

第九章排序算法 自测卷答案

姓名	班级
XT.4T	<i>1</i> 11.51X

题号	_	\equiv	Ξ	四	五	总分
题分	24	18	36	8	14	100
得分						

<u> </u>	埴空騵	(每空1分,	共 24 分)
•	块工业	$(\mathbf{T} + \mathbf{I})$	- 77 44 /J /

- 1. 对于n个记录的集合进行归并排序,所需要的平均时间是 $O(nlog_2n)$,所需要的附加空间是 O(n)
- 2. 从未排序的序列中,依次取出元素,与已排序序列的元素比较后,放入已排序序列中的恰当位置上,这是<u>插入排序</u>,从未排序的序列中,挑选出元素,放在已排序序列的某一端位置,这是<u>选择排序</u>,逐次将待排序的序列中的相邻元素两两比较,凡是逆序则进行交换,这是<u>冒泡排序</u>,如果整个排序过程都在内存中进行,称为<u>内部排序</u>,排序算法的复杂性与排序算法的<u>运算量</u>大小与占用存储多少 有关。
- 3. 对线性表{12, 5, 8, 32, 21, 6}进行升序排序时,用冒泡排序方法第 1 趟排序的结果是 5, 8, 12, 21, 6, 32 ,用简单选择排序方法第 1 趟排序的结果是 5, 12, 8, 32, 21, 6 。
- 4. 对 n 个元素进行直接插入排序,在进行第 i 趟排序时,假定元素 r[i+1]的插入位置为 r[j],则需要移动元素的次数为 i-j+1。
- 5. 在堆排序和快速排序中,若初始记录接近正序或反序,则选用<u>堆排序</u>;若初始记录基本无序,则 最好选用 快速排序 。
- **6.** 大多数排序算法都有两个基本的操作: <u>比较(两个关键字的大小)</u>和<u>移动(记录或改变指向记</u>录的指针)。
- 7. 对于 n 个记录的集合进行冒泡排序,在最坏的情况下所需要的时间是 $O(n^2)$ 。若对其进行快速排序,在最坏的情况下所需要的时间是 $O(n^2)$ 。
- 8.【计研题 2000】对于 n 个记录的表进行 2 路归并排序,整个归并排序需进行 log_{2n} _趟(遍),共计移动 $nlog_{2n}$ 次记录。

(即移动到新表中的总次数! 共 log2n 趟, 每趟都要移动 n 个元素)

- 9. 在插入和选择排序中,若初始数据基本正序,则选用<u>插入排序(到尾部)</u>;若初始数据基本反序,则选用<u>选择排序</u>。
- 10. 设要将序列(Q, H, C, Y, P, A, M, S, R, D, F, X)中的关键码按字母序的升序重新排列,则:

冒泡排序一趟扫描的结果是 H, C, Q, P, A, M, S, R, D, F, X, Y ;

初始步长为 4 的希尔(shell)排序一趟的结果是 P, A, C, S, Q, D, F, X, R, H,M, Y ;

二路归并排序一趟扫描的结果是 H, Q, C, Y, A, P, M, S, D, R, F, X;

快速排序一趟扫描的结果是 F, H, C, D, P, A, M, Q, R, S, Y, X ;

堆排序初始建堆的结果是 A, D, C, R, F, Q, M, S, Y, P, H, X 。

二、单项选择题(每小题1分,共18分)

- (C) 1. 【计研题 2001】置换选择排序的功能是 。 (置换选择排序=简单选择排序?)
- A. 选出最大的元素 B. 产生初始归并段 C. 产生有序文件 D. 置换某个记录
- (D)2. 对 n 个不同的排序码进行冒泡排序,在元素无序的情况下比较的次数为

A.n+1

B.n

C. n-1

 $D \cdot n(n-1)/2$

(前3个答案都太小了)

- (C) 3. 排序方法中,从未排序序列中依次取出元素与已排序序列(初始时为空)中的元素进行比较,将其放入已排序序列的正确位置上的方法,称为
 - A. 希尔排序
- B. 冒泡排序
- C. 插入排序
- D. 选择排序
- (B) 4. 若一组记录的排序码为 (46,79,56,38,40,84),则利用堆排序的方法建立的初始堆为

A. 79, 46, 56, 38, 40, 84

B. 84, 79, 56, 38, 40, 46

- C. 84, 79, 56, 46, 40, 38 D. 84, 56, 79, 40, 46, 38 (**B**) 5. 【计研题 2001】对有 n 个记录的表作快速排序,在最坏情况下,算法的时间复杂度是 B. $O(n^2)$ C. $O(nlog_2n)$ D. $O(n^3)$ 下述几种排序方法中,平均查找长度(ASL)最小的是 (**B**) 6. C. 归并排序 A. 插入排序 B.快速排序 D. 选择排序 (D) 7. 排序方法中,从未排序序列中挑选元素,并将其依次插入已排序序列(初始时为空)的一 端的方法,称为 A. 希尔排序 B. 归并排序 C. 插入排序 D. 选择排序 (A) 8. 将 5 个不同的数据进行排序,至少需要比较 次。 B.5 C.6 (C)9. 对 n 个不同的排序码进行冒泡排序,在下列哪种情况下比较的次数最多。 A. 从小到大排列好的 B. 从大到小排列好的 C. 元素无序 D. 元素基本有序 (C) 10. 堆的形状是一棵 A. 二叉排序树 B.满二叉树 C. 完全二叉树 D. 平衡二叉树 (C)11. 下述几种排序方法中,要求内存最大的是 A. 插入排序 B.快速排序 C. 归并排序 D. 选择排序 (C) 12. 若一组记录的排序码为(46,79,56,38,40,84),则利用快速排序的方法,以第一个记录为 基准得到的一次划分结果为 A. 38, 40, 46, 56, 79, 84 B. 40,38, 46, 79, 56, 84 C. 40, 38, 46, 56, 79, 84 D. 40, 38,46, 84, 56, 79 (B) 13. 若一组记录的排序码为(46,79,56,38,40,84),则利用堆排序的方法建立的初始堆为 A. 79, 46, 56, 38, 40, 84 B. 84, 79, 56, 38, 40, 46 C. 84, 79, 56, 46, 40, 38 D. 84, 56, 79, 40, 46, 38) 14. 在堆排序方法中,每趟排序的定义是:将待排序关键字调整为堆后,将堆顶元素与待排序 序列的最后一个元素进行交换。如果待排序序列为{100,70,50,20,90,75,60,25},要求按关键字从小到大 的顺序排序,则各趟排序的结果为: 第1趟排序的结果为20,95,75,25,70,50,60,100; 第2趟
 - A. 20, 50, 60, 25, 70, 75, 90, 100

第 6 趟排序的结果为 (E); 第 7 趟排序的结果为 20,25,50,60,70,75,90,100。

- B. 25, 50, 20, 60, 70, 75, 90, 100
- C. 60, 70, 75, 25, 20, 50, 90, 100
- D. 50, 70, 60, 25, 20, 75, 90, 100
- E. 20, 25, 50, 60, 70, 75, 90, 100
- F. 20, 25, 50, 70, 90, 75, 60, 100
- $G.\ 20, 25, 50, 60, 90, 75, 70, 100$
- H. 25, 20, 70, 60, 50, 75, 90, 100

三、简答题(每小题 6 分,共 36 分)

1. 堆排序为什么是不稳定的排序?

答:因为在堆排序时,在调整堆的过程中,有可能改变具有相同关键字的元素的先后次序,故该排序方法 是不稳定的。例如,初始序列为 8,5,5,按从小到大进行排序,则初始状态为: 显然,两个 5 的相对顺序发生了变化,所以是不稳定的。

排序的结果为(\mathbb{C}); 第 3 趟排序的结果为(\mathbb{D}); 第 4 趟排序的结果为(\mathbb{A}); 第 5 趟排序的结果为(\mathbb{B});

2. 试比较直接插入排序、直接选择排序、快速排序、堆排序、归并排序的时、空性能。答:

	平均时间	最坏情况	辅助空间
直接插入	O(n2)	O(n2)	O(n1)

直接选择	O(n2)	O(n2)	O(1)
快速排序	O(nlg2n)	O(n2)	O(nlog2n)
堆排序	O(nlog2n)	O(nlog2)	O(1)
归并排序	O(nlog2n)	O(nlog2n)	O(n)

3. 将两个长度为 n 的有序表归并为一个长度为 2n 的有序表,最小需要比较 n 次,最多需要比较 2n-1 次,请说明这两种情况发生时,两个被归并的表有何特征?

答:最少的比较次数是这样一种情况:若 A 表所有元素都小于(或大于)B 表元素,则 A1 比较完 $B1\sim$ Bn 之后,直接拼接即可。

最多比较次数的情况应该是 A、B 两表互相交错,此时需要穿插重排。则 A 表的每个元素都要与 B 表元素相比,A1 与 B1 相比,能确定其中一个元素的位置;剩下一个还要与另一表中下一元素再比较一次,即:在表 A 或表 B 的 n 个元素中,除了最后一个元素外,每个元素都要比较 2 次!最坏情况总共为 2n—1 次。

4. 对于整数序列 100,99,98,…3,2,1,如果将它完全倒过来,分别用冒泡排序和快速排序法,它们的比较次数和交换次数各是多少?

答: 冒泡排序的比较和交换次数将最大,都是 1+2+...+n-1=n(n-1)/2=50×99=4545 次

快速排序则看按什么数据来分子表。

如果按 100 来分,则很惨,也会是 n(n-1)/2!

若按中间数据 50 或 51 来分表,则:

第 1 轮能确定 1 个元素,即在 1 个子表中比较和交换了 n-1 个元素; $n-(2^{1}-1)$

第2轮能再确定2个元素,即在2个子表中比较和交换了n-3个元素;n-(22-1)

第3轮能再确定4个元素,即在4个子表中比较和交换了n-7个元素;n-(23-1)

第 4 轮能再确定 8 个元素,即在 8 个子表中比较和交换了 n-15 个元素; $n-(2^4-1)$

••••

第 6 轮能再确定 32 个元素, 即在 32 个子表中比较和交换了 n-65 个元素; n-(26-1)

第7轮则能全部确定,(因为 $2^7=128$), 在 100 个子表中比较和交换了 n-(100-1) 个元素;

64+100)=7n-(8+16+32+164)=700-220=480 次

若从中间选择初始元素,则 ASL= (n+1) log₂n−(2¹+2²+2³+······+2^m)= nlog₂n+log₂n−(2¹+2²+2³+······+n)≈O (nlog₂n)

5.【严题集 10.11②】试问:按锦标赛排序的思想,决出 8 名运动员之间的名次排列,至少需编排多少场次的比赛(应考虑最坏的情况)?

刘答:不能简单地用 $(n-1)+(n-2)\log_2 n$ 来计算比赛场次。要特别注意,随着 n/2的叶子结点被调整完毕之后,

树的深度会逐层减少!

分别 n=8 和 n=7 的情况推导并归纳,得到如下计算公式:

比赛场次= $(n-1) + n/2(k-1) + (n/2^2)(k-2) + \cdots + n/2^{(k-1)}$,其中 k= $\lfloor \log_2 n \rfloor$

当 n=8 时, k=3, 比赛场次=7+8/2(2)+8/4=17 场(这是最坏情况,即每次都先从叶子调整起)

- 6. 【全国专升本题】【严题集 10. 6④】奇偶交换排序如下所述:第一趟对所有奇数 i,将 a[i]和 a[i+1]进行比较;第二趟对所有的偶数 i,将 a[i]和 a[i+1]进行比较,若 a[i]》a[i+1],则两者交换;第三趟对奇数 i,第四趟对偶数 i;……依次类推直至整个序列有序为止。
- (1) 试问这种排序方法的结束条件是什么? 是否为稳定排序?
- (2) 分析当初始序列为正序或逆序两种情况下,奇偶交换排序过程中所需进行的关键字比较的次数。
- (3) 分析此种排序方法的平均复杂度及最坏复杂度。

答:(1) 这种算法其实是两两比较,第一趟很像锦标赛的"初赛",将胜者(大数)置于偶数单元; 第二趟对偶数单元操作,即第一组大者与第二组小者战,大者后移。结果相当于冒泡排序的一趟; 所以结束条件应为偶数趟无交换。

结束条件是: 若 n 为偶数时, 奇数循环时 i>n-1 , 偶数循环时 i>n ,

若 n 为奇数时, 奇数循环时 i>n 偶数循环时 i>n+1

似乎不稳定? 因为交换没有依次进行

四、给出一组关键字: 29, 18, 25, 47, 58, 12, 51, 10, 分别写出按下列各种排序方法进行排序时的变化过程:

- (1) 归并排序 每归并一次书写一个次序。
- (2) 快速排序 每划分一次书写一个次序。
- (3) 堆排序 先建成一个堆,然后每从堆顶取下一个元素后,将堆调整一次。(8分)

解:

(1)2 路归并:

第一趟:18,29,25,47,12,58,10,51;

第二趟:18,25,29,47,10,12,51,58;

第三趟:10,12,18,25,29,47,51,58

(2)快速排序

第一趟:10,18,25,12,29,58,51,47;

第二趟:10,18,25,12,29,47,51,88;

第三趟:10,12,18,25,29,47,51,88

(3)堆排序 建大堆

58,47,51,29,18,12,25,10;

- **(1)51,47,25,29,18,12,10,58**;
- 247,29,25,10,18,12,51,58;
- 329,18,25,10,12,47,51,58;
- **4**25,18,12,10,29,47,51,58;
- **(5)18,10,12,25,29,47,51,58**;
- **6**12.10.18.25.29.47.51.58:
- 710,12,18,25,29,47,51,58

五、算法设计题(每题7分,共14分)

1. 请实现插入排序。

```
void Insertsort(int a∏, int n)
    int i, j, k;
    for (i = 1; i < n; i++)
        //为 a[i]在前面的 a[0...i-1]有序区间中找一个合适的位置
        for (j = i - 1; j >= 0; j--)
             if (a[j] < a[i])
                 break;
        //如找到了一个合适的位置
        if (j != i - 1)
             //将比 a[i]大的数据向后移
             int temp = a[i];
             for (k = i - 1; k > j; k--)
                 a[k+1] = a[k];
             //将 a[i]放到正确位置上
             a[k + 1] = temp;
         }
    }
}
```

2. 【严题集 10.41④】假设有 1000 个关键字为小于 10000 的整数的记录序列,请设计一种排序方法,要求以尽可能少的比较次数和移动次数实现排序,并按你的设计编出算法。

```
解:可以用基数排序来实现,关键字位数 d=4,数基 radix=10(从 0~9)则基数排序的算法如下;
void Hash_Sort(int a[])//对 1000 个关键字为四位整数的记录进行排序
{
    int b[10000];
    for(i=0;i<1000;i++) //直接按关键字散列 (即分配)
    {
        for(j=a[i];b[j];j=(j+1)%10000);
        b[j]=a[i];
    }
    for(i=0,j=0;i<1000;j++) //将散列收回 a 中
        if(b[j])
    {
        for(x=b[j],k=j;b[k];k=(k+1)%10000)
        if(b[k]==x)
        {
              a[i++]=x;
              b[k]=0;
        }
        //if
```

}//Hash_Sort