C&S I F Sessional exam

Total points 27/30

CAO LL OCSSIONAL CAUTT	
Email address * atulmahto201@gmail.com	
Name * ATUL MAHTO KHARIA	
Class * EEE	
A time invariant system is a system whose output *	3/3
increases with a delay in input decreases with a delay in input	
remains same with a delay in input vanishes with a delay in input	~

A system is said to be defined as non causal, when *	3/3
the output at the present depends on the input at an earlier time	
the output at the present does not depend on the factor of time at all	
the output at the present depends on the input at the current time	
the output at the present depends on the input at a time instant in the future	ıre 🗸

Which among the following is a LTI system? * 3/3

- dy(t)/dt+ty(t)=x(t)
- $y(t)=x(t)cos\pi t$
- y(n)=x(n)+nx(n-1)
- y(n)=x3 (n+1)

X Express the waveform shown by the standard signals *

0/3

- $V_mr(t)-3/2 V_mr(t-1) + V_m/2 r(t-5) + V_m U(t-5)$
- $V_mr(t)-3/2 V_mr(t-1) + V_m/2 r(t-5)$
- $V_mr(t) + V_m U(t-5)$
- $V_mr(t)$ 3/2 $V_mr(t-1) + V_m/2 r(t-5) + V_m U(t-5) + V_mr(t+5)$

X

Correct answer

 $V_mr(t)$ - 3/2 $V_mr(t-1) + V_m/2 r(t-5) + V_m U(t-5)$

Find the initial value of the signal given below $F(t) = [e^{-2t} + e^{-t}]$ 3/3 cos3t] U (t) *

✓ In the circuit, switch S is closed and steady state conditions reached. 3/3 Now at time t=0, switch S is opened. What is the expression for the current through the inductor? *

- I(t) = 5A
- I(t) = 6.5 A
- $i(t) = 5 \cos 1000tA$
- The step voltage applied to a series R-L circuit is 36V with R= 15 Ohms. 3/3 Determine the value of inductance L required to make the current of 1.0A at 250 µsecs. Assume the initial current is zero. *
- 4.56 H
- 6.957 H
- 7.2 H
- 2.1 H

~	At t= 0+, with zero initial condition which of the following will act as shor circuit *	rt 3/3
0	Inductor	
•	Capacitor	✓
0	Resistor	
0	None of these	
/	At very low frequencies a series R-C circuit behaves as almost purely *	3/3
0	Resistive	
0	Inductive	
•	Capacitive	✓
0	None of these	

This form was created inside of Maharaja Surajmal Institute of Technology.

Google Forms