R Programming as a Part of Bigdata Course Clustering

John Aa. Sørensen, lektor Section for Information Technology, DTU Diplom

23 February 2017

Examples on Clustering Preparation Steps

```
# Step 1: Choose appropriate attributes.
# Step 2: Scale the data.
# Step 3: Screen for outliers.
# Step 4: Calculate distances.
# Step 5: Select a clustering algorithm.
    Hierarchical and/or partitioning cluster analysis.
# Step 5: Repeat using outlier substitution with median.
# Step 5: Repeat using "single" link clustering.
# Step 6: Obtain one or more cluster solutions.
# Step 7: Determine the number of clusters present.
# Step 8: Obtain final clustering solution.
# Step 9: Visualize the results.
```

Examples on References of Relevance to Clustering

- ► The main reference is [Kabacoff, 2015] Chap. 16 "Clustering Analysis"
- and a selection of R packages and their corresponding bagground papers typical in Journal of Statistical Software,
- e.g. [Charrad, 2014] NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set
- and [Pison, 1999] Displaying a Clustering with CLUSPLOT, from Elsevier.

Choose Attributes

```
> # 5.1: Step 1: Choose appropriate attributes.
> # Example p. 373 [Kabacoff, 2015]
> data(nutrient, package="flexclust")
> str(nutrient)
'data.frame': 27 obs. of 5 variables:
$ energy : int 340 245 420 375 180 115 170 160 265 300 ...
$ protein: int 20 21 15 19 22 20 25 26 20 18 ...
$ fat : int 28 17 39 32 10 3 7 5 20 25 ...
$ calcium: int 9 9 7 9 17 8 12 14 9 9 ...
$ iron : num 2.6 2.7 2 2.6 3.7 1.4 1.5 5.9 2.6 2.3 ...
> head(nutrient, 3) # Display upper 3 rows from 5 dim. DS
               energy protein fat calcium iron
BEEF BRAISED
                  340
                          20 28
                                       9 2.6
                          21 17 9 2.7
HAMBURGER
                  245
                          15 39
                                       7 2.0
BEEF ROAST
                  420
```

4/38

```
# 5.3: Step 3: Screen for outliers.
      This step is exemplified using ref. [Filzmoser, 2005].
#
# Ref. [Kabacoff, 2015] p. 371
# screen and remove univariate outliers using package: outliers
 install.packages("outliers") # Moved to top of this script.
 install.packages("mvoutlier") # Moved to top of this script.
 library(outliers)
# library(mvoutlier)
# help(package="outliers")
                          # Single variable outliers.
# help(package="mvoutliers")
                          # Multivariable outliers.
#
```

6/38

```
# ref. [Filzmoser, 2005], package "mvoutliers"
# Demonstrate the function symbol.plot()
# Objective:
# A method for multivariate outlier detection able
# to distinguish between extreme values of a normal
# distribution and values originating from a different
# distribution (outliers).
# Method: Find subset of observations, h, with
# MCD (Minimum Covariance Determinant).
#
```

```
# Create data matrices with two different distributions:
# Matrix x: Two column vectors with 100 rows of std. normal.
x \leftarrow cbind(rnorm(100), rnorm(100))
# Matrix y: Two column vectors 10 rows of norm. mean=5, std=1
y \leftarrow cbind(rnorm(10, 5, 1), rnorm(10, 5, 1))
# Matrix z: Two column vectors, each with 110 rows.
z \leftarrow rbind(x,y)
str(z) # Check structure of resulting z matrix
head(z, 10) # Check the top 20 rows in z.
par(opar.org)
plot(z[,1],z[,2])
title("Raw data from two distributions.")
```

Raw data for outlier detection experiment.

Boolean with outlier True, False

Mahalanobis distance

```
$md
[1] 1.5488775 0.6202039 0.5959240 2.2306050 ...
[12] 0.9678372 0.3507535 0.6464982 0.2694994 ...
.
.
[78] 0.3398362 0.9764323 0.5955232 1.5111894 ...
[89] 2.1523832 1.6060837 1.1749813 1.3489594 ...
[100] 0.3659154 4.0687445 5.7896500 6.9665733 ...
[105] 5.6263406 6.1093877 4.6828475 6.0451329 ...
```

symbol.plot() for outlier removal.

Distance Calculation I

```
# 5.4: Step 4: Calculate distances.
#
# Compute dist. matrix btw. first 4 rows of nutrient,
# using the dist() function in R base installation.
# dist() contains the following distances using ?dist()
#
        "euclidean", "maximum", "manhattan",
#
        "canberra", "binary", "minkowski"
#
?dist()
                     # Check manual.
d <- dist(nutrient) #</pre>
as.matrix(d)[1:4,1:4] # Symm. dist. matrix, 0 diagonal.
#
       Notice the very different numerical ranges
#
       of the variables => need for scaling.
```

Distance Calculation II

```
> d <- dist(nutrient)</pre>
> as.matrix(d)[1:4,1:4] # Symm. dist. mtx, 0 diagonal.
              BEEF BRAISED HAMBURGER BEEF ROAST BEEF STEAK
                 0.00000
                          95.6400
                                    80.93429 35.24202
BEEF BRAISED
HAMBURGER
                95.64000 0.0000
                                   176.49218
                                              130.87784
                80.93429 176.4922
                                     0.00000 45.76418
BEEF ROAST
BEEF STEAK
                35.24202 130.8778 45.76418
                                                0.00000
>
```

Distance Calculation III

```
# If mixed data types:
# binary, nomial (category), ordinal (eg. Likert)
# or continous (e.g. temperature), use e.g. the daisy()
# function in the cluster package.
# Example on packages for clustering on mixed types:
# Functions for agglomerative clustering: agnes()
# Functions for partitioning around medoids: pam().
```

Select a Clustering Algorithm

Verify Scaling of the Attributes

```
# Check the scaled variables properties.
# Mean values = 0
# Standard deviations = 1.
#
attributes(nutrient.scaled)
# Verify that mean values are = 0.
summary(nutrient.scaled)
```

Scaled Histograms of Attributes for Clustering

Euclidean Distance Matrix for scaled nutrient

```
#
# Display the euclidean distance matrix of
# nutrient.scaled
#
?dist()  # Manual for dist()
d_eucli <- dist(nutrient.scaled,"euclidean")
d_eucli
#</pre>
```

Check Attributes of Dataset in d_eucli

```
> attributes(d_eucli)
$Size
Γ1 27
$Labels
[1] "beef braised"
                          "hamburger" ...
[5] "beef canned"
                          "chicken broiled" ...
[9] "lamb leg roast"
                          "lamb shoulder roast" ...
[13] "pork simmered"
                           "beef tongue" ...
[17] "clams raw"
                           "clams canned" ...
[21] "mackerel broiled"
                           "mackerel canned" ...
[25] "sardines canned"
                           "tuna canned" ...
#
```

Average Link Clustering, Euclidean Distance

```
par(opar)
fit.average_eucli <- hclust(d_eucli, method="average")</pre>
plot(fit.average_eucli, hang=-1, cex=0.8,
     main="Average Linkage Clustering, Euclidean")
# hang=-1, the labels are below the plot, rotated 90 Degree.
# cex=.8, scale text cx times, [Kabacoff, 2015] p. 53.
#
pdf("fig_5_2_AV_Link_Clust.pdf")
par(opar)
plot(fit.average_eucli, hang=-1, cex=0.8,
     main="Average Linkage Clustering, Euclidean")
par(opar)
dev.off()
```

Average Link Clustering, Euclidean Distance

Average Linkage Clustering, Euclidean

d_eucli hclust (*, "average")

Estimate Number of Clusters

Estimation of the Number of Clusters

Estimation of the Number of Clusters, [Charrad, 2014]

	Name of the index in NbClust	Optimal number of clusters
1.	"ch" (Calinski and Harabasz 1974)	Maximum value of the index
2.	"duda" (Duda and Hart 1973)	Smallest number of clusters
		such that index > criticalValue
3.	"pseudot2" (Duda and Hart 1973)	Smallest number of clusters
		such that index < criticalValue
4.	"cindex" (Hubert and Levin 1976)	Minimum value of the index
5.	"ganna" (Baker and Hubert 1975)	Maximum value of the index
6.	"beale" (Beale 1969)	Number of clusters such that
		critical value >= alpha
7.	"ccc" (Sarle 1983)	Maximum value of the index
8.	"ptbiserial" (Milligan 1980, 1981)	Maximum value of the index
9.	"gplus" (Rohlf 1974; Milligan 1981)	Minimum value of the index
10.	"db" (Davies and Bouldin 1979)	Minimum value of the index
11.	"frey" (Frey and Van Groenewoud 1972)	Cluster level before
		index value < 1.00
12.	"hartigan" (Hartigan 1975)	Maximum difference between
		hierarchy levels of the index
13.	"tau" (Rohlf 1974; Milligan 1981)	Maximum value of the index
14.	"ratkowsky" (Ratkowsky and Lance 1978)	Maximum value of the index
15.	"scott" (Scott and Symons 1971)	Maximum difference between
		hierarchy levels of the index
16.	"marriot" (Marriot 1971)	Max. value of second differences
		between levels of the index
17.	"ball" (Ball and Hall 1965)	Maximum difference between
		hierarchy levels of the index
18.	"trcovw" (Milligan and Cooper 1985)	Maximum difference between
		hierarchy levels of the index
19.	"tracew" (Milligan and Cooper 1985)	Max. value of second
		differences between levels
20.	"friedman" (Friedman and Rubin 1967)	Maximum difference between
		hierarchy levels of the index
21.	"ncclain" (McClain and Rao 1975)	Minimum value of the index
22.	"rubin" (Friedman and Rubin 1967)	Minimum value of second
		differences between levels
23.	"kl" (Krzanowski and Lai 1988)	Maximum value of the index
24.	"silhouette" (Rousseeuw 1987)	Maximum value of the index
25.	"gap" (Tibshirani et al. 2001)	Smallest number of clusters such
		that critical Value $>= 0$
26.	"dindex" (Lebart et al. 2000)	Graphical method
27.	"dunn" (Dunn 1974)	Maximum value of the index
28.	"hubert" (Hubert and Arabie 1985)	Graphical method
29.	"sdindex" (Halkidi et al. 2000)	Minimum value of the index

Table 2: Overview of the indices implemented in the NbClust package.

30. "sdbw" (Halkidi and Vazirgiannis 2001)

Final Clustering Solution I

```
par(opar)
> # 5.8: Step 8: Obtain final clustering solution.
> #
> # Listing 16.3 page 377 [Kabacoff, 2015]
> #
> ?cutree() # Manual for tree cutting.
# Use k=5 groups as desired.
> clusters <- cutree(fit.average_eucli, k=5)</pre>
> table(clusters)
clusters
 1 2 3 4 5
 7 16 1 2 1
```

Final Clustering Solution II

```
> aggregate(nutrient, by=list(cluster=clusters), median)
clust energ prote fat calc iron
 1
    340.0 19
               29 9 2.50
 2
    170.0 20 8 13 1.45
 3 160.0 26 5 14 5.90
 4 57.5 9 1 78 5.70
 5 180.0 22 9 367 2.50
> #
> aggregate(as.data.frame(nutrient.scaled),
+ by=list(cluster=clusters), median)
clust energ prote fat calc
                             iron
 1 1.310 0.000 1.378 -0.4480 0.0811
 3 -0.468 1.646 -0.753 -0.3839 2.4077
 4 -1.481 -2.352 -1.108 0.4361 2.2709
 5 -0.270 0.705 -0.398 4.1396 0.0811
> #
```

Visualize Final Solution I

```
#
# Listing 16.3 page 377 [Kabacoff, 2015]
#
par(opar)
plot(fit.average_eucli, hang=-1, cex=0.8,
    main="Average Linkage Clustering\n k=5 Cluster Solution.")
# Display the k=5 cluster solution.
rect.hclust(fit.average_eucli, k=5)
#
```

Visualize Final Solution II

d_eucli hclust (*, "average")

Partitioning Clustering k-means

Partitioning Clustering k-means, Dataset: Wine

```
str(wine)
'data frame': 178 obs. of 14 variables:
                  : Factor w/ 3 levels "1", "2", "3": 1 1 1 1 .
 $ Type
 $ Alcohol
                         14.2 13.2 13.2 14.4 13.2 ...
                  : num
 $ Malic
                         1.71 1.78 2.36 1.95 2.59 1.76 1.87 ...
                  : niim
 $ Ash
                         2.43 2.14 2.67 2.5 2.87 2.45 2.45
                  : num
 $ Alcalinity
                         15.6 11.2 18.6 16.8 21 15.2 14.6...
                  : num
                         127 100 101 113 118 112 96 121 97 98 ...
 $ Magnesium
                  : int
 $ Phenols
                         2.8 2.65 2.8 3.85 2.8 3.27 2.5 2 ...
                  : num
 $ Flavanoids
                         3.06 2.76 3.24 3.49 2.69 3. 3.15 ...
                  : num
 $ Nonflavanoids
                         0.28 0.26 0.3 0.24 0.39 0.34 0.3 ...
                  : num
 $ Proanthocyanins: num
                         2.29 1.28 2.81 2.18 1.82 1.97 1 ...
 $ Color
                   : num
                         5.64 4.38 5.68 7.8 4.32 6.75 5. ...
 $ Hue
                         1.04 1.05 1.03 0.86 1.04 1.0 ...
                  : num
 $ Dilution
                         3.92 3.4 3.17 3.45 2.93 2.85 ...
                  : niim
 $ Proline
                         1065 1050 1185 1480 735 1450 . . .
                   : int
```

The CCC index for the Number of Clusters

The CCC (Cubic Cluster Criteria) from NbClust() for assessing the quality of the clustering, cf. [Kabacoff, 2015] page 387 and [Charrad, 2014]. If CCC is negative and decreasing for increasing number of clusters, then the dataset has a tendency to unimodality.

Partitioning around Mediods

Partitioning around Medoids, I

Component 1
These two components explain 55.41 % of the point variability.

Partitioning around Medoids, II

References I

Joseph Adler (2012)

R in a Nutshell *OReilly*

Robert I. Kabacoff (2015)

R in Action

Manning Publications 2'Ed.

Malika Charrad, Nadia Ghazzali, Vronique Boiteau, Azam Niknafs (2014) NbClust: An R Package for Determining Relevant Number of Clusters in a Data Set

October 2014, Volume 61, Issue 6, Journal of Statistical Software

Peter Filzmoser, Robert G. Garrett, Clemens Reimann Multivariate outlier detection in exploration geochemistry Computers & Geosciences 31 (2005) 579587.

Greet Pison, Anja Struyf, Peter J. Rousseeuw (1999) Displaying a Clustering with CLUSPLOT.

Computational Statistics & Data Analysis 30 (1999) 381-392, Elsevier

References II

R Core Team and contributors worldwide (2015)

The R Language Manual System

CRAN e.g. via RStudio

Tom Short, (2004)

Short Reference Card

CRAN cran.r-project.org/doc/contrib/Short-refcard.pdf

Paul Teetor

R Cookbook

O'Reilley

Paul Torfs, Caludia Brauer

A (very) Short Introduction to R.

CRAN cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

Yanchang Zhao

R and Data Mining.

Elsevier 2013.

References III

Yanchang Zhao

R Reference Card for Data Mining.

www.rdatamining.com www.rdatamining.com/docs/r-reference-card-for-data-mining.pdf