《系统工程导论》第三次作业 黑箱建模 1

要求:

- 1. 实现函数linear_regressionl(data, alpha)
- 2. 输入为Nx2的矩阵data,第一列为Y,第二列为X;显著性水平alpha;
- 3. 打印出回归直线方程(也可以打印中间过程数据)
- 4. 用F检验进行统计检验, matlab中F分布对于给定显著性水平和自由度的分度数函数为finv, 请大家自行学习使用该函数; python 请大家自己找合适的函数。输出检验结果, 如果输入数据满足线性关系, 那么继续做5和6, 否则结束
- 5. 打印出置信区间, matlab 中标注正态分布相应的分位数函数是norminv, 请 大家自行学习使用该函数
- 6. 画出所有数据点、回归直线(y 为因变量,x 为自变量)和置信区间对应的两条边界线
- 7. 完成作业报告,显著性水平取 0.05

解答:

1. 结果图像:

由图可见, 一元线性回归直线方程为

$$y = 5.18 - 134.61x$$

符合显著性水平 $\alpha = 0.05$ 的要求,置信区间为

$$y = 5.18 - 134.61x \pm 1.59$$

2. 求解过程:

(1) 原始数据如下:

编号	成分A(x)	成分B(y)	编号	成分A(x)	成分B(y)
1	0.009	4.0	8	0.014	1.7
2	0.013	3.44	9	0.016	2.92
3	0.006	3.6	10	0.014	4.8
4	0.025	1.0	11	0.016	3.28
5	0.022	2.04	12	0.012	4.16
6	0.007	4.74	13	0.020	3.35
7	0.036	0.6	14	0.018	2.2

(2) 求解一元线性回归方程

原理: 假设已经得到了x和y的若干数据对 x_i 和 y_i (i=1,2,...,N), 称为样本点,

如果x和y存在某种线性关系,则x和y可用 $y = a + bx + \varepsilon$ 表示,其中a和b是待定系数, ε 是随机变量,该模型为一元回归模型。利用最小二乘原理使目标误差平方和最小,可以得到:

$$X_i = [x_1 - \bar{x}, x_2 - \bar{x}, \dots, x_N - \bar{x}], \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$Y_i = [y_1 - \bar{y}, y_2 - \bar{y}, \dots, y_N - \bar{y}], \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$\hat{b} = \frac{\sum X_i Y_i}{\sum X_i^2} = \frac{L_{xy}}{L_{xx}}, \hat{a} = \bar{y} - \hat{b}\bar{x}$$

一元回归直线方程:

$$y = \hat{a} + \hat{b}x$$

(3) 显著性检验

F检验中计算F的公式:

$$F = \frac{(N-2)ESS}{RSS}$$

对于给定的显著性水平 α 以及自由度(1,N-2),可以用finv(p,v1,v2)来计算 F_a ,其中p取 $1-\alpha$,v1和v2分别取1和N-2。比较F和 F_a ,当 $F>F_a$ 时,否定原假设,认为x和y不存在线性关系,否则接受原假设。

(4) 精度分析

通过F检验确定x和y存在线性关系,接下来求取置信区间。首先求取y的剩余均方差为:

$$S_{\delta} = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y})^2}{N-2}} = \sqrt{\frac{RSS}{f_R}}$$

再用norminv(p,u,sigma)求取标准正态分布上 $\alpha/2$ 百分位点的值 $Z_{\alpha/2}$,,其中p取 $1-\alpha/2$, u取 0, sigma取 1. 这样得到:

$$L_1: y_1 = a + bx - Z_{\alpha/2}S_{\delta}$$

$$L_2: y_2 = \alpha + bx + Z_{\alpha/2}S_\delta$$