

Model Development Phase Template

Date	07 November 2024
Team ID	739730
Project Title	Figurative Intelligence: Machine Learning for Simile and Metaphor Detection.
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Logistic Regressio n	Logistic Regression is a linear model used for binary classification tasks. It predicts probabilities using the sigmoid function and outputs class labels based on a threshold	Optimization algorithm	<pre>y_pred = model1.predict(X_test) print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred)) print("\nclassification Report:\n", classification_report(y_test, y_pred)) Logistic Regression Accuracy: 1.0 Classification Report: precision recall f1-score support 0 1.00 1.00 41 1 1.00 1.00 38 accuracy 1.00 79 macro avg 1.00 1.00 79 weighted avg 1.00 1.00 79</pre>

ANN	ANN is a deep learning model composed of interconnected layers of nodes (neurons). It learns patterns from data using forward propagation and backpropagation with activation functions to handle non-linear problems.	hidden_layer_sizes	y_pred_prob = model.predict(X_test.toarray()) y_pred = (y_pred_prob > 0.5).astype(int).flatten() print("\nclassification Report:\n", classification_report(y_test, y_pred, target
-----	--	--------------------	---