CGraph documentation

Bruno Kim Medeiros Cesar May 25, 2013

Abstract

- 1 sorting
- 2 list
- 3 set
- 4 graph
- 5 graph_metric

5.1 Constants

These constants are hard-coded to protect some numeric processes of hanging. They can be redefined during compilation, passing a flag such as -DGRAPH_METRIC_TOLERANCE=1E-3.

5.1.1 GRAPH_METRIC_TOLERANCE

Error tolerance for numeric methods.

5.1.2 GRAPH_METRIC_MAX_ITERATIONS

Maximum number of iterations for numeric methods.

5.2 Component identification and extraction

5.2.1 graph_undirected_components

Label vertices' components treating edges as undirected.

Preconditions label must have dimension n.

Postconditions label[i] is the component ID of vertex v_i .

Return Number of components

For directed graphs, considers adjacencies as incidences. Labels start from 0 and are sequential with step 1. Component IDs are not ordered according to size.

5.2.2 graph_directed_components

Label vertices' components treating edges as directed.

Preconditions label must have dimension n.

Postconditions label[i] is the component ID of vertex v_i .

Return Number of components

For undirected graphs, simply call $graph_undirected_components$. For directed graphs, two vertices v_i and v_j are in the same component if and only if

$$d(v_i, v_j) \neq \infty$$
$$d(v_i, v_i) \neq \infty$$

where d(u, v) is the geodesic distance between them. In other words, they are in the same component if they are mutually reachable.

Labels start from 0 and are sequential with step 1. Component IDs are not ordered according to size.

5.2.3 graph_num_components

Extract number of components from label vector.

Preconditions

n > 0

label must have dimension n.

label must contain sequential IDs starting from 0.

Return Number of components

5.2.4 graph_components

Map components to vertices from label vector.

Preconditions

n > 0

label must have dimension n.

label must contain sequential IDs starting from 0.

 ${\tt comp}$ must have size ${\tt num_comp}$ and all sets should be already initialized.

graph_num_components(g) == num_comp

Postconditions

If v_i is in component c_j , then label[i] == j and

set_contains(comp[j], i) is true.

Return Number of components

5.2.5 graph_components

Creates a new graph from g's largest component.

The guarantee of vertices' order ID is the same as graph_subset. If two or more components have the same maximum size, one will be chosen in an undefined way.

Return A new graph isomorphic to g's largest component.

Memory deallocation

```
graph_t *largest = graph_components(g);
delete_graph(largest);
```

5.3 Degree metrics

5.3.1 graph_degree

List all vertices' degrees.

Preconditions degree must have dimension n.

Postconditions degree [i] is the degree of vertex v_i .

The degree of a directed graph's vertex is defined as the sum of incoming and outgoing edges.

5.3.2 graph_directed_degree

List all vertices' incoming and outgoing degrees.

Preconditions

g must be directed. in_degree must have dimension n. out_degree must have dimension n.

Postconditions

in_degree[i] is the number of incoming edges to vertex v_i . out_degree[i] is the number of outgoing edges from vertex v_i .

5.4 Clustering metrics

5.4.1 graph_clustering

List all vertices' local clustering.

Preconditions

```
g must be undirected. clustering must have dimension n.
```

Postconditions clustering[i] is the local clustering coefficient of vertex v_i .

The local clustering coefficient is only defined for undirected graphs, and gives the ratio of edges between a vertex' neighbors and all possible edges. Formally,

$$C_i = \frac{e_i}{\binom{k_i}{2}} = \frac{2e_i}{k_i(k_i - 1)}$$

where

 C_i is the local clustering coefficient of vertex v_i .

 e_i is the number of edges between v_i 's neighbors.

 k_i is the degree of v_i .

If a vertex v_i has 0 or 1 adjacents, $C_i = 0$ by definition.

5.4.2 graph_num_triplets

Counts number of triplets and triangles (6 * number of closed triplets).

5.4.3 graph_transitivity

Compute the ratio between number of triangles and number of triplets.

5.5 Geodesic distance metrics

- 5.5.1 Definitions
- 5.5.2 graph_geodesic_distance
- 5.5.3 graph_geodesic_vertex
- 5.5.4 graph_geodesic_all
- 5.5.5 graph_geodesic_distribution

5.6 Centrality measures

- 5.6.1 graph_betweenness
- **5.6.2** graph_eigenvector
- 5.6.3 graph_pagerank
- 5.6.4 graph_kcore

5.7 Correlation measures

- ${\bf 5.7.1} \quad {\tt graph_degree_matrix}$
- ${\bf 5.7.2} \quad {\tt graph_neighbor_degree_vertex}$
- 5.7.3 graph_neighbor_degree_all
- 5.7.4 graph_knn
- 5.7.5 graph_assortativity