Espaces de Sobolev

6 décembre 2014

Table des matières

Ι	Rappels divers	2	2
1	Les espaces L^p 1.1 Rappels d'analyse fonctionnelle1.2 Les espaces L^p 1.3 2 rappels de mesure1.4 Supportabilité1.5 Caractérisation du dual	;	2 3 5
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	6 7 8
II 1	Espaces de Sobolev Restriction à un ouvert	11 12	
2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	19 19 20	5 9 9

Introduction

On s'intéresse aux problèmes de la forme :

$$\begin{cases} Lu = -\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial u}{\partial x_i} + cu = f \text{ sur } \Omega \subset \mathbb{R}^N \text{ born\'e ouvert} \\ u = g \text{ sur } \partial \Omega \end{cases}$$
 (P)

🛂 Définition: Hölderienne

fhölderienne d'exposant α si :

$$\exists c > 0; \forall x, y, |f(x) - f(y)| \le c|x - y|^{\alpha}, 0 < \alpha < 1$$

⇔ Théorème: Unicité et existence

Soit $\partial\Omega$ de classe \mathcal{C}^1 , L uniformément elliptique :

$$\exists \alpha > 0; \forall x \in \overline{\Omega}, \forall \xi \in \mathbb{R}^N, \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \ge \alpha |\xi|^2$$

On suppose $a_{ij}, b_i, c \in \mathcal{C}^{0,\alpha}(\Omega)$ (continue et hölderienne), $\alpha \in]0,1[,c \geq 0.$ $f \in \mathcal{C}^{0,\alpha}(\overline{\Omega}), g \in \mathcal{C}^0(\partial\Omega).$

Alors $\exists ! u$ solution de $(\underline{\mathbf{P}})$ tel que $u \in \mathcal{C}^{2,\alpha}(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$.

⇔ Théorème: estimation de Schender

Si de plus, $\partial\Omega$ de classe $\mathcal{C}^{2,\alpha}$, $g\in\mathcal{C}^{2,\alpha}(\partial\Omega)$, alors $u\in\mathcal{C}^{2,\alpha}(\overline{\Omega})$ et on a :

$$||u||_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le c \left(||f||_{\mathcal{C}^{0,\alpha}(\overline{\Omega})} + ||g||_{\mathcal{C}^{2,\alpha}(\partial\Omega)} \right)$$

Première partie

Rappels divers

- 1 Les espaces L^p
- 1.1 Rappels d'analyse fonctionnelle

♣ Définition: Dual

Soit X un evn. On appelle dual de X l'espace

$$X' = \mathcal{L}(X, \mathbb{R})$$

Si $\phi \in X'$ et $x \in X$, on note souvent :

$$\phi(x) = \langle \phi, x \rangle_{X'X}$$

appelé crochet de dualité.

♦ Définition: Bidual

Soit X un evn. On appelle bidual de X l'espace

$$X'' = (X')'$$

qui est un Banach.

Remarque : On peut identifier X avec un sous-espace de X'' à travers une isométrie, de la manière suiva,te : $\forall x \in X$, on définit :

$$f_x: x' \in X' \mapsto \langle x', x \rangle_{X'X} \in \mathbb{R}$$

 f_x est dans X'' car linéaire, et $|\langle x', x \rangle| \le ||x||_X ||x'||_{X'}$ donc f_x est borné.

On peut montrer que:

$$\mathcal{F}: x \in X \mapsto f_x \in X''$$

est une isométrie, ie $||x||_X = ||f_x||_{X''}$, $\forall x \in X$. Donc on identifie x avec f_x et on écrit $X \subset X''$. Question : a-t-on X = X''? autrement dit, \mathcal{F} est-elle surjective? En général, non.

♣ Définition: Reflexif

Si \mathcal{F} est surjective, on dit que C est reflexif.

⇒ Théorème: représentation de Riesz-Fréchet

Soit H de Hilbert.

$$\forall F \in H', \exists ! \tau(F) \in H; \forall x \in H, \langle F, x \rangle_{H'H} = (\tau(F), x)_H$$

De plus, l'application

$$\Phi: H' \to H$$

$$F \mapsto \tau(F)$$

est une isométrie.

1.2 Les espaces L^p

Dans la suite, O est un ouvert de $\mathbb{R}^N,\ N\geq 2$ Ω est un ouvert borné de \mathbb{R}^N dx la mesure de Lebesgue

♦ Définition:

Soit $1 \le p < +\infty$.

$$L^p(O) = \{f: O \to \mathbb{R} \text{ mesurable }; \int |f|^p dx < \infty\}$$

$$L^\infty(O) = \{f: O \to \mathbb{R} \text{ mesurable }; |f| < \infty \text{ p.p. dans } O\}$$

$$\forall 1 \le p \le +\infty, L^p_{loc}(O) = \{f \in L^p(\omega), \forall \omega \text{ ouvert born\'e}, \bar{\omega} \subset O\}$$

$\overline{ {f 1} Propriét} \acute{e}:$

 $L^p(O)$ est de Banach muni de la norme :

$$||f||_{L^p(O)} = \begin{vmatrix} \left(\int_O |f|^p dx \right)^{\frac{1}{p}} & \text{si} & p < \infty \\ \inf\{C; |f| \le C \text{ pp}\} & \text{si} & p = \infty \end{vmatrix}$$

1 Remarque:

Si $p=2,\,L^2(O)$ est un Hilbert par rapport au produit scalaire

$$(f,g)_{L^2(O)} = \int_O f(x)g(x)dx$$

il Propriété: inégalité de Holder

Soit $1 \le p \le +\infty$. On pose

$$p' = \begin{vmatrix} \frac{p}{p-1} & \text{si} & 1$$

appelé le conjugué.

$$\forall f \in L^p(O), \forall g \in L^{p'}(O), \int_O |f(x)g(x)| dx \le ||f||_{L^p(O)} ||g||_{L^{p'}(O)}$$

⇔ Corollaire:

 $1\leq p\leq +\infty,\, p'$ son conjugué. Si $f_n\to f$ dans $L^p(O)$ et $g\in L^{p'}(O)$ alors :

$$\lim_{n\to +\infty} \int_O f_n g dx = \int_O f g dx$$

⇔ Corollaire:

 $1 \leq p < q \leq +\infty, \ \Omega \text{ ouvert born\'e de } \mathbb{R}^N. \text{ Alors } L^q(\Omega) \subset L^p(\Omega) \text{ et } \|f\|_{L^p(\Omega)} \leq c\|f\|_{L^q(\Omega)} \text{ où } c = c(|\Omega|, p, q).$

⇔ Lemme: inégalité de Young

Soient $a, b \ge 0$ et 1 . Alors

$$ab \le \frac{1}{p}a^p + \frac{1}{p'}b^{p'}$$

avec p' le conjugué de p.

⇒ Théorème: inégalité d'interpolation

Soit $1 \le p \le r < +\infty$. Si $f \in L^p(O) \cap L^r(O)$ alors $f \in L^q(O), \forall p \le q \le r$.

$$||f||_{L^{q}(O)} \le ||f||_{L^{p}(O)}^{\alpha} ||f||_{L^{r}(O)}^{1-\alpha}$$

avec $\alpha \in [0,1]$ tel que $\frac{\alpha}{p} + \frac{1-\alpha}{r} = \frac{1}{q}$

1.3 2 rappels de mesure

⇔ Lemme: de Fatou

Soit $\{f_n\}\subset L^1(O)$ positives bornées dans $L^1(O).$ On pose

$$f(x) = \liminf_{n \to +\infty} f_n(x)$$
 p.p. dans O

Alors $f \in L^1(O)$ et

$$||f||_{L^1(O)} \le \liminf_{n \to +\infty} ||f_n||_{L^1(O)}$$

⇒ Théorème: convergence dominée de Lebesgue

 $\{f_n\}\subset L^1(O)$ telle que :

- 1. $f_n \to f$ presque partout dans O2. $\exists h \in L^1(O)$ telle que $|f_n(x)| \le h(x)$ presque partout dans $O, \forall n \in \mathbb{N}$.

alors $f_n \xrightarrow{L^1(O)} f$.

${ m { ilde 1}} Propri\'et\'e:$

 $1 \leq p \leq +\infty \text{ tel que } f_n \xrightarrow{L^p} f.$ Alors $\exists \{f_{n_k}\}$ une sous-suite telle que $f_{n_k} \to f$ presque partout dans O.

1.4 Supportabilité

♦ Définition: Séparable

Soit B un espace de Banach.

B est dit séparable s'il existse $A \subset B$ avec A au plus dénombrable tel que $\overline{A} = B$.

i Propriété:

 $L^p(O)$ est séparable si $1 \le p < +\infty$.

1.5 Caractérisation du dual

⇔ Théorème: représentation de Green

 $1 \leq p < +\infty, \; p'$ son conjugué. Si $f \in (L^p(O))',$ alors $\exists ! g_f \in L^p(O)$ tel que

$$\forall v \in L^{p'}(O), \langle f, v \rangle_{(L^p(O))'L^p(O)} = \int_O g_f(x)v(x)dx$$

De plus,

$$\Phi: (L^p(O))' \to L^p(O)$$

$$f \mapsto a_f$$

est une isométrie.

Remarque: On peut donc identifier f avec g_f .

De plus, Φ est surjective. On identifie donc $(L^p)'$ avec $L^{p'}$ si $1 \le p \le +\infty$.

$$-1$$

$$-p=1, (L^1)'=L^{\infty}$$

$$--p=+\infty,\,L^1\subset (L^\infty)'$$

Ceci implique en particulier que $L^p(O)$ reflexif si $1 . Mais <math>L^1$ et L^∞ non reflexifs.

2 Densité dans L^p

2.1 Notion de support

♦ Définition:

 $\phi: O \to \mathbb{R}$ continue.

$$supp(\phi) = \{x \in O; \phi(x) \neq 0\}$$

(fermé de O)

♦ Définition:

$$\mathcal{D}(O) = \{v : O \to \mathbb{R}; v \in \mathcal{C}^{\infty}(O) \text{ et } supp(v) \text{ est un compact de } \mathbb{R}^n \text{ contenu dans } O\}$$
$$\mathcal{C}^0_C(O) = \{v : O \to \mathbb{R}; v \in \mathcal{C}^0(O) \text{ et } supp(v) \text{ est un compact de } \mathbb{R}^n \text{ contenu dans } O\}$$

1 Propriété:

$$1 \le p \le +\infty, f \in L^p(O).$$

On pose

$$\mathcal{A} = \{A \text{ ouvert de } O; f = 0 \text{ p.p. dans } A\}$$

Alors si $w = \bigcup_{A \in \mathcal{A}} A$, on a f = 0 p.p. dans A.

♣ Définition:

On pose alors $supp(f) = O \setminus w$.

🔥 Définition:

$$L_c^p(O) = \{ f \in L^p(O); supp(f) \text{ est un compact de } \mathbb{R}^n \text{ inclu dans } O \}$$

2.2 Convolution

♦ Définition:

 $1 \leq p \leq +\infty, \ f \in L^1(\mathbb{R}^N), \ g \in L^p(\mathbb{R}^n)$. On définit le produit de convolution par :

$$\forall x \in \mathbb{R}^n, (f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy \text{ p.p.}$$

IPropriété:

1. $f \in L^1(\mathbb{R}^N)$, $g \in L^p(\mathbb{R}^N)$. f * g est bien définie et $f * g \in L^p(\mathbb{R}^N)$, et :

$$||f * g||_{L^p(\mathbb{R}^n)} \le ||f||_{L^1(\mathbb{R}^N)} ||g||_{L^p(\mathbb{R}^N)}$$

2. $f,g \in L^1(\mathbb{R}^N)$, f*g = g*f3. Si $f \in \mathcal{D}(\mathbb{R}^N)$, $g \in L^p(\mathbb{R}^N)$, alors $f*g \in \mathcal{C}^\infty(\mathbb{R}^N)$ (mais pas nécessairement à support compact).

$$\frac{\partial}{\partial x_i}(f*g) = \frac{\partial f}{\partial x_i}*g$$

Si de plus, $g \in L^p_c(\mathbb{R}^N)$, alors $f * g \in \mathcal{D}(\mathbb{R}^N)$ et $supp(f * g) \subset supp(f) + supp(g)$.

2.2.1Suites régularisantes

 $B(0,1) \subset \mathbb{R}^N$. Soit $\rho \in \mathcal{D}(\mathbb{R}^N)$, $\rho \geq 0$, $\|\rho\|_{L^1(\mathbb{R}^N)} = 1$, $supp(\rho) \subset \overline{B(0,1)}$. $\forall n \in \mathbb{N}$, on pose $\rho_n(x) = n^N \rho(nx)$, $\forall x \in \mathbb{R}^N$. $\{\rho_n\}_n$ s'appelle une suite régularisante.

 $1 \le p < +\infty, \ f \in L^p(\mathbb{R}^N). \ \forall \{\rho_n\}_n \text{ suite régularisante :}$ $\rho_n * f \to f \text{ data}$

$$\underbrace{\rho_n * f}_{\in \mathcal{C}^{\infty}(\mathbb{R}^N)} \to f \text{ dans } L^p(\mathbb{R}^N)$$

⇔ Théorème:

 $\mathcal{D}(\mathbb{R}^N)$ est dense dans $L^p(\mathbb{R}^N), \forall 1 \leq p < +\infty$. (Faux pour L^{∞} !)

⇔ Lemme: de Urysohn

 $O \text{ ouvert de } \mathbb{R}^N, \ K \text{ compact de } \mathbb{R}^N, \ K \subset O.$ Alors $\exists \psi \in \mathcal{D}(O)$ telle que $\psi \equiv 1$ sur K et $0 \leq \psi < 1$.

⇔ Corollaire:

$$\forall O \subset \mathbb{R}^N, \exists \{\psi_n\} \subset \mathcal{D}(O) \text{ tel que}$$

$$\forall n \in \mathbb{N}, 0 \leq \psi_n \leq 1, \psi_n \to 1 \text{ p.p. dans } O$$

⇔ Théorème:

Soit $v \in L^p(\mathbb{R}^N)$. On prolonge v par zéro :

$$\tilde{v} = \left\{ \begin{array}{ll} v & \text{dans} & O \\ 0 & \text{sinon} \end{array} \right.$$

Donc $\tilde{v} \in L^p(\mathbb{R}^N)$

⇔ Théorème:

$$f \in L^1_{loc}(O)$$
 tel que

$$\int_{O} f(x)\phi(x)dx = 0 \ \forall \phi \in \mathcal{D}(O)$$

alors f = 0 presque partout dans O.

Distributions 3

$◆ Définition: Convergence des suites dans <math>\mathcal{D}(O)$

$$\{\phi_n\} \subset \mathcal{D}(O), \ \phi \in \mathcal{D}(O)$$

$$\phi_n \to \phi \text{ dans } \mathcal{D}(O) \text{ si :}$$

1. $\exists K \text{ compact, } K \subset O;$

$$\forall n, supp(\phi_n) \subset K$$

$$supp(\phi) \subset K$$

2. $\forall \alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n, \ \partial^{\alpha} \phi_n \to \partial^{\alpha} \phi$ uniformément dans K

Remarque: $\mathcal{D}(O)$ n'est pas métrisable, cela ne définit pas une topologie mais on peut en définir une telle que la convergence des suites dans cette topologie soit celle-ci.

Une application $T: \mathcal{D}(O) \to \mathbb{R}$ est une distribution si :

- 1. T linéaire
- 2. Si $\phi_n \to \phi$ dans $\mathcal{D}(O)$, alors $T(\phi_n) \to T(\phi)$

L'ensemble des distributions sur O est noté $\mathcal{D}'(O).$ On notera :

$$\langle T, \phi \rangle_{\mathcal{D}'(O)\mathcal{D}(O)} = T(\phi)$$

Remarque : L'application $\Phi: f \in L^1_{loc}(O) \to T_f \in \mathcal{D}'(O)$ est injective et linéaire car si $T_f(\phi) = O \forall \phi \in \mathcal{D}(O)$ alors f = 0

Donc on identifie f et T_f et on écrit :

$$L^1_{loc}(O) \subset \mathcal{D}'(O)$$

🔩 Définition: Distribution régulière

 $T \in \mathcal{D}'(O)$ est une régulière si :

$$\exists f \in L^1_{loc}(O); T = T_f$$

Remarque : On peut montrer qu'il existe des distributions non régulières.

🔸 Définition: Dérivée d'une distribution

Soit $T \in \mathcal{D}'(O)$. On appelle dérivée de T (au sens des distributions) par rapport à la ième variable et on la note $\frac{\partial T}{\partial x_i}$ la distribution définie par :

$$\forall \phi \in \mathcal{D}(O), \langle \frac{\partial T}{\partial x_i}, \phi \rangle_{\mathcal{D}'(O)\mathcal{D}(O)} = -\langle T, \frac{\partial \phi}{\partial x_i} \rangle_{\mathcal{D}'(O)\mathcal{D}(O)}$$

Deuxième partie

Espaces de Sobolev

Définition:
$$1 \leq p \leq +\infty. \text{ On définit, pour } O \text{ ouvert de } \mathbb{R}^N:$$

$$W^{1,p}(O) = \{v \in L^p(O); \frac{\partial v}{\partial x_i} \in L^p(O), \forall i=1,...,N\}$$

où $\frac{\partial v}{\partial x_i}$ est donnée au sens des distributions. On munit cet espace de la norme :

$$||w||_{W^{1,p}(O)} = ||w||_{L^p(O)} + \sum_{i=1}^N \left\| \frac{\partial w}{\partial x_i} \right\|_{L^p(O)}$$

Pour p = 2, on note $W^{1,p}(O) = H^1(O)$.

 $1 \le p < +\infty$. La norme $\| \bullet \|_{W^{1,p}(O)}$ est équivalente à la norme : $\|u\| = \left(\|u\|_{L^p(O)}^p + \|\nabla u\|_{L^p(O)}^p \right)$

$$||u|| = (||u||_{L^p(O)}^p + ||\nabla u||_{L^p(O)}^p)^{\frac{1}{p}}$$

$$\|\nabla u\|_{L^p(O)}^p = \sum_{i=1}^N \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(O)}^p$$

Remarque: Puisque les constantes de l'inégalité sont indépendantes de l'ouvert et ne dépend que de W et p, on utilisera l'une des deux indifférement.

- $1 \le p \le +\infty$, $W^{1,P}(O)$ est un espace de Banach avec la norme associée $H^1(O)$ est un Hilbert par rapport au produit scalaire :

$$(u,v)_{H^1(O)} = (u,v)_{L^2(O)} + \sum_{i=1}^N \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i}\right)_{L^2(O)}$$

I Propriété:

 $W^{1,p}(O)$ séparable si $1 \leq p < +\infty,$ réflexif si 1

I Propriété:

 $\begin{array}{ll} --1 \leq p < +\infty, \, \forall O_1 \subset O, \, u \in W^{1,p}(O) \Rightarrow u \in W^{1,p}(O_1) \\ --\psi \in \mathcal{D}(O), \, u \in W^{1,p}(O), \, \text{alors} \, \, \psi u \in W^{1,p}(O) \, \, \text{et} \end{array}$

$$\frac{\partial (\psi u)}{\partial x_i} = u \frac{\partial \psi}{\partial x_i} + \psi \frac{\partial u}{\partial x_i}$$

⇔ Lemme:

 $1 \le p \le +\infty, \ \phi \in \mathcal{D}(\mathbb{R}^N), \ u \in W^{1,p}(\mathbb{R}^N).$

$$\phi * u \in \mathcal{C}^{\infty}(\mathbb{R}^N) \text{ et } \frac{\partial}{\partial x_i}(\phi * u) = \phi * \frac{\partial u}{\partial x_i}$$

⇔ Théorème:

 $1 \leq p < +\infty$ $\mathcal{D}(\mathbb{R}^N)$ est dense dans $W^{1,p}(\mathbb{R}^N)$

1 Restriction à un ouvert

🛂 Définition: ouvert à frontière lipschitzienne

Soit $N \geq 2$, Ω ouvert borné.

On définit un système de coordonnées locales de la manière suivante :

On suppose qu'il existe $m \in \mathbb{N}^*$ et m fonctions

$$\psi_i: Q =]-1,1[^{N-1} \times \mathbb{R} \to \mathbb{R}$$

et $\exists r > 0$ tel que :

$$\psi_i: \quad U = Q \times] - r, r[\quad \rightarrow \quad \psi_i(U) \\ (y', y_N) \qquad \mapsto \quad (y', y_N + \psi_i(y'))$$

alors ψ_i est un homéomorphisme entre U et $\psi_i(U)$ et $\forall i$:

$$\Gamma_{i} = \psi_{i}(Q \times \{0\}) \subset \partial \Omega$$

$$U_{i}^{+} = \psi_{i}(Q \times]0, r[) \subset \Omega$$

$$U_{i}^{-} = \psi_{i}(Q \times]-r, 0[) \subset \Omega$$

et

$$\partial\Omega = \bigcup_{i=1}^{m} \Gamma_i$$

On dit que $\partial\Omega$ est lipschitienne (resp. \mathcal{C}^k) s'il existe un système de coordonnées locales tel que $\forall i, \ \psi_i$ est lipschitzienne (resp. \mathcal{C}^k)

⇒ Théorème: de prolongement

$$1 \le p \le +\infty$$

Soit $\Omega \subset \mathbb{R}^N$ et on suppose 3 cas :

- $N=1:\Omega$ est un intervalle ouvert de $\mathbb R$ (borné ou non)
- -N > 2:
 - Ω est le demi-espace $\mathbb{R}^{n-1} \times \mathbb{R}_+^*$
 - Ω ouvert borné avec $\partial\Omega$ lipschitzienne

Alors il existe un opérateur de prolongement p linéaire et continu

$$p: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$$

tel que:

- 1. $Pu = u \operatorname{sur} \Omega$
- 2. $||Pu||_{L^p(\mathbb{R}^N)} \le c||u||_{L^p(\Omega)}$ $||Pu||_{W^{1,p}(\mathbb{R}^N)} \le c||u||_{W^{1,p}(\Omega)}$ où $c = c(\Omega, p)$.

Définition:

 $\Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. On note $\mathcal{D}(\overline{\Omega})$ (resp. $\mathcal{C}^1_c(\overline{\Omega})$) l'ensemble des restrictions à $\overline{\Omega}$ de fonctions de $\mathcal{D}(\mathbb{R}^N)$ (resp. $\mathcal{C}^1_c(\mathbb{R}^N)$). Si $\Omega = \mathbb{R}^{N-1} \times \mathbb{R}^+_*$, on note $\mathcal{D}(\mathbb{R}^{N-1} \times \mathbb{R}^+)$

Remarque: $\mathcal{D}(\Omega) \subseteq \mathcal{D}(\overline{\Omega})$ car les fonctions de $\mathcal{D}'\overline{\Omega}$) ne s'annulent pas forcément sur $\partial\Omega$.

⇔ Théorème:

 Ω ouvert de \mathbb{R}^N comme dans le théorème de prolongement, $1 \leq p < +\infty$. Alors $\mathcal{D}(\overline{\Omega})$ est dense dans $W^{1,p}(\Omega)$.

⇔ Théorème: chain rule

 $1 \leq p \leq +\infty, \, \Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. Soit $G \in \mathcal{C}^1(\mathbb{R})$ tel que G(0) = 0 et $\forall s, \, |G'(s)| \leq M$ Alors $\forall u \in W^{A,p}(\Omega), \, G(u) \in W^{1,p}(\Omega)$ et on a (au sens des distributions) :

$$\nabla G(u) = G'(u)\nabla u$$

\Rightarrow Théorème: Stampacchia

 $1 \leq p \leq +\infty, \, \Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement.

$$u_{+} = \max\{u, 0\}, \ u_{-} = \min\{u, 0\}, \ _{=}u_{-} + u_{+}$$

 $u_+=\max\{u,0\},\ u_-=\min\{u,0\},\ _=u$ Alors $u_+,\ u_-$ et |u| appartiennent) $W^{1,p}(\Omega)$ et on a presque partout :

$$\nabla u_{+} = \begin{vmatrix} \nabla u & \text{où} & u > 0 \\ 0 & \text{où} & u \le 0 \end{vmatrix}$$

$$\nabla u_{-} = \begin{vmatrix} 0 & \text{où} & u \ge 0 \\ \nabla u & \text{où} & u < 0 \end{vmatrix}$$

$$\nabla u_{+} = \begin{vmatrix} \nabla u & \text{où} & u > 0 \\ 0 & \text{où} & u \leq 0 \end{vmatrix}$$

$$\nabla u_{-} = \begin{vmatrix} 0 & \text{où} & u \geq 0 \\ \nabla u & \text{où} & u < 0 \end{vmatrix}$$

$$\nabla |u| = \begin{vmatrix} \nabla u & \text{où} & u > 0 \\ 0 & \text{où} & u = 0 \\ -\nabla u & \text{où} & u < 0 \end{vmatrix}$$

 $1 \leq p \leq +\infty$, $\Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement. $w \in W^{1,p}(\Omega) \Rightarrow \nabla u = 0$ p.p. sur les lignes de niveau, ie $\forall \alpha, \, \nabla u = 0$ p.p. sur $\{u = \alpha\}$

 $1 \leq p \leq +\infty$, $\Omega \subset \mathbb{R}^N$ comme dans le théorème de prolongement, connexe. Si $u \in W^{1,p}(\Omega)$; $\nabla u = 0$ dans Ω , alors u est constante.

$\mathbf{2}$ Amélioration de la régularité

Est-ce que la condition $\nabla u \in (L^p(\Omega))^n$ "améliore" vraiment la régularité ou juste la sommabilité de u? Le théorème suivant repond pour N=1 où on gagne beaucoup. Pour $N\geq 2$, la réponse est donnée par les théorèmes d'inclusion de Sobolec où on "gagne moins".

$$1 \leq p < +\infty$$
. On a :

$$W^{1,p}(\mathbb{R}) \subset \mathcal{C}_b^0(\mathbb{R}) \left(= \mathcal{C}^0(\mathbb{R}) \cap L^\infty(\mathbb{R})\right)$$

$$\forall u \in W^{1,p}(\mathbb{R}), \ \|u\|_{L^{\infty}(\mathbb{R})} \le c(p) \|u\|_{W^{1,p}(\mathbb{R})}$$

$$1 \leq p < +\infty. \text{ On a}: \\ W^{1,p}(\mathbb{R}) \subset \mathcal{C}_b^0(\mathbb{R}) \left(= \mathcal{C}^0(\mathbb{R}) \cap L^\infty(\mathbb{R}) \right) \\ \text{et} \\ \forall u \in W^{1,p}(\mathbb{R}), \ \|u\|_{L^\infty(\mathbb{R})} \leq c(p) \|u\|_{W^{1,p}(\mathbb{R})} \\ \text{De plus, si } p > 1, \\ \forall x, y \in \mathbb{R}, \ |u(x) - u(y)| \leq |x - y|^{\frac{p-1}{p}} \|u\|_{L^p(\mathbb{R})} \\ \text{ie } u \text{ est h\"olderienne d'exposant } \frac{p-1}{p} = \frac{1}{p'} \\ \\ \text{Remarques:} \\$$

- 1. $\forall I \in \mathbb{R}, W^{1,p}(I) \subset \mathcal{C}^0(\bar{I}) \cap L^{\infty}(I)$. En particulier, si $u \in W^{1,p}(]a,b[)$, on a u(a) et u(b) bien définis. Cela donne un sens aux conditions de Dirichlet.
- 2. $W^{1,p}(\mathbb{R}) \subset \mathcal{C}_b^0(\mathbb{R})$ même pour $p = +\infty$
- 3. Pour $N \geq 2$, l'inclusion montrée n'est pas vraie en général $\forall p$

2.1Notion de trace

→ Théorème: de Rademacher

 $f: a \subset \mathbb{R}^N \to \mathbb{R}$, A ouvert, f lipschitzienne sur A. f est alors différentiable presque partout et ∇f est égal à son gradient au sens des distributions presque partout.

⇔ Théorème: partition de l'unité

 $F \subset \mathbb{R}^N, \geq 2, F$ compact. $A_1, ..., A_m$ m ouverts de \mathbb{R}^N tel que $F \subset \cup_{i=1}^m A_i$ Donc $\forall i = 1, ..., m, \exists \gamma_i \in \mathcal{D}(A_i)$ avec $0 \leq \gamma_i \leq 1$ et

$$\sum_{i=1}^{m} \gamma_i(x) = 1 \ \forall x \in F$$

♦ Définition:

 $N \geq 2,\, \Omega \subset \mathbb{R}^N$ borné, $\partial \Omega$ lipschitzienne.

Soit $\gamma_1,...,\gamma_n$ donnés par le théorème précédent correspondant à $F=\partial\Omega$ et $A_i=V_i$ dans la définition de Nečas. Soit u mesurable sur $\partial\Omega$. On dit que u est intégrable sur $\partial\Omega$ si $\forall i=1...m$, les fonctions

$$u(y', \psi_i(y'))\gamma_i(y', \psi_i(y'))\sqrt{1 + |\nabla \psi_i(y')|^2}$$

est intégrable sur Q.

On pose ensuite

$$\int_{\partial\Omega} u(x)ds = \sum_{i=1}^{m} \int_{\Gamma_i} u(x)\gamma_i(x)ds$$

οù

$$\int_{\Gamma_i} u(x)\gamma_i(x)ds = \int_Q u(y', \psi_i(y'))\gamma_i(y', \psi_i(y'))\sqrt{1 + |\nabla \psi_i(y')|^2} dy'$$

Remarque : On peut montrer que la définition est indépendant des coordonnées locales et des γ_i

 Ω borné de $\mathbb{R}^N,\,\partial\Omega$ lipschitzienne, $N\geq 2.$ On définit $L^p(\partial\Omega,\,1\leq<+\infty$ par :

$$L^p(\partial\Omega)=\{u:\partial\Omega\to\mathbb{R}\text{ mesurables égales p.p tel que }\int_{\partial\Omega}|u|^pds<+\infty\}$$

et.

$$L^{\infty}(\partial\Omega) = \{ f : \partial\Omega \to \mathbb{R}; \exists c > 0; |f| \le c \text{ p.p sur } \partial\Omega \}$$

On munit ces espaces des normes :

$$p<+\infty : \|u\|_{L^p(\partial\Omega)} = \left(\int_{\partial\Omega} |u|^p ds\right)^{rac{1}{p}}$$

$$p = +\infty$$
: $||u||_{L^{\infty}(\partial\Omega)} = \inf\{c; |f| < c \text{ p.p. sur } \partial\Omega\}$

I Propriété:

 $L^p(\partial\Omega)$ est de Banach $\forall 1 \leq p \leq +\infty$, Hilbert pour p=2.

Pour la suite, on prend p=2.

⇔ Théorème: de trace

N > 2.

1. $\exists ! \gamma : H^1(\mathbb{R}^{N-1} \times \mathbb{R}_+^*) \to L^2(\mathbb{R}^{N-1})$ linéaire continue appelée trace, tel que

$$\gamma(u) = u_{|\mathbb{R}^{N-1}} \ \forall u \in H^1\left(\mathbb{R}^{N-1} \times \mathbb{R}_*^+\right) \cap \mathcal{C}^0\left(\mathbb{R}^{N-1} \times \mathbb{R}_+\right)$$

2. Si Ω est un ouvert borné de \mathbb{R}^N , $\partial\Omega$ lipschitzienne, alors $\exists ! \gamma : H^1(\Omega) \to L^2(\partial\Omega)$ linéaire continue, tel que

$$\gamma(u) = u_{1\partial\Omega} \ \forall u \in H^1(\Omega) \cap \mathcal{C}^0\left(\overline{\Omega}\right)$$

Problème : On peut montrer que γ n'est pas surjective sur $L^2(\partial\Omega)$.

♦ Définition:

On pose

$$H^{\frac{1}{2}}(\partial\Omega) = \gamma \left(H^1(\Omega)\right) \subset L^2(\partial\Omega)$$

⇔ Théorème:

 Ω borné, $\partial\Omega$ lipschitzienne (ou $\Omega=\mathbb{R}^{N-1}\times\mathbb{R}_+^*).$ Alors :

1. $H^{\frac{1}{2}}(\partial\Omega)$ est un Banach par rapport à :

$$||u||_{H^{\frac{1}{2}}(\partial\Omega)}^2 = \int_{\partial\Omega} |u|^2 ds + \int_{\partial\Omega} \int_{\partial\Omega} \frac{|u(x) - u(y)|}{|x - y|^{N-1}} ds_x ds_y$$

- 2. $\{u_{1\partial\Omega}, u\in\mathcal{C}^\infty(\mathbb{R}^N)\}$ dense dans $H^{\frac{1}{2}}(\partial\Omega)$
- 3. $\gamma:H^1(\Omega)\to H^{\frac{1}{2}}(\partial\Omega)$ est linéaire continue, ie

$$\|\gamma(u)\|_{H^{\frac{1}{2}}(\partial\Omega)} \le c\|u\|_{H^1(\Omega)}$$

4. Il existe un relevement continue de la trace, ie $\exists g$ linéaire continue tel que

$$g: \begin{array}{ccc} H^{\frac{1}{2}}(\partial\Omega) & \to & H^1(\Omega) \\ u & \mapsto & U \end{array}$$

avec $\gamma(U) = u$.

⇒ Théorème:

 Ω borné de $\mathbb{R}^N,\, N\geq 2,\,\partial\Omega$ lipschitzienne. On note n(x) le vecteur normal unitaire à $\partial\Omega.$ Alors $\forall u,v\in H^1(\Omega)$:

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} dx = \int_{\partial \Omega} \gamma(u) \gamma(v) n_i ds - \int_{\Omega} v \frac{\partial u}{\partial x_i} dx, \ i = 1..n$$

Dans la suite, on noter $\gamma(u)$ simplement u, en retenant que c'est la trace.

 $1 \le p \le +\infty$. $W_0^{1,p}(O)$ est la fermeture de $\mathcal{D}(O)$ dans la norme $W^{1,p}(O)$.

IRemarque:

- $\begin{array}{ll} & W_0^{1,p}(O) \text{ est un espace fermé de } W^{1,p}(O) \\ & H_0^1(O) \text{ de Hilbert} \\ & \text{D'après le théorème de densité dans } \mathbb{R}^N, \text{ on a} \end{array}$

$$W_0^{1,p}(\mathbb{R}^N) = W^{1,p}(\mathbb{R}^N)$$

1 Propriété:

 $1 \leq p \leq +\infty$. Si $u \in W_0^{1,p}(O)$, alors son prolongement par 0:

$$\tilde{u} = \left| \begin{array}{cc} u & \text{dans } O \\ 0 & \text{sinon} \end{array} \right|$$

vérifie $\tilde{u}\in W^{1,p}(\mathbb{R}^N)$ et $\tilde{u}\in W^{1,p}_0(O_1),\,\forall O\subset O_1.$ De plus,

$$||u||_{W^{1,p}(O)} = ||\tilde{u}||_{W^{1,p}(O_1)} = ||\tilde{u}||_{W^{1,p}(\mathbb{R}^N)}$$

 $1 \leq p \leq +\infty$, Ω intervalle de $\mathbb R$ si N=1 ou Ω borné, $\partial \Omega$ lipschitzienne si $N \geq 2$. Si $u \in W^{1,p}(\Omega)$, u à support compact inclu dans Ω , alors $u \in W^{1,p}_0(\Omega)$.

Remarque : On peut remarquer que l'hypothèse $\partial\Omega$ lipschitzienne n'est pas nécessaire.

$$H_0^1(\Omega) = \{ u \in H^1(\Omega); u(a) = u(b) = 0 \}$$

1. $\Omega=]a,b[\subset\mathbb{R}$ $H^1_0(\Omega)=\{u\in H$ 2. $N\geq 2,\,\Omega$ ouvert de $\mathbb{R}^N,$ borné, $\partial\Omega$ lipschitzienne

$$H_0^1(\Omega) = \{ u \in H^1(\Omega); \gamma(u) = 0 \text{ sur } \partial\Omega \}$$

Remarque: Si $u \in \mathcal{C}(\bar{\Omega}) \Rightarrow u_{|\partial\Omega} = 0$ Si $u \in H^1(\Omega)$, $\partial \Omega$ lipschitzienne $\Rightarrow \gamma(u) = 0$ Si $\partial\Omega$ non lipschitzienne, on ne peut rien dire de spécial.

I Propriété: Inégalité de Poincaré

 $\exists c_{\Omega}$ de l'ordre du diamètre de Ω tel que

$$||u||_{L^2(\Omega)} \le c_{\Omega} ||\nabla u||_{L^2(\Omega)}$$

⇔ Corollaire:

Sous les hypothèses précédentes, si on pose

$$\forall u \in H_0^1(\Omega), \ \|u\|_{H_0^1(\Omega)} = \|\nabla u\|_{L^2(\Omega)}$$

on définit une norme équivalente (pour Ω fixé) à la norme sur H^1 :

$$\| \bullet \|_{H_0^1(\Omega)} \le \| \bullet \|_{H^1(\Omega)} \le (1 + c_{\Omega}) \| \bullet \|_{H_0^1(\Omega)}$$

2.1.1 Dual

On pose $H^{-1}(\Omega) = (H_0^1(\Omega))'$ muni de la norme :

$$||F||_{H^{-1}(\Omega)} = \sup_{u \neq 0} \frac{|\langle F, u \rangle|}{||u||_{H_0^1(\Omega)}}$$

⇒ Théorème:

Soit $F \in H^{-1}(\Omega)$.

Alors

$$\exists (f_n)_{n=0}^N \subset L^2(\Omega); F = f_0 + \sum_{i=1}^N \frac{\partial f_i}{\partial x_i} \ (*)$$

De plus :

$$||F||_{H^1(\Omega)} = \inf \sum_{i=1}^N ||f_i||_{L^2(\Omega)}$$

où l'inf est pris sur toutes les fonctions $(f_n)_n$ vérifiant (*). Réciproquement si $f_0,...,f_N$ sont dans $L^2(\Omega)$, alors

$$F = f_0 + \sum_{i=1}^{N} \frac{\partial f_i}{\partial x_i}$$

définit un élément F dans $H^{-1}(\Omega)$, et

$$||F||_{H^1(\Omega)} \le \sum_{i=1}^N ||f_i||_{L^2(\Omega)}$$

En particulier, pour $f_i=0 \ \forall 1\leq i\leq N,$ on en déduit que $L^2(\Omega)\subset H^{-1}(\Omega)$ et

$$||f_0||_{H^{-1}(\Omega)} \le ||f_0||_{L^2(\Omega)}$$

2.1.2 Caractérisation de $H^1(\Omega)$ par Fourier (dans \mathbb{R})

♦ Définition:

 $u\in L^1(\mathbb{R}).$ La transformation de Fourier \hat{u} de u et l'antitransformée \check{u} sont définies par :

$$\hat{u}(\xi)=\frac{1}{(2\pi)^{\frac{N}{2}}}\int_{\mathbb{R}^N}e^{-i\langle\xi,x\rangle}u(x)dx$$
 définie p.p. dans \mathbb{R}^N

$$\check{u}(\xi)=\frac{1}{(2\pi)^{\frac{N}{2}}}\int_{\mathbb{R}^N}e^{i\langle\xi,x\rangle}u(x)dx$$
 définie p.p. dans \mathbb{R}^N

Théorème: de Plancherel

 $u \in L^1(\mathbb{R}^N) \cap L^2(\mathbb{R}^N).$ Alors \hat{u} et \check{u} sont dans $L^2(\mathbb{R}^N)$ et

$$||u||_{L^2(\mathbb{R}^N)} = ||\hat{u}||_{L^2(\mathbb{R}^N)} = ||\check{u}||_{L^2(\mathbb{R}^N)}$$

I Propriété:

Si $\{u_n\} \subset L^1(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$ est telle que $u_n \xrightarrow{L^2(\mathbb{R}^N)} u$, alors $\{\hat{u}_n\}$ et $\{\check{u}_n\}$ convergent dans $L^2(\mathbb{R}^N)$ vers \hat{u} et \check{u} . De plus, \hat{u} et \check{u} sont indépendants de la suite choisie.

On définit ainsi la transformée de Fourier pour $u \in L^2(\mathbb{R}^N.$

I Propriété: dans L²

- 1. Plancherel reste vrai dans $L^2(\mathbb{R}^N)$

$$\int_{\mathbb{R}^N} uv dx = \int_{\mathbb{R}^N} \hat{u}\overline{\hat{v}}d\xi$$

- 1. Plancherel reste vial dans L (as)

 2. $u, v \in L^2(\mathbb{R}^N)$, $\int_{\mathbb{R}^N} uv dx = \int_{\mathbb{R}^N} 3. \ \forall u \in L^2(\mathbb{R}^N), \ u = \mathring{u} = \mathring{u}$ 4. Si $u : \mathbb{R}^N \to \mathbb{R}$, $\widehat{\nabla u}(\xi) = \xi \hat{u}(\xi)$ pour presque tout $\xi \in \mathbb{R}^N$

$$u: \mathbb{R}^N \to \mathbb{R}$$

$$u \in H^1(\mathbb{R}^N) \Leftrightarrow (1+|\xi|)\hat{u}(\xi) \in L^2(\mathbb{R}^N)$$

$$||u||_{H^1(\mathbb{R}^N)} \le ||(1+|\xi|)\hat{u}||_{L^2(\mathbb{R}^N)} \le \sqrt{2}||u||_{H^1(\mathbb{R}^N)}$$

Inclusions continues de Sobolev

🛂 Définition: Inclusion continue

On dit que l'inclusion $X \subset_c Y$ est continue si $X \subset Y$ et $i_X : x \in X \mapsto x \in Y$ est continue (ie $||x||_X \leq C||x||_Y$)

Remarque : On a vu que $W^{1,p}(\mathbb{R}) \subset \mathcal{C}_b^0(\mathbb{R})$ est continue.

$$N \geq 2, f_i \geq 0, f_i \in L^{N-1}(\mathbb{R}^{N-1}), i = 1, ..., N$$

 $\forall x = (x_1, ..., x_n), \text{ on pose } \hat{x}_i = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_N) \in \mathbb{R}^{N-1}. \text{ Alors } :$

$$\int_{\mathbb{R}^N} \prod_{i=1}^N f_i(\hat{x}_i) dx \leq \prod_{i=1}^N \|f_i\|_{L^{N-1}(\mathbb{R}^{N-1})}$$

$$\int_{\mathbb{R}^N} \prod_{i=1}^N f_i(\hat{x}_i) dx \le \prod_{i=1}^N ||f_i||_{L^{N-1}(\mathbb{R}^{N-1})}$$

riangleq Théorème: Inclusions de Sobolev dans \mathbb{R}^N

 $N \ge 2$

1. $1 \leq p < N$: On pose $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}.$ Alors :

$$W^{1,p}(\mathbb{R}^N) \subset L^{p^*}(\mathbb{R}^N)$$

et $\exists c = c(p, N)$ tel que

$$\forall u \in W^{1,p}(\mathbb{R}^N), ||u||_{L^{p^*}(\mathbb{R}^N)} \le c||\nabla u||_{L^p(\mathbb{R}^N)}$$

Corollaire:

$$W^{1,p}(\mathbb{R}^N) \subset_c L^q(\mathbb{R}^N) \ \forall q \in [p, p^*]$$

2. p = N

$$W^{1,N}(\mathbb{R}^N) \subset_c L^q(\mathbb{R}^N) \ \forall q \in [N, +\infty[$$

3. p > N

— Si $1 < N < p < +\infty$, alors $\exists c = c(p, N)$ tel que

$$\forall u \in W^{1,p}(\mathbb{R}^N), |u(x) - u(y)| \le C|x - y|^{1 - \frac{N}{p}} \|\nabla u\|_{L^p(\mathbb{R}^N)} \text{ p.p}$$

— Si
$$1 < N < p \le +\infty$$
, alors $W^{1,p}(\mathbb{R}^N) \subset_c L^{\infty}(\mathbb{R}^N)$

Remarques:

- 1. On voit que u est continue presque partout. Il existe donc un représentant de u continue.
- 2. $W^{1,p}(\mathbb{R}^N) \subset \mathcal{C}_b^0(\mathbb{R}^N)$ dans le sens que tout élément de $W^{1,p}$ admet un représentant dans \mathcal{C}_b^0 .
- 3. L'inclusion dans \mathcal{C}^0 (montré pour $p<+\infty$) est aussi vraie pour $p=+\infty$ en raisonnant par troncature.

\Rightarrow Théorème: Inclusions de Sobolev dans Ω

 $N\geq 2,\,\Omega$ ouvert borné dans $\mathbb{R}^N,\,\partial\Omega$ lipschitzienne, ou $\Omega=\mathbb{R}^{N-1}\times\mathbb{R}^+_*.$

1. $1 \le p < N$: On pose $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}$.

$$W^{1,p}(\Omega) \subset_c L^q(\Omega) \ \forall q \in [p,p^*]$$

2. p = N:

$$W^{1,N}(\mathbb{R}^N) \subset_c L^q(\Omega) \ \forall q \in [N, +\infty[$$

3. p > N:

$$W^{1,p}(\Omega) \subset_c L^{\infty}(\Omega) \text{ et } W^{1,p}(\Omega) \subset_c \mathcal{C}^0(\overline{\Omega})$$

→ Théorème:

 $\Omega\subset\mathbb{R}^N$, intervalle si N=1, ouvert borné à frontière lipschitzienne sinon. Alors $u\in W^{1,p}(\Omega)\Rightarrow u$ lipschitizienne.

⇔ Théorème: Inclusions de Sobolev dans O

 $N \geq 2,\, O \subset \mathbb{R}^N$ quel conque.

1.
$$1 \le p < N$$
: On pose $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}$.

$$W^{1,p}(O) \subset_c L^q(O) \ \forall q \in [p, p^*]$$

2.
$$p = N$$
:

$$W^{1,N}(\mathbb{R}^N) \subset_c L^q(O) \ \forall q \in [N, +\infty[$$

3.
$$p > N$$

$$W^{1,p}(O) \subset_c L^{\infty}(O) \text{ et } W^{1,p}(O) \subset_c \mathcal{C}^0(\overline{O})$$

2.2.1 Inclusions compactes de Sobolev

🔸 Définition: Application compacte

X,Y de Banach, $h:X\to Y$ est compact si l'image d'un borné est relativement compacte.

♣ Définition: Inclusion compacte

X,Y de Banach. On dit que l'inclusion $X \subseteq Y$ est compacte si $X \subseteq Y$ et $i_x: x \in X \mapsto x \in Y$ compacte.

Remarque : Si h linéaire, h compact $\Rightarrow h$ continue.

⇔ Théorème: Ascoli-Arzela

Soit $\{f_n\}$ bornée dans $\mathcal{C}^0_b(\mathbb{R}^N)$ équi continue, ie

$$\forall \varepsilon>0, \exists \delta>0 \text{ (indépendant de n); } \|x-y\|<\delta \Rightarrow \forall n\in\mathbb{N}, |f_n(x)-f_n(y)|<\varepsilon$$

Alors $\{f_n\}$ admet une sous-suite qui converge uniformément sur chaque compact $K\subset \mathbb{R}^N$

Remarque : Si $\{f_n\}\subset \mathcal{C}_b^1$, alors d'après le théorème des accroissements finis, $\{f_n\}$ est équicontinue. En particulier, l'inclusion

$$\forall K, \ \mathcal{C}_b^1(\mathbb{R}^N) \overline{\subset} \mathcal{C}^0(K)$$

⇒ Théorème:

Si $N=1,\,1< p<+\infty,\,I$ intervalle borné de $\mathbb{R},$ alors $W^{1,p}(I)\overline{\subset}\mathcal{C}^0(I)$

⇔ Théorème:

Si $N \geq 2,\,\Omega$ ouvert borné de $\mathbb{R}^N,\,\partial\Omega$ lipschitzienne. Si N

$$W^{1,p}(\Omega)\overline{\subset}\mathcal{C}^0(\overline{\Omega})$$

→ Théorème: de Rellich-Komdrochov

 $N \geq 2,\,\Omega$ borné de $\mathbb{R}^N,\,\partial\Omega$ lipschitzienne. Si $1 \leq p < N,$ en posant $\frac{1}{p*} = \frac{1}{p} - \frac{1}{N},$

$$\forall q \in [1, p^*[, W^p(\Omega) \overline{\subset} L^q(\Omega)]$$

Remarque : Pour $p = p^*$, on avait l'inclusion, mais elle n'est pas compacte. p^* s'appelle l'exposant critique des inclusions de Sobolev.

⇔ Théorème:

Si $N\geq 2,\, p=N,\, \Omega$ borné, $\partial \Omega$ lipschitzienne.

$$\forall q \in [1, +\infty[, W^{1,N}(\Omega)\overline{\subset}L^q(\Omega)]$$

Remarque:

- 1. En général, faux si Ω non borné
- 2. De même si $\partial\Omega$ non lipschitzienne
- 3. Pour H_0^1 , Ω borné sans frontière lipschitzienne suffit. On peut trouver $\Omega_1 \supset \Omega$, $\partial \Omega_1$ lipschitzienne et on regarde $\{Pu_n\}$ sur Ω_1
- 4. On a aussi

$$L^2(\Omega)\overline{\subset}H^{-1}(\Omega)$$

$$H^{\frac{1}{2}}(\partial\Omega)\overline{\subset}L^2(\partial\Omega)$$

$$L^2(\partial\Omega)\overline{\subset}H^{-\frac{1}{2}}(\partial\Omega)$$