Cylinders and Quadric Surfaces

Section 12.6

Outline

- Cylinders and Quadric Surfaces
 - ▶ Cylinders 精靈
 - ▶ Ellipsoid 橢球面
 - ▶ Hyperboloid of One Sheet 罩葉☆茴酉
 - ▶ Hyperboloid of Two Sheets 🔫 葉垜母 値
 - ▶ Elliptic Paraboloid 排傷圖 抛物面
 - ▶ Hyperbolic Paraboloid → 対域物 価

Cylinders and Quadric Surfaces

- In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces (or cross-sections) of the surface.
- Now we will sketch some common surfaces with the help of traces.

Cylinders

- Cylinders:
- A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.

Ex:
$$7 = y^3$$
.

Ex: Sketch $x^2 + y^2 = 4$, $4y^2 + 2^2 = 1$ in \mathbb{R}^3

- Quadric Surfaces:
- A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

By translation and rotation it can be brought into one of the two standard forms

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 or $Ax^2 + By^2 + Iz = 0$

$$Ax^2 + Hy = 0$$

$$Ax^2 + J = 0$$

Ex: Reduce the equation to a standard form.

$$\chi^2 - \frac{y^2}{4} - 2\chi + y + 3z + 6 = 0$$

Standard Forms

$$Ax^2 + By = 0$$

$$A x^2 + J = 0$$

$$E_X: X^2 + \frac{y^2}{4} + \frac{z^2}{4} = 1$$

- **Example:** $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$
- It's called an **ellipsoid**. All of its traces are ellipses.

$$Ax^2+By^2+Cz^2=1$$
 Family

Ex:
$$\frac{\chi^2}{4} + y^2 - \frac{7}{4}^2 = 1$$

Example: $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$ This surface is called a hyperboloid of one

sheet.

$$Ax^2+By^2+Cz^2=1$$
 Family

Ex:
$$4x^2 - y^2 + 2z^2 + 4 = 0$$

- Example: $4x^2 y^2 + 2z^2 + 4 = 0$
- It is a hyperboloid of two sheets.

FIGURE 10

$$4x^2 - y^2 + 2z^2 + 4 = 0$$

$$Ax^2+By^2+Cz^2=0$$
 family

Ex:
$$x^2 + 4y^2 - 7^2 = 0$$

$$Ex: 4x^{2}+y^{2}=7$$

- Example: $z = 4x^2 + y^2$
- Because of the elliptical and parabolic traces, the quadric surface $z=4x^2+y^2$ is called an elliptic paraboloid.

Ex: Find the surface obtained by rotating the curve $y = x^2$ about the y - axis.

Ex:
$$7 = 9^2 \times x^2$$
.

Example: $z = y^2 - x^2$, a hyperbolic paraboloid.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Ex: classify and sketch the quadric surface

$$\chi^{2} + \frac{y^{2}}{4} - \frac{7}{2} - 2\chi + y + 67 + 1 = 0$$

Ex: classify the quadric surface $2\chi^2 - 4y^2 + Z^2 + 4y + 6z + a = 0$ according to the constant a.

$$2\chi^2 - 4y^2 + \xi^2 + 4y + 6z + a = 0$$
 according to the constant a.

Ex: Classify the surface $x^2 + ay^2 + zx - 2ay - 7 = 0$ according to the constant a.

Review

- How do we sketch quadric surfaces? What are standard forms of quadric surfaces?
- Classify ellipsoid and hyerboloid of one (two) sheet(s).
- Classify elliptic paraboloid and hyperbolic paraboloid.