DM 24 : énoncé

Dans tout le problème, f désigne une application de \mathbb{R}_+^* dans \mathbb{R}_+^* que l'on suppose continue, décroissante et de limite nulle en $+\infty$.

Partie I

Pour $x \in \mathbb{R}_+^*$, $k \in \mathbb{N}$ et $n \in \mathbb{N}$, on pose

$$c_k(x) = f(x+k) - \int_{x+k}^{x+k+1} f(t) dt$$
 et $C_n(x) = \sum_{k=0}^{n} c_k(x)$,

$$d_k(x) = f(x+k+1) - \int_{x+k}^{x+k+1} f(t) dt$$
 et $D_n(x) = \sum_{k=0}^{n} d_k(x)$.

- $\mathbf{1}^{\circ}$) a) Interpréter géométriquement $c_k(x)$ et $C_n(x)$.
- b) Établir l'inégalité $c_k(x) \le f(x+k) f(x+k+1)$.
- c) En déduire que la série de terme général $c_k(x)$ converge pour tout x>0 et que sa somme $C(x) = \sum_{k=0}^{+\infty} c_k(x)$ vérifie l'inégalité $C(x) \leq f(x)$.
- (2°) Après en avoir justifié l'existence, déterminer C(x) dans chacun des deux cas suivants:
- **a)** $f(x) = e^{-x}$. **b)** $f(x) = \frac{1}{x(x+1)}$.
- $\mathbf{3}^{\circ}$) Montrer que la série de terme général $d_k(x)$ converge pour tout x>0 et exprimer sa somme $D(x) = \sum_{k=0}^{+\infty} d_k(x)$ au moyen de C(x) et de f(x).

Partie II

On note E l'ensemble des applications de \mathbb{R}_+^* dans \mathbb{R} qui sont bornées. Pour tout $g \in E$, on pose $||g|| = \sup_{x>0} |g(x)|$.

 4°) Montrer que l'on définit ainsi une norme sur E.

Pour toute la suite, on notera d la distance associée à cette norme.

- $\mathbf{5}^{\circ}$) Soit $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions de (E,d) et $g\in E$ telle que $g_n\underset{n\to+\infty}{\longrightarrow} g$.
- a) Montrer que, pour tout $x \in \mathbb{R}_+^*$, $g_n(x) \underset{n \to +\infty}{\longrightarrow} g(x)$.
- **b**) On suppose que g est continue et que pour tout $n \in \mathbb{N}$, g_n est aussi continue. Montrer que, pour tout $x, y \in \mathbb{R}_+^*$ avec x < y, $\int_x^y g_n(t) dt \xrightarrow[n \to +\infty]{}_x^y g(t) dt$.
- **6**°) Pour tout $n \in \mathbb{N}^*$ et x > 0, on pose $g_n(x) = \frac{\sqrt{(x-1)^2 + \frac{1}{n}}}{x+1}$.

Montrer que $(g_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions de E.

Montrer que $(g_n)_{n\in\mathbb{N}^*}$ converge dans (E,d) vers une application g que l'on déterminera.

- 7°) On note $C^1(E)$ l'ensemble des fonctions de E qui sont de classe C^1 . Montrer que $C^1(E)$ n'est pas un fermé de E. Est-ce un ouvert ?
- $\mathbf{8}^{\circ}$) On note $C^0(E)$ l'ensemble des fonctions de E qui sont continues. Montrer que c'est un fermé de E.
- 9°) Montrer que l'application C définie en partie I est continue sur \mathbb{R}_{+}^{*} et que C(x) tend vers 0 lorsque x tend vers $+\infty$.
- 10°) On suppose dans cette seule question que $f(x) \xrightarrow[x\to 0]{} +\infty$.
- a) Montrer que, lorsque x tend vers 0, $\int_{x}^{x+1} f(t) dt$ est négligeable devant f(x).
- b) En déduire que C(x) et f(x) sont équivalents lorsque x tend vers 0.
- **11**°) Soit $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions de $C^1(E)$ telle que, pour tout $n\in\mathbb{N}, g'_n\in E$. On suppose que, pour tout $x\in\mathbb{R}^*_+$, il existe $g(x)\in\mathbb{R}$ tel que $g_n(x)\underset{n\to+\infty}{\longrightarrow} g(x)$.

On suppose de plus qu'il existe une application $h \in E$ telle que la suite (g'_n) converge dans (E, d) vers h.

Montrer que g est de classe C^1 et que g' = h.

Partie III

Dans cette partie, on conserve les hypothèses faites sur f en début d'énoncé, auxquelles on ajoute l'hypothèse supplémentaire suivante : f est de classe C^1 et f' est une application croissante.

- $\mathbf{12}^{\circ}$) Montrer que f'(x) possède une limite que l'on précisera lorsque x tend vers $+\infty$.
- 13°) Montrer que la fonction C est de classe C^1 et qu'elle est décroissante (on pourra utiliser la fonction g = -f').

14°) Pour
$$x > 0$$
 et $k \in \mathbb{N}$, on pose $u_k(x) = \frac{1}{2}(f(x+k) + f(x+k+1)) - \int_{x+k}^{x+k+1} f(t) dt$ et pour $k \ge 1$, on pose $v_k(x) = f(x+k) - \int_{x+k-\frac{1}{2}}^{x+k+\frac{1}{2}} f(t) dt$.

On admet que, f' étant croissante, pour tout $a, b \in \mathbb{R}_+^*$ avec a < b, le graphe de $f|_{[a,b]}$ est situé au dessous du segment de droite joignant les points de coordonnées (a, f(a)) et (b, f(b)).

- a) Interpréter géométriquement $u_k(x)$ et en déduire que $u_k(x) \geq 0$.
- **b)** Montrer que pour tout x > 0, la série $\sum u_k(x)$ est convergente et exprimer sa somme $U(x) = \sum_{k=0}^{+\infty} u_k(x)$ en fonction de C(x) et de f(x).
- 15°) Montrer que pour tout x > 0, la série $\sum v_k(x)$ est convergente et montrer que sa somme $V(x) = \sum_{k=1}^{+\infty} v_k(x)$ vérifie : $V(x) = C(x) f(x) + \int_x^{x+\frac{1}{2}} f(t) dt$.
- **16**°) On admet que, f' étant croissante, pour tout $a, b \in \mathbb{R}_+^*$ avec a < b, $f\left(\frac{a+b}{2}\right) \le \frac{1}{2}\Big(f(a)+f(b)\Big)$.

Montrer que pour tout
$$x > 0$$
, $\frac{1}{2}f(x) \le C(x) \le f(x) - \int_x^{x+\frac{1}{2}} f(t) dt$.

- 17°) a) Montrer que, quand x tend vers $+\infty$, les conditions suivantes sont équivalentes :
 - 1. f'(x) est négligeable devant f(x).
 - 2. f(x) et f(x+1) sont équivalents.
- **b)** On suppose que f'(x) est négligeable devant f(x) lorsque x tend vers $+\infty$. Montrer que, lorsque x tend vers $+\infty$, $C(x) \sim \frac{1}{2}f(x)$.
- c) Donner un exemple de fonction f satisfaisant à ces conditions.
- 18°) a) Soit a > 0. Lorsque $f(x) = e^{-ax}$, montrer que f vérifie les conditions du début de l'énoncé et du début de cette partie.

Calculer le rapport $\frac{C(x)}{f(x)}$.

b) Montrer que, pour tout $m \in]\frac{1}{2}, 1[$, il existe une fonction f satisfaisant les conditions du début de l'énoncé et du début de cette partie et telle que $\lim_{x \to +\infty} \frac{C(x)}{f(x)} = m$.