Person Re-IDentification

Related work and project status

First milestone

Bonomi Andrea - Ismail Khouloud - Laiti Francesco Lobba Davide - Turri Evelyn

Trends and Applications of Computer Vision Academic Year 2022/2023

What is Person Re-ID?

(a) Pedestrian Detection

(b) Person Re-identification

Deep Person Re-ID

BoT-BS: Bag of Tricks and a Strong Baseline for Deep Person Re-identification

1st Paper

BoT-BS | Introduction

Problem

Complex network structure and a concatenation of multi-branch features

Solution

Improve performance and provide a stronger baseline for future research, for the industry and for the community

1St | Warmup Learning Rate

2nd Random Erasing Augmentation (REA)

Each image in the dataset have a probability p_e of undergoing Random Erasing

 \rightarrow In this paper, p_e=0.5

But, REA does harm to models in **cross-domain** ReID task, it decreases its performances by:

>34%
Market1501 →
DukeMTMC-reID
→ Market1501

Figure 4. Sampled examples of random erasing augmentation. The first row shows five original training images. The processed images are presented in the second low.

3rd Label Smoothing

Cross Entropy Loss

Real Image

Label Distribution

 $L(ID) = \sum_{i=1}^{N} -q_i \log(p_i) \begin{cases} q_i = 0, y \neq i \\ q_i = 1, y = i \end{cases} \qquad q_i = \begin{cases} 1 - \frac{N-1}{N} \varepsilon & \text{if } i = y \\ \varepsilon/N & \text{otherwise,} \end{cases}$

Label Smoothing Regularization Loss

Transferred Image

Label Distribution

$$q_i = \begin{cases} 1 - \frac{N-1}{N}\varepsilon & \text{if } i = y\\ \varepsilon/N & \text{otherwise} \end{cases}$$

Encourages the model to be less confident, to regularize it and make it more adaptable

4th | Last Stride

5th BNNeck

Problem

Targets of triplet loss and ID loss are inconsistent in the embedding space

Solution

BNNeck

It adds a batch normalization (BN) layer after features and before the classifier FC layers

6th Loss

$$L = L_{ID} + L_{Triplet} + \beta L_C$$

$$L_C = \frac{1}{2} \sum_{j=1}^{B} \left\| f_{t_j} - c_{y_j} \right\|_2^2$$

Label of the j-th image in a mini batch

$$L_{Triplet} = [d_p - d_n + \alpha]_+$$

Denotes the y-th class center of deep features

BoT-BS | Illustration

NFormer: Robust Person Re-identification with Neighbor Transformer

2nd Paper

NFormer | Introduction

Problem

Learning representation from single images, ignoring any interactions between them

Solution

NFormer

Modeling and learning from **relations** between images

Representations without NFormer

Representations with NFormer

NFormer | Neighbor Transformer Network

NFormer | Landmark Agent Attention

NFormer | Reciprocal Neighbor Softmax

Normal Softmax

RNS

NFormer | Representation vectors

Multi-Domain Learning and Identity Mining for Vehicle Re-Identification

3rd Paper

Vehicle re-Identification | Why?

Person Re-ID	Vehicles Re-ID
BoT-BS	Multi-Domain Learning and Identity Mining for Vehicle Re-Identification

Without changing implementation

Dataset	Rank-1	mAP	
VeRi-776	95.8 %	79.9 %	

Project Status

Demos and further works

Preliminary results

Train	Test	Train Time	Rank-1	Rank-5	Rank-10	mAP
Market –	Market	– 3h 25m –	88.89 %	95.19 %	97.62 %	72.92 %
	Duke	311 25111 —	34.06 %	49.64%	55.83 %	18.28 %
Duke –	Market	/h 10m	43.85 %	63.06 %	70.33 %	18.88 %
	Duke	– 4h 10m –	79.30 %	89.09 %	92.05 %	61.45 %

Tests are made on an Azure VM provided by Microsoft with a Nvidia K80 12 Gb GPU

Demo | Market trained

10 query Market Duke

Demo | Duke trained

query

Duke Market

Further works

References

- 1. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2018). Bag of Tricks for Image Classification with Convolutional Neural Networks. arXiv. https://doi.org/10.48550/arXiv.1812.01187
- 2. Wang, H., Shen, J., Liu, Y., Gao, Y., & Gavves, E. (2022). NFormer: Robust Person Re-identification with Neighbor Transformer. arXiv. https://doi.org/10.48550/arXiv.2204.09331
- 3. He, S., Luo, H., Chen, W., Zhang, M., Zhang, Y., Wang, F., Li, H., & Jiang, W. (2020). Multi-Domain Learning and Identity Mining for Vehicle Re-Identification. arXiv. https://doi.org/10.48550/arXiv.2004.10547
- 4. Zheng, L., Yang, Y., & Hauptmann, A. G. (2016). Person Re-identification: Past, Present and Future. arXiv. https://doi.org/10.48550/arXiv.1610.02984
- 5. "Open-reID." [Online]. Available: https://github.com/Cysu/open-reid
- 6. "Pytorch reid." [Online]. Available: https://github.com/layumi/Person_reID_baseline_pytorch
- 7. "Nformer." [Online]. Available: https://github.com/haochenheheda/NFormer
- 8. "Bag of tricks and a strong reid baseline." [Online]. Available: https://github.com/michuanhaohao/reid-strong-baseline

Person Re-IDentification

Related work and project status

First milestone

Bonomi Andrea - Ismail Khouloud - Laiti Francesco Lobba Davide - Turri Evelyn

Trends and Applications of Computer Vision Academic Year 2022/2023