计算机组成原理课程设计

计算机学院实验中心系统结构实验室

2022年8月

计组课程设计团队题目

题目一: 基于Altera CPM7128的硬连线控制器设计

按照给定数据格式、指令系统和数据通路,根据所提供的器件要求,自行设计一个基于硬布线控制器的顺序模型处理机

▶ 基本功能:根据设计方案,在TEC-8上进行组装、调试运行

▶ 附加功能: a. 在原指令基础上要求扩指至少三条

b. 修改PC指针功能 (任意指针)

题目二:完成流水硬连线控制器的设计根据设计方案,在TEC-8上进行组装、调试运行

题目三:基于TEC-8系统完成中断功能硬连线控制器设计。

题目四(自主探索): 以Minisys平台的FPGA芯片,完成基于MIPSfpga 处理器的研究与mips指

令的相关实验。

计组课程设计个人自选题目(待定)

完成"从高级语言到源程序到门级电路实现"计算机组成虚拟仿真实验。

实验环境

▶开发环境

PC微机: EDA设计软件, 自行完成逻辑设计、编写程序、编译和下载, 调试、运行成功 TEC-8实验箱

▶调试工具

逻辑笔 万用表 数字示波器

- ▶元器件: Altera MAX7000系列CPLD芯片: EPM7128
- ➤描述语言: VHDL语言、Verilog语言

TEC-8 实验平台

TEC-8 模型计算机框图

控制台工作方式

(SWC、SWB、SWA为控制台指令的定义开关)

SWC	SWB	SWA	操作	
0	0	0	取指	
0	0	1	写存储器	
0	1	0	读存储器	
0	1	1	写寄存器	
1	0	0	读寄存器	

TEC-8指令系统和指令格式

名称	助记符	功能	指令格式		
			IR7 IR6 IR5 IR4	IR3 IR2	IR1 IR0
加法	ADD Rd, Rs	Rd ← Rd + Rs	0001	Rd	Rs
减法	SUB Rd, Rs	Rd ← Rd − Rs	0010	Rd	Rs
逻辑与	AND Rd, Rs	Rd ← Rd and Rs	0011	Rd	Rs
加 1	INC Rd	Rd ← Rd + 1	0100	Rd	XX
取数	LD Rd, [Rs]	Rd ← [Rs]	0101	Rd	Rs
存数	ST Rs, [Rd]	Rs → [Rd]	0110	Rd	Rs
C条件转移	JC addr	如果 C=1,则	0111 offs		set
		PC ← 0 + offset			
Z条件转移	JZ addr	如果 Z=1, 则	1000	off	set
		PC ← 0 + offset			
无条件转	JMP [Rd]	PC ← Rd	1001	Rd	XX
移					
输出	OUT Rs	DBUS ← Rs	1010	XX	Rs
中断返回	IRET	返回断点	1011	XX	XX
关中断	DI	禁止中断	1100	XX	XX
开中断	EI	允许中断	1101	XX	XX
停机	STP	暂停运行	1110	XX	XX

时序信号

□ 硬布线控制器模型机所使用时序信号比微程序控制器的 时序信号多

微程序中时钟周期(节拍脉冲)信号T1-T3 节拍电位信号:一拍等于一个T1-T3的循环

□时序信号的产生

实验箱提供时钟周期信号和节拍信号:

T1至T3, W1至W3

控制器结构图

执行一条机器指令的节拍数

- > 时序电路,采用可变节拍方式实现
- ➤ 大多数机器指令可选用2拍,节拍发生器产生节拍电位 信号W1和W2
- ➤ 所需节拍数较少的指令: 只需要1个节拍电位的指令:在时序电路中加入控制信号SHORT,通知街拍发生器在W1节拍之后不产生W2
- ➤ 所需节拍数较多的指令: 需要3个节拍电位的指令: 在时序电路中加入控制信号LONG, 通知节拍发生器在W2节拍之后产生W3

TEC-8 硬布线控制器流程图

TEC-8 流水微程序控制器流程图(参考)

EPM7128

EPM7128SLC84-15有84个引脚,其中5根用于ISP(In SystemProgrammable)下载。器件内有8个逻辑阵列块,有128个宏单元,每个宏单元都有独立的可编程电源控制,宏单元内的寄存器具有单独的时钟和复位等信号;有60个可用I/O口,可单独配置为输入、输出及双向工作方式;有2个全局时钟及一个全局使能端和一个全局清除端。

EPM7128芯片引脚

×	CLR#	1	IN	复位信号	₩K1	81	IN	开关
¥	₩ MF	55	IN	主时钟	₩K2	80	IN	开关
×	€ CP1	56	IN	100KHz或10KHz	₩ K3	79	IN	开关
×	€ CP2	57	IN	1KHz或100Hz	≭K4	77	IN	开关
×	€ CP3	58	IN	10Hz或1Hz	₩K 5	76	IN	开关
×	♥ QD	60	IN	启动按钮QD	₩K6	75	IN	开关
¥	PULSE	61	IN	中断脉冲pulse	₩K 7	74	IN	开关
×	₭ K 0	54	IN	开关	∗K8	73	IN	开关
					₩K 9	70	IN	开关
×	*LG1-D0/	/L4 4	4 out	200 100	₩K10	69	IN	开关
	*LG1-D1/		5 out		₩K11	68	IN	开关
	*LG1-D2/	_	6 out		₩K12	67	IN	开关
	*LG1-D3/		8 out		₩K13	65	IN	开关
	≰LG1-D4 /		9 out		∗K14	64	IN	开关
	*LG1-D5/		0 out		₩K15	63	IN	开关
X	&LG1-D6/	L10 5	1 out	数码管1//发光二极管L1				

*LG1-D7//L11//SPEAKER 52 out LG1小数点//发光二极管L0//扬声器

EPM7128引脚规定(续)

```
*LG2-A
         37 out 数码管LG2 //发光二极管L11
*LG2-B
         39 out 数码管LG2//发光二极管L10
           out 数码管LG2//发光二极管L9
*LG2-C
         41 out 数码管LG2//发光二极管L8
*LG2-D
            35 out 数码管LG3
*LG3-A
*LG3-B
            36 out 数码管LG3
            17 out 数码管LG3
*LG3-C
            18 out 数码管LG3
*LG3-D
           30 out 数码管LG4//控制南方绿灯
*LG4-A//TL8
*LG4-B//TL9
           31 out 数码管LG4//控制东方红灯
☀LG4-C//TL10 33 out 数码管LG4//控制东方黄灯

★LG4-D//TL11 34 out 数码管LG4//控制东方绿灯
           25 out 数码管LG5//控制西方黄灯
*LG5-A//TL4
           27 out 数码管LG5//控制西方绿灯
*LG5-B//TL5
*LG5-C//TL6
           28 out 数码管LG5//控制南方红灯
*LG5-D//TL7
           29 out 数码管LG5//控制南方黄灯
           20 out 数码管LG6//控制北方红灯
*LG6-A//TL0
           21 out 数码管LG6//控制北方黄灯
*LG6-B //TL1
           22 out 数码管LG6//控制北方绿灯
*LG6-C //TL2
☀LG6-D //TL3 24 out 数码管LG6//控制西方红灯
```

硬连线控制 器 EPM7128 引脚 规定

信号	方向	引脚号	信号	方向	引脚号
CLR#	输入	1	MEMW	输出	27
Т3	输入	83	STOP	输出	28
SWA	输入	4	LIR	输出	29
SWB	输入	5	LDZ	输出	30
SWC	输入	6	LDC	输出	31
IR4	输入	8	CIN	输出	33
IR5	输入	9	S0	输出	34
IR6	输入	10	S1	输出	35
IR7	输入	11	S2	输出	36
W1	输入	12	S3	输出	37
W2	输入	15	M	输出	39
W3	输入	16	ABUS	输出	40
С	输入	2	SBUS	输出	41
Z	输入	84	MBUS	输出	44
DRW	输出	20	SHORT	输出	45
PCINC	输出	21	LONG	输出	46
LPC	输出	22	SEL0	输出	48
LAR	输出	25	SEL1	输出	49
PCADD	输出	18	SEL2	输出	50
ARINC	输出	24	SEL3	输出	51
SELCTL	输出	52			

课程设计验收要求

- 设计验收答辩在设计调试完成后的答辩验收周,以预约方式集中进行。
- · 各组同学先完成基于vhdl的工程设计、编译、仿真、调试。
- 验收时小组成员必须到齐(线上组员连线参与),验收前出示调试日志
- 主讲解人做系统运行演示、设计思路讲解。
- 小组成员分别讲解各自承担工作。
- 验收老师提问答辩环节。

成绩给定标准

- 每人所承担的工作量及完成情况(结合日志)
- 系统演示及验收答辩情况。
- 个人负责设计部分的完成情况及解决问题的能力。
- 整体设计是否完成基本以及附加功能要求、能否最大限度的利用硬件资源完成设计、团队分工情况、演示答辩效果、报告撰写能力等综合考虑。
- 若发现组间(代码报告)抄袭现象严重者,取消成绩。

课程设计报告要求

- ◆ 每个小组提交一份课程设计报告。
- ◆ 每个小组同时提交以班级组号为名的电子文件夹,内容包括: 设计代码文件夹、课程设计报告电子版。
- ◈ 报告采用学校课程设计统一封面。
- ◈ 报告内容:

主体:1.课题硬件环境描述。

2.每个课题的题目分析、团队分工、设计详解、调试过程中的问题及讨论、设 计调试小结等

附件: 1.小组调试日志。

2.小组各成员的心得总结

#