Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské.
- 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny.
- 3. Pro nenewtonovskou kapalinu změřte závislost zdánlivé viskozity na rychlosti otáčení rotoru a graficky znázorněte.
- 4. Změřte teplotní závislost viskozity glycerinu pomocí kuličkového viskozimetru v oboru teplot od 25 °C do 35 °C. Graficky znázorněte závislost $\eta = \eta(T)$. Určete aktivační energii.
- 5. Pyknometrickou metodou určete hustotu glycerinu a stanovte podíl vody v glycerinu. Změřenou viskozitu glycerinu srovnejte s tabelovanou hodnotou.

Teoretická část

Dynamickou vikozitu kapaliny η můžeme definovat vztahem [1]

$$\tau = \eta \cdot D \,, \tag{1}$$

kde τ je smykové napětí a D je rychlost smykové deformace.

Pokud je η konstanta a nezívisí na rychlosti deformace, nazýváme kapalinu newtonovskou. Pokud η na rychlosti závisí, mluvíme o zdánlivé viskozitě a kapalinu nazýváme nenewtonovskou. Pro některé nenewtonovské kapaliny platí mocninný zákon [1]

$$\eta = m \cdot D^{n-1} \,, \tag{2}$$

kde m je konstanta a n je číslo.

Změnu viskozity s teplotou můžeme charakterizovat vztahem [1]

$$\eta(T) = C \cdot \exp(\frac{\epsilon_A}{kT}),$$
(3)

kde C je konstanta, ϵ_A je aktivační energie, k je Boltzmannova konstanta a T je termodynamická teplota. Po zlogaritmování dostaneme

$$\ln(\eta) = \ln(C) + \frac{\epsilon_A}{k} \cdot \frac{1}{T}, \tag{4}$$

tedy rovnici přímky v proměnných $\ln \eta$ a 1/T.

Viskozitu budeme měřit rotačním a kuličkovým viskozimetrem značky HAAKE.

Rotační viskozimetr je vybaven čtyřmi rotory různé velikosti ozančenými L1, L2, L3 a L4 a umožňuje volit frekvenci otáčení.

V kuličkovém viskozimetru měříme čas t, za který kulička ve viskózní kapalině urazí vzdálenost $100\,\mathrm{mm}$. Kuličkový viskozimetr je připojen k přístroji, který umožňuje nastavit teplotu kapaliny. Viskozitu určíme ze změřeného času t pomocí vztahu [1]

$$\eta = K \cdot (\rho_1 - \rho_2) \cdot t \,, \tag{5}$$

kde ρ_1 je hustota kuličky, ρ_2 hustota kapaliny a K je konstanta kuličky. Byla použita ocelová kulička o hmotnosti 14,92 g, průměru 15,19 mm a hustotě $\rho_1 = 8,127 \, \mathrm{g \, cm^{-3}}$. Pro takovou kuličku uvádí [1] konstantu kuličky $K = 0,7061 \, \mathrm{mPa \, cm^{-3} \, g^{-1}}$.

Viskozita glycerinu je silně závislá na složení a v rotačním viskozimetru neměříme čistý glycerin. Jeho koncentraci změříme pyknometrickou metodou [2]. Změříme hmotnost prázdného pyknometru m_1 , hmotnost pyknometru naplněného vodou (o známé hustotě) m_2 a hmotnost pyknometru naplněného glycerinem m_3 . Hustotu glycerinu určíme podle vztahu [1]

$$\rho_{glycerin} = \frac{m_3 - m_1}{m_2 - m_1} \cdot (\rho_{voda} - \sigma) + \sigma, \qquad (6)$$

kde σ je hustota vzduchu.

Výsledky měření

Teplota v místnosti byla 25,6 °C. Atmosférický tlak byl 992 hPa. Relativní vlhkost vzduchu byla 33 %. Hustota vzduchu σ je při těchto podmínkách přibližně $(1,18\pm0,01)\,\mathrm{kg}\,\mathrm{m}^{-3}$.

V rotačním viskozimetru jsme měřili glycerin a škrob. Teplota obou kapalin byla $25,6\,^{\circ}$ C. V kuličkovém pouze glycerin při teplotách v rozmezí $25\,^{\circ}$ C až $35\,^{\circ}$ C.

Naměřené hodnoty viskozity glycerinu jsou uvedeny v tabulce 1 zaneseny do grafu 1. Viskozita glycerinu na frekvenci otáčení nijak zřejmě nezávisí (Pearsonův korelační koeficient 0,04). Glycerin proto považujeme za newtonovskou kapalinu. Viskozitu určíme metodou nejmenších čtverců, $\eta = (720 \pm 30) \,\mathrm{mPa}\,\mathrm{s}$.

rotor	frekvence (\min^{-1})	viskozita (mPas)	rotor	frekvence (\min^{-1})	viskozita (mPas)
	0,6	861		5	828
	1	801		6	792
	1.5	754	1.0	10	644
	2	721	L2	12	605
L1	2.5	657		20	610
	3	653		30	590
	4	667			
	5	661		20	940
	6	656		30	760
			L3	50	760
L4	100	740		60	740
	200	720		100	750

Tabulka 1: Naměřená viskozita glycerinu rotačním viskozimetrem

U škroby je naopak závislost na rychlosti otáčení zřejmá, škrob je tedy nenewtonovská kapalina. Naměřené hodnoty jsou uvedeny v tabulce 2 a zaneseny do grafu 2. Závislost fitujeme funkcí $\eta(F) = A \cdot F^{n-1}$, kde F je frekvence otáčení rotoru v otáčkách za minutu. Po dosazení $D = 2 \cdot 2\pi \cdot F/60$ dostáváme konstanty v (2)

$$m = (4900 \pm 400) \,\mathrm{mPa} \,\mathrm{s}^{\mathrm{n}} \qquad n = 0.42 \pm 0.03$$
 (7)

Zdánlivá viskozita se zvyšující se rychlostí klesá (n < 1), škrob je tedy pseudoplastická látka [1].

Kuličkový viskozimetr byl naplněn bezvodým glycerinem (99,5%), jeho hustotu udává [1] při naší teplotě $(1,257 \pm 0,001)\,\mathrm{g\,cm^{-3}}$. Naměřené hodnoty jsou uvedeny v tabulce 3 a zaneseny do grafů 3 a 4. Ze směrnice přímky (4) určíme aktivační energii $\epsilon_A = (1,00 \pm 0,02)\,10^{10}\,\mathrm{J}$.

Pyknometrickou metodou jsme změřili hustotu glycerinu, který jsme používali v rotačním viskozimetru. Hmotnost prázdného pyknometru $m_1 = (24,805 \pm 0,005)$ g. Hmotnost pyknometru naplněného destilovanou vodou $m_2 = (49,678 \pm 0,005)$ g. Hmotnost pyknometru naplněného použitým glycerinem $m_3 = (56,042 \pm 0,005)$ g. Hustota destilované vody při 25,6 °C je $(997,0 \pm 0,5)$ g cm⁻³ [3]. Hustotu použitého glycerinu jsme podle (6) určili jako $(1251,8 \pm 0,6)$ g cm⁻³. Podle [1] má glycerin tuto hustotu při koncentraci přibližně 97,5%.

Diskuze

Na láhvi, ze které jsme brali glycerin, byla nálepka, že není zaručeno, že to je čistý glycerin.

Zdroj [1] uvádí pro glycerin následující viskozity

$c \setminus t$	$20^{\circ}\mathrm{C}$	30 °C
97%	$765\mathrm{mPas}$	$340\mathrm{mPas}$
98%	$939\mathrm{mPas}$	$409\mathrm{mPas}$

Je vidět, že viskozita glycerinu je velmi silně závislá na koncentraci i na teplotě. Naše naměřená viskozita je v rozmezí vytyčeném těmito čtyřmi hodnotami.

Hodnoty viskozity naměřené rotačním viskozimetrem měly značný rozptyl, např. glycerin s rotorem L3 při 30 otáčkách za minutu jsme změřili čtyřikrát, hodnoty v mPas byly postupně 630, 840, 820, 760. V takovém případě jsme vzali hodnotu 760 jako přibližný střed. Tento jev byl pravděpodobně způsoben chybou přístroje.

Závěr

Pyknometrickou metodou jsme změřili hustotu glycerinu a podle ní určili jeho koncentraci přibližně 97.5%. Rotačním viskozimetrem jsme ověřili, že je glycerin newtonovská kapalina a změřili jsme při teplotě $25.6\,^{\circ}\mathrm{C}$

 Graf 1: Dynamická viskozita glycerinu měřená rotačním viskozimetrem s různými rotory (logaritmické měřítko na vodorovné ose)

rotor	frekvence (\min^{-1})	viskozita (mPas)	rotor	frekvence (\min^{-1})	viskozita (mPas)
	10	3000	L2	5	4888
	12	2670		6	4405
	20	1980			
L2	30	1910			
	50	1310			
	60	1200			
	100	950			

Tabulka 2: Naměřené zdánlivé viskozity škrobu rotačním viskozimetrem

Graf 2: Zdánlivá viskozita škrobu v závislosti na rychlosti otáčení (logaritmické měřítko u obou os)

teplota (°C)	čas(s)	viskozita (mPas)
25.2	183	888
26.2	173	839
27.1	160	776
28.2	146	708
29.1	135	655
30.1	124	602
31.1	115	558
32.1	107	519
33	99	480
34	92	446
35	86	417

Tabulka 3: Naměřené hodnoty kuličkovým viskozimetrem

Graf 3: Závislost viskozity glycerinu na teplotě, měřeno kuličkovým viskozimetrem

Graf 4: Závislost viskozity glycerinu na teplotě (přizpůsobené osy)

jeho dynamickou viskozitu (720 ± 30) mPa s.

Rotačním viskozimetrem jsme také změřili závislost zdánlivé viskozity škrobu na rychlosti deformace. S rostoucí rychlostí deformace viskozita klesá, a to mocninně s exponentem přibližně -0.58. Ověřili jsme, že škrob je nenewtonovská kapalina.

Kuličkovým viskozimetrem jsme změřili závislost viskozity glycerinu (koncentrace 99,5%) na teplotě v rozmezí 25 °C až 35 °C. Viskozita s rostoucí termodynamickou teplotou exponenciálně klesá. Ze závislosti jsme určili aktivační energii $\epsilon_A = (1,00 \pm 0,02) \, 10^{10} \, \mathrm{J}$

Všechny uvedené odchylky jsou standardní ($P=68\,\%$).

Seznam použité literatury

- 1. Studium reologického chování látek studijní text pro fyzikální praktikum I MFF UK [online]. [cit. 2016-05-04]. Dostupný z WWW: (http://physics.mff.cuni.cz/vyuka/zfp/zadani/106).
- 2. Pyknometrická metoda měření hustoty [online]. [cit. 2016-05-04]. Dostupný z WWW: \http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_106_pyknometr.pdf\).
- 3. Water Density and Specific Weight [online]. [cit. 2016-05-04]. Dostupný z WWW: \(\lambda\text{http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html}\).