Отчет по лабораторной работе \mathbb{N}^2 2 Вариант \mathbb{N}^2 17

Щербаков Илья Анатольевич

Группа: Б9122-02-03-01сцт

Цель работы

- 1. Построить таблицу конечных разностей по значениям табличной функции.
- 2. По соответствующим интерполяционным формулам вычислить значения функции в заданных узлах
- 3. Оценить минимум и макисмум для $f^{n+1}(x)$
- 4. Проверить на выполнение равенство $\min R_n < R_n(z) < \max R_n$, где z заданный угол, а $R_n(z) = L_n(z) f(z)$
- 5. Сделать вывод по проделанной работе.

Входные данные:

- 1. **Функция:** $y = 0.5x^2 \cos 2x$
- 2. Отрезок [0.6, 1.1]
- 3. $x^* = 0.84$, $x^{**} = 0.62$, $x^{***} = 1.07$

Ход работы:

1 Используемые библиотеки

Для реализации необходимой программы используются следующие библиотеки языка Python:

- **PrettyTable** библиотека **Python**PrettyTable предоставляет инструменты для создания красиво оформленных таблиц в **Python**. Она позволяет отображать данные в удобочитаемом виде, что упрощает их анализ и визуализацию.
 - Функциональность: библиотека PrettyTable обеспечивает возможность создания таблиц с различными стилями форматирования, включая плоские колонки, как в PLAIN _COLUMNS, что обеспечивает гибкость в представлении данных.
- sympy библиотека sympy представляет собой мощный символьный математический пакет для **Python**. Она способна обрабатывать символьные выражения, уравнения, и действия, что делает ее полезным инструментом в области научных вычислений, анализа данных и математического моделирования.
 - Функциональность: библиотека sympy позволяет выполнять различные операции с символами, такие как дифференцирование, интегрирование, решение уравнений и многое другое, что делает ее важным ресурсом для работы с математическими вычислениями в Python.

```
from prettytable import PrettyTable, PLAIN_COLUMNS from sympy import *
```

2 Инициализация входных данных

Начиная реализацию алгоритма известна непосредственная функция $y = 0.5x^2 - \cos 2x$ и отрезок [0.6, 1.1]

```
x = Symbol('x', real=True)
y = 0.5 * x ** 2 - cos(2 * x)
a = 0.6
b = 1.1
h = (b - a) / 10
n = 11

x_star2 = 0.62
x_star3 = 1.07
x_star4 = 0.83
```

• В приведенном ниже коде определяется сама функция, границы отрезка, количество узлов для разбиения, x^*, x^{**}, x^{***} .

3 Реализация непосредтвенного алгоритма

Для реализации алгоритма были написаны следующие функции, позволяющие выполнить необходимый пласт работь, удовлетворить условию лабораторной работы и найти искомые значения.

Функция newton minus param

```
def newton_minus_param(t: float, n: int):
    a = 1

for i in range(n):
    a = a * (t - i)

a = a / factorial(n)
return a
```

• Функция newton_minus_param(t: float, n: int) Эта функция вычисляет параметр для метода Ньютона, используя отрицательные значения параметров.

Алгоритм

- Инициализируется переменная а равная 1.
- Далее циклически умножается значение а на (t i) для каждого значения i от 0 до n.
- Затем значение а делится на факториал n.
- Возвращается вычисленное значение параметра а

Функция newton plus param

```
def newton_plus_param(t: float, n: int):
    a = 1
    for i in range(n):
        a = a * (t + i)

a = a / factorial(n)

return a
```

• Функция newton_plus_param(t: float, n: int) Данная функция вычисляет параметр для метода Ньютона с использованием положительных параметров.

Алгоритм

– Инициализируется переменная а равная 1.

- Далее циклически умножается значение а на $(\mathbf{t} + \mathbf{i})$ для каждого значения \mathbf{i} от 0 до \mathbf{n} .
- Затем значение **a** делится на факториал **n**.
- Функция возвращает вычисленное значение параметра а

Функция gauss1 minus param

```
def gauss1_minus_param(t: float, n: int):
1
       a = 1
2
3
       for i in range(n):
4
           if i % 2 == 1 or i == 0:
5
                a = a * (t - i)
           else:
                a = a * (t + i - 1)
9
       a = a / factorial(n)
10
       return a
11
```

• Функция gauss1_minus_param(t: float, n: int) Эта функция рассчитывает параметр для метода Гаусса с отрицательными параметрами.

Алгоритм

- Инициализируется переменная а равная 1.
- В цикле вычисляется значение параметра ${\bf a}$, учитывая условия для умножения на $({\bf t}$ ${\bf i})$ и $({\bf t}$ + ${\bf i}$ ${\bf 1})$ в зависимости от значения ${\bf i}$.
- Функция возвращает вычисленное значение параметра а

Функция gauss2 plus param

```
def gauss2_plus_param(t: float, n: int):
    a = 1
    for i in range(n):
        if i % 2 == 1 or i == 0:
            a = a * (t + i)
        else:
            a = a * (t - i + 1)
    a = a / factorial(n)
    return a
```

• Функция gauss2_plus_param(t: float, n: int) Эта функция вычисляет параметр для метода Гаусса с положительными параметрами.

Алгоритм

- Инициализируется переменная а равная 1.
- В цикле вычисляется значение параметра ${\bf a}$, учитывая условия для умножения на $({\bf t}+{\bf i})$ и $({\bf t}-{\bf i}+{\bf 1})$ в зависимости от значения ${\bf i}$.
- Функция возвращает вычисленное значение параметра ${\bf a}$

Функция insert gauss1_polynomial

• Функция insert_gauss1_polynomial(t: float, n: int, mass: list) Данная функция вставляет метод Гаусса с отрицательными параметрами.

Алгоритм

- Переменная **Рх** инициализируется как 0.
- Производятся вычисления с использованием метода **gauss1_minus_param** для вычисления значения **Px**.
- Возвращается результат вычисления Рх.

Функция insert gauss2 polynomial

• Функция insert_gauss2_polynomial(t: float, n: int, mass: list) Эта функция вставляет метод Гаусса с положительными параметрами.

Алгоритм

- Переменная **Px2** инициализируется как 0.
- Производятся вычисления с использованием метода $gauss2_plus_param$ для вычисления значения Px2.
- Возвращается результат вычисления **Px2**.

Функция insert newton1 polynomial

```
def insert_newton1_polynomial(t: float, n: int, mass: list):
    Px = 0
    j = 0
    for i in range(n):
        Px += mass[i][j] * newton_parameter_minus(t, i)
    return Px
```

• Функция insert_newton1_polynomial(t: float, n: int, mass: list) Данная функция вставляет метод Ньютона с отрицательными параметрами.

Алгоритм

- Переменная **Px** инициализируется как 0.
- Производятся операции с использованием метода **newton minus param** для вычисления **Px**.
- Возвращается результат вычисления Рх.

Функция insert newton2 polynomial

```
def insert_newton2_polynomial(t: float, n: int, mass: list):
    Px2 = 0
    for i in range(0, n):
        j = n - i - 1
        Px2 += mass[i][j] * newton_parameter_plus(t, i)
    return Px2
```

• Функция insert_newton2_polynomial(t: float, n: int, mass: list) Эта функция вставляет метод Ньютона с положительными параметрами.

Алгоритм

- Переменная **Px2** инициализируется как 0.
- Производятся операции с использованием метода newton plus param для вычисления Px2.
- Возвращается результат вычисления Px2.

4 Нахождение значений

Таблица значений функции у(х)

```
x_list = []
  y_list = []
  for i in range(0, 11):
3
       xi = a + i * h
       x_list.append(xi)
       yi = y.subs(x, xi).evalf()
       y_list.append(yi)
   table.add_column(" ", [i for i in range(0, 11)])
9
   table.add_column("x", x_list)
10
   table.add_column("y(x)", y_list)
11
  print(table)
12
13
  table.clear()
14
```

- Цикл for проходит по значениям от 0 до 10.
- Для каждого значения і вычисляется хі как сумма а и произведение і на h.
- \bullet Значение xi добавляется в список x_list .
- Значение **уі** вычисляется с использованием функции **subs** для подстановки **хі** вместо переменной **х** в функцию **у**, а затем вычисляется численное значение с помощью eval f().
- Значение **yi** добавляется в список **y** list.

Создание таблицы, которая способна наглядно показать визуально оценить изменение функции для различных значений \mathbf{x} . Это обеспечивает наглядное представление данных и упрощает анализ поведения функции на определенном диапазоне.

+ N +	0	+.	x	 -	y(x)	+
0)		0.6		-0.182357754476674	Ī
1			0.65		-0.0562488286245873	Ī
2	2		0.7		0.0750328570997589	Ī
3	5		0.75		0.210512798332297	Ī
4	í		0.8		0.349199522301289	Ī
5	5		0.8500000000000001		0.490094494295525	Ī
6	5		0.9		0.632202094693087	Ī
7	7		0.9500000000000001		0.774539566863504	Ī
8	3		1.0		0.916146836547142	Ī
9	9		1.05		1.05609610459986	Ī
1	L0		1.1		1.19350111725535	Ī
+		+.		+-		+

Рис. 1: Таблица значений функции у(х)

Расчет разностей и формирование новой таблицы

```
list_diffs = [y_list.copy()]
1
2
   while len(list_diffs[-1]) != 1:
3
       lis = []
4
       for i in range(0, len(list_diffs[-1]) - 1):
5
           lis.append(list_diffs[-1][i + 1] - list_diffs[-1][i])
6
       list_diffs.append(lis)
7
8
   list_to_table = list_diffs.copy()
  max_length = len(max(list_to_table, key=len))
10
11
  for lst in list_to_table:
12
       while len(lst) < max_length:</pre>
13
           lst.append("")
14
15
   table.field_names = [" ", "Value 1", "Value 2", "Value 3", "Value 4", "Value 5", "Va
16
                         "Value 9", "Value 10", "Value 11"]
  for i in range(0, len(list_to_table)):
18
       table.add_row([f"{i}"] + list_to_table[i])
19
20
  table.set_style(PLAIN_COLUMNS)
21
  print(table)
22
```

Эта таблица представляет собой таблицу разностей, которая является инструментом для вычисления и визуализации разностей между последовательными значениями в исходном наборе данных.

Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
-0.182357754476674	-0.0562488286245873	0.0750328570997589	0.210512798332297	0.349199522301289	0.490094494295525
0.126108925852086	0.131281685724346	0.135479941232538	0.138686723968992	0.140894971994236	0.142107600397562
0.00517275987225996	0.00419825550819189	0.00320678273645364	0.00220824802524427	0.00121262840332609	0.000229871772854329
0.000974504364068068	-0.000991472771738250	-0.000998534711209365	-0.000995619621918187	-0.000982756630471759	-0.000960074259632016
-1.69684076701815e-5	-7.06193947111466e-6	2.91508929117779e-6	1.28629914464273e-5	2.26823708397439e-5	3.22751154861467e-5
9.90646819906682e-6	9.97702876229245e-6	9.94790215524954e-6	9.81937939331656e-6	9.59274464640281e-6	9.27026235625350e-6
7.05605632256301e-8	-2.91266070429064e-8	-1.28522761932981e-7	-2.26634746913756e-7	-3.22482290149306e-7	
-9.96871702685365e-8	-9.93961548900746e-8	-9.81119849807754e-8	-9.58475432355499e-8		
2.91015378461879e-10	1.28416990929914e-9	2.26444174522555e-9			
9.93154530837259e-10	9.80271835926416e-10				
1.28826949108429e-11					
0.132596284438680					

Рис. 2: Подпись к изображению

Value 6	Value 7	Value 8	Value 9	Value 10	Value 11
0.490094494295525	0.632202094693087	0.774539566863504	0.916146836547142	1.05609610459986	1.19350111725535
0.142107600397562	0.142337472170416	0.141607269683639	0.139949268052715	0.137405012655488	
0.000229871772854329	-0.000730202486777687	-0.00165800163092356	-0.00254425539722702		
-0.000960074259632016	-0.000927799144145869	-0.000886253766303469			
3.22751154861467e-5	4.15453778424002e-5				
9.27026235625350e-6					

Рис. 3: Подпись к изображению

Вычисление параметров методов и их погрешностей

На этапе вычисления параметров методов и оценки их погрешностей происходит ключевой анализ результатов и определение точности методов Ньютона и Гаусса. Происходит расчет параметров, необходимых для осуществления методов численного анализа, а также оценка погрешностей этих методов.

В процессе вычисления параметров методов Ньютона и Гаусса рассчитываются значения параметров ${\bf t}$ и ${\bf t1},\,{\bf t2},\,$ которые используются для правильного применения соответствующих методов численного дифференцирования. Далее происходит вызов функций для данных методов, а также вычисление и анализ погрешностей этих методов

```
t = min(abs(x_list[0] - x_star2), abs(x_list[1] - x_star2)) / h
  print('Newton 1:', insert_newton1_polynomial(t, 11, list_diffs))
3
  print("R_N1: ", insert_newton1_polynomial(t, 11, list_diffs) - y.subs(x, x_star2).eval
4
  t = -1 * (x_list[-1] - x_star3) / h
6
  print('Newton 2:', insert_newton2_polynomial(t, 11, list_diffs))
  print("R_N2: ", insert_newton2_polynomial(t, 11, list_diffs) - y.subs(x, x_star3).eval
10
11
  for i in range(n - 1):
12
       if (x_list[i] < x_star4) and (x_list[i + 1] > x_star4):
13
           break
14
15
  t1 = abs(x_list[i] - x_star4) / h
16
  t2 = abs(x_list[i + 1] - x_star4) / h
17
18
19
       print('Gauss 1:', insert_gauss1_polynomial(t1, 11, list_diffs))
20
       print("R_G1: ", insert_gauss1_polynomial(t1, 11, list_diffs) - y.subs(x, x_star4).
21
   else:
22
       t2 = -1 * t2
23
       print('Gauss 2:', insert_gauss2_polynomial(t2, 11, list_diffs))
24
       print("R_G2: ", insert_gauss2_polynomial(t2, 11, list_diffs) - y.subs(x, *_star4).
25
26
  w = 1
27
  for i in range(11):
28
        = w * (x - x_list[i])
30
  y_der = diff(y, x, n + 1)
31
  R_n = y_{der} * w / factorial(n + 1)
32
33
   crit_points = solve(y_der, x)
34
   crit_points = [point for point in crit_points if a <= float(point) <= b]</pre>
35
   endpoints = [a, b]
   values_at_endpoints = {endpoint: y_der.subs(x, endpoint).evalf() for endpoint in endpo
37
   values_at_critical_points = {cp: y_der.subs(x, cp).evalf() for cp in crit_points}
38
  extremum_values = list(values_at_endpoints.values()) + list(values_at_critical_points.
```

Реализация

1. Вычисление параметров для метода Ньютона:

- Вычисляется значение **t** для метода Ньютона 1, которое представляет собой минимальное из двух значений: разницы между нулевым элементом списка **x_list** и **x_star2**, и разницы между первым элементом списка **x list** и **x star2**, деленное на **h**.
- Далее при помощи функций insert_newton1 и insert_newton2 происходит вычисление метода и его оценка.

2. Вычисление параметров для метода Гаусса:

- Вычисляются значения ${\bf t1}$ и ${\bf t2}$ для метода Гаусса, представляющие собой отношение модуля разности между определенными значениями из ${\bf x}$ list и ${\bf x}$ star4 к ${\bf h}$.
- В зависимости от соотношения t1 и t2, вызываются функции insert_gauss1 или insert_gauss2 для расчета метода Гаусса и оценки его погрешности.

3. Подготовка данных для дальнейшего анализа:

• Выполняется вычисление произведения $(x - \mathbf{x} \ \mathbf{list}[\mathbf{i}])$ для всех элементов $\mathbf{x} \ \mathbf{list}$.

4. Расчет критических точек и их значений:

- Производная y der функции y вычисляется по x до (n+1) порядка.
- Проводится поиск критических точек на отрезке между а и b.
- Значения производной на конечных точках и на критических точках вычисляются и сохраняются в соответствующих словарях.

Вывод

- Исходя из полученных данных, можно сделать следующие выводы:
 - Значения и оценки для обоих вариантов метода Ньютона близки друг к другу, что говорит о сходимости метода.
 - Значение Гаусса и его оценка также близки, что указывает на надежность результатов метода.
 - Основываясь на полученных данных, можно заключить, что и метод Ньютона, и метод Гаусса дали близкие значения и оценки, что свидетельствует о их эффективности и точности.

Поиск значений и оценка точек экстремума

Этапы поиска значений точек экстремума является важным этапом в анализе функций и моделей.

1. Производные функции:

 Для поиска точек экстремума сначала вычисляются производные функций. Это может быть первая производная для определения точек экстремума первого порядка или высшие производные для точек экстремума более высокого порядка.

2. Решение уравнений:

 Затем производные приравниваются к нулю, чтобы найти критические точки, где производная равна нулю. Решение уравнения производной равной нулю позволяет найти потенциальные точки экстремума.

3. Определение интервала:

 После нахождения критических точек необходимо оценить интервал, в котором следует искать точки экстремума, обычно между двумя критическими точками или в пределах определенного диапазона.

4. Вычисление значений:

Затем вычисляются значения функции в найденных критических точках, а также на конечных точках заданного интервала, что позволяет определить, являются ли найденные точки минимумами или максимумами.

5. Оценка экстремума:

 Для оценки экстремума сравниваются значения функции в найденных точках, определяется минимальное и максимальное значение. Это позволяет определить, где находятся точки минимума и максимума на заданном интервале.

```
w = 1
for i in range(11):
    w = w * (x - x_list[i])

y_der = diff(y, x, n + 1)
R_n = y_der * w / factorial(n + 1)

crit_points = solve(y_der, x)
crit_points = [point for point in crit_points if a <= float(point) <= b]</pre>
```

```
endpoints = [a, b]
  values_at_endpoints = {endpoint: y_{der.subs}(x, endpoint).evalf() for endpoint in e
11
  values_at_critical_points = {cp: y_der.subs(x, cp).evalf() for cp in crit_points}
  extremum_values = list(values_at_endpoints.values()) + list(values_at_critical_poi
  minimum = min(extremum_values)
  maximum = max(extremum_values)
  print('Minimum f(12)(E) on interval:', minimum)
  print('Maximum f(12)(E) on interval:', maximum)
18
  crit_points = solve(R_n, x)
19
  crit_points = [point for point in crit_points if a <= float(point) <= b]</pre>
  endpoints = [a, b]
21
  values_at_endpoints = {endpoint: R_n.subs(x, endpoint).evalf() for endpoint in end
22
  values_at_critical_points = {cp: R_n.subs(x, cp).evalf() for cp in crit_points}
23
  extremum_values = list(values_at_endpoints.values()) + list(values_at_critical_poi
^{24}
  minimum = min(extremum_values)
  maximum = max(extremum_values)
  print('Minimum Rn on interval:', minimum)
  print('Maximum Rn on interval:', maximum)
```

Исходя из полученных данных, можно сделать следующие выводы относительно поведения функции:

1. Поведение функции f(12)(E):

- Минимум функции f(12)(E) на отрезке составляет -1484.21736233646, что указывает на точку, в которой функция достигает своего наименьшего значения на данном отрезке.
- Максимум функции f(12)(E) на отрезке равен 2410.50057627790, показывая точку экстремума, в которой функция достигает своего наивысшего значения на заданном отрезке.
- Эти значения отражают изменения функции f(12)(E) в пределах заданного диапазона и могут быть важными при анализе ее поведения.

2. Оценка Rn и поведение:

- Минимальное значение оценки Rn на отрезке равно 0, что может указывать на минимальное воздействие погрешностей на результаты функции на данном отрезке.
- Максимальное значение оценки Rn на отрезке составляет 9.06372527153927e-31, что отражает максимальное воздействие погрешностей на результаты функции в заданном диапазоне.

Вывод

В ходе выполнения лабораторной работы были реализованы различные численные методы (методы Ньютона и методы Гаусса) для аппроксимации функции.

1. Входные данные:

- Функция: $y = 0.5x^2 \cos 2x$
- Отрезок [0.6, 1.1] и шаг разбиения $(h = \frac{b-a}{10})$.

2. Применение методов аппроксимации:

- Методами Ньютона и Гаусса были найдены коэффициенты аппроксимирующих многочленов.
- Были примены методы для вычисления значений аппроксимирующих многочленов в заданных точках.

3. Анализ результатов:

- Были найдены минимальное и максимальное значение R_n на заданном интервале.
- Произведено сравнение результатов и проверка неравенства $\min R_n < R_n(z) < \max R_n$.

4. Код работы можно посмотреть на GitHub

– Ссылка: https://github.com/IlushkaDV/Laba2 VM