TTT++: When Does Self-Supervised Test-Time Training Fail or Thrive?

NeurIPS 2021

Yuejiang Liu, Parth Kothari, Bastien van Delft Baptiste Bellot-Gurlet, Taylor Mordan, Alexandre Alahi

EPFL

Presented by: Daehoon Gwak

Feb 14, 2022

Vision seminar

Index

- Introduction
- Background
- Methods
- Experiments
- Conclusion

Introduction

- The standard assumption in ML is that the data distribution at test time will match the training distribution.
- When this assumption does not hold the performance of standard ML methods can deteriorate significantly.
- However, in almost all practical applications, ML systems are regularly tested under unavoidable distribution shift.
- Domain Generalization / Domain Adaptation => Test-Time Adaptation

Introduction

Domain Adaptation

 In domain adaptation, the key assumption is that the target data is accessible during training, which allows the model to be adapted to the target domains.

Domain Generalization

 Fixed decision boundary ⇒ Since these models are trained on source domains, there will always be an "adaptivity gap" when applying them to target domains without further adaptation

Test-Time Adaptation

 Given a trained model, how can we effectively adapt it from one domain to another on the fly, without access to training data and human annotations?

Background

- Test-Time Training(TTT)
 - Test-Time Training with Self-Supervision for Generalization under Distribution Shifts (ICML 2020)

Step1: Training

$$\min_{\theta_{\mathrm{e}},\theta_{\mathrm{s}},\theta_{\mathrm{m}}} \mathbb{E}_{P} \left[\frac{\ell_{\mathrm{m}}(x,y;\theta_{\mathrm{e}},\theta_{\mathrm{m}})}{+\ell_{s}(x,y_{\mathrm{s}};\theta_{\mathrm{e}},\theta_{s})} \right]$$

Step2: Test-time training

$$\min_{\theta_{\rm e},\theta_{\rm s}} \left[\ell_s(x,y_{\rm s};\theta_e,\theta_s) \right]$$

Step3: Test-time prediction

Background

- Test-Time Training(TTT)
 - Test-Time Training with Self-Supervision for Generalization under Distribution Shifts (ICML 2020)

Motivation

Failure case of TTT

 Without any constraints over the feature distribution, TTT may yield an updated encoder that overfits the self-supervised task, which deteriorates the performance on the main task.

Motivation

Failure case of TTT

- Illustrative Example of Failures
 - (a): The predictive model reaches high accuracy on both the main classification task, i.e., separating red and blue data points, and the auxiliary self-supervised task, i.e., separating circles and crosses.
 - (b): Under significant distributional shift, test samples are encoded into a new subspace.
 - (c): Failure case of TTT without any constraints over the distribution.

Overview

• TTT + Regularization (Feature Alignment)

Online Feature Alignment

- Imposing a constraint over the feature space during TTT
 - Constraint: The feature distribution of test examples remains close to that in the training domain.
 - After training, set of feature vectors encoded from the training data $Z = \{z_1^T, ..., z_N^T\}$
 - Mean vector: $\mu_Z = \frac{1}{N} \Sigma_{i=1}^N z_i$ and Covariance matrix: $\Sigma_Z = \frac{1}{N-1} (Z^T Z (I^T Z)^T (I^T Z))$
 - This design choice allows us to summarize the distribution of training features in a compact format and store it as part of the model (consider adversarial training, MMD, ...)
- At test time, we constrain the self-supervised adaptation by minimizing $\mathcal{L}_{f,z}$

$$\mathcal{L}_{f,z} = \|\mu_z - \mu_z'\|_2^2 + \|\Sigma_z - \Sigma_z'\|_F^2$$

$$\mathcal{L}_{TTT++} = \mathcal{L}_s + \lambda_z \mathcal{L}_{f,z} + \lambda_s \mathcal{L}_{f,s}$$

Online Dynamic Queue

- One practical challenge for online feature alignment: scalability
- Intuitively, a good estimate of moments of the entire distribution needs at least a handful of samples per class. (~1000 samples in the case of CIFAR-100)
- However, the computational resources during deployment are often limited to accommodate such a large batch size in the test-time setting.

Online Dynamic Queue

- The dynamic queue contains a few batches of feature vectors encoded at test time.
- Progressively updating it by appending the latest mini-batch and popping out the oldest one

TTT through Contrastive Learning

- A lower bound of the test accuracy on the main task is expected to grow rapidly when the SSL task gets closer to the main task.
- Rotation Prediction ⇒ Contrastive Learning (SimCLR)

$$\mathcal{L}_s = -\log \frac{\exp(\operatorname{sim}(h_i, h_j)/\tau)}{\sum_{k=1}^{2B} \mathbb{1}_{k \neq i} \exp(\operatorname{sim}(h_i, h_k)/\tau)}$$

$$sim(u, v) = u^T v / (||u|| ||v||)$$

Common Image Corruption

- ResNet -50 on CIFAR 10-C and CIFAR 100-C datasets
 - 15 types of common image corruptions that vary in severity.
 - Batch size of 256 for test-time training
 - Dynamic queue containing 16 batches of feature vectors (CIFAR100-C)

Common Image Corruption

• TTT-C: TTT + SimCLR

• TFA: TTT + feature alignment

Table 1: Average classification error (%) on CIFAR10-C/100-C [1] and CIFAR10.1 [41]

Method	C10-C	C100-C	C10.1
Test	29.1	61.2	12.1
BN [42]	15.7	43.3	14.1
TTT-R [6]	14.3	40.4	11.0
SHOT [37]	14.7	38.1	11.1
TENT [8]	12.6	36.3	13.4
TFA (Ours)	11.9	35.8	12.1
TTT-C (Ours)	10.7	36.9	9.7
TTT++ (Ours)	9.8	34.1	9.5

- Common Image Corruption
 - Effect of Batch-Queue Decoupling

	,	w/o queu	e	w/ queue						
Sample Size	64	128	256	64 × 2	64 × 4	64 × 8	64 × 16			
Test Error	40.31	38.67	37.01	39.84	37.37	36.18	36.02			

Ablation study

$$\mathcal{L}_{TTT++} = \mathcal{L}_s + \lambda_z \mathcal{L}_{f,z} + \lambda_s \mathcal{L}_{f,s}$$

$$\cdot \mathcal{L}_{f,z} = \|\mu_z - \mu_z'\|_2^2 + \|\Sigma_z - \Sigma_z'\|_F^2$$

TFA	brit	contr	defoc	elast	fog	frost	gauss	glass	impul	jpeg	motn	pixel	shot	snow	zoom
$w/o \mathcal{L}_{f,s}$ $w/o \mathcal{L}_{f,z}$															7.32 7.44
w/o Σ w/o μ									25.17 18.95						
Full	7.44	7.40	8.89	15.73	12.82	11.49	12.94	18.46	19.13	11.66	10.77	9.93	12.67	11.73	7.03

Conclusion

⋮≡ README.md

TTT++

This is an official implementation for the paper

TTT++: When Does Self-supervised Test-time Training Fail or Thrive? @ NeurIPS 2021
Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, Alexandre Alahi

TL;DR: Online Feature Alignment + Strong Self-supervised Learner → Robust Test-time Adaptation

Thank you!