Belegungs-Anforderungs-Graphen

Graphische Darstellung der Beziehung von Prozessen zu Betriebsmitteln (Holt, 1972)

Es gibt zwei Knotentypen:

- ▶ Prozesse, repräsentiert durch Kreise:
- Р
- ► Betriebsmittel, repräsentiert durch Quadrate:

В

Pfeile:

- ► P belegt B
- P wartet auf B

Zyklus im Graphen o Deadlock

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 8

7.3 Deadlocks Deadlocks

Beispiel

Gegeben:

- ▶ drei Prozesse A, B, C und
- ▶ drei Betriebsmittel R,S,T

Prozess A

- Anforderung R
- Anforderung S
- Freigabe R
- Freigabe S

Prozess B

- Anforderung S
- Anforderung T
- Freigabe S
- Freigabe T

Prozess C

- Anforderung T
- Anforderung R
- Freigabe T
- Freigabe R

Das Betriebssystem kann jeden (nicht blockierten) Prozess **jederzeit** ausführen

Sequentielle Ausführung von A, B, C wäre unproblematisch (dann aber auch keine Nebenläufigkeit)

Wie sieht es bei nebenläufiger Ausführung aus?

Votizen	
VOLIZCII	

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 10

Notizen

7.3 Deadlocks Deadlocks

Ausführung II

1. A fordert R an

(B zunächst suspendiert)

Ť		
R	S	Т
4. C	forder	t R an
A	В	C
		1
R	S	T

S

S

Notizen		

Verfahren zur Deadlock-Behandlung

Notizen

Notizen

Mit Betriebsmittelzuteilungsgraphen ("Belegungs/Anforderungs-Graphen") lassen sich Deadlocks erkennen (→Zyklus im Graph)
Wie weiter verfahren?

Ignorieren ("Vogel-Strauß-Verfahren")

Deadlocks erkennen und beheben

Verhinderung durch Planung der Betriebsmittelzuordnung (*deadlock avoidance*)

Vermeidung durch Nichterfüllung (mindestens) einer der vier Voraussetzungen für Deadlocks (*deadlock prevention*)

Diese Strategien werden im folgenden untersucht.

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 12

7.4.1

Deadlocks Verfahren zur Deadlock-Behandlung→Ignorieren von Deadlocks

Ignorieren des Problems

"Vogel-Strauß-Algorithmus"

Ausdruck optimistischer Lebenshaltung:

"Deadlocks kommen in der Praxis sowieso nie vor"

http://clipart.cook-line.com/480/unctors/tf06038/CookCline.anim0612.pp

...warum also dann Aufwand in ihre Vermeidung stecken?

Beispiel:

- ▶ UNIX-System mit z.B. 100 Einträge großer Prozesstabelle
- ▶ 10 Programme versuchen gleichzeitig, je 12 Kindprozesse zu erzeugen
- ▶ Deadlock nach 90 erfolgreichen fork()-Aufrufen (wenn keiner der Prozesse aufgibt)

Ähnliche Beispiele sind mit anderen begrenzt großen Systemtabellen möglich (z.B. inode-Tabelle)

...manchmal nicht so gut

http://clipart.coolclips.com/480/vectors/tf05038/CoolClips_anim0613.p

http://www.instore.si/newsarticle/newsarticle/Septembra-v-Aldiju-nojevo-mesi

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 14

7.4.2

 ${\sf Deadlocks} \qquad {\sf Verfahren} \ {\sf zur} \ {\sf Deadlock\text{-}Behandlung} {\to} {\sf Erkennung} \ {\sf und} \ {\sf Behebung}$

Deadlock-Erkennung und Behebung

Engl.: deadlock detection and resolution / recovery

Vorgehensweise: Das Auftreten von Deadlocks wird vom Betriebssystem nicht verhindert. Es wird versucht, Deadlocks zu erkennen und anschließend zu beheben.

Betrachtet werden im folgenden:

Deadlock-Erkennung mit einem Betriebsmittel je Klasse (Einfacher Fall) Deadlock-Erkennung mit mehreren Betriebsmitteln je Klasse (Allgemeiner Fall) Verfahren zur Deadlock-Behebung

Deadlocks erkennen (Einfacher Fall)

Vereinfachende Annahme: **Ein Betriebsmittel** je Betriebsmitteltyp **Vorgehen:**

- erzeuge Belegungs-/Anforderungs-Graph
- ▶ suche nach Zyklen
- ▶ falls ein Zyklus gefunden wurde: Deadlock beheben (s.u.)

Wann wird die Untersuchung durchgeführt?

- ▶ bei jeder Betriebsmittelanforderung?
- ▶ in regelmäßigen Zeitabständen?
- wenn "Verdacht" auf Deadlock besteht (z.B. Abfall der CPU-Auslastung unter eine Grenze)

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 16

7.4.2

Deadlocks Verfahren zur Deadlock-Behandlung→Erkennung und Behebung

Beispiele: Sicher?

4 Prozesse, ein Betriebsmitteltyp (10 Stück vorhanden)

verfügbar: 10

hat

0

0

Proz.

Α

В

C

verfügbar: 2

hat

1

2

max.

6

Proz.

В

C

verfügbar: 1

Proz.	hat	max.
A	1	6
В	2	5
C	2	4
D	4	7
	ļi.	

sicher!

sicher!

unsicher!

z.B. sequenzielle Ausführung von A, B, C, D in beliebiger Reihenfolge ist möglich. C ist ausführbar, (\rightarrow dann 4 verfügbar) dann D, B, A möglich.

Differenz max – hat immer > verfgbar. Deadlock, sobald irgend ein Prozess auf sein Maximum zugeht

lotizen			
lotizen			

A belegt R und fordert S an.

B fordert T an.

C fordert S an.

D belegt U und fordert S und T an.

E belegt T und fordert V an.

F belegt W und fordert S an.

G belegt V und fordert U an.

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 18

7.4.2

Deadlocks Verfahren zur Deadlock-Behandlung→Erkennung und Behebung

Deadlocks erkennen

Erweiterung: Mehrere (E_i -viele) Betriebsmittel je Betriebsmitteltyp i (z.B. mehrere Drucker)

Prozesse P_1, \ldots, P_n

$$E = (E_1, E_2, \ldots, E_m)$$

Betriebsmittelvektor *E*: Gesamtzahl der BM je Typ *i*

$$A=(A_1,A_2,\ldots,A_m)$$

Verfügbarkeitsvektor A:

Gesamtzahl der BM je Typ i

Belegungsmatrix C: Zeile j gibt BM-Belegung durch Prozess j an ("Prozess j belegt C_{jk} Einheiten von BM k")

Anforderungsmatrix R: Zeile j gibt BM-Belegung durch Prozess j an ("Prozess j belegt R_{jk} Einheiten von BM k")

$$C = \begin{pmatrix} C_{11} & C_{12} \dots & C_{1m} \\ C_{21} & C_{22} \dots & C_{2m} \\ \dots & \dots & \dots \\ C_{n1} & C_{n2} \dots & C_{nm} \end{pmatrix}$$

$$R = \begin{pmatrix} R_{11} & R_{12} \dots & R_{1m} \\ R_{21} & R_{22} \dots & R_{2m} \\ \dots & \dots & \dots \\ R_{n1} & R_{n2} \dots & R_{nm} \end{pmatrix}$$

Votizen			

Erkennungsalgorithmus

Zu Beginn sind alle Prozesse aus P unmarkiert (Markierung heißt, dass der Prozess in keinem DL steckt)

Suche einen Prozess, der ungehindert durchlaufen kann, also einen unmarkierten Prozess P_i , dessen Zeile in der Anforderungsmatrix-Zeile R_i (komponentenweise) kleiner oder gleich dem Verfügbarkeitsvektor A ist

Kein passendes P_i gefunden? Dann \rightarrow **Ende**

Gefunden? Dann kann P_i durchlaufen und gibt danach seine belegten Betriebsmittel zurück: $A = A + C_i$, wird markiert und es geht beim nächsten unmarkierten Prozess weiter

Beim Ende des Verfahrens sind **alle unmarkierten** Prozesse an einem **Deadlock beteiligt**.

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 20

7.4.2

Deadlocks Verfahren zur Deadlock-Behandlung→Erkennung und Behebung

Beispiel

 $E = \begin{pmatrix} 4 & 2 & 3 & 1 \end{pmatrix} \text{ vorhanden}$ $C = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix} \text{ Belegungen}$ $A = \begin{pmatrix} 2 & 1 & 0 & 0 \end{pmatrix} \text{ verfügbar}$

$$R = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{pmatrix}$$
 Anforderungen

Ausführbar ist zunächst nur P_3

Freigabe $C_3 = (0120)$

- \Rightarrow A = (2100) + (0120)
- \Rightarrow A = (2220)

Nun ausführbar: P_2 (benötigt $R_2 = (1010)$)

Freigabe $C_2 = (2001)$

 \Rightarrow A = (4221)

Schließlich auch P_1 ausführbar

 $\Rightarrow A = (4231)$

⇒ Alle Prozesse markiert,

kein Deadlock aufgetreten.

Notizen			
. 10 1. 20 1.			

Notizen

Wie kann man auf erkannte Deadlocks reagieren?

Prozessunterbrechung

- ▶ Betriebsmittel zeitweise entziehen, anderem Prozess bereitstellen und dann zurückgeben
- ▶ Kann je nach Betriebsmittel schwer oder nicht möglich sein

Teilweise Wiederholung (rollback)

- ▶ System sichert regelmäßig Prozesszustände (checkpoints)
- ▶ Dadurch ist Abbruch und späteres Wiederaufsetzen möglich
- ► Arbeit seit letztem Checkpoint geht beim Rücksetzen verloren und wird beim Neuaufsetzen wiederholt (ungünstig z.B. bei seit Checkpoint ausgedruckten Seiten)
- ▶ Beispiel: Transaktionsabbruch bei Datenbanken

Prozessabbruch

- ► Härteste, aber auch einfachste Maßnahme
- ► Nach Möglichkeit Prozesse auswählen, die relativ problemlos neu gestartet werden können (z.B. Compilierung)

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 22

7.4.3

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Verhinderung

Verhindern von Deadlocks

Bisher: Erkennung von Deadlocks, gegebenenfalls "drastische" Maßnahmen zur Auflösung

Annahme bisher: Prozesse fordern alle Betriebsmittel "auf ein Mal" an (vgl. 7.4.2).

In den meisten praktischen Fällen werden BM jedoch nacheinander angefordert

Das Betriebssystem muss dann dynamisch über die Zuteilung entscheiden

Notizen
Notizen

Kann man **Deadlocks** durch "geschicktes" Vorgehen bei der Betriebsmittelzuteilung **von vornherein verhindern**?

Welche Informationen müssen dazu vorab zur Verfügung stehen? Im folgenden betrachtet

Betriebsmittelpfade (Grafische Veranschaulichung)

Sichere und unsichere Zustände

Der vereinfachte Bankiersalgorithmus für eine BM-Klasse

Der Bankiersalgorithmus für mehrere BM-Klassen

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 24

7.4.3

 $\begin{tabular}{ll} Verfahren zur Deadlock-Behandlung \rightarrow Deadlock-Verhinderung \\ \hline \end{tabular}$

Notizen

Definition

Ein Systemzustand ist sicher, wenn er

keinen Deadlock repräsentiert und

es eine geeignete Prozessausführungsreihenfolge gibt, bei der alle Anforderungen erfüllt werden

(die also **auch dann** nicht in einen Deadlock führt, wenn alle Prozesse gleich ihre max. Ressourcenanzahl anfordern)

Sonst heißt der Zustand unsicher.

Bei einem sicherem Zustand kann das System **garantieren**, dass alle Prozesse bis zum Ende durchlaufen können.

Bei unsicherem Zustand ist das nicht garantierbar (aber auch nicht ausgeschlossen!).

Beispiel: Ein Prozess gibt ein BM zu einem "glücklichen Zeitpunkt" kurzzeitig frei, wodurch eine Deadlock-Situation "zufällig" vermieden wird. (\rightarrow "Glück" nicht vorhersehbar) "Unsicher" bedeutet also nicht "Deadlock unvermeidlich".

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 26

7.4.3

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Verhinderung

Beispiel

3 Prozesse A,B,C; jeweils mit BM-Besitz und max. Bedarf ein Betriebsmitteltyp, 10x vorhanden

Zustand (a) ist sicher (es gibt eine DL-freie Lösung) (b2) ist **nicht** sicher (A und C brauchen je 5, frei sind nur 4)

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 27

Notizen			
Notizen			

Bankier-Algorithmus (1 BM-Klasse)

Notizen

Dijkstra (wer sonst? 1965):

- Ein Bankier kennt die Kreditrahmen seiner Kunden.
- Er geht davon aus, dass nicht alle Kunden gleichzeitig ihre Rahmen voll ausschöpfen werden.
- Daher hält er weniger Bargeld bereit als die Summe der Kreditrahmen.
- Gegebenenfalls verzögert er die Zuteilung eines Kredits, bis ein anderer Kunde zurückgezahlt hat.
- Zuteilung erfolgt nur, wenn sie "sicher" ist (also letztlich alle Kunden bis zu ihrem Kreditrahmen bedient werden können).

Bankier = Betriebssystem, Bargeld = Betriebsmitteltyp,

Kunden = Prozesse, Kredit = BM-Anforderung

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 28

7.4.3

Verfahren zur Deadlock-Behandlung→Deadlock-Verhinderung

Bankier-Algorithmus (2)

Prüfe bei jeder Anfrage, ob die Bewilligung in einen sicheren **Zustand führt:**

Prüfe dazu, ob ausreichend Betriebsmittel bereitstehen, um mindestens einen Prozess vollständig zufrieden zu stellen.

Davon ausgehend, dass dieser Prozess nach Durchlauf seine Betriebsmittel freigibt: führe Test mit dem Prozess aus, der dann am nächsten am Kreditrahmen ist

usw., bis alle Prozesse positiv getestet sind;

Falls **ja**, kann die aktuelle Anfrage **bewilligt** werden.

Sonst: Anforderung **verschieben** (warten)

Votizen			
Notizen			
Jotizen			
Votizen			
Jotizen			
Votizen			
Votizen			
Notizen			

Verallgemeinerter Bankier-Algorithmus

Mehrere Betriebsmittelklassen

Datenstrukturen wie bei "Deadlockerkennung" (7.4.2)

Matrizen mit belegten / angeforderten Betriebsmitteln Vektoren mit BM-Bestand, verfügbaren BM und belegten BM je

Betriebsmitteltyp

- ► E Betriebsmittelvektor
- ► A Verfügbarkeitsvektor
- ► C Belegungsmatrix
- ► *R* Anforderungsmatrix

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 30

7.4.3

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Verhinderung

Beispiel

$$C = \begin{pmatrix} 6 & 3 & 4 & 2 \end{pmatrix} \text{ vorhanden}$$

$$C = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 2 \end{pmatrix} \text{ zugewiesen}$$

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \end{pmatrix}$$
 verfügbar

$$P = \begin{pmatrix} 5 & 3 & 2 & 2 \end{pmatrix}$$
 belegt

$$R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$
 angefordert

Sicher? Ja, Ausführungsfolge P_4 , P_1 , P_5 , ...ist möglich:

$$P_4 \rightarrow A = \begin{pmatrix} 2 & 1 & 2 & 1 \end{pmatrix}$$

$$P_1 \rightarrow A = \begin{pmatrix} 5 & 1 & 3 & 2 \end{pmatrix}$$

$$P_5 \rightarrow A = \begin{pmatrix} 5 & 1 & 3 & 2 \end{pmatrix}$$

$$P_2 \rightarrow A = \begin{pmatrix} 5 & 2 & 3 & 2 \end{pmatrix}$$

$$P_3 \rightarrow A = \begin{pmatrix} 6 & 3 & 4 & 2 \end{pmatrix}$$

Notizen

Beispiel

 $E = \begin{pmatrix} 6 & 3 & 4 & 2 \end{pmatrix}$ vorhanden

$$C \ = \ \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 1 & \frac{1}{1} & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ zugewiesen}$$

 $A = \begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$ verfügbar

$$P = \begin{pmatrix} 5 & 3 & 3 & 2 \end{pmatrix}$$
 belegt

$$R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix} \text{ angefordert}$$

P2 fordere ein BM 3 an (rot)

Sicher? Ja, Ausführungsfolge P_4 , P_1 , P_5 , P_2 , P_3 möglich:

$$P_4 \rightarrow A = \begin{pmatrix} 2 & 1 & 1 & 1 \end{pmatrix}$$

$$P_1 \rightarrow A = \begin{pmatrix} 5 & 1 & 2 & 2 \end{pmatrix}$$

$$P_5 \rightarrow A = \begin{pmatrix} 5 & 1 & 2 & 2 \end{pmatrix}$$

$$P_2 \rightarrow A = \begin{pmatrix} 5 & 2 & 3 & 2 \end{pmatrix}$$

$$P_3 \rightarrow A = \begin{pmatrix} 6 & 3 & 4 & 2 \end{pmatrix}$$

also erhält P_2 ein BM3

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 32

7.4.3

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Verhinderung

Beispiel

_____ Hochschu

 $E = \begin{pmatrix} 6 & 3 & 4 & 2 \end{pmatrix}$ vorhanden

$$C \ = \ \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ zugewiesen}$$

 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$ verfügbar

$$P = \begin{pmatrix} 5 & 3 & 4 & 2 \end{pmatrix}$$
 belegt

$$R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix} \text{ angefordert}$$

Nun fordere auch P_5 ein BM 3 an

 \rightarrow dann würde

 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$

Sicher? Nein!

ightarrow daher Anfrage von P_5 blockieren

Notizen

Ist der Bankier-Algorithmus praktikabel?

Notizen

In der Praxis gibt es mehrere Probleme beim Einsatz:

Prozesse können "maximale Ressourcenanforderung" selten im Voraus angeben

Anzahl der Prozesse ändert sich ständig

Ressourcen können verschwinden (z.B. durch Ausfall)

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 34

7.4.4

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Vermeidung

Deadlock-Vermeidung

Deadlock-Verhinderung ist wenig praktikabel ©

Ansatz: Vermeidung mindestens einer der vier

Deadlock-Voraussetzungen (vgl 7.2)

Wechselseitiger Ausschluss

 $Belegungs\text{-}/An for derungs bedingung \ (\text{,,Hold-and-Wait", d.h. } zu$

reservierten BM weitere anforderbar)

Ununterbrechbarkeit (kein erzwungener BM-Entzug)

zyklisches Warten

Notizen		
Notizen		

1. Wechselseitiger Ausschluß?

Notizen

Falls es keine exklusive Zuteilung eines Betriebsmittels an einen Prozess gibt, gibt es auch keine Deadlocks.

Beispiel: Zugriff auf Drucker

Einführung eines **Spool-Systems**, das

- ► Druckaufträge von Prozessen (schnell) entgegennimmt
- ▶ ggf. zwischenspeichert
- ▶ und der Reihe nach auf dem Drucker ausgibt

Entkopplung zwischen (konkurrierenden)

Prozessen und dem (langsamen) Betriebsmittel

Vermeidung einer exklusiven Zuteilung des Betriebsmittels "Drucker"

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 36

7.4.4

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Vermeidung

2. Belegungs-/Anforderungsbedingung?

Vermeiden, dass neue Betriebsmittel-Anforderungen zu bereits bestehenden hinzukommen.

"Preclaiming": Alle Anforderungen zu Beginn der Ausführung stellen ("alles oder nichts")

Vorteil: Wenn Anforderungen erfüllt werden, kann der Prozess sicher bis zum Ende durchlaufen (er hat ja dann alles, was er braucht)

Nachteil:

- ► Anforderungen müssen zu Beginn bekannt sein
- ► Betriebsmittel werden unter Umständen lange blockiert
- ▶ und können zwischenzeitlich nicht (sinnvoll) anders genutzt werden.

Beispiel: Batch-Jobs bei Großrechnern.

NI_+!		
Notizen		

3. Ununterbrechbarkeit?

Notizen

Hängt vom Betriebsmittel ab, aber

"gewaltsamer" Entzug ist in der Regel nicht akzeptabel

- Drucker?
- ► CD-Brenner?

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 38

7.4.4

Deadlocks Verfahren zur Deadlock-Behandlung→Deadlock-Vermeidung

4. Zyklische Wartebedingung?

Wenn es kein zyklisches Auf-einander-warten gibt, entstehen auch keine Deadlocks

Idee:

- ▶ Betriebsmitteltypen **linear ordnen** und
- nur in aufsteigender Ordnung Anforderungen annehmen (wenn mehrere Exemplare eines Typs gebraucht werden: alle Exemplare auf einmal anfordern)
- z.B. "Drucker vor Scanner vor CD-Brenner vor ..."

Dadurch entsteht **automatisch** ein **zyklenfreier** Belegungs-Anforderungs-Graph,

wodurch Deadlocks ausgeschlossen sind.

Tatsächlich praktikables Verfahren.

Notizen		
Votizen		
Notizen		
Votizen		
Notizen		

Deadlock-Vermeidung im Überblick

Deadlock-Vermeidung durch Verhinderung (mindestens) einer der 4 Vorbedingungen eines Deadlocks ist möglich:

 ${\sf Wechselseitiger\ Ausschlu{B}} \longrightarrow {\sf Spooling}$

Belegungs-/Anforderungsbed. \rightarrow Preclaiming
Ununterbrechbarkeit (BM-Entzug...besser nicht)

Zyklisches Warten \rightarrow Betriebsmittel ordnen

© Robert Kaiser, Hochschule RheinMain

BS WS 2021/2022

7 - 40

7.5

Deadlocks Verwandte Fragestellungen

Verwandte Fragestellungen

Deadlocks bei der Benutzung von Semaphoren (vgl. Kap. 3)

Zwei-Phasen-Locking in Datenbanken

Verhungern (Starvation), kein Deadlock, aber auch kein Fortschritt für einen Prozess (vgl. Philosophen-Problem)

Notizen			
-			
NI .:			
Notizen			
-			