Q1. Fig 1 below shows 2 equivalent circuits (a) and (b). In circuit (a) the 2 coupled inductors have self- inductances L₁ and L₂ as shown and a mutual inductance M. Find L_A, L_B and L_C in terms of L₁, L₂ and M

Figure 1

In (a),
$$V_1=L_1\frac{dI_1}{dt}+M\frac{dI_2}{dt}$$
 and $V_2=L_2\frac{dI_2}{dt}+M\frac{dI_1}{dt}$

In (b), the current through LB is $I_1 + I_2$, hence

$$V_1 = L_A \frac{dI_1}{dt} + L_B \frac{d}{dt} (I_1 + I_2)$$
 and $V_2 = L_C \frac{dI_2}{dt} + L_B \frac{d}{dt} (I_1 + I_2)$

To make (a) and (b) equivalent, we will have

$$L_1 \frac{dI_1}{dt} + M \frac{dI_2}{dt} = L_A \frac{dI_1}{dt} + L_B \frac{d}{dt} (I_1 + I_2) \text{ and } L_2 \frac{dI_2}{dt} + M \frac{dI_1}{dt} = L_C \frac{dI_2}{dt} + L_B \frac{d}{dt} (I_1 + I_2)$$

So
$$L_1 = L_A + L_B$$
, $M = L_B$, $L_2 = L_C + L_B$

$$L_A = L_1 - M$$

$$L_B = M$$

$$L_C = L_2 - M$$

Q2. Use a series of source transformations to find the current i_{\circ} in the circuit given in the Fig 2 below.

We can eliminate the resistor in series with 2A current source and the resistor in parallel with the 34V voltage source. After three times of voltage/current conversion, we have $I_o=-0.85A$

Q3. Refer circuit below. Find i(t) (current flowing through the 1 ohm resistor) in terms of $i_s(t)$, $v_{S1}(t)$, $v_{S2}(t)$.

Use mesh current analysis, we have three loops of current I_1 , I_2 , I_3

Q4. The circuit below is a commonly used equivalent circuit used to model the ac behavior of a bipolar junction transistor amplifier circuit. If $g_m = 38$ m, compute v_{out} .

First, we consider the left circuit.

The eulvalent parallel resistance is $3K\Omega \mid 15K\Omega = 2.5K\Omega$

Use voltage divider, we got
$$V_{\pi}=3sin10t*\frac{2.5K\Omega}{2.5K\Omega+300\Omega}=2.68sin10t$$

Hence, the dependent source $g_m V_\pi = 0.038*2.68 sin 10t = 0.1018 sin 10t$ A

$$V_{out} = -(g_m V_\pi * 1K\Omega) = -101.8 sin 10t \ V$$