BCC204 - Teoria dos Grafos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

Conexidade ou Conectividade

Teoria dos grafos

Fonte

Este material é baseado no livro

► Goldbarg, M., & Goldbarg, E. (2012). *Grafos: conceitos, algoritmos e aplicações*. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Definição

Em um GND conexo, todos os vértices são alcançáveis a partir de qualquer outro.

Em um GND conexo, sempre é possível fazer um passeio fechado que inclua todos os vértices.

Definição

Se G é um grafo direcionado, então ele é considerado conexo quando o seu grafo não direcionado subjacente é conexo.

O grafo não direcionado subjacente é o grafo resultante quando a orientação dos arcos de G é ignorada.

Subgrafo

Definição

Um grafo $G_s = (V_s, A_s)$ é dito ser um subgrafo de um grafo G = (V, A) se todos os vértices e todas as arestas de G_s estão em G, ou seja, se $V_s \subseteq V$ e $A_s \subseteq A$.

Observações:

- Todo grafo é subgrafo de si próprio;
- ightharpoonup O subgrafo G_s de G também é subgrafo de G;
- Um vértice simples de G é um subgrafo de G;
- Uma aresta simples de G (juntamente com suas extremidades) é um subgrafo de G.

Subgrafo

Quais são os possíveis subgrafos?

Subgrafos Maximais

Subgrafo Maximal

Um subgrafo G_s de G é dito maximal em relação a uma propriedade τ se não for subgrafo de nenhum outro subgrafo de G que também possua a propriedade τ .

O conceito de maximalidade é relacionado a uma condição de pertinência.

Conexidade

Componentes Conexos

Um componente conexo de um grafo G é um subgrafo conexo maximal de G.

O número de componentes conexos em G é denotado por c.

Grafos conexos possuem apenas um componente conexo.

Grafo desconexo, componentes conexos e subgrafos não maximais.

Grafo Simplesmente Conexo: s-conexo

O grafo subjacente não direcionado obtido através da substituição de todas as arestas de G por arestas não direcionadas é um grafo conexo.

Grafo Semi-Fortemente Conexo: sf-conexo

Para cada par de vértices (v_1, v_2) , existe um caminho de v_1 para v_2 ou de v_2 para v_1 .

Grafo Fortemente Conexo: f-conexo

Para cada par de vértices (v_1, v_2) , existe um caminho direcionado de v_1 para v_2 e de v_2 para v_1 .

Componentes Fortemente Conexos

Em um grafo direcionado, componentes fortemente conexos são subgrafos maximais f-conexos.

Definição

A conexidade ou conectividade em vértices $\kappa(G)$ de um grafo G=(V,E) é o menor número de vértices cuja remoção desconecta G ou o reduz a um único vértice.

Atenção

- Conceito aplicado a Grafos Não Direcionados;
- Indica o quanto um grafo é conexo.

Exemplos de remoções de conjuntos de vértices que desconectam o grafo. Neste caso, $\kappa(G)=1$ (figura 2).

Grafos Completos

Para grafos completos com n vértices, $\kappa(K_n) = n - 1$.

Grafos Não Completos

Para grafos não completos haverá um par (v_1, v_2) de vértices não adjacentes, então temos que:

$$\kappa(G) \leq n-2 \quad \forall G \neq K_n$$

Limite superior para $\kappa(G)$ em qualquer grafo:

$$\kappa(G) \leq \delta(G)^a$$

 $^{a}\delta(G)$: menor grau em um GND

Grafos Completos

Para grafos completos com n vértices, $\kappa(K_n) = n - 1$.

Grafos Não Completos

Para grafos não completos haverá um par (v_1, v_2) de vértices não adjacentes, então temos que:

$$\kappa(G) \leq n-2 \quad \forall G \neq K_n$$

Limite superior para $\kappa(G)$ em qualquer grafo:

$$\kappa(G) \leq \delta(G)^a$$

 $^{a}\delta(G)$: menor grau em um GND

Grafos Completos

Para grafos completos com n vértices, $\kappa(K_n) = n - 1$.

Grafos Não Completos

Para grafos não completos haverá um par (v_1, v_2) de vértices não adjacentes, então temos que:

$$\kappa(G) \leq n-2 \quad \forall G \neq K_n$$

Limite superior para $\kappa(G)$ em qualquer grafo:

$$\kappa(G) \leq \delta(G)^a$$

 ${}^{a}\delta(G)$: menor grau em um GND.

k-Conexidade ou k-Conectividade

Definição

Um grafo G = (V, E) é k-conexo se e somente se para todo par $v, w \in V, v \neq w$ existirem ao menos k caminhos disjuntos.

Caminhos Disjuntos

Dois caminhos entre os vértices v e w de um grafo são disjuntos se não possuírem arestas em comum.

k-Conexidade ou k-Conectividade

Propriedades

Para todo grafo k-conexo:

$$\kappa(G) \leq \delta(G)$$

$$\kappa(G) \leq k$$

k-Conexidade ou k-Conectividade

Exemplos

Grafo borboleta: 2-conexo

 K_7 : 6-conexo, mas também é 1-conexo, 2-conexo, 3-conexo, 4-conexo e 5-conexo.

$$k \geq \kappa(G) \leq \delta(G)$$

Articulação

Aresta de articulação (ou Ponte)

Uma aresta de articulação de um grafo G é uma aresta cuja remoção resulta na desconexão de G.

A aresta u_1 é de articulação. As arestas u_3 e u_4 não são.

Articulação

Vértice de articulação

Um vértice de articulação de um grafo G é um vértice cuja remoção resulta na desconexão de G.

O vértice 4 é de articulação, porém, o vértice 2 não é.

Exemplos

Qual a conectividade em vértices do grafo abaixo?

Exemplos

Para cada um dos grafos abaixo, determine se é s-conexo, sf-conexo ou f-conexo.

Dúvidas?

