UNIT 5: Branch-and-Bound

0/1 Knapsack problem

Branch and Bound:

- proposed by Ailsa Land and Alison Doig during their discrete programming research at the London School of Economics in 1960
- algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization
- the most commonly used tool for solving NP-hard optimization problems

Branch and Bound: Idea

 systematic enumeration of candidate solutions using state space search

• Limitation: depends on efficient estimation of the lower and upper bounds of regions/branches of the search space. If no bounds are available, the algorithm degenerates to an exhaustive search

Branch and Bound: terminating a search path in state space tree

- 1. The value of the node's bound is not better than the value of the best solution seen so far **OR**
- 2. The node represents no feasible solutions because the constraints of the problem are already violated **OR**
- 3. The subset of feasible solutions represented by the node consists of a single point (and hence no further choices can be made)

Branch and Bound: Applications

used for solving a number of NP-hard problems:

- Integer programming
- Nonlinear programming
- Travelling salesman problem (TSP)
- Quadratic assignment problem (QAP)
- Maximum satisfiability problem (MAX-SAT)
- Nearest neighbor search
- Flow shop scheduling
- Cutting stock problem
- Computational phylogenetics
- Set inversion
- Parameter estimation
- 0/1 knapsack problem
- Set cover problem
- Feature selection in machine learning
- Structured prediction in computer vision

Knapsack problem

Given n items of known weights w1, ..., wn and values v1, ..., vn, and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack.

Branch and Bound: 0/1 Knapsack problem

• order the items of a given instance in descending order by their value-to-weight ratios. (first item gives the best payoff per weight unit and the last one gives the worst payoff per weight unit, with ties resolved arbitrarily)

$$v_1/w_1 \geq v_2/w_2 \geq \ldots \geq v_n/w_n$$

Compute the upper bound

$$ub = v + (W - w)(v_{i+1}/w_{i+1})$$

item	weight (kg)	Profit (Rs.)
1	7	42
2	3	12
3	4	40
4	5	25

 $v_1/w_1 \ge v_2/w_2 \ge \ldots \ge v_n/w_n$

Knapsack capacity = 10 kg

item	weight (kg)	Profit (Rs.)	
1	7	42 -42/7	= 6
2	3	12 12/3	= 4
3	4	40 40/4	=10 7
4	5	25 2 5/5	5 =5

 item
 weight (kg)
 Profit (Rs.)

 3
 4
 40

 1
 7
 42

 4
 5
 25

 2
 3
 12

Knapsack capacity = 10 kg

Example:

Solve

item	weight	value
1	4	\$40
2	7	\$42
. 3	5	\$25
4	3	\$12

Knapsack capacity = 10 kg

$$v_1/w_1 \ge v_2/w_2 \ge \ldots \ge v_n/w_n$$

$$ub = v + (W - w)(v_{i+1}/w_{i+1})$$

weight	value	value weight
4	\$40	10
7	\$42	6
5	\$25	5
3	\$12	4
	4 7 5	4 \$40 7 \$42 5 \$25

Knapsack solution – Branch and Bound

Let's check our understanding...

Solve the following instance of the knapsack problem by the branch-and bound algorithm.

item	weight	value	
1	2	\$12	
2	1	\$10	capacity $W = 5$
3	3	\$20	
4	2	\$15	

Let's check our understanding...

Solve the following instance of the knapsack problem by the branch-and bound algorithm.

	value	weight	item
	\$100	10	1
W = 16	\$63	7	2
	\$56	8	3
	\$12	4	4

The found optimal solution is {item 2, item 3} of value \$119.

Next session...

Branch-and-Bound:

Travelling salesperson problem