DATA STRUCTURES AND APPLICATIONS (Effective from the academic year 2018 -2019) SEMESTER – III					
Course Code	18CS32	CIE Marks	40		
Number of Contact Hours/Week	3:2:0	SEE Marks	60		
Total Number of Contact Hours	50	Exam Hours	03		
CREDITS A					

CREDITS –4

Course Learning Objectives: This course (18CS32) will enable students to:

- Explain fundamentals of data structures and their applications essential for programming/problem solving.
- Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.
- Demonstrate sorting and searching algorithms.
- Find suitable data structure during application development/Problem Solving.

• Find suitable data structure during application development/Problem Solving.		
Module 1	Contact Hours	
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure	10	
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers		
and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory,		
Dynamically allocated arrays.		
Array Operations : Traversing, inserting, deleting, searching, and sorting. Multidimensional		
Arrays, Polynomials and Sparse Matrices.		
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.		
Programming Examples.		
Textbook 1: Chapter 1: 1.2, Chapter 2: 2.2 - 2.7 Text Textbook 2: Chapter 1: 1.1 - 1.4,		
Chapter 3: 3.1 - 3.3, 3.5, 3.7, Chapter 4: 4.1 - 4.9, 4.14 Reference 3: Chapter 1: 1.4		
RBT: L1, L2, L3		
Module 2	10	
Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic	10	
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix		
expression.		
Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.		
Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular		
queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple		
Stacks and Queues. Programming Examples.		
Textbook 1: Chapter 3: 3.1 -3.7 Textbook 2: Chapter 6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13 RBT: L1, L2, L3		
Module 3		
Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;	10	
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion.		
Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues.		
Applications of Linked lists – Polynomials, Sparse matrix representation. Programming		
Examples		
Textbook 1: Ch apter 4: 4.1 – 4.6, 4.8, Textbook 2: Ch apter 5: 5.1 – 5.10,		
RBT: L1, L2, L3		
Module 4		
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked	10	
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;		
Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition,		
Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,		
Programming Examples		

Textbook 1: Chapter 5: 5.1 –5.5, 5.7; Textbook 2: Chapter 7: 7.1 – 7.9		
RBT: L1, L2, L3		
Module 5		
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs,	10	
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First		
Search.		
Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort.		
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.		
Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files,		
Basic File Operations, File Organizations and Indexing		
Textbook 1: Chapter 6: 6.1 –6.2, Chapter 7:7.2, Chapter 8: 8.1-8.3		
Textbook 2: Chapter 8: 8.1 – 8.7, Chapter 9: 9.1-9.3, 9.7, 9.9		
Reference 2: Chapter 16: 16.1 - 16.7		
RBT: L1, L2, L3		

Course Outcomes: The student will be able to:

- Use different types of data structures, operations and algorithms
- Apply searching and sorting operations on files
- Use stack, Queue, Lists, Trees and Graphs in problem solving
- Implement all data structures in a high-level language for problem solving.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
- 2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

Reference Books:

- 1. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning, 2014.
- 2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.
- 3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2nd Ed, McGraw Hill, 2013
- 4. A M Tenenbaum, Data Structures using C, PHI, 1989
- 5. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.