Best Available Copy

(20)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-340356 (P2000-340356A)

(43)公開日 平成12年12月8日(2000.12.8)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 5 B 6/70

H 0 5 B 6/70

E 3K090

 C

審査請求 有 請求項の数15 OL (全 11 頁)

(21)出願番号

特願平11-150076

(22)出願日

平成11年5月28日(1999.5.28)

(71)出願人 397015175

エリー株式会社

静岡県藤枝市志太2丁目3-23

(72)発明者 八木 俊一

静岡県藤枝市志太2丁目3-23 エリー株

式会社内

(74)代理人 100088568

弁理士 鴇田 將

Fターム(参考) 3K090 AA01 AA02 AB02 AB03 AB04

AB05 BA01 BA08 BB01 BB15

CA03 CA05 CA17 DA14 DA17

EB29

(54) 【発明の名称】 被加熱物の加熱方法及びその装置

(57)【要約】

(修正有)

【課題】 本発明の目的は、設置スペースをコンパクト化し、被加熱物の均一加熱を図り、かつ、反射波を安定的に低減できる被加熱物の加熱方法及びその装置を安価に提供することにある。

【解決手段】 本発明に係る被加熱物の加熱方法及びその装置は、マイクロ波による被加熱物を加熱する加熱方法であって、マイクロ波発振器7から発振するマイクロ波をオーブンに投入するための伝搬通路4,6の形状を、オーブンに向かって入射するマイクロ波の進行を妨げない形状とし、かつオーブン側の伝搬通路開口部の断面積をマイクロ波発振器側の伝搬通路開口部の断面積をマイクロ波の反射器具5によってオーブンから前記マイクロ波発振器側に向かうマイクロ波の反射波の大部分を該反射器具で反射させてオーブン側に再度戻し得るようにしてマイクロ波の反射波を低減し加熱整合を促進するものである。

【特許請求の範囲】

【請求項1】 マイクロ波による被加熱物を加熱する加 熱方法であって、マイクロ波発振器から発振するマイク 口波をオーブンに投入するための伝搬通路の形状を、オ ーブンに向かって入射するマイクロ波の進行を妨げない 形状とし、かつオーブン側の伝搬通路開口部の断面積を マイクロ波発振器側の伝搬通路開口部の断面積よりも大 きな形状とし、該伝搬通路内部の所定の位置に設けたマ イクロ波の反射器具によってオーブンから前記マイクロ 波発振器側に向かうマイクロ波の反射波の大部分を該反 10 射器具で反射させてオーブン側に再度戻し得るようにし てマイクロ波の反射波を低減し加熱整合を促進すること を特徴とする被加熱物の加熱方法。

上記オーブン側の伝搬通路開口部の断面 【請求項2】 積をマイクロ波発振器側の伝搬通路開口部の断面積より も大きな形状とし、さらにその大きな形状としたオーブ ン側の伝搬通路開口部と同じ大きさで同じ形状の開口部 を有する所定の長さの金属製のストレート管を通してマ イクロ波をオーブンに投入することでマイクロ波の入射 波の整合を向上せしめ、マイクロ波の反射波を低減し加 熱整合を促進することを特徴とする請求項1記載の被加 熱物の加熱方法。

【請求項3】 マイクロ波による被加熱物を加熱する加 熱方法であって、オープンのマイクロ波投入口より所定 の距離を置き、かつ該マイクロ波投入口の正面の所定の オープン内位置に設置した金属製の反射拡散器具にて、 オーブンに入射するマイクロ波を所定の率でオーブン内 に反射拡散し、かつ反射拡散されるマイクロ波の大部分 をオープン内の該反射拡散器具の位置よりも内側に導入 し、マイクロ波の反射波を低減し加熱整合を促進するこ とを特徴とする被加熱物の加熱方法。

【請求項4】 マイクロ波による被加熱物を加熱する加 熱方法であって、オーブンに複数のマイクロ波投入口を 設け、向かい合うマイクロ波投入口をそれぞれ対面の位 置に設置しマイクロ波を投入することでマイクロ波によ る均一加熱を促進してマイクロ波の反射波を低減し加熱 整合を促進することを特徴とする請求項1、2または3 記載の被加熱物の加熱方法。

【請求項5】 マイクロ波による被加熱物を加熱する加 熱方法であって、マイクロ波発振器から発振するマイク 口波をオープンに投入するための伝搬通路の形状を、オ ーブンに向かって入射するマイクロ波の進行を妨げない 形状とし、かつオーブン側の伝搬通路開口部の断面積を マイクロ波発振器側の伝搬通路開口部の断面積よりも大 きな形状とし、該伝搬通路内部の所定の位置に設けたマ イクロ波の反射器具によってオーブンから前記マイクロ 波発振器側に向かうマイクロ波の反射波の大部分を該反 射器具で反射させてオーブン側に再度戻し得るように し、さらにその大きな形状としたオーブン側の伝搬通路 開口部と同じ大きさで同じ形状の開口部を有する所定の 50

長さの金属製のストレート管を通してマイクロ波をオー ブンに投入するとともに、オーブンのマイクロ波投入口 よりオープン内側に所定の距離を置き、かつ該マイクロ 波投入口の正面の所定の位置に設置した金属製の反射拡 散器具にて、オーブンに入射するマイクロ波を所定の率 で反射拡散し、かつ反射拡散されるマイクロ波の大部分 をオーブン内の該反射拡散器具の位置よりも内側に導入 してマイクロ波の反射波を低減し加熱整合を促進するこ とを特徴とする被加熱物の加熱方法。

【請求項6】 マイクロ波による被加熱物を加熱する加 熱方法であって、マイクロ波発振器から発振するマイク 口波をオーブンに投入するための伝搬通路の形状を、オ ーブンに向かって入射するマイクロ波の進行を妨げない 形状とし、かつオーブン側の伝搬通路開口部の断面積を マイクロ波発振器側の伝搬通路開口部の断面積よりも大 きな形状とし、該伝搬通路内部の所定の位置に設けたマ イクロ波の反射器具によってオーブンから前記マイクロ 波発振器側に向かうマイクロ波の反射波の大部分を該反 射器具で反射させてオーブン側に再度戻し、さらにその 大きな形状としたオーブン側の伝搬通路開口部と同じ大 きさで同じ形状の開口部を有する所定の長さの金属製の ストレート管を通してマイクロ波をオーブンに投入する とともに、オーブンのマイクロ波投入口より所定の距離 を置き、かつ該マイクロ波投入口の正面のオーブン内の 所定の位置に設置した金属製の反射拡散器具にて、オー ブンに入射するマイクロ波を所定の率で反射拡散し、か つ反射拡散されるマイクロ波の大部分をオーブンにおけ る該反射拡散器具の位置よりも内側に導入し、さらにオ ープンに複数のマイクロ波投入口を設け、向かい合うマ イクロ波投入口をそれぞれ対面の位置に設置しマイクロ 波を投入することでマイクロ波による均一加熱を促進し てマイクロ波の反射波を低減し加熱整合を促進すること を特徴とする被加熱物の加熱方法。

【請求項7】 マイクロ波によるオーブン内の被加熱物 を加熱する加熱装置であって、オーブンに接続する導波 管の形状を、オーブンに向かって入射するマイクロ波の 進行を妨げない形状とし、かつオーブン側の導波管開口 部の断面積をマイクロ波発振器側の導波管開口部の断面 積よりも大きな形状とし、該導波管の内部の所定の位置 に、オーブンに向かって入射するマイクロ波の進行を妨 げない所定の大きさの側面円錐形、角錐形又は釣り鐘形 及びそれらに類似する形状の金属製の反射拡散器具をそ の底側をオーブン側に向けた状態で取り付けたことを特 徴とする被加熱物の加熱装置。

【請求項8】 請求項7において、オーブン側の導波管 開口部の断面積をマイクロ波発振器側の導波管開口部の 断面積よりも大きな形状とし、その大きな形状としたオ ープン側の導波管開口部の先端に、断面積が同じ大きさ で同じ形状の所定の長さの金属製ストレート管を設置 し、そのストレート管をオープンのマイクロ波投入口に

30

接続したことを特徴とする請求項7記載の被加熱物の加熱装置。

【請求項9】 請求項8記載の金属製ストレート管をオープンのマイクロ波投入口側に一体に形成したことを特徴とする被加熱物の加熱装置。

【請求項10】 マイクロ波によるオーブン内の被加熱物を加熱する加熱装置であって、オーブン内に設置する金属製で固定のマイクロ波反射拡散器具はオーブン内のマイクロ波投入口の正面の位置にあり、マイクロ波投入口より所定の距離を置いてオーブン内に設置し、入射するマイクロ波を所定の率でオーブン内で反射拡散し、かつ反射拡散されるマイクロ波の大部分をオーブン内の該反射拡散器具の位置よりも内側に導入できる構造としたことを特徴とする被加熱物の加熱装置。

【請求項11】 金属製で固定のマイクロ波反射拡散器 具はオープン内のマイクロ波投入口の正面の位置にあり、マイクロ波投入口より所定の距離を置いてオープン内に設置し、該反射拡散器具の構造は、複数枚数の断面 V字型またはU字型の所定の長さおよび所定の幅の羽根を中心近辺から放射状に形成し、それらの羽根のV字またはU字の頂点線側をオープンのマイクロ波投入口に向けた構造としたことを特徴とする請求項10記載の被加熱物の加熱装置。

【請求項12】 金属製で固定のマイクロ波反射拡散器 具はオープン内のマイクロ波投入口の正面の位置にあ り、マイクロ波投入口より所定の距離を置いてオープン 内に設置し、該反射拡散器具は所定の大きさの側面円錐 型、釣り鐘型あるいは角錐型及びそれらの類似形状で形 成し、その頂点側をマイクロ波投入口側に向けた構造と したことを特徴とする請求項10記載の被加熱物の加熱 30 装置。

【請求項13】 マイクロ波によるオーブン内の被加熱物を加熱する加熱装置であって、オーブンに複数のマイクロ波投入口を設け、向かい合うマイクロ波投入口をそれぞれ対面の位置に設置したことを特徴とする請求項7または10記載の被加熱物の加熱装置。

【請求項14】 マイクロ波によるオーブン内の被加熱物を加熱する加熱装置であって、オーブンに接続する導波管の形状を、オーブンに向かって入射するマイクロ波の進行を妨げない形状とし、かつオーブン側の導波管開口部の断面積をマイクロ波発振器側の導波管開口部の断面積よりも大きな形状とし、該導波管の内部の所定の位置に、オーブンに向かって入射するマイクロ波の進行を妨げない所定の大きさの側面円錐形、角錐形又は釣り鐘形及びそれらに類似する形状の金属製の反射拡散器具をその底側をオーブン側に向けた状態で取り付け、さらにオーブン側の導波管開口部の断面積をマイクロ波発振器側の導波管開口部の断面積よりも大きな形状とし、その大きな形状としたオーブン側の導波管開口部の先端に、断面積が同じ大きさで同じ形状の所定の長さの金属製ス50

トレート管を設置し、そのストレート管をオーブンのマイクロ波投入口に接続するか、あるいはそのストレート管をオーブンのマイクロ波投入口側に一体に形成して接続するとともに、オーブン内に設置する金属製で固定のマイクロ波反射拡散器具はオーブン内のマイクロ波投入口の正面の位置にあり、マイクロ波投入口より所定の距離を置いてオーブン内に設置し、入射するマイクロ波を所定の率でオーブン内で反射拡散しかつ反射拡散されるマイクロ波の大部分をオーブン内の該反射拡散器具の位置よりも内側に導入できる構造としたことを特徴とする被加熱物の加熱装置。

【請求項15】 マイクロ波によるオーブン内の被加熱 物を加熱する加熱装置であって、オーブンに接続する導 波管の形状を、オープンに向かって入射するマイクロ波 の進行を妨げない形状とし、かつオーブン側の導波管開 口部の断面積をマイクロ波発振器側の導波管開口部の断 面積よりも大きな形状とし、該導波管の内部の所定の位 置に、オーブンに向かって入射するマイクロ波の進行を 妨げない所定の大きさの側面円錐形、角錐形又は釣り鐘 形及びそれらに類似する形状の金属製の反射拡散器具を その底側をオーブン側に向けた状態で取り付け、さらに オーブン側の導波管開口部の断面積をマイクロ波発振器 側の導波管開口部の断面積よりも大きな形状とし、その 大きな形状としたオーブン側の導波管開口部の先端に、 断面積が同じ大きさで同じ形状の所定の長さの金属製ス トレート管を設置し、そのストレート管をオープンのマ イクロ波投入口に接続するか、あるいはそのストレート 管をオーブンのマイクロ波投入口側に一体に形成して接 続するとともに、オーブン内に設置する金属製で固定の マイクロ波反射拡散器具はオーブン内のマイクロ波投入 口の正面の位置にあり、マイクロ波投入口より所定の距 離を置いてオーブン内に設置し、入射するマイクロ波を 所定の率でオーブン内で反射拡散しかつ反射拡散される マイクロ波の大部分をオープン内の該反射拡散器具の位 置よりも内側に導入できる構造とし、さらにオープンに 複数のマイクロ波投入口を設け、向かい合うマイクロ波 投入口をそれぞれ対面の位置に設置したことを特徴とす る被加熱物の加熱装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はマイクロ波を利用してオーブン内の被加熱物を加熱して乾燥、昇温、解凍、調理、焙煎、殺菌、濃縮等を行なうための被加熱物の加熱方法及びその装置に関する。

[0002]

【従来の技術】マイクロ波を使用して被加熱物を加熱する場合において、マグネトロン本体から発振されたマイクロ波は導波管を通じて槽内に投入されるが、その投入されたマイクロ波の一部は反射波として導波管を逆流してマグネトロンに戻り、エネルギーロスを発生させると

ともに発熱によってマグネトロンにダメージを与える結果となる。これを防止するための従来技術は、導波管の中途にマイクロ波の整合をとって反射波を低減させるための整合器を装着することと、マイクロ波発振器の近傍に反射波を吸収・消滅させるためのアイソレーターを装着することであった。

【0003】また、オープン内でマイクロ波を攪拌して整合をとるための装着としてスターラーが一般的に使用されてきた。

【0004】また、オープンに複数のマイクロ波投入口 10 を設置する場合は、それらの投入口から入射されるマイクロ波同士の干渉および反射波の増大を防ぐために、それらのマイクロ波投入口の対面位置をずらしたり、長方形状をしたマイクロ波投入口の場合、片側が横置きであれば、対面側を縦置きにし、かつ対面位置をずらしたりして設置することが行われてきた。

[0005]

【発明が解決しようとする課題】従来技術によるところのアイソレーターや整合器は大変高価であり、マイクロ波発振器を工業的に多数使用しようとする場合の導入コ 20 スト高の最大の要因となっており、それがマイクロ波という高付加価値エネルギーの利用を狭めている結果となっていた。

【0006】また、マイクロ波をオーブン内で攪拌して均一加熱を図るための装置としてスターラーが一般的に使用されてきたが、スターラーは回転翼のため回転軸およびモーターを必要とするのでその設置スペースを多要し、マイクロ波導入口を多数設置することができず、マイクロ波導入口の多数設置によっては回転しながまた。またスターラーでは回転しなが見し、反射波を安定的に低減させることも困難であった。人別波を安定的に低減させることも困難であら出し、反射波を安定的に低減させることも困難であら出し、反射波を安定的に低減させることも困難であら出し、反射波を安定的に低減させることも困難でありにで設置する場合、それらの投入口の対面位置をずらして設置することは、微細な部分での均一加熱およびとに微妙に悪影響を与え、加熱整合に問題があり、ひいては反射波も十分には低減できなかった。殊に被加熱物を固定して加熱する場合はそれが顕著に現れていた。

[0008]

【課題を解決するための手段】まず、オーブンに接続する導波管の形状を、オーブンに向かって入射するマイクロ波の進行を妨げない形、すなわちオーブン側の開口部の断面積をマイクロ波発振器側の断面積よりも大きな形状とする。すなわち、マイクロ波発振器側よりオーブン側にむかってその断面積が徐々に広がるホーン状等とし、この導波管内部の所定の位置に所定の大きさの円錐形状、角錐形状または釣り鐘形状及びそれらの類似形状の反射拡散器具をその底側をオーブン側に向けた形で設けても、マイクロ波発振器側からオーブン側へのマイクロ波入射波の進行を妨げない構造とする。そしてこの反

射拡散器具の底側でオーブンから該導波管に向から反射 波の大半を反射させオーブンに再度戻すことでマイクロ 波発振器方向へのマイクロ波反射波を格段に減少させ る。

【0009】さらに、オープンにおけるマイクロ波投入口と該導波管との間に、該導波管のオーブン側の開口部と同じ大きさおよび形状の開口部を両口に有する所定の長さの金属製のストレート管を設置して、該ストレート管を通してマイクロ波をオーブンに投入することで加熱整合を向上させることができ、ひいてはマイクロ波の反射波を低減することにも寄与する。

【0010】次に、オーブンのマイクロ波投入口の正面 位置に投入口から所定の距離を置いたオーブン内の位置 にスターラーに代わる金属製で固定の反射拡散器具を設けることでオーブンに入射するマイクロ波の反射拡散を 行い均一加熱をはかる。適切な位置に適切なサイズの該 反射拡散器具を用いることで加熱整合を促進する結果を生み、ひいては反射波の軽減に供する。該反射拡散器具により、そのコンパクト性からマイクロ波投入口をオーブンに多数設けることが可能となり加熱整合を向上させることができる。スターラーによるような回転による反射攪拌を行わないことにより反射波のエネルギー量の変動を防止し、反射波の低減をはかることが出来る。

【0011】また、複数のマイクロ波投入口をオープンに設け、それぞれ向かい合うマイクロ波投入口を対面させることで微細な整合を実現し精度の高い均一加熱を実現する。マイクロ波投入口を対面させた場合、一般的にはマイクロ波が対面するマイクロ波投入口に進入するので反射波が増え加熱整合を損なうのであるが、これを請求項1と請求項7の記載における導波管、および請求項3と請求項10の反射拡散器具との併設によって解決し、さらに反射波を格段に減少させ加熱整合を格段に向上させることに成功した。

【0012】すなわち、本発明に係る被加熱物の加熱方法は、マイクロ波による被加熱物を加熱する加熱方法であって、マイクロ波発振器から発振するマイクロ波をオーブンに投入するための伝搬通路の形状を、オーブンに向かって入射するマイクロ波の進行を妨げない形状とし、かつオーブン側の伝搬通路開口部の断面積をマイクロ波発振器側の伝搬通路開口部の断面積よりも大きな形状とし、該伝搬通路内部の所定の位置に設けたマイクロ波の反射器具によってオーブンから前記マイクロ波発振器側に向かうマイクロ波の反射波の大部分を該反射器具で反射させてオーブン側に再度戻し得るようにしてものである。

形状、角錐形状または釣り鐘形状及びそれらの類似形状 【0013】また 請求項1記載の被加熱物の加熱方法 の反射拡散器具をその底側をオープン側に向けた形で設 は、上記オープン側の伝搬通路開口部の断面積をマイク けても、マイクロ波発振器側からオープン側へのマイク ロ波発振器側の伝搬通路開口部の断面積よりも大きな形 ロ波入射波の進行を妨げない構造とする。そしてこの反 50 状とし、さらにその大きな形状としたオープン側の伝搬

通路開口部と同じ大きさで同じ形状の開口部を有する所定の長さの金属製のストレート管を通してマイクロ波をオープンに投入することでマイクロ波の入射波の整合を向上せしめ、マイクロ波の反射波を低減し加熱整合を促進するようにしたものである。

【0014】そして、本発明に係るマイクロ波による被加熱物を加熱する加熱方法は、オーブンのマイクロ波投入口より所定の距離を置き、かつ該マイクロ波投入口の正面の所定のオープン内位置に設置した金属製の反射拡散器具にて、オープンに入射するマイクロ波を所定の率でオープン内に反射拡散し、かつ反射拡散されるマイクロ波の大部分をオープン内の反射拡散器具の位置よりも内側に導入し、マイクロ波の反射波を低減し加熱整合を促進するようにしたものである。

【0015】また、マイクロ波による被加熱物を加熱する加熱方法は、オーブンに複数のマイクロ波投入口を設け、向かい合うマイクロ波投入口をそれぞれ対面の位置に設置しマイクロ波を投入することでマイクロ波による均一加熱を促進してマイクロ波の反射波を低減し加熱整合を促進するようにしたものである。

【0016】さらに、マイクロ波による被加熱物を加熱 する加熱方法は、マイクロ波発振器から発振するマイク 口波をオープンに投入するための伝搬通路の形状を、オ ープンに向かって入射するマイクロ波の進行を妨げない 形状とし、かつオーブン側の伝搬通路開口部の断面積を マイクロ波発振器側の伝搬通路開口部の断面積よりも大 きな形状とし、該伝搬通路内部の所定の位置に設けたマ イクロ波の反射器具によってオープンから前記マイクロ 波発振器側に向かうマイクロ波の反射波の大部分を該反 射器具で反射させてオーブン側に再度戻し、さらにその 30 大きな形状としたオーブン側の伝搬通路開口部と同じ大 きさで同じ形状の開口部を有する所定の長さの金属製の ストレート管を通してマイクロ波をオープンに投入する とともに、オーブンのマイクロ波投入口よりオーブン内 側に所定の距離を置き、かつ該マイクロ波投入口の正面 の所定の位置に設置した金属製の反射拡散器具にて、オ ーブンに入射するマイクロ波を所定の率で反射拡散し、 かつ反射拡散されるマイクロ波の大部分をオープン内の 反射拡散器具の位置よりも内側に導入してマイクロ波の 反射波を低減し加熱整合を促進するようにしたものであ 40 る。

【0017】本発明に係る被加熱物の加熱方法は、マイクロ波による被加熱物を加熱する加熱方法であって、マイクロ波発振器から発振するマイクロ波をオープンに投入するための伝搬通路の形状を、オープンに向かって入射するマイクロ波の進行を妨げない形状とし、かつオープン側の伝搬通路開口部の断面積をマイクロ波発振器側の伝搬通路内部の所定の位置に設けたマイクロ波の反射器具によってオープンから前記マイクロ波発振器側に向かう

マイクロ波の反射波の大部分を該反射器具で反射させて オーブン側に再度戻し得るようにし、さらにその大きな 形状としたオーブン側の伝搬通路開口部と同じ大きさで 同じ形状の開口部を有する所定の長さの金属製のストレ ート管を通してマイクロ波をオーブンに投入するととも に、オーブン内のマイクロ波投入口より所定の距離を置 き、かつ該マイクロ波投入口の正面の所定の位置に設置 した金属製の反射拡散器具にて、オーブンに入射するマ イクロ波を所定の率で反射拡散し、かつ反射拡散される マイクロ波の大部分をオーブンにおける該反射拡散器具 の位置よりも内側に導入し、さらにオーブンに複数のマ イクロ波投入口を設け、向かい合うマイクロ波投入口を それぞれ対面の位置に設置しマイクロ波を投入すること でマイクロ波による均一加熱を促進してマイクロ波の反 射波を低減し加熱整合を促進するようにしたものであ る。

【0018】本発明に係る被加熱物の加熱装置は、マイクロ波によるオープン内の被加熱物を加熱する加熱装置であって、オープンに接続する導波管の形状を、オープンに向かって入射するマイクロ波の進行を妨げない形状とし、かつオープン側の導波管開口部の断面積をマイクロ波発振器側の導波管開口部の断面積よりも大きな形状とし、該導波管の内部の所定の位置に、オープンに向かって入射するマイクロ波の進行を妨げない所定の大きさの側面円錐形、角錐形又は釣り鐘形及びそれらに類似する形状の金属製の反射拡散器具をその底側をオープン側に向けた状態で取り付けたものである。

【0019】請求項7において、オーブン側の導波管開口部の断面積をマイクロ波発振器側の導波管開口部の断面積よりも大きな形状とし、その大きな形状としたオーブン側の導波管開口部の先端に、断面積が同じ大きさで同じ形状の所定の長さの金属製ストレート管を設置し、そのストレート管をオープンのマイクロ波投入口に接続したものである。

【0020】請求項8記載の金属製ストレート管をオーブンのマイクロ波投入口側に一体に形成するようにしたものである。

【0021】マイクロ波によるオープン内の被加熱物を加熱する加熱装置であって、オープン内に設置する金属製で固定の反射拡散器具はオープン内のマイクロ波投入口の正面の位置にあり、マイクロ波投入口より所定の距離を置いてオープン内に設置し、入射するマイクロ波を所定の率でオープン内で反射拡散し、かつ反射拡散されるマイクロ波の大部分をオープン内の該反射拡散器具の位置よりも内側に導入できる構造としたものである。

【0022】金属製で固定の反射拡散器具はオープン内のマイクロ波投入口の正面の位置にあり、マイクロ波投入口より所定の距離を置いてオープン内に設置し、該反射拡散器具の構造は、複数枚数の断面V字型またはU字型の所定の長さおよび所定の幅の羽根を中心近辺から放

(6)

射状に形成し、それらの羽根のV字またはU字の頂点線 側をオーブンのマイクロ波投入口に向けた構造としたも のである。

【0023】金属製で固定の反射拡散器具はオーブン内 のマイクロ波投入口の正面の位置にあり、マイクロ波投 入口より所定の距離を置いてオーブン内に設置し、該反 射拡散器具は所定の大きさの側面円錐型、釣り鐘型ある いは角錐型及びそれらの類似形状で形成し、その頂点側 をマイクロ波投入口側に向けた構造としたものである。

【0024】マイクロ波によるオーブン内の被加熱物を 加熱する加熱装置であって、オーブンに複数のマイクロ 波投入口を設け、向かい合うマイクロ波投入口をそれぞ れ対面の位置に設置したものである。

【0025】マイクロ波によるオーブン内の被加熱物を 加熱する加熱装置であって、オーブンに接続する導波管 の形状を、オーブンに向かって入射するマイクロ波の進 行を妨げない形状とし、かつオーブン側の導波管開口部 の断面積をマイクロ波発振器側の導波管開口部の断面積 よりも大きな形状とし、該導波管の内部の所定の位置 に、オーブンに向かって入射するマイクロ波の進行を妨 げない所定の大きさの側面円錐形、角錐形又は釣り鐘形 及びそれらに類似する形状の金属製の反射拡散器具をそ の底側をオープン側に向けた状態で取り付け、さらにオ ーブン側の導波管開口部の断面積をマイクロ波発振器側 の導波管開口部の断面積よりも大きな形状とし、その大 きな形状としたオーブン側の導波管開口部の先端に、断 面積が同じ大きさで同じ形状の所定の長さの金属製スト レート管を設置し、そのストレート管をオーブンのマイ クロ波投入口に接続するか、あるいはそのストレート管 をオーブンのマイクロ波投入口側に一体に形成して接続 30 するとともに、オープン内に設置する金属製で固定の反 射拡散器具はオープン内のマイクロ波投入口の正面の位 置にあり、マイクロ波投入口より所定の距離を置いてオ ーブン内に設置し、入射するマイクロ波を所定の率でオ ープン内で反射拡散しかつ反射拡散されるマイクロ波の 大部分をオーブン内の該反射拡散器具の位置よりも内側 に導入できる構造としたものである。

【0026】マイクロ波によるオーブン内の被加熱物を 加熱する加熱装置であって、オーブンに接続する導波管 の形状を、オーブンに向かって入射するマイクロ波の進 行を妨げない形状とし、かつオープン側の導波管開口部 の断面積をマイクロ波発振器側の導波管開口部の断面積 よりも大きな形状とし、該導波管の内部の所定の位置 に、オーブンに向かって入射するマイクロ波の進行を妨 げない所定の大きさの側面円錐形、角錐形又は釣り鐘形 及びそれらに類似する形状の金属製の反射拡散器具をそ の底側をオーブン側に向けた状態で取り付け、さらにオ ーブン側の導波管開口部の断面積をマイクロ波発振器側 の導波管開口部の断面積よりも大きな形状とし、その大 きな形状としたオーブン側の導波管開口部の先端に、断 50

面積が同じ大きさで同じ形状の所定の長さの金属製スト レート管を設置し、そのストレート管をオーブンのマイ クロ波投入口に接続するか、あるいはそのストレート管 をオープンのマイクロ波投入口側に一体に形成して接続 するとともに、オーブン内に設置する金属製で固定のマ イクロ波反射拡散器具はオーブン内のマイクロ波投入口 の正面の位置にあり、マイクロ波投入口より所定の距離 を置いてオーブン内に設置し、入射するマイクロ波を所 定の率でオープン内で反射拡散しかつ反射拡散されるマ イクロ波の大部分をオーブン内の該反射拡散器具の位置 よりも内側に導入できる構造とし、さらにオーブンに複 数のマイクロ波投入口を設け、向かい合うマイクロ波投 入口をそれぞれ対面の位置に設置したものである。

[0027]

【作用】マイクロ波のロスエネルギーである反射波のほ とんどは、導波管内部で発生しているか、オープンに一 旦導入されたマイクロ波がマイクロ波投入口から導波管 を逆流してくることで発生している。この原因として は、オープンと接続する導波管の構造そのものが反射波 を起こさせているか、オーブンからマイクロ波が進入し やすい構造となっているか、加熱システムの全体的な整 合がよくないかの理由による。それであるならば、マイ クロ波がオーブンに投入される時にはほぼ全量を投入で きるように、少なくともオーブンに接続する導波管の構 造として入射するマイクロ波の進行を妨げない構造にす ることが必要であり、またオーブン側からのマイクロ波 の反射波が導波管に進入しないようにするための逆止弁 的な機能を有する機構を設ける必要があり、同時に最も 重要な要素ある加熱整合を格段に向上させる必要があ

【0028】実験によれば、請求項1と請求項7におけ るごとくにオープンに接続する導波管において、マイク 口波発振器から発振したマイクロ波の大半をオープンに 導入するためには、導波管内部で反射波を発生させない ことが重要であり、オーブンのマイクロ波投入口までの 導波管の断面積について調査を行ったところ、導波管の すべての位置での比較で、マイクロ波発振器側に位置す る導波管の断面積よりもオーブン側に位置する導波管の 断面積が小さくなってはならないこと、またオーブン側 に位置する導波管の断面積がマイクロ波発振器側に位置 する導波管の断面積よりも大きいか同等であっても、形 状が反射波を生む形状であってはならないことを確認し た。したがって、導波管はマイクロ波発振器からの導波 管をそのままオーブンに接続するか、オーブンに近付く につれてその断面積を広げた導波管を接続すればよいの であるが、しかしながらこれではオーブンから導波管へ のマイクロ波の反射波の進入は防ぐことができない。

【0029】そこで、オーブンに接続する導波管の形状 を、オーブン側の開口部の断面積をマイクロ波発振器側 の開口部の断面積よりも大きくしたホーン状等の形状と

して、その内部にマイクロ波の反射波を進入させないための逆止弁的な働きをする金属製の円錐形、角錐形または釣り鐘形及びそれらの類似形状の反射器具をその底側をオーブン側に向けた形で設置した。

【0030】オーブンへ入射していくマイクロ波の進行を妨げないためには、導波管の形状や大きさと導波管内部に設置する反射器具との関係を慎重に考慮する必要があり、それらの適切な組み合わせにてこれを実施しないかぎりは反射波を減少させることはできない。例えば該反射器具の大きさや形状や設置位置が不適切であったり、該反射器具との関係で導波管の大きさや形状が不適切であった場合は、マイクロ波に収束が起こり、該反射器具のあるエリアで反射波化してしまうからである。

【0031】一方、該反射器具の大きさと形状と設置位置を適切に選択することで、オーブンから逆流するマイクロ液に対して、該反射器具が逆止弁的な作用を行うことをパワーモニターによって確認した。なお、該反射器具の底側は、平面になっていても空洞になっていても、オーブンからのマイクロ波の反射波を十分反射でき、再度アプリケーター側に戻す形状であればよいので、その形状には拘束されない。

【0032】実験を重ねた結果、オーブンに接続する導波管とその導波管内部に設置する反射器具との良好なバランスを得ることが、格段に反射波を減少させることができた。また加熱整合も、加熱効率を比較する実験から格段に向上していることが判明した。

【0033】さらに、請求項2におけるストレート管をオーブンと請求項1および請求項7の導波管との間に設置して加熱効率を測定したところ、さらに加熱整合が向上していた。これはこのストレート管が整合器の役割を果たしており、該導波管内部に設置した反射器具を経過したオーブンに入射するマイクロ波および該反射器具によって再度反射されたオーブンからの反射波の整合を改善しているからである。このストレート管は請求項1および請求項7の導波管の一部として形成するか、あるいはオーブンの一部として一体に形成してもよい。いずれたしても、マイクロ波発振器からオーブンにむけてマイクロ波が伝搬していく伝搬通路に設けることが肝要である。

【0034】次に、マイクロ波の攪拌装置として従来はスターラーが一般的に使用されてきたわけあるが、必ずしも回転攪拌によって加熱整合を十分に向上させてはいない。なぜならば、実験によって、スターラーによって回転攪拌を行っても一定の箇所に焦げを発生させるのであり、アットランダムな攪拌は行われておらず、むしろマイクロ波に一定の流れをつくっているにすぎないことが判明しているからである。また、スターラーにては入射波、反射波ともにエネルギー量に変動が発生することが観測されており、微細な加熱整合に影響がでている。また、スターラーは回転装置であるためにオーブン内部

でスペースを多く必要とし、マイクロ波投入口を多く設置して加熱整合をとることに対しては障害となるケース が多かった。

【0035】そこで、スターラーに代わる反射拡散器具 を発明した。これは請求項3および請求項10にて述べ た、金属製で固定の反射拡散器具である。この反射拡散 器具はオーブンに入射するマイクロ波を所定の率でオー ブン内で反射拡散できるように形成し、かつ反射拡散さ れるマイクロ波の大部分をオーブン内の反射拡散器具の 10 位置よりもオーブン内側へ導入できるように形成したも ので、オーブン内のマイクロ波投入口の正面位置にマイ クロ波投入口より所定の距離をおいて設置するものであ る。実験を重ね、マイクロ波投入口からの距離、入射す るマイクロ波を拡散する率、該反射拡散器具の形を追求 したところ、請求項11におけるごとくの風車型のマイ クロ波反射拡散器具や請求項12におけるごとくの円錐 型、釣り鐘型あるいは角錐型及びそれらに類似する形状 といった反射拡散器具の開発に至った。

【0036】固定の該反射拡散器具をマイクロ波投入口からの所定の適切な距離をおいてオーブン内に設置し、入射するマイクロ波に対して所定の反射拡散率を有する該反射拡散器具を設置して調査したところ、反射波が格段に減少しており、またマイクロ波加熱による被加熱物の焦げも発生しなくなった。これは、加熱整合がスターラーによって行う攪拌よりも格段に向上していることを示すものである。なお、固定の反射拡散器具の場合はマイクロ波の入射波、反射波ともにエネルギー量に変動が認められないことも加熱整合の向上に寄与している。また、該反射拡散器具は小型であり、マイクロ波投入口を多数設置して加熱整合をとる方法の障害にはならない。

【0037】次に、オーブンにマイクロ波投入口を複数 設けた場合に、それぞれを対面の位置に設置した場合であっても、請求項1および請求項7のオーブンに接続する導波管の内部に設置した反射器具のために、マイクロ波投入口同士が干渉しあってマイクロ波の反射波を増大させることはない。そして、比較として、マイクロ波投入口を対面で設置すれば、マイクロ波投入口を対面で設置した場合よりも加熱整合が高いことを確認している。

【0038】請求項5、請求項6、請求項14あるいは 請求項15のごとくに本発明の事項を組み合わせてシス テムを構築してマイクロ波の反射波と加熱整合を調査し たところ下記の結果を得た。従来のシステムでスターラ 一を用いて加熱実験を行ったところ、マイクロ波の反射 波は入射波に対して約25%の多きを記録していた。これに対し、請求項5と請求項14のシステムでは、約8%を記録し、請求項6と請求項15のシステムでは、約3%というレベルを実現することができた。一定の温度 へ到達するために加熱時間も短縮されており、これは加 熱整合の向上を示す。また、乾燥のための加熱において は、従来のシステムでは発生していた不均一加熱による 被加熱物の焦げを無くすことができ、解凍のための加熱 においては、従来の解凍では発生していた不均一加熱に よるドリップの流出を皆無にすることができた。

[0039]

【発明の実施の形態】実施例1

幅500mm、高さ500mm、奥行き600mmのオ ープンを2台準備して各種の比較を行った。ともに整合 器を使用せず、角形導波管をそのままオーブンと接続使 用した場合の反射波と、オーブンと接続する導波管をホ ーン状の形状としその内部のオーブン側開口部から8m mの位置に、該導波管のオーブン側の形状に合わせて円 錐形(円の直径75mm、高さ80mm)のアルミ製反 射器具を、円錐形の底面をオーブン側に向けて取り付け た場合の反射波との比較をマイクロ波パワーモニターを 用いて測定した。この際使用した角形導波管の開口部サ イズは55mm×110mm、ホーン状の導波管のオー ブン側の開口部は直径130mmの円形を採用した。こ の際、該ホーン状の導波管にはマイクロ波発振器側から 上記の角形導波管が接続されている。テストには1.5 k w出力のマイクロ波発振器を使用した乾燥装置を使用 し、被乾燥物には含水率75%に調整したタオル2kg を用いた。この場合には双方ともオーブン内部にスター ラーが取り付けられている。まず、角形導波管をそのま まオーブンに接続した場合には、1.5kwマイクロ波 出力に対して 0. 40から 0. 45 kwの反射波を計測 した。次に、オーブンに接続する導波管を上記のごとく ホーン状とし、その内部に円錐形の反射器具を取り付け た場合には1.5kwのマイクロ波出力に対して0.1 5から0. 25kwの反射波であった。

【0040】実施例2

次に、実施例1と同じ条件で、オーブンと実施例1におけるホーン状の導波管との間に請求項2のストレート管を接続して反射波を調査した。その結果、マイクロ波の反射波は0.12kwから0.15kwに減少していることを確認した。なお、マイクロ波投入口の形状が正8角形のオーブンにての実験を行い、ホーン状の導波管のオーブン側の開口部をマイクロ波投入口と同じ正8角形に形成し、その内部に正8角錐の反射器具を実施例1と同じ位置に設置してマイクロ波の反射波を計測したところ、上記とほぼ同等の結果を得た。

【0041】実施例3

実施例2と同じ条件で、スターラーに代えて、請求項11における風車状の反射拡散器具をオープン内に設置した。羽根の枚数は8枚とし、羽根の長さは240mm、羽根の形をV字状としVの三角形底辺の幅を20mm、角度を90°、Vの頂点線側をマイクロ波投入口に向けて、マイクロ波投入口からその頂点線までの距離を80mmとして加熱を行いマイクロ波の反射波を測定した。その結果、マイクロ波の反射波は0.05kwを記録し

た。これは入射波1. 5 k wに対して、約3%の反射率である。この反射率はマイクロ波のロス率と言い換えることができるので、大変効率的な加熱整合を実現していると言えるものである。なお、実施例1のホーン状の導波管をオーブンに接続した実験において、マイクロ波発振器近傍に整合器を装着しても反射率は4%を切ることができなかった。なお、同条件にて、請求項13における釣り鐘状の反射拡散器具をその頂点をマイクロ波投入口に向けた状態で設置してマイクロ波の反射波を測定した。この釣り鐘状の反射器具の底面の直径は80mm、高さは60mmを採用した。結果、反射波は0.07kwであった。

14

【0042】 実施例4

実施例3と同じ条件で、マイクロ波投入口を2口とし、これらを対面させて反射波の測定を行ったところ、マイクロ波の反射波はさらに0.02kwのレベルまで減少した。これは1.5kwのマイクロ波を分岐導波管で2口に分けて投入した結果、さらに加熱整合が向上したことによる。また、タオルの乾燥時間もマイクロ波投入口を2口に分けて乾燥を行った方が短かった。乾燥状態をサーモラベルを各所に埋め込み、調査したところ、加熱の到達温度誤差は最大で3℃を記録したにすぎなかった。したがって、精度の高い均一加熱が行われており、整合器を装備する必要が無く、かつ反射波の少なさから、アイソレーターを装備する必要も無いことを確認した。

[0043]

【発明の効果】マイクロ波を使用した装置は、電子レンジ以外の工業用途には普及が遅れているのが現状であった。このことの大きな理由のひとつにアイソレーターや整合器といった付帯設備が大変高価であることがあげられる。当該技術によりマグネトロンに損傷を与えずにかつ高い加熱効率を得ながら、アイソレーターおよび整合器を省略することができる。このことより装置の製造コストを大幅に下げることができるのと同時に、加熱整合性の高さから、低コストで品質の高い様々な商品の開発に寄与する。

【0044】マイクロ波はON時点での瞬時の動作開始およびOFF時点での瞬時の動作停止ができ、かつ物質の内部を効率的に加熱できる大変有用なエネルギーであり、その普及には大変大きな効果が期待されるところである。これを当技術によって、乾燥分野、濃縮分野、殺菌分野、焙煎分野、解凍分野等の広い産業にわたって利用していくことを可能とするものである。

【図面の簡単な説明】

40

【図1(1)】(a)は本発明の一実施例を示す概略説明図で、導波管内に反射器具を設けた場合を示し、

(b) は導波管にストレート管を設けた場合を示す。

【図1(2)】(c)は導波管にストレート管を設けた50場合の概略説明図で、(d)はオーブンとストレート管

を一体に形成した場合の概略説明図ある。

【図2】(a)は導波管の形状例および該導波管内部に設置する反射器具の設置例を示す正面図、(b)は

15

(a)の側面断面図で、(c)は導波管の形状例および 該導波管内部に設置する反射器具の設置例を示す正面 図、(d)は(c)の側面断面図である。

【図3】(a)は導波管内部に設置する反射器具の形状例を示す正面概略図、(b)は(a)の側面概略図で、(c)は導波管内部に設置する反射器具の形状例を示す正面概略図、(d)は(c)の側面概略図である。

【図4】オーブン内に設置する金属製で固定のマイクロ波の反射拡散器具の設置例を示す概略説明図である。

【図5(1)】(a)は羽根型反射拡散器具の形状例を示す概略正面図で、(b)は(a)の概略側面図で、

(c)は羽根型反射拡散器具の部分的斜視図である。

【図5(2)】(a)は円錐型反射拡散器具の形状例を示す概略説明図、(b)は釣り鐘型反射拡散器具の形状例を示す概略説明図、(c)は角錐型反射拡散器具の形状例を示す概略説明図である。

【図6】(a)はオーブンのマイクロ波投入口の対面設*20

* 置の説明例を示す正面図、(b)は(a)の側面図、(a)は(a)の現面図である。

(c)は(a)の平面図である。

【図7】組合せ構造例を示す概略説明図である。 【符号の説明】

1 オーブン

1a 投入口にフランジを有するオーブン

1 b 投入口にストレート管を有するオーブン

2 オープン内に設置した固定のマイクロ波の反射拡散 器具

10 3 マイクロ波投入口

4 マイクロ波投入口(あるいは請求項9のストレート

管) に接続する導波管

5 4の導波管内部の所定の位置に設置したマイクロ波の反射器具

6 導波管

7 マイクロ波発振器

8 接続フランジ

9 マイクロ波投入口および4の導波管に接続するストレート管

【図1(1)】

【図1 (2)】

[図7]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.