Range Minimal Query

Гусев Илья, Булгаков Илья

Московский физико-технический институт

Москва, 2019

Содержание

- 🕕 Задача RMQ
- Sqrt-декомопзиция
- Sparse table
- 🐠 Дерево отрезков

Задача RMQ

RMQ - Range Minimum (Maximum) Query - задача поиска минимума на отрезке.

Дан массив чисел, к нему делаются запросы на поиск минимума на отрезке $\left[l,\ r \right]$

Задача RMQ

Разновидности задач

По количеству запросов:

- offline можно получить много запросов, проанализировать их все и выдать ответ на все сразу
- online обработка запросов строго по одному

По возможности измнения исходного массива:

- static массив чисел закреплён
- dynamic массив чисел меняется

Online vs offline

Тривиальное решение

Без предобработки
 Время препроцессинга: O(1)

Время ответа: O(n)

② С предобработкой Время препроцессинга: $O(n^3)$

Время ответа: О(1)

Нужно вычислить n^2 возможных отвезков, каждый вычисляем за n.

Замечание: n^3 может быть сокращен до n^2 с помощью динамики

Sqrt-декомопзиция

Поделим массив на блоки размером \sqrt{n} . Предпосчитаем минимумы на этих блоках.

При запросе берём минимум из минимумов полностью покрытых блоков и оставшихся элементов неполностью покрытых блоков.

Sqrt-декомопзиция

Время препроцессинга: O(n)

Время ответа: $O(\sqrt{n})$

Sparse table - цель

Проблема: время на ответ у sqrt-декомпозиции все еще очень долгое. Хотим: немного увеличим время на препроцессинг, но добьёмся константного времени на ответ.

```
Цель:
```

```
Препроцессинг - O(n \log n), Запрос - O(1)
```


Sparse table - интуиция

Нам не обязательно вычислять все n^2 интервалов, чтобы уметь отвечать про минимум за $\mathrm{O}(1)$. Каждый интервал может быть накрыт двумя интервалами длины степени двойки.

	0	1	2	3	4	5	6	7
0	31	31	31	26				
1		41	41	26	26			
2			59	26	26	26		*
3				26	26	26	26	
4					53	53	53	53
5						58	58	58
6							97	93
7								93

Sparse table - описание идеи

Заведем таблицу ST, такую, что она содержит минимумы на всех отрезках, длина которых есть степень двойки.

Имеем n*log(n) интервалов, которые можно вычислить за n*log(n) с помощью динамического программирования

	2^{0}	2^1	2^2	2^3
0	31	31	*	
1	41	41		
2	59	26		
3	26	26		
4	53	53		
5	58	58		
6	97	93		
7	93			

Sparse table - реализация препроцессинга

Дано: массив А

Таблица ST[k][i] = min на полуинтервале $[A[i], A[i+2^k])$.

Формула для вычисления таблицы с помощью динамики:

$$ST[k][i] = min(ST[k-1][i], ST[k-1][i+2(k-1)]).$$

Благодаря ей мы можем сначала посчитать ST[0], ST[1], потом ST[2] и т.д.

	[3]	0	0	0							
	[2]	3	2	2	2	0	0	0			
	[1]	3	6	4	2	2	5	0	0	1	
ST	[0]	3	8	6	4	2	5	9	0	7	1
		1	2	3	4	5	6	7	8	9	10
	A[i]	3	8	6	4	2	5	9	0	7	1

Sparse table - как вычислять запрос?

$$RMQ(i,j) = min(ST[k][i], ST[k][j-2^k+1]$$

 $k = log(j-i+1)$

Например,

$$RMQ(1,6) = min(ST[2][1] + ST[2][6 - 4 + 1])$$

Sparse table - оценка работы

```
Оценки работы: Препроцессинг - O( n \log n ), Запрос - O(1)
```


Дерево отрезков

Рассмотрим еще одну структуру данных для решения задачи RMQ Дерево отрезков – это двоичное дерево, в каждой вершине которого написано значение заданной функции на некотором отрезке. Функция в нашем случае – это минимум.

Дерево отрезков - построение и хранение

Как храним дерево?

Храним подобно бинарной куче - заведём массив $T[2n^{\sim}1]$.

Свойства:

- Корень будет лежать в первом элементе массива
- Листы лежат в элементах с номерами от n до 2n-1.
- Сыновья i-ой вершины будут лежать в элементах с номерами 2i и 2i+1- левый и правый соответственно.
- T[i] = min(T[2i], T[2i+1]) для i-ой вершины, не являющейся листом.

Построение за O(n) подобно бинарной куче.

Фундаментальный отрезок – такой отрезок, что существует вершина в дереве, которой он соответствует.

Утверждение: на каждом уровне их количество не превосходит 2.

Два способа вычисления решения:

- Вычисление сверху
- Вычисление снизу

Дерево отрезков - вычисление сверху

Алгоритм. Начнем проверять детей вершины root. Возможны два варианта:

- отрезок [I ...r] попадает только в одного сына корня.
 Просто перейдём в того сына, в котором лежит наш отрезок-запрос, и применим описываемый здесь алгоритм к текущей вершине.
- отрезок пересекается с обоими сыновьями. Перейти сначала в левого сына и посчитать ответ на запрос в нём, а затем перейти в правого сына, посчитать в нём ответ и выбрать min(max).

Заведём два указателя – I и r. Изначально установим I и r указывающими на листы, соответствующие концам отрезка запроса.

Заметим, что если I указывает на вершину, являющуюся правым сыном своего родителя, то эта вершина принадлежит разбиению на фундаментальные отрезки, в противном случае не принадлежит. Аналогично с указателем r — если он указывает на вершину, являющуюся левым сыном своего родителя, то добавляем её в разбиение. После этого сдвигаем оба указателя на уровень выше и повторяем операцию. Продолжаем операции пока указатели не зайдут один за другой.

Дерево отрезков - модификация

Как изменить значение элемента дерева? Заметим, что для каждого листа есть ровно log(n) фундаментальных отрезков, которые его содержат – все они соответствуют вершинам, лежащим на пути от нашего листа до корня. Значит, при изменении элемента достаточно просто пробежаться от его листа до корня и обновить значение во всех вершинах на пути по формуле T[i] = min(T[2i], T[2i+1]).

Дерево отрезков - оценка работы

Оценки работы: Препроцессинг - O(n) Запрос - O(logn)).

Дерево отрезков - максимальная сумма на подотрезке

Введём для каждой вершины 4 числа:

- Сумма на отрезке
- Максимальная из сумм на префисках отрезка:
- Максимальная из сумм на суффиксах отрезка
- Максимальная сумма на подотрезке

Шаг (из $[I_1, r_1], [I_2, r_2]$ собираем $[I_1, r_2]$):

- $S(I_1, r_2) = sum(S(I_1, r_1), S(I_2, r_2))$
- $Pr(l_1, r_2) = max(Pr(l_1, r_1), S(l_1, r_1) + Pr(l_2, r_2))$
- $Suf(l_1, r_2) = max(Suf(l_2, r_2), S(l_2, r_2) + Suf(l_1, r_1))$
- $R(I_1, r_2) = max(R(I_2, r_2), R(I_1, r_1), Pr(I_2, r_2) + Suf(I_1, r_1))$

Полезные ссылки І

E-maxx: sqrt-декомпозиция

 $\verb|https://e-maxx.ru/algo/sqrt|_decomposition|$

Xa6p: Static RMQ https://habr.com/ru/post/114980/