Boston House Data Prediction using popular Regression Algorithms

Importing necessary Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
import seaborn as sns
%matplotlib inline
```

Loading the Dataset

```
In [2]:
```

```
data = load_boston()
data.keys()
```

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2.

The Boston housing prices dataset has an ethical problem. You can refer to the documentation of this function for further details.

The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning.

In this special case, you can fetch the dataset from the original source::

```
import pandas as pd
import numpy as np
```

data url = "http://lib.stat.cmu.edu/datasets/boston"

```
raw df = pd.read csv(data_url, sep="\s+", skiprows=22, header=None)
        data = np.hstack([raw df.values[::2, :], raw df.values[1::2, :2]])
        target = raw df.values[1::2, 2]
    Alternative datasets include the California housing dataset (i.e.
    :func:`~sklearn.datasets.fetch california housing`) and the Ames housing
    dataset. You can load the datasets as follows::
        from sklearn.datasets import fetch_california_housing
        housing = fetch_california_housing()
    for the California housing dataset and::
        from sklearn.datasets import fetch openml
        housing = fetch openml(name="house prices", as frame=True)
    for the Ames housing dataset.
  warnings.warn(msg, category=FutureWarning)
Out[2]:
dict keys(['data', 'target', 'feature names', 'DESCR', 'filename', 'data module'])
In [3]:
print(data.DESCR)
.. boston dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14)
is usually the target.
    :Attribute Information (in order):
        - CRIM
               per capita crime rate by town
        - ZN
                  proportion of residential land zoned for lots over 25,000 sq.ft.
                 proportion of non-retail business acres per town
        - INDUS
        - CHAS
                  Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX
                 nitric oxides concentration (parts per 10 million)
        - RM
                 average number of rooms per dwelling
                 proportion of owner-occupied units built prior to 1940
        - AGE
        - DIS
                 weighted distances to five Boston employment centres
        - RAD
                 index of accessibility to radial highways
       - TAX
                 full-value property-tax rate per $10,000
       - PTRATIO pupil-teacher ratio by town
                  1000(Bk - 0.63)^2 where Bk is the proportion of black people by town
                  % lower status of the population
        - LSTAT
        - MEDV
                  Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon Un
iversity.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.
```

The Boston house-price data has been used in many machine learning papers that address re

gression problems.

.. topic:: References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massach usetts, Amherst. Morgan Kaufmann.

In [4]:

```
print(data.data)

[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
  [2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
  [2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
  ...
  [6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
  [1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
  [4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
```

In [5]:

```
print(data.target)
```

```
[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2

      37.9
      32.5
      26.4
      29.6
      50.
      32.
      29.8
      34.9
      37.
      30.5
      36.4
      31.1
      29.1
      50.

      33.3
      30.3
      34.6
      34.9
      32.9
      24.1
      42.3
      48.5
      50.
      22.6
      24.4
      22.5
      24.4
      20.

21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
 9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.
11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4
16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11.
                                                  9.5 14.5 14.1 16.1 14.3
11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3 16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
22. 11.9]
```

In [6]:

```
boston_features = data.feature_names
print(boston_features)
```

'B' 'LSTAT']

In [7]:

```
# Preparing the Dataset
```

boston_df = pd.DataFrame(data.data,columns=boston_features)
boston_df.head()

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

Here we can see that the target variable is not added, so we'll add the target column in the below steps

In [8]:

boston_df['PRICE'] = data.target

Checking the newly added column in the dataframe

In [9]:

boston_df.head()

Out[9]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

In [10]:

boston df.describe(include='all')

Out[10]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	T/
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.0000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.2371
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.5371
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.0000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.0000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.0000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.0000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.0000

In [11]:

boston_df.describe()

Out[11]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	T/
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.0000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.2371
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.5371
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.0000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.0000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.0000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.0000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.0000
4										Þ

Checking the Transpose of the overall description of the dataset

In [12]:

boston_df.describe().T

Out[12]:

	count	mean	std	min	25%	50%	75%	max
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.9762
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.0000
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.7400
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.0000
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.8710
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.0000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.0000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.9000
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.9700
PRICE	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.0000

Checking the data type of each column variable

In [13]:

boston_df.dtypes

Out[13]:

CRIM ZN	float64 float64
INDUS	float64
CHAS	float64
NOX	float64
RM	float64
AGE	float64
DIS	float64
RAD	float64
TAX	float64
PTRATTO	float64

PRICE float64 dtype: object In [14]: boston df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Column Non-Null Count Dtype 0 CRIM 506 non-null float64 ZN 506 non-null 1 float64 INDUS 2 506 non-null float64 CHAS 506 non-null float64 3 NOX float64 4 506 non-null RM float64 5 506 non-null 6 AGE 506 non-null float64 7 DIS 506 non-null float64 506 non-null float64 8 RAD 9 TAX 506 non-null float64 10 PTRATIO 506 non-null float64 11 B 506 non-null float64 506 non-null 12 LSTAT float64 13 PRICE 506 non-null float64 dtypes: float64(14) memory usage: 55.5 KB

Checking whether any null value is present in the dataset

float64

float64

В

LSTAT

```
In [15]:
```

```
boston_df.isnull().sum()
Out[15]:
CRIM 0
```

ZN 0 INDUS CHAS NOX RM AGE DIS RAD TAX 0 PTRATIO 0 В LSTAT PRICE dtype: int64

Finding the correlation of the datapoints in the dataset

```
In [16]:
```

boston df.corr()

Out[16]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
CRIM	1.000000	0.200469	0.406583	0.055892	0.420972	- 0.219247	0.352734	0.379670	0.625505	0.582764	0.289946	0.38
ZN	0.200469	1.000000	0.533828	0.042697	- 0.516604	0.311991	0.569537	0.664408	- 0.311948	- 0.314563	- 0.391679	0.17

INDUS	CRIM 0.406583	ZN	INDUS 1.000000	CHAS 0.062938	NOX 0.763651	RM_	AGE 0.644779	DIS_	RAD 0.595129	TAX 0.720760	PTRATIO 0.383248	0.25
											- 0.121515	0.04
NOX	0.420972	0.516604	0.763651	0.091203	1.000000	0.302188	0.731470	0.769230	0.611441	0.668023	0.188933	0.38
TAX	0.582764	- 0.314563	0.720760	- 0.035587	0.668023	0.292048	0.506456	- 0.534432	0.910228	1.000000	0.460853	0.44
PTRATIO	0.289946	- 0.391679	0.383248	- 0.121515	0.188933	- 0.355501	0.261515	- 0.232471	0.464741	0.460853	1.000000	0.17
В	- 0.385064	0.175520	- 0.356977	0.048788	- 0.380051	0.128069	- 0.273534	0.291512	- 0.444413	- 0.441808	- 0.177383	1.00
LSTAT	0.455621	- 0.412995	0.603800	0.053929	0.590879	- 0.613808	0.602339	0.496996	0.488676	0.543993	0.374044	0.36
PRICE	0.388305	0.360445	0.483725	0.175260	- 0.427321	0.695360	0.376955	0.249929	- 0.381626	0.468536	0.507787	0.33
4									ľ			₩ ▶

Checking the shape of the dataframe used

```
In [17]:
```

```
boston_df.shape
```

Out[17]:

(506, 14)

Plotting the Heatmap

In [18]:

```
sns.set(rc={'figure.figsize':(15,10)})
sns.heatmap(boston_df.corr(),annot=True)
```

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Out[18]:

<AxesSubplot:>

CRIM	1	-0.2	0.41	-0.056	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39
K	-0.2	1	-0.53	-0.043	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36
SNONI	0.41	-0.53	1	0.063	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48
CHAS	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.0074	-0.036	-0.12	0.049	-0.054	0.18
XON	0.42	-0.52	0.76	0.091	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43
RM	-0.22	0.31	-0.39	0.091	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7
AGE	0.35	-0.57	0.64	0.087	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38
DIS	-0.38	0.66	-0.71	-0.099	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25
RAD	0.63	-0.31	0.6	-0.0074	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38
TAX	0.58	-0.31	0.72	-0.036	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47
TRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51

В	-0.39	0.18	-0.36	0.049	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33
LSTAT	0.46	-0.41	0.6	-0.054		-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74
PRICE	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE

- -0.4

Data Visualization - Performing Basic EDA operations

1. Pairplot

In [19]:

sns.pairplot(boston_df)

Out[19]:

<seaborn.axisgrid.PairGrid at 0x17faabe61d0>

In [20]:

```
plt.scatter(boston_df['CRIM'], boston_df['PRICE'])
plt.xlabel("Crime Rate")
plt.ylabel("Price")
```

Out[20]:

Text(0, 0.5, 'Price')

2. Scatterplot - CRIME RATE vs PRICE

In [21]:

```
sns.regplot(x="CRIM",y="PRICE",data=boston_df)
```

Out[21]:

<AxesSubplot:xlabel='CRIM', ylabel='PRICE'>

3. ScatterPlot - AGE vs PRICE

In [22]:

```
plt.scatter(boston_df['AGE'], boston_df['PRICE'])
plt.xlabel("Age")
plt.ylabel("Price")
```

Out[22]:

Text(0, 0.5, 'Price')

In [23]:

```
sns.regplot(x="AGE", y="PRICE", data=boston_df)
```

Out[23]:

<AxesSubplot:xlabel='AGE', ylabel='PRICE'>

4. ScatterPlot - ROOMS vs PRICE

In [24]:

```
plt.scatter(boston_df['RM'], boston_df['PRICE'])
plt.xlabel("Rooms Per Dwelling")
plt.ylabel("Price")
```

Out[24]:

Text(0, 0.5, 'Price')

In [25]:

```
sns.regplot(x="RM",y="PRICE",data=boston_df)
```


In [26]:

sns.regplot(x="LSTAT",y="PRICE",data=boston_df)

Out[26]:

<AxesSubplot:xlabel='LSTAT', ylabel='PRICE'>

Detecting the outliers present in the Criminal Rate Data Column using Box-Plot

In [27]:

```
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(boston_df['CRIM'])
```

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From vers
ion 0.12, the only valid positional argument will be `data`, and passing other arguments
without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[27]:

<AxesSubplot:xlabel='CRIM'>

Detecting the outliers present in the AGE Data Column using Box-Plot

In [28]:

```
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(boston_df['AGE'])
```

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From vers
ion 0.12, the only valid positional argument will be `data`, and passing other arguments
without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[28]:

```
<AxesSubplot:xlabel='AGE'>
```


Detecting the outliers present in the PRICE Column using Box-Plot

In [29]:

```
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(boston_df['PRICE'])
```

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From vers
ion 0.12, the only valid positional argument will be `data`, and passing other arguments
without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[29]:

<AxesSubplot:xlabel='PRICE'>

Visualizing the DataFrame at a Glance using Pandas .head function

In [30]:

boston_df.head()

Out[30]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Splitting the Dataset into Features and Label

```
In [31]:
```

```
X = boston_df.iloc[:,:-1]
Y = boston_df.iloc[:,-1]
```

In [32]:

7.7

Out[32]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

```
In [33]:
Y
Out[33]:
      24.0
      21.6
2
      34.7
3
      33.4
4
      36.2
501
      22.4
      20.6
502
503
      23.9
      22.0
504
505
      11.9
Name: PRICE, Length: 506, dtype: float64
```

Model Training

```
In [34]:
```

```
from sklearn.model_selection import train_test_split
```

Splitting the dataset into Train and Test Data into 70% and 30% Respectively

```
In [35]:

X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.3, random_state=15)
```

```
In [36]:
```

 X_{train}

Out[36]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
129	0.88125	0.0	21.89	0.0	0.624	5.637	94.7	1.9799	4.0	437.0	21.2	396.90	18.34
349	0.02899	40.0	1.25	0.0	0.429	6.939	34.5	8.7921	1.0	335.0	19.7	389.85	5.89
257	0.61154	20.0	3.97	0.0	0.647	8.704	86.9	1.8010	5.0	264.0	13.0	389.70	5.12
60	0.14932	25.0	5.13	0.0	0.453	5.741	66.2	7.2254	8.0	284.0	19.7	395.11	13.15
314	0.36920	0.0	9.90	0.0	0.544	6.567	87.3	3.6023	4.0	304.0	18.4	395.69	9.28
375	19.60910	0.0	18.10	0.0	0.671	7.313	97.9	1.3163	24.0	666.0	20.2	396.90	13.44
133	0.32982	0.0	21.89	0.0	0.624	5.822	95.4	2.4699	4.0	437.0	21.2	388.69	15.03
396	5.87205	0.0	18.10	0.0	0.693	6.405	96.0	1.6768	24.0	666.0	20.2	396.90	19.37
245	0.19133	22.0	5.86	0.0	0.431	5.605	70.2	7.9549	7.0	330.0	19.1	389.13	18.46
456	4.66883	0.0	18.10	0.0	0.713	5.976	87.9	2.5806	24.0	666.0	20.2	10.48	19.01

```
In [37]:
```

```
X_train.shape
```

Out[37]:

(354, 13)

In [38]:

y_train.shape

```
Out[38]:
(354,)
In [39]:
y test.shape
Out[39]:
(152,)
In [40]:
X test.shape
Out[40]:
(152, 13)
Scaling the Train and Test Data using sklearn StandardScaler
In [41]:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
In [42]:
X train scaled = scaler.fit transform(X train)
In [43]:
X test scaled = scaler.fit transform(X test)
In [44]:
X train scaled
Out[44]:
array([[-0.32742136, -0.47138865, 1.5567594 , ..., 1.25320943,
         0.45613396, 0.81342951],
       [-0.43580738, 1.25986886, -1.45378412, ..., 0.56369103,
         0.38227796, -0.93425629],
       [-0.36172168, 0.3942401, -1.05704583, ..., -2.51615782,
         0.38070656, -1.0423461 ],
       [0.30728278, -0.47138865, 1.00395126, ..., 0.7935305,
         0.45613396, 0.95801718],
       [-0.41516181, 0.48080298, -0.78137106, ..., 0.28788367,
         0.37473522, 0.83027468],
       [0.15426348, -0.47138865, 1.00395126, ..., 0.7935305,
        -3.59201284, 0.90748168]])
In [45]:
X test scaled
Out[45]:
array([[-0.39138546, 0.90829998, -0.71005094, ..., -1.08471245,
         0.39241368, -0.47595831],
       [-0.34329631, 0.31784256, -1.01978929, ..., -2.5383999,
         0.2811574 , -0.97794122],
       [-0.38109148, -0.52566804, -1.00810105, ..., -0.85024673,
         0.40680566, 0.24974956],
       [ 1.17984502, -0.52566804, 1.04464602, ..., 0.83790643,
         0.40680566, 1.14325115],
       [-0.37791113, -0.52566804, -0.34917654, ..., 1.16615844,
```

O 201412E

0 00100711

```
U.3914123 , U.8U488/14],
       [-0.34087782, -0.52566804, 1.59837637, ..., 1.30683787,
         0.40680566, 0.7769015211)
In [46]:
from sklearn.linear model import LinearRegression
LR = LinearRegression()
In [47]:
LR
Out[47]:
▼ LinearRegression
LinearRegression()
In [48]:
LR.fit(X_train,y_train)
Out[48]:
▼ LinearRegression
LinearRegression()
In [49]:
## print the coefficients and the intercept
print(LR.coef )
[-7.30973225e-02 6.66062943e-02 8.45497046e-02 2.21512330e+00
-2.27372067e+01 3.24861978e+00 2.06578129e-02 -1.59247039e+00
 3.48847293e-01 -1.39796398e-02 -9.58296625e-01 9.98858984e-03
-5.92254599e-01]
In [50]:
print(LR.intercept )
41.76845495082349
In [51]:
## Prediction for the test data
reg pred=LR.predict(X test)
In [52]:
reg pred
Out[52]:
array([28.93841071, 40.17469652, 23.26283893, 22.72011976, 26.33677317,
        6.50809139, 16.72675328, 13.83049735, 28.38006838, 16.83901688,
       17.50579197, 22.45848043, 15.59048086, 16.11229233, 20.62101705,
       15.20710548, 8.47374859, 7.69857378, 21.45782622, 10.97606569, 38.72583349, 13.26023439, 23.33227986, 19.27402726, 19.3360351,
       19.62525449, 27.32359007, 19.91480848, 19.97039516, 19.98919575,
       21.45883975, 7.54689782, 20.33795817, 19.38369205, 23.37468039,
       19.05153146, 24.46267997, 28.19200979, 20.69966547, 18.68680301,
       28.11584489, 35.29854655, 20.0879725 , 27.8604335 , 25.57788978,
       21.59692292, 21.74601139, 30.24313863, 25.66136714, 20.36289475,
       31.39205843, 15.24938636, 14.28689956, 14.33724217, 17.70236617,
       30.67294605, 8.45801637, 29.38244272, 16.52514507, 26.35269311,
       17.64563127, 27.64146931, 18.83849367, 30.29337701, 34.33685682,
       20.40053045, 23.50840914, 18.29950906, 25.26796658, 18.96662268,
       19.54785317, 23.47174606, 20.06513963, 12.71104176, 34.58884204,
       20.18038844, 36.73034446, 17.86919358, 20.77346653, 13.21836627,
```

```
15.31962116, 17.54865527, 36.91230929, 22.57139152, 34.90624299,
18.75605528, 29.72788323, 23.65381032, 26.57590857, 20.73578394,
30.18801597, 24.57127722, 36.24961976, 23.92962871, 26.06991012,
32.79245337, 15.70279192, 27.04841957, 22.23639227, 22.14422298,
20.04264192, 12.51038729, 30.05440823,
                                       3.91508266, 24.43278658,
13.96740998, 23.30762929, 24.83459343, 21.47895717, 35.16407276,
29.91813952, 23.00538811, 20.21991859, 26.7787996 , 18.54381139,
25.54068621, 29.75000896, 15.542685 , 15.20621604, 31.59691836,
24.48797917, 12.79369385, 20.42987578, 33.54619872, 30.10169183,
                        , 41.41331714, 34.03046388, 24.20339851,
16.38623272, 22.77814
34.37334928, 22.64842338, 8.61530203, 15.61618271, 13.20934389,
22.16702318, 32.47200523, 9.2780732, 31.05708968, 27.49363576,
22.81749188, 17.4918494 , 20.47648792, 28.54144204, 23.17545754,
20.19885139, 19.7480775 , 17.29339103, 33.25948721, 18.95593496,
17.24115455, 16.74058242])
```

In [53]:

```
plt.scatter(y_test,reg_pred)
plt.xlabel("Test Truth Data")
plt.ylabel("Test Predicted Data")
```

Out[53]:

Text(0, 0.5, 'Test Predicted Data')

In [54]:

```
## residuals
residuals=y_test-reg_pred
```

In [55]:

```
sns.displot(residuals, kind="kde")
```

Out[55]:

In [56]:

plt.scatter(reg_pred,residuals)

Out[56]:

<matplotlib.collections.PathCollection at 0x17fb8c36b30>

In [57]:

Performance Metrics
from sklearn.metrics import mean_squared_error ## MSE

```
from sklearn.metrics import mean_absolute_error ## MAE
 print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test, reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))
27.58101431810535
3.7410552297491826
5.251762972384164
In [58]:
 from sklearn.metrics import r2 score
 score=r2 score(y test, reg pred)
print(score)
0.6745262607211457
In [59]:
 ## Adjusted R square
 #display adjusted R-squared
1 - (1-score)*(len(y test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[59]:
0.6438656910789349
Replacing the Xtrain and Xtest Data with their scaled value and check whether there is any significant changes
in the R^2
In [60]:
 from sklearn.linear model import LinearRegression
 regressor = LinearRegression()
In [61]:
 regressor.fit(X train scaled, y train)
Out[61]:
 ▼ LinearRegression
 LinearRegression()
In [62]:
print(regressor.coef )
 [-0.57477822 \quad 1.53891131 \quad 0.57966473 \quad 0.52327069 \quad -2.61571068 \quad 2.30712032 \quad -2.61571068 \quad -2.615710071009 \quad -2.61571000000000000000000000000000000000
     0.58203021 - 3.24197468 \quad 3.03389615 - 2.37665943 - 2.0847086
                                                                                                                                                                                      0.95347108
  -4.219047681
In [63]:
print(regressor.intercept )
22.598870056497184
In [64]:
 ## Prediction for the test data
 reg pred scaled=regressor.predict(X test scaled)
reg_pred_scaled
Out[64]:
array([29.42463134, 40.61980423, 23.29897949, 22.74061402, 26.4525965,
                       6.28990307, 16.47974461, 13.56370461, 28.95497615, 17.49308995,
                    17.47719586, 22.97436652, 16.3614426 , 15.45013899, 21.12309223,
                    14.91234242, 8.43924416, 8.04022778, 21.83340869, 11.56712765, 30 00754475 13 33528082 23 51226403 10 21055180 10 65136063
```

```
JJ.UJ/JTT/J, IJ.JJZCUUUZ, ZJ.JIZZUTJJ, IJ.ZIUJJIUJ, IJ.UJIJUJUJ,
19.92020457, 28.03197224, 19.32099938, 19.96826541, 20.86872688,
22.19425428, 7.53319237, 20.773365 , 19.39044594, 23./2136932, 18.87022269, 24.96021168, 28.23281392, 20.69551791, 19.37194935,
29.28811809, 35.34873981, 19.99782097, 28.54655757, 25.61194664,
22.23749836, 21.74517391, 30.55628098, 26.44523454, 20.37401324,
32.33920514, 14.87300921, 14.39367596, 14.45346953, 17.92770041,
31.34936014, 8.73807517, 29.57151886, 16.30931465, 26.45033129,
17.47457576, 27.75310272, 18.71862476, 30.21772465, 34.66598234,
20.40381065, 23.27971114, 18.24107235, 25.64969651, 18.94833594,
20.15482152, 24.18153851, 20.07589036, 12.03550143, 35.02016365,
21.25567391, 37.04163541, 18.4118881 , 20.74489414, 13.39241986,
15.23374827, 17.61224194, 37.55997143, 23.70708553, 35.31240389,
18.59071991, 30.55847821, 23.6698027 , 26.6435274 , 20.9614213 ,
30.74266834, 25.44464509, 35.99961779, 24.06620718, 25.83510891,
32.60717018, 16.1425784 , 27.7594317 , 22.0735267 , 21.78537948,
20.03481481, 12.71558176, 30.65271935,
                                         3.36324905, 24.63843861,
13.96277842, 23.67535194, 24.59990408, 21.54826575, 35.59706163,
30.12203431, 23.03074256, 20.97569756, 26.07544888, 19.00141849,
25.34055397, 29.91583008, 15.45227059, 14.32601875, 32.36723659,
24.67705534, 12.18934835, 20.32484065, 32.96968048, 30.56629772,
15.94230652, 22.82085236, 41.36355971, 34.37172257, 24.61744623,
34.76112273, 22.98704168, 8.57551228, 15.90253854, 12.85275527,
22.37127071, 33.12591892, 9.33521016, 31.56154069, 28.16215999,
23.35092939, 17.32183768, 20.98538519, 28.98690929, 23.22604912,
20.98033326, 19.73015481, 18.5988905 , 33.46069977, 19.05492711,
17.1429949 , 16.62854312])
```

In [65]:

```
plt.scatter(y_test, reg_pred_scaled)
plt.xlabel("Test Truth Data")
plt.ylabel("Test Predicted Data")
```

Out[65]:

Text(0, 0.5, 'Test Predicted Data')

In [66]:

```
## residuals
residuals_scaled=y_test-reg_pred_scaled
```

In [67]:

```
residuals_scaled
```

Out[67]:

301 -7.424631 262 8.180196 172 -0.198979 505 -10.840614 111 -3.652596 -8.198891 380 307 -5.260700 381 -8.154927 106 2.357005 139 1.171457 Name: PRICE, Length: 152, dtype: float64

In [68]:

sns.displot(residuals_scaled, kind="kde")

Out[68]:

<seaborn.axisgrid.FacetGrid at 0x17fb8c82f50>

In [69]:

plt.scatter(reg_pred, residuals_scaled)

Out[69]:

<matplotlib.collections.PathCollection at 0x17fb8d721a0>

In [70]:

```
## Performance Metrics
from sklearn.metrics import mean_squared_error ## MSE
from sklearn.metrics import mean_absolute_error ## MAE
print(mean_squared_error(y_test,reg_pred_scaled))
print(mean_absolute_error(y_test,reg_pred_scaled))
print(np.sqrt(mean_squared_error(y_test,reg_pred_scaled)))
```

27.46473809683593 3.727436748688041 5.2406810718489565

In [71]:

```
from sklearn.metrics import r2_score
score_scaled=r2_score(y_test, reg_pred_scaled)
print(score_scaled)
```

0.6758983950483787

In [72]:

```
## Adjusted R square
#display adjusted R-squared
1 - (1-score_scaled)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
```

Out[72]:

0.6453670844369941

There is no such significant changes between the Normal and Scaled R^2 Values

Evaluating the Dataset using Ridge Regression

```
In [73]:
```

```
## Ridge
from sklearn.linear_model import Ridge
ridge=Ridge()
```

In [74]:

```
ridge.fit(X train, y train)
```

```
▼ Ridge
Ridge()
In [75]:
ridge pred = ridge.predict(X test)
In [76]:
ridge pred
Out[76]:
array([28.34700411, 40.99020024, 22.61027099, 23.2155383 , 26.11759627,
         5.98219852, 15.62597673, 12.83874366, 27.99127334, 16.39679102,
       17.63269965, 22.29196843, 15.78474533, 16.47304297, 20.43928823,
       15.53700685, 8.49051102, 7.8570057, 22.21636121, 10.37300533, 39.15601791, 13.50243764, 22.42297964, 19.37771, 20.02993273,
       19.47530705, 26.96124868, 20.72561217, 20.17750241, 20.71514059,
       21.94343695, 9.32729636, 20.38013688, 19.1333901 , 23.19582726,
       20.02576519, 23.47458314, 28.86578648, 20.87954425, 18.47360772,
       28.94436027, 34.87608624, 20.54470438, 27.33611564, 25.40585055,
       21.40416119, 21.0462387, 30.30832271, 26.11474415, 20.26341559,
       31.91067008, 17.09132649, 14.36271739, 14.53180137, 17.96166841,
       31.01618851, 8.82019251, 28.42608421, 15.4304323 , 26.85162603,
       16.61153694, 27.46829035, 18.41043268, 29.5195852 , 34.09605507,
       20.2223502, 22.90603938, 18.54047753, 25.00272711, 19.63226713,
       18.43735905, 23.78779977, 20.24490781, 13.18344169, 34.96474836,
       20.79023033, 37.42422335, 17.13861604, 21.01270366, 13.99123209,
       14.4508423 , 17.43909906, 36.97607769, 22.90718041, 35.16515341,
       19.2989718 , 29.88230126, 23.07193895, 26.22457409, 20.75840548,
       30.13141762, 24.5859121 , 37.01350018, 23.78615258, 25.57973946, 32.02685983, 15.78405085, 27.41134644, 21.26214375, 23.12465509,
       19.41357858, 12.66093485, 29.90958765, 4.38255416, 24.25073335, 15.91089374, 22.97921236, 23.89152687, 20.77540019, 34.81754799,
       30.12105276, 22.52794502, 19.86807171, 26.46315873, 18.84789258,
       24.91207356, 29.2459565 , 16.2150825 , 14.22966397, 31.55193231,
       24.08301293, 12.64748472, 19.93409229, 32.92761943, 29.70919044,
       16.78158311, 22.41770084, 40.88693989, 34.39226363, 24.06135042,
       33.92040686, 22.83345534, 10.45132671, 15.85212532, 14.81175304,
       22.48341944, 32.44637478, 9.10872096, 30.80920283, 27.10737493,
       22.70310752, 16.47854624, 20.17080451, 28.16656697, 22.97102641,
       20.38098202, 20.3644423 , 18.08376687, 33.00326745, 18.90459902,
       16.85547231, 16.76993899])
In [77]:
plt.scatter(y test, ridge pred)
plt.xlabel("Test Truth Data")
plt.ylabel("Test Predicted Data")
Out[77]:
Text(0, 0.5, 'Test Predicted Data')
  40
  35
```

Out [74]:

30

In [78]:

```
## residuals
ridge_residuals=y_test-ridge_pred
ridge_residuals
```

Out[78]:

```
301
       -6.347004
262
        7.809800
172
        0.489729
505
      -11.315538
       -3.317596
111
       -7.683767
380
307
       -4.803267
381
       -8.004599
106
        2.644528
139
        1.030061
```

Name: PRICE, Length: 152, dtype: float64

In [79]:

```
sns.displot(ridge_residuals, kind="kde")
```

Out[79]:

<seaborn.axisgrid.FacetGrid at 0x17fb8d9f850>


```
In [80]:
```

```
plt.scatter(ridge pred, ridge residuals)
```

Out[80]:

<matplotlib.collections.PathCollection at 0x17fb8ea9540>

In [81]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test, ridge_pred))
print(mean_absolute_error(y_test, ridge_pred))
print(np.sqrt(mean_squared_error(y_test, ridge_pred)))
```

26.895629415693488 3.6794629931440492 5.186099634184971

In [82]:

```
from sklearn.metrics import r2_score
ridge_score=r2_score(y_test, ridge_pred)
print(ridge_score)
```

0.6826142441600589

In [83]:

```
## Adjusted R square
#display adjusted R-squared
1 - (1-ridge_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
```

Out[83]:

0.6527155860012239

Evaluating the Dataset using the Lasso Regression

```
In [84]:
from sklearn.linear model import Lasso
lasso = Lasso()
In [85]:
lasso
Out[85]:
▼ Lasso
Lasso()
In [86]:
lasso.fit(X train, y train)
Out[86]:
▼ Lasso
Lasso()
In [87]:
print(lasso.intercept_)
42.22410959384636
In [88]:
print(lasso.coef )
[-0.02663527 \quad 0.07056985 \quad -0.
                                       0.
                                                   -0.
                                                                0.5581624
  0.03947285 \ -0.70744747 \quad 0.26299305 \ -0.01560035 \ -0.68467839 \quad 0.00800488
 -0.81411349]
In [89]:
lasso pred=lasso.predict(X test)
In [90]:
lasso pred
Out[90]:
array([27.12941361, 36.88288348, 23.53663729, 25.39359024, 24.84286728,
        4.74509463, 13.77197408, 14.59393706, 27.91697514, 20.70575638,
       17.19959477, 23.38059776, 18.76539026, 15.71949933, 21.9400187,
       16.89252795, 7.77093828, 7.50463158, 23.9060242 , 10.67279224,
       36.68242587, 16.43054605, 21.60211303, 18.79002068, 22.97393494,
       21.98666538, 27.36347518, 20.51518792, 20.88869769, 24.0578185 ,
       24.76600528, 11.71271316, 21.09083519, 18.65597701, 22.96610777,
       24.27196609, 23.65172725, 30.72143679, 19.57450749, 20.41043529,
       26.31788589, 30.87741489, 20.55445125, 28.70729577, 22.47098468,
       23.75433348, 21.10560936, 28.90566851, 28.19825584, 16.67068047,
       32.12026299, 20.94566571, 16.26353947, 16.30748208, 19.98072517,
       30.37613072, 8.87735163, 26.18796243, 12.67216926, 27.34816607,
       17.23128131, 27.34355876, 18.57341514, 30.83959245, 33.33076023,
       20.40398752, 23.76843679, 19.73860467, 26.12468643, 19.82619535,
       19.14066668, 24.65846193, 19.44224362, 14.85090005, 34.12218508,
       24.57761427, 35.32778313, 17.67055649, 20.75709165, 14.43617187,
       13.07633825, 15.7003081 , 34.14255471, 24.5261761 , 31.5570532 ,
```

18.31798381. 29.61277049. 23.18107675. 26.92377089. 23.20020534.

```
29.55871397, 27.93439204, 29.58002763, 24.96195126, 23.44437412, 28.19490581, 17.65750882, 27.42232493, 19.52255178, 21.93159263, 18.13777849, 11.19682599, 29.79131801, 2.30146038, 24.03640166, 18.25897984, 22.23769927, 21.57007722, 20.81030838, 30.89776734, 29.08864257, 21.89925985, 23.03711848, 25.66765445, 19.68908392, 23.18863185, 28.70904018, 18.68770727, 14.57359524, 30.66186561, 24.58434053, 10.89134835, 19.84919038, 30.72379031, 30.70017339, 18.0433517, 22.58478993, 34.40515005, 30.02136614, 23.9168915, 31.20069332, 24.54281215, 12.44231477, 17.88352247, 14.46959123, 22.73879405, 31.34618692, 5.81778454, 31.55147121, 28.4583525, 24.25812821, 14.77655907, 21.84372431, 26.78499449, 22.59591976, 22.40993065, 19.96668011, 17.62667583, 31.72425704, 16.39858989, 16.53095951, 16.19477664])
```

In [91]:

```
plt.scatter(y_test,lasso_pred)
plt.xlabel("Test Truth Data")
plt.ylabel("Test Predicted Data")
```

Out[91]:

Text(0, 0.5, 'Test Predicted Data')

In [92]:

```
## residuals
lasso_residuals=y_test-lasso_pred
lasso_residuals
```

Out[92]:

```
301 -5.129414
262 11.917117
172 -0.436637
505 -13.493590
```

```
111 -2.04286/
...
380 -7.226676
307 -3.524257
381 -5.498590
106 2.969040
139 1.605223
Name: PRICE, Length: 152, dtype: float64
```

In [93]:

```
sns.displot(lasso_residuals, kind="kde")
```

Out[93]:

<seaborn.axisgrid.FacetGrid at 0x17fb8eed330>

In [94]:

```
## SCatter plot with predictions and residual
##uniform distribution
plt.scatter(lasso_pred, lasso_residuals)
```

Out[94]:

<matplotlib.collections.PathCollection at 0x17fba74c760>

In [95]:

sns.regplot(lasso pred, lasso residuals)

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From v
ersion 0.12, the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[95]:

<AxesSubplot:ylabel='PRICE'>

In [96]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,lasso_pred))
print(mean_absolute_error(y_test,lasso_pred))
print(np.sqrt(mean_squared_error(y_test,lasso_pred)))
```

33.31417646922572

4.044140676389867

5.771843420366298

```
In [97]:
from sklearn.metrics import r2 score
lasso score=r2 score(y test, lasso pred)
print(lasso score)
0.6068712534869765
In [98]:
## Adjusted R square
#display adjusted R-squared
1 - (1-lasso score)*(len(y test)-1)/(len(y test)-X test.shape[1]-1)
Out[98]:
0.5698373860618365
Evaluating the ElasticNet Regression
In [99]:
from sklearn.linear model import ElasticNet
elasticnet = ElasticNet()
In [100]:
elasticnet
Out[100]:
▼ ElasticNet
ElasticNet()
In [101]:
elasticnet.fit(X train, y train)
Out[101]:
▼ ElasticNet
ElasticNet()
In [102]:
print(elasticnet.intercept )
41.43181147909337
In [103]:
print(elasticnet.coef )
[-0.04587096 \quad 0.07269826 \quad -0.
                                       0.
                                                  -0.
                                                               0.79596544
 0.03686871 - 0.7795076 0.29552182 - 0.01671115 - 0.70696726 0.00824164
 -0.79346039]
In [104]:
elasticnet pred=elasticnet.predict(X test)
In [105]:
elasticnet pred
Out[105]:
array([27.26828373, 37.51032106, 23.5103766 , 25.16133916, 24.8620994 ,
        4 96350039 13 75939807 14 15667878 27 93675223 20 29567914
```

```
1.50550055, 15.75555007, 11.15007070, 27.55070225, 20.25507517
17.11111674, 23.24198129, 18.29521516, 15.94525879, 21.63377027,
16.40644521, 7.87286401, 7.22000653, 23.84317529, 10.73149498, 37.09206294, 16.14321934, 21.46168756, 18.71686962, 22.66965331,
21.75464982, 27.23463365, 20.62922864, 20.67907094, 23.58241666,
24.58592064, 11.78176239, 20.80240837, 18.79055074, 22.951107
24.17318451, 23.54136541, 30.86092198, 19.808766 , 20.29363844,
26.46814145, 31.09658387, 20.6554074 , 28.63220283, 22.81079176,
23.5971913 , 21.19882451, 28.96528236, 28.01436765, 17.07321262,
32.26511008, 20.85186443, 16.06946393, 16.03035783, 19.76871859,
30.34973931, 8.49742367, 26.34728922, 12.96971314, 27.25290027,
17.19984168, 27.43741824, 18.47001984, 30.68086412, 33.4438989,
20.28502535, 23.64998184, 19.64133836, 25.98274388, 20.02589897,
18.98966344, 24.53715483, 19.41113857, 14.84442847, 34.27319022,
24.07758544, 35.79058396, 17.59623148, 20.89894275, 14.3681251 ,
13.31437778, 15.81759266, 34.35110555, 24.3429957 , 31.92712315,
18.59530486, 29.55954147, 23.26274262, 26.90558219, 22.98676213,
29.53320464, 27.56199386, 30.2395347 , 24.87823579, 23.54384238,
28.43667746, 17.27931099, 27.3885288 , 19.4826149 , 22.12587463,
18.26416243, 11.20908887, 29.71976701,
                                          2.60692363, 24.14034378,
18.30165931, 22.13797235, 21.69294449, 20.83264279, 31.11039637, 29.20630786, 21.89492996, 22.71580248, 25.65511909, 19.59974065,
23.21237664, 28.75998786, 18.43942393, 14.54893282, 30.72271777,
24.62367812, 11.14817335, 19.78183593, 30.81838114, 30.59386778,
17.97997007, 22.66230113, 34.72279392, 30.46533435, 23.87706966,
31.36784604, 24.37016055, 12.54069607, 17.67449394, 14.57784374,
22.73312952, 31.35300892, 6.12363363, 31.4891038 , 28.38592949,
24.17505825, 15.00700429, 21.5219948 , 26.93744597, 22.54457767,
22.23913207, 20.00321318, 16.47854978, 32.03802161, 16.60981382,
16.4738673 , 16.12693736])
```

In [106]:

```
plt.scatter(y_test,elasticnet_pred)
plt.xlabel("Test Truth Data")
plt.ylabel("Test Predicted Data")
```

Out[106]:

Text(0, 0.5, 'Test Predicted Data')

10 20 30 40 50 Test Truth Data

In [107]:

sns.regplot(y_test,elasticnet_pred)

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From v
ersion 0.12, the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[107]:

<AxesSubplot:xlabel='PRICE'>

In [108]:

residuals elasticnet_residuals=y_test-elasticnet_pred elasticnet residuals

Out[108]:

301	-5.268284
262	11.289679
172	-0.410377
505	-13.261339
111	-2.062099
380	-6.078550
380 307	-6.078550 -3.838022
307	-3.838022

100 1.0000

Name: PRICE, Length: 152, dtype: float64

In [109]:

sns.displot(elasticnet_residuals,kind="kde")

Out[109]:

<seaborn.axisgrid.FacetGrid at 0x17fba7ae2f0>

In [110]:

Scatter plot with predictions and residual
##uniform distribution
plt.scatter(elasticnet pred, elasticnet residuals)

Out[110]:

<matplotlib.collections.PathCollection at 0x17fba83fb80>


```
-15 5 10 15 20 25 30 35
```

In [111]:

```
sns.regplot(elasticnet pred, elasticnet residuals)
```

C:\Users\Shobhandeb\AppData\Local\Programs\Python\Python310\lib\site-packages\seaborn_de
corators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From v
ersion 0.12, the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[111]:

<AxesSubplot:ylabel='PRICE'>

In [112]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,elasticnet_pred))
print(mean_absolute_error(y_test,elasticnet_pred))
print(np.sqrt(mean_squared_error(y_test,elasticnet_pred)))
```

32.36843282824359

3.9801854082590764

5.6893262191795255

In [113]:

```
from sklearn.metrics import r2_score
elasticnet_score=r2_score(y_test,elasticnet_pred)
print(elasticnet_score)
```

0.6180316377889994

```
In [114]:
## Adjusted R square
#display adjusted R-squared
1 - (1-elasticnet_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[114]:
0.5820491109140501
In [ ]:
```