

Please amend claim 1 as follows.

1. (amended) In a [Wye-connected] multiple phase electrical system for supplying
2 power from an AC source to [at least one] a plurality of nonlinear [load] loads connected
3 to [a] at least one phase line therein, a device for substantially eliminating currents in the
4 neutral wire [generated by the nonlinear load], said device comprising:
5 [an] a first electrical circuit comprising
6 a first passive electrical component connected along a phase line in said
7 electrical system in series [between the AC source and the] with at least one
8 of said nonlinear [load] loads,
9 a second passive electrical component connected in parallel to said first
10 passive electrical component,
11 a third passive electrical component connected in parallel to said first
12 and said second passive electrical components; and
13 wherein said first, said second, and said third passive electrical components of said
14 first circuit are tuned to a harmonic frequency of a fundamental frequency of the AC source
15 so as to substantially eliminate a harmonic current drawn by [the] said at least one nonlinear
16 load connected in series with said parallel connection of said first, said second, and said third
17 passive electrical components.

[Please amend claim 2 as follows.]

1 2. (amended) A device as recited in claim 1, wherein:
2 said first, said second, and said third passive electrical components of said first
3 electrical circuit are tuned to a third harmonic frequency of the AC source.

[Please amend claim 3 as follows.]

3. (amended) A device as recited in claim 1, wherein:

4 said first passive electrical component of said first electrical circuit comprises a
capacitor;

5 said second passive electrical component of said first electrical circuit comprises a
6 reactor; and

7 said third passive electrical component of said first electrical circuit comprises a
8 resistor.

[Please amend claim 4 as follows.]

1 4. (amended) A device as recited in claim 2, wherein:

2 said first passive electrical component of said first electrical circuit comprises a
3 capacitor;

4 said second passive electrical component of said first electrical circuit comprises a
5 reactor; and

6 said third passive electrical component of said first electrical circuit comprises a
7 resistor.

(Please amend claim 5 as follows.)

5. (amended) A [harmonic] neutral current eliminating device as recited in claim 1,
wherein:

each phase line in the electrical system [is connected] supplies power to at least one
nonlinear load;

said device [comprises a plurality of said] includes a second and third electrical
[circuits] circuit, each of said first, said second and said third electrical circuits being
connected along a separate phase line [therein] in said electrical system [and] in series with
at least one nonlinear load whose power is supplied by said separate phase line, [so as to]
said first, said second and said third electrical circuits substantially eliminate a harmonic
current in each of said separate phase lines drawn [thereby] by said nonlinear loads;

said second electrical circuit comprises a fourth passive electrical component, a fifth
passive electrical component connected in parallel to said fourth passive electrical
component, and a sixth passive electrical component connected in parallel to said fourth and
said fifth passive electrical components;

said third electrical circuit comprises a seventh passive electrical component, an
eighth passive electrical component connected in parallel to said seventh passive electrical
component, and a ninth passive electrical component connected in parallel to said eighth and
said seventh passive electrical components; and

wherein each of said first, said second and said third electrical circuits is tuned to an
identical harmonic frequency of the AC source.

Please amend claim 6 as follows.]

1 6. (amended) A [harmonic] neutral current eliminating device as recited in claim 2,
2 wherein:

3 each phase line in the electrical system [is connected] supplies power to at least one
4 nonlinear load;

5 said device [comprises a plurality of said] includes a second and third electrical
6 [circuits] circuit, each of said first, said second and said third electrical circuits being
7 connected along a separate phase line [therein] in said electrical system [and] in series with
8 at least one nonlinear load whose power is supplied by said separate phase line, [so as to]
9 said first, said second and said third electrical circuits substantially eliminate a harmonic
10 current in each of said separate phase lines drawn [thereby] by said nonlinear loads;

11 said second electrical circuit comprises a fourth passive electrical component, a fifth
12 passive electrical component connected in parallel to said fourth passive electrical
13 component, and a sixth passive electrical component connected in parallel to said fourth and
14 said fifth passive electrical components;

15 said third electrical circuit comprises a seventh passive electrical component, an
16 eighth passive electrical component connected in parallel to said seventh passive electrical
17 component, and a ninth passive electrical component connected in parallel to said eighth and
18 said seventh passive electrical components; and

19 wherein each of said first, said second and said third electrical circuits is tuned to a
20 third harmonic of the AC source.

SAC

Please amend claim 11 as follows.

11. (amended) A device for reducing currents [substantially eliminating harmonic
2 currents in an electrical system having] in an electrical system which supplies power to a
3 nonlinear load [and] from an AC source[, and increasing the operational range of the
4 nonlinear load], comprising:

5 a first passive electrical component connected in series with the nonlinear load;

6 a second passive electrical component connected in parallel to said first passive
7 electrical component;

8 a third passive electrical component connected in parallel to said first and said second
9 passive electrical component;

10 a housing member for said first, said second, and said third passive electrical
11 components;

12 means for connecting the nonlinear load to said parallel connection of said first, said
13 second and said third passive electrical components; and

14 wherein said first, said second, and said third passive electrical components are tuned
15 to a third harmonic frequency of the AC source so as to substantially alter current drawn
16 by the nonlinear load.

C Please amend claim 12 as follows.]

12. (amended) A device as recited in claim 11, [including] wherein:

2 [a housing for said first, said second, and said third passive electrical components;
3 and]

4 said connecting means includes an equipment rack panel member connected to said
5 *member* *member* housing so as to mount said housing in an equipment rack storing the nonlinear load; and

6 wherein said equipment rack panel member is substantially perforated so as to allow
7 airflow to pass therethrough.

Please amend claim 13 as follows.

1 13. (amended) A device as recited in claim 11, [including] wherein:

2 [an electrical housing member;]

3 said connecting means includes at least one electrical socket for connecting to the
4 nonlinear load, said socket being disposed along a first surface of said housing member[;],
5 and at least one bracket member for mounting said device along a substantially planar
6 surface so that said socket and said first surface of said housing member are substantially
7 aligned with said planar surface, said device substantially replacing a conventional wall outlet.

*4/14/11
new claim*

Pleas amend claim 15 as follows.

1 15. (amended) A device as recited in claim 11, further including:

2 an isolation transformer connected between said AC source and said parallel
3 connection of said first, said second, and said third passive electrical components; and *4/14/11*
4 [a housing member having] wherein said connecting means includes electrical
5 [connectors] sockets extending therefrom for providing connection to the nonlinear load[;],
6 and at least one bracket member for attaching said housing member to a utility cart.

Please delete claim 16 without prejudice and without dedication or abandonment of
the subject matter thereof.

Please amend claim 17 as follows.

1 17. (amended) A device as recited in claim 11, including:

2 means, connected in series with said parallel [combination] connection of said first,
3 said second, and said third passive electrical components, for [clamping] controlling current
4 levels drawn by the nonlinear load, comprising a current [clamping] limiting circuit, a
5 [sensor] circuit for detecting a rapid rise in current drawn by the nonlinear load and [means]
6 a switch for automatically deactivating said clamping circuit based upon signal levels detected
7 by said [sensor] current detecting circuit.

Please amend claim 18 as follows.

1 18. (amended) A device as recited in claim 17, wherein:
2 said first, said second, and said third [devices] electrical components are tuned to a
3 third harmonic frequency of the AC source.

Please amend claim 19 as follows.

1 19. (amended) A device as recited in claim 18, wherein:
2 said current level [clamping] limiting circuit maintains a maximum current level drawn
3 by the nonlinear load to between approximately 6 and 8 amps[; and
4 the nonlinear load includes a heating unit].

Please add the following new claims 20-21.

-20-

A device as recited in claim 1, wherein:

1 each phase line in the electrical system supplies power to at least one nonlinear load;
2 said device includes a second electrical circuit, each of said first and said second
3 electrical circuits being connected along a separate phase line therein in said electrical
4 system and in series with at least one nonlinear load whose power is supplied by said
5 separate phase line, said first and said second electrical circuits substantially eliminate a
6 harmonic current in each of said separate phase lines drawn by said nonlinear loads;
7 said second electrical circuit comprises a fourth passive electrical component, a fifth
8 passive electrical component connected in parallel to said fourth passive electrical
9 component, and a sixth passive electrical component connected in parallel to said fourth and
10 said fifth passive electrical components;
11 wherein each of said first and said second electrical circuits is tuned to an identical
12 harmonic frequency of the AC source.