Lab 14

Machine Learning 2021-2022 - UMONS Souhaib Ben Taieb

1

Consider the problem of multiple linear regression, where the aim is to find $\hat{eta}^{\hat{L}S} \in \mathbb{R}^p$ such that:

$$\hat{\beta}^{LS} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

We can show that the ordinary least squares estimate is given by $\hat{\beta}^{LS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ where $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^n$. Now consider the problem of ridge regression, where the optimization problem is now formulated as finding $\hat{\beta}^R \in \mathbb{R}^p$ such that:

$$\hat{\beta}^R = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

The solution is given by $\hat{\beta}^R = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$, where \mathbf{I}_p is the $p \times p$ identity matrix. Assuming that p = n and that $\mathbf{X} = \mathbf{I}_p$,

- Prove that $\hat{\beta}^R = \frac{\hat{\beta}^{LS}}{\lambda + 1}$.
- Assuming that Bias($\hat{\beta}^{LS}$) = 0, compute the bias of the ridge estimator.
- Derive the covariance matrices of $\hat{\beta}^{LS}$ and $\hat{\beta}^{R}$ and show how they relate to one another. Assume that $\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{T}] = \sigma^{2}\mathbf{I}_{n}$, where $\boldsymbol{\varepsilon} \in \mathbb{R}^{n}$ is a random noise vector (i.e. $\boldsymbol{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$).

2

Suppose that the columns of X_1 are orthonormal, and that $X_2 = 10X_1$. Show that the ordinary least squares estimates are equivariant, meaning that multiplying X by a constant c scales the coefficients estimates by a factor $\frac{1}{c}$.

Is it also the case for the ridge estimates?