

Ejemplo:

Ejemplo: Dado el siguiente argumento lógico:

Tautolog.
$$(p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \neg q)) \rightarrow (s \lor t)$$

Se pide:

- ¿En que tipo de representación esta? Taujo baja
- ¿Cuál es la representación de este en las otras formas? 🗸
- Determine su validez mediante una tabla de verdad.

2. Simbogis mo:
2 premites & page Madra pormsConclusion-9

Tablas de Sinlogismos.

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$p \to q$ p $\therefore q$	Simplificación	$\begin{array}{c} p \wedge q \\ \therefore p \end{array}$
Modus Tollens	$p \to q$ $\neg q$ $\therefore \neg p$	Conjunción	$p \\ q \\ \therefore p \land q$
Silogismo hipotético (Transitividad)	$p \to q$ $q \to r$ $\therefore p \to r$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$
Silogismo disyuntivo (Eliminación)	$p \lor q$ $\neg p$ $\therefore q$		∴ <i>r</i>
Adición	$p \\ \therefore p \lor q$	Resolución	

Egemplos:

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \land (Q \lor R)$ $\equiv (P \land Q) \lor (P \land R)$	$P \lor (Q \land R)$ $\equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \lor \mathbf{F} \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$	

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{array}{c} p \rightarrow q \\ p \\ \therefore q \end{array}$	Simplificación	$\begin{array}{c} p \wedge q \\ \therefore p \end{array}$
Modus Tollens	$p \to q$ $\neg q$ $\therefore \neg p$	Conjunción	$p \\ q \\ \therefore p \land q$
Silogismo hipotético (Transitividad)	$p \to q$ $q \to r$ $\therefore p \to r$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$ $\therefore r$
Silogismo disyuntivo (Eliminación)	$p \lor q$ $\neg p$ $\therefore q$		
Adición	$p \\ \therefore p \lor q$	Resolución	

Ejemplo: Demuestre que el siguiente argumento lógico es valido:

	710(111)249	
· p (a)	Pusos	Justifi cución
· b -> d (p) Y).	P	Premisa (a)
• 5vr (c)	$P \rightarrow q$	Premisa (b)
:. svt	• 9	Modus Youens en 172
4)	Y-379	Pienisa (d)

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{pmatrix} p \to q \\ p \\ \therefore q \end{pmatrix}$	Simplificación	$p \wedge q$ $\therefore p$
Modus Tollens	$ \begin{array}{c} p \to q \\ \neg q \\ \vdots \neg p \end{array} $	Conjunción	$\begin{array}{c} p \\ q \\ \therefore p \wedge q \end{array}$
Silogismo hipotético (Transitividad)	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	Prueba de división por casos	$\begin{array}{c} p \lor q \\ p \to r \\ q \to r \end{array}$
Silogismo disyuntivo (Eliminación)	$\begin{pmatrix} p \lor q \\ \neg p \\ \therefore q \end{pmatrix}$		∴ <i>r</i>
Adición	$ \begin{pmatrix} p \\ \therefore p \lor q \end{pmatrix} $	Resolución	

F_	
つノ	75

Modus Tollens en 3 y 4

6) SVY Previsor (0)

7) s

Elimonocion en 5 mg 6

8):.5yt

Adicion en 7