6. Problem Set - 04.05.2022

Elektrodynamik I - 136.015

Gerechnete Beispiele:

16) a) & b)

17) a) & b)

18) a) & b) & c)

16 Quadrupolpotential

16 Quadrupolpotential

(a) Wie müssen die Konstanten C_1 und C_2 gewählt werden, sodass das in Kugelkoordinaten gegebene Skalarfeld

$$V(r, \vartheta, \varphi) = \frac{C_1 \cos^2 \vartheta + C_2}{r^3}$$

ein elektrisches Potential im ladungsfreien Raum sein kann.

(b) Finde C_1 und C_2 für eine geladene Scheibe mit Radius R in der Äquatorebene des Koordinatesystemes mit gleichmäßig verteilter Ladung Q, deren Zentrum im Ursprung liegt.

nur (a) oder (b): 2P, (a) und (b): 3P

a)

Gemäß der Angabe gehen wir von einem Skalarfeld der folgenden Form aus:

$$V(r,artheta,arphi) = rac{C_1 \cdot \cos^2 artheta + C_2}{r^3}$$

Für einen ladungsfreien Raum muss gelten:

$$\underbrace{-\nabla^2 V = \frac{\rho}{\epsilon_0}}_{Poisson Gleichung} = 0$$

 $abla^2$ ist in dabei der Laplace-Operator. Wir können demnach den Laplace in Kugelkoordinaten anschreiben: (die Formel entstammt der Formelsammlung für den ersten Test)

$$abla^2 V = rac{1}{r^2} \cdot \partial_r (r^2 \cdot \partial_r V) + rac{1}{r^2 \cdot \sin artheta} \cdot \partial_artheta (\sin artheta \cdot \partial_artheta V) + rac{1}{r^2 \sin^2 artheta} \cdot \partial_arphi \partial_arphi V$$

 $\partial_r V$ entspricht dabei:

$$\partial_r V = -3 \cdot rac{C_1 \cdot \cos^2 artheta + C_2}{r^4}$$

Damit folgt für den Term $\partial_r(r^2 \cdot \partial_r V)$:

$$egin{aligned} \partial_r(r^2\cdot\partial_r V) &= \partial_r\left(\cancel{r^2}\cdot(-3)\cdotrac{C_1\cdot\cos^2artheta+C_2}{r^4}
ight) \ &= \partial_r\left((-3)\cdotrac{C_1\cdot\cos^2artheta+C_2}{r^2}
ight) = 6\cdotrac{C_1\cdot\cos^2artheta+C_2}{r^3} \end{aligned}$$

Für das gesamte erste Glied folgt somit:

$$rac{1}{r^2} \cdot \partial_r (r^2 \cdot \partial_r V) = 6 \cdot rac{C_1 \cdot \cos^2 artheta + C_2}{r^5}$$

Weiters entspricht $\partial_{\vartheta}V$:

$$\partial_{artheta}V=\partial_{artheta}\left(rac{C_1\cdot\cos^2artheta+C_2}{r^3}
ight)=\partial_{artheta}\left(rac{C_1\cdot(\cosartheta\cdot\cosartheta)+C_2}{r^3}
ight)$$

Für $\cos \vartheta \cdot \cos \vartheta$ kann die Produktregel der Ableitung angewandt werden:

$$=\frac{C_1\cdot \left(-\sin\vartheta\cdot\cos\vartheta-\cos\vartheta\cdot\sin\vartheta\right)}{r^3}=-2\cdot\frac{C_1\cdot \left(\sin\vartheta\cdot\cos\vartheta\right)}{r^3}$$

Für den Term $\partial_{\vartheta}(\sin\vartheta\cdot\partial_{\vartheta}V)$ folgt damit:

$$\partial_{artheta}(\sinartheta\cdot\partial_{artheta}V) = \partial_{artheta}\left(-2\cdotrac{C_1\cdot(\sin^2artheta\cdot\cosartheta)}{r^3}
ight)\partial_{artheta}\left(-2\cdotrac{C_1\cdot((\sinartheta\cdot\sinartheta)\cdot\cosartheta)}{r^3}
ight)$$

Erneut kann die Produktregel für Ableitungen angewandt werden:

$$=-2\cdotrac{C_1\cdot((\cosartheta\cdot\sinartheta\cdot\cosartheta)\cdot\cosartheta-\sinartheta\cdot\sinartheta)}{r^3} \ \partial_{artheta}(\sinartheta\cdot\partial_{artheta}V)=-2\cdotrac{C_1\cdot(2\cdot\sinartheta\cdot\cos^2artheta-\sin^3artheta)}{r^3}$$

Somit folgt für das zweite Glied:

$$egin{aligned} rac{1}{r^2 \cdot \sin artheta} \cdot \partial_{artheta} (\sin artheta \cdot \partial_{artheta} V) &= rac{1}{r^2 \cdot \sin artheta} \cdot (-2) \cdot rac{C_1 \cdot (2 \cdot \sin artheta \cdot \cos^2 artheta - \sin^3 artheta)}{r^3} \ &= -2 \cdot rac{C_1 \cdot (2 \cdot \cos^2 artheta - \sin^2 artheta)}{r^5} \end{aligned}$$

Zuletzt entspricht $\partial_{\omega}V$ gleich 0.

Aus den vorherigen Berechnungen folgt für für die eingangs aufgestellte Bedingung $-\nabla^2 V = 0$:

$$egin{aligned} -
abla^2 V &= 6 \cdot rac{C_1 \cdot \cos^2 artheta + C_2}{r^5} - 2 \cdot rac{C_1 \cdot (2 \cdot \cos^2 artheta - \sin^2 artheta)}{r^5} = 0 \ &= rac{1}{r^5} \cdot (C_1 \cdot (2 \cdot \cos^2 artheta + 2 \cdot \sin^2 artheta) + 6 \cdot C_2) = 0 \ &= 2 \cdot C_1 + 6 \cdot C_2 = 0 \end{aligned}$$

Daraus folgt für C_1 und C_2 :

$$C_1 = -3 \cdot C_2$$
 $C_2 = -rac{1}{3} \cdot C_1$

b)

Für die geladene Scheibe kann die Raumladungsdichte $\rho(R, \varphi, z)$ wie folgt angenommen werden:

$$ho(R,arphi,z) = \sigma \cdot \delta(R-|r|) = rac{Q}{R^2 \cdot \pi} \cdot \delta(R-|r|)$$

Damit kann weiters das elektrische Potential der Scheibe ermittelt werden. $\sqrt{r^2+z^2}$ entspricht dabei dem Punkt zwischen einem Betrachtungspunkt auf der z-Achse und dem Radius der Scheibe.

$$V(R,arphi,z) = rac{1}{4\pi \cdot \epsilon_0} \cdot \int rac{
ho(R,arphi,z)}{\sqrt{r^2+z^2}} \, d^3r$$

Mit der Integration über die Zylinderkoordinaten und dem Volumenselement $dV=r\,dr\,d\varphi$ folgt daraus:

$$=rac{1}{4\pi\cdot\epsilon_0}\cdot\int_0^{2\pi}\int_0^Rrac{\sigma}{\sqrt{r^2+z^2}}\cdot r\,dr\,darphi$$

Der Term r^2+z^2 kann für die Integration wie folgt substituiert werden:

$$u=r^2+z^2 o du=2\cdot r\,dr o dr=rac{du}{2\cdot r}$$

Damit ergibt sich das elektrische Potential zu:

$$\begin{split} &=\frac{\sigma}{4\pi\cdot\epsilon_0}\cdot\int_0^{2\pi}\int_0^R\frac{\cancel{y}}{\sqrt{u}}\,\frac{du}{2\cdot\cancel{y}}\,d\varphi=\frac{\sigma}{4\pi\cdot\epsilon_0}\cdot\int_0^{2\pi}\sqrt{u}\left|_0^Rd\varphi\right.\\ &=\frac{\sigma}{4\pi\cdot\epsilon_0}\cdot\int_0^{2\pi}\sqrt{r^2+z^2}\left|_0^Rd\varphi=\frac{\sigma}{4\pi\cdot\epsilon_0}\cdot\int_0^{2\pi}\sqrt{R^2+z^2}-\sqrt{z^2}\,d\varphi\right.\\ &=\frac{\sigma}{\cancel{\cancel{A}\!\!/\!\!\pi}\cdot\epsilon_0}\cdot\left(\sqrt{R^2+z^2}-\sqrt{z^2}\right)\cdot\cancel{\cancel{A}\!\!/\!\!\pi}\\ &=\frac{\sigma}{2\cdot\epsilon_0}\cdot\left(\sqrt{R^2+z^2}-\sqrt{z^2}\right)\end{split}$$

Dieser Ausdruck kann nun mit dem Ausdruck für das elektrische Potential aus dem Unterpunkt a) gleichgesetzt werden:

$$V(R,arphi,z) = rac{\sigma}{2\cdot\epsilon_0}\cdot\left(\sqrt{R^2+z^2}-\sqrt{z^2}
ight) = rac{C_1\cdot\cos^2artheta+C_2}{r^3}$$

Nachdem wir das elektrische Potential in der z-Achse betrachten, muss ϑ mit 0 angenommen werden. (siehe Skizze)

$$rac{\sigma}{2 \cdot \epsilon_0} \cdot \left(\sqrt{R^2 + z^2} - \sqrt{z^2}
ight) = rac{C_1 \cdot \overbrace{\cos^2 0}^{=1} + C_2}{r^3} = rac{C_1 + C_2}{r^3}$$

Mit dem Zusammenhang $C_2=-rac{1}{3}\cdot C_1$ aus Unterpunkt a) kann der rechte Ausruck weiter vereinfacht werden zu:

$$rac{\sigma}{2 \cdot \epsilon_0} \cdot \left(\sqrt{R^2 + z^2} - \sqrt{z^2}
ight) = rac{C_1 - rac{1}{3} \cdot C_1}{r^3} = rac{2}{3} \cdot rac{C_1}{r^3}$$

Für C_1 einer geladenen Scheibe, gemäß der Angabe, ergibt sich somit final:

$$C_1 = rac{3}{4} \cdot rac{\sigma \cdot r^3}{\epsilon_0} \cdot \left(\sqrt{R^2 + z^2} - |z|
ight)$$

Dadurch folgt für C_2 final:

$$C_2 = -rac{1}{3}\cdot C_1 = -rac{1}{\cancel{z}}\cdotrac{\cancel{z}}{4}\cdotrac{\sigma\cdot r^3}{\epsilon_0}\cdot\left(\sqrt{R^2+z^2}-|z|
ight)$$

17 Wechselwirkung von Stickstoffmolekülen

17 Wechselwirkung von Stickstoffmolekülen

Wir modellieren die beiden positiven Ionen im N_2 -Molekül durch zwei Punktladungen mit Ladung +Q im Abstand D. Die Bindungselektronen nehmen wir als geladenen Stab der Länge D an mit der Ladung -2Q, gleichmäßig verteilt.

- (a) Bestimme alle Multipolmomente bis zu den Quadrupolmomenten für ein Molekül, dessen Zentrum im Ursprung liegt und das entlang der r_3 -Achse ausgerichtet ist. Zeige, dass alle Momente außer Q_{33} verschwinden und dass dieses durch $QD^2/6$ gegeben ist.
- (b) Bilde die Multipolentwicklung des Potentials an der Stelle $(r_1 \ge 0, r_2 = 0, r_3)$ und zeige, dass es folgende asymptotische Fernfelder hat: $V_1(r_1) = -\frac{QD^2}{24\pi\epsilon_0 r_1^3}$ für $r_1 \gg D, r_3$ und $V_3(r_3) = +\frac{QD^2}{12\pi\epsilon_0 r_2^3}$ für $r_3 \gg D, r_1$.
- (c) Wir betrachten nun die Wechselwirkungsenergie zwischen dem N₂-Molekül im Ursprung und einem zweiten N₂-Molekül in hinreichend großer Entfernung $R \gg D$ an der Position R_i und mit der Ausrichtung der Bindungsachse a_i . Verwende die asymptotischen Fernfelder und zeige, dass die führende Ordnung der Wechselwirkungsenergie gegeben ist durch $C Q^2 D^4/(2\pi\epsilon_0 R^5)$ mit folgenden Koeffizienten C für die jeweiligen Molekülkonstellationen: koaxial $(R_i = R \delta_{3i}, a_i = \delta_{3i})$: C = +1/3, kreuzend $(R_i = R \delta_{1i}, a_i = \delta_{1i})$: C = -1/6.

a)

Die gesamte Multipol-Entwicklung entspricht:

$$V(m{x}) = rac{1}{4\pi \cdot \epsilon_0} \cdot \left[rac{Q}{r} + rac{m{\hat{r}} \cdot m{p}}{r^2} + rac{m{\hat{r}} \cdot m{Q}_2 \cdot m{\hat{r}}}{r^3}
ight]$$

Der Term Q entspricht dabei dem Multipol-Anteil. In unserem Fall ergibt sich dieser zu:

$$Q = \sum_{n=1}^{N=3} q_n = Q + Q - 2 \cdot Q = 0$$

Für den Dipol-Anteil p folgt analog:

$$oldsymbol{p} = \sum_{n=1}^{N=3} q_n \cdot oldsymbol{x}_n = Q \cdot rac{D}{2} \cdot (ec{e}_3 - ec{e}_3) + q_3 \cdot oldsymbol{x}_3$$

Aus der Symmetrie des Stabes q_3 bzgl. der r_{12} -Ebene folgt, dass $q_3 \cdot \boldsymbol{x}_3$ ebenfalls 0 ergibt. Somit folgt für den Dipol-Anteil:

$$oldsymbol{p} = Q \cdot rac{D}{2} \cdot (ec{e}_3 - ec{e}_3) + \underbrace{q_3 \cdot oldsymbol{x}_3}_{=0} = 0$$

Der Multipol-Anteil Q folgt zu:

$$\mathcal{Q}_2 = rac{1}{2} \cdot \sum_{n=1}^{N=3} rac{q_n}{2} \cdot ig(3 \cdot oldsymbol{x}_n \cdot oldsymbol{x}_n - r_n^2 \cdot oldsymbol{I} ig)$$

Aus dem Plenum ist zusätzlich der folgende Ausdruck für den Quadrupol bekannt (spurbehaftet):

$$P_{ij} = rac{1}{2} \cdot \int
ho(m{x}) \cdot m{x}_i \cdot m{x}_j \, d^3 x$$

Die Raumladungsdichte $\rho(x)$ kann in diesem Beispiel aus zwei Komponenten zusammengesetzt werden. Die erste Komponente sind die positiven Punktladungen Q:

$$ho_P(m{r}) = \left(\delta(r_1) \cdot \delta(r_2) \cdot \delta\left(r_3 \pm rac{D}{2}
ight)
ight) \cdot Q$$

Für die Raumladungsdichte des geladenen Stabs gilt:

$$ho_S(m{r}) = \left(\delta(r_1) \cdot \delta(r_2) \cdot \Theta\left(rac{D}{2} - |r_3|
ight)
ight) \cdot \left(-rac{2 \cdot Q}{D}
ight)$$

In Summe kann die Raumladungsdichte somit angeschrieben werden als:

$$egin{align}
ho(m{r}) &=
ho_P(m{r}) +
ho_S(m{r}) \ &= \delta(r_1) \cdot \delta(r_2) \cdot \left(Q \cdot \delta\left(r_3 \pm rac{D}{2}
ight) + \Theta\left(rac{D}{2} - |r_3|
ight) \cdot \left(-rac{2 \cdot Q}{D}
ight)
ight)
onumber \end{split}$$

Weiter vereinfacht ergibt sich somit:

$$Q = Q \cdot \delta(r_1) \cdot \delta(r_2) \cdot \left(\delta\left(r_3 + rac{D}{2}
ight) + \delta\left(r_3 - rac{D}{2}
ight) - rac{2}{D} \cdot \Theta\left(rac{D}{2} - |r_3|
ight)
ight)$$

Die folgendenden Berechnungen wurden unter Zuhilfenahme von Wolfram Alpha berechnet!

Mit der ermittelten Raumladungsdichte $\rho(r)$ kann nun das Quadrupolmoment gemäß der eingangs beschriebenen Formel aus dem Plenum berechnet werden: (Die Parameter der Heaviside-Funktion können in Integralsgrenzen überführt werden.)

$$P_{11} = rac{Q}{2} \cdot \left[\left(\int_{-\infty}^{\infty} \delta(r_1) \cdot r_1^2 \, dr_1
ight) \cdot \left(\int_{-\infty}^{\infty} \delta(r_2) \, dr_2
ight) \cdot \left(\int_{-\infty}^{\infty} \delta\left(r_3 - rac{D}{2}
ight) dr_3 + \int_{-\infty}^{\infty} \delta\left(r_3 + rac{D}{2}
ight) dr_3 - rac{2}{D} \cdot \int_{-rac{D}{2}}^{rac{D}{2}} 1 \, dr_3
ight)
ight]$$

Die Integrale über $\delta(r)$ ergeben gemäß der Definition der Delta-Distribution jeweils 1. Die Integrale nach dr_3 ergeben jedoch in Summe 0, wodurch das gesamte Ergebnis für P_{11} zu 0 wird.

$$P_{11} = rac{Q}{2} \cdot \left[\left(\int_{-\infty}^{\infty} \delta(r_1) \cdot r_1^2 \, dr_1
ight) \cdot \left(\int_{-\infty}^{\infty} \delta(r_2) \, dr_2
ight) \cdot \left(\underbrace{1+1-2}_{=0}
ight)
ight] = 0$$

 P_{22} kann analog zu P_{11} berechnet werden:

$$P_{22} = rac{Q}{2} \cdot \left[\left(\int_{-\infty}^{\infty} \delta(r_1) \, dr_1
ight) \cdot \left(\int_{-\infty}^{\infty} \delta(r_2) \cdot r_2^2 \, dr_2
ight) \cdot \left(\int_{-\infty}^{\infty} \delta\left(r_3 - rac{D}{2}
ight) dr_3 + \int_{-\infty}^{\infty} \delta\left(r_3 + rac{D}{2}
ight) dr_3 - rac{2}{D} \cdot \int_{-rac{D}{2}}^{rac{D}{2}} 1 \, dr_3
ight)
ight]$$

Auch hier ergeben die Integrale nach dr_3 in Summe 0, wodurch das Ergebnis für P_{22} ebenfalls zu 0 ausfällt:

$$P_{22} = rac{Q}{2} \cdot \left[\left(\int_{-\infty}^{\infty} \delta(r_1) \, dr_1
ight) \cdot \left(\int_{-\infty}^{\infty} \delta(r_2) \cdot r_2^2 \, dr_2
ight) \cdot (\underbrace{1+1-2}_{=0})
ight] = 0$$

Somit kann P_{33} angeschrieben werden:

$$P_{33} = \frac{Q}{2} \cdot \left[\left(\underbrace{\int_{-\infty}^{\infty} \delta(r_1) \, dr_1}_{=1} \right) \cdot \left(\underbrace{\int_{-\infty}^{\infty} \delta(r_2) \, dr_2}_{=1} \right) \cdot \left(\underbrace{\int_{-\infty}^{\infty} \delta\left(r_3 - \frac{D}{2}\right) \cdot r_3^2 \, dr_3}_{=\frac{D^2}{4}} + \underbrace{\int_{-\infty}^{\infty} \delta\left(r_3 + \frac{D}{2}\right) \cdot r_3^2 \, dr_3}_{=\frac{D^2}{4}} - \frac{2}{D} \cdot \int_{-\frac{D}{2}}^{\frac{D}{2}} 1 \cdot r_3^2 \, dr_3 \right) \right]$$

Der letzte Term kann nun noch manuell integriert werden:

$$egin{aligned} rac{2}{D} \cdot \int_{-rac{D}{2}}^{rac{D}{2}} 1 \cdot r_3^2 \, dr_3 &= rac{2}{D} \cdot \left(rac{1}{3} \cdot r_3^3
ight)igg|_{-rac{D}{2}}^{+rac{D}{2}} &= rac{2}{D} \cdot \left(rac{rac{D^3}{8}}{3} + rac{D^3}{8}
ight) \ &= rac{\mathscr{L}}{\mathscr{B}} \cdot \left(rac{2 \cdot D^{\mathscr{S}}}{24}
ight) &= rac{D^2}{6} \end{aligned}$$

Für P_{33} folgt somit final:

$$=\frac{Q}{2}\cdot\left[1\cdot1\cdot\left(\underbrace{\frac{D^2}{4}+\frac{D^2}{4}}_{=\frac{D^2}{2}}-\frac{D^2}{6}\right)\right]=\frac{Q}{2}\cdot\frac{2\cdot D^2}{6}$$

$$P_{33}=\frac{Q\cdot D^2}{6}$$

In diesem Beispiel müssen lediglich P_{11} , P_{22} und P_{33} betrachtet werden, da alle anderen Anteile, bei denen i ungleich j ist, in Summe 0 ergeben. (Erneut aufgrund des Integrals nach r_3 .)

b)

Die Multipolentwicklung des elektrischen Potentials kann anhand der in Unterpunkt a) angeführten Formel ermittelt werden. Diese lautet:

$$V(m{x}) = rac{1}{4\pi \cdot \epsilon_0} \cdot \left[rac{Q}{r} + rac{m{\hat{r}} \cdot m{p}}{r^2} + rac{m{\hat{r}} \cdot Q_2 \cdot m{\hat{r}}}{r^3}
ight]$$

Indem man nun die Berechnungen aus Unterpunkt a) einfügt, erhält man die folgende Formel: (P_{11} und P_{22} können gemäß Unterpunkt a) vernachlässigt werden, nachdem sie jeweils 0 ergeben. Somit wird für r_i und r_j jeweils r_3 eingesetzt. Für r^2 kann $r_1^2 + r_3^2$ eingesetzt werden, nachdem das Potential an der Stelle $r_1 \geq 0$, $r_2 = 0$, r_3 betrachtet werden soll. r_2 entfällt hier demnach, da es gemäß der Angabe gleich 0 ist. $r^2 = r_1^2 + r_2^2 + r_3^2$)

$$egin{aligned} V_1(r_1) &= rac{1}{4\pi \cdot \epsilon_0} \cdot \left[rac{0}{r} + rac{0}{r^2} + rac{Q \cdot D^2}{6} \cdot rac{3 \cdot r_i \cdot r_j - r^2 \cdot \delta_{ij}}{r^5} + \mathcal{O}(r^{-4})
ight] \ &= rac{1}{4\pi \cdot \epsilon_0} \cdot \left[rac{Q \cdot D^2}{6} \cdot rac{3 \cdot r_i \cdot r_j - r^2 \cdot \delta_{ij}}{r^5}
ight] \ &= rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot \left[rac{3 \cdot r_3^2 - r^2}{r^5}
ight] = rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot \left[rac{3 \cdot r_3^2 - (r_1^2 + r_3^2)}{(r_1^2 + r_3^2)^{rac{5}{2}}}
ight] \ &= rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot \left[rac{-r_1^2 + 2 \cdot r_3^2}{(r_1^2 + r_3^2)^{rac{5}{2}}}
ight] \end{aligned}$$

Gemäß der Angabe gilt für $V_1(r_1)$: $r_1 >> r_3$. Damit folgt für $V_1(r_1)$:

$$V_1(r_1) = rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot \left[rac{-r_1^2}{(r_1^2)^{rac{5}{2}}}
ight] = rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot rac{-\cancel{p_1^2}}{r_1^{\cancel{S}}} = -rac{Q \cdot D^2}{24\pi \cdot \epsilon_0} \cdot rac{1}{r_1^3}$$

Die Berechnung von $V_3(r_3)$ erfolgt analog zu $V_1(r_1)$:

$$egin{aligned} V_3(r_3) &= rac{Q \cdot D^2}{24 \pi \cdot \epsilon_0} \cdot \left[rac{3 \cdot r_3^2 - (r_1^2 + r_3^2)}{(r_1^2 + r_3^2)^{rac{5}{2}}}
ight] \ &= rac{Q \cdot D^2}{24 \pi \cdot \epsilon_0} \cdot \left[rac{-r_1^2 + 2 \cdot r_3^2}{(r_1^2 + r_3^2)^{rac{5}{2}}}
ight] \end{aligned}$$

Für $V_3(r_3)$ gilt gemäß der Angabe $r_3 >> r_1$: Daraus folgt:

$$V_3(r_3) = rac{Q \cdot D^2}{\cancel{2} 4 \ \pi \cdot \epsilon_0} \cdot \left[rac{\cancel{Z} \cdot r_3^2}{(r_3^2)^{rac{5}{2}}}
ight] = rac{Q \cdot D^2}{12 \pi \cdot \epsilon_0} \cdot \left[rac{\cancel{p}_3^{\cancel{Z}}}{r_3^{\cancel{Z}}}
ight]$$

$$V_3(r_3) = rac{Q\cdot D^2}{12\pi\cdot\epsilon_0}\cdotrac{1}{r_3^3}$$

18 Metallkugeln

18 Metallkugeln

In einem Leiter können Ladungen weitgehend ohne mechanische Arbeit bewegt werden und wir können das Potential entlang einer Metallfläche als konstant annehmen. Zwei konzentrische, dünne, metallische Hohlkugeln mit Radius R_1 und R_2 mit $R_1 < R_2$ werden mit einer Spannungsquelle jeweils auf die Potentiale $V_1 \neq 0$ und $V_2 = 0$ gehalten.

- (a) Löse die Poisson-Gleichung mit diesen Randbedingungen im ladungsfreien Raum abseits der Kugeloberflächen. Berechne und skizziere das Potential V(r) und das elektrische Feld $E_i(r)$ in allen Bereichen.
- (b) Finde anhand der Unstetigkeiten in $E_i(r)$ an den Stellen $r = R_1$ und $r = R_2$ die Ladungen Q_1 und Q_2 , die sich auf den jeweiligen Kugeloberflächen befinden.
- (c) Berechne die Energie im elektrischen Feld und gib sie in Vielfachen von Q_1V_1 an.

(a): 1P, (b): 1P, (c): 1P

a)

Die Poisson-Gleichung ist allgemein definiert als:

$$-
abla^2 V(r) = rac{
ho}{\epsilon_0}$$

Im ladungsfreien Raum außerhalb der Kugel gilt weiters:

$$-\nabla^2 V(r) = 0$$

 ∇^2 ist in dabei der Laplace-Operator. Wir können demnach den Laplace in Kugelkoordinaten anschreiben: (die Formel entstammt der Formelsammlung für den ersten Test)

$$abla^2 V(r) = rac{1}{r^2} \cdot \partial_r (r^2 \cdot \partial_r V(r)) + rac{1}{r^2 \cdot \sin artheta} \cdot \partial_artheta (\sin artheta \cdot \partial_artheta V(r)) + rac{1}{r^2 \sin^2 artheta} \cdot \partial_arphi \partial_arphi V(r)$$

Nachdem wir in diesem Unterpunkt das elektrische Potential in Abhängigkeit von r betrachten wollen, können wir ausschließlich den Term $\frac{1}{r^2}\cdot\partial_r(r^2\cdot\partial_r V)$ betrachten. Dieser kann wie bereits die Poisson-Gleichung gleich 0 gesetzt werden:

$$rac{1}{r^2}\cdot\partial_r(r^2\cdot\partial_r V(r))=0$$

Durch beidseitige Integration folgt:

$$egin{aligned} \partial_r(r^2\cdot\partial_rV(r)) &= 0 \ igg| \ f^2\cdot\partial_rV(r) &= C_1 \end{aligned}$$

Dieser Term kann umgeformt werden zu:

$$\partial_r V(r) = rac{C_1}{r^2}$$

Das Ergebnis kann erneut beidseitig integriert werden:

$$\partial_r V(r) = rac{C_1}{r^2} \left| \int
ight.$$

Damit ergibt sich die Form für das elektrische Potential zu:

$$\implies V(r) = \int rac{C_1}{r^2} \, dr = -rac{C_1}{r} + C_2 = 0$$

Im Zwischenraum der Kugel kommen die beiden Randbedingungen $V(R_2) = 0$ und $V(R_1) \neq 0$, aus der Angabe, zum Tragen. Daraus folgt für $V(R_2)$:

$$V(R_2) = 0 = -rac{C_1}{R_2} + C_2 \implies C_2 = rac{C_1}{R_2}$$

Für $V(R_1)$ ergibt sich damit:

$$egin{aligned} V(R_1)
eq 0 &= -rac{C_1}{R_1} + \underbrace{C_2}_{rac{C_1}{R_2}} = -rac{C_1}{R_1} + rac{C_1}{R_2} \ &V(R_1) = C_1 \cdot \left(rac{1}{R_2} - rac{1}{R_1}
ight) \ &= C_1 \cdot \left(rac{R_1 - R_2}{R_1 \cdot R_2}
ight) \ &\Longrightarrow C_1 = V(R_1) \cdot rac{R_1 \cdot R_2}{R_1 - R_2} \end{aligned}$$

Damit folgt für C_2 gemäß dem eingangs festgestellten Zusammenhang zwischen C_2 und C_1 :

$$C_2 = rac{C_1}{R_2} = V(R_1) \cdot \left(rac{R_1}{R_1 - R_2}
ight)$$

Nun können die Ergebnisse für C_1 und C_2 in die Form für V(r) eingesetzt werden, wodurch folgt:

$$V(r) = V(R_1) \cdot \left(-rac{1}{r} \cdot rac{R_1 \cdot R_2}{R_1 - R_2} + rac{R_1}{R_1 - R_2}
ight)$$

Das elektrische Feld im Zwischenraum der Kugeln kann nun über den Zusammenhang zwischen E und V bestimmt werden:

$$E(r) = -\nabla V(r)$$

Damit folgt für E(r) im Zwischenraum der Kugeln:

$$egin{aligned} E(r) &= -\partial_r \left(V(R_1) \cdot \left(-rac{1}{r} \cdot rac{R_1 \cdot R_2}{R_1 - R_2} + rac{R_1}{R_1 - R_2}
ight)
ight) \ &= -V(R_1) \cdot \left(rac{1}{r^2} \cdot rac{R_1 \cdot R_2}{R_1 - R_2} + 0
ight) \ &E(r) &= -rac{V(R_1)}{r^2} \cdot rac{R_1 \cdot R_2}{R_1 - R_2} \end{aligned}$$

Für das elektrische Feld im Innenraum der Kugel gilt aufgrund der Symmetrie:

$$E(r) = 0$$

(Dieser Zusammenhang wurde bereits in vergangenen Problem-Sets nachgewiesen.)

Für den Außenraum entspricht das elektrische Potential V(r):

$$V(r) = rac{1}{4\pi \cdot \epsilon_0} \cdot \int_V rac{
ho(r')}{|r-r'|} d^3r'$$

Nachdem wir den ladungsfreien Raum betrachten, ist auch hier V(r)=0. Über den eingangs aufgestellten Zusammenhang zu V(r) folgt somit:

$$V(r)=-rac{C_1}{r}+C_2=0$$

Betrachtet man diesen Zusammenhang im Unendlichen, folgt:

$$\lim_{r o 0}\left(-rac{C_1}{r}+C_2
ight)=0$$

Der Term $-\frac{C_1}{r}$ ergibt sich mit $\lim_{r\to 0}$ zu 0. Somit folgt für C_2 :

$$C_2 = 0$$

Weiters kann aus der Randbedingung $V(R_2)$ abgeleitet werden:

$$egin{aligned} V(R_2) &= -rac{C_1}{R_2} + \underbrace{C_2}_{=0} = 0 \ \ &\Longrightarrow -rac{C_1}{R_2} = 0 \end{aligned}$$

Somit ergibt sich auch C_1 zu 0.

Für das elektrische Feld im ladungsfreien Außenraum abseits der Kugeloberfläche folgt somit final:

$$E(r) = -\nabla V(r)$$

Für V(r) = 0 entpricht das elektrische Feld E somit:

$$E(r) = 0$$

Skizziert verläuft E(r) wie folgt:

Die Faktoren a_1 und a_2 entsprechen dabei:

$$a(r) = -rac{R_2 \cdot V(R_1)}{(R_1 - R_2) \cdot r}$$
 $a_1 = a(R_1) = -rac{R_2 \cdot V(R_1)}{(R_1 - R_2) \cdot R_1}$ $a_2 = a(R_2) = -rac{R_2 \cdot V(R_1)}{(R_1 - R_2) \cdot R_2}$

Das elektrische Potential V(r) entspricht skizziert:

b)

Aufgrund der Sprungbedingungen für die Normalprojektion der elektrischen Flußdichte folgt: (Quelle: Vorlesungen über die Grundlagen der Elektrotechnik Band 1 von Adalbert Prechtl, Seite 273)

$$[|D_n|] = \sigma$$

Aus dem Zusammenhang $D = \epsilon_0 \cdot E$ folgt:

$$[|\epsilon_0 \cdot E_n|] = rac{Q}{A}$$

Somit kann die Ladung Q wie folgt berechnet werden:

$$egin{aligned} Q &= A \cdot \epsilon_0 \cdot E(r) \ &= \left(4\pi \cdot \cancel{\mathscr{F}}\right) \cdot \epsilon_0 \cdot \left(-rac{V(R_1)}{\cancel{\mathscr{F}}} \cdot rac{R_1 \cdot R_2}{R_1 - R_2}
ight) \ &= -4\pi \cdot \epsilon_0 \cdot rac{R_1 \cdot R_2}{R_1 - R_2} \cdot V(R_1) \end{aligned}$$

Wie bei einem Kugelkondensator sind auch in diesem Fall die Ladungen gegengleich. Somit gilt:

$$Q_{innen} = -Q_{aueta en}$$

c)

Die elektrische Energie ist definiert durch:

$$W=\int m{F}\,ds$$

Durch den Zusammenhang, dass die Kraft F gleich $q \cdot E$ ist, kann der Ausdruck umgeformt werden zu:

$$W = \int Q \cdot oldsymbol{E} \, ds$$

Weiters gilt für das elektrische Potential und das elektrische Feld:

$$V=-\int oldsymbol{E}\,ds$$

Somit folgt der Zusammenhang:

$$W = \int Q \cdot oldsymbol{E} \, ds = -Q \cdot V$$

Eingesetzt ergibt sich die elektrische Energie somit zu:

$$W = -Q \cdot V(R_1) \cdot \left(-rac{1}{r} \cdot rac{R_1 \cdot R_2}{R_1 - R_2} + rac{R_1}{R_1 - R_2}
ight)$$

Als Vielfaches von $Q_1 \cdot V_1$ geschrieben, folgt somit für die elektrische Energie:

$$\frac{W}{Q_1 \cdot V_1} = \frac{1}{r} \cdot \frac{R_1 \cdot R_2}{R_1 - R_2} - \frac{R_1}{R_1 - R_2}$$