Additions and Corrections

2001, Volume 44

Jay T. Goodwin, Robert A. Conradi, Norman F. H. Ho, and Philip S. Burton*: Physicochemical Determinants of Passive Membrane Permeability: Role of Solute Hydrogen-Bonding Potential and Volume.

Page 3722. In line 25, "... from $\log P_{\rm hydrocarbon/water}$ — $\log P_{\rm octanol/water}$..." should be "... from $\log P_{\rm octanol/water}$ — $\log P_{\rm hydrocarbon/water}$...". In Table 1, the values for $\log p_{\rm trans}$ should be negative in sign.

Page 3733. In Table 2, the values for $\log P_{\rm octanol/water}$ for compounds 1 and 2, all values of $\log P_{\rm hydrocarbon/water}$, and all values of $\log P_{\rm heptane/glycol}$ should be negative in sign.

Table 1. Permeability Data for Compounds 1−12

	p_{i}	eff		$p_{ m eff,ve}$				log		
compound	$AP \rightarrow BL^a$	$BL \rightarrow AP^a$	${\sf ratio}^b$	$AP \rightarrow BL^a$	$BL \rightarrow AP^a$	$ratio^b$	$p_{\mathrm{mono}}{}^c$	$p_{\mathrm{para}}{}^c$	p_{trans}^{c}	$p_{ m trans}$
1	0.17	0.24	1.4	0.14	0.12	0.9	0.14	0.60	0.00	
2	0.24	0.38	1.6	0.25	0.25	1.0	0.25	0.56	0.00	
3a	0.91	1.84	2.0	0.89	0.78	0.9	0.9	0.48	0.42	-6.38
4	1.41	2.24	1.6	1.52	1.42	0.9	1.56	0.44	1.12	-5.95
5a	2.75	5.19	1.9	2.80	2.64	0.9	2.95	0.37	2.58	-5.59
6	7.20	14.5	2.0	8.93	9.02	1.0	10.7	0.36	10.3	-4.99
7	21.9	20.6	0.9	22.6	20.8	0.9	38.4	0.77	37.6	-4.42
8	24.6	22.9	0.9	25.2	23.5	0.9	46.5	0.71	45.8	-4.34
9a	34.5	32.4	0.9	35.1	33.0	0.9	97.0	0.60	96.4	-4.02
10	42.6	47.2	1.1	47.4	47.7	1.0	343	0.56	342	-3.47
11a	52.0	56.8	1.1	55.1	59.5	1.1				
12	58.3	58.4	1.0	55.5	55.6	1.0				

 a AP → BL = apical-to-basolateral permeability; BL → AP = basolateral-to-apical permeability. b Ratio of BL → AP to AP → BL permeabilities. c p_{mono} = monolayer permeability, p_{para} = paracellular permeability, p_{trans} = transcellular permeability; permeabilities are given in units of 10^{-6} centimeters per second. Standard errors in permeabilities are ≤10%, $n \ge 4$, except for compounds 7, 8, 9a, and 10, where the standard error is ≤30%. The mass balances for all permeabilities determined are 100% (±10%).

Table 2. Physicochemical Data for Compounds 1-12

compound	MW	tHB ^a	dHB^a	a HB^a	$\log \atop P_{\text{octanol/water}}^b$	$\log \atop P_{\text{heptane/water}^b}$	$\log P^b$	$\log P_{ m heptane/glycol}^b$
1	277	6	3	3	-0.30	-6.30	6.00	-6.17
2	291	6	3	3	-0.06	-6.26	6.20	-5.83
3a	319	6	3	3	0.66	-5.33	5.99	-5.79
4	333	6	3	3	1.24	-4.61	5.85	-5.43
5a	367	6	3	3	1.44	-4.15	5.59	-5.34
6	373	6	3	3	2.40	-3.41	5.81	-5.03
7	220	4	2	2	0.48	-3.73	4.21	-5.00
8	234	4	2	2	0.76	-3.53	4.29	-4.40
9a	262	4	2	2	1.59	-2.64	4.23	-3.77
10	276	4	2	2	2.03	-2.14	4.17	-3.69
11a	310	4	2	2	2.32	-2.00	4.32	-3.70
12	316	4	2	2	3.13	-0.90	4.03	-3.41

 $[^]a$ tHB = total number of solute hydrogen bonds possible, dHB = number of donor hydrogen bonds, aHB = number of acceptor hydrogen bonds. b Standard error for log $P_{\text{octanol/water}} \le 15\%$, for log $P_{\text{heptane/water}} \le 10\%$, for Δ log $P \le 15\%$, and for log $P_{\text{heptane/ethylene glycol}} \le 5\%$; $n \ge 2$ for all solvent partition experiments.

JM0200963

10.1021/jm0200963 Published on Web 04/10/2002