where N_i and d_i in Equation 16-41 are for cohesionless soil, cohesive soil and rock layers.

$$\overline{N}_{ch} = \frac{d_s}{\sum_{i=1}^{m} \frac{d_i}{N_i}}$$
 (Equation 16-42)

where:

$$\sum_{i=1}^{m} d_i = d_s$$

Use d_i and N_i for cohesionless soil layers only in Equation 16-42.

 d_s = The total thickness of cohesionless soil layers in the top 100 feet (30 480 mm).

m = The number of cohesionless soil layers in the top 100 feet (30 480 mm).

 s_{ui} = The undrained shear strength in psf (kPa), not to exceed 5,000 psf (240 kPa), ASTM D 2166 or D 2850.

$$\overline{s}_{u} = \frac{d_{c}}{\sum_{i=1}^{k} \frac{d_{i}}{s_{ui}}}$$
(Equation 16-43)

where:

$$\sum_{i=1}^k d_i = d_c$$

 d_c = The total thickness of cohesive soil layers in the top 100 feet (30 480 mm).

k = The number of cohesive soil layers in the top 100 feet (30 480 mm).

PI = The plasticity index, ASTM D 4318.

w = The moisture content in percent, ASTM D 2216.

Where a site does not qualify under the criteria for *Site Class* F and there is a total thickness of soft clay greater than 10 feet (3048 mm) where a soft clay layer is defined by: $S_u < 500$ psf (24 kPa), $w \ge 40$ percent, and PI > 20, it shall be classified as *Site Class* E.

The shear wave velocity for rock, *Site Class* B, shall be either measured on site or estimated by a geotechnical engineer or engineering geologist/seismologist for