SD 204 SVD / PCA

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Plan

Algèbre linéaire

SVD

Pseudo-inverse

Stabilité numérique

ACP

Définition

Interprétation et récursion

Sommaire

Algèbre linéaire

SVD

Pseudo-inverse Stabilité numérique

ACP

Définition Interprétation et récursion

La décomposition spectrale

Théorème spectral

Une matrice symétrique $S \in \mathbb{R}^{n \times n}$ est diagonalisable en base orthonormée, *i.e.*, il existe $\lambda_1 \ge \ldots \ge \lambda_n$ et une matrice orthogonale $U \in \mathbb{R}^{n \times n}$ telle que :

$$S = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\top}$$
 ou $SU = U \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

Rem: Si l'on écrit $U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ cela signifie que :

$$S = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$$

De plus $\forall i \in [1, n], \quad S\mathbf{u}_i = \lambda_i \mathbf{u}_i$

Rappel : une matrice orthogonale $U \in \mathbb{R}^n$ est une matrice telle que

$$\overline{U^{\top}U} = UU^{\top} = \mathrm{Id}_n \text{ ou } \forall i, j = 1, \dots, n, \mathbf{u}_i^{\top}\mathbf{u}_j = \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j}$$

Vocabulaire : les λ_i sont les valeurs propres de S et les $\mathbf{u}_i \in \mathbb{R}^n$

sont les vecteurs propres associés

La décomposition en valeurs singulières (: Singular Value Decomposition, SVD)

Théorème

Pour toute matrice $X \in \mathbb{R}^{n \times p}$, il existe une matrice orthogonale $U \in \mathbb{R}^{n \times n}$ et une matrice orthogonale $V \in \mathbb{R}^{p \times p}$, telles que $U^{\top}XV = \operatorname{diag}(s_1, \dots, s_{\min(n,p)}) = \Sigma \in \mathbb{R}^{n \times p}$

avec
$$s_1 \geqslant s_2 \geqslant \ldots \geqslant s_{\min(n,p)} \geqslant 0$$
, ou encore :
$$X = U \Sigma V^\top$$

avec
$$U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$$
 et $V = [\mathbf{v}_1, \dots, \mathbf{v}_p]$

$$\frac{\mathsf{Rappel}}{\left\langle \mathbf{v}_{i}, \mathbf{v}_{j} \right\rangle = \delta_{i,j}, \quad \forall i, j \in \llbracket 1, n \rrbracket} \left\langle \mathbf{v}_{i}, \mathbf{v}_{j} \right\rangle = \delta_{i,j}, \quad \forall i, j \in \llbracket 1, p \rrbracket$$

<u>Démonstration</u>: diagonaliser $X^{T}X$ Golub et Van Loan (1996)

SVD la suite

<u>Vocabulaire</u> : les s_j sont les valeurs singulières de X; les \mathbf{u}_j (resp. \mathbf{v}_j) sont les vecteurs singuliers à gauche (resp. droite)

Propriété variationnelle de la plus grande valeur singulière

$$s_1 = \begin{cases} \max_{\mathbf{u} \in \mathbb{R}^n, \mathbf{v} \in \mathbb{R}^p} \mathbf{u}^\top X \mathbf{v} \\ \text{s.c.} \|\mathbf{u}\|^2 = 1 \text{ et } \|\mathbf{v}\|^2 = 1 \end{cases}$$

$$\begin{aligned} & \mathsf{Lagrangien}: \mathcal{L}(\mathbf{u}, \mathbf{v}) = \mathbf{u}^\top X \mathbf{v} - \lambda_1 (\|\mathbf{u}\|^2 - 1) - \lambda_2 (\|\mathbf{v}\|^2 - 1) \\ & \mathsf{CNO}: \begin{cases} \nabla_{\mathbf{u}} \mathcal{L} = X \mathbf{v} - 2\lambda_1 \mathbf{u} = 0 \\ \nabla_{\mathbf{v}} \mathcal{L} = X^\top \mathbf{u} - 2\lambda_2 \mathbf{v} = 0 \end{cases} \\ & \Longleftrightarrow \begin{cases} X \mathbf{v} = 2\lambda_1 \mathbf{u} \\ X^\top \mathbf{u} = 2\lambda_2 \mathbf{v} \end{cases} \\ & \Leftrightarrow \begin{cases} X^\top X \mathbf{v} = \alpha \mathbf{v} \\ XX^\top \mathbf{u} = \alpha \mathbf{u} \end{cases} \end{aligned}$$

avec $\alpha = 2\lambda_1\lambda_2$, et donc ${\bf v}$ et ${\bf u}$ sont des vecteurs propres de $X^\top X$ et de XX^\top

La SVD toujours et encore

SVD compacte

On ne garde que les éléments non-nuls de la diagonale

$$X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top} = U_r \operatorname{diag}(s_1, \dots, s_r) V_r^{\top}$$

avec
$$s_i > 0, \forall i \in [1, r]$$
 et $U_r = [\mathbf{u}_1, \dots, \mathbf{u}_r], V_r = [\mathbf{v}_1, \dots, \mathbf{v}_r]$

<u>Rem</u>: r = rg(X) nombre de valeurs singulières (non-nulles)

 $\overline{ ext{Rem}}$: les matrices $\mathbf{u}_i \mathbf{v}_i^ op$ sont toutes de rang 1

Rem: les vecteurs \mathbf{u}_i (resp. les vecteurs \mathbf{v}_i^{\top}) sont des vecteurs orthonormaux qui engendrent le même espace que celui engendré par les colonnes (resp. les lignes) de X

$$|\operatorname{vect}(\mathbf{x}_1,\ldots,\mathbf{x}_p)| = \operatorname{vect}(\mathbf{u}_1,\ldots,\mathbf{u}_r)|$$

SVD et meilleure approximation

Théorème (meilleure approximation de rang k)

Prenons la SVD de
$$X \in \mathbb{R}^{n \times p}$$
 donnée par $X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$ (i.e., $r = \operatorname{rg}(X)$). Si $k < r$ et si $X_k = \sum_{i=1}^k s_i \mathbf{u}_i \mathbf{v}_i^{\top}$ alors
$$\min_{Z \in \mathbb{R}^{n \times p} \ : \ \operatorname{rg}(Z) = k} \|X - Z\|_2 = \|X - X_k\|_2 = s_{k+1}$$

Rem: la norme spectrale de X est définie par

$$|||X|||_2 = \sup_{u \in \mathbb{R}^p, ||u|| = 1} ||Xu|| = s_1(X)$$

Rem: ce théorème est aussi crucial pour l'analyse en composante principale (ACP)

Sommaire

Algèbre linéaire

SVD

Pseudo-inverse

Stabilité numérique

ACP

Définition

Interprétation et récursion

Pseudo-inverse

Définition

Si $X \in \mathbb{R}^{n \times p}$ admet pour SVD $X = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^{\top}$ alors sa pseudo-inverse $X^+ \in \mathbb{R}^{p \times n}$ est définie par :

$$X^+ = \sum_{i=1}^r \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top$$

 $\begin{array}{l} \underline{\mathsf{Rem}} \colon \mathsf{Si} \ X \in \mathbb{R}^{n \times n} \ \text{est inversible } (\textit{i.e., } \mathsf{de \ rang} \ n) \ \mathsf{alors} \\ X = \sum_{i=1}^n s_i \mathbf{u}_i \mathbf{v}_i^\top \ \mathsf{et \ alors} \ X^+ = X^{-1} \\ \\ \underline{\mathsf{D\acute{e}monstration}} \ \colon \qquad XX^+ = \sum_{j=1}^n s_j \mathbf{u}_j \mathbf{v}_j^\top \sum_{i=1}^n \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^\top \\ \\ = \sum_{j=1}^n \sum_{i=1}^n s_j \frac{1}{s_i} \mathbf{u}_j \mathbf{v}_j^\top \mathbf{v}_i \mathbf{u}_i^\top \\ \\ = \sum_{i=1}^n \sum_{i=1}^n s_j \frac{1}{s_i} \delta_{i,j} \mathbf{u}_j \mathbf{u}_i^\top = \sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^\top = \mathrm{Id}_n \end{array}$

SVD et numérique

Les fonctions SVD et pseudo-inverse sont disponibles dans toutes librairies numériques, par exemple Numpy

- Pseudo-inverse : U, s, V = np.linalg.svd(X)
 Attention dans ce cas :
 X=np.dot(U, np.dot(np.diag(S), V))
 If y a aussi plusieurs variantes matrice pleine ou non
 cf. full_matrices=True/False
- Pseudo-inverse : Xinv = np.linalg.pinv(X)

Exo: Vérifier numériquement le théorème de meilleure approximation de rang fixé pour une matrice tirée aléatoirement selon une loi gaussienne (e.g., de taille 9×6 , pour k=3)

Sommaire

Algèbre linéaire

SVD

Pseudo-inverse

Stabilité numérique

ACP

Définition

Interprétation et récursion

Quelques mots de stabilité numérique

Prenons $\hat{\boldsymbol{\theta}} = X^+ \mathbf{y}$ comme solution des moindres carrés. Supposons qu'on observe maintenant non plus \mathbf{y} mais $\mathbf{y} + \Delta$ où Δ est une erreur très petite : $\|\Delta\| \ll \|\mathbf{y}\|$. Alors l'estimateur des moindres carrés pour $\mathbf{y} + \Delta$ par X donne $\hat{\boldsymbol{\theta}}^\Delta = X^+(\mathbf{y} + \Delta)$ $\hat{\boldsymbol{\theta}}^\Delta = \hat{\boldsymbol{\theta}} + X^+ \Delta$

 $\hat{oldsymbol{ heta}}^{\Delta} = \hat{oldsymbol{ heta}} + \sum_{i=1}^r rac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^{ op} \Delta$

Exemple de problème de conditionnement

 $X \in \mathbb{R}^{10 \times 6}$ dont les valeurs singulières sont ci-dessous :

Prochains cours : remèdes possibles

- Régulariser le spectre / les valeurs singulières
- ightharpoonup Contraindre les coefficients de $\hat{ heta}$ à n'être pas trop grands

Une solution rendant ces deux points de vue équivalents : *Ridge Regression* / Régularisation de Tychonoff

Sommaire

Algèbre linéaire

SVD

Pseudo-inverse

Stabilité numérique

ACP

Définition

Interprétation et récursion

ACP

On observe n points x_1, \ldots, x_n dans \mathbb{R}^p , ainsi on créé une matrice $X = [x_1, \ldots, x_n]^\top$ matrice $n \times p : n$ observations (lignes), p features (colonnes)

Rem: on doit recentrer les points pour qu'ils aient une moyenne nulle $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (on peut aussi mettre à l'échelle pour avoir un écart-type similaire par *feature*)

Analyse en Composante Principale, ACP (: Principal Component Analysis, PCA)

Paramètre k: nombre d'axes pour représenter un nuage de n points (x_1, \ldots, x_n) , représentés par les lignes de $X \in \mathbb{R}^{n \times p}$.

Cette méthode ${\bf compresse}$ le nuage de points de dimension p en un nuage de dimension k

L'ACP (de niveau k) consiste à effectuer la SVD de X, et à ne garder que les k axes principaux pour représenter le nuage.

$$X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top} \longrightarrow \sum_{i=1}^{k} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

On appelle axes principaux les k vecteurs $\mathbf{v}_1, \dots, \mathbf{v}_k$, et en général $k \ll p$ (e.g., k = 2, pour une visualisation planaire)

Sommaire

Algèbre linéaire

SVD

Pseudo-inverse

Stabilité numérique

ACP

Définition

Interprétation et récursion

Data and mean

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

Rem: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe ${f v}$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 ${\bf v}$ tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien)

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K v tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien) pour $k=1,\ldots,K$ faire

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K \mathbf{v} tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien) pour $k = 1, \dots, K$ faire $\mathbf{w} \leftarrow X\mathbf{v}$

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

Rem: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe ${\bf v}$

Algorithme : Méthode de la puissance itérée

Entrées :
$$X \in \mathbb{R}^{n \times p}$$
, itérations K \mathbf{v} tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien) pour $k = 1, \dots, K$ faire $\mathbf{w} \leftarrow X\mathbf{v}$ $\mathbf{v} \leftarrow X^{\mathsf{T}}\mathbf{w}$

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \argmax_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 ${\bf v}$ tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien)

pour
$$k = 1, \dots, K$$
 faire

$$\mathbf{w} \leftarrow X\mathbf{v}$$

$$\mathbf{v} \leftarrow X^{\top}\mathbf{w}$$

$$\mathbf{v} \leftarrow \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Sorties : Axe principale (approché) $\mathbf{v}_1 = \mathbf{v}$

Premier axe principal

Maximiser la fonction objectif suivante en ${f v}$:

$$\mathcal{L}(\mathbf{v}, \lambda) = (X\mathbf{v})^{\top} (X\mathbf{v}) - \lambda (\mathbf{v}^{\top} \mathbf{v} - 1) = \mathbf{v}^{\top} X^{\top} X \mathbf{v} - \lambda (\mathbf{v}^{\top} \mathbf{v} - 1)$$

 λ : multiplicateur de Lagrange

Conditions d'optimalité du premier ordre en un extremum

$$\frac{\partial \mathcal{L}(\mathbf{v}_1, \lambda)}{\partial \mathbf{v}} = 0 \Leftrightarrow X^{\top} X \mathbf{v}_1 = \lambda \mathbf{v}_1$$

La matrice de Gram $X^{\top}X$ est diagonalisable (symétrique) donc si \mathbf{v}_1 est un extremum alors c'est un vecteur propre.

<u>Rem</u>: on normalise \mathbf{v}_1 pour que $\|\mathbf{v}_1\| = 1$, ainsi $\lambda = \mathbf{v}_1^\top X^\top X \mathbf{v}_1$ et \mathbf{v}_1 est un vecteur propre, de valeur propre λ maximale

Aspect récursif de l'ACP - Déflation

<u>Construction récursive</u> : définir les axes principaux en partant du plus important et en descendant

Par récurrence, on définit le $k^{\rm e}$ axe pour qu'il soit orthogonal aux axes principaux précédents :

$$\mathbf{v}_k = \underset{\mathbf{v} \in \mathbb{R}^p, \, \mathbf{v}^\top \mathbf{v}_1 = \dots = \mathbf{v}^\top \mathbf{v}_{k-1} = 0, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \|X\mathbf{v}\|^2$$

- le premier axe maximise la variance des données projetées sur l'axe porté par ce vecteur
- le deuxième axe est celui orthogonal au premier, de variance projetée maximale
- etc.

Nouvelle représentation des données

Les axes (de direction) $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^p$ sont appelés axes principaux ou axes factoriels, les nouvelles variables $\mathbf{c}_j = X\mathbf{v}_j, j = 1, \dots, p$ sont appelées composantes principales

Nouvelle représentation :

La matrice XV_k (avec $V_k = [\mathbf{v}_1, \dots, \mathbf{v}_k]$) est la matrice représentant les données dans la base des k premiers vecteurs propres

Reconstruction dans l'espace original (débruiter) :

- Reconstruction "parfaite" pour $\mathbf{x} \in \mathbb{R}^p$: $\mathbf{x} = \sum_{j=1}^p (\mathbf{x}^{ op} \mathbf{v}_j) \mathbf{v}_j$
- lacktriangle Reconstruction avec perte d'information : $\hat{\mathbf{x}} = \sum_{j=1}^k (\mathbf{x}^ op \mathbf{v}_j) \mathbf{v}_j$

Références I

► G. H. Golub and C. F. van Loan.

Matrix computations.

Johns Hopkins University Press, Baltimore, MD, third edition, 1996.