迴歸分析期末報告

2014年人均二氧化碳排放量與其他變數之多元迴歸模型探討

指導教授: 江振東 教授

組員名單: 106304013 統計二 吳昱弘

106304027 統計二 許智超

106304050 統計二 張韶恩

106304054 統計二 葉洧彤

目錄

壹、	研究動機及目的	P.2
貳、	研究方法及資料蒐集	P.2
參、	基本資料分析	P.3
肆、	模型配適及分析	P.7
伍、	結論	P.8
陸、	附錄	P.9
柒、	分工情形與貢獻度	P.32

壹、 研究動機及目的

近年來,溫室效應的加劇導致天氣越發極端,溫室氣體的排放量控制儼然成為國際社會當前必須控制的議題,聯合國也於2015年年底通過巴黎協定,各國約定溫室氣體減量,希望能阻止全球暖化之趨勢。許多因素都會影響二氧化碳的排放量,例:國家發展、能源使用比例、製造業的比例、科學發展等。因此,我們想透過迴歸分析討論二氧化碳排放量與HDI(人類發展指數)、能源密集度(每生產一單位國內生產毛額所需投入之能源)、製造業佔GDP之比例的關係。

本次報告將以全世界國家為母體,目的為探討 2014 年人均二氧化碳排放量與 HDI、能源密集度、製造業佔 GDP 之比例的關聯,希望能建立一個簡易且具有高度解釋力的模型。

貳、 研究方法及資料蒐集

我們將建立一個複迴歸模型來解釋 2014 年人均二氧化碳排放量與 HDI 能源 密集度、製造業佔 GDP 比例間的關係,希望此模型能用簡易的變數解釋反應變數的變異。因此,我們希望能找出在複判定係數大於 0.8 的模型中,複判定修正係數最大的模型作為最佳模型。並透過以下圖形之步驟 (詳細說明見附錄一)建模:

自變數為 2014 年的人類發展指數(2014 Human development index),透過平均壽命、受教育年限(包括平均受教育年限和預期受教育年限)、人均國民總收入的計算得出的指標,用來衡量各國社會經濟發展程度;2014 年各國能源密集度(單位:公噸油當量/千美元),每生產一單位國內生產毛額(GDP)所需投入之能源;2014 年各國製造業佔 GDP 之比例。反應變數為 2014 人均二氧化碳排放量(單位:公噸/人),以下用 CO2 代稱。

我們總共蒐集到 187 筆資料,刪除掉資料不齊全的國家,和人均二氧化碳排放量為零(不合常理)的國家,最終總共有 172 筆資料被納入模型中,原始資料及資料來源詳見附錄二,國家分布(依據地緣政治劃分)請見下表,並附上詳細劃分地圖於附錄二。

地理分布	亞太	非洲	東歐	拉美加勒比	西歐及其他
被採入國家數	46	45	22	32	27
未納入國家數	5	7	1	0	2

參、 基本資料分析

我們將以附錄二的原始資料做基本分析,包括樣本大小、平均數、標準差等,並先畫出各個解釋變數與反應變數的散佈圖,再透過觀察圖形及 Box-Cox 進行變數轉換。

一、人均二氧化碳排放量(Y)

下表為關於各國人均二氧化碳的敘述型統計:

樣本數	平均數	標準差	中位數
172	4.667442	6.244079	2.6

並且可以透過下面人均碳排放量的直方圖看出,此變數為一個右偏分佈。

二、HDI(人類發展指數)(X1)

下表為關於各國 HDI (人類發展指數)的敘述型統計:

樣本數	平均數	標準差	中位數
172	0.710134	0.149877	0.7375

再來我們可以透過下面HDI與Y之散佈圖得知,散佈圖右邊Y的變異增大, 因此我們考慮對Y進行Box-Cox轉換(附錄三)。

經過轉換,我們得知 logY 為 Box-Cox 所選擇的最佳轉換,並透過下圖轉換 後資料的散佈圖可以看出轉換後有的線性關係更強烈,資料分佈更平均更適合配 適模型。

三、能源密集度(X2)

下表為關於各國能源密集度的敘述型統計:

樣本數	平均數	標準差	中位數
172	0.710134	0.149877	0.7375

再來我們可以透過下面能源密集度與 $\log Y$ 之散佈圖得知,散佈圖左邊 $\log Y$ 的變異較大,然而我們已經對 Y 做過轉換了,因此這裡我們考慮對 X2 進行 Box-Cox 轉換(附錄四)。

經過轉換,我們得知 X2-0.5 為 Box-Cox 所選擇的最佳轉換,並透過下圖轉換 後資料的散佈圖可以看出轉換後資料分佈更平均更適合配適模型,可是與 logY 的線性關係卻程度不高,關於變數的採納有待討論。

四、製造業佔 GDP 之比例(%)(X3)

下表為關於各國製造業佔 GDP 之比例的敘述型統計:

樣本數	平均數	標準差	中位數
172	11.82096	7.036821	11.37077

再來我們可以透過下面製造業佔 GDP 之比例與 logY 之散佈圖得知,散佈圖左邊 logY 的變異較大,然而我們已經對 Y 做過轉換了,因此這裡我們考慮對X3 進行 Box-Cox 轉換(附錄五)。

經過轉換,我們得知 $X3^{0.5}$ 為 Box-Cox 所選擇的最佳轉換,並透過下圖轉換 後資料的散佈圖可以看出轉換後資料分佈更平均更適合配適模型,可是與 logY的線性關係卻程度不高,關於變數的採納有待討論。

肆、 模型配適及分析

一、多個自變數的一階模型(未考慮交互作用項)

我們以三個自變數做發想,先考慮這些變數所能建構出來的所有模型,依據模型選擇標準先尋找模型,再針對模型做殘差分析。然而,這些變數所能建立出來的模型沒有一個的判定係數能夠大於 0.8(詳見附錄六),因此我們下一步將把變數的交互作用考慮進模型,希望能找到符合準則的模型。

二、考慮交互作用項多自變數的一階模型

再來針對交互作用項做討論,根據經驗人類發展指標越高的國家,通常製造業、科技發展也會越好,對於能源的使用效率也會增加,因此我們判定人類發展指標與能源密集度、製造業佔 GDP 之比例存在交互作用,因此將此兩者納入模型。

並以這五個變數做發想,且在附錄六中含有 X1 及 X2'的模型為最佳模型, 因此我們認定此兩個變數為重要變數需要保留。再以放入剩下三個變數所能建構 出的所有模型做考慮,依據模型選擇標準尋找模型。在這些模型中(詳見附錄七), 我們找到了一個複判定係數大於 0.8,且複判定修正係數最大的迴歸模型(附錄 八):

$$logY = -3.93 + 6.73X1 + 1.99X2' + 0.24X3' - 4.24X1X2' - 0.35X1X3'$$

三、模型離群值與影響點的探討

在建構出最佳模型後,我們須考慮離群值與影響點(附錄九)對於模型的探討, 我們認為影響點對於解釋反應變數會存在問題,因為我們二氧化碳排放是世界議 題,希望能夠以世界為主體進行討論,因此排除少部分過度影響的模型的國家, 聚焦於那些建構模型的主體,因此我們希望能配適出符合大多數國家的模型,因 此將影響點刪除。

四、刪除影響點後重新建模與模型解釋

我們刪除了22個影響點,最終建立了一個可以高度解釋資料的迴歸模型(附錄十):

$$\log Y = -4.23 + 7.29X1 + 2.77X2' + 0.21X3' - 5.62X1X2' - 0.29X1X3'$$

模型的 R^2 高達 0.86,有百分之八十六的 $\log Y$ 變異可以被自變數所解釋,且 R_a^2 最大,MSE 最小。模型檢定皆符合假設,詳見附錄十。

伍、 結論

最終模型為: logY = -4.23 + 7.29X1 + 2.77X2′ + 0.21X3′ - 5.62X1X2′ - 0.29X1X3′, 此模型可以解釋解釋 86%的資料變異,且每個多放入模型的變數增加的解釋力可以彌補所損失的自由度,符合我們對於動機對於自變數能好好解釋反應變數的期待。另因為模型存在高度共線性,所以就單個變數的邊際貢獻做解釋會沒有意義,所以不做解釋。

另外,想探討模型的代表性,在剔除影響值時,我們總共剔除了亞太 10 個、非洲 8 個、拉丁美洲 1 個、西歐 3 個國家。再加上先前的缺失值,我們可以發現模型中只納入 70%亞太國家及 71%的非洲國家,因此對這兩個區域來說,模型較無代表性,在資料的解釋上須多加注意。

陸、 附錄

附錄一:研究方法詳述

在配適迴歸模型前,我們會希望確認資料是否符合模型假設。因此,我們會在解釋模型前先分析殘差圖及常態機率圖,來了解是否有明顯訊息顯示資料違反模型假設。因為解釋變數的項目稍多,沒有擁有相同解釋變數組合兩組資料,因此無法執行缺適性檢定,只能改以分析殘差圖及常態機率圖替代,來確認是否適合配適線性迴歸模型。

選擇出適當的解釋變數後,我們將以我們對於自變數與反應變數的知識與經驗來思考,會不會存在交互作用及二次項的可能性。若認定可能存在交互作用或二次項,則會將其納入模型觀察它們對於模型的邊際效應,了解他們在統計上是否顯著,是否有必要將其放入模型中。

再來,我們會以所有複判定係數大於 0.8 的迴歸模型中,選擇複判定修正係數最大的模型作為最佳模型,這是因為我們希望模型對於資料有良好的解釋力, 且希望每個多放入模型的變數增加的解釋力可以彌補所損失的自由度,因此使用複判定修正係數作為依據選取模型。

接著會利用 Hat Matrix Leverage Values 找出離群 x 值,及 Studentized Deleted Residuals 來找出離群 Y 值。再來,我們也利用 DFFITS、DFBETAS、Cook's Distance Measures 等準則,了解各個觀測值對於模型配適結果是否有過大的影響力,進而對離群值及影響點做探討及處理。

之後會檢驗殘差,如果圖形沒有明顯違反模型假設,我們將會對所配適出的 迴歸模型做出解釋,探討模型代表的意義及模型代表性。最後我們會討論研究過 程中的潛在問題及瑕疵,並找出其原因,期望在日後研究中做改善。 附錄二:原始資料

資料來源: 聯合國發展計畫書:人類發展報告 http://hdr.undp.org/en/data#

世界銀行:能源密集度

https://data.worldbank.org/indicator/EG.EGY.PRIM.PP.KD?end=2015

&start=1990&view=chart

世界銀行:製造業佔 gdp%數

 $\underline{https://data.worldbank.org/indicator/NV.IND.MANF.ZS?end{=}2014\&st}$

art=1960

Country(2014)(建模資料)	HDI(x1)	能源密集度	製造業佔	人均碳排放(y)	logy
		(x2)	gdp%(x3)		
Afghanistan	0.491	2.637532569	11.47758756	0.3	-0.52288
Albania	0.773	3.158878953	5.325788985	2	0.30103
Algeria	0.747	4.102356185	40.83789686	3.7	0.568202
Angola	0.564	3.646200582	4.763071572	1.3	0.113943
Antigua and Barbuda	0.77	4.011551141	2.699136205	5.4	0.732394
Argentina	0.82	4.344156368	14.77277855	4.7	0.672098
Armenia	0.745	5.347381268	9.666405536	1.9	0.278754
Australia	0.933	5.150979283	6.369189661	15.4	1.187521
Austria	0.901	3.555638114	16.56001525	6.9	0.838849
Azerbaijan	0.758	3.762405728	4.707010697	3.9	0.591065
Bahamas	0.807	4.027368648	2.843766256	6.3	0.799341
Bahrain	0.81	9.922769246	14.92809337	23.4	1.369216
Bangladesh	0.583	3.129437284	16.61270766	0.5	-0.30103
Barbados	0.796	3.877799352	5.683162086	4.5	0.653213
Belarus	0.807	6.832916452	21.08754522	6.7	0.826075
Belgium	0.909	4.782440467	12.57640221	8.3	0.919078
Belize	0.706	4.529278834	8.679689354	1.4	0.146128
Benin	0.505	8.615622669	13.17637254	0.6	-0.22185
Bhutan	0.599	11.06016415	8.118230887	1.3	0.113943
Bolivia (Plurinational State	0.675	5.167152493	9.738327927	1.9	0.278754
of)					
Bosnia and Herzegovina	0.754	8.753814155	10.94019418	6.2	0.792392
Botswana	0.701	3.295525765	5.306357334	3.2	0.50515
Brazil	0.752	4.043844382	10.33709739	2.6	0.414973
Brunei Darussalam	0.853	4.749922448	16.12843664	22.1	1.344392
Bulgaria	0.797	6.35695483	13.31880701	5.9	0.770852

Burkina Faso	0.405	5.949926311	6.271112601	0.2	-0.69897
Cabo Verde	0.644	2.69585812	6.386060314	0.9	-0.04576
Cambodia	0.566	5.585297471	15.39756683	0.4	-0.39794
Cameroon	0.543	4.860077438	14.42311377	0.3	-0.52288
Canada	0.918	7.647191113	9.779467184	15.1	1.178977
Central African Republic	0.349	8.86589517	7.773247231	0.1	-1
Chad	0.403	2.787178174	2.687991149	0.1	-1
Chile	0.833	3.768751083	11.13369594	4.7	0.672098
China	0.738	7.104220001	30.37704711	7.5	0.875061
Colombia	0.738	2.341951577	12.26931864	1.8	0.255273
Congo	0.595	4.078888254	4.739399373	0.6	-0.22185
Congo (Democratic	0.436	22.58516	15.55441347	0.1	-1
Republic of the)					
Costa Rica	0.78	3.011811734	12.15485506	1.6	0.20412
Croatia	0.824	3.946157917	12.29637774	4	0.60206
Cuba	0.768	2.13362346	15.08753224	3	0.477121
Cyprus	0.856	3.261150162	4.077574194	5.3	0.724276
Czechia	0.879	5.733707062	24.18523484	9.2	0.963788
Côte d'Ivoire	0.465	8.440094011	16.85122556	0.5	-0.30103
Denmark	0.928	2.65096504	11.86019337	5.9	0.770852
Djibouti	0.467	4.126723088	4.234889207	0.8	-0.09691
Dominica	0.724	2.782690025	3.01890949	1.9	0.278754
Dominican Republic	0.718	2.41986981	14.35430837	2.1	0.322219
Ecuador	0.742	3.417907563	13.7648167	2.8	0.447158
Egypt	0.683	3.714344523	16.77444601	2.2	0.342423
El Salvador	0.67	3.516454456	15.88464192	1	0
Equatorial Guinea	0.59	2.629228383	20.12563307	4.7	0.672098
Estonia	0.864	7.073665602	14.08367262	14.8	1.170262
Eswatini (Kingdom of)	0.58	4.995411386	30.79342384	0.9	-0.04576
Ethiopia	0.445	14.67318586	3.991325246	0.1	-1
Fiji	0.73	3.116301518	11.11603049	1.3	0.113943
Finland	0.914	6.701320502	14.55561288	8.7	0.939519
France	0.894	4.082022916	10.280426	4.6	0.662758
Gabon	0.693	6.695885433	17.39340587	2.8	0.447158
Gambia	0.454	4.620075222	6.344615727	0.3	-0.52288
Georgia	0.765	5.636552492	11.41494909	2.4	0.380211
Germany	0.93	3.640399424	20.46665237	8.9	0.94939

Ghana	0.576	3.568537794	11.32658682	0.5	-0.30103
Greece	0.864	3.706200901	8.406774303	6.2	0.792392
Grenada	0.761	2.954964831	3.420720402	2.3	0.361728
Guatemala	0.643	4.862503158	18.78001123	1.2	0.079181
Guinea	0.44	10.17288937	11.08249804	0.2	-0.69897
Guinea-Bissau	0.445	12.37991099	12.38172963	0.2	-0.69897
Guyana	0.648	6.611909566	3.291157998	2.6	0.414973
Haiti	0.49	9.949935889	6.367630523	0.3	-0.52288
Honduras	0.603	6.014682578	17.25458749	1.1	0.041393
Hong Kong, China (SAR)	0.923	1.553685814	1.233846828	6.4	0.80618
Hungary	0.833	4.21020415	19.52883159	4.3	0.633468
Iceland	0.925	18.10574784	10.6575901	6.1	0.78533
India	0.618	4.960149499	15.06557011	1.7	0.230449
Indonesia	0.683	3.683529323	21.07517605	1.8	0.255273
Iran (Islamic Republic of)	0.788	7.697669294	13.75049814	8.3	0.919078
Iraq	0.666	4.027473423	1.827205373	4.8	0.681241
Ireland	0.921	2.365128644	19.97243041	7.3	0.863323
Israel	0.899	3.437751671	12.70316521	7.9	0.897627
Italy	0.874	2.977931579	13.91352914	5.3	0.724276
Jamaica	0.728	5.102949008	8.119285305	2.6	0.414973
Japan	0.903	3.871243964	19.73129704	9.5	0.977724
Jordan	0.73	4.508938447	16.72574274	3	0.477121
Kazakhstan	0.793	7.871573916	10.31824363	14.4	1.158362
Kenya	0.572	7.825663741	9.958063149	0.3	-0.52288
Kiribati	0.616	4.828188332	4.648806449	0.6	-0.22185
Korea (Republic of)	0.896	6.625532809	27.48912524	1.6	0.20412
Kuwait	0.799	4.96721337	5.541764161	25.2	1.401401
Kyrgyzstan	0.663	9.211918332	13.6761968	1.6	0.20412
Lao People's Democratic	0.586	2.302410416	8.427695284	0.3	-0.52288
Republic					
Latvia	0.838	4.093339923	10.87022306	3.5	0.544068
Lebanon	0.751	4.150984189	7.702096498	4.3	0.633468
Lesotho	0.509	11.01950053	11.98924328	1.1	0.041393
Liberia	0.431	24.01874978	2.264755089	0.2	-0.69897
Lithuania	0.851	3.807436433	17.35480913	4.4	0.643453
Luxembourg	0.895	3.066832919	3.952534923	17.4	1.240549
Malawi	0.468	5.461409106	9.549752663	0.1	-1

Malaysia	0.79	5.134960719	22.87393024	8	0.90309
Maldives	0.705	3.993509568	1.984973239	3.3	0.518514
Malta	0.862	2.345127015	10.22530041	5.4	0.732394
Mauritania	0.514	3.503129258	8.020468793	0.7	-0.1549
Mauritius	0.782	2.548934892	13.58815698	3.4	0.531479
Mexico	0.761	3.853119994	15.89917709	3.9	0.591065
Micronesia (Federated	0.618	6.844246204	0.368585601	1.4	0.146128
States of)					
Moldova (Republic of)	0.696	8.160677826	11.63244809	1.4	0.146128
Mongolia	0.734	6.662648223	8.777293136	7.1	0.851258
Montenegro	0.805	4.354356946	3.880020359	3.6	0.556303
Morocco	0.65	3.238855529	16.49048603	1.7	0.230449
Mozambique	0.427	16.58230074	8.992605911	0.3	-0.52288
Myanmar	0.564	3.129920458	19.9307583	0.4	-0.39794
Namibia	0.636	3.311005557	10.02490751	1.6	0.20412
Nepal	0.56	7.603696352	5.751729379	0.3	-0.52288
Netherlands	0.924	3.964626966	10.36065281	9.9	0.995635
New Zealand	0.91	5.519838785	11.07794813	7.7	0.886491
Nicaragua	0.649	5.245786443	14.7329135	0.8	-0.09691
Niger	0.345	7.074701702	6.296931201	0.1	-1
Nigeria	0.524	5.628943913	9.635811603	0.5	-0.30103
Norway	0.946	3.579962265	6.794526904	9.3	0.968483
Oman	0.815	6.383538199	49.90023738	15.4	1.187521
Pakistan	0.548	4.536274806	13.5424308	0.9	-0.04576
Palau	0.786	12.9859978	0.988785595	12.3	1.089905
Panama	0.781	2.273620638	6.605711074	2.3	0.361728
Papua New Guinea	0.536	7.942183629	2.14235377	0.8	-0.09691
Paraguay	0.698	3.884101393	18.81475755	0.9	-0.04576
Peru	0.746	2.782416771	13.93614636	2	0.30103
Philippines	0.689	3.034443781	20.6079274	1.1	0.041393
Poland	0.842	4.254309584	16.7673198	7.5	0.875061
Portugal	0.839	3.274580852	11.79849405	4.3	0.633468
Qatar	0.853	6.475978234	10.1421686	45.4	1.657056
Romania	0.802	3.483	20.97986494	3.5	0.544068
Russian Federation	0.807	8.345606024	11.59660932	11.9	1.075547
Rwanda	0.509	5.337639351	5.891690527	0.1	-1
Saint Kitts and Nevis	0.77	2.68322602	6.460927619	4.3	0.633468

Saint Lucia	0.737	3.186996993	2.178148363	2.3	0.361728
Saint Vincent and the	0.72	2.832899125	4.879079958	1.9	0.278754
Grenadines					
Samoa	0.703	4.259010114	10.57903874	1	0
Sao Tome and Principe	0.567	4.606869765	6.466076733	0.6	-0.22185
Saudi Arabia	0.852	5.809792569	10.79531467	19.5	1.290035
Senegal	0.486	5.056820743	16.99741556	0.6	-0.22185
Serbia	0.775	5.936982935	15.69507666	5.3	0.724276
Seychelles	0.786	2.978451629	6.501198824	5.4	0.732394
Sierra Leone	0.423	5.725464982	1.532608562	0.2	-0.69897
Singapore	0.928	2.4848573	17.76319139	10.3	1.012837
Slovakia	0.845	4.524089445	19.65174859	5.7	0.755875
Slovenia	0.887	4.745000232	19.77805676	6.2	0.792392
South Africa	0.685	9.033627494	12.04630861	9	0.954243
Spain	0.88	3.308066631	12.49571217	5	0.69897
Sri Lanka	0.763	2.032837842	16.97410879	0.9	-0.04576
Suriname	0.718	3.44134072	16.35249219	3.6	0.556303
Sweden	0.92	4.713804978	14.61644157	4.5	0.653213
Switzerland	0.939	2.260459146	18.36203263	4.3	0.633468
Tajikistan	0.645	5.064901788	7.515590327	0.6	-0.22185
Tanzania (United Republic	0.515	8.535183879	9.120109	0.2	-0.69897
of)					
Thailand	0.735	5.556494468	27.72107755	4.6	0.662758
Timor-Leste	0.61	3.000131026	0.278161888	0.4	-0.39794
Togo	0.481	14.62049829	5.566687219	0.4	-0.39794
Tonga	0.717	3.071825441	6.215040398	1.1	0.041393
Trinidad and Tobago	0.779	19.14162488	16.35258188	34.2	1.534026
Tunisia	0.725	3.701350884	15.56215637	2.6	0.414973
Turkey	0.778	2.947927628	16.79190703	4.5	0.653213
Uganda	0.5	7.029147697	8.507748174	0.1	-1
Ukraine	0.748	12.48534484	12.22812816	5	0.69897
United Arab Emirates	0.855	5.268228526	7.777059562	23.3	1.367356
United Kingdom	0.919	3.068878182	8.897979987	6.5	0.812913
United States	0.918	5.621145713	11.89869691	16.5	1.217484
Uruguay	0.801	2.893944677	12.14330217	2	0.30103
Vanuatu	0.598	4.298013877	3.31315021	0.6	-0.22185
Venezuela (Bolivarian	0.778	5.473513518	12.07335643	6	0.778151

Republic of)					
Viet Nam	0.678	5.745538499	13.17879577	1.8	0.255273
Yemen	0.505	3.21140525	8.557795136	0.9	-0.04576
Zambia	0.58	7.398638071	6.820015756	0.3	-0.52288
Zimbabwe	0.525	15.74958139	12.5907647	0.8	-0.09691

Country(2014)(未建模資	HDI(x1)	人均碳排放	logy	能源密集度	製造業佔
料)		(y)		(x2)	gdp%(x3)
Andorra	0.853	5.8	0.763427994	*	*
Comoros	0.501	0.2	-0.698970004	4.663190839	*
Eritrea	0.428	0.1	-1	4.741396717	*
Libya	0.695	9.2	0.963787827	4.444336609	*
Liechtenstein	0.911	1.2	0.079181246	*	*
Madagascar	0.512	0.1	-1	5.184313328	*
Mali	0.414	0.1	-1	1.963952595	*
Palestine, State of	0.679	0.6	-0.22184875	*	*
Solomon Islands	0.539	0.3	-0.522878745	5.32672044	*
South Sudan	0.397	0.1	-1	1.298348898	*
Sudan	0.492	0.3	-0.522878745	3.96863328	*
Syrian Arab Republic	0.55	1.6	0.204119983	4.449796296	*
The former Yugoslav	0.747	3.6	0.556302501	*	*
Republic of Macedonia					
Turkmenistan	0.697	12.5	1.096910013	14.29510486	*
Uzbekistan	0.695	3.4	0.531478917	11.0696613	*

圖片來源:

https://commons.wikimedia.org/wiki/File:UN_regional_groups.svg#/media/File:UN_regional_groups.svg

附錄三:Y的Box-Cox transformation

		模型陳	述式規格詳細資料	34
類型	DF	變勲	描述	值
Dep	1	BoxCox(y)	使用的 Lambda	0
			Lambda	0
			對數概度	-62.7393
			Conv. Lambda	0
			Conv. Lambda LL	-62.7393
			CI界限	-64.6600
			Alpha	0.05
			選項	幾何平均值縮放
Ind	1	Identity(x)	DF	1

透過上圖可以看到經由 $Box ext{-}Cox$ 後, λ 值在 0 附近 $SSE(\lambda)$ 會最小,因此我們採用 λ 為 0 的結果,作變數轉換對 Y 取對數值,來試圖建構更好的模型。

附錄四: X2 的 Box-Cox transformation

	模型陳述式規格詳細資料											
類型	DF	變數	描述	值								
Dep	1	BoxCox(x2)	使用的 Lambda	-0.5								
			Lambda	-0.5								
			對數槪度	-142.1								
			Conv. Lambda	-0.5								
			Conv. Lambda LL	-142.1								
			CI界限	-144.0								
			Alpha	0.05								
			選項	幾何平均值縮放								
Ind	1	Identity(logy)	DF	1								

透過上圖可以看到經由 Box-Cox 後, λ 值在-0.5 附近 SSE(λ)會最小,因此 我們採用 λ 為-0.5 的結果,作變數轉換對 X2 取 $X2^{-0.5}$,來試圖建構更好的模型。

附錄五: X3 的 Box-Cox transformation

	模型陳述式規格詳細資料											
類型	DF	變數	描述	值								
Dep	1	BoxCox(x3)	使用的 Lambda	0.5								
			Lambda	0.5								
			對數概度	-313.5								
			Conv. Lambda	0.5								
			Conv. Lambda LL	-313.5								
			CI界限	-315.4								
			Alpha	0.05								
			選項	幾何平均值縮放								
Ind	1	Identity(logy)	DF	1								

透過上圖可以看到經由 Box-Cox 後, λ 值在 0.5 附近 $SSE(\lambda)$ 會最小,因此 我們採用 λ 為 0.5 的結果,作變數轉換對 X3 取 $X3^{0.5}$,來試圖建構更好的模型。

附錄六:未考慮交互作用項之所有一階模型的模型準則

 $Adjx2=X2'=X2^{-0.5} \cdot Adjx3=X3'=X3^{0.5}$

			模型: N 應變數	程序 MODEL1 h: logy			
			R 平方	翼 挥方法			
		â	賣取的觀測	值數目	172		
		1	使用的觀測	值數目	172		
模型中的 敷目	R 平方	調整的 R 平方	С(р)	А	IC	SBC	模型中的變數
1	0.7727	0.7714	20.2891 -424.02		-424.0204 -417.72		x1
1	0.0539	0.0483	615.7407	-178.73	12 -	-172.43624	adjx3
1	0.0221	0.0164	642.0169	-173.05	92 -	-166.76422	adjx2
2	0.7972	0.7948	2.0111	-441.61	95 -	-432.17699	x1 adjx2
2	0.7731	0.7704	21.9627	-422.31	88 -	-412.87634	x1 adjx3
2	0.0769	0.0660	598.6498	-180.97	28 -	-171.53031	adjx2 adjx3

可以看出所有的一階模型皆沒有達到 R^2 大於 0.8 的標準,因此表示模型還存在著其他沒被考慮進去的變數。

附錄七:考慮交互作用項的模型之模型準則比較

REG 程序 模型: MODEL2 康變數: logy 調整 R 平方選擇方法										
	詢	取的觀測	自住數目	172						
	使	用的觀測	自住數目	172						
模型中的 調整的 數目 R平方 R平方 C(p) 模型中的變數										
數目	R平方		4.							
數目	R 平方 0.7948	0.7972	18.8797							
數目	R 平方 0.7948 0.8124	0.7972	18.8797	x1 adjx2 adjx3 x1 adjx2 x1 adjx3						
數目 2 5	R 平方 0.7948 0.8124 0.8086	0.7972 0.8179 0.8119	18.8797	x1 adjx2 adjx3 x1 adjx2 x1 adjx3 x1 adjx2						
數目 2 5 3	R 平方 0.7948 0.8124 0.8086 0.8079	0.7972 0.8179 0.8119 0.8123	18.8797 6.0000 7.4238 9.0502	x1 adjx2 adjx3 x1 adjx2 x1 adjx3 x1 adjx2						
數目 2 5 3 4	R 平方 0.7948 0.8124 0.8086 0.8079 0.8075	0.7972 0.8179 0.8119 0.8123 0.8120	18.8797 6.0000 7.4238 9.0502 9.3925	x1 adjx2 adjx3 x1 adjx2 x1 adjx3 x1 adjx2 x1 adjx2 x1 adjx3						
數目 2 5 3 4	R 平方 0.7948 0.8124 0.8086 0.8079 0.8075 0.7981	0.7972 0.8179 0.8119 0.8123 0.8120 0.8029	18.8797 6.0000 7.4238 9.0502 9.3925	x1 adjx2 adjx3 x1 adjx2 x1adjx3 x1adjx2 x1adjx2 x1 adjx3 adjx3 x1 adjx2 adjx3 x1 adjx2						

從上圖可以看出,考慮五個變數,X1、X2'、X3'、X1X2'、X1X3'的迴歸模型最能符合選擇標準,因此選擇為我們的最佳模型。

附錄八:最佳模型之迴歸方程式及檢定

		讀	取的觀測值	數目	172		
		使	用的觀測值	數目	172		
			變異數的	的分析			
來源		DF	平方和		均方	F值	Pr > F
模型		5	51.38915	10.27783		149.10	<.0001
誤差		166	11.44254	0.0	6893		
已校፤	E的總計	171	62.83169	,			
	根 MSE		0.26255	R 平方		0.817	9
	應變平均	自值	0.33065	調整	R平力	0.812	4
	變異係數		79.40344				

	參數估計值													
變數	DF	参數 估計值	標準 誤差	t 值	Pr > t	類型 I SS	類型 II SS	平方 信 相關類型						
Intercept	1	-3.93099	0.48606	-8.09	<.0001	18.80460	4.50857							
x1	1	6.73775	0.70942	9.50	<.0001	48.54963	6.21789	0.3520						
adjx2	1	1.98905	0.82411	2.41	0.0169	1.53812	0.40155	0.0339						
adjx3	1	0.24241	0.10787	2.25	0.0259	0.00084431	0.34812	0.0295						
x1adjx2	1	-4.23562	1.14451	-3.70	0.0003	0.92884	0.94408	0.0762						
x1adjx3	1	-0.34526	0.14868	-2.32	0.0214	0.37171	0.37171	0.0314						

 $\log Y = -3.93 + 6.73X1 + 1.99X2' + 0.24X3' - 4.24X1X2' - 0.35X1X3'$

附錄九:模型離群點與影響點(畫底線為離群值或影響點之標記)

					SAS 3	系統					
					JAJ 2	J \ 700					
					REG # 模型: M						
					應變數:						
					輸出統	計值					
DEBETAS											
觀測值	強差	RStudent	Hat 對角 H	共變量比率	DFFITS	Intercept	x1	adjx2	adjx3	x1adjx2	x1adjx3
1	-0.0913	-0.3610	0.0780	1.1194	-0.1050	0.0577	-0.0464	-0.0800	-0.0179	0.0686	0.0156
2	-0.1967	-0.7552	0.0180	1.0343	-0.1022	0.0188	-0.0219	-0.0030	-0.0203	-0.0054	0.0318
3	0.1452	0.5706	0.0642	1.0950	0.1494	0.0041	-0.0253	0.0029	0.0006	0.0029	0.0262
4	0.3502	1.3575	0.0298	0.9999	0.2381	0.0027	-0.0018	0.1278	-0.1034	-0.1087	0.0880
5	0.1491	0.5752	0.0294	1.0556	0.1002	-0.0280	0.0408	0.0091	0.0239	-0.0107	-0.0394
6	-0.0534	-0.2037	0.0104	1.0462	-0.0209	-0.0009	0.0007	-0.0000	0.0034	0.0004	-0.0046
7	-0.2594	-0.9926	0.0091	1.0098	-0.0953	0.0304	-0.0434	-0.0184	-0.0199	0.0284	0.0248
8	-0.1018	-0.3953	0.0426	1.0769	-0.0834	0.0371	-0.0489	-0.0049	-0.0329	0.0133	0.0410
9	-0.0524	-0.2018	0.0270	1.0641	-0.0336	-0.0152	0.0165	0.0104	0.0151	-0.0119	-0.0170
10	0.0865	0.3313	0.0170	1.0507	0.0436	-0.0110	0.0152	0.0054	0.0082	-0.0046	-0.0141
11	0.0661	0.2559	0.0359	1.0730	0.0494	-0.0166	0.0227	0.0012	0.0181	-0.0025	-0.0252
12	0.4442	1.7308	0.0328	0.9623	0.3186	-0.0831	0.1275	0.0859	-0.0052	-0.1440	0.0093
13	-0.1943	-0.7543	0.0402	1.0583	-0.1544	0.0900	-0.0697	-0.0799	-0.0739	0.0644	0.0633
14	0.000282	0.001081	0.0170	1.0549	0.0001	-0.0000	0.0001	0.0000	0.0000	-0.0000	-0.0001
15	0.0327	0.1258	0.0259	1.0639	0.0205	-0.0005	0.0013	0.0034	-0.0043	-0.0057	0.0062
16	-0.1702	-0.6533	0.0189	1.0406	-0.0906	0.0016	-0.0097	0.0007	0.0159	0.0063	-0.0148
17	-0.2053	-0.7840	0.0076	1.0218	-0.0684	0.0205	-0.0262	-0.0196	-0.0116	0.0209	0.0160
18	0.1106	0.4276	0.0340	1.0663	0.0802	0.0054	-0.0022	-0.0327	0.0415	0.0269	-0.0379
19	0.0724	0.2781	0.0224	1.0577	0.0421	0.0124	-0.0046	-0.0166	0.0026	0.0096	-0.0042
20	0.0153	0.0582	0.0077	1.0448	0.0051	-0.0014	0.0019	0.0012	0.0012	-0.0015	-0.0013
21	0.1095	0.4205	0.0210	1.0524	0.0616	-0.0175	0.0284	0.0096	0.0104	-0.0214	-0.0121
22	0.2520	0.9671	0.0153	1.0180	0.1207	-0.0232	0.0254	0.0413	-0.0043	-0.0295	-0.0087
23	-0.0706	-0.2692	0.0070	1.0415	-0.0226	0.0060	-0.0066	-0.0041	-0.0040	0.0035	0.0046
24	0.4824	1.8659	0.0158	0.9295	0.2365	0.0263	-0.0199	0.0053	-0.0753	-0.0169	0.0889
25	0.001415	0.005412	0.0146	1.0523	0.0007	-0.0002	0.0002	0.0001	0.0000	-0.0002	-0.0000
26	0.1342	0.5199	0.0382	1.0676	0.1036	0.0530	-0.0506	-0.0043	-0.0470	0.0068	0.0459
27	-0.0547	-0.2106	0.0270	1.0639	-0.0351	0.0086	-0.0061	-0.0202	0.0046	0.0149	-0.0030
28	-0.2922	-1.1272	0.0238	1.0145	-0.1762	0.0621	-0.0568	-0.0095	-0.1141	0.0128	0.1017
29	-0.3181	-1.2293	0.0255	1.0074	-0.1989	0.0821	-0.0711	-0.0419	-0.1181	0.0383	0.1057
30	-0.1554	-0.6046	0.0454	1.0719	-0.1318	0.0576	-0.0783	-0.0435	-0.0134	0.0640	0.0206
31	0.0680	0.2667	0.0610	1.1014	0.0680	0.0459	-0.0436	-0.0380	-0.0112	0.0372	0.0122
32	-0.1226	-0.5140	0.1782	1.2497	-0.2394	-0.0127	0.0197	-0.1521	0.1495	0.1327	-0.1424
33	-0.0658	-0.2512	0.0103	1.0453	-0.0257	-0.0001	-0.0004	0.0037	-0.0006	-0.0044	0.0010
34	0.3284	1.2777	0.0381	1.0161	0.2541	-0.0254	0.0156	0.0110	0.0323	-0.0298	0.0068
35	0.0000597	0.000229	0.0244	1.0629	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000
36	-0.1173	-0.4505	0.0205	1.0508	-0.0651	-0.0033	0.0003	-0.0285	0.0263	0.0251	-0.0206

37	-0.3990	-1.6448	0.1376	1.0906	-0.6571	-0.1850	0.1526	0.4823	-0.3143	-0.4302	0.2894
38	-0.2690	-1.0312	0.0123	1.0102	-0.1151	-0.0041	0.0165	0.0065	-0.0019	-0.0242	-0.0012
39	-0.1156	-0.4415	0.0093	1.0393	-0.0429	-0.0003	-0.0002	0.0035	0.0017	-0.0042	-0.0021
40	0.1871	0.7247	0.0352	1.0545	0.1385	0.0175	-0.0426	-0.0092	-0.0067	0.0380	0.0151
41	-0.0987	-0.3822	0.0382	1.0724	-0.0762	0.0170	-0.0222	0.0147	-0.0322	-0.0164	0.0409
42	-0.003195	-0.0124	0.0487	1.0900	-0.0028	-0.0007	0.0007	-0.0003	0.0015	0.0004	-0.0018
43	0.1541	0.6060	0.0653	1.0946	0.1601	-0.0176	0.0172	-0.0559	0.1124	0.0489	-0.1029
44	-0.0897	-0.3488	0.0454	1.0815	-0.0761	-0.0346	0.0384	0.0452	0.0100	-0.0527	-0.0104
45	0.5151	2.0344	0.0525	0.9432	0.4786	0.1143	-0.1114	0.1997	-0.2951	-0.1699	0.2751
46	-0.009310	-0.0359	0.0279	1.0666	-0.0061	0.0009	-0.0010	-0.0013	0.0001	0.0006	0.0007
47	0.1126	0.4334	0.0249	1.0562	0.0693	-0.0110	-0.0015	0.0163	0.0063	-0.0025	-0.0021
48	0.0539	0.2057	0.0095	1.0453	0.0202	-0.0033	0.0010	0.0033	0.0025	-0.0009	-0.0012
49	0.1135	0.4344	0.0145	1.0450	0.0527	-0.0202	0.0136	0.0158	0.0198	-0.0114	-0.0144
50	-0.1749	-0.6702	0.0159	1.0366	-0.0851	0.0357	-0.0245	-0.0309	-0.0320	0.0222	0.0245
51	0.7687	3.1015	0.0627	0.7874	0.8019	-0.4874	0.3644	0.4192	0.3930	-0.3272	-0.3302
52	0.1177	0.4533	0.0270	1.0577	0.0754	-0.0163	0.0257	0.0208	-0.0101	-0.0320	0.0104
53	-0.0474	-0.1886	0.0888	1.1365	-0.0589	0.0294	-0.0242	-0.0034	-0.0465	0.0033	0.0401
54	-0.2719	-1.0854	0.0889	1.0905	-0.3389	-0.2960	0.2580	0.2144	0.1684	0.1931	-0.1578
55	-0.2167	-0.8293	0.0109	1.0225	-0.0872	0.0175	-0.0084	-0.0203	-0.0104	0.0069	0.0093
56	-0.2816	-1.0920	0.0343	1.0283	-0.2057	0.0296	-0.0526	-0.0549	0.0522	0.0820	-0.0529
57	-0.3277	-1.2606	0.0163	0.9952	-0.1622	0.0066	-0.0191	0.0291	-0.0085	-0.0240	0.0158
58	0.0614	0.2351	0.0154	1.0510	0.0294	-0.0079	0.0090	0.0011	0.0119	-0.0044	-0.0093
59	0.1027	0.3966	0.0331	1.0664	0.0734	0.0138	-0.0141	0.0256	-0.0298	-0.0215	0.0284
60	-0.2428	-0.9291	0.0100	1.0151	-0.0933	0.0281	-0.0398	-0.0172	-0.0155	0.0288	0.0170
61	-0.007727	-0.0301	0.0509	1.0925	-0.0070	-0.0038	0.0041	0.0018	0.0043	-0.0021	-0.0048
62	-0.1590	-0.6112	0.0225	1.0465	-0.0927	0.0416	-0.0335	-0.0532	-0.0234	0.0444	0.0208
63	-0.0682	-0.2614	0.0166	1.0518	-0.0339	0.0036	-0.0058	0.0070	-0.0074	-0.0072	0.0099
64	-0.0791	-0.3045	0.0262	1.0613	-0.0500	0.0088	-0.0107	-0.0033	-0.0080	-0.0010	0.0145
65	-0.0776	-0.2977	0.0203	1.0550	-0.0428	0.0181	-0.0151	-0.0067	-0.0254	0.0067	0.0208
66	-0.0732	-0.2849	0.0484	1.0865	-0.0643	-0.0234	0.0202	0.0389	-0.0194	-0.0350	0.0175
67	-0.1083	-0.4254	0.0651	1.1018	-0.1122	-0.0365	0.0307	0.0742	-0.0435	-0.0662	0.0396
68	0.2399	0.9236	0.0223	1.0283	0.1395	0.0231	0.0045	0.0069	-0.0392	-0.0203	0.0198
69	-0.0508	-0.1964	0.0346	1.0726	-0.0372	-0.0256	0.0211	0.0200	0.0103	-0.0170	-0.0093
70	-0.002245	-0.008626	0.0234	1.0618	-0.0013	0.0005	-0.0004	0.0000	-0.0009	0.0001	0.0008
71	0.1436	0.6277	0.2433	1.3508	0.3559	0.0292	-0.0376	-0.1886	0.1444	0.2235	-0.1676
72	-0.0982	-0.3769	0.0195	1.0521	-0.0531	-0.0134	0.0161	0.0028	0.0201	-0.0034	-0.0257
73	-0.8116	-3.3975	0.1196	0.7850	-1.2524	0.6092	-0.7996	-0.6162	-0.0552	0.8316	0.1041
74	0.1670	0.6401	0.0158	1.0380	0.0812	-0.0333	0.0299	0.0156	0.0462	-0.0159	-0.0400
75	0.0250	0.0961	0.0220	1.0599	0.0144	-0.0052	0.0031	0.0034	0.0059	-0.0023	-0.0040
76	0.1368	0.5249	0.0196	1.0472	0.0743	-0.0196	0.0298	0.0160	0.0042	-0.0288	-0.0034
77	0.5225	2.0397	0.0297	0.9204	0.3569	0.0111	0.0297	0.0985	-0.1138	-0.0922	0.0589
78	0.1698	0.6765	0.0890	1.1194	0.2114	0.1368	-0.1579	-0.1070	-0.0941	0.1311	0.1079
79	-0.005411	-0.0208	0.0200	1.0581	-0.0030	-0.0009	0.0010	0.0011	0.0006	-0.0013	-0.0006
80	-0.0196	-0.0753	0.0244	1.0627	-0.0119	-0.0049	0.0058	0.0050	0.0028	-0.0063	-0.0032

81	-0.0492	-0.1876	0.0093	1.0453	-0.0182	0.0054	-0.0080	-0.0038	-0.0034	0.0053	0.0049
82	0.0656	0.2538	0.0363	1.0734	0.0492	0.0227	-0.0246	-0.0097	-0.0278	0.0109	0.0317
83	0.0483	0.1845	0.0099	1.0460	0.0184	-0.0044	0.0034	0.0031	0.0041	-0.0031	-0.0022
84	0.3353	1.2946	0.0226	0.9985	0.1969	-0.0679	0.1022	0.0449	0.0281	-0.0799	-0.0364
85	-0.4326	-1.6696	0.0155	0.9525	-0.2097	-0.0312	0.0074	0.0585	-0.0511	-0.0350	0.0509
86	-0.2232	-0.8564	0.0160	1.0261	-0.1093	-0.0126	0.0006	-0.0308	0.0395	0.0312	-0.0275
87	-0.8493	-3.4777	_0.0770	0.7349	-1.0042	-0.2455	0.2405	-0.1476	0.5965	0.2062	-0.6857
88	0.6537	<u>2.5579</u>	0.0209	0.8387	0.3736	-0.1393	0.1979	0.0432	0.1134	-0.0744	-0.1593
89	-0.1121	-0.4298	0.0186	1.0495	-0.0592	0.0081	-0.0155	0.0078	-0.0226	0.0023	0.0207
90	-0.3317	-1.3022	0.0550	1.0319	-0.3140	0.1232	-0.0879	-0.2273	0.0155	0.1797	-0.0140
91	-0.2452	-0.9387	0.0104	1.0149	-0.0964	0.0079	-0.0135	0.0074	-0.0048	-0.0059	0.0076
92	0.1363	0.5202	0.0093	1.0364	0.0503	-0.0146	0.0190	0.0091	0.0096	-0.0092	-0.0143
93	0.3623	1.4115	0.0386	1.0036	0.2828	0.0720	-0.0502	-0.1605	0.1085	0.1325	-0.1001
94	0.1538	0.6419	0.1699	1.2306	0.2904	0.2670	-0.2346	-0.1906	-0.1671	0.1731	0.1570
95	-0.1173	-0.4500	0.0183	1.0485	-0.0614	-0.0198	0.0230	0.0101	0.0235	-0.0125	-0.0286
96	0.3025	1.1861	0.0538	1.0415	0.2829	-0.0504	0.0663	-0.0845	0.1312	0.0916	0.1600_
97	-0.4750	-1.8424	0.0220	0.9383	-0.2761	-0.0091	0.0110	-0.0274	-0.0357	0.0222	0.0305
98	0.2553	0.9828	0.0217	1.0235	0.1465	0.0096	-0.0160	0.0106	-0.0284	-0.0157	0.0480
99	0.1997	0.7706	0.0278	1.0438	0.1302	-0.0133	0.0297	0.0282	-0.0126	-0.0274	-0.0087
100	0.1173	0.4547	0.0393	1.0713	0.0920	0.0295	-0.0373	-0.0439	-0.0004	0.0575	0.0000
101	0.2294	0.8884	0.0337	1.0428	0.1659	-0.0421	0.0323	0.1078	-0.0181	-0.0920	0.0169
102	0.1240	0.4763	0.0212	1.0507	0.0701	0.0097	-0.0204	-0.0081	-0.0032	0.0211	0.0066
102	0.1045	0.2000	0.0005	1.0400	0.0200	0.0021	0.0004	0.0000	0.0010	0.0011	0.0000
103	0.1045	0.3988	0.0095	1.0408	0.0390	-0.0031	-0.0004	0.0036	0.0016	-0.0011	0.0022
104	0.1358	0.5331	0.0623	1.0945	0.1374	0.0527	-0.0291	0.0025	-0.0792	-0.0102	0.0595
105	-0.2839	-1.0901	0.0150	1.0083	0.1343	0.0261	-0.0472	-0.0016	-0.0361	0.0258	0.0365
106	0.3032	-0.7170	0.0136	1.0009	-0.1224	-0.0386 0.0431	-0.0598	-0.0068	-0.0426	-0.0419	-0.0353 0.0595
107	-0.1858		0.0283			-0.0362		0.0324	0.0308	-0.0235	-0.0242
	0.1334	0.5127		1.0505	0.0775		0.0250				
109	-0.2539	-0.9972	0.0828	1.1044	-0.2503	0.1568	-0.1332 -0.1242	-0.1911	0.0130	0.1730	-0.0102 0.1285
111	0.1650	0.6322	0.0160	1.0386		-0.0309	0.0239	0.0454	0.0103	-0.0354	-0.0100
112	-0.3439	-1.3253	0.0189		-0.1842	-0.0883		0.0410	0.0103	-0.0334	-0.0476
113	-0.0859	-0.3295	0.0203		-0.0474		-0.0020	0.0112		-0.0110	0.0030
114	-0.2810	-1.0837	0.0235		-0.1680		-0.0629	-0.0240		0.0442	0.0051
115	-0.2773	-1.0633	0.0122	1.0076			-0.0422			0.0226	0.0520
116	0.0986	0.3859	0.0571	1.0938	0.0950		-0.0623	-0.0279		0.0295	0.0419
117	0.005597	0.0214	0.0154	1.0532	0.0027	0.0000	0.0001	0.0002	0.0005	-0.0002	-0.0004
118	-0.1885	-0.7311	0.0386	1.0578	-0.1465	0.0187		0.0481	-0.0526	-0.0465	0.0646
119	0.4816	1.9817	0.1281	1.0327	0.7596	0.1886	-0.2441	0.0356	-0.3094	-0.0490	0.4242
120	0.1530	0.5886	0.0232	1.0483	0.0907	-0.0389	0.0332	0.0279	0.0472	-0.0247	-0.0422
121	0.1257	0.5034	0.0994	1.1408	0.1673	-0.0643	0.0988	0.0289	0.0452	-0.0546	-0.0674
122	-0.0247	-0.0954	0.0302	1.0688	-0.0168	-0.0002	0.0016	0.0018		-0.0047	0.0026
123	0.2385	0.9325	0.0518	1.0596	0.2180	0.1434				0.0268	0.1328
124	-0.3330	-1.2807	0.0154	0.9924			-0.0313			0.0251	0.0359
124	0.5550	1.2007	3.0134	0.0024	0.1000	5.0514	0.0013	0,000	0.0000	0.0201	0.0333

125	-0.0359	-0.1376	0.0160	1.0531	-0.0176	0.0011	0.0017	-0.0018	-0.0009	-0.0013	-0.0001
126	-0.1570	-0.6048	0.0259	1.0505	-0.0986	0.0322	-0.0147	-0.0272	-0.0310	0.0145	0.0191
127	0.0954	0.3650	0.0150	1.0476	0.0451	0.0090	-0.0098	-0.0027	-0.0149	0.0025	0.0184
128	-0.0615	-0.2353	0.0135	1.0490	-0.0276	-0.0049	0.0061	0.0077	0.0015	-0.0102	-0.0017
129	0.6448	2.5249	0.0233	0.8457	0.3898	-0.1422	0.2039	0.0925	0.0435	-0.1511	-0.0634
130	-0.0163	-0.0624	0.0214	1.0595	-0.0092	-0.0023	0.0034	0.0008	0.0024	-0.0016	-0.0036
131	0.1872	0.7212	0.0256	1.0443	0.1169	-0.0387	0.0578	0.0299	0.0102	-0.0510	-0.0131
132	-0.5881	-2.2940	0.0220	0.8782	-0.3438	-0.1147	0.0961	-0.0552	0.1524	0.0501	-0.1370
133	0.2127	0.8176	0.0200	1.0327	0.1168	-0.0098	0.0047	-0.0008	0.0150	0.0181	-0.0237
134	-0.0208	-0.0802	0.0302	1.0689	-0.0141	0.0024	-0.0034	-0.0022	-0.0008	0.0014	0.0030
135	0.002336	0.008961	0.0203	1.0584	0.0013	-0.0002	0.0002	0.0003	0.0000	-0.0002	-0.0001
136	-0.3256	-1.2467	0.0070	0.9871	-0.1048	0.0357	-0.0371	-0.0333	-0.0246	0.0311	0.0256
137	-0.0376	-0.1439	0.0157	1.0526	-0.0182	-0.0010	0.0002	-0.0068	0.0051	0.0062	-0.0041
138	0.3225	1.2415	0.0182	0.9988	0.1690	-0.0514	0.0757	0.0320	0.0117	-0.0546	-0.0186
139	0.1579	0.6160	0.0511	1.0778	0.1429	-0.0637	0.0548	0.0173	0.1033	-0.0152	-0.0937
140	0.0641	0.2449	0.0125	1.0477	0.0275	-0.0052	0.0070	0.0045	0.0010	-0.0078	0.0007
141	0.2179	0.8364	0.0173	1.0287	0.1110	-0.0127	0.0121	-0.0062	0.0210	0.0184	-0.0307
142	0.1802	0.7325	0.1249	1.1621	0.2767	0.1783	-0.1638	0.0094	-0.2393	-0.0033	0.2257
143	0.2516	0.9954	0.0731	1.0793	0.2796	0.1760	-0.2005	-0.1491	-0.1141	0.1795	0.1293
144	-0.0403	-0.1547	0.0216	1.0589	-0.0230	-0.0055	0.0062	0.0004	0.0096	-0.0001	-0.0118
145	-0.1575	-0.6083	0.0309	1.0557	-0.1087	-0.0319	0.0321	0.0014	0.0574	0.0018	-0.0659
146	0.5529	2.1472	0.0172	0.8942	0.2838	-0.0440	0.0885	-0.0146	0.0816	-0.0382	-0.0805

147	-0.1264	-0.4849	0.0184	1.0474	-0.0665	-0.0201	0.0219	0.0255	0.0107	-0.0301	-0.0114
148	-0.2975	-1.1589	0.0423	1.0313	-0.2436	-0.0297	0.0768	0.0112	0.0133	-0.0620	-0.0314
149	0.2389	0.9154	0.0127	1.0188	0.1038	-0.0250	0.0104	0.0236	0.0221	-0.0117	-0.0116
150	-0.4483	-1.7376	0.0227	0.9517	-0.2651	-0.0383	0.0227	0.0096	0.0965	0.0062	-0.1016
151	-0.0894	-0.3582	0.1002	1.1470	-0.1195	-0.0785	0.0895	0.0678	0.0479	-0.0814	-0.0543
152	-0.3607	-1.3837	0.0090	0.9764	-0.1320	0.0160	-0.0302	-0.0354	-0.0009	0.0402	0.0106
153	-0.3672	-1.4188	0.0224	0.9862	-0.2146	-0.0816	0.0606	0.0953	-0.0235	-0.0767	0.0231
154	0.1782	0.6875	0.0290	1.0497	0.1188	-0.0134	0.0049	0.0070	0.0175	-0.0111	0.0015
155	-0.2504	-0.9957	0.0824	1.0901	-0.2983	-0.0481	0.0331	-0.1166	0.1805	0.0961	-0.1446
156	0.1247	0.4887	0.0597	1.0932	0.1231	0.0953	-0.0794	-0.0829	-0.0375	0.0717	0.0341
157	-0.2479	-0.9510	0.0149	1.0186	-0.1169	0.0235	-0.0215	-0.0340	-0.0035	0.0193	0.0138
158	0.6232	2.4778	0.0539	0.8803	0.5915	-0.1424	0.2318	0.1200	0.0306	-0.2419	-0.0202
159	0.0545	0.2082	0.0102	1.0459	0.0211	-0.0050	0.0026	0.0045	0.0044	-0.0026	-0.0024
160	0.2104	0.8076	0.0174	1.0306	0.1074	0.0140	-0.0307	-0.0067	-0.0094	0.0230	0.0195
161	-0.5929	-2.3096	0.0191	0.8734	-0.3223	-0.1137	0.0905	0.0834	0.0008	-0.0683	0.0002
162	-0.0208	-0.0801	0.0317	1.0706	-0.0145	0.0035	-0.0061	-0.0017	-0.0023	0.0047	0.0024
163	0.3960	1.5309	0.0216	0.9738	0.2276	-0.0883	0.1230	0.0267	0.0616	-0.0516	-0.0818
164	-0.1382	-0.5334	0.0309	1.0590	-0.0952	-0.0162	0.0153	0.0466	-0.0123	-0.0519	0.0165
165	0.0214	0.0823	0.0249	1.0631	0.0131	-0.0026	0.0042	0.0021	-0.0012	-0.0036	0.0008
166	-0.2208	-0.8467	0.0150	1.0256	-0.1043	-0.0146	0.0255	0.0188	0.0029	-0.0348	-0.0053
167	-0.1231	-0.4741	0.0261	1.0560	-0.0776	-0.0133	0.0071	-0.0268	0.0400	0.0244	-0.0316
168	0.1165	0.4450	0.0099	1.0398	0.0445	-0.0122	0.0172	0.0079	0.0054	-0.0131	-0.0056

169	-0.0439	-0.1676	0.0096	1.0459	-0.0165	0.0051	-0.0060	-0.0021	-0.0066	0.0036	0.0059
170	0.3672	1.4347	0.0434	1.0062	0.3056	-0.1034	0.0802	0.2149	-0.0159	-0.1834	0.0161
171	-0.4380	-1.6901	0.0148	0.9495	-0.2071	-0.0694	0.0363	0.0385	0.0317	-0.0167	-0.0193
172	0.1389	0.5425	0.0531	1.0834	0.1285	0.0370	-0.0246	-0.0827	0.0477	0.0669	-0.0443

HAT=0.0698

RSTUDENT(d*)=+-1.975

DFFITS=+-0.3735

DFBETAS=+-0.1525 為判斷離群值及影響點的依據。

對於原始資料的分類(黃色是離群值、橘色是影響點、紅色是離群值又是影響點)

Country(2014)	HDI(x1)	能源密集度(x2)	製造業佔 gdp%(x3)
Afghanistan	0.491	2.637532569	11.47758756
Albania	0.773	3.158878953	5.325788985
Algeria	0.747	4.102356185	40.83789686
Angola	0.564	3.646200582	4.763071572
Antigua and Barbuda	0.77	4.011551141	2.699136205
Argentina	0.82	4.344156368	14.77277855
Armenia	0.745	5.347381268	9.666405536
Australia	0.933	5.150979283	6.369189661
Austria	0.901	3.555638114	16.56001525
Azerbaijan	0.758	3.762405728	4.707010697
Bahamas	0.807	4.027368648	2.843766256
Bahrain	0.81	9.922769246	14.92809337
Bangladesh	0.583	3.129437284	16.61270766
Barbados	0.796	3.877799352	5.683162086
Belarus	0.807	6.832916452	21.08754522
Belgium	0.909	4.782440467	12.57640221
Belize	0.706	4.529278834	8.679689354
Benin	0.505	8.615622669	13.17637254
Bhutan	0.599	11.06016415	8.118230887
Bolivia (Plurinational State of)	0.675	5.167152493	9.738327927
Bosnia and Herzegovina	0.754	8.753814155	10.94019418
Botswana	0.701	3.295525765	5.306357334
Brazil	0.752	4.043844382	10.33709739

Brunei Darussalam	0.853	4.749922448	16.12843664
Bulgaria	0.797	6.35695483	13.31880701
Burkina Faso	0.405	5.949926311	6.271112601
Cabo Verde	0.644	2.69585812	6.386060314
Cambodia	0.566	5.585297471	15.39756683
Cameroon	0.543	4.860077438	14.42311377
Canada	0.918	7.647191113	9.779467184
Central African Republic	0.349	8.86589517	7.773247231
Chad	0.403	2.787178174	2.687991149
Chile	0.833	3.768751083	11.13369594
China	0.738	7.104220001	30.37704711
Colombia	0.738	2.341951577	12.26931864
Congo	0.595	4.078888254	4.739399373
Congo (Democratic Republic of			
the)			15.55441347
Costa Rica	0.78	3.011811734	12.15485506
Croatia	0.824	3.946157917	12.29637774
Cuba	0.768	2.13362346	15.08753224
Cyprus	0.856	3.261150162	4.077574194
Czechia	0.879	5.733707062	24.18523484
Côte d'Ivoire	0.465	8.440094011	16.85122556
Denmark	0.928	2.65096504	11.86019337
Djibouti	0.467	4.126723088	4.234889207
Dominica	0.724	2.782690025	3.01890949
Dominican Republic	0.718	2.41986981	14.35430837
Ecuador	0.742	3.417907563	13.7648167
Egypt	0.683	3.714344523	16.77444601
El Salvador	0.67	3.516454456	15.88464192
Equatorial Guinea	0.59	2.629228383	20.12563307
Estonia	0.864	7.073665602	14.08367262
Eswatini (Kingdom of)	0.58	4.995411386	30.79342384
Ethiopia	0.445	14.67318586	3.991325246
Fiji	0.73	3.116301518	11.11603049
Finland	0.914	6.701320502	14.55561288
France	0.894	4.082022916	10.280426
Gabon	0.693	6.695885433	17.39340587
Gambia	0.454	4.620075222	6.344615727
Georgia	0.765	5.636552492	11.41494909

Germany	0.93	3.640399424	20.46665237
Ghana	0.576	3.568537794	11.32658682
Greece	0.864	3.706200901	8.406774303
Grenada	0.761	2.954964831	3.420720402
Guatemala	0.643	4.862503158	18.78001123
Guinea	0.44	10.17288937	11.08249804
Guinea-Bissau	0.445	12.37991099	12.38172963
Guyana	0.648	6.611909566	3.291157998
Haiti	0.49	9.949935889	6.367630523
Honduras	0.603	6.014682578	17.25458749
Hong Kong, China (SAR)			1.233846828
Hungary	0.833	4.21020415	19.52883159
Iceland	0.925	18.10574784	10.6575901
India	0.618	4.960149499	15.06557011
Indonesia	0.683	3.683529323	21.07517605
Iran (Islamic Republic of)	0.788	7.697669294	13.75049814
Iraq	0.666	4.027473423	1.827205373
Ireland	0.921	2.365128644	19.97243041
Israel	0.899	3.437751671	12.70316521
Italy	0.874	2.977931579	13.91352914
Jamaica	0.728	5.102949008	8.119285305
Japan	0.903	3.871243964	19.73129704
Jordan	0.73	4.508938447	16.72574274
Kazakhstan	0.793	7.871573916	10.31824363
Kenya	0.572	7.825663741	9.958063149
Kiribati	0.616	4.828188332	4.648806449
Korea (Republic of)			27.48912524
Kuwait	0.799	4.96721337	5.541764161
Kyrgyzstan	0.663	9.211918332	13.6761968
Lao People's Democratic Republic	0.586	2.302410416	8.427695284
Latvia	0.838	4.093339923	10.87022306
Lebanon	0.751	4.150984189	7.702096498
Lesotho	0.509	11.01950053	11.98924328
Liberia	0.431	24.01874978	2.264755089
Lithuania	0.851	3.807436433	17.35480913
Luxembourg	0.895	3.066832919	3.952534923
Malawi	0.468	5.461409106	9.549752663
Malaysia	0.79	5.134960719	22.87393024

Maldives	0.705	3.993509568	1.984973239
Malta	0.862	2.345127015	10.22530041
Mauritania	0.514	3.503129258	8.020468793
Mauritius	0.782	2.548934892	13.58815698
Mexico	0.761	3.853119994	15.89917709
Micronesia (Federated States of)	0.618	6.844246204	0.368585601
Moldova (Republic of)	0.696	8.160677826	11.63244809
Mongolia	0.734	6.662648223	8.777293136
Montenegro	0.805	4.354356946	3.880020359
Morocco	0.65	3.238855529	16.49048603
Mozambique	0.427	16.58230074	8.992605911
Myanmar	0.564	3.129920458	19.9307583
Namibia	0.636	3.311005557	10.02490751
Nepal	0.56	7.603696352	5.751729379
Netherlands	0.924	3.964626966	10.36065281
New Zealand	0.91	5.519838785	11.07794813
Nicaragua	0.649	5.245786443	14.7329135
Niger	0.345	7.074701702	6.296931201
Nigeria	0.524	5.628943913	9.635811603
Norway	0.946	3.579962265	6.794526904
Oman	0.815	6.383538199	49.90023738
Pakistan	0.548	4.536274806	13.5424308
Palau	0.786	12.9859978	0.988785595
Panama	0.781	2.273620638	6.605711074
Papua New Guinea	0.536	7.942183629	2.14235377
Paraguay	0.698	3.884101393	18.81475755
Peru	0.746	2.782416771	13.93614636
Philippines	0.689	3.034443781	20.6079274
Poland	0.842	4.254309584	16.7673198
Portugal	0.839	3.274580852	11.79849405
Qatar	0.853	6.475978234	10.1421686
Romania	0.802	3.483	20.97986494
Russian Federation	0.807	8.345606024	11.59660932
Rwanda	0.509	5.337639351	5.891690527
Saint Kitts and Nevis	0.77	2.68322602	6.460927619
Saint Lucia	0.737	3.186996993	2.178148363
Saint Vincent and the Grenadines	0.72	2.832899125	4.879079958
Samoa	0.703	4.259010114	10.57903874

Sao Tome and Principe	0.567	4.606869765	6.466076733
Saudi Arabia	0.852	5.809792569	10.79531467
Senegal	0.486	5.056820743	16.99741556
Serbia	0.775	5.936982935	15.69507666
Seychelles	0.786	2.978451629	6.501198824
			1.532608562
Singapore	0.928	2.4848573	17.76319139
Slovakia	0.845	4.524089445	19.65174859
Slovenia	0.887	4.745000232	19.77805676
South Africa	0.685	9.033627494	12.04630861
Spain	0.88	3.308066631	12.49571217
Sri Lanka	0.763	2.032837842	16.97410879
Suriname	0.718	3.44134072	16.35249219
Sweden	0.92	4.713804978	14.61644157
Switzerland	0.939	2.260459146	18.36203263
Tajikistan	0.645	5.064901788	7.515590327
Tanzania (United Republic of)	0.515	8.535183879	9.120109
Thailand	0.735	5.556494468	27.72107755
			0.278161888
Togo	0.481	14.62049829	5.566687219
Tonga	0.717	3.071825441	6.215040398
Trinidad and Tobago	0.779	19.14162488	16.35258188
Tunisia	0.725	3.701350884	15.56215637
Turkey	0.778	2.947927628	16.79190703
Uganda	0.5	7.029147697	8.507748174
Ukraine	0.748	12.48534484	12.22812816
United Arab Emirates	0.855	5.268228526	7.777059562
United Kingdom	0.919	3.068878182	8.897979987
United States	0.918	5.621145713	11.89869691
Uruguay	0.801	2.893944677	12.14330217
Vanuatu	0.598	4.298013877	3.31315021
Venezuela (Bolivarian Republic of)	0.778	5.473513518	12.07335643
Viet Nam	0.678	5.745538499	13.17879577
Yemen	0.505	3.21140525	8.557795136
Zambia	0.58	7.398638071	6.820015756
Zimbabwe	0.525	15.74958139	12.5907647

附錄十: 最終迴歸模型解釋與分析

模型假設: $E(Y) = \beta_0 + \beta_1 X 1 + \beta_2 X 2 + \beta_3 X 3' + \beta_4 X 1 X 2' + \beta_5 X 1 X 3$ "

最終配適模型結果為:

 $\log Y = -4.23 + 7.29X1 + 2.77X2' + 0.21X3' - 5.62X1X2' - 0.29X1X3'$

其中 Y=人均碳排放量、X1=HDI、X2=能源密集度,X2'為 X2 轉換之結果、X3= 製造業佔 GDP%,X3'為 X3 轉換之結果。

變異勲的分析												
來源		DF		平方和		共	-			> F		
模型			Ę	5 4	40.45157		8.0903	1 17	177.85		<.0001	
誤差			144	1	6.5506	3 0.04549		9				
已校正的總計		ât	149	9 4	7.0022	0						
根 MSE			E		0.	0.21328		マ平方		0.860	06	
底變平均		均	值	0.33899		įĮ.	調整 R 平		0.855	58		
	嶷	異係	敷		62.	2.91824						
						参數估	計	值				
變數 DF			1	参出計	敷值	標誤	進	t值	Pr	> t		變異 數 膨脹
Interce	pt	1	-4.	.239	949	0.559	76	-7.57	<	<.0001		
x1 1 7		7.	7.29276		0.79725		9.15	<.0001		4	1.2298	
adjx2 1 2		2.	2.77239		0.95761		2.90	0.0044		2	7.5150	
adjx3 1 0		0.	.205	513	0.11750		1.75	0.0830		0 39.489		
x1adjx2 1 -5		-5.	-5.62414		1.33332		-4.22	2 <.0001		66.3475		
x1adjx3		1	-0.	.294	120	0.16320		-1.80 0		0.0735	6	8.2088

此模型可用來解釋人均碳排放量,跟自變數組合的關係。判定係數 R^2 為0.86,考量自由度後調整的 R_a^2 為0.85,有達到我們之預期,是理想中模型。

且全面性 F 檢定為顯著,代表模型反應變數和自變數存在線性關係。另外根據下圖迴歸模型殘差圖,可以看出沒有違反迴歸模型假設,因此認定此模型為最終模型。

柒、 分工情形與貢獻度

分工	組員名稱	貢獻度	細部分工
建模	許智超	30%	尋找變數,建立變數轉換的模型,找離群值和影響點
	張韶恩	20%	尋找變數,建立交互作用項之模型,建立模型準則
報告撰寫	吳昱弘	40%	目錄,研究動機、目的、方法,資料蒐集,基本資料
			分析,模型配適及分析,結論,附錄
	葉洧彤	10%	附錄十