Álgebra Linear e Geometria Analítica - A

Exame Final	10 de Janeiro de 2025

Nome:		
${f N}^o$ mecanográfico:	Curso	
Declaro que desisto:		

Questão 1	Questão 2	Questão 3	Questão 4	Questão 5	Questão 6	Classificação final

PARTE I

Escolha múltipla

 $(4 \ val.)$ 1) Selecione a (única) afirmação verdadeira em cada uma das seguintes questões. Cada resposta certa será cotada com 0,5 valores.

(a) Considere as bases $\mathscr{B}=((1,-1),(-3,4))$ e $\mathscr{C}=((1,0),(0,1))$ de \mathbb{R}^2 . A matriz de mudança de base de \mathscr{B} para \mathscr{C} é:

$$\boxtimes \left[\begin{array}{cc} 1 & -3 \\ -1 & 4 \end{array} \right].$$

$$\square \left[\begin{array}{cc} 1 & -1 \\ -3 & 4 \end{array} \right].$$

$$\square \left[\begin{array}{cc} 1 & -3 \\ -1 & 4 \end{array} \right]^{-1}.$$

$$\square \left[\begin{array}{cc} 1 & -1 \\ -3 & 4 \end{array} \right]^{-1}.$$

 \square Nenhuma das anteriores.

(b) Considere a matriz $A = \begin{bmatrix} 1 \\ k \end{bmatrix}$	$-1 \\ 2k + 3$], onde k é um parâmetro re	d. Podemos dizer que:
---	----------------	-------------------------------	-----------------------

- \square A é invertível para todo $k \in \mathbb{R}$.
- $\square \ det(A) = -det(A^{-1})$ para todo $k \in \mathbb{R}$.

$$\boxtimes \ det(A) = det \left[\begin{array}{cc} 1 & -1 \\ 0 & 3k+3 \end{array} \right] \ \mathrm{para} \ \mathrm{todo} \ k \in \mathbb{R}.$$

- \square det(2A) = 2det(A) para todo $k \in \mathbb{R}$.
- \square Nenhuma das anteriores.

(c) Considere o sistema
$$\begin{cases} x+z=3\\ x+2y-z=2\\ ax+4z=1 \end{cases}$$
 nas variáveis x,y,z e onde a é um parâmetro real. Então:

$$oxtimes$$
 o sistema é de Cramer se e só se $a \neq 4$. Se $a = 0$, $y = \frac{\det \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 4 \end{bmatrix}}{\det \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & 4 \end{bmatrix}}$.

$$\square$$
 o sistema é de Cramer se e só se $a \neq 4$. Se $a = 0$, $y = \frac{\det \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & 4 \end{bmatrix}}{\det \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 4 \end{bmatrix}}$.

$$\square \text{ o sistema \'e de Cramer se e s\'o se } a=0. \text{ Se } a=0, \ y=\frac{\det\begin{bmatrix}3&0&1\\2&2&-1\\1&0&4\end{bmatrix}}{\det\begin{bmatrix}1&0&1\\1&2&-1\\0&0&4\end{bmatrix}}.$$

$$\square$$
 o sistema é de Cramer se e só se $a = 0$. Se $a = 0$, $y = \frac{\det \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 4 \end{bmatrix}}{\det \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & 4 \end{bmatrix}}$.

□ Nenhuma das anteriores.

(d) Considere o espaço vetorial \mathbb{R}^3 munido de produto interno e os vetores $u=(1,1,1)$ e $v=(1,2,-1)$. O produto vetorial entre u e v é:
$\square \ u \times v = 2.$
$\boxtimes \ u \times v = (-3, 2, 1).$
$\square \ u \times v = (1, 2, -3).$
$\square \ u \times v = 0.$
$\square \ u \times v = (3, -2, -1).$
\square Nenhuma das anteriores.
(e) Considere o espaço vetorial \mathbb{R}^3 munido de produto interno e o subespaço de \mathbb{R}^3
$F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
Uma base ortogonal de F é:
$\square \mathscr{B} = ((1,0,0),(0,1,0)).$
$\square \mathscr{B} = ((-1, 1, 0), (-1, 0, 1)).$
$\square \mathscr{B} = ((1,1,1)).$
$\boxtimes \mathscr{B} = ((-1,1,0),(1,1,-2)).$
□ Nenhuma das anteriores.
(f) Escolha a opção correta.
\Box Uma matriz A do tipo 3×3 é diagonalizável se e só se tem 3 valores próprios distintos.
\square Se A é uma matriz do tipo 3×3 com dois valores próprios distintos então um dos subespaços próprios de A , associado a um dos valores próprios, tem dimensão superior a 1.
\boxtimes Se A é uma matriz do tipo 4×4 com dois valores próprios distintos e o subespaço próprio associado a um desses valores tem dimensão 3, então A é diagonalizável.
\square Nenhuma das anteriores.

(g) Seja $L: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear tal que L(x,y) = (2x+y,3x-4y,x-y). Então a matriz representativa de L relativamente à base canónica de \mathbb{R}^2 e à base canónica de \mathbb{R}^3 é:

$$\square \left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -4 & -1 \end{array} \right].$$

$$\square \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{array} \right].$$

$$\square \left[\begin{array}{cc} 2 & 1 \\ 3 & -4 \end{array} \right].$$

$$\boxtimes \left[\begin{array}{cc} 2 & 1 \\ 3 & -4 \\ 1 & -1 \end{array} \right].$$

- \square Nenhuma das anteriores.
- (h) O determinante da matriz $\begin{bmatrix} a & b & 0 \\ 4 & 0 & c \\ 2 & 2 & 5 \end{bmatrix}$ é igual a:

$$\boxtimes \ -4\det \left[\begin{array}{cc} b & 0 \\ 2 & 5 \end{array} \right] - c\det \left[\begin{array}{cc} a & b \\ 2 & 2 \end{array} \right] \text{, para todos } a,b,c \in \mathbb{R}.$$

$$\Box \ -\det \left[\begin{array}{cc} b & 0 \\ 2 & 5 \end{array} \right] + \det \left[\begin{array}{cc} a & 0 \\ 2 & 5 \end{array} \right] - \det \left[\begin{array}{cc} a & b \\ 2 & 2 \end{array} \right], \, \text{para todos } a,b,c \in \mathbb{R}.$$

$$\Box \ \det \left[\begin{array}{cc} b & 0 \\ 2 & 5 \end{array} \right] + \det \left[\begin{array}{cc} a & 0 \\ 2 & 5 \end{array} \right] + \det \left[\begin{array}{cc} a & b \\ 2 & 2 \end{array} \right], \, \mathrm{para} \ \mathrm{todos} \ a, b, c \in \mathbb{R}.$$

$$\label{eq:determinant} \square \ \mbox{4} \det \left[\begin{array}{cc} b & 0 \\ 2 & 5 \end{array} \right]\!, \mbox{ para todos } a,b,c \in \mathbb{R}.$$

 \square Nenhuma das anteriores.

PARTE II

Justifique devidamente as seguintes questões:

2) Considere o sistema de equações lineares nas variáveis $x, y \in z$ e no parâmetro real a,

$$\begin{cases} x + ay = 1\\ (a+1)y + az = 1\\ x + ay + a(a-1)z = a \end{cases}$$

- a) (1 val.) Determine os valores de a para os quais o sistema é possível e determinado.
- b) (3 val.) Determine o valor de a para o qual o sistema tem (0,1,-1) como solução e resolva o sistema usando o método de eliminação de Gauss-Jordan para este valor de a.

[Se não determinou o valor de a resolva o sistema $\begin{cases} x+y=1\\ 3y+2z=-2\\ x-2y-2z=3 \end{cases}$ usando o método de eliminação de Gauss-Jordan. Neste caso a questão será cotada para 2 valores.]

- c) (1,5 val.) Considere o espaço vetorial \mathbb{R}^3 e o subespaço $S = \langle (1,0,1), (a,a+1,a), (0,a,a(a-1)) \rangle$, onde a é um parâmetro real. Determine os valores de a para os quais $S = \mathbb{R}^3$.
 - (3,5 val.)3) Considere o espaço vetorial \mathbb{R}^4 e o subconjunto

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + 3z = 0 \ \land y = 2w\}.$$

- a) Verifique que S é um subespaço vetorial de \mathbb{R}^4 .
- b) Determine uma base e a dimensão de S.
- (2 val.)4) Considere o sistema (impossível) AX = B, onde:

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \\ 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix}.$$

Encontre a solução dos mínimos quadrados e calcule o erro dos mínimos quadrados associado.

- (1 val.)5) Seja A uma matriz $n \times n$ e λ um valor próprio de A. Mostre que:
- (a) λ^2 é um valor próprio de A^2 .
- (b) se A é diagonalizável então A^2 também é diagonalizável.

(4 val.)6)

(a) Determine uma equação reduzida e classifique a cónica definida pela equação

$$x^2 - 4xy + y^2 - 6x + 6y + 9 = 0.$$

(b) Classifique a forma quadrática $Q: \mathbb{R}^2 \to \mathbb{R}$ definida por $Q(x,y) = x^2 - 4xy + y^2$.