Cpts 570 Homework 2

Xinyu Liu

October 2021

Analytical Analysis

1

 \mathbf{a}

We know that w= vector point from - to +. Therefore $w=C_+-C_-$. Any point on the hyperplane $w\cdot x+b$ is 0 and hyperplane is in the middle of C_+,C_- . Therefore, we have $w\cdot \frac{C_+-C_-}{2}+b=0$. Use w we found, $b=-(C_+-C_-)\cdot \frac{C_+-C_-}{2}$

b

Number of support vectors = points that lies on margin

 $\mathbf{2}$

a

$$\begin{aligned} \exp(-\frac{1}{2}||x_{i}-x_{j}||^{2}) \\ & exp(-\frac{1}{2}(||x_{i}||^{2}-2x_{i}x_{j}+||x_{j}||^{2})) \\ & exp(x_{i}x_{j}-\frac{1}{2}||x_{i}||^{2}-\frac{1}{2}||x_{j}||^{2}) \\ & exp(x_{i}x_{j})exp(-\frac{1}{2}||x_{i}||^{2}-\frac{1}{2}||x_{j}||^{2}) \\ & exp(-\frac{1}{2}||x_{i}||^{2}-\frac{1}{2}||x_{j}||^{2}) = \text{some constant C} \\ & C*exp(x_{i}x_{j}) \\ & = C*\sum_{n=0}^{\infty}\frac{x_{i}^{n}x_{j}^{n}}{n!} \\ & = C*\sum_{n=0}^{\infty}\frac{(x_{i}x_{j})^{n}}{n!} \\ & = C*\sum_{n=0}^{\infty}\frac{K(x_{i}x_{j})}{n!} \\ & \text{Kernel for any n} \end{aligned}$$

b

$$||\phi(x_i) - \phi(x_j)||^2$$

= $||\phi(x_i)||^2 - 2\phi(x_i)\phi(x_j) + ||\phi(x_j)||^2$
RBF kernel has range (0, 1)

$$= 1 - 2 * 0 + 1 = 2 \le 2$$

3

Again, RBF kernel has range (0,1), when x_i and x_j are very far, $K(x_i, x_j) = 0$ Therefore $f(x_{far}) = \sum a_i y_i K(x_{far}, x_i) + b = 0 + b$

4

According to Mercer's theorem, the kernel function has to be symmetric and positive-finite. We know that a legal kernel function is $K = \langle x_i, x_j \rangle$, which means $\langle x_i, x_j \rangle$ is positive. Therefore, $-\langle x_i, x_j \rangle$ is not positive and does not satisfy Mercer's theorem.

 $\mathbf{5}$

Soft margin optimization is $min \frac{1}{2}||w||^2 + C \sum \xi_i$.

 $C \sum \xi_i$ means bend for fitting training samples by C * sum of all cost, therefore we substitute ξ_i with C_+ and C_- depending on whether i is +1 or -1.

Changed version would be $min_{\frac{1}{2}}^{\frac{1}{2}}||w||^2 + C\sum_i C_i$ where $C_i = C_+$ or C_-

6

 \mathbf{a}

Training formula would be optimizing $min^{\frac{1}{2}}||w||^2 + c\sum_i \xi_i$ where ξ_i is the coarseness of i-th cluster

b

If current refine level accuracy is too low, then increase the amount of refinement.

 \mathbf{c}

The refining SVM should stop when current cluster accuracy = next level refined cluster accuracy

7

 \mathbf{a}

He only needs to pick B-th closest to margin support vectors from SV, because those have more weight values for classifying.

b

 $f(u) = \sum_{i \in SV}^{B} \alpha_i x_i u$. for all B are obtained from (a), then update weights based on f(u)

Programming and Empirical Analysis

1

1a.

The graphs for 1a takes too long to generate since SVC() takes long to converge. However, I have accuracy for what I've got so far.

	Training	Validation	Testing
10^{-4}	0.91620	0.8454	0.8351
10^{-3}	0.9228	0.83775	0.8282
10^{-2}	0.9267	0.8355	0.827

We can see that as C parameter increases, so does training accuracy. However, validation and testing accuracy go down. When C is too large, that means tolerance for training data is too high, thus causing overfitting.

Following is the graph when max_iter = 500000. Since it doesn't reach convergence, we can't really say much about this result. However, we can see that accuracy becomes a flat line starting at 10^{-1} . It's possible that C becomes too large and completely overrules optimization.

1b.

 \bullet Best C is: 0.0001

• Accuracy: 0.8382

Confusion matrix:

1c.

We find C = 0.0001 is the best option from 1a. When we use a polynomial kernel function of 2, 3, 4 degrees, we can see that accuracy drop dramatically. Therefore, we can conclude that linear kernel fits best for fashion-mnist data. Also, support vectors increase as accuracy drop, likely it's because when using extra support vectors for margin maximization causes overfitting.

Following are some extra graphs for other C.

 $\mathbf{2}$

Graph takes way too long, therefore I only have code for this question.

3

	Training	Validation	Testing
ID3	1.0	0.9705	0.9489
Pruned	0.9916	1.0	0.9708

As we can see, the training accuracy for ID3 is 100% as expected. Validation and testing are relatively high also. After pruning, there is a big increase in accuracy for validation and testing with only a very slight drop for training.