LECTURE: TREES-1

TDRK12 DATA STRUCTURES, 7.5 CREDITS

Vladimir Tarasov

7 February 2022

School of Engineering, Jönköping University

TABLE OF CONTENTS

- 1. Trees
- 2. Binary Trees
- 3. Binary Search Trees
- 4. AVL Trees

Trees

Definition

A tree is recursively defined as

- a set of one or more nodes where one node is designated as the root of the tree and
- all the remaining nodes can be partitioned into non-empty sets each of which is a sub-tree of the root.

Types of Trees

- · General Trees
- Forests
- Binary Trees
- Expression Trees
- Tournament Trees

BASIC TERMINOLOGY

- Root node The root node R is the *topmost node* in the tree. If R = NULL, then it means the tree is empty.
- **Sub-trees** If the root node R is not NULL, then the trees T_1 , T_2 , and T_3 are called the sub-trees of R.
- **Leaf node** A node that has *no children* is called the leaf node or the terminal node.
 - Edge The line connecting a node to any of its successors.
 - **Path** A sequence of consecutive edges is called a path.
- **Ancestor node** An ancestor of a node is any *predecessor node* on the path from root to that node.
- **Descendant node** A descendant node is any *successor node* on *any path* from the node to *a leaf node*

APPLICATIONS OF TREES

- To store simple as well as complex data.
- To implement other types of data structures like hash tables, sets, and maps.
- Trees are widely used for information storage and retrieval in symbol tables.
- Trees are used in compiler construction, database design, and file system directories.

APPLICATIONS OF TREES

- A self-balancing tree, Red-black tree is used in kernel scheduling to preempt massively multi-processor computer operating system use.
- B-trees are used to store tree structures on disc. They are used to index a large number of records.
- B-trees are also used for secondary indexes in databases, where the index facilitates a select operation to answer some range criteria.

GENERAL TREES

- General trees are data structures that store elements hierarchically.
- The top node of a tree is the *root node* and each node, except the root, has a *parent*.
- A node in a general tree (except the leaf nodes) may have zero or more *sub-trees*.
- · General trees which have 3 sub-trees per node are called *ternary trees*.
- The number of sub-trees for any node may be *variable*.
 - A node can have 1 sub-tree, whereas some other node can have 3 sub-trees.

Definition

A forest is a disjoint union of trees:

- Obtained by deleting the root and the edges connecting the root node to nodes at level 1.
- Can be converted into a tree by adding a single node as the root node of the tree.
- Can also be defined as an ordered set of zero or more general trees.

- Every node of a tree is the root of some sub-tree.
- All the sub-trees immediately below a node form a forest.
- A forest may be empty because it is a set, and sets can be empty.

- Binary trees are widely used to store *algebraic expressions*.
- For example, consider the algebraic expression Exp:

•
$$Exp = (a - b) + (cd)$$

 This expression can be represented using a binary tree

TOURNAMENT TREES

Definition

In a **tournament tree** (also called a *selection tree*):

- Each external node represents a player
- Each internal node represents the winner of the match
 - between the players represented by its children

- Such tournament trees are also called winner trees
 - They record the winner at each level
- A loser tree records the loser at each level.

Binary Trees

BINARY TREES

Definition

A binary tree is a data structure which is defined as a collection of elements called nodes:

- The topmost element is called the *root node*
- Each node has 0, 1, or at the most 2 children

Each node contains:

- · a data element,
- · a "left" pointer which points to the *left child*,
- a "right" pointer which points to the right child.

- The root element is pointed by a "root" pointer.
- If root = NULL, then the tree is empty.

Parent If N is any node in T that has left successor S_1 and right successor S_2 , then N is called the parent of S_1 and S_2 . Every node other than the root node has a parent

Sibling All nodes that are at the same level and share the same parent are called *siblings*

Level number Every node in the binary tree is assigned a *level number*. The root node is defined to be at level 0. The left and right child of the root node have a level number 1. Every node is at one level higher than its parents.

BINARY TREE TERMINOLOGY

Degree The number of children that a node has. The degree of a leaf node is zero.

In-degree The number of edges arriving at that node. The root has zero in-degree.

Out-degree The number of edges leaving that node.

Depth The length of the path from the root to the node *N*. The depth of the root node is zero.

BINARY TREE TERMINOLOGY

Height of a tree: The total number of nodes on the path from the *root* node to the *deepest node* in the tree.

- A tree with only a root node has a height of 1.
- A binary tree of height h has at least h nodes and at most $2^h 1$ nodes. This is because every level will have at least one node and can have at most 2 nodes.
- The height of a binary tree with n nodes is at least $log_2(n+1)$ and at most n.

BINARY TREE TERMINOLOGY

Similar binary trees: Two binary trees *T* and *T'* are said to be similar if both trees have the *same* structure.

Copies of binary trees: Two binary trees *T* and *T'* are said to be copies if they have *similar structure and same content* at the corresponding nodes.

LINKED REPRESENTATION OF BINARY TREES

- In computer's memory, a binary tree can be maintained either using a linked representation or using sequential representation.
- In linked representation of binary tree, every node will have three parts:
 - · the data element,
 - · a pointer to the left node and
 - · a pointer to the right node.

Binary tree node

```
struct node

formula to struct node

struct node* left;

int data;

struct node* right;

}
```


SEQUENTIAL REPRESENTATION OF BINARY TREES

- Sequential representation of trees is done using a single or one dimensional array.
- It is very inefficient as it requires a lot of memory space.
- A sequential binary tree follows the rules given below:
 - · One dimensional array called TREE is used.
 - The root of the tree will be stored in the first location. That is, TREE[1] will store the data of the root element.
 - The children of a node K will be stored in location (2 * K) and (2 * K + 1).
 - The maximum size of the array **TREE** is given as $(2^h 1)$, where h is the height of the tree.
 - An empty tree or sub-tree is specified using NULL. If TREE[1] = NULL, then the tree is empty.

SEQUENTIAL REPRESENTATION OF BINARY TREES

A binary tree and its corresponding sequential representation. The tree has 11 nodes and its height is 4.

1	20
2	15
3	35
4	12
5	17
6	21
7	39
8	
9	
10	16
11	18
12	
13	
14	36
15	45

TRAVERSING A BINARY TREE

Definition

Traversing a binary tree is the process of visiting each node in the tree exactly once in a systematic way.

There are three different algorithms for tree traversals, which differ in the order in which the nodes are visited:

- Pre-order algorithm
- In-order algorithm
- Post-order algorithm

5: FND

Algorithm for pre-order traversal

```
Step 1: Repeat Steps 2 to 4
while TREE != NULL

Step 2: Write TREE -> DATA

Step 3: PREORDER(TREE -> LEFT)

Step 4: PREORDER(TREE -> RIGHT)

[END OF LOOP]
```

- Pre-order traversal is also called as depth-first traversal.
- Pre-order traversal algorithms are used to extract a *prefix notation* from an expression tree. For example:

```
+ - a b * c d
```


Algorithm for in-order traversal

Step 1: Repeat Steps 2 to 4
while TREE != NULL

Step 2: INORDER(TREE -> LEFT)

Step 3: Write TREE -> DATA
Step 4: INORDER(TREE -> RIGHT)

ep 4: INORDER(TREE -> RIGHT)

[END OF LOOP]

5: END

In-order traversal is also called as *symmetric* traversal.

In-order traversal algorithm is usually used to display the elements of a binary search tree

An example of in-order traversal:

B, D, A, E, H, G, I, F, C

5: FND

Algorithm for post-order traversal

Post-order traversals are used to extract postfix notation from an expression tree.

An example of post-order traversal:

Binary Search Trees

Definition

A binary search tree (BST), also known as an ordered binary tree, is a binary tree in which the nodes are arranged in order:

- All nodes in the *left* sub-tree have a value *less than* that of the root node.
- All nodes in the *right* sub-tree have a value *equal* to or *greater* than the *root* node.
- The same rule is applicable to every sub-tree in the tree.

BINARY SEARCH TREES

- BSTs are efficient in searching elements.
- BSTs are widely used in dictionary problems
 - where the code always inserts and searches the elements that are indexed by some key value.
- A binary search tree may or may not contain duplicate values, depending on its implementation

Typical Operations on Binary Search Trees

Operations on Binary Search Trees

- 1. Searching for a node in a binary search tree
- 2. Inserting a new node in a binary search tree
- 3. Deleting a node from a binary search tree
- 4. Determining the height of a binary search tree
- 5. Determining the number of nodes
- 6. Finding the mirror image of a binary search tree
- 7. Finding the smallest node of a binary search tree

Algorithm to Search a Value in a BST

```
searchElement (TREE, VAL)
Step 1: IF TREE->DATA = VAL OR TREE = NULL, then
            Return TRFF
        ELSE
            TF VAL < TRFF->DATA
                Return searchElement(TREE->LEFT, VAL)
            ELSE
                Return searchElement(TREE->RIGHT, VAL)
            [END OF IF]
        [END OF IF]
Step 2: End
```

- Since the nodes are ordered in BSTs, we eliminate half of the sub-tree from the search process as at every step.
- BSTs also speed up the insertion and deletion operations

SEARCHING FOR A NODE WITH VALUE 12 IN A BST

SEARCHING IN BINARY SEARCH TREES

- The average running time of a search operation in a BST is $O(\log_2 n)$
- The worst case time to search for an element in a BST is O(n)
 - · Occurs when the tree is a linear chain of nodes
- In a sorted array, searching can be done in O(log₂ n) time, but insertions and deletions are quite expensive
- In a linked list, inserting and deleting elements is easier, but searching for an element is done in O(n) time.

Algorithm to insert a node in a BST

```
Insert (TREE, VAL)
Step 1: IF TREE = NULL, then
            Allocate memory for TREE
            SFT TRFF->DATA = VAL
            SET TREE->LEFT = TREE ->RIGHT = NULL
        ELSE
            TE VAL < TREE->DATA
                SET TREE->LEFT = Insert(TREE->LEFT, VAL)
            FLSE
                SET TREE->RIGHT =Insert(TREE->RIGHT, VAL)
            [END OF IF]
        [END OF IF]
Step 2: End
```

- The new node is added by following the rules of the binary search trees.
- The insertion requires time proportional to the height of the tree in the worst case.
- It takes O(log₂n) time to execute in the average case and O(n) time in the worst case.

Inserting Node with Values 12 and 55 in a BST

- Care should be taken that the properties of the BSTs do not get violated and nodes are not lost in the process.
- The deletion of a node involves any of the three cases.

Case 1: Deleting a node (78) that has no children

Case 2: Deleting a node (54) with one child (either left or right).

- The node's child is set to be the child of the node's parent.
- In other words, replace the node with its child.

Case 3: Deleting a node (56) with two children.

- Replace the node's value with its *in-order predecessor* (largest value in the left sub-tree) or *in-order successor* (smallest value in the right sub-tree).
- Node 56 is replaced by its in-order predecessor.

Case 3: Deleting a node with two children.

- Replace the node's value with its *in-order predecessor* (largest value in the left sub-tree) or *in-order successor* (smallest value in the right sub-tree).
- Node 56 is replaced by its in-order successor.

Algorithm to delete a values from a BST

```
Delete (TREE, VAL)
Step 1: IF TREE = NULL, then
            Write "VAL not found in the tree"
        FLSF TF VAL < TREE->DATA
            SET TREE->LEFT = Delete(TREE->LEFT, VAL)
        FLSF TF VAL > TREE->DATA
            SET TREE->RIGHT = Delete(TREE->RIGHT, VAL)
        FISE TE TREE-SLEET AND TREE-SRIGHT
            SET TEMP = findLargestNode(TREE->LEFT)
            SFT TREE->DATA = TEMP->DATA
            SET TREE->LEFT = Delete(TREE->LEFT. TEMP->DATA)
        ELSE
            SET TEMP = TREE
            TE TREE->LEET = NULL AND TREE->RIGHT = NULL
                SET TREE = NULL
            FLSE TE TREE->LEFT != NULL
                SET TREE = TREE->LEFT
            FISE
                SET TREE = TREE-SRIGHT
        [END OF IF]
             FREE TEMP
    [END OF IF]
Step 2: End
```

- Deletion requires time proportional to the height of the tree in the worst case, O(n).
- It takes $O(log_2n)$ time to execute in the average case

Algorithm to determine the height of a BST

```
Height (TREE)
Step 1: IF TREE = NULL, then
            Return 0
        FLSE
            SET LeftHeight = Height(TREE->LEFT)
            SET RightHeight = Height(TREE->RIGHT)
        IF LeftHeight > RightHeight
            Return LeftHeight + 1
        FLSE
            Return RightHeight + 1
        [END OF IF]
    [END OF IF]
Step 2: End
```

- In order to determine the height of a BST, we will calculate the height of the left and right sub-trees.
- Whichever height is greater,
 1 is added to it.

Algorithm to determine the number of nodes in a BST

 To calculate the total number of nodes in a BST, count the number of nodes in the left sub-tree and the right sub-tree ans add 1.

Algorithm to obtain the mirror image of a BST

Mirror image of a binary search tree is obtained by interchanging the left sub-tree with the right sub-tree at every node of the tree.

Algorithm to find the smallest node in a bst

- The basic property of a BST states that the smaller value will occur in the left sub-tree.
- If the left sub-tree is NULL, then the value of root node will be smallest as compared with nodes in the right sub-tree.

AVL Trees

Definition

- AVL tree is a self-balancing binary search tree in which the heights of the two sub-trees of a node may differ by at most one.
- In the structure, AVL tree stores an additional variable called the BalanceFactor.

- AVL tree is also known as a height-balanced tree.
- The key advantage of using an AVL tree is that it takes $O(\log_2 n)$ time to perform search, insertion and deletion operations in average case as well as worst case (because the height of the tree is limited to $O(\log_2 n)$).

BALANCE FACTOR OF AVL TREES

- The balance factor of a node

 Balance factor = Height (left sub-tree) Height (right sub-tree)
- A BST in which every node has a balance factor of -1, 0 or 1 is said to be height balanced. A
 node with any other balance factor is considered to be unbalanced and requires rebalancing.
- If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one level higher than that of the right sub-tree. Such a tree is called *Left-heavy tree*.
- If the balance factor of a node is 0, then it means that the height of the left sub-tree is equal to the height of its right sub-tree.
- If the balance factor of a node is -1, then it means that the left sub-tree of the tree is one level lower than that of the right sub-tree. Such a tree is called *Right-heavy tree*.

(a) Left-heavy AVL tree, (b) right-heavy tree, (c) balanced tree

SEARCHING FOR A NODE IN AN AVL TREE

- Searching in an AVL tree is performed exactly the same way as it is performed in a binary search tree.
- Because of the height-balancing of the tree, the search operation takes $O(\log_2 n)$ time to complete.
- Since the operation does not modify the structure of the tree, no special provisions need to be taken.

INSERTING A NODE IN AN AVL TREE

- Since an AVL tree is also a variant of BST, insertion is also done in the same way.
- The new node is always inserted as the leaf node.
- But the step of insertion is usually followed by an additional step of rotation.
- Rotation is done to restore the balance of the tree.
- If after insertion of the new node, the balance factor of every node is still -1, 0 or 1, then rotations are not needed.

INSERTING A NODE IN AN AVL TREE

- The new node is inserted as the leaf node, so it will always have balance factor equal to zero.
- The nodes whose balance factors will change are those which lie on the *path* between the *root* of the tree and the *newly inserted* node.
- The possible changes which may take place in any node on the path are as follows:
 - Initially the node was either left or right heavy and after insertion has become balanced.
 - Initially the node was balanced and after insertion has become either left or right heavy.
 - Initially the node was heavy (either left or right) and the new node has been inserted in the heavy sub-tree thereby creating an unbalanced sub-tree. Such a node is said to be a *critical node*.

- To perform rotation, we need to find the critical node.
- Critical node is the nearest ancestor node on the path from the root to the inserted node whose balance factor is neither -1, 0 nor 1.
- The second task is to determine which type of rotation has to be done.
- There are four types of rebalancing rotations and their application depends on the position of the inserted node with reference to the critical node.

- **LL rotation:** the new node is inserted in the *left sub-tree* of the *left sub-tree* of the critical node
- Node B becomes the root, with T_1 and A as its left and right child. T_2 and T_3 become the left and right sub-trees of A .

- RR rotation: the new node is inserted in the right sub-tree of the right sub-tree of the critical node
- Node B becomes the root, with A and T_3 as its left and right child. T_1 and T_2 become the left and right sub-trees of A.

- LR rotation: the new node is inserted in the *right sub-tree* of the *left sub-tree* of the critical node
- Node C becomes the root, with B and A as its left and right children. Node B has T_1 and T_2 as its left and right sub-trees and T_3 and T_4 become the left and right sub-trees of node A.

- **RL rotation:** the new node is inserted in the *left sub-tree* of the *right sub-tree* of the critical node
- Node C becomes the root, with A and B as its left and right children. Node A has T_1 and T_2 as its left and right sub-trees and T_3 and T_4 become the left and right sub-trees of node B.

DELETING A NODE FROM AN AVL TREE

- Deletion of a node in an AVL tree is similar to that of binary search trees.
- Deletion may disturb the AVLness of the tree, so to re-balance the AVL tree we need to perform rotations.
- There are two classes of rotation that can be performed on an AVL tree after deleting a given node: R rotation and L rotation.
 - If the node to be deleted is present in the left sub-tree of the critical node, then L rotation is applied else
 - if node is in the right sub-tree, R rotation is performed.
- Further there are three categories of L and R rotations.
 - The variations of L rotation are: L-1, L0 and L1 rotation.
 - · Correspondingly for R rotation, there are R0, R-1 and R1 rotations.

DELETING A NODE FROM AN AVL TREE

- Let B be the root of the left or right sub-tree of A (critical node).
- R0 rotation is applied if the balance factor of B is 0.
- Node B becomes the root, with T_1 and A as its left and right child. T_2 and T_3 become the left and right sub-trees of A.

- Let B be the root of the left or right sub-tree of the critical node.
- R1 rotation is applied if the balance factor of B is 1.
- Node B becomes the root, with T_1 and A as its left and right child. T_2 and T_3 become the left and right sub-trees of A.

DELETING A NODE FROM AN AVL TREE

- Let B be the root of the left or right sub-tree of the critical node.
- R-1 rotation is applied if the balance factor of B is -1.
- Node C becomes the root, with T_1 and A as its left and right child. T_2 and T_3 become the left and right sub-trees of A.

