Predicting Air Pollution Levels in Five Major Indian Cities

A. J. Smoliakov D. Yntykbay D. G. Griffon

Data Science Study Programme Faculty of Mathematics and Informatics

2024-12-16

Table of Contents

- Introduction
- 2 Data Analysis
- Methodology
- 4 Conclusion

Project Overview

- Background:
 - Air pollution ranks among the most pressing global health threats
 - India faces some of the highest pollution levels globally
 - Driven by rapid urbanization and economic growth
- Study Objectives:
 - Analyze pollution and weather data from five major Indian cities:
 - Bengaluru, Delhi, Hyderabad, Jaipur, Mumbai
 - Develop predictive models using multivariate linear regression
 - Focus on understanding key meteorological and temporal predictors

Literature Review

- Extensive research available:
 - Widespread interest among scientists and data analysts
 - Numerous studies on air pollution
 - Many also are focused on India due to severe air quality issues
- Research gap:
 - No existing studies examining these five specific cities together
 - Unique combination of air quality and weather datasets
- Most existing approaches:
 - Deep learning / neural network models
 - Complex machine learning algorithms
- Our approach:
 - Focus on interpretable linear regression
 - Emphasis on feature engineering
 - Independent models for each city and pollutant

Data Sources

- Air Quality Data in India (2015-2020):
 - Hourly pollution measurements
 - Coverage: 27 major Indian cities
 - Over 700,000 records
- Historical Weather Data (2006-2019):
 - Over 20 meteorological variables
 - Coverage: 8 Indian cities
 - Over 700,000 records
- Combined Dataset:
 - Time period: January 2015 to December 2019
 - Five cities with complete data coverage:
 - Bengaluru, Delhi, Hyderabad, Jaipur, Mumbai

Raw Outcome Variable Distribution

- Initial analysis revealed strongly right-skewed distributions:
 - High frequency of lower values
 - Long tail extending toward higher concentrations
 - Pattern consistent across all pollutants and cities

After Log Transformation

- Applied logarithmic transformation to address skewness:
 - Added constant of 1 to handle zero values
 - Resulted in more normal-like distributions
 - Data better suited for linear regression
 - Transformation applied consistently across all pollutants

Feature Engineering

- Temporal Features:
 - Hour of day (cyclic encoding)
 - Day of week
 - Month of year
- Weather-Related Features:
 - Wind components (X and Y axes)
 - 24-hour cumulative precipitation
 - 24-hour cumulative wind speed
 - Normalized sunrise times
- All continuous features were scaled

Preliminary Analysis

Preliminary Analysis

- Correlation between pollutants:
 - Most pollutants positively correlated with each other
 - O₃ shows distinct pattern from other pollutants
- Weather correlations:
 - Humidity: negative correlation with most pollutants
 - Wind speed: negative correlation, aids pollutant dispersion
 - Temperature: positive correlation with O₃
 - UV index: positive correlation with O₃
- Temporal patterns:
 - Strong seasonal trends observed
 - Higher pollution in autumn and winter

Model Development

- Independent linear regression models for each:
 - City
 - Response variable
- Data splitting:
 - Training: 2015-2018
 - Testing: 2019
- Removed features with VIF > 4:
 - minTempC
 - maxTempC
 - DewPointC

Model Performance by Pollutant

Response	r	R ²	RMSE
PM2.5	0.728	0.538	0.437
PM10	0.694	0.492	0.435
O3	0.660	0.443	0.576
NO×	0.430	0.214	0.604
NH3	0.338	0.161	0.420
CO	0.311	0.132	0.307
SO2	0.273	0.102	0.388

Model Performance by City

City	r	R^2	RMSE
Delhi	0.615	0.403	0.412
Hyderabad	0.598	0.390	0.390
Bengaluru	0.427	0.246	0.481
Jaipur	0.411	0.198	0.472
Mumbai*	0.061	0.007	0.649

st Mumbai had substantial missing data, only 2/7 pollutants were modeled

Key Findings

- Best predictions for:
 - $PM_{2.5}$ ($R^2 = 0.538$)
 - \bullet PM₁₀ (R² = 0.492)
 - O_3 ($R^2 = 0.443$)
- Best performing cities:
 - Delhi ($R^2 = 0.403$)
 - Hyderabad ($R^2 = 0.390$)
- Key predictors:
 - Month of the year (seasonal patterns)
 - Humidity (negative correlation)
 - Temperature (positive correlation)
 - cos(hour of day) (cyclic pattern)
 - Cumulative precipitation over 24 hours

Conclusions

- Models show moderate predictive power
- Performance varies significantly across:
 - Pollutants
 - Cities
- Temporal patterns are strong predictors
- Meteorological variables show consistent influence

Room for Improvement

- Explore more sophisticated approaches:
 - Generalized Additive Models (GAMs)
 - Using time series models (e.g. LSTM)
- Additional predictors:
 - Satellite data
 - Traffic information
 - Industrial activity metrics
 - Special events data
- Extend to more cities and longer time periods

Thank you for your attention