Example Project 2 Group 1

Lim Li Ping Joey, U2321331C Vinodhithaa, U2322818J Murugan Rithika U2323063E

Project 2

To investigate how the choice of **Graph Representation** and **Priority Queue** data structures affect the **time complexity** of **Dijkstra's Algorithm**

Adjacency Matrix + Array PQ

VS

Adjacency List + Heap PQ

Graphs

- Dijkstra's Algorithm works on Weighted and Directed graphs
- Two datasets:

Sparse Graphs: $|E| \approx |V|$ Dense Graphs: $|E| \approx |V|^2$

- Graphs are connected to make the comparisons meaningful
- There can be bidirectional edges with different weights, but there are no parallel edges between the same pair of (src, dest) vertices

```
# (|V|, |E|)
sparse = []
dense = []
for num_vertices in [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000]:
    sparse.append([num_vertices, int(num_vertices*1.5)])
    dense.append([num_vertices, num_vertices * (num_vertices-1)])
```

```
edges = []
edge set = set()
    for i in range(num_nodes - 1):
        src = i
        dest = i + 1
        weight = random.randint(1, 10000)
        edges.append((src, dest, weight))
        edge_set.add((src, dest))
    while len(edges) < num edges:</pre>
        src = random.randint(0, num_nodes - 1)
        dest = random.randint(0, num_nodes - 1)
        while src == dest or (src.dest) in edge set:
            src = random.randint(0, num_nodes - 1)
            dest = random.randint(0, num nodes - 1)
        weight = random.randint(1, 10000)
        edges.append((src, dest, weight))
        edge set.add((src, dest))
    with open(file_name, 'w') as f:
        for src, dest, weight in edges:
            f.write(f"{src} {dest} {weight}\n")
```

Graphs

Dense $|E|\approx |V|^2$

part (a)

For Adjacency Matrix + Array PQ:

- 1) Code Implementation
- 2) Theoretical Analysis
- 3) Empirical Analysis on Sparse vs Dense Graphs
- 4) Comparison of Big O with Sparse and Dense Graphs

a) Adjacency Matrix as Graph & Array for Priority Queue

```
def dijkstras adjacency matrix and array pq(adj matrix, src):
    print("Running Dijkstra's with Adjacency Matrix + Array")
    key comps = 0 #increment when distance is compared
    distances= []
    pi= []
    S= []
   for in adj matrix[0]:
        distances.append(float("inf"))
        pi.append(None)
        S.append(0)
    distances[src]=0
    V= len(distances) #number of vertices/nodes
    unvisited= len(distances)
```

```
while unvisited>0:
    #select node with smallest current distance
    smallest distance= float("inf")
    index smallest distance=-1
    for index of current node in range(V):
       key comps+=1
        if distances[index of current node] < smallest distance and S[index of current node] == 0:
            smallest_distance= distances[index_of_current_node]
            index smallest distance= index of current node
    if index smallest distance ==-1:
        return distances, key comps #graph is unconnected and there are nodes with infinite distance
   #visit adjacent nodes of node with current smallest distance
    for index of adj node in range(V):
       weight= adj matrix[index_smallest_distance][index_of_adj_node]
        if weight != 0 and S[index of adj node]==0:
            key comps+=1
            new distance= weight + distances[index smallest distance]
            current distance= distances[index of adj node]
            if new distance < current distance:
                distances[index of adj node] = new distance
                pi[index_of_adj_node]= index_smallest_distance #update predecessor
   S[index smallest distance]=1 #all adjacent nodes have been visited
    unvisited-=1
return distances, key comps
```

Overall Time Complexity: $O(V^2)$

Sparse Graph

Theoretical Empirical

50

4 400 160000

2 200

Eticai	Lilipilicai		
V^2		٧	Number of Comparisons
2500	0	50	2550
10000	1	100	10106
40000	2	200	40211
90000	3	300	90316
	4	400	160433

Theoretical number of comparisons: $O(V^2)$

Dense Graph

Theoretical number of comparisons: $O(V^2)$

```
#visit adjacent nodes of node with current smallest distance
for index of adj node in range(V):
   weight= adj matrix[index_smallest_distance][index_of_adj_node]
    if weight != 0 and S[index of adj node]==0:
        key comps+=1
        new_distance= weight + distances[index_smallest_distance]
        current distance= distances[index of adj node]
        if new distance < current distance:
            distances[index of adj node] = new distance
            pi[index of adj node] = index smallest distance #update predecessor
S[index smallest distance]=1 #all adjacent nodes have been visited
unvisited-=1
```

Dense graphs have more edges so weight != 0 and key_comps is incremented more number of times

```
while unvisited>0:
    #select node with smallest current distance
    smallest distance= float("inf")
    index smallest distance=-1
    for index of current node in range(V):
       key comps+=1
        if distances[index of current node] < smallest distance and S[index of current node] == 0:
            smallest_distance= distances[index_of_current_node]
            index smallest distance= index of current node
   if index smallest distance ==-1:
        return distances, key comps #graph is unconnected and there are nodes with infinite distance
   #visit adjacent nodes of node with current smallest distance
   for index of adj node in range(V):
       weight= adj_matrix[index_smallest_distance][index_of_adj_node]
        if weight != 0 and S[index of adj node]==0:
            key comps+=1
            new distance= weight + distances[index smallest distance]
            current distance= distances[index of adj node]
            if new distance < current distance:</pre>
                distances[index of adj node] = new distance
                pi[index_of_adj_node]= index_smallest_distance #update predecessor
   S[index smallest distance]=1 #all adjacent nodes have been visited
   unvisited-=1
return distances, key comps
```

Upper $O(2V^2)$

Dense Graph

Theoretical number of comparisons: $O(2V^2)$

part (b)

For Adjacency List + Heap PQ:

- 1) Code Implementation
- 2) Theoretical Analysis
- 3) Empirical Analysis on Sparse vs Dense Graphs
- 4) Comparison of Big O with Sparse and Dense Graphs

b) Code Impl - HeapItem

```
class HeapItem:
    comparison_count = 0 # Class-level variable to count comparisons
    def __init__(self, priority, vertex):
        self.priority = priority
        self.vertex = vertex
    def __lt__(self, other):
        """Override < operator for heap comparisons and count
them."""HeapItem.comparison_count += 1
        return self.priority < other.priority</pre>
    def __eq__(self, other):
        return self.priority == other.priority
```

b) Code Impl - Initialisation

```
def dijkstras_adjacency_list_and_heap_pq(adj_list, src):
    HeapItem.comparison_count = 0
    key comps = 0
    distances = []
    pi = []
    S = []
    for _ in adj_list.keys():
        distances.append(float("inf"))
        pi.append(None)
        S.append(0)
    distances[src] = 0
    heap_pq = []
    for vertex in adj list.keys():
        heapq.heappush(heap_pq, HeapItem(distances[vertex],
vertex))
```

b) Theoretical Analysis

Adjacency List as Graph + Heap for Priority Queue

```
def dijkstras_adjacency_list_and_heap_pq(adj_list, src):
    HeapItem.comparison count = 0
    key comps = 0
    distances = []
    pi = []
    S = []
    for _ in adj_list.keys():
        distances.append(float("inf"))
        pi.append(None)
        S.append(0)
    distances[src] = 0 -----
    heap pq = []
    for vertex in adj list.keys():
        heapq.heappush(heap pg, HeapItem(distances[vertex],
vertex))
```

b) Code Impl - Main Part of Dijkstra's

```
• • •
    while heap_pq:
            heapItem = heapq.heappop(heap pq)
            current dist = heapItem.priority
            u = heapItem.vertex
            if (current dist > distances[u]):
            S[u] = 1
            for (v,weight) in adj list[u]:
                key_comps += 1
                if S[v] == 0 and distances[v] > current dist +
weight:
                    distances[v] = current dist + weight
                    pi[v] = u # predecessor
                    heapq.heappush(heap_pq, HeapItem(distances[v],
v))
        total_cmps = HeapItem.comparison_count + key_comps
        return distances, total_cmps
```

b) Theoretical Analysis

```
• • •
    while heap_pq:
            heapItem = heapq.heappop(heap_pq)
            current_dist = heapItem.priority
            u = heapItem.vertex
            if (current_dist > distances[u]):
            S[u] = 1
            for (v,weight) in adj list[u]:
                key comps += 1
                                                                                 O(|E| log |V|)
                if S[v] == 0 and distances[v] > current_dist +
weight:
                    distances[v] = current dist + weight
                    pi[v] = u # predecessor
                    heapq.heappush(heap_pq, HeapItem(distances[v],
v))
        total_cmps = HeapItem.comparison_count + key_comps
        return distances, total_cmps
```

Total Time Complexity:

 $O(|V|)+O(|V|\log|V|)+O(|V|\log|V|)+O(|E|\log|V|)=O((|V|+|E|)\log|V|)$

Hence, the overall time complexity is $O((|V|+|E|)\log|V|)$

Sparse and Dense graphs

Sparse Graph:

 A graph is considered sparse when the number of edges |E| is roughly proportional to the number of vertices |V|, i.e., |E|≈|V|

In a sparse graph, since $|E| \approx |V|$, we can substitute |E| with |V| in the time complexity formula.

$$O((|V|+|V|)\log|V|)=O(2|V|\log|V|)=O(|V|I)$$
og |V|)

For sparse graphs, the time complexity simplifies to:

 $O(|V|\log|V|)$

Dense Graph:

A graph is considered **dense** when the number of edges approaches the maximum possible, i.e., |E|≈|V|²

In a dense graph, the number of edges scales as |V|2, so we substitute |E| with |V|2 in the time complexity formula:

$$O((|V| + |V|^2) \log |V|) = O((|V|^2 \log |V|)$$

For dense graphs, the time complexity becomes:

 $O(|V|^2 \log |V|)$

Split into two tests: No. of Operations and Time Elapsed (ms)

No. of Operations: Relaxation Checks + Heap Cmps

Theoretical Dense vs Empirical Dense

No. of Operations: Relaxation Checks + Heap Cmps

Theoretical Upper Bound: O((|V| + |E|)log|V|)

Theoretical Sparse vs Empirical Sparse

No. of Operations: Relaxation Checks + Heap Cmps

Theoretical Upper Bound: O((|V|+|E|)log|V|)

Why is there a **discrepancy**?

$$O((|V| + |E|)log|V|)$$

b) Theoretically Modelling our Empirical Data

O((|V| + |E|)log|V|) shows the upper bound;

the worst case for Adjacency List + Heap Dijkstra's Implementation. But how do we model our actual Empirical Data?

- Linear Regression to find $\,c_1,\,c_2$ in

$$c_1|V|log|V| + c_2|E|log|V|$$

By fitting the equation to our Empirical Data using Linear Regression, we can model how the implementation scales

Potential Problem: Overfitting

c1 (V coefficient): 1.0468023425 c2 (E coefficient): 1.5702035137

c) Comparison

Dense graphs for **Adjacency List + Heap** and the **Adjacency Matrix + Array**

Significant difference

Sparse graphs for Adjacency List + Heap and the Adjacency Matrix + Array

Reasons to Still Use an Adjacency Matrix:

- Space constraints are less critical, making the larger memory use acceptable in dense graphs.
- The matrix structure simplifies certain algorithms, especially in dense graphs, where direct edge lookups (O(1)) are more useful.
- When $\mathbf{E} \approx \mathbf{V}^2$ (very dense graphs), the logarithmic overhead of heap operations in the adjacency list makes the matrix still competitive.
- For small graphs, where the number of vertices is relatively limited, the adjacency matrix can be a simpler, more intuitive structure to use.

Conclusion

Criteria	Adjacency Matrix + Array	Adjacency List + Min-Heap
Graph Size Considerations	Smaller graphs, where heap's logarithmic overhead is less significant	Larger graphs, where efficient memory use and speed are more important
Edge Access	Direct edge access, constant-time lookup for edges	Worst-case edge lookup O(V) when a node is connected to all others
Time Complexity	Constant-time edge lookup $(O(1))$ but slower updates for neighbors in the priority queue	Faster overall performance due to lower operational overhead, especially with edge relaxation in larger graphs
Space Efficiency	Uses more space, especially in sparse graphs (stores all possible edges)	More memory-efficient for sparse graphs (stores only existing edges)
Scenarios	When direct edge access is needed and space is not a major concern	When performance (speed) and memory efficiency are crucial for large-scale graphs
Key Takeaway	Competitive in dense graphs or smaller datasets where constant-time edge lookup matters despite space requirements	Ideal for most cases, especially for larger, sparse graphs where speed and memory efficiency are key

Thank you!