

Kapittel 20

Karboksylsyrer og nitriler

Karboksylsyrer og nitriler

- Viktige stoffklasser
 - Syrer er utgangsstoff for
 - Estere
 - Nitriler
 - Syreklorider
 - Amider
- Navnsetting
- Struktur og egenskaper
 - Syrestyrker
- Fremstilling av karboksylsyrer
- Reaksjoner til karboksylsyrer

karboksylsyre

KJM 1110 - Mats Tilset

Navnsetting

Karboksylsyrer

- Lokaliser den lengste kjeden med karboksylsyregruppen
 - I navnsettingssammenheng høyeste prioritet av alle grupper vi har omtalt systematisk til nå
 - Alle andre funksjonelle grupper angis som substituenter
- Karbonyl-C er pr.definisjon posisjon 1
 - Etterstavelse -ansyre
- Sykliske karboksylsyrer angis som substituenter på ringen
 - -karboksylsyre
- Veldig mange syrer omtales med trivialnavn
 - Ofte avledet fra materiale syrene er isolert fra

Nitriler

- Enkle nitriler angis ved å legge til -nitril etter hydrokarbonets navn; nitril-C er posisjon nr. 1
- Trivialnavn ofte avledet fra karboksylsyras trivialnavn
- Som substituent: cyano-

Karboksylsyregruppen: Struktur og egenskaper

- Geometri
 - sp² hybridisert C-atom
 - sp² hybridisert C=O-atom
 - sp³ hybridisert C-O-atom
 - Plan struktur, 120° bindingsvinkler
- Elektroniske egenskaper
 - Polar gruppe
 - Hydrogenbindende

 Hydrogenbundne dimerer i flytende og fast fase – høye kokepunkt

$$H_3C-C$$
 $C-CH_3$
 $C-CH_3$

Hydrogenbundet dimer av eddiksyre

karboksylsyre

Karboksylsyrers syreegenskaper

"Henderson-Hasselbalchs ligning" = "bufferligningen"

•
$$pK_a = -\log K_a = -\log \frac{A^- H_3 O^+}{A^-}$$
 og $\log \frac{A^-}{A^-} = pH - pK_a$

og
$$\log \frac{A^-}{A^-} = pH - pK_a$$

- En sterk syre har lav p K_a , en svak syre har høy p K_a

Eksempler på p K_a -verdier:

- CH ₃ CH ₂ OH	16.0	(alkohol)
$- C_6H_5OH$	9.9	(fenol)
− CH ₃ COOH	4.8	(karboksylsyre)
- C ₆ H ₅ COOH	4.2	(karboksylsyre)
- HOCH ₂ COOH	3.8	(karboksylsyre)
- CF ₃ COOH	0.2	(karboksylsyre)

Induktive effekter og resonanseffekter påvirker syrestyrkene

Alkohol sammenlignet med karboksylsyre

Alkoholatanionet er ikke resonansstabilisert

Acetic acid

Karboksylsyrer er surere fordi deres korresponderende baser (anioner) er resonansstabiliserte

Acetate ion (delocalized charge)

Syrestyrken påvirkes av substituenter

- Elektrontiltrekkende substituenter
 - Øker syrestyrken (reduserer pK_a-verdien)
 - Stabiliserer den korresponderende basen (anionet)
- Elektrondonerende substituenter
 - Reduserer syrestyrken (øker pK_a-verdien)
 - Destabiliserer den korresponderende basen (anionet)

KJM 1110 - Mats Tilset

Fremstilling av karboksylsyrer

- Kjent fra før
 - Oksidasjon av sidekjeder på aromater med KMnO₄
 - Oksidasjon av primær alkohol
 - Oksidasjon av aldehyd
- Nye metoder
 - Karboksylering av Grignard-reagenser

$$R-Br \xrightarrow{Mg(s)} R-MgBr \xrightarrow{1. CO_2} R-CO$$
OH

Hydrolyse av nitriler

$$R-Br \xrightarrow{Na^{+}CN^{-}} R-C \equiv N \xrightarrow{1. OH^{-}, H_{2}O} R-C \xrightarrow{OH^{-}} R$$

Fremstilling av nitriler

- Kjent fra før
 - Nukleofil substitusjon (S_N2) på alkylhalider

$$R-Br \xrightarrow{Na^+CN^-} R-C=N$$

- Ny metode
 - Dehydratisering (vannavspalting) av primære amider

$$R-C$$
 + $SOCI_2$ \longrightarrow $R-C\equiv N + 2 HCI + $SO_2$$

Nitrilers egenskaper

Beslektet med karbonylgruppen

Nitrilers reaksjoner

Nukleofilt angrep på det elektrofile nitril-karbonet

Hydrolyse (katalysert av syre eller base) gir primært amid...

$$R-C\equiv N$$
1. $OH^{-}, H_{2}O$
2. $H_{3}O^{+}$
 $R-C$
 NH_{2}

...og deretter, ved høyere temperaturer, karboksylsyre

Reduksjon av nitril med LiAlH₄ gir primært amin

$$R-C \equiv N \xrightarrow{2. H_3O^+} R-CH_2-NH_2$$