EECS 445

Introduction to Machine Learning

Collaborative Filtering (UV Decomp) and Generative Models

Prof. Kutty

* announcement: no alternate finals

67pm Apr 25

if you liked

Steps:

- generate predictions
- pick movies to present to user

you might like

Recommendations as Matrix Completion

m items

n users

	5				4
		2	3		
	4				
				4	
1					
	2		3		
	5	1			3

call this the utility (or user-item) matrix Y

How to solve for the missing ratings?

- 1) Matrix factorization
- 2) Nearest neighbor prediction

Collaborative Filtering (kNN) review

Approach 2: Nearest Neighbor Prediction

Key idea:

Suppose user *a* has not rated movie *i*

To predict the rating

- compute similarity between user a and all other users in the system
- find the k 'nearest neighbors' of user \boldsymbol{a} who have rated movie \boldsymbol{i}
- compute a prediction based on these users' ratings of i

Collaborative Filtering

UV Decomposition

How to solve for the missing ratings?

- 1) Matrix factorization
- 2) Nearest neighbor prediction

more action

less action

Low-Rank Factorization: example

Matrix Rank

• Column rank of a matrix $\hat{Y} \in \mathbb{R}^{n \times m}$ is the size of the largest subset of columns of \hat{Y} that constitute a linearly independent set.

Facts:

- column rank of \widehat{Y} = row rank of \widehat{Y} = rank(\widehat{Y})
- rank(\hat{Y}) ≤ min(m, n)
- If $rank(\hat{Y}) = min(m, n)$ then \hat{Y} is said to be *full rank*
- Theorem: Let $\hat{Y} \in \mathbb{R}^{n \times m}$ and $\operatorname{rank}(\hat{Y}) = r$. Then there is $U \in \mathbb{R}^{n \times r}$ and $V^T \in \mathbb{R}^{r \times m}$ such that $\hat{Y} = UV^T$

UV factorization

We may think of Y as being approximated by

$$\hat{Y} = UV^T$$

where

U contains the relevant features of the user and

V contains the relevant features of the movie

So

$$\widehat{Y}_{ai} = [UV^T]_{ai} = \begin{bmatrix} \overline{v}^{a} & \overline{v}^{c} \\ \overline{v}^{a} & \overline{v}^{c} \end{bmatrix} = \overline{u}^{(a)} \cdot \overline{v}^{(i)}$$

$$= \overline{u}^{(a)} \cdot \overline{v}^{(i)}$$

$$= \overline{u}^{(a)} \cdot \overline{v}^{(i)}$$

in this example

$$\hat{Y}_{52} = -1$$

$$\zeta(5) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Objective Function

D - set of observed entries

Recall that
$$\hat{Y} = UV^T$$

So
$$\hat{Y}_{ai} = [UV^T]_{ai} = [[\bar{u}^{(1)}, ..., \bar{u}^{(n)}]^T [\bar{v}^{(1)}, ..., \bar{v}^{(m)}]]_{ai} = \bar{u}^{(a)} \cdot \bar{v}^{(i)}$$

$$J(U,V) = \frac{1}{2} \sum_{(a,i) \in D} \left(Y_{ai} - \overline{u}^{(a)} \cdot \overline{v}^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{a=1}^{n} \left\| \overline{u}^{(a)} \right\|^2 + \frac{\lambda}{2} \sum_{i=1}^{m} \left\| \overline{v}^{(i)} \right\|^2$$

Idea: Minimize J(U, V) using coordinate descent

Algorithm Overview

- Initialize "movie" features $\bar{v}^{(1)}$, ..., $\bar{v}^{(m)}$ to small (random) values
- Iterate until convergence

fix
$$\bar{v}^{(1)}$$
, ..., $\bar{v}^{(m)}$
solve for $\bar{u}^{(1)}$, ..., $\bar{u}^{(n)}$

$$\min_{\bar{u}^{(a)}} \frac{1}{2} \sum_{(a,i) \in D} (Y_{ai} - \bar{u}^{(a)} \cdot \bar{v}^{(i)})^2 + \frac{\lambda}{2} \|\bar{u}^{(a)}\|^2$$

fix
$$\bar{u}^{(1)}$$
, ..., $\bar{u}^{(n)}$ solve for $\bar{v}^{(1)}$, ..., $\bar{v}^{(m)}$
$$\min_{\bar{v}^{(i)}} \ \frac{1}{2} \sum_{(a,i) \in D} (Y_{ai} - \bar{u}^{(a)} \cdot \bar{v}^{(i)})^2 + \frac{\lambda}{2} \|\bar{v}^{(i)}\|^2$$

Ridge regression!!
$$J_{n,\lambda}(\bar{\theta}) = \lambda \frac{||\theta||^2}{2} + \frac{1}{n} \sum_{i=1}^n \frac{(y^{(i)} - (\bar{\theta} \cdot \bar{x}^{(i)}))^2}{2}$$

Example

Goal: Find rank 1 \hat{Y} . Assume $\lambda = 1$ in the objective function.

Suppose after 1 iteration $U = [6, 2, 3, 3, 5]^T$ and $V = [4, 1, 5]^T$

	5		7
		2	
Y =		1	4
	4		
		3	6

Fix V find new $\bar{u}^{(1)}$

https://forms.gle/ffiBvNbPjHF8ghi77

$$\min_{\bar{u}^{(a)}} \ \frac{1}{2} \sum_{(a,i) \in D} (Y_{ai} - \bar{u}^{(a)} \cdot \bar{v}^{(i)})^2 + \frac{\lambda}{2} \|\bar{u}^{(a)}\|^2$$

Example

Goal: Find rank 1 \hat{Y} . Assume $\lambda = 1$ in the objective function.

Suppose after 1 iteration $U = [6, 2, 3, 3, 5]^T$ and $V = [4, 1, 5]^T$

$$Y = \begin{bmatrix} 5 & & 7 \\ & 2 & \\ & 1 & 4 \\ & 4 & \\ & & 3 & 6 \end{bmatrix}$$

Fix V find new $\bar{u}^{(1)}$

$$\min_{\bar{u}^{(1)}} \ \frac{1}{2} \sum_{(1,i) \in D} (Y_{1i} - \bar{u}^{(1)} \cdot \bar{v}^{(i)})^2 + \frac{\lambda}{2} \|\bar{u}^{(1)}\|^2$$

$$= \min_{\overline{u}^{(1)}} \frac{1}{2} (Y_{11} - \overline{u}^{(1)} \cdot \overline{v}^{(1)})^2 + \frac{1}{2} (Y_{13} - \overline{u}^{(1)} \cdot \overline{v}^{(3)})^2 + \frac{\lambda}{2} ||\overline{u}^{(1)}||^2$$

$$= \min_{\overline{u}^{(1)}} \frac{1}{2} (5 - 4 \overline{u}^{(1)})^2 + \frac{1}{2} (7 - 5 \overline{u}^{(1)})^2 + \frac{\lambda}{2} ||\overline{u}^{(1)}||^2$$

Set partial derivative of this expression to 0 and solve for $\bar{u}^{(1)}$

$$\bar{u}^{(1)} \approx 1.3$$

Notice that error $(Y_{11} - [UV^T]_{11})^2$ goes from $(5 - 24)^2$ to $(5 - 5.2)^2$

Related ideas and issues

- Context-aware recommender systems
- Cold start problem
- Manipulation in recommender systems

Discriminative vs Generative Models

Discriminative Models

E.g., Classification → learned a separator to discriminate two classes

*internal structure of the classes is not captured

Why do we care about generative models?

Better understanding of where our data came from; how it was 'generated'

- describes internal structure of the data
- can also be used for classification

We can use this as a basis for soft clustering

We can use this as a basis for graphical models

Maximum Likelihood Estimation (MLE)

Underlying Distribution for this (unlabeled) Dataset

 $x^{(i)}$ 0

1 $P_{r}(x^{(i)}=1) = P$ 0 $P_{nle} = \frac{2}{7}$ 0

1

0

0

We assume data are generated i.i.d. from an unknown Bernoulli distribution that has parameter p each of these "coin flips" is with the same coin (same bias towards head) and each coin flip is independent of previous flips

.

generative story with i.i.d. assumption for Bernoulli

Given
$$S_n = \{x^{(i)}\}_{i=1}^n$$

Assume

- each $x^{(i)} \sim \operatorname{Bern}(x; p)$ i.e., each $x^{(i)} = 1$ with probability p and $x^{(i)} = 0$ with probability 1 - p (identically distributed)
- $\forall i \neq j \quad p(x^{(i)}, x^{(j)}) = \operatorname{Bern}(x^{(i)}; p) \operatorname{Bern}(x^{(i)}; p)$ (independently distributed) e.g., $p(x^{(1)} = 1, x^{(2)} = 0, x^{(3)} = 1, x^{(4)} = 1) = p^3(1 p)$ $p(x^{(i)} = 1) = p^3(1 p)$ Of $p \in \mathbb{P} = 1$ Consequently

Goal: Determine *p*

Underlying Distribution for this (unlabeled) Dataset

x⁽ⁱ⁾
0.0002
1110
0.01
710
-1120.09
774.11
3.532

n(i) CIR

Maximum Likelihood Estimate: intuition

We assume data are generated i.i.d. from an unknown Gaussian distribution that has parameter μ , σ^2

each datapoint was drawn from the same 'bell curve'

Use MLE to determine the *likeliest* parameter values, given the dataset

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

examples: inches of snowfall, heights of people etc.

generative story with i.i.d. assumption for univariate Gaussian

Assume

• each $\bar{x}^{(i)} \sim N(\bar{x}|\mu,\sigma^2)$

(identically distributed)

• each $\bar{x}^{(i)} \sim N(\bar{x}|\mu,\sigma^2)$ (id • $\forall i \neq j \quad p(\bar{x}^{(i)},\bar{x}^{(j)}) = N(\bar{x}^{(i)}|\mu,\sigma^2)N(\bar{x}^{(j)}|\mu,\sigma^2)$

(independently distributed)

Consequently,

$$p(S_n) = \prod_{i=1}^n N(\bar{x}^{(i)}|\mu,\sigma^2)$$

Goal: Determine μ , σ^2

- Want to maximize $p(S_n)$ wrt μ
- Want to maximize $p(S_n)$ wrt σ^2

MLE for the univariate Gaussian

• Given $S_n = \{x^{(i)}\}_{i=1}^n$ drawn iid

$$p(S_n) = \prod_{i=1}^n p(x^{(i)})$$

• Want to maximize $p(S_n)$ wrt μ

$$\mu_{\text{MLE}} = \sum_{i=1}^{n} \frac{x^{(i)}}{n}$$

• Want to maximize $p(S_n)$ wrt σ^2

$$\sigma_{\text{MLE}}^2 = \sum_{i=1}^n \frac{\left(x^{(i)} - \mu_{\text{MLE}}\right)^2}{n}$$

Multivariate Gaussian Distribution

Underlying Distribution for this (unlabeled) Dataset

for $\bar{x} \in \mathbb{R}^d$ $d \ge 2$

Example 1: Here $\bar{x} \in \mathbb{R}^2$

Example 2:

Here	\bar{x}	\in	\mathbb{R}^4
------	-----------	-------	----------------

$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$
0.0002	10.052	8.602	227
1110	12.110	-805.1	-84.5
0.01	0.01	5292.01	837.1
710	-73610	8015.03	-2.503
-1120.09	11.01	1680	-5686
774.11	3.67	46.86	51.13
3.532	624	587.4	-3700