

19th European Conference on Computational Biology

Planetary Health and Biodiversity

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

Qiao Liu liuqiao@stanford.edu

Outline

- Background
- Methods
- Results
- Conclusions

Cancer drug response

- Cancer drug response (CDR) describes how a cancer patient responses to a specific drug
 - Sensitive a high degree of drug efficacy
 - Resistant a low degree of drug efficacy
 - IC₅₀ half-maximal inhibitory concentration
- Identification of cancer drug response (CDR) is crucial for personalized cancer therapy
- Drug efficacy may vary due to the heterogeneity of cancer patients
- There are millions of compounds while only a minority can be considered as drugs

Two types of methods for predicting CDR

Network-driven methods

- The core idea is to construct a similarity-based model and assign the sensitivity profile of a known drug to a new drug if there are structurally similar.
- Major limitation: low scalability and efficiency
- Machine learning methods
 - Taking large-scale profiles of both drugs and cancer cell lines as input
 - Typical approaches include LR (Geeleher et al., 2014), SVM (Dong et al., 2015), random forest (Daemen et al., 2013), neural networks (Chang et al., 2018)

Limitations of current methods

- Most previous works used engineered features of drugs such as molecular fingerprints
- Most previous works used single omics data of cancer cell lines, such as genomic mutation or gene expression

Motivation and intuition

- Drug can be naturally represented as a graph as it has unique topological structures, such as edges (chemical bond) and nodes (atoms)
- Multi-omics data of cancer cell line can reveal more biological information than single-omics data
- Identifying molecular signatures that determine drug response has not been fully explored

A hybrid graph convolutional network

- We proposed DeepCDR, as an end-to-end framework for predicting cancer drug response
- DeepCDR takes chemical structures of drugs and multi-omics data of cancer cell line as input and outputs the sensitivity of drug

Convolutional graph networks

- Graph neural networks aim at graph-based representation of data by exploring topological relationships among nodes of a graph
- Convolutional graph networks (GCNs) introduced convolutions on graph largely based on spectral graph theory (Kipf et al., ICLR, 2017)

where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}_N$ and $\tilde{\mathbf{D}}_{i,i} = \sum_j \tilde{\mathbf{A}}_{i,j}$. $\mathbf{X} \in \mathbb{R}^{N \times C}$ is the input signal with C channels and $\boldsymbol{\Theta} \in \mathbb{R}^{C \times F}$ denotes the parameters of F filters.

Uniform graph convolutional network(UGCN)

- Drug can be represented as $\{\mathcal{G}_i = (\mathbf{X}_i, \mathbf{A}_i)|_{i=1}^M\}$ where $\mathbf{X}_i \in \mathbb{R}^{N_i \times C}$ and $\mathbf{A}_i \in \mathbb{R}^{N_i \times N_i}$ is the feature matrix and adjacent matrix of ith drug
- Each atom in a drug was represented as a 75-dimensional feature vector, including chemical and topological properties (atom type, degree and hybridization)
- We extended the original GCN (Kipf et al., ICLR, 2017) for processing drugs with variable sizes and structures by introducing complementary drug
- Layer-wise operation of UGCN is derived as

$$\begin{split} \mathbf{H}_{i}^{(l+1,\alpha)} &= \sigma(((\tilde{\mathbf{D}}_{i} + \mathbf{D}_{i}^{B})^{-\frac{1}{2}} \tilde{\mathbf{A}}_{i} (\tilde{\mathbf{D}}_{i} + \mathbf{D}_{i}^{B})^{-\frac{1}{2}} \mathbf{H}_{i}^{(l,\alpha)} + \\ & (\tilde{\mathbf{D}}_{i} + \mathbf{D}_{i}^{B})^{-\frac{1}{2}} \mathbf{B}_{i} (\tilde{\mathbf{D}}_{i}^{c} + \mathbf{D}_{i}^{B^{T}})^{-\frac{1}{2}} \mathbf{H}_{i}^{(l,\beta)}) \mathbf{\Theta}^{(l)}) \end{split} \qquad \qquad \\ \mathbf{H}_{i}^{(l+1,\beta)} &= \sigma(((\tilde{\mathbf{D}}_{i}^{c} + \mathbf{D}_{i}^{B^{T}})^{-\frac{1}{2}} \mathbf{B}_{i}^{T} (\tilde{\mathbf{D}}_{i} + \mathbf{D}_{i}^{B})^{-\frac{1}{2}} \mathbf{H}_{i}^{(l,\alpha)} + \\ & (\tilde{\mathbf{D}}_{i}^{c} + \mathbf{D}_{i}^{B^{T}})^{-\frac{1}{2}} \tilde{\mathbf{A}}_{i}^{c} (\tilde{\mathbf{D}}_{i}^{c} + \mathbf{D}_{i}^{B^{T}})^{-\frac{1}{2}} \mathbf{H}_{i}^{(l,\beta)}) \mathbf{\Theta}^{(l)}) \end{split}$$

 Drugs with different size will be embedded into a fixed dimensional vector (default: 100)

Dataset

- Drug structure data (.MOL) were from Pubchem database (Kim et al., 2018)
- Cancer cell lines data (genomic mutation, gene expression and DNA methylation) were downloaded from Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012)
- Drug sensitivity data were obtained from Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al. 2016)
- We finally collected a dataset containing 107446 instances across 561 cancer cell lines and 223 drugs
- Each cell line corresponds to a TCGA cancer type.

Rediscovering cancer drug responses

- Baseline methods: ridge regression, random forest and CDRscan
- DeepCDR outperforms other methods by a large margin

Methods	Pearson's correlation	Spearman's correlation	RMSE	
Ridge Regression	0.780	0.731	2.368	
Random Forest	0.809	0.767	2.270	
MOLI	0.813 ± 0.007	0.782 ± 0.005	2.282 ± 0.008	
CDRscan	0.871 ± 0.004	0.852 ± 0.003	1.982 ± 0.005	
tCNNs	$0.885 {\pm} 0.008$	0.862 ± 0.006	1.782 ± 0.006	
DeepCDR	0.923 ± 0.006	0.903 ± 0.004	1.058 ± 0.006	

Bind test for cancer cell line or drug

- DeepCDR still outperforms the best baseline method tCNNs
- Blind test for drug: 0.503 vs 0.429
- Blind test for cancer cell line: 0.889 vs 0.865

DeepCDR predicts the binary drug sensitivity status

- Using threshold to binarize IC₅₀ values, each drug has a unique threshold IC₅₀ value provided by Iorio et al. 2016
- DeepCDR again outperforms tCNNs, CDRscan and MOLI by achieving higher AUCs and auPRs

Ablation studies

- We evaluated the contribution of each type of omics data
- Besides, we verified the power of graph convolution by setting adjacent matrices to identity matrices
- We found that epigenomic data contributed most but was ignored by many previous studies

Table 2: Model ablation results with different experimental settings

Experimental setting	Pearson's correlation
Single genomics	0.846
Single transcriptomics	0.878
Single epigenomics	0.891
Multi-omics without adjacent info	0.886
Multi-omics with adjacent info	0.921

Model interpretation

- We calculated the absolute gradient of the predicted outcome from DeepCDR regression model with respect to the each gene's expression
- Top-5 prioritized genes were illustrated, many top ranked genes have been verified to be associated with cancers by existing literature

Table 3: Top-5 cancer-associated genes prioritized by DeepCDR

Drug	Cell line	TCGA type	Top-5 cancer-associated genes	$\ln(\mathrm{IC_{50}})$	
EGFR inhibitors		Observed	Predicted		
Erlotinib	A3/KAW	DLBC	EGFR,ALK,BCL10,CREB3L1,STAG1	1.110	1.206
Lapatinib	BT-474	BRCA	ERBB2,MDS2,FOXL2,EGFR,MNX1	-1.028	-0.879
Bleomycin	A-375	SKCM	ACKR3,ASXL1,MTCP1,FOXL2,SALL4	-1.514	-1.428
Nilotinib	BHT-101	THCA	CBLC,ABI1,POU5F1,KLF4,ZNF198	-0.630	-0.714
Salubrinal	SUP-B15	ALL	JAK3,EIF1AX,NUMA1,PRDM1,IL21R	1.781	1.471

Conclusion

- DeepCDR is an end-to-end deep learning framework for predicting cancer drug response
- DeepCDR contains a novel UGCN architecture for representing topological information of drugs
- DeepCDR has potential translational value in guiding disease-specific drug design

Acknowledgement

- I would like to thank Prof. Jiang and Jiang Group for their helpful discussion
- I would like to thank Dr. Mu Zhou and SenseTime AI medical group for their helpful discussion

Thank you!

