Rare Pattern Mining

Data Mining Algorithms 1 (DMA 1) Winter 2024/25

Prof. Dr. Gabriel Marques Tavares

LMU Munich, Chair for Database Systems and Data Mining Munich Center for Machine Learning (MCML.AI)

Significance of Low-support Patterns

- Contrast infrequent patterns with frequent patterns
 - Lot of existing work in frequent pattern mining
- Perspective of relative support
 - Infrequent patterns seem not important
 - For example, 0.1% (rare) vs. 10% (frequent)
- Perspective of absolute support
 - Minor patterns maybe nevertheless **significant**
 - In 100,000 transactions: 100 occurrences vs. 10,000 occurrences

- Scientific and medical domains, vehicle accidents data, synthetic data generation

Low-support patterns in medical datasets

- Rare deseases affect many people

- Don't appear as frequent patterns

RareDiseaseFacts

RARE DISEASES by the numbers

PRMA

RARE DISEASES AFFECT

THE FDA HAS APPROVED

RARE DISEASES
by the
NUMBERS

50%

of the people affected by rare diseases are **children** **Approximately**

7,000

rare diseases & disorders have been identified

#DYK:

If all of the people with rare diseases lived in one country, it would be the

world's 3rd most populous country

Source: Global Genes. https://globalgenes.org/rare-diseases-facts-statistics/

Low-support patterns in vehicle accidents datasets

Dense representation

- Categories for road conditions, speed, severity, etc.

Example

- Pattern {bad-road-condition, high-speed, serious-accident} may be rare.
- Should be avoided, nevertheless.

Actionable

 Improve traffic conditions to prevent from high damages and from hurting people seriously.

Low-support patterns for synthetic dataset generation with real data

- Extend rare-pattern datasets for benchmarking purposes (data augmentation)
- Better generation quality
 - Overcome difficulty to cover all low support patterns by sampling
- More flexibility in controlling bias
 - Increase occurrence of low support patterns
 - Decrease occurrence of high support patterns

https://tdwi.org/articles/2017/04/12/dimensional-models-in-the-big-data-era.aspx

Existing approaches (selected)

- T. Uno, M. Kiyomi, H. Arimura: LCM ver. 2: Efficient mining algorithms for frequent / closed / maximal itemsets.
 FIMI @ICDM 2004, CEUR 126.
- L. Troiano, G. Scibelli: A time-efficient breadth-first levelwise lattice-traversal algorithm to discover rare itemsets.
 Data Mining and Knowledge Discovery 28(3): 773–807, 2014.
- P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche,
 A. Soltani, Z. Deng, H. T. Lam: *The SPMF open-source* data mining library version 2. ECML PKDD 2016: 36–40.
- Y. Lu, T. Seidl: Towards Efficient Closed Infrequent Itemset Mining Using Bi-Directional Traversing. DSAA 2018: 140-149.
- Y. Lu, F. Richter, T. Seidl: Efficient Infrequent Itemset Mining Using Depth-First and Top-Down Lattice Traversal. DASFAA (1) 2018: 908-915.
- Y. Lu, F. Richter, T. Seidl: Efficient Infrequent Pattern

- Mining Using Negative Itemset Tree. Complex Pattern Mining 2020: 1-16.
- F. Richter, Y. Lu, L. Zellner, J. Sontheim, T. Seidl: *TOAD: Trace Ordering for Anomaly Detection*. **ICPM** 2020.
- L. Zellner, F. Richter, J. Sontheim, A. Maldonado, T. Seidl: Concept Drift Detection on Streaming Data with Dynamic Outlier Aggregation. SA4PM @ ICPM 2020

Power set lattice of itemsets (Hasse diagram)

Sparse and dense datasets

- Sparse datasets
 - Large number of distinct items
 - Short transactions
 - Bottom-up traversal is efficient

- Dense datasets
 - (Relatively) small number of distinct items
 - Long transactions
 - Top-down may be preferred

Traversal orders for the power set lattice

Breadth-first vs. Depth-first (e.g., Apriori vs. FP-growth)

Bottom-up vs. Top-down (Apriori, FP-growth vs. Rarity)

Traversal orders: Some observations

- Well-known results:
 - Breadth-first traversal is slower than depth-first traversal
 - Bottom-up traversal (almost all existing algorithms) is extremely slow when *minSup* is small
- Top-down traversal is better if the number of frequent patterns is huge

Traversal orders: What is the best for real datasets?

- In reality, dataset is both sparse and dense
 - *a*:4, *b*:5, *c*:2, *d*:2, *e*:2
 - Less frequent items: c, d, e
 - More frequent items: *a*, *b*

Tid	Itemset	
1	$\{a,b,c\}$	
2	$\{a,b,d\}$	
3	$\{b,c\}$	
4	$\{a,b\}$	
5	$\{a,b,e\}$	
6	$\{d,e\}$	

Tid	Itemset	
1	{a,b}	
2	{a,b}	
3	{b}	
4	$\{a,b\}$	
5	{a,b}	

RaCloMiner - Bi-directional traversal

- Basic idea: Combine both, bottom-up and top-down traversal
- Our proposal: Rare Closed Itemset Miner [Lu, Seidl, DSAA 2018]
- As top-down traversal is not efficient, select split point carefully.
- Preliminary heuristics: choose value around inflection point.

Experimental setting

- Datasets from FIMI repository (U Antwerp) 3 sparse datasets, 3 dense datasets
- RaCloMiner, implemented in Java [Lu, Seidl, DSAA 2018]
- LCM implemented by using SPMF^[2] library [Uno et al., FIMI 2004] [Fournier-Viger et al., ECML PKDD 2016]
- Rarity: a breadth-first top-down approach for comparison [Troiano, Scibelli, DMKD 2014]

Database	Size (N)	Items (I)	Average length (L)
retail	88162	16470	10.3
BMS1	59602	497	2.5
BMS2	77512	3340	4.6
mushrooms	8415	119	23
chess	3196	75	37
connect	67556	129	43

Experimental results for dense datasets

Experimental results for sparse datasets

