WEEK 10

PROBLEM DEFINATION:

CLUSTERING MODEL

e. Clustering algorithms for unsupervised classification.

Plot the cluster data using R visualizations

SOURCE CODE:

1. Clustering algorithms for unsupervised classification.

library(cluster)

- > set.seed(20)
- > irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
- # nstart = 20. This means that R will try 20 different random starting assignments and then select the one with the lowest within cluster variation.
- > irisCluster

OUTPUT:

Petal.Length Petal.Width

- 1 1.462000 0.246000
- 2 4.269231 1.342308
- 3 5.595833 2.037500

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 2.02200 13.05769 16.29167 (between_SS / total_SS = 94.3 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

SOURCE CODE:

> irisCluster\$cluster <- as.factor(irisCluster\$cluster)

> ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster\$cluster)) + geom_point()

OUTPUT:

SOURCE CODE:

> d <- dist(as.matrix(mtcars)) # find distance matrix

> hc <- hclust(d) # apply hirarchical clustering

> plot(hc) # plot the dendrogram

OUTPUT:

Cluster Dendrogram

d hclust (*, "complete")

2. Plot the cluster data using R visualizations.

SOURCE CODE:

generate 25 objects, divided into 2 clusters. $x \leftarrow rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)), cbind(rnorm(15,5,0.5), rnorm(15,5,0.5))) clusplot(pam(x, 2))$

OUTPUT:

clusplot(pam(x = x, k = 2))

Component 1
These two components explain 100 % of the point variability.

SOURCE CODE:

add noise, and try again:

x4 <- cbind(x, rnorm(25), rnorm(25))
clusplot(pam(x4, 2))</pre>

OUTPUT:

clusplot(pam(x = x4, k = 2))

Component 1
These two components explain 81.17 % of the point variability.