Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Оразгелдиев Язгелди

Российский университет дружбы народов, Москва, Россия

Докладчик

- Оразгелдиев Язгелди
- студент
- Российский университет дружбы народов
- orazgeldiyev.yazgeldi@gmail.com
- https://github.com/YazgeldiOrazgeldiyev

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

```
M Untitled Model 1
                                                                             GENERATE (Exponential(1.0.1.75)) : прибытие автомобилей
TEST LE QSOther1,QSOther2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E QSOther1,QSOther2,Obs1 1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5.Obsl 1.Obsl 2 : плины очерелей равны.
; выбираем произв. пункт пропуска
: молелирование работы пункта 1
Obsl 1 OUEUE Other1 : присоелинение к очерели 1
SEIZE punktl ; ванятие пункта 1
DEPART Other1 : BMXON MB OWEDERM 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
: молелирование работы пункта 2
Obsl 2 OUEUE Other2 : присоелинение к очерели 2
SEIZE punkt2 : BANSTME DVHKTA 2
DEPART Other2 : BMXOR MB OvenerM 2
ADVANCE 4.3 / обслуживание на пункте 2
RELEASE punkt2 / освобожление пункта 2
TERMINATE : автомобиль покилает систему
: задание условия остановки процедуры моделирования
GENERATE 10080 : генерация фиктивного транвакта.
у указывающего на окончание рабочей нелели
: (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1 / остановить молелипование
START 1 ; запуск процедуры моделирования
```

Рис. 1: Модель первой стратегии обслуживания

	odel 111 -									
	START :	IME		END TIME	BLOCKS	FA				
	0	.000		10080.000	18		2		0	
	NAM				VALUE					
	OBSL 1	-			5.000					
	OBSL 2				11.000					
	OTHER1				000,000					
	OTHER2				001,000					
	PUNKT1				003.000					
	PUNKT2			10	002.000					
LABEL		100	BIOGE	euro.	ENTRY CO		ausseue.	comm	. DEEDU	
LABEL		1	BLUCK	E	5853			O COUNT	O	
					5853			0	0	
		-	TEST		5853 4162			0	0	
		4	TRANSF	r p	2431			0	0	
OBSL_1			TRANSF		2928		38	7	0	
		6	SEIZE		2541		00	0	0	
			DEPART		2541			0	0	
			ADVANC		2541			1	0	
		0	RELEAS		2540			0	0	
		10	TERMIN	TE	2540			0	0	
OBSL 2		11	QUEUE	****	2925		31	8		
0000_0		12	SETZE		2537			0	0	
		1.3	SEIZE		2537			0	0	
			ADVANC		2537			1	0	
			RELEAS		2536			0	0	
		16	TERMIN	ATE	2536			0	0	
		17	GENERA	37	1			0	0	
		18	TERMIN	ATE	1			0	0	
FACILITY				A17F	-WF 8.03.		MIPE BY	n Tur		
PUNKT2										388
PUNKT1		2541	0.99	,	.957 1		5079	0	0 0	387
PURKTI		2091	0.99		.900 1		2018	V	0	387
QUEUE										
OTHER1		393	387 2	928	2 187.	098	644.1	07	646.75	8 0
OTHER2		393	388 2	925	2 187.	114	644.8	23	647,475	9 0

Рис. 2: Отчёт по модели первой стратегии обслуживания

```
DIRECTORS

punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоедимение к очереди 1

ENTER punkt, 1; замяжие пункта 1

DEPART Other; выкол на очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE punkt, 1; освобомление пункта 1

TERMINATE; автомобиль помидает систему

; запание условия остановки процедуры моделирования

GENERATE 10080; генерация финкцимого транзакта,

; указывающего на окомчание рабочей медели

; (7 дией 7.4 часа * 60 минут = 10080 минут суммарно)

TERMINATE 1; остановить моделирования

START 1; запуск процедуры моделирования
```

Рис. 3: Модель второй стратегии обслуживания

Рис. 4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике

Таблица 1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1	стратегия 2		
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- · среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково.

Рис. 5: Модель двух стратегий обслуживания с 1 пропускным пунктом

Рис. 6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

```
116t4.gps
 TRANSFER 0.33, Obsl 3:
 go TRANSFER 0.5, Obsl_1, Obsl_2 ;
 Obsl 1 QUEUE Other1 ;
 SETZE nunkel :
 DEPART Other1 :
 ADVANCE 4,3 ;
 RELEASE nunkel :
 TERMINATE ;
 Ohs1 2 OUEUE Other2 :
 SEIZE punkt2 /
 DEPART Other2 :
 ADVANCE 4.3 /
 RELEASE nunke2 /
 TERMINATE :
 Obsl 3 QUEUE Other3 :
 SEIZE punkt3 ;
 DEPART Others :
 ADVANCE 4.3 /
 RELEASE nunkes /
 TERMINATE :
 GENERATE 10080 ;
 TERMINATE 1 /
 START 1 /
```

Рис. 7: Модель первой стратегии обслуживания с 3 пропускными пунктами

	START TIME		2		E BLOCKS FA					ES		
	0	.000	10	080.0	00 2	3	3			0		
	MAN	T			VALC	T.						
	60				3.0							
	OBSL 1				4.0							
	OBSL 2				10.0							
	OBSL 3				16.0							
	OTHER1				10004.0							
	OTHER2											
	OTHER3				10002.0							
	PUNETI				10005.0							
	PUNKT2				10001.0	00						
	PUNKT3				10003.0	00						
LABEL			BLOCK TY									
		7	GENERATE		5.5	97			>		0	
90		2	TRANSFER		5.5	47					0	
		3	TRANSFER TRANSFER QUEUE SEIZE DEPART		34	82					0	
OBSL_1		4	QUEUE		18	53					0	
			SEIZE		18	52					0	
		6	ADVANCE		18	52					0	
		7	RELEASE		14	51					0	
			RELEASE		18				3		0	
OBSL 2			TERMINAT	E		29					0	
OBSL		11	SEIZE			29						
		1.2	DEPART		18	29					0	
		1.2	BEVARIE		1.0	29						
		1.4	ADVANCE RELEASE		1.0	29			5		0	
		1.6	TERMINAT	*	1.6	29			5		o	
OBSL 3		1.6	TERMINAT		1.6	65			1		0	
						62						
		1.0	DEPART		18						0	
						62					0	
		20	ADVANCE RELEASE		10						0	
		21	TERMINAT	×		61			5			
		22	TERMINAT	-	44	1			5		0	
			TERMINAT			1		1			0	
FACILITY												
PUNKTS			0.717								0	
PUNKTS		1862	0.740		4.006	7	5534	1)	0	0	3
PUNKTI		1852	0.727		3.957	1	5546)	0	0	1

Рис. 8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

```
BENERATE (Exponential(1.0.1.75)) /
TRANSFER 0.5. a. b:
a TRANSPER 0.5.Obsl 1.Obsl 2 :
b TRANSFER 0.5, Obsl 3, Obsl 4 :
Obsl 1 OUEUE Other1 :
SEIZE punkt1 ;
DEPART Other1 :
ADVANCE 4,3 :
RELEASE punkt1 :
TERMINATE :
Obsl 2 QUEUE Other2 :
SEIZE punkt2 /
DEPART Other2
ADVANCE 4.3
RELEASE punkt2 /
TERMINATE :
Obs1_3 QUEUE Other3 ;
SEIZE punkt3 /
DEPART Other3 /
ADVANCE 4.3
RELEASE punkt3 /
TERMINATE :
Obsl 4 OUEUE Other4 :
SEIZE punkt4 /
DEPART Other4
ADVANCE 4,3
RELEASE punkt4 :
TERMINATE :
GENERATE 10080
TERMINATE 1 :
START 1 :
```

Рис. 9: Модель первой стратегии обслуживания с 4 пропускными пунктами

```
Dunk STORAGE 3;

GRERATE (Exponential(1,0,1.75)); прибытие автонобилей GRERATE (Exponential(1,0,1.75)); прибытие автонобилей GRERATE (Exponential(1,0,1.75)); прибытие автонобилей GRERATE (Exponential(1,0,1.75)); прибытие прибыте притего п
```

Рис. 10: Модель второй стратегии обслуживания с 3 пропускными пунктами

Рис. 11: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

```
В 116ta орз

ришк STORAGE 4;

обивелате (Екропепtial (1,0,1.75)) ; прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER ришк: ; завитие пункта 1

DEPART Other; выход на очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE ришк: ; освобождение пункта 1

TERMINATE; завтомобиль помидает систему

; задание условия остановки процедуры моделирования 
GEMERATE 10080; теперация финтивного транзакта, 
; указываждего на окопчание рабочей педели 
; (7 дней × 24 часа * 60 минут = 10000 минут сунмарно) 
TERMINATE 1; остановить моделирования 
START 1; запуск процедуры моделирования
```

Рис. 12: Модель второй стратегии обслуживания с 4 пропускными пунктами

Рис. 13: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случае второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 *при втором типе обслуживания и 4 при первом.*

Результаты

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- \cdot изменить модели, чтобы определить оптимальное число пропускных пунктов.