AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for verifying whether a trace can be
2	produced by a generator, comprising:
3	receiving a specification for the generator, wherein the generator is a finite
4	state machine that defines a set of inputs and outputs, and wherein the generator
5	contains may contain parametric inputs to model non-determinism;
6	receiving the trace, wherein the trace is a sequence of assignments of non-
7	parametric inputs and outputs for the generator, and wherein the trace does not
8	contain assignments of parametric inputs;
9	using the specification to build a data structure that can be used to
10	determine if a non-parametric input and output are consistent with the current
11	state of the generator; and
12	verifying elements of the trace, wherein verifying a given element involves
13	using the data structure to determine if there exists any parametric input
14	assignment that causes a match between non-parametric inputs and outputs of the
15	generator with the ones specified in the given element of the trace; and
16	if the specification of the generator is sequentially deterministic, and hence
17	does not depend on parametric inputs, translating the generator into a checker and
18	using that checker to verify the trace.

2. (Original) The method of claim 1,

2	wherein the generator is sequentially deterministic, which means that there
3	exists a single next state for each combination of current state, non-parametric
4	input, and output; and
5	wherein using the data structure to determine if there exists any parametric
6	input assignment involves,
7	using the data structure to perform a satisfiability test to
8	determine if there exist any parametric inputs that can match the
9	non-parametric input and output assignment of the generator with
10	the ones of the trace at a current state, and
11	computing a unique next state based on the current state,
12	the non-parametric input and the output.
1	3. (Original) The method of claim 1,
2	wherein the generator is sequentially non-deterministic, which means that
3	the next state can depend on a parametric input, and consequently there can exist
4	more than one next state for some combinations of current state, non-parametric
5	input, and output; and
6	wherein using the data structure to determine if there exists any
7	parametric input assignment involves determining a set of next states;
8	wherein determining the set of next states involves considering all possible
9	parametric inputs, all states in a current set of states, the non-parametric input and
10	the output;
11	wherein if there exists at least one state in the set of next states, the non-
12	parametric input and output are consistent with the generator.
1	4. (Original) The method of claim 3, wherein determining the set of next
2	states involves computing a forward image and constraining the parametric input
3	and output to their assignments in the trace.

1	5. (Original) The method of claim 1, wherein the trace is produced by a
2	simulation of a system under test.
1	6. (Original) The method of claim 1, wherein the data structure is in the
2	form of a binary decision diagram (BDD).
1	7. (Original) The method of claim 1, wherein if for all possible parametric
2	inputs the non-parametric input and output are not consistent with a generator
3	output, the trace is not valid.
1	8 (Canceled).
1	9. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform
3	method for verifying whether a trace can be produced by a generator, comprising:
4	receiving a specification for the generator, wherein the generator is a finite
5	state machine that defines a set of inputs and outputs, and wherein the generator
6	contains may contain parametric inputs to model non-determinism;
7	receiving the trace, wherein the trace is a sequence of assignments of non-
8	parametric inputs and outputs for the generator, and wherein the trace does not
9	contain assignments of parametric inputs;
10	using the specification to build a data structure that can be used to
l 1	determine if a non-parametric input and output are consistent with a parametric
12	input and output for the generator; and
13	verifying elements of the trace, wherein verifying a given element involves
14	using the data structure to determine if there exists any parametric input
15	assignment that causes a match between non-parametric inputs and outputs of the

generator with the ones specified in the given element of the trace; and

17	if the specification of the generator is sequentially deterministic, and hence
18	does not depend on parametric inputs, translating the generator into a checker and
19	using that checker to verify the trace.
1	10. (Original) The computer-readable storage medium of claim 9,
2	wherein the generator is sequentially deterministic, which means that there
3	exists a single next state for each combination of current state, non-parametric
4	input, and output; and
5	wherein using the data structure to determine if there exists any parametric
6	input assignment involves,
7	using the data structure to perform a satisfiability test to
8	determine if there exist any parametric inputs that can match the
9	non-parametric input and output assignment of the generator with
10	the ones of the trace at a current state, and
11	computing a unique next state based on the current state,
12	the non-parametric input and the output.
1	11. (Original) The computer-readable storage medium of claim 9,
2	wherein the generator is sequentially non-deterministic, which means that
3	the next state can depend on a parametric input, and consequently there can exist
4	more than one next state for some combinations of current state, non-parametric
5	input, and output; and
6	wherein using the data structure to determine if there exists any
7	parametric input assignment involves determining a set of next states of a
8	generator;
9	wherein determining the set of next states involves considering all possible
10	parametric inputs all states in a current set of states, the non-parametric input and

11

the output;

12	wherein if there exists at least one state in the set of next states, the non-
13	parametric input and output are consistent with the generator.
1	12. (Original) The computer-readable storage medium of claim 11,
2	wherein determining the set of next states involves computing a forward image
3	and constraining the parametric input and output to their assignments in the trace.
1	13. (Original) The computer-readable storage medium of claim 9, wherein
2	the trace is produced by a simulation of a system under test.
1	14. (Original) The computer-readable storage medium of claim 9, wherein
2	the data structure is in the form of a binary decision diagram (BDD).
1	15. (Original) The computer-readable storage medium of claim 9, wherein
2	if for all possible parametric inputs the non-parametric input and output are not
3	consistent with a generator output, the trace is not valid.
1	16 (Canceled).
1	17. (Currently amended) An apparatus that verifies whether a trace can be
2	produced by a generator, comprising:
3	a receiving mechanism configured to receive a specification for the
4	generator, wherein the generator is a finite state machine that defines a set of
5	inputs and outputs, and wherein the generator contains may contain parametric
6	inputs to model non-determinism;

trace, wherein the trace is a sequence of assignments of non-parametric inputs and

wherein the receiving mechanism is additionally configured to receive the

7

9	outputs for the generator, and wherein the trace does not contain assignments of
10	parametric inputs;
11	a data structure building mechanism configured to use the specification to
12	build a data structure that can be used to determine if a non-parametric input and
13	output are consistent with a parametric input and output for the generator; and
14	a verification mechanism configured to verify elements of the trace,
15	wherein verifying a given element involves using the data structure to determine it
16	there exists any parametric input assignment that causes a match between non-
17	parametric inputs and outputs of the generator with the ones specified in the given
18	element of the trace; and
19	a translation mechanism configured to translate the generator into a
20	checker and use that checker to verify the trace if the specification of the generator
21	is sequentially deterministic, and hence does not depend on parametric inputs.

18. (Original) The apparatus of claim 17,

wherein the generator is sequentially deterministic, which means that there exists a single next state for each combination of current state, non-parametric input, and output; and

wherein while using the data structure to determine if there exists any parametric input assignment, the verification mechanism is configured to,

use the data structure to perform a satisfiability test to
determine if there exist any parametric inputs that can match the
non-parametric input and output assignment of the generator with
the ones of the trace at a current state, and to
compute a unique next state based on the current state, the
non-parametric input and the output.

19. (Original) The apparatus of claim 17,

2	wherein the generator is sequentially non-deterministic, which means that
3	the next state can depend on a parametric input, and consequently there can exist
4	more than one next state for some combinations of current state, non-parametric
5	input, and output; and
6	wherein while using the data structure to determine if there exists any
7	parametric input assignment, the verification mechanism is configured to
8	determine a set of next states of a generator;
9	wherein determining the set of next states involves considering all possible
10	parametric inputs, all states in a current set of states, the non-parametric input and
11	the output;
12	wherein if there exists at least one state in the set of next states, the non-
13	parametric input and output are consistent with the generator.
1	20. (Original) The apparatus of claim 19, wherein while determining the
2	set of next states the verification mechanism is configured to compute a forward
3	image and constraining the parametric input and output to their assignments in the
4	trace.
1	21. (Original) The apparatus of claim 17, wherein the trace is produced by
2	a simulation of a system under test.

22. (Original) The apparatus of claim 17, wherein the data structure is in

2 parametric inputs the non-parametric input and output are not consistent with a

3 generator output, the trace is not valid.

the form of a binary decision diagram (BDD).

1

2

24 (Canceled).

1	25. (Currently amended) A means for verifying whether a trace can be
2	produced by a generator, comprising:
3	a receiving means for receiving a specification for the generator, wherein
4	the generator is a finite state machine that defines a set of inputs and outputs, and
5	wherein the generator contains may contain parametric inputs to model non-
6	determinism;
7	wherein the receiving means is additionally configured to receive the trace,
8	wherein the trace is a sequence of assignments of non-parametric inputs and
9	outputs for the generator, and wherein the trace does not contain assignments of
10	parametric inputs;
11	a data structure building means configured to use the specification to build
12	a data structure that can be used to determine if a non-parametric input and output
13	are consistent with a parametric input and output for the generator; and
14	a verification means configured to verify elements of the trace, wherein
15	verifying a given element involves using the data structure to determine if there
16	exists any parametric input assignment that causes a match between non-
17	parametric inputs and outputs of the generator with the ones specified in the given
18	element of the trace; and
19	a translation means configured to translate the generator into a checker and
20	use that checker to verify the trace if the specification of the generator is
21	sequentially deterministic, and hence does not depend on parametric inputs.