Intermède

Trigonométrie et nombres complexes

Méthodes et savoirs-faire

Le cercle trigonométrique

Trigonométrie

Compétences attendues

I. Techniques utilisant les nombres complexes

1. Linéarisation

$$\cos^{3}(t) = \cdots$$
$$\sin^{4}(t) = \cdots$$
$$\cos^{2}(x)\sin^{2}(x) = \cdots$$
$$etc.$$

2. Défactorisation

$$\cos(a)\sin(b) = \frac{\sin(a+b) + \sin(b-a)}{2}$$
$$\cos(a)\cos(b) = \cdots$$
$$\sin(a)\sin(b) = \cdots$$

3. Technique de l'angle-moitié

$$e^{i\theta} + e^{i\theta'} = \cdots$$

$$e^{i\theta} - e^{i\theta'} = \cdots$$

$$1 + e^{i\theta} = \cdots$$

$$1 - e^{i\theta} = \cdots$$

4. Formules de factorisation

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
$$\cos(p) - \cos(q) = \cdots$$
$$\sin(p) + \sin(q) = \cdots$$
$$\sin(p) - \sin(q) = \cdots$$

5. Délinéarisation

$$\cos(3t) = \cos^{3}(t) - 3\cos(t)\sin^{2}(t)$$
$$\cos(5t) = \cdots$$
$$\sin(3t) = \cdots$$
$$etc.$$

6. Sommation

$$\sum_{k=0}^{n} \cos(kt) = \cdots$$
$$\sum_{k=0}^{n} \sin(kt) = \cdots$$

II. Techniques utilisant ou non les nombres complexes

1. Formules d'addition

$$cos(a + b) = \cdots$$

$$sin(a + b) = \cdots$$

$$cos(a - b) = \cdots$$

$$sin(a - b) = \cdots$$

2. Formules pour tangente

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$
$$\tan(a-b) = \cdots$$

3. Formules de duplication

$$cos(2a) = 2cos2(a) - 1$$

$$sin(2a) = 2sin(a)cos(a)$$

III. Techniques sans les complexes

1. Valeurs remarquables

$$\cos\left(\frac{\pi}{3}\right) = \cdots$$
$$\sin\left(\frac{\pi}{6}\right) = \cdots$$
$$etc.$$

2. Angles associés

$$\cos(\pi - x) = \cdots$$

$$\sin(-x) = \cdots$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cdots$$

$$etc.$$

3. Trouver la phase et l'amplitude

Transformer $A\cos(t) + B\sin(t)$ en $C\sin(t+\varphi)$

4. Graphes de sin, cos et tan

À connaître absolument!

5. Dérivées

$$cos' = \cdots$$

$$sin' = \cdots$$

$$tan' = \frac{1}{cos^2} = 1 + tan^2$$

(Cx O)	Resou dre	cos x + cos 2x	= Cos O + cos	32
<u>5) De</u>	elinearisation.			
On veut	transformer	une expressi	ion du tyre	
Paisont in	tervenix	,	une expression et sin(E)	
Exem	de: Soit x	· e R	i 32) Astoce	
Or	$e^{i3\infty} = (e^{i}$	$\left(\cos \frac{1}{2}\right)^{3} = \left(\cos \frac{1}{2}\right)^{3}$	$5 \times + i \sin \times $ $)^3$	
=	$\cos^3(x) + 3$ + $(-i\sin^3(x))$	$\cos^2(x)$ $\sin(x)$	$-3i\cos(x)$	$\sin^2(x)$
			$\int sin(x) - sin$	
CCI		$3(4-\sin^2(x))$ $(x) + 3\sin(x)$) sinfe) - sin3(:	x)
Applica		mes de Teho		
6) 50	ommation			
		= 2 1 1c=0 Astrice Re(1)	Re (eikt)	
		ristuce (1/e/)		

