1. The area of shaded portion is

- A) $+\int_0^a y dx$ B) $+\int_0^a x dy$
- D) $-\int_0^b x dy$
- Integrate the following function $\int \frac{1}{(-2x+4)} dx$ 2.
- The rate of change of displacement with respective to time gives instantaneous velocity. The 3. velocity of a particle at instant t is $V = (2t+5)^2 ms^{-1}$. Find the displacement in 1s.
 - A) 49 m
- B) 36.3 m
- D) 10 m
- The rate of change of velocity gives acceleration. The acceleration of a particle is $a = 3t^2 ms^{-2}$. The 4. velocity of particle at t = 0 is $1ms^{-1}$. Find velocity of the particle at t = 2s.
 - A) 12 ms^{-1}
- B) 13 ms^{-1}
- C) 11 ms^{-1}
- D) 9 ms^{-1}
- The acceleration of a particle is $a = a_0 bv$, where V is velocity at instant t. The particle starts from 5. rest at t = 0. Find velocity of the particle as function of time.
 - A) $V = \frac{a_0}{h} (1 e^{-bt})$ B) $V = \frac{b}{a} (1 e^{-bt})$ C) $V = \frac{a_0}{h} e^{-bt}$ D) $V = \frac{a_0}{h} (1 e^{bt})$

- The rate of change of velocity gives acceleration. The acceleration of a particle is $a = -\omega^2 x$, where 6. ω is constant and x is position of the particle at instant t. Find velocity of the particle as function of x, if v = 0 at x = A.
- A) $V = \omega (A x)$ B) $V = \omega \sqrt{A^2 x^2}$ C) $V = \frac{\omega}{2} \sqrt{A^2 x^2}$ D) $V = A\omega$
- The net force on a particle is the rate of change of momentum. If net force on a particle is 7. $F = (4+3t^2)N$ along X-axis. Find change in momentum from t = 0 to t = 1s.
 - A) Zero
- B) 2 N-s
- C) 4 N-s
- D) 20 N-s

- Find the value of 8.
- $\int_{0}^{4} |(1-x)| dx$
B) 1 C) 4
- A) Zero
- D) 5
- The rate of flow of charge in L-R circuit is $I = I_0 \left(1 e^{-\frac{t}{\lambda}} \right)$. Find total charge flow from t = 0 to $t = \lambda$ 9.
 - A) $\frac{\lambda I_0}{\rho}$
- B) λI_0
- C) $e\lambda I_0$
- D) $2\lambda I_0$
- Work done by variable force is $W = \int F dr$. If a force $F = \frac{k}{r^2}$ is acting on a body. Find work done by 10. force when the body displaces from $r = r_0$ to $r = \infty$.
 - A) Zero
- B) $\frac{k}{r_0}$ C) $\frac{2k}{r_0}$ D) $\frac{k}{2r_0}$
- The average value of quantity a is $\langle a \rangle = \frac{\int a \ dt}{\int dt}$. If the velocity of a particle is $V = bt^2$. In time 11. interval t = 0 to t = 1s,
 - A) average velocity is $\frac{b}{2}$

B) average acceleration is b

C) average velocity is zero D) average acceleration is zero

- 12. The electric current is $I = \frac{dq}{dt}$. Current, I = bt is passing through a wire. Find out the correct statement(s).
 - A) The charge flow through wire in time interval t = 0 to $t = t_0$ is $\frac{bt_0^2}{2}$
 - B) The average current through wire from t = 0 to t = t_0 is $\frac{bt_0}{2}$
 - C) The charge flow through wire is zero
 - D) The charge flow through wire from t = 0 to $t = t_0$ is infinity
- 13. The area of the region bounded by the parabola $y^2 = 4ax$, where a = 9m, its axis and two coordinates x = 4m and x = 9m is 19n. Find the value of n.
- 14. The area of the smaller portion of the circle $x^2 + y^2 = 4$ cut-off by the line x = 1 is $\left(\frac{n\pi 3\sqrt{3}}{3}\right)m^2$. Find the value of n.
- 15. Find the area between the X-axis and the curve $y = \sin x$ from x = 0 and $x = \pi$.
- 16. If $V_x = \frac{dx}{dt}$ and $V_y = \frac{dy}{dt}$, where V_x and V_y are x-component and y-component of velocity, respectively. A particle is moving on a curved path as such $V_x = 10 \, \text{m/s}$ and $V_y = 10 \, (1-t)$. The relation between x and y-coordinates independent of time gives the equation of path of the particle. Find the equation of the path of the particle starts from origin of coordinate system.
 - A) $y = x \frac{x^2}{20}$ B) $y = x + \frac{x^2}{20}$ C) y = 20x D) $x = y \frac{y^2}{20}$
- 17. The rate of change of velocity gives acceleration. The acceleration of a particle is $a = a_0 e^{-bt}$ in the X-direction. If particle starts from rest, its velocity versus time graph is

- 18. A particle is moving whose component of velocity along X-axis, V_x =by and the component of velocity along Y-axis is $V_y = bx$. Here, $V_x = \frac{dx}{dt}$ and $V_y = \frac{dy}{dt}$. The equation of path of the particle is
 - A) $x^2 + y^2 = constant B$) $x^2 y^2 = constant$
 - C) xy = constant

- D) x = y + constant
- 19. A particle starts from rest from x = 0 with a velocity $V = b\sqrt{x}$ along X-axis. Velocity-time graph for particle is

The relation between time t and distance x is $t = bx^2 + cx$, where b and c are constants. Find 20. acceleration as function of x.

A)
$$\frac{2b}{(c+2bx)^3}$$

B)
$$\frac{-2b}{(c+2bx)^3}$$
 C) $\frac{-b}{(c+bx)^3}$ D) $\frac{-3b}{(c+2bx)^3}$

C)
$$\frac{-b}{(c+bx)^3}$$

D)
$$\frac{-3b}{(c+2bx)^3}$$

The conservative force is defined as $F = -\frac{\partial U}{\partial x}\hat{\mathbf{i}} - \frac{\partial U}{\partial y}\hat{\mathbf{j}} - \frac{\partial U}{\partial z}\hat{\mathbf{k}}$, where U is potential energy. The 21.

potential energy of a particle is $U = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)$ J. Find conservative force on the particle at x = 2 m.

- A) 6 N along negative X-axis
- B) 6 N along positive X-axis
- C) 0 N along positive X-axis
- D) Zero
- The kinetic energy of a particle is $E_k = \frac{1}{2} mv^2$, where m is mass of particle and v is its speed. 22.

Power is the rate of change of kinetic energy. A constant power P is supplied to a particle of mass m. Find velocity of the particle as function of time.

A)
$$\sqrt{\frac{Pt}{m}}$$

B) $\frac{2Pt}{m}$ C) $\sqrt{\frac{2Pt}{m}}$ D) $\sqrt{\frac{4Pt}{m}}$

The x-coordinate of centre of mass is $x_{CM} = \frac{\int x dm}{\int dm}$ 23.

The linear mass density (mass per unit length) of a thin rod as shown in the figure is $\lambda = \lambda_0 X$. where $\,\lambda_0^{}$ is constant. Find the x-coordinate of centre of mass of rod.

- A) $\frac{1}{2}$
- B) $\frac{1}{2}$

- Potential difference $dv = -E \cdot dr$, where E is electric field. If electric field in a region is $E = -ax^2 \hat{i}$ 24. and potential of the origin is zero. Find potential at x = b.
 - A) ab
- B) ab^3
- C) $\frac{ab^3}{3}$
- D) Zero
- The root mean square value of current is $I_{rms} = \sqrt{\frac{\int I^2 dt}{\int dt}}$. Current through a wire is $I = I_0 \sin \omega t$. 25.

Find root mean square value of current from t = 0 to $t = \frac{2\pi}{\omega}$.

- A) I_0
- B) I_0^2
- C) $\frac{2I_0}{\pi}$ D) $\frac{I_0}{\sqrt{2}}$

If $y = \frac{b^2x}{(a^2 + x^2)^{3/2}}$, the y-x graph for $x \ge 0$ is 26.

27. The rate of change of velocity with respect to time is acceleration of the particle. A particle starts from rest. Its acceleration versus time graph is as shown in figure. The displacement versus time graph for the particle is

28. If $-\frac{dy}{dx} = -kx + ax^3$. Here, k and a are positive constants. For $x \ge 0$, y-x graph is

29. Apparent depth $=\int \frac{dy}{\mu}$

$$y=1$$
 uni
$$\mu=1+y$$

$$y=0$$

Where, μ is refractive index of the medium. But optical path $=\int \mu\,dy$. In the medium as shown in figure,

A) Apparent depth is ln 2

B) apparent depth is ln 3

C) optical path is ln 2 unit

- D) optical path is $\frac{3}{2}$ unit
- 30. If velocity of a particle is $v = \frac{dx}{dt}$ and acceleration of the particle is $a = \frac{dv}{dt}$. The acceleration of a particle moving along X-axis is $-\frac{1}{2x^2}$ ms⁻². At t = 0m x = 1m and v = 0. Find its magnitude of velocity (in ms⁻¹) at x = 0.5 m.
- 31. If $y = \frac{15}{4(0.75\sin\theta + \cos\theta)}$. Find minimum value of |y|
- 32. If a particle is in stable equilibrium, potential energy is minimum. If potential energy of a particle is $U = \left(\frac{1}{r^2} \frac{2}{r}\right)J$. Find the value of r (in metre) at stable equilibrium of the particle.

PART-B:KEY

 $-\frac{1}{2}ln\bigl(-2x+4\bigr)+k$ 1. C 4. D 5. Α 6. В C D 10. 7. 11. AB 12. AB 13. 15. 16. 17. C 19. 14. 18. В C 20. В 21. Α 22. 24. 25. D 26. C 27. Α 29. 31. 32. 28. 30.