Introduction

Oh hey, it's another one of those textbook notes that I never complete. I've decided to try something different in order to develop my understanding of measure theory. One of the primary for understanding measure theory is Gerald B. Folland's *Real Analysis and Applications* — and one of the benefits it has over a lot of other texts is that it has a significant number of exercises. I'm going to try to do them all — I'll start with Chapters 1–3, and if that goes well enough, continue up through whatever chapter I end up having to tap out at. Interspersed, I will include various notes. I figure that in order to make a subject like measure theory really stick, I need to deal with it consistently.

Contents

Introduction	1
Chapter 1	1
Section 1.2	1
Section 1.3	

Chapter 1

Section 1.2

Definition (σ -Algebra). An algebra of sets on X is a nonempty collection \mathcal{A} of X that is closed under finite unions and complements.

A σ -algebra is an algebra that is closed under countable unions.

Exercise (Exercise 1): A family of sets $\Re \subseteq P(X)$ is called a ring if it is closed under finite unions and differences. A ring that is closed under countable unions is called a σ -ring.

- (a) Rings (σ -rings) are closed under finite (countable) intersections.
- (b) If \Re is a ring (σ -ring), then \Re is an algebra (σ -algebra) if and only if $X \in \Re$.
- (c) If \Re is a σ-ring, then $\{E \subseteq X \mid E \in \Re \text{ or } E^c \in \Re\}$ is a σ-algebra.
- (d) If \mathcal{R} is a σ -ring, then $\{E \subseteq X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Solution:

- (a) Note that for any $E, F \in \mathcal{R}$, that $E \cap F = E \cup F \setminus ((E \setminus F) \cup (F \setminus E))$.
- (b) Let \mathcal{R} be a σ -ring. Then, \mathcal{R} is a σ -algebra if for some $E \in \mathcal{R}$, $E^c \in \mathcal{R}$. Since $E^c = X \setminus E \in \mathcal{R}$, we have $X \setminus E \cup E \in \mathcal{R}$ as \mathcal{R} is closed under (countable) unions. Hence, $X \in \mathcal{R}$.
 - If $X \in \mathcal{R}$, then for any $E \in \mathcal{R}$, $E^c = X \setminus E \in \mathcal{R}$. Thus, \mathcal{R} is closed under intersections.
- (c) Since \Re is a σ -ring, we only need show that the set $\mathcal{A} = \{E \subseteq X \mid E \in \Re \text{ or } E^c \in \Re\}$ is closed under complements. We see that for any $E \in \mathcal{A}$, it is the case that either $E \in \Re \text{ or } E^c \in \Re$, so $E^c \in \mathcal{A}$ if and only if $E^c \in \Re \text{ or } E \in \Re$, so \mathcal{A} is closed under complements.
- (d) Let \mathcal{R} be a σ -ring, and let $\mathcal{A} = \{ E \subseteq X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R} \}$. We will show that \mathcal{A} is closed under unions and complements.

Let $E, F \in \mathcal{A}$. Then, for all $S \in \mathcal{R}$, we have $E \cap S \in \mathcal{R}$ and $F \cap S \in \mathcal{R}$. Since \mathcal{R} is closed under unions, we must have $(E \cup F) \cap S = (E \cap S) \cup (F \cap S) \in \mathcal{R}$, so $E \cup F \in \mathcal{A}$.

Let $E \in A$.

Proposition (Proposition 1.2): The Borel σ -algebra, $\mathcal{B}_{\mathbb{R}}$, is generated by each of the following:

(a) the open intervals, $\mathcal{E}_1 = \{(a,b) \mid a < b\}$;

- (b) the closed intervals, $\mathcal{E}_2 = \{[a, b] \mid a < b\};$
- (c) the half-open intervals, $\mathcal{E}_3 = \{(a, b] \mid a < b\}$ or $\mathcal{E}_4 = \{[a, b) \mid a < b\}$;
- (d) the open rays, $\mathcal{E}_5 = \{(\alpha, \infty) \mid \alpha \in \mathbb{R}\}\$ or $\mathcal{E}_6 = \{(-\infty, \alpha) \mid \alpha \in \mathbb{R}\};$
- (e) the closed rays, $\mathcal{E}_7 = \{[\alpha, \infty) \mid \alpha \in \mathbb{R}\}\ \text{or}\ \mathcal{E}_8 = \{(-\infty, \alpha] \mid \alpha \in \mathbb{R}\}.$

Proof. The elements for \mathcal{E}_j for $j \neq 3,4$ are open or closed, and the elements of \mathcal{E}_3 , \mathcal{E}_4 are G_δ sets — for instance,

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a,b + \frac{1}{n}\right).$$

Thus, $\sigma(\mathcal{E}_j) \subseteq \mathcal{B}_{\mathbb{R}}$ for each j. On the other hand, every open set in \mathbb{R} is a countable union of open intervals, so $\mathcal{B}_{\mathbb{R}} \subseteq \sigma(\mathcal{E}_1)$. Thus, $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{E}_1)$.

Section 1.3

Theorem (Theorem 1.9): Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} \mid \mu(N) = 0\}$, and let $\overline{\mathcal{M}} = \{E \cup F \mid E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N}\}$. Then, \mathcal{M} is a σ-algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Proof. Since M and N are closed under countable unions, so is $\overline{\mathbb{M}}$. If E ∪ F ∈ $\overline{\mathbb{M}}$, with E ∈ M and F ⊆ N ∈ N, we may assume E ∩ N = Ø — else, we replace F with F\E and N with N\E. Then, E ∪ F = (E ∪ N) ∩ (N^c ∪ F), so (E ∪ F)^c = (E ∪ N)^c ∪ (N \ F). Since (E ∪ N)^c ∈ M and N \ F ⊆ N, we have (E ∪ F)^c ∈ $\overline{\mathbb{M}}$, so $\overline{\mathbb{M}}$ is a σ-algebra.

If $E \cup F \in \overline{M}$ as above, we set $\overline{\mu}(E \cup F) = \mu(E)$. This is well-defined, since if $E_1 \cup F_1 = E_2 \cup F_2$, with $F_j \subseteq N_j \in \mathbb{N}$, then $E_1 \subseteq E_2 \cup N_2$, so $\mu(E_1) \leq \mu(E_2) + \mu(N_2) = \mu(E_2)$. Similarly, $\mu(E_2) \subseteq \mu(E_1)$.

Exercise (Exercise 6): Complete the proof of Theorem 1.9.

Solution: We now wish to show that every subset of a null set in \mathbb{M} is an element of $\overline{\mathbb{M}}$. This can be seen by the fact that for some $F \subseteq \mathbb{N} \in \mathbb{N}$, we have $F = \emptyset \cup F \in \overline{\mathbb{M}}$.

To show uniqueness, we suppose there is some other measure $\nu \colon \overline{\mathbb{M}} \to [0,\infty)$ such that ν agrees with μ on \mathbb{M} . For some $E \in \mathbb{M}$ and $F \subseteq N \in \mathbb{N}$, we have

$$\nu(E \cup F) = \mu(E)$$
$$= \overline{\mu}(E \cup F).$$

Exercise (Exercise 7): If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) , and $\alpha_1, \ldots, \alpha_n \in [0, \infty)$, then $\mu = \sum_{j=1}^n \alpha_j \mu_j$ is a measure on (X, \mathcal{M}) .

Solution: It is clear that $\mu(\emptyset) = \emptyset$. If we have a sequence of disjoint sets $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$, then

$$\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) = \sum_{j=1}^{n} \alpha_{j} \mu_{j}\left(\bigcup_{i=1}^{\infty} E_{i}\right)$$

$$= \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{\infty} \mu_{j}(E_{i})$$

$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{n} \alpha_{j} \mu_{j}\right)(E_{i})$$

$$= \sum_{i=1}^{\infty} \mu(E_{i}).$$

Exercise (Exercise 9): If (X, \mathcal{M}, μ) is a measure space, and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Solution: We have

$$\begin{split} \mu(E) &= \mu(((E \cup F) \setminus F) \sqcup E \cap F) \\ \mu(E) &= \mu(E \cup F) - \mu(F) + \mu(E \cap F) \\ \mu(E) + \mu(F) &= \mu(E \cup F) + \mu(E \cap F). \end{split}$$