CS 446/ECE 449: Machine Learning

A. G. Schwing

University of Illinois at Urbana-Champaign, 2020

L13: Structured Prediction (ILP, LP relaxation, message passing, graph cut)

Goals of this lecture

Getting to know structured inference algorithms

Reading material:

• D. Koller and N. Friedman; Probabilistic Graphical Models: Principles and Techniques;

Recap: Inference Program

$$\mathbf{y}^* = \arg\max_{\hat{\mathbf{y}}} \sum_r f_r(\hat{\mathbf{y}}_r)$$

Algorithms:

- Exhaustive search
- Dynamic programming
- Integer linear program
- Linear programming relaxation
- Message passing
- Graph-cut

Integer Linear Program

$$\mathbf{y}^* = \arg\max_{\hat{\mathbf{y}}} \sum_r f_r(\hat{\mathbf{y}}_r)$$

Integer Linear Program (LP) equivalence: variables $b_r(\mathbf{y}_r)$

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(1) \\ b_1(2) \\ b_2(1) \\ b_2(2) \\ b_{12}(1,1) \\ b_{12}(2,1) \\ b_{12}(1,2) \\ b_{12}(2,2) \end{bmatrix}^{\top} \begin{bmatrix} f_1(1) \\ f_1(2) \\ f_2(1) \\ f_2(2) \\ f_{12}(1,1) \\ f_{12}(2,1) \\ f_{12}(1,2) \\ f_{12}(2,2) \end{bmatrix} \text{ s.t. } \begin{aligned} b_r(\boldsymbol{y}_r) \in \{0,1\} & \forall r, \boldsymbol{y}_r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = 1 & \forall r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = 1 & \forall r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = b_r(\boldsymbol{y}_r) & \forall r, \boldsymbol{y}_r, \rho \in P(r) \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = b_r(\boldsymbol{y}_r) & \forall r, \boldsymbol{y}_r, \rho \in P(r) \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = b_r(\boldsymbol{y}_r) & \forall r, \boldsymbol{y}_r \in P(r) \end{aligned}$$

$$b_r(\mathbf{y}_r) \in \{0, 1\} \qquad \forall r, \mathbf{y}_r$$

$$\sum_{\mathbf{y}_r} b_r(\mathbf{y}_r) = 1 \qquad \forall r$$

$$\sum_{\mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r) \quad \forall r, \mathbf{y}_r, p \in P(r)$$

Example:

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(1) \\ b_1(2) \\ b_2(1) \\ b_2(2) \\ b_{12}(1,1) \\ b_{12}(2,1) \\ b_{12}(1,2) \\ b_{12}(2,2) \end{bmatrix}^{\top} \begin{bmatrix} f_1(1) \\ f_1(2) \\ f_2(1) \\ f_2(2) \\ f_{12}(1,1) \\ f_{12}(2,1) \\ f_{12}(1,2) \\ f_{12}(2,2) \end{bmatrix} \text{ s.t. } \begin{aligned} b_r(\boldsymbol{y}_r) \in \{0,1\} & \forall r, \boldsymbol{y}_r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = 1 & \forall r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = 1 & \forall r \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = b_r(\boldsymbol{y}_r) & \forall r, \boldsymbol{y}_r, \boldsymbol{p} \in P(r) \\ \sum_{\boldsymbol{y}_r} b_r(\boldsymbol{y}_r) = b_r(\boldsymbol{y}_r) & \forall r, \boldsymbol{y}_r, \boldsymbol{p} \in P(r) \end{aligned}$$

Last constraint explicitly:

$$b_{12}(1,1) + b_{12}(1,2) = b_1(1)$$

 $b_{12}(2,1) + b_{12}(2,2) = b_1(2)$
 $b_{12}(1,1) + b_{12}(2,1) = b_2(1)$
 $b_{12}(1,2) + b_{12}(2,2) = b_2(2)$

Linear Programming Relaxation

$$m{y}^* = rg \max_{\hat{m{y}}} \sum_r f_r(\hat{m{y}}_r)$$

LP relaxation:

$$b_r(\mathbf{y}_r) \in \{0,1\} \quad \forall r, \mathbf{y}_r$$

$$\max_{b_r} \qquad \sum_{r, \mathbf{y}_r} b_r(\mathbf{y}_r) f_r(\mathbf{y}_r)$$

s.t. Local probability b_r

Marginalization

s.t. b∈C

- Advantage: global optimum for LP, very good solvers available
- Disadvantage: no global optimum for ILP, slow for larger problems

Message Passing ([Loopy] Belief Propagation)

Exploit: Graph structure defined via marginalization constraints

How: Compute the dual function

Message passing solvers:

• Advantage: Efficient due to analytically computable sub-problems

• Disadvantage: Special care required to find LP relaxation optimum

Computing the dual of

$$\max_{b} \sum_{r, \mathbf{y}_r} b_r(\mathbf{y}_r) f_r(\mathbf{y}_r) \quad \text{s.t.} \quad \begin{cases} b_r(\mathbf{y}_r) \ge 0 & \forall r, \mathbf{y}_r \\ \sum_{\mathbf{y}_r} b_r(\mathbf{y}_r) = 1 & \forall r \\ \sum_{\mathbf{y}_p \setminus \mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r) & \forall r, p \in P(r), \mathbf{y}_r \end{cases}$$

Lagrangian:

$$L() = \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r) f_r(\mathbf{y}_r) + \sum_{r,\rho \in P(r),\mathbf{y}_r} \lambda_{r \to \rho}(\mathbf{y}_r) \left(\sum_{\mathbf{y}_\rho \setminus \mathbf{y}_r} b_\rho(\mathbf{y}_\rho) - b_r(\mathbf{y}_r) \right)$$
$$= \sum_{r,\mathbf{y}_r} b_r(\mathbf{y}_r) \left(f_r(\mathbf{y}_r) - \sum_{\rho \in P(r)} \lambda_{r \to \rho}(\mathbf{y}_r) + \sum_{c \in C(r)} \lambda_{c \to r}(\mathbf{y}_c) \right)$$

Intermediate result:

$$\sum_{r,\rho\in P(r),\mathbf{y}_r} \lambda_{r\to\rho}(\mathbf{y}_r) \sum_{\mathbf{y}_\rho\setminus\mathbf{y}_r} b_\rho(\mathbf{y}_\rho) = \sum_{r,\rho\in P(r),\mathbf{y}_\rho} \lambda_{r\to\rho}(\mathbf{y}_r) b_\rho(\mathbf{y}_\rho)$$

$$= \sum_{\rho,r\in C(\rho),\mathbf{y}_\rho} \lambda_{r\to\rho}(\mathbf{y}_r) b_\rho(\mathbf{y}_\rho)$$

$$= \sum_{r,c\in C(r),\mathbf{y}_r} \lambda_{c\to r}(\mathbf{y}_c) b_r(\mathbf{y}_r)$$

$$= \sum_{r,\mathbf{y}_r,c\in C(r)} \lambda_{c\to r}(\mathbf{y}_c) b_r(\mathbf{y}_r)$$

Lagrangian:

$$L() = \sum_{r, \mathbf{y}_r} b_r(\mathbf{y}_r) \left(f_r(\mathbf{y}_r) - \sum_{p \in P(r)} \lambda_{r \to p}(\mathbf{y}_r) + \sum_{c \in C(r)} \lambda_{c \to r}(\mathbf{y}_c) \right)$$

Maximize Lagrangian w.r.t. primal variables subject to remaining constraints:

$$\max_{b} L() \quad \text{s.t.} \quad \left\{ \begin{array}{l} b_r(\mathbf{y}_r) \geq 0 & \forall r, \mathbf{y}_r \\ \sum_{\mathbf{y}_r} b_r(\mathbf{y}_r) = 1 & \forall r \end{array} \right.$$

Dual function:

$$g(\lambda) = \sum_{r} \max_{\boldsymbol{y}_{r}} \left(f_{r}(\boldsymbol{y}_{r}) - \sum_{p \in P(r)} \lambda_{r \to p}(\boldsymbol{y}_{r}) + \sum_{c \in C(r)} \lambda_{c \to r}(\boldsymbol{y}_{c}) \right)$$

Dual function:

$$g(\lambda) = \sum_{r} \max_{\boldsymbol{y}_{r}} \left(f_{r}(\boldsymbol{y}_{r}) - \sum_{p \in P(r)} \lambda_{r \to p}(\boldsymbol{y}_{r}) + \sum_{c \in C(r)} \lambda_{c \to r}(\boldsymbol{y}_{c}) \right)$$

Dual program:

$$\min_{\lambda} g(\lambda)$$

Original primal:

$$\max_{b} \sum_{r, \mathbf{y}_r} b_r(\mathbf{y}_r) f_r(\mathbf{y}_r) \quad \text{s.t.} \quad \begin{cases} b_r(\mathbf{y}_r) \ge 0 & \forall r, \mathbf{y}_r \\ \sum_{\mathbf{y}_r} b_r(\mathbf{y}_r) = 1 & \forall r \\ \sum_{\mathbf{y}_p \setminus \mathbf{y}_r} b_p(\mathbf{y}_p) = b_r(\mathbf{y}_r) & \forall r, p \in P(r), \mathbf{y}_r \end{cases}$$

Properties of dual program:

- Convex program
- Not strongly convex
- Piecewise linear
- Unconstrained
- Lagrange multipliers are messages

Lagrange multipliers are messages defined on edges of the graph. They shift 'energy' such that local maximization (dual) is identical to global maximization (primal).

- Efficient algorithms to compute the minimum cost cut in a weighted graph
- Efficient algorithms to compute the maximum flow through a weighted graph

For binary problems $y_d \in \{1, 2\}$:

- Convert scoring function F into auxiliary graph (not the same graph as before!)
- Compute a weighted cut cost corresponding to the labeling score

What are the nodes and what are the weights on the edges in this auxiliary graph?

What are the nodes in the auxiliary graph?

- Two special nodes called 'source' and 'terminal'
- Variables y_d as nodes

What are the nodes in the auxiliary graph?

- Two special nodes called 'source' and 'terminal'
- Variables y_d as nodes

What weights do we assign to edges? Recall that local scoring functions are arrays:

$$[f_1(y_1 = 1) \ f_1(y_1 = 2)]$$

Graph-cut solvers compute a min-cut:

What weights do we assign to edges?

Recall that local scoring functions are arrays:

$$\begin{bmatrix} f_{12}(1,1) & f_{12}(1,2) \\ f_{12}(2,1) & f_{12}(2,2) \end{bmatrix} = f(1,1) - f(2,1) + f(2,2)$$

$$+ \begin{bmatrix} 0 & 0 \\ f(2,1) - f(1,1) & f(2,1) - f(1,1) \end{bmatrix}$$

$$+ \begin{bmatrix} f(2,1) - f(2,2) & 0 \\ f(2,1) - f(2,2) & 0 \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & f(1,2) + f(2,1) - f(1,1) - f(2,2) \\ 0 & 0 \end{bmatrix}$$

Graph-cut solvers compute a min-cut:

Requirement for optimality: Pairwise edge weights are positive

$$f(1,1) + f(2,2) - f(1,2) - f(2,1) \ge 0$$
 sub-modularity

For higher order functions? More complicated graph constructions For more than two labels? Move making algorithms

Structured Prediction

Inference:

$$\mathbf{y}^* = \arg\max_{\hat{\mathbf{y}}} \sum_r f_r(\mathbf{w}, x, \hat{\mathbf{y}}_r)$$

Efficiency and accuracy of inference algorithms is problem dependent:

- Exhaustive search
- Dynamic programming
- Integer linear program
- Linear programming relaxation
- Message passing
- Graph-cut

Quiz:

- What is the advantage of ILP and LP relaxation compared to dynamic programming and exhaustive search?
- When is a graph-cut algorithm optimal?

Important topics of this lecture

More inference algorithms for structured spaces

Up next:

Learning models for structured output spaces