DATA STRUCTURE AND ALGORITHM

Lecturer: Er. Saroj ghimire

Qualification: Msc.CSIT, BE(COMPUTER)

Overview

- Concept of sorting
- > Types of sorting: internal and external
- > Sorting algorithm: selection, insertion and bubble
- > Divide and conquer algorithm : merge sorting

Objectives

- Understanding sorting algorithm
- To learn how to use sorting techniques

sorting

- Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange data in a particular order. Most common orders are in numerical or lexicographical order.
- A sorting algorithm is just a series of orders or instructions. In this, an array is an input, on which the sorting algorithm performs operations to give out a sorted array.
- The importance of sorting lies in the fact that data searching can be optimized to a very high level, if data is stored in a sorted manner. Sorting is also used to represent data in more readable formats. Following are some of the examples of sorting in real-life scenarios
 - Telephone Directory The telephone directory stores the telephone numbers of people sorted by their names, so that the names can be searched easily.
 - Dictionary The dictionary stores words in an alphabetical order so that searching of any word becomes easy.

Type of sorting

- > There are two different categories in sorting:
 - Internal sorting: If the input data is such that it can be adjusted in the main memory at once, it is called internal sorting.

• External sorting: If the input data is such that it cannot be adjusted in the memory entirely at once, it needs to be stored in a hard disk, floppy disk, or any other storage device. This is called external sorting.

Selection Sort

- > The selection is a straightforward process of sorting values.
- In this method, to sort the data in ascending order, the 0th element is compared with all other elements.
- ▶ If the 0th element is found to be greater than the compared element, the two values get interchanged.
- In this way after the first iteration, the smallest element is placed at 0th position.
- > The technique is repeated until the full array gets sorted.

Fig. Selection Sort Technique

Insertion Sort

- Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands.
- > The array is virtually split into a sorted and an unsorted part.
- Values from the unsorted part are picked and placed at the correct position in the sorted part.

Algorithm:

- 1. If it is the first element, it is already sorted. return 1;
- 2. Pick next element
- 3. Compare with all elements in the sorted sub-list
- 4. Shift all the elements in the sorted sub-list that is greater than the value to be sorted
- 5. Insert the value
- 6. Repeat until list is sorted

Bubble Sort

- Bubble sort is a simple sorting algorithm.
- This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order.
- > This algorithm is not suitable for large data sets as its average and worst case complexity are of $O(n^2)$ where **n** is the number of items.

Algorithm:

- First iteration(compare and swap)
 - Starting from the first index, compare the first and the second elements.
 - If the first element is greater than the second element, they are swapped.
 - Now, compare the second and the third elements. Swap them if they are not in order.
 - The above process goes on until the last element.
- 2. Remaining iteration(same process)

Bubble sort example						
Iniitial	5	3	8	4	6	Initial Unsorted array
Step 1	√	3	8	4	6	Compare 1 st and 2 nd
July 1	<i>*</i> -~					(Swap)
Step 2	3	5	8	4	6	Compare 2 nd and 3 rd
	¥¥					(Do not Swap)
Step 3	3	5	8	4	6	Compare 3 ^{ra} and 4 ^{rn}
				¥-	*	(Swap)
Step 4	3	5	4	8	6	Compare 4 th and 5 ^{rh}
						(Swap)
Step 5	3	5	4	6	8	Repeat Step 1-5 until
						no more swaps required

Divide And Conquer Algorithm: Merge Sorting

- A divide and conquer algorithm is a strategy of solving a large problem by:
 - breaking the problem into smaller sub-problems
 - solving the sub-problems, and
 - combining them to get the desired output.
- The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort)

Merge Sorting

- Merge sort is a sorting technique based on divide and conquer technique. With worst-case time complexity being O(n log n), it is one of the most respected algorithms.
- Merge sort first divides the array into equal halves and then combines them in a sorted manner

Algorithm

- Divide the unsorted list into sub-lists, each containing element.
- Take adjacent pairs of two singleton lists and merge them to form a list of 2 elements. N. will now convert into lists of size 2.
- Repeat the process till a single sorted list of obtained

College of Management & IT

Further Readings

- Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall, 1988.
- Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.
- Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann, Springer.
- Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi
- Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition. Addison-Wesley publishing
- RG Dromey, How to Solve it by Computer, Cambridge University Press.
- Shi-kuo Chang, Data Structures and Algorithms, World Scientific
- Sorenson and Tremblay: An Introduction to Data Structure with Algorithms.
- Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to Algorithms.
- Prentice-Hall of India Pvt. Limited, New Delhi Timothy A. Budd, Classic Data Structures in C++, Addison Wesley