

D1/03. Oracle RDBMS

School on the Database Infrastructure for the CMS Phase 2 Upgrade

Outline

Vilnius University

- DBMS overview
 - O Types, RDBMS, ACID, History
- Oracle RDBMS
 - History, Documentation
 - Elements, Architecture
- Features and hands-on
 - Transactions
 - Privileges
 - Indexes and performance
 - Catalog Views
 - PL/SQL and stored subprograms

DBMS

- Database Management System (DBMS)
 - software for creating and managing databases
 - o makes it possible for end users to create, read, update and delete data in a database
 - o an interface between the database and end users or application programs
 - o ensures that data is consistently organized and remains easily accessible
 - Major elements
 - Kernel code manages memory and storage for the DBMS
 - Repository of metadata aka data dictionary
 - Query language enables applications to access the data
- Types
 - Usually follows <u>Database Model</u> type (see D1/01 presentation)
 - Hierarchical, Star, Object-Oriented, NoSQL, ...
 - Relational database management system (RDBMS)
 - Specific types, like In-memory, Data warehouse, cloud-based, ...

Relational DBMS

- Basis Relational model
- RDBMS distinguishes between the following types of operations
 - Logical operations
 - Application specifies what content is required
 - Physical operations
 - RDBMS determines how things should be done and carries out the operation
 - stores and retrieves data so that physical operations are transparent to applications
- Object-Relational DBMS that implements object-oriented features
 - o user-defined types, inheritance, and polymorphism
 - It makes possible to store complex business models in a relational database

ACID Principles

- Atomic
 - <u>transaction</u> symbolizes a unit of work performed (multiple statements)
 - o atomic transaction is an indivisible and irreducible series of database operations
 - o all or nothing!
- Consistency
 - transaction must change affected data only in <u>allowed ways</u>
 - valid according to all defined rules (constraints, cascades, triggers, and any combination)
- Isolation
 - concurrent execution of transactions (isolation of transactions with locks)
 - concurrency control mechanism like 2-phase locking (2PL)
- Durability
 - o committed transaction <u>remains</u> committed even in the case of a system failure

Short DBMS history

- late 60's (pioneers)
 - network (CODASYL) & hierarchical (IMS) DBMS
 - physical data structures reflected in DML (no data independence)
- 1970 (E.F.Codd's paper)
 - the most influential paper in DB research
 - physical and logical data layer separation
- mid 1970's (relational pioneers)
 - 2 functional prototypes: Ingres (UCB) & System R (IBM San Jose)
- early 1980's (commercialization of relational systems)
 - Oracle by Ellison
 - o IBM DB2
 - Relational Technology Inc based on Ingres (https://www.openhub.net/p/ingres)
 - others...

Oracle Corporation

- Software Development Laboratories
 - Started by Larry Ellison with two friends in 1977
- Relational Software, Inc
 - Changed the name in 1979
 - o First commercially available SQL-based RDBMS: Oracle v2 in 1979
- Oracle Systems Corporation
 - Changed the name in 1982
 - To align itself more closely with its flagship product Oracle Database
 - Initial public offering in 1986
- Oracle Corporation
 - Name change in 1995

Oracle Database Milestones

- Oracle V2 (1979) RSI introduced Oracle V2 (Version 2) as the first commercially available SQL-based RDBMS, a landmark event in the history of relational databases
- Oracle Version 3 (1983), was the first relational database to run on mainframes, minicomputers, and PCs. The database was written in C, enabling the database to be ported to multiple platforms
- <u>Version 4 through Version 6</u> added enhancements to concurrency control, data distribution, and scalability
- Oracle7 (1992) introduced PL/SQL stored procedures and triggers
- <u>Oracle8</u> (1997) object-relational database, supporting many new data types and partitioning of large tables
- Oracle8i (1999) provided native support for internet protocols and server-side support for Java
- Oracle9i (2001) multiple instances to access a single database simultaneously (RAC) and Oracle XML DB
- Oracle Database 10q (2003) introduced grid computing for virtualization of computing resources
- <u>Oracle Database 11q</u> (2007) automation improvements
- Oracle Database 12c (2013) was designed for the Cloud, In-Memory column store, and support for JSON
- Oracle Database Release 18c (2018) further integration of RESTful services like RDF, PGQL
- Oracle Database Release 19c (2019) enhancement of RESTful like REST Enabled SQL Support

Oracle Documentation

- Help Center
 - https://docs.oracle.com/en/
- Oracle Database
 - https://docs.oracle.com/en/database/oracle/oracle-database/index.html
- SQLPlus
 - https://docs.oracle.com/en/database/oracle/oracle-database/19/sqpqr/index.html#SQPQ R101
- SQL Reference
 - https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/index.html
- SQL Developer
 - https://docs.oracle.com/en/database/oracle/sql-developer/

Major Oracle Database Elements

- Database
 - collection of physical operating system files on disk
 - not logical concept as in other DBMS
- Instance
 - collection of processes and listeners which is mounted on a database system
 - o instance can only mount to one database
 - DB2 can have many databases under it
 - a database can have more than one instance
 - an instance belongs to a database (or further can think it as an instance is a database)
- Schema/User
 - o schema the set of objects (tables, indexes, views, etc) that belong to a user
 - o in Oracle, a user can be considered the same as a schema
 - when a user is created, a schema with the same name will also be created
 - database instance can have multiple users/schemas

Oracle DB Architecture

Vilnius University

Oracle Namespaces

- Names must be from 1 to 30 bytes long (with some exceptions)
 - SCHEMA.TABLE.COLUMN each element is 30 bytes long max
- Schema objects that share one namespace
 - Tables, Views, Sequences, Private synonyms, Stand-alone procedures, Stand-alone stored functions, Packages, Materialized views, User-defined types
- Schema objects that has its own namespace
 - Indexes, Constraints, Clusters, Database triggers, Private database links, Dimensions

DATABASE NAMESPACE

SCHEMA NAMESPACE

Tables, Views, Sequences, Private Synonyms, Standalone Procedures and Functions, Views, Types, ...

Indexes

Constraints

Users, Roles, Public Synonyms

Transactions

- Transaction
 - logical atomic unit of work that contains one or more SQL statements
 - either all committed (applied to the database) or all rolled back (undone from the database)
- Workflow
 - Transaction begins
 - when the first executable SQL statement is encountered
 - Transaction ends
 - User issues a COMMIT or ROLLBACK statement
 - User runs a DDL statement such as CREATE, DROP, RENAME, or ALTER
 - all DML statements are being committed beforehand
 - user disconnects from Oracle (transaction is committed)
 - user process terminates abnormally (transaction is rolled back)
 - Next executable SQL statement automatically starts next transaction

Oracle Transactions hands-on (1)

- Open two sqlplus sessions, same user/account → (1) and (2)
- (1) Create a table with primary key

```
CREATE TABLE TTEST (ID number primary key);
```

(1) Insert a couple of records

```
INSERT INTO TTEST VALUES (1);
INSERT INTO TTEST VALUES (2);
```

• (1) Check records exist in the same session?

```
SELECT * FROM TTEST;
```

- (2) Check if records exist in another session?
- (1) Commit transaction

```
COMMIT;
```

• (2) Check if records exist in second session

Oracle Transactions hands-on (2)

• (1) Insert a record

```
INSERT INTO TTEST VALUES (3);
```

- (2) Insert the same record here too!
- (1) Commit transaction

```
COMMIT;
```

• (1) Insert a record

```
INSERT INTO TTEST VALUES (3);
```

- (2) Insert the same record here too!
- (1) Rollback transaction

```
ROLLBACK;
```

Privileges

- Authorization model
 - Every object has an <u>owner</u> = schema = user
 - privileges control if a user can <u>access and/or modify</u> an object owned by <u>another</u> user
 - privileges are <u>granted or revoked</u> by
 - instance administrator, a user with the ADMIN privilege
 - owner of the object
- Accounts = Object owners
 - Administrative accounts SYS, SYSTEM
 - Schema accounts = users
- Roles
 - o groupings of privileges that you can use to create different levels of database access
 - o all users of the database have the **PUBLIC** role
 - DBA, SYSDBA, SYSOPER are administrative roles

Oracle Privileges hands-on

Try to access your colleagues table

```
SELECT * FROM CMS_{LAST_NAME}.PARTS;
```

Grant read access to PUBLIC role

```
GRANT SELECT ON PARTS TO PUBLIC;
```

Try to select from colleagues table again?

Oracle Privileges hands-on

Grant modification of data to fellow students

```
GRANT SELECT, INSERT, UPDATE ON TTEST TO CMS DBSCHOOL STUDENT;
```

- Try to insert, update data records in colleagues' table.
- Try to DELETE records there. Does it work?

Revoke modification permission

REVOKE INSERT, UPDATE ON TTEST FROM CMS DBSCHOOL STUDENT;

Indexes

- Index
 - schema object that contains an entry for each value that appears in the indexed column(s)
 - provides direct, fast access to rows
 - Index types in Oracle
 - Normal indexes (B-tree)
 - Bitmap indexes (rowids associated with a key value as a bitmap)
 - Partitioned indexes
 - Function-based indexes (based on expressions), Domain indexes (application-specific)
- CREATE INDEX statement
 - creates an index on one or more columns of a table

```
CREATE INDEX parts_name_idx ON parts (name);
```

SQL Query Execution

- <u>Parser</u> checks syntax and semantic analysis
- Optimizer determines the most efficient way of producing the result of the query by either
 - costing methods cost-based optimizer (CBO)
 - o internal rules rule-based optimizer (RBO)
- Row Source Generator outputs the execution plan for the SQL statement based on the plan
- <u>SQL Execution Engine</u> executes plan and then produces the results of the query

SQL Optimization Hints

- 1. Index all the predicates in JOIN, WHERE, ORDER BY and GROUP BY clauses
- 2. Avoid using functions in predicates as index is not used if there is a function on the column

```
SELECT * FROM TABLE1 WHERE UPPER (COL1) = 'ABC'
```

3. Avoid using wildcard (%) at the beginning of a predicate

```
SELECT * FROM TABLE1 WHERE COL1 LIKE '%ABC'
```

- 4. Avoid unnecessary columns in SELECT clause (replace * with columns)
- 5. Use inner join, instead of outer join if possible
- 6. DISTINCT and UNION should be used only if it is necessary
- 7. CLOB/BLOB columns must be put at the end of the statements
- 8. Limit ORDER BY clause usage
- 9. Educate yourself
 - a. SQL Tuning by Oracle
 - b. <u>Techniques for improving the performance of SQL queries by IBM Knowledge Center</u>

Data Dictionary

- Data dictionary views / catalog views (aka Reflection)
 - monitor the state of the database in real time
- View types
 - USER, ALL, DBA show information about schema objects
 - at different levels of privilege
 - V\$ show performance-related information
 - PRIVS views show privilege information for users, roles, and objects
- Reference
 - Lookup "Oracle Catalog Views" in web
 - https://docs.oracle.com/database/121/nav/catalog_views.htm

Catalog Views hands-on

- Use sqlplus alone
- Discover which table columns are indexed?
- Discover index types
- Provide the single results table
- Hint:
 - Search web for "Oracle Catalog Views"
 - Discover USER_IND* catalog view names

PL/SQL

- PL/SQL is a Procedural Language for SQL
 - o compiled by the Oracle Database server and stored inside the database
 - both PL/SQL and SQL run within the same server process
- Try to execute this in sqlplus:

```
BEGIN
   FOR i IN 5..20 LOOP
        IF MOD(i,2) = 0 THEN
            INSERT INTO ttest(id) VALUES (i);
        END IF;
   END LOOP;
   COMMIT;
END;
```

PL/SQL stored subprograms

- Stored Procedures and Functions
 - <u>compiled</u> and <u>stored</u> in an Oracle Database, ready to be executed
 - can accept <u>parameters</u> when they are executed
- Packages (specification and optional body)
 - groups logically related PL/SQL types, variables, and subprograms

```
CREATE OR REPLACE FUNCTION ttest_total RETURN number IS
   total number := 0;
BEGIN
   SELECT count(*) into total FROM ttest;
   RETURN total;
END;
/
select ttest_total() from dual;
```

PL/SQL hands-on

- Create function IS_EVEN
 - accepts NUMBER parameter
 - returns string (varchar2) "EVEN" or "ODD"
- Use the function in SQL to print table for each TTEST row

עד	FAFIN
3	ODD
1	ODD
6	EVEN
20	EVEN
10	EVEN
12	EVEN
14	EVEN
16	EVEN
18	EVEN
4	EVEN
2	EVEN
8	EVEN

TD EVEN

12 rows selected.

Summary

- Most popular DBMS Relational
 - Based on Relational Model
 - Separation of Logical and Physical layers
 - Oracle Database one of the leading ones in the market. Since the beginning.
- Oracle Database
 - Database Files
 - Instance Service
 - Account/Schema main objects container / subject of privileges
- Features to consider
 - Catalog Views database reflection (lookup reference)
 - SQL tuning huge subject, mind indexes, ...
 - PL/SQL powerful application development tool

