pati@iitg.ac.in 1

Tutorial problems: MA101-Calculus

IIT Guwahati, 2020

Tutorial 1: Realnumbers1,2,3, Sequence1

1. Let S and T be nonempty and bounded above. Define $S+T=\{s+t\mid s\in S, t\in T\}$. Then show that $\sup(S+T)=\sup S+\sup T$.

Sol. Let $a=\sup S$ and $b=\sup T$. In particular, a is an upper bound of S and b is an upper bound of S. That is, $\forall s\in S,\, a\geq s$, and $\forall\, t\in T,\, b\geq t$. Thus $\forall\, s\in S, t\in T$, we have $a+b\geq s+t$. That is, a+b is an upper bound of S+T.

Since $S+T\neq\emptyset$ and bounded above, $\sup(S+T)$ exists in \mathbb{R} . Let $d=\sup(S+T)$. As a+b is already an upper bound, we will have $d\leq a+b$.

Now we show d=a+b. Suppose it is not true. Then d< a+b. Write $d=a+b-\epsilon$, where $\epsilon>0$. As $a=\sup S$, $\exists s\in S$ s.t. $s>a-\epsilon/2$. As $b=\sup T$, $\exists t\in T$ s.t. $t>b-\epsilon/2$. So, we have $s+t\in S+T$ and $s+t>a+b-\epsilon=d$. Hence d cannot be an upper bound of S+T. Therefore it cannot be the least upper bound of S+T. This contradicts the fact that $d=\sup(S+T)$. So d=a+b.

2. Give a finite set, a countable set and an uncountable set $S \subseteq \mathbb{R}$ such that $\mathsf{lub}\, S \in S$. Give a finite set, a countable set and an uncountable set $S \subseteq \mathbb{R}$ such that $\mathsf{lub}\, S \notin S$.

Sol. First: $\{1\}$, $-\mathbb{N}$, (0,1].

Second: For each nonempty finite set S, lub $S \in S$. For $S = \emptyset$, lub S does not exist. So $S = \emptyset$, the condition lub $S \in S$ cannot hold. $-\{\frac{1}{n} : n \in \mathbb{N}\}$, (0,1).

3. Let A and B be nonempty and bounded sets such that $A \cap B \neq \emptyset$. Order lub's of $A \cup B$, A and $A \cap B$.

Sol. $\operatorname{lub} A \cap B \leq \operatorname{lub} A \leq \operatorname{lub} A \cup B$.

4. Determine the sets $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$ and $\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right]$.

Sol. (a) Ans: $\{0\}$. Note that $0 \in$ all these sets. For any x > 0, by Archimedean principle, there is $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < x$. Thus $x \notin (-\frac{1}{n_0}, \frac{1}{n_0})$. So x cannot be in the intersection. Similarly any x < 0 cannot be in the intersection.

pati@iitg.ac.in 2

- (b) Ans: ∅. Argue!
- 5. Let $S \subseteq [1,2]$ be an infinite set. Show that it has a limit point.

Sol. Divide the interval into two halves and select the one which contains an infinite subset of S. Call it $I_1=[a_1,b_1]$. Now consider that interval and further divide that and continue. We will have closed intervals $[a_1,b_1]\supseteq [a_2,b_2]\supseteq\ldots$

Using nested interval theorem, let $a\in \cap [a_n,b_n]$. We now show that a is a limit point of S. Consider a $D_\epsilon(a)$. Select n such that $\frac{1}{2^n}<\epsilon$. Since the length of $I_n=[a_n,b_n]$ is $\frac{1}{2^n}$, and $a\in I_n$, we see that $(a-\epsilon,a+\epsilon)$ completely contains I_n . But, recall that I_n contains infinitely many points of S. Hence, $D_\epsilon(a)=(a-\epsilon,a)\cup(a,a+\epsilon)$ contains infinitely many points of S.

6. Let a < b. Supply 3 rationals and 3 irrationals inside (a, b).

Sol. Put $n=\left[\frac{3}{b-a}\right]+1.$ Then the numbers are

$$\frac{[na]+1+\frac{1}{2}}{n}, \frac{[na]+1+\frac{1}{3}}{n}, \frac{[na]+1+\frac{1}{4}}{n}$$

and

$$\frac{[na] + 1 + \frac{1}{2\sqrt{2}}}{n}, \frac{[na] + 1 + \frac{1}{3\sqrt{2}}}{n}, \frac{[na] + 1 + \frac{1}{4\sqrt{2}}}{n}.$$

- 7. Consider the sequence $(a_n = \frac{1}{n})$.
 - a) Let $a \neq 0$. Then $a_n \not\to a$ as $\exists \epsilon > 0$ such that $B_{\epsilon}(a)$ misses infinitely many terms of (a_n) . Give a value for ϵ .

Sol. |a|/2

- b) $a_n \to 0$ as each $B_{\epsilon}(a)$ contains a tail (which may depend on ϵ) of (a_n) . Which tail?
- Sol. $a_{[1/\epsilon]+1}, a_{[1/\epsilon]+2}, \ldots$ If someone gives an existential argument using Archimedean property, then it is fine. The intention of the exercise was to familiarize the students with the notations.
- 8. Let s > 0. Is $\frac{[10^n s]}{10^n} \to s$?

Sol. Yes. Recall that for any real number a, we have $[a] \leq a < [a] + 1$.

Hence,
$$[10^n s] \le 10^n s < [10^n s] + 1.$$

So
$$0 \le 10^n s - [10^n s] \le 1$$
.

pati@iitg.ac.in 3

That is,
$$0 \le s - \frac{[10^n s]}{10^n} < \frac{1}{10^n}$$
.

Sandwich lemma implies $s-\frac{[10^ns]}{10^n}\to 0$. Then by definition, $\frac{[10^ns]}{10^n}\to s$.