

www.vishay.com

Vishay Siliconix

Dual N-Channel 20 V (D-S) MOSFET

PowerPAK® SC-70-6L Dual Top View Bottom View

Marking code: CC

PRODUCT SUMMARY									
V _{DS} (V)	20								
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.046								
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 2.5 \text{ V}$	0.063								
Q _g typ. (nC)	3.5								
I _D (A) ^a	4.5								
Configuration	Dual								

FEATURES

- TrenchFET® power MOSFET
- New thermally enhanced PowerPAK® SC-70 package
 - Small footprint area
 - Low on-resistance
- Typical ESD protection 560 V
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

RoHS COMPLIANT

HALOGEN FREE

APPLICATIONS

- · Load switch for portable applications
- High frequency DC/DC converter

ORDERING INFORMATION	
Package	PowerPAK SC-70
Lead (Pb)-free and halogen-free	SiA906EDJ-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-source voltage		V_{DS}	20	V		
Gate-source voltage		V _{GS}	± 12			
	T _C = 25 °C		4.5 ^a			
Continuous drain surrent (T. 150 °C)	T _C = 70 °C		4.5 ^a			
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	4.5 ^{a, b, c}			
	T _A = 70 °C		4.1 ^{b, c}	Α		
Pulsed drain current		I _{DM}	15			
Continuous source-drain diode current	T _C = 25 °C		4.5 ^a			
Continuous source-drain diode current	T _A = 25 °C	I _S	1.6 ^{b, c}			
	T _C = 25 °C		7.8			
Maximum power dissipation	T _C = 70 °C	_	5	w		
	T _A = 25 °C	P _D	1.9 ^{b, c}	VV		
	T _A = 70 °C		1.2 ^{b, c}			
Operating junction and storage temperature	e range	T _J , T _{stq}	-55 to +150	°C		
Soldering recommendations (peak tempera	ture) ^{d, e}		260			

THERMAL RESISTANCE RATINGS									
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT				
Maximum junction-to-ambient b, f	t ≤ 5 s	R _{thJA}	52	65	°C/W				
Maximum junction-to-case (drain)	Steady state	R_{thJC}	12.5	16	7 °C/W				

Notes

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- Maximum under steady state conditions is 110 °C/W

SiA906EDJ

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	J 050 A	-	23	-	mV/°C
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-3.3	-	
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.6	-	1.4	V
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$	-	-	± 8	μА
Zava mata walta na disaisa awasant	I _{DSS}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	
Zero gate voltage drain current		V _{DS} = 20 V, V _{GS} = 0 V, T _J = 55 °C	-	-	-10	
On-state drain current ^a	I _{D(on)}	$V_{DS} \le 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10	-	-	Α
Desire and a second sec	5	$V_{GS} = 4.5 \text{ V}, I_D = 3.9 \text{ A}$	-	0.037	0.046	
Drain-source on-state resistance ^a	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 3.3 \text{ A}$	-	- 0.051 (0.063	Ω
Forward transconductance a	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 3.9 \text{ A}$	-	14	-	S
Dynamic ^b				•	•	•
Input capacitance	C _{iss}		-	350	-	
Output capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	63	-	pF
Reverse transfer capacitance	C _{rss}		-	37	-	
Tatal sate about	Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 5.1 \text{ A}$	-	7.5	12	nC
Total gate charge			-	3.5	5.5	
Gate-source charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 5.1 \text{ A}$	-	0.95	-	
Gate-drain charge	Q _{gd}		-	0.75	-	
Gate resistance	R_{g}	f = 1 MHz	0.7	3.5	7	Ω
Turn-on delay time	t _{d(on)}		-	10	15	
Rise time	t _r	V_{DD} = 10 V, R_L = 2.4 Ω	-	12	20	
Turn-off delay time	t _{d(off)}	$I_D \cong 4.1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	-	18	30	
Fall time	t _f		-	12	20	
Turn-on delay time	t _{d(on)}		-	5	10	ns
Rise time	t _r	$V_{DD} = 10 \text{ V}, R_{L} = 2.4 \Omega$	-	12	20	
Turn-off delay time	t _{d(off)}	$I_D \cong 4.1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	-	15	25	-
Fall time	t _f		-	10	15	
Drain-Source Body Diode Characteristic	s			•	•	
Continuous source-drain diode current	I _S	T _C = 25 °C	-	-	4.5	^
Pulse diode forward current			-	-	15	A
Body diode voltage	dy diode voltage V _{SD}		-	0.8	1.2	V
dody diode reverse recovery time t _{rr}		I _S = 4.1 A, V _{GS} = 0 V	-	15	30	ns
Body diode reverse recovery charge	Q _{rr}	$I_F = 4.1 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	8	20	nC
Reverse recovery fall time	t _a	T _J = 25 °C	-	8	-	
<u> </u>				7	 	ns

Notes

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %
- b. Guaranteed by design, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

www.vishay.com

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Gate Current vs. Gate-Source Voltage

V_{DS} - Drain-to-Source Voltage (V)

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

Gate Current vs. Gate-Source Voltage

Transfer Characteristics

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Gate Charge

Source-Drain Diode Forward Voltage

1.7 $I_D = 3.9 A$ 1.5 R_{DS(on)} - On-Resistance 1.3 V_{GS} = 4.5 V, 2.5 V (Nomalized) 1.1 0.9 0.7 0.5 - 25 0 25 125 150 - 50 50 75 100 T_J - Junction Temperature (°C)

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power (Junction-to-Ambient)

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Safe Operating Area, Junction-to-Ambient

Note

a. The power dissipation P_D is based on T_J max = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69067.

PowerPAK® SC70-6L

BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL

- All dimensions are in millimeters
 Package outline exclusive of mold flash and metal burr
 Package outline inclusive of plating

			SINGL	_E PAD			DUAL PAD						
DIM	M	ILLIMETER	RS		INCHES		M	ILLIMETER	RS	INCHES			
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015	
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010	
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
D1	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028	
D2	0.135	0.235	0.335	0.005	0.009	0.013							
Е	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
E1	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041	
E2	0.345	0.395	0.445	0.014	0.016	0.018							
E3	0.425	0.475	0.525	0.017	0.019	0.021							
е		0.65 BSC			0.026 BSC	,	0.65 BSC			0.026 BSC			
K		0.275 TYP	1		0.011 TYP		0.275 TYP			0.011 TYP			
K1		0.400 TYP	1		0.016 TYP			0.320 TYP			0.013 TYP		
K2		0.240 TYP	1		0.009 TYP			0.252 TYP			0.010 TYP		
К3		0.225 TYP	1	0.009 TYP									
K4		0.355 TYP	1		0.014 TYP								
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015	
Т							0.05	0.10	0.15	0.002	0.004	0.006	
ECNI- C C	7404 D	. 0 00 1	. 07										

ECN: C-07431 - Rev. C, 06-Aug-07

DWG: 5934

Document Number: 73001 06-Aug-07

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Dual

Dimensions in mm (inches)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.