

130B

OSCILLOSCOPE

SERIALS PREFIXED: 946-

OPERATING AND SERVICING MANUAL

OPERATING AND SERVICING MANUAL

MODEL 130B/BR

OSCILLOSCOPE

SERIALS PREFIXED: 946 -

Copyright HEWLETT-PACKARD COMPANY 1959
275 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

130B002/11-59

SPECIFICATIONS**SWEEP**

Sweep Range:	0.2 μ sec/cm to at least 12.5 sec/cm. 21 calibrated sweeps, accurate within $\pm 5\%$, in a 1-2-5-10 sequence, 1 μ sec/cm to 5 sec/cm. Vernier permits continuous adjustment of sweep time between calibrated steps and extends slowest sweep time to at least 12.5 sec/cm.
Magnifier:	X5 Magnifier may be used on all ranges and expands fastest sweep to 0.2 μ sec/cm. Accuracy within 10%.
Synchronization:	Internally from line voltage or from signals causing 1/2 centimeter or more vertical deflection. Externally from 0.5 volts peak-to-peak or more.
Trigger Point:	Continuously adjustable from -30 to +30 volts on either positive or negative slope of external synchronizing signal, or from any point of the vertical signal presented on the screen.
Preset Triggering:	Switch position on sweep mode control selects optimum setting for automatic triggering.

INPUT AMPLIFIERS

Sensitivity:	1 mv/cm to at least 125 v/cm. 15 calibrated ranges, accurate within $\pm 5\%$, in a 1-2-5-10 sequence, 1 mv/cm to 50 v/cm. Vernier permits continuous adjustment between ranges and decreases sensitivity of 50 v/cm range to at least 125 volts/cm. Input voltage rating 600 volts dc or rms.
Phase Shift:	Within $\pm 1^\circ$ relative phase shift at frequencies up to 50 kc between vertical and horizontal amplifiers with verniers in cal.
Stability:	1 mv/hr after warmup.
Bandwidth:	DC Coupling: dc to 300 kc. AC Coupling: 2 cps to 300 kc. Specified bandwidth is independent of sensitivity setting.
Balanced Input:	On 1, 2, 5, 10, 20 and 50 mv/cm ranges. Cabinet Mount input impedance: 2 megohms shunted with approximately 25 $\mu\mu$ f. Rack Mount input impedance: 2 megohms, approximately 125 $\mu\mu$ f shunt capacity. Disconnecting the wires at the front panel which connect to the rear terminals reduces the input capacity to approximately 25 $\mu\mu$ f.
Common Signal Rejection (Balanced input only):	Rejection at least 40 db. Common signal must not exceed 1.5 volts.

SPECIFICATIONS (CONT'D.)

Single Ended Input: Cabinet Mount input impedance: 1 megohm shunted with approximately 50 $\mu\mu$ f. Rack Mount input impedance: 1 megohm, approximately 200 $\mu\mu$ f shunt capacity. Disconnecting the wires at the front panel connecting to the rear terminals reduces the input capacity to approximately 50 $\mu\mu$ f.

Internal Calibrator: 300 millivolts peak-to-peak $\pm 2\%$, 300 cycles squarewave applied to vertical or horizontal amplifiers by CAL position of input attenuators.

GENERAL

Illuminated Graticule: Edge lighted graticule with controlled illumination, 10 cm x 10 cm, marked in centimeter squares with 2 mm subdivisions, on major horizontal and vertical axes. Effectively shielded from ambient light.

CRT Plates: Direct connection to deflection plates via terminals on rear. Sensitivity approximately 20 volts/cm.

Intensity Modulation: Terminals on rear; 20 volts positive signal blanks CRT at normal intensity.

Cathode Ray Tube: 5 AQP mono-accelerator flat face type with 3000 volt accelerating potential. Available with P1, P2, P7 or P11 screen.

Dimensions: Cabinet Mount: 9-3/4 in. wide, 15 in. high, 21-1/4 in. deep.
Rack Mount: 19 in. wide, 8-3/4 in. high, 22 in. deep, 19-3/4 in. deep behind panel.

Weight: Cabinet Mount: Net 41 lbs., shipping 54 lbs.
Rack Mount: Net 47 lbs, shipping 62 lbs.

Power Supply: 115/230 volts $\pm 10\%$, 50/1000 cycles, 160 watts.

Filter Supplied: Color of filter compatible with screen phosphor.
Green for P1 and P2, Amber for P7, Blue for P11.

Rack Mount: Has rear terminals in parallel with front panel connections.

Accessories Furnished: Supplied with Rack Mount, 130B-12P and Q Mounting Brackets (pr.)
Two 125-57 Plugs (mate with rear terminals).
Two 125-59 Clamps for 125-57 Plugs.

Accessories Available: AC-83A Viewing Hood; face-fitting molded rubber.
Additional Mounting Brackets, 130B-12P (left) and 130B-12Q (right)

CONTENTS

SECTION I	GENERAL DESCRIPTION	PAGE
	1 - 1 General	I - 1
	1 - 2 Damage in Transit	I - 1
	1 - 3 Power Line Voltages	I - 1
	1 - 4 Power Cord	I - 1
	1 - 5 Installation of Rack Mount	I - 1
SECTION II	OPERATING INSTRUCTIONS	
	2 - 1 Controls and Terminals	II - 1
	2 - 2 Rear-Access Terminals	II - 1
	2 - 3 Warm-Up Drift	II - 1
	2 - 4 AC or DC Coupling	II - 2
	2 - 5 Balanced Inputs	II - 2
	2 - 6 Operating Procedures	II - 2
SECTION III	THEORY OF OPERATION	
	3 - 1 General Content	III - 1
	3 - 2 Over-All Operation	III - 1
	3 - 3 Vertical Amplification Channel	III - 1
	3 - 4 Horizontal Amplification Channel	III - 2
	3 - 5 Sweep Generator	III - 2
	3 - 6 Low Voltage Power Supply	III - 3
	3 - 7 High Voltage Power Supply	III - 4
	3 - 8 Calibrator	III - 4
SECTION IV	MAINTENANCE	
	4 - 1 Introduction	IV - 1
	4 - 2 Simple Check Procedure	IV - 1
	4 - 3 Isolating Troubles to Major Sections	IV - 3
	4 - 4 Removing the Cabinet	IV - 3
	4 - 5 Connecting for 230 Volt Operation	IV - 3
	4 - 6 Tube Replacement	IV - 4
	4 - 7 Condensed Test and Adjustment Procedure	IV - 5
	4 - 8 Adjustment Procedure	IV - 9
	4 - 9 Turn On	IV - 9
	4 - 10 Power Supplies	IV - 9
	4 - 11 Replacing and Adjusting the CRT	IV - 11
	4 - 12 Checking and Adjusting the Calibrator	IV - 13
	4 - 13 Adjusting the Vertical Amplifier	IV - 13
	4 - 14 Adjusting the Horizontal Amplifier	IV - 15
	4 - 15 Phase Shift Adjust	IV - 15
	4 - 16 Adjusting Preset	IV - 17
	4 - 17 Adjusting the Sawtooth Generator and Sweep Amplifier	IV - 17
SECTION V	TABLE OF REPLACEABLE PARTS	
	5 - 2 Table of Replaceable Parts	V - 2

CATHODE RAY TUBE WARRANTY

The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from , are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your warranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

- 1) Carefully wrap the tube in 1/4" thick cotton batting or other soft padding material.
- 2) Wrap the above in heavy kraft paper.
- 3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
- 4) Surround the tube with at least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
- 5) Tubes returned from outside the continental United States should be packed in a wooden box.
- 6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

CRT WARRANTY CLAIM

FROM:

DATE: _____

NAME: _____

COMPANY: _____

ADDRESS: _____

Person to contact for further information:

NAME: _____

TITLE: _____

COMPANY: _____

ADDRESS: _____

To process your claim quickly please enter the information indicated below:

1) \oplus INSTRUMENT MODEL _____ SERIAL _____

2) TUBE TYPE _____ SERIAL _____

3) ORIGINAL TUBE _____ REPLACEMENT TUBE _____

4) YOUR PURCHASE ORDER NO. _____

5) DATE PURCHASED _____

6) PURCHASED FROM _____

7) COMPLAINT: (Please describe nature of trouble) _____

8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure) _____

SIGNATURE _____

SECTION I GENERAL DESCRIPTION

1-1 GENERAL

The Model 130B dc to 300 kc Oscilloscope is a general purpose oscilloscope. It can be used with either internal or external sweeps which can be either internally or externally synchronized and it can be obtained in either the cabinet or rack type mounting. Because of its high sensitivity and balanced input, the Model 130B may often be used directly with transducers, enabling you to see a direct presentation of phenomena desired without having to resort to preamplifiers.

Some of the special features of this oscilloscope are as follows:

A. LINEAR INTEGRATOR SWEEP GENERATOR

The accurate direct reading sweeps are obtained from a feedback type integrator which insures a high order linearity and stability. This type of sweep generator, is more reliable and independent of tube characteristics than other types of sweep generator.

B. X5 SWEEP EXPANSION

You speed observation and analysis of transients by expanding a two centimeter segment of the trace to 10 centimeters for easy viewing of detail. This X5 sweep expander, may be used on all sweep time settings and expands the fastest sweep time to .2 microsecond/cm.

C. CALIBRATED AMPLIFIERS

Voltage measurements of various waveforms are quickly made with the 130B, accurate within $\pm 5\%$. A built-in calibrator which is accurate within $\pm 2\%$ permits quick verification and standardization of the amplifier gain.

Phase shift measurements can be made accurately with this oscilloscope over a wide range of input frequencies.

1-2 DAMAGE IN TRANSIT

This instrument should be thoroughly inspected when it is received. If any damage is evident, refer to the "Claim for Damage in Shipment" paragraph on the Warranty sheet in this manual.

1-3 POWER LINE VOLTAGES

The Oscilloscope is shipped from the factory wired for 115 volts ac line operation, unless otherwise specified. However, the instrument may also be operated from a 230 volts ac line source if the proper conversion is made to the power transformer. This conversion is described in the Maintenance Section (Section IV).

1-4 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin, added to a standard two-blade ac plug, which grounds the instrument chassis when used with the appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two contact outlet. When the adapter is used, the ground connection becomes a short lead from the adapter which should be connected to a suitable ground for the protection of operating personnel.

1-5 INSTALLATION OF RACK MOUNT

The 130B is designed so that it can be supported in a 19 inch rack by the front panel in the usual manner; or, the dust cover may be rigidly mounted in the rack with brackets as shown in Figure 1-1. In the latter case, the chassis is supported by the dust cover and may be slipped in

or out easily; the screws through the front panel merely holding the chassis in place. To rack mount the 130BR using the brackets:

- 1) Mount the bracket as shown in Figure 1-1 with screws through the outside holes of the brackets. The length of these screws may be chosen to space the front panel from the panel rails as desired. The brackets at the rear are not necessary in most installations but can be used if added support is required. These brackets are available from the Hewlett-Packard Company as an accessory item.
- 2) Remove the dust cover from the 130BR and mount it in the brackets with the 10-32 trusshead screws provided.

- 3) Slip the 130BR into the dust cover and fasten in place with screws through the front panel.

Figure 1-1. Model 130BR Installation

MANUAL CHANGES

MODEL 130B

OSCILLOSCOPE

ERRATA:

C218: Add capacitor, fixed, ceramic, .01uf $\pm 20\%$,
1000 vdcw; -hp- Stock No. 15-43, Mfr., CC

L301: Should read 5mh

R232: Change to resistor, fixed, composition, 1000 ohms
 $\pm 5\%$, $\frac{1}{2}$ W; -hp- Stock No. 23-1000-5, Mfr., B

R232: Change to resistor, fixed, composition, 1000 ohms
 $\pm 5\%$, $\frac{1}{2}$ W; -hp- Stock No. 23-1000-5, Mfr., B

12/7/59 - 130B

12/4/59

1/8/60 - 130B

NOTES

FIGURE 2-1
OPERATING CONTROLS
AND TERMINALS

TOR.

ALIBRATING

: 5 %),

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A X5 sweep magnifier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a one-half centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -

A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3-conductor receptacle J102, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS

-----DANGER - HIGH VOLTAGE-----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. See Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A X5 sweep magnifier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a one-half centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -

A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3-conductor receptacle J102, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS

-----DANGER - HIGH VOLTAGE-----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. See Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

2-4 AC OR DC COUPLING

AC coupling permits high gain to be employed without regard for the dc level involved. In the AC position the input signal (vertical or horizontal) is coupled to the amplifier through a capacitor which removes the dc component from the input. This coupling circuit has a low frequency cut-off at 2 cps. To avoid degrading input pulses or square waves below 200 cps it is advisable to use dc coupling. WHEN USING DC COUPLING THE AVERAGE VALUE OF THE DC DETERMINES THE POSITION OF THE SWEEP ON THE OSCILLOSCOPE. IF YOU ARE UNABLE TO FIND THE TRACE WITH THE VERTICAL POSITION CONTROL WHEN USING DC COUPLING, TRY AC COUPLING. When AC coupled the maximum dc that may be applied is 600 volts.

2-5 BALANCED INPUTS

The instrument will accept balanced input signals on the six most sensitive ranges. This arrangement is shown in Figure 2-7.

Driving the instrument from a balanced source can be very effective in removing the unwanted stray pickup that would otherwise obscure the desired information. To take advantage of the noise reduction that is possible with a balanced input, you must be sure that neither terminal of the source is connected to ground, and use double conductor shielded cable between the source and oscilloscope. The input cable shield must be connected to a suitable ground, either at the oscilloscope or some other point. With these precautions in the external input circuit, any stray signals (noise, hum, etc.) will be coupled equally to the two input terminals, and be cancelled by the differential amplifiers. Since the desired information is applied between the two input terminals, it will be amplified and displayed in the normal manner. Since the noise is a problem

mainly at low level, the fact that balanced input is available only on the most sensitive ranges is generally not a serious limitation.

The common-mode signal rejection will be at least 40 db (1/100 of the input signal). When using a balanced input certain limitations must be considered. The proper operating levels must be maintained on the input amplifier: The COMMON-MODE SIGNAL VOLTAGE MUST NOT EXCEED 1.5 VOLTS EITHER POSITIVE OR NEGATIVE, ON EITHER INPUT TERMINAL. Note that this is the sum of all voltages (dc plus peak ac).

NOTE

If balanced ac coupling is desired, it is necessary to connect a capacitor in the external signal path to the middle terminal, since a dc voltage on this terminal only unbalances the amplifier. This arrangement is shown in Figure 2-7.

2-6 OPERATING PROCEDURES

Basic operating procedures are described in the following illustrations. Positions of controls are different on the cabinet model but their functions are identical to those of the rack model.

Figure	Description
2-2	VERTICAL BALANCE ADJUSTMENT
2-3	HORIZONTAL BALANCE ADJUSTMENT
2-4	INTERNAL SWEEP-INTERNAL SYNCHRONIZATION
2-5	INTERNAL SWEEP-EXTERNAL SYNCHRONIZATION
2-6	EXTERNAL HORIZONTAL INPUT
2-7	AC COUPLING BALANCED INPUT
2-8	CONNECTION TO CRT DEFLECTION PLATES
2-9	EXTERNAL INTENSITY MODULATION
2-10	ALIGNING SCOPE TRACE WITH GRATICULE

VERTICAL BALANCE ADJUSTMENT

After Warm-Up:

1. Turn SWEEP MODE control to FREE RUN.
2. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1.
3. Set SWEEP TIME/CM switch so that a convenient base line is formed. (Any sweep time faster than 50 MILLISECONDS/CM is satisfactory.)
4. Short vertical input terminals together.
5. Set AC-DC switch to DC.
6. Turn VERNIER to CAL.
7. Center trace with VERT. POS. control.
8. Set VERT. SENSITIVITY to 50 MILLIVOLTS/CM.
9. Center trace with coarse (screwdriver) VERT. DC BAL. control or with fine (knob) control if unbalance is slight.
10. Set VERT. SENSITIVITY to 5 MILLIVOLTS/CM, repeat step 9.
11. Set VERT. SENSITIVITY to 1 MILLIVOLT/CM, repeat step 9.
12. Turn VERNIER fully CCW, repeat step 9.

Repeat steps 6 through 12 until the trace does not move as the VERNIER control is rotated.

Figure 2-2

HORIZONTAL BALANCE ADJUSTMENT

After Warm-Up:

1. Short together the horizontal input terminals.
2. Set AC-DC switch to DC.
3. Set HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM.
4. Turn VERNIER to CAL.
5. Center spot with HORIZ. POS. control, if necessary, adjust vertical position.
6. Set HORIZ. SENSITIVITY to 1 MILLIVOLT/CM, repeat step 7.
7. Return the spot to center with coarse (screwdriver) HORIZ. DC BAL. control or with the fine (knob) control if the unbalance is slight.
8. Set HORIZ. SENSITIVITY to 5 MILLIVOLTS/CM, repeat step 7.
9. Turn VERNIER fully CCW, repeat step 7.

Repeat steps 4 through 9 until the spot does not move as the VERNIER control is rotated.

Figure 2-3

INTERNAL SWEEP - INTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps)
2. Set SYNC switch to INT.
3. Set SWEEP MODE to PRESET.
4. Connect vertical input signal into vertical input terminals.
5. Set AC-DC switch for type coupling desired.
6. Adjust VERT. SENSITIVITY for desired sensitivity.
7. Set TRIGGER SLOPE switch for triggering on positive or negative slope of input signal, as desired.
8. Set TRIGGER LEVEL control to 0.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-4

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps).
2. Set SYNC switch to EXT.
3. Set SWEEP MODE to PRESET.
4. Feed synchronizing signal (0.5 volts p-p or more) to the horizontal input terminals.
5. Set AC-DC switch for type coupling desired.
6. Set TRIGGER LEVEL to 0.
7. Feed vertical input signal into vertical input terminals.
8. Adjust VERT. SENSITIVITY for desired sensitivity.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Set TRIGGER SLOPE for triggering on positive or negative slope, as desired.
11. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be found necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-5

EXTERNAL HORIZONTAL INPUT

1. Feed horizontal signal to horizontal input terminals.
2. Set AC-DC switch for type of input coupling desired.
3. Set HORIZ. SENSITIVITY switch for desired sensitivity.
4. Adjust horizontal position of pattern with HORIZ. POS. control.

This type of input will be found useful for viewing Lissajous patterns, etc.

Figure 2-6

AC COUPLING BALANCED INPUT

The following procedure is for the vertical input, but is the same for the horizontal input.

1. Set VERT. SENSITIVITY to 50 MILLIVOLTS/CM, input not balanced on higher ranges.
2. Set AC-DC switch to AC.
3. Disconnect shorting strap.

4. Connect 0.1 microfarad capacitor to mid-terminal.
5. Connect input signal to A and B.
6. Ground input at the black terminal.

The capacitor must be used to block any dc.

Figure 2-7

CONNECTION TO CRT DEFLECTION PLATES

The following procedure is for connecting external signals to the vertical deflection plates, but is the same for the horizontal plates.

1. Remove rear access plate fastened by four screws.
2. Remove the shorting bars between the Vertical Amplifier and terminals D3 and D4 and replace them with 1 megohm, 1/2 watt resistor.

For balanced AC coupling:

3. Connect balanced signal through appropriate capacitor to D3 and D4.

For single-ended AC coupling:

4. Bypass D4 to chassis with an adequate capacity.
5. Connect the signal to D3 through an appropriate capacitor.

NOTE: If it is desired to have positive voltage deflect the beam downward, bypass D3 to chassis and connect the signal to D4.

Figure 2-8

EXTERNAL INTENSITY MODULATION

CAUTION: Dangerous Voltages are present on this terminal board. Be sure the instrument is turned off when making this connection.

To intensity modulate the CRT with external signals:

1. Remove rear access plate fastened by four small screws at rear of dust cover.

2. Remove shorting bar.

3. Connect modulating signal to these terminals. A positive voltage of 20 volts peak will blank the CRT trace from normal intensity.

Figure 2-9

ALIGNING SCOPE TRACE WITH GRATICULE

R0

**CAUTION: DANGEROUS VOLTAGES ARE
PRESENT INSIDE THE INSTRUMENT**

Remove two screws at rear of dust cover and slide cover off to rear. Fiber lever (2) controls both radial and longitudinal positioning of CRT and is locked by clamp (1).

To align sweep trace with graticule loosen clamp (1) with a screwdriver. Rotate fiber arm (2) until the trace is parallel to horizontal lines on graticule. Tighten clamp (1) after adjustment has been made.

Figure 2-10

Figure 3-1. Model 130B Block Diagram

SECTION III

THEORY OF OPERATION

3-1 GENERAL CONTENT

This section contains a brief description of the over-all operation of the Model 130B Oscilloscope, description of each major section and detailed description of a Schmitt trigger.

3-2 OVER-ALL OPERATION

The block diagram in Figure 3-1 shows the basic circuits of the Model 130B Oscilloscope.

A. VERTICAL AMPLIFIER

The Vertical Amplifier receives the input signal, amplifies it, and drives the vertical deflection plates of the cathode ray tube. In addition, this amplifier determines the vertical position of the spot on the screen and supplies a signal for synchronizing the sweep with the vertical input signal.

B. HORIZONTAL AMPLIFIER

The Horizontal Amplifier receives its signal either from the horizontal INPUT jack or from the Sweep Generator, amplifies it and drives the horizontal deflection plates of the cathode ray tube. Except for the provisions in the Horizontal Amplifier for amplifying the internally-generated sawtooth voltage, it is essentially the same as the Vertical Amplifier.

C. SWEEP GENERATOR

The Sweep Generator forms a sawtooth voltage to control the horizontal movement of the spot across the face of the cathode ray tube. The Sweep Generator is divided into two parts: 1) a sawtooth generator, 2) a trigger generator, which starts the sawtooth. The trigger generator controls allow the operator to choose the point at which the sawtooth sweep begins.

In addition to forming the internal sweep of the oscilloscope, the Sweep Generator also supplies the required unblanking pulse which brightens the trace during each sweep.

D. CALIBRATOR

An internal square-wave calibrator, with a nominal frequency of 300 cps, is provided for setting the basic gain of the amplifiers. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL., turns on the calibrator supply voltage and connects its output to the appropriate amplifier.

E. CATHODE RAY TUBE

The cathode ray tube is a 5AQP - mono-accelerator type. It is normally supplied with a P1 phosphor screen but is available in the P7 and P11 phosphors also and P2 upon special order. All are electrically interchangeable and the tube is easily changed. The mono-accelerator anode makes possible a simple astigmatism adjustment which requires no resetting when adjusting the FOCUS or INTENSITY controls. The deflection plate terminals are connected through removable jumpers at the rear of the instrument so that direct connections to the plates can be made easily.

3-3 VERTICAL AMPLIFICATION CHANNEL

The vertical amplification channel consists of three parts: the AC-DC switch, the input attenuator, and the amplifier section proper.

A. AC - DC SWITCH

The signal comes into the input terminals and is fed to the AC-DC switch. For ac coupling, a capacitor is switched into the signal path. In the DC position, the signal goes directly to the input attenuator.

B. INPUT ATTENUATOR

The input attenuator is a sixteen position switch having fifteen calibrated ranges (1 MILLIVOLT/CM to 50 VOLTS/CM) and a calibrate position. When the switch is in the CAL. position, the input of the amplifier is directly connected to the output of the internal calibrator. On ranges less sensitive than 50 MILLIVOLTS/CM, single-ended frequency-compensated attenuators are inserted ahead of the Vertical Amplifier. On the six most sensitive ranges, balanced-type attenuators are inserted between the second differential amplifier (V2) and the third differential amplifier (V3). On the six most sensitive ranges, balanced input signals may be applied to the input terminals after removing the jumper to the ground terminal. The sensitivity may be varied continuously between ranges by means of the VERNIER control.

C. VERTICAL AMPLIFIER

The Vertical Amplifier consists of four stages of balanced differential amplifiers* in cascade. The first stage (V1) has the VERT. DC BAL. adjustment (R10A, B) in its cathode circuit which adjusts the current division between the two halves of the stage. The second stage has a VERNIER control in the cathode circuit which varies the gain of the amplifier between ranges of the VERT. SENSITIVITY switch, and another dc balance adjustment (R20) is also provided. In the last three stages, neutralizing capacitors are used to cancel the coupling effects between the input and output of the amplifier arising from the inter-electrode capacitances. The output of the second stage is fed to the balanced attenuator of the VERT. SENSITIVITY switch. The output of the balanced attenuator is connected to the third balanced differential amplifier (V3). The third stage has two potentiometers in its cathode circuit, one controls the vertical position of the pattern (VERT. POS) and the other adjusts the basic gain of the Vertical Amplifier (R40, Gain Adj.). The fourth balanced differential amplifier (V4) is the output stage. The neon lamps in the grid-cathode circuit of V4 protect the tube when the Model 130B is first turned on. The output of V4 drives the vertical deflection plates of the cathode ray tube. In addition, synchronization signals are coupled from

the plates of V4 and coupled into the Sweep Generator to trigger the sweep during either INTERNAL + or INTERNAL - synchronization. As a precaution against drift and hum, a regulated dc supply is used for the heaters of the first three stages.

3-4 HORIZONTAL AMPLIFICATION CHANNEL

The Horizontal Amplifier is essentially identical to the Vertical Amplifier, except in the INT. SWEEP X1 and X5 position of the HORIZ. SENSITIVITY switch. In these positions, the sawtooth signal from the Sweep Generator is fed through the sweep attenuator to the grid of V103, the third balanced differential amplifier. In the INT. X5 position, R164, X5 Mag. Adj., in the cathode circuit of V104 sets the gain of the amplifier to obtain sweep magnification of X5. The output of V104 drives the horizontal deflection plates of the cathode ray tube.

3-5 SWEEP GENERATOR

The sweep generator provides a sawtooth voltage to produce linear horizontal movement of the spot across the face of the cathode ray tube when the HORIZ. SENSITIVITY switch is set to INT. SWEEP (X1 or X5). In addition, the sweep generator furnishes the pulse required to unblank the cathode ray tube during each sweep.

The sweep generator consists of a Trigger Generator, a Sawtooth Generator, and a Gate Out Cathode Follower.

A. TRIGGER GENERATOR

The purpose of the Trigger Generator is to receive a synchronizing signal and convert it into a fast, constant-amplitude pulse to start the Sawtooth Generator.

The Trigger Generator consists of a SYNC selector switch (S201), a Trigger Amplifier (V201), and a Trigger Generator (V202). The SYNC selector switch accepts a signal from:

- 1) the Vertical Amplifier (internal synchronization, + or -),
- 2) an internal 6.3 volt source (line-frequency synchronization), or
- 3) the horizontal INPUT terminals (external synchronization).

* Valley and Wallman, "Vacuum Tube Amplifier", Massachusetts Institute of Technology Radiation Series, vol. 18, pp 441-451. McGraw-Hill Book Company, Inc., New York, 1948.

The synchronizing signal is fed to V201 which amplifies the signal and delivers it in the proper phase, as selected by the TRIGGER SLOPE switch, to the Trigger Generator. Adjustment of the TRIGGER LEVEL control sets the output level of V201, determining the point on the input waveform that will trigger the Trigger Generator (V202). Trigger Generator (V202) is a Schmitt trigger circuit; a discussion of the Schmitt trigger follows:

A Schmitt trigger consists of two amplifiers, A and B, having both plate-to-grid and cathode-to-cathode coupling. The circuit has two stable states: A side conducting, B side cut off; B side conducting, A side cut off. Due to regenerative action the change-over from one state to the other is very rapid, producing fast rise and decay times in the square-wave output. The levels at which the change-over takes place (hysteresis limits) can be adjusted to be close together as in the Trigger Generator (V202) or widely spaced as in the Start-Stop Trigger (V203). To trigger the circuit, the A side grid voltage must cross a particular hysteresis limit to change the state of the circuit. For example; if the A side is conducting, driving the grid voltage positive through the upper hysteresis limit will have no effect, but driving the grid voltage negative through the lower hysteresis limit will put the A side out of conduction and B side into conduction.

B. SAWTOOTH GENERATOR

The Sawtooth Generator consists of Start-Stop Trigger (V203), and Integrator Switch (V205), a Feedback Integrator (V206B), and Integrator Cathode Follower (V206A), and a Retriggering Hold-Off Cathode Follower (V207B).

Start-Stop Trigger (V203), a Schmitt trigger circuit, is fed by Trigger Generator (V202). The square wave output of V203 is fed directly to the Integrator Switch (V205), which in turn controls the action of Feedback Integrator (V206B). When V203 produces a negative pulse, it causes V205 to cut off permitting V206B to commence operation.

Feedback Integrator (V206B), a Miller integrator circuit*, generates essentially a positive linearly rising waveform, which is applied to the Horizontal Amplifier to sweep the trace across the face

of the cathode ray tube. The rate at which this sweep takes place is determined by the values of the RC network in the grid circuit of V206B. These values are varied by the SWEEP TIME switch. The output of V206B is fed through a neon lamp (I203) to the Integrator Cathode Follower (V206A). Neon lamps (I204 to I206) are used to drop the voltage to the proper level and at the same time furnish a direct-coupled path for the signal. The neon lamps are shunted with a capacitor to improve the high-frequency response of the circuit, and a series resistor is used to eliminate any tendency toward oscillation.

The output of the Integrator Cathode Follower (V206A) is fed to two circuits: 1) through the sweep attenuator to the Horizontal Amplifier and 2) to the Retriggering Hold-Off Cathode Follower (V207B) in the Sawtooth Generator feedback circuit. During the Sweep, V207B conducts and the capacitor in its cathode circuit charges. However, at the termination of the sweep, V207B is cut off and the cathode capacitor discharges, maintaining a positive bias on the grid of V203A. This hold-off bias allows sufficient time between sweeps for the Sweep Generator to recover. The bias which determines the triggering level of the Start-Stop Trigger (V203A) is supplied by the Retriggering Bias Control (V207A). The bias is adjusted by the SWEEP MODE control, R218, in the grid circuit of V207A.

C. GATE OUT CATHODE FOLLOWER

Another function of the Start-Stop Trigger is to furnish a pulse to unblank the cathode ray tube. The Gate Out Cathode Follower (V204), couples the required positive unblanking pulse from the Start-Stop Trigger to the grid of the crt for the duration of the sweep.

3-6 LOW VOLTAGE POWER SUPPLY

The low-voltage power supply consists of four regulated voltage supplies, three positive (+585V, +300V, +100V) and one negative (-150V), furnishing the plate voltages and dc filament voltages required for the instrument.

The operation of each of the four regulators is similar; only the -150 volt supply will be discussed. V306, V307 and V308 constitute the voltage regulator circuit for the -150 volt supply. V308, a glow discharge tube, provides a fixed reference voltage for the cathode of V307, the

* Millman and Taub, "Pulse and Digital Circuits" pp 216-228, McGraw-Hill Book Company, Inc., New York, 1956.

Control Tube. V306 operates as the regulator tube (or variable resistor), controlled by the voltage at the plate of V307. If the regulated output from the cathode of V306 tends to increase, the voltage at the grid of V307 tends to increase, causing V307 to draw more current. This lowers the plate voltage of V307 and the grid voltage of V306, resulting in greater plate resistance for V306. Increased plate resistance causes a greater voltage drop across V306, compensating for the increased output voltage from the regulator and resulting in a substantially constant output.

If the regulated output tends to decrease, the reverse of the above action occurs, tending to maintain the output voltage constant. In the same manner, changes in voltage at the screen of V307 compensate for variations and ripple in the input (unregulated) voltage. The output of the -150 volt supply serves as the reference voltage for the three positive-voltage supplies.

3-7 HIGH-VOLTAGE POWER SUPPLY

The high-voltage power supply provides regulated dc voltage to the cathode and control grid of the cathode ray tube. The high-voltage power supply consists of an RF Oscillator tube (V313), a high-voltage transformer (T302), high-voltage rectifiers (V310,311) and a High-Voltage Control Tube (V312). The RF Oscillator, a Hartley circuit, oscillates at a frequency of approximately 100 kc. The high-voltage transformer has two separate secondaries which feed the High-Voltage Rectifiers.

The output of V310 is connected to the cathode of the cathode ray tube. A fraction of this voltage is fed to the High-Voltage Control Tube V312, a dc-coupled amplifier. The output of V312 is fed back to the screen of RF Oscillator tube (V313) in proper phase to oppose any change in the high-voltage output. The INTENSITY control in the output of this supply determines the voltage on the cathode of the cathode ray tube.

The output of V311 is connected to the control grid of the cathode ray tube, and normally the crt beam is cut off. During the sweep operation, a positive

pulse from the Gate Out Cathode Follower (V204) in the Sweep Generator circuit overrides the negative crt grid cutoff voltage and unblanks the cathode ray tube. The brilliance of the trace may be adjusted with the Intensity Adjust potentiometer (R343), in series with grid-voltage supply.

3-8 CALIBRATOR

The Calibrator, a square-wave oscillator, produces an accurate voltage across R244 for application to either amplifier for setting the basic gain. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL. turns on the Calibrator and connects its output to the appropriate amplifier.

The Calibrator consists of two neon lamps (I 207 and I 208) in a relaxation oscillator circuit. Operation of the Calibrator is as follows:

When the +300 volt supply is applied to the Calibrator, I 207 will ionize first due to higher potential across it compared to the potential across I 208. When I 207 fires it will draw current through R243. However, the voltage at the junction of R242, C213 and R243 will build up slowly because the voltage across a capacitor cannot change instantaneously. As C213 allows this voltage to change, the voltage at the common junction of I 207 and I 208 will also change, since the voltage drop across the ionized neon lamp is constant (approximately 60 volts). As the voltage at the common junction of I 207 and I 208 reaches approximately +70 volts, I 208 will fire. This additional current through R240 and R241 will reduce the voltage across I 207 and it will de-ionize. I 208 remains lit until the voltage across C213 charges through R243 to a voltage approximately 70 volts below the voltage that appears at the common junction of I 207 and I 208. I 207 will now fire and the action will repeat itself.

I 208 is thus alternately turned off and on at a rate of approximately 300 cps. The output of the Calibrator is taken from the current passing through R244 and I 208. The output is approximately a square wave which can be set with R240 to obtain 300 millivolts in amplitude.

SECTION IV MAINTENANCE

4-1 INTRODUCTION

This section contains instructions for testing, adjusting, and trouble shooting the Model 130B Oscilloscope.

Standard, readily available components are used for manufacture of $\text{\textcircled{H}}$ instruments whenever possible. Special components are available through your local $\text{\textcircled{H}}$ Representative who maintains a part stock for your convenience.

When ordering parts, specify instrument model and serial number plus the component description and stock number appearing in the Table of Replaceable Parts.

Your local $\text{\textcircled{H}}$ Representative maintains complete facilities and specially trained personnel to assist you with any problems you may have with $\text{\textcircled{H}}$ instruments.

The material in this section is divided according to circuit functions, each section having a complete set of adjustment instructions. The material in this section is as follows:

- 4-2 Simple Check Procedure
- 4-3 Isolating Troubles to Major Sections
- 4-4 Removing the Cabinet
- 4-5 Connecting for 230 Volt Operation
- 4-6 Tube Replacement
- 4-7 Condensed Test and Adjustment Procedure
- 4-8 Adjustment Procedure
- 4-9 Turn On
- 4-10 Power Supplies
- 4-11 Replacing and Adjusting the CRT
- 4-12 Checking and Adjusting the Calibrator
- 4-13 Adjusting the Vertical Amplifier
- 4-14 Adjusting the Horizontal Amplifier
- 4-15 Phase Shift Adjust
- 4-16 Adjusting Preset
- 4-17 Adjusting the Sawtooth Generator and Sweep Amplifier

The following test equipment is used for testing and adjusting the Model 130B Oscilloscope during manufacture. Equivalent test equipment may be used.

- 1) A high impedance dc vacuum tube voltmeter, such as an $\text{\textcircled{H}}$ Model 410B with an $\text{\textcircled{H}}$ Model 459A DC Voltage Multiplier, calibrated to an accuracy of $\pm 1\%$.
- 2) A high impedance ac vacuum tube voltmeter, such as an $\text{\textcircled{H}}$ Model 400D/H/L.
- 3) A variable power line transformer with a minimum rating of 3 amps.
- 4) A square-wave generator such as an $\text{\textcircled{H}}$ Model 211A.
- 5) A sine-wave oscillator with a maximum frequency of at least 500,000 cycles, such as an $\text{\textcircled{H}}$ Model 200CD.
- 6) An accurate time mark generator suitable for sweep speed calibration.

4-2 SIMPLE CHECK PROCEDURE

This check should be performed first whenever instrument malfunction is suspected. It is not necessary to remove the instrument from the cabinet.

Set both VERT. and HORIZ. SENSITIVITY switches on CAL. The pattern should be a straight line tilted at 45 degrees. In addition, the deflection should be a total of six centimeters in the horizontal and vertical directions.

If the proper pattern is obtained, it is likely that both the Vertical and Horizontal Amplifier, the Power Supplies and the Calibrator are functioning properly. To check the Sweep Generator proceed as follows:

Figure 4-1. Location Diagram for Major Circuits

- 1) Leaving the VERT. SENSITIVITY switch in CAL, switch HORIZ. SENSITIVITY switch to INT. SWEEP X1.
- 2) Switch SWEEP TIME/CM switch to 1 MILLI-SECOND. A six centimeter square-wave pattern should appear on the screen. If no pattern is obtained be sure SWEEP MODE is in PRESET, SYNC switch is in INT., and adjust TRIGGER LEVEL to trigger. If a pattern cannot be obtained, the malfunction is most likely in the Sweep Generator.

4-3 ISOLATING TROUBLES TO MAJOR SECTIONS

Determining which major section contains a malfunction is usually not a difficult process, if the following general rules are remembered.

- 1) A failure affecting all major sections can usually be traced to the power supply.
- 2) A failure occurring in the last two stages of the Horizontal Amplifier also will affect internally generated sweeps, while a failure in the first two stages affects only the Horizontal Amplifier.
- 3) A sweep Generator failure affects internally generated sweeps only, and does not affect the Horizontal Amplifier.
- 4) If following the Simple Check Procedure does not produce a trace or spot on the screen, measure the voltages on the deflection plates of the Cathode-Ray Tube (deflection plate terminal board is a convenient place to measure). If, with both VERT. and HORIZ. SENSITIVITY switches set to 50 MILLIVOLTS/CM, these voltages can be set to approximately 480 vdc using the position controls, look for trouble in the high voltage section of the power supplies. If one set of deflection plates has unbalanced voltages, or if the position control must be turned far from its mechanical center to balance these voltages, look for trouble in that amplifier. If both sets of deflection plates have unusual voltages, look for trouble in the power supply.
- 5) If the series heater string should open, all major sections will be inoperative.
- 6) The two sides of the direct-coupled differential amplifier, such as are used in the Vertical and Horizontal Amplifiers on the 130B, are balanced and, unless a signal is present, the spot will be motionless in the center of the screen. Any signal,

whether this signal is applied to the input terminals or is supplied by an internal source, such as a positioning or balance control, causes the spot to move from the center of the screen. As the instrument ages it is to be expected that a drift will occur which must be compensated by internal adjustments. However, should there be a component failure in either amplifier the spot will be thrown off the screen and usually out of range of adjustment of the balance and positioning controls. To isolate the trouble, begin by shorting together the grids of the amplifier closest to the output. If the trace (spot) returns to the screen, the fault is ahead of this stage. Proceed towards the front of the amplifier. If shorting the grids of one stage does not return the spot to the screen, the fault is in this stage, or if there is a balancing control in this stage, it may be out of adjustment.

- 7) To check the Sweep Generator quickly, set the SWEEP TIME/CM switch to 5 or 10 MILLISECONDS/CM, turn the SWEEP MODE control to FREE RUN, and observe I 201, I 202 and I 203. These are the three neon lamps near V206 (6AW8) on the Sweep Generator etched circuit board. If these lamps flicker regularly, the Sweep Generator is sweeping. Turning the SWEEP MODE into the TRIGGER region should stop the generation of sweeps and, hence, the flickering of the neon lamps.

4-4 REMOVING THE CABINET

In the cabinet model, remove the two screws at the rear of the cabinet, and push the instrument forward.

If the 130BR has been rack-mounted with brackets as described in Figure 1-1, remove the screws which pass through the front panel, and withdraw the chassis. If the instrument is out of the rack, turn it on its face (handles will protect the controls), remove the two screws at the rear, and lift off the dust cover.

4-5 CONNECTING FOR 230 VOLT OPERATION

Unless otherwise requested by the customer, instruments are shipped with their power transformer primaries connected in parallel for operation on 115 volt (nominal) power lines.

To convert to 230 volt supply, remove the instrument from its cabinet or dust cover by removing the two screws at the rear of the chassis, and

push the chassis forward. At the primary of the power transformer (marked A), remove the wires connecting terminals 2 and 5, and 1 and 4. Then connect 1 to 2 as shown in Figure 4-2, and replace the 2 amp slow-blow fuse (F301) with a 1-1/4 amp slow-blow fuse. The instrument may now be connected to the 230 volt line.

Figure 4-2. Line Voltage Connection

4-6 TUBE REPLACEMENT

In many cases instrument malfunction can be corrected by replacing a weak or defective tube. Before changing the setting of any internal adjust-

ment, check the tubes. Adjustments made in an attempt to compensate for a defective tube will often complicate the repair problem.

It is a good practice to check tubes by substitution rather than by using a "tube checker". The results obtained from the "tube checker" can be misleading. Before removing a tube, mark it so that if the tube is good it can be returned to the same socket. Replace only tubes proved to be weak or defective.

Any tube with corresponding standard EIA (JEDEC) characteristics can be used as a replacement. Where variation in tube characteristics will affect circuit performance, an adjustment is provided. The following table lists the tests and adjustments which should be performed if such tubes are replaced.

The chart in Table 4-2 lists all tubes in the 130B with their functions and adjustments required when replacing tubes. The heaters of some tubes are operated in series from a regulated dc voltage obtained from the Low-Voltage Power Supply. These tubes are identified in the chart with an asterisk and their heaters are shown in the Filament and Primary Detail Schematic. If a tube in the dc string is pulled or burned out, all tubes in the string will be turned off.

4-7 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All basic tests and adjustments are covered in the following Table 4-1. In most cases, this table will cover all normal adjustment needs for the oscilloscope. For a more complete and de-

tailed test procedure refer to paragraph 4-8.

If the instrument is not operating, refer to paragraphs 4-3 and 4-6.

If a tube is replaced, refer to Table 4-2 and complete the indicated adjustments.

TABLE 4-1.
CONDENSED TEST AND
ADJUSTMENT PROCEDURE

		adjust lever and vertical deflection produce 6 cm vertical deflection.	4

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		<u>VERTICAL AMPLIFIER</u>	
V1*	12AU7‡	Phase Inverter Amplifier	Vertical Amplifier (par. 4-13A/B)
V2*	12AU7	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		<u>HORIZONTAL AMPLIFIER</u>	
V101*	12AU7‡	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7	Differential Amplifier	Horizontal Amplifier (par. 4-14B)
V104*	6DJ8/6BQ7	Differential Amplifier	Sawtooth Generator (par. 4-17)
		<u>SWEEP GENERATOR</u>	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	12AT7	Trigger Generator	none
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-15 & 4-16)
V204	6C4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Follower b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		<u>POWER SUPPLY</u>	
V301	12B4	+300-volt Series Regulator	none
V302	6AU6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5AQP	CRT	Adj. Vert. & Horiz. Gain (par. 4-13, 4-14)
V310	1V2	High Voltage Rectifier	none
V311	1V2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. +585-volt Series Regulator b. +585-volt Control Tube	none none

* Series dc heater

† Tested part - See Table of Replaceable Parts

TABLE 4-1. CONDENSED TEST AND ADJUSTMENT PROCEDURE

Test	External Equipment Required	Procedure	Adjust	Notes
1. Low Voltage Power Supply	DC vtv with 1% accuracy	Measure all low voltage power supply outputs should be within the following limits: -150 ± 6 volts +100 ± 4 volts +300 ± 12 volts +585 ± 25 volts	If voltages are outside limits, adjust R332 for -150 volts.	Check sweep calibration if -150V is adjusted.
2. Vertical amplifier balance	NONE	HOR.SENS. to INT.SWEEP X1, SWEEP MODE to free-run, SYNC to INT., SWEEP TIME to 1.0 ms/cm, short-circuit input terminals and set INPUT for DC. VERT.SENS. and Vernier to Cal.	Center bottom of calibrating signal with VERT.POS. control	Repeat as required.
		VERT.SENS. to 1 mv/cm, Center VERT.DC.BAL control (knob).	Center trace with coarse balance control. (Screw adjustment in center of DC BAL control.)	
3. Vertical VERNIER balance	NONE	Short circuit input terminals and set INPUT for DC. VERT.SENS. to 1 mv/cm, VERNIER to Cal.	Center spot (or trace) with VERT. POS. control.	Repeat as required.
		VERNIER fully CCW	Return spot to center with R20	
4. Vertical amplifier gain	400 cycle Voltage Calibration Generator	VERT.SENS. to 50 mv/cm. VERNIER to Cal. Connect 300 mv p-p from Calibration Generator to vertical input.	Adjust R40 for 6 cm deflection.	
	Square Wave Generator	Connect 50 kc square wave to Vert. Input. Adjust square wave generator for 6 cm deflection. SYNC to INT, Adjust SWEEP MODE and TRIGGER LEVEL for stable picture.	Adjust C12 for best square wave.	
5. Calibrator	NONE	VERT.SENS. and VERNIER to CAL, SWEEP MODE to free-run; SWEEP TIME to 1 ms/cm.	Adjust R240 for 6 cm deflection.	
6. Horizontal amplifier balance	NONE	Short-circuit input terminals and set INPUT for DC. VERT.SENS. to 50 mv/cm, with no input. HOR.SENS. and VERNIER to CAL.	Center the left spot with the HOR.POS. control.	Repeat as required.
		HOR.SENS. to 1 mv/cm, Center the HOR.DC BAL control (knob).	Center the spot with the coarse balance control (screw driver adjustment in center of DC BAL control).	
7. Horizontal VERNIER balance	NONE	Short-circuit input terminals and set INPUT for DC. HOR.SENS. to 1 mv/cm, VERNIER to CAL.	Center spot with POS. control HORIZ.	Repeat as required.
		VERNIER fully CCW.	Return spot to center with R120.	
8. Horizontal amplifier gain	NONE	HOR.SENS. and VERNIER to CAL.	Adjust R144 for 6 cm between spots.	
	Square wave generator	HOR.SENS. to 50 mv/cm, Connect 50 kc square wave to Hor. input and adjust for 6 cm deflection.	Adjust C114 for best defined spots.	
9. Sweep gain	Time Marker Generator	HOR.SENS. to INT.SWEEP X1 SWEEP TIME to 1 ms/cm, VERNIER to CAL; 1 kc markers from generator to VERT. input. SYNC to INT. Adjust SWEEP MODE and TRIG.LEVEL for stable pattern.	Adjust R134 for one marker/cm	
		HOR.SENS. to INT.SWEEP X5.	Adjust R164 for markers 5 cm apart.	
10. Sweep preset	DC VTVM	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to 1 ms/cm, SWEEP MODE to PRE-SET, SYNC to EXT. with no input. Connect VTVM 30 volt range between center arm of Preset pot (R220) and ground.	Slowly adjust R220 and note voltage just prior to sweep start. Adjust pre-set for 2 volts more positive than voltage noted.	
11. Sweep length	Sine Wave Oscillator	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to 1 ms/cm. SYNC to INT. Connect 500 kc sine wave to vertical input. Adjust level and VERT SENS. to produce 6 cm vertical deflection.	Adjust R229 for a trace about 10.5 cm long.	

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		<u>VERTICAL AMPLIFIER</u>	
V1*	12AU7‡	Phase Inverter Amplifier	Vertical Amplifier (par. 4-13A/B)
V2*	12AU7	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		<u>HORIZONTAL AMPLIFIER</u>	
V101*	12AU7‡	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7	Differential Amplifier	Horizontal Amplifier (par. 4-14B)
V104*	6DJ8/6BQ7	Differential Amplifier	Sawtooth Generator (par. 4-17)
		<u>SWEEP GENERATOR</u>	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	12AT7	Trigger Generator	none
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-15 & 4-16)
V204	6C4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Follower b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		<u>POWER SUPPLY</u>	
V301	12B4	+300-volt Series Regulator	none
V302	6AU6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5AQP	CRT	Adj. Vert. & Horiz. Gain (par. 4-13, 4-14)
V310	1V2	High Voltage Rectifier	none
V311	1V2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. +585-volt Series Regulator b. +585-volt Control Tube	none none

* Series dc heater

‡ Tested part - See Table of Replaceable Parts

REGULATOR BOARD

RECTIFIER CHASSIS

HIGH VOLTAGE BOARD

Figure 4-3. Power Supply Location Diagram

4-8 ADJUSTMENT PROCEDURE

Usually a particular oscilloscope will not need complete testing and calibration. Only one or two tests will be needed and they can be done without completing the entire test procedure.

The following procedures are listed in a recommended sequence for a complete test and calibration operation. In general, tubes are the main cause of trouble and new ones should be tried before making adjustments or other component replacements.

Specifications for the \oplus Model 130B Oscilloscope are given in the front of this manual. The following test procedures contain extra checks to help you analyze a particular instrument. These extra checks and the data they contain can not be considered as specifications.

A fifteen minute warm-up and power supply output voltage measurements are always recommended before making any other test or adjustment.

4-9 TURN ON

When turning the oscilloscope on for the first time after repair in any circuit, measure resistance from power supplies to ground. They usually will be within 25% of the following:

+100 volt supply	110 ohms
-150	50,000 ohms
+300	9,000 ohms
+585	85,000 ohms

CAUTION

When first turning an oscilloscope on after power supply repairs, turn the intensity and both positioning controls full counterclockwise before applying power. Failure to follow this precaution can cause permanent cathode-ray tube damage.

4-10 POWER SUPPLIES

The power supplies in the oscilloscope are extremely stable and will require infrequent adjustment. The output voltages should be measured at regular intervals but unnecessary adjustments should be avoided.

Power supply voltages may be measured at the points indicated in Figure 4-3.

To adjust the power supply section, refer to Figure 4-3, and proceed as follows:

A. LOW VOLTAGE SUPPLY

- 1) Turn sweep generator off by turning the HOR. SENS. switch to 50 volt/cm position.
- 2) Permit the 130B to warm up for at least five minutes at a line voltage of 115/230 volts.
- 3) Measure power supply voltages with line volts set to 115 volts. The voltages will normally be within the limits given in Table 4-3. Control R332 can be adjusted if necessary to set the +100 volt supply within limits.

If adjustment of the +100 volt supply was necessary, all sweep timing, calibrator and gain adjustments must be checked.

If poor low voltage supply regulation is suspected, the following check may be made:

- Check the regulation of each power supply voltage as the power line voltage is varied between 103 and 127 volts. All regulated voltages should remain within $\pm 1\%$ over this range of line voltage.
- Measure the ac ripple on each supply voltage. This ac voltage should not exceed the amount specified in Table 4-3.

TABLE 4-3. REGULATED POWER SUPPLY TOLERANCES

Supply	Tolerance (115/230 volt line)	Variation $\pm 10\%$ line voltage change	Nominal Ripple at 115/230V
+100 V	$\pm 4\%$	$\pm 1\%$	5 mv
-150 V	$\pm 4\%$	$\pm 1\%$	5 mv
+300 V	$\pm 4\%$	$\pm 1\%$	5 mv
+585 V	$\pm 4\%$	$\pm 1\%$	60 mv

If any output does not regulate or has excessive ripple, replace the Series Regulator Tube or the Control Tube of that supply. It must be kept in mind, however, that loss of regulation of the -150 volts will cause the other supplies to lose regulation, and that loss of regulation of the +100 volts will cause the +585 volt and +300 volt supplies to lose regulation also.

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.

When replacing tube sockets it will be necessary to lift each pin slightly, working around the socket several times until it is free.

1. Apply heat sparingly to lead of part to be replaced. Remove part from card as iron heats the lead.
2. Using a small awl, carefully clean inside of hole left by old part.

3. Bend clean tinned leads on new part and carefully insert through holes on board.
4. Hold part against board and solder leads. Avoid overheating the board.

Figure 4-4

B. HIGH VOLTAGE SUPPLY

- 1) The -2550 volt output is measured on the resistor board under the base of the crt. Connect an appropriate dc voltmeter (such as an ϕ Model 410B VTVM with an ϕ Model 459A DC Resistive Voltage Multiplier) to the Junction of R338, C312 (marked -2550 CATH. on cover).
- 2) With the line at 115/230 volts the high voltage should measure $-2550 \pm 4\%$. Control R334 can be adjusted if necessary to set the -2550 volt supply within limits.

If poor -2550 voltage supply regulation is suspected the following check may be made:

- Check the regulation by varying the line voltage between 103 and 127 volts. The -2550 should remain within $\pm 1\%$ over this range of line voltage. If the -2550 supply does not regulate check the control tube V312.

- 3) Set SWEEP TIME/CM to 5 MILLISECONDS.
- 4) Set HOR. SENS. to INT. SWEEP X1.
- 5) Set SWEEP MODE fully clockwise to FREE RUN.
- 6) Set INTENSITY control to 10 o'clock.
- 7) Set Int. Adj., R343, until the trace is just visible.
- 8) Set SWEEP MODE fully counterclockwise to PRESET.
- 9) Set INTENSITY control for a low intensity spot.
- 10) Center spot and adjust FOCUS control and ASTIGMATISM (R303) to obtain a small round and sharply focused spot.

4-11 REPLACING AND ADJUSTING THE CRT

To replace the cathode-ray tube, refer to Figure 2-10, and proceed as follows:

- 1) Turn off and remove the 130B from the cabinet.
- 2) Loosen the clamp on the crt socket. (Cabinet model; remove cover from High Voltage terminal board to get access for screwdriver through board).
- 3) Remove the front-panel bezel.

4) With a screwdriver loosen the crt base from socket. Free the crt from the socket by pressing on the center of the tube base with one hand while supporting the front of the crt with the other.

DANGER - Do not apply force on neck of tube.

- 5) Remove the crt through the front panel.

CAUTION - HANDLE THE CATHODE RAY TUBE CAREFULLY.

- 6) Insert the replacement crt through the front panel and seat in socket.

- 7) Replace front-panel bezel.

- 8) Adjust the socket assembly so that the face of the crt just misses the bezel assembly. Tighten the clamp just enough to hold the crt in place loosely.

NOTE

Turn the INTENSITY control to minimum when first applying power to a crt. The phosphor can be damaged quickly by too much brightness.

- 9) Set the INTENSITY control fully counterclockwise. Turn the 130B on and allow to warm up.

- 10) Set the SWEEP MODE control to FREE RUN.

- 11) Adjust the INTENSITY control to obtain a weak trace; adjust the FOCUS control for a sharp trace, and with the vertical position control, center the trace vertically.

- 12) Align trace with graticule using the alignment handle at rear of crt.

CAUTION - Do not over-tighten crt clamp or tube damage may result.

- 13) Making certain the crt face is close to but not touching the bezel assembly, tighten the clamp on the crt socket only enough to hold the crt from turning. If the face of the tube touches the bezel assembly, Newton rings may be visible.

- 14) Readjust the astigmatism; see paragraph 4-10B.

- 15) Check the gain calibration of the Vertical and Horizontal Amplifiers by setting the VERTICAL and HORIZONTAL SENSITIVITY selectors to CAL, and if necessary, adjusting R40 (Figure 4-5) to obtain 6 cm vertical deflection and R144 (Figure 4-6) to obtain 6 cm horizontal deflection on the trace; see paragraph 4-13B and 4-14B.

Figure 4-5. Vertical Amplifier Adjustment Location

4-12 CHECKING AND ADJUSTING THE CALIBRATOR

- Set HORIZ. SENSITIVITY to INT. SWEEP X1; SWEEP TIME/CM to 1 MILLISECOND; SWEEP MODE to PRESET; SYNC. to INT.; and TRIGGER LEVEL to "0".

NOTE

If PRESET (SWEEP MODE) is maladjusted, you may not obtain a trace. See paragraph 4-16.

- Set the VERT. SENSITIVITY switch to 50 MILLIVOLTS/CM. Place the VERNIER control in CAL.

- Connect the signal source to the vertical INPUT terminals and set its rms output voltage, read on the vtv, to 106 millivolts (300 mv/ $2\sqrt{2}$) and its output frequency to 1000 cps.

- Adjust R40 (see Figure 4-5) to obtain exactly 6 centimeters deflection.
- Set the VERT. SENSITIVITY switch to CAL.
- Adjust the R240 (see Figure 4-7) for exactly 6 centimeters deflection.

4-13 ADJUSTING THE VERTICAL AMPLIFIER

The following adjustments are located in the vicinity of the Vertical Amplifier or the VERT. SENSITIVITY switch as shown in Figure 4-5.

A. VERNIER BALANCE ADJUSTMENT

To adjust VERNIER balance, allow the instrument to warm up 15 minutes and adjust Vertical balance as shown by Figure 2-2. Then refer to Figure 4-5 and proceed as follows:

- Short the INPUT terminals and set the INPUT switch to DC.
- Set VERT. SENSITIVITY to 1 MILLIVOLT/CM, and VERNIER to CAL.
- Center spot (or trace) with VERT. POS. control.
- Turn VERNIER fully counterclockwise and return spot to center with R20, the Bal. Adj.

The trace should now be stationary as the VERNIER is rotated.

B. VERT. AMPL. GAIN AND FREQ. RESP. ADJUSTMENTS

To adjust the Vertical Amplifier gain and frequency response adjustments refer to Figure 4-5 and proceed as follows:

- Adjust Vertical and VERNIER balance as indicated by Figure 2-2 and paragraph 4-13A.
- Set HORIZ. SENSITIVITY to INT. SWEEP X1 and set the SWEEP TIME/CM switch to 2 MILLISECONDS, SWEEP MODE to PRESET and TRIGGER LEVEL to "0".
- Place VERTICAL SENSITIVITY switch and its VERNIER in CAL.
- Adjust R40 for exactly 6 centimeters deflection.
- Set VERT. SENSITIVITY to 50 MILLIVOLTS/CM. Set SYNC to INT.
- Set SWEEP TIME/CM switch to 5 MICROSECONDS.
- Connect a 50 kc square wave to the Vertical INPUT and adjust the square-wave amplitude for 6 to 8 centimeters deflection.
- Adjust C12 for best square wave. To give C12 a range of adjustment sufficient to compensate for variations of tube characteristics, C13 may be connected in parallel with C12 to increase the maximum capacity to 1340 μuf .

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust frequency response of the input attenuator refer to Figure 4-5 and proceed as follows:

- Connect a 5 kc square wave to the Vertical INPUT.
- Set SWEEP TIME/CM to obtain 3 or 4 cycles of the square wave.
- Make the indicated adjustment for best square-wave presentation on the following ranges:

VOLT/CM	ADJUST
10	C2
1	C4
.1	C3

← FRONT PANEL

Figure 4-6. Horizontal Amplifier Adjustment Locations

4-14 ADJUSTING HORIZONTAL AMPLIFIER

To adjust the Horizontal Amplifier, refer to Figure 4-6 and proceed as follows:

A. VERNIER BALANCE ADJUSTMENT

To adjust the VERNIER balance allow the instrument to warm up thoroughly and adjust Horizontal balance as shown by Figure 2-3; then refer to Figure 4-6 and:

- 1) Short the INPUT terminals and set the INPUT switch to DC.
- 2) Set the HORIZ. SENSITIVITY to 1 MILLIVOLT/CM and the VERNIER to CAL.
- 3) Center the spot with the HORIZ. POS. control.
- 4) Turn the VERNIER completely counterclockwise and return the spot to the center with R120, Bal. Adj. The spot will now be stationary as the VERNIER is rotated.

B. AMPLIFIER GAIN AND FREQUENCY RESPONSE ADJUSTMENTS

To adjust the gain and frequency response, refer to Figure 4-6 and proceed as follows:

- 1) Set HORIZ. SENSITIVITY switch to CAL. and the VERNIER to CAL.
- 2) Adjust R144 for exactly 6 centimeters deflection.
- 3) Set VERT. SENSITIVITY to 2 VOLTS/CM.
- 4) Connect an 8 kc (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the SYNC. IN terminal of the 211A square wave generator; adjust the sine wave for 10 cm deflection.
- 5) Set HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM.
- 6) Connect a 50 kc square wave to the Horizontal INPUT, and adjust the square wave amplitude for 6 to 8 cm deflection.
- 7) Adjust C114 for best square wave response.

NOTE

Some vacuum tubes require more capacity for compensation than the maximum value of C114.

Capacitor C115 may be connected in parallel with C114 to increase the maximum capacity to 1340 μf , permitting a greater percentage of vacuum tubes to be used.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust the frequency response at the input attenuator, refer to Figure 4-6 and proceed as follows:

- 1) Set VERT. SENSITIVITY to 2 VOLTS/CM.
- 2) Connect an 800 cps (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the Sync-In terminal of the 211A square wave generator; adjust the sine wave for 10 centimeter deflection.
- 3) Set HORIZ. SENSITIVITY to 10 VOLTS/CM (VERNIER in CAL.).
- 4) Connect a 5 kc square wave to the Horizontal INPUT and adjust its amplitude for 6 centimeter deflection.
- 5) Make the following adjustments on the ranges indicated for the best square wave response, adjusting the square-wave amplitude to 6 centimeters on each range.

<u>VOLTS/CM</u>	<u>ADJUST</u> (see Fig. 4-6)
10	C102
1	C104
.1	C103

4-15 PHASE SHIFT ADJUST

Phase shift between Vertical and Horizontal Amplifiers.

If the square wave response of the Vertical and Horizontal Amplifier was carefully set, the relative phase shift between the two amplifiers should not exceed one degree at frequencies below 50 kc.

To check Phase Balance:

- 1) Set VERT. and HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM and VERNIER to CAL.
- 2) Apply a 50 kc sine-wave signal to the HORIZ. INPUT and VERT. INPUT. Center pattern and adjust signal amplitude for 6 cm vertical and 6 cm horizontal deflection.

TUBE SIDE OF BOARD (DOOR OPEN)

R240 —
ADJUST CALIBRATOR
(SEE PARA. 4-12)

R229 —
ADJUST SWEEP LENGTH
(SEE PARA. 4-17(17))

BOTTOM VIEW
(CABINET MODEL)RIGHT SIDE VIEW
(RACK MOUNT MODEL)

SWEEP TIME / CM ADJUSTMENTS
(SEE PARA. 4-17)

C227 —
ADJUST 1 MICROSECOND

C225 —
ADJUST 10 MICROSECONDS

C223 —
ADJUST .1 MILLISECOND

R259 —
ADJUST .1 SECOND

R260 —
ADJUST 10 MILLISECONDS

R261 —
ADJUST 1 MILLISECOND

RACK MOUNT MODEL ONLY. LOCATED
BELOW THE HORIZONTAL SENSITIVITY
SWITCH ON CABINET MODEL.

R220 —
ADJUST PRESET
(SEE PARA. 4-16)

TOP VIEW (RACK MOUNT MODEL)

BOTTOM VIEW (CABINET MODEL WITH SWEEP DECK OPEN)

LD-L-165
R0

Figure 4-7. Sweep Generator Adjustment Locations

The opening of the pattern, if any, should not exceed a tenth of a centimeter. If necessary to correct phase difference, adjust C114 for closure of the pattern (Figure 4-6).

4-16 ADJUSTING PRESET

To adjust Preset refer to Figure 4-7 and proceed as follows:

- 1) Set VERT. SENSITIVITY to OFF, SWEEP TIME/CM switch to .1 MILLISECOND and SWEEP MODE control maximum counterclockwise to PRESET. Set SYNC selector to INT.
- 2) Connect a dc voltmeter between ground (+) and the center tap of R220 the PRESET adjust control.
- 3) Turn R220 fully counterclockwise. Then slowly adjust R220 clockwise until the sweep generator begins to free fun. Turn R220 counterclockwise until the sweep just stops and record this voltage which should be about -26 volts.
- 4) Set R220 to give a voltmeter indication exactly 2 volts less negative than the voltage noted.

4-17 ADJUSTING THE SAWTOOTH GENERATOR AND SWEEP AMPLIFIER

To adjust the Sawtooth Generator and Sweep Amplifier refer to Figures 4-6 and 4-7 and proceed as follows:

- 1) Set SYNC to INT., SWEEP MODE to PRESET and TRIGGER LEVEL to "0".
- 2) Set HORIZ. SENSITIVITY to INT. SWEEP X1, SWEEP TIME/CM to 1 MILLISECOND, and its VERNIER to CAL.
- 3) Connect 1 kc (1000 μ sec) time markers to the Vertical INPUT.
- 4) Set R261, 1 Millisecond Adj., on the potentiometer board, to its mechanical center.
- 5) Adjust R134, Sweep Attenuator, (Figure 4-6) and HORIZ. POS. for approximately 1 time marker/cm. This is a rather coarse adjustment. Set it as close as is practical. Then make the final adjustment with R261.
- 6) Set SWEEP TIME/CM to 10 MILLISECONDS and connect 100 cycle (10,000 μ sec) time markers to the Vertical INPUT.

7) Adjust R260 (Figure 4-7) for 1 marker per centimeter.

8) Set SWEEP TIME/CM to .1 SECOND and connect 10 cycle (100,000 μ sec) time markers to the Vertical INPUT.

9) Adjust R259 (Figure 4-7) for 1 marker per centimeter.

10) Disconnect the time mark generator from the Vertical INPUT, set VERT. SENSITIVITY switch to 10 VOLTS/CM, the Vertical and Horizontal input switches to AC, and SWEEP TIME/CM to 5 MICROSECONDS.

11) Disconnect the blue-white lead (Figure 4-7) from the Sweep Generator board and connect it through a 1 microfarad capacitor to the Horizontal INPUT.

12) Connect a wire between V206 pin 1 (6AW8) and the Vertical INPUT.

13) Connect a 50 kc square wave from the 600 ohm output of the ϕ Model 211A to the Horizontal INPUT and adjust its amplitude for about 6 centimeter deflection.

14) Adjust C113 near the HORIZ. SENSITIVITY switch, and C116 and C118 on the Horizontal Amplifier board (Figures 4-6 and 4-7), for best square wave presentation. Remove the wire between V206 pin 1 and the Vertical INPUT.

15) Reconnect the blue-white lead to the Sweep Generator board, and connect the time marker generator to the Vertical INPUT. Make the following adjustment as indicated for 1 time marker per centimeter.

Time Marker	SWEEP TIME/CM	(Fig. 4-7) Adjust
1 μ sec (1 mc)	.1 MICROSEC.	C227
10 μ sec (100 kc)	10 MICROSEC.	C225
.1 msec(10 kc)	.1 MILLISEC.	C223

16) Set HORIZ. SENSITIVITY to INT. SWEEP X5, and adjust R164 (Figure 4-6), for markers 5 centimeters apart.

17) Connect a 500 kc signal to the Horizontal INPUT, set SWEEP TIME/CM to 1 MILLISECOND, set SYNC to EXT, and adjust R229, Sweep Length, (Figure 4-7) for a trace about 10.5 centimeters long.

NOTES

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counter-clockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. † indicates a selected part. See parts list.
8. Interconnecting parts and assemblies are shown on cable diagram.
9. * indicated value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:

* = no tube element	P = plate
H = heater	T = target (plate)
K = cathode	R = reflector or repeller
G = control grid	A = anode (plate)
Sc = screen grid	S = spade
Sp = suppressor grid	Sh = shield
Hm = heater mid-tap	NC = no external connection to socket
IS = internal shield	△ = indefinite reading due to circuit (see 2.)

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.

2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments. Resistance values may vary considerably from those shown when the circuit contains potentiometers, crystal diodes, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

VERTICAL AMPLIFIER
VOLTAGE - RESISTANCE DIAGRAM
 (VIEWED FROM ETCHED SIDE)

V1 (12AU7)
 PHASE INVERTER

V4 (6BQ7A/6DJ8)
 DIFFERENTIAL AMPLIFIER

V2 (12AU7)
 DIFFERENTIAL AMPLIFIER

V3 (12AT7)
 DIFFERENTIAL AMPLIFIER

FIGURE 4-8

FIGURE 4-9
VERTICAL AMPLIFIER

(ON REAR
PANEL.
RACK
MOUNT
ONLY)

COPYRI
Th
oil
re
H
13

VERTICAL AMPLIFIER
VOLTAGE - RESISTANCE DIAGRAM
(VIEWED FROM ETCHED SIDE)

V1 (12AU7)
 PHASE INVERTER

V4 (6BQ7A/6DJ8)
 DIFFERENTIAL AMPLIFIER

V2 (12AU7)
 DIFFERENTIAL AMPLIFIER

V3 (12AT7)
 DIFFERENTIAL AMPLIFIER

FIGURE 4-8

**HORIZONTAL AMPLIFIER
VOLTAGE-RESISTANCE DIAGRAM
(VIEWED FROM ETCHED SIDE)**

V104 (6BQ7/6DJ8)
DIFFERENTIAL AMPLIFIER

V101 (12AU7)
INVERTER AMPLIFIER

V103 (12AT7)
DIFFERENTIAL AMPLIFIER

V102 (12AU7)
DIFFERENTIAL AMPLIFIER

FIGURE 4-10

LD-E-130BCD

FIGURE 4-11
HORIZONTAL AMPLIFIER

COPYRIGHT
19
CD
MI
RE
H4
H3

**HORIZONTAL AMPLIFIER
VOLTAGE-RESISTANCE DIAGRAM
(VIEWED FROM ETCHED SIDE)**

V104 (6BQ7/6DJ8)
DIFFERENTIAL AMPLIFIER

V101 (12AU7)
INVERTER AMPLIFIER

V103 (12AT7)
DIFFERENTIAL AMPLIFIER

V102 (12AU7)
DIFFERENTIAL AMPLIFIER

LD-E-130BCD

FIGURE 4-10

**SWEEP GENERATOR
VOLTAGE-RESISTANCE DIAGRAM
(VIEWED FROM RIGHT SIDE)**

**V202 (12AT7)
TRIGGER GENERATOR**

**V203 (6U8)
SWEEP START-STOP TRIGGER**

**V204 (6C4)
GATE OUT CATHODE FOLLOWER**

**V201 (6BQ7A/6DJ8)
TRIGGER AMPLIFIER**

**V207 (12AX7)
RETRIGGERING BIAS CONTROL**

**V205 (12AL5)
INTEGRATOR SWITCH**

**V206 (6AW8)
INTEGRATOR CATHODE FOLLOWER**

FIGURE 4-12

LD-E-131B

FIGURE 4-13
SWEEP GENERATOR

NOTES:

CONDITIONS OF VOLTAGE

a. VOLTAGE -
VERT. SENSITIVITY
HORIZ. SENSITIVITY
SWEEP TIME/CM =
TRIGGER SLOPE =

b. RESISTANCE -
SAME AS ABOVE.

**SWEEP GENERATOR
VOLTAGE-RESISTANCE DIAGRAM
(VIEWED FROM RIGHT SIDE)**

**V202 (12AT7)
TRIGGER GENERATOR**

**V201 (6BQ7A/6DJ8)
TRIGGER AMPLIFIER**

**V203 (6U8)
SWEEP START-STOP TRIGGER**

**V204 (6C4)
GATE OUT CATHODE FOLLOWER**

**V205 (12AL5)
INTEGRATOR SWITCH**

**V207 (12AX7)
RETRIGGERING BIAS CONTROL**

**V206 (6AW8)
INTEGRATOR CATHODE FOLLOWER**

FIGURE 4-12

LD-E-13105

NOTES:

CONDITIONS OF VOLTAGE RESISTANCE MEASUREMENTS:

- a. VOLTAGE -
 VERT. SENSITIVITY = 50 MILLIVOLTS/CM; VERNIER = CAL; INPUT = DC.
 HORIZ. SENSITIVITY = INT. SWEEP XI; VERNIER = CAL; INPUT = DC.
 SWEEP TIME/CM = 50 MILLISECONDS; VERNIER = CAL.
 TRIGGER SLOPE = +; TRIGGER LEVEL = 0; SWEEP MODE = PRESET;
 SYNC = INT.
- b. RESISTANCE -
 SAME AS ABOVE, EXCEPT SYNC = LINE.

TRIGGER GENERATOR

CALIBRATOR

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the operation
and maintenance of Hewlett-Packard equipment
and is not to be used otherwise or
reproduced without written consent of the
Hewlett-Packard Company.

1308-S6-T946

REF. DESIGNATORS
C201 - 216
I201 - 208
L201 - 202
R201 - 246
S201 - 204
V201 - 207

UNASSIGNED:
C202

FIGURE 4-14
SWEET TIME/CM SWITCH

REF. DESIGN

C220 — 23
R250 — 26
S204 — 20

NOT ASSIGNED
R264

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the manufacture, assembly, and maintenance of Hewlett-Packard equipment and is not to be reproduced without written permission of Hewlett-Packard Company.

1308 - ST/CM SWITCH

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be used otherwise or reproduced without written consent of the Hewlett-Packard Company.

130B - ST/CM SWITCH - T946A

POWER SUPPLY REGULATOR VOLTAGE - RESISTANCE DIAGRAM

Figure 4-15.

FIGURE 4-16
POWER SUPPLY

POWER SUPPLY REGULATOR VOLTAGE - RESISTANCE DIAGRAM

Figure 4-15.

FIGURE 4-17
FILAMENT AND PRIMARY DETAIL

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be used otherwise or reproduced without written consent of the Hewlett-Packard Company.

FIGURE 4-18
SWEET TIME/CM SWITCH
ASSEMBLY DIAGRAM

SWEEP TIME / CM SWITCH S204

NOTES

CATHODE RAY TUBE WARRANTY

The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from , are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your warranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

- 1) Carefully wrap the tube in 1/4" thick cotton batting or other soft padding material.
- 2) Wrap the above in heavy kraft paper.
- 3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
- 4) Surround the tube with at least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
- 5) Tubes returned from outside the continental United States should be packed in a wooden box.
- 6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

CRT WARRANTY CLAIM

FROM: _____ DATE: _____

NAME: _____

COMPANY: _____

ADDRESS: _____

Person to contact for further information:

NAME: _____

TITLE: _____

COMPANY: _____

ADDRESS: _____

To process your claim quickly please enter the information indicated below:

1) \oplus INSTRUMENT MODEL _____ SERIAL _____

2) TUBE TYPE _____ SERIAL _____

3) ORIGINAL TUBE _____ REPLACEMENT TUBE _____

4) YOUR PURCHASE ORDER NO. _____

5) DATE PURCHASED _____

6) PURCHASED FROM _____

7) COMPLAINT: (Please describe nature of trouble) _____

8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure) _____

SIGNATURE _____

SECTION V

TABLE OF REPLACEABLE PARTS

NOTE

Readily available standard-components have been used in this instrument, whenever possible. However, special components may be obtained from your local Hewlett-Packard representative or from the factory.

When ordering parts always include:

1. \oplus Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed give complete description, function, and location of part.

If there are any corrections for the Table of Replaceable Parts they will be listed on an Instruction Manual Change sheet at the front of this manual.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
C1	Capacitor: fixed, mylar, 0.1 μf $\pm 20\%$, 600 vdcw Texas Capacitor Co.	16-110	2			
C2	Capacitor: variable, ceramic, 5-20 μf 500 vdcw	L*	13-20	2		
C3	Capacitor: variable, mica, 14 - 50 μf 500 vdcw	L*	13-33	4		
C4	Capacitor: variable, mica, 50-380 μf 175 vdcw	QQ*	13-5	2		
C5	Capacitor: fixed, silver mica, 820 μf $\pm 5\%$, 500 vdcw	Z*	15-104	4		
C6	Capacitor: fixed, mica .01 μf $\pm 5\%$, 300 vdcw	Z*	14-24	3		
C7, 8	Capacitor: fixed, ceramic, 10,000 μf $\pm 20\%$, 1000 vdcw	CC*	15-43	6		
C9	Capacitor: fixed, mica, 75 μf $\pm 5\%$, 300 vdcw	V*	14-75	3		
C10	Capacitor: fixed, mica, 15 μf $\pm 10\%$, 500 vdcw	V*	14-15	2		
C11	This circuit reference not assigned					
C12	Capacitor: variable, mica 170-780 μf 175 vdcw	QQ*	13-32	3		
C13	Capacitor: fixed, mica, 560 μf $\pm 10\%$, 500 vdcw Electrical value adjusted at factory		14-81	2		
C14	This circuit reference not assigned					
C15, 16	Capacitor: fixed, titanium dioxide, 2 μf $\pm 5\%$, 500 vdcw Electrical value adjusted at factory	DD*	15-118	4		
C17, 18	Capacitor: fixed, titanium dioxide, 3.3 μf $\pm 10\%$, 500 vdcw	DD*	15-78	4		
C19	Capacitor: fixed, titanium dioxide, 1.5 μf $\pm 20\%$, 500 vdcw	DD*	15-38	4		
C20	This circuit reference not assigned					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
C21	Same as C19 Electrical value adjusted at factory					
C22	Same as C7					
C23 thru C100	These circuit references not assigned					
C101	Same as C1					
C102	Same as C2					
C103	Same as C3					
C104	Same as C4					
C105	Same as C5					
C106	Same as C6					
C107, 108	Same as C7					
C109	Same as C9					
C110	Same as C10					
C111	Capacitor: fixed, mica, 200 μ f $\pm 10\%$, 500 vdcw	V*	14-200	1		
C112	This circuit reference not assigned					
C113	Capacitor: variable, ceramic, 7-45 μ uf, 500 vdcw	L*	13-1	3		
C114	Same as C12					
C115	Same as C13					
C116	Same as C3					
C117	This circuit reference not assigned					
C118	Same as C3					
C119, 120	Same as C19 Electrical value adjusted at factory					
C121, 122	Same as C17					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	STOCK NO.	#			
C123	Capacitor: fixed, titanium dioxide, 2.2 μuf $\pm 10\%$, 500 vdcw Electrical value adjusted at factory	15-52	2			
DD*						
C124	This circuit reference not assigned					
C125	Same as C123 Electrical value adjusted at factory					
C126	Capacitor: fixed, paper, .01 μf $\pm 10\%$, 600 vdcw	16-11	2			
CC*						
C127 thru C200	These circuit references not assigned					
C201	Capacitor: fixed, paper, .047 μf $\pm 10\%$, 1000 vdcw	16-114	2			
CC*						
C202	This circuit reference not assigned					
C203	Same as C201					
C204	Capacitor: fixed, mica, 27 μuf $\pm 10\%$, 500 vdcw	14-17	2			
V*						
C205	Capacitor: fixed, mica, 68 μuf $\pm 10\%$, 500 vdcw	14-60	1			
V*						
C206	Same as C7					
C207	Capacitor: fixed, ceramic, 10 μuf $\pm 0.5\%$, 500 vdcw	15-30	1			
K*						
C208	Same as C204					
C209	Capacitor: fixed, silver mica, 200 μf $\pm 5\%$, 500 vdcw	15-103	1			
Z*						
C210	Capacitor: fixed, paper, .0022 μf $\pm 10\%$, 600 vdcw	16-22	2			
CC*						
C211	Capacitor: fixed, ceramic, .02 μf -0% +100%, 600 vdcw	15-85	2			
G*						
C212	Same as C7					
C213	Same as C210					
C214, 215	Same as C15					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION		STOCK NO.	#			
C216	Capacitor: fixed, ceramic, .01 μ f $\pm 20\%$, 250 vdcw	CW*	15-135	1			
C217 thru C219	These circuit references not assigned						
C220	Capacitor: fixed, mylar, 1.0 μ f $\pm 5\%$, 200 vdcw	CW*	16-102	2			
C221	Capacitor: fixed, mylar, .01 μ f $\pm 5\%$, 200 vdcw	CW*	16-103	1			
C222	Capacitor: fixed, mylar, .01 μ f $\pm 5\%$, 400 vdcw	CW*	16-101	1			
C223	Same as C4						
C224	Same as C5						
C225	Same as C113						
C226	Same as C9						
C227	Same as C113						
C228	Same as C220						
C229	Capacitor: fixed, paper, 0.1 μ f $\pm 10\%$, 400 vdcw	CC*	16-35	4			
C230	Same as C126						
C231	Capacitor: fixed, mica, 680 μ uf $\pm 10\%$, 500 vdcw	Z*	14-21	1			
C232	Capacitor: fixed, mica, 470 μ uf $\pm 10\%$, 500 vdcw	V*	14-62	1			
C233 thru C300	These circuit references not assigned						
C301	Capacitor: fixed, electrolytic, 2 section, 20 μ f/sec.	CC*	18-22HP	2			
C302	Capacitor: fixed, electrolytic, 80 μ f, 300 vdcw	X*	18-64	1			
C303	Capacitor: fixed, electrolytic, 160 μ f, 450 vdcw Electrical value adjusted at factory	CC*	18-51HP	1			

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION		hp STOCK NO.	#			
C304A, B	Same as C301						
C305	Capacitor: fixed, paper, 0.1 μ f $\pm 10\%$, 1000 vdcw	J*	16-82	1			
C306, 307	Capacitor: fixed, tubular, .01 μ f $\pm 20\%$, 400 vdcw	CC*	16-109	5			
C308	Same as C229						
C309	Same as C306						
C310A, B	Capacitor: fixed, electrolytic, 4 sections, 20 μ f/sec., 450 vdcw	CC*	18-42HP	2			
C311, 312	Capacitor: fixed, paper, .0068 μ f $\pm 10\%$, 5000 vdcw	CC*	16-93	3			
C313	Capacitor: fixed, paper, .015 μ f $\pm 10\%$, 3000 vdcw	CC*	16-126	1			
C314, 315	Capacitor: fixed, paper, .0015 μ f $\pm 20\%$, 500 vdcw	CC*	16-125	2			
C316	Capacitor: fixed, ceramic, .02 μ f -0% +100%, 600 vdcw		15-85	1			
		Radio Mat. Co.					
C317 thru C319	These circuit references not assigned						
C320	Same as C306						
C321	This circuit reference not assigned						
C322	Capacitor: fixed, ceramic, 2000 $\mu\mu$ f $\pm 20\%$, 1000 vdcw	L*	15-80	2			
C323	Capacitor: fixed, mica, 200 $\mu\mu$ f $\pm 10\%$, 500 vdcw	V*	14-200	1			
C324	Same as C229						
C325	Same as C306						
C326	Capacitor: fixed, paper, .001 μ f $\pm 10\%$, 600 vdcw	CC*	16-21	1			
C327	Same as C7						
C328	Capacitor: fixed, paper, .22 μ f 400 vdcw	CC*	16-48	1			

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	STOCK NO.	#			
CR301, 302	Rectifier, selenium	CN*	212-114	2		
CR303 thru CR306	Rectifier, silicon: 500 V PIV	BV*	212-147	4		
F301	Fuse, cartridge: 2 amp, slow blow for 115 V 1/2 amp, slow blow, for 230 V operation	T*	211-16 211-20	1 1		
I1, 2	Lamp, glow: 1/25 W, 90 vdcw, 65 VAC, NE2	O*	211-43	6		
I3 thru I100	These circuit references not assigned					
I101, 102	Same as I1					
I103 thru I301	These circuit references not assigned					
I302 thru I305	Lamp, incandescent: 6-8V, .15 amp	O*	211-47	4		
I306	This circuit reference not assigned					
I307, 308	Same as I1					
J1	Binding Post Assembly: red	HP*	AC-10D	4		
	Insulator, binding post (rack model)	HP*	AC-54A	4		
	Insulator, binding post (cabinet model)	HP*	AC-54B	2		
	Connector Assembly	HP*	G-76J	1		
J2	Connector, receptacle: male, 3 contact (on rear panel, rack mount only)		125-58	2		
J3 thru J100	These circuit references not assigned	CU*				

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	(hp)	STOCK NO.	#			
J101	Binding Post Assembly: red	HP*	AC-10D	(2)	See	J1	
	Insulator, binding post (rack model)	HP*	AC-54A	(2)	See	J1	
	Insulator, binding post (cabinet model)	HP*	AC-54B	(1)	See	J1	
	Connector Assembly	HP*	G-76K	1			
J102	Same as J2						
L201	Coil, choke: $1 \mu\text{h} \pm 10\%$	CG*	48-96	1			
L202	Coil, r.f.: $360 \mu\text{h}$	CG*	48-63	1			
L203 thru L300	These circuit references not assigned						
L301	Coil, r.f.: $5 \mu\text{h}$	CG*	48-61	1			
L302	Coil, r.f.: $200 \mu\text{h}$	CG*	48-34	1			
P1	Cord, power	Cornish Wire Co.	812-106	1			
R1	Resistor: fixed, deposited carbon, 900,000 ohms $\pm 1\%$, 1 W	NN*	33-900K	2			
R2	Resistor: fixed, deposited carbon, 90,000 ohms $\pm 1\%$, 1/2 W	NN*	33-90K	2			
R3	Resistor: fixed, deposited carbon, 9000 ohms $\pm 1\%$, 1/2 W	NN*	33-9000	1			
R4	Resistor: fixed, deposited carbon, 1000 ohms $\pm 1\%$, 1/2 W	NN*	33-1000	2			
R5	Resistor: fixed, deposited carbon, 1 megohm $\pm 1\%$, 1/2 W	NN*	33-1M	4			
R6, 7	Resistor: fixed, composition, 100,000 ohms $\pm 10\%$, 1/2 W	B*	23-100K	4			
R8, 9	Resistor: fixed, composition, 100 ohms $\pm 10\%$, 1/2 W	B*	23-100	17			

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R10A, B	Resistor: variable, dual concentric, linear taper, Rear section: 250 ohms $\pm 10\%$ Front section: 10,000 ohms $\pm 10\%$, 2 W	210-199 BO*	2			
R11	Resistor: fixed, composition, 2.7 megohms $\pm 10\%$, 1/2 W	23-2.7M B*	3			
R12	Resistor: fixed, deposited carbon, 75,000 ohms $\pm 1\%$, 1 W	31-75K NN*	2			
R13	This circuit reference not assigned					
R14, 15	Resistor: fixed, metal film, 100,000 ohms $\pm 1\%$, 1/2 W	330-100K The Daven Co.	4			
R16, 17	Resistor: fixed, deposited carbon, 30,500 ohms $\pm 1\%$, 1 W	31-30.5K NN*	4			
R18	Resistor: variable, composition, 20,000 ohms Part of S3	210-195 BO*	1			
R19	Resistor: fixed, deposited carbon, 15,000 ohms $\pm 1\%$, 1/2 W	33-15K NN*	8			
R20	Resistor: variable, linear taper, 500 ohms $\pm 20\%$, 2/10 W	210-203 BO*	2			
R21	Same as R19					
R22	Resistor: fixed, deposited carbon, 1200 ohms $\pm 1\%$, 1/2 W	33-1200 NN*	2			
R23	Resistor: fixed, deposited carbon, 1800 ohms $\pm 1\%$, 1/2 W	33-1800 NN*	2			
R24	This circuit reference not assigned					
R25	Resistor: fixed, deposited carbon, 3000 ohms $\pm 1\%$, 1/2 W	33-3000 NN*	3			
R26, 27	These circuit references not assigned					
R28	Resistor: fixed, deposited carbon, 6000 ohms $\pm 1\%$, 1/2 W	33-6000 NN*	2			
R29, 30	Same as R3					
R31, 32	Same as R19					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R33, 34	Same as R8					
R35, 36	Resistor: fixed, deposited carbon, 41,500 ohms $\pm 1\%$, 1 W	NN*	31-41.5K	4		
R37	Resistor: fixed, deposited carbon, 49,000 ohms $\pm 1\%$, 1 W	NN*	31-49K	2		
R38	Resistor: variable, composition, linear taper, 5000 ohms	G*	210-15	2		
R39	Resistor: fixed, composition, 560 ohms $\pm 10\%$, 1/2 W	B*	23-560	2		
R40	Resistor: variable, composition, 5000 ohms $\pm 30\%$, 1/3 W, linear taper	BO*	210-134	2		
R41	Resistor: fixed, deposited carbon, 800,000 ohms $\pm 1\%$, 1/2 W	NN*	33-800K	2		
R42, 43	Same as R8					
R44	Same as R41					
R45	Resistor: fixed, composition, 5100 ohms $\pm 5\%$, 1 W	B*	24-5100-5	1		
R46	Resistor: fixed, composition, 22,000 ohms $\pm 10\%$, 2 W	B*	25-22K	2		
R47	Resistor: fixed, composition, 10,000 ohms $\pm 10\%$, 2 W	B*	25-10K	6		
R48	Same as R46					
R49	Same as R45					
R50, 51	Same as R8					
R52 thru R100	These circuit references not assigned					
R101	Same as R1					
R102	Same as R2					
R103	Resistor: fixed, deposited carbon, 9000 ohms $\pm 1\%$, 1/2 W	NN*	33-9000	3		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R104	Same as R4					
R105	Same as R5					
R106, 107	Same as R6					
R108, 109	Same as R8					
R110A,B	Same as R10					
R111	Same as R11					
R112	Same as R12					
R113	This circuit reference not assigned					
R114, 115	Same as R14					
R116, 117	Same as R16					
R118	Resistor: variable, composition, 20,000 ohms	BO*	210-195	1		
R119	Same as R19					
R120	Same as R20					
R121	Same as R19					
R122	Same as R22					
R123	Same as R23					
R124	This circuit reference not assigned					
R125	Same as R25					
R126, 127	These circuit references not assigned					
R128	Same as R28					
R129, 130	Same as R103					
R131, 132	Same as R19					
R133	Resistor: fixed, deposited carbon, 50,000 ohms $\pm 1\%$, 1/2 W	NN*	33-50K	1		
R134	Resistor: variable, linear taper, 125,000 ohms	BO*	210-110	1		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	STOCK NO.	#			
R135	This circuit reference not assigned					
R136	Resistor: fixed, deposited carbon, 900,000 ohms $\pm 1\%$, 1/2 W	NN*	33-900K	1		
R137, 138	Same as R8					
R139, 140	Same as R35					
R141	Same as R37					
R142	Same as R38					
R143	Same as R39					
R144	Same as R40					
R145	Resistor: fixed, deposited carbon, 1.5 megohms $\pm 1\%$, 1/2 W	NN*	33-1.5M	3		
R146, 147	Same as R8					
R148	Same as R145					
R149	Resistor: fixed, composition, 6200 ohms $\pm 5\%$, 2 W	B*	25-6.2K-5	1		
R150, 151	Resistor: fixed, composition, 7500 ohms $\pm 5\%$, 1 W	B*	24-7.5K-5	2		
R152, 153	Resistor: fixed, composition, 27,000 ohms $\pm 10\%$, 2 W	B*	25-27K	2		
R154, 155	Same as R8					
R156 thru R163	These circuit references not assigned					
R164	Resistor: variable, composition, 2500 ohms $\pm 20\%$, 1/2 W	G*	210-98	1		
R165	Resistor: fixed, composition, 56 megohms $\pm 10\%$, 1/2 W	B*	23-56M	1		
R166 thru R200	These circuit references not assigned					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	STOCK NO.	#			
R201	Resistor: fixed, composition, 680,000 ohms $\pm 10\%$, 1/2 W	B*	23-680K	1		
R202	Resistor: fixed, composition, 1.2 megohms $\pm 10\%$, 1/2 W	B*	23-1.2M	2		
R203	Resistor: fixed, composition, 39,000 ohms $\pm 5\%$, 2 W	B*	25-39K-5	3		
R204, 205	Resistor: fixed, composition, 13,000 ohms $\pm 5\%$, 1 W	B*	24-13K-5	2		
R206, 207	Same as R203					
R208	Same as R202					
R209	Part of S202: not separately replaceable					
R210	Resistor: fixed, deposited carbon, 2 megohms $\pm 1\%$, 1/2 W	NN*	33-2M	1		
R211	Resistor: fixed, composition, 47 ohms $\pm 10\%$, 1/2 W	B*	23-47	1		
R212	Resistor: fixed, composition, 3600 ohms $\pm 5\%$, 1/2 W	B*	23-3600-5	1		
R213	Resistor: fixed, composition, 3300 ohms $\pm 10\%$, 1/2 W	B*	23-3300	1		
R214	Resistor: fixed, composition, 30,000 ohms $\pm 5\%$, 2 W	B*	25-30K-5	1		
R215	Resistor: fixed, deposited carbon, 216,300 ohms $\pm 1\%$, 1/2 W	NN*	33-216.3K	1		
R216	Resistor: fixed, deposited carbon, 252,000 ohms $\pm 1\%$, 1/2 W	NN*	33-252K	2		
R217	Resistor: fixed, deposited carbon, 479,000 ohms $\pm 1\%$, 1 W	NN*	31-479K	1		
R218	Part of S201: not separately replaceable					
R219	Resistor: fixed, composition, 120,000 ohms $\pm 10\%$, 1/2 W	B*	23-120K	1		
R220	Resistor: variable, composition, 100,000 ohms $\pm 30\%$, 1/4 W	BO*	210-138	2		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R221	Resistor: fixed, composition, 27,000 ohms $\pm 10\%$, 1/2 W	B*	23-27K	3		
R222	Resistor: fixed, composition, 7.5 megohms $\pm 5\%$, 1/2 W	B*	23-7.5M-5	1		
R223	Resistor: fixed, composition, 16,000 ohms $\pm 5\%$, 1 W	B*	24-16K-5	1		
R224	Resistor: fixed, composition, 62,000 ohms $\pm 5\%$, 2 W	B*	25-62K-5	1		
R225, 226	Same as R47					
R227	Same as R216					
R228	Resistor: fixed, deposited carbon, 284,000 ohms $\pm 1\%$, 1/2 W	NN*	33-284K	1		
R229	Resistor: variable, composition, linear taper 500,000 ohms $\pm 30\%$, 1/4 W	BO*	210-146	2		
R230	Resistor: fixed, composition, 390,000 ohms $\pm 10\%$, 1/2 W	B*	23-390K	1		
R231	Resistor: fixed, composition, 270,000 ohms $\pm 10\%$, 1/2 W	B*	23-270K	1		
R232	Resistor: fixed, deposited carbon, 680 ohms $\pm 1\%$, 1/2 W	NN*	33-680	1		
R233	Resistor: fixed, composition, 33,000 ohms $\pm 10\%$, 1 W	B*	24-33K	1		
R234	Resistor: fixed, composition, 82,000 ohms $\pm 10\%$, 2 W	B*	25-82K	1		
R235	Resistor: fixed, composition, 470 ohms $\pm 10\%$, 1/2 W	B*	23-470	2		
R236	Same as R221					
R237	Same as R235					
R238	Resistor: fixed, composition, 68,000 ohms $\pm 10\%$, 2 W	B*	25-68K	1		
R239	Same as R8					
R240	Same as R229					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R241	Resistor: fixed, deposited carbon, 2.163 megohms $\pm 1\%$, 1 W	NN*	31-2.163M	1		
R242	Resistor: fixed, composition, 22 megohms $\pm 10\%$, 1/2 W	B*	23-22M	1		
R243	Resistor: fixed, composition, 3 megohms $\pm 5\%$, 1/2 W	B*	23-3M-5	1		
R244	Same as R25					
R245	Resistor: fixed, composition, 1200 ohms $\pm 10\%$, 1/2 W	B*	23-1200	1		
R246	Same as R11					
R247 thru R249	These circuit references not assigned					
R250	Resistor: fixed, deposited carbon, 3.6 megohms $\pm 1\%$, 1/2 W	NN*	33-3.6M	1		
R251, 252	Resistor: fixed, deposited carbon, 1.2 megohms $\pm 1\%$, 1/2 W	NN*	33-1.2M	1		
R253	Resistor: fixed, deposited carbon, 36 megohms $\pm 1\%$, 2 W	NN*	32-36M	1		
R254, 255	Resistor: fixed, deposited carbon, 12 megohms $\pm 1\%$, 1 W	NN*	31-12M	2		
R256	Resistor: fixed, deposited carbon, 1.15 megohms $\pm 1\%$, 1/2 W	NN*	33-1.15M	1		
R257, 258	Resistor: fixed, deposited carbon, 376,000 ohms $\pm 1\%$, 1/2 W	NN*	33-376K	2		
R259 thru R261	Resistor: variable, composition, 20,000 ohms $\pm 20\%$, 1/4 W	BO*	210-136	3		
R262	Resistor: variable, composition, linear taper, 50,000 ohms $\pm 30\%$, 1/3 W	BO*	210-153	1		
R263	Resistor: fixed, composition, 22,000 ohms $\pm 10\%$, 1/2 W	B*	23-22K	2		
R264	This circuit reference not assigned					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	STOCK NO.	#			
R265	Resistor: fixed, composition, 3.9 megohms $\pm 10\%$, 1/2 W	B*	23-3.9M	1		
R266 thru R300	These circuit references not assigned					
R301	Same as R145					
R302	Resistor: fixed, wirewound, 4000 ohms $\pm 5\%$, 20 W	S*	27-7	1		
R303	Same as R220					
R304	Resistor: fixed, composition, 2.2 megohms $\pm 10\%$, 1 W	B*	24-2.2M	2		
R305	Resistor: fixed, composition, 1000 ohms $\pm 10\%$, 1/2 W	B*	23-1000	6		
R306	Resistor: fixed, composition, 68,000 ohms $\pm 10\%$, 1 W	B*	24-68K	1		
R307	Resistor: fixed, composition, 10,000 ohms $\pm 10\%$, 1/2 W	B*	23-10K	2		
R308	Resistor: fixed, composition, 1 megohm $\pm 10\%$, 1 W	B*	24-1M	2		
R309	Same as R305					
R310	Resistor: fixed, deposited carbon, 1.13 megohms $\pm 1\%$, 1/2 W	NN*	33-1.13M	1		
R311	Resistor: fixed, deposited carbon, 1.39 megohms $\pm 1\%$, 1/2 W	NN*	33-1.39M	2		
R312	Resistor: fixed, deposited carbon, 2.84 megohms $\pm 1\%$, 1 W	NN*	31-2.84M	1		
R313	Resistor: fixed, wirewound, 20,000 ohms $\pm 10\%$, 10 W	S*	26-77	1		
R314	Resistor: fixed, wirewound, 1500 ohms $\pm 10\%$, 20 W	S*	27-46	1		
R315	Same as R308					
R316	Same as R305					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION		hp STOCK NO.	#			
R317	Resistor: fixed, composition, 22,000 ohms $\pm 10\%$, 1 W	B*	24-22K	1			
R318	Same as R221						
R319	Resistor: fixed, composition, 1.2 megohms $\pm 10\%$, 1 W	B*	24-1.2M	2			
R320	Same as R305						
R321	Resistor: fixed, deposited carbon, 1.75 megohms $\pm 1\%$, 1/2 W	NN*	33-1.75M	1			
R322	Resistor: fixed, deposited carbon, 2.52 megohms $\pm 1\%$, 1/2 W	NN*	33-2.52M	1			
R323	Resistor: fixed, composition, 680,000 ohms $\pm 10\%$, 1 W	B*	24-680K	2			
R324	Resistor: fixed, composition, 100,000 ohms $\pm 10\%$, 1 W	B*	24-100K	1			
R325	Same as R305						
R326	Resistor: fixed, composition, 12,000 ohms $\pm 10\%$, 1 W	B*	24-12K	1			
R327	Same as R263						
R328	Resistor: fixed, composition, 4700 ohms $\pm 10\%$, 1/2 W	B*	23-4700	1			
R329	Same as R319						
R330	Same as R305						
R331	Same as R5						
R332	Resistor: variable, composition, linear taper, 250,000 ohms $\pm 30\%$, 1/4 W	BO*	210-194	1			
R333	Same as R311						
R334	Resistor: variable, composition, linear taper, 1 megohm $\pm 30\%$, 1/4 W	BO*	210-139	1			
R335	Resistor: fixed, deposited carbon, 20 megohms $\pm 10\%$, 1 W	AV*	26-84	1			

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
R336	Resistor: variable, composition, linear taper, 5 megohms $\pm 30\%$, 1/2 W	I*	210-159	1		
R337	Same as R5					
R338	Resistor: fixed, composition, 27,000 ohms $\pm 10\%$, 1/2 W	B*	23-27K	1		
R339	Same as R304					
R340	This circuit reference not assigned					
R341	Same as R307					
R342	This circuit reference not assigned					
R343	Resistor: variable, composition, 1 megohm $\pm 30\%$, 0.2 W	BO*	210-118	1		
R344, 345	These circuit references not assigned					
R346	Resistor: fixed, deposited carbon, 29 megohms $\pm 10\%$, 1 W	AV*	26-85	1		
R347	This circuit reference not assigned					
R348	Resistor: fixed, composition, 270,000 ohms $\pm 10\%$, 1 W	B*	24-270K	1		
R349	Same as R46					
R350	Resistor: fixed, composition, 47,000 ohms $\pm 10\%$, 1/2 W	B*	23-47K	2		
R351	Resistor: fixed, composition, 1000 ohms $\pm 10\%$, 1/2 W	B*	23-1000	2		
R352	Resistor: fixed, composition, 2000 ohms $\pm 5\%$, 1/2 W	B*	23-2000-5	1		
R353	Resistor: fixed, composition, 510 ohms $\pm 5\%$, 1 W	B*	24-510-5	1		
R354	Resistor: fixed, composition, 2700 ohms $\pm 10\%$, 1/2 W	B*	23-2700	1		
R355, 356	Resistor: fixed, composition, 68,000 ohms $\pm 10\%$, 1/2 W	B*	23-68K	2		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION		hp STOCK NO.	#			
R357	Resistor: variable, wirewound, 25 ohms $\pm 10\%$, 2 W, linear taper	BO*	210-188	1			
R358	Same as R323						
R359	Resistor: fixed, deposited carbon, 750, 000 ohms $\pm 1\%$, 1/2 W	NN*	33-750K	1			
R360	Resistor: fixed, composition, 10 megohms $\pm 10\%$, 1/2 W	B*	23-10M	1			
R361	Resistor: fixed, composition, 56, 000 ohms $\pm 10\%$, 1 W	B*	24-56K	1			
R362	Resistor: fixed, composition, 150, 000 ohms $\pm 10\%$, 1 W	B*	24-150K	1			
R363	This circuit reference not assigned						
R364	Resistor: fixed, composition, 82, 000 ohms $\pm 10\%$, 1/2 W	B*	23-82K	1			
R365	Resistor: variable, composition, linear taper, 50, 000 ohms $\pm 20\%$,	G*	210-18	1			
R366	Resistor: fixed, composition, 33, 000 ohms $\pm 10\%$, 1/2 W	B*	23-33K	1			
R367	This circuit reference not assigned						
R368	Resistor: fixed, composition, 1 megohm $\pm 10\%$, 1/2 W	B*	23-1M	1			
R369	Same as R350						
R370	Same as R351						
R371	Resistor: fixed, composition, 2. 2 megohms $\pm 10\%$, 1/2 W	B*	23-2. 2M	1			
S1	Switch, toggle: SPST Vertical AC-DC Switch	D*	310-11	1			
S2	Vertical Sensitivity Switch Assembly	HP*	130B-95A	1			
S3	Part of R18: not separately replaceable						

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	HP STOCK NO.	#			
S4 thru S100	These circuit references not assigned					
S101	Switch, rotary: 5 section, 16 pos.	W*	310-236	1		
S102	Horizontal Sensitivity Switch Assembly	HP*	130B-95B	1		
S103	Part of R118: not separately replaceable					
S104 thru S200	These circuit references not assigned					
S201	Sync Switch Assembly	HP*	130B-19H	1		
S202	Trigger Level Switch Assembly	HP*	130B-19G	1		
S203	Part of R218: not separately replaceable					
S204	Sweep Time/CM Switch Assembly	HP*	130B-19J	1		
S205	Part of R262: not separately replaceable					
S206 thru S300	These circuit references not assigned					
S301	Part of R357: not separately replaceable					
T1	Transformer, power	HP*	910-162	1		
V1, 2	Tube, electron: 12AU7	ZZ*	212-12AU7	4		
V3	Tube, electron: 12AT7	ZZ*	212-12AT7	3		
V4	Tube, electron: 6DJ8	ZZ*	212-6DJ8	3		
V5 thru V100	These circuit references not assigned					
V101, 102	Same as V1					
V103	Same as V3					
V104	Same as V4					

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	HP STOCK NO.	#			
V105 thru V200	These circuit references not assigned					
V201	Same as V4					
V202	Same as V3					
V203	Tube, electron: 6U8	ZZ*	212-6U8	1		
V204	Tube, electron: 6C4		212-6C4	1		
V205	Tube, electron: 12AL5		212-12AL5	1		
V206	Tube, electron: 6AW8A		212-6AW8A	1		
V207	Tube, electron: 12AX7	ZZ*	212-12AX7	1		
V208 thru V300	These circuit references not assigned					
V301	Tube, electron: 12B4A	ZZ*	212-12B4A	3		
V302	Tube, electron: 6AU6	ZZ*	212-6AU6	1		
V303	Same as V301					
V304	Tube, electron: 6BH6	ZZ*	212-6BH6	2		
V305	Tube, electron: 6X4	ZZ*	212-6X4	1		
V306	Same as V301					
V307	Same as V304					
V308	Tube, electron: 5651	ZZ*	212-5651	1		
V309	Tube, electron, cathode-ray type (Final number in tube designation denotes phosphor type)		212-5AQP-	1		
V310, 311	Tube, electron: 5642	ZZ*	212-5642	2		
V312	Tube, electron: 12AU7	ZZ*	212-12AU7	1		
V313	Tube, electron: 6AQ5	ZZ*	212-5642	1		
V314	Tube, electron: 6DJ8	ZZ*	212-6DJ8	1		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * & MFR. DESIGNATION	hp STOCK NO.	#			
<u>MISCELLANEOUS</u>						
	CRT bezel	HP*	120A-20A	1		
	Filter, light: amber	HP*	120A-83A	1		
	Filter, light: blue	HP*	120A-83B	1		
	Filter, light: green	HP*	120A-83G	1		
	Fuseholder	T*	140-16	1		
	Graticule	HP*	120A-83C	1		
	Holder, rectifier	T*	140-91	2		
	Jewel	HP*	145-23A	1		
	Knob: FOCUS, INTENSITY, SCALE LIGHT	HP*	G-74D	3		
	Knob: VERT.POS., HORIZ. POS.	HP*	G-74G	2		
	Knob: TRIGGER LEVEL	HP*	G-74L	1		
	Knob: VERT. SENSITIVITY, HORIZ. SENSITIVITY, SYNC TIME, SWEEP TIME	HP*	G-74Q	4		
	Knob: TRIGGER SLOPE	HP*	G-74AT	1		
	Knob: VERNIER, VERT. SENSITIVITY, HORIZ. SENSITIVITY, SYNC TIME, SWEEP TIME	HP*	G-74AU	4		
	Knob: VERT. and HORIZ. DC BAL	HP*	G-74BJ	2		
	Lampholder Assembly	JJ*	145-27	1		
	Pilot Light Assembly	AD*	145-25	1		

* See "List of Manufacturers Code Letters For Replaceable Parts Table".

Total quantity used in the instrument.

LIST OF CODE LETTERS USED IN TABLE OF REPLACEABLE PARTS TO DESIGNATE THE MANUFACTURERS

CODE LETTER	MANUFACTURER	ADDRESS	CODE LETTER	MANUFACTURER	ADDRESS
A	Aerovox Corp.	New Bedford, Mass.	AK	Hammerlund Mfg. Co., Inc.	New York 1, N. Y.
B	Allen-Bradley Co.	Milwaukee 4, Wis.	AL	Industrial Condenser Corp.	Chicago 18, Ill.
C	Amperite Co.	New York, N. Y.	AM	Insuline Corp. of America	Manchester, N. H.
D	Arrow, Hart & Hegeman	Hartford, Conn.	AN	Jennings Radio Mfg. Corp.	San Jose, Calif.
E	Bussman Manufacturing Co.	St. Louis, Mo.	AO	E. F. Johnson Co.	Waseca, Minn.
F	Carborundum Co.	Niagara Falls, N. Y.	AP	Lenz Electric Mfg. Co.	Chicago 47, Ill.
G	Centralab	Milwaukee 1, Wis.	AQ	Micro-Switch	Freeport, Ill.
H	Cinch-Jones Mfg. Co.	Chicago 24, Ill.	AR	Mechanical Industries Prod. Co.	Akron 8, Ohio
HP	Hewlett-Packard Co.	Palo Alto, Calif.	AS	Model Eng. & Mfg., Inc.	Huntington, Ind.
I	Clarostat Mfg. Co.	Dover, N. H.	AT	The Muter Co.	Chicago 5, Ill.
J	Cornell Dubilier Elec. Co.	South Plainfield, N. J.	AU	Ohmite Mfg. Co.	Skokie, Ill.
K	Hi-Q Division of Aerovox	Olean, N. Y.	AV	Resistance Products Co.	Harrisburg, Pa.
L	Erie Resistor Corp.	Erie 6, Pa.	AW	Radio Condenser Co.	Camden 3, N. J.
M	Fed. Telephone & Radio Corp.	Clifton, N. J.	AX	Shallcross Manufacturing Co.	Collingdale, Pa.
N	General Electric Co.	Schenectady 5, N. Y.	AY	Solar Manufacturing Co.	Los Angeles 58, Calif.
O	General Electric Supply Corp.	San Francisco, Calif.	AZ	Sealectro Corp.	New Rochelle, N. Y.
P	Girard-Hopkins	Oakland, Calif.	BA	Spencer Thermostat	Attleboro, Mass.
Q	Industrial Products Co.	Danbury, Conn.	BC	Stevens Manufacturing Co.	Mansfield, Ohio
R	International Resistance Co.	Philadelphia 8, Pa.	BD	Torrington Manufacturing Co.	Van Nuys, Calif.
S	Lectrohm Inc.	Chicago 20, Ill.	BE	Vector Electronic Co.	Los Angeles 65, Calif.
T	Littlefuse Inc.	Des Plaines, Ill.	BF	Weston Electrical Inst. Corp.	Newark 5, N. J.
U	Maguire Industries Inc.	Greenwich, Conn.	BG	Advance Electric & Relay Co.	Burbank, Calif.
V	Micamold Radio Corp.	Brooklyn 37, N. Y.	BH	E. I. DuPont	San Francisco, Calif.
W	Oak Manufacturing Co.	Chicago 10, Ill.	BI	Electronics Tube Corp.	Philadelphia 18, Pa.
X	P. R. Mallory Co., Inc.	Indianapolis, Ind.	BJ	Aircraft Radio Corp.	Boonton, N. J.
Y	Radio Corp. of America	Harrison, N. J.	BK	Allied Control Co., Inc.	New York 21, N. Y.
Z	Sangamo Electric Co.	Marion, Ill.	BL	Augat Brothers, Inc.	Attleboro, Mass.
AA	Sarkes Tarzian	Bloomington, Ind.	BM	Carter Radio Division	Chicago, Ill.
BB	Signal Indicator Co.	Brooklyn 37, N. Y.	BN	CBS Hytron Radio & Electric	Danvers, Mass.
CC	Sprague Electric Co.	North Adams, Mass.	BO	Chicago Telephone Supply	Elkhart, Ind.
DD	Stackpole Carbon Co.	St. Marys, Pa.	BP	Henry L. Crowley Co., Inc.	West Orange, N. J.
EE	Sylvania Electric Products Co.	Warren, Pa.	BQ	Curtiss-Wright Corp.	Carlstadt, N. J.
FF	Western Electric Co.	New York 5, N. Y.	BR	Allen B. DuMont Labs	Clifton, N. J.
GG	Wilkor Products, Inc.	Cleveland, Ohio	BS	Excel Transformer Co.	Oakland, Calif.
HH	Amphenol	Chicago 50, Ill.	BT	General Radio Co.	Cambridge 39, Mass.
II	Dial Light Co. of America	Brooklyn 37, N. Y.	BU	Hughes Aircraft Co.	Culver City, Calif.
JJ	Leecraft Manufacturing Co.	New York, N. Y.	BV	International Rectifier Corp.	El Segundo, Calif.
KK	Switchcraft, Inc.	Chicago 22, Ill.	BW	James Knights Co.	Sandwich, Ill.
LL	Gremar Manufacturing Co.	Wakefield, Mass.	BX	Mueller Electric Co.	Cleveland, Ohio
MM	Carad Corp.	Redwood City, Calif.	BY	Precision Thermometer & Inst. Co.	Philadelphia 30, Pa.
NN	Electra Manufacturing Co.	Kansas City, Mo.	BZ	Radio Essentials Inc.	Mt. Vernon, N. Y.
OO	Acro Manufacturing Co.	Columbus 16, Ohio	CA	Raytheon Manufacturing Co.	Newton, Mass.
PP	Alliance Manufacturing Co.	Alliance, Ohio	CB	Tung-Sol Lamp Works, Inc.	Newark 4, N. J.
QQ	Arco Electronics, Inc.	New York 13, N. Y.	CD	Varian Associates	Palo Alto, Calif.
RR	Astron Corp.	East Newark, N. J.	CE	Victory Engineering Corp.	Union, N. J.
SS	Axel Brothers Inc.	Long Island City, N. Y.	CF	Weckesser Co.	Chicago 30, Ill.
TT	Belden Manufacturing Co.	Chicago 44, Ill.	CG	Wilco Corporation	Indianapolis, Ind.
UU	Bird Electronics Corp.	Cleveland 14, Ohio	CH	Winchester Electronics, Inc.	Santa Monica, Calif.
VV	Barber Colman Co.	Rockford, Ill.	CI	Malco Tool & Die	Los Angeles 42, Calif.
WW	Bud Radio Inc.	Cleveland 3, Ohio	CJ	Oxford Electric Corp.	Chicago 15, Ill.
XX	Allen D. Cardwell Mfg. Co.	Plainville, Conn.	CK	Camloc-Fastener Corp.	Paramus, N. J.
YY	Cinema Engineering Co.	Burbank, Calif.	CL	George K. Garrett	Philadelphia 34, Pa.
ZZ	Any brand tube meeting RETMA standards.		CM	Union Switch & Signal	Swissvale, Pa.
AB	Corning Glass Works	Corning, N. Y.	CN	Radio Receptor	New York 11, N. Y.
AC	Dale Products, Inc.	Columbus, Neb.	CO	Automatic & Precision Mfg. Co.	Yonkers, N. Y.
AD	The Drake Mfg. Co.	Chicago 22, Ill.	CP	Bassick Co.	Bridgeport 2, Conn.
AE	Elco Corp.	Philadelphia 24, Pa.	CQ	Birnbach Radio Co.	New York 13, N. Y.
AF	Hugh H. Eby Co.	Philadelphia 44, Pa.	CR	Fischer Specialties	Cincinnati 6, Ohio
AG	Thomas A. Edison, Inc.	West Orange, N. J.	CS	Telefunken (c/o MVM, Inc.)	New York, N. Y.
AH	Fansteel Metallurgical Corp.	North Chicago, Ill.	CT	Potter-Brumfield Co.	Princeton, Ind.
AI	General Ceramics & Steatite Corp.	Keasbey, N. J.	CU	Cannon Electric Co.	Los Angeles, Calif.
AJ	The Gudeman Co.	Sunnyvale, Calif.	CV	Dynac, Inc.	Palo Alto, Calif.
			CW	Good-All Electric Mfg. Co.	Ogallala, Nebr.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Klystron tubes as well as other electron tubes, fuses and batteries are specifically excluded from any liability. This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and when upon our examination it is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number and serial number. On receipt of this information, we will give you service data or shipping instructions.
2. On receipt of shipping instructions, forward the instrument prepaid, to the factory or to the authorized repair station indicated on the instructions. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Truck or Railway Express. The instruments should be packed in a strong exterior container and surrounded by two or three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

HEWLETT-PACKARD COMPANY
Laboratory Instruments for Speed and Accuracy
275 PAGE MILL ROAD PALO ALTO, CALIF. U.S.A.
CABLE "HEWPACK"

HEWLETT-PACKARD COMPANY / OPERATING AND SERVICE MANUAL

130B
OSCILLOSCOPE

CERTIFICATION

THE HEWLETT-PACKARD COMPANY CERTIFIES
THAT THIS INSTRUMENT WAS THOROUGHLY
TESTED AND INSPECTED, AND FOUND TO
MEET ITS PUBLISHED SPECIFICATIONS WHEN
IT WAS SHIPPED FROM THE FACTORY.

 FURTHER CERTIFIES THAT ITS CALIBRATION
MEASUREMENTS ARE TRACEABLE TO THE
NATIONAL BUREAU OF STANDARDS TO THE
EXTENT ALLOWED BY THE BUREAU'S
CALIBRATION FACILITY.

hp MANUAL CHANGES

MODEL 130B/BR

OSCILLOSCOPE

Manual Serial Prefixed: 201-
Manual Printed: JAN 1962

Make all changes in this manual according to the Errata below. Also check the following table for your instrument serial prefix (3 digits) and/or serial number (8 digits) and make any listed change(s) in the manual:

Serial Prefix or Number	Make Manual Changes	Serial Prefix or Number	Make Manual Changes
201-07788 & Above	1		

ERRATA

Figure 4-13,

Change value of R241 to 683.7K ohms.

Table 5-1,

C115: Beside circuit reference, add *.

C202: Change to capacitor, fxd, silver mica, 200 pf $\pm 5\%$, 500 vdcw; \odot Stock No. 0140-0090.

C209: Change to read "Not assigned".

C305: Change value to 0.01 μ f.

F301: Change to F101.

L201: Change description to read: Inductor, 1 mh.

R302: Change to resistor, fxd, ww, 4500 ohms $\pm 10\%$, 20W; \odot Stock No. 0819-0011.

R349: Beside circuit reference, add *.

V309: Change \odot Stock No. from 2090-0007 to 5083-0010.

Table 5-2,

\odot Stock No. 0140-0090: Change value to 200 pf.

\odot Stock No. 0160-0040: Change value to 0.01 μ f.

\odot Stock No. 0818-0001: Delete.

Add \odot Stock No. 0819-0011, resistor, fxd, ww, 4500 ohms $\pm 10\%$, 20W; Mfr. 35434;
Mfr. Part No. C-20, obd#; TQ 1; RS 1.

\odot Stock No. 2090-0007: Delete.

Add \odot Stock No. 5083-0010, Tube, elect: cathode-ray tube (Normally supplied with P1
phosphor. Also available are P2, P7 and P11); Mfr. 28480; Mfr. Part No. 5083-0010;
TQ 1; RS 1.

\odot Stock No. 9140-0053: Change value to 1 mh.

For oscilloscopes having internal-graticule cathode-ray tubes, replace the graticule illumination lamps and switch in the schematic diagram with the following circuit, and make the following changes in the table of replaceable parts:

Serial Prefix or Number

Make Manual Changes

Serial Prefix or Number

Make Manual Changes

201-07788 & Above	1		

ERRATA
(cont'd)

I302 thru I305, R357, S301: Delete

Add L303: Coil.trace-alignment, ^{hp} Stock No. 1990-0012.

Add R372: Resistor, fixed, metal film, 24,000 ohms $\pm 10\%$, 4 watt, Stock No. 0771-0005.

Add R373: Resistor, variable, composition, 20,000 ohms, $\pm 10\%$, 2 Watt, 2-section,
 pp Stock No. 2100-0041.

Add S302: Switch, Rotary, \oplus Stock No. 3100-0001. (This replaces S301 as the AC power switch).

V305: Change to tube, internal-graticule cathode-ray, \oplus Stock No. 5083-0023 for P2 phosphor.
5083-0033 for P7 phosphor.
5083-0042 for P11 phosphor.
5083-0053 for P31 phosphor.

The SCALE control in the above circuit can rotate the crt trace a small amount to allow best alignment with the internal graticule. This may become necessary when the oscilloscope is used in the presence of a strong d-c magnetic field. Graticule illumination and external filters are not needed with the internal-graticule tube.

CHANGE 1

C213: Change to capacitor, fixed, ceramic, 6800 pf $\pm 20\%$, 1000 vdcw;
 ^{hp} Stock No. 0150-0097.

OPERATING AND SERVICE MANUAL

MODEL 130B/BR

SERIALS PREFIXED: 201

OSCILLOSCOPE

Copyright HEWLETT-PACKARD COMPANY 1959
1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U. S. A.

TABLE OF CONTENTS

Section	Page	Section	Page
I GENERAL DESCRIPTION	1-1	III THEORY OF OPERATION (cont'd)	
1-1. General	1-1	3-7. High Voltage Power Supply	3-4
1-2. Damage in Transit	1-1	3-8. Calibrator	3-4
1-3. Power Line Voltages	1-1		
1-4. Power Cord	1-1	IV MAINTENANCE	4-1
1-5. Installation of Rack Mount	1-1	4-1. Introduction	4-1
1-6. Cathode Ray Tube Warranty	1-2	4-2. Simple Check Procedure	4-1
		4-3. Removing the Cabinet	4-3
		4-4. Isolating Troubles to Major Sections	4-3
II OPERATING INSTRUCTIONS	2-1	4-5. Connecting for 230 Volt Operation	4-3
2-1. Controls and Terminals	2-1	4-6. Tube Replacement	4-4
2-2. Rear-Access Terminals	2-1	4-7. Condensed Test and Adjustment Procedures	4-5
2-3. Warm-Up Drift	2-1	4-8. Adjustment Procedure	4-9
2-4. AC or DC Coupling	2-2	4-9. Turn On	4-9
2-5. Balanced Inputs	2-2	4-10. Power Supplies	4-9
2-6. Operating Procedures	2-2	4-11. Replacing and Adjusting the CRT	4-11
		4-12. Checking and Adjusting the Calibrator	4-13
III THEORY OF OPERATION	3-1	4-13. Adjusting the Vertical Amplifier	4-13
3-1. General Content	3-1	4-14. Adjusting the Horizontal Amplifier	4-15
3-2. Over-All Operation	3-1	4-15. Phase Shift Adjust	4-15
3-3. Vertical Amplification Channel . .	3-1	4-16. Adjusting Preset	4-17
Horizontal Amplification Channel . .	3-2	4-16. Adjusting the Sawtooth Generator and Sweep Amplifier	4-17
3-5. Sweep Generator	3-2		
3-6. Low Voltage Power Supply	3-3		

LIST OF ILLUSTRATIONS

Number	Page	Number	Page
1-1. Model 130B/BR Oscilloscope	1-0	4-5. Vertical Amplifier Adjustment Locations	4-12
1-2. Cathode Ray Tube Warranty	1-2	4-6. Horizontal Amplifier Adjustment Locations	4-14
1-3. Model 130BR Installation.	1-3	4-7. Sweep Generator Adjustment Locations	4-16
2-1. Operating Controls and Terminals. . .	2-0	4-8. Vertical Amplifier, Voltage Resistance Diagram	4-20
2-2. Vertical Balance Adjustment.	2-3	4-9. Vertical Amplifier, Schematic	4-21
2-3. Horizontal Balance Adjustment	2-4	4-10. Horizontal Amplifier, Voltage Resistance Diagram	4-22
2-4. Internal Sweep, Internal Synchronization.	2-5	4-11. Horizontal Amplifier, Schematic	4-23
2-5. Internal Sweep, External Synchronization	2-6	4-12. Sweep Generator, Voltage Resistance Diagram	4-24
2-6. External Horizontal Input	2-7	4-13. Sweep Generator, Schematic	4-25
2-7. AC Coupling Balanced Input	2-8	4-14. Sweep Time/CM Switch.	4-26
2-8. Connection to CRT Deflection Plates .	2-9	4-15. Power Supply Regulator, Voltage Resistance Diagram	4-27
2-9. External Intensity Modulation	2-10	4-16. Power Supply, Schematic.	4-28
2-10. Aligning Scope Trace with Graticule .	2-11	4-17. Filament and Primary Detail, Schematic Diagram.	4-29
3-1. Model 130B Block Diagram	3-0	4-18. Sweep Time/CM Switch, Assembly Diagram	4-30
4-1. Location Diagram for Major Circuits .	4-2		
4-2. Line Voltage Connection	4-4		
4-3. Power Supply Location Diagram	4-8		
4-4. Servicing Etched Circuit Boards. . . .	4-7		

LIST OF TABLES

4-1. Condensed Test and Adjustment Procedures.	4-6	4-3. Regulated Power Supply Tolerances	4-9
4-2. Tube Replacement Chart	4-7	5-1. Reference Designator.	5-2
		5-2. Table of Replaceable Parts.	5-13

SPECIFICATIONS**SWEEP****Sweep Range:**

0.2 μ sec/cm to at least 12.5 sec/cm. 21 calibrated sweeps, accurate within $\pm 5\%$, in a 1-2-5-10 sequence, 1 μ sec/cm to 5 sec/cm. Vernier permits continuous adjustment of sweep time between calibrated steps and extends slowest sweep time to at least 12.5 sec/cm.

Magnifier:

X5 Magnifier may be used on all ranges and expands fastest sweep to 0.2 μ sec/cm. Accuracy within 10%.

Synchronization:

Internally from line voltage or from signals causing 1/2 centimeter or more vertical deflection. Externally from 0.5 volts peak-to-peak or more.

Trigger Point:

Continuously adjustable from approximately -30 to +30 volts on either positive or negative slope of external synchronizing signal, or from any point of the vertical signal presented on the screen.

Preset Triggering:

Switch position on sweep mode control selects optimum setting for automatic triggering.

INPUT AMPLIFIERS

Vertical and horizontal amplifiers have same characteristics.

Sensitivity:

1 mv/cm to at least 125 v/cm. 15 calibrated ranges, accurate within $\pm 5\%$, in a 1-2-5-10 sequence, 1 mv/cm to 50 v/cm. Vernier permits continuous adjustment between ranges and decreases sensitivity of 50 v/cm range to at least 125 volts/cm. Input voltage rating 600 volts dc or rms.

Phase Shift:

Within $\pm 1^\circ$ relative phase shift at frequencies up to 50 kc between vertical and horizontal amplifiers with verniers in cal.

Stability:

1 mv/hr after warmup.

Bandwidth:

DC Coupling: dc to 300 kc. AC Coupling: 2 cps to 300 kc. Specified bandwidth is independent of sensitivity setting.

Balanced Input:

On 1, 2, 5, 10, 20 and 50 mv/cm ranges. Cabinet Mount input impedance: 2 megohms shunted with approximately 25 pf. Rack Mount input impedance 2 megohms, approximately 125 pf shunt capacity. Disconnecting the wires at the front panel which connect to the rear terminals reduces the input capacity to approximately 25 pf.

Common Signal Rejection:

(Balanced input only):

Rejection at least 40 db. Common signal must not exceed 1.5 volts.

Single Ended Input:

Cabinet Mount input impedance: 1 megohm shunted with approximately 50 pf. Rack Mount input impedance: 1 megohm, approximately 200 pf shunt capacity. Disconnecting the wires at the front panel connecting to the rear terminals reduces the input capacity to approximately 50 pf.

Internal Calibrator:

300 millivolts peak-to-peak $\pm 2\%$, 300 cycles squarewave applied to vertical or horizontal amplifiers by CAL position of input attenuators.

SPECIFICATIONS (CONT'D.)**GENERAL****External Graticule (Standard):**

Edge lighted graticule with controlled illumination, 10 cm x 10 cm, marked in centimeter squares with 2 mm subdivisions, on major horizontal and vertical axes.

Internal Graticule (Optional):

10 cm x 10 cm, major horizontal.

CRT Plates:

Direct connection to deflection plates via terminals on rear. Sensitivity approximately 20 volts/cm.

Intensity Modulation:

Terminals on rear; 20 volts positive signal blanks CRT at normal intensity.

Dimensions:

Cabinet Mount: 9-3/4 in. wide, 15 in. high, 21-1/4 in. deep.

Rack Mount:**Weight:**

Cabinet Mount: Net 41 lbs, shipping 54 lbs.

Rack Mount: Net 47 lbs, shipping 62 lbs.

Cathode Ray Tube:

5 AQP mono-accelerator flat face type with 3000 volt accelerating potential. Available with P1, P2, P7 or P11 screen.

Power Supply:

115/230 volts $\pm 10\%$, 50/1000 cycles, 160 watts.

Filter Supplied:

Color of filter compatible with screen phosphor. Green for P1 and P2, Amber for P7, Blue for P11.

Rack Mount:

Has rear terminals in parallel with front panel connections.

Accessories Furnished:

Supplied with Rack Mount.

130B-12P and Q Mounting Brackets (pair).

Two 125-57 Plugs (mate with rear terminals).

Two 125-59 Clamps for 125-57 Plugs.

Accessories Available:

AC-83A Viewing Hood; face-fitting molded rubber. Price \$5.00.

Additional Mounting Brackets. 130B-12P (left) and 130B-12Q (right); \$2.50 a pair.

Price:

Model 130B, Cabinet Mount: \$650.00

Model 130BR, Rack Mount: \$650.00

Options:

2. P-2 CRT (installed)
3. Internal graticule CRT (installed)
7. P-7 CRT (installed)
11. P-11 CRT (installed)

Figure 1-1. Model 130B/BR Oscilloscope

SECTION I GENERAL DESCRIPTION

1-1 GENERAL

The Hewlett-Packard Model 130B Oscilloscope is a general purpose oscilloscope. It can be used with either internal or external sweeps which can be either internally or externally synchronized and it can be obtained in either the cabinet or rack type mounting. Because of its high sensitivity and balanced input, the Model 130B may often be used directly with transducers, enabling you to see a direct presentation of phenomena desired without having to resort to preamplifiers.

Some of the special features of this oscilloscope are as follows:

A. LINEAR INTEGRATOR SWEEP GENERATOR

The accurate direct reading sweeps are obtained from a Miller-integrator sweep circuit which insures a high order linearity and stability. This type of sweep generator, is more reliable and independent of tube characteristics than other types of sweep generator.

B. X5 SWEEP EXPANSION

You speed observation and analysis of transients by expanding a two centimeter segment of the trace to 10 centimeters for easy viewing of detail. This X5 sweep expander, may be used on all sweep time settings and expands the fastest sweep time to .2 microsecond/cm.

C. CALIBRATED AMPLIFIERS

Voltage measurements of various waveforms are quickly made with the 130B, accurate within $\pm 5\%$. A built-in calibrator which is accurate within $\pm 2\%$ permits quick verification and standardization of the amplifier gain.

Phase shift measurements can be made accurately with this oscilloscope over a wide range of input frequencies.

1-2 DAMAGE IN TRANSIT

This instrument should be thoroughly inspected when it is received. If any damage is evident, refer to the "Claim for Damage in Shipment" paragraph on the Warranty sheet in this manual.

1-3 POWER LINE VOLTAGES

The Oscilloscope is shipped from the factory wired for 115 volts ac line operation, unless otherwise specified. However, the instrument may also be operated from a 230 volts ac line source if the proper conversion is made to the power transformer. This conversion is described in the Maintenance Section (Section IV).

1-4 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin, added to a standard two-blade ac plug, which grounds the instrument chassis when used with the appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two contact output. When the adapter is used, the ground connection becomes a short lead from the adapter which should be connected to a suitable ground for the protection of operating personnel.

1-5 INSTALLATION OF RACK MOUNT

The \oplus 130BR is designed so that it can be supported in a 19 inch rack by the front panel in the usual manner; or, the dust cover may be rigidly mounted in the rack with brackets as shown in Figure 1-1. In the latter case, the chassis is supported by the dust cover and may be slipped in

or out easily; the screws through the front panel merely holding the chassis in place. To rack mount the 130BR using the brackets:

- 1) Mount the bracket as shown in Figure 1-3 with screws through the outside holes of the brackets. The length of these screws may be chosen to space the front panel from the panel rails as desired. The brackets at the rear are not necessary in most installations but can be used if added support is required. These brackets are available from the Hewlett-Packard Company as an accessory item.
- 2) Remove the dust cover from the 130BR and

mount it in the brackets with the 10-32 trusshead screws provided.

- 3) Slip the 130BR into the dust cover and fasten in place with screws through the front panel.

1-6 CATHODE RAY TUBE WARRANTY

The cathode ray tube (crt) supplied with the oscilloscope and replacement crt's purchased from Hewlett-Packard company are guaranteed against electrical failure for one year from the date of sale by Hewlett-Packard. Cathode Ray Tube Warranty sheet is illustrated in figure 1-2. A sheet for your use is included in the appendix of this manual.

CATHODE RAY TUBE WARRANTY

The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your warranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

- 1) Carefully wrap the tube in 1/4" thick cotton batting or other soft padding material.
- 2) Wrap the above in heavy kraft paper.
- 3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
- 4) Surround the tube with at least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
- 5) Tubes returned from outside the continental United States should be packed in a wooden box.
- 6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

CRT WARRANTY CLAIM

DATE: _____

FROM: _____

NAME: _____

COMPANY: _____

ADDRESS: _____

Person to contact for further information:

NAME: _____

TITLE: _____

COMPANY: _____

ADDRESS: _____

To process your claim quickly please enter the information indicated below:

1) INSTRUMENT MODEL _____ SERIAL _____

2) TUBE TYPE _____ SERIAL _____

3) ORIGINAL TUBE _____ REPLACEMENT TUBE _____

4) YOUR PURCHASE ORDER NO. _____

5) DATE PURCHASED _____

6) PURCHASED FROM _____

7) COMPLAINT: (Please describe nature of trouble) _____

8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure) _____

SIGNATURE _____

Figure 1-2. Cathode Ray Tube Warranty

Figure 1-3. Model 130BR Installation

FIGURE 2-1
OPERATING CONTROLS
AND TERMINALS

TING

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A X5 sweep magnifier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a one-half centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -

A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3-conductor receptacle J102, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS

-----DANGER - HIGH VOLTAGE-----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. See Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A X5 sweep magnifier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a one-half centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -

A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3-conductor receptacle J102, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS

-----DANGER - HIGH VOLTAGE-----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. See Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

2-4 AC OR DC COUPLING

AC coupling permits high gain to be employed without regard for the dc level involved. In the AC position the input signal (vertical or horizontal) is coupled to the amplifier through a capacitor which removes the dc component from the input. This coupling circuit has a low frequency cut-off at 2 cps. To avoid degrading input pulses or square waves below 200 cps it is advisable to use dc coupling. WHEN USING DC COUPLING THE AVERAGE VALUE OF THE DC DETERMINES THE POSITION OF THE SWEEP ON THE OSCILLOSCOPE. IF YOU ARE UNABLE TO FIND THE TRACE WITH THE VERTICAL POSITION CONTROL WHEN USING DC COUPLING, TRY AC COUPLING. When AC coupled the maximum dc that may be applied is 600 volts.

2-5 BALANCED INPUTS

The instrument will accept balanced input signals on the six most sensitive ranges. This arrangement is shown in Figure 2-7.

Driving the instrument from a balanced source can be very effective in removing the unwanted stray pickup that would otherwise obscure the desired information. To take advantage of the noise reduction that is possible with a balanced input, you must be sure that neither terminal of the source is connected to ground, and use double conductor shielded cable between the source and oscilloscope. The input cable shield must be connected to a suitable ground, either at the oscilloscope or some other point. With these precautions in the external input circuit, any stray signals (noise, hum, etc.) will be coupled equally to the two input terminals, and be cancelled by the differential amplifiers. Since the desired information is applied between the two input terminals, it will be amplified and displayed in the normal manner. Since the noise is a problem

mainly at low level, the fact that balanced input is available only on the most sensitive ranges is generally not a serious limitation.

The common-mode signal rejection will be at least 40 db (1/100 of the input signal). When using a balanced input certain limitations must be considered. The proper operating levels must be maintained on the input amplifier: The COMMON-MODE SIGNAL VOLTAGE MUST NOT EXCEED 1.5 VOLTS EITHER POSITIVE OR NEGATIVE, ON EITHER INPUT TERMINAL. Note that this is the sum of all voltages (dc plus peak ac).

NOTE

If balanced ac coupling is desired, it is necessary to connect a capacitor in the external signal path to the middle terminal, since a dc voltage on this terminal only unbalances the amplifier. This arrangement is shown in Figure 2-7.

2-6 OPERATING PROCEDURES

Basic operating procedures are described in the following illustrations. Positions of controls are different on the cabinet model but their functions are identical to those of the rack model.

Figure	Description
2-2	VERTICAL BALANCE ADJUSTMENT
2-3	HORIZONTAL BALANCE ADJUSTMENT
2-4	INTERNAL SWEEP-INTERNAL SYNCHRONIZATION
2-5	INTERNAL SWEEP-EXTERNAL SYNCHRONIZATION
2-6	EXTERNAL HORIZONTAL INPUT
2-7	AC COUPLING BALANCED INPUT
2-8	CONNECTION TO CRT DEFLECTION PLATES
2-9	EXTERNAL INTENSITY MODULATION
2-10	ALIGNING SCOPE TRACE WITH GRATICULE

VERTICAL BALANCE ADJUSTMENT

After Warm-up:

1. Turn SWEEP MODE control to FREE RUN.
2. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1.
3. Set SWEEP TIME/CM switch so that a convenient base line is formed. (Any sweep time faster than 50 MILLISECONDS/CM is satisfactory.)
4. Short vertical input terminals together.
5. Set AC-DC switch to DC.
6. Set VERT. SENSITIVITY to CAL. Turn VERNIER to CAL.
7. Center bottom portion of calibration signal trace using VERT. POS. control.
8. Set VERT. SENSITIVITY to 1 MILLIVOLTS/CM.
9. Center trace with coarse (screwdriver) VERT. DC BAL. control or with fine (knob) control if unbalance is slight.
10. Repeat steps 6, 7, 8 and 9 if necessary.

NOTE: A separate adjustment (Bal. Adj. on the etched board) is provided to balance the VERNIER.

Figure 2-2

HORIZONTAL BALANCE ADJUSTMENT

After warm-up:

1. Short together the horizontal INPUT terminals.
2. Set AC-DC switch to DC.
3. Set HORIZ. SENSITIVITY to CAL. Turn VERNIER to CAL.
4. Adjust the HORIZ. POS. control to place the left edge of the calibrating signal trace on the major vertical axis.

5. Set HORIZ. SENSITIVITY to 1 MILLIVOLT/CM.

6. Return the spot to the major vertical axis with the coarse (screwdriver) HORIZ. DC BAL. control or with the fine (knob) control if the unbalance is slight.

7. Repeat steps 2, 3, 4, and 5 if necessary.

NOTE: A separate adjustment (Bal. Adj. on the etched board) is provided to balance the VERNIER.

Figure 2-3

INTERNAL SWEEP - INTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps)
2. Set SYNC switch to INT.
3. Set SWEEP MODE to PRESET.
4. Connect vertical input signal into vertical input terminals.
5. Set AC-DC switch for type coupling desired.
6. Adjust VERT. SENSITIVITY for desired sensitivity.
7. Set TRIGGER SLOPE switch for triggering on positive or negative slope of input signal, as desired.
8. Set TRIGGER LEVEL control to 0.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-4

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps).
2. Set SYNC switch to EXT.
3. Set SWEEP MODE to PRESET.
4. Feed synchronizing signal (0.5 volts p-p or more) to the horizontal input terminals.
5. Set AC-DC switch for type coupling desired.
6. Set TRIGGER LEVEL to 0.
7. Feed vertical input signal into vertical input terminals.
8. Adjust VERT. SENSITIVITY for desired sensitivity.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Set TRIGGER SLOPE for triggering on positive or negative slope, as desired.
11. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be found necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-5

EXTERNAL HORIZONTAL INPUT

1. Feed horizontal signal to horizontal input terminals.
2. Set AC-DC switch for type of input coupling desired.
3. Set HORIZ. SENSITIVITY switch for desired sensitivity.

4. Adjust horizontal position of pattern with HORIZ. POS. control.

This type of input will be found useful for viewing Lissajous patterns, etc.

Figure 2-6

AC COUPLING BALANCED INPUT

The following procedure is for the vertical input, but is the same for the horizontal input.

1. Set VERT. SENSITIVITY to 50 MILLIVOLTS/CM, input not balanced on higher ranges.
2. Set AC-DC switch to AC.
3. Disconnect shorting strap.

4. Connect 0.1 microfarad capacitor to mid-terminal.
5. Connect input signal to A and B.
6. Ground input at the black terminal.

The capacitor must be used to block any dc.

Figure 2-7

CONNECTION TO CRT DEFLECTION PLATES

The following procedure is for connecting external signals to the vertical deflection plates, but is the same for the horizontal plates.

1. Remove rear access plate fastened by four screws.
2. Remove the shorting bars between the Vertical Amplifier and terminals D3 and D4 and replace them with 1 megohm, 1/2 watt resistor.

For balanced AC coupling:

3. Connect balanced signal through appropriate capacitor to D3 and D4.

For single-ended AC coupling:

4. Bypass D4 to chassis with an adequate capacity.
5. Connect the signal to D3 through an appropriate capacitor.

NOTE: If it is desired to have positive voltage deflect the beam downward, bypass D3 to chassis and connect the signal to D4.

Figure 2-8

EXTERNAL INTENSITY MODULATION

CAUTION: Dangerous Voltages are present on this terminal board. Be sure the instrument is turned off when making this connection.

To intensity modulate the CRT with external signals:

1. Remove rear access plate fastened by four small screws at rear of dust cover.

2. Remove shorting bar.
3. Connect modulating signal to these terminals. A positive voltage of 20 volts peak will blank the CRT trace from normal intensity.

Figure 2-9

ALIGNING SCOPE TRACE WITH GRATICULE

**CAUTION: DANGEROUS VOLTAGES ARE
PRESENT INSIDE THE INSTRUMENT**

Remove two screws at rear of dust cover and slide cover off to rear. Fiber lever (2) controls both radial and longitudinal positioning of CRT and is locked by clamp (1).

To align sweep trace with graticule loosen clamp (1) with a screwdriver. Rotate fiber arm (2) until the trace is parallel to horizontal lines on graticule. Tighten clamp (1) after adjustment has been made.

Figure 2-10

Figure 3-1. Model 130B Block Diagram

SECTION III

THEORY OF OPERATION

3-1 GENERAL CONTENT

This section contains a brief description of the over-all operation of the Model 130B Oscilloscope, description of each major section and detailed description of a Schmitt trigger.

3-2 OVER-ALL OPERATION

The block diagram in Figure 3-1 shows the basic circuits of the Model 130B Oscilloscope.

A. VERTICAL AMPLIFIER

The Vertical Amplifier receives the input signal, amplifies it, and drives the vertical deflection plates of the cathode ray tube. In addition, this amplifier determines the vertical position of the spot on the screen and supplies a signal for synchronizing the sweep with the vertical input signal.

B. HORIZONTAL AMPLIFIER

The Horizontal Amplifier receives its signal either from the horizontal INPUT jack or from the Sweep Generator, amplifies it and drives the horizontal deflection plates of the cathode ray tube. Except for the provisions in the Horizontal Amplifier for amplifying the internally-generated sawtooth voltage, it is essentially the same as the Vertical Amplifier.

C. SWEEP GENERATOR

The Sweep Generator forms a sawtooth voltage to control the horizontal movement of the spot across the face of the cathode ray tube. The Sweep Generator is divided into two parts: 1) a sawtooth generator, 2) a trigger generator, which starts the sawtooth. The trigger generator controls allow the operator to choose the point at which the sawtooth sweep begins.

In addition to forming the internal sweep of the oscilloscope, the Sweep Generator also supplies the required unblanking pulse which brightens the trace during each sweep.

D. CALIBRATOR

An internal square-wave calibrator, with a nominal frequency of 300 cps, is provided for setting the basic gain of the amplifiers. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL., turns on the calibrator supply voltage and connects its output to the appropriate amplifier.

E. CATHODE RAY TUBE

The cathode ray tube is a 5AQP - mono-accelerator type. It is normally supplied with a P1 phosphor screen but is available in the P7 and P11 phosphors also and P2 upon special order. All are electrically interchangeable and the tube is easily changed. The mono-accelerator anode makes possible a simple astigmatism adjustment which requires no resetting when adjusting the FOCUS or INTENSITY controls. The deflection plate terminals are connected through removable jumpers at the rear of the instrument so that direct connections to the plates can be made easily.

3-3 VERTICAL AMPLIFICATION CHANNEL

The vertical amplification channel consists of three parts: the AC-DC switch, the input attenuator, and the amplifier section proper.

A. AC - DC SWITCH

The signal comes into the input terminals and is fed to the AC-DC switch. For ac coupling, a capacitor is switched into the signal path. In the DC position, the signal goes directly to the input attenuator.

B. INPUT ATTENUATOR

The input attenuator is a sixteen position switch having fifteen calibrated ranges (1 MILLIVOLT/CM to 50 VOLTS/CM) and a calibrate position. When the switch is in the CAL. position, the input of the amplifier is directly connected to the output of the internal calibrator. On ranges less sensitive than 50 MILLIVOLTS/CM, single-ended frequency-compensated attenuators are inserted ahead of the Vertical Amplifier. On the six most sensitive ranges, balanced-type attenuators are inserted between the second differential amplifier (V2) and the third differential amplifier (V3). On the six most sensitive ranges, balanced input signals may be applied to the input terminals after removing the jumper to the ground terminal. The sensitivity may be varied continuously between ranges by means of the VERNIER control.

C. VERTICAL AMPLIFIER

The Vertical Amplifier consists of four stages of balanced differential amplifiers* in cascade. The first stage (V1) has the VERT. DC BAL. adjustment (R10A, B) in its cathode circuit which adjusts the current division between the two halves of the stage. The second stage has a VERNIER control in the cathode circuit which varies the gain of the amplifier between ranges of the VERT. SENSITIVITY switch, and another dc balance adjustment (R20) is also provided. In the last three stages, neutralizing capacitors are used to cancel the coupling effects between the input and output of the amplifier arising from the inter-electrode capacitances. The output of the second stage is fed to the balanced attenuator of the VERT. SENSITIVITY switch. The output of the balanced attenuator is connected to the third balanced differential amplifier (V3). The third stage has two potentiometers in its cathode circuit, one controls the vertical position of the pattern (VERT. POS) and the other adjusts the basic gain of the Vertical Amplifier (R40, Gain Adj.). The fourth balanced differential amplifier (V4) is the output stage. The neon lamps in the grid-cathode circuit of V4 protect the tube when the Model 130B is first turned on. The output of V4 drives the vertical deflection plates of the cathode ray tube. In addition, synchronization signals are coupled from

the plates of V4 and coupled into the Sweep Generator to trigger the sweep during either INTERNAL + or INTERNAL - synchronization. As a precaution against drift and hum, a regulated dc supply is used for the heaters of the first three stages.

3-4 HORIZONTAL AMPLIFICATION CHANNEL

The Horizontal Amplifier is essentially identical to the Vertical Amplifier, except in the INT. SWEEP X1 and X5 position of the HORIZ. SENSITIVITY switch. In these positions, the sawtooth signal from the Sweep Generator is fed through the sweep attenuator to the grid of V103, the third balanced differential amplifier. In the INT. X5 position, R164, X5 Mag. Adj., in the cathode circuit of V104 sets the gain of the amplifier to obtain sweep magnification of X5. The output of V104 drives the horizontal deflection plates of the cathode ray tube.

3-5 SWEEP GENERATOR

The sweep generator provides a sawtooth voltage to produce linear horizontal movement of the spot across the face of the cathode ray tube when the HORIZ. SENSITIVITY switch is set to INT. SWEEP (X1 or X5). In addition, the sweep generator furnishes the pulse required to unblank the cathode ray tube during each sweep.

The sweep generator consists of a Trigger Generator, a Sawtooth Generator, and a Gate Out Cathode Follower.

A. TRIGGER GENERATOR

The purpose of the Trigger Generator is to receive a synchronizing signal and convert it into a fast, constant-amplitude pulse to start the Sawtooth Generator.

The Trigger Generator consists of a SYNC selector switch (S201), a Trigger Amplifier (V201), and a Trigger Generator (V202). The SYNC selector switch accepts a signal from:

- 1) the Vertical Amplifier (internal synchronization, + or -),
- 2) an internal 6.3 volt source (line-frequency synchronization), or
- 3) the horizontal INPUT terminals (external synchronization).

* Valley and Wallman, "Vacuum Tube Amplifier", Massachusetts Institute of Technology Radiation Series, vol. 18, pp 441-451. McGraw-Hill Book Company, Inc., New York, 1948.

The synchronizing signal is fed to V201 which amplifies the signal and delivers it in the proper phase, as selected by the TRIGGER SLOPE switch, to the Trigger Generator. Adjustment of the TRIGGER LEVEL control sets the output level of V201, determining the point on the input waveform that will trigger the Trigger Generator (V202). Trigger Generator (V202) is a Schmitt trigger circuit; a discussion of the Schmitt trigger follows:

A Schmitt trigger consists of two amplifiers, A and B, having both plate-to-grid and cathode-to-cathode coupling. The circuit has two stable states: A side conducting, B side cut off; B side conducting, A side cut off. Due to regenerative action the change-over from one state to the other is very rapid, producing fast rise and decay times in the square-wave output. The levels at which the change-over takes place (hysteresis limits) can be adjusted to be close together as in the Trigger Generator (V202) or widely spaced as in the Start-Stop Trigger (V203). To trigger the circuit, the A side grid voltage must cross a particular hysteresis limit to change the state of the circuit. For example, if the A side is conducting, driving the grid voltage positive through the upper hysteresis limit will have no effect, but driving the grid voltage negative through the lower hysteresis limit will put the A side out of conduction and B side into conduction.

B. SAWTOOTH GENERATOR

The Sawtooth Generator consists of Start-Stop Trigger (V203), and Integrator Switch (V205), a Feedback Integrator (V206B), and Integrator Cathode Follower (V206A), and a Retriggering Hold-Off Cathode Follower (V207B).

Start-Stop Trigger (V203), a Schmitt trigger circuit, is fed by Trigger Generator (V202). The square wave output of V203 is fed directly to the Integrator Switch (V205), which in turn controls the action of Feedback Integrator (V206B). When V203 produces a negative pulse, it causes V205 to cut off permitting V206B to commence operation.

Feedback Integrator (V206B), a Miller integrator circuit*, generates essentially a positive linearly rising waveform, which is applied to the Horizontal Amplifier to sweep the trace across the face

of the cathode ray tube. The rate at which this sweep takes place is determined by the values of the RC network in the grid circuit of V206B. These values are varied by the SWEEP TIME switch. The output of V206B is fed through a neon lamp (I203) to the Integrator Cathode Follower (V206A). I203 is shunted with a capacitor to improve the high-frequency response of the circuit, and a series resistor is used to eliminate any tendency toward oscillation. I204 through I206 are protective neons for the timing capacitor in the sweep time switch.

The output of the Integrator Cathode Follower (V206A) is fed to two circuits: 1) through the sweep attenuator to the Horizontal Amplifier and 2) to the Retriggering Hold-Off Cathode Follower (V207B) in the Sawtooth Generator feedback circuit. During the Sweep, V207B conducts and the capacitor in its cathode circuit charges. However, at the termination of the sweep, V207B is cut off and the cathode capacitor discharges, maintaining a positive bias on the grid of V203A. This hold-off bias allows sufficient time between sweeps for the Sweep Generator to recover. The bias which determines the triggering level of the Start-Stop Trigger (V203A) is supplied by the Retriggering Bias Control (V207A). The bias is adjusted by the SWEEP MODE control, R218, in the grid circuit of V207A.

C. GATE OUT CATHODE FOLLOWER

Another function of the Start-Stop Trigger is to furnish a pulse to unblank the cathode ray tube. The Gate Out Cathode Follower (V204), couples the required positive unblanking pulse from the Start-Stop Trigger to the grid of the crt for the duration of the sweep.

3-6 LOW VOLTAGE POWER SUPPLY

The low-voltage power supply consists of four regulated voltage supplies, three positive (+585V, +300V, +100V) and one negative (-150V), furnishing the plate voltages and dc filament voltages required for the instrument.

The operation of each of the four regulators is similar; only the -150 volt supply will be discussed. V306, V307 and V308 constitute the voltage regulator circuit for the -150 volt supply. V308, a glow discharge tube, provides a reference voltage for the cathode of V307, the

* Millman and Taub, "Pulse and Digital Circuits" pp 216-228, McGraw-Hill Book Company, Inc., New York, 1956.

Control Tube. V306, a Series Regulator, is controlled by the voltage at the plate of V307. If the output voltage from the rectifier increases, the bias of V307 decreases, causing V307 to draw more current. This lowers the plate voltage of V307 and the grid voltage of V306, resulting in greater plate resistance for V306. Increased plate resistance causes a greater voltage drop across V306, compensating for the increased output voltage from the rectifier and resulting in substantially constant output.

If the output voltage from the rectifier decreases, the reverse of the above action occurs. Changes in supply voltage due to changes in load current are minimized in the same manner. Thus, the output voltage is held essentially constant. The output of the -150 volt supply serves as the reference voltage for the three positive-voltage supplies.

3-7 HIGH-VOLTAGE POWER SUPPLY

The high-voltage power supply provides regulated dc voltage to the cathode and control grid of the cathode ray tube. The high-voltage power supply consists of an RF Oscillator tube (V313), a high-voltage transformer (T302), high-voltage rectifiers (V310,311) and a High-Voltage Control Tube (V312). The RF Oscillator, a Hartley circuit, oscillates at a frequency of approximately 100 kc. The high-voltage transformer has two separate secondaries which feed the High-Voltage Rectifiers.

The output of V310 is connected to the cathode of the cathode ray tube. A fraction of this voltage is fed to the High-Voltage Control Tube V312, a dc-coupled amplifier. The output of V312 is fed back to the screen of RF Oscillator tube (V313) in proper phase to oppose any change in the high-voltage output. The INTENSITY control in the output of this supply determines the voltage on the cathode of the cathode ray tube.

The output of V311 is connected to the control grid of the cathode ray tube, and normally the crt beam is cut off. During the sweep operation, a positive

pulse from the Gate Out Cathode Follower (V204) in the Sweep Generator circuit overrides the negative crt grid cutoff voltage and unblanks the cathode ray tube. The brilliance of the trace may be adjusted with the Intensity Adjust potentiometer (R343), in series with grid-voltage supply.

3-8 CALIBRATOR

The Calibrator, a square-wave oscillator, produces an accurate voltage across R244 for application to either amplifier for setting the basic gain. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL. turns on the Calibrator and connects its output to the appropriate amplifier.

The Calibrator consists of two neon lamps (I207 and I208) in a relaxation oscillator circuit. Operation of the Calibrator is as follows:

When the +300 volt supply is applied to the Calibrator, I207 will ionize first due to higher potential across it compared to the potential across I208. When I207 fires it will draw current through R243. However, the voltage at the junction of R242, C213 and R243 will build up slowly because the voltage across a capacitor cannot change instantaneously. As C213 allows this voltage to change, the voltage at the common junction of I207 and I208 will also change, since the voltage drop across the ionized neon lamp is constant (approximately 60 volts). As the voltage at the common junction of I207 and I208 reaches approximately +70 volts, I208 will fire. This additional current through R240 and R241 will reduce the voltage across I207 and it will de-ionize. I208 remains lit until the voltage across C213 charges through R243 to a voltage approximately 70 volts below the voltage that appears at the common junction of I207 and I208. I207 will now fire and the action will repeat itself.

I208 is thus alternately turned off and on at a rate of approximately 300 cps. The output of the Calibrator is taken from the current passing through R244 and I208. The output is approximately a square wave which can be set with R240 to obtain 300 millivolts in amplitude.

SECTION IV MAINTENANCE

4-1 INTRODUCTION

This section contains instructions for testing, adjusting, and trouble shooting the Model 130B Oscilloscope.

Standard, readily available components are used for manufacture of hp instruments whenever possible. Special components are available through your local hp Representative who maintains a part stock for your convenience.

When ordering parts, specify instrument model and serial number plus the component description and stock number appearing in the Table of Replaceable Parts.

Your local hp Representative maintains complete facilities and specially trained personnel to assist you with any problems you may have with hp instruments.

The material in this section is divided according to circuit functions, each section having a complete set of adjustment instructions. The material in this section is as follows:

- 4-2 Simple Check Procedure
- 4-3 Removing the Cabinet
- 4-4 Isolating Troubles to Major Sections
- 4-5 Connecting for 230 Volt Operation
- 4-6 Tube Replacement
- 4-7 Condensed Test and Adjustment Procedure
- 4-8 Adjustment Procedure
- 4-9 Turn On
- 4-10 Power Supplies
- 4-11 Replacing and Adjusting the CRT
- 4-12 Checking and Adjusting the Calibrator
- 4-13 Adjusting the Vertical Amplifier
- 4-14 Adjusting the Horizontal Amplifier
- 4-15 Phase Shift Adjust
- 4-16 Adjusting Preset
- 4-17 Adjusting the Sawtooth Generator and Sweep Amplifier

The following test equipment is used for testing and adjusting the Model 130B Oscilloscope during manufacture. Equivalent test equipment may be used.

- 1) A high impedance dc vacuum tube voltmeter, such as an hp Model 410B with an hp Model 459A DC Voltage Multiplier.
- 2) A high impedance ac vacuum tube voltmeter, such as an hp Model 400D/H/L.
- 3) A variable power line transformer with a minimum rating of 3 amps.
- 4) A square-wave generator such as an hp Model 211A.
- 5) A sine-wave oscillator with a maximum frequency of at least 500,000 cycles, such as an hp Model 200CD.
- 6) An accurate time mark generator suitable for sweep speed calibration.

4-2 SIMPLE CHECK PROCEDURE

This check should be performed first whenever instrument malfunction is suspected. It is not necessary to remove the instrument from the cabinet.

Set both VERT. and HORIZ. SENSITIVITY switches on CAL. The pattern should be a straight line tilted at 45 degrees. In addition, the deflection should be a total of six centimeters in the horizontal and vertical directions.

If the proper pattern is obtained, it is likely that both the Vertical and Horizontal Amplifier, the Power Supplies and the Calibrator are functioning properly. To check the Sweep Generator proceed as follows:

Figure 4-1. Location Diagram for Major Circuits

- 1) Leaving the VERT. SENSITIVITY switch in CAL, switch HORIZ. SENSITIVITY switch to INT. SWEEP X1.
- 2) Switch SWEEP TIME/CM switch to 1 MILLI-SECOND. A six centimeter square-wave pattern should appear on the screen. If no pattern is obtained be sure SWEEP MODE is in PRESET, SYNC switch is in INT., and adjust TRIGGER LEVEL to trigger. If a pattern cannot be obtained, the malfunction is most likely in the Sweep Generator.

4-3 REMOVING THE CABINET

In the cabinet model, remove the two screws at the rear of the cabinet, and push the instrument forward.

If the 130BR has been rack-mounted with brackets as described in Figure 1-3, remove the screws which pass through the front panel, and withdraw the chassis. If the instrument is out of the rack, turn it on its face (handles will protect the controls), remove the two screws at the rear, and lift off the dust cover.

4-4 ISOLATING TROUBLES TO MAJOR SECTIONS

Determining which major section contains a malfunction is usually not a difficult process, if the following general rules are remembered.

- 1) A failure affecting all major sections can usually be traced to the power supply.
- 2) A failure occurring in the last two stages of the Horizontal Amplifier also will affect internally generated sweeps, while a failure in the first two stages affects only the Horizontal Amplifier.
- 3) A sweep Generator failure affects internally generated sweeps only, and does not affect the Horizontal Amplifier.
- 4) If following the Simple Check Procedure does not produce a trace or spot on the screen, measure the voltages on the deflection plates of the Cathode-Ray Tube (deflection plate terminal board is a convenient place to measure). If, with both VERT. and HORIZ. SENSITIVITY switches set to 50 MILLIVOLTS/CM, these voltages can be set to approximately 480 vdc using the position controls, look for trouble in the high voltage section of the power supplies. If one set of deflection

plates has unbalanced voltages, or if the position control must be turned far from its mechanical center to balance these voltages, look for trouble in that amplifier. If both sets of deflection plates have unusual voltages, look for trouble in the power supply.

- 5) If the series heater string should open, all major sections will be inoperative.
- 6) The two sides of the direct-coupled differential amplifier, such as are used in the Vertical and Horizontal Amplifiers on the 130B, are balanced and, unless a signal is present, the spot will be motionless in the center of the screen. Any signal, whether this signal is applied to the input terminals or is supplied by an internal source, such as a positioning or balance control, causes the spot to move from the center of the screen. As the instrument ages it is to be expected that a drift will occur which must be compensated by internal adjustments. However, should there be a component failure in either amplifier the spot will be thrown off the screen and usually out of range of adjustment of the balance and positioning controls. To isolate the trouble, begin by shorting together the grids of the amplifier closest to the output. If the trace (spot) returns to the screen, the fault is ahead of this stage. Proceed towards the front of the amplifier. If shorting the grids of one stage does not return the spot to the screen, the fault is in this stage, or if there is a balancing control in this stage, it may be out of adjustment.

- 7) To check the Sweep Generator quickly, set the SWEEP TIME/CM switch to 5 or 10 MILLISECONDS/CM, turn the SWEEP MODE control to FREE RUN, and observe I201, I202 and I203. These are the three neon lamps near V206 (6AW8) on the Sweep Generator etched circuit board. If these lamps flicker regularly, the Sweep Generator is sweeping. Turning the SWEEP MODE into the TRIGGER region should stop the generation of sweeps and, hence, the flickering of the neon lamps.

4-5 CONNECTING FOR 230 VOLT OPERATION

Unless otherwise requested by the customer, ^W instruments are shipped with their power transformer primaries connected in parallel for operation on 115 volt (nominal) power lines.

To convert to 230 volt supply, remove the instrument from its cabinet or dust cover by removing the two screws at the rear of the chassis, and

push the chassis forward. At the primary of the power transformer (marked A), remove the wires connecting terminals 2 and 5, and 1 and 4. Then connect 1 to 2 as shown in Figure 4-2, and replace the 2 amp slow-blow fuse (F301) with a 1-1/4 amp slow-blow fuse. The instrument may now be connected to the 230 volt line.

Figure 4-2. Line Voltage Connection

4-6 TUBE REPLACEMENT

In many cases instrument malfunction can be corrected by replacing a weak or defective tube. Before changing the setting of any internal adjust-

ment, check the tubes. Adjustments made in an attempt to compensate for a defective tube will often complicate the repair problem.

It is a good practice to check tubes by substitution rather than by using a "tube checker". The results obtained from the "tube checker" can be misleading. Before removing a tube, mark it so that if the tube is good it can be returned to the same socket. Replace only tubes proved to be weak or defective.

Any tube with corresponding standard EIA (JEDEC) characteristics can be used as a replacement. Where variation in tube characteristics will affect circuit performance, an adjustment is provided. The following table lists the tests and adjustments which should be performed if such tubes are replaced.

The chart in Table 4-2 lists all tubes in the 130B with their functions and adjustments required when replacing tubes. The heaters of some tubes are operated in series from a regulated dc voltage obtained from the Low-Voltage Power Supply. These tubes are identified in the chart with an asterisk and their heaters are shown in the Filament and Primary Detail Schematic. If a tube in the dc string is pulled or burned out, all tubes in the string will be turned off.

4-7 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All basic tests and adjustments are covered in the following Table 4-1. In most cases, this table will cover all normal adjustment needs for the oscilloscope. For a more complete and de-

tailed test procedure refer to paragraph 4-8.

If the instrument is not operating, refer to paragraphs 4-3 and 4-6.

If a tube is replaced, refer to Table 4-2 and complete the indicated adjustments.

TABLE 4-1.
CONDENSED TEST AND
ADJUSTMENT PROCEDURE

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		<u>VERTICAL AMPLIFIER</u>	
V1*	12AU7‡	Phase Inverter Amplifier	Vertical Amplifier (par. 4-13A/B)
V2*	12AU7	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		<u>HORIZONTAL AMPLIFIER</u>	
V101*	12AU7‡	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7	Differential Amplifier	Horizontal Amplifier (par. 4-14B)
V104*	6DJ8/6BQ7	Differential Amplifier	Sawtooth Generator (par. 4-17)
		<u>SWEEP GENERATOR</u>	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	12AT7	Trigger Generator	none
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-16 and 17, Step 17)
V204	6C4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Follower b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		<u>POWER SUPPLY</u>	
V301	12B4	+300-volt Series Regulator	none
V302	6AU6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5AQP	CRT	Adj. Vert. & Horiz. Gain (par. 4-13, 4-14)
V310	1V2	High Voltage Rectifier	none
V311	1V2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. +585-volt Series Regulator b. +585-volt Control Tube	none none

* Series dc heater

‡ Tested part - See Table of Replaceable Parts

TABLE 4-1. CONDENSED TEST AND ADJUSTMENT PROCEDURE

Test	External Equipment Required	Procedure	Adjust	Notes
1. Low Voltage Power Supply	DC vtvm with 1% accuracy	Measure all low voltage power supply outputs should be within the following limits: -150 \pm 6 volts +100 \pm 4 volts +300 \pm 12 volts +585 \pm 25 volts	If voltages are outside limits, adjust R332 for -150 volts.	Check sweep calibration if -150V is adjusted.
2. Vertical amplifier balance	NONE	HOR.SENS. to INT.SWEEP X1, SWEEP MODE to free-run, SYNC to INT., SWEEP TIME to 1.0 ms/cm, short-circuit input terminals and set INPUT for DC. VERT.SENS. and Vernier to Cal.	Center bottom of calibrating signal with VERT.POS. control	Repeat as required.
		VERT.SENS. to 1 mv/cm, Center VERT.DC.BAL control (knob).	Center trace with coarse balance control. (Screw adjustment in center of DC BAL control.)	
3. Vertical VERNIER balance	NONE	Short circuit input terminals and set INPUT for DC. VERT.SENS. to 1 mv/cm, VERNIER to Cal.	Center spot (or trace) with VERT. POS. control.	Repeat as required.
		VERNIER fully CCW	Return spot to center with R20	
4. Vertical amplifier gain	400 cycle Voltage Calibration Generator	VERT.SENS. to 50 mv/cm. VERNIER to Cal. Connect 300 mv p-p from Calibration Generator to vertical input.	Adjust R40 for 6 cm deflection.	
	Square Wave Generator	Connect 50 kc square wave to Vert. Input. Adjust square wave generator for 6 cm deflection. SYNC to INT, Adjust SWEEP MODE and TRIGGER LEVEL for stable picture.	Adjust C12 for best square wave.	
5. Calibrator	NONE	VERT.SENS. and VERNIER to CAL, SWEEP MODE to free-run; SWEEP TIME to 1 ms/cm.	Adjust R240 for 6 cm deflection.	
6. Horizontal amplifier balance	NONE	Short-circuit input terminals and set INPUT for DC. VERT.SENS. to 50 mv/cm, with no input. HOR.SENS. and VERNIER to CAL.	Center the left spot with the HOR.POS. control.	Repeat as required.
		HOR.SENS. to 1 mv/cm, Center the HOR.DC BAL control (knob).	Center the spot with the coarse balance control (screw driver adjustment in center of DC BAL control).	
7. Horizontal VERNIER balance	NONE	Short-circuit input terminals and set INPUT for DC. HOR.SENS. to 1 mv/cm, VERNIER to CAL.	Center spot with POS. control HORIZ.	Repeat as required.
		VERNIER fully CCW.	Return spot to center with R120.	
8. Horizontal amplifier gain	NONE	HOR.SENS. and VERNIER to CAL.	Adjust R144 for 6 cm between spots.	
	Square wave generator	HOR.SENS. to 50 mv/cm, Connect 50 kc square wave to Hor. input and adjust for 6 cm deflection.	Adjust C114 for best defined spots.	
9. Sweep gain	Time Marker Generator	HOR.SENS. to INT.SWEEP X1 SWEEP TIME to 1 ms/cm, VERNIER to CAL; 1 kc markers from generator to VERT. input. SYNC to INT. Adjust SWEEP MODE and TRIG.LEVEL for stable pattern.	Adjust R134 for one marker/cm	
		HOR.SENS. to INT.SWEEP X5.	Adjust R164 for markers 5 cm apart.	
10. Sweep preset	DC VTVM	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to 1 ms/cm, SWEEP MODE to PRE-SET, SYNC to EXT. with no input. Connect VTVM 30 volt range between center arm of Preset pot (R220) and ground.	Slowly adjust R220 and note voltage just prior to sweep start. Adjust pre-set for 2 volts more positive than voltage noted.	
11. Sweep length	Sine Wave Oscillator	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to 1 ms/cm. SYNC to INT. Connect 500 kc sine wave to vertical input. Adjust level and VERT SENS. to produce 6 cm vertical deflection.	Adjust R229 for a trace about 10.5 cm long.	

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		<u>VERTICAL AMPLIFIER</u>	
V1*	12AU7‡	Phase Inverter Amplifier	Vertical Amplifier (par. 4-13A/B)
V2*	12AU7	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		<u>HORIZONTAL AMPLIFIER</u>	
V101*	12AU7‡	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7	Differential Amplifier	Horizontal Amplifier (par. 4-14B)
V104*	6DJ8/6BQ7	Differential Amplifier	Sawtooth Generator (par. 4-17)
		<u>SWEEP GENERATOR</u>	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	12AT7	Trigger Generator	none
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-16 and 17, Step 17)
V204	6C4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Follower b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		<u>POWER SUPPLY</u>	
V301	12B4	+300-volt Series Regulator	none
V302	6AU6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5AQP	CRT	Adj. Vert. & Horiz. Gain (par. 4-13, 4-14)
V310	1V2	High Voltage Rectifier	none
V311	1V2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. +585-volt Series Regulator b. +585-volt Control Tube	none none

* Series dc heater

† Tested part - See Table of Replaceable Parts

REGULATOR BOARDPOWER SUPPLY LOCATION DIAGRAM

GATE LEVEL ADJ.

R343 INTENSITY ADJ.

Figure 4-3. Power Supply Location Diagram

4-8 ADJUSTMENT PROCEDURE

Usually a particular oscilloscope will not need complete testing and calibration. Only one or two tests will be needed and they can be done without completing the entire test procedure.

The following procedures are listed in a recommended sequence for a complete test and calibration operation. In general, tubes are the main cause of trouble and new ones should be tried before making adjustments or other component replacements.

Specifications for the *ø* Model 130B Oscilloscope are given in the front of this manual. The following test procedures contain extra checks to help you analyze a particular instrument. These extra checks and the data they contain can not be considered as specifications.

A fifteen minute warm-up and power supply output voltage measurements are always recommended before making any other test or adjustment.

4-9 TURN ON

When turning the oscilloscope on for the first time after repair in any circuit, measure resistance from power supplies to ground. They usually will be within 25% of the following:

+100 volt supply	110 ohms
-150	50,000 ohms
+300	9,000 ohms
+585	85,000 ohms

CAUTION

When first turning an oscilloscope on after power supply repairs, turn the intensity and both positioning controls full counterclockwise before applying power. Failure to follow this precaution can cause permanent cathode-ray tube damage.

4-10 POWER SUPPLIES

The power supplies in the oscilloscope are extremely stable and will require infrequent adjustment. The output voltages should be measured at regular intervals but unnecessary adjustments should be avoided.

Power supply voltages may be measured at the points indicated in Figure 4-3.

To adjust the power supply section, refer to Figure 4-3, and proceed as follows:

A. LOW VOLTAGE SUPPLY

- 1) Turn sweep generator off by turning the HOR. SENS. switch to 50 volt/cm position.
- 2) Permit the 130B to warm up for at least five minutes at a line voltage of 115/230 volts.
- 3) Measure power supply voltages with line volts set to 115 volts. The voltages will normally be within the limits given in Table 4-3. Control R332 can be adjusted if necessary to set the +100 volt supply within limits.

If adjustment of the +100 volt supply was necessary, all sweep timing, calibrator and gain adjustments must be checked.

If poor low voltage supply regulation is suspected, the following check may be made:

- Check the regulation of each power supply voltage as the power line voltage is varied between 103 and 127 volts. All regulated voltages should remain within $\pm 1\%$ over this range of line voltage.
- Measure the ac ripple on each supply voltage. This ac voltage should not exceed the amount specified in Table 4-3.

TABLE 4-3. REGULATED POWER SUPPLY TOLERANCES

Supply	Tolerance (115/230 volt line)	Variation $\pm 10\%$ line voltage change	Nominal Ripple at 115/230V
+100 V	$\pm 4\%$	$\pm 1\%$	5 mv
-150 V	$\pm 4\%$	$\pm 1\%$	5 mv
+300 V	$\pm 4\%$	$\pm 1\%$	5 mv
+585 V	$\pm 4\%$	$\pm 1\%$	60 mv

If any output does not regulate or has excessive ripple, replace the Series Regulator Tube or the Control Tube of that supply. It must be kept in mind, however, that loss of regulation of the -150 volts will cause the other supplies to lose regulation, and that loss of regulation of the +100 volts will cause the +585 volt and +300 volt supplies to lose regulation also.

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.

Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

When replacing components with multiple mounting pins such as tube sockets, electrolytic capacitors, and potentiometers, it will be necessary to lift each pin slightly, working around the components several times until it is free.

WARNING: If the specific instructions outlined in the steps below regarding etched circuit boards without eyelets are not followed, extensive damage to the etched circuit board will result.

1. Apply heat sparingly to lead of component to be replaced. If lead of component passes through an eyelet in the circuit board, apply heat on component side of board. If lead of component does not pass through an eyelet, apply heat to conductor side of board.

3. Bend clean tinned leads on new part and carefully insert through eyelets or holes in board.

2. Reheat solder in vacant eyelet and quickly insert a small awl to clean inside of hole. If hole does not have an eyelet, insert awl or a #57 drill from conductor side of board.

4. Hold part against board (avoid overheating) and solder leads. Apply heat to component leads on correct side of board as explained in step 1.

In the event that either the circuit board has been damaged or the conventional method is impractical, use method shown below. This is especially applicable for circuit boards without eyelets.

1. Clip lead as shown below.

2. Bend protruding leads upward. Bend lead of new component around protruding lead. Apply solder using a pair of long nose pliers as a heat sink.

This procedure is used in the field only as an alternate means of repair. It is not used within the factory.

Figure 4-4. Servicing Etched Circuit Boards

B. HIGH VOLTAGE SUPPLY

- 1) The -2550 volt output is measured on the resistor board under the base of the crt. Connect an appropriate dc voltmeter (such as an ϕ Model 410B VTVM with an ϕ Model 459A DC Resistive Voltage Multiplier) to the Junction of R338, C312 (marked -2550 CATH. on cover).
- 2) With the line at 115/230 volts the high voltage should measure $-2550 \pm 4\%$. Control R334 can be adjusted if necessary to set the -2550 volt supply within limits.

If poor -2550 voltage supply regulation is suspected the following check may be made:

- Check the regulation by varying the line voltage between 103 and 127 volts. The -2550 should remain within $\pm 1\%$ over this range of line voltage. If the -2550 supply does not regulate check the control tube V312.
- 3) Set SWEEP TIME/CM to 5 MILLISECONDS.
 - 4) Set HOR. SENS. to INT. SWEEP X1.
 - 5) Set SWEEP MODE fully clockwise to FREE RUN.
 - 6) Set INTENSITY control to 10 o'clock.
 - 7) Set Int. Adj., R343, until the trace is just visible.
 - 8) Set SWEEP MODE fully counterclockwise to PRESET.
 - 9) Set INTENSITY control for a low intensity spot.
 - 10) Center spot and adjust FOCUS control and ASTIGMATISM (R303) to obtain a small round and sharply focused spot.

4-11 REPLACING AND ADJUSTING THE CRT

To replace the cathode-ray tube, refer to Figure 2-10, and proceed as follows:

- 1) Turn off and remove the 130B from the cabinet.
- 2) Loosen the clamp on the crt socket. (Cabinet model; remove cover from High Voltage terminal board to get access for screwdriver through board).
- 3) Remove the front-panel bezel.

4) With a screwdriver loosen the crt base from socket. Free the crt from the socket by pressing on the center of the tube base with one hand while supporting the front of the crt with the other.

DANGER - Do not apply force on neck of tube.

- 5) Remove the crt through the front panel.

CAUTION - HANDLE THE CATHODE RAY TUBE CAREFULLY.

- 6) Insert the replacement crt through the front panel and seat in socket.

- 7) Replace front-panel bezel.

- 8) Adjust the socket assembly so that the face of the crt just misses the bezel assembly. Tighten the clamp just enough to hold the crt in place loosely.

NOTE

Turn the INTENSITY control to minimum when first applying power to a crt. The phosphor can be damaged quickly by too much brightness.

-
- 9) Set the INTENSITY control fully counterclockwise. Turn the 130B on and allow to warm up.

- 10) Set the SWEEP MODE control to FREE RUN.

- 11) Adjust the INTENSITY control to obtain a weak trace; adjust the FOCUS control for a sharp trace, and with the vertical position control, center the trace vertically.

- 12) Align trace with graticule using the alignment handle at rear of crt.

CAUTION - Do not over-tighten crt clamp or tube damage may result.

- 13) Making certain the crt face is close to but not touching the bezel assembly, tighten the clamp on the crt socket only enough to hold the crt from turning. If the face of the tube touches the bezel assembly, Newton rings may be visible.

- 14) Readjust the astigmatism; see paragraph 4-10B.

- 15) Check the gain calibration of the Vertical and Horizontal Amplifiers by setting the VERTICAL and HORIZONTAL SENSITIVITY selectors to CAL, and if necessary, adjusting R40 (Figure 4-5) to obtain 6 cm vertical deflection and R144 (Figure 4-6) to obtain 6 cm horizontal deflection on the trace; see paragraph 4-13B and 4-14B.

C12
ADJUST AMPLIFIER FREQUENCY
RESPONSE
(SEE PARA. 4-13B)

R40
GAIN ADJUSTMENT FOR
VERTICAL SENSITIVITY CALIBRATION
(SEE PARA. 4-13B)

LEFT SIDE VIEW

Figure 4-5. Vertical Amplifier Adjustment Location

4-12 CHECKING AND ADJUSTING THE CALIBRATOR

- 1) Set HORIZ. SENSITIVITY to INT. SWEEP X1; SWEEP TIME/CM to 1 MILLISECOND; SWEEP MODE to PRESET; SYNC. to INT.; and TRIGGER LEVEL to "0".

NOTE

If PRESET (SWEEP MODE) is maladjusted, you may not obtain a trace. See paragraph 4-16.

- 2) Set the VERT. SENSITIVITY switch to 50 MILLIVOLTS/CM. Place the VERNIER control in CAL.
- 3) Connect the signal source to the vertical INPUT terminals and set its rms output voltage, read on the vvtm, to 106 millivolts ($300 \text{ mv}/2\sqrt{2}$) and its output frequency to 1000 cps.
- 4) Adjust R40 (see Figure 4-5) to obtain exactly 6 centimeters deflection.
- 5) Set the VERT. SENSITIVITY switch to CAL.
- 6) Adjust the R240 (see Figure 4-7) for exactly 6 centimeters deflection.

4-13 ADJUSTING THE VERTICAL AMPLIFIER

The following adjustments are located in the vicinity of the Vertical Amplifier or the VERT. SENSITIVITY switch as shown in Figure 4-5.

A. VERNIER BALANCE ADJUSTMENT

To adjust VERNIER balance, allow the instrument to warm up 15 minutes and adjust Vertical balance as shown by Figure 2-2. Then refer to Figure 4-5 and proceed as follows:

- 1) Short the INPUT terminals and set the INPUT switch to DC.
- 2) Set VERT. SENSITIVITY to 1 MILLIVOLT/CM, and VERNIER to CAL.
- 3) Center spot (or trace) with VERT. POS. control.
- 4) Turn VERNIER fully counterclockwise and return spot to center with R20, the Bal. Adj.

The trace should now be stationary as the VERNIER is rotated.

B. VERT. AMPL. GAIN AND FREQ. RESP. ADJUSTMENTS

To adjust the Vertical Amplifier gain and frequency response refer to Figure 4-5 and proceed as follows:

- 1) Adjust Vertical and VERNIER balance as indicated by Figure 2-2 and paragraph 4-13A.
- 2) Set HORIZ. SENSITIVITY to INT. SWEEP X1 and set the SWEEP TIME/CM switch to 2 MILLISECONDS, SWEEP MODE to PRESET and TRIGGER LEVEL to "0".
- 3) Place VERTICAL SENSITIVITY switch and its VERNIER in CAL.
- 4) Adjust R40 for exactly 6 centimeters deflection.
- 5) Set VERT. SENSITIVITY to 50 MILLIVOLTS/CM. Set SYNC to INT.
- 6) Set SWEEP TIME/CM switch to 5 MICROSECONDS.
- 7) Connect a 50 kc square wave to the Vertical INPUT and adjust the square-wave amplitude for 6 to 8 centimeters deflection.
- 8) Adjust C12 for best square wave. To give C12 a range of adjustment sufficient to compensate for variations of tube characteristics, C13 may be connected in parallel with C12 to increase the maximum capacity to $1340 \mu\text{f}$.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust frequency response of the input attenuator refer to Figure 4-5 and proceed as follows:

- 1) Connect a 5 kc square wave to the Vertical INPUT.
- 2) Set SWEEP TIME/CM to obtain 3 or 4 cycles of the square wave.
- 3) Make the indicated adjustment for best square-wave presentation on the following ranges:

<u>VOLT/CM</u>	<u>ADJUST</u>
10	C2
1	~
.1	C3

←FRONT PANEL

Figure 4-6. Horizontal Amplifier Adjustment Locations

4-14 ADJUSTING HORIZONTAL AMPLIFIER

To adjust the Horizontal Amplifier, refer to Figure 4-6 and proceed as follows:

A. VERNIER BALANCE ADJUSTMENT

To adjust the VERNIER balance allow the instrument to warm up thoroughly and adjust Horizontal balance as shown by Figure 2-3; then refer to Figure 4-6 and:

- 1) Short the INPUT terminals and set the INPUT switch to DC.
- 2) Set the HORIZ. SENSITIVITY to 1 MILLIVOLT/CM and the VERNIER to CAL.
- 3) Center the spot with the HORIZ. POS. control.
- 4) Turn the VERNIER completely counterclockwise and return the spot to the center with R120, Bal. Adj. The spot will now be stationary as the VERNIER is rotated.

B. AMPLIFIER GAIN AND FREQUENCY RESPONSE ADJUSTMENTS

To adjust the gain and frequency response, refer to Figure 4-6 and proceed as follows:

- 1) Set HORIZ. SENSITIVITY switch to CAL. and the VERNIER to CAL.
- 2) Adjust R144 for exactly 6 centimeters deflection.
- 3) Set VERT. SENSITIVITY to 2 VOLTS/CM.
- 4) Connect an 8 kc (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the SYNC. IN terminal of the 211A square wave generator; adjust the sine wave for 10 cm deflection.
- 5) Set HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM.
- 6) Connect a 50 kc square wave to the Horizontal INPUT, and adjust the square wave amplitude for 6 to 8 cm deflection.
- 7) Adjust C114 for best square wave response.

NOTE

Some vacuum tubes require more capacity for compensation than the maximum value of C114.

Capacitor C115 may be connected in parallel with C114 to increase the maximum capacity to 1340 μf , permitting a greater percentage of vacuum tubes to be used.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust the frequency response at the input attenuator, refer to Figure 4-6 and proceed as follows:

- 1) Set VERT. SENSITIVITY to 2 VOLTS/CM.
- 2) Connect an 800 cps (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the Sync-In terminal of the 211A square wave generator; adjust the sine wave for 10 centimeter deflection.
- 3) Set HORIZ. SENSITIVITY to 10 VOLTS/CM (VERNIER in CAL.).
- 4) Connect a 5 kc square wave to the Horizontal INPUT and adjust its amplitude for 6 centimeter deflection.
- 5) Make the following adjustments on the ranges indicated for the best square wave response, adjusting the square-wave amplitude to 6 centimeters on each range.

VOLTS/CM	ADJUST (see Fig. 4-6)
10	C102
1	C104
.1	C103

4-15 PHASE SHIFT ADJUST

Phase shift between Vertical and Horizontal Amplifiers.

If the square wave response of the Vertical and Horizontal Amplifier was carefully set, the relative phase shift between the two amplifiers should not exceed one degree at frequencies below 50 kc.

To check Phase Balance:

- 1) Set VERT. and HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM and VERNIER to CAL.
- 2) Apply a 50 kc sine-wave signal to the HORIZ. INPUT and VERT. INPUT. Center pattern and adjust signal amplitude for 6 cm vertical and 6 cm horizontal deflection.

TUBE SIDE OF BOARD (DOOR OPEN)

 SWEEP TIME / CM ADJUSTMENTS

 (SEE PARA. 4-17)

C227
ADJUST 1 MICROSECOND

C225
ADJUST 10 MICROSECONDS

C223
ADJUST .1 MILLISECOND

R259
ADJUST .1 SECOND

R260
ADJUST 10 MILLISECONDS

R261
ADJUST 1 MILLISECOND

RACK MOUNT MODEL ONLY. LOCATED
BELOW THE HORIZONTAL SENSITIVITY
SWITCH ON CABINET MODEL.

R220
ADJUST PRESET
(SEE PARA. 4-16)

TOP VIEW (RACK MOUNT MODEL)

BOTTOM VIEW (CABINET MODEL WITH SWEEP DECK OPEN)

LD-L-165
R0

Figure 4-7. Sweep Generator Adjustment Locations

The opening of the pattern, if any, should not exceed a tenth of a centimeter. If necessary to correct phase difference, adjust C114 for closure of the pattern (Figure 4-6).

4-16 ADJUSTING PRESET

To adjust Preset refer to Figure 4-7 and proceed as follows:

- 1) Set VERT. SENSITIVITY to OFF, SWEEP TIME/CM switch to .1 MILLISECOND and SWEEP MODE control maximum counterclockwise to PRESET. Set SYNC selector to INT.
- 2) Connect a dc voltmeter between ground (+) and the center tap of R220 the PRESET adjust control.
- 3) Turn R220 fully counterclockwise. Then slowly adjust R220 clockwise until the sweep generator begins to free fun. Turn R220 counterclockwise until the sweep just stops and record this voltage which should be about -26 volts.
- 4) Set R220 to give a voltmeter indication exactly 2 volts less negative than the voltage noted.

4-17 ADJUSTING THE SAWTOOTH GENERATOR AND SWEEP AMPLIFIER

To adjust the Sawtooth Generator and Sweep Amplifier refer to Figures 4-6 and 4-7 and proceed as follows:

- 1) Set SYNC to INT., SWEEP MODE to PRESET and TRIGGER LEVEL to "0".
- 2) Set HORIZ. SENSITIVITY to INT. SWEEP X1, SWEEP TIME/CM to 1 MILLISECOND, and its VERNIER to CAL.
- 3) Connect 1 kc (1000 μ sec) time markers to the Vertical INPUT.
- 4) Set R261, 1 Millisecond Adj., on the potentiometer board, to its mechanical center.
- 5) Adjust R134, Sweep Attenuator, (Figure 4-6) and HORIZ. POS. for approximately 1 time marker/cm. This is a rather coarse adjustment. Set it as close as is practical. Then make the final adjustment with R261.
- 6) Set SWEEP TIME/CM to 10 MILLISECONDS and connect 100 cycle (10,000 μ sec) time markers to the Vertical INPUT.

7) Adjust R260 (Figure 4-7) for 1 marker per centimeter.

8) Set SWEEP TIME/CM to .1 SECOND and connect 10 cycle (100,000 μ sec) time markers to the Vertical INPUT.

9) Adjust R259 (Figure 4-7) for 1 marker per centimeter.

10) Disconnect the time mark generator from the Vertical INPUT, set VERT. SENSITIVITY switch to 10 VOLTS/CM, the Vertical and Horizontal input switches to AC, and SWEEP TIME/CM to 5 MICROSECONDS.

11) Disconnect the blue-white lead (Figure 4-7) from the Sweep Generator board and connect it through a 1 microfarad capacitor to the Horizontal INPUT. Set SYNC to EXT.

12) Connect a wire between V206 pin 1 (6AW8) and the Vertical INPUT.

13) Connect a 50 kc square wave from the 600 ohm output of the \oplus Model 211A to the Horizontal INPUT and adjust its amplitude for about 6 centimeter deflection.

14) Adjust C113 near the HORIZ. SENSITIVITY switch, and C116 and C118 on the Horizontal Amplifier board (Figures 4-6 and 4-7), for best square wave presentation. Remove the wire between V206 pin 1 and the Vertical INPUT.

15) Reconnect the blue-white lead to the Sweep Generator board, and connect the time marker generator to the Vertical INPUT. Make the following adjustment as indicated for 1 time marker per centimeter.

Time Marker	SWEEP TIME/CM	(Fig. 4-7) Adjust
1 μ sec (1 mc)	.1 MICROSEC.	C227
10 μ sec (100 kc)	10 MICROSEC.	C225
.1 msec(10 kc)	.1 MILLISEC.	C223

16) Set HORIZ. SENSITIVITY to INT. SWEEP X5, and adjust R164 (Figure 4-6), for markers 5 centimeters apart.

17) Connect a 500 kc signal to the Horizontal INPUT, set SWEEP TIME/CM to 1 MILLISECOND, set SYNC to EXT, and adjust R229, Sweep Length, (Figure 4-7) for a trace about 10.5 centimeters long.

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counter-clockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. † indicates a selected part. See parts list.
8. Interconnecting parts and assemblies are shown on cable diagram.
9. * indicated value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:

*	=	no tube element	P	=	plate
H	=	heater	T	=	target (plate)
K	=	cathode	R	=	reflector or repeller
G	=	control grid	A	=	anode (plate)
Sc	=	screen grid	S	=	spade
Sp	=	suppressor grid	Sh	=	shield
Hm	=	heater mid-tap	NC	=	no external connection to socket
IS	=	internal shield	Δ	=	indefinite reading due to circuit (see 2.)

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.

2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments. Resistance values may vary considerably from those shown when the circuit contains potentiometers, crystal diodes, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

**VERTICAL AMPLIFIER
VOLTAGE - RESISTANCE DIAGRAM
(VIEWED FROM ETCHED SIDE)**

**V1 (12AU7)
PHASE INVERTER**

**V4 (6BQ7A/6DJ8)
DIFFERENTIAL AMPLIFIER**

**V2 (12AU7)
DIFFERENTIAL AMPLIFIER**

**V3 (12AT7)
DIFFERENTIAL AMPLIFIER**

LD-E-1768

FIGURE 4-8

FIGURE 4-9
VERTICAL AMPLIFIER

**VERTICAL AMPLIFIER
VOLTAGE - RESISTANCE DIAGRAM
(VIEWED FROM ETCHED SIDE)**

**V1 (12AU7)
PHASE INVERTER**

**V4 (6BQ7A/6DJ8)
DIFFERENTIAL AMPLIFIER**

**V2 (12AU7)
DIFFERENTIAL AMPLIFIER**

**V3 (12AT7)
DIFFERENTIAL AMPLIFIER**

LD-E-176B

FIGURE 4-8

Figure 4-9. Vertical Amplifier

HORIZONTAL AMPLIFIER
VOLTAGE-RESISTANCE DIAGRAM
 (VIEWED FROM ETCHED SIDE)

V104 (6BQ7/6DJ8)
 DIFFERENTIAL AMPLIFIER

V101 (12AU7)
 INVERTER AMPLIFIER

V103 (12AT7)
 DIFFERENTIAL AMPLIFIER

V102 (12AU7)
 DIFFERENTIAL AMPLIFIER

FIGURE 4-10

LD-E-130 BCD

FIGURE 4-11
HORIZONTAL AMPLIFIER

5

HORIZONTAL AMPLIFIER
VOLTAGE-RESISTANCE DIAGRAM
 (VIEWED FROM ETCHED SIDE)

V104 (6BQ7/6DJ8)
 DIFFERENTIAL AMPLIFIER

V101 (12AU7)
 INVERTER AMPLIFIER

V103 (12AT7)
 DIFFERENTIAL AMPLIFIER

V102 (12AU7)
 DIFFERENTIAL AMPLIFIER

FIGURE 4-10

LD-E-130BCD

Figure 4-11. Horizontal Amplifier

SWEET GENERATOR
VOLTAGE - RESISTANCE DIAGRAM
(VIEWED FROM RIGHT SIDE)

V202 (12AT7)
TRIGGER GENERATOR

V203 (6U8)
SWEEP START-STOP TRIGGER

V204 (6C4)
GATE OUT CATHODE FOLLOWER

V201 (6BQ7A/6DJ8)
TRIGGER AMPLIFIER

V207 (12AX7)
RETRIGGERING BIAS CONTROL

V206 (6AW8)
INTEGRATOR CATHODE FOLLOWER

FIGURE 4-12

FIGURE 4-13
SWEET GENERATORNOTES:

CONDITIONS OF 1

a. VOLTAGE - |
VERT. SENSIT.
HORIZ. SENSIT.
SWEEP TIME
TRIGGER SLOPEb. RESISTANCE :
SAME AS AB

**SWEEP GENERATOR
VOLTAGE-RESISTANCE DIAGRAM
(VIEWED FROM RIGHT SIDE)**

**V202 (12AT7)
TRIGGER GENERATOR**

**V203 (6U8)
SWEEP START-STOP TRIGGER**

**V204 (6C4)
GATE OUT CATHODE FOLLOWER**

**V201 (6BQ7A/6DJ8)
TRIGGER AMPLIFIER**

**V207 (12AX7)
RETRIGGERING BIAS CONTROL**

**V206 (6AW8)
INTEGRATOR CATHODE FOLLOWER**

FIGURE 4-12

LD-E-131BC

NOTES:

CONDITIONS OF VOLTAGE RESISTANCE MEASUREMENTS:

a. VOLTAGE -

VERT. SENSITIVITY = 50 MILLIVOLTS/CM; VERNIER = CAL; INPUT = DC.
 HORIZ. SENSITIVITY = INT. SWEEP XI; VERNIER = CAL; INPUT = DC.
 SWEEP TIME/CM = 50 MILLISECONDS; VERNIER = CAL.
 TRIGGER SLOPE = +; TRIGGER LEVEL = 0; SWEEP MODE = PRESET;
 SYNC = INT.

b. RESISTANCE -

SAME AS ABOVE, EXCEPT SYNC = LINE.

Figure 4-13. Sweep Generator

FIGURE 4-14
SWEEP TIME/CM SWITCH

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be used otherwise or reproduced without written consent of the Hewlett-Packard Company.

1908 - 8T/CM SWITCH - T948A

POWER SUPPLY REGULATOR VOLTAGE - RESISTANCE DIAGRAM

Figure 4-15.

POWER SUPPLY REGULATOR VOLTAGE - RESISTANCE DIAGRAM

V 303 (12B4)
+100V SERIES REGULATOR

V 306 (12B4)
-150V SERIES REGULATOR

V 305 (6X4)
-150V RECTIFIER

V 301 (12B4)
+300V SERIES REGULATOR

V 302 (6AU6)
+300V CONTROL TUBE

V 314 (6DJ8)

V 312 (12AU7)
H.V. CONTROL TUBE

V 308 (5651)
VOLTAGE REFERENCE

V 304 (6BH6)
+100V CONTROL TUBE

V 307 (6BH6)
-150V CONTROL TUBE

LD-E-132BC

Figure 4-15.

Figure 4-16. Power Supply

FIGURE 4-17
FILAMENT AND PRIMARY DETAIL

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY

This drawing is intended for the operation and maintenance of Hewlett-Packard equipment and is not to be used otherwise or reproduced without written consent of the Hewlett-Packard Company.
1308 - FIL. DETAIL - T001

FIGURE 4-18
SWEET TIME/CM SWITCH
ASSEMBLY DIAGRAM

SWEEP TIME / CM SWITCH S204

CATHODE RAY TUBE WARRANTY

The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from hp, are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your warranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

- 1) Carefully wrap the tube in 1/4" thick cotton batting or other soft padding material.
- 2) Wrap the above in heavy kraft paper.
- 3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
- 4) Surround the tube with at least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
- 5) Tubes returned from outside the continental United States should be packed in a wooden box.
- 6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

CRT WARRANTY CLAIM

FROM:

DATE: _____

NAME: _____

COMPANY: _____

ADDRESS: _____

Person to contact for further information:

NAME: _____

TITLE: _____

COMPANY: _____

ADDRESS: _____

To process your claim quickly please enter the information indicated below:

1) INSTRUMENT MODEL _____ SERIAL _____

2) TUBE TYPE _____ SERIAL _____

3) ORIGINAL TUBE _____ REPLACEMENT TUBE _____

4) YOUR PURCHASE ORDER NO. _____

5) DATE PURCHASED _____

6) PURCHASED FROM _____

7) COMPLAINT: (Please describe nature of trouble) _____

8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure) _____

SIGNATURE _____

SECTION V

REPLACEABLE PARTS

5-1. INTRODUCTION.

5-2. This section contains information for ordering replacement parts. Table 5-1 lists parts in alphabetical order of their reference designators and indicates the description and stock number of each part, together with any applicable notes. Table 5-2 lists parts in alphabetical order of their stock numbers and provides the following information on each part:

- a. Description of the part (see list of abbreviations below).
- b. Manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
- c. Typical manufacturer's stock number.
- d. Total quantity used in the instrument (TQ column).
- e. Recommended spare part quantity for complete maintenance during one year of isolated service (RS column).

5-3. Miscellaneous parts not indexed in table 5-1 are listed at the end of table 5-2.

5-4. ORDERING INFORMATION.

5-5. To order a replacement part, address order or inquiry either to your authorized Hewlett-Packard sales representative or to

CUSTOMER SERVICE
Hewlett-Packard Company
395 Page Mill Road
Palo Alto, California

or, in Western Europe, to

Hewlett-Packard S.A.
Rue du Vieux Billard No. 1
Geneva, Switzerland.

5-6. Specify the following information for each part:

- a. Model and complete serial number of instrument.
- b. Hewlett-Packard stock number.
- c. Circuit reference designator.
- d. Description.

5-7. To order a part not listed in tables 5-1 and 5-2, give a complete description of the part and include its function and location.

REFERENCE DESIGNATORS

A	= assembly
B	= motor
C	= capacitor
CR	= diode
DL	= delay line
DS	= device signaling (lamp)
E	= misc electronic part

F	= fuse
FL	= filter
J	= jack
K	= relay
L	= inductor
M	= meter

P	= plug
Q	= transistor
R	= resistor
RT	= thermistor
S	= switch
T	= transformer

V	= vacuum tube, neon bulb, photocell, etc.
W	= cable
X	= socket
XF	= fuseholder
XV	= tube socket
XDS	= lampholder

ABBREVIATIONS

bp = bandpass
bwo = backward wave oscillator

c = carbon
cer = ceramic
cmo = cabinet mount only
coef = coefficient
com = common
comp = composition
conn = connection
crt = cathode-ray tube

dep = deposited
det = detector

EIA = Tubes and transistors selected for best performance will be supplied if ordered by stock numbers; tubes or transistors meeting Electronic Industries' Association standards will normally result in instrument operating within specifications

elect = electrolytic
encap = encapsulated

f = farads
fxd = fixed

Ge = germanium
grd = ground (ed)

h = henries
Hg = mercury

impg = impregnated
incd = incandescent
ins = insulation (ed)

K = kilo

lin = linear taper
log = logarithmic taper

m = milli = 10^{-3}
M = megohms
ma = milliamperes
minat = miniature
mfg = metal film on glass
mfr = manufacturer

mtg = mounting
my = mylar

NC = normally closed
Ne = neon
NO = normally open
NPO = negative positive zero-zero temperature coefficient
nsr = not separately replaceable

obd = order by description
p = peak
pc = printed circuit board
pf = picofarads = 10^{-12} farads
pp = peak-to-peak
piv = peak inverse voltage
pos = position(s)
poly = polystyrene
pot = potentiometer
rect = rectifier

rot = rotary
rms = root-mean-square
rmo = rack mount only

s-b = slow-blow
Se = selenium
sect = section(s)
Si = silicon
sl = slide

td = time delay
TiO₂ = titanium dioxide

tog = toggle
tol = tolerance
trim = trimmer
twt = traveling wave tube

var = variable
w/ = with
W = watts
ww = wirewound
w/o = without

* = optimum value selected at factory, average value shown (part may be omitted)

Table 5-1. Reference Designation Index

Circuit Reference	Stock No.	Description	Note
C1	0170-0022	fxd, my, 0.1 μ f $\pm 20\%$, 600 vdcw	
C2	0130-0006	var, cer, 5-20 μ f, 500 vdcw	
C3	0131-0004	var, mica, 14-50 μ f, 500 vdcw	
C4	0131-0001	var, mica, 50-380 μ f, 175 vdcw	
C5	0140-0091	fxd, silver mica, 820 μ f $\pm 5\%$, 500 vdcw	
C6	0140-0009	fxd, mica, 0.01 μ f $\pm 5\%$, 500 vdcw	
C7, 8	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C9	0140-0040	fxd, mica, 75 μ f $\pm 5\%$, 500 vdcw	
C10	0140-0004	fxd, mica, 15 μ f $\pm 10\%$, 500 vdcw	
C11		Not Assigned	
C12	0131-0003	var, mica, 170-780 μ f, 175 vdcw	
C13	0140-0044	fxd, mica, 560 μ f $\pm 10\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C14		Not Assigned	
C15, 16	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C17, 18	0150-0022	fxd, TiO_2 , 3.3 μ f $\pm 10\%$, 500 vdcw	
C19	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C20		Not Assigned	
C21	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C22	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C23 thru C100		Not Assigned	
C101	0170-0022	fxd, my, 0.1 μ f $\pm 20\%$, 600 vdcw	
C102	0130-0006	var, cer, 5-20 μ f, 500 vdcw	
C103	0131-0004	var, mica, 14-50 μ f, 500 vdcw	
C104	0131-0001	var, mica, 50-380 μ f, 175 vdcw	
C105	0140-0091	fxd, silver mica, 820 μ f $\pm 5\%$, 500 vdcw	
C106	0140-0009	fxd, mica, 0.01 μ f $\pm 5\%$, 500 vdcw	
C107, 108	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C109	0140-0040	fxd, mica, 75 μ f $\pm 5\%$, 500 vdcw	
C110	0140-0004	fxd, mica, 15 μ f $\pm 10\%$, 500 vdcw	
C111	0140-0056	fxd, mica, 200 μ f $\pm 10\%$, 500 vdcw	
C112		Not Assigned	
C113	0130-0001	var, cer, 7-45 μ f, 500 vdcw	
C114	0131-0003	var, mica, 170-780 μ f, 175 vdcw	
C115	0140-0015	fxd, mica, 270 μ f $\pm 10\%$, 500 vdcw	
C116	0131-0004	var, mica, 14-50 μ f, 500 vdcw	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	hp Stock No.	Description	Note
C117		Not Assigned	
C118	0131-0004	var, mica, 14-50 μ f, 500 vdcw	
C119, 120	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C121, 122	0150-0022	fxd, TiO_2 , 3.3 μ f $\pm 10\%$, 500 vdcw	
C123	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C124		Not Assigned	
C125	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C126	0160-0002	fxd, paper, 0.01 μ f $\pm 10\%$, 600 vdcw	
C127 thru C200		Not Assigned	
C201	0160-0056	fxd, paper, 0.047 μ f $\pm 10\%$, 1000 vdcw	
C202		Not Assigned	
C203	0160-0056	fxd, paper, 0.047 μ f $\pm 10\%$, 1000 vdcw	
C204	0140-0005	fxd, mica, 27 μ f $\pm 10\%$, 500 vdcw	
C205	0140-0025	fxd, mica, 68 μ f $\pm 10\%$, 500 vdcw	
C206	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C207	0150-0009	fxd, cer, 10 μ f $\pm 0.5 \%$, 500 vdcw	
C208	0140-0005	fxd, mica, 27 μ f $\pm 10\%$, 500 vdcw	
C209	0140-0090	fxd, silver mica, 200 μ f $\pm 5\%$, 500 vdcw	
C210	0160-0007	fxd, paper, 2200 μ f $\pm 10\%$, 600 vdcw	
C211	0150-0024	fxd, cer, 0.02 μ f $\pm 10\%$, 600 vdcw	
C212	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C213	0150-0014	fxd, cer, 0.005 μ f, 500 vdcw	
C214, 215	0150-0031	fxd, TiO_2 , 2 μ f $\pm 5\%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C216	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C217		Not Assigned	
C218	0150-0012	fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	
C219		Not Assigned	
C220	0170-0018	fxd, my, 1.0 μ f $\pm 5\%$, 200 vdcw	
C221	0170-0019	fxd, my, 0.1 μ f $\pm 5\%$, 200 vdcw	
C222	0170-0017	fxd, my, 0.01 μ f $\pm 5\%$, 400 vdcw	
C223	0131-0001	var, mica, 50-380 μ f, 175 vdcw	
C224	0140-0091	fxd, silver mica, 820 μ f $\pm 5\%$, 500 vdcw	
C225	0130-0001	var, cer, 7-45 μ f, 500 vdcw	
C226	0140-0040	fxd, mica, 75 μ f $\pm 5\%$, 500 vdcw	
C227	0130-0001	var, cer, 7-45 μ f, 500 vdcw	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
C228	0170-0018	fxd, my, $1.0 \mu\text{f} \pm 5\%$, 200 vdcw	
C229	0160-0013	fxd, paper, $0.1 \mu\text{f} \pm 10\%$, 400 vdcw	
C230	0160-0002	fxd, paper, $0.01 \mu\text{f} \pm 10\%$, 600 vdcw	
C231	0140-0007	fxd, mica, $680 \mu\text{f} \pm 10\%$, 500 vdcw	
C232	0140-0027	fxd, mica, $470 \mu\text{f} \pm 10\%$, 500 vdcw	
C233 thru C300		Not Assigned	
C301	0180-0012	fxd, elect, 2 sect, $20 \mu\text{f}/\text{sect}$, 450 vdcw	
C302	0180-0044	fxd, elect, $80 \mu\text{f}$, 300 vdcw	
C303	0180-0030	fxd, elect, 2 sect, $120 \times 40 \mu\text{f}$, 450 vdcw. Optimum value selected at factory. Average value shown.	
C304A, B	0180-0012	fxd, elect, 2 sect, $20 \mu\text{f}/\text{sect}$, 450 vdcw	
C305	0160-0040	fxd, paper, $0.1 \mu\text{f} \pm 10\%$, 1000 vdcw	
C306, 307	0160-0054	fxd, tubular, $0.01 \mu\text{f} \pm 20\%$, 400 vdcw	
C308	0160-0013	fxd, paper, $0.1 \mu\text{f} \pm 10\%$, 400 vdcw	
C309	0160-0054	fxd, tubular, $0.01 \mu\text{f} \pm 20\%$, 400 vdcw	
C310A, B	0180-0025	fxd, elect, 4 sect, $20 \mu\text{f}/\text{sect}$, 450 vdcw	
C311, 312	0160-0045	fxd, paper, $6800 \mu\text{f} \pm 10\%$, 5000 vdcw	
C313	0160-0062	fxd, paper, $0.015 \mu\text{f} \pm 10\%$, 3000 vdcw	
C314, 315	0160-0061	fxd, paper, $1500 \mu\text{f} \pm 20\%$, 5000 vdcw	
C316	0150-0024	fxd, cer, $0.02 \mu\text{f} \pm 10\%$, 600 vdcw	
C317 thru C319		Not Assigned	
C320	0160-0054	fxd, tubular, $0.01 \mu\text{f} \pm 20\%$, 400 vdcw	
C321		Not Assigned	
C322	0150-0023	fxd, cer, $2000 \mu\text{f} \pm 20\%$, 1000 vdcw	
C323	0140-0056	fxd, mica, $200 \mu\text{f} \pm 10\%$, 500 vdcw	
C324	0160-0013	fxd, paper, $0.1 \mu\text{f} \pm 10\%$, 400 vdcw	
C325	0160-0054	fxd, tubular, $0.01 \mu\text{f} \pm 20\%$, 400 vdcw	
C326	0160-0006	fxd, paper, $0.001 \mu\text{f} \pm 10\%$, 600 vdcw	
C327	0150-0012	fxd, cer, $0.01 \mu\text{f} \pm 20\%$, 1000 vdcw	
C328	0160-0018	fxd, paper, $0.22 \mu\text{f}$, 400 vdcw	
CR301, 302	1883-0005	Diode, se	
CR303 thru CR306	1901-0007	Diode, Si: 500 ma, 400 PIV	
F301	2110-0006	Fuse, cartridge: 2 amp, s-b for 115 V operation	
	2110-0007	Fuse, cartridge: 1 amp, s-b for 230 V operation	
I1, 2	2140-0008	Lamp, neon: $1/25 \text{ W}$, 90 vdcw, 65 VAC, NE2	
I3 thru I100		Not Assigned	
I101, 102	2140-0008	Lamp, neon: $1/25 \text{ W}$, 90 vdcw, 65 VAC, NE2	
I103 thru I200		Not Assigned	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	Description	Note
I201 thru I208	G-84B	Lamp, neon: aged and selected, blue code	
I209 thru I300		Not Assigned	
I301	2140-0012	Lamp, incd: 6-8V, 2 pin base, #12	
I302 thru I305	2140-0009	Lamp, incd: 6-8V, 0.15 amp, #47	
I306	G-84B	Lamp, neon: aged and selected, blue code	
I307, 308	2140-0008	Lamp, neon: 1/25 W, 90 vdcw, 65 VAC, NE2	
J1	AC-10D AC-54A AC-54B G-76J	Binding Post Assembly: red Insulator, binding post (rack model) Insulator, binding post (cabinet model) Connector Assembly	
J2	1251-0039	Connector, receptacle: male, 3 contact (on rear panel, rack mount only)	
J3 thru J100		Not Assigned	
J101	AC-10D AC-54A AC-54B G-76K	Binding Post Assembly: red Insulator, binding post (rack model) Insulator, binding post (cabinet model) Connector Assembly	
J102	1251-0039	Connector, receptacle: male, 3 contact (on rear panel, rack mount only)	
L201	9140-0053	Inductor: 1 μ h	
L202	9140-0038	Inductor: 360 μ h	
L203 thru L300		Not Assigned	
L301	9140-0037	Coil, r.f.: 5 mh	
L302	9140-0019	Coil, r.f.: 200 μ h	
P1	8120-0050	Cord, power	
R1	0730-0103	fxd, dep c, 900K ohms $\pm 1\%$, 1 W	
R2	0727-0203	fxd, dep c, 90K ohms $\pm 1\%$, 1/2 W	
R3	0727-0152	fxd, dep c, 9K ohms $\pm 1\%$, 1/2 W	
R4	0727-0100	fxd, dep c, 1K ohms $\pm 1\%$, 1/2 W	
R5	0727-0274	fxd, dep c, 1 M $\pm 1\%$, 1/2 W	
R6, 7	0687-1041	fxd, comp, 100K ohms $\pm 10\%$, 1/2 W	
R8, 9	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R10A, B	2100-0147	var, dual concentric, lin, rear sect: 250 ohms $\pm 10\%$ front sect: 10K ohms $\pm 10\%$, 2 W	
R11	0687-2751	fxd, comp, 2.7 M $\pm 10\%$, 1/2 W	
R12	0730-0058	fxd, dep c, 75K ohms $\pm 1\%$, 1 W	
R13		Not Assigned	
R14, 15	0757-0012	fxd, mfg, 100K ohms $\pm 1\%$, 1/2 W	
R16, 17	0757-0022	fxd, mfg, 30,900 ohms $\pm 1\%$, 1 W	
R18	2100-0145	var, comp, 20K ohms $\pm 20\%$, 1/3 W, includes S3	
R19	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	
R20	2100-0151	var, comp, lin, 500 ohms $\pm 20\%$, 2/10 W	
R21	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	# Description	Note
R22	0727-0105	fxd, dep c, 1200 ohms $\pm 1\%$, 1/2 W	
R23	0727-0112	fxd, dep c, 1800 ohms $\pm 1\%$, 1/2 W	
R24		Not Assigned	
R25	0727-0124	fxd, dep c, 3K ohms $\pm 1\%$, 1/2 W	
R26, 27		Not Assigned	
R28	0727-0140	fxd, dep c, 6K ohms $\pm 1\%$, 1/2 W	
R29, 30	0727-0152	fxd, dep c, 9K ohms $\pm 1\%$, 1/2 W	
R31, 32	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	
R33, 34	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R35, 36	0757-0023	fxd, mfg, 41,200 ohms $\pm 1\%$, 1 W	
R37	0757-0024	fxd, mfg, 49,900 ohms $\pm 1\%$, 1 W	
R38	2100-0006	var, ww, 5K ohms $\pm 10\%$, 2 W	
R39	0687-5611	fxd, comp, 560 ohms $\pm 10\%$, 1/2 W	
R40	2100-0091	var, comp, 5K ohms $\pm 30\%$, 1/3 W, lin	
R41	0757-0025	fxd, mfg, 806K ohms $\pm 1\%$, 1 W	
R42, 43	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R44	0757-0025	fxd, mfg, 806K ohms $\pm 1\%$, 1 W	
R45	0689-5125	fxd, comp, 5100 ohms $\pm 5\%$, 1 W	
R46	0693-2231	fxd, comp, 22K ohms $\pm 10\%$, 2 W	
R47	0693-1031	fxd, comp, 10K ohms $\pm 10\%$, 2 W	
R48	0693-2231	fxd, comp, 22K ohms $\pm 10\%$, 2 W	
R49	0689-5125	fxd, comp, 5100 ohms $\pm 5\%$, 1 W	
R50, 51	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R52 thru R100		Not Assigned	
R101	0730-0103	fxd, dep c, 900K ohms $\pm 1\%$, 1 W	
R102	0727-0203	fxd, dep c, 90K ohms $\pm 1\%$, 1/2 W	
R103	0727-0152	fxd, dep c, 9K ohms $\pm 1\%$, 1/2 W	
R104	0727-0100	fxd, dep c, 1K ohms $\pm 1\%$, 1/2 W	
R105	0727-0274	fxd, dep c, 1 M $\pm 1\%$, 1/2 W	
R106, 107	0687-1041	fxd, comp, 100K ohms $\pm 10\%$, 1/2 W	
R108, 109	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R110A, B	2100-0147	var, dual concentric, lin, rear sect: 250 ohms $\pm 10\%$ front sect: 10K ohms $\pm 10\%$, 2 W	
R111	0687-2751	fxd, comp, 2.7 M $\pm 10\%$, 1/2 W	
R112	0730-0058	fxd, dep c, 75K ohms $\pm 1\%$, 1 W	
R113		Not Assigned	
R114, 115	0757-0012	fxd, mfg, 100K ohms $\pm 1\%$, 1/2 W	
R116, 117	0757-0022	fxd, mfg, 30,900 ohms $\pm 1\%$, 1 W	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	hp Stock No.	# Description	Note
R118	2100-0145	var, comp, 20K ohms $\pm 20\%$, 1/3 W, includes S103	
R119	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	
R120	2100-0151	var, comp, lin, 500 ohms $\pm 20\%$, 2/10 W	
R121	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	
R122	0727-0105	fxd, dep c, 1200 ohms $\pm 1\%$, 1/2 W	
R123	0727-0112	fxd, dep c, 1800 ohms $\pm 1\%$, 1/2 W	
R124		Not Assigned	
R125	0727-0124	fxd, dep c, 3K ohms $\pm 1\%$, 1/2 W	
R126, 127		Not Assigned	
R128	0727-0140	fxd, dep c, 6K ohms $\pm 1\%$, 1/2 W	
R129, 130	0727-0152	fxd, dep c, 9K ohms $\pm 1\%$, 1/2 W	
R131, 132	0727-0168	fxd, dep c, 15K ohms $\pm 1\%$, 1/2 W	
R133	0727-0195	fxd, dep c, 50K ohms $\pm 1\%$, 1/2 W	
R134	2100-0073	var, comp, lin, 125K ohms $\pm 20\%$, 1/4 W	
R135		Not Assigned	
R136	0727-0259	fxd, dep c, 900K ohms $\pm 1\%$, 1/2 W	
R137, 138	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R139, 140	0757-0023	fxd, mfg, 41,200 ohms $\pm 1\%$, 1 W	
R141	0757-0024	fxd, mfg, 49,900 ohms $\pm 1\%$, 1 W	
R142	2100-0006	var, ww, 5K ohms $\pm 10\%$, 2 W	
R143	0687-5611	fxd, comp, 560 ohms $\pm 10\%$, 1/2 W	
R144	2100-0091	var, comp, lin, 5K ohms $\pm 30\%$, 1/3 W	
R145	0757-0026	fxd, mfg, 1.5 M $\pm 1\%$, 1 W	
R146, 147	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R148	0757-0026	fxd, mfg, 1.5 M $\pm 1\%$, 1 W	
R149	0692-6225	fxd, comp, 6200 ohms $\pm 5\%$, 2 W	
R150, 151	0689-7525	fxd, comp, 7500 ohms $\pm 5\%$, 1 W	
R152, 153	0693-2731	fxd, comp, 27K ohms $\pm 10\%$, 2 W	
R154, 155	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R156 thru R163		Not Assigned	
R164	2100-0067	var, comp, lin, 2500 ohms $\pm 10\%$, 1/2 W	
R165	0687-5661	fxd, comp, 56 M $\pm 10\%$, 1/2 W	
R166 thru R200		Not Assigned	
R201	0687-6841	fxd, comp, 680K ohms $\pm 10\%$, 1/2 W	
R202	0687-1251	fxd, comp, 1.2 M $\pm 10\%$, 1/2 W	
R203	0692-3935	fxd, comp, 39K ohms $\pm 5\%$, 2 W	
R204, 205	0689-1335	fxd, comp, 13K ohms $\pm 5\%$, 1 W	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	# Description	Note
R206, 207	0692-3935	fxd, comp, 39K ohms $\pm 5\%$, 2 W	
R208	0687-1251	fxd, comp, 1.2 M $\pm 10\%$, 1/2 W	
R209		nsr; Part of S202	
R210	0727-0287	fxd, dep c, 2 M $\pm 1\%$, 1/2 W	
R211	0687-4701	fxd, comp, 47 ohms $\pm 10\%$, 1/2 W	
R212	0686-3625	fxd, comp, 3600 ohms $\pm 5\%$, 1/2 W	
R213	0687-3321	fxd, comp, 3300 ohms $\pm 10\%$, 1/2 W	
R214	0692-3035	fxd, comp, 30K ohms $\pm 5\%$, 2 W	
R215	0727-0223	fxd, dep c, 216,300 ohms $\pm 1\%$, 1/2 W	
R216	0727-0228	fxd, dep c, 252K ohms $\pm 1\%$, 1/2 W	
R217	0730-0091	fxd, dep c, 479K ohms $\pm 1\%$, 1 W	
R218		nsr; Part of S203	
R219	0687-1241	fxd, comp, 120K ohms $\pm 10\%$, 1/2 W	
R220	2100-0095	var, comp, lin, 100K ohms $\pm 30\%$, 1/4 W	
R221	0687-2731	fxd, comp, 27K ohms $\pm 10\%$, 1/2 W	
R222	0686-7555	fxd, comp, 7.5 M $\pm 5\%$, 1/2 W	
R223	0689-1635	fxd, comp, 16K ohms $\pm 5\%$, 1 W	
R224	0692-6235	fxd, comp, 62K ohms $\pm 5\%$, 2 W	
R225	0771-0004	fxd, mfg, 20K ohms $\pm 10\%$, 4 W	
R226		Not Assigned	
R227	0727-0228	fxd, dep c, 252K ohms $\pm 1\%$, 1/2 W	
R228	0727-0230	fxd, dep c, 284K ohms $\pm 1\%$, 1/2 W	
R229	2100-0102	var, comp, lin, 500K ohms $\pm 30\%$, 1/4 W	
R230	0687-3941	fxd, comp, 390K ohms $\pm 10\%$, 1/2 W	
R231	0687-2741	fxd, comp, 270K ohms $\pm 10\%$, 1/2 W	
R232	0686-1025	fxd, comp, 1K ohms $\pm 5\%$, 1/2 W	
R233	0690-3331	fxd, comp, 33K ohms $\pm 10\%$, 1 W	
R234	0693-8231	fxd, comp, 82K ohms $\pm 10\%$, 2 W	
R235	0687-4711	fxd, comp, 470 ohms $\pm 10\%$, 1/2 W	
R236	0687-2731	fxd, comp, 27K ohms $\pm 10\%$, 1/2 W	
R237	0687-4711	fxd, comp, 470 ohms $\pm 10\%$, 1/2 W	
R238	0693-6831	fxd, comp, 68K ohms $\pm 10\%$, 2 W	
R239	0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	
R240	2100-0102	var, comp, lin, 500K ohms $\pm 30\%$, 1/4 W	
R241	0730-0096	fxd, dep c, 683.7K ohms $\pm 1\%$, 1 W	
R242	0687-3351	fxd, comp, 3.3 M $\pm 10\%$, 1/2 W	
R243	0687-1051	fxd, comp, 1 M $\pm 10\%$, 1/2 W	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	# Description	Note
R244	0686-1025	fxd, comp, 1K ohms $\pm 5\%$, 1/2 W	
R245	0687-1221	fxd, comp, 1200 ohms $\pm 10\%$, 1/2 W	
R246	0687-1251	fxd, comp, 1.2 M $\pm 10\%$, 1/2 W	
R247 thru R249		Not Assigned	
R250	0727-0294	fxd, dep c, 3.6 M $\pm 1\%$, 1/2 W	
R251, 252	0727-0280	fxd, dep c, 1.2 M $\pm 1\%$, 1/2 W	
R253	0733-0009	fxd, dep c, 36 M $\pm 1\%$, 2 W	
R254, 255	0730-0145	fxd, dep c, 12 M $\pm 1\%$, 1 W	
R256	0727-0279	fxd, dep c, 1.15 M $\pm 1\%$, 1/2 W	
R257, 258	0727-0237	fxd, dep c, 376K ohms $\pm 1\%$, 1/2 W	
R259 thru R261	2100-0093	var, comp, lin, 20K ohms $\pm 20\%$, 1/4 W	
R262	2100-0107	var, comp, lin, 50K ohms $\pm 30\%$, 1/3 W	
R263	0687-2231	fxd, comp, 22K ohms $\pm 10\%$, 1/2 W	
R264		Not Assigned	
R265	0687-3951	fxd, comp, 3.9 M $\pm 10\%$, 1/2 W	
R266 thru R300		Not Assigned	
R301	0763-0005	fxd, mfg, 1.5 M $\pm 1\%$, 2 W	
R302	0818-0001	fxd, ww, 4K ohms $\pm 5\%$, 20 W	
R303	2100-0095	var, comp, lin, 100K ohms $\pm 30\%$, 1/4 W	
R304	0690-2251	fxd, comp, 2.2 M $\pm 10\%$, 1 W	
R305	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R306	0690-6831	fxd, comp, 68K ohms $\pm 10\%$, 1 W	
R307	0687-1031	fxd, comp, 10K ohms $\pm 10\%$, 1/2 W	
R308	0690-1051	fxd, comp, 1 M $\pm 10\%$, 1 W	
R309	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R310	0727-0278	fxd, dep c, 1.13 M $\pm 1\%$, 1/2 W	
R311	0727-0281	fxd, dep c, 1.39 M $\pm 1\%$, 1/2 W	
R312	0730-0116	fxd, dep c, 2.84 M $\pm 1\%$, 1 W	
R313	0816-0018	fxd, ww, 20K ohms $\pm 10\%$, 10 W	
R314	0819-0016	fxd, ww, 1500 ohms $\pm 10\%$, 20 W	
R315	0690-1051	fxd, comp, 1 M $\pm 10\%$, 1 W	
R316	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R317	0690-2231	fxd, comp, 22K ohms $\pm 10\%$, 1 W	
R318	0687-2731	fxd, comp, 27K ohms $\pm 10\%$, 1/2 W	
R319	0690-1251	fxd, comp, 1.2 M $\pm 10\%$, 1 W	
R320	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R321	0727-0284	fxd, dep c, 1.75 M $\pm 1\%$, 1/2 W	
R322	0727-0289	fxd, dep c, 2.52 M $\pm 1\%$, 1/2 W	
R323	0690-6841	fxd, comp, 680K ohms $\pm 10\%$, 1 W	

See introduction to this section

Table 5-1. Reference Designation Index (Cont')

Circuit Reference	Stock No.	# Description	Note
R324	0690-1041	fxd, comp, 100K ohms $\pm 10\%$, 1 W	
R325	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R326	0690-1231	fxd, comp, 12K ohms $\pm 10\%$, 1 W	
R327	0687-2231	fxd, comp, 22K ohms $\pm 10\%$, 1/2 W	
R328	0687-4721	fxd, comp, 4700 ohms $\pm 10\%$, 1/2 W	
R329	0690-1251	fxd, comp, 1.2 M $\pm 10\%$, 1 W	
R330	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R331	0727-0276	fxd, dep c, 1 M $\pm 1\%$, 1/2 W	
R332	2100-0144	var, comp, lin, 250K ohms $\pm 30\%$, 1/4 W	
R333	0727-0281	fxd, dep c, 1.39 M $\pm 1\%$, 1/2 W	
R334	2100-0096	var, comp, lin, 1 M $\pm 30\%$, 1/4 W	
R335	0836-0002	fxd, dep c, 20 M $\pm 10\%$, 1 W	
R336	2100-0112	var, comp, lin, 5 M $\pm 30\%$, 1/2 W	
R337	0727-0274	fxd, dep c, 1 M $\pm 1\%$, 1/2 W	
R338	0687-2731	fxd, comp, 27K ohms $\pm 10\%$, 1/2 W	
R339	0690-2251	fxd, comp, 2.2 M $\pm 10\%$, 1 W	
R340		Not Assigned	
R341	0687-1031	fxd, comp, 10K ohms $\pm 10\%$, 1/2 W	
R342		Not Assigned	
R343	2100-0080	var, comp, lin, 1 M, $\pm 30\%$, 1/4 W	
R344, 345		Not Assigned	
R346	0836-0003	fxd, dep c, 29 M $\pm 10\%$, 1 W	
R347		Not Assigned	
R348	0690-2741	fxd, comp, 270K ohms $\pm 10\%$, 1 W	
R349	0693-2231	fxd, comp, 22K ohms $\pm 10\%$, 2 W	
R350	0687-4731	fxd, comp, 47K ohms $\pm 10\%$, 1/2 W	
R351	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R352	0692-2025	fxd, comp, 2K ohms $\pm 5\%$, 2 W	
R353	0689-5115	fxd, comp, 510 ohms $\pm 5\%$, 1 W	
R354	0687-2721	fxd, comp, 2700 ohms $\pm 10\%$, 1/2 W	
R355, 356	0687-6831	fxd, comp, 68K ohms $\pm 10\%$, 1/2 W	
R357	2100-0140	var, ww, lin, 25 ohms $\pm 10\%$, 2 W, includes S301	
R358	0690-6841	fxd, comp, 680K ohms $\pm 10\%$, 1 W	
R359	0727-0253	fxd, dep c, 750K ohms $\pm 1\%$, 1/2 W	
R360	0687-1061	fxd, comp, 10 M $\pm 10\%$, 1/2 W	
R361	0690-5631	fxd, comp, 56K ohms $\pm 10\%$, 1 W	
R362	0690-1541	fxd, comp, 150K ohms $\pm 10\%$, 1 W	
R363		Not Assigned	

See introduction to this section

Table 5-1 Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	# Description	Note
R364	0687-8231	fxd, comp, 82K ohms $\pm 10\%$, 1/2 W	
R365	2100-0013	var, comp, lin, 50K ohms $\pm 20\%$, 1/2 W	
R366	0687-3331	fxd, comp, 33K ohms $\pm 10\%$, 1/2 W	
R367		Not Assigned	
R368	0686-3055	fxd, comp, 1M $\pm 10\%$, 1/2 W	
R369	0687-4731	fxd, comp, 47K ohms $\pm 10\%$, 1/2 W	
R370	0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	
R371	0687-2251	fxd, comp, 2.2 M $\pm 10\%$, 1/2 W	
S1	3101-0001	Switch, tog: SPST Vertical AC-DC Switch	
S2	130B-95D	Vertical Sensitivity Switch Assy	
S3		Part of R18: nsr	
S4 thru S100		Not Assigned	
S101	3100-0243	Switch, rot: 5 sect, 16 pos	
S102	130B-95C	Horizontal Sensitivity Switch Assy	
S103		Part of R118: nsr	
S104 thru S200		Not Assigned	
S201	130B-19H	Sync Switch Assy	
S202	130B-19G	Trigger Level Switch Assy	
S203		Part of R218: nsr	
S204	130B-19J 130B-19C	Sweeptime/CM Switch Assy (rack model only) Sweeptime/ CM Switch Assy (cabinet model only)	
S205		Part of R262: nsr	
S206 thru S300		Not Assigned	
S301		Part of R357: nsr	
T1 thru T300		Not Assigned	
T301	9100-0091	Transformer, power	
T302	130B-11B-1	Transformer, rf, high voltage	
V1	G-73R	Tube, elect: selected	
V2	1932-0029	Tube, elect: 12AU7	
V3	G-73N	Tube, elect: 12AT7	
V4	1932-0022	Tube, elect: 6DJ8	
V5 thru V100		Not Assigned	
V101	G-73R	Tube, elect: selected	
V102	1932-0029	Tube, elect: 12AU7	
V103	G-73N	Tube, elect: 12AT7	
V104	1932-0022	Tube, elect: 6DJ8	
V105 thru V200		Not Assigned	
V201	1932-0022	Tube, elect: 6DJ8	

See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	Stock No.	# Description	Note
V202	1932-0027	Tube, elect: 12AT7	
V203	1933-0004	Tube, elect: 6U8	
V204	1921-0005	Tube, elect: 6C4	
V205	1930-0019	Tube, elect: 12AL5	
V206	1933-0002	Tube, elect: 6AW8A	
V207	1932-0030	Tube, elect: 12AX7	
V208 thru V300		Not Assigned	
V301	1921-0010	Tube, elect: 12B4A	
V302	1923-0021	Tube, elect: 6AU6	
V303	1921-0010	Tube, elect: 12B4A	
V304	1923-0027	Tube, elect: 6BH6	
V305	1930-0016	Tube, elect: 6X4	
V306	1921-0010	Tube, elect: 12B4A	
V307	1923-0027	Tube, elect: 6BH6	
V308	1940-0001	Tube, elect: 5651	
V309	2090-0007	Tube, elect, cathode-ray type (Normally supplied with P1 phosphor. Also available are P2, P5 and P7.)	
V310, 311	1920-0001	Tube, elect: 5642	
V312	1932-0029	Tube, elect: 12AU7	
V313	1923-0018	Tube, elect: 6AQ5	
V314	1932-0022	Tube, elect: 6DJ8	
<u>MISCELLANEOUS</u>			
	120A-20A	CRT bezel	
	120A-83A	Filter, light: amber	
	120A-83B	Filter, light: blue	
	120A-83G	Filter, light: green	
	1400-0084	Fuseholder	
	130B-11B	High voltage oscillator and rectifier assy	
	1400-0056	Holder, rectifier	
	1450-0020	Jewel, for pilot lamp	
	G-74D	Knob: FOCUS, INTENSITY, SCALE LIGHT	
	G-74G	Knob: VERT. POS., HORIZ. POS	
	G-74L	Knob: TRIGGER LEVEL	
	G-74Q	Knob: VERT SENSITIVITY, HORIZ SENSITIVITY, SYNC TIME SWEEP TIME	
	G-74AT	Knob: TRIGGER SLOPE	
	G-74AU	Knob: VERNIER, VERT. SENSITIVITY, HORIZ SENSITIVITY, SYNC TIME, SWEEP TIME	
	G-74BJ	Knob: VERT. and HORIZ DC BAL	
	1450-0022	Socket assy, pilot lamp	

See introduction to this section

Table 5-2. Replaceable Parts

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS	
AC-10D	Binding Post Assembly: red	28480	AC-10D	4	1	
AC-54A	Insulator, binding post (rack model)	28480	AC-54A	4	0	
AC-54B	Insulator, binding post (cabinet model)	28480	AC-54B	2	0	
G-73N	Tube, elect: 12AT7	80131	12AT7	2	2	
G-73R	Tube, elect: selected	28480	G-73R	2	2	
G-76J	Connector Assembly	28480	G-76J	1	1	
G-76K	Connector Assembly	28480	G-76K	1	1	
G-84B	Lamp, neon: aged and selected, blue code	28480	G-84B	9	9	
130B-19C	Sweep Time/CM Switch Assembly (cabinet model only)	28480	130B-19C	1	1	
130B-19G	Trigger Level Switch Assembly	28480	130B-19G	1	1	
130B-19H	Sync Switch Assembly	28480	130B-19H	1	1	
130B-19J	Sweep Time/CM Switch Assembly (rack model only)	28480	130B-19J	1	1	
130B-95C	Horizontal Sensitivity Switch Assembly	28480	130B-95C	1	1	
130B-95D	Vertical Sensitivity Switch Assembly	28480	130B-95D	1	1	
130B-11B-1	Transformer, rf, high voltage	28480	130B-11B-1	1	1	
0130-0001	var, cer, 7-45 pf, 500 vdcw	72982	503-000-D2PO-33R	3	1	
0130-0006	var, cer, 5-20 pf, 500 vdcw	72982	503000BP2PO28R	2	1	
0131-0001	var, mica, 50-380 pf, 175 vdcw	72136	96W	3	1	
0131-0003	var, mica, 170-780 pf, 175 vdcw	72136	T52910	2	1	
0131-0004	var, mica, 14-50 pf, 500 vdcw	72136	T5-1410-3	4	1	
0140-0004	fxd, mica, 15 pf ±10%, 500 vdcw	76433	RCM15B150K	2	1	
0140-0005	fxd, mica, 27 pf ±10%, 500 vdcw	76433	RCM15B270K	2	1	
0140-0007	fxd, mica, 680 pf ±10%, 500 vdcw	76433	RCM20B681K	1	1	
0140-0009	fxd, mica, 0.01 μf ±5%, 500 vdcw	00656	1467LX"B"	2	1	
0140-0015	fxd, mica, 270 pf ±10%, 500 vdcw	76433	RCM20B271K	1	1	
0140-0025	fxd, mica, 68 pf ±10%, 500 vdcw	00853	DR 1468 B10	1	1	
0140-0027	fxd, mica, 470 pf ±10%, 500 vdcw	76433	RCM20B471K	1	1	
0140-0040	fxd, mica, 75 pf ±5%, 500 vdcw	00853	DR1475E5	3	1	
0140-0044	fxd, mica, 560 *pf ±10%, 500 vdcw	72136	CM20EJ61K	1	1	
0140-0056	fxd, mica, 200 pf ±10%, 500 vdcw	76433	RCM20B201K	2	1	
0140-0090	fxd, silver mica, 200 μf ±5%, 500 vdcw	72136	CM15E201J	1	1	
0140-0091	fxd, silver mica, 820 pf ±5%, 500 vdcw	72136	CM20E821J	3	1	
0150-0009	fxd, cer, 10 pf ±0.5 %, 500 vdcw	04222	CI-1	1	1	
0150-0012	fxd, cer, 0.01 μf ±20%, 1000 vdcw	71590	13C-DISC.	9	2	
0150-0014	fxd, cer, 0.005 μf, 500 vdcw	04222	D1-4	1	1	
0150-0022	fxd, TiO ₂ , 3.3 pf ±10%, 500 vdcw	82142	JM obd#	4	1	
0150-0023	fxd, cer, 2K pf ±20%, 1000 vdcw	91418	JF.002 ~	1	1	

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS	
0150-0024	fxd, cer, 0.02 μ f $\pm 10\%$, 600 vdcw	91418	B.02GMV	2	1	
0150-0031	fxd, TiO ₂ , 2 * μ f $\pm 5\%$, 500 vdcw	78488	GA obd#	8	2	
0160-0002	fxd, paper, 0.01 μ f $\pm 10\%$, 600 vdcw	56289	160P10396	2	1	
0160-0006	fxd, paper, 0.001 μ f $\pm 10\%$, 600 vdcw	56289	160P10296	1	1	
0160-0007	fxd, paper, 2200 μ f $\pm 10\%$, 600 vdcw	56289	160P22296	1	1	
0160-0013	fxd, paper, 0.1 μ f $\pm 10\%$, 400 vdcw	56289	160P10494	3	1	
0160-0018	fxd, paper, 0.22 μ f, 400 vdcw	56289	160P22494	1	1	
0160-0040	fxd, paper, 0.1 μ f $\pm 10\%$, 1000 vdcw	14655	TST-100	1	1	
0160-0045	fxd, paper, 6800 μ f $\pm 10\%$, 5000 vdcw	56289	184P682950	2	1	
0160-0054	fxd, tubular, 0.01 μ f $\pm 20\%$, 400 vdcw	56289	109P10304	5	2	
0160-0056	fxd, paper, 0.047 μ f $\pm 10\%$, 1000 vdcw	56289	73P473910	2	1	
0160-0061	fxd, paper, 1500 μ f $\pm 20\%$, 5000 vdcw	56289	184P152050	2	1	
0160-0062	fxd, paper, 0.015 μ f $\pm 10\%$, 3000 vdcw	56289	184P153930	1	1	
0170-0017	fxd, my, 0.01 μ f $\pm 5\%$, 400 vdcw	84411	620S obd#	1	1	
0170-0018	fxd, my, 1.0 μ f $\pm 5\%$, 200 vdcw	84411	HEW-4 obd#	2	1	
0170-0019	fxd, my, 0.1 μ f $\pm 5\%$, 200 vdcw	84411	620S obd#	1	1	
0170-0022	fxd, my, 0.1 μ f $\pm 20\%$, 600 vdcw	09134	27	2	1	
0180-0012	fxd, elect, 2 sect, 20 μ f/sect, 450 vdcw	00853	PLI obd#	2	1	
0180-0025	fxd, elect, 4 sect 20 μ f/sect, 450 vdcw	56289	D32452	1	1	
0180-0030	fxd, elect, 2 sect, *120 x 40 μ f, 450 vdcw	56289	D32352	1	1	
0180-0044	fxd, elect, 80 μ f, 300 vdcw	37942	103481	1	1	
0686-1025	fxd, comp, 1K ohms $\pm 5\%$, 1/2 W	01121	EB1025	1	1	
0686-3625	fxd, comp, 3600 ohms $\pm 5\%$, 1/2 W	01121	EB3625	1	1	
0686-7555	fxd, comp, 7.5M $\pm 5\%$, 1/2 W	01121	EB7555	1	1	
0687-1011	fxd, comp, 100 ohms $\pm 10\%$, 1/2 W	01121	EB1011	17	4	
0687-1021	fxd, comp, 1K ohms $\pm 10\%$, 1/2 W	01121	EB1021	8	2	
0687-1031	fxd, comp, 10K ohms $\pm 10\%$, 1/2 W	01121	EB1031	2	1	
0687-1041	fxd, comp, 100K ohms $\pm 10\%$, 1/2 W	01121	EB1041	4	1	
0687-1051	fxd, comp, 1M $\pm 10\%$, 1/2 W	01121	EB1051	1	1	
0687-1061	fxd, comp, 10M $\pm 10\%$, 1/2 W	01121	EB1061	1	1	
0687-1221	fxd, comp, 1200 ohms $\pm 10\%$, 1/2 W	01121	EB1221	1	1	
0687-1241	fxd, comp, 120K ohms $\pm 10\%$, 1/2 W	01121	EB1241	1	1	
0687-1251	fxd, comp, 1.2M $\pm 10\%$, 1/2 W	01121	EB1251	2	1	
0687-2231	fxd, comp, 22K ohms $\pm 10\%$, 1/2 W	01121	EB2231	2	1	
0687-2251	fxd, comp, 2.2M $\pm 10\%$, 1/2 W	01121	EB2251	1	1	
0687-2721	fxd, comp, 2700 ohms $\pm 10\%$, 1/2 W	01121	EB2721	1	1	
0687-2731	fxd, comp, 27K ohms $\pm 10\%$, 1/2 W	01121	EB2731	4	1	
0687-2741	fxd, comp, 270K ohms $\pm 10\%$, 1/2 W	01121	EB2741	1	1	

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS	
0687-2751	fxd, comp, $2.7M \pm 10\%$, 1/2 W	01121	EB2751	3	1	
0687-3321	fxd, comp, $3300 \text{ ohms} \pm 10\%$, 1/2 W	01121	EB3321	1	1	
0687-3331	fxd, comp, $33K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB3331	1	1	
0687-3351	fxd, comp, $3.3M \pm 10\%$, 1/2 W	01121	EB3351	1	1	
0687-3941	fxd, comp, $390K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB3941	1	1	
0687-3951	fxd, comp, $3.9M \pm 10\%$, 1/2 W	01121	EB3951	1	1	
0687-4701	fxd, comp, $47 \text{ ohms} \pm 10\%$, 1/2 W	01121	EB4701	1	1	
0687-4711	fxd, comp, $470 \text{ ohms} \pm 10\%$, 1/2 W	01121	EB4711	2	1	
0687-4721	fxd, comp, $4700 \text{ ohms} \pm 10\%$, 1/2 W	01121	EB4721	1	1	
0687-4731	fxd, comp, $47K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB4731	2	1	
0687-5611	fxd, comp, $560 \text{ ohms} \pm 10\%$, 1/2 W	01121	EB5611	2	1	
0687-5661	fxd, comp, $56M \pm 10\%$, 1/2 W	01121	EB5661	1	1	
0687-6831	fxd, comp, $68K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB6831	2	1	
0687-6841	fxd, comp, $680K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB6841	1	1	
0687-8231	fxd, comp, $82K \text{ ohms} \pm 10\%$, 1/2 W	01121	EB8231	1	1	
0689-1335	fxd, comp, $13K \text{ ohms} \pm 5\%$, 1 W	01121	GB1335	2	1	
0689-1635	fxd, comp, $16K \text{ ohms} \pm 5\%$, 1 W	01121	GB1635	1	1	
0689-5115	fxd, comp, $510 \text{ ohms} \pm 5\%$, 1 W	01121	GB5115	1	1	
0689-5125	fxd, comp, $5100 \text{ ohms} \pm 5\%$, 1 W	01121	GB5125	2	1	
0689-7525	fxd, comp, $7500 \text{ ohms} \pm 5\%$, 1 W	01121	GB7525	2	1	
0690-1041	fxd, comp, $100K \text{ ohms} \pm 10\%$, 1 W	01121	GB1041	1	1	
0690-1051	fxd, comp, $1M \pm 10\%$, 1 W	01121	GB1051	2	1	
0690-1231	fxd, comp, $12K \text{ ohms} \pm 10\%$, 1 W	01121	GB1231	1	1	
0690-1251	fxd, comp, $1.2M \pm 10\%$, 1 W	01121	GB1251	2	1	
0690-1541	fxd, comp, $150K \text{ ohms} \pm 10\%$, 1 W	01121	GB1541	1	1	
0690-2231	fxd, comp, $22K \text{ ohms} \pm 10\%$, 1 W	01121	GB2231	1	1	
0690-2251	fxd, comp, $2.2M \pm 10\%$, 1 W	01121	GB2251	2	1	
0690-2741	fxd, comp, $270K \text{ ohms} \pm 10\%$, 1 W	01121	GB2741	1	1	
0690-3331	fxd, comp, $33K \text{ ohms} \pm 10\%$, 1 W	01121	GB3331	1	1	
0690-5631	fxd, comp, $56K \text{ ohms} \pm 10\%$, 1 W	01121	GB5631	1	1	
0690-6831	fxd, comp, $68K \text{ ohms} \pm 10\%$, 1 W	01121	GB6831	1	1	
0690-6841	fxd, comp, $680K \text{ ohms} \pm 10\%$, 1 W	01121	GB6841	2	1	
0692-2025	fxd, comp, $2K \text{ ohms} \pm 5\%$, 2 W	01121	HB2025	1	1	
0692-3035	fxd, comp, $30K \text{ ohms} \pm 5\%$, 2 W	01121	HB3035	1	1	
0692-3935	fxd, comp, $39K \text{ ohms} \pm 5\%$, 2 W	01121	HB3935	3	1	
0692-6225	fxd, comp, $6200 \text{ ohms} \pm 5\%$, 2 W	01121	HB6225	1	1	
0692-6235	fxd, comp, $62K \text{ ohms} \pm 5\%$, 2 W	01121	HB6235	1	1	
0693-1031	fxd, comp, $10K \text{ ohms} \pm 10\%$, 2 W	01121	HB1031	1	1	
0693-2231	fxd, comp, $22K \text{ ohms} \pm 10\%$, 2 W	01121	HB2231	2	1	

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS	
0693-2731	fxd, comp, 27K ohms ±10%, 2 W	01121	HB2731	2	1	
0693-6831	fxd, comp, 68K ohms ±10%, 2 W	01121	HB6831	1	1	
0693-8231	fxd, comp, 82K ohms ±10%, 2 W	01121	HB8231	1	1	
0727-0100	fxd, dep c, 1K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0105	fxd, dep c, 1200 ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0112	fxd, dep c, 1800 ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0124	fxd, dep c, 3K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0140	fxd, dep c, 6K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0152	fxd, dep c, 9K ohms ±1%, 1/2 W	19701	DC1/2BR5 obd#	6	2	
0727-0168	fxd, dep c, 15K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	8	2	
0727-0195	fxd, dep c, 50K ohms ±1%, 1/2 W	19701	DC1/2BR5 obd#	1	1	
0727-0203	fxd, dep c, 90K ohms ±1%, 1/2 W	19701	DC1/2BR5 obd#	2	1	
0727-0223	fxd, dep c, 216,300 ohms ±1%, 1/2 W	19701	DC1/2BR5 obd#	1	1	
0727-0228	fxd, dep c, 252K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0230	fxd, dep c, 284K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	1	1	
0727-0237	fxd, dep c, 376K ohms ±1%, 1/2 W	19701	DC1/2CR5 obd#	2	1	
0727-0253	fxd, dep c, 750K ohms ±1%, 1/2 W	19701	DC1/2AR5 obd#	1	1	
0727-0259	fxd, dep c, 900K ohms ±1%, 1/2 W	19701	DC1/2AR5 obd#	1	1	
0727-0274	fxd, dep c, 1M ±1%, 1/2 W	19701	DC1/2AR5 obd#	3	1	
0727-0276	fxd, dep c, 1M ±1%, 1/2 W	19701	DC1/2CR5 obd#	1	1	
0727-0278	fxd, dep c, 1.13M ±1%, 1/2 W	19701	DC1/2CR5 obd#	1	1	
0727-0279	fxd, dep c, 1.15M ±1%, 1/2 W	19701	DC1/2CR5 obd#	1	1	
0727-0280	fxd, dep c, 1.2M ±1%, 1/2 W	19701	DC1/2AR5 obd#	2	1	
0727-0281	fxd, dep c, 1.39M ±1%, 1/2 W	19701	DC1/2AR5 obd#	2	1	
0727-0284	fxd, dep c, 1.75M ±1%, 1/2 W	19701	DC1/2AR5 obd#	1	1	
0727-0287	fxd, dep c, 2M ±1%, 1/2 W	19701	DC1/2CR5 obd#	1	1	
0727-0289	fxd, dep c, 2.52M ±1%, 1/2 W	19701	DC1/2AR5 obd#	1	1	
0727-0294	fxd, dep c, 3.6M ±1%, 1/2 W	19701	DC1/2BR5 obd#	1	1	
0730-0058	fxd, dep c, 75K ohms ±1%, 1 W	19701	DC1R5 obd#	2	1	
0730-0091	fxd, dep c, 479K ohms ±1%, 1 W	19701	DC1R5 obd#	1	1	
0730-0096	fxd, dep c, 683.7K ohms ±1%, 1 W	19701	DC1R5 obd#	1	1	
0730-0103	fxd, dep c, 900K ohms ±1%, 1 W	19701	DC1R5 obd#	2	1	
0730-0116	fxd, dep c, 2.84M ±1%, 1W	19701	DC1R5 obd#	1	1	
0730-0145	fxd, dep c, 12M ±1%, 1 W	19701	DC1R5 obd#	2	1	
0733-0009	fxd, dep c, 36M ±1%, 2 W	19701	DC2R5 obd#	1	1	
0757-0012	fxd, mfg, 100K ohms ±1%, 1/2 W	15909	obd#	4	1	
0757-0022	fxd, mfg, 30,900 ohms ±1%, 1 W	07115	NL25 obd#	4	1	

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description#	Mfr.	Mfr. Part No.	TQ	RS	
0757-0023	fxd, mfg, 41,200 ohms $\pm 1\%$, 1 W	07115	NI25	obd#	4	1
0757-0024	fxd, mfg, 49,900 ohms $\pm 1\%$, 1 W	07115	NI25	obd#	2	1
0757-0025	fxd, mfg, 806K ohms $\pm 1\%$, 1 W	07115	NI25	obd#	2	1
0757-0026	fxd, mfg, 1.5M $\pm 1\%$, 1 W	07115	NI25	obd#	2	1
0763-0005	fxd, mfg, 1.5M $\pm 1\%$, 2 W	07115	N30		1	1
0771-0004	fxd, mfg, 20K ohms $\pm 10\%$, 4 W	07115	LPI-4		1	1
0816-0018	fxd, ww, 20K ohms $\pm 10\%$, 10 W	35434	G-C10-20KH		1	1
0818-0001	fxd, ww, 4K ohms $\pm 5\%$, 20 W	35434	G-C20-4KH-T5		1	1
0819-0016	fxd, ww, 1500 ohms $\pm 10\%$, 20 W	35434	GE20-1500		1	1
0836-0002	fxd, dep c, 20M $\pm 10\%$, 1 W	77764	BBF	obd#	1	1
0836-0003	fxd, dep c, 29M $\pm 10\%$, 1 W	77764	BBF	obd#	1	1
1251-0039	Connector, receptacle: male, 3 contact (on rear panel, rack model only)	02660	MS3102A-10SL-3P		2	1
1883-0005	Diode, Se	77638	24Y1		2	2
1901-0007	Diode, Si: 500 ma, 400 PIV	81483	obd#		4	4
1920-0001	Tube, elect: 5642	80131	5642		2	2
1921-0005	Tube, elect: 6C4	80131	6C4		1	1
1921-0010	Tube, elect: 12B4A	80131	12B4A		3	3
1923-0018	Tube, elect: 6AQ5	80131	6AQ5		1	1
1923-0021	Tube, elect: 6AU6	80131	6AU6		1	1
1923-0027	Tube, elect: 6BH6	80131	6BH6		2	2
1930-0016	Tube, elect: 6X4	80131	6X4		1	1
1930-0019	Tube, elect: 12AL5	80131	12AL5		1	1
1932-0022	Tube, elect: 6DJ8	80131	6DJ8		4	4
1932-0027	Tube, elect: 12AT7	80131	12AT7		1	1
1932-0029	Tube, elect: 12AU7	80131	12AU7		3	3
1932-0030	Tube, elect: 12AX7	80131	12AX7		1	1
1933-0002	Tube, elect: 6AW8A	80131	6AW8A		1	1
1933-0004	Tube, elect: 6U8	80131	6U8		1	1
1940-0001	Tube, elect: 5651	80131	5651		1	1
2090-0007	Tube, elect: cathode-ray type (Normally supplied with P1 phosphor. Also available are P2, P5 and P7.)	80131	5AQP1		1	1
2100-0006	var, ww, 5K ohms $\pm 10\%$, 2 W	11237	252		2	1
2100-0013	var, comp, lin, 50K ohms $\pm 20\%$, 1/2 W	75910	obd#		1	1
2100-0067	var, comp, lin, 2500 ohms $\pm 10\%$, 1/2 W	11237	obd#		1	1
2100-0073	var, comp, lin, 125K ohms $\pm 20\%$, 1/4 W	11237	45		1	1
2100-0080	var, comp, lin, 1M $\pm 30\%$, 1/4 W	11237	Model 70		1	1
2100-0091	var, comp, lin, 5K ohms $\pm 30\%$, 1/3 W	11237	PE70	obd#	2	1
2100-0093	var, comp, lin, 20K ohms $\pm 20\%$, 1/4 W	11237	UPE70 Special obd#		3	1

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS	
2100-0095	var, comp, lin, 100K ohms ±30%, 1/4 W	11237	UPE70 Special obd#	2	1	
2100-0096	var, comp, lin, 1M ±30%, 1/4 W	11237	UPE70 Special obd#	1	1	
2100-0102	var, comp, lin, 500K ohms ±30%, 1/4 W	11237	UPE70 Special obd#	2	1	
2100-0107	var, comp, lin, 50K ohms ±30%, 1/3 W	11237	RGC-45	1	1	
2100-0112	var, comp, lin, 5M ±30%, 1/2 W	12697	37, HV insulator	1	1	
2100-0140	var, ww, lin, 25 ohms ±10%, 2 W includes S301	11237	GC-252	1	1	
2100-0144	var, comp, lin, 250K ohms ±30%, 1/4 W	11237	UPE70 obd#	1	1	
2100-0145	var, comp, 20K ohms ±20%, 1/3 W, includes S3	11237	RGC47	2	1	
2100-0147	var, dual concentric, lin, Rear sect: 250 ohms ±10% Front sect: 10K ohms ±10%, 2 W	11237	C252-HT252	2	1	
2100-0151	var, comp, lin, 500 ohms ±20%, 2/10 W	11237	UPE70 obd#	2	1	
2110-0006	Fuse, cartridge: 2 amp, s-b, for 115V operation	71400	MDL2	1	10	
2110-0007	Fuse, cartridge: 1 amp, s-b, for 230V operation	71400	MDL1	1	0	
2140-0008	Lamp, neon: 1/25 W, 90 vdcw, 65 VAC, NE2	24455	NE2	6	6	
2140-0009	Lamp, incd: 6-8V, 0.15 amp, #47	24455	#47	4	4	
2140-0012	Lamp, incd: 6-8V, 2 pin base, #12	24455	#12	1	1	
3100-0243	Switch, rot: 5 sect, 16 pos	76854	189138-L6	1	1	
3101-0001	Switch, tog: SPST, Vertical AC-DC Switch	04009	80994-H	1	1	
8120-0050	Cord, power	71700	obd#	1	1	
9100-0091	Transformer, power	28480	obd#	1	1	
9140-0019	Coil, r.f.: 200 μh	99848	1200-15-201	1	1	
9140-0037	Coil, r.f.: 5 mh	99848	35000-15-502	1	1	
9140-0038	Inductor: 360 μh	99848	Special obd#	1	1	
9140-0053	Inductor: 1 μh	99848	31000-15-102	1	1	
<u>MISCELLANEOUS</u>						
G-74D	Knob: FOCUS, INTENSITY, SCALE LIGHT	28480	G-74D	3	0	
G-74G	Knob: VERT. POS., HORIZ. POS.	28480	G-74G	1	0	
G-74L	Knob: TRIGGER LEVEL	28480	G-74L	1	0	
G-74Q	Knob: VERT. SENSITIVITY, HORIZ. SENSITIVITY, SYNC TIME, SWEEP TIME	28480	G-74Q	4	0	
G-74AT	Knob: TRIGGER SLOPE	28480	G-74AT	1	0	
G-74AU	Knob: VERNIER, VERT. SENSITIVITY, HORIZ. SENSITIVITY, SYNC TIME, SWEEP TIME	28480	G-74AU	4	0	
G-74BJ	Knob: VERT. and HORIZ: DC BAL	28480	G-74BJ	2	0	
120A-20A	CRT bezel	28480	120A-20A	1	0	
120A-83A	Filter, light: amber	28480	120A-83A	1	0	
120A-83B	Filter, light: blue	28480	120A-83B	1	0	
120A-83G	Filter, light: green	28480	120A-83G	1	0	
130B-11B	High voltage oscillator and rectifier assy	28480	130B-11B	1	0	

See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Stock No.	Description #	Mfr.	Mfr. Part No.	TQ	RS		
1400-0056	Holder, rectifier	75915	099063	2	1		
1400-0084	Fuseholder	75915	342014	1	1		
1450-0020	Jewel, for pilot lamp	72765	14L-15 less nut	1	0		
1450-0022	Socket assy, pilot lamp	72765	2020-AE	1	0		

See introduction to this section

APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 handbooks.

CODE NO.	MANUFACTURER	ADDRESS	CODE NO.	MANUFACTURER	ADDRESS	CODE NO.	MANUFACTURER	ADDRESS
00334	Humidial Co.	Colton, Calif.	07137	Transistor Electronics Corp.	Minneapolis, Minn.	48620	Precision Thermometer and Inst. Co.	Philadelphia, Pa.
00335	Westrex Corp.	New York, N.Y.	07138	Westinghouse Electric Corp. Electronic Tube Div.	Elmira, N.Y.	49956	Raytheon Company	Lexington, Mass.
00373	Garlock Packing Co., Electronic Products Div.	Camden, N.J.	07261	Avnet Corp.	Los Angeles, Calif.	54294	Shallcross Mfg. Co.	Selma, N.C.
00656	Aerovox Corp.	New Bedford, Mass.	07263	Fairchild Semiconductor Corp.	Mountain View, Calif.	55026	Simpson Electric Co.	Chicago, Ill.
00779	Amp, Inc.	Harrisburg, Pa.	07910	Continental Device Corp.	Hawthorne, Calif.	55933	Sonofone Corp.	Elmsford, N.Y.
00781	Aircraft Radio Corp.	Boonton, N.J.	07933	Rheem Semiconductor Corp.	Mountain View, Calif.	55938	Sorenson & Co., Inc.	So. Norwalk, Conn.
00853	Sangamo Electric Company, Ordill Division (Capacitors)	Marion, Ill.	07980	Boonton Radio Corp.	Boonton, N.J.	56137	Spaulding Fibre Co., Inc.	Tonawanda, N.Y.
00866	Goe Engineering Co.	Los Angeles, Calif.	08145	U.S. Engineering Co.	Los Angeles, Calif.	56289	Sprague Electric Co.	North Adams, Mass.
00891	Carl E. Holmes Corp.	Los Angeles, Calif.	08358	Burgess Battery Co.	Niagara Falls, Ontario, Canada	59446	Telex, Inc.	St. Paul, Minn.
01121	Allen Bradley Co.	Milwaukee, Wis.	08717	Sloan Company	Burbank, Calif.	61775	Union Switch and Signal, Div. of Westinghouse Air Brake Co.	Swissvale, Pa.
01255	Litton Industries, Inc.	Beverly Hills, Calif.	08718	Cannon Electric Co.	Phoenix, Ariz.	62119	Universal Electric Co.	Owosso, Mich.
01281	Pacific Semiconductors, Inc.	Culver City, Calif.	08792	CBS Electronics Semiconductor Operations, Div. of C.B.S. Inc.	Lowell, Mass.	64959	Western Electric Co., Inc.	New York, N.Y.
01295	Texas Instruments, Inc. Transistor Products Div.	Dallas, Texas	09026	Babcock Relays, Inc.	Costa Mesa, Calif.	65092	Weston Inst. Div. of Daystrom, Inc.	Newark, N.J.
01349	The Alliance Mfg. Co.	Alliance, Ohio	09134	Texas Capacitor Co.	Houston, Texas	66346	Wollensak Optical Co.	Rochester, N.Y.
01561	Chassi-Trak Corp.	Indianapolis, Ind.	09250	Electro Assemblies, Inc.	Chicago, Ill.	70276	Allen Mfg. Co.	Hartford, Conn.
01589	Pacific Relays, Inc.	Van Nuys, Calif.	09569	Mallory Battery Co. of Canada, Ltd.	Toronto, Ontario, Canada	70309	Allied Control Co., Inc.	New York, N.Y.
01930	Amerock Corp.	Rockford, Ill.	10411	Ti-Tal, Inc.	Berkeley, Calif.	70485	Atlantic India Rubber Works, Inc.	Chicago, Ill.
01961	Pulse Engineering Co.	Santa Clara, Calif.	10646	Carborundum Co.	Niagara Falls, N.Y.	70563	Amerite Co., Inc.	New York, N.Y.
02114	Ferroxcube Corp. of America	Saugerties, N.Y.	11236	CTS of Berne, Inc.	Berne, Ind.	70903	Belden Mfg. Co.	Chicago, Ill.
02286	Cole Mfg. Co.	Palo Alto, Calif.	11237	Chicago Telephone of California, Inc.	So. Pasadena, Calif.	70998	Bird Electronic Corp.	Cleveland, Ohio
02660	Amphenol-Borg Electronics Corp.	Chicago, Ill.	11312	Microwave Electronics Corp.	Palo Alto, Calif.	71002	Birnbach Radio Co.	New York, N.Y.
02735	Radio Corp. of America Semiconductor and Materials Div.	Somerville, N.J.	11711	General Instrument Corporation Semiconductor Division	Newark, N.J.	71041	Boston Gear Works Div. of Murray Co. of Texas	Quincy, Mass.
02771	Vocaline Co. of America, Inc.	Old Saybrook, Conn.	11717	Imperial Electronics, Inc.	Buena Park, Calif.	71218	Bud Radio Inc.	Cleveland, Ohio
02777	Hopkins Engineering Co.	San Fernando, Calif.	11870	Melabs, Inc.	Palo Alto, Calif.	71286	Camloc Fastener Corp.	Paramus, N.J.
03508	G.E. Semiconductor Products Dept.	Syracuse, N.Y.	12697	Clarostat Mfg. Co.	Dover, N.H.	71313	Allan D. Cardwell Electronic Prod. Corp.	Plainville, Conn.
03705	Aper Machine & Tool Co.	Dayton, Ohio	14655	Cornell Dubilier Elec. Corp.	No. Plainfield, N.J.	71400	Bussmann Fuse Div. of McGraw-Edison Co.	St. Louis, Mo.
03797	Eldema Corp.	El Monte, Calif.	15909	The Daven Co.	Livingston, N.J.	71450	CTS Corp.	Elkhart, Ind.
03877	Transitron Electronic Corp.	Wakefield, Mass.	16758	Delco Radio Div. of G. M. Corp.	Kokomo, Ind.	71468	Cannon Electric Co.	Los Angeles, Calif.
03888	Pyrofilm Resistor Co.	Morristown, N.J.	18873	E. I. DuPont and Co., Inc.	Wilmington, Del.	71471	Cinema Engineering Co.	Burbank, Calif.
03954	Air Marine Motors, Inc.	Los Angeles, Calif.	19315	Eclipse Pioneer, Div. of Bendix Aviation Corp.	Teterboro, N.J.	71482	C. P. Clare & Co.	Chicago, Ill.
04009	Arrow, Hart and Hegeman Elect. Co.	Hartford, Conn.	19500	Thomas A. Edison Industries, Div. of McGraw-Edison Co.	West Orange, N.J.	71528	Standard-Thomson Corp., Clifford Mfg. Co. Div.	Waltham, Mass.
04062	Elmenco Products Co.	New York, N.Y.	19701	Electra Manufacturing Co.	Kansas City, Mo.	71590	Centralab Div. of Globe Union Inc.	Milwaukee, Wis.
04222	Hi-Q Division of Aerovox	Myrtle Beach, S.C.	20183	Electronic Tube Corp.	Philadelphia, Pa.	71700	The Cornish Wire Co.	New York, N.Y.
04298	Elgin National Watch Co., Electronics Division	Burbank, Calif.	21520	Fansteel Metallurgical Corp.	No. Chicago, Ill.	71744	Chicago Miniature Lamp Works	Chicago, Ill.
04404	Dymec Division of Hewlett-Packard Co.	Palo Alto, Calif.	21335	The Fafnir Bearing Co.	New Britain, Conn.	71753	A. O. Smith Corp., Crowley Div.	West Orange, N.J.
04651	Sylvania Electric Prods., Inc.	Electronic Tube Div.	21964	Fed. Telephone and Radio Corp.	Clifton, N.J.	71785	Cinch Mfg. Corp.	Chicago, Ill.
04713	Motorola, Inc., Semiconductor Prod. Div.	Phoenix, Arizona	24446	General Electric Co.	Schenectady, N.Y.	71984	Dow Corning Corp.	Midland, Mich.
04732	Filtrol Co., Inc.	Western Division	24455	G.E., Lamp Division	Nela Park, Cleveland, Ohio	72136	Electro Motive Mfg. Co., Inc.	Willimantic, Conn.
04773	Automatic Electric Co.	Northlake, Ill.	24655	General Radio Co.	West Concord, Mass.	72354	John E. Fast & Co.	Chicago, Ill.
04870	P M Motor Co.	Chicago, Ill.	26462	Grobet File Co. of America, Inc.	Carlstadt, N.J.	72619	Dialight Corp.	Brooklyn, N.Y.
05006	Twentieth Century Plastics, Inc.	Los Angeles, Calif.	26992	Hamilton Watch Co.	Lancaster, Pa.	72656	General Ceramics Corp.	Keasbey, N.J.
05277	Westinghouse Electric Corp., Semi-Conductor Dept.	Youngwood, Pa.	28480	Hewlett-Packard Co.	Palo Alto, Calif.	72758	Girard-Hopkins	Oakland, Calif.
05593	Illumitronic Engineering Co.	Sunnyvale, Calif.	33173	G.E. Receiving Tube Dept.	Owensboro, Ky.	72765	Drake Mfg. Co.	Chicago, Ill.
05624	Barber Colman Co.	Rockford, Ill.	35434	Lectrohm Inc.	Chicago, Ill.	72825	Hugh H. Eby Inc.	Philadelphia, Pa.
05729	Metropolitan Telecommunications Corp., Metro Cap. Div.	Brooklyn, N.Y.	37942	P. R. Mallory & Co., Inc.	Indianapolis, Ind.	72928	Gudemian Co.	Chicago, Ill.
05783	Stewart Engineering Co.	Santa Cruz, Calif.	39543	Mechanical Industries Prod. Co.	Akron, Ohio	72982	Erie Resistor Corp.	Erie, Pa.
06004	The Bassick Co.	Bridgeport, Conn.	40920	Miniature Precision Bearings, Inc.	Keene, N.H.	73061	Hansen Mfg. Co., Inc.	Princeton, Ind.
06555	Beede Electrical Instrument Co., Inc.	Penacook, N.H.	42190	Muter Co.	Chicago, Ill.	73138	Helipot Div. of Beckman Instruments, Inc.	Fullerton, Calif.
06812	Torrington Mfg. Co., West Div.	Van Nuys, Calif.	43990	C. A. Norgren Co.	Englewood, Colo.	73293	Hughes Products Division of Hughes Aircraft Co.	Newport Beach, Calif.
07115	Corning Glass Works Electronic Components Dept.	Bradford, Pa.	44655	Ohmite Mfg. Co.	Skokie, Ill.	73445	Amperex Electronic Co., Div. of North American Phillips Co., Inc.	Hicksville, N.Y.
07126	Digitran Co.	Pasadena, Calif.	47904	Polaroid Corp.	Cambridge, Mass.	73506	Bradley Semiconductor Corp.	Hamden, Conn.

From: F.S.C. Handbook Supplements

H4-1 Dated October 1961

H4-2 Dated November 1961

APPENDIX
CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

CODE NO.	MANUFACTURER	ADDRESS	CODE NO.	MANUFACTURER	ADDRESS	CODE NO.	MANUFACTURER	ADDRESS
74861	Industrial Condenser Corp.	Chicago, Ill.	82877	Rotron Manufacturing Co., Inc.	Woodstock, N.Y.	95354	Methode Mfg. Co.	Chicago, Ill.
74868	R.F. Products Division of Amphenol-Borg Electronics Corp.	Danbury, Conn.	82893	Vector Electronic Co.	Glendale, Calif.	95987	Weckesser Co.	Chicago, Ill.
74970	E. F. Johnson Co.	Waseca, Minn.	83058	Carr Fastener Co.	Cambridge, Mass.	96067	Huggins Laboratories	Sunnyvale, Calif.
75042	International Resistance Co.	Philadelphia, Pa.	83125	Pyramid Electric Co.	Darlington, S.C.	96095	Hi-Q Division of Aerovox	Olean, N.Y.
75173	Jones, Howard B., Division of Clinch Mfg. Corp.	Chicago, Ill.	83148	Electro Cords Co.	Los Angeles, Calif.	96256	Thordarson-Meissner Div. of Maguire Industries, Inc.	Mt. Carmel, Ill.
75378	James Knights Co.	Sandwich, Ill.	83186	Victory Engineering Corp.	Union, N.J.	96296	Solar Manufacturing Co.	Los Angeles, Calif.
75382	Kulka Electric Corporation	Mt. Vernon, N.Y.	83298	Bendix Corp., Red Bank Div.	Red Bank, N.J.	96330	Carlton Screw Co.	Chicago, Ill.
75818	Lenz Electric Mfg. Co.	Chicago, Ill.	83330	Smith, Herman H., Inc.	Brooklyn, N.Y.	96341	Microwave Associates, Inc.	Burlington, Mass.
75915	Littelfuse Inc.	Des Plaines, Ill.	83501	Gavitt Wire and Cable Co., Div. of Amerace Corp.	Brookfield, Mass.	96501	Excel Transformer Co.	Oakland, Calif.
76005	Lord Mfg. Co.	Erie, Pa.	83594	Burroughs Corp., Electronic Tube Div.	Plainfield, N.J.	97539	Automatic and Precision Mfg. Co.	Yonkers, N.Y.
76210	C. W. Marwedel	San Francisco, Calif.	83777	Model Eng. and Mfg., Inc.	Huntington, Ind.	97966	CBS Electronics, Div. of C.B.S., Inc.	Danvers, Mass.
76433	Micamold Electronic Mfg. Corp.	Brooklyn, N.Y.	83821	Loyd Scruggs Co.	Festus, Mo.	98141	Axel Brothers Inc.	Jamaica, N.Y.
76487	James Millen Mfg. Co., Inc.	Malden, Mass.	84171	Arco Electronics, Inc.	New York, N.Y.	98220	Francis L. Mosley	Pasadena, Calif.
76493	J. W. Miller Co.	Los Angeles, Calif.	84396	A. J. Glesener Co., Inc.	San Francisco, Calif.	98278	Microdot, Inc.	So. Pasadena, Calif.
76530	Monadnock Mills	San Leandro, Calif.	84411	Good All Electric Mfg. Co.	Ogallala, Neb.	98291	Sealectro Corp.	Mamaroneck, N.Y.
76545	Mueller Electric Co.	Cleveland, Ohio	84970	Sarkes Tarzian, Inc.	Bloomington, Ind.	98405	Card Corp.	Redwood City, Calif.
76854	Oak Manufacturing Co.	Chicago, Ill.	85454	Boonton Molding Company	Boonton, N.J.	98734	Palo Alto Engineering Co., Inc.	Palo Alto, Calif.
77068	Bendix Pacific Division of Bendix Corp.	No. Hollywood, Calif.	85474	R. M. Bracamonte & Co.	San Francisco, Calif.	98821	North Hills Electric Co.	Mineola, N.Y.
77221	Phastron Instrument and Electronic Co.	South Pasadena, Calif.	85660	Koiled Kords, Inc.	New Haven, Conn.	98925	Clevite Transistor Prod. Div. of Clevite Corp.	Waltham, Mass.
77342	Potter and Brumfield, Div. of American Machine and Foundry	Princeton, Ind.	85911	Seamless Rubber Co.	Chicago, Ill.	98978	International Electronic Research Corp.	Burbank, Calif.
77630	Radio Condenser Co.	Camden, N.J.	86684	Radio Corp. of America, RCA Electron Tube Div.	Harrison, N.J.	99109	Columbia Technical Corp.	New York, N.Y.
77638	Radio Receptor Co., Inc.	Brooklyn, N.Y.	87216	Philco Corp. (Lansdale Division)	Lansdale, Pa.	99313	Varian Associates	Palo Alto, Calif.
77764	Resistance Products Co.	Harrisburg, Pa.	87473	Western Fibrous Glass Products Co.	San Francisco, Calif.	99515	Marshall Industries, Electron Products Division	Pasadena, Calif.
78283	Signal Indicator Corp.	New York, N.Y.	88140	Cutler-Hammer, Inc.	Lincoln, Ill.	99707	Control Switch Division, Controls Co. of America	El Segundo, Calif.
78471	Tilley Mfg. Co.	San Francisco, Calif.	89473	General Electric Distributing Corp.	Schenectady, N.Y.	99800	Delevan Electronics Corp.	East Aurora, N.Y.
78488	Stackpole Carbon Co.	St. Marys, Pa.	89636	Carter Parts Div. of Economy Baler Co.	Chicago, Ill.	99848	Wilco Corporation	Indianapolis, Ind.
78553	Tinnerman Products, Inc.	Cleveland, Ohio	89665	United Transformer Co.	Chicago, Ill.	99934	Renbrandt, Inc.	Boston, Mass.
78790	Transformer Engineers	Pasadena, Calif.	90179	U.S. Rubber Co., Mechanical Goods Div.	Passaic, N.J.	99942	Hoffman Semiconductor Div. of Hoffman Electronics Corp.	Evanston, Ill.
78947	Ucinite Co.	Newtonville, Mass.	90970	Bearing Engineering Co.	San Francisco, Calif.	99957	Technology Instrument Corp. of Calif.	Newbury Park, Calif.
79142	Veeder Root, Inc.	Hartford, Conn.	91260	Connor Spring Mfg. Co.	San Francisco, Calif.			
79251	Wenco Mfg. Co.	Chicago, Ill.	91418	Radio Materials Co.	Chicago, Ill.			
79727	Continental-Wirt Electronics Corp.	Philadelphia, Pa.	91506	Augat Brothers, Inc.	Attleboro, Mass.			
79963	Zierick Mfg. Corp.	New Rochelle, N.Y.	91637	Dale Electronics, Inc.	Columbus, Nebr.			
80031	Mepco Division of Sessions Clock Co.	Morristown, N.J.	91662	Elco Corp.	Philadelphia, Pa.			
80130	Times Facsimile Corp.	New York, N.Y.	91737	Gremar Mfg. Co., Inc.	Wakefield, Mass.			
80131	Electronic Industries Association	Washington, D.C.	91827	K F Development Co.	Redwood City, Calif.			
80207	Any brand tube meeting EIA standards		91921	Minneapolis-Honeywell Regulator Co., Micro-Switch Division	Freeport, Ill.			
80248	Unimax Switch, Div. of W. L. Maxson Corp.	Wallingford, Conn.	92196	Universal Metal Products, Inc.	Bassett Puenta, Calif.			
80294	Oxford Electric Corp.	Chicago, Ill.	93332	Sylvania Electric Prod. Inc., Semiconductor Div.	Woburn, Mass.			
80411	Bourns Laboratories, Inc.	Riverside, Calif.	93369	Robbins and Myers, Inc.	New York, N.Y.			
80486	Acro Div. of Robertshaw Fulton Controls Co.	Columbus 16, Ohio	93410	Stevens Mfg. Co., Inc.	Mansfield, Ohio			
80583	All Star Products Inc.	Defiance, Ohio	93983	Insuline-Van Norman Ind., Inc., Electronic Division	Manchester, N.H.			
80640	Hammerlund Co., Inc.	New York, N.Y.	94144	Raytheon Mfg. Co., Industrial Components Div., Receiving Tube Operation	Quincy, Mass.			
81030	Stevens, Arnold, Co., Inc.	Boston, Mass.	94145	Raytheon Mfg. Co., Semiconductor Div., California Street Plant	Newton, Mass.			
81415	International Instruments, Inc.	New Haven, Conn.	94148	Scientific Radio Products, Inc.	Loveland, Colo.			
81453	Wilkor Products, Inc.	Cleveland, Ohio	94154	Tung-Sol Electric, Inc.	Newark, N.J.			
81483	Raytheon Mfg. Co., Industrial Components Div., Industr. Tube Operations	Newton, Mass.	94197	Curtiss-Wright Corp., Electronics Div.	East Paterson, N.J.			
81860	International Rectifier Corp.	El Segundo, Calif.	94310	Tru Ohm Prod. Div. of Model Engineering and Mfg. Co.	Chicago, Ill.			
82042	Barry Controls, Inc.	Watertown, Mass.	94682	Worcester Pressed Aluminum Corp.	Worcester, Mass.			
82142	Carter Parts Co.	Skokie, Ill.	95236	Allies Products Corp.	Miami, Fla.			
82170	Jeffers Electronics Division of Speer Carbon Co.	Du Bois, Pa.	95238	Continental Connector Corp.	Woodside, N.Y.			
82209	Allen B. DuMont Labs., Inc.	Clifton, N.J.	95263	Leecraft Mfg. Co., Inc.	New York, N.Y.			
82219	Maguire Industries, Inc.	Greenwich, Conn.	95264	Lerco Electronics, Inc.	Burbank, Calif.			
82229	Sylvania Electric Prod. Inc., Electronic Tube Div.	Emporium, Pa.	95265	National Coil Co.	Sheridan, Wyo.			
82376	Astron Co.	East Newark, N.J.	95275	Vitramon, Inc.	Bridgeport, Conn.			
82389	Switchcraft, Inc.	Chicago, Ill.						
82647	Metals and Controls, Inc., Div. of Texas Instruments, Inc., Spencer Prods.	Atleboro, Mass.						
82866	Research Products Corp.	Madison, Wis.						

00015-19
Revised: 6 December 1961

From: F.S.C. Handbook Supplements
H4-1 Dated October 1961
H4-2 Dated November 1961

THE FOLLOWING H-P VENDORS HAVE NO NUMBER ASSIGNED IN THE LATEST SUPPLEMENT TO THE FEDERAL SUPPLY CODE FOR MANUFACTURERS HANDBOOK:

0000F	Malco Tool and Die	Los Angeles, Calif.
0000I	Telefunken (c/o American Elite)	New York, N.Y.
0000L	Winchester Electronics, Inc.	Santa Monica, Calif.
0000M	Western Coil Div. of Automatic Ind., Inc.	Redwood City, Calif.
0000N	Nahm-Bros. Spring Co.	San Leandro, Calif.
0000P	Ty-Car Mfg. Co., Inc.	Holliston, Mass.
0000T	Texas Instruments, Inc., Metals and Controls Div.	Versailles, Ky.
0000U	Tower Mfg. Corp.	Providence, R.I.
0000W	Webster Electronics Co. Inc.	New York, N.Y.
0000X	Spruce Pine Mica Co.	Spruce Pine, N.C.
0000Y	Midland Mfg. Co. Inc.	Kansas City, Kans.
0000Z	Willow Leather Products Corp.	Newark, N.J.
000AA	British Radio Electronics Ltd.	Washington, D.C.
000BB	Precision Instrument Components Co.	Van Nuys, Calif.
000CC	Computer Diode Corp.	Lodi, N.J.
000DD	General Transistor	Los Angeles, Calif.
000EE	A. Williams Manufacturing Co.	San Jose, Calif.
000FF	Carmichael Corrugated Specialties	Richmond, Calif.
000GG	Goshen Die Cutting Service	Goshen, Ind.

PRINTED IN U.S.A.