Name:	Student ID #:	

CS472 / ECE472 / CS572 / ECE572

Fall 2018 Midterm Exam

You may use a calculator and a double-sided 8.5" x 11" notesheet.

Indicate whether the	following	statements are	True or False.

mui	tate whether the johowing statements are true of raise.
 1.	(2 pt) Assuming that the pipeline is initially empty, a pipelined CPU can fully execute a single instruction in less time than the non-pipelined equivalent CPU.
 2.	(2 pt) The programmer's choice of compiler could have an impact on the order that instructions will be executed within the computer.
 3.	(2 pt) Anytime a CPU writes to a page of virtual memory, the corresponding page is immediately written to disk to avoid loss of data.
 4.	(2 pt) The highest addressable virtual memory location must always be less than or equal to the highest physical memory address within a computer.
 5.	(2 pt) The execution time of a benchmark program is generally considered to be a fair comparison between processors with different Instruction Set Architectures (ISAs).
 6.	(2 pt) A program's memory access patterns will have a significant impact on the hit rate of a data cache.
 7.	(2 pt) A conflict miss can never occur in a direct-mapped cache.
 8.	(2 pt) In the MIPS architecture, the machine code of a branch instruction indicates the absolute memory address that should be placed inside the program counter (PC).
 9.	(2 pt) As the level of associativity increases, it becomes easier to implement a least-recently-used (LRU) cache replacement policy.
 10.	(2 pt) Anytime a CPU writes to a page of virtual memory, the corresponding page is immediately written to disk to avoid loss of data.
 11.	(2 pt) Static RAM (SRAM) is generally used to implement memory caches while dynamic RAM (DRAM) is generally used as the basis for system memory.
12.	(2 pt) The decimal value 36.015625 can be exactly represented in IEEE 754 single precision format.
13.	(2 pt) In a virtual memory system, a translation-lookaside buffer (TLB) miss implies that the specified memory page must be retrieved from swap space (on the HDD).
 14.	(2 pt) The MIPS ISA uses a load/store architecture that requires operands to be moved into registers before ALU operations can take place.
 15.	(2 pt) A write-through cache scheme implies that a cache will write changes only to the cache block (and set a dirty bit). The modified cache block will then be written to main memory only when it is replaced by a different block.

A. The stack and the heap each start at

B. The stack and the heap both start

they grow away from each other

towards low addresses

high memory addresses and work

near the middle of main memory and

Provide the ap	propriate answer in the blank space.		
16. (2 pts) li	n a pipelined CPU design, situations that pr	revent	the next instruction stream from being executed
during i	ts designated clock cycle are called:		
For each of the	e following questions, choose the best answe	er.	
17. (2 pts) A	An immediate-format MIPS instruction requ	uires h	ow many registers to be specified?
	1	C.	
В.	2	D.	4
	Which of the following is a technique that c aphorical "power wall"?	omput	ter architects can take in order to avoid hitting
A.	Decrease the clock period to reduce	C.	Improve parallelization to execute
D	power consumption Increase the clock frequency	D	multiple instructions simultaneously All of the above
D.	increase the clock frequency	υ.	All of the above
19. (2 pts) li	n a CMOS IC design, power consumption is	impro	ved by lowering which of the following?
A.	The operating voltage	C.	The capacitive load
В.	The operating frequency	D.	All of the above
been se	lected as 8 bytes and that there are 64 bloo	ck indi	e cache with N=3. Assume that the block size has ces in the cache (i.e. there are 64 sets of 3 many bits will each individual tag occupy?
A.	10	C.	12
В.	11	D.	13
memory	y system to provide each process with its or	wn vir	gn have a problem. They implemented a virtual tual address space (each page with a size of 2K). is. Which of the following suggestions would be
A.	Remove the translation-lookaside buffer (TLB) so that all queries can go	C.	Increase the size of each memory page
	directly to main memory	D.	Move 90% of the memory pages into
B.	Decrease the size of each memory		swap space (on HDD) so that
	page		additional memory is available for
			the page table
22. (2 pts) V	Which of the following statements best des	cribes	memory behavior in the MIPS architecture?

C. The stack and the heap each start at low memory addresses and work

D. The stack starts at a high memory

address, the heap starts at a low

address and they grow towards each

towards high addresses

other

23.	(2 pts) Suppose that the MIPS architects decided to change the instruction length and develop a CPU with
	sixty-four 32 bit registers. If all other features remain intact, how many bits should the machine code of
	an R-format instruction occupy?

For each of the following problems, assume that the main memory contents are as shown in the diagram. Each problem is independent (e.g. the memory is initialized to match the diagram prior to each question).

24. (4 pts) Assume that the initial register values are as follows:

```
addi $s0, $t1, 19

sub $s0, $a1, $s0

add $a2, $t1, $zero

add $t1, $s0, $a1
```

After the assembly code has finished execution, what are the contents of the following registers?

25. (4 pts) Assume that the initial register values are as follows:

```
addi $t1, $zero, 10
lw $s0, 0($a2)
slt $t1, $t1, $s0
beq $t1, $zero, L1
addi $a1, $a1, 2
j L2
L1:
lw $s0, 4($a2)
L2:
```

Contents				
Address				_
0x1c20	0x8a	0x78	0x42	0x9c
0x1c24	0x97	0x3d	0xff	0x14
0x1c28	0xa3	0x67	0xda	0x81
0x1c2c	0x00	0x00	0x2f	0x18
0x1c30	0x2c	0xe2	0x22	0x71
0x1c34	0x00	0x00	0x00	0x08
0x1c38	0x9d	0x56	0x18	0xb4
0x1c3c	0xef	0x02	0xbb	0x7c
• • •				
• • •				
0xffe8	0xf7	0x35	0x21	0xc3
0xffec	0x8a	0x55	0x48	0x8d
0xfff0	0x00	0x00	0x1c	0x28
0xfff4	0x00	0x00	0x3f	0x28
0xfff8	0x2b	0x7e	0x12	0x72
0xfffc	0x13	0x48	0x15	0x13

After the assembly code has finished execution, what are the contents of the following registers?

26. (8 pts) For this problem, assume that the initial register values are as follows:

$$$t1 = 0x0004$$
, $$s0 = 0x0107$, $$s1 = 0x571$, $$sp = 0xfff4$

```
addi $sp, $sp, -8

lw $s0, 0($sp)

lw $s1, 4($sp)

lw $t1, 0($s1)

addi $s0, $zero, 255

or $t1, $t1, $s0

addi $sp, $sp, 8
```

After the assembly code has finished execution, what are the contents of the following registers?

- 27. (7 pts) Compute the IEEE 754 single precision (32 bit) representation of the decimal value 467.625
 - A. What is the 1 bit value of the sign bit?
 - B. What is the 8 bit value of the biased exponent?
 - C. What is the 23 bit value of the mantissa?

28. (3 pts) Suppose that the CPU design shown below was manufactured with a defect. The input to the ADDER was intended to be 4 (corresponding to a 4 byte instruction). Unfortunately, the input was inadvertently set to 8 (as shown). All other components of the computer are still running on the assumption that each instruction occupies 32 bits. The small box below shows the sequence of 32 bit instructions that was going to be executed. Assuming the program counter (PC) was originally pointing to the first instruction, what will be the final value of \$t0 after the program counter reaches the END label?

29. (3 pts) In a particular computer, the instruction-cache miss rate is 3% and the data-cache hit rate is 96%. There is a miss penalty of 120 cycles that occurs when either cache is unable to immediately return the data. In a given program, suppose that 30% of the instructions involve load or store operations. If the base number of cycles per instruction (CPI) is 2 (meaning the CPI with an ideal cache) then what would be the expected CPI during this particular program?								
T	The expected CPI is:							
30. (1	0 pts) Suppose	you are	e working	g with a dire	ct-mapped cache imp	olementation	. The cache has a block size	
of					the cache. The cache			
			_	•		•	om the initially empty	
					n sequential order (16 art but you may find			
	Byte		lock	Block	•		partial Credit.	
	Address	_	dress	Index	Tag	Hit?		
	162							
	139							
	301							
	300							
	249							
	141							
	220							
	261							
	208							
	172							
	B Comr	olete th	e followi	ing tahle sh	nwing the final state o	of the cache	If a value is unknown, write	
				nat space.	owing the iniai state t	or the cache.	in a value is ankilowil, write	
	Index Va		Tag					
	0							
	1						How many cache hits	
	2						occurred?	
	3							
	4							
	5							
	6							
	7							
	8							
	9						How many times were	
	10						blocks replaced?	
	11						(Loading into an empty	
	13						slot does not count.)	