

The smooth vertical walls AB and CB are at right angles to each other. A particle P is moving with speed u on a smooth horizontal floor and strikes the wall CB at an angle α . It rebounds at an angle β to the wall CB. The particle then strikes the wall AB and rebounds at an angle γ to that wall (see diagram). The coefficient of restitution between each wall and P is e.

(a) Show that
$$\tan \beta = e \tan \alpha$$
.

(b) Express γ in terms of α and explain what this result means about the final direction of motion of P.

As a result of the two impacts the particle loses $\frac{8}{9}$ of its initial kinetic energy.

(c) Given that
$$\alpha + \beta = 90^{\circ}$$
, find the value of e and the value of $\tan \alpha$. [4]

© UCLES 2021 9231/33/O/N/21