Análise Matemática I 1° Exame - 15 de Janeiro de 2003 LEBM, LEFT e LMAC

Resolução

1.

- a) $\lim \frac{(n+1)^{18}(4n+1)^2}{(n+3)^{20}} = \lim \frac{(1+1/n)^{18}(4+1/n)^2}{(1+3/n)^{20}} = 16,$ b) $\lim \left(\frac{n-3}{n}\right)^n = \lim \left(1 \frac{3}{n}\right)^n = e^{-3},$ c) $\lim \frac{\pi^n}{n!} = 0$, porque $\lim \frac{a^n}{n!} = 0$ para qualquer $a \in \mathbb{R}$.

2.

- a) Seja $n \in \mathbb{N}_1$ fixo e P(n) a proposição $x_n \geq 0$. Então P(1) é verdadeira, pois $99 \ge 0$, e se P(n) é verdadeira, vem $x_{n+1} \ge 0$ (porque $0 \ge 0$ e as raízes quadradas são não negativas), pelo que P(n+1) é verdadeira. Por indução, P(n) é verdadeira para todo o $n \in \mathbb{N}_1$.
- b) A sucessão é decrescente. De facto, se $0 \le x_n < 1/2$, então $x_{n+1} = 0$, pelo que $x_{n+1} \le x_n$; e se $x_n \ge 1/2$, então $x_{n+1} \le x_n \iff \sqrt{2x_n - 1} \le x_n$ $x_n \Leftrightarrow 2x_n - 1 \leq x_n^2 \Leftrightarrow 0 \leq (x_n - 1)^2$, condição esta verdadeira [para a segunda equivalência usou-se o facto de $x_n \ge 0$].
- \mathbf{c}) A sucessão converge pois é decrescente e minorada. Designemos por l o seu limite. Se $l \geq 1/2$, então, aplicando limites a ambos os membros de $x_{n+1} = \sqrt{2x_n - 1}$, vem $l = \sqrt{2l - 1}$, ou seja, l = 1. Se l < 1/2, então lé necessariamente igual a zero. Portanto, l=0 ou l=1. Como $x_1 \geq 1$ e $x_n > 1 \implies x_{n+1} > 1$, tem-se que $l \ge 1$. Conclui-se que l = 1.
- d) Se $x_1 = 0.99$, a sucessão é ainda decrescente e minorada por zero, pelo que converge. Contudo, l < 1, pelo que l = 0.
- 3. Pelo Teorema de Bolzano-Weierstrass, uma vez que é limitada, (x_n) tem uma subsucessão, (x_{n_k}) , convergente, digamos para a. Aplicando limites a ambos os membros da igualdade $f(x_{n_k}) = x_{n_k} + \frac{1}{n_k}$ e usando a continuidade de f em a ($\lim f(x_{n_k}) = f(\lim x_{n_k})$), vem f(a) = a, pelo que a é ponto fixo $\mathrm{de}\ f$.

4.

- a) $\sum_{n=2}^{\infty} 4^{-n} = \lim_{k \to \infty} \sum_{n=2}^{k} 4^{-n} = \frac{1}{4^2} \lim_{k \to \infty} \sum_{n=0}^{k-2} \frac{1}{4^n}$ $\frac{1}{4^2} \lim_{k \to \infty} \frac{1 (1/4)^{k-1}}{1 1/4} = \frac{1}{12}$. A série é (absolutamente) convergente.
- **b)** Como $\lim_{n \to \infty} \left(\frac{n+1}{n+100} \right)^5 = \lim_{n \to \infty} \left(\frac{1+1/n}{1+100/n} \right)^5 = 1 \neq 0$, a série diverge.

- c) A série harmónica alternada é simplesmente convergente.
- d) Como $\lim \frac{\frac{1}{\sqrt{n}\sqrt[3]{n+2}}}{\frac{1}{n^{1/2+1/3}}} = 1$ e a série de Dirichlet, $\sum \frac{1}{n^{\alpha}}$, converge sse $\alpha > 1$, a série do enunciado é divergente, já que $5/6 \le 1$.
- e) Pelo Critério d'Alembert, a série é (absolutamente) convergente, uma vez que $\lim \frac{\frac{[(2(n+1))!]^2}{(4(n+1))!}}{\frac{[(2n)!]^2}{(4n)!}} = \lim \frac{(2n+2)^2(2n+1)^2}{(4n+4)(4n+3)(4n+2)(4n+1)} = \frac{2^4}{4^4} = \frac{1}{2^4} < 1.$

5.

a)
$$\frac{d}{dx} \tan x = \frac{d}{dx} \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

$$\mathbf{b)} \ \frac{d}{dx} \frac{\arctan x}{\ln x} = \frac{1}{(1+x^2)\ln x} - \frac{\arctan x}{x\ln^2 x},$$

c)
$$\frac{d}{dx}e^{\sqrt{x}} = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$$
,

d)
$$\frac{d}{dx}x^x = \frac{d}{dx}e^{x \ln x} = x^x (\ln x + 1),$$

a)
$$\frac{d}{dx} \tan x = \frac{d}{dx} \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x,$$
b) $\frac{d}{dx} \frac{\arctan x}{\ln x} = \frac{1}{(1+x^2)\ln x} - \frac{\cos^2 x}{x \ln^2 x},$
c) $\frac{d}{dx} e^{\sqrt{x}} = \frac{1}{2\sqrt{x}} e^{\sqrt{x}},$
d) $\frac{d}{dx} x^x = \frac{d}{dx} e^{x \ln x} = x^x (\ln x + 1),$
e) $\lim_{x\to 0} \frac{\sin(\sin x)}{x} = \lim_{x\to 0} \frac{\cos(\sin x)\cos x}{1} = 1$, pela Regra de Cauchy.

6. A função seno é contínua em \mathbb{R} e a função $x \mapsto 1/x$ é contínua em $\mathbb{R} \setminus \{0\}$, pois é o quociente de duas funções contínuas em que o denominador não se anula. Como a composta de funções contínuas é uma função contínua, f é contínua em $\mathbb{R} \setminus \{0\}$.

Se $n \in \mathbb{N}$, então $f(1/(\pi/2 + 2n\pi)) = 1$. Como $\lim 1/(\pi/2 + 2n\pi) = 0$ e $\lim f(1/(\pi/2 + 2n\pi)) \neq f(0)$, a definição de continuidade de Heine garante que f é descontínua em zero.

7. Por definição, $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$. Pelo Teorema de Lagrange, para cada $x \neq 0$, existe c_x entre 0 e x, tal que $\frac{f(x)-f(0)}{x-0} = f'(c_x)$. Quando $x \to 0$, também $c_x \to 0$. Conclui-se que $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{c_x\to 0} f'(c_x) = \frac{f(x)-f(0)}{x-0}$ 1. Nota: também se poderia chegar a este resultado aplicando a Regra de Cauchy.