0	$\sigma_{1}^{\#1} + \alpha \beta \boxed{\frac{2}{3}}$	$\sigma_{1}^{\#2} + \alpha \beta \frac{\sqrt{2}}{3(1-\alpha)^{2}}$	$\tau_{1+}^{\#1} + \alpha \beta - \frac{i \sqrt{2}}{3(1)}$	$\sigma_{1}^{*1} + ^{lpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$

$f_{1^-}^{\#2} \alpha$	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}\overline{i}kt_1\bigg -\frac{1}{3}\overline{i}\sqrt{2}kt_1\bigg $
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \vec{l} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\bigg \frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha \beta$	$\omega_{1}^{#2} + \alpha \beta$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{lpha}$

1 1 8 8

Source constraints SO(3) irreps

 $\tau_0^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

 $t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha == 0$

$\omega_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{t_1}{2}$						
$f_{2}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0						2
$\omega_{2}^{\#1}_{\alpha\beta} \ f_{2}^{\#1}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0		$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
	$^{1}_{4}+^{\alpha\beta}$	$^{1}_{1}$	$+^{\alpha eta \chi}$		$f_{0}^{\#2}$	0	0	0	0
	$\omega_2^{\#1}$.	$f_{2}^{#1}$	$\omega_2^{\#1}$		$f_{0}^{\#1}$	0	0	0	0
	$\sigma_0^{\#}$	$_{+}^{1}$ $\tau_{0}^{\#1}$	$t_{0}^{\#2}$	$\sigma_0^{\sharp 1}$	$\omega_{0^+}^{\#1}$	$6 k^2 r_3$	0	0	0
$\sigma_{0}^{\#1}$	$+\frac{1}{6k^2}$		0	0		$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{\#2}$ †	$\omega_{0}^{\#1}$ †

 \sim

 $\sigma_{1}^{\#1}{}^{\alpha} = \sigma_{1}^{\#2}{}^{\alpha}$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 \sim

 $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$

$\tau_2^{r_+^+}$ $\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{"+}$ $\alpha \beta$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
,	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} +^{\alpha \beta \chi}$	

0

 $\frac{2}{t_1}$

 $\sigma_{2}^{\#1}$ $_{\alpha eta \chi}$

 $\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$ 5 Total #:

0

?	?	
	$J^P = 0^-$	
?	$\overrightarrow{k^{\mu}}$	
	?	

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

, /	$J^P = 0^-$	
	\bigcirc	-
?	k^{μ}	
	?	