Meeting 4 Development Economics Cohort

Aldrich Wang, Ziz Zhou

Oeconomica, University of Chicago

November 5, 2022

- Recap of Last Meeting
- 2 Intro to Set Theory
 - Intersection
 - Union
 - Complement
 - Other Notations
 - Combination of Three Events
- 3 R IHDS Workbook

- 1 Recap of Last Meeting
- 2 Intro to Set Theory
- 3 R IHDS Workbook

Recap of Last Meeting

- ► Sample space: a set that contains every possible outcome of a random experiment.
- ► **Event**: a subset of sample space; an unambiguous outcome of the experiment that can be determined by yes or no.

- Recap of Last Meeting
- 2 Intro to Set Theory
 - Intersection
 - Union
 - Complement
 - Other Notations
 - Combination of Three Events
- 3 R IHDS Workbook

Intro to Set Theory

Let $A, B \subset \Omega$ be two events in the sample space. Keep these two guys in mind and we will define three terms later.

Intersection

Let's firstly define the term **intersection**:

- ▶ Mathematically, we denote $A \cap B = \{\omega \in \Omega : \omega \in A \text{ and } \omega \in B\}$.
- ▶ Definition in words: The intersection contains elements that are both in A and in B.

Union

Then, we are going to define union.

- ▶ Mathematically, we denote $A \cup B = \{\omega \in \Omega : \omega \in A \text{ or } \omega \in B\}$.
- Definition in words: The union contains elements that are either in A or in B.

Complement

- ▶ Mathematically, we denote the complement of A as $A^c = \{\omega \in \Omega : \omega \notin A\}$.
- ▶ Definition in words: The complement contains all the elements that are not in A.

Other Notations

- ▶ Multiple intersections: $\bigcap_{i>1} A_i = A_1 \cap A_2 \cap A_3 \cap ...$;
- ► Multiple unions: $\bigcup_{i>1} A_i = A_1 \cup A_2 \cup A_3 \cup ...$;
- ► Explanation in words: These two above expressions can help us to define the intersection/union of more than two sets. Especially when we have a large collection of events, we can use these notations to simplify.

Combination of Three Events

▶ Example: $(B \cup C) \cap A^C$

- Recap of Last Meeting
- 2 Intro to Set Theory
- 3 R IHDS Workbook

