A - 12435

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 150 points

Problem Statement

You are given an integer sequence $A=(A_1,A_2,A_3,A_4,A_5)$ obtained by permuting (1,2,3,4,5).

Determine whether A can be sorted in ascending order by performing **exactly one** operation of swapping two adjacent elements in A.

Constraints

• A is an integer sequence of length 5 obtained by permuting (1,2,3,4,5).

Input

The input is given from Standard Input in the following format:

 A_1 A_2 A_3 A_4 A_5

Output

If A can be sorted in ascending order by exactly one operation, print Yes; otherwise, print No.

Sample Input 1

1 2 4 3 5

Sample Output 1

Ves

By swapping A_3 and A_4 , A becomes (1,2,3,4,5), so it can be sorted in ascending order. Therefore, print Yes.

Sample Input 2

5 3 2 4 1

Sample Output 2

No

No matter what operation is performed, it is impossible to sort \boldsymbol{A} in ascending order.

Sample Input 3

1 2 3 4 5

Sample Output 3

No

You must perform exactly one operation.

2 1 3 4 5

Sample Output 4

Yes

B - Geometric Sequence

Time Limit: 2 sec / Memory Limit: 1024 MB

 $\mathsf{Score} : 200 \, \mathsf{points}$

Problem Statement

You are given a length-N sequence $A=(A_1,A_2,\ldots,A_N)$ of positive integers.

Determine whether A is a geometric progression.

Constraints

- $2 \le N \le 100$
- $1 \le A_i \le 10^9$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

If A is a geometric progression, print Yes; otherwise, print No.

Sample Input 1

5 3 6 12 24 48

Sample Output 1

Yes

$$A = (3, 6, 12, 24, 48).$$

 $\it A$ is a geometric progression with first term $\it 3$, common ratio $\it 2$, and five terms.

Therefore, print Yes.

Sample Input 2

3 1 2 3

Sample Output 2

No

$$A = (1, 2, 3).$$

Since $A_1:A_2=1:2
eq 2:3=A_2:A_3$, A is not a geometric progression.

Therefore, print No.

Sample Output 3

Yes

 $\it A$ is a geometric progression with first term 10, common ratio 0.8, and two terms.

Therefore, print Yes.

C - Paint to make a rectangle

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 300 points

Problem Statement

You are given a grid of H rows and W columns.

Let (i,j) denote the cell at row i ($1 \le i \le H$) from the top and column j ($1 \le j \le W$) from the left.

The state of the grid is represented by H strings S_1, S_2, \ldots, S_H , each of length W, as follows:

- If the j-th character of S_i is #, cell (i, j) is painted black.
- If the j-th character of S_i is ., cell (i,j) is painted white.
- If the j-th character of S_i is ?, cell (i, j) is not yet painted.

Takahashi wants to paint each not-yet-painted cell white or black so that all the black cells form a rectangle.

More precisely, he wants there to exist a quadruple of integers (a,b,c,d) $(1 \le a \le b \le H, 1 \le c \le d \le W)$ such that:

For each cell (i,j) ($1 \le i \le H, 1 \le j \le W$), if $a \le i \le b$ and $c \le j \le d$, the cell is black; otherwise, the cell is white.

Determine whether this is possible.

Constraints

- $1 \le H, W \le 1000$
- ullet H and W are integers.
- Each S_i is a string of length W consisting of #, ., ?.
- There is at least one cell that is already painted black.

Input

The input is given from Standard Input in the following format:

Output

If it is possible to paint all the not-yet-painted cells so that the black cells form a rectangle, print Yes; otherwise, print No.

Sample Input 1

```
3 5
.#?#.
.?#?.
?...?
```

Sample Output 1

Yes

The grid is in the following state. ? indicates a cell that are not yet painted.

By painting cells (1,3),(2,2), and (2,4) black and cells (3,1) and (3,5) white, the black cells can form a rectangle as follows:

Therefore, print Yes.

Sample Input 2

3 3

?##

#.# ##?

Sample Output 2

No

To form a rectangle with all black cells, you would need to paint cell (2,2) black, but it is already painted white.

Therefore, it is impossible to make all black cells form a rectangle, so print No.

1 1 #

Sample Output 3

Yes

D - Stone XOR

Time Limit: 3 sec / Memory Limit: 1024 MB

Score: 400 points

Problem Statement

There are N bags, labeled bag 1, bag $2, \ldots$, bag N.

Bag i ($1 \le i \le N$) contains A_i stones.

Takahashi can perform the following operation any number of times, possibly zero:

Choose two bags A and B, and move all stones from bag A into bag B.

Find the number of different possible values for the following after repeating the operation.

- $B_1 \oplus B_2 \oplus \cdots \oplus B_N$, where B_i is the final number of stones in bag i. Here, \oplus denotes bitwise XOR.
- ▶ About bitwise XOR

It can be proved that under the constraints of this problem, the number of possible values is finite.

Constraints

- $2 \le N \le 12$
- $1 \le A_i \le 10^{17}$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the number of different possible values for $B_1\oplus B_2\oplus \cdots \oplus B_N$ after repeating the operation.

Sample Input 1

3 2 5 7

Sample Output 1

3

For example, if Takahashi chooses bags 1 and 3 for the operation, then the numbers of stones in bags 1,2,3 become 0,5,9.

If he stops at this point, the XOR is $0 \oplus 5 \oplus 9 = 12$.

The other possible XOR values after repeating the operation are 0 and 14.

Therefore, the possible values are 0, 12, 14; there are three values, so the output is 3.

Sample Input 2

Sample Output 2

2				
	2			

Sample Input 3

6 71 74 45 34 31 60

Sample Output 3

E - Vitamin Balance

Time Limit: 2 sec / Memory Limit: 1024 MB

 $\mathsf{Score} : 450 \, \mathsf{points}$

Problem Statement

There are N foods, each containing exactly one of vitamins 1, 2, and 3.

Specifically, eating the i-th food gives you A_i units of vitamin V_i , and C_i calories.

Takahashi can choose any subset of these N foods as long as the total calorie consumption does not exceed X.

Find the maximum possible value of this: the minimum intake among vitamins 1, 2, and 3.

Constraints

- $1 \le N \le 5000$
- $1 \le X \le 5000$
- $1 \le V_i \le 3$
- $1 \le A_i \le 2 \times 10^5$
- $1 \leq C_i \leq X$
- · All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the maximum possible value of "the minimum intake among vitamins 1, 2, and 3" when the total calories consumed is at most X.

Sample Input 1

```
5 25
1 8 5
2 3 5
2 7 10
3 2 5
3 3 10
```

Sample Output 1

3

Each food provides the following if eaten:

- 1st food: 8 units of vitamin 1, and 5 calories
- 2nd food: $3\,\mbox{units}$ of vitamin $2,\mbox{and}~5$ calories
- 3rd food: $7\,\mbox{units}$ of vitamin 2, and $10\,\mbox{calories}$
- 4th food: $2\ \mbox{units}$ of vitamin 3, and $5\ \mbox{calories}$
- 5th food: 3 units of vitamin 3, and 10 calories

Eating the 1st, 2nd, 4th, and 5th foods gives 8 units of vitamin 1, 3 units of vitamin 2, 5 units of vitamin 3, and 25 calories.

In this case, the minimum among the three vitamin intakes is 3 (vitamin 2).

It is impossible to get 4 or more units of each vitamin without exceeding 25 calories, so the answer is 3.

2 5000 1 200000 1 2 200000 1

Sample Output 2

F - Double Sum 3

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 525 points

Problem Statement

You are given an integer sequence $A=(A_1,A_2,\ldots,A_N)$ of length N.

For each integer pair (L,R) with $1 \le L \le R \le N$, define f(L,R) as follows:

- Start with an empty blackboard. Write the R-L+1 integers A_L,A_{L+1},\ldots,A_R on the blackboard in order.
- Repeat the following operation until all integers on the blackboard are erased:
 - Choose integers l, r with $l \le r$ such that every integer from l through r appears at least once on the blackboard. Then, erase all integers from l through r that are on the blackboard.
- Let f(L,R) be the minimum number of such operations needed to erase all the integers from the blackboard.

Find
$$\sum_{L=1}^{N}\sum_{R=L}^{N}f(L,R)$$
.

Constraints

- $1 \le N \le 3 \times 10^5$
- $1 \leq A_i \leq N$
- · All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

Sample Output 1

16

For example, in the case of (L, R) = (1, 4):

- $\bullet \ \ {\it The blackboard has} \ 1,3,1,4.$
- Choose (l,r)=(1,1) and erase all occurrences of 1. The blackboard now has 3,4.
- Choose (l,r)=(3,4) and erase all occurrences of 3 and 4. The blackboard becomes empty.
- It cannot be done in fewer than two operations, so f(1,4)=2.

Similarly, you can find f(2,4)=2, f(1,1)=1, etc.

$$\sum_{L=1}^{N}\sum_{R=1}^{N}f(L,R)=16$$
, so print 16 .

Sample Output 2

23

Sample Input 3

10 5 1 10 9 2 5 6 9 1 6

Sample Output 3

G - Permutation Concatenation

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 600 points

Problem Statement

You are given a positive integer N.

For an integer sequence $A=(A_1,A_2,\ldots,A_N)$ of length N. Let f(A) be the integer obtained as follows:

- Let S be an empty string.
- For $i=1,2,\ldots,N$ in this order:
 - \circ Let T be the decimal representation of A_i without leading zeros.
 - \circ Append T to the end of S.
- Interpret S as a decimal integer, and let that be f(A).

For example, if A=(1,20,34), then f(A)=12034.

There are N! permutations P of $(1, 2, \ldots, N)$. Find the sum, modulo 998244353, of f(P) over all such permutations P.

Constraints

- $1 \le N \le 2 \times 10^5$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

N

Output

Print the sum, modulo 998244353, of f(P) over all permutations P of $(1, 2, \ldots, N)$.

Sample Input 1

3

Sample Output 1

1332

The six permutations of (1,2,3) are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). Their f(P) values are 123,132,213,231,312,321. Therefore, print 123+132+213+231+312+321=1332.

Sample Input 2

390

Sample Output 2

727611652

Print the sum modulo 998244353.

79223

Sample Output 3