Lexical Analysis (Scanning)

Lecture 3

Finite Automata (FA)

DFA is a 5-tuple (S, Σ , δ , s_0 , F) where:

- S is a finite set of states.
- o Σ a finite set of symbols, the input *alphabet*.
- \bullet δ transition function is a *mapping* from $S \times \Sigma \rightarrow Set$ of states
- $s_0 \in S$ is the *start state*

Finite Automata

- States are nodes, transitions are directed labeled edges, some states are marked as *final*, one state is marked as *starting*.
- The mapping δ of an FA can be represented in a *transition table*

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}
*3		

NFA vs DFA

NFA has either:

- >Multiple transitions from one state on the same input
- ≽ε-move
- A string is accepted by an NFA if there exists a sequence of transitions leads from the start state to some final state.

Finite Automata (Example)

- 1) Design FSM that accept $RE=[a-z]^+|[0-9]^+$
- 2) Match RE= $[a-z]^+|[0-9]^+$ with "Abcd 2004"
- 3) Which of the following Strings are accepted by the FSM?
 - **a.** a
 - b. Abcd 2004
 - c. Abcd 2004
 - d. 20000007
 - e. abcd2004
 - 2) {bcd,2004}
 - 3) a,d

Finite Automata (Example)

- 1) Define the following FSM
- 2) Define language accepted by this machine
- 3) Is Machine DFA or NFA?
- 1) FA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where:

1.
$$S = \{q0,q1,q2,q3,q4\}$$

2.
$$\Sigma = \{0,1\}$$

3.
$$s0=q0$$

4.
$$F = \{q2, q4\}$$

5.	$\delta =$
•	•

state	symbol		
	0	1	
90	$\{q_0, q_3\}$	$\{q_0, q_1\}$	
91	ϕ	{ q ₂ }	
92	$\{q_2\}$	{q ₂ }	
<i>q</i> ₃	$\{q_4\}$	ϕ	
94	$\{q_4\}$	{ <i>q</i> ₄ }	

- 2) Language contains two consecutive 0's or two consecutive 1's
- 3) NFA because q0 has more than one transition on the same input.

Scanner Phases

- ☐ The scanning process is a pattern matching process and it can be divided in two main phases:
 - Pattern specification using regular expressions
 - Pattern recognition using finite automata for recognizing patterns

RE to NFA (Thompson's construction)

RE to NFA

• The construction of an NFA using a regular expression. The \(\mathbb{\epsilon}\)-transitions are used to "glue together" the machines of each piece of a regular expression to form a machine that corresponds to the whole expression

RE to NFA (Continued)

^{*} Jim Hogg :2014 Washington university

RE to NFA (Example-1)

NFA for a(b|c)*

RE to NFA (Example-2)

NFA for abc*

NFA to DFA (Subset construction)

NFA State	а	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none

NFA State	а	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
d1 = {1,2,3,4,6,9}	none	$d2 = \{3,4,5,6,8,9\}$	

NFA State	a	b	C
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$

NFA State	a	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d2 = \{3,4,5,6,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	

NFA State	a	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d2 = \{3,4,5,6,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	

NFA State	a	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d2 = \{3,4,5,6,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$

NFA State	а	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d2 = \{3,4,5,6,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d3 = \{3,4,6,7,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	

NFA State	a	b	С
d0 = n0	$d1 = \{1,2,3,4,6,9\}$	none	none
$d1 = \{1,2,3,4,6,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d2 = \{3,4,5,6,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	$d3 = \{3,4,6,7,8,9\}$
$d3 = \{3,4,6,7,8,9\}$	none	$d2 = \{3,4,5,6,8,9\}$	d3 = {3,4,6,7,8,9}

NFA State	а	b	С
d0	d1	-	-
*d1	-	d2	d3
*d2	-	d2	d3
*d3	-	d2	d3

