Material properties file format, version 1.0

The file is divided in two sections, header and data. The extension .MTR is highly recomended for files of this type.

```
$MaterialFormat
1.0 file-type data-size
$EndMaterialFormat
$Materials
number-of-materials
material-number type <type-specific-data> [text]
$EndMaterials
where:
file-type int — is equal 0 for the ASCII file format.
data-size int — the size of the floating point numbers used in the file. Usu-
     ally data-size = sizeof(double).
number-of-materials int — Number of materials defined in the file.
material-number int — is the number (index) of the n-th material. These
     numbers do not have to be given in a consecutive (or even an ordered)
     way. Each number has to be given only onece, multiple definition are
     treated as inconsistency of the file and cause stopping the calculation.
type int — is type of the material.
< type-specific-data > - format of this list depends on the type.
```

type	type-specific-data	Description
11	k	$\mathbf{K} = (k)$
-11	a	$\mathbf{A} = \mathbf{K}^{-1} = (a)$
21	k	$\mathbf{K} = \left(\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right)$
22	$k_x k_y$	$\mathbf{K} = \begin{pmatrix} k_x & 0 \\ 0 & k \end{pmatrix}$
23	k_x k_y k_{xy}	$\mathbf{K} = \begin{pmatrix} k_x & k_{xy} \\ k_{xy} & k_y \end{pmatrix}$
-21	a	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right)$
-22	$a_x a_y$	$\mathbf{A} = \mathbf{K}^{-1} = \left(\begin{array}{cc} a_x & 0\\ 0 & a_y \end{array}\right)$
-23	a_x a_y a_{xy}	$\mathbf{A} = \mathbf{K}^{-1} = \begin{pmatrix} a_x & a_{xy} \\ a_{xy} & a_y \end{pmatrix}$
31	k	$\mathbf{K} = \left(\begin{array}{ccc} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{array}\right)$
33	k_x k_y k_z	$\mathbf{K} = \begin{pmatrix} k_x & 0 & 0\\ 0 & k_y & 0\\ 0 & 0 & k_z \end{pmatrix}$
36	$k_{x} k_{y} k_{z}$ $k_{x} k_{y} k_{z} k_{xy} k_{xz} k_{yz}$ a	$\mathbf{K} = \begin{pmatrix} k_x & k_{xy} & k_{xz} \\ k_{xy} & k_y & k_{yz} \\ k_{xz} & k_{yz} & k_z \end{pmatrix}$
-31	a	(0 0 0 0)
-33	a_x a_y a_z	$\mathbf{K} = \mathbf{K}^{-1} = \begin{pmatrix} a_x & 0 & 0 \\ 0 & a_y & 0 \\ 0 & 0 & a_z \end{pmatrix}$
-36	a_x a_y a_z a_{xy} a_{xz} a_{yz}	$\mathbf{K} = \mathbf{K}^{-1} = \begin{pmatrix} a_x & a_{xy} & a_{xz} \\ a_{xy} & a_y & a_{yz} \\ a_{xz} & a_{yz} & a_z \end{pmatrix}$

Note: all variables ($k,\ k_x,\ k_y,\ k_z,\ k_{xy},\ k_{xz},\ k_{yz},\ a,\ a_x,\ a_y,\ a_z,\ a_{xy},\ a_{xz},\ a_{yz}$) are of the double type.

text char[] — is a text description of the material, up to 256 chars. This

parameter is optional.

Comments concerning 1-2-3-FLOW:

ullet If number-of-materials differs from actual number of material lines in the file, it stops the calculation.