目录

第一章	概率论的基本概念	. 1
第二章	随机变量及其分布	.1
第三章	多为随机变量及其分布	.3
第四章	随机变量的数字特征	.3
第五章	大数定律和中心极限定理	.4
第六章	样本及抽样分布	. 5

第七章 参数估计	5
第八章 假设检验	6
三大抽样分布	6
常用随机变量分布	7
正态总体均值、方差的置信区间	8
正态总体参数的假设检验	Q

第一章 概率论的基本概念

1. 互斥(互不相容): AB = Ø

对立(互逆): $\bar{A} = B$

完备(完全)事件组: $A_1, A_2, ..., A_n$, 满足 $A_i A_j = \emptyset, i \neq j$, 且 $\bigcup_{i=1}^n A_i = \Omega$

2. 德摩根律: $\overline{A \cup B} = A \cap B$ $\overline{A \cap B} = A \cup B$ $\overline{A - B} = \overline{AB} = \overline{A} \cup B$

- $3. A \subset B. AB = A$
- 4. $P(A \cup B) = P(A) + P(B) P(AB)$ $P(A B) = P(A) P(AB) = P(A\bar{B})$ $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC)$ $P(AB) = P(A) - P(A\overline{B})$
- 5. 古典型概率计算公式: $P(A) = \frac{k}{n} = \frac{\text{\sharp A$ 中的基本事件数}}{\frac{k}{k \pm \alpha \cos s + \omega + k \pm 4}}$
- 6. 不放回抽取, 连续取 n 次每次取 1 个↔ 次取 n 个
- 7. 条件概率: $P(B|A) = \frac{P(AB)}{P(A)}$ 乘法定理: P(AB) = P(B|A)P(A)

缩减样本空间解法

P(ABC) = P(C|AB)P(B|A)P(A)

8. 全概率公式: 离散: $P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(A|B_i) P(B_i)$

连续: $p_X(x) = \int_{-\infty}^{+\infty} p(x|y) p_Y(y) dy$

 $p_{Y}(y)$ 同理

9. 贝叶斯公式: 离散:
$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^n P(A|B_j)P(B_j)}$$

连续:
$$p(y|x) = \frac{p(x|y)p_Y(y)}{p_X(x)} = \frac{p(x|y)p_Y(y)}{\int_{-\infty}^{+\infty} p(x|y)p_Y(y) \, dy}$$
 $p(x|y)$ 同理

10. A、B 独立: P(AB) = P(A)P(B)

定理: ①一列独立事件中任一部分改为对立事件,所得事件列仍为相互独立

②事件 A、B、C、任取两个事件都独立、则

两两独立: $P(ABC) \neq P(A)P(B)P(C)$

相互独立: P(ABC) = P(A)P(B)P(C)

11.

第二章 随机变量及其分布

- 1. 离散型随机变量(概率质量函数 PMF)
 - a) **0-1 分布**: 抛硬币, 二选一

$$P{X = k} = p^k (1-p)^{1-k}, k = 0,1$$
 $E(X) = p$ $D(X) = p(1-p)$

b) **二项分布**: *X~B(n,p)* n 重伯努利, 出现 k 次"是"

$$P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,1,...,n$$

$$E(X) = np$$
 $D(X) = np(1-p)$

c) **几何分布**: $X \sim Ge(P)$ n 重伯努利, 第 k 次**首次**出现"是"

$$P\{X = k\} = p(1-p)^{k-1}, k = 0,1,...,n$$
 $E(X) = \frac{1}{p}$ $D(X) = \frac{1-p}{p^2}$

无记忆性 为负二项分布的特例 r=1

几何分布的和

$$P\{X=k\} = C_{k-1}^{r-1}p^r(1-p)^{k-r}, k=r,r+1, \dots \quad E(X) = \frac{r}{p} \qquad D(X) = \frac{r(1-p)}{p^2}$$

X=第 k 次实验. 正好发生 r 次"是"

e) **超几何分布**: $X \sim h(n, N, M)$ 不放回抽样的二项分布

$$P\{X = k\} = \frac{C_N^k C_{N-M}^{n-k}}{C_N^n} \qquad E(X) = n \frac{M}{N} \qquad D(X) = n \frac{M}{N} (1 - \frac{M}{N}) (1 - \frac{n-1}{N-1})$$

N 件物品, 有 M 件次品, 抽 n 件 (不放回) 有 k 件次品概率

分子: k 件从不合格品中抽取, 剩下的在合格品中抽取

分母: 从 N 件中随便抽取 n 件

若 N 巨大, 放不放回区别不大, 近似为二项分布

f) **松柏分布**: $X \sim P(\lambda)$ 二项分布的极限, $p = \lambda/n$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 $E(X) = \lambda$ $D(X) = \lambda$

$$E(X) = X$$

$$D(X) = \lambda$$

条件: 平稳性、独立性、普诵性

意义:单位时间内随机事件发生的次数;例:汽车站台的候客人数

结论: $X_1 + X_2 \sim P(2\lambda)$

- 2. 概率密度函数**充要条件**①f(x) > 0; ② $\int_{-\infty}^{+\infty} f(x) dx = 1$
- 3. 连续型随机变量(概率密度函数 PDF)
 - a) **均匀分布**: *X~U(a,b)*

古典派的几何概型

$$p(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases} \qquad F(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x \le b \\ 1, x > b \end{cases}$$

$$E(X) = \frac{a+b}{2}$$
 $D(X) = \frac{(b-a)^2}{12}$

b) 正态分布: $X \sim N(\mu, \sigma^2)$

二项分布的另一种极限

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad F(x) = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$E(X) = \mu \qquad D(X) = \sigma^2$$

重要结论: ①aX + $b \sim N(a\mu + b, a^2\sigma^2)$ ②标准化: 令Z = $\frac{X-\mu}{a}$, 则Z $\sim N(0,1)$

③ $Z \sim N(0,1)$, $P(Z > z_{\alpha}) = \alpha, 0 < \alpha < 1$, z_{α} 称为上 α 分位点

 $4P(\mu - \sigma < X < \mu + \sigma) \approx 68.26\%, P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 99.72\%$

c) **标准正态分布**: $X \sim N(0,1)$ 用 Z 表示

$$p(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 $F(X) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$

性质: $\Phi(-x) = 1 - \Phi(x)$, $\Phi(0) = 0.5$, $\int_{-\infty}^{+\infty} \varphi(t) dt = 1$

泊松分布的间隔, 连续的几何分布 d) **指数分布**: *X~Exp*(λ)

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases} \qquad F(x) = \begin{cases} 1 - e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$$

$$E(X) = \frac{1}{\lambda} \qquad \qquad D(X) = \frac{1}{\lambda^2}$$

泊松分布的三个条件+无记忆性 指数函数取对数→对数正太分布

无记忆性: ①
$$P\{X > t\} = \int_t^{+\infty} \lambda e^{-\lambda t} dt = e^{-\lambda t}, t > 0$$

② $P\{X > t + s | X > s\} = P\{X > t\}$

- +伯努利分布 +二项分布 +二项分布 +工交分布 +工太分布 +工太分布 +工太分布
- 5. (累积)分布函数 CDF: $F(x) = P(X \le x)$

离散:
$$F(x) = P(X \le x) = \Sigma_{a \le x} p(a)$$

F(x)为分布函数的**充分必要条件**: ①F(x)单调非减; ②F(x)右连续;

$$P\{a < X \le b\} = P\{X \le b\} - P\{X \le a\} = F(b) - F(a)$$

 $P(X < a) = 1 - P(X \ge a) = F(a - 0) \Leftarrow a - 0$ 为 a 左极限,离散时有意义
 $P(x = a) = P(X \le a) - P(X < a) = F(a) - F(a - 0)$

- 6. 中心极限定理: 正态分布是所有分布的最终归宿
- 7. 泊松过程: $P(X = k, t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$ 时间可变的泊松分布(t=1)

8. 唯二无记忆性的分布: 几何分布、指数分布

9. 随机变量的函数分布: PDF 为 $p_X(x)$ 的X, PDF 为 $p_Y(y)$ 的Y = g(X)

h(y)是单调函数y = g(x)的反函数

a) 公式法: $p_Y(y) = \begin{cases} p_X[h(y)] \cdot |h'(y)|, a < y < b \\ 0, 其他 \end{cases}$

其中 a,b 为函数g(X)在 X 可能取值区间上的值域

b) 定义法: ①写出 $p_X(x)$; ② $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le h(y)\} = F_X(h(y))$; ③ $p_Y(y) = F_Y'(y)$

第三章 多为随机变量及其分布

1. 离散: 联合概率质量函数 JPMF **边缘**概率质量函数 MPMF (边缘分布):

条件概率质量函数: $P\{X = x_i | Y = y_i\} = \frac{P(X = x_i | Y = y_i)}{P(Y = y_i)}$ Y 同理

2. 连续: 联合概率密度函数 JPDF

边缘概率密度函数 MPDF (边缘密度): $p_X(x) = \int_{-\infty}^{+\infty} p(x,y) dy$ Y 同理

条件概率密度函数: $p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$ X 为条件同理

3. 条件概率→条件分布

4. 联合累积分布函数 JCDF: $F(x,y) = P(\{X \le x\} \mathbf{L}\{Y \le y\}) = P(X \le x, Y \le y)$

边缘累积分布函数 MCDF: $= F(x, +\infty) = \lim_{y \to +\infty} F(x, y) = P(X \le x)$

 $F_Y(y) = F(+\infty, y)$ $F_X(x)F_Y(y)$ 也是分布函数

条件累积分布函数: 连续: $F_{X|Y}(x|y) = \int_{-\infty}^{x} \frac{p(u,y)}{p_Y(y)} du$ X 为条件同时

5. 相互**独立**: CDF: $F(x_1, x_2, ..., x_n) = \prod_{i=1}^n F_i(x_i)$

PMF: $P(X = x_1, X = x_2, ..., X = x_n) = \prod_{i=1}^n P(X = x_i)$

PDF: $p(x_1, x_2, ..., x_n) = \prod_{i=1}^n p_i(x_i)$

离散: $p_{ij} = p_i.p_{.j}$ 连续: $p(x,y) = p_X(x)p_Y(y)$

6. **二维均匀分布**: $p(x,y) = \begin{cases} 1/S \\ 0, \pm \ell \end{cases}$

二维正态分布: $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho) \Rightarrow X \sim N(\mu_1, \sigma_1^2) \& Y \sim N(\mu_2, \sigma_2^2)$

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho)^2} \left[\frac{(x-u_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-u_2)}{\sigma_1\sigma_2} + \frac{(y-u_2)^2}{\sigma_2^2} \right]}$$

性质: ①X,Y相互独立 $\Leftrightarrow \rho = 0$; ② $aX + bY \sim N(a\mu_1 + b\mu_2, a\sigma_1^2 + 2ab\sigma_1\sigma_2\rho + b\sigma_2^2)$ 7. Z = (X,Y)的分布:

a) X, Y离散: $P(X + Y = k) = \sum_{i=0}^{k} P(X = i) P(Y = k - i)$ 卷积公式

b) X,Y连续: Z = Y + X $p_Z(z) = \int_{-\infty}^{+\infty} p(x,z-x) \, dx = \int_{-\infty}^{+\infty} p(z-y,y) \, dy$

$$\stackrel{X,Y$$
相互独立 $=$ $\int_{-\infty}^{+\infty} p_X(x) p_Y(z-x) dx = \int_{-\infty}^{+\infty} p_X(z-y) p_Y(y) dy$

$$Z = \frac{Y}{X} \qquad p_{Y/X}(z) = \int_{-\infty}^{+\infty} |x| P(x, xz) \, dx \qquad |x| \, \hat{\mathbb{E}} \, \mathbb{Y} \, : \, \left| \frac{dy}{dz} \right|$$

$$Z = YX p_{YX}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} P\left(x, \frac{z}{x}\right) dx$$

c) X离散,Y连续: $F_Z(z) = P\{Z \le z\} = \sum_i P\{X = x_i\} P\{g(x_i, Y) \le z | X = x_i\}$

8. $X_i \sim F_i(x)$ $Y = max(X_1, X_2, ..., X_n)$ $F_Y(y) = \prod_{i=1}^n F_i(y)$

$$Z = min(X_1, X_2, ..., X_n)$$
 $F_Z(z) = 1 - \prod_{i=1}^n (1 - F_i(z))$

9.

第四章 随机变量的数字特征

1. 数学期望(随机变量的一阶矩)

意义: ①对不确定性的计量; ②加权平均(重心)

a) 离散: $\mu = \mu_X = E(X) = \sum_{i=1}^{\infty} x_i p(x_i)$ 前提: $\sum_{i=1}^{\infty} |x_i| p(x_i) < \infty$

b) 连续: $E(X) = \int_{-\infty}^{\infty} xp(x) dx$

性质: ① $E[g(X)] = \sum_{i=1}^{\infty} g(x_i) p(x_i) = \int_{-\infty}^{\infty} g(x) p(x) dx;$

$$E[g(X,Y)] = \sum_{j} \sum_{i} g(x_{i},y_{j}) p(x_{i},y_{j}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) p(x,y) dxdy$$

② $E(c) = c \rightarrow E(E(X)) = E(X)$ ③齐次性: E(aX + b) = aE(X) + b

④可加性: $E(X \pm Y) = E(X) \pm E(Y)$ ⑥X, Y独立: E(XY) = E(X)E(Y)

⑤施瓦茨不等式: $[E(XY)]^2 \leq E(X^2)E(Y^2)$

2. 示性函数:
$$X = \begin{cases} 1, 事件A发生 \\ -1, 事件A没发生 \end{cases}$$
, $Y = \begin{cases} 1, 事件B发生 \\ -1, 事件B没发生 \end{cases}$, $XY = \begin{cases} 1, AB \cup \bar{AB} \\ -1, A\bar{B} \cup \bar{AB} \end{cases}$

3. 方差 (二阶矩): 衡量集中程度

$$Var(X) = \sigma^2 = \sigma_X^2 = D(X) = E[(X - E(X))^2] = \sum_{i=1}^{\infty} (x_i - \mu)^2 p(x_i)$$

性质: $(1)D(X) = E(X^2) - E(X)^2$;

 $(2)D(aX + b) = a^2D(X);$ b 的几何意义为平移量

 $(\Im D(c) = 0 \to D(D(x)) = D(x)$

 $4D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$

⑤D(X) = 0 ⇔存在常数 c 使得P(X = c) = 1 X = c与P(X = c) = 1不同

- 4. **标准差**:解决方差单位不一致 $\sigma = \sigma_x = \sqrt{Var(X)}$
- 5. 协方差: $Cov(X,Y) = E[(X \mu_X)(Y \mu_Y)] = E(XY) E(X)E(Y) = Cov(Y,X)$ Cov(X,Y) > 0,正相关; < 0,负相关; = 0,不相关 不相关 本独文 性质: ①Cov(aX,bY) = abCov(X,Y) ③CovX,X = D(X)② $Cov(X_1 + X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$

对称性求解协方差: 例如 X、Y、Z 独立,且 X+Y+Z=2,则cov(X,Y)=cov(X,2-X-Z)=cov(X,2)-cov(X,X)-cov(X,Z) 因为cov(X,Y)=cov(X,Z),所以cov(X,Y)=1/2D(X)

6. 相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X\sigma_Y}$ 因为标准差有单位 $\rho_{XY} \in [-1,1]$ $\rho > 0$,正相关; $\rho < 0$,负相关; $\rho = 1$,完全正相关; $\rho = -1$,完全负相关; $\rho = 0$,(线性) 不相关; $\rho_{XY} = 1$ ⇔存在常数 $a(\neq 0)$,b使得a(Y = aX + b) = 1

7. 满足二维正态分布的 X,Y 独立 $\Leftrightarrow \rho = 0$,即不相关 8

第五章 大数定律和中心极限定理

- 1. 马尔可夫不等式: $P(X \ge a) \le \frac{E(X)}{a}$ 切比雪夫不等式: $P(|X u| \ge k) \le \frac{\sigma^2}{k^2}$
- 2. 概率收敛: 记为 $Y_n \stackrel{P}{\to} a$ $\lim_{n \to \infty} P\{|Y_n a| < \varepsilon\} = 1$
- 3. 弱大数定律 统计存在的基础
 - a) 伯努利大数定律: 记为 $\frac{X_n}{n} \stackrel{P}{\to} p, n \to \infty$

条件:
$$X_n \sim B(n, p)$$

$$\lim_{n \to \infty} P\left\{ \left| \frac{X_n}{n} - p \right| < \varepsilon \right\} = 1$$

b) 辛钦大数定律: 记为 $\bar{X} \stackrel{P}{\to} \mu, n \to \infty$

条件: $X_1, X_2, ..., X_n$ 独立同分布, 期望存在

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - E(X_i) \right| < \varepsilon \right\} = 1$$

c) 切比雪夫大数定律: 记为 $\bar{X} \stackrel{P}{\to} \mu, n \to \infty$

条件:
$$X_1, X_2, ..., X_n$$
两两不相关, $E(X_i) = D(X_i)$ 存在, $D(X_i) \le c$ (常数)
$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n E(X_i) \right| < \varepsilon \right\} = 1$$

结论: 切比雪夫 or 辛钦能推出伯努利

- 4. 强大数定律: $P\left(\lim_{n\to\infty}|\bar{X}-\mu|<\epsilon\right)=1$ 约束条件比弱大数更强 考研不考
- 5. 中心极限定理 解释了为什么生活中正态分布处处可见
 - a) 棣莫弗-拉普拉斯定理 理解: 伯努利分布的和的极限是正态分布 条件: $X_n \sim B(n,p)$

$$\lim_{n \to \infty} P\left(\frac{X_n - np}{\sqrt{np(1 - p)}} \le X\right) = \Phi(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{X} e^{-\frac{t^2}{2}} dt \qquad X_n \sim N(np, np(1 - p))$$

b) 列维-林德伯格定理: 条件: $X_1, X_2, ..., X_n$ 独立同分布, $E(X_i) = D(X_i)$ 存在

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \le X\right) = \Phi(X) \qquad \qquad \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

c) 计算方法: 例如
$$P\{X > k\} = P\left\{\frac{X_n - np}{\sqrt{np(1-p)}} > \frac{k - np}{\sqrt{np(1-p)}}\right\} = 1 - \Phi\left(\frac{k - np}{\sqrt{np(1-p)}}\right)$$

第六章 样本及抽样分布

1. 样本 $X_1, X_2, ..., X_n$

- a) 若X的分布为F(x),则样本的分布为 $F_n(x_1,x_2,...,x_n) = \prod_{i=1}^n F(x_i)$
- b) 若X的密度为f(x),则样本的密度为 $f_n(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$
- c) $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, 其线性组合也服从正态分布
- 2. 统计量(样本数字特征): 不含未知参数
 - a) 样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - b) 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 n \bar{X}^2 \right)$

样本标准差: $S = \sqrt{S^2}$

c) k(原点)阶矩: $E(X^k)$ k 阶中心矩: $E\{[X - E(X)]^k\}$

k+l 阶混合矩: $E(X^kY^l)$ k+l 阶混合中心矩 $E\{[X-E(X)]^k[Y-E(Y)]^l\}$

性质: ①
$$E(\overline{X}) = E\left(\frac{1}{n}\sum X_i\right) = \frac{1}{n}\sum E(X_i) = \frac{1}{n}*n*E(X) = E(X);$$

$$②D(\overline{X}) = D\left(\frac{1}{n}\sum X_i\right) = \frac{1}{n^2}\sum D(X_i) = \frac{1}{n}D(X); \qquad ③E(S^2) = D(X)$$

- 3. 抽样分布: 统计量的分布
 - a) **卡方分布**: 记作 $\chi^2 \sim \chi^2(n)$ $X_i \sim N(0,1), \chi^2 = \sum_{i=1}^n X_i^2$

$$E(X) = n$$
 $D(X) = 2n$ 若n 为正整数、 $\Gamma(n) = (n-1)!$

性质: ① χ_1^2 , χ_2^2 独立, $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$;

②上
$$\alpha$$
分位点: $P\{\chi^2 > \chi^2_{\alpha}(n)\} = \int_{\chi^2_{\alpha}(n)}^{\infty} f(y) dy = \alpha$

b) **t 分布**: 记作
$$T \sim t(n)$$
 $T = \frac{X}{\sqrt{Y/n}}, \begin{cases} X \sim N(0,1) \\ Y \sim \gamma^2(n) \end{cases}, X, Y$ 独立

$$E(X) = 0(n > 1)$$
 $D(X) = \frac{n}{n-2}(n > 2)$

性质: ①上 α 分位点: $P\{T > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t) dt = \alpha$

②h(t)为偶函数; ③n 充分大时, t(n)分布近似于N(0,1)

$$4P\{|T| > t_{\alpha/2}(n)\} = \alpha;$$
 $5t_{1-\alpha}(n) = -t_{\alpha}(n)$

c) **F 分布**: 记作 $F \sim F(n_1, n_2)$ $F = \frac{X/n_1}{Y/n_2}, \begin{cases} X \sim \chi^2(n_1) \\ Y \sim \chi^2(n_2) \end{cases}, X, Y 独立$

$$E(X) = \frac{n_2}{n_2 - 2} (n_2 > 2) \qquad D(X) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)} (n_2 > 4)$$

性质: ①上 α 分位点: $P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{\infty} \psi(y) dy = \alpha$

$$2F \sim F(n_1, n_2), \quad \boxed{1}_F \sim F(n_2, n_1), \quad F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_1, n_2)}$$

- d) 一个正态总体的抽样分布: 总体 $X \sim N(\mu, \sigma^2)$
 - i. 样本均值的分布: $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 或 $U = \frac{\bar{X} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
 量化 \bar{X} 逼近 μ 的靠谱程度

ii. 样本方差的分布:量化 S^2 逼近 σ^2 的靠谱程度

$$ar{X}$$
与 S^2 相互独立,且 $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$

$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

- e) **两个正太总体的抽样分布**: 总体 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,且相互独立
 - i. 样本均值的差:

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right) \implies U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

ii. 样本方差的比例:
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

4.

★第七章 参数估计

- 1. 参数估计意义: 分布函数已知, 部分参数未知
- 2. 点估计: 样本构造估计量 $\hat{\theta}(X_1, X_2, ..., X_n)$, 未知参数 θ , 估计值 $\hat{\theta}(x_1, x_2, ..., x_3)$

种类: ①一致估计量: $\lim_{n \to \infty} P(|\hat{\theta} - \theta| < \varepsilon) = 1$ $\bar{\theta} \stackrel{P}{\to} \theta$

大样本容量

②无偏估计量: $E(\hat{\theta}) = \theta$

小样本容量

③更有效估计量: $D(\hat{\theta}_1) < D(\hat{\theta}_2)$, $\hat{\theta}_1$ 更有效

计算方法:

a) 矩估计法:

理论基础: 样本 k 阶矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$,随机变量 k 阶矩 $E(X^k) = \mu_k$

$$\lim_{n\to\infty} P(|A_k - \mu_k| < \varepsilon) = 1, \quad \{\exists A_k \xrightarrow{P} \mu_k, n \to \infty\}$$

步骤:列出一阶矩到 k 阶矩的方程。(考研最多两个方程)

- b) **最大似然估计法**:可能性最大的就是事实
 - i. 似然函数: 离散: $L(\theta) = L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n p(x_i; \theta), \theta \in \Theta$

连续: $L(\theta) = L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta), \theta \in \Theta$

ii. 最大似然函数: $L(x_1,x_2,...,x_n;\hat{\theta}) = \max_{\theta \in \Theta} L(x_1,x_2,...,x_n;\theta)$

最大似然估计值: $\hat{\theta}(x_1, x_2, ..., x_n)$; 最大似然估计量: $\hat{\theta}(X_1, X_2, ..., X_n)$

- iii. 计算方法: 对数似然方程 $\frac{d}{d\theta} \ln L(\theta) = 0$ 解法之一
- 3. 区间估计: 置信水平1 α
 - a) 一个正态总体 $N(\mu, \sigma^2)$
 - i. μ的置信区间

①
$$\underline{\sigma^2$$
已知: $\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$ ② $\underline{\sigma^2 \pm 2}$: $\left(\bar{X} \pm \frac{s}{\sqrt{n}} t_{\alpha/2} (n-1)\right)$

ii. σ^2 的置信区间

 σ 的置信区间同理

① μ已知:
$$\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$$
 ② μ未知: $\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right)$

②
$$\mu$$
未知: $(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$

- b) 两个总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$
 - i. $\mu_1 \mu_2$ 的置信区间

①
$$\sigma_1^2, \sigma_2^2$$
已知: $(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$

②
$$\sigma_1^2 = \sigma_2^2 = \pm$$
知: $(\bar{X} - \bar{Y} \pm t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_{\omega}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$

$$S_{\omega}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

ii. σ_1^2/σ_2^2 的置信区间

$$(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)})$$

4.

第八章 假设检验

- 1. 第一类错误: H₀是对的, 但我们拒绝了它
 - 第二类错误: H₀ 错 , 接受 (纳伪)
- 2. 显著性检测: 只控制第一类错误
- 步骤: ①提出Ho;

- ②给出显著性水平α;
- ③确定检验统计量及拒绝域形式;
- ④求出拒绝域W

常用随机变量分布

		$P\{X=k\}/p(x)$	F(x)	E(X)	D(X)	
0-1 分布		$p^k(1-p)^{1-k}$		р	p(1-p)	抛硬币,二选一
二项分布	$X \sim B(n,p)$	$\binom{n}{k} p^k (1-p)^{n-k}$		пр	np(1-p)	n 重伯努利,出现 k 次"是"
松柏分布	$X \sim P(\lambda)$	$\frac{\lambda^k}{k!}e^{-\lambda}$		λ	λ	二项分布的 极限 , $p = \frac{\lambda}{n}$
几何分布	<i>X∼Ge(P)</i>	$p(1-p)^{k-1}$		$\frac{1}{p}$	$\frac{1-p}{p^2}$	n 重伯努利,第 k 次 首次 出现"是"
负二项分布	$X \sim Nb(r,p)$	$C_{k-1}^{r-1}p^r(1-p)^{k-r}$		$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	几何分布的 和 X=第 k 次实验,正好发生 r 次"是"
超几何分布	$X \sim h(n, N, M)$	$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$		$n\frac{M}{N}$	$n\frac{M}{N}(1-\frac{M}{N})(1-\frac{n-1}{N-1})$	不放回 抽样的二项分布
均匀分布	$X \sim U(a,b)$	$\begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$	$\begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x \le b \\ 1, x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	古典派的几何概型
正态分布	$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$ \Phi\left(\frac{x-\mu}{\sigma}\right) $ $ \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt $	μ	σ^2	二项分布的另一种极限
标准正态分布	<i>X∼N</i> (0,1)	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$	0	1	
指数分布	$X \sim Exp(\lambda)$	$\begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	泊松分布的间隔,连续的几何分布
二维均匀分布		$p(x,y) = \begin{cases} 1/S \\ 0, 其他 \end{cases}$				
二维正态分布	$(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$	$p(x,y) = \frac{1}{2\pi\alpha}$	$\frac{1}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho)^2} \left[\frac{1}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho)^2} \left[\frac{1}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho)^2}} \right] \right]}$	$\frac{(x-u_1)^2}{\sigma_1^2}$ 2	$\frac{\rho(x-\mu_1)(y-u_2)}{\sigma_1\sigma_2} + \frac{(y-u_2)^2}{\sigma_2^2} \bigg]$	

正态总体均值、方差的置信区间

	待估参数	待估参数 其他参数 枢轴量的分布		置信区间		
一个正态总体	μ	σ²已知	$U = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$		
		σ²未知	$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right)$		
	σ^2	3	$\chi^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \sim \chi^{2}(n)$	$\left(\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\chi_{\alpha/2}^2(n)}, \frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\chi_{1-\alpha/2}^2(n)}\right)$		
		μ未知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \sim \chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$		
两个正态总体	$\mu_1 - \mu_2$	σ_1^2,σ_2^2 已知	$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$		
		$\sigma_1^2 = \sigma_2^2 = 未知$	$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ $S_{\omega}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$(\bar{X} - \bar{Y} \pm t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)S_{\omega}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$		
	$\sigma_1^2/\sigma_2^2 \qquad \mu_1, \mu_2 未知 \qquad F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$			$(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)})$		

正态总体参数的假设检验

检验参数	其他参数	H_0	И		拒绝域
1型型少数	共心少奴	110	H_1	1座一位 がい 重ねがい	
μ	2 — 4			$\bar{X} - \mu_0$	$ U \ge u_{\alpha/2}$
	σ²已知	$\mu = \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	$U \ge u_{\alpha}$
		$\mu \leq \mu_0$		3, 4.0	$U \le u_{\alpha}$
μ				$ar{V}=\mu$	$ T \ge t_{\alpha/2}(n-1)$
	σ ² 未知	$\mu \ge \mu_0$	$\mu < \mu_0$	$T = \frac{X - \mu_0}{S / \sqrt{n}} \sim t(n - 1)$	$T \ge t_{\alpha}(n-1)$
					$T \le t_{\alpha}(n-1)$
			$\sigma^2 \neq \sigma_0^2$	n #	$\chi^2 \le \chi^2_{1-\alpha/2}(n) \text{ or } \chi^2 \ge \chi^2_{\alpha/2}(n)$
	μ已知			$\chi^{2} = \frac{1}{\sigma^{2}} \sum_{i} (X_{i} - \mu)^{2} \sim \chi^{2}(n)$	$\chi^2 \ge \chi^2_{\alpha}(n)$
2		$\sigma^2 = \sigma_0^2$		$\frac{\sigma^{2}}{i=1}$	$\chi^2 \le \chi^2_{1-\alpha}(n)$
σ^2	μ未知	$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \sim \chi^2(n-1)$	$\chi^2 \le \chi^2_{1-\alpha/2}(n-1) \text{ or } \chi^2 \ge \chi^2_{\alpha/2}(n-1)$
		$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$\chi^2 \ge \chi^2_\alpha(n-1)$
				σ^2	$\chi^2 \le \chi^2_{1-\alpha}(n-1)$
	σ_1^2,σ_2^2 已知			$(\bar{X} - \bar{Y}) - \mu_0$	
		σ_1^2, σ_2^2 已知 $u_1 - u_2 = u_2$	$\mu_1 - \mu_2 \neq \mu_0$	$Z = \frac{(N-1)^{n} R_0}{N(0,1)}$	$ U \ge u_{\alpha/2}$
				$Z = \frac{(\bar{X} - \bar{Y}) - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$U \ge u_{\alpha}$
$\mu_1 - \mu_2$		$\mu_1 - \mu_2 \le \mu_0$			$U \le u_{\alpha}$
11 12	$\sigma_1^2 = \sigma_2^2 =$ 未知		$\mu_1 - \mu_2 < \mu_0$	$(\bar{X} - \bar{Y}) - \mu_0$	$ T \ge t_{\alpha/2}(n_1 + n_2 - 2)$
				$T = \frac{\sqrt{10}}{\sqrt{11}} \sim t(n_1 + n_2 - 2)$	$T \ge t_{\alpha}(n_1 + n_2 - 2)$
				$T = \frac{(\bar{X} - \bar{Y}) - \mu_0}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$	$T \le t_{\alpha}(n_1 + n_2 - 2)$
σ_1^2/σ_2^2	μ ₁ ,μ ₂ 已知	$\sigma_1^2 = \sigma_2^2$ $\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$ $\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$	$F = \frac{X / n_1}{Y / n_2} \sim F(n_1, n_2), \begin{cases} X \sim \chi^2(n_1) \\ Y \sim \chi^2(n_2) \end{cases}$	$F \le F_{1-\alpha/2}(n_1, n_2) \text{ or } F \le F_{\alpha/2}(n_1, n_2)$
					$F \leq F_{\alpha}(n_1, n_2)$
				Y/n_2 (v_1, v_2) $(Y \sim \chi^2(n_2)$	$F \le F_{1-\alpha}(n_1, n_2)$
	μ ₁ ,μ ₂ 未知			$F = S_1^2 / S_2^2 \sim F(n_1 - 1, n_2 - 1)$	
					$F \le F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \text{ or } F \le F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$
					$F \leq F_{\alpha}(n_1 - 1, n_2 - 1)$
					$F \le F_{1-\alpha}(n_1 - 1, n_2 - 1)$