Задача 0.1. Ще казваме, че булева формула ϕ е в 2-конюнктивна нормална форма (2CNF), ако ϕ е конюнкция от дизюнкти c най-много два литерала.

Разглеждаме проблема 2SAT:

Вход: ϕ 2CNF формула Въпрос: Изпълнима ли е ϕ ?

- 1. Да се докаже, че 2SAT е в класа Р.
- 2. Да се докаже, че има (детерминиран) алгоритъм с времева сложност $O(|\phi||)$, който разрешава 2SAT и в случай, че ϕ е изпълнима намира оценка, която свидетелства за това.

Задача 0.2. Нека G = (V, E) е граф. Дефинираме рекурсивно редицата от графи $G_i = (V_i, E_i)$ и множествата $C_i \subseteq V$ по следния начин:

- 1. $G_0 = G$, $C_0 = \emptyset$.
- 2. Ако $E_i \neq \emptyset$, нека $\{u_i, v_i\} \in E_i$. Дефинираме:

$$\begin{array}{rcl} C_{i+1} & = & C_i \cup \{u_i, v_i\} \\ V_{i+1} & = & V_i \setminus \{u_i, v_i\} \\ E_{i+1} & = & E_i \setminus \{\{x, y\} \in E_i \,|\, \{x, y\} \cap \{u_i, v_i\} \neq \emptyset\}. \end{array}$$

- 1. Да се докаже, че ако $E_i = \emptyset$, то C_i е върхово покритие на G.
- 2. Да се докаже, че всяко върохово покритие C^* на G съдържа поне един от върховете u_i или v_i за всяко i.
- 3. Да се заключи, че има алгоритъм с времева сложност O(|V| + |E|), който намира върхово покритие C на G, което е не повече от два пъти по-голямо от оптималното.

Задача 0.3. Нека G = (V, E) е (неориентиран) граф и $S \subseteq V$ е множество от негови върхове. Казваме, че дърво T = (V', E') е дърво на Steiner за S спрямо графа G, ако:

$$S \subseteq V' \subseteq V \ u \ E' \subseteq E$$
.

Ако $c: E \to \mathbb{N}$ е ценова функция за G, с $c_{\text{Steiner}}(S)$ означаваме най-малката цена на щайнерово дърво за S спрямо G:

$$c_{\text{Steiner}}(S) = \min\{c(T) \mid T \text{ е щайнерово дърво за } S \text{ спрямо } G\}.$$

Разглеждаме следния проблем STEINERTREE:

Вход: G=(V,E) неориентиран граф, $S\subseteq V$, $c:E\to\mathbb{N}$, $k\in\mathbb{N}$ Въпрос: Вярно ли е, че $c_{\mathtt{Steiner}}(S)\leq k$?

Да се докаже, че SteinerTree е NP-пълен.

Упътване 0.1. 1. Заменете всяка клауза $\ell_1 \vee \ell_2$ във ϕ с $(\widetilde{\ell_1} \to \ell_2)(\widetilde{\ell_2} \to \ell_1)$, където:

$$\widetilde{\ell}_i = \begin{cases} \overline{x}, \text{ and } \ell_i = x \\ x, \text{ and } \ell_i = \overline{x}. \end{cases}$$

и проверете, че двете формули са еквивалентни.

2. Нека ϕ е конюнкция от формули от вида $\ell_1 \to \ell_2$. Разгледайте ориентиран граф $G_{\phi} = (V_{\phi}, E_{\phi})$ с върхове:

$$V_\phi=\{\ell\,|\,\ell$$
 е литерал във $\phi\}$ и ребра $E_\phi=\{(\ell_1,\ell_2)\,|\,\ell_1 o\ell_2$ е подформула на $\phi\}.$

Докажете, че ако във G_{ϕ} има път $\ell_1 \to_{G_{\phi}}^* \ell_2$, то при всяка оценка v, при която $v(\phi)=1$ е в сила, че $v(\ell_1 \to \ell_2)=1$. Заключете, че:

- ако $\ell \to_{G_{\phi}}^* \widetilde{\ell}$ за някой литерал ℓ и $v(\phi)=1,$ то $v(\ell)=0.$
- ullet ако ℓ и $\widetilde{\ell}$ са в една и съща компонента на силна свързаност в G_ϕ за някой литерал ℓ , то ϕ не е изпълнима.
- 3. Разгледайте:

$$\begin{array}{lcl} X_t &=& \{x \in Var(\phi) \,|\, \overline{x} \to_{G_\phi}^* x\} \\ X_f &=& \{x \in Var(\phi) \,|\, x \to_{G_\phi}^* \overline{x}\} \\ Y_t &=& \{y \,|\, \exists x \in X_t(x \to_{G_\phi}^* y) \text{ или } \exists x \in X_f(\overline{x} \to_{G_\phi}^* y)\} \\ Y_f &=& \{y \,|\, \exists x \in X_t(x \to_{G_\phi}^* \overline{y}) \text{ или } \exists x \in X_f(\overline{x} \to_{G_\phi}^* \overline{y})\}. \end{array}$$

- Покажете, че ако $v(\phi)=1$ е изпълнима, то $(Y_t \cup X_t) \cap (Y_f \cup X_f)=\emptyset$ и за всяко $x \in X_t \cup Y_t, \ v(x)=1,$ а за всяко $x \in Y_f \cup X_f, \ v(x)=0.$
- Покажете, че ако $(X_t \cup Y_t) \cap (X_f \cup Y_f) = \emptyset$, то всяка оценка $v: Var(\phi) \to \{0,1\}$, за която:

$$v(x) = \begin{cases} 1, \text{ ако } x \in X_t \cup Y_t \\ 0, \text{ ако } x \notin X_t \cup Y_t, \end{cases}$$

има свойството, че $v(\phi) = 1$.

Упътване 0.3.

За това, че SteinerTree е в NP, съобразете, че е достатъчно да генерирате (недетерминирано) $V' \subseteq V$ с $\min(k, |V|)$ върха и след това да проверите, че (V', E') е свързан, където E' са ребрата на G, които свързват два върха от V'.

За пълнотата, достатъчно е да сведете за полиномиално време STEINERTREE към 3SAT. За целта разгледайте съждителна формула в 3КНФ:

$$\phi = \bigwedge_{i=1}^m C_i$$
, където $C_i = \ell_{i,1} \vee \ell_{i,2} \vee \ell_{i,3}$.

Графът, който искаме да построим заедно с ценовата функция трябва да кодира: избор на истинност за съждителните променливите; проверка на това дали този избор води до изпълнимостта на всяка от клаузите C_i .

Нека $\{x_1, \ldots, x_n\}$ са променливите, които участват във ϕ . С оглед на горното, за момент си представете, че графът е ориентиран, тогава може да моделираме горната идея така

- $V_{\phi} = \{r, g_1, g_2, \dots, g_n\} \cup \{x_i, \overline{x_i} \mid i \leq n\} \cup \{C_j \mid j \leq m\}.$
- Мислим си за V като r корен, g_1, \ldots, g_n "превключватели", които трябва да решат дали x_i или $\overline{x_i}$ е истина, C_j избира свидетел за това, че е вярна. За да постигнем това:

$$E_{\phi} = \{\{r, g_i\}, \{g_i, x_i\}, \{g_i, \overline{x_i}\} \mid i \le n\} \cup \{\{\ell_{i,j}, C_j\} \mid j \le m, i \le 3\}.$$

- Целта е изпълнимостта на булевата формула да е свързана с дърво на Щайнер за $S_{\phi} = \{r, g_1, \dots, g_n, C_1, \dots, C_m\}$. Да забележим, че ако се абстрахираме от ребрата, които свързват клаузи с литерали, графът е ацикличен. За да форсираме C_1, \dots, C_m да бъдат листа в щайнеровото дърво, трябва да направим ребрата, които излизат от тях "скъпи така че да не може да не е "изгодно" да се избира повече едно ребро от тях. От друга страна искаме да не допускаме повече от един избор на x_i или $\overline{x_i}$, като те трябва да са равноправни.
- Водени от горните съображения, да разгледаме първо случая, когато сред клаузите C_j са и всички клаузи от вида $\overline{x_i} \lor x_i \lor x_i$. Ясно е, че всяка от тях е тривиално изпълнена, независимо от оценката. Ценното обаче е, че тя ще бъде в множеството S и ще изисква избора на поне една от променливите x_i или $\overline{x_i}$.

• Сега вече може да определим цените:

$$c(r,g_i) = 0, \ \text{за всяко} \ i$$

$$c(g_i,x_i)=c(g_i,\overline{x_i}) = 1, \ \text{за всяко} \ i$$

$$c(\ell_{i,j},C_i) = \gamma \ \text{за всяко} \ i \leq m \ \text{и} \ j \leq 3.$$

 γ трябва да бъде определено подходящо. Как?

- За да се покрие всяка от клаузите е необходимо поне $\gamma.m$. Ако $\gamma > 2n$, то добавянето на повече от m ребра ще бъде по-неизгодно от добавянето на всички ребра $\{g_i, x_i\}, \{g_i, \overline{x_i}\}$, които биха довели до щайнерово дърво с цена от $2n + m\gamma$. Следователно $\gamma = 2n + 1$ за момента върши работа.
- Сега знаем, че оптималното щайнерово дърво за S_{ϕ} ще избере точно m ребра, в които участват клаузи. Следователно, клаузите ще бъдат листа! Тогава може да си мислим за първоначалното дърво с корен r със синове g_1, \ldots, g_n и остава да бъде решено с кои от синовете на g_i ще участват. Знаем, че поне един от тях трябва да участва, заради специалните клаузи.
- Е, сега е ясно, че ако участват повече от n от литералите $\{x_i, \overline{x_i} \mid i \leq n\}$, цената на щайнеровото дърво ще бъде поне $1+n+\gamma m=1+n+(2n+1)m$. От друга страна, ако участват точно n от тях, тя ще бъде n+(2n+1)m. Това и определя параметъра k=n+(2n+1)m.
- Довършете, като докажете, че следните са еквивалентни:
 - 1. в G_{ϕ} има щайнерово дърво за S_{ϕ} при ценова функция c ($\gamma=2n+1$) с цена не по-голяма от n+(2n+1)m.
 - 2. ϕ е изпълнима.