

Battery Pack Protection and Monitor IC

FEATURES

- 5-8 Cell Lilon Battery Management Unit
- Supports most chemistries including Cobalt, Manganese and Iron-Phosphate
- Multi-channel ADC for current, voltage and temperature measurement
 - Cell voltage measurement 8 channels
 @ 12 bits accuracy
 - Current measurement channel @ 16 bits
 - Internal temperature measurement @ 12 bits
 - Customer specific applications 3 channels @ 12 bits; two for external temperature and one extra external channel)
- Built-in Protection includes:
 - Over voltage (OV)
 - Under voltage (UV)
 - Reversal voltage (RV)
 - Over current (OC)
 - Short circuit (SC)
 - Over temperature (OT)
 - Under temperature (UT)
 - Permanent Fail (PF)
 - Embedded 64X16 Bit registers in EEPROM (EEPROM write/erase life cycle is about
 - 100000 times at ambient temperature 25 °C) for programmable settings of various protection thresholds/timers and protection release thresholds/timers Supports Internal/External Bleeding for Cell balance
- Supports hardware mode (without uP) or software mode (with uP)
- Supports separate charge and discharge loop
- Integrated 3.3V, 10V voltage regulator
- Integrated N-MOSFET driver
- Supports SMBus serial Interface
- Low power consumption

APPLICATIONS

- Electric Bicycle
- Electric Motorcycle
- Power Tools
- UPS backup battery

GENERAL DESCRIPTION

OZ8920 is a highly integrated battery pack protection and monitor IC for managing Li-lon or Li-polymer pack in electric bicycle, electric motorcycle, power tools, and UPS applications. It supports 5-8 series Li-lon battery pack or Li-polymer battery pack applications.

With integrated multi-channel 16-bit Analog to Digital Converter (ADC), OZ8920 works constantly to monitor each cell's voltage, the charge/discharge current and the pack temperature to provide overvoltage, under-voltage, reversal voltage, overcurrent, short circuit, over-temperature and undertemperature safety protection. Working with embedded FET driver circuits, the protection circuits will independently shut off the FETs when the battery cells are experiencing extreme stress. When cell voltage is higher than the pre-set maximum rating voltage PFVH or lower than preset lowest working voltage PFVL, OZ8920 can automatically assert the Permanent Fail (PF) signal to blow an external fuse to cut off the power line or to signal an alarm to user. All of the protection thresholds and their related delay time are programmable in EEPROM for different battery types and different applications.

"Balance on Demand (BOD)" technology has been embedded in the OZ8920 to support internal/ external bleeding for cell voltage balance during charge state and optional idle state (no charge and discharge) (1 bit EEPROM configuration); BOD technology can achieve the longer life cycle of the battery pack..

OZ8920 can be configured to work in hardware mode (without uP) or software mode (with uP) by embedded EEPROM. In hardware mode OZ8920 can work independently for battery pack protection and Monitoring. In software mode, OZ8920 can work with external uP or MCU to implement a more accurate coulomb counting gas gauge function.

ORDERING INFORMATION

Part Number	Temp Range	Package
OZ8920TN	-40°C to 85°C	LQFP48L

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Nama	Pin	I/O	Descrip	otion	
Name	No	1/0	Hardware Mode	Software Mode	
BAT2	1	1	Cell2 positive input		
CB2	2	0	Cell2 external bleeding control		
GNDA	3	Ground	Analog ground		
SRP	4	1	Current sense resistor positive terminal		
SRN	5	1	Current sense resistor negative terminal		
BAT1	6	1	Cell1 positive input		
CB1	7	0	Cell1 external bleeding control		
BAT0	8	1	Cell1 negative input		
PCHG	9	0	Pre-charge MOSFET control. Sink high impedance at PCHG FET OFF		
GNDP	10	Ground	MOSFET driver power ground		
DSG	11	0	Discharge MOSFET control. Pus level 10V to turn on the discharge to turn off the discharge MOSFET.	MOSFET, drive to low level 0V	

Na	Pin		Descr	ription	
Name	No	I/O	Hardware Mode	Software Mode	
CHG	12	0	Charge MOSFET control. Sink 10 impedance at CHG FET OFF	DuA current at CHG FET ON, high	
SCRL	13	ı	Short circuit external automatic SC event in sleep mode, the three	release input / and detection of eshold is about 1V	
GNDA	14	Ground	Analog ground		
GPIO0	15	I/O	External thermal sensor driver voltage	GPIO0	
GPIO1	16	I/O	External thermal sensor input	GPOI1	
GPIO2	17	I/O	External thermal sensor input	GPIO2	
GPIO3	18	I/O	External thermal sensor input	GPIO3	
EFETC	19	I/O	External FET control signal, can be configured to input or output	External shutdown	
RSTN	20	I/O	External reset input		
PF	21	0	Permanent failure output. Active	high	
TCLK	22	-	External clock input		
ALERTN	23	0	Interrupt output in software mod	e. Active low (Open drain)	
GNDD	24	Ground	Digital ground		
SDA	25	I/O	4-wire SMBUS data input		
SDAO	26	I/O	4-wire SMBUS data output (Open drain)		
SCL	27	I/O	4-wire SMBUS clock input		
SCLO	28	I/O	4-wire SMBUS clock output (Ope	n drain)	
INCHGN	29	0	Indicates "In charge" state. Activ	ve low (Open drain)	
VDDD	30	Power	Digital 3.3V power		
GNDA	31	Ground	Analog ground		
V3.3	32	Power		pply is 30mA in full power mode; A in sleep mode and shutdown	
NC	33				
V10	34	Power	10V power supply for MOSFET on full power mode, sleep mode a	driver. Maximum supply is 30mA and shutdown mode.	
NC	35				
vcc	36	Power	Chip Power supply		
BAT8	37	I	Cell8 positive input		
CB8	38	0	Cell8 external bleeding control		
BAT7	39	I	Cell7 positive input		
СВ7	40	0	Cell7 external bleeding control		
BAT6	41	I	Cell6 positive input		
CB6	42	0	Cell6 external bleeding control		

Nome	Pin	1/0	Description			
Name	No	I/O	Hardware Mode	Software Mode		
BAT5	43	I	Cell5 positive input			
CB5	44	0	Cell5 external bleeding control			
BAT4	45	I	Cell4 positive input			
CB4	46	0	Cell4 external bleeding control			
ВАТ3	47	I	Cell3 positive input			
СВЗ	48	0	Cell3 external bleeding control			

Note 1: All GPIO or open drain pins need to be pulled-high or pulled-low when not used.

DC CHARACTERISTICS

Absolute Maximum Ratings

Supply volta	age range	VCC	-0.3V to 48V	
	Analog	SRP,SRN	-0.5V to 5.5V	
	Analog	THERMV(power supply for temperature sense	-0.3V to 5.5V	
		resistor)		
	Analog	THERM1(12bits ADC	-0.3V to 5.5V	
		input),THERM2(12bits),THERM3(12bits)		
Input	Analog	BAT0 to BAT1,BAT1 to BAT2,BAT2 to	-0.3V to 5.5V	
Impat		BAT3,BAT3 to BAT4,BAT4 to BAT5,BAT5 to		
		BAT6,BAT6 to BAT7,BAT7 to BAT8		
	Analog	SCRL	-0.3V to 48V	
	Digital	RSTN, TCLK	-0.3V to 5.5V	
		All other input pins		
	Analog	PCHG,CHG (10uA sink current)	-0.3V to 48V	
	Analog	DSG	-0.3V to 10V	
Output	Digital	PF	-0.3V to 5.5V	
	Digital	CB1,CB2,CBnCB8	(n-1)*Vcell to	
			n*Vcell	
I/O	Digital	GPIO[0:3], SCLO, SCL, SDAO, SDA, EFETC,	-0.3V to 5.5V	
		INCHGN	2kV	
	ESD Human Body Model (HBM)			
ESD Charg	1kV			
Operating f	-40°C to 85°C			
	nperature ra	<u> </u>	-55°C to 150°C	
Lead tempe	`	ering, 10 sec)	300°C	

Note 1: All voltages are with respect to ground of this device except BATn - BAT(n-1), where n=1,2,3,4,5,6,7,8 cell voltage

Note 2: Ground refers to common node of GNDA, GNDD, and GNDP

Electrical Characteristics

Power Supply T _A =25°C and VCC=28V (unless otherwise noted)								
Parameter					MAX	Unit		
Supply Voltage(VCC)	T _A =25°C		8.5		40	V		
	Normal Mode	T _A =25°C, Vcc=8.5V to 36V		590	750	uA		
Supply Current	Sleep Mode	T _A =25°C, Vcc=8.5V to 36V		38	55	uA		
	Shut Down	T _A =25°C, Vcc=8.5V to 36V		24	35	uA		

General Purpose Inputs And Output T _A =25°C and VCC=28V (unless other					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
V _{IH} High-level Input Voltage	T _A =-40°C to 85°C	2			V
V _{IL} Low-level Input Voltage	T _A =-40°C to 85°C			0.8	V
Voн Output Voltage High	ILoad=-0.5mA, T _A =-40°C to 85°C	V3.3-0.7			V
Vol. Output Voltage Low	ILoad=0.5mA, T _A =-40°C to 85°C			0.4	V
Current Drive Capability	GPIO0 T _A =25°C		1		mΑ
Current Drive Capability	GPIO1, 2, 3, T _A =25°C		8		mA

Note 1: All GPIO or open drain pins need to be pulled-high or pulled-low when not used.

3.3V LDO Regulator T _A =25°C and VCC=28V (unless other	rwise noted)				
Parameter	Test Conditions	MIN	TYP	MAX	Unit
Regulator Output Voltage (Full power mode)	I _o <25mA, Vcc=8.5V to 36V, T _A =-40°C to 85°C	2.97	3.3	3.63	V
Line Regulation @ iload=32.8mA	Io =10mA, Vcc=8.5V to 36V, $T_A=25$ °C		20	50	mV
Load Regulation @ Vcc=32V	Vcc=32V, I _o < 30mA			127	mV
3.3V Current Limit (Full power mode)	Vcc=8.5V to 36V, T _A =25°C			30	mA
Regulator Output Voltage (sleep mode or shut down mode)	I _o <100uA, Vcc=8.5V to 36V, T _A =25°C	2.8	2.95		V
3.3V Current Limit (Sleep mode or Shut down mode)	Vcc=8.5V to 36V, T_A =25°C			100	uA

10V LDO Regulator T _A =25°C and VCC=28V (unless other)	herwise noted)				
Parameter	Test Conditions	MIN	TYP	MAX	Unit
	I _o <30mA, Vcc=15V				
	to 36V,	9.0	10.5	12.5	V
Regulator Output Voltage	T_A =-40°C to 85°C				
	I _o =10mA, Vcc=15V				
	to 36V,		100	300	mV
Line Regulation	T_A =-40°C to 85°C				
	Vcc=32V, I _o <			300	mV
Load Regulation @ Vcc=32V	30mA			300	IIIV
10V Current Limit				30	mA

Multi-Channel AD	С					
T _A =25°C and VCC=	28V (unless otherwi	se noted)				
Parameter		Test Conditions	MIN	TYP	MAX	Unit
raiailletei	Input Voltage Range	Vcc=8.5V to 36V, T _A =25°C	-250	1115	250	mV
	Resolution			16 bits		
Current Channel (1 channel)	Conversion Time				256	mS
	Offset		Auto	offset canc	ellation	
	Slope		In software mode, support slope calibration			
	Input Voltage Range		-0.3		5	V
	Resolution			12 bits		
Lion-ion Cell Voltage Channel	Conversion Time				16	mS
	Offset		Auto offset cancellation			
	Slope		In software mode, support slope calibration			
	Input Voltage Range		0.1		2.5	V
Internal	Resolution			12 bits		
Internal Temperature	Conversion Time				16	mS
(1 channel)	Offset		Auto offset cancellation			
	Slope		In software mode, support slope calibration			

Parameter		Test Conditions	MIN	TYP	MAX	Unit
	Input Voltage Range		0.1		2.5	\ \
	Resolution			12 bits		
GPIO[1:2] channel	Conversion Time				16	mS
	Offset		Auto	Auto offset cancellation		
	Slope			In software mode, support slope calibration		
	Input Voltage Range		0.1		2.5	٧
	Resolution			12 bits		
GPIO[3]	Conversion Time				16	mS
	Offset		Auto	Auto offset cancellation		
	Slope			In software mode, support slope calibration		

Internal Oscillator T _A =25°C and VCC=28V (unless otherwise noted)								
Parameter	Test Conditions	MIN	TYP	MAX	Unit			
512kHz Oscillator Frequency	Vcc=8.5V to 36V, T _A =-40°C to 85°C	470	512	552	KHz			
32kHz Oscillator Frequency	Vcc=8.5V to 36V, T _A =25°C	21	29	37	KHz			

Over-Current(OC) And Short-Circuit(SC) Protection T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Conditions	MIN	MAX	Step/Unit		
OC0 Detection Threshold Range (16-bit setup)		16 bits p	rogrammable	Negative ADC Value		
OC0 Delay Time(3-bit setup)		2	32	Scan Cycle		
OC0 Release Time(3-bit setup)		2	32	Scan Cycle		
	Charge	10mV	105mV	5mV		
OC Detection Threshold Range	Discharge	30mV	285mV	5mV		
OC I hystoresis Makes	Charge		N/A			
OC Hysteresis Value	Discharge	1	0mV	mV		
OC Delay Time (8-bit setup)		2ms	16.3s	Note1		
OC Release Time (3-bit setup)	Charge	1s	32s	Variable		
OC Release Time (3-bit setup)	Discharge	1s	32s	Variable		
SC Detection Threshold Range	Discharge	50mV	620mV Note2	10mV		

SC Hysteresis Value	Charge		N/A	
SC Hysteresis value	Discharge	20mV		mV
SC Delay Time (8-bit setup)		33us 32.825ms		Note 3
SC Release Time (3-bit setup)		0.25min 1.75min		0.25min

Note1: 8-bit OC delay control byte divided into two sections, The high 5 bits are used to indicate the over current delay time as N+1 (N is the 5 bits value) delay units; the low 3 bits are used to indicate the OC delay unit as follows:

OC delay scale	OC delay unit	OC delay scale	OC delay unit
3'b000	2ms*1=2ms	3'b100	2ms*31=62ms
3'b001	2ms*3=6ms	3'b101	2ms*63=126ms
3'b010	2ms*7=14ms	3'b110	2ms*127=254ms
3'b011	2ms*15=30ms	3'b111	2ms*255=510ms

The OC delay time = (N+1)*(OC delay unit), so its range is 2ms~16.3s

Note2: The maximum value for the SC threshold is -620mV by design, but the maximum negative voltage for each of the SRN and SRP pins is -0.5V. Therefore, it is highly recommended that the setup for SC threshold does not exceed -500mV.

Note3: 8-bit SC delay control byte is divided into two sections. The high 5 bits are used to indicate the short circuit delay time as N+1 (N is the 5 bit value) delay units; the low 3 bits are used to indicate the SC delay unit as follows:

SC delay scale	SC delay unit	SC delay scale	SC delay unit
3'b000	4us*2=8us	3'b100	4us*32=128us
3'b001	4us*4=16us	3'b101	4us*64=256us
3'b010	4us*8=32us	3'b110	4us*128=512us
3'b011	4us*16=64us	3'b111	4us*256=1024us

The SC delay time = (N+1)*(SC delay unit)+25us, so its range is 32.825ms ~ 33us

Over-Voltage(OV) And Under-Voltage(UV) Protection T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Condition	MIN	TYP	MAX	Unit/step	
OV Detection Threshold Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	12bits pro	grammable	e (0-5V)	V	
OV Release Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	12bits programmable (0-5V)			V	
OV Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
OV Release Time (same as OV delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
UV Detection Threshold Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	12bits programmable (0-5V)			V	
UV Release Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	12bits programmable (0-5V)			V	
UV Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
UV Release Time (same as UV delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	

de
5
bud
will be provid
ĭ
es
at
<u>d</u>
 0.
60
20
7
9
O
b
nte
it #129456 printed on 6/1/2009.
90
34
2
oient #1
3 nt
pie
O Ci
ontrolled Recipient #
Controlled F
=
ntr
Ö

Parameter	Test Condition	MIN	TYP	MAX	Unit/step	
	Vcc=8.5V to 36V,		1.0V			
RV Detection Threshold Value	$T_A=-40$ °C to 85°C		1.00			
	Vcc=8.5V to 36V,	Comp. on LIV/ relegan value				
RV Release Value	$T_A=-40$ °C to 85°C	Same as UV release value				
	Vcc=8.5V to 36V,	2ms		0ma	Variable	
RV Delay Time (2-bit setup)	$T_A=-40$ °C to 85°C	21115		8ms	variable	

Permanent Fail Voltage (PFVL, PFVH and Cell Un-balance PF) Protection T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Conditions	MIN	TYP	MAX	units/step	
	Vcc=8.5V to 36V,					
PFVL Threshold Range	T_A =-40°C to 85°C	12bits pro	grammabl	e (0-5V)	V	
	Vcc=8.5V to 36V,				Scan	
PFVL Delay Time (4bits setup)	T_A =-40°C to 85°C	1		16	Cycle	
	Vcc=8.5V to 36V,					
PFVH Threshold Range	T_A =-40°C to 85°C	12bits pro	grammabl	e (0-5V)	V	
	Vcc=8.5V to 36V,				Scan	
PFVH Delay Time (4bits setup)	T_A =-40°C to 85°C	1		16	Cycle	
Cell Un-balance PF threshold	Vcc=8.5V to 36V,					
Range	T_A =-40°C to 85°C	12bits programmable(0-5V)			V	
Cell un-balance PF Delay Time	Vcc=8.5V to 36V,				Scan	
(4bits setup)	T_A =-40°C to 85°C	1		16	Cycle	

Internal Thermal Protection (OT & UT) T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step	
OT Detection Threshold value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User I	rogramm	able	1°C /2.1mV	
OT Detection release Range	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User Programmable			1°C /2.1mV	
OT Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
OT Release Time (same as OT delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
UT Detection Threshold Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User Programmable			V	
UT Detection Release Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User Programmable			V	
UT Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	
UT Release Time (same as UT delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle	

External Thermal Protection (OT & UT) T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Conditions	s MIN TYP MAX Unit/Step				
	Vcc=8.5V to 36V,	Lloar Brogrammable (Notal)				
OT Detection Threshold value	T_A =-40°C to 85°C	User Programmable (Note1)				

External Thermal Protection (OT & UT) T _A =25°C and VCC=28V (unless otherwise noted)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
OT Detection release Range	Vcc=8.5V to 36V, T _A =-40°C to 85°C		User Programmable		
OT Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle
OT Release Time (same as OT delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle
UT Detection Threshold Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User Programmable			V
UT Detection Release Value	Vcc=8.5V to 36V, T _A =-40°C to 85°C	User Programmable			V
UT Delay Time (4-bit setup)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle
UT Release Time (same as UT delay time)	Vcc=8.5V to 36V, T _A =-40°C to 85°C	1		16	Scan Cycle

Note1: Depends on external temperature sensor characteristics, refer to 'External Temperature Sensor'.

Power MOSFET Driver Circuit T _A =25°C and VCC=28V (unless otherwise noted)						
Parameter	Test Conditions	MIN	TYP	MAX	Unit	
CHG on, sink current (constant current source),	Vcc=8.5V to 36V, T_A =25°C	7.3	9.5	11.7	uA	
CHG off, no sink current (high impedance)	Vcc=8.5V to 36V, T_A =25°C		0		uA	
PCHG on, sink current, (constant current source)	Vcc=8.5V to 36V, T_A =25°C	7.3	9.5	11.7	uA	
PCHG off, no sink current (high impedance)	Vcc=8.5V to 36V, T_A =25°C		0		uA	
DSG High Level	Vcc=15V to 36V, T_A =25°C	8.5	10.5	13.5	V	
DSG Low Level	Vcc=8.5V to 36V, T_A =25°C	0		0.5	V	

AC TIMING

SMBUS Bus Timing

	_	Lin	nits		Comment
Symbol	Parameter	Min	Max	Units	
FSMB	SMBUS Bus Operating Frequency	10	400	KHz	
tO	Bus free time between Stop and Start condition	1.3	-	μS	
t1	Hold time after (Repeated) Start condition. After this period, the first clock is generated	0.6	-	μs	
t2	Repeated Start condition set up time	0.6		μS	
t3	Stop Condition setup time	0.6	-	μS	
t4	Data hold time	150	-	ns	
t5	Data setup time	100	-	ns	
TIMOUT		25	-	ms	See Note 1
t6	Clock low period	1.3	-	μS	
t7	Clock high period	0.6	-	μS	
tF	Clock/Data Fall time	-	300	ns	See Note 2
tR	Clock/Data Rise Time	-	300	ns	See Note 2

Note 1: A device times out when any clock low duration exceeds this value

Note 2: Rise and Fall times are measured between 10% to 90% of the signal amplitude.

FUNCTIONAL DESCRIPTION

OZ8920 Power Up Sequence

Fig.1 shows the OZ8920 power up sequence. When power supply is applied to VCC >8.5V, the 10V LDO and 3.3V LDO start firstly. When Vldo3.3>2.4V, the power on reset block generates Power On Reset (POR) signal to enable the 512K oscillator and initializes the digital section. When Power and clock are ready, the digital circuits will read EEPROM data, and then go to different working state based on the *auto_scan_enable* setting. If the *auto_scan_enable* (2-bit in EEPROM register *Scan Rate [19h]*) is 00 (default), the OZ8920 will go to the assembly state, in this state, OZ8920 doesn't do ADC scan, only after pushing RSTN (reset pin), OZ8920 can go to the normal working state; if the *auto_scan_enable* bit is 11, OZ8920 will go to the normal working state directly.

When VCC of OZ8920 is lower than 7.5V (about 1V hysteresis), OZ8920 is in power off status. All V3.3 and V10 LDOs are disabled and all MOSFETs are disabled.

Fig. 1 OZ8920 Power Up

Page 17

Measurements

OZ8920's multi-channel ADC (as shown in Fig. 2) measures up to 8 cell voltages, current, internal temperature and external temperature based on cyclic scan and time slot method. It will periodically measure all these values by predefined scan rate. During one measurement period, voltage, current, etc will be measured one by one in different time slot.

The ADC scan cycle period can be programmed in EEPROM register scan rate [19h] from 0.5S~16S.

Fig. 2, Muti-Channel ADC

1. ADC Channel Description

a. Current Channel (1 channel)

This is a dedicated channel to measure the current across the sense resistor ($2m\Omega$ to $10m\Omega$), during charging and discharging for coulomb counting or other purpose.

Resolution: 16-bit (signed)
Input Voltage Range: ± 250mV

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

b. Lion-ion Cell Voltage Channel (5~8 channels)

These channels are designed for cell voltage measurement.

Resolution: 12bits (signed)
Input Voltage Range: -0.3V~5.0V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

c. Internal Temperature (1 channel)

This channel is designed for internal temperature sensor.

Resolution: 12bits (signed)
Input Voltage Range: 0.1V~2.5V
Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

d. GPIO Channel (3 channel)

GPIO1, GPIO2 and GPIO3 can be configured as external temperature sensor (please refer to the external thermal sensor section) or other analog input in software mode, for detailed configuration information please refer to EEPROM register *GP Mode [1ah]*.

GPIO1, GPIO2, GPIO3 can be configure to the external thermal sensor

Accuracy: 12bits (signed)

Input Voltage Range: 0.1V~2.5V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

GPIO1, GPIO2, GPIO3 can be configure to other analog input or digital I/O in software mode.

2. ADC Time Slot

Note:

- (1) The time slot's length is not in scale.
- (2) Max cell can be cell5~cell8.
- (3) IT indicates 12-bit internal temperature channel.
- (4) GP1 indicates 12-bit gpio1 channel; GP2 indicates 12-bit gpio2 channel; GP3 indicates 12-bit gpio3 channel. gpio1, gpio2, gpio3 channel can be scanned or not controlled by the control registers mapped from EEPROM; If gpio1, gpio2, gpio3 channel is not scanned, the corresponding ADC time slot will be skipped.

Internal/External Bleeding

OZ8920 can do cell bleeding for Li-ion batteries when the cells are being charged or in idle state. OZ8920 supports internal bleeding and external bleeding (can be configured by setting 1 Bit in EEPROM register [1dh]: Select External Bleeding). The bleeding function can also be disabled by setting 1 Bit in EEPROM register [18h]: Hardware Bleeding Support. Bleeding is performed during charging process or optionally during idle state (enable in EEPROM register [1d]: Allow Idle Bleeding) and start bleeding voltage point is programmable (Bleeding Start: 12 Bits in EEPROM registers [56h, 57h]).

Fig.3 External Bleeding Diagram

For internal bleeding, the current will be 10mA~15mA for the thermal consideration, and the cell with highest voltage will be bled one time; for the external bleeding, bleeding current is decided by external bleeding resistor Rb (Fig. 3), and can support 1~4 or 7 maximum cell bleeding simultaneously (configured in EEPROM 1dh). Balance accuracy is programmable from 9.76mV~78.1mV (*Bleeding Accuracy:* 3 Bits in EEPROM register [1dh]).

OZ8920 has embedded O2micro "Balance on Demand (BOD)" technology:

- Battery pack is in charge state (current larger than charge current threshold) or in idle state (current smaller than charge current threshold and larger than discharge current threshold) if idle bleeding is enabled by setting 1 Bit in EEPROM register [1dh]: Allow Idle Bleeding.
- The bleeding function is enabled
- The highest cell voltage exceeds the *Bleeding Start* voltage
- The cell voltages' difference exceeds the Bleeding Accuracy
- No error event, like OT, UT, UV, RV, OC0, OC, SC. If any error event happens, bleeding stops right away.

In software mode, hardware bleeding is supported by setting 1 Bit in EEPROM register [18h]: Hardware Bleeding Support. If software bleeding is selected, software can start cell bleeding by writing the bleeding control/statue register at any time. If any bleeding error(s) happen, the bleeding control/status will be automatically cleared to stop the bleeding (software can know the bleeding error exactly because any safety bleeding error will make ALERTN active to inform the software). If software wants to continue to do bleeding, it needs to write the bleeding control/status register again.

Pre-Charge

OZ8920's Pre-charging function operates as follows:

- When enabled, the Pre-charge function PreCHGEnable='1', if Vcell < UnderVoltageTH, the pre-charge MOSFET will be turned ON and charge MOSFET will be turned OFF; if UnderVoltageTH <= Vcell <= UVRelease, the pre-charge MOSFET is still ON and charge MOSFET will be turned ON; if Vcell >= UVRelease, pre-charge will be turned OFF and charge MOSFET is still ON if no other protection event occurs.
- When disabled, the Pre-charge function PreCHGEnable='0', prohibits pre-charge but permits charge even if Vcell < UnderVoltageTH provided that no other protection event occurs.</p>

Battery Protection

OZ8920 includes a digital Battery Protection Engine (BPE), which can operate independently. The BPE constantly monitors data from the ADC and other protection circuits. If a protection error condition is detected and persists for certain time, the BPE will force the charge and/or discharge FET off. If some vital safety condition, such as extremely high cell voltage (PFVH) or extremely low cell voltage (PFVL), or extremely un-balanced cell voltage happens, or the Power MOSFET fails, the BPE will assert the Permanent Fail (PF) signal to instruct an optional external fuse circuit to permanently disable the battery pack. In software mode the chip provides an exclusive pin ALERTN to inform the uP while switching off the protection power mosfet when error condition happens.

1. Over-current (OC)

OZ8920 includes two level over current protection, first level OC0 is based on the ADC measured current value; second level OC is based on an independent hardware over-current detector (separate from the ADC) that monitors the sense resistor to detect over-current condition in either charge or discharge. If the over-current condition continues for a programmable delay time, the protection circuit will turn off the charge and discharge FETs. In sleep mode, OC detection is not available, only when sleep wakeup timer has expired or there is wakeup by SMBUS access, or SC event occurs, the OZ8920 returns to full power mode and then OC detection becomes available. The charge and discharge over-current thresholds are set in protection register in EEPROM.

OC0 Protection Set

OC0 protection detection is for discharge current protection which is based on the current measurement of ADC, by comparing the 16-bit signed current value with the 16-bit signed threshold which is a negative value (indicating the discharge state). When current value < the threshold for a specified delay time, the OC0 state is detected; when current value >= the threshold, no OC0 state is detected. Please refer to EEPROM register information: **OC0 Control [27h]**, **OC0 Threshold [2ch, 2dh]**.

When the OC0 state is detected and continues for some delay time selected by the 3-bit in EEPROM register *OC0 Control [27h]*, all of the FETs (charge FET, discharge FET, precharge FET) will be turned off. When no OC0 continues for some delay time selected by 3-bit in EEPROM register *OC0 Control [27h]*, charge FET and discharge FET will be turned on, if no other error(s) happen.

In general, compared to the OC protection, OC0's threshold is lower than that of OC protection and OC0's delay time is longer than the OC's one. For example, for discharge state, the absolute value of current is larger and larger, at first OC0's threshold is met, OC0 is detected; then, OC's (discharge OC) threshold is met, OC is detected. If user wants to disable the OC0 protection, he can set the OC0's threshold as most minimum value (16'8000) in EEPROM register **OC0 Threshold [2ch, 2dh]**.

Item		Description
OC0 Value	Charge	N/A
OCO value	Discharge	16bits EEPROM (<i>OC0 Threshold [2ch, 2dh]</i>)
Delay Time		3bits EEPROM (<i>OC0 Control [27h]</i>) Configure, Range from 2 to 32 scan cycles
		N/A
Release		3bits EEPROM (OCO Control [27h])
		Configure, Range from 2 to 32 scan cycles
MOSFET	Set	Turn off charge, pre-charge and discharge FETs
Protection	Release	Turn on charge, pre-charge and discharge FETs

OC Protection Set

OZ8920 includes an independent hardware over-current detector that monitors the current that flows through the sense resistor to detect over-current condition in either charge or discharge. If the over-current condition continues for a programmable delay time, the protection circuit will turn off the charge and discharge FETs. The charge and discharge over-current thresholds are set in EEPROM registers *Charge OC Threshold* [1eh] and *Discharge OC Threshold* [1fh].

The real OC value is the Voc/Rs, where Rs is current sense resistor value. The over-current delay allows the system to momentarily accept a high current condition. The delay time can be programmed from 2ms to 16.3s by the parameter in EEPROM register *OC Delay [2ah]*. Charge and discharge OC share the same delay time. Charge OC release time and Discharge OC release time can be programmed from 1second to 32 seconds in EEPROM register *OC Release Control [2dh]* independently.

Item		Description
OC Value		5bits EEPROM (<i>Charge OC Threshold [1eh]</i>) Control: Start: 10mV; Stop:105mV; Step:5mV
OC value		6bits EEPROM (<i>Discharge OC Threshold [1fh]</i>) Control: Start: 30mV; Stop:285mV; Step: 5mV
Hyst.	Charge	N/A
Value	Discharge	10mV
Delay		8bits EEPROM (<i>OC Delay [2ah]</i>) Configure, Range from 2mS to 16.3S
Release		3 bits EEPROM (<i>OC Release Control [2dh]</i>) Control: Range from 1S to 32S
Release		3bits control external release or timer release (<i>OC Delay [2ah]</i>) Control: (000: external release; 001~111: 1S~31S)
MOSFET	Set	Turn off charge, pre-charge and discharge FETs
Protection	Release	Turn on charge, pre-charge and discharge FETs

2. Short-circuit (SC)

Short circuit protection is very similar to over-current protection. When short circuit condition is detected, OZ8920 will turn off charge and discharge FETs. Short circuit threshold and delay time can be programmed. Vsc can be programmed from 50mV to 620mV in 10mV steps by the parameter in EEPROM register *SC Threshold [2bh]*. The real current is Vsc/Rs. Short circuit delay time can be programmed from 33us to 32.825ms. The short circuit delay time is configured by EEPROM register *SC Delay [2ch]*. SC release time can be programmed in EEPROM register *SC Release Control [2dh]* from 0.25min~1.75min in 0.25min step. OZ8920 also supports an external release function, when SC happens, the chip will release when the input analog signal of Pin SCRL come back to the normal levels, this function is enabled by setting in EEPROM register *SC Release Control [2dh]*.

Item		Description
SC Value	Charge	N/A
	Discharge	6bits EEPROM (<i>SC Threshold [2bh]</i>) Control:Start:50mV; Stop:620mV; Step:10mV
		20mV

Ite	m	Description
		8bits EEPROM (<i>SC Delay [2ch]</i>) Configure, Range from 33uS to 32.825mS
Release		3bits EEPROM (<i>SC Release Control [2dh]</i>) Control: (000: external release; 001~111:0.25min~1.75min)
MOSFET		Turn off charge, pre-charge and discharge FETs
Protection	Release	Turn on charge, pre-charge and discharge FETs

In sleep mode, SC protection is based on SCRL pin and internal integrator wakeup circuit of OZ8920. There are two cases for SC protection in sleep mode.

Case1: SC protection is based on voltage of SCRL pin. When circuit short current is big enough and SCRL reaches about 1V, SC protection happens. OZ8920 will try to turn off external MOSFET immediately. But different external MOSFET characteristics and PCB layout will cause different SC threshold and delay time. In this case, OZ8920 SC threshold and delay time setting in EEPROM are invalid.

Case 2: When short circuit current is not big enough then SCRL pin cannot reach 1V. Wakeup circuit will wake up OZ8920 after about 390us delay, then EEPROM setting parameters are valid. OZ8920 will turn off MOSFET after EEPROM SC delay time.

In sleep mode, SCRL detection is used to wake up OZ8920 when SC happens.

3. Over-voltage (OV)

The protection engine performs over-voltage detection by comparing 12 bit values from the ADC with an OV threshold, which is programmed in EEPROM register *OV Threshold [38h, 39h]*. When over-voltage condition is detected, OZ8920 will turn off the charge FET after a specified delay time. This delay time can be programmed in EEPROM register *OV Delay Control [25h]*. When cell voltage is less than the OV release value and persists for the specified time which is the same as OV delay time, OZ8920 Protection Engine will quit the OV condition and turn on the charge FET. The OV release value also can be programmed in EEPROM register *OV Release [3ah, 3bh]*. The OV release value should set lower than OV threshold value. In sleep mode, OV detection is not available, only when sleep wakeup timer has expired or there is wakeup by SMBUS access, or SC event occurs, the OZ8920 returns to full power mode; then OV detection becomes available.

Item		Description
OV V	/alue	12Bits EEPROM (OV Threshold [38h, 39h])
OV Delay Time		4Bits EEPROM (<i>OV Delay Control [25h]</i>) Control:1~16 scan cycles Step:1scan cycle
Release	e Value	12Bits EEPROM (OV Release [3ah, 3bh])
Release D	Delay Time	Same as OV delay time
MOSFET	Set	Turn off charge and pre-charge FETs, Permit discharge
Protection	Release	Turn on charge FET

4. Under-voltage (UV)

Under-voltage protection operates in the same way as over-voltage protection. When under-voltage condition is detected, OZ8920 will turn off discharge FET after a specified delay time. Its threshold can also be programmed in EEPROM register *UV Threshold [3ch, 3dh]*. UV release value can be programmed in EEPROM register *UV Release [3eh, 3fh]*. The UV release voltage value should be set higher than UV threshold value. Under-voltage protection and release has the same delay time as the over-voltage protection and release. In sleep mode, UV detection is not available, only when sleep wakeup timer has expired or wakeup by SMBUS access, or SC event occurs, the OZ8920 returns to full power mode, then UV detection becomes available.

Item	Description
UV Value	12Bits EEPROM (UV Threshold [3ch, 3dh])
UV Delay Time	Same as OV delay time
Release Value	12Bits EEPROM (<i>UV Release [3eh, 3fh]</i>)
Release Delay Time	Same as OV delay time

Ite	m	Description
MOSFET	Set	Turn off discharge FETs, Permit charge and pre-charge
Protection	Release	Turn on discharge FETs

5. Reversal Voltage (RV)

OZ8920 incorporates cell reversal-voltage (RV) protection function. When cell voltage falls under about 1.0V, OZ8920 will turn off the discharge MOSFET immediately to prevent the battery cells from immediate reversal. The RV protection will be released only when cell voltage recovers to the configured release threshold voltage and delay a certain time which pre-configured. RV function and RV delay time can be set in EEPROM register Gp Mode [1ah]. RV release value and release delay time are the same as UV setting.

Ite	m	Description
RV V	'alue	About 1.0V
RV Relea	se Value	Same as UV release value. <i>UV Threshold [3ch, 3dh]</i>
RV Delay Time		2bits EEPROM (<i>Gp Mode [1ah]</i>) Control: (00:RV disable; 01~11:2ms~8ms)
RV Release Time		Same as UV release value. UV Release [3eh, 3fh]
MOSFET	Set	Turn off discharge FET
Protection	Release	Turn on discharge FET

6. Thermal Protection (OT and UT)

Thermal protection is performed based on inputs from both the internal temperature sensor and the optional external temperature sensors. Thermal information may be used to temporarily interrupt the charge cycle and/or disable discharge.

External temperature protection: OZ8920 provides both under temperature (UT) and over temperature (OT) protection. When over-temperature is detected in charging or discharging state (COT or DOT) from external thermistor, OZ8920 will turn off charge and discharge FETs after a specified delay time; when under-temperature is detected, OZ8920 will turn off charge FET after a specified delay time and permit discharge if no other protection events happen. External OT protection is not available when there is no charge/discharge current (idle status). Both OT and UT are not available in sleep mode. Both OT and UT thresholds are programmable. For discharge state, 12-bit DOTE threshold can be programmed in EEPROM registers DOTE Threshold [28h and 29h], 12-bit DOTE release value can be programmed in EEPROM registers COTE Threshold [4eh and 4fh], 12-bit COTE threshold can be programmed in EEPROM registers COTE Release [50h, 51h]. External under temperature (UTE) threshold is set up in EEPROM registers UTE Threshold [52h, 53h], UTE release value can be programmed in EEPROM registers UTE Release [54h, 55h].

Internal temperature protection (IC temperature): OZ8920 provides internal IC temperature for both under temperature (UT) and over temperature (OT) protection during charging; discharging and idle state (no charge/discharge). OT and UT protections are not available in sleep mode.

Internal over temperature (OTI) threshold setting is in EEPROM registers *OTI Threshold [4ah, 4bh]*. OTI release value can be programmed in EEPROM registers *OTI Release [48h, 49h]*. Internal under temperature (UTI) threshold setting is in EEPROM registers *UTI Threshold [4ah, 4bh]*. UTI release value is programmed in EEPROM registers *UTI Release [4ch, 4dh]*.

External and Internal OT/UT delay time can be programmed in EEPROM register OT/UT Delay Control [25h].

	Item	Description
Ī		External: Charge: 12Bits EEPROM (COTE Threshold [4eh and 4fh])
	OT Value	Discharge: 12Bits EEPROM (DOTE Threshold [28h and 29h])
		Internal: 12Bits EEPROM (<i>OTI Threshold [4ah, 4bh]</i>)
I	OT Dolov Timo	4Bits EEPROM (<i>OT/UT Delay Control [25h]</i>)
	OT Delay Time	Control: 1~16 scan cycles, step: 1scan cycle

Item		Description
		External: charge: 12Bits EEPROM (COTE Release [50h, 51h])
Release Value		Discharge: 12Bits EEPROM (<i>DOTE Release [2ah, 2bh]</i>)
		Internal: 12Bits EEPROM (OTI Release [48h, 49h])
Release D	elay Time	Same as OT delay time
MOSFET	Set	Turn off charge, pre-charge and discharge FETs
Protection	Release	Turn on charge, pre-charge and discharge FETs

Iten	n	Description
UT Value		External: 12Bits EEPROM (<i>UTE Threshold [52h, 53h]</i>) Internal: 12Bits EEPROM (<i>UTI Threshold [4ah, 4bh]</i>)
	Discharge	N/A
UT Delay		4Bits EEPROM (<i>OT/UT Delay Control [25h]</i>) Control: 1~16scan cycles, step: 1scan cycle (Share with OT)
Release Value		External: 12Bits EEPROM (<i>UTE Release [54h, 55h]</i>) Internal: 12Bits EEPROM (<i>UTI Release [4ch, 4dh]</i>)
value	Discharge	N/A
Release De	elay Time	Same as UT delay time
MOSFET	Set	Turn off charge and pre-charge FETs, Permit discharge
Protection	Release	Turn on charge and pre-charge FETs

7. Permanent Fail (PF) protection

a. Cell voltage extremely low or high permanent fail (PFVL and PFVH)

If any cell voltage lower than PFVL or higher than PFVH continues for pre-defined time (4-bit configuration in *EEPROM register PF Control [26h]*), OZ8920 will assert a PF signal to blow the external fuse then shut down the system and the pack will be in permanent fail; this function acts as the secondary voltage protection and can be disabled by setting the *PFVH enable* and *PFVL enable* bits in the EEPROM register *PF Control [26h]*. The PFVL and PFVH thresholds are programmable by setting the EEPROM register *PFVH Threshold [40h, 41h]* and *PFVL Threshold [42h, 43h]*.

b. Cell voltage extremely unbalances permanent fail (PFUB)

If the (max cell voltage – min cell voltage) > the extremely unbalanced threshold voltage, the cell unbalance is detected, if the cell unbalance is detected for a specified delay time (4-bit configuration in *EEPROM register PF Control [26h]*), it will send out PF to blow the external fuse and shut down the system. This function can be disabled by setting the *PF unbalance enable* bit in EEPROM register *PF Control [26h]*. The PFUB threshold is programmable by setting the EEPROM register *PF Unbalance Threshold [44h, 45h]*.

c. MOSFET failure permanent fail (PFMF)

If the charge MOSFET, precharge MOSFET are both turned off, but the chip is in charge state (the current > the "in_charge" current threshold), the charge or pre-charge MOSFET will be regarded as failure; on the other hand, if the discharge MOSFET is turned off, but the chip is in discharge state (the current < the "in_discharge" current threshold; the current, discharge current threshold both are negative value), the discharge MOSFET will be regarded as failure.

If the MOSFET fail is detected for a specified delay time (4-bit configuration in **EEPROM register PF Control [26h]**), it will send out PF and shut down the system. This function can be disabled by setting the **PF mosfet fail enable** bit in EEPROM register **PF Control [26h]**.

Item	Description
PFVL threshold value [40h, 41h]	12Bits EEPROM programmable
PFVH threshold value [42h, 43h]	12Bits EEPROM programmable
PFUB threshold value [44, 45h]	12Bits EEPROM programmable

Item	Description
PF Mosfet Failure	There is discharge current when discharge MOSFET is off or there is charge
[26h]	current when charge MOSFET is off
Release Value	N/A
Delay Time	Range: 1~16 scan cycles
[26h]	Step: 1scan cycle

Power Mode

To save power, OZ8920 works in different power modes according to the system status. There are 3 power modes as follows:

Fig. 4 OZ8920 Power Mode Diagram

State Description (Fig. 4)

Otato Boodinption (37
State	Description
Full Power	Voltage, temp. and current scan
	Safety protection check
Sleep	Stop voltage, temp. and current scan
	Stop safety protection check except for SC protection based on SCRL pin
	Wake up, RV protection block ,and SCRL pin is working
Shut Down	Only LDO10 and backup 3.3V power supply; SMBUS wakeup circuit working
	Power consumption<35uA

Transition Description

Transition	Initial State	Condition		Final
		Hardware Mode	Software Mode	State
1	Full Power	 No charge/discharge and No OV, RV, OT, UT, OC0, OC, SC, PFVL, PFVH, PFUB, PFMF event occurs for 30 seconds Note: OZ8920 can enter sleep mode during UV event. No bleeding event SMBUS is not active 	uP makes decision	Sleep
2	Sleep	 sleep timer expired SC or RV event occurs SMBUS is active EFETC Signal wake-up circuit detected charge/discharge current 	uP makes decision	Full Power
3	Full Power	PF (PFVL, PFVH, PFUB, PFMF)shut downEFETC shutdown active	uP makes decision	Shutdown

Transition	Initial State	Condition	Final	
		Hardware Mode	State	
4	Shutdown	 Any one of the Wake up events happens: EFETC shut down inactive Reset or SMBUS active for PF shutdo shutdown 	wn or software	Full Power

Internal Temperature Sensor

OZ8920 takes advantage of silicon device physics and circuit design technology for the internal temperature sensor. The internal temperature sensor generates a voltage level which is proportional to the temperature. As Fig.5 showing below, with a temperature increase of 1°C, internal temperature sensor output voltage will increase 2.0976mV. The offset can be get from the 12Bit EEPROM which measured in the ATE test. So, if at T0, ADC reading out VT0, the characteristic curve function can be get: VTS (mV)=2.0976*T+(VT0 – 2.0976*T0)

Fig. 5 Internal Temperature Sensor Curve

External Temperature Sensor

OZ8920 provides 3 GPIOs for external temperature detection; the application circuitry is shown in Fig.6. We recommend using 103 NTC type thermistor.

103 NTC Thermistor RT characteristics are shown in Fig. 7. The sensed voltage Vt characteristics are shown in Fig. 8

For Example: Vt2=3.3V * RT2 / (RB2 + RT2)

Fig.6 External Temperature Sensor Application

Vt Characteristics

Fig.7 Thermistor RT characteristics

Fig.8 The sensed voltage Vt characteristics

Power MOSFET Driver Control

Smart MOSFET driver is designed for N-type and/or P-type MOSFET controlled charge, and discharge circuit. The driver also supports parallel and serial charge discharge loop.

The charge and discharge MOSFETs are controlled through protection register, subject to override by the Battery Protection Engine (BPE). OZ8920 also provides a pin (EFETC) for external MOSFET control signal input or internal MOSFET control signal output, it makes the MOSFET control very flexible. The discharge (DSG) MOSFET gate-to-source voltage is clamped to 10V (typical) when MOSFET is in ON state; CHG and PCHG pins internally embedded a 10uA current sink for P-type charge and pre-charge MOSFET driver or level shift for N-type charge and pre-charge MOSFET driver. The charge and pre-charge MOSFET gate-to-source voltage is decided by external divider resistor and the pack voltage. MOSFET driver circuits are shown in Fig.9 and Fig.10.

Note: 3 Bits in EEPROM configure the PIN's function: charge & discharge FET off (input), charge FET off (input), discharge FET off (input), discharge FET off (output) and shutdown (input)

Fig.9 MOSFET drive circuit with P-type charge and pre-charge MOSFET

Fig.10 MOSFET drive circuit with N-type charge and pre-charge MOSFET

Serial Communication Bus

OZ8920 supports SMBus communication interface. The SMBUS master can access OZ8920's registers with SMBUS protocol. In this condition, OZ8920 is working as an SMBUS slave node.

2-wire SMBUS Bus

In this case, Pin27 should be shorted with Pin28 as input clock pin and the clock comes from external SMBUS host, Pin25 should be shorted with Pin 26 as bi-directional data pin. For detailed SMBUS protocol and timing information, please refer to the SMBUS Specifications.

4-wire SMBUS Bus

In this case, Pin28 is the output clock pin (SCLO) and Pin27 is the input clock pin (SCL), Pin26 is the output data pin (SDAO), Pin25 is the input data pin (SDA). This bus protocol and timing is the same as 2-wire SMBUS bus except separating input/output line.

4-wire SMBUS bus is used to support non-common ground communication.

Wake-up

To save power, OZ8920 enters sleep mode if charge/discharge current is less than the threshold for 30S and no safety events happen. The wakeup circuit is used to wakeup OZ8920 when in sleep mode. In the sleep mode, backup 3.3V power supply provides system power, internal 32KHz oscillator provides system clock, wakeup integrator monitors the charge/discharge current and SCRL circuit provides short circuit protection. If the charge/discharge current is higher than the wakeup current threshold, the integrator wakes up the whole system. If SCRL detects short circuit event, it turns off discharge MOSFET immediately, then informs the system to wake up. Additionally, the system also provides timer wakeup and SMBUS access wakeup mechanism.

The Wake-up charge and discharge current can be adjusted by setting *charge/discharge integrator control* in EEPROM register *Sleep Control* [1ch].

Wake-up current can be estimated using the equation below.

$$(I_{\min} \times R_{\text{sens}}) \times F_{\text{osc32k}} \times T_{\text{integ}} = 2.0V$$

Here, I_{\min} is the minimum charge/discharge current to wake up the system

 $R_{
m sens}$ is resistance of sense resistor,

 $F_{
m osc32k}$ is the output frequency of internal 32k clock which is between 21k and 37k.

 $T_{\rm integ}$ is the integrating time for discharge or charge which can be programmed in EEPROM register **Sleep Control [1ch]**. The threshold voltage 2.0V is designed and fixed.

For example,
$$F_{\rm osc32k}=26K, R_{\rm sens}=2.5m\Omega, T_{\rm integ}=64mS$$

Then we can get $I_{\min} = 2000/(2.5 \times 26 \times 64) = 0.48A$

When discharge or charge current is higher than 0.48A, OZ8920 will wake up from sleep mode in about 64mS, otherwise, OZ8920 will stay in sleep mode.

Deadman

Deadman check function is enabled by a non-zero value to "deadman control" register (operation register 2ch). If deadman check is enabled, OZ8920 will increment the deadman timer every second when the safety scan is enabled. The software needs to do as follows:

- Read the deadman timer by reading the operation register *Deadman Timer 2dh*
- Write "1" into the bit 7 "clear deadman timer" of operation register Deadman Timer 2dh to clear the deadman timer.

If the handshake between OZ8920 and the software is normal, the software will clear the deadman timer before the deadman timer expires. As a result no deadman is found.

If the handshake has some problems, the software cannot clear the deadman timer in time, while the deadman timer will do +1 every second. After some time, the deadman timer exprires. As a result, OZ8920 will send out a 64ms low active pulse to RSTN pin to reset the external uP.

It is noted that when starting up the deadman check, it's possible to get a false deadman. To avoid this problem, handshake procedure is needed immediately after writing a non-zero value to "deadman control".

EEPROM AND OPERATION REGISTERS MAP

OZ8920 has two types of registers. One type is OZ8920's operation registers which address is from 00h to 7fh; the other type is embedded EEPROM registers which address is from 00h to 7fh. Software can directly access OZ8920's operation registers via SMBUS bus; and software can access the EEPROM registers indirectly by access the operation register 5ch~5fh.

EEPROM registers are used to store important battery pack, battery cell information and to configure the OZ8920 chip. Operation registers are used to store ADC instant data, OZ8920 status information, and some parameters to control OZ8920 state-machine, etc. When system is powered on, the data in EEPROM register 12h-15h, 16h-27h, 5ah-5bh, 74h-75hwill be loaded into the Operation registers 02h-05h, 06h-17h, 18h-19h, 1ah-1bh respectively. Fig. 11 shows the configuration of EEPROM registers and Operation registers.

Fig.11 Configuration of EEPROM Register and Operation Register

EEPROM Section	Description
00h~15h ATE data	This section reserved for O2Micro internal use only.
16h~5bh User data	This section used for user control, programming data. 16h~27h are mapped into the Operation registers 06h~17h; 5ah~5bh are mapped into the Operation registers 18h~19h; Access is controlled by 2-bit paramter_access in bit7, bit6 of EEPROM register Parameter Access [5bh]. Parameter_access = 00: the safety scan is disabled; readable; writable; Parameter_access = 01: the safety scan is enabled; readable; writable; Parameter_access = 10: the safety scan is enabled; read only; Parameter_access = 11: the safety scan is enabled; not-readable; not-writable
5ch~7bh Project info data	This section stores project information data. 74h~75h are mapped into the Operation registers 1ah~1bh. Access is controlled by 1-bit <i>project_info_access</i> in bit7 of EEPROM register *Project Info Access [75h]. Project_info_access = 0: readable; writable; Project_info_access = 1: not-readable; not-writable
7ch~7fh Log Data	These data are readable, writable always.

OZ8920 EEPROM Registers

Reg	Reg				Bit Nu	Bit Number					
index	Name	7	6	5	4	3	2	1	0		
(hex)		,			-			'			
00~15				Re	served						
16	Cell Number	sda_delay_e nable	pec enable		SMBus add	lress config		Cell n	umber		
17	Hardware Mode			rese	erved			hardwa	re mode		
18	Function Support	reserved		efetc mode		reserved	Pre_charge support	hardware bleeding support	sleep support		
19	Scan Rate	auto sca	n enable		reserved			scan rate			
1a	Gp Mode	rv su	pport	gp3 ı	mode	gp2	mode	gp1 i	mode		
1b	Charge/Discharge Threshold	rese	rved	charge three	shold control	rese	erved	discharge cor	threshold trol		
1c	Sleep Control	charge integ	rator control		integrator ntrol		sleep time control				
1d	Bleeding Mode	select external bleeding	ble	eeding accura	асу	allow idle bleeding	allow bleeding all				
1e	Charge OC Threshold		Reserved	erved			arge OC thresh	nold			
1f	Discharge OC Threshold	rese	rved			discharge C	OC threshold				
20	OC Delay		OC delay number					OC delay scal	е		
21	OC Release Control	rese	rved	discharge OC release			charge	OC release	control		
22	SC Threshold	rese	erved			SC thr	reshold				
23	SC Delay		S	C delay numb	er		5	SC delay scale	Э		
24	SC Release Control	prmt_ reserved4	prmt_ reserved3	prmt_ reserved2	prmt_ reserved1	prmt_ reserved0	so	release cont	rol		
25	OT/UT, OV/UV Delay Control		OT/UT	delay			OV/U\	delay			
26	Pf Control	pfvh enable	pfvl enable	pf unbalance enable	pf mosfet fail enable		pf d	elay			
27	OC0 Control	rese	rved	OC	0 release con	trol		OC0 delay			
28	DOTE Threshold	bit3~	bit0 of discha	rge OTE three	shold		Rese	erved			
29	DOTE THESHOLD			bit11	-bit4 of discha	arge OTE thre	eshold				
2a	DOTE Release	bit3~bit0	of OTE relea	se for discha	rge OTE		Rese	erved			
2b	DOTE Nelease			Bit11~bit	4 of OTE rele	ase for discha	arge OTE				
2c	OC0 Threshold			bit7~bit0 of	f OC0 (level-0	ocver curren	t) threshold				
2d	COO THIESHOU				bit15~bit8 of 0	OC0 threshold	d				

Controlled Recipient #129456 printed on 6/1/2009. Updates will be provided to registered

Controlled Recipient #129456 printed on 6/1/2009. Updates will be provided to registered recipients.

Reg	Reg	Bit Number								
index	Name	7	7 6 5 4 3 2 1						0	
(hex)		,			"			'		
2e~37	reserved	Reserved								
38	OV Threshold		bit3~bit0 of	OV threshold			Rese	erved		
39	01000				bit11~bit4 of	OV threshold	l			
3a	OV Release		bit3~bit0 of	OV release			Rese	erved		
3b	O V Noidage				bit11~bit4 o	f OV release				
3c	UV Threshold		bit3~bit0 of	UV threshold			Rese	erved		
3d	OV TIMOSIISIA				bit11~bit4	of threshold				
3e	UV Release		bit3~bit0 of	UV release			Rese	erved		
3f	. Ov Kolodoc				bit11~bit4 o	f UV release				
40	Pfvh Threshold		bit3~bit0 of p	ofvh threshold			Rese	erved		
41	. Tivii Tilicanoid				bit11~bit4 of	ofvh threshold	d			
42	Pfvl Threshold		bit3~bit0 of	ofvl threshold			Rese	erved		
43	Fivi Tillesilola				bit11~bit4 of	pfvl threshold	I			
44	Pf Unbalance	bit	3~bit0 of pf un	balance thres	hold		Rese	erved		
45	Threshold			bit1	1~bit4 of pf ur	balance thre	shold			
46	OTI Threshold		bit3~bit0 of 0	OTI threshold			Rese	erved		
47	OTITIITESIIOId				bit11~bit4 of	OTI threshold	i			
48	OTI Release		bit3~bit0 of	OTI release			Reserved			
49	OTTRelease				bit11~bit4 of	OTI release				
4a	UTI Threshold		bit3~bit0 of l	JTI threshold			Rese	erved		
4b	OTTTTTTESTIOIG				bit11~bit4 of	UTI threshold	i			
4c	UTI Release		bit3~bit0 of	UTI release			Rese	erved		
4d	OTTNelease				bit11~bit4 of	UTI release				
4e	COTE Threshold	bit	3~bit0 of char	ge OTE thres	hold		Rese	erved		
4f	COTE TITIESTICIA			bit1	1~bit4 of char	ge OTE thres	shold			
50	COTE Release	bit3~bit0 of	OTE release	for charge OT OT	E or internal		Rese	erved		
51	1			bit11~bit4 of	OTE release	for charge O	TE or internal			
52	LITE Throughold		bit3~bit0 of U	JTE threshold	I		Rese	erved		
53	UTE Threshold	bit11~bit4 of UTE threshold								
54	LITE Dolone		bit3~bit0 of UTE release					erved		
55	UTE Release				bit11~bit4 of	UTE release				
56	Planding Stort		bit3~bit0 of I	oleeding start			rese	erved		
57	bieeding Start				bit11~bit4 of	bleeding star	t			
58~59	Reserved				rese	erved				
56 57	Bleeding Start Reserved		bit3~bit0 of I	oleeding start	bit11~bit4 of	bleeding star	rese	erved		

OZ8920

Reg	Reg				Bit N	umber					
index	Name	7	7 6 5 4 3 2 1 0								
(hex)											
5a	Reserved				rese	erved	<u> </u>				
5b	Parameter Access	parameter access reserved									
5c	Current_				Low byte of cu	ırrent 2 nd offse	et				
5d	2nd_offset				High byte of co	urrent 2 nd offs	et				
5e	Gpio1_2nd_offset				gpio1 2	nd offset					
5f	Gpio2_2nd_offset				gpio2 2	nd offset					
60	Gpio3_ 2 nd _offset				gpio3 2	nd offset					
61	Reserved				rese	erved					
62~6d	Factory Name				Factory Name	e(ASCII code)				
6e~72	Project Name				Project Name	e(ASCII code))				
73	Version Number				Version	Number					
74	Reserved				rese	erved					
75	Project Info Access	project info access				reserved					
76	Reserved				rese	erved					
77	Reserved				rese	erved					
78~79	Reserved				rese	erved					
7a	Reserved				rese	erved					
7b	Reserved				rese	erved					
7c	Pf Record		Res	erved		pfvh	pfvl	pf unbalance	pf mosfet fail		
7d~7f	Reserved				rese	rved					

Detailed EEPROM Register Information

EE register 00h~15h are reserved for OZ8920 chip's internal use. Some of the data in this area are mapped into operation register 02h~05h..

EE register 16h ~ 5bh are parameter data which are used by customer for OZ8920 chip configuration, battery management control setup and customer information purpose. EE register 16h ~ 27h, 5bh are mapped to operation register 06h ~ 17h, 19h respectively. Its access is controlled by the EEPROM-mapped 2-bit *parameter access*.

Register 16h-Cell Number Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
16h	sda_delay	pec_enabl	SMBus address config				cell n	umber
	_enable	е						

This register specifies cell number. SMBus address, sda delay and pec control.

	0 1	T	Description	D/M	Defectly Value		
Bit #	Name	_	R/W	Default Value			
7	sda_delay_enable	the extra delay on S	Control the extra delay on SDA input line. If "1", enable the extra delay on SDA input line; if "0", disable the extra delay on SDA input line.				
6	pec_enable	Enable PEC (packed protocol. If "1", enail the PEC function. It is noted that where support is one-byte PEC-read; doesn't doesn't support mu	RW	0h			
5:2	SMBus address config	Specify the 8-bit SM	Bus device address as 8'h60 + 2*N.	RW	0h		
		Specify the cell cour	nt in the battery pack as follows:				
		cell number	cell count in the battery pack				
1:0	coll number	2'b00	5	RW	Oh		
1.0	cell number	2'b01	6	L//	0h		
		2'b10	7				
		2'b11	8				

Register 17h -Hardware Mode Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
17h		Reserved							

This register selects hardware mode or software mode.

Bit #	Name	Description	R/W	Reset Value
7:2	reserved	Reserved.	R	0h
1:0	Hardware mode	Select hardware mode or software mode. If "0", "1", "3", select hardware mode; if "2", select software mode. this bit cannot be written directly via SMBus interface. Instead this bit can be changed only when EEPROM mapping.	R	1h

Register 18h - Function Support Register

		o oappo.t						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
18h	reserved		efetc mode		reserved	Precharge support	Hardware bleeding support	Sleep support

This register specifies efetc mode, precharge, hardware bleeding and sleep control.

Bit #	Name	node, precharge, nardware bleeding and sleep control. Description	R/W	Reset Value
7	reserved	Reserved	R	0h
6:4	EFETC mode	Select EFETC pin function as follows: EFETC EFETC pin function mode O00 Input signal to disable charge fet If "1", disable charge fet forcely; if "0", charge fet is controlled by the internal logic. O01 Input signal to disable discharge fet. If "1", disable discharge fet forcely; if "0", discharge fet is controlled by the internal logic. O10 Input signal to disable charge/discharge fet. If "1", disable charge fet and discharge fet forcely; if "0", charge fet and discharge fet forcely; if "0", charge fet and discharge fet are controlled by the internal logic. O11 To output discharge fet control logic 100 Input shut down signal. If "1", shut down OZ8920; if "0", OZ8920 works normally. 101, 110, Reserved.	RW	Oh
3	Reserved	reserved	R	0h
2	Precharge support	Support precharge function. If "1", support precharge function; if "0", don't support precharge function.	RW	0h
1	Hardware bleeding support	Select hardware bleeding or software bleeding. If "1", select hardware bleeding; if "0", select software bleeding, software can control the bleeding by writing the bleeding control/status register.	RW	0h
0	Sleep support	Support sleep function. If "1", support sleep function; if "0", don't support sleep function.	RW	0h

Register 19h -Scan Rate Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
19h	auto_sca	an_ebale		reserved			scan rate	

This register specifies auto scan control and configuration.

11115 16	nis register specifies auto scan control and configuration.							
Bit #	Name	Description	R/W	Default Value				
7:6	auto_scan_enable	auo scan control. If "01", "10", "11", auto scan is enabled. After power on reset, the safety scan will automatically start after EEPROM mapping. if "00", auto scan is disabled. After power on reset, the safety scan will not start after EEPROM mapping until the detection of a low pulse on RSTN pin. For reliability reason, if want to enable auto scan, we need to set it to "11"; if want to disable auto scan, we need to set it to "00".	RW	0h				
5:3	reserved	reserved	R	0h				

Bit #	Name		Description	R/W	Default Value
2:0	scan rate	Select the s	afety scan period as following table:	RW	0h
		scan rate	scan period		
		000	1s		
		001	2s		
		010	4s		
		011	6s		
		100	8s		
		101	12s		
		110	16s		
		111	0.5s		

Register 1ah -GPIO Mode Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1ah	RV protect	tion control	gpio3	mode	gpio2	mode	gpio1	mode

This register sets GPIO mode and reversal voltage control.

Bit #	Name		Description	R/W	Reset Value
		RV(Reverse \	/oltage) Protection control as follows:		
	D) /	RVcontrol	RV function		
7.0	RV	2'b00	RV protection function is disabled.		Oh
7:6	protection	2'b01	RV delay time is 2ms	R	0h
	control	2'b10	RV delay time is 4ms		
		2'b11	RV delay time is 8ms		
		Select gpio3 f	unction as follows:		
		gpio3	gpio3 function		
		mode			
		2'b00	not-scanned analog pin.		
5.4		2'b01	scanned analog pin (12-bit adc	DW	0h
5:4	gp3 mode		channel); no temperature check on	RW	
			gp3.		
		2'b10	scanned analog pin (12-bit adc		
			channel); temperature check on gp3.		
		2'b11	a digital pin.		
		Select gpio2 f	unction as follows:		
		gpio2	gp2 function		
		mode			
		2'b00	not-scanned analog pin.		
2.0	au 0 a a da	2'b01	scanned analog pin (12-bit adc	RW	Oh
3:2	gp2 mode		channel); no temperature check on	KVV	0h
			gp2.		
		2'b10	scanned analog pin (12-bit adc		
			channel); temperature check on gp2.		
		2'b11	a digital pin.		
			unction as follows:		
		gpio1	gp1 function		
		mode			
		2'b00	not-scanned analog pin.		
1:0	gp1 mode	2'b01	scanned analog pin (12-bit adc	RW	0h
1.0	gpiniode		channel); no temperature check on	IXVV	OH
			gp2.		
		2'b10	scanned analog pin (12-bit adc		
			channel); temperature check on gp2.		
		2'b11	a digital pin		

Register 1bh-Charge/Discharge Threshold Register

	· J ·			- 3				
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1bh	rese	rved	charge_t	hreshold	rese	rved	discharge_threshold	
			control				con	trol

This register sets charge/discharge state threshold

Bit #	Name	e/discharge state threshold.	escription	R/W	Default Value
7:6	reserved	Reserved.	·	R	0h
5:4	charge_thresh old control	charge_threshold control charge state threshold (Unit is current ADC's LSB) 2'b00 8 2'b01 16 2'b10 32 2'b11 64 the current > charge state threshold, the chip will be regarded a charge state; otherwise the chip is not in charge state.			0h
3:2	reserved	Reserved.	<u> </u>	R	0h
1:0	discharge_thre shold control	discharge_th control 3'b000 3'b001 3'b010 3'b011	discharge state threshold(Unit is current ADC's LSB) -16 -32 -64 -128 e state threshold, the chip will be content of the chip is not in	RW	0h

Register 1ch -Sleep Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1ch	Charge i	ntegrator	Discharge integrator		Sleep time control			
	cor	ntrol	con	ntrol	'			

This register specifies sleep time control and charge/discharge integrator control.

Bit #	Name	De	escription	R/W	Default Value
		Control the time width of charge integrator to define the charge wake up current:			
	Charge	charge integrator control	The integrating time width	5	
7:6	integrator control	2'b00	8ms	RW	0h
	J	2'b01	16ms		
		2'b10	32ms		
		2'b11	64ms		
		Control the time width of char	ge integrator to define the		
		discharge wake up current:			
5:4	Discharge	Discharge integrator control	The integrating time width	RW	0h
0	integrator control	2'b00	8ms		0
		2'b01	16ms		
		2'b10	32ms		
		2'b11	64ms		
3:0	Sleep time	Control the sleep time as follows:			0h
3.0	control	Sleep time control	Sleep time	RW	

OZ8920

Bit #	Name	D	Description					
		4'b0000	disable sleep time expired wakeup function.					
		4'b0001	1 minutes					
			N minutes					
		4'b1111	15 minutes					
		In sleep mode every sleep tii	eep mode every sleep time, the chip will wake up to enter					
		into full power mode to checl	o full power mode to check the events.					

Register 1dh -Bleeding Mode Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1dh	select	bleeding accuracy			allow idle	allow	bleeding	number
	external				bleeding	bleeding		
	bleeding					all		

I nis re	This register specifies bleeding mode.										
Bit #	Name	Description	R/W	Reset Value							
7	select external bleeding	Select external bleeding. If "1", select external bleeding; if "0", select internal bleeding.	RW	0h							
6:4	bleeding accuracy	Select bleeding accuracy as follows: 3 bits Bleeding accuracy 3'b000 4*2.44 = 9.76mv 3'b001 8*2.44 = 19.5mv 3'b010 12*2.44 = 29.3mv 3'b011 16*2.44 = 39.0mv 3'b100 20*2.44 = 48.80mv 3'b101 24*2.44 = 58.56mv 3'b101 28*2.44 = 68.3mv 3'b111 32*2.44 = 78.1mv The cell bleeding is to be stopped if the max_voltage - min_voltage < bleeding accuracy.	RW	0h							
3	allow idle bleeding	If "1", allow bleeding in idle state and bleeding in OV state; if "0", don't allow bleeding in idle state or OV state.	RW	0h							
2	allow bleeding all	If "1", allow bleeding all cells; if "0", only allow bleeding one cell at the same time.	RW	0h							
1:0	bleeding number	Select the maximum bleeding number for external bleeding, if allow bleeding all is "0", select the maximum bleeding number as N+1. For example, if bleeding number is 2'b10, the maximum bleeding number is 3. For other cases, the maximum bleeding number is 1.	RW	0h							

Register 1eh-Charge OC Threshold

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1eh		Reserved			Cha	rge OC thres	hold	

This register sets the charge over current protection threshold.

Bit #	Name	Description		Default Value
7:5	reserved	Reserved.	R	0h
4:0	Charge OC threshold	Configure the charge OC threshold. The charge OC threshold is as follows: 4 bits over current offset M from bit 7~bit4 in EE register03h (M is limited in -6~+6);	RW	0h

CONFIDENTIAL OZ8920 - DS-v1.0 Page 37

Bit #	Name	Desc	ription	R/W	Default Value
		(N+2)*5mv (N:0~31) so that its r for the case M=0(over curre (N-4)*5mv (N:6~31) so that its ra for the case M=-6(over curre = (N-10)*5mv (N:12~31) so that As a result, when M is in the be in the range 10mv~105mv. At the condition the over current	ent offset=30mv), the threshold = ange is 10mv~165mv; ent offset=0mv), the threshold = ange is 10mv~135mv; ent offset=-30mv), the threshold its range is 10mv~105mv. e range -6~+6, the threshold can		
		current threshold is as follows: 5 bits control	Charge OC threshold		
		0	-20mv		
		1	-15mv		
		2	-10mv		
		3	-5mv		
		4	0mv		
		5	5mv		
		6	10mv		
		N			
		30	(N-4)*5mv 130mv		
		31	135mv		

Register 1fh-Discharge OC Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1fh	Rese	Reserved			Discharge C	C threshold		

This register sets the discharge over current protection threshold.

Bit #	Name	Des	scription	R/W	Reset Value
7:6	reserved	Reserved.		R	0h
5:0	Discharge OC threshold	Configure the discharge OC three from bit7~bit4 in EE register04h value is 30mv and its step is 5m. The discharge OC threshold is a (N+M)*5mv for the case M=6(over curre (N+6)*5mv (N:0~63) so that its range for the case M=0(over curre N*5mv (N:6~63) so that its range for the case M=-6(over curre (N-6)*5mv (N:12~63) so that its range for the case M=-6(over curre (N-6)*5mv (N:12~63) so that its range for the case M=-6(over curre N*5mv (N:12~63) so that its range for the case M=-6(over curre N*6)*5mv (N:12~63) so that its range 30mv~285mv. At the condition the over current threshold is as shown in the followed bits control 0 1 2	ort offset=30mv), the threshold = ange is 30mv~345mv; nt offset=0mv), the threshold = a is 30mv~315mv; ent offset=-30mv), the threshold = ange is 30mv~285mv. The range is 30mv~315mv. The range is 30mv~315mv. The range is 30mv~315mv; The range is	RW	0h
		3	15mv		

OZ8920

Bit #	Name	Des	R/W	Reset Value	
		N	N*5mv		
		62	310mv		
		63	315mv		

Register 20h -OC Delay Register

- tog t	*** ***	ay ragiote.						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
20h		0	C delay numb	er		(OC delay scal	е

This register sets over current delay time.

This register sets over current delay time.								
Bit #	Name		Description	R/W	Reset Value			
7:3	OC delay	,	mber is used to indicate the over current	RW	0h			
7.5	number	delay number as N	I+1 (N is the 5 bits value); 3 bits OC delay	1200	OH			
		scale is used to inc	ale is used to indicate the oc delay unit as follows:					
		Oc delay scale	oc delay unit					
		3'b000 2ms*1=2ms	2ms*1=2ms					
	OC delay scale 3'b010 3'b011 3'b010 3'b100	3'b001	2ms*3=6ms					
		3'b010	2ms*7=14ms	RW				
		3'b011	2ms*15=30ms					
2:0		3'b100	2ms*31=62ms		0h			
	Scale	3'b101	2ms*63=126ms					
		3'b110	2ms*127=254ms					
		3'b111	2ms*255=510ms					
		The OC delay time = (N+1)*(oc delay unit)., so its range is						
		2ms~16.3s						

Register 21h -OC Release Control Register

- 3	· · · · · · · · · · · · · · · · · · ·								
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
21h	reserved		Dischar	ge OC release	e control	Charge	OC release	control	

This register sets over current release control.

Bit #	Name		Description	R/W	Reset Value
7:6	reserved	Reserved.		R	0h
			harge OC release as follows: Discharge OC release External release. The discharge OC will be released by the signal from analog SCRL Pin. 1s time release. The discharge OC will be released after 1 second. 2s time release. The discharge OC will be released after 2 seconds. 4s time release. The discharge OC will be released after 4 seconds. 8s time release. The discharge OC will be released after 8 seconds. 16s time release. The discharge OC will be released after 16 seconds. 24s time release. The discharge OC will be released after 16 seconds.		
		3'b111	be released after 24 seconds. 32s time release. The discharge OC will		

Bit #	Name		Description	R/W	Reset Value
			be released after 32 seconds.		
		Control the chai	rge OC release as follows:		
		3-bit control	charge OC release		
		3'b000	1s time release. The charge OC will be		
			released after 1 second.		
		3'b001	1s time release. The charge OC will be		
			released after 1 second.		
	Charge OC	3'b010	2s time release. The charge OC will be		
			released after 2 seconds.		
2:0		3'b011	4s time release. The charge OC will be	RW	0h
2.0	release control		released after 4 seconds.		
		3'b100	8s time release. The charge OC will be		
			released after 8 seconds.		
		3'b101	16s time release. The charge OC will be		
			released after 16 seconds.		
		3'b110	24s time release. The charge OC will be		
			released after 24 seconds.		
		3'b111	32s time release. The charge OC will be		
			released after 32 seconds.		

Register 22h -SC Threshold

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
22h	rese	rved			SC thr	eshold		

This register sets the short circuit current protection threshold.

Bit #	Name	Description	R/W	Reset Value
7:6	reserved	Reserved.	R	0h
5:0	SC threshold	Configure the SC threshold as follows: 4 bits short circuit offset M from bit3~bit0 in EE register03h (M is limited in -3~+3); Its start value is 50mv and its step is 10mv*1; The threshold*2 = (N+M+2)*10mv. for the case M=3(short circuit offset=30mv), the threshold = (N+5)*10mv (N:0~63) so that its range is 50mv~680mv; for the case M=0(short circuit offset=0mv), the threshold = (N+2)*10mv (N:3~63) so that its range is 50mv~650mv; for the case M=-3(short circuit offset=-30mv), the threshold = (N-1)*10mv (N:6~63) so that its range is 50mv~620mv. As a result, when M is in the range -3~+3, the threshold can be in the range 50mv~620mv. When the short circuit offset =0, the short circuit threshold is as follows: 6 bits SC threshold S	RW	0h

OZ8920

Bit #	Name		Description	R/W	Reset Value	
		N	(N+2)*10mv			
		62	640mv			
		63	620mv			

Register 23h -SC Delay

		<u> </u>						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
23h		S	C delay numb	er		Ş	SC delay scale	Э

This register sets short circuit delay time.

Bit #	Name	line circuit delay time	Description		R/W	Reset Value
7:3		5 bits SC delay num	ber is used to indicate the short circuit	t delay	RW	
1.3	number	number as N+1 (N is	s the 5 bits value); 3 bits SC delay sca	le is	KVV	0h
		used to indicate the	sc delay unit as follows:			
		SC delay scale	sc delay unit		RW	0h
		3'b000	4us*2=8us			
		3'b001	4us*4=16us			
		3'b010	4us*8=32us			
2:0	SC delay	3'b011	4us*16=64us			
2.0	scale	3'b100	4us*32=128us			
		3'b101	4us*64=256us			
		3'b110	4us*128=512us			
		3'b111	4us*256=1024us			
		The SC delay time =	(N+1)*(sc delay unit)+25us, so its rar	nge is		
		32.825ms ~33us.				

Register 24h -SC Release Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
24h	prmt_rese	prmt_rese	prmt_rese	prmt_rese	prmt_rese	SC release control					
	rved4	rved3	rved2	rved1	rved0						

This register sets short circuit release control.

Bit #	Name		Description			
7	prmt_re served4	real register is rese	real register is reserved for future use.			
6	prmt_re served3	real register is rese	rved for future use.	RW	0h	
5	prmt_re served2	real register is rese	real register is reserved for future use.			
4	prmt_re served1	real register is rese	RW	0h		
3	prmt_re served0	real register is rese	RW	0h		
2:0	SC release control	Control 3'b000 Exter release 3'b001 0.25n release 3'b010 0.5mi	External release. The SC will be released by SCRL Pin. 0.25min time release. The SC will be released after 0.25 minutes. 0.5min time release. The SC will be released after 0.5 minutes.		Oh	

Bit #	Name		Description	R/W	Reset Value
			released after 0.75 minutes.		
		3'b100	1.0min time release. The SC will be released after 1.0 minutes.		
		3'b101	1.25min time release. The SC will be released after 1.25 minutes.		
		3'b110	1.5min time release. The SC will be released after 1.5 minutes.		
		3'b111	1.75min time release. The SC will be released after 1.75 minutes.		

OT/UT. OV/UV Delay Control Register 25h

01/01, 0	T/OT Delay	Ochill of Ite	giotoi zoii					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
25h		OT/UT	Delay			OV/UV	Delay	

This register sets over voltage/under voltage, over temperature/under temperature delay time.

	The register dete ever vertage, and remperature, and remperature detay time.								
Bit #	Name	Description	R/W	Reset Value					
7:4	OT/UT Delay	Control the OT/UT delay time and release time as (N+1) scan cycles	RW	0h					
3:0	OV/UV Delay	Control the OV/UV delay time and release time as (N+1) scan cycles	RW	0h					

Register 26h -PF Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
26h	pfvh enable	pfvl enable	pf unbalance enable	pf mosfet fail enable		pf d	elay	

This register sets PF functions and delay time.

Bit #	Name	Description	R/W	Reset Value
7	pfvh enable	Enable pfvh function. If "1", enable pfvh function; if "0', disable pfvh function.	RW	0h
6	pfvl enable	Enable pfvl function. If "1", enable pfvl function; if "0', disable pfvl function.	RW	0h
5	pf unbalance enable	Enable pf unbalance function. If "1", enable pf unbalance function; if "0', disable pf unbalance function.	RW	0h
4	pf mosfet enable	Enable pf mosfet fail function. If "1", enable mosfet fail function; if "0", disable mosfet fail function. The detailed mosfet fail function is as follows: If the charge mosfet, precharge mosfet both are turned off, but the chip is in charge state(the current > the charge current threshold), the mosfet will be regarded as having falied; on the other hand, if the discharge mosfet is turned off, but the chip is in discharge state the current < the discharge current threshold. (the current and the discharge current threshold are both negative values), the mosfet will be regarded as having failed. If this bit is "0", disable the mosfet fail detection.	RW	0h
3:0	Pf delay	Configure the pf delay time for pfvh, pfvl, pf unbalance, pf mosfet fail's delay time as (N+1) scan cycles. If the pfvh or pfvl or pf unbalance or pf mosfet fail is detected for continuous pf delay time, OZ8920 will send out PF and shut down the system.	RW	0h

Register 27h -OC0 Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit0	
27h	Rese	erved	OCO	Release Co	ntrol	00	0 Delay Con	trol

This register specifies OC0 control.

Bit #	Name		Description	R/W	Default Value	
7:6	reserved	reserved		R	0h	
		Control OC0 r	elease as follows:			
		3 bit control	OC0 release			
		000	2 scan cycles			
		001	4 scan cycles			
5:3	OC0 Release	010	6 scan cycles	RW	0h	
5.5	Control	011	8 scan cycles	IXVV	OH	
		100	12 scan cycles			
		101 16 scan cycles		16 scan cycles		
		110 24 scan cycles				
		111	32 scan cycles			
		Control OC0 c	lelay as follows:			
		3 bit control	OC0 delay			
		000	2 scan cycles			
		001	4 scan cycles			
2:0	OC0 Delay	010	6 scan cycles	RW	0h	
2.0	Control	011	8 scan cycles	KVV	OH	
		100	12 scan cycles			
		101	16 scan cycles			
		110	24 scan cycles			
		111	32 scan cycles			

Register 28h~29h -DOTE Threshold Register

- Rogiotoi /	<u> </u>	<u> </u>	moia riogio						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
28h	bit3~	bit0 of discha	rge OTE thre	shold	reserved				
29h	•		bit11-	-bit4 of discha	arge OTE thre	shold			

These two registers are used to specify the 12-bit discharge OTE (external over temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 2ah~2bh -DOTE Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
2ah	bit3~bit0	of OTE relea	se for discha	rge OTE	reserved				
2bh			bit11~bit	4 of OTE rele	ase for discha	rge OTE			

These two registers are used to specify the 12-bit discharge OTE (external over temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 2ch~2dh -OC0 Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2ch			bit7~bit0 o	f OC0 (level (over current) threshold		
2dh			ı	oit15~bit8 of 0	OC0 threshold	t		

These two registers are used to specify the 16-bit OC0 (level 0 over current) threshold voltage (-250mV~0mV). Please refer to OC0 protection for detail.

Registers 2eh~37h -Reserved

Register 38h~39h -OV Threshold Register

Register)- 1160~110c	7 Tillesilo	iu Kegistei						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
38h		bit3~bit0 of 0	OV threshold		reserved				
39h				bit11~bit4 of	OV threshold				

These two registers are used to specify the 12-bit OV (over voltage) threshold voltage (-300mV~5000mV).

Register 3ah~3bh -OV Release

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
3ah		bit3~bit0 of OV release				reserved				
3bh				bit11~bit4 of	f OV release					

These two registers are used to specify the 12-bit OV (over voltage) release voltage (-300mV~5000mV). User should set this OV release voltage lower than OV threshold voltage.

Register 3ch~3dh-UV Threshold

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
3ch		bit3~bit0 of UV threshold				reserved				
3dh				bit11~bit4 of	UV threshold					

These two registers are used to specify the 12-bit UV (under voltage) release voltage (-300mV~5000mV).

Register 3eh~3fh -UV Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
3eh	bit3~bit0 of UV release				reserved				
3fh				bit11~bit4 of	f UV release				

These two registers are used to specify the 12-bit UV (under voltage) release voltage (-300mV~5000mV). User should set this UV release voltage higher than UV threshold voltage.

Register 40h~41h -PFVH Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
40h		bit3~bit0 of PI	FVH threshold	t	reserved				
41h			b	it11~bit4 of P	FVH threshol	d			

These two registers are used to specify the 12-bit PFVH (high voltage permanent failure) threshold voltage (-300mV~5000mV). User should set this PFVH threshold higher than OV threshold.

Register 42h~43h- PFVL Threshold Register

				-					
Address	Bit7	Bit7 Bit6 Bit5 Bit4				Bit2	Bit1	Bit0	
42h		bit3~bit0 of P	FVL threshold	k	reserved				
43h			t	it11~bit4 of F	FVL threshol	d			

These two registers are used to specify the 12-bit PFVL (low voltage permanent failure) threshold voltage (-300mV~5000mV). User should set this PFVH threshold lower than UV threshold.

CONFIDENTIAL OZ8920 - DS-v1.0 Page 44

Register 44h~45h -PF-Unbalance Threshold Register

Address	Bit7	Bit7 Bit6 Bit5 Bit4				Bit2	Bit1	Bit0	
44h	bit3~	-bit0 of PF un	balance thres	shold	reserved				
45h			bit11	~bit4 of PF ur	nbalance thres	shold			

These two registers are used to specify the 12-bit PF unbalance (unbalance permanent failure) threshold voltage (-300mV~5000mV).

Register 46h~47h -OTI Threshold Register

1109.010.	1 to glotter 1 till 0 til 1 till 0 till 1 till 0 till 1 to glotter											
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
46h		bit3~bit0 of 0	OTI threshold		reserved							
47h	•	•	•	bit11~bit4 of	OTI threshold		•					

These two registers are used to specify the 12-bit OTI (internal over temperature) threshold voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 48h~49h --OTI Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
48h		bit3~bit0 of	OTI release		reserved				
49h		•		bit11~bit4 of	OTI release	•			

These two registers are used to specify the 12-bit OTI (internal over temperature) release voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 4ah~4bh- UTI Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 E				
4ah		bit3~bit0 of U	JTI threshold		reserved				
4bh				bit11~bit4 of	UTI threshold				

These two registers are used to specify the 12-bit UTI (internal under temperature) threshold voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 48h~49h- UTI Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4ch		bit3~bit0 of	UTI release		reserved				
4dh				bit11~bit4 of	UTI release				

These two registers are used to specify the 12-bit UTI (internal under temperature) release voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 4eh~4fh -COTE Threshold Register

. tog.oto.		<u> </u>							
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4eh	bit3	~bit0 of charg	ge OTE thresh	nold	reserved				
4fh			bit1	ge OTE thres	hold				

These two registers are used to specify the 12-bit charge OTE (external over temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 50h~51h -COTE Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2 Bit1 Bit			
50h	bit3~bi	t0 of OTE rele	ease for charg	ge OTE	reserved				
51h			bit11~b	it4 of OTE rel	ease for char	ge OTE			

These two registers are used to specify the 12-bit charge OTE (external over temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 52h~53h -UTE Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
52h		bit3~bit0 of U	TE threshold		reserved				
53h			ŀ	bit11~bit4 of l	JTE threshold	l			

These two registers are used to specify the 12-bit UTE (external under temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 54h~55h - UTE Release Register

Address	Bit7	Bit7 Bit6 Bit5 Bit4				Bit3 Bit2 Bit1			
54h		bit3~bit0 of l	JTE release		reserved				
55h				bit11~bit4 of	UTE release				

These two registers are used to specify the 12-bit UTE (external under temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 56h~57h - Bleeding Start Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
56h		bit3~bit0 of b	leeding start		reserved				
57h				bit11~bit4 of	bleeding start				

These registers are used to specify the bleeding start voltage and its LSB is 2.44mv. Only when the cell voltage > the bleeding start voltage, the cell can be in bleeding.

Registers 58h~5ah - Reserved

Register 5bh -Parameter Access Register

Address	Bit7	Bit6	Bit5 Bit4 Bit3 Bit2 Bit1 B						
5bh	parameter access		reserved						

This register is used to control access of parameter.

Bit #	Name		Description	R/W	Reset Value
		These bits cor	ntrol access to the parameter data		
		Parameter	parameter data access		
		access			
		2'b00	The safety scan is disabled; can read/write		
7:6	Parameter		parameter data.	RW	0h
7.0	access	2'b01	The safety scan is enabled; can read/write parameter data.	KVV	OH
		2'b10	The safety scan is enabled; can read parameter		
			data but cannot write parameter data.		
		2'b11	The safety scan is enabled; cannot read		

Bit #	Name	Description	R/W	Reset Value
		parameter; cannot write parameter data.		
		These 2 bits themselves can always be read.		
5:0	Reserved	Reserved	R	0h

EE register 5ch ~ 75h are project info data which are used by customer. EE register 75h is mapped to internal register 1bh. Its access is controlled by the EEPROM-mapped 1-bit **project_info_access**.

Current _2nd_offset and GPIO_2nd_offset Registers 5ch~60h

Current 2nd offset Register

Address	Bit7									
5ch		Low byte of current 2 nd offset								
5dh	•		Н	ligh byte of cu	urrent 2 nd offse	et				

GPIO 2nd_offset Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
5eh		gpio1 2 nd offset								
5fh		gpio2 2 nd offset								
60h				gpio3 2	nd offset					

These registers are used to specify the 2nd offset for current, gpio channels.

Reserved Registers 61h

Register 62h~6dh - Factory Name

10-byte registers for factory name (ASCII code) used by the user.

Register 6eh~72h -Project Name

5-byte registers for project name (ASCII code) used by the user.

Register 73h -Version Number

1-byte register for version number used by the user.

Registers 74h - Reserved

Register 75h - Project Info Access Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75h	project info access				reserved			

This register is used to control access of project info.

Registers 76h~7bh - Reserved

EE register 7ch ~ 7fh are Log data which are used by customer. They can always be read or written.

Register 7ch - PF Record Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75c		rese	rved		pfvh	pfvl	pf	pf mosfet
							unbalance	fail

This register saves the PF event record. When any individual PF event happens, the related PF record bit will be set to "1".

Registers 7dh~7fh - Reserved

OZ8920 Operation Registers

OZ8920 operation registers from 00h to 7fh store the instant ADC readings, OZ8920 chip status information, etc. They also provide the control registers to control OZ8920's operation.

Register index	Register Name				Bit N	umber				
(hex)	Name	7	6	5	4	3	2	1	0	
00	Chip ID & Revision		Chi	p ID			Chip re	evision		
01~04	Reserved				Rese	erved				
05~1b				Маррі	ng from EEPR	OM				
1c~1d	Reserved				Rese	erved				
1e	Safety Event	scan event	RV event	UT event	OT event	SC event	OC event	UV event	OV event	
1f	PF Event	pfvh event	pfvl event	l event pf unbalance event pf mosfet fail reserved OC0 event shut dow					down	
20	Sleep Event	sleep_expire d_event	integrator_w akeup_event		rv_wakeup_ event	efetc_wakeup _event				
21	Alert Enable	scan event enable	sleep_expire d event enable			rese	reserved			
22	FET Enable		reserved Precharge enable				Charge enable	Discharge enable		
23	FET Disable Status	OC0 disable	RV disable	UT disable	OT disable	SC disable	OC disable	UV disable	OV disable	
24	Bleeding Control/ Status	cell8_ bleeding	cell7_ bleeding	cell6_ bleeding	cell5_ bleeding	cell4_ bleeding	cell3_ bleeding	cell2_ bleeding	cell1_ bleeding	
25	OV/UV timer		ov timer				uv t	imer	•	
26	OT/UT timer		ot ti	mer			ut ti	mer		
27	OC Timer				ОС	timer				
28	PF timer		rese	rved			PF t	imer		
29	Charge/ Discharge State			OC0 timer			OC0 state	charge state	discharge state	
2a	Safety Status	pfvh_state	pfvl_state	pf_ unbalance_ state	pf_ mosfet_fail_ state	ut_state	ot_state	uv_state	ov_state	
2b	softeare reset	softwar	e reset			rese	rved			
2c	Deadman Control			reserved deadman contr					control	
2d	Deadman Timer	clear deadman timer		reserved deadman timer						
2e	GPIO Data	gp3 in	gp2 in	gp1 in	gp0 in	GP3 out enable GP3 out enable GP2 out				
. 2f	Reserved				rese	erved				

Controlled Recipient #129456 printed on 6/1/2009. Updates will be provided to registered recipients.

Total Tota	Registe index	r Register Name				Bit N	umber			
Section		Name	7	6	5	4	3	2	1	0
31 High byte of cell1's left-justified ADC data reserved	30		Low b	oyte of cell1's	left-justified AD	C data		res	erved	
Data Data High byte of cell2's left-justified ADC data reserved Data Cell3 ADC Data Low byte of cell4's left-justified ADC data reserved High byte of cell3's left-justified ADC data reserved Data Reserved High byte of cell4's left-justified ADC data reserved Data Reserved High byte of cell4's left-justified ADC data reserved High byte of cell5's left-justified ADC data reserved Data Cell6 ADC Data Cell6 ADC Data Cell6 ADC Data Cell7 ADC Data Reserved High byte of cell6's left-justified ADC data reserved High byte of cell6's left-justified ADC data reserved High byte of cell6's left-justified ADC data reserved Data Cell6 ADC Data Cell7 ADC Data Cell8 ADC Data Low byte of cell8's left-justified ADC data Reserved High byte of cell6's left-justified ADC data reserved High byte of cell6's left-justified ADC data reserved Low byte of cell8's left-justified ADC data reserved High byte of cell8's left-justified ADC data Reserved Low byte of internal temperature's left-justified ADC data Feserved High byte of internal temperature's left-justified ADC data Ceserved High byte of internal temperature's left-justified ADC data Reserved High byte of gpio1's left-justified ADC data Reserved High byte of gpio2's left-justified ADC data Reserved High byte of gpio2's left-justified ADC data Reserved High byte of gpio2's left-justified ADC data Reserved High byte of current's left-justified ADC data Reserved High byte of cell6's left-justified ADC data Res	31	Data			High b	yte of cell1's le	eft-justified AD	C data		
34 Cell3 ADC Data 15 Data 16 Cell4 ADC Data 17 Data 18 Cell5 ADC Data 18 Cell5 ADC Data 18 Cell5 ADC Data 18 Cell6 ADC Data 18 Cell6 ADC Data 18 Cell6 ADC Data 18 Cell6 ADC Data 19 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 Data 17 Data 18 Data 19 Data 19 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 Data 17 Data 18 Data 19 Data 19 Data 10	32		Low b	oyte of cell2's	left-justified AD	C data		res	erved	
Data Data High byte of cell3's left-justified ADC data reserved	33	Data			High b	yte of cell2's l	eft-justified AD	C data		
35 Cell4 ADC Low byte of cell4's left-justified ADC data Teserved	34		Low b	yte of cell3's	left-justified AD	C data		res	erved	
Section	35	Data				<u> </u>	eft-justified AD	C data		
37	36		Low b	oyte of cell4's	left-justified AD	C data		res	erved	
Data High byte of cell6's left-justified ADC data reserved	37	Data			High b	yte of cell4's le	eft-justified AD	C data		
39	38		Low b	yte of cell5's	left-justified AD	C data		res	erved	
Data Data High byte of cell6's left-justified ADC data reserved	39	Data			High b	yte of cell5's l	eft-justified AD	C data		
Cell7 ADC Low byte of cell7's left-justified ADC data reserved	3a		Low b	oyte of cell6's	left-justified AD	C data		res	erved	
3d Data Bata High byte of cell7's left-justified ADC data 3e Cell8 ADC Data High byte of cell8's left-justified ADC data 40 Internal Temp ADC Data High byte of internal temperature's left-justified ADC data 41 Low byte of internal temperature's left-justified ADC data 42 Gpio1 ADC Data High byte of gpio1's of left-justified ADC data 44 Gpio2 ADC Low byte of gpio2's of left-justified ADC data 45 Data High byte of gpio2's left-justified ADC data 46 Gpio3 ADC Low byte of gpio3's of left-justified ADC data 48 Current ADC Data High byte of current's left-justified ADC data 48 Current ADC Low byte of current's left-justified ADC data 49 Group2 Group2 Group2 offset 4c Current Offset Group2 Group2 offset 4d Reserved 5b Reserved Low byte of ewriting data or read back data EEPROM Data EEPROM Data EEPROM Data Low byte of cell8's left-justified ADC data reserved ADC data reserved Teserved	3b	Data			•		eft-justified AD	C data		
36 Cell8 ADC Data Low byte of cell8's left-justified ADC data reserved 40 Internal Temp ADC Data High byte of internal temperature's left-justified ADC data 41 Every byte of gpio1's of left-justified ADC data reserved 42 Gpio1 ADC Data High byte of internal temperature's left-justified ADC data reserved 43 Every byte of gpio1's of left-justified ADC data reserved 44 Gpio2 ADC Data High byte of gpio1's left-justified ADC data reserved 45 Data High byte of gpio2's left-justified ADC data reserved 46 Gpio3 ADC Data High byte of gpio2's left-justified ADC data reserved 47 Data High byte of gpio3's left-justified ADC data reserved 48 Current ADC Data High byte of current's left-justified ADC data High byte of current's left-justified ADC data 49 Data High byte of current's left-justified ADC data 40 Group1 Offset Group2 Group2 offset 41 Every byte of Current offset's left-justified ADC data reserved 42 Group2 offset 43 Group1 Offset Group2 Group2 offset 44 Group2 High byte of Current offset's left-justified ADC data reserved 45 EEPROM Data Low byte of ewriting data or read back data	3c		Low b	byte of cell7's	left-justified AD	C data		res	erved	
Second ADC Data High byte of cell8's left-justified ADC data	3d	Data					eft-justified AD	OC data		
A0	3e		Low b	yte of cell8's	left-justified AD	C data		res	erved	
Internal Temp ADC Data High byte of internal temperature's left-justified ADC data High byte of gpio1's left-justified ADC data reserved	3f	Data				•	eft-justified AD	OC data		
42 Gpio1 ADC Data High byte of gpio1's left-justified ADC data reserved	40		Low byte o			ustified ADC		res	erved	
High byte of gpio1's left-justified ADC data 44	41				High byte of ir	nternal tempera	ature's left-just	tified ADC da	ta	
High byte of gpio1's left-justified ADC data reserved	42		Low by	te of gpio1's c	of left-justified A	DC data		res	erved	
A5 Data High byte of gpio2's left-justified ADC data 46 Gpio3 ADC Data High byte of gpio3's of left-justified ADC data reserved 47 Low byte of gpio3's left-justified ADC data 48 Current ADC Data High byte of current's left-justified ADC data 49 Group1 Offset Group2 Group2 offset 40 Group2 Group2 offset 41 Low byte of Current offset's left-justified ADC data 42 High byte of current's left-justified ADC data 43 Group1 Offset High byte of Current offset's left-justified ADC data 44 Group2 Group2 offset 45 Low byte of Current offset's left-justified ADC data 46 Feserved Feserved 56 Reserved Feserved 57 Low byte of ee writing data or read back data	43	Data					left-justified AE	OC data		
46	44		Low by	te of gpio2's c	•				erved	
High byte of gpio3's left-justified ADC data Low byte of current's left-justified ADC data High byte of current's left-justified ADC data High byte of current's left-justified ADC data Group1 Offset Group2 Group2 offset Current Offset Low byte of Current offset's left-justified ADC data reserved High byte of Current offset's left-justified ADC data reserved Figh byte of current's left-justified ADC data Freserved Low byte of Current offset's left-justified ADC data Freserved Low byte of Current offset's left-justified ADC data Freserved Low byte of ee writing data or read back data	45	Data				•	left-justified AE	OC data		
48 Current ADC Data 49 High byte of current's left-justified ADC data 49 Group1 Offset 40 Group2 41 Group2 42 Group2 offset 43 Group2 offset 44 Group2 45 Low byte of current's left-justified ADC data 46 Group2 offset 47 Group2 offset 48 Group1 offset 49 Group2 offset 40 Group2 offset 40 Low byte of Current offset's left-justified ADC data 40 Figh byte of Current offset's left-justified ADC data 41 Figh byte of current's left-justified ADC data 42 Figh byte of Current offset's left-justified ADC data 43 Figh byte of current's left-justified ADC data 44 Figh byte of current's left-justified ADC data 45 Figh byte of current's left-justified ADC data 46 Figh byte of current's left-justified ADC data 47 Figh byte of current's left-justified ADC data 48 Figh byte of current's left-justified ADC data 49 Figh byte of current's left-justified ADC data 40 Figh byte of current's left-justified ADC data 41 Figh byte of current's left-justified ADC data 42 Figh byte of current's left-justified ADC data 43 Figh byte of current's left-justified ADC data 44 Figh byte of current's left-justified ADC data 45 Figh byte of current's left-justified ADC data 46 Figh byte of current's left-justified ADC data 47 Figh byte of current's left-justified ADC data 48 Figh byte of current's left-justified ADC data 49 Figh byte of current's left-justified ADC data 40 Figh byte of current's left-justified ADC	46		Low by	te of gpio3's c	-				erved	
High byte of current's left-justified ADC data 4a Group1 Offset 4b Group2 Group2 offset 4c Current Offset 4d High byte of Current offset's left-justified ADC data 4e-5a Reserved 5b Reserved EEPROM Data High byte of current's left-justified ADC data Freserved Low byte of Current offset's left-justified ADC data reserved Low byte of current offset's left-justified ADC data reserved Low byte of ee writing data or read back data	47	Data				•	•			
49 High byte of current's left-justified ADC data 4a Group1 Offset 4b Group2 Group2 offset 4c Current Offset 4d High byte of Current offset's left-justified ADC data 4e-5a Reserved 5b Reserved EEPROM Data Fign byte of current's left-justified ADC data Freserved Freserved Low byte of ee writing data or read back data	48				Low by	te of current's	left-justified Al	DC data		
4b Group2 Group2 offset 4c Current Offset 4d High byte of Current offset's left-justified ADC data reserved 4e~5a Reserved reserved 5b Reserved reserved 5c EEPROM Data EEPROM Data Group2 offset Low byte of Current offset's left-justified ADC data reserved Low byte of ee writing data or read back data	49				High by			DC data		
4c Current Offset Low byte of Current offset's left-justified ADC data reserved 4d High byte of Current offset's left-justified ADC data 4e-5a Reserved reserved 5b Reserved reserved 5c Low byte of ee writing data or read back data	4a	·				-				
Current Offset High byte of Current offset's left-justified ADC data 4e~5a Reserved reserved 5b Reserved reserved EEPROM Data EEPROM Data	4b	Group2					2 offset			
4d High byte of Current offset's left-justified ADC data 4e~5a Reserved reserved 5b Reserved reserved 5c EEPROM Data EEPROM Data	4c	Current Offset	Low byte	of Current offs	et's left-justifie	d ADC data		res	erved	
5b Reserved reserved 5c Low byte of ee writing data or read back data					High byte o	of Current offse	et's left-justifie	d ADC data		
5c Low byte of ee writing data or read back data EEPROM Data	4e~5a					rese	erved			
EEPROM Data		Reserved								
	5c	EEPROM Data			Low byte	e of ee writing	data or read b	oack data		
	5d				High byt	e of ee writing	data or read b	oack data		

Register index	Register Name	Bit Number									
(hex)	Name	7	6	5	4	3	2	1	0		
5e	EEPROM Address	reserved				ee address					
5f	EEPROM Control	ee busy		ee mode			ee op	_code			
60-7f	Reserved				Rese	erved					

Detailed Operation Register Information

Register 00h - Chip ID & Revision Register

Bit #	Name	Description	R/W	Reset Value
7:4	Chip ID	This indicates the chip ID of OZ8920s	R	1h
3:0	Chip Revision	This indicates the chip revision of OZ8920. "0" indicates A version.	R	0h

Register 01h~04 - Reserved

Register 05h - Cell Number Register

This register is mapped from EE register 15h.

Register 06h~19h - Parameter Data

These registers are mapped from EE register 16h~5bh.

Register 1ah~1bh - Project Info

These registers are mapped from EE register 5ch~75h.

Register 1ch~1dh - Reserved

Register 1eh - Safety Event Register

Bit #	Name	Description	R/W	Reset Value
7	scan event	When an adc scan is completed, this bit will be set to "1". Once this bit is set to "1", it will be kept until software clears it by writing "1" into this bit.	RW	0h
6	RV event	When RV (reverse voltage) happens, this bit will be set to high. And then it is kept as "1" until software clears it by writing "1" into this bit.	RW	0h
5	UT event	Once UT (under temperature) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
4	OT event	Once OT (over temperature) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
3	SC event	Once SC (short circuit) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
2	OC event	Once OC (over current) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
1	UV event	Once UV (under voltage) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
0	OV event	Once OV (over voltage) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h

Register 1fh - PF Event Register

Bit #	Name	Description	R/W	Reset Value
7	pfvh event	When the pfvh is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
6	pfvl event	When the pfvl is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
5	pf unbalance event	When the pf unbalance is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
4	pf mosfet fail event	When the pf mosfet fail is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
3:2	reserved	Reserved.	R	0h
2	OC0 event	When OC0 is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
1:0	software shut down	In software mode, if these bits are "01", the chip will be shut down; when these bits are "00", "10", "11", the chip will work normally. In hardware mode, this bit is ignored.	RW	10h

Register 20h - Sleep Event Register

Bit #	Name	Description	R/W	Reset Value
7	sleep_expired_event	When the sleep timer is expired, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
6	integrator_wakeup_event	When the wakeup from wakeup integrator block is acvite, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
5	sc_wakeup_event	In sleep state, when the sc_wakeup signal is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
4	rv_wakeup_event	In sleep state, when the rvp signal is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
3	efetc_wakeup_event	In sleep state, if efetc shut down function is enabled, when efetc pin is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	R	0h
2	reserved	Reserved.	R	0h
1:0	sleep request	Request sleep. In software mode, if these bits are "01", the chip will enter into sleep state (if no events (OV, OC, OC0, SC, OT, UT, pfvh, pfvl, pf unbalance, pf mosfet fail, no bleeding, not charge state, not discharge state; if there is any of events, the chip will stay in the full power mode even this sleep request bits are set "01"); if these bits are "00", "10", "11", the chip will go to full power state from sleep state. In hardware mode, these bits will be ignored.	RW	10h

If any of sleep_expired_event, integrator_wakeup_event, sc_wakeup_event, rv_wakeup_event is found, the alert_n will be active to inform the software.

Register 21h - Alert Enable Register

Bit #	Name	Description	R/W	Reset Value
7	scan event enable	If this bit is set to "1", when scan event happens, the interrupt signal alert_n will be active; If this bit is set to "0", the scan event will not make the interrupt signal alert_n active.	RW	0h
6	Sleep expired	If this bit is set to "HIGH", when sleep expired event happens,	RW	0h

Bit #	Name	Description	R/W	Reset Value
	event enable	the interrupt signal alert_n will be active.		
		If this bit set to "LOW", the ADC event will not make the		
		interrupt signal alert_n active.		
5:0	Reserved	Reserved	R	0h

In software mode or hardware mode, any safety event including RV event, UT event, OT event, SC event, OC event, OC0 event, UV event, OV event, PFVH event, PFVL event, PF unbalance event, PF mosfet fail event, any sleep events including integrator wakeup event, SC wakeup event, RV wakeup event, EFETC wakeup event will make AlertN pin active to inform software. Additionally, if scan event enable bit is "1", scan event will make alertn pin active and furthermore, if sleep expired event enable bit is "1", sleep expired event will make alertn pin active.

Register 22h - FET Enable Register

Bit #	Name	Description	R/W	Reset Value
7:3	Reserved	Reserved.	R	0h
2	•	In software mode, if "1", turn on the precharge FET if the safety check doesn't force the FET to turn off; if "0", turn off the precharge FET unconditionally. In hardware mode, this bit is ignored.	RW	0h
1		In software mode, if "1", turn on the charger FET if the safety check doesn't force the FET to turn off; if "0", turn off the charger FET unconditionally. In hardware mode, this bit is ignored.	RW	0h
0	Discharge enable	In software mode, if "1", turn on the discharger FET if the safety check doesn't force the FET to turn off; if "0", turn off the discharger FET unconditionally. In hardware mode, this bit is ignored.	RW	0h

Register 23h - FET Disable Status Register

Bit #	Name	Description	R/W	Reset Value
7:0	OT, SC, OC, UV, OV disable	Each of bits 7~0 will be set by OZ8920 in response to the safety event continues for some delay time. And the bits can be cleared automatically after some time when the corresponding events disappear.	R	0h

Register 24h - Bleeding Control/Status Register

Register 24th Dieeding Control/Otatus Register					
Bit #	Name	Description	R/W	Reset Value	
7	cell8_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. If "1", enable cell8 bleeding; if "0", disable cell8 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell8 is in bleeding.	RW/R	0h	
6	Cell7_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. If "1", enable cell7 bleeding; if "0", disable cell7 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell7 is in bleeding.	RW/R	0h	
5	Cell6_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell6 bleeding; if "0", disable cell6 bleeding. When hw_bld_support = 1 (select hardware bleeding), indicate cell6 is in bleeding, this bit is read only.	RW/R	0h	
4	Cell5_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell5 bleeding; if "0", disable cell5 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell5 is in bleeding.	RW/R	0h	

9	
giste	
to re	
ovided	
oe pr	
will b	
d on 6/1/2009. Updates will be provided to registere	
1/2009.	
/9 u	
456 printed o	
nt #129456 printed or	
cipient #	
lled Re	oto
Contro	rocinion in

Bit #	Name	Description	R/W	Reset Value
3	Cell4_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell4 bleeding; if "0", disable cell4 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell4 is in bleeding, this bit is read only.	RW/R	0h
2	Cell3_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell3 bleeding; if "0", disable cell3 bleeding. In hardware mode, this bit is read only indicating cell3 is in bleeding, this bit is read only.	RW/R	0h
1	Cell2_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell2 bleeding; if "0", disable cell2 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell2 is in bleeding, this bit is read only.	RW/R	Oh
0	Cell1_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell1 bleeding; if "0", disable cell1 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell1 is in bleeding, this bit is read only.	RW/R	0h

Register 25h - OV/UV Timer Register

Bit #	Name	Description	R/W	Reset Value
7:4	ov timer	ov timer(unit is a scan cycle)	R	0h
3:0	ut timer	uv timer(unit is a scan cycle)	R	0h

Register 26h - OT/UT Timer Register

3				
Bit #	Name	Description	R/W	Reset Value
7:4	ot timer	ot timer(unit is a scan cycle)	R	0h
4:0	ut timer	lut timer(unit is a scan cycle)	R	0h

Register 27h - OC Timer Register

Bit #	Name	Description	R/W	Reset Value
7:0	OC timer	It indicates the OC timer. When OC delay, Its unit is OC delay unit controlled by OC delay register; when OC release, the unit is 0.25s.	R	0h

Register 28h - PF Timer Register

Bit #	Name	Description	R/W	Reset Value
7:6	Reserved	Reserved.	R	0h
3:0	PF timer	PF timer (unit is a scan cycle).	R	0h

Register 29h - Charge/Discharge State Register

_				
Bit #	Name	Description	R/W	Reset Value
7:3	OC0 timer	5-bit OC0 timer.	R	0h
2	OC0 state	OC0 state indicating OC0 is detected.	R	0h
1	charge state	Indicates OZ8920 is in charge state. If "1", in charge state; if "0", not in charge state.	R	0h
0	discharge state	Indicates OZ8920 is in discharge state. If "1", in discharge state; if "0", not in discharge state.	R	0h

Register 2ah - Safety Status Register

Bit #	Name	Description	R/W	Reset Value
7	pfvh_state	Indicate pfvh is detected.	R	0h
6	pfvl_state	Indicate pfvl is detected.	R	0h
5	pf unbalance state	Indicate pf unbalance is detected.	R	0h
4	pf mosfet state	Indicate pf mosfet fail is detected.	R	0h
3	ut_state	Indicate UT is detected.	R	0h
2	ot_state	Indicate OT is detected.	R	0h
1	uv_state	Indicate UV is detected.	R	0h
0	ov_state	Indicate OV is detected.	R	0h

Register 2bh - Software Reset Register

Bit #	Name	Description	R/W	Reset Value
7:6	software reset	When software writes "01" into these bits, a software reset pulse is generated to reset the safety scan engine; when writes "00", "10", "11", there is no effect. If software reads this bit, "00" is always read out.	RW	0
5:0	reserved	reserved	R	0

Register 2ch - Deadman Control Register

Bit #	Name		Description		R/W	Reset Value
7:2	Reserved	Reserved.		R	0h	
		Specify the deadman	time as shown in the following table:			
		deadman control	deadman expired time			
1:0	doodman control	00	deadman check is disabled.		RW	0h
1.0	deadman control	01	4 seconds		KVV	OH
		10	8 seconds			
		11	16 seconds			

Deadman check function is enabled by a non-zero value to "deadman control" register. If deadman check is enabled, OZ8920 will increment the deadman timer every second when the safety scan is enabled. The software needs to do as follows:

- Read the deadman timer by reading the register 2dh
- Write "1" into the bit 7 "clear timer" of register 2dh to clear the deadman timer.

If the handshake between OZ8920 and the software is normal, the software will clear the deadman timer before the deadman timer reaches the deadman expired time. In a result no deadman is found.

If the handshake has some problems, the software cannot clear the deadman timer in time, while the deadman timer will do +1 every second. After some time, the deadman timer will reach the deadman expired time. As a result, OZ8920 will send out a 64ms low active pulse to RSTN pin to reset the external uP.

It is noted that when starting up the deadman check, it's possible to get a false deadman. To avoid this problem, do the above handshake procedure immediately after writing a non-zero value to "deadman control".

Register 2dh - Deadman Timer Register

Bit #	Name	Description	R/W	Reset Value
7	clear	Clear deadman timer. If write "1" into this bit, the deadman timer will be cleared to "0"; if write "0" into this bit, no effect on the deadman timer. This bit always reads as a "0"		0h

Bit #	Name	Description	R/W	Reset Value
6:4	reserved	Reserved.	R	0h
3:0	deadman timer	The deadman timer unit is 1s.	R	0h

Register 2eh - GPIO Enable & Data Register

Bit #	Name	Description	R/W	Reset Value
7	gp3 in	gpio3 input.	R	0h
6	gp2 in	gpio2 input	R	0h
5	gp1 in	gpio1 input	R	0h
4	gp0 in	gpio0 input	R	0h
3	gp3 out enable	If gpio3 is configured as a digital pin, enable gp3 output. If "1", enable gp3 output (output bit2 gp3 out); if "0", disable gp3 output.	RW	0h
2	gp3 out	the gpio3's output data.	RW	0h
1	gp2 out enable	If gp2 is configured as a digital pin, enable gp2 output. If "1", enable gp2 output (output bit0 gp2 out); if "0", disable gp2 output.	RW	0h
0	gp2 out	the gpio2's output data.	RW	0h

Register 2fh - Reserved Register

Register 30h~3fh - Cell Voltage ADC Data Register

These registers are used to store the cell1~cell8's left-justified ADC data whose LSB is 2.44mv (5000mv/2048). The cell1~cell4's adc data are the adjusted value with the corresponding group1 offset register (4ah); the cell5~cell8's adc data are the adjusted value with the corresponding group2 offset register (4bh).

In adc fft mode, the adc data is the raw data without the adjustment and stored in current adc data registers (48h, 49h).

Register 40h~41h - Internal Temperature ADC Data Register

These registers are used to store the internal temperature's left-justified adc data whose LSB is 1.22mv (2500mv/2048).

Register 42h~47h - GPIO ADC Data Register

These registers are used to store the 3 gpios's left-justified adc data which LSB is 1.22mv (2500mv/2048).

Register 48h~49h - Current ADC Data Register

These registers are used to store the current's left-justified adc data which LSB is 7.63uv (250mv/32768). The adc data is the adjusted value with the current offset register (4ch, 4dh). In adc fft mode, the adc data is the raw data without the adjustment with current offset.

Register 4ah~4dh - Group1, Group2, Current Offset Register

These registers are used to store the group1 offset, group2 offset, current offset in 2's complement format.

For register 4ah, 4bh, offset = N*2.44mv (N:-128~127);

For register 4ch & 4dh, offset = N*7.63uv (N:-2048~2047).

Register 4eh~5bh - Reserved Register

Register 5ch~5dh - EEPROM Data Register

When writing word into EEPROM, this register is used to store the writing data; when reading a word from EEPROM, this register is used to store the read back word. When writing byte into EEPROM, register 5ch is used to store the writing data; register 5dh is not used.

In adc fft mode, the bit3~bit0 of register 5ch can be used to specify the adc channel.

Register 5eh - EEPROM Address Register

	Bit #	Name	Description	R/W	Reset Value
ĺ	7	Reserved	Reserved.	R	0h
	6:0	oo addross	ee_address[6:1] are used to specify the EEPROM's word address. For byte write, ee_address[0] is used to specify the high or low byte. If "0", select the low byte; if "1", select the high byte.	RW	0h

Register 5fh - EEPROM Control Register

Bit #	Name	Description		R/W	Reset Value
DIL#	INAILIE	This bit is high indicating the E		17/11	iveser vaine
7	ee_busy	After the access, it is low. Only		R	0h
,	CC_busy	software can start another EER		1	011
6:4	ee_mode	These bits are used to select Eselect EEPROM mode; if set to EEPROM mode. In EEPROM mode, software cannot be select Eselect EEPROM mode.	EEPROM mode. If set to "101", o other values, select non-	RW	0h
3:0	ee op code	These bits are used to specify follows: ee_op_code 4'b0000 4'b0001 4'b0010 4'b0011 4'b0100 4'b0110 4'b0110 4'b1000 4'b1000 4'b1001 4'b1010 0 4'b1011 Others	Access no access Word erase Word write Block erase Block Write Normal read Internal high test read External high test read External low test read Block read Block read Byte write Reserved	RW	Oh

Register 60h ~ 7fh - Reserved Registers

User Configurable Parameters

In order to make OZ8920 work properly and protect the battery pack, user should configure EEPROM registers correctly. Instead of setting EEPROM registers in binary code, O2Micro developed a software utility (Taurus) to help end user configure the EEPROM registers in an understandable, intuitive way.

Group	Name	Units/Steps/Values	Description
Battery Setting	CellNumber	5-8 Li battery in series	To set the number of the battery Pack cells
Mode	HWMode		Hard/Software Mode selection
Wode	EFETC Mode		To set the EFETC control mode
	SMBUSAddress	N: 4 bits, Addr: 60h+2*N Support up to 16 devices	SMBUS address setting
SMBUS Configuration	PECEnable		Enable packet error check based on SMBUS protocol
	SDA delay enable		Enable the extra delay on SDA input line
	RV Control	Disable,2,4,8 ms	Reverse Voltage function control
GPIO Config	GP1 mode		GP1 function selection
GP10 Coning	GP2 mode		GP2 function selection
	GP3 mode		GP3 function selection
	PreCHGEnable		Pre-charge function enable
Options	Rsense	mOhm	The value of the sense resistor (Rs)
	Parameter Access		Control the access to parameter data
	CHGCurrentTH	8~64 ADC LSB / Rs	Charge current threshold
	DSGCurrentTH	-128~-16 ADC LSB / /Rs	Discharge current threshold
Idle Mode Configuration	ScanRate	0.5,1,2,4,6,8,12,16, seconds	To Specify the protection scan period in Idle Mode
	Auto Scan Enable		Auto Scan Control
	SleepEnable		Enable the sleep mode
Sleep Mode Configuration	SleepTime	0-15 Minutes step:1 Min	To select the period of sleep mode, after every sleep interval the chip will do protection scan
OC/SC Configuration	CHGOverCurrentTH	-20mV/Rs-135mV/Rs with step of 5mV/Rs	Charge over current threshold
	DSGOverCurrentTH	0mV/Rs-315mV/Rs with step of 5mV/Rs	Discharge over current threshold
	OverCurrentDelay	2ms-16.3s	Over current delay time
	ShortCurrentTH	50mV/Rs-620mV/Rs with step of 10mV/Rs	Short circuit current threshold
	SC Delay	33us-32.825mS	Short circuit current delay time
	DOC Release Time	External, 1~31s	DOC release time setting

CONFIDENTIAL OZ8920 - DS-v1.0 Page 58

OZ8920

Group	Name	Units/Steps/Values	Description
	COC Release Time	1~32s	COC release time setting
	SC Release Time	0.25~1.75min with step of 0.25min	SC release time setting
	OC0 Delay Time	2~32 scan cycle	OC0 delay time setting
	OC0 Rlease Time	2~32 scan cycle	OC0 release time setting
	OC0 Threshold	Signed 16 bits data (negtive)	OC0 threshold
	OverVoltageTH	0-5V	Over voltage(OV) threshold voltage setting
01///11/	OVRelease	0-5V	OV release voltage setting
OV/UV Configuration	UnderVoltageTH	0-5V	Under voltage(UV) threshold voltage setting
	UVRelease	0-5V	UV release voltage setting
	OVUVDelay	1~16 scan cycle	OV and UV delay time setting
	COTE TH	°C	Charge external over temperature threshold
	COTE Release	°C	Charge external OT release
	DOTE TH	°C	Discharge external over temperature threshold
	DOTE Release	°C	Discharge external OT release
OT/UT Configuration	UTE TH	°C	External under temperature (UT) threshold
J. J. J.	UTE Release	°C	External UT release
	ОТІ ТН	°C	Internal OT threshold
	OTI Release	°C	Internal OT release value
	UTI TH	°C	Internal UT threshold
	UTI Release	°C	Internal UT release value
	OTUTDelay	1-16 scan cycle	OT UT delay time setting
	PF Record		PF record register
	PFVHTH	0-5V	Permanent failure(PF) high voltage threshold set
	PFVLTH	0-5V	PF low voltage threshold setting
PF Configuration	PFDelay	1-16 scan cycle	PF delay time
-	PFVHEnable		PFVH function enable
	PFVLEnable		PFVL function enable
	MOSFailEnable		PF of MOSFET failure enable
	PFUnbalanceEn		PF of the cell unbalance enable
	PFUnbalanceTH	0-2.5V	PF of the cell unbalance threshold
Bleeding	BleedEnable		Bleeding function enable
Configuration	ExtBleedSel		To select the external or internal bleeding method

 CONFIDENTIAL
 OZ8920 - DS-v1.0
 Page 59

Group	Name	Units/Steps/Values	Description
	BleedCellNumber	1-4	Max bleeding cell number in external bleeding method
	BleedAll		Enable all cell bleeding option
	Idle Bleed Enable		Enable bleeding in idle state
	BleedStartPoint	0-5V	Bleeding start point voltage
	BleedAccuracy	9.76, 19.50, 29.30, 39.00, 48.80, 58.56, 68.30, 78.10mV	Bleeding accuracy setting

PACKAGE INFORMATION

48L LQFP 7x7mm Package Outline Drawing

NOTE:

- 1. REFER TO JEDEC STD MS-026 BBC
- 2. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSIONS. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE." DI" AND "E1" ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDE MOLD MISMATCH

SYMBOL	DIMENSION (MM)		
	MIN	NOR	MAX
Α	-	-	1.60
A1	0.05	-	0.15
A 2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09	-	0.20
D	9.00 BSC		
D1	7.00 BSC		
E	9.00 BSC		
E1	7.00 BSC		
е	0.50 BSC		
L	0.45		0.75
L1	1.00 REF		
θ	0°	-	7°
θ1	0°	-	-
θ2	11°	12°	13°

IMPORTANT NOTICE

No portion of O_2 Micro specifications/datasheets or any of its subparts may be reproduced in any form, or by any means, without prior written permission from O_2 Micro.

O₂Micro and its subsidiaries reserve the right to make changes to their datasheets and/or products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

 O_2 Micro warrants performance of its products to the specifications applicable at the time of sale in accordance with O_2 Micro's standard warranty. Testing and other quality control techniques are utilized to the extent O_2 Micro deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customer acknowledges that O_2 Micro products are not designed, manufactured or intended for incorporation into any systems or products intended for use in connection with life support or other hazardous activities or environments in which the failure of the O_2 Micro products could lead to death, bodily injury, or property or environmental damage ("High Risk Activities"). O_2 Micro hereby disclaims all warranties, and O_2 Micro will have no liability to Customer or any third party, relating to the use of O_2 Micro products in connection with any High Risk Activities.

Any support, assistance, recommendation or information (collectively, "Support") that O_2 Micro may provide to you (including, without limitation, regarding the design, development or debugging of your circuit board or other application) is provided "AS IS." O_2 Micro does not make, and hereby disclaims, any warranties regarding any such Support, including, without limitation, any warranties of merchantability or fitness for a particular purpose, and any warranty that such Support will be accurate or error free or that your circuit board or other application will be operational or functional. O_2 Micro will have no liability to you under any legal theory in connection with your use of or reliance on such Support.

COPYRIGHT © 2005-2008, O₂Micro International Limited