CS 225

Data Structures

May 3 — Floyd-Warshall's Algorithm
G Carl Evans

Floyd-Warshall's Algorithm is an alterative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
       d[u][v] = cost(u, v)
10
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
         foreach (Vertex v : G):
14
            if (d[u, v] > d[u, w] + d[w, v])
15
              d[u, v] = d[u, w] + d[w, v]
16
```

```
FloydWarshall(G):
 6
     Let d be a adj. matrix initialized to +inf
 7
     foreach (Vertex v : G):
 8
       d[v][v] = 0
 9
     foreach (Edge (u, v) : G):
       d[u][v] = cost(u, v)
10
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
          foreach (Vertex v : G):
14
15
            if d[u, v] > d[u, w] + d[w, v]:
16
              d[u, v] = d[u, w] + d[w, v]
```

	Α	В	С	D
A				
В				
С				
D				


```
12 foreach (Vertex k : G):
13 foreach (Vertex u : G):
14 foreach (Vertex v : G):
15 if d[u, v] > d[u, k] + d[k, v]:
16 d[u, v] = d[u, k] + d[k, v]
```

	Α	В	С	D	
A	0	-1	∞	∞	
В	∞	0	4	3	
С	∞	∞	0	-2	
D	2	∞	∞ •	0	
-1 3 C					

Let us consider k=A:

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞ •••	0
-1 B 4				

```
12 foreach (Vertex k : G):
13 foreach (Vertex u : G):
14 foreach (Vertex v : G):
15 if d[u, v] > d[u, k] + d[k, v]:
16 d[u, v] = d[u, k] + d[k, v]
```

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞ •	0
-1 B 4 C				

Let us consider k=B:

vs. $A \rightarrow B \rightarrow C$

vs. A B D

vs. $(C) \rightarrow (B) \rightarrow (A)$

vs. $(C) \rightarrow (B) \rightarrow (D)$

vs. $D \rightarrow B \rightarrow A$

 $VS. \qquad D \longrightarrow B \longrightarrow C$

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞ •	0
		-1	B	4

Running Time?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
       d[u][v] = cost(u, v)
10
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
            if d[u, v] > d[u, w] + d[w, v]:
15
16
              d[u, v] = d[u, w] + d[w, v]
```