第一章、函数与极限

第一节、变量与函数

- 一、集合
- 二、函数
- 三、函数的几种特性
- 四、反函数
- 五、复合函数 初等函数

一、集合

1. 定义及表示法

定义 1. 具有某种特定性质的事物的总体称为集合. 组成集合的事物称为元素.

不含任何元素的集合称为空集,记作 Ø.

元素 a 属于集合 M, 记作 $a \in M$.

元素 a 不属于集合 M, 记作 $a \in M$ (或 $a \notin M$).

注: M 为数集 $\begin{cases} M^* & \overline{\lambda} = \overline{\lambda} M + \overline{\lambda} = \overline{\lambda} M \\ M^* & \overline{\lambda} = \overline{\lambda}$

表示法:

(1) 列举法: 按某种方式列出集合中的全体元素 .

例:有限集合
$$A = \{a_1, a_2, \dots, a_n\} = \{a_i\}_{i=1}^n$$

自然数集 $N = \{0, 1, 2, \dots, n, \dots\} = \{n\}$

(2) 描述法: $M = \{x \mid x \text{ 所具有的特征}\}$

例:整数集合
$$Z = \{x \mid x \in N \text{ 或 } -x \in N^+\}$$

有理数集 $Q = \{\frac{p}{q} \mid p \in Z, q \in N^+, p = q = p \}$
实数集合 $R = \{x \mid x \neq p = x \neq q = x$

2. 区间

3. 邻域

点a的8邻域

$$U(a, \delta) = \left\{ \begin{array}{c|c} x & a - \delta < x < a + \delta \end{array} \right\}$$

$$= \left\{ \begin{array}{c|c} x & x - a < \delta \end{array} \right\}$$

$$= \left\{ \begin{array}{c|c} x & a - \delta < x < a + \delta \end{array} \right\}$$

$$= \left\{ \begin{array}{c|c} x & a + \delta \end{array} \right\}$$

点a的去心 δ 邻域 $U(a,\delta) = \{x | 0 < |x-a| < \delta\}$

其中,a 称为邻域中心, δ 称为邻域半径.

左 δ 邻域: $(a-\delta,a)$, 右 δ 邻域: $(a,a+\delta)$.

4. 集合之间的关系及运算

定义2. 设有集合 A,B,若 $x \in A$ 必有 $x \in B$,则称A 是 B 的子集,或称 B 包含 A,记作 $A \subset B$.

若 $A \subset B$ 且 $B \subset A$,则称 $A \subseteq B$ 相等,记作A = B.

例如, $N \subset Z$, $Z \subset Q$, $Q \subset R$ 显然有下列关系:

- (1) $A \subset A$; A = A; $\emptyset \subset A$
- (2) $A \subset B \perp B \subset C \longrightarrow A \subset C$

定义3. 给定两个集合A,B, 定义下列运算:

并集 $A \cup B = \{x \mid x \in A$ 或 $x \in B\}$

交集 $A \cap B = \{x \mid x \in A \perp x \in B \}$

差集 $A \setminus B = \{ x \mid x \in A \perp x \notin B \}$

余集 $B_A^c = A \setminus B$ (其中 $B \subset A$)

直积 $A \times B = \{(x, y) | x \in A, y \in B \}$

特例: $R \times R$ $\stackrel{!}{=}$ R^2

为平面上的全体点集

二、函数

1. 函数的概念

定义 设非空数集 $D \subset R$, x 和 y 是两个变量, 若存在某个 法则 f, 对于每个数 $x \in D$, 变量 y 都有唯一确定的值和它 对应, 则称 $f:D \to R$ 为定义在 D上的函数,

$$f(D) = \{y | y = f(x), x \in D\}$$
 称为值域.

函数的二要素: 定义域、对应法则.

函数的记号: 通常用 f,g,F,φ 等表示,可记作

$$y = f(x), y = F(x), y = \varphi(x)$$

函数图形:

$$C = \{(x, y) | y = f(x), x \in D \}$$

$$\subset D \times f(D)$$

$$\forall x \in D | \xrightarrow{f} y \in f(D) = \{ y | y = f(x), x \in D \}$$
(定义域) — (d域)

定义域 ——使表达式及实际问题都有意义的自变量集合.

对应规律的表示方法:解析法、图象法、列表法

例如,反正弦主值 $y = f(x) = \arcsin x$

定义域
$$D = [-1,1]$$
, 值域 $f(D) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

例1.已知函数
$$y = f(x) = \begin{cases} 2\sqrt{x}, & 0 \le x \le 1 \\ 1+x^2, & x > 1 \end{cases}$$

例1.已知函数
$$y = f(x) = \begin{cases} 2\sqrt{x}, & 0 \le x \le 1 \\ 1+x^2, & x > 1 \end{cases}$$
, 求 $f\left(\frac{1}{2}\right)$ 及 $f\left(\frac{1}{t}\right)$,并写出定义域及值域. 解: $f\left(\frac{1}{2}\right) = 2\sqrt{\frac{1}{2}} = \sqrt{2}, \quad f\left(\frac{1}{t}\right) = \begin{cases} 1+\frac{1}{t^2}, & 0 < t < 1 \\ \frac{2}{\sqrt{t}}, & t \ge 1 \end{cases}$

定义域
$$D = [0, +\infty)$$

值域
$$f(D) = [0, +\infty)$$

例2 函数
$$y = \operatorname{sgn} x = \begin{cases} 1, & x > 0, \\ 0 & x = 0, \\ -1 & x < 0 \end{cases}$$

称为符号函数, 它的定义域为

$$D = (-\infty, +\infty)$$
,值域为

$$R_f = \{-1,0,1\}$$
, 它的图形为

例 取整函数 y = [x], $x \in R$, [x] 表示不超过x 的最大整数. 如 [2.5] = 2, [-3.4] = -4. 它的图形为

三、函数的几种特性

(1) 函数的有界性

设函数 $y = f(x), x \in D$, 且数集 $X \subset D$.

若存在数 K_1 , 使得对 $\forall x \in X$, 都有 $f(x) \leq K_1$, 则称函数 f(x) 在X上有上界. K_1 称为f 在X上的一个上界.

若存在数 K_2 ,使得对 $\forall x \in X$,都有 $f(x) \ge K_2$ 则称函数 f(x) 在X上有下界. K_2 称为 f 在X上的一个下界.

若∃M > 0, $\forall x \in X$, 使 $|f(x)| \le M$,称 f(x) 在X上有界.

若这样的数M不存在,则称函数f(x) 在X上无界. 即 对 $\forall M > 0$, $\exists x_1 \in X$, 使 $|f(x_1)| > M$.

如 $y = \sin x$ 在 $(-\infty, +\infty)$ 有界. $y = \frac{1}{x}$ 在 (0,1)上无界.

f(x)在X上有界的充要条件是它在X上既有上界又有下界.

(2) 单调性

设函数 $y = f(x), x \in D$, 且区间 $I \subset D$.

若 $f(x_1) < f(x_2)$,称f(x)为I上的单调增函数:

若 $f(x_1) > f(x_2)$,称f(x) 为I 上的 单调减函数.

(3) 奇偶性

设函数 f(x) 的定义域为D, 且D关于原点对称,

若 f(-x) = f(x), 则称 f(x) 为偶函数;

若 f(-x) = -f(x), 则称 f(x) 为奇函数.

说明: 若f(x)在 x = 0 有定义 ,则当

f(x) 为奇函数时,必有 f(0) = 0.

例如,

$$y = f(x) = \frac{e^x + e^{-x}}{2}$$
 偶函数

 $\stackrel{\text{id}}{=}$ ch x 双曲余弦

又如,

再如,
$$y = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 奇函数
$$\vdots$$
 = th x 双曲正切

(4) 周期性

设函数f(x) 的定义域为D, 若 $\exists l > 0$, $\forall x \in D$, $x \neq l \in D$, 且 $f(x \pm l) = f(x)$

则称f(x)为周期函数,称l为周期(一般指最小正周期).

注:周期函数不一定存在最小正周期.

例如, 常量函数f(x) = C

狄里克雷 (Dirichlet) 函数 D(x) =1, x为有理数0x为无理数

四、反函数

1. 反函数的概念 (P13)

习惯上, y = f(x), $x \in D$ 的反函数记成 $y = f^{-1}(x), x \in f(D)$

- 2. 反函数的性质:
- (1) y=f(x) 单调递增(减), 其反函数 $y=f^{-1}(x)$ 存在, 且也单调递增(减).

(2) 函数 y = f(x) 与其反函数 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称 .

例如

指数函数
$$y = e^x, x \in (-\infty, +\infty)$$

对数函数 $y = \ln x, x \in (0, +\infty)$
互为反函数

它们都单调递增, 其图形关于直线 y = x 对称.

四、复合函数 初等函数

1. 复合函数

设有函数链 $y = f(u), u \in D_1$

$$u = g(x), x \in D, \quad \coprod g(D) \subset D_1$$

则 $y = f(g(x)), x \in D$

称为由y=f(u)和u=g(x) 构成的复合函数, u 称为中间变量.

注意:构成复合函数的条件 $g(D) \subset D_1$ 不可少.

例如, 函数链: $y = \arcsin u$, $u = 2\sqrt{1-x^2}$, 可定义复合

函数
$$y = \arcsin 2\sqrt{1-x^2}, x \in D = \left[-1, -\frac{\sqrt{3}}{2}\right] \cup \left[\frac{\sqrt{3}}{2}, 1\right]$$

但函数链 $y = \arcsin u, u = 2 + x^2$ 不能构成复合函数.

两个以上函数也可构成复合函数. 例如,

$$y = \sqrt{u}, u > 0,$$

$$u = \cot v, v \neq k\pi \ (k = 0, \pm 1, \pm 2, \cdots),$$

$$v = \frac{x}{2}, x \in (-\infty, +\infty)$$

$$x \Rightarrow y \in \triangle_{\infty} \#_{\infty}.$$

可定义复合函数:

$$y = \sqrt{\cot \frac{x}{2}}, \quad x \in (2k\pi, (2k+1)\pi), k \in \mathbb{Z}.$$

$$\because \cot \frac{x}{2} \ge 0, \quad \therefore k\pi < \frac{x}{2} \le k\pi + \frac{\pi}{2}$$

2. 初等函数

(1) 基本初等函数

幂函数、指数函数、对数函数、三角函数、反三角函数

(2) 初等函数

由常数及基本初等函数 经过有限次四则运算和复合运算所构成,并可用一个式子表示的函数,称为初等函数. 否则称为非初等函数.

例如
$$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$
 可表为 $y = \sqrt{x^2}$, 故为初等函数.

又如: 双曲函数与反双曲函数也是初等函数.

非初等函数举例:

符号函数

$$y = \operatorname{sgn} x = \begin{cases} 1, & \exists x > 0 \\ 0, & \exists x = 0 \\ -1, & \exists x < 0 \end{cases}$$

取整函数

$$y = [x] = n$$
, $\stackrel{\triangle}{=} n \le x < n+1$, $n \in Z$

4. 函数的运算

例 设函数f(x)的定义域为(-l,l),则函数f(x)必可表示为偶函数与奇函数之和.

解
$$g(x) = \frac{\left(f(x) + f(-x)\right)}{2}, x \in (-l, l)$$
 偶函数
$$h(x) = \frac{\left(f(x) - f(-x)\right)}{2}, x \in (-l, l)$$
 奇函数
$$\therefore f(x) = g(x) + h(x).$$

例. 求 $y = \begin{cases} x^2, & -1 \le x < 0 \\ \ln x, & 0 < x \le 1 \end{cases}$ 的反函数及其定义域. $2e^{x-1}, 1 < x \le 2$

解: 当
$$-1 \le x < 0$$
 时, $y = x^2 \in (0,1]$,
则 $x = -\sqrt{y}$, $y \in (0,1]$
当 $0 < x \le 1$ 时, $y = \ln x \in (-\infty,0]$,
则 $x = e^y$, $y \in (-\infty,0]$
当 $1 < x \le 2$ 时, $y = 2e^{x-1} \in (2,2e]$,
则 $x = 1 + \ln \frac{y}{2}$, $y \in (2,2e]$

反函数
$$y = \begin{cases} e^x, & x \in (-\infty, 0] \\ -\sqrt{x}, & x \in (0, 1] \end{cases}$$
 定义域为 $1 + \ln \frac{x}{2}, & x \in (2, 2e]$ $(-\infty, 1] \cup (2, 2e].$

内容小结

- 1. 集合的概念
- 2. 函数的定义及函数的二要素 对应规律
- 3. 函数的特性 有界性, 单调性, 奇偶性, 周期性
- 4. 初等函数

作业

习题1-1:

2, 3, 4, 5, 7, 8, 9,

12 (1, 2, 4), 13

1. 设 f(0) = 0且 $x \neq 0$ 时 $af(x) + bf\left(\frac{1}{x}\right) = \frac{c}{x}$, 其中 a, b, c 为常数,且 $|a| \neq |b|$,证明 f(x)为奇函数.

证: 令
$$t = \frac{1}{x}$$
, 则 $x = \frac{1}{t_1}$, $af\left(\frac{1}{t}\right) + bf(t) = ct$
由
$$\begin{cases} af(x) + bf(\frac{1}{x}) = \frac{c}{x} \\ af\left(\frac{1}{x}\right) + bf(x) = cx \end{cases}$$
消去 $f\left(\frac{1}{x}\right)$, 得
$$f(x) = \frac{c}{b^2 - a^2} \left(bx - \frac{a}{x}\right) \quad (x \neq 0),$$
显然 $f(-x) = -f(x)$, 又 $f(0) = 0$, 故 $f(x)$ 为奇函数 .

2. 设函数 = f(x), $x \in (-\infty, +\infty)$ 的图形关于直线 x = a, x = b (a < b) 均对称,求证y = f(x) 是周期函数.

证: 由
$$f(x)$$
 的对称性知

于是
$$f(a+x) = f(a-x), \qquad f(b+x) = f(b-x)$$

$$f(x) = f(a+(x-a))$$

$$= f(a-(x-a)) = f(2a-x)$$

$$= f(b+(2a-x-b))$$

$$= f(b-(2a-x-b))$$

$$= f(x+2(b-a)),$$

故f(x)是周期函数 ,周期为T = 2(b-a).