CSP II

- 1. Review
 - a. A CSP or "Constrained Satisfaction Problem":
 - i. Representing a problem as constraints and variables (generalizing)
 - ii. Items/entities that can take on values
 - iii. Items/entities have constraints that relate them to each other
 - b. Variables $X = \{X_1, X_2, ..., X_n\}$
 - i. Each variable X_i has its own domain $Di = \{v_1, v_2, ..., v_k\}$
 - 1. Possible values that can be assigned to
 - ii. Each variable must be assigned a value
 - c. Constraints $C = \{C_1, C_2, ..., C_m\}$
 - i. Each constraint is Boolean: relates variables to each other
 - ii. In map coloring:
 - 1. Adjacent variables must have different colors

a.
$$C_i \leftarrow X_1 != X_p$$

- d. All constraints are unary/binary constraints (unary constraint has self-edges)
 - i. Any (n > 2)-ary constraint can be reduced to a bunch of binary constraints
 - 1. Trick: invent new variables!
 - 2. Reduce constraints using new variables as "intermediary steps"
- e. Turn CSP into a graph
 - i. Vertex = variable
 - ii. Edge = constraint
- f. How do we know if a CSP is solvable?
 - i. We don't beforehand!
 - ii. Can check though (in polynomial time)
- g. Vocab terms needed:
 - i. A vertex is node consistent iff no value in it's domain breaks a unary constraint (domain is good)
 - ii. A vertex is arc consistent iff no value in it's domain breaks a binary constraint
 - 1. Arc consistent with respect to another vertex!
- h. Is NT arc consistent with respect to Q?
 - i. Consider NT=R $\exists y \in D_Q \ s.t. \ NT \neq Q?$
 - 1. If I assign value of Red to NT, does it work with Q/will that break constraint with Q? (yes)

- ii. Consider NT= $G \exists y \in D_Q \ s.t. \ NT \neq Q?$
- iii. Consider NT=B $\exists y \in D_Q \ s.t. \ NT \neq Q$?

- i.j. How do we check?
 - i. AC-3 Algorithm
 - ii. Preprocessing step!
- k. Bonus:

1.

$$\left(\forall j \mid D_j \mid = 1\right) \rightarrow solution$$

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise **inputs**: csp, a binary CSP with components (X, D, C) ${f local\ variables}:\ queue,\ {f a}\ queue\ of\ arcs,\ initially\ all\ the\ arcs\ in\ csp$ Doesn't need to be a queue while queue is not empty do An unordered collection $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if Revise (csp, X_i, X_j) then if size of $D_i = 0$ then return falsefor each X_k in X_i .NEIGHBORS - $\{X_j\}$ do ____ If we change D_i Make X_i arc consistent wrsp to X_i add (X_k, X_i) to queue return true consist. with all other **function** REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i neighbors $revised \leftarrow false$ $\bullet \quad \text{Another neighbor X_k may} \\$ for each x in D_i do have relied on a value we if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then removed to be arc consist delete x from D_i Pseudocode: with $X_i!$ $revised \leftarrow true$ • Remove any values from D_i that make it not arc consist. w/ X_i return revised

- i. Grab an edge first and get the two nodes that have that edge
- ii. REVISE returns true when one or more domains are removed
- iii. Since I lost domain, I have to check whether the node that connected with me is arc consistent again (recheck and make all neighbors arc consistent for me)

- 2. Today: Searching for Solution
 - a. Remember:
 - i. We can tree search this
 - ii. Need to make the tree small enough to be worth it

$$\square\left(\left|C\right|\left(\max_{1\leq i\leq n}\left|D_i\right|\right)^3\right)$$

- iii.
- iv. Run AC-3 as a preprocessing step!
 - 1. If AC-3 returns false, not solvable so don't even try to solve!
 - 2. If AC-3 returns true:
 - a. Might be lucky and AC-3 has solved it for you (O(n) time to check)
 - b. Domains of Variables produced by AC-3 are minimal
 - i. Every vertex is node + arc consistent
 - ii. No unnecessary searching
- b. How to actually solve given minimal CSP?
- 3. DFS Tree Search
 - a. Like we've talked about before:
 - i. Fix order of variables (prune the tree)
 - ii. Expand the tree using DFS
 - 1. State = partial assignment (assign some partial variables)
 - 2. Action = assigning (Var = value) to the partial assignment
 - 3. Stop expanding a branch when a constraint is violated
 - 4. Leaf node in tree = legal (does not break constraints) & complete (went to all nodes) assignment
- 4. DFS Tree Search & Backtrack Algorithm

DFS-Search interface function

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure return BACKTRACK(\{\}, csp)

DFS helper function (to do the actual DFS)
```

function BACKTRACK(assignment, csp) returns a solution, or failure

```
if assignment is complete then return assignment Base case: legal & compete assignment \rightarrow solution! var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(csp) for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do Actions! Expand the tree
```

if value is consistent with assignment then add $\{var = value\}$ to assignment assignment is a reference! Not a deepcopy! $inferences \leftarrow Inference(csp, var, value)$ assignment is a reference! Not a deepcopy! TODO: talk about this if $inferences \neq failure$ then

 $\begin{array}{l} \text{add } inferences \text{ to } assignment \\ result \leftarrow BACKTRACK(assignment, csp) \end{array}$

if $result \neq failure$ then return result

remove $\{var = value\}$ and inferences from assignment assignment is a reference! Not a deepcopy!

Recursive DFS call

return failure

- b. How to configure Backtrack?
 - i. Select-Unassigned-variable
 - ii. Order-Domain-Values
 - iii. Inference
- 5. CSP Heuristics
 - a. Heuristics in past problems:
 - i. Domain-specific knowledge
 - ii. Task Engineering
 - b. Heuristics in CSPs:
 - i. More abstract
 - ii. Apply to all CSPs
 - c. Variable ordering
 - i. SELECT-UNASSIGNED-VARIABLE
 - ii. Goal: Prune the tree
 - 1. Rather than rely on a fixed ordering of variables
 - 2. Pick new variable based on what other's have already been chosen!
 - 3. Pick variable with smallest domain remaining!
 - a. Minimum Remaining Values (MRV) heuristic
 - b. Fail-first heuristic
 - 4. Degree heuristic:
 - a. Pick variable involved in the most constraints!
 - 5. Can combine multiple heuristics!
 - a. Use MRV and settle ties with degree heuristic!
 - d. Value ordering
 - i. ORDER-DOMAIN-VALUES
 - 1. Choose value that is the most "flexible"
 - 2. Least Constraining Value (LCV) heuristic:
 - a. Prefers domain values that affect neighbor domains the least
 - b. Fail-last heuristic