Derivace – trénink na písemku

Výsledky jsou na druhé straně.

Úloha 1. Nalezněte rovnici tečny

- (a) k funkci 2^x v bodě 0,
- (b) k funkci $\sin x$ v bodě π .

Úloha 2. U následujících funkcí určete maximální (tj. co největší) intervaly, na kterých je funkce rostoucí či klesající, a nalezněte všechna lokální maxima a minima.

(a)
$$2x^3 - x^2 - 8x - 4$$

(b)
$$x^4 - 8x^3 + 18x^2 - 5$$

(c)
$$\frac{3}{x} - \frac{1}{x^2}$$

(d)
$$\frac{1-2x^2}{x^2+3}$$

(e)
$$x^2 - \ln(x^2)$$

Úloha 3. Nalezněte globální extrémy následujících funkcí na zadaných intervalech:

(a)
$$\frac{x}{x^2+1}$$
 na $\langle 0; 2 \rangle$

(b)
$$(x^2 + 1)e^x$$
 na $\langle -2; 0 \rangle$

(c)
$$2x^3 - x^2 - 8x - 4$$
 na $\langle -3; 2 \rangle$

Výsledky

Úloha 1. (a) $y = (\ln 2)x + 1$; (b) $y = -x + \pi$

- **Úloha 2.** (a) Rostoucí na $(-\infty; -1)$ a $\langle \frac{4}{3}; \infty \rangle$, klesající na $\langle -1; \frac{4}{3} \rangle$, lok. maximum v -1, lok. minimum v $\frac{4}{3}$.
 - (b) Rostoucí na $(0, \infty)$, klesající na $(-\infty, 0)$, lok. minimum v 0. (Stacionární bod 3 není extrémem.)
 - (c) Rostoucí na $(0; \frac{2}{3})$, klesající na $(-\infty; 0)$ a $(\frac{2}{3}; \infty)$, lok. maximum v $\frac{2}{3}$. (Pozor na to, že je potřeba vzít v potaz i bod 0, ve kterém funkce není definována.)
 - (d) Rostoucí na $(-\infty; 0)$, klesající na $(0; \infty)$, lok. maximum v 0.
 - (e) Rostoucí na $\langle -1; 0 \rangle$ a $\langle 1; \infty \rangle$, klesající na $(-\infty; 1)$ a $\langle 0; 1 \rangle$, lok. minimum v -1 a 1.

Úloha 3. (a) Minimum v 0, maximum v 1.

- (b) Minimum v 1, maximum v 0.
- (c) Minimum v 3, maximum v 1.