Periodicity and topology.

Paweł Dłotko.

Let us start with something nice, periodic, noiseless

Moving away and coming back.

Take its 2-dimensional embedding

Periodicity implies cyclicity

Let us take something less ideal

Moving away and coming back.

Still cyclic, but noisy

Why it is nice to look at embeddings?

- 1. The technique generalizes to higher dimensions (image sequence, Jan's example), and even more,
- 2. Topology gives score on how periodic or aperiodic things are,
- 3. We can compare how motion of one joint (of half of body) against the motion of another joint (half of the body),
- 4. We get numerical scale telling us how similar, or different, things are.

Why not to use spectral methods?

Minimum temperature in Melbourne, 1981-1990.

- State of the art spectral methods do not allow us to recover that year has 365 days.
- Topological methods, give an estimate between 300 and 370 days.
- Topology generalize to higher dimensions.

Change of period.

This is where Fourier analysis will fail, but topology still provides important insights.

Dynamic graph (50 dimensional embedding, r=5).

Discontinuous change of period (100 dimensional embedding, r=5).

Continuous change of period.

Continuous change of period.

SWE in \mathbb{R}^{100} . (See the animation!!)

Damping and sliding window embedding.

And Sliding Window Embedding

And Sliding Window Embedding

Why this is relevant for medical images (2/3 d)?

- 1. Agnostic to dimension,
- 2. Robust...
- 3. Tool that quantify how far away we are from perfectly periodic behavior,
- 4. Or, how two periodic behaviors are far away from each other.

Let us see Jan's example!