Quantum Optics, Homework 3

Jinyuan Wu

November 16, 2021

Interference between Gaussian pulses Consider two Gaussian pulses with wave vectors $\mathbf{k}_{1,2} = k(\pm \sin \theta, 0, \cos \theta)$, respectively. They are incident to a plane detector on the surface z = 0. The intensity distributions of the two beams are all

$$|\mathcal{E}|^2 \propto e^{-\left(x^2 + y^2\right)/\sigma^2},\tag{1}$$

with $\sigma \gg \lambda$. The pulses arrive at the detector simultaneously. The detector absorbs the pulses completely and there is no reflection. Calculate $P^{(1)}(\mathbf{r})$ and $P^{(2)}(\mathbf{r}_1, \mathbf{r}_2)$ for the following states of the optical field:

(a)
$$|\psi\rangle = \frac{1}{\sqrt{2^N N!}} \left(a_1^{\dagger} + a_2^{\dagger}\right)^N |V\rangle.$$

(b)
$$|\psi\rangle = \frac{1}{N!} \left(a_1^{\dagger} a_2^{\dagger}\right)^N |V\rangle$$
.

(c)
$$|\psi\rangle = \frac{1}{\sqrt{2N!}} \left(\left(a_1^{\dagger} \right)^N + \left(a_2^{\dagger} \right)^N \right) |V\rangle.$$

(d)
$$|\psi\rangle = D_1(\alpha)D_2(\alpha)|V\rangle$$
, $D_j(\alpha) \equiv e^{\alpha a_j^{\dagger} - \alpha^* a_j}$.

(e)
$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(D_1(\alpha) + D_2(\alpha) \right) |V\rangle$$
.

Solution

(a)

Figure 1: The two Gaussian beams incident to a detector