# R: Split/Apply/Combine using the Orange dataset

```
# clear workspace
rm(list=ls())
# Get info on "Orange" R dataset
help("Orange")
# Make a copy of the "Orange" template and save as my
orange <- as.data.frame(Orange)</pre>
```

"If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions."

Albert Einstein

# R Orange dataset = original template Growth of Orange Trees

#### **Description**

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

#### Columns:

- **Tree** ordered factor indicating the tree on which the measurement is made.
- age numeric vector giving the age of the tree (days since 1968/12/31)
- **circumference** numeric vector of trunk circumferences (mm).





```
> str(orange) # Get structure 'data.frame': 35 obs. of 3 variables:
```

\$ Tree : Ord.factor w/ 5 levels "3"<"1"<"5"<"2"<...:</pre>

\$ age : num 118 484 664 1004 1231 ...

\$ circumference: num 30 58 87 115 120 142 145 33 69 111 ...

# What are values of 'Tree' factor?

> levels(orange\$Tree)

[1] "3" "1" "5" "2" "4"

#### 7 "ages" or data collection dates:

| Tree.age |      | Tree.date  |
|----------|------|------------|
| 1        | 118  | 1969-04-27 |
| 2        | 484  | 1970-04-28 |
| 3        | 664  | 1970-10-25 |
| 4        | 1004 | 1971-09-30 |
| 5        | 1231 | 1972-05-14 |
| 6        | 1372 | 1972-10-02 |
| 7        | 1582 | 1973-04-30 |

#### **Data for Tree 1**

Data for Tree 2

#### **Data for Tree 3.**

•

Data for Tree 5

# Data Exploration: "orange" data frame

# R/Studio Viewer

> view(orange)



#### Orange Tree Growth Data

```
attach(orange) # Can now skip orange$ prefix
# What are min/max values of 'age'?
# Get X-axis range for: age
Xrange <- range(age); Xrange</pre>
     118 1582
[1]
# Get Y-axis range for: circumference
Yrange <- range(circumference); Yrange</pre>
     30 214
[1]
# See help("plot"), example("plot")
plot(age, circumference,
  main="Orange Tree Growth",
  xlab="Tree age(days since 1968/12/31)",
  ylab="Tree circumference (mm)",
  xlim= Xrange, ylim= Yrange);
```



Tree age (days since 1968/12/31)

#### What does this mean?

- Data was collected for each Tree at 7 "ages": 118, 484, 664, 1004, 1231,1372, 1582.
- Each dot is the circumference measurement for a Tree.
- As age increases, circumference also increases.

# Other plots of the same data...

Given: Tree



From help("orange")

circumference



#### From ggplot2-tutorial

```
library(ggplot2)
qplot(age, circumference, data = Orange,
    geom = c("point", "line"), colour = Tree,
    main = "How does orange tree circumference vary with age?")
```

```
# Get rows from orange where Tree = "1"
# Method 1: Use subset()
Tree1 <-subset(orange, orange$Tree == "1")</pre>
# Method 2: Use sqldf()
library(sqldf)
Tree1 <- sqldf("SELECT * FROM orange
        WHERE Tree='1'")
# Compute correlation. See help("cor")
cor(Tree1$age, Tree1$circumference)
[1] 0.9854675
What does this mean?
There is a HIGH POSITIVE correlation between age and circumference.
```

### Method 1 & 2 result in the same data frame:

```
> Tree1
        age circumference
        118
                         30
        484
                         58
        664
                         87
     1 1004
                       115
     1 1231
                       120
     1 1372
                       142
     1 1582
                       145
```

#### Tree1 fitted model



## **Problem:** Define Covariance/Correlation Chart

| Row | Tree | Covariance                                       | Correlation                                      |
|-----|------|--------------------------------------------------|--------------------------------------------------|
| 1   | 1    | <pre>cov(age,circumference) where Tree="1"</pre> | <pre>cor(age,circumference) where Tree="1"</pre> |
| 2   | 2    | <pre>cov(age,circumference) where Tree="2"</pre> | <pre>cor(age,circumference) where Tree="2"</pre> |
| 3   | 3    | <pre>cov(age,circumference) where Tree="3"</pre> | <pre>cor(age,circumference) where Tree="3"</pre> |
| 4   | 4    | <pre>cov(age,circumference) where Tree="4"</pre> | <pre>cor(age,circumference) where Tree="4"</pre> |
| 5   | 5    | <pre>cov(age,circumference) where Tree="5"</pre> | <pre>cor(age,circumference) where Tree="5"</pre> |

"A problem well defined is a problem half-solved."

- John Dewey

### We'll try 3 methods:

- \*Using subset() and merge()
- \*Using tapply()
- Using ddply()

\*Adapted from MyFirstRLesson.R Patricia Hoffman, PhD.

http://patriciahoffmanphd.com/startr.php

UCSC Extension – Course 262

Data Mining and Machine Learning

### **SubProblems:**

- Get chart1 for orange
- Get **chart2** for oPlus10 (circumference +10)
- Get chart3 for oX2 (circumference \*2)
- Get chart4 for oX\_2 (circumference \* -2)

How to do all of the above without cutting/pasting code for the same functionality but different inputs?

### **Solution:**

Define & re-use function **covcor()**.

```
chart1 <- covcor(orange)

oPlus10 <-orange
oPlus10$circumference <- oPlus10$circumference+10
chart2 <- covcor(oPlus10)

oX2 <-orange
oX2$circumference <- oX2$circumference*(-2)
chart3 <- covcor(oX2)

oX_2 <-orange
oX_2$circumference <- oX_2$circumference*(-2)
chart4 <- covcor(oX_2)</pre>
```

# Method 1: Define function covcor() Using subset() and merge()

```
# FUNCTION covcor:
# INPUT: data frame with Tree, age, circumference
# OUTPUT: data frame with Tree,
Correlation/Covariance
covcor <- function(orangedf)</pre>
# SPLIT using subset()
Tree1 <- subset(orangedf, Tree == "1")</pre>
Tree2 <- subset(orangedf, Tree == "2")</pre>
Tree3 <- subset(orangedf, Tree == "3")</pre>
Tree4 <- subset(orangedf, Tree == "4")</pre>
Tree5 <- subset(orangedf, Tree == "5")</pre>
# APPLY functions cov() and cor()
# Calculate COVARIANCE for each Tree
cov.df <- data.frame("fac" = factor(1:5),</pre>
"cov" = c(cov(Tree1$age, Tree1$circumference),
cov(Tree2$age,Tree2$circumference),
cov(Tree3$age,Tree3$circumference),
cov(Tree4$age,Tree4$circumference),
cov(Tree5$age,Tree5$circumference)))
```

```
# Calculate CORRELATION for each Tree
cor.df <- data.frame("fac" = factor(1:5),</pre>
"cor" = c(cor(Tree1$age,Tree1$circumference),
cor(Tree2$age,Tree2$circumference),
cor(Tree3$age,Tree3$circumference),
cor(Tree4$age,Tree4$circumference),
cor(Tree5$age,Tree5$circumference)))
# COMBINE using merge()
# "Join" cov.df and cor.df using the fac column
chart <- merge(cov.df, cor.df,bv.x = "fac", bv.v =
"fac")
# Assign column names
names(chart) <- c("TREE", "COVARIANCE", "CORRELATION")</pre>
# Assign row names
row.names(chart)<- c("1","2","3","4","5")
return(chart)
```

### INPUT: data frame orangedf

#### Step 1: SPLIT

```
Tree1 <- subset(orangedf, Tree == "1")
Tree2 <- subset(orangedf, Tree == "2")
Tree3 <- subset(orangedf, Tree == "3")
Tree4 <- subset(orangedf, Tree == "4")
Tree5 <- subset(orangedf, Tree == "5")</pre>
```



```
# Calculate the COVARIANCE for each tree
cov.df <- data.frame("fac" = factor(1:5),
  "cov" = c(cov(Tree1$age,Tree1$circumference),
  cov(Tree2$age,Tree2$circumference),
  cov(Tree3$age,Tree3$circumference),
  cov(Tree4$age,Tree4$circumference),
  cov(Tree5$age,Tree5$circumference)))</pre>
```

#### **Step 2: APPLY**

#### cov.df

|   | fac | V2                                |
|---|-----|-----------------------------------|
| 1 | 1   | <pre>cov(age,circumference)</pre> |
| 2 | 2   | <pre>cov(age,circumference)</pre> |
| 3 | 3   | <pre>cov(age,circumference)</pre> |
| 4 | 4   | <pre>cov(age,circumference)</pre> |
| 5 | 5   | <pre>cov(age,circumference)</pre> |

```
# Calculate the CORRELATION for each Tree
cor.df <- data.frame("fac" = factor(1:5),
  "cor" = c(cor(Tree1$age,Tree1$circumference),
  cor(Tree2$age,Tree2$circumference),
  cor(Tree3$age,Tree3$circumference),
  cor(Tree4$age,Tree4$circumference),
  cor(Tree5$age,Tree5$circumference)))</pre>
```

#### cor.df

|   | fac | V2                                |
|---|-----|-----------------------------------|
| 1 | 1   | <pre>cor(age,circumference)</pre> |
| 2 | 2   | <pre>cor(age,circumference)</pre> |
| 3 | 3   | <pre>cor(age,circumference)</pre> |
| 4 | 4   | <pre>cor(age,circumference)</pre> |
| 5 | 5   | <pre>cor(age,circumference)</pre> |

#### **Step 3: COMBINE**

```
chart <- merge(cov.df, cor.df,by.x = "fac", by.y = "fac")
names(chart) <- c("TREE", "COVARIANCE", "CORRELATION")
row.names(chart) <- c("1", "2", "3", "4", "5")
return(chart)</pre>
```

#### chart

|   | TREE | COVARIANCE | CORRELATION |
|---|------|------------|-------------|
| 1 | 1    | 22340.07   | 0.9854675   |
| 2 | 2    | 34290.45   | 0.9873624   |
| 3 | 3    | 22239.83   | 0.9881766   |
| 4 | 4    | 37062.62   | 0.9844610   |
| 5 | 5    | 30442.81   | 0.9877376   |



# Method 2: Define function covcor() Using tapply(index(array), column, function)+ merge()

```
covcor <- function(orangedf)</pre>
# SPLIT/APPLY
agg.cor <-tapply(1:nrow(orangedf),</pre>
         orangedf$Tree, FUN=function(x)
         cor(orangedf$age[x],
         orangedf$circumference[x]))
agg.cov <-tapply(1:nrow(orangedf),</pre>
         orangedf$Tree, FUN=function(x)
         cov(orangedf$age[x],
         orangedf$circumference[x]))
# Convert arrays to tables, then dfs
agg.cor <-(as.data.frame(as.table(agg.cor)))</pre>
agg.cov <-(as.data.frame(as.table(agg.cov)))</pre>
# COMBINE
chart <-merge(agg.cov, agg.cor, by=c("Var1"))</pre>
colnames(chart) <- c("TREE", "COVARIANCE",</pre>
                           "CORRELATION")
return(chart)
```

- tapply applies function to elements in index(array) and groups results by column.
- Outputs an array, which must be converted to table, then data frame for merge().
- Similar to SQL "Group By " concept:

```
CREATE VIEW aggcov AS (SELECT Tree,
*COVAR_POP(age,circumference) AS COVARIANCE FROM
orangedf GROUP BY Tree);

CREATE VIEW aggcor AS (SELECT Tree,
*CORRELATION(age,circumference) AS CORRELATION
FROM orangedf GROUP BY Tree);

CREATE VIEW chart as (SELECT aggcov.Tree as TREE,
COVARIANCE, CORRELATION FROM aggcov, aggcor WHERE
aggcov.Tree = aggcor.Tree);

*Currently no built-in CORRELATION functions in SQL.
See: http://www.xarg.org/2012/07/statistical-functions-in-mysql/
```

# INPUT: data frame orangedf

#### **Step 1: SPLIT/APPLY**

agg.cov <-tapply(1:nrow(orangedf),
orangedf\$Tree, FUN=function(x)
cov(orangedf\$age[x],
orangedf\$circumference[x]))</pre>
Values
agg.

Values
agg.cor array[5]
agg.cov array[5]

agg.cov <(as.data.frame
(as.table(agg.cov)))</pre>

| Var1 | Freq        |
|------|-------------|
| 3    | 22239.83    |
| 1    | 22340.07    |
| 5    | 30442.81    |
| 2    | 34290.45    |
| 4    | 37062.62    |
|      | 3<br>1<br>5 |

|   | Var1 | Freq      |
|---|------|-----------|
| 1 | 3    | 0.9881766 |
| 2 | 1    | 0.9854675 |
| 3 | 5    | 0.9877376 |
| 4 | 2    | 0.9873624 |
| 5 | 4    | 0.9844610 |

```
agg.cor <-
(as.data.frame
(as.table(agg.cor)))</pre>
```

#### **Step 2: COMBINE**

chart <-merge(agg.cov, agg.cor, by=c("Var1"))
colnames(chart) <- c("TREE", "COVARIANCE", "CORRELATION")</pre>

#### chart

|   | TREE | COVARIANCE | CORRELATION |
|---|------|------------|-------------|
| 1 | 1    | 22340.07   | 0.9854675   |
| 2 | 2    | 34290.45   | 0.9873624   |
| 3 | 3    | 22239.83   | 0.9881766   |
| 4 | 4    | 37062.62   | 0.9844610   |
| 5 | 5    | 30442.81   | 0.9877376   |



# Method 3: Define function covcor() Using ddply(data frame, column, function1, function2)

```
library(plyr)
# Define 2 new functions to be used with ddply
ncor <- function(newdf) {chart <- cor(newdf[, 2],</pre>
         newdf[, 3]); return(chart)}
ncov <- function(newdf) {chart <- cov(newdf[, 2],</pre>
         newdf[, 3]);return(chart)}
# Now use ddply to compute BOTH ncov and ncor:
covcor <- function(odf) {</pre>
   chart <- ddply(odf, .(Tree), c("ncov", "ncor"))</pre>
   colnames(chart) <- c("TREE", "COVARIANCE", "CORRELATION")</pre>
   return(chart) }
# That's it! no subsetting or merging required!
orange <- as.data.frame(Orange)</pre>
o.chart <- covcor(Orange)</pre>
```

#### From help("plyr"):

- **ddply:** Split data frame, apply function(s), and return results in a data frame.
- plyr is a set of tools that implement the split-applycombine (SAC) pattern.

SAC is essential in data analysis. To solve a problem:

- Break it down into smaller pieces.
- Do something to each piece.
- Combine the results back together again.

# INPUT: data frame odf

#### **Step 0: Define new functions**

```
library(plyr)
# Define 2 new functions to be used with ddply
ncor <- function(newdf) {chart <- cor(newdf[, 2], newdf[, 3]); return(chart)}
ncov <- function(newdf) {chart <- cov(newdf[, 2], newdf[, 3]); return(chart)}</pre>
```

#### **Step 1: SPLIT/APPLY/COMBINE**

```
# Now use ddply to compute BOTH ncov and ncor:
covcor <- function(odf)
    {chart <- ddply(odf, .(Tree), c("ncov", "ncor"))
    colnames(chart) <- c("TREE", "COVARIANCE", "CORRELATION")
    return(chart)}

# That's it! no subsetting or merging required!
orange <- as.data.frame(Orange)
chart <- covcor(orange)</pre>
chart
```

|   | TREE | COVARIANCE | CORRELATION |
|---|------|------------|-------------|
| 1 | 1    | 22340.07   | 0.9854675   |
| 2 | 2    | 34290.45   | 0.9873624   |
| 3 | 3    | 22239.83   | 0.9881766   |
| 4 | 4    | 37062.62   | 0.9844610   |
| 5 | 5    | 30442.81   | 0.9877376   |



OUTPUT:
data frame
chart

### DATA TRANSFORMATIONS: What happens when we change circumference?

Result: Both Covariance & Correlation are

negative. Absolute value of Covariance doubles,

but absolute value of Correlation stays the same.

| INCE                                        | range)<br>OVARIANCE CORRELATION | corcov(orangeplus10)  TREE COVARIANCE CORRELATION                                                                                                                       |
|---------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1<br>2 2<br>3 3<br>4 4<br>5 5<br>Original | 22340.07                        | 1 1 22340.07 0.9854675 2 2 34290.45 0.9873624 3 3 22239.83 0.9881766 4 4 37062.62 0.9844610 5 5 30442.81 0.9877376  Transformation: circumference+10 Result: No change. |
| corcov(                                     | orangex2)                       | corcov(orangex 2)                                                                                                                                                       |
| TDEE /                                      | OVARIANCE CORRELATION           | TREE COVARIANCE CORRELATION                                                                                                                                             |
| IKEE (                                      | 44680.14 0.9854675              | 1 1 -44680.14 -0.9854675                                                                                                                                                |
| 1 1                                         | 11000:11 0:3031073              |                                                                                                                                                                         |
|                                             | 68580.90 0.9873624              | 2 2 -68580.90 -0.9873624                                                                                                                                                |
| 1 1                                         |                                 | 2 2 -68580.90 -0.9873624<br>3 3 -44479.67 -0.9881766                                                                                                                    |
| 1 1<br>2 2                                  | 68580.90 0.9873624              |                                                                                                                                                                         |

Result: Covariance doubles,

but correlation stays the same.

#### **Conclusions:**

- by scale. Doubling circumference increases covariance (data points "stretch out" to fill more space) but doesn't affect correlation (direction is still positive/upward).
- Negative correlation/ covariance reverses the direction of the relationship. I.e., as age increases, the tree circumference "shrinks" instead of getting larger.

### **DATA VISUALIZATION**: What happens when we change **circumference**?



### BTW....

### 7 "ages" or sample dates:

| Tree.age |      | Tree.date  |
|----------|------|------------|
| 1        | 118  | 1969-04-27 |
| 2        | 484  | 1970-04-28 |
| 3        | 664  | 1970-10-25 |
| 4        | 1004 | 1971-09-30 |
| 5        | 1231 | 1972-05-14 |
| 6        | 1372 | 1972-10-02 |
| 7        | 1582 | 1973-04-30 |

```
# convert 'age' to a date
secs.per.day <- 24 * 60 * 60
orange$age.sec <- orange$age * secs.per.day</pre>
orange$Date <- as.POSIXct(orange$age.sec,
origin = "1968-12-31", tz = "EST")
# Get YYYY-MM-DD
orange$age.date <-substr(orange$Date,1,10)</pre>
# Can use getYear, getMonth, getDay,
# getHour, getMin, getSec.
library(gdata)
getYear(orange$Date)
```