* 4 4 5 0	24 🗆	#4.夕	
考生序号	子亏	姓名	

西北工业大学考试试题(卷)

2020-2021 学年第二学期

开课学院: 数学与统计学院

课程: 高等数学(下)期中

考试日期: 2021-5-9

考试时间: 2 小时

题号	_	 111	四	五	六	总分
得分						

— ,	埴空题	(每小题	4分.	共 40 名	(4

- 1. 设函数 $z = x^y$,则 dz =
- 2. 设u = f(x + y, yz) 具有二阶连续偏导数,则 $u_x = ______$, $u_{xz} = ______$;
- 3. 设函数 $f(x,y) = e^{\sqrt{x^2+y^4}}$,则 $f_v(0,0) = ______;$
- 5. 设螺旋线 $x = \cos t$, $y = \sin t$, z = t 在点 (1,0,0)处的切线方程为_____;
- 6. 设函数 $f(x,y,z) = x^2 + 2y^2 + 3z^2$,则在点(1,1,1)处的梯度 $\operatorname{grad} f(1,1,1) = _______$;
- 7. 设 $D = \{(x,y) | x^2 + y^2 \le y, x \ge 0\}$,则 $I = \iint_D f(x,y) d\sigma$ 在极坐标下的二次积分为

8. $\[\[\mathcal{Q} = \{(x,y,z) | x^2 + y^2 + z^2 \le 1 \} \], \] \] \] \]_{\Omega} (x^2 + y^2 + z^2) \, dx \, dy \, dz = \underline{\hspace{1cm}};$

9. 设 L 为椭圆 $\frac{x^2}{3} + \frac{y^2}{2} = 1$, 其周长为 a, 则 $\oint_L (xy + 2x^2 + 3y^2) ds = ______;$

10. 设 L 为圆周 $x^2 + y^2 = 2$ (逆时针方向) 在第一象限部分,则 $\int_L x \, dy - 2y \, dx = _____.$

西北工业大学命题专用纸

二、选择题(每小题4分,共40分)

1. 函数
$$z = \begin{cases} \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0), \\ 0, (x, y) = (0, 0) \end{cases}$$
 在点 $(0, 0)$ 处 () .

- A. 无定义; B. 极限不存在; C. 极限存在,但不连续; D. 连续.

2.
$$z = f(x, y)$$
 的偏导数 z_x, z_y 在点 (x_0, y_0) 处连续是 $f(x, y)$ 在该点可微的() .

- B. 必要条件; C. 充分条件; D. 既非必要条件也非充分条件.

3. 对于函数
$$z = x^2 - y^2$$
, 点 **(0,0)** ().

- A. 不是驻点; B. 是驻点但不是极值点; C. 是极小值点; D. 是极大值点.

4. 设 D 是由直线
$$y = x, x = 1$$
 和 x 轴围成的三角形区域,则二重积分 $\iint_{D} e^{x^{2}} d\sigma = ($).

- A. $\frac{1}{2}(e-1)$; B. $\frac{1}{2}(e+1)$; C. $\frac{1}{3}(e-1)$; D. $\frac{1}{3}(e+1)$.

5. 设区域
$$D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0 \}$$
,则二重积分 $\iint_D \frac{1+xy}{1+x^2+y^2} dxdy = ($).

- A. $\frac{\pi^2}{4}$; B. $\frac{\pi^2}{2}$; C. $\pi \ln 2$; D. $\frac{\pi}{2} \ln 2$.

6. 设
$$I_1 = \iint_D \cos(x^2 + y^2) d\sigma$$
, $I_2 = \iint_D \cos\sqrt{x^2 + y^2} d\sigma$, $I_3 = \iint_D x \cos(x^2 + y^2) d\sigma$, 其中 $D = \{(x,y) | x^2 + y^2 \le 1\}$, 则 () .

- A. $I_3 < I_1 < I_2$; B. $I_1 < I_2 < I_3$; C. $I_3 < I_2 < I_1$; D. $I_2 < I_1 < I_3$.

7. 设有空间区域
$$\Omega_1$$
: $x^2+y^2+z^2 \le R^2$, $z \ge 0$, Ω_2 : $x^2+y^2+z^2 \le R^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$, 则 () .

- A. $\iiint_{\Omega_{v}} z \, dv = 4 \iiint_{\Omega_{v}} z \, dv;$ B. $\iiint_{\Omega_{v}} y \, dv = 4 \iiint_{\Omega_{v}} y \, dv;$
- C. $\iiint_{\Omega_1} x \, dv = 4 \iiint_{\Omega_2} x \, dv;$ D. $\iiint_{\Omega_1} z \, dv = 0.$

- 8. 设 Ω 是由 $z = x^2 + y^2$ 与z = 1围成的区域,则 $\iint_{\Omega} f(x, y, z) dV \neq ($
- A. $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{x^2+y^2}^{1} f(x,y,z) dz;$
- B. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\rho^2}^1 f(\rho \cos \theta, \rho \sin \theta, z) \rho dz;$
- C. $\int_0^1 dz \int_0^{2\pi} d\theta \int_0^{\sqrt{z}} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\rho;$
- D. $\int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{1} f(r \sin\varphi \cos\theta, r \sin\varphi \sin\theta, r \cos\varphi) r^{2} \sin\varphi dr.$
- 9. 设 L 是抛物线 $2y = x^2$ 上由 (0,0) 到 (2,2) 的一段弧,则第一类曲线积分 $\int_L x ds = ($).
- A. 0; B. $\frac{1}{3}(5\sqrt{5}-1)$; C. $\frac{1}{3}(5\sqrt{5}+1)$; D. $\frac{1}{2}(5\sqrt{5}+1)$.
- 10. 设 $L: x^2 + y^2 = R^2$ (逆时针方向),则 $\oint_L \frac{(x+y)dx (x-y)dy}{x^2 + y^2} = ($

- A. π ; B. **0**; C. -2π ; D. 2π .
- 三、 $(7 \, \beta)$ 求由球面 $x^2 + y^2 + z^2 = 5$ 与抛物面 $4z = x^2 + y^2$ 所围立体($z \ge 0$ 部分)的体积.
- 四、(7分) 确定有向闭曲线 C,使曲线积分 $I = \oint_C (x^2 + \frac{y^3}{3}) dx + (2y + x \frac{x^3}{3}) dy$ 达到 最大值.
- 五、(6 分) 求函数 $z = x^3 + y^3 3xy$ 的极值.
- 六、(10 分) 求由半球面 $z = \sqrt{3a^2 x^2 y^2}$ 及旋转抛物面 $2az = x^2 + y^2$ 所围立体 Ω 的表 面积A.

教务处印制