Political Methodology III: Model Based Inference

Justin Grimmer

Associate Professor Department of Political Science Stanford University

May 3rd, 2017

Model Based Inference

- 1) Likelihood inference
- 2) Logit/Probit
- 3) Ordered Probit
- 4) Choice Models:
- 5) Count Models
- 6) Survival Models
- 7) Hypothesis Tests + Model Checking in Likelihood
 - Likelihood Ratios, Wald, and Score tests
 - Model Checking: analysis of residuals, hat values, etc.

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model
 - Warwick (1992 AJPS) Cox PH model
 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(t)dt = 1 - \int_0^y f(t)dt = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - \blacksquare S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) |_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(t)dt = 1 - \int_0^y f(t)dt = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) |_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(t)dt = 1 - \int_0^y f(t)dt = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) \big|_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(t)dt = 1 - \int_0^y f(t)dt = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) \big|_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

One-to-one relationships with density and probability:

$$\begin{split} f(y) &= -\frac{d}{dy}S(y) \quad \text{and} \quad S(y) &= \int_y^\infty f(t)dt \\ \Pr(y \leq Y_i < y + h) &= S(y) - S(y + h) \end{split}$$

lacktriangle Hazard function: Instantaneous rate of leaving a state at time t conditional on survival up to that time

$$\lambda(y) \equiv \lim_{h \downarrow 0} \frac{\Pr(y \le Y_i < y + h \mid Y_i \ge y)}{h} = \frac{f(y)}{S(y)}$$

- "Force of mortality" what is the 'risk' that I die at time y given that I have lived up until y?
- Difficult to directly interpret, but useful for model checking, etc.
- One-to-one relationship with survival function:

$$\lambda(y) \ = \ -\frac{d}{dy} \log S(y) \quad \text{and} \quad S(y) \ = \ \exp\left(-\int_0^y \lambda(t) dt\right)$$

- 4 ロ ト 4 回 ト 4 差 ト 4 差 ト 9 9 9 0

lacktriangle Hazard function: Instantaneous rate of leaving a state at time t conditional on survival up to that time

$$\lambda(y) \equiv \lim_{h \downarrow 0} \frac{\Pr(y \le Y_i < y + h \mid Y_i \ge y)}{h} = \frac{f(y)}{S(y)}$$

- "Force of mortality" what is the 'risk' that I die at time y given that I have lived up until y?
- Difficult to directly interpret, but useful for model checking, etc.
- One-to-one relationship with survival function:

$$\lambda(y) \ = \ -\frac{d}{dy} \log S(y) \quad \text{and} \quad S(y) \ = \ \exp\left(-\int_0^y \lambda(t) dt\right)$$

(4 ロ) (日) (主) (主) (で)

■ Shape of the survival curve

Expected (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- **Expected** (remaining) time to event (= life expectancy at age y):

$$\mu(y) \ \equiv \ \mathsf{E}(Y_i - y \mid Y_i > y) \ = \ \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- **Expected** (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- \blacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- **Expected** (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- \blacksquare Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c,\infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- \blacksquare Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- \blacksquare Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c,\infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c, \infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c, \infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

■ Notice the "bump"?

- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

May 3rd, 2017

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n = 314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent? Justin Grimmer (Stanford University

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:

$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

$$f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$$

■ Expected remaining time to event:

$$\mu(t_j) = \mathbb{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:

$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

$$f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$$

■ Expected remaining time to event:

$$\mu(t_j) = \mathbb{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

←ロト ←団ト ← 重ト → 重 ・ 夕へで

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:

$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

$$f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$$

■ Expected remaining time to event:

$$\mu(t_j) = \mathbb{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

(ロ) (回) (重) (重) (重) の(で)

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$ ■ $f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$
- Expected remaining time to event:

$$\mu(t_j) = \mathbb{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$
 - $f(t_j) = S(t_{j-1}) S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 \lambda(t_k))$
- Expected remaining time to event:

$$\mu(t_j) = \mathsf{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $\blacksquare S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$
 - $f(t_j) = S(t_{j-1}) S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 \lambda(t_k))$
- Expected remaining time to event:

$$\mu(t_j) = \mathsf{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) = \frac{1}{S(t_j)} \sum_{k=j}^{\infty} (t_{k+1} - t_k) S(t_k)$$

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - $d_j = \#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - $d_j = \#$ of units that failed at time t_j
 - $lackbox{\textbf{m}} m_j = \#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 Q ()

Kaplan-Meier Estimator

■ This leads to the Kaplan-Meier estimator:

$$\widehat{S}(t_j) = \prod_{k=j}^{J} (1 - \hat{\lambda}(t_k)) = \prod_{k=j}^{J} \frac{r_k - d_k}{r_k}$$

■ Using the MLE derivation for $\hat{\lambda}(t_j)$, we obtain the Hessian-based estimate of the asymptotic variance:

$$\widehat{\mathrm{Var}(\widehat{S}(t_j))} \ = \ \widehat{S}^2(t_j) \sum_{k=j}^J \frac{d_k}{r_k(r_k-d_k)}$$

Kaplan-Meier Estimator

■ This leads to the Kaplan-Meier estimator:

$$\widehat{S}(t_j) = \prod_{k=j}^{J} (1 - \hat{\lambda}(t_k)) = \prod_{k=j}^{J} \frac{r_k - d_k}{r_k}$$

■ Using the MLE derivation for $\hat{\lambda}(t_j)$, we obtain the Hessian-based estimate of the asymptotic variance:

$$\widehat{\operatorname{Var}(\widehat{S}(t_j))} \ = \ \widehat{S}^2(t_j) \sum_{k=j}^J \frac{d_k}{r_k(r_k - d_k)}$$

Example: Time Until Commitment to IMF Article VIII

FIGURE 2. The Kaplan-Meier Survival Function Duration of Article XIV Status over Time

Simmons (2000 APSR)

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangle This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- lacktriangle A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangleright This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- lacksquare A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangle This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- \blacksquare A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangleright This changes nothing except that the sign of eta gets reversed
- lacktriangle The constant hazard assumption: λ_i does not vary across time

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^{n} \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i}}_{\text{uncensored}} \cdot \underbrace{\{S(Y_i \mid \mu_i)\}^{D_i}}_{\text{censored}}$$

$$= \prod_{i=1}^{n} \left\{ \frac{1}{\mu_i} \exp(-Y_i/\mu_i) \right\}^{1-D_i} \left\{ \exp(-Y_i/\mu_i) \right\}^{D_i}$$

$$= \prod_{i=1}^{n} \exp\left\{ -(1-D_i)X_i^{\top}\beta \right\} \exp\left\{ -\exp(-X_i'\beta)Y_i \right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^n \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i}}_{\text{uncensored}} \cdot \underbrace{\{S(Y_i \mid \mu_i)\}^{D_i}}_{\text{censored}}$$

$$= \prod_{i=1}^n \underbrace{\left\{\frac{1}{\mu_i} \exp(-Y_i/\mu_i)\right\}^{1-D_i}}_{\text{exp}(-Y_i/\mu_i)} \underbrace{\{\exp(-Y_i/\mu_i)\}^{D_i}}_{\text{exp}(-Y_i/\mu_i)}$$

$$= \prod_{i=1}^n \exp\left\{-(1-D_i)X_i^\top \beta\right\} \exp\left\{-\exp(-X_i'\beta)Y_i\right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

4 ロ ト 4 回 ト 4 重 ト 4 重 ・ 夕 Q や

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^n \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i}}_{\text{uncensored}} \cdot \underbrace{\{S(Y_i \mid \mu_i)\}^{D_i}}_{\text{censored}}$$

$$= \prod_{i=1}^n \underbrace{\left\{\frac{1}{\mu_i} \exp(-Y_i/\mu_i)\right\}^{1-D_i}}_{\text{exp}(-Y_i/\mu_i)} \underbrace{\{\exp(-Y_i/\mu_i)\}^{D_i}}_{\text{exp}(-Y_i/\mu_i)}$$

$$= \prod_{i=1}^n \exp\left\{-(1-D_i)X_i^\top \beta\right\} \exp\left\{-\exp(-X_i'\beta)Y_i\right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

4 ロ ト 4 回 ト 4 重 ト 4 重 ・ 夕 Q や

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i'\beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- lacktriangle Reduces to the exponential model when lpha=1
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i'\beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- lacktriangle Reduces to the exponential model when lpha=1
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i'\beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- lacktriangle Reduces to the exponential model when lpha=1
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Cabinet Duration Example: Exponential or Weibull? King et al. (Exponential) vs. Warwick and Easton (Weibull)

■ Comparing density functions:

Figure 1. Duration Frequencies with Three Fitted Distributions 0.08 Exponential Log-logistic 0.06 Frequency 0.04 0.02 00 0.00 10 20 30 50 40 60 Duration (Months)

Cabinet Duration Example: Exponential or Weibull? King et al. (Exponential) vs. Warwick and Easton (Weibull)

■ Comparing hazard functions:

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i' \beta^*)$$

where
$$\lambda_0(y) \ = \ egin{cases} 1 & ext{(exponential)} \ lpha y^{lpha-1} & ext{(Weibull)} \end{cases}$$
 and $eta^* = -lpha eta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $\lambda_0(y)$: Nonparametric baseline hazard common to all i across t

 \blacksquare $X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

1014012121212120

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i^{'} \beta^*)$$

where
$$\lambda_0(y) = \begin{cases} 1 & \text{(exponential)} \\ \alpha y^{\alpha-1} & \text{(Weibull)} \end{cases}$$
 and $\beta^* = -\alpha\beta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $\lambda_0(y)$: Nonparametric baseline hazard common to all i across t

 $\blacksquare X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

4 D > 4 A > 4 B > 4 B > B 90

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i^{'} \beta^*)$$

where
$$\lambda_0(y) = \begin{cases} 1 & \text{(exponential)} \\ \alpha y^{\alpha-1} & \text{(Weibull)} \end{cases}$$
 and $\beta^* = -\alpha\beta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $lacktriangleq \lambda_0(y)$: Nonparametric baseline hazard common to all i across t

■ $X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

Example: Hazards Accommodated by the Cox Model

- The Cox PH model allows flexible shapes of hazard functions
- Suppose we have one binary predictor $x \in \{0,1\}$ to model y:

$$1 \lambda(y \mid x) = \lambda_0(y) \exp(x\beta)$$
 — no time-varying covariate

2
$$\lambda(y \mid x) = \lambda_0(y) \exp[x\beta_1 + xy\beta_2]$$
 — interaction with time trend

3
$$\lambda(y \mid x) = \lambda_0(y) \exp[x\beta_1 + x(1.5 - y)\mathbf{1}\{y \le 1.5\}\beta_2]$$

—— allowing high initial risk

Note: In the figures, the relative risk (RR) stands for:

$$RR = \frac{\lambda(y \mid x = 1)}{\lambda(y \mid x = 0)} = \exp[g(y \mid x = 1) - g(y \mid x = 0)]$$

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\hfill\blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = risk$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\hfill\blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk set at time } t_j$

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- \blacksquare Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = risk$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- Take the log and maximize to obtain the estimate of β

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- \blacksquare Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- lacktriangle This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk}$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \operatorname{risk}$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- \blacksquare Take the log and maximize to obtain the estimate of β

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk}$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacktriangle Take the log and maximize to obtain the estimate of eta

Hypothesis Testing

Simple Example: Antiobama Speech

We'll use the speech data from the problem set, as follows:

- $Y_i=1$ if representative says obamacare or big government during the year, 0 otherwise
- $\boldsymbol{X}_i = (1, I(\mathsf{Year} = 2010)_i, \mathsf{Democrat}_i, \mathsf{DW}\text{-}\mathsf{Nom}_i)$

$$Y_i \sim \operatorname{Bernoulli}(\pi_i)$$

$$\pi_i = \operatorname{logit}^{-1}(\boldsymbol{X}_i'\boldsymbol{\beta}) = \frac{1}{1 + \exp(-\boldsymbol{X}_i'\boldsymbol{\beta})}$$

Which covariates do we include? \rightsquigarrow depends on goal.

- Predictive goal → replicate task
- Model fitting → do covariates increase likelihood? Can we drop them?

←ロ → ← 同 → ← 三 → ← 三 → へ Q ○

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- Let $\widehat{m{\beta}}_R=\widehat{m{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{m{\beta}}_{UR}=\widehat{m{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

4□ > 4□ > 4 □ > 4 □ > 4 □ > 4 □ >

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- Let $\widehat{m{\beta}}_R=\widehat{m{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{m{\beta}}_{UR}=\widehat{m{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\pmb{\beta}}_R=\widehat{\pmb{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\pmb{\beta}}_{UR}=\widehat{\pmb{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

4 D > 4 A > 4 B > 4 B > B = 400 C

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

4D> 4B> 4E> 4E> E 990

Hypothesis Testing — Likelihood Ratio Test

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

Hypothesis Testing — Likelihood Ratio Test

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

←□ → ←□ → ← = → → ■ りへで

```
un_rest_reg<- glm(once~two_10 + dem + dw_nom,
   data = speech_dat, family = binomial(link = logit))
rest_reg<- glm(once~1, family= binomial(link = logit))
##calculating the likelihood ratio
log_lik<- function(pars, X, Y){</pre>
   y.tilde<- X%*%pars
   probs<- plogis(y.tilde)</pre>
   \log_{\text{out}} - Y\%*\%\log(\text{probs}) + (1-Y)\%*\%\log(1 - \text{probs})
   return(log_out)
}
X<- cbind(1, two_10, dem, speech_dat$dw_nom)</pre>
un_rest<- log_lik(un_rest_reg$coef, X, once)
rest<- log_lik(rest_reg$coef, as.matrix(rep(1, nrow(X))), once)
> 2 * in rest - 2*rest
   [.1]
[1.] 433.996
```

```
> 2 * un_rest - 2*rest
    [,1]
[1,] 433.996
##get the same statistic automatically from glm
diff<- un_rest_reg$null.deviance - un_rest_reg$deviance
1 - pchisq(diff, 3) ##very small!
[1] 0</pre>
```

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \equiv h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\operatorname{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq \operatorname{Var}(h(oldsymbol{eta}_{UR}))$ (Delta method)
- lacktriangle Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- $\blacksquare \ \ \text{We can show that} \ W \stackrel{d}{\longrightarrow} \chi^2_Q$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- lacktriangle Wald statistic: Use asymptotic distribution of \widehat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \; \equiv \; h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacktriangle The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacktriangle Choose any ${\sf Var}(oldsymbol{eta}_{UR})$ as appropriate (e.g. Huber-White)
- $\blacksquare \ \ \text{We can show that} \ W \stackrel{d}{\longrightarrow} \chi^2_Q$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathrm{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- lacktriangle Wald statistic: Use asymptotic distribution of \widehat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \ \equiv \ h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(\widehat{h}(\widehat{oldsymbol{eta}_{UR}}))$ (Delta method)
- lacktriangle Choose any ${\sf Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- $\blacksquare \text{ We can show that } W \stackrel{d}{\longrightarrow} \chi^2_Q$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathrm{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- \blacksquare The "meat" $\simeq \operatorname{Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacksquare Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- $\blacksquare \ \ \text{We can show that} \ W \stackrel{d}{\longrightarrow} \chi^2_Q$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathrm{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \stackrel{d}{\longrightarrow} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- \blacksquare The "meat" $\simeq \widehat{\mathrm{Var}(h(\widehat{m{eta}}_{UR}))}$ (Delta method)
- lacksquare Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathrm{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq \widehat{\mathrm{Var}(h(\widehat{oldsymbol{eta}}_{UR}))}$ (Delta method)
- lacksquare Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathrm{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β
- lacktriangle Wald statistic: Use asymptotic distribution of \hat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq \widehat{\mathrm{Var}(h(\widehat{oldsymbol{eta}}_{UR}))}$ (Delta method)
- lacksquare Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{oldsymbol{eta}}_{UR}}{\mathsf{s.e.}(\widehat{oldsymbol{eta}}_{UR})} \stackrel{d}{\longrightarrow} \mathsf{N}(0,1)$$

```
> un_rest_reg$coef%*%solve(vcov(un_rest_reg))%*%un_rest_reg$coef
[,1]
[1,] 225.2437
> 1 - pchisq(225.2437, 3)
[1] 0
```

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- \blacksquare Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\pmb{\beta}}_R)$

$$LM = s(\widehat{\boldsymbol{\beta}}_R)' \widehat{\operatorname{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \stackrel{d}{\longrightarrow} \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\boldsymbol{\beta}}_R)$

$$LM = s(\widehat{\boldsymbol{\beta}}_R)' \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \stackrel{d}{\longrightarrow} \chi_{\mathcal{Q}}^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\beta}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'}\widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)}s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- \blacksquare Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\pmb{\beta}}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- \blacksquare Score test: If the null is true, $s(\widehat{\pmb{\beta}}_R)$ should also equal zero except for sampling variability
- \blacksquare Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\pmb{\beta}}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'} \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

```
score_func<- function(coef, X, Y){</pre>
   y.tilde<- X%*%coef
   probs<- plogis(y.tilde)</pre>
   out<- t(Y - probs)%*%X
   return(out) }
> round(score_func(un_rest_reg$coef, X, once), 2)
[1,] 0 0 0 0
rest_score<- score_func(c(rest_reg$coef, 0, 0, 0), X, once)
> round(rest_score,2)
[1.] 0 -6.30 -128.92 129.51
```

```
hess_func<- function(coef, X, Y){
   v.tilde<- X%*%coef
   probs<- plogis(y.tilde)</pre>
   base<- matrix(0, nrow = len(coef), ncol = len(coef))</pre>
   for(z in 1:nrow(X)){
    base<- base + probs[z]*(1 - probs[z])* X[z,]%*\%t(X[z,])
   return(base)
rest_hess<- solve(hess_func(c(rest_reg$coef, 0, 0, 0), X, once))
>rest_score%*%rest_hess%*%t(rest_score)
[1,] 395.0382
> 1- pchisq(395, 3)
[1] 0
```


- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$ Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$ Easily robustified by sandwich	Not invariant to transformation (e.g. $\theta_1/\theta_2=1$ vs. $\theta_1=\theta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$ Cannot be easily robustified
VV	Only need $\hat{ heta}_{UR}$ Easily robustified by sandwich	Not invariant to transformation (e.g. $\theta_1/\theta_2=1$ vs. $\theta_1=\theta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

Figure 3. The Lagrange Multiplier Test

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$
		Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$	Not invariant to transformation
	Easily robustified by sandwich	(e.g. $ heta_1/ heta_2=1$ vs. $ heta_1= heta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$
		Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$	Not invariant to transformation
	Easily robustified by sandwich	(e.g. $ heta_1/ heta_2=1$ vs. $ heta_1= heta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- Model diagnostics
- AIC/BIC
- Cross Validation
- MLE, Cramer-Rao, and You
- Midterm