MATHS-S1 CUPGE – ESIR Calcul propositionnel, quantificateurs et raisonnement

Ahmad Karfoul

Les grandes lignes

☐ Vocabulaires usuels

☐ Introduction au calcul propositionnel

Quantificateurs

Raisonnement

Vocabulaires usuels

- Axiome: un énoncé supposé évidemment vrai et que l'on ne cherche pas à démontrer (ex. les axiomes d'Euclid, les axiomes de Pano, etc.)
- ☐ Proposition (assertion): un énoncé qui met en relation des objets mathématiques et on ne peut pas connaître à priori s'il est vraie ou faux.
- ☐ Théorème : une proposition vraie (connue dans le monde scientifique).

Remarque: Dans la pratique des mathématiques, le mot proposition est souvent utilisé, par abus de langage, pour désigner un théorème intermédiaire et parfois théorème.

Corollaire: un corollaire à un théorème est une conséquence de ce théorème.

Vocabulaire usuel

- Lemme : un théorème préparatoire à l'établissement d'un théorème de plus grande importance.
- Conjecture: une proposition supposée vraie sans parvenir à la démontrer (ex. conjecture de Fermat, conjecture de Bertrand en 1845, etc.).
- Définition : un énoncé décrivant la particularité d'un objet (elle énonce comment l'objet est construit).
- Syntaxe: un langage non-ambigu pour écrire un énoncé ou un formule
- Sémantique: connaître ce qu'il signifie l'énoncé

- ☐ Le calcul propositionnel possède :
 - > Une syntaxe : ordre dans lequel les symboles apparaissent
 - Une sémantique : interprétation du sens d'un ensemble
- □ Proposition élémentaire (atomique) : une phrase simple dont on peut déterminer dans un contexte si elle est varie ou fausse
- **□ Variable propositionnelle :** une variable propositionnelle est représentée par une lettre (a, b, p, q, \cdots) qui peut prendre l'une des deux valeurs : **vrai** ou **faux**
- Connecteur logique: Cinq connecteurs logiques de base sont définis :
 - V : la disjonction (l'opérateur ou)
 - \(\rightarrow\) \ \(\lambda\) : la conjonction (l'opérateur et)
 - → (ou⁻): la négation (l'opérateur non)
 - > ⇒ : l'implication (l'opérateur si ··· alors)
 - ➤ ⇔ : l'équivalence

- ☐ Le calcul propositionnel est formé de :
 - Variables propositionnelles (propositions)
 - Connecteurs logiques
 - Symboles auxiliaire (ex. parenthèses (,))
- ☐ Les propositions atomiques sont des propositions
- \square Si A est une proposition, alors \overline{A} (non A) est une proposition
- ☐ Si A et B sont des propositions, alors :
 - 1) $(A \wedge B)$ (cad. A et B) conjonction
 - 2) $(A \lor B)$ (cad. A ou B) disjonction
 - 3) $(A \Rightarrow B)$ (cad. Si A alors B) implication
 - 4) $(A \Leftrightarrow B)$ (cad. A si et seulement si B) équivalence sont aussi des propositions.

• Exemple:

P : S'il fait beau et qu'je n'ai pas un examen à préparer alors je pars à la plage

- La propositions peut être modélisée sous la forme suivante:
 - Variable propositionnelle A= il fait beau
 - Variable propositionnelle B= j'ai un examen
 - Variable propositionnelle C = je pars à la plage

La proposition P s'écrit alors : $(A \land \overline{B}) \Rightarrow C$

• Exemple :

P : Si je fais du vélo alors c'est une journée sans pluie

- La propositions peut être modélisée sous la forme suivante:
 - Variable propositionnelle A= je fais du vélo
 - Variable propositionnelle *B*= journée sans pluie

La proposition P s'écrit alors : $A \Rightarrow B$

Remarque: les symboles auxiliaires (parenthèses et espace) sont utilisés pour lever les éventuelles ambiguïtés

Remarque: on convient de l'ordre de priorité suivant entre les connecteurs : \neg (ou \neg) précède \land précède \lor précède \Rightarrow

• Exemple : la proposition $\bar{A} \vee B \wedge \bar{C}$ signifie $(\bar{A}) \vee (B \wedge \bar{C})$

Remarque: Parfois les symboles \(\perp \) et \(\pi\) désignant respectivement faux et vrai sont utilisés (mais il ne sont pas indispensables).

- Sous-formule: une proposition atomique de la formule considérée; ou une formule allant d'une parenthèse ouvrante à la fermante qui lui correspond.
 - \blacktriangleright Les sous-formules immédiates de $(X \land Y), (X \lor Y), (X \Rightarrow Y)$ et $(X \Leftrightarrow Y)$ sont X et Y
 - \triangleright La seule sous-formule immédiate de \bar{X} est X
- Exemple: Quelles sont les sous-formules de la proposition suivante

$$F = (p \lor \overline{q}) \land \mathsf{T}$$

Solution: $\{F, (p \lor \overline{q}), \mathsf{T}, p, q, \overline{q}\}$

- Valuation : Une manière de déterminer la valeur de vérité (vrai ou faux) des variables propositionnelles
 - La valeur de vérité d'une formule complexe n'est fonction que des valeurs de vérités de ses sous-formules
 - La table de vérité est un moyen efficace pour calculer la vérité d'une proposition considérée.
 - \blacktriangleright La négation $(non (\neg (ou^{-})))$:

Exemple : la proposition $P: \overline{A}$

A	$ar{A}$
0	1
1	0

Vrai = 1 Faux = 0

Remarque : $\overline{\overline{A}} \equiv A$ (la double négation)

 \triangleright La jonction ($et(\land)$):

Exemple : la proposition $P: A \wedge B$

A	В	A ∧ <i>B</i>
0	0	0
0	1	0
1	0	0
1	1	1

ightharpoonup La disjonction ($ou(\land)$) :

Exemple : la proposition $P: A \vee B$

A	В	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

ightharpoonup Propriétés des connecteurs V et Λ : Prenons trois propositions A, B et C quelconques

Idempotence :

$$A \lor A \equiv A$$
$$A \land A \equiv A$$

Associativité :

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

 $(A \land B) \land C \equiv A \land (B \land C)$

Commutativité :

$$A \lor B \equiv B \lor A$$
$$A \land B \equiv B \land A$$

Distributivité :

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

 $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

Lois de De Morgan :

$$\frac{\overline{(A \vee B)}}{\overline{(A \wedge B)}} \equiv \overline{A} \wedge \overline{B}$$

 \triangleright L'implication (\Rightarrow): l'implication signifie que si A (l'hypothèse) alors B (la conclusion).

Exemple : la proposition $P: A \Rightarrow B$

A	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Remarque : l'implication n'est fausse que à la condition : la proposition A (l'hypothèse) est vraie et la proposition B (la conclusion) est fausse.

- Exemple: l'énoncé « si tu gagnes le tournoi alors j'arrête mon entraînement » n'est faux que si tu gagnes le tournoi et que je n'arrête pas mon entraînement (c'est-à-dire si $A \wedge \bar{B}$)
- Exemple: l'énoncé « si 1+0=2 alors la terre est plate » est naturellement vrai puisqu'il faut que 1+0=2.

> Un zoom sur implication

A	В	·	$A \Rightarrow B$	$\overline{A \Rightarrow B}$	
0	0		1	0	
0	1		1	0	
1	0		0	1	$A \wedge \bar{B}$
1	1		1	0	

 $\overline{A \Rightarrow B} \equiv A \land \overline{B} \text{ alors, } \overline{\overline{A \Rightarrow B}} \equiv \overline{A \land \overline{B}}, \text{ alors } A \Rightarrow B \equiv \overline{A} \lor B$

A	В	$ar{A}$	$A \lor B$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

 \triangleright L'équivalence (⇔) : la proposition A équivaut à B, cad. A ⇔ B (ou A si et seulement si B), est vraie lorsque les deux propositions A et B sont vraies ou fausses simultanément.

Exemple : La proposition $P: A \Leftrightarrow B$

A	В	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

• Exercice : Montrer que $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

 \blacktriangleright La contraposition : $A \Rightarrow B \equiv \bar{B} \Rightarrow \bar{A}$ (Démonstration???)

Remarque: Quand la proposition " $P \Rightarrow Q$ " est vraie, on dit que P est une condition suffisante pour Q (il suffit que P soit vraie pour que Q soit vraie). On dit aussi que Q est une condition nécessaire pour P (il faut que Q soit vraie pour que P soit vraie).

Remarque : Quand la proposition " $P \Leftrightarrow Q$ « est vraie, on dit que P est une condition nécessaire et suffisante pour Q soit vraie.

- Exemple : le quadrilatère ABCD est un losange ⇒ le quadrilatère ABCD est un parallélogramme
- Modèle d'une proposition : un modèle d'une proposition P est une valuation notée v telle que v(P) = vrai (ou $v \models P$). La notation mod(P) désignera l'ensemble des modèles de P.
 - Exercice: Soient p, q et s trois variables propositionnelles. Trouver l'ensemble $mod((p \lor s) \land (q \lor \bar{s}))$

Remarque: les formules A et B sont équivalentes, $(A \equiv B)$, lorsqu'ils ont les mêmes modèles, mod(A) = mod(B).

- Une tautologie: La tautologie est une proposition composée (formule) qui est vraie quelles que soient les valeurs de vérité des propositions simples qui la composent. La notation $\models P$ signifie que la proposition P est une tautologie.
 - Exemple: les propositions suivantes sont des tautologies:

$$\bar{A} = A$$
, $\overline{(A \wedge \bar{A})}$, $(A \wedge B) \Leftrightarrow (B \wedge A)$, $(A \vee B) \Leftrightarrow (B \vee A)$

- Une formule P est dite satisfaisable s'il existe une valuation, ν , qui le rend vraie. On note $\nu \models P$.
- \square Une formule P est dite falsifiable s'il existe une valuation, ν , qui le rend fausse.
- \square Une formule P est dite valide s'il existe une valuation, ν , qui satisfait P.
- \square Une formule P est dite contradictoire s'elle n'est pas satisfaisable.

• Exemple:

Formule	Satisfaisable	Valide	Falsifiable	Contradictoire
$A \lor B$	Oui	Non	Oui	Non
$A \lor \bar{A}$	Oui	Oui	Non	Non
$A \wedge \bar{A}$	Non	Non	Oui	Oui