

Model Development Phase Template

Date	15 JULY 2024
Team ID	739811
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
1. K Nearest Neighbors Model	from sklearn.neighbors import NheighborsClassifier None SkleghborsClassifier (n_neighbors-5,netrice'mintowski',p = 2) km.fst(χ_{crain} , χ_{crain})	55.18867	<pre>from sklearn.metrics import accuracy_score accuracy_KNN = accuracy_score (y_test, y_pred) print(f'Accuracy_KNN: {accuracy_KNN*100}')</pre>

			precision recall f1-score support apple 1.00 1.00 1.00 23 harma 1.00 1.00 1.00 20 hastgram 0.01 1.00 1.00 25 coconut 1.00 1.00 0.95 11 coconut 1.00 1.00 1.00 20 cocord 1.00 1.00 1.00 20 cotfee 1.00 1.00 1.00 20 cotfee 1.00 1.00 1.00 20 grapes 1.00 1.00 1.00 20 grapes 1.00 1.00 1.00 20 jute 0.74 0.94 0.94 0.93 kidneybeans 0.90 1.00 0.95 19 lentil 1.00 0.96 0.95 25 maize 1.00 1.00 1.00 1.00 17 mange 1.00 1.00 1.00 1.00 17 mungbean 1.00 1.00 1.00 1.00 20 muskmelon 1.00 1.00 1.00 1.00 1.00 muskmelon 1.00 1.00 1.00 1.00 1.00 papaya 1.00 0.93 0.93 14 papaya 1.00 0.93 0.93 15 pigeorpes 1.00 0.93 0.93 15 pigeorpes 1.00 0.90 0.95 21 pomgranate 1.00 1.00 1.00 1.00 24 papaya 1.00 0.93 0.93 0.93 15 pigeorpes 1.00 0.90 0.95 21 pomgranate 1.00 1.00 1.00 1.00 23 rice 0.93 0.74 0.82 19 welghted avg 0.97 0.97 0.97 440 welghted avg 0.97 0.97 0.97 440
2. SVM Model	from sklearn.svm import SVC svm=SVC(kernel='rbf', random_state=0) svm.fit(X_train,y_train)	9.433	y_pred_svc=svm.predict(X_test) print('Training Set:',svm.score(X_train,y_train)) print('Training Set:',svm.score(X_test,y_test)) Iraining Set: 0.1211382113821138 Iraining Set: 0.09433962264150944
3.Decision Tree Model	<pre>dt=DecisionTreeClassifier() dt.fit(X_train,y_train) DecisionTreeClassifier DecisionTreeClassifier()</pre>	97.166	y_pred_dt=dt.predict(X_test) print('Training Set:',dt.score(X_train,y_train)) print('Training Set:',dt.score(X_test,y_test)) Training Set: 1.0 Training Set: 0.9716981132075472
4. Random Forest Model] rand_forest-RandomForestClassifier(random_state=42) Loading rand_forest.fit(X_train,y_train) RandomForestClassifier RandomForestClassifier(random_state=42)	97.1669	predictionFrand_forest.predict(X_test) print('Training Set: ',rand_forest.score(X_train,y_train)) print('Training Set: ',rand_forest.score(X_test,y_test)) Training Set: 1.0 Training Set: 6.37264159943196224