

Cross correlators

for radio astronomy

Adam Deller May 16, 2018

What is a correlator?

OF TECHNOLOGY

Why correlators matter to YOU

Correlators and interferometry

Correlators and Interferometry

Correlators and Interferometry

Visibilities (real component shown, unit is $\lambda_0 = c / \nu_0$)

Monochromatic == problematic

- Mathematically: $u \times 1 + v \times m$ is supposed be constant, but both u and v are $\propto v$
- No truly monochromatic radiation!
- Fortunately, "fairly narrow" band of Δν (quasi-monochromatic) can suffice:
 - Real world viewpoint: different frequency components stay "in phase" as wavefront propagates from one antenna to the next

Monochromatic == problematic

Monochromatic == problematic

- Mathematically: $u \times l + v \times m$ is supposed be constant, but both u and v are $\propto v$
- No truly monochromatic radiation!
- Fortunately, "fairly narrow" band of Δν (quasi-monochromatic) can suffice:
 - if $\Delta u \times l \ll 1$ and $\Delta v \times m \ll 1$ then the different frequency components stay in phase and we're ok
 - Correlator needs to slice at least this finely

Correlators and Interferometry

Visibilities (real component shown, unit is $\lambda_0 = c / v_0$)

Correlators and Interferometry

Sky brightness at frequency $v' = v_0 + \delta v$

Visibilities (real component shown, unit is $\lambda' = c / \nu'$)

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a standard complex correlator:

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a standard complex correlator:

The output

The output

Making it feasible

 Analog filters are costly & finnicky; this would be expensive and temperamental

Making it feasible

- Analog filters are costly & finnicky; this would be expensive and temperamental
- Fortunately, we can (and do) digitize the signal – meaning we can use a digital substitute: digital filterbank

The advantage of going digital

- Stable, cheap filters
- Produces complex output: when crossmultiplying, use 1 complex multiplier rather than 2 real multipliers and a phase shift

$$e^{i\phi} = \cos \phi + i \sin \phi$$

Animation from http://en.wikipedia.org/wiki/File:Unfasor.gif

 Since this architecture consists of a <u>Fourier</u> transform (F) followed by <u>cross</u>-multiplication (X), we dub this the "FX" correlator

Righting the wrongs

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

Adequately sampled

Undersampled, cannot be reconstructed

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

 When correlation is low (almost always) even very coarse quantization is ok!

until the headroom runs out...

- When correlation is low (almost always) even very coarse quantization is ok!
- Sensitivity loss due to quantisation:
 - 8 bit: 0.1%
 - 4 bit: 1.3%
 - 2 bit: 12%
 - 1 bit: 36%
- Correct visibility amplitudes for this sensitivity loss

Righting the wrongs

OF TECHNOLOGY

Delay compensation

 Delay to the nearest sample is easy:

Delay compensation

 Delay to the nearest sample is easy:

Delay compensation

 In practise, delay all to common reference

sample# (time)

Righting the wrongs

Fringe rotation

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro

Fringe rotation

- Implementation: rotate phase using complex multiplier
- $\Delta \varphi = 2\pi \, \nu_{lo} \, \tau_g \quad \nu_{lo} = \text{local oscillator frequency,}$ $\tau_q = \text{applied delay}$
- Update rate of $\Delta \phi$ depends on how fast τ_q changes:
 - If τ_{g} is changing fast, update every sample in the time domain
 - For shorter baseline / low frequency instruments, can do post-channelisation or even post-accumulation

Alternate implementation

- We have shown how to build a practical FX correlator, which first Fourier transforms and then multiplies
- Convolution theorem: Multiplication in the frequency domain is equivalent to convolution in the time domain
- It is mathematically equivalent to convolve the two signals in the time domain and then Fourier transform

An equivalent "XF" correlator

An equivalent "XF" correlator

An equivalent "XF" correlator visibility amplitude 0000 sample# (time) Multiply !& accum.

0000

sample# (time)

lag

An equivalent "XF" correlator

An equivalent "XF" correlator

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro

A realistic XF correlator

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro

A realistic XF correlator

XF vs FX

 Different windowing in time domain gives different spectral response

XF vs FX: which is better?

- Advantages and disadvantages to both
 - FX many fewer operations overall
 - XF can make use of very efficient lowprecision integer multipliers up-front (but need special-purpose hardware)
 - FX: access to frequency domain at short timescale allows neat tricks and higher precision correction of delay effects
 - Modern correlators mostly FX-style, but use digital filterbank to channelise rather than FFT (shape channel response, contain RFI)

Correlator platforms

Correlators on CPUs


```
status = vectorFFT_CtoC_cf32(complexunpacked, fftd, pFFTSpecC, fftbuffer);
if(status != vecNoErr)
  csevere << startl << "Error doing the FFT!!!" << endl;</pre>
```

. . .

status = vectorAddProduct_cf32(vis1, vis2, &(scratchspace->threadcrosscorrs[resul

Correlators on CPUs

- Many positive points:
 - Can implement in "normal" code (e.g.,
 C++); maintainable, many skilled coders
 - Development effort transferrable across generations of hardware
 - Incremental development is trivial
 - Natively good at floating point (good for FX), no cost to do high precision
- One major disadvantage:
 - CPUs not optimised for correlation; big system like JVLA would take many CPUs.

Correlators on CPUs

The Very Long Baseline Array, 10 stations

The European VLBI Network, ~20 stations

The Long Baseline Array, Australia, ~6 stations

Correlators on GPUs

Correlators on GPUs

Advantages:

- More powerful and more efficient than CPUs
- Also good at floating point

• Disadvantages:

- Writing code is more difficult (GPUs are more specialized, less flexible: need to carefully manage data transfers)
- Fewer trained GPU programmers available
- Transfer-ability of code across hardware generations harder (capabilities change faster, need new code to use)

Correlators on GPUs

GMRT, India, 30 stations

The Low Frequency Array (LOFAR), 73 stations

Correlators on FPGAs

Correlators on FPGAs

Advantages:

 More efficient than CPUs or GPUs, particularly for integer multiplication

Disadvantages:

- Programming is harder again (especially debugging), yet fewer trained people
- Transfer-ability across hardware generations even more limited
- Synchronous (clocked) system, less robust to perturbations c.f. CPUs/GPUs

Correlators on FPGAs

"Roach" reconfigurable FPGA board used for correlation

Correlators on ASICs

Correlators on ASICs

Advantages:

Highest possible efficiency, low per-unit cost

Disadvantages:

- Highest development cost (time and manufacturing setup)
- Specialized knowledge required
- Can't be changed / very difficult to upgrade during lifetime

Correlators on ASICs

The Westerbork Synthesis Radio Telescope, Netherlands

The Very Large Array, New Mexico

OF TECHNOLOGY

Correlator platform overview

The end

May 16 2018, 16th Synthesis Imaging Workshop, NRAO Socorro