Word Embeddings

convert words → **numbers** (vectors)

Unlike Bag of Words or TF-IDF, these vectors:

- Capture meaning of the word,
- Understand context and similarity,
- Are dense and compact (not mostly zeros),
- Are learned from large text data.

"Word embeddings give each word a unique, meaningful position in space."

Each word is represented as a fixed-length vector (e.g., 100 or 300 dimensions) based on its context in large text corpora.

Background: The Problem with Earlier Techniques

Technique	Major Limitation
One-Hot Encoding	No meaning, huge vectors
Bag of Words	No order, no context
TF-IDF	No similarity understanding

So all of them treat words like:

- "king" and "queen" → unrelated
- "India" and "Pakistan" → no connection
- "run" and "ran" → totally different

But we know those words are related.

Word Embeddings solve this.

* Example

Word	Embedding (simplified)
"king"	[0.21, -1.5, 0.3,, 0.8]
"queen"	[0.19, -1.4, 0.33,, 0.79]

Arithmetic relationships:

king - man + woman ≈ queen

Main Techniques:

Method	Description	
Word2Vec	Learns embeddings by predicting neighboring words	Google News (3 million words, 300-dim)
GloVe	Learns from global co-occurrence statistics	Wikipedia + Gigaword (6 billion tokens)
FastText	Like Word2Vec, but also looks at word- parts (subwords)	
ELMo	Learns context-dependent embeddings (deep LSTM)	
BERT	Learns context-aware embeddings using transformers	

How It Differs from Previous Methods

Feature	One-Hot / BoW / TF-IDF	Word Embedding
Fixed-size vector	✓ Yes	✓ Yes
Sparse	✓ Mostly zeros	X Dense
Understand similarity	XNo	✓ Yes
Word meaning/context	XNo	✓ Yes
Learns from data	X No (manual features)	✓ Yes (unsupervised)

Use Cases

- · Sentiment analysis
- Chatbots
- Question answering
- Document similarity
- Plagiarism detection
- Search engines

Trivia

• Word2Vec was created by Google in 2013.

- Word embeddings led to the "deep learning revolution" in NLP.
- Embeddings are like the "first layer" of understanding in NLP models.
- You can visualize them using **t-SNE** or **PCA** (to 2D or 3D).