New Idea

Aresh Pourkavoos

January 31, 2021

Let F be a set of sets of vertices, $V = \bigcup F$. F is a polytope if there exists a function $d : F \to \mathbb{Z}$ such that:

- 1. Null face: $\emptyset \in F$, and $d(\emptyset) = -1$.
- 2. Ordering: for all $a, b \in F$, if there exists no $c \in F$ such that $a \subset c$ and $c \subset b$, then d(b) = d(a) + 1.
- 3. Recursion: define a facet of P to be a triplet (f, F', d') where $f \in F$, d(f) = d(V) 1, $F' = F \cap \mathscr{P}(V)$, and $d' = d|_{F'}$. Then all facets of P are also polytopes.