AiSD L2Z7

Maurycy Borkowski

31.03.2021

Zadanie 7

Podzielmy zbiór zadań na: $S_1 = \{i : A_i < B_i\}$ i $S_2 = \{i : A_i \geqslant B_i\}$. Posortujmy S_1 rosnąco po A_i a S_2 malejąco o B_i . Odpowiedź $S_1 \cup S_2$.

Dowód. Weźmy dowolne rozwiązanie optymalne S jeżeli Snie jest powyższejpostaci to musi być spełniony jeden z przypadków dla dwóch kolejnych zadań $i,j\le S.$

Możemy iterować się po kolei od 1 do n-1 i sprawdzać czy każda para kolejnych zadań spełnia warunek konieczny bycia w rozwiązaniu algorytmu (poprawna kolejność w $S_{1,2}$ i poprawna kolejność procesowania najpierw S_1 potem S_2). Taka para nie znajdzie się w tym rozwiązaniu tylko wtedy gdy spełniony jeden z poniższych warunków. Jeżeli nie znajdziemy, żadnej takiej pary dla kolejnych zadań to S jest powyższej postaci.:

- 1. $j \in S_2 \land i \in S_1$
- $2. i, j \in S_1 \land A_i > A_i$
- 3. $i, j \in S_2 \land B_i < B_i$

Pokażemy, że w każdym z tych przypadków zmiana zadań i,j da nam rozwiązanie niegorsze niż S. Oznaczenia:

S' - S z zamienionymi zadaniami i, j

 b_1 - zakończenie poprzedniego (przed i) zadania w S

 b_1^\prime - zakończenie poprzedniego (przed j) zadania w S^\prime

 b_2 - zakończenie obu zadań w ${\cal S}$

 b_2' - zakończenie obu zadań w S'

$$\alpha = \max(b_1, (A_j + a_1))$$
rozpoczęcie pierwszego zadania $b \le S$ $\beta = \max(a_2, (B_j + \alpha))$ rozpoczęcie drugiego zadania $b \le S$ $b_2 = B_i + \beta = \max(a_1 + A_j + A_i + B_i, B_j + B_i + b_1, B_j + B_i + A_j + a_1)$ $\gamma = \max(b_1, (A_i + a_1))$ rozpoczęcie pierwszego zadania $b \le S'$ $\delta = \max(a_2, (B_i + \gamma))$ rozpoczęcie drugiego zadania $b \le S'$ $b'_2 = B_j + \delta = \max(a_1 + A_j + A_i + B_j, B_j + B_i + b_1, B_j + B_i + A_i + a_1)$

1.
$$j \in S_2 \land i \in S_1 \implies A_j \geqslant B_j \land A_i < B_i$$
:

$$\underbrace{a_1 + A_j + A_i + B_i}_{1. \quad w \quad b_2} \geqslant \underbrace{B_i + B_j + A_i + a_1}_{3. \quad w \quad b_2'}$$

$$\underbrace{B_j + B_i + A_j + a_1}_{3. \quad w \quad b_2} \geqslant \underbrace{a_1 + A_j + A_i + B_j}_{1. \quad w \quad b_2'}$$

2.
$$i, j \in S_1 \land A_j > A_i \implies A_j > A_i \land A_i < B_i$$

$$\underbrace{B_j + B_i + A_j + a_1}_{3. \quad w \quad b_2} > \underbrace{B_i + B_j + A_i + a_1}_{3. \quad w \quad b_2'}$$

$$\underbrace{B_j + B_i + A_j + a_1}_{3. \quad w \quad b_2} > \underbrace{a_1 + A_j + A_i + B_j}_{1. \quad w \quad b_2'}$$

3.
$$i, j \in S_2 \land B_j < B_i \implies A_j \geqslant B_j \land B_j < B_i$$

$$\underbrace{a_1 + A_j + A_i + B_i}_{1. w b_1} \geqslant \underbrace{B_i + B_j + A_i + a_1}_{3. w b_2'}$$

$$\underbrace{a_1 + A_j + A_i + B_i}_{1. \quad w \quad b_2} > \underbrace{a_1 + A_j + A_i + B_j}_{1. \quad w \quad b_2'}$$

W każdym przypadku mamy: $b_2 \geqslant b_2'$. Zmiana nie pogarsza rozwiązania. \Box źródło