CLAIMS

based on the attenuation determination, selectively attenuating the received analog spread-

digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-

filtering the digital spread-spectrum signal in an attempt to compensate for interference in the

determining whether to attenuate the received analog spread-spectrum signal;

spectrum signal to generate a selectively attenuated analog spread-spectrum signal;

(currently amended) In a spread-spectrum receiver, a method for processing a received

1

2

3

5

6

7

8

spectrum signal;

analog spread-spectrum signal, comprising:

9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and		
0	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,		
1	wherein:		
12	the atter	uation determination is based on the amplitude of the digital spread-spectrum	
13	signal prior to the interference-compensation filtering and the de-spreading; and		
14	the atter	uation determination is independent of any determination of bit error rate.	
1	2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-	
2	channel interference in t	he received analog spread-spectrum signal.	
1	3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-	
2	spectrum signal has a ne	gative signal-to-noise ratio (SNR).	
1	4. (origina) The invention of claim 1, wherein:	
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital		
3	spread-spectrum signal is greater than an upper threshold; and		
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital		
5	spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the		
6	lower threshold.		
1	5. (original) The invention of claim 4, wherein the upper threshold is greater than the lower	
2	threshold by an amount	greater than the level of selective attenuation in order to provide hysteresis in the	
3	attenuation determinatio	n.	

1	6. (original) The invention of claim 1, wherein:		
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and		
3	further comprising:		
4	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and		
5	converting the IF signal to baseband after digitization.		
1	7. (original) The invention of claim 6, wherein the filtering and the de-spreading are		
2	implemented at baseband.		
1	8. (original) The invention of claim 1, wherein:		
2	the filtering attempts to compensate for off-channel interference in the received analog spread-		
3	spectrum signal;		
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio		
5	(SNR);		
6	the received analog spread-spectrum signal is attenuated when the amplitude of the digital		
7	spread-spectrum signal is greater than an upper threshold;		
8	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital		
9	spread-spectrum signal is less than a lower threshold;		
10	the upper threshold is greater than the lower threshold by an amount greater than the level of		
11	selective attenuation in order to provide hysteresis in the attenuation determination;		
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;		
13	further comprising:		
14	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and		
15	converting the IF signal to baseband after digitization; and		
16	the filtering and the de-spreading are implemented at baseband.		
1	9. (currently amended) A spread-spectrum receiver, comprising:		
2	a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to		
3	generate a selectively attenuated analog spread-spectrum signal;		
4	an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spread		
5	spectrum signal to generate a digital spread-spectrum signal;		

an interference-compensation filter adapted to filter the digital spread-spectrum signal in an

attempt to compensate for interference in the received analog spread-spectrum signal to generate a

6 7

8

filtered digital spread-spectrum signal;

9	a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a		
10	de-spread digital signal; and		
11	a controller adapted to control the variable attenuator based on the amplitude of the digital		
12	spread-spectrum signal prior to the interference-compensation filter and the digital processor, wherein the		
13	selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR).		
1	10. (original) The invention of claim 9, wherein the filter is adapted to attempt to		
2	compensate for off-channel interference in the received analog spread-spectrum signal.		
1	11. (canceled)		
	40		
1	12. (original) The invention of claim 9, wherein:		
2	the controller is adapted to control the variable attenuator to attenuate the received analog		
3	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper		
4	threshold; and		
5	the controller is adapted to control the variable attenuator not to attenuate the received analog		
6	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower		
7	threshold, wherein the upper threshold is greater than the lower threshold.		
1	13. (original) The invention of claim 12, wherein the upper threshold is greater than the		
2	lower threshold by an amount greater than the level of selective attenuation in order to provide hysteresis		
3	in the attenuation determination.		
1	14. (original) The invention of claim 9, wherein:		
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and		
3	further comprising:		
4	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the		
5	digitization; and		
6	a digital downconverter adapted to convert the IF signal to baseband after digitization.		
1	15. (original) The invention of claim 14, wherein the filter and the digital processor are		

2

adapted to operate at baseband.

16. (currently amended) The invention of claim 9, wherein:

the filter is adapted to attempt to compensate for off-channel interference in the received analog spread-spectrum signal;

the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR):

the controller is adapted to control the variable attenuator to attenuate the received analog spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper threshold:

the controller is adapted to control the variable attenuator not to attenuate the received analog spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower threshold:

the upper threshold is greater than the lower threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the attenuation determination;

the received analog spread-spectrum signal is a radio frequency (RF) signal;

further comprising:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2

2

3

- a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the digitization; and
- a digital downconverter adapted to convert the IF signal to baseband after digitization; and
 - the filter and the digital processor are adapted to operate at baseband.
 - 17 (canceled)

20

- (previously presented) The invention of claim 1, wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal in a time domain.
- 19 (previously presented) The invention of claim 6, wherein the attenuation determination is based on the amplitude of the digital IF signal.
 - (previously presented) The invention of claim 1, wherein: the received analog spread-spectrum signal is attenuated when the amplitude of the digital spread-spectrum signal is greater than a first threshold;

8 9

10 11 12

> 1 2

1 2 3

4 5 6

7 8

9 10

11 12

13

14 15

1

2 3

4

5

the received analog spread-spectrum signal is not attenuated when the amplitude of the digital spread-spectrum signal is less than a second threshold, wherein the first threshold is greater than or equal to the second threshold;

a transition from the received analog spread-spectrum signal not being attenuated to the received analog spread-spectrum signal being attenuated occurs after the amplitude of the digital spread-spectrum signal is greater than the first threshold for a first specified amount of time; and

a transition from the received analog spread-spectrum signal being attenuated to the received analog spread-spectrum signal not being attenuated occurs after the amplitude of the digital spreadspectrum signal is less than the second threshold for a second specified amount of time.

- 21. (previously presented) The invention of claim 1, wherein the attenuation determination is further based on a priori knowledge of maximum expected interference-to-carrier ratio.
- 22 (new) In a spread-spectrum receiver, a method for processing a received analog spreadspectrum signal, comprising:

determining whether to attenuate the received analog spread-spectrum signal;

based on the attenuation determination, selectively attenuating the received analog spreadspectrum signal to generate a selectively attenuated analog spread-spectrum signal;

digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spreadspectrum signal:

filtering the digital spread-spectrum signal in an attempt to compensate for interference in the received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and

de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal, wherein:

the attenuation determination is based on the amplitude of the digital spread-spectrum signal prior to the interference-compensation filtering and the de-spreading; and

the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR).

23. (new) In a spread-spectrum receiver, a method for processing a received analog spreadspectrum signal, comprising:

determining whether to attenuate the received analog spread-spectrum signal;

based on the attenuation determination, selectively attenuating the received analog spreadspectrum signal to generate a selectively attenuated analog spread-spectrum signal;

digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-			
spectrum signal;			
filtering the digital spread-spectrum signal in an attempt to compensate for interference in the			
received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and			
de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,			
wherein:			
the attenuation determination is based on the amplitude of the digital spread-spectrum			
signal prior to the interference-compensation filtering and the de-spreading; and			
the attenuation determination is further based on a priori knowledge of maximum			

expected interference-to-carrier ratio.