Введение в теорию формальных языков

Лекция 10

Трансляторы

Главным компонентом систем программирования является транслятор.

Все трансляторы подразделяются на два основных класса:

- компиляторы,

- интерпретаторы.

Компилятор

Интерпретатор

Смешанная стратегия трансляции

Проход компилятора – процесс последовательного чтения компилятором данных из внешней памяти, их обработка и помещение результата во внешнюю память, в частности, ОП.

Один проход включает в себя выполнение одного или нескольких этапов компиляции.

Результат промежуточных проходов — внутреннее представление исходной программы, результат последнего прохода — объектная программа.

Схема функционирования компилятора

Описание формального языка

- **Алфавит** задается перечислением конечного непустого множества символов, которые могут быть использованы для записи текстов на каком-либо языке.
- Синтаксис определяется набором правил, устанавливающих, какие комбинации символов алфавита являются правильными текстами на определяемом языке и позволяющих связать с каждым правильным текстом на этом языке некоторую синтаксическую структуру.
- Семантика определяет смысл синтаксически правильных конструкций языка, то, что означает конструкция. Семантика обычно описывается словами. Четкое и точное описание семантики очень важно для транслятора, т.к. его цель получить эквивалентную программу на МЯ (для компилятора), либо точно выполнить указанные действия (для интерпретатора).
- Прагматика формального языка сводится к аргументации того, зачем та или иная конструкция вошла в состав языка.

Основные компоненты компилятора

- Информационные таблицы:
 - служебных идентификаторов
 - констант
 - имен
 - процедур
 - блоков
 - циклов
 - •

Фазы компиляции

- Фаза анализа программ (заполнение таблиц):
 - лексический анализатор (сканер);
 - синтаксический и семантический анализаторы (парсер).
- Построение внутреннего представления программы.
- Фаза оптимизации.
- Фаза синтеза (асс. или маш. код).
- Распределение памяти.
- Генерация команд и маш.-зав. оптимизация.

Теория формальных языков и грамматик. Определения 1.

Цепочка символов в алфавите V - любая конечная последовательность символов этого алфавита.

Пустая цепочка (ε) - цепочка, которая не содержит ни одного символа.

Если α и β - цепочки, то цепочка $\alpha\beta$ - конкатенация цепочек α и β .

Например, если
$$\alpha$$
 = ab и β = cd, то $\alpha\beta$ = abcd, $\alpha\epsilon$ = $\epsilon\alpha$ = $\epsilon\alpha$.

Обращение (или реверс) цепочки α - цепочка, символы которой записаны в обратном порядке, обозначается как $\alpha^{\mathbf{R}}$.

Например, если α = abcdef, то α^R = fedcba, $\varepsilon = \varepsilon^R$.

Теория формальных языков и грамматик. Определения 1.

n-ая степенью цепочки α (α ⁿ) – конкатенация п цепочек α ;

$$\alpha^0 = \varepsilon$$
; $\alpha^n = \alpha \alpha^{n-1} = \alpha^{n-1} \alpha$.

Длина цепочки - количество составляющих ее символов.

Например, если α = abcdefg, то длина α равна 7. Длину цепочки α обозначается $|\alpha|$. $|\epsilon|$ = 0

Определения 2.

Язык в алфавите V - это подмножество цепочек конечной длины в этом алфавите.

V* - множество, содержащее все цепочки конечной длины в алфавите V, включая пустую цепочку ε.

Например, если V = { 0, 1 }, то
$$V^* = \{\epsilon, 0, 1, 00, 11, 01, 10, 000, 001, 011, ...\}.$$

V⁺ - множество, содержащее все цепочки конечной длины в алфавите V, исключая пустую цепочку ε.

$$V^* = V^+ \cup \{ \epsilon \}.$$

Порождающая грамматика

Порождающая грамматика G - это четверка

$$G = (T, N, P, S)$$
 , где

Т – непустое множество **терминальных** символов (алфавит терминалов),

N – непустое множество *нетерминальных* символов (алфавит нетерминалов), не пересекающийся с T,

Р - конечное подмножество множества $(T \cup N)^+ \times (T \cup N)^*$.

Элемент $(\alpha, \ \beta)$ множества Р называется **правилом вывода** и записывается в виде

$$\alpha \rightarrow \beta$$
,

причем α содержит хотя бы один нетерминальный символ.

S - *начальный символ (цель*) грамматики, S ∈ N.

Декартовым произведением $A \times B$ множеств A и B называется множество $\{ (a,b) \mid a \in A, b \in B \}$.

Соглашения

- 1) Большие латинские буквы будут обозначать нетерминальные символы.
- 2) **S** будет обозначать начальный символ (цель) грамматики.
- 3) Маленькие греческие буквы будут обозначать цепочки символов.
- 4) Все остальные символы (маленькие латинские буквы, знаки операций и пр.) будем считать терминальными символами.

Соглашения

5) для записи правил вывода с одинаковыми левыми частями

$$\alpha \rightarrow \beta 1$$
 $\alpha \rightarrow \beta 2$... $\alpha \rightarrow \beta n$

будем пользоваться сокращенной записью

$$\alpha \rightarrow \beta 1 \mid \beta 2 \mid \dots \mid \beta n$$
.

Каждое β i , i = 1, 2, ... ,n , будем называть **альтернативой** правила вывода из цепочки α .

Пример грамматики:

$$A \rightarrow \epsilon$$

Определения 3.

Цепочка $\beta \in (T \cup N)^*$ непосредственно выводима из цепочки $\alpha \in (T \cup N)^+$ в грамматике G = (T, N, P, S), если $\alpha = \xi_1 \gamma \xi_2$, $\beta = \xi_1 \delta \xi_2$, где ξ_1 , ξ_2 , $\delta \in (T \cup N)^*$, $\gamma \in (T \cup N)^+$ и правило вывода $\gamma \to \delta$ содержится в P.

обозначается: $\alpha \rightarrow \beta$

Цепочка $\beta \in (T \cup N)^*$ выводима из цепочки $\alpha \in (T \cup N)^+$ в грамматике G = (T, N, P, S), если существуют цепочки $\gamma 0$, $\gamma 1$, ..., γn (n >= 0), такие, что

 $\alpha = \gamma 0 \rightarrow \gamma 1 \rightarrow ... \rightarrow \gamma n = \beta.$ обозначается $\alpha \Rightarrow \beta$

Последовательность у0, у1,..., уп называется выводом длины п.

Определения 3.

Язык, порождаемый грамматикой
$$G = (T, N, P, S)$$
: $L(G) = \{\alpha \in T^* \mid S \Rightarrow \alpha\}.$

Сентенциальная форма в грамматике G = (T, N, P, S) - цепочка $\alpha \in (T \cup N)^*$, для которой $S \Rightarrow \alpha$.

Язык, порождаемый грамматикой - множество терминальных сентенциальных форм.

Определения 4.

Грамматики G1 и G2 называются **эквивалентными**, если L(G1) = L(G2).

Например, G1 = ({0,1}, {A,S}, P1, S) и G2 = ({0,1}, {S}, P2, S) P1:
$$S \to 0A1$$
 P2: $S \to 0S1 \mid 01$ $0A \to 00A1$ $A \to \epsilon$

эквивалентны, т.к. обе порождают язык $L(G1) = L(G2) = \{ 0^n 1^n \mid n > 0 \}.$

Грамматики G1 и G2 *почти эквивалентны*, если $L(G1) \cup \{\epsilon\} = L(G2) \cup \{\epsilon\}.$

Например, G1 = (
$$\{0,1\}$$
, $\{A,S\}$, P1, S) и G2 = ($\{0,1\}$, $\{S\}$, P2, S) P1: S \rightarrow 0A1 P2: S \rightarrow 0S1 | ϵ 0A \rightarrow 00A1 A \rightarrow ϵ

почти эквивалентны, так как

$$L(G1) = \{ 0^n 1^n | n > 0 \}, a$$
 $L(G2) = \{ 0^n 1^n | n > = 0 \}.$

Классификация грамматик и языков по Хомскому

ТИП 0:

Грамматика G = (T, N, P, S) - *грамматика типа 0*, если на ее правила вывода не накладывается никаких ограничений.

ТИП 1:

Грамматика G = (T, N, P, S) - **неукорачивающая** грамматикой, если каждое правило из P имеет вид

$$\alpha \rightarrow \beta$$
, где $\alpha \in (T \cup N)^+$, $\beta \in (T \cup N)^+$ и $|\alpha| <= |\beta|$.

<u>Исключение</u> - в неукорачивающей грамматике допускается <u>наличие правила</u> $S \to \varepsilon$, при условии, что S (начальный символ) не встречается в правых частях правил.

Грамматика G = (T, N, P, S) - *контекстно-зависимая* (*КЗ*), если каждое правило из Р имеет вид

$$\alpha \to \beta$$
, где $\alpha = \xi 1 \ A \ \xi 2$; $\beta = \xi 1 \ \gamma \ \xi 2$; $A \in N$; $\gamma \in (T \cup N)^+$; $\xi 1, \xi 2 \in (T \cup N)^*$.

В КЗ-грамматике допускается Исключение.

Грамматику типа 1 можно определить как неукорачивающую либо как контекстно-зависимую.

Классификация грамматик и языков по Хомскому

ТИП 2:

Грамматика G = (T, N, P, S) - *контекстно-свободная* (*КС*), если каждое правило из P имеет вид

$$A \rightarrow \beta$$
, где $A \in N$, $\beta \in (T \cup N)^*$.

Грамматика G = (T, N, P, S) - неукорачивающая контекстно-свободная (НКС), если каждое правило из P имеет вид $A \to \beta$, где $A \in N$, $\beta \in (T \cup N)^+$.

В неукорачивающей КС-грамматике допускается *Исключение*.

Грамматику типа 2 можно определить как контекстно-свободную либо как неукорачивающую контекстно-свободную.

Классификация грамматик и языков по Хомскому

ТИП 3:

Грамматика G = (T, N, P, S) - *праволинейная*, если каждое правило из P имеет вид имеет вид:

 $A \rightarrow wB$ либо $A \rightarrow w$, где $A, B \in N$, $w \in T^*$.

Грамматика G = (T, N, P, S) - **леволинейная**, если каждое правило из P имеет вид: $A \to Bw$ либо $A \to w$, где $A, B \in N, w \in T^*$.

Грамматику типа 3 (регулярную, Р-грамматику) можно определить как праволинейную либо как леволинейную.

Автоматная грамматика - праволинейная (леволинейная) грамматика, такая, что каждое правило с непустой правой частью имеет вид: $A \to a$ либо $A \to aB$

(для леволинейной, $A \rightarrow a$ либо $A \rightarrow Ba$), где $A, B \in N$, $a \in T$.

Соотношения между типами грамматик

неук. Р \subset неук. КС \subset КЗ \subset Тип 0

- (1) Любая регулярная грамматика является КС-грамматикой.
- (2) Любая неукорачивающая КС-грамматика является КЗ-грамматикой.

 \rightarrow

- (3) Любая неукорачивающая грамматика является грамматикой типа 0.
- Язык L(G) является *языком типа к* по Хомскому, если его можно описать грамматикой типа k, где k максимально возможный номер типа грамматики по Хомскому.

Соотношения между типами языков

$P \subset KC \subset K3 \subset Tип 0$

- (1) Каждый регулярный язык является КС-языком, но существуют КС-языки, которые не являются регулярными (например, L = { aⁿ bⁿ | n > 0 }).
- (2) Каждый КС-язык является КЗ-языком, но существуют КЗ-языки, которые не являются КС-языками (например, L = { aⁿ bⁿ cⁿ | n > 0 }).
- (3) Каждый КЗ-язык является языком типа 0, но существуют языки типа 0, которые не являются КЗ-языками (например: язык, состоящий из записей самоприменимых алгоритмов Маркова в некотором алфавите).
- (4) Кроме того, существуют языки, которые вообще нельзя описать с помощью порождающих грамматик. Такие языки не являются рекурсивно перечислимым множеством.
- Проблема, можно ли язык, описанный грамматикой типа **k**, описать грамматикой типа **k + 1** (k = 0, 1, 2), является **алгоритмически неразрешимой**.

КС-грамматики

Разбор цепочки - процесс построения вывода цепочки α из цели S грамматики G = (T, N, P, S).

Вывод цепочки $\beta \in T^*$ из $S \in N$ в КС-грамматике G = (T, N, P, S), называется:

- **левосторонним**, если в нем каждая очередная сентенциальная форма получается из предыдущей заменой самого левого нетерминала.
- правосторонним, если в нем каждая очередная сентенциальная форма получается из предыдущей заменой самого правого нетерминала.

Например, для цепочки
$$a+b+a$$
 в грамматике $G = (\{a, b, +\}, \{S,T\}, \{S \rightarrow T \mid T+S; T \rightarrow a \mid b\}, S)$

можно построить выводы:

(1)
$$S \rightarrow T+S \rightarrow T+T+S \rightarrow T+T+T \rightarrow a+T+T \rightarrow a+b+T \rightarrow a+b+a$$
 - произвольный

$$(2)$$
 $S \rightarrow T+S \rightarrow a+S \rightarrow a+T+S \rightarrow a+b+S \rightarrow a+b+T \rightarrow a+b+a$ - левый

$$(3)$$
 $S \rightarrow T+S \rightarrow T+T+S \rightarrow T+T+T \rightarrow T+T+a \rightarrow T+b+a \rightarrow a+b+a$ - правый

Выводы (1) – (3) являются эквивалентными в том смысле, что в них в одних и тех же местах применяются одни и те же правила вывода, но в различном порядке.

Дерево вывода

Дерево вывода (или **дерево разбора**) в КС-грамматике G = (T, N, P, S) – дерево, для которого выполнены следующие условия:

- (1) дерево ориентировано и упорядочено;
- (2) каждая вершина дерева помечена символом из множества $N \cup T \cup \{\epsilon\}$, при этом корень дерева помечен символом S; листья символами из $T \cup \{\epsilon\}$;
- (3) если вершина дерева помечена символом A ∈ N, а ее непосредственные потомки - символами а1, а2, ..., ап, где каждое аі ∈ T ∪ N, то A → a1 a2 ... an - правило вывода в этой грамматике;
- (4) если вершина дерева помечена символом A ∈ N, а ее единственный непосредственный потомок помечен символом ε, то A → ε - правило вывода в этой грамматике.

Пример дерева вывода для цепочки а + b + а в грамматике G:

Дерево вывода можно строить *нисходящим* либо *восходящим* способом.

Неоднозначность грамматик

КС-грамматика G *неоднозначная*, если существует **хотя бы одна** цепочка $\alpha \in \mathbf{L}(\mathbf{G})$, для которой может быть построено два или более различных деревьев вывода.

В противном случае грамматика является однозначной.

Если грамматика однозначная, то при любом способе построения, нисходящем или восходящем, будет получено одно и то же дерево разбора.

Пример неоднозначной грамматики:

```
G_{if} = ( \{ if, then, else, a, b \}, \{ S \}, P, S),
```

где $P = \{ S \rightarrow \text{ if b then S else S } | \text{ if b then S } | a \}.$

В этой грамматике для цепочки

if b then if b then a else a

можно построить два различных дерева вывода.

Неоднозначность грамматик

Неоднозначность - это свойство грамматики, а не языка.

Если грамматика используется для определения языка программирования, то она должна быть однозначной.

Можно преобразовать грамматику G_if, устранив неоднозначность:

 $S \rightarrow \text{ if b then } S \mid T$

 $T \rightarrow \text{ if b then T else S} \mid a$

Проблема определения, является ли заданная КС-грамматика однозначной, является алгоритмически неразрешимой.

Деревья вывода для цепочки if b then if b then a else a в грамматике G_if

Грамматика **G_if** неоднозначна, однако, это **не** означает, что язык **L(G_if)** неоднозначный.

Преобразование неоднозначных грамматик

Некоторые виды правил вывода, которые приводят к неоднозначности и некоторые способы эквивалентных преобразований неоднозначных грамматик к однозначным:

- 1. $A \to AA \mid \alpha$ \Rightarrow $A \to \alpha A \mid \alpha$ (док-во для $\alpha\alpha\alpha$) порождаются подцепочки α^n (n >= 1);
- 2. $A \to A\alpha A \mid \beta$ \Rightarrow $A \to \beta\alpha A \mid \beta$ (док-во для $\beta\alpha\beta\alpha\beta$) порождаются подцепочки β (α β)ⁿ (n >= 0);
- 3. $A \to \alpha A \, | \, A\beta \, | \, \gamma$ \Rightarrow $A \to \alpha A \, | \, B;$ $B \to B\beta \, | \, \gamma$, $B \notin N$ (док-во для $\alpha \gamma \beta$) порождаются подцепочки $\alpha^n \gamma \, \beta^m$ (n, m >= 0);
- 4. $A \to \alpha A \mid \alpha A \beta A \mid \gamma \Rightarrow A \to \alpha A \mid B;$ $B \to \alpha B \beta A \mid \gamma$, $B \notin N$ (док-во для $\alpha \alpha \gamma \beta \gamma$) порождаются подцепочки $\delta = \alpha^n \alpha^m \gamma (\beta \delta)^m$ (n,m >=0) Таким приемом преобразована грамматика G_i : $(\alpha \equiv if_b_t, \beta \equiv else, \alpha \equiv \gamma, A \equiv S, B \equiv T).$

Неоднозначные языки

Язык называется **неоднозначным**, если он не может быть порожден никакой однозначной грамматикой.

Проблема определения, порождает ли данная КС-грамматика однозначный язык (т.е. существует ли эквивалентная ей однозначная грамматика), является алгоритмически неразрешимой.

Пример неоднозначного КС-языка:

$$L = \{a^i b^j c^k \mid i = j или j = k\}$$
.

Одна из грамматик, порождающих L, такова:

S
$$\to$$
 AB | DC (док-во для цепочки abc) A \to aA | ϵ В \to bBc | ϵ С \to cC | ϵ D \to aDb | ϵ

Бесплодные символы грамматики.

Нетерминал (символ) $A \in N$ является **бесплодным** в грамматике G = (T, N, P, S), если множество $\{ \alpha \in T^* \mid A \Rightarrow \alpha \}$ пусто.

Алгоритм удаления бесплодных символов:

Вход: КС-грамматика G = (T, N, P, S),

Выход: КС-грамматика G' = (T, N', P', S), не содержащая

бесплодных символов, для которой L(G) = L(G').

Метод:

Строим множества $N_0, N_1, ...$

1.
$$N_0 := \emptyset$$
; $i := 1$.

2.
$$N_i := N_{i-1} \cup \{A \mid A \to \alpha \in P \text{ } u \text{ } \alpha \in (T \cup N_{i-1})^*\}$$
.

<u>Если</u> $N_i \neq N_{i-1}$, <u>то</u> i := i + 1 и переходим к шагу 2, <u>иначе</u> $N' := N_i$; P' состоит из правил множества P, содержащих только символы из $N_i \cup T$; G' := (T, N', P', S).

Удаление бесплодных символов грамматики. Пример.

```
S \to AC \mid Bb \mid \varepsilon A \to aCb B \to bB C \to cCc \mid c D \to Aa \mid Bb \mid d Шаг 0: N_0 := \varnothing; \ i := 1. Шаг 1: N_1 := \{S, C, D\}; \ i := 2. Шаг 2: N_2 := \{S, C, D, A\}; \ i := 3. Шаг 3: N_3 := \{S, C, D, A\} = N_2, т.е. искомое множество построено.
```

Удаляем все правила, содержащие нетерминал В, не вошедший в построенное множество:

$$S \rightarrow AC \mid \varepsilon$$
 $A \rightarrow aCb$
 $C \rightarrow cCc \mid c$
 $D \rightarrow Aa \mid d$

Недостижимые символы грамматики

Символ $x \in (T \cup N)$ является **недостижимым** в грамматике G = (T, N, P, S), если он не появляется ни в одной сентенциальной форме этой грамматики.

Алгоритм удаления недостижимых символов:

Вход: КС-грамматика G = (T, N, P, S),

Выход: КС-грамматика G' = (T', N', P', S), не содержащая

недостижимых символов, для которой L(G) = L(G').

Метод:

Строим множества V_0 , V_1 , ...

1. $V_0 := \{S\}; i := 1.$

2.
$$V_i := V_{i-1} \cup \{ x \mid x \in T \cup N, A \to \alpha x \beta \in P, A \in V_{i-1}, \alpha, \beta \in (T \cup N)^* \}$$
.

<u>Если</u> $V_i \neq V_{i-1}$, <u>то</u> i := i + 1 и переходим к шагу 2, <u>иначе</u> $N' := V_i \cap N$; $T' := V_i \cap T$; P' состоит из правил множества P, содержащих только символы из V_i ; G' := (T', N', P', S).

Удаление недостижимых символов грамматики. Пример.

```
S \rightarrow AC \mid \varepsilon
```

 $A \rightarrow aCb$

 $C \rightarrow cCc \mid c$

 $D \rightarrow Aa \mid d$

Шаг 0: $V_0 := \{S\}; i := 1.$

Шаг 1: $V_1 := \{S, A, C, \varepsilon\}; i := 2.$

Шаг 2: $V_2 := \{S, A, C, ε, a, b, c\}; i := 3.$

Шаг 3: $V_3 := \{S, A, C, \epsilon, a, b, c\} = V_2,$ т.е. искомое множество построено

Удаляем все правила, содержащие символы D и d, не вошедшие в построенное множество:

$$S \rightarrow AC \mid \epsilon$$

 $A \rightarrow aCb$

 $C \rightarrow cCc \mid c$

Приведенные грамматики

Недостижимые и бесплодные символы в грамматике G = (T, N, P, S) называются **бесполезными** символами в этой грамматике.

КС-грамматика G называется *приведенной*, если в ней нет бесполезных символов.

Алгоритм приведения грамматики:

- 1) обнаруживаются и удаляются все бесплодные нетерминалы.
- 2) обнаруживаются и удаляются все недостижимые символы.

Удаление символов сопровождается удалением правил вывода, содержащих эти символы.

Если в алгоритме переставить шаги 1) и 2), то не всегда результатом будет приведенная грамматика. Например, при такой перестановке шагов грамматика

$$S \rightarrow AB \mid a$$

$$A \rightarrow b$$

$$B \rightarrow BA$$

останется неприведенной.

Алгоритм устранения правил с пустой правой частью

Вход: КС-грамматика G = (T, N, P, S).

Выход: КС-грамматика G' = (T, N', P', S') - неукорачивающая, L(G') = L(G).

Метод:

- 1. Построить множество $X = \{A \in N \mid A \Rightarrow \epsilon\}$; N' := N.
- 2. Построить *P*′, удалив из множества правил *P* все правила с пустой правой частью.
- 3. Если $S \in X$, то ввести новый начальный символ S', добавив его в N', и в множество правил P' добавить правило $S' \to S \mid \varepsilon$. Иначе просто переименовать S в S'.
- 4. Изменить P' следующим образом. Каждое правило вида $B \to \alpha_1 A_1 \alpha_2 A_2 ... \alpha_n A_n \alpha_{n+1}$, где $A_i \in X$ для i=1,...,n, $\alpha_i \in ((N'-X) \cup T)^*$ для i=1,...,n+1 (т. е. α_i цепочка, не содержащая символов из X), заменить 2^n правилами, соответствующими всем возможным комбинациям вхождений A_i между α_i :

$$B \to \alpha_1 \alpha_2 \dots \alpha_n \alpha_{n+1}$$

$$B \to \alpha_1 \alpha_2 \dots \alpha_n A_n \alpha_{n+1}$$

$$\dots$$

$$B \to \alpha_1 \alpha_2 A_2 \dots \alpha_n A_n \alpha_{n+1}$$

$$B \to \alpha_1 A_1 \alpha_2 A_2 \dots \alpha_n A_n \alpha_{n+1}$$

Если $\alpha_i = \varepsilon$ для всех i = 1, ..., n + 1, то получившееся на данном шаге правило $B \to \varepsilon$ не включать в множество P'.

5. Удалить бесполезные символы и правила, их содержащие.

Устранение правил с пустой правой частью. Пример.

$$S \rightarrow BC \mid Ab \mid AB$$

 $A \rightarrow Aa \mid \epsilon$
 $B \rightarrow \epsilon$
 $C \rightarrow c$
Шаг 1: $X := \{A, B\};$
Шаг 2, 3: $S1 \rightarrow S \mid \epsilon$
 $S \rightarrow BC \mid C \mid Ab \mid b \mid AB \mid A \mid B$
 $A \rightarrow Aa \mid a$
 $C \rightarrow c$
Приводим грамматику:
 $S1 \rightarrow S \mid \epsilon$
 $S \rightarrow C \mid Ab \mid b \mid A$
 $A \rightarrow Aa \mid a$
 $C \rightarrow c$