BÚSQUEDA LOCAL: CONECTIVIDAD

Tecnología Digital V: Diseño de Algoritmos Universidad Torcuato Di Tella

Motivación

Recapitulando

- 1. Dado el estado (solución factible) actual, nos movemos a una solución en el vecindario definido por $N_{\rm op}$ que sea mejor.
- 2. El algoritmo converge a un óptimo local.
- 3. No puede garantizar convergencia a un **óptimo global**.

Motivación de la composición del composición de la composición de

Recapitulando

- 1. Dado el estado (solución factible) actual, nos movemos a una solución en el vecindario definido por $N_{\rm op}$ que sea mejor.
- 2. El algoritmo converge a un óptimo local.
- 3. No puede garantizar convergencia a un óptimo global.

Observación

Quizás moverse siempre a una solución que mejore es demasiado *codicioso*. Quizas podemos relajar esta condición...

Pregunta

Dada una solución factible $s \in S$ y un vecindario N(s), existe una forma de llegar desde s a una sólución $s^* \in S$ que sea un óptimo global?

l

Def: Vecindario Conectado

Un vecindario N_{op} se dice **conectado** si para toda solución factible $s_0 \in S$, existe una secuencia de pasos $s_i \in N_{\mathrm{op}}(s_{i-1}), 1 \leq i \leq k$ tal que s_k sea un óptimo global.

Def: Vecindario Conectado

Un vecindario N_{op} se dice **conectado** si para toda solución factible $s_0 \in S$, existe una secuencia de pasos $s_i \in N_{\mathrm{op}}(s_{i-1}), 1 \leq i \leq k$ tal que s_k sea un óptimo global.

Def: Vecindario Conectado

Un vecindario N_{op} se dice **conectado** si para toda solución factible $s_0 \in S$, existe una secuencia de pasos $s_i \in N_{\mathrm{op}}(s_{i-1}), 1 \leq i \leq k$ tal que s_k sea un óptimo global.

Lema

Sea $N_{\rm op}$ un vecindario no conetado, y $s \in S$ una solución no conectada para $N_{\rm op}$. Entonces para todo $s' \in N_{\rm op}(s)$ tiene que ser necesariamente una solución no conectada dado $N_{\rm op}$.

Intuición y definición

Vecindario conectado

Vecindario no conectado

Operador swap

Tomar dos vértices e intercambiar sus posiciones.

$$s = (0, v_1, v_2, v_4, v_3, v_6, v_5, 0)$$

Aplicamos $s' = \mathbf{swap}(s, v_3, v_4)$ $s' = (0, v_1, v_2, v_3, v_4, v_6, v_5, 0)$

Operador swap

Tomar dos vértices e intercambiar sus posiciones.

$$s \quad = \quad (0, v_1, v_2, v_4, v_3, v_6, v_5, 0)$$

Pregunta

Como demostramos que un vecindario N_{op} es conectado?

Pregunta

Como demostramos que un vecindario N_{op} es conectado?

Respuesta

Suponemos que conocemos una solución óptima genérica, mostramos explícitamente como armar la secuencia de transformaciones para una solución incial $s_0 \in S$.

$$s_0 = (0, v_1, v_2, v_4, v_3, v_6, v_5, 0)$$
 Solución inicial

$$\begin{split} s_0 = (0, v_1, v_2, v_4, v_3, v_6, v_5, 0) \\ \text{Solución inicial} \end{split}$$

$$\begin{split} s_1 &= (0, v_1, v_2, \textcolor{red}{v_3, v_4}, v_6, v_5, 0) \\ s_1 &= \mathbf{swap}(s_0, v_3, v_4) \end{split}$$

$$\pi = (0, v_1, v_2, v_3, v_4, v_5, v_6, 0)$$
 Solución óptima

$$s_0 = (0, v_1, v_2, v_4, v_3, v_6, v_5, 0) \label{eq:s0}$$
 Solución inicial

$$s_2 = (0, v_1, v_2, v_3, v_4, v_5, v_6, 0)$$

$$s_2 = swap(s_1, v_5, v_6)$$

$$\begin{split} s_1 &= (0, v_1, v_2, \textcolor{red}{v_3}, \textcolor{red}{v_4}, v_6, \textcolor{blue}{v_5}, 0) \\ s_1 &= \mathbf{swap}(s_0, v_3, v_4) \end{split}$$

$$\pi = (0, v_1, v_2, v_3, v_4, v_5, v_6, 0)$$

Solución óptima

TSP y Swap: Formalización

- s: solución inicial
- π: solución óptima
- 1. **Para** i = 1, ..., n
- 2. Si $\pi_i \neq s_i$
- 3. Sea s_i tal que $s_i == \pi_i$
- 4. Aplicar $s = \mathbf{swap}(s, s_j, \pi_i)$ (Notar que necesariamente j > i)
- Fin Si
- 6. Fin Para

Segundo ejemplo: m-TSP

Definición: m-TSP

Consideramos un grafo completo G=(V,E), con $V=\{0,1,\ldots,n\}$, o representa el depósito. Sea c_{ij} el costo asociado al arco (i,j) y $m\geq 1$ la cantidad de vehículos. El objetivo del m-TSP es determinar un circuito para cada vehículo de forma tal que cada vértice $i\in V\setminus\{0\}$ sea visitado una única vez, minimizando el costo total, empezando y terminando en el depósito.

Segund ejemplo: m-TSP (m = 2) y Swap

Generalizamos **swap** a múltiples rutas.

Pregunta

El operador **swap** es conectado para el *m*-TSP?

Pregunta

El operador **swap** es conectado para el *m*-TSP?

Observación

swap no altera la cardinalidad (cantidad de vértices) de una ruta.

Solución factible (s)

Solución óptima (π)

Conectividad y búsqueda local: Para qué?

- 1. Es una propiedad deseable para un operador, ya que nos garantiza que existe una forma de llegar a un óptimo global del problema.
- 2. En problemas con un gran número de restricciones los operadores suelen quedar desconectados.
- Conceptualmete es una propiedad importante para escapar de óptimos locales:
 - Expandir el vecindario: generar un árbol acotado de secuencias de aplicaciones del operador. Ejemplo: Chained Lin-Kernighan para TSP.
 - Esquemas meta-heurísticos: bajo determinadas circunstancias, moverse a una solución del vecindario que no sea necesariamente mejor. Ejemplo: Simmulated Annealing, Tabú Search.