姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月3日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月3日

目录

第一章	补充知识-概率论	1
1.1	配对问题	1
1.2	几个概率的不等式	2
1.3	轮流射击模型	3
1.4	补充: 随机变量的矩	4

第一章 补充知识-概率论

补充知识来自于

- (1) 概率论与数理统计 茆诗松
- (2) 做题总结

1.1 配对问题

问题描述: 在一个有 n 个人参加的晚会,每个人带来一件礼物,且规定每个人带的礼物都不相同. 晚会期间各人从放在一起的 n 件礼物中随机抽取一件,问至少有一个人自己抽到自己的礼物的概率是多少?

Solution. (配对问题)

设 A_i 为事件: 第 i 个人自己抽到自己的礼物, i = 1, 2, ..., n 所求概率为

$$P(A_1) = P(A_2) = \dots = P(A_n) = \frac{1}{n}$$

$$P(A_1 A_2) = P(A_1 A_3) = \dots = P(A_{n-1} A_n) = \frac{1}{n(n-1)}$$

$$P(A_1 A_2 A_3) = P(A_1 A_2 A_4) = \dots = P(A_{n-2} A_{n-1} A_n) = \frac{1}{n(n-1)(n-2)}$$

. . .

$$P(A_1 A_2 A_3 \dots A_n) = \frac{1}{n!}$$

再由概率的加法公式(容斥原理)得

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i=1}^{n-1} P(A_i A_{i+1}) + \sum_{i=1}^{n-2} P(A_i A_{i+1} A_{i+2})$$

$$+ \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n)$$

$$= C_n^1 \frac{1}{n} - C_n^2 \frac{1}{n(n-1)} + \ldots + (-1)^{n-1} C_n^n \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} + \ldots + (-1)^{n-1} \frac{1}{n!}$$

当 $n \to \infty$, 上述概率由 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, 则

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - e^{-1} \approx 0.6321$$

1.2 几个概率的不等式

- 1. $P(AB) \ge P(A) + P(B) 1$
- 2. $P(A_1A_2...A_n) \ge P(A_1) + P(A_2) + ... + P(A_n) (n-1)$ (Boole 不等式)
- 3. $|P(AB) P(A)P(B)| \le \frac{1}{4}$

Proof. 相关证明如下:

- (1) 由于 $P(A \cup B) = P(A) + P(B) P(AB) \le 1 \implies P(AB) \ge P(A) + P(B) 1$
- (2) 采用数学归纳法证明, 对于 n = 2, 即不等式 (1) 已经证明, 不妨假设对于 n = k 个事件, 不等式成立, 即

$$P(A_1 A_2 \dots A_k) \ge P(A_1) + P(A_2) + \dots + P(A_k) - (k-1)$$

考虑 n = k + 1 个事件 $A_1 A_2 ... A_{k+1}$, 不妨令 $B = A_1 A_2 ... A_k$, 则

$$P(A_1 A_2 \dots A_k A_{k+1}) = P(B A_{k+1}) \ge P(B) + P(A_{k+1}) - 1 \ge P(A_1) + P(A_2) + \dots + P(A_{k+1}) - (k)$$

由数学归纳法可知, 原不等式成立

(3) $\pm P(A) \ge P(AB), P(B) \ge P(AB),$ $\cup P(A)P(B) \ge P(AB)^2,$ $\cup P(AB)$

$$P(AB) - P(A)P(B) \le P(AB) - P(AB)^2 = P(AB)(1 - P(AB))$$

令 x = P(AB), 则 f(x) = x(1-x), 当 $x = \frac{1}{2}$ 时, 取得 $f(x)_{max} = \frac{1}{4}$ 即

$$P(AB) - P(A)P(B) \le \frac{1}{4}$$

由于 $P(AB) + P(A\bar{B}) = P(A)$, 即 $P(AB) = P(A) - P(A\bar{B})$ 则

$$P(A)P(B) - P(AB) = P(A)P(B) - P(A) + P(A\bar{B}) = P(A\bar{B}) - P(A)P(\bar{B}) \le \frac{1}{4}$$

即

$$P(AB) - P(A)P(B) \ge \frac{1}{4}$$

综上原不等式成立

1.3 轮流射击模型

问题描述: 有两名选手比赛设计, 轮流对同一个目标进行射击, 甲命中目标的概率为 α , 乙命中的概率为 β . **甲先射**, 谁先设中谁获胜. 问甲乙两人获胜的概率各是多少?

Solution.

(方法一) 记事件 A_i 为第 i 次射中目标, i = 1, 2, ...,因为甲先射,所以甲获胜可以表示为

$$A_1 \cup \bar{A}_1 \bar{A}_2 A_3 \cup \dots$$

由于事件独立,则甲获胜的概率为

$$P(甲获胜) = \alpha + (1 - \alpha)(1 - \beta)\alpha + (1 - \alpha)^{2}(1 - \beta)^{2}\alpha^{2}\dots$$

$$= \alpha \sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$

$$= \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

同理, 乙获胜的概率为

$$P(乙获胜) = (1 - \alpha)\beta + (1 - \alpha)(1 - \beta)(1 - \alpha)\beta + \dots$$
$$= \beta(1 - \alpha)\sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$
$$= \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

(方法二) 由于射击是独立, 所有有如下条件

$$P($$
 甲获胜 $) = \alpha + (1 - \alpha)(1 - \beta)P($ 甲获胜 $)$

前面失败的情况并不影响后续获胜(无记忆性),则可以直接解出甲获胜的概念

$$P(甲获胜) = \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

$$P(乙获胜) = 1 - P(甲获胜) = \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

1.4 补充: 随机变量的矩

设 (X,Y) 是二维随机变量,如果 $E(X^kY^l)$ 存在,则称 $E(X^k)$,(k=1,2...) 为 X 的 k 阶原点矩;称 $E(X-EX)^k$,k=(2,3,...) 为 X 的 k 阶中心矩;称 $E(X^kY^l)$,(k,l=1,2,...) 为 X 与 Y 的 k+l 阶混合原点矩;称 $E[(X-EX)^k(Y_EY)^l$,(k,l=1,2,...)] 为 X,Y 的 k+l 阶混合中心矩