Análisis y Diseño de Circuitos Eléctricos

Universidad del Valle de México (UVM)

Introducción

O Hoy vivimos en un mundo predominantemente eléctrico. Las dos áreas primarias de la electrotecnología que permean esencialmente todos los aspectos de nuestras vidas son la **potencia** y la **información**.

Introducción

 La electrotecnología es una fuerza impulsora de los cambios que están ocurriendo en cada disciplina de la ingeniería.

Introducción

Fundamental a la electrotecnología es el área del **análisis de circuitos**.

Sistemas de unidades

TABLE 1.4 SI Base Units		
Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s^a
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	Α
Luminous intensity	Candela	cd
*The abbreviation sec is frequently used.		

Sistemas de unidades

International System of Units (SI)

SI Base Units

Base Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	Α
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

SI Derived Units

Derived Quantity	Name	Symbol	Equivalen SI units
Frequency	hertz	Hz	s ⁻¹
Force	newton	N	m·kg·s-2
Pressure	pascal	Pa	N/m ²
Energy	joule	J	N∙m
Power	watt	W	J/s
Electric charge	coulomb	C	s·A
Electric potential	volt	V	W/A
Electric resistance	ohm	Ω	V/A
Celsius temperature	degree Celsius	°C	K*

*Unit degree Celcius is equal in magnitude to unit kelvin.

SI Prefixes

Factor	Name	Symbol	Numerical Value
10 ¹²	tera	Т	1 000 000 000 000
10 ⁹	giga	G	1 000 000 000
10 ⁶	mega	M	1 000 000
10 ³	kilo	k	1 000
10 ²	hecto	h	100
10 ¹	deka	da	10
10^{-1}	deci	d	0.1
10^{-2}	centi	C	0.01
10 ⁻³	milli	m	0.001
10 ⁻⁶	micro	μ	0.000 001
10 ⁻⁹	nano	'n	0.000 000 001
10 ⁻¹²	pico	р	0.000 000 000 001

Adapted from NIST Special Publication 811

© 2006 Finn Scientific, Inc. All Rights Reserved AP6R99

[.] SI rules and style conventions recommend using spaces rather than commas to separate groups of three digits.

 Circuito eléctrico: Es la interconexión de componentes eléctricos.

 La cantidad más elemental en un análisis de circuitos eléctricos es la carga eléctrica. La carga se mide en coulombs (C).

The Sub-atomic Particles				
Relative size	Name	Mass (Kg)	Charge (C)	
	Proton	1.67 x 10 ⁻²⁷	+1.602 x 10 ⁻¹⁹	
	Neutron	1.67 x 10 ⁻²⁷	0	
• size exaggerated	Electron	9.11 x 10 ⁻³¹	-1.602 x 10 ⁻¹⁹	

Nos interesa el movimiento de la carga eléctrica ya que da como resultado la transferencia de energía. Un circuito eléctrico es esencialmente un conducto que facilita la transferencia de carga desde un punto a otro.

 La razón de cambio de la carga con respecto al tiempo constituye una corriente eléctrica.

$$i(t) = \frac{dq(t)}{dt}$$
 o $q(t) = \int_{-\infty}^{t} i(x)dx$

La unidad básica es el ampere (A). Un ampere equivale a 1 coulomb por segundo (1 C/s).

Corriente real vs. Corriente convencional

O Corriente alterna vs. Corriente directa

Voltaje (también llamado tensión, diferencia de potencial o fuerza electromotriz).- Es la diferencia en el nivel de energía de una unidad de carga localizada en uno de los dos puntos de un circuito.

$$v = \frac{dw}{dq}$$

FIGURA 1.6 Representaciones de voltaje.

- O Absorción de energía.Una corriente positiva entra en la terminal positiva y sale por la terminal negativa.
- O Suministro de energía.- Una corriente positiva entra en la terminal negativa y sale por la terminal positiva.

$$vi = \frac{dw}{dq} \left(\frac{dq}{dt} \right) = \frac{dw}{dt} = p$$

Ejercicios

Tarea 1

O Hacer ejercicios del 2.1 al 2.7 del libro de Irwin (p. 85 y 86)