Quantitative measurements of olfactory perceptual thresholds in *Drosophila*

Allie Hexley 8/18/16

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

Why quantify perceptual thresholds in Drosophila?

- We want to quantitatively determine how differences in neural activity lead to differences in perceptual discrimination
- Determine minimum concentration difference flies can detect and how that difference relates to a difference in number of neural spikes
- Produce curves for behavior vs concentration and neural activity vs concentration

Why Drosophila?

- Numerically compact brain and a sophisticated genetic toolbox for manipulating circuit functions
- Olfactory neurons are stereotyped, so it is easy to find neurons with the same connectivity and physiology in every individual
- Genetic labels for specific neurons and these labels can be used to target specific neurons for electrophysiological measurements

Why train the flies?

- Previous work has shown that we can train flies via Pavlovian conditioning
- Pairing an odor with electric shock causes learned aversion of that odor
- Odors used in previous work and our work: 4methylcyclohexanol (MCH) and 3-octanol (OCT)
- We want to condition the animals so that we can push the perceptual thresholds to the limits and make sure we are calculating the minimum difference the flies can discriminate

Pavlovian olfactory conditioning causes learned aversion

Individual flies show learned aversion

Investigating behavior across concentration

- Previous work has not tested varying concentrations of odor and looked at performance limits
- What is the minimum concentration difference that the flies can distinguish?
- How does this minimum concentration difference relate to a difference in neural activity?

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

- Motivation
- Constructing the behavior chamber
 - Preliminary data
 - Next steps

Specifications

- Allow for individual fly movements to be tracked
- Allow for Pavlovian conditioning via electric shock
- Allow two odors to be presented simultaneously on separate halves of the chamber
- Be fully-automated

Previous Designs

Tully and Quinn, 1985

Claridge-Chang et al., 2009

Schematic of the chamber

Schematic of input odor line

The behavior chamber

Image acquisition

Image acquisition

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

- Motivation
- Constructing the behavior chamber
- Preliminary data
 - Next steps

Mock conditioning

Innate preference is maintained after mock conditioning.

Flies learn aversion to MCH

 When presentation of MCH is paired with electric shocks, flies learn aversion to MCH.

Flies learn aversion to MCH

- Training Against 5% MCH
- Learned aversion to 5% MCH, but learned aversion not maintained when tested at 3% MCH

Training against 3% MCH

Training against 3% MCH

Can *Drosophila* distinguish 5% MCH from 3% MCH?

 Training against 5% MCH, no obvious aversion learned to 5% MCH

Can *Drosophila* distinguish 5% MCH from 3% MCH?

 Training against 3% MCH, no obvious aversion learned to 3% MCH

Conclusions

- None of these results are statistically significant because the sample size is too small
- However the results are suggestive that the flies cannot learn aversion to 5% MCH vs 3% MCH
- Possible hypotheses:
 - Flies cannot disciminate between 5% and 3% MCH (concentrations are near saturation point for discrimination)
 - Flies are generalizing learned aversion to all concentrations of MCH, so perceiving 5% and 3% to be equally aversive regardless of the concentration trained against

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

- Motivation
- Constructing the behavior chamber
- Preliminary data
- Next steps

Next steps

- Repeat experiments with a much larger population of flies (n=50)
- Repeat experiments with a much larger range/number of concentrations (n=6)
- This will allow us to see if this data is statistically significant
- Produce behavior vs concentration curve to see how behavior varies across concentration

Looking ahead

- Record neuron spiking in flies showing behavior change after conditioning and produce spike rate vs concentration curve to see how neural activity depends on odor concentration
- Test with a variety of odors and see if generalization along concentration is the same for all odors or if it differs depending on the odor used

Thank you!

Acknowledgements

The Hong Lab
SURF & NSF

Training against 8% OCT

Training against 4% OCT

References

- Adam Claridge-Chang, Robert D. Roorda, Eleftheria Vrontou, Lucas Sjulson, Haiyan Li, Jay Hirsh, & Gero Misenbock. Writing Memories with Light-Addressable Reinforcement Circuitry. Cell. 2009.
- T. Tully and W.G. Quinn. Classical Conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol. 1985.