# Представление булевой функции формулами в СДНФ и СКНФ

Теорема 1 (о представлении булевой функции формулой в СДНФ).

Для любой булевой функции  $f(x_1...x_n) \not\equiv 0$ , существует формула F, которая находится в СДНФ относительно списка переменных  $< X_1, ..., X_n >$  и выражает булеву функцию  $f(x_1...x_n)$ . Формула F определена однозначно с точностью до перестановки дизьюнктивных членов.

Обозначим

$$X_i^s = \begin{cases} X_i, \text{ если } s = 1 \\ \neg X_i, \text{ если } s = 0 \end{cases}$$

И для оценок, принадлежащих множеству {0; 1} будет выполняться

$$s^t = \begin{cases} s, \text{ если } t = 1 \\ \neg s, \text{ если } t = 0 \end{cases}$$

$$s, t \in \{0,1\}$$

Назовем элементарную конъюнкцию  $X_1^{s_1} \& \dots \& X_n^{s_n}$  ассоциированной с оценкой  $< s_1, \dots, s_n >$ .

Например, для оценки < 0, 1, 0 > списка переменных  $< X_1, X_2, X_3 >$  ассоциированной с ней элементарной конъюнкцией является

$$X_1^0 \& X_2^1 \& X_3^0 = \neg X_1 \& X_2 \& \neg X_3.$$

**Лемма 1.** Конъюнкция  $X_1^{t_1} \& X_2^{t_2} \& \dots \& X_n^{t_n}$ , ассоциированная с оценкой  $< t_1, t_2, \dots, t_n >$ , принимает значение И (или 1) на оценке  $< t_1, \dots, t_n >$  и только на ней.

#### Доказательство:

- 1) Значение конъюнкции  $X_1^{t_1} \& X_2^{t_2} \& \dots \& X_n^{t_n}$  на оценке  $< t_1, t_2, \dots, t_n >$  :  $t_1^{t_1} \& t_2^{t_2} \& \dots \& t_n^{t_n} \equiv 1 \& 1 \& \dots \& 1 = 1 (\mathsf{И}), \text{ т.к.}$   $t_i^{t_i} = \left\{ \begin{matrix} 0^0 = \neg 0 = 1 \\ 1^1 = 1 \end{matrix} \right.$
- 2) Для любой оценки списка переменных  $< s_1, \dots, s_n > \neq < t_1, \dots, t_n >$  значение конъюнкции  $X_1^{t_1} \& X_2^{t_2} \& \dots \& X_n^{t_n} = 0$  (Л). Так как существует  $t_i \neq s_i$ :

$$s_j^{t_j} = \begin{cases} 0^1 = 0 \\ 1^\circ = \neg 1 = 0 \end{cases}$$
. И  $s_1^{t_1} \& \dots \& s_j^{t_j} \& \dots \& s_n^{t_n} \equiv A \dots \& 0 \& \dots B \equiv 0$  (Л). Ч.т.д.

Доказательство теоремы 1. Конструктивное с обоснованием.

Алгоритм построения СДНФ для функции  $f(x_1,...,x_n) \not\equiv 0$ , заданной таблицей

Приведем алгоритм построения для булевой функции  $f(x_1...x_n) \not\equiv 0$  формулы F, находящейся в СДНФ относительно списка переменных  $\langle X_1,...,X_n \rangle$  и выражающей булеву функцию  $f(x_1...x_n)$ .

- 1. Выберем в таблице булевой функции f все те оценки, на которых f принимает значение 1 (так как f не равна тождественно 0, такие оценки (строки) найдутся). Отмечаем все единицы функции символом \*.
- 2. Для оценки списка переменных в каждой выбранной строке строим ассоциированную с ней элементарную конъюнкцию.

 $< t_1, \dots, t_n >: f(t_1, \dots, t_n) = 1$  строим конъюнкцию  $x_1^{t_1} \& \dots \& x_n^{t_n}$ .

**Пример 4**. Функция f(x, y, z) задана таблично.

| _ |   |   |            |                                             |
|---|---|---|------------|---------------------------------------------|
| X | y | Z | f(x, y, z) | СДНФ                                        |
| 1 | 1 | 1 | 1*         | $x^{1} \& y^{1} \& z^{1} = x \& y \& z$     |
| 1 | 1 | 0 | 1*         | $x^1 \& y^1 \& z^0 = x \& y \& \neg z$      |
| 1 | 0 | 1 | 0          |                                             |
| 1 | 0 | 0 | 1*         | $x^1 \& y^0 \& z^0 = x \& \neg y \& \neg z$ |
| 0 | 1 | 1 | 1*         | $x^0 \& y^1 \& z^1 = \neg x \& y \& z$      |
| 0 | 1 | 0 | 0          |                                             |
| 0 | 0 | 1 | 1*         | $x^0 \& y^0 \& z^1 = \neg x \& \neg y \& z$ |
| 0 | 0 | 0 | 0          |                                             |

3. Составляем дизъюнкцию всех полученных в пункте 2 элементарных конъюнкций. Построим формулу

$$F = \bigvee (x_1^{t_1} \& \dots \& x_n^{t_n}),$$

где дизьюнкция берется по всем оценкам  $< t_1, \ldots, t_n >$ , для которых  $f(t_1, \ldots, t_n) = 1$ . В результате получим СДНФ, выражающую формулу F

$$F = (x \& y \& z) \lor (x \& y \& \neg z) \lor (x \& \neg y \& \neg z) \lor (\neg x \& y \& z) \lor (\neg x \& \neg y \& z).$$

# Обоснование табличного метода построения СДНФ.

Докажем, что построенная таким способом формула F в СДНФ выражает данную функцию, т.е.

$$1)f(t_1,...,t_n) = 1 \Rightarrow F|_{\langle t_1,...,t_n \rangle} = 1$$

$$2)f(t_1,\ldots,t_n)=0\Rightarrow F|_{< t_1,\ldots,t_n>}=0$$

Если функция на оценке  $< t_1, \ldots, t_n >$ , принимает значение 1, то ассоциированная с ней конъюнкция входит в СДНФ:  $F = (x_1^{t_1} \& \ldots \& x_n^{t_n}) \lor D$ , D —остальная часть СДНФ. По лемме на оценке  $< t_1, \ldots, t_n >$  ассоциированная конъюнкция принимает значение 1.

Следовательно,  $F|_{\langle t_1,...,t_n \rangle} = 1 \lor D = 1.$ 

Если функция на оценке  $\langle s_1, ..., s_n \rangle$ : принимает значение 0, то F = 0, т.к. F не содержит ассоциированных с оценкой  $\langle s_1, ..., s_n \rangle$  конъюнкций (по лемме другие конъюнкции на этой оценке равны нулю):  $F = 0 \vee ... \vee 0 = 0$ .

# **Покажем единственность построения СДНФ**. От противного.

Пусть для функции f существуют две формулы в СДНФ, причем  $F_1 \neq F_2$  с точностью до перестановки элементарных конъюнкций. И пусть для определенности сущенствует ассоциированная конъюнкция  $X_1^{s_1} \& \dots \& X_n^{s_n}$ , которая содержится в  $F_1$ , но не содержится в  $F_2$ . Тогда на оценке  $< s_1, \dots, s_n >$ :

$$F_1|_{\langle S_1,\dots,S_n\rangle}=1$$

$$F_2|_{\langle S_1,...,S_n \rangle} = 0$$

Следовательно, формулы  $F_1$  и  $F_2$  не могут выражать одну и ту же функцию.

# Теорема 2. (О представлении булевой функции формулой в СКНФ).

Для любой булевой функции  $f(x_1...x_n) \not\equiv 1$ , существует формула F, которая находится в СКНФ относительно списка переменных  $< X_1,...,X_n >$  и выражает булеву функцию  $f(x_1...x_n)$ . Формула F определена однозначно с точностью до перестановки дизьюнктивных членов.

Назовем дизьюнкцию  $X_1^{1-t_1} \vee ... \vee X_n^{1-t_n}$  ассоциированной с оценкой  $< t_1, ..., t_n >$ .

Например, для оценки < 0, 1, 0 > списка переменных  $< X_1, X_2, X_3 >$  ассоциированной с ней элементарной дизъюнкцией является

$$X_1^{1-0} \vee X_2^{1-1} \vee X_3^{1-0} = X_1^{1} \vee X_2^{0} \vee X_3^{1} = X_1 \vee \neg X_2 \vee X_3.$$

**Лемма 2**. Дизъюнкция  $X_1^{1-t_1} \lor ... \lor X_n^{1-t_n}$ , ассоциированная с оценкой  $< t_1, ..., t_n >$ , принимает значение  $0(\Pi)$  на оценке  $< t_1, ..., t_n >$  и только на ней.

**Доказательство** аналогично доказательству леммы 1.

**Доказательство теоремы 2.** Приведем алгоритм построения для булевой функции  $f(x_1...x_n) \not\equiv 1$  формулы F, находящейся в СКНФ относительно списка переменных  $< X_1, ..., X_n >$  и выражающей функцию f.

# Алгоритм построения СКНФ для функции $f(x_1,\ldots,x_n)\not\equiv 1$ , заданной таблицей

- 1. Выберем в таблице булевой функции f все те оценки (строки), на которых f принимает значение 0 (так как f не равна тождественно 1, такие строки найдутся). Отмечаем все нули функции.
- 2. Для оценки списка переменных в каждой выбранной строке строим ассоциированную с ней элементарную дизъюнкцию  $X_1^{1-t_1} \vee ... \vee X_n^{1-t_n}$ .
- 3. Составляем конъюнкцию всех полученных в пункте 2 элементарных дизъюнкций.

$$F = \&(X_1^{1-t_1} \vee ... \vee X_n^{1-t_n})$$

Обоснование – аналогично СДНФ.

Пример 5. Построим СКНФ для функции из примера 4.

| X | y | Z | f(x, y, z) | СКНФ                                                                                    |
|---|---|---|------------|-----------------------------------------------------------------------------------------|
| 1 | 1 | 1 | 1*         |                                                                                         |
| 1 | 1 | 0 | 1*         |                                                                                         |
| 1 | 0 | 1 | 0          | $x^{1-1} \lor y^{1-0} \lor z^{1-1} = x^0 \lor y^1 \lor z^0 = \neg x \lor y \lor \neg z$ |
| 1 | 0 | 0 | 1*         |                                                                                         |
| 0 | 1 | 1 | 1*         |                                                                                         |
| 0 | 1 | 0 | 0          | $x^{1-0} \lor y^{1-1} \lor z^{1-0} = x^1 \lor y^0 \lor z^1 = x \lor \neg y \lor z$      |
| 0 | 0 | 1 | 1*         |                                                                                         |
| 0 | 0 | 0 | 0          | $x^{1-0} \lor y^{1-0} \lor z^{1-0} = x^1 \lor y^1 \lor z^1 = x \lor y \lor z$           |

$$F = (\neg x \lor y \lor \neg z) \& (x \lor \neg y \lor z) \& (x \lor y \lor z).$$

Из приведенных теорем следует еще один способ построения СДНФ и СКНФ заданной формулы.

# Алгоритм построения СДНФ (СКНФ) для формулы А

- 1) Строим таблицу истинности для формулы A: U-1, J-0. Получим булеву функцию  $f(x_1, ..., x_n)$
- 2) По функции строим СДНФ (СКНФ).

Из единственности построения формулы в СДНФ (СКНФ) следует единственность формулы в СДНФ (СКНФ), равносильной данной (теорема была в предыдущем разделе, но единственность мы не доказали).

Итак, каждой формуле А соответствует булева функция:

 $A \leftrightarrow f(x_1, ..., x_n) \to функция единственным образом представлена в СДНФ (СКНФ).$ 

# Полные системы булевых функций

**Определение 1**. Система булевых функций  $f = \{f_1, \dots, f_l\}$  называется **полной**, если любую булеву функцию можно выразить с помощью суперпозиций этих функций.

Функция может быть получена в результате суперпозиции одним из следующих способов:

1) замена переменной  $x_i \rightarrow x_i$ :

$$f_t(x_1,...,x_{i-1},x_i,x_{i+1},...x_t) \to f_t(x_1,...,x_{i-1},x_j,x_{i+1},...x_t)$$

2) подстановка функции вместо переменной  $f_i \rightarrow x_i$ .

$$f_t(x_1,...,x_{i-1},x_i,x_{i+1},...x_t) \to f_t(x_1,...,x_{i-1},f_j(x_1,...,x_j),x_{i+1},...x_t)$$

В зависимости от глубины вложений (подстановок) суперпозиция бывает ранга 0,1, ...

Пример известной полной системы {¬, &, V}, т.к. любую булеву функцию можно представить формулой в СДНФ и\или в СКНФ.

Два способа доказательства полноты системы булевых функций:

- 1. По утверждению.
- 2. По критерию Поста.

**Утверждение 1**. Пусть система функций  $f = \{f_1, \ldots, f_k\}$  — полная. Тогда система функций  $g = \{g_1, \ldots, g_m\}$  тоже полная, если любую функцию  $f_i$  ( $i = 1, \ldots, k$ ) можно представить с помощью суперпозиций функций  $g_1, \ldots, g_m$ .

Известную полную систему выражаем через новую систему!

### Доказательство:

Произвольную булеву функцию  $\, \varphi \,$  представим с помощью суперпозиций  $\, g_{1}, \ldots, g_{m}.$ 



Выражаем произвольную булеву функцию  $\varphi$  через суперпозиции функций  $f_1,\ldots,f_k$ . Это можно сделать, т.к. система функций  $f=\{f_1,\ldots,f_k\}$  полная. Затем каждую функцию  $f_i$  выразим через суперпозиции функций  $g_1,\ldots,g_m$  (это возможно по условию теоремы). Таким образом, мы получили, что любую булеву функцию можно выразить через суперпозиции функций  $g_1,\ldots,g_m$ . Следовательно, система функций  $g=\{g_1,\ldots,g_m\}$  тоже полная.

# Пример 1.

По утверждению 1 докажем полноту системы:

1.  $g_1(x) = \neg x$ ,  $g_2(x_1, x_2) = x_1 \& x_2$  через известную полную систему

$$f_1(x) = \neg x, f_2(x_1, x_2) = x_1 \& x_2, f_3(x_1, x_2) = x_1 \lor x_2.$$

Представляем функции известной полной системы через суперпозиции функций новой системы:

$$\begin{split} f_1 &(x) = g_1(x); \\ f_2 &(x_1, x_2) = g_2(x_1, x_2); \\ f_3 &(x_1, x_2) = g_1 \Big( g_2(g_1(x_1), g_1(x_2)) \Big), \text{ т. к. } x_1 \lor x_2 = \neg (\neg x_1 \& \neg x_2). \end{split}$$

2. Докажем полноту системы  $\{\neg, \supset\}$ 

Как и в примере 1, обозначим эту систему функциями {g}

$$g_1(x) = \neg x$$
  $g_2(x_1, x_2) = x_1 \supset x_2$  а исходную полную систему – функциями  $\{f\}$ 

$$f_1(x) = \neg x$$
  
 $f_2(x_1, x_2) = x_1 \& x_2$   
 $f_3(x_1, x_2) = x_1 \lor x_2$ 

Здесь, как и в прошлом примере, совпала одна из функций:

$$f_1(x) \equiv g_1(x)$$

а остальные попробуем выразить (без записи суперпозиции)

Т.к. 
$$x_1 \supset x_2 \equiv \neg x_1 \lor x_2 \Rightarrow$$
  
 $x_1 \lor x_2 \equiv \neg x_1 \supset x_2$   
и  $x_1 \& x_2 \equiv \neg (\neg x_1 \lor \neg x_2) \equiv \neg (x_1 \supset \neg x_2).$ 

В дальнейшем для доказательства полноты системы будем просто указывать формулы, выражающие операции известной полной системы  $f=\{f_1,\ldots,f_k\}$  через операции новой системы  $g=\{g_1,\ldots,g_m\}.$ 

# Штрих Шеффера и штрих Вебба (стрелка Пирса)

$$x_1 | x_2 = \neg x_1 \lor \neg x_2 \lor x_1 \circ x_2 = \neg x_1 \& \neg x_2$$

Выпишем для этих операций таблицу истинности.

| $x_1$ | $x_2$ | $x_1 \mid x_2$ | $x_1 \circ x_2$ |
|-------|-------|----------------|-----------------|
| 1     | 1     | 0              | 0               |
| 1     | 0     | 1              | 0               |
| 0     | 1     | 1              | 0               |
| 0     | 0     | 1              | 1               |

### Пример 2.

Докажем, что система, состоящая из одной булевой функции {|} будет полной. Возьмем систему {¬, &} в качестве известной полной. Тогда

$$\neg x \equiv x | x$$

$$x_1 \& x_2 \equiv \neg (\neg x_1 \lor \neg x_2) \equiv \neg (x_1 | x_2) \equiv (x_1 | x_2) | (x_1 | x_2).$$

$$x_1 \lor x_2 \equiv \neg x_1 | \neg x_2 \equiv (x_1 | x_1) | (x_2 | x_2).$$

Докажите, что система {•} так же полная.

#### Многочлен Жегалкина

Рассмотрим систему булевых функций {&, +,1}. Легко убедиться, что она полная. Выпишем булевы функции системы:

| $x_1$ | $x_2$ | $x_1 \& x_2$ | $x_1 + x_2$ | 1 |
|-------|-------|--------------|-------------|---|
| 1     | 1     | 1            | 0           | 1 |
| 1     | 0     | 0            | 1           | 1 |
| 0     | 1     | 0            | 1           | 1 |
| 0     | 0     | 0            | 0           | 1 |

Для доказательства полноты системы  $\{\&, +, 1\}$  через полную систему  $\{\neg, \&, \lor\}$  покажем:

$$\neg x = x + 1;$$
  
 $x \& y - \text{так и остается};$   
 $x \lor y \equiv \neg (\neg x \& \neg y) \equiv ((x + 1) \& (y + 1)) + 1.$ 

Для схожести многочлена Жегалкина с обычным алгебраическим многочленом будем обозначать конъюнкцию точкой (как умножение):  $\{\cdot, +, 1\}$ .

# Для данной системы булевых функций справедливы тождества:

1. Коммутативность

$$A + B \equiv B + A$$
$$A \cdot B \equiv B \cdot A$$

2. Ассоциативность

$$(A+B) + C \equiv A + (B+C)$$
$$(A \cdot B) \cdot C \equiv A \cdot (B \cdot C)$$

3. Дистрибутивность

$$A \cdot (B + C) \equiv A \cdot B + A \cdot C$$

- 4.  $A + A \equiv 0$
- 5.  $A \cdot A \equiv A$

Первые три тождества совпадают с соответствующими алгебраическими тождествами.

# Определение 2. Многочленом Жегалкина называется многочлен вида

$$\sum_{\text{по всем слагаемым}} x_{i_1} \, x_{i_2} \, ... \, x_{i_k} + a_i$$
,

в котором все переменные имеют степень не выше первой и нет двух одинаковых слагаемых. Номера переменных идут в порядке возрастания.  $a_i = const \in \{0,1\}$ .

Номера переменных идут в порядке возрастания – для единственности представления.

**Утверждение 2.** Любую формулу логики высказывания можно представить многочленом Жегалкина однозначно с точностью до перестановки слагаемых.

#### Доказательство.

Для доказательства достаточно пересчитать количество различных многочленов Жегалкина и убедиться, что оно совпадает с числом всех булевых функций.

Известно, что число различных булевых функций от n переменных равно  $2^{2^n}$ .

Покажем, что число различных многочленов Жегалкина также  $2^{2^n}$ . Количество различных слагаемых в многочлене Жегалкина от n переменных равно  $2^n$ :

$$x_1, x_2, \dots x_n$$
  $2 \cdot 2 \cdot \dots \cdot 2 = 2^n$  (каждую переменную либо берем, либо нет в слагаемое многочлена).

И каждое слагаемое либо берем в многочлен, либо нет. Получаем: всего различных многочленов Жегалкина от n переменных  $2^{2^n}$ . Ч.т.д.

# Алгоритм приведения формулы F к виду многочлена Жегалкина

1. Выражаем все логические операции формулы F через  $\{\&, +, 1\}$  (это сделать можно, так как система полная).

$$\neg x = x + 1$$
 $x \lor y \equiv \neg(\neg x \& \neg y) \equiv (x + 1)(y + 1) + 1$ 
 $x \supset y \equiv \neg x \lor y \equiv \neg(x \& \neg y) \equiv x(y + 1) + 1$ 
 $x \sim y \equiv \neg(x + y) \equiv x + y + 1$ 
Получаем формулу  $F_1 \equiv F$ 

2. Используя тождества (1) – (5), приводим формулу  $F_1$  к виду многочлена. Получаем формулу  $F_2 \equiv F_1$ .  $F_2$  — многочлен Жегалкина.

Запишем итоговые значения многочленов Жегалкина для основных операций, с учетом особенностей операций сложения по модулю 2 и конъюнкции (x + x = 0;  $x \cdot x = x$ ).

$$\neg x = x + 1;$$

$$x \& y \equiv x \cdot y;$$

$$x \lor y \equiv xy + x + y;$$

$$x \supset y \equiv xy + x + 1;$$

$$x \sim y \equiv x + y + 1;$$

$$x + y - \text{B cucteme.}$$

Пример 3. Найти многочлен Жегалкина формулы А.

1. 
$$A = (\neg x \& y) \sim (y \supset z) \equiv (\neg x \& y) \sim (\neg y \lor z) \equiv (\neg x \& y) \sim \neg (y \& \neg z) \equiv$$
  

$$\equiv ((x+1)y) \sim (y(z+1)+1) \equiv (xy+y) + (yz+y+1) + 1 \equiv$$
  

$$\equiv xy + yz + y + y + 1 + 1 \equiv xy + yz.$$

2. 
$$F \equiv \neg(y \supset \neg x) \sim (\neg x \supset \neg z)$$
  
1)  $A = \neg(y \supset \neg x) = y(x+1) + y + 1 + 1 = xy + y + y = xy;$  (1+1=0!)  
2)  $B = (\neg x \supset \neg z) = (x+1)(z+1) + (x+1) + 1 =$   
 $= xz + x + z + 1 + x + 1 + 1 = xz + z + 1$   
3)  $F \equiv \neg(y \supset \neg x) \sim (\neg x \supset \neg z) = A + B + 1 = xy + xz + z + 1 + 1 = xy + xz + z$   
Other:  $xy + xz + z$ 

Приведем табличный алгоритм построения многочлена Жегалкина, который легко запрограммировать.

# Алгоритм построения многочлена Жегалкина по булевой функции Метод треугольника

- 1. Строится таблица, в которой строки идут в порядке возрастания двоичных кодов от 00...00 до 11...11.
- 2. Строится вспомогательная треугольная таблица, в которой первый столбец совпадает со столбцом значений функции в таблице. Ячейка в каждом последующем столбце получается путём сложения по модулю 2 двух ячеек предыдущего столбца стоящей в той же строке и строкой ниже.
- 3. Столбцы вспомогательной таблицы нумеруются двоичными кодами в том же порядке, что и строки таблицы истинности. Каждому двоичному коду ставится в соответствие один из членов полинома Жегалкина в зависимости от позиций кода, в которых стоят единицы.
- 4. Если в верхней строке какого-либо столбца стоит единица, то соответствующий член присутствует в полиноме Жегалкина.

Многочлен Жегалкина имеет вид: 1 + z + xy.

Проверим результат, построив многочлен Жегалкина через СДНФ. В этом случае

|    |   |   |   |          | 000 | 001        | 010 | 011 | 100 | 101 | 110 | 111 |
|----|---|---|---|----------|-----|------------|-----|-----|-----|-----|-----|-----|
| Nº | x | у | Z | f(x,y,z) | 1   | Z          | у   | yz  | x   | χz  | xy  | xyz |
| 0  | 0 | 0 | 0 | 1        | 1   | 1          | 0   | 0   | 0   | 0   | 1   | 0   |
| 1  | 0 | 0 | 1 | 0        | 0   | <b>→</b> 1 | 0   | 0   | 0   | 1   | 1   |     |
| 2  | 0 | 1 | 0 | 1        | 1   | 1          | 0   | 0   | 1   | 0   |     |     |
| 3  | 0 | 1 | 1 | 0        | 0   | 1          | 0   | 1   | 1   |     |     |     |
| 4  | 1 | 0 | 0 | 1        | 1   | 1          | 1   | 0   |     |     |     |     |
| 5  | 1 | 0 | 1 | 0        | 0   | 0          | 1   |     |     |     |     |     |
| 6  | 1 | 1 | 0 | 0        | 0   | 1          |     |     |     |     |     |     |
| 7  | 1 | 1 | 1 | 1        | 1   |            |     |     |     |     |     |     |

дизъюнкцию можно просто заменить операцией +, т. к. при любых значениях входных переменных в единицу обращается не более одной элементарной конъюнкции. Получим:

$$(\neg x \& \neg y \& \neg z) \lor (\neg x \& y \& \neg z) \lor (x \& \neg y \& \neg z) \lor (x \& y \& z) \equiv$$

$$\equiv (\neg x \& \neg y \& \neg z) + (\neg x \& y \& \neg z) + (x \& \neg y \& \neg z) + (x \& y \& z) \equiv$$

$$\equiv (x+1)(y+1)(z+1) + (x+1)y(z+1) + x(y+1)(z+1) + xyz \equiv$$

$$\equiv (z+1)[(x+1)(y+1) + (x+1)y + x(y+1)] + xyz \equiv$$

$$\equiv (z+1)[xy + x + y + 1 + xy + y + xy + x] + xyz \equiv (z+1)[xy+1] + xyz \equiv$$

$$\equiv xyz + z + xy + 1 + xyz \equiv xy + z + 1$$

# Функционально замкнутые классы

Определение 3. Класс булевой функции называется функционально замкнутым (Ф3), если любая суперпозиция функций из этого класса также принадлежит этому классу.

Если класс Т – ФЗ. Следовательно, любая суперпозиция функций из Т принадлежит классу Т.

# Пример 4.

- 1.  $P_1$  класс функций одной переменной является функционально замкнутым. Возьмем функции из этого класса  $f_i(x_1)$  и  $f_i(x_2)$ . Очевидно, что суперпозиция этих функций также содержит одну переменную:  $f_i(f_i(x_2))$ .
- 2.  $P_2$  класс функций двух переменных не является функционально замкнутым. Возьмем функции из этого класса  $f(x_1, x_2)$ ,  $g(x_2, x_3)$ . Суперпозиция  $f(x_1, g(x_2, x_3))$  содержит три переменные.
- 3. К класс всех булевых функций функционально замкнутый.

Для формулировки критерия Поста о полноте системы булевых функций необходимо рассмотреть пять  $\Phi$ 3 классов:  $T_0$ ,  $T_1$ , S, L, M.

 $T_0$  – класс функций, сохраняющих 0.

 $T_1$  — класс функций, сохраняющих 1. S — класс самодвойственных функций. L — класс линейных функций.

- класс монотонных функций.

1.  $T_0$  – класс функций, сохраняющих  $\theta$ , то есть функций, удовлетворяющих условию  $f_i(0,0,...,0)=0.$ 

### Пример 5.

$$\begin{aligned} x_1 & \& x_2|_{<0,0>} = 0 \in T_0 \\ x_1 & \lor x_2|_{<0,0>} = 0 \in T_0 \\ x_1 & \supset x_2|_{<0,0>} = 1 \Rightarrow (x_1 \supset x_2) \notin T_0 \end{aligned}$$

**Докажем**, что класс функций, сохраняющих 0, функционально замкнут.

Пусть  $f_1(x_1,...,x_n) \in T_0$ ,  $f_2(x_1,...,x_m) \in T_0$ . Рассмотрим их суперпозицию на оценке < 0, ..., 0 >.

$$f_1\left(x_1,\ldots,\underbrace{f_2(x_1,\ldots,x_n)}_{x_i},\ldots x_n\right)\Big|_{\langle 0,\ldots,0\rangle}$$

$$f_1(0,\ldots,\underbrace{f_2(0,\ldots,0)}_{=0},\ldots,0)=0$$

Количество булевых функций, принадлежащих  $T_0$ , равно  $2^{2^n-1} = \frac{1}{2} \cdot 2^{2^n}$ .

(На оценке < 0, ..., 0 > значение функции определено -0.)

2.  $T_1$  – класс функций, сохраняющих I, то есть функций, удовлетворяющих условию  $f(1,1,\ldots,1)=1.$ 

# Пример 6.

$$\begin{aligned} x_1 & \& x_2|_{\langle 1,1 \rangle} = 1 \\ x_1 & \lor x_2|_{\langle 1,1 \rangle} = 1 \\ x_1 & \supset x_2|_{\langle 1,1 \rangle} = 1 \end{aligned} \} \in T_1 \\ x_1 & \to x_2|_{\langle 1,1 \rangle} = 1$$

Доказательство функциональной замкнутости класса  $T_1$  аналогично  $T_0$  (вместо "0" подставить "1").

Число функций, сохраняющих 1 тоже совпадает:  $2^{2^{n}-1} = \frac{1}{2} \cdot 2^{2^{n}}$ .