

Vishay Vitramon

Multilayer Ceramic Chip Capacitors

FEATURES

- · General purpose dielectric
- Excellent aging characteristics

- · Ideal for decoupling and filtering
- Ideal for surge suppression and high voltage applications
- Wide range of case sizes, voltage ratings and capacitance values

GENERAL SPECIFICATIONS

NOTE: Electrical characteristics at $+25\,^{\circ}\text{C}$ unless otherwise specified

Capacitance Range: 100 pF to 1.8 µF

Temperature Coefficient of Capacitance (TCC):

X7R: \pm 15 % from - 55 °C to + 125 °C, with 0 Vdc applied

Dissipation Factor (DF):

 \leq 25 V ratings: 3.5 % maximum at 1.0 Vrms and 1 kHz > 25 V ratings: 2.5 % maximum at 1.0 Vrms and 1 kHz

Aging Rate: 1 % maximum per decade

Insulation Resistance (IR):

At + 25 °C and rated voltage 100 000 M Ω minimum or 1000 $\Omega F,$ whichever is less

At + 125 $^{\circ}C$ and rated voltage 10 000 M Ω minimum or 100 $\Omega F,$ whichever is less

Dielectric Withstanding Voltage (DWV):

This is the maximum voltage the capacitors are tested for a 1 to 5 second period and the charge/discharge current does not exceed 50 mA.

 \leq 200 Vdc : DWV at 250 % of rated voltage 500 Vdc: DWV at 200 % of rated voltage 630/1000 Vdc: DWV at 150 % of rated voltage

- 1. DC voltage rating should not be exceeded in application.
- 2. Process Code may be added with up to three digits, used to control non-standard products and/or special requirements.
- 3. Case size designator may be replaced by four digit drawing number used to control non-standard products and/or special requirements

Vishay Vitramon

Multilayer Ceramic Chip Capacitors

X7R	DIELEC	TR	RIC																											
ST	YLE		VJC	402			\	/J06	03				VJ0	805					٧	J12	06			VJ1210 ¹⁾						
EIA	TYPE		04	02				0603	3				08	05						1200	3						1210)		
VOLTA	GE (Vdc)	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500	16	25	50	100	200	500	630	16	25	50	100	200	500	630
CAP.	CAP.																													
121	120 pF	••	••	••	••																									
151	150 pF	••	••	••	••																									
181 221	180 pF 220 pF	••	••	••	••																									
271	270 pF	••	••	••	••																									
331	330 pF	••	••	••	••					••					••															
391	390 pF	••	••	••	••	••	••	••	••	••					••															•
471 561	470 pF 560 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••															•
681	680 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••						•	•	•							·
821	820 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••						•	•	•							•
102	1000 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•						•	•
122 152	1200 pF 1500 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•						•	•
182	1800 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•						•	•
222	2200 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•						•	•
272	2700 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•						•	•
332 392	3300 pF 3900 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•					•	•	•
472	4700 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		•	•	•	•	•	•	•					•	•	•
562	5600 pF	••	••	••		••	••	••	••		••	••	••	••	••		•	•	•	•	•	•						•	•	•
682	6800 pF	••	••	••		••	••	••	••		••	••	••	••	••		•	•	•	•	•	•						•	•	٠
822	8200 pF	••	••	••		••	••	••	••		••	••	••	••	••		•	•	•	•	•	•						•	•	•
103 123	0.010 μF 0.012 μF	••	••			••	••	••	••		••	••	••	••	••		•	•	•	•	•	•		•	•	•	•	•	•	•
153	0.015 µF	••	••			••	••	••	••		••	••	••	••	•		•	•	•	•	•	•		•	•	•	•	•	•	
183	0.018 µF	••				••	••	••	••		••	••	••	••	•		•	•	•	•	•	•		•	•	•	•	•	•	
223	0.022 µF	••				••	••	••	••		••	••	••	••	•		•	•	•	•	•			٠	•	•	•	•	•	
273 333	0.027 μF 0.033 μF	••				••	••	••			••	••	••	••	•		•	•	•	•	•			•	•	•	•	•	•	
393	0.039 μF	-				••	••	••			••	••	••	•			•	•	•	•	•			•	•	•	•	•	•	
473	0.047 µF					••	••	••			••	••	••	•			•	•	•	•	•			•	•	•	•	•		
563	0.056 µF					••	••				••	••	••	•			•	•	•	•	•			٠	•	•	•	•		
683 823	0.068 µF 0.082 µF					••	••				•	•	•	•			•	•	•	•	•			•	•	•	•	•		
104	0.002 µr					••	••				·	•	•	Ť			·	•	•	•	•			·	•	•	•	•		
124	0.12 µF					•					•	•	•				•	•	•	•				•	•	•	•	•		
154	0.15 µF					•					•	•	•				•	•	•	•				•	•	•	•	•		
184 224	0.18 μF 0.22 μF				-	-	-				•	•					•	•	•	•	-			•	•	•	•			
274	0.27 μF										•	•					•	•	•	•				•	•	•	•			
334	0.33 µF										•						•	•	•					•	•	•	•			
394	0.39 µF										•						•	•	•					•	•	•	•			
474 564	0.47 μF 0.56 μF										•						•	•	•	 				•	•	•	•			_
684	0.68 μF																•	Ė						•	•	•				
824	0.82 µF																•							•	•					
105	1.0 µF																•							•	•					
125 155	1.2 μF 1.5 μF																		<u> </u>	<u> </u>										
185	1.8 µF																													
225	2.2 µF																													
275	2.7 µF																													
335 395	3.3 μF 3.9 μF				<u> </u>	-	<u> </u>				 						<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>						<u> </u>
475	3.9 μF 4.7 μF					\vdash					\vdash								<u> </u>											
565	5.6 µF										t						t			I				t						
685	6.5 µF																													

- 1. See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
- Available only in paper tape

Vishay Vitramon

X7R	DIELE	EC.	TR	IC																													
ST	YLE		٧J	180	81)			1	/J18	312 ¹	1)			1	VJ18	325 ¹)		1	/J2	220 ¹)		١	/J2	225)		VJ3640 ¹⁾				
EIA	TYPE			-					18	12					18	25					•					-					-		
(\	TAGE /dc)	50	100	200	500	1000	25	50	100	200	500	1000	25	50	100	200	500	1000	50	100	200	500	25	50	100	200	500	1000	25	50	100	200	500
CAP. CODE	CAP.																																
121	120 pF																																
151 181	150 pF 180 pF																																
221	220 pF																																
271 331	270 pF 330 pF																															-	
391	390 pF																																
471	470 pF					•																											
561 681	560 pF 680 pF					•																											
821	820 pF					•																											
102	1000 pF				•	•						•																					
	1200 pF 1500 pF				•	•						•																					-
182	1800 pF				•	•						•																					
	2200 pF				•	•						•																					
272 332	2700 pF 3300 pF				•	•					•	•																					-
392	3900 pF				•	•					•	•																					
472	4700 pF			•	•	•					•	•																					
	5600 pF 6800 pF			•	•	•					•	•																					
822	8200 pF			•	•	•					•	•																					
	0.010 µF	•	٠	•	•	•				•	•	•																					
	0.012 μF 0.015 μF	•	•	•	•					•	•	•				•	•					•											
183	0.018 µF	•	•	•	•					•	•	•				•	•					•											
	0.022 μF 0.027 μF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•				•											_
	0.027 μF	÷	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•				•	•
393	0.039 µF	•	•	•			•	•	•	•	•		•	•	•	•	•	•				•	•	•	•	•	•	•				•	•
	0.047 μF 0.056 μF	•	•	•			•	•	•	•	•		•	•	•	•	•	•				•	•	•	•	•	•	•				•	•
	0.068 μF	•	•	•			•	•	•	•	•		•	•	•	•	•	Ť				•	·	•	•	•	•	•				•	•
823	0.082 μF	•	•	•			•	•	•	•	•		•	•	•	•	•					•	٠	•	•	•	•	•				•	•
104 124	0.10 μF 0.12 μF	•	•	•			•	•	•	•	•		•	•	•	•	•				•	•	•	•	•	•	•	•				•	•
154	0.12 μF	•	•				•	•	•	•			•	•	•	•	•				•	•	÷	•	•	•	•					•	•
184	0.18 µF	•	•				•	•	•	•			•	•	•	•	•				•		٠	•	•	•	•		٠	•	•	•	•
224 274	0.22 μF 0.27 μF	•					•	•	•	•			•	•	•	•			•	•	•		·	•	•	•	•		•	•	•	•	•
334	0.33 µF						•	•	•	•			•	•	•	•			•	•	•		•	•	•	•	•		•	•	•	•	•
394	0.39 μF						•	•	•	•			•	•	•	•			•	•	•		•	•	•	•			٠	٠	•	•	•
474 564	0.47 μF 0.56 μF					 	•	•	•			 	•	•	•	•			•	•	•		•	•	•	•		 	•	•	•	•	•
684	0.68 µF						•	•	•				•	•	•	•			•	•			•	•	•	•			•	•	•	•	•
824	0.82 µF						•	•	•				•	•	•				•	•			•	•	•	•			•	•	•	•	lacksquare
105 125	1.0 μF 1.2 μF						•	•					•	•	•				•	•			•	•	•	•			•	•	•	•	
155	1.5 µF												•	•	•				•				•	•	•				•	•	•	•	
185 225	1.8 μF 2.2 μF												•	•					•				•	•	•				•	•	•	•	<u> </u>
275	2.2 µF 2.7 µF					 				_		 	•							_			•	•		 		 	•	•	•	\vdash	\vdash
335	3.3 µF																						•						•	•	•		
395 475	3.9 µF 4.7 µF												1										•						•	•	•	<u> </u>	\vdash
565	4.7 μF 5.6 μF																						•						•	•			
685	6.5 µF																												•				

Note

1. See soldering recommendations within this data book, or visit www.vishay.com/doc?45034

EIA STYLE	VISHAY VITRAMON	LENGTH	WIDTH	MAXIMUM THICKNESS	TERMINATION (P)			
EIA STYLE	STYLE DESIGNATION	(L)	(W)	(Т)	(Min.)	(Max.)		
0402	VJ0402	0.040 + 0.004/ - 0.002 [1.00 + 0.10/ - 0.05]	0.020 + 0.004/ - 0.002 [0.50 + 0.10/ - 0.05]	0.024 [0.60]	0.004 [0.10]	0.016 [0.41]		
0603	VJ0603	0.063 ± 0.005 [1.60 ± 0.12]	0.031 ± 0.005 [0.80 ± 0.12]	0.036 [0.92]	0.012 [0.30]	0.018 [0.46]		
-	VJ0612	0.063 ± 0.008 [1.60 ± 0.20]	0.126 ± 0.008 [3.20 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.018 [0.46]		
-	VJ0508	0.049 ± 0.008 [1.25 ± 0.20]	0.079 ± 0.008 $[2.00 \pm 0.20]$	0.042 [1.07]	0.005 [0.13]	0.018 [0.46]		
0805	VJ0805	0.079 ± 0.008 [2.00 ± 0.20]	0.049 ± 0.008 [1.25 ± 0.20]	0.057 [1.45]	0.010 [0.25]	0.028 [0.71]		
1206	VJ1206	0.126 ± 0.008 [3.20 ± 0.20]	0.063 ± 0.008 [1.60 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.028 [0.71]		
1210	VJ1210	0.126 ± 0.008 [3.20 ± 0.20]	0.098 ± 0.008 [2.50 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.028 [0.71]		
-	VJ1808	0.177 ± 0.010 [4.50 ± 0.25]	0.080 ± 0.010 [2.03 ± 0.25]	0.067 [1.68]	0.010 [0.25]	0.030 [0.76]		
1812	VJ1812	0.177 ± 0.010 [4.50 ± 0.25]	0.126 ± 0.008 [3.20 ± 0.20]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]		
1825	VJ1825	0.177 ± 0.010 [4.50 ± 0.25]	0.252 ± 0.010 [6.40 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]		
-	VJ2220	0.220 ± 0.008 [5.59 ± 0.20]	0.200 ± 0.010 [5.08 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]		
-	VJ2225	0.220 ± 0.010 [5.59 ± 0.25]	0.250 ± 0.010 [6.35 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]		
-	VJ3640	0.360 ± 0.015 $[9.14 \pm 0.38]$	0.400 ± 0.015 [10.20 ± 0.38]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]		

Vishay Vitramon

Multilayer Ceramic Chip Capacitors

REEL	REEL DIMENSIONS in inches (millimeters)												
TAPE SIZE	A MAX.	B MIN.	С	D MIN.	N MIN.	W ₁	W ₂ MAX.	W ₃					
8 mm	10.000	0.050	0.512 + 0.50 - 0.20	0.705	1.969	0.331 + 0.059/- 0.0 (8.4 + 1.5/- 0.0)	0.567 (14.4)	Shall					
12 mm	12.992 (330)	0.059 (1.5)		0.795 (20.2)	(50.0)	0.488 + 0.079/- 0.0 (12.4 + 2.0/- 0.0)	0.724 (18.4)	tape width without					
16 mm			(13.0 + 0.50 - 0.20)		2.401 (61.0)	0.646 + 0.0789/- 0.0 (16.4 + 2.0/- 0.0)	0.882 (22.4)	interferance					

- For reels less than 360 mm diameter (A), the most widely used reel diameters are 178 mm ± 2 mm and 330 mm ± 2 mm. Reel diameters ranging from 254 mm to 292 mm also exist. Commonly used hub diameters are 80, 100, 150 and 178 mm.
- Tape with components must wrap around hub without damage.

STANDAR	STANDARD PACKAGING QUANTITIES 1/2)											
			EEL TITIES	11 1/4" AND 13"REEL QUANTITIES								
BODY SIZE	TAPE SIZE	PAPER TAPE PACKAGING CODE "C"/"O" ⁴⁾	PLASTIC TAPE PACKAGING CODE "T"	PAPER TAPE PACKAGING CODE "P"/" " ⁴)	PLASTIC TAPE PACKAGING CODE "R"							
0402 ³⁾	8 mm	5000/10 000	N/A	10 000/30 000	N/A							
0603	8 mm	4000	4000	10 000	N/A							
0805 ⁴⁾	8 mm	3000	3000	10 000	10 000							
1206 ⁵⁾	8 mm	N/A	3000	N/A	10 000							
1210 ⁵⁾	8 mm	N/A	3000	N/A	10 000							
1808	12 mm	N/A	3000	N/A	10 000							
1812	12 mm	N/A	1000	N/A	5000							
1825	12 mm	N/A	1000	N/A	4000							
2220	12 mm	N/A	1000	N/A	4000							
2225	12 mm	N/A	1000	N/A	4000							
3640	16 mm	N/A	500	N/A	2000							

- REFERENCE: EIA Standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- N/A = Not Available, not supported anymore
- Quantity can vary with customer request
 Flamed paper tape code "O" (7" reel) and "I" (11 1/4/13" reel) for AgPd terminated parts (termination code F)
 Packaging "C/P" or "T/R" and quantity can depend from product thickness

EMBOSSED 8, 12 AND 16 MM CARRIER TAPE

Figure 1

CONSTAN	CONSTANT CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)													
TAPE SIZE	D ₀	E ₁	P ₀	P ₂	S ₁ MIN.	T MAX.	T ₁							
8 mm and 12 mm	0.059 + 0.004/- 0.0 (1.50 + 0.10/- 0.0)	0.069 + 0.004 (1.75 ± 0.10)	0.175 + 0.004 (4.0 ± 0.10)	0.079 + 0.002 (2.0 ± 0.05)	0.024 (0.60)	0.024) (0.60)	0.004 (0.10) Max.							

VARIAB	VARIABLE CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)												
TAPE SIZE	B ₁ MAX.	D ₁ MIN.	E ₂ MIN.	F	P ₁	R MIN.	T ₂	W MAX.	A ₀ , B ₀ AND K ₀				
8 mm 2 mm Pitch	0.171 (4.35)	0.177 (0.450)	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.79 ± 0.004 (2.00 ± 0.10)	0.984 (25.0)	0.098 (2.50) Max.	0.327 (8.30)	see note 1				
8 mm 4 mm Pitch	0.171 (4.35)	0.177 (0.450)	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	0.984 (25.0)	0.098 (2.50) Max.	0.327 (8.30)	see note 1				
12 mm 2 mm Pitch	0.323 (8.20)	0.059 (0.150)	0.404 (10.25)	0.217 ± 0.002 (5.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	1.181 (30.0)	0.256 (6.50) Max.	0.484 (12.30)	see note 1				
16 mm 4 mm Pitch	0.476 (12.1)	0.059 (0.150)	0.561 (14.25)	0.295 ± 0.004 (7.50 ± 0.1)	0.157 ± 0.004 (4.00 ± 0.10)	1.181 (30.0)	0.341 (8.0) Max.	0.641 (16.3)	see note 1				

- 1. The cavity defined by Ao, Bo and Ko shall surround the component with sufficient clearance that:
 - a) The component does not protrude above the top surface of the carrier tape.
 - b) The component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - c) Rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm figure 3 & 4.
 - d) Lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12mm wide tape and to 1.0 mm maximum for 16 mm wide tape figure 5.

PAPER 8 MM CARRIER TAPE

CONSTAN	CONSTANT CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)													
TAPE SIZE	D ₀	E ₁	P ₀	P ₂	T ₁ MAX.	G MIN.	R REF.							
8 mm	0.059 + 0.004/- 0.0 (1.50 + 0.10/- 0.0)	0.069 + 0.004 (1.75 ± 0.10)	0.175 + 0.004 (4.0 ± 0.10)	0.079 + 0.002 (2.0 ± 0.05)	0.024 (0.60)	0.029 (0.75)	0.010 (0.25)							

VARIABLE	VARIABLE CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)													
TAPE SIZE	E ₂ MIN.	F	P ₁	W MAX.	A _{0,} B ₀ AND K ₀	Т								
8 mm 2 mm Pitch	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.79 ± 0.004 (2.00 ± 0.10)	0.327 (8.30)	see note 1	1.1 mm maximum for paper base tape								
8 mm 4 mm Pitch	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	0.327 (8.30)	see note 1	1.1 mm maximum for paper base tape								

- 1. The cavity defined by Ao, Bo and Ko shall surround the component with sufficient clearance that:
 - a) The component does not protrude above the top surface of the carrier tape.
 - b) The component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed
 - c) Rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm figure 3 & 4.
 - d) Lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 1 2mm wide tape and to 1.0 mm maximum for 16 mm wide tape figure 5.

MAXIMUM COMPONENT ROTATION FOR PUNCHED AND EMBOSSED CARRIER

Figure 3 Maximum Lateral Movement Carrier Top View

8 & 12 mm carrier: 0.020" (0.050 mm) Maximum

16 mm carrier: 0.039" (1.0 mm) Maximum

8 & 12 mm carrier: 0.020" (0.050 mm) Maximum

16 mm carrier: 0.039" (1.0 mm) Maximum

Figure 4

Maximum Component Rotation Embossed Carrier Side View

Maximum Component Rotation Paper Carrier Side View

MAXIMUM LATERAL MOVEMENT FOR PUNCHED AND EMBOSSED CARRIER

Figure 5 Maximum Component Rotation Top View

BENDING RADIUS FOR PUNCHED EMBOSSED CARRIER

Figure 6

Note 1: The tape with or without components shall pass without damage round "R", see dimensions table

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000
Revision: 08-Apr-05
www.vishay.com