RZ/A2M Group DRP Library User's Manual and Functional Design Specifications First Edition (Rev. 1.00)

Lrgb2LCrop

September 25, 2019			
Renesas Electronics			
Approved by	Examined by	Author	

RZ/A2M Group

DRP Custom Library User's Manual

Lrgb2LCrop

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

How to Use This Manual

1. Purpose and Target Readers

This manual is intended to provide the user with an understanding of the functions of the DRP library and how to utilize them. It is aimed at users designing application systems making use of the DRP library. In order to use this manual, you will need a basic knowledge of programming languages and microprocessors.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

Contents

1. Introduction	6
1. Introduction	6
1.2 Functions	
2. Operation Conditions	8
3. File Structure	9
4. DRP Library Reference	10
4.1 How to Read the DRP Library Reference4.2 Image Conversion	
4.2 Image Conversion	11
4.2.1 Lrgb2LCrop	
5. Using the DRP Library	13
6. Reference Documents	16

RZ/A2M Group

DRP Library User's Manual

1. Introduction

1.1 Summary

This manual describes the functions and usage of the DRP library, which run on the dynamically reconfigurable processor (DRP) of RZ/A2M Group Microprocessors.

The DRP can perform various functions according to user's setting. In this document, the function performed by DRP is called "circuit", and the data representing circuit information is called "configuration data". Writing of the circuit to DRP can be performed by loading the configuration data using DRP Driver*1. DRP Library is a collection of configuration data with various functions, mainly image processing.

Note 1. For details of DRP Driver, refer to "RZ/A2M Group DRP Driver User's Manual (R01US0355)".

1.2 Functions

The functions of the configuration data contained in the DRP library are listed below.

Table 1.1 DRP Library Functions

Category	Function Name	Outline	Page
Image conversion	Lrgb2LCrop	Copy the L layer of the LRGB picture specified by a cropping window and insert it at a specified coordinate in the target L Image (L could be an grey picture).	11

2. Operation Conditions

The DRP library operates under the conditions listed below.

Table 2.1 Operation Conditions

Item	Description		
Microprocessor	RZ/A2M Group Microprocessors*1		
	• R7S921051VCBG		
	• R7S921052VCBG		
	• R7S921053VCBG		

Note 1. The DRP library operates on RZ/A2M Group Microprocessors equipped with a DRP function module. It will not operate on RZ/A2M Group Microprocessors without a DRP function module.

This library was confirmed to operate in the following development environment:

Renesas e² studio 7.5.0

The following toolchain is compatible:

GCC ARM Embedded Toolchain 6-2017-q2-update

3. File Structure

Figure 3.1 shows the file structure of configuration data and header files in the DRP library.

Figure 3.1 File Structure

4. DRP Library Reference

4.1 How to Read the DRP Library Reference

In this section the specifications of the configuration data contained in the DRP library are presented in the format shown below.

Function name* ¹			
Function outline			
Configuration data file	The name of the configuration data file. Use the DRP Driver's R_DK2_Load() function to load the data in the DRP.		
Supported version	Lists the version of the configuration data that operates under present specification. Use the DRP Driver's R_DK2_GetInfo() function to get the version.		
Configuration data size (byte)	Lists the size of the configuration data. Lists all versions, if there are different versions.		
Header file	The name of the header file for using the configuration data. Use #include "header file" to include the file.		
Parameter	Lists the parameters required by the circuit. Parameters are passed from the CPU to the DRP by means of the DRP driver's R_DK2_Start() function. Parameters are defined as a structure within the header file. Before running the circuit, set the parameters on the CPU side. The data type defined in stdint.h is used.		
	Also, the area where parameters are stored and the area indicated by parameters representing addresses such as 'src' and 'dst' must be located in physical memory. *2		
I/O details	Lists the details of the data specified by the parameters. Unless otherwise indicated, the same address may be specified for the input buffer address and output buffer address.		
Number of tiles	The number of tiles used by the circuit. The DRP has 6 tiles. The DRP Driver's R_DK2_Load() function is used to assign circuits to tiles.		
Segmented processing	Indicates that the function can be processed in parallel by multiple circuits. In parallel processing, the input image is divided up in the vertical direction and processed accordingly. The segmented processing can be executed by utilizing the 6 tiles of DRP and loading multiple configuration data of 3 tiles or less. For details on loading multiple configuration data of 3 tiles or less into DRP, see the explanation of R_DK2_Load () function in "RZ/A2M Group DRP Driver User's Manual".		

Example: A case where the input image is divided into three portions in the vertical direction

Description	Describes the specifications of the configuration data.
Note	Additional notes appear here.

Note 1. The function name of configuration data is a character string that can be obtained from the configuration data by using the DRP Driver's R_DK2_GetInfo() function.

Note 2. If the values of physical memory in the area of parameters and input/output data of the circuit are incorrect because the values are in the Cortex-A9 cache, etc., the circuit does not work properly. It must be necessary to clean the cache before calling the DRP driver's R_DK2_Start() function or to allocate the parameters and input/output data of circuit to a non-cached area.

For information on using the API functions of the DRP Driver, refer to "RZ/A2M Group DRP Driver User's Manual (R01US0355)".

4.2 **Image Conversion**

Lrgb2LCrop 4.2.1

Lrgb2LCrop
Copy the L layer of the LRGB picture specified by a cropping window and insert it at a specified coordinate in

the target L Image (L could be an grey pict	ire)

the target L Ir	mage (L could be an gre	ey picture).	
Configuration data file			drp_lrgb2lcrop.dat, r_drp_lrgb2lcrop_t2.dat
Supported version			90
Configuration data size (byte)			256, 120064
Header file			drp_lrgb2lcrop_x.h, r_drp_lrgb2lcrop_x_t2.h
		(r_	_drp_lrgb2lcrop.h)
Parameter	Structure name		
	r_drp_lrgb2lcrop_t		
	Member name	Type	Description
	src	uint32_t	Input image address
	L_dst	uint32_t	Output image address of separated L-channel
	width	uint16_t	Horizontal width of input image (pixels)
	height	uint16_t	Vertical width of input image (pixels)
	tXstart	uint16_t	x coordinate crop window
	tYstart	uint16_t	y coordinate crop window
	tWidth	uint16_t	Horizontal width of crop Window (pixels)
	tHeight	uint16_t	Vertical width of crop Window (pixels)
	tXplace	uint16_t	x coordinate to insert crop window src area in target image
	tYplace	uint16_t	y coordinate to insert crop window src area in target image
	tPwidth	uint16_t	Full target image width (pixels)
	tPheight	uint16_t	Full target image height (pixels)
I/O details	Input image	Address:	Specified by src.
		Width (pixels):	Specified by src_width. (8 to 1280)
		Height (pixels):	
		Format:	LRGB (3 bytes per pixel)
		Data size:	(src_width) × (src_height) × 4 bytes
	Output image	Address:	Specified by dst.
	-	Width (pixels):	Specified by dst_width. (1 to 1280)
		Height (pixels):	Specified by dst_height. (1 to 960)
		Format:	L (1 bytes per pixel)
		Data size:	(dst_width) × (dst_height) × 1 bytes
Number of	1, 2		· · · · · · · · · · · · · · · · · · ·
tiles	•	s a small footprii	nt, the 2-tile version is optimized for speed)

Segmented Not supported processing

Description

This function crops a rectangular portion of the size specified by the offsets from the image at the address specified by src and outputs it to the address specified by I_dst at a specified position within the output image. This function allows the same address to be specified for both src and dst.as long as the crop window positions does not overlap.

Note

The arguments should be set such that the cropped rectangular area does not extend outside of the input image area and/or the output area. There is no range check or overflow check implemented so illegal memory read or write may happen in case of an overflow situation.

5. Using the DRP Library

To use this library, it is necessary to initialize the DRP, load configuration data, etc. Also, since the parameters are different for each configuration data, set the parameters based on the specification of the configuration data to be used. For application example of DRP library, refer to "RZ/A2M Group 2D Barcode Application Note (R01AN4503)".

Usage example:

```
#include " r drp lrgb2lcrop x t2.h"
// variable declaration
uint8_t *output_bufadr;
int32_t ret_val;
static uint8_t drp_lib_id[R_DK2_TILE_NUM] = {0};
static volatile uint8_t drp_lib_status[R_DK2_TILE_NUM] = {DRP_NOT_FINISH};
static uint8 t frame RAM A[R BCD CAMERA HEIGHT * R BCD CAMERA WIDTH]
               __attribute__ ((section("ImageWork_RAM"))); /* lrgb2l crop */
static r_drp_lrgb2lcrop_t param_lrgb2l_crop __attribute__ ((section("Uncache_IRAM")));
static void cb_drp_finish(uint8_t id)
   uint32 t tile no;
   /* Change the operation state of the DRP library notified by
      the argument to finish */
   for (tile no = 0; tile no < R DK2 TILE NUM; tile no++)</pre>
   {
       if (drp_lib_id[tile_no] == id)
           drp_lib_status[tile_no] = DRP_FINISH;
           break;
       }
   }
   return;
}
* End of function cb drp finish
                              /* Input picture is of bayer2lrgb, code is not part of this example */
/* Set the address of buffer to be read/write by DRP (please crosscheck r_drp_bayer2lrgb_color_correction )*/
R_MMU_VAtoPA((uint32_t)output_bufadr, &(param_bayer2lrgb_color_correction.dst));
```

```
// usage example
```

```
/* Load DRP Library */
/* +----+ */
/* tile 1 |
/* tile 2 | | */
/* + lrgb2l_crop
                | */
/* tile 3 |
/* tile 4 | | */
/* tile 5 |
/* +-----+ */
/* load DRP Library lrgb2l_crop */
ret_val = R_DK2_Load(&g_drp_lib_lrgb2lcrop_t2[0],
           R DK2 TILE 2,
           _DK2_TILE_PATTERN_1_1_2_1_1, NULL, &cb_drp_finish, &drp_lib_id[0]);
DRP_DRV_ASSERT(ret_val);
/* Activate DRP Library lrgb2l_crop
ret_val = R_DK2_Activate(drp_lib_id[TILE_2], 0);
DRP DRV ASSERT(ret val);
```

```
/***********************
/* Set R_DK2_Start function parameters for lrgb2l_crop
param lrgb2l crop.spare = 0 ;
/* Set the address of buffer to be read/write by DRP */
param lrgb2l crop.src = (uint32 t)&output bufadr[0];
param lrgb2l crop.l dst = (uint32 t)&frame RAM A[0];
/* get the physical address */
R_MMU_VAtoPA((uint32_t)param_lrgb2l_crop.src, &(param_lrgb2l_crop.src ));
R MMU VAtoPA((uint32 t)param lrgb2l crop.l dst, &(param lrgb2l crop.l dst ));
/* Set Input Image size */
param_lrgb2l_crop.width = R_BCD_CAMERA_WIDTH;
param_lrgb2l_crop.height = R_BCD_CAMERA_HEIGHT;
/* Set Output Image size (in this case it is the same as the input */
param_lrgb2l_crop.tPwidth = R_BCD_CAMERA_WIDTH;
param lrgb2l crop.tPheight = R BCD CAMERA HEIGHT;
/* specify the cropping window */
param_lrgb2l_crop.tXstart = 20 ; // crop window at (20,10)
param_lrgb2l_crop.tYstart = 10 ;
param_lrgb2l_crop.tWidth = 16 ; // 16 x 32 pixel
param_lrgb2l_crop.tHeight = 32
// specify the starting point, where the contents of the crop window
// should be placed (50,25)
param_lrgb2l_crop.tXplace = 50 ; // place at (50,25)
param_lrgb2l_crop.tYplace = 25
/* Initialize variables to be used in termination judgment of the DRP */
drp lib status[TILE 2] = DRP NOT FINISH;
/*************
/* Start DRP Library */
/***************/
ret val = R_DK2_Start(drp_lib_id[TILE_2],
                    (void *)&param lrgb2l crop,
                    sizeof(r drp lrgb2l crop t));
DRP_DRV_ASSERT(ret_val);
/* Wait until DRP processing is finish */
while (drp_lib_status[TILE_2] == DRP_NOT_FINISH);
. . . . .
// clean up
/***************/
/* Unload DRP library */
ret_val = R_DK2_Unload(drp_lib_id[TILE_2], &drp_lib_id[TILE_2]);
DRP_DRV_ASSERT(ret_val);
```

6. Reference Documents

User's Manual: Hardware

RZ/A2M Group User's Manual: Hardware (R01UH0746)

(Download the latest version of the update or news from the Renesas Electronics website.)

User's Manual: Software

RZ/A2M Group DRP Driver User's Manual (R01US0355)

(Download the latest version of the update or news from the Renesas Electronics website.)

RZ/A2M Group 2D Barcode Sample Program Application Note (R01AN4503)

(Download the latest version of the update or news from the Renesas Electronics website.)

User's Manual: Development environment

For the Renesas Electronics integrated development environment (e² studio), visit the Renesas Electronics website to download the latest version.

Technical Update/Technical News

(Download the latest version of the update or news from the Renesas Electronics website.)

Revision History	RZ/A2M Group DRP Library User's Manual
------------------	--

Rev.	Date	Description		
		Page	Summary	
1.00	Sep 25, 2019	_	First Edition issued	

RZ/A2M Group DRP Single Custom User's Manual

Publication Date: Rev.1.00 Sept. 25, 2019

Published by: Renesas Electronics Corporation

RZ/A2M Group

