Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

Min et al.

¿Cuál es el sentimiento de estas oraciones?

- ¡Qué buena comida! \rightarrow Positivo
- La verdad que fue un asco. \rightarrow Negativo
- El plato dejó mucho que desear. \rightarrow ?

¿Cuál es el sentimiento de la siguiente oración?

Si por ejemplo:

- iQué buena comida! -> Positivo
- La verdad que fue un asco. -> Negativo

Entonces

- El plato dejó mucho que desear. ->?

Negativo.

Se estudió:

- ¿Cómo elegir los ejemplos? (Liu et al.)
- Lómo frasear mejor el problema? (Zhao et al.)

▶ ¿Qué aprende con estos ejemplos?

¿Cuál es el sentimiento de la siguiente oración?

Si por ejemplo:

- iQué buena comida! -> Positivo
- La verdad que fue un asco. -> Negativo

Entonces

- El plato dejó mucho que desear. ->?

Negativo.

Identificaron factores importantes de los ejemplos mostrados in-context que afectan el rendimiento.

Aislaron cada factor, para ver su efecto de manera independiente.

Los resultados no son intuitivos.

Usaron 6 modelos de lenguaje basados en transformers.

Evaluaron en 26 datasets de clasificación y multiple-choice.

El primer experimento fue testear qué tanto sirve el mapeo correcto de los ejemplos a sus labels.

Gold

- ightharpoonup Siamese ightarrow Cat
- ightharpoonup Persian ightharpoonup Cat
- ightharpoonup Boxer ightarrow Dog

Random

- ightharpoonup Siamese ightarrow Dog
- ▶ Persian → Cat
- ightharpoonup Boxer ightharpoonup Cat

Replacing gold labels with random labels only marginally hurts performance.

Nonetheless, the models do achieve non-trivial performance on the downstream tasks.

¿Qué está pasando?

Encontraron 3 factores que afectan el rendimiento.

Distribution of the input text

El modelo aprende qué tipos de texto pueden aparecer en el input.

- ightharpoonup Siamese ightarrow Cat
- ightharpoonup Persian ightharpoonup Cat
- ightharpoonup Boxer ightharpoonup Dog

El modelo entiende que van a aparecer razas de animales como input.

- ightharpoonup Oración aleatoria $1 o \mathsf{Cat}$
- ▶ Oración aleatoria 2 → Cat
- ▶ Oración aleatoria 3 → Dog

Y miden su rendimiento.

This suggests that in-distribution inputs in the demonstrations substantially contribute to performance gains

Distribución de los labels

El modelo aprende qué tipos de labels aparecen normalmente.

Distribución de los labels

- ► Siamese → Knife
- ightharpoonup Persian ightarrow Arrow
- ightharpoonup Boxer ightharpoonup Food

This indicates that conditioning on the label space significantly contributes to performance gains

Formato

El modelo puede beneficiarse de saber cómo es el formato de la pregunta.

Formato

Only labels

Example answers are:

Cat, Cat, Dog

No labels

Example inputs are:

Siamese, Persian, Boxer

Formato

El gráfico es denso, pero...

Removing the format is close to or worse than no demonstrations.

Meta training

Usaron MetalCL, un modelo entrenado con un objetivo para aprender bien in-context learning.

Meta training

Patterns we see so far are significantly more evident with MetalCL.

Discusión

¿Los modelos aprenden en inferencia?

Discusión

Los autores argumentan que no. Pareciera ser que pueden ignorar las demostraciones y usar información del pre-training.

Discusión

Creen que los ejemplos son para *localizar la tarea*, pero las habilidades fueron obtenidas en el pre-training.

Crítica

- Gran paper.
- Los gráficos podían ser un poco densos.
- No tomaron el tamaño de un modelo como un factor que pudiese afectar sus conclusiones.

Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

Min et al.