BT4012 Fraud Analytics Group 26

A0236495U Lim Zhen Yong A0234935Y Lam Wen Jett A0233839W Ng Han Leong, Jordan A0236437B Lo Zhi Hao

Table of contents

01

Introduction

02

Exploratory

Data Analysis

03

Data

Preprocessing

04

Models

Evaluation

05

Conclusion &

Future Works

01

Introduction

Introduction to the Problem of Online Job Fraud

Online job portals have become crucial in **connecting job** seekers with potential employers

In the first quarter of **2022**, the US alone recorded over **20,700** cases of job-related frauds, **a third** of which resulted in monetary losses.

Platforms that
effectively filter out
these scams can gain
a competitive edge,
retain more users,
and potentially
increase revenue.

The Problem - Impact on Stakeholders

Job Seekers:

Facing financial and emotional distress

Employers:

Inefficient recruitment process
Disrupts the job market

Job Platforms:

tarnish the reputation of online job platforms.

Our Aim

Enhance the reliability of online job markets by developing a fraud detection system.

Introduction to Dataset

Name: Employment Scam Aegean Dataset (EMSCAD)

Period: Between 2012 and 2014

Source: real-life job ads posted by Workable, software-as-a-service that provides applicant tracking system and recruitment software

Contributors: All the entries were manually annotated by specialized Workable employees.

Curators: Vidros et al., University of the Aegean

Criteria of Fraud: based on client's suspicious activity on the system, false contact or company information, candidate complaints and periodic detail analysis of the clients.

02

Exploratory Data Analysis

Overview

Univariate Analysis

Bivariate Analysis

Text Data
Analysis

Univariate Analysis

Dataset Overview - Null Values Detection
- Fraudulent Class Distribution - Feature
Distribution (Industry, Department,
Location)

Dataset Overview

Dataset: Employment Scam Aegean Dataset (EMSCAD)

Dimensions: 17880 rows and 18 columns (including target variable)

Target Variable: fraudulent (Class 0 - Non-Fraudulent, Class 1 - Fraudulent)

Features: job_id, title, location, department, salary_range, company_profile, description, requirements, benefits, telecommuting, has_company_logo, has_questions, employment_type, required_experience, required_education, industry, function

#	Column	Non-Null Count	Dtype
0	job_id	17880 non-null	int64
1	title	17880 non-null	object
2	location	17534 non-null	object
3	department	6333 non-null	object
4	salary_range	2868 non-null	object
5	company_profile	14572 non-null	object
6	description	17879 non-null	object
7	requirements	15184 non-null	object
8	benefits	10668 non-null	object
9	telecommuting	17880 non-null	int64
10	has_company_logo	17880 non-null	int64
11	has_questions	17880 non-null	int64
12	employment_type	14409 non-null	object
13	required_experience	10830 non-null	object
14	required_education	9775 non-null	object
15	industry	12977 non-null	object
16	function	11425 non-null	object
17	fraudulent	17880 non-null	int64
ltvn	es: int64(5), object(13)	

Features Overview

telecommuting, has_company_logo, has_questions

Binary Features

location, department, salary_range, employment_type, required_experience, required_education, industry, function

Multiclass Categorical Features

company_profile, description, requirements, benefits

Null Values Detection

Overall, out of the 17 features columns in the dataset, **12** features have **missing values**.

The features that have missing values includes (from least to most):

- 1. description
- 2. location
- 3. requirements
- 4. company_profile
- 5. employment_type
- 6. industry
- 7. function
- 8. required_experience
- 9. benefits
- 10. required_education
- 11. department
- 12. salary_range

job_id	0
description_length	0
company_profile_length	0
fraudulent	0
has_questions	0
requirements_length	0
telecommuting	0
has_company_logo	0
title	0
benefits_length	0
description	1
location	346
requirements	2696
company_profile	3308
employment_type	3471
industry	4903
function	6455
required_experience	7050
benefits	7212
required_education	8105
department	11547
salary_range	15012
dtype: int64	

Fraudulent Class Distribution

We noticed significant class imbalance in the Fraudulent target class, with 17,014 instances of non-fraudulent job postings, and only 866 instances of fraudulent jobs.

Feature Distribution - Industry

There are 133 unique industries that are observed in total. Top 3 industries are IT and Services, Computer Software and Internet.

However, 6 industries
has only 1 observation,
while 42 industries have
less than 10
observations.

Industry	Count
Alternative Dispute Resolution	1
Shipbuilding	1
Sporting Goods	1
Museums and Institutions	1
Wine and Spirits	1
Ranching	1

Feature Distribution - Departments

There are 1,337 unique departments that are observed in total. Top 3 departments are Sales, Engineering and Marketing.

However, 815
departments has only 1
observation, while 1256
departments have less
than 10 observations.

Feature Distribution - Location

In terms of location, we processed it into country and cities (details will be shared later!). There are **91 unique countries** that are observed. Top 3 locations of postings are **United States**, **Great Britain** and **Greece**.

However, 14 countries has only 1 observation, while 38 countries have less than 10 observations.

Bivariate Analysis

Fraudulent Postings by Features
(Telecommuting, Have Company Logo,
Have Questions, Employment Type,
Function, Required_education,
Required_experience)

Binary Features vs Fraudulent

Telecommuting

Have Company Logo

Has Questions

We noticed significant differences in terms of chances of fraudulent job postings across the binary features. Job that **allows telecommuting**, **does not have screening questions**, and **posted by companies which does not provide company logo** are more likely to be fraudulent.

Part-time job postings have a higher chance of being fraudulent.

When employment type is not provided (Missing Value) or is stated as others, the chances of the job posting being fraudulent is higher as well.

Executive and **Entry Level** required experience have a higher chance of being fraudulent as compared to others.

We should also note that there is a higher chance of fraud when required experience are **not** available or **not** applicable.

required experience	Occurrences	Percentage of Fraudulent	
Associate	2297	1.828472	
Director	389	4.370180	
Entry level	2697	6.637004	
Executive	141	7.092199	
Internship	381	2.624672	
Mid-Senior level	3809	2.966658	
NA values	7050	6.170213	
Not Applicable	1116	5.376344	

Required Education vs Fraudulent

	Occurrences	Percentage of Fraudulent
required_education		
Associate Degree	274	2.189781
Bachelor's Degree	5145	1.943635
Certification	170	11.176471
Doctorate	26	3.846154
High School or equivalent	2080	8.173077
Master's Degree	416	7.451923
NA values	8105	5.564466
Professional	74	5.405405
Some College Coursework Completed	102	2.941176
Some High School Coursework	27	74.074074
Unspecified	1397	4.366500
Vocational	49	0.000000
Vocational - Degree	6	0.00000
Vocational - HS Diploma	9	0.000000

In terms of education, we note that positions that require **high school** or **certification** education levels are more likely to be fraudulent.

Positions that requires **master's degree** also exhibited higher chance of being fraudulent.

Function vs Fraudulent

In terms of job functions, we notice that **Administrative** functions, **Financial Analyst** and **Accounting/Auditing** have the highest chance of being fraudulent

Coupled with the observations from required education and required experience, we do notice that most of the fraudulent postings are targeted towards less educated and experienced personnels.

Text Data Analysis

Company Profile Analysis - Job Requirements Analysis - Job Title Analysis - Job Description Analysis -Job Benefits Analysis

Job Titles vs Fraudulent

Fraudulent Job Titles

Data Entry Admin/Clerical Positions - Work From Home

Cruise Staff Wanted *URGENT*

Home Based Payroll Data Entry Clerk Position - Earn \$100-\$200 Daily

Account Sales Managers \$80-\$130,000/yr

Payroll Clerk

Non-Fraudulent Job Titles

English Teacher Abroad

Customer Service Associate

Software Engineer

Account Manager

Project Manager

Job titles in fraudulent postings tend to be more **entry level**, and tend to include details such as **salary** and **special characters**.

Job Details vs Fraudulent

In terms of job descriptions, requirements and benefits, we notice a few subtle difference between fraudulent and non-fraudulent posts.

This includes more frequent use of words such as `project`,

`online` and `require`, among the rest.

Thus, from our analysis, we do believe that **text data are important** and should be processed as features for our classification model.

03

Data Preprocessing

Data Preprocessing Techniques

Handling of Missing Values

After performing Exploratory Data Analysis:

- Categorical → "Unknown"
- Text → "No available data"

Reasoning:

 Lack of context in data collection and job postings details → Missing Completely At Random (MCAR)

Application:

 Applied across all columns with NA values for a consistent approach

Feature Engineering

Column-specific feature engineering:

- 'Location' → Split into 'country' and 'city', followed by one hot encoding
- 'Department' → Categorize rare departments as 'others'

Reasoning:

- Ensure <u>interpretable data</u> for model
- Mitigate <u>overfitting & reduce training data</u>
 <u>dimensionality</u>

Application:

 Applied to 'Country', 'city' and 'industry' columns as well

Text Preprocessing

From our Exploratory Data Analysis:

- Significant amount of text data ('title',
 'company_profile', 'description', 'requirements',
 'benefits')
- Capture context of text → <u>high value features</u>

Text Preprocessing Methods:

- Removing stopwords → reduce noise & enhance relevance of text data
- Tokenization → individual words
- Stemming and Lemmatization → basic form

Application:

 Applied to 'full_text' column → contains concatenated text data from key columns

Text Encoding

Transforming text data into machine-readable format:

- Bag of Words (BoW) → statistical embeddings of vocabularies
- Pre Trained Word2Vec Word Embedding → preprocessing method that yield the best features

Reasoning:

- Enhance <u>significance of features</u> derived from text data
- Statistical embeddings <u>capture nuanced</u>
 <u>relationships</u> within the text

SMOTE Oversampling

Due to an imbalanced dataset:

 Utilize Synthetic Minority Oversampling Technique (SMOTE)

Reasoning:

- Address class imbalances → improve model
 performance
- Counter biases towards majority class → prevent <u>model skewing</u>
- Enhance <u>generalizability</u> to unseen data

04

Model Evaluation

Metrics for Evaluation

Accuracy

Measures **overall correctness** by calculating the ratio of correctly predicted instances to the total number of instances.

Roc AUC

Illustrates the trade-off between true positive rate and false positive rate.

Precision

Assesses the accuracy of positive predictions by calculating the ratio of true positives to the sum of true positives and false positives.

Correctly identify all relevant instances of a class, calculated as the ratio of true positives to the sum of true positives and false negatives.

Combines precision and recall into a single metric, providing a balance between false positives and false negatives in a model's performance.

Best Performers (Before SMOTE)

Model	Accuracy	F1-Score	Precision	Recall	Roc AUC
LSTM (With CountVec)	99%	87%	97%	78%	81%
Decision Tree Classifier (With CountVec)	98%	78%	76%	81%	90%

Best Performers (After SMOTE)

Model	Accuracy	F1-Score	Precision	Recall	Roc AUC
XGBClassifier (With Word2Vec)	99%	87%	93%	82%	99%
KNN Classifier (With TF-IDF)	86%	42%	27%	97%	95%

Optimal Model Selected 99

Model	Accuracy	F1-Score	Precision	Recall	Roc AUC
XGBClassifier (With Word2Vec without SMOTE)	98%	80%	98%	67%	99%
XGBClassifier (With Word2Vec and SMOTE)	99%	87%	93%	82%	99%

- The Recall score increased for the model after oversampling.
- Although this comes at the cost of lower Precision, the cost of false negative is much high than false positive.

05

Conclusion & Future Works

Conclusion - Project Achievements

- successfully developed a machine learning-based fraud detection system
- combines data preprocessing, feature engineering, and the implementation of various classifiers to identify fraudulent job postings
- determined the most effective classifier

Integration of Fraud Detection Model in Real-Life Applications

Integrate our model through an API

Allow real-time analysis and classification of job postings

Ensures that fraudulent listings are identified and addressed before they reach job seekers

Periodically review existing listings on platforms

Safeguarding the job market against scams

Feedback loop

Continuously improving its adaptability to new fraud patterns.

Limitations

The EMSCAD dataset, while extensive, has a significant class imbalance which can bias the system.

Its temporal scope, focusing on listings from 2012 to 2014, may limit its effectiveness against newer fraudulent strategies

Future Directions

Enrich the dataset with more recent and geographically diverse data

To explore deep learning models for improved accuracy, especially in complex text data analysis

A collaborative effort across job platforms for a unified fraud detection system

Thank You!