CS 181 Homework 4

Charles Zhang, 305-413-659

April 26, 2021

Problem 1

Path 1: $q_{start} \rightarrow ab^* \rightarrow q_1 \rightarrow a^* \rightarrow q_2 \rightarrow (aa)^* \rightarrow q_1 \rightarrow ab \cup ba \rightarrow q_{accept}$

- ab* matches aaab
- a* matches aaab
- $(aa)^*$ matches ϵ
- $ab \cup ba$ matches aaab

Path 2: $q_{start} \rightarrow ab^* \rightarrow q_1 \rightarrow a^* \rightarrow q_2 \rightarrow b^* \rightarrow q_{accept}$

- ab[⋆] matches aaab
- a* matches aaab
- b^* matches aaab

Problem 2

This CFG generates a language that has exactly two '#' symbols. Each of these '#' symbols can have 0 or more '0' symbols to its left and 0 or more '0' symbols to its right. The number of '0' symbols to the left and right of each '#' are independent of one another.

Problem 3

Proof by construction:

- \exists NFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts A
- Goal: construct a new NFA $M' \ni M'$ accepts A^R
- For some string $w = w_1 w_2 ... w_n$ in A, an accepting computation begins at q_0 , using symbols $w_1 w_2 ... w_n$ and the transition function δ to transition to other states $q_i \in Q$ until the machine ends up in some $q_x \ni q_x \in F$
- Let M' = (Q', Σ, δ', q'₀, F') such that:
 Q' ≡ Q ∪ {q'₀}
 δ'(q'₀, ε) ≡ F
 δ'(j, x) ≡ {i | δ(i, x) = j} ∀ p, q ∈ Q, x ∈ Σ
 F' ≡ {q₀}
- Claim: M' accepts A^R

Justification:

The basic idea of modeling M' is that we use the same NFA as M, but traverse it backwards. This should allow us to essentially accept strings of the form $w \in A$ in reverse order, which is the definition of A^R , according to the problem statement. We do this by defining δ' such that, for any transition from state i to state j using symbol x in M, there is a corresponding transition from state j to state i using symbol x in M'. We then account for the fact that M may have multiple accept states by adding a ϵ transition from a new state (and start state) q'_0 to each of the accept states of M. Finally, we designate the start state of M, q_0 , as the only accept state of M', completing the idea that a string w' must traverse each of M's states in reverse to be accepted by M'.

Problem 4

 $G = (V, \Sigma, R, S)$, with $V = \{S, M, D, P, K, T\}$ and R = the rule set below.

$$S \to M \mid D$$

$$M \to aMa \mid bMb \mid cMc \mid \#K\#$$

$$D \to P\#K$$

$$P \to TTPT \mid \#$$

$$K \to aK \mid bK \mid cK \mid \epsilon$$

$$T \to a \mid b \mid c$$

Justification:

This CFG splits the CFL into two cases: languages that satisfy $z = x^R$ and languages that satisfy |y| = 2|x|. We handle the reverse case using the R rule, recursively adding matching symbols in the language to either side of R, modelling how x mirrors z. We then end this recursion by filling in the # symbols and K, which acts as a variable that represents $y \in \Sigma^*$. We handle the "doubling" case by using the P rule, which recursively adds twice as many T variables (which are just a single terminal from the alphabet) to the left side of P as the right side. This models x being twice as long as y. P finishes recursion with the # separator. Finally, the rule is concluded using the D rule to combine P, the # separator, and the K rule to allow $z \in \Sigma^*$. These two cases are mashed together in the starting rule S.

Problem 5

Proof (by contradiction):

- Assume L_5 is regular
- Let *p* be the pumping length given by the pumping lemma
- Let $w = 0^p 110^p$, noting that $w \in L_5$
- By Sipser's condition 1 of the pumping lemma, we know that w can be split into three parts such that w = abc and for any $i \ge 0$, the string $w' = ab^ic$ is in L_5
- Sipser's condition 3 of the pumping lemma states that, when pumping w, it must be split such that $|ab| \le p$
- Since w begins with p occurrences of 0, condition 3 guarantees that ab is made up entirely of 0s
- Sipser's condition 2 of the pumping lemma states that, when pumping w, it must be split such that $|b| \ge 1$
- Taken together, these conditions imply that b must contain at least one 0, and be made up entirely of 0s, therefore, $b = 0^t$, where $t \ge 1$
- We then pump the substring b using i = 3
- $w' = 0^{p+2t} 110^p$
- |w'| = 2p + 2t + 2
- In order for w' to satisfy L_5 's condition that |x| = |y|, it must be true that $|x| = |y| = \frac{|w'|}{2} = \frac{2p+2t+2}{2} = p+t+1$
- Since $t \ge 1$, it must follow that $p + t + 1 \le p + 2t$
- Therefore, x must be made up of all 0s, as the first p + 2t symbols of w' are 0s
- In other words, #(0, x) = |x|
- For w' to be in L_5 , it must also be true that #(0, y) = |x|
- From the first condition of L_5 , we know that #(0, y) = |y|
- However, this is impossible, as the substring 11 must appear in y
- Thus, Sipser's condition 1 of the pumping lemma is not satisfied, and a contradiction has been found ⇒

 —