

Printed Pages: 4 TCS – 405

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 1071

Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2006-07

THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours] [Total Marks: 100

Note: (1) Attempt **all** questions.

(2) All questions carry equal marks.

- 1 Attempt any two parts of the following:
 - (a) (i) Find the transitive closure R^+ and reflexive and transitive closure R^* of the relation-

$$R = \{(1, 2), (2, 3), (3, 4), (5, 4)\}$$

(ii) Consider the following transition diagram- 6

Test whether the string 110101 is accepted by the finite automata represented by above transition diagram. Show the entire sequence of states traversed.

- (b) Give DFA accepting the following languages 10 over the alphabet $\{0,1\}$ -
 - (i) The set of all strings with three consecutive zeros.
 - (ii) The set of all strings such that every block of 05 consecutive symbols contains at least two zeros.
- (c) Find the equivalence partition and corresponding 10 reduced machine in standard form, for the following machine -

PS	NS,	Z
13	X = 0	X = 1
A	F, 0	B, 1
В	G, 0	A, 1
С	В, 0	C, 1
D	C, 0	B, 1
Е	D, 0	A , 1
F	E, 1	F, 1
G	E, 1	G, 1

where, PS = Present State, NS = Next State Z = Output, X = I/P

- 2 Attempt any two questions:
 - (a) Construct DFA equivalent to the NFA- $\{p, q, r, s\}, \{0, 1\}, \delta, p, \{s\}\}$, where δ is given by

	0	1
p	p,q	p
\boldsymbol{q}	r	r
r	S	_
S	S	S

V-1071]

2

[Contd...

V-10	7 1]	3 [Conto	<i>l</i>
	(e)	What is an ambiguous grammar? Explain with example.	5
		$B \to d$	
		$A \rightarrow b$	
		$A \rightarrow Ab$	
		$S \rightarrow a \ Ac \ Be$	
	()	considering the productions -	-
	(d)	Find parse tree for the expression <u>abbcde</u>	5
	(c)	Explain the procedure to convent a Moore machine into its corresponding Mealy machine, with the help of an example.	5
		"The set of all strings not containing 101 as a substring."	
		language over the alphabet $\{0,1\}$ -	
	(b)	Write regular expression for the following	5
		$10 + (0 + 11)0^*1$	
	\	following regular expression -	
	(a)	Construct finite automata equivalent to	5
3	Atter	mpt any four questions :	
		(ii) $s(rs+s)^*r=rr^*s(rr^*s)^*$	
		$(i) \qquad (r+s)^* = r^* + s^*$	
	(0)	expressions r , s and t	-0
	(c)		10
	(b)	Construct NFA for $(a/b)^+$ and derive DFA through subset construction algorithm.	10

	(f)		5
		that has the productions - $S \rightarrow bA/aB$	
		$A \to bA/aS/a$	
		$B \to aBB/bS/b$	
		Find an equivalent grammar in CNF.	
4	Atte	mpt any two questions:	
	(a)	Define concept and working of a PDA.	10
	(b)	Construct a PDA equivalent to the following grammar-	10
		$S \rightarrow aAA$	
		$A \rightarrow aS/bS/a$	
	(c)		10
		$\left\{a^i\ b^j\ c^k \middle i \neq j \ or \ j \neq k\right\}$	
5	Atter	mpt any four questions:	
	(a)	Define the basic model of a Turing machine.	5
	(b)	Explain the techniques for Turing machines construction.	5
	(c)	Explain Church's thesis.	5
	(d)	Design Turing machine to compute the function $f(n) = n^2$	5
	(e)	Design Turing machine to recognize the language- "The set of strings with an equal no. of 0's and 1's."	5
	(f)	Give recursive definitions for : $n+m$.	5
V-10	71]	4 [12960)]

B.TECH.

THEORY EXAMINATION (SEM–IV) 2016-17 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Explain the following:

 $10 \times 2 = 20$

- (a) Design the DFA that accepts an even number of a's and even number of b's.
- (b) Consider the DFA given below and identify the L accepted by the machine.

- (c) State the pumping lemma theorem for regular languages.
- (d) Convert the FA given below to left linear grammar.

- (e) Check whether the grammar is ambiguous or not. $R-> R+R/RR/R^*/a/b/c$. Obtain the string $w=a+b^*c$
- (f) S->aB/bA A->a/aS/bAA B-> b/bS/aBB. Identify the strings obtained from this grammar.
- (g) Define PDA. Draw the graphical representation for PDA.
- (h) Design a PDA which accepts set of balanced paranthesis ({ { } } }).
- (i) Eliminate unit productions in the grammar. S->A/bb A->B/b B->S/a
- (j) What are checking off symbols?

SECTION - B

2. Attempt any five of the following questions:

 $5 \times 10 = 50$

(a) (i) Convert the NFA- ε to DFA.

(ii) Check with the comparison method for testing equivalence of two FA given

below.

- **(b)** Prove that the compliment, homomorphism and inverse homomorphism, closure of a regular language is regular.
- (c) State and prove kleene's theorem with an example.
- (d) Consider the grammar with the production S->aSS A->b. Compute the string aababbb with the left most and right most derivation. Draw the derivation tree.
- (e) (i) Find out whether the language $L = \{x^n y^n z^n \mid n \ge 1\}$ is context free or not.
 - (ii) Construct a PDA that accepts $L = \{ ww^R \mid w = (a+b)^* \}$
- (f) (i) Convert the following CFG into CNF

$$S \to XY \mid Xn \mid p$$

$$X \rightarrow mX \mid m$$

$$Y \rightarrow Xn \mid o$$

- (ii) Convert the following CFG into CNF $S \rightarrow ASA \mid aB, A \rightarrow B \mid S, B \rightarrow b \mid \epsilon$
- (g) Design a TM to recognize all strings consisting of an odd number of α 's.
- (h) Prove that the halting problem is undecidable.

SECTION - C

Attempt any two of the following questions:

 $2 \times 15 = 30$

3. (a) Minimize the automata given below

(b) Compute the epsilon- closure for the given NFA. Convert it into DFA.

- **4.** (a) Construct PDA to accept $L = \{0^n \ 1^n \mid n \ge 0\}$
 - (b) Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S) \text{ where the productions are } S \rightarrow XS \mid \epsilon, A \rightarrow aXb \mid Ab \mid ab$
- **5.** (a) Prove that single tape machines can simulate multi tape machines.
 - (b) Design a TM to recognize all strings consisting of an odd number of α 's.

B. TECH (SEM IV) THEORY EXAMINATION 2017-18 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Define alphabet, string and language.
- b. Design a regular expression that accepts all the strings for input alphabet {a,b} containing exactly 2 a's.
- c. Design a NFA that accepts all the strings for input alphabet {a,b} containing the substring abba.
- d. Define Chomsky hierarchy.
- e. Is context free language closed under union? If yes, give an example.
- f. Convert NFA into equivalent DFA by taking any suitable example.
- g. Remove useless productions from the given productions: $S \rightarrow AB|ab$, $A \rightarrow aA|B|a$, $B \rightarrow D|E$

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

- a. Define Deterministic Finite Automata (DFA) and design a DFA that accepts the binary number whose equivalent is divisible by 5.
- b. State recursive definition of regular expression and construct a regular expression corresponding to the state transition diagram as shown in Fig.1

Fig.1

c. Reduce the given grammar $G=(\{S,A,B\},\{a,b\},P,S)$ to Chomsky Normal Form. Where P is defined as:

$$S \rightarrow bA \mid aB$$

 $A \rightarrow bAA \mid aS \mid a$
 $B \rightarrow aBB \mid bS \mid b$

- d. What is Push Down Automata (PDA)? Design the PDA for the language $L = \{wcw^R \mid w \in \{a,b\}^*\}$
- e. Define Turing Machine (TM). Construct the TM for the language $L = \{a^nb^n \mid n>0\}$.

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Describe Mealy and Moore machines with example. Convert the given Mealy machine as shown in Fig. 2 into Moore Machine.

Fig. 2

(b) Construct the minimum state automata equivalent to DFA described by Fig. 3

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) State Pumping Lemma for regular sets. Show that the set $L=\{a^p|\ p \text{ is a prime}\}$ is not regular.
- (b) Discuss closure properties i.e. concatenation, union, intersection, complement of regular languages.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss inherent ambiguity of context free languages with suitable example. Construct the context free grammar that accepts language $L=\{a^ib^jc^k|\ i=j\ or\ j=k;\ i,j,k\ are\ positive\ integers\}.$
- (b) Define parse tree. Find parse tree for the string *abbcde* considering the productions-

S→aAcBe

A→Ab

A→b

 $B \rightarrow d$

Is this ambiguous? Justify.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Differentiate between deterministic PDA (DPDA) and non-deterministic PDA (NPDA) with suitable example. Also discuss two stack PDA with example.

(b) Construct a PDA equivalent to the following CFG productions:

$$S\rightarrow aAA$$
, $A\rightarrow aS \mid bS \mid a$

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Write short notes on the following:
 - (i) Halting problem of Turing machine
 - (ii) Recursive Language
 - (iii) Variants of Turing Machine
- (b) Define Post's Correspondence Problem (PCP) and Modified PCP with its applications. Find any three PCP solutions of the lists $x=(b,bab^3,ba)$ and $y=(b^3,ba,a)$.

Printed Pages: 02

Sub Code: RCS403
Roll No.

B TECH

(SEM-IV) THEORY EXAMINATION 2018-19 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. For the given language $L_1 = \varepsilon$, $L_2 = \{a\}$, $L_3 = \emptyset$. Compute $L_1 L_2^* U L_3^*$.
- b. Design a FA to accept the string that always ends with 101.
- c. Write regular expression for set of all strings such that number of a's divisible by 3 over $\Sigma = \{a,b\}$
- d. Construct the CFG for the Language $L = \{a^{2n}b^n | n \ge 3\}$.
- e. What do you mean by ε -Closure in FA?
- f. Explain Universal TM.
- g. Explain Two Stack PDA.

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

a. Construct a minimum state DFA from given FA

Fig. 1

b. Find the regular expression corresponding to the finite automata given bellow:

Fig. 2

- c. Convert the following CFG to its equivalent GNF: $S \rightarrow AA \mid a, A \rightarrow SS \mid b$.
- d. Design a PDA for the following language: $L = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$
- e. Design a TM for the following language: $L = \{ a^{n+2}b^n \mid n > 0 \}$

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Design FA for ternary number divisible by 5.
- (b) Explain Myhill-Nerode Theorem using suitable example.
- 4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Prove that the following Language $L = \{a^nb^n\}$ is not regular
- (b) Explain the Closure properties of regular expression.
- 5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Design the CFG for the following language
 - i) $L = \{0^m 1^n | m \neq n \& m, n \geq 1\}$
 - ii) $L = \{a^l b^m c^n \mid 1 + m = n \& 1, m \ge 1\}$
- (b) Prove that the following Language $L = \{a^nb^nc^n\}$ is not Context Free.
- 6. Attempt any one part of the following:

 $7 \times 1 = 7$

- (a) Design a PDA for the Language $L = \{WW^R \mid W = \{a,b\}^*\}$
- (b) Generate CFG for the given PDA M is defined as

 $M = (\{q_0, q_1\}, \{0,1\}, \{x, z_0\}, \delta, q_0, z_0, q_1)$ where δ is given as follows:

$$\delta(q_0,1,z_0) = (q_0,xz_0)$$

$$\delta\left(q_0,1,x\right)=\left(q_0,xx\right)$$

$$\delta(q_0,0,x) = (q_0,x)$$

$$\delta(q_0, \varepsilon, x) = (q_1, \varepsilon)$$

$$\delta (q_1, \varepsilon, x) = (q_1, \varepsilon)$$

$$\delta (q_1,0,x) = (q_1,xx)$$

$$\delta \left(q_{1}\text{,}0\text{, }z_{0}\right) =\left(\text{ }q_{1}\text{, }\epsilon \right)$$

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Design a TM for the following language:

$$L = \{ a^n b^n c^n \mid n \ge 1 \}$$

- (b) Write short note on:
 - i) Recursive Language and Recursively Enumerable Language.
 - ii) PCP problem and Modified PCP Problem

				Sub	ject	Coc	ae: 1	VC2	402
Roll No:									

BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1.	Attempt all o	uestions in brief.	2x1	0 = 20
	1 1 1 1 1 1 1 1 1 1 1 1			_

Q.no	Questions	Marks	CO
(a)	Define Alphabet and String in Automata Theory.	2	2
(b)	Give the definition of Deterministic Finite Automaton (DFA).	2	1
(c)	Explain in brief about the Kleen's Theorem.	2	2
(d)	Define Context Free Grammar (CFG).	2	1
(e)	Write the Context Free Grammar (CFG) for regular expression (0+1)*	2	3
(f)	What are Right Linear grammar and Left Linear grammars?	2	3
(g)	Discuss briefly about the Push Down Automata (PDA).	2	4
(h)	What do you mean by Two stack Pushdown Automata?	2	4
(i)	What do you mean by basic Turing Machine Model?	2	5
(j)	What do you understand by the Halting Problem?	2	5

SECTION B

2. Attempt any *three* of the following:

1	0	x3	=	3	Ō
	·	$\Delta \mathbf{v}$		•	v

Printed Page: 1 of 2

Q.no	Questions	Marks	CO
(a)	Explain in detail about the Turing Church's Thesis and Recursively	10	5
	Enumerable languages.		
(b)	Prove that the Compliment, Homomorphism, Inverse Homomorphism,	10	2
	and Closure of a Regular Language is also Regular.		
(c)	Give the Complete description about the Chomsky Hierarchy.	10	3
(d)	Convert the grammar $S \to aAA$, $A \to a aS bS$ to a PDA that accepts	10	4
	the same language by Empty stack.		
(e)	Grammar G is given with the production S->aSS A->b. Compute the	10	1
	string w= aababbb with the Left most and Right most derivation Tree.		

SECTION C

3. Attempt any *one* part of the following:

X	
/ A I	

Q.no	Questions	Marks	CO
(a)	Write short notes on following.	10	5
	i) Turing Machine as Computer of Integer Functions		
	ii) Universal Turing machine		
(b)	Explain in detail about the Pumping Lemma and application of	10	2
	Pumping Lemma for Regular Languages.		

4. Attempt any *one* part of the following:

=10	
	=10

Q.no	Questions	Marks	CO
(a)	Construct a Non Deterministic Finite Automation (NFA) for the	10	1
	language L which accepts all the strings in which the third symbol		
	from right end is always 'a' over $\Sigma = \{a, b\}$.		
(b)	Explain in detail about the Myhill-Nerode theorem using suitable	10	3
	example.		

Roll No: Subject Code: KCS402

BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

5. Attempt any *one* part of the following:

10x1 = 10

Printed Page: 2 of 2

Q.no	Questions	Marks	CO
(a)	Prove that the following Language $L = \{a^nb^n: n \ge 0\}$ is not a regular	10	4
	language.		
(b)	Design a Turing Machine for the language L. Where, $L=\{a^nb^nc^n n\geq 1\}$	10	5

6. Attempt any *one* part of the following: 10x1 = 10

11000111	pt any one part of the following.	IUAI IU	
Q.no	Questions	Marks	CO
(a)	Prove that the Compliment, Homomorphism, Closure and Inverse	10	2
	Homomorphism of a Regular language is also Regular.		
(b)	Minimize the given DFA shown below (Figure A).	10	1
	b 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3

7. Attempt any *one* part of the following:

10x1 = 10

		l 0	*		
Q.no		Questions	N	Aarks	CO
(a)	Explain in	detail about the following.	1	0	4
	i)	Closure properties of Regular Languages			
	ii)	Decidability- Decision properties of Regular Land	nguages		
(b)	Check whe	ether the grammar is ambiguous or not.	1	0	3
	$R \rightarrow R + R/1$	RR/ R*/ a / b / c. Obtain the string $w = a+b*c$			

Printed Pages:02
Paper Id: 238248

Roll No. Sub Code: KCS-402

B.TECH (SEM IV) THEORY EXAMINATION 2022-23 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

 $2 \times 10 = 20$

- (a) What do you understand by grammar?
- (b) What do you mean by ε -Closure in FA?
- (c) State Arden's Theorem.
- (d) State Kleen's Theorem.
- (e) Derive the CFG for (a+b)*.
- (f) Explain Chomsky Hierarchy.
- (g) Explain pumping lemma for context free language.
- (h) Draw the graphical representation for PDA.
- (i) Explain Halting Problem of Turing Machine.
- (j) Explain Linear bounded Automata.

SECTION B

2. Attempt any *three* of the following:

10x3=30

- (a) Construct a DFA for ternary number divisible by 4.
- (b) Determine the FA accepted by the language described by the regular expression: (0+1)*0(0+1)*0(0+1)* over the alphabet $\{0,1\}$ and also mention the accepted language
- (c) Consider the grammar with following production rules:

S→ABD | AC

A→aA | bAa la

B→bbA | aB | AB

C→aCa laD

 $D\rightarrow aD \mid bC$

Convert the above grammar into Chomsky Normal Form.

- (d) Design a PDA for the language $L = \{WW^T \mid W = (a+b)^*\}$
- (e) Write short notes on:
 - i) Church's Thesis
 - ii) Recursive and Recursive Enumerable Language

SECTION C

3. Attempt any *one* part of the following:

10x1=10

(a) Construct a DFA equivalent to the NFA

State/∑	Input						
	A	b					
→ Q0	Q1	Q2					
Q1	Q4	Q3					
Q2	Q4	Q3					
Q3	Q5	Q6					
Q4	Q7	Q6					
Q5	Q3	Q6					
Q6	Q6	Q6					
Q7	Q4	Q6					

4. Attempt any *one* part of the following:

10x1=10

(a) Find the regular expression corresponding to the finite automata given below:

(b) State pumping lemma for regular language. Prove that the language L= {a^p | p is prime} is not regular.

5. Attempt any *one* part of the following:

0x1=10

(a) A context free grammar G is given by the following productions:

 $E \rightarrow E + E | E - E | E * E | E \wedge E | N$

 $N\rightarrow0|1|2|3|4|5|6|7|8|9$

Determine whether the grammar G is ambiguous or not. If ambiguous then construct an unambiguous grammar equivalent to G.

(b) Explain Closure properties of regular language.

6. Attempt any one part of the following:

10x1=10

- (a) Design a two stack PDA for the language $L=\{a^n b^n c^n \mid n>=1\}$
- (b) Generate CFG for the given PDA M is defined as

 $M = (\{q0, q1\}, \{0,1\} \{x, z0\}, \delta, q0, z0, q1)$ where δ is given as follows: δ (q0,1, z0) = (q0, xz0)

 $\delta(q0,1, x) = (q0, xx)$

 $\delta(q0,0, x) = (q0, x)$

 $\delta (q0, \varepsilon, x) = (q1, \varepsilon)$

 $\delta(q_1, \varepsilon, x) = (q_1, \varepsilon)$

 δ (q1,0, x) = (q1, xx)

δ (q1,0, z0) = (q1, ε)

7. Attempt any *one* part of the following:

10x1=10

(a) Design a Turing Machine for the language:

 $L=\{a^n b^n c^n \mid n>=1\}$

- (b) Write short notes on:
 - (i) Variants of Turing Machine
 - (ii) Post Correspondence problem
 - (iii) Universal Turing Machine

	HI HILL	PAPER ID-411411	
--	---------	-----------------	--

					Pr	inte	i Pa	ge: 1	l of 3	j
	 	 		Su	bjec	t Co	de:	BCS	5402	
Roll No:										

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME:	3 HRS
-------	-------

2.

e

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably

SECTION A

		SECTION A
1.	Atte	mpt all questions in brief. $2 \times 7 = 14$
	a.	Give the mathematical definition of DFA. Differentiate between NFA and DFA.
	b.	Construct Deterministic Finite Automata (DFA) to accept string that always ends with 101 over alphabet $\Sigma = \{0,1\}$
	c.	Give regular expressions that represent the language (L), which has all binary strings having two consecutive 0s and two consecutive 1s over the alphabet $\Sigma = \{0, 1\}$.
	đ.	Compute the Language generated by the given CFG $G = (\{S\}, \{a, b\}, P, S\})$ where P is defined by: $\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \epsilon\}$
	e.	Let G be the grammar S → 0B 1A A → 0 0S 1AA B → 1 1S 0BB Determine the leftmost derivation for the string 00110101
	f.	Explain the concept of two stack PDA. Give an example of a language that is

SECTION B

Explain Multi Tape Turing Machine.

language L = $\{a^nb^n \mid n \ge 1\}$.

accepted by two stack PDA but not accepted by normal one stack PDA

Attempt any three of the following:

a Construct a Finite automata (DFA) which accepts all binary numbers whose decimal equivalent is divisible by 4 over Σ = {0, 1}.

b. Compute the regular expression using Arden's Theorem for the following DFA.

c. Write an equivalent left linear grammar from the given right linear grammar.

S→0A f1B

A→0C |1A |0

B→1B |1A |1

C→0 |0A

d. Differentiate between DPDA and NPDA. Construct a PDA that accepts

Differentiate between Deterministic Turing machine and Non-Deterministic

Turing machine. Design a Turing machine for the language L={ww | wε(a +

1 | Paga

Printed Page: 2 of 3 Subject Code: BCS402

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS

M.MARKS: 70

SECTION C

4. Attempt any one part of the following:

 $7 \times 1 = 7$

State Pumping Lemma for Regular Language Show that the given language L={a^p | Where p is:a prime} is not regular.
 Discuss closure properties (i.e. union, concatenation complement, intersection and difference) of regular language. https://www.aktuonline.com

5. Attempt any one part of the following:

 $7 \times 1 = 7$

a.	Reduce the given grammar G = ({S, A, B}, {a, b}, P, S) to Chomsky Normal
	form. Where P is defined by:
	S →bA aB
	$A \rightarrow bAA \mid aS \mid a$
	B →aBB bS b
b.	Design a CFG for the following language:
ļ	(i) $L = \{0^m 1^n m \neq n \& m, n \ge 1\}$
	(ii) L= $\{a^p b^q c^r \mid p+q=r \& p, q>=1\}$

6. Attempt any one part of the following:

 $7 \times 1 = 7$

-		/ 11 - /	
	a.	Construct PDA equivalent to the following CFG $G = (\{S, A\}, \{0,1\}, P, S\}$	Ì
		where P is defined by:	ļ
		S →0S1 A	İ
	,	A →1A0 S s	ł

2 | F . 3 =

									Ш		l
		p	APE	R	ID.	41	14	11			

			 Sul	bject	Co	de:	BCS	402
Roll No:								

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS MLMARKS: 70

b.	Find the equivalent CFG of the following PDA
	$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:
	δ (q0, a, z0) = (q0, az0)
	$\delta(q0, a, a) = (q1, aa)$
	$\delta(q1, a, a) = (q1, \varepsilon)$
	$\delta(q1, \varepsilon, z0) = (q1, \varepsilon)$

7. Attempt any one part of the following:

Printed Page: 3 of 3

- Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb.
- Explain the any two of the following:
 - Universal Turing Machine.
 - Post Correspondence Problem. ii.
 - Recursive and recursively Enumerable Languages

https://www.aktuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से