

Protokol Semestrálny projekt z predmetu Signály a systémy

Obsah

1	Štan	ndardné zadanie	1
	1.1	Základy	1
	1.2	Predspracovanie rámca	2
	1.3	DFT	2
	1.4	Spektogram	3
	1.5	Určenie rušivých frekvencií	4
	1.6	Generovanie signálu	4
2		iaci filter Návrh 4 pásmových zádrží	4
3	Nulové body a póly		4
4	Frekvenčná charakteristika		
5	Závo	er - filtrácia signálu	7

Úvod

V tomto projekte sa venujem analýze zadanému audio súboru vo formáte .wav, nájdeniu zanesených rušivých frekvencií, vytvoreniu filtra na ich odstránenie a jeho aplikáciu na pôvodnú nahrávku.

1 Štandardné zadanie

1.1 Základy

Tabuľka 1 popisuje získané informácie o signále

Vzorkovacia frekvencia	16 kHz
Dĺžka [vzorky]	$46797 \mathrm{samples}$
Dĺžka [s]	$2.9248125\mathrm{s}$
Minimálna hodnota	3427
Maximálna hodnota	-2953

Tabulka 1: Základné informácie o signále

Tabulka 2: Zobrazenie pôvodného signálu

1.2 Predspracovanie rámca

Pôvodný signál bol rozdelený do rámcov dĺžky 1024 vzoriek s prekryvom 512 vzoriek. Tým vzniklo 90 celých rámcov pre ď alšie spracovanie. Po vykreslení všetkých vzoriek som ručne vybral opticky najkrajší periodický rámec. Po prehratí vybraného rámca som zistil, že obsahuje vyslovenie samohlásky "a", takže splňuje aj podmienku znelosti.

Tabulka 3: Graf vybraného rámca

1.3 **DFT**

Po implementácii mojej funkcie <code>my_slow_dft()</code> a využití <code>np.fft.fft()</code> som porovnal výstupy jednotlivých funkcií. Numericky boli výsledné frekvencie rovnaké. Podstatný rozdiel bol v dĺžke behu, kde môj algoritmus trval približne $1.71\,\mathrm{s}$ a algoritmus z knižnice <code>numpy</code> pracoval $1.74\times10^{-4}\,\mathrm{s}$. Došlo teda k $10\,000$ -násobnému zrýchleniu. Potvrdila sa korelácia medzi dvomi uvedenými funkciami s presnoťou $1\times10^{-4}\,\mathrm{s}$.

Tabulka 4: Graf vybraného rámca po aplikácii DFT

1.4 Spektogram

Na vykreslenie spektogramu z vybraného znelého rámca som využil funkciu plt.specgram().

Tabulka 5: Spektogram vybraného rámca

1.5 Určenie rušivých frekvencií

Zo spektogramu sa dajú odčítať rušivé frekvencie. Všetky majú navyše harmonický vzťah a ležia na násobkoch \approx 740 Hz.

1.6 Generovanie signálu

Na generovanie signálu som použil vstavanú funkciu np.cos. Výsledný signál vznikol sčítaním štyroch funkcií kosínus na patričných frekvenciách.

Tabulka 6: Spektogram vytvoreného šumu

2 Čistiaci filter

2.1 Návrh 4 pásmových zádrží

Na vytvorenie čistiaceho filtra som zvolil metódu 4 pásmových zádrží. Pomocou funkcie signal.buttord () som najprv zistil vhodný rád Butterworth filtra a tiež kritické frekvencie pásmovej zádrže. Na výpočet parametrov bolo potrebné najprv vypočítať frekvencie pre vhodnú šírku záverného pásma(30 Hz) a tiež šírku prechodu do priepustného pásma(50 Hz). Následne som posunul získané hodnoty funkcii scipy.signal.butter(), ktorá z nich vypočítala koeficienty prenosovej funkcie. Pomocnou nich došlo k odfiltrovaniu zaneseného šumu v štyroch krokoch, jednej pre každú rušivú frekvenciu.

3 Nulové body a póly

Keď že každú rušivú frekvenciu so svojimi koeficientmi a,b je potrebný jeden samostaný filter, tak má každá svoje nuly a k nim prislúchajúce póly. Po vykreslení do komplexnej roviny som zistil, že nuly jednej frekvencie ležia vždy velmi tesne na sebe tak, že sa prekrývajú tesne na hranici jednotkovej kružnice a teda filter je stabilný.

Tabulka 7: Nuly a póly v komplexnej rovine

Tabulka 8: Nuly a póly v komplexnej rovine s priblížením

4 Frekvenčná charakteristika

Po vytvorení filtrov a získaní koeficientov ich prenosovej funkcie som vykreslis frekvenčnú charakteristiku každého z filtrov a vykreslil do dvoch grafov, z ktorých jeden vykresluje magnitúdu a druhý fázový posun filtrov. Na prvom grafe sú ľahko viditeľné potláčané frekvencie(násobky 740 Hz).

Tabulka 9: Nuly a póly v komplexnej rovine

Tabulka 10: Impulzná odozva na filter odstraňujúci frekvenciu $2220\,\mathrm{Hz}$

5 Záver - filtrácia signálu

Po aplikácii filtrov došlo k veľmi peknému vyčisteniu signálu. Prekvapilo ma, že filter dokázal potlačiť aj "pískanie", ktoré je bežným pozostatkom pri využití Butterworth filtra kvôli jemnejšie skosenej hrane vo frekvenčnej charakteristike.