First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L2: Entry 1 of 2

File: JPAB

Apr 9, 2002

PUB-NO: JP02002103919A

DOCUMENT-IDENTIFIER: JP 2002103919 A

TITLE: PNEUMATIC TIRE

PUBN-DATE: April 9, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

COUNTRY

OCHI, NAOYA

ASSIGNEE-INFORMATION:

NAME

BRIDGESTONE CORP

APPL-NO: JP2000303117

APPL-DATE: October 3, 2000

INT-CL (IPC): <u>B60 C 11/11</u>; <u>B60 C 11/04</u>; <u>B60 C 11/12</u>

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a pneumatic tire satisfying the driving/braking performance on an ice/snow road surface and the draining performance on a wet road surface at good balance.

SOLUTION: A tread section 1 is provided with a rib-like land section 5, intermediate land columns 9a and 9b comprising groups of second block land sections 8a and 8b, and side land section columns (7a) and (7b) comprising groups of first block land sections 6a and 6b. A pair of first block land sections 6a1 and 6b1 and a pair of second block land sections 8a1 and 8b1 are arranged into an inverse truncated chevron shape toward tread ends 12a and 12b side from a pattern center 11 side. The second block land sections 8a and 8b comprises a plurality of split land sections 14a-14c having a nearly convex lens cross sectional tread shape and divided by fine grooves 13. Chamfering sections are provided on the corner sections 15 of the first block land sections 6a and 6b and both corner sections 16a and 16b of the second block land sections 8a and 8b. A plurality of sipes 10 crossing the land sections 5, 6a, 6b, 8a, 8b are arranged on them.

COPYRIGHT: (C) 2002, JPO

Previous Doc

Next Doc

Go to Doc#

First Hit Pre

Previous Doc

Next Doc

Go to Doc#

End of Result Set

☐ Generate Collection

Print

L2: Entry 2 of 2

File: DWPI

Apr 9, 2002

DERWENT-ACC-NO: 2002-551670

DERWENT-WEEK: 200279

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Pneumatic tire for snowy road surface has multiple sipes formed across

convex ribs and side and intermediate convex blocks

PATENT-ASSIGNEE:

ASSIGNEE

CODE

BRIDGESTONE CORP

BRID

PRIORITY-DATA: 2000JP-0303117 (October 3, 2000)

Search Selected

Search ALL

Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 2.002103919 A

April 9, 2002

007

B60C011/11

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP2002103919A

October 3, 2000

2000JP-0303117

INT-CL (IPC): <u>B60 C 11/04</u>; <u>B60 C 11/11</u>; <u>B60 C 11/12</u>

ABSTRACTED-PUB-NO: JP2002103919A

BASIC-ABSTRACT:

NOVELTY - Intermediate convex blocks (8a,8b) of convex lens shape, consists of several convex portions (14a-14c) separated by fine groove (13). A chamber whose width of convex portion reduces at an angular portion (15,16a,16b) of side convex blocks (6a,6b,8a,8b), is positioned towards a pattern center side (11). Multiple sipes (10) are formed across convex ribs (5), side and intermediate convex blocks.

USE - For snowy road surface.

ADVANTAGE - Excels in braking effect on both sides on ice and snowy road surface. Obtains draining effect on wet surfaces.

DESCRIPTION OF DRAWING(S) - The figure shows the tread portion of the pneumatic tire.

Convex ribs 5

The second Thank a state of the second secon

Convex blocks 6a, 6b, 8a, 8b

Sipes 10

Pattern center side 11

Fine groove 13

Convex portions 14a-14c

Angular portions 15,16a,16b

CHOSEN-DRAWING: Dwg.1/3

TITLE-TERMS: PNEUMATIC ROAD SURFACE MULTIPLE FORMING CONVEX RIB SIDE INTERMEDIATE

CONVEX BLOCK

DERWENT-CLASS: A95 Q11

CPI-CODES: A11-B17; A12-T01B;

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1] 018; H0124*R; S9999 S1434 Polymer Index [1.2] 018; ND01;

Q9999 Q9234 Q9212 ; Q9999 Q9256*R Q9212 ; K9416 ; B9999 B5367 B5276

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2002-156521 Non-CPI Secondary Accession Numbers: N2002-436936

Previous Doc Next Doc Go to Doc#

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-103919 (P2002-103919A)

(43)公開日 平成14年4月9日(2002.4.9)

(51) Int.Cl.7							
D 11/04 11/12 C 11/04 D 審査請求 未請求 謝求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリヂストン 東京都中央区京橋1丁目10番1号 (72)発明者 蔵智 直也 東京都小平市小川東町3-1-1 株式 社プリヂストン技術センター内 (74)代理人 100072051	(51) Int.Cl. ⁷		識別記号	FΙ			デーマコート*(参考)
11/04 11/12 C 11/04 D 11/04 D 審査請求 未請求 請求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリヂストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町3-1-1 株式社プリヂストン技術センター内 (74)代理人 100072051	B60C	11/11		B60C 1	1/11		F
11/12 D 11/04 D 審査請求 未請求 請求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリヂストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町 3-1-1 株式 社プリヂストン技術センター内 (74)代理人 100072051							D
11/04 D 審査請求 未請求 請求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリデストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町3-1-1 株式 社プリデストン技術センター内 (74)代理人 100072051		11/04		1	1/12		С
11/04 D 審査請求 未請求 請求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリデストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町3-1-1 株式社プリデストン技術センター内 (74)代理人 100072051							D
審査請求 未請求 請求項の数10 OL (全 7 (21)出願番号 特願2000-303117(P2000-303117) (71)出願人 000005278 株式会社プリヂストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町3-1-1 株式社プリヂストン技術センター内 (74)代理人 100072051		•		1	1/04		D
株式会社プリヂストン 東京都中央区京橋1丁目10番1号 (72)発明者 越智 直也 東京都小平市小川東町3-1-1 株式 社プリヂストン技術センター内 (74)代理人 100072051					•	請求項の数1	0 OL (全 7 頁)
(72)発明者 越智 直也 東京都小平市小川東町 3 - 1 - 1 株式 社プリヂストン技術センター内 (74)代理人 100072051	(21)出願番	身	特願2000-303117(P2000-303117)	(71) 出願人			,
東京都小平市小川東町 3 - 1 - 1 株式 社ブリヂストン技術センター内 (74)代理人 100072051	(22)出願日		平成12年10月3日(2000.10.3)		東京都	中央区京橋17	「目10番1号
社プリヂストン技術センター内 (74) 代理人 100072051				(72)発明者			
(74) 代理人 100072051							
							センター内
金田十 杉村 留作 (A(1名)				(74)代理人			
 					弁理士	杉村 興作	(外1名)

(54) 【発明の名称】 空気入りタイヤ

(57)【要約】

【課題】 氷雪路面上での駆動・制動性能と濡れた路面上での排水性能の双方をバランスよく満足した空気入りタイヤを提供することにある。

【解決手段】 トレッド部1に、リブ状陸部5と、第2ブロック陸部8a,8b群からなる中間陸部列9a,9bと,第1ブロック陸部6a,6b群からなる側方陸部列7a,7bとを有し、一対の第1ブロック陸部6a1,6b1同士及び一対の第2ブロック陸部8a1,8b1同士は、いずれもパターンセンター11側からトレッド端12a,12b側に向かって逆ハの字状の配置関係にあり、第2ブロック陸部8a,8bは、略凸レンズ断面状の踏面形状を有しかつ細溝13の配設によって区分された複数個の分割陸部14a~14cで構成され、第1ブロック陸部6a,6bの角部15及び第2ブロック陸部8a,8bの両角部16a,16bにそれぞれ面取り部を設け、各陸部5,6a,6b,8a,8bに、これを横切る複数本のサイブ10を配設す

【特許請求の範囲】

【請求項1】 トレッド部を中央域と両側方域に区分す るとき、前記中央域に位置しタイヤ周方向に沿って連続 して延びる少なくとも1本のリブ状陸部と、前記側方域 に位置しタイヤ周方向に所定の間隔で配設した複数個の 第1ブロック陸部からなる側方陸部列と、リブ状陸部と 側方陸部列との間に位置しタイヤ周方向に所定の間隔で 配設した複数個の第2ブロック陸部からなる中間陸部列 とをトレッド部に有する空気入りタイヤにおいて、 パターンセンターを挟んで向かい合う、一対の第1ブロ ック陸部同士及び一対の第2ブロック陸部同士は、いず れもパターンセンター側からトレッド端側に向かって逆 ハの字状の配置関係にあり、

1

前記中間陸部列を構成する第2ブロック陸部は、タイヤ の正面視で、略凸レンズ断面状の踏面形状を有し、か つ、その長手方向を横切る細溝の配設によって区分され た複数個の分割陸部で構成され、

第1プロック陸部の最もパターンセンター側に位置する 角部及び第2ブロック陸部の両角部に、それぞれの先端 に向かって陸部高さが減少する面取りを施し、

リブ状陸部、第1ブロック陸部及び第2ブロック陸部の 各陸部に、これを横切る複数本のサイプを配設すること を特徴とする空気入りタイヤ。

【請求項2】 タイヤの負荷転動時に、第2ブロック陸 部は、そのパターンセンター側に位置する角部からトレ ッド端側に位置する角部に向かって順次接地する請求項 1に記載した空気入りタイヤ。

【請求項3】 第2ブロック陸部は、その両角部の先端 を結んだ直線 (m) のタイヤ周方向に対する角度が、鋭 角側から測定して5~55°の範囲にある請求項1又は2 に記載した空気入りタイヤ。

【請求項4】 第2ブロック陸部は3個の分割陸部で構 成する請求項1、2又は3に記載した空気入りタイヤ。 【請求項5】 第1ブロック陸部の最もパターンセンタ 一側に位置する角部及び第2ブロック陸部の両角部は、 その頂角が20~50°の範囲にある請求項1~4のいずれ か1項に記載した空気入りタイヤ。

【請求項6】 第1ブロック陸部、及び第2ブロック陸 部の分割陸部に配設するサイプの本数はそれぞれ少なく とも2本である語述項1~5のいずれか1項に記載した 空気入りタイヤ。

【請求項7】 リブ状陸部、第1ブロック陸部及び第2 ブロック陸部の各陸部におけるサイプの配設角度は、い ずれもタイヤ周方向に対して比較的大きな角度とする請 求項1~6のいずれか1項に記載した空気入りタイヤ。

【請求項8】 パターンセンターを挟んで向かい合う、 同士は、いずれもタイヤ周方向に所定の位相差で形成し、性能に劣るという欠点がある。 てなる請求項1~7のいずれか1項に記載した空気入り タイヤ。

【請求項9】 リブ状陸部は、その両側壁から所定ピッ チで交互に分岐する分岐部を具え、該分岐部は、第2ブ ロック陸部のパターンセンター側に位置する角部と向か い合う鋭角の角部を有し、該角部に、その先端に向かっ て陸部高さが減少する面取りを施す請求項1~8のいず

【請求項10】 リブ状陸部は、タイヤ周方向にストレ ート状に延びる1対の周方向溝によって区画形成され、 該周方向溝は、第2ブロック陸部のパターンセンター側 10 に位置する角部と対応する溝壁位置に、タイヤ周方向に 隣接する2個の第2ブロック陸部間に位置する傾斜溝へ の水の流入を促進する擬似陸部を設ける請求項1~8の いずれか1項に記載した空気入りタイヤ。

れか1項に記載した空気入りタイヤ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、空気入りタイ ヤ、特に冬用空気入りタイヤに関するものであり、より 詳細には、かかるタイヤの氷雪路面上での駆動・制動性 能を確保しつつ、濡れた路面上での排水性能の向上を図 20 る。

[0002]

【従来の技術】例えば、氷雪路面上を走行するのに適し た従来の冬用空気入りタイヤ、いわゆるスノータイヤ は、そのトレッドパターンとしては、図3に示すよう に、周方向に沿って延びるジグザグ溝及びストレート溝 と、これらの溝間にわたってタイヤ幅方向に延びる横溝 とを配設することによって、トレッド部に複数個の多角 形のブロック陸部を区画形成するとともに、トレッド部 をパターンセンターで2つのトレッド半区域に区分した ときの左右トレッド半区域に位置するブロック陸部は、 パターンセンターを挟んで線対称、又はタイヤ周方向に 所定の位相差で左右トレッド半区域に位置するブロック 陸部をずらしたような、いわゆる方向性パターンを形成 するものではなく、一方のトレッド半区域に位置するブ ロック陸部と、他方のトレッド半区域に位置するブロッ ク陸部との延在方向がタイヤ周方向の正逆を反転させた 方向になるように180°回転させた、いわゆる点対称パ ターンとして配設されるのが一般的である。

【0003】上記のトレッドパターンを有するタイヤの 場合、ストレー上溝の配設は、温れた路面上での排水件 能を向上させるには有効であるが、特に氷雪路面上での 駆動・制動性能の向上効果が小さく、一方、横溝は、氷 雪路面上での駆動・制動性能は得られるものの、濡れた 路面上での排水性能、特にハイドロプレーニング現象の 発生を抑制する効果が小さい。

【0004】また、ジグザグ溝の配設は、氷雪路面上で 一対の第1ブロック陸部同士及び一対の第2ブロック陸部 ----の駆動・制動性能を向上させるには有効であるが、排水

> 【0005】よって、従来のトレッドレッドパターンを 50 有する冬用空気入りタイヤでは、水雪路面上での駆動・

2/19/05 EAST Version: 2.0-1-4-

制動性能と濡れた路面上での排水性能の双方をバランス よく満足させることが難しかった。

[0006]

【発明が解決しようとする課題】この発明の目的は、ト レッド部の中央域にタイヤ周方向に沿って連続して延び るリブ状陸部を配設し、このリブ状陸部の両側に位置す る中間陸部列及び側方陸部列のブロック陸部の形状を適 正化して、濡れた路面での排水性能に有利な方向性パタ ーンを形成するように設定するとともに、各陸部を横切 るサイプを適正に配設することによって、氷雪路面上で 10 の駆動・制動性能と濡れた路面上での排水性能の双方を バランスよく満足した空気入りタイヤを提供することに ある。

[0007]

【課題を解決するための手段】上記目的を達成するた め、この発明は、トレッド部を中央域と両側方域に区分 するとき、前記中央域に位置しタイヤ周方向に沿って連 続して延びる少なくとも1本のリブ状陸部と、前記側方 域に位置しタイヤ周方向に所定の間隔で配設した複数個 の第1ブロック陸部からなる側方陸部列と、リブ状陸部 と側方陸部列との間に位置しタイヤ周方向に所定の間隔 で配設した複数個の第2ブロック陸部からなる中間陸部 列とをトレッド部に有する空気入りタイヤにおいて、パ ターンセンターを挟んで向かい合う、一対の第1ブロッ ク陸部同士及び一対の第2ブロック陸部同士は、いずれ もパターンセンター側からトレッド端側に向かって逆ハ の字状の配置関係にあり、前記中間陸部列を構成する第 2ブロック陸部は、タイヤの正面視で、略凸レンズ断面 状の踏面形状を有し、かつ、その長手方向を横切る細溝 の配設によって区分された複数個の分割陸部で構成さ れ、第1ブロック陸部の最もパターンセンター側に位置 する角部及び第2ブロック陸部の両角部に、それぞれの 先端に向かって陸部高さが減少する面取りを施し、リブ 状陸部、第1ブロック陸部及び第2ブロック陸部の各陸 部に、これを横切る複数本のサイプを配設することを特 徴とする空気入りタイヤである。

【0008】また、上記タイヤは、タイヤの負荷転動時 に、第2ブロック陸部は、そのパターンセンター側に立 置する角部からトレッド端側に位置する角部に向かって 性能を得る点から好ましい。

【0009】さらに、ブロックエッジの確保と排水性能 向上効果の双方をバランスよく満足させる場合には、第 2ブロック陸部は、その両角部の先端を結んだ直線mの タイヤ周方向に対する角度が、鋭角側から測定して5~ 55°の範囲にあることがこのましい。

【0010】さらにまた、雪上性能をより高める必要が-ある場合には、第2ブロック陸部は、3個の分割陸部で 構成することが好ましい。

つつ、排水性を有利に向上させる場合には、第1ブロッ ク陸部の最もパターンセンター側に位置する角部及び第 2ブロック陸部の両角部は、その頂角が20~50°の範囲 にあることが好ましい。

【0012】また、ブロック剛性をさほど低下させるこ となく雪上性能を効果的に増加させるには、第1ブロッ ク陸部、及び第2プロック陸部の分割陸部に配設するサ イプの本数はそれぞれ少なくとも2本であることが好ま LW.

【0013】加えて、駆動・制動性能時の操縦性能をよ り一層向上させる場合には、リブ状陸部、第1ブロック 陸部及び第2ブロック陸部の各陸部におけるサイプの配 設角度は、いずれもタイヤ周方向に対して比較的大きな 角度であることがより好適である。

【0014】さらに、パターンノイズの低減を図る必要 がある場合には、パターンセンターを挟んで向かい合 う、一対の第1ブロック陸部同士及び一対の第2ブロック 陸部同士は、いずれもタイヤ周方向に所定の位相差で形 成してなることが好ましい。

【0015】さらにまた、トレッド接地中央域の排水性 能を高めるとともに、雪上性能に有効なエッジ成分を有 効に増加させる手段としては、リブ状陸部は、その両側 壁から所定ピッチで交互に分岐する分岐部を具え、該分 岐部は、第2ブロック陸部のパターンセンター側に位置 する角部と向かい合う鋭角の角部を有し、該角部に、そ の先端に向かって陸部高さが減少する面取りを施すこと が好ましい。

【0016】加えて、特に排水性能を重視する場合に は、リブ状陸部は、タイヤ周方向にストレート状に延び 30 る1対の周方向溝によって区画形成され、該周方向溝 は、第2ブロック陸部のパターンセンター側に位置する 角部と対応する溝壁位置に、タイヤ周方向に隣接する2 個の第2ブロック陸部間に位置する傾斜溝への水の流入 を促進する擬似陸部を設けることが好ましい。

[0017]

【発明の実施の形態】図1は、この発明に従う空気入り タイヤの代表的なトレッド部に形成したトレッドパター ンの一部を示したものである。

【0018】図1に示すトレッド部1を有するタイヤ 順次接地する向きに車両に装着することが、十分を排水 40 は、トレッド部1を中央域2と再側方域2a、3bに区分す。 るとき、前記中央域2に位置しタイヤ周方向4に沿って 連続して延びる少なくとも1本のリブ状陸部5と、前記 側方域3a,3bに位置しタイヤ周方向4に所定の間隔で配 設した複数個の第1ブロック陸部6a,6bからなる側方陸部 列7a,7bと、リブ状陸部5と側方陸部列7a,7bとの間に位 置しタイヤ周方向4に所定の間隔で配設した複数個の第 -2-ブロック-陸部8a-8bからなる中間陸部列9a-9bとを有し

【0019】そして、この発明の構成上の主な特徴は、

【0011】加えて、第1プロック陸部の剛性を確保し、50、トレッド部1の中央域2にリブ状陸部5を配設するとと ---2/19/05, EAST-Version:-2.0.1.4

もに、リブ状陸部5の両側に位置する中間陸部列9a,9b 及び側方陸部列7a,7bのそれぞれのブロック陸部8a,8b及 び6a,6bの形状を適正化して、濡れた路面での排水性能 に有利な方向性パターンを形成し、加えて、各陸部5,6 a,6b,8a,8bを横切るサイプ10を適正に配設することにあ る。

【0020】より具体的には、前記中央域2にタイヤ周 方向に沿って連続して延びる少なくとも1本のリブ状陸 部5を配設し、パターンセンター11を挟んで向かい合 う、一対の第1ブロック陸部6a1,6b1同士及び一対の第2 ブロック陸部8a1,8b1同士を、いずれもパターンセンタ -11側からトレッド端12a,12b側に向かって逆ハの字状 に配置し、第2ブロック陸部8a,8bは、タイヤの正面視 で、略凸レンズ断面状の踏面形状を有し、かつその長手 方向を横切る細溝13の配設によって区分された複数個の 分割陸部14a~14cで構成され、第1ブロック陸部6a,6b の最もパターンセンター11側に位置する角部15及び第2 ブロック陸部の両角部16a,16bに、それぞれの先端17.1 8,19に向かって陸部高さが減少する面取りを施し、リブ 状陸部5、第1ブロック陸部6a,6b及び第2ブロック陸 部8a,8bの各陸部に、これを横切る複数本のサイプ10を 配設することにあり、上記構成を採用することにより、 氷雪路面上での駆動・制動性能と濡れた路面上での排水 性能の双方をバランスよく満足させることができる。

【0021】尚、図1では、パターンセンター11はタイ ヤ赤道位置と一致している場合を示しているが、パター ンセンター11がタイヤ赤道位置から幾分シフトしていて

【0022】以下、この発明を完成させるに至った経緯 を作用とともに説明する。発明者は、氷雪路面上での駆 30 動・制動性能と濡れた路面上での排水性能の双方をバラ ンスよく満足させるため、トレッドパターンを、従来の 点対称パターンではなく、排水性能の点で有利な方向性 パターン、すなわち、パターンセンター11を挟んで向か い合う、一対の第1ブロック陸部6a1,6b1同士及び一対の 第2ブロック陸部8a1,8b1同士を、いずれもパターンセン ター11側からトレッド端12a12b側に向かって逆ハの字状 に配置した方向性パターンを採用することとした。

【0023】そして、発明者はまず、前記中央域2に位む 置しタイヤ周方向4に沿って連続して延びる少なくとも、40~た、同様に、第1ブロック陸部63.66の最もパターンセ 1本のリブ状陸部5を配設すれば、トレッド部1の中央 域2に位置する陸部の接地面積が増加し、乾いた路面 や、氷雪路面のような低摩擦路面を走行したときのグリ ップ力を確保することができる。

【0024】また、トレッド接地域に存在する水を排出 する際に、一方のトレッド半区域20a又は20bに存在する 水が他方のトレッド半区域20b又は20aに移動して、トレ ニッド接地域内で混流を形成することは、タイヤ側方への

ド接地域に存在する水を、左右のトレッド半区域20a,20 bに実質的に分断できるため、上述したような水の混流 を防止することができ、また、トレッド接地中央域に存 在する水をスムーズに分流することができ、この結果、 排水性能が高まる。

【0025】さらに、リブ状陸部5の両側に、それぞれ 複数個の第2ブロック陸部8a,8bからなる中間陸部列9a, 9bと、複数個の第1ブロック陸部6a,6bからなる側方陸部 列7a,7bとを設けて、ブロック基調とすることによっ 10 て、基本的な雪上性能を確保することができる。

【0026】さらにまた、第2ブロック陸部8a,8bの踏 面形状を、図1に示すように略凸レンズ断面状、より具 体的に言えば、2つの円弧の一部を重なり合わせたとき の重なり合った領域の輪郭形状のように流線形の形状に することによって、水流に対するブロック陸部の抵抗を 低減してスムーズに水を分流や合流することができ、そ の結果、排水性が向上する。

【0027】尚、第2ブロック陸部8a,8bは、上記のよ うに略凸レンズ断面状に形成すると、通常のブロックパ ターンの場合の配設ピッチの2~3倍にわたって延在す る長い陸部形状となり、1ピッチ当たりのブロック陸部 のエッジ成分量が減少することになり、これでは、十分 な雪上性能を確保することができない。

【0028】そのため、この発明では、第2ブロック陸 部8a,8bに、その長手方向を横切る細溝13を配設して、 第2ブロック陸部8a,8bを複数個、好ましくは図1に示す ように3個の分割陸部14a~14cに区分することによっ て、排水性能をさほど低下させることなく、1ピッチ当 たりのブロック陸部のエッジ成分量を増加させることが でき、この結果、雪上での制動及び駆動性能を確保する ことができる。

【0029】また、第2ブロック陸部8a,8bを上記のよ うに略凸レンズ断面状に形成すると、その両角部16a,16 bは鋭角に形成されることになり、この構成では、分割 陸部14a,14cの陸部剛性を十分に確保することができな

【0030】そのため、この発明では、第2ブロック陸 部8a,8bの両角部16a,16bに面取りを施すことによって、 分割陸部14a,14cの剛性を確保することができる。ま ンター側に位置する角部15についても、同様に面取りを 施すことによって、第1ブロック陸部6a,6bの脚性を確 保することができる。

【0031】さらに、この発明では、リブ状陸部5、第 1プロック陸部6a,6b及び第2ブロック陸部8a,8bのそれ ぞれに、該陸部を横切る複数本のサイプ10を配設するこ ―ととし、これによって、ブロック剛性を確保しつつ、エ-。火之成分を有効に増加させることができる結果、雪上性

能が向上する。 排水能力を低下させることになるが、この発明では、中 央域2にリブ状陸部5を配設することによって、トレッ 50 【0032】加えてリブ状陸部、第1プロック陸部及び 2/19/05, EAST Version: 2.0-1.4

第2ブロック陸部の各陸部におけるサイプの配設角度 を、いずれもタイヤ周方向に対して比較的大きな角度に すれば、特に駆動・制動性能時の操縦性能をより一層向 上させることができる。

【0033】サイプの前記配設角度は、第2プロック陸 部8a,8bの場合には、図1に示すように、第2ブロック 陸部8a,8bの長手方向と反対の向き(換言すれば、タイ ヤ周線を挟んで交差する向き)でかつタイヤ周方向4に 対して90~140°の角度で配設することが好ましく、ま た、第1ブロック陸部6a,6bの場合あるいはリブ状陸部 5の場合にも、タイヤ周方向4に対して90~140°の角 度で配設することが好ましい。

【0034】尚、図1では、第1ブロック陸部6a,6bや リブ状陸部5へのサイプ10の配設方向は、第2ブロック 陸部8a,8bの場合と同様な角度で配設した場合を示して あるが、特に限定はしない。

【0035】以上のことから、この発明は、上記構成を 有するトレッドパターンを採用することによって、初め て氷雪路面上での駆動・制動性能と濡れた路面上での排 水性能の双方をパランスよく満足した空気入りタイヤの 20 開発に成功したのである.

【0036】次に、他の実施形態について説明する。第 2ブロック陸部8a,8bの両角部16a,16bや、第1ブロック 陸部6a,6bの最もパターンセンター11側に位置する角部1 5に施す面取りは、陸部高さが漸減するようななだらか な曲面状にすれば、排水性能を向上させるのに有利に作 用する。

【0037】さらに、この発明のタイヤは、タイヤ負荷 転動時に、第2ブロック陸部&a,8bが、そのパターンセ ンター11側に位置する角部16aからトレッド端12a.12b側 30 に位置する角部16bに向かって順次接地するような向き に車両に装着すれば、上述した効果が得られる。

【0038】さらにまた、第2ブロック陸部8a,8bは、 その両角部16a,16bの先端18,19を結んだ直線mのタイヤ 周方向4に対する角度が、鋭角側から測定して5~55° の範囲にあることが好ましい。前記角度が5°未満だ と、第2ブロック陸部8a,8bの長さが通常のブロックパ ターンを有するタイヤの4ピッチ以上の長さになり、編... 溝13で分割陸部に区分しても、必要なエッジ成分量が待 られなくなるセそれがあるからであり、また。前記角度、40 が55°よりも大きくなると、第2ブロック陸部8a,8a又は 8b,8b間に形成される傾斜溝21a,21bのタイヤ周方向4に 対する配設角度が大きくなりすぎて、十分な排水性能が 得られなくなる恐れがあるからである。尚、前記角度 は、排水性能と雪上性能の双方をバランスよく満足させ るには、10~50°の範囲にすることがより好適である。 また、細溝13の配設角度は、タイヤ周方向に対して90~・――し、性能評価を行ったので、以下で説明する。

陸部8a,8bの両角部16a,16bは、その頂角&が20~50°の 範囲にあることが好ましい。前記項角が20°未満だと、 ブロック陸部の剛性が不足する傾向があり、また、50° を超えると、トレッド接地域内の水の流線方向と傾斜溝 21a,21bの配設方向とが一致しなくなって排水能力が低 下する傾向があるからである。尚、前記頂角は、より好 適には25~45°とする。

【0040】また、第1ブロック陸部6a,6b、及び第2 ブロック陸部8a,8bの分割陸部14a~14cに配設するサイ 10 プ10の本数はそれぞれ少なくとも2本にすることが雪上 性能を確保する点で好ましく、より好ましくは3~6本

【0041】さらに、パターンセンター11を挟んで向か い合う、一対の第1ブロック陸部6a1,6b1同士及び一対の 第2ブロック陸部8a1,8b1同士を、いずれもタイヤ周方向 4に所定の位相差で形成すれば、パターンノイズの低減 を図ることができる。

【0042】さらにまた、図1に示すように、リブ状陸 部5は、その両側壁から所定ピッチで交互に分岐する分 岐部22を具え、該分岐部22は、第2ブロック陸部8a,8b のパターンセンター11側に位置する角部16aと向かい合 う鋭角の角部23を有し、該角部23に、その先端24に向か って陸部高さが減少する面取りを施せば、トレッド接地 中央域の排水性能を高めるとともに、雪上性能に有効な エッジ成分を有効に増加させることができる。

【0043】加えて、図2に示すように、リブ状陸部5 は、タイヤ周方向4にストレート状に延びる1対の周方 向溝25a,25bによって区画形成され、該周方向溝25a,25b は、第2ブロック陸部&a,8bのパターンセンター11側に 位置する角部16aと対応する溝壁位置に、タイヤ周方向 4に隣接する2個の第2ブロック陸部8a,8a又は8b,8b間 に位置する傾斜溝21a,21bへの水の流入を促進する擬似 陸部26を設ければ、排水性能をより一層向上させること ができる。

【0044】尚、擬似陸部26は、傾斜溝21a,21bへの水 の流入を促進するための形状を有すればよいが、一例を 挙げておくと、図2に示すような略三角形や略台形形状 の平面又は曲面形状にすることが好ましく、また、その 陸部高さをリブ状陸部5の側壁27a,27bからトレッド端1 2a_12bに向かって新属するように構成することが好まし 11.

【0045】上述したところは、この発明の実施形態の 一例を示したにすぎず、請求の範囲において種々の変更 を加えることができる。

[0046]

【実施例】次に、この発明に従う空気入りタイヤを試作

140° の範囲にすることが好ましい。 【0039】加えて、第1プロック陸部6a,6bの最もパー 実施例1のタイヤは、図1に示す下レッドパターンを有 ターンセンター11側に位置する角部15及び第2ブロック 50 し、タイヤサイズが195/65R15であり、ネガティブ率を 2/19/05 EAST-Version: 2.0-1.4

38%とし、第2ブロック陸部8a,8bの、タイヤ周方向4に対する傾斜角度を15°、両角部16a,16bの頂角のを30°とし、サイブ10の配設本数は、第1ブロック陸部6a,6bで7本、第2ブロック陸部8a,8bの分割陸部14a,14b,14cでそれぞれ4本、3本及び4本であり、また、リブ状陸部5には配設ピッチ5.8mmで複数本のサイプ10を配置し、サイプ10の配設角度は、いずれの陸部とも、パターンセンター11で区分した各トレッド半区域20a,20bにて、タイヤ周方向4に対して105°の一定角度及び一定幅(0.5mm)で配設した。各角部15,16a,16b,23の面取り長さは、それぞれ6、12、12、6mmとし、分岐部22は、タイヤ周方向4に対して15°の傾斜角度で配設し、その長さは26mmで形成した。尚、トレッド部以外のタイヤ構造については、通常の乗用車用空気入りタイヤのものとほぼ同様な構成とした。

【0047】:実施例2

実施例2のタイヤは、図2に示すトレッドパターンを有し、ネガティブ率を38%とし、第2ブロック陸部8a,8bの、タイヤ周方向4に対する傾斜角度を15°、両角部16a,16bの頂角を30°とし、サイプ10の配設本数は、第1 20ブロック陸部6a,6bで7本、第2ブロック陸部8a,8bの分割陸部14a,14b,14cでそれぞれ4本、3本及び4本であり、また、リブ状陸部5には配設ピッチ5.8mmでサイプ10を配置し、サイプ10の配設角度は、いずれの陸部とも、パターンセンター11で区分した各トレッド半区域20a,20bにて、タイヤ周方向4に対して105°の一定角度及び一定幅(0.5mm)で配設した。各角部15,16a,16bの面取り長さは、それぞれ6、12、12mmとし、擬似陸部の寸法は、周方向長さを17mm、幅を4.5mmとした。*

*【0048】·従来例

従来例のタイヤは、図3に示すトレッドパターンを有する。

10

【0049】(性能評価)上記各供試タイヤについて、 氷雪性能と排水性能を評価したので以下で説明する。上 記各供試タイヤを標準リム(6JJ)に組み付け、タイ ヤ内圧:230kPa、タイヤ負荷荷重:実車2名乗車相当の 条件下で以下の各試験を行った。

【0050】 氷雪性能は、雪上でのトータル性能、雪上ブレーキ性能及び雪上トラクション性能の3種類の性能によって評価した。雪上でのトータル性能は、圧雪路面のテストコースにおいて、制動性能、発進性能、直進性能及びコーナリング性能をプロのドライバーによるフィーリングによって総合的に評価した。雪上ブレーキ性能は、圧雪路面上を40km/hから急ブレーキ(フル制動)をかけたときの制動距離を測定し、この測定値から評価した。雪上トラクション性能は、圧雪路面上にて、発進して50m位置に達するまでの加速時間を測定し、この測定値から評価した。排水性能は、水深5mmの濡れた路面上を直進走行して通過したときのハイドロプレーニング現象が発生するときの限界速度を測定し、これによって評価した。

【0051】表1にこれらの評価結果を示す。尚、表1中の数値は、従来例を100とした指数比で表しており、いずれの性能とも大きいほど優れていることを示している。

【0052】 【表1】

		従来例	実施例1	実施例2
性	雪上トータル性能	100	105	102
能	雪上プレーキ性能	100	105	103
評	雪上駆動性能	100	105	102
価	排水性能	100	1 2 5	1 3 0

【0053】表1の評価結果から、実施例1及び2は、 従来例に比べて、排水性能及び雪上性能のいずれるが優 れている。

400541 -

【発明の効果】この発明によって、氷雪路面上での駆動 ・制動性能と濡れた路面上での排水性能の双方に優れた 空気入りタイヤの提供が可能になった。

【図面の簡単な説明】

【図1】 この発明に従う代表的な空気入りタイヤのトレッド部の一部の展開図である。

【図2】 この発明に従う他の空気入りタイヤのトレッド部の一部の展開図である。

【図3】 従来例のタイヤのトレッド部の一部の展開図

※【符号の説明】

- 1 トレッド部
- 2 中央域
- 40 3a,3b 侧方域。
 - 4 タイヤ周方向
 - 5 リブ状陸部
 - 6a,6b 第1ブロック陸部
 - 7a,7b 側方陸部列
 - 8a,8b 第2ブロック陸部
 - 9a,9b 中間陸部列

10- サイプ---

11 パターンセンター

12a,12b トレッド端

※50 13 細溝

2/19/05, EAST Version: 2.0-1-4

11

14a,14b,14c 分割陸部 15,16a,16b 角部 17,18,19 角部の先端 20a,20b トレッド半区域 21a,21b 傾斜溝 22 分岐部

Eller State

23 角部

24 角部の先端

25a, 25b 周方向溝

26 擬似陸部

27a,27b リブ状陸部の側壁

【図1】

【図3】

12

【図2】

Machine translation for Japan 2002-103919

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention aims at improvement in the wastewater engine performance on the wet road surface, securing drive / braking engine performance on the snow-and-ice road surface of this tire more to a detail about a pneumatic tire, especially the pneumatic tire for winter.

[0002]

[Description of the Prior Art] For example, the conventional pneumatic tire for winter suitable for running a snow-and-ice road surface top and the so-called snow tire By arranging the zigzag slot and straight slot which extend along a hoop direction as shown in drawing 3, and the transverse groove which extends crosswise [tire] over these slots as the tread pattern While carrying out partition formation of the block land part of two or more polygons at the tread section. The block land part located in the right-and-left tread half area when classifying the tread section into two tread half areas in the pattern pin center, large. It is not what forms the so-called directivity pattern which shifted the block land part located in axial symmetry or a tire hoop direction by predetermined phase contrast across a pattern pin center, large in a right-and-left tread half area. It is common to be arranged as the so-called point symmetry pattern rotated 180 degrees so that the extension direction of the block land part located in one tread half area and the block land part located in the tread half area of another side might become in the direction which reversed the right reverse of a tire hoop direction.

[0003] Although it is effective in arrangement of a straight slot raising the wastewater engine performance on the wet road surface in the case of the tire which has the above-mentioned tread pattern, the improvement effectiveness of drive / braking engine performance on a snow-and-ice road surface is especially small, and although obtained, on the other hand, the effectiveness which controls the wastewater engine performance on the wet road surface, especially generating of hydroplaning is small [a transverse groove / drive / braking engine performance on a snow-and-ice road surface].

[0004] Moreover, although it is effective in arrangement of a zigzag slot raising drive / braking engine performance on a snow-and-ice road surface, there is a fault of being inferior to the wastewater engine performance.

[0005] Therefore, it was difficult to satisfy the both sides of drive / braking engine performance on a snow-and-ice road surface, and the wastewater engine performance on the wet road surface with sufficient balance to the pneumatic tire for winter which has the conventional tread red pattern.

[0006]

[Problem(s) to be Solved by the Invention] The purpose of this invention arranges in the central region of the tread section the rib-like land part continuously prolonged along a tire hoop direction, and the configuration of the block land part of the middle land part train located in the both sides of this rib-like land part and a side land part train is rationalized. While setting up so that a directivity pattern advantageous to the wastewater engine performance in the wet road surface may be formed It is in offering the pneumatic tire with which it was satisfied of the both sides of drive / braking engine performance on a snow-and-ice road surface, and the wastewater engine performance on the wet road surface with sufficient balance by arranging SAIPU which crosses each land part proper.

[0007]

[Means for Solving the Problem] In order to attain the above-mentioned purpose, when this invention classifies the tread section into a central region and the method region of both sides, At least one rib-like land part which is located in said central region and is continuously prolonged along a tire hoop direction. The side land part train which consists of two or more 1st block land parts which were located in said side region and arranged in the tire hoop direction at the predetermined spacing, In the pneumatic tire which has the middle land part train which consists of two or more 2nd block land parts which were located between the rib-like land part and the side land part train, and were arranged in the tire hoop direction at the predetermined spacing in the tread section. The 1st block land parts of a pair which face each other across a pattern pin center, large, and the 2nd block land parts of a pair. The 2nd block land part from which all have [side / pattern pin center, large] the arrangement relation of the shape of reverse. Ha's character toward tread one end, and constitute said middle land part train. It consists of two or more division land parts classified by arrangement of the rill which has a rough convex lens cross-section-like tread configuration, and crosses the longitudinal direction by the front view of a tire. To the corner of the 1st block land part most located in a pattern pin center, large side, and both the corners of the 2nd block land part. It is the pneumatic tire characterized by arranging two or more SAIPU which performs beveling with which land part: height decreases toward each tip, and crosses this to each land part of a rib-like land part.

The second secon

the 1st block land part, and the 2nd block land part.

[0008] Moreover, as for the 2nd block land part, it is [the above-mentioned tire] desirable at the time of load rolling of a tire to equip a car at the sense which carries out sequential touch-down toward the corner located in tread one end from the corner located in the pattern pin center, large side from the point of obtaining sufficient wastewater engine performance.

[0009] Furthermore, it is this better ** that the include angle to the tire hoop direction of the straight line m which connected the tip of both that corner measures the 2nd block land part from an acute-angle side in satisfying reservation of a block edge and the both sides of the improvement effectiveness in the wastewater engine performance with sufficient balance, and it is in the range of 5-55 degrees.

[0010] When the engine performance on the snow needs to be raised more, as for the 2nd block land part, constituting from three division land parts is desirable further again.

[0011] In addition, when raising wastewater nature advantageously, securing the rigidity of the 1st block land part, as for the corner of the 1st block land part most located in a pattern pin center, large side, and both the corners of the 2nd block land part, it is desirable that it is in the range the vertical angle of whose is 20-50 degrees.

[0012] Moreover, in order to make the engine performance on the snow increase effectively, without reducing block rigidity so much, as for the number of SAIPU arranged in the 1st block land part and the division land part of the 2nd block land part, it is desirable respectively that it is at least two.

[0013] In addition, when raising further the controllability ability at the time of drive / braking engine performance, it is more suitable for the arrangement include angle of SAIPU in each land part of a rib-like land part, the 1st block land part, and the 2nd block land part that each is a comparatively big include angle to a tire hoop direction.

[0014] Furthermore, when reduction of a pattern noise needs to be aimed at, as for each of 1st block land parts of a pair which face each other across a pattern pin center, large, and 2nd block land parts of a pair, it is desirable to come to form in a tire hoop direction by predetermined phase contrast.

[0015] While raising the wastewater engine performance of a tread touch-down central region, further again as a means to which an edge component effective in the engine performance on the snow is made to increase effectively A rib-like land part is equipped with the tee which branches by turns in a predetermined pitch from the both-sides wall, and, as for this tee, it is desirable to perform beveling with which it has the corner of the acute angle which faces the corner located in the pattern pin center, large side of the 2nd block land part, and land part height decreases toward the tip to this corner.

[0016] In addition, when thinking especially the wastewater engine performance as important, partition formation of the rib-like land part is carried out by one pair of hoop direction slots which extend in the shape of a straight in a tire hoop direction, and as for this hoop direction slot, it is desirable to prepare the false land part which promotes the inflow of the water to the inclination slot located between the two 2nd block land parts which adjoin the corner located in the pattern pin center, large side of the 2nd block land part and a corresponding groove face location in a tire hoop direction.

[Embodiment of the Invention] <u>Drawing 1</u> shows some tread patterns formed in the typical tread section of a pneumatic tire according to this invention.

[0018] When the tire which has the tread section 1 shown in <u>drawing 1</u> classifies the tread section 1 into the central region 2 and the method regions 3a and 3b of both sides, At least one rib-like land part 5 which is located in said central region 2 and is continuously prolonged along the tire hoop direction 4, The side land part trains 7a and 7b which consist of two or more 1st block land parts 6a and 6b which were located in said side regions 3a and 3b, and were arranged in the tire hoop direction 4 at the predetermined spacing, It has the middle land part trains 9a and 9b which consist of two or more 2nd block land parts 8a and 8b which were located between the rib-like land part 5 and the side land part trains 7a and 7b, and were arranged in the tire hoop direction 4 at the predetermined spacing.

[0019] And while the main descriptions on the configuration of this invention arrange the rib-like land part 5 in the central region 2 of the tread section 1 Each block land part 8a and 8b of the middle land part trains 9a and 9b located in the both sides of the rib-like land part 5 and the side land part trains 7a and 7b and the configuration of 6a and 6b are rationalized. It is in arranging SAIPU 10 which forms a directivity pattern advantageous to the wastewater engine performance in the wet road surface, in addition crosses each land parts 5, 6a, 6b, 8a, and 8b proper.

[0020] At least one rib-like land part 5 continuously prolonged along a tire hoop direction is more specifically arranged in said central region 2. The 1st block land part six al of a pair which faces each other across the pattern pin center, large 11, six bl comrades and the 2nd block land part eight al of a pair, and eight bl comrades All are arranged in the shape of [of reverse Ha] a character toward a tread edge 12a side and the 12b side from the pattern pin center, large 11 side. The 2nd block land parts 8a and 8b It consists of two or more division land parts 14a-14c classified by arrangement of the rill 13 which has a rough convex lens cross-section-like tread configuration, and crosses the longitudinal direction by the front view of a tire. To the corner 15 of the 1st block land parts 6a and 6b most located in the pattern pin center, large 11 side, and both the corners 16a and 16b of the 2nd block land part Beveling with which land part height decreases toward each tip 17, 18, and 19 is performed. By being in arranging two or more SAIPU 10 which crosses this, and adopting the above-mentioned configuration as each land part of the rib-like land part 5, the 1st block land parts 6a and 6b, and the 2nd block land parts 8a and 8b The both sides of drive / braking engine performance on a snow-and-ice road surface and the wastewater engine performance on the wet road surface can be satisfied with sufficient balance.

[0021] In addition, in drawing 1, although the pattern pin center, large 11-shows the case of being in agreement with a tire

The second secon

equatorial location, the pattern pin center, large 11 may shift it from a tire equatorial location a little.

[0022] Hereafter, the circumstances of having come to complete this invention are explained with an operation. In order for an artificer to satisfy the both sides of drive / braking engine performance on a snow-and-ice road surface, and the wastewater engine performance on the wet road surface with sufficient balance, A tread pattern Not the conventional point symmetry pattern but the advantageous directivity pattern in respect of the wastewater engine performance, Namely, the 1st block land part six al of a pair which faces each other across the pattern pin center, large 11, six b1 comrades and the 2nd block land part eight al of a pair, and eight b1 comrades We decided to adopt the directivity pattern which has arranged all in the shape of [of reverse Ha] a character toward the tread edge 12a12b side from the pattern pin center, large 11 side.

[0023] And an artificer can secure the grip force when the crawler bearing area of the land part located in the central region 2 of the tread section 1 increasing, and running the dry road surface and a low friction road surface like a snow-and-ice road surface, if at least one rib-like land part 5 which is located in said central region 2 and is first prolonged continuously along the tire hoop direction 4 is arranged.

[0024] Moreover, although the wastewater capacity to the tire side is made to decline, the water which exists in one tread half area 20a or 20b moving to tread half area 20b or 20a of another side, and forming the abouchement within tread touch-down, in case the water which exists in a tread touch-down region is discharged Since the water which exists in a tread touch-down region by arranging the rib-like land part 5 in the central region 2 in this invention can be substantially divided to the tread half areas 20a and 20b on either side, Splitting of the water which can prevent the abouchement of water which was mentioned above and exists in a tread touch-down central region can be carried out smoothly, consequently the wastewater engine performance increases.

[0025] Furthermore, the fundamental engine performance on the snow is securable by establishing the middle land part trains 9a and 9b which become the both sides of the rib-like land part 5 from two or more 2nd block land parts 8a and 8b, respectively, and the side land part trains 7a and 7b which consist of two or more 1st block land parts 6a and 6b, and considering as the block keynote.

[0026] If the tread configuration of the 2nd block land parts 8a and 8b is told to the shape of a rough convex lens cross section, and a twist concrete target as shown in drawing 1, further again By making a part of two radii into a streamlined configuration like the profile configuration of a field where it overlapped when lapping, the resistance of a block land part to a stream is reduced, and splitting and joining can do water smoothly, consequently wastewater nature improves.

[0027] In addition, if the 2nd block land parts 8a and 8b are formed in the shape of a rough convex lens cross section as mentioned above, it becomes the long land part configuration which extends over two to 3 times of the arrangement pitch in the case of the usual block pattern, the amount of edge components of the block land part per one pitch will decrease, and, now, they cannot secure sufficient engine performance on the snow.

[0028] Therefore, in this invention, the rill 13 which crosses that longitudinal direction to the 2nd block land parts 8a and 8b is arranged. The 2nd block land parts 8a and 8b by classifying more than one into three division land parts 14a-14c, as preferably shown in drawing 1 Without reducing the wastewater engine performance so much, the amount of edge components of the block land part per one pitch can be made to increase, consequently braking in a place on the snow and the drive engine performance can be secured.

[0029] Moreover, if the 2nd block land parts 8a and 8b are formed in the shape of a rough convex lens cross section as mentioned above, both those corners 16a and 16b will be formed in an acute angle, and cannot fully secure the land part rigidity of the division land parts 14a and 14c with this configuration.

[0030] Therefore, in this invention, the rigidity of the division land parts 14a and 14c is securable by beveling to both the corners 16a and 16b of the 2nd block land parts 8a and 8b. Moreover, the rigidity of the 1st block land parts 6a and 6b is securable by beveling similarly similarly about the corner 15 of the 1st block land parts 6a and 6b most located in a pattern pin center, large side.

[0031] Furthermore, in this invention, as a result of being able to make an edge component increase effectively, supposing that two or more SAIPU 10 which crosses this land part is arranged, and securing block rigidity to each of the rib-like land part 5, the 1st block land parts 6a and 6b, and the 2nd block land parts 8a and 8b by this, the engine performance on the snow improves. [0032] In addition, if each makes the arrangement include angle of SAIPU in each land part of a rib-like land part, the 1st block land part, and the 2nd block land part a comparatively big include angle to a tire hoop direction, the controllability ability at the time of drive / braking engine performance can be raised especially further.

[0033] Said arrangement include angle of SAIPU in the case of the 2nd block land parts 8a and 8b As shown in <u>drawing 1</u>, it is the sense (if it puts in another way) opposite to the longitudinal direction of the 2nd block land parts 8a and 8b. Are the sense which crosses on both sides of the tire circumference, and it is desirable to arrange at the include angle of 90-140 degrees to the tire hoop direction 4. Moreover, it is desirable to arrange at the include angle of 90-140 degrees to the tire hoop direction 4 also the case of the 1st block land parts 6a and 6b or in the case of the rib-like land part 5.

[0034] In addition, especially limitation is not carried out although <u>drawing 1</u> has shown the case where the arrangement direction of SAIPU 10 to the 1st block land parts 6a and 6b or the rib-like land part 5 is arranged at the same include angle as the case of the 2nd block land parts 8a and 8b.

[0036] Next, other operation gestalten are explained. Beveling performed to both the corners 16a and 16b of the 2nd block land parts 8a and 8b and the corner 15 of the 1st block land parts 6a and 6b most located in the pattern pin center, large 11 side will act in favor of raising the wastewater engine performance, if it is made into the shape of a gently-sloping curved surface which land part height dwindles.

[0037] Furthermore, if sense in which the 2nd block land parts 8a and 8b carry out sequential touch-down toward tread edge 12a and corner 16b located in the 12b side from corner 16a located in that pattern pin center, large 11 side at the time of tire load rolling is equipped with the tire of this invention at a car, the effectiveness mentioned above will be acquired.

[0038] As for the 2nd block land parts 8a and 8b, it is desirable that the include angle to the tire hoop direction 4 of the straight line m which connected the tips 18 and 19 of both the corners 16a and 16b measures from an acute-angle side, and is in the range of 5-55 degrees further again. If said include angle is less than 5 degrees, even if the die length of the 2nd block land parts 8a and 8b will turn into die length of four or more pitches of the tire which has the usual block pattern and it will classify into a division land part by the rill 13 If it is because there is a possibility that the required amount of edge components may no longer be obtained and said include angle becomes larger than 55 degrees It is because there is a possibility that the arrangement include angle to the tire hoop direction 4 of the inclination slots 21a and 21b formed between the 2nd block land parts 8a and 8a or 8b, and 8b may become large too much, and sufficient wastewater engine performance may no longer be obtained. In addition, in order to satisfy the both sides of the wastewater engine performance and the engine performance on the snow with sufficient balance, it is more suitable for said include angle to make it the range of 10-50 degrees. Moreover, as for the arrangement include angle of a rill 13, it is desirable to make it the range of 90-140 degrees to a tire hoop direction.

[0039] In addition, as for the corner 15 of the 1st block land parts 6a and 6b most located in the pattern pin center, large 11 side, and both the corners 16a and 16b of the 2nd block land parts 8a and 8b, it is desirable that it is in the range the vertical angle theta of whose is 20-50 degrees. It is because there is an inclination for the direction of an elementary stream of the water of the area within tread touch-down and the arrangement direction of the inclination slots 21a and 21b to stop being in agreement, and for wastewater capacity to decline when there is an inclination for the rigidity of a block land part to run short if said vertical angle is less than 20 degrees and it exceeds 50 degrees. In addition, said vertical angle is more suitably made into 25-45 degrees. [0040] Moreover, as for the number of SAIPU 10 arranged in the 1st block land parts 6a and 6b and the division land parts 14a-14c of the 2nd block land parts 8a and 8b, carrying out to at least two is desirable respectively at the point of securing the engine performance on the snow, and it makes it 3-6 more preferably.

[0041] Furthermore, if each of the 1st block land part six al of a pair which faces each other across the pattern pin center, large 11, six bl comrades and 2nd block land parts eight al of a pair, and eight bl comrades is formed in the tire hoop direction 4 by predetermined phase contrast, reduction of a pattern noise can be aimed at.

[0042] As shown in drawing 1, further again the rib-like land part 5 It has the tee 22 which branches by turns in a predetermined pitch from the both-sides wall. This tee 22 If beveling with which it has the corner 23 of the acute angle which faces corner 16a located in the pattern pin center, large 11 side of the 2nd block land parts 8a and 8b, and land part height decreases toward the tip 24 to this corner 23 is performed While raising the wastewater engine performance of a tread touch-down central region, an edge component effective in the engine performance on the snow can be made to increase effectively.

[0043] As shown in drawing 2, in addition, the rib-like land part 5 Partition formation is carried out by one pair of hoop direction slots 25a and 25b which extend in the shape of a straight in the tire hoop direction 4. These hoop direction slots 25a and 25b In corner 16a located in the pattern pin center, large 11 side of the 2nd block land parts 8a and 8b, and a corresponding groove face location If the false land part 26 which promotes the inflow of the water to the inclination slots 21a and 21b located between the two 2nd block land parts 8a and 8a which adjoin the tire hoop direction 4 or 8b, and 8b is formed, the wastewater engine performance can be raised further.

[0044] In addition, although it should just have a configuration for promoting the inflow of the water to the inclination slots 21a and 21b, when an example is given, as for the false land part 26, it is desirable to make it the flat surface of an abbreviation triangle or an abbreviation trapezoid configuration or a curved-surface configuration as shown in drawing 2, and it is desirable the land part] to constitute so that the land part height may be dwindled toward the tread edges 12a and 12b from the side attachment walls 27a and 27b of the rib-like land part 5.

[0045] The place mentioned above cannot be passed for an example of the operation gestalt of this invention to have been shown, but various modification can be added in a claim.

[0046]

[Example] Next, since the pneumatic tire according to this invention was made as an experiment and the performance evaluation was performed, it explains below

- The tire of example 1 example 1 has the tread pattern shown in <u>drawing 1</u>. Tire sizes are 195 / 65R15, and the rate of a negative is made into 38%. The vertical angle theta of 15 degrees and both the corners 16a and 16b is made into 30 degrees for whenever [to the tire hoop direction 4 of the 2nd block land parts 8a and 8b / tilt-angle]. The arrangement number of SAIPU 10 By the 1st block land parts 6a and 6b, respectively by the division land parts 14a, 14b, and 14c of 7 and the 2nd block land parts 8a and 8b Four It is 3 and 4 and two or more SAIPU 10 is arranged by arrangement pitch 5.8mm to the rib-like land part 5. The arrangement include angle of SAIPU 10 Which land part was arranged to the tire hoop direction 4 in each tread half areas 20a and 20b classified in the pattern pin center, large 11 with the fixed include angle of 105 degrees, and constant width (0.5mm). Setting the beveling die length of each corners 15, 16a, 16b, and 23 to 6, 12, and 12 or 6mm, respectively, the tee 22 was arranged by whenever [tilt-angle / of 15 degrees] to the tire-hoop direction 4, and formed the die-length-by-26mm. In addition, and arranged by whenever [tilt-angle / of 15 degrees] to the tire-hoop direction 4, and formed the die-length-by-26mm. In addition, and arranged by whenever [tilt-angle / of 15 degrees]

about tire structures other than the tread section, it considered as the almost same configuration as the thing of the usual pneumatic tire for passenger cars.

[0047] - The tire of example 2 example 2 has the tread pattern shown in drawing 2. The rate of a negative is made into 38%, and the vertical angle theta of 15 degrees and both the corners 16a and 16b is made into 30 degrees for whenever [to the tire hoop direction 4 of the 2nd block land parts 8a and 8b / tilt-angle]. The arrangement number of SAIPU 10 By the 1st block land parts 6a and 6b, respectively by the division land parts 14a, 14b, and 14c of 7 and the 2nd block land parts 8a and 8b Four It is 3 and 4 and SAIPU 10 is arranged by arrangement pitch 5.8mm to the rib-like land part 5. The arrangement include angle of SAIPU 10 Which land part was arranged to the tire hoop direction 4 in each tread half areas 20a and 20b classified in the pattern pin center, large 11 with the fixed include angle of 105 degrees, and constant width (0.5mm). The beveling die length of each corners 15, 16a, and 16b was set to 6 and 12 or 12mm, respectively, and the dimension of a false land part set hoop direction die length to 17mm, and it set width of face to 4.5mm.

[0048] - The tire of the conventional example conventional example has the tread pattern shown in drawing 3.

[0049] (Performance evaluation) Since the snow-and-ice engine performance and the wastewater engine performance were evaluated, each above-mentioned sample offering tire is explained below. Each above-mentioned sample offering tire was attached to the standard rim (6JJ), and each following trial was performed under the conditions of tire internal pressure:230kPa and tire load load:real vehicle binary-name entrainment.

[0050] Three kinds of engine performance of the total engine performance in a place on the snow, brake performance on the snow, and the on-the-snow traction engine performance estimated the snow-and-ice engine performance. The total engine performance in a place on the snow evaluated synthetically the braking engine performance, the start engine performance, the rectilinear-propagation engine performance, and the cornering engine performance with the feeling by a pro's driver in the test course of a hardened snow road surface. Brake performance on the snow measured the brake stopping distance when slamming the brake (full braking) for a hardened snow road surface top from 40 km/h, and evaluated it from this measured value. The on-the-snow traction engine performance measured the acceleration time until it departs and arrives at 50m location on a hardened snow road surface, and evaluated it from this measured value. The wastewater engine performance measured critical speed in case hydroplaning when carrying out rectilinear-propagation transit of the wet with a depth of 5mm road surface top, and passing occurs, and evaluated it by this.

[0051] These evaluation results are shown in Table 1. In addition, the numeric value in Table 1 expresses the conventional example with the characteristic ratio set to 100, and shows that it is excellent, so that which engine performance is large. [0052]

[Table 1]

		従来例	実施例1	実施例2
性	雪上トータル性能	100	105	102
能	雪上プレーキ性能	100	105	1 0 3
評	雪上駆動性能	100	105	102
衠	排水性能	100	1 2 5	1 3 0

[0053] the evaluation result of Table 1 to the examples 1 and 2 -- the conventional example -- comparing -- both the wastewater engine performance and the engine performance on the snow -- although -- it excels.

[0054]

[Effect of the Invention] Offer of the pneumatic tire which was excellent in the both sides of drive / braking engine performance on a snow-and-ice road surface and the wastewater engine performance on the wet road surface with this invention was attained.

	done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] At least one rib-like land part which is located in said central region and is continuously prolonged along a tire hoop direction when classifying the tread section into a central region and the method region of both sides, The side land part train which consists of two or more 1st block land parts which were located in said side region and arranged in the tire hoop direction at the predetermined spacing, In the pneumatic tire which has the middle land part train which consists of two or more 2nd block land parts which were located between the rib-like land part and the side land part train, and were arranged in the tire hoop direction at the predetermined spacing in the tread section The 1st block land parts of a pair which face each other across a pattern pin center, large, and the 2nd block land parts of a pair The 2nd block land part from which all have [side / pattern pin center, large] the arrangement relation of the shape of reverse Ha's character toward tread one end, and constitute said middle land part train It consists of two or more division land parts classified by arrangement of the rill which has a rough convex lens cross-section-like tread configuration, and crosses the longitudinal direction by the front view of a tire. To the corner of the 1st block land part most located in a pattern pin center, large side, and both the corners of the 2nd block land part The pneumatic tire characterized by arranging two or more SAIPU which performs beveling with which land part height decreases toward each tip, and crosses this to each land part of a rib-like land part, the 1st block land part, and the 2nd block land part.

[Claim 2] It is the pneumatic tire which indicated the 2nd block land part at claim 1 which carries out sequential touch-down toward the corner located in tread one end from the corner located in the pattern pin center, large side at the time of load rolling of a tire.

[Claim 3] The 2nd block land part is the pneumatic tire indicated to claim 1 which the include angle to the tire hoop direction of the straight line (m) which connected the tip of both the corner measures from an acute-angle side, and has it in the range of 5-55 degrees, or 2.

[Claim 4] The 2nd block land part is the pneumatic tire indicated to claims 1 and 2 constituted from three division land parts, or 3.

[Claim 5] The corner of the 1st block land part most located in a pattern pin center, large side and both the corners of the 2nd block land part are the pneumatic tire indicated in any 1 term of claims 1-4 in the range the vertical angle of whose is 20-50 degrees.

[Claim 6] The number of SAIPU arranged in the 1st block land part and the division land part of the 2nd block land part is the pneumatic tire indicated in any 1 term of claims 1-5 whose number is at least two, respectively.

[Claim 7] The arrangement include angle of SAIPU in each land part of a rib-like land part, the 1st block land part, and the 2nd block land part is the pneumatic tire indicated in any 1 term of claims 1-6 which each makes a comparatively big include angle to a tire hoop direction.

[Claim 8] Each of 1st block land parts of a pair which face each other across a pattern pin center, large, and 2nd block land parts of a pair is the pneumatic tire indicated in any 1 term of claims 1-7 which it comes to form in a tire hoop direction by predetermined phase contrast.

[Claim 9] It is the pneumatic tire indicated in any 1 term of claims 1-8 which perform beveling with which a rib-like land part is equipped with the tee which branches by turns in a predetermined pitch from the both-sides wall, this tee has the corner of the acute angle which faces the corner located in the pattern pin center, large side of the 2nd block land part, and land part height decreases toward the tip to this corner.

[Claim 10] It is the pneumatic tire which partition formation of the rib-like land part was carried out by one pair of hoop direction slots which extend in the shape of a traight in a tire hoop direction, and indicated this hoop direction slot in any 1 term of claims 1-8 which prepare the false land part which promotes the inflow of the water to the inclination slot located between the two 2nd block land parts which adjoin a tire hoop direction in the corner located in the pattern pin center, large side of the 2nd block land part, and a corresponding groove face location.

[Translation done.]