Game Theory and Applications (博弈论及其应用)

Chapter 10: Extensive Game with Imperfect Information

南京大学

高尉

Recap on Extensive Game

- The extensive game is an alternative representation that makes the temporal structure explicit
- Nash equilibrium
- Subgame perfect equilibrium (SPE): an outcome is SPE if it is Nash Equilibrium in every subgame
- How to find SPE back induction and one deviation
- Two variants
 - Perfect information: game tree
 - Imperfect information

Motivation

- Extensive game with perfect information
 - Know all previous strategies for all players
- Sometimes, players
 - Don't know all the strategies the other take or
 - Don't recall all their own past actions
- Extensive game captures some of this unknown
 - A later choice is made without knowledge of an earlier choice
- How to represent the case two players make choices at the same time, in mutual ignorance of each other

Player 2 does not know the choice of player 1 over M or R

Player 1 does not know if he has made a choice or not

Definition of extensive game with Perfect Information

An extensive game with perfect information is defined by $G = \{N, H, P, \{u_i\}\}$

- Players *N* is the set of *N* players
- Histories H is a set of sequence $a^1 \dots a^k$, where each component a^i is a strategy
- Player function $P(h): H \to N$ is the player who takes action after the history h
- Payoff function u_i
- Action set $A(h) = \{a: (h, a) \in H\}$ for non-terminal h

Ultimatum Game

 $\cup\{((0,2),y),((0,2),n)\}$

$$G = \{N, H, P, \{u_i\}\}\$$

$$N = \{A, B\}$$

$$H = \{\emptyset, (2,0), (1,1), (0,2), ((2,0),y)\}$$

$$\cup \{((2,0),n), ((1,1),y), ((1,1),n)\}$$

$$Q = \{N, H, P, \{u_i\}\}\}$$

$$Q = \{N, H, P, \{u_i\}\}$$

$$Q = \{N, H, P,$$

$$P: P(\emptyset) = A; P((2,0)) = B; P((1,1)) = B; P((0,2)) = B$$

 $A: A(\emptyset) = \{(2,0),(0,2),(1,1)\}; A((2,0)) = A((0,2)) = A((1,1)) = \{y,n\}$

Extensive Game with Imperfect Information

Player 1 does not know the choice of player 2 over LA or LB Nonterminal histories: {Ø, L, LA, LB}

- \triangleright Player 1 has information set $I_1 = \{\emptyset, \{LA, LB\}\},\$
- \triangleright Player 2 has information set $I_2 = \{\{L\}\}$

- Player 1 has information set $I_{11} = \{\emptyset\}$
- Player 2 has information set $I_{21} = \{C\}$
- Player 3 has the information set $I_{31} = \{D, Cd\}$

Definition of Extensive Game with Imperfect Information

An extensive game with imperfect information is defined by $G = \{N, H, P, I, \{u_i\}\}$

- Information set $I = \{I_1, I_2, ... I_N\}$ is the set of information partition of all players' strategy nodes, where the nodes in an information set are indistinguishable to player
 - $I_i = \{I_{i1}, ..., I_{ik_i}\}$ is the information partition of player i
 - $I_{i1} \cup \cdots \cup I_{ik_i} = \{\text{all nodes of player } i\}$
 - $-I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$
 - Action set A(h) = A(h') for $h, h' \in I_{ij}$, denote by $A(I_{ij})$
 - $P(I_{ij})$ be the player who plays at information set I_{ij}
- An extensive game with perfect information is a special case where each I_{ij} contains only one node

Pure Strategies

- A pure strategy for player i selects an available action at each of i's information sets I_{i1}, \dots, I_{im}
- All pure strategies for player *i* is

$$A(I_{i1}) \times A(I_{i2}) \times A(I_{im})$$

where $A(I_{ij})$ denotes the strategies available in I_{ij}

What's the pure strategies for players 1 and 2?

Pure Strategies

What's the pure strategies for players 1 and 2?

•
$$I_1 = \{I_{11}, I_{12}\} = \{\emptyset, \{LA, LB\}\}\$$
 $I_2 = \{I_{21}\} = \{\{L\}\}\$

- $A(I_{21}) = \{A, B\}$
- The pure strategy for player 2: A, B
- $A(I_{11}) = \{L, R\}, A(I_{12}) = \{a, b\}$
- The pure strategy for player 1: *La, Lb, Ra, Rb*

Normal-Form Representation of Extensive Imperf. Game

0,2

R

1,1

• The pure and mixed strategy Nash Equilibrium remains?

(1,1)

• What's the difference from the extensive game with perfect information game?

Extensive Representation of Normal-Form Game

A strategy game \Longrightarrow An extensive game with imperfect inf.

Exercise: 3-Players Game

$$G = \{\{1,2,3\}, \{\{a,b,c\}, \{x,y,z\}, \{L,R\}\}, \{u_i\}_{i=1}^3\}$$

P3 chooses L

P2

 χ \boldsymbol{Z} **P1**

P3 chooses R

P2

 χ \boldsymbol{Z} **P1**

Perfect Recall (完美回忆) and Imperfect Recall

- An extensive game has perfect information if each information set consist of only one nodes
- An extensive game has perfect recall if each player recalls exactly what he did in the past
 - otherwise, this game has imperfect recall

Perfect recall

Example of Imperfect Recall

Player *i* has **perfect recall** in game G if for any two history h and h' that are in the same information set for player i, for any path $h_0, h_1, ..., h_n, h$ and $h'_0, h'_1, ..., h'_m, h'$ from the root to h and h' with $P(h_k) = P(h'_k) = i$, we have

- \bullet n = m
- $h_i = h'_i$ for $1 \le i \le n$
- $a(h_i) = a(h'_i)$ where a(h) denotes the action after h

G is a game of perfect recall if every player has perfect recall in it.

Definition of Mixed and Behavioral Strategies

Mixed Strategies: A mixed strategy of player i in an extensive game is a probability over the set of player i's

pure strategy

Behavioral strategies: A behavior strategy of player i is a collection $\beta_{ik}(I_{ik})_{I_{ik} \in I_i}$ of independent probability measure, where $\beta_{ik}(I_{ik})$ is a probability measure over $A(I_{ik})$

Behavioral strategies distinguish from mixed strategies

A behavioral strategy for player 1:

- Selects A with prob. 0.5, and B otherwise
- choose G with prob. 0.3, and H otherwise

Here's a mixed strategy that isn't a behavioral strategy

- > Pure Strategy AG with probability 0.6, pure strategy BH 0.4
- The choices at the two nodes are not independent

In imperfect-information games, mixed and behavioral strategies produce different sets of equilibria

- In some games, mixed strategies can achieve equilibria that aren't achievable by any behavioral strategy
- In some games, behavioral strategies can achieve equilibria that aren't achievable by any mixed strategy

Consider game Player 1 inform. set: {{Ø, L}} L R U D 1,0 100,100 5,1 2,2

- Player 1: R is a strictly dominant strategy
- Player 2: D is a strictly dominant strategy
 - (R, D) is the unique Nash equilibrium for mixed strategy

- 1: the information set is $\{(\emptyset,L)\}$
- 2: D is a strictly dominant strategy

Player 2's best response to D:

- Player 1's the behavioral strategy [L, p; R, 1 p] i.e., choose L with probability p
- The expected payoff of player 1 is
- $U_1 = p^2 + 100p(1 p) + 2(1 p) = -99p^2 + 98p + 2$
- To find the maximum, we have p = 49/99

(R,D) is not an equilibrium for behavioral strategy

Kuhn Theorem (1953)

Theorem In an finite extensive game with perfect recall

- any mixed strategy of a player can be replaced by an equivalent behavioral strategy
- any behavioral strategy can be replaced by an equivalent mixed strategy
- Two strategies are equivalent

Corollary In an finite extensive game with perfect recall, the set of Nash equilibrium does not change if we restrict ourselves to behavior strategies

What behavioral strategy is equivalent to mixed strategy $(p_{AC}, p_{AD}, p_{BC}, p_{BD})$

- $I_{11} = \{\emptyset\} I_{12} = \{AM, AR\}$
- $A(I_{11}) = \{A, B\}$
- $A(I_{12}) = \{C, D\}$

•
$$\beta_{11}(I_{11})(A) = p_{AC} + p_{AD} \beta_{11}(I_{11})(B) = p_{BC} + p_{BD}$$

•
$$\beta_{12}(I_{12})(C) = \frac{p_{AC}}{p_{AC} + p_{AD}} \quad \beta_{12}(I_{12})(D) = \frac{p_{AD}}{p_{AC} + p_{AD}}$$

What mixed strategy is equivalent to behavioral strategy of prob. *p* over A and *q* over C

$$(p_{AC}, p_{AD}, p_{BC}, p_{BD})$$

$$= (pq, p(1-q), (1-p)q, (1-p)(1-q))$$

What are Nash Equilibria

What are Nash Equilibria

What are Nash Equilibria