

自动控制原理实验报告

院(系):智能工程学院

学号: 22354189

姓名:张瑞程

自期: 2024.9.22

实验名称:基于 Matlab 的典型环节模拟

说明:①实验报告通常应包括 实验目的、实验任务/要求、实验设备、实验原理、实验步骤、实验结果与心得体会、实验结论等部分;②实验报告不限于上述各部分,根据实验内容调整;③报告应做到 整洁,详实,正确,决定最终评分;④ 实验报告提交 pdf 电子版,命名方式:姓名+学号+自控原理实验报告-实验 X. pdf

实验二:基于 Matlab 的典型环节模拟

1) 实验目的;

- 1、掌握典型环节模拟电路的构成。
- 2、观察和分析各典型环节的单位阶跃响应曲线,掌握它们各自的特性。

2) 实验任务/要求

- 1、绘制比例环节的阶跃响应曲线
- 2、绘制惯性环节的阶跃响应曲线
- 3、绘制积分环节的阶跃响应曲线
- 4、绘制比例积分环节的阶跃响应曲线
- 5、绘制微分环节的阶跃响应曲线
- 6、绘制比例微分环节的阶跃响应曲线

3) 实验仪器、设备及材料

计算机、Matlab 软件平台

4) 实验原理;

利用 Matlab 把各个环节的响应曲线的比例环节进行 Simulink 建模;

5) 实验步骤;

1、绘制比例环节(P)的阶跃响应曲线

设 R_1 =100 $k\Omega$,分别取 R_2 =100 $k\Omega$,200 $k\Omega$,500 $k\Omega$,1 $M\Omega$

比例环节的 Simulink 建模

该电路的传递函数为:
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{R_2}{R_1} = K$$

表 1: 比例环节阶跃响应及其特性参数数据记录表

R_1 的取值	R_2 的取值	K 的取值	传递函 数 <i>G</i> (s)	阶跃响应曲线
$R_1 = 100k\Omega$	R_2 =100 $k\Omega$	1	1	2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3

- 1. **当** K=1 时,输出将和输入保持一致,响应曲线从 0 平稳上升 到 1;
- 2. **当 K=2** 时,响应曲线在稳态时的输出会达到 2,系统的反应 会加快,输出在更短时间内达到稳态;
- 3. **当 K=5** 时,系统的输出会快速上升到 5,输出随增益变大而快速达到更高的稳态值。

观察规律:

- 增益越大,输出的稳态值越高,并且系统响应速度加快;
- **没有振荡或超调**,因为比例环节没有引入任何动态或滞后因 素,系统是无滞后的。
 - 2、绘制惯性环节的阶跃响应曲线

该电路的传递函数为: $G(s) = \frac{L(c(t))}{L(r(t))} = \frac{K}{Ts+1}, K = -\frac{R_2}{R_1}, T = R_2C$

表 2: 惯性环节阶跃响应及其特性参数数据记录表

惯性环节电路参 数	K 的 取	T 的 取值	传递函数 $G(s)$	阶跃响应曲线
--------------	--------------------	------------------	-------------	--------

	值			
	itt.			
$R_1 = R_2 = 100k\Omega,$ $C = 0.1 \mu F$	1	0.0	1/0.01s+ 1	0.6
$R_1 = R_2 = 100k\Omega,$ $C = 1 \mu F$	1,33	0.1	1/0.1s+1	
$R_1 = R_2 = 100k\Omega,$ $C = 10 \mu F$	1		1/1s+1 /52	0.6
$R_1 = R_2 = 100k\Omega,$ $C = 100 \mu\text{F}$	1	10	1/10s+1	0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-

- 1. 时间常数 T 较小时(例如 T=0.01 或 T=0.1),系统的响应会非常快,输出迅速接近稳态,曲线几乎无延迟。
- 2. 时间常数 T 增大时(例如 T=1 或 T=10),系统响应变慢,输出需要较长的时间才能达到稳态,曲线呈现明显的延迟,且系统响应更加平滑。
- 3. 稳定性与响应时间的权衡: 小 T 使系统更快速,但可能更敏感,大 T 使系统更加平滑和稳定。

3、绘制积分环节(I)的阶跃响应曲线

图 3: 积分环节的 Simulink 建模

该电路的传递函数为:
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{1}{Ts}, T = R_2C$$

因为 integrator 的 T 不能直接调,所以需要再加个 gain,再调。

表 3: 积分环节阶跃响应及其特性参数数据记录表

积分环节电路参数	T 的取值	传递函数 <i>G(s)</i>	阶跃响应曲线
$R=100k\Omega, C=0.1 \mu$	F		0.1
	0.01	-1/00.1s	0.06
	SA	TI	0.04
		TAI	0 1 2 3 4 5 6 7 8 9 10
$R=100k\Omega, C=1 \mu F$			
	0.1	-1/0.1s	0.6
			0.4
			0.2-
			0 1 2 3 4 5 6 7 8 9 10

1. 积分特性:积分环节的特点是对输入信号进行积分,因此当输入是单位阶跃信号时,输出将随时间不断增加,并且其斜率受

时间常数 TTT 控制。

2. 时间常数 TTT 的影响:

- 。 当 TTT 较小(例如 T=0.01T=0.01T=0.01),输出的斜率会较大,意味着系统响应非常快,输出迅速增加。
- 。 当 TTT 较大(例如 T=10T=10T),输出的斜率会变小,意味着系统响应较慢,输出缓慢增加。

3. 响应曲线趋势:

- 。 小 TTT 值下,输出增加的速率较高;
- 。 大 TTT 值下,输出增加的速率较低。

4、绘制比例积分环节(PI)的阶跃响应曲线

该电路的传递函数为:
$$G(s) = \frac{L(c(t))}{L(r(t))} = K\left(1 + \frac{1}{Ts}\right), K = -\frac{R_2}{R_1}, T = R_2C$$

图 4: 比例积分环节的 Simulink 建模

表 4: 比例积分环节阶跃响应及其特性参数数据记录表

	K			
惯性环节电路	的	T的	传递函数	吃玩闹点曲坐
参数	取	取值	G(s)	阶跃响应曲线
	值			

$R_1 = R_2 = 100k\Omega$ $C = 0.1 \mu\text{F}$	1	0.01	1+1/0.01 s	0.8-0.8-0.8-0.8-0.8-0.8-0.8-0.8-0.8-0.8-
$R_1 = R_2 = 100k\Omega$ $C = 1 \mu F$		0.1	1+1/0.1s	
$R_1 = R_2 = 100k\Omega$ $C = 10 \mu F$		1	1+1/1s	
$R_1 = R_2 = 100k\Omega$ $C = 100 \mu$ F	1	10	1+1/10s	80 60 0 1 2 3 4 5 6 7 8 9 10

T 越大,响应曲线斜率越大,且在理想条件下,响应将趋于无穷。

5、绘制微分环节(D)的阶跃响应曲线

图 5: 微分环节的 Simulink 建模

该电路的传递函数为: $G(s) = \frac{L(c(t))}{L(r(t))} = -Ts$, $T = RC_1$ 。

表 5: 微分环节阶跃响应及其特性参数数据记录表

	. 10.4		
微分环节电路参数	T 的取 值	传递函数 $G(s)$	阶跃响应曲线
$R=100k\Omega, C_2=0.01 \mu\text{F}, \ C_1=0.01 \mu\text{F}$	1 μF 0.0 1		x 10 ¹¹ 15 10 10 0 1 2 3 4 5 6 7
$R=100k\Omega, C_2=0.01 \mu\text{F}, C_1=$	0.1 μF 0.1	0.1s+1	x 10 ¹² 15 10 10 10 11 2 3 4 5 6 7

当输入为单位阶跃响应时,系统响应为一个脉冲,且随着 T 值增大,响应脉冲峰值增大。

6、绘制比例微分环节(PD)的阶跃响应曲线

图 6: 比例微分环节的 Simulink 建模

该电路的传递函数为:
$$G(s) = \frac{L(c(t))}{L(r(t))} = K(Ts+1), K = -\frac{R_2}{R_1}, T = R_2C_1$$

表 6: 比例微分环节阶跃响应及其特性参数数据记录表

比例微分环节 电路参数		T 的 取值	传递函数 $G(s)$	阶跃响应曲线
$R_1 = R_2 = 100k\Omega,$ $C_2 = 0.01 \mu F,$ $C_1 = 0.1 \mu F$	1	0.0	0.01s+ 1	x10 ⁻¹ 15 10 10 10 11 11 11 11 11 11

$R_1=R_2=100k\Omega$,				×10 ¹² G
$C_2 = 0.01 \mu\text{F}$				
$C_1 = 1 \mu F$	1	0.1	0.1s+1	10-
				5-
				0 1 2 3 4 5 6 7 8 9 10
$R_1=R_2=100k\Omega$,		1	s+1	×10 ¹³ [6
$C_2 = 0.01 \mu\text{F}$	4			
$C_1 = 10 \ \mu F$	1		9	10-
			N.	
	X	5	A .	5
	(
		- 10		
				0 1 2 3 4 5 6 7 8 9 10
$R_1 = R_2 = 100k\Omega,$		10	10s+1	0 1 2 3 4 5 6 7 8 9 16 x10 ³⁴
$C_2 = 0.01 \mu\text{F}$		10	10s+1	
	1	10	10s+1	
$C_2 = 0.01 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F},$ $C_1 = 100 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F},$ $C_1 = 100 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F},$ $C_1 = 100 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F},$ $C_1 = 100 \mu\text{F}$	1	10	10s+1	
$C_2 = 0.01 \mu\text{F},$ $C_1 = 100 \mu\text{F}$ $\times 10^{14}$	1	10	10s+1	

当输入为单位阶跃响应时,系统响应为一个脉冲,且随着 T 值增大,响应脉冲峰值增大。

6) 实验结果及心得

学会了各种响应曲线的 Matlab 模拟,并学会快速在 simulink 用搜索模块直接搜索召唤,比一个一个拖动出来,有效率多。

7) 拓展思考

1. 用运算放大器模拟典型环节时,其传递函数是在哪两个假设条件 下近似导出的?

运算放大器的传递函数在以下两个假设条件下近似导出:

- (1) 理想运算放大器模型假设:假设运算放大器的增益无限大,输入电流为零(即输入端没有电流流入),同时电压差为零(负反馈下,同相输入端和反相输入端的电压相等)。
- (2) 频率响应假设:假设运算放大器的频率响应是理想的,即其带宽足够大,系统在所关心的频率范围内不会失真,忽略运放的相位延迟和增益滚降。
- **2.** 怎样选用运算放大器?输入电阻、反馈电阻和同相端电阻如何匹配?
 - 运算放大器选择:选择运算放大器时,需要考虑其带宽、增益

带宽积、输入偏置电流、输入失调电压、噪声性能、功耗等参数,以确保其能满足所设计电路的需求。

- 输入电阻、反馈电阻和同相端电阻的匹配:
 - 。 输入电阻: 应尽可能高,以确保电路能接受高阻抗信号输入,同时避免电路负载影响输入信号。
 - 。 反馈电阻: 应根据传递函数设计,确保运算放大器的反馈 环路稳定,反馈电阻大小决定放大倍数(增益)。
 - 。同相端电阻:如果运算放大器工作在差分模式下,应在同相端输入匹配一个等值电阻,避免失调电压和输入偏置电流引起的不平衡。
- 3. 在什么条件下,惯性环节可以近似地看作积分环节? 在什么条件下,又可以近似地看作比例环节?
- <1> 惯性环节近似为积分环节: 当惯性环节的时间常数 T 足够大(相比于输入信号变化速率),即 T→∞ 时,惯性环节的输出变化速度变得极其缓慢,系统对输入的反应类似于积分环节,表现为对输入变化的累积效应,输出不断增长。
- <2> 惯性环节近似为比例环节: 当惯性环节的时间常数 T 足够小 (相比于输入信号变化速率),即 T→0 时,惯性环节的延迟效应可以忽略,系统近似表现为无滞后的比例环节,输出几乎瞬时跟随输入变化。

4. 如何根据阶跃响应的波形,确定积分环节和惯性环节的时间常数?

- (1) 积分环节:对于积分环节,其阶跃响应曲线表现为线性增长的趋势。时间常数 T 对应于曲线的斜率,即输出变化的速度。较大的 T 会导致输出增长较慢,而较小的 T 则对应更快的增长速度。
- (2) 惯性环节: 惯性环节的阶跃响应为一个平滑的上升曲线, 其响应曲线为一阶系统的响应。时间常数 T 决定了系统达到稳态的速度。通过观察响应曲线从初始值上升到稳态值的 63.2%处所花费的时间,可以确定时间常数 T。

