1. (5 points) If if $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$ and $a_1 = 1$, Find the closed form for this linear homogeneous recurrence relation of order 2.

 $a_n=7a_{n-1}-10a_{n-2}$ \rightarrow characteristic equation $r^2=7r-10$, i.e. $r^2-7r+10=0$. Factoring, $r^2-7r+10=(r-2)(r-5)$, so the solution takes the form $a_n=a_12^n+a_25^n$.

Initial conditions: $\alpha_0 = \lambda = \alpha_1 2^0 + \alpha_2 5^0 = \alpha_1 + \alpha_2 = 0$ $\alpha_1 = 1 = \alpha_1 2^0 + \alpha_2 5^0 = \alpha_1 + \alpha_2 = 0$

Solve any way you like. I add the equations together:

$$2\alpha_1 + 5\alpha_2 = 4$$

$$-2\alpha_1 - 2\alpha_2 = -4$$

$$3\alpha_2 = -3 \implies \alpha_2 = -1$$
Substitute into eqn. 0 to get $\alpha_1 = 1 = 2 \rightarrow \alpha_1 = 3$.

So the general solution is $\left[\alpha_n = 3x^2 - 5^n\right]$

2. (5 points)Prove your closed form is correct by induction on n.

Proof by induction that the necurence $a_n = 7a_{n-1} - 10a_{n-2}$ with initial conditions $a_n = 2$ and $a_n = 1$ is solved by $a_n = 3 \cdot 2^n - 5^n$?

Base ase: we need too because it's a second-order recurrence.

$$0 \quad a_0 = 2 = 3 \cdot 2^{\circ} - 5^{\circ} = 3 - 1 = 2$$

$$0 \quad a_1 = 1 = 3 \cdot 2^{\circ} - 5^{\circ} = 6 - 5 = 1$$

Inductive Steps assume the inductive hypothesis that for some $K \in \mathbb{N}$, $k \ge 2$,

and use the prove that
$$a_{k+1} = 3 \cdot 2^{k+1} - 5^{k}$$
. Use the proin-dead induction want to prove that $a_{k+1} = 3 \cdot 2^{k+1} - 5^{k+1}$. Use the provence to create a rease, so start with the LHS of and use the recurrence to create a form that allows us to apply the IH: