Математический анализ. Теория

Александр Сергеев

1 Friends and strangers graph

Рассмотрим связный неориентированный граф G из n вершин

В n-1 вершину поставим нумерованные фишки. Одну вершину оставим свободной

Будем перемещать фишки по ребрам (перемещать фишку можно только в пустую вершину)

Для каких графов G можно получить любое расположение фишек в графе из исходного?

Теорема Уилсона

Если граф G:

- Нет точек сочленения
- Граф не двудольный
- Граф не цикл длины $n \ge 4$
- G не следующий граф:

то в таком графе возможно получить любое расположение фишек, иначе невозможно

Доказательство необходимости

• Рассмотрим граф

Заметим, что в таком графе 1 никогда не попадет в правую половину

• Рассмотрим двудольный граф

Рассмотрим его как перестановку

Поменяем 2 и о местами

Заметим, что величина (четность перестановки + номер доли, где находится \circ) не изменилась

Отсюда из исходной перестановки невозможно получить перестановку

• Рассмотрим граф:

В нем невозможно поменять порядок фишек

Доказательство достаточности

Отсутствует...

Рассмотрим обобщение предыдущей игры:

Пусть фишки могут меняться местами, если они соседи и "друзья"

Т.е. теперь у нас два графа: "географический"
графXи граф дружбы Y

В прошлой задаче граф дружбы – "звездочка" с о в центре (т.е. о дружит со всеми, а остальные не дружат между собой)

Построим граф FS(X,Y) – граф друзей и врагов

B нем будет n! вершин

Каждая вершина графа – биекция $\sigma: V(X) \to V(Y)$

Получается, что σ – какой-то способ расположить фишки по вершинам (т.к. V(x) – множество вершин, а V(Y) – множество фишек)

Вершины σ и σ' соединены ребром, если они отличаются одним "дружеским" обменом

Тогда из любой перестановки можно получить любую \Leftrightarrow граф связен Из теоремы Уилсона: $FS(G,K_{1,n-1}),G$ – из теоремы Уилсона, $K_{1,n-1}$ –

звездочка с вершиной n в центре

Ответим на другой вопрос: Для каких G граф $FS(G,C_n),C_n$ – цикл длины n – связен

Лемма

ГрафыFS(X,Y) и FS(Y,X) – изоморфны

Т.е. можно построить биекцию $u \stackrel{\theta}{\leftrightarrow} u'$ такую, что ребра uv и $\theta(u)\theta(v)$ существуют одновременно

Доказательство

Построим биекцию $\sigma \in FS(X,Y) \leftrightarrow \sigma^{-1} \in FS(Y,X)$

Теперь рассмотрим граф $FS(C_n, G)$

Теперь рассмотрим следующую ситуацию:

По кругу стоят 3n человек: n семей вида папа-мама-ребенок

Ребенок не может меняться со своими родителями, все остальные могут меняться между собой

//todo т.к. оффтоп, мне лень дальше конспектировать См. первую лекцию, начиная с 30 минуты

$\mathbf{2}$ Функции и отображения в \mathbb{R}^m

2.1 Линейные отображения

Определение

 $\operatorname{Lin}(X,Y)$ – множество линейных отображений из X в Y (линейные пространства)

 $\operatorname{Lin}(X,Y)$ – линейное пространство

Обозначение

Пусть $A \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^n)$ $||A|| := \sup_{|x|=1} |A(x)|$

Замечание 1

 $||A|| \in \mathbb{R}$

Доказательство

Было доказано: $|Ax| \leq C_a |x|, C_A = \sqrt{\sum a_{ij}^2}$

Замечание 2

Из теоремы Вейерштрасса $\sup \leftrightarrow \max$ в конечномерном случае

Замечание 3

 $\forall x \in \mathbb{R}^m \ |Ax| \le ||A|||x||$

Доказательство

Для x = 0 очевидно \tilde{x} .

$$\widetilde{x} := \frac{x}{|x|}$$
 $|A\widetilde{x}| \le ||A||$

Замечание 4

Если $\exists C : \forall x |Ax| \leq C|x|$, то $||A|| \leq C$

Пример

- m=n=1 A линейное отображение: $x\mapsto ax$ $\|A\|=|a|$
- m=1, n любое $A: \mathbb{R} \to \mathbb{R}^n$

Тогда
$$\exists \, \overline{v} \in \mathbb{R}^n Ax = x \overline{v}$$

 $||A|| = |\overline{v}|$

- n = 1, m любое $A: \mathbb{R}^m \to \mathbb{R}$ Тогда $\exists l \in \mathbb{R}^m : Ax = \langle x, l \rangle$ ||A|| = |l|
- *m*, *n* любые $A = (a_{ij})$ $x \mapsto Ax$ ||A|| так легко не считается((((

Лемма

Пусть X, Y – нормированные линейное пространство $A \in \operatorname{Lin}(X, Y)$

Тогда следующие утверждения эквивалентны:

- 1. A ограничен, т.е. $||A|| < +\infty$
- 2. A непрерывно в $\mathbb{0} \in X$
- 3. A непрерывно на X
- 4. A равномерно непрерывное ($\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x_1, x_2 : |x_1 x_2| < 0$ $\delta ||Ax_1 - Ax_2| < \varepsilon)$

Доказательство

$$4 \Rightarrow 3 \Rightarrow 2$$
 – очевидно

Докажем $2 \Rightarrow 1$

Возьмем $\varepsilon = 1$

$$\exists \delta > 0: \ \forall x: |x| < \delta \ |Ax| < 1$$

Возьмем |x| = 1

$$|Ax| = \frac{1}{\delta} |A(\delta x)| < \frac{1}{\delta}$$

Тогда $||A|| \le \frac{1}{\delta}$

Докажем
$$1 \Rightarrow 4$$

 $\forall \varepsilon > 0 \ \exists \delta = \frac{\varepsilon}{\|a\|} : \ \forall x_1, x_2 : |x_1 - x_2| < \delta$
 $|Ax_1 - Ax_2| = |A(x_1 - x_2)| \le \|A\||x_1 - x_2|$

$$|Ax_1 - Ax_2| = |A(x_1 - x_2)| \le |A||x_1 - x_2| < \varepsilon$$

Теорема о пространстве линейных отображений

• $\|\cdot\|$ — норма в ${\rm Lin}(X,Y), X, Y$ — конечномерные нормированные пространства Т.е.

1.
$$||A|| \ge 0, ||A|| = 0 \Leftrightarrow A = 0$$

2.
$$\forall \alpha \in \mathbb{R} \|\alpha A\| = |\alpha| \|A\|$$

$$3. ||A + B|| \le ||A|| + ||B||$$

•
$$||BA|| \le ||B|| \cdot ||A||$$

Доказательство

$$\begin{split} \|A\| &\geq 0 - \text{тривиально} \\ \|A\| &= \sup_{|x|=1} \|Ax\| = 0 \Rightarrow A = 0 \\ \|\alpha A\| &= |\alpha| \|A\| \\ |(A+B)x| \leq |Ax| + |Bx| \leq \underbrace{\left(\|A\| + \|B\|\right)}_{C} |x| \Rightarrow \|A+B\| \leq C = \|A\| + \|B\| \end{split}$$

$$|BAx| \le ||B|||Ax| \le ||B|||A|||x|$$

Замечание

 $B \operatorname{Lin}(X, Y)$

$$||A|| = \sup_{|x|=1} |Ax| = \sup_{|x| \le 1} |Ax| = \sup_{|x| < 1} |Ax| = \sup_{x \ne 0} \frac{|Ax|}{|x|} = \inf\{C \in \mathbb{R} : \forall x \in X |Ax| \le C|x|\}$$

Теорема Лагранжа (для отображений)

 $F:D\subset\mathbb{R}^m\to\mathbb{R}^n$ – дифференцируема в D – открытом

$$a, b \in D, [a, b] \subset D$$

Тогда
$$\exists \, c \in [a,b]$$
, т.е. $\exists \, \theta \in [0,1] : c = a + \theta(b-a) : |F(b) - F(a)| \leq ||F'(c)|||b-a|$

Доказательство

$$f(t) = F(a+t(b-a)), t \in [0,1]$$

$$f'(t) = F'(a + t(b - a))(b - a)$$

$$|F(b) - F(a)| = |f(1) - f(0)| \le |f'(\theta)|(1 - 0) = |F'(a + \theta(b - a))(b - a)| \le |F'(a + \theta(b - a))||b - a|$$

Лемма

$$B \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^m)$$

$$\exists c > 0 : \forall x |Bx| \ge c|x|$$

Тогда
$$B$$
 – обратим и $||B^{-1}|| \le \frac{1}{c}$

Доказательство

Обратимость очевидна, т.к. $\operatorname{Ker} B = \{0\}$. Тогда $\exists B^{-1}$

$$|\underbrace{B^{-1}y}_{x}| \le \frac{1}{c}|BB^{-1}y| = \frac{1}{c}|y|$$

Замечание

 Ω_m – множество обратимых линейных операторов $\mathbb{R}^m \to \mathbb{R}^m$

$$|x| = |A^{-1}Ax| \le ||A^{-1}|| |Ax|$$

$$|x| = |A^{-1}Ax| \le ||A^{-1}|| |Ax|$$

T.e. $|Ax| \ge \frac{1}{||A^{-1}||} |x|$

Теорема об обратимости линейного операторого, близкого к обратимому

 $L \in \Omega_m$ – обратимый линейный оператор $\mathbb{R}^m \to \mathbb{R}^m$

$$M\in \mathrm{Lin}(\mathbb{R}^m,\mathbb{R}^m): \|L-M\|\leq rac{1}{\|L^{-1}\|}-M$$
 – близкий к L

Тогда

- $M \in \Omega_m$ т.е. Ω_m открытое
- $||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} ||L M||}$

•
$$||L^{-1} - M^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||L - M||} ||L - M||$$

Доказательство 1 и 2

$$Mx = Lx + (M - L)x$$

$$|Mx| \ge |Lx| - |(M-L)x| \ge \frac{1}{\|L^{-1}\|} |x| - \|M - L\||x| = (\|L^{-1}\|^{-1} - \|M - L\|)|x|$$

1 и 2 следуют из леммы

Доказательство 3

$$\frac{1}{l} - \frac{1}{m} = \frac{m - l}{lm}$$

$$\frac{1}{l} - \frac{1}{m} = \frac{m-l}{lm}$$
 Аналогично $L^{-1} - M^{-1} = M^{-1}(M-L)L^{-1}$

$$\|L^{-1}-M^{-1}\|=\|M^{-1}(M-L)L^{-1}\|\leq \|M^{-1}\|\|M-L\|\|L^{-1}\|\leq$$
из пункта 2

Следствие

Отображение $L \mapsto L^{-1}$, заданное на Ω_m , непрерывно

Доказательство

Доказательство по Гейне

Рассмотрим последовательность операторов $B_k: B_k \to L$

Проверим, что $B_k^{-1} \to L^{-1}$

H.C.H.M.
$$||B_k - L|| < \frac{1}{||L^{-1}||}$$

$$||B_k^{-1} - L^{-1}|| \le \frac{||L^{-1}||}{\frac{1}{||L^{-1}||} - \underbrace{||L - B_k||}_{\to 0}} \underbrace{||L - B_k||}_{\to 0} \to 0$$

Теорема (о непрерывно дифференцируемых отображениях)

$$F: \underbrace{D}_{\text{откр}} \subset \mathbb{R}^m \to \mathbb{R}^l$$
, дифф. на D

$$F': D \to \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^l)$$

Тогда $1 \leftrightarrow 2$

- 1. $F \in C^1(D)$ (все частные производные непрерывны на D)
- 2. $F': D \to \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^l)$ непрерывно на D $\forall x \in D \ \forall \varepsilon > 0 \ \exists \ \delta > 0 : \forall \widetilde{x} : |x \widetilde{x}| < \delta \ \|F'(x) F'(\widetilde{x})\| < \varepsilon$

Доказательство $1 \rightarrow 2$

Пусть $F \in C^1(D)$

$$\forall i,j \ \forall x \in D \ \forall \varepsilon > 0 \ \exists \, \delta > 0 : \forall \, \widetilde{x} : |x - \widetilde{x}| < \delta \ |\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x})| < \frac{\varepsilon}{\sqrt{mn}}$$
 Тогда $\|F'(x) - F'(\widetilde{x})\| \le \sqrt{\sum_{ij} (\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x}))^2} \le \varepsilon$

Доказательство $2 \rightarrow 1$

Пусть
$$\forall x \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \widetilde{x} : |x - \widetilde{x}| < \delta \ \|F'(x) - F'(\widetilde{x})\| < \varepsilon$$

$$h = (0, \dots, 0, \underbrace{1}_{k}, 0, \dots 0)^{T}$$

$$\left|\underbrace{(F'(x) - F'(\widetilde{x})h)}_{\sum_{i=1}^{l}(\frac{\partial f_{i}}{\partial x_{k}}(x) - \frac{\partial f_{i}}{\partial x_{k}}(\widetilde{x}))}\right| \leq \|F'(x) - F'(\widetilde{x})\||h| \leq \varepsilon$$

Отсюда
$$\sqrt{\sum_{i=1}^l (\frac{\partial f_i}{\partial x_k}(x) - \frac{\partial f_i}{\partial x_k}(\widetilde{x}))^2} \le \varepsilon$$

Тогда для
$$i=i_0-|\frac{\partial f_{i_0}}{\partial x_k}(x)-\frac{\partial f_{i_0}}{\partial x_k}(\widetilde{x})|\leq \varepsilon$$

3 Экстремумы

Определение

$$f:D\subset\mathbb{R}^m\to\mathbb{R}$$

 $a \in D$ – локальный максимум $f \Leftrightarrow \exists U(a) : \forall x \in U(a) \cap D \ f(x) \leq f(a)$ (нестрогий экстремум)

 $a \in D$ – локальный строгий максимум $f \Leftrightarrow \exists \, U(a) : \forall \, x \in U(a) \cap D \,\, f(x) < f(a)$ (строгий экстремум)

Теорема Ферма

 $f:D\subset\mathbb{R}^m\to\mathbb{R}$

 $a \in \operatorname{Int} D, f$ – дифференцируема

a – экстремум

Тогда \forall направление $l \frac{\partial f}{\partial l}(a) = 0$

Доказательство

 $g(t)=f(a+tl), t\in\mathbb{R}$ – задана в окрестности 0 g'(0)=0

$$g'(t) = f'l = \left(\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_m}\right) \cdot \begin{pmatrix} l_1 \\ \vdots \\ l_m \end{pmatrix} = \frac{\partial f}{\partial l}$$

Следствие (необходимое условие экстремума)

a – локальный экстремум

Тогда
$$\forall 1 \le k \le m \frac{\partial f}{\partial x_k}(a) = 0$$

Следствие (т. Ролля)

Пусть $K \subset \mathbb{R}^m$ – компакт

f – дифференцируема в Int K $(f:K \to \mathbb{R},$ непрерывна)

 $f_{\partial K} = \mathrm{const}, \partial K$ – граница компакта

Тогда $\exists x_0 \in \text{Int } K : \text{grad } f(x_0) = 0$

Доказательство

По теореме Вейерштрасса f достигает max, min на K

Если оба на ∂K , то $f \equiv \mathrm{const}$ на K

Иначе применим теорему Ферма

Определение

 $Q(h): \mathbb{R}^m \to \mathbb{R}$ – квадратичная форма, если она представляет однородный многочлен 2 степени

ный многочлен
$$2$$
 степени т.е. $Q(h)=\sum_{1\leq i\leq m, 1\leq j\leq m}a_{ij}h_ih_j, a_{ij}=a_{ji}$

Q – положительно определенная $\Leftrightarrow \forall \, h \neq 0 \,\, Q(h) > 0$

Q – отрицательно определенная $\Leftrightarrow \forall h \neq 0 \ Q(h) < 0$

Q — незнакоопределенная $\Leftrightarrow \exists \, h: Q(h)>0, \exists \, h: Q(h)<0$

Q — полуопределенная (положительно определенная вырожденная) \Leftrightarrow $\forall h \ Q(h) \geq 0, \exists h \neq 0 : Q(h) = 0$

Лемма

- 1. $Q: \mathbb{R}^m \to \mathbb{R}$ кв. форма, Q > 0Тогда $\exists \gamma_O > 0 : \forall x \ Q(x) > \gamma_O | x^2$
- 2. $p: \mathbb{R}^m \to \mathbb{R}$ норма Тогда $\exists C_1, C_2 > 0: \forall x \in \mathbb{R}^m \ C_1|x_1| \leq p(x) \leq$

Доказательство

1.
$$\gamma_Q:=\min_{|x|=1}Q(x)>0$$
 Тогда $Q(x)=|x|^2Q(\frac{x}{|x|})\geq \gamma_Q|x|^2, x\neq 0$

2. Проверим, что p(x) непрерывна, чтобы доказать существование минимума и максимума:

$$|p(x) - p(y)| \le p(x - y) = p(\sum (x_k - y_k)\overline{e_k}) \le \sum |x_k - y_k|p(e_k) \le M|x - y|, M = \sqrt{\sum p(e_k)^2} - \text{по KBIII}$$
 $C_1 = \min_{|x|=1} p(x), C_2 = \max_{|x|=1} p(x)$
 $p(x) = |x|p(\frac{x}{|x|}) \le |x|C_2, \ge |x|C_1$

Напоминание

$$f(x+h)=f(x)+\mathrm{d}\,f(x,h)+rac{1}{2!}\,\mathrm{d}^2\,f(x,h)+\dots$$
 $\mathrm{d}^2\,f(x,h)=f''_{x_1x_1}(x)h_1^2+\dots+f''_{x_nx_n}h_n^2+2f''_{x_1x_2}h_1h_2+\dots$ Теорема (достаточное условие экстремума)

$$f: D \subset \mathbb{R}^m \to \mathbb{R}, a \in \text{Int } D, \text{grad } f(a) = 0, f \in C^2(D)$$

$$Q(h) := d^2 f(a, h)$$

Тогда $Q > 0 \Rightarrow a$ – локальный минимум

 $Q < 0 \Rightarrow a$ – локальный максимум

 $Q \leq 0$ – не точка локального экстремума

 $Q \ge 0$ – информации недостаточно

Доказательство

$$\forall h \; \exists t \in (0,1) : f(a+h) = f(a) + \underbrace{\mathrm{d} f(a,h)}_{0} + \frac{1}{2!} \, \mathrm{d} f(a+th,h) - \mathrm{остаток} \; \mathrm{B}$$

формуле Лагранжа

$$f(a+h)-f(a)=\frac{1}{2!}Q(h)+\frac{1}{2!}\underbrace{(f_{x_1x_1}''(a+th)h_1^2-f_{x_1x_1}''(a)h_1^2+\ldots+2f_{x_1x_2}''h_1h_2-2f_{x_1x_2}''(a)h_1h_2)}_{|6.\text{м.}\cdot h_i^2|=o(|h|^2)}+\ldots)$$
 ...)
$$f(a+h)-f(a)\geq \frac{1}{2}Q(h)-|\alpha(h)||h|^2\geq \frac{1}{2}\gamma_Q|h|^2-|\alpha(h)||h|^2\geq \frac{1}{4}\gamma_Q|h|^2>0, \alpha(h)-6.\text{м., при достаточно малых }|h|}$$
 Пункт 1 доказан Пункт 2 доказывается заменой $f\to -f$ Пункт 3: $h:Q(h)>0, \widetilde{h}:Q(\widetilde{h})<0$ Аналогично п.1. $f(a+s\cdot h)-f(a)\geq \frac{1}{2}Q(sh)-|\alpha(s)|s^2=\frac{1}{2}Q(h)s^2-|\alpha(s)|s^2\geq \frac{1}{4}Q(h)\cdot s^2$ С другой стороны $f(a+s\cdot \widetilde{h})<0$ по аналогичным соображениям Пункт 4: $f:\mathbb{R}^2\to\mathbb{R}, a=(0,0)$ $f(x_1,x_2)=x_1^2-x_2^4$ $Q(h)=2h_1^2$ полуопределенный Тут нет экстремума $f(x_1,x_2)=x_1^2+x_2^4$ — в нуле экстремум

4 Функциональные последовательности и ряды

4.1 Равномерная сходимость последовательностей и функций

Определение

Последовательность функций – отображение $N \leadsto$ множество функций Пусть $f_1(x), f_2(x), \ldots : X \to \mathbb{R}, X$ – любое множество Последовательность (f_n) сходится поточечно на E – существует функция f(x) $f_n \underset{E}{\to} f$ $\forall x \in E \ \forall \varepsilon > 0 \ \exists \ N : \forall \ n > N \ |f_n(x) - f(x)| < \varepsilon$ Последовательность (f_n) сходится равномерно на E к функции f $f_n \underset{E}{\to} f \ \forall \varepsilon > 0 \ \exists \ N : \forall \ n > N \ \underbrace{\forall \ x \in E \ |f_n(x) - f(x)| < \varepsilon}_{\sup_{x \in E} |f_n(x) - f(x)| = \rho(f_n, f) \le \varepsilon}$

Замечание

 $f \Longrightarrow f$ на $E, E_0 \subset E$

Тогда $f_n \underset{E_0}{\Longrightarrow}$

Замечание

 $f_n \underset{E}{\Longrightarrow} f$

Тогда $f_n \xrightarrow{E} f$

Замечание

 $\mathcal{F} = \{ f : X \to \mathbb{R}, f - \text{orp.} \}$

Тогда $\to (f,g) = \sup_{x \in X} |f(x) - g(x)|$ является метрикой на $\mathcal F$

Доказательство

Первые две аксиомы очевидны

Докажем неравенство треугольника

$$\forall \varepsilon > 0 \ \exists x_0 : \rho(f,g) - \varepsilon < |f(x_0) - g(x_0)| \le |f(x_0) - h(x_0)| + |h(x_0) - g(x_0)| \le \rho(f,h) + \rho(h,g)$$

Отсюда $\rho(f,g) \leq \rho(f,h) + \rho(h,g)$

Замечание

 $f_n \Longrightarrow f$ на E_1 и на E_2

Тогда $f_n \rightrightarrows f$ на $E_1 \cup E_2$

Теорема 1 (Стокса - Зайдля)

X – метрическое пространство

 $f_n, f: X \to \mathbb{R}$

 $c \in X, f_n$ – непрерывная в c

 $f_n \rightrightarrows f$ на X

Тогда f – непрерывна в c

Доказательство

Дано утверждение о равномерной сходимости

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| < \varepsilon$$

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|$$

Начиная с некоторого большого n:

$$|f(x) - f(c)| \le \underbrace{|f(x) - f_n(x)|}_{<\varepsilon} + |f_n(x) - f_n(c)| + \underbrace{|f_n(c) - f(c)|}_{<\varepsilon}$$

Т.к. f_n непрерывна, то $\exists U(c): \forall x \in U(c) |f_n(x) - f_n(c)| < \varepsilon$ Отсюда $|f(x) - f(c)| < 3\varepsilon$

Тогда $\forall \varepsilon > 0 \; \exists U(c) : \forall x \in U(c) \; |f(x) - f(c)| < 3\varepsilon$

Замечание

Вместо метрических пространств можно рассматривать топологические пространства (без изменения доказательства)

Следствие

$$f_n \in C(X), f_n \rightrightarrows f$$
 на X . Тогда $f \in C(X)$
Следствие 2
 $f_n \in C(X), \forall c \; \exists \; W(c) : f_n \rightrightarrows f$ на $W(c)$. Тогда $f \in C(X)$
Замечание
 $f_n \rightrightarrows f$ на $X \not\Rightarrow \forall c \; \exists \; W(c) : f_n \rightrightarrows f$
Пример: $f_n = x^n, x \in (0,1)$
 $f \equiv 0$
Рассмотрим точку x в $(\alpha, \beta), \beta \neq 1$
 $\rho(f_n, f) = \beta^n \to 0$
 $f_n(x) \rightrightarrows f$ на (α, β)
Но $\rho(f_n, f) = 1$ на $(0, 1)$