Seja (a_n) uma sucessão de números reais. A expressão

$$a_1 + a_2 + \ldots + a_n + \ldots$$

traduz a série gerada pela sucessão (a_n) . Diz-se também que a_n é o **termo geral** da **série**. Podemos também denotar a série de termo geral a_n pelos símbolos

$$\sum_{n=1}^{\infty} a_n.$$

Vamos agora associar à série a sucessão das somas parciais (S_n) definida por

Exemplo: Paradoxo do atleta

A série $\sum_{n=1}^{\infty} a_n$ diz-se **convergente** (ou que converge) se a respetiva sucessão das somas parciais (S_n) for convergente, i.e, se existir e for finito o limite

$$\lim_{n\to\infty} S_n.$$

Nesse caso, chama-se soma da série ao valor desse limite e escreve-se

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n.$$

Caso contrário, i.e., se a sucessão das somas parciais for divergente, a série diz-se **divergente** (ou que diverge). Um dos objectivos principais deste capítulo é analisar a natureza de uma série numérica, ou seja, averiguar se ela é convergente ou divergente.

Exemplos:
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 $\sum_{n=1}^{\infty} (-1)^n$ $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

$$\textstyle\sum_{n=1}^{\infty} (-1)^n$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Série dos inversos dos factoriais:

$$1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} + \ldots = e$$

Série "alternada" dos inversos dos naturais:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{n+1} \frac{1}{n} + \ldots = \ln 2$$

Série de Gregory:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots + (-1)^{n+1} \frac{1}{2n-1} + \ldots = \frac{\pi}{4}$$

Séries de Euler :

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$$
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots + \frac{1}{(2n-1)^2} + \dots = \frac{\pi^2}{8}$$

Séries geométricas. Chama-se série geométrica a toda a série que é gerada por uma progressão geométrica, ou seja, da forma

$$a + ar + ar^{2} + \ldots + ar^{n-1} + \ldots = \sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^{n}$$

onde $a \neq 0$ é o primeiro termo e $r \in \mathbb{R}$ é a **razão**. Convenciona-se $0^0 = 1$.

$$S_n = \left\{ egin{array}{l} na, \ \mathrm{se} \ r = 1 \ arac{1-r^n}{1-r}, \ \mathrm{se} \ r
eq 1. \end{array}
ight.$$

A série geométrica $\sum_{n=1}^{\infty} ar^{n-1}$ converge se e só se |r| < 1 e, nesse caso, temos

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

Exemplos: $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n}$; $\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$

$$\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$$

Séries redutíveis. Uma série diz-se redutível (ou telescópica, ou de Mengoli) se o termo geral a_n pode ser escrito numa das formas

$$a_n = u_n - u_{n+p}$$
 ou $a_n = u_{n+p} - u_n$

para alguma sucessão (u_n) e para algum $p \in \mathbb{N}$. Exemplos:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+4)}; \qquad \sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

$$\sum_{n=1}^{\infty} (u_n - u_{n+p}) = u_1 + \ldots + u_p - p \lim_{n \to \infty} u_n.$$

3.2 Propriedades gerais

Teorema Para qualquer $p \in \mathbb{N}$, as séries $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=p+1}^{\infty} a_n$ têm a mesma natureza, i.e., ou são ambas convergentes ou ambas divergentes.

$$\sum_{n=1}^{\infty} a_n = S_p + \sum_{n=p+1}^{\infty} a_n = S_p + R_p$$

 $\sum_{n=p+1}^{\infty} a_n$ designa-se por resto de ordem p e denota-se por R_p .

Teorema Se a série $\sum_{n=1}^{\infty} a_n$ é convergente, então $\lim_{p\to\infty} R_p = 0$.

Teorema (condição necessária de convergência) Se a série $\sum_{n=1}^{\infty} a_n$ é convergente, então $\lim_{n\to\infty} a_n = 0$.

Teste de divergência: Se $\lim_{n\to\infty} a_n \neq 0$ então $\sum_{n=1}^{\infty} a_n$ é divergente.

3.2 Propriedades gerais

Exemplo:
$$\sum_{n=1}^{\infty} \frac{n}{5n+1}$$

A condição $\lim_{n\to\infty}a_n\neq 0$ é necessária para a convergência mas não é suficiente. Veja-se o que acontece, por exemplo, nos seguintes casos:

Exemplo:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

Se $\lim_{n \to \infty} a_n = 0$, então nada se pode concluir sobre a natureza de $\sum_{n=1}^\infty a_n$

3.2 Propriedades gerais

Proposição

1 Se $\lambda \in \mathbb{R}$ e $\sum_{n=1}^{\infty} a_n$ é convergente, então $\sum_{n=1}^{\infty} \lambda a_n$ converge e

$$\sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n$$

- ② Se $\lambda \neq 0$ e a série $\sum_{n=1}^{\infty} a_n$ é divergente, então $\sum_{n=1}^{\infty} \lambda a_n$ diverge.
- § Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são ambas convergentes, então $\sum_{n=1}^{\infty} a_n + b_n$ converge e

$$\sum_{n=1}^{\infty} a_n + b_n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

3 Se $\sum_{n=1}^{\infty} a_n$ é convergente e $\sum_{n=1}^{\infty} b_n$ é divergente, então $\sum_{n=1}^{\infty} a_n + b_n$ diverge.

Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são ambas divergentes, então nada se pode concluir.

Exemplos: $\sum_{n=1}^{\infty} ((-1)^n + (-1)^{n+1}) \in \sum_{n=1}^{\infty} (n^2 + \frac{n}{4n+3})$

Exemplos:

- $\sum_{n=1}^{\infty} ((-1)^n + (-1)^{n+1})$
- $\sum_{n=1}^{\infty} (\frac{1}{2^n} + \frac{1}{(n+1)n})$
- $\sum_{n=1}^{\infty} (1 + \frac{1}{2^n})$

Exercícios de revisão capítulos 1 e 2:

1a teste 2014/15

- 1. Em cada uma das alíneas, determina uma função f(t) cuja transformada de Laplace seja F(s).
 - $F(s) = \frac{2s-1}{s^2+3}$
 - $(s) = \frac{d}{ds} \frac{1 e^{-3s}}{s}$
- 2. Resolve:
 - $y' + \frac{x \cos x}{y \sin y} = 0$
 - ② $xy'' y' = 3x^2$ (sugestão: começa por fazer uma mudança de variável z = y').