

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 07

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Basic Psychological Research and Research Methods

cognitive model
statistics
computing

What is Cognitive Modeling?

statistics computing

cognitive model

statistics computing

Essentially, all the models are wrong, but some are useful.

- George E. P. Box

Essentially, all the models are wrong imperfect, but some are useful.

REINFORCEMENT LEARNING FRAMEWORK

cognitive model
statistics
computing

cognitive model

statistics computing

The very short history

1998 2018

Boom in Cognitive Modeling

cognitive model

statistics computing

statistics computing

2-armed bandit task

a simple task often used in the laboratory:

- repeated choice between N options (N-armed bandit)
- ...whose properties (reward amounts, probabilities) are learned through trial-and-error
- ...with a goal in mind: maximize the overall reward

statistics computing

2-armed bandit task

What can be your strategies:

- I. predict the value of each deck
- 2. choose the best
- 3. learn from outcome to update predictions (repeat)

How prediction is shaped by learning?

cognitive model

statistics

computing

Modeling the 2-armed bandit task

how do you suggest to model this learning process?

suppose we ran this experiment on a person

our models are basically detailed hypotheses about behavior and about the brain... we can test these hypotheses!

statistics computing

One simple experiment: two choice task

cognitive model

statistics computing

choice presentation

action selection

outcome

Elements

statistics computing

what do we know?

what can we measure?

what do we not know?

Data: choice & outcome

Summary stats: choice accuracy

Learning algorithm: RL update

Rescorla-Wagner Value Update

statistics
computing

Cognitive Model

- cognitive process
- using internal variables and free parameters

Observation Model (Data Model)

- relate model to observed data
- has to account for noise

Rescorla & Wagner (1972)

Rescorla-Wagner Value Update

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

- learning rate

reward prediction error

value

- reward

cognitive model

statistics

computing

statistics

computing

Understand the learning rate

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

$$V_1 = 0$$

$$V_2 = V_1 + 0.9 * (1 - V_1)$$

$$= 0 + 0.9 * (1 - 0)$$

$$= 0.9$$

computing

Understand the learning rate

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

statistics

computing

Understand the learning rate

Value update:

$$V_{t+1} = V_t + \alpha * PE$$

Prediction error:

$$PE = R_t - V_t$$

statistics computing

Optimal learning rate?

Rescorla-Wagner Value Update

cognitive model statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

choice rule: greedy / ε-greedy / softmax

Choice rule: greedy

$$p(C = a) = \begin{vmatrix} 1, V(a) > V(b) \\ 0, V(a) < V(b) \end{vmatrix}$$

Choice rule: ε-greedy

$$p(C=a) = \begin{vmatrix} 1-\varepsilon, V(a) > V(b) \\ \varepsilon, V(a) < V(b) \end{vmatrix}$$

Choice rule: softmax

statistics computing

$$p(C=a) = \frac{e^{\tau^*V(a)}}{e^{\tau^*V(a)} + e^{\tau^*V(b)}} = \frac{1}{1 + e^{-\tau^*(V(a) - V(b))}}$$

statistics computing

Choice rule: direct comparison

Rescorla-Wagner Value Update

cognitive model

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error: $PE = R_t - V_t$

$$PE = R_t - V_t$$

choice rule (sigmoid /softmax):

$$p(C=a) = \frac{1}{1+e^{\tau*(v(b)-v(a))}}$$

learning rate

reward prediction error

value

- reward

softmax temperature

cognitive model

statistics

computing

Generalizing RL framework

A. Trial details

(750-1500ms)

Palminteri et al. (2015)

Lockwood et al. (2016)

Swart et al. (2017)

