

CARROM ROBOT

Engineering Exploration Course Project

Mohammad ayan khan 1313

Aditi.V.Angadi 1337

Rohan M 1304

Akshatha N K 1314

Under the guidance of NANDISH HUMBI

2019-2020, Even Semester CEER, KLE Technological University, Hubballi

Problem Definition

Design a semi-automatic carrom robot, which is able to compete in a match of carrom with the other device. The robot is attached to one side of the board and is able to hit the striker at different angles. Robot should be of size of 25 *25 * 25 cm, size of the carrom board should be of 75 *75 cm. Budget to build the robot should be within Rs .4000, the duration to make the robot ready is within 3 months. Robot should hold the carromboard, the striker and also move on carromboard. Robot should rotate as per user instructions and also hit the striker with impact force.

Function Tree and Functional clustering

Sub Systems Identified

SUBSYSTEM 1: Control and interface of robot.

SUBSYSTEM 2 : Movement of robot.

SUBSYSTEM 3: Angle change of robotic arm.

SUBSYSTEM 4: Striking mechanism.

Generated Concepts

CONCEPT 1:

CONCEPT 2:

CONCEPT 3:

CONCEPT 4:

Selected Concept

Virtual Implementation

3D model of the entire system

3D model of the entire system

Better to make separate video by keeping open the assembly of the entire system. Later attach the video using some video editing software.

Engineering Exploration 2019-2020 Even

Circuit diagram of the entire system

Flow chart / Simulink model of the entire system

Bill of materials required for the entire system

SL.NO.	PART NAME	MATERIAL WITH WHICH	DESCRIPTION	QUANTITY REQUIRED
		PART IS MADE		
1.	DC MOTOR	CARBON STRUCTURE	1 - 1	
2.	DC MOTOR	CARBON 30rpm 1 STRUCTURE		1
3.	DC MOTOR	CARBON STRUCTURE	CARBON 200rpm	
4.	RELAY MODULE		4 CHANNELED	1
5.	ARDUINO MEGA- 2560		AT2560	1
6.	BLUETOOH MODULE			1
7.	CHASIS	METAL		5
8.	WHEELS	PLASTIC WITH RUBBER COATING		2
9.	BATTERY	DRY CELL		1
10.	N CHANNEL MOSFET		60V,30A	4
11.	DC ADAPTOR			1
12.	JUMPER WIRES	Copper wires	MALE TO MALE	
13.	JUMPER WIRES	Copper wires	MALE TO FEMALE	
14.	CONNECTING CABLES	Copper wires	SINGLE STRANDED WIRE	
15.	DOUBLE SIDED TAPE	ADHESIVE		1
16.	NUTS AND BOLTS			
17.	RESISTOR		10KOhm	4
18.	BREADBOARD			1
19.	FEMALE DC POWER ADAPTER			1
20.	USB CABLE		Гп	1 gineering Eynlor

Engineering Exploration 2019-2020 Even

Motor Sizing and Battery Sizing of the entire system

MOTOR SIZING FOR THE SYSTEM

SI.NO	MOTOR USED	QUANTITY	RPM USED	PURPOSE OF USE
1	DC motor	2	30	for movement of robot
2	DC motor	1	10	for angle change of robotic arm
3	DC motor	1	200	to strike the coin

BATTERY SIZING FOR THE SYSTEM

ACTUATOR USED	QUANTITY OF MOTOR USED	BATTERIES REQUIRED	SPECIFICATIONS	DURATION UPTO WHICH BATTERY SUPPLIES ENERGY
DC motor	4	1	12V,5Ah	4.166 h

Functional specifications of the entire system

S.no	FUNCTION	SPECIFICATION
1	CHANGE THE ANGLE OF ARM FOR STRIKING	The arm should rotate from 0 to 180 degree until the user pushes stop button
2	MOVEMENT OF THE ROBOT	The robot should move along the length of the carrom board from left to write and vice versa according to instructions given by the user
3	TAKE INPUT FROM THE USER	The robot should take input from the user within the range of 10 m
4	STRIKING THE COIN	The striking clamp which is fixed on the DC motor. When the motor receives the input to strike it rotates in anticlockwise thus the clamp rotates in anticlockwise and strikes the coin with impact force

Modeling and Simulation

Thank You