Reasoning with Latent Structure Refinement for Document-Level Relation Extraction

ACL 2020

Motivation

 Document-level relation extraction requires reasoning over the entity and relation mentions across sentences

- Previous graph-based models:
 - Rule based graph construction
 - Co-reference based graph construction
- In this paper:
 - Graph structure is learned end-to-end
 - Three types of nodes are encoded:
 - Mention
 - Entity
 - Tokens on dependency path
 - Graph structure is refined through multiple layers of graph constructions

Node Extraction Overview

Node Extraction

 Each sentence is separately encoded by a sequence encoder (e.g. LSTM or BERT):

$$\begin{aligned}
\overleftarrow{\mathbf{h}_{j}^{i}} &= \mathbf{LSTM}_{l}(\overleftarrow{\mathbf{h}_{j+1}^{i}}, \gamma_{j}^{i}) \\
\overrightarrow{\mathbf{h}_{j}^{i}} &= \mathbf{LSTM}_{r}(\overleftarrow{\mathbf{h}_{j-1}^{i}}, \gamma_{j}^{i})
\end{aligned}$$

- Three types of nodes are extracted:
 - Mentions: words in the document referring to entity
 - MDP: Words on the SDP between mentions in sentence
 - Entity: The average of mention representation of an entity

Structure Induction

Compute scores for each pair of nodes:

$$\mathbf{s}_{ij} = (\tanh(\mathbf{W}_p \mathbf{u}_i))^T \mathbf{W}_b (\tanh(\mathbf{W}_c \mathbf{u}_j))$$

Compute scores for each node to be root:

$$\mathbf{s}_i^r = \mathbf{W}_r \mathbf{u}_i$$

Compute weight matrix based on the scores:

$$\mathbf{P}_{ij} = \begin{cases} 0 & \text{if } i = j \\ \exp(\mathbf{s}_{ij}) & \text{otherwise} \end{cases}$$

Structure induction

Compute laplacian matrix from weight matrix:

$$\mathbf{L}_{ij} = \begin{cases} \sum_{i'=1}^{n} \mathbf{P}_{i'j} & \text{if } i = j \\ -\mathbf{P}_{ij} & \text{otherwise} \end{cases}$$

$$\hat{\mathbf{L}}_{ij} = \begin{cases} \exp(\mathbf{s}_i^r) & \text{if } i = 1\\ \mathbf{L}_{ij} & \text{if } i > 1 \end{cases}$$

Compute adjacency matrix from laplacian matrix:

$$\mathbf{A}_{ij} = (1 - \delta_{1,j}) \mathbf{P}_{ij} [\hat{\mathbf{L}}^{-1}]_{ij}$$
$$-(1 - \delta_{i,1}) \mathbf{P}_{ij} [\hat{\mathbf{L}}^{-1}]_{ji}$$

Graph Reasoning and Graph Refinement

GCN encoder is employed to propagate node information in the induced graph

$$\mathbf{u}_{i}^{l} = \sigma(\sum_{j=1}^{n} \mathbf{A}_{ij} \mathbf{W}^{l} \mathbf{u}_{i}^{l-1} + \mathbf{b}^{l})$$

- Dense connection is employed in GCN:
 - The input to each layer is combination of outputs of multiple previous layers
- Iterative refinement:
 - Stacking N layers of structure induction and graph reasoning
 - Early layers capture shallow dependencies in the graph and deeper layers extract more abstract connections

Mode Overview

Classification

 To classify the relation between two entities the representation of the corresponding nodes are used:

$$P(r|\mathbf{e}_i, \mathbf{e}_j) = \sigma(\mathbf{e}_i^T \mathbf{W}_{\mathbf{e}} \mathbf{e}_j + \mathbf{b}_e)_r$$

- Experiments on:
 - DocRed
 - CDR (biomedical domain)
 - o GDA (biomedical domain)

			Dev		Te	st
Model	Ign F1	F1	Intra- $F1$	Inter-F1	Ign F1	F1
CNN (Yao et al., 2019)	41.58	43.45	51.87*	37.58*	40.33	42.26
LSTM (Yao et al., 2019)	48.44	50.68	56.57*	41.47*	47.71	50.07
BiLSTM (Yao et al., 2019)	48.87	50.94	57.05*	43.49*	48.78	51.06
ContexAware (Yao et al., 2019)	48.94	51.09	56.74*	42.26*	48.40	50.70
GCNN ♣ (Sahu et al., 2019)	46.22	51.52	57.78	44.11	49.59	51.62
EoG ♣ (Christopoulou et al., 2019)	45.94	52.15	58.90	44.60	49.48	51.82
GAT ♣ (Veličković et al., 2018)	45.17	51.44	58.14	43.94	47.36	49.51
AGGCN ♣ (Guo et al., 2019a)	46.29	52.47	58.76	45.45	48.89	51.45
GloVe+LSR	48.82	55.17	60.83	48.35	52.15	54.18
BERT (Wang et al., 2019)	-	54.16	61.61*	47.15*	-	53.20
Two-Phase BERT (Wang et al., 2019)	-	54.42	61.80*	47.28*	-	53.92
BERT+LSR	52.43	59.00	65.26	52.05	56.97	59.05

Model	F1	Intra- $F1$	Inter- $F1$
Gu et al. (2017)	61.3	57.2	11.7
Nguyen and Verspoor (2018)	62.3	-	-
Verga et al. (2018)	62.1	-	-
Sahu et al. (2019)	58.6	-	-
Christopoulou et al. (2019)	63.6	68.2	50.9
LSR	61.2	66.2	50.3
LSR w/o MDP Nodes	64.8	68.9	53.1
Peng et al. (2016)	63.1		-
Li et al. (2016b)	67.3	58.9	_
Panyam et al. (2018)	60.3	65.1	45.7
Zheng et al. (2018)	61.5	-	-

Model	F1	Intra- $F1$	Inter- $F1$
NoInf (Christopoulou et al., 2019)	74.6	79.1	49.3
Full (Christopoulou et al., 2019)	80.8	84.1	54.7
EoG (Christopoulou et al., 2019)	81.5	85.2	50.0
LSR	79.6	83.1	49.6
LSR w/o MDP Nodes	82.2	85.4	51.1