

PROCESO DIRECCIÓN DE FORMACIÓN PROFESIONAL INTEGRAL FORMATO GUÍA DE APRENDIZAJE

1. IDENTIFICACIÓN DE LA GUIA DE APRENDIZAJE

- Denominación del Programa de Formación: Mantenimiento electrónico e instrumental industrial
- Código del Programa de Formación: 115417
- Nombre del Proyecto: Diseño de estación de trabajo de electrónica industrial.
- Fase del Proyecto: Análisis y ejecución.
- Actividad de Proyecto: Análisis de: requerimientos de formación a los que dará soporte la estación, ofertas de equipos similares y posible mercado para la comercialización.
- **Competencia:** Inspeccionar de los bienes los sistemas electrónicos e instrumental industrial comprobando su estado actual con relación a sus especificaciones técnicas.
- **Resultados de Aprendizaje Alcanzar:** -Obtener información sobre las presentes en las maquinarias y equipo industrial cumpliendo la normativa de la empresa.
 - -Analizar el desempeño de los componentes electrónicos en las máquinas críticas utilizando herramientas estadísticas.
- Duración de la Guía: 40 Horas

2. PRESENTACION

En esta guía se encuentra la ruta con la actividad de proyecto máquinas eléctricas con las actividades necesarias para el desarrollo del trimestre.

3. FORMULACION DE LAS ACTIVIDADES DE APRENDIZAJE

El desarrollo de las actividades de aprendizaje debe ser presentadas al instructor y enviadas en un archivo en Word o procesador de texto disponible en el ambiente de formación a la plataforma virtual. El archivo en Word debe contener la siguiente información: Programa de formación, nombres de los integrantes del equipo de trabajo y desarrollo de las actividades de aprendizaje planteadas en la guía.

3.1 Actividades de reflexión inicial

De acuerdo a las orientaciones recibidas por el instructor y el material de apoyo suministrado, desarrolla las siguientes preguntas para reconocer lo aprendido o cuanto sabes.

¿Por qué es importante esta actividad para el desarrollo del proyecto formativo?

¿Qué se entiende por máquina eléctrica?

3.2 Actividades de contextualización e identificación de conocimientos necesarios para el aprendizaje

De acuerdo a las orientaciones recibidas por el instructor y el material de apoyo suministrado, desarrolle las siguientes actividades para reconocer lo aprendido.

ACTIVIDAD 1 (E1): Circuitos Unifilares. Tiempo estimado actividad (4h)

Actividad circuitos unifilares.

3.3 Actividades de apropiación del conocimiento (conceptualización y teorización)

De acuerdo a las orientaciones recibidas por el instructor y el material de apoyo suministrado, desarrolle las siguientes actividades para reconocer lo aprendido.

ACTIVIDAD 2 (E2): Conceptos Voltaje de fase, línea, Vrms, Vp. Tiempo estimado actividad (6h)

Descripción: Aprendiz, en esta actividad debe entregar un informe escrito con el desarrollo de la actividad y enviarlo por medio de la plataforma LMS como evidencia.

Objetivo: Conocer la definición de voltaje de línea, de fase, Vrms, Vp, Vp-p.

- 1. Defina qué es voltaje de línea y voltaje de fase. Proponga un ejemplo para cada caso.
- Defina qué es Voltaje rms, Voltaje promedio y Voltaje Pico. Realice una gráfica explicando cada definición.
- 3. Realice los siguientes ejercicios:
 - a. Se mide la tensión con un voltímetro arrojando el resultado de 220 Vac. Calcule el voltaje pico y voltaje promedio.
 - b. Un equipo industrial en las especificaciones de placa, tiene que el voltaje pico de operación es de 310 Vp, calcule el voltaje RMS.
 - c. Se mide la tensión con un voltímetro arrojando el resultado de 280 V prom. Calcule el voltaje pico y voltaje RMS.

ACTIVIDAD 3 (E3): Impedancia en Circuitos RC, RL y RLC. Tiempo estimado actividad (6h)

Descripción: Aprendiz, en esta actividad debe entregar un informe escrito con el desarrollo de la actividad y enviarlo por medio de la plataforma LMS como evidencia.

Objetivo: Identificar la impedancia de circuitos RC, RL y RLC y comportamiento del desfase de corriente respecto al voltaje.

- 1. Defina qué es la impedancia en un circuito eléctrico.
- 2. Dados los siguientes circuitos RC, calcule la impedancia del circuito en coordenadas rectangulares y polares. Realice el diagrama fasorial.

3. Dados los siguientes circuitos RL, calcule la impedancia del circuito en coordenadas rectangulares y polares. Realice el diagrama fasorial.

4. Dados los siguientes circuitos RLC, calcule la impedancia del circuito en coordenadas rectangulares y polares. Realice el diagrama fasorial.

ACTIVIDAD 4 (E4): Transformadores. Tiempo estimado actividad (12h)

Descripción: Aprendiz, en esta actividad debe entregar un informe escrito con el desarrollo de la actividad y enviarlo por medio de la plataforma LMS como evidencia.

Objetivo: Identificar los principios de funcionamiento, relación de trasformación y tipos de transformadores eléctricos.

Resuelva los siguientes numerales de acuerdo a las orientaciones suministradas por el instructor y el material de apoyo.

- 1. Defina qué es el magnetismo, campo magnético y flujo magnético e indique la unidad de medida según el Sistema Internacional de Medidas.
- 2. Materiales magnéticos. Diligencie la tabla a continuación con los diferentes tipos de materiales que se listan a continuación.

Material	Tipo de material Permeabilidad rel	
	Ejemplo: Ferromagnético, Valor adimensional (si diamagnético, paramagnético dimensiones)	
Hierro		

Aluminio	
Plata	
Acero	
Plomo	
Cromo	
Ferrita	

- 3. Enuncie que es una curva de magnetización para los materiales.
- 4. Partes generales de un transformador monofásico.

Indique el nombre de cada una de las partes que se muestran en la figura siguiente:

- 5. Relaciones de transformación. Realice los siguientes ejercicios:
 - 1. Un transformador tiene un primario con 400 espiras y un secundario de 200 espiras, el primario es alimentado con 120 V.
 - Calcular la relación de transformación y el voltaje del secundario.
 - Si el transformador tiene un voltaje máximo de 500v, qué sucede si es alimentado por error en el secundario con 120V
 - 2. Un transformador es alimentado con 120 V en el primario que tiene 100 espiras, si desea tener 12 v en el secundario ¿Cuál debería ser el número de espiras del secundario?

3. A un transformador se le conecta una carga resistiva de 5000 w a una tensión de 120 V en el devanado secundario.

Sí el voltaje del primario es 7600 V, entonces determine:

- La relación de transformación
- La corriente del devanado primario y del secundario
- 4. Un transformador de potencia nominal de 3000 W tiene un voltaje en el primario de 120 v y secundario de 12 v. calcular:
 - a. La relación de transformación
 - b. La corriente del primario
 - c. La corriente del secundario
- 6. Tipos de transformadores. Diligencie la tabla que se muestra a continuación enunciando 5 tipos de transformadores con una breve descripción.

	Tipo de transformador	Funcionamiento		
1				
2				
3				
4				
5				

ACTIVIDAD 5 (E5): Motores Eléctricos. Tiempo estimado actividad (12h)

Descripción: Aprendiz, en esta actividad debe entregar un informe escrito con el desarrollo de la actividad y enviarlo por medio de la plataforma LMS como evidencia.

Objetivo: Identificar los principios de funcionamiento, clasificación según normatividad, aspectos generales de la normatividad NEMA e IEC, identificación de placa motores trifásicos

Resuelva los siguientes numerales de acuerdo a las orientaciones suministradas por el instructor y el material de apoyo.

- 1. ¿Qué es un motor eléctrico?
- 2. Mencione 3 aplicaciones industriales de los motores eléctricos
- 3. ¿Cuáles son las unidades usadas para definir la velocidad de rotación, el par del motor y la potencia?
- 4. ¿Cuándo se habla de estator y rotor a qué tipo de máquina eléctrica se refiere?
- 5. Según la norma NEMA y por su naturaleza de funcionamiento eléctrico, ¿cuáles son los tipos de motores DC?
- 6. ¿Cuáles son las partes que conforman el motor DC?, descríbalas e identifíquelas en las figuras que se presentan a continuación

Parte	Parte en la imagen (a, b, c, etc)	Descripción
Inducido (Armadura)		
Escobillas		
Conmutador		
Devanado de campo		
Estructura (Frame)		

Parte	Parte en la imagen (a, b, c, etc)	Descripción
Inducido (Armadura)		
Rodamientos (bearings)		
Eje (shaft)		
Rotor inducido (Armadura)		
Estructura (Frame)		
Cubierta		

- 7. Dibuje el circuito de conexión para un motor DC tipo Shunt.
- 8. Según la norma NEMA y por su naturaleza de funcionamiento eléctrico, ¿cuáles son los tipos de motores AC?
- 9. ¿Cuáles son las partes que conforman el motor AC?, descríbalas e identifíquelas en las figuras que se presentan a continuación

Parte	Parte en la imagen (a, b, c, etc)	Descripción
Borneras		
Bobinas estator		
Ventilador		
Eje (Shaft)		
Rotor		
Rodamientos		
Carcaza		
Aletas de refigeración		

- 9. ¿Cuál es la diferencia entre un motor síncrono y de inducción (asíncrono)?
- 10. ¿Cuáles son las normas internacionales que definen el diseño de los motores eléctricos?
- 11. Dados los siguientes bornes de un motor trifásico asíncrono de 6 puntas, realice la conexión (dibuje sobre los bornes) en estrella y en triángulo.

- 12. Según el estándar NEMA MG1, ¿cuáles son los diseños de motores según la curva Par-Velocidad?
- 13. Según la norma IEC, ¿cuáles son los diseños de motores según la curva Par-Velocidad?
- 14. Dadas las siguientes placas de motores, para cada una de ellas identifique (cuando aplique):
 - Potencia nominal
 - Frecuencia de trabajo
 - Factor de potencia
 - Eficiencia
 - Corriente a rotor bloqueado (corriente de arranque aprox).
 - Factor de servicio
 - Tipo de servicio (S1 S9)

- Grado de protección IP
- Torque nominal y torque de arranque

a.

b.

3.4 Actividades de trasferencia del conocimiento.

Socialice con sus compañeros los resultados obtenidos y establezcan conclusiones de su trabajo acorde a todas las experiencias.

Identifique en su grupo de trabajo si alguien no ha comprendido bien el funcionamiento o el montaje práctico y ayúdelo a alcanzar esa competencia. Indique al instructor a cargo.

- Ambiente Requerido: El asignado por la coordinación
- Materiales: Mesas, sillas, computadores con software electrónico.

4. ACTIVIDADES DE EVALUACIÓN

Tome como referencia las técnica e instrumentos de evaluación citados en la guía de Desarrollo Curricular

Evidencias de Aprendizaje	Criterios de Evaluación	Técnicas e Instrumentos de Evaluación
Evidencias de Conocimiento:	Conoce los conceptos básicos relacionados con transformadores y motores, identificación de placas.	Cuestionario Lista de chequeo
Evidencias de Desempeño	Realiza la guía de forma adecuada, desarrollando responsablemente todos los puntos contenidos en la misma.	Lista de chequeo
Evidencias de Producto:	Documento consolidado de acuerdo a lo parámetros orientados por el instructor.	

5. GLOSARIO DE TERMINOS

Máquina eléctrica: es un dispositivo que puede convertir energía mecánica en energía eléctrica o energía eléctrica en energía mecánica

Transformador: dispositivo eléctrico estrechamente relacionado con las máquinas eléctricas. Convierte energía eléctrica ca a un nivel de voltaje a energía eléctrica ca a otro nivel de voltaje.

Campo magnético: Es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos.

4. REFERENTES BILBIOGRAFICOS

Máquinas eléctricas, Stephen Chapman, McGrawHill

http://www.learningaboutelectronics.com/Articulos/Calculadora-de-conversion-de-forma-rectangular-a-polar.php

https://es.wikipedia.org/wiki/Fasor

https://como-funciona.co/un-transformador/

Materiales magnéticos:

http://www1.frm.utn.edu.ar/tecnologiae/apuntes/materiales magneticos.pdf

Curva de magnetización:

https://ikastaroak.birt.eus/edu/argitalpen/backupa/20200331/1920k/es/IEA/E/E04/es_IEA_E04_Contenidos/website_13_curvas_de_magnetizacin_imanacin.html#:~:text=Los%20fabricantes%20de%20los%20materiales,se%20obtiene%20la%20inducci%C3%B3n%20resultante.

Materiales Magnéticos:

https://youtu.be/IXCRmS3R0J8

Relación de transformación:

https://piensa3d.com/que-es-un-transformador-tipos-funcionamiento/

https://es.wikipedia.org/wiki/Transformador

8. CONTROL DEL DOCUMENTO

	Nombre	Cargo	Dependencia	Fecha	
Autor (es)	Andrés Mauricio Vaneg Ariza	as Instructor	Centro de automatización industrial	Noviembre 2020	

8. CONTROL DE CAMBIOS (diligenciar únicamente si realiza ajustes a la guía)

	Nombre	Cargo	Dependencia	Fecha	Razón del Cambio
Autor (es)					