

Sign of the times: the lipid signature of a collapsing phytoplankton bloom

W. Kumler¹, H. Fredricks², J. Ossolinski², A. Allen³, K. Thamatrakoln⁴, K. Bidle⁴, B. Van Mooy², and B. R. Edwards¹ ¹Earth and Planetary Science, UC Berkeley; ²Marine Chemistry and Geochemistry, WHOI; ³Biological Oceanography, SIO; ⁴Marine and Coastal Sciences, Rutgers

Background

- Phytoplankton blooms are impactful, large-scale events in the ocean
- They collapse abruptly when population controls are re-established

 Traditional methods have emphasized nutrient limitation as the major decay factor

- Lipids are excellent biomarkers for environmental stresses and community composition
- In oligotrophic environments, lipid swapping has been used as a biomarker for nutrient stress o P-containing lipids are replaced with betaine lipids^[1]

Research question:

Can we use lipids to assess bloom dynamics in eutrophic systems?

- Common intact membrane lipids (IP-DAGs) identified at every station
- Variation in relative abundances imply either nutrient stress induced lipid swapping or shifts in community composition
- DGTS = diacylglyceryltrimethylhomoserine
- DGTA = diacylglyceryl hydroxymethyltrimethyl-β-alanine DGCC = diacylglyceryl carboxyhydroxymethylcholine
- DGTS/A DGCC **MGDG** DGDG **SQDG** PC = phosphatidylcholine MGDG = monogalactosyldiacylglycer DGDG = digalactosyldiacylglycerol PE = phosphatidylethanolamine

SQDG = sulfoquinovosyldiacylglycerol

PG = phosphatidylglycerol

- Monterey stations have SQDG:PG ratios statistically different from Point Reyes stations (Mann-Whitney U, p-value < 0.001, n = 36)
- SQDG:PG values for oligotrophic 52 regions typically vary between 2 and 7^[7], implying the Monterey region is nutrient-limited

 However, SQDG:PG and phosphorus concentration are minimally correlated and other proxies for bloom health, such as chlorophyll:pheophytin, show that high SQDG:PG levels are correlated with...

Conclusions

Acknowledgements