Análisis II / Matemática 3 / Análisis Matemático II Segundo cuatrimestre 2021 - Primer parcial (13/10/2021) TEMA 2

1	2	3	4	Calificación

APELLIDO Y NOMBRE:

NRO. DE LIBRETA:

CARRERA:

Ejercicio 1

Sea
$$C := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z = x^2 + y^2, y \ge 0\}.$$

- (a) Dar una parametrización regular de C que empiece en el (1,0,1) y termine en el (-1,0,1).
- (b) Calcular $\int_{\mathcal{C}}(0,y,x)\cdot \mathbf{ds}$, donde C está orientada como en el ítem anterior.

Ejercicio 2

Sea $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ el campo dado por

$$\mathbf{F}(x,y) = \left(x \operatorname{sen}(\sqrt{x^2 + y^2}) - \frac{y}{x^2 + y^2}, y \operatorname{sen}(\sqrt{x^2 + y^2}) + \frac{x}{x^2 + y^2}\right).$$

Calcular $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$, donde \mathcal{C} es la curva dada por la unión de los dos segmentos de recta

$$\begin{cases} y = 1 - x, & 0 \le y \le 1 \\ y = x - 1, & -1 \le y \le 0 \end{cases}$$

recorrida desde el (0,-1) al (0,1).

Ejercicio 3 Sea $C := \{(x, y, z) \in \mathbb{R}^3 : z = 2, x^2 + y^2 = 1\}$ orientada de manera tal que al proyectarla en el plano xy se recorra en sentido positivo. Calcular $\int_{C} F \cdot \mathbf{ds}$, donde

$$F(x,y,z) = \left(\frac{x}{x^2 + y^2 + (z-2)^2} + \frac{(z-2)^3}{3}, \frac{y}{x^2 + y^2 + (z-2)^2} + \frac{x^3}{3}, \frac{z-2}{x^2 + y^2 + (z-2)^2} + \frac{y^3}{3}\right).$$

Ejercicio 4 Sea \mathbf{F} el campo vectorial dado por $\mathbf{F}(x,y,z) = \left(sen(z^2) + 3xy, e^{x^3} - y^2, x^2 - yz\right)$. Calcular el flujo de \mathbf{F} a través de la superficie S dada por la sección de la esfera de ecuación $x^2 + y^2 + (z - 3)^2 = 5$ acotada entre los planos z = 1 y z = 3, orientada con la normal interior.

Justifique todas las respuestas, no omita detalles y sea claro al escribir.