SVM – Support Vector Machines Metoda wektorów nośnych

JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology

UM – slajdy dodatkowe do wykładu

Plan wykładu

- Liniowa separowalność w statystycznej klasyfikacji
- 2. Podstawy metody SVM
- 3. Uogólnienie SVM (nie w pełni separowalne liniowo)
- 4. Funkcje jądrowe (kernal functions)
- 5. SVM dla danych separowalnych nieliniowo
- 6. Podsumowanie
- 7. Gdzie szukać więcej

Formalizacja problemu klasyfikacji

• W przestrzeni danych (ang. measurement space) Ω znajdują się wektory danych \mathbf{x} stanowiące próbkę uczącą D, należące do dwóch klas

$$D = \{ (\mathbf{x}_i, c_i) | x_i \in \mathbb{R}^p, c_i \in \{1, -1\} \}_{i=1}^{N}$$

- Szukamy klasyfikatora pozwalającego na podział całej przestrzeni Ω na dwa rozłączne obszary odpowiadającej klasom {1,-1} oraz pozwalającego jak najlepiej klasyfikować nowe obiekty x do klas
- Podejście opiera się na znalezieniu tzw. granicy decyzyjnej między klasami → g(x)

Separowalność liniowa

 Dwie klasy są liniowo separowalne, jeśli istnieje hiperpłaszczyzna H postaci g(x)

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

przyjmująca wartości

$$\begin{cases} g(\mathbf{x}_i) > 0 & \mathbf{x}_i \in 1 \\ g(\mathbf{x}_i) < 0 & \mathbf{x}_i \in -1 \end{cases}$$

Jak poszukiwać takiej hiperpłaszczyzny granicznej?

Liniowa funkcja separująca

- Funkcja liniowa separująca
- Wyznacza podział przestrzeni na obszary odpowiadające dwóm klasom decyzyjnym.
- Oryginalna propozycja
 Fisher, ale także inne
 metody (perceptron, itp..)
- Uogólnienia dla wielu klas.

 Znajdź liniową hiperpłaszczyznę (decision boundary) oddzielające obszary przykładów z dwóch różnych klas

Jedno z możliwych rozwiązań

Inne możliwe rozwiązanie

Zbiór wielu możliwych rozwiązań

- Którą z hiperpłaszczyzn należy wybrać? B1 or B2?
- Czy można to formalnie zdefiniować?

Uwagi o marginesie

- Hiperpłaszczyzny b_{i1} i b_{i2} są otrzymane przez równoległe przesuwanie hiperpłaszczyzny granicznej aż do pierwszych punktów z obu klas.
- Odległość między nimi margines klasyfikatora liniowego
- Jaki margines wybierać?

Figure 5.22. Margin of a decision boundary.

Węższe czy szersze marginesy?

- Szerszy margines → lepsze własności generalizacji, mniejsza podatność na ew. przeuczenie (overfitting)
- Wąski margines mała zmiana granicy, radykalne zmiany klasyfikacji

Teoria "Structural risk minimization"

 Oszacowanie górnej granicy błędu ze względu na błąd uczący R_e, liczbę przykładów N i tzw. model complexity h z prawdopodobieństwem 1-η "generalization error" nie przekroczy:

 $R \le R_e + \varphi(\frac{h}{N}, \frac{\log(\eta)}{N})$

- Prace teoretyczne h complexity dla modelu liniowego:
- "Models with small margins have higher capacity -complexity because they are more flexivle and can fit many training sets"
- Także "The hypothesis space with minimal VC-dimension according to SRM"
- Reasumując modele o wiekszej complexity mają gorsze oszacowanie błędu
- Dlatego wybieraj większy margines!

Znajdź hiperpłaszycznę, która maksymalizuje tzw. margines => B1 jest lepsze niż B2

Liniowe SVM hiperpłaszczyzna graniczna

Vapnik – poszukuj "maximal margin classifier"

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$$

gdzie w i b są parametrami modelu

$$y = \begin{cases} 1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0 \\ -1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} < 0 \end{cases}$$

 Parametry granicy wyznaczaj tak, aby maksymalne marginesy b_{i1} i b_{i2} były miejscem geometrycznym punktów x spełniających warunki

$$b_{i1} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1$$
$$b_{i2} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1$$

Margines – odległość między płaszczyznami b_{i1} i b_{i2}

Poszukiwanie parametrów hiperpłaszczyzny

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

Ilustracje i sposób przekształceń

Fig. 2. A binary classification toy problem: separate balls from diamonds. The *optimal hyperplane* is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half-way between the two classes. The problem is separable, so there exists a weight vector \mathbf{w} and a threshold b such that $y_i \cdot ((\mathbf{w} \cdot \mathbf{x}_i) + b) > 0$ $(i = 1, \dots, m)$. Rescaling \mathbf{w} and b such that the point(s) closest to the hyperplane satisfy $|(\mathbf{w} \cdot \mathbf{x}_i) + b| = 1$, we obtain a *canonical* form (\mathbf{w}, b) of the hyperplane, satisfying $y_i \cdot ((\mathbf{w} \cdot \mathbf{x}_i) + b) \ge 1$. Note that in this case, the *margin*, measured perpendicularly to the hyperplane, equals $2/||\mathbf{w}||$. This can be seen by considering two points $\mathbf{x}_1, \mathbf{x}_2$ on opposite sides of the margin, i.e., $(\mathbf{w} \cdot \mathbf{x}_1) + b = 1$, $(\mathbf{w} \cdot \mathbf{x}_2) + b = -1$, and projecting them onto the hyperplane normal vector $\mathbf{w}/||\mathbf{w}||$ (from [29]).

$$\mathbf{margin} = \frac{2}{\|\mathbf{w}\|}$$
$$\|\mathbf{w}\| \equiv \sqrt{w_1^2 + \dots + w_p^2}$$

Cel: Maksymalizuj margines!

$$\frac{2}{\|\mathbf{w}\|} \longrightarrow \frac{\|\mathbf{w}\|}{2} \longrightarrow \frac{\|\mathbf{w}\|^2}{2}$$

maximize

minimize

minimize

Linear Support Vector Machines

Sformułowanie mat. problemu:

$$\min_{\mathbf{w}} = \frac{\|\mathbf{w}\|^2}{2}$$

Przy warunkach ograniczających

$$y_i(w \cdot x_i + b) \ge 1$$
 $i = 1, 2, ..., N$

 Jest to problem optymalizacji kwadratowej z liniowymi ogr. → uogólnione zadanie optymalizacji rozwiązywany metodą mnożników Lagrange'a (tak aby np. nie dojść do w → 0)

LSVM

Minimalizuj funkcję Lagrange'a

$$L(w,b,\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (y_i(\mathbf{w}\mathbf{x}_i + b) - 1)$$

- parametry α ≥0 mnożniki Lagrange'a
- Powinno się różniczkować L po w i b nadal trudności w rozwiązaniu
- Przy przekształceniach wykorzystuje się ograniczenia Karush-Kuhn-Tucker na mnożniki:

$$\alpha_i \ge 0$$

$$\alpha_i [y_i (w \cdot x_i + b) - 1] = 0$$

- W konsekwencji α_i są niezerowe wyłącznie dla wektorów nośnych \mathbf{x} , pozostałe są zerowe
- Rozwiązanie parametrów w i b zależy wyłącznie od wektorów nośnych.

LSVM - sformułowanie dualne

- Nadal zbyt wiele parametrów w,b,α do oszacowania
- Przechodzi się na postać dualną zadania optymalizacji
- Maksymalizuj L(α) $\sum_{i=1}^{N} \alpha_i \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$
- Przy ograniczeniach

$$\alpha_i \ge 0, \ \forall i \ \sum_{i=1}^N \alpha_i y_i = 0$$

Rozwiązanie (α>0 dla i∈SV); b – odpowiednio uśredniane

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

Hiperpłaszczyzna decyzyjna

$$\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b = 0$$

Rozwiązanie LSVM

Klasyfikacja – funkcja decyzyjna

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b)$$

- O ostatecznej postaci hiperpłaszczyzny decydują wyłącznie wektory nośne ($\alpha_{\rm i}$ >0)
- Im większa wartość $\alpha_{\rm i}$ tym większy wpływ wektora na granicę decyzyjną
- Klasyfikacja zależy od iloczynu skalarnego nowego x z wektorami nośnymi x_i ze zbioru uczącego
- Pewne założenie metody starać się zbudować klasyfikator liniowy używając możliwie minimalną liczbę wektorów z danych treningowych (wektory nośne)
- Funkcjonalnie klasyfikator podobny do niektórych sieci neuronowej, metod jądrowych Parzena

Przykład

Obliczmy wagi

$$v_1 = \sum_i \alpha_i y_i x_{i1} = 65.5621 \cdot 1 \cdot 0.3858 + 65.5621 \cdot (-1) \cdot 0.4871 = -6.64$$

$$w_2 = \sum_i \alpha_i y_i x_{i2} = 65.5621 \cdot 1 \cdot 0.4687 + 65.5621 \cdot (-1) \cdot 0.611 = -9.32$$

x ₁	X ₂	у	Lagrange Multiplier
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

$$b' = 1 - (-6.64) \cdot 0.3858 - (-9.32)(0.4687) = 7.930$$

$$b'' = -1 - (-6.64) \cdot 0.4871 - (-9.32)(0.611) = 7.928$$

$$b = 0.5 \cdot (b' + b'') = 7.93$$

Figure 5.24. Example of a linearly separable data set.

 Co robić z LSVM gdy dane nie są w pełni liniowo separowalne?

Jak użyć SVM dla dane liniowo nieseparowalnych

Figure 5.25. Decision boundary of SVM for the nonseparable case.

Zmienne dopełniające

Figure 5.26. Slack variables for nonseparable data.

Zmienne osłabiające - interpretacja

- Zmienne ξ_i≥0 dobiera się dla każdego przykładu uczącego. Jej wartość zmniejsza margines separacji. (rodzaj "zwisu" punktu poza hiperpłaszczyzną nośną)
- Jeżeli $0 \le \xi_i \le 1$, to punkt danych (\mathbf{x}_i, d_i) leży wewnątrz strefy separacji, ale po właściwej stronie
- Jeżeli ξ_i>1, punkt po niewłaściwej stronie hiperpłaszczyzny i wystąpi błąd klasyfikacji
- Modyfikacja wymagań dla wektorów nośnych

$$b_{i1}$$
 $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1 - \xi$
 b_{i2} $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1 + \varsigma$

Linear SVM – niepełna separowalność

■ For all ©

$$w_1 * x_1 + w_2 * x_2 \ge b + 1$$

■ For ⓒ

$$w_1 * x_1 + w_2 * x_2 \ge b + 1 - \xi$$

...for some positive ξ

Task: Maximize the margin and minimise training errors

$$\frac{\|\mathbf{w}\|^2}{2} \xrightarrow{\mathbf{BECOMES}} \frac{\|\mathbf{w}\|^2}{2} + C(\sum_i \xi_i)$$

--inimi-a

minimi-a

SVM z dodatkowymi zmiennymi

- Jak przedefiniować sformułowanie? Z dodatkowymi zmiennymi dopełniającym oraz kosztem błędu na danych uczących
 - Mimimalizuj wyrażenie: $L(w) = \frac{||\vec{w}||^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$
 - z ograniczeniami:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le 1 + \xi_i \end{cases}$$

- Drugi czynnik odpowiada za ew. błędy testowania (górne oszacowanie tych błędów
- Parametr C ocena straty związanej z każdym błędnie klasyfikowanym punktem dla które ξ>0
- Przetarg "szeroki margines" to dużo błędów i odwrotnie

Controlling Soft-Margin Separation

Soft Margin: minimize
$$P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{i=1} \xi_i$$

s. t. $y_i [\vec{w} \cdot \vec{x}_i + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

- $\sum \xi_i$ is an upper bound on the number of training errors.
- C is a parameter that controls trade-off between margin and error.

Rozwiązanie problemu

Programowanie kwadratowe (QP) : trudności rozwiazania → przeformułuj problem

Globalne max α_i może być adnalaziona

 Ponownie dojdziemy do dualnego problemu:

Max: $W(\alpha) =$

$$\sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i} \bullet \mathbf{x}_{j} \right)$$

$$-\sum_{i=1}^{m}\sum_{j=1}^{m}a_{i}$$

ogranicz:

(1)
$$0 \le \alpha i \le C, \forall i$$

$$(2) \quad \sum_{i=1}^{m} \alpha_i \, y_i = 0$$

Example Reuters "acq": Varying C

Observation: Typically no local optima, but not necessarily...

Nonlinear Support Vector Machines

 Co zrobić gdy próby uczące powinny być nieliniowo separowalne?

Nonlinear Support Vector Machines

Transformacja do wysoce wielowymiarowej przestrzeni

SVM – Transformacje

- Przykład transformacji 1D→ 2D
- Projekcja danych oryginalnych x∈R^p w nową m>p wielowymiarową
 przestrzeń, w której z dużym prawdopodobieństwem będą separowalne
 liniowo (Twierdzenia matem. np. Covera)
- Przykład przekształcenia wielomianowe wyższego stopnia gdzie do zmiennych x dołącza się ich p-te potęgi oraz iloczyny mieszane.

Przykład transformacji wielomianowej

Przykład transformacji wielomianowej

Oryginalna funkcja celu

$$y(x_1, x_2) = \begin{cases} 1 & \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\ -1 & otherwise \end{cases}$$

- Transformacja $\Phi:(x_1,x_2) \to (x_1^2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2,1)$
- Poszukujemy parametrów

$$w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2} x_1 + w_1 \sqrt{2} x_2 + w_0 = 0$$

Rozwiązanie

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

(a) Decision boundary in the original two-dimensional space.

(b) Decision boundary in the transformed space.

Figure 5.28. Classifying data with a nonlinear decision boundary.

Kilka definicji

 Przykłady danych do klasyfikacji

Model nieliniowy SVM

- Funkcja decyzyjna po przekształceniu $g(\mathbf{x}) = \mathbf{w}\varphi(\mathbf{x}) + b$
- Sformułowanie problemu nieliniowego SVM

$$\min_{\mathbf{w}} = \frac{\|\mathbf{w}\|^2}{2} \qquad y_i(\mathbf{w} \cdot \Phi(x_i) + b) \ge 1 \quad i = 1, 2, ..., N$$

 Podobnie jak poprzednio optymalizujemy funkcje z mnożnikami Lagrange'a

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\Phi(\mathbf{x}_i) \Phi(\mathbf{x}_j) \right)$$

Funkcja klasyfikująca

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}) + b)$$

Curse of dimensionality and ...

- Oblicz $\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i)$
- Problem: Trudne obliczeniowo do wykonania!
- Wiele parametrów do oszacowania wielomian stopnia p dla N atrybutów w oryginalnej przestrzeni prowadzi do $O(N^P)$ atrybutów w nowej rozszerzonej F feature space
- Skorzystaj z dot product (iloczynu skalarnego) na wektorach wejściowych jako miary podobieństwa wektorów
- Iloczyn $\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$ może być odniesiony do podobieństwa wektorów $\mathbf{x}_i \cdot \mathbf{x}_j$ w transformowanej rozszerzonej przestrzeni
- Idea kerneli (funkcji jądrowych)
 - Proste funkcje K dwóch argumentów wektorowych pozwalają obliczyć wartość iloczynu skalarnego w rozszerzonej przestrzeni

Co to są funkcje jądrowe (Kernel function)

- Wywodzą się z badań liniowych przestrzeni wektorowych, przestrzeni Hilberta, Banacha
- Intuicyjnie są to stosunkowo proste symetryczne $K(\mathbf{x}_i, \mathbf{x}_j)$ zależne od odległości między \mathbf{x}_i i \mathbf{x}_j które spełniają pewne wymagania matem.

$$K(u) \ge 0, \int K(u) du = 1, \sigma_K^2 = \int uK(u) du > 0$$

Niech X oznacza niepusty zbiór wektorów danych.

• Funkcję $\psi: X \times X \mapsto R$ nazywamy dodatnio określonym kernelem (p.d. Mercel kernel), wtedy i tylko wtedy gdy

$$\sum_{i=1}^{n} \sum_{k=1}^{n} c_j c_k \psi(\mathbf{x}_j, \mathbf{x}_k) \ge 0$$

dla wszystkich $n \in N, \mathbf{x}_1, \ldots, \mathbf{x}_n \subseteq X$, oraz $c_1, \ldots, c_n \subseteq R$.

Wniosek z twierdzenia Mercera

• Twierdzenie. Niech $K(\mathbf{x}, \mathbf{y})$ oznacza funkcję symetryczną dwóch wektorów będącą kernelem, taką że $\forall \mathbf{x}, \mathbf{y} \in X, \ X \subseteq R$. Wtedy możemy określić przekształcenie $\phi: \ X \mapsto \mathcal{F}$, takie że

$$K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{y}).$$

Przestrzeń \mathcal{F} , do której następuje mapowanie, jest nazywana przestrzenią zmiennych przekształconych (Feature space).

- Własność podstawą tzw. triku kernelowego (kernel trick):
- "... map the data into some other scalar product space (feature space) F by means of a nonlinear mapping like the above, and perform the linear algorithm (like decision boundary for 2 classes) in the feature space F. In many cases the mapping Φ cannot be explicitly computed, due to the high-dimensionality of F. But this is not an obstacle, when the decision function requires the evaluation of scalar products Φ(x)·Φ (y), and not the pattern Φ(x) in explicit form."[Camastra]
- "every <u>dot product</u> is replaced by a non-linear <u>kernel</u> function. "

Typowo stosowane jądra

Dopuszczalne typy jąder związane z SVM

Normalne (Gaussowskie)	$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)}{2\sigma^2}\}$
Wielomianowe	$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + d)^p$
sigmoidalne	$K(\mathbf{x}_i, \mathbf{x}_j) = tgh(\kappa \mathbf{x}_i \cdot \mathbf{x}_j - \delta)$

Konstruujemy wektory zmiennych rozszerzonych za pomocą przekształcenia wielomianowego stopnia drugiego (p1 = 2):

$$\Phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\Phi(\mathbf{y}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2).$$

Wtedy okazuje się że iloczyn skalarny w przestrzeni zmiennych przekształconych można wyrazić jako funkcję iloczynu skalarnego zmiennych obserwowanych w \mathbb{R}^d :

$$(\Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})) = (1 + \mathbf{x} \cdot \mathbf{y})^2.$$

SVM: the kernel trick

Przykład prostego przekształcenia wielomianowego

The kernel trick:
$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (\mathbf{x}_{i} \cdot \mathbf{x}_{j})^{2} = (x_{i1}^{2}, \sqrt{2}x_{i1}x_{i2}, x_{i2}^{2}) \cdot (x_{j1}^{2}, \sqrt{2}x_{j1}x_{j2}, x_{j2}^{2})$$

$$= \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

Original optimization function:

$$\sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$

Nie musimy znać funkcji Φ, wystarczy znać jądro (kernel) i można pracować w nowej przestrzeni

Funkcja decyzyjna

Wykorzystanie funkcji jądrowych

$$f(\mathbf{x}) = sign\left(\sum_{i=1}^{N} \alpha_i y_i \Phi(\mathbf{x}_i) \Phi(\mathbf{x}) + b\right)$$
$$sign\left(\sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b\right)$$

- Model klasyfikacji binarnej rozszerza się na zagadnienie wieloklasowe K > 2
 - Specyficzne konstrukcje złożone:
 - one-versus-all
 - Pairwise classification (Hastie,...)

Example: SVM with Polynomial of Degree 2

Kernel: $K(\vec{x}_i, \vec{x}_j) = [\vec{x}_i \cdot \vec{x}_j + 1]^2$

plot by Bell SVM applet

Example: SVM with RBF-Kernel

Kernel: $K(\vec{x}_i, \vec{x}_j) = \exp(-|\vec{x}_i - \vec{x}_j|^2 / \sigma^2)$

plot by Bell SVM applet

Example 2: Cleveland heart data

Left: 2D MDS features, linear SVM, C=1, acc. 81.9%

Right: support vectors removed, margin is clear.

Gaussian kernel, C=10000, 10xCV, 100% train, 79.3 ± 7.8 test Gaussian kernel, C=1, 10xCV, 93.8% train, 82.6 ± 8.0 test Auto C=32 and Gaussian dispersion 0.004: about 84.4 ± 5.1 on test

Przykładowe zastosowania

Można się zapoznać z listą:

http://www.clopinet.com/isabelle/Projects/SVM/applist.html

A few interesting applications, with highly competitive results:

- On-line Handwriting Recognition, zip codes
- 3D object recognition
- Stock forecasting
- Intrusion Detection Systems (IDSs)
- Image classification
- Detecting Steganography in digital images
- Medical applications: diagnostics, survival rates ...
- Technical: Combustion Engine Knock Detection
- Elementary Particle Identification in High Energy Physics
- Bioinformatics: protein properties, genomics, microarrays
- Information retrieval, text categorization

Trochę historii

- Wczesne lata sześćdziesiąte została opracowana metoda "support vectors" w celu konstruowania hiperpłaszczyzn do rozpoznawania obrazu (Vapnik i Lerner 1963, Vapnik i Czervonenkis 1964) – liniowa SVM.
- Początek lat 1990-siątych: uogólnienie metody pozwalające na konstruowanie nieliniowych funkcji separujących (Boser 1992, Cortes i Vapnik 1995).
- 1995: dalsze rozszerzenie pozwalające otrzymać estymację funkcji ciągłej na wyjściu – regresja (Vapnik 1995).

Kilka zagadn. efektywnego stosowania SVM

- Normalizuj sygnały wejściowe
- Dobrze wybierz wartość C
- Wybór funkcji jądrowej
- Uogólnienia dla problemów wieloklasowych
- ... co jeszcze?
- Na ile są skuteczne SVM w analizie danych niezrównoważonych

Parę uwag podsumowujących

- Dane odwzorowane (przy pomocy funkcji jądrowych) w nową przestrzeń cech – silna przewaga nad innymi metodami
- W nowej przestrzeni dane powinny być liniowo separowalne
- W porównaniu do innych podejść wielowymiarowość przekształcenia jest "rozwiązana" przez trick kernelowy
- Pośrednio ogranicza się niebezpieczeństwo przeuczenia
- Teoretycznie poszukują minimum globalnego a nie lokalnego (jak podejścia heurystyczne – MLP)
- Ograniczenia
 - Dobór parametrów
 - Skrajne podejście "black box"

Mocne strony SVM

Stopień skomplikowania/pojemność jest niezależna od liczby wymiarów.

Bardzo dobra podbudowa statystyczno-teoretyczna

Znajdowanie minimum glonalnego. Minimalizujemy funkcję kwadratową co gwarantuje zawsze znalezienie minimum. Algorytm jest wydajny i SVM generuje prawie optymalny klasyfikator. Nie jest tez czuły na przetrenowanie.

Dobre uogólnianie dzięki wielowymiarowej "feature space".

Najważniejsze: poprzez użycie odpowiedniej funkcji jądra SVM bardzo duża skuteczność w praktyce

Słabe strony SVM

Powolny trening – minimalizacja funkcji, szczególnie dokuczliwy przy dużej ilości danych użytych do treningu.

Rozwiązania też są skomplikowane (normalnie >60% wektorów użytych do nauki staje się wektorami wspierającymi), szczególnie dla dużych ilości danych.

Przykład (Haykin): poprawa o 1.5% ponad wynik osiągnięty przez MLP. Ale MLP używał 2 ukrytych węzłów, a SVM 285 wektorów.

Trudno dodać własną wiedzę (prior knowledge)

Jianfeng Feng, Sussex University

Przetarg między złożonością modelu a minimalizacją błędów

Min. number of training errors,

Model complexity

Best trade-off

Functions ordered in increasing complexity

Odnośniki literaturowe

- T.Hastie, R.Tibshirani, J.Friedman: The Elements of Statistical Learning. Springer → poszukaj wersji elektronicznej pdf
- J.Koronacki, J.Ćwik: Statystyczne systemy uczące się (rozdz. 6)
- M.Krzyśko, W.Wołyński, T.Górecki, M.Skorzybut: Systemy uczące się.
- S.Osowski: Sieci neuronowe w przetwarzaniu informacji.

Inne materialy - internet

- A.Bartkowiak: Wykłady nt. Sieci Neuronowych: w11 Kernele, siecie SVM i sieci GDA.
 - http://www.ii.uni.wroc.pl/~aba/
- W.Duch: wyklady nt. Computational Intelligence
 - http://www.fizyka.umk.pl/~duch/Wyklady/NN_plan. html
- Angielska wersja Wikipedii
- Thorsten Joachims: Support Vector and Kernel Methods - SIGIR 2003 Tutorial

SVM Related Links

- SVM Website
 - http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM,
 support only binary classification and only C language
 - SVM-torch: another recent implementation also written in C.

Inne odnośniki do literatury anglojęzycznej

- "Statistical Learning Theory" by Vapnik: extremely hard to understand, containing many errors too.
- C. J. C. Burges. <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>. *Knowledge Discovery and Data Mining*, 2(2), 1998.
 - Better than the Vapnik's book, but still written too hard for introduction, and the examples are so not-intuitive
- The book "An Introduction to Support Vector Machines" by N.
 Cristianini and J. Shawe-Taylor
 - Also written hard for introduction, but the explanation about the mercer's theorem is better than above literatures
- The neural network book by Haykins
 - Contains one nice chapter of SVM introduction