Curs 8

Scop

Fie (S, Σ) o signatură multisortată.

- \square O ecuație este $(\forall X)t \stackrel{\cdot}{=}_s t'$, unde $t, t' \in T_{\Sigma}(X)_s$.
- \square O ecuație condiționată este $(\forall X)t \stackrel{\cdot}{=}_s t'$ if H, unde $t, t' \in T_{\Sigma}(X)_s$ și $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}.$

Scop

Fie (S, Σ) o signatură multisortată.

- \square O ecuație este $(\forall X)t \stackrel{\cdot}{=}_s t'$, unde $t, t' \in T_{\Sigma}(X)_s$.
- \square O ecuație condiționată este $(\forall X)t =_s t'$ if H, unde $t, t' \in T_{\Sigma}(X)_s$ și $H = \{u_1 =_{s_1} v_1, \dots, u_n =_{s_n} v_n\}.$

Scop: să înțelegem când o ecuație se poate obține din alte ecuații (condiționate)!

- Două puncte de vedere diferite:
 - <u>semantic:</u> când o ecuație este adevărată într-o algebră anume
 - □ <u>sintactic:</u> axiome + reguli de deducție care ne permit să deducem alte ecuații
- □ O dată fixate pentru logica ecuațională, vom arăta că ele coincid, i.e. corectitudinea și completitudinea logicii ecuaționale.

Cuprins

- Substituţii
- 2 Deducție ecuațională
 - Cazul necondiționat
 - Cazul condiționat
- 3 Logica ecuațională
 - Corectitudinea
 - Completitudinea

Substituții

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

□ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

- □ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.
- \square Ce se întâmplă dacă \mathcal{B} este liber generată de Y, i.e. $B \simeq T_{\Sigma}(Y)$?

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

- □ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.
- \square Ce se întâmplă dacă \mathcal{B} este liber generată de Y, i.e. $B \simeq T_{\Sigma}(Y)$?

Definiție

O substituție a variabilelor din X cu termeni din $T_{\Sigma}(Y)$ este o funcție S-sortată

$$\tau:X\to T_\Sigma(Y).$$

- $\square \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ este notația uzuală pentru } \sigma : X \to T_{\Sigma}(X),$ cu $\sigma(x_i) = t_i \text{ și } \sigma(X) = X, \text{ pt. } x \neq x_i, \text{ or. } i = 1, \dots, n.$
- O substituție $au: X o T_\Sigma(Y)$ se extinde unic la un (S, Σ) -morfism $ilde{ au}: T_\Sigma(X) o T_\Sigma(Y)$
 - \square $\tilde{\tau}_s(x) := \tau_s(x)$, or $x \in X_s$,
 - \square $\tilde{\tau}_s(\sigma) := \sigma$, or. $\sigma : \rightarrow s$,
 - $\vec{\tau}_s(\sigma(t_1,\ldots,t_n)) := \sigma(\tilde{\tau}_{s_1}(t_1),\ldots,\tilde{\tau}_{s_n}(t_n)), \text{ or. } \sigma:s_1\ldots s_n\to s \text{ și or.}$ $t_1\in T_\Sigma(X)_{s_1},\ldots,t_n\in T_\Sigma(X)_{s_n}.$

- $\square \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ este notația uzuală pentru } \sigma : X \to T_{\Sigma}(X),$ cu $\sigma(x_i) = t_i \text{ și } \sigma(X) = X, \text{ pt. } X \neq x_i, \text{ or. } i = 1, \dots, n.$
- O substituție $\tau: X \to T_{\Sigma}(Y)$ se extinde unic la un (S, Σ) -morfism $ilde{ au}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$
 - \square $\tilde{\tau}_s(x) := \tau_s(x)$, or. $x \in X_s$,
 - \square $\tilde{\tau}_s(\sigma) := \sigma$, or. $\sigma : \rightarrow s$,
 - $\vec{\tau}_s(\sigma(t_1,\ldots,t_n)) := \sigma(\tilde{\tau}_{s_1}(t_1),\ldots,\tilde{\tau}_{s_n}(t_n)), \text{ or. } \sigma:s_1\ldots s_n\to s \text{ și or.}$ $t_1\in T_\Sigma(X)_{s_1},\ldots,t_n\in T_\Sigma(X)_{s_n}.$
- \square Vom indentifica uneori $\tilde{\tau}$ cu τ .

Fie X, Y și Z mulțimi de variabile.

 \square Compunerea substituțiilor $\tau: X \to T_{\Sigma}(Y)$ și $\mu: Y \to T_{\Sigma}(Z)$ este

$$au; \mu: X o T_{\Sigma}(Z)$$
 $(\tau; \mu)_s(x) := (\tau; \tilde{\mu})_s(x),$ or. $x \in X_s.$

- ☐ Compunerea substituțiilor este asociativă.
- ☐ Compunerea substituțiilor nu este în general comutativă.

- $\square S = \{s\} \text{ si } \Sigma = \{a : \rightarrow s, \ f : s \rightarrow s, \ g : s \rightarrow s, \ p : sssss \rightarrow s\}$
- $\square X = \{x, y, z, u, v\}$
- $\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X)$

- $\square S = \{s\} \text{ si } \Sigma = \{a : \rightarrow s, \ f : s \rightarrow s, \ g : s \rightarrow s, \ p : sssss \rightarrow s\}$
- $\square X = \{x, y, z, u, v\}$
- $\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X)$
- $\square \ \tau: X \to T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\}$
- $\square \ \tilde{\tau}(t) = p(u, v, f(y), f(a), u)$

- $\square S = \{s\} \text{ \sharp i } \Sigma = \{a : \to s, \ f : s \to s, \ g : s \to s, \ p : sssss \to s\}$
- $\square X = \{x, y, z, u, v\}$
- $\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X)$
- \square $\tau: X \to T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\}$
- $\square \ \tilde{\tau}(t) = p(u, v, f(y), f(a), u)$
- $\square \ \mu: X \to T_{\Sigma}(X), \ \mu = \{y \leftarrow g(a), \ u \leftarrow z, \ v \leftarrow f(f(a))\}$
- $\square \ \widetilde{\mu}(t) = p(z, f(f(a)), x, g(a), z)$

```
\Box S = \{s\} \text{ $\vec{s}$ } \Sigma = \{a : \rightarrow s, \ f : s \rightarrow s, \ g : s \rightarrow s, \ p : sssss \rightarrow s\} \\
\Box X = \{x, y, z, u, v\} \\
\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X) \\
\Box \tau : X \rightarrow T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\} \\
\Box \tilde{\tau}(t) = p(u, v, f(y), f(a), u) \\
\Box \mu : X \rightarrow T_{\Sigma}(X), \ \mu = \{y \leftarrow g(a), \ u \leftarrow z, \ v \leftarrow f(f(a))\} \\
\Box \tilde{\mu}(t) = p(z, f(f(a)), x, g(a), z) \\
\Box (\tilde{\tau}; \tilde{\mu})(t) = \tilde{\mu}(\tilde{\tau}(t)) = \tilde{\mu}(p(u, v, f(y), f(a), u)) = \\
= p(z, f(f(a)), f(g(a)), f(a), z)
```

Exemple

$$\Box S = \{s\} \text{ $\vec{\varsigma}$ i $\Sigma = \{a : \rightarrow s, f : s \rightarrow s, g : s \rightarrow s, p : sssss \rightarrow s\}} \\
\Box X = \{x, y, z, u, v\} \\
\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X) \\
\Box \tau : X \rightarrow T_{\Sigma}(X), \tau = \{x \leftarrow f(y), y \leftarrow f(a), z \leftarrow u\} \\
\Box \tilde{\tau}(t) = p(u, v, f(y), f(a), u) \\
\Box \mu : X \rightarrow T_{\Sigma}(X), \mu = \{y \leftarrow g(a), u \leftarrow z, v \leftarrow f(f(a))\} \\
\Box \tilde{\mu}(t) = p(z, f(f(a)), x, g(a), z) \\
\Box (\tilde{\tau}; \tilde{\mu})(t) = \tilde{\mu}(\tilde{\tau}(t)) = \tilde{\mu}(p(u, v, f(y), f(a), u)) = \\
= p(z, f(f(a)), f(g(a)), f(a), z) \\
\Box (\tilde{\mu}; \tilde{\tau})(t) = \tilde{\tau}(\tilde{\mu}(t)) = \tilde{\tau}(p(z, f(f(a)), x, g(a), z)) \\
= p(u, f(f(a)), f(y), g(a), u)$$

Două variante

În funcție de tipul ipotezelor avem două variante: □ Cazul necondiționat: □ E mulțime de ecuații necondiționate. □ Vom încerca să înțelegem ce înseamnă E ⊢ (∀X)t = t'. □ Cazul condiționat: □ Γ mulțime de ecuații condiționate. □ Vom încerca să înțelegem ce înseamnă Γ ⊢ (∀X)t = t'.

Cazul necondiționa

- \square (S,Σ) signatură multisortată, X și Y mulțimi de variabile
- □ E mulțime de ecuații necondiționate

- \square (S, Σ) signatură multisortată, X și Y mulțimi de variabile
- □ E mulțime de ecuații necondiționate

$$\mathsf{R} \quad \overline{(\forall X)t \stackrel{\cdot}{=}_{s} t}$$

- \square (S, Σ) signatură multisortată, X și Y mulțimi de variabile
- ☐ E mulțime de ecuații necondiționate

$$\mathsf{R} \quad \overline{(\forall X)t \stackrel{\cdot}{=}_{s} t}$$

S
$$\frac{(\forall X)t_1 \stackrel{\cdot}{=}_s t_2}{(\forall X)t_2 \stackrel{\cdot}{=}_s t_1}$$

- \square (S, Σ) signatură multisortată, X și Y mulțimi de variabile
- ☐ E mulțime de ecuații necondiționate

$$\mathsf{R} \quad \overline{(\forall X)t \stackrel{.}{=}_{\mathsf{s}} t}$$

$$S \quad \frac{(\forall X)t_1 =_s t_2}{(\forall X)t_2 =_s t_1}$$

$$\mathsf{T} \quad \frac{(\forall X)t_1 \stackrel{.}{=}_s \ t_2, \ (\forall X)t_2 \stackrel{.}{=}_s \ t_3}{(\forall X)t_1 \stackrel{.}{=}_s \ t_3}$$

- \square (S, Σ) signatură multisortată, X și Y mulțimi de variabile
- □ E mulțime de ecuații necondiționate

$$\mathsf{R} \quad \overline{(\forall X)t \stackrel{.}{=}_{s} t}$$

$$S \quad \frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X)t_2 \stackrel{.}{=}_s t_1}$$

$$\top \quad \frac{(\forall X)t_1 =_s t_2, \ (\forall X)t_2 =_s t_3}{(\forall X)t_1 =_s t_3}$$

$$\frac{(\forall X)t_1 =_{s_1} t'_1, \ldots, (\forall X)t_n =_{s_n} t'_n}{(\forall X)\sigma(t_1, \ldots, t_n) =_{s} \sigma(t'_1, \ldots, t'_n)}$$

, unde $\sigma: s_1 \dots s_n o s \in \Sigma$

- \square (S, Σ) signatură multisortată, X și Y mulțimi de variabile
- ☐ E mulțime de ecuații necondiționate

$$\mathsf{R} \quad \overline{(\forall X)t \stackrel{.}{=}_{s} t}$$

$$S \quad \frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X)t_2 \stackrel{.}{=}_s t_1}$$

$$\mathsf{T} \quad \frac{(\forall X)t_1 \stackrel{.}{=}_s t_2, \ (\forall X)t_2 \stackrel{.}{=}_s t_3}{(\forall X)t_1 \stackrel{.}{=}_s t_3}$$

$$\frac{(\forall X)t_1 =_{s_1} t'_1, \dots, (\forall X)t_n =_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) =_{s} \sigma(t'_1, \dots, t'_n)}$$

, unde $\sigma: s_1 \dots s_n \to s \in \Sigma$

$$\mathsf{Sub}_{E} \quad \overline{(\forall X)\widetilde{\theta}(t) \stackrel{.}{=}_{s} \widetilde{\theta}(t')}$$

, unde $(\forall Y)t\stackrel{\cdot}{=}_s t'\in E$ și $\theta:Y\to T_\Sigma(X)$

Observații

- □ R reflexivitate
- ☐ S simetrie
- □ T tranzitivitate
- □ CΣ compatibilitate cu operații
- \square Sub_E substituție
- Dacă $\theta: Y \to T_{\Sigma}(X)$, există un unic morfism $\tilde{\theta}: T_{\Sigma}(Y) \to T_{\Sigma}(X)$ a.î. $\tilde{\theta}_s(y) = \theta_s(y)$, or. $y \in Y_s$
- □ Convenţie: Pentru uşurinţă, vom identifica substituţia $\overline{\theta}: Y \to T_{\Sigma}(X)$ cu morfismul $\widetilde{\theta}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$!

Sub_E
$$\overline{(\forall X)\tilde{\theta}(t) \stackrel{.}{=}_{s} \tilde{\theta}(t')}$$

VS.

$$\mathsf{Sub}_{\mathsf{E}} \quad \overline{(\forall X)\theta(t) \stackrel{.}{=}_{\mathsf{s}} \theta(t')}$$

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

$$\square$$
 $\epsilon_n = \epsilon$ și

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

- \Box $\epsilon_n = \epsilon$ și
- \square pt. or. $i \in \{1, \ldots, n\}$ avem:

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

- \Box $\epsilon_n = \epsilon$ și
- \square pt. or. $i \in \{1, \ldots, n\}$ avem:
 - \square $\epsilon_i \in E$ sau

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

- \square $\epsilon_n = \epsilon$ și
- \square pt. or. $i \in \{1, ..., n\}$ avem:
 - \square $\epsilon_i \in E$ sau
 - \square ϵ_i se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, $C\Sigma$, Sub_E .

Fie *E* o mulțime de ecuații numite axiome sau ipoteze.

Spunem că ecuația $\epsilon := (\forall X)t =_s t'$ se deduce ecuațional din E dacă există o secvență de ecuații $\epsilon_1, \ldots, \epsilon_n$ a.î.

- $\Box \epsilon_n = \epsilon \text{ si}$
- \square pt. or. $i \in \{1, \ldots, n\}$ avem:
 - \square $\epsilon_i \in E$ sau
 - \square ϵ_i se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, $C\Sigma$, Sub_E .

În acest caz

- \square scriem $E \vdash (\forall X)t \stackrel{\cdot}{=}_s t', E \vdash \epsilon$,
- \square spunem că ϵ este deductibilă, demonstrabilă, derivabilă din E,
- \square secvența $\epsilon_1, \ldots, \epsilon_n = \epsilon$ este o *E*-demonstrație pt. ϵ .

- \square *NAT* = (S, Σ) , unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- □ Deoarece avem un singur sort, putem renunța la cuantificare!
- $\Box E = \{x + 0 \stackrel{\cdot}{=} x, \ x + succ(y) \stackrel{\cdot}{=} succ(x + y)\}$
- □ Arătăm că $E \vdash 0 + succ(0) \stackrel{\cdot}{=} succ(0)$:

- \square *NAT* = (S, Σ) , unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- □ Deoarece avem un singur sort, putem renunţa la cuantificare!
- $\Box E = \{x + 0 \stackrel{\cdot}{=} x, x + succ(y) \stackrel{\cdot}{=} succ(x + y)\}$
- □ Arătăm că $E \vdash 0 + succ(0) \stackrel{\cdot}{=} succ(0)$:
 - 1 0 + succ(0) = succ(0+0)(Sub_E pt. $x + succ(y) = succ(x+y) \in E$ și $\{x \leftarrow 0, y \leftarrow 0\}$)

Exempli

- \square *NAT* = (S, Σ) , unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- □ Deoarece avem un singur sort, putem renunța la cuantificare!

$$\Box E = \{x + 0 \stackrel{\cdot}{=} x, \ x + succ(y) \stackrel{\cdot}{=} succ(x + y)\}$$

□ Arătăm că $E \vdash 0 + succ(0) \stackrel{\cdot}{=} succ(0)$:

2
$$0+0=0$$

(Sub_E pt. $x+0=x \in E$ si $\{x \leftarrow 0\}$)

Exempli

- \square *NAT* = (S, Σ) , unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- □ Deoarece avem un singur sort, putem renunța la cuantificare!

$$\Box E = \{x + 0 \stackrel{\cdot}{=} x, \ x + succ(y) \stackrel{\cdot}{=} succ(x + y)\}$$

□ Arătăm că $E \vdash 0 + succ(0) \stackrel{\cdot}{=} succ(0)$:

2
$$0+0=0$$

(Sub_E pt. $x+0=x \in E$ si $\{x \leftarrow 0\}$)

$$3 \quad succ(0+0) \stackrel{\cdot}{=} succ(0) \qquad (2, C_{\Sigma})$$

Exempli

- \square *NAT* = (S, Σ) , unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- □ Deoarece avem un singur sort, putem renunța la cuantificare!

$$\Box E = \{x + 0 \stackrel{\cdot}{=} x, \ x + succ(y) \stackrel{\cdot}{=} succ(x + y)\}$$

□ Arătăm că $E \vdash 0 + succ(0) \stackrel{\cdot}{=} succ(0)$:

1
$$0 + succ(0) = succ(0 + 0)$$

 $(Sub_E \text{ pt. } x + succ(y) = succ(x + y) \in E \text{ și } \{x \leftarrow 0, y \leftarrow 0\})$
2 $0 + 0 = 0$

$$(Sub_E \text{ pt. } x + 0 = x \in E \text{ si } \{x \leftarrow 0\})$$

$$3 \quad succ(0+0) \stackrel{\cdot}{=} succ(0) \qquad (2, C_{\Sigma})$$

Cazul condiționa

Ipotezele sunt ecuații condiționate

Fie *E* o mulțime de ecuații necondiționate.

Fie Γ o mulțime de ecuații condiționate.

$$\begin{array}{c|c} \mathsf{Sub}_{\Gamma} & \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{\mathsf{s}_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{\mathsf{s}_n} \theta(v_n)}{(\forall X)\theta(t) \stackrel{.}{=}_{\mathsf{s}} \theta(t')} \\ \end{array} \right], \text{ unde}$$

$$(\forall Y)t \stackrel{.}{=}_s t' \text{ if } H \in \Gamma, \ H = \{u_1 \stackrel{.}{=}_{s_1} v_1, \ldots, u_n \stackrel{.}{=}_{s_n} v_n\} \text{ $\vec{\mathsf{y}}$i $\theta: $Y \to T_\Sigma(X)$.}$$

Dacă
$$H=\emptyset$$
, atunci Sub_{Γ} $\overline{(\forall X)\theta(t) \stackrel{.}{=}_s \theta(t')}$

Regulile deducției ecuaționale

- \square (S,Σ) signatură multisortată, X și Y mulțimi de variabile
- Γ mulţime de ecuaţii condiţionate

$$R \quad \overline{(\forall X)t \stackrel{\cdot}{=}_s t}$$

$$S \quad \frac{(\forall X)t_1 \stackrel{.}{=}_{\mathfrak{s}} \ t_2}{(\forall X)t_2 \stackrel{.}{=}_{\mathfrak{s}} \ t_1}$$

$$\mathsf{T} \quad \frac{(\forall X)t_1 \doteq_s t_2, \ (\forall X)t_2 \doteq_s t_3}{(\forall X)t_1 \doteq_s t_3}$$

$$\begin{array}{ll}
C\Sigma & \frac{(\forall X)t_1 =_{s_1} t'_1, \dots, (\forall X)t_n =_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) =_{s} \sigma(t'_1, \dots, t'_n)}
\end{array}$$

, unde $\sigma: s_1 \dots s_n \to s \in \Sigma$

$$\begin{array}{c} \mathsf{Sub}_{\Gamma} & \frac{(\forall X)\theta(u_1) =_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) =_{s_n} \theta(v_n)}{(\forall X)\theta(t) =_{s} \theta(t')} \\ \end{array} \right], \text{ unde}$$

 $(\forall Y)t \stackrel{\cdot}{=}_s t' \text{ if } H \in \Gamma, \ H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \ldots, u_n \stackrel{\cdot}{=}_{s_n} v_n\} \text{ $\vec{\mathsf{y}}$i $\theta: $Y \to T_\Sigma(X)$.}$

Deducția ecuațională

Fie Γ o mulțime de ecuații condiționate numite axiome sau ipoteze.

Spunem că ecuația $\epsilon := (\forall X)t \stackrel{\cdot}{=}_s t'$ se deduce ecuațional din Γ dacă există o secvență de ecuații $\epsilon_1, \ldots, \epsilon_n$ a.î.

- $\Box \epsilon_n = \epsilon \operatorname{si}$
- \square pt. or. $i \in \{1, \ldots, n\}$ avem:
 - \square $\epsilon_i \in \Gamma$ sau
 - \square ϵ_i se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, $C\Sigma$, Sub_{Γ} .

În acest caz

- \square scriem $\Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t', \Gamma \vdash \epsilon$,
- \square spunem că ϵ este deductibilă, demonstrabilă, derivabilă din Γ ,
- \square secvența $\epsilon_1, \ldots, \epsilon_n = \epsilon$ este o Γ -demonstrație pt. ϵ .

Exempli

- \square *NATBOOL* = (S, Σ) , unde $S = \{n, b\}$ și $\Sigma = \{T, F, 0, s, \star, >\}$
- $\Gamma = \{\gamma, \epsilon_1, \epsilon_2\}$

 - $\square \epsilon_1 := (\forall \{a,c\}) s(s(s(0))) \star a \stackrel{\cdot}{=}_n s(s(s(0))) \star c,$
 - $\square \ \epsilon_2 := (\forall \{a,c\}) s(s(s(0))) > 0 \stackrel{\cdot}{=}_b T$

Exemple

```
□ NATBOOL = (S, \Sigma), unde S = \{n, b\} şi \Sigma = \{T, F, 0, s, \star, >\}
□ \Gamma = \{\gamma, \epsilon_1, \epsilon_2\}
□ \gamma := (\forall \{x, y, z\})x \stackrel{\cdot}{=}_n y if \{z \star x \stackrel{\cdot}{=}_n z \star y, \ z > 0 \stackrel{\cdot}{=}_b T\},
□ \epsilon_1 := (\forall \{a, c\})s(s(s(0))) \star a \stackrel{\cdot}{=}_n s(s(s(0))) \star c,
□ \epsilon_2 := (\forall \{a, c\})s(s(s(0))) > 0 \stackrel{\cdot}{=}_b T
□ Arătăm că \Gamma \vdash (\forall \{a, c\})a \stackrel{\cdot}{=}_n c:
□ \epsilon_1 \in \Gamma
□ \epsilon_2 \in \Gamma
∃ \epsilon_2 \in \Gamma
∃ \epsilon_3 = \epsilon
(1, 2, Sub\Gamma pt. \gamma \in \Gamma şi \{x \leftarrow a, y \leftarrow c, z \leftarrow s(s(s(0)))\})
```

- \square (S, Σ) signatură multisortată
- □ Γ o mulțime de ecuații condiționate

- \square (S, Σ) signatură multisortată
- □ Γ o mulțime de ecuații condiționate
- \square Sintaxa: $\Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$
 - \square există ο Γ-demonstrație $\epsilon_1, \ldots, \epsilon_n = (\forall X)t \stackrel{\cdot}{=}_s t'$
 - (vezi secţiunea anterioară)

- \square (S, Σ) signatură multisortată
- Γ o mulţime de ecuaţii condiţionate
- \square Sintaxa: $\Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$
 - \square există o Γ-demonstrație $\epsilon_1, \ldots, \epsilon_n = (\forall X)t \stackrel{\cdot}{=}_s t'$
 - (vezi secţiunea anterioară)
- \square Semantica: $\Gamma \models (\forall X)t \stackrel{.}{=}_s t'$
 - \square pentru orice (S, Σ) -algebră \mathcal{A} , $\mathcal{A} \models \Gamma \Rightarrow \mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t'$
 - \square \mathcal{A} satisface o ecuație condiționată $(\forall X)t =_s t'$ if H dacă pentru orice morfism $f: T_{\Sigma}(X) \to \mathcal{A}$,

$$f_{s'}(u) = f_{s'}(v)$$
, or. $u =_{s'} v \in H \Rightarrow f_s(t) = f_s(t')$.

(vezi cursurile anterioare)

Corectitudinea

Scop

Fie Γ o mulțime de ecuații condiționate.

Reguli de deducție corecte

O regulă de deducție $\boxed{\frac{\epsilon_1,\ldots,\epsilon_n}{\epsilon}}$ este corectă dacă $\Gamma \models \epsilon_1,\ldots,\Gamma \models \epsilon_n \Rightarrow \Gamma \models \epsilon.$

Reguli de deducție corecte

$$\frac{\epsilon_1,\ldots,\epsilon_n}{\epsilon}$$

este corectă dacă

$$\Gamma \models \epsilon_1, \ldots, \Gamma \models \epsilon_n \Rightarrow \Gamma \models \epsilon.$$

Propoziție

Regulile de deducție R, S, T, $C\Sigma$, Sub_{Γ} sunt corecte.

- I R este corectă: Exercițiu!
- 2 S este corectă: Exercițiu!
- 3 T este corectă: Exercițiu!

$$\begin{array}{c|c} C\Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} t_1', \ldots, (\forall X)t_n \stackrel{.}{=}_{s_n} t_n'}{(\forall X)\sigma(t_1, \ldots, t_n) \stackrel{.}{=}_s \sigma(t_1', \ldots, t_n')} \end{array} \right|, \text{ unde } \sigma: s_1 \ldots s_n \rightarrow s \in \Sigma$$

4 CΣ este corectă:

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} \ t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{s_n} \ t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_{s} \ \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: s_1 \dots s_n \rightarrow s \in \Sigma$$

□ Fie $\sigma: s_1 \dots s_n \to s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 \stackrel{.}{=}_{s_1} t'_1, \dots, \Gamma \models (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n.$

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{s_n} t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_s \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: s_1 \dots s_n \to s \in \Sigma$$

- □ Fie $\sigma: s_1 \dots s_n \to s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 =_{s_1} t'_1, \dots, \Gamma \models (\forall X)t_n =_{s_n} t'_n.$
- □ Trebuie să arătăm că $\Gamma \models (\forall X)\sigma(t_1,\ldots,t_n) \stackrel{.}{=}_s \sigma(t'_1,\ldots,t'_n)$:

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{\mathsf{s}_1} t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{\mathsf{s}_n} t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_{\mathsf{s}} \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: \mathsf{s}_1 \dots \mathsf{s}_n \to \mathsf{s} \in \Sigma$$

- □ Fie $\sigma: s_1 \dots s_n \to s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 \stackrel{.}{=}_{s_1} t'_1, \dots, \Gamma \models (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n.$
- Trebuie să arătăm că $\Gamma \models (\forall X)\sigma(t_1,\ldots,t_n) \doteq_s \sigma(t'_1,\ldots,t'_n)$:
 fie $\mathcal{A} \models \Gamma$ și $f: \mathcal{T}_{\Sigma}(X) \to \mathcal{A}$ un morfism.

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{s_n} t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_s \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: s_1 \dots s_n \to s \in \Sigma$$

- □ Fie σ : $s_1 ... s_n \rightarrow s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 \stackrel{.}{=}_{s_n} t'_1, ..., \Gamma \models (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n$.
- □ Trebuie să arătăm că $\Gamma \models (\forall X)\sigma(t_1,\ldots,t_n) \stackrel{.}{=}_s \sigma(t_1',\ldots,t_n')$:
 - fie $\mathcal{A} \models \Gamma$ și $f : T_{\Sigma}(X) \rightarrow \mathcal{A}$ un morfism.

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{s_n} t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_s \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: s_1 \dots s_n \to s \in \Sigma$$

- □ Fie $\sigma: s_1 \dots s_n \to s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 \stackrel{.}{=}_{s_1} t'_1, \dots, \Gamma \models (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n.$
- Trebuie să arătăm că $\Gamma \models (\forall X)\sigma(t_1,\ldots,t_n) \stackrel{\cdot}{=}_s \sigma(t'_1,\ldots,t'_n)$:
 - fie $\mathcal{A} \models \Gamma$ si $f : T_{\Sigma}(X) \to \mathcal{A}$ un morfism.

 - avem

$$f_s(\sigma(t_1,\ldots,t_n)) = A_\sigma(f_{s_1}(t_1),\ldots,f_{s_n}(t_n)) = A_\sigma(f_{s_1}(t'_1),\ldots,f_{s_n}(t'_n)) = f_s(\sigma(t'_1,\ldots,t'_n))$$

$$\begin{array}{ll} \mathsf{C} \Sigma & \frac{(\forall X)t_1 \stackrel{.}{=}_{\mathsf{s}_1} t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{\mathsf{s}_n} t_n'}{(\forall X)\sigma(t_1, \dots, t_n) \stackrel{.}{=}_{\mathsf{s}} \sigma(t_1', \dots, t_n')} \end{array} \right| \text{, unde } \sigma: \mathsf{s}_1 \dots \mathsf{s}_n \to \mathsf{s} \in \Sigma$$

- □ Fie $\sigma: s_1 \dots s_n \to s \in \Sigma$ și presupunem $\Gamma \models (\forall X)t_1 \stackrel{.}{=}_{s_1} t'_1, \dots, \Gamma \models (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n$.
- Trebuie să arătăm că $\Gamma \models (\forall X)\sigma(t_1,\ldots,t_n) \stackrel{.}{=}_s \sigma(t'_1,\ldots,t'_n)$:
 - fie $\mathcal{A} \models \Gamma$ si $f : T_{\Sigma}(X) \to \mathcal{A}$ un morfism.
 - din ip., $f_{s_1}(t_1) = f_{s_1}(t_1'), \dots, f_{s_n}(t_n) = f_{s_n}(t_n')$
 - avem

$$f_s(\sigma(t_1,\ldots,t_n)) = A_\sigma(f_{s_1}(t_1),\ldots,f_{s_n}(t_n)) = A_\sigma(f_{s_1}(t_1'),\ldots,f_{s_n}(t_n')) = f_s(\sigma(t_1',\ldots,t_n'))$$

■ deci
$$\mathcal{A} \models (\forall X)\sigma(t_1,\ldots,t_n) \stackrel{\cdot}{=}_s \sigma(t'_1,\ldots,t'_n)$$

5 Sub_Γ este corectă:

$$\boxed{ \begin{aligned} & \text{Sub}_{\Gamma} & \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \ldots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)\theta(t) \stackrel{.}{=}_{s} \theta(t')} \\ & (\forall Y)t \stackrel{.}{=}_{s} t' \text{ if } H \in \Gamma, \ H = \{u_1 \stackrel{.}{=}_{s_1} v_1, \ldots, u_n \stackrel{.}{=}_{s_n} v_n\} \text{ \vec{s} i θ} : Y \to T_{\Sigma}(X). \end{aligned} } , \text{ unde}$$

5 Sub_Γ este corectă:

□ Fie $(\forall Y)t \stackrel{\cdot}{=}_s t'$ if $H \in \Gamma$, $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}$ şi $\theta : Y \to T_{\Sigma}(X)$ a.î. $\Gamma \models (\forall X)\theta(u_i) \stackrel{\cdot}{=}_{s_i} \theta(v_i)$, or. $1 \le i \le n$.

5 Sub_Γ este corectă:

Subr
$$\frac{(\forall X)\theta(u_1) =_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) =_{s_n} \theta(v_n)}{(\forall X)\theta(t) =_{s} \theta(t')}, \text{ unde}$$

- $(\forall Y)t \stackrel{.}{=}_s t' \text{ if } H \in \Gamma, \ H = \{u_1 \stackrel{.}{=}_{s_1} v_1, \ldots, u_n \stackrel{.}{=}_{s_n} v_n\} \text{ \sharp} i \ \theta : Y \to T_{\Sigma}(X).$
 - □ Fie $(\forall Y)t \stackrel{\cdot}{=}_s t'$ if $H \in \Gamma$, $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}$ şi $\theta : Y \to T_{\Sigma}(X)$ a.î. $\Gamma \models (\forall X)\theta(u_i) \stackrel{\cdot}{=}_{s_i} \theta(v_i)$, or. $1 \le i \le n$.
 - □ Trebuie să arătăm că $\Gamma \models (\forall X)\theta(t) \stackrel{\cdot}{=}_s \theta(t')$:

5 Sub_Γ este corectă:

$$Sub_{\Gamma} \quad \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)\theta(t) \stackrel{.}{=}_{s} \theta(t')} , \text{ unde }$$

$$(\forall Y)t \stackrel{\cdot}{=}_s t'$$
 if $H \in \Gamma$, $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}$ și $\theta : Y \to T_{\Sigma}(X)$.

- □ Fie $(\forall Y)t \stackrel{\cdot}{=}_s t'$ if $H \in \Gamma$, $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}$ şi $\theta : Y \to T_{\Sigma}(X)$ a.î. $\Gamma \models (\forall X)\theta(u_i) \stackrel{\cdot}{=}_{s_i} \theta(v_i)$, or. $1 \le i \le n$.
- □ Trebuie să arătăm că $\Gamma \models (\forall X)\theta(t) \stackrel{.}{=}_{s} \theta(t')$:
 - fie $\mathcal{A} \models \Gamma$ și $f : T_{\Sigma}(X) \to \mathcal{A}$ un morfism.
 - \blacksquare atunci $\tilde{\theta}$; $f:T_{\Sigma}(Y)\to \mathcal{A}$
 - din ip., avem $(\tilde{\theta}; f)_{s_i}(u_i) = (\tilde{\theta}; f)_{s_i}(v_i)$, or. $1 \le i \le n$.
 - deoarece $\mathcal{A} \models (\forall Y)t \stackrel{\cdot}{=}_{s} t'$ if $H \in \Gamma$, obţinem $(\tilde{\theta}; f)_{s}(t) = (\tilde{\theta}; f)_{s}(t')$, i.e. $f_{s}(\tilde{\theta}(t)) = f_{s}(\tilde{\theta}(t'))$.
 - deci $\mathcal{A} \models (\forall X)\tilde{\theta}(t) \stackrel{\cdot}{=}_s \tilde{\theta}(t')$, echivalent cu $\mathcal{A} \models (\forall X)\theta(t) \stackrel{\cdot}{=}_s \theta(t')$.

Teoremă (Corectitudinea deducției)

$$\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'.$$

Teoremă (Corectitudinea deducției)

$$\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'.$$

- \square Fie $\epsilon_1, \ldots, \epsilon_n = (\forall X)t =_s t'$ o Σ-demonstrație.
- \square Demonstrăm că $\Gamma \models \epsilon_i$ prin inducție după $i = 1, \ldots, n$:

Teoremă (Corectitudinea deducției)

$$\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'.$$

- \square Fie $\epsilon_1, \ldots, \epsilon_n = (\forall X)t =_s t'$ o Σ-demonstrație.
- \square Demonstrăm că $\Gamma \models \epsilon_i$ prin inducție după $i=1,\ldots,n$:
 - \square Pt. i=1 avem trei cazuri:
 - 1 $\epsilon_1 \in \Gamma$,

 - $\begin{array}{l} \mathbf{\Xi} \ \ \epsilon_1 = (\forall X) \theta(t_1) \doteq_{s_1} \theta(t_1') \ \mathsf{prin} \ \mathsf{Sub}_{\Gamma} \ \mathsf{pt.} \ (\forall Y) t_1 \doteq_{s_1} t_1' \in \Gamma \ \mathsf{si} \\ \theta : Y \to \mathcal{T}_{\Sigma}(X). \end{array}$

Teoremă (Corectitudinea deducției)

$$\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'.$$

- \square Fie $\epsilon_1, \ldots, \epsilon_n = (\forall X)t \stackrel{\cdot}{=}_s t'$ o Σ-demonstrație.
- \square Demonstrăm că $\Gamma \models \epsilon_i$ prin inducție după $i = 1, \ldots, n$:
 - \square Pt. i=1 avem trei cazuri:
 - 1 $\epsilon_1 \in \Gamma$,

 - $\begin{array}{l} {\bf E} \quad \epsilon_1 = (\forall X) \theta(t_1) \doteq_{s_1} \theta(t_1') \text{ prin Sub}_{\Gamma} \text{ pt. } (\forall Y) t_1 \doteq_{s_1} t_1' \in \Gamma \text{ si} \\ \theta : Y \to \mathcal{T}_{\Sigma}(X). \end{array}$
 - cum R și Sub_Γ sunt corecte, rezultă $\Gamma \models \epsilon_1$.

Teoremă (Corectitudinea deducției)

$$\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'.$$

- \square Fie $\epsilon_1, \ldots, \epsilon_n = (\forall X)t =_s t'$ o Σ-demonstrație.
 - \square Demonstrăm că $\Gamma \models \epsilon_i$ prin inducție după $i=1,\ldots,n$:
 - \square Pt. i=1 avem trei cazuri:
 - 1 $\epsilon_1 \in \Gamma$,

 - $\begin{array}{c} \mathbf{E} & \epsilon_1 = (\forall X) \theta(t_1) =_{s_1} \theta(t_1') \text{ prin } \mathsf{Sub}_{\Gamma} \text{ pt. } (\forall Y) t_1 =_{s_1} t_1' \in \Gamma \text{ si} \\ \theta : Y \to \mathcal{T}_{\Sigma}(X). \end{array}$
 - cum R și Sub_Γ sunt corecte, rezultă $\Gamma \models \epsilon_1$.
 - \square Pres. $\Gamma \models \epsilon_1, \ldots, \Gamma \models \epsilon_{i-1}$.
 - \blacksquare știm că ϵ_i se obține din $\epsilon_1,\ldots,\epsilon_{i-1}$ aplicând una din R, S, T, C Σ , Subr.
 - cum R, S, T, C Σ , Sub Γ sunt corecte, rezultă $\Gamma \models \epsilon_i$.

Completitudinea

Scop

Fie Γ o mulțime de ecuații condiționate.

Închiderea la reguli de deducție

Fie

- \square (S, Σ) o signatură multisortată
- \square X o mulțime de variabile
- □ Regula de deducție

$$\operatorname{\mathsf{Reg}} \ \frac{(\forall X)t_1 \stackrel{.}{=}_{\mathsf{s}_1} \ t_1', \dots, (\forall X)t_n \stackrel{.}{=}_{\mathsf{s}_n} \ t_n'}{(\forall X)t \stackrel{.}{=}_{\mathsf{s}} \ t'}$$

O relație binară
$$\sim\subseteq T_\Sigma(X)\times T_\Sigma(X)$$
 este închisă la regula Reg dacă
$$t_1\sim_{s_1}t_1',\ldots,t_n\sim_{s_n}t_n'\Rightarrow t\sim_s t'.$$

Propoziție

Sunt echivalente:

- ∼ este congruență pe $T_{

 }(X)$,
- ${f 2}$ ~ este închisă la R, S, T, C ${f \Sigma}$.

Propoziție

Sunt echivalente:

- $extbf{■}$ ~ este congruență pe $T_{\Sigma}(X)$,
- \simeq este închisă la R, S, T, C Σ .

Demonstrație

 \Rightarrow Pres. că \sim este congruență pe $T_{\Sigma}(X)$.

Propoziție

Sunt echivalente:

- $\blacksquare \sim$ este congruență pe $T_{\Sigma}(X)$,
- \simeq este închisă la R, S, T, C Σ .

- \Rightarrow Pres. că \sim este congruență pe $T_{\Sigma}(X)$.
 - ☐ Închisă la R, S, T: Exercițiu!

Propoziție

Sunt echivalente:

- $\blacksquare \sim$ este congruență pe $T_{\Sigma}(X)$,
- ${f 2}$ ~ este închisă la R, S, T, C ${f \Sigma}$.

- \Rightarrow Pres. că \sim este congruență pe $T_{\Sigma}(X)$.
 - ☐ Închisă la R, S, T: Exercițiu!
 - Închisă la CΣ:

 - □ deoarece \sim este congruență pe $T_{\Sigma}(X)$, obținem $\sigma(t_1, \ldots, t_n) \sim_s \sigma(t'_1, \ldots, t'_n)$.

Demonstrație (cont.)

- \leftarrow Pres. că \sim este închisă la R, S, T, CΣ.
 - Deoarece \sim este închisă la R, S, T, obținem că \sim este echivalență pe $T_{\Sigma}(X)$. (Exercițiu!)
 - \square Arătăm că \sim este compatibilă cu operațiile:

 - deoarece \sim este închisă la $C\Sigma$., obținem $\sigma(t_1, \ldots, t_n) \sim_s \sigma(t'_1, \ldots, t'_n)$.

Amintiri: Închiderea la substituții

Fie

- \square (S, Σ) o signatură multisortată, X mulțime de variabile,
- □ Γ o mulțime de ecuații condiționate,
- $\square \sim$ o congruență pe $T_{\Sigma}(X)$.

Spunem că \sim este închisă la substituție dacă

$$CS(\Gamma, T_{\Sigma}(X))$$

or.
$$(\forall Y)t \stackrel{\cdot}{=}_s t'$$
 if $H \in \Gamma$, or. $h: Y \to T_{\Sigma}(X)$
 $\tilde{h}_{s'}(u) \sim_{s'} \tilde{h}_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow \tilde{h}_{s}(t) \sim_{s} \tilde{h}_{s}(t')$

Pentru simplitate, identificăm morfismul \tilde{h} cu h și scriem:

$$CS(\Gamma, T_{\Sigma}(X))$$

or.
$$(\forall Y)t \stackrel{.}{=}_s t'$$
 if $H \in \Gamma$, or. $h: Y \to T_{\Sigma}(X)$
 $h_{s'}(u) \sim_{s'} h_{s'}(v)$, or. $u \stackrel{.}{=}_{s'} v \in H \Rightarrow h_s(t) \sim_s h_s(t')$

Închiderea la substituții

Propoziția

Sunt echivalente:

- \blacksquare ~ verifică CS(Γ , $T_{\Sigma}(X)$) (i.e. închisă la substituție),
- $\geq \sim$ este închisă la Sub_{Γ},

Închiderea la substituții

Propoziția

Sunt echivalente:

- \blacksquare verifică CS(Γ , $T_{\Sigma}(X)$) (i.e. închisă la substituție),
- $\geq \sim$ este închisă la Sub_{Γ},

$$\sim \text{ verifică } \mathsf{CS}(\Gamma, T_\Sigma(X)) \text{ (i.e. închisă la substituție),} \\ \Leftrightarrow \\ \text{or. } (\forall Y)t \stackrel{.}{=}_s t' \text{ if } H \in \Gamma, \ H = \{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \text{ și. or.} \\ h: Y \to T_\Sigma(X) \text{ a.î. } h_{s_1}(u_1) \sim_{s_1} h_{s_1}(v_1), \dots, h_{s_n}(u_1) \sim_{s_n} h_{s_n}(v_n) \text{ implică} \\ h_s(t) \sim_s h_s(t') \\ \Leftrightarrow \\ \sim \text{ este închisă la Subr}$$

Echivalența sintactică

Echivalența sintactică pe $T_{\Sigma}(X)$ determinată de Γ este

$$t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'$$
, or. $s \in S$.

Echivalența sintactică

Echivalența sintactică pe $T_{\Sigma}(X)$ determinată de Γ este

$$t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'$$
, or. $s \in S$.

Propoziția

 \sim_{Γ} este o congruență pe $T_{\Sigma}(X)$ închisă la substituție.

Echivalența sintactică

Echivalența sintactică pe $T_{\Sigma}(X)$ determinată de Γ este

$$t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'$$
, or. $s \in S$.

Propoziția

 \sim_{Γ} este o congruență pe $T_{\Sigma}(X)$ închisă la substituție.

- □ Din def. deducției sintactice \vdash , \sim_{Γ} este închisă la R, S, T, CΣ, Sub_Γ.
- \square Rezultă \sim_{Γ} este congruență pe $T_{\Sigma}(X)$.
- \square Rezultă \sim_{Γ} este închisă la substituție.

Completitudinea deducției ecuaționale

Fie Γ o mulțime de ecuații condiționate.

Teoremă (Completitudinea deducției)

$$\Gamma \models (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'.$$

- \square echivalența sintactică: $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$.
- \square echivalența semantică: $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t'$.
- $\square \sim_{\Gamma}$ congruență pe $T_{\Sigma}(X)$ închisă la substituție .
- $\square \equiv_{\Gamma}$ este cea mai mică congruența pe $T_{\Sigma}(X)$ închisă la substituție.
- \square Deci $\equiv_{\Gamma} \subseteq \sim_{\Gamma}$, i.e. $\Gamma \models (\forall X)t \stackrel{.}{=}_{s} t' \Rightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_{s} t'$.

Teorema de completitudine

- (S,Σ) signatură multisortată, X mulțime de variabile, $t,t'\in \mathcal{T}_{\Sigma}(X)_s$
 - \square Echivalența sintactică: $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t =_s t'$.
 - \square Echivalența semantică: $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X) t \doteq_s t'$.
 - \square Corectitudinea deducției: $\sim_{\Gamma} \subseteq \equiv_{\Gamma}$.
 - \square Completitudinea deducției: $\equiv_{\Gamma} \subseteq \sim_{\Gamma}$.

Teoremă (Teorema de completitudine)

$$\Gamma \models (\forall X)t \stackrel{.}{=}_s t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'$$
$$(\equiv_{\Gamma} = \sim_{\Gamma})$$

Vacanță plăcută!