Sistema de Sonar (Parte 2)

Versão LabEAD 2021

RESUMO

Esta experiência tem por objetivo concluir o desenvolvimento de um circuito que realiza a detecção de objetos próximos com a aplicação de um sensor ultrassônico de distância e de um servomotor. Na primeira parte, os circuitos das experiências anteriores foram revisados e alguns novos componentes foram implementados. O **projeto do sistema de sonar** deverá ser realizado nesta experiência e, em seguida, deve ser sintetizado na placa FPGA DEO-CV, usando a infraestrutura de bancada remota do LabEAD.

OBJETIVOS

Após a conclusão desta experiência, os seguintes tópicos devem ser conhecidos pelos alunos:

- Aplicação de sensor ultrassônico de distância e de servomotor em sistemas digitais;
- Desenvolvimento de circuito para varredura e detecção de objetos;
- Uso da comunicação serial para transmissão de dados;
- Desenvolvimento de máquina de estados para controle de um sistema estrutural;
- Projeto de circuitos em FPGA.

1. ESPECIFICAÇÃO DO PROJETO

1.1. Interface do Circuito

O projeto desta experiência visa desenvolver um circuito digital que permite rastrear objetos através da medida de distância aos objetos. A interface básica de sinais do circuito deve seguir os sinais apresentados na figura 1. O processo de varredura e medida de distância aos objetos é executado com auxílio de um atuador e de um sensor específico.

Figura 1. Interface básica do sistema de Sonar.

O servomotor apresentado na figura deve posicionar o sensor de distância para a varredura e localização de objetos. A montagem física destes componentes deve permitir uma variação angular dentro dos limites especificados para o servomotor. A figura 2 ilustra uma possível montagem física.

A figura 2 também apresenta os principais elementos do projeto e sua interação durante seu funcionamento. O servomotor é acoplado ao sensor HC-SR04 e permite sua rotação em relação ao seu eixo. A cada posição angular estabelecida, a distância ao objeto mais próximo deve ser medida. Em seguida, um bloco de informação composto por posição angular e distância deve ser enviado pela interface serial, que posteriormente poderá ser representado graficamente na tela do computador.

Figura 2. Montagem do sistema de sonar na bancada remota.

1.2. Descrição Sucinta do Funcionamento

O funcionamento do sistema de sonar deve seguir a seguinte descrição:

O circuito deve somente iniciar sua operação com o acionamento do sinal LIGAR. Há qualquer momento, o desacionamento do sinal LIGAR deve interromper o funcionamento do sistema. O circuito faz interface com os componentes externos ao circuito através dos sinais TRIGGER, ECHO e PWM. No modo de localização, o sistema deve continuamente realizar o rastreamento de objetos e a medição de distância a uma taxa de 1 medida a cada 2 segundos. O sinal de saída do circuito SAIDA_SERIAL é um sinal RS-232C que deve ser conectado a um dispositivo de comunicação serial e a informação enviada é composta por dois valores: o ângulo de posicionamento do servomotor e a distância ao objeto nesta posição. Esta saída deve ser transmitida por um sinal RS232-C na configuração 8N2 a 9600 *bauds* em formato "ângulo,distância.", usando caracteres ASCII. Cada informação (ângulo e distância) deve ser composta por 3 dígitos BCD em código ASCII, totalizando 8 dados ASCII enviados. Por exemplo, uma saída indicando um objeto na posição a 153° a 17 cm de distância deve ser composta pela sequência de caracteres ASCII "153,017.". Quando o circuito detectar um objeto a menos de 20 cm, a saída ALERTA_PROXIMIDADE deve ser ativada.

1.3. Interface Gráfica do Sistema de Sonar

A saída do sistema de sonar deve ser apresentada através de uma interface gráfica com o usuário (GUI) mostrada no computador. Esta interface gráfica foi desenvolvida com o software livre **Processing** [Processing, 2021]. A figura 3 ilustra a interface gráfica do sistema de sonar.

Figura 3. Interface gráfica do sistema de sonar com processing.

Além da tradicional descrição radial de informações de localização de objetos à distância, a interface apresenta na parte inferior a detecção ou não de um objeto dentro do intervalo de medidas e as informações de posicionamento (ângulo) e de distância medida. A comunicação da interface do sistema de sonar com o circuito programado na FPGA é realizada através do MQTT com o uso do tópico dadosonar.

1.4. Considerações para o Projeto da Experiência

Seguem abaixo algumas considerações sobre o desenvolvimento do projeto do circuito do sistema de sonar.

1.4.1. Etapas de desenvolvimento

Inicialmente, é recomendável a elaboração do **pseudocódigo** do funcionamento do sistema. Com base no pseudocódigo, deve-se elaborar a sequência de operações¹ essenciais com o acionamento dos componentes correspondentes. Tais componentes já foram desenvolvidos e testados em experiência anterior (medida de distância) e na Parte 1 desta experiência (movimentação contínua do servomotor e transmissão de dados do sonar). A figura 4 apresenta um esboço do pseudocódigo do sistema de sonar. Alguns aspectos precisam ser detalhados, como por exemplo, a taxa de 1 medida a cada 2 segundos.

```
pseudocódigo: sistema de sonar
entradas: ligar, echo
saídas: trigger, pwm, saída serial
1. loop infinito
     enquanto ligar=0 espera
3.
     inicie componentes internos
4.
5.
         posicione servomotor
        medir distância ao objeto
7.
         transmitir dados do sonar
     enquanto ligar=1
8.
9. fim loop
```

Figura 4. Esboço do pseudocódigo do sistema de sonar.

Para o **desenvolvimento incremental** do projeto da experiência, apresentamos aqui a sugestão de algumas etapas de projeto e de testes em bancada que podem ser observadas pelo grupo:

- A etapa inicial envolveu o desenvolvimento de componentes a serem usados no projeto do sistema de sonar:
 - a. circuito medidor de distância com sensor HC-SR04. O circuito usa o sensor ultrassônico para calcular a distância a um objeto;
 - controle de movimentação do servomotor. O circuito controla o movimento oscilatório percorrendo todas as posições especificadas;
 - c. circuito de **transmissão de dados do sonar** com saída via interface serial. O circuito envia dados de ângulo e distância.
- 2) Em um segundo momento, deve-se realizar a integração inicial dos circuitos de controle do **servomotor** e de interface com o **sensor de distância** para geração dos dados a serem enviados para a interface gráfica. O circuito deve posicionar o servomotor, em seguida, realizar uma medida de distância e depois aguardar 2 segundos para repetir o ciclo. O circuito deve possuir uma unidade de controle para controlar o acionamento dos sinais de controle dos componentes e monitorar os sinais de condição e o fluxo de dados pode incluir componentes adicionais. Aqui o <u>fluxo de dados</u> deve incluir um **componente que gera os valores dos ângulos²** (a serem apresentados na saída) para cada posição do servomotor. Por exemplo: deve gerar um ângulo de 20º para a posição 000, ângulo de 40º para a posição 0, até chegar a 160º para a posição 111.
 - Na <u>simulação com o ModelSim</u>, o *testbench* deve acionar o circuito, posicionar o servomotor nas 8 posições especificadas e realizar medidas com o sensor de distância. O *testbench* deve ser elaborado para gerar o sinal ECHO de acordo com os casos de teste elaborados pelo grupo. Os valores do circuito para ângulo e distância medida devem ser usados para verificar o funcionamento correto.

_

¹ Por exemplo, o ciclo básico de funcionamento do circuito do sistema de sonar envolve o posicionamento do servomotor, em seguida a medição de distância a objetos e posterior envio dos dados de ângulo e distância para a saída serial do sistema digital.

² Este componente é uma ROM 8x24 contendo os 3 caracteres ASCII de distância para cada posição do servomotor. Por exemplo, a primeira posição da memória contém o valor x"303230" para representar a saída "020" para ser enviado para a saída serial. O arquivo VHDL do componente rom_8x24.vhd é fornecido.

- O teste em bancada pode ser executado com a instanciação dos componentes (servomotor e sensor HC-SR04) e deve-se observar os valores das saídas de ângulo e distância. Os dados de ângulo e distância podem ser apresentados nos displays de 7 segmentos da placa FPGA. As saídas em displays e outros sinais de depuração devem ser usados para verificar o funcionamento correto desta etapa.
- 3) Em seguida, deve-se realizar a integração dos circuitos dos itens 1) e 2) anteriores, para envio de dados reais da medida com o sensor de distância para a interface serial do computador e apresentação na saída serial. O circuito desta etapa corresponde ao circuito básico do sistema de sonar da experiência, assim a unidade de controle deve seguir o pseudocódigo desenvolvido inicialmente.
 - Na simulação com o ModelSim, o testbench deve acionar o circuito do sistema de sonar, posicionar o servomotor nas 8 posições especificadas, realizar medidas como sensor de distância e, em seguida, enviar os dados pela saída serial. O testbench deve ser elaborado para gerar o sinal ECHO de acordo com os casos de teste elaborados pelo grupo. Os valores do circuito para ângulo e distância medida devem ser usadas para verificar o funcionamento correto, além da análise do sinal serial de saída.
 - O teste em bancada pode ser executado com o acionamento dos componentes (servomotor e sensor HC-SR04) na bancada remota, observando os valores obtidos em displays de 7 segmentos a cada medida e finalmente analisando a saída serial fornecida pelo circuito de teste. As saídas seriais podem ser analisadas com a ferramenta **Protocol** do Analog Discovery.
- 4) Na etapa final, deve-se concluir o projeto do sistema de sonar incluindo componentes para gerar a saída alerta proximidade e gerar os sinais de depuração em leds e displays de 7 segmentos (por exemplo, seguindo a tabela 1 da seção 1.4.3). Este circuito deve realizar a apresentação dos dados do sistema de sonar na interface gráfica implementada pelo software Processing. O circuito do sistema de sonar deve ser programado na FPGA e a saída serial deve ser ligada no pino da GPIO ligado no tópico TX do MQTT. Esta última etapa não precisa ser simulada, sendo executada diretamente na bancada do Laboratório Digital.

1.4.2. Detalhamento da multiplexação de displays

O mapeamento de sinais de depuração em leds e displays de 7 segmentos disponíveis na placa FPGA é um recurso importante para a verificação de funcionamento do projeto sintetizado na bancada remota. Dado o número limitado destes recursos (10 leds e 6 displays), torna-se necessário o uso da técnica de multiplexação de recursos para expandir o número de sinais que podem ser monitorados no projeto.

O conceito de multiplexação de recursos pode ser explicado usando como exemplo a multiplexação dos displays de 7 segmentos. A figura 5 ilustra como isto pode ser realizado.

A figura mostra conceitualmente como os 6 displays de 7 segmentos podem ser compartilhados para permitir a exibição de um total de 24 bits por conjunto de sinais, provenientes de diversos componentes do projeto. O controle do subconjunto de sinais é controlado pelo sinal sel mux. Durante a depuração, o responsável pela realização dos procedimentos de teste pode controlar os valores apresentados nos displays pelo acionamento de entradas de depuração (sinal sel mux). A tabela 1 abaixo ilustra uma possível aplicação deste conceito.

	, c.u	510 ac 5111ai5 a	o aopai ayao o	XIBIU05 CIII	uispiays as	, bege	
sel mux	componente	HEX5	HEX4	HEX3	HEX2	HEX1	H

sel_mux	componente	HEX5	HEX4	HEX3	HEX2	HEX1	HEX0
00	servomotor + HC-SR04	posição do servo	estado_hcsr04	a definir	distancia2	distancia1	distancia0
01	uart	estado_tx	DADO_TX1	DADO_TX0	estado_rx	DADO_RX1	DADO_RX1
10	tx dados sonar	estado_tx_sonar	contagem_selmux	dado_tx1	dado_tx2	a definir	a definir
11	sonar	estado_sonar	a definir	a definir	angulo2	angulo1	angulo0

Tabela 1 – Exemplo de sinais de depuração exibidos em *display*s de 7 segmentos.

Figura 6 - Multiplexação de displays de 7 segmentos.

Com a adição dos sinais de seleção para a multiplexação de *displays* e os sinais de depuração, a interface de sinais do sistema de sonar é apresentada abaixo na figura 7. Se necessário, pode-se aumentar o número de sinais que podem ser monitorados nos *displays* de 7 segmentos mudando o multiplexador para um multiplexador 8x1.

Figura 7. Interface de sinais do sistema de Sonar com multiplexação de displays.

O mesmo conceito de multiplexação de recursos pode ser aplicado para a multiplexação dos 10 *leds* disponíveis na placa FPGA DE0-CV. O sinal de seleção da multiplexação pode ser compartilhado entre *leds* e *displays*. A definição dos sinais mapeados em *leds* deve ser apresentada no Planejamento.

Mais informações sobre o mapeamento dos recursos da placa FPGA serão fornecidas durante a execução da parte experimental.

2. PARTE EXPERIMENTAL

2.1. Atividade 1 - Projeto do Sistema de Sonar

Esta atividade visa desenvolver o projeto do sistema de sonar usando as ferramentas apresentadas e usadas no Laboratório Digital. A qualidade da documentação do projeto é um ponto importante da avaliação do desempenho do grupo.

- a) Desenvolva o projeto do circuito do Sistema de Sonar, conforme especificação apresentada na seção 1. Siga as etapas de desenvolvimento e elabore os projetos dos circuitos intermediários. Apresente as decisões de projeto e detalhes do seu funcionamento. Acrescente na documentação diagramas de projeto (diagrama de blocos do fluxo de dados e diagrama de transição de estados para unidade de controle).
 - <u>DICA</u>: na documentação do projeto, escreva um parágrafo descrevendo o funcionamento do circuito, fornecendo a cada passo os componentes envolvidos e as ações tomadas pelos elementos.
- b) Defina casos de teste para verificação de funcionamento do sistema de sonar. Elabore o(s) testbench(es) necessários.
- c) Execute a **simulação** dos casos de teste definidos para o sistema de sonar usando o **ModelSim**. Anote as figuras das formas de onda obtidas para mostrar o correto funcionamento dos módulos testados.
- d) <u>Submeter junto com o Planejamento</u> um arquivo zip contendo os códigos VHDL usados para simulação com o ModelSim (código fonte dos módulos e *testbenches*).

2.2. Atividade 2 - Planejamento da Execução Experimental

Esta atividade experimental visa planejar como a parte experimental será executada na bancada do Laboratório Digital. A qualidade deste plano também será considerada na avaliação do grupo.

- e) Elabore um **Plano de execução** da experiência a ser seguido durante a execução das atividades experimentais na bancada remota. Mostre:
 - 1. como o funcionamento correto de cada módulo é validado;
 - 2. quais testes devem ser aplicados para verificar o sistema de sonar e suas partes;
 - 3. os principais sinais de depuração definidos pelo grupo e que podem ser monitorados durantes os testes e na demonstração final do projeto.
- f) <u>Mostre no Planejamento</u> a sequência de atividades programadas pelo grupo para serem executadas na bancada do Laboratório Digital.
- g) Como preparação, execute a designação de sinais aos recursos da placa FPGA. Adote a seguinte tabela de designação <u>mínima</u> abaixo. <u>Sinais de depuração</u> podem ser adicionados pelo grupo e devem ser documentados no Planejamento.

sinal	pino	MQTT Dash	
clock	CLOCK_50	-	
reset	GPIO_0_D0	E0 (Switch/button)	
ligar	GPIO_0_D1	E1 (Switch/button)	
trigger	GPIO_1_D34	-	
echo	GPIO_0_D34	-	
pwm	GPIO_1_D35	-	
saida_serial	GPIO_1_D4	dadosonar (Text)	
alerta_proximidade	GPIO_1_D0	S0 (Switch/button)	

Atenção: defina o tópico dadosonar no widget do MQTT Dash conforme apresentado aqui.

h) Submeter junto com o Planejamento o arquivo QAR do projeto (exp6 txbyy.gar).

2.3. Atividade 3 - Procedimento Experimental no Laboratório Remoto

Esta atividade experimental visa executar o Plano de atividades elaborado pelo grupo para testar o projeto do sistema de sonar na bancada do Laboratório Digital.

- i) A cada etapa de testes programe a placa FPGA e execute os testes planejados. Mostre para o professor o correto funcionamento de cada circuito de teste.
- j) Capture formas de onda dos principais sinais de depuração usando ferramentas do **Analog Discovery** e imagens de saídas em *displays* de 7 segmentos e *leds* para o sistema de sonar. Documente também saídas observadas no software **Processing** (na interface gráfica e no console de mensagens).
- k) Finalmente, teste o circuito (final) do sistema de sonar usando como entradas de controles alguns widgets de projeto do MQTT Dash. A figura 5 ilustra uma tela de um projeto no MQTT Dash.
- I) Relate quaisquer ocorrências experimentais no Relatório.
- m) Realize uma demonstração de funcionamento do sistema de sonar ao professor.
- n) Submeta o arquivo QAR do projeto do sistema de sonar exp6_txbyy.qar junto com o Relatório.

Figura 5 - Exemplo de tela do MQTT Dash para o sistema de sonar.

2.4. Atividade 4 - Desafio

- o) Uma modificação será apresentada pelo professor.
 <u>DICA</u>: arquivos de apoio também serão fornecidos pelo professor.
- p) Projete a modificação e documente o circuito modificado.
- q) Elabore um plano de teste para verificar o funcionamento.
- r) Execute uma demonstração de seu funcionamento.
- s) Anote os resultados experimentais no Relatório.
- t) Submeta o arquivo QAR do projeto modificado (exp6_desafio_txbyy.qar) junto com o Relatório.

DICA:

O desafio da experiência está relacionado com a adição de um **novo modo de funcionamento** do sistema de sonar. O modo de funcionamento do sistema de sonar é modificado com base em caracteres recebidos de um terminal serial através do pino da GPIO mapeado no tópico RX.

Depois do acionamento do sinal de reset, o circuito deve iniciar no modo de funcionamento normal (modo=0). Quando o circuito receber um caractere C_1 , deve mudar para o novo modo de funcionamento (modo=1), em que uma funcionalidade adicional deve ser implementada. O recebimento de um caractere C_2 deve fazer o sistema voltar ao modo normal. Por exemplo, se receber um caractere C_1 ='N' o circuito deve entrar no modo novo e se receber um caractere C_2 ='A', deve voltar ao modo antigo.

DICA: como forma de preparação para a implementação do desafio, o grupo poderá acrescentar ao circuito da experiência um módulo de recepção serial do componente UART_8N2 com o mapeamento do sinal de dado ASCII recebido para as saídas de *displays* de 7 segmentos (DADO RX1 e DADO RX0), conforme a tabela 1.

3. BIBLIOGRAFIA

- ALMEIDA, F.V. de; SATO, L.M.; MIDORIKAWA, E.T. Tutorial para criação de circuitos digitais em VHDL no Quartus Prime 16.1. Apostila de Laboratório Digital. Departamento de Engenharia de Computação e Sistemas Digitais, Escola Politécnica da USP. Edição de 2017.
- ALTERA. DEO-CV User Manual. 2015.
- ALTERA. Quartus Prime Introduction Using VHDL Designs. 2016.
- ALTERA. Quartus Prime Introduction to Simulation of VHDL Designs. 2016.
- D'AMORE, R. VHDL descrição e síntese de circuitos digitais. 2ª edição, LTC, 2012.
- MEALY, B.; TAPPERO, F. **Free Range VHDL** The no-frills guide to writing powerful code for your digital implementations. Free Range Factory, Janeiro de 2018 (v.1.21).
- MIDORIKAWA, E.T. Metodologia de Projeto com Dispositivos Programáveis. Apostila de Laboratório Digital. PCS-EPUSP, 2016.
- PROCESSING. Site do programa *processing*. http://processing.org. Acesso em 01/10/2021.
- TOCCI, R. J.; WIDMER, N.S.; MOSS, G.L. **Sistemas Digitais: Princípios e Aplicações**. Prentice-Hall, 11ª ed., 2011.
- VAHID, F. **Sistemas Digitais: Projeto, Otimização e HDLs**. Bookman, 2008.
- WAKERLY, John F. **Digital Design Principles & Practices**. 4th edition, Prentice Hall, 2006.

4. MATERIAL DISPONÍVEL

- Circuito Integrado: 74HC4050 (buffer e conversão de tensão de 5V para 3,3V)
- 1 sensor ultrassônico HC-SR04
- 1 servomotor
- 1 protoboard ou outra plataforma de montagem
- (software) sketch processing para interface gráfica do sistema de sonar ou equivalente
- 1 kit Lab do LabEAD

5. EQUIPAMENTOS NECESSÁRIOS

- 1 computador com interface serial (ou cabo USB serial), software de comunicação serial e softwares Intel Quartus Prime e ModelSim
- 1 dispositivo Analog Discovery da Digilent.
- 1 placa de desenvolvimento FPGA DE0-CV com o dispositivo Cyclone V 5CEBA4F23C7N.

Histórico de Revisões

E.T.M./2015 - versão inicial

E.T.M./2019 – revisão e atualização

E.T.M./2020 – revisão e reorganização da experiência para acesso remoto

E.T.M./2021 – revisão