CLAIM AMENDMENTS

1 to 12. Cancelled

- 13. (Currently amended) A method for producing differentiated cells from primate pluripotent stem (pPS) cells, comprising:
 - a) obtaining a culture of pPS cells:
 - b) optionally initiating differentiation of the pPS cells; and then
 - c) culturing the pPS cells or their progeny cells in a medium containing a histone deacetylase inhibitor, until at least ~60% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α_1 -antitrypsin (AAT);
 - · antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α-fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - · evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
- 14. (Previously presented) The method of claim 13, wherein at least about 60% of the cells have at least five of said characteristics.
- 15. (Previously presented) The method of claim 13, wherein at least about 80% of the cells have at least seven of said characteristics.
- (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is n-butyrate.
- 17. (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is propionic acid, isovaleric acid, or isobutyric acid.
- 18. (Previously presented) The method of claim 13, wherein the histone deacetylase inhibitor is Trichostatin A

- 19. (Currently amended) The method of claim 13, comprising pro-differentiating the cells wherein differentiation of the pPS cells is initiated by forming embryoid bodies.
- 20. (Currently amended) The method of claim 13, comprising pro-differentiating the cells wherein differentiation of the pPS cells is initiated by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); hexmethylene bisacetamide, or another polymethylene bisacetamide.
- 21. (Previously presented) The method of claim 13, comprising further culturing the cells in a medium containing a cytokine or hormone selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF-α, TGF-β, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
- 22. (Previously presented) The method of claim 21, wherein the cells are cultured in a medium containing at least three of said cytokines or hormones.
- 23. (Previously presented) The method of claim 22, wherein the cells are cultured in a medium containing EGF, TGF-α, and HGF.
- 24. (Previously presented) The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing a histone deacetylase inhibitor.
- 25. (Previously presented) The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing n-butyrate.

- 26. (Currently amended) The method of claim 13 claim 27, wherein the pPS cells are human embryonic stem cells.
- 27. (Currently amended) A method for maintaining cells differentiated from an established culture of primate pluripotent stem (pPS) cells, comprising culturing the differentiated cells in a medium containing a histone deacetylase inhibitor, so that at least ~60% of the cultured cells maintain at least three of the following characteristics:
 - antibody-detectable expression of α₁-antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α-fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
- 28. (Currently amended) A method for producing differentiated cells from human embryonic stem (hES) cells, comprising:
 - a) obtaining a culture of hES cells;
 - b) optionally initiating differentiation of the hES cells; and then
 - c) culturing the hES cells or their progeny cells in a medium containing a histone deacetylase inhibitor, until at least ~60% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α₁-antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α-fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - · the morphological features of hepatocytes.

- 29. (New) The method of claim 13, wherein the pPS cells are cultured with the histone deacetylase inhibitor without previously initiating differentiation.
- 30. (New) The method of claim 13, wherein the pPS cells are cultured on an extracellular matrix without feeder cells before contact with the histone deacetylase inhibitor.
- 31. (New) The method of claim 28, wherein at least about 60% of the cells have at least five of said characteristics.
- 32. (New) The method of claim 28, wherein at least about 80% of the cells have at least seven of said characteristics.
- (New) The method of claim 28, wherein the histone deacetylase inhibitor is n-butyrate or Trichostatin A.
- 34. (New) The method of claim 28, comprising pre-differentiating the cells by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); hexmethylene bisacetamide, or another polymethylene bisacetamide.
- 35. (New) The method of claim 28, comprising further culturing the cells in a medium containing at least three cytokines or hormones selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF-α, TGF-β, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
- (New) The method of claim 34, wherein the cells are cultured in a medium containing EGF,
 TGF-α, and HGF.

- 37. (New) The method of claim 27, wherein at least about 60% of the cells have at least five of said characteristics.
- 38. (New) The method of claim 27, wherein at least about 80% of the cells have at least seven of said characteristics.
- 39. (New) The method of claim 27, wherein the histone deacetylase inhibitor is n-butyrate.
- 40. (New) The method of claim 27, wherein the histone deacetylase inhibitor is Trichostatin A

Upon allowance of the application, please renumber the claims as follows:

Claim	13	\rightarrow	1	Claim	28	\rightarrow	16
	14	\rightarrow	2		29	\rightarrow	7
	15	\rightarrow	3		30	\rightarrow	8
	16	\rightarrow	4		31	\rightarrow	17
	17	\rightarrow	5		32	~ ~	18
	18	\rightarrow	6		33	\rightarrow	19
	19	\rightarrow	9		34	\rightarrow	20
	20	\rightarrow	10		35	→	21
	21	\rightarrow	11		36	\rightarrow	22
	22	\rightarrow	12		37	\rightarrow	24
	23	\rightarrow	13		38	→	25
	24	\rightarrow	14		39	>	26
	25	 →	15		40	\rightarrow	27
	26	\rightarrow	28				
	27	\rightarrow	23				