Error Detection '#

Types of Error

- an error occurs when a bit is altered between transmission and reception
- single bit errors
 - only one bit altered
 - caused by white noise
- burst errors
 - contiguous sequence of B bits in which first, last and any number of intermediate bits in error
 - caused by impulse noise or by fading in wireless
 - effect greater at higher data rates

Error Detection

- Link transmission will have errors
- P_b: Probability of bit error (BER)
- P_f : Probability of frame not in error = $(1-P_b)^F$, F is frame length in bits
- detected using error-detecting code
 - calculated as a function of data bits
 - recalculated and checked by receiver
- still chance of undetected error

Redundancy

• To detect or correct errors, redundant bits of data must be added

Error Coding

- Process of adding redundancy for error detection or correction
- Two types:
 - Block codes
 - Divides the data to be sent into a set of blocks
 - Extra information attached to each block
 - Memoryless
 - Convolutional codes
 - Treats data as a series of bits, and computes a code over a continuous series
 - The code computed for a set of bits depends on the current and previous input

XOR Operation

- Main operation for computing error detection/correction codes
- Similar to modulo-2 addition

$$0 + 0 = 0$$

$$1 + 1 = 0$$

a. Two bits are the same, the result is 0.

$$1 \oplus 0 = 1$$

b. Two bits are different, the result is 1.

c. Result of XORing two patterns

Block Coding

- Message is divided into k-bit blocks
 - Known as datawords
- r redundant bits are added
 - Blocks become *n=k+r* bits
 - Known as codewords

Error Detection in Block Coding

Notes

- An error-detecting code can detect only the types of errors for which it is designed
 - Other types of errors may remain undetected.
- There is no way to detect every possible error

Common Detection Methods

- Parity check
- Checksum
- Cyclic Redundancy Check

Parity Check

- Most common, least complex
- Single bit is added to a block
- Two schemes:
 - Even parity Maintain even number of 1s
 - E.g., $1011 \rightarrow 1011\underline{1}$
 - Odd parity Maintain odd number of 1s
 - E.g., 1011 → 1011<u>0</u>

2D Parity Check

What is its performance?

2D Parity Check: Performance

b. One error affects two parities

c. Two errors affect two parities

2D Parity Check: Performance

d. Three errors affect four parities

e. Four errors cannot be detected

Internet Checksum

- Used in network and transport layer
- Treat datawords to be protected as numbers and sum them using ones complement addition (wrap around leftmost digit)
- Send the negative of sum along with data
- Receiver adds all datawords (including checksum) and checks if zero
- Cannot protect against errors that don't affect the sum

Internet Checksum: Sender

- The message is divided into 16-bit words.
- The value of the checksum word is set to 0.
- All words including the checksum are added using one's complement addition.
- The sum is complemented and becomes the checksum.
- The checksum is sent with the data.

Internet Checksum: Receiver

- The message (including checksum) is divided into 16-bit words.
- All words are added using one's complement addition.
- The sum is complemented and becomes the new checksum.
- If the value of checksum is 0, the message is accepted; otherwise, it is rejected.

Cyclic Redundancy Check

 In a cyclic code, rotating a codeword always results in another codeword

• Example:

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001 <mark>011</mark>	1001	1001110
0010	0010110	1010	1010 <mark>011</mark>
0011	0011 <mark>101</mark>	1011	1011000
0100	0100111	1100	1100 <mark>010</mark>
0101	0101100	1101	1101 <mark>001</mark>
0110	0110001	1110	1110100
0111	0111010	1111	1111111

CRC Encoder/Decoder

CRC Generator

Checking CRC

Polynomial Representation

- More common representation than binary form
- Easy to analyze
- Divisor is commonly called generator polynomial

a. Binary pattern and polynomial

b. Short form

Division Using Polynomial

Strength of CRC

- Can be analyzed using polynomial
 - M(x) Original message
 - G(x) Generator polynomial of degree n
 - R(x) Generated CRC

$$M(x)\cdot x^n = Q(x)\cdot G(x) + R(x)$$

Transmitted message is

$$M(x)\cdot x^n - R(x)$$

which is divisible by G(x)

Strength of CRC

Received message is

$$M(x)\cdot x^n - R(x) + E(x)$$

where E(x) represents bit errors

- Receiver does not detect any error when E(x) is divisible by G(x), which means either:
 - $E(x) = 0 \rightarrow \text{No error}$
 - $E(x) \neq 0 \rightarrow Undetectable error$

Strength of CRC

- If G(x) contains at least two terms, then all single-bit errors can be detected
- If G(x) cannot divide $x^t + 1$ ($0 \le t < n$), then all isolated double errors can be detected
- If G(x) contains a factor of (x+1), all odd-numbered errors can be detected

CRC's Strength Summary

- All burst errors with L ≤ n will be detected
- All burst errors with L = n + 1 will be detected with probability $1 (1/2)^{n-1}$
- All burst errors with L > n + 1 will be detected with probability $1 (1/2)^n$

Error Correction

Example: Error Correction Code

Dataword	Codeword	
00	00000	
01	01011	
10	10101	
11	11110	

$$k, r, n = ?$$

The receiver receives 01001, what is the original dataword?

Hamming Distance

Hamming Distance between two words is the number of differences between corresponding bits.

- d(01, 00) = ?
- d(11, 00) = ?
- d(010, 100) = ?
- d(0011, 1000) = ?
- How many 8-bit words are *n* bits away from 10000111?

Minimum Hamming Distance

The minimum Hamming distance is the smallest Hamming distance between all possible pairs in a set of words.

Find the minimum Hamming Distance of the following codebook

Detection Capability of Code

• To guarantee the detection of up to *s*-bit errors, the minimum Hamming distance in a block code must be

Correction Capability of Code

• To guarantee the correction of up to *t*-bit errors, the minimum Hamming distance in a block code must be

Example: Hamming Distance

• A code scheme has a Hamming distance $d_{min} = 4$. What is the error detection and correction capability of this scheme?

Error Correction

- Two methods
 - Retransmission after detecting error
 - Forward error correction (FEC)

Forward Error Correction

- Consider only a single-bit error in k bits of data
 - *k* possibilities for an error
 - One possibility for no error
 - #possibilities = k + 1
- Add r redundant bits to distinguish these possibilities; we need

$$2^r \ge k+1$$

• But the r bits are also transmitted along with data; hence

$$2^{r} \ge k + r + 1$$

Hamming Code

- Simple, powerful FEC
- Widely used in computer memory
 - Known as ECC memory

error-correcting bits

Example: Hamming Code

Example: Correcting Error

Receiver receives 10010100101

