HW₂

- 1) n²
- (a) $(2n)^2 = 4n^2$: It becomes 4 times slower.
- **(b)** $(n+1)^2 = n^2 + 2n + 1$: Factor of increase is $(n^2 + 2n + 1)/n^2 \approx 1 + 2/n + 1/n^2$ for large n.

2)n³

- (a) $(2n)^3 = 8n^3$: It becomes 8 times slower.
- **(b)** $(n+1)^3=n^3+3n^2+3n+1$: Factor of increase is $(n^3+3n^2+3n+1)/n^3$ aprox $1+3/n+3/n^2+1/n^3$.

3)100n²

- (a) $100(2n)^2 = 400n^2$: It becomes 4 times slower.
- **(b)** $100(n+1)^2=100(n^2+2n+1)$: Factor of increase is $100(n^2+2n+1)/100n^2$ aprox $1+2/n+1/n^2$

4)n log n

- (a) $2n \log(2n) = 2n(\log 2 + \log^2 n) = 2n \log n + 2n \log 2$: Approximately doubles but increase by 2 log 2 times due to the log 2 term.
 - **(b) (n+1)log(n+1):**This is a bit more complex,but increases proportionally by a factor approaching log(n+1)-log aprox 1/n for large n.

5)2ⁿ

- (a) $2^{2n} = (2^n)^2 = 2^n \cdot 2^n = 4^n$:Exponential increase, precisely squared.
- **(b)** $2^{n+1} = 2^n . 2$: exactly two times slower.

3)

To arrange the given functions in ascending order of growth rate, we'll analyze each function's asymptotic behavior as n becomes large. The function that grows slowest as n increases should be listed first, and the one that grows fastest should be listed last. Here's a breakdown of each function's growth:

1.
$$f_2(n) = sqrt\{2n\}$$
)

This function grows as Theta $sqrt\{n\}$, which is slower than linear growth.

2.
$$f_3(n) = n + 10$$

This is a linear function Theta(n), and grows faster than $sqrt\{n\}$.

3.
$$f_1(n) = n^2$$

This polynomial function grows faster than linear but slower than cubic functions. It is Theta $(n^{2.5})$.

4.
$$f_6(n) = n2 \log n$$

This function grows faster than any polynomial n^k for $k \le 2$ but slower than n^3 . It is super-quadratic due to the logarithmic factor.

5.
$$f_4 = 10^n$$

This exponential function grows very fast, significantly faster than polynomial or polynomial-logarithmic functions.

$$6.f_5 = 100^n$$

This function, also exponential, grows even faster than 10ⁿ to a larger base.

Arranging them in order of ascending growth rate gives:

-
$$f_2(n)$$
 = sqrt{2n} (smallest growth rate)

$$-f_3(n) = n + 10$$

$$- f_1(n) = n^{2}$$

```
- f_6(n) = n2 \log n
```

$$- f_4 = 10^n$$

-
$$f_5 = 100^n$$
 (largest growth rate)

This list ensures that each function is O(g(n)) of the function that follows it, reflecting an increasing order of growth rates.

5)

Given the statement that f(n) is O(g(n)), let's analyze each sub-statement to decide whether they are true or false, providing proofs or counterexamples accordingly:

(a) $log_2 f(n)$ is $O(log_2 g(n))$.

True. Since f(n) = O(g(n)), by definition, there exists a positive constant c and a value n_0 such that $f(n) \le c * g(n)$ for all $n \ge n_0$. Taking logarithms of both sides:

$$\log_2 f(n) \le \log_2 (c * g(n)) = \log_2 c + \log_2 g(n)$$

Here, $\log_2 c$ is a constant. Hence, $\log_2 f(n)$ can be bounded by a constant plus $\log_2 g(n)$, which means $\log_2 f(n) = O(\log_2 g(n))$.

(b) $2^{(f(n))}$ is $O(2^{g(n)})$.

False. This statement can be false because exponential growth is sensitive to the exponent's rate of increase. Consider $f(n) = g(n) + \log_2 n$. Clearly, f(n) = O(g(n)) since the logarithmic term grows much slower than any polynomial, and thus does not affect the overall class. However:

$$2^{(f(n))} = 2^{(g(n)} + \log_2 n = 2^{(g(n))} * n$$

This is not $O(2^{(g(n))})$ because the factor of n makes $2^{(f(n))}$ grow faster than any constant multiple of $2^{(g(n))}$.

c)
$$n^2$$
 is $O(g(n)^2)$.

True. Again, since f(n) = O(g(n)), there exists some constant c such that $f(n) \le c * g(n)$ for all $n \ge n_0$. Squaring both sides yields:

$$f(n)^2 \le (c * g(n))^2 = c^2 * g(n)^2$$

Thus, $f(n)^2 = O(g(n)^2)$ because we can find a constant c^2 that bounds $f(n)^2$ in terms of $g(n)^2$.

These proofs and counterexamples show the nuanced effects of different mathematical operations on growth rates and asymptotic behaviors.

The "How to Design Algorithms" handout serves as a foundational guide for students and professionals in computer science, outlining effective strategies for algorithm design. It emphasizes a structured approach to problem-solving, aimed at crafting efficient and reliable algorithms.

Core Elements of the Handout:

- 1. **Problem Understanding**: Clarity on the problem at hand is essential. It entails defining the objectives and constraints accurately, which guides the selection of appropriate strategies.
- 2. Solution Exploration: The document encourages exploring multiple solutions through brainstorming and examining existing algorithms. This phase may involve sketching ideas using flowcharts or pseudocode to visualize potential solutions.
- 3. **Algorithm Development**: The handout advocates for an iterative development process. Starting with a basic solution, it is refined progressively through testing and optimization to handle various inputs effectively.
- 4. Performance Analysis: Emphasis is placed on analyzing the algorithm's efficiency concerning time and space usage. Techniques for optimizing performance are discussed, ensuring the algorithm operates within acceptable parameters.
- 5. **Documentation and Review**: Maintaining detailed documentation throughout the algorithm's development is crucial. The handout also recommends peer reviews as a means to gain insights and identify unnoticed errors.