Órgãos de Máquinas Engrenagens – Aula TP 4

Carlos M. C. G. Fernandes

1 Correção de dentado para igualar escorregamentos específicos quando $z_1 + z_2 < 60$

Quando $z_1+z_2<60$, Henriot aconselha que $x_1+x_2\neq 0$. Tal implica que ocorra variação de entre-eixo.

1.1 Método analítico

Para determinar o valor da correção quando $z_1 + z_2 < 60$, devemos seguir o seguinte procedimento:

- 1. Procurar o valor de x_1 criando uma engrenagem hipotética $z_1 + z_2^* = 60$ em que $x_1 + x_2^* = 0$;
- 2. Calculamos o valor do número de dentes da engrenagem hipotética $z_2^* = 60 z_1$;
- 3. Para $z_1 + z_2^* = 60$, consideramos que $x_1 + x_2^* = 0$, logo $x_1 = x$ e $x_2^* = -x$;
- 4. Impor a igualdade $g_{s2_{max}^*} = g_{s1_{max}}$ e determinar x:

$$\left| 1 - \frac{z_1}{z_2^*} \cdot \frac{\sqrt{(r_{a2}^* - x \cdot m)^2 - r_{b2}^{*2}}}{a^* \cdot \sin \alpha - \sqrt{(r_{a2}^* - x \cdot m)^2 - r_{b2}^{*2}}} \right| = \left| \frac{z_2^*}{z_1} \cdot \frac{\sqrt{(r_{a1} + x \cdot m)^2 - r_{b1}^2}}{a^* \cdot \sin \alpha - \sqrt{(r_{a1} + x \cdot m)^2 - r_{b1}^2}} - 1 \right|$$
(1)

Notar que $a^* = r_1 + r_2^*$.

5. Em posse de $x_1 = x$, resolver a igualdade $g_{s2_{max}} = g_{s1_{max}}$ para a engrenagem de interesse e determinar x_2 :

$$\left| 1 - \frac{z_1}{z_2} \cdot \frac{\sqrt{(r_{a2} + x_2 \cdot m)^2 - r_{b2}^2}}{a' \cdot \sin \alpha' - \sqrt{(r_{a2} + x_2 \cdot m)^2 - r_{b2}^2}} \right| = \left| \frac{z_2}{z_1} \cdot \frac{\sqrt{(r_{a1} + x_1 \cdot m)^2 - r_{b1}^2}}{a' \cdot \sin \alpha' - \sqrt{(r_{a1} + x_1 \cdot m)^2 - r_{b1}^2}} - 1 \right|$$
(2)

6. De notar que $x_1 + x_2 \neq 0$, o que implica variação de entre-eixo. Resolver o seguinte sistema de equações:

$$\begin{cases} \left| 1 - \frac{z_{1}}{z_{2}} \cdot \frac{\sqrt{(r_{a2} + x_{2}m)^{2} - r_{b2}^{2}}}{a' \cdot \sin \alpha' - \sqrt{(r_{a2} + x_{2}m)^{2} - r_{b2}^{2}}} \right| = \left| \frac{z_{2}}{z_{1}} \cdot \frac{\sqrt{(r_{a1} + x_{1}m)^{2} - r_{b1}^{2}}}{a' \cdot \sin \alpha' - \sqrt{(r_{a1} + x_{1}m)^{2} - r_{b1}^{2}}} - 1 \right| \\ a' \cdot \cos \alpha' = a \cdot \cos \alpha \\ \operatorname{inv} \alpha' = \operatorname{inv} \alpha + 2 \tan \alpha \cdot \frac{x_{1} + x_{2}}{z_{1} + z_{2}} \end{cases}$$
(3)

1.2 Método gráfico

- 1. Escolher z_1 nas abcissas;
- 2. Interceptar $z_1 \text{ com } z_1 + z_2 = 60$;
- 3. Escolher x_1 nas ordenadas
- 4. Interceptar z_1 com a razão de transmissão $u = \frac{z_2}{z_1}$ (à esquerda de ABA');
- 5. Escolher x_2 nas ordenadas;
- 6. De notar que $x_1 + x_2 \neq 0$, o que implica variação de entre-eixo. Como o somatório das correções é conhecido, podemos resolver o seguinte sistema de equações para determinar o novo entre-eixo e o novo ângulo de pressão de funcionamento:

$$\begin{cases} a'\cos\alpha' = a\cos\alpha \\ \operatorname{inv}\alpha' = \operatorname{inv}\alpha + 2\tan\alpha \cdot \frac{x_1 + x_2}{z_1 + z_2} \end{cases}$$
 (4)

1.3 Exemplo de aplicação

Determine as correções de dentado que igualam os escorregamentos específicos máximos do pinhão e roda, com os dados da Tabela 1. Utilize o método analítico e o método gráfico.

Tabela 1: <u>Dados da Eng</u>renagem

z_1	20
z_2	30
m	2 mm
α	20°

Figura 1: Ábaco de Henriot para escolha das correções x_1 e x_2 [1].

2 Controlo metrológico com calibres cilíndricos

O controlo metrológico por calibre cilíndrico está apresentado na Figura 2.

Figura 2: Controlo por calibre cilíndrico [2].

$$\widehat{DB} = \widehat{DA} + \widehat{AB} = \widehat{DK} + \widehat{KB}$$
 (5)

$$\widehat{DB} = \operatorname{inv} \alpha \cdot r_b + \frac{a}{2} = \frac{i}{2} \cdot \frac{r_b}{r} + \operatorname{inv} \theta \cdot r_b$$
 (6)

$$\operatorname{inv}\theta = \operatorname{inv}\alpha + \frac{a}{2 \cdot r_b} - \frac{i}{2 \cdot r} \tag{7}$$

2.1 Número par de dentes

Para determinar a cota de controlo G (ver Figura 3) para uma roda dentada de número de dentes par, é necessário resolver o sistema de equações (8).

$$\begin{cases}
\operatorname{inv} \theta = \operatorname{inv} \alpha + \frac{a}{2 \cdot r_b} - \frac{i}{2 \cdot r} \\
l \cdot \cos \theta = r_b \\
G = 2 \cdot l + a
\end{cases}$$
(8)

Figura 3: Numero par de dentes: $G = 2 \cdot l + a$ [2].

2.2 Número impar de dentes

Para determinar a cota de controlo G (ver Figura 4) para uma roda dentada de número de dentes par, é necessário resolver o sistema de equações (9).

$$\begin{cases}
\operatorname{inv} \theta = \operatorname{inv} \alpha + \frac{a}{2 \cdot r_b} - \frac{i}{2 \cdot r} \\
l \cdot \cos \theta = r_b \\
G = 2 \cdot l \cdot \cos \left(\frac{\pi}{2 \cdot z}\right) + a
\end{cases} \tag{9}$$

Figura 4: Número impar de dentes: $G = 2 \cdot l \cdot \cos\left(\frac{\pi}{2 \cdot z}\right) + a$ [2].

Referências

- [1] Vullo, Vincenzo: *Gears*, volume 10 de *Springer Series in Solid and Structural Mechanics*. Springer International Publishing, Cham, 2020, ISBN 978-3-030-38631-3.
- [2] Henriot, G.: Traité théorique et pratique des engrenages. Dunod, 1961, ISBN 2.04.005836.2.