Week 6: More Field theory (13.4, 13.5, 13.6)

Practice Problems

- 1. Determine the splitting fields over \mathbb{Q} of the polynomials $x^4 1$ and $x^4 + 1$.
- 2. Find all irreducible polynomials of degrees 1, 2, and 4 over \mathbb{F}_2 and check that their product is $x^{16} x$.
- 3. Directly compute the product $\Phi_1(x)\Phi_2(x)\Phi_3(x)\Phi_4(x)\Phi_6(x)\Phi_{12}(x)$.

Presentation Problems

- 1. Let p be a prime. Show that $x^{p-1} 1 = \prod_{\alpha \in \mathbb{F}_p^{\times}} (x \alpha)$. Deduce that $(p-1)! \equiv -1 \pmod{p}$. This last result is known as Wilson's theorem (4/4).
- 2. Let p be a prime. Show that $(1+x)^{pn}=(1+x^p)^n$ as polynomials over \mathbb{F}_p . By comparing coefficients, deduce that $\binom{pn}{pk}\equiv\binom{n}{k}\pmod{p}$ for all $0\leq k\leq n$.

Here are some (tricky) generalizations that are interesting but not directly relevant to this course:

Bonus I: Show that $\binom{pn}{nk} \equiv \binom{n}{k} \pmod{p^2}$ for all $0 \le k \le n$.

Bonus II: Show that if $p \ge 5$ then $\binom{pn}{pk} \equiv \binom{n}{k} \pmod{p^3}$ for all $0 \le k \le n$.

- 3. Let p be a prime and let $a \in \mathbb{F}_p^{\times}$. Show that $x^p x + a$ is irreducible and separable over \mathbb{F}_p .
- 4. Let $a \geq 2$ be an integer. For all positive integers n and d, show that d divides n if and only if $a^d 1$ divides $a^n 1$. Deduce that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.

Module Theory Problem

- 1. Let $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ be the unit sphere. A vector field on \mathbb{S}^2 is a continuous function (in the ε - δ sense) $X : \mathbb{S}^2 \to \mathbb{R}^3$ such that X(p) is tangent to \mathbb{S}^2 at p for each $p \in \mathbb{S}^2$, meaning that $X(p) \cdot p = 0$ at each $p \in \mathbb{S}^2$. The set of all such vector fields is denoted $\mathfrak{X}(\mathbb{S}^2)$.
 - (a) Let $C(\mathbb{S}^2)$ denote the set of continuous functions $\mathbb{S}^2 \to \mathbb{R}$. Define a commutative ring structure on $C(\mathbb{S}^2)$ and a $C(\mathbb{S}^2)$ -module structure on $\mathfrak{X}(\mathbb{S}^2)$.
 - (b) Let M denote the set of all continuous functions $\mathbb{S}^2 \to \mathbb{R}^3$. Define a $C(\mathbb{S}^2)$ -modules structure on M such that M is free of rank 3 and contains $\mathfrak{X}(\mathbb{S}^2)$ as a submodule.
 - (c) Show that $\mathfrak{X}(\mathbb{S}^2)$ is a direct summand of M, and in fact that $M \cong \mathfrak{X}(\mathbb{S}^2) \oplus C(\mathbb{S}^2)$. This isomorphism $M \xrightarrow{\sim} \mathfrak{X}(\mathbb{S}^2) \oplus C(\mathbb{S}^2)$ should make the diagrams

commute.

(d) The Hairy Ball Theorem from Topology says that there is no nonvanishing vector field on \mathbb{S}^2 . In other words, for any $X \in \mathfrak{X}(\mathbb{S}^2)$ there is a point $p \in \mathbb{S}^2$ for which X(p) = 0. Assuming the Hairy Ball Theorem, prove that $\mathfrak{X}(\mathbb{S}^2)$ is not free.

Bonus: If you know what $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$ means, try to prove the Hairy Ball Theorem.

Because $\mathfrak{X}(\mathbb{S}^2)$ is a direct summand of a free module, it gives an example of a "projective module". In fact, by the Serre-Swan theorem, every (finitely generated) projective module over $C(\mathbb{S}^2)$ is of the same general form. Projective modules are abundant in geometry, and are crucial to some very important construction of homological algebra. Before we define projective modules, we need a lemma. Fix a commutative ring R.

2. For any R-module P, the functor $\operatorname{Hom}_R(P,-)$ is left-exact: for any short exact sequence of R-modules

$$0 \longrightarrow X \stackrel{\alpha}{\longrightarrow} Y \stackrel{\beta}{\longrightarrow} Z \longrightarrow 0,$$

the sequence

$$0 \longrightarrow \operatorname{Hom}_R(P,X) \xrightarrow{\alpha_*} \operatorname{Hom}_R(P,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(P,Z)$$

is also exact.

In general, β_* is not necessarily surjective. Another way to say this is that $\operatorname{Hom}_R(P,-)$ is not necessarily exact (meaning that applying it to a short exact sequence does not necessarily give a short exact sequence). For example, applying $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},-)$ to $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ does not give a short exact sequence (try it!). Like being a direct summand of a free module, $\operatorname{Hom}_R(P,-)$ being exact characterizes projective modules.

- 3. Prove that for an R-module P, the following are equivalent:
 - (a) The functor $\operatorname{Hom}_R(P, -)$ is exact.
 - (b) For any surjective R-module homomorphism $\pi \colon M \to N$ and any R-module homomorphism $f \colon P \to N$, there is an R-module homomorphism $\tilde{f} \colon P \to M$ making the diagram

$$P \xrightarrow{\tilde{f}} N$$

$$\downarrow^{\pi} \\ N$$

commute (i.e., such that $f = \pi \circ \tilde{f}$). Note that we do not require \tilde{f} to be unique.

- (c) Any surjective R-module homomorphism $\pi \colon M \to P$ has a section (an R-module homomorphism $\sigma \colon P \to M$ such that $\pi \circ \sigma = \mathrm{id}_P$).
- (d) Any short exact sequence of R-modules $0 \to M \to N \to P \to 0$ splits.
- (e) There is an R-module Q such that $P \oplus Q$ is a free R-module.

If the above hold, we say that P is a projective R-module.

Tricky Problems

- 1. Let R be a finite ring with no zero divisors. Do not assume that R is commutative.
 - (a) Show that every nonzero element of R is a unit.
 - (b) Show that the center Z(R) is a finite field.
 - (c) Let q = |Z(R)|. Show that $|R| = q^n$ for some integer $n \ge 1$.
 - (d) Let $x \in R \setminus Z(R)$.
 - i. Show that $|C_R(x)| = q^d$ for some d < n.
 - ii. Use Lagrange's theorem to show that $q^d 1$ divides $q^n 1$.
 - iii. Show that d divides n.

(e) Use to class equation to obtain an expression of the form

$$q^{n} - 1 = (q - 1) + \sum_{i=1}^{k} \frac{q^{n} - 1}{q^{d_{i}} - 1}$$

where each d_i is a proper divisor of n.

- (f) Show that $\Phi_n(q)$ divides $(q^n-1)/(q^d-1)$ for every proper divisor d of n.
- (g) Show that $|\Phi_n(q)| \leq q 1$.
- (h) Use the product expansion $\Phi_n(q) = \prod (q \zeta)$ to show that n = 1 and deduce that R is a field.

This is known as Wedderburn's little theorem.

2. (a) Let $P(x) \in \mathbb{Z}[x]$ be a nonconstant polynomial. Show that there are infinitely many distinct prime divisors of the integers $\{P(n): n \in \mathbb{Z}\}$.

Now let m be a positive integer and let p be a prime not dividing m.

- (b) Show that $\Phi_m(a) \equiv 0 \pmod{p}$ if and only if $\gcd(a,p) = 1$ and the order of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is precisely m. Hint: Use the product expansion $x^n 1 = \prod_{d|n} \Phi_d(x)$ and the fact that $x^m 1$ is separable over \mathbb{F}_p .
- (c) Show that p divides $\Phi_m(a)$ for some $a \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{m}$.
- (d) Deduce that there are infinitely many primes congruent to 1 modulo m.

This is a special case of Dirichlet's theorem on primes in arithmetic progressions.