Lemma: Let u be an odd integer and $e \ge 3$, then u^{2e-2} $u^{2} \equiv 1 \pmod{2^e}$

Remark: Hence ord_e (u) $\leq 2^{e-2} < 2^{e-1} = \phi(2^e)$ and u cannot be a primitive root.

Proof: By induction on e

Base case e = 3: $|^2 = 3^2 = 5^2 = 7^2 = 1 \pmod{8}$

Assume $u = 1 \pmod{2^e}$, i.e $u^2 = k \cdot 2^e + 1$.

Then,

$$u^{2^{e-1}} = (e^{2^{e-2}})^{2} = (k \cdot 2^{e} + 1)^{2}$$

$$= k^{2} \cdot 2^{2e} + 2 \cdot k \cdot 2^{e} + 1$$

$$= 0 + 0 + 1$$

$$= 1 \pmod{2^{e+1}}.$$

2 behaves very different than odd primes p. we should investigate this further.

Is there a unit u such that $\operatorname{ord}_{2^n}(u) = 2^{n-2}$? $(n \geqslant 3)$

Theorem: ord₂ⁿ (5) = 2^{n-2}

Proof: We already know ord_n(5) $|\phi(n)=2^{n-1}$. To prove ord_n(5) = 2^{n-2} , we need

1. $5^{2^{n-2}} \equiv 1 \pmod{2^n}$ - already proved in lemma 2. $5^{2^{n-3}} \neq 1 \pmod{2^n}$

Then, ord_n(5) $|2^{n-2}$ and ord_n(5) $|2^{n-3}$ gives ord_n(5) = 2^{n-2}

$$5^{2^{n-3}} = (5^{2^{n-4}} + 1)(5^{2^{n-4}})$$

$$= (5^{2^{n-4}} + 1)(5^{2^{n-5}} + 1)(5^{2^{n-5}})$$

$$= (5^{2^{n-4}} + 1)(5^{2^{n-5}} + 1)(5^{2^{n-6}})$$

$$= (5^{2^{n-4}} + 1)(5^{2^{n-5}} + 1)(5^{2^{n-6}} + 1)...(5^{2^{n-6}} + 1)(5^{n-6})$$

Each factor above is $2 \pmod{4}$, except 5-1. Therefore, the power of 2 contained in 5^{2} -1 is 1+1+1+...+1+2=n-1, i.e.

n-3 times

 $2^{n-1} \parallel 5^{2^{n-3}} \Rightarrow 5^{2^{n-3}} \not\equiv 1 \pmod{2^n}$

5 generates 2^{n-2} units of \mathbb{Z}_{2^n} (half of them), so the units \mathbb{Z}_{2^n} forms almost cyclic group

Examples: (1) n=4

(2) n = 5

Observation: u, -u (mod 2^n): one of them is generated by 5 while the other is not In particular, -1 (mod 2^n) is not generated by 5

Theorem: Units of \mathbb{Z}_{2^n} can be generated by two units: 5 and -1. In other words,

units of $\mathbb{Z}_{2^n} \equiv \left\{ \pm 5^k : 1 \le k \le 2^{n-2} \right\}$

Proof: There are $\phi(2^n) = 2^{n-1}$ units in \mathbb{Z}_{2^n} . Clearly all the 2^{n-1} numbers in $\{\pm 5^k : 1 \le k \le 2^{n-2}\}$ are all units and we just need to show that they are all distinct. Want to show

•
$$5 \neq 5 \pmod{2^n}$$
 for $1 \leq k \leq l \leq 2^{n-2}$:

This is equivalent to $5^{l-k} \neq 1 \pmod{2^n}$ which is true because $1 \leq l-k \leq 2^{n-2} - 1$ and $ord_{2^n}(5) = 2^{n-2}$

•
$$-5^k \neq -5^\ell \pmod{2^n}$$
 for $1 \leq k \leq \ell \leq 2^{n-2}$

Equivalent to the previous case.

•
$$5^k \equiv -5^\ell \pmod{2^n}$$
 for $1 \leq k \leq \ell \leq 2^{n-2}$

This is equivalent to $5^{l-k} \neq -1 \pmod{2^n}$

which is true because $5^{\ell-k} \neq -1 \pmod{4}$

•
$$5^{k} = -5^{\ell} \pmod{2^{n}}$$
 for $1 \le \ell \le k \le 2^{n-2}$

This is equivalent to $5 \neq -1 \pmod{2^n}$

which is true because $5 \neq -1 \pmod{4}$.