

One scheme for Optimization of Pulsar Timing Arrays

Andrea Lommen, Sam Finn, Joe Simon, Ryan Anella, Brian Christy

Acknowledgments

The NANOGrav detection working group

Brief recap of Burt, Lommen & Finn (2011) results

- Burt, Lommen and Finn (2011): spend MORE time on the best pulsars, and LESS time on the worst pulsars.
- Analysis assumed $\sigma = \frac{O_0}{\sqrt{T}}$
- Ryan Anella's analysis adds realistic noise floor, and optimization results under various conditions.

This particular optimization optimizes for signal to noise. For use with a

The S/N ratio, ρ , for one pulsar is just

$$\rho = \frac{\tau}{\sigma}$$

 τ : GW signal in that pulsar

 σ : pulsar noise (rms).

Sum that up for all pulsars...

$$\hat{k}$$
: GW direction

$$\hat{n}_i$$
: pulsar direction

 N_p : number of pulsars in array

$$\overline{\rho^2(\hat{k})} \propto \sum_{j=1}^{N_p} \left(\frac{1 - \hat{k} \cdot \hat{n}_j}{\sigma_j} \right)^2$$

σ_j

is the thing we get to jigger...

$$\sigma = \frac{\sigma_0}{\sqrt{T}}$$

Not really fair...

Instead:

$$\sigma^2 = \frac{{\sigma_0}^2}{T} + Floor^2$$

TimeSpent (%)

Results for
Current
NANOGrav
Array

	47 Delama e la descrita CM		
	17 Pulsars + Isotropic GWs		
Pulsar Name	10 ns		
J0030+0451	0		
J0613-0200	0		
J1012+5307	0		
J1455-3330	0		
J1600-3053	0		
J1640+2224	0		
J1643-1224	0		
J1713+0747	52.56		
J1744-1134	0		
J1853+1308	0		
B1855+0900	0		
J1909-3744	47.44		
J1910+1256	0		
J1918-0642	0		
B1953+2900	0		
J2145-0750	0		
J2317+1439	0		

Results for Current NANOGrav Array

	TimeSpent (%)			
	17 Pulsars + Isotropic GWs			
	10 ns	80%		
Pulsar Name				
J0030+0451	0	3.87		
J0613-0200	0	1.47		
J1012+5307	0	0.30		
J1455-3330	0	0		
J1600-3053	0	4.42		
J1640+2224	0	0		
J1643-1224	0	0		
J1713+0747	52.56	39.79		
J1744-1134	0	3.27		
J1853+1308	0	1.73		
B1855+0900	0	8.30		
J1909-3744	47.44	29.93		
J1910+1256	0	0		
J1918-0642	0	3.05		
B1953+2900	0	0		
J2145-0750	0	2.71		
J2317+1439	0	1.17		

Overall / Current PTA (1)	8.98	1.56
---------------------------	------	------

Do we really expect the sources to be isotropically distributed?

- Vikram Ravi: No.
- Joe Simon: No.

Optimize for a source toward virgo

how much does distribution

			rimesp	ent (%)	
		17 Pulsars + Isotropic GWs		17 Pulsars + GWs only from Virgo	
Pulsar Name	Angle from Virgo Cluster (Deg)	10 ns	80%	10 ns	80%
J0030+0451	162.42	0	3.87	0	0
J0613-0200	93.85	0	1.47	0	3.12
J1012+5307	48.48	0	0.30	0	4.08
J1455-3330	58.12	0	0	0	0
J1600-3053	67.18	0	4.42	0	7.14
J1640+2224	60.67	0	0	0	1.16
J1643-1224	68.26	0	0	0	0
J1713+0747	70.34	52.56	39.79	85.73	51.35
J1744-1134	82.29	0	3.27	0	3.72
J1853+1308	93.30	0	1.73	0	1.23
B1855+0900	94.76	0	8.30	0	6.83
J1909-3744	105.98	47.44	29.93	14.27	20.09
J1910+1256	97.36	0	0	0	0
J1918-0642	103.86	0	3.05	0	1.29
B1953+2900	101.89	0	0	0	0
J2145-0750	139.89	0	2.71	0	0
J2317+1439	147.61	0	1.17	0	0

Overall / Current PTA (1)	8.98	1.56	10.13	1.63

TimeSpent (%)

What if you add a pulsar in the direction of Virgo?

	l	TimeSpent (%)			
		17 + 1 Pulsars +Isotropic GWs 17 +1 Pulsars + GWs only			Ws only from Virgo
Pulsar Name	Angle from Virgo Cluster (Deg)	10 ns	80%	10 ns	80%
J0030+0451	162.42	0	2.28	0	0
J0613-0200	93.85	0	1.21	0	0.87
J1012+5307	48.48	0	0.09	0	1.47
J1455-3330	58.12	0	0	0	0
J1600-3053	67.18	0	2.99	0	3.36
J1640+2224	60.67	0	0	0	0
J1643-1224	68.26	0	0	0	0
J1713+0747	70.34	38.19	30.53	31.22	30.82
J1744-1134	82.29	0	1.94	0	1.24
J1853+1308	93.30	0	0.72	0	0
B1855+0900	94.76	0	5.71	0	3.17
J1909-3744	105.98	26.46	22.04	0	11.41
J1910+1256	97.36	0	0	0	0
J1918-0642	103.86	0	1.67	0	0
B1953+2900	101.89	0	0	0	0
J2145-0750	139.89	0	1.33	0	0
J2317+1439	147.61	0	0.23	0	0
J1227+1243	0	35.34	29.25	68.78	47.67
Optimized/Unoptimized		6.97	1.54	9.46	1.66
Optimized 18 - Pulsar Array / Optimized 17 -		1.37	1.75	4.11	4.49
Pulsar Array			1		

Conclusion

- There are some pulsars we should be spending more time on, at the exclusion of others.
- All experiments to characterize the noise in pulsars are absolutely worth it. They have the potential to completely change the way we observe.
- Anisotropy of GW sources should be an ingredient in optimization schemes
- We should consider a targeted search for new pulsars toward Virgo/Coma/Fornax.