Lineare Algebra Nachbereitungsaufgabe 7

Khmelyk Oleh

2023

(a) Für welche $a \in \mathbb{R}$ ist $M := (v_1, v_2, v_3)$ mit

$$v_1 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ a+1 \end{pmatrix}, v_3 = \begin{pmatrix} a \\ a \\ 2 \end{pmatrix} \in \mathbb{R}^3$$

linear unabhängig über \mathbb{R} ?

Stellen wir eine Matrize:
$$A := \begin{pmatrix} 3 & 1 & a \\ 2 & 1 & a \\ 1 & a+1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -3a-2 & a-6 \\ 0 & -2a-1 & a-4 \\ 1 & a+1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -3a-2 & a-6 \\ 0 & a+1 & 2 \\ 1 & a+1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -3a-2 & a-6 \\ 0 & a+1 & 2 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & a \\ 0 & a+1 & 2 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & -a^2-a+2 \end{pmatrix} \Rightarrow, 3 \text{ Vektoren muss linear unabhaendig sein } \Rightarrow \text{ muss}$$
$$-a^2 - a + 2 \neq 0 \Leftrightarrow (a-1)(a+2) \neq 0 \Leftrightarrow a \neq 1, a \neq -2$$
$$\text{Loesung: } a \in (-\infty; -2) \cup (-2; 1) \cup (1; +\infty), a \in \mathbb{R}$$

(b) Es sei $B:=\{e_1,e_2,e_3\}$ die Standardbasis des \mathbb{R}^3 und $f_a:\mathbb{R}^3\to\mathbb{R}^3$ (für $a\in\mathbb{R}$) lineare Abbildungen mit $f_a(e_i) = v_i$ für alle $i \in \{1, 2, 3\}$. Warum sind die Abbildungen f_a durch diese Festlegung eindeutig bestimmt? Bestimmen Sie Ker (f_0) , Ker (f_1) und Ker (f_2) .

 $\{e_1, e_2, e_3\}$ ist eine Basis $\Rightarrow Span\{e_1, e_2, e_3\} = \mathbb{R}^3$

Nur wenn v_1, v_2, v_3 - linear unabhaendig sind, sind sie eine Basis in \mathbb{R}^3 und nur dann $Span\{v_1, v_2, v_3\}$

 $Ker(f_0), Ker(f_2): a \neq -2, a \neq 1 \Rightarrow v_1, v_2, v_3$ bilden eine Basis $\Rightarrow rg(A) = 3 \Rightarrow dim(Ker(A)) = 3 - 3 = 0 \Rightarrow Ker(f_0) = Ker(f_2) = (0, 0, 0)^T$

$$a = 1: \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow x_3 = t; x_2 = -t; x_1 = 0 \Rightarrow Ker(f_1) = Span(\{(0, -1, 1)^T\})$$

(c) Für welche $a \in \mathbb{R}$ ist f_a surjektiv? Begründen Sie!

 f_a - surjektiv wenn $dim(Im(f_a)) = 3$ naemlich $Im(f_a) = \mathbb{R}^3$ Dass ist wahr nur wenn v_1, v_2, v_3 bilden eine Basis \Rightarrow wenn $a \in (-\infty; -2) \cup (-2; 1) \cup (1; +\infty), a \in \mathbb{R}$

(d2) Geben Sie das Bild von f_0 elementweise an (d.h. schreiben Sie alle Elemente explizit auf), wenn der zugrundeliegende Körper nicht \mathbb{R} , sondern GF(2) ist.

$$Im(f_0): \begin{pmatrix} 3 & 1 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \text{In } GF(2): \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow Im(f_0)_{GF(2)} = \{a \cdot (1,0,0)^T + b \cdot (0,1,0)^T | a,b \in GF(2)\} = \{(0,0,0)^T, (1,0,0)^T, (0,1,0)^T, (1,1,0)^T\}$$

1