Coniques

Dans tout ce problème, on se donne (O, \vec{i}, \vec{j}) , un repère orthonormé direct du plan.

On rappelle que si D est une droite donnée, et M un point quelconque, la distance d(M, D) de M à D est égale à la longueur du segment [MH], où H est le projeté orthogonal de M sur D.

- 1. Soient x, y deux réels tels que $x^2 + y^2 = 1$. Montrer qu'il existe un unique réel θ dans $[0, 2\pi[$ tel que $x = \cos(\theta)$ et $y = \sin(\theta)$ (on pourra se souvenir de la définition géométrique de sinus et cosinus).
- 2. Soit $\mathscr{C} = \{M(x;y) \mid (x-1)^2 + (y-2)^2 = 4\}$. Donner une représentation graphique de l'ensemble \mathscr{C} . Montrer qu'un point M(x;y) appartient à \mathscr{C} si, et seulement si, il existe un unique réel θ dans $[0,2\pi[$ tel que $x=1+2\cos(\theta)$ et $y=2+2\sin(\theta)$.
- 3. Soit $\mathscr{E} = \left\{ M(x; y) \mid \frac{x^2}{4} + y^2 = 1 \right\}.$
 - (a) Montrer qu'un point M(x;y) appartient à $\mathscr E$ si, et seulement si, il existe un unique réel $\theta \in [0,2\pi[$ tel que $x=2\cos(\theta)$ et $y=\sin(\theta)$.
 - (b) Montrer que pour tout point M(x;y) dans \mathscr{E} , on a $-2 \le x \le 2$ et $-1 \le y \le 1$, et que, de plus, les points de coordonnées (-x,y), (x,-y) et (-x,-y) appartiennent à \mathscr{E} . En déduire que \mathscr{E} admet deux axes de symétrie (orthogonale) et un centre de symétrie.
 - (c) Donner une représentation graphique de l'ensemble \mathscr{E} .
 - (d) On va montrer qu'il existe un point F, une droite \mathscr{D} et un nombre $e \in]0,1[$ tels que \mathscr{E} soit l'ensemble des points M vérifiant l'équation (donnée par "foyer et directrice")

$$(F \& D)$$
 $MF = e d(M, \mathcal{D}).$

Alors, F est appelé un foyer de \mathscr{E} , \mathscr{D} la directrice associée, et e est l'excentricité de \mathscr{E} . On cherchera F et \mathscr{D} sous la forme $F(x_F;0)$ et $\mathscr{D} = \{M(x;y) \mid x = \delta\}$, pour des valeurs x_F , $\delta > 0$ à déterminer.

Anim. GeoGebra possible...

i. On rappelle que, pour M(x;y), on a $d(M,\mathcal{D}) = |x - \delta|$. Montrer qu'un point M(x;y) vérifie (F & D) si et seulement si il vérifie l'équation polynomiale

(P)
$$(1 - e^2)x^2 + 2(\delta e^2 - x_F)x + y^2 = e^2\delta^2 - x_F^2$$

ii. Déterminer des valeurs e, x_F et δ telles que $\mathscr E$ soit l'ensemble des points M vérifiant (F & D).

Remarque : on constate que $\mathscr E$ est aussi représentée par l'équation

$$(F' \& D') \qquad MF' = e \ d(M, \mathscr{D}'),$$

pour $F'(-x_F; 0)$ et $\mathcal{D}' = \{M(x; y) \mid x = -\delta\}.$

(e) On va montrer ici que $\mathscr E$ est aussi la solution du "problème du jardinier", c'est-à-dire que

$$\mathscr{E} = \{ M \mid MF + MF' = 4 \},$$

avec F et F' les foyers déterminés ci-dessus. La longueur de la "corde du jardinier" est ici 4.

- i. En remarquant l'inégalité $\delta>2$, montrer que, si M vérifie (F & D) et (F' & D'), alors $MF+MF'=2e\delta$. Noter que $2e\delta=4$.
- ii. Pour tout M(x; y), calculer $MF^2 MF'^2$ (en fonction de x seul, la valeur de x_F étant connue). Lorsque M vérifie MF + MF' = 4, en déduire une expression de MF MF', puis de MF, et en conclure que M vérifie (F & D).
- 4. Intermède : changement de repère. On considère deux vecteurs unitaires \vec{I} et \vec{J} faisant avec \vec{i} et \vec{j} un angle donné $(\vec{i}, \vec{I}) = (\vec{j}, \vec{J}) = \theta$, où θ est un réel donné.

- (a) Justifier le fait que (O, \vec{I}, \vec{J}) est un repère orthonormé. Une figure sera utile.
- (b) Exprimer les vecteurs \vec{I}, \vec{J} en fonction des vecteurs \vec{i}, \vec{j} et du réel θ .
- (c) Soit M un point du plan. En désignant par (x,y) les coordonnées de ce point dans le repère (O,\vec{i},\vec{j}) et par (X,Y) celles dans le repère (O,\vec{I},\vec{J}) , montrer que l'on a $x=X\cos(\theta)-Y\sin(\theta)$ et $y=X\sin(\theta)+Y\cos(\theta)$.
- 5. Soit $\mathscr{F} = \{M(x;y) \mid 3x^2 4xy + 3y^2 + 6x 4y 2 = 0\}.$
 - (a) Si un point un point M a pour coordonnées (x,y) dans le repère (O,\vec{i},\vec{j}) , et (X,Y) dans le repère (O,\vec{I},\vec{J}) de la question précédente, calculer $x^2 + y^2$ et xy en fonction de X,Y et θ . En déduire une équation satisfaite par les coordonnées (X,Y) d'un point M de \mathscr{F} dans le repère (O,\vec{I},\vec{J}) .
 - (b) Montrer qu'il est possible de trouver un réel θ de sorte que $\mathscr F$ admette dans le repère $(O,\vec I,\vec J)$ une équation de la forme

$$X^2 + 5Y^2 + c_1X + c_2Y + c_3 = 0,$$

où c_1, c_2, c_3 sont des réels à déterminer.

- (c) Déterminer a,b,α,β tels que $\mathscr F$ soit décrit par l'équation $\frac{(X-\alpha)^2}{a^2}+\frac{(Y-\beta)^2}{b^2}=1.$
- (d) Donner une représentation graphique de l'ensemble \mathscr{F} en faisant apparaître son centre de symétrie.
- 6. Dans l'espace à trois dimensions, muni d'un repère ortonormé direct $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$, l'équation $z^2 = x^2 + y^2$ définit un cône de sommet O: si M(x;y;z) appartient à cet ensemble, alors pour tout $\lambda \in \mathbb{R}$, $M_{\lambda}(\lambda x; \lambda y; \lambda z)$ aussi. Ce cône admet l'axe (Oz) comme axe "de révolution", c'est-à-dire que le cône est inchangé si on le fait "tourner" autour de cet axe. Si on "penche" l'axe de révolution dans le plan (Oyz) d'un angle θ , le cône penché obtenu \mathscr{C}_{θ} a pour équation :

$$\cos(2\theta)z^2 + 2\sin(2\theta)yz = x^2 + \cos(2\theta)y^2.$$

Dans chacun des cas suivants, donner une équation décrivant l'intersection du cône \mathscr{C}_{θ} avec le plan horizontal d'équation z=1, et donner une représentation graphique de cette intersection :

- (a) $\theta = 0$; On voit ainsi qu'on a un cône à base circulaire.
- (b) $\theta = \pi/8$;
- (c) $\theta = \pi/4$;
- (d) $\theta = \pi/2$. Visualiser $y^2 x^2 = 1$ avec un logiciel?

Remarque : Avec GeoGebra, on peut visualiser l'intersection du cône $\{z^2=x^2+y^2\}$ avec les plans z=cx+1, c curseur variant de 0.1 en 0.1 entre -2 et 2 : on passe par les types ellipse (dont cercle), parabole $(y=x^2)$ et hyperbole (xy=1)...