Estructura de datos para organización y búsqueda de archivos

Isabela Muriel Roldán
Juan Pablo Castaño Duque
Mateo Flórez Restrepo
Medellín, octubre 30 del 2017

Estructura de Datos Diseñada

Gráfica 1: Árbol AVL que almacena directorios y ficheros alfabéticamente

Operaciones de la Estructura de Datos

Buscar: proyecto

Gráfica 2: Imagen de una operación de inserción al árbol, en la que se auto balancea si es necesario

Tabla 1: Complejidad de las operaciones de la estructura de datos

Criterios de Diseño de la Estructura de Datos

- Esta estructura de datos organiza de una manera eficiente los datos ingresados y permite su manipulación, como el ingreso o la búsqueda de datos de una manera bastante rápida y eficaz.
- La estructura de datos tiene un sistema de autobalance, lo que significa que sus nodos siempre estarán a la misma altura "n" o "n+1" lo que disminuye de una manera muy notable la complejidad de los algoritmos de búsqueda e inserción.
- Esta estructura de datos si en el momento de usar el método de inserción se ve afectado el estado de equilibrio realiza rotaciones a la derecha y a la izquierda en los nodos para reorganizar el árbol, recuperar su balanceo y así no afectar la complejidad de los métodos de manera negativa.

Consumo de Tiempo y Memoria

TIEMPO	ejemplito.txt	treeEtc.txt	juegos.txt
Lectura e inserción	1,15 ms	17,2 ms	345,14 ms
Búsqueda por nombre	0,81 ms	0,02 ms	0,47 ms

MEMORIA	ejemplito.txt	treeEtc.txt	juegos.txt
Consumo de memoria	5 MB	7MB	14 MB

Tabla 2: Análisis de los resultados obtenidos con la implementación de la estructura de datos

Gráfica 4: Grafica de análisis de tiempos según conjuntos de datos.

Software Desarrollado

Gráfico 4: Árbol AVL de organización de archivos

Referencias

- Stalin, F. Árbol rojo negro la evolución de los árboles binarios de búsqueda.
 Recuperado agosto 10, 2017, de Computer science in esmeraldas.
 http://computerscienceesmeraldas.blogspot.com.co/2016/03/arbol-rojo-negro-la-evolucion-de-los.html.
- Universidad Carlos III de Madrid. Tablas hash. Recuperado agosto 12, 2017, del Departamento de ingeniería telemática. http://www.it.uc3m.es/abel/as/MMC/M2/HashTable_es.html.
- Wikipedia. Árbol-B. Recuperado agosto 11, 2017. https://es.wikipedia.org/wiki/Árbol-B.
- Wikipedia. Árbol B+. Recuperado agosto 11, 2017. https://es.wikipedia.org/wiki/Árbol_B%2B.
- Solis, S. Árboles B. Recuperado agosto 12, 2017, de youtube https://www.youtube.com/watch?v=EbiFITGh0rl

