Chapitre 6

Solutions des exercices de cours chapitre 2

6.1 Exercices sur le chapitre 2

Exercice 12.Parmi les ensembles suivants de \mathbb{R}^2 , le(s)quel(s) sont des droites vectorielles? $E_1 = \{(x, y) \in \mathbb{R}^2, x + 3y = 2\}$, $E_3 = \{(x, y) \in \mathbb{R}^2, x^2 - 3y^2 = 2\}$: Non puisique (0, 0) n'apparteient pas à E_1 .

 $E_2 = \{(x,y) \in \mathbb{R}^2, x^2 + 3y = 0\}$: Non $levecteur(3,-3) \in E_2$ mais pas (6,-6). $E_4 = \{(x,y) \in \mathbb{R}^2, x + 3y = 0\}$ oui car l'application f qui à (x,y) associe x + 3y est linéaire et $E_4 = \ker f$,

 $E_5 = \{(x,y) \in \mathbb{R}^2, x^2 - 3y^2 = 0\}$: Non $x^2 - 3y^2 = (x - \sqrt{3}y)(x + \sqrt{3})$ et E_5 est la réunion de deux droites vectorielles; on sait que la réunion de deux SEV n'est un SEV que si l'un est contenu dans l'autre et ici ce n'est pas le cas ...

Exercice 13. Soit $\vec{u} = (a, b)$ avec $a^2 + b^2 \neq 0$.

1) On sait que $\vec{v} = (x, y)$ est colinéaire à \vec{u} si et seulement si le déterminant

$$\left| \begin{array}{cc} x & \beta \\ y & b \end{array} \right| = 0$$

Ce qui donne bx - ay = 0. Et toute équation est de la forme $\lambda bx - \lambda ay = 0$ avec $\lambda \neq 0$.

- 2) La droite vectorielle $\vec{\Delta}$ orthogonale à \vec{u} dans le plan est l'ensemble des vecteurs orthogonaux à \vec{u} ie l'ensemble des vecteurs $\vec{v}(x,y)$ tels que $<\vec{u},\vec{v}>=0$ ou encore ax+by=0.
- 3) Pour trouver la position relative de \vec{D} et $\vec{\Delta}$, on prend un vecteur colinéaire $\vec{v}=(ta,tb)$ à \vec{u} et on cherche à ce que a(ta)+b(tb)=0 mais $a(ta)+b(tb)=t(a^2+b^2)$ donc t=0

Exercice 14. On se donne deux droites vectorielles non confondues \vec{D}_1 et \vec{D}_2 et pour $\{i,j\} = \{1,2\}$ on note p_i les projections sur D_i parallèlement à D_j , démontrer que l'on a : 1) Pour $i = 1, 2, p_i \circ p_i = p_i$ (fait en cours pour p_1).

2)a) On traite le cas i = 1 l'autre est analogue. on a $s_1 \circ s_1 = id$.; en effet pour tout $x \in R^2$, $s_1(x) = p_1(x) - p_2(x)$ donc en appliquant la définition de s_1 à $s_1(x)$ et la linéarité de s_1 , on obtient

$$s_1(s_1(x)) = s_1(p_1(x) - p_2(x)) = s_1(p_1(x)) - s_1(p_2(x)) = p_1(p_1(x)) - p_2(p_1(x)) - [p_1(p_2(x)) - p_2(p_2(x))]$$

donc d'après les propriétés vues en 1)

$$s_1(s_1(x)) = p_1(x) + p_2(x)$$
 et finalement $s_1(s_1(x)) = x$

b) On traite le cas i=1 l'autre est anaogue. Tout vecteur :evc u de_1 s'écrit $\vec{u}=\vec{u}+\vec{0}$ donc \vec{D}_1 est incluse dans l'ensemble des invariants de $_1$. réciproquement , $s_1=p_1-p_2=Id-2p_2$ donc \vec{u} est invariant par s_1 si ets eulement si $p_2(\vec{u})=\vec{0}$ donc si et seulement si $\vec{u}\in\vec{D}_1$.

Exercice 15. On se place dans le cas particulier de $E = \mathbb{R}^2$, espace vectoriel euclidien dont on notera $\langle x, y \rangle$ le produit scalaire. Soient $D_1 = \text{Vect}(\overrightarrow{u_1})$ et $D_2 = \text{Vect}(\overrightarrow{u_2})$ deux droites vectorielles engendrées par les vecteurs $\overrightarrow{u_1} = (1, 1)$ et $\overrightarrow{u_2} = (a, b)$, où a et b sont deux nombres réels.

1)A quelle condition D_1 et D_2 sont elles en somme directe? orthogonales?

 D_1 et D_2 sont elles en somme directe si et seulement si la famille $(\overrightarrow{u_1}, \overrightarrow{u_2})$, est libre ie si $a - b \neq 0$; D_1 et D_2 sont orthogonales si et seulement si les vecteurs $\overrightarrow{u_1}, \overrightarrow{u_2}$ sont orthogonaux ie a + b = 0.

2) Donner l'expression analytique de la projection orthogonale p sur D_1 puis celle de la symétrie orthogonale par rapport à D_1 .

On considère la base orthogonale $\vec{u}_1, \vec{v}_1 = (-1, 1)$ et tout vecteur $\vec{v} = (x, y)$ s'écrit comme

$$\vec{v} = <\vec{u}_1, \vec{v}> \frac{\vec{u}_1}{||\vec{u}_1||^2} + <\vec{u}_2, \vec{v}> \frac{\vec{u}_2}{||\vec{u}_2||^2}$$

donc

$$p(\vec{v}) = (\frac{(x+y)}{2}, \frac{(x+y)}{2})$$
$$s(\vec{v}) = (x+y)\frac{(1,1)}{2} - (-x+y)\frac{(-1,1)}{2}$$

donc comme on s'en doutait (pusiqu'on l'avait appris par le passé):

$$s(\vec{v}) = (y, x)$$

3) Donner, quand c'est possible, l'expression analytique de la projection \tilde{p} sur D_1 parallèlement à D_2 puis celle de la symétrie autour de D_1 de direction D_2 .

On suppose que $a \neq b$. On peut alors écrire $\vec{v} = \lambda \vec{u}_1 + \mu \vec{u}_2$ et on doit résoudre

$$\begin{cases} \lambda + \mu \ a = x \\ \lambda + \mu \ b = y \end{cases}$$

donc on résoud le système de Cramer , car $a - b \neq 0$. et on obtient

(6.1)
$$\lambda = \frac{\begin{vmatrix} x & a \\ y & b \end{vmatrix}}{\begin{vmatrix} b-a \end{vmatrix}} = \frac{bx-ay}{b-a}$$

(6.2)
$$y = \frac{\begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix}}{b-a} = \frac{y-x}{b-a}$$

Donc $p_1(\vec{v}) = \frac{bx - ay}{b - a}(1, 1)$ et $s_1(\vec{v}) = \lambda \vec{u}_1 - \mu(a, b)$

$$s_1(\vec{v}) = \frac{1}{b-a}((a+b)x - 2ay, 2bx - (a+b)y).$$

Exercice 16. $D = \text{Vect}(\overrightarrow{u})$ avec $\overrightarrow{u} = (3,4)$, soit M(x,y) un point du plan , on cherche deux réels (α,β) de sorte que $(x,y) = \alpha(3,4) + \beta(-4,3)$ ce qui signifie que l'on a à résoudre le système :

$$\begin{cases} 3\alpha - 4\beta = x \\ 4\alpha + 3\beta = y \end{cases}$$

de déterminant $\delta=\begin{vmatrix}3&-4\\4&3\end{vmatrix}=25\neq 0$. On a donc un système de Cramer et on trouve $\alpha=\frac{3x+4y}{25}$, $\beta=\frac{3y-4x}{25}$.

On a donc $p(x,y) = \alpha(3,4) = (\frac{3(3x+4y)}{25}, \frac{4(3x+4y)}{25}).$

De même, on sait que $s(x,y) = \alpha(3,4) - \beta(-4,3) = (\frac{-7x + 24y}{25}, \frac{24x + 7y}{25}).$

Exercice 17. Soient \vec{e}_1 et \vec{e}_2 deux vecteurs quelconques formant une famille libre de \mathbb{R}^2 . On se donne deux réels α et β . On sait qu'il existe deux réels , μ de sorte que tout vecteur du plan $\vec{u} = \lambda \vec{e}_1 + \mu \vec{e}_2$.

 \vec{u} est tel que $\langle \vec{u}, \vec{e}_1 \rangle = \alpha$ et $\langle \vec{u}, \vec{e}_2 \rangle = \beta$ si et seulement si les composantes λ, μ satisfont le système linéaire 2×2 :

$$\left\{ \begin{array}{ll} \lambda < \vec{e}_1, \vec{e}_1 > + & \mu < \vec{e}_2, \vec{e}_1 > = \alpha \\ \lambda < \vec{e}_1, \vec{e}_2 > + & \mu < \vec{e}_2, \vec{e}_2 > = \beta \end{array} \right.$$

68CHAPITRE 6. SOLUTIONS DES EXERCICES DE COURS CHAPITRE 2

de déterminant $\delta = \begin{vmatrix} <\vec{e}_1,\vec{e}_1> & <\vec{e}_2,\vec{e}_1> \\ <\vec{e}_1,\vec{e}_2> & <\vec{e}_2,\vec{e}_2> \end{vmatrix} = <\vec{e}_1,\vec{e}_1> <\vec{e}_1,\vec{e}_1> - <\vec{e}_1,\vec{e}_2>^2$.

D'après l'inégalité de Cauchy-Schwarz, $\delta \geq 0$ et on a même $\delta > 0$ stricte puisque la famille $vece_1, \vec{e_2})$ est libre ce qui empêche le cas d'égalité dans l'inégalité. Donc le système est de Cramer et il admet une unique solution . Sauriez-vous exprimer les composantes , μ en fonction de α et β ?

Exercice 18. Parmi les matrices de $\mathbb{M}_2(\mathbb{R})$, lesquelles sont orthogonales ?orthogonales directes? $R = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$: Non pas inversible et toute matrice orthogonale est inevrsible

 $S=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$: Oui c'est une symétrie orthogonale d'axe (d'invariants) $Vect(\vec{\imath}).$

 $T = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$: Non car les vecteurs colonnes (ou lignes) ne sont pas normés.

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$$
.: Oui $U = R_{\frac{\pi}{4}}$.

Exercice 19. Démontrer soigneusement la proposition (2.18). (cf TD) Exercice 20. Soit S une matrice orthogonale indirecte de $\mathbb{O}_2(\mathbb{R})$. On a $(\widehat{S\vec{u},S\vec{v}}) = \widehat{(\vec{v},\vec{u})}$ (cf TD)