InfoSPE Année 2009~2010

<u>TD 7</u>: <u>L'amplificateur opérationnel</u> <u>Partie 3 - Applications non linéaires</u>

Exercice 1.

On considère le montage suivant dans lequel on injecte un signal d'entrée sinusoïdal $v_e = V_e \sin \omega t$, avec $V_e < V_{sat}$, V_{sat} étant la tension de saturation de l'AOP.

Déterminer et tracer l'évolution de la tension de sortie de ce montage.

Rq: La diode sera supposée parfaite (ddp nulle en sens direct).

Exercice 2.

On considère le montage cicontre :

Déterminer l'expression de v^+ en fonction de v_s et montrer que le potentiel v^- est solution d'une équation différentielle.

On suppose qu'à l'instant t=0, le condensateur est déchargé et que $v_s=+V_{sat}$. Déterminer et tracer

en fonction du temps les variations de v^- jusqu'au point de basculement du comparateur. Le comparateur ayant basculé, déterminer et tracer les nouvelles variations de v^- .

Montrer que le comparateur basculera de nouveau et que ce processus instable se répète indéfiniment. Calculer la période des oscillations du signal de sortie du comparateur.

InfoSPE Année 2009~2010

Exercice 3.

Dans le montage ci-dessus, déterminer et tracer en fonction du temps les variations de la tension de sortie $v_{\scriptscriptstyle S}$.

Exercice 4.

Dans le montage ci-contre, déterminer et tracer en fonction du temps les variations de la tension de sortie $v_{\scriptscriptstyle S}$.

Rq : Les diodes seront supposées idéales (ddp nulle en sens direct).

