

Overview [1]

My literature review focuses on various styles of aquatic soft locomotion.

Why Underwater Soft Robots?[2]

- 80% of the ocean is unexplored.
- See animals in their habitat.
- Mimicking organic movement

Jellyfish: Jet Propulsion [3], [4], [5], [6]

Electro-Deformation Actuation

Magnetic Field Actuation

Visible-Light Actuation

Cardiomyocyte Actuation

Squids: Jet Propulsion [7],[8]

MAGNETIC

Magnetic Liquid Metal (MLM) - Gallium-based alloy

ORIGAMI

Octopus: String Jet Propulsion and Crawling [9]

Fig. 7. A concept design of the integrated Soft Unmanned Underwater Vehicle PoseiDRONE in its intended final configuration.

Fig. 8. The first working prototype of the PoseiDRONE, referred to here as the PDR1.

Fishes/ Eels Motion [10]

High Control

High Speed

- Anguilliform: Almost entire body undulates
- Subcarangiform: Rear half of body undulates
- Carangiform: Rear third of body undulates
- Thunniform: Only the tail moves

Fishes/ Eels: DEAs, FEAs [11], [12]

Cylindrical DEAs

Flexi-Tuna (FEAs)

Fishes/ Eels: DEAs, FEAs [13]

Fishes/ Eels: String actuation [14], [15]

Fishes/ Eels: Magnetic Actuation[16]

Uses 2 solenoids on either side

MAGFLE

Fishes/ Eels: Depth Control [17], [18]

SWIM BLADDERS

Fig. 6. Hardware setup of robotic fish.

FINS

Fig. 1. Mechanical construction of the robotic fish.

Other: Deformable Robot for Agile Guided Observation and Navigation (DRAGON) [19], [20]

Future Trends

- Rise in anguilliform robot research as they have higher controllability.
- Multimodal locomotion PoseiDRONE
- Tetherless
- Swarm locomotion Fish schools

[14] Flatfishbot: untethered, control localized buoyancy with thermoelectric pneumatic actuators. [327]Light-driven bionic snake soft robot: using a hydrogel Poly (N-isopropylacrylamide) and carbon nanotubes. [91] Copebot: copepod-like combustion-driven high-

> performance robot [8]ART: turtle-inspired, with adaptive morphogenesis. [328]JellyZ: jellyfsh-inspired robot actuated by TCP.

[318]Starfish-shaped gel robot made of electro-active polymer gel (PAMPS gel). [319]Robo-Piketo: actuated by IPMC, capable of very quick turning and fast acceleration from a stop.

[320]Snake-like swimming robot with IPMC actuator. [321]Robotic fish with two undulating long-fins. [135]Micro manta ray robot fish actuated by SMA wires. [269]G9 serial robotic fish.

[323]Cephalopods-inspired SUUV.

[283]Starfish robot based on SMS.

[19]Turtle-like swimming robot with SMA flippers. [284]Double-caudal-fin robotic fish. [281]2D maneuverable fish propelled by IPMC fins. [324]RobCutt-II with the robotic arm. [62]Robotic fish based on DEAs

[64] Translucent swimming robots driven by frameless fluid electrode DEAs.

[317]Eight-tentacles-jellyfsh-robot actuated by pump. [22]Untethered Jellyfish robot actuated by DEAs. [325]RoboScallop: scallop-inspired robot firstly demonstrated jet propulsion for a robot swimming. [16]Breaststroke-inspired robot actuated by DEA. [316] Walking robot capable of sensing flow.

[80]SoFi: integrated, untethered, remote control. [282]Fish robot with multimodal swimming. [227]PATRICK: brittle-star-inspired robot, actuated by SMA wires.

[53]Biomimetic underwater robot with six MSM-IPMC

[326] Octopus-inspired bipedal walking soft robot.

References

- 1. Aracri, S., Giorgio-Serchi, F., Suaria, G., Sayed, M. E., Nemitz, M. P., Mahon, S., & Stokes, A. A. (2021). Soft Robots for Ocean Exploration and Offshore Operations: A Perspective. Soft Robotics, 8(6). https://doi.org/10.1089/soro.2020.0011
- 2. NATIONAL GEOGRAPHIC. (2023, October 19). Ocean | National Geographic Society. Education.nationalgeographic.org. https://education.nationalgeographic.org/resource/ocean/
- 3. Yin, C., Wei, F., Fu, S., Zhai, Z., Ge, Z., Yao, L., Jiang, M., & Liu, M. (2021). Visible Light-Driven Jellyfish-like Miniature Swimming Soft Robot. ACS Applied Materials & Interfaces, 13(39),
- 47147–47154. https://doi.org/10.1021/acsami.1c13975 4. Ren, Z., Hu, W., Dong, X., & Sitti, M. (2019). Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10549-7
- 5. Nawroth, J. C., Lee, H., Feinberg, A. W., Ripplinger, C. M., McCain, M. L., Grosberg, A., Dabiri, J. O., & Parker, K. K. (2012). A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 30(8), 792–797. https://doi.org/10.1038/nbt.2269
- 6. Zhou, Y., Jin, H., Liu, C., Dong, E., Xu, M., & Yang, J. (2016). A novel biomimetic jellyfish robot based on a soft and smart modular structure (SMS). https://doi.org/10.1109/robio.2016.7866406 7. Jiang, O., Hu, Z., Wu, K., Wu, W., Zhang, S., Ding, H., & Wu, Z. (2023). Squid-Inspired Powerful Untethered Soft Pumps via Magnetically Induced Phase Transitions. Soft Robotics.
- https://doi.org/10.1089/soro.2022.0118
- 8. Hu, J., Li, H., & Chen, W. (2021). A squid-inspired swimming robot using folding of origami. The Journal of Engineering, 2021(10), 630–639. https://doi.org/10.1049/tje2.12075
- 9. Arienti, A., Calisti, M., Giorgio-Serchi, F., & Laschi, C. (2013). PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability. OCEANS Conference, 1–7. https://doi.org/10.23919/oceans.2013.6741155
- 10. Rusydi Muhammad Razif, M., Athif Mohd Faudzi, A., Najaa Aimi Mohd Nordin, I., Natarajan, E., & Yaakob, O. (2024). View of A Review on Development of Robotic Fish. Jtse.utm.my. https://jtse.utm.my/index.php/jtse/article/view/20/15
- 11. Liu, S., Wang, Y., Li, Z., Jin, M., Ren, L., & Liu, C. (2022). A fluid-driven soft robotic fish inspired by fish muscle architecture. Bioinspiration & Biomimetics, 17(2), 026009–026009. https://doi.org/10.1088/1748-3190/ac4afb
- 12. Wang, R., Zhang, C., Zhang, Y., Yang, L., Tan, W., Qin, H., Wang, F., & Liu, L. (2024). Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle. Soft Robotics. https://doi.org/10.1089/soro.2023.0163
- 13. Mashable. (2021, August 26). Robotic Tuna May Be the Key to Understanding the Physics of Fish | Mashable. YouTube. https://www.youtube.com/watch?v=GuZRzbzcPfw
- 14. Hall, R., Espinosa, G., Chiang, S.-S., & Onal, C. D. (2024). Design and Testing of a Multi-Module, Tetherless, Soft Robotic Eel. 2024 IEEE International Conference on Robotics and Automation (ICRA), 8821–8827. https://doi.org/10.1109/icra57147.2024.10611531
- 15. WPI Soft Robotics Laboratory. (2022, June 9). BioRob 2022 Supplementary Video. YouTube. https://www.youtube.com/watch?v=ElmRZea01Wk
- 16. Wei, D., Hu, S., Zhou, Y., Ren, X., Huo, X., Yin, J., & Wu, Z. (2023). A Magnetically Actuated Miniature Robotic Fish with the Flexible Tail Fin. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/lra.2023.3300283
- 17. Makrodimitris, M., Aliprantis, I., & Papadopoulos, E. (2014). Design and implementation of a low cost, pump-based, depth control of a small robotic fish. 2014 IEEE/RSJ International
- Conference on Intelligent Robots and Systems, 1127–1132. https://doi.org/10.1109/iros.2014.6942699 18. Le Zhang, We, Yonghui Hu, Dandan Zhang, & Long Wang. (2007). Development and depth control of biomimetic robotic fish. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/iros.2007.4398997
- 19. Hall, R., & Onal, C. D. (2024). Untethered Underwater Soft Robot with Thrust Vectoring. 8828–8834. https://doi.org/10.1109/icra57147.2024.10610430
- 20. WPI Soft Robotics Laboratory. (2023, October 5). Untethered Underwater Soft Robot with Thrust Vectoring. YouTube. https://www.youtube.com/watch?v=S9OxFPv63ZI
- 21. Qu, J., Xu, Y., Li, Z., Yu, Z., Bao Quan Mao, Wang, Y., Wang, Z., Fan, Q., Xiang, Q., Zhang, M., Xu, M., Liang, B., Liu, H., Wang, X., & Li, T. (2023). Recent Advances on Underwater Soft Robots. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202300299

Any Questions?

