

Preserving Ordinal Consensus: Towards Feature Selection for Unlabeled Data

Jun Guo, Heng Chang, and Wenwu Zhu Tsinghua University, China

Introduction

Which is more discriminative?

• Regression-based feature selection is frequently-used to address the above practical problem.

$$\min_{\mathbf{W}} \left\{ \frac{\|\mathbf{W}^T \mathbf{X} - \mathbf{H}\|_F^2}{+\beta \|\mathbf{W}\|_{2,1}} + \alpha \Upsilon(\mathbf{W}, \mathbf{X}, \mathbf{H}) \right\}$$

Original data matrix: $\mathbf{X} = [\mathbf{x}_1, \cdots, \mathbf{x}_n] \in \mathbb{R}^{d_1 \times n}$ Target matrix: $\mathbf{H} = [\mathbf{h}_1, \cdots, \mathbf{h}_n] \in \mathbb{R}^{d_2 \times n}$ Feature selection matrix: $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$ $(d_1 > d_2)$ Regularization term: $\Upsilon(\mathbf{W}, \mathbf{X}, \mathbf{H})$

- In unsupervised scenarios:
 - $-\mathbf{H} = [\mathbf{h}_1, \cdots, \mathbf{h}_n] \in \mathbb{R}^{d_2 \times n}$ is frequently determined by learning pseudo labels through classical machine learning algorithms, such as
 - ➤ linear regression [UDFS, IJCAI'11] ➤ K-means clustering [RUFS, IJCAI'13]
 - > spectral clustering [NDFS, AAAI'12] > bi-orthogonal semi-NMF [SOCFS, CVPR'15]
 - For the regularization term γ (W,X,H), most existing methods mainly focus on preserving sample-level relations (e.g., locality). The **feature-level** relationship especially ordinal information is totally neglected.

Experiment

Datasets:

Table 1: Description of Benchmark Datasets.

Dataset	# of Samples	# of Features	# of Classes	Type
LUNG	203	3312	5	cancer
COIL20	1440	1024	20	object
Isolet1	1560	617	26	spoken letter
USPS	9298	256	10	written digit
AT&T	400	644	40	human face
UMIST	575	644	20	human face

- Comparing Algorithms:
 - -the baseline that uses all the feature dimensions (All Features)
 - -the classical Laplacian Score [NIPS'05]
 - other famous unsupervised feature selection methods: MCFS [KDD'10], UDFS [IJCAI'11], NDFS [AAAI'12], RUFS [IJCAI'13], SOCFS [CVPR'15]

• Results:

Table 2: Clustering results (NMI%±STD). The best results are in boldface.

	LUNG	COIL20	Isolet1	USPS	AT&T	UMIST
All Features	51.7±5.4	76.3±1.8	75.9±1.6	60.9±0.8	80.5±1.8	42.1±2.3
Laplacian Score	42.9±5.0 (300)	71.8±2.0 (300)	73.1±1.5 (300)	59.5±2.1 (200)	80.4±1.8 (300)	45.1±3.4 (200)
MCFS	45.6±4.5 (300)	74.9±2.2 (150)	74.4±1.9 (200)	61.2±1.8 (200)	80.2±1.9 (200)	45.1±3.2 (150)
UDFS	49.6±5.1 (300)	74.7±1.6 (300)	73.6±1.6 (300)	56.8±1.4 (200)	80.6±1.8 (150)	44.9±2.7 (300)
UDFS + doublet	49.9±5.0 (300)	75.0±1.8 (300)	73.9±1.9 (250)	57.0±1.5 (200)	81.2±1.9 (200)	45.1±2.9 (250)
UDFS + triplet	51.7±5.1 (250)	75.4±1.7 (250)	74.4±1.7 (250)	57.5±1.5 (170)	82.5±1.8 (150)	45.6±2.7 (300)
NDFS	48.3±5.2 (250)	76.0±1.6 (300)	78.4±1.8 (250)	60.7±1.3 (140)	80.3±1.8 (300)	47.8±3.1 (150)
NDFS + doublet	48.8±5.0 (300)	76.2±1.7 (250)	78.8±1.8 (300)	62.7±1.5 (170)	80.9±2.0 (300)	48.0±2.9 (150)
NDFS + triplet	49.9±5.0 (250)	76.9±1.9 (250)	79.1±1.7 (250)	63.5±1.3 (140)	82.2±1.9 (300)	48.5±2.8 (200)
RUFS	49.1±5.1 (250)	77.0±2.2 (150)	78.9±1.1 (300)	61.5±1.4 (170)	80.9±1.7 (300)	46.4±3.0 (150)
RUFS + doublet	49.7±5.2 (250)	77.3±2.4 (200)	79.2±1.3 (250)	61.9±1.7 (200)	81.1±1.7 (300)	46.9±3.1 (200)
RUFS + triplet	51.0±5.0 (250)	77.8±2.1 (150)	79.7 ± 1.2 (250)	62.5±1.6 (170)	82.3±1.7 (300)	47.2±3.0 (200)
SOCFS	55.7±6.2 (250)	74.8±2.3 (300)	78.3±1.9 (300)	61.6±1.4 (110)	81.1±1.6 (100)	49.4±3.2 (50)
SOCFS + doublet	55.9±6.0 (300)	75.0±2.2 (250)	79.2±2.0 (300)	61.9±1.1 (110)	81.4±1.3 (200)	50.0±3.0 (100)
SOCFS + triplet	56.6±5.9 (250)	75.3±2.1 (250)	80.0±2.0 (250)	62.2±1.0 (110)	82.3±1.2 (100)	50.3±3.0 (100)
Ours $(\alpha = 0)$	52.3±6.3 (300)	74.7±2.6 (250)	77.3±2.1 (250)	62.1±1.7 (200)	79.8±1.9 (150)	48.3±3.5 (50)
Ours (doublet)	56.8±6.1 (250)	77.5±2.3 (250)	78.9±2.0 (300)	62.9±1.5 (200)	83.6±1.6 (200)	51.5±3.3 (100)
Ours (triplet)	60.2±5.8 (250)	80.1±2.2 (200)	82.2±1.6 (200)	64.5±1.0 (200)	86.2±1.6 (200)	52.6±3.1 (100)

- Our proposed method achieves higher accuracies than other methods.
- Triplet is more effective than doublet for feature-selection-based clustering.

Our Proposed Method

Definition

Given distance function $dis(\cdot, \cdot)$ and projection function $\Phi(\cdot)$. A data point \mathbf{z}_i and its neighbors \mathbf{z}_u and \mathbf{z}_v form a triplet. The projection of this triplet is defined as an *Ordinal Consensus Preserving* process when the following condition holds: If $dis(\mathbf{z}_i, \mathbf{z}_u) \leq dis(\mathbf{z}_i, \mathbf{z}_v)$, then $dis(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_u)) \leq dis(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_v))$.

- For \mathbf{z}_i , we optimize: $\max_{\Phi(\cdot)} \mathbf{A}_{uv}^i \left[dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_u)\right) dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_v)\right) \right]$
- $\triangleright \mathbf{A}^i$ is an antisymmetric matrix.
- ightharpoonup The $(u,v)^{th}$ element of \mathbf{A}^i is defined as $\mathbf{A}^i_{uv} = dis(\mathbf{z}_i,\mathbf{z}_u) dis(\mathbf{z}_i,\mathbf{z}_v)$.

Rearrangement Inequality

If real numbers $s_1 \le s_2 \le \cdots \le s_n$ and $t_1 \le t_2 \le \cdots \le t_n$, then

$$s_n t_1 + s_{n-1} t_2 + \dots + s_1 t_n \le s_{\sigma(1)} t_1 + s_{\sigma(2)} t_2 + \dots + s_{\sigma(n)} t_n \le s_1 t_1 + s_2 t_2 + \dots + s_n t_n,$$
 where $\sigma(1), \sigma(2), \dots, \sigma(n)$ is the permutation of $\{1, 2, \dots, n\}$.

- For all data points: $\max_{\Phi(\cdot)} \sum_{i=1}^{n} \sum_{u,v \in \mathcal{N}_i} \mathbf{A}_{uv}^{i} \left[dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_u)\right) dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_v)\right) \right]$
 - $ightharpoonup \mathcal{N}_i$ indicates the k nearest neighbors of \mathbf{z}_i .

$$\mathbf{C}_{ij} = \begin{cases} \sum_{u \in \mathcal{N}_i} \mathbf{A}_{uj}^i &, j \in \mathcal{N}_i \\ 0 &, j \notin \mathcal{N}_i \end{cases} \quad \max_{\Phi(\cdot)} - \sum_{i=1}^n \sum_{u,v \in \mathcal{N}_i} \mathbf{A}_{vu}^i dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_u)\right) - \sum_{i=1}^n \sum_{u,v \in \mathcal{N}_i} \mathbf{A}_{uv}^i dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_v)\right) \\ \max_{\Phi(\cdot)} - \sum_{i=1}^n \sum_{u=1}^n \mathbf{C}_{iu} dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_u)\right) - \sum_{i=1}^n \sum_{v=1}^n \mathbf{C}_{iv} dis\left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_v)\right) \end{cases}$$

- The equivalent form: $\min_{\Phi(\cdot)} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{C}_{ij} dis \left(\Phi(\mathbf{z}_i), \Phi(\mathbf{z}_j) \right)$
- Note that the i^{th} projection vector and the i^{th} feature dimension share the one-to-one correspondence:

$$\mathbf{W}^T \mathbf{X} = (\mathbf{w}^1)^T \mathbf{x}^1 + \dots + (\mathbf{w}^i)^T \mathbf{x}^i + \dots + (\mathbf{w}^j)^T \mathbf{x}^j + \dots$$

- \succ This one-to-one correspondence can be regarded as an implicit function $\Phi(\cdot)$.
- \succ For simplicity, we use squared Euclidean distance, then we obtain the Laplacian matrix ${f L}$ of the above-defined weighting matrix ${f C}$.
- \succ To enforce W to preserve the feature-level ordinal consensus: $\min_{\mathbf{w}} Tr(\mathbf{W}^T \mathbf{L} \mathbf{W})$.
- The overall objective function:

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{V}} \|\mathbf{W}^T \mathbf{X} - \mathbf{U} \mathbf{V}\|_F^2 + \beta \|\mathbf{W}\|_{2,1} + \alpha Tr(\mathbf{W}^T \mathbf{L} \mathbf{W})$$
s.t.
$$\mathbf{W}^T \mathbf{W} = \mathbf{I}, \ \mathbf{V}_{\cdot i} \in \{0, 1\}^c, \ \|\mathbf{V}_{\cdot i}\|_0 = 1, \ \forall i.$$

Considering the existence of noise and outliers

increasing the risk of involving in bad local minima, we incorporate Self-Paced Learning s.t. into our final objective function:

$$\min_{\mathbf{w}, \mathbf{r}} \quad \sum_{i} r_{i} \ell_{i} \left(\mathbf{x}_{i}, \mathbf{w} \right) + f \left(\lambda, \mathbf{r} \right) \\
s.t. \quad r_{i} \in \left[0, 1 \right], \forall i,$$

expand

$$\min_{\mathbf{W},\mathbf{U},\mathbf{V},\mathbf{r}\in[0,1]^n} \sum_{i=1}^n r_i \left\| \mathbf{W}^T \mathbf{x}_i - \mathbf{U} \mathbf{v}_i \right\|_2^2 + f(\lambda,\mathbf{r}) + \beta \left\| \mathbf{W} \right\|_{2,1} + \alpha Tr(\mathbf{W}^T \mathbf{L} \mathbf{W})$$

s.t.
$$\mathbf{W}^T \mathbf{W} = \mathbf{I}, \ \mathbf{V}_{\cdot i} \in \{0, 1\}^c, \ \|\mathbf{V}_{\cdot i}\|_0 = 1, \ \forall i.$$

Please refer to our paper for the optimization.

Key References

- [1] "Laplacian score for feature selection," NIPS'05.
- [2] "Unsupervised feature selection for multi-cluster data," KDD'10.
- [3] " $l_{2;1}$ -norm regularized discriminative feature selection for unsupervised learning," IJCAl'11.
- [4] "Unsupervised feature selection using nonnegative spectral analysis," AAAI'12.
- [5] "Robust unsupervised feature selection," IJCAI'13.
- [6] "Unsupervised simultaneous orthogonal basis clustering feature selection," CVPR'15.
- [7] "Unsupervised Feature Selection with Ordinal Locality," ICME'17.