- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Router Architecture Overview

Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Input Port Functions

Data link layer:

e.g., Ethernet see chapter 5

Decentralizéd switching:

- given datagram dest., lookup output port using forwarding table in input port memory
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Three types of switching fabrics

Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- □ speed limited by memory bandwidth (2 bus crossings per datagram)

Switching Via a Bus

- □ datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- □ 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
 - Synchronous
- □ Cisco 12000: switches Gbps through the interconnection network

Output Ports

- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

- □ Fabric slower than input ports combined -> queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

The Internet Network layer

Host, router network layer functions:

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IP datagram format

IP protocol version number header length (bytes) "type" of data

max number remaining hops (decremented at each router)

upper layer protocolto deliver payload to

how much overhead with TCP?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

IP Fragmentation & Reassembly

- network links have MTU
 (max.transfer size) largest
 possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = 1 1480/8

One large datagram becomes several smaller datagrams

length ID fragflag offset						
=1500 =x =185	•	length	ID	fragflag	offset	
		=1500	=x	=1	*=185	

length	ID	fragflag	offset	
=1040	=x	=0	=370	

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IP Addressing: introduction

- ☐ IP address: 32-bit identifier for host, router *interface*
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one interface
 - IP addresses
 associated with each
 interface

Subnets

□ IP address:

- subnet part (high order bits)
- host part (low order bits)

□ What's a subnet?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

Recipe

■ To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24