

Учебный комплекс «Радио»

Центра компьютерного обучения «Специалист» при МГТУ им. Н. Э. Баумана

Москва, ул. Радио, д. 24, корп. 1, подъезд 2, 2-й этаж

Схема проезда

Администратор учебного

+7 (495) 780-47-54

комплекса:

Остановка «Лефортовская набережная» трамвай № 37,50 от станций метро «Комсомольская» и «Красносельская»,

маршрутное такси №125М от станции метро «Бауманская»)

троллейбус № 24 или маршрутное такси №534М от станций метро «Красные ворота» и «Авиамоторная» Остановка «Лефортовская набережная» (трамвай № 24 от станций метро «Чкаловская» и «Курская»,

(трамвай № 24, 37, 50 от станции метро «Авиамоторная»,

маршрутное такси №199М от станций метро «Площадь Ильича» и «Римская»)

Добраться до УК «Радио» можно пешком от станции метро «Бауманская». Дойдите до дома № 24, кор.1, 2-й подъезд, 2-й этаж в соответствии со схемой. Также Вы можете воспользоваться маршрутами наземного транспорта, чтобы доехать до УК «Радио»:

- маршрутное такси № 125М до остановки «Лефортовская набережная»
- трамвай 45 (ст. «Сокольники» ст. «Красносельская» ст. «Бауманская»);
- трамваи 37 и 50 (ст. «Комсомольская» ст. «Красносельская» ст. «Бауманская» ст. «Авиамоторная»).

Трамвай № 24, №37, №50 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор. 1, 2-й подъезд, 2-й этаж.

Проезд от станций метро «Красные ворота» и «Авиамоторная»:

Троллейбус № 24 или маршрутным такси №534 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор.1.

Схема расположения входа в учебный комплекс «Радио»

Схема расположения аудиторий учебного комплекса «Радио»

Драйвер электронных весов

v. 8

Руководство программиста

Содержание

Введение	5
Сокращения	5
Условные обозначения	5
О руководстве	5
Что такое «Драйвер электронных весов»?	6
Интерфейс драйвера	7
Структура описания методов и свойств	8
Классификация свойств	9
Отличия от драйвера версии 6	10
Общие свойства	11
ResultCode	12
ResultDescription	12
Системные свойства	12
Version	13
ApplicationHandle	13
DeviceDescription	13
IsDemo	13
Логические устройства	14
Свойства текущего ЛУ	15
AddDevice () ДобавитьУстройство ()	19
DeleteDevice () Удалить Устройство ()	20
ShowProperties () ПоказатьСтраницуСвойств ()	22
Работа с весами	23
ReadWeight () ПолучитьВес ()	23
ZeroScale () Ноль ()	26
SetTareWeight () УстановитьТару ()	28
Tare () Tapa ()	31
Reset () Сброс ()	33
GetDeviceMetrics () ПолучитьПараметрыУстройства ()	33
Программирование весов	36
SetValue () УстановитьПараметр ()	36
GetValue () ПолучитьПараметр ()	37

[Содержание]

Особенности работы с оборудованием	38
Mettler Toledo 8217	38
Macca-K	38
Тензо	38
Подключение драйвера	39
1C: Предприятие v.7.7	39
1C: Предприятие v.8.x	39
Microsoft VBA (Excel, Word и др.)	40
Borland Delphi, C++ Builder	42
Приложение 1. Коды и описание ошибок	44
Приложение 2. Модели весов	45
Приложение 3. Системные параметры весов	46

Введение

Сокращения

ККМ Контрольно-кассовая машина

POS Point of sale (рабочее место кассира)

АРМК Автоматизированное рабочее место кассира

ПК Персональный компьютер ОС Операционная система ПО Программное обеспечение

ВК Внешняя компонента для системы программ

«1С: Предприятие» 7.7, 8.х

ЛУ Логическое устройство.

Win32 Семейство ОС Windows 2000 / 2003 x86 / XP x86 / Vista x86 / 7 x86 / 7 x64 /

8 x86 / 8 x64

Условные обозначения

Информация, выделенная таким образом, является важной и требует обязательного прочтения и/или выполнения.

Информация, отмеченная такой иконкой, носит ознакомительный и/или рекомендательный характер.

Информация, отмеченная такой иконкой, является примером использования настройки или механизма работы.

О руководстве

Данное руководство программиста является описанием продукта «АТОЛ: Драйвер электронных весов» v.8.0. При написании руководства подразумевалось, что читатель имеет навыки программирования на одном или нескольких языках программирования для ОС Windows 2000 / 2003 x86 / XP x86 / Vista x86 / 7 x86 / 7 x64 / 8 x86 / 8 x64, а также знаком с используемым оборудованием.

Ввиду универсальности драйверов не все функциональные возможности оборудования могут быть реализованы в драйвере. Компания АТОЛ всегда стремится к поддержке всех функциональных возможностей конкретной модели оборудования, но оставляет за собой право реализации тех функций, которые считает необходимыми. Все возможности драйвера подробно изложены в данном документе, свободно доступном на сайте компании АТОЛ, с которым можно ознакомиться до приобретения драйвера.

Что такое «Драйвер электронных весов»?

«АТОЛ: Драйвер электронных весов» – программная компонента (драйвер), предназначенная для работы с электронными весами.

Электронные весы, о которых далее пойдет речь, должны иметь возможность связи с ПК (по интерфейсу RS-232). Такие весы (далее возможно использование синонима «оборудование»), обычно, используются при создании АРМК на базе ПК (или POS-терминала). Подключенные к ПК электронные весы служат для определения веса отпускаемого товара. Такие АРМК позволяют повысить (по сравнению с традиционным комплексом «ККМ и весы отдельно») производительность работы кассира.

Интерфейс драйвера

Интерфейс драйвера состоит из методов и свойств. Все методы представляют собой функции без параметров, возвращающие результат выполнения операции.

Описание метода выглядит следующим образом:

```
// Язык Pascal

function Имя() : integer;

// Язык С

int function Имя();

// Язык Basic

Function Имя() As integer;
```

Для большинства методов требуется указывать параметры. Например, для метода печати строки это строка, которая должна быть напечатана, межстрочный интервал, шрифт и т.д.

В драйвере для передачи подобных данных используются свойства. Фактически, это глобальные переменные драйвера, в которые можно записать или считать значение. Однажды установленное свойство сохраняет свое значение до последующего изменения или выгрузки самого драйвера.

Рассмотрим функцию «Добавить логическое устройство» (AddDevice()), которой необходимо передать название устройства, а результатом работы будет индекс созданного логического устройства.

Функция могла бы выглядеть следующим образом:

```
// Язык Pascal

function Print (ASrt: string) : integer;

// Язык С

int Print (char * Astr);

// Язык Basic

Function Print (AStr As string) As integer;
```

Ho в драйвере используются два свойства CurrentDeviceName и CurrentDeviceIndex. Таким образом, вызов этого метода будет выглядеть следующим образом:

```
ECЛИ Драйвер.AddDevice() <> 0 Torда

// Сообщение пользователю об ошибке

// Выход из программы

КонецЕСЛИ;

Драйвер.CurrentDeviceName = "Устройство на СОМ1";

Сообщение ("Создано логическое устройство с индексом №" + ЧислоВСтроку(Драйвер.CurrentDeviceIndex);
```

Данный подход позволяет:

- устанавливать значения параметров (свойств) перед выполнением метода в любом порядке;
- обращаться к параметрам (свойствам) по именам;
- устанавливать значения только необходимым параметрам (свойствам), а в остальных оставлять последние значения.

Как уже было сказано выше, все методы драйвера являются функциями, возвращающими код результата. Для удобства код результата также заносится в свойство ResultCode, а его описание — в ResultDescription.

Структура описания методов и свойств

При описании методов и свойств будет использоваться следующая структура.

MethodName () НазваниеМетода ()

Подробное описание использования метода.

Название	Тип	Дост.	Значения		
Входные свойства					
InputProperty ВходноеСвойство	Int	RW	Значения свойства: 0 100		

Свойства, значения которым необходимо присвоить до вызова метода.

Если этого раздела таблице нет, то для вызова данного метода не требуется изменение значения никаких свойств.

Выходные свойства					
OutputProperty ВыходноеСвойство	Log	R	Значения свойства: TRUE / FALSE		

Свойства, принимающие значения после вызова метода.

Если этого раздела таблице нет, то данный метод не изменяет значения никаких свойств.

Описание свойств

Подробное описание входных и выходных свойств.

InputProperty

ВходноеСвойство [ВХ]

Подробное описание использования входного свойства.

OutputProperty

ВыходноеСвойство [ВЫХ]

Подробное описание использования выходного свойства.

Возможные ошибки

Описание характерных ошибок для данного метода.

Поддерживаемое оборудование

Модели весов, поддерживающие данный метод.

Если данного раздела нет, то метод поддерживается всеми моделями весов.


```
Пример работы, включает следующие элементы:

// Поясняющие комментарии к разделу

InputProperty = "Значение";

// Комментарии к свойству

MethodName();

// Комментарии к методу
```

Классификация свойств

По типу:

Тип	Описание
Int	Целое / Integer Целое 32-битное число со знаком.
	Диапазон значений: -2147483648 2147483647

Тип	Описание						
	Дробное / Double						
	Дробное 64-битное число со знаком.						
Dbl	Диапазон значений: $5.0 \times 10^{-324} \dots 1.7 \times 10^{+308}$, точность $15 \dots 16$ знаков после дес. запятой.						
Doi	Для дробных величин допускается погрешность не более 0,0001.						
	Значения с недопустимой погрешностью рассматриваются как «недопустимое значение» (ошибка - 6).						
	Допустимая точность описана для каждого из свойств отдельно						
G.	Строка / String						
Str	Строка символов						
	Логическое / Logical						
Log	Целое число, интерпретируемое как «ЛОЖЬ (FALSE)» при значении 0 и «ИСТИНА (TRUE)» в остальных случаях						

По доступу:

Дост.	Описание
R	Только для чтения.
RW	Для чтения и записи.

Отличия от драйвера версии 6

Драйвер версии 8 создавался так, чтобы обеспечить максимальную совместимость с драйвером версии 6, однако были некоторые нюансы, которые потребовали значительного изменения логики работы. В результате драйвер версии 8 позволяет создавать два типа обектов драйвера:

- Драйвер электронных весов v.8 (совместимый с v.6).
- Драйвер электронных весов v.8.

Первый обеспечивает максимальную совместимость с драйвером 6-й версии, второй – имеет некоторые отличия:

Функция	Поведение драйвера, совместимого с v.6	Поведение драйвера, не совместимого с v.6
Загрузка параметров ЛУ	При создании объекта драйвера автоматически происходит загрузка параметров из реестра (если приложение не внесено в список	При создании драйвера не происходит загрузка параметров. КПО должно самостоятельно вызвать метод загрузки параметров из реестра, либо передать строку

Функция	Поведение драйвера, совместимого с v.6	Поведение драйвера, не совместимого с v.6
	исключений)	настроек, либо создать ЛУ и передать настройки через соответствующие свойства драйвера
Создание нескольких экземпляров драйвера в одном процессе	Все экземпляры драйвера работают с единственным «внутренним» объектом. В результате невозможно осуществлять параллельную (многопоточную) работу с различными устройствами в одном процессе	Все экземпляры драйвера независимы. Возможна параллельная (многопоточная) работа нескольких экземпляров драйвера с различными устройствами

Состав методов и свойств для обоих типов объектов драйвера одинаков.

В системе 1С Предприятие v.7.7 не рекомендуется создавать объект драйвера, не совместимый с v.6. Это обусловлено особенностью данной версии 1С, приводящей к созданию нескольких экземпляров драйвера.

Общие свойства

Подробное описание входных и выходных свойств приводится в каждом методе. В целях снижения громоздкости и уменьшения количества повторяющегося текста, описание некоторых свойств приведено один раз – в данном разделе.

Для этих свойств справедливо следующее:

- Назначение этих свойств не зависит от использующего их метода.
- В большинстве приложений нет необходимости менять эти свойства постоянно при вызове каждого метода, как правило, их значения выставляются один раз сразу после загрузки драйвера.

Название	Тип	Дост.	Значения
ResultCode Результат	Int	R	Код ошибки. См. «Приложение 1. Коды и описание ошибок»
ResultDescription ОписаниеРезультата	Str	R	Описание кода ошибки. См. «Приложение 1. Коды и описание ошибок»

ResultCode

Результат

Свойство содержит код результата выполнения последней операции (вызова метода, записи или чтения свойства драйвера). Если ошибки не произошло, то значение данного свойства устанавливается в 0 («Ошибок нет»).

Выполнение метода. Если значение свойства, используемого методом, не подходит для данного метода вообще (для случаев, когда разные методы используют разные диапазоны свойств), выставляются ResultCode = -6 («Недопустимое значение»). Если значение свойства подходит методу в принципе, происходит определение типа устройства. После этого, если значение не подходит данной модели, выставляется ResultCode = -12 («Не поддерживается в данной версии оборудования»).

Запись свойства. Если записываемое значение свойства не попадает в диапазон допустимых значений ни для одной из моделей, поддерживаемых драйвером, оно не запоминается и в ResultCode записывается «—6».

ResultDescription

ОписаниеРезультата

Свойство содержит строку с описанием на русском языке ошибки, возникшей в результате последней операции. Может в готовом виде использоваться для выдачи пользователю предупреждающих сообщений.

Системные свойства

В данном разделе описана группа свойств, содержащих информацию о драйвере.

Название	Тип	Дост.	Значения
Version Версия	Str	R	Версия драйвера
ApplicationHandle	Int	RW	Дескриптор главного окна клиентского приложения
DeviceDescription ОписаниеУстройства	Str	R	Название драйвера
IsDemo ДемонстрационныйРежим	Log	R	Флаг работы в демонстрационном режиме

Version

Версия

Свойство содержит версию данного драйвера.

ApplicationHandle

После загрузки драйвера в это свойство можно записать дескриптор главного окна приложения-клиента. Это предотвратит появление отдельных кнопок в панели задач при отображении визуальной страницы свойств и других окон драйвера.

При использовании драйвера в качестве внешней компоненты данное свойство не поддерживается, так как драйвер самостоятельно при загрузке инициализирует свойство корректным значением.

При записи значения в данное свойство следует проявлять особую аккуратность, так как запись некорректного значения может привести к нарушениям работы системы.

DeviceDescription

ОписаниеУстройства

Название драйвера: «Электронные весы».

IsDemo

Демонстрационный Режим

Если свойство IsDemo = TRUE, то драйвер не обнаружил электронного ключа защиты и работает в демонстрационном режиме.

Логические устройства

Логическое устройство — набор свойств драйвера, определяющих параметры связи с оборудованием. Подобных наборов (устройств) одновременно может быть от 1 до 99 штук. Это позволяет, однажды настроив несколько наборов свойств (например: номер порта ПК, скорость обмена данных с оборудованием), быстро применять необходимые параметры, просто переключая устройства.

Драйвер может хранить настройки ЛУ в системном реестре, а также передавать их через свойства DeviceSettings и DevicesSettings.

В случае использования объекта драйвера, совместимого с v.6, все данные о логических устройствах автоматически загружаются из реестра при создании экземпляра драйвера и автоматически сохраняются при разрушении. Если необходима совместимость с интерфейсом драйвера v.6, но при этом нужно, чтобы приложение, вызывающее драйвер, не обращалось к реестру автоматически, пропишите параметр вида

"Произвольное_имя_переменной"="Имя_Приложения"
в следующих разделах:
«[HKEY_CURRENT_USER\Software\ATOL\Drivers\6.0\AppNotLoadDevices]»
или
«[HKEY_LOCAL_MACHINE\Software\ATOL\Drivers\6.0\AppNotLoadDevices]»

[HKEY_CURRENT_USER\Software\ATOL\Drivers\6.0\AppNotLoadDevices]

"Frontol"="Frontol.exe"

"FrontolAdmin"="FrontolAdmin.exe"

или

 $[HKEY_LOCAL_MACHINE \backslash Software \backslash ATOL \backslash Drivers \backslash 6.0 \backslash AppNotLoad Devices]$

"Frontol"="Frontol.exe"

"FrontolAdmin"="FrontolAdmin.exe"

Имя логического устройства – имя, которое задается пользователем и используется для удобства визуального выбора.

Номер логического устройства – персональный номер устройства в списке существующих логических устройств драйвера. То есть, при создании нового логического устройства, ему присваивается минимальный свободный номер. При удалении логического устройства из «середины» списка номера остальных не меняются.

Индекс логического устройства – порядковый номер устройства в списке существующих логических устройств драйвера. При создании нового логического устройства индексы пересчитываются так, чтобы номера шли по порядку. При удалении логического устройства из «середины» списка индексы изменяются таким образом, чтобы опять получился непрерывный ряд значений.

Текущее устройство – то устройство, свойства которого доступны в текущий момент для чтения и редактирования. Все методы драйвера работают со свойствами именно этого устройства. Чтобы изменить свойства другого устройства, его необходимо предварительно сделать текущим. Изменяя номер или индекс логического устройства, можно выбрать текущее устройство.

Например, существовали три ЛУ с номерами: 1, 2 и 3 с индексами 0, 1 и 2 соответственно; после удаления ЛУ с номером 2 появится «дыра», т.е. можно сделать текущим ЛУ с номером 1 или 3, но не 2. Однако индекс устройства № 3 изменился: был «2», а стал «1». При создании нового ЛУ ему будет присвоен номер 2 и индекс 1 (у устройства №3 индекс поменяется с 1 на 2).

Логическими устройствами (добавление, удаление и т.д.) драйвер может управлять следующими способами:

- Программно методы AddDevice (), DeleteDevice () и т.д.
- Визуально метод ShowProperties ().

Последний способ является предпочтительным, так как вы избавляетесь от временных затрат на разработку собственного подобного интерфейса.

Свойства текущего ЛУ

В данном разделе описана группа свойств, используемая для изменения параметров текущего логического устройства.

Название	Тип	Дост.	Значения
CurrentDeviceIndex ИндексТекущегоУстройства	Int	RW	Индекс текущего ЛУ: 0 98
CurrentDeviceNumber НомерТекущегоУстройства	Int	RW	Номер текущего ЛУ: 1 99
DeviceEnabled УстройствоВключено	Log	RW	Флаг «Устройство включено»: FALSE / TRUE
PortNumber НомерПорта	Int	RW	Номер порта ПК: • 1001 – COM1; • • 1256 – COM256
BaudRate СкоростьОбмена	Int	RW	Скорость обмена с ПК: • 3 – 1200; • 4 – 2400; • 5 – 4800; • 7 – 9600; • 9 – 14400; • 10 – 19200

Название	Тип	Дост.	Значения
Parity Четность	Int	RW	 Метод проверки четности: ● 0 – нет (None); ● 1 – нечетность (Odd); ● 2 – четность (Even)
Model Модель	Int	RW	Модель подключенного оборудования: см. «Приложение 2. Модели весов»
LogicalNumber ЛогическийНомер	Int	RW	Номер, используемый драйвером для идентификации оборудования: 0 99
DevicesSettings ПараметрыУстройств	Str	RW	Параметры логических устройств в виде строки
DeviceSettings ПараметрыУстройства	Str	RW	Параметры логического устройства в виде строки
DecimalPoint ДесятичнаяТочка	Int	RW	Значения свойства: -9 + 9

CurrentDeviceIndex

ИндексТекущегоУстройства

В свойство записывается индекс текущего логического устройства.

Если логическое устройство с таким индексом не может существовать, то значение свойства CurrentDeviceIndex сохраняет значение, содержавшееся до операции присвоения, а в ResultCode заносится -9.

CurrentDeviceNumber

НомерТекущегоУстройства

В свойство записывается номер текущего логического устройства.

Значение свойства сохраняется в реестре ПК.

Если логическое устройство с таким номером не может существовать, то значение свойства CurrentDeviceNumber сохраняет значение, содержащее до операции присвоения, а в ResultCode заносится -9.

DeviceEnabled

УстройствоВключено

При установлении DeviceEnabled = TRUE драйвер занимает порт ΠK , установленный в свойстве PortNumber. В случае, если порт по каким-либо причинам занять не удалось, то DeviceEnable становится равным FALSE, а в ResultCode заносится код ошибки.

PortNumber

НомерПорта

В свойство записывается номер СОМ-порта ПК, к которому подключено оборудование и, на работу с которым настроено данное логическое устройство.

Значение свойства сохраняется в реестре ПК.

Ecnu DeviceEnabled = TRUE, то присвоение свойству PortNumber нового значения приводит к установке DeviceEnabled = FALSE, и последующей попытке восстановить DeviceEnabled = TRUE с новыми параметрами. После установки свойства необходимо проверить значение свойства DeviceEnabled для определения, удалось ли инициализировать новый порт, так как если порт занять не удалось, DeviceEnabled принимает FALSE, а ResultCode = -6.

BaudRate

СкоростьОбмена

В свойство записывается код скорости обмена данными с ПК.

Значение свойства сохраняется в реестре ПК.

Parity

Четность

В свойство записывается значение, определяющее метод проверки четности при обмене с электронными весами.

Значение свойства сохраняется в реестре ПК.

Model

Модель

В свойство записывается значение, определяющее модель весов, по протоколу обмена которого должен работать драйвер с текущим логическим устройством.

LogicalNumber

ЛогическийНомер

Номер весов, используемый для идентификации их драйвером. При подключении нескольких весов к одному порту Logical Number должен быть уникальным.

Тензо ТВ-003/05Д и *CAS LP v.1.6/v.2.0*: используется только указанными моделями весов.

DevicesSettings

ПараметрыУстройств

Count=2

Получение и изменение параметров логических устройств в виде строки.

Формат данных в строке параметров может изменяться в новых версиях драйвера. Поэтому не рекомендуется редактировать эту строку в прикладном ПО.

CurrentDeviceNumber=3 DeviceNumber0=3 DeviceName0=Феликс MachineName0= PortNumber0=1 BaudRate0=18 Model0=24 AccessPassword0= UseAccessPassword0=1 WriteLogFile0=0 DeviceNumber1=6 DeviceName1=Пилот MachineName1= PortNumber1=1 BaudRate1=18 Model1=101 AccessPassword1=1111 UseAccessPassword1=1 WriteLogFile1=0

DeviceSettings

ПараметрыУстройства

Получение и изменение параметров логического устройства в виде строки.

Формат данных в строке параметров может изменяться в новых версиях драйвера. Поэтому не рекомендуется редактировать эту строку в прикладном ПО.

DeviceNumber=6
DeviceName=Пилот
MachineName=
PortNumber=1
BaudRate=18
Model=101
AccessPassword=1111
UseAccessPassword=1
WriteLogFile=0

DecimalPoint

ДесятичнаяТочка

Свойство позволяет осуществлять корректировку получаемого от устройства значения веса (см. метод ReadWeight на стр. 23). Корректировка производится по формуле:

 $Weight = Полученное_значение_веса*10^{DecimalPoint}$

К примеру, для значения DecimalPoint = 0 значение веса останется неизменным, для DecimalPoint = 2 увеличится в 100 раз, а для DecimalPoint = -3 уменьшится в 1000 раз соответственно.

Также свойство осуществляет корректировку передаваемого в устройство значения веса тары по формуле:

 ${\it C}$ корректированное $_{\it TareWeight} = {\it TareWeight} \, / \, 10^{\, {\it DecimalPoint}}$

См. метод SetTareWeight на стр. 28.

AddDevice () ДобавитьУстройство ()

Метод создает новое логическое устройство и устанавливает его текущим.

Для определения числа логических устройств, существующих на данный момент, необходимо воспользоваться свойством DeviceCount. Индекс первого логического устройства равен 0, а последнего DeviceCount-1.

Название	Тип	Дост.	Значения				
Выходные свойства							
CurrentDeviceIndex ИндексТекущегоУстройства	Int	RW	Индекс текущего ЛУ: 0 98				
CurrentDeviceNumber НомерТекущегоУстройства	Str	RW	Номер текущего ЛУ: 1 99				
CurrentDeviceName НаименованиеТекущегоУстройства	Str	RW	Название ЛУ				
DeviceCount КоличествоУстройств	Int	R	Количество ЛУ: 1 99				

CurrentDeviceIndex

ИндексТекущегоУстройства

[ВЫХ]

При добавлении нового логического устройства CurrentDeviceIndex увеличивается на 1.

CurrentDeviceNumber

НомерТекущегоУстройства

[ВЫХ]

Свойство CurrentDeviceNumber содержит минимальный свободный номер логического устройства.

CurrentDeviceName

НаименованиеТекущегоУстройства

[ВЫХ]

Названия логических устройств используются только для удобства пользовательского выбора.

При добавлении нового логического устройства свойство CurrentDeviceName принимает значение «Без имени».

DeviceCount

КоличествоУстройств

[ВЫХ]

При добавлении нового логического устройства DeviceCount увеличивается на единицу.

Возможные ошибки

Код	Причина
-7	Попытка создания более 99 устройств
-21	Сервис не запущен

В случае возникновения ошибки «-21» корректная работа драйвера не гарантируется. Для продолжения работы запустите сервис, затем пересоздайте объект драйвера.

DeleteDevice () УдалитьУстройство ()

Метод производит удаление текущего логического устройства.

Для определения числа логических устройств, существующих на данный момент, необходимо воспользоваться свойством DeviceCount. Индекс первого логического устройства равен 0, а последнего DeviceCount - .1.

Название	Тип	Дост.	Значения
В	ыході	ные сво	рйства
CurrentDeviceIndex ИндексТекущегоУстройства	Int	RW	Индекс текущего ЛУ: 0 98
CurrentDeviceNumber НомерТекущегоУстройства	Str	RW	Номер текущего ЛУ: 1 99
CurrentDeviceName НаименованиеТекущегоУстройства	Str	RW	Название ЛУ.
DeviceCount КоличествоУстройств	Int	R	Количество ЛУ: 1 99

Описание свойств

CurrentDeviceIndex

ИндексТекущегоУстройства

[ВЫХ]

При удалении не последнего ЛУ, текущим становится ЛУ, следующее за удаляемым.

При удалении последнего ЛУ, текущем становится ЛУ, предшествующее удаляемому.

CurrentDeviceNumber

НомерТекущегоУстройства

[ВЫХ]

При удалении не последнего ЛУ, текущим становится ЛУ с ближайшим наибольшим номером.

При удалении последнего ЛУ, текущем становится ЛУ предшествующее удаляемому.

DeviceCount

КоличествоУстройств

[ВЫХ]

При удалении текущего логического устройства DeviceCount уменьшается на единицу.

Возможные ошибки

Код	Причина
	•

-8 Нельзя удалить все устройства – должно оставаться хотя бы одно

ShowProperties () ПоказатьСтраницуСвойств ()

Выводит на экран визуальную страницу свойств. Подробнее о странице свойств смотрите в документе «АТОЛ: Драйвер торгового оборудования».

Описание свойств

LockDevices

БлокироватьУстройства

[BX]

Логический параметр, определяющий возможность изменения на странице свойств параметров текущего логического устройства.

Ecnu LockDevices = TRUE, то работа с логическими устройствами с помощью визуальной страницы свойств заблокирована, иначе (FALSE) — разрешена.

Работа с весами

ReadWeight () ПолучитьВес ()

Метод выполняет чтение показаний весов и вычисления стоимости груза, установленного на чаше.

Название	Тип	Дост.	Значения
	Входные свойства		
UnitPrice ЦенаЗаЕдиницу	Dbl	RW	Цена за 1 кг
UpdatePrice ОбновлятьЦену	Log	RW	Обновлять цену за 1 кг: FALSE / TRUE
			Выходные свойства
Weight Bec	Dbl	R	Вес груза, находящегося на чаше весов, в кг
SalesPrice ОбщаяЦена	Dbl	R	Стоимость груза: UnitPrice*Weight
TareWeight ВесТары	Dbl	RW	Вес тары, находящейся на чаше весов, в кг
NettoWeight ВесНетто	Log	RW	Нулевой вес тары: FALSE / TRUE
AutoZeroMode РежимАвтонуля	Log	RW	На чаше груза нет: FALSE / TRUE
OutOfZero НольВнеДиапазонаНуля	Log	R	Весы находятся в нерабочем состоянии: FALSE / TRUE
NegWeight ОтрицательныйВес	Log	R	Отрицательное значение в индикаторе «Вес» на весах: FALSE / TRUE
BigWeight БольшойВес	Log	R	На чаше весов слишком большой груз: FALSE / TRUE
NonStable ВесНеСтабилен	Log	R	Груз на чаше весов не стабилен: FALSE / TRUE

Название	Тип	Дост.	Значения
InvalidRange НеверныйДиапазонВеса	Log	R	На чаше весов груз, вес которого выходит за допустимый диапазон взвешивания: FALSE / TRUE

UnitPrice

ЦенаЗаЕдиницу [BX]

В свойство заносится цена за 1 кг товара, установленного на чаше весов. *ТВЕС ВР 4149*, ЭЛВЕС ВР 4900, Штрих ВТ, МР, АС, CAS LP v.1.5, Штрих АС РОЅ, Штрих АС мини РОЅ, ПетВес серия Е, Масса-К серии ПВ, Масса-К серий ВТ, ВТМ, Масса-К серий МК-А, МК-Т, Мера (Ока) до 30 кг, Мера (Ока) до 150 кг, АСОМ РС100, CAS LP v.1.6/v.2.0, DIGI DS-788, Меркурий 314/315: свойство поддерживается только данными моделями весов.

UpdatePrice

ОбновлятьЦену [ВХ]

- Если UpdatePrice = TRUE, то при вызове метода драйвер сначала задает в весах цену товара за 1 кг (из свойства UnitPrice), а уж потом запрашивает данные с весов. В этом случае весы самостоятельно подсчитывают стоимость товара, используя только что полученную цену.
- Ecnu UpdatePrice = FALSE, то весы при вычислении стоимости используют цену, введенную с клавиатуры, и метод заносит ее в свойство UnitPrice.

Штрих AC POS, Штрих AC мини POS, ПетВес серия E, Масса-К серии ПВ, Масса-К серий ВТ, ВТМ, Масса-К серий МК-А, МК-Т, Масса-К серий МК-ТВ, МК-ТН, ТВ-А, Мера (Ока) до 30 кг, Мера (Ока) до 150 кг, Меркурий 314/315: свойство поддерживается только данными моделями весов.

Weight

Bec [BЫX]

Свойство содержит вес груза, находящегося на чаше весов. Значение этого свойства корректируется по следующей формуле:

Weight=Полученное_значение веса $*10^{DecimalPoint}$

См. свойство DecimalPoint на стр.19.

SalesPrice

ОбщаяЦена [ВЫХ]

Свойство содержит стоимость товара, установленного на чаше, вычисленную весами по формуле:

 $Cmoumocmb = Bec \cdot Цена$

TareWeight

ВесТары [ВЫХ]

Свойство содержит вес тары, установленной на чаше весов.

NettoWeight

BecHetto [BUX]

Если NettoWeight = FALSE, то в весах задан нулевой вес тары.

AutoZeroMode

РежимАвтонуля [ВЫХ]

Если AutoZeroMode = TRUE, то на чаше весов отсутствует груз.

Штрих AC POS / AC мини POS и Mettler Toledo 8217, DIGI DS-708: используется только указанными моделями весов.

OutOfZero

НольВнеДиапазонаНуля

[ВЫХ]

Ecnu OutOfZero = TRUE, то весы находятся в нерабочем состоянии. Для возвращения их в рабочее состояние включите и выключите их.

Штрих AC POS / AC мини POS и Mettlet Toledo 8217: используется только указанными моделями весов.

NegWeight

ОтрицательныйВес

[ВЫХ]

Ecли NegWeight = TRUE, то в индикаторе «Вес» на весах содержится отрицательное значение.

BigWeight

БольшойВес [ВЫХ]

Eсли BigWeight = TRUE, то вес груза, находящегося на чаше превышает «Наибольший предел взвешивания» данных весов.

Штрих AC POS / AC мини POS, *Mettler Toledo 8217*, *DIGI DS-708* и *DIGI DS-788*: используется только указанными моделями весов.

DIGI DS-708: для данной модели параметр не считывается с весов, а, вне зависимости от модификации весов, вычисляется по формуле

Weight > 30.

NonStable

ВесНеСтабилен [ВЫХ]

Ecnu NonStable = TRUE, то весы не могут определить вес груза, находящегося на чаше, так как он нестабилен.

InvalidRange

Неверный Диапазон Веса

[ВЫХ]

Ecли InvalidRange = TRUE, то вес груза, находящегося на чаше находится за пределами взвешивания данных весов, то есть превышает «Наибольший предел взвешивания» или меньше «Наименьшего предела взвешивания». Значение груза берется по модулю.

 ${\it Штрих}\ {\it AC\ POS}\ /\ {\it AC\ мини\ POS\ DIGI\ DS-708}$ и ${\it DIGI\ DS-788}$: используется только указанными моделями весов.

ZeroScale () Ноль ()

Метод выполняет установку «нуля» на весах. При этом производится обновление значений следующих свойств:

Название	Тип	Дост.	Значения		
Выходные свойства					
NettoWeight ВесНетто	Log	RW	Нулевой вес тары: FALSE / TRUE		
AutoZeroMode РежимАвтонуля	Log	RW	На чаше груза нет: FALSE / TRUE		

Название	Тип	Дост.	Значения
OutOfZero НольВнеДиапазонаНуля	Log	R	Весы находятся в нерабочем состоянии: FALSE / TRUE
NegWeight ОтрицательныйВес	Log	R	Отрицательное значение в индикаторе «Вес» на весах: FALSE / TRUE
BigWeight БольшойВес	Log	R	На чаше весов слишком большой груз: FALSE / TRUE
NonStable ВесНеСтабилен	Log	R	Груз на чаше весов не стабилен: FALSE / TRUE
InvalidRange НеверныйДиапазонВеса	Log	R	На чаше весов груз, вес которого выходит за допустимый диапазон взвешивания: FALSE / TRUE

NettoWeight

BecHetto [BHX]

Если NettoWeight = FALSE, то в весах задан нулевой вес тары.

AutoZeroMode

РежимАвтонуля [ВЫХ]

Если AutoZeroMode = TRUE, то на чаше весов отсутствует груз.

Штрих AC POS / AC мини POS и Mettler Toledo 8217используется только указанными моделями весов.

OutOfZero

НольВнеДиапазонаНуля

[ВЫХ]

Ecnu OutOfZero = TRUE, то весы находятся в нерабочем состоянии. Для возвращения их в рабочее состояние включите и выключите их.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NegWeight

ОтрицательныйВес

[ВЫХ]

Eсли NegWeight = TRUE, то в индикаторе «Вес» на весах содержится отрицательное значение.

BigWeight

БольшойВес [ВЫХ]

Eсли BigWeight = TRUE, то вес груза, находящегося на чаше превышает «Наибольший предел взвешивания» данных весов.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NonStable

ВеснеСтабилен [ВЫХ]

Ecли NonStable = TRUE, то весы не могут определить вес груза, находящегося на чаше, так как он нестабилен.

InvalidRange

Неверный Диапазон Веса

[ВЫХ]

Ecли InvalidRange = TRUE, то вес груза, находящегося на чаше находится за пределами взвешивания данных весов, то есть превышает «Наибольший предел взвешивания» или меньше «Наименьшего предела взвешивания». Значение груза берется по модулю.

Штрих AC POS / AC мини POS: используется только указанными моделями весов.

SetTareWeight () УстановитьТару ()

Метод выполняет установку значения «Массы тары» на весах. Значение свойства TareWeight записывается в весы в качестве веса тары. При этом производится обновление значений следующих свойств:

Название	Тип	Дост.	Значения
		I	Входные свойства
TareWeight ВесТары	Dbl	RW	Вес тары, находящейся на чаше весов, в кг

Название	Тип	Дост.	Значения			
Выходные свойства						
NettoWeight ВесНетто	Log	RW	Нулевой вес тары: FALSE / TRUE			
AutoZeroMode РежимАвтонуля	Log	RW	На чаше груза нет: FALSE / TRUE			
OutOfZero НольВнеДиапазонаНуля	Log	R	Весы находятся в нерабочем состоянии: FALSE / TRUE			
NegWeight ОтрицательныйВес	Log	R	Отрицательное значение в индикаторе «Bec» на весах: FALSE / TRUE			
BigWeight БольшойВес	Log	R	На чаше весов слишком большой груз: FALSE / TRUE			
NonStable ВесНеСтабилен	Log	R	Груз на чаше весов не стабилен: FALSE / TRUE			
InvalidRange НеверныйДиапазонВеса	Log	R	На чаше весов груз, вес которого выходит за допустимый диапазон взвешивания: FALSE / TRUE			

TareWeight

BecTapы [BX]

В свойство записывается значение, которое будет использоваться в качестве веса тары. В устройство передается значение веса тары скорректированное по формуле:

 ${\it C}$ корректированное $_{\it TareWeight} = {\it TareWeight} \, / \, 10^{\, {\it DecimalPoint}}$

См. свойство DecimalPoint на стр. 19.

NettoWeight

BecHetto [BUX]

Если NettoWeight = FALSE, то в весах задан нулевой вес тары.

AutoZeroMode

РежимАвтонуля [ВЫХ]

Если AutoZeroMode = TRUE, то на чаше весов отсутствует груз.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

OutOfZero

НольВнеДиапазонаНуля

[ВЫХ]

Ecnu OutOfZero = TRUE, то весы находятся в нерабочем состоянии. Для возвращения их в рабочее состояние включите и выключите их.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NegWeight

ОтрицательныйВес

[ВЫХ]

Ecли NegWeight = TRUE, то в индикаторе «Вес» на весах содержится отрицательное значение.

BigWeight

БольшойВес [ВЫХ]

Ecли BigWeight = TRUE, то вес груза, находящегося на чаше превышает «Наибольший предел взвешивания» данных весов.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NonStable

ВеснеСтабилен [ВЫХ]

Ecnu NonStable = TRUE, то весы не могут определить вес груза, находящегося на чаше, так как он нестабилен.

InvalidRange

НеверныйДиапазонВеса

[ВЫХ]

Ecли InvalidRange = TRUE, то вес груза, находящегося на чаше находится за пределами взвешивания данных весов, то есть превышает «Наибольший предел взвешивания» или меньше «Наименьшего предела взвешивания». Значение груза берется по модулю.

Штрих AC POS / AC мини POS: используется только указанными моделями весов.

Tare () Tapa ()

Метод выполняет установку значения «Массы тары» на весах равным грузу установленному сейчас на чаше весов. При этом производится обновление значений следующих свойств:

Название	Тип	Дост.	Значения			
	Выходные свойства					
NettoWeight ВесНетто	Log	RW	Нулевой вес тары: FALSE / TRUE			
AutoZeroMode РежимАвтонуля	Log	RW	Ha чаше груза нет: FALSE / TRUE			
OutOfZero НольВнеДиапазонаНуля	Log	R	Весы находятся в нерабочем состоянии: FALSE / TRUE			
NegWeight ОтрицательныйВес	Log	R	Отрицательное значение в индикаторе «Вес» на весах: FALSE / TRUE			
BigWeight БольшойВес	Log	R	На чаше весов слишком большой груз: FALSE / TRUE			
NonStable ВесНеСтабилен	Log	R	Груз на чаше весов не стабилен: FALSE / TRUE			
InvalidRange НеверныйДиапазонВеса	Log	R	На чаше весов груз, вес которого выходит за допустимый диапазон взвешивания: FALSE / TRUE			

Описание свойств

NettoWeight

BecHetto [BUX]

Если NettoWeight = FALSE, то в весах задан нулевой вес тары.

AutoZeroMode

РежимАвтонуля [ВЫХ]

Если AutoZeroMode = TRUE, то на чаше весов отсутствует груз.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

OutOfZero

НольВнеДиапазонаНуля

[ВЫХ]

Ecnu OutOfZero = TRUE, то весы находятся в нерабочем состоянии. Для возвращения их в рабочее состояние включите и выключите их.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NegWeight

ОтрицательныйВес

[ВЫХ]

Eсли NegWeight = TRUE, то в индикаторе «Вес» на весах содержится отрицательное значение.

BigWeight

БольшойВес [ВЫХ]

Eсли BigWeight = TRUE, то вес груза, находящегося на чаше превышает «Наибольший предел взвешивания» данных весов.

Штрих AC POS / AC мини POS и Mettler Toledo 8217: используется только указанными моделями весов.

NonStable

ВесНеСтабилен [ВЫХ]

Ecnu NonStable = TRUE, то весы не могут определить вес груза, находящегося на чаше, так как он нестабилен.

InvalidRange

Неверный Диапазон Веса

[ВЫХ]

Ecnu InvalidRange = TRUE, то вес груза, находящегося на чаше находится за пределами взвешивания данных весов, то есть превышает «Наибольший предел взвешивания» или меньше «Наименьшего предела взвешивания». Значение груза берется по модулю.

Штрих AC POS / AC мини POS: используется только указанными моделями весов.

Reset () Сброс ()

Метод выполняет перезапуск весов. При этом весы переходят в состояние аналогичное состоянию после их включения.

Поддерживаемое оборудование

Model	Название
5	Штрих AC POS
6	Штрих AC мини POS
25	Штрих ВМ100

GetDeviceMetrics () ПолучитьПараметрыУстройства ()

При выполнении метода вызывается универсальная команда запроса типа устройства.

Название	Тип	Дост.	Значения				
Выходные свойства							
UPotocolVersion УВерсияПротокола	Int	R	Версия формата универсальной команды: целое число				
UТуре УТип	Int	R	 Тип оборудования: 0 – не определен; 1 – ККМ; 2 – весы электронные; 3 – Мето PlusTM 				
UModel УМодель	Int	R	Модель оборудования: см. «Приложение 2. Модели весов»				

Название	Тип	Дост.	Значения
UMode УРежим	Int	R	Поддерживаемые оборудованием режимы: • 15 – Off-Line; • 14 – On-Line; • 13 – пассивный On-Line (принтер чеков); • 12 – фискальный регистратор; • 11 – фискальная плата; • 10 0 – зарезервировано
UMajorVersion УСтаршаяВерсия	Int	R	Версия блока: целое число
UMinorVersion УМладшаяВерсия	Int	R	Подверсия блока: целое число
UCodePage УКодоваяСтраница	Int	R	Используемая блоком кодовая страница: см. «Приложение 6. Кодовая страница ККМ»
UDescription УОписаниеУстройства	Str	R	Описание оборудования: строка символов

UProtocolVersion

УВерсияПротокола

[ВЫХ]

В свойство заносится версия поддерживаемой универсальной команды определения типа оборудования.

Данный драйвер корректно может обрабатывать только версию 1 (на сегодня это последняя версия этой команды).

Если значение свойства отлично от 1, то содержимое свойств Utype, Umodel, Umode, UmajorVersion, UminorVersion, UcodePage, Udescription не было обновлено из-за того, что драйвер «не умеет» работать с данной версией команды.

UType

УТип [ВЫХ]

В свойство заносится код типа оборудования.

UModel

Умодель [ВЫХ]

В свойство заносится код модели оборудования. Для каждого типа оборудования введено отдельное множество кодов моделей.

UMode

УРрежим [ВЫХ]

В свойстве содержится двухбайтовое беззнаковое целое число, представляющее собой битовую кодировку поддерживаемых оборудованием режимов.

UMajorVersion

УСтаршаяВерсия [ВЫХ]

В свойстве содержится версия оборудования. Данный параметр обычно выводится как первая составляющая версии устройства.

UMinorVersion

УМладшаяВерсия [ВЫХ]

В свойстве содержится «подверсия» оборудования. Данный параметр обычно выводится как вторая составляющая версии устройства.

UCodePage

УКодоваяСтраница [ВЫХ]

В свойстве содержится «кодовая таблица» (код языка), для которого адаптированы все ресурсы устройства. Данный параметр обычно выводится как четвертая составляющая версии устройства.

UDescription

УОписаниеУстройства [ВЫХ]

В свойстве содержится строка, описывающая оборудование. Длина строки может быть произвольной и зависит только от длины названия оборудования, заложенного его разработчиками.

Программирование весов

SetValue () УстановитьПараметр ()

Метод выполняет программирование числовых значений системных настроек весов. Значение задается в свойстве Value, номер настройки – в свойстве ValuePurpose.

Название	Тип	Дост.	Значения	
Входные свойства				
ValuePurpose НазначениеПараметра	Int	RW	RW Номер устанавливаемого параметра: см. «Приложение 3. Системные параметры весов»	
Value Параметр	Dbl	RW	Значение параметра: см. «Приложение 3. Системные параметры весов»	

Описание свойств

ValuePurpose

НазначениеПараметра

[BX]

В свойстве задается номер системного параметра в весах.

Value

Параметр [ВХ]

Числовое значение для программирования системных параметров весов.

Используется для вещественных и целочисленных значений, драйвер сам определяет тип целевого свойства и производит, если необходимо, преобразование.

Поддерживаемое оборудование

Model	Название
5	Штрих AC POS
6	Штрих AC мини POS

GetValue () ПолучитьПараметр ()

Метод используется для получения значений числовых системных настроек весов. Номер настройки задается в свойстве ValuePurpose. В случае успешного завершения метода значение настройки сохраняется в свойстве Value.

Название	Тип	Дост.	Значения	
Входные свойства				
Int RW 1		Номер устанавливаемого параметра: см. «Приложение 3. Системные параметры весов»		
Выходные свойства				
Value Параметр	Dbl	RW	Значение параметра: см. «Приложение 3. Системные параметры весов»	

Описание свойств

ValuePurpose

НазначениеПараметра

[BX]

В свойстве задается номер системного параметра в весах.

Value

Параметр [ВЫХ]

Поддерживаемое оборудование

Model	Название
5	Штрих AC POS
6	Штрих AC мини POS

Числовое значение получаемого системного параметра весов.

Особенности работы с оборудованием

Mettler Toledo 8217

Если при выполнении метода ReadWeight регистрируемый вес нестабилен, отрицателен или превышает максимально допустимый предел, а также в случае возникновения иных ошибочных ситуаций, масса весами не возвращается вообще, при этом драйвер возвращает нулевой вес.

Масса-К

Работа с весами (чтение веса) ведется по протоколу с однобайтовыми командами (протоколы №№ 3, 4, 5), который возвращает только состояние весов и вес. Поддерживается команда установки нуля (ZeroScale()) из протокола №1. Но пользоваться командами из разных протоколов надо осторожно, так как производителем заявлена их плохая совместимость.

В модели «Масса-К серий МК-А, МК-Т» предполагается, что от весов приходит информация в граммах, и драйвер переводит ее в килограммы делением на тысячу.

Тензо

Обратите внимание, что «Тензо ТВ-003/05Д» является терминалом управления к весам и может, как входить непосредственно в весы, так и присоединяться к ним отдельно. Масштаб возвращаемого веса (кг, г) зависит от настроек тензо-датчиков присоединяемых к терминалу.

Подключение драйвера

1C: Предприятие v.7.7

Подключение драйвера происходит в глобальном модуле конфигурации для «1С: Предприятие» версии 7.7.

```
Перем Весы Экспорт; // Глоб. переменная для работы с драйвером
  Процедура ПриНачалеРаботыСистемы()
  // Загрузка внешней компоненты
ЗагрузитьВнешнююКомпоненту ("C:\Program Files (x86) \ATOL\Drivers8\Bin\Scale1C.dll")
Тогда
  // Создание объекта
      Becы = СоздатьОбъект ("AddIn.Scale45");
      Сообщить ("Объект загружен");
  Иначе
      Сообщить ("Внешняя компонента драйвера не найдена");
  КонецЕсли;
  КонецПроцедуры
  Процедура ПриЗавершении Работы Системы ()
      Bесы = 0;
                        // Отсоединение объекта
  КонецПроцедуры
```


При подключении внешней компоненты необходимо указать путь к библиотеке. При установке по умолчанию для платной версии драйвера библиотека расположена в каталоге «C:\Program Files (x86)\ATOL\Drivers8\Bin\», для бесплатной версии – «C:\Program Files (x86)\ATOL\Drivers8\Bin_Free\»

1C: Предприятие v.8.х

Подключение драйвера происходит в модуле приложения конфигурации для «1С: Предприятие» версии 8.х.

```
Перем Весы Экспорт; // Глоб. переменная для работы с драйвером
Процедура ПриНачалеРаботыСистемы()
Попытка
// Загрузка внешней компоненты
```

```
ЗагрузитьВнешнююКомпоненту ("C:\Program Files (x86)\ATOL\Drivers8\Bin\Scale1C.dll");
   Сообщить ("Внешняя компонента загружена");
   Попытка
// Создание объекта
          Becы = Новый ("AddIn.Scale8");
   Исключение
          Сообщить ("Объект не найден!");
   КонецПопытки;
   Исключение
          Сообщить ("Внешняя компонента драйвера не найдена");
   КонецПопытки;
КонецПроцедуры
Процедура ПриЗавершении Работы Системы ()
   Bесы = 0;
                      // Отсоединение объекта
КонецПроцедуры
```


При подключении внешней компоненты необходимо указать путь к библиотеке. При установке по умолчанию для платной версии драйвера библиотека расположена в каталоге «C:\Program Files (x86)\ATOL\Drivers8\Bin\», для бесплатной версии — «C:\Program Files (x86)\ATOL\Drivers8\Bin_Free\»

Microsoft VBA (Excel, Word и др.)

Откройте панель инструментов «Элементы управления».

Нажмите кнопку «другие элементы» и выберите в списке либо.

Вставьте компонент на лист (форму).

Далее можно работать с драйвером, как с ActiveX компонентой.

Через контекстное меню можно отобразить редактор свойств или визуальную страницу свойств драйвера.

Borland Delphi, C++ Builder

В среде ActiveX компоненту можно поместить на палитру компонентов. Выберите пункт «Import ActiveX Control...» в меню «Component»

- 1. Выберите элемент;
- 2. В поле «Palette Page» укажите страницу палитры, на которую желаете добавить компонент;
- 3. В поле «Unit dir name» задайте директорию, в которой будет сохранен импортируемый модуль;
- 4. Нажмите кнопку «Install...».

- 7. Нажмите «ОК» в окне сообщения об удачной перекомпиляции.
- 8. Закройте окно пакетного файла.
- 9. Нажмите «Yes» для подтверждения сохранения пакетного файла.

После этого на закладке «ActiveX» будут расположены компоненты «TScale45» и «TScale8».

Приложение 1. Коды и описание ошибок

Код ошибки	Описание
0	Ошибок нет
-1	Нет связи
-3	Порт недоступен
-4	Ключ защиты не найден
-6	Недопустимое значение
-7	Невозможно добавить устройство
-8	Невозможно удалить устройство
-9	Логическое устройство не найдено
-10	Неверная последовательность команд
-11	Устройство не включено
-12	Не поддерживается в данной версии оборудования
-14	Порт занят приложением: («\\<имя ПК>\<описание приложения-клиента>\<описание драйвера>»)
•••	
-2600	Неверный тип протокола
-2601	Неверная скорость
-2602	Неверное значение режима «Sleep»
-2603	Неверное значение режима «Тара»
-2604	Неверное значение массы тары
-2605	Неверная команда
-2606	Переполнение поля «Стоимость»

Приложение 2. Модели весов

Модель (Model)	Название
0	TBEC BP 4149
1	ЭЛВЕС ВР 4900
2	Штрих ВТ, МР, АС
4	CAS LP v.1.5
5	Штрих AC POS
6	Штрих AC мини POS
7	CAS AP / AD / CS / ER / ER Jr / SW
10	CAS S-2000
11	ПетВес серия Е
12	Тензо ТВ-003/05Д
13	Bolet MD-991
14	Масса-К серии ПВ
15	Масса-К серий ВТ, ВТМ
16	Масса-К серий МК-А, МК-Т
17	Мера (Ока) до 30 кг
18	Мера (Ока) до 150 кг
19	ACOM PC100W
20	ACOM PC100
21	ACOM SI-1
23	CAS LP v.1.6/v.2.0
24	Mettler Toledo 8217
25	Штрих ВМ100
26	Мера (9 байт) до 30 кг
27	Мера (9 байт) до 150 кг
28	CAS BW-6/BW-15/BW-30/BW-60/BW-150
29	Масса-К серий МК-ТВ, МК-ТН, ТВ-А
30	Mettler-Toledo Tiger-E
31	DIGI DS-788
32	Меркурий 314/315
33	CAS PDS/PDS II
34	DIGI DS-708

Приложение 3. Системные параметры весов

Знач.	Описание (ValuePurpose)	Возможные значения (Value)		
0	Тип протокола	 0 – Штрих 1 – Электроника 2 – Штрих АС POS 		
1	Скорость связи	 3 – 1200 бод; 4 – 2400 бод; 5 – 4800 бод; 7 – 9600 бод; 10 – 19200 бод; 12 – 38400 бод; 14 – 57600 бод; 18 – 115200 бод 		
2	Режим «Sleep»	0 – выключен;не ноль – включен		
3	Режим «Тара»	 0 – единичная установка тары; не ноль – множественная установка тары 		

+7(495) 730-7420 www.atol.ru

Исключительные права на программное обеспечение и документацию принадлежат компании АТОЛ

Учебный комплекс «Радио»

Центра компьютерного обучения «Специалист» при МГТУ им. Н. Э. Баумана

Москва, ул. Радио, д. 24, корп. 1, подъезд 2, 2-й этаж

Схема проезда

Администратор учебного

+7 (495) 780-47-54

комплекса:

Остановка «Лефортовская набережная» трамвай № 37, 50 от станций метро «Комсомольская» и «Красносельская»,

маршрутное такси №125М от станции метро «Бауманская»)

троллейбус № 24 или маршрутное такси №534М от станций метро «Красные ворота» и «Авиамоторная»

Остановка «Лефортовская набережная» (трамвай № 24 от станций метро «Чкаловская» и «Курская»,

(трамвай № 24, 37, 50 от станции метро «Авиамоторная»,

> маршрутное такси №199М от станций метро «Площадь Ильича» и «Римская»)

Проезд от станции метро «Бауманская»:

Добраться до УК «Радио» можно пешком от станции метро «Бауманская». Дойдите до дома № 24, кор.1, 2-й подъезд, 2-й этаж в соответствии со схемой. Также Вы можете воспользоваться маршрутами наземного транспорта, чтобы доехать до УК «Радио»:

- маршрутное такси № 125М до остановки «Лефортовская набережная»
- трамвай 45 (ст. «Сокольники» ст. «Красносельская» ст. «Бауманская»);
- трамваи 37 и 50 (ст. «Комсомольская» ст. «Красносельская» ст. «Бауманская» - ст. «Авиамоторная»).

Трамвай № 24, №37, №50 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор. 1, 2-й подъезд, 2-й этаж.

Проезд от станций метро «Красные ворота» и «Авиамоторная»:

Троллейбус № 24 или маршрутным такси №534 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор.1.

Схема расположения входа в учебный комплекс «Радио»

Схема расположения аудиторий учебного комплекса «Радио»

Учебный комплекс «Радио»

Центра компьютерного обучения «Специалист» при МГТУ им. Н. Э. Баумана

Москва, ул. Радио, д. 24, корп. 1, подъезд 2, 2-й этаж

Схема проезда

Администратор учебного

+7 (495) 780-47-54

комплекса:

Остановка «Лефортовская набережная» трамвай № 37, 50 от станций метро «Комсомольская» и «Красносельская»,

маршрутное такси №125М от станции метро «Бауманская»)

троллейбус № 24 или маршрутное такси №534М от станций метро «Красные ворота» и «Авиамоторная»

Остановка «Лефортовская набережная» (трамвай № 24 от станций метро «Чкаловская» и «Курская»,

(трамвай № 24, 37, 50 от станции метро «Авиамоторная»,

> маршрутное такси №199М от станций метро «Площадь Ильича» и «Римская»)

Проезд от станции метро «Бауманская»:

Добраться до УК «Радио» можно пешком от станции метро «Бауманская». Дойдите до дома № 24, кор.1, 2-й подъезд, 2-й этаж в соответствии со схемой. Также Вы можете воспользоваться маршрутами наземного транспорта, чтобы доехать до УК «Радио»:

- маршрутное такси № 125М до остановки «Лефортовская набережная»
- трамвай 45 (ст. «Сокольники» ст. «Красносельская» ст. «Бауманская»);
- трамваи 37 и 50 (ст. «Комсомольская» ст. «Красносельская» ст. «Бауманская» - ст. «Авиамоторная»).

Трамвай № 24, №37, №50 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор. 1, 2-й подъезд, 2-й этаж.

Проезд от станций метро «Красные ворота» и «Авиамоторная»:

Троллейбус № 24 или маршрутным такси №534 до остановки «Лефортовская набережная». Двигайтесь в направлении ул. Радио. Дойдите до дома № 24, кор.1.

Схема расположения входа в учебный комплекс «Радио»

Схема расположения аудиторий учебного комплекса «Радио»

