Лабораторная работа 1

Тема: Приближенные методы решения нелинейных скалярных уравнений.

<u>Задание</u>: Исследование функции f(x) и решение уравнения f(x)=0 (с точностью 10^{-10} вычислить наименьший положительный корень)

- 1. Построить график функции f(x) на некотором промежутке, содержащем ее наименьший положительный корень. Используя график, определить окрестность корня, в которой выполнены достаточные условия сходимости итерационных методов.
- 2. Найти требуемое приближенное решение, используя функцию *root* пакета Mathcad.
- 3. Найти требуемое приближенное решение, используя один из итерационных методов.
- 4. Продемонстрировать отсутствие сходимости используемого метода приближенного решения при ненадлежащем выборе начального приближения или параметра метода.
- 5. Вычислить модуль разности приближенных решений, полученных в пунктах 2 и 3.
- 6. Вычислить оценку погрешности приближенных решений, полученных в пункте 3, используя неравенство (4).
- 7. Сравнить графически результаты, полученные в пунктах 5 и 6. Определить влияние на результат этого сравнения значения системной переменной *TOL*, от которой зависит точность результата, возвращаемого функцией *root*.

Примечание. Точность результата, возвращаемого функцией *root*, зависит от значения *TOL* в том смысле, что условием окончания итерационного цикла, применяемого в *root* для получения результата, является выполнение неравенства |f(x)|< TOL . В некоторых случаях, уменьшая значение переменной *TOL*, можно повысить точность получаемого решения.

Методы приближенного решения

- 1. Метод простых итераций
- 2. Метод Ньютона (метод касательных)
- 3. Упрощенный метод Ньютона.
- 4. Конечно-разностный метод Ньютона
- 5. Метод хорд
- 6. Метод секущих.
- 7. Метод Стеффенсена

Варианты индивидуальных заданий.

	I	1	
N	f(x)	N	f(x)
1	$\ln x - \frac{1}{x^2}$	2	$\ln x - \frac{7}{2 \cdot x + 6}$
3	$\ln x - \frac{7}{2 \cdot x + 6}$	4	$e^{-x}-(x-1)^2$
5	$\frac{1-x}{x} - \pi \cdot \cos(\pi \cdot x)$	6	e ^x +x ² -10
7	$\tan\left(\frac{x}{2}\right) - x^3$	8	$e^x - 2 \cdot (x - 2)^2$
9	$2\tan\left(\frac{\pi x}{8}\right) - x^4$	10	$e^x + 2 \cdot x^2 - 3$
11	$\sqrt{x} - 2 \cdot \sin \left(\frac{\pi}{2} \cdot x \right)$	12	$e^{-x} - \sqrt{x-1}$
13	\sqrt{x} -3cos(x)	14	3sin(2 <i>x</i>)−1.5 <i>x</i>
15	$2 \cdot \ln x - \frac{1}{x}$	16	$2 \cdot e^{-x} - \frac{x}{2}$
17	$x-3\cdot\cos^2 x$	18	$\ln(2x-1)-x^2+1.5$
19	$x^4 - \sqrt{x+1} - 3$	20	$x \cdot \ln x - \frac{3}{x}$
21	$3\tan\left(\frac{3x}{8}\right) - x^2$	22	$e^{-x} - 5(x - 1)^2$
23	$e^{1-x}+x^2-5$	24	$x^3 - 4\cos(x)$
25	2sin(2x)-x ²	26	$x^4 - 5\cos(x)$
27	$e^{x-1}+2x^2-7$	28	$2e^{-x}-(x+1)^2$
29	tan(7.5 x) - 2(x+1)	30	tan (2.5 x) - 5 x

В приложении 1 в качестве примера приведена копия MathCAD-документа, в котором для решения уравнения f(x)=0 использована функция **root** и реализован алгоритм метода простых итераций.

Для получения примерных значений верхней и нижней границ модуля производной f(x) в окрестности корня функции, которые нужны для выбора итерационного параметра и оценки погрешности соответственно, построен график производной.

Построены графики разности приближенных решений и оценки погрешности для решений по методу простых итераций.			