

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE

Mid-Sem Exam, 2019 August Semester

Course Name: Introductory Mechanics

Date: 27 September 2019

Instructor(s): Sudarshan Ananth & Mukul Kabir

Course Code: PH1113

Duration: 2 hrs

Total Marks: 50

Instructions:

1. Printouts, photocopies, notes and textbooks are not allowed.

2. There should be 3 pages in this question paper. Please check that all the pages are there in your copy of the question paper.

3. There are 5 questions, 10 marks each. Answer all questions.

Questions:

1. 2 + 4 + (2 + 2) marks

(a) The vectors $\vec{A} = 2\hat{i} - 3\hat{j}$ and $\vec{B} = -\hat{i} + a\hat{j} - 5\hat{k}$ are perpendicular to each other. What is the value of a?

(b) Find two unit vectors which are perpendicular to both $\vec{C}=2\hat{i}-3\hat{j}$ and $\vec{D}=-\hat{i}+4\hat{j}-5\hat{k}$

(c) A rocket has launched straight up into the air. As time t=0 the rocket is at rest, and about to be launched. The position of the rocket as a function of time is given by,

$$y(t) = \frac{1}{2}(a_0 - g)t^2 - \frac{1}{30}\frac{a_0}{t_0^4}t^6$$
, for $0 < t < t_0$,

where a_0 is a positive constant, g is the acceleration of gravity, and $a_0 > g$. The constant t_0 is the time that the rocket takes to burn out the entire fuel.

Find out the y-component of the acceleration as a function of time t. Argue that your result is correct.

2. 3 + (1 + 1 + 1) + (3 +1) marks

(a) The center of two spherical planets of mass m_1 and m_2 ($m_1 \neq m_2$) are separated by a distance d. Consider the origin of the coordinate system to be at the center of planet with mass m_1 .

At what location x measured from the center of planet m_1 will a third planet of mass m experience zero gravitational force?

(b) A person on a spherical asteroid of mass m_1 and radius R, sees a small satellite of mass m_2 orbiting the asteroid in a circular orbit of period T. For the following questions, express your results in terms of m_1 , m_2 , π , T and universal gravitational constant G.

- (1) Derive an expression for the radius $r_{\rm sat}$ of the satellite's orbit.
- (II) What is the magnitude of the velocity of the satellite, $v_{
 m sat}$?
- (H1) The asteroid rotates about its axis with a period T_a such that the satellite appears stationary to the person on the asteroid. Find an expression for T_a .
- (c) A particle of mass m is subjected to two forces, a central force $\vec{f_1}$ and a frictional force $\vec{f_2}$, with

$$\vec{f_1} = f(r)\hat{r}$$
 $\vec{f_2} = -\lambda \vec{v} \quad (\lambda > 0),$

where v is the velocity of the particle.

- (i) If the particle initially has angular momentum L_0 about r=0, find its angular momentum for all subsequent times.
- (I) Using the result in (I), comment on the situation $\lambda = 0$.

Help: In polar coordinates,

3. 4 + (2 + 2 + 2) marks

Block 1 of mass 3m is sliding along a frictionless horizontal table to the right with speed v_0 , and collides with block 2 of mass m that was moving to the left with speed v_0 . After collision, the two blocks slick together and the blocks enter a rough surface at x=0 with a coefficient of kinetic friction that increases with distance as $\mu(x)=bx^2$ for $0 \le x \le d$, where b is a positive constant. The blocks come to rest at x=d. The downward gravitational acceleration is g. Derive an expression for the initial speed v_0 of the blocks.

(b) Two identical particles 1 and 2 form a system. At the instant shown in the picture, the particles have equal and opposite momentums, $p_2 = -p_1 = p$.

- Determine a vector expression for the angular momentum of the system about the point A.
- Determine a vector expression for the angular momentum of the system about the point B.

por

(CP)

(III) How do your results for angular momentum about A and B compare, and discuss your result.

4. (2 + 1) + (3 + 1) + 3 marks

- (a) The displacement of a simple harmonic oscillator is given by $x = a \sin \omega t$. If the values of the displacement x and the velocity \dot{x} are plotted on perpendicular axes, eliminate t to show that the equation of the points (x,\dot{x}) is an ellipse. Show that this ellipse represents a path of constant energy.
- (b) A particle oscillates with simple harmonic motion along the \boldsymbol{x} axis with a displacement amplitude a. While in motion, it moves from x to x + dx in time dt. Show that the probability of finding it between x to x+dx is given by,

 $\frac{dx}{c^2} = \frac{dx}{\pi\sqrt{(a^2 - x^2)}}$ $\frac{dx}{c^2} = \frac{dx}{c^2}$

Discuss the reasons that you think for the correctness of the result.

(c) Verify that the solution, $x=(A+Ct)e^{-bt/2m}$ satisfies the equation $m\ddot{x}+b\dot{x}+kx=0$,

5. 2 + (2 + 1) + 3 + 2 marks

(a) Show that y = f(x + ct) is a solution of the wave equation,

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

- (b) Show that the wave profile, that is $y_1 = f_1(x-ct)$ remains unchanged with time when c is the wave velocity. Show that the same is true for the wave profile $y_2 = f_2(x+ct)$.
- The phase velocity v of transverse waves in a crystal of atomic separation a is given by,

$$v = c \left[\frac{\sin(ka/2)}{(ka/2)} \right],$$

where k is the wave number and c is the constant. Show that the value of the group velocity is $c\cos(ka/2)$. Determine the limiting value of the group velocity for long wavelengths?

In relativistic wave mechanics the dispersion relation for an electron of velocity $v=\sqrt{v}$ $\hbar k/m$ is given by $\omega^2/c^2=k^2+m^2c^2/\hbar^2$, where c is the velocity of light, m is the electron mass (considered constant at a given velocity), $\hbar=h/2\pi,\ h$ is Planck's constant. Show that the product of group velocity and particle (phase) velocities is

