VOICE CLONING

Capstone Project Report

Submitted by:

(101610091)Taranjeet Singh

(101603354)Tarun Dani

(101603352)Tanuj Kukreja

BE Fourth Year, COE

CPG No. 20

Under the Mentorship of

Dr. Raman Kumar Goyal

Assistant Professor

Computer Science and Engineering Department

Thapar Institute of Engineering and Technology, Patiala

May, 2020

TABLE OF CONTENTS

•	Use Case Diagram	3
•	E-R Diagram	4
•	Class Diagram	5
•	Sequence Diagram	6
•	State Chart Diagram	7
•	Project outcome and Result Analysis	8
•	Component Design	10
•	Interface Design	11
•	Context Diagram	12
•	Tier Architecture	13

Use Case Diagram

Fig.

E-R Diagram

Class Diagram

Sequence Diagram

State Chart Diagram

Project outcome and Result Analysis

- The final project will be capable of converting and storing a digital copy of a person's natural voice.
- First step transforms the text into time-aligned features, such as mel spectrogram, or F0 frequencies and other linguistic features;
- Second step converts the time-aligned features into audio.
- We primarily used Tacotron 2 and WaveGlow models to achieve the output.
- Table 1 and Table 2 compare the training performance of the modified Tacotron 2 and WaveGlow models with mixed precision and FP32.

Number of GPUs	Mixed Precision mels/sec	FP32 mels/sec	Speed-up with Mixed Precision	Multi-GPU Weak Scaling with Mixed Precision	Multi-GPU Weak Scaling with FP32
1	20,992	12,933	1.62	1.00	1.00
4	74,989	46, <mark>1</mark> 15	1.63	3.57	3.57
8	140,060	88,719	1.58	6.67	6.86

Table 1: Training performance results for modified Tacotron 2 model

Number of GPUs	Mixed Precision samples/sec	FP32 samples/sec	Speed-up with Mixed Precision	Multi-GPU Weak Scaling with Mixed Precision	Multi-GPU Weak Scaling with FP32
1	81,503	36,671	2.22	1.00	1.00
4	275,803	124,504	2.22	3.38	3.40
8	583 887	264 903	2 20	7 16	7 22

Table 2: Training performance results for WaveGlow model

• As shown in Table 1 and 2, using Tensor Cores for mixed precision training achieves a substantial speedup and scales efficiently to 4/8 GPUs. Mixed precision training also maintains the same accuracy as single-precision training and allows bigger batch size.

• The waveform of the voice samples of original and deep faked audio would look like the image shown below:

• Speech quality depends on model size and training set size; using Tensor Cores with automatic mixed precision makes it possible to train higher quality models in the same amount of time.

Component Design

Interface Design

Page **11** of **13**

Context Diagram

Tier Architecture

