Next Word Prediction Using Stacked LSTM Networks in Deep Learning

The text dataset is a children stories which is taken from kaggle. Using this dataset, a next word predicting model has been trained using stacked LSTM

```
In [3]: !kaggle datasets download -d edenbd/children-stories-text-corpus
        Dataset URL: https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
        License(s): CC0-1.0
        children-stories-text-corpus.zip: Skipping, found more recently modified local copy (use --force to force download)
 In [4]: import zipfile
         zip_ref=zipfile.ZipFile("children-stories-text-corpus.zip","r")
         zip_ref.extractall()
         zip_ref.close()
 In [5]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import re
 In [6]: with open('cleaned_merged_fairy_tales_without_eos.txt', 'r', encoding='UTF-8') as file:
             content = file.read()
         print(content[:500])
        The Happy Prince.
        HIGH above the city, on a tall column, stood the statue of the Happy Prince. He was gilded all over with thin leaves of f
        ine gold, for eyes he had two bright sapphires, and a large red ruby glowed on his sword-hilt.
        He was very much admired indeed. "He is as beautiful as a weathercock," remarked one of the Town Councillors who wished t
        o gain a reputation for having artistic tastes; "only not quite so useful," he added, fearing lest people should think him
        unpractical, which h
 In [7]: #removing some punctuations using regex
         def reg(text):
             pattern=r"[^\w\s\.\,\;]"
             processed=re.sub(pattern,'',text)
             return processed
         reg_text=reg(content)
         This is a huge datasets for a next word predicting model. First 1000000 strings have taken from it so that it can be handled by the system
         and also to train it quickly.
 In [9]: reg_text=reg_text.replace("\n"," ")
         txt=reg_text[:1000000]
         txt[:1000]
Out[9]: 'The Happy Prince. HIGH above the city, on a tall column, stood the statue of the Happy Prince. He was gilded all over
          with thin leaves of fine gold, for eyes he had two bright sapphires, and a large red ruby glowed on his swordhilt. He wa
          s very much admired indeed. He is as beautiful as a weathercock, remarked one of the Town Councillors who wished to gai
          n a reputation for having artistic tastes; only not quite so useful, he added, fearing lest people should think him unpr
          actical, which he really was not. Why cant you be like the Happy Prince asked a sensible mother of her little boy who wa
          s crying for the moon. The Happy Prince never dreams of crying for anything. I am glad there is some one in the world w
          ho is quite happy, muttered a disappointed man as he gazed at the wonderful statue. He looks just like an angel, said th
          e Charity Children as they came out of the cathedral in their bright scarlet cloaks and their clean white pinafores. How
         do you know said the Mathematical Master'
In [10]: len(txt)
Out[10]: 1000000
In [11]: import tensorflow as tf
         from tensorflow.keras.preprocessing.text import Tokenizer
         from tensorflow.keras.preprocessing.sequence import pad_sequences
         from tensorflow.keras.utils import to_categorical
         For vectorization, "Tokenizer" object has been used. "fit_on_texts" function allocated a number for each word in that text.
```

In [13]: token=Tokenizer()

token.fit_on_texts([txt])

```
In [80]: # Showing index of word
          token_word=token.word_index
          "texts_to_sequences" function converted the text into a list of tokens corresponding the word.
In [16]: token_line=token.texts_to_sequences([txt])[0]
          token_len=len(token_line)
          token_len
Out[16]: 191738
In [82]: token_line[:15]
Out[82]: [1, 209, 72, 302, 444, 1, 583, 29, 4, 1030, 3394, 182, 1, 1283, 5]
          The whole token sequences have been made a array having (n,4) dimension. So that for every row first three elements can be used as
          input and fourth element as output.
In [86]: input=[]
          for i in range(4*(token_len//4)-3):
              input.append(token_line[i:i+4])
          input[:10]
Out[86]: [[1, 209, 72, 302],
           [209, 72, 302, 444],
           [72, 302, 444, 1],
           [302, 444, 1, 583],
           [444, 1, 583, 29],
           [1, 583, 29, 4],
           [583, 29, 4, 1030],
           [29, 4, 1030, 3394],
           [4, 1030, 3394, 182],
           [1030, 3394, 182, 1]]
          Here the splitting has been done which was stated above. "x" is the input and "y_" is the output.
In [21]: x=[]
          y_=[]
          for i in input:
              x.append(i[:-1])
              y_.append(i[-1])
          x=np.array(x)
          y_=np.array(y_)
          print(f"shape of x: {x.shape}")
          print(f"shape of y: {y_.shape}")
         shape of x: (191733, 3)
        shape of y: (191733,)
In [22]: x_col=x.shape[1]
          print(f"total column in x: {x_col}")
        total column in x: 3
          We can notice that token started from 1. So to include 0, "+1" business has been done here.
In [24]: total_word=len(token.word_index)
          total_word=total_word+1
          total_word
Out[24]: 9234
          This is a multiclass classification. So the output can't be just a number. So, the categorization has been done using "to_categorical"
          function. Also notice that, the output can be any word from our word vocabulary. so, the "total_word" has been taken as length of one
          output.
In [26]: y=to_categorical(y_,num_classes=total_word)
Out[26]: (191733, 9234)
In [27]: from tensorflow import keras
          from keras import Sequential
          from keras.layers import Dense, LSTM, Embedding,Dropout
```

- 1. Word embedding has been done to create a array corresponding every unique word/token.
- 2. Then LSTM layers have been used for finding the pattern.
- 3. To reduce overfitting droupout has been used.
- 4. As activation function, Softmax has been used because it is a multiclass classification problem.

```
In [29]: model=Sequential()

model.add(keras.Input(shape=(x_col,)))
model.add(Embedding(total_word,100))
model.add(LSTM(500, return_sequences=True))
model.add(LSTM(500))
model.add(Dropout(0.5))
model.add(Dense(total_word,activation="softmax"))

model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 3, 100)	923,400
lstm (LSTM)	(None, 3, 500)	1,202,000
lstm_1 (LSTM)	(None, 500)	2,002,000
dropout (Dropout)	(None, 500)	0
dense (Dense)	(None, 9234)	4,626,234

Total params: 8,753,634 (33.39 MB)

Trainable params: 8,753,634 (33.39 MB)

Non-trainable params: 0 (0.00 B)

Fnoch 1/100								
Epoch 1/100 3835/3835	91s	23ms/step	_	accuracy:	0.0769	_	loss:	6.3871
Epoch 2/100				,				
	84s	22ms/step	-	accuracy:	0.1233	-	loss:	5.5513
Epoch 3/100 3835/3835	85s	22ms/step	_	accuracv:	0.1438	_	loss:	5.2408
Epoch 4/100				,				
	85s	22ms/step	-	accuracy:	0.1580	-	loss:	5.0369
Epoch 5/100 3835/3835	84s	22ms/step	_	accuracy:	0.1695	_	loss:	4.8613
Epoch 6/100								
3835/3835 ———————————————————————————————————	85s	22ms/step	-	accuracy:	0.1847	-	loss:	4.6762
'	84s	22ms/step	-	accuracy:	0.1975	_	loss:	4.5126
Epoch 8/100		22 / 1			0 0100		,	
3835/3835 ———————————————————————————————————	845	22ms/step	-	accuracy:	0.2139	-	1055:	4.3399
•	85s	22ms/step	-	accuracy:	0.2347	-	loss:	4.1209
Epoch 10/100 3835/3835 ———————————————————————————————————	950	22ms/step		accupacy:	0 25/1		1000	2 0201
Epoch 11/100	033	22113/3CEP		accuracy.	0.2541		1033.	3.5501
	85s	22ms/step	-	accuracy:	0.2750	-	loss:	3.7294
Epoch 12/100 3835/3835	84c	22ms/step	_	accuracy.	0 2982	_	1055.	3 5363
Epoch 13/100	0.15	223/ 3 сер		accar acy.	0.2302		1033.	3.3303
	84s	22ms/step	-	accuracy:	0.3224	-	loss:	3.3371
Epoch 14/100 3835/3835	84s	22ms/step	_	accuracy:	0.3485	_	loss:	3.1553
Epoch 15/100		·		-				
3835/3835 ———————————————————————————————————	84s	22ms/step	-	accuracy:	0.3698	-	loss:	2.9869
	84s	22ms/step	-	accuracy:	0.3923	-	loss:	2.8340
Epoch 17/100		22 / 1					,	
3835/3835 ———————————————————————————————————	845	22ms/step	-	accuracy:	0.415/	-	loss:	2.68/2
	84s	22ms/step	-	accuracy:	0.4401	-	loss:	2.5372
Epoch 19/100 3835/3835	9/10	22ms/step		accupacy:	0 1596		1000	2 4200
Epoch 20/100	043	221113/3CEP	Ī	accui acy.	0.4380	-	1055.	2.4233
	84s	22ms/step	-	accuracy:	0.4770	-	loss:	2.3188
Epoch 21/100 3835/3835	855	22ms/step	_	accuracy:	0.4925	_	loss:	2.2187
Epoch 22/100								
	85s	22ms/step	-	accuracy:	0.5114	-	loss:	2.1239
Epoch 23/100 3835/3835	84s	22ms/step	-	accuracy:	0.5257	_	loss:	2.0466
Epoch 24/100								
3835/3835 ———————————————————————————————————	85s	22ms/step	-	accuracy:	0.5382	-	loss:	1.9759
•	84s	22ms/step	-	accuracy:	0.5516	-	loss:	1.9074
Epoch 26/100	010	22mc/c+on		2661102611	A E610		10001	1 0515
3835/3835 ———————————————————————————————————	045	22ms/step	-	accuracy:	0.3018	-	1055:	1.0010
	84s	22ms/step	-	accuracy:	0.5751	-	loss:	1.7843
Epoch 28/100 3835/3835 ———————————————————————————————————	84s	22ms/step	_	accuracy:	0.5834	_	loss:	1.7408
Epoch 29/100	0.5	э, э сер		uccu. ucy.			1033.	277.00
	84s	22ms/step	-	accuracy:	0.5942	-	loss:	1.6854
Epoch 30/100 3835/3835	84s	22ms/step	_	accuracy:	0.6022	_	loss:	1.6497
Epoch 31/100				-				
3835/3835 ———————————————————————————————————	84s	22ms/step	-	accuracy:	0.6122	-	loss:	1.6019
•	84s	22ms/step	-	accuracy:	0.6188	-	loss:	1.5692
Epoch 33/100	05-	22			0 6354		1	4 5264
3835/3835 ———————————————————————————————————	855	22ms/step	-	accuracy:	0.6251	-	1055:	1.5361
3835/3835	85s	22ms/step	-	accuracy:	0.6307	-	loss:	1.5145
Epoch 35/100 3835/3835	85c	22ms/sten	_	accuracy.	0 6376	_	1055.	1 4801
Epoch 36/100	033	22m3/3ccp		accuracy.	0.0370		1033.	1.4001
3835/3835	85s	22ms/step	-	accuracy:	0.6398	-	loss:	1.4636
Epoch 37/100 3835/3835	85s	22ms/step	_	accuracy:	0.6504	_	loss:	1.4291
Epoch 38/100		·		-				
3835/3835 ———————————————————————————————————	85s	22ms/step	-	accuracy:	0.6529	-	loss:	1.4041
•	85s	22ms/step	-	accuracy:	0.6552	-	loss:	1.3991
Epoch 40/100								

```
3835/3835
                                      - 85s 22ms/step - accuracy: 0.6603 - loss: 1.3692
       Epoch 41/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6647 - loss: 1.3548
       Epoch 42/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6697 - loss: 1.3377
       Epoch 43/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6710 - loss: 1.3197
       Epoch 44/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6739 - loss: 1.3091
       Epoch 45/100
                                      - 85s 22ms/step - accuracy: 0.6807 - loss: 1.2867
       3835/3835
       Epoch 46/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6815 - loss: 1.2789
       Epoch 47/100
        3835/3835
                                      - 87s 23ms/step - accuracy: 0.6843 - loss: 1.2661
       Epoch 48/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6824 - loss: 1.2662
       Epoch 49/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6876 - loss: 1.2453
       Epoch 50/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6886 - loss: 1.2447
       Epoch 51/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6930 - loss: 1.2282
       Epoch 52/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.6937 - loss: 1.2273
        Epoch 53/100
       3835/3835
                                      - 84s 22ms/step - accuracy: 0.6964 - loss: 1.2117
       Epoch 54/100
       3835/3835
                                      - 84s 22ms/step - accuracy: 0.6995 - loss: 1.2020
       Epoch 55/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7003 - loss: 1.1905
       Epoch 56/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7018 - loss: 1.1909
       Epoch 57/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7035 - loss: 1.1760
       Epoch 58/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7062 - loss: 1.1693
       Epoch 59/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7079 - loss: 1.1629
       Epoch 60/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7101 - loss: 1.1594
       Epoch 61/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7091 - loss: 1.1481
       Epoch 62/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7126 - loss: 1.1439
       Epoch 63/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7160 - loss: 1.1315
       Epoch 64/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7142 - loss: 1.1342
       Epoch 65/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7177 - loss: 1.1269
       Epoch 66/100
       3835/3835
                                      *85s 22ms/step - accuracy: 0.7161 - loss: 1.1251
       Epoch 67/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7180 - loss: 1.1172
        Epoch 68/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7198 - loss: 1.1156
       Epoch 69/100
       3835/3835
                                      - 85s 22ms/step - accuracy: 0.7179 - loss: 1.1121
       Epoch 70/100
        3835/3835
                                       85s 22ms/step - accuracy: 0.7214 - loss: 1.1072
       Epoch 71/100
                                     - 85s 22ms/step - accuracy: 0.7196 - loss: 1.1095
       3835/3835
        Epoch 71: early stopping
In [33]: plt.plot(history.history["accuracy"],color="red",label="train")
         plt.title('Model Accuracy')
         plt.ylabel('Accuracy')
         plt.xlabel('Epoch')
         plt.legend()
         plt.show()
```



```
In [34]: plt.plot(history.history["loss"],color="red",label="train")
   plt.title('loss function')
   plt.ylabel('loss')
   plt.xlabel('Epoch')
   plt.legend()
   plt.show()
```


Predicting next word using this trained model.

```
In [36]: def predict_next(inp_text):
    token_line=token.texts_to_sequences([inp_text])[0]
    token_len=len(token_line)
    if token_len<x_col:
        input=pad_sequences([token_line],maxlen=x_col, padding="pre")
    elif token_len>x_col:
        input=token_line[-x_col:]
    else:
        input=token_line
    pred=model.predict(np.array([input]))
    predict_index=np.argmax(pred)
    for word,index in token.word_index.items():
        if index==predict_index:
```


The original line was "...He is as beautiful as a weathercock..."

So, this model is not predicting very well. The training accuracy is 71.96% which is not so good. However, we can use larger dataset and also more LSTM layers to get good accuracy and prediction if the system's capacity permits.