Geometría Proyectiva

Alejandro Zubiri

January 30, 2025

${\bf \acute{I}ndice}$

1	Introducción	2
2	Nomenclatura	2
	Espacio Afín 3.1 Propiedades del espacio afín	9

1 Introducción

 ${\it Correo: mruizleo@campusunie.es}$

2 Nomenclatura

- Punto: letras mayúsculas P(a,b).
- \bullet Vectores: minúsculas con notación vector $\vec{u}(a,b)$

3 Espacio Afín

Definición 1. Dados un conjunto de elementos, siendo estos puntos, A, y un espacio vectorial \mathbb{V} , llamamos el espacio afín a la terna (A, \mathbb{V}, φ) , siendo φ una aplicación entre elementos de A, tal que:

$$\varphi: A \times A \mapsto \mathbb{V} \tag{1}$$

Esta terna debe cumplir que:

- $\forall p \in A \land \vec{v} \in \mathbb{V}, \exists ! Q \in A/\varphi(P,Q) = \vec{PQ} = \vec{u} = Q P$
- Relación de Chasles: $\forall P, Q, R \in A \land \varphi(P,Q) + \varphi(Q,R) = \varphi(P,R)$

$$\vec{PQ} + \vec{QR} = \vec{PR} \tag{2}$$

Demostraci'on. • $\vec{PQ} = Q - P$

• $\vec{QR} = R - Q$

$$\vec{PQ} + \vec{QR} = Q - P + R - Q = R - P = \vec{PR}$$
 (3)

La dimensión del espacio afín va a ser la dimensión de \mathbb{V} .

3.1 Propiedades del espacio afín

- 1. $\forall P \in A, \varphi(P, P) = 0$
- 2. $\varphi(P,Q) = 0 \iff P = Q$
- 3. $\forall P, Q \in A, \varphi(P, Q) = -\varphi(Q, P)$
- 4. Regla del paralelogramo: $\forall P, Q, R, S \in A$:

$$\varphi(P,Q) = \varphi(R,S) \iff \varphi(P,R) = \varphi(Q,S)$$
 (4)