Mechine Learning Assignment 1

1 Generative and Discriminative classifiers: Gaussian Bayes and Logistic Regression

Recall that a generative classifier estimates P(x,y) = P(y)P(x|y), while a discriminative classifier directly estimates P(y|x).

1.1 Specific Gaussian naive Bayes classifiers and logistic regression

Consider a specific class of Gaussian naive Bayes classifiers where:

- y is a boolean variable following a Bernoulli distribution, with parameter $\pi = P(y=1)$ and thus $P(y=0) = 1 \pi$.
- $x = [x_1, ..., x_D]^T$ with each feature x_i a continuous random variable. For each x_i , $P(x_i|y=k)$ is a Gaussian distribution $\mathcal{N}(\mu_{ik}, \sigma_i)$. Note that σ_i is the standard deviation of the Gaussian distribution, which does not depend on k.
- For all $i \neq j$, x_i and x_j are conditionally independent given y (so called "naive" classifier).

Question: please show that the relationship between a discriminative classifier (say logistic regression) and the above specific class of Gaussian naive Bayes classifiers is precisely the form used by logistic regression.

SOLUTION:

First of all, we can recall the expression of logistic regression as follow,

$$P(y=1|x) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{D} w_i x_i)} = \frac{1}{1 + \exp(W^T x)}.$$
 (1)

and with the definition of Gaussian distribution and Bernoulli distribution,

$$y \sim Bernoulli(\pi)$$

$$x_i|y = k \sim \mathcal{N}(\mu_{ik}, \sigma_i), k = \{0, 1\}$$

we can write the expression of each feature of x and y,

$$P(y) = \pi^k (1 - \pi)^{1 - y} \tag{2}$$

$$P(x_i|y=k,\mu_{ik},\sigma_i) = \frac{1}{(2\pi\sigma_i^2)^{1/2}} \exp\left(-\frac{(x_i-\mu_{ik})^2}{2\sigma_i^2}\right).$$
(3)

Because of our conditional independence assumption we can write this,

$$P(x|y=1) = \prod_{i=1}^{D} P(x_i|y=1) = \sum_{i=1}^{D} \ln P(x_i|y=1)$$
 (4)

$$P(x|y=0) = \prod_{i=0}^{D} P(x_i|y=0) = \sum_{i=1}^{D} \ln P(x_i|y=0).$$
 (5)

Now recall the Bayes' Forlula:

$$P(y|x) = \frac{P(x,y)}{P(x)} = \frac{P(x|y)P(y)}{P(x)},$$
(6)

we can compute a posterior probability of P(y=1|x), by substituting eq.(4)(5) into eq.(6):

$$P(y=1|x) = \frac{P(x|y=1)P(y=1)}{P(x|y=1)P(y=1) + P(x|y=0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(x|y=0)P(y=0)}{P(x|y=1)P(y=1)}}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{P(x|y=0)P(y=0)}{P(x|y=1)P(y=1)}\right\}}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{P(y=0)}{P(x|y=1)} + \ln\frac{P(x|y=0)}{P(x|y=1)}\right\}}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{1-\pi}{\pi} + \sum_{i=1}^{D} \ln\frac{P(x_i|y=0,\mu_{i0},\sigma_i)}{P(x_i|y=1,\mu_{i1},\sigma_i)}\right\}}$$
(7)

Now consider just the summation in the eq.(7), with the eq.(3) we can expand this term as follows:

$$\sum_{i=1}^{D} \ln \frac{P(x_i|y=0,\mu_{i0},\sigma_i)}{P(x_i|y=1,\mu_{i1},\sigma_i)} = \sum_{i=1}^{D} \ln \frac{\frac{1}{(2\pi\sigma_i^2)^{1/2}} \exp\left(-\frac{(x_i-\mu_{i0})^2}{2\sigma_i^2}\right)}{\frac{1}{(2\pi\sigma_i^2)^{1/2}} \exp\left(-\frac{(x_i-\mu_{i1})^2}{2\sigma_i^2}\right)}$$

$$= \sum_{i=1}^{D} \ln \exp\left\{\frac{(x_i-\mu_{i1})^2 - (x_i-\mu_{i0})^2)}{2\sigma_i^2}\right\}$$

$$= \sum_{i=1}^{D} \left\{\frac{(x_i-\mu_{i1})^2 - (x_i-\mu_{i0})^2)}{2\sigma_i^2}\right\}$$

$$= \sum_{i=1}^{D} \left\{\frac{(x_i^2 - 2x_i\mu_{i1} + \mu_{i1}^2) - (x_i^2 - 2x_i\mu_{i0} + \mu_{i0}^2)}{2\sigma_i^2}\right\}$$

$$= \sum_{i=1}^{D} \left\{\frac{2x_i(\mu_{i0} - \mu_{i1}) + \mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2}\right\}$$

$$= \sum_{i=1}^{D} \left\{\frac{(\mu_{i0} - \mu_{i1})}{\sigma_i^2}x_i + \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2}\right\}$$

So combine the result of eq.(7) and eq.(8), we can find that:

$$P(y=1|x,\mu_{i0},\mu_{i1},\sigma_{i}) = \frac{1}{1 + \exp\left\{\ln\frac{1-\pi}{\pi} + \sum_{i=1}^{D} \left\{\frac{(\mu_{i0} - \mu_{i1})}{\sigma_{i}^{2}} x_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right\}\right\}}$$
$$= \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{D} w_{i} x_{i})},$$
(9)

where the weight $w_1, ..., w_D$ is given by

$$w_i = \frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2}$$

and where

$$w_i = \ln \frac{1 - \pi}{\pi} + \sum_{i=1}^{D} \left\{ \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2} \right\}$$

Also we have the same form that

$$P(y = 0|x) = 1 - P(y = 1|x) = \frac{\exp\left(w_0 + \sum_{i=1}^{D} w_i x_i\right)}{1 + \exp\left(w_0 + \sum_{i=1}^{D} w_i x_i\right)}$$

So now we proved the relationship between a discriminative classifier and the above specific class of Gaussian naive Bayes classifiers is precisely the form used by logistic regression.

1.2 General Gaussian naive Bayes classifiers and logistic regression

Removing the assumption that the standard deviation σ_i of $P(x_i|y=k)$ does not depend on k. That is, for each x_i , $P(x_i|y=k)$ is a Gaussian distribution $\mathcal{N}(\mu_{ik}, \sigma_{ik})$, where i=1,...,D and k=0,1.

Question: is the new form of P(y|x) implied by this more general Gaussian naive Bayes classifier still the form used by logistic regression? Derive the new form of P(y|x) to prove your answer.

SOLUTION:

As the assumption that the standard deviation σ_i of $P(x_i|y=k)$ does not depend on k is removed, we can rewrite the equations mentioned in the subsection 1.1. Firstly, the definitions of general Gaussian naive Bayes classifiers are described as follows:

$$P(x_i|y=k,\mu_{ik},\sigma_{ik}) = \frac{1}{(2\pi\sigma_{ik}^2)^{1/2}} \exp\left(-\frac{(x_i-\mu_{ik})^2}{2\sigma_{ik}^2}\right).$$
(10)

Also the posterior probability P(y=1|x) of Bayes Formula can be rewritten as

$$P(y=1|x) = \frac{P(x|y=1)P(y=1)}{P(x|y=1)P(y=1) + P(x|y=0)P(y=0)}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{1-\pi}{\pi} + \sum_{i=1}^{D} \ln\frac{P(x_i|y=0,\mu_{i0},\sigma_{ik})}{P(x_i|y=1,\mu_{i1},\sigma_{ik})}\right\}}$$
(11)

so now we can substitute the equation (10) into the summation function in the equation (11),

$$\sum_{i=1}^{D} \ln \frac{P(x_i|y=0, \mu_{i0}, \sigma_{i0})}{P(x_i|y=1, \mu_{i1}, \sigma_{i1})}$$

$$= \sum_{i=1}^{D} \ln \frac{\frac{1}{(2\pi\sigma_{i0}^2)^{1/2}} \exp\left(-\frac{(x_i - \mu_{i0})^2}{2\sigma_{i0}^2}\right)}{\frac{1}{(2\pi\sigma_{i1}^2)^{1/2}} \exp\left(-\frac{(x_i - \mu_{i1})^2}{2\sigma_{i1}^2}\right)}$$

$$= \sum_{i=1}^{D} \ln \left\{ \frac{|\sigma_{i1}|}{|\sigma_{i0}|} \exp\left(\frac{(x_i - \mu_{i1})^2}{2\sigma_{i1}^2} - \frac{(x_i - \mu_{i0})^2)}{2\sigma_{i0}^2}\right) \right\}$$

$$= \sum_{i=1}^{D} \left\{ \ln \frac{|\sigma_{i1}|}{|\sigma_{i0}|} + \frac{(x_i - \mu_{i1})^2}{2\sigma_{i1}^2} - \frac{(x_i - \mu_{i0})^2)}{2\sigma_{i0}^2} \right\}$$

$$= \sum_{i=1}^{D} \left\{ \ln \frac{|\sigma_{i1}|}{|\sigma_{i0}|} + \frac{\sigma_{i0}^2(x_i^2 - 2x_i\mu_{i1} + \mu_{i1}^2) - \sigma_{i1}^2(x_i^2 - 2x_i\mu_{i0} + \mu_{i0}^2)}{4\sigma_{i1}^2\sigma_{i0}^2} \right\}$$

$$= \sum_{i=1}^{D} \left\{ \ln \frac{|\sigma_{i1}|}{|\sigma_{i0}|} + \frac{\sigma_{i0}^2 - \sigma_{i1}^2}{4\sigma_{i1}^2 \sigma_{i0}^2} x_i^2 + \frac{\sigma_{i1}^2 \mu_{i0} - \sigma_{i0}^2 \mu_{i1}}{2\sigma_{i1}^2 \sigma_{i0}^2} x_i + \frac{\sigma_{i1}^2 \mu_{i0}^2 - \sigma_{i0}^2 \mu_{i1}^2}{4\sigma_{i1}^2 \sigma_{i0}^2} \right\}$$

Now when substituting the equation above into the eq.(11), we get the form of general Gaussian naive Bayes classifiers as follow:

$$P(y=1|x) = \frac{1}{1 + \exp\left\{\ln\frac{1-\pi}{\pi} + \sum_{i=1}^{D} \left\{\ln\frac{|\sigma_{i1}|}{|\sigma_{i0}|} + \frac{\sigma_{i0}^{2} - \sigma_{i1}^{2}}{4\sigma_{i1}^{2}\sigma_{i0}^{2}} x_{i}^{2} + \frac{\sigma_{i1}^{2}\mu_{i0} - \sigma_{i0}^{2}\mu_{i1}}{2\sigma_{i1}^{2}\sigma_{i0}^{2}} x_{i} + \frac{\sigma_{i1}^{2}\mu_{i0}^{2} - \sigma_{i0}^{2}\mu_{i1}}{4\sigma_{i1}^{2}\sigma_{i0}^{2}}\right\}\right\}}$$
(12)

So the form of the classifiers is

$$P(y=1|x) = \frac{1}{1 + \exp\left\{w_0 + \sum_{i=1}^{D} (w_i x_i + v_i x_i^2)\right\}}$$
(13)

where

$$w_0 = \ln \frac{1 - \pi}{\pi} + \sum_{i=1}^{D} \ln \frac{|\sigma_{i1}|}{|\sigma_{i0}|} + \frac{\sigma_{i1}^2 \mu_{i0}^2 - \sigma_{i0}^2 \mu_{i1}^2}{4\sigma_{i1}^2 \sigma_{i0}^2}$$
$$w_i = \sum_{i=1}^{D} \frac{\sigma_{i1}^2 \mu_{i0} - \sigma_{i0}^2 \mu_{i1}}{2\sigma_{i1}^2 \sigma_{i0}^2}$$
$$v_i = \sum_{i=1}^{D} \frac{\sigma_{i0}^2 - \sigma_{i1}^2}{4\sigma_{i1}^2 \sigma_{i0}^2}$$

Also we can get the similar for of the another posterior probability as this

$$P(y=1|x) = \frac{\sum_{i=1}^{D} (w_i x_i + v_i x_i^2)}{1 + \exp\left\{w_0 + \sum_{i=1}^{D} (w_i x_i + v_i x_i^2)\right\}}$$
(14)

So we can get a conclusion that the new form of P(y|x) implied by this more general Gaussian naive Bayes classifier **is not** the form used by logistic regression, and it can be written as the follow:

$$P(y=1|x) = \frac{1}{1 + \exp\left\{w_0 + \sum_{i=1}^{D} \left(w_i x_i + v_i x_i^2\right)\right\}}$$
(15)

$$P(y=0|x) = \frac{\exp\left\{w_0 + \sum_{i=1}^{D} (w_i x_i + v_i x_i^2)\right\}}{1 + \exp\left\{w_0 + \sum_{i=1}^{D} (w_i x_i + v_i x_i^2)\right\}}$$
(16)

1.3 Gaussian Bayes classifiers and logistic regression

Now, consider the following assumptions for our Gaussian Bayes classifiers (without "naive"):

- y is a boolean variable following a Bernoulli distribution, with parameter $\pi = P(y=1)$ and thus $P(Y=0) = 1 \pi$.
- $\mathbf{x} = [x_1, x_2]^T$, i.e., we only consider two features for each sample, with each feature a continuous random variable. x_1 and x_2 are **not** conditional independent given y. We assume $P(x_1, x_2|y=k)$ is a bivariate Gaussian distribution $\mathcal{N}(\mu_{1k}, \mu_{2k}, \sigma_1, \sigma_2, \rho)$, where μ_{1k} and μ_{2k} are means of x_1 and x_2 , x_1 and x_2 are standard deviations of x_1 and x_2 , and x_2 are correlation between x_1 and x_2 . The density of the bivariate Gaussian distribution is:

$$P(x_1, x_2|y=k) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\sigma_2^2(x_1-\mu_{1k})^2 + \sigma_1^2(x_2-\mu_{2k})^2 - 2\rho\sigma_1\sigma_2(x_1-\mu_{1k})(x_2-\mu_{2k})}{2(1-\rho^2)\sigma_1^2\sigma_2^2}\right].$$

Question: is the form of $P(y|\mathbf{x})$ implied by such not-so-naive Gaussian Bayes classifiers still the form used by logistic regression? Derive the form of $P(y|\mathbf{x})$ to prove your answer.

Solution: Recall the Bayes Formula again and we have,

$$P(y=1|x) = \frac{P(x|y=1)P(y=1)}{P(x|y=1)P(y=1) + P(x|y=0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(x|y=0)P(y=0)}{P(x|y=1)P(y=1)}}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{1-\pi}{\pi} + \ln\frac{P(x|y=0)}{P(x|y=1)}\right\}}.$$
(17)

As described in the question, the density of the bivariate Gaussian distribution is:

$$P(x_1, x_2 | y = k) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left\{-\frac{\sigma_2^2(x_1 - \mu_{1k})^2 + \sigma_1^2(x_2 - \mu_{2k})^2 - 2\rho\sigma_1\sigma_2(x_1 - \mu_{1k})(x_2 - \mu_{2k})}{2(1 - \rho^2)\sigma_1^2\sigma_2^2}\right\}$$
(18)

So we can substitute the equation (18) into the ln function in equation (17),

$$\ln \frac{P(x|y=0)}{P(x|y=1)} = \ln \frac{P(x_1, x_2|y=0)}{P(x_1, x_2|y=1)}$$

$$= \ln \left\{ \frac{\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left\{ -\frac{\sigma_{2}^{2}(x_{1}-\mu_{10})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{20})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{10})(x_{2}-\mu_{20})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}} \right\}}{\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left\{ -\frac{\sigma_{2}^{2}(x_{1}-\mu_{11})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{21})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{11})(x_{2}-\mu_{21})}}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}} \right\}} \right\}}$$

$$= \ln \left\{ \frac{\exp\left\{ -\frac{\sigma_{2}^{2}(x_{1}-\mu_{10})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{20})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{10})(x_{2}-\mu_{20})}}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}} \right\}}{\exp\left\{ -\frac{\sigma_{2}^{2}(x_{1}-\mu_{11})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{20})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{11})(x_{2}-\mu_{20})}}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}} \right\}}$$

$$= \frac{\sigma_{2}^{2}(x_{1}-\mu_{11})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{21})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{11})(x_{2}-\mu_{21})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$-\frac{\sigma_{2}^{2}(x_{1}-\mu_{10})^{2}+\sigma_{1}^{2}(x_{2}-\mu_{20})^{2}-2\rho\sigma_{1}\sigma_{2}(x_{1}-\mu_{10})(x_{2}-\mu_{20})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$= \frac{\sigma_{2}^{2}(x_{1}^{2}-2x_{1}\mu_{11}+\mu_{11}^{2}-x_{1}^{2}+2x_{1}\mu_{10}-\mu_{10}^{2})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$+\frac{\sigma_{1}^{2}(x_{2}^{2}-x_{2}\mu_{21}+\mu_{21}^{2}-x_{2}^{2}+x_{2}\mu_{20}-\mu_{20}^{2})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$+\frac{2\rho\sigma_{1}\sigma_{2}(x_{1}x_{2}-x_{2}\mu_{10}-x_{1}\mu_{20}+\mu_{10}\mu_{20}-x_{1}x_{2}+x_{2}\mu_{11}+x_{1}\mu_{21}-\mu_{11}\mu_{21})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$=\frac{2\sigma_{2}^{2}(\mu_{10}-\mu_{11})+2\rho\sigma_{1}\sigma_{2}(\mu_{21}-\mu_{20})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}x_{1}$$

$$+\frac{2\sigma_{1}^{2}(\mu_{20}-\mu_{21})+2\rho\sigma_{1}\sigma_{2}(\mu_{11}-\mu_{10})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}x_{1}$$

$$+\frac{\sigma_{2}^{2}(\mu_{10}^{2}-\mu_{21})+2\rho\sigma_{1}\sigma_{2}(\mu_{11}-\mu_{10})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$+\frac{\sigma_{2}^{2}(\mu_{11}^{2}-\mu_{10}^{2})+2\rho\sigma_{1}\sigma_{2}(\mu_{11}-\mu_{10})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}}x_{1}$$

$$+\frac{\sigma_{2}^{2}(\mu_{11}^{2}-\mu_{10}^{2})+\sigma_{1}^{2}(\mu_{11}^{2}-\mu_{20}^{2})+2\rho\sigma_{1}\sigma_{2}(\mu_{10}\mu_{20}-\mu_{11}\mu_{21})}{2(1-\rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

So now we can get the complete form of the equation (17) as follow:

$$P(y=1|x_1,x_2) = \frac{1}{1+\exp\{w_0 + w_1x_1 + w_2x_2\}}$$
 (19)

where,

$$w_{2} = \frac{2\sigma_{1}^{2}(\mu_{20} - \mu_{21}) + 2\rho\sigma_{1}\sigma_{2}(\mu_{11} - \mu_{10})}{2(1 - \rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$w_{1} = \frac{2\sigma_{2}^{2}(\mu_{10} - \mu_{11}) + 2\rho\sigma_{1}\sigma_{2}(\mu_{21} - \mu_{20})}{2(1 - \rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

$$w_{0} = \ln\frac{1 - \pi}{\pi} + \frac{\sigma_{2}^{2}(\mu_{11}^{2} - \mu_{10}^{2}) + \sigma_{1}^{2}(\mu_{21}^{2} - \mu_{20}^{2}) + 2\rho\sigma_{1}\sigma_{2}(\mu_{10}\mu_{20} - \mu_{11}\mu_{21})}{2(1 - \rho^{2})\sigma_{1}^{2}\sigma_{2}^{2}}$$

Also, we have the similar form that

$$P(y=1|x_1,x_2) = \frac{\exp\{w_0 + w_1x_1 + w_2x_2\}}{1 + \exp\{w_0 + w_1x_1 + w_2x_2\}}.$$
 (20)

So, we can find that the form of P(y|x) implied by such not-so-naive Gaussian Bayes classifier still the form used by logistic regression.