МГТУ им. Баумана

ЛАБОРАТОРНАЯ РАБОТА №1 Ч.2.

По курсу: "Операционные системы"

Функции обработчика системного таймера. Пересчет динамических приоритетов

Работу выполнил: Мокеев Даниил, ИУ7-56

Преподаватель: Рязанова Н.Ю.

Функции обработчика прерываний от системного таймера

1.1 Unix

1.1.1 По тику

- Инкремент счетчика использования процессора текущим процессом;
- инкремент часов и других таймеров системы;
- декремент счетчика времени, оставшегося до отправления на выполнение отложенных вызовов и отправка отложенных вызовов на выполнение, при достижении нулевого значения счетчика;
- декремент кванта.

1.1.2 По главному тику

- Добавление в очередь отложенных вызовов функций планировщик;
- пробуждение системных процессов swapper и pagedaemon;
- декремент счетчиков времени, оставшегося до отправления сигналов тревоги:
 - SIGALRM сигнал будильника реального времени, который отравляется по истичении заданного промежутка реального времени;
 - SIGPROF сигнал будильника профиля процесса, который измеряет время работы процесса;
 - SIGVTALRM сигнал будильника виртуального времени, который измеряет время работы процесса в режиме задачи.

1.1.3 По кванту

• При превышении текущим процессом выделенного кванта, отправка сигнала SIGXCPU этому процессу.

1.2 Windows

1.2.1 По тику

- Инкремент счетчика системного времени;
- декремент счетчиков отложенных задач;
- декремент остатка кванта текущего потока;
- активация обработчика ловушки профилирования ядра.

1.2.2 По главному тику

• Инициализация диспетчера настройки баланса путем освобождения объекта «событие», на котором он ожидает.

1.2.3 По кванту

• Инициализация диспетчеризации потоков путем добавления соответствующего объекта DPC в очередь.

2 Пересчет динамических приоритетов

2.1 Unix

В Unix планировщик предоставляет процессор каждому процессу системы на небольшой период времени, после чего производит переключение на следующий процесс. Этот период называется квантом времени.

Переключение контекста - на самом низком уровне планировщик заставляет процессор производить переключения от одного процесса к другому.

Классическое ядро UNIX является строго невытесняемым. Это означает, что если процесс выполняется в режиме ядра, то ядро не заставит этот процесс уступить процессорное время какому-либо более приоритетному процессу. Выполняющийся процесс может освободить процессор в случае своего блокирования в ожидании ресурса, иначе он может быть вытеснен при переходе в режим задачи. Такая реализация ядра позволяет решить множество проблем синхронизации, связанных с доступом нескольких процессов к одним и тем же структурам данных ядра.