IE 534/CS 598 Deep Learning

University of Illinois at Urbana-Champaign

Fall 2018

Lecture 4

We now consider a multi-layer neural network.

$$Z^{1} = W^{1}x + b^{1},$$

$$H^{1} = \sigma(Z^{1}),$$

$$Z^{\ell} = W^{\ell}H^{\ell-1} + b^{\ell}, \quad \ell = 2, ..., L,$$

$$H^{\ell} = \sigma(Z^{\ell}), \quad \ell = 2, ..., L,$$

$$U = W^{L+1}H^{L} + b^{L+1},$$

$$f(x; \theta) = F_{\text{softmax}}(U).$$
(1)

The neural network has L hidden layers followed by a softmax function. Each layer of the neural network has d_H hidden units. The ℓ -th hidden layer is $H^\ell \in \mathbb{R}^{d_H}$. H^ℓ is produced by applying an element-wise nonlinearity to the input $Z^\ell \in \mathbb{R}^{d_H}$. Using a slight abuse of notation,

$$\sigma(Z^{\ell}) = \left(\sigma(Z_0^{\ell}), \sigma(Z_1^{\ell}), \dots, \sigma(Z_{d_H-1}^{\ell})\right). \tag{2}$$

The SGD algorithm for updating θ is:

- Randomly select a new data sample (X, Y).
- Compute the forward step $Z^1, H^1, \ldots, Z^L, H^L, U, f(X; \theta)$, and $\rho := \rho(f(X; \theta), Y)$.
- Calculate the partial derivative

$$\frac{\partial \rho}{\partial U} = -\left(e(Y) - f(X;\theta)\right). \tag{3}$$

- Calculate the partial derivatives $\frac{\partial \rho}{\partial b^{L+1}}$, $\frac{\partial \rho}{\partial W^{L+1}}$, and δ^L .
- For $\ell = L 1, ..., 1$:
 - ullet Calculate δ^ℓ via the formula

$$\delta^{\ell} = (W^{\ell+1})^{\top} (\delta^{\ell+1} \odot \sigma'(Z^{\ell+1})). \tag{4}$$

- Calculate the partial derivatives with respect to W^{ℓ} and b^{ℓ} .
- ullet Update the parameters heta with a stochastic gradient descent step.

- In principle, the neural network can more accurately fit more complex nonlinear relationships with more layers.
- A "deep neural network" is a highly nonlinear model due to repeated applications of element-wise nonlinearities.
- However, the numerical estimation of the neural network with stochastic gradient descent suffers a limitation called the vanishing gradient problem as the number of layers is increased.

- As the number of layers L is increased, the magnitude of the gradient with respect to the parameters in the lower layers becomes small (e.g., $\frac{\partial \rho}{\partial W^{\ell}}$ for $\ell \ll L$).
- This leads to (stochastic) gradient descent converging extremely slowly.
- Essentially, the lower layers take an impractically long amount of time to train.

Example

Each hidden layer has a single unit (i.e., $d_H=1$) and $\sigma(\cdot)$ is a sigmoid function. Let's initialize $b^\ell=0$ and $W^\ell=\frac{1}{2}$. The input dimension d=1 and the output is also one-dimensional. Assume x=1 and let the loss function be $\rho(z,y)=(y-z)^2$.

Then,

$$\left| \frac{\partial \rho}{\partial W^{\ell}} \right| \le C 2^{-(L-\ell)},\tag{5}$$

- The vanishing gradient problem can also occur due to saturation.
- Saturation occurs when the inputs to the hidden units have very large magnitudes.
- For example, recall that if $\sigma(\cdot)$ is a sigmoidal function, then its derivative is

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)). \tag{6}$$

Since $\lim_{\|z\| \to \infty} \sigma(z) \to 0$,

$$\lim_{\|z\| \to \infty} \sigma'(z) = 0. \tag{7}$$

Contour plots of distribution of gradient magnitudes.

Contour plots of distribution of gradient magnitudes.

REGULAR				
	kernel	input	output	num weights
conv1	4	3	128	6144
conv2	4	128	128	262144
conv3	4	128	128	262144
conv4	4	128	128	262144
conv5	4	128	128	262144
conv6	3	128	128	147456
conv7	3	128	128	147456
conv8	3	128	128	147456
fc1		2048	500	1024000
fc2		500	500	250000
fc3		500	10	5000
				2776088
SHALLOW				
	kernel	input	output	num weights
conv1	4	3	256	12288
conv3	4	256	256	1048576
conv5	4	256	128	524288
fc1		2048	500	1024000
fc2		500	500	250000
fc3		500	10	5000
				2864152
EXTRA SHA	LLOW			
	kernel	input	output	num weights
conv1	4	3	700	33600
conv3	4	700	128	1433600
fc1		2048	500	1024000
fc2		500	500	250000
fc3		500	10	5000
2-LAYER				2746200
	kernel	input	output	num weights
conv1	5	3		225000
fc1		192000	10	1920000
		132000	10	2145000
	-			2143000

We first consider a convolution network with a single hidden layer. Let the input image be $X \in \mathbb{R}^{d \times d}$ and a filter $K \in \mathbb{R}^{k_y \times k_x}$.

We define a convolution of the matrix X with the filter K as the map $X*K: \mathbb{R}^{d\times d} \times \mathbb{R}^{k_y \times k_x} \to \mathbb{R}^{(d-k_y+1)\times (d-k_x+1)}$ where

$$(X * K)_{i,j} = \sum_{m=0}^{k_y - 1} \sum_{n=0}^{k_x - 1} K_{m,n} X_{i+m,j+n}.$$
 (8)

The hidden layer applies an element-wise nonlinearity $\sigma:\mathbb{R}\to\mathbb{R}$ to each element of the matrix X*K. We define the variable $Z\in\mathbb{R}^{(d-k_y+1)\times(d-k_x+1)}$ and the hidden layer $H\in\mathbb{R}^{(d-k_y+1)\times(d-k_x+1)}$ where

$$H_{i,j} = \sigma((Z)_{i,j}),$$

$$Z = X * K.$$
(9)

Y is the label for the image X and takes values in the set $\mathcal{Y} = \{0, 1, \dots, K-1\}.$

$$f(x;\theta) = F_{\text{softmax}}(U),$$

$$U_k = W_{k,:,:} \cdot H + b,$$
(10)

where $W \in \mathbb{R}^{K \times (d-k_y+1) \times (d-k_x+1)}$, $b \in \mathbb{R}^K$, $U \in \mathbb{R}^K$, and $W_{k,:,:} \cdot H = \sum_{i,j} W_{k,i,j} H_{i,j}$.

The collection of parameters is $\theta = \{K, W, b\}$. The cross-entropy error for a single data sample (X, Y) is

$$\rho := \rho(f(X;\theta), Y)
= -\log \left(f_Y(X;\theta) \right).$$
(11)

The single layer convolution network is:

Input Convolve
$$Z = X * K$$
,

ReLU $H = \sigma(Z)$,

FC $U_k = W_{k,:,:} \cdot H + b$, $k = 0, ..., K - 1$,

 $f(x; \theta) = F_{\text{softmax}}(U)$. (12)

The cross-entropy error for a single data sample (X, Y) is

$$\rho := \rho(f(X;\theta), Y)
= -\log\left(f_Y(X;\theta)\right).$$
(13)

The stochastic gradient descent algorithm for updating θ is:

- Randomly select a new data sample (X, Y).
- Compute the forward step (Z, H, U, ρ) .
- Calculate the partial derivatives $(\frac{\partial \rho}{\partial U}, \delta, \frac{\partial \rho}{\partial K})$.
- Update the parameters $\theta = \{K, W, b\}$ with a stochastic gradient descent step:

$$b^{(\ell+1)} = b^{(\ell)} - \alpha^{(\ell)} \frac{\partial \rho}{\partial U},$$

$$W_{k,\cdot,\cdot}^{(\ell+1)} = W_{k,\cdot,\cdot}^{(\ell)} - \alpha^{(\ell)} \frac{\partial \rho}{\partial U_k} H,$$

$$K^{(\ell+1)} = K^{(\ell)} - \alpha^{(\ell)} \left(X * (\sigma'(Z) \odot \delta) \right), \quad (14)$$

where $\alpha^{(\ell)}$ is the learning rate.

- Convolutions are invariant to translations.
- Consider an image $X: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ and the convolution

$$Z_{i,j} = (X * K)_{i,j} = \sum_{m=0}^{k_y - 1} \sum_{n=0}^{k_x - 1} K_{m,n} X_{i+m,j+n}.$$
 (15)

• Let Y = t(X), defined as

$$Y_{i,j} = t(X)_{i,j} = X_{i-b_1,j-b_2}. (16)$$

Then,

$$(Y * K)_{i,j} = \sum_{m=0}^{k_y-1} \sum_{n=0}^{k_x-1} K_{m,n} Y_{i+m,j+n}$$

$$= \sum_{m=0}^{k_y-1} \sum_{n=0}^{k_x-1} K_{m,n} X_{i+m-b_1,j+n-b_2}$$

$$= (X * K)_{i-b_1,j-b_2} = Z_{i-b_1,j-b_2}.$$

(17)

We have that

$$(Y * K)_{i,j} = (X * K)_{i-b_1,j-b_2}$$

= $Z_{i-b_1,j-b_2}$
= $t(Z)_{i,j}$ (18)

Therefore,

$$t(X) * K = t(X * K). \tag{19}$$

Shifting the data does not change the output of the convolution operation (up to translations)!