How are you today?

Data Warehouse Concepts 1

STADVDB

Outline

- Data Warehouse Overview
- Transactional/Operational vs
 Analytical DB (Data Warehouse)
- Integrating Heterogeneous Databases
- Data Cube
- OLAP Operations

How do Organizations gain Competitive Advantage?

Before

- Efficient and Cost-Effective Customer
 Service
- Systems that automate Business Processes
- Large volume of Transactional data
- Stored in *Operational*Databases

Now

- Use Operational Data to support Decision-Making Activities
- Turn archived data into a Source of Knowledge
- Input to Decision-Support Systems
- Knowledge is Power

But...

Operational data may come from multiple Transactional DB!

Data Warehouse

- A subject-oriented, integrated, time-variant, and non-volatile collection of data to help analysts or management to make informed decisions in an organization (Inmon, 1990)
 - Organized around major subjects of the enterprise (e.g., product, customers, sales) rather than the operations (e.g., invoicing, stock control, product sales)
 - Constructed by integrating data from multiple heterogeneous sources (TutorialsPoint.com)
 - Collected data is identified with a particular historical time period
 - Previous data is not erased when new data is added
- Supports analytical reporting, structured and/or adhoc queries and decision-making (TutorialsPoint.com)

Types of DW Applications

- Information Processing through traditional querying, basic statistical analysis, reporting using crosstabs, tables, charts or graphs
- Analytical Processing through basic OLAP operations, e.g., slice-and-dice, drill down, drill up and pivoting
- Data Mining or knowledge discovery to find hidden patterns and associations, constructing analytical models, performing classification and prediction
- Example usage:
 - Tuning strategies, such as reposition products or brands
 - Analysis of customer buying preferences
 - Analysis of business operations

Data Mining Classic Case: Diapers & Beers

- study done by Walmart
- men who buy diapers also buy beer
- relocated beers next to diapers
- sales of beers and diapers increased significantly

Operational DB vs Data Warehouse

Operational Database	Data Warehouse
Day-to-day transaction processing	Historical analytical processing
Used by operational users (clerks, DBAs, DB professionals)	Used by knowledge workers (analysts, managers, executives)
Used to run the business	Used to analyze the business
Narrow, planned and simple updates and queries	Broad, adhoc, complex queries and analysis
Focuses on Data In (read, modify, retrieve)	Focuses on Information Out (read only)
Based on Entity Relationship and Relational Models	Based on Star, Snowflake and Constellation Schema
Primitive and highly detailed, flat relational view of data	Summarized and consolidated, multidimensional view data
DB size: 100MB to 100GB	DB size: 100GB to 100TB
Number of users: thousands	Number of users: hundreds

http://www.tutorialspoint.com/dwh/dwh_overview.htm

Integrated Data

- Data Warehouse integrates an organization's applicationoriented data from different sources
 - Data are coming from heterogeneous database sources
 - Data may be represented in different format
- A unified view of the heterogeneous data must be presented to the user

Integrating Heterogeneous DB

- Query-driven Approach
 - Wrappers and integrators are built on top of multiple DB
 - During a query, the metadata dictionary is used to translate the query into appropriate form for individual heterogeneous DB
 - Translated queries are mapped and sent to local query processors
 - Results from heterogeneous sites are integrated into global answer set
 - Disadvantages
 - Needs complex integration and filtering processes
 - Inefficient
 - Very expensive for frequent queries
 - Expensive for queries that require aggregations

Integrating Heterogeneous DB

- Update-driven Approach
 - Information from multiple heterogeneous sources are integrated and stored in a warehouse
 - Information is available for direct querying and analysis
 - Advantages
 - Provide high performance
 - Data is copied, processed, integrated, annotated, summarized and restructured in semantic data store in advance
 - Query processing does not require an interface to process data at local sources

Update-Driven Approach Design Issue: When to Gather Data

- Source Driven Architecture
 - Data sources transmit new information to warehouse, either continuously or periodically
- Destination Driven Architecture
 - Warehouse periodically requests new information from data sources

Keeping warehouse exactly synchronized with data sources is too expensive

Data Cube

- Used to represent data in multiple dimensions
- Defined by dimensions and facts
- Dimensions
 - The entities with respect to which an enterprise preserves the records

Data Cube as Lattice of Cuboids

Dimensional Hierarchy

Defines mappings from a set of lower-level concepts to higher-level concepts

Data Cube - Example

A company wants to keep track of sales records using a sales
 DW with respect to the following dimensions – time, item,
 branch and location – to keep track of monthly sales and
 branch where the items were sold

Sample 2D view of Sales Data with respect to time, item and

location

Location="New Delhi"				
	Item(type)			
Time(quarter)	Entertainment	Keyboard	Mobile	Locks
Q1	500	700	10	300
Q2	769	765	30	476
Q3	987	489	18	659
Q4	666	976	40	539
			No. of the last	

Data Cube - Example

 Sample 3D view of Sales Data with respect to time, item, branch and location

Time	Location	="Gurgao	n"	Location	="New De	lhi"	Loca	tion="Mu	mbai"
Time	Item		Item			Item			
	Mouse	Mobile	Modem	Mouse	Mobile	Modem	Mouse	Mobile	Moden
Q1	788	987	765	786	85	987	986	567	875
Q2	678	654	987	659	786	436	980	876	908
Q3	899	875	190	983	909	237	987	100	1089
Q4	787	969	908	537	567	836	837	926	987

16

How you doin'?

Data Cube - Example

 Sample 3D cube view of Sales Data with respect to time, item, branch and location

- Roll-up performs aggregation on a data cube by:
 - Climbing up a concept hierarchy for a dimension

Reducing >= 1 dimension(s)

Chicago 440
New York 1560
Toronto 395
Vancouver
Q1 605 825 14 400

Mobile Modem Phone Security item(types)

roll-up on location

Acations USA 2000

Q1 1000

Q2 Q3 Q4

Mobile Modem Phone Security

On Roll-up:

item(types)

Transcend the location hierarchy to group data from Cities to Countries

Concept Hierarchy for the dimension <u>Location</u>: Street < City < Province < Country

http://www.tutorialspoint.com/dwh/dwh_olap.htm

http://www.tutorialspoint.com/dwh/dwh_olap.htm

19

 Slice – selects one particular dimension from a given cube and provides a new sub-cube

Slice is performed for the *Time* dimension using the criterion

time = "Q1"

 Dice – selects two or more dimensions from a given cube and provides a new sub-cube

Dice is performed for the dimensions Time, Location and Item using the criteria

location = "Toronto" or "Vancover" time = "Q1" or "Q2" item = "Mobile" or "Modem"

21

Data Mart

- A database containing a subset of organization-wide data that is valuable to a specific group of people in the organization
- Supports the analytical requirements of a particular business unit (such as the Sales department), or
- Supports users who share the same requirements to analyze a particular business process (such as property sales)

- Benefits
 - Implemented on low-cost servers
 - Small in size improves enduser response time
 - Customized by department
 - Easier to build

Data Warehouse	Data Mart			
Scope	Scope			
 Application independent Centralized, possibly enterprise-wide Planned 	 Specific DSS application Decentralized by user area Organic, possibly not planned 			
Data	Data			
 Historical, detailed, and summarized Lightly denormalized 	 Some history, detailed, and summarized Highly denormalized 			
Subjects	Subjects			
 Multiple subjects 	 One central subject of concern to users 			
Sources	Sources			
 Many internal and external sources 	 Few internal and external sources 			
Other Characteristics	Other Characteristics			
 Flexible Data oriented Long life Large Single complex structure 	 Restrictive Project oriented Short life Start small, becomes large Multi, semi-complex structures, together complex 			

References

Chapter 32: Data Warehouse Design

Connolly, T. & Begg, C. (2015). Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition. Harlow, Essex: Addison-Wesley

Chapter 29: Overview of Data Warehousing and OLAP

Elmasri, R. & Navathe, S. (2011). Fundamentals of Database Systems, 6th Edition. Boston: Pearson/Addison Wesley

Chapter 9: Data Warehousing

Hoffer, J., Ramesh, V. and Topi, H. (2012). Modern Database Management, 11th Edition. Upper Saddle River, N.J.: Pearson/Prentice Hall

Chapter 20: Data Mining

Silberschatz, A., Korth, H. & Sudarshan, S. (2010). Database System Concepts, 6th Edition. McGraw-Hill Book Co.

Online

www.tutorialspoint/dwh/index.htm

TutorialsPoint.com, Data Warehousing Tutorial

24