QUIZ 3: CHAPTER 4 MARCH 28

Name:

- All answers should be fully justified.
- Complete this quiz without any aids, including the text or your peers.
- (1) True or false: For every $x \in \mathbb{Q}$, $2\lfloor x \rfloor = \lfloor 2x \rfloor$. Prove your answer.

Let
$$x = 0.5$$
. Then $2[x] = 2.0 = 0$
but $[2x] = [1] = 1$

(2) True or false: If $f:A\to B$ and $g:B\to C$ are both surjective, then $g\circ f$ is surjective. Prove your answer.

Direct proof. Let f: A -B & g: B -C be (arbitrary) surjective functions.

(3) Prove that for every $n \in \mathbb{Z}$, $\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil = n$.

Case 1: n is even. Let
$$n=2k$$
, $k\in\mathbb{Z}$. Then $\lfloor \frac{n!}{2} \rfloor + \lceil \frac{n}{2} \rceil = \lfloor \frac{2k}{2} \rfloor + \lceil \frac{2k}{2} \rceil$

$$= \lfloor k \rfloor + \lceil k \rceil$$

$$= k + k \quad (since k\in\mathbb{Z})$$

$$= 2k = 2k$$

$$\begin{bmatrix} \frac{n}{2} \end{bmatrix} 4 \begin{bmatrix} \frac{n}{2} \end{bmatrix} = \begin{bmatrix} \frac{2k+1}{2} \end{bmatrix} + \begin{bmatrix} \frac{2k+1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} k+\frac{1}{2} \end{bmatrix} + \begin{bmatrix} k+\frac{1}{2} \end{bmatrix}$$

$$= k+\begin{bmatrix} \frac{1}{2} \end{bmatrix} + k+\begin{bmatrix} \frac{1}{2} \end{bmatrix}$$

$$= k+0 + k+1$$

$$= 2k+1$$

$$= n.$$

(4) Define $f: \{-1,0,1,2,3,4\} \rightarrow \{0,1,2,3,4\}$ by f(x) = |x-2|.

(a) Draw an arrow diagram for f.

(b) Give the set representation of f.

$$f = \{(-1,3), (0,2), (1,1), (2,0), (3,1), (4,2)\}$$

(c) Find the range of f.

(d) Is f onto? (Why or why not?)

(e) Is f one-to-one? (Why or why not?)