

Supercomputing

TMA4280—Introduction to Supercomputing

NTNU, IMF January 12. 2018

1

Outline

Context: Challenges in Computational Science and Engineering

Examples: Simulation of turbulent flows and other applications

Goal and means: parallel performance improvement

Overview of supercomputing systems

Conclusion

Computational Science and Engineering (CSE)

What is the motivation for Supercomputing?

Solve complex problems fast and accurately:

- efforts in modelling and simulation push sciences and engineering applications forward,
- computational requirements drive the development of new hardware and software.

Computational Science and Engineering (CSE)

Development of computational methods for scientific research and innovation in engineering and technology.

- Scientific model (Physics, Biology, Medical, ...)
- Mathematical model
- Numerical model
- Implementation
- Visualization, Post-processing
- Validation
- → Feedback: virtuous circle

Allows for larger and more realistic problems to be simulated, new theories to be experimented numerically.

Outcome in Industrial Applications

Evolution of computational power

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Figure: Moore's Law: exponential increase of number of transistors per chip, 1-year rate (1965), 2-year rate (1975). WikiMedia, CC-BY-SA-3.0

Evolution of computational power

Figure: Top500: worlwide ranking of supercomputers. Source: top500.org

Progress in numerical methods and software

- improvement of linear solvers,
- model reduction,
- uncertainty quantification,
- development of new programming models,
- **—** . . .

Each stage of the development of a new method requires care:

- Implementation: unit testing
- Algorithms: verification
- Conceptual model: validation
- Error propagation, Reliability: uncertainty quantification

Outline

Context: Challenges in Computational Science and Engineering

Examples: Simulation of turbulent flows and other applications

Goal and means: parallel performance improvement

Overview of supercomputing systems

Conclusion

Context

Why is it necessary to

- solve larger problems,
- improve accuracy,

and how to work towards these goals?

Example: Large-Eddy Simulation

Incompressible Navier-Stokes Equations (NSE):

Find
$$\hat{\boldsymbol{u}} \equiv (\boldsymbol{u}, \boldsymbol{p})$$
 such that:

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{p} - 2\nu \nabla \cdot \varepsilon(\boldsymbol{u}) = \boldsymbol{f} \quad \text{in } \Omega \times [0, T]$$

$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega \times [0, T]$$

$$\hat{\boldsymbol{u}}(\cdot, 0) = \hat{\boldsymbol{u}}^0 \quad \text{in } \Omega$$

- Scope: 3D turbulent flows, high Reynolds number $Re = 10^5 10^6$
- Applications: design of turbines, aircrafts, climate modelling, ...
- Discretization: finite dimensional problem, N degrees of freedom,
- Modelling unresolved scales: physical subgrid model, stabilization (Implicit LES), filtering . . .

Number of degrees of freedom to resolve scales, Kolmogorov Law:

$$N \sim Re^{9/4}$$

AIAA Benchmark: Complex Landing Gear (BANC-II)

- Meshes: initial 3.6M elements, final 23.8M elements
- Resources: adaptive stages 900K core.h, final 600K core.h

Figure: Mesh adaptation stages, Lighthill tensor (noise generation). Vilela De Abreu/N. Jansson/Hoffman, 18th AIAA Aeroacoustics Conference, 2012

Applications

Computationally intensive problems:

- Physical phenomena involving a large range of scales
- Systems with many degrees of freedom
- Methods with high dimensionality (Monte–Carlo)
- Big Data

Example: weather forecasting

For more information, see http://met.no

Example: climate modelling

Example: molecular dynamics

For more information, see http://www.gromacs.org.

Outline

Context: Challenges in Computational Science and Engineering

Examples: Simulation of turbulent flows and other applications

Goal and means: parallel performance improvement

Overview of supercomputing systems

Conclusion

Evaluation of performance

Measure unit: FLOPS, Floating-point Operator Per Second.

- 1. R_{PEAK} : theoretical operation rate handled by the hardware.
- 2. R_{MAX} : maximum achieved in reality for a given benchmark.

Efficiency:
$$\mathcal{E} = R_{MAX}/R_{PEAK}$$

Top500: ranking using HPL (High-Performance LINPACK Benchmark) LINPACK: library for solving dense linear systems.

Parallelization

Example of mesh distribution:

Figure: Snake demo run, 16 processes.

Figure: Gear demo run, 32 processes.

Expectations and limitations

- Given a fixed problem:
 Serial computation → Parallel computation on P processors
- The **wall time** T_n is the execution time on n processors.
- Speed-up:

$$S_P = T_1/T_P$$

- Ideally, linear (strong) scaling: $S_P = P$
- Data dependencies, Communication overhead, . . .

Levels of parallelism: Single processor

Core

- pipelining
- superscalar execution
- vector processing (SIMD unit)
- branch prediction
- caching techniques
- multithreading
- prefetching
- ··

Instruction-level parallelism, Concurrency

Levels of parallelism: Multi-processor

Compute node

- multiple cores on a chip
- core sharing cache memory
- affinity, locality
- accelerators

— ..

Shared memory model

Levels of parallelism: Distributed system

Cluster (system comprised of several compute nodes)

- network topologies
- optimized libraries
- communication patterns

— ..

Distributed memory model

Outline

Context: Challenges in Computational Science and Engineering

Examples: Simulation of turbulent flows and other applications

Goal and means: parallel performance improvement

Overview of supercomputing systems

Conclusion

Historical perspective: CRAY-1

Figure: Pr. Seymour Cray and a CRAY-1. © Cray Research, Inc. (CRI)

Specifications:

- Type: Vector computer
- Processor Clock 83 MHz
- Peak performance 166 MFLOPS
- Memory 8 MB to 32 MB
- Sold for 8.8 M dollars
- Power consumption of 115 kW

Comparison:

- Intel Xeon E5-2620v3 (6 cores):200 GFLOPS
- Nvidia Tesla:500 GFLOPS to 1 TFLOPS

Historical perspective: evolution

Top Computers Over Time for the Highly-Parallel Linpack Benchmark.

Year	Computer	Processors	R_{MAX}
2005	IBM Blue Gene/L	131072	280600
2002	Earth Simulator Computer, NEC	5104	35610
2001	ASCI White-Pacific, IBM SP Power3	7424	7226
2000	ASCI White-Pacific, IBM SP Power3	7424	4938
1999	ASCI Red Intel Pentium II Xeon	9632	2379
1998	ASCI Blue-Pacific SST, IBM SP604E	5808	2144
1997	Intel ASCI Option Red 200MHzPentiumPro	9152	1338
1996	Hitachi CP-PACS	2048	368.2
1995	Intel Paragon XP/S MP	6768	281.1
1994	Intel Paragon XP/S MP	6768	281.1
1993	Fujitsu NWT	140	124.5
1992	NÉC SX-3/44	4	20.0
1991	Fujitsu VP2600/10	1	4.0

Achieved performance R_{MAX} in GFlops.

Historical perspective: current consumer hardware

Can you estimate the computing power of a Raspberry Pi Model-B?

Historical perspective: current consumer hardware

Can you estimate the computing power of a Raspberry Pi Model-B?

LINPACK single node compute benchmark result:

Precision	R_{MAX}
Single	0.065 GFLOPS
Double	0.041 GFLOPS

A cluster of 64 Raspberry Pi Model B computers, labeled "Iridis-pi", achieved a LINPACK HPL suite result of:

1.14 GFLOPS (n=10240) at **216 Watts** for power consumption.

Supercomputers at NTNU: History

Year	System	Processors	Type	GFLOPS
1986–1992	Cray X-MP	2	Vector	0.5
1992–1996	Cray Y-MP	4	Vector	1.3
1995–2003	Cray J90	8	Vector	1.6
1992–1999	Intel Paragon	56	MPP	5.0
1996–2003	Cray T3E	96	MPP	58
2000-2001	SGI O2	160	ccNUMA	100
2001–2008	SGI O3	898	ccNUMA	1000
2006-2011	IBM P5+	2976	Distributed SMP	23500
2012-	SGI Altix ICE X	23040	Distributed SMP	497230

Supercomputers at NTNU: Current

— System: SGI Altix ICE

Type: Distributed SMP

— Nodes: 1404

 Each node is a shared memory system with two octa-core chips and 32 GB memory.

— Physical cores: 22464

Logical cores: 44928

— CPU: Intel Xeon (Sandy Bridge)

Theoretical peak performance: 467 TFLOPS

UNINETT Sigma2 manages the supercomputing infrastructure in Norway: https://www.sigma2.no/

Supercomputers at NTNU: IDUN/Lille

System: Dell P630

Type: Distributed SMP

- Nodes: 27

 Each node is a shared memory system with two deca-core chips and 128 GB memory.

CPU: Intel Xeon E5-2630v4 (about 500GFLops per CPU)

Supercomputers at NTNU: IDUN/Lille

Types of system architecture

Various existing categories:

- vector computers (CRAY X-MP)
- shared memory systems (SGI O3)
- distributed memory clusters (SGI Altix ICE X)
- compute grids (Folding@HOME)

Each of them require:

- adapting algorithms,
- using different programming models,
- hardware-specific implementation optimizations,
- ...

Evolution: system architecture

Back to Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Limitations to improving single-core performance \rightarrow multi-core.

Evolution: number of cores per socket

Comparison of the evolution w.r.t system and performance share.

Network

Figure: K-Computer, 6D mesh/torus TOFU network topology, Fujitsu.

Figure: Network topologies, WikiMedia, Public Domain

Factors influencing the performance of communications:

- nature of the wiring (copper cable, optical fibre)
- topology of the network to reduce the transmission path
- protocols, algorithms (packet ordering, error checking)

Evolution: interconnect

Comparison of the evolution w.r.t system and performance share.

Efficiency: findings patterns

Figure: Top500: Efficiency vs Interconnect

Power efficiency: finding patterns

Figure: Top500: Power Efficiency vs Accelerator

Cost: top supercomputers' energy cost per year is \sim million dollar. If energy consumption scales linearly: 1/10 nuclear power plant per Exascale supercomputer.

Performance considerations

	mber 2016 HPCG Results			HPL Rmax	TOP500	HPCG	Fraction
m	Site	Computer	Cores	(Pflop/s)	Rank	(Pflop/s)	of Peak
1	RIKEN Advanced Institute for Computational Science Japan	K computer – SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10.510	7	0.6027	5.35
2	NSCC / Guangzhou China	Tianhe-2 (MilkyWay-2) – TH-IVB-FEP Cluster, Intel Xeon 12 C 2.2 GHz, TH Express 2, Intel Xeon Phi 31S1P 57-core NUDT	3,120,000	33.863	2	0.5801	1.1
3	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi Processor 7250 68C 1.4GHz, Intel Omni-Path Architecture Fujitsu	557,056	13.555	6	0.3855	1.5
4	National Supercomputing Center in Wuxi China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93.015	1	0.3712	0.3
5	DOE/SC/LBNL/NERSC USA	Cori – XC40, Intel Xeon Phi 7250 68C 1.4GHz, Cray Aries Cray	632,400	13.832	5	0.3554	1.3
6	DOE/NNSA/LLNL USA	Sequoia – IBM BlueGene/Q, PowerPC A2 1.6 GHz 16-core, 5D Torus IBM	1,572,864	17.173	4	0.3304	1.6
7	DOE/SC/Oak Ridge Nat Lab USA	Titan – Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray	560,640	17.590	3	0.3223	1.2

Figure: High Performance Conjugate Gradients (HPCG) Benchmark project

Complement to LINPACK: dense vs sparse matrix computations.

Outline

Context: Challenges in Computational Science and Engineering

Examples: Simulation of turbulent flows and other applications

Goal and means: parallel performance improvement

Overview of supercomputing systems

Conclusion

Conclusion

- Supercomputing is crucial for Computer Science and Engineering to address new problems.
- Development of computational power is enabling but poses challenges.
- Adapting algorithms to compute on concurrent and parallel systems is non-trivial: application-dependent, low-level.
- Various hardware architecture, programming models, languages available.
- Communication is the key element in scalability.