PHY 304 (Statistical Mechanics)



## Mid-Semester Exam

Instructor: Ambresh Shivaji (email: ashivaji) Name:

TA: Subhadip Ghosh (email: subhadipg) Reg. No.:

Max. Marks: 20

1. Consider a system of two particles each of which can be in one of the three states with energies 0,  $\epsilon$  and  $2\epsilon$ . Write down the partition function of the system, if the particles follow:

- (a) Classical statistics (MB)
- (b) Quantum statistics of identical bosons (BE)
- (c) Quantum statistics of identical fermions (FD).

What is the statistical probability that system is in a state with energy  $4\epsilon$  among all possible allowed states, in each case? Calculate the average energy of the system in three cases. Compare them in  $T \to \infty$  limit and justify the outcome.

- 2. Consider an ultrarelativistic ideal gas (p >> mc) of N identical monoatomic molecules.
  - (a) Calculate the partition function of the gas.
  - (b) Show that the entropy of the gas is given by

$$S = Nk_B \left[ 4 - \ln(N\Lambda^3/V) \right],$$

where  $\Lambda = \hbar c \pi^{2/3}/(k_B T)$ .

(c) Show that the adiabatic expansion of such a gas is governed by

$$PV^{4/3} = \text{constt.}$$

3. The equation of state for a real gas is given by,

$$\left(P + \frac{\alpha}{V^2}\right)(V - \beta) = Nk_B T,$$

where,  $\alpha$  and  $\beta$  are phenomenological parameters. Show that, at a given temperature, the specific heat at constant volume  $(C_V)$  for a real gas with fixed N does not depend on the volume.

## Useful expressions:

$$\int_0^\infty x^n e^{-x} \ dx = n!$$