Durée: 2 heures

Diplôme national du Brevet Nouvelle–Calédonie 14 décembre 2020

ATTENTION: ANNEXE pages et 8/8 est à rendre avec la copie

L'usage de calculatrice avec mode examen activé est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé

Exercice 1 : QCM 18 points

1.
$$\frac{5}{3} - \frac{1}{3} \times \frac{3}{2} = \frac{5}{3} - \frac{1}{2} = \frac{10}{6} - \frac{3}{6} = \frac{7}{6}$$
.

2.
$$245 \times 10^{-5} = 2,45 \times 10^{2} \times 10^{-5} = 2,45 \times 10^{-3}$$
.

3. • Durée moyenne :
$$\frac{3+2+4+3+7+9+7}{7} = \frac{35}{7} = 5$$
 (min).

4. • Durée médiane : $2 < 3 \le 3 < 4 < 7 \le 7 < 9$, le temps médian est 4 (min).

5. On a
$$p(\text{Roi}) = \frac{4}{32} = \frac{1}{8}$$
.

6. (0°N; 78°O) : latitude nulle.

Exercice 2: La facture 8 points

	A	В	С	D	Е
1	Référence	Prix HT	TGC (en %)	Montant TGC	Prix TTC
2	Phare avant	64 000	22 %	14 080	78 080
3	Pare choc	18 000	22 %		21 960
4	Peinture	11 700	11 %	1 287	12 987
5	Main d'œuvre	24 000		1 440	25 440
6	TOTAL À RÉGLER (en Francs)				138 467

- 1. Le montant TGC pour le pare-chocs est égal à la différence 21960 18000 = 3960 (francs). On peut aussi calculer $18000 \times \frac{22}{100} = 3960$ (francs).
- **2.** On a $\frac{1440}{24000} \times 100 = \frac{1440}{24} = 6$ (%)
- 3. Dans la case C6 on écrit : = SOMME(E2 :E5)

Exercice 3: Programmes de calcul

11 points

- 1. Elle obtient : $4 \rightarrow -1 \rightarrow -4$.
- **2.** Lucie obtient $-3 \rightarrow 9 \rightarrow 5$.
- **3.** On a successivement avec le programme $A: x \to x 5 \to x(x 5)$.
- **4.** On a successivement avec le programme B: $x \to x^2 \to x^2 4$.
- **5.** On veut trouver *x* tel que :

$$x(x-5) = x^2 - 4$$
 ou $x^2 - 5x = x^2 - 4$ ou encore $4 = 5x$, soit en multipliant chaque membre par $\frac{1}{5}$, $x = \frac{4}{5} = 0.8$.

EXERCICE 4 : La régate 16 points

Dans la figure suivante, on donne les distances en mètres :

AB = 400, AC = 300, BC = 500 et CD = 700.

Les droites (AE) et (BD) se coupent en C

Les droites (AB) et (DE)sont parallèles

1. Les droites (AB) et (DE) étant parallèles, on peut écrire d'après le théorème de Thalès :

$$\frac{DE}{AB} = \frac{CD}{BC}$$
 soit $\frac{DE}{400} = \frac{700}{500}$, d'où en multipliant par 400 : $DE = 400 \times \frac{700}{500} = 400 \times \frac{7}{5} = 560$ (m).

2. On a BC² = 500^2 = 25000 et AB² + AC² = 400^2 + 300^2 = 16000 + 9000 = 25000.

On a donc $AB^2 + AC^2 = BC^2$: d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.

3. Par définition du cosinus d'un angle aigu, dans le triangle ABC rectangle en A:

$$\cos\widehat{ABC} = \frac{AB}{BC} = \frac{400}{500} = \frac{4}{5} = 0,8.$$

La calculatrice donne, en mode degré : ÂBC ≈ 36,8,soit 37° au degré près.

4. *Remarque : non demandé :*

Pour calculer la longueur d'un parcours, il reste à calculer CE.

Or les droites (AB) et (DE) étant parallèles, la droite (AC) perpendiculaire à (AB) est aussi perpendiculaire à (DE), donc le triangle CDE est rectangle en E.

D'après le théorème de Pythagore :

$$CE^2 + ED^2 = CD^2$$
 ou $CE^2 + 560^2 = 700^2$, soit $CE^2 = 700^2 - 560^2 = (700 + 560) \times (700 - 560) = 1260 \times 140 = 176400$.

D'où CE = $\sqrt{176400}$ = 420 (m).

Longueur d'un parcours : AB + BC + CD + DE + EC + CA = 400 + 500 + 700 + 560 + 420 + 300 = 2880.

Les 5 tours représentent donc une longueur de $5 \times 2880 = 14400$ (m) ou 14,4 (km).

5. 1 h 48 min = 60 + 48 = 108 min. La vitesse moyenne est égale au quotient de la distance parcourue par le le temps mis pour faire les 5 tours :

$$v = \frac{14400}{108} = \frac{1600}{12} = \frac{400}{3} \approx 133,33 \text{ (m/min) soit} \approx 60 \times 133,33 = 7999,8 \text{ (m/h), soit enfin à peu près } 8 \text{ (km/h)}.$$

EXERCICE 5: La corde 7 points

1. Le triangle ABC étant rectangle en B, le théorème de Pythagore permet d'écrire : $AB^2 + BC^2 = AC^2$, soit $5^2 + BC^2 = 5,25^2$ ou encore $BC^2 = 5,25^2 - 5^2 = 2,5625 \approx 1,60078$ soit 1,6 m au dixième près.

2. Si la corde est tendue en son milieu on a la figure suivante composée de deux triangles rectangles identiques à celui de la question **1.**:

Comme 1,55 < 1,60, Melvin qui mesure 1,55 m pourra passer sous cette corde sans se baisser en la soulevant par le milieu.

EXERCICE 6: Les étiquettes

14 points

- 1. Comme 1+0+2=3, 102 est un multiple de 3 (critère de divisibilité par 3;
 - $102 = 90 + 12 = 3 \times 30 + 3 \times 4 = 3 \times (30 + 4) = 3 \times 34$.

102 est un multiple de 3 : il est divisible par 3.

- **2.** On donne la décomposition en produits de facteurs premiers de 85 : $85 = 5 \times 17$. On a vu que $102 = 3 \times 34 = 3 \times 2 \times 17 = 2 \times 3 \times 17$.
- 3. Donner 3 diviseurs non premiers du nombre 102.

 $2 \times 3 = 6$; $2 \times 17 = 34$; $3 \times 17 = 51$ sont trois diviseurs de 102 non premiers.

4. Si toute la feuille est utilisée c'est que la longueur et la largeur sont des multiples des côtés du carré. Ces côtés ont donc une longueur *c* qui divise à la fois 102 et 85.

Or 34 ne divise pas 85 (car 2 divise 34 mais ne divise pas 85). les étiquettes ne peuvent pas faire 34cm de côté.

5. Par contre 17 divise 85 (85 = 5×17) et 17 divise 102 (102 = 17×6).

Les étiquettes rentrent 5 fois en largeur et 6 fois en longueur : il y en aura donc $5 \times 6 = 30$ par feuille.

Remarque: on peut aussi utiliser les aires.

Une étiquette a une aire de $17 \times 17 = 289$ et la feuille une aire de $85 \times 102 = 8670$.

On pourra donc faire $\frac{8670}{289}$ = 30 étiquettes dans une feuille.

EXERCICE 7: L'habitation

15 points

Partie 1:

Dans cette partie, on considère que x = 6 m.

- 1. Le diamètre a une longueur de 6 m. Donc avec r = 3, le volume du cylindre est égal à : $\pi \times 3^2 \times 2 = 18\pi \text{ m}^3$.
- 2. Le volume de la partie conique est égale à :

$$\frac{1}{3} \times \pi \times 3^2 \times 1 = 3\pi \text{ m}^3$$
, soit $\approx 9,42 \text{ ou } 9 \text{ m}^3$ à l'unité près.

3. Le volume de la case est donc égal à :

 $18\pi + 3\pi = 21\pi \approx 65,97$, soit $\approx 66 \text{ m}^3$ à l'unité près.

Partie 2:

Dans cette partie, le diamètre est exprimé en mètre, le volume en m^3 .

Sur l'**annexe** page 5, on a représenté la fonction qui donne le volume total de la case en fonction de son diamètre x.

1. On lit sur l'annexe $V(7) \approx 90 \text{ m}^3$.

$$V(x) = 12,5x.$$

- **2.** On a $V(8) = 12,5 \times 8 = 100 \text{ m}^3$.
- **3.** La fonction *V* est une fonction linéaire.
- 4. La représentation graphique de la fonction linéaire V est une droite contenant l'origine.
- **5.** Le plus grand volume de la maison est donc $V(6) = 12,5 \times 6 = 75 \text{ m}^3$.
 - Le plus grand volume de la case est donc $V(6) \approx 66 \text{ m}^3$.

Nolan choisira donc la maison.

EXERCICE 8: Scratch 11 points

Le script suivant permet de tracer le carré de côté 50 unités .

```
quand est cliqué
s'orienter à 90
stylo en position d'écriture
répéter 4 fois
avancer de 50
tourner de 90 degrés
```

1. On a lancé le script suivant :

2. Il suffit de compter le nombre de segments tracés : 12. Seule la figure 2 convient.

ANNEXE 1

Exercice 7:
Partie 2: question 1 et 3

Volume de la case en fonction de x

ANNEXE 2

Exercice 8 question 1

Script à compléter

Exercice 8 question 2

