# ECE 2300 Recitation Class 4

**Renxiang Guan** 



#### **Pre-class**





#### • Quiz this week!

- After Thursday lecture (8:00 pm 8:40 pm)
- Same format as last quiz. Online student need to turn on at least one camara.
- If you want to take online quiz, notify us beforehand!

#### Midterm 1 next week!

- Location to be announced
- Thursday June 15<sup>th</sup> 7-8:40 pm
- Arrange your time well!

#### 4.1.1 Recap - Conductors





Definition:

- Static state characteristics:
  - Inside:
  - Surface(Boundary):
  - Outside:

#### 4.1.2 Recap – Dielectrics





Definition:

- Polarization Vector:
  - Defined by dipole density:

## 4.1.2 Recap – Dielectrics





Surface charge density:

Volume charge density:

#### 4.2.1 Electric Flux Density/Electric Displacement





Definition:

- Expression:
  - Relation with E and P:

#### 4.2.1 Electric Flux Density/Electric Displacement





Integration Form:

Differential Form:

#### 4.2.2 Electric Displacement in Isotropic Medium





Relation between Polarization Vector and Field:

#### 4.2.3 Electric Dis. for anisotropic Medium





General anisotropic medium

Biaxial:

## **4.3 Boundary Conditions**





Normal:

# **4.3 Boundary Conditions**





Tangential:

#### 4.4.1 Capacitors





Definition:

- Equation for description:
  - General Form:
  - \*Related to only surface area & distance:

#### 4.4.2 Find Capacitance





- Step1:
- Step2:
- Step3:
- Step4:

#### 4.4.3 Connected Capacitors





Series Connection:

Parallel Connection:

#### **Ex.1 Electric Displacement**





Suppose we have a capacitor with capacitance of C, what is the capacitance C' after we inserted a dielectric with relative permittivity of  $\epsilon r$ ?

#### **Ex.1 Electric Displacement**





Suppose we have a capacitor with capacitance of C, what is the capacitance C' after we inserted a dielectric with relative permittivity of  $\epsilon r$ ?

#### 4.5 Energy of Electric Field





For discrete charges:

\*why ½?

For continuous charges:

#### 4.5 Energy of Electric Field (Some Eq.s)









Key Point:





- Why legal?
  - Uniqueness Theorem!





#### Examples:

Point charge and a conducting plane









#### Examples:

Line charge and a parallel conducting cylinder







#### Examples:

Point charge and a conducting sphere











# Thank You

Credit to Deng Naihao for this slides & information