Assignment-3
Checkpoint
presentation

Group 2

Efficient streaming of 360° video using DASH over QUIC

Problem Statement

- Streaming VR video for headsets under the current network infra is suboptimal.
- We aim to follow and improve upon the paper "Streaming 360° videos to head-mounted virtual reality using DASH over QUIC transport protocol"
- Experiment with adaptive bitrate algorithms to improve FPS
- Modify DASH for ease of use and implementation

Employs HTTP over TCP for video streaming.

DASH Limitations

We only want to send the tile that falls in the viewport of head mounted device (HMD)

Naively applying DASH for 360° video streaming may result in suboptimal streaming quality.

Quick UDP Internet Connections (QUIC)

HTTP Request Over QUIC

System Design (from paper)

Shou-Cheng Yen, Ching-Ling Fan, and Cheng-Hsin Hsu. 2019. Streaming 360° videos to head-mounted virtual reality using DASH over QUIC transport protocol. In Proceedings of the 24th ACM Workshop on Packet Video (PV '19).

Project deliverables

Video streaming via DASH over QUIC

Modules implemented by the paper

Integrating head-tracker for 360° video

Implementing bit-rate controller and view port extractor from video

Roadmap

360° Video Streaming via DASH over QUIC

Final Presentation

By: Group 2

QUIC

- Created by Google has now become IETF standard (<u>RFC9000</u>)
- Built over UDP so it is easy to integrate into the already present infrastructure.
- Used aioquic for implementation.

Zero RTT Connection Establishment

- 1. Repeat connection
- 2. Never talked to server before

DASH (Dynamic Adaptive Streaming over HTTP)

- Information of different video formats stored in .mpd file
- MPD file is communicated before the streaming starts
- Client uses MPD file as lookup table

Our DASH Implementation

- We have encoded video at 3 qualities.
- When requesting for next frame, client shares the bandwidth information
- Given the available bandwidth, server will decide quality.
- ABR is based on switching using thresholds.
- Primitive version of industry standard DASH.

Viewport of monoscopic 360° VR

In 360° video content, the viewer can only see the chunk in their field of view at an instant. This is the viewport.

This means that a 3840x1920 360° VR video is displayed as 1280x720 window in viewing portal.

The widow is projected onto a 2D screen for our viewing.

System Design

Wireshark Capture

Learnings

- 1. Better understanding of different HTTP versions
- 2. Asynchronous programming
- 3. DASH
- 4. QUIC protocols
- 5. Basic Concepts of videos and images
- 6. Fundamentals of 360° VR videos
- 7. Extraction of viewport from 360° VR video frame

Challenges

- No good reference for DASH implementation. The one we found was old and did not work due to deprecated libraries.
- 2. QUIC is relatively newer technology and hence there is a lack of good tutorials. (As of April 2023, 8.9% of all websites use QUIC) (Wikipedia)
- 3. Limited sources and references for handling of 360° degree VR videos.
- 4. Academic challenges: Placement exams and University application deadlines.

References

The QUIC Protocol, HTTP3, and How HTTP Has Evolved | YouTube

https://github.com/aiortc/aioquic(QUIC python library)

https://github.com/najaco/quic-v-stream (Video Streaming)

https://github.com/pari685/AStream (DASH)

OmniCV 0.0.1 documentation (Viewport extraction)

Thank You