	Saturday, 30 July 2022, 12:23 AM
	Finished
Completed on	Saturday, 30 July 2022, 12:33 AM
Time taken	10 mins 4 secs
Grade	6.0 out of 10.0 (60 %)
Question 1	
Incorrect	
Mark 0.0 out of 2.0	
Select one: a. Both the n b. The numb c. The numb	wing is true for a semiconductor doped with Boron at 300°K? number of holes and the number of free electrons are equal to zero er of holes is equal to the number of free electrons er of holes is greater than the number of free electrons er of holes is less than the number of free electrons er of holes is less than the number of free electrons
The correct answer	er is: The number of holes is greater than the number of free electrons
Question 2 Correct Mark 2.0 out of 2.0	
Intrinsic semicond	uctors are pure, without any impurity atoms added.
Select one:	
● True	
O False	
The correct answer	er is 'True'.
Correct Marks for this submis	ssion: 2.0/2.0.

Question 3	
Correct	
Mark 2.0 out of 2.0	
If a silicon diffusion is doped with phosphorus at a concentration of $4.6 \times 10^17/\text{cm}^3$, what is the concentration of holes in this piece of silicon per cm ^{3?} Assume ni = $1.5 \times 10^10/\text{cm}^3$ at 300^{6}	
Answer: 489.13 ✓	
The correct answer is: 489 Correct Marks for this submission: 2.0/2.0.	
Question 4	
Correct	
Mark 2.0 out of 2.0	
Which of the following is true for the diffusion capacitance of a PN junction?	
Select one:	
a. The capacitance decreases as the mean transit time increases	
b. The capacitance decreases as temperature increases	
c. None of these	
Od. The amount of charge stored decreases as the forward bias increases	
e. The capacitance decreases as the forward bias increases	
The correct answer is: The capacitance decreases as temperature increases	
Correct	
Marks for this submission: 2.0/2.0.	
-	
Question 5	
Correct Mark 0.0 out of 2.0	
Mark 5.5 Gat of 2.0	
The maximum value for the depletion region capacitance of a reverse biased PN junction occurs when the reverse bias is equal to zero volts.	
Select one:	
True ✓	
○ False	
The correct answer is 'True'.	
Correct Marks for this submission: 2.0/2.0. Accounting for previous tries, this gives 0.0/2.0 .	

◆ Practice Quiz 2 - Opamps

Jump to... \$

Practice Quiz 4 - Diodes ▶