WARTHOG 2018, Lecture V-1

Main Exercise 1. We assume $G = SL_2$ and $\ell > 2$ ($\ell \neq p$).

Assume first that ℓ divides q-1.

- (a) Determine the irreducible characters with trivial defect.
- (b) Let $\theta, \theta' \in \operatorname{Irr} T$ such that θ and θ' take the same values on ℓ' -elements. Show that the irreducible consituents of $R_e(\theta)$ and $R_e(\theta')$ are in the same block.
- (c) Given $\theta \in \operatorname{Irr} T$, let

$$e_{\theta} = \frac{1}{|T_{\ell'}|} \sum_{t \in T_{\ell'}} \theta(t) t^{-1}.$$

- (i) Show that $\overline{\mathbb{F}}_{\ell}[G/U]e_{\theta}$ is a projective $\overline{\mathbb{F}}_{\ell}G$ -module.
- (ii) Deduce that the consituents of $R_e(\theta)$ and $R_e(\theta')$ are not in the same block unless θ and θ' take the same values on ℓ' -elements.
- (d) Generalize these results to the case where ℓ divides q+1 using \mathbf{T}^{sF} instead of T and $R\Gamma_c(\widetilde{\mathbf{X}}(s), \overline{\mathbb{F}}_{\ell})$ instead of $\overline{\mathbb{F}}_{\ell}[G/U]$.

WARTHOG 2018, Lecture V-2

Main Exercise 2. Let A be a finite dimensional k-algebra such that $Irr A = \{k, S\}$. We assume that the projective and injective indecomposable modules have the following shape:

$$P_k = I_k = egin{array}{cccc} k & & & & & \\ K & & & & \\ S & & & \\ k & & & \\$$

- (a) Compute $\operatorname{Hom}_A(P,Q)$ for all projective indecomposable modules P and Q. Draw the quiver of A with relations.
- (b) Let $f: P_S \longrightarrow P_k$ be a non-trivial morphism of A-modules. We form the 2-term complex

$$C = \cdots 0 \longrightarrow P_S \oplus P_S \xrightarrow{(f,0)} P_k \longrightarrow 0 \cdots$$

- (i) Show that $\operatorname{Hom}_A(C, C[n]) = 0$ if |n| > 1.
- (ii) Show that any morphism of complexes $C \to C[1]$ or $C[1] \to C$ is null-homotopic.
- (iii) Deduce that C is a tilting complex for A and that A is derived equivalent to $\operatorname{End}_{D^b(A)}(C)$.
- (c) Determine the structure of the projective indecomposable modules of the algebra $B = \operatorname{End}_{D^b(A)}(C)$.