

CONDOMINI

Contrasti pt.2

Gruppo 5: Francesco Costalunga Chiara Borsi Martino Spelzini Jacopo Colangelo

Contrasti polinomiali

Rilevare un andamento di tipo lineare, quadratico, cubico nella nostra distribuzione di dati, spesso rilevante in studi longitudinali

La matrice dei contrasti, lavorerà in ordine crescente (n^2,n^3,...), continuando ad aumentare in base al numero dei contrasti (n-1). È normalizzata e corrispondente alla trasposta della matrice delle ipotesi

Ogni confronto farà riferimento alla media globale, e sarà di tipo ortogonale

Contrasti polinomiali su Rstudio

Funzione contr.poly(n)

```
.L .Q .C

[1,] -0.6708204 0.5 -0.2236068

[2,] -0.2236068 -0.5 0.6708204

[3,] 0.2236068 -0.5 -0.6708204

[4,] 0.6708204 0.5 0.2236068
```


Output Rstudio

Summary

- Effetto lineare
- Effetto quadratico

- ...

Effect plot

Funzione a livello grafico

```
call:
lm(formula = Perdita_peso ~ Esercizio, data = esercizio_pp)
Residuals:
   Min
           10 Median
                               Max
-0.3800 -0.1625 -0.0100 0.1300 0.4200
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
Esercizio.L 0.33234 0.06780 4.902 3.96e-05 ***
Esercizio.Q -0.95938
                     0.06780 -14.151 5.23e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.2144 on 27 degrees of freedom
Multiple R-squared: 0.8926, Adjusted R-squared: 0.8846
F-statistic: 112.1 on 2 and 27 DF, p-value: 8.341e-14
```

Contrasti Helmert

Obiettivo principale: Codificare la differenza tra un livello e quelli immediatamente precedenti.

Esempio: Se consideriamo una variabile categoriale a tre livelli A,B,C, il primo contrasto codificherà la differenza tra i primi due livelli (A e B) mentre il secondo codificherà la differenza tra il terzo livello (C) e la media dei primi due (A+B).

Questo può essere dedotto anche dalla matrice dei contrasti.

Qui la prima colonna rappresenta il primo contrasto A VS B dove il livello A = (-1) mentre B=1. Il livello C viene codificato come O perché in questo momento non deve essere considerato.

Nella seconda colonna viene rappresentato il secondo contrasto dove A e B = (-1) perché considerati come unico termine di paragone mentre C= 2.

La matrice delle ipotesi codifica in modo visivo le nostre ipotesi di partenza e da essa si ottiene la matrice di contrasto

$$H = \begin{bmatrix} -1/2 & 1/2 & 0 \\ -1/6 & -1/6 & 1/3 \end{bmatrix}$$

Primo contrasto

Secondo contrasto

$$C = \begin{bmatrix} -1 & -1 \\ 1 & -1 \\ 0 & 2 \end{bmatrix}$$

Applicazione pratica in Rstudio

La funzione associata ai contrasti Helmert fa parte della famiglia dei contrasti (contrasts) ed è: contr.Helmert

Passaggi preliminari:

- Usando la funzione contrasts verificare la matrice dei contrasti contrasts(anorexia\$Treat)

Output in R

CBT 0 0 Cont 1 0 FT 0 1

Cont FT

Cont 0 0
CBT 1 0

- Associare alla matrice di default (treatment) la matrice helmert indicando il numero dei livelli della VI tra parentesi contrasts(anorexia\$Treat)=contr.helmert(3)

- Creare il modello di regressione
 modello=lm(Postwt~Treat,anorexia)

[,1] [,2] Cont -1 -1 CBT 1 -1 FT 0 2

Residuals:

Min 1Q Median 3Q Max -15.2941 -3.7299 -0.0021 4.7809 17.9034

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 85.7661 0.8819 97.256 < 2e-16 ***

Treat1 2.2944 0.9842 2.331 0.022667 *

Treat2 2.3640 0.6744 3.505 0.000806 ***

--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 7.288 on 69 degrees of freedom Multiple R-squared: 0.2005, Adjusted R-squared: 0.1773 F-statistic: 8.651 on 2 and 69 DF, p-value: 0.0004443

Contrasti Helmert Invertiti

- Utilizzati per esaminare le differenze gerarchiche tra gruppi in un set di dati
- Strumento specifico per analisi tra gruppi con dati ordinati
- Esempio scenario di utilizzo: confronto trattamento terapia
- Vantaggi e Applicabilità

Implementazione in R con Esempio Pratico


```
anorexia$Treat=factor(anorexia$Treat)
      contrasts(anorexia$Treat)
      anorexia$Treat=factor(anorexia$Treat, levels = c("Cont","CBT","FT"))
      contrasts(anorexia$Treat)
      matrice=matrix(c(2,-1,-1,
                       0,1,-1),3,2)
2)
      contrasts(anorexia$Treat)=matrice
      contrasts(anorexia$Treat)
      modello=lm(Postwt ~ Treat, data=anorexia)
      summary(modello)
```

library(effects)

plot(effect("Treat", modello))

Contrasti Personalizzati

Le ipotesi sono l'aspetto fondamentale su cui si basa la scelta dei contrasti

In specifici disegni si potrebbe dover ricorrere a dei contrasti non presenti nelle altre tipologie

Nella costruzione di una matrice di contrasti personalizzati bisogna mantenere la ortogonalità.

- centrati

- interpretazioni
- incorrelati
- singole

Esempio Pratico

4 livelli di diete da confrontare come impatto di co2. Queste divise in 2 gruppi di impatto principali

Matrice delle ipotesi

Esempio su Rstudio

Trasformazione da matrice delle ipotesi a matrice di contrasto

round(ginv(H), 2)


```
Call:
```

lm(formula = co2 ~ dieta, data = datax)

Residuals:

Min 1Q Median 3Q Max -26.0514 -2.6031 0.3036 2.7643 15.3962

Coefficients:

Residual standard error: 4.824 on 436 degrees of freedom Multiple R-squared: 0.4156, Adjusted R-squared: 0.4115 F-statistic: 103.3 on 3 and 436 DF, p-value: < 2.2e-16

Grazie per l'attenzione!