Dobio sam 1.87 i neznam šta mi je točno, a šta nije, ali možda nekom pomogne.

1.

```
Zadan je sljedeći VHDL kod:
entity Element is port(
   clock, Q, R, S, T: in std_logic;
   Qout: out std_logic);
end Element;
architecture beh of Element is
   signal Qint: std logic;
begin
   process(...)
      variable sel: std logic vector(1 downto 0);
   begin
      if Q='1' then
         Qint<= '0';
      elsif R='0' then
         Qint<= '1';
      elsif falling_edge(clock) then
         sel:=S&T;
         case sel is
           when "00"=> Qint<= '0';
           when "01"=> Qint<= '1';
           when "10"=> Qint<= Qint;
           when "11"=> Qint<= Qint;
           when others=> null;
         end case;
      end if;
      Qout<= Qint;
   end process;
end beh;
Označite sve signale koji čine minimalnu listu osjetljivosti.
    Qint
V
    R
V
    Q
\Box T
    S

    clock
```

```
2.
Zadan je sljedeći VHDL kod:
entity Element is port(
   cp, G, H: in std_logic;
   Qout: out std_logic);
end Element;
architecture beh of Element is
  signal Qint: std logic;
begin
   process(cp, G)
   begin
      if rising_edge(cp) then
         if H= '0' then
            Qint<= not Qint;
         end if;
      end if;
      if G='0' then
         Qint<= '1';
      end if;
   end process;
   Qout<= Qint;
```

end beh;

Označite sve ulaze bistabila koji djeluju sinkrono.

G

H

```
3.
```

```
Zadan je sljedeći VHDL kod:
entity Element is port(
   clock, V, W, X, Y: in std_logic;
   Qout: out std_logic);
end Element;
architecture beh of Element is
   signal Qint: std_logic;
begin
   process(clock, V, W)
      variable sel: std_logic_vector(1 downto 0);
   begin
      if V='1' then
         Qint<= '0';
      elsif W='0' then
         Qint<= '1';
      elsif falling edge(clock) then
         sel:=X&Y;
         case sel is
           when "00"=> Qint<= '0';
           when "01"=> Qint<= Qint;
           when "10"=> Qint<= '0';
           when "11"=> Qint<= '0';
           when others=> null;
         end case;
      end if;
   end process;
   Qout<= Qint;
end beh;
Označite asinkroni ulaz najvišeg prioriteta.
    W
\circ
   X
\circ Y
V
```

```
4.
```

```
Zadan je sljedeći VHDL kod:
entity Element is port(
   clock, F, G, H: in std_logic;
   Qout: out std_logic);
end Element;
architecture beh of Element is
   signal Qint: std logic;
begin
   process(clock, F, G)
   begin
      if F='0' then
          Qint<= '1';
      elsif G='0' then
          Qint<= '1';
      elsif rising_edge(clock) then if H= '0' then
             Qint<= not Qint;
          end if;
      end if;
   end process;
   Qout<= Qint;
end beh;
Na što djeluje ulaz F?
    na padajući brid
    na logičku razinu 0
    na rastući brid
    na logičku razinu 1
```

5. Stroj s konačnim brojem stanja zadan je tablicom u nastavku. Stroj ima jedan jednobitni ulaz, te jedan 3-bitni izlaz.

Trenutno stanje	Pobuda U	Sljedeće stanje	Izlaz
S2	0	S4	2
S2	1	S3	3
S5	0	S3	4
S5	1	S3	5
S0	0	S5	0
S0	1	S5	7
S1	0	S6	2
S1	1	S5	0
S3	0	S6	0
S3	1	S1	2
S4	0	S2	0
S4	1	S6	7
S7	0	S2	2
S7	1	S7	4
S6	0	S2	4
S6	1	S0	5

Za realizaciju tog stroja na raspolaganju su 3 JK bistabila. Pri tome se svako stanje kodira prema tablici prikazanoj u nastavku.

1		1	5
Stanje	Kod		
	stanja		
	Q2	Q1	Q 0
S0	0	1	0
S1	0	1	1
S2	0	0	0
S 3	1	0	0
S4	1	0	1
S5	0	0	1
S 6	1	1	1
S7	1	1	0

Projektirajte taj sklop uporabom zadanih bistabila. Nije dozvoljeno obavljati minimizaciju broja stanja stroja (naime, iako se ovo uobičajeno čini prilikom projektiranja, za potrebe strojnog ocjenjivanja u ovom se zadatku ne smije). U polja za unos rješenja za svaki ulaz bistabila, te za svaki izlaz stroja unesite minimizirani algebarski zapis funkcije. Prilikom unosa algebarskog oblika za stanja bistabila koristiti oznake Qj (gdje je j broj bistabila; npr. Q2), odnosno U za pobudu. Primjer jednog takvog rješenja:

Q2 and not Q1 and U or not Q0 and not U. Prilikom očitavanja izlaza stroja bit izlaza O0 promatran je kao bit najmanje težine.

B2.J	not Q1 or (Q0 and not U)
B2.K	(Q1 and Q0) or (Q1 and not U) or (Q0 and not U) or (not Q1 and not Q0 and U)
B1.J	(Q2 and U) or (Q2 and not Q0)
B1.K	(Q2 and not U) or (not Q2 and U) or (not Q0 and not U)
B0.J	(Q2 and not Q1) or (not Q2 and Q1) or (not Q1 and not U)
B0.K	(Q2 and Q1) or (Q2 and not U) or (not Q2 and not Q1)
O2 [(Q2 and Q1 and Q0) or (Q2 and Q0 and U) or (Q1 and not Q0 and U) or (not Q2 and
O1 [(Q2 and not Q1 and U) or (not Q2 and not Q0 and U) or (not Q2 and not Q1 and not
O0 [(Q2 and Q0 and U) or (not Q1 and Q0 and U) or (not Q2 and not Q0 and U)

6. Stroj s konačnim brojem stanja zadan je tablicom u nastavku. Stroj ima jedan 1-bitni ulaz, te jedan 1-bitni izlaz.

Trenutno stanje	Pobuda U	Sljedeće stanje	Izlaz
S4	0	S5	0
S4	1	S5	0
S6	0	S2	1
S6	1	S3	0
S0	0	S3	0
S0	1	S3	0
S2	0	S6	0
S2	1	S4	1
S1	0	S6	1
S1	1	S6	0
S7	0	S5	1
S7	1	S1	0
S3	0	S7	0
S3	1	S3	0
S5	0	S6	0
S5	1	S4	1

Provjerite je li zadani stroj s konačnim brojem stanja Mealyjev ili Mooreov? Dobro razmislite o vašem odgovoru!

- O Stroj s konačnim brojem stanja je Mealyjev, ali mu izlaz ne ovisi o trenutnim ulazima
- O Stroj s konačnim brojem stanja je Mooreov, ali mu izlaz ovisi i o trenutnim ulazima
- O Stroj s konačnim brojem stanja je Mooreov
- Stroj s konačnim brojem stanja je Mealyjev

7. Permanentna memorija je zadana slikom.

Očitajte sadržaj memorije po lokacijama. U polja za unos rješenja potrebno je unijeti vrijednost memorijske lokacije u heksadekadskom obliku (kao dvije heksadekadske znamenke); npr. E8 ili 2F. Pri tome bit i[0] tretirajte kao bit najveće težine.

T 1	
Lokacija ₀	22
Lokacija 1	09
Lokacija 7	9C
Lokacija ₃	DF
Lokacija 4	11
Lokacija ₅	4B
Lokacija 6	E8
Lokacija	55

Zadana je uređena n-torka P=(9, 2, 15, 8, 15, 15, 9, 10, 9, 13, 15, 11, 11, 0, 3, 8). Funkcija F(i) vraća i-ti element od P (npr. F(1) = 2). Projektirati sklop koji ostvaruje ovu funkciju. Na raspolaganju je ispisna memorija 8x8 te 4 multipleksora 2x1, spojenih prema slici. Prikazati sadržaj memorije po lokacijama, u heksadekadskom obliku.

Važna napomena: U svaki redak unijeti odgovarajuću vrijednost memorijske lokacije prikazane kao dvoznamenkasti heksadekadski broj. Primjerice, ako je D7...D0 = 10110001, tada je potrebno upisati B1. Unos nedvoznamenkastih brojeva neće biti prihvaćen.

9.

Zadana je funkcija $f(A,B,C,D)=m(1,\,2,\,3,\,6,\,7,\,8,\,10,\,11,\,12,\,13,\,15)$. Koliko ta funkcija ima **primarnih implikanata/minimalnih oblika**?

- O 4/1
- © 15/3
- 8/2
- © 2/3

10.

Prilikom minimizacije Mooreovog stroja s konačnim brojem stanja, u nekom koraku analiziraju se dva stanja: S2 i S3. Dio tablice koji se odnosi na ta dva stanja prikazan je u nastavku.

Trenutno stanje Pobuda Sljedeće stanje Trenutni izlaz

S2	0	S 8	0
S2	1	S 6	0
S 3	0	S 8	0
S3	1	S 6	0

Što možemo sa sigurnošću zaključiti o ta dva stanja na temelju ovdje prikazanih podataka?

- stanja su možda ekvivalentna
- stanja nisu ekvivalentna
- O stanja su ekvivalentna

11. Na raspolaganju je 4-ulazni LUT s D bistabilom, prikazan slikom. Programirati taj bistabil tako da se dobije bistabil čija je funkcija opisana sljedećom tablicom.

_	_	_	
			Qn+1
0	0	0	not Qn
0	0	1	Qn
0	1	0	not Qn
0	1	1	Qn
1	0	0	Qn
1	0	1	Qn
1	1	0	Qn
1	1	1	not Qn

LUT_0 1
LUT_1 0
LUT_2 1
LUT_3 0
LUT_4 0
LUT_5 0
LUT_6 0

LUT_7	1
LUT_8	0
LUT_9	1
LUT_10	0
LUT_11	1
LUT_12	1
LUT_13	1
LUT_14 [1
LUT_15	0

Važna napomena: U svako polje za unos treba unijeti samo vrijednost pripadnog ulaza luta za navedenu funkciju. Dozvoljena su dva načina upisa vrijednosti: 1 se tretira jednako kao i true, a 0 je ekvivalentna sa false. Bilo koji oblik redundantnog unosa (dupliciranje nula, proširivanje jedinice sa vodećom nulom) povlači netočnost unosa.

12. PLA strukturom u tehnologiji MOSFET ostvarene su funkcije f1 i f2. O kojim se funkcijama radi?

- of f1=(x1 AND x0) OR (NOT X1 AND NOT X0), f2=(X1 AND NOT X0) OR (NOT X2 AND NOT X1)
- f1=(x2 AND x1) OR (NOT X1 AND NOT X0), f2=(X2 AND NOT X0) OR (NOT X2 AND NOT X1)
- f1=(x2 AND x1) OR (NOT X1 AND NOT X0), f2=(X1 AND NOT X0) OR (NOT X2 AND NOT X1)
- of f1=(x1 AND x0) OR (NOT X1 AND NOT X0), f2=(X2 AND NOT X0) OR (NOT X2 AND NOT X1)

Na raspolaganju je SR-bistabil izveden s 4 sklopa NI i ulazom za signal takta. Taj je bistabil pomoću dva sklopa I pretvoren u JK-bistabil (vidi sliku). Ako sve ulaze ovog bistabila (J,K,CP) trajno spojimo na logičko 1, na izlazu ćemo primijetiti oscilacije. Ukoliko označimo s TL trajanje logičke 0, s TH trajanje logičke 1, a kašnjenje svakog logičkog sklopa iznosi 25ns, odredite iznose vremena TH i TL. Podrazumijevana mjerna jedinica je ns.

Funkcija f(n) svakom n iz skupa {0,...,15} pridružuje broj (n XOR m), gdje je m jednak broju n zarotiranom udesno za jedan bit. Ovu funkciju potrebno je ostvariti permanentnom memorijom kapaciteta 8x8, i multipleksorima, prema slici. Što treba upisati u memoriju? U ponuđenim rješenjima prikazan je sadržaj memorijskih lokacija od 4 do 7, u heksadekadskom zapisu.

- b1, be, 8d, 82
- b2, bd, 8e, 81
- c6, fa, 36, 0a
- f1, fe, cd, c2

Dvoulazni NI sklop modeliran je VHDL-om kao sklop nand2. Potom je napisan strukturni model sklopa sklop1. Sučelje sklopa nand2 te model sklopa sklop1 prikazani su u nastavku.

```
ENTITY nand2 IS

PORT (

a : OUT std_logic;

b,c : IN std_logic);

END sklop1;

ARCHITECTURE ar OF sklop1 IS

SIGNAL i : std_logic;

BEGIN

s1: ENTITY work.nand2 PORT MAP (b<=i,c<=e,a<=f);

s2: ENTITY work.nand2 PORT MAP (i,e,d);

END ar;
```

Ponašajni opis istovjetan opisu "ar" u tijelu bloka ARCHITECTURE sadržava sljedeći izraz:

```
f <= NOT (d AND e) AND e;

f <= NOT e OR d;

f <= NOT d AND NOT e;</pre>
```

 $f \le d OR e$;