Poisson problem in a 2D annulus

Problem

Our objective is to solve

$$-\Delta u(\mathbf{x}) = f(\mathbf{x}) = -\frac{1}{r^2} \left[\pi r \cos(\pi r) - (\pi^2 r^2 + \omega^2) \sin(\pi r) \right] \cos(\omega \theta), \qquad \forall \mathbf{x} \in \Omega,$$

$$u(\mathbf{x}) = u_I(\mathbf{x}) = \sin(0.25\pi) \cos(\omega \theta), \qquad \forall \mathbf{x} \in \Gamma_I,$$

$$\partial_r u = -\pi \cos(\omega \theta), \qquad \forall \mathbf{x} \in \Gamma_O,$$

where $\omega = 2$ and $(r(\mathbf{x}), \theta(\mathbf{x}))$ are the polar coordinates. The domain is given by

$$\Omega = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\} \setminus \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \le 0.25\},
\Gamma_I = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 0.25\},
\Gamma_O = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1\}.$$

The exact solution, shown in Figure 1, is

$$u(\mathbf{x}) = \sin(\pi r)\cos(\omega \theta).$$

Note that we want to impose the outer boundary via $\partial_r u = -\pi \cos(\omega \theta)$ (not via Dirichlet boundary conditions).

Weak formulation

The discrete weak formulation is given as follows. Find $u_h \in V_h^{\Gamma_I}$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla \varphi d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) \varphi d\mathbf{x} - \pi \int_{\Gamma_{\Omega}} \cos(\omega \theta) \varphi d\mathbf{s}, \quad \forall \varphi \in V_h$$

where

$$V_h = \{ v \in C^0(\Omega) : v_K \in \mathbb{P}^p(K), v(\mathbf{x}) = 0 \ \forall \mathbf{x} \in \Gamma_I \},$$
$$V_h^{\Gamma_I} = \{ v \in C^0(\Omega) : v_K \in \mathbb{P}^p(K), v(\mathbf{x}) = u_I(\mathbf{x}) \ \forall \mathbf{x} \in \Gamma_I \}.$$

Numerical results

Let us solve the problem with different polynomial spaces. As a reference, we first use the exact solution to impose the outer boundary strongly. The results of a convergence study are summarized in Table 1. We obtain the expected convergence rates.

Figure 1: Left: exact solution. Right: typical mesh

Г		p = 1		p=2		p=3		p=4	
	Cells	E_2	rate	E_2	rate	E_2	rate	E_2	rate
	1536	4.85e-03	_	1.06e-04	_	2.26e-06	_	4.56e-08	_
	6144	1.21e-03	2.00	1.32e-05	3.00	1.41e-07	4.00	1.42e-09	5.00
	24576	3.03e-04	2.00	1.65e-06	3.00	8.82e-09	4.00	4.45e-11	5.00
	98304	7.59e-05	2.00	2.07e-07	3.00	5.52e-10	4.00	1.51e-12	4.88
	393216	1.90e-05	2.00	2.58e-08	3.00	3.47e-11	3.99	9.51e-12	-2.65

Table 1: Convergence imposing the outer boundary strongly.

Now let us consider the outer boundary via $\partial_r u = -\pi \cos(\omega \theta)$. The results of a convergence study are summarized in Table 2. The convergence rate drops to second-order. The reason being that the condition $\partial_r u = -\pi \cos(\omega \theta)$ assumes the outer boundary is a perfect circle. However, we approximate it via straight lines. In particular, we perform the integral $\int_{\Gamma_O} \cos(\omega \theta) d\mathbf{s}$ along straight lines.

	p=1		p=2		p=3		p=4	
Cells	E_2	rate	E_2	rate	E_2	rate	E_2	rate
1536	5.16e-03	_	1.34e-04	_	7.89e-05	_	7.89e-05	_
6144	1.29e-03	2.00	2.39e-05	2.49	1.97e-05	2.00	1.97e-05	2.00
24576	3.23e-04	2.00	5.20e-06	2.20	4.91e-06	2.00	4.91e-06	2.00
98304	8.07e-05	2.00	1.25e-06	2.06	1.23e-06	2.00	1.23e-06	2.00
393216	2.02e-05	2.00	3.08e-07	2.02	3.07e-07	2.00	3.07e-07	2.00

Table 2: Convergence with Neumann boundary conditions with a Q_1 approx. of the boundary.

To recover the high-order accuracy, we can approximate the boundary (and the domain) via high-order polynomials. In deal. II this is done by using high-order element transformations. The results of a convergence test using element transformations based on polynomials of degree p are shown in Table 3.

	p = 1		p=2		p=3		p=4	
Cells	E_2	rate	E_2	rate	E_2	rate	E_2	rate
1536	5.16e-03	_	7.16e-05	_	1.10e-06	_	1.33e-08	_
6144	1.29e-03	2.00	8.96e-06	3.00	6.87e-08	4.00	4.17e-10	5.00
24576	3.23e-04	2.00	1.12e-06	3.00	4.29e-09	4.00	1.30e-11	5.00
98304	8.07e-05	2.00	1.40e-07	3.00	2.68e-10	4.00	9.56e-13	3.77
393216	2.02e-05	2.00	1.75e-08	3.00	1.68e-11	4.00	2.24e-12	-1.23

Table 3: Convergence with Neumann boundary conditions with Q_p mappings.

References

- To generate circular and annular domains, see
 - https://www.dealii.org/9.0.0/doxygen/deal.II/step_1.html, https://www.dealii.org/7.3.0/doxygen/deal.II/classGridGenerator.html.
- To attach manifold descriptions to boundaries, see https://www.dealii.org/9.0.0/doxygen/deal.II/group__manifold.html.
- To use high-order mappings, see

```
https://www.dealii.org/current/doxygen/deal.II/classMappingQGeneric.html, https://www.dealii.org/current/doxygen/deal.II/classMappingQ.html.
```

- To see the effect of using high-order mappings in circular domains, see https://www.dealii.org/current/doxygen/deal.II/step_10.html.
- To output data using a high-order mapping, see the function build_patches in https://www.dealii.org/current/doxygen/deal.II/classDataOut.html.
- To impose Dirichlet boundary conditions via high-order mappings, see interpolate_boundary_values in

```
https://www.dealii.org/current/doxygen/deal.II/namespaceVectorTools.html.
```

• To compute error norms based on high-order mappings, see integrate_difference in https://www.dealii.org/current/doxygen/deal.II/namespaceVectorTools.html.