Subjective Questions: Advanced Regression

Submitted by: Rakesh C

O1. What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans) The optimum alpha for the ridge is 2 and for the Lasso, it is 0.0001 Doubling up the alpha value that is 4 and 0.0002 results to the following:

BEFORE

The optimum alpha is 2

The R2 Score of the model on the test dataset for optimum alpha is 0.8308526739483172 The MSE of the model on the test dataset for optimum alpha is 0.0026219108677012896 **AFTER**

The R2 Score of the model on the test dataset for doubled alpha is 0.8401367121286467 The MSE of the model on the test dataset for doubled alpha is 0.0024780012879913383

RIDGE CO-EFFICIENT DIFFERENCE

	Ridge Co-Efficient		
Total_sqr_footage	0.177934		Ridge Doubled Alpha Co-Efficient
TotRmsAbvGrd	0.157682	TotRmsAbvGrd	0.144170
GarageArea	0.140742	Total_sqr_footage	0.132364
RoofMatl_WdShngl	0.054566	GarageArea	0.129064
OverallCond	0.050681	Total_porch_sf	0.047310
Total_porch_sf	0.045530	OverallCond	0.044595
LotArea	0.044130	RoofMatl_WdShngl	0.043249
Condition2 PosA	0.038999	CentralAir_Y	0.037361
Neighborhood StoneBr	0.036737	KitchenQual_Ex	0.036792
KitchenQual Ex	0.036166	BsmtFullBath	0.036714
SaleType ConLD	0.035953	LotArea	0.035046
CentralAir Y	0.035617	Neighborhood_StoneBr	0.033668
Condition2 Norm	0.034374	BsmtQual_Ex	0.033296
HouseStyle 2.5Unf	0.033392	House Style_2.5Unf	0.030123
, -	0.032599	Neighborhood_Veenker	0.029981
LandContour_HLS		SaleType_ConLD	0.028258
BsmtFullBath	0.032266	Condition2_Norm	0.027573
Neighborhood_Veenker	0.032239	LandContour_HLS	0.027504
Sale Type_CWD	0.031380	Heating_GasW	0.026646
BsmtQual_Ex	0.031072	LandContour_Low	0.025887
Condition1_PosA	0.029804	Alley_Pave	0.025798

Lasso CO-EFFICIENT DIFFERENCE

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Efficient
Total_sqr_footage	0.330670	Total sqr footage	0.307323
GarageArea	0.149267	GarageArea	0.149592
TotRmsAbvGrd	0.145800	TotRmsAbvGrd	0.145473
OverallCond	0.052302	OverallCond	0.045897
RoofMatl_WdShngl	0.046925	Total porch sf	0.042764
Total_porch_sf	0.041547		0.036888
CentralAir_Y	0.035731	CentralAir_Y	
KitchenQual_Ex	0.031611	KitchenQual_Ex	0.031137
LandContour_HLS	0.030953	BsmtQual_Ex	0.027808
LandContour Low	0.030330	RoofMati_WdShngl	0.026721
House Style_2.5Unf	0.029290	LandContour_Low	0.024908
Neighborhood StoneBr	0.029133	LandContour_HLS	0.023481
Heating GasW	0.027140	Neighborhood_StoneBr	0.021890
BsmtQual Ex	0.026466	Alley_Pave	0.021609
Neighborhood Veenker	0.026176	Condition1_Norm	0.021155
Alley Pave	0.026042	MSSubClass_70	0.020351
7-	0.023493	Heating_GasW	0.019444
Condition1_Norm		BsmtCond_TA	0.017616
MSSubClass_70	0.023208	Neighborhood_Veenker	0.016854
Condition1_PosA	0.022783	House Style_2.5Unf	0.016512
LotArea	0.022001	PavedDrive_Y	0.013547

The change in alpha value was very minimal, the change in R2 and MSE remained almost the same which did not have much impact. the predictor variables also hardly changed, only a few variables have minimal increase than the other variables.

Q2. You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans) The optimum value of lambda for ridge and lasso are as follows:

Ridge - 2

Lasso - 0.0001

R2

Ridge-0.8308526739483172

Lasso-0.8356403844911493

Mean Square Error

Ridge - 0.0026219108677012896

Lasso - 0.00254769775067085

The mean square error difference is minimal, it doesn't have much impact.

since lasso has the top edge in featuring few of the variables near zero it has quite a higher weightage compared to the ridge model

Q.3) After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans) The five most important predictors are

1) total square footage area 2) Garage area 3) Total rooms above grade 4) overall condition 5) lot area

therefore a lasso model was built by removing these attributes from the dataset The R2 Score of the model on the test dataset is 0.7607336355362793 (without top5 predictors) The MSE of the model on the test dataset is 0.0037088087403233626 (without top5 predictors)

the new top5 predictor is shown in the below table

	Lasso Co-Efficient
LotFrontage	0.122682
HouseStyle_2.5Fin	0.094535
Total_porch_sf	0.083869
HouseStyle_2.5Unf	0.073230
RoofMatl WdShngl	0.070518

Q4) How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans) The model is robust and generalizable:

- 1) if it is not impacted by the outliers
- 2) it should be simple and generalized so that more training is not required and it's widely used.
- 3) simple models are robust in nature but are more prone to errors it is more biased but has less variance (Bias- variance trade-off) more regularization is required.
- 4) the model should be accurate in the datasets and confidence analysis (standard deviation) uncertainty has to be determined for the prediction of the model's robustness.