Beyond Classical Search

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

26 Jan 2016

Outline

- Local Search
 - Hill Climbing
 - Random Hill Climbing
 - Local Beam Search
- Advanced Search
 - **■** Continuous Search Spaces
 - Partial Information
 - Online Search

Outline

- Local Search
 - Hill Climbing
 - Random Hill Climbing
 - Local Beam Search
- 2 Advanced Search
 - **■** Continuous Search Spaces
 - Partial Information
 - Online Search

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single current state, explores neighbors

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory?

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Sometimes only the goal matters (not the path)

- 8-Queens
- Bag Generation
- Job Scheduling

Iterative Improvement

Single *current* state, explores neighbors

Memory? O(1)

Optimal? Usually not

Example: Traveling Salesperson Problem

Problem

Visit all cities exactly once, minimum distance

Start A random complete tour

Move Swap a pair to reduce total distance

Achieves 1% of optimal with thousands of cities

Example: *n*-queens

Problem

Put n queens on an $n \times n$ board No two queens on the same row, column, or diagonal

Start All queens placed randomly

Move Move a queen to reduce conflicts

Can solve *n*-queens problems for, e.g. n = 1 million

Hill Climbing

```
def hill_climb(problem):
    # start at the problem's initial state
    current = Node(problem.get_random_complete_state())
    while True:
        # select the neighboring state with the best score
        state_scores = []
        for state, score in problem.get_neighbors(current.state):
            state_scores.append((score, state))
        best_score, best_state = max(state_scores)
        # if no neighbors are better, return the current
        if best score <= current.score:</pre>
            return current state
        # otherwise. move current to the best state
        current = Node(best_state, best_score)
```

Hill Climbing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again

Simulated Annealing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again

Simulated Annealing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again Complete!

Simulated Annealing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again Complete!

Simulated Annealing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again Complete!

Simulated Annealing

Sideways Moves

Allow moving to neighbors as good as the current

Stochastic Hill Climbing

Choose randomly from all neighbors that improve score

Random Restart Hill Climbing

Generate a new initial state and try again Complete!

Simulated Annealing

Some bad moves; gradually decrease size and frequency Complete and Optimal if "gradual" enough

Simulated Annealing

```
def simulated_annealing(problem, get_temperature):
    current = Node(problem.get_random_complete_state())
    for time in itertools.count():
        # stop when the temperature reaches zero
        temperature = get_temperature(time)
        if temperature == 0:
            return current
        # select a random neighbor
        neighbors = problem.get_neighbors(current.state)
        state, score = random.choice(neighbors)
        # always move to the neighbor if it's better.
        # and sometimes if it's worse
        change = score - current.score
        prob = math.exp(change / temperature)
        if change > 0 or random.random() < prob:</pre>
            current = Node(state, score)
```

Idea

Keep *k* states instead of just one

vs. *k* Random Restarts

Idea

Keep *k* states instead of just one

vs. k Random Restarts

One state has good neighbors, others have bad neighbors Local Beam Search All searches share good neighbors *k* Random Restarts Other searches use bad neighbors

Idea

Keep *k* states instead of just one

vs. k Random Restarts

One state has good neighbors, others have bad neighbors Local Beam Search All searches share good neighbors *k* Random Restarts Other searches use bad neighbors

Idea

Keep *k* states instead of just one

vs. k Random Restarts

One state has good neighbors, others have bad neighbors Local Beam Search All searches share good neighbors k Random Restarts Other searches use bad neighbors

- \blacksquare Keep k best states
- \blacksquare Keep k random states, probabilities based on scores

Idea

Keep *k* states instead of just one

vs. k Random Restarts

One state has good neighbors, others have bad neighbors Local Beam Search All searches share good neighbors *k* Random Restarts Other searches use bad neighbors

- \blacksquare Keep k best states
- \blacksquare Keep k random states, probabilities based on scores

Idea

Keep *k* states instead of just one

vs. k Random Restarts

One state has good neighbors, others have bad neighbors Local Beam Search All searches share good neighbors *k* Random Restarts Other searches use bad neighbors

- \blacksquare Keep k best states
- \blacksquare Keep k random states, probabilities based on scores

```
def local beam search(problem. k):
    current = [Node(problem.get_random_complete_state())]
    while True:
        # get all neighbors of the current states
        state scores = []
        for node in current:
            for state, score in problem.get_neighbors(node.state):
                # return the first goal state generated
                if problem.is_goal(state):
                    return state
                state_scores.append((score, state))
        # select the k best states to consider next time
        current = []
        for score. state in heapq.nlargest(k. state scores);
            current.append(Node(state, score))
```

Genetic Algorithms

Idea

- Stochastic local beam search
- Successors generated from pairs of states

Genetic Algorithms

Requirements

- States must be encoded as strings
- Substrings must be meaningful components

Genetic Algorithms

Requirements

- States must be encoded as strings
- Substrings must be meaningful components or crossover is pointless!

Outline

- Local Search
 - Hill Climbing
 - Random Hill Climbing
 - Local Beam Search
- 2 Advanced Search
 - **■** Continuous Search Spaces
 - Partial Information
 - Online Search

Continuous Search Spaces

Problem

Place 3 airports in Romania, minimizing

$$\sum (x_c - x_a)^2 + (y_c - y_a)^2$$

 $a \in airports \ c \in cities$

As a Search Problem?

But there are co actions from each st

Solutions

Discretize each action moves $\pm \delta$ in x or y direction

Continuous Search Spaces

Problem

Place 3 airports in Romania, minimizing

$$\sum (x_c - x_a)^2 + (y_c - y_a)^2$$

 $a \in airports \ c \in cities$

As a Search Problem?

But there are ∞ actions from each state!

Solutions

Discretize each action moves $\pm \delta$ in x or y direction

Continuous Search Spaces

Problem

Place 3 airports in Romania, minimizing

$$\sum (x_c - x_a)^2 + (y_c - y_a)^2$$

 $a \in airports \ c \in cities$

As a Search Problem?

But there are ∞ actions from each state!

Solutions

Discretize each action moves $\pm \delta$ in x or y direction

Continuous Search Spaces

Problem

Place 3 airports in Romania, minimizing

$$\sum (x_c - x_a)^2 + (y_c - y_a)^2$$

 $a \in airports \ c \in cities$

As a Search Problem?

But there are ∞ actions from each state!

Solutions

Discretize each action moves $\pm \delta$ in x or y direction

Gradient each action moves $\alpha \nabla f(x)$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A

Augment hill climbing with memory

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 2$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 2 \xrightarrow{1} h(x) = 2$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 2 \xrightarrow{1} h(x) = 2$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 3 \xrightarrow{1} h(x) = 2$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 3 \xrightarrow{1} h(x) = 2 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 3 \xrightarrow{1} h(x) = 2 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 3 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 3 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 4$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 5$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 3$$

Problem

Successor function is not available until a state is visited, e.g. robot exploration, maze problems

Solution: Learning Real-Time A*

Augment hill climbing with memory

$$h(x) = 9 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 5 \xrightarrow{1} h(x) = 4 \xrightarrow{1} h(x) = 3$$

Key Points

Search Algorithms

- Hill Climbing
- Simulated Annealing
- Local Beam Search
- Discretized Search
- Multiple-Belief State Search
- LRTA* Search