

Health Professions

Applying Deep Learning to Public Health: Using Unbalanced Demographic Data to Predict Thyroid Disorder with TensorFlow

Anaelia Ovalie, John LaGue, Shih-Yin Chen, and Yasser Attiga Advisor: Patricia Francis-Lyon, Ph.D.

Abstract

- Thyroid disorders affect an estimated 20 million Americans, and up to 60% of them may not realize they have one. To help reach out to at-risk populations, Influence Health developed a model that identifies people who are more likely to have a thyroid disorder.
- The goal of this project was to create a model using deep learning techniques to see if predictions can be improved over the current Influence Health models.
- Results: By using TensorFlow's DNN classifier, our group was able to improve on Influence Health's Random Forest models, raising lift scores by 20-50 percentage points.

Neural Networks

Basic ANN

Hidden Output

Deep Neural Network

Artificial Neural Network (ANN)

- Machine learning technique that attempts to 'learn' something from a given data set by mimicking the neurons of a human brain.
- Three main sections of interconnected "neurons:" input, hidden, and output.
- Weights and biases of "neurons" are updated after each epoch.
- Used for tasks such as classifying images as cats or dogs or recognizing handwritten digits on checks.

Google's TensorFlow

• Open source machine learning software library for Python

tf.contrib.learn.DNNClassifier.__init__(hidden_units,
feature_columns, model_dir=None, n_classes=2,
weight_column_name=None,optimizer=None, activation_fn=relu,
dropout=None, gradient_clip_norm=None,
enable_centered_bias=False, config=None,
feature_engineering_fn=None, embedding_lr_multipliers=None)

- Much of our project involved running numerous models to determine important and optimal parameters
- Activation fn proved to be the most influential for our project

Methods

Sampling Methods for Imbalanced Data

- Downsampling:
- Randomly drop instances from the over-represented class
- Upsampling with Bootstrap:
- Randomly add copies of instances from the under-represented class
- Upsampling with SMOTE (Synthetic Minority Over-sampling Technique):
- Creating synthetic samples from the minor class instead of creating copies. Depending upon the amount of over-sampling required, neighbors from the k nearest neighbors are randomly chosen. Selecting two or more similar instances and perturbing an instance one attribute at a time by a random amount within the difference to the neighboring instances.

Activation functions

- Every neuron has two properties: "weight" and "bias" ("threshold")
- The role of the activation function in a neural network is to produce a non-linear decision boundary via non-linear combinations of the weighted inputs

Results

DOWNSAMPLE WITH 0.5 THRESHOLD			BOOTSTRAP WITH 0.5 THRESHOLD			SMOTE WITH 0.5 THRESHOLD			
	precision	sensitivity		precision	sensitivity			precision	sensitivity
elu	0.1172	0.7142	elu	0.1176	0.7134		elu	0.0875	0.8353
relu	0.1141	0.7233	relu	0.1143	0.7244		relu	0.1124	0.6129
relu6	0.1141	0.7235	relu6	0.1144	0.7234		relu6	0.1122	0.6142
sigmoid	0.0788	0.6479	sigmoid	0.0855	0.6094		sigmoid	NA	NA
softplus	0.1113	0.7269	softplus	0.1117	0.7246		softplus	0.0765	0.9387
softsign	0.1136	0.7300	softsign	0.1153	0.7185		softsign	0.0833	0.8675
tanh	0.1181	0.7113	tanh	0.1183	0.7114		tanh	0.0849	0.8883
DOWNSAME	PLE WITH 0.4 TH	RESHOLD	BOOTSTF	RAP WITH 0.4 TI	TH 0.4 THRESHOLD SMOTE WITH 0.4 THRESHOLD		ESHOLD		
	precision	sensitivity		precision	sensitivity			precision	sensitivity
elu	0.0988	0.8311	elu	0.0987	0.8313		elu	0.0767	0.9207
relu	0.0971	0.8386	relu	0.0967	0.8385		relu	0.0898	0.8259
relu6	0.0971	0.8388	relu6	0.0970	0.8380		relu6	0.0897	0.8270
sigmoid	0.0610	1.0000	sigmoid	0.0610	1.0000		sigmoid	NA	NA
softplus	0.0948	0.8433	softplus	0.0949	0.8422		softplus	0.0684	0.9819
softsign	0.0984	0.8304	softsign	0.0987	0.8278		softsign	0.0761	0.9267
tanh	0.0987	0.8324	tanh	0.0987	0.8343		tanh	0.0758	0.9444

Precision and Sensitivity

For each model, as precision improved, sensitivity diminished, and vice versa. This was mostly a function of threshold; when neurons had higher activation thresholds, they were less likely to misclassify someone as positive (i.e. has thyroid disorder). However, that meant they were also predisposed to selecting fewer people, leading to unbalanced confusion matrices.

Discussion

The Lift Statistic (borrowed from Influence Health)

Lift measures the performance of the model in predicting target (positive) classes at a certain percentile compared to the average prevalence in the population. It is simply the percent increase in prediction from average response at the top (10th, 20th, and so on) percentiles. For example, suppose a population has an average response rate of 5%, but a certain model has identified a segment with a response rate of 20%. Then that segment would have a lift of 300% ((20-5)/5)*100%.

Using lift as a point of comparison, our models outperform random forest classifiers.

Feature Rankings and Physiological Relevance

Feature Ran	kings
age	0.167675
income	0.145367
housemates	0.114853
division	0.110549
education	0.093428
gender	0.090256
payer	0.058479
marital	0.045166
mail	0.039942
POC	0.038789
race	0.035839
donate	0.031434

Common risk factors associated with thyroid disorders vary based on the disease, but they include family history, iodine intake deficiency, age, sex, type 1 diabetes, and radiation to the neck region. Besides age and sex, none of the other risk factors can be extracted from our demographic data. Yet, the DNN model still identified a subset of people with a higher propensity of having a disorder. If DNN classifiers using demographic data can work effectively on thyroid disorder predictions, they could likely work for other diseases as well.

Conclusion

Two main tasks of our analysis:

- Addressing unbalanced data was the key
- Chose parameters to tweak such as activation functions and hidden nodes

For all different models we built, we found out the best model with the highest effectiveness. We evaluated the models base on the precision, recall, and lift. As a result, we found that the demographic data can have some insight on detecting thyroid disorders, and using our deep neural network model, the effectiveness of targeting the potential patients can increase up to 140% with 20th percentile of the population, comparing to random selection.

In the future, if we have more medical data, we can try to find out the relationships among different diseases, and will potentially be able to build more knowledge-driven models.