Deep Learning Object Detection

for Counting Fish

Jamie Shaffer July 2020

Agenda

- Background
- Challenge
- Concept
 - o Data
 - Model
 - o Evaluation
- Summary & Next Steps

Acknowledgements and information sources are listed at the end of the presentation.

Background

Pacific Northwest Salmon

Salmon hatch in freshwater streams

Migrate to the saltwater ocean

Return upstream to their natal streams

Spawn and die

Salmon hatch in freshwater streams

Migrate to the saltwater ocean

Background

Pacific Northwest Hydroelectric Power

Columbia & Snake River Dams

Background

Power and Salmon

Built fish ladders

Adjust dam outflow

Fishing guidelines (daily limits, season duration)

Monitor fish migrating upstream through the ladders

Challenge

Accurate & Timely Fish Counts

- Estimate from a daily sample (Ballard Locks)
- 2. Real-time count (Bonneville Dam)
- 3. Video count (Rock Island Dam)

Challenges:

- Sampling error
- Human expertise
- Fish counts affect
 - Policy decisions
 - Recreational fishing
 - Commerce

Is machine learning for object detection ready to assist in this challenge?

Concept

Concept

Collect & Prepare Data (Images)

Select & Train Model

Test & Evaluate

Data

Public Viewing Windows

Web scraped images

Lighting

- Depth of tank
- Obstructions

Detect:

- Fish or no fish (count)
- Fish details (count species)

Fish Count Window

Snapshots from video

Data

3 classes:

- adipose
- no_adipose
- unknown (out of view)

Final:

- 317 snapshots from video
- 1025 annotations (~3.2 per image)
 - Bounding box + Label
- 15 null examples (no fish)
- Augmented by flip, blur, brightness (roboflow.ai) \rightarrow 951 images

Label & Prepare Images

Model

Classification + Object Detection

Sliding Window Detection

Classification cNN to extract features

- VGG16
- Darknet

Collect feature maps from different stages

- Predict class
- Predict bounding box

Model selected: YOLOv5

- Train quickly
- Predict quickly
- Smaller, easier to deploy
- Google Colab + GPU

~ 12 msec to predict on each image

adipose 0.96

Recall: "If there's a fish in there, what percentage of the time do you find it?" ~80%

F1 score: ~60%

2*Precision*Recall / (Precision + Recall)

mAP@0.5

mAP

Average Precision for 1 class:

 Calculate the BEST Precision at each level of Recall, then AVERAGE these

$$\frac{\#TP(c)}{\#TP(c)+\#FP(c)}$$

mean Average Precision for 3 classes:

 Find the Average Precision for each class, take the mean of those

@0.5

IoU = intersection over union

Common definition of "@0.5":

IoU > 0.5, it's a valid detection.

mAP@0.5 ~ 70%

- Average precision (correct label)
- over all classes,
- if we set the valid detection threshold to 50% bounding box overlap

Summary & Next Steps:

Single Shot Detection and Classification tools have matured; building a system for this application is within reach.

Next steps - model:

- Expert labeled images
- More images (+chinook +coho)

Next steps - full solution:

- Object counting
- Handling of difficult cases

Questions?

Acknowledgements

Special thank you to the staff at the Chelan County PUD for providing information on salmon counting methods and images.

D. Patterson, T. Mosey, T. West https://www.chelanpud.org/environment/fish-and-wildlife/fish-counts

Team Roboflow.ai

J. Nelson

Image augmentation tools & template notebooks for YOLO models

B. Crossley, Spokane Tribe Water and Fish Program
Fish identification and counting challenges and pilot programs.

Sources

- https://pixabay.com/photos/animal-river-water-stone-fish-4623023/
- https://pixabay.com/photos/salmon-fish-run-jump-upstream-1107404/
- https://pixabay.com/photos/sockeye-salmon-run-adams-river-50303/
- https://pixabay.com/photos/natural-landscape-river-water-fish-4620642/
- https://pixabay.com/photos/animal-river-water-4623019/
- https://pixabay.com/photos/fish-salmon-chinook-bay-landscapes-386853/
- https://static.seattletimes.com/wp-content/uploads/2018/12/Columbia-and-Sna ke-rivers-dams-W-780x520.jpg
- https://www.ncwlife.com/wp-content/uploads/2018/03/IMG-Rock-Island-Dam -1920x1
- http://www.eregulations.com/wp-content/uploads/2020/06/191.jpg

- https://static.seattletimes.com/wp-content/uploads/2016/10/b224c62e-940
 3-11e6-b59c-0a10cc50aad4-375x349.jpg
- http://mediad.publicbroadcasting.net/p/northwestnews/files/styles/medium/public/201403/fish_ladder.jpg
- https://thefisheriesblog.files.wordpress.com/2013/05/de1de-two_fins2.jpg
- https://static.seattletimes.com/wp-content/uploads/2018/10/Lower-Snake-River-Dams
- http://www.eregulations.com/wp-content/uploads/2020/06/Marine_-_Soc keye_Ocean_1.3_-_brightness.jpg
- CNN diagram
 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional
 -neural-networks-the-eli5-way-3bd2b1164a53
- Architecture figures are from the YOLOv4 paper https://arxiv.org/pdf/2004.10934.pdf
- Kitten classification + detection drawing from https://towardsdatascience.com/object-detection-using-deep-learning-ap proaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a

Addendum

Model: Classification + Localization

Model: Step 1: Object Classification

Convolutional Neural Networks (CNN), also called "Deep Learning"

- Break down an image into pieces
- Predict what it is based on pieces

'Guitar and Violin', Picasso, c. 1912 \rightarrow

Model: Step 2: Object Detection

- Classification CNN:
- VGG16
- Darknet

- Collect feature maps from different stages
- More 'pieces' for the final layer to use

- One shot final step:
- Predict class
- Predict bounding box

Model

Backbone Image

Classification cNN to extract features

- VGG16
- Darknet

Classification + Object Detection

- Collect feature maps from different stages
- More 'pieces' for the final layer to use

- One shot final step:
- Predict class
- Predict bounding box

Model selected: YOLOv5

Evaluation: Training and Inference

1 hour 12 mins (fast!) - Training time for 500 sessions with all 951 images (epochs)

13 MB (small!) - Size of model weight file

12 msec (fast!) - Time required for inference (object detection) on a simple image

This translates to a nearly 1 - 1 ratio for video processing -- a 1 minute video can be run through the model in about 1 minute.

*Times are from Google Colab with GPU enabled.

Gallery of Difficult Images

Difficult images are great for providing to clues to poor predictions!

Shadows
Object overlap
Crowded conditions

-- there's an extra box in this image @0.42

Crowded conditions

2 or 3 fish were not found

0.4 threshold

Model may be linking large fish with no_adipose

Obstructed view

Phantom floor fish -reminiscent of the Viola-Jones
algorithm, suggesting that the
model may be using lighting
rather than other features

Image credit: Rudy Owens

