SBA: Statistical Business Analyst with SAS

SBA1 Introduction to Statistical Analysis: Hypothesis Testing

W2 Pearson Correlation and Simple Regression

Using Correlation to Measure Relationship Between Continuous Variables

Hypothesis Testing for a Correlation

	population parameter	sample statistic
correlation	ρ	r

$$H_0: \rho = 0$$

$$H_a: \rho \neq 0$$

	population parameter	sample statistic
correlation	ρ	r

p-value does not measure strength

$$H_0: \rho = 0 \qquad \qquad H_a: \rho \neq 0$$

$$\begin{array}{c|c} population & sample \\ statistic \\ \hline correlation & \rho & r \\ \hline \\ does measure strength \\ \hline \\ H_0: \rho = 0 & H_a: \rho \neq 0 \\ \hline \\ large sample sizes \\ \hline \\ small p-values \\ \hline \end{array}$$

The Pearson correlation statistic is a measure of the linear relationship, or association, between two continuous variables. The closer the value is to -1, the stronger the negative linear relationship is between the two variables. The closer the value is to 0, the weaker the linear relationship. A correlation coefficient of 0 means that no linear relationship or association exists between the two variables.

Avoiding Common Errors When Interpreting Correlations

Missing Link

The Truer Story

Demo Producing Correlation Statistics and Scatter Plots Using PROC CORR

PROC CORR

Pearson correlation coefficient

p-values

/*st102d04.sas*/ /*Part A*/

%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area

Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom;

```
ods graphics / reset=all imagemap;

proc corr data=STAT1.AmesHousing3 rank

plots(only)=scatter(nvar=all ellipse=none);

var &interval;

with SalePrice;

id PID;

title "Correlations and Scatter Plots with SalePrice";
```

Correlations and Scatter Plots with SalePrice

The CORR Procedure

1 With Variables:	SalePrice
8 Variables:	Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom

					Simple Statis	stics	
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
SalePrice	300	137525	37623	41257460	35000	290000	Sale price in dollars
Gr_Liv_Area	300 1131 232.64939 339222 334.00000 1500 Above grade (ground) living area square						Above grade (ground) living area square feet
Basement_Area	300	882.31000	359.78397	264693	0	1645	Basement area in square feet
Garage_Area	300	369.45333	176.25309	110836	0	902.00000	Size of garage in square feet
Deck_Porch_Area	300	118.26333	132.61169	35479	0	897.00000	Total area of decks and porches in square feet
Lot_Area	300	8294	3324	2488241	1495	26142	Lot size in square feet
Age_Sold	300	45.88667	27.47697	13766	8 1.00000 135.00000 Age of house when sold, in ye		Age of house when sold, in years
Bedroom_AbvGr	300	2.51333	0.69144	754.00000	0	4.00000	Bedrooms above grade
Total_Bathroom	300	1.70167	0.65707	510.50000	1.00000	4.10000	Total number of bathrooms (half bathrooms counted 109

Pearson Correlation Coefficients, N = 300 Prob > r under H0: Rho=0											
SalePrice Sale price in dollars	Basement_Area 0.68956 <.0001	Gr_Liv_Area 0.65046 <.0001	Age_Sold -0.61542 <.0001	Total_Bathroom 0.60043 <.0001	Garage_Area 0.57892 <.0001	Deck_Porch_Area 0.43989 <.0001	Lot_Area 0.25335 <.0001	Bedroom_AbvGr 0.16594 0.0040			

Correlations and Scatter Plot Matrix of Predictors

The CORR Procedure

8 Variables:	Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom	
--------------	--	--

Pearson Correlation Co Prob > r under					
Gr_Liv_Area Above grade (ground) living area square feet	Gr_Liv_Area 1.00000	Bedroom_AbvGr 0.48431 <.0001	Basement_Area 0.43985 <.0001		
Basement_Area Basement area in square feet	Basement_Area 1.00000	Total_Bathroom 0.48500 <.0001	Gr_Liv_Area 0.43985 <.0001		
Garage_Area Size of garage in square feet	Garage_Area 1.00000	Age_Sold -0.41346 <.0001	Total_Bathroom 0.36876 <.0001		
Deck_Porch_Area Total area of decks and porches in square feet	Deck_Porch_Area 1.00000	Basement_Area 0.33689 <.0001	Gr_Liv_Area 0.28058 <.0001		
Lot_Area Lot size in square feet	Lot_Area 1.00000	Bedroom_AbvGr 0.29801 <.0001	Basement_Area 0.27198 <.0001		
Age_Sold Age of house when sold, in years	Age_Sold 1.00000	Total_Bathroom -0.52889 <.0001	Garage_Area -0.41346 <.0001		
Bedroom_AbvGr Bedrooms above grade	Bedroom_AbvGr 1.00000	Gr_Liv_Area 0.48431 <.0001	Lot_Area 0.29801 <.0001		
Total_Bathroom Total number of bathrooms (half bathrooms counted 10%)	Total_Bathroom 1.00000	Age_Sold -0.52889 <.0001	Basement_Area 0.48500 <.0001		

Correlation Analysis and Model Building

Correlations between the response variable and potential predictors can be useful by suggesting variables that should be included or excluded from model building. Often, modelers have many predictors, and thus, a very large number of possible models to explore. Predictors with a weak or no relationship with the response variable might sometimes be excluded. Typically, the decision to throw out a variable is based on multivariable analyses. However, if the modeler has far more predictors than can be used and variable reduction becomes necessary (often under time pressure), predictors with weak or no correlation with the response variable are good candidates for exclusion. Part of correlation analysis involves visually assessing associations between variables by looking at scatter plots. When these plots reveal patterns in the data, such as curvilinear relationships, a modeler might need to build additional terms into the model, such as polynomials. Another reason to create scatter plots is to assess the linear relationship between pairs of predictor variables. When predictors are highly correlated, they provide redundant information. Multicollinearity (strong correlations among sets of predictors) can destabilize parameter estimates

and degrade the ability of model selection routines, such as stepwise selection, to select good variables. Correlation analysis is one of several ways to address collinearity prior to model building.

Practice - Describing the Relationship between Continuous Variables **TOTAL POINTS 4**

1.

Question 1

The percentage of body fat, age, weight, height, and 10 body circumference measurements (for example, abdomen) were recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The data are in the **stat1.bodyfat2** data set. Body fat, one measure of health, has been accurately estimated by a water displacement measurement technique.

- 1. Generate scatter plots and correlations for the VAR variables Age, Weight, and Height, and the circumference measures Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist versus the WITH variable, PctBodyFat2. **IMPORTANT: For PROC CORR, ODS Graphics will display a maximum of 10 VAR variable plots at a time. This practice analyzes thirteen variables, so it requires two PROC CORR steps to generate all thriteen plots. This limitation only applies to the ODS graphics. The correlation table displays all variables in the VAR statement by default.
- Write a PROC CORR step to analyze all thirteen variables
 (Age, Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist). This will generate a correlation table for all of the variables, but it will display plots for only the first ten.
- 3. Write an ODS statement to limit the graphic output to scatter plots.
- 4. Write another PROC CORR step, to look at only the last three variables, **Biceps**, **Forearm**, and **Wrist**.
- 5. Submit the code. The output should include a correlation table for all thirteen variables followed by a plots for the first ten, and then plots for the last three.
- 6. Examine the plots. Can straight lines adequately describe the relationships?

```
/*st102s03.sas*/ /*Part A*/
```

%let interval=Age Weight Height Neck Chest Abdomen Hip

Thigh Knee Ankle Biceps Forearm Wrist;

```
ods graphics / reset=all imagemap;
proc corr data=STAT1.BodyFat2
plots(only)=scatter(nvar=all ellipse=none);
var &interval;
```

```
with PctBodyFat2;
id Case;
title "Correlations and Scatter Plots";
run;

%let interval=Biceps Forearm Wrist;

ods graphics / reset=all imagemap;
ods select scatterplot;
proc corr data=STAT1.BodyFat2
    plots(only)=scatter(nvar=all ellipse=none);
    var &interval;
    with PctBodyFat2;
    id Case;
    title "Correlations and Scatter Plots";
run;
```

Correlations and Scatter Plots

The CORR Procedure

1 With Variables:	PctBodyFat2
13 Variables:	Age Weight Height Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist

		Sin	nple Statisti	cs		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
PctBodyFat2	252	19.15079	8.36874	4826	0	47.50000
Age	252	44.88492	12.60204	11311	22.00000	81.00000
Weight	252	178.92440	29.38916	45089	118.50000	363.15000
Height	252	70.30754	2.60958	17718	64.00000	77.75000
Neck	252	37.99206	2.43091	9574	31.10000	51.20000
Chest	252	100.82421	8.43048	25408	79.30000	136.20000
Abdomen	252	92.55595	10.78308	23324	69.40000	148.10000
Hip	252	99.90476	7.16406	25176	85.00000	147.70000
Thigh	252	59.40595	5.24995	14970	47.20000	87.30000
Knee	252	38.59048	2.41180	9725	33.00000	49.10000
Ankle	252	23.10238	1.69489	5822	19.10000	33.90000
Biceps	252	32.27341	3.02127	8133	24.80000	45.00000
Forearm	252	28.66389	2.02069	7223	21.00000	34.90000
Wrist	252	18.22976	0.93358	4594	15.80000	21.40000

		Pearson Correlation Coefficients, N = 252 Prob > r under H0: Rho=0												
Age Weight Height Neck Chest Abdomen Hip Thigh K						Knee	Ankle	Biceps	Forearm	Wrist				
	PctBodyFat2	0.29146 <.0001	0.61241 <.0001	-0.02529 0.6895	0.49059 <.0001		0.81343 <.0001	0.62520 <.0001	0.55961 <.0001	0.50867 <.0001	0.26597 <.0001	0.49327 <.0001	0.38139 <.0001	0.34657 <.0001

Correlations and Scatter Plots

The CORR Procedure

Generate correlations among all the variables previously mentioned (**Age**, **Weight**, **Height**, **Neck**, **Chest**, **Abdomen**, **Hip**, **Thigh**, **Knee**, **Ankle**, **Biceps**, **Forearm**, and **Wrist**) minus **PctBodyFat2**. Use the OUT= option in the PROC CORR statement to output the correlation table into a data set named **pearson**. Use the BEST= option to select only the highest five per variable.

Submit the code and review the results. Are there any notable relationships?

```
out=pearson;
 var &interval;
 title "Correlations of Predictors";
run;
%let big=0.7;
proc format;
  picture correlations &big -< 1 = '009.99' (prefix="*")
             -1 <- -&big = '009.99' (prefix="*")
             -&big <-< &big = '009.99';
run;
proc print data=pearson;
  var _NAME_ &interval;
  where _type_="CORR";
  format &interval correlations.;
run;
%let big=0.7;
data bigcorr;
  set pearson;
  array vars{*} &interval;
  do i=1 to dim(vars);
    if abs(vars{i})<&big then vars{i}=.;</pre>
  end;
  if _type_="CORR";
  drop i _type_;
run;
```

proc print data=bigcorr; format &interval 5.2; run; title;

Correlations of Predictors

The CORR Procedure

13 Variables: Age Weight Height Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist

	Pearson Correlation Coefficients, N = 252 Prob > r under H0: Rho=0										
Age	Age 1.00000	Height -0.24521 <.0001	Abdomen 0.23041 0.0002	Wrist 0.21353 0.0006	Thigh -0.20010 0.0014						
Weight	Weight 1.00000	Hip 0.94088 <.0001	Chest 0.89419 <.0001	Abdomen 0.88799 <.0001	Thigh 0.86869 <.0001						
Height	Height 1.00000	Knee 0.50050 <.0001	Weight 0.48889 <.0001	Wrist 0.39778 <.0001	Ankle 0.39313 <.0001						
Neck	Neck 1.00000	Weight 0.83072 <.0001	Chest 0.78484 <.0001	Abdomen 0.75408 <.0001	Wrist 0.74483 <.0001						
Chest	Chest 1.00000	Abdomen 0.91583 <.0001	Weight 0.89419 <.0001	Hip 0.82942 <.0001	Neck 0.78484 <.0001						
Abdomen	Abdomen 1.00000	Chest 0.91583 <.0001	Weight 0.88799 <.0001	Hip 0.87407 <.0001	Thigh 0.76662 <.0001						
Hip	Hip 1.00000	Weight 0.94088 <.0001	Thigh 0.89641 <.0001	Abdomen 0.87407 <.0001	Chest 0.82942 <.0001						
Thigh	Thigh 1.00000	Hip 0.89641 <.0001	Weight 0.86869 <.0001	Knee 0.79917 <.0001	Abdomen 0.76662 <.0001						
Knee	Knee 1.00000	Weight 0.85317 <.0001	Hip 0.82347 <.0001	Thigh 0.79917 <.0001	Abdomen 0.73718 <.0001						
Ankle	Ankle 1.00000	Weight 0.61369 <.0001	Knee 0.61161 <.0001	Wrist 0.56619 <.0001	Hip 0.55839 <.0001						
Biceps	Biceps 1.00000	Weight 0.80042 <.0001	Thigh 0.76148 <.0001	Hip 0.73927 <.0001	Neck 0.73115 <.0001						
Forearm	Forearm 1.00000	Biceps 0.67826 <.0001	Weight 0.63030 <.0001	Neck 0.62366 <.0001	Wrist 0.58559 <.0001						
Wrist	Wrist 1.00000	Neck 0.74483 <.0001	Weight 0.72977 <.0001	Knee 0.66451 <.0001	Chest 0.68016 <.0001						

	Correlations of Predictors													
Obs	_NAME_	Age	Weight	Height	Neck	Chest	Abdomen	Hip	Thigh	Knee	Ankle	Biceps	Forearm	Wrist
4	Age	1	0.01	0.24	0.11	0.17	0.23	0.05	0.20	0.01	0.10	0.04	0.08	0.21
5	Weight	0.01	1	0.48	*0.83	*0.89	*0.88	*0.94	*0.86	*0.85	0.61	*0.80	0.63	*0.72
6	Height	0.24	0.48	1	0.32	0.22	0.18	0.37	0.33	0.50	0.39	0.31	0.32	0.39
7	Neck	0.11	*0.83	0.32	1	*0.78	*0.75	*0.73	0.69	0.67	0.47	*0.73	0.62	*0.74
8	Chest	0.17	*0.89	0.22	*0.78	1	*0.91	*0.82	*0.72	*0.71	0.48	*0.72	0.58	0.66
9	Abdomen	0.23	*0.88	0.18	*0.75	*0.91	1	*0.87	*0.76	*0.73	0.45	0.68	0.50	0.61
10	Hip	0.05	*0.94	0.37	*0.73	*0.82	*0.87	1	*0.89	*0.82	0.55	*0.73	0.54	0.63
11	Thigh	0.20	*0.86	0.33	0.69	*0.72	*0.76	*0.89	1	*0.79	0.53	*0.76	0.56	0.55
12	Knee	0.01	*0.85	0.50	0.67	*0.71	*0.73	*0.82	*0.79	1	0.61	0.67	0.55	0.66
13	Ankle	0.10	0.61	0.39	0.47	0.48	0.45	0.55	0.53	0.61	1	0.48	0.41	0.56
14	Biceps	0.04	*0.80	0.31	*0.73	*0.72	0.68	*0.73	*0.76	0.67	0.48	1	0.67	0.63
15	Forearm	0.08	0.63	0.32	0.62	0.58	0.50	0.54	0.56	0.55	0.41	0.67	1	0.58
16	Wrist	0.21	*0.72	0.39	*0.74	0.66	0.61	0.63	0.55	0.66	0.56	0.63	0.58	1

Correlations of Predictors

Obs	_NAME_	Age	Weight	Height	Neck	Chest	Abdomen	Hip	Thigh	Knee	Ankle	Biceps	Forearm	Wrist
1	Age	1.00												
2	Weight		1.00		0.83	0.89	0.89	0.94	0.87	0.85		0.80		0.73
3	Height			1.00										
4	Neck		0.83		1.00	0.78	0.75	0.73				0.73		0.74
5	Chest		0.89		0.78	1.00	0.92	0.83	0.73	0.72		0.73		
6	Abdomen		0.89		0.75	0.92	1.00	0.87	0.77	0.74				
7	Hip		0.94		0.73	0.83	0.87	1.00	0.90	0.82		0.74		
8	Thigh		0.87			0.73	0.77	0.90	1.00	0.80		0.76		
9	Knee		0.85			0.72	0.74	0.82	0.80	1.00				
10	Ankle										1.00			
11	Biceps		0.80		0.73	0.73		0.74	0.76			1.00		
12	Forearm												1.00	
13	Wrist		0.73		0.74									1.00

Simple Linear Regression

Scenario

The Simple Linear Regression Model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

response variable linear association variable predictor variable

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

How SAS performs Simple Linear Regression

method of least squares

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

method of least squares

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Comparing the Regression Model to a Baseline Model

simple linear regression model

Hypothesis Testing and Assumptions for Linear Regression

predictor (X)

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

assumptions

mean of Y is linearly related to X

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}$$

$$\triangle$$

August 19, 2021 Suhaimi William Chan Page | **69**

Demo Performing Simple Linear Regression Using PROC REG

8 quit; 9 10 title;

/*st102d05.sas*/

ods graphics;

```
proc reg data=STAT1.ameshousing3;
  model SalePrice=Lot_Area;
  title "Simple Regression with Lot Area as Regressor";
run;
quit;
title;
```

Simple Regression with Lot Area as Regressor

The REG Procedure Model: MODEL1 Dependent Variable: SalePrice Sale price in dollars

> Number of Observations Read 300 Number of Observations Used 300

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	1	27164711173	27164711173	20.44	<.0001				
Error	298	3.960588E11	1329056404						
Corrected Total	299	4.232235E11							

Root MSE	36456	R-Square	0.0842
Dependent Mean	137525	Adj R-Sq	0.0610
Coeff Var	26.50882		

Parameter Estimates											
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t					
Intercept	Intercept	1	113740	5666.48352	20.07	<.0001					
Lot_Area	Lot size in square feet	1	2.86770	0.63431	4.52	<.0001					

August 19, 2021 Suhaimi William Chan Page | 74

Question 1

You just used PROC REG to regress y on X_1 and found the parameter estimates table below. Given this information, what is the best guess (predicted value) of y when $X_1 = 13$?

	Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value						
Intercept	1	5	1.0	5						
X ₁	1	10	2.5	4						

The best guess of y when $X_1 = 13$ is the intercept plus the slope times X_1 :

$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta} X_1$$
 $135 = 5 + 10(13)$

Practice - Using PROC REG to Fit a Simple Linear Regression Model **TOTAL POINTS 3**

1.

Question 1

Using the **bodyfat2** data set, perform a simple linear regression model.

Perform a simple linear regression model with PctBodyFat2 as the response variable and Weight
as the predictor.

What is the value of the *F* statistic and the associated *p*-value? How would you interpret this in connection with the null hypothesis?

F value = 150 and p-value < .001 Reject null hypothesis

The value of the *F* statistic is 150.03 and the *p*-value is <.001. Therefore, you would reject the null hypothesis of no relationship, or a zero slope for **Weight**.

Question 2

Write the predicted regression equation.

```
y = -12.05158 + 0.17439 X
```

The prediction regression equation is:

PctBodyFat2 = -12.05158 + 0.17439 * **Weight**.

Question 3

What is the value of R-square? How would you interpret this?

The R-square value of 0.3751 can be interpreted to mean that 37.51% of the variability in **PctBodyFat2** can be explained by **Weight**.

/*st102s04.sas*/
ods graphics on;

proc reg data=STAT1.BodyFat2;

model PctBodyFat2=Weight;
title "Regression of % Body Fat on Weight";
run;
quit;

title;

Regression of % Body Fat on Weight

The REG Procedure Model: MODEL1 Dependent Variable: PctBodyFat2

Number of Observations Read	252
Number of Observations Used	252

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	6593.01614	6593.01614	150.03	<.0001		
Error	250	10986	43.94389				
Corrected Total	251	17579					

Root MSE	6.62902	R-Square	0.3751
Dependent Mean	19.15079	Adj R-Sq	0.3726
Coeff Var	34.61485		

	Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t						
Intercept	1	-12.05158	2.58139	-4.67	<.0001						
Weight	1	0.17439	0.01424	12.25	<.0001						

Regression of % Body Fat on Weight

The REG Procedure Model: MODEL1 Dependent Variable: PctBodyFat2

