Tarea 3: Curvas Elípticas.

- 1. Sea la curva elíptica $E := y^2 = x^3 + x + 9$ definida sobre \mathbb{Z}_{17}
 - i) Calcula y muestra todos los puntos de E.
 - ii) Alicia desea enviar el siguiente mensaje C = (a, b) = ((12, 7), (11, 12)) a Bob, los parámetros públicos de Bob son $\alpha = (0, 3) \in E$ una raíz primitiva y $\beta = (13, 3)$, donde $\beta = s\alpha$ y s su llave privada. Usa cualquier algoritmo mencionado en la sección 5.2 del libro "Elliptic Curves Number Theory and Cryptography de Lawrence C. Washington" Para resolver el PLD.
 - iii) A partir de la información encontrada en ii) descifra el mensaje enviado a Bob.
- 2. Sea $E := y^2 = x^3 20x + 21 \pmod{35}$ y sea $P = (15, -4) \in E$.
 - i) Factoriza 35 tratando de calcular 3P.
 - ii) Factoriza 35 tratando de calcular 4P duplicándolo.
 - iii) Calcula ambos 3P y 4P sobre $E \pmod{5}$ y sobre $E \pmod{7}$ explica por que el factor 5 se obtiene calculando 3P y el factor 7 se obtiene calculando 4P.
- 3. Alicia quiere firmar un mensaje utilizando el esquema ElGamal elíptico con los siguientes parámetros: p=314159, a=217, b=2006, P=(123456,43989), n=314423. Su clave privada es d=223344 y su clave pública es Q=(216438,187612).
 - i) Si el mensaje que quiere firmar es m=6500 (cantidad de pesos que quiere retirar de su cuenta mediante una transferencia bancaria), ¿cuál es la firma digital de m? (supongamos que el entero aleatorio k tal que $1 \le k \le n-1$ que se tiene que escoger es igual a 666).
 - ii) ¿Qué cómputos tiene que hacer el banco para verificar la firma de Alicia?
- 4. Sea $\mathbb{E}: y^2 = x^3 + 333x + 2$ sobre \mathbb{F}_{347} y sea P = (110, 136)
 - (a) Si sabemos que $|\mathbb{E}| = 358$. ¿podemos decir que \mathbb{E} es criptográficamente útil?, ¿Cuál es el orden de P? ¿Entre que valores se puede escoger la clave privada?
 - (b) Si tu clave privada es d = 101 y algún conocido te ha enviado el mensaje cifrado $(C_1 = (232, 278), C_2 = (135, 214))$ ¿Cuál era el mensaje original?
- 5. Sea $\mathbb{E}: y^2 = x^3 + 2x + 7$ sobre \mathbb{Z}_{31} con $\#\mathbb{E} = 39$ y P = (2,9) es un punto de orden 39 sobre \mathbb{E} , el ECIES simplicado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m = 8
 - (a) Calcula Q = mP
 - (b) Descifra la siguiente cadena de texto cifrado ((18,1),21),((3,1),18)),((17,0),19),((28,0),8)
 - (c) Supongamos que cada texto plano representa un caracter alfabético, convierte el texto plano en una palabra en ingles. usa la asociación $(A \longrightarrow 1, ..., Z \longrightarrow 26)$ en este caso 0 no es considerado como un texto plano o un par ordenado¹.

¹Nota: La tarea es en parejas con personas diferentes a las que hicieron las tareas 1 y 2, se entrega el viernes 30 de noviembre antes de las 11:59 p.m, solo formato pdf, enviarla a dolphinperruno@gmail.com, c.c.p. mandiaz@ciencias.unam.mx, tareas recibidas después de esta hora se calificara sobre 6, no mandar captura de código para justificar procedimientos.