TALLER CONTROL 2 SEGUNDO CORTE

JOSE ROLDAN

Código:

```
p=[1 \ 0.6348 \ 0.4761];
roots(p)
s=tf('s');
pid=0.049+(0.151/s)+0.331*s;
G=10/(s^2+0.5*s+2);
step(G)
step(feedback(pid*G,1))
z=tf('z',0.0844);
Ts=0.0844;
Gz=c2d(G,Ts);
%punto 3
%forward
plot(simout.time(:,1), simout.Data(:,1), 'r')
hold on
plot(simout.time(:,1), simout.Data(:,2), 'b')
%backward
plot(simout1.time(:,1), simout1.Data(:,1), 'r')
hold on
plot(simout1.time(:,1), simout1.Data(:,2), 'b')
%tustin
plot(simout2.time(:,1), simout2.Data(:,1), 'r')
plot(simout2.time(:,1), simout2.Data(:,2), 'b')
%punto 6
%polos forward
numfor=[3.31 -6.13 4.82];
denfor=[1 0.81 -2.13 1.83];
pzmap(numfor, denfor)
figure(1)
zplane(numfor, denfor)
%polos backward
numbac=[5.31 -6.62 2.82 0];
denbac=[8.81 -13.11 6.81 -1];
pzmap(numbac, denbac)
figure(1)
zplane(numbac, denbac)
%polos tustin
numtus=[15.73 -7.73 -9.69 13.77];
dentus=[29.73 -29.73 8.31 3.77];
pzmap(numtus, dentus)
figure(1)
zplane(numtus, dentus)
%punto 7
%forward
Gt = (3.31*s^2 + 0.49*s + 1.51)/(s^3 + 3.81*s^2 + 2.49*s + 1.51);
Gzfor = (3.31*z^2 - 6.62*z + 4.82)/(z^3 + 0.81*z^2 - 2.13*z + 1.83);
```

```
step(Gt)
hold on
step(Gzfor)
%backward
Gzbac=(5.31*z^3 - 6.62*z^2 + 2.82*z)/(8.81*z^3 - 13.11*z^2 + 6.81*z - 1);
step(Gt)
hold on
step(Gzbac)
%tustin
Gztus=(15.73*z^3 - 7.73*z^2 - 9.69*z + 13.77)/(29.73*z^3 - 29.73*z^2 +
8.31*z + 3.77);
step(Gt)
hold on
step(Gztus)
```

Al probar los resultados con el pid, se obtiene que cumple con los parámetros que pide el ejercicio

En forward

En backward

En tustin

6) Polos forward

Polos backward

Polos tustin

Comparación forward

Comparación backward

Comparación tustin

Modelo en simulink

