Project

Supervised Machine Learning: Plant Health

Reading in the dataset

```
data$Health_Status = as.factor(data$Health_Status)
summary(data)
```

```
##
      Plant_ID
                        Temperature_C
                                           Humidity_.
                                                         Soil_Moisture_.
##
    Length: 1000
                        Min.
                               :15.28
                                        Min.
                                                :30.60
                                                         Min.
                                                                : -0.2927
                        1st Qu.:23.06
                                                         1st Qu.: 35.2800
##
    Class : character
                                        1st Qu.:53.94
##
    Mode :character
                       Median :25.08
                                        Median :60.63
                                                         Median: 44.9962
##
                        Mean
                               :25.06
                                        Mean
                                                :60.71
                                                         Mean
                                                                 : 45.0875
##
                        3rd Qu.:26.94
                                        3rd Qu.:67.29
                                                         3rd Qu.: 54.9137
##
                        Max.
                               :36.56
                                        Max.
                                                :91.93
                                                         Max.
                                                                 :103.8936
##
       Soil_pH
                    Nutrient_Level Light_Intensity_lux Health_Score
##
           :5.035
                            :18.23
                                             :11301
                                                                  : 52.87
                    Min.
                                     Min.
                                                          1st Qu.: 72.45
    1st Qu.:6.131
                    1st Qu.:43.17
                                     1st Qu.:17919
##
    Median :6.500
                    Median :49.82
                                     Median :19872
                                                          Median: 79.45
##
##
   Mean
           :6.491
                    Mean
                            :49.51
                                     Mean
                                             :19860
                                                          Mean
                                                                : 79.72
    3rd Qu.:6.833
                    3rd Qu.:56.39
                                     3rd Qu.:21837
                                                          3rd Qu.: 87.00
##
  {\tt Max.}
           :8.122
                            :81.13
                                             :29295
                                                                  :115.29
                    Max.
                                     Max.
                                                          Max.
   Health_Status
##
##
   0:174
   1:826
##
##
##
##
##
```

Exploratory Data Analysis

To check if there are duplicate plant observations recorded, we check if the distinct count of the Plant_ID is the same as the number of rows.

```
data %>% summarise(count = n_distinct(Plant_ID))

## count
## 1 1000
```

Perfect, this field can be dropped. We also renamed the other variables for simplicity.

```
data <- data[,-c(1)]
data <- data %>%
  rename(
   Humidity = Humidity_.,
   Soil_Moisture = Soil_Moisture_.
)
```

Looking at all the variables, we use a pair plot:

pairs(data) Temperature_C Humidity Soil_Moisture 20 Soil_pH Nutrient_Level Health_Score 6. Health_Status 4.

These plots show that the variables are not correlated. If so, very weekly. The Health Score, looks like a continuous variable that is used to create the Health Status values.

All variables look roughly normally distributed - we should confirm this:

```
par(mfrow=c(3,2))
hist(data$Temperature_C, main="Distribution of Temperature")
hist(data$Humidity, main="Distribution of Humidity")
hist(data$Soil_Moisture, main="Distribution of Moisture")
hist(data$Soil_pH, main="Distribution of pH")
hist(data$Nutrient_Level, main="Distribution of Nutrient Level")
hist(data$Light_Intensity_lux, main="Distribution of Intensity Lux")
```


These do all look pretty close to a normal distribution. We need to also see the distribution of the two response variables. One of which is a categorical with 2 classes (0 and 1).

```
par(mfrow=c(1,2))
hist(data$Health_Score, main = "Distribution of Health Score")
hist(as.numeric(data$Health_Status), main = "Distribution of Health Status")
```

Distribution of Health Score

Distribution of Health Status

as.numeric(data\$Health_Status)

Whilst the health score is normally distributed, the health status is very imbalanced - we will have to take this into consideration when we explore modeling plant health.

Modeling the health status

First we can try model the health status using all variables with logistic regression.

```
##
## Call:
  glm(formula = Health_Status ~ Temperature_C + Humidity + Soil_Moisture +
       Soil_pH + Nutrient_Level + Light_Intensity_lux, family = "binomial",
##
##
       data = data)
##
## Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                                1.387
                                                        0.1653
                        2.200e+00
                                   1.586e+00
                       -5.000e-02 2.847e-02
## Temperature_C
                                               -1.756
                                                        0.0791 .
## Humidity
                        5.100e-03
                                   8.412e-03
                                                0.606
                                                        0.5443
## Soil_Moisture
                       -6.615e-03
                                   5.667e-03
                                               -1.167
                                                        0.2431
## Soil_pH
                        5.156e-02
                                                0.316
                                                        0.7520
                                   1.631e-01
## Nutrient_Level
                        2.253e-03 8.447e-03
                                                0.267
                                                        0.7896
## Light_Intensity_lux 8.306e-06 2.781e-05
                                                0.299
                                                        0.7651
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 924.34 on 999 degrees of freedom
## Residual deviance: 919.08 on 993 degrees of freedom
## AIC: 933.08
##
## Number of Fisher Scoring iterations: 4
```

This model does not find any of the variables to be statistically significant (except temperature). We should run this model with a train test split to see how well it predicts the health score.

```
train_size <- 0.75*nrow(data)</pre>
training_sample <- sample(1:nrow(data), train_size)</pre>
training_dataset <- data[training_sample, ]</pre>
testing_dataset <- data[-training_sample, ]</pre>
model_validate <- glm(</pre>
  Health_Status ~ Temperature_C + Humidity + Soil_Moisture + Soil_pH + Nutrient_Level + Light_Intensity
  data=training_dataset,
  family='binomial'
)
y_pred_probs <- predict(</pre>
  model_validate,
  newdata=testing_dataset,
  type='response'
)
y_pred <- ifelse(y_pred_probs > 0.5, 1, 0)
table(y_pred, testing_dataset$Health_Status)
##
## y_pred
             0
           45 205
        1
```

Unsurprisingly its predicting the 1 every time. This could be due to the unbalanced nature of the response variable. The distribution of the predicted values might be interesting:

```
hist(y_pred_probs)
```

Histogram of y_pred_probs

