UNIT 1 – Fundamentals of Deep Learning

1. What is Artificial Intelligence? List its main branches.

Answer: Artificial Intelligence (AI) is the simulation of human intelligence in machines. Branches include:

- Machine Learning
- Natural Language Processing
- Computer Vision
- Robotics
- Expert Systems

2. Explain the evolution of Machine Learning.

Answer: ML evolved from:

- Probabilistic Modeling (using probabilities),
- Early Neural Networks (Perceptrons),
- Kernel Methods (SVMs),
- Ensemble Models (Random Forests),
- to Deep Learning (neural networks with many layers).

3. What is Probabilistic Modeling? Give an example.

Answer: It uses probability to predict outcomes. Example: Naive Bayes for spam email classification.

4. What are Perceptrons?

Answer: Early neural models with a single-layer that adjust weights based on inputs to learn binary classification.

5. What are Kernel Methods?

Answer: They transform data into higher dimensions using kernels (like RBF), useful in SVM for non-linear classification.

6. Compare Decision Trees, Random Forests, and Gradient Boosting.

- Decision Tree: single model
- Random Forest: multiple trees (bagging)
- Gradient Boosting: sequential tree learning (boosting)

7. Name four branches of ML with examples.

Answer:

- Supervised (e.g., regression)
- Unsupervised (e.g., clustering)
- Reinforcement (e.g., game AI)
- Semi-supervised (e.g., limited labeled data)

8. Explain Supervised Learning.

Answer: Input-output mapping using labeled data. Example: spam detection. Includes diagram with input \rightarrow model \rightarrow output.

9. How do we evaluate ML models?

Answer:

- Accuracy = (TP + TN) / Total
- Precision = TP / (TP + FP)
- **Recall** = TP / (TP + FN)
- **F1-Score** = 2 * (Precision * Recall) / (Precision + Recall)

10. What is Overfitting and Underfitting?

Answer:

- Overfitting: model memorizes training data (high variance)
- Underfitting: model fails to learn patterns (high bias)
- Solutions: Regularization, cross-validation

UNIT 2 – Introducing Deep Learning

1. Define Deep Learning.

Answer: A subset of ML that uses deep neural networks to model complex patterns in large datasets.

2. Biological vs Machine Vision?

- Biological: Human eye + brain
- Machine: Cameras + neural networks
 Example: Face detection by human vs. using CNN

3. Human vs Machine Language Understanding.

Answer:

- Human: contextual, emotional
- Machine: uses embeddings, RNNs, transformers

4. What is an ANN?

Answer: Artificial Neural Network consists of input, hidden, and output layers. Diagram: nodes with connections.

5. Single vs Multi-layer Neural Network?

Answer:

- Single: learns simple patterns
- Multi-layer (deep): learns complex, hierarchical patterns

6. Explain training of deep neural networks.

Answer:

Forward pass → loss → backpropagation → weight update via gradient descent

7. Challenges in deep learning training?

Answer: Overfitting, vanishing gradients, computational cost, large data requirements

8. Techniques to improve DL models?

Answer: Dropout, Batch Normalization, Data Augmentation

9. Importance of Activation Functions?

Answer: Adds non-linearity.

Compare:

• ReLU: fast, sparse activation

• Sigmoid: saturates

• Tanh: zero-centered

10. Optimization algorithms in DL?

Answer:

• **SGD:** updates weights using gradients

• Adam: combines momentum + RMSprop

UNIT 3 – Neural Networks and Tools

1. Define Neural Network with diagram.

Answer: Mimics brain neurons. Diagram: input \rightarrow hidden \rightarrow output layers

2. Layers in NN?

Answer:

- Input Layer
- Hidden Layer(s)
- Output Layer

Examples: Dense, Convolution, Recurrent

3. Activation Functions?

Answer: Introduce non-linearity. Examples: ReLU, Sigmoid, Tanh

4. Compare Keras, TensorFlow, Theano, CNTK.

Answer:

Keras: high-level

• TensorFlow: flexible, Google-backed

• Theano: older, research

• CNTK: Microsoft, less used now

5. Setting up DL workstation?

Answer:

- Install Python, libraries (Keras/TensorFlow)
- Set up GPU drivers
- Use Jupyter or IDE

6. What is binary classification?

Answer: Classify into 2 classes.

Example: Positive/Negative sentiment in IMDB reviews

7. Preprocessing IMDB reviews?

- Tokenization
- Padding
- Vectorization
- Label encoding

8. Define multiclass classification.

Answer: More than two classes.

Example: Classifying news articles into topics

9. Classifying newswires using DL?

Answer:

• Dataset: Reuters

• Architecture: Embedding → Dense → Softmax

10. Compiling and training a model in Keras?

Answer:

- model.compile() → define loss, optimizer
- model.fit() → train
- model.evaluate() → test

UNIT 4 – CNN and RNN

1. What is a CNN? Main components?

Answer:

- Convolution layer
- Pooling layer
- Fully connected layer
 Used in image classification.

2. Representation learning in CNN?

Answer: CNNs automatically learn filters to extract meaningful features.

3. Convolution layer working?

Answer: Applies filters across image patches to detect patterns. Diagram: sliding filter.

4. Multichannel convolution?

Answer: Applies filters across all color channels (RGB). Each filter spans all channels.

5. Define RNN. Difference from FFNN?

- RNN: has memory via feedback loops
- FFNN: no memory, input → output directly

6. RNN working step-by-step?

Answer:

- Inputs processed sequentially
- Hidden state updated at each step

7. Simple RNN in Python?

import torch.nn as nn

model = nn.RNN(input_size=10, hidden_size=20, num_layers=1)

8. What are PyTorch Tensors?

Answer: Multi-dimensional arrays for GPU/CPU. Operations: reshape, add, matmul.

9. Building CNN in PyTorch?

Answer:

- Define model
- Use loss = nn.CrossEntropyLoss()
- Optimizer: torch.optim.Adam()

10. NumPy vs PyTorch Tensors?

Answer:

• NumPy: CPU only

• PyTorch: GPU support, auto-diff

UNIT 5 – Applications and Research Models

1. What is Machine Vision? Example?

Answer: Ability of machines to see and interpret visual data. Example: Object detection in self-driving cars.

2. NLP Workflow in DL?

Answer:

Tokenization → Embedding → RNN/Transformer → Output (e.g., sentiment)

3. What is GAN? Architecture?

- Generator creates fake data
- Discriminator checks real vs fake

• Trained together in a loop

Diagram: Generator → Fake data → Discriminator

4. Types of Deep Reinforcement Learning?

Answer:

- DQN
- Policy Gradient
- Actor-Critic

Difference: learns through environment feedback

5. Agent-Environment interaction?

Answer: Agent takes action → Environment gives reward → Agent updates strategy

6. What is an Autoencoder?

Answer: Neural network for unsupervised learning. Encoder compresses → Decoder

reconstructs

7. How do Boltzmann Machines work?

Answer:

- Models energy of system
- Learns by lowering energy of data-like configurations

8. What is RBM?

Answer: A type of Boltzmann Machine with restricted connections. Faster and easier to train.

9. Structure of DBN?

Answer: Stack of RBMs. Each layer learns features and passes them up.

10. Compare Autoencoders, RBMs, and DBNs.

Mo	del	Structure	Learning	Use Case
Aut	toencoder	Encoder–Decoder	Backpropagation	Dimensionality Reduction
RBI	М	Bipartite graph	Energy Minimization	Feature learning
DBI	N	Stack of RBMs	Layer-wise training	Pre-training deep nets