無線網路概論 Intro. to Wireless Internet Lecture 08 – Localization

Lecturer: 陳彥安 Chen, Yan-Ann

YZU CSE

Lecture Material

- 無線網路 通訊協定、感測網路、射頻技術 與應用服務, 2011.
 - Ch18. GPS定位技術簡介
 - Ch19. 無線感測網路定位技術
- Wireless Networks and Applications
 - Prof. Peter Steenkiste
 - Carnegie Mellon University
- Wireless Internet
 - Prof. You-Chiun Wang
 - National Sun Yat-sen University

Outline

- Location-based services
- Positioning concepts
- Global navigation satellite system
- Positioning technology by wireless networks

Location-based Services

- Think about what services you can provide to make money once you know people's locations?
 - Best Location Aware Apps
 - https://www.tomsguide.com/us/pictures-story/1042-best-location-aware-apps.html

Location-based Services

- Examples of common LBS applications:
 - Where are you?
 - How best to get to a destination?
 - Whether friends are nearby?
 - Local weather forecast
 - Where businesses of interests in this area are located?
 - Companies to track packages, vehicles, buses, etc.
 - US 9-1-1 emergency localization by 2012

Location-based Search

- Foursquare (Android, iOS)
 - Location-aware smart search tool focusing on discovery of nearby locations, events, restaurants and shops

- Google map
 - Digital map for location-aware search

Location-based Games

 Combine the creature collection and monster battling gameplay of Nintendo's Pokémon with Niantic's augmented reality technology. Ingress

Location-based Information

- Gas Buddy
 - A mobile app that helps users track down the cheapest nearby gas station based on their present location.

Save time, save money. Find the cheapest gas near you!

- Waze
 - A combination of social network and crowd-sourced traffic map, allowing drivers to report traffic conditions and incidents and share them in a living map to the benefit of all.

Location-based Tour Guides

- NPS National Mall
 - Work as an excellent companion app to explore the historical buildings and monuments that surround the nation's capital.

- Detour
 - Provide guided walking tours of famous neighborhoods and landmarks of cities around the world.

Social Networks

- Glympse
 - A popular location-sharing service that earns praise for its combination of features and ease of use.

Happn

 Highlight interesting people that you might have crossed paths with down the jogging path, cafe, or party.

LBS Systems

- Closed systems:
 - They do not have the capability of wireless communication.
 - Global positioning system (GPS) is a representative.
 - [Drawback] When there is something occurring (such as temporary close of roads or sudden car accident), it cannot be immediately reported by the system.
- Mobile location-based service (MLBS) systems:
 - They are based on wireless communications (such as WiFi, LTE-A) to provide positioning services.
 - [Example] You can call 119 via your mobile phone in case of emergency, where your position can be sent back to the nearby fire bureau.

Outline

- Location-based services
- Positioning concepts
- Global navigation satellite system
- Positioning technology by wireless networks

Data Types

- Point locations in terms of coordinates:
 - Physical or geometric locations
 - GPS: latitude and longitude, height
 - Cartesian coordinate system based on three orthogonal planes
- Extended region locations given by names:
 - Symbolic locations
 - YZU, Building I, Room 1102

Approaches

- Proximity: estimate distance between two nodes
- Trilateration and triangulation
 - Using elementary trigonometric properties: a triangle is completely determined,
 - if two angles and a side length are known
 - if the lengths of all three sides are known
 - Infer a 3D position from information about two triangles
- Fingerprinting (scene analysis)
 - Using radio characteristics as fingerprint to identify it
- Hybrid methods: multiple sources of information

Proximity and Distance

- Binary nearness: using finite range of wireless communication and/or threshold
 - within range of a beacon signal from a source with known position
 - yields region locations, e.g.: cell in cellular network
- Distance measurement (ranging)
 - Received signal strength
 - Time of flight (time of arrival)
 - Time difference of arrival

Measuring Location: Trigonometry Basics

- Triangles in a plane
- Lateration: distance measurement to known reference points
 - A triangle is fully determined by the length of its sides
 - Time of Flight (e.g. GPS, Active Bat)
 - Attenuation (e.g. RSSI)
- Angulation: measuring the angle with respect to two known reference points and a reference direction or a third point
 - A triangle is fully determined by two angles and one side as shown
 - Phased antenna arrays
 - Aircraft navigation (VOR)

Quality of Position Information

- Positioning accuracy: largest distance between an estimated position and the true position
- Precision: the ratio with which a given accuracy is reached, averaged over many repeated attempts
 - Example: average error of less than 20cm in 95% of cases.

	Accurate	Inaccurate (systematic error)
Precise		
Imprecise (reproducibility error)	X X X	

Outline

- Location-based services
- Positioning concepts
- Global navigation satellite system
- Positioning technology by wireless networks

GPS Concept

Global Navigation Satellite System

GPS History (1/2)

- GPS was developed by US Department of Defense in 1973 and completed established in 1995.
- GPS can provide 3D positioning service.

GPS History (2/2)

- In 1983/9/1, Korean Air Lines flight 007 flew to the territorial air space of USSR and was shoot down by USSR air force Su-15.
- Due to that accidence, US government announced to open parts of the GPS service for civil usage.

GPS Architecture

GPS Space Segment

- GPS system has 24 satellites (with 3 backup satellites).
 - They fly along 6 orbits, with the altitude of 20,200km.
 - Round-trip time: 11hr & 58min
 - Orbit inclination angle: 55°
 - Coordinate system: WGS 84
 - Each satellite is equipped with an atomic clock to provide precise timing.

GPS Satellites

Satellite Orbits

- 24 satellites are needed to guarantee that 4 are always visible everywhere
- Extra satellites provide redundancy
 - Deal with maintenance, replacement, ...

GPS Nominal Constellation
24 Satellites in 6 Orbital Planes
4 Satellites in each Plane
20,200 km Altitudes, 55 Degree Inclination

Control Segment (1/2)

- Master control stations:
 - Located in the Schriever air base, Colorado, USA
 - Collect data from monitoring stations.
 - Calculate the satellite orbits.
 - Regulate timing.

Control Segment (2/2)

- Monitoring stations
 - Track GPS satellites as they pass overhead
 - Collect navigation signals, range/carrier measurements, and atmospheric data.
 - Feed observations to the master control station
- Ground antennas
 - Send commands, navigation data uploads, and processor program loads to the satellites.
 - Collect telemetry.

User Segment

GPS Involves 5 Basic Steps

- Satellite Ranging
 - Determining distance from satellite
- Trilateration
 - Intersection of spheres
- Timing
 - Why consistent, accurate clocks are required
- Positioning
 - Knowing where satellite is in space
- Correction of errors
 - Correcting for ionospheric and tropospheric delays

How GPS Works?

- Find a satellite and calculate the distance to that satellite.
 - Distance = time delay * speed of light
- Use trilateration to determine your position or "fix".
 - Intersection of spheres
- At least 3 satellites required for 2D fix
- Use extra satellites to support 3D positioning.
- Correct the positioning errors due to environment.

Types of GPS Services

- Standard positioning service (SPS):
 - It operates on GPS L1 frequency, which contains coarse acquisition code (C/A code, for civil usage).
 - Positioning accuracy < 12.8 meters
 - Timing accuracy < 40 nanoseconds
- Precise positioning service (PPS):
 - This service requires the authorization from USA government.
 - It operates on both GPS L1 and L2 frequencies, and also transmits precise code (P(y) code, for military usage).
 - Positioning accuracy < 11.8 meters
 - Timing accuracy < 40 nanoseconds

GPS Signals

- L1 carrier: 1575.42MHz, L2 carrier: 1227.6 MHz
- PRN (pseudo random noise): as satellite identification
 - C/A (coarse acquisition) code, P (precise) code

GPS Operating Bands

L frequency bands for GPS signals:

Lband	Frequency	Purpose	
L1	1575.42 MHz	C/A code, P(y) code, L1C code (future)	
L2	1227.60 MHz	P(y) code, L2Ccode (future)	
L3	1381.05 MHz	Detection of high-energy activity (nuclear detonation)	
I.4	1379.91 MHz	Correctness of errors caused by ionosphere	
L ₅	1176.45 MHz	Safety-of-Life (SoL) signals	

- GPS uses pseudo-random noise (PRN) to identify satellites.
 - C/A code: Commercial GPS receivers
 - P(y) code: Military purpose

Selective Availability

- For military purpose, USA government introduces selective availability (SA) to GPS so as to intentionally add errors to satellite clocks and broadcast inaccurate orbit parameters.
 - The positioning inaccuracy will increase to 100 meters.
 - When turning off SA, the positioning inaccuracy will decrease to 15 meters.
 - In 2000/05/02, President Clinton announced to cancel the SA function.

Satellite Positions

- Each satellite has an atomic clock that keeps time very accurately
 - Satellites synchronize their clocks
 - Also periodically synchronize with the true time maintained on earth
- Satellites also know their location very accurately.

Step 1: Find a Satellite & Ranging

- Once your GPS receiver obtain the signal from a satellite, it can employ the time-to-arrival (ToA) scheme to calculate the distance to that satellite.
 - Distance = velocity × time.
 - Velocity: Light speed (i.e., 299,792,458 meters per second).
- GPS Lock

Determining Range

- Each satellite periodically generates a pseudo random code
 - Receivers also locally generate the codes in synchronized fashion
- Receivers measure Time of Arrival (TOA) of codes
- Transmission includes Time of Transmission (TOT) of code and the location of the satellite at that time
 - Allows receiver to calculate Time of Flight and distance

Navigation Messages

- System time and clock correction values
- Its own highly accurate orbital data (ephemeris)
- Approximate orbital data for all other satellites (almanac)
- System health, etc.

Step 2: Trilateration

- Let (X, Y) be the position of your GPS receiver.
- The positions of satellites A, B, and C are (x1, y1), (x2, y2), and (x3, y3), respectively.
- The distance between your GPS receiver and satellites A, B, and C are r1, r2, r3, respectively.
- Then, we can derive position (X, Y) by

$$r_1^2 = (X - x_1)^2 + (Y - y_1)^2$$

$$r_2^2 = (X - x_2)^2 + (Y - y_2)^2$$

$$r_3^2 = (X - x_3)^2 + (Y - y_3)^2$$

Step 3: Amend the Result

• GPS uses three satellites to localize a receiver but the positioning result can be applied to only the 2D plane.

 Therefore, it requires the fourth satellite to amend the positioning result in the 3D space.

Step 4: Correct Errors

- The final positioning result can be obtained by correcting the following errors:
 - Latency caused by the atmosphere (especially ionosphere and troposphere)
 - Multi-path effect
 - Time difference at the GPS receiver
 - Satellite clock errors
 - Orbit inaccuracy
 - Number of satellites

Assisted GPS

- Enhance GPS startup performance
 - Measure by time-to-first-fix (TTFF).
- Obtain navigation messages through mobile networks (control plane) or data networks (user plane)

Differential GPS

- DGPS uses ground-based reference stations to help measure the difference between the actual (or internally computed) pseudo-ranges and the measured satellite pseudo-ranges.
 - It then broadcasts the difference and known position.
 - GPS receivers may correct their pseudo-ranges by the same amount.
 - DGPS can improve positioning accuracy from 15m (nominal GPS) to about 10cm.

NMEA Messages

- NMEA 0183 (or NMEA for short) is a combined electrical and data specification for communication
 - Between marine electronic devices such as echo sounder, sonars, anemometer, gyrocompass, autopilot, GPS receivers and many other types of instruments.
- It has been defined by, and is controlled by, the U.S.-based National Marine Electronics Association.

```
$GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76

$GPGSA,A,3,10,07,05,02,29,04,08,13,,,,1.72,1.03,1.38*0A

$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70

$GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79

$GPGSV,3,3,11,29,09,301,24,16,09,020,,36,,,*76

$GPRMC,092750.000,A,5321.6802,N,00630.3372,W,0.02,31.66,280511,,,A*43

$GPGGA,092751.000,5321.6802,N,00630.3371,W,1,8,1.03,61.7,M,55.3,M,,*75

$GPGSA,A,3,10,07,05,02,29,04,08,13,,,,1.72,1.03,1.38*0A

$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70

$GPGSV,3,2,11,02,39,223,16,13,28,070,17,26,23,252,,04,14,186,15*77

$GPGSV,3,3,11,29,09,301,24,16,09,020,,36,,,*76

$GPRMC,092751.000,A,5321.6802,N,00630.3371,W,0.06,31.66,280511,,,A*45
```


Outline

- Location-based services
- Positioning concepts
- Global navigation satellite system
- Positioning technology by wireless networks

How about Indoors?

- We can use received WiFi signal strength (RSS) to measure distance to APs with known location.
- Does not work in practice: too many factors affects RSS: objects, people, ...
 - Results of triangulation based on RSS tend to give large, unpredictable errors
- How about using time of arrival?
 - e.g., based on sound, radar-like techniques, ...
 - Works better, but it is still hard
 - Can work well but often requires special infrastructure
 - Reflections can also create inaccuracies: longer path.

Positioning Technologies

- Proximity: estimate distance between two nodes
- Trilateration and triangulation
 - Using elementary trigonometric properties: a triangle is completely determined,
 - if two angles and a side length are known
 - if the lengths of all three sides are known
 - Infer a 3D position from information about two triangles
- Fingerprinting (scene analysis)
 - Using radio characteristics as fingerprint to identify it
- Hybrid methods: multiple sources of information

Positioning Technologies

- Positioning technology realized by wireless networks:
 - Cell identification
 - Time of arrival (ToA)
 - Trilateration positioning
 - Time difference of arrival (TDoA)
 - Angle of arrival (AoA)
 - Received signal strength (RSS) localization

Cell Identification

- Cell identification uses the associated cellular base station to localize a mobile phone.
 - It is the simplest positioning technology.
- The accuracy of this scheme depends on the coverage range and density of base stations.
 - In countryside, the error rate is larger.
 - In urban, the error rate can decrease due to high density of base stations.
 - Average inaccuracy: 200m ~ 2km

ToA

- ToA is based on signal transmission time.
 - According to the arrival time of a transmission signal, the base station can estimate the distance between it and the mobile phone.
 - Then, we can localize the mobile phone via trilateration scheme.
- ToA requires strict time synchronization among base stations to monitor the signal emitted from a mobile phone.
 - Even with a small error of just 1 microsecond (10^{-6} seconds), the positioning inaccuracy will increase to $200^{\sim}300$ meters.

Trilateration

- Trilateration positioning uses the intersection point of cell coverage to identify a mobile phone.
 - When a mobile phone obtains the signal from a base station, it can calculate its distance
 R to that base station (using signal strength).
 - We can draw a circle centered at the base station with radius R.
 - Then, the position of the mobile phone is the intersection point of three circles.

TDoA (1/2)

- TDoA is an improvement of ToA, which is also based on the transmission time of a signal.
 - It requires a reference base station and multiple auxiliary base stations to calculate the distance, which is realized based on the time difference of their received signals.
 - We can get the position of a mobile phone by using hyperbola formulas.

TDoA (2/2)

- Comparing with ToA, TDoA is easier to implement.
 - TDoA can work well without time synchronization between the mobile phone and base stations.

AoA

Estimate the position by received angles.

- MIMO for measuring received angle
 - The phase-shift difference of the received signal arriving at antennas equally separated by a "d" distance

Location Fingerprinting

- Fingerprint methods for recognizing locations
- Examples
 - Visual identification of places from photos
 - Recognition of horizon shapes
 - Measurement of signal strengths of nearby networks (e.g. RADAR)
- Method: computing the difference between a feature set extracted measurements with a feature database
- Advantages: passive observation only (protect privacy, prevent communication overhead)
- Disadvantage: access to feature database needed

RADAR: Key Idea

RSS from multiple APs tends to be unique to a location.

RADAR Approach

- Scenario: floor layout with three base stations (in the hallways)
- Empirical method
 - offline phase: database is constructed
 - Collect signal strength measurements from all three base stations at 70 distinct locations
 - Store each of the 70 measurement triples together with the spatial location and orientation in a database
 - online phase: position can be determined
 - Measure the current signal strength from all three base stations
 - Find the most similar triple(s) in the database
 - Resolution 2.94m (50 th percentile)

RSS Localization

- RSS localization is a two-phase positioning technology.
- Training phase (offline):
 - This phase uses mobile phones to collect signal strength from different base stations at a set of points P in advance and then constructs radio map in the region of interest.
- Positioning phase (online):
 - By comparing the radio map and the received signal strength, a mobile phone can choose the nearest location in P as its position (or using interpolation method).
- RSS localization can be used in an indoor environment.

RSS Localization (2/3)

Match Algorithm (1/2)

- Distance (Similarity)
 - Evaluate the difference of a captured fingerprint and a known fingerprint in the radio map database.
 - Ex: Euclidean distance

$$egin{split} d(\mathbf{p},\mathbf{q}) &= d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

Match Algorithm (2/2)

- K-nearest neighbor (KNN)
 - Find the k nearest neighbor (with the lowest distance) and use the location of these neighbors for estimating the position.
 - Ex: Average

Model-Based Radio Map

- Model set-up phase incurs high cost.
- Alternative use: radio propagation model and floor plan (instead of measurements)
 - Considered models
 - Rayleigh fading model: small-scale rapid amplitude fluctuation to model multi-path fading
 - Rician distribution model: like Rayleigh but with additional LoS component
 - Floor Attenuation Factor propagation model: large scale path loss with building models
 - Wall Attenuation Factor model: considers effects from walls between transmitter and receiver
 - Resolution 4.3m (50 th percentile)

Limits of Localization Using Signal Strength

- Measuring distance based on signal strength is an attractive idea for wireless networks:
 - RSS does not require additional hardware
 - RSS declines with distance
 - Many different promising methods proposed
- Experimental study:
 - 802.11 technology with a range of methods and environments tested
 - Median localization error of 10ft (3.05m) and 97th percentile of 30ft (9.15m)
- Fundamental limitations that require
 - more complex environment models
 - additional infrastructure

Hybrid Technologies

- Smartphones: have many other sensors
 - Accelerometer, compass, ...
- Can be used to estimate the user's walking speed, direction, ...
- This information can be combined with finger printing based techniques
- Especially useful if finger printing provides accurate location in specific points
 - When entering a store, escalator, elevators
 - Can use the other sensors starting with these well-known locations

Summary

- Once you know people's locations, you can develop many interesting and practical applications.
- Closed systems (such as GPS) and MLBS are two major categories of LBS.
- GPS was developed by the US Department of Defense, and is now open for commercial usage.
- GPS is based on time of arrival.
- Except for GPS, you can get your positions by some other technologies such as cell identification, trilateration, ToA, TDoA, RSS localization, and so on.