ESTRUTURAS DE DADOS II

MSC. DANIELE CARVALHO OLIVEIRA

DOUTORANDA EM CIÊNCIA DA COMPUTAÇÃO - USP

MESTRE EM CIÊNCIA DA COMPUTAÇÃO – UFU

BACHAREL EM CIÊNCIA DA COMPUTAÇÃO - UFJF

REPRESENTAÇÃO DE GRAFOS

3 REPRESENTAÇÃO DOS GRAFOS

- Como representar grafos em nossos algoritmos?
- Estruturas de dados!
 - Matrizes
 - Matriz de Adjacência
 - Matriz de Incidência
 - Listas
 - Listas de Adjacência

4 MATRIZ DE ADJACÊNCIA

- Dado um grafo G(V, E)
- Uma Matriz de Adjacência M é formada por n linhas e n colunas
 - n = número de vértices do grafo

$$M_{ij} = \begin{cases} 1, se(i,j) \in E(G) \\ 0, se(i,j) \notin E(G) \end{cases}$$

	1	2	3	4	5
1	0	ı	0	0	1
2	ı	0	ı	1	0
3	0	ı	0	ı	0
4	0	ı	ı	0	I
5	I	0	0	ı	ı

Simétrica

	1	2	3	4	5
1	0	I	0	0	1
2	0	0	ı	0	0
3	0	1	0	0	0
4	0	ı	ı	0	0
5	0	0	0	ı	ı

7 MATRIZ DE ADJACÊNCIA

- O espaço reservado para armazenar as informações da matriz é da ordem $O(|V|^2)$
- Para buscar uma aresta: O(1)

8 MATRIZ DE INCIDÊNCIA

• Dado um grafo G(V, E) de n vértices e m arestas

$$M_{ij} = \begin{cases} 1, \forall v_i, se\left(v_i, v_j\right) \in E(G) \\ 0, se\left(v_i, v_j\right) \notin E(G) \\ 0, se\left(v_i, v_i\right) \in E(G) \end{cases}$$

	el	e2	е3	e4	e 5	е6	e7	е8
ı	ı	0	0	0	0	0	1	0
2	ı	1	ı	0	ı	0	0	0
3	0	I	I	I	0	0	0	0
4	0	0	0	ı	ı	ı	0	0
5	0	0	0	0	0	ı	ı	0

10 MATRIZ DE INCIDÊNCIA NO DIGRAFO

$$M_{ij} = \begin{cases} 1, \forall v_i, se\left(v_i, v_j\right) \in E(G) \\ -1, \forall v_j, se\left(v_i, v_j\right) \in E(G) \\ 0, se\left(v_i, v_j\right) \notin E(G) \\ 0, se\left(v_i, v_i\right) \in E(G) \end{cases}$$

	el	e2	e3	e4	e5	e6	e7	e8
1	1	0	0	0	0	0	1	0
2	-1	I	-1	0	-1	0	0	0
3	0	-1	1	-1	0	0	0	0
4	0	0	0	ı	I	-1	0	0
5	0	0	0	0	0	1	-1	0

12 MATRIZ DE INCIDÊNCIA

- O espaço reservado para armazenar as informações da matriz é da ordem $O(|V| \times |E|)$
- Para buscar uma aresta: O(1)

13 LISTA DE ADJACÊNCIA

- Consiste em um vetor Adj com n = |V| entradas
- Cada entrada Adj[v] possui uma lista encadeada de vértices adjacentes à v.

16 LISTA DE ADJACÊNCIA

- O espaço reservado para armazenar as informações da lista é da ordem O(|V| + |E|)
- Para buscar uma aresta: O(n)
 - Para descobrir se existe a aresta (i, j) deve-se percorrer a lista do nó i até encontrar (ou não) j

BUSCA EM GRAFOS

18 ALGORITMOS DE BUSCA

- Operação mais comum em Grafos
 - Visita sistemática a seus nós (uma única vez!)
- Similar às buscas em árvore

 Para passear ou caminhar pelos vértices e arestas, utiliza-se marcar um vértice quando ele já foi visitado.

19 ALGORITMOS DE BUSCA

- Dois tipos básicos de busca
 - Busca em Profundidade
 - Busca em Largura

procedimento Busca(G: Grafo)

Para Cada vértice v de G:

Marque ν como não visitado

Para Cada vértice v de G:

Se ν não foi visitado:

Busca-Prof(ν)

procedimento Busca-Prof(v: vértice)

Marque v como visitado

Para Cada vértice w adjacente a v:

Se w não foi visitado:

Busca-Prof(w)

BUSCA EM PROFUNDIDADE

DFS

22 BUSCA EM PROFUNDIDADE

- Para acessar todos os vértices do grafo, a busca em profundidade varre a lista de adjacência de cada vértice do grafo
 - Assim, o tempo gasto para a operação é O(|V| + |E|)

procedimento Busca-Largura(v: vértice)

Inicializar FMarcar ν como visitado
Colocar ν no final de FEnquanto F não vazio:

u := primeiro elemento de FRetirar u de FPara cada vértice w adjacente a u:

Se w não foi visitado:

Marcar w como visitado Colocar w no final de F

BUSCA EM LARGURA

BFS

Fila

Distâncias

Distâncias

Distâncias

Fila

5

Distâncias

Fila

Distâncias

Fila

Distâncias

Fila

2

Fila

Distâncias

1 2 3 4 5
0 1 ∞ 2 1

Distâncias

1 2 3 4 5
2 1

Distâncias

Fila

4

Distâncias

Fila

Fila

3

Distâncias

Fila

Distâncias

Distâncias

Fila

37 BUSCA EM LARGURA

- Primeiro os vértices são inicializados, ou seja, marcados como não visitados.
- O vetor de distâncias é inicializado com ∞ em todas as posições
 - Este processo de inicialização gasta tempo O(|V|)

38 BUSCA EM LARGURA

- A medida que os vértices são encontrados, são colocados em uma fila
 - As operações de inserção e remoção da fila gastam tempo $\mathcal{O}(1)$
 - Como todos os vértices são colocados e retirados da fila, o tempo total é O(|V|)

39 BUSCA EM LARGURA

- Como cada vértice é colocado na fila apenas I vez, a lista de adjacência de cada um só é analisado I vez
 - Tempo O(|E|)

• Portanto o tempo de execução da busca em largura é O(|V| + |E|)

Trabalho

• Implemente o DFS e o BFS

Extra

- URI
 - 1076; 1081; 1317; 1469; 1862; 1082; 1269; 1550; 1692; 1910; 1928; 1487

FIM DA AULA II

Próxima aula:

Grafos: Djikstra, Conjuntos Estáveis, Cliques