

NASA-CR-134182) GENERALIZED ENVIRONMENTAL
CONTROL AND LIFE SUPPORT SYSTEM COMPUTER
PROGRAM (G189A) CONFIGURATION CONTROL
Phase 1 (McDonnell-Douglas Astronautics
Co.) 49 p HC 74-57

N74-15799

CSCL 06K

Uncclas

G3/05 28798

LIFE SUPPORT SYSTEM COMPUTER PROGRAM

PHASE I FINAL REPORT

Contract NAS9-13404

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
US Department of Commerce
Springfield, VA 22151

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

PRICES SUBJECT TO CHANGE

**MCDONNELL
DOUGLAS**

**GENERALIZED ENVIRONMENTAL CONTROL AND
LIFE SUPPORT SYSTEM COMPUTER PROGRAM (G189A)
CONFIGURATION CONTROL**

**PHASE I FINAL REPORT
Contract NAS9-13404**

31 DECEMBER 1973

MDC G5084

PREPARED BY:

R. L. BLAKELY

APPROVED BY:

K. H. HOUGHTON, M.D.

**CHIEF BIOTECHNOLOGY & SPACE SCIENCES ENGINEER
BIOTECHNOLOGY & SPACE SCIENCES SUBDIVISION**

PREPARED FOR:

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER
HOUSTON, TEXAS**

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-WEST

5301 Bolsa Avenue, Huntington Beach, CA 92647

I

FOREWORD

The work described in this report was performed by the Biotechnology and Space Sciences Subdivision of the Engineering Division, McDonnell Douglas Astronautics Company - Western Division, Huntington Beach, California. J. R. Jaax, Crew Systems Division, National Aeronautics and Space Administration, Johnson Space Center (JSC) was the contract technical monitor. R. S. Barker was the project manager for McDonnell Douglas. R. L. Blakely was responsible for performing the G189A computer program configuration control effort.

PRECEDING PAGE BLANK NOT FILMED

SUMMARY

This final report documents the work performed during Phase I of contract NAS9-13404, Generalized Environmental and Life Support System Computer Program (G189A) Configuration Control. Phase I of the contract covers the period from 2 April 1973 to 31 October 1973. During this period the following items of significance were accomplished:

1. A G189A simulation of the Shuttle Orbiter EC/LSS was prepared and used to study payload support capabilities. (The current status of this simulation is documented in Attachment No. 1 of this report.)
2. Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. An Exec 8 version of the program library is available as an operational SECURE file on the NASA/JSC UNIVAC 1110 computer and an Exec 2 version is available on magnetic tape for use on the NASA/JSC UNIVAC 1108 computers. Both program libraries have been checked out and are operational. A copy of the Exec 8 program library was sent to NASA/MSFC and is operational on their UNIVAC 1108 computers. A copy of the G189 program library Fortran symbolics was sent to NASA/Ames Research Center where it is intended to be made operational on their IBM 360/67 computer.
3. Several new component subroutines were added to the G189A program library and many existing subroutines were revised to improve their capabilities. (Addendum No. 1 of this report contains the required changes to the G189A Program Manual, Reference 1, which document the component subroutine additions and revisions.)
4. A number of special analyses were performed in support of a NASA/JSC Shuttle Orbiter EC/LSS Payload Support Capability Study.

1.0 INTRODUCTION

The G189 Generalized Environmental Control and Life Support System Computer Program was initially conceived and developed by MDAC in 1964. It was initially delivered to NASA/JSC in 1965 under contract NAS9-4090. Since this time a number of program revisions and developments have occurred as a result of work performed in-house and in conjunction with other NASA contracts. The Crew Systems Division of NASA/JSC has been instrumental in the development of this program into a valuable EC/LSS simulation tool. This contract, NAS9-13404 - Generalized Environmental Control and Life Supoort System Computer Program (G189A) Configuration Control, provides a method for updating and maintaining the G189A program library and documentation for all program users. The effort also involves (1) providing instruction and recommendations for the use and application of the program, (2) developing new subroutines and logic required for new simulations, and (3) supporting special analyses required by NASA/JSC. The following section describes in detail the progress made, during Phase I of the contract, under the various tasks described in contract NAS9-13404.

2.0 REPORT OF PHASE I PROGRESS

The Phase I progress on tasks 1-11 as described in contract NAS9-13404 is reported herein.

2.1 Task 1, Formulate Master Programs

Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. An Exec 8 version of the program library was prepared for the NASA/JSC UNIVAC 1110 computer and is maintained as a SECURE file in permanent storage. An Exec 2 version of the program, suitable for use on the NASA/JSC UNIVAC 1108 computers, was prepared and placed on magnetic tape. The two program libraries are identical except for minor coding differences required by the Exec 8 or Exec 2 system. These program libraries are described in more detail in Section 2.2.

A survey of available master program tapes for previously prepared G189 simulators was made. The following table lists those simulators, their magnetic tape number, the person under whose name the tape is reserved, the approximate version data, and the operating system under which the tape was prepared.

TABLE 1 - MASTER PROGRAM TAPES FOR G189 SIMULATORS

Description	Tape No.	Reserved By	Approx. Version Date	Oper. System
Apollo Block II CM ECS Simulation:				
G189 Subroutine Elements	A13459	Dave Cook/LEC	9/69	Exce II
Basic Case Data - Earth Orbit	A00643	Dave Cook/LEC	9/69	Exec II
SSP 12 Man Simulation with Mol Sieve:				
G189 Subroutine Elements	A04141	Bill Ayotte/	7/71	Exec II
Restart Data	A05417	Boeing	7/71	Exec II
SSP Water Waste Management System Simulation:				
G189A Subroutine Elements	A12961	Bob Blakely/ MDAC	11/72	Exec II
Data Tape	A08553	Bill Ayotte/ Boeing	11/72	Exec II

In addition to these master program tapes, two new tapes and one permanent file were prepared for the new G189A Shuttle Orbiter EC/LSS Simulation. These items are described in Section 2.2.

2.2 Task 2, Maintain Library

In addition to the previously created G189 simulator master program tapes listed in Table 1, two new tapes and one permanent file for the G189A Shuttle Orbiter EC/LSS simulation were created. A G189A master program library for the Exec 8 operating system was created as a SECURE file on the NASA/JSC

UNIVAC 1110 computer. A similar library for the Exec 2 operating system, currently used on the NASA/JSC UNIVAC 1108 computers, was placed on magnetic tape. A set of basic case data for the Shuttle Orbiter EC/LSS simulation was also placed on magnetic tape for use on the Exec 2 operating system. The characteristics of these files are described in Table 2.

TABLE 2 - SHUTTLE G189A SIMULATOR MASTER PROGRAM FILES AND TAPES

<u>File Name or Tape No.</u>	<u>Qualifier or Label</u>	<u>Description</u>
G189AD	EC2-M22636	An Exec 8 SECURE file of the G189A program library which resides on the UNIVAC 1110 mass storage device. The file is cataloged for public access and as a read only file. It contains symbolic and relocatable elements for all G189A routines including a MAP collector element called SEGPRG which is used to provide program segmentation.
A07947	UPDAT	An Exec 2 tape containing two identical files of Fortran V source and relocatable elements of all G189A routines including a MAP element called SEGPRG which is to provide program segmentation.
A06583	NTOUT	An Exec 2 tape containing the basic case data for the current G189A Shuttle Orbiter EC/LSS Simulation.

The two program libraries, G189AD and A07947, contain the most recent changes and additions made to the G189A program by MDAC-W as of 17 July 1973. These libraries have also been updated several times at NASA/JSC as required for the Shuttle Orbiter EC/LSS simulation. The most recent JSC updates were made on 26 November 1973.

A magnetic tape of the Exec 8 master program library was made and modified to run on the NASA/MSFC UNIVAC 1108 computer system on 3 August 1973. This tape was sent to Sam Clonts, NASA/MSFC, S&E-ASTN-PLB, Bldg. 4666. An external BCD tape of the Exec 8 master program library Fortran subroutine symbolics was requested and sent to Dr. D. E. Cagliostro, NASA/Ames Research

Center on 24 September 1973. Dr. Cagliostro intends to implement the G189A program on an IBM 360/67 computer at Ames Research Center.

2.3 Task 3, Provide Recommendations

Contact has been maintained between active G189A program users at NASA/MSFC and MDAC-W to provide recommendations regarding use of master program library tapes, program subroutine modifications, and routine peculiarities or limitations.

2.4 Task 4, Provide Instruction

Contact has been maintained between active G189A users at NASA/MSFC and MDAC-W to provide briefings on new options and subroutines being developed and to aid in debugging program errors.

2.5 Task 5, Provide Program Modifications

Several component subroutine modifications have been made and several new subroutines have been prepared for use with the Shuttle Orbiter ETC/LSS simulation. These changes are briefly described below.

ALTCOM - Modified to calculate outlet temperature, as an option, if heat addition is specified.

F21 - New subroutine which will calculate the thermal properties (c_p , μ , k , ρ) of Freon 21 for a given temperature or the integrated value over a range of temperatures.

LIOH - New subroutine which calculates removal efficiency as a function of on-line time, carbon dioxide outlet pressure, water vapor generation, and heat dissipation.

SPLIT - Modified to calculate overall split ratio, as an option, if either primary or secondary exit flow is specified.

SSRAD - New subroutine which calculates effective sink temperature given solar and infra-red heat flux data, computes a fluid to root temperature drop, and determines the outlet fluid temperature. This is a simplified model based upon the equations in Reference 2.

In addition to these modifications many changes, not apparent to the user, have been incorporated into the new master program libraries which improve the efficiency and operation of the G189A program. Also many new subroutines and modifications have been incorporated into the program as a result of inhouse efforts and in conjunction with other NASA contracts. These changes are documented in Addendum No. 1 of this report.

2.6 Task 6 - Establish System Schematic Configurations on Master Programs

The current G189A Shuttle Orbiter EC/LSS simulation data are maintained on magnetic tape as described in Section 2.2. The G189A component schematic representation of the Shuttle Orbiter EC/LSS and a listing of the simulation data are presented in Attachment No. 1 of this report.

2.7 Task 7, Support Special Analyses

A number of special analyses were performed in conjunction with the NASA/JSC Shuttle Orbiter EC/LSS Payload Support Study. A summary list of these analyses is provided below.

1. Feasibility of providing separate high and low temperatures radiators to increase payload support capability, Reference 3.
2. Feasibility of placing a low temperature payload heat exchanger in parallel with the ARS interchanger in the freon loop. Determination of minimum cabin air flow and water loop flow requirements and the tradeoffs between flow requirements, heat exchanger size and pumping power, Reference 4.
4. Determination of minimum cabin air, water, and freon loop flow requirements as a function of mission phase. Parametric analyses of high and low temperature payload heat exchanger loop capabilities as a function

of freon flow rate, payload temperature requirements, and heat exchanger effectiveness, Reference 5.

2.8 Task 8, Maintain Status Reports

Weekly written status reports were prepared up through 1 June 1973 at which time this requirement was deleted. Their function was replaced with oral briefings and the monthly activity report. A list of interested G189A program users at key locations was determined and is presented below:

1. Bob Balinkas 203/623-8012
Mail Stop 1A-2-6
Hamilton Standard
Windsor Locks, Connecticut 06096
2. Buford Beadle 205/632-1623
Mail Stop 190
Teledyne-Brown Engr.
Research Park
Huntsville, Alabama 35812
3. Dr. D. E. Cagliostro 415/965-6190
NASA/Ames Research Center
Moffett Field, California 94035
4. Sam Clonts 205/453-3828
S&E-ASTN-PLB-Bldg. 4666
NASA/MSFC
Huntsville, Alabama 35812
5. John Coggi 714/896-3536
A3-253-AJCO-M.S. 13/3
MDAC-West
Huntington Beach, California 92646
6. Ben Fulbright 713/483-6257
Bldg. 16, Mail Code EZ
NASA/JSC
Houston, Texas 77058
7. Jim Jaax 713/483-4941
Bldg. 7, Mail Code EC2
NASA-JSC
Houston, Texas 77058

8. Orin L. Murray 314/232-6742
Dept. E242-Bldg. 106, Level 1, M.S. 68
MDAC-E
Box 516
St. Louis, Mo. 63166
9. Stu Nicol 714/896-2310
A3-253-AJCO-M.S. 14/2
MDAC-West
Huntington Beach, California
10. Woodrow Ryan 205/453-2350
Computer Sciences
8300 Whitesburg Dr.
Huntsville, Alabama 35812
11. Wylie Ward 205/532-1623
Mail Stop 190
Teledyne - Brown Engr.
Research Park
Huntsville, Alabama 35812

2.9 Task 9, Provide Monthly Activity Report

Monthly activity reports documenting the current status of the G189A program and the work performed during each reporting period were prepared and distributed to all interested G189A program users.

2.10 Task 10, Provide Digital Computer Program Requirements

The G189 master program libraries and Shuttle Orbiter EC/LSS simulation data are maintained at NASA/JSC, Crew Systems Division, in the form of card decks, magnetic tapes, or permanent files (Section 2.2). Program listings are also maintained at NASA/JSC, Crew Systems Division.

2.11 Task 11, Provide Final Report

This document constitutes the final report for Phase I of this contract.

3.0 CONCLUSIONS

The G189A program configuration control concept has proven to be very effective in organizing and controlling the use and modification of the program and its simulations. Interested users have been determined and communications

between these personnel have been established. This effort has resulted in the orderly development of the program and provides a central focal point for determining program inadequacies and errors, providing consultation and problem solutions, and distributing new updated versions of the program library.

A G189A Shuttle Orbiter EC/LSS simulation has been developed and executed satisfactorily (Attachment No. 1). The modelling in this simulation is consistent with the current state of development for the Orbiter EC/LSS. The simulation represents the active freon, water, and gas loops. The heat exchangers, cabins, and radiators currently use steady state solution techniques, however, these components can be easily transformed into transient models as the detailed component designs are established. The current simulation is capable of steady state or transient analysis with respect to heat load and environmental flux variations. Transport lag, thermal capacitance, or pressure drop effects are not included but will be added as the information becomes available. This initial simulation provides a basic building block model which can be easily developed into an accurate simulation of the Shuttle Orbiter EC/LSS as the hardware development and testing proceeds.

REFERENCES

- 1.0 Barker, R. S.; Blakely, R. L.; Hamill, T. D.; Nicol, S. W.; G189A Generalized Environmental/Thermal Control and Life Support Systems Computer Program Program Manual; McDonnell Douglas Astronautics Company Report MDAC-G2444, September 1971
- 2.0 Anderson, A. J., et. al., Radiator Design for Space Vehicles, AiResearch Report No. MS-AP-0069, 1963.
- 3.0 Status reports for the weeks ending 5/11, 5/18, 5/25 and 6/1/73 on contract NAS9-13404.
- 4.0 Fifth Monthly Activity Report, 2 September 1973, contract NAS9-13404.
- 5.0 Sixth Monthly Activity Report, 15 October 1973, contract NAS9-13404.

ATTACHMENT NO. 1

G189A SIMULATION OF THE SHUTTLE ORBITER EC/LSS

Attachment No. 1

1.0 INTRODUCTION

A G189A simulation of the Shuttle Orbiter EC/LSS was prepared under phase I of contract NAS9-13404, Generalized Environmental Control and Life Support System Computer Program (G189A) Configuration Control. This attachment describes the current status of the simulation model and presents some computed results obtained from the model.

2.0 SIMULATION MODEL DESCRIPTION

A G189A simulation of the Shuttle Orbiter EC/LSS has been developed and successfully executed. The simulation is being constantly modified to bring it into agreement with the current baseline or special study configuration. The model discussed in this attachment was prepared for a special payload support capability study.

The modelling detail used in this simulation is consistent with the current state of development for the Shuttle Orbiter EC/LSS. The simulation is being used to study the effects of varying heat loads, flow rates, heat exchanger sizes, and system configurations. Therefore, the current model simulates only the primary flow stream circuits for the cabin gas, avionic bay gas, water, and freon loops. The simulation is set up to run steady state or transient cases, however, steady state solutions are used for all components. The G189A program allows the option of using steady state solutions for each piece of equipment modelled. As the EC/LSS development evolves and the various equipment sizes and weights become well defined these data can be easily added to the simulation, without program modification, such that a true transient solution can be obtained.

A G189A simulation of an EC/LSS is prepared by representing each piece of equipment or system with a G189A component subroutine that is available in the G189A program library (Reference 1 of the Final Report). The flow path connections and order of solution are specified as input data to the

Attachment No. 1

program. Figures 1-4 present schematics of the G189A components used to represent a Shuttle Orbiter EC/LSS configuration used for a payload support capability study.

Figure 1 presents the G189A component schematic used to simulate the cabin gas and avionic bays gas loops. Each piece of equipment (heat exchanger, compartment, fan, duct tee, etc.) is represented by a component and assigned an arbitrary but unique component number. Each G189A component is allowed to have two separate flow stream connections: (1) a primary flow stream, indicated by a "P" on the schematics, and (2) a secondary flow stream, indicated by an "S" on the schematics. These designations are required for preparation of the G189A simulation model data.

Figure 2 presents the G189A component schematic used to represent the Atmospheric Revitalization System (ARS) water loop; Figure 3, the freon loop exclusive of the radiator system; and Figure 4, the radiator system. Figure 4 contains a G189A component, 113, which does not represent a physical piece of hardware. This component subroutine, FL0MET, is used to determine the integrated average heat rejection rate and outlet temperature provided by the radiator system during a transient run.

The G189A simulation data required for the Shuttle Orbiter EC/LSS is presented as Card Listing No. 1 of this attachment. The first page of this listing contains case data required for this simulation model which was prepared to represent a seven man on-orbit simulation with maximum payload heat input (8.5 kw). The second page begins with a listing of G189A comment (IDXX) cards for component number 1 which were used to document pertinent design data for the Shuttle Orbiter EC/LSS and their references. These cards are followed by the detailed component and table data required for the G189A simulation. The component data are grouped by component number which appears in the second column of the card listing data. Table data are grouped in a similar manner by table number which is arbitrarily assigned

Attachment No. 1

by the user. The input data cards are annotated so that the user can easily identify the required input data. (Reference 1 of the Final Report describes the input data requirements and formats in detail.)

The G189A program allows the user an opportunity to modify his input basic case simulation data (Card Listing No. 1) during the system analysis solution. Two subroutines, GPØLY1 and GPØLY2, provide this capability. The G189A program proceeds through its system analysis by solving components in a given order (the solution path) specified by the user. Subroutine GPØLY1 is called prior to a component's solution and subroutine GPØLY2 is called after a component's solution but before its computed data are stored. These subroutines allow the user an opportunity to modify and examine a components' input data prior to its solution and also an opportunity to modify and examine the computed results before they are stored. Card Listing No. 2 of the attachment contains the GPØLY1 Fortran statements used for the Shuttle Orbiter EC/LSS simulation under discussion. Card Listing No. 3 contains the required GPØLY2 Fortran statements. Comment cards have been inserted to describe the operations being performed.

The GPØLY1 logic is used to set up the component heat loads, to specify the gas leakage rate to the avionics bay, and to simulate the operation of the cabin temperature control valve. The heat load data for each component are input as table data with heat load being a function of mission phase. A table of mission phase versus mission time is also input in the basic case simulation data (Card Listing No. 1). The first block of GPØLY1 logic determines the current mission phase. If this phase is identical to the previously determined mission phase then the heat load data do not require updating and that logic is skipped. As mentioned previously, the simulation model discussed in this attachment has been modified to perform a special payload capability analysis for a seven man crew (3 men in the payload compartment) on-orbit case with maximum payload heat production (8.5 kw). Therefore, the heat load logic of GPØLY1 has been modified to

Attachment No. 1

override the table data heat load values and to store the heat load data specified for the special payload capability case. An example of this modification can be observed by examining the second block of GPØLY1 logic labelled "FIND MAIN CABIN HEAT LOAD". The first Fortran statement in this logic reads table 1002 to determine the cabin heat load, QCAB. This value is subsequently modified to the correct value for the special study case, QCAB=5306. The last statement in the logic block stores this value in the V array reference location number 66 of component number 2. The remaining heat load calculations are modified in a similar manner.

The GPØLY1 logic block following Fortran statement lable number 3, near the end of the listing, is entered when the current component being solved is component number 3, N=3. This logic block determines the total outboard gas leakage rate from the main cabin to the avionics bay which is set to 0.125 lb/hr for this case. The next logic block determines the payload compartment gas flow requirement which is set to 48 cfm. The last block of logic simulates the cabin temperature control valve operation and determines the split ratio for component number 86 (Figure 1) required to control the cabin temperature to TSET=70°F. This logic was overridden for this simulation such that all of the gas flow would be directed through the cabin heat exchanger and the minimum cabin temperature could be determined.

The GPØLY2 logic (Card Listing No. 3) consists of only one card for this simulation. When the current component number being solved is the payload compartment, N=82, then the gas temperature leaving the payload compartment, R(2), is set to 75.0°F. This logic was required for the special payload capability study and is not used normally.

The combination of the basic case simulation data (Card Listing No. 1), the Fortran subroutine GPØLY1 logic (Card Listing No. 2), and the Fortran subroutine GPØLY2 logic (Card Listing No. 3) comprises the special payload capability study simulation model of the Shuttle Orbiter EC/LSS used for

Attachment No. 1

the seven man, on-orbit, maximum payload heat case. The results of this case and three others set up for a payload capability study are discussed in the following section.

3.0 COMPUTED RESULTS

The seven-man, on-orbit, maximum payload heat simulation model described in Section 2.0 was run and the computed results are summarized in Figure 5. Figure 5 contains a schematic drawing of the cabin and avionics bays gas loops, the ARS water loop (shown as dotted lines), and a portion of the freon loop. For this simulation the freon inlet temperature to the ARS interchanger and low temperature payload was set to 40°F as a boundary condition and the radiator system portion of the simulation model was excluded from the solution path. Figure 1 indicates the heat loads, flows, and heat exchanger UA's used to compute the fluid temperatures indicated on the schematic. The sensible and latent heat generated by the crew and the operation of the lithium hydroxide beds were computed by the metabolic man and lithium hydroxide component subroutines present in the G189A program library. The other heat loads, exclusive of the computed heat exchanger heat transfer rates, were input via component simulation model data or GPØLY logic. The cabin gas fan flow was set at 317 cfm and avionics bay fan flows were set at 200 cfm each.

The purpose of running the seven man, on-orbit, maximum payload heat case shown in Figure 1 was to determine if the main cabin temperature could be controlled to 75°F, to determine the freon supply and return temperatures for the high and low temperature payload loops, and to determine any other temperature critical components for the set of imposed heat loads and flows. The simulation model predicted a cabin temperature of 74.5°F with a dew point of 56.0°F, a low temperature payload coolant supply temperature of 45.3°F with a return temperature of 103.8°F, and a high temperature payload coolant supply temperature of 96.0°F with a return temperature of 106.6°F.

Attachment No. 1

The computed results for three other cases are summarized in a similar manner on Figures 6, 7, and 8. The payload gas flow is set to zero cfm for all of these cases. Figure 6 shows the results of a four man, on-orbit, no space lab case with the total freon flow set at 2903 lb/hr and a water loop flow of 600 lb/hr. The cabin air temperature could be lowered to 68.5°F if desired and the low temperature payload coolant supply temperature of 41.1°F could be maintained with a return temperature of 88.9°F.

Figure 7 depicts the results of a seven man launch/reentry case with the total freon flow set to 3301 lb/hr and a water flow of 700 lb/hr. The results indicate that the main cabin could be lowered to 71.2°F and the low temperature payload coolant supply and return temperatures would be 41.1°F and 82.2°F respectively. These payload coolant temperatures are different from those in Figure 6 due to the difference in freon flows through the low temperature payload heat exchanger.

Figure 8 presents the results of a case similar to that shown in Figure 7 except that there are only four men present in the cabin. These results indicate that the main cabin temperature could be lowered to 68.1°F if desired.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The basic case simulation model of the Shuttle Orbiter EC/LSS was developed and successfully used in a series of payload capability studies during phase I of contract NAS9-13404. The simulation provides a valuable analytical tool which can be easily used to study component placement or substitution, heat load variations and timelines, fluid flow variations, etc. Only the primary fluid circuits of the Shuttle Orbiter EC/LSS and the steady state characteristics of the components are currently modelled. As the EC/LSS development proceeds the simulation should be expanded to represent the transient characteristics of each component, to incorporate their pressure drop characteristics, and to incorporate the secondary fluid circuits.

FIGURE 1, G187A SIMULATION -
CABIN AND AVIONICS BAY GAS LOOPS

FIGURE 2, G187A SIMULATION -
ARS COOLANT WATER LOOP

FIGURE 3, G189A SIMULATION -

FREON LOOP

FIGURE 4. G189A SIMULATION -
RADIATOR SYSTEM

FIGURE 5 - 7 MAN ON-ORBIT, MAX PAYLOAD HEAT

FIGURE 6 - 4 MAN ON-DECK, NO SPARE LAB

FIGURE 7 - 7 MAN LAUNCH/REENTRY

FIGURE 8 - 4 MAN LAUNCH/REENTRY

CARD LISTING NO. 1

DATA DECK FOR G189A SHUTTLE

ORBITER EC/LSS SIMULATION

INPUT CARD IMAGES LISTED BELOW

TAPE TOUT
BASIC 1 117 76 YEA NAY
CASE G189A SHUTTLE ECLSS AND ATCS SIMULATION 7 MAN ON ORBITMAX P/L Q
\$CASE1
KRUN=4,
KCHOUT=1, KPRNT=6, KPTINV(1)=1, MAXSLP=4, MINSSI=2, KRUN=1, DTIME=30.,
TIMEMX=360., MAXSSI=5, TMAX=250., TMIN=-20., WTMAX=1.E6,
TIMEMX =3600.0,
DTIME =60.0 ,
TMIN = -200.0,
KPTINV(2) =5 ,
DTIME=235.8, TIMEMX=107524.8,
TIMEMX=6000., DTIME=120.,
KRUN=0,
MAXSSI=12, MINSSI=4,
KCHOUT=0,
TMAX = 250.0 \$
\$PROPI
CP(1)=1., RHO(1)=62.4, VISC(1)=2.42, WTM(1)=18., XK(1)=0.34,
CP(2)=.248, RHO(2)=86.8, VISC(2)=.822, WTM(2) =102.9, XK(2)=.0612,
CP(3)=0.27, RHO(3)=116.0, VISC(3)=5.81, WTM(3)=000.0, XK(3)=0.038,
CP(4)=0.56, RHO(4)=51.8, VISC(4)=10.2, WTM(4)=000.0, XK(4)=0.066,
CP(5)=0.72, RHO(5)=68.4, VISC(5)=0.007, WTM(5)=000.0, XK(5)=0.275,
CPCONL=1., CPCCONV=0.44, CPCO2=0.2, CPDIL=0.25, CPOXY=0.22, CPTC=0.2,
GAMGAS=1.4, VISGA5=0.44, WTMCON=18., WTMDIL=28., WTMTC=20.,
XKGAS=0.146 \$

ID** I 50 FLUID TYPE CODES --

 ID** I 51 1 = WATER

 ID** I 52 2 = FREON 21

 ID** I 53 3 = FC-40

 ID** I 54 4 = HYDRAULIC FLUID

 ID** I 55 5 = GSE GLYCOL/WATER

 ID** I 99

 ID** I 100 RISD - ATMOSPHERIC REVITALIZATION REQUIREMENTS - SRR CONFG- 7/23/73

 ID** I 101 1. CABIN AIR TEMPS, 65-80 F DB, 39-61 F DP

 ID** I 102 A. TMAX=70 F DB, 61 F DP FOR 4 MEN AT MAX METABOLIC RATES

 ID** I 103 AND MAX HEAT LOADS (EXCEPT FOR REENTRY PHASE)

 ID** I 104 B. TMAX=80 F DB, 61 F DP FOR 10 MEN AT NOMINAL METABOLIC

 ID** I 105 RATES AND MAX HEAT LOADS (EXCEPT FOR REENTRY PHASE)

 ID** I 106 C. TMAX=90F DB DURING ENTRY, TOUCHDOWN, AND TD+15 MIN.

 ID** I 107 D. TEMP SELECTABLE WITHIN + OR - 2 F DURING ORBITAL

 ID** I 108 PHASES WITH 4 MEN

 ID** I 120 2. CABIN GAS PRESSURES

 ID** I 121 A. 14.7 PSIA +/-2 TOTAL PRESSURE (13.9 PSIA DURING AIRLIFT)

 ID** I 122 MAKEUP GAS = 7 LB/DAY FOR STRUCTURE AND METABOLIC

 ID** I 123 * 3 LB/DAY FOR AVIONICS BAY PURGE

 ID** I 124 B. OXYGEN PRESSURE = 3.1 PSIA +/-1 (MINIMUM OF 2.75 PSIA

 ID** I 125 DURING REPRESSURIZATION)

 ID** I 126 C. CO₂ PRESSURE = 0-7.6 MM HG (5.0 MM HG NOMINAL)

 ID** I 130 3. COLD PLATE EQUIPMENT TEMP = 35-120 F

 ID** I 140 4. AIR COOLED AVIONICS HX GAS TEMP = 100 F IN OR 130 F OUT

 ID** I 150 5. PAYLOAD SUPPORT

 ID** I 151 A. CABIN

 ID** I 152 1000 BTU/HR FROM PAYLOAD CONSOLE

 ID** I 153 METABOLIC HEAT AND CO₂ FOR 4 MEN

 ID** I 154 B. PAYLOAD MODULE

 ID** I 155 48 CFM NOMINAL AT 50 F NOMINAL

 ID** I 156 MAINTAIN HABITABLE PRESSURE AND GAS COMPOSITION

 ID** I 160 6. STRUCTURAL HEAT LOSS/GAIN

 ID** I 161 MAX GAIN = 1700 BTU/HR DURING NON-ORBIT PHASES

 ID** I 162 * 6500 BTU/HR DURING ENTRY TO TD + 15 MIN

 ID** I 163 MAX LOSS = 4600 BTU/HR DURING ORBITAL PHASES

 ID** I 170 7. AVIONICS BAY

 ID** I 171 PRESSURE = CABIN P + 0.4 PSIA

 ID** I 172 (= CABIN P + 0.6 PSIA DURING FIRE SUPPRESSION OR

 ID** I 173 AIR LOCK PRESSURIZATION)

 ID** I 180 8. LIOH CAPABILITY

 ID** I 181 10 MEN AT 2.11 LB CO₂/DAY OR

 ID** I 182 4 MEN AT 2.58 LB CO₂/DAY TO MAINTAIN PPCO₂ LIMITS

 ID** I 190 9. CABIN HX GAS SUPPLY = 50 F DB, 50 F DP

 ID** I 200 10. CABIN WALL TEMP >GT; CABIN GAS TEMP FOR ALL PRESSURIZED COMP

 ID** I 210 11. ON-ORBIT STRUCTURAL HEAT LOSS SHALL BE ACCOMMODATED FOR BY

 ID** I 211 A 1.0 KW HEATER

 ID** I 299

 ID** I 300 RISD - ACTIVE THERMAL CONTROL REQUIREMENTS- SRR CONFG- 7/23/73

 ID** I 310 1. RADIATORS (12 MODULAR STAGNATION TYPE PANELS, 8 UP, 4 DOWN)

 ID** I 311 QREJECT = 7000-75000 BTU/HR FOR ANY ATTITUDE FROM

 ID** I 312 100000 FT TO 100-270 NAUTICAL MILE ORBIT

ID** 1 320 2. HEAT SINKS
 ID** 1 321 AMMONIA BOILER - 20000 FT TO TOUCHDOWN + 17 MIN (40+-5F)
 ID** 1 322 NONE - ASCENT TO 100000 FT, REENTRY 100000-20000 FT
 ID** 1 323 VAPOR CYCLE - FERRY OPERATIONS, 40000 BTU/HR (42 +-3F)
 ID** 1 330 3. PAYLOAD HEAT LOAD = 21500 BTU/HR MAX
 ID** 1 340 4. HX UA VALUES
 ID** 1 341 7398 FREON-WATER INTERCHANGER
 ID** 1 342 1027 FUEL CELL HX (TYPE A, 2LOOPS OPERATING)
 ID** 1 343 1508 FUEL CELL HX (TYPE B, 2LOOPS OPERATING)
 ID** 1 344 1644 GSE HX
 ID** 1 345 563 HYDRAULIC HX (1 LOOP OPERATING)
 ID** 1 346 1429 PAYLOAD HX
 ID** 1 350 5. FREON PUMP--CENTRIFUGAL, EFFICIENCY= 0.291
 ID** 1 360 6. HYDRAULICS HEATING = 0.15000 BTU/AR (+GT.40 F HYDRAULIC FL)
 ID** 1 370 7. SUBLIMATOR OPERATION
 ID** 1 371 ASCENT TO 100000 FT, ON-ORBIT DOORS CLOSED, AND DURING
 ID** 1 372 RENTRY FROM DOOR CLOSURE TO 100000 FT
 ID** 1 380 8. INTERCHANGER LOAD = 40000 BTU/HR AT 40 F FREON SUPPLY
 ID** 1 399
 ID** 1 400 HSD-FREON COOLANT LOOP PROPOSAL 5-29-73
 ID** 1 410 1. 0.75 IN OD AL TUBES, 0.028 IN WALL
 ID** 1 420 2. FREON PUMP DELTA P = 41 PSI AT 2200 LB/HR
 ID** 1 430 3. HX'S ARE STAINLESS STEEL WITH NICKEL FINS EXCEPT FOR TYPE A
 FUEL CELL HX WHICH IS ALUMINUM
 ID** 1 997
 ID** 1 998
 ID** 1 999 SHUTTLE CREW METABOLIC SIMULATION 2 2
 KBAS 1 0 3 80 2
 NSTR 1 00 SOLVE FOR TYP CREWMAN AND MULTIPLY BY TOTAL NO
 KARY 1 16 4 4 CREWMEN
 KARY 1 17 990 AVG. MAN, 500 BTU/HR METABOLIC RATE, CLO=.99
 VARY 1 71 25.0 AVG. CABIN GAS VELOCITY (IFT/MIN) PRR
 VARY 1 72 300. MAX HEAT STORAGE/MAN (BTU) PRR

 ID** 2 0 SHUTTLE MAIN CABIN
 ID** 2 1 WALL TEMPERATURES-GT. CABIN GAS TEMPERATURE RDD/SRR
 ID** 2 2 .LT. 113 DEG F CREW ACCESSIBLE RDD/SRR
 ID** 2 3 .LT. 120 DEG F CREW NON-ACCESSIBLE
 KBAS 2 0 1 1 2 43 2
 NSTR 2 0021000010 2 RESETS, CARRY ENTRAINED WATER
 VARY 2 2 72.5 CABIN TEMP (F) RDD/SRR
 VARY 2 3 14.7 4 CABIN PRESSURE (PSIA) RDD/SRR
 VARY 2 6 9.4 H2O VAPOR FLOW (LB/HR)
 VARY 2 10 272.0 OXYGEN FLOW (LB/HR)
 VARY 2 11 875.8 NITROGEN FLOW (LB/HR)
 VARY 2 12 9.4 CO2 FLOW (LB/HR)
 VARY 2 66 CABIN HEAT LOAD - CALC IN GPOLY
 VARY 2 87 72.5 CABIN GAS DESIGN TEMP (F) (4 MEN) RDD/SRR
 VARY 2 88 7.5 CABIN GAS DESIGN TEMP TOL (F) (4 MEN) RDD/SRR
 VARY 2 90 14.7 DESIGN TOTAL PRESSURE (PSIA) RDD/SRR
 VARY 2 91 0.2 DESIGN TOTAL PRESSURE TOL (PSIA) RDD/SRR
 VARY 2 92 3.1 DESIGN OXYGEN PRESSURE (PSIA) RDD/SRR
 VARY 2 93 0.1 DESIGN OXYGEN PRESSURE TOL (PSIA) RDD/SRR
 VARY 2 96 50.0 DESIGN DEW POINT (F) RDD/SRR
 VARY 2 97 11.0 DESIGN DEW POINT TOL (F) RDD/SRR
 VARY 2 99 7.6 MAX ALLOWABLE CO2 PRESSURE (MM HG) RDD/SRR
 VARY 2 101 250. MAX ALLOWABLE TRACE CONTAMINANT LEVEL (PPM)
 VARY 2 122 0.25 TOTAL OUTBOARD LEAKAGE (LB/HR), 6 LB/DAY RDD/SRR

VARY 2 127 N-C ADDITION RATE (LB/HR)
 VARY 2 128 COND. VAPOR ADDITION RATE (LB/HR)
 VARY 2 129 COND ENTRAINED LIQUID ADDITION RATE (LB/HR)
 VARY 2 134 0.2 SPECIFIC HEAT OF N-C ADDED (BTU/LB-F)

ID** 3 0 SPLIT - MAIN CABIN LEAKAGE TO AVOIDONICS BAYS
 KBAS 3 0 10 2 2 2 4 2
 NSTR 3 002 SPECIFY R(20) IN GPOLY - CALC R(65)
 VARY 3 20 MAX LEAKAGE TO AV BAYS 1-3 (LB/HR) = 3 LB/DAY ROD/SRR

ID** 4 0 SPLIT - AVOIDONICS BAY NO. 1 GAS SUPPLY
 KBAS 4 0 10 -3 2 2 5 2
 NSTR 4 00 INPUT UNIVERSAL SPLIT RATIO
 VARY 4 65 .666666666 SPLIT RATIO TO AVOIDONICS BAYS 2 AND 3

ID** 5 0 SPLIT - (AVOIDONICS BAY NOS. 2 AND 3 GAS SUPPLIES)
 KBAS 5 0 10 -4 2 2 83 2
 NSTR 5 00 INPUT UNIVERSAL SPLIT RATIO
 VARY 5 65 .5 SPLIT RATIO TO AVONIC BAY 3

ID** 8 0 MAIN CABIN FANS (3)
 KBAS 8 0 23 84 2 13 2
 NSTR 8 01 INPUT HEAT ADDITION DUE TO FAN + CFM
 VARY 8 76 317.0 FAN VOLUMETRIC FLOW (CFM)
 VARY 8 91 436.3 FAN HEAT ADDITION (WATTS) FE

ID** 13 0 SPLIT - (LIOP BEDS BYPASS)
 KBAS 13 0 10 8 2 2 15 2
 NSTR 13 00 INPUT UNIV SPLIT RATIO
 VARY 13 65 0.792 LIOP BEDS BYPASS GAS FLOW RATIO

ID** 15 0 SPLIT - (LIOP BED INTERNAL BYPASS)
 KBAS 15 0 10 13 2 2 17 2
 NSTR 15 00 INPUT UNIV SPLIT RATIO
 VARY 15 65 0.0 SPLIT RATIO - LIOP I BYPASS

ID** 17 0 LIOP BEDS
 KBAS 17 0 63 15 2 19 2
 NSTR 17 01 1 REMOVE ALL TRACE CONTAMINANTS - SS SOLUTION
 VARY 17 66 0.95 CO₂ REMOVAL EFFICIENCY CONSTANT = C1
 VARY 17 67 0.0 CO₂ REMOVAL EFFICIENCY CONSTANT = C2
 VARY 17 68 875.0 HEAT OF REACTION FOR CO₂ (BTU/LB CO₂)

ID** 19 0 GASMIX - (LIOP BED INTERNAL BYPASS)
 KBAS 19 0 6 17 2 15 85 2

ID** 22 0 MAIN CABIN CONDENSING HX
 KBAS 22 0 4 86 2 -58 0 1 23 2
 NSTR 22 0200000100 1 COUNTERFLOW, REMOVE ALL COND H₂O, SS MODEL
 VARY 22 66 1062. OVERALL UA (BTU/HR-F)

ID** 23 0 GASMIX - (CABIN TEMP CONTROL VALVE BYPASS)
 KBAS 23 0 6 22 2 86 80 2

ID** 24 0 AVOIDONICS BAY 1 - AIR COOLED AVOIDONICS COMPARTMENT
 KBAS 24 0 1 20 29 2 -4 32 24
 NSTR 24 0021100010 2 RESETS, CARRY ENTRAINED WATER
 VARY 24 2 85.0 AVOIDONICS BAY 1 - TEMP (F)

VARY	24	3	14.3	4 AVIONICS BAY 1 - PRES (PSIA)	RDD/SRR
VARY	24	6	7.5	AVIONICS BAY 1 - COND VAPOR (LB/HR)	PRR
VARY	24	10	749.7	AVIONICS BAY 1 - O2 FLOW (LB/HR)	PRR
VARY	24	11	749.7	AVIONICS BAY 1 - N2 FLOW (LB/HR)	PRR
VARY	24	12	10.0	AVIONICS BAY 1 - CO2 FLOW (LB/HR)	PRR
VARY	24	66		HEAT LOAD (BTU/HR) - CALC IN GPOLY	
VARY	24	87	85.0	AVIONICS BAY 1 - DESIGN GAS TEMP (F)	
VARY	24	88	45.0	AVIONICS BAY 1 - DESIGN GAS TEMP TOL (F)	
VARY	24	90	14.3	AVIONICS BAY 1 - DESIGN TOTAL PRESS (PSIA)	
VARY	24	91	14.3	AVIONICS BAY 1 - DESIGN TOTAL PRESS TOL.(PSIA)	
VARY	24	92	3.0	AVIONICS BAY 1 - DESIGN O2 PRESS (PSIA)	
VARY	24	93	3.0	AVIONICS BAY 1 - DESIGN O2 PRESS (TOL (PSIA))	
VARY	24	96	50.0	AVIONICS BAY 1 - DESIGN DEW POINT TEMP (F)	
VARY	24	97	11.0	AVIONICS BAY 1 - DESIGN DEW POINT TEMP TOL (F)	
VARY	24	99	7.6	AVIONICS BAY 1 - MAX CO2 PRES (MM HG)	
VARY	24	101	250.0	AVIONICS BAY 1 - MAX TRACE CONT LEVEL (PPM)	
VARY	24	122	0.04167	AVIONICS BAY 1 - LEAKAGE (LB/HR) - 1 LB/DAY	RDD/SRR
ID**	26	0	AVIONICS BAY 1 - FANS (2)		
KBAS	26	0	23	24 2	29 24
NSTR	26	01		INPUT HEAT ADDITION DUE TO FAN + CFM	
VARY	26	76	200.0	FAN VOLUMETRIC FLOW (CFM)	
VARY	26	91	121.0	FAN HEAT ADDITION (WATTS)	FE
KBAS	29	0	4	26 2 -50 0 1	24 24
NSTR	29	0	2000000100	COUNTERFLOW, SS MODEL	
VARY	29	66	373.0	OVERALL UA (BTU/HR-F)	FE
ID**	30	0	AVIONICS BAY 2 - AIR COOLED AVIONICS COMPARTMENT		
KBAS	30	0	1 20	35 2 -5	38 30
NSTR	30	0021100010		2 RESETS, CARRY ENTRAINED WATER	
VARY	30	2	85.0	AVIONICS BAY 2 - TEMP (F)	
VARY	30	3	14.3	4 AVIONICS BAY 2 - PRES (PSIA)	RDD/SRR
VARY	30	6	7.5	AVIONICS BAY 2 - COND VAPOR (LB/HR)	PRR
VARY	30	10	749.7	AVIONICS BAY 2 - O2 FLOW (LB/HR)	PRR
VARY	30	11	749.7	AVIONICS BAY 2 - N2 FLOW (LB/HR)	PRR
VARY	30	12	10.0	AVIONICS BAY 2 - CO2 FLOW (LB/HR)	PRR
VARY	30	66		HEAT LOAD (BTU/HR) - CALC IN GPOLY	
VARY	30	87	85.0	AVIONICS BAY 2 - DESIGN GAS TEMP (F)	
VARY	30	88	45.0	AVIONICS BAY 2 - DESIGN GAS TEMP TOL (F)	
VARY	30	90	14.3	AVIONICS BAY 2 - DESIGN TOTAL PRESS (PSIA)	
VARY	30	91	14.3	AVIONICS BAY 2 - DESIGN TOTAL PRESS TOL.(PSIA)	
VARY	30	92	3.0	AVIONICS BAY 2 - DESIGN O2 PRESS (PSIA)	
VARY	30	93	3.0	AVIONICS BAY 2 - DESIGN O2 PRESS (TOL (PSIA))	
VARY	30	96	50.0	AVIONICS BAY 2 - DESIGN DEW POINT TEMP (F)	
VARY	30	97	11.0	AVIONICS BAY 2 - DESIGN DEW POINT TEMP TOL (F)	
VARY	30	99	7.6	AVIONICS BAY 2 - MAX CO2 PRES (MM HG)	
VARY	30	101	250.0	AVIONICS BAY 2 - MAX TRACE CONT LEVEL (PPM)	
VARY	30	122	0.04167	AVIONICS BAY 2 - LEAKAGE (LB/HR) - 1 LB/DAY	RDD/SRR
ID**	32	0	AVIONICS BAY 2 - FANS (2)		
KBAS	32	0	23	30 2	35 30
NSTR	32	01		INPUT HEAT ADDITION DUE TO FAN + CFM	
VARY	32	76	200.0	FAN VOLUMETRIC FLOW (CFM)	
VARY	32	91	121.0	FAN HEAT ADDITION (WATTS)	FE
ID**	35	0	AVIONICS BAY 2 - GAS/LIQ HX		
KBAS	35	0	4	32 2 -51 0 1	30 30

NSTR	35	0200000100	COUNTERFLOW, SS MODEL			
VARY	35	66 373.0	OVERALL UA (BTU/HR-F)			FE
ID**	36	0 AVIONICS BAY 3 - AIR COOLED AVIONICS COMPARTMENT				
KBAS	36	0 1 20	41 2	5		54 36
NSTR	36	0021100010	2 RESETS; CARRY ENTRAINED WATER			
VARY	36	2 85.0	AVIONICS BAY 3 - TEMP (F)			
VARY	36	3 14.3	9 AVIONICS BAY 3 - PRES (PSIA)			RDD/SRR
VARY	36	6 7.5	AVIONICS BAY 3 - COND VAPOR (LB/HR)			PRK
VARY	36	10 749.7	AVIONICS BAY 3 - O2 FLOW (LB/HR)			PRK
VARY	36	11 749.7	AVIONICS BAY 3 - N2 FLOW (LB/HR)			PRK
VARY	36	12 10.0	AVIONICS BAY 3 - CO2 FLOW (LB/HR)			PRR
VARY	36	66	HEAT LOAD (BTU/HR) - CALC IN GPOLY			
VARY	36	87 85.0	AVIONICS BAY 3 - DESIGN GAS TEMP (F)			
VARY	36	88 45.0	AVIONICS BAY 3 - DESIGN GAS TEMP TOL (F)			
VARY	36	90 14.3	AVIONICS BAY 3 - DESIGN TOTAL PRESS (PSIA)			
VARY	36	91 14.3	AVIONICS BAY 3 - DESIGN TOTAL PRESS TOL.(PSIA)			
VARY	36	92 3.0	AVIONICS BAY 3 - DESIGN O2 PRESS (PSIA)			
VARY	36	93 3.0	AVIONICS BAY 3 - DESIGN O2 PRESS (TOL (PSIA))			
VARY	36	96 50.0	AVIONICS BAY 3 - DESIGN DEW POINT TEMP (F)			
VARY	36	97 11.0	AVIONICS BAY 3 - DESIGN DEW POINT TEMP TOL (F)			
VARY	36	99 7.6	AVIONICS BAY 3 - MAX CO2 PRES (MM HG)			
VARY	36	101 250.0	AVIONICS BAY 3 - MAX TRACE CONT LEVEL (PPM)			
VARY	36	122 0.04167	AVIONICS BAY 3 - LEAKAGE (LB/HR) = 1 LB/DAY	RDD/SRR		
ID**	38	0 AVIONICS BAY 3 - FANS (2)				
KBAS	38	0 23	36 2			41 36
NSTR	38	01	INPUT HEAT ADDITION DUE TO FAN + CFM			
VARY	38	76 200.0	FAN VOLUMETRIC FLOW (CFM)			
VARY	38	91 121.0	FAN HEAT ADDITION (WATTS)			
ID**	39	0 WINDOW PANELS				
KBAS	39	0 49	54 1			47
NSTR	39	02	INPUT HEAT LOAD			
VARY	39	65	HEAT LOAD (BTU/HR) - CALC IN GPOLY			
ID**	40	0 IMU - BAY 3 CIRCUIT				
KBAS	40	0 49	48 1			52
NSTR	40	02	INPUT HEAT LOAD			
VARY	40	65	HEAT LOAD (BTU/HR) - CALC IN GPOLY			
ID**	41	0 AVIONICS BAY 3 - GAS/LIQ HX				
KBAS	41	0 4	38 2	-52 0 1		36 36
NSTR	41	0200000100	COUNTERFLOW, SS MODEL			
VARY	41	66 373.0	OVERALL UA (BTU/HR-F)			FE
ID**	42	0 SPLIT = (IMU BAY 1 AND IMU BAY 2 CIRCUIT)				
KBAS	42	0 10	-48 1			44
VARY	42	65 .5	SPLIT RATIO TO IMU BAY 1 CIRCUIT			
ID**	43	0 WATER LOOP PUMPS (2)				
KBAS	43	0 22	-22 1			48 2
NSTR	43	00002	INPUT HEAT ADDITION DUE TO PUMP			
VARY	43	80	PUMP VOLUMETRIC FLOW (CFM)			
VARY	43	85 44.17	PUMP HEAT ADDITION (WATTS)			
ID**	44	0 IMU - BAY 2 CIRCUIT				
KBAS	44	0 49	42 1			45

NSTR	44	02	INPUT HEAT LOAD				
VARY	44	65	HEAT LOAD (BTU/HR) - CALC IN GPOLY				
ID**	45	0	IMU - BAY 1 CIRCUIT				
KBAS	45	0 49	-42	1			46
NSTR	45	02	INPUT HEAT LOAD				
VARY	45	65	HEAT LOAD (BTU/HR) - CALC IN GPOLY				
ID**	46	0	LIQMIX - (IMU BAY 1 AND IMU BAY 2 CIRCUITS)				
KBAS	46	0 7	44	1	-45		49
ID**	47	0	SIDE HATCH PANELS				
KBAS	47	0 49	-29	1			53 2
NSTR	47	02	INPUT HEAT LOAD				
VARY	47	65	HEAT LOAD (BTU/HR) - CALC IN GPOLY				
ID**	48	0	SPLIT - (IMU BAY 3 CIRCUIT)				
KBAS	48	0 10	43	1			40
NSTR	48	00	INPUT UNIV SPLIT RATIO				
VARY	48	65 .666666667	SPLIT RATIO - FLOW TO COLDPLATES AV-1, AV-2				
ID**	49	0	SPLIT - (AVIONICS COLDPLATES AV-1 AND AV-2)				
KBAS	49	0 10	46	1			50
NSTR	49	00	INPUT UNIV SPLIT RATIO				
VARY	49	65 .5	SPLIT RATIO TO AVIONIC BAY 1 COLDPLATES				
ID**	50	0	AVIONICS BAY 1 COLDPLATES, AV-1				
KBAS	50	0 8	-49	1			51
NSTR	50	00	NO TEMP TEST FOR FAILURES				
VARY	50	51 60.0	ELEC TEMP (F)				
VARY	50	66	ELEC HEAT DISP - CALC IN GPOLY (WATTS)				
VARY	50	67 1.0	E6	CP ELEC - CP CONTACT COND (BTU/HR-F)			
ID**	51	0	AVIONICS BAY 2 COLDPLATES, AV-2				
KBAS	51	0 8	49	1			26
NSTR	51	00	NO TEMP TEST FOR FAILURES				
VARY	51	51 60.0	ELEC TEMP (F)				
VARY	51	66	ELEC HEAT DISP - CALC IN GPOLY (WATTS)				
VARY	51	67 1.0	E6	CP ELEC - CP CONTACT COND (BTU/HR-F)			
ID**	52	0	AVIONICS BAY 3 COLDPLATES, AV-3				
KBAS	52	0 8	40	1			42
NSTR	52	00	NO TEMP TEST FOR FAILURES				
VARY	52	51 60.0	ELEC TEMP (F)				
VARY	52	66	ELEC HEAT DISP - CALC IN GPOLY (WATTS)				
VARY	52	67 1.0	E6	CP ELEC - CP CONTACT COND (BTU/HR-F)			
ID**	53	0	LIQMIX - AVIONIC BAY HXS 1, 2, AND 3				
KBAS	53	0 7	47	1	-39		55
ID**	54	0	LIQMIX - AVIONIC BAY HXS 2 AND 3				
KBAS	54	0 7	-35	1			39
ID**	55	0	WATER/FREON INTERCHANGER HX				
KBAS	55	0 4	53	1	-76	2	61
NSTR	55	0200020100	COUNTERFLOW, LIQ-LIQ, SS MODEL				
VARY	55	66 5947.0	OVERALL UA (BTU/HR-F)				
							FE

ID**	56	0 WATER SUBLIMATOR 1					
KBAS	56	0 49	74	2			57
NSTR	56	00			PASS TEMP AND FLOW		
ID**	57	0 WATER SUBLIMATOR 2					
KBAS	57	0 49	56	2			75
NSTR	57	00			PASS TEMP AND FLOW		
ID**	58	0 POTABLE WATER CHILLER					
KBAS	58	0 49	61	1			60
NSTR	58	00			PASS TEMP AND FLOW		
VARY	58	1 600.0			H2O FLOW (LB/HR)		
VARY	58	2 45.0			TEMP (F)		
VARY	58	3 80.0			4 PRESS (PSIA)		OFCL
ID**	59	0 LOW TEMP PAYLOAD HX					
KBAS	59	0 4	60	2		76	2
NSTR	59	0000020100			CNTRFLOW, LIQ-LIQ, SS MODEL		77
VARY	59	1 1280.			FREON FLOW (LB/HR)		
VARY	59	2 45.0			TEMP (F)		
VARY	59	3 90.0			4 PRESS (PSIA)		
VARY	59	67 0.922			HX EFFECTIVENESS		
ID**	60	0 LOW TEMP P/L HEAT LOAD SIMULATOR					
KBAS	60	0 49	59	2			59
NSTR	60	02			INPUT HEAT LOAD IN GPOLY		
VARY	60	65			HEAT LOAD (BTU/HR) - INPUT IN GPOLY		
ID**	61	0 LIQUID COOLED GARMENT HX					
KBAS	61	0 49	55	1			58
ID**	62	0 FREON 21 PUMPS (2)					
KBAS	62	0 22	-78	2			66
NSTR	62	00002			INPUT PUMP HEAT ADDITION		
VARY	62	85 765.2			PUMP HEAT ADDITION (WATTS)		
ID**	65	0 FUEL CELL HX					
KBAS	65	0 4	66	3		-62	2
NSTR	65	0200020100			CNTRFLOW, LIQ-LIQ, SS MODEL		67
VARY	65	1 14741.0			FC-40 FLOW (LB/HR)		
VARY	65	2 130.0			TEMP (F)		
VARY	65	3 70.0			4 PRESS (PSIA)		
VARY	65	66 1485.			OVERALL UA (BTU/HR-F)		FE
ID**	66	0 FUEL CELL WASTE HEAT SIMULATOR					
KBAS	66	0 49	65	3			65
NSTR	66	02			INPUT HEAT LOAD		
VARY	66	65			FUEL CELL WASTE HEAT (BTU/HR) - CALC IN GPOLY		
ID**	67	0 SPLIT - GSE HX BYPASS CONTROL VALVE					
KBAS	67	0 10	-65	2			87
NSTR	67	00			INPUT UNIV SPLIT RATIO		
VARY	67	65 0.0			SPLIT RATIO - ALL FLOW TO GSE HX		
ID**	68	0 HYDRAULICS HX 1					
KBAS	68	0 4	87	2		-69	4
NSTR	68	0200020100			CNTRFLOW, LIQ-LIQ, SS MODEL		71
VARY	68	20 0.0			FLOW (LB/HR)		

VARY	68	21	20.0	TEMP (F)	HSD/PRO
VARY	68	22	500.	23 PRESS (PSIA)	
VARY	68	66	200.	OVERALL UA (BTU/HR-F)	
ID**	69	0	HYDRAULIC HX NO. 1 COOLING LOAD SIMULATOR		
KBAS	69	0	49	-68 4	68
NSTR	69	02		INPUT HEAT LOAD	
VARY	69	65		HYD HX NO. 1 HEAT LOAD (BTU/HR) - CALC IN GPOLY	
ID**	70	0	HYDRAULICS HX 2		
KBAS	70	0	4	68 2	72
NSTR	70	0200020100		CNTRFLOW, LIQ-LIQ, SS MODEL	
VARY	70	1	0.0	FLOW (LB/HR)	OFCL
VARY	70	2	0.0	TEMP (F)	OFCL
VARY	70	3	500.0	4 PRES (PSIA)	RDD/SRR
VARY	70	66	200.	OVERALL UA (BTU/HR-F)	
ID**	71	0	HYDRAULIC HX NO. 2 COOLING LOAD SIMULATOR		
KBAS	71	0	49	-70 4	70
NSTR	71	02		INPUT HEAT LOAD	
VARY	71	65		HYD HX NO. 2 HEAT LOAD (BTU/HR) - CALC IN GPOLY	
ID**	72	0	HEAT SINK 1		
KBAS	72	0	49	70 2	73
NSTR	72	00		PASS FLOW AND TEMP	
ID**	73	0	HEAT SINK 2		
KBAS	73	0	49	72 2	90
NSTR	73	00		PASS FLOW AND TEMP	
ID**	74	0	LIQMIX - FROM GSE HX AND GSE HX BYPASS		
KBAS	74	0	7	89 2	56
ID**	75	0	OXYGEN RESTRICTOR		
KBAS	75	0	49	57 2	76
NSTR	75	00		PASS FLOW AND TEMP	
ID**	76	0	SPLIT - FREON FLOW TO ARS I/C AND LOW TEMP P/L HX		
KBAS	76	0	10	75 2	3
NSTR	76	001		SPECIFY PRI OUTFLOW - CALC SPLIT RATIO	
VARY	76	1	2400.0	ARS I/C FLOW (LB/HR)	
VARY	76	2	40.0	TEMP (F)	
VARY	76	3	260.0	4 PRES (PSIA)	
VARY	76	20	1280.0	LOW TEMP P/L HX FLOW (LB/HR)	
VARY	76	21	40.0	TEMP (F)	
VARY	76	22	260.0	23 PRESS (PSIA)	
ID**	77	0	LIQMIX - FREON FLOW FROM ARS I/C AND LOW TEMP P/L HX		
KBAS	77	0	7	-59 2	55
ID**	78	0	HIGH TEMP P/L HX		
KBAS	78	0	4	79 2	62
NSTR	78	0000020100		CNTRFLOW, LIQ-LIQ, SS MODEL	
VARY	78	1	3680.	FREON FLOW (LB/HR)	
VARY	78	2	75.0	TEMP (F)	
VARY	78	3	90.0	4 PRES (PSIA)	
VARY	78	67	0.625	HX EFFECTIVENESS	

ID** 79 O HIGH TEMP P/L HEAT LOAD SIMULATOR
 KBAS 79 0 49 78 2 78
 NSTR 79 02 INPUT HEAT LOAD
 VARY 79 65 HEAT LOAD (BTU/HR) - INPUT IN GPOLY

 ID** 80 O SPLIT - (SEC FLOW TO PAYLOAD, PRI FLOW TO MAIN CABIN)
 KBAS 80 0 10 23 2 81 2
 NSTR 80 002 SPECIFY SEC FLOW
 VARY 80 20 PAYLOAD GAS FLOW - INPUT IN GPOLY FROM TABLE 1080

 ID** 81 O PAYLOAD CREW METABOLIC SIMULATION
 KBAS 81 0 3 -80 2 82 82
 KARY 81 16 3 3 CREWMEN
 KARY 81 17 990 AVG. MAN, 500 BTU/HR METABOLIC RATE, CLD=.99
 VARY 81 71 25.0 AVG. CABIN GAS VELOCITY (FT/MIN)
 VARY 81 72 300. MAX HEAT STORAGE/MAN (BTU)

 ID** 82 O PAYLOAD COMPARTMENT SIMULATION
 KBAS 82 0 1 81 2 1 82
 NSTR 82 0021000010 2 RESETS, CARRY ENTRAINED WATER
 VARY 82 2 72.5 PAYLOAD CABIN TEMP (F)
 VARY 82 3 14.7 4 PAYLOAD CABIN PRESSURE (PSIA)
 VARY 82 6 1.8 H2O VAPOR FLOW (LB/HR)
 VARY 82 10 51.8 OXYGEN FLOW (LB/HR)
 VARY 82 11 166.8 NITROGEN FLOW (LB/HR)
 VARY 82 12 1.8 CO2 FLOW (LB/HR)
 VARY 82 66 CABIN HEAT LOAD - CALC IN GPOLY
 VARY 82 87 72.5 CABIN GAS DESIGN TEMP (F)
 VARY 82 88 7.5 CABIN GAS DESIGN TEMP TOL (F)
 VARY 82 90 14.7 DESIGN TOTAL PRESSURE (PSIA)
 VARY 82 91 0.2 DESIGN TOTAL PRESSURE TOL (PSIA)
 VARY 82 92 3.1 DESIGN OXYGEN PRESSURE (PSIA)
 VARY 82 93 0.1 DESIGN OXYGEN PRESSURE TUL (PSIA)
 VARY 82 96 50.0 DESIGN DEW POINT (F)
 VARY 82 97 11.0 DESIGN DEW POINT TOL (F)
 VARY 82 99 7.6 MAX ALLOWABLE CO2 PRESSURE (MM HG)
 VARY 82 101 250. MAX ALLOWABLE TRACE CONTAMINANT LEVEL (PPM)
 VARY 82 122 TOTAL OUTBOARD LEAKAGE (LB/HR)
 VARY 82 127 N-C ADDITION RATE (LB/HR)
 VARY 82 128 COND. VAPOR ADDITION RATE (LB/HR)
 VARY 82 129 COND ENTRAINED LIQUID ADDITION RATE (LB/HR)
 VARY 82 134 0.2 SPECIFIC HEAT OF N-C ADDED (BTU/LB-F)

 ID** 83 O GAS MIX - (PAYLOAD AND MAIN CABIN GAS RETURNS)
 KBAS 83 0 6 3 2 -82 2 84 2

 ID** 84 O ALTCOM - (SIMULATE HEAT LOAD ADDITIONS TO CABIN HX RETURN GAS)
 KBAS 84 0 49 83 2 8 2
 NSTR 84 02 INPUT HEAT LOAD IN GPOLY
 VARY 84 65 MISC RETURN GAS HEAT INPUT IN GPOLY FROM TABLE 1084

 ID** 85 O GAS MIX - (LIOH BEDS BYPASS)
 KBAS 85 0 6 19 2 13 86 2

 ID** 86 O SPLIT - (CABIN TEMPERATURE CONTROL VALVE)
 KBAS 86 0 10 85 2 22 2
 NSTR 86 00 CALC UNIV SPLIT RATIO
 VARY 86 65 SPLIT RATIO - CALC IN GPOLY TO CONTROL CABIN TEMP

ID**	87	0 SPLIT - (VAPOR CYCLE BYPASS VALVE)				
KBAS	87	0 10	67	2		88
NSTR	87	00	INPUT UNIV SPLIT RATIO			
VARY	87	65 0.0	SPLIT RATIO - NO FLOW TO VAPOR CYCLE FERRY KIT			
ID**	88	0 VAPOR CYCLE FERRY KIT				
KBAS	88	0 49	-87	2		69
ID**	89	0 LIQMIX - (GSE HX AND VAPOR CYCLE RETURNS)				
KBAS	89	0 7	90	2	-88	74
ID**	90	0 GSE HX				
KBAS	90	0 4	99	2	-91	5
NSTR	90	0200020100	CNTRFLOW, LIQ-LIQ, SS MODEL			
VARY	90	66 2107.	OVERALL UA (BTU/HR-F)			
ID**	91	0 GSE HX COOLANT SUPPLY CONDITIONS				
KBAS	91	0 49		5		
VARY	91	1 3375.	FLOW (LB/HR)			
VARY	91	2 40.0	TEMP (F)			
VARY	91	3 50.0	4 PRESS (PSIA)			
ID**	98	0 SPLIT - RADIATOR BYPASS CONTROL VALVE				
KBAS	98	0 10	73	2		101
VARY	98	65 0.0	SPLIT RATIO - ALL FLOW TO RADIATOR			
ID**	99	0 LIQMIX - FROM RADIATOR AND RADIATOR BYPASS				
KBAS	99	0 7	113	2	98	90
VARY	99	1 3680.0	FREON FLOW (LB/HR)			
VARY	99	2 40.0	TEMP (F)			
VARY	99	3 260.0	PRESSURE (PSIA)			
ID**	101	0 SPLIT TO SIDE 1 AND SIDE 2 PANELS				
KBAS	101	0 10	98	2		102
VARY	101	65 0.5	SPLIT RATIO			
ID**	102	0 SPLIT TO FORE AND AFT TOP PANELS OF SIDE 1				
KBAS	102	0 10	101	2		103
VARY	102	65 0.5	SPLIT RATIO			
ID**	103	0 SIDE 1 FORE TOP RADIATOR PANELS				
KBAS	103	0 62	102	2		104
NSTR	103	011	1 USE STEADY STATE SOLUTION			
KARY	103	16	103	2 SOLAR HEAT FLUX TABLE NO.		
KARY	103	17	104	3 IR HEAT FLUX TABLE NO.		
VARY	103	66 .25	4 SOLAR ABSORPTIVITY			
VARY	103	67 .92	5 IR EMISSIVITY			
VARY	103	68 .934	6 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)			
VARY	103	69 1.0	7 SCRIPT F			
VARY	103	70 249.4	8 RADIATING AREA (FT ²) (NO PRIME TUBE)			
VARY	103	71 3655.5	9 UA AT 550 LB/HR (BTU/HR-F)			
VARY	103	72 550.	10 FLOW AT CALCULATED UA, R(71) (LB/HR)			
VARY	103	73 0.8	11 UA FLOW PROPORTIONALITY EXPONENT			
VARY	103	74 0.00001	12 TAU CONVERGENCE CRITERION			
VARY	103	75 0.01	13 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)			
VARY	103	87 151.6	14 RADIATOR + TUBE MASS (LBS)			
VARY	103	88 0.22	15 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)			

ID** 104 0 SIDE 1 AFT TOP RADIATOR PANELS
 KBAS 104 0 62 -102 2
 NSTR 104 011 105 1 USE STEADY STATE SOLUTION 105
 KARY 104 16 103 SOLAR HEAT FLUX TABLE NO.
 KARY 104 17 104 IR HEAT FLUX TABLE NO.
 VARY 104 66 .25 SOLAR ABSORPTIVITY
 VARY 104 67 .92 IR EMISSIVITY
 VARY 104 68 .934 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)
 VARY 104 69 1.0 SCRIPT F
 VARY 104 70 249.4 RADIATING AREA (FT2) (NO PRIME TUBE)
 VARY 104 71 3655.5 UA AT 550 LB/HR (BTU/HR-F)
 VARY 104 72 550. FLOW AT CALCULATED UA, R(71) (LB/HR)
 VARY 104 73 0.8 UA FLOW PROPORTIONALITY EXPONENT
 VARY 104 74 0.00001 TAU CONVERGENCE CRITERION
 VARY 104 75 0.01 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)
 VARY 104 87 151.6 RADIATOR + TUBE MASS (LB)
 VARY 104 88 0.22 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)

ID** 105 0 LIQMIX FROM SIDE 1 FORE AND AFT TOP RADIATOR PANELS
 KBAS 105 0 7 103 2 -103 106

ID** 106 0 SIDE 1 CAVITY RADIATOR PANELS
 KBAS 106 0 62 105 2 111
 NSTR 106 011 106 1 USE STEADY STATE SOLUTION
 KARY 106 16 106 SOLAR HEAT FLUX TABLE NO.
 KARY 106 17 107 IR HEAT FLUX TABLE NO.
 VARY 106 66 .45 SOLAR ABSORPTIVITY
 VARY 106 67 .92 IR EMISSIVITY
 VARY 106 68 .944 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)
 VARY 106 69 1.0 SCRIPT F
 VARY 106 70 175.12 RADIATING AREA (FT2) (NO PRIME TUBE)
 VARY 106 71 3655.5 UA AT 550 LB/HR (BTU/HR-F)
 VARY 106 72 550. FLOW AT CALCULATED UA, R(71) (LB/HR)
 VARY 106 73 0.8 UA FLOW PROPORTIONALITY EXPONENT
 VARY 106 74 0.00001 TAU CONVERGENCE CRITERION
 VARY 106 75 0.01 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)
 VARY 106 87 151.6 RADIATOR + TUBE MASS (LB)
 VARY 106 88 0.22 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)

ID** 107 0 SPLIT TO FORE AND AFT TOP PANELS OF SIDE 2
 KBAS 107 0 10 -101 2 2
 VARY 107 65 0.5 SPLIT RATIO

ID** 108 0 SIDE 2 FORE TOP RADIATOR PANELS
 KBAS 108 0 62 107 2
 NSTR 108 011 108 1 USE STEADY STATE SOLUTION
 KARY 108 16 103 SOLAR HEAT FLUX TABLE NO.
 KARY 108 17 104 IR HEAT FLUX TABLE NO.
 VARY 108 66 .25 SOLAR ABSORPTIVITY
 VARY 108 67 .92 IR EMISSIVITY
 VARY 108 68 .934 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)
 VARY 108 69 1.0 SCRIPT F
 VARY 108 70 249.4 RADIATING AREA (FT2) (NO PRIME TUBE)
 VARY 108 71 3655.5 UA AT 550 LB/HR (BTU/HR-F)
 VARY 108 72 550. FLOW AT CALCULATED UA, R(71) (LB/HR)
 VARY 108 73 0.8 UA FLOW PROPORTIONALITY EXPONENT
 VARY 108 74 0.00001 TAU CONVERGENCE CRITERION

VARY 108 75 0.01 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)
 VARY 108 87 151.6 RADIATOR + TUBE MASS (LB)
 VARY 108 88 0.22 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)

ID** 109 0 SIDE 2 AFT TOP RADIATOR PANELS
 KBAS 109 0 62 -107 2
 NSTR 109 011 1 USE STEADY STATE SOLUTION
 KARY 109 16 103 SOLAR HEAT FLUX TABLE NO.
 KARY 109 17 104 IR HEAT FLUX TABLE NO.
 VARY 109 66 .25 SOLAR ABSORPTIVITY
 VARY 109 67 .92 IR EMISSIVITY
 VARY 109 68 .934 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)
 VARY 109 69 1.0 SCRIPT F
 VARY 109 70 249.4 RADIATING AREA (FT2) (NO PRIME TUBE)
 VARY 109 71 3655.5 UA AT 550 LB/HR (BTU/HR-F)
 VARY 109 72 550. FLOW AT CALCULATED UA, R(71) (LB/HR)
 VARY 109 73 0.8 UA FLOW PROPORTIONALITY EXPONENT
 VARY 109 74 0.00001 TAU CONVERGENCE CRITERION
 VARY 109 75 0.01 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)
 VARY 109 87 151.6 RADIATOR + TUBE MASS (LB)
 VARY 109 88 0.22 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)

ID** 110 0 LIQMIX FROM SIDE 2 FORE AND AFT TOP RADIATOR PANELS
 KBAS 110 0 7 108 2 -109

ID** 111 0 SIDE 2 CAVITY RADIATOR PANELS
 KBAS 111 0 62 105 2 112
 NSTR 111 011 1 USE STEADY STATE SOLUTION
 KARY 111 16 111 SOLAR HEAT FLUX TABLE NO.
 KARY 111 17 112 IR HEAT FLUX TABLE NO.
 VARY 111 66 .45 SOLAR ABSORPTIVITY
 VARY 111 67 .92 IR EMISSIVITY
 VARY 111 68 .944 OVERALL FIN RADIATOR EFFECTIVENESS (NO PRIME TUBE)
 VARY 111 69 1.0 SCRIPT F
 VARY 111 70 175.12 RADIATING AREA (FT2) (NO PRIME TUBE)
 VARY 111 71 3655.5 UA AT 550 LB/HR (BTU/HR-F)
 VARY 111 72 550. FLOW AT CALCULATED UA, R(71) (LB/HR)
 VARY 111 73 0.8 UA FLOW PROPORTIONALITY EXPONENT
 VARY 111 74 0.00001 TAU CONVERGENCE CRITERION
 VARY 111 75 0.01 FLUID OUTLET TEMP CONVERGENCE CRITERION (F)
 VARY 111 87 151.6 RADIATOR + TUBE MASS (LB)
 VARY 111 88 0.22 RADIATOR + TUBE SPECIFIC HEAT, AL6061-T6 (BTU/LB-F)

ID** 112 0 LIQMIX FROM SIDE 1 AND SIDE 2 RADIATOR PANELS
 KBAS 112 0 7 106 2 -111 113

ID** 113 0 CALCULATE TIME AVERAGED OUTLET TEMPERATURE
 KBAS 113 0 29 4 112 2 101
 NSTR 113 00 6 METER MAIN FLOW ONLY

TABL	1	10	2	5	LIN	STP
TITL	1	20RADIATOR RETURN FLOW (LB/HR)	VS	HRS		
VALU	1	10021 0.0	6.288	12.576	18.864	25.152
VALU	1	11020 2200.	2400.	2800.	3200.	3800.

TABL	2	10	2	19	LIN	STP
TITL	2	20RADIATOR RETURN TEMPERATURE (F)	VS.	HRS		
VALU	2	10021 0.0	1.572	3.144	4.716	6.288
						7.860

VALU	2	1102D	125.	150.	175.	200.	125.	150.
VALU	2	1202I	9.432	11.004	12.576	14.148	15.720	17.292
VALU	2	1302D	175.	200.	100.	125.	150.	175.
VALU	2	1402I	18.864	20.436	22.008	23.580	25.152	26.724
VALU	2	1502D	100.	125.	150.	175.	100.	125.
VALU	2	1602I	28.296					
VALU	2	1702D	150.					

TABL	103	10	2	18	LIN	LIN		
TITL	103	2050LAR FLUX, BETA=78 DEG, SOLAR ORIENTED, TOP PNLS, BTU/HR-FT2 VS HRS						
VALU	103	1002I	0.0	.0655	.131	.1965	.262	.3275
VALU	103	1102D	452.87	452.79	452.53	451.96	451.03	449.23
VALU	103	1202I	.393	.4585	.524	1.040	1.1135	1.179
VALU	103	1302D	446.83	444.01	443.0	443.0	444.01	446.85
VALU	103	1402I	1.2455	1.31	1.3755	1.441	1.5065	1.572
VALU	103	1502D	449.29	451.03	451.96	452.53	452.79	452.87

TABL	104	10	2	25	LIN	LIN		
TITL	104	201R FLUX, BETA=78 DEG, SOLAR ORIENTED, TOP PANELS, BTU/HR- FT2 VS HRS						
VALU	104	1002I	0.0	.0655	.131	.1965	.262	.3275
VALU	104	1102D	14.2	14.38	14.9	15.72	16.79	18.03
VALU	104	1202I	.393	.4585	.524	.5895	.655	.7205
VALU	104	1302D	19.36	21.07	22.66	24.03	25.09	25.76
VALU	104	1402I	.786	.8515	.917	.9825	1.040	1.1135
VALU	104	1502D	25.99	25.76	25.09	24.03	22.66	21.07
VALU	104	1602I	1.179	1.2455	1.31	1.3755	1.441	1.5065
VALU	104	1702D	19.36	18.03	16.79	15.72	14.9	14.38
VALU	104	1802I	1.572					
VALU	104	1902D	14.2					

TABL	106	10	2	16	LIN	LIN		
TITL	106	2050LAR FLUX, BETA=78, SOLAR ORIENTED, SIDE 1 CAV, BTU/HR-FT2 VS HRS						
VALU	106	1002I	0.0	.0655	.131	.1965	.262	.3275
VALU	106	1102D	.39	.51	.68	.87	1.16	1.09
VALU	106	1202I	.393	.4585	1.1135	1.179	1.2455	1.31
VALU	106	1302D	.41	0.0	0.0	.41	1.09	1.16
VALU	106	1402I	1.3755	1.441	1.5065	1.572		
VALU	106	1502D	.87	.68	.51	.39		

TABL	107	10	2	25	LIN	LIN		
TITL	107	201R FLUX, BETA=78, SOLAR ORIENTED, SIDE 1 CAVITY, BTU/HR-FT2 VS HRS						
VALU	107	1002I	0.0	.0655	.131	.1965	.262	.3275
VALU	107	1102D	2.48	2.89	4.03	5.65	9.6	14.4
VALU	107	1202I	.393	.4585	.524	.5895	.655	.7205
VALU	107	1302D	19.36	25.0	31.9	37.56	42.26	45.54
VALU	107	1402I	.786	.8515	.917	.9825	1.040	1.1135
VALU	107	1502D	46.74	45.54	42.26	37.56	31.9	25.0
VALU	107	1602I	1.179	1.2455	1.31	1.3755	1.441	1.5065
VALU	107	1702D	19.36	14.5	9.6	5.65	4.03	2.89
VALU	107	1802I	1.572					
VALU	107	1902D	2.48					

TABL	111	10	2	16	LIN	LIN		
TITL	111	2050LAR FLUX, BETA=78, SOLAR ORIENTED, SIDE 2 CAVITY, BTU/HR-FT2 VSHR						
VALU	111	1002I	0.0	.0655	.131	.1965	.262	.3275
VALU	111	1102D	22.3	20.81	16.78	11.27	5.43	2.49
VALU	111	1202I	.393	.4585	1.1135	1.179	1.2455	1.31
VALU	111	1302D	.41	0.0	0.0	.41	2.49	5.93

VALU	111	1402I	1.3755	1.441	1.5065	1.572		
VALU	111	1502D	11.27	16.78	20.81	22.3		
TABL	112	10	2	25	LIN	LIN		
TITL	112	20IIR	FLUX, BETA=7B, SOLAR ORIENTED, SIDE 2 CAVITY, BTU/HR=FT2 VS HRS					
VALU	112	100	0.0	.0655	.131	.1965	.262	.3275
VALU	112	110	56.54	55.05	50.56	43.26	35.55	27.48
VALU	112	120	.393	.4585	.524	.5895	.655	.7205
VALU	112	130	19.36	13.04	6.77	3.68	1.16	.19
VALU	112	140	.786	.8515	.917	.9825	1.040	1.1135
VALU	112	150	.15	.19	1.16	3.68	6.77	13.04
VALU	112	160	1.179	1.2455	1.31	1.3755	1.441	1.5065
VALU	112	170	19.36	27.48	35.53	43.26	50.56	55.05
VALU	112	180	1.572					
VALU	112	190	56.54					
TABL1000	10	2	24	LIN	STP			
TITL1000	20MISSION PHASE VS. MISSION TIME (SEC) FOR SORTIE MISSION 2A							
VALU1000	1102I	-600.	0.0	596.	1459.	2203.	69161.	
VALU1000	1202D	1.0	2.0	3.0	4.0	5.0	6.0	
VALU1000	1302I	83232.	89075.	94200.	166200.	176350.	184200.	
VALU1000	1402D	7.0	8.0	9.0	10.0	11.0	12.0	
VALU1000	1502I	270600.	357000.	443400.	529800.	537000.	595225.	
VALU1000	1602D	13.0	14.0	15.0	16.0	17.0	18.0	
VALU1000	1702I	597833.	599645.	599841.	600000.	600120.	600900.	
VALU1000	1802D	19.0	20.0	21.0	22.0	23.0	24.0	
TABL1002	10	2	11	LIN	STP			
TITL1002	20CABIN HEAT LOAD (-METABOLIC) VS. MISSION PH. (SORTIE 2A) (BTU/HR)							
VALU1002	1102I	1.0	3.0	5.0	6.0	8.0	9.0	
VALU1002	1202D	3938.	2688.	5362.	2438.	2585.	5112.	
VALU1002	1302I	10.0	11.0	12.0	18.0	21.0		
VALU1002	1402D	2585.	2438.	5112.	3938.	6238.		
TABL1024	10	2	17	LIN	STP			
TITL1024	20AVIONIC BAYS AIR LOAD VS. MISSION PH (SORTIE 2A) (BTU/HR)							
VALU1024	1102I	1.0	3.0	4.0	5.0	6.0	9.0	
VALU1024	1202D	11818.	11761.	7499.	5159.	7749.	8050.	
VALU1024	1302I	10.0	11.0	12.0	16.0	17.0	18.0	
VALU1024	1402D	8219.	7749.	5296.	5352.	6071.	11915.	
VALU1024	1502I	19.0	20.0	21.0	22.0	23.0		
VALU1024	1602D	13133.	14338.	14276.	12536.	6937.		
TABL1050	10	2	20	LIN	STP			
TITL1050	20AVIONIC BAYS CP LOAD VS. MISSION PH (SORTIE 2A) (BTU/HR)							
VALU1050	1102I	1.0	2.0	3.0	4.0	5.0	6.0	
VALU1050	1202D	11083.	9903.	8351.	6748.	5631.	6408.	
VALU1050	1302I	7.0	8.0	9.0	10.0	11.0	12.0	
VALU1050	1402D	7638.	7109.	6174.	6649.	6597.	5436.	
VALU1050	1502I	16.0	17.0	18.0	19.0	20.0	21.0	
VALU1050	1602D	5406.	5713.	8477.	9780.	10148.	10210.	
VALU1050	1702I	22.0	23.0					
VALU1050	1802D	9768.	7084.					
TABL1060	10	2	3	LIN	STP			
TITL1060	20LOW TEMP. PAYLOAD HX LOAD VS. MISSION PH (SORTIE 2A) (BTU/HR)							
VALU1060	1102I	1.0	12.0	18.0				
VALU1060	1202D	5200.	21500.	5200.				

TABL1066	10	3	3	4	LIN	LIN	LIN
TITL1066	20FUEL CELL -A-	WASTE HEAT (BTU/HR)	VS.	NO. CELLS	VS.	ELEC OUTPUT (KW)	
VALU1066	11031	3.2		10.0		12.0	14.0
VALU1066	12030	1.0	5000.	20800.		25400.	30000.
VALU1066	13030	2.0	5000.	18200.		22600.	27000.
VALU1066	14030	3.0	5000.	17200.		21000.	25400.
TABL1069	10	2	5		LIN	STP	
TITL1069	20HYDRAULIC LOOP	HEAT LOSS (BTU/HR)	VS.	MISSION PH (SORTIE 2A)			
VALU1069	11021	1.0	5.0	6.0		12.0	18.0
VALU1069	12020	0.0	-15000.	0.0		-15000.	0.0
TABL1075	10	2	2		LIN	STP	
TITL1075	2002 RESTRICTOR	HEAT LOSS (BTU/HR)	VS.	MISSION PH (SORTIE 2A)			
VALU1075	11021	1.0	23.0				
VALU1075	12020	0.0	0.0				
TABL1079	10	2	2		LIN	STP	
TITL1079	20HIGH TEMP PAYLOAD HX	HEAT LOAD (BTU/HR)	VS.	MISSION PH (SORTIE 2A)			
VALU1079	11021	1.0	23.0				
VALU1079	12020	0.0	0.0				
TABL1080	10	2	3		LIN	STP	
TITL1080	20PAYLOAD GAS FLOW (CFM)	VS. MISSION PH (SORTIE 2A)					
VALU1080	11021	1.0	12.0			18.0	
VALU1080	12020	0.0	48.0			0.0	
TABL1082	10	2	2		LIN	STP	
TITL1082	20PAYLOAD AIR LOAD VS. MISSION PH FOR 48CFM (SORTIE 2A)	(BTU/HR)					
VALU1082	11021	1.0	23.0				
VALU1082	12020	0.0	0.0				
TABL1084	10	2	18		LIN	STP	
TITL1084	20HX IN LOADS (-LIQH QS, QL)	VS. MISSION PH (SORTIE 2A)	(BTU/HR)				
VALU1084	11021	1.0	3.0		4.0	5.0	6.0
VALU1084	12020	6473.	6386.		5862.	3434.	4995.
VALU1084	13021	8.0	9.0		10.0	11.0	12.0
VALU1084	14020	5756.	4436.		5024.	5343.	3293.
VALU1084	15021	16.0	17.0		18.0	19.0	20.0
VALU1084	16020	3293.	3251.		5934.	6514.	3286.
TABL1566	10	3	3	4	LIN	LIN	LIN
TITL1566	20FUEL CELL -B-	WASTE HEAT (BTU/HR)	VS.	NO. CELLS	VS.	ELEC OUTPUT (KW)	
VALU1566	11031	5.0		10.0		12.0	14.0
VALU1566	12030	1.0	11000.	26600.		33400.	40400.
VALU1566	13030	2.0	11000.	23400.		29000.	34300.
VALU1566	14030	3.0	11000.	22200.		27200.	32000.
TABL2066	10	2	23		LIN	STP	
TITL2066	20FUEL CELL OUTPUT REQ'D	VS. MISSION PH (SORTIE 2A)	(KW)				
VALU2066	11021	1.0	2.0		3.0	4.0	5.0
VALU2066	12020	17.86	15.86		11.90	11.42	7.29
VALU2066	13021	7.0	8.0		9.0	10.0	11.0
VALU2066	14020	8.87	9.43		9.75	9.50	9.24
VALU2066	15021	13.0	14.0		15.0	16.0	17.0
VALU2066	16020	8.18	8.65		8.66	9.20	9.40
VALU2066	17021	19.0	20.0		21.0	22.0	23.0
VALU2066	18020	13.90	16.03		16.10	15.25	10.06

ENDC

A.32

```

SUBROUTINE GPOLY1
COMMON /COMPR/ DS(15),N,NAI,NBI,NC,NCAB,NCFL,NEXT,NEXV,NK,
1 NKEX,NKS,NKT,NLFL,NP,NPASS,NPF,NPFT(6),NW,NS,NSF,NSFT(6),
2 NSTR(18),NSUBR,NV,NVT,Y(12)
COMMON /RARRAY/ IMAXR,R(1)
COMMON /ECLSTI/ KCHOUT,KPRNT,KPTINV(4),KWIT,KWIT1,KWIT2,
1 KWIT3,KWIT4,NUFF
COMMON /KANDV/ K
COMMON /MISC/ DTIME,GRAV,KFLSYS,KOUTPT,KPDRUP,KSYPAS,KTRANS,
1 LPSUM(5),MAXCI,MAXLP,MAXSLP,MAXSSI,NCOMPS,NEADT,NLAST,NPASPD,
2 MINSSI,PGMIN,PLMIN,START,STEADY,TIME,TIMEMX,TMAX,TMIN,WTMAX
COMMON /CASE/ NCASE,NRSCS
COMMON /F21P/ CPF,RHDF,VISCF,WTMF,XKF
COMMON /PROPTY/ CPO,CPI99),CPCONL,CPCONV,CPCO2,CPDIL,CPOXY,CPTC,
1 GAMGAS,RHOO,RHO(99),VISCO,VISC(99),VISGAS,WTMD,WTM(99),WTMCN,
2 WTMDIL,WTMTC,XKO,XK(99),XKGAS,XKLIQ,VISLIQ
COMMON /SOURCE/ A(19),B(19),CPA,CPB,IA1,IB1,NA,NB,NPF,S,NPFST(6),
1 NSFS,NSFST(6),RHOA,RHOB,VISCA,VISCB,WTMA,WTMB,XKA,XKB
COMMON /POW/ POWER
COMMON /VLOC/ IP,IS,IC,IQ,IV,IVT,IE,INEXK
COMMON /SHUTLE/ PH
LOGICAL POWER
DIMENSION V(1),K(1)
EQUIVALENCE (V,K)
LOGICAL STEADY

```

```

C      DETERMINE MISSION PHASE
PH=VALUE(1000,TIME,0.0) + 0.00001
IF(PH.EQ.0LPH) GO TO 999
OLPH=PH
C      FIND MAIN CABIN HEAT LOAD (DOES NOT INCLUDE METABOLIC)
QCAB=VALUE(1002,PH,0.0)
QCAB=S306.
CALL SV(QCAR,2,66)
C      FIND AIONICS BAY AIR HEAT LOADS (DOES NOT INCLUDE FAN)
QAV=VALUE(1024,PH,0.0) - 938.0
QAV1=QAV/3.0
QAV2=QAV1
QAV3=QAV1
QAV1=1B12.
QAV2=1B19.
QAV3=2080.
CALL SV(QAV1,24,66)
CALL SV(QAV2,30,66)
CALL SV(QAV3,36,66)
C      FIND AIONICS BAY COLDPLATE HEAT LOADS (CONVERT TO WATTS)
QAVCP=VALUE(1050,PH,0.0)/3.413
QAVCP1=QAVCP/3.0
QAVCP2=QAVCP1
QAVCP3=QAVCP1
QAVCP1=812. /3.413
QAVCP2=873. /3.413
QAVCP3=2071./3.413
CALL SV(QAVCP1,50,66)
CALL SV(QAVCP2,51,66)
CALL SV(QAVCP3,52,66)

```

```

C      FIND LOW TEMP PAYLOAD HEAT LOAD
QLTPL=VALUE(1060,PH,0.0)
QLTPL=18880.0
CALL SV(QLTPL,60,65)
C      FIND FUEL CELL ELEC OUTPUT REQD.
FCKW=VALUE(2066,PH,0.0)
C      DETERMINE NO. OF FUEL CELLS OPERATING
NFC=IFIX(FCKW/7.15) +1
XFC=FLOAT(NFC) + .00001
C      DETERMINE FUEL CELL WASTE HEAT
C      - TYPE A -
QFCWH=VALUE(1066,XFC,FCKW)
QFCWH=41150.
CALL SV(QFCWH,66,65)
C      FIND HYDRAULIC LOOP HEAT LOSS
QHYD1=VALUE(1069,PH,0.0)
QHYD1=0.0
CALL SV(QHYD1,69,65)
QHYD2=C.0
CALL SV(QHYD2,71,65)
C      FIND O2 RESTRICTOR HEAT LOSS
QO2R=VALUE(1075,PH,0.0)
QO2R=0.0
CALL SV(QO2R,75,65)
C      FIND HIGH TEMP PAYLOAD HX HEAT LOAD
QHTPL=VALUE(1079,PH,0.0)
QHTPL=10120.0
CALL SV(QHTPL,79,65)
C      FIND HEAT LOAD FOR PAYLOAD AIR FROM MAIN CABIN
QPLAIR=VALUE(1082,PH,0.0)
QPLAIR=0.0
CALL SV(QPLAIR,82,65)
C      FIND MAIN CABIN HEAT LOADS TO BE ADDED BEFORE HX INLET
C      INCLUDES CABIN COLDPLATE LOADS
C      (DOES NOT INCLUDE LIOH OR FAN LOADS)
QHXIN=VALUE(1084,PH,0.0) -1489.
QHXIN=1635.
CALL SV(QHXIN,84,65)
C      FIND IMU LOAD FOR EACH WATER LOOP CIRCUIT
QIMU=2269.
QIMUI=QIMU/3.0
QIMU2=QIMUI
QIMU3=QIMUI
CALL SV(QIMUI,45,65)
CALL SV(QIMU2,44,65)
CALL SV(QIMU3,40,65)
999 CONTINUE

```

```

3 IF(N.NE.3) GO TO 305
C      SPECIFY TOTAL LEAKAGE RATE TO AVIONICS BAYS 1-3 AS R(2D) FOR COMP 3
C      MAX LEAKAGE = 3 LB/DAY = 0.125 LB/HR PER RDU/SRK
R(2D)=0.125
305 CONTINUE
80 IF(N.NE.80) GO TO 8050
C      FIND PAYLOAD GAS FLOW FROM MAIN CABIN
PLCFM=VALUE(1080,PH,0.0)
PLCFM=48.0
R(2D)=PLCFM*RHOA*60.0
8050 CONTINUE
86 IF(N.NE.86) GO TO 8650
C      FIND SPLIT RATIO FOR CABIN TEMP CONTROL VALVE
IF(KSYPPAS.EQ.0) GO TO 8650
TCAB=VV(2,104)
TSET=70.0
IF(ABS(TCAB-TCAB0).LE.0.1) GO TO 8650
CALL ESTIM(R(65),TCAB,TSET,R650,TCAB0,TSET0,I=0,ITERI,NSTR(1))
R(65)=0.0
8650 CONTINUE

```

```

RETURN
END

```

```

SUBROUTINE GPOLY2
COMMON /COMP/ DS(15),N,NA1,NB1,NC,NCAB,NCFL,NEXT,NEXV,NK,
1 NKEX,NKS,NKT,NLFL,NP,NPASS,NPF,NPFT(6),NW,NS,NSF,NSFT(6),
2 NSTR(18),NSUBR,NV,NVT,Y(12)
COMMON /RARRAY/ IMAXR,R(1)
COMMON /KANDV/ K
COMMON /MISC/ DTIME,GRAV,KFLSYS,KOUTPT,KPDRUP,KSYPAS,KTRANS,
1 LPSUM(5),MAXCI,MAXLP,MAXSLP,MAXSSI,NCOMPS,NEWDT,NLAST,NPASPD,
2 MINSSI,PGMIN,PLMIN,START,STEADY,TIME,TIMEMX,TMAX,TMIN,WTMAX
COMMON /CASE/ NCASE,NRSCS
COMMON /PROPTY/ CPO,CP(99),CPEONL,CPCONV,CPCO2,CPDIL,CPOXY,CPTC,
1 GAMGAS,RHO0,RHO(99),VISCO,VISC(99),VISGAS,WTMD,WTM(99),WIMCON,
2 WTMDIL,WTMTC,XKO,XK(99),XKGAS,XKLIQ,VISLIQ
COMMON /SOURCE/ A(19),B(19),CPA,CPB,IA1,IB1,NA,NB,NPFS,NPFST(6),
1 NSFS,NSFST(6),RHOA,RHOB,VISCA,VISCB,WTMA,WTMB,XKA,XKB
COMMON /POW/ POWER
LOGICAL POWER
DIMENSION V(1),K(1)
EQUIVALENCE (V,K)
LOGICAL STEADY
IF(N.EQ.82) R(2)=75.0
RETURN
END

```