Mark 0.50 out of 0.50	
c	consider the RSA cryptosystem with the following setting:
	Use a 27-letter alphabet for plaintext and ciphertext:(notation for blank) with numerical equivalent 0 and letters A-Z (the English alphabet) with numerical equivalents 1-26.
•	Plaintext message units are blocks of $k=2$ letters, whereas ciphertext message units are blocks of $l=3$ letters.
	The modulus $n = na$ where $n = 37$ and $a = 79$

• You must choose the encryption exponent e as the smallest valid odd prime (pay attention to the required condition!).

 \Box $c_2 = b_2^e \mod n = 2887$ \Box $c_3 = b_3^e \mod n = 1255$

Encrypt the plaintext VIENNA.

Values:

Solution.

Question 1

n= 2923 \square $\varphi(n)=$ 2808 \square e= 5 \square

Plaintext:

Blocks of k letters: VI \square EN \square NA \square Numerical equivalents: $b_1 = 603$ \square $b_2 = 149$ \square $b_3 = 379$ \square

Encryption:

 $c_1 = b_1^e \mod n = 1359$

Ciphertext:

Blocks of l letters: AWI \square CYY \square ASM \square

AWICYYASM

Question 2

Consider the RSA cryptosystem with the following setting:

- Use a 27-letter alphabet for plaintext and ciphertext:
- _(notation for blank) with numerical equivalent 0 and letters A-Z (the English alphabet) with numerical equivalents 1-26.
- Plaintext message units are blocks of k=2 letters, whereas ciphertext message units are blocks of l=3 letters. • The modulus n = pa, where p = 61 and a = 71.
- Decrypt the ciphertext CLPAYQCMJ.

Values:

4331

Solution.

Ciphertext:

Blocks of *l* letters: CLP AYO CMJ Numerical equivalents: $c_1 = 2527$

 $\varphi(n) = 4200$

Decryption:

Plaintext:

 $b_1 = c_1^d \mod n = 59$ \square $b_2 = c_2^d \mod n = 498$ \square $b_3 = c_3^d \mod n = 257$ \square Blocks of k letters: BE

BERLIN

You must choose the encryption exponent e as the smallest valid odd prime (pay attention to the required condition!).

• The decryption exponent d is determined by e and must be filled in as a positive number mod $\varphi(n)$.