Prova scritta di Calcolo Scientifico

Udine, 12 febbraio 2018

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, e_{\text{max}}, e_{\text{min}})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, e_{\max} , e_{\min} in modo che $t = e_{\min} + 1$, realmin = 1/32 e realmax = 62.
 - Quanti sono i numeri di F?
 - Definisci i numeri denormalizzati. Quanti sono i numeri denormalizzati relativi a F? Calcola gli elementi positivi di F.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Sia $x = (1.\overline{01})_2$ e $y = (10.\overline{01})_2$. Determina $\tilde{x} = fl(x) \in \mathcal{F}$ e $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Scrivi x, y e x, y come frazioni di numeri interi in base 10 e calcola gli errori relativi come frazioni di numeri interi in base 10.
 - Determina $\tilde{z}=\tilde{x}fl(+)\tilde{y}\in\mathcal{F}$ e calcola e tale che $\frac{\tilde{z}}{2^{e+1}}< realmin<\frac{\tilde{z}}{2^{e}}.$
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = \frac{2e^x}{1-x^2}$ al variare di x.
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Assumi che e^x sia ottenuto con un errore relativo maggiorato dalla precisione di macchina. Studia la stabilità degli algoritmi ottenuti dall' identità $\frac{2e^x}{1-x^2} = e^x(\frac{1}{1-x} + \frac{1}{1+x})$.
- 3. Sia $f(x) = \frac{-x^3}{3} + x^2 \frac{1}{3}$.
 - Disegna il grafico di f. Localizza le tre radici α, β, γ con $\alpha < \beta < \gamma$
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -0.5$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - La successione ottenuta con $x_0 = 1$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - Studia la convergenza a γ del metodo di Newton. La successione ottenuta con $x_0 = 3$ è convergente a γ ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.

Sia $g(x) = 3 - \frac{1}{x^2}$. Verifica che α, β, γ sono punti fissi di g.

- Studia la convergenza ad α, β, γ del metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Quando convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Proponi e analizza un criterio d'arresto.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 1 & \alpha & 2\\ \alpha & 1 & -2\\ 2 & -2 & 0 \end{array}\right).$$

- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Calcola la fattorizzazione LU di A.
- Per quale scelta del parametri α il sistema Ax = b ha unica soluzione?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro α il metodo di Gauss con il pivot parziale al primo passo scambia la prima con la terza riga di A?
- Sia $\alpha = -3$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Nota la fattorizzazione PA = LU con quali algoritmi risolvi in generale il sistema lineare Ax = b? Qual' è il costo computazioanale?
- 5. Sia $f(x) = 2\log_2(x)$. Dati i punti $P_0 = (\frac{1}{2}, f(\frac{1}{2})), P_1 = (1, f(1)), P_2 = (2, f(2)).$
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x) p(x) e determina una limitazione di $\max_{x \in [0.5, 2]} |f(x) p(x)|$.
 - Dato l' ulteriore punto $P_3=(4,f(4))$, determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P_0, P_1, P_2 nel senso dei minimi quadrati.
 - Determina il polinomio rdi primo grado di miglior approssimazione dei tre punti P_1, P_2, P_3 nel senso dei minimi quadrati.

Si vuole risolvere Ax = b..

- Scrivi la pseudocodifica del metodo di eliminazione di Gauss senza pivot parziale per calcolare x.
 - Modifica la pseudocodifica del metodo di eliminazione di Gauss per implementare la tecnica del pivot parziale in maniera efficiente.
 - Proponi un algoritmo per calcolare x quando A è triangolare superiore e scrivi la sua pseudocodifica.