Difference Equations

- 2.1.1 Compound Interest
- 2.1.2 Loan Repayment
- 2.1.3 Gambler's Ruin
- 2.2.2 Exponential Population Growth
- 2.2.3 Average Lifespan
- 2.2.★ Rabbit Populations
- 2.2.4 Nonlinear Population Models

2.2.2 Exponential Population Growth

Assumption. Population reproduces at specific times of the year.

2.2.2 Exponential Population Growth

Assumption. Population reproduces at specific times of the year.

- \circ $\beta =$ babies born per individual each season (per capita birth rate)
- \circ $\mu=$ probability of dying between one season and the next
- \circ N_k = number of individuals at the start of the k^{th} breeding season

2.2.2 Exponential Population Growth

Assumption. Population reproduces at specific times of the year.

- \circ $\beta =$ babies born per individual each season (per capita birth rate)
- \circ $\mu=$ probability of dying between one season and the next
- \circ N_k = number of individuals at the start of the k^{th} breeding season

- 1 Find a Difference Equation for N_k .
- Based on your DE, what happens if $\beta > \mu$? Based on your DE, what happens if $\beta < \mu$?

2.2.3. Death Rate

Consider the following

O(k) = probability that an individual born at k=0 is alive at time k.

2.2.3. Death Rate

Consider the following

O(k) = probability that an individual born at k=0 is alive at time k.

- Solution What is the probability of dying between time (k-1) and k?

 - **b** Find an expression that **does not use** μ .
- 4 Use the previous expressions to find P(k).
- **5** What is the probability of the individual dying at age k?

2.2.3. Average Lifespan

O Probability of dying at age $k = \mu P(k-1) = \mu (1-\mu)^{k-1}$.

6 Brainstorm: How do we compute the Average Lifespan?

2.2.3. Average Lifespan

O Probability of dying at age
$$k = \mu P(k-1) = \mu (1-\mu)^{k-1}$$
.

6 Brainstorm: How do we compute the Average Lifespan?

7 Find a formula for L = Average Lifespan.

Hint.
$$\sum_{k=1}^{\infty} kr^k = \frac{r}{(r-1)^2}$$

Tutorial #2 – Ebola Epidemic

- $oldsymbol{\circ}$ Recovery rate is $\gamma = \operatorname{probability}$ of recovering in 1 year
- **()** Average recovery time is $T=rac{1}{\gamma}$

Tutorial #2 – Ebola Epidemic

- \bullet Recovery rate is $\gamma = \text{probability of recovering in 1 year}$
- **(f)** Average recovery time is $T = \frac{1}{\gamma}$

- O Recovery rate $\gamma=$ probability of disease dying between one season and the next $=\mu$
- O Average Recovery time T = average lifespan of disease in the individual = L

Tutorial #2 – Ebola Epidemic

- $oldsymbol{\circ}$ Recovery rate is $\gamma = \operatorname{probability}$ of recovering in 1 year
- ① Average recovery time is $T = \frac{1}{\gamma}$
- O Recovery rate $\gamma=$ probability of disease dying between one season and the next = μ
- O Average Recovery time T= average lifespan of disease in the individual =L

$$L = \frac{1}{\mu}$$

Tutorial #2 – Ebola Epidemic

- $oldsymbol{\circ}$ Recovery rate is $\gamma = \operatorname{probability}$ of recovering in 1 year
- ① Average recovery time is $T = \frac{1}{\gamma}$
- O Recovery rate $\gamma=$ probability of disease dying between one season and the next = μ
- O Average Recovery time T = average lifespan of disease in the individual = L

$$L = \frac{1}{\mu} \qquad \Leftrightarrow \qquad T = \frac{1}{\gamma}$$

Preparation for next lecture

2.2.3. Average Lifespan

O Figure out the Average Lifespan of this population.