Determinação da Carga Elementar: Experiência de Millikan

A. C. M. Padilha, F. Marques, M. D. T. V. Steinkirch, e R. A. Tubero Instituto de Física da Universidade de São Paulo (Data: 02 de outubro de 2006)

Em 1911, R. A. Millikan apresentou um método, conhecido como $C\hat{a}mara\ de\ Bolhas$, que comprovou a quantização da carga elétrica e, em consequência, obteve o seu valor elementar. Tal fato lhe rendeu o premio Nobel, em 1923, e consagrou o método como um dos mais famosos e importantes experimentos da Física. Consistia em uma análise da dinâmica de gotas de óleo eletrizadas submetidas a campos elétricos e, evidenciava-se, assim, as cargas adquiridas através de um processo de borrifação. Esse se mostrou capaz de confirmar o caráter quantizado da carga do elétron, uma vez que foi observada a ionização mínima e seus múltiplos. Assim, a reprodução dessa experiência de forma mais moderna, confirmou os resultados obtidos há quase um século atrás, com $e=1.571\cdot 10^{-19}(13)C$, compatível com o valor aceito, $e=1,602\cdot 10^{-19}$.

I. INTRODUÇÃO

A. Introdução Histórica

O conceito de partícula elétrica era aceito há mais de dois séculos atrás, sendo em 1881 a primeira vez que o seu valor numérico foi estimado, por G. Johnstune Stoney de Dublin. Em seguida, o precursor na investigação da carga do elétron foi J. J. Thompson, que o descobriu em 1897 e determinou sua razão $\frac{q}{m}.$ Desde então, Thompson e seus colaboradores passaram a tentar estimar o valor de q. Essas tentativas tinham como base um método conhecido como Câmara de Bolhas. Esse método fundamenta-se no fato de que íons gasosos servem como núcleos de condensação de vapor dágua (formação de bolhas). Assim, aplicava-se um campo elétrico na câmara paralelo ao campo gravitacional terrestre e, a partir daí, por meio de uma série de cálculos, determinava-se o valor de q. Esses cálculos consideravam, entre muitos fatores, estimativas do número de bolhas na câmara. A carga do elétron obtida com este método oscilava em torno de $1.04 \cdot 10^{-19}C[1]$. O método de Thompson apresentava uma importante fonte de erros associada à dificuldade de se levar em consideração o efeito da evaporação das gotículas de água. Isso resultava em valores superestimados para o número de gotículas o que levaria a valores subestimados para a carga do elétron[1]. Tentativas para solucionar este pro-blema levaram, em 1909, R. A. Millikan e seu aluno H. Fletcher, à realização de um experimento semelhante. Tal experimento utilizava, em lugar das bolhas, gotículas de óleo borrifadas através de pequenos orifícios para dentro de uma câmara, onde havia um campo elétrico vertical. Ao passar pelos orifícios, as gotas carregadas podiam ser observadas sob a ação da força elétrica. Foi verificado experimentalmente que as cargas das gotículas correspondiam a múltiplos inteiros de uma carga elementar $q_e \approx 1.59 \cdot 10^{-19} C[\hat{1}]$. Com isso, Millikan, além de determinar um valor mais razoável para a carga do elétron, demonstrou a natureza quântica da carga elétrica.

Esse experimento histórico, popularmente conhecido

como a Experiência da Gota de Óleo de Millikan gerou grande impacto na comunidade científica da época e rendeu a ele o Prêmio Nobel, em 1923.

B. O Experimento de Millikan

O objetivo desse trabalho foi a reprodução moderna do experimento que Millikan realizou há quase um século atrás, a fim de se encontrar, novamente, o valor da carga elementar e a prova da quantização da matéria. Um experimento eficiente para a medição de e deve levar em conta um corpo com muita pouca carga, de forma que a mudanca em uma carga faca uma diferenca notável. Além disso, a força que age no corpo deve ser pequena mesmo frente a um campo elétrico intenso. Com essas premissas, e com a intenção de reduzir as incertezas devidas à evaporação, Millikan fez uso do seu famoso método no qual gotas de óleos muito pequenas eram borrifadas entre duas placas planas e paralelas, de distância d, com diferença de potencial V. Assim, havia nessa região um campo elétrico de magnitude $E = \frac{V}{d}$, de forma que se poderia considerar a atuação das seguintes forças: elétrica, empuxo, peso e viscosidade, de acordo com esquema da figura 1, e descritas pelas equações 1 a 4.

Figura 1: Esquema das Forças agentes na gota de óleo, em regime de descida e subida.

$$\vec{F}_{el} = q\vec{E} \tag{1}$$

$$\vec{F}_{emp} = \rho_{ar} \frac{4}{3} \pi a^3 g \hat{x} \tag{2}$$

$$\vec{F}_p = -\rho_{ol} \frac{4}{3} \pi a^3 g \hat{x} \tag{3}$$

$$\vec{F}_{visc} = -6\pi a \eta \vec{v} \tag{4}$$

Convenciona-se que q é a carga da gotícula, a é o seu raio, ρ_{ar} é a densidade do ar, ρ_{ol} é a densidade do óleo, η é o coeficiente de viscosidade do ar, g é a acelaração da gravidade na superfície da Terra e \vec{v} é a velocidade da gota em regime de subida ou descida, sendo $v_s\hat{x}$ ou $-v_d\hat{x}$, dependendo da orientação do campo elétrico.

O valor de ρ_{ar} pode ser obtido a partir da expressão 5.

$$\rho_{ar} = 1,2929 \left(\frac{273,13}{T}\right) \left\lceil \frac{(p-0,3783e)}{760} \right\rceil \tag{5}$$

onde T é a temperatura, p é a pressão atmosférica e e é a pressão de vapor que leva em conta a umidade do ar.

Levando em consideração que as velocidades de subida e descida são praticamente constantes, admite-se que as forças que atuam sobre a gota se anulam rapidamente, de forma que a força resultante pode ser expressa por 6.

$$\vec{F}_R = \vec{F}_{el} + \vec{F}_{emp} + \vec{F}_p + \vec{F}_{visc} = \vec{0}$$
 (6)

Obtém-se a expressão 7, para o regime de subida, e 8, para o regime de descida.

$$F_{el} + F_{emp} - F_p - F_{viscs} = 0 \tag{7}$$

$$-F_{el} + F_{emp} - F_p + F_{visc_D} = 0 \tag{8}$$

Manipulando essas duas equações, de forma a subtrair 7 de 8 e substituir as expressões correspondentes, 1 a 4, obtemos, finalmente, a equação do raio da gota, representada pela equação 9.

$$a^{2} = \eta \frac{9(v_{d} - v_{s})}{4g(\rho_{ol} - \rho_{ar})} \tag{9}$$

Uma última correção se origina devido a não homogeneidade do fluido onde está a gota, fazendo com que seu raio varie de acordo com seu caminho livre médio. Nesse caso, representa-se esse fato através da correção no coeficiente de viscosidade do ar, de acordo com a equação 10

$$\eta = \eta_0 \left(1 + \frac{b}{pa} \right)^{-1} \tag{10}$$

Figura 2: Gráfico para correção do coeficiente de viscosidade do ar em uma dada temperatura[2].

onde η_0 é o coeficiente de viscosidade do ar à temperatura ambiente dado em função de T, que é obtido a partir do gráfico da figura 2[2]. A constante b é dada, de valor $6,67 \cdot 10^{-4} (cmHg) \cdot cm$.

Substituindo 10 em 9 e isolando a, temos:

$$a = -\frac{b}{2p} + \sqrt{\left(\frac{b}{2p}\right)^2 + \frac{9\eta_0(v_d - v_s)}{4g(\rho_{ol} - \rho_{ar})}}$$
(11)

E, por fim, somando as equações 7 e 8 e isolando q, temos a equação 12 que determina, finalmente, a carga elétrica de uma gotícula.

$$q = \frac{3\pi\eta ad}{V}(v_s + v_d) \tag{12}$$

C. Considerações sobre as Incertezas

Em geral, para análise de qual incerteza apresenta maior influência no valor da carga da gota, considera-se as incertezas dos termos da equação 12 de maneira independente, porém, nesse experimento, isso não é verdade. Os termos do raio da gota, densidade relativa do ar e velocidades de descida e subida da gota, são correlacionados e, dessa forma, a expressão geral da incerteza σ_q , considerando os termos de covariância, é corretamente apresentada na equação 13.

$$\sigma_{q}^{2} = \left(\frac{\partial q}{\partial \eta}\right)^{2} \sigma_{\eta}^{2} + \left(\frac{\partial q}{\partial a}\right)^{2} \sigma_{a}^{2} + \left(\frac{\partial q}{\partial d}\right)^{2} \sigma_{d}^{2} + \left(\frac{\partial q}{\partial V}\right)^{2} \sigma_{V}^{2} + \left(\frac{\partial q}{\partial v_{s}}\right)^{2} \sigma_{v_{s}}^{2} + \left(\frac{\partial q}{\partial v_{d}}\right)^{2} \sigma_{v_{d}}^{2} + 2\left(\frac{\partial q}{\partial a}\right)\left(\frac{\partial q}{\partial v_{d}}\right) cov\left(a, v_{d}\right) + 2\left(\frac{\partial q}{\partial a}\right)\left(\frac{\partial q}{\partial v_{s}}\right) cov\left(a, v_{s}\right) + 2\left(\frac{\partial q}{\partial a}\right)\left(\frac{\partial q}{\partial \eta}\right) cov\left(a, \eta\right)$$

$$(13)$$

Não sendo possível calcular os termos de covariância, por não haver um espaço amostral para todos os valores correlacionados (há somente o espaço amostral das velocidades), desconsidera-se esses termos, simplificando 13 na equação 14.

$$\begin{split} \sigma_q^2 &= \left(\frac{\partial q}{\partial \eta}\right)^2 \sigma_\eta^2 + \left(\frac{\partial q}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial q}{\partial d}\right)^2 \sigma_d^2 + \left(\frac{\partial q}{\partial V}\right)^2 \sigma_V^2 + \\ &+ \left(\frac{\partial q}{\partial v_s}\right)^2 \sigma_{v_s}^2 + \left(\frac{\partial q}{\partial v_d}\right)^2 \sigma_{v_d}^2 (14) \end{split}$$

II. DESCRIÇÃO EXPERIMENTAL

Para a observação das gotas, foi disposto um arranjo experimental (figura 4) composto de um suporte, uma fonte de tensão contínua e um borrifador (um recipiente costituído por uma ampola de vidro com abertura na parte superior conectada a uma parte de borracha. A ampola contém dois tubos, sendo que um deles é ligado ao nebulizador e o outro está parcialmente imerso no óleo, figura 3). O suporte sustentava, ao centro, um condensador, e, nas duas hastes, uma lâmpada incandescente e uma câmera digital. Estes dois últimos formam o conjunto ótico e estão dispostos horizontalmente e fixados no eixo do suporte com liberdade de movimento. O condensador consistia em uma câmara formada por duas placas condutoras planas paralelas e mais quatro paredes, sendo duas laterais de um material isolante opaco, e as outras duas, vidro transparente. As placas ficavam separadas por uma distância d e eram conectadas à fonte que aplicava nelas uma diferença de potencial V. A placa superior possuía 3 orifícios por onde se borrifava as gotículas de óleo. Por fim, à fonte era permitido a inversão da polaridade, de modo a escolher a orientação do campo elétrico \vec{E} entre as placas.

Foi realizado um prévio ajuste do foco utilizando-se um fio de cobre, inserido no orifício central. A fonte de luz e o microscópio foram ajustados de modo que a câmera filmasse o fio com um contorno brilhante em um fundo escuro. O ajuste final do foco realizou-se através da observação das gotas, borrifando-as sobre o condensador, de forma que elas fossem vistas como pontos brilhantes nos quais a luz era espalhada. Por fim, gravou-se cerca de 30 vídeos, nos quais se escolhia algumas gotículas e a polaridade era invertida sempre que elas se aproximavam

Figura 3: Borrifador das Gotas de óleo.

Figura 4: Aparato experimental: suporte com lâmpada, condensador e câmera.

do limite da imagem da câmera. Analisou-se cerca de 2 a 3 gotas por vídeo, seguindo o critério daquelas que descreviam suscessivos movimentos de subida e descida sem serem perdidas de vista do observador durante o maior tempo possível em cada video gravado. A tensão V=250(2)V aplicada foi monitorada em um voltímetro durante todo o experimento e a distância das placas (d=0.4510(3)cm), foi medida com um paquímetro. Outros dados importantes no experimento foram:

- temperatura: $T = 23,5^{\circ}C$.
- pressão atmosférica, com o barômetro da sala: p = 70.360(5)cmHg.
- densidade do ar úmido (equação 5): $\rho_{ar} = 1.090(19) \cdot 10^{-3} g/cm^{3}.$
- densidade do óleo: $\rho_{ol} = 0.8312(36)g/cm^3$.
- coeficiente de viscosidade do ar (para a temperatura T, de acordo com a figura 2): $\eta_0 = 1.84(1)g/cm.s.$
- aceleração da gravidade na superfície da Terra: $g = 978,602cm/s^2$.

III. RESULTADO E ANÁLISE

A. Análise dos Dados Obtidos no Experimento

Uma vez dispondo-se dos vídeos, marcaram-se as posições de várias gotículas em função do tempo, utilizando-se o software *Video-Point*. A partir daí, para cada uma das 65 gotas diferentes, obteve-se as velocidades médias de subida e descida, por meio de ajustes lineares dos respectivos gráficos de distância percorrida em função do tempo. Porém, essas velocidades estavam em unidade de pixel por segundo. Então, uma curva de calibração foi traçada a partir da foto de uma pequena régua, disposta na mesma posição em que o condensador se encontrava e, ajustando uma reta aos pontos, foi possível encontrar a conversão de pixel para centímetros, conforme pode-se observar na figura 5.

Figura 5: Curva de Calibração em milímetros em função de pixels.

O coeficiente angular do ajuste foi $a=3.81.10^{-4} cm/px$.

Em seguida, a partir das equações 12, 10 e 11, os valores de cada carga (q) foram calculados, caracterizando-se, assim, uma coleção de dados que foram analisados estatisticamente através do software Origin. Inicialmente, construiu-se um histograma geral da distribuição de cargas com um canal(bin) de $5.10^{-20}C$, conforme a figura 6. Pode-se observar que nesse histograma há a existência de picos consecutivos, caracterizando núcleos de concentração de carga. Esse comportamento foi considerado uma evidência da quantização da carga elétrica.

Sendo a carga quantizada, as vizinhanças de cada pico do histograma devem obedecer a uma função densidade de probabilidade gaussiana em torno de um valor mais provável $n \cdot e$. Então, baseando-se nesse histograma, escolheu-se para analisar-se separadamente ao redor de cada pico, intervalos de $(2-3).10^{-19}C$, $(4-6.5).10^{-19}C$, $(7.5-9.5).10^{-19}C$ e o restante a seguir. Assim, para

Figura 6: Histograma da distribuição das cargas das gotas, obtido nesse experimento.

cada um desses, construiu-se um novo histograma, com um mesmo canal de $5.10^{-20}C$, de acordo com a figura 7. Ajustando-se no mesmo software as curvas gaussianas, determinou-se o valor mais provável de $n \cdot e$. O valor da carga elementar foi então determinado subtraindo-se $n \cdot e$ de $(n+1) \cdot e$ para 3 picos consecutivos das gaussianas.

Figura 7: Histogramas de cada pico da distribuição original das cargas das gotas.

A incerteza do valor mais provável da carga representada pela gaussiana foi determinada medindo-se a largura à meia altura de cada uma das gaussianas e dividindo-a pela raiz do número de dados correspondentes a cada uma das curvas. Subtraindo e somando essas incertezas dos seus respectivos valores mais prováveis, tornou-se possível calcular a diferença máxima e mínima entre cada dois picos adjacentes. E, com esses valores, tomou-se a média ponderada pelas incertezas para, finalmente,

determinar a carga do elétron juntamente com sua incerteza, obtida também através da média entre os valores. Reproduziu-se esse procedimento nas tabelas I e II, onde se conclui que o valor obtido para carga elementar do elétron foi $q=2,92\cdot 10^{-19}(21)C$.

ſ		1e	2e	3e
	carga	$2.53 \ 10^{-19}$	$5.44 \ 10^{-19}$	$8.39 \ 10^{-19}$
Ī	incerteza	$8.8 \ 10^{-21}$	$1.5 \ 10^{-20}$	$3.4 \ 10^{-20}$
Ī	maior	-	0.00 -0	$8.74 \ 10^{-19}$
ſ	menor	$2.61 \ 10^{-19}$	$5.29 \ 10^{-19}$	$8.05 \ 10^{-19}$

Tabela I: Obtenção da Carga Elementar: cargas e incertezas pela gaussiana de cada pico.

		2e - 1e	3e - 2e	e final
ſ				$2.92 \ 10^{-19}$
ľ	incerteza	$2.4 \ 10^{-20}$	$1.9 \ 10^{-20}$	$2.1 \ 10^{-20}$

Tabela II: Obtenção da Carga Elementar: cálculo pela diferença de picos.

Esse valor obtido para a carga elementar não correspondeu com o valor esperado, já conhecido, $e=1,602\cdot 10^{-19}$ nem em três incertezas. Pode-se perceber que $2.e=3,204\cdot 10^{-19}$ e, assim, o valor obtido fica, dentro de duas incertezas, equivalente a 2.e. Isso poderia ser explicado pela hipótese de que as gotículas apenas se ionizariam duplamente. Outra hipótese para o resultado obtido é a existência de um erro sistemático no experimento, já que, ao se verificar o histograma geral (figura 6), percebe-se o seu caráter consistente, no sentindo de que a diferença entre os picos (tabela II) é praticamente constante.

Por fim, observa-se que o uso da expressão 14 para o cálculo da incerteza faz com que a mesma seja superestimada. Assim, de qualquer maneira, é necessário subtitituir as expressões 11 e 10 em 12 e calcular as derivadas parciais $\frac{\partial q}{\partial x_i}$ em relação a cada variável independente x_i cuja incerteza foi considerada. Porém, tal caminho mostrou-se inviável devido ao grande volume de cálculos envolvidos. O método adotado considera as grandezas da equação 12 como independentes e, para estimar a relevância de cada um dos termos da expressão 14, comparou-se a ordem de grandeza desses. O resultado desse procedimento pode ser visualizado na tabela III, pela qual se justifica a consideração apenas da incerteza de V (σ_V) , de ordem de grandeza muito superior às outras.

B. Análise dos Dados das outras Equipes

Por tratar-se de um experimento de cunho estatístico, a maior quantidade de dados o torna mais confiável, e, por esse motivo, foi realizado uma nova análise com os dados das cargas obtidas por todas as outras equipes, repetindo-se os procedimentos anteriores. Construiu-se

σ_d^2	$9.0 \ 10^{-06}$
σ_V^2	4.00
σ_p^2	$2.5 \ 10^{-05}$
σ_{ρ}^{2}	$1.3 \ 10^{-05}$
$\sigma_{\rho_{ar}}^2$	$3.7 \ 10^{-10}$
σ_a^2	$\approx 10^{-13}$
σ_{η}^2	$\approx 10^{-10}$
$\sigma_{v_s}^2$	$\approx 10^{-9}$
$\sigma_{v_d}^2$	$\approx 10^{-9}$

Tabela III: Ordens de grandeza das incertezas.

um histograma geral da distribuição de cargas com um canal(bin) de $5.10^{-20}C$, conforme a figura 8 e nesse histograma obteve-se também um indício da quantização da carga elétrica, em forma de picos consecutivos igualmente espaçados.

Figura 8: Histograma da distribuição das cargas das gotas, obtidos pelas outras equipes.

Mais uma vez, analizou-se cada pico, em intervalos de $(0.75-2.75).10^{-19}C$, $(2.75-4.25).10^{-19}C$, $(4.25-6.75).10^{-19}C$, e, para cada um, construiu-se um novo histograma, com canal de $5.10^{-20}C$, de acordo com a figura o

O ajuste das curvas gaussianas se fez da mesma forma que anteriormente, e os resultados podem ser verificados nas tabelas IV e V. Concluiu-se, por fim, que a carga elementar do elétron para os dados das outras equipes foi $q=1.571\cdot 10^{-19}(13)C$.

Nota-se que o esse valor é compatível com o aceito atualmente, dentro de duas incertezas. Uma vez que, ao se coletar mais dados, os resultados se aproximam dos valores esperados, comprova-se o caráter estatístico do experimento.

Figura 9: Histogramas de cada pico da distribuição original das cargas das gotas para os dados das outras equipes.

		1e	2e	3e
П	carga	$2.196 \ 10^{-19}$	$3.766 \ 10^{-19}$	$5.476 \ 10^{-19}$
	incerteza	$9.1 \ 10^{-21}$	$7.8 \ 10^{-21}$	$1.18 \ 10^{-20}$
	maior	$2.10 \ 10^{-19}$	$3.84 \ 10^{-19}$	$5.59 \ 10^{-19}$
	menor	$2.29 \ 10^{-19}$	$3.69 \ 10^{-19}$	$5.36 \ 10^{-19}$

Tabela IV: Obtenção da Carga Elementar para os dados obtidos pelas outras equipes: cargas e incertezas pela gaussiana de cada pico.

	2e - 1e	3e - 2e	e final
carga	$1.5703 \ 10^{-19}$	$1.7 \ 10^{-19}$	$1.5709 \ 10^{-19}$
incerteza	$1.27 \ 10^{-21}$	$1.9 \ 10^{-20}$	$1.27 \ 10^{-21}$

Tabela V: Obtenção da Carga Elementar para os dados obtidos pelas outras equipes: cálculo pela diferença de picos.

IV. CONCLUSÃO

Uma primeira análise desse experimento foi a constatação, por meio dos histogramas, da quantização

da carga elétrica, sugerida pelos espaçamentos iguais das curvas gaussianas ajustadas para cada pico desses gráficos. Em contramão, à medida em que se tentou observar cargas maiores que tres vezes o valor elementar, tornou-se difícil a determinação dos picos, possivelmente pelo aumento da incerteza, essa influenciável por fatores como a força da gravidade e a deformação da gotícula, ambas proporcionais à massa. O valor obtido para a carga elementar utilzando somente os dados desse experimento foi $q = 2,92 \cdot 10^{-19}(21)C$ e utilizando os dados de todas as equipes foi $q = 1.571 \cdot 10^{-19} (13) C$. Comparando com o valor aceito atualmente que é de $e = 1,602 \cdot 10^{-19}$, conclui-se que somente o último apresenta-se compatível, dentro de três incertezas. Dessa maneira, mostra-se bastante saliente o caráter estatístico da experiência, uma vez que o valor obtido para a carga do elétron tornou-se mais próximo de e à medida em que o espaço amostral cresceu. Uma proposta de melhoria para o experimento é o aumento do número de dados coletados. Uma última análise pode ser feita a respeito do método de medida empregado no experimento. Devido ao fato de que, por um lado, é possível determinar as velocidades das gotículas e a distancia entre as placas do condensador com uma boa precisão e, por outro, não é possível a determinação precisa de outras grandezas, como a temperatura e a tensão entre as placas, a incerteza final acaba sendo bastante influenciada por essas últimas. Uma solução para isso é a utilização de multímetros e termômetros mais precisos, com o último posicionado próximo ao condensador. E,entrando nesse mérito, um detalhe ser considerado é que o condensador é iluminado por uma lampada incandescente, e essa é capaz de aumentar a temperatura no interior daquele. Por tal motivo, uma nova determinação da temperatura em cada vídeo obtido, poderia melhorar os resultados da experiência. Por fim, outra grandeza de determinação duvidosa foi a umidade relativa do ar, que é utilizada na determinação da densidade do ar (equação 5), uma vez que a sua obtenção foi realizada em um aparelho obsoleto e de difícil leitura, sugerindo a sua substituição.

^[1] C. DOS SANTOS, Experimento da gota de óleo de Millikan (http://www.if.ufrgs.br/historia/millikan.html, 2002).

^[2] ______, Apostila de Física Experimental V - Millikan,

IFUSP (2006).

^[3] O. A. M. Helene, Tratamento Estatísticos de Dados (1949).