UNIVERSITÉ de MONTPELLIER

— Faculté des sciences — Département de Mathématiques Année 2018–2019 Algèbre Linéaire et Analyse 2 HLMA203

LICENCE 1ère année Série 1 & Série 3

Contrôle Final: session 1

Date: 10 Mai 2019 **Heure**: 16h00

Durée: 3 heures (hors tiers-temps) Document et calculatrice interdits

Exercice §1 : QCM. Qualifier les assertions suivantes par **V** (vraie) ou **F** (fausse), sur la copie ; bien reporter, au préalable, une colonne avec tous les numéros (pas les assertions ellesmêmes), dans l'ordre, mêmes ceux sans réponse. Toute réponse fausse est comptée négativement.

- 1. La somme de deux isomorphismes $\mathbb{R}^4 \to \mathbb{R}^4$ est un isomorphisme.
- 2. La fonction $f(x) = e^{e^x + x}$ est une primitive de la fonction $F(x) = e^{e^x}$.
- 3. Le déterminant d'une matrice triangulaire inférieure est le produit des termes diagonaux.
- 4. Pour toutes matrices inversibles A et B, AB est inversible et $(AB)^{-1} = A^{-1}B^{-1}$.
- 5. L'équation différentielle y' 3y + 2 = 0 est linéaire homogène.
- 6. La dimension de l'algèbre des matrices carrées $\mathcal{M}_{2019}(\mathbb{R})$ est 2019.
- 7. Il existe deux plans vectoriels F et G dans \mathbb{R}^4 tels que $F \cap G = 0$.
- 8. Certaines applications linéaires $\mathbb{R}^2 \to \mathbb{R}^3$ ne sont pas injectives.
- 9. Le DL de $\sqrt{1+x}$, en x=0 et à l'ordre 2, est donné par : $\sqrt{1+x}=1+\frac{1}{2}x+\frac{1}{4}x^2+O(x^3)$.
- 10. Pour tous $A, B \in \mathcal{M}_4(\mathbb{R})$, avec A inversible, nous avons $\det(ABA^{-1}) = \det(B)$.

Exercice §2: les matrices commutantes.

Pour toute matrice carrée A, on s'intéresse à l'ensemble $\mathcal{C}(A)$: les matrices B qui "commutent à A", *i.e.* telles que AB = BA; il y en a beaucoup : B = A, B = I (unité), $B = A^2$,...

Partie I. Soit $E = \mathcal{M}_n(\mathbb{R})$, l'ensemble des matrices carrées d'ordre n > 1, et soit $A \in E$.

- 1. Vérifier que $\mathcal{C}(A)$ est un s.e.v de E. Pourquoi $\mathcal{C}(A)$ est non nul?
- 2. Montrer que l'application $f: E \to E, f(B) = AB BA$, est un endomorphisme.
- 3. À l'aide du Théorème du Rang, établir la formule : $rang(f) = n^2 \dim \mathcal{C}(A)$.
- 4. En déduire que f n'est pas surjective.

Partie II. On suppose n=2 et $A=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, avec $a\neq b$.

- 1. Décrire explicitement les matrices $B \in \mathcal{C}(A)$: poser $B = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ et résoudre le système.
- 2. En déduire que C(A) est un plan; montrer ensuite que nous avons $C(A) = Vect(I_2, A)$.
- 3. Application : montrer qu'il existe un polynôme $P(X) = X^2 \tau X + \delta$, tel que P(A) = 0. Ind. : inutile d'expliciter τ et δ , l'existence de P(X) se déduit de la propriété $A^2 \in \mathcal{C}(A)$.

Exercice §3. Soit l'équation différentielle du second ordre (linéaire à coefficients constants):

$$(\mathcal{E}) \quad y \in \mathcal{C}^{\infty}(\mathbb{R}), \ y'' - 4y' + 3y = 3e^{4x} - 4e^{3x}.$$

- 1. Donner une base de solutions de l'équation homogène associée (\mathcal{E}_0) .
- 2. Trouver une solution particulière de la forme $y_1 = \alpha e^{4x}$ pour l'équation différentielle (\mathcal{E}_1) $y \in \mathcal{C}^{\infty}(\mathbb{R})$, $y'' 4y' + 3y = e^{4x}$.
- 3. Trouver une solution particulière de la forme $y_2 = \beta x e^{3x}$ pour l'équation différentielle (\mathcal{E}_2) $y \in \mathcal{C}^{\infty}(\mathbb{R})$, $y'' 4y' + 3y = e^{3x}$.
- 4. En déduire une solution particulière pour (\mathcal{E}) .
- 5. Trouver l'unique solution y de (\mathcal{E}) vérifiant y(0) = 0 et y'(0) = 0.

Exercice §4. Rappelons les développements limités (DL) de sinus et cosinus en 0 (n > 0):

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1});$$
$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}).$$

- 1. Calculer le DL de $1/\cos$, en x=0 et à l'ordre 8, par composition avec celui de 1/(1+x).
- 2. En déduire le DL de tangente (en x = 0, à l'ordre 8), par produit avec le DL de sinus.

Exercice §5. Soient les polynômes : $P_1 = X^6 + 6X^4 + 9X^2 + 4$ et $P_2 = X^6 + 9X^4 + 24X^2 + 16$.

- 1. Calculer le polynôme unitaire $P = pgcd(P_1, P_2)$.
- 2. Décomposer P en facteurs premiers dans $\mathbb{R}[X]$.
- 3. En déduire les décompositions en facteurs premiers de P_1 et P_2 (dans $\mathbb{R}[X]$).
- 4. Calculer le polynôme unitaire $ppcm(P_1, P_2)$.

Exercice §6. Soit la matrice réelle : $A = \begin{pmatrix} 2 & 0 & 1 & 9 \\ 0 & 2 & 0 & 1 \\ 1 & 1 & 9 & 0 \\ 9 & 1 & 0 & 2 \end{pmatrix}$.

- 1. Calculer le déterminant de A.
- 2. En déduire qu'il n'existe pas de matrice $B \in \mathcal{M}_4(\mathbb{R})$, telle que $B^2 = A$.

Exercice §7. Calcul de $I = \int_0^{\pi/2} \frac{dx}{1 + \cos x}$.

- 1. Pour $t = \tan \frac{x}{2}$, retrouver les formules $\cos x = \frac{1 t^2}{1 + t^2}$ et $dx = \frac{2dt}{1 + t^2}$.
- 2. Effectuer le changement de variables $t = \tan \frac{x}{2}$ dans l'intégrale de I.
- 3. Conclure.