Álgebra I. Examen de suficiencia Universidad de El Salvador, 06/07/2019

Cada una de las siguientes preguntas vale $\frac{1}{2}$ punto. Marque las respuestas correctas o escriba el resultado final de sus cálculos. El borrador no se entrega y no se evalúa.

Anillos

Respuesta:

Pregunta 1. ¿Cuáles de los siguientes elementos son invertibles en el anillo $\mathbb{Z}[\sqrt{2}]$?										
	a) $\sqrt{2}$;	b) $1 - \sqrt{2}$;	c) $2 + 3\sqrt{2}$;	d) $3 + 2\sqrt{2}$.						
Pregunta 2. Escriba los polinomios ciclotómicos $\Phi_3, \Phi_4, \Phi_5, \Phi_6$.										
Respuesta:										
				_						
Pregunta 3.		guientes números son j								
	a) 3;	b) 5;	c) 7;	d) 11.						
Pregunta 4. ¿Cuántos elementos tiene el anillo cociente $\mathbb{F}_2[X]/(X^4+X^3+1)$?										
Respuesta:										
Drogueta 5	·Cuántos alamas	ntos tiene el anillo coci	onto 7[;]/(5)?							

Pregunta 6. ¿Para cuáles de los siguientes cuerpos k el polinomio $X^3 - X^2 + 1$ es irreducible en k[X]?

- a) ℚ;
- b) ℝ;
- c) **F**₂;
- d) \mathbb{F}_3 .

Pregunta 7. ¿Cuáles de los siguientes anillos cociente son cuerpos?

- a) $\mathbb{Z}[X]/(X^2+1)$; b) $\mathbb{Q}[X]/(X^3+1)$; c) $\mathbb{F}_2[X]/(X^3+X+1)$; d) $\mathbb{F}_2[X]/(X^3+X^2+X+1)$.

Pregunta 8. ¿Cuáles de las siguientes afirmaciones son ciertas?

- a) Si un polinomio $f \in \mathbb{Z}[X]$ es irreducible en $\mathbb{Q}[X]$, entonces es también irreducible en $\mathbb{Z}[X]$.
- b) Para dos polinomios $f, g \in \mathbb{Q}[X]$ se cumple $cont(fg) = cont(f) \cdot cont(g)$.
- c) Los únicos polinomios irreducibles en $\mathbb{C}[X]$ son lineales.
- d) Un polinomio irreducible $f \in \mathbb{Z}[X]$ debe ser irreducible módulo cualquier primo p.

Pregunta 9. ¿Cuáles de los siguientes anillos son dominios de ideales principales?

- a) $\mathbb{Z}[X]$;
- b) $\mathbb{Z}[i]$; d) $\mathbb{Z}[\sqrt{-2}]$; d) $\mathbb{Z}[\sqrt{-3}]$.

Pregunta 10. ¿Cuáles de las siguientes aplicaciones son homomorfismos de anillos?

a) La traza de una matriz:

$$M_2(\mathbb{R}) \to \mathbb{R}, \quad a \mapsto \operatorname{tr} a.$$

b) El determinante de una matriz:

$$M_2(\mathbb{R}) \to \mathbb{R}, \quad a \mapsto \det a.$$

c) La reducción de una matriz entera módulo 2:

$$M_2(\mathbb{Z}) \to M_2(\mathbb{F}_2), \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} [a_{11}] & [a_{12}] \\ [a_{21}] & [a_{22}] \end{pmatrix}.$$

d) El cuadrado de un polinomio con coeficientes en \mathbb{F}_2 :

$$\mathbb{F}_2[X] \to \mathbb{F}_2[X], \quad f \mapsto f^2.$$

Grupos

Respuesta:

diupos										
Pregunta 11.	unta 11. ¿Cuáles de los siguientes grupos tienen centro trivial?									
	a) <i>D</i> ₈ ;	b) <i>A</i> ₃ ;	c) A ₄ ;		d) Q ₈ .					
Pregunta 12. ¿Cuántos diferentes generadores posee el grupo $\mu_{20}(\mathbb{C}) := \{z \in \mathbb{C} \mid z^{20} = 1\}$?										
Respuesta:										
Pregunta 13.	3. Enumere los subgrupos del grupo $\mu_{12}(\mathbb{C})$.									
Respuesta:										
D	Determine el signo de la	(1	2 3 4 5	6 7 8 9) - 0					
	Determine el signo de la	a permutation ₂	1 4 5 3	7 8 9 6	$\in S_9$.					
Respuesta:										
Pregunta 15. ¿Cuál es el máximo posible orden de una permutación $\sigma \in S_7$?										

Pregunta 16. Calcule el orden de las matrices $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ en $GL_2(\mathbb{Z})$.

Respuesta:

Pregunta 17. ¿Cuáles de los siguientes subgrupos son normales en S_4 ?

- a) {id, (1 2 3), (1 3 2)},
- b) {id, (1 2 3 4), (1 3) (2 4), (1 3) (2 4)},
- c) {id, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)},
- d) {id, (1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}.

Pregunta 18. ¿Cuántas matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ con coeficientes en el cuerpo finito \mathbb{F}_p satisfacen ad - bc = 1? Respuesta:

Pregunta 19. ¿Cuáles de los siguientes grupos poseen un número finito de generadores?

- a) Q;
- b) \mathbb{Q}/\mathbb{Z} ; c) \mathbb{Q}^{\times} ;
- d) $SL_2(\mathbb{Z})$.

Pregunta 20. Determine cuáles de las siguientes afirmaciones son ciertas.

- a) Si $H, K \subseteq G$ son subgrupos normales, entonces $H \cap K$ es también normal en G.
- b) Si $K \subseteq H \subseteq G$ es una cadena de subgrupos y K es normal en H, entonces es normal en G.
- c) Si $K \subseteq H \subseteq G$ es una cadena de subgrupos y K es normal en G, entonces es normal en H.
- d) Si $\phi: G \to H$ es un homomorfismo de grupos y $K \subseteq G$ es un subgrupo normal, entonces $\phi(K)$ es un subgrupo normal de H.