(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-267566 (P2001-267566A)

(43)公開日 平成13年9月28日(2001.9.28)

(51) Int.Cl.7

徽別記号

FΙ

テーマコート*(参考)

H01L 29/78 27/105 H01L 29/78

301G

27/10

444A

審査請求 未請求 請求項の数26 OL (全 9 頁)

(21)出魔番号

特願2001-20773(P2001-20773)

(22)出願日

平成13年1月29日(2001.1.29)

(31)優先権主張番号 09/502.420

(32)優先日

平成12年2月11日(2000.2.11)

(33)優先権主張国

米国 (US)

(71) 出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 ヤンジュン マー

アメリカ合衆国 ワシントン 98683, パンクーパー, エスイー 24ティーエイ

チ ウェイ 18311

(72)発明者 ヨシ オノ

アメリカ合衆国 ワシントン 98607, カマス, エヌダブリュー 24ティーエイ

チ サークル 2526

(74)代理人 100078282

弁理士 山本 秀策

(54) 【発明の名称】 多層誘電体スタックおよびその方法

(57)【要約】

【課題】 MOSトランジスタおよび集積回路構造に用 いることができる高誘電体材料および挿入材料の交互の 層を有する多層誘電体スタックを提供すること。

【解決手段】 多層誘電体スタックを含む I Cのための 集積回路(IC)構造は、a)第1の誘電体材料を含 み、半導体基板を覆う第1の誘電体層と、b)第2の誘 電体材料を含み、第1の誘電体層を覆う第2の誘電体層 と、c)第1の誘電体材料を含み、第1および第2の誘 電体層を覆う第3の誘電体層と、d) 誘電体スタックを 覆う電極とを含む。

【特許請求の範囲】

【請求項1】 a)ゲート電極と、

b) 該ゲート電極の下に上面を有するチャネル領域と、

c) 第1の誘電体材料を含む第1の誘電体層、第2の誘 電体材料を含む第2の誘電体層、および該第1の誘電体 材料を含む第3の誘電体層を含み、該ゲート電極と該チ ャネル領域の上面との間に挿入させたゲート誘電体スタ ックと、を含むMOSトランジスタ。

【請求項2】 多層誘電体スタックを含む I Cのための 集積回路(IC)構造であって、該構造は、

- a) 第1の誘電体材料を含み、半導体基板を覆う第1の 誘電体層と、
- b) 第2の誘電体材料を含み、該第1の誘電体層を覆う 第2の誘電体層と、
- c) 該第1の誘電体材料を含み、該第1および第2の誘 電体層を覆う第3の誘電体層と、
- d) 該誘電体スタックを覆う電極と、を含む、IC構 造。

【請求項3】 前記第1の誘電体材料は、ZrO,、H fOx、TiOx、およびTaxOxからなる群から選択さ 20 れ、前記第2の誘電体材料は、Al,O,、AlN、Si N、Si,N₄、およびSiO₂からなる群から選択され る、請求項2に記載の集積回路構造。

【請求項4】 前記第1の誘電体材料は、A1,O,、A 1N、SiN、Si,N、およびSiO,からなる群か ら選択され、前記第2の誘電体材料は、ZrOx、Hf O₁、TiO₂、およびTa₂O₅からなる群から選択され る、請求項2に記載の集積回路構造。

【請求項5】 前記第1の誘電体層は、50オングスト ローム未満の厚さである、請求項2に記載の集積回路構 30 造。

【請求項6】 前記第1の誘電体層は、約2~5オング ストロームの厚さである、請求項2に記載の集積回路構 造。

【請求項7】 前記第2の誘電体層は、50オングスト ローム未満の厚さである、請求項2に記載の集積回路構 造。

【請求項8】 前記第2の誘電体層は、約2~5オング ストロームの厚さである、請求項2に記載の集積回路構

【請求項9】 前記第1の誘電体層と前記半導体基板と の間に挿入された酸化バリアをさらに含む、請求項2に 記載の集積回路構造。

【請求項10】 前記酸化バリアが、窒化シリコンおよ び酸窒化シリコンからなる群から選択される材料で構成 される、請求項9に記載の集積回路構造。

【請求項11】 前記半導体基板と前記電極との間に、 複数の前記第1の誘電体材料および前記第2の誘電体材 料の複数の交互の層が挿入された、請求項2に記載の集 積回路構造。

【請求項12】 前記複数の交互の層は、約20~20 0オングストロームの厚さの合計厚さを有する、請求項 11 に記載の集積回路構造。

【請求項13】 a) 半導体基板の上面に第1の誘電体 b) 該第1の誘電体層の上に第 層を形成する工程と、 2の誘電体層を形成する工程と、

c) 該第2の誘電体層の上に、第3の誘電体層を形成す る工程であって、該第3の誘電体層は、該第1の誘電体 材料と同じ誘電体材料を含む、工程と、を含む、誘電体 10 スタックを形成する方法。

【請求項14】 前記半導体基板を摂氏約400度から 900度の間の温度でアニーリングし前記誘電体スタッ クを改質する工程をさらに含む、請求項13に記載の方 法。

【請求項15】 前記誘電体スタック上に電極層を堆積 する工程と、該電極層およびその下の該誘電体スタック をパターニングして、所望の集積回路構造を形成する工 程と、をさらに含む、請求項14に記載の方法。

【請求項16】 前記第1の誘電体層を形成する工程 は、単原子層堆積法を用いて、前記第1の誘電体材料を 堆積する、請求項13 に記載の方法。

【請求項17】 前記第2の誘電体層を形成する工程 は、単原子層堆積法を用いて、前記第2の誘電体材料を 堆積する、請求項13に記載の方法。

【請求項18】 前記第1の誘電体層を形成する工程 は、単原子層堆積法を用いて、前記第1の誘電体材料の 第1の前駆体を堆積する、請求項13に記載の方法。

【請求項19】 前記第1の前駆体を酸化して、前記第 1の誘電体材料を形成する工程をさらに含む、請求項1 8に記載の方法。

【請求項20】 前記第1の前駆体は、自己制限的に形 成された単分子層として堆積される、請求項18に記載

【請求項21】 前記第1の前駆体は、2rCl,、ジ ルコニウムイソプロポキシド(以下Zr(iOPr)。 と記す) およびジルコニウムテトラメチルヘプタンジ オネート(以下Zr(tmhd)、と記す)からなる群 から選択される、請求項18に記載の方法。

【請求項22】 前記第1の誘電体層を形成する工程 は、所定の時間、第1のターゲットのスパッタリングを 用い、前記第2の誘電体層を形成する工程は、所定の時 間、第2のターゲットのパルススパッタリングを用い る、請求項13に記載の方法。

【請求項23】 前記第1のターゲットおよび前記第2 のターゲットのスパッタリングの前記時間は、シャッタ ーにより制御される、請求項22に記載の方法。

【請求項24】 スパッタリングが酸化雰囲気で実行さ れる、請求項22に記載の方法。

【請求項25】 前記第1の誘電体層を形成する工程 50 は、所定の時間、第1のターゲット材料の蒸着を用い、

3

前記第2の誘電体層を形成する工程は、所定の時間、第 2のターゲット材料の蒸着を用いる、請求項13に記載 の方法。

【請求項26】 前記第1のターゲットおよび前記第2のターゲットの蒸着の時間は、シャッターにより制御される、請求項25に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、一般的に大規模集 積回路(LSI)製造プロセスに関し、より詳細には、 多層誘電体スタック、およびそのようなスタックを有す るトランジスタを製造するための方法に関する。

[0002]

【従来の技術】現在のVLSI技術は、MOSデバイスのゲート誘電体としてSiOュを用いる。デバイス寸法が縮小され続けるにつれ、ゲートとチャネル領域間で同一のキャパシタンスを維持するために、SiOュ層の厚さも減少しなければならない。将来には、2ナノメートル(nm)未満の厚さが予想される。しかしながら、そのようなSiOュ膜ではトンネル電流を無視できなくなる為、代替の材料を考慮する必要がある。高誘電率を有する材料では、ゲート誘電体層を逆に厚くすることができるので、トンネル電流問題を改善できる。これらの、いわゆるhigh-k誘電体膜は、本明細書において、二酸化シリコンを凌ぐ高誘電率を有するものとして定義される。典型的には、二酸化シリコンは、約4の比誘電率を有するが、約10を超える比誘電率を有するゲート誘電体材料を用いることが望ましい。

[0003]

【発明が解決しようとする課題】上記のh i g h - k 誘電体に関する一般的な問題の一つは、通常の集積回路製造条件を用いていかに均一な膜を成長させるかということである。現在の常法を用いた場合には、膜の表面の平坦性が大きく低下する。表面の平坦性の低下により、誘電体膜に隣接するチャネル領域に不均一な電界を生じる。そのような膜は、MOSFETデバイスのゲート誘電体として不適切である。

【0004】高いトンネル電流のために、1.5nmよりも薄い SiO_z 膜は、一般的にCMOSデバイスのゲート誘電体として使用できない。現在、 SiO_z を TiO_z および Ta_zO_z に置き換えるための研究における多大な努力が、最大の関心を呼んでいる。堆積後の高温アニーリング界面に副成される SiO_z 層は、酸化物換算膜厚(EOT):1.5nmを有するhigh ー k膜の実現を非常に困難にしている。

[0005]

【課題を解決するための手段】全体的な性能を劣化させたり、またはトンネル電流を増加させることなく、酸化物薄膜に関する問題を改善する代替誘電体が用いられれば有利である。

【0006】MOSトランジスタのゲート電極とその下のチャネル領域との間の絶縁バリアとして、high-k誘電体膜が用いられ得れば有利である。

【0007】high-k誘電体膜が、低減された表面 平坦性および低リーク電流を有して形成され得れば有利 である。これらの特性を有する高誘電率材料が、集積回 路のゲート誘電体および格納キャパシタに用いられ得れ ば有利である。

【0008】本発明によるMOSトランジスタは、a) が一ト電極と、b)該ゲート電極の下に上面を有するチャネル領域と、c)第1の誘電体材料を含む第1の誘電体層、第2の誘電体材料を含む第2の誘電体層、および該第1の誘電体材料を含む第3の誘電体層を含み、該ゲート電極と該チャネル領域の上面との間に挿入させたゲート誘電体スタックとを含み、これにより上記目的を達成する。

[0009] 本発明によル多層誘電体スタックを含む I Cのための集積回路 (IC) 構造は、a) 第1の誘電体材料を含み、半導体基板を覆う第1の誘電体層と、b) 第2の誘電体材料を含み、該第1の誘電体層を覆う第2の誘電体層と、c) 該第1の誘電体材料を含み、該第1 および第2の誘電体層を覆う第3の誘電体層と、d) 該 誘電体スタックを覆う電極とを含み、これにより上記目的を達成する。

【 0 0 1 0 】前記第 1 の誘電体材料は、 Z r O₂、 H f O₂、 T i O₂、 および T a₂ O₃ からなる群から選択され、前記第 2 の誘電体材料は、 A 1₂ O₃、 A 1 N、 S i N、 S i , N₄、 および S i O₂ からなる群から選択されてもよい。

(0 【0011】前記第1の誘電体材料は、A1,O,、A1 N、SiN、Si,N,、およびSiO,からなる群から 選択され、前記第2の誘電体材料は、ZrO,、Hf O,、TiO,、およびTa,O,からなる群から選択され てもよい。

【0012】前記第1の誘電体層は、50オングストローム未満の厚さであってもよい。

【0013】前記第1の誘電体層は、約2~5オングストロームの厚さであってもよい。

【0014】前記第2の誘電体層は、50オングストローム未満の厚さであってもよい。

【0015】前記第2の誘電体層は、約2~5オングストロームの厚さであってもよい。

【0016】前記第1の誘電体層と前記半導体基板との間に挿入された酸化パリアをさらに含んでもよい。

【0017】前記酸化バリアが、窒化シリコンおよび酸窒化シリコンからなる群から選択される材料で構成されてもよい。

【0018】前記半導体基板と前記電極との間に、複数の前記第1の誘電体材料および前記第2の誘電体材料の 50 複数の交互の層が挿入されてもよい。

もよい。

【0019】前記複数の交互の層は、約20~200オ ングストロームの厚さの合計厚さを有してもよい。

【0020】本発明による誘電体スタックを形成する方 法は、a) 半導体基板の上面に第1の誘電体層を形成す る工程と、b) 該第1の誘電体層の上に第2の誘電体層 を形成する工程と、c) 該第2の誘電体層の上に、第3 の誘電体層を形成する工程であって、該第3の誘電体層 は、該第1の誘電体材料と同じ誘電体材料を含む、工程 とを含み、これにより上記目的を達成する。

【0021】前記半導体基板を摂氏約400度から90 10 0度の間の温度でアニーリングし前記誘電体スタックを 改質する工程をさらに含んでもよい。

【0022】前記誘電体スタック上に電極層を堆積する 工程と、該電極層およびその下の該誘電体スタックをパ ターニングして、所望の集積回路構造を形成する工程と をさらに含んでもよい。

【0023】前記第1の誘電体層を形成する工程は、単 原子層堆積法を用いて、前記第1の誘電体材料を堆積し てもよい。

【0024】前記第2の誘電体層を形成する工程は、単 20 原子層堆積法を用いて、前記第2の誘電体材料を堆積し てもよい。

【0025】前記第1の誘電体層を形成する工程は、単 原子層堆積法を用いて、前記第1の誘電体材料の第1の 前駆体を堆積してもよい。

【0026】前記第1の前駆体を酸化して、前記第1の 誘電体材料を形成する工程をさらに含んでもよい。

【0027】前記第1の前駆体は、自己制限的に形成さ れた単分子層として堆積されてもよい。

【0028】前記第1の前駆体は、2rCl,、ジルコ ニウムイソプロポキシド(以下Zr(iOPr),と記 す)、およびジルコニウムテトラメチルヘプタンジオネ ート(以下乙r (tmhd),と記す)からなる群から 選択されてもよい。

【0029】前記第1の誘電体層を形成する工程は、所 定の時間、第1のターゲットのスパッタリングを用い、 前記第2の誘電体層を形成する工程は、所定の時間、第 2のターゲットのパルススパッタリングを用いてもよ 61

【0030】前記第1のターゲットおよび前記第2のタ 40 ーゲットのスパッタリングの前記時間は、シャッターに より制御されてもよい。

【0031】スパッタリングが酸化雰囲気で実行されて もよい。

【0032】前記第1の誘電体層を形成する工程は、所 定の時間、第1のターゲット材料の蒸着を用い、前記第 2の誘電体層を形成する工程は、所定の時間、第2のタ ーゲット材料の蒸着を用いてもよい。

【0033】前記第1のターゲットおよび前記第2のタ

【0034】従って、SiOzを凌ぐ高誘電率を有する high-k材料と挿入材料とで交互に構成される多層 誘電体スタックが提供される。high-k材料は、酸 化チタン(TiO₁)、酸化ジルコニウム(ZrO₂)、 酸化ハフニウム(HfO,)、酸化タンタル(Ta 、O、)、およびバリウムストロンチウムチタン酸化物 ((Ba, Sr) TiO,) から選択され、好ましく は、酸化ジルコニウムまたは酸化ハフニウムである。挿 入材料は、酸化アルミニウム(A1,O,)、窒化アルミ ニウム(A1N)、窒化シリコン(SiNまたはSi, N_{\bullet})、または二酸化シリコン (SiO_{\bullet}) から選択さ れ、好ましくは、酸化アルミニウム、窒化アルミニウ ム、または窒化シリコンである。

6

【0035】好ましくは、high-k材料と挿入材料 との交互の層は、集積回路における従来技術の二酸化シ リコン誘電体層に取って代わる。それぞれの層は、好ま しくは厚さ50オングストローム未満である。挿入材料 と接するhigh-k材料の薄層は、挿入材料によって 膜の結晶化が抑制される。多層は、トンネル電流を低減 し、これにより、より優れたデバイス性能を可能にす る。全体の高さは変えずに、追加の層がトンネル電流を 低減する。所与の高さを有するスタックの全キャパシタ ンスは、挿入材料およびhigh-k材料の両方の誘電 率に非常に依存する。所望の全厚に対する層の数は、各 層で得られる最小厚さおよび所望のデバイス特性により 限定される。

【0036】さらに、半導体基板上の誘電体材料からな る第1の層と、第1の層上の誘電体材料からなる第2の 層と、第2の層上の第1の層と同じ材料で構成された第 3の層とを有する多層誘電体スタック、および誘電体ス タック上の電極と含むICのための集積回路(IC)構 造も提供される。誘電体スタックの構成材料は上述した とおりである。誘電体スタックの全厚は、好ましくは、 20~200オングストロームの間である。

【0037】本発明の別の実施形態では、集積回路構造 は、ゲート電極と、上面がゲート電極の下に重なるチャ ネル領域と、第1の誘電体材料を含む第1の誘電体層、 第2の誘電体材料を含む第2の誘電体層、および第1の 誘電体層と同じ材料を含む第3の誘電体層を含み、ゲー ト電極とチャネル領域の上面との間に挿入されたゲート 誘電体スタックとを含むMOSトランジスタである。

【0038】本発明のいくつかの局面は、シリコン基板 と誘電体スタックとの間に挿入され、誘電体スタックの 下にあるシリコン基板に酸素が移動するのを防ぐ酸化バ リアをさらに含む。界面材料は、窒化アルミニウム、窒 化シリコン、および酸窒化シリコンからなる群から選択 される。

【0039】上面を有する半導体基板上へのICの形成 ーゲットの蒸着の時間は、シャッターにより制御されて 50 において、半導体基板上に多層誘電体スタックを形成す 7

るための方法が提供される。この方法は、

- a) 第1の誘電体層を半導体基板の上面に形成する工程 と
- b)第2の誘電体層を第1の誘電体層の上に形成する工程と.
- c)第3の誘電体層を第2の誘電体層の上に形成する工程であって、第3の誘電体層は第1の誘電体材料と同一の誘電体材料を含む、工程と、を含む。

【0040】好ましくは、各誘電体層は前駆体の単原子層堆積法(Atomic Layer CVD)(とき 10 にパルスCVDとも称される)と、所望の酸化材料を形成するためのその後の前駆体の酸化とにより形成される。単原子層堆積法(Atomic Layer CVD)が好ましいが、各誘電体層を堆積するその他の方法は、スパッタリングや蒸着を含む。

【0041】複数の誘電体層の堆積に続いて、誘電体スタック全体が好適には、摂氏約400~900度の間の温度でアニーリングされ、スタック、層間の界面、および基板との界面が改質される。

【0042】続く処理は、ICの形成を完了するために 20 実行され得、電極層を堆積する工程と電極層とその下の 複数の誘電体層をバターンニングする工程とを含み、多 層誘電体スタック構造を形成する。

[0043]

【発明の実施の形態】以下、例示目的である図面(倍率は一定ではない)を参照して、図1は、一般的な従来技術による集積回路のMOSトランジスタゲート構造10を示す。MOSトランジスタゲート構造10は、半導体基板12上のチャネル領域15を含む活性領域14の上に形成されている。MOSトランジスタゲート構造10は、一定の幅を備えるチャネル領域15の上に位置する二酸化シリコン誘電体層16を有する。電極18は、典型的にはドープされたポリシリコンであり、誘電体層16の上に形成され、ゲート構造10が完成される。

【0044】完成されたMOSトランジスタは、図1および他のいくつかの図に示されるソース領域21、ドレイン領域23、および電界絶縁領域27も含む。しかし、これらの特徴は当業者に周知であるので、さらに説明または明示しない。以下の説明において、このMOSトランジスタゲート構造10に類似する構造は、本発明40が誘電体材料を用いる他のデバイス構造に適用可能であることを強調するために、しばしば集積回路構造と呼ばれる。

【0045】ICデバイスの寸法を縮小し続けるにつれ、二酸化シリコン誘電体層16の厚さも、同じキャバシタンスレベルおよびデバイス全体の他の特性を維持するためにより薄くしなければならない。ICデバイスの「寸法」とは、一般的に、チャネル領域15の長さを言う。その長さは、図1に示すように、一般的に、ゲート電極18の長さに等しい。この長さが縮小し続けるにつ

れ、チャネル領域の面積も減少する。キャパシタンスを維持するためには、二酸化シリコン層の厚さも減少しなければならない。二酸化シリコン誘電体層の必要な厚さが非常に薄くなる(約20オングストローム)と、一般的に、高いトンネル電流の発生により代替材料の使用を必要とする。代替材料は、二酸化シリコンに対して高誘電率を有するために、「high-k」材料と呼ばれる。high-k材料のための現在の候補は、酸化チタン(TiO_1)、酸化シルコニウム(ZrO_2)、酸化ハフニウム(HfO_2)、酸化タンタル(Ta_2O_3)、およびバリウムストロンチウムチタン酸化物((Ba, Sr) TiO_3)である。残念ながら、これらの材料は、通常の成膜プロセス条件または後続するプロセス温度において多結晶構造を成長する傾向にある。これらの多結

【0046】本発明は、high-k材料および挿入材料の交互の層を用いるととにより、これらの問題に取り組む。挿入材料は好ましくは非晶質である。薄いhigh-k層内での多結晶構造の形成を低減または排除する。挿入材料は非晶質なので、隣接層内の結晶化の量もさらに低減する傾向にある。また、薄いhigh-k層を有するととにより、発生し得る任意の結晶化は、比較的小さな結晶構造を形成する。非晶質の挿入材料が好ましいが、単結晶材料または小さな多結晶構造を有する材料も、本発明の範囲内である。

晶構造は、リーク電流の増加に関係してきた。

【0047】以下、図2を参照して、半導体基板112 の活性領域114上に集積回路構造110が形成され る。集積回路構造は、図1に示す二酸化シリコン誘電体 層16に取って代わる多層誘電体スタック116を有す る。多層誘電体スタックは、活性領域114の上に挿入 層130を有し、挿入層130の上にhigh-k層1 40を有する。挿入層130は、酸化アルミニウム(A 1,0,)、窒化アルミニウム(A1N)、窒化シリコン (SiNまたはSi,N.)、または二酸化シリコン(S iO₂)で構成されるが、好ましくは、酸化アルミニウ ムである。挿入層130は、厚さ50オングストローム 未満である。high-k層140は、high-k誘 電体材料で構成される。high-k誘電体材料は、酸 化チタン(TiO₁)、酸化ジルコニウム(ZrO₂)、 酸化ハフニウム(HfOz)、酸化タンタル(Ta 、O、)、またはバリウムストロンチウムチタン酸化物 ((Ba, Sr) TiO」) であるが、好ましくはZr O, 、またはHfO, である。第2の挿入層150はhi gh-k層140上にあり、好ましくは、挿入層130 と同一の材料で構成される。本発明の好適な実施形態で は、例えば、A 1,O,/Z r O,/A 1,O,/Z r O,/ Al,O,/ZrO,のように層が繰り返す。

う。その長さは、図1に示すように、一般的に、ゲート 【0048】図3に示すように、層の数またはバターン 電極18の長さに等しい。この長さが縮小し続けるにつ 50 が何度も繰返し得る。それぞれの追加の層は、多層誘電 20

得る。

体スタックのトンネル電流を低減する傾向にあるが、同 時に全体のキャパシタンスを低減する。低いトンネル電 流で、高いキャパシタンスを有することが望ましいの で、ICデバイスの所望の性能に基づき、平衡が好適に 決定される。また、high-k層140を挿入層13 0よりも先に堆積するというように、材料の順序を逆に することも可能である。

【0049】偶数の層を上述したが、最上層として特別 の層を備えることもまた、本発明の範囲内である。最上 層は、電極118に良好な界面を設けるように選択され 10 得る。

【0050】挿入層130は、好ましくは、酸化パリア として機能し、その下のシリコンを保護する材料から選 択される。挿入層130が酸化バリアとして機能しない 場合、すなわちさもなくばhigh-k層140がその 下のシリコン基板に接触している場合、酸化パリア17 0は、図4に示すように、半導体基板112と多層誘電 体スタック116との間に設けられる。本発明で必要と する厚さにおいて、酸化バリアとして機能する材料は、 酸化アルミニウム、窒化シリコン、および酸窒化シリコ ンを含む。

【0051】図5は、本発明による多層誘電体スタック 216を備える集積回路デバイスの製造の中間段階の実 施形態を示す。複数のhigh-k材料230および挿 - 入材料240の層が、ウェハ212全体に交互に堆積さ れ、多層誘電体スタック216を形成している。次に、 電極層218もウェハ全体に堆積される。電極層218 とその下の多層誘電体スタック216は、パターニング されてからエッチングされ、図2に示す集積回路構造を 製造する。所望の接合または他の構造を製造するために 30 さらなるプロセスが実行され得る。

【0052】また、本発明の多層誘電体スタックは、新 規な置き換えゲート製造法と組み合わせて用いるのにも 適している。置き換えゲートは、後に実質的に除去され る予備ゲート構造の形成を含む。予備ゲート構造が除去 された後には、予備ゲート構造が存在した箇所に開口部 が残される。次に、最終的なゲートがとの開口に形成さ れ得る。図6は、置き換えゲートの形成における中間段 階での半導体基板を示す。予備ゲート構造は、すでに除 去されており、プレーナ材料311により囲まれた開口 部300を形成している。プレーナ材料311は、好ま しくは二酸化シリコンまたは窒化シリコンである。

【0053】図7は、置き換えゲートを形成するための 開口部を有する半導体基板312上に、挿入材料330 およびhigh-k材料340の交互の層で形成される 多層誘電体スタック層316と電極層318とが堆積さ れたその後の段階を示す。図8に示す構造を製造するた めには、多層誘電体スタック層316および電極層31 8が、化学機械研磨または他の適切なプロセスにより、

【0054】図8は、置き換えゲート構造に適用された 本発明を示す。多層誘電体スタック416は、活性領域 414上にある。多層誘電体スタック416の形成中 に、多層壁422および424も形成される。電極41

8は好ましくは金属であり、多層壁422と424との 間で多層誘電体スタック416上にある。

【0055】本発明の方法における工程を図9に模式的・ に示す。第1の工程510は、半導体基板を提供する工 程である。本発明の別の実施形態では、半導体基板上に 酸化バリアも提供される。

【0056】工程520は、酸化アルミニウム(Al, O,)、窒化アルミニウム(AIN)、窒化シリコン (SiNまたはSi,N,)、または二酸化シリコン(S i O₂) などの挿入材料、あるいは酸化チタン(Ti O_{i})、酸化ジルコニウム (ZrO_{i}) 、酸化ハフニウム・ (HfO₂)、酸化タンタル(Ta₂O₂)、またはバリ ウムストロンチウムチタン酸化物((Ba, Sr) Ti O,) などのh i g h - k 材料からなる50 A未満の薄 層を堆積する工程である。high-k材料は、好まし くは2r0ぇ、またはHf0ぇである。好ましくは、35 オングストローム以下の薄層が堆積される。20オング ストローム以下のさらに薄い層が望ましい。

【0057】工程530は、50Å未満のhigh-k 材料または挿入材料のうち、工程520で堆積されなか った材料を堆積する。好ましくは、35オングストロー ム以下の薄層が堆積される。20オングストローム以下 のさらに薄い層が望ましい。

【0058】本発明の好適な実施形態では、基板上に極 薄層の材料を堆積するのに、単原子層堆積法(Atom ic Layer CVD) (「パルスCVD」または 「原子層エピタクシ」とも呼ばれる)が用いられる。単 原子層堆積法(AtomicLayer CVD)は、 化学吸着として知られる化学現象を用いる。化学吸着で は、気相の材料がそれを飽和させる表面に吸着し、単分 子層を形成する。たいていの従来の堆積技術は、物理吸 着プロセスを用いる。物理吸着プロセスでは、純粋に統 計的な表面カバレッジで多層堆積領域を形成する。化学 吸着の利点を生かすことで、厚さおよび組成が極めて均 質な膜を成長させ得る。例えば、この方法では、第1の 単分子層を形成するために、塩化ジルコニウム(2rC 1.)を用いてZrC1.系をパージし、次いで表面を水 蒸気(H,O)に曝すことにより、シリコン上に酸化ジ ルコニウム膜を報告されているように成長する。酸化ジ ルコニウム層を形成するための他の前駆体は、ジルコニ ウムプロポキシド(Zr(iOPr)。)およびジルコ ニウムテトラメチルヘプタンジオネート(Zr(tmh d),)を含む。化学吸着は、所与の気体-固体の組み 合わせに対し、非常に限られた範囲の温度および圧力で それらがプレーナ材料311上にある領域から除去され 50 起とる。例えば、酸化ジルコニウムは、ZrCl。およ

びH、Oを用いて摂氏300度の温度で、シリコン基板 上に報告されているように堆積されてきた。そのプロセ スは単分子層を形成するので、さらなる単分子層を加え ることにより、酸化ジルコニウムのより厚い層が形成さ れる。いったん所望の厚さのhigh-k材料が堆積さ れたら、一つ以上の単分子層を所望の厚さに達するまで 堆積することにより、挿入材料の層を形成し得る。例え ば、A1,O,を生成するために、水素化ジメチルアルミ ニウム(DMAH)およびH,Oが用いられる。選択し た前駆体に関する化学吸着を利用するためには、過度の 実験を行わずに一般的なプロセスが最適化されなければ ならない。この堆積スキームの重要な局面は、次の成分 を導入する前に、その前の成分を十分に除去すること と、high-k材料および挿入材料により異なり得る 温度および圧力を制御する能力とである。単原子層堆積 法(Atomic Layer CVD)により、10 オングストローム以下の厚さの層、好ましくは、約2~ 5オングストロームの間の厚さの層を形成することを可 能にする。そのような超薄原子層の半導体基板上への堆 積を達成するための実用的な装置は現存しないが、原子 20 層堆積が実行可能であるという実験的堆積は実施されて いる。

【0059】従来のシステムを用いた別の堆積技術は、 ターゲットをスパッタリングして、high-kまたは 挿入材料の薄層を堆積することである。高純度金属の2 つのスパッタリングターゲットが用いられる。例えば、 一つのターゲットがジルコニウムで、一つのターゲット がアルミニウムである。それぞれのターゲットは、堆積 時間を制御するための各自のシャッターを有する。ウェ ハを用意し、堆積チャンバ内に配置する。次に、このウ 30 ェハを室温~摂氏500度の間の温度に加熱する。次 に、アルゴン (Ar) および酸素 (O₂) の混合物が堆 積チャンバに導入される。チャンパ内に約500₩~5 kWの間のスパッタリング出力によりプラズマが生成さ れる。アルミニウムターゲットのシャッターは、好まし くは、約1~10秒の時間開き、ウェハ上にアルミニウ ムを堆積し、その後閉じる。アルミニウムターゲットの シャッターが閉じた後、ジルコニウムシャッターが約1 ~20秒の時間開き、ウェハを上にジルコニウムを堆積 し、その後閉じる。チャンバ内に存在する酸素により、 ターゲット材料のウェハ上への堆積と同時に堆積された ターゲット材料の酸化物を形成し、それぞれAl,O,お よびZr0ぇを生成する。その後、所望によりこの工程 が繰り返され、Al,O,/ZrO,/Al,O,/ZrO, /A 1,O,/ZrO,のような多層誘電体スタックが形 成される。

【0060】本発明の堆積方法の別のさらなる実施形態 では、薄層を堆積するためにターゲットからの蒸着法が 用いられる。基本的なプロセスは、スパッタリングに関 して上述した説明と実質的に同一だが、プラズマにター 50 た、上述の多層誘電体スタックを形成するための所望の

ゲットを曝す代わりに、摂氏約1,000~2,000 度の間の温度でターゲットを加熱する点が異なる。上述 のように、堆積時間を制御し、ターゲット間を交互にす るためにシャッターが用いられ得る。

【0061】上述の例では、挿入層は、high-k層 よりも前に堆積されるが、high-k層を最初に堆積 することも本発明の範囲内である。また、最初の層と最 後の層が同一の材料となり得るか、または最後の層がま ったく異なる材料になり得るように、奇数の層を形成す ることも本発明の範囲内である。

【0062】工程540は、所望の数の層が堆積される まで、工程520および530の繰返しを提供する。各 層の堆積は、シャッター、または他の手段を利用して、 堆積時間を制御するととにより制御され得る。

【0063】工程550は、アルゴン、窒素、または窒 素および水素の混合物を含む不活性ガス雰囲気または酸 素、水蒸気、一酸化二窒素または亜酸化窒素を含む酸化 雰囲気のいずれかで、多層誘電体スタックをアニーリン グする工程である。アニーリングは、好ましくは、hi gh-k層および挿入層、ならびに様々な層間の界面お よびその下のシリコンとの界面を改善するために、摂氏 400度~900度に上昇された温度で実施される。

【0064】工程560は、電極の堆積と電極およびそ の下の多層誘電体スタックのパターニングを行う。パタ ーニングは、所望により従来のパターニングプロセスま たは置き換えゲートプロセスのいずれかを用い得る。

【0065】本発明は、トランジスタのゲート誘電体と して二酸化シリコンを置き換えることに特によく適して いるが、キャパシタ、強誘電体メモリデバイス、または 他の種類の集積回路用の誘電体としても利用できる。

【0066】さらなる実施形態が本発明の範囲で可能で ある。例示的実施形態から明白なように、本発明は、い くつかの異なる集積回路構造に関する様々な構成で実施 され得る。本発明の範囲内で本方法の他の変形が、当業 者により行われ得る。従って、上述の開示および説明 は、例示目的のみであって、本発明の限定を意図してい ない。本発明は特許請求の範囲により規定される。

[0067]

【発明の効果】上述したように、high-k材料およ び挿入材料の交互の層を有する多層誘電体スタックが提 供される。挿入材料の存在およびhigh-k材料層の 薄さは、比較的高いアニーリング温度であっても、hi gh-k材料が結晶化する影響を低減または排除する。 high-k誘電体層は、好ましくはジルコニウムまた はハフニウムの金属酸化物である。挿入層は、好ましく は非晶質の酸化アルミニウム、窒化アルミニウム、また は窒化シリコンである。この層が、個々の層内で結晶化 により形成されるグレインバウンダリーの貫通成長を抑 制するので、全体的なトンネル電流が低減される。ま

(8)

材料を堆積する方法として、単原子層堆積法、スパッタ リング、および蒸着が提供される。

【図面の簡単な説明】

【図1】二酸化シリコン誘電体層を有する集積回路構造 (従来技術)を示す模式断面図。

【図2】多層誘電体スタックを有する集積回路構造を示す模式断面図。

【図3】多層誘電体スタックの層数が異なり得ることを 示す模式断面図。

【図4】シリコン基板と多層誘電体スタックとの間に挿 10 入された酸化バリアを示す模式断面図。

【図5】複数の誘電体層および電極層の堆積に続く中間 段階を示す模式断面図。

【図6】置き換えゲート法を用いた、本発明によるデバイスの形成の中間段階を示す模式断面図であって、予備ゲートの除去後の構造を示す図。

【図7】置き換えゲート法を用いた、本発明によるデバイスの形成の中間段階を示す模式断面図であって、多層 誘電体材料および電極材料層を堆積した後の構造を示す 図。 *【図8】余分な材料を除去するためのプレーナプロセス 後の図7のデバイスを示す模式断面図。

【図9】本発明の方法の工程をまとめたフローチャート。

【符号の説明】

110 集積回路構造

112、312 半導体基板

114、414 活性領域

116、216、316、416 多層誘電体スタック

10 118 電極

130 挿入層

140 high-k層

150 第2の挿入層

170 酸化バリア

218、318、418 電極層

230、340 high-k材料

240、330 挿入材料

300 開口部

311 プレーナ材料

*20 422 多層壁

【図1】

【図2】

【図3】

【図4】

【図6】

