Math 120A (Differential Geometry) University of California, Los Angeles

Aaron Chao

Winter 2022

These are my lecture notes for Math 120A (Differential Geometry), which is taught by Fumiaki Suzuki. The textbook for this class is *Differential Geometry of Curves and Surfaces*, by Kristopher Tapp. Many of the figures I include in these notes are taken from Tapp's book.

Contents					
Week 1					
1	Jan 3, 20221.1 What is Differential Geometry?1.2 Parametrized Curves	3 3 3			
2	Jan 5, 2022 2.1 Proof of Proposition 1.12 2.2 Reparametrization	6 6			
3	Jan 7, 2022 3.1 Reparametrization (Cont'd)	10 10 11			
Week 2					
4	Jan 10, 2022 4.1 Curvature (Cont'd)	14 14 16			
5	Jan 12, 2022 5.1 Plane Curves (Cont'd)	18 18			
6	Jan 14, 2022 6.1 Plane Curves(Cont'd) 6.2 Space Curves	23 23 24			

Week 3	
7 Jan 19, 2022 7.1 Space Curves (Cont'd)	28 28
8 Jan 21, 2022 8.1 Rigid Motions	32 32

1 Jan 3, 2022

1.1 What is Differential Geometry?

Differential geometry studies geometry via analysis and linear algebra.

Geometry	Analysis	Linear Algebra
Intuitive	Rigorous	Computable
Curved	$\xrightarrow{\operatorname{tangent space}}$	Linear
Global	Local	

1.2 Parametrized Curves

Example 1.1

A unit circle $S' = \{\vec{x} \text{ in } \mathbb{R}^2 \mid |\vec{x}| = 1\}$

$$\vec{\gamma}: [0, 2\pi) \to \mathbb{R}^2$$

 $t \mapsto (\cos t, \sin t)$

$$\vec{\gamma}[0,2\pi) = S'$$

Definition 1.2 (Parametrized curve and Trace)

A (parametrized) curve is a smooth function $\vec{\gamma} \colon I \to \mathbb{R}^n$, where I is an interval in \mathbb{R} . The image

$$\vec{\gamma}(I) = \{\vec{\gamma}(t) \mid t \in I\}$$

is called the <u>trace</u> of $\vec{\gamma}$.

Recall 1.3 An interval is a subset of $\mathbb R$ that has one of the following forms:

$$(a,b), [a,b], (a,b], [a,b), (-\infty,b), (-\infty,b], (a,\infty), [a,\infty), (-\infty,\infty) = \mathbb{R}.$$

A function $\vec{\gamma} : I \to \mathbb{R}^n$ is called <u>smooth</u> if $\vec{\gamma}$ is infinitely differentiable, or equivalently, each of the component functions $x_i : I \to \mathbb{R}$ is infinitely differentiable.

Example 1.4

 $\vec{\gamma}(t) = (\cos t, \sin t, t), t \in (-\infty, \infty)$ is a curve, called a helix.

Definition 1.5 (Derivative)

Let $\vec{\gamma}: I \to \mathbb{R}^n$ be a curve. The <u>derivative</u> of $\vec{\gamma}$ at t is defined as

$$\vec{\gamma}'(t) = \lim_{h \to 0} \frac{\vec{\gamma}(t+h) - \vec{\gamma}(t)}{h}$$

If t is on the boundaries of I, then use the left- or right-hand limit.

Remarks 1.6

- i. If $\vec{\gamma}(t) = (x_1(t), x_2(t), \dots, x_n(t))$, then $\vec{\gamma}'(t) = (x_1'(t), x_2'(t), \dots, x_n'(t))$.
- ii. The tangent line to the curve at $\vec{\gamma}'(t_0)$ is defined as

$$\vec{L}(t) = \vec{\gamma}(t_0) + t\vec{\gamma}'(t_0), \quad t \in (-\infty, \infty),$$

as soon as $\vec{\gamma}'(t) \neq \vec{0}$.

Definition 1.7 (Regular)

A curve $\vec{\gamma}: I \to \mathbb{R}^n$ is called regular if $\forall t \in I, \vec{\gamma}'(t) \neq \vec{0}$.

Remark 1.8 regular = tangent line is defined everywhere = the trace is smooth

Example 1.9

$$\vec{\gamma}(t) = (t^2, t^3), \quad t \in (-\infty, \infty)$$

Then $\vec{\gamma}$ is a curve that is not regular.

Indeed, $\vec{\gamma}'(t) = (2t, 3t^2)$, so $\vec{\gamma}'(0) = \vec{0}$.

Notice, $x(t) = t^2$, $y(t) = t^3$, so $x(t) = y(t)^{2/3}$. Hence, the trace is given by $x = y^{2/3}$ in \mathbb{R}^2 .

Remark 1.10 The analogy with the physics is useful. If $\vec{\gamma}: I \to \mathbb{R}^n$ is a curve, then $\vec{\gamma}(t)$ is the position of a moving particle at time t in \mathbb{R}^2 .

• $\vec{\gamma}'(t)$ velocity

- $\vec{\gamma}''(t)$ acceleration
- $|\vec{\gamma}'(t)|$ speed

In this analogy, regular = the speed is always nonzero = the particle never stops (hence no "corners" on the trace)

Definition 1.11 (Arc length)

Let $\vec{\gamma}(t): I \to \mathbb{R}^n$ be a regular curve. Then the <u>arc length</u> between times t_1, t_2 is defined as

$$\int_{t_1}^{t_2} |\vec{\gamma}'(t)| \, dt$$

Proposition 1.12

Let $\vec{\gamma} \colon [a,b] \to \mathbb{R}^n$ be a regular curve with the arc length $L, \vec{p} = \vec{\gamma}(a), \vec{q} = \vec{\gamma}(b)$. Then $L \ge |\vec{q} - \vec{p}|$.

Moreover, the equality holds if and only if $\vec{\gamma}$ parametrizes the line segment between \vec{p}, \vec{q} .

For the proof, we use the inner-product:

for
$$\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$$

 $\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

Basic properties:

- i. The inner product $\langle -, \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is symmetric and bilinear.
- ii. $\langle \vec{x}, \vec{y} \rangle = |\vec{x}||\vec{y}|\cos\theta$, where θ is the angle between \vec{x}, \vec{y} . $(\theta \in [0, 2\pi])$
- iii. $\langle \vec{x}, \vec{y} \rangle = 0 \Leftrightarrow \vec{x}, \vec{y}$ are orthogonal to each other.
- iv. $\langle \vec{x}, \vec{x} \rangle = |\vec{x}|^2$
- v. $\langle \vec{x}, \vec{y} \rangle \leq |\vec{x}||\vec{y}|$ (Schwartz Inequality) and the equality holds if and only if $\theta = 0$.

2 Jan 5, 2022

2.1 Proof of Proposition 1.12

Proof. <u>Idea:</u> Compare $\vec{\gamma}'(t)$ and its projection onto $\vec{q} - \vec{p}$. Set $\vec{n} = \frac{\vec{q} - \vec{p}}{|\vec{q} - \vec{p}|}$; \vec{n} is unit.

Tapp Pg.15

Then $|\vec{\gamma}'(t)| \ge \langle \vec{\gamma}'(t), \vec{n} \rangle$ by Schwartz inequality. Now,

$$\begin{split} L &= \int_a^b |\vec{\gamma}'(t)| \, dt \geq \int_a^b \langle \vec{\gamma}'(t), \vec{n} \rangle \, dt \\ &= [\langle \pmb{\gamma}(t), \vec{n} \rangle]_a^b = \langle \pmb{\gamma}(b), \vec{n} \rangle - \langle \pmb{\gamma}(a), \vec{h} \rangle \\ &= \left\langle \vec{q} - \vec{p}, \frac{\vec{q} - \vec{p}}{|\vec{q} - \vec{p}|} \right\rangle = |\vec{q} - \vec{p}| \end{split}$$

If the equality holds, then $\forall t \in [a, b], \gamma'(t), \vec{n}$ are in the same direction. So,

$$\gamma'(t) = \langle \gamma'(t), \vec{n} \rangle \vec{n}.$$

$$\gamma(t) = \gamma(a) + \int_a^t \gamma'(u) du$$

$$= \vec{p} + \left(\int_a^t \langle \gamma'(u), \vec{n} \rangle dt \right) \vec{n}$$

parametrizes the line segment between \vec{p}, \vec{q} .

2.2 Reparametrization

There are regular curves that share common properties. Which regular curves should we identify?

Example 2.1

$$\gamma(t) = (t, t^2), \quad t \in [-2, 2]$$

$$\tilde{\gamma}(t) = (-2t, (-2t)^2), t \in [-1, 1].$$
Then $\gamma[-2, 2] = \tilde{\gamma}[-1, 1] =$

 $\boldsymbol{\gamma}, \tilde{\boldsymbol{\gamma}}$ are the same, up to change in time:

Let $\phi: [-1,1] \to [-2,2], t \mapsto -2t$.

Then $\tilde{\gamma} = \gamma \circ \phi$

Definition 2.2 (Reparametrization)

Let $\gamma \colon I \to \mathbb{R}^n$ be a regular curve. A reparametrization of γ is a function of the form

$$\tilde{\boldsymbol{\gamma}} = \boldsymbol{\gamma} \circ \phi : \tilde{I} \to \mathbb{R}^n,$$

where \tilde{I} is an interval, $\phi \colon \tilde{I} \to I$ is a smooth bijection such that $\forall t \in \tilde{I}, \phi'(t) \neq 0$

Figure 1: Kapp pg.19

Proposition 2.3

A reparametrization of a regular curve is a regular curve.

Proof. We use the same notations as the definition.

 $\tilde{\gamma} = \gamma \circ \phi \colon \tilde{I} \to \mathbb{R}^n$ is the composition of smooth functions, so smooth.

Moreover,
$$\forall t \in \tilde{I}, \tilde{\gamma}'(t) = \gamma'(\phi(t)) \cdot \phi'(t) \neq 0$$

We will be interested in regular curves up to reparametrizations.

Remarks 2.4

- 1. $\gamma, \tilde{\gamma}$ have the same trace.
- 2. There are regular curves with the same trace that cannot be reparametrized to each other. For instance,

$$\gamma_1(t) = (\cos(t), \sin(t)), t \in [0, 2\pi),
\gamma_2(t) = (\cos(t), \sin(t)), t \in [0, 4\pi),$$

Question 2.5: Is there a canonical reparametrization of a given regular curve?

Definition 2.6 (Unit-speed)

A regular curve $\gamma: I \to \mathbb{R}^n$ is called <u>unit-speed</u> (or parametrized by arc length) if $\forall t \in I$, $|\gamma'(t)| = 1$.

Remark 2.7 If $\gamma: I \to \mathbb{R}^n$ is unit-speed, then,

Arc length between
$$t_1, t_2 = \int_{t_1}^{t_2} |\gamma'(t)| dt = \int_{t_1}^{t_2} dt = t_2 - t_1$$

Proposition 2.8

A regular curve always has a unit-speed reparametrization.

Proof. Let $\gamma: I \to \mathbb{R}^n$ be a regular curve. Fix $t_0 \in I$. Define $s: I \to \mathbb{R}$ by

$$s(t) = \int_{t_0}^t |\boldsymbol{\gamma}'(u)| \, du.$$

Let $\tilde{I} = s(I) \subset \mathbb{R}$. Then \tilde{I} is an interval by IVT.

Since $s'(t) = |\gamma'(t)| > 0$ by FTC, regularity, $s: I \to \tilde{I}$ is a smooth bijection. Then, $\phi = s^{-1}: \tilde{I} \to I$ is a smooth bijection,

$$\phi'(t) = \frac{1}{s'(\phi(t))} = \frac{1}{|\gamma'(\phi(t))|} \neq 0.$$

Now $\tilde{\gamma} = \gamma \circ \phi \colon \tilde{I} \to \mathbb{R}^n$ is a reparametrization of γ , that is unit-speed:

$$|\tilde{\gamma}'(t)| = |\gamma'(\phi(t)) \cdot \phi'(t)|$$

$$= |\gamma'(\phi(t))| \cdot 1/|\gamma'(\phi(t))|$$

$$= 1$$

Note:

$$s^{-1} \cdot s(t) = t$$
$$(s^{-1})'(s(t)) \cdot s'(t) = 1$$
$$(s^{-1})'(s(t)) = 1/s'(t)$$

3 Jan 7, 2022

3.1 Reparametrization (Cont'd)

Example 3.1

 $\gamma(t) = (\cos(t), \sin(t), t), \quad t \in (-\infty, \infty)$ How can we find a unit-speed reparametrization of γ ? Compute the arc length function $S: (-\infty, \infty) \to \mathbb{R}$:

$$s(t) = \int_0^t |\gamma'(u)| \, du = \int_0^t |(-\sin(u), \cos(u), 1)| \, du$$
$$= \int_0^t \sqrt{2} \, du = \sqrt{2}t$$

Set $\phi = s^{-1}$, then $\phi(t) = t/\sqrt{2}$

$$\tilde{\gamma}(t) = \gamma(t) \circ \phi(t) = \left(\cos\left(t/\sqrt{2}\right), \sin\left(t/\sqrt{2}\right), t/\sqrt{2}\right)$$

 $t \in (-\infty, \infty)$, is a unit speed reparametrization of γ .

We will be interested in invariants for a regular curve that are unchanged under any reparametrizations.

Examples include:

- trace
- arc-length
- curvature
- torsion

Non-examples include:

- position
- velocity
- speed
- acceleration

Sometimes we consider more specific reparametrization.

Proposition 3.2

If $\tilde{\gamma} = \gamma \cdot \phi \colon \tilde{I} \to \mathbb{R}^n$ is a reparametrization of a regular curve $\gamma \colon I \to \mathbb{R}^n$, then one of the following holds:

- i. $\forall t \in \tilde{I}, \phi'(t) > 0$ i.e. ϕ is strictly increasing
- ii. $\forall t \in \tilde{I}, \phi'(t) < 0$ i.e. ϕ is strictly decreasing

Proof. Otherwise $\exists t \in \tilde{I}, \phi'(t) = 0$ by IVT. This contradicts the assumption on ϕ .

Definition 3.3 (Orientation-preserving vs. orientation-reversing)

Under the setting of the proposition, we say $\tilde{\gamma}$ is <u>orientation-preserving</u> if (i) occurs, or orientation-reversing if (ii) occurs.

Example 3.4 (Orientation-preserving)

The arc length reparametrization of a regular curve $\phi \colon I \to \tilde{I}$ is orientation-preserving, because $\phi'(t) = 1/|\gamma'(\phi(t))| > 0 \quad \forall t \in I$

This shows an orientation-preserving unit-speed. Reparametrization always exists.

Example 3.5 (Orientation-reversing)

$$\gamma(t) = (t, t^2), \quad t \in [-2, 2]$$
 $\vec{\tilde{\gamma}}(t) = (-t, (-t)^2), \quad t \in [-2, 2]$

 $\vec{\tilde{\gamma}}$ is an orientation-reversing reparametrization of γ by $\phi \colon [-2,2] \to [-2,2], \quad t \mapsto -t$ (Indeed, $\phi' = -1 < 0$).

We will be interested in invariants that are unchanged under any orientation-preserving reparametrization.

- Signed curvature
- Rotation index

3.2 Curvature

The curvature measures how sharply the trace bends. What is a plausible definition of the curvature?

Let $\gamma \colon I \to \mathbb{R}^n$ be a regular curve. Set $\vec{v} = \gamma', \vec{a} = \gamma''$

 \vec{v} knows speed, direction of the motion

 \implies \vec{a} should know the change in speed, direction \rightarrow curvature.

We write

$$\vec{a} = \vec{a}^{\parallel} + \vec{a}^{\perp}$$

where

$$ec{a}^{\parallel} = \left\langle ec{a}, rac{ec{v}}{|ec{v}|} \right
angle rac{ec{v}}{|ec{v}|} \colon \quad ext{parallel to } ec{v}$$

$$\vec{a}^{\perp} = \vec{a} - \vec{a}''$$
: orthogonal to \vec{v}

Proposition 3.6

$$\frac{d}{dt}|\vec{v}(t)| = \left\langle \vec{a}, \frac{\vec{v}}{|\vec{v}|} \right\rangle$$

= the parallel component of \vec{a} with respect to \vec{v}

Proof.

$$\begin{aligned} \frac{d}{dt}|\vec{v}(t)| &= \frac{d}{dt} \langle \vec{v}(t), \vec{v}(t) \rangle^{1/2} \\ &= \frac{1}{2} \frac{1}{\langle \vec{v}(t), \vec{v}(t) \rangle^{1/2}} \cdot 2 \langle \vec{v}(t), \vec{v}'(t) \rangle \\ &= \left\langle \frac{\vec{v}(t)}{|\vec{v}(t)|}, \vec{a}(t) \right\rangle \end{aligned}$$

Note: $\langle v, v \rangle' = \langle v', v \rangle + \langle v, v' \rangle = 2 \langle v', v \rangle$

So $|\vec{a}^{\perp}(t)|$ would be a plausible definition of the curvature. However this depends on $|\vec{t}|$. (Imagine a centripetal force for a car turning a corner.)

Definition 3.7 (Curvature)

Let $\gamma \colon I \to \mathbb{R}^n$ be a regular curve. The <u>curvature function</u> $\kappa \colon I \to [0, \infty)$ is defined as

$$\kappa(t) = \frac{|\vec{a}^{\perp}(t)|}{|\vec{v}(t)|^2}$$

Proposition 3.8

Curvature is independent of parametrizations.

Proof. Let γ be a regular curve. $\tilde{\gamma} = \gamma \circ \phi$ is a reparametrization of γ .

Denote:

 $\kappa\colon \text{curvature function for }\gamma$

 $\tilde{\kappa}$: curvature function for $\tilde{\gamma}$

We need to show $\tilde{\kappa} = \kappa \circ \phi$

Denote:

v,a: velocity, acceleration of γ

 \tilde{v}, \tilde{a} : velocity, acceleration of $\tilde{\gamma}$.

Then,

$$\tilde{\gamma} = \gamma \circ \phi$$

$$\tilde{v} = \gamma' \circ \phi \cdot \phi' = v \circ \phi \cdot \phi'$$

$$\tilde{a} = \gamma'' \circ \phi \cdot (\phi')^2 + \gamma' \circ \phi \cdot \phi'$$

$$= a \circ \phi \cdot (\phi')^2 + v \circ \phi \cdot \phi'$$

So, \tilde{v} is parallel to v,

$$\tilde{a}^{\perp} = a^{\perp} \circ \phi \cdot (\phi')^2$$

Therefore,

$$\tilde{\kappa} = \frac{\tilde{a}^{\perp}}{|\tilde{v}|^2} = \frac{|a^{\perp} \circ \phi \cdot (\phi')^2|}{|v \circ \phi \cdot \phi'|^2} = \frac{|a^{\perp} \circ \phi|}{|v \circ \phi|^2}$$
$$= \kappa \circ \phi$$

4 Jan 10, 2022

Note: From now on, I will bold my vectors like this **n** instead of \vec{n} .

4.1 Curvature (Cont'd)

Recall 4.1

$$\kappa(t) = \frac{|\mathbf{a}^{\perp}(t)|}{|\mathbf{v}(t)|^2}$$

Example 4.2

 $\gamma(t) = (R\cos(t), R\sin(t)), \quad t \in (-\infty, \infty)$

$$\mathbf{v}(t) = (-R\sin(t), R\cos(t))$$

$$\mathbf{a}(t) = (-R\cos(t), -R\sin(t))$$

Here,

$$\langle \mathbf{v}(t), \mathbf{a}(t) \rangle = -R^2 \sin(t) \cos(t) + R^2 \cos(t) \sin(t) = 0;$$

So,

$$\mathbf{v}(t) \perp \mathbf{a}(t) \implies \mathbf{a}(t) = \mathbf{a}^{\perp}(t).$$

Therefore,

$$\kappa(t) = \frac{|\mathbf{a}(t)|}{|\mathbf{v}(t)|^2} = \frac{R}{R^2} = \frac{1}{R} \stackrel{R \to +\infty}{\longrightarrow} 0 \text{ (flat)}$$

Historically, the curvature of a regular curve was first defined by $\kappa(t) = \frac{1}{R(t)}$, where R(t) is the radius of the circle that best approximates the trace at t (The osculating circle; Read Tapp). Here we give another interpretation of the curvature using the osculating parabola.

Definition 4.3 (Unit tangent and normal vectors)

Let $\gamma \colon I \to \mathbb{R}^n$ be a regular curve. Define the unit tangent and <u>normal vectors</u> as

$$\mathbf{t}(t_0) = \frac{\mathbf{v}(t_0)}{|\mathbf{v}(t_0)|}, \quad \underbrace{\mathbf{n}(t_0) = \frac{\mathbf{a}^{\perp}(t_0)}{|\mathbf{a}^{\perp}(t_0)|}}_{\text{defined only if } \kappa(t_0) \neq 0}$$

Remarks 4.4

i. $\mathbf{t}(t_0), \mathbf{n}(t_0)$ are orthonormal, i.e. unit, orthogonal to each other

Tapp Page 27

ii. The osculating plane at t_0 is the plane through $\mathbf{t_0}$ spanned by $\mathbf{t}(t_0), \mathbf{n}(t_0)$. The osculating plane is the plane that γ is the closest to begin in, and contains the directions where the curve is heading and bending.

Proposition 4.5

Let $\gamma: I \to \mathbb{R}^n$ be a regular curve. Then $|\mathbf{t}'| = \kappa |\mathbf{v}|^2$, and $\mathbf{t}' = \kappa |\mathbf{v}|\mathbf{n}$ if \mathbf{n} is defined. In particular, if γ is unit-speed, then

$$|\mathbf{t}'| = \kappa$$
, and $\mathbf{t}' = \kappa \mathbf{n}$ if \mathbf{n} is defined.

Proof.

$$\mathbf{t}' = \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)' = \frac{\mathbf{a}}{|\mathbf{v}|} - \mathbf{v}\frac{\langle \mathbf{a}, \mathbf{v} \rangle}{|\mathbf{v}|^3} = \frac{\mathbf{a} - \mathbf{a}^\parallel}{|\mathbf{v}|} = \frac{\mathbf{a}^\perp}{|\mathbf{v}|}$$

Hence $|\mathbf{t}'| = \frac{|\mathbf{a}|^{\perp}}{|\mathbf{v}|^2} \cdot |\mathbf{v}| = \kappa |\mathbf{v}|$, and

$$\mathbf{t}' = \frac{|\mathbf{a}^{\perp}|}{|\mathbf{v}|^2} |\mathbf{v}| \frac{\mathbf{a}^{\perp}}{|\mathbf{a}^{\perp}|} = \kappa |\mathbf{v}| \mathbf{n} \text{ if } \mathbf{n} \text{ is defined.}$$

Remark 4.6 Let $\gamma \colon I \to \mathbb{R}^n$ be a unit-speed curve, $t_0 \in I$ with $\kappa(t_0) \neq 0$.

Then $\gamma'(t_0) = \mathbf{t}, \gamma''(t_0) = \mathbf{t}' = \kappa \mathbf{n}$, and the 2nd order Taylor approximation at γ at t_0 is

$$\gamma(t_0 + h) \approx \gamma(t_0) + h\gamma'(t_0) + \frac{h^2}{2}\gamma''(t_0)$$
$$= \gamma(t_0) + h\mathbf{t} + \frac{\kappa h^2}{2}\mathbf{n}$$

Set $\mathbf{D}(h) = \gamma(t_0 + h) - \gamma(t_0) \approx h\mathbf{t} + \frac{\kappa h^2}{2}\mathbf{n}$: displacement. Then,

$$x(t) := \langle \mathbf{D}(h), \mathbf{t} \rangle \approx h$$

 $y(t) := \langle \mathbf{D}(h), \mathbf{n} \rangle \approx \frac{\kappa h^2}{2}$ the parabola $y = \frac{\kappa}{2} x^2$ in the osculating plane

Tapp Page 30

 $\kappa(t_0)$ = the concavity of the parabola that best approximates the trace at t_0

Proposition 4.7

Let $\gamma \colon I \to \mathbb{R}^n$ be a regular curve. If $\forall t \in I, \kappa(t) = 0$, then γ parametrizes a straight line.

Proof.

$$|\mathbf{t}'| = \kappa |\mathbf{v}| = 0 \implies \mathbf{t}' = \mathbf{0}$$

$$\implies \mathbf{t} = \mathbf{0} \text{ constant}$$

$$\implies \mathbf{v} = |\mathbf{v}|\mathbf{c}$$

$$\implies \text{fixing } t_0 \in I,$$

$$\gamma(t) = \gamma(t_0) + \int_{t_0}^t \mathbf{v}(u) \, du$$

$$= \gamma(t_0) + \left(\int_{t_0}^t |\mathbf{v}(u)| \, du\right) \mathbf{c}$$

4.2 Plane Curves

 \mathbb{R}^2 is the only \mathbb{R}^n where the terms "clockwise" and "counter-clockwise" makes sense. This allows us to define

"signed curvature" = curvature + turning direction with respect to ${\bf v}$

Recall 4.8

$$\kappa = \frac{|\mathbf{a}^{\perp}|}{|\mathbf{v}|^2} = \frac{\langle \mathbf{a}, \mathbf{n} \rangle}{|\mathbf{v}|^2}$$

Definition 4.9 (Signed curvature)

Let $\gamma: I \to \mathbb{R}^2$ be a regular plane curve. Then the <u>signed curvature</u> $\kappa_s: I \to \mathbb{R}$ is defined as

$$\kappa_s = rac{\langle \mathbf{a}, \mathbf{n}_s
angle}{|\mathbf{v}|^2},$$

where,

$$\mathfrak{n}_s = R_{90}\mathbf{t}$$

= the counterclockwise 90° rotation of **t**

5 Jan 12, 2022

5.1 Plane Curves (Cont'd)

Example 5.2

$$\gamma(g) = (\cos(t), \sin(2t)), \quad t \in [0, 2\pi]$$

Lissajous curve

$$\mathbf{v}(t) = (-\sin t, 2\cos 2t)$$

$$\mathbf{a}(t) = (-\cos t, -4\sin 2t)$$

$$|\mathbf{v}(t)| = \sqrt{\sin^2 t + 4\cos^2 2t}$$

$$\mathbf{t}(t) = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|} = (-\sin t, 2\cos 2t) \frac{1}{\sqrt{\sin^2 t + 4\cos^2 2t}}$$

$$\mathbf{n}_s = R_{90}\mathbf{t} = (-2\cos 2t, -\sin t) \frac{1}{\sqrt{\sin^2 t + 4\cos^2 2t}}$$

$$\kappa_s = \frac{\langle \mathbf{a}, \mathbf{n}_s \rangle}{|\mathbf{v}|^2} = \frac{2\cos t \cos 2t + 4\sin t \sin 2t}{(\sin^3 t + 4\cos^2 2t)^{3/2}}$$

$$\kappa_s(0) = \frac{2}{4^{3/2}} = \frac{2}{8} = \frac{1}{4} > 0$$

$$\kappa_s\left(\frac{\pi}{2}\right) = 0$$

$$\kappa_s(\pi) = \frac{-1}{4} < 0$$

$$\kappa_s \left(\frac{3\pi}{2} \right) = 0$$

Proposition 5.3

Let $\gamma \colon I \to \mathbb{R}^2$ be a plane curve. Then $|\kappa_s| = \kappa$.

Proof. Compare $\kappa = \frac{\langle \mathbf{a}, \mathbf{n} \rangle}{|\mathbf{v}|^2}$, $\kappa_s = \frac{\langle \mathbf{a}, \mathbf{n}_s \rangle}{|\mathbf{v}|^2}$ $\mathbf{n}_s = \pm \mathbf{n}$, because they are both unit, orthogonal to \mathbf{t} . Hence κ_s coincides with κ_s up to signs.

Proposition 5.4

Signed curvature is unchanged by any orientation-preserving reparametrizations.

Proof. Exercise. □

Proposition 5.5

Let $\gamma: I \to \mathbb{R}^2$ be a plane curve. Then there exists a smooth function $\theta: I \to \mathbb{R}$ such that $\forall t \in I, \mathbf{t}(t) = (\cos \theta(t), \sin \theta(t))$.

What should θ be?

$$\mathbf{t}' = \theta'(-\sin\theta, \cos\theta) = \theta' R_{90}\mathbf{t} = \theta' \mathbf{n}_s.$$

On the other hand,

$$\mathbf{t}' = \left(rac{\mathbf{v}}{|\mathbf{v}|}
ight)' = rac{\mathbf{a}^{\perp}}{|\mathbf{v}|} = rac{\langle \mathbf{a}, \mathbf{n}_s
angle}{|\mathbf{v}|} \mathbf{n}_s = \kappa_s |\mathbf{v}| \mathbf{n}_s$$

By comparing the two formulas, $\theta' = \kappa_s |\mathbf{v}|$. In the proof, we solve this differential equation.

Remark 5.6 If γ is unit-speed, $\theta' = \kappa_s$. This shows: signed curvature = the rate of change of the angle curvature = |the rate of change of the angle|

Proof. Fix $t_0 \in I$, $\theta_0 \in \mathbb{R}$ such that $\mathbf{t}(t_0) = (\cos \theta_0, \sin \theta_0)$.

Define

$$\theta(t) = \theta_0 + \int_{t_0}^t \kappa_s(u) |\mathbf{v}(u)| \, du$$

We will show this $\theta(t)$ works.

$$\theta: I \to \mathbb{R}$$
 is a smooth function $\theta' = \kappa_s |\mathbf{v}|, \theta(t_0) = \theta_0.$

Set $\mathbf{t}_{\theta} = (\cos \theta, \sin \theta)$

We need to show $\mathbf{t} = \mathbf{t}_{\theta}$.

Observe $\mathbf{t}, \mathbf{t}_{\theta}$ are unit.

Enough to show $\langle \mathbf{t}, \mathbf{t}_{\theta} \rangle = 1$

On the other hand,

$$\mathbf{t}_{\theta}(t_0) = (\cos \theta(t_0), \sin \theta(t_0))$$
$$= (\cos \theta_0, \sin \theta_0)$$
$$= \mathbf{t}(t_0)$$

So,

$$\langle \mathbf{t}(t_0), \mathbf{t}_{\theta}(t_0) \rangle = 1$$

Enough to show $\langle \mathbf{t}, \mathbf{t}_{\theta} \rangle' = 0$

$$\mathbf{t}' = \kappa_s |\mathbf{v}| \mathbf{n}_s = \kappa_s |\mathbf{v}| R_{90} \mathbf{t}$$

$$\mathbf{t}'_{\theta} = \theta'(-\sin\theta, \cos\theta) = \kappa_s |\mathbf{v}| R_{90} \mathbf{t}_{\theta}$$

Therefore,

$$\langle \mathbf{t}, \mathbf{t}_{\theta} \rangle' = \langle \mathbf{t}', \mathbf{t}_{\theta} \rangle + \langle \mathbf{t}, \mathbf{t}'_{\theta} \rangle$$

$$= \kappa_{s} |\mathbf{v}| (\langle R_{90}\mathbf{t}, \mathbf{t}_{\theta} \rangle + \langle \mathbf{t}, R_{90}\mathbf{t}_{\theta} \rangle)$$

$$= \kappa_{s} |\mathbf{v}| (\langle R_{90}\mathbf{t}, \mathbf{t}_{\theta} \rangle + \langle R_{90}\mathbf{t}, R_{90}(R_{90}\mathbf{t}_{\theta}) \rangle) \qquad R_{90} \text{ is orthogonal}$$

$$= \kappa_{s} |\mathbf{v}| (\langle R_{90}\mathbf{t}, \mathbf{t}_{\theta} \rangle - \langle R_{90}\mathbf{t}, \mathbf{t}_{\theta} \rangle) \qquad R_{90} \circ R_{90} = R_{180} = -1$$

$$= 0$$

Remark 5.7 The angle function θ is unique up to an integer multiple of 2π . Indeed if $\Theta: I \to \mathbb{R}$ is a smooth function such that $\forall t \in I, \gamma = (\cos \Theta, \sin \Theta)$, then,

$$\Theta' = \theta' = \kappa_s |\mathbf{v}|$$

$$\implies |\Theta - \theta|' = 0$$

$$\implies \Theta - \theta = \text{constant}$$

On the other hand,

$$(\cos\theta,\sin\theta)=(\cos\Theta,\sin\Theta)=\mathbf{t}$$

So $\Theta - \theta \in 2\pi \cdot \mathbb{Z}$

6 Jan 14, 2022

6.1 Plane Curves(Cont'd)

Definition 6.1 (Closed curve)

A regular curve $\gamma: [a,b] \to \mathbb{R}^n$ is called <u>closed</u> if $\gamma(a) = \gamma(b)$, and $\forall n \in \mathbb{N}, \gamma^{(n)}(a) = \gamma^{(n)}(b)$

Definition 6.2 (Rotation index)

Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a closed plane curve. The <u>rotation index</u> of γ is defined as

$$i_{\gamma} = \frac{1}{2\pi} (\theta(b) - \theta(a)),$$

where θ is the angle function from proposition 5.5.

Remarks 6.3

- i. $i_{\gamma} \in \mathbb{Z}$, because $\mathbf{t}(a) = \mathbf{t}(b)$, so $\theta(b) \theta(a) \in 2\pi\mathbb{Z}$
- ii. Later on, we will show $i_{\gamma} = \pm 1$ if γ has no self-intersection.

Proposition 6.4

Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a closed plane curve. Then

$$i_{\gamma} = \frac{1}{2\pi} \int_{a}^{b} \kappa_{s}(t) |\mathbf{v}(t)| dt$$

Proof. This follows from the construction of the angle function.

Proposition 6.5

Rotation index is unchanged under any orientation-preserving reparametrizations.

Proof. Exercise. □

Example 6.6

$$\gamma(t) = (\cos t, \sin 2t), t \in [0, 2\pi]$$

Recall:

$$\kappa_s(t) = \frac{2\cos t \cos 2t + 4\sin t \sin 2t}{(\sin^2 t + 4\cos^2 2t)^{3/2}}$$
$$|\mathbf{v}| = (\sin^2 t + 4\cos^2 2t)^{1/2}$$

Therefore,

$$i_{\gamma} = \frac{1}{2\pi} \int_0^{2\pi} \frac{2\cos t \cos 2t + 4\sin t \sin 2t}{\sin^2 t + 4\cos^2 2t} dt$$

$$= \frac{1}{2\pi} \left(\int_0^{\pi} - - - dt + \underbrace{\int_{\pi}^{2\pi} - - - dt}_{\text{then the integrand is multiplied by } -1} \right)$$

= 0

6.2 Space Curves

What's special about \mathbb{R}^3 ? \mathbb{R}^3 has the cross product.

Recall 6.7
$$\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3) \in \mathbb{R}^3,$$

 $\mathbf{x} \times \mathbf{y} = (x_2y_3 - x_3y_2, -(x_1y_3 - x_3y_1), x_1y_2 - x_2y_1) \in \mathbb{R}^3$

Basic properties:

i. $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ is bilinear, and antisymmetric.

(i.e.
$$\mathbf{y} \times \mathbf{x} = -\mathbf{x} \times \mathbf{y}$$
)

- $|\mathbf{x} \times \mathbf{y}| = |\mathbf{x}||\mathbf{y}|\sin(\theta)$, where θ is the angle between \mathbf{x}, \mathbf{y}
 - = the area of the parallelogram spanned by \mathbf{x}, \mathbf{y}
- iii. $\mathbf{x} \times \mathbf{y}$ is orthogonal to \mathbf{x}, \mathbf{y} ;

 $\{x, y, x \times y\}$ is a right-handed system.

Example 6.8

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ are orthonormal, then $\{\mathbf{x}, \mathbf{y}, \mathbf{x} \times \mathbf{y}\}$ is an orthonormal basis for \mathbb{R}^3 :

- $\mathbf{x} \times \mathbf{y}$ is orthogonal to \mathbf{x}, \mathbf{y} , and
- $|\mathbf{x} \times \mathbf{y}| =$

= 1

Proposition 6.9

Let $\gamma \colon I \to \mathbb{R}^3$ be a space curve, then

$$\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$$

| Proof. $|\mathbf{v} \times \mathbf{a}| =$

$$= |\mathbf{v}||\mathbf{a}^{\perp}| \\ \implies \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3} = \frac{|\mathbf{a}^{\perp}|}{|\mathbf{v}|^2} = \kappa$$

Definition 6.10 (Unit binormal vector and Frenet frame)

Let $\gamma: I \to \mathbb{R}^3$ be a space curve. The <u>unit binormal vector</u> for γ at $t \in I$ is defined as $\mathbf{b}(t) = \mathbf{t}(t) \times \mathbf{n}(t)$ (only if $\kappa(t) \neq 0$). The orthonormal basis $\{\mathbf{t}(t), \mathbf{n}(t), \mathbf{b}(t)\}$ for \mathbb{R}^3 is called the Frenet frame for γ at t.

Remark 6.11 $\mathbf{b}(t)$ is a unit normal vector to the osculating plane of $\boldsymbol{\gamma}$ at t. \Longrightarrow \mathbf{b} encodes the tilt of the osculating plane of $\boldsymbol{\gamma}$.

We want to define the "torsion" as the measurement of the change of the tilt of the osculating plane.

Definition 6.12 (Torsion)

Let

 $\gamma \colon I \to \mathbb{R}^3$ be a space curve,

 $t \in I \text{ s.t. } \kappa(t) \neq 0$

The torsion of γ at t is defined as

$$au(t) = -rac{\langle \mathbf{b}'(t), \mathbf{n}(t) \rangle}{|\mathbf{v}(t)|}$$

Remark 6.13 Why is this definition plausible?

- i. $\mathbf{b}'(t)$ is parallel to $\mathbf{n}(t)$ (later). So $\langle \mathbf{b}'(t), \mathbf{n}(t) \rangle = \pm |\mathbf{b}'(t)|$
- ii. $\langle \mathbf{b}'(t), \mathbf{n}(t) \rangle$ depends on parametrizations.

Proposition 6.14

Torsion is independent of parametrizations.

Proof. Read Tapp for the details.

Sketch:

 φ is orientation-preserving.

$$\tilde{t} = t \circ \varphi, \tilde{n} = n \circ \varphi$$

$$\implies \tilde{b} = b \circ \varphi$$

$$\implies \tilde{b}' = b' \circ \varphi \cdot \varphi'$$

7 Jan 19, 2022

7.1 Space Curves (Cont'd)

Recall 7.1 $\mathbf{b} = \mathbf{t} \times \mathbf{n}, \ \tau = -\frac{\langle \mathbf{b}', \mathbf{n} \rangle}{|\mathbf{v}|}$ Note: $\mathbf{b}' = -\tau |\mathbf{v}| \mathbf{n}$

Proposition 7.2

Let $\gamma \colon I \to \mathbb{R}^3$ be a space curve such that $\forall t \in I, \kappa(t) \neq 0$. Then the following conditions are equivalent:

- i. The trace of γ is contained in a plane in \mathbb{R}^3 .
- ii. $\forall t \in I, \tau(t) = 0$.

Remark 7.3 The torsion measures the failure of a space curve to remain in a plane in \mathbb{R}^3 .

Proof. (i.) is equivalent to:

(i.)' $\exists \mathbf{w} \neq \mathbf{0} \in \mathbb{R}^3, c \in \mathbb{R}, \forall t \in I, \langle \gamma, \mathbf{w} \rangle = c$

We show (i.)' \Leftrightarrow (ii.).

$$(\Leftarrow)\mathbf{b}' = -\tau |\mathbf{v}|\mathbf{n} = 0$$
, so

$$\mathbf{b} = \text{constant} =: \mathbf{w} \neq 0$$

$$\langle \gamma(t), \mathbf{w} \rangle' = \langle \mathbf{v}(t), \mathbf{w} \rangle = \langle |\mathbf{v}(t)|\mathbf{t}(t), \mathbf{b}(t) \rangle = 0$$
, so

 $\langle \boldsymbol{\gamma}(t), \mathbf{w} \rangle = \text{constant.}$

 $(\Longrightarrow)\langle \gamma(t), \mathbf{w} \rangle = \text{constant, so}$

$$\langle \boldsymbol{\gamma}(t), \mathbf{w} \rangle = \langle \mathbf{a}(t), \mathbf{w} \rangle = 0$$

$$\mathbf{t}(t), \mathbf{n}(t) \in \text{span}(\mathbf{v}(t), \mathbf{a}(t)), \text{ so}$$

$$\langle \mathbf{t}(t), \mathbf{w} \rangle = \langle \mathbf{n}(t), \mathbf{w} \rangle = 0.$$

This shows that **w** is normal to the osculating plane spanned by $\mathbf{t}(t)$, $\mathbf{n}(t)$, so

 $\mathbf{b}(t) = \pm \frac{\mathbf{w}}{|\mathbf{w}|} = \text{ constant, so}$

$$\mathbf{b}'(t) = \mathbf{0}$$
, so

$$\tau(t) = -\frac{\langle \mathbf{b}'(t), \mathbf{n}(t) \rangle}{|\mathbf{v}(t)|} = 0$$

There are differential equations for $\mathbf{t}, \mathbf{n}, \mathbf{b}$ determined by κ, τ .

Proposition 7.4 (Frenet equations)

Let $\gamma: I \to \mathbb{R}^3$ be a space curve such that $\forall t \in I, \kappa(t) \neq 0$. Then,

$$\begin{aligned} \mathbf{t}' &= & \kappa |\mathbf{v}| \mathbf{n} \\ \mathbf{n}' &= & -\kappa |\mathbf{v}| \mathbf{t} & +\tau |\mathbf{v}| \mathbf{b} \\ \mathbf{b}' &= & -\kappa |\mathbf{v}| \mathbf{n} \end{aligned}$$

In particular, if γ is unit-speed, then

$$\mathbf{t}' = \kappa \mathbf{n}$$

$$\mathbf{n}' = -\kappa \mathbf{t} + \tau \mathbf{b}$$

$$\mathbf{b}' = -\kappa \mathbf{n}$$

Remark 7.5 This suggests that a space curve is completely determined by the functions κ, τ up to initial conditions. (Fundamental Theorem of Space Curves)

Lemma 7.6

Let $\gamma, \delta \colon I \to \mathbb{R}^n$ be curves (not necessarily regular).

i. If $\exists c \in \mathbb{R}, \forall t \in I, |\gamma(t)| = c$, then $\forall t \in I, \gamma'(t)$ is orthogonal to $\gamma(t)$.

ii. If $\exists D \in \mathbb{R}, \forall t \in I, \langle \gamma(t), \delta(t) \rangle = D$, then $\forall t \in I, \langle \gamma'(t), \delta(t) \rangle = -\langle \gamma(t), \delta'(t) \rangle$.

Remark 7.7 Both the assumptions are satisfied if $\forall t \in I, \gamma(t), \delta(t)$ are orthogonal.

Proof of Lemma.

i.
$$c^2 = |\gamma(t)|^2 = \langle \gamma(t), \gamma(t) \rangle$$
.
 $\implies 0 = 2 \langle \gamma(t), \gamma'(t) \rangle$
 $\implies \langle \gamma(t), \gamma'(t) \rangle = 0$

ii. $\langle \boldsymbol{\gamma}(t), \boldsymbol{\delta}(t) \rangle = D$ $\Longrightarrow \langle \boldsymbol{\gamma}'(t), \boldsymbol{\delta}(t) \rangle + \langle \boldsymbol{\gamma}(t), \boldsymbol{\delta}'(t) \rangle = 0$ $\Longrightarrow \langle \boldsymbol{\gamma}'(t), \boldsymbol{\delta}(t) \rangle = -\langle \boldsymbol{\gamma}(t), \boldsymbol{\delta}'(t) \rangle$

Proof of Proposition 7.4. We have proved $\mathbf{t}' = \kappa |\mathbf{v}| \mathbf{n}$. As for \mathbf{n}', \mathbf{b}' , it is enough to compute their components with respect to the Frenet frame $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$.

$$\langle \mathbf{n}', \mathbf{t} \rangle = -\langle \mathbf{n}, \mathbf{t}' \rangle = -\langle \mathbf{n}, \kappa | \mathbf{v} | \mathbf{n} \rangle = -\kappa | \mathbf{v} |$$

$$\langle \mathbf{n}', \mathbf{n} \rangle = 0$$

 $\langle \mathbf{n}', \mathbf{b} \rangle = -\langle \mathbf{n}, \mathbf{b}' \rangle = \tau |\mathbf{v}|$

Therefore,

$$\mathbf{n'} = -\kappa |\mathbf{v}|\mathbf{t} + \tau |\mathbf{v}|\mathbf{b}.$$

$$\langle \mathbf{b'}, \mathbf{t} \rangle = -\langle \mathbf{b}, \mathbf{t'} \rangle = -\langle \mathbf{b}, -\kappa |\mathbf{v}|\mathbf{n} \rangle = 0$$

$$\langle \mathbf{b'}, \mathbf{n} \rangle = -\tau |\mathbf{v}|$$

$$\langle \mathbf{b'}, \mathbf{b} \rangle = 0$$

Therefore,

$$\mathbf{b}' = -\tau |\mathbf{v}| \mathbf{n}$$

Remark 7.8 Another interpretation of the torsion can be given by the Frenet equations. Let $\gamma \colon I \to \mathbb{R}^3$ be a unit-speed space curve. Then,

$$\gamma' = \mathbf{t}, \gamma'' = \mathbf{t}' = \kappa \mathbf{n},$$
$$\gamma''' = (\kappa \mathbf{n})' = \kappa' \mathbf{n} + \kappa \mathbf{n}' = -\kappa^2 \mathbf{t} + \kappa' \mathbf{n} + \kappa \tau \mathbf{b}$$

So the 3rd order Taylor approximation at $t_0 \in I$, $\kappa(t_0) > 0$ is as follows:

$$\mathbf{D}(h) = \boldsymbol{\gamma}(t_0 + h) - \boldsymbol{\gamma}(t_0)$$

$$\approx h\boldsymbol{\gamma}'(t_0) + \frac{h^2}{2}\boldsymbol{\gamma}''(t_0) + \frac{h^3}{6}\boldsymbol{\gamma}'''(t_0)$$

$$= \left(h - \frac{\kappa^2 h^3}{6}\right)\mathbf{t} + \left(\frac{\kappa h^2}{2} + \frac{\kappa' h^3}{6}\right)\mathbf{n} + \frac{\kappa \tau h^3}{6}\mathbf{b}$$

Therefore,

$$x(h) = \langle \mathbf{D}(h), \mathbf{t} \rangle \approx h - \frac{\kappa^2 h^3}{6}$$
$$y(h) = \langle \mathbf{D}(h), \mathbf{n} \rangle \approx \frac{\kappa h^2}{2} + \frac{\kappa' h^3}{6}$$
$$z(h) = \langle \mathbf{D}(h), \mathbf{b} \rangle \approx \frac{\kappa \tau h^3}{6}$$

If $\tau(t_0) > 0$, then the curve passes through the osculating plane from below.

If $\tau(t_0) < 0$, then the curve passes through the osculating plane from above.

8 Jan 21, 2022

8.1 Rigid Motions

In geometry, it is often useful to "tilt your head", or choose an orthonormal set of vectors at a point, adapted to the problem at hand:

This is achieved by rigid motions.

Definition 8.1 (Rigid motion)

A rigid motion in \mathbb{R}^n is a function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ that preserves the distances:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}, |f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Example 8.2

The translation by $\mathbf{p} \in \mathbb{R}^n$

$$T_{\mathbf{p}} \colon \mathbb{R}^n \to \mathbb{R}^n, \, \mathbf{x} \mapsto \mathbf{x} + \mathbf{p}$$

is a rigid motion. Indeed,

$$|T_{\mathbf{p}}(\mathbf{x}) - T_{\mathbf{p}}(\mathbf{y})| = |\mathbf{x} + \mathbf{p} - (\mathbf{y} + \mathbf{p})|$$
$$= |\mathbf{x} - \mathbf{y}|$$

Note: $T_{\mathbf{p}}$ is never linear if $\mathbf{p} \neq \mathbf{0}$, because $T_{\mathbf{p}}(\mathbf{0}) = \mathbf{p} \neq 0$.

Theorem 8.3

Let $L_A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation represented by an $n \times n$ matrix A. The following conditions are equivalent:

- 1. L_A is a rigid motion.
- 2. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle L_A(\mathbf{x}), L_A(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.
- 3. If $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is an orthonormal basis of \mathbb{R}^n , so is $\{L_A\mathbf{x}_1, \dots, L_A\mathbf{x}_n\}$.
- 4. The column vectors of A form an orthonormal basis of \mathbb{R}^n .
- 5. $A^T A = I_n$

Definition 8.4

A linear rigid motion and its matrix are called orthogonal.

O(n) :=the set of all $n \times n$ orthogonal matrices

Proposition 8.5

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a rigid motion. Then,

$$\exists ! \mathbf{p} \in \mathbb{R}^n, \exists ! A \in O(n), f = T_{\mathbf{p}} \circ L_A$$

Sketch of proof. Step 1: $(f(\mathbf{0}) = \mathbf{0})$: $\exists ! A \in O(n), f = L_A$ Step 2: (General Case): Set $\mathbf{p} = f(\mathbf{0})$. Then apply Step 1 to $(T_{\mathbf{p}})^{-1} \circ f = T_{-\mathbf{p}} \circ f$ Indeed,

$$(T_{\mathbf{p}})^{-1} \circ f(\mathbf{0}) = T_{-\mathbf{p}} \circ f(\mathbf{0}) = T_{-\mathbf{p}}(\mathbf{p}) = \mathbf{0},$$

So,

$$\exists ! A \in O(n), (T_{\mathbf{p}})^{-1} \circ f = L_A$$

$$\implies f = T_{\mathbf{p}} \circ L_A$$

Read Tapp for the details.

We can classify rigid motions:

Lemma 8.6

$$A \in O(n) \implies \det(A) = \pm 1$$

Proof.
$$A^T A = \mathbb{I}_n$$
, so $1 = \det(A^T A) = \det(A^T) \det(A) = \det(A)^2$

Example 8.7

Let $A \in O(2)$. The column vectors of A are orthonormal:

$$A = \underbrace{\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{\begin{subarray}{c} \text{rotation,} \\ \det = 1 \\ \text{proper} \end{subarray}}_{\begin{subarray}{c} \text{cos } \theta \\ \sin \theta & -\cos \theta \end{subarray}} \begin{subarray}{c} \text{reflection} \\ \det = -1 \\ \text{improper} \end{subarray}}$$

Example 8.8

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in O(3) \text{ represents the reflection about the } xy \text{ plane:}$

det(A) = -1, so L_A is improper.

Remark 8.9 proper = physically performable (e.g. rotations) improper = physically unperformable (e.g. reflections)

Another interpretation of proper (improper rigid motions is given in terms of the orientation of orthonormal basis.

Definition 8.10 (Ordered orthonormal basis and Positively oriented vs. Negatively oriented) An <u>ordered orthonormal basis</u> (o.o.b.) $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of \mathbb{R}^n is called <u>positively oriented</u> (p.o.) if the orthogonal matrix whose column vectors are $\mathbf{x}_1, \dots, \mathbf{x}_n$ has $\det = 1$, and negatively oriented (n.o.) if it has $\det = -1$.

Example 8.11

 $\{\mathbf{x}_1, \mathbf{x}_2\}$ are o.o.b of \mathbb{R}^2 .

p.o. $\Leftrightarrow \mathbf{x}_2 = R_{90}\mathbf{x}_1$

n.o. $\Leftrightarrow \mathbf{x}_2 = R_{-90}\mathbf{x}_1$

Example 8.12

 $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ o.o.b. of \mathbb{R}^3 . p.o. $\Leftrightarrow \mathbf{x}_3 = \mathbf{x}_1 \times \mathbf{x}_2 \Leftrightarrow \text{ right-hand}$ n.o. $\Leftrightarrow \mathbf{x}_3 = -\mathbf{x}_1 \times \mathbf{x}_2 \Leftrightarrow \text{ left-hand}$

Proposition 8.13

Let $A \in O(n)$. Then

A preserves the orientation of any o.o.b. $\Leftrightarrow \det(A) = +1$ A reserves the orientation of any o.o.b. $\Leftrightarrow \det(A) = -1$.

Proof. Let $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be an o.o.b. of \mathbb{R}^n . Set

$$B := (\mathbf{x}_1 \cdots \mathbf{x}_n) \in O(n).$$

Then,

$$AB = (L_A \mathbf{x}_1 \cdots L_A \mathbf{x}_n)$$

Note, det(AB) = det(A) det(B).

Therefore,

$$\det(AB) = \begin{cases} \det(B) & \text{if } \det(A) = 1\\ -\det(B) & \text{if } \det(A) = -1 \end{cases}$$

Proposition 8.14

The following functions are unchanged by proper rigid motions:

- i. Curvature for a regular curve
- ii. Torsion for a space curve
- iii. Signed curvature for a plane curve.

By improper rigid motions, (i) is unchanged, (ii) and (iii) are multiplied by -1.