Algorithm Implementation

- GPPs (Pentium) not in this course
- VLSI
 - ASICs

- not in this course

- PLDs
 - PALs/PLAs
 - AND/OR planes
 - Gate Arrays
 - MPGAs

 - FPGAsfocus of this course

PLDs – Programmable Logic Devices

- 1. AND/OR Arrays (PAL/PLA)
- An array of AND gates connected to an array of OR gates
- SOP form of equations
- PAL
 - AND-plane programmable
 - OR-plane not programmable
- PLA©
 - AND-plane programmable
 - OR-plane programmable

See PLA Example

PLDs cont

- 2. Gate Arrays
- 2.A. Mask Programmable Gate Array (MPGA)
- Arrays or rows of uncommitted, prefabricated transistors
 - Wafer is fabbed all the way except for the last metal layers
 - User submits "wire masks" to connect transistors in order to form larger circuits
 - Wafer fab is completed
 - ~ 1-2 months
- 2.B. Field Programmable Gate Arrays (FPGAs)
- Pre-fabbed programmable integrated circuit
- Completely user programmed

	FPGA	MPGA	
Cost	\$	\$\$	
Speed (operation)	Slower	Faster	
Implementation	Immediate	Several weeks	
Reprogrammability	Yes	No	

FPGAs - Definition

- Definition: programmable integrated circuit
- Trade-off between ASICs and general purpose processors (GPP)

FPGAs - Advantages

- Reusable
 - ASIC => Fixed design
 - FPGA => Flexible design
- Quick circuit implementation
 - ASIC \Rightarrow 2 months
 - FPGA \Rightarrow 1 day
- Cheap
 - ASIC => More expensive design cycle
 - Verification
 - FPGA => Hardware verification
- Fast execution
 - GPP vs. FPGA

FPGAs - Disadvantages

- Slow application implementation
 - FPGA vs. GPP
- Expensive
 - FPGA vs. GPP
- Slow execution
 - FPGA vs. ASIC
- Area constrained
 - Application size limited
 - Reduce size
 - Split temporally or spatially

Programmable IO (not shown) Array of programmable logic blocks (LB) **VER Channel** Connection Look-up-table based or multiplexer based Segment Logical function of inputs LB Synchronous element Interconnects HOR/VER wiring channels W segments per channel Programmable switch boxes (SB) Programmable connector boxes (CB) CB SB **HOR Channel**

- PLBs or CLBs
 - Functional Unit
 - Nand Gates (PAL like)
 - Multiplexer based
 - LUT based
 - Flip-Flop
 - Usually MultipleFunctional/FFunits/PLB

- Logic blocks (LBs) Functional Unit
 - Multiplexer based
 - Look-up-table based (LUT)

- Logic blocks (LBs) Functional Unit
 - Multiplexer based
 - Look-up-table based (LUT)

$$Z = A \cdot (B + C)$$

Α	В	С	Z	
0	0 0		0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

- Connector Boxes (CB)
 - Connects LB pins to connection segments
 - Flexibility F_C = # possible connections / LB pin
- Switch Boxes (SB)
 - Connects vertical and horizontal wiring channels

• Flexibility F_S = # possible connections / incoming segment

CB

SB

Implementation of FPGA Application

- 1. Initial Design Entry
- 2. Translation
- 3. Logic Optimization and Technology Mapping
- 4. Placement
- 5. Routing
- 6. Configuration File Generation

- 1 Design entry (synthesis, schematic capture ...)
- 2 Technology mapping
- 3 Placement
- 4 Routing
- 5 Bitmap

- Design entry
 - Schematic capture

Design entry

```
• Synthesis VHDL or Verilog
          entity ADDER8 is
            port(
                A : in BIT_VECTOR(7 downto 0);
                B : in BIT_VECTOR(7 downto 0);
                S: out BIT_VECTOR(8 downto 0)
            );
         end;
          architecture BEHAVIORAL of ADDER8 is
           begin
             S \leq A + B;
         end;
   S(4) =
   S(5) = A(5) \times B(5) \times Ci(5)
   S(6) = A(6) \text{ xor } B(6) \text{ xor } Ci(6)
```

- Technology mapping
 - Design equations => logic cell functions and connecting signals

$$S(4) =$$
 $S(5) = A(5) \times B(5) \times Ci(5)$
 $S(6) = A(6) \times B(6) \times Ci(6)$

•

A(6)	B(6)	Co(6)	S(6)	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Dr. John M. Emmert

- Placement
 - Physical location of logic cell functions on FPGA

- Routing
 - Route connecting signals

- Bitmap
 - Downloadable configuration file
 - Program the FPGA
 - Serial
 - 0010011101001011001010011111011101011•••••
 - Parallel
 - 00100100
 - 00101101
 - ••••

- Bitmap
 - Partial
 - Dynamic

• GPP with dynamically reconfigurable hardware

Summary

- Introduction
 - Definition
 - Advantages
 - Disadvantages
- Generic architecture
 - Programmable logic blocks
 - Programmable interconnection network
 - Wiring segments
 - Switch boxes
 - Connector boxes
- Circuit mapping process
 - Design entry
 - Technology mapping
 - Placement
 - Routing
 - Configuration
- Summary