Correctesa i Anàlisi del Cost de l'Algorisme d'Euclides

Enric Rodríguez

En aquest full estudiarem l'*algorisme d'Euclides* que, donats dos nombres naturals a i b, calcula el seu màxim comú divisor GCD(a, b). Considerem la següent versió:

```
int euclides (int a, int b) {

/* Pre: a > b i b \ge 0 */

/* Post: euclides (a,b) = GCD(a,b) */

if (b == 0) return a;

else return euclides (b, a\%b); }
```

Vegem per inducció sobre *N*, el nombre de crides recursives, que el codi és correcte:

- Cas base: N = 0. En aquest cas necessàriament b = 0, i per tant GCD(a, b) = GCD(a, 0) = a, de forma que l'algorisme retorna el valor correcte.
- Cas inductiu: Siguin a i b tals que euclides(a,b) fa N crides recursives, amb N>0. Siguin q i r el quocient i el residu de dividir a entre b, de forma que a=qb+r i $0 \le r < b$. Com que r=a%b, es compleix la precondició de la crida recursiva euclides(b,a%b). A més, GCD(a,b)=GCD(b,a)=GCD(b,qb+r)=GCD(b,r), i per tant per HI es retorna el valor correcte.

A continuació analitzarem el cost de l'algorisme. A part de la crida recursiva, el treball a realitzar té cost constant. Així doncs, el cost és proporcional al nombre de crides recursives. Per tant ens limitarem a estudiar, donats a i b, quin és el nombre de crides recursives de euclides(a, b).

Sigui F_N la successió de Fibonacci: $F_0 = 1$, $F_1 = 1$ i $F_N = F_{N-1} + F_{N-2}$ per $N \ge 2$. Demostrarem per inducció que si per a i b es fan N crides recursives (on $N \ge 1$), aleshores $a \ge F_{N+1}$ i $b \ge F_N$:

- Cas base: N=1. Si es fa 1 crida recursiva, llavors $b \neq 0$. Com que $b \geq 0$ per la precondició, ha de ser $b \geq 1 = F_1$. A més, com que també per la precondició a > b, tenim $a \geq 2 = F_2$.
- Cas inductiu: N > 1. Siguin ara a i b tals que euclides(a,b) fa N crides recursives. Siguin també q i r el quocient i el residu de dividir a entre b, de forma que a = qb + r i $0 \le r < b$. Llavors euclides(b,r) requereix N-1 crides recursives. Per HI, $b \ge F_N$ i $r \ge F_{N-1}$. A més, com que a > b, necessàriament $q \ge 1$. Així doncs, $a \ge b + r \ge F_N + F_{N-1} = F_{N+1}$.

Queda doncs demostrat que, si euclides(a,b) fa N crides recursives, aleshores $a \ge F_{N+1}$ i $b \ge F_N$. A més, es pot demostrar (vegeu a sota) que per tot $N \ge 0$ es té $F_N \ge \phi^{N-1}$, on $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ és l'anomenat $nombre\ d'or$. Usant això, tenim que si per a i b l'algorisme d'Euclides fa N crides recursives, aleshores $b \ge F_N \ge \phi^{N-1}$, d'on $\log_{\phi} b \ge N - 1$ i $1 + \log_{\phi} b \ge N$. Per tant, N és $\mathcal{O}(\log b)$.

Finalment, demostrem per inducció que per tot $N \ge 0$ tenim $F_N \ge \phi^{N-1}$:

- Cas base 1: Per a N = 0, tenim $F_0 = 1 > \phi^{-1}$ ($\phi^{-1} \approx 0.618$).
- Cas base 2: Per a N = 1, tenim $F_1 = 1 = \phi^0$.
- Cas inductiu: Suposem $N \ge 2$. Observem que $\phi^2 = (\frac{1+\sqrt{5}}{2})^2 = \frac{3+\sqrt{5}}{2} = \phi + 1$. Per tant, per HI, $F_N = F_{N-1} + F_{N-2} \ge \phi^{N-2} + \phi^{N-3} = \phi^{N-3}(\phi + 1) = \phi^{N-1}$.