Topic 4 Logic Optimization

Simplification and Optimization

- How can we build better circuits?
- Let's consider two important design criteria
 - **Delay** the time from inputs changing to new correct stable output
 - Size the number of transistors
 - For quick estimation, assume
 - Every gate has delay of "1 gate-delay"
 - Every gate *input* requires 2 transistors
 - Ignore inverters for simplicity

Transforming F1 to F2 represents an *optimization*: Better in all criteria of interest

Logic Optimization

- Two-level size optimization using algebraic methods
 - Goal: circuit with only two levels
 (AND-OR network), with minimum
 transistors
 - Sum-of-products yields two levels
 - F = abc + abc' is sum-of-products
 - G = w(xy + z) is not

Logic Optimization

- Multi-level optimization
 - Improves some, but worsens other

Transforming G1 to G2 represents a *tradeoff*: Some criteria better, others worse

Performance/Size Tradeoffs

• Delay & Size tradeoff

- We don't always need the speed of two level logic
- Multiple levels may yield fewer gates
- Example
 - F1 = ab + acd + ace \rightarrow F2 = ab + ac(d + e) = a(b + c(d + e))
 - General technique: Factor out literals

Critical Path

- Critical path: longest delay path from an input to output
- Optimization
 - Reduce delay by shortening length of critical path
 - Reduce size by using multiple levels on non-critical paths
 - But may make non-critical path become critical path

Logic Optimization

• Optimization using Boolean Algebra

- To obtain Boolean equations with fewer literals (optimization in size)
- To obtain circuit with shorter delay

Optimization using other techniques

- Karnaugh-map (to achieve simplified two-level circuit)
- Quine-McCluskey (not in this class)

Karnaugh Map (K-map) Technique

- A graphical technique used to simplify a logic equation
- A way to show the *relationship* between the logic inputs and corresponding output
 - Like truth table
- Much cleaner and more *procedural* than algebraic simplification by theorems of Boolean algebra
- Theoretically, it can be used for any number of input variables,
 - BUT is only practical for less than six, we will limit our discussion to logic equations with *five or less* variables

Building a K-map

- K-map can be filled up directly from a truth table
 - Each minterm corresponds to a cell in the K-map
- K-map cells are labeled so that both horizontal and vertical movement differ only in one variable

• Since the adjacent cells differ in only one variable, they can be grouped to create simpler terms in the sum-of-product expression.

Two-Variable K-map

• There are four minterms – 2 by 2 square map

Three-Variable K-map

• There are $2^3 = 8$ minterms – 2 by 4 rectangular map

Show the variables along which the labels varying vertically

Show the variables along which the labels varying horizontally

Y	Z	F	
0	0	1	r
0	1	0	r
1	0	1	r
1	1	1	r
0	0	0	r
0	1	0	r
1	0	0	r
1	1	1	r
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0

m0	X'Y'Z'
m1	X'Y'Z
m2	X'YZ'
m3	X'YZ
m4	XY'Z'
m5	XY'Z
m6	XYZ'
m7	XYZ

YZ				
	Y'Z'	Y'Z	YZ	YZ'
х,	1	0	1	1
	m0	m1	m3	m2
X	0	0	1	0
	m4	m5	m7	m6

Four-Variable K-map

• There are $2^4=16$ minterms – 4 by 4 square map

W	X	Y	Z	F		
0	0	0	0	1	m0	W'X'Y'Z'
0	0	0	1	0	m1	W ' X ' Y ' Z
0	0	1	0	1	m2	W'X'YZ'
0	0	1	1	1	m3	W'X'YZ
0	1	0	0	0	m4	W'XY'Z'
0	1	0	1	0	m5	W'XY'Z
0	1	1	0	0	m6	W'XYZ'
0	1	1	1	1	m7	W'XYZ
1	0	0	0	1	M8	WX'Y'Z'
1	0	0	1	1	m9	WX'Y'Z
1	0	1	0	0	M10	WX'YZ'
1	0	1	1	0	m11	WX'YZ
1	1	0	0	1	m12	WXY'Z'
1	1	0	1	0	m13	WXY'Z
1	1	1	0	0	m14	WXYZ'
1	1	1	1	1	m15	WXYZ

Show the variables along which the labels varying vertically or horizontally

Label the Rows and Columns by 0 and 1

F YZ WX	Y'Z'	Y'Z	YZ	YZ'
	00	01	11	10
W'X' 00	1	0	1	1
	m0	m1	m3	m2
W'X 01	0	0	1	O
	m4	m5	m7	m6
WX 11	1	0	1	0
	m12	m13	m15	m14
WX' 10	1	1	0	0
	m8	m9	m11	m10

0 represents the primed form1 represents the unprimed form

Simplify – Grouping and Canceling

- Group is in shape of rectangle or square
- Group the adjacent 1's until all the 1's are grouped

No adjacent 1's, the minterm cannot be further simplified: F = X'Y'

Two adjacent 1's: F = X'Y' + X'Y = X'(Y' + Y) = X' • 1 = X' If both primed and unprimed forms of a letter appear in the same group, the letter can be canceled

A group corresponds to a Sum-of-Minterm expression

No zeros in the group

• The number of 1's in the group should be 2^N , N = 0, 1, 2, ...

Group as many adjacent 1's as possible

• Group as many adjacent 1's as possible

Y'Z', because both W and W' appear, and both X and X' appear, So W and X cancel. That leaves the 00 for YZ – primed Y and primed Z.

Edges wrap around

$$F = Z'$$

$$F = W'Z' + X'Z'$$

Summary

- Group is in shape of rectangle or square
- Group the adjacent 1's until all the 1's are grouped
- The number of 1's in the group should be 2^N , N = 0, 1, 2, ...
- Collect as many 1's as possible in the same group
- No zeros in the group
- Edges wrap around
- If both primed and unprimed forms of a letter appear in a same group,
 the letter cancels
- The simplified result will be a sum-of-product form; the number of the product terms is decided by the number of the groups

Group Patterns of 2-Variable Map

Summary

- A group of one cell represents a minterm, giving a term of two literals
- A group of two cells represents a term of one literal
- A group of all the four cells gives a logic 1

Group Patterns of 3-Variable Map

Group Patterns of 3-Variable Map

Summary

- A group of one cell represents a minterm, giving a term of three literals
- A group of two cells represents a term of two literals
- A group of four cells represents a term of one literal
- A group of all the eight cells gives a logic 1

Group Patterns of 4-Variable Map

Group Patterns of 4-Variable Map

Summary

- A group of one cell represents a minterm, giving a term of four literals
- A group of two cells represents a term of three literals
- A group of four cells represents a term of two literals
- A group of eight cells represents a term of one literal
- A group of all the sixteen cells gives a logic 1
- The more the number of cells in one group, the less the number of literals that group represents, hence cheaper to implement using logic gates

Don't Care Conditions

- The possible input combinations might not be all valid or not for consideration for a device
 - Hence we don't care what the corresponding outputs are under those conditions
 - Called don't care conditions
 - Mark the corresponding outputs by X

A	В	C	D	F
0	0	0	0	F X 0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	X
1	0	1	0	1
1	0	1	1	1
1 1	1	0	0	X
1	1	0	1	1 X X
1	1	1	0	X
1	1	1	1	1

Don't Care Conditions

- By employing **don't care** conditions, logic equations can be further simplified
- Example:

F (A, B, C, D) =
$$\Sigma$$
m(2, 3, 5, 6, 7, 10, 11, 15)
+ Σ d(0, 9, 12, 13, 14)

- Fill out the K-map with 1's and X's
- Each "X" can be either 0 or 1 depending upon the needs of simplification
- Not all X's have to be considered
- Apply the same grouping and canceling rules before using 'X': F = A'C + A'BD + B'C + CD after: F = C + BD (Essential PI?)

Prime Implicants

- Implicant: is a product term
- A **prime implicant** (**PI**) is a group that cannot be entirely contained by another implicant

- A prime implicant (PI) is essential if a a cell is covered ONLY by that PI
- The **essential PIs** can be found by
 - looking at each cell marked as 1 and not covered by any other essential PI
 - and checking the number of PIs that cover it

F YZ	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

Check each cell marked as 1, only if it has not been covered by an essential PI

Essential PI: X'Z'

No essential PIs found

Essential PI: XZ

F YZ WX	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

No essential PIs found

No essential PIs found

Essential PIs

Non essential PIs

- Essential PIs have to be used in the simplified equation
- Cells not covered by essential PIs can be represented by any PIs covering them

$$F = X'Z' + XZ + WX'(or WZ) + X'Y(or YZ)$$

Product-of-Sum Simplification – An Alternate Method

• Redraw the K-map for F' by switching 1's and 0's

W	X	Y	Z	F	F'
0	0	0	0	1	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1

WX YZ	00	01	11	10
00	1	1	1	1
01	0	0	1	0
11	1	0	0	0
10	1	1	0	0

Product-of-Sum Simplification – An Alternate Method

Two forms of the same truth table

Product-of-Sum Simplification – An Alternate Method

Simplify Any Standard Sum-of-Product Form

Method 1: fill out the table directly

•
$$\mathbf{F} = \mathbf{A'C} + \mathbf{A'BD} + \mathbf{AB'C} + \mathbf{BCD}$$

A	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

m0

m15

Simplify Any Standard Sum-of-Product Form

- $\mathbf{F} = \mathbf{A'C} + \mathbf{A'BD} + \mathbf{AB'C} + \mathbf{BCD}$
 - Method 2: convert any form of equation to sum-of-minterm
 - AND with sum of the primed and unprimed forms of the missing literal, one at a time until all the missing literals are considered
 - Remove the duplicated minterms

```
F = A'C + A'BD + AB'C + BCD

= A'C (B+B') + A'BD (C+C') + AB'C (D+D') + BCD (A+A')

= A'BC + A'B'C + A'BCD + A'BC'D + AB'CD +

AB'CD' + ABCD + A'BCD

= A'BC (D+D') + A'B'C (D+D') + A'BCD + A'BC'D + AB'CD +

AB'CD'+ABCD+A'BCD

= A'BCD + A'BCD' + A'B'CD + A'B'CD' + A'BC'D + A'BC'D +

AB'CD + AB'CD'+ABCD+A'BCD

= Σ m(7, 6, 3, 2, 7, 5, 11, 10, 15, 7)

= Σ m(2, 3, 5, 6, 7, 10, 11, 15)
```

Simplify Any Standard Sum-of-Product Form

• $\mathbf{F} = \mathbf{A'C} + \mathbf{A'BD} + \mathbf{AB'C} + \mathbf{BCD}$

В	A	C	D	F	
0	0	0	0	0	m0
0	0	0	1	0	m1
0	0	1	0	1	<i>m</i> 2
0	0	1	1	1	<i>m3</i>
1	0	0	0	0	m4
1	0	0	1	1	<i>m5</i>
1	0	1	0	1	<i>m6</i>
1	0	1	1	1	<i>m</i> 7
0	1	0	0	0	m8
0	1	0	1	0	m9
0	1	1	0	1	m10
0	1	1	1	1	m11
1	1	0	0	0	m12
1	1	0	1	0	m13
1	1	1	0	0	m14
1	1	1	1	1	m15

After simplification:

Dealing with Five Variables

E	A	В	C	D	F
0	0	0	0	0	X
0	0	0	0	1	0
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	0	1	X
0	1	0	1	0	1
0	1	0	1	1	1
0	1	1	0	0	X
0	1	1	0	1	X
0	1	1	1	0	X
0	1	1	1	1	1

E	A	В	C	D	F
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	0
1	0	0	1	1	X X
1	0	1	0	0	X
1	0	1	0	1	1
1	0	1	1	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	0	1	X
1	1	0	1	0	1
1	1	0	1	1	0
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	X
1	1	1	1	1	0

$$F = E'(C+BD) + E(C'+B'D)$$

Power Optimization

- Power is another important design criteria
 - Measured in Watts (energy/second)
 - Rate at which energy is consumed
- Increasingly important as more transistors on a chip
 - Power not scaling down at same rate as size
 - cooling is difficult
 - CMOS technology: Switching a wire from 0 to 1 consumes power (known as *dynamic power*)
 - $P = k * CV^2 f$
 - k: constant; C: capacitance of wires; V: voltage; f: switching frequency
 - Power reduction methods
 - Reduce voltage: But slower, and there's a limit
 - What else?

Using Low-Power Gates on Non-Critical Paths

- Another method: Use low-power gates
 - Multiple versions of gates may exist
 - Fast/high-power, and slow/low-power, versions
 - Use slow/low-power gates on non-critical paths
 - Reduces power, without increasing delay

