人工智能导论作业1

自 64 赵文亮 2016011452 2018 年 11 月 13 日

目录

<u>问题 1</u>	2
问题 2	2
问题 3	2
问题 4	3
问题 5	3
问题 6	4
问题 7	5
问题 8	6

- a) 状态: 当前所处景点
 - 初始状态: 圆明园
 - 目标状态: 十渡
 - 后继函数: 从当前景点 X_i 出发,从可以直接到达的下个景点中选择一个 X_j 作为后继状态
 - 代价函数: 从圆明园玩到十渡路上花费的时间
- b) 状态: $X = (X_1, X_2, ..., X_9)$, 其中 X_i 表示第 i 个小方格上当前数字(用 9 表示小方格为空格)。
 - 初始状态: $X_{\text{init}} = permutation(1, 2, ..., 9)$,为 $1 \sim 9$ 的任意一种排列
 - 目标状态: $X_{dst} = (1, 2, ..., 9)$
 - 后继函数: 从当前状态分别尝试向上、下、左、右移动一步,所有可能出现的状态均为后继状态
 - 代价函数: 从初始状态到目标状态移动总步数
- c) 状态: $X = (X_1, X_2, X_3)$, 其中 X_i 表示第 i 个容器中水的体积
 - 初始状态: X = (0,0,0)
 - 目标状态: $\exists i, X_i = 1 (i = 1, 2, 3)$
 - 后继函数:
 - 装满: $X_1 \leftarrow 12$ 或 $X_2 \leftarrow 8$ 或 $X_3 \leftarrow 3$
 - 清空: 任取 i(i = 1, 2, 3), $X_i \leftarrow 0$
 - 移动: 任取 $i \neq j (i, j \in 1, 2, 3)$,如果 $X_i + X_j \leq V_j$ (V_j 表示第 j 个容器的容积),则 $X_i \leftarrow, X_j \leftarrow X_i + X_j$

问题 2

- a) 在一致代价搜索中,如果任意一个状态到后继状态的代价都为固定值,则退化为宽度优先搜索。
- b) 在最佳优先搜索中,如果从当前状态扩展出的后继状态的启发函数相等,则退化为深度优先搜索。
- c) 在 A* 算法中有 f(n) = g(n) + h(n), 如果 h(n) = 0, 则 A* 退化为一致代价搜索。

问题 3

- a) 正确。深度优先搜索随机扩展任意的未被访问过的后继节点,而使用可采纳启发函数的 A^* 搜索只会扩展评价函数 f(n) 最小的后继节点,所以相对于 A^* 来讲,深度优先搜索会扩展更多无用节点或代价更高的节点,所以该命题正确。
- b) 正确。可采纳的定义为:设节点 n 到目标的真是路径代价为 $h^*(n)$, 若启发函数 h(n) 满足 $h(n) \le h^*(n)$ 则称 h(n)为可采纳的。而 h(n) = 0 显然满足这个条件。
- c) 如果考虑机器人的运动学和动力学,则正确。由于 A* 算法是基于有限的节点,而机器人动作、状态、感知 都是连续的,无法使用 A* 求解。如果考虑机器人的路径规划(例如走迷宫),可以使用 A* 搜索规划出大 致路线,再进行进一步控制。

- d) 宽度优先搜索算法与代价无关,而只有在深度有限的时候宽度优先搜索才是完备的,所以该命题错误。
- e) 正确。根据可采纳的定义(见 b), 曼哈顿距离是假设车辆可以跳过其他车辆的乐观估计, 所以可以作为可采纳的启发函数。

- a) 错误。设 $f(n) = n, g(n) = n^2$,则存在 $c_1 = 1, n_0 = 1$,当 $n \ge n_0$ 时, $n \le c_1 n^2$,即 $f(n) = \mathcal{O}(g(n))$ 。而 反过来若 $g(n) = \mathcal{O}(f(n))$,则 $\exists n'_0, c_2$,使得 $n^2 \le c_2 n \forall n \ge n_0$ 成立。解得 $n \le c_2$,矛盾。
- b) 错误。令 f(n) = 1, g(n) = n,若 $f(n) + g(n) = \Theta(\min(f(n), g(n)))$,则 $\exists c_1 > 0, c_2 > 0, n_0, s.t.c_2 g(n) \le \min(f(n), g(n)) \le c_1 g(n) \forall n \ge n_0$ 成立,即 $c_2 n \le 1 \le c_1 n, \forall n \le n_0$,显然不成立。
- c) 正确。由己知, $\exists c_1, n_0, s.t. f(n) \leq c_1 g(n); \exists n_1, f(n) \geq 1, \forall n \geq n_1; \exists n_2, \log(g(n)) \geq 1, \forall n \geq n_2$ 。令 $n_3 = \max(n_0, n_1, n),$ 则 $\forall n \geq n_3,$ 有 $\log(f(n)) \leq \log(c_1) + \log(g(n)) \leq (\log(c_1) + 1) \log(g(n)) \triangleq c_3 \log(g(n))$ 。 即 $\log(f(n)) = \mathcal{O}(\log(g(n)))$
- d) 错误。设 f(n) = 2n, g(n) = n,则 $f(n) = \mathcal{O}(g(n))$ 。而若 $\exists c_1, n_0, s.t. 2^{f(n)} \le c_1 2^{g(n)}, \forall n \le n_0$ 则有 $2^{2n} \le c_1 2^n$,或 $n \le \log_2 c_1$,矛盾。
- e) 错误。令 $f(n) = \frac{1}{n}$,若 $\exists c_1, n_0 s.t. f(n) \le c_1 f^2(n), \forall n \ge n_0$,即 $\frac{1}{n} \le \frac{c_1}{n^2}$, $n \le c_1$,矛盾。
- f) 正确。若 $f(n) = \mathcal{O}(g(n))$,则 $\exists c_1, n_0, f(n) \leq c_1 g(n), \forall n \leq n_0$,即 $g(n) \geq \frac{1}{c_1} f(n) \triangleq c_2 f(n), \forall n \geq n_0$,则 $g(n) = \Omega(f(n))$
- g) 不正确。令 $f(n) = 4^n$,则 $f(n/2) = 2^n$ 。由 $c_2 2^n \le 4^n \le c_1 2^n$, $\forall n \ge n_0$,可得 $2^n \le c_1$,矛盾。
- h) 正确。由于

$$\lim_{n \to \infty} \frac{o(f(n))}{f(n)} = 0$$

则 $\exists n_0, |o(f(n))| \le 0.5 |f(n)|, \forall n \ge n_0,$ 则 $0.5 f(n) \le f(n) + o(f(n)) \le 1.5 f(n), \forall n \ge n_0,$ 故 $f(n) + o(f(n)) = \Theta(f(n))$

问题 5

- 1) 宽度优先搜索和深度优先搜索的搜索树分别如图 1a 和图 1b 所示。其中由于深度优先搜索的步数过多,将不含目标节点的子树省略。
- 2) 宽度优先搜索的优势:在目标节点深度有限的的情况下(例如本例),可以找到最优解。且时间复杂度为 $\mathcal{O}(b^d)$,比深度优先的 $\mathcal{O}(b^m)$ 小;深度优先搜索的优势:空间复杂度为 $\mathcal{O}(bm)$,比宽度优先搜索的 $\mathcal{O}(b^d)$ 要小很多,节约了大量内存。
- 3) 设 g(n) 为到达节点 n 时走过的步数,h(n) 为所有数码到目标位置的曼哈顿距离之和。搜索过程如图 2 所示

(a) 宽度优先搜索

(b) 深度优先搜索

图 1: 八数码问题宽度/深度优先搜索树

 $\alpha-\beta$ 剪枝是一种在对抗搜索中很有效的算法。在双人对抗搜索的搜索树中,从某一方来看,己方决策时的层为 MAX 层,对方决策的层为 MIN 层。最基本的极大极小算法求解时扩展了所有需要的节点,极大地浪费了时间和空间。而在 $\alpha-\beta$ 剪枝中,设 α 为极大层节点的下界, β 为极小层节点的下界。这样如果发现某一极小层节点的 beta 值小于等于它任意父节点的 α ,则可以停止对该节点的搜索,即为 α 剪枝,如果发现某一极大层节点的 α 值大于等于它任意父节点的 β ,则可以停止对该节点的搜索,即为 β 剪枝。在相同的时间里, $\alpha-\beta$ 剪枝可以预测大约 2 倍的步数。

使用 $\alpha-\beta$ 剪枝与不使用 $\alpha-\beta$ 剪枝的结果分别如图 3 和图 4 所示。不用 $\alpha-\beta$ 剪枝一共扩展了 12 个终叶节点,而使用 $\alpha-beta$ 剪枝一共扩展了 7 个终叶节点,可见 $\alpha-\beta$ 剪枝确实可以提高效率。

图 2: 八数码问题 A* 算法搜索树

图 3: 使用 $\alpha - \beta$ 剪枝

- a) 不考虑一个格子至多一架飞行器的约束下,任意时刻每个飞行器所在的位置有 n^2 种可能性,则状态空间为 $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)$,其中 $X_i=(x_i,y_i)$ 为第 i 个飞行器所处的坐标。状态空间大小为 n^{2n} 。
- b) 每次可以对任一飞行器执行至多 5 种操作, 其中保持不动的操作认为状态没有变化。则分支因子为 b = 4n。
- c) 令启发函数 h_i 为第 i 架飞行器到目的地的曼哈顿距离。很显然,当空域中没有其他飞行器时,这个 h_i 即为真实值 h_i^* 。
- d) 选择 $h = \sum_{i=1}^{n} h_i$ 。这是一个一致的启发函数,下面证明。首先证明 h_i 是一致的。设第 i 个飞行器的终点

问题 8 6

图 4: 不使用 $\alpha - \beta$ 剪枝

为 (\hat{x}_i, \hat{y}_i) ,则

$$h_{i}(n) = |x_{n} - \hat{x}_{i}| + |y_{n} - \hat{x}_{i}|$$

$$= |x_{n} - x_{n'} + x_{n'} - \hat{x}_{i}| + |y_{n} - y_{n'} + y_{n'} - \hat{x}_{i}|$$

$$\leq |x_{n} - x_{n'}| + |x_{n'} - \hat{x}_{i}| + |y_{n} - y_{n'}| + |y_{n'} - \hat{x}_{i}|$$

$$= h_{i}(n') + c(n, n')$$

则 h_i 是一致的。则显然 $h = \sum_{i=1}^n h_i$ 也是一致的,证毕。同时显然可知,h 可以由原问题的松弛问题得到。另一方面,(2)(3) 选项并不能从原问题的松弛问题中得到,所以选择第一个启发函数。

问题 8

- 1) 是。从下一问的解答中会给出所有追上的最短路径。
- 2) 分步数讨论,以棋盘的行列表示坐标,例如 (i,j) 表示从上到下数第 i 行、从左到右数第 j 列的方格。初始状态下,兵位于 2 点,即 (1,1);马位于 (8,2)。
 - 1 步或 2 步: 此时兵最终到达在 3 或 4 点,而马在竖直方向至多向上前进两个格,不可能追上;
 - 3 步: 此时兵最终到达 5 点,坐标为 (3,2),马有可能追上兵。搜索过程如图 5 所示。每次扩展节点时,设当前点为 $n(x_n,y_n)$,终点为 $d(x_d,y_d)=(3,2)$,已走步数为 s,若 $|x_d-x_n|>2(3-s)$ 或 $|y_d-y_n|>2(3-s)$ 则说明在剩下的几步中根本不可能走到终点,则不再扩展这种节点。

从图中可以看到,3步时存在四条路径,所以这些就是所求最短路径,分别为

1.
$$(8,2) \to (6,1) \to (5,3) \to (3,2)$$

2.
$$(8,2) \to (6,3) \to (5,1) \to (3,2)$$

3.
$$(8,2) \to (6,3) \to (4,4) \to (3,2)$$

问题 *8* 7

图 5: 马追兵问题搜索过程

4.
$$(8,2) \to (7,4) \to (5,3) \to (3,2)$$