

APPLICATION
FOR
UNITED STATES LETTERS PATENT
ENTITLED

DISTRIBUTED SEARCH SYSTEM AND METHOD

TO WHOM IT MAY CONCERN:

BE IT KNOWN THAT DR. LARRY R. HARRIS of 94 Annursnac Hill Road, Concord, MA 01742 invented certain new and useful improvements entitled as set forth above of which the following is a specification:

PATENT GROUP
FOLEY, HOAG & ELIOT LLP
ONE POST OFFICE SQUARE
BOSTON, MA 02109-2170
TEL: 617-832-1000
FAX: 617-832-7000

TOP SECRET//SI//EYES ONLY

1 Docket No.: EZM-001.01
2
3

4
5
6 DISTRIBUTED SEARCH SYSTEM AND METHOD
7
8
9
10

11
12 CLAIM OF PRIORITY
13
14
15
16
17
18
19
20
21
22
23
24

This application claims priority to U.S.S.N. 60/221,546 entitled "Distributed Natural Language Search Method", naming Larry R. Harris as inventor, and filed on 28 July 2000, the contents of which are herein incorporated by reference in their entirety.

25
26 BACKGROUND
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000

1 depends on customers' ability to locate products and/or
2 information easily and quickly; however, industry statistics
3 indicate that over seventy percent of potential customers to
4 internet websites leave the websites without finding their
5 desired product(s)/information. This result is not desirable for
6 the website in generating profits directly through internet
7 sales, or indirectly through advertising revenue.

8 First generation techniques for finding products and/or
9 information on the internet were advertiser-based and listed
10 websites, rather than individual products. Second generation
11 techniques involved aggregating product and other information
12 from multiple supplier sites (product catalogs) at online
13 shopping malls or business-to-business "vortals" to allow
14 consumers to access consolidated listings across multiple
15 suppliers. It is anticipated that the next generation supplier
16 networks may dynamically access information from relevant
17 suppliers in response to a buyer's requirements and present only
18 the suppliers and products that precisely meet the consumers'
19 needs.

20

21 SUMMARY

22 The present disclosure provides a system and method for
23 performing a search of data sources that can reside on a network
24 such as the internet. The search can be specific to the content

1 and organization of the data sources. The search can also be a
2 distributed search to multiple data sources. Data sources can
3 include textual documents such as web pages that can include
4 program instructions, and other types of text documents, text
5 files, and databases, although other data sources can be
6 included. The data sources can reside on one or more servers or
7 other devices on a network. Searches or queries can be initiated
8 using natural language expressions, sentences, keywords, or
9 combinations thereof, from which data source content-specific
10 queries can be generated and executed. In some embodiments, a
11 dynamically generated customized query can be formed and issued
12 for each data source to be searched or queried.

13 In one embodiment, the methods and systems can provide an
14 application that can be installed on a subscriber's server to
15 allow a website and/or other data sources accessible to the
16 server, to be searched without requiring pre-integration,
17 reformatting, etc. of the server or the data on the server. In
18 another embodiment, the application can reside on another device
19 or server that can be in communication with the subscriber's
20 website server. For the purposes of the methods and systems
21 described herein, a "website" can be understood to include a
22 document on a network such as the internet or an intranet, that
23 can include a home page and other documents and files that can be
24 accessed through the webpage either directly or indirectly, and

1 the website can also include databases that can be accessed
2 directly or indirectly. The application can develop a customized
3 query for the website and/or other data sources accessible to the
4 server, using wired or wireless communications systems and
5 protocols.

6 When a subscriber maintains a product catalog database, for
7 example, the installed application can access the database and
8 build a customized dictionary that can convert a natural language
9 or keyword search query to a precise SQL query for the
10 subscriber's product catalog database. Additionally and
11 optionally, if the target of the search is text, the installed
12 application can build a custom dictionary can generate an
13 advanced text search of the website using one or more standard
14 text search engines that may be otherwise installed at or
15 available to the website.

16 In some embodiments, the methods and systems can allow an
17 internet user or other internet accessible entity, including non-
18 human entities, to initiate a search from, for example, a
19 website. Such a website can hereinafter be referred to as an
20 initiating website, and can be the network location from which
21 the search can be broadcast or distributed to subscriber websites
22 and hence, customized dictionaries. In one embodiment, the
23 customized dictionaries can receive a HTTP command and thereafter
24 reach behind security measures such as firewalls to access

1 otherwise protected or secure data. The systems and methods can
2 also allow subscribers to receive a search command or query
3 information from the initiating website, utilize the subscriber's
4 local customized dictionary to translate the search for the
5 respective website, data source, etc., initiate a customized
6 search of the subscriber's website, data source, etc., and
7 extract the relevant information for submission as search results
8 to the initiating website. In one embodiment, the search can be
9 an SQL search or a text search.

10 In one embodiment, the application at a particular
11 subscriber's server can immediately determine from the received
12 search command and the customized dictionary, that a search may
13 not be necessary because the website and/or data source may not
14 include relevant information, products, services, etc.

15 In an embodiment, the search results from subscribers can be
16 formatted in XML, and the initiating website can receive the
17 multiple search results and integrate the XML results for
18 presentation to a user at the initiating site. The results can
19 also be formatted for presentation by email, instant messaging,
20 or for voice. In some embodiments, the query can be submitted by
21 email, instant messaging, or voice.

22 The methods and systems can produce search results that can
23 include a subscriber (supplier) name, a product name or
24 identifier, a product price, a product description, a product

1 image, etc. In one embodiment, the user's (or querying entity's)
2 selection of a product can provide a transition to an order
3 basket that can be at the initiating website, the subscriber's
4 website, or an alternate website. In one embodiment, search
5 results can be accompanied by a URL of the order processing
6 system that can be used to order the product; and, when the user
7 selects the item, the relevant product information can be
8 submitted to the purchasing system to initiate the purchase
9 process.

10 The methods and systems can allow a subscriber to access and
11 search a cooperating subscriber's website and products in a peer-
12 to-peer relationship.

13 The methods and systems can accommodate customized searches.
14 Accordingly, a user can establish an account or profile that can
15 be transmitted or otherwise associated with the search or query
16 request from the initiating device or website. The user's
17 profile can be incorporated into the customized searches at the
18 subscriber websites. In one embodiment, the user can transmit
19 the profile with the query information or search request, while
20 in another embodiment, the user can be identified at the
21 initiating device or website by an account number that can allow
22 access to a locally or centrally stored profile for submission
23 with the inquiry. In yet another embodiment, a user can submit
24 or otherwise be associated with a profile such that subscribers

1 can customize a search or query based on the user profile and/or
2 identity.

3 The methods and systems can allow a user to customize the
4 presentation of search results. For example, a user can select
5 an option to view search results by price. In an embodiment, a
6 subscriber can customize or otherwise control the search results.

7 For example, a subscriber may not produce a search result for a
8 particular product unless the inventory level for that product
9 exceeds a particular value.

10 In one embodiment, subscribers can update respective
11 customized dictionaries to produce more accurate searches that
12 can reflect changes in terminology, etc. In an embodiment, a
13 dictionary can be updated locally or remotely via a wired or
14 wireless network.

15 The methods and systems can allow hierarchical searching of
16 multiple servers and/or data sources using a "broker" dictionary
17 that can receive query information and/or a search request from
18 the initiating website or device, and broadcast the request to
19 several other customized dictionaries, known as broadcast
20 dictionaries, that can be located, for example, on various
21 subscribers' servers. The broker dictionary can receive and
22 compile search results from broadcast dictionaries, and transfer
23 a single, composite search result to the initiating website. The
24 broker dictionary can be utilized as an intelligent filter to

1 intelligently select only specific broadcast dictionaries that
2 may be more likely to produce relevant search results.

3 In an embodiment, the methods and systems can identify
4 customized dictionaries using a URL that can allow a remote
5 server to access the dictionary, create a local copy, modify the
6 copy, and transmit the modified copy to the original location for
7 re-writing, etc.

8 Other objects and advantages will become apparent
9 hereinafter in the specification and drawings.

10

11 BRIEF DESCRIPTION OF THE DRAWINGS

12 FIG. 1 displays an architectural block diagram of a system
13 that practices the principles of the methods and systems
14 described herein for a single data source;

15 FIG. 2 displays systems and methods according to FIG. 1 for
16 an exemplary internet embodiment;

17 FIG. 3 displays systems and methods according to FIG. 1 for
18 an exemplary query translation architecture;

19 FIG. 4 displays systems and methods according to FIG. 1 for
20 an exemplary architecture providing query translation and
21 retrieval;

22 FIG. 5 displays systems and methods according to FIG. 1 for
23 an exemplary query translation, retrieval, and presentation
24 architecture; and,

FIG. 6 is a diagram representing systems and methods in accordance with the principles of FIG. 1 that include a broker dictionary.

DESCRIPTION

To provide an overall understanding, certain illustrative embodiments will now be described; however, it will be understood by one of ordinary skill in the art that the systems and methods described herein can be adapted and modified to provide systems and methods for other suitable applications and that other additions and modifications can be made without departing from the scope hereof.

Referring now to FIG. 1, there is a block diagram of a system 100 that implements the techniques described herein. As will become apparent herein, the techniques as described in relation to FIG. 1 have many applications and embodiments, some of which can be referenced herein with respect to other figures.

FIG. 1, and other Figures provided herein, can therefore be understood to represent the techniques, and while pictorial objects can be represented in the Figures, those with ordinary skill in the art will understand that these pictorial objects can be provided for understanding only and are not intended to be a

1 limitation on the methods and systems. Accordingly, pictorial
2 objects and their associated concepts can be combined with other
3 pictorial objects, or additionally and optionally, separated into
4 further pictorial objects, while not departing from the methods
5 and systems.

6 As FIG. 1 indicates, the techniques herein can be initiated
7 by a survey 102 of a data source 20. The survey can be automated
8 or manually guided to identify data sources 20. As will be
9 understood herein, data sources can include one or more textual
10 documents, databases, etc., where a textual document can be
11 understood to include a text file, web page, etc., that can be
12 formatted text such as HTML, XML, some other SGML format, or
13 another text format. A data source that is a database can use a
14 format compatible with MySQL, SQL, Oracle, Informix, Sybase, the
15 Freedom Engine, Access, ODBC, DB2, etc. Those with ordinary
16 skill in the art will recognize that the methods and systems are
17 not limited to the type or format of the data sources. Through
18 the survey 102, the data source(s) can be analyzed with regard to
19 data format, data type, data organization (e.g., categorization,
20 hierarchical structure), relevant terms and phrases,
21 relationships between words, terms, and phrases, identification
22 of abbreviations or word/phrase variations, codes related to data

1 (purchase codes, product codes, price codes, or any other code
2 that can relate to categorizing the product in terms of price,
3 demographic appropriateness or characteristics, etc.) etc. Other
4 information related to the data source can be manually provided.

5 In some embodiments, the survey can be automated, and additional
6 information including the number of data sources, etc., can be
7 determined. For the purposes of illustration with respect to the
8 embodiment of FIG. 1, a database data source 20 is illustrated,
9 although such an example is provided for illustration and not
10 limitation, and multiple and varied format data sources,
11 including textual data sources, can be utilized for the methods
12 and systems.

13 A dictionary 18 can be formulated 104 based on the survey
14 results 102. The dictionary 18 can be understood to be, for
15 example, a computer program that can be implemented in a higher
16 level language such as C, C++, Java, etc., that can receive query
17 information as input, and can provide as output, a query
18 formatted and otherwise customized for the data source.

19 Referring again to FIG. 1, query information 106 can be
20 received by the dictionary 18. Although FIG. 1 illustrates only
21 one dictionary 18, it can be understood that there can be

1 multiple dictionaries, and in such embodiments, the query
2 information 106 can be received by the multiple dictionaries.
3 The illustrated dictionary 18 can generate a customized query 110
4 based on the received query information 106 and the survey
5 results. The customized query 110 can be applied to the data
6 source 20 from which the survey was conducted. The customized
7 query results 112 can, in some embodiments, be returned to the
8 dictionary 18. In some embodiments, the dictionary 18 can
9 format, arrange, aggregate, etc., the customized query results
10 112 and transfer or forward the results. For example, the query
11 results 108 can be transferred to the entity that requested that
12 supplied the query information 106, or another entity can be
13 designated or otherwise specified to receive the query results
14 108. As indicated previously herein, FIG. 1 illustrates the
15 principles of the methods and systems which have wide
16 applicability.

17 Referring now to FIG. 2, there is an architectural block
18 diagram 10 of an illustrative system that utilizes the methods
19 and systems for an internet application. The FIG. 1 system
20 indicates an initiating device 12 that can include a digital
21 computer system that can utilize a wired or wireless
22 communications link to connect to a communication network such as

1 the internet. A user of the initiating device 12 can utilize
2 different peripheral devices that can be integrated with or
3 otherwise configured for compatible use with the initiating
4 device 12. For example, the initiating device 12 can include a
5 keyboard, keypad, stylus, digital camera, microphone, etc., that
6 can communicate data to the initiating device using wired or
7 wireless communications systems and/or protocols, etc. The
8 initiating device 12 can be a microprocessor-based system
9 including a computer workstation, such as a PC workstation or a
10 SUN workstation, handheld, palmtop, laptop, personal digital
11 assistant (PDA), cellular phone, etc., that includes a program
12 for organizing and controlling the initiating device 12 to
13 operate as described herein. Additionally and optionally, the
14 initiating device 12 can be equipped with a sound and video card
15 for processing multimedia data. The initiating device 12 can
16 operate as a stand-alone system or as part of a networked
17 computer system. Alternatively, the initiating device 12 can be
18 dedicated devices, such as embedded systems, that can be
19 incorporated into existing hardware devices, such as telephone
20 systems, PBX systems, sound cards, etc. Accordingly, it will be
21 understood by one of ordinary skill in the art that the

1 initiating device 12 described herein has wide applicability and
2 can be incorporated in many systems, and realized in many forms.

3 For a system according to FIG. 1, the initiating device 12
4 can be connected to a network such as the internet and can be
5 equipped with what is well-known as an internet "browser" such as
6 the commercially available Netscape Navigator, Internet Explorer,
7 etc., browsers, and those with ordinary skill in the art will
8 recognize that, depending upon the initiating device 12 and its
9 configuration, the browser can differ, and hence references
10 herein to a browser can include references to a user interface to
11 the internet or other network, wherein the methods and systems
12 herein are not limited to the browser or other network interface.

13 Furthermore, the initiating device 12 can access the internet
14 using wired or wireless communications links and/or protocols.

15 The initiating device 12 can communicate with a server that
16 can be represented in the FIG. 1 system as a System Server 14.
17 The illustrated server 14 can be also be a microprocessor-based
18 system including a computer workstation, such as a PC workstation
19 or a SUN workstation, handheld, palmtop, laptop, personal digital
20 assistant (PDA), cellular phone, etc., that includes a program
21 for organizing and controlling the server 14 to operate as

1 described herein. Additionally and optionally, the server 14 can
2 be equipped with a sound and video card for processing multimedia
3 data. The server 14 can operate as a stand-alone system or as
4 part of a networked computer system. Alternatively, the server
5 14 can be dedicated devices, such as embedded systems, that can
6 be incorporated into existing hardware devices, such as telephone
7 systems, PBX systems, sound cards, etc. In some embodiments,
8 servers can be clustered together to handle more traffic, and can
9 include separate servers for different purposes such as a
10 database server, an application server, and a Web presentation
11 server. The server 14 can also include one or more mass storage
12 devices such as a disk farm or a redundant array of independent
13 disk ("RAID") system for additional storage and data integrity.
14 Read-only devices, such as compact disk drives and digital
15 versatile disk drives, can also be connected to the server 14.
16 As used herein, the term "server" is intended to refer to any of
17 the above-described servers. In an embodiment, the initiating
18 device 12 and the server 14 can be similar systems.

19 In an embodiment of the FIG. 1 system, the initiating device
20 12 can access the server 14 via the internet, and the server 14
21 can provide a webpage or other interface to the initiating device
22 12 to allow a user of the initiating device 12 to input data

1 indicative of a query for information. Those with ordinary skill
2 in the art will recognize that this query information can be of
3 varying formats, and can include one or more keywords and/or
4 natural language terms or expressions that can optionally be
5 linked using one or more logical operators, including boolean
6 expressions or notations such as "and", "or", and "not". In some
7 embodiments, additionally and optionally, "+" and "-" can be used
8 to indicate desired and undesired terms, respectively, for
9 example. Those with ordinary skill in the art will recognize
10 that there are many different connectors and methods of relating
11 keywords, sentences, questions, and/or natural language words or
12 expressions that can be used.

13 For the purposes of the discussion herein, natural language
14 can be understood to be a word, phrase, grouping of words, etc.,
15 in a language written or spoken by humans.

16 Additionally and optionally, the query information can
17 include a full text statement or question or other natural
18 language data. The query information can be entered to the
19 initiating device 12 and thereafter edited using one or more of
20 multiple peripheral devices connected to the initiating device
21 that can include a keyboard, keypad, stylus, mouse, microphone,

1 etc., wherein those of ordinary skill in the art will recognize
2 that the methods and systems herein are not limited to the
3 mechanism of inputting query information to the initiating device
4 12. Furthermore, the methods and systems are not limited to the
5 format of inputting the query information or a user interface
6 that can be provided to facilitate such entry. For example, in
7 some embodiments, the query information can be input using one or
8 a combination of text input boxes, text documents, menu
9 selections, drop-down boxes, radio buttons, etc. The illustrated
10 initiating device 12 also can provide a user with the ability to
11 initiate the search, and in one embodiment, search initiation can
12 be understood as entering the query information.

13 Furthermore, the query information can be entered by a
14 variety of formats, including human users that can utilize
15 peripheral devices and/or integrated software to enter and/or
16 retrieve data by, for example, a keyboard, stylus, voice
17 commands, etc. In some embodiments, the query information can
18 additionally and optionally be provided by automated and/or non-
19 human sources using scripts or other programming techniques.
20 Accordingly, references herein to a user of the initiating device
21 12 can be understood to include any entity, human or non-human,

1 that can cause query information to be provided to the initiating
2 device 12.

3 Upon initiation of a search or query by a user of the
4 initiating device 12, for the FIG. 1 system, the initiating
5 device 12 can transfer the query information to the server 14
6 that can include a list of subscribers that can be included, in
7 one embodiment, in a database 13. The subscriber database 13 can
8 be accessed locally or through a network such as the internet
9 using wired or wireless communications devices and protocols.

10 The subscriber database 13 can be understood to include a memory
11 having one or more physical or logical partitions and/or
12 segments, and can optionally and additionally utilize one or more
13 of well-known database packages including MySQL, SQL, Oracle,
14 Informix, Sybase, the Freedom Engine, Access, ODBC, DB2, etc.,
15 with such examples provided for illustration and not limitation.

16 In an embodiment, the database 13 can reside in a memory of the
17 server 14.

18 In an embodiment, the server 14 can access subscriber
19 information from the database 13 to cause the query information
20 to be distributed to one or more subscribers 16a, 16b, 16c. In
21 the illustrated system, the database 13 can include URLs of

1 subscriber servers 16a, 16b, 16c (also referenced herein
2 collectively or individually as 16). The query information can
3 be transferred, distributed, or otherwise communicated to the
4 subscriber servers 16 simultaneously as in a broadcast, or using
5 an ordered scheme that can include network or load balancing
6 schemes. The FIG. 1 system illustrates the communication of
7 query information to three subscribers 16a, 16b, 16c although the
8 methods and systems can be applied to one or more subscribers and
9 the number of subscribers is not a limitation. For an embodiment
10 wherein the system server 14 communicates to the subscriber
11 servers 16 via a network such as the internet, the transfer of
12 the query information can be performed using HTTP or HTTPS, for
13 example, although such an example is provided for illustration
14 and not limitation.

15 The illustrated subscribers 16a, 16b, 16c can be servers as
16 described previously herein with respect to the System Server 14.
17 The servers 16 can include one or more data sources 20a, 20b,
18 20c, 20d (also referenced herein collectively or individually as
19 20). The subscribers 16 also include a dictionary 18a, 18b, 18c,
20 18d (also referenced herein collectively or individually as 18)
21 that can be associated with and based on the data sources 20a,
22 20b, 20c, 20d. In an embodiment such as that of FIG. 1, a data

1 source 20 can be associated with a dictionary 18, although in
2 some embodiments, one dictionary 18 can be associated with more
3 than one data source 20. Alternately, in an embodiment, one data
4 source 20 could be associated with more than one dictionary 18.

5 For the illustrated systems and methods, as described
6 previously herein, a dictionary 18 can be understood to be a
7 translator between the received query information, received from
8 the System Server 14 as described herein, and a data source 20.
9 For the illustrated systems where one dictionary 18 corresponds
10 to a data source 20, a dictionary 18 can be formed by installing
11 a computer program on the subscriber server 16. In an
12 embodiment, the computer program can be run from a remote
13 location via a network. As indicated previously, in some
14 embodiments, the survey computer program can be understood as a
15 survey engine that examines the data sources 20 on the server 16.

16 As indicated previously, the dictionary 18 can incorporate the
17 survey engine results to provide a customized interface between
18 received query information, and the data source 20.

19 For example, if the data source 20 is a database, the survey
20 engine can identify labels of tables, rows, and columns, and
21 abbreviations of labels, when necessary. This survey information

1 can be incorporated into a dictionary 18 to allow received query
2 information to be properly translated for the database. In the
3 case of a database, query information from a user of the
4 initiating device 12 can be an input to a dictionary 18, and the
5 dictionary output can be a customized SQL query that uses
6 terminology, abbreviations, etc., derived from the survey engine.

7 In some embodiments, the dictionary output can be a customized
8 HTTP search string that can utilize a general access method that
9 can be created for the data source (e.g., the HTTP search string
10 can be formatted based on drop-down menus/boxes, radio button
11 selections, and/or other general access provisions). In an
12 example of a database embodiment, a database can be configured
13 with columns or rows that relate to colors that are abbreviated,
14 such as "Rd" for Red, "Bl" for Blue, etc. If query information
15 is submitted with the word "Blue", the customized dictionary can
16 cause a customized query to be formatted using "Bl" according to
17 the survey information. Accordingly, row information and column
18 information can be understood herein to include a
19 characterization of the database information that can include
20 header information, element information, extraneous information
21 that can otherwise provide insight to the database, etc.

1 Additionally and optionally, when the data source 20 is
2 text, the survey engine can scan the text, identify synonyms,
3 abbreviations, etc., for incorporation into a dictionary 18. A
4 dictionary for a text data source 20 can format received query
5 information into an advanced text query that can utilize a
6 standard text engine. Some examples of standard text engines can
7 include AltaVista, Excite, Google, Infoseek, Inktomi, Microsoft
8 Index Server, etc., although such examples are provided for
9 illustration and not limitation. Optionally and additionally,
10 the dictionary can convert the received query information into a
11 HTTP query that can be formatted according to a web page on the
12 server 16, where the web page can include text input boxes, radio
13 buttons, drop-down boxes, check-boxes, etc.

14 The illustrated dictionaries 18 can also include a natural
15 language and linguistic processor that is well-known in the art
16 for parsing received information, performing context analysis,
17 generating synonyms, etc. The dictionaries 18 also include a
18 spell corrector that can verify word spellings and generate
19 phonetic equivalents, although such features can reside
20 independent of the spell corrector. The dictionaries 18 can also
21 perform word variations to better interpret and/or distinguish
22 words, for example, between similar words such as "build",

1 "builder", and "building." Furthermore, the dictionaries 18 can
2 perform phrase identification that includes identifying word
3 groups within context. For example, "wrinkle-free" can be
4 interpreted with respect to clothes, or in another manner with
5 respect to plastic surgery. Accordingly, it can be understood
6 that the dictionaries 18 for the illustrated systems and methods
7 can extend the received query information to include terminology
8 that is compatible with, understood by, and/or interpreted by a
9 data source 20 to which the dictionary 18 corresponds.

10 A dictionary 18 can be equipped with a foreign language
11 translator to convert received query information from one
12 language, to another language that is compatible with the data
13 source 20. In some embodiments, a dictionary 18 can be
14 established for different languages, while in another embodiment,
15 a single dictionary 18 can translate queries for multiple
16 languages.

17 A dictionary 18 can determine that received query
18 information from the initiating device 12 is not compatible with
19 the data source 20 or otherwise cannot be interpreted. In an
20 embodiment, the dictionary 18 can generate a list of possible
21 interpretations for a user of the initiating device 12 to select.

1 Additionally and optionally, the dictionary 18 can cause the
2 initiating device 12 to provide a user with a request for
3 additional, alternate, or restated query information.

4 A dictionary 18 can also identify a Frequently Asked
5 Question (FAQ) and supply either a pre-defined answer to a user
6 at the initiating device 12, or redirect the user to, for
7 example, a web page that includes an answer. A dictionary 18 can
8 also recognize and respond appropriately to query information
9 that seeks a "yes" or "no" answer, time-based queries using date
10 or time terminology including "now", "last month", "before",
11 "between", etc., and arithmetic queries that can include
12 mathematical concepts such as "lowest-priced", "top 5", "less
13 than", etc.

14 In the illustrated systems and methods, results of a
15 customized data source search can be provided to a dictionary 18,
16 and the dictionary 18 can thereafter organize, format, etc., the
17 search results for return to the initiating device 12. The
18 information can be presented via the subscriber server 16 to the
19 System Server 14 and hence to the initiating device 12, or
20 directly from the subscriber server 16 to the initiating device
21 12. In one embodiment, the search results can be formatted in

1 XML to allow the server 16 to format the results according to a
2 web application that can be executing on the subscriber server
3 16. For example, the XML output from the dictionary 18 can be
4 used in Extensible Stylesheet Language (XSL) stylesheets or other
5 web formatting options. Those with ordinary skill in the art
6 will recognize that many formats for the dictionary output can be
7 utilized, and the use of XML herein is provided for illustration
8 and not limitation. For example, in one embodiment, HTML
9 templates can be utilized to present search results directly to
10 an internet browser without requiring additional programming.
11 Other forms of SGML documents or other textual formats can be
12 used without departing from the scope of the techniques provided
13 herein. Alternately, search results can be presented graphically
14 using bar charts, pie charts, histograms, Excel compatible
15 spreadsheets, etc. Search results can also be saved as an Excel
16 compatible file for later analysis. Additionally and optionally,
17 the methods and systems herein can allow the search results to be
18 provided to an application through a variety of Application
19 Programmer Interfaces (APIs).

20 In some embodiments, the requested query information can
21 provide significant search results. The methods and systems
22 herein can provide the search results using a format that

1 includes categories and sub-categories from which a user at the
2 initiating device 12, for example, can further select. Aggregate
3 data can also be presented with hyperlinks to detailed
4 information to allow users to retrieve further information
5 without providing further details, follow-up questions, etc.
6 Those with ordinary skill in the art will thus recognize that
7 although the methods and systems presented herein are provided
8 with respect to an internet illustration that includes browsers,
9 etc., other interfaces can be utilized to retrieve query
10 information and present query results.

11
12 A user or system manager associated with a server 16 can
13 provide or otherwise designate filtering schemes for providing
14 search results. A subscriber, for example, can determine to
15 exclude products from particular users based upon a received
16 profile (i.e., age, etc.). Those with ordinary skill in the art
will recognize that there are many parameters by which a
subscriber can filter or otherwise customize the search results.

17 The methods and systems can operate with security measures
18 that can be established by a system manager related to a server
19 16. For example, query information can be received or otherwise
20 associated with identity information. A dictionary 18 can be
21

1 configured to prevent the query information from being applied to
2 a data source for which the user is not allowed to otherwise
3 access. In such an embodiment, the methods and systems herein
4 can be incorporated behind a firewall.

5 Those with ordinary skill in the art will recognize that the
6 methods and systems can also be practiced outside of a firewall.

7 In such an embodiment, a distributed or other search can be
8 performed across a network such as the internet or an intranet,
9 wherein accessibility to the data sources may not be protected by
10 a firewall. As indicated previously, search results can be
11 aggregated at the initiating device 12 or another remote device
12 for presentation to a user.

13 A dictionary 18 can also generate an output log that can be
14 understood to be a computer file that can be accessed by a system
15 administrator or other authorized individual or entity according
16 to the server 16 configuration or other authorization scheme.
17 The log file can be stored locally on the server 16 or another
18 memory device connected to the server 16 through a wired or
19 wireless network. The log files can be configured to provide
20 data pertaining to received query information, customized search
21 queries, generated search results, query identity, data source

1 identity, time of query, etc., with such examples provided only
2 for illustration. By editing the log file, a system
3 administrator can view the effectiveness of the dictionary with
4 respect to query information, desired results, security, etc.
5 Filters can be applied to the log files to provide log results
6 based on results generated, date, time of day, time period, etc.

7 In the illustrated embodiments, a system administrator or
8 other authorized user can edit a dictionary **18** to further
9 customize the dictionary **18**. Such edits can result from an
10 analysis of the log file, for example. Dictionary edits can also
11 be performed to further enhance business objectives. For
12 example, automated, scheduled searches can be performed to query
13 databases for stock information, etc. In an embodiment, an email
14 can be generated based on a search. For example, in an automated
15 search established by an administrator to verify stock quantity,
16 once a stock quantity reaches a predetermined value, an email can
17 be sent to the administrator and/or another interested party.

18 A system manager or other authorized user can also customize
19 a dictionary **18** and provide rules against which searches can be
20 performed and search results can be presented. For example, a
21 system manager can edit the dictionary to include a formula or

1 rule for determining a profit margin, and have results presented
2 in order of profit margin. Other rules could present results by
3 vendor, product availability, price, etc., with such examples
4 provided for illustration and not limitation. Such manual
5 customization of a dictionary 18 can be performed and applied
6 according to a particular user, or a group of users. The
7 dictionary editing can be performed locally or via a network.

8 In some practices of the systems and methods, system
9 requirements can provide for certain query information to be
10 provided. If the query information is not provided by the user
11 at the initiating device 12, the user can be prompted to enter
12 the remaining information.

13 Accordingly, a dictionary 18 can include one or more of
14 relevant content and/or values from a data source 20, a
15 representation of schemas, relationships, and category
16 hierarchies from the data source 20, configuration settings
17 according to users and/or groups of users, business rules,
18 terminology definitions or specifications, synonyms, a language
19 translator, a natural language processor, an output data
20 formatter, and a log file generator.

1 The methods and systems herein can also allow for the
2 aggregation of customized query results from multiple data
3 sources and/or dictionaries. For example, as provided herein,
4 query information submitted at an initiating device 12 can be
5 broadcast to one or more dictionaries in broadcast or some other
6 sequenced manner, wherein the search results can be filtered or
7 otherwise aggregated at the System Server 14. The filtering or
8 other presentation of information performed by the System Server
9 14 can be performed additionally and optionally to filtering and
10 organization that can be performed at individual dictionaries 18
11 and or servers 20.

12 Referring now to FIG. 3, there is a diagram representing the
13 methods and systems in an embodiment that can be known as a query
14 translation embodiment 30. In the FIG. 3 configuration, query
15 information can be presented to the system 32 through an API 33
16 and to a query translator 34. The query translator 34 can
17 translate the query information into a SQL statement, advanced
18 text search expression, HTTP call, etc, by accessing a dictionary
19 18 that corresponds to a data source 20 to be searched. For the
20 FIG. 3 embodiment, a server 16 can provide the received query
21 information to the system 32 to receive from the system 32 via
22 the query translator 34, a SQL statement, advanced text search

1 expression, HTTP call, etc. The server 16 can thereafter submit
2 or apply the returned search to a relational database, text
3 search engine, etc.

4 Referring to FIG. 4, there is a diagram of a configuration
5 40 for the methods and systems that can allow the return of a
6 data set for formatting a search request, by an application that
7 can reside on the server 16 or another device. As indicated by
8 FIG. 3, query information can be provided by the server 16. The
9 query information can include or be accompanied by a dictionary
10 selection, a user ID, business rules, etc., and a desired output
11 format to the system 42 through its API 33. This interface can
12 be implemented using HTTP, Component Object Module (COM), Java,
13 Enterprise, Javabean, C, C++, Visual Basic, or another well-known
14 method. The natural language query, dictionary selection, and
15 output format can be input to a query processor 44 that includes
16 a data access module 46 that transfers the query information and
17 dictionary selection to a query translator 34. The query
18 translator 34 can utilize the specified dictionary 18 and query
19 information to generate a customized query as provided herein.
20 Those with ordinary skill in the art will recognize that although
21 FIG. 4 depicts a single dictionary 18 and query translator 34,
22 the embodiment of FIG. 4 can include multiple dictionaries and/or

1 query translators. The customized query can be transferred to
2 the data access module 46 that can issue the customized query to
3 the data source 20 corresponding to the query. FIG. 4
4 demonstrates two data sources 20 that include a relational
5 database management system 20a and a text search engine 20b,
6 although other data sources can be utilized and specified. The
7 customized query search results can be returned to the data
8 access module 46 and thereafter transferred to the formatting
9 module 48 with the specified output format. The formatting
10 module 48 can format the query results based on the specified
11 format, and transfer the formatted output to the server 16
12 through the API 33. In an embodiment, the formatted results can
13 be transferred to the server 16 in XML format. A web application
14 on the server 16 or another location can transform the XML search
15 results into a desired presentation style using, for example, the
16 W3C standard extensible stylesheet language transformation (XSLT)
17 and HTML.

18 Referring to FIG. 5, there is a diagram for an embodiment 50
19 where the search results can be presented to a server application
20 in a ready-to-display format. As was shown in FIG. 4, in FIG. 5,
21 a server 16 can provide query information, dictionary selection,
22 and output format to the data access module 46 of the query

1 processor 44. The data access module 46 can provide the query
2 information and dictionary selection to the query translator
3 module 34 that utilizes the specified dictionary 18 to generate a
4 customized search or query. The customized search can be
5 provided to the data access module 46 and executed against the
6 appropriate data source 20. The results of the search can be
7 returned to the formatting module 48 via the data access module
8 46, with the specified output format. The formatted search
9 results can be provided to the server 16 for display. In the
10 illustrated system of FIG. 4, the formatted results can be fully
11 customizable HTML templates for output to the internet, and can
12 include colors, headers, footers, and other customizable
13 characteristics to match the web site. The HTML can additionally
14 and optionally include graphs, pie charts, bar graphs, reports,
15 and spreadsheets that can be displayed using, for example,
16 ActiveX control or Java applet.

17 As indicated with reference to FIG. 4, the system and
18 methods according to FIG. 5 can be practiced with multiple query
19 translators 34 and/or dictionaries 18. Additionally, the data
20 sources 20a, 20b can be multiple and can include other data
21 sources than illustrated. In the embodiments herein, although

1 identification can be provided with a query request, some
2 embodiments may not utilize query information.

3 Referring now to FIG. 6, there is shown an embodiment 60
4 wherein a "broker dictionary" 18e can be utilized to interface to
5 other dictionaries and data sources. One of ordinary skill in
6 the art will recognize from the description of the methods and
7 systems provided herein, that a server 16 that is not
8 illustrated, can be associated with the broker dictionary 18e.
9 The illustrated broker dictionary 18e can include, for example,
10 URLs of other servers at different locations in a local or other
11 network (e.g., internet, intranet, LAN, WAN, etc.) that have
12 relevant data sources and/or dictionaries. Dictionaries to which
13 the broker dictionary 18e can communicate can be referred to
14 herein as broadcast dictionaries. In an embodiment, the broker
15 dictionary 18e can provide an interface for a subscriber 16 with
16 multiple servers. The multiple servers can maintain different
17 customized dictionaries, or can share the broker dictionary 18e.
18 In some embodiments, the broker dictionary 22 can interface to
19 multiple subscribers 16 and/or data sources 20.

20 According to the FIG. 6 system, the broker dictionary 18e
21 can receive query information from the initiating device 12 and

1 the broker dictionary 18e can filter the search request to
2 eliminate broadcast dictionaries and/or data sources 20 that do
3 not include data relevant to the query information. The broker
4 dictionary 18e can therefore include sophisticated and
5 intelligent filters to eliminate unneeded broadcast search
6 requests. Those with ordinary skill in the art will recognize
7 that the broker dictionary 18e can include the attributes
8 previously provided to dictionaries in general, including but not
9 limited to language translation, synonym generation, natural
10 language processing, business rules, etc.

11
12
13 The broker dictionary 18e can relay or broadcast query
14 information, as processed by the broker dictionary 18e,
15 unprocessed, or a combination thereof, to the selected broadcast
16 dictionaries 18f, 18g, 18h and other data sources 20e, 20f, 20g.

17 For example, in the illustrated system of FIG. 5, the broker
18 dictionary 18e can process the query information to provide a
19 customized query that can be provided to the non-broadcast
20 dictionary data sources 20e, 20f, 20g. Similarly, the broadcast
21 dictionaries 18f, 18g, 18h can receive either the customized
22 query information or the original query information from the
initiating device 12. In either case, the broadcast dictionaries
18f, 18g, 18h can process the received query information from the

1 broker dictionary 18e, and distribute a customized query to one
2 or more data sources 20h, 20i, 20j as provided previously herein.

3 The customized query results from the different data sources
4 20e-20j can be transmitted or otherwise transferred to the broker
5 dictionary 18e. The illustrated broker dictionary 18e can
6 receive customized query search results and format the results to
7 present a single result package to the initiating device 12 or
8 other server 16 or application as provided herein. In some
9 embodiments, the broker dictionary 18e can filter the search
10 results before transferring or communicating the search results
11 as provided herein.

12 Those with ordinary skill in the art will recognize that the
13 systems and methods herein can include one or more databases that
14 can be in communication with the servers 16 but are not otherwise
15 illustrated in the representative figures. For example, a
16 database can be utilized to maintain information based on user
17 identity and privileges, broker dictionaries and associated
18 broadcast dictionaries, rules for filtering query results, etc.

19 Accordingly, it can be understood that the methods and
20 systems disclosed herein can be applied to a variety of queries.

21 For example, the query information initially submitted can be a

1 question, such as "How far is bank XXX from home?", such that
2 data pertinent to the user (e.g., "home") and data related to a
3 another sensor or entity (e.g., mapping program or distance
4 calculator) can be integrated with the query information to
5 provide an appropriate response. Questions can be presented in
6 succession, and results from one question can be a basis as input
7 to the dictionary for subsequent questions.

8 The techniques described herein are not limited to a
9 particular hardware or software configuration, and may find
10 applicability in many computing or processing environments. The
11 techniques can be implemented in hardware or software, or a
12 combination of hardware and software. The techniques can be
13 implemented in one or more computer programs executing on one or
14 more programmable computers that include a processor, a storage
15 medium readable by the processor (including volatile and non-
16 volatile memory and/or storage elements), one or more input
17 devices, and one or more output devices.

18 The computer program(s) is preferably implemented in one or
19 more high level procedural or object-oriented programming
20 languages to communicate with a computer system; however, the

1 program(s) can be implemented in assembly or machine language, if
2 desired. The language can be compiled or interpreted.

3 The computer program(s) can be preferably stored on a
4 storage medium or device (e.g., CD-ROM, hard disk, or magnetic
5 disk) readable by a general or special purpose programmable
6 computer for configuring and operating the computer when the
7 storage medium or device is read by the computer to perform the
8 procedures described herein. The system can also be considered
9 to be implemented as a computer-readable storage medium,
10 configured with a computer program, where the storage medium so
11 configured causes a computer to operate in a specific and
12 predefined manner.

13 One potential advantage of the methods and systems is that
14 an internet user may obtain reliable, accurate, and efficiently
15 organized information in response to a search or query request.

16 What has thus been described is a method and system for
17 providing efficient searching of devices on communications
18 networks, such as servers on the internet, using an application
19 that can survey a subscriber's server that can include a catalog
20 and database, and use the formatting information and data from
21 the survey to create a dictionary customized to the subscriber's

1 data sources. A user seeking information can initiate a search
2 from an initiating device using keywords, natural language terms,
3 connectors, expressions, etc., wherein such query information can
4 be transmitted to various subscriber customized dictionaries.
5 The customized dictionaries can customize the query based on
6 respective subscriber databases and text documents, text search
7 engines, etc., to produce an accurate search result. The search
8 results can be filtered and integrated for presentation to the
9 initiating device. Search results can be customized using user
10 preference or profile information.

11 Although the methods and systems have been described
12 relative to specific embodiments thereof, the methods and systems
13 are not so limited. Obviously many modifications and variations
14 may become apparent in light of the above teachings. For
15 example, although the illustrated embodiment presented herein
16 related to the internet, the methods and systems can be applied
17 to searching other devices on other communications networks.
18 Although HTML and XML languages were utilized to facilitate the
19 searching, other languages may be utilized. The survey program
20 can be run locally on a server, or remotely from another
21 platform. Similarly, a dictionary can be accessed and/or managed
22 locally or remotely using wired or wireless communications

1 systems and methods. Results of customized queries can be
2 aggregated at a server having multiple data sources, and
3 thereafter transferred to the system server that can aggregate
4 the results. In another embodiment, an application residing on
5 the initiating device can receive and aggregate the results for
6 presentation on the device. In an embodiment, search results can
7 be displayed according to a user identification and/or
8 information stored in a central database or local memory that
9 includes user-specific preferences. The preferences can indicate
10 suppliers, price, and other search-relevant criteria that can be
11 submitted with the natural language search terms. In embodiments
12 utilizing a user account for preferences, the respective
13 subscriber dictionaries can integrate the user's preferences with
14 the search terms to increase the probability of satisfying a
15 search query for a user. In another embodiment, a user can be
16 prompted for preference criteria, while in another embodiment,
17 user identification data can be entered and submitted with the
18 search criteria. Upon receiving the user identification data, a
19 dictionary can cause a pre-stored user profile to be extracted
20 and incorporated into the search.

21 In some embodiments, a user can be presented with search
22 results and can select the desired results for purchase. Search

1 results can be accompanied by a URL of the order processing
2 system that can be used to order the product; and, when the user
3 selects the item, the relevant product information can be
4 submitted to the purchasing system to initiate the purchase
5 process. In an embodiment, the user's selection of a product can
6 provide a transition to an order basket or other ordering scheme
7 that can be provided by the initiating website, the subscriber's
8 website, or an alternate website. In these embodiments, the
9 ordering scheme can interface to a browser or other interface at
10 the initiating device.

14 Data sources and dictionaries do not have to reside on the
15 same server, medium, etc. Additionally, methods of presenting a
16 query and presenting query results can be integrated with instant
17 messaging and/or email.

15 Many additional changes in the details, materials, and
16 arrangement of parts, herein described and illustrated, can be
17 made by those skilled in the art. Accordingly, it will be
18 understood that the following claims are not to be limited to the
19 embodiments disclosed herein, can include practices otherwise
20 than specifically described, and are to be interpreted as broadly
21 as allowed under the law.