7 Visualizations You Should Learn in R

Data Visualization in R

Let your data tell the story

With ever increasing volume of data, it is impossible to tell stories without visualizations. Data visualization is an art of how to turn numbers into useful knowledge.

R Programming lets you learn this art by offering a set of inbuilt functions and libraries to build visualizations and present data. Before the technical implementations of the visualization, let's see first how to select the right chart type.

Selecting the Right Chart Type

There are four basic presentation types:

1. Comparison

- 2. Composition
- 3. Distribution
- 4. Relationship

To determine which amongst these is best suited for your data, I suggest you should answer a few questions like,

- How many variables do you want to show in a single chart?
- How many data points will you display for each variable?
- Will you display values over a period of time, or among items or groups?

Below is a great explanation on selecting a right chart type by Dr. Andrew Abela.

In your day-to-day activities, you'll come across the below listed 7 charts most of the time.

- 1. Scatter Plot
- 2. Histogram
- 3. Bar & Stack Bar Chart
- 4. Box Plot
- 5. Area Chart
- 6. Heat Map
- 7. Correlogram

We'll use 'Big Mart data' example as shown below to understand how to create visualizations in R. You can download the full dataset from <u>here</u>.

Item_Identifier ‡	Item_Weight ‡	Item_Fat_Content ‡	Item_Visibility ‡	Item_Type ‡	Item_MRP [‡]	Outlet_Identifier ‡	Outlet_Establishment_Year ‡	Outlet_Size ‡	Outlet_Location_Type ‡	Outlet_Type
FDA15	9.300	Low Fat	0.016047301	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Typ
DRC01	5.920	Regular	0.019278216	Soft Drinks	48.2592	OUT018	2009	Medium	Tier 3	Supermarket Typ
FDN15	17.500	Low Fat	0.016760075	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Typ
FDX07	19.200	Regular	0.000000000	Fruits and Vegetables	182.0950	OUT010	1998		Tier 3	Grocery Store
NCD19	8.930	Low Fat	0.000000000	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Typ
FDP36	10.395	Regular	0.000000000	Baking Goods	51.4008	OUT018	2009	Medium	Tier 3	Supermarket Typ
FDO10	13.650	Regular	0.012741089	Snack Foods	57.6588	OUT013	1987	High	Tier 3	Supermarket Typ
FDP10	NA	Low Fat	0.127469857	Snack Foods	107.7622	OUT027	1985	Medium	Tier 3	Supermarket Typ
FDH17	16.200	Regular	0.016687114	Frozen Foods	96.9726	OUT045	2002		Tier 2	Supermarket Typ
FDU28	19.200	Regular	0.094449590	Frozen Foods	187.8214	OUT017	2007		Tier 2	Supermarket Typ
FDY07	11.800	Low Fat	0.000000000	Fruits and Vegetables	45.5402	OUT049	1999	Medium	Tier 1	Supermarket Typ
FDA03	18.500	Regular	0.045463773	Dairy	144.1102	OUT046	1997	Small	Tier 1	Supermarket Typ
FDX32	15.100	Regular	0.100013500	Fruits and Vegetables	145.4786	OUT049	1999	Medium	Tier 1	Supermarket Typ
FDS46	17.600	Regular	0.047257328	Snack Foods	119.6782	OUT046	1997	Small	Tier 1	Supermarket Typ
FDF32	16.350	Low Fat	0.068024300	Fruits and Vegetables	196.4426	OUT013	1987	High	Tier 3	Supermarket Typ

Now let's see how to use these visualizations in R

1. Scatter Plot

When to use: Scatter Plot is used to see the relationship between two continuous variables.

In our above mart dataset, if we want to visualize the items as per their cost data, then we can use scatter plot chart using two continuous variables, namely Item_Visibility & Item_MRP as shown below.

Here is the R code for simple scatter plot using function **ggplot()** with geom_point().

Now, we can view a third variable also in same chart, say a categorical variable (Item_Type) which will give the characteristic (item_type) of each data set. Different categories are depicted by way of different color for item_type in below chart.

R code with an addition of category:

```
ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) +
    scale_x_continuous("Item Visibility", breaks = seq(0,0.35,0.05))+
    scale_y_continuous("Item MRP", breaks = seq(0,270,by = 30))+
    theme_bw() + labs(title="Scatterplot")
```

We can even make it more visually clear by creating separate scatter plots for each separate Item_Type as shown below.

R code for separate category wise chart:

```
ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) +
scale_x_continuous("Item Visibility", breaks = seq(0,0.35,0.05))+
scale_y_continuous("Item MRP", breaks = seq(0,270,by = 30))+
theme_bw() + labs(title="Scatterplot") + facet_wrap( ~ Item_Type)
```

Here, facet_wrap works superb & wraps Item_Type in rectangular layout.

2. Histogram

When to use: Histogram is used to plot continuous variable. It breaks the data into bins and shows frequency distribution of these bins. We can always change the bin size and see the effect it has on visualization.

From our mart dataset, if we want to know the count of items on basis of their cost, then we can plot histogram using continuous variable Item_MRP as shown below.

Here is the R code for simple histogram plot using function **ggplot()** with **geom_histogram()**.

```
ggplot(train, aes(Item_MRP)) + geom_histogram(binwidth = 2)+
scale_x_continuous("Item MRP", breaks = seq(0,270,by = 30))+
scale_y_continuous("Count", breaks = seq(0,200,by = 20))+
labs(title = "Histogram")
```

3. Bar & Stack Bar Chart

When to use: Bar charts are recommended when you want to plot a categorical variable or a combination of continuous and categorical variable.

From our dataset, if we want to know number of marts established in particular year, then bar chart would be most suitable option, use variable Establishment Year as shown below.

Here is the R code for simple bar plot using function ggplot() for a single continuous variable.

```
ggplot(train, aes(Outlet_Establishment_Year)) + geom_bar(fill = "red")+theme_bw()+
scale_x_continuous("Establishment Year", breaks = seq(1985,2010)) +
scale_y_continuous("Count", breaks = seq(0,1500,150)) +
coord_flip()+ labs(title = "Bar Chart") + theme_gray()
```

Vertical Bar Chart:

As a variation, you can remove coord_flip() parameter to get the above bar chart vertically.

To know item weights (continuous variable) on basis of Outlet Type (categorical variable) on single bar chart, use following code:

```
ggplot(train, aes(Item_Type, Item_Weight)) + geom_bar(stat = "identity", fill =
"darkblue") + scale_x_discrete("Outlet Type")
+ scale_y_continuous("Item Weight", breaks = seq(0,15000, by = 500))
+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + labs(title = "Bar Chart")
```

Stacked Bar chart:

Stacked bar chart is an advanced version of bar chart, used for visualizing a combination of categorical variables.

From our dataset, if we want to know the count of outlets on basis of categorical variables like its type (Outlet Type) and location (Outlet Location Type) both, stack chart will visualize the scenario in most useful manner.

Here is the R code for simple stacked bar chart using function ggplot().

```
ggplot(train, aes(Outlet_Location_Type, fill = Outlet_Type)) + geom_bar()+
labs(title = "Stacked Bar Chart", x = "Outlet Location Type", y = "Count of Outlets")
```

4. Box Plot

When to use: Box Plots are used to plot a combination of categorical and continuous variables. This plot is useful for visualizing the spread of the data and detect outliers. It shows five statistically significant numbers- the minimum, the 25th percentile, the median, the 75th percentile and the maximum.

From our dataset, if we want to identify each outlet's detailed item sales including minimum, maximum & median numbers, box plot can be helpful. In addition, it also gives values of outliers of item sales for each outlet as shown in below chart.

The black points are outliers. Outlier detection and removal is an essential step of successful data exploration.

Here is the R code for simple box plot using function ggplot() with geom_boxplot.

```
ggplot(train, aes(Outlet_Identifier, Item_Outlet_Sales)) + geom_boxplot(fill = "red")+
scale_y_continuous("Item Outlet Sales", breaks= seq(0,15000, by=500))+
labs(title = "Box Plot", x = "Outlet Identifier")
```

5. Area Chart

When to use: Area chart is used to show continuity across a variable or data set. It is very much same as line chart and is commonly used for time series plots. Alternatively, it is also used to plot continuous variables and analyze the underlying trends.

From our dataset, when we want to analyze the trend of item outlet sales, area chart can be plotted as shown below. It shows count of outlets on basis of sales.

Here is the R code for simple area chart showing continuity of Item Outlet Sales using function ggplot() with geom_area.

```
ggplot(train, aes(Item_Outlet_Sales)) + geom_area(stat = "bin", bins = 30, fill =
"steelblue") + scale_x_continuous(breaks = seq(0,11000,1000))+ labs(title = "Area
Chart", x = "Item Outlet Sales", y = "Count")
```

6. Heat Map

When to use: Heat Map uses intensity (density) of colors to display relationship between two or three or many variables in a two dimensional image. <u>Heat Map Analysis for website</u> allows you to explore two dimensions as the axis and the third dimension by intensity of color.

From our dataset, if we want to know cost of each item on every outlet, we can plot heatmap as shown below using three variables Item MRP, Outlet Identifier & Item Type from our mart dataset.

The dark portion indicates Item MRP is close 50. The brighter portion indicates Item MRP is close to 250.

Here is the R code for simple heat map using function ggplot().

```
ggplot(train, aes(Outlet_Identifier, Item_Type))+
  geom_raster(aes(fill = Item_MRP))+
  labs(title ="Heat Map", x = "Outlet Identifier", y = "Item Type")+
  scale_fill_continuous(name = "Item MRP")
```

7. Correlogram

When to use: Correlogram is used to test the level of co-relation among the variable available in the data set. The cells of the matrix can be shaded or colored to show the co-relation value.

Darker the color, higher the co-relation between variables. Positive co-relations are displayed in blue and negative correlations in red color. Color intensity is proportional to the co-relation value.

From our dataset, let's check co-relation between Item cost, weight, visibility along with Outlet establishment year and Outlet sales from below plot.

In our example, we can see that Item cost & Outlet sales are positively correlated while Item weight & its visibility are negatively correlated.

Correlogram

Here is the R code for simple correlogram using function **corrgram()**.

Now I guess it should be easy for you to visualize the data using **ggplot2** library in R Programming.

Apart from visualizations, you can learn more about data mining and the process to Combine Data from Analytics into R.

To know more or for any assistance on R programming, please drop us a comment with your details & we will be glad to assist you!!

Dikesh is a software developer and has been a pioneer in building some cool and fun codes at Tatvic. Dikesh loves gaming and has been a champion of Counter Strikes at least at Tatvic.

R data visualization tutorial, selecting the right chart type in R, Visualizations in R

1. Leave new

max November 6, 2017 3:34 pm

thanks for posting, it's very heplful. may i reference this for my assignment? Reply