Giorno 7 Che stai a contare?

Se ti do una scatola di caramelle e ti chiedo quante caramelle contiene tu che fai?

Tiro a indivinare. Apri la scatola prendi una caramella e conti 1, prendi un'altra caramella e conti 2, ..., prendi la 13ma caramella e conti 13. Non ci sono più caramelle e dici che nella scatola c'erano 13 caramelle.

Ora lasciami fare una domandina. Che hai fatto in tutto ciò se non istituire una funzione biettiva tra le caramelle e il sottoinsieme $I_{13} = \{1, 2, 3, \dots, 12, 13\} \subset \mathbb{N}$?

Contare significa stabilire una funziona bilineare tra un insieme da contare (la scatola di caramelle) e un sottoinsieme finito di \mathbb{N} .

Definizione: dati 2 insiemi A e B, diciamo che hanno la stessa *cardinalità* se esiste una funzione biettiva $f:A\to B$.

Avere la stessa cardinalità è una relazione di equivalenza sugli insiemi (e pure sugli insiemi finiti). Le classi di equivalenza rispetto a questa relazione di equivalenza sono, ad esempio, tutti gli insiemi con 17 elementi. Esiste una classe di equivalenza ogni $n \in \mathbb{N}$, fatta di tutti gli insiemi finiti con n elementi.

Le classi di equivalenza sono una rappresentazione dei numeri naturali. Il numero $17 \in \mathbb{N}$ è identificato con tutti gli insiemi finiti con 17 elementi.

Dobbiamo notare 2 cose: primo, il numero è per definizione astratto, non importa se conti mele, pere, colori o unicorni. Secondo, la definizione di avere la stessa cardinalità si estende per costruzione anche agli insiemi infiniti.

Gli insiemi che hanno la stessa cadinalità di \mathbb{N} sono detti *numerabili*. Il numero cardinale corrispondente si chiama \aleph_0 (letto *aleph-zero*). Ovviamente, un insieme numerabile è in corrispondenza biunivoca con \mathbb{N} , quindi $\aleph_0 \notin \mathbb{N}$ perché non può essere in corrispondenza con un sottoinsieme finito di \mathbb{N} . Sono i sottoinsiemi finiti di \mathbb{N} che definiscono gli elementi di \mathbb{N} .

Esercizio: sono più i numeri naturali o i numeri pari? [Siate certi di considerare la mappa $f: \mathbb{N} \to 2\mathbb{N}: n \mapsto 2n$. (È biettiva? Quindi?)]

Esercizio: Se consideriamo $A=\mathbb{N}\cup\{a\}$. È numerabile? Chi ha maggiore cardinalità, \mathbb{N} o A?

Nota: notate che gli assiomi di Peano definiscono i numerali naturali, dicono che 0 è il primo, che esiste sempre il successivo e che il successivo e sempre un numero nuovo, che continuano per sempre a comparire numeri nuovi e che

tutti i naturali sono ottenuti come il successivo di un numero naturale. Questo definisce già un (buon) ordine di $\mathbb N.$

Poi definiamo la cardinalità dei numeri naturali che si estende agli insiemi numerabili.

Ora prima di definire per bene il buon ordine andiamo in vacanza in montagna all'Hilbert hotel.