Sprawozdanie Bartłomiej Jurga 311576

Lokalne układy odniesienia

Celem ćwiczenia jest zapoznanie się z lokalnymi układami 1992 oraz 2000 i odwzorowaniem Gaussa-Krügera. Porównanie różnic we wartościach współrzędnych, pól powierzchni i zniekształceń dla danych z poprzedniego zadania.

Wstęp teoretyczny

Południk osiowy – linia odwzorująca się z danego układu lokalnego na mapę bez żadnych zniekształceń. Im dalej się odsuniemy od niego, tym większe będą zniekształcenia odwzorowawcze.

Odwzorowanie Gaussa-Krügera – odwzorowanie kartograficzne pasów południkowych na walec styczny do południka osiowego każdego odwzorowywanego pasa. Jest ono wiernokątne i poprzeczne. Południk styczności (osiowy) wyznacza oś X, równik oś Y.

Układ "1992"

Układ 1992 opiera się na odwzorowaniu walcowym Gaussa-Krügera elipsoidy lokalnej GRS80. Układ współrzędnych jest jednolity dla całego kraju.

Elementarna skala długości południka środkowego $m_0 = 0.9993$.

Zniekształcenie wacha się od -70cm/km do +90cm/km.

Obraz Polski jest przesunięty o 5 300 000m w stosunku do obrazu równika, zatem wzory na współrzędne kartezjańskie X Y wyrażają się wzorami:

$$X = m_0 * X_{GK} - 5 300 000m$$

$$Y = m_0 * Y_{GK} + 500 000m$$

 $X_{GK},\,Y_{GK}-współrzędne odwzorowania Gaussa-Krügera$

Odwzorowanie jest równokątne (konforemne), walcowe i poprzeczne.

Początek układu znajduje się w punkcie przecięcia południka $L_0 = 19^\circ$ z obrazem równika

Układ 1992 stanowi podstawę do sporządzania map w skalach 1:10000 i mniejszych, ze wzgłedu na duże zniekształcenia (w porównaniu do na przykład układu 2000) nie jest używany do opracowań map w większych skalach.

Układ "2000"

Układ 2000 opiera się na odwzorowaniu walcowym Gaussa-Krügera elipsoidy lokalnej GRS80. Kraj jest podzielony na cztery pasy południkowe o szerokości 3° i południkach osiowych 15°,18°,21°,24° długości geograficznej wschodniej, ponumerowane odpowiednio numerami 5,6,7,8.

Południk osiowy każdej ze stref odwzorowuje się na linię prostą z elementarną skalą m0 = 0.999923.

Zniekształcenia wynoszą od -7.7cm/km do +7cm/km.

Początkiem układu współrzędnych dla każdej ze stref jest punkt przecięcia obrazu równika z obrazem południka osiowego, otrzymuje on współrzędną x = 0m.

Układ został stworzony w celu wprowadzenia mapy zasadniczej (Podstawowej Mapy Kraju).

Wzory na współrzędne kartezjańskie:

$$X_{2000} = m_0 * X_{GK}$$

$$Y_{2000} = m_0 * Y_{GK} + nr_strefy * 1 \ 000 \ 000 + 500 \ 000$$

Przebieg zadania

Zadanie rozpoczęto od napisania algorytmu przeliczającego współrzędne krzywoliniowe fi, lamda na płaskie współrzędne w odwzorowaniu Gaussa-Krügera na podstawie poniższych wzorów:

Zależności między współrzędnymi G-K a geodezyjnymi fi lambda

2. Wzory robocze x, y = f (B,L)

Formuły odwzorowawcze przeliczające współrzędne krzywoliniowe na płaskie współrzędne w odwzorowaniu G-K (współrzędne lokalne w strefie odwzorowawczej)

$$x = \sigma + \frac{l^2}{2} \cdot N \cdot \sin \varphi \cdot \cos \varphi \cdot \begin{cases} 1 + \frac{l^2}{12} \cos^2 \varphi \cdot (5 - t^2 + 9\eta^2 + 4\eta^4) \\ + \frac{l^4}{360} \cos^4 \varphi \cdot (61 - 58t^2 + t^4 + 270\eta^2 - 330\eta^2 t^2) + \dots \end{cases}$$

$$y = l \cdot N \cos \varphi \cdot \left\{ 1 + \frac{l^2}{6} \cos^2 \varphi \cdot (1 - t^2 + \eta^2) + \frac{l^4}{120} \cos^4 \varphi \cdot (5 - 18t^2 + t^4 + 14\eta^2 - 58\eta^2 t^2) + \dots \right\}$$

gdzie: t = tgB, $\eta^2 = e'^2 \cdot \cos^2 B$, $1 = L - L_o$ jest wyrażone w radianach.

Wartość σ - długości łuku południka otrzymujemy z równania:

$$\sigma = a(A_0 \varphi - A_2 \sin 2\varphi + A_4 \sin 4\varphi - A_6 \sin 6\varphi + \dots)$$

$$gdzie \qquad A_0 = 1 - \frac{e^2}{4} - \frac{3e^4}{64} - \frac{5e^6}{256}, \quad A_2 = \frac{3}{8} \cdot \left(e^2 + \frac{e^4}{4} + \frac{15e^6}{128}\right), A_4 = \frac{15}{256} \cdot \left(e^4 + \frac{3e^6}{4}\right), \quad A_6 = \frac{35e^6}{3072}.$$

Współrzędne x y będziemy nazywać współrzędnymi lokalnymi na płaszczyźnie Gaussa-Krugera.

Gdzie $e^{2} = 0.00673949677548$ kwadrat drugiego mimośrodu

 $L_0 = 19^{\circ}$ dla G-K i układu 1992 lub $15^{\circ}/18^{\circ}/21^{\circ}/24^{\circ}$ dla układu 2000

Jako dane przyjęto punkty z poprzedniego zadania.

Następnie napisano algorytm przeliczający współrzędne płaskie z odwzorowania G-K na układy 1992 i 2000, oraz algorytmy odwrotne, oparte na teorii podanej na początku sprawozdania.

Ostatni został napisany algorytm odwrotny do Gaussa-Krügera, zamieniający poprzez iterowanie współrzędne płaskie na krzywoliniowe (fi lamda):

3.3. Algorytm

1. Iteracyjne wyznaczenie pierwszego przybliżenia szerokości geodezyjnej φ_1 :

$$\varphi_1^{i=0} = \frac{x_{gk}}{aA_0}; \quad \sigma^i = f(\varphi_1^i)$$
 – na podstawie wzoru pkt. 2.3.3;

$$\varphi_1^i = \varphi_1^{i-1} + \frac{x_{gk} - \sigma^{i-1}}{aA_0}; \quad \text{Warunek zakończenia iteracji: } |\varphi_1^i - \varphi_1^{i-1}| < 0".000001$$

2. Wielkości pomocnicze (obliczone w funkcji φ_1):

$$N_1$$
; M_1 ; t_1 ; η_1 ;

3. Współrzędne geodezyjne:

$$\varphi = \varphi_1 - \frac{y_{gk}^2 t_1}{2M_1 N_1} \cdot \left\{ 1 - \frac{y_{gk}^2}{12N_1^2} \cdot \left(5 + 3t_1^2 + \eta_1^2 - 9\eta_1^2 t_1^2 - 4\eta_1^4 \right) + \frac{y_{gk}^4}{360N_1^4} \cdot \left(61 + 90t_1^2 + 45t_1^4 \right) + \dots \right\};$$

$$\lambda = \lambda_0 + \frac{y_{gk}}{N_1 \cos \varphi_1} \cdot \left\{ 1 - \frac{y_{gk}^2}{6N_1^2} \cdot \left(1 + 2t_1^2 + \eta_1^2 \right) + \frac{y_{gk}^4}{120N_1^4} \cdot \left(5 + 28t_1^2 + 24t_1^4 + 6\eta_1^2 + 8\eta_1^2 t_1^2 \right) + \dots \right\};$$

Od razu obliczane też są elementarne skale długości i zniekształcenia odwzorowawcze dla każdego punktu oraz pola prostokątu ABDC.

Skala długości (m_{92}) w układzie współrzędnych PL-1992 wynosi:

$$m_{92} = m_{092} \cdot m_{GK} = 0,9993 \, m_{GK} \tag{59}$$

zaś zniekształcenia długości (Z₉₂):

$$Z_{92} = m_{92} - 1 (60)$$

Skala pól (p_{GK}) na płaszczyźnie Gaussa-Krügera obliczana jest ze wzoru:

$$p_{GK} = m_{GK}^2 \tag{61}$$

natomiast w układzie współrzędnych PL-1992 wg wzoru:

$$p_{92} = m_{092}^2 \cdot p_{GK} = m_{092}^2 \cdot m_{GK}^2 = 0,9993^2 \cdot m_{GK}^2.$$
 (62)

Zestawienie wyników

	1. Zestawienie współrzędnych								
	Xgk	Ygk	X2000	Y2000	X1992	Y1992			
Α	5570120.598	124812.240	5568256.030	7482170.562	266221.513	624724.871			
В	5542315.026	125464.213	5540450.350	7482077.452	238435.406	625376.388			
С	5571077.962	160469.933	5568256.030	7517829.438	267178.207	660357.604			
D	5543273.894	161308.310	5540450.350	7517922.548	239393.602	661195.394			
S	5556666.778	143014.258	5554323.110	7500000.000	252777.112	642914.148			
М	5556696.771	143059.016	5554351.883	7500045.531	252807.084	642958.875			

2. Zestawienie pól powierzchni(km²)						
Pelipsoidalne	Pgk	P2000	P1992			
994.265196067564	994.761149108003	994.108283724926	993.368970932222			

	3. Elementarna skala długości i zniekształcenia (cm/km)					
	mgk	Kgk(1km)	m 2000	K2000(1km)	m 1992	K1992(1km)
Α	1.000191	19.1	0.999927	-7.3	0.999491	-50.9
В	1.000193	19.3	0.999927	-7.3	0.999493	-50.7
С	1.000316	31.6	0.999927	-7.3	0.999616	-38.4
D	1.000319	31.9	0.999927	-7.3	0.999619	-38.1
S (średniej						
szerokości)	1.000251	25.1	0.999923	-7.7	0.999551	-44.9
M						
(środkowy)	1.000251	25.1	0.999923	-7.7	0.999551	-44.9

	4. Elementarna skala długości i zniekształcenia (m²/ha)					
	m^2 gk	K ² gk(1ha)	m ² 2000	K ² 2000(1ha)	m ² 1992	K ² 1992 (1ha)
Α	1.000383	3.825	0.999854	-1.462	0.998982	-10.175
В	1.000387	3.865	0.999854	-1.461	0.998986	-10.135
С	1.000632	6.324	0.999854	-1.462	0.999232	-7.680
D	1.000639	6.390	0.999854	-1.461	0.999239	-7.614
S (średniej						
szerokości)	1.000502	5.023	0.999846	-1.540	0.999102	-8.980
M						
(środkowy)	1.000503	5.026	0.999846	-1.540	0.999102	-8.976

Wnioski

Zniekształcenia w układzie 2000 są zdecydowanie mniejsze od tych w układzie 1992 (maksymalnie 7.7 cm/km zniekształcenia w układzie 2000 to ponad sześć razy mniejsze zniekształcenie niż 50.9 cm/km w układzie 1992). Dokładność samego Gaussa-Krügera plasuje się pośrodku tych dwóch układów.

Różnica ta powiększa się jeszcze bardziej, gdy weźmiemy większą jednostkę odległości, w tym przypadku będzie to hektar.

Zniekształcenie pola na jeden hektar w układzie 1992 wynosi 10.18 m²/ha. Jest to prawie siedem razy większe zniekształcenie niż w układzie 2000. To doświadczenie potwierdza fakt, że układ 2000 jest zdecydowanie dokładniejszy i co za tym idzie, lepszy do odwzorowywania map wielkoskalowych.