This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
| OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Refine Search

Search Results -

Terms	Documents
(cache near5 coheren\$2 near5 memory) same (duplicat\$3 or copy\$3) same (FIFO or buffer)	37

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

L1

Refine Search

Recall Text
Clear

Interrupt

Search History

DATE: Wednesday, August 18, 2004 Printable Copy Create Case

Set
Name
side by
sideQueryHit
CountSet
Name
result setDB = USPT, USOC; PLUR = YES; OP = ORUSPT, USOC; PLUR = YES; OP = ORL1(cache near5 coheren\$2 near5 memory) same (duplicat\$3 or copy\$3)
same (FIFO or buffer)37L1

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
(707/201 370/401 370/402 709/213 709/214 709/253 710/306 710/312 710/112 711/141 711/148).ccls.	4925

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Refine Search

Recall Text 👄 Clear

Interrupt

Search History

DATE: Wednesday, August 18, 2004 Printable Copy Create Case

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L1 and L2	45

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Wednesday, August 18, 2004 Printable Copy Create Case

Set Name side by side	Query	<u>Hit</u> Count	<u>Set</u> <u>Name</u> result set
DB=0	USPT, USOC; PLUR=YES; OP=OR		
<u>L3</u>	11 and L2	45	<u>L3</u>
<u>L2</u>	cache same coheren\$2 same memory same (duplicat\$3 or cop\$4) same (FIFO or buffer)	127	<u>L2</u>
<u>L1</u>	710/306,312,112;711/141,148;709/213,214,253;370/401-402;707/201.ccls.	4925	<u>L1</u>

END OF SEARCH HISTORY

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Membership Publications/Services Standards Conferences Careers/Jobs

JEEE!	Welcome United States Patent and Trademark Office
Help FAQ Terms IEE	E Peer Review Quick Links Se.
Welcome to IEEE Xplore*	
O- Home O- What Can I Access?	Your search matched 1 of 1062489 documents. A maximum of 500 results are displayed, 15 to a page, sorted by Relevance Descending order.
O- Log-out	Refine This Search:
Tables of Contents	You may refine your search by editing the current search expression or enterinew one in the text box.
O- Journals & Magazines	cache and coheren* <and>(fifo or buffer) and invalid*</and>
Conference Proceedings	\square Check to search within this result set
O- Standards	Results Key:
Search 5	JNL = Journal or Magazine CNF = Conference STD = Standard
O- By Author	1 Photonic architectures for distributed shared memory multiprocess
O- Basic	Dowd, P.W.; Chu, J.;
O- Advanced	Massively Parallel Processing Using Optical Interconnections, 1994., Proceeding the First International Workshop on , 26-27 April 1994
Member Services	Pages:151 - 161
O- Join IEEE O- Establish IEEE Web Account	[Abstract] [PDF Full-Text (904 KB)] IEEE CNF
Access the IEEE Member Digital Library	
IEEE Enterprise Access the IEEE Enterprise File Cabinet	

Print Format

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Membership Publications/Services Standards Conferences Careers/Jobs

United States Patent and Trademark Office Welcome

> 1 Million Users 1 Million Documents IEEE Xpiore®

» ABSTRACT PLUS

Welcome to IEEE Xplore Terms IEEE Peer Review

FAQ

Quick Links

4

O What Can Y Home I Access?

O-Log-out

Tables of Contents

O Journals & Magazines

Conference Proceedings O Standards

Search

O By Author O Basic

Advanced

Member Services

Veb Account **Join IEEE**

- Access the IEEE Member Digital Library

Access the EEE Enterprise File Cabinet

> Search Results [PDF FULL-TEXT 904 KB] DOWNLOAD CITATION

Rights Links

multiprocessors Photonic architectures for distributed shared memory

Dowd, P.W. Chu, J.

Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA;

Interconnections, 1994., Proceedings of the First International Workshop on This paper appears in: Massively Parallel Processing Using Optical

Meeting Date: 04/26/1994 - 04/27/1994

Publication Date: 26-27 April 1994

Location: Cancun Mexico

On page(s): 151 - 161 Reference Cited: 20

Inspec Accession Number: 4677984

Abstract:

the per bit overhead and increase the exploitation of spatial locality, while false sharing is channels to be realized on a single optical fiber. Larger blocks are supported to reduce for a wavelength-division multiple access photonic network and the cache coherence reduced through a mechanism to provide a finer granularity of **invalidation**. Two main is based on wavelength division multiplexing which enables multiple multi-access protocol required to support a distributed shared memory environment. The architecture This paper studies the interaction between the access protocol used to provide arbitration

eee

O

þe

O O

Print Format

coherence protocol and a reservation based WDMA access protocol based WDMA access protocol is compared to a system with a snooping based cache paper: a system with a directory based cache coherence protocol and a pre-allocation considered. Larger snooping-based multiprocessors may be possible with this approach. data channel reservation, thereby enabling a snooping based coherence protocol to be broadcast support of cache-level control information, in addition to its primary role of access protocols. This paper extends the function of a control channel to include WDMA optical networks: reservation (control-channel based) or pre-allocation media approaches have been considered to harness the enormous available bandwidth of Two major scenarios are considered through trace-based discrete-event simulation in this

Index Terms:

multiplexing based multiprocessors spatial locality trace-based discrete-event simulation wavelength division allocation media access protocols reservation snooping based coherence protocol snoopingdistributed shared memory multiprocessors access protocol cache coherence protocol cache-level control information control channel architectures shared memory systems wavelength division multiplexing WDMA optical networks buffer storage distributed memory systems optical information processing optical links parallel wavelength-division multiple access photonic network false sharing optical fiber photonic architectures pre-

Documents that cite this document

There are no citing documents available in IEEE Xplore at this time

Search Results [PDF FULL-TEXT 904 KB] DOWNLOAD CITATION

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

Ъ

þe

Се

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

☐ Generate Collection Print

L3: Entry 9 of 45

File: USPT

Sep 16, 2003

US-PAT-NO: 6622214

DOCUMENT-IDENTIFIER: US 6622214 B1

TITLE: System and method for maintaining memory coherency in a computer system

having multiple system buses

DATE-ISSUED: September 16, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Vogt; Pete D. Boulder CO White; George P. Long Beach CA Chang; Stephen S. Glendora CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Intel Corporation Santa Clara CA 02

APPL-NO: 09/ 228665 [PALM]
DATE FILED: January 12, 1999

PARENT-CASE:

This U.S. Patent application is a divisional application of U.S. patent application Ser. No. 08/714,750, filed Sep. 16, 1996, now U.S. Pat. No. 5,897,656.

INT-CL: [07] G06 F 13/14

US-CL-ISSUED: 711/141; 711/124, 711/146 US-CL-CURRENT: 711/141; 711/124, 711/146

FIELD-OF-SEARCH: 711/141, 711/143-145, 711/133, 711/159, 711/146, 711/124, 711/154,

711/130, 711/210, 710/100, 710/107, 710/128, 710/54-55, 710/305, 710/309-310

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL Richter 714/43 January 1981 4245344 4796232 January 1989 House 365/189.03 <u>495</u>3081 August 1990 Feal et al. 710/111

h eb bgeeefc ef

e ge

	4982321	January 1991	Pantry et al.	710/107
	5115411	May 1992	Kass et al.	365/189.01
	5119485	June 1992	Ledbetter, Jr. et al.	711/146
	5193163	March 1993	Sanders et al.	711/122
	5225374	July 1993	Fare et al.	438/1
	<u>5265211</u>	November 1993	Amini et al.	710/36
	5269005	December 1993	Heil et al.	710/49
	5293603	March 1994	MacWilliams et al.	710/129
	5319766	June 1994	Thaller et al.	711/146
	<u>5325510</u>	June 1994	Frazier	711/118
	5359715	October 1994	Heil et al.	710/128
	5369748	November 1994	McFarland et al.	710/126
	5369753	November 1994	Tipley	711/122
	5386517	January 1995	Sheth et al.	710/60
	5398325	March 1995	Chang et al.	711/3
	5404462	April 1995	Datwyler et al.	713/600
	5414820	May 1995	McFarland et al.	710/128
	5442754	August 1995	Datwyler et al.	710/128
	5495570	February 1996	Heugel et al.	714/11
	5495585	February 1996	Datwyler et al.	710/100
П	5553258	September 1996	Godiwala et al.	711/3
	5553263	September 1996	Kalish et al.	711/127
	5644753	July 1997	Ebrahim et al.	711/131
	5673400	September 1997	Kenny	710/129
	5684977	November 1997	Van Loo et al.	711/143
	5740400	April 1998	Bowles	711/144
	5822755	October 1998	Shippy	711/118
	5828835	October 1998	Isfeld et al.	709/200
	5829033	October 1998	Hagersten et al.	711/141
	<u>5857084</u>	January 1999	Klein	710/129
	5900011	May 1999	Saulsbury et al.	711/119

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
195 06 734	September 1995	DE	
0 507 063	October 1992	EP	

OTHER PUBLICATIONS

Corollary Inc., Gemini External Design Specification, Dec. 4, 1995, pp. 1-107.*
"VIC 8251F VIC to VME Interface with Mirrored Memory," Creative Electronic Systems, Version 1.1, Jun. 1994, pp. 1-103, XP002198526, Petit-Lancy, Switzerland.
"IBM patents--Abstract/Exempt Claim", U.S. patent No. 5,018,053 issued May 21, 1991, patent title "Method for Reducing Cross-Interrogate Delays in a Multiprocessor System", Micron Technology Confidential Information, p. 2658, Mar. 27, 1996.

Customer Request Summary--E014 Full-Text Patent Report, U.S. Patent No. 5,369,753, issued Nov. 29, 1994, patent title "Method and Apparatus for Achieving Multilevel Inclusion in Multilevel Cache Hierarchies", SPO Services Results, 18 pages, Mar. 13, 1996.

Anderson, Don, et al., "Chapter 4: Multiple Processors and the MESI Model", Pentium.TM. Processor System Architecture, pp. 65-91, 1995.

Glaskowsky, Peter N., "Profusion Adds Processors and Performance: Corollary Creates Credible Chip Set for 8-CPU Pentium Pro Servers", Microdesign Resources, 2 pages, Sep. 16, 1996.

"ULTRASPARC.TM.--Ultra Port Architecture (UPA): The New-Media System Architecture", from Sun Microelectronics, 4 pages, last updated Jun. 6, 1996.

"Gemini External Design Specification", Corollary Confidential Document, pp. i-107, Dec. 4, 1995.

"Gemini Reference Platform Specification", Corollary Confidential Document, pp. i-29, Mar. 15, 1996.

Handy, Jim, "Chapter 4: Maintaining Coherency in Cached Systems", The Cache Memory Book, pp. 125-190, 1993.

ART-UNIT: 2186

PRIMARY-EXAMINER: Kim; Matthew

ASSISTANT-EXAMINER: Tran; Denise

ATTY-AGENT-FIRM: Blakely, Sokoloff, Taylor & Zafman LLP

ABSTRACT:

A cache-coherent, multiple-bus, multiprocessing system and method interconnects multiple system buses and an I/O bus to a shared main memory and efficiently maintains cache coherency while minimizing the impact to latency and total bandwidth within the system. The system provides coherency filters which coordinate bus-to-bus communications in such a way as to maintain cache memory coherency with a small amount of cross-bus traffic. In addition, the system provides a multiported pool of memory cells which interconnect the multiple buses.

9 Claims, 11 Drawing figures

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L3: Entry 36 of 45

File: USPT

Mar 30, 1999

US-PAT-NO: 5890217

DOCUMENT-IDENTIFIER: US 5890217 A

TITLE: Coherence apparatus for cache of multiprocessor

DATE-ISSUED: March 30, 1999

INVENTOR-INFORMATION:

!	STATE	ZIP	CODE	COUNTRY
asaki				JP
nsaki				JP
ısaki				JP
ısaki				JP
Unoke-machi				JP
lai				JP
ısaki				JP
nsaki				JP
ısaki				JP
	Y asaki	asaki dasaki unoke-machi dai asaki	asaki asaki asaki asaki asaki asaki asaki asaki usaki asaki dasaki Unoke-machi dai asaki	asaki dasaki unoke-machi dai asaki

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Fujitsu Limited	Kawasaki			JP	03
PFU Limited	Kahoku			JP	03

APPL-NO: 08/ 598243 [PALM]
DATE FILED: February 7, 1996

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	7-060500	March 20, 1995
JP	7-250527	September 28, 1995

INT-CL: $[06] \underline{G06} \underline{F} \underline{13}/\underline{00}$

US-CL-ISSUED: 711/141; 711/120, 711/147 US-CL-CURRENT: 711/141; 711/120, 711/147

FIELD-OF-SEARCH: 395/468, 395/471, 395/472, 395/447, 395/474, 395/475, 711/141,

711/144, 711/145, 711/120, 711/147, 711/148

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

	Search Selected	Search ALL Clear	
PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4136386	January 1979	Annunziata et al.	711/119
4503497	March 1985	Krygowski et al.	711/124
4622631	November 1986	Frank et al.	707/201
5291442	March 1994	Emma et al.	711/120
5522058	May 1996	Iwasa et al.	711/145
5537569	July 1996	Masubuchi	711/121
5568633	October 1996	Boudou et al.	711/141
5606686	February 1997	Tarui et al.	711/121

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0049387	April 1982	EP	
0095598	December 1983	EP	
0301354-A2	February 1989	EP	
0397994-A2	November 1990	EP	
0489556	June 1992	EP	
0669578-A2	August 1995	EP	
60-215272	October 1985	JP	
62-282358	December 1987	JP	
4-305746	October 1992	JP	
6-110844	April 1994	JP	
7-6092	January 1995	JP	
WO 82/03480	October 1982	MO	
WO 90/00283	January 1990	MO	
WO-95/24678-A2	September 1995	WO	

ART-UNIT: 272

PRIMARY-EXAMINER: Swann; Tod R.

ASSISTANT-EXAMINER: King, Jr.; Conley B.

ATTY-AGENT-FIRM: Staas & Halsey

ABSTRACT:

A plurality of processors, each with caches provided for a plurality of processor

h eb b g ee ef c e f

modules and a local storage in which a main storage is distributed and arranged are mutually connected through an internal snoop bus. The processor modules are mutually connected through a second system bus. By using two separate buses, cache coherence operations within a processor group is kept separate from cache coherence operations outside the processor group.

60 Claims, 65 Drawing figures

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L1: Entry 2 of 37

File: USPT

Jun 8, 2004

DOCUMENT-IDENTIFIER: US 6748465 B2 TITLE: Local bus polling support buffer

<u>Detailed Description Text</u> (23):

Maintaining a copy of data concerning I/O devices coupled to bus 250 in buffer 242 allows the number accesses that I/O controller 140 makes to memory 232 to be reduced. This reduction in accesses may, in turn, allow memory 232 to be powered down at times where memory 232 would otherwise have to be powered up to allow I/O controller 240 to make such accesses. In an embodiment of computer system 200 that is further comprised of cache 234, this reduction in accesses may also allow cache 234 to remain powered down along with memory 232 at times where cache 234 would otherwise have to be powered up to either respond to accesses being made by I/O controller 140, or to take steps necessary to maintain coherency between data stored in cache 234 and memory 232. In another embodiment of computer system 200 that is further comprised of cache 214, this reduction in accesses may also allow cache 214 to remain powered down, which may in turn, allow processor 210 to remain powered down at times where it would otherwise be necessary to be powered up in order to maintain coherency between data stored in cache 214 and memory 232. In still another embodiment of computer system 200, both caches 214 and 234 are present, either processor 210 or memory 232 and their associated caches may be powered down during the normal operation of computer system 200, as determined to be appropriate as part of whatever measures are being taken to reduce power consumption by computer system 200. In such an embodiment, the reduction in accesses to memory 232 would allow whichever ones of processor 210 or memory 232 and their associated caches to remain powered down.

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Generate Collection Print

L1: Entry 2 of 37

File: USPT

Jun 8, 2004

US-PAT-NO: 6748465

DOCUMENT-IDENTIFIER: US 6748465 B2

TITLE: Local bus polling support buffer

DATE-ISSUED: June 8, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Howard; John S. Portland OR Hosler; Brad Portland OR

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Intel Corporation Santa Clara CA 02

APPL-NO: 09/ 968073 [PALM]
DATE FILED: September 28, 2001

INT-CL: [07] G06 F 13/00

US-CL-ISSUED: 710/36; 710/46, 710/52, 711/147, 711/165, 713/320, 713/330 US-CL-CURRENT: 710/36; 710/46, 710/52, 711/147, 711/165, 713/320, 713/330

FIELD-OF-SEARCH: 710/1, 710/36, 710/46, 710/52, 711/147, 711/165, 713/320, 713/330

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 4698748 October 1987 Juzswik et al. 713/322 5293602 March 1994 Fukagawa et al. 711/147 П 6141726 October 2000 Dell 711/103

ART-UNIT: 2182

PRIMARY-EXAMINER: Perveen; Rehana

ATTY-AGENT-FIRM: Blakley, Sokoloff, Taylor & Zafman LLP

ABSTRACT:

A method and apparatus for allowing memory, cache and/or a processor to remain powered down while repetitive transactions are carried out on an I/O bus and actions are taken in response to feedback received from I/O devices coupled to the I/O bus.

28 Claims, 3 Drawing figures

<u>Previous Doc</u> <u>Next Doc</u> <u>Go to Doc#</u>

Generate Collection Print

L1: Entry 15 of 37

File: USPT

Oct 16, 2001

DOCUMENT-IDENTIFIER: US 6304932 B1

TITLE: Queue-based predictive flow control mechanism with indirect determination of queue fullness

Detailed Description Text (30):

Finally, each module that has a cache memory, including both processor and input/output modules, has a cache coherency queue for storing coherent transactions in a first-in first-out ("FIFO") order. A coherent transaction is any transaction (such as a read) that results in the need to check other caches to see whether the requested data is in the other cache, or to verify that the cache is up-to-date. Such transactions are indicated by signals sent during the address cycle for the transactions initiated on bus 12. Each module having a cache memory monitors the bus and loads coherent transaction into its cache coherency queue, referred to herein as CCC queues. The coherent transactions wait in the CCC queue of a particular module until that module checks its cache, and reports the results of that coherency check to main memory controller 14. In a preferred implementation, main memory controller 14 begins reading the main memory as soon as the read transaction has been issued. Main memory controller 14 waits until the results of the coherency checks are reported by all of the modules, and then responds to the coherent transaction. If no client module has a private-dirty copy of the data, main memory controller 14 will supply the data from main memory. Otherwise, the client module that has a private-dirty copy will supply the data and main memory controller 14 will update main memory with the new data value. In a preferred implementation, coherency responses are received by main memory controller 14 quickly enough so that there is no appreciable delay in responding to the transaction.

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L1: Entry 15 of 37

File: USPT

Oct 16, 2001

US-PAT-NO: 6304932

DOCUMENT-IDENTIFIER: US 6304932 B1

TITLE: Queue-based predictive flow control mechanism with indirect determination of

queue fullness

DATE-ISSUED: October 16, 2001

INVENTOR-INFORMATION:

CITY

0111

STATE MA ZIP CODE COUNTRY

Ziegler; Michael L.

Whitinsville Roseville

CA

Brooks; Robert J. Bryg; William R.

Saratoga

CA

Frink; Craig R.

Chelmsford

MA

Hotchkiss; Thomas R.

Groton

MA

Odineal; Robert D. Williams; James B.

Roseville Lowell CA MA

Wood; John L.

Rochester

NH

ASSIGNEE-INFORMATION:

NAME

NAME

CITY

STATE ZIP CODE

COUNTRY

TYPE CODE

Hewlett-Packard Company

Palo Alto CA

02

APPL-NO: 09/ 697560 [PALM]
DATE FILED: October 25, 2000

PARENT-CASE:

CROSS REFERENCE TO RELATED APPLICATION This is a continuation of application Ser. No. 08/201,185 filed on Feb. 24, 1994 now U.S. Pat. No. 6,182,176

INT-CL: [07] G06 F 13/14

US-CL-ISSUED: 710/112; 710/113 US-CL-CURRENT: 710/112; 710/113

FIELD-OF-SEARCH: 710/112, 710/113, 710/114, 710/115, 710/116, 710/117, 710/118

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

5265235

November 1993

Sindhu et al.

711/120

ART-UNIT: 273

PRIMARY-EXAMINER: Ellis; Richard L.

ABSTRACT:

A shared bus system having a bus and a set of client modules coupled to the bus. Each client module is capable of sending transactions on the bus to other client modules and receiving transactions on the bus from other client modules for processing. Each module has a queue for storing transactions received by the module for processing. A bus controller limits the types of transactions that can be sent on the bus to prevent any module's queue from overflowing.

3 Claims, 2 Drawing figures

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L1: Entry 17 of 37

File: USPT

Jan 30, 2001

DOCUMENT-IDENTIFIER: US 6182176 B1

** See image for Certificate of Correction **

TITLE: Queue-based predictive flow control mechanism

Detailed Description Text (30):

Finally, each module that has a cache memory, including both processor and input/output modules, has a cache coherency queue for storing coherent transactions in a first-in first-out ("FIFO") order. A coherent transaction is any transaction (such as a read) that results in the need to check other caches to see whether the requested data is in the other cache, or to verify that the cache is up-to-date. Such transactions are indicated by signals sent during the address cycle for the transactions initiated on bus 12. Each module having a cache memory monitors the bus and loads coherent transaction into its cache coherency queue, referred to herein as CCC queues. The coherent transactions wait in the CCC queue of a particular module until that module checks its cache, and reports the results of that coherency check to main memory controller 14. In a preferred implementation, main memory controller 14 begins reading the main memory as soon as the read transaction has been issued. Main memory controller 14 waits until the results of the coherency checks are reported by all of the modules, and then responds to the coherent transaction. If no client module has a private-dirty copy of the data, main memory controller 14 will supply the data from main memory. Otherwise, the client module that has a private-dirty copy will supply the data and main memory controller 14 will update main memory with the new data value. In a preferred implementation, coherency responses are received by main memory controller 14 quickly enough so that there is no appreciable delay in responding to the transaction.

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

☐ Generate Collection Print

L1: Entry 17 of 37

File: USPT

Jan 30, 2001

US-PAT-NO: 6182176

DOCUMENT-IDENTIFIER: US 6182176 B1

** See image for Certificate of Correction **

TITLE: Queue-based predictive flow control mechanism

DATE-ISSUED: January 30, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Ziegler; Michael L. Whitinsville MA Brooks; Robert J. Roseville CA Bryg; William R. Saratoga CA Frink; Craig R. Chelmsford MA Hotchkiss; Thomas R. Groton MA Odineal; Robert D. Roseville CA Williams; James B. Lowell MA Wood; John L. Rochester NH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Hewlett-Packard Company Palo Alto CA 02

APPL-NO: 08/ 201185 [PALM]
DATE FILED: February 24, 1994

INT-CL: [07] G06 F 13/14

US-CL-ISSUED: 710/112; 710/113 US-CL-CURRENT: 710/112; 710/113

FIELD-OF-SEARCH: 395/250, 395/400, 395/425, 395/325

Search Selected

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search ALL

Clear

ge

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5204954	April 1993	Hammer et al.	395/425
5257374	October 1993	Hammer et al.	395/650

5265235

November 1993

Sindhu et al.

395/425

OTHER PUBLICATIONS

U.S. application No. 0497054A3, Sindhu et al., filed Aug. 5, 1992. U.S. application No. 0317468A3, Hammer et al., filed May 24, 1989.

ART-UNIT: 273

PRIMARY-EXAMINER: Ellis; Richard L.

ABSTRACT:

A shared bus system having a bus and a set of client modules coupled to the bus. Each client module is capable of sending transactions on the bus to other client modules and receiving transactions on the bus from other client modules for processing. Each module has a queue for storing transactions received by the module for processing. A bus controller limits the types of transactions that can be sent on the bus to prevent any module's queue from overflowing.

1 Claims, 2 Drawing figures

<u>Previous Doc</u> <u>Next Doc</u> <u>Go to Doc#</u>

Generate Collection Print

L1: Entry 35 of 37

File: USPT

May 12, 1992

DOCUMENT-IDENTIFIER: US 5113514 A

TITLE: System bus for multiprocessor computer system

Abstract Text (1):

The invention comprises a system bus apparatus and method for a multi-arm, multiprocessor computer system having a main memory and localized buffer cache memories at each processor. Each block of data in a cache includes tag bits which identifies the condition of the data block in relation to the corresponding data in main memory and other caches. The system bus (SYSBUS) comprises three subparts; 1) a MESSAGE/DATA bus, 2) a REQUEST/GRANT bus and 3) a BCU bus. The MESSAGE/DATA bus is coupled to every device on the system and is used for transferring messages, data and addresses. The REQUEST/GRANT bus couples between every device on an arm of the system and that arm's bus control unit (BCU). The BCU bus couples between the various BCUs. Both the MESSAGE/DATA bus and the BCU bus include ACK/NACK/HIT bits which are used when responding to messages received over the SYSBUS to inform the message-issuing device if the devices received the message and, if so, the condition of the data in relation to other caches and main memory. The protocol allows inconsistent copies of data to exist and prevents stale data from being used erroneously by monitoring the tag bits and the ACK/NACK/HIT bits. Further, under the appropriate conditions, a copy of the most recent data block may be transferred from one cache to another (with appropriate updating of tags) without updating the main memory. When a memory operation will bring about a situation where cache coherence can no longer be maintained, main memory is updated with the most recent copy of the data and the other caches are either updated or tagged as invalid.

Previous Doc

Next Doc

Go to Doc#

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Generate Collection Print

L1: Entry 35 of 37

File: USPT

May 12, 1992

US-PAT-NO: 5113514

DOCUMENT-IDENTIFIER: US 5113514 A

TITLE: System bus for multiprocessor computer system

DATE-ISSUED: May 12, 1992

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Albonesi; David H. Hudson MA Langendorf; Brian K. Shrewsbury MA Morton Grove Chang; John ILFaase; John G. Palo Alto CA Homberg; Michael J. Grafton MA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Prime Computer, Inc. Framingham MA 02

APPL-NO: 07/ 482288 [PALM]
DATE FILED: February 20, 1990

PARENT-CASE:

CROSS REFERENCE TO RELATED APPLICATION This application is a continuation of application Ser. No. 07/397,124, filed Aug. 22, 1989 now abandoned.

INT-CL: [05] G06F 12/00, G06F 13/00

US-CL-ISSUED: 395/425

US-CL-CURRENT: <u>711/144</u>; <u>711/145</u>

FIELD-OF-SEARCH: 365/49

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Clear

	11000		
PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4785394	November 1988	Fischer	364/200
4785395	November 1988	Keeley	364/200
4928225	May 1990	McCarthy et al.	364/200

h eb bgeeef c ee

e ge

OTHER PUBLICATIONS

J. Archibald & J. Baer, Cache Coherence Protocols: Evaluation Using A Multiprocessor Simulation Model, ACM Transactions on Computer Systems, vol. 4, No. 4 (Nov. 1986).

ART-UNIT: 232

PRIMARY-EXAMINER: Bowler; Alyssa H.

ATTY-AGENT-FIRM: Wolf, Greenfield & Sacks

ABSTRACT:

The invention comprises a system bus apparatus and method for a multi-arm, multiprocessor computer system having a main memory and localized buffer cache memories at each processor. Each block of data in a cache includes tag bits which identifies the condition of the data block in relation to the corresponding data in main memory and other caches. The system bus (SYSBUS) comprises three subparts; 1) a MESSAGE/DATA bus, 2) a REQUEST/GRANT bus and 3) a BCU bus. The MESSAGE/DATA bus is coupled to every device on the system and is used for transferring messages, data and addresses. The REQUEST/GRANT bus couples between every device on an arm of the system and that arm's bus control unit (BCU). The BCU bus couples between the various BCUs. Both the MESSAGE/DATA bus and the BCU bus include ACK/NACK/HIT bits which are used when responding to messages received over the SYSBUS to inform the message-issuing device if the devices received the message and, if so, the condition of the data in relation to other caches and main memory. The protocol allows inconsistent copies of data to exist and prevents stale data from being used erroneously by monitoring the tag bits and the ACK/NACK/HIT bits. Further, under the appropriate conditions, a copy of the most recent data block may be transferred from one cache to another (with appropriate updating of tags) without updating the main memory. When a memory operation will bring about a situation where cache coherence can no longer be maintained, main memory is updated with the most recent copy of the data and the other caches are either updated or tagged as invalid.

28 Claims, 19 Drawing figures

S-PAT-NO: DCUMENT-IDENTIFIER: ITLE:	6122659 US 6122659 A	
ITLE:	US 6122659 A	
	Memory controller for controlling memory accesses across networks in distributed shared memory processing systems	
KWIC		
ncluding plurality of sprovided for interconcludes one or more conherency directory is no nodes have copies eceive FIFOs are used	ystem for a shared memory parallel processing system processing nodes. A multi-stage communication network onnecting the processing nodes. Each processing node aches for storing a plurality of cache lines. A cache distributed to each of the nodes for tracking which of	

