BALTSEM - a marine model for decision support at the Baltic Sea

Some of the authors of this publication are also working on these related projects:

Project

BONUS BLUEWEBS: Blue growth boundaries in novel Baltic food webs View project

The Baltic Sea Action Plan A new environmental strategy for the Baltic Sea region Itic Marine Environment Protection Commission

Eutrophication segment of the BSAP:

- is based on allowable nutrient inputs from the land of 600,000 tonnes nitrogen and 21,000 tonnes phosphorus annually
- with actual average (1997-2003) land loads of 737,720 t TN and 36,310 t TP the total required reductions are about 135,000 t TN and 15,000 t TP
- these numbers have been estimated with the marine biogeochemical model SANBALTS, which is a component of the decision support system Baltic Nest

State of RT: within EAM an important role in defining ES and EO set forward, e.g. by BSAP, MSFD, WFD, UWWTD, ND and many other acronyms to come, belongs to some conventional numbers that are used for relevant painting. Often, such numbers include winter surface nutrients and summer chlorophyll, i.e. seasonally varying indicators. Concurrently, climate fluctuations in a system with long residence times demand multi-decadal time scales

Policy driver	Status classification					
	Unaffected/Acceptable		Affected/Unacceptable			
HELCOM BSAP	Unaffected by eutrophication		Affected by eutrophication			
MSFD	Good Environmental Status		Polluted			
WFD	High ES	Good ES	Moderate ES	Poor ES	Bad ES	
UWWTD	Unpolluted/non-sensitive		Polluted/sensitive			
ND	Unpolluted		Polluted			

BAltic sea Long-Term large-Scale Eutrophication Model

Main characteristics:

- 13 sub-basins
- **High vertical resolution**
- Water exchange between- and water mixing within sub-basins are described from wellfounded HD principles
- Meteorological and nutrient loading boundary conditions are reconstructed from the best available data, here for 1970-2006

Nitrogen fixation

Burial

Sub-basin boundaries

Denitrification

Long-term dynamics in the Gotland Sea (1970 – 2006)

Simulation

Observations

Salinity (psu)

Oxygen (mL/L)

Long-term dynamics in the Gotland Sea (1970 – 2006)

Simulation

Observations

Nitrate (μM)

Phosphate (μM)

Meridional gradients of seasonal dynamics

Simulation

Observations

Meridional gradients of seasonal dynamics

Simulation

Observations

Meridional gradients of seasonal dynamics

Simulation

Observations

$$\omega = \frac{\sum \left| \left(C_{\text{mod}}^{i} - C_{obs}^{i} \right) \right|}{N \times \text{SD}_{obs}};$$

 $\omega = \frac{\sum \left| \left(C_{\text{mod}}^i - C_{obs}^i \right) \right|}{N \times \text{SD}_{\text{obs}}}; \quad \begin{array}{l} \textbf{\textit{C}}_{\text{mod}} - \text{modelled concentration,} \\ \textbf{\textit{C}}_{\text{obs}} - \text{observed concentration,} \\ \text{SD}_{\text{obs}} - \text{standard deviation of observations;} \end{array}$ N – number of compared pairs i

$$\omega = \frac{\sum \left| \left(C_{\text{mod}}^{i} - C_{obs}^{i} \right) \right|}{N \times \text{SD}_{obs}};$$

 $C_{\rm mod}$ – modelled concentration, $C_{\rm obs}$ – observed concentration, ${\rm SD_{\rm obs}}$ – standard deviation of observations; N – number of compared pairs i

Daily simulated and monthly averaged observations

Monthly means

$$\omega = \frac{\sum \left| \left(C_{\text{mod}}^{i} - C_{obs}^{i} \right) \right|}{N \times \text{SD}_{obs}};$$

 $C_{\rm mod}$ – modelled concentration, $C_{\rm obs}$ – observed concentration, ${\rm SD_{\rm obs}}$ – standard deviation of observations; N – number of compared pairs i

Daily simulated and monthly averaged observations

Monthly means

$$\omega = \frac{\sum \left| \left(C_{\text{mod}}^{i} - C_{obs}^{i} \right) \right|}{N \times \text{SD}_{obs}};$$

C_{mod} – modelled concentration,
C_{obs} – observed concentration,
SD_{obs} – standard deviation of observations;
N – number of compared pairs i

Daily simulated and monthly averaged observations

Monthly means

Seasonal dynamics of plankton variables

Long-term (1970-2006) monthly means, Note different scales

Vertically integrated plankton groups (mg C m⁻²)

Time-depth distribution of total phytoplankton (mg C m⁻³)

Seasonal dynamics of total phytoplankton

Long-term (1970-2006) surface daily means (mg N m⁻³)

Seasonal dynamics of total phytoplankton

Long-term (1970-2006) surface daily means (mg N m⁻³) C:Chl"a"= 30 (spring) or 60 (summer)

Seasonal dynamics of nitrogen uptake

Long-term (1970-2006) daily mean water column integrals (mg N m⁻²)

Long-term (1970-2006) average budget

10³ tonnes year⁻¹

Baltic Proper

Kattegat

Long-term (1970-2006) average budget of the entire Baltic

10³ tonnes year⁻¹

	N fixation	Atm dep	Landload	
	425	333	600	
		6.2	50	
<= to Ska	Uptake		Recycling	
146.2	4614		3281	
29.9	720		492	
fr Ska =:	Sinking		Output	
123.9	1873		626	
24.0	250		205	
		78		
	Burial	Denitrification		
	156	1025		
	32			

mg m⁻² day⁻¹

	N fixation	Atm dep	Landload
	2.8	2.2	4.0
		0.04	0.33
<= to Ska	Uptake	Recycling	
1.0	31		21.7
0.2	4.8		3.3
fr Ska =>	Sinking		Output
0.8	12.4		4.1
0.2	1.7		1.4
		0.5	
	Burial	Denitrification	
	1.0	6.8	
	0.2		

HELCOM's good intentions

(when science meets management, then politics beats science)

BSAP nutrient reduction targets reached Time line of the ... HELCOM regional implementation platform activities in the Baltic Sea

Baltic Sea In good environmental status by 2020/2021

2016 2017 2018 2019 2020 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

HELCOM's good intentions

(when science meets management, then politics beats science)

Time line of the ... HELCOM regional implementation platform activities in the Baltic Sea

Baltic Sea In good environmental status by 2020/2021

2016 2017 2018 2019 2020 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

HELCOM's good intentions

(when science meets management, then politics beats science)

HELCOM's wishful thinking (when science meets management, then politics beats science)

Nitrogen loads (Kt N/yr)

Phosphorus loads (Kt P/yr)

(when science meets management, then politics beats science)

Nitrogen loads (Kt N/yr)

Reference dynamics, Baltic Proper net primary production (PP,gC/m2/yr), nitrogen fixation (Nfix, Kt/yr) direct contribution of Nfix in PP (%)

Phosphorus loads (Kt P/yr)

(when science meets management, then politics beats science)

Nitrogen loads (Kt N/yr)

Reference dynamics, Baltic Proper net primary production (PP,gC/m2/yr), nitrogen fixation (Nfix, Kt/yr) direct contribution of Nfix in PP (%)

Phosphorus loads (Kt P/yr)

Both N & P reduction

(when science meets management, then politics beats science)

Nitrogen loads (Kt N/yr)

Reference dynamics, Baltic Proper net primary production (PP,gC/m2/yr), nitrogen fixation (Nfix, Kt/yr) direct contribution of Nfix in PP (%)

Phosphorus loads (Kt P/yr)

Both N & P reduction

Only P reduction

(when science meets management, then politics beats science)

Nitrogen loads (Kt N/yr)

Reference dynamics, Baltic Proper net primary production (PP,gC/m2/yr), nitrogen fixation (Nfix, Kt/yr) direct contribution of Nfix in PP (%)

Phosphorus loads (Kt P/yr)

Only N reduction

Both N & P reduction

Only P reduction

