

规格书

1 节锂离子/锂聚合物电池保护 IC

目 录

1.	概述	5
2.	特点	5
3.	应用	5
4.	方框图	6
5.	订购信息	6
6.	产品目录	7
6.1.	电气参数选择	7
6.2.	延迟时间代码-延迟时间参数选择	8
6.3.	特性代码-其它功能选择	9
7.	封装、脚位及标记信息	9
8.	绝对最大额定值	11
9.	电气特性	12
9.1.	电气参数(延迟时间除外)	12
9.2.	延迟时间参数	13
10.	电池保护IC应用电路示例	14
11.	工作说明	15
11.1.	. 正常工作状态	15
11.2.	. 过充电状态	15
11.3.	. 过放电状态	15
11.4.	. 放电过流状态(放电过流检测功能和负载短路检测功能)	16
11.5.	. 充电过流状态	16
11.6.		
11.7.	. 向 0V 电池充电功能(禁止)	17
12.	特性(典型数据)	18
13.	封装信息	21
13.1.	. DFN-6L 封装	21
13.2	. SOT-23-6 封装	22

1 节锂离子/锂聚合物电池保护 IC

14. 修订记录.......23

1 节锂离子/锂聚合物电池保护 IC

注意:

- 1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.hycontek.com。
- 2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。
- 3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4、请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。
- 5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。
- 6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。
- 7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。
- 8、本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。

1 节锂离子/锂聚合物电池保护 IC

1. 概述

HY2113 系列 IC,内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

2. 特点

HY2113 全系列 IC 具备如下特点:

(1) 高精度电压检测电路

•	过充电检测电压	4.000~4.500V	精度±25mV
•	过充电释放电压	3.800~4.500V	精度±50mV
•	过放电检测电压	2.00~3.10V	精度±50mV
•	过放电释放电压	2.00~3.40V	精度±50mV
•	放电过流检测电压	25~250mV	精度±15mV
•	充电过流检测电压	-40mV ~ -100mV	精度±20mV
•	负载短路检测电压	0.85V(固定)	精度±0.3V

- (2) 各延迟时间由内部电路设置(不需外接电容)
- (3) 休眠功能:可以选择"有"或"无"(详见产品目录)
- (4) 过放自恢复功能:可以选择"有"或"无"(详见产品目录)
- (5) 低耗电流(具有休眠功能的型号)
 - 工作模式 典型值 3.0µA , 最大值 6.0µA (VDD=3.9V)
 - 休眠模式 最大值 0.1µA (VDD=2.0V)
- (6) 连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值是20V)
- (7) 向 0V 电池充电功能:可以选择"允许"或"禁止"
- (8) 宽工作温度范围: -40℃~+85℃
- (9) 小型封装: DFN-6L & SOT-23-6
- (10) 无卤素绿色环保产品

3. 应用

- 1 节锂离子可再充电电池组
- 1 节锂聚合物可再充电电池组

4. 方框图

5. 订购信息

● 产品名称定义

1 节锂离子/锂聚合物电池保护 IC

6. 产品目录

6.1. 电气参数选择

● DFN-6L 封装

表 1、电气参数选择表

参数	过充电检测	过充电释	过放电检	过放电释	放电过流	充电过流	延迟时间	特性代码
	电压	放电压	测电压	放电压	检测电压	检测电压	代码	
型号	V _{cu}	V _{CR}	V _{DL}	V_{DR}	V _{DIP}	V _{CIP}	-	-
HY2113-AA1A	4.280V	4.080V	2.30V	2.30V	125mV	-100mV	1	Α
HY2113-BA1A	4.325V	4.125V	2.50V	2.80V	150mV	-100mV	1	Α
HY2113-CA1A	4.275V	4.075V	2.30V	2.30V	150mV	-100mV	1	Α
HY2113-DA1A	4.275V	4.175V	2.30V	2.40V	100mV	-100mV	1	Α
HY2113-EA1B	4.300V	4.100V	2.30V	2.30V	150mV	-100mV	1	В
HY2113-FA2B	4.250V	4.050V	2.50V	2.80V	200mV	-100mV	2	В
HY2113-GA3A	4.280V	4.080V	3.00V	3.00V	75mV	-50mV	3	Α
HY2113-HA3A	4.280V	4.280V	2.80V	2.80V	50mV	-50mV	3	Α
HY2113-IA2C	4.190V	4.190V	2.70V	3.00V	100mV	-40mV	2	С
HY2113-LA1A	4.200V	4.200V	2.50V	2.50V	150mV	-100mV	1	Α
HY2113-MA1A	4.280V	4.280V	2.80V	2.80V	250mV	-100mV	1	Α
HY2113-NA4A	4.380V	4.280V	2.60V	2.80V	150mV	-100mV	4	Α
HY2113-NA4B	4.380V	4.280V	2.60V	2.80V	150mV	-100mV	4	В
HY2113-OA1B	4.400V	4.200V	2.80V	3.00V	150mV	-100mV	1	В
HY2113-JA1B	4.275V	4.075V	2.80V	2.80V	150mV	-100mV	1	В
HY2113-KA5B	4.250V	4.190V	2.80V	3.00V	150mV	-100mV	5	В
HY2113-PA5B	4.250V	4.190V	2.50V	3.00V	150mV	-100mV	5	В

备注:

- 1、表 1 中列出各电气参数的典型值,各电气参数的精度请参阅表 8。
- 2、延迟时间代码对应的延迟时间参数请参阅表 3;特性代码对应的其它功能特性请参阅表 4。
- 3、需要上述规格以外的产品时,请与本公司业务部联系。

● SOT-23-6 封装

表 2、电气参数选择表

参数	过充电检测	过充电释	过放电检	过放电释	放电过流	充电过流	延迟时间	4+ 44. /D77
	电压	放电压	测电压	放电压	检测电压	检测电压	代码	特性代码
型号	V _{CU}	V _{CR}	V _{DL}	V _{DR}	V _{DIP}	V _{CIP}	-	-
HY2113-AB1A	4.280V	4.080V	2.30V	2.30V	125mV	-100mV	1	Α
HY2113-BB1A	4.325V	4.125V	2.50V	2.80V	150mV	-100mV	1	Α
HY2113-CB1A	4.275V	4.075V	2.30V	2.30V	150mV	-100mV	1	Α
HY2113-DB1A	4.275V	4.175V	2.30V	2.40V	100mV	-100mV	1	Α
HY2113-EB1B	4.300V	4.100V	2.30V	2.30V	150mV	-100mV	1	В
HY2113-FB2B	4.250V	4.050V	2.50V	2.80V	200mV	-100mV	2	В
HY2113-GB3A	4.280V	4.080V	3.00V	3.00V	75mV	-50mV	3	А
HY2113-HB3A	4.280V	4.280V	2.80V	2.80V	50mV	-50mV	3	Α
HY2113-IB2C	4.190V	4.190V	2.70V	3.00V	100mV	-40mV	2	С
HY2113-LB1A	4.200V	4.200V	2.50V	2.50V	150mV	-100mV	1	Α
HY2113-MB1A	4.280V	4.280V	2.80V	2.80V	250mV	-100mV	1	А
HY2113-NB4A	4.380V	4.280V	2.60V	2.80V	150mV	-100mV	4	Α
HY2113-NB4B	4.380V	4.280V	2.60V	2.80V	150mV	-100mV	4	В
HY2113-OB1B	4.400V	4.200V	2.80V	3.00V	150mV	-100mV	1	В
HY2113-JB1B	4.275V	4.075V	2.80V	2.80V	150mV	-100mV	1	В
HY2113-KB5B	4.250V	4.190V	2.80V	3.00V	150mV	-100mV	5	В
HY2113-PB5B	4.250V	4.190V	2.50V	3.00V	150mV	-100mV	5	В

备注:

- 1、表 2 中列出各电气参数的典型值,各电气参数的精度请参阅表 8。
- 2、延迟时间代码对应的延迟时间参数请参阅表 3;特性代码对应的其它功能特性请参阅表 4。
- 3、需要上述规格以外的产品时,请与本公司业务部联系。

6.2. 延迟时间代码一延迟时间参数选择

表 3、延迟时间代码一延迟时间参数选择表

延迟时间	过充电检测延迟时 间	过放电检测延迟时 间	放电过流检测延迟时间	充电过流检测延迟 时间	负载短路检测延迟 时间
代码	T _{oc}	T _{OD}	T _{DIP}	T _{CIP}	T _{SIP}
1	1200ms	140ms	12ms	8ms	300µs
2	1000ms	20ms	12ms	8ms	300µs
3	1200ms	140ms	6ms	8ms	300µs
4	250 ms	20ms	12ms	8ms	150µs
5	1000ms	140ms	24ms	16ms	300µs

备注:

1、表 3 中列出各延时时间参数的典型值,各延时时间参数的精度详见表 9~表 13。

6.3. 特性代码一其它功能选择

表 4、特性代码一其它功能选择表

特性代码	向 0V 电池充电功能	休眠功能/过放自恢复功能
Α	允许	有休眠功能
В	允许	有过放自恢复功能
С	禁止	有过放自恢复功能

7. 封装、脚位及标记信息

● DFN-6L 封装

表 5、DFN-6L 封装

脚位	符号	说明		
1	NC	无连接		
2	OC	充电控制用 MOSFET 门极连接端子		
3	OD	放电控制用 MOSFET 门极连接端子		
4	VSS	接地端,负电源输入端子		
5	VDD	电源端,正电源输入端子		
6	CS	过电流检测输入端子,充电器检测端子		

#: 序列号,按 A~Z 顺序设定。

\$: 延迟时间代码,按1~9顺序设定。

&: 特性代码,按 A~Z 顺序设定。

xxx: 日期编码。

● SOT-23-6 封装

表 6、SOT-23-6 封装

脚位	符号	说明
1	OD	放电控制用 MOSFET 门极连接端子
2	CS	过电流检测输入端子,充电器检测端子
3	OC	充电控制用 MOSFET 门极连接端子
4	NC	无连接
5	VDD	电源端,正电源输入端子
6	VSS	接地端,负电源输入端子

- 3: 产品名称。
- #: 序列号,按 A~Z 顺序设定。
- \$: 延迟时间代码,按1~9顺序设定。
- &: 特性代码,按 A~Z 顺序设定。

XXXX: 日期编码。

1 节锂离子/锂聚合物电池保护 IC

8. 绝对最大额定值

表 7、绝对最大额定值(VSS=0V, Ta=25℃,除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	V
OC 输出端子电压	V _{OC}	VDD-20~VDD+0.3	V
OD 输出端子电压	V_{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-20~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	${\mathbb C}$
储存温度范围	T _{ST}	-40~+125	${\mathbb C}$
容许功耗	P_D	250	mW

9. 电气特性

9.1. 电气参数(延迟时间除外)

表 8、电气参数(延迟时间参数除外。VSS=0V,Ta=25℃,除非特别说明。)

项目	符号	条件	最小值	典型值	最大值	单位				
		输入电压								
VDD-VSS 工作电压	V_{DSOP1}	-	1.5	_	8	V				
VDD-CS 工作电压	V_{DSOP2}	-	1.5	_	20	V				
		耗电流(有休眠功能的型	号)							
工作电流	I_{DD}	V _{DD} =3.9V	-	3.0	6.0	μΑ				
休眠电流	I_{PD}	V _{DD} =2.0V	-	-	0.1	μΑ				
耗电流(有过放自恢复功能的型号)										
工作电流	I_{DD}	V _{DD} =3.9V	-	3.0	6.0	μΑ				
过放电时耗电流	I _{OD}	V _{DD} =2.0V	-	0.16	0.5	μA				
		检测电压								
过充电检测电压	V _{CU}	4.0~4.5V,可调整	V _{CU} -0.025	V _{CU}	V _{CU} +0.025	V				
过几电弧侧电压	v CU	4.0~4.5V,可调整 -5℃~55℃(*1)	V _{CU} -0.035	V _{CU}	V _{CU} +0.035	V				
过充电释放电压	V_{CR}	3.8 ~ 时 4.5V,可	V _{CR} -0.05	V_{CR}	V _{CR} +0.05	٧				
20元电梯双电压	V CR	调整 V _{CR} =V _{CU} 时	V _{CR} -0.05	V_{CR}	V _{CR} +0.025	٧				
过放电检测电压	V_{DL}	2.0~3.1V,可调整	V _{DL} -0.05	V_{DL}	V _{DL} +0.05	٧				
过放电释放电压	V_{DR}	2.0~3.4V,可调整	V _{DR} -0.05	V_{DR}	V _{DR} +0.05	٧				
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	V _{DIP} -15	V_{DIP}	V _{DIP} +15	mV				
负载短路检测电压	V_{SIP}	V _{DD} =3.0V	0.55	0.85	1.15	V				
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	V _{CIP} -20	V_{CIP}	V _{CIP} +20	mV				
		控制端子输出电压								
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V				
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V				
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V				
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V				
	向 0	V 电池充电的功能(允许	或禁止)							
充电器起始电压(允许 向 0V 电池充电功能)	V_{0CH}	允许向 0V 电池充电功能	1.2	-	-	٧				
电池电压(禁止向 0V 电池充电功能)	V _{OIN}	禁止向 0V 电池充电功能	-	-	0.5	V				

说明:*1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

9.2. 延迟时间参数

表 9、延迟时间代码=1 时,延迟时间参数组合

项目	符号	条件	最小值	典型值	最大值	单位
过充电检测延迟时间	T _{OC}	V _{DD} =3.9V→4.5V	900	1200	1500	ms
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	105	140	175	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V , CS=0.4V	9	12	15	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V , CS=-0.2V	6	8	10	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V , CS=1.3V	200	300	400	μs

表 10、延迟时间代码=2 时,延迟时间参数组合

项目	符号	条件	最小值	典型值	最大值	单位
过充电检测延迟时间	T _{oc}	V _{DD} =3.9V→4.5V	700	1000	1300	ms
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	15	20	25	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V , CS=0.4V	9	12	15	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V , CS=-0.2V	6	8	10	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V , CS=1.3V	200	300	400	μs

表 11、延迟时间代码=3 时,延迟时间参数组合

项目	符号	条件	最小值	典型值	最大值	单位
过充电检测延迟时间	T_OC	V _{DD} =3.9V→4.5V	900	1200	1500	ms
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	105	140	175	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V , CS=0.4V	4	6	8	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V , CS=-0.2V	6	8	10	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V , CS=1.3V	200	300	400	μs

表 12、延迟时间代码=4时,延迟时间参数组合

项目	符号条件		最小值	典型值	最大值	单位
过充电检测延迟时间	T _{OC}	V _{DD} =3.9V→4.5V	200	250	300	ms
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	15	20	25	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V , CS=0.4V	9	12	15	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V , CS=-0.2V	6	8	10	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V , CS=1.3V	100	150	200	μs

表 13、延迟时间代码=5时,延迟时间参数组合

项目	符号条件		最小值	典型值	最大值	单位
过充电检测延迟时间	T_OC	V _{DD} =3.9V→4.5V	700	1000	1300	ms
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	105	140	175	ms
放电过流检测延迟时间	T_{DIP}	V _{DD} =3.6V , CS=0.4V	18	24	30	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V , CS=-0.2V	12	16	20	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V , CS=1.3V	200	300	400	μs

© 2011-2012 HYCON Technology Corp

10. 电池保护 IC 应用电路示例

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	100Ω	200Ω	*1
R2	电阻	限流	1kΩ	2kΩ	2kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1μF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- *1、R1连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- *2、R2 连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器反接时的电流,请尽可能选取较大的阻值。
- *3、C1有稳定VDD电压的作用,请不要连接0.01µF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET有可能被损坏。

注意:

- 1. 上述参数有可能不经预告而作更改,请及时到网站上下载最新版规格书。 网址:<u>http://www.hycontek.com</u>。
- 2. 外围器件如需调整,建议客户进行充分的评估和测试。

11.工作说明

11.1.正常工作状态

此IC持续侦测连接在VDD和VSS之间的电池电压,以及CS与VSS之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(V_{DL})以上并在过充电检测电压(V_{CU})以下,且CS端子电压在充电过流检测电压(V_{CIP})以上并在放电过流检测电压(V_{DIP})以下时,IC的OC和OD端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接 CS 端子和 VSS 端子,或者连接充电器,就能恢复到正常工作状态。

11.2. 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(V_{cu}),并且这种状态持续的时间超过过充电检测延迟时间(T_{oc})以上时,HY2113 系列 IC会关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"过充电状态"。

过充电状态在如下2种情况下可以释放:

不连接充电器时,

- (1) 由于自放电使电池电压降低到过充电释放电压(V_{CR})以下时,过充电状态释放,恢复到正常工作状态。
- (2)连接负载放电,放电电流先通过充电控制用MOSFET的寄生二极管流过,此时,CS端子侦测到一个"二极管正向导通压降(Vf)"的电压。当CS端子电压在放电过流检测电压(V_{DIP})以上且电池电压降低到过充电检测电压(V_{CU})以下时,过充电状态释放,恢复到正常工作状态。

注意:进入过充电状态的电池,如果仍然连接着充电器,即使电池电压低于过充电释放电压(V_{CR}),过充电状态也不能释放。断开充电器,CS端子电压上升到充电过流检测电压(V_{CIP})以上时,过充电状态才能释放。

11.3. 过放电状态

11.3.1. 有休眠功能的型号

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,HY2113 系列 IC会关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"过放电状态"。

当关闭放电控制用 MOSFET 后,CS 由 IC 内部电阻上拉到 VDD,使 IC 耗电流减小到 休眠时的耗电流值,这个状态称为"休眠状态"。

过放电状态的释放,有以下两种情况:

- (1)连接充电器,若CS端子电压低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DL})时,过放电状态释放,恢复到正常工作状态。
 - (2) 连接充电器,若CS端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放

电释放电压 (V_{DR}) 时,过放电状态释放,恢复到正常工作状态。

11.3.2. 有过放自恢复功能的型号

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,HY2113 系列IC会关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"过放电状态"。

过放电状态的释放,有以下三种方法:

- (1)连接充电器,若CS端子电压低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DL})时,过放电状态释放,恢复到正常工作状态。
- (2)连接充电器,若CS端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态。
- (3)没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态,即"有过放自恢复功能"。

11.4. 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,HY2113 通过检测CS端子电压持续侦测放电电流。一旦CS端子电压超过放电过流检测电压(V_{DIP}),并且这种状态持续的时间超过放电过流检测延迟时间(T_{DIP}),则关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压 (V_{SIP}) ,并且这种状态持续的时间超过负载短路检测延迟时间 (T_{SIP}) ,则也关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"负载短路状态"。

当连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于放电过流/负载短路释放阻抗(典型值约 $300k\Omega$)时,放电过流状态和负载短路状态释放,恢复到正常工作状态。另外,即使连接在电池正极(PB+)和电池负极(PB-)之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS端子电压降低到放电过流保护电压(V_{DIP})以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

注意:

(1) 若不慎将充电器反接时,回路中的电流方向与放电时电流方向一致,如果CS端子电压高于放电过流检测电压 (V_{DIP}) ,则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

11.5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果CS端子电压低于充电过流检测电压(V_{CIP}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CIP}),则关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使CS端子电压高于充电过流检测电压(V_{CIP})时,充电过流状态被解除,恢复到正常工作状态。

11.6. 向 **0V** 电池充电功能(允许)

此功能用于对已经自放电到 0V的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-)之间的充电器电压,高于"向 0V电池充电的充电器起始电压(V_{OCH})"时,充电控制用MOSFET的门极固定为VDD端子的电位,由于充电器电压使MOSFET的门极和源极之间的电压差高于其导通电压,充电控制用MOSFET导通(OC端子),开始充电。这时,放电控制用MOSFET仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(V_{DL})时,HY2113 系列IC进入正常工作状态。

注意:

- 1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。
- 2. "允许向 0V电池充电功能"比"充电过流检测功能"优先级更高。因此。使用"允许向 0V电池充电"功能的IC,在电池电压较低的时候会强制充电。电池电压低于过放电检测电压(V_{DL})以下时,不能进行充电过流状态的检测。

11.7. 向 **0V** 电池充电功能 (禁止)

当连接内部短路的电池(0V电池)时,禁止向 0V电池充电的功能会阻止对它再充电。当电池电压低于"0V电池充电禁止的电池电压(V_{0IN})"时,充电控制用MOSFET的门极固定为PB-电压,禁止充电。当电池电压高于"0V电池充电禁止的电池电压(V_{0IN})"时,可以充电。

注意:

1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。

12.特性(典型数据)

1. 过充电检测电压/过充电释放电压,过放电检测电压/过放电释放电压,放电过流检测电压/ 负载短路检测电压,充电过流检测电压以及各延迟时间

(7)V_{DIP} vs. Ta

(8)T_{DIP} vs. Ta

(9)V_{SIP} vs. Ta

(10)T_{SIP} vs. Ta

(11)V_{CIP} vs. Ta

(12)T_{CIP} vs. Ta

1 节锂离子/锂聚合物电池保护 IC

2.耗电流

(13)I_{DD} vs. Ta

13. 封装信息

13.1.DFN-6L 封装

说明:

- 1. 单位为 mm 或 inch.
- 2. 引脚和散热片的颜色是银色.

Top Vlew

Bottom View

SYMBOL	Dimensions I	n Millimeters	Dimensions In Inches		
STWIDOL	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
Α	0.450	0.550	0.018	0.022	
A 1	0.000	0.050	0.000	0.002	
A3	0.150REF		0.006REF		
D	1.724	1.876	0.068	0.074	
E	1.924	2.076	0.076	0.082	
D1	1.300	1.500	0.051	0.059	
E1	0.800	1.000	0.031	0.039	
k	0.200MIN.		0.008	BMIN.	
b	0.180	0.280	0.007	0.011	
е	0.500TYP.		0.020	TYP.	
L	0.174	0.326	0.007	0.013	

13.2.SOT-23-6 封装

说明:单位为 mm。

SYM	ALL DIMENSIONS IN MILLIMETERS				
BOL	MINIMUM	NOMINAL			
Α	-	1.30	1.40		
A1	0	-	0.15		
A2	0.90	1.20	1.30		
b	0.30	-	0.50		
b1	0.30	0.40	0.45		
b2	0.30	0.40	0.50		
С	0.08	-	0.22		
c1	0.08 0.13 0.20				
D	2.90 BSC				
Е	2.80 BSC				
E1	1.60 BSC				
е		0.95 BSC			
e1		1.90 BSC			
L	0.30	0.45	0.60		
L1		0.60 REF			
L2	0.25 BSC				
R	0.10		-		
R1	0.10	-	0.25		
θ	0° 4° 8°				
θ1	5°	-	15°		
θ2	5°	-	15°		

1 节锂离子/锂聚合物电池保护 IC

14. 修订记录

以下描述本文件差异较大的地方,而标点符号与字形的改变不在此描述范围。

版本	页次	变更摘要
V01	-	新版发行。
V02	All	增加新型号,详见第6页。
	17	增加"特性(典型数据)"。
	20	修改封装尺寸。
V03	7	增加新型号: HY2113-LA1A、HY2113-MA1A、HY2113LB1A 及 HY2113MB1A。
V04	9	修改 SOT-23-6 封装正印标记。
V05	All	增加新型号,详见第7、8页
V06	All	增加新型号,详见第7、8页
V07	All	增加新型号,详见第7、8页