APAN PS5430 Applied Text & Natural Language Analytics Week 4: Information Extraction I

Javid Huseynov, Ph.D. Thursday, February 13, 2019

Week 4 Agenda

- Overview of NLP Pipeline Tasks
- Information Extraction (IE)
- Named Entity Recognition & Linking (NER and NEL)
 - Approaches
 - Rule-based NER
 - Machine Learning-based NER
 - NER Evaluation Metrics
- Coreference Resolution
- IE Tool Demos
- Class Exercise: SpaCy NER Training & Entity Linking using Spark

NLP Pipeline Tasks

TEXT

Basic Text Processing

Regular Expressions Tokenization Segmentation Stemming Lemmatization

Part-of-Speech Tagging

Information Extraction

Named Entity Recognition Named Entity Disambiguation

Coreference Resolution Relationship Extraction

Natural Language Understanding

Sentiment Analysis Semantic Analysis Question Answering Machine Translation

KNOWLEDGE

Information Extraction (IE)

The NLP task of **extracting structured** (semantic) **information** from unstructured text, to enable:

- further modeling by computer algorithms
- meaning and knowledge extraction

Subtasks

- Named Entity Recognition
- Named Entity Linking
- Coreference Resolution
- Relationship Extraction

Tools

- IBM Watson NLU
- Google Cloud NL
- Amazon Comprehend
- Thomson Reuters Open Calais
- Microsoft Text Analytics
- Stanford CoreNLP
- spaCy
- Natural Language Toolkit (NLTK)

^{*} open-source

Named Entity Recognition (NER)

IE subtask of *finding* and *classifying* **named entities**, e.g. person, company, organization, geolocation, etc.

IBM announced that Technology Strategist, IBM Watson Customer Engagement Lisa Seacat DeLuca will be speaking at the NAI 2017 Annual Conference on Friday, April 7 at the Marriott Longwarf Hotel in Boston.

• COMPANY: IBM

• **PERSON**: Lisa Seacat DeLuca

• **POSITION**: Technology Strategist

• ORGANIZATION: National Academy of Inventors, NAI

• DATE: April 7

• FACILITY: Marriott Longwarf Hotel

• CITY: Boston

Methods

- Rule-based
 - Gazetteer Lookup
- Pattern-based
 - Regular Expressions
- ML Sequence-based
 - Supervised Classifier

Uses

- Document classification
- Information retrieval
- Question answering

NER: Uses & Tools

- The uses:
- Named entities can be indexed, linked off, etc.
- Sentiment can be attributed to companies or products
- Many IE relations are associations between named entities
- For question answering, answers are often named entities.
- Concretely:
- Many web pages tag entities with links to bio or topic pages, etc.
- Apple/Google/Microsoft/... smart recognizers for document content

NER tools

- Stanford NER
- IBM Watson NLU
- Thomson ReutersOpenCalais
- Google Cloud NL
- Amazon Comprehend
- Azure Text Analytics
- SpaCy
- NLTK
- Evri
- Yahoo Term
 Extraction

Named Entity Linking (NEL), a.k.a. Named Entity Disambiguation

Task of *identifying* and *linking off* **named entities** to a knowledge base, such as DBpedia, Dun & Bradstreet, Yago, Babel, etc.

IBM announced that Technology Strategist, IBM Watson Customer Engagement Lisa Seacat DeLuca will be speaking at the NAI 2017 Annual Conference on Friday, April 7 at the Marriott Longwarf Hotel in Boston.

- IBM Corporation headquartered in Armonk, New York
- Lisa Seacat DeLuca IBM Technology Strategist
- NAI National Academy of Inventors, **not** Network Advertising Initiative or National Association for Interpretation

Methods

- Rule-based
- Machine Learning
- Knowledge Graphs

Applications

- Hotlinking / Wikifying
- Enriching knowledge base
- Linking to enterprise data

Tools

- IBM Watson NLU
- TR Open Calais
- Google Cloud NL

NER Approaches

Knowledge-driven

- Advantages
 - Higher precision
 - Simple lookup methods
 - Small amount of training data
- Disadvantages
 - Expensive development
 - Domain dependence
 - Weak scalability

Data-driven

- Advantages
 - Higher recall
 - No need for grammars
 - No need for linguistic experts
 - Availability of tagged data
- Disadvantages
 - Lower precision
 - Require a lot of training data

Rule-based NER or NEL

- Regular Expressions
 - Phone number (###-###-###)
 - Email (contains @ and .com/org/net)
 - Capitalized names
- Context patterns
 - [PERSON] earned [MONEY] Ex. David earned \$10
 - [PERSON] joined [ORGANIZATION] Ex. Sam joined IBM
 - [PERSON],[JOBTITLE] Ex. Mary, the teacher

- Challenges
 - First word in sentence is capitalized
 - Titles in articles can be all caps
 - Nested named entities can contain noncap words
 - All nouns in German are capitalized
 - New proper names emerge daily, i.e. movies, books, celebrities, etc.
 - Proper names can be ambiguous, i.e.
 - Jordan (river, country or person)
 - Columbia University (mixed geo and organization)

Machine Learning-based NER or NEL

- Supervised Learning for NER
 - Label training data (POS and IOB tags)
 - methods: Hidden Markov Models, k-Nearest Neighbors, Decision Trees, AdaBoost, SVM, ...
 - steps: NE recognition, POS tagging, Parsing
- Unsupervised Learning
 - labels must be automatically discovered
 - method: clustering
 - example: NE disambiguation, text classification

IOB2 Tagging Format

Alex B-PER
is 0
going 0
to 0
Los B-LOC
Angeles I-LOC

ML Approaches: k-Nearest Neighbor or Distance-based

• Given two objects X and Y:

•
$$X = (x_1, x_2, ..., x_n)$$

•
$$Y = (y_1, y_2, ..., y_n)$$

Calculate Euclidean distances

• d (X, Y) =
$$\sqrt{\sum_{i=0}^{n} |xi - yi|^2}$$

Higher Similarity ~ Lower Distance

- Pros:
 - Robust, simple, fast training
- Cons:
 - Depends on *distance* and *k*
 - Susceptible to noise

	Person	Capitalized	Living	NBA
Michael Jordan	1	1	1	1
Jordan	0	1	0	0
Kobe Bryant	1	1	1	1
Chicago Bulls	0	1	0	1
Los Angeles Lakers	0	1	0	1

- d ("Michael Jordan", "Jordan") = $\sqrt{1^2 + 0^2 + 1^2 + 1^2} = 1.73$
- d ("Michael Jordan", "Kobe Bryant") = $\sqrt{0^2 + 0^2 + 0^2 + 0^2} = 0$
- d ("Michael Jordan", "Chicago Bulls") = $\sqrt{1^2 + 0^2 + 1^2 + 0^2} = 1.41$

ML Approaches: Decision tree-based

- The classifier has a tree structure, where each node is either:
 - a <u>leaf</u> node which indicates the value of the target attribute (class) of examples
 - a <u>decision</u> node which specifies some test to be carried out on a single attribute-value, with one branch and sub-tree for each possible outcome of the test
- An instance x_p is classified by starting at the root of the tree and moving through it until a leaf node is reached, which provides the classification of the instance
- Pros:
 - Understandable Rules, Feature Extraction
- Cons:
 - Error-prone for multi-class labeling, requires a lot of training data

	Person	Capitalized	Living	isPerson?
Michael Jordan	1	1	1	YES
Jordan	0	1	0	NO
Chicago Bulls	0	1	0	NO

NER Evaluation Metrics

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Coreference Resolution

Task of *finding* **expressions** that refer to the same entity in text:

"If I have learned nothing else in all my years here, my biggest lesson is you have to constantly reinvent this company", IBM CEO Ginni Rometty said.

- Ginni Rometty, IBM antecedents
- I, my, this company anaphors
- Antecedents and anaphors *markables*

Methods

- Heuristics
 - Syntactic, Semantic, or Pragmatic (topic) rules
- Supervised Learning
 - Binary Classification (SVM)
 - Ranking
 - Anaphoricity
- Unsupervised Learning
 - Bayesian w/ Dirichlet distrib.
 - Expectation Maximization

Applications

- Document Summarization
- Question Answering
- Relevance & Sentiment

Coreference vs Anaphoricity

- Coreference is when two mentions refer to the same entity in the world
- Anaphoricity is when a term (anaphor) refers to another term (antecedent) and the interpretation of the anaphor is in some way determined by the interpretation of the antecedent
- Not all anaphoric relations are coreferential, e.g.
 - "We went to see a concert last night. The tickets were really expensive."
- Conversely, multiple identical full noun-phrase (NP) references are typically coreferential but not anaphoric.

Coreference

Anaphoricity

Pronomial Anaphora Resolution: Hobbs' Naïve Algorithm

Information Extraction Tool Demos

IBM Watson NLU:

• https://natural-language-understanding-demo.ng.bluemix.net/

Thomson Reuters Open Calais:

https://permid.org/onecalaisViewer

Google Natural Language Processing API:

• https://cloud.google.com/natural-language/

Amazon Comprehend:

• https://aws.amazon.com/comprehend/