Bornes: corrigé

Ex 1 Soit $f: x \mapsto \lfloor x \rfloor + \lfloor \frac{1}{x} \rfloor$. Elle est définie sur \mathbb{R}_+^* et y minorée par 0 (c'est évident). donc $\inf_{\mathbb{R}_+^*} f$ existe. De plus :

- Si x > 1, alors $\left\lfloor \frac{1}{x} \right\rfloor = 0$ et $f(x) = \lfloor x \rfloor \geqslant 1$.
- Si 0 < x < 1 alors $\lfloor x \rfloor = 0$ et $f(x) = \lfloor \frac{1}{x} \rfloor \geqslant 1$.
- f(1) = 2.

1 est minorant de f et $f\left(\frac{3}{2}\right)=1,$ donc $\left[\inf_{\mathbb{R}_+^*}f=\min_{\mathbb{R}_+^*}f=1\right]$

 $\textit{Remarque}: 1 \text{ est atteint sur tout l'intervalle }] \frac{1}{2}, 2 \text{[et l'intervalle]} \frac{1}{2}, 1 \text{[}.$

Ex 2 Soit $f: x \mapsto \frac{2x^2 + 4x + 1}{x^2 + 2x + 2}$. Alors pour tout réel x:

$$f(x) = 2 - \frac{1}{x^2 + 2x + 2} = 2 - \frac{1}{(x+1)^2 + 1}$$

Comme $(x+1)^2 + 1 \ge 1$, on a donc :

$$1 \leqslant f(x) \leqslant 2$$

f est donc bornée sur $\mathbb R$, ce qui assure l'existence de $\sup_{\mathbb R} f$ et $\inf_{\mathbb R} f$.

- De plus $f\left(-1\right)=1$, donc $\displaystyle \overline{\inf_{\mathbb{R}}f=\min_{\mathbb{R}}f=1}$
- Montrons que $\sup_{\mathbb{R}} f = 2$.
 - * 2 est bien majorant de f et n'est pas atteint par f (f (x) = 2 \iff 0 = 1).
 - * Soit $\varepsilon > 0$. Montrons que 2ε n'est pas majorant de f, c'est-à-dire qu'il existe un réel x tel que

$$f(x) > 2 - \varepsilon$$
 (*)

Or

$$(*) \iff 2 - \frac{1}{(x+1)^2 + 1} > 2 - \varepsilon$$
$$\iff (x+1)^2 > \frac{1}{\varepsilon} - 1$$

- · Si $\varepsilon \geqslant 1$, n'importe quel réel x vérifie (*).
- · Si $\varepsilon < 1$, le réel $x = \sqrt{\frac{1}{\varepsilon} 1}$ vérifie (*) (car $(x+1)^2 > x^2 = \frac{1}{\varepsilon} 1$)

Dans tous les cas $2-\varepsilon$ n'est pas majorant de f, ce qui confirme notre conjecture : $\sup_{\mathbb{R}} f=2$

Ex 3 Soit
$$f: x \mapsto \frac{x^2 \cos x}{1 + x^2}$$
.

- On a $\forall x \in \mathbb{R}, |f(x)| \leq \frac{x^2}{1+x^2} \leq 1$. Donc f est bornée sur \mathbb{R} , et $\sup_{\mathbb{R}} f$ et $\inf_{\mathbb{R}} f$ existent.
- Montrons que $\sup_{\mathbb{D}} f = 1$ (un dessin le suggère aisément).
 - * 1 est majorant, comme on vient de le montrer.
 - * Soit $\varepsilon > 0$. Montrons que 1ε n'est pas majorant, c'est-à-dire qu'il existe un réel x_0 tel que $f(x_0) \stackrel{(*)}{>} 1 \varepsilon$. Pour s'approcher au plus près de 1, cherchons x_0 sous la forme $x_0 = 2k\pi$, avec $k \in \mathbb{N}$, de sorte que le cosinus soit maximal. Alors (*) devient

$$\frac{4k^2\pi^2}{1+4k^2\pi^2} > 1-\varepsilon \Longleftrightarrow \frac{1}{1+4k^2\pi^2} < \varepsilon \Longleftrightarrow k^2 > \frac{1}{4\pi^2} \left(\frac{1}{\varepsilon}-1\right)$$

- · Si $\varepsilon > 1$, avec n'importe quel $k, x_0 = 2k\pi$ vérifie bien (*) .
- $\cdot \quad \underline{\mathrm{Si}\ \varepsilon \leqslant 1}, \, \mathrm{alors}\ \mathrm{en}\ \mathrm{posant}\ k = \left\lfloor \frac{1}{2\pi} \sqrt{\frac{1}{\varepsilon} 1} \right\rfloor + 1, \, x_0 = 2k\pi \ \mathrm{v\'erifie}\ \mathrm{bien}\ (*) \, .$

Au total, $1-\varepsilon$ n'est pas majorant et on a bien $\sup_{\mathbb{R}} f=1.$

- Montrons de même que $\inf_{\mathbb{D}} f = -1$
 - * -1 est minorant, puisque $|f| \le 1$.
 - * Soit $\varepsilon > 0$. Montrons que $-1 + \varepsilon$ n'est pas minorant, i.e. qu'il existe un réel x_0 tel que $f(x_0) \stackrel{(*)}{<} -1 + \varepsilon$. Pour s'approcher au plus près de -1, cherchons x_0 sous la forme $x_0 = (2k+1)\pi$, avec $k \in \mathbb{N}$, de sorte que le cosinus soit minximal. Alors (*) devient

$$-\frac{\left(2k+1\right)^{2}\pi^{2}}{1+\left(2k+1\right)^{2}\pi^{2}} < -1+\varepsilon \Longleftrightarrow \frac{1}{1+\left(2k+1\right)^{2}\pi^{2}} < \varepsilon \Longleftrightarrow \left(2k+1\right)^{2} > \frac{1}{\pi^{2}}\left(\frac{1}{\varepsilon}-1\right)$$

- · Si $\varepsilon > 1$, avec n'importe quel k, $x_0 = (2k+1)\pi$ vérifie bien (*).
- $\cdot\quad \underline{\mathrm{Si}\;\varepsilon\leqslant 1},\,\mathrm{alors\;en\;posant}\;k=\left\lfloor\frac{1}{2\pi}\sqrt{\frac{1}{\varepsilon}-1}\right\rfloor,\,x_0=\left(2k+1\right)\pi\;\mathrm{v\acute{e}rifie\;bien}\;(*)\,.$

Au total, $-1+\varepsilon$ n'est pas majorant et on a bien $\inf_{\mathbb{R}} f = -1.$

Ex 4 Soit
$$E = \left\{ \frac{n}{mn+1}, m \in \mathbb{N}^*, n \in \mathbb{N}^* \right\}$$

 $\begin{aligned} \mathbf{Ex} \ \mathbf{4} \ \ & \text{Soit} \ E = \left\{ \frac{n}{mn+1}, \ m \in \mathbb{N}^*, n \in \mathbb{N}^* \right\}. \\ & \quad - \ E \ \text{contient} \ \tfrac{1}{2} \ (\text{avec} \ (m,n) = (1,1)) \ \text{donc est non vide. De plus, pour tout} \ (m,n) \in \mathbb{N}^{*2} \end{aligned}$

$$0<\frac{n}{mn+1}<\frac{n}{n+1}=1$$

Donc E est non vide et borné, et sup E et inf E existen

Montrons que $\sup E = 1$. 1 est bien majorant, et montrons que c'est le plus petit :

Soit $\varepsilon > 0$. montrons que $1 - \varepsilon$ n'est pas majorant de E en trouvant un élément $x \in E$ tel que $x > 1 - \varepsilon$.

Cela revient à trouver
$$(m,n)\in\mathbb{N}^{*2}$$
 tel que $\dfrac{n}{mn+1}>1-\varepsilon\ (*)$.

Posons
$$\boxed{m=1}$$
. $(*)$ devient alors $\frac{n}{n+1}>1-\varepsilon$ soit $n>\frac{1}{\varepsilon}-1$.

* Si $\varepsilon > 1$, avec n'importe quel $n \in \mathbb{N}^*$, (m, n) vérifie (*)

* Si
$$\varepsilon \leqslant 1$$
, en posant $n = \left\lfloor \frac{1}{\varepsilon} \right\rfloor$, le couple (m,n) vérifie $(*)$.

Dans tout les cas, $1 - \varepsilon$ n'est pas majorant de E, i.e. $\sup E = 1$.

Montrons que $\inf E = 0$. 0 est bien minorant, et montrons que c'est le plus grand :

Soit $\varepsilon > 0$. montrons que ε n'est pas minorant de E en trouvant un élément $x \in E$ tel que $x < \varepsilon$.

Cela revient à trouver
$$(m,n)\in\mathbb{N}^{*2}$$
 tel que $\dfrac{n}{mn+1}<\varepsilon\ (*)$.

$$\operatorname{Posons}\left[\overline{n=1}\right]\!.\ (*) \text{ devient alors } \frac{1}{m+1} > 1-\varepsilon \text{ soit } m > \frac{1}{\varepsilon}-1.$$

* Si $\varepsilon > 1$, avec n'importe quel $m \in \mathbb{N}^*$, (m, n) vérifie (*).

* Si
$$\varepsilon \leqslant 1$$
, en posant $m = \left| \frac{1}{\varepsilon} \right|$, le couple (m, n) vérifie $(*)$.

Dans tout les cas, ε n'est pas minorant de E, i.e. $\sup E = 0$.

Ex 5 Soient A et B deux parties de \mathbb{R} non vides telles que $A \subset B$ et B majorée.

A est non vide par hypothèse et majorée en effet $\forall x \in A$, on a $x \in B$ donc $x \leq \sup B$.

Donc $\sup A$ existe (théorème de la borne supérieure).

De plus, on a $\forall x \in A, \ x \leq \sup B$, donc $\sup B$ majore A, et donc $\sup A$. Ainsi

$$\boxed{\sup A \leqslant \sup B}$$

Ex 6 Soient f et g deux fonctions strictement positives majorées sur un intervalle I.

Alors $\sup_{I} f$, $\sup_{I} g$, $\inf_{I} f$ et $\inf_{I} g$ existent et

$$\forall x \in I, \ 0 \leqslant \inf_{I} f \leqslant f\left(x\right) \leqslant \sup_{I} f \quad \text{et} \quad 0 \leqslant \inf_{I} g \leqslant g\left(x\right) \leqslant \sup_{I} g$$

Par produit on a donc $\forall x \in I$,

$$0 \leqslant \inf_{I} (f) \times \inf_{I} (g) \leqslant f (x) g (x) \leqslant \sup_{I} (f) \times \sup_{I} (g)$$

Donc fg est bornée sur I, $\sup_{T} (f) \times \sup_{T} (g)$ en est un majorant et $\inf_{T} (f) \times \inf_{T} (g)$ un minorant. Ainsi

$$\left[\sup_{I}\left(fg\right)\leqslant\sup_{I}\left(f\right)\times\sup_{I}\left(g\right)\right]\quad\text{et}\quad\left[\inf_{I}\left(fg\right)\geqslant\inf_{I}\left(f\right)\times\inf_{I}\left(g\right)\right]$$

Ex 7 Soit f une fonction majorée sur un intervalle I et sur un intervalle J. On note $M_I = \sup_I f$ et $M_J = \sup_I f$.

Soit $x \in I \cup J$. Si $x \in I$, alors $f(x) \leqslant M_I$, et si $x \in J$ alors $f(x) \leqslant M_J$. Donc $f(x) \leqslant \max(M_I, M_J)$.

Ainsi f est majorée sur $I \cup J$, ce qui assure l'existence de $\sup f$. De plus $\sup f \leqslant \max (M_I, M_J)$.

Inversement, si μ est un majorant de f sur $I \cup J$, alors $\forall x \in I \cup J$, $f(x) \leq \mu$. En particulier

$$\forall x \in I, f(x) \leqslant \mu \text{ donc } M_I \leqslant \mu$$

$$\forall x \in J, f(x) \leqslant \mu \text{ donc } M_J \leqslant \mu$$

 μ est donc supérieur à M_I et M_J , donc au plus grand des deux : $\mu \geqslant \max (M_I, M_J)$.

On en déduit que $\max{(M_I, M_J)}$ est le plus grand des majorants de f sur $I \cup J$, soit

$$\sup_{I \cup J} f = \max\left(M_I, M_J\right)$$

Ex 8 Soit E une partie non vide bornée de \mathbb{R} , $M = \sup E$, $m = \inf E$. On pose $\mathcal{D} = \{|x - y|, \ (x, y) \in E^2\}$. E est non vide, donc en choisissant $x \in E$, on a $0 = |x - x| \in D$, donc $\mathcal{D} \neq \emptyset$. De plus

$$\forall (x,y) \in E^2, \; \left\{ \begin{array}{l} m \leqslant x \leqslant M \\ m \leqslant y \leqslant M \end{array} \right. \Rightarrow m-M \leqslant x-y \leqslant M-m \Rightarrow |x-y| \leqslant M-m$$

 \mathcal{D} est donc majoré par M-m. Donc il admet une borne supérieure sup \mathcal{D}

Montrons que $\sup \mathcal{D} = M - m$: soit μ un majorant de \mathcal{D} : alors

$$\forall y \in E, \forall x \in E, \ x - y \leqslant \mu$$

 $y \in E$ étant fixé quelconque, on a ainsi

$$\forall x \in E, \ x \leqslant \mu + y$$

Par "passage au sup", on en déduit

$$M \leqslant \mu + y$$

Ainsi

$$\forall y \in E, \ y \geqslant M - \mu$$

Par "passage à l'inf" on peut donc affirmer

$$m \geqslant M - \mu$$

et ainsi

$$\mu \geqslant M - m$$

M-m est donc le plus petit des majorants de \mathcal{D} , CQFD.

Autre solution : soit $\varepsilon > 0$: par définition des bornes supérieures et inférieures,

$$\exists x \in E \; / \; x > M - \frac{\varepsilon}{2} \quad \text{et} \quad \exists y \in E \; / \; y < m + \frac{\varepsilon}{2}$$

Mais alors

$$|x-y| \geqslant x-y > M-m-\varepsilon$$

Donc $M - m - \varepsilon$ n'est pas un majorant de \mathcal{D} , CQFD.

Ex 9 Soit A un sous ensemble de \mathbb{R} non vide et borné tel que inf A > 0

On pose $B = \left\{ \frac{1}{a}, \ a \in A \right\}$. Alors B est non vide (il existe un élément a de A, donc $\frac{1}{a} \in B$).

De plus si $b \in B$, alors $\exists a \in A / b = \frac{1}{a}$. Comme $a \geqslant \inf A$, on a alors $b \leqslant \frac{1}{\inf A}$.

Ainsi B est majoré par $\frac{1}{\inf A}$ et minoré par 0 : B est borné non vide, et $\sup B$ existe.

Montrons que $\sup B = \frac{1}{\inf A}$: si M est un majorant de B, alors

$$\forall b \in B, \ b \leqslant M \quad \text{soit} \quad \forall a \in A, \ 0 < \frac{1}{a} \leqslant M$$

(en effet inf A > 0, donc $\forall a \in A, a > 0$). On en déduit que

$$\forall a \in A, \ a \geqslant \frac{1}{M} > 0$$

Par "passage" à la borne inférieure, il vient inf $A \geqslant \frac{1}{M} > 0$, soit $M \geqslant \frac{1}{\inf A}$.

 $\frac{1}{\inf A}$ est donc le plus petit majorant de B, soit

$$\boxed{\sup B = \frac{1}{\inf A}}$$

Ex 10 Soit $(I_k)_{k\in\mathbb{N}}$ une suite de segments emboîtés, c'est-à-dire d'intervalles fermés et bornés de type $I_k=[a_k,b_k]$ avec $a_k \leqslant b_k$, et formant une suite décroissante pour l'inclusion $(\forall k \in \mathbb{N}, \ I_{k+1} \subset I_k)$.

a) Pour tout $k \in \mathbb{N}$,

$$I_{k+1} \subset I_k \Rightarrow \left\{ \begin{array}{l} a_k \leqslant a_{k+1} \\ b_k \geqslant b_{k+1} \end{array} \right.$$

 $I_{k+1} \subset I_k \Rightarrow \left\{ \begin{array}{l} a_k \leqslant a_{k+1} \\ b_k \geqslant b_{k+1} \end{array} \right.$ Autrement dit $(a_k)_{k \in \mathbb{N}}$ est croissante et $(b_k)_{k \in \mathbb{N}}$ décroissante.

De plus, si $k \in \mathbb{N}$, $a_0 \leqslant a_k \leqslant b_k \leqslant b_0$. On en déduit que $(a_k)_{k \in \mathbb{N}}$ et $(b_k)_{k \in \mathbb{N}}$ sont bornées.

Posons $a = \sup a_k$ et $b = \inf b_k$. Alors

$$\forall k \in \mathbb{N}, \begin{cases} \forall n < k, \ a_n \leqslant a_k \leqslant b_k \\ \forall n \geqslant k, \ a_n \leqslant b_n \leqslant b_k \end{cases}$$

Ainsi pour tout $k \in \mathbb{N}$, b_k majore la suite $(a_n)_{n \in \mathbb{N}}$. On en déduit que $\forall k \in \mathbb{N}, \ a \leqslant b_k$.

Mais alors a minore la suite $(b_k)_{k\in\mathbb{N}}$, donc

$$a \leqslant b$$

b) Montrons que $\bigcap I_k = [a, b]$

* si $x \in [a,b]$, alors pour tout entier $k \in \mathbb{N}$ on a

$$a_k \leqslant a \leqslant x \leqslant b \leqslant b_k$$
 d'où $x \in [a_k, b_k] = I_k$

On en déduit que $x\in\bigcap_{k\in\mathbb{N}}I_k,$

* Inversement si $x \in \bigcap_{k \in \mathbb{N}} I_k$, alors $\forall k \in \mathbb{N}, \ a_k \leqslant x \leqslant b_k$. Donc x majore $(a_k)_{k \in \mathbb{N}}$ et minore $(b_k)_{k \in \mathbb{N}}$.

Il vient:

$$a \leqslant x \leqslant b$$
 ou $x \in [a, b]$

ce qui établit l'égalité proposée par double inclusion.

Ex 11 Soit f une fonction définie sur [0, 1] vérifiant :

$$\left\{ \begin{array}{l} \forall x \in \left[0,1\right], \ f\left(x\right) \in \left[0,1\right] \\ \forall \left(x,y\right) \in \left[0,1\right]^{2}, \quad \left|f\left(x\right) - f\left(y\right)\right| \leqslant \left|x - y\right| \end{array} \right.$$

On se propose de démontrer qu'il existe un réel $\alpha \in [0,1] / f(\alpha) = \alpha$.

On pose à cet effet : $A = \{x \in [0,1] / f(x) \ge x\}$.

a) On a $f(0) \in [0,1]$, donc $f(0) \ge 0$, i.e. $0 \in A$.

Majoré (évidemment par 1) et non vide, il admet une borne supérieure sup $A = m \in [0, 1]$.

b) Si $z \in A$, alors par définition $z \leqslant f(z)$ et par hypothèse $f(z) - f(m) \leqslant |z - m| = m - z$ (car $z \leqslant m$): donc

$$\forall z \in A, \ z \leqslant f(z) \leqslant f(m) + m - z$$

En considérant les deux membres extrêmes de cet encadrement, on obtient

$$\forall z \in A, \ 2z \leqslant f(m) + m \quad i.e.$$

soit

$$\forall z \in A, \ z \leqslant \frac{f\left(m\right) + m}{2}$$

Par passage au sup il vient

$$m\leqslant\frac{m+f\left(m\right)}{2}$$

Ce dont on déduit aisément

$$f\left(m\right)\geqslant m$$

c) On suppose que $m \neq 1$. Alors

$$\forall z \in]m, 1], f(m) - f(z) \leq |m - z| \stackrel{z > m}{=} z - m$$

Mais comme z > m, on a $z \notin A$, et donc f(z) < z: en ajoutant, il vient

$$\forall z \in \left] m, 1 \right], \ f(m) < 2z - m$$

Mais alors

$$\forall z \in]m,1], z > \frac{f(m)+m}{2}$$

Par passage à l'inf, on en déduit (puisque inf [m, 1] = m) que

$$m \geqslant \frac{m + f(m)}{2}$$

Et ainsi

$$f\left(m\right)\leqslant m$$

 $\boxed{f\left(m\right)\leqslant m}$ d) On a ainsi d'après b) et c), si $m\neq 1, \boxed{f\left(m\right)=m}$

Mais si m=1, alors on a d'après 3. : $1=m\leqslant f(m)\leqslant 1$, d'où

$$f\left(m\right) = m = 1$$

Dans les deux cas on a bien l'existence d'un réel $m = \sup A$ vérifiant f(m) = m, CQFD.