Certification of Arctic Termination

Adam Koprowski

Eindhoven University of Technology Department of Mathematics and Computer Science

(joint work with Frédéric Blanqui and Johannes Waldmann)

7 March 2008 TCS seminar, VU

Outline

- CoLoR
 - Background: termination of rewriting
 - Why?... motivation
 - How?... CoLoR's approach to certification
 - When?... history of the project
 - What?... overview of the content
 - Related work
 - Certified competition
- Arctic Termination
 - Monotone Algebras
 - Polynomial Interpretations
 - Matrix Interpretations
 - Arctic Interpretations
 - Arctic Below Zero Interpretations
 - Performance & Summary

Outline

- CoLoR
 - Background: termination of rewriting
 - Why?... motivation
 - How?... CoLoR's approach to certification
 - When?... history of the project
 - What?... overview of the content
 - Related work
 - Certified competition
- Arctic Termination
 - Monotone Algebras
 - Polynomial Interpretations
 - Matrix Interpretations
 - Arctic Interpretations
 - Arctic Below Zero Interpretations
 - Performance & Summary

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{rcl} 0+y & = & y \\ s(x)+y & = & s(x+y) \end{array}$$

Example (Computing with plus

Now let us do some some maths... how about 2 + 2?

Definitio

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc} 0+y & \to & y \\ s(x)+y & \to & s(x+y) \end{array}$$

Example (Computing with plus

Now let us do some some maths... how about 2 + 2?

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc} 0+y & \to & y \\ s(x)+y & \to & s(x+y) \end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc} 0+y & \to & y \\ s(x)+y & \to & s(x+y) \end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$\begin{array}{l} s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow \\ s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0)))) \end{array}$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc} 0+y & \to & y \\ s(x)+y & \to & s(x+y) \end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$egin{aligned} s(s(0)) + s(s(0)) &
ightarrow s(s(0) + s(s(0))))
ightarrow s(s(0+s(s(0)))) &
ightarrow s(s(s(s(0)))) \end{aligned}$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$egin{aligned} s(s(0)) + s(s(0)) &
ightarrow s(s(0) + s(s(0)))
ightarrow s(s(s(s(0))))
ightarrow s(s(s(s(0)))) \end{aligned}$$

Definition

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Is undecidable.
- Is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex, so reliability is an issue.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, ...)
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, ...),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, ...),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, ...),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, ...),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 difficult, tool dependent, extra work with every change, . . .
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs using results from CoLoB

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 - \Rightarrow difficult, tool dependent, extra work with every change, \dots
 - CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Hainbow: a tool for translation from proofs in TPG format to Coqproofs using results from CoLoR.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.
Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 difficult, tool dependent, extra work with every change, ...
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 - \Rightarrow difficult, tool dependent, extra work with every change, \dots
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.
Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 difficult, tool dependent, extra work with every change, . . .
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.
Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 difficult tool dependent extra work with every charters.
 - \Rightarrow difficult, tool dependent, extra work with every change, ...
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoF

http://color.loria.fr

CoLoR: Coq Library on Rewriting and Termination.
Goal: certification of termination proofs produced by various termination provers.

- Possibility: certification of tools source code.
 difficult, tool dependent, extra work with every change, . . .
- CoLoR's approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR's architecture overview

CoLoR's architecture overview

CoLoR's architecture overview

History

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

June 2007

History

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

lune 2007

History

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004 March 2005

July 2006

May 2007

lune 2007

History

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

une 2007

History

Project started (Blanqui)

First release

First certified proofs

First certification workshop

First certified competition

March 2004

March 2005

July 2006

May 2007

June 2007

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations

Transformation techniques:

- dependency pairs
- rule elimination
- arguments filtering
- conversion from algebraic to varyadic terms

[Hinderer

[Coupet-Grimal, Delobel

[Koprowski]

ואותם ki. Zantema

[Koprowski, Waldmann

[Blanqui

Blanqu

Blanqui

[Diariqui] [Diangui]

[Blanqui]

Termination criteria:

polynomial interpretations

- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations

Transformation techniques:

- dependency pairs
- rule elimination
- arguments filtering
- conversion from algebraic to varyadic terms

[Hinderer]

[Koprowski

[Coupet-Grimal, Delobel

(Rlangui

7antema

Koprowski, Waldmann

[Rlandui]

Bianqui

2langui

Bianqui

[Blanqui]

Termination criteria:

- polynomial interpretations
- multiset ordering

- matrix interpretations
- Transformation techniques:

[Hinderer] [Koprowski]

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations

• Transformation techniques:

- dependency pairs
- rule elimination
- arguments filtering
- conversion from algebraic to varyadic terms

[Hinderer]
[Koprowski]
[Coupet-Grimal, Delobel]
[Koprowski]
[Blanqui]
[Koprowski, Zantema]
[Koprowski, Waldmann]

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic t

[Hinderer] [Koprowski] [Coupet-Grimal, Delobel] [Koprowski]

[Blanqui] [Koprowski, Zantema] (oprowski, Waldmann)

[Blanqui]

[Blanqui]

Blanqui

[Blanqui]

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - a guillents intering
 - conversion from algebraic to varyadic terms

[Hinderer] [Koprowski] [Coupet-Grimal, Delobel] [Koprowski] [Blangui]

[Koprowski, Zantema

[Blanqui]

Blanqui

Blanqui

[Dianqui] [Dianqui]

[Blanqui]

- Termination criteria:
 - polynomial interpretations
 - multiset ordering
 - recursive path ordering
 - higher-order recursive path ordering
 - dependency graph cycles
 - matrix interpretations
 - arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - a argumente filtorina
 - arguments intering
 - conversion from algebraic to varyadic terms

[Hinderer]
[Koprowski]
[Coupet-Grimal, Delobel]
[Koprowski]
[Blanqui]
[Koprowski, Zantema]

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination

 - arguments filtering
 - conversion from algebraic to varvadic terms

[Hinderer]
[Koprowski]
[Coupet-Grimal, Delobel]
[Koprowski]
[Blanqui]
[Koprowski, Zantema]
[Koprowski, Waldmann]

Termination criteria:

- polynomial interpretations
- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic terms

[Hinderer] [Koprowski] [Coupet-Grimal, Delobel] [Koprowski]

[Blanqui] [Koprowski, Zantema] [Koprowski, Waldmann]

> [Blanqui] [Blanqui]

[Blanqui

- Termination criteria:
 - polynomial interpretations
 - multiset ordering
 - recursive path ordering
 - higher-order recursive path ordering
 - dependency graph cycles
 - matrix interpretations
 - arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic terms

[Hinderer] [Koprowski] [Coupet-Grimal, Delobel] [Koprowski] [Blanqui] [Koprowski, Zantema]

[Koprowski, Waldmann]

[Blanqui]

Blanqu

Blanqui

Blanqui

- Termination criteria:
 - polynomial interpretations
 - multiset ordering
 - recursive path ordering
 - higher-order recursive path ordering
 - dependency graph cycles
 - matrix interpretations
 - arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic terms

[Hinderer] [Koprowski] [Coupet-Grimal, Delobel] [Koprowski] [Blanqui]

[Koprowski, Zantema] [Koprowski, Waldmann]

[Blanqui]

[Blanqui]

Blanqui

Blanqui]

- Termination criteria:
 - polynomial interpretations
 - multiset ordering
 - recursive path ordering
 - higher-order recursive path ordering
 - dependency graph cycles
 - matrix interpretations
 - arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic terms

[Hinderer] [Koprowski]

[Coupet-Grimal, Delobel]

[Koprowski] [Blanqui]

[Koprowski, Zantema]

[Koprowski, Waldmann]

[Blanqui]

[Blanqui] [Blanqui]

Blangui

Blanqui

Termination criteria:

•	rlod	vnomial	inter	pretations
•	יוטט	viioiiiiai	11116	piclalions

- multiset ordering
- recursive path ordering
- higher-order recursive path ordering
- dependency graph cycles
- matrix interpretations
- arctic interpretations
- Transformation techniques:
 - dependency pairs
 - rule elimination
 - arguments filtering
 - conversion from algebraic to varyadic terms

[Hinderer]

[Koprowski] [Coupet-Grimal, Delobel]

> [Koprowski] [Blanqui]

[Koprowski, Zantema]

[Koprowski, Waldmann]

[Blanqui]

[Blanqui]

[Blanqui]

[Blanqui]

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski]

[Koprowski]

r. Blangui

lınderer, Blanquı

[Hinderer

- $\,\bullet\,$ \approx 50.000 lines of code (more than half the size of the standard library.
- ullet pprox 1.000 definitions and pprox 2.500 lemmas

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski,Zantema]

[Koprowski

[Blanqui

Hinderer, Blanqui

[Hinderer]

- $\,\circ\,\approx 50.000$ lines of code (more than half the size of the standard library.
- $\bullet~\approx$ 1.000 definitions and \approx 2.500 lemmas.

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski] [Koprowski,Zantema]

[Koprowski]

ıвıanquı er. Blanqui

[Hinderer

- $\,\,$ \approx 50.000 lines of code (more than half the size of the standard library.
- ullet pprox 1.000 definitions and pprox 2.500 lemmas

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski] [Koprowski,Zantema] [Koprowski]

Koprowski] [Blanqui]

Hinderer, Blanqui

[Hinderer

- $\,\,$ \approx 50.000 lines of code (more than half the size of the standard library.
- ullet pprox 1.000 definitions and pprox 2.500 lemmas.

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

In total:

- $\bullet~\approx 50.000$ lines of code (more than half the size of the standard library.
- $\bullet \approx 1.000$ definitions and ≈ 2.500 lemmas

[Koprowski] [Koprowski,Zantema] [Koprowski] [Koprowski] [Blanqui]

> r, Bianquij [Hinderer]

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

In total:

ho pprox 50.000 lines of code (more than half the size of the standard library.

ullet pprox 1.000 definitions and pprox 2.500 lemmas

[Koprowski]
[Koprowski,Zantema]
[Koprowski]
[Koprowski]
[Blanqui]

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

In total:

ho pprox 50.000 lines of code (more than half the size of the standard library.

 $_{ullet} pprox 1.000$ definitions and pprox 2.500 lemmas

[Koprowski] [Koprowski,Zantema] [Koprowski] [Koprowski]

[Blanqui] [Hinderer, Blanqui]

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski,Zantema] [Koprowski]

[Koprowski]

[Blanqui] r Blanquil

[Hinderer, Blanqui]

[Hinderer]

In total:

 ≈ 50.000 lines of code (more than half the size of the standard library.

ullet pprox 1.000 definitions and pprox 2.500 lemmas.

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.
- In total:
 - \$\infty\$ 50.000 lines of code (more than half the size of the standard library.
 - $_{ullet} pprox 1.000$ definitions and pprox 2.500 lemmas

[Koprowski] [Koprowski,Zantema] [Koprowski]

[Koprowski] [Blanqui]

[Hinderer, Blanqui]

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski,Zantema] [Koprowski]

[Koprowski]

[Blanqui]

[Hinderer, Blanqui]

[Hinderer]

- $\bullet~\approx 50.000$ lines of code (more than half the size of the standard library.
- ullet pprox 1.000 definitions and pprox 2.500 lemmas.

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski,Zantema] [Koprowski]

[Koprowski]

[Blanqui]

[Hinderer, Blanqui]

[Hinderer]

- $\bullet \approx$ 50.000 lines of code (more than half the size of the standard library.
- $\bullet \approx$ 1.000 definitions and \approx 2.500 lemmas.

General libraries:

- matrices
- semi-rings
- simply typed lambda-terms
- finite multisets
- varyadic terms
- algebraic terms with symbols of fixed arity
- integer polynomials with multiple variables
- lists, vectors, relations, etc.

[Koprowski]

[Koprowski,Zantema] [Koprowski]

[Koprowski]

[Blanqui]

[Hinderer, Blanqui]

[Hinderer]

- $\bullet \approx$ 50.000 lines of code (more than half the size of the standard library.
- $\bullet \approx$ 1.000 definitions and \approx 2.500 lemmas.

Related work

CoLoR project
 Authors: Blanqui, . . .

Tool: T-TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME, ...

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Related work

CoLoR project

Authors: Blanqui, ...
Tool: T-TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME, ...

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Related work

CoLoR project

Authors: Blanqui, ...
Tool: T-TPA, ...

Proof assistant: Cog

A3PAT project

Authors: Contejean, ...

Tool: CiME, ...

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Certified competition

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR

Certified competition

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR

Certified competition

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:

CiME + A3PAI		
TPA + CoLoR		

354 • $T_TT_2 + CoLoR$ 289

317

Outline

- CoLoR
 - Background: termination of rewriting
 - Why?... motivation
 - How?... CoLoR's approach to certification
 - When?... history of the project
 - What?... overview of the content
 - Related work
 - Certified competition
- Arctic Termination
 - Monotone Algebras
 - Polynomial Interpretations
 - Matrix Interpretations
 - Arctic Interpretations
 - Arctic Below Zero Interpretations
 - Performance & Summary

Monotone algebras

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \to A$ is *monotone* with respect to a binary relation \rhd on A if

$$a_i \rhd a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \rhd [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition (Monotone Σ -algebras)

A weakly monotone Σ -algebra $(A,[\cdot],>,\gtrsim)$ is a Σ -algebra $(A,[\cdot])$ equipped with two binary relations $>,\gtrsim$ on A such that

- > is well-founded:
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Monotone algebras

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition (Monotone Σ -algebras)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that

- > is well-founded;
- \bullet > \cdot \gtrsim \subseteq >;
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Monotone algebras

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

ℓ ≳_T r for every rule ℓ → r in R ∪ S and
 ℓ >_T r for every rule ℓ → r in R'.

Then $SN(R_{top}/S)$ implies $SN((R \cup R')_{top}/S)$.

Monotone algebras

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Then $SN(R_{top}/S)$ implies $SN((R \cup R')_{top}/S)$.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1 / \rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- *termination*: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: SN(^{top}_R / →_S) (important in the dependency pairs setting).

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

- top rewrite relation: $t \stackrel{\mathsf{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r \sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

- Interpretation domain: N.
- Semi-ring computation structure: ⟨N,+,*⟩.

Example

$$x*(y+z) \to x*y+x*z$$

$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$

$$[x*(y+z)] = 2x+2(y+z+2)+2x(y+z+2)+1$$

$$(*y+x*z] = (2x+2y+2xy+1)+(2x+2z+2xz+1)+2$$

- Interpretation domain: N.
- Semi-ring computation structure: $(\mathbb{N}, +, *)$.

Example

$$x*(y+z) \to x*y+x*z$$

$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$

$$(y+z)] = 2x+2(y+z+2)+2x(y+z+2)+1$$

$$[x+x*z] = (2x+2y+2xy+1)+(2x+2z+2xz+1)+2$$

To obtain strict monotonicity we require that for every interpretation [f(x₁,...,x_n)], ∀i,∃c > 0, c * x_i ∈ [f(x₁,...,x_n)].

- Interpretation domain: \mathbb{N} .
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.

Example

$$x*(y+z) \to x*y+x*z$$

$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$

$$[x*(y+z)] = 2x+2(y+z+2)+2x(y+z+2)+1$$

$$(*y+x*z] = (2x+2y+2xy+1)+(2x+2z+2xz+1)+2$$

- Interpretation domain: \mathbb{N} .
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.

Example

- Interpretation domain: \mathbb{N} .
- Semi-ring computation structure: $(\mathbb{N}, +, *)$.

Example

$$x * (y + z) \rightarrow x * y + x * z$$
$$[x + y] = x + y + 2, \qquad [x * y] = 2x + 2y + 2xy + 1$$
$$[x * (y + z)] = 2x + 2(y + z + 2) + 2x(y + z + 2) + 1$$
$$[x * y + x * z] = (2x + 2y + 2xy + 1) + (2x + 2z + 2xz + 1) + 2$$

- Interpretation domain: \mathbb{N} .
- Semi-ring computation structure: $(\mathbb{N}, +, *)$.

Example

$$x*(y+z) \to x*y+x*z$$
$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$
$$[x*(y+z)] = 2x+2y+2z+4+2xy+2xz+4x+1$$
$$[x*y+x*z] = 2x+2y+2xy+1+2x+2z+2xz+1+2$$

- Interpretation domain: \mathbb{N} .
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.

Example

$$x * (y + z) \rightarrow x * y + x * z$$

$$[x + y] = x + y + 2, \qquad [x * y] = 2x + 2y + 2xy + 1$$

$$[x * (y + z)] = 6x + 2y + 2z + 2xy + 2xz + 5$$

$$[x * y + x * z] = 4x + 2y + 2z + 2xy + 2xz + 4$$

- Interpretation domain: N.
- Semi-ring computation structure: $(\mathbb{N}, +, *)$.

Example

$$x * (y + z) \rightarrow x * y + x * z$$

$$[x + y] = x + y + 2, \qquad [x * y] = 2x + 2y + 2xy + 1$$

$$[x * (y + z)] = 6x + 2y + 2z + 2xy + 2xz + 5$$

$$[x * y + x * z] = 4x + 2y + 2z + 2xy + 2xz + 4$$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathbf{b}(\mathbf{a}(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Now we need to restrict to linear interpretations
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} x$$

- Now we need to restrict to linear interpretations
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix} x$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$a(a(x)) \rightarrow a(b(a(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \times + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$[\mathsf{a}(\mathsf{b}(\mathsf{a}(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

Example

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $a(a(x)) \rightarrow a(b(a(x))).$

- Now we need to restrict to linear interpretations
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$(\mathbf{a}(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

Example

$$a(a(x)) \to a(b(a(x))).$$

$$[a(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [b(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[a(a(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$[a(b(a(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Now we need to restrict to linear interpretations.

• Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\begin{aligned} \mathsf{a}(\mathsf{a}(x)) &\to \mathsf{a}(\mathsf{b}(\mathsf{a}(x))). \\ [\mathsf{a}(x)] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right), \qquad [\mathsf{b}(x)] &= \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{a}(x))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{b}(\mathsf{a}(x)))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \end{aligned}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i > \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} > \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\begin{aligned} \mathsf{a}(\mathsf{a}(x)) &\to \mathsf{a}(\mathsf{b}(\mathsf{a}(x))). \\ [\mathsf{a}(x)] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right), \qquad [\mathsf{b}(x)] &= \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{a}(x))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{b}(\mathsf{a}(x)))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \end{aligned}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{N}, +, * \rangle$.
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\begin{aligned} \mathsf{a}(\mathsf{a}(x)) &\to \mathsf{a}(\mathsf{b}(\mathsf{a}(x))). \\ [\mathsf{a}(x)] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right), \qquad [\mathsf{b}(x)] &= \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{a}(x))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \\ [\mathsf{a}(\mathsf{b}(\mathsf{a}(x)))] &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}\right) x + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right) \end{aligned}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation $[f(x_1,...,x_n)] = F_1x_1 + ... F_nx_n + \vec{f}$ we have $\forall i, (F_i)_{1,1} > 0$.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite $(\vec{f_1})$.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ⇒ for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + f$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (f_1) .

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite $(\vec{f_1})$.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite $(\vec{f_1})$.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + f$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (f_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\bullet \ \vec{u} > \vec{v} \text{ iff } \forall i, \vec{u}_i \gg \vec{v}_i.$
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + f$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite $(\vec{f_1})$.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ullet \Rightarrow full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, ..., x_n)] = F_1 x_1 + ... F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- $\bullet \Rightarrow$ full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, ..., x_n)] = F_1 x_1 + ... F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs.
- \bullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{f}_1) .

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but 5 ⊕ 6 = 6 ≯ 6 = 3 ⊕ 6. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \bullet \Rightarrow for every interpretation $[f(x_1,\ldots,x_n)]=F_1x_1+\ldots F_nx_n+\tilde{f}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite $(\tilde{f_1})$.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Semi-ring computation structure: $(A_{\mathbb{N}}, max, +)$.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall i, \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall i, \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs.
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{t}$ we require $\exists i$, finite $((F_i)_{1,1})$ or finite (\vec{t}_1) .

$$\{\operatorname{cac} \to \epsilon, \ \operatorname{aca} \to \operatorname{a^4} \ / \ \epsilon \to \operatorname{c^4}\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[\operatorname{cac}](x) = \begin{pmatrix} 0 & -\infty & 0 \\ 1 & 0 & 1 \\ 0 & -\infty & 0 \end{pmatrix} x \quad [\operatorname{aca}](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} x \quad [\operatorname{a}^4](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x$$

$$\{c\,a\,c \to \epsilon, \ a\,c\,a \to a^4 \ / \ \epsilon \to c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[\operatorname{cac}](x) = \begin{pmatrix} 0 & -\infty & 0 \\ 1 & 0 & 1 \\ 0 & -\infty & 0 \end{pmatrix} x \quad [\operatorname{aca}](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} x \quad [\operatorname{a}^4](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x$$

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[\operatorname{cac}](x) = \begin{pmatrix} 0 & -\infty & 0 \\ 1 & 0 & 1 \\ 0 & -\infty & 0 \end{pmatrix} x \quad [\operatorname{aca}](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} x \quad [\operatorname{a}^4](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x$$

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[\operatorname{cac}](x) = \begin{pmatrix} 0 & -\infty & 0 \\ 1 & 0 & 1 \\ 0 & -\infty & 0 \end{pmatrix} x \quad [\operatorname{aca}](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} x \quad [\operatorname{a}^4](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x$$

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x + \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[\operatorname{cac}](x) = \begin{pmatrix} 0 - \infty & 0 \\ 1 & 0 & 1 \\ 0 - \infty & 0 \end{pmatrix} x \quad [\operatorname{aca}](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} x \quad [\operatorname{a}^4](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x$$

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- \bullet >, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- \bullet >, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

while x > y do x := x - 1;
cond(true, x, y)
$$\rightarrow$$
 cond(gr(x, y), p(x), y), $gr(s(x), s(y)) \rightarrow gr(x, y)$, $gr(0, x) \rightarrow false$, $gr(s(x), 0) \rightarrow true$, $p(0) \rightarrow 0$, $p(s(x)) \rightarrow x$
$$cond^{\sharp}(true, x, y) \rightarrow cond^{\sharp}(gr(x, y), p(x), y)$$

$$[cond^{\sharp}(x, y, z)] = (0)x + (0)y + (-\infty)z + (0), \quad [0] = (0),$$

$$[cond(x, y, z)] = (0)x + (2)y + (-\infty)z + (0), \quad [false] = (0),$$

$$[gr(x, y)] = (-1)x + (-\infty)y + (0), \quad [true] = (2),$$

$$[p(x)] = (-1)x + (0), \quad [s(x)] = (2)x + (3).$$

$$[cond^{\sharp}(true, x, y)] = (0)x + (-\infty)y + (0)$$

while x > y do x := x - 1;
$$\operatorname{cond}(\operatorname{true}, x, y) \to \operatorname{cond}(\operatorname{gr}(x, y), \operatorname{p}(x), y), \quad \operatorname{gr}(\operatorname{s}(x), \operatorname{s}(y)) \to \operatorname{gr}(x, y), \\ \operatorname{gr}(0, x) \to \operatorname{false}, \quad \operatorname{gr}(\operatorname{s}(x), 0) \to \operatorname{true}, \\ \operatorname{p}(0) \to 0, \quad \operatorname{p}(\operatorname{s}(x)) \to x \\ \operatorname{cond}^{\sharp}(\operatorname{true}, x, y) \to \operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y) \\ [\operatorname{cond}^{\sharp}(x, y, z)] = (0)x + (0)y + (-\infty)z + (0), \quad [0] = (0), \\ [\operatorname{cond}(x, y, z)] = (0)x + (2)y + (-\infty)z + (0), \quad [\operatorname{false}] = (0), \\ [\operatorname{gr}(x, y)] = (-1)x + (-\infty)y + (0), \quad [\operatorname{true}] = (2), \\ [\operatorname{p}(x)] = (-1)x + (0), \quad [\operatorname{s}(x)] = (2)x + (3). \\ [\operatorname{cond}^{\sharp}(\operatorname{true}, x, y)] = (0)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y + (0) \\ [\operatorname{cond}^{\sharp}(\operatorname{gr}(x, y), \operatorname{p}(x), y)] = (-1)x + (-\infty)y +$$

while
$$x > y$$
 do $x := x - 1$; cond(true, x, y) \rightarrow cond(gr(x, y), p(x), y), gr($s(x)$, $s(y)$) \rightarrow gr(x, y), gr($s(x)$, $s(y)$) \rightarrow gr(x, y), gr($s(x)$, $s(y)$) \rightarrow true, p($s(x)$) \rightarrow true, p($s(x)$) \rightarrow true, cond $s(x, y, z)$] = (0) $s(x)$ + (0) $s(x)$ = (0) $s(x)$ + (1) $s(x)$ = (0) $s(x)$ + (1) $s(x)$ = (2) $s(x)$ = (3) $s(x)$ = (

while
$$x > y$$
 do $x := x - 1$; cond(true, x, y) \rightarrow cond(gr(x, y), p(x), y), gr(x , y), gr(x , y) \rightarrow gr(x , y), x gr(x , x) y true, p(x) y cond x (true, x , y) y cond x (gr(x , y), p(x), y) [cond x (x , y , x)] = (0) x + (0) y + (x) + (0), [0] = (0), [cond(x , y , x)] = (0) x + (2) y + (x), [false] = (0), [gr(x , y)] = (x), x (gr(x)) = (x), x (gr(x)) = (x), x (gr(x)) = (x), gr(x) = (x), gr(x), gr(x) = (x), gr(x)

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	S	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	S	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	S	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	S	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	S	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs.
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

problem set	time	s	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

The end

http://color.loria.fr

Thank you for your attention.