Homework 1

Christopher Mertin CS6966: Theory of Machine Learning

February 1, 2017

- 1. Consider the problem of classifying points in the two-dimensional plane, i.e., $\chi = \mathbb{R}^2$. Suppose that the (unknown) true label of a point (x, y) is given by $\operatorname{sign}(x)$ (we define $\operatorname{sign}(0) = \pm 1$ for convenience). Suppose the input distribution \mathcal{D} is the uniform distribution over the unit circle centered at the origin.
 - (a) Consider the hypothesis h as shown in the figure below (h classifies all the points on the right of the line as +1 and all the points to the left as -1). Compyte the risk $L_{\mathcal{D}}(h)$, as a function of θ (which is, as is standard, given in radians).

- (b) Suppose we obtain $1/\theta$ (which is given to be an integer ≥ 2) training samples (*i.e.*, samples from \mathcal{D} , along with their true labels). What is the probability that we find a point whose label is "inconsistent" with h? Can you bound this probability by a constant independent of θ ?
- (c) Give an example of a distribution \mathcal{D} under which h has risk zero.
- 2. Suppose A_1, A_2, \ldots, A_n are events in a probability space.
 - (a) Suppose $\Pr[A_i] = \frac{1}{2n}$ for all i. Then, show that the probability that none of the A_i 's occur is at least 1/2.
 - (b) Give a concrete example of events A_i for which $\Pr[A_i] = \frac{1}{n-1}$ for all i, and the probability that none of them occur is zero.
 - (c) Suppose $n \geq 3$, and $\Pr[A_i] = \frac{1}{n-1}$, but the events are all *independent*. Show that the probability that none of them occur is $\geq 1/8$.

- 3. In our proof of the no-free lunch theorem, we assumed the algorithm A to be deterministic. Let us now see how to allow randomized algorithms. Let A be a randomized map from set X to set Y. Formally, this means that for every $x \in X$, A(x) is a random variabl, that takes values in Y. Suppose |X| < c|Y|, for some constant c < 1.
 - (a) Show that there exists $y \in Y$ such that $\max_{x \in X} \Pr[A(x) = y] \leq c$.
 - (b) Show that this implies that for any distribution \mathcal{D} over X, $\Pr_{x \sim \mathcal{D}}(A(x) = y) \leq c$.
- 4. Recall that the VC dimension of a hypothesis class \mathcal{H} is the size fo the largest set that it can "shatter."
 - (a) Consider the task of classifying points on a 2D plane, and let \mathcal{H} be the class of axis parallel rectangles (points inside the rectangle are "+" and the points outside are "-"). Prove that the VC dimension of \mathcal{H} is 4.
 - (b) This time, let $\chi = \mathbb{R}^d \setminus \{0\}$ (origin excluded), and let \mathcal{H} be the set of all hyperplanes through the origin (points on one side are "+" and the other side are "-"). Prove that the VC dimension of \mathcal{H} is < d.
 - *Hint:* Consider any set of d+1 points. They need to be linearly dependent. Now, could it happen that u, v are "+", but $\alpha u + \beta v$ is "-" for $\alpha, \beta \geq 0$? Can you generalize this?
 - (c) **(BONUS)** Let χ be the points on the real line, and let \mathcal{H} be the class of hypotheses of the form $\operatorname{sign}(p(x))$, where p(x) is a polynomial of degree at most d (for convenience, define $\operatorname{sign}(0) = +1$). Prove that the VC dimension of this class is d+1.
 - *Hint:* The tricky part is the uppoer bound. Here, suppose d = 2, and suppose we consider any four points $x_1 < x_2 < x_3 < x_4$. Can the sign pattern +, -, +, arise from a degree 2 polynomial?
- 5. In the examples above (and in general), a good rule of thumb for VC dimension of a function class is the *number of parameters* involved in defining a function in that class. However, this is not universally true, as illustrated in this problem: Let χ be the points on the real line, and define \mathcal{H} to be the class of functions of the form $h_{\theta} := \text{sign}(\sin(\theta x))$, for $\theta \in \mathbb{R}$. Note that each hypothesis is defined by the single parameter θ .

Prove that the VC dimension of \mathcal{H} is infinity.

So where does the "complexity" of the function class come from? (**BONUS**) Prove that if we restrict θ to be a rational number whose numerator and denominator have at most n bits, then the VC dimension is $\mathcal{O}(n)$.