

ESM3045DV

NPN DARLINGTON POWER MODULE

- HIGH CURRENT POWER BIPOLAR MODULE
- VERY LOW R_{th} JUNCTION CASE
- SPECIFIED ACCIDENTAL OVERLOAD AREAS
- ULTRAFAST FREEWHEELING DIODE
- FULLY INSULATED PACKAGE (UL COMPLIANT)
- EASY TO MOUNT
- LOW INTERNAL PARASITIC INDUCTANCE

INDUSTRIAL APPLICATIONS:

- MOTOR CONTROL
- SMPS & UPS
- DC/DC & DC/AC CONVERTERS
- WELDING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CEV}	Collector-Emitter Voltage (V _{BE} = -5 V)	600	V
V _{CEO(sus)}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V
Ic	Collector Current	24	А
I _{CM}	Collector Peak Current (t _p = 10 ms)	36	Α
I _B	Base Current	2.5	А
I _{BM}	Base Peak Current (t _p = 10 ms)	5	Α
P _{tot}	Total Dissipation at T _c = 25 °C	125	W
V _{isol}	Insulation Withstand Voltage (RMS) from All Four Terminals to Exernal Heatsink	2500	V
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 2003 1/8

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case (transistor)	Max	1	°C/W	
R _{thj-case}	Thermal Resistance Junction-case (diode)	Max	2	°C/W	l
R _{thc-h}	Thermal Resistance Case-heatsink With Conductive				Ì
	Grease Applied	Max	0.05	°C/W	Ì

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

Symbol Parameter		Test Conditions	Min.	Тур.	Max.	Unit	
I _{CER} #	Collector Cut-off Current ($R_{BE} = 5 \Omega$)	V _{CE} = V _{CEV} V _{CE} = V _{CEV} T _j = 100 °C			1.5 17	mA mA	
I _{CEV} #	Collector Cut-off Current (V _{BE} = -5)	V _{CE} = V _{CEV} V _{CE} = V _{CEV} T _j = 100 °C			1 12	mA mA	
I _{EBO} #	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA	
VCEO(SUS)*	Collector-Emitter Sustaining Voltage (I _B = 0)	$I_C = 0.2 \text{ A}$ L = 25 mH $V_{clamp} = 450 \text{ V}$	450			V	
$h_{FE}*$	DC Current Gain	I _C = 20 A V _{CE} = 5 V		120			
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.2 1.3 1.4 1.6	2	V V V	
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 20 A I _B = 1.2 A I _C = 20 A I _B = 1.2 A T _j = 100 °C		2.1 2.1	3	V V	
di _C /dt	Rate of Rise of On-state Collector	$V_{CC} = 300 \text{ V}$ $R_C = 0$ $t_p = 3 \mu s$ $I_{B1} = 0.45 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$	125	160		A/μs	
V _{CE} (3 μs)••	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_C = 20 \Omega$ $I_{B1} = 0.45 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$		4.5	8	V	
V _{CE} (5 μs)••	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_C = 20 \Omega$ $I_{B1} = 0.45 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$		2.5	4.5	V	
t _s t _f t _c	Storage Time Fall Time Cross-over Time	$I_{C} = 15 \text{ A}$ $V_{CC} = 50 \text{ V}$ $V_{BB} = -5 \text{ V}$ $R_{BB} = 0.6 \Omega$ $V_{clamp} = 450 \text{ V}$ $I_{B1} = 0.3 \text{ A}$ $L = 0.17 \text{ mH}$ $T_{j} = 100 ^{\circ}\text{C}$		2.1 0.15 0.5	4 0.4 1.2	μs μs μs	
V _{CEW}	Maximum Collector Emitter Voltage Without Snubber	$I_{CWoff} = 24 \text{ A}$ $I_{B1} = 1.2 \text{ A}$ $V_{BB} = -5 \text{ V}$ $V_{CC} = 50 \text{ V}$ $L = 0.1 \text{ mH}$ $R_{BB} = 0.6 \Omega$ $T_j = 125 ^{\circ}\text{C}$	450			V	
V _F *	Diode Forward Voltage	I _F = 20 A T _j = 100 °C		1.7	2	V	
I _{RM}	Reverse Recovery Current	$V_{CC} = 200 \text{ V}$ $I_F = 20 \text{ A}$ $di_F/dt = -125 \text{ A}/\mu\text{s}$ $L < 0.05 \mu\text{H}$ $T_j = 100 ^{\circ}\text{C}$		11	14	А	

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % # See test circuits in databook introduction

47/ 2/8

To evaluate the conduction losses of the diode use the following equations:

 $V_F = 1.47 + 0.0026 I_F$ $P = 1.47 I_{F(AV)} + 0.0026 I_{F(RMS)}^2$

Safe Operating Areas

Derating Curve

Collector Emitter Saturation Voltage

Thermal Impedance

Collector-emitter Voltage Versus base-emitter Resistance

Base-Emitter Saturation Voltage

4

Reverse Biased SOA

Foward Biased SOA

Reverse Biased AOA

Forward Biased AOA

Switching Times Inductive Load

Switching Times Inductive Load Versus Temperature

Dc Current Gain

Typical V_F Versus I_F

Peak Reverse Current Versus diF/dt

Turn-on Switching Test Circuit

Turn-on Switching Waveforms

Turn-on Switching Test Circuit

Turn-off Switching Waveforms

Turn-off Switching Test Circuit of Diode

Turn-off Switching Waveform of Diode

ISOTOP MECHANICAL DATA

DIM.	mm		inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	11.8		12.2	0.465		0.480
A1	8.9		9.1	0.350		0.358
В	7.8		8.2	0.307		0.322
С	0.75		0.85	0.029		0.033
C2	1.95		2.05	0.076		0.080
D	37.8		38.2	1.488		1.503
D1	31.5		31.7	1.240		1.248
Е	25.15		25.5	0.990		1.003
E1	23.85		24.15	0.938		0.950
E2		24.8			0.976	
G	14.9		15.1	0.586		0.594
G1	12.6		12.8	0.496		0.503
G2	3.5		4.3	0.137		1.169
F	4.1		4.3	0.161		0.169
F1	4.6		5	0.181		0.196
Р	4		4.3	0.157		0.169
P1	4		4.4	0.157		0.173
S	30.1		30.3	1.185		1.193

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com