Простые, но важные инструменты теории игр

Б. А. Золотов, Турнир юных математиков Фонд «Время Науки»

8 ноября 2020

К чему скриншотить презентацию, когда можно её скачать

Слайды доступны по ссылке: http://bit.ly/spbtym-game-theory

Игры с олимпиад

Они же — игры с полной информацией.

- Множество позиций
- Игроки делают ходы по очереди
- Игрокам известны все возможные ходы из каждой позиции
- На некоторых позициях определяется исход игры, например — «проигрывает тот, кто не может сделать ход».

Кто выигрывает при правильной игре?

Правильная игра — никто из игроков не знает, какой ход его соперник сделает следующим.

Нет ни игры «в поддавки», ни игры «в худший случай». Нельзя сводить рассмотрение такой игры к рассмотрению одного варианта поведения противника.

Что такое выигрышная стратегия

Это правило, которое описывает ответы данного игрока на *любые* ходы его противника и при любых ходах противника приводит к выигрышу.

Мы должны уметь отвечать на любой возможный ход — разумеется, по-разному. Во всех разумных играх стратегия существует, причём только у одного игрока.

Ничья

Изредка бывает, что выигрышных стратегий нет, каждый игрок может не проигрывать.

Симметрия

Двое размещают прямоугольники 6×1 на доске 100×100 .

Симметрия

Двое размещают прямоугольники 6×1 на доске 100×100 .

Симметрия ещё глупее

Есть две кучи по 100 монеток. Можно вынуть сколько угодно монеток из одной кучи.

Симметрия ещё глупее

Есть две кучи по 100 монеток. Можно вынуть сколько угодно монеток из одной кучи.

Тоже симметрия, но в шахматных фигурах

Двое по очереди ходят ладьёй по шахматному полю, причём ходить можно только вниз или влево.

Тоже симметрия, но в шахматных фигурах

Двое по очереди ходят ладьёй по шахматному полю, причём ходить можно только вниз или влево.

Камни из кучи

- \blacksquare Дана куча из k камней. За ход можно вынуть из неё от 1 до 7 камней. Проигрывает тот, кто не может сделать ход.
- Дана куча из k камней. За ход можно вынуть из неё от 1 до 7, а также 9 камней. Проигрывает тот, кто не может сделать ход.

Камни из кучи

- \blacksquare Дана куча из k камней. За ход можно вынуть из неё от 1 до 7 камней. Проигрывает тот, кто не может сделать ход.
- Дана куча из k камней. За ход можно вынуть из неё от 1 до 7, а также 9 камней. Проигрывает тот, кто не может сделать ход.

Выигрывает второй при k, делящемся на 8, и первый иначе.

Выигрышные и проигрышные позиции

Это метод решения задач на игры, который работает почти всегда, если у каждой позиции есть простое описание.

Выигрышная позиция — у игрока, начинающего в ней, есть стратегия. Проигрышная — нет стратегии.

Например, «последняя» позиция — проигрышная. Позиции, из которых есть ход в «последнюю», — выигрышные.

Теорема о характеризации позиций

Выигрышные позиции — такие, из которых есть ход хотя бы в одну проигрышную.

Проигрышные позиции — такие, ходы из которых только в выигрышные.

В соответствии с этим утверждением можно проанализировать все позиции, начиная с конечной.

Примеры

В куче n камней, из неё можно вынуть a_1, a_2, \ldots, a_k камней.

0 камней — проигрышная позиция, остальные расставим.

Примеры

В куче n камней, из неё можно вынуть a_1, a_2, \ldots, a_k камней. 0 камней — проигрышная позиция, остальные расставим.

Двое ходят королём по шахматной доске, можно ходить только вниз, влево или вниз-влево.

Примеры

В куче n камней, из неё можно вынуть $a_1,\ a_2,\ \dots,\ a_k$ камней. 0 камней — проигрышная позиция, остальные расставим.

Двое ходят королём по шахматной доске, можно ходить только вниз, влево или вниз-влево.

Игра Ним

Имеется k кучек, в них N_1 , N_2 , ..., N_k камней. Можно вынуть сколько угодно камней, но только из одной кучи.

Ним-сумма

Переведём размеры кучек в двоичную систему и сложим без переноса разрядов.

То же самое, что разложить в сумму степеней двойки и посмотреть, каких из них нечётное число.