

WEBENCH® Design Report

VinMin = 8.0V VinMax = 28.0V Vout = 12.0V Iout = 1.0A Device = LM25118Q1MH/NOPB Topology = Buck_Boost Created = 3/27/15 8:09:41 AM BOM Cost = \$5.71 Footprint = 702.0 mm² BOM Count = 28 Total Pd = 1.17W

Design: 1231947/65 LM25118Q1MH/NOPB LM25118Q1MH/NOPB 8.0V-28.0V to 12.00V @ 1.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	MuRata	GRM21BR71E104KA01L Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	TDK	C2012C0G1H271J Series= C0G	Cap= 270.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Ccomp2	Yageo America	CC0805KRX7R9BB222 Series= X7R	Cap= 2.2 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Cin	MuRata	GRM31CR71H475KA12L Series= X7R	Cap= 4.7 uF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 4.98 A	3	\$0.22	1206 11 mm ²
5.	Cinx	Kemet	C0805C104K5RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
6.	Cout	Panasonic	16SVPF82M Series= 1273	Cap= 82.0 uF ESR= 27.0 mOhm VDC= 16.0 V IRMS= 3.0 A	1	\$0.35	CAPSMT_62_E61 53 mm ²
7.	Cramp	Yageo America	CC0805KRX7R9BB391 Series= X7R	Cap= 390.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
8.	Css	Yageo America	CC0805KRX7R9BB223 Series= X7R	Cap= 22.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Cvcc	MuRata	GRM155R61A105KE15D Series= X5R	Cap= 1.0 uF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
10. Cvccx	TDK	C1608X5R1C105K Series= X5R	Cap= 1.0 uF ESR= 5.713 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
11. D1	Diodes Inc.	B240A-13-F	VF@Io= 500.0 mV VRRM= 40.0 V	1	\$0.09	SMA 37 mm ²
12. D2	Diodes Inc.	B220-13-F	VF@Io= 500.0 mV VRRM= 20.0 V	1	\$0.08	SMB 44 mm ²
13. D3	Diodes Inc.	B240A-13-F	VF@Io= 500.0 mV VRRM= 40.0 V	1	\$0.09	SMA 37 mm ²
14. D4	Diodes Inc.	B220-13-F	VF@Io= 500.0 mV VRRM= 20.0 V	1	\$0.08	SMB 44 mm ²
15. L1	Bourns	SDR1307-330KL	L= 33.0 μH DCR= 65.0 mOhm	1	\$0.35	
16. M1	Texas Instruments	CSD18504Q5A	VdsMax= 40.0 V IdsMax= 50.0 Amps	1	\$0.56	SDR1307 227 mm² TRANS_NexFET_Q5A 55 mm²
17. M2	Texas Instruments	CSD16323Q3	VdsMax= 25.0 V IdsMax= 60.0 Amps	1	\$0.44	TRANS_NexFET_Q3 19
18. Rcomp	Vishay-Dale	CRCW040239K2FKED Series= CRCWe3	Res= 39.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
19. Renable	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
20. Rfbb	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	Res= 1000.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
21. Rfbt	Vishay-Dale	CRCW04028K66FKED Series= CRCWe3	Res= 8.66 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
22. Rsense	Stackpole Electronics Inc	CSR1206FK50L0 Series= ?	Res= 50.0 mOhm Power= 500.0 mW Tolerance= 1.0%	1	\$0.10	1206 11 mm ²
23. Rt	Vishay-Dale	CRCW040218K7FKED Series= CRCWe3	Res= 18.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
24. Ruv1	Vishay-Dale	CRCW040230K1FKED Series= CRCWe3	Res= 30.1 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
25. Ruv2	Vishay-Dale	CRCW04026K98FKED Series= CRCWe3	Res= 6.98 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
26. U1	Texas Instruments	LM25118Q1MH/NOPB	Switcher	1	\$2.76	

MXA20A 71 mm²

Operating Values

#	Name	Value	Category	Description
1.		496.229 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	208.385 mA	Current	Output capacitor RMS ripple current
3.	lin Avg	470.51 mA	Current	Average input current
4.	L lpp	721.87 mA	Current	Peak-to-peak inductor ripple current
5.	L1 Irms	1.021 A	Current	Inductor ripple current
6.	M1 Irms	662.348 mA	Current	MOSFET RMS ripple current
7.	M2 Irms	2.143 A	Current	MOSFET RMS ripple current
8.	SW lpk	1.361 A	Current	Peak switch current
9.	BOM Count	28	General	Total Design BOM count
10.	FootPrint	702.0 mm ²	General	Total Foot Print Area of BOM components
11.	Frequency	294.659 kHz	General	Switching frequency
12.	IC Tolerance	18.0 mV	General	IC Feedback Tolerance
13.	M1 Rdson	9.8 mOhm	General	Drain-Source On-resistance
14.	M1 ThetaJA	51.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
	M2 Rdson	4.4 mOhm	General	Drain-Source On-resistance
16.	M2 ThetaJA	58.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
	Pout	12.0 W	General	Total output power
18.	Total BOM	\$5.71	General	Total BOM Cost
	D1 Tj	33.508 degC	Op_Point	D1 junction temperature
	D1 Tj	33.508 degC	Op_Point	D1 junction temperature
	,	J	. —	·
21.		36.25 degC	Op_Point	D1 junction temperature
	D3 Tj	33.508 degC	Op_Point	D1 junction temperature
	D4 Tj	36.25 degC	Op_Point	D1 junction temperature
	Vout OP	12.0 V	Op_Point	Operational Output Voltage
	Cross Freq	12.849 kHz	Op_point	Bode plot crossover frequency
26.	Duty Cycle	43.87 %	Op_point	Duty cycle
	Efficiency	91.086 %	Op_point	Steady state efficiency
28.	IC Tj	39.722 degC	Op_point	IC junction temperature
29.		40.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
30.	IOUT_OP	1.0 A	Op_point	lout operating point
31.	M1 TjOP	33.26 degC	Op_point	MOSFET junction temperature
	M2 TjOP	32.351 degC	Op_point	MOSFET junction temperature
	Phase Marg	51.279 deg	Op_point	Bode Plot Phase Margin
	VIN_OP	28.0 V	Op_point	Vin operating point
	Vout p-p	19.845 mV	Op_point	Peak-to-peak output ripple voltage
36.	Cin Pd	246.243 μW	Power	Input capacitor power dissipation
	Cout Pd	1.172 mW	Power	Output capacitor power dissipation
38.	D1 Pd	140.324 mW	Power	Diode power dissipation
	D2 Pd	250.0 mW	Power	Diode power dissipation
	D3 Pd	140.324 mW	Power	Diode power dissipation
	D4 Pd	250.0 mW	Power	Diode power dissipation
42.		140.324 mW	Power	Diode power dissipation
43.		243.061 mW	Power	IC power dissipation
	L Pd	81.25 mW	Power	Inductor power dissipation
45.	M1 Pd	64.029 mW	Power	MOSFET power dissipation
46.	M1 PdCond	4.652 mW	Power	M1 MOSFET conduction losses
47.		59.377 mW	Power	M1 MOSFET switching losses
48.	M2 Pd	19.731 mW	Power	MOSFET power dissipation
49.	M2 PdCond	0.0 W	Power	M2 MOSFET conduction losses
50.	M2 PdSw	19.731 mW	Power	M2 MOSFET switching losses
50.				

Design Inputs

#	Name	Value	Description
1.	lout	1.0	Maximum Output Current
2.	lout1	1.0	Output Current #1
3.	VinMax	28.0	Maximum input voltage
4.	VinMin	8.0	Minimum input voltage
5.	Vout	12.0	Output Voltage
6.	Vout1	12.0	Output Voltage #1
7.	base_pn	LM25118-Q1	Base Product Number
8.	source	DC	Input Source Type
9.	Ta	30.0	Ambient temperature

Design Assistance

- 1. The LM25118-Q1 is a wide range buck-boost controller which is operable in an ultra wide input range of 3 to 75V. A buck-boost regulator can maintain regulation for input voltages either higher or lower than the output voltage. The challenge is that buck-boost power converters are not as efficient as buck regulators. The LM5118 has been designed as a dual mode controller whereby the power converter acts as a buck regulator while the input voltage is above the output. As the input voltage approaches the output voltage, a gradual transition to the buck-boost mode occurs. This gradual transition between modes eliminates disturbances at the output during transitions.
- 2. LM25118-Q1 Product Folder: http://www.ti.com/product/lm25118%2Dq1: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.