Year 11 Physics - Worksheet 2 Thermodynamics: Quantifying Heat Phase Change

1	v		in.	50
	Student Name:	Module 3	ID:	
Part 1: H	eating Curve Ana	alysis (Knowled	dge Node N5 Anal	yse)
	below shows a typical her 00°C. Energy is added at		, starting as ice below 0° C	and ending a
	Hea	ating Curve Graph	Area	
		ature vs. Energy Add		
` '	graph above, clearly labe Water, Boiling Water, Ho		responding to: Heating Ic	e, Melting Ice
` /	n section(s) is the added en n your reasoning.	nergy increasing the *	kinetic energy* of the part	icles the most
(c) In which	n section(s) is the added e	nergy primarily incre	easing the *potential energ	y* (overcomin
` /	n section(s) is the added enter the particles? Explain	00 2		y* (overcomi

(d) Indicate on the graph where the formula Q=mcT would be used to calculate energy added, and

where Q=mL would be used.

Part 2: Calculations (Knowledge Nodes N3 Apply, N5 Apply) (Use the provided data table for c and L values) Worked Example 1 (Q=mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. (c _{water} = 4186 J kg ⁻¹ K ⁻¹) Q = mcΔT = (0.2 kg)(4186 J kg ⁻¹ K ⁻¹)(50 - 20 K) = 25116 J Worked Example 2 (Q=mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. (L _{f,water} = 3.34 × 10 ⁵ J kg ⁻¹) Q = mL _f = (0.05 kg)(3.34 × 10 ⁵ J kg ⁻¹) = 16700 J Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? (L _{v,water} = 2.26 × 10 ⁶ J kg ⁻¹) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. (c _{ice} = 2100 J kg ⁻¹ K ⁻¹ , L _{f,water} = 3.34 × 10 ⁵ J kg ⁻¹ , c _{water} = 4186 J kg ⁻¹ K ⁻¹) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5]	[Numeracy Focus: Graph interpretation - No. 2. Define the following terms:	<i>[5]</i>
 Latent Heat of Vaporization (Lv): [Literacy N3, N5] Part 2: Calculations (Knowledge Nodes N3 Apply, N5 Apply) (Use the provided data table for c and L values) Worked Example 1 (Q=mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. (c_{water} = 4186 J kg⁻¹ K⁻¹) Q = mcΔT = (0.2 kg)(4186 J kg⁻¹ K⁻¹)(50 - 20 K) = 25116 J Worked Example 2 (Q=mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. (L_{f,water} = 3.34 × 10⁵ J kg⁻¹) Q = mL_f = (0.05 kg)(3.3 × 10⁵ J kg⁻¹) = 16700 J Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? (L_{v,water} = 2.26 × 10⁶ J kg⁻¹) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. (c_{ice} = 2100 J kg⁻¹ K⁻¹, L_{f,water} = 3.34 × 10⁵ J kg⁻¹, c_{water} = 4186 J kg⁻¹ K⁻¹) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5] #MarkSense Quiz 2 	• Specific Heat Capacity (c):	
[Literacy N3, N5] Part 2: Calculations (Knowledge Nodes N3 Apply, N5 Apply) (Use the provided data table for c and L values) Worked Example 1 (Q=mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. (water = 4186 J kg ⁻¹ K ⁻¹) Q = mc\Delta T = (0.2 kg)(4186 J kg ⁻¹ K ⁻¹)(50 - 20 K) = 25116 J Worked Example 2 (Q=mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. (Lf,water = 3.34 × 10 ⁵ J kg ⁻¹) Q = mL_f = (0.05 kg)(3.34 × 10 ⁵ J kg ⁻¹) = 16700 J Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? (Lv,water = 2.26 × 10 ⁶ J kg ⁻¹) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. (cice = 2100 J kg ⁻¹ K ⁻¹ , Lf,water = 3.34 × 10 ⁵ J kg ⁻¹ , cwater = 4186 J kg ⁻¹ K ⁻¹) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5]	• Latent Heat of Fusion (Lf):	
Part 2: Calculations (Knowledge Nodes N3 Apply, N5 Apply) (Use the provided data table for c and L values) Worked Example 1 (Q=mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. (c _{water} = 4186 Jkg ⁻¹ K ⁻¹) Q = mcΔT = (0.2 kg)(4186 Jkg ⁻¹ K ⁻¹)(50 - 20 K) = 25116 J Worked Example 2 (Q=mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. (L _{f,water} = 3.34 × 10 ⁵ Jkg ⁻¹) Q = mL _f = (0.05 kg)(3.34 × 10 ⁵ Jkg ⁻¹) = 16700 J Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? (L _{v,water} = 2.26 × 10 ⁶ J kg ⁻¹) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. (c _{ice} = 2100 Jkg ⁻¹ K ⁻¹ , L _{f,water} = 3.34 × 10 ⁵ Jkg ⁻¹ , c _{water} = 4186 Jkg ⁻¹ K ⁻¹) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5]	• Latent Heat of Vaporization (Lv):	
Worked Example 1 (Q=mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. (c _{water} = 4186 J kg ⁻¹ K ⁻¹) Q = mcΔT = (0.2 kg)(4186 J kg ⁻¹ K ⁻¹)(50 - 20 K) = 25116 J Worked Example 2 (Q=mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. (L _{f,water} = 3.34 × 10 ⁵ J kg ⁻¹) Q = mL _f = (0.05 kg)(3.34 × 10 ⁵ J kg ⁻¹) = 16700 J Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? (L _{v,water} = 2.26 × 10 ⁶ J kg ⁻¹) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. (c _{ice} = 2100 J kg ⁻¹ K ⁻¹ , L _{f,water} = 3.34 × 10 ⁵ J kg ⁻¹ , c _{water} = 4186 J kg ⁻¹ K ⁻¹) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). /Numeracy Focus: Formula application, multi-step calculations - N3, N5]	[Literacy N3, N5]	
Worked Example 1 ($\dot{\mathbf{Q}}$ =mcT): Calculate heat needed to warm 200g (0.2kg) water from 20°C to 50°C. ($c_{water} = 4186\mathrm{Jkg^{-1}K^{-1}}$) $Q = mc\Delta T = (0.2\mathrm{kg})(4186\mathrm{Jkg^{-1}K^{-1}})(50 - 20\mathrm{K}) = 25116\mathrm{J}$ Worked Example 2 (\mathbf{Q} =mL): Calculate heat needed to melt 50g (0.05kg) of ice at 0°C. ($L_{f,water} = 3.34 \times 10^5\mathrm{Jkg^{-1}}$) $Q = mL_f = (0.05\mathrm{kg})(3.34 \times 10^5\mathrm{Jkg^{-1}}) = 16700\mathrm{J}$ Practice Problems: Show your working clearly. 1. How much energy is released when 100g (0.1kg) of steam at 100°C condenses to water at 100°C? ($L_{v,water} = 2.26 \times 10^6\mathrm{Jkg^{-1}}$) [N5 Apply] 2. Calculate the total heat required to change 30g (0.03kg) of ice at -15°C to water at 40°C. ($c_{ice} = 2100\mathrm{Jkg^{-1}K^{-1}}$, $L_{f,water} = 3.34 \times 10^5\mathrm{Jkg^{-1}}$, $c_{water} = 4186\mathrm{Jkg^{-1}K^{-1}}$) [N3 Apply, N5 Apply] (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5]	Part 2: Calculations (Knowledge	dge Nodes N3 Apply, N5 Apply)
$(c_{ice} = 2100\mathrm{Jkg^{-1}K^{-1}},L_{f,water} = 3.34\times10^5\mathrm{Jkg^{-1}},c_{water} = 4186\mathrm{Jkg^{-1}K^{-1}})[\mathrm{N3\ Apply},\mathrm{N5\ Apply}]$ (Hint: This requires three steps: heating ice, melting ice, heating water). [Numeracy Focus: Formula application, multi-step calculations - N3, N5] $+ \mathrm{MarkSense\ Quiz\ 2}$	Worked Example 1 (Q=mcT): Calc to 50°C. $(c_{water} = 4186 \mathrm{Jkg^{-1}K^{-1}}) Q = m$ Worked Example 2 (Q=mL): Calc $(L_{f,water} = 3.34 \times 10^5 \mathrm{Jkg^{-1}}) Q = mL_f = 0$ Practice Problems: Show your working	culate heat needed to warm 200g (0.2kg) water from 20°C $c\Delta T = (0.2 \mathrm{kg})(4186 \mathrm{J kg^{-1} K^{-1}})(50 - 20 \mathrm{K}) = 25116 \mathrm{J}$ culate heat needed to melt 50g (0.05kg) of ice at 0°C. $(0.05 \mathrm{kg})(3.34 \times 10^5 \mathrm{J kg^{-1}}) = 16700 \mathrm{J}$ ng clearly.
$\# Mark Sense \ Quiz \ 2$	$(c_{ice} = 2100 \mathrm{Jkg^{-1}K^{-1}}, L_{f,water} = 3.34 \times 10^{-1})$	$0^5 \mathrm{Jkg^{-1}}, c_{water} = 4186 \mathrm{Jkg^{-1}K^{-1}}) [\mathrm{N3\ Apply},\mathrm{N5\ Apply}]$
$\# Mark Sense \ Quiz \ 2$		
	application, multi-step calculations - N3, N	5]
Instructions: Choose the best answer for multiple choice questions. Show working for calculations.	# Mark Sense Quiz 2	
	Instructions: Choose the best answer for	multiple choice questions. Show working for calculations.
Student Name: ID:	Student Name:	ID:

1. During boiling, the energy added is primarily used to: [N5]
A. Increase particle kinetic energy
B. Increase Temperature
C. Break intermolecular bonds / Increase potential energy
D. Decrease volume
Answer: 2. Substance A has a specific heat capacity of 900 J/kg°C and substance B has c=450 J/kg°C. It 1kg of each substance absorbs 900J of heat, which statement is true? [N3]
A. Temp of A increases by 1°C, Temp of B increases by 2°C.
B. Temp of A increases by 2°C, Temp of B increases by 1°C.
C. Both increase temperature by 1°C.
D. Both increase temperature by 2°C.
Answer: 3. Calculate the heat energy needed to raise the temperature of 500g (0.5kg) of water from 20°C to 60°C. ($c_{water} = 4186 \mathrm{Jkg^{-1}K^{-1}}$). Show working. [N3 Apply] (2 marks)