

MONASH INFORMATION TECHNOLOGY

FIT3179 Data Visualisation

Week 01: Introduction to Data Visualisation

A definition of a Data Viz.

There isn't a universal definition! For a starting place though: any visual representation of information

The process of using Data Visualisation in combination with interactive analysis tools is called *Visual Analytics*

Intersecting fields of knowledge

- It is a conjunction of a number of areas:
 - Knowledge Discovery
 - Cognitive Science
 - Graphic Design
 - Interactive Computer Graphics
 - Data Science
- You may have experience in some or all of these already.
 we just need to put them together

Transformation

- A visualisation transforms data into information (then understanding and insight) and makes it useful to people
- Clichés...
 - "Seeing is believing"
 - "A picture is worth a thousand words"

Making a Graphic versus Forming Insight

- Making a Visualisation is often thought of as process of making a graphic or an image
- But really it is a cognitive process
 - Form a mental image of something
 - Internalize an understanding
 - "The purpose of visualization is insight, not pictures"
 - Insight: discovery, decision making, explanation

The History of Visualisations

- Humans acquire more information through vision than any of the other senses combined
- Human Vision
 - Highest bandwidth sense
 - Fast, parallel
 - Pattern recognition
 - Pre-attentive
 - Extends memory and cognitive capacity
 - People think visually
- Creating an image is a really effective way to transmit information

A Historical Overview of Info Vis

We can argue that the first viz. is the first image!

- Narrow View:
 - Started with Computer Graphics
 - 1987 first journal on Computer Graphics and Visualisation
- Wider View:
 - Cave Paintings, Hieroglyphics, Maps, Astrological Charts... Info
 Graphics
- Which view? Depends on your philosophies

Rock art at Narwala Garbarnmang in Arnhem Land (from D. Bruno et al, 2011)

Astronomical Charts (1600's)

Source: http://upload.wikimedia.org/wikipedia/commons/c/cd/Scheiners_sun_spots.jpg

Graphs (William Playfair, 1700's)

Time Series (Etienne-Jules Marey, 1800's)

studies horses at different paces

the undulations of the dorsal fin of a descending sea-horse,

Marey's man in black velvet, photographed in stick-figure images, became the time-series forerunner of Marcel Duchamp's Nude Descending a Staircase.

Napoleon's March by Charles Minard (1861)

London Underground Map based on a design by Harry Beck (1931) MONASH

Source: http://ni.chol.as/media/geoff-files/sillymaps/large_geographical_map.gif

Source: http://ni.chol.as/media/geoff-files/sillymaps/tubegeo.jpg

Source: Jenny, B. 2006. Geometric distortion of schematic network maps.

Source: Jenny, B. 2006. Geometric distortion of schematic network maps.

Visualisation of Scientific and Engineering Data

Basic steps in Building a Viz.

So maybe all this talk has made you interested in building your own viz. What would you need to do?

Get data

- Evaluate data in some way
- Consider Interaction principles
- Compose data into useful sets (build the viz)
- Reduce data clutter

We'll cover these steps in detail during the semester!

Data input can be:

- Static (AKA discrete) information (e.g. one point in time)
- Dynamic (AKA continuous) information what reality is
 - Hard for use to see continuous info from discrete data
 - Visualisation helps us see the continuous

Data can belong to different dataset types:

Tables: Items, AttributesGeometry: Items, Positions

Networks and Trees: Items (nodes), Links, Attributes

Data attributes can allow sorting/grouping in different ways

- Categorical: departments, gender, state...
- Ordered: age bracket, day of the week...
- Quantitative: \$, voltage, counts of things, latitude/ longitude...

Generally it's better to have an image than a number

Humans are not good at interpreting numbers

- Better to combine multi-dimensional information into a single, easily understandable form
- Easier to extract and emphasise important info

Problems with building an InfoViz

- In building a viz., there are three basic limitations to visualisations
 - Computer limits (for interactive vis)
 - Human perceptual & cognitive limits
 - http://en.wikipedia.org/wiki/Misleading graph
 - http://www.abc.net.au/news/2013-05-08/jericho--read-between-the-lines/4674322
 - Display limits (run out of pixels to show fine changes)
- The designer always needs to trade-off between showing as much data as possible and reducing clutter

27

Modern Interactive Visualisations

To resolve the inherent tension between 'more data' vs 'less clutter', computers allow us to provide *interactivity*

- Allows us to show multiple different perspectives on the data
- Larger data sets maybe easier to work with now too (zooming, expanding, clicking down into data)
- The user can see what they need without distraction

OneBayArea

Source: http://maps.onebavarea.org/travel_housing/

Monash CityX (formerly City Science)

Source: http://monash.edu/research/city-science/#visualization/

Science Isn't Broken

Research and Readings

Some Links to Get Started

- http://flowingdata.com
- http://www.visualcomplexity.com/vc/
- http://www.informationisbeautiful.net/
- http://datavisualization.ch/
- http://www.visualizing.org/
- http://www.smashingmagazine.com/2009/09/11/25useful-data-visualization-and-infographics-resources/