NAME:

1	/8	2	/12	3	/12	4	/12	5	/10		
6	/10	7	/12	8	/6	9	/10	10	/8	Т	/100

MATH 251 (Fall 2011) Final Exam, Dec 15th

No calculators, books or notes! Show all work and give **complete explanations**. This 120 min exam is worth 100 points.

- (1) [8 pts] Let $z = f(x, y) = x^2 y^3$.
- (a) Calculate the directional derivative of f at the point (-1,2) in the direction of the vector (3,2).

(b) In which direction does f decrease the fastest at the point (-1,2)?

- (2) [12 pts]
- (a) Let D be a region in the xy-plane. If D is the shape of a metal plate and z = f(x, y) is mass per unit area of the plate at the point (x, y), what does $\iint_D f(x, y) dA$ represent, and why?
- (b) Calculate $\iint_D y \, dA$, where D is the triangular region in the xy-plane with vertices (0,0), (3,0), and (2,1).

(c) Calculate $\iint_D x \, dA$, where D is the region in the xy-plane bounded by $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$ with $x \ge 0$ and $y \le 0$.

(3) [12 pts] One of the following two vector fields is conservative:

$$\mathbf{F}_{1}(x,y) = (2y + 3x^{2}y^{2} + 6x)\mathbf{i} + (2x^{3}y + 6y + 8x)\mathbf{j}$$

$$\mathbf{F}_{2}(x,y) = (2x + 3x^{2}y^{2} + 6y)\mathbf{i} + (2x^{3}y + 6x + 8y)\mathbf{j}.$$

(a) Which vector field is conservative and which is not? Why?

(b) For the vector field that is conservative, evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve parametrized by $\mathbf{r}(t) = (\cos(\frac{\pi t^2}{2}), t^3)$ for $0 \le t \le 1$.

(4) [12 pts] Let $\mathbf{F}(x,y) = (x^2 + 2y)\mathbf{i} + (y - 3x)\mathbf{j}$.
(a) Calculate the curl of F .
(b) Calculate the divergence of F .
(c) Suppose that \mathbf{F} is the velocity vector field of a fluid flowing in the plane. Let C be a small circle
centered at the origin. (i) On average, is fluid flowing in or out of C? Why?
(ii) On average, is the fluid rotating counterclockwise or clockwise about C ? Why?

(5) [10 pts] Let L be the line through the points (1,2,4) and (2,1,3), and let P be the plane parametrized by $\mathbf{r}(u,v)=(1+2u,2+v,3-u)$. Find the (x,y,z) coordinates of the point of intersection of the line L and the plane P.

(6) [10 pts] Let z = f(x, y) be a function such that

(x,y)	(-1,2)	(1, -2)	$(0,\sqrt{3})$	$(\sqrt{3},0)$
$\frac{\partial f}{\partial x}$	-4	1	6	0
$\frac{\partial f}{\partial y}$	10	4	8	0

Which of the (x, y) values in this table are candidates for the absolute maximum and absolute minimum of f subject to the constraint $4x^2 + 3xy + 2y^2 = 6$? Carefully justify your answers!

(7)	[12	pts
(')	1-2	Pub

(a) Carefully state Stokes' Theorem. In particular, with the aid of a sketch, describe in words the relationship between the orientation on the surface and the direction to go around the boundary.

(b) Let C be the curve obtained by intersecting the surfaces $x^2 + z^2 = 1$ and y = 2. Go around C in the direction so that when you pass through the point (1, 2, 0) you are heading in the positive z direction. Sketch the directed curve C. Also, identify and sketch an oriented surface, S, with $\partial S = C$.

(c) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the directed curve described in (b) and $\mathbf{F}(x, y, z) = x\mathbf{i} + y^2\mathbf{j} + z^3\mathbf{k}$.

(8) [6 pts] Let $z = f(x, y) = xy^2$, where $x = g(t) = t^2$ and y = h(t). Suppose that h(2) = -3 and h'(2) = 1. Calculate $\frac{dz}{dt}$ at t = 2.

- (9) [10 pts] Let E be the solid region that is above the triangle with vertices (0,0,0), (3,0,0) and (0,2,0) and below the plane x+y+z=6.
- (a) Sketch the solid E.

(b) Set up but do not evaluate an iterated triple integral for $\iiint_E x^2 dV$.

(10) [8 pts] Let S be the surface $y = x + 3z$ with $0 \le x \le 2$ and $0 \le z \le 1$. Calculate	ilate $\iint_S yz dS$.					
Pledge: I have neither given nor received aid on this exam						
Signature:						