Table 1 – Lattice parameters of Tetracene molecule calculated in VASP code

	D2	D3	\mathbf{TS}	TS-SCS	PBE*	Exp
a	7.54 (7.41)	7.92	7.71	7.70	9.25	7.90
b	5.96(5.83)	6.00	5.99	6.08	7.21	6.03
\mathbf{c}	13.28 (13.39)	13.38	13.38	13.47	16.62	13.53
α	$102.10 \ (102.21)$	101.21	101.36	100.97	101.36	100.30
eta	114.33 (113.23)	113.26	113.61	114.39	112.14	113.20
γ	85.20 (85.11)	85.89	85.74	85.68	86.67	86.30
Volume ($Å^3$)	531.41 (519.01)	572.96	554.74	563.74	1007.16	582.85

^{*}without dispersion correction

Tetracene

Figure 1 – Tetracene molecule

⁽⁾ Parenthesis values were calculated with CRYSTAL program Exp Campbell, R. B *et al* Acta cryst, 15(3): 289-290, 1962.

Figure 2 – The bc plane of Tetracene Crystal

Figure 3 – The ac plane of Tetracene Crystal

Figure 4 – The ab plane of Tetracene Crystal

Table 2 – Calculated vibrational frequencies (cm^{-1}) of the monomer, dimer and solid-state (PBE tetracene system).

Monomer		Dimer	Experimental (P.A.) this work	VASP/CRYSTAL	
Assignment	$\frac{\nu(\mathrm{cm}^{-1})}{\mathrm{Int}(\mathrm{km/mol})}$	$ u({\rm cm}^{-1}) $ Int(km/mol)	$ u(\mathrm{cm}^{-1}) $	$\omega({ m cm}^{-1})$ Int(relative)	
$ u_1$	57 (0.8)	15 (<0.01) 31 (0) 52 (0) 59 (0.6) 80 (1.0) 87 (0.1) 94 (0) 112 (0)		69.7 (8.2)	
$ u_2$	93 (0)	117 (0.3)	106 (m) + sh	102.4 (2.1) 105.7 (9.5)	
0	199 (.0.01)	124 (0)			
$3 u_1 \ u_3$	132 (<0.01) 153 (0.01)		142 (m)	128.5 (7.1)	
ν3	155 (0.01)		112 (111)	148 (0.1)	
		162(0)		,	
$ u_4$	164 (1.3)	168 (1.7) 169 (0)	166 (s) + sh	164.6 (15.5)	
$ u_5$	199(0.05)	176 (0.2)	197 (w)	170.1 (0.1)	
$\nu_1 + \nu_3$	201 (<0.01)	208 (0)	017 ()		
$\nu_1 + 2\nu_2$	228 (<0.01)	212 (0.09)	217 (w)		
$ \begin{array}{c} \nu_1 + 2\nu_2 \\ \nu_2 + \nu_3 \end{array} $	247 (0.01)		252 (vw)		
$ u_6$	275(1.03)	282 (1.6)	271 (m)	267.4(3.0)	
		286 (0)		274.6 (2.6)	
$ u_2 + u_5$	293 (<0.01)	316 (0) 316 (0.03)	306 (vw)		
		324 (0)	322 (w)	320.8 (0.9)	
$ u_8$	322 (<0.01)	325 (0.06) 335 (0.03) 335 (0)	342 (w)	323.8 (0.5)	
$\nu_1 + 2\nu_3$	$353 \ (< 0.01)$	· /			
$\nu_1 + \nu_8$	379 (<0.01)				
$ u_{10} $	385 (0.04)	$390 \ (0.02)$	392 (w)		
$2\nu_1 + \nu_6$	380 (<0.01)				

 $Italic:\ Intermolecular\ modes$