경제학적 관점으로 분석하는

헝가리안 알고리즘

신용호 (연세대학교)

연세 이론 컴퓨터과학 학생 모임 주니어 세미나 2023. 3. 27.

J	W	x	у	Z	
а					
b					
С					
d					

J	w	x	У	Z	
а					
b					
С					
d					

а

b

C

(y)

d

 \overline{z}

구매자 1

물건 J

J I	W	x	У	Z	
а	12	12	12	8	
b	5	6	10	9	
С	8	5	11	11	
d	2	3	3	7	

J	w	x	У	Z	
а	12	12	12	8	
b	5	6	10	9	
С	8	5	11	11	
d	2	3	3	7	

J I	W	x	У	Z	
а	12	12	12	8	
b	5	6	10	9	
С	8	5	11	11	
d	2	3	3	7	

입력

구매자 I & 물건 J(|I| = |J| = n)각 구매자 $i \in I$ 가 생각하는 물건 $j \in J$ 의 가치 $v_{i,j}$

출력

총 가치가 최대인 구매자-물건 할당 방법, 즉

$$\sum_{i\in I} v_{i,\sigma(i)}$$

가 최대인 일대일 대응 $\sigma: I \to J$

활용

택시 배차

물류 관리

객체 추적

깐깐한 구매자

J I	W	x	У	Z	
а	12	12	12	8	
b	5	6	10	9	
С	8	5	11	11	
d	2	3	3	7	

경쟁의 해소

경쟁

많은 구매자가 적은 수의 물건을 원하는 상황

가격

경쟁을 해소하는 경제학적 방법 각 물건 $j \in J$ 마다 p_i 의 가격이 붙었다고 가정

경쟁의 해소

가격

각 물건 $j \in J$ 마다 p_i 의 가격이 붙었다고 가정

효용 Utility

구매자 i가 물건 j에 대해 생각하는 이득, 즉, $v_{i,j} - p_j$

균형 Equilibrium

모든 구매자 i가 자신이 받은 물건 $\sigma(i)$ 를 만족하는 상황, 즉, $\forall i \in I \ \forall j \in J \ v_{i,\sigma(i)} - p_{\sigma(j)} \geq v_{i,j} - p_j$

목표

<u>균형</u>을 이루면서 <u>총 가치는 최대</u>가 되는 <u>할당</u>과 <u>가격</u> 찾기

알고리즘 개요

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법
- B. 경쟁 중인 물건의 가격 인상폭
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법
- B. 경쟁 중인 물건의 가격 인상폭
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

J	W	x	У	Z	max u
а	12	12	12	8	12
b	5	6	10	9	10
С	8	5	11	11	11
d	2	3	3	7	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

			J'	•	-	
I'	J	w	x	у	Z	max u
	а	0	0	0	-4	12
	b	-5	-4	0	-1	10
	С	-3	-6	0	0	11
	d	-5	-4	-4	0	7
	p	0	0	0	0	

			J'	-	-	
,						
	а	0	0	0	-4	12
	b	-5	-4	0	-1	10
	С	-3	-6	0	0	11
	d	-5	-4	-4	0	7
	p	0	0	0	0	

만약 |I'| + |J'| < n 이라면?

 $I \setminus I'$ 은 J'의 물건만 원함

$$|I \setminus I'| = n - |I'| > |J'|$$

경쟁 발생!

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

정점 덮개 Vertex cover

어떤 그래프에서 모든 간선의 적어도 한 끝점이 속해 있는 정점의 부분 집합

쾨니그의 정리 Kőnig's theorem

이분 그래프에서 최소 정점 덮개의 크기는 최대 이분 매칭의 크기와 동일하다.

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

경쟁 중인 물건 가격 인상

J	w	x	У	Z	max u
а	12	12	12	8	12
b	5	6	10	9	10
С	8	5	11	11	11
d	2	3	3	7	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

경쟁 중인 물건 가격 인상

J	w	x	У	Z	max u
а	12	12	12	8	12
b	5	6	10	9	7
С	8	5	11	11	8
d	2	3	3	7	4
р	0	0	3	3	

J	w	x	у	Z	max u
а	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

경쟁 중인 물건 가격 인상

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지
- D. 균형 도달 시 총 가치가 최대인지

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

알 수 있는 사실 1

노란 행렬의 원소는 항상 0보다 작거나 같다.

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
a	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
a	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

J	w	x	у	Z	max u
а	0	0	0	-4	12
b	-5	-4	0	-1	10
С	-3	-6	0	0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	x	у	Z	max u
а	0	0	-3	-7	12
b	-2	-1	0	-1	7
С	0	-3	0	0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

알고리즘의 종료

J	w	x	у	Z	max u
а	I',J	\ <i>J'</i> 0	0 I',	J' -4	12
b	-5	-4	0	-1	10
С	$I = \setminus I'$,	$J \setminus J'$	$I \setminus I$	'', <i>J'</i> 0	11
d	-5	-4	-4	0	7
p	0	0	0	0	

J	w	х	у	Z	max u
а	I',J	\ <i>J'</i> 0	-3 <i>I'</i> ,	J' -7	12
b	-2	-1	0	-1	7
С	$I\setminus I'$,	J \-J'	$I \setminus I$	′′, <i>J′</i> 0	8
d	-2	-1	-4	0	4
p	0	0	3	3	

알고리즘의 종료

단계 진입 조건

$$|I'| + |J'| < n$$

단계 마다의 증가량

$$\varepsilon \cdot |I \setminus I'| \cdot |J \setminus J'| - \varepsilon \cdot |I'| \cdot |J'|$$

$$= \varepsilon \cdot ((n - |I'|)(n - |J'|) - |I'||J'|)$$

$$= \varepsilon \cdot (n^2 - (|I'| + |J'|)n)$$

$$> 0$$

알고리즘의 종료

알 수 있는 사실 1.

노란 행렬의 원소는 항상 0보다 작거나 같다.

알 수 있는 사실 2.

단계를 진행할 때마다 노란 행렬의 원소의 합은 커지기만 한다.

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지 > 노란 행렬 원소 합 증가
- D. 균형 도달 시 총 가치가 최대인지

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지 > 노란 행렬 원소 합 증가
- D. 균형 도달 시 총 가치가 최대인지

최대 총 가치 할당

J	W	x	У	Z	max u
а	12	12	12	8	12
b	5	6	10	9	7
С	8	5	11	11	8
d	2	3	3	7	4
р	0	0	3	3	

최대 총 가치 할당

정리 1.

임의의 가격 $p \in \mathbb{R}^J$, 임의의 할당 $\sigma: I \to J$ 에 대해

$$\sum_{i \in I} \max u_i + \sum_{j \in J} p_j \ge \sum_{i \in I} v_{i,\sigma(i)}$$

[증명]

$$\sum_{i \in I} \max u_i + \sum_{j \in J} p_j = \sum_{i \in I} \max_{j \in J} (v_{i,j} - p_j) + \sum_{j \in J} p_j$$

$$\geq \sum_{i \in I} (v_{i,\sigma(j)} - p_{\sigma(j)}) + \sum_{j \in J} p_j$$

$$= \sum_{i \in I} v_{i,\sigma(i)}$$

최대 총 가치 할당

정리 2.

어떤 가격 $p \in \mathbb{R}^J$ 에서 균형에 도달한 할당 $\sigma: I \to J$ 에 대해

$$\sum_{i \in I} \max u_i + \sum_{j \in J} p_j = \sum_{i \in I} v_{i,\sigma(i)}$$

[증명]

$$\sum_{i \in I} \max u_i + \sum_{j \in J} p_j = \sum_{i \in I} \max_{j \in J} (v_{i,j} - p_j) + \sum_{j \in J} p_j$$

$$= \sum_{i \in I} (v_{i,\sigma(j)} - p_{\sigma(j)}) + \sum_{j \in J} p_j$$

$$= \sum_{i \in I} v_{i,\sigma(i)}$$

해결해야 하는 질문

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지 > 노란 행렬 원소 합 증가
- D. 균형 도달 시 총 가치가 최대인지> 총 가치 = 최대 효용 + 가격

헝가리안 알고리즘

- 1. 구매자들끼리 경쟁이 붙은 물건 찾기
- 2. 경쟁이 붙은 물건의 가격 적당히 인상
- 3. 경쟁이 없을 때까지 위 작업 반복

- A. 경쟁이 붙은 물건을 찾는 방법 > 정점 덮개 & 쾨니그의 정리
- B. 경쟁 중인 물건의 가격 인상폭 > *I* \ *I*'과 *J* \ *J*'의 최소 절댓값
- C. 언젠간 균형에 도달하는지 > 노란 행렬 원소 합 증가
- D. 균형 도달 시 총 가치가 최대인지 > 총 가치 = 최대 효용 + 가격

헝가리안 알고리즘

- 1. 모든 물건 $j \in J$ 에 대해, $p_i \leftarrow 0$
- 2. 노란 행렬을 만들고 최소의 개수로 행렬의 0을 모두 덮는 방법 $I' \subseteq I, J' \subseteq J$ 찾는다
- 3. 만약 |I'| + |J'| < n 이면, $\varepsilon \leftarrow \text{노란 행렬의 } I \setminus I', J \setminus J'$ 중 최소 절댓값 경쟁이 붙은 $j' \in J'$ 에 대해, $p_{j'} \leftarrow p_{j'} + \varepsilon$
- 4. 만약 |I'| + |J'| = n 이면, 각 구매자에게 원소 값이 0인 물건을 할당한다.

헝가리안 알고리즘

Harold W. Kuhn

Dénes Kőnig

Jenő Egerváry

생각해 볼 질문

Q1. 최소 비용 할당을 구하는 방법?

Q2. 다항 시간에 계산하는 방법?

Q3. 구매자가 거짓을 고할 수 있다면?

감사합니다

질문은 언제나 환영합니다

