

Predicting Loan Upper Limit

Anh Nguyen, Eli Friedmann, Hunter Lampley, Joey Ripcho, Nay Tjatur

Agenda

	SERVICE	
BUSINESS UNDERSTANDING	lend money to businesspeople, small businesses, working professionals, students, and others.	
	OBJECTIVE	
OUTCOME	make a profit by lending money and making sure there are a minimum # of defaults among cust.	
Predict the upper limit of the loan amount to provide to cust.	MODEL	
	Multiple Linear Regression	

Iterative Project Process

Out[11]: 0 4.0 dtype: float64

In [12]: 1 #fill in all missing data with mode of 'No_of_Credit_Cards'
2 df['No_of_Credit_Cards'].fillna(df['No_of_Credit_Cards'].mode()[0], inplace=True)

- Remove empty/redacted columns
- Impute missing/unique values with mean or mode

- Bar charts and scatter plots to make sense of data
- Double check for intuitive accuracy

```
In [29]: 1 pro='Profession'
             other=np.full((1), 'Other_Occupations')
           3 ohe=OneHotEncoder(categories='auto', drop=other, sparse=False)
           4 prof=pi[pro].array.reshape(-1,1)
             prof1=pd.DataFrame(ohe.fit_transform(prof))
Out[29]:
                0 1
             0 0.0 1.0
             1 0.0 1.0
            2 0.0 1.0
             3 1.0 0.0
            4 0.0 1.0
          11995 0.0 1.0
          11996 0.0 1.0
          11997 0.0 0.0
          11998 1.0 0.0
          11999 0.0 1.0
         12000 rows × 2 columns
```

```
In [16]:

1 ccpay='Credit_Card_Payment_Per_Month (USD)'
2 loanlimit='Upper_Loan_Limit (in thousands of USD)'
3 scaler = MinMaxScaler()
4 df[['Credit_Card_Payment_Per_Month (USD)_scaled']] = scaler.fit_transform(df[[ccpay]])
5 print(ccpay,':', scaler.data_min_,'min,',scaler.data_max_,'max')
6 df[['Upper_Loan_Limit (in thousands of USD)_scaled']] = scaler.fit_transform(df[[loanlimit]])
7 print(loanlimit,':', scaler.data_min_,'min,', scaler.data_max_,'max')
8 df

Credit_Card_Payment_Per_Month (USD): [473.75241725] min, [1814.26340553] max
Upper_Loan_Limit (in thousands of USD): [0.53995619] min, [173.80581301] max
```

Credit_Card_Payment_Per_Month (USD)_scaled	Upper_Loan_Limit (in thousands of USD)_scaled
0.504430	0.531023
0.654340	0.492108
0.554174	0.448142
0.107580	0.268893
0.543812	0.621941
0.070119	0.370733
0.055297	0.298411
0.525918	0.380473
0.001841	0.248742
0.539929	0.476990

Feature Engineering:

• Scaling/Encoding various columns

versions of variables

of CC and Monthly CC Pay

70-30 training-test split

versions of columns

Random NumPy Seed: 603479 Dropped non-scaled/encoded

```
In [18]: 1  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=603479)
2  model = LinearRegression(fit_intercept=True)
3  model.fit(X_train, y_train)
Out[18]: LinearRegression()
```

- Compare MSE/MAE of various models
- Rule: Improved MSE, improved model


```
In [19]: 1 predictions = model.predict(X_test)
            2 print('Intercept:', model.intercept_)
            3 print('Coefficients: ',model.coef_)
            4 print('mean_squared_error : ', mean_squared_error(y_test, predictions))
            5 print('mean_absolute_error : ', mean_absolute_error(y_test, predictions))
          Intercept: 0.1365115283861379
          Coefficients: [0.06508629 0.20746799]
          mean_squared_error: 0.007381988491060714
          mean_absolute_error: 0.06716589655041498
                                    In [32]:
                                                 model2 = LinearRegression()
                                               4 model2.fit(x2_train, y2_train)
                                               6 y2_pred = model2.predict(x2_test)
                                               7 print('Intercept:', model2.intercept_)
                                               8 print('Coefficients :', model2.coef_)
                                              9 print('MSE =',mean_squared_error(y2_test, y2_pred))
                                              10 print('MAE =',mean_absolute_error(y2_test, y2_pred))
                                              Intercept: 0.01849284508855359
                                              Coefficients: [0.06450817 0.20825765 0.13755598 0.12941389]
                                              MSE = 0.005869914419459934
                                              MAE = 0.06158971793846204
                                        In [46]: 1 y3_pred = model3.predict(x3_test)
                                                  2 print('Intercept:', model3.intercept_)
                                                  3 print('Coefficients:', model3.coef_,)
                                                  4 print('MSE =',mean_squared_error(y3_test, y3_pred))
                                                  5 print('MAE =',mean_absolute_error(y3_test, y3_pred))
                                                 Intercept: -0.048242810602848796
                                                 Coefficients: [0.06616429 0.19758712 0.13615976 0.1293948 0.20980979]
                                                 MSE = 0.0018532880430741777
                                                 MAE = 0.03311307763073609
                                    In [61]: 1 y4_pred = model4.predict(x4_test)
                                             print('Intercept:', model4.intercept_)
print('Coefficients:', model4.coef_,)
                                             4 print('MSE =',mean_squared_error(y4_test, y4_pred))
                                            5 print('MAE =',mean_absolute_error(y4_test, y4_pred))
                                            Intercept: -0.13983785845790248
```

0.116038661

MSE = 0.0008276000174591291 MAE = 0.023817517777583067

Coefficients: [0.06525312 0.20289717 0.13557406 0.12923478 0.20878529 0.09379275

Data Overview

Exploratory Data Analysis

Data Dictionary

DataFrame	Feature	Description	Туре	Sample data
	No_of_Credit_Cards	Number of credit cards owned	int	4
Credit_Card_ Information	Credit_Card_Payment_ Per_Month	Payment amount by credit card per month	float	1149.95
	Upper_Loan_Limit	Highest loan that can be awarded to an individual	float	92.55
Professional_ Information	Profession	Describes each individual's profession from either 'businessman', 'working professional', or 'other occupations'	string	Working_ Professional
Biographical_ Information	Age	Describes the age of each individual	int	60
Credit_Agency_ Rating	Rating	Distinguishes an individual's credit card rating from either 'rating 1', 'rating 2', or 'other ratings'	string	RN_1

Positive relationship between monthly credit card payment and loan limit.

If your monthly payments are higher, you are more likely to get approved for a larger loan.

There appears to be three main types of occupations in our data set.

Both **Working Professionals** and **Businessmen** have roughly the same distribution of loan limits.

Other Occupations has a lower distribution of loan limits.

There appears to be three main types of credit ratings.

Both **RN 1** and **RN 2** have roughly the same distribution of loan limits.

Other Ratings has a lower distribution of loan limits.

Positive relationship between age and loan limit.

If you are older, you are more likely to get approved for a larger loan.

Feature Engineering

Numeric

Scaling

Categorical

- Dummy Encoding
 - Two features with three possible responses (1,0) (0,1) (0,0)

Models Considered

ML Model	Features	MSE	MAE
Multiple Linear Regression 1	# of Credit Cards, Monthly Payment	0.0074	0.067
Multiple Linear Regression 2	# of Credit Cards, Monthly Payment, Occupation	0.0059	0.062
Multiple Linear Regression 3	# of Credit Cards, Monthly Payment, Occupation, Age	0.0018	0.033
Multiple Linear Regression 4	# of Credit Cards, Monthly Payment, Occupation, Age, Credit Rating	0.00083	0.024

Models Deployed

- Multiple linear regression with 5 features
- We created a GUI/user interface based on our deployed model to determine loan approval/rejection

Features:

- 1. Number of credit cards
- 2. Amount of monthly credit card payments made to the bank
- 3. Occupation (Working Professional vs. Businessman)
- 4. Age
- 5. Credit rating (RN 1 vs. RN 2)

*Categorical variables

Results

Linear Regression Equation

 $Y = -0.140 + 0.065(nocc) + 0.203(ccpay_scaled) + 0.136(businessman)$

+ 0.129(working professional) + 0.209(age_scaled) + 0.094(RN1) + 0.116(RN2)

Age and CCPay highest coefficients

NoCC was not scaled

- Coeff 0.06 indicates strong relationship with Y

All positive coefficients

Intercept: -0.1398378584579027

MSE = 0.0008276000174591286

MAE = 0.023817517777583053

	0	1
0	No_of_Credit_Cards	0.065253
1	Credit_Card_Payment_Per_Month (USD)_scaled	0.202897
2	Businessman?	0.135574
3	Working Professional?	0.129235
4	Age_scaled	0.208785
5	RN_1?	0.093793
6	RN_2?	0.116039

Model Performance Analysis

- The categorical features (**Credit Rating** and **Occupation**) were not optimal, as we could only use 3 categories that each had a similar relationship to the output variable
- Number of credit cards and monthly payments were strongly correlated presenting a multicollinearity issue

However, dropping number of credit cards did not appear to improve the model

performance, so we decided to keep it in the model

		0	1
0		No_of_Credit_Cards	0.065253
1	Credit_Card_Payment_Per_Month (USD)_scaled		0.202897
2		Businessman?	0.135574
3		Working Professional?	0.129235
4		Age_scaled	0.208785
5		RN_1?	0.093793
6		RN_2?	0.116039

Recommendations and Next Steps

 Consider more features: salary and income, credit utilization, length of credit history, recent inquiries, etc.

Regularize the model: Ridge and Lasso

Try different types of models: decision tree

• Try out our GUI!

Thank you