A MONOTONICITY PROPERTY OF RIEMANN'S XI FUNCTION AND A REFORMULATION OF THE RIEMANN HYPOTHESIS

Jonathan ${\rm Sondow^1}$ and ${\rm Cristian~Dumitrescu^2}$

¹209 West 97th Street, New York, New York 10025, USA E-mail: jsondow@alumni.princeton.edu

²119 Young Street, Kitchener, Ontario, N2H4Z3, Canada E-mail: cristiand43@gmail.com

(Received June 8, 2009; Accepted November 24, 2009)

[Communicated by Attila Pethő]

Abstract

We prove that Riemann's xi function is strictly increasing (respectively, strictly decreasing) in modulus along every horizontal half-line in any zero-free, open right (respectively, left) half-plane. A corollary is a reformulation of the Riemann Hypothesis.

1. Introduction

The Riemann zeta function $\zeta(s)$ is defined as the analytic continuation of the Dirichlet series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} ,$$

which converges if $\Re(s) > 1$. The zeta function is holomorphic in the complex plane, except for a simple pole at s = 1. The real zeros of $\zeta(s)$ are $s = -2, -4, -6, \ldots$ Its nonreal zeros lie in the *critical strip* $0 \le \Re(s) \le 1$. The *Riemann Hypothesis* asserts that all the nonreal zeros lie on the *critical line* $\Re(s) = 1/2$.

Riemann's xi function $\xi(s)$ is defined as the product

$$\xi(s) := \frac{1}{2}s(s-1)\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s),$$

 $Mathematics\ subject\ classification\ number:\ 11 M26.$

Key words and phrases: critical line, critical strip, functional equation, gamma function, Hadamard product, horizontal half-line, open half-plane, increasing in modulus, monotonicity, nonreal zero, Riemann Hypothesis, Riemann zeta function, xi function.

where Γ denotes the gamma function. The zero of s-1 cancels the pole of $\zeta(s)$, and the real zeros of $s\zeta(s)$ are cancelled by the (simple) poles of $\Gamma\left(\frac{1}{2}s\right)$, which never vanishes. Thus, $\xi(s)$ is an entire function whose zeros are the nonreal zeros of $\zeta(s)$ (see [1, p. 80]). The xi function satisfies the remarkable functional equation

$$\xi(1-s) = \xi(s).$$

We prove the following monotonicity property of $\xi(s)$. (Throughout this note, *increasing* and *decreasing* will mean strictly so, and a *half-line* will be a half-infinite line not including its endpoint.)

THEOREM 1. The xi function is increasing in modulus along every horizontal half-line lying in any open right half-plane that contains no zeros of xi. Similarly, the modulus decreases on each horizontal half-line in any zero-free, open left half-plane.

For example, since $\xi(s) \neq 0$ outside the critical strip, if t is any fixed number, then $|\xi(\sigma+it)|$ is increasing for $1 < \sigma < \infty$ and decreasing for $-\infty < \sigma < 0$.

In the next section, as a corollary of Theorem 1, we give a reformulation of the Riemann Hypothesis (a slight improvement of [2, Section 13.2, Exercise 1 (e)]). The proof of Theorem 1 is presented in the final section.

2. A reformulation of the Riemann Hypothesis

Here is an easy corollary of Theorem 1.

COROLLARY 1. The following statements are equivalent.

- (i) If t is any fixed real number, then $|\xi(\sigma+it)|$ is increasing for $1/2 < \sigma < \infty$.
- (ii) If t is any fixed real number, then $|\xi(\sigma+it)|$ is decreasing for $-\infty < \sigma < 1/2$.
- (iii) The Riemann Hypothesis is true.

PROOF. If $|\xi(s)|$ is increasing along a half-line L (or decreasing on L), then $\xi(s)$ cannot have a zero on L. It follows, using the functional equation, that each of the statements (i) and (ii) implies (iii). Conversely, if (iii) holds, then $\xi(s) \neq 0$ on the right and left open half-planes of the critical line, and Theorem 1 implies (i) and (ii).

3. Proof of Theorem 1

We prove the first statement. The second then follows, using the functional equation.

Let $H=H(\sigma_0)=\{s:\Re(s)>\sigma_0\}$ be a zero-free, open right half-plane. Fix a real number t_0 , and denote by $L=L(\sigma_0,t_0)$ the horizontal half-line

$$L = \{\sigma + it_0 : \sigma > \sigma_0\} \subset H = \{\sigma + it : \sigma > \sigma_0\}.$$

In order to prove that $|\xi(s)|$ is increasing along L, we employ the *Hadamard product* representation of the xi function [1, p. 80]:

$$\xi(s) = \frac{1}{2}e^{Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

Here the product is over all nonreal zeros ρ of zeta, and B is the negative real number

$$B := \frac{1}{2}\log 4\pi - 1 - \frac{1}{2}C = -0.023095\dots,$$

where C is Euler's constant.

We first prove that $|1 - (s/\rho)|$ is increasing on L. Since $H = \{s : \Re(s) > \sigma_0\}$ is zero-free and $L \subset H$, we have

$$\Re(\rho) < \sigma_0 < \Re(s) \qquad (s \in L).$$

It follows that the distance $|s-\rho|$ and, hence, the modulus $|1-(s/\rho)|=|s-\rho||\rho|^{-1}$ are increasing along L.

We next show that $|e^{s/\rho}|$ is non-decreasing on L. (In fact, $|e^{s/\rho}|$ is increasing on L, but we do not need this deeper fact.) Let $\rho = \beta + i\gamma$ denote a nonreal zero of zeta. Since $\beta = \Re(\rho) \geq 0$, the modulus

$$|e^{s/\rho}| = e^{\Re(s/\rho)} = e^{(\beta\sigma + \gamma t_0)/(\beta^2 + \gamma^2)}$$

is non-decreasing along L.

It remains to overcome the effect of the Hadamard product factor e^{Bs} , which, since B < 0, is decreasing in modulus on L. We use the following alternate interpretation of the constant B. First, let ρ_1, ρ_2, \ldots be the zeros of zeta with positive imaginary part, and write $\rho_n = \beta_n + i\gamma_n$, for $n \ge 1$. Then B is also given by the formulas [1, p. 82]

$$B = -\sum_{n=1}^{\infty} \left(\frac{1}{\rho_n} + \frac{1}{\bar{\rho}_n} \right) = -2 \sum_{n=1}^{\infty} \frac{\beta_n}{\beta_n^2 + \gamma_n^2}.$$

For $N \geq 1$, denote the Nth partial sum of the series for -B by

$$S_N := \sum_{n=1}^N \left(\frac{1}{\rho_n} + \frac{1}{\bar{\rho}_n} \right).$$

Note that $-(B + S_N)$ is positive, and that it approaches zero as N tends to infinity. Now for $N \ge 2$, let $P_N(s)$ be the finite product

$$P_N(s) := \left(1 - \frac{s}{\overline{\rho}_1}\right) \prod_{n=2}^N \left(1 - \frac{s}{\rho_n}\right) \left(1 - \frac{s}{\overline{\rho}_n}\right).$$

Then by combining exponential factors, we can write the Hadamard product as

$$\xi(s) = \frac{1}{2} e^{(B+S_N)s} \left(1 - \frac{s}{\rho_1}\right) P_N(s) \prod_{n=N+1}^{\infty} \left(1 - \frac{s}{\rho_n}\right) e^{s/\rho_n} \left(1 - \frac{s}{\bar{\rho}_n}\right) e^{s/\bar{\rho}_n}.$$

From what we have shown about $|1 - (s/\rho)|$ and $|e^{s/\rho}|$, both $P_N(s)$ and the infinite product are increasing in modulus along L. To analyze the remaining factors on L, set $s = \sigma + it_0$ and define the function

$$f_N(\sigma) := \left| \frac{1}{2} e^{(B+S_N)s} \left(1 - \frac{s}{\rho_1} \right) \right|^2 = \frac{1}{4} e^{2(B+S_N)\sigma} \frac{(\sigma - \beta_1)^2 + (t_0 - \gamma_1)^2}{\beta_1^2 + \gamma_1^2}.$$

A calculation shows that the derivative $f'_N(\sigma)$ is positive if

$$\frac{\sigma - \beta_1}{(\sigma - \beta_1)^2 + (t_0 - \gamma_1)^2} > -(B + S_N).$$

Now fix $\sigma_1 > \sigma_0$. Since $\sigma_1 - \beta_1 \ge \sigma_1 - \sigma_0 > 0$, and $-(B + S_N) \to 0$ as $N \to \infty$, we can choose N so large that $f'_N(\sigma_1) > 0$. Then f'_N is also positive on some open interval I containing σ_1 . It follows that $f_N(\sigma)$ and, therefore, $|\xi(\sigma + it_0)|$ are increasing for $\sigma \in I$. Since σ_1 (> σ_0) and t_0 are arbitrary, the theorem is proved.

References

- [1] H. Davenport, *Multiplicative Number Theory*, 2nd ed., revised by H. L. Montgomery, Graduate Texts in Mathematics 74, Springer-Verlag, New York Berlin, 1980.
- [2] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I, Classical Theory*, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.

·__