SATP/STP-Standardbedingungen

STP: Temperatur 273.15K Druck: 1 bar = $10^5 Pa$ **SATP**: Temperatur 298.15K Druck: 1 bar

SI-Basiseinheiten

Name	Einheit
Zeit	s
Länge	m
Masse	kg
elektrische Stärke	A
Temperatur	K
Stoffmenge	mol
Lichtstärke	cd

Kohärent: abgeleitete Basiseinheiten können als Produkt von Potenzen der Basiseinheiten dargestellt werden mit einem Faktor k: $k = 1 \Rightarrow$ kohärent, $k \neq 1 \Rightarrow$ nicht Kohärent.

Umrechnen

$$\begin{array}{l} 1ml = 1cm^3 = 10^{-3}l = 10^{-3}dm^3 = 10^{-6}m^3 \\ 1bar = 10^5 \frac{N}{m^2} = 10^5 \frac{kg}{m \cdot s^2} = 10^5 Pa \end{array}$$

Grundbegriffe Definitionen

Arbeit: ist eine Energieübertragungsform, die mit einer geordneten makroskopischen Bewegung der Trennwand zwischen System und der Umgebung verbunden ist.

Wärme: ist einer Energieübertragungsform, die mit einer ungeordneten mikroskopischen Bewegung der Moleküle verbunden ist.

intensive Funktion: der Wert hängt nicht von der Systemgrösse ab. (Druck und Temperatur)

 ${\bf extensive\ Funktion}:$ der Wert hängt von der Systemgrösse ab. (Teilchenzahl und Volumen, Entropie)

Austausch	Name
m,w,q	offen
w,q	geschlossen
w	adiabatisch
q	diathermal
Ø	isoliert/abgeschlossen

Totales Differential

$$dF(x,y) = \left(\frac{\partial F}{\partial x}\right)_y dx + \left(\frac{\partial F}{\partial y}\right)_x dy$$

Satz von Schwarz

$$\left(\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x}\right)_y\right)_x = \left(\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y}\right)_x\right)_y$$

Wenn dF(x,y) = Adx + Bdy ein totales Differential ist, gilt somit auch:

$$A = \left(\frac{\partial F}{\partial x}\right)_y B = \left(\frac{\partial F}{\partial y}\right)_x$$

Nach Satz von Schwarz gilt nun auch:

$$\left(\frac{\partial A}{\partial y}\right)_x = \left(\frac{\partial B}{\partial x}\right)_y$$

Formelsammlung Thermodynamik

Weg- und Zustandsfunktion

Zustandsfunktion: ist Wegunabhängig und beschreibt augenblickliche Lage, ohne Ahnung was davor oder danach ist.(Druck, Volumen, Temperatur, Enthalpie, Entropie, innere Energie)

Wegfunktion: Beschreiben einen Prozess/Vorgang. (Wärme, Arbeit)

Ideale Gasgleichung

$$pV = nRT$$

Nullter Hauptsatz

Sind zwei Körper jeweils mit einem dritten im thermischen Gleichgewicht, so sind sie auch miteinander im thermischen Gleichgewicht.

Erster Hauptsatz

Die innere Energie eines isolierten Systems ist konstant. Für ein geschlossenes System:

$$dU = \delta q + \delta w$$
$$\Delta U = Q + W$$

Konvention!: Arbeit positiv falls Erhöhung innere Energie.

Volumenarbeit

•
$$p = const.$$

$$w = -p_{ex}\Delta V$$

• irrev.: Expansion falls $p_{in} > p_{ex}$; Kompression falls $p_{in} < p_{ex}$.

$$w_{ges} = (V_2 - V_1)(p_1 - p_2)$$

• Reversible isotherme Volumenarbeit: T = const.Reversibel bedeutet innere Druck p gleich äusserem Druck p_{ex} . Volumenänderung von V_1 zu V_2 .

$$w=-\int_{V_1}^{V_2} p dV = -\int_{V_1}^{V_2} \frac{nRT}{V} dV = -nRT \ln \left(\frac{V_2}{V_1}\right)$$

Prozesse bei konstantem Volumen

$$\delta w = 0 \rightarrow dU = \delta q$$

Wärmekapazität:

$$C_{v,m} = \frac{C_v}{n}$$
$$\delta q_V = dU = C_V dT$$

Prozesse bei konstantem Druck

Einführung Entalpie:

$$H = U + pV = U + nRT$$

Da der Druck konstant ist:

$$dH = \delta q_p$$

Nun kann auch hier Wärmekapazität definiert werden:

$$C_{p,m} = \frac{C_p}{n}$$

Für ideale gase:

$$\delta q_p = dH = C_p dT$$

Temperaturabhängikeit U und H

$$\Delta U = \int_{T_1}^{T_2} C_V(T) dT$$

$$\Delta H = \int_{T_1}^{T_2} C_p(T) dT$$

Sind C_V und C_p konstant so gilt:

$$\Delta U = C_V (T_2 - T_1)$$

$$\Delta H = C_p(T_2 - T_1)$$

Verbindung von C_p und C_V

$$C_p = C_V + nR$$

$$C_{p,m} = C_{V,m} + R$$

Adiabatische Prozesse

Für einen Adiabatischen Prozess gilt:

- geschlossenes System, nur Volumenarbeit
- kein Wärmeaustausch mit der Umgebung
- für ein reversiblen Prozess

$$\delta a = 0$$

$$dU = -pdV = C_V dT$$

Mit der Idealen Gasgleichung kommt man auf die Poisson'sche Gleichungen:

$$\gamma = \frac{C_{p,m}}{C_{V,m}} \qquad \gamma > 1$$

$$T \cdot V^{(\gamma - 1)} = const$$

$$p \cdot V^{(\gamma)} = const$$

$$T^{\gamma} \cdot p^{(1-\gamma)} = const$$

$$T \cdot p^{\left(\frac{1-\gamma}{\gamma}\right)} = const$$

Zweiter Hauptsatz

"Ein Prozess bei dem lediglich Wärme aus einem Reservoir entnommen und vollständig in Arbeit umgewandelt wird, ist unmöglich." Kelvin'sche Aussage

Kurz:
$$\Delta S_{Gesamt} > 0$$

Bzw.
$$\Delta S_{Gesamt} = \Delta S_{sys} + \Delta S_{umg}$$

Carnot Kreisprozess

Bilanz

$$\begin{split} w_{total} &= -\left(RT_W \ln \frac{V_2}{V_1} - RT_K \ln \frac{V_3}{V_4}\right) \\ q_{tot} &= q_w + q_K = RT_W \ln \frac{V_2}{V_1} + RT_K \ln \frac{V_4}{V_3} \end{split}$$

Aus der Adiabatengleichung ergibt sich ein Verhältnis der Volumen:

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

Nutzarbeit:

$$w = -R(T_W - T_K) \ln \frac{V_2}{V_1}$$

Der Wirkungsgrad:

$$\eta = \frac{|w|}{q_w} = \frac{T_W - T_K}{T_W} = \frac{q_w + q_k}{q_w}$$

3. Hauptsatz der Thermodynamik

Die Entropie einer reinen und perfekt kristallinen Substanz (Element oder Verbindung) ist bei null Kelvin gleich null.

Clausische Ungleichung

$$\frac{\delta q_{rev}}{T} \ge \frac{\delta q}{T}$$

Für alle möglichen Wege zwischen Zustand a und b wird auf einem reversiblen die maximale Arbeit geleistet.

Entropie S (Zustandsfunktion)

In einem abgeschlossenen System verläuft ein spontaner Prozess bis das Maximum der Entropie S erreicht ist.

Dimension und Einheit: Energie/Temperatur bzw. Joule/Kelvin

$$dS = \frac{\delta q_{rev}}{T}$$

Extensive Zustandsfunktion, änderung:

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{\delta q_{rev}}{T}$$

isoliertes System: $\delta q = 0; dS \geq 0$

reversible isotherme Volumenänderung ideales gas

$$dU = \delta q + \delta w = 0$$

$$\delta q = -\delta w = p_{ex}dV = pdV = \frac{nRT}{V}dV$$

$$\delta q_{rev} = \frac{nRT}{V}dV$$

$$dS = \frac{1}{T} \cdot \frac{nRT}{V}dV = \frac{nR}{V}dV$$

$$\Delta S = \int_{V_1}^{V_2} dS = nR \ln\left(\frac{V_2}{V_1}\right)$$

reversible isochore Temperaturänderung

$$\begin{split} \delta q_{rev} &= C_V dT \\ dS &= \frac{C_V}{T} dT \\ \Delta S &= \int_{T_1}^{T_2} dS = \int_{T_1}^{T_2} \frac{C_V}{T} dT \end{split}$$

Falls $C_V = const$, gilt:

$$\Delta S = n \cdot C_V \ln \left(\frac{T_2}{T_1} \right)$$

Für die Isobare folgt analog:

$$\Delta S = n \cdot C_p \ln \left(\frac{T_2}{T_1} \right)$$

Mischentropie

$$\Delta_M S = -nR \sum_i x_i \ln(x_i)$$

Dabei ist $x_i = \frac{p_i}{n} = \frac{n_i}{n}$ und $p = \sum_i p_i$ bzw. $n = \sum_i n_i$

(Standard)reaktionsentropie

$$\Delta_R S = \frac{dS}{d\xi}$$
 $\Delta_R S = \sum_i v_i S_{m,i}$ $\Delta_R S^{\circ} = \sum_i v_i S_{m,i}^{\circ}$

Fundamentalgleichung der Thermodynamik

$$dU = TdS - pdV + \delta w_{nv,rev}$$

Potentiale

Bezeichnung	Gleichung	Differentialform
Innere Energie	U(S,V) = TS - pV	dU = TdS - pdV
Enthalpie	H(S,p) = U + pV	dH = TdS + Vdp
Freie Enthalpie	G(T,p) = H - TS	dG = -SdT + Vdp
Freie Energie	A(T,V) = U - ST	dA = -SdT - pdV

Helmholz Freie Energie

Bedingungen: geschlossenes System bei konstantem Druck und konstanter Temperatur. Das minimum von A entspricht dem Gleichgewichtszustand. $dA \leq 0$

Gibbs Energie

Bedingung: System bei konstantem Volumen und Temperatur. Das minimum von G entspricht dem Gleichgewichtszustand. Bei einer Zustandsänderung von 1 zu 2:

$$\Delta G = G_2 - G_1 < w_{nv}$$

Allgemeine Form:

$$\Delta G = \Delta H - T\Delta S$$

Bsp. isotherme Druckänderung:

$$dT = 0$$

$$\Delta G = \int dG = \int_{p_1}^{p_2} V dp = nRT \int_{p_1}^{p_2} \frac{1}{p} dp = nRT \ln \left(\frac{p_2}{p_1} \right)$$
 Molare Gibbs Energie: $\frac{G}{d} = G_m$

Änderung der Gibbs'sche Energie beim Mischen

$$\Delta_M G = nRT \sum_i x_i \ln(x_i)$$

Chemische Thermodynamik

Chemische Potential

Das chemische Potential beschreibt die Fähigkeit einer chemischen Möglichkeit. Es ist definiert als:

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, p, n_{j \neq i}}$$

Rein Stoff:

$$\mu_i = \left(\frac{\partial G}{\partial n}\right)_{T,p} = G_m(T,p)$$

(Molare) Standard Gibbs'sche Energie im Standardzustand bei beliebiger Temperatur:

$$G_m^{\circ} = \Delta_B H^{\circ}(T) - TS^{\circ}(T) = \mu^{\circ}$$

Berücksichtigt man Tempabhängigkeit von Enthalpie und Entropie:

$$\mu(T) = (\Delta_B H^{\circ} + C_p(T - T^{\circ})) - (S^{\circ} + C_p \ln\left(\frac{T}{T^{\circ}}\right)) \cdot T$$

(Nicht Standardzustand) Druckabhängigkeit des Chemischen Potentials

$$G_m(T, p) = G_m^{\circ}(T) + \int_{p^{\circ}}^{p} V_m dp$$
$$\mu(T, p) = \mu^{\circ}(T) + \int_{p^{\circ}}^{p} V_m dp$$

chemisches Potential Phasengleichgewicht

Das chemische Potential einer spezies hat in jeder Phase denselben Wert.

$$\mu_1^A=\mu_1^B=\mu_1^C$$

Die Zahl 1 steht für den Stoff und A,B,C für die Phase. Im
Gleichgewicht zwischen 2 Phasen ist der Wert des Chemischen
Potential in allen Phasen gleich.

$$\mu^A = \mu^B$$

Bedingung chemisches Gleichgewicht

$$\Delta_R G = \sum_i v_i \mu_i = 0$$

Gibbs'sche Phasenregel

Phase: Anzahl aller vollständig homogener Gebiete P

Komponenten: Bestandteile einer Mischung, eine chemische Spezies. Anzahl Komponenten: C

Freiheitsgrade: Auch Varianz F- die Anzahl der intensiven Zustandsvariablen, die man unabhängig voneinander ändern kann, ohne dass sich Anzahl der im Gleichgewicht stehenden Phasen ändert.

Beziehung:

$$F = C - P + 2$$

Beispiel: Was ist die Varianz für ein System aus Wasser, Eis und Wasserdampf? C = 1: P = 3: also $F = 0 \rightarrow \text{Tripelpunkt}$. keine Möglichkeit etwas zu variieren.

Standardzustand

Der Standardzustand einer Substanz ist deren reine Form bei der jeweiligen Temperatur und einem Durck von $p = p^{\circ}$. Willkürlich definierter Zustand. Für jeden Aggregatszustand gibt es einen eigenen Standardzustand.

(Standard)bildungsenthalpie

Eine definierte Skala mit der Enthalpien berechnet werden können. $\Delta_B H^{\circ}$ ist Null falls: Element, in ihrere bei SATP stabilsten Form, im Standardzustand, bei SATP.

Die Standardbiludungsenthalpie eines Stoffes bei SATP ist die Enthalpie der Reaktion, bei deren dieses Stoffes im Standardzustand aus Elementen im Standardzustand.

Reaktionsenthalpie

- Endotherme Reaktion falls: $\Delta_R H > 0$
- Exotherme Reaktion falls: $\Delta_B H < 0$

Satz von Hess: Die Enthalpieänderung ΔH eines Gesamtprozesses ist die Summe der Enthalpieänderung der einzelnen Prozessschritte.

 $\Delta_B H$ ist eine Zustandsfunktion.

$$\Delta_R H^{\circ}(T) = \Delta_B H^{\circ}(Produkte, T) - \Delta_B H^{\circ}(Reaktanden, T)$$

Temperaturabhängigkeit Enthalpie

$$H(T_2) = H^{\circ}(T_1) + \int_{T_1}^{T_2} C_p dT$$

Enthalpieänderung beim Mischen

$$\Delta_M H = 0$$

eine chemische Reaktion

$$r_1R_1+r_2R_2+\ldots {\ensuremath{\longleftarrow}} p_1P_1+p_2P_2+\ldots$$

 $r_1, p_1...$ sind die stöchiometrischen Koeffizienten. Anfangskonzentrationen: $n_{R1}^0; n_{R2}^0; n_{P1}^0; n_{P2}^0$ Stöchiometrische Koeffizientent (positiv für Produkte und negativ für Edukte)

$$\xi = \frac{n_i - n_i^0}{v_i}$$

Gleichgewicht

Die Gleichgewichtskonstante ${\cal K}_p$ entspricht dem Wert des Reaktionsquotienten Q_n im Gleichgewicht.

$$K_p = \exp\left(-\frac{\Delta_R G^{\circ} + (p - p^{\circ}) \sum_k v_k V_{m,k})}{RT}\right)$$

Kann die Druckabhängigkeit vernachlässigt werden und gibt es keine kondensierte Phase wird es zu:

$$K_p = \exp\left(-\frac{\Delta_R G^{\circ}}{RT}\right)$$

Wir können K_p umschreiben zu:

$$K_p = \prod_m \left(\frac{p_m}{p^{\circ}}\right)^{v_m}$$

Eine Gleichgewichtskonstante mit den Molanteilen der Gase im Reaktionsgemisch

$$K_x = \prod_m x_m^{v_m} = \left(\frac{p}{p^{\circ}}\right)^{\Delta v} \cdot K_p$$

 v_m ist der Stöchiometrische Koeffizient. $x_i = \frac{p_i}{r_i} = \frac{n_i}{r_i}$

Konzentration der Gase: $c_m = \frac{n_m}{V} = \frac{p_m}{RT}$ Standardkonzentration c° - $1\frac{mol}{m^3}$ K_c ist eine einheitslose Gleichgewichtskonstante mit den Konzentrationen der Gase im Reaktionsgemisch

$$K_c = \prod_m \left(\frac{c_m}{c^{\circ}}\right)^{v_m} = K_p \left(\frac{c^{\circ}RT}{p^{\circ}}\right)^{\Delta v}$$

$$\Delta v = \sum_{m} v_m$$

Gesamtdruck und gesamte Stoffmenge

$$p = \sum_{i} p_i$$

$$n = \sum_{i} n_i$$

Prinzip von Le Chatelier

Prinzip des kleinsten Zwanges

- Konzentration: fügen wir Edukte zu Reaktionsgemisch im Gleichgewicht, dann bilden sich vermehrt Produkte, um das gestörte Gleichgewicht wieder zu erreichen.
- Temperatur: Temperaturerhöhung verschiebt Gleichgewicht in endotherme Richtung. Temperaturerniderungung in exotherme Richtung.
- Druck: Teilchenanzahl wirkt Druckänderung entgegen. Bei erhöhung des Drucks verschiebt sich Gleichgewicht in Richtung, wo Teilchenanzahl verringert wird. System schrumpft. Bei erniedrigung verschiebt sich Gleichgewicht in Richtung mehr Teilchen. System Expandiert

Phasendiagramm

Der Kritische Punkt und der Tripelpunkt besitzen keinen Freiheitsgrad, alle Linien besitzen einen Freiheitsgrad und innerhalb der Phasenräume existieren zwei Freiheitsgrade. Bei jedem Phasenübergang gilt: $\Delta S = \frac{\Delta H}{T}$ Die Clapeyron'sche Gelichung gibt die Steigung der einzelnen Koexistenzkurven.

$$\frac{dp}{dT} = \frac{\Delta S_m}{\Delta V_m}$$

$$\frac{dp}{dT} = \frac{\Delta H_m}{T\Delta V_m}$$

Koexistenzkurve Fest-Flüssig

Bei p_s sei die Schmelztemperatur gleich T_s

$$\frac{dp}{dT} = \frac{\Delta_S H}{T_S \Delta_S V}$$

$$\Delta_S V = V_m(l) - V_m(s)$$

Wenn $\Delta_S H$ und $\Delta_S V$ konstant:

$$p = p_S + \frac{\Delta_S H}{T_S \Delta_S V} (T - T_S)$$

Koexistenzkurve Fest/Flüssig - Gas

Auch eine Dampfdruckkurve bzw. Sättigungsdampfdruck 3 Annahmen: $\Delta_V H$ ist wesentlich konstant; $V_m(g) >> V_m(l)$ oder $V_m(s)$;ideales Gas

$$V_m(g) = \frac{RT}{p}$$

$$\Delta_V V_m = V_m(g) - V_m(s) \approx V_m(g)$$

T* ist die Siedetemperatur bei einem Druck p*, T ist die Siedetemperatur bei einem neuen Druck p.

$$p = p^* \exp\left(-\frac{\Delta_V H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)\right)$$

Experimentelle Daten werden mit der Antoine Gleichung ausgewertet und können so geplottet werden:

$$log_{10}(p) = A - \frac{B}{T + C}$$

Verhalten in Nähe 0K

Debye-Modell, bei sehr kleinen Temperaturen: $C_V \sim T^3$

Reale Gase

Kompressionsfaktor **Z**: Das Verhältnis zwischen dem molaren Volumen des realen Gases und des idealen Gases (bei gleichen T und p).

$$Z = \frac{V_m}{V_m, id} = \frac{pV_m}{RT}$$

Ideales Gas: Z = 1

Je weiter weg von 1, desto weniger ideal ist das Verhalten.

Kompressionsfaktor als Funktion des Drucks:

Z > 1: Abstossung dominiert

Z < 1: Anziehung dominiert

 $Z \to 1$ wenn $p \to 0$ Virial-Zustandsgleichung Entwicklung der Funktion Z(p) bzw. Z(d_m)

$$Z = 1 + B_2^0(T)p + B_3^0(T)p^2 + \dots$$
$$Z = 1 + B_2^0(T)d_m + B_3^0(T)d_m^2 + \dots$$

In intensiver Form:

$$\frac{pV_m}{RT} = 1 + \frac{B_{2V}(T)}{V_m} + \frac{B_{3V}(T)}{V_m^2} + \dots$$

Boyle-Temperatur

Temperatur, bei der sich ein reales Gas, das unter einem kleinen Druck steht, wie ein ideales Gas verhält. Bei Boyle-Temperatur gilt: $\lim_{p\to 0} \left(\frac{\partial Z}{\partial p}\right)_T = 0$ Kein Bereich der überwiegende Anziehung bei mittleren Drücken! Ueber Boyle-Temp. kann kein Gas verflüssigt werden.

Van der Waal'sche Gleichung

$$\boxed{\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT}$$

Mit $\frac{a}{V_m^2}$ korrigieren wir den Druck(Anziehung zwischen Gasmolekülen), mit dem Term b berrücksichtigen wird das Eigenvolumen.

Ploten wir jedoch diese Funktion, so bekommen wir eine Van der Waals Schleife, welche experimentell keinen Sinn ergibt. Wir berücksichtigen dies mit der Maxwell-Konstruktion.

Kritischer Punkt: Maxwell gerade übergeht in einen Punkt auf der kritischen Isotherme. Diesen Punkt ist berechenbar.

Kritischer Druck: $p_k = \frac{a}{27b^2}$

Kritische Temperatur: $T_k = \frac{8a}{27Rb}$ Kritisches molares Volumen: $V_{mk} = 3b$

Mehrkkomonentensysteme

Gesamtvolumen der Mischphasen(Achtung!):

$$\sum_{i} n_{i} V_{m,i} \neq V$$

 $\mathbf{Exzessgr\ddot{o}ssen}$: Generell: eine extensive \mathbf{Z} ustandsgr \ddot{o} sse \mathbf{X}

$$X = V, U, H, S, G$$

Eine Exzessgrössse X^E oder $\Delta_M X$ ist die Differenz zwischen dem Gesamtwert der Grösse X für die Mischung und der Summe der Grösse C reiner Komponenten vor dem Mischen:

$$\Delta_M X = X - \sum_i X_i(rein)$$

Partielle Molare Grösse:

$$X = \sum_{i} n_i \overline{X}_{m,i}$$

Dabei ist $\overline{X}_{m,i}$ eine partielle molare Grösse X für die Komponente i in der Mischphase, eine Eigenschaft der Mischphase.

Raoult'sches Gesetz

Beschreibt jedoch nur **ideale** Wechselwirkung. Der Druck p_i einer Komponente über der Mischung entspricht ihrem jeweiligen Anteil in der Mischung. Der Gesamtdruck p setzt sich additiv aus p_a und p_b zusammen.

Der Dampfdruck variiert linear mit der Zusammensetzung der Mischung.

Nicht-Ideal Flüsssige Mischung

Gesetz von Henry: Der Partialdruck eines Gases über einer Flüssigkeit ist direkt proportional zur Konzentration des Gases in der Flüssigkeit

$$p_B = K_H x_B$$

• p_{Ac} als Funktion von x_{CS2}

• p_{Ac} folgt das Raoult'sche Gesetz für $x_{Ac} \rightarrow 1$

• p_{Ac} folgt das Henry'sche Gesetz für $x_{Ac} \rightarrow 0$

• Beide Verhalten sind ideale Grenzgesetze!

Aktivität des Lösungsmittel:

Ideales verhalten: $\mu_A^L = \mu_A^{L,*} + RT \ln x_A$ Nicht-ideales Verhalten: $\mu_A^L = \mu_A^{L,*} + RT \ln a_A$

Ideal verdünnte Lösung Lösungsmittel anhand Raoult und gelöster Stoff anhand Henry.

Aktivität: effektiver Stoffmengeanteil, korrektur zu idealem Verhalten: $a_B = \frac{p_B}{K_M} = \gamma_B x_B$ Berechnung:

$$a_A = \frac{p_A}{p_A^{\circ}}$$
 bei $x_a = 1$

Kollagitive Eigenschaften: Siedepunkterhöhung, Dampfdurckernierdrigung, Gefrierpunktniedrigung, osmotischer Druck.

Molenbruch

$$b_B = \frac{n_B}{n_A M_A}$$

Wobei M_A in kg/mol.

${\bf kyro} \ {\bf und} \ {\bf ebullioskopische} \ {\bf Konstanten}$

$$K_K = \frac{M_A R T^{2*}}{\Delta_{schm} H}$$
$$K_e = \frac{M_A R T^{2*}}{\Delta_{sch}}$$

Siedepunkterhöhung: $\Delta T_{sied} = K_e \cdot b_B$ Schmelztemperatur: $\Delta T_{schm} = K_K \cdot b_B$