ECE 220 Computer Systems & Programming

Lecture 26 – Linked List July 22, 2020

MT2 this Friday

The Linked List Data Structure

A linked list is an ordered collection of nodes, each of which contains some data, connected using pointers.

- Each node points to the next node in the list.
- The first node in the list is called the
- The last node in the list is called the

Array vs. Linked List

Element 0

Element 1

Element 2

	Array	Linked List
Memory Allocation		
Memory Structure		
Memory Overhead		
Order of Access		
Insertion/Deletion		

Example: A List of Student Record

```
typedef struct studentStruct Node;
struct studentStruct{
  int UIN;
  float GPA;
  Node *next;
};
Head
Pointer
UIN,GPA
UIN,GPA
NULL
```

We have a list of 200 student records (nodes) sorted by UIN

- 1. Find a particular student record by UIN
- 2. Add a new student record to the sorted list at the correct location
- 3. Delete a student record from the list

Find a student record by UIN in a sorted list

/* If matching UIN is found, print "record found" and return a pointer
to this node, otherwise print "record not found" and return NULL */
Node *find_node(Node *head, int find_UIN){

][

Add a new student record to a sorted list

Delete an existing student record from a sorted list

