Homework 51

The due date for this homework is Tue 7 May 2013 12:00 AM EDT -0400.

Question 1

Consider the sequence $a=\Delta b$, where $b=\left(\frac{1}{n}\right)$. Only one of the following statements is true. Which one?

 $\displaystyle igcircle \sum_{n=1}^{\infty} a_n$ converges, but $\displaystyle \sum_{n=1}^{\infty} b_n$ diverges.

- $igorplus {igorplus} {igorplus} {igorplus} {f Both} \sum_{n=1}^\infty a_n \ {f and} \ \sum_{n=1}^\infty b_n \ {f converge}.$
- $igoplus_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ diverge.
- $\sum_{n=1}^{\infty} a_n$ diverges, but $\sum_{n=1}^{\infty} b_n$ converges.

Question 2

Which of the following statements are true about the series $\sum_{n=1}^{\infty} ne^{-2n}$?

- $ne^{-2n} < e^{-n}$ for $n \geq 1$, so the comparison test says that the series converges.
- $\lim_{n o +\infty} ne^{-n}=0$, so the n-th term test says that the series diverges.
- $me^{-2n}>n$ for $n\geq 1$, so the comparison test says that the series diverges.
- The integral $\int_{x=1}^{+\infty} xe^{-2x}\,dx$ converges, so the integral test says that the series converges.

- The integral $\int_{x=1}^{+\infty} xe^{-2x}\,dx$ diverges, so the integral test says that the series diverges.
- $\lim_{n
 ightarrow+\infty}ne^{-2n}=0$, so the n-th term test is inconclusive.

Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{1}{n^{0.999\cdots}}$?

- $\lim_{n \to +\infty} rac{1}{n^{0.999\cdots}}
 eq 0$, so the n-th term test says that the series diverges.
- $\frac{1}{n^{0.999\cdots}} < \frac{1}{n} \text{ for } n \geq 1 \text{, so the comparison test says that the series converges.}$
- $\frac{1}{n^{0.999\cdots}} \geq \frac{1}{n} \text{ for } n \geq 1 \text{, so the comparison test says that the series diverges.}$
- The integral $\int_{x=1}^{+\infty} \frac{dx}{x^{0.999...}}$ diverges, so the integral test says that the series diverges.
- The integral $\int_{x=1}^{+\infty} \frac{dx}{x^{0.999...}}$ converges, so the integral test says that the series converges.
- $\lim_{n \to +\infty} \frac{1}{n^{0.999...}} = 0$, so the n-th term test says that the series converges.

Question 4

Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n}$?

$$\frac{\left(\ln n\right)^2}{n}<\frac{1}{n^2} \text{ for } n>2, \text{ so the comparison tests says that the series}\\ \sum_{n=1}^{\infty}\frac{\left(\ln n\right)^2}{n} \text{ converges}.$$

$$\frac{\left(\ln n\right)^2}{n}<\frac{1}{n} \text{ for } n=1, \text{ so the comparison tests says that the series}\\ \sum_{n=1}^{\infty}\frac{\left(\ln n\right)^2}{n} \text{ converges}.$$

$$\frac{\left(\ln n\right)^2}{n}>\frac{1}{n^2} \text{ for } n>2, \text{ so the comparison tests says that the series} \\ \boxed{\square} \ \sum_{n=1}^{\infty}\frac{\left(\ln n\right)^2}{n} \text{ diverges}.}$$

$$\frac{\left(\ln n\right)^2}{n}>\frac{1}{n} \text{ for } n>2, \text{ so the comparison tests says that the series}\\ \boxed{\square} \sum_{n=1}^{\infty}\frac{\left(\ln n\right)^2}{n} \text{ diverges}.$$

- The integral $\int_{x=8}^{+\infty} \frac{(\ln x)^2}{x} \ dx$ diverges, so the integral test says that the series diverges.
- The integral $\int_{x=8}^{+\infty} \frac{(\ln x)^2}{x} \ dx$ converges, so the integral test says that the series converges.

Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{1}{2n+1}$?

- The integral $\int_{x=1}^{+\infty} \frac{dx}{2x+1}$ diverges, so the integral test says that the series diverges.
- The integral $\int_{x=1}^{+\infty} \frac{dx}{2x+1}$ converges, so the integral test says that the series converges.

- $\lim_{n o\infty}rac{1}{2n+1}=0$, so the n-th term test is inconclusive.
- $\lim_{n o +\infty}rac{1/(2n+1)}{1/n}=rac{1}{2}$, so the limit test says that the series converges.
- $\lim_{n o +\infty}rac{1/(2n+1)}{1/n}=rac{1}{2}$, so the limit test says that the series diverges.
- $\lim_{n o\infty}rac{1}{2n+1}=0$, so the n-th term test says that the series diverges.

Which of the following statements are true about the series $\sum_{n=1}^{\infty} rac{\sqrt[3]{n}}{(n+2)\sqrt{n}}$?

- $\frac{\sqrt[3]{n}}{(n+2)\sqrt{n}}<\frac{1}{n^{7/6}} \text{ for } n\geq 1 \text{, so the comparison test says that the series converges.}$
- $\lim_{n o +\infty}rac{\sqrt[3]{n}}{(n+2)\sqrt{n}}=0$, so the n-th term test says that the series converges.
- $\lim_{n o +\infty}rac{\sqrt[3]{n}}{(n+2)\sqrt{n}}\left/rac{1}{n^{7/6}}
 ight.=1$, so the limit test says that the series converges.
- $\frac{\sqrt[3]{n}}{(n+2)\sqrt{n}}>\frac{1}{n} \text{ for } n\geq 1 \text{, so the comparison test says that the series diverges.}$
- The integral $\int_{x=1}^{+\infty} \frac{\sqrt[3]{x}}{(x+2)\sqrt{x}} \ dx$ converges, so the integral test says that the series converges.
- $\lim_{n o +\infty}rac{\sqrt[3]{n}}{(n+2)\sqrt{n}}\left/rac{1}{n^2}
 ight.=0$, so the limit test says that the series converges.

Determine the asymptotic behavior of the sequence $a=\left(rac{n(n+1)}{n^2+4}
ight)$ as

 $n o +\infty.$ Using this information, determine whether the series $\displaystyle \sum_{n=1}^{\infty} a_n$

converges or diverges.

- $a_n=1+Oigg(rac{1}{n}igg)$ as $n o +\infty$, so the series diverges.
- $a_n=1+Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series diverges.
- $a_n = Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series diverges.
- $a_n = Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series converges.
- $a_n=1+Oigg(rac{1}{n}igg)$ as $n o +\infty$, so the series converges.
- $a_n=Oigg(rac{1}{n}igg)$ as $n o +\infty$, so the series diverges.

Question 8

Determine the asymptotic behavior of the sequence $a=\left(n^2\tan\frac{1}{n^3}\right)$ as

 $n o +\infty.$ Using this information, determine whether the series $\displaystyle \sum_{n=1}^{\infty} a_n$

converges or diverges.

- $a_n=rac{1}{n}+Oigg(rac{1}{n^3}igg)$ as $n o +\infty$, so the series converges.
- $a_n = Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series diverges.

- $a_n=rac{1}{n}+Oigg(rac{1}{n^7}igg)$ as $n o +\infty$, so the series diverges.
- $a_n=O\Bigl(n^2\Bigr)$ as $n o +\infty$, so the series diverges.
- $a_n=Oigg(rac{1}{n^3}igg)$ as $n o +\infty$, so the series converges.
- $a_n=rac{1}{n}+Oigg(rac{1}{n^7}igg)$ as $n o +\infty$, so the series converges.

Determine the asymptotic behavior of the sequence $a=\left(\sin\frac{1}{n^2}\right)$ as

 $n o +\infty$. Using this information, determine whether the series $\sum_{n=1}^\infty a_n$

converges or diverges.

- $a_n=rac{1}{n}+Oigg(rac{1}{n^3}igg)$ as $n o +\infty$, so the series converges.
- $a_n = Oigg(rac{1}{n}igg)$ as $n o +\infty$, so the series converges.
- $_{\bigcirc}$ $a_n=O(1)$ as $n
 ightarrow+\infty$, so the series diverges.
- $a_n=rac{1}{n^2}+Oigg(rac{1}{n^6}igg)$ as $n o +\infty$, so the series converges.
- $a_n=rac{1}{n}+Oigg(rac{1}{n^3}igg)$ as $n o +\infty$, so the series diverges.
- $a_n=rac{1}{n^2}+Oigg(rac{1}{n^6}igg)$ as $n o +\infty$, so the series diverges.

Question 10

Determine the asymptotic behavior of the sequence $a = \left(\ln \frac{n^2 + 3}{n^2 + 1}\right)$ as

 $n o +\infty.$ Using this information, determine whether the series $\displaystyle \sum_{n=1}^{\infty} a_n$

converges or diverges.

- $a_n=rac{1}{n}+Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series converges.
- $a_n=rac{1}{n}+Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series diverges.
- $a_n=rac{2}{n^2}+Oigg(rac{1}{n^4}igg)$ as $n o +\infty$, so the series converges.
- $a_n=1+Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series converges.
- $a_n=1+Oigg(rac{1}{n^2}igg)$ as $n o +\infty$, so the series diverges.
- $a_n=rac{2}{n^2}+Oigg(rac{1}{n^4}igg)$ as $n o +\infty$, so the series diverges.
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers