NAME: Final version 014

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (b) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.
- (c) The distribution of annual income for school employees where a high percentage of employees are entry-level teachers and only a few are high-paid administrators.
- (d) The distribution of heights of adult men

2. (15 Points)

In a deck of strange cards, there are 490 cards. Each card has an image and a color. The amounts are shown in the table below.

	black	gray	violet	white	yellow	Total
bike	34	27	31	46	32	170
cat	18	37	25	45	36	161
flower	50	20	49	16	24	159
Total	102	84	105	107	92	490

(a) What is the probability a random card is a bike?

(b) What is the probability a random card is both a bike and white?

(c) What is the probability a random card is either a flower or black (or both)?

(d) What is the probability a random card is white?

(e) What is the probability a random card is a cat given it is gray?

(f) What is the probability a random card is yellow given it is a cat?

(g) Is a bike or a cat more likely to be gray?

3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	68	4
В	90	15
C	76	9
D	132	11

One specimen of each type is weighed. The results are shown below.

Type of fruit		Mass of specimen (g)
	Α	68.72
	В	72
	С	81.58
	D	129.4

Which specimen is the most unusually small (relative to others of its type)?

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 100.3 millimeters and a standard deviation of 3.1 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 95.9 and 101.7 millimeters?

5. (10 points)

A species of duck is known to have a mean weight of 122 grams and a standard deviation of 80 grams. A researcher plans to measure the weights of 100 of these ducks sampled randomly. What is the probability the **sample mean** will be between 116 and 134 grams?

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Vireo griseus*. She randomly samples 15 adults of *Vireo griseus*, resulting in a sample mean of 10.09 grams and a sample standard deviation of 0.767 grams. Determine a 95% confidence interval of the true population mean.

7	/15	points)
	ιıυ	DUILIO

A student is taking a multiple choice test with 800 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 426 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

X	У	xy
16	4.7	
73	6.8	
51	2.1	
74	8.6	
19	3.8	
29	1.4	
74	5.1	
58	2.2	
30	3.2	
$\sum X =$	$\sum y =$	$\sum xy =$
$\bar{X} =$	$\bar{y} =$	
$S_X =$	$s_y =$	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of a and b.)

(e) Please plot the data and a corresponding regression line.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.56. If 80 trials occur, what is the probability of getting at least 49 but less than 56 successes?

In other words, let $X \sim \text{Bin}(n = 80, p = 0.56)$ and find $P(49 \le X < 56)$.

Use a normal approximation along with the continuity correction.

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 180. You decide to run two-tail test on a sample of size n = 9 using a significance level α = 0.02.

You then collect the sample:

279.6	201.7	237.5	158.6	190
248.6	190.7	211	218.7	

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?