

Evaluating a Learning Algorithm

- Video: Deciding What to Try
 Next
 5 min
- Video: Evaluating a Hypothesis
 7 min
- Reading: Evaluating a Hypothesis 4 min
- Video: Model Selection and Train/Validation/Test Sets
 12 min
- Reading: Model Selection and Train/Validation/Test Sets
 3 min

Bias vs. Variance

- Video: Diagnosing Bias vs.
 Variance
 7 min
- Reading: Diagnosing Bias vs. Variance
 3 min
- Video: Regularization and Bias/Variance
 11 min
- Reading: Regularization and Bias/Variance
 3 min
- Video: Learning Curves
 11 min
- Reading: Learning Curves 3 min
- Video: Deciding What to Do
 Next Revisited
 6 min
- Reading: Deciding What to do Next Revisited
 3 min

Review

- Reading: Lecture Slides
 10 min
- Quiz: Advice for Applying
 Machine Learning
 5 questions
- Programming Assignment:
 Regularized Linear
 Regression and
 Bias/Variance
 3h

Building a Spam Classifier

- Video: Prioritizing What to Work On 9 min
- Reading: Prioritizing What to Work On 3 min

Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes $J_{train}(\Theta)$ to be low and $J_{CV}(\Theta)$ to be high.

Large training set size: causes both $J_{train}(\Theta)$ and $J_{CV}(\Theta)$ to be high with $J_{train}(\Theta) \approx J_{CV}(\Theta)$.

If a learning algorithm is suffering from **high bias**, getting more training data will not **(by itself)** help much.

Experiencing high variance:

Low training set size: $J_{train}(\Theta)$ will be low and $J_{CV}(\Theta)$ will be high.

Large training set size: $J_{train}(\Theta)$ increases with training set size and $J_{CV}(\Theta)$ continues to decrease without leveling off. Also, $J_{train}(\Theta) < J_{CV}(\Theta)$ but the difference between them remains significant.

If a learning algorithm is suffering from **high variance**, getting more training data is likely to help.

✓ Complete

Go to next item

