Package 'ExamplePackage'

March 7, 2018

, 2010
Type Package
Title What the Package Does (Title Case)
Version 0.1.0
Author Who wrote it
Maintainer The package maintainer <yourself@somewhere.net></yourself@somewhere.net>
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License What license is it under?
Encoding UTF-8
LazyData true
Imports dplyr, ggplot2
RoxygenNote 6.0.1
R topics documented: movingaverage
Index 4
movingaverage Moving Average
Description We created a function that calculates a moving average of a specified window width across a vector.
Usage
<pre>movingaverage(x = x, side = "both", numbertoside = NULL)</pre>

2 SimTtestPower

Arguments

x a vector for which you will be calculating the moving average.

side whether you want to average elements on the left, right, or both sides (see illus-

tration below). This argument should accept the following values: "left", "right", "both".

number to side the number of elements to the side of your index element that you want to in-

clude in the moving average.

Details

To create this function, we only used methods that were introduced in either Lecture 1 or Lecture 2.

Value

A vector of the moving average

Examples

```
input data <-c(0,2.457,3.878,3.663,1.90,-0.658,-2.943,-3.986,-3.349,-1.299,1.299,3.349,3.986,2.943,0.658,-1.904,-3.663,-3.878,-2.457,0)\\ moving average (x=input data,number to side=3,side="both")
```

SimTtestPower

Two-Sample Power Calculation Based on Simulation

Description

Power is the probability we reject the null hypothesis given it is false. Building on this definition, create a function that uses simulations to estimate power for a two-sample T-test.

Usage

```
SimTtestPower(Var1mean = NULL, Var2mean = NULL, Var1sd = NULL,
   Var2sd = NULL, Var1samplesize = NULL,
   var2samplesize = NULL,
   var2samplesize = NULL,
   var2samplesize = NULL,
   var2samplesize = NULL,
```

Arguments

Variable 1 mean
Variable 2 mean

Variable 1 standard deviation
Var2sd Variable 2 standard deviation

Var1samplesize Variable 1 sample size
Var2samplesize Variable 2 sample size
nsim Number of simulations
alphalevel alpha-level (default=0.05)

SimTtestPower 3

Details

First, you will need to simulate two normally distributed variables, each with a distinct sample size, mean, and standard deviation, and perform a T-test. For that single simulation, evaluate if we would reject the null hypothesis given a specific alpha-level. Now repeat this simulation many times. Power can then be estimated as the proportion of simulations for which we rejected the null hypothesis.

Value

Empirical power calculation

Examples

SimTtestPower(Var1mean=20, Var2mean=22, Var1sd=4, Var2sd=6, Var1samplesize=40, Var2samplesize=40, nsim=10000, alphalevel=0.05)

Index

 ${\tt movingaverage}, \\ 1$

SimTtestPower, 2