

Predicting Structural Damage from an Earthquake

-Lhamu Tsering

Business Context

- "Earthquakes don't kill people, buildings do."
- 2015 Nepal Earthquake
- Model purpose

Process Outline

Data Collection

2015 Nepal Earthquake Portal

Preprocessing

Dummy Variables, Class Imbalance, standardizing

Model Evaluation/ Model Selection

Evaluation Metrics Confusion Matrix

Cleaning and EDA

Data cleaning, Exploration and visuals

Multiclass Classification Models

Data Introduction

2015 Earthquake Nepal Data Portal

- Raw survey data (post 2015 eq)
- 11 worst hit districts
- 762106 buildings
 - Building Use (762106, 17)
 - Building Structure (762106, 31)
 - Building Damage(762106, 12)

Building Superstructure

Distribution of Building Superstructure Composition

Foundation Type

Comparison on building damage based on Foundation Type

Floor Type

Roof Type

Comparison on building damage based on Roof Type

Model Results

Model	Recall Score	F1 Score
Baseline Logistic Regression	0.6732	0.594
Random Forest Classifier	0.724	0.7263

Accurately Predicted Classes

Feature importance

Top 15 Important Features

Conclusion & Next Steps

Thank You!

https://github.com/Yeshi341/s tructural damage from earthq uake

boutlhamu@gmail.com

slides template credit: www.slidesgo.com