KOSHA GUIDE D - 58 - 2016

용융탄산염형 연료전지 설계 및 설치에 관한 기술지침

2016. 12

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한국산업안전보건공단 이융희
- 제·개정 경과
 - 2016년 11월 화학안전분야 제정위원회 심의(pwwjd)
- 관련규격 및 자료
 - KOSHA GUIDE D-7, (연료전지의 설계 및 취급 안전 기술지침)
- KOSHA GUIDE D-18, (안전밸브 등의 배출용량 산정 및 설치 등에 관한 기술지침)
 - KOSHA GUIDE D-45, (내화구조에 관한 기술지침)
 - KOSHA GUIDE D-54. (화학설비의 압력시험에 관한 기술지침)
 - KOSHA GUIDE E-150, (가스폭발위험장소의 설정에 관한 일반지침)
 - KOSHA GUIDE M-111, (압력용기의 용접설계에 관한 기술지침)
 - KS C IEC 62282-3-100,200,300 (정치형 연료전지 발전시스템-안전, 시험, 설치)
- 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www. kosha.or.kr) 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련 규격 및 자료 등에 관하여 최근 개정 내용이 있는 경우 동 지침에 우선하여 참고하시기 바랍니다.

공표일자 : 2016년 12월 19일

제 정 자 : 한국산업안전보건공단 이사장

D - 58 - 2016

용융탄산염형 연료전지 설계 및 설치에 관한 기술지침

1. 목 적

이 지침은 용융탄산염형 연료전지의 설계 및 설치 시에 고려하여야 할 위험요소를 파악하고, 이를 제거하기 위한 기술적 사항을 정하는데 목적이 있다.

2. 적용범위

이 지침은 신재생에너지 발전용 용융탄산염연료전지발전기와 보조설비의 설계 및 설치에 적용하며, KOSHA GUIDE D-7(연료전지의 설계 및 취급 안전 기술지침) 참조를 하였다.

3. 용어의 정의

- 이 지침에서 사용되는 용어의 정의는 다음과 같다.
- (1) "연료전지(Fuel Cell)"란 연료와 산소(대기중의 공기 사용)의 전기화학반응으로부터 전기를 생산하는 장치를 말하며, 작동온도와 전해질(Electrolyte)에 따라 연료전지를 구분한다.
- (2) "용융탄산염형 연료전지(Molten Carbonate Fuel Cell,)"란 알칼리 탄산염 혼합물을 전해질로 사용하는 내부개질 정치형 발전기(이하 MCFC라 한다)이다.
- (3) "MBOP(Mechanical Balance Of Plant)"란 연료와 공기를 스택에 공급하는 기계적 장치를 통칭하여 말한다.
- (4) "EBOP(Electrical Balance Of Plant)"란 스택에서 발생된 직류전기를 교류로 변환하여 공급하는 전기적 장치를 통칭하여 말한다.
- (5) "모듈(Module)"이란 연료와 산소가 만나 전기화학반응이 일어나는 직류(DC) 전기를 생산하는 설비를 말한다.
- (6) "스택(Stack)"이란 원하는 출력을 내기 위해 Cell을 여러 장 적층한 것을 말한다.
- (7) "보조기기(Assistant equipment)"란 연료전지 발전을 위해 주기기 외 추가적으로 필 요한 각종 보조설비들을 말한다.
- (8) "애노드(Anode)"란 Cell 구성요소의 하나로 연료가 공급되는 곳을 말한다.

D - 58 - 2016

- (9) "캐소드(Cathode)"란 Cell 구성요소로 공기가 공급되는 곳을 말한다.
- (10) "분산형전원"이란 중앙급전 전원과 구분되는 것으로서 전력소비지역 부근에 분산하여 배치 가능한 전원(상용전원의 정전시에만 사용하는 비상용 예비전원을 제외한다)을 말하며, 신재생에너지 발전설비, 전기저장장치 등을 포함한다.
- (11) "계통연계(Grid Connect Mode)"란 분산형전원을 송전사업자나 배전사업자의 전력 계통에 접속하는 것을 말한다.
- (12) "사용전검사(Examination application form before use)"란 사업용 및 자가용 전기설비의 안전성 확보를 위하여 전기사업법에 의한 전기설비기술기준의 판단기준으로 수행하는 검사를 말한다.
- (13) "단독운전(Grid Independent Mode)"이란 연료전지와 전력계통의 전원과 전기적으로 분리된 상태에서 분산형전원에 의해서만 가압되는 상태를 말한다.

4. MCFC의 발전원리

4.1 연료전지 화학반응

- (1) 스택에서는 각각의 내부개질 연료전지가 연료 내 탄화수소의 화학에너지를 직류전기 와 열로 변환시키며, 스택 모듈에 의해 생성된 직류전기를 교류전기로 변환하여 국내 전력망에 연계한다.
- (2) 애노드에 연료를, 캐소드에 산소를 공급하여 최종적으로는 산소와 연료가 반응하여 물을 생성하고 애노드에서 전자를 방출하고 그 전자는 외부회로를 통해 캐소드로 이동한다.
- (3) 화학반응식은 열. 물 전기분해 역반응으로 다음 [그림-1]와 같다.

전체반응

Anode : $H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^{-}$

Cathode : $1/2 O_2 + CO_2 + 2e^- \rightarrow CO_3^{2-}$

Total : $H_2 + 1/2 O_2 \rightarrow H_2O$

[그림-1] 연료전지 반응식

- (4) MCFC 원리는 반응식은 다음과 같다
 - 전체: H₂ + ½O₂ → H₂ O + 전기 + 열

D - 58 - 2016

(5) 음극(연료극)은 수소와 탄산이온이 결합하여 물과 이산화탄소 형성하는 것으로서 전 자는 외부회로를 거쳐 전기에너지가 발생하며 반응식은 다음과 같다.

$$H_2$$
 $+$ CO_3 $^{2-}$ \rightarrow H_2 O $+$ CO_2 $+$ $2e^-$

(6) 양극(공기극)은 산소와 이산화탄소, 전자가 결합하여 탄산이온을 형성하고 탄산이온 은 전해질을 통해 음극으로 이동하며 반응식은 다음과 같다.

$$-\frac{1}{2}O_{2} + CO_{2} + 2e^{-} \rightarrow CO_{3}^{2-}$$

5. MCFC연료전지의 구성

5.1 일반사항

- (1) MCFC연료전지는 산소와 수소의 전기화학반응을 이용해 전력을 생산하는 전력생산 장치로서, 용융탄산염(Molten Carbonate Salt)을 전해질로 하여 550℃~650℃ 내의 고 온과 0.1 MPa 이하의 압력에서 운전되는 연료전지이다.
- (2) 대표적인 연료전지 시스템 구성은 [그림-2]와 같다.

[그림-2] 연료전지 시스템 구성

5.2 모듈(Module)

모듈 내부에 스택이 포함되며, 각 스택에는 직류전기를 생산하는 전기화학전지셀 (Electrochemical Cell)로 구성되어 대형 배터리와 유사하고 개별 셀들로 구성되어 내외부 충격, 운전 중 비상정지시 안전하게 보호되어야 한다.

5.3 MBOP (Mechanical Balance Of Plant)의 구성

- (1) MBOP는 연료, 물, 공기 시스템등으로 구성되어 있다.
- (2) 연료공급부는 탈황기, 예비개질기, 연료차단밸브 등으로 구성되어 있으며, 공기공급

D - 58 - 2016

부에는 블로워와 버너등이 있고, 물공급부에는 수처리 시스템이 있다.

- (3) 전기/제어 시스템을 통해 각 시스템을 자동제어 한다.
- (4) 탈황기(Desulfurizer)는 연료 내에 포함된 부취제(황화합물)를 제거하기 위하여 상온 흡착탈황 방식을 사용하고 있다.
- (5) 가습기(Humidifier)는 연료와 수증기를 혼합하는 믹서부와 개질반응에 필요한 열량을 확보하는 열교환부로 구성되어 있다.
- (6) 예비개질기(Preconverter)는 연료에 에탄 이상의 고차탄화수소(C_2H_6 , C_3H_8 등)를 포함하고 있어, 스택의 운전조건에서는 탄소침적현상(Carbon Deposition)을 방지하기 위하여 탄화수소를 수증기개질반응을 통해 약 $3\sim5\%$ 의 수소로 변화하며 다음 [그림-3]과 [그림-4]와 같다.

Methane reforming reaction
$$CH_4 + H_2O \leftrightarrow CO + 3H_2$$
Water-gas shift reaction $CO + H_2O \leftrightarrow CO_2 + H_2$

Overall reaction $CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$

[그림-3] 메탄개질반응

 $CnHm + nH_2O \rightarrow nCO + (\frac{m}{2} + n)H_2$
 $CO + H_2O \rightarrow H_2 + CO_2$
[그림-4] NG 개질반응

- (7) 수처리 설비(Water Treatment System)은 초순수를 생산하여 공정에 공급하기 위한 설비이다.
- (8) 블로워(Fresh Air Blower)는 전기화학 반응에 필요한 O_2 (공기) 및 CO_2 (이산화탄 소)를 공급하고, 스택 내부 온도를 제어하기 위해 블로워를 필요로 한다.
- (9) 에어히터(Air Heater)는 MCFC연료전지 시스템의 최초 기동시 모듈을 발전가능 온 도까지 승온하고, 저 발전량에서 모듈 온도를 유지하며, 정지시 일정속도로 냉각하기 위해서 사용한다. 시스템의 자가발열 기능이 완료된 이후에는 더 이상 동작하지 않게된다.
- (10) 연료차단밸브는 연료 인입부에는 연료차단밸브 2개가 직렬로 제작되어 가스누출 및 비상정지시 자동차단으로 안전성을 확보한다.

D - 58 - 2016

5.4 EBOP(Electrical Balance Of Plant)의 구성

- (1) EBOP는 직류전기를 교류전기로 변환시켜주는 계통연계 인버터로 출력전압을 계통 전압으로 승압시켜주는 변압기(Transformer)와 계통과 연결하는 개폐장치인 S/G(Switch Gear)로 구성되어 있다.
- (2) PCU(Power Conditioning Unit)는 모듈에서 생산된 직류전기를 교류전기로 변환시키는 장치이며, IGBT(Insulated Gate Bipolar mode Transistor) 스위칭소자를 이용한 3 상 인버터방식을 이용하고 있다.
- (3) 차단기(Switch Gear)는 연료전지내부의 전원공급 및 생산된 전력을 계통으로 송전하기 위한 설비이며, 보호계전요소(누전, 단락, 지락, 과전류, 과전압등)의 기능이 계통이상시 부하차단 한다.

5.5 보조설비의 구성

- (1) 가스히터(Gas Heater)는 연료를 가스정압기로 감압 전 온도보정(상온)을 위한 장치이다.
- (2) 가스정압기는 도시가스를 공급 전 일정한 압력(약 0.14 MPa)으로 조절하는 장치이다.
- (3) 질소공급설비는 가동정지, 비상정지시 퍼지용으로 공급 되어지는 장치이다.
- (4) 열교환기는 연료전지에서 대기방출 되는 폐열회수장치이다.
- (5) 송배전설비는 송배전선로, 변압기, 개폐장치(차단기), 보호계전기, 구내전선로 및 이에 부속하는 장치로서 계통연계에 필요한 전기설비를 말한다.

6. MCFC 설계 및 설치 기준

6.1 일반 안전 요구사항 및 방침

연료전지 발전시스템에 사용되는 물질의 위험요인(화재 및 폭발, 전기충격 등)에 근거하여, 적절한 방법(가연성 혼합물의 형성 방지, 점화원 제거, 폭발 억제 및 봉쇄 이격 관리등)을 사용하여 화재 및 폭발에 대한 위험성을 제거하여야 한다.

6.1.1 표기

연료전지 발전시스템에 대한 공정흐름도(PFD), 공정배관계장도(P&ID), 그리고 각 세부도

D - 58 - 2016

면은 약어와 심볼을 이용하여 간단하고 일목요연하게 작성해야 하며, 공정 또는 지역등을 포함하여 고유의 도면번호를 부여한다.

6.2 MBOP의 설계 및 설치 기준

6.2.1 배관

- (1) 배관 및 관련 접합부의 부품은 비의도적인 배출을 방지할 수 있도록 기능성 및 누출 내구성에 따른 적절한 강도로 설계하여야 한다.
- (2) 배관 및 그의 부품은 다음의 측면을 고려하여야 한다.
- (가) 침전물 트랩 또는 필터를 설치하거나 적절한 지침을 제품의 기술 문서에 제공하여 야 한다.
- (나) 가스를 운송하는데 사용되는 비금속 배관은 잠재적인 과열과 기계적 손상에 대한 보호 하여야 한다.

6.2.2 단열

연료전지 발전시스템의 부품에 부착된 단열 자재와 이의 내부 접합 또는 부착 수단은 아래 항목을 만족해야 한다.

- (1) 기계적 또는 접착성으로 정위치를 유지하여야 한다.
- (2) 아래 항목과 같이 예상되는 부하 및 서비스 동작으로 인한 위치 이동이나 손상에 대하여 보호되어야 한다.
- (가) 절연된 금속과 시스템이 노출되는 대기 및 온도, 절연 시스템 자체의 다양한 부품과 의 화학적 적합성
- (나) 예상되는 열 및 기계적 남용(대기 상태에 의한 손상을 포함)에 대한 절연의 보호
- (다) 열 발생 대상의 표면온도를 제한함으로써 그 근처에 있는 자재의 점화를 방지
- (라) 유지보수 목적을 위한 관, 부품 등에 대한 미래의 접근성
- (3) 정상 운전시에 마주칠 수 있는 모든 공기 속도, 온도 및 유체에 대하여 견딜 수 있어야 한다.
- (4) 필요한 경우 건강 및 안전 위험을 피하기 위해 제조업체는 매뉴얼에 단열 시스템 검사 및 안전 요건을 지정하여 발전기 운전시 근로자를 보호하여야 한다.

6.2.3 제어시스템

D - 58 - 2016

연료전지 발전시스템의 자동제어는 안전하고 신뢰성 있도록 설계 및 제작되어야 하며, 안전장치를 설치하여야 한다.

- (1) 고장을 방지하기 위한 수단은 아래와 같다.
- (가) 연료전지 발전시스템 내의 안전장치는 다음 항목을 충족하여야 한다.
- ① 비상정지 버튼의 각 부문 동작시 발전정지
- ② 연료와 공기혼합 문제로 인한 발전정지와 가스차단밸브 동작
- ③ 가스누출에 의한 가스감지기 동작검사로 인한 발전정지 연료차단밸브 동작
- ④ 화염발생에 의한 화염감지기 동작검사로 인한 발전정지 연료차단밸브 동작
- ⑤ 스택내부의 비정상적인 온도상승/하강에 따른 발전정지 연료차단밸브 동작
- ⑥ 비상 정지로 운전 정지시 연료차단 또는 보호장치 동작
- (나) 관련규격 인증된 기술과 부품의 사용
- (2) 제어시스템은 고장이나 이상 또는 손상이 있는 경우 다음을 고려하여 설계 되어야 한다.
- (가) 일단 정지 명령이 주어지면 연료전지 발전 시스템은 정지 하여야 한다.
- (나) 안전장치는 효과적으로 동작해야 한다.
- (다) 연료전지 발전 시스템은 운전절차에 의한 운전방법을 명문화하여 운전한다.

6.2.4 대기방출

연료전지 발전시스템은 연료 이용 장비의 산출물(수증기)을 외부 대기로 이송시키기 위한 순환 시스템을 공급하거나, 아래 요건들을 만족시키는 배관 시스템으로 설계 하여야 한다.

- (1) 특별히 배출 시스템은 응축수로 인한 부식에 내구성을 갖는 재질로 제작되어야 한다.
- (2) 비금속 재질은 온도 한계, 응축수의 활성에 대한 강도와 내구성에 따라 판단해야 한다.
- (3) 물, 얼음 및 기타 파편이 배기 파이프 내부에 누적되거나 환기 파이프를 방해하지 못하도록 배수와 같은 수단을 제공해야 한다.
- 6.3 EBOP의 설계 및 설치 기준
- 6.3.1 계통연계장치
 - (1) 저압 계통연계시 직류유출방지 변압기의 설치

D - 58 - 2016

분산형전원을 인버터를 이용하여 배전사업자의 저압 전력계통에 연계하는 경우 인버터로 부터 직류가 계통으로 유출되는 것을 방지하기 위하여 상용주파수 변압기(단권변압기를 제외한다)를 설치하여야 한다. 다만, 다음 각 호를 모두 충족하는 경우에는 예외로 한다.

- (가) 인버터의 직류 회로가 비접지인 경우 또는 고주파 변압기를 사용하는 경우
- (나) 인버터의 교류출력에 직류 검출기를 구비하고, 직류 검출시 교류출력을 정지하는 기능을 갖춘 경우

6.3.2 단락전류 제한장치의 설치

연료전지를 계통연계 하는 경우 전력계통의 단락용량이 다른 전기공급자 또는 전기사용 자 차단기의 차단용량 또는 전선의 순시허용전류 등을 상회할 우려가 있을 때는 제한하는 장치의 시설을 설치하여야 하며, 이러한 장치로도 대응할 수 없는 경우에는 그 밖의 대책을 강구하여야 한다.

6.3.3 계통연계용 보호장치의 설치

- (1) 계통연계 중 아래사항과 같이 문제 발생시 자동으로 연료전지를 전력계통으로부터 분리하기 위한 장치 및 전력계통과의 보호협조를 실시하여야 한다.
- (가) 연료전지의 이상 또는 고장
- (나) 연계한 전력계통의 이상 또는 고장시(허용전류, 전압, 주파수 등 적정기준 초과시)
- (다) 단독운전시 연료전지는 단위 발전기별로 계통전력을 차단 후 독립운전 가능
- (2) "(1)"항의 "(가)"에 따라 연계한 전력계통의 이상 또는 고장 발생시 분산형전원의 분리시점은 해당 계통의 개, 폐 시점 이전이어야 하며, 이상 발생 후 해당 계통의 전 압 및 주파수가 정상 범위 내에 들어올 때까지 계통과의 분리상태를 유지하여 계통협 조를 이루어야 한다.

6.3.4 특고압 송전 계통연계시 분산형전원 운전제어 장치의 설치

분산형전원을 송전사업자의 특고압 전력계통에 연계하는 경우 계통안정화 또는 조류억제 등의 이유로 운전제어가 필요할 때에는 그 분산형전원에 필요한 운전제어 장치를 설치하여야 한다.

6.3.5 연계용 변압기 중성점의 접지

D - 58 - 2016

분산형전원을 특고압 전력계통에 연계하는 경우 연계용 변압기 중성점의 접지는 전력계통에 연결되어 있는 다른 전기설비의 정격을 초과하는 과전압을 유발하거나 전력계통의 지락고장 보호협조를 방해하지 않도록 설치하여야 한다.

6.3.6 피뢰설비 및 모듈접지

- (1) 낙뢰에 의한 피해와 근로자의 산업재해를 예방하기 위하여 연료전지 모듈에는 피뢰설비를 설치해야 된다.
- (2) 모듈접지는 제1종접지공사로 각 외함의 접지단자에 지중접지 한다.

6.4 가스폭발 위험장소 구분 및 전기기구 설치

- (1) "KS C IEC 60079-10-1(폭발분위기-제10-1부:폭발위험장소의 구분) 및 "KOSHA GUIDE E-138(위험성평가를 기반으로 하는 천연가스(NG) 사용 보일러실 등의 폭발위험장소 설정에 관한 기술지침)"에 따라 설정한다.
- (2) 연료전지 시스템내에는 NG용 가스 검지 및 경보 장치를 설치하여야 한다.
- (3) 폭발위험장소내는 각 위험장소에 적합한 방폭구조 전기기계·기구를 설치하여야 한다.

6.5 안전밸브

6.5.1 안전밸브 설치 근거

안전밸브 작동시 아래기준에 의거 시스템이 정지하고 대기방출이 되어야 한다.

- (1) KOSHA GUIDE D-18(안전밸브 배출용량산정 및 설치등에 관한 기술지침)
- (2) 산업안전보건기준에 관한 규칙 제261조 (안전밸브 등의 설치)
- (3) 전기설비기술기준의 판단기준 제9장(연료전지설비) 제126조(안전밸브)

6.5.2 MCFC연료전지 및 보조기기 안전밸브 설치 대상은 다음과 같다.

- (1) 탈황기
- (2) 질소공급설비
- (3) 가스정압설비
- (4) 열교환기

D - 58 - 2016

7 비상 운전 및 조치

7.1 비상운전모드(Emergency Shut-down mode)

MCFC연료전지의 비상운전모드는 다음과 같은 MBOP, EBOP 및 기타의 고장 시에 변경되며, 이 경우에는 연료극과 공기극에 질소가스가 자동으로 투입되어 근로자의 안전과 모듈의 열화를 억제하고 안전하게 정지하여야 한다.

- (1) MBOP 고장원인은 다음과 같다.
- (가) 모니터링장치의 오동작이나 고장이 발생했을 경우
- (나) MBOP에서 연료, 물, 공기 제어가 원활하지 않을 경우
- (다) 주기기의 운전제어가 불가능한 경우
- (라) PLC 제어값과 실제값의 차이가 발생하였을 경우
- (2) EBOP 고장원인은 다음과 같다.
- (가) 주요 부품의 고장으로 전력품질이 낮아지는 경우
- (나) 변압기 및 인버터등의 관리온도범위 이탈한 경우
- (3) 모듈 고장원인은 다음과 같다.
- (가) 모듈내부의 온도가 급격히 변화될 경우
- (나) 운전관리인자가 허용범위를 벗어났을 경우
- (4) 기타 고장원인은 다음과 같다.
- (가) 선로외란과 같은 외부환경요인이 설비에 영향을 미칠 경우
- (나) 운전, 정비 조작 중 실수가 발생할 경우

7.2 비상정지 후 점검항목

수동이나 자동으로 비상정지 후에는 이상원인을 확인하기 위해 다음 사항을 점검한다.

- (1) 비상정지(ESD) 버튼 동작 확인
- (2) 연료전지 모듈 내부온도 측정값과 설정값에 대한 온도차 이상 확인
- (3) 예비개질기 온도, 압력, 차압의 측정값과 설정값의 이상 확인
- (4) 가스감지기 동작 확인

KOSHA GUIDE

D - 58 - 2016

- (5) 공기공급장치 이상 확인
- (6) 수증기와 탄소의 비율

7.3 자동 정지(Emergency Shut-down)

MCFC 연료전지 설비는 운전 중 [표-1]과 같이 공정조건에 일정시간 동안 유지되면 알람이 울리고 연료 공급이 자동 중단되어 발전을 중단한다.

[표-1] 이상동작 발생 시 자동 정지

No.	이상상태	자동 조치
1	화염, 가스 누출 및 연기 감지	Shutdown
2	가스감지기 동작 이상 감지	
3	통신이상 감지	
4	대기방출장치(안전밸브, 파열판등) 열림 감지	
5	비상정지(ESD) 릴레이 이상 또는 버튼 눌림 감지	
6	연료량 대비 공기량 낮음 감지	
7	스택모듈 온도, 압력, 차압 이상 감지	
8	가스차단밸브 동작이상 감지	