Solving Sentiment Analysis with a Rule-based Approach

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Introduce rule-based approaches

Demonstrate a simplistic rule-based approach

Refine that approach to make it more robust

Apply sentiment lexicons

Building Is Hard, Using Is Easy

Building a sophisticated sentiment analysis system is hard

User

Using a sophisticated sentiment analysis system is easy

A Simplistic Rule-based Approach to Polarity Detection

Sentiment Analysis as Binary Classification

Attempt to build a simple rule-based classifier to classify a text fragment

Split text fragment into words

Calculate polarity of individual words

Aggregate word polarities

Split text fragment into words

Split documents into paragraphs
Split paragraphs into sentences
Split sentences into words
Simple library functions available

Split text fragment into words

This	
is	
the	
worst	
restaurant	
in	
the	
metropolis	
by	
а	
long	
way	

Tag each word as positive or negative
Ignore neutral words entirely
Requires use of a sentiment lexicon
Like a dictionary, but for polarity lookup
Ideally should also provide intensity

Aggregate word polarities

More positive words? Fragment is positive

Else negative

If intensity available, sum rather than count

Aggregate word polarities

Aggregate word polarities

"This is the worst restaurant in the metropolis, by a long way"

Negative

Sentiment Analysis as Binary Classification

This illustrated the basic idea of a rule-based polarity detection system

Sentiment Analysis as Binary Classification

But this is a very simplistic system, riddled with flaws

Limitations of a Simplistic Rulebased Approach

A More Realistic Rule-based Algorithm

Limitations of a Simplistic Approach

Intensity

Valency, boosters, punctation, capitalisation

Reversal

Negation, contrasting conjunctions and adverbs

Context

Different meanings in different contexts

Polarity alone loses intensity information

Augment sentiment lexicon with valence scores

Good sentiment lexicons have finegrained valence scores for words

Good	Positive
Great	Positive
Fine	Positive
Amazing	Positive

This sentiment lexicon lacks valence scores

Words have polarity, but intensity is not captured

Good	+1.8
Great	+2.3
Fine	+2.0
Amazing	+2.9

This sentiment lexicon includes valence scores

Polarity and intensity are both captured

Intensity modulated by boosters

"really", "so", "such"

"The food is really good"

"The polenta is so good"

"That was such a good cake"

Intensity also modulated by punctuation

```
"Ś", "İ"
```

"The food is good!!!!"

"Chili-flavored icecream???"

Intensity also modulated by capitalisation

"The food is GOOD"

Reversal

Negation, contrasting conjunctions and adverbs

Polarity is flipped by negation

"The food is not good"

"This is not the worst restaurant in the metropolis"

Reversal

Negation, contrasting conjunctions and adverbs

Polarity is subtly influenced by contrast

"The food is great but the service is not"

"The noise level is annoying. However, the energy more than makes up for it"

Context

Different meanings in different contexts

"Large", "Small", "High", "Low"

Problematic ambiguous adjectives

Rule-based analysers often struggle with context

ML-based systems tend to do better if 'trained' with the right data

Sentiment Lexicons

Sentiment Lexicons Contain Word Metadata

Split text fragment into words

Look up each word in a sentiment lexicon

Arrive at polarity, intensity, mood,...

Sentiment lexicons form the core of virtually all sentiment analysis (rule-based and ML-based)

Sentiment Lexicons Contain Word Metadata

Dictionary

Lookup table for meanings of words

Thesaurus

Lookup table for synonyms of words

Sentiment lexicon

Lookup table for intensity, polarity,...

Like dictionaries, sentiment lexicons are extremely laborious to create

Don't Try This at Home

Reliable, widely used sentiment lexicons

- Sentiwordnet
- MPQA
- LIWC
- General Inquirer

Sentiment Lexicons Contain Word Metadata

Polarity

Positive or negative?

Subjectivity

Objective or subjective?

Affective state

Emotions, moods, ...

Affective State Enriches Rule Formulation

Emotion

"Angry","Ecstatic"

Mood

"Listless","Bored"

Attitude

"Affectionate", "Hostile"

Personality trait

"Diligent","Methodical"

Interpersonal stance

"Flirtatious","Warm"

Building Is Hard, Using Is Easy

Building a sophisticated sentiment analysis system is hard

User

Using a sophisticated sentiment analysis system is easy

Coming Up: Using VADER and Sentiwordnet

VADER

A sophisticated rule-based system

Sentiwordnet

A sophisticated sentiment lexicon

Summary

A naive rule-based classifier simply sums up individual word polarities

Rules can be added to deal with intensity and contrast

Sensitivity to context is a weak spot for rule-based systems

Sentiment lexicons are at the heart of it all