ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 4.2.1 **Кольца Ньютона**

Цель работы: познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

Оборудование: измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из чёрного стекла; ртутная лампа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

Теоретические сведения:

Интерференция монохроматических волн. Пусть в пространстве распространяются две монохроматические волны одинаковой частоты с амплитудами a_1 и a_2 , и пусть в некоторой точке наблюдения их фазы равны φ_2 и φ_1 соответственно.

Рис. 1: Сложение колебаний

Согласно принципу суперпозиции, результирующий колебательный процесс в точке наблюдения представляет собой сумму колебаний, создаваемых каждой из волн, т. е. гармоническое колебание той же частоты ω . Интенсивность результирующего колебания можно найти используя правило сложения векторов.

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi,$$

где $\Delta \varphi = \varphi_1 - \varphi_2$ – разность фаз, $I_1 = a_1^2$ и $I_2 = a_2^2$ – интенсивности слагаемых волн.

Интенсивность — величина, пропорциональная плотности потока энергии в волне. В пространстве, где налагаются две волны, происходит *перераспределение*

потоков энергий: в некоторых точках пространства результирующая интенсивность больше суммы интенсивностей слагаемых волн, в других точках, наоборот, результирующий поток энергии меньше суммы потоков энергии в слагаемых волнах. Это явление называется интерференцией. При наложении волн одинаковой интенсивности $I_1 = I_2 = I_0$ имеем

$$I = 2I_0(1 + \cos \Delta \varphi).$$

Чередующиеся максимумы I_{max} и минимумы I_{min} результирующей интенсивности образуют интерференционные полосы.

Двухлучевая интерференция. В любой двухлучевой интерференционной схеме свет от одного источника приходит в точку наблюдения по двум различным путям r_1 и r_2 с разностью фаз $\Delta \varphi = k_2 r_2 - k_1 r_1$, где $k_1 = n_1 \omega/c$ и $k_2 = n_2 \omega/c$ (частота волны при переходе из одной среды в другую остаётся неизменной). Таким образом,

$$\varphi_2 - \varphi_1 = \frac{\omega}{c}(n_2r_2 - n_1r_1) = \frac{\omega}{c} \cdot \Delta,$$

где n_1 и n_2 – $nоказатели преломления среды вдоль путей <math>r_2$ и r_1 соответственно.

$$\Delta = n_2 r_2 - n_1 r_1$$

есть разность *оптических путей* двух плеч интерферометра (*оптическая разность хода*). Если амплитуды волн в точке наблюдения одинаковы, то получаем

$$I = 2I_0(1 + \cos\frac{\omega}{c}\Delta).$$

Эта формула справедлива при интерференции любых монохроматических волн одинаковой частоты и интенсивности.

Видность. Контраст интерференционной картины принято характеризовать величиной eud - $\mathit{nocmu}\ \nu$, определяемой равенством

$$\nu = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}.$$

Интенсивность максимальна и равна $I_{max}=(a_1+a_2)^2$ при $\Delta\varphi=2m\pi$, где m – целое число, называемое порядком интерференции. Геометрическое место точек, удовлетворяющих этим условиям, образует максимумы (светлые интерференционные полосы) m-го порядка. $\Delta\varphi=(2m+1)\pi$ возникают минимумы (тёмные интерференционные полосы). Видность максимальна (и равна единице) при равных амплитудах волн, при этом $I_{max}=4I_0$ вдвое больше суммы интенсивностей слагаемых волн, а $I_{min}=0$.

Кольца Ньютона. Этот классический опыт используется для определения *радиуса кривизны* сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R-d)^2 = 2Rd-d^2$, где R – радиус кривизны сферической поверхности. При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух—стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = 2d + \frac{\lambda}{2} = \frac{r^2}{R} + \frac{\lambda}{2}.$$

Рис. 2: Схема наблюдения колец Ньютона

Условие интерференционного минимума есть $\Delta=(2m+1)\frac{\lambda}{2}$ $(m=0,\,1,\,2,\,\ldots),$ откуда получаем для радиусов тёмных колец

$$r_m = \sqrt{m\lambda R}$$
.

Аналогично для радиусов r'_m светлых колец

$$r_m' = \sqrt{(2m-1)\lambda R/2}.$$

Рис. 3: Образование колец Ньютона в отражённом (слева) и в проходящем свет (справа)

Экспериментальная установка:

Схема экспериментальной установки приведена на рис. 4. Опыт выполняется с помощью измерительного микроскопа. На столике микроскопа помещается держатель с пластинкой чёрного стекла. На пластинке лежит исследуемая линза.

Рис. 4: Схема установки для наблюдения колец Ньютона

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора K, коллиматора (щель S и объектив O) и призмы прямого зрения Π . Свет от монохроматора попадает на опак-иллюминатор (ОИ), расположенный между окуляром и объективом микроскопа — специальное устройство для освещения объекта при работе в отражённом свете. Внутри опакиллюминатора находится полупрозрачная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях с помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси микроскопа с помощью микрометрического винта M.

Оптическая схема монохроматора позволяет получить в плоскости входного окна опакиллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, и в том же месте находится плоскость наблюдения микроскопа, т. е. точка источника и точка наблюдения интерференции совпадают. Картина интерференции как и в случае расположения пластинки сверху, так и в данном случае не зависит от коэффициента преломления линзы и определяется величиной зазора между нижней поверхностью линзы и стеклянной пластинкой.

Обработка данных:

1. Рассчитаем цену деления окулярной шкалы. Для этого сверху на линзу положим калиброванную объектную шкалу, найдём её изображение и совместим его с окулярной шкалой. Объектная шкала размером 1 мм разбита на 100 делений, т.е. её цена деления равна 0,01 мм. Теперь совместим две шкалы так, чтобы штрихи объектной шкалы лучше всего совпадали со штрихами окулярной шкалы. Запишем значение и рассчитаем коэффициент k перевода делений окулярной шкалы в миллиметры:

$$(4,90-3,88)$$
 дел. $=0,1$ мм $(10$ делений.) $k=\frac{10^{-1}}{1,02}~\frac{\mathrm{MM}}{\mathrm{дел.}} \approx 9,8\cdot 10^{-2}\frac{\mathrm{MM}}{\mathrm{дел.}}.$

Абсолютная погрешность измерения радиусов колец равна половине наименьшего расстояния между соседними полосами, т.е.

$$\sigma_x = 9.8 \cdot 10^{-2} \cdot \frac{7}{200} \text{ mm} \approx 3.43 \cdot 10^{-3} \text{ mm}.$$

2. Далее будем идти от одного достаточно удалённого кольца к центру и снимать по окулярной шкале значения положений центров колец. Дойдя до центра центрального пятна, запишем его положение и будем продолжать измерение координат центров колец с другой стороны от пятна. Результаты измерений приведены в таблице ниже.

Радиус кольца можно рассчитать трёмя способами: 1) используя координаты концов кольца; 2) используя координаты левого конца и центра центрального пятна; 3) используя координаты правого конца и центра центрального пятна. В данной работе радиус кольца рассчитывается каждым из способов, затем берётся среднее арифметическое по трём значениям. При этом абсолютная погрешность значения радиуса вычисляется по формуле

$$\sigma_r = \sqrt{2} \cdot \sigma_r \approx 4.85 \cdot 10^{-3} \text{ MM}.$$

Номер кольца m	Цвет кольца	Левый край, дел.	Правый край, дел.
1	Светлый	4,19	5,49
	Темный	3,99	5,73
2	Светлый	3,72	5,92
	Темный	3,57	6,10
3	Светлый	3,41	6,23
	Темный	3,29	6,36
4	Светлый	3,18	6,49
	Темный	3,08	6,63
5	Светлый	3,00	6,72
	Темный	2,86	6,82
6	Светлый	2,77	6,92

Таблица 1: Координаты левого и правого концов колец

Координата центра центрального пятна: $X_c = 4.84$ дел.

Темный

Ниже в таблице представлены значения радиусов для каждого из колец.

Таблица 2: Радиусы колец

2.68

6.99

Номер кольца т	1	2	3	4	5	6	Центральное пятно
r_m , дел.	0,87	1,27	1,54	1,78	1,98	2,16	0,50
r'_m , дел.	0,65	1,10	1,41	1,66	1,86	2,08	0,50

По данным из таблицы построим графики зависимости r_m^2 и $(r_m')^2$ от номера m кольца. Также, на графике отметим границы центрального тёмного пятна.

По данным из графика, зная коэффициенты наклона прямых, определим радиус кривизны линзы по формуле

$$k = \lambda R \Rightarrow R = \frac{k}{\lambda}$$

где λ – длина волны зелёного света, k – среднее арифметическое коэффициентов наклона для темных и светлых колец.

$$R=rac{k}{\lambda}=rac{74,3}{5,46}$$
 мм $pprox13,61$ мм.

3. В третьем пункте будем освещать линзу сразу двумя различными спектральными компонентами ртути (жёлтым и зелёным). В микроскоп будет видна картина «биений»: чёткость интерференционных колец периодически изменяется, за чёткими кольцами следуют более размытые, за которыми потом снова следуют чёткие и т.д. Это объясняется наложением двух систем интерференционных колец, возникающих для разных длин волн λ_1 и λ_2 . Чёткие кольца в результирующей картине образуются при наложении светлых колец на светлые и тёмных на тёмные. Размытые кольца получаются при наложении светлых колец одной картины на тёмные кольца другой.

Рассчитать период возникших биений можно используя тот факт, что если в промежутке между двумя центрами соседних чётких участков укладывается Δm колец для спектральной линии с длиной волны λ_1 , то в этом промежутке должно располагаться $(\Delta m-1)$ колец

для спектральной линии с длиной волны λ_2 (при $\lambda_2 > \lambda_1$). Тогда, для периода биений Δm получаем формулу

$$r^{2} = \lambda_{1} m_{1} R = \lambda_{2} m_{2} R,$$

$$(r')^{2} = \lambda_{1} m'_{1} R = \lambda_{2} m'_{2} R,$$

$$\lambda_{1} \cdot (\Delta m + 1) = \lambda_{2} \cdot \Delta m,$$

$$\Delta m = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}}.$$

где λ_1 – длина волны зелёного света. Отсюда получаем выражение для разности длин волн.

 $\lambda_2 - \lambda_1 = \frac{\lambda_1}{\Delta m}.$

Считая темные кольца, находим: $\Delta m = 14$. Теперь найдём разность длин волн, сравним результат с табличным.

Таблица 3: Результат измерения разности длин волн

Номер кольца т	Табличное значение	Экспериментальное значение
$\lambda_2 - \lambda_1$, hm	1 - 50	39,0

Вывод: В данной работе было изучено явление интерференции электромагнитных волн видимого диапазона на примере колец Ньютона. С помощью интерференции волн рассчитали радиус кривизны линзы ($R\approx 13{,}61$ мм), а также вычислили и сравнили с табличным значение разности длин волн для желтого и зеленого света ($\Delta\lambda_{\rm эксп.}=39{,}0$ нм; $\Delta\lambda_{\rm теор.}$ находится в диапазоне 1-50 нм). Получившийся результат лежит в диапазоне теоретической оценки.

Относительная погрешность r^2 вычисляется по формуле

$$\varepsilon_{r^2} = 2 \cdot \varepsilon_r,$$

тогда абсолютная погрешность получается равной

$$\sigma_{r^2} = 2r \cdot \sigma_r$$
.

Коэффициенты наклона прямых и их погрешности представлены ниже:

$$k_{\rm temh.} = (7,\!467 \pm 0,\!063) \cdot 10^{-3} \; {\rm mm}^2, \quad \varepsilon_{k_{\rm temh.}} \approx 0,\!84\%;$$

$$k_{\text{\tiny CBETJL}} = (7.391 \pm 0.057) \cdot 10^{-3} \text{ mm}^2, \quad \varepsilon_{k_{\text{\tiny CBETJL}}} \approx 0.77\%;$$