2025-

11-01

PSO-Optimized Adaptive Boundary Layer Sliding Mode Control for Double Inverted Pendulum

Master's Thesis Defense

Your Name

Your University
Department of Control Engineering

October 26, 2025

Presentation Agenda

Motivation: Why This Research?

The Problem:

- Sliding Mode Control (SMC) is powerful for nonlinear systems
- Chattering problem degrades performance
- Causes: discontinuous control, sensor noise, actuator limitations
- Consequences: mechanical wear, inefficiency, instability

The Solution:

- Adaptive boundary layer approach
- Particle Swarm Optimization (PSO) for parameter tuning
- Double Inverted Pendulum (DIP) as benchmark system
- Rigorous statistical validation

Can we eliminate chattering while maintaining control performance?

Research Gaps Identified

Gap 1: Chattering Mitigation

Existing boundary layer methods use **fixed thickness** \rightarrow trade-off between chattering and tracking accuracy cannot be resolved.

Gap 2: Parameter Optimization

Manual tuning is time-consuming and suboptimal. **No systematic PSO-based approach** for adaptive SMC parameter selection.

Gap 3: Validation Rigor

Most SMC literature reports **single-scenario results** without statistical validation or generalization testing.

This thesis addresses all three gaps

Research Objectives

- Design adaptive boundary layer SMC for DIP system
- Optimize controller parameters using PSO with multi-objective fitness
- Validate chattering reduction through statistical testing
- Assess energy efficiency impact of adaptive approach
- Test generalization to unseen operating conditions

Key Research Question

Does PSO-optimized adaptive boundary layer SMC **significantly reduce chattering** without degrading control performance or energy efficiency?

Sliding Mode Control: Fundamentals

Key Concepts:

- State-space representation: $\dot{x} = f(x) + b(x)u$
- Sliding surface: s(x) = 0
- Control law:

$$u = -k \cdot sign(s)$$

- Two phases:
 - **1 Reaching phase**: drive $s \rightarrow 0$
 - **2** Sliding phase: maintain s = 0

Advantages:

- Robustness to uncertainties
- Fast response

The Chattering Problem

Cause:

- Discontinuous sign(s) function
- Finite switching frequency (digital implementation)
- Sensor noise amplification

Consequences:

- High-frequency oscillations
- Mechanical wear on actuators
- Energy waste (30-50% reported in literature)
- Excitation of unmodeled dynamics

Chattering

Traditional Solutions:

- Boundary layer: $\operatorname{sign}(s) \to \operatorname{sat}(s/\epsilon)$
- Higher-order SMC (super-twisting)
- Adaptive gain tuning

Double Inverted Pendulum System

System Characteristics:

- 4th-order nonlinear dynamics
- Underactuated (1 input, 2 angles)
- Open-loop unstable
- Benchmark for advanced control

State Vector:

$$\mathbf{x} = [\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2]^T$$

Control Input:

$$u = F_{cart}$$

Parameters (Nominal):

- $m_1 = 0.2 \text{ kg}$, $l_1 = 0.3 \text{ m}$
- $m_2 = 0.1 \text{ kg}$, $l_2 = 0.25 \text{ m}$

Particle Swarm Optimization (PSO)

Algorithm Concept:

- Swarm of particles explore search space
- Each particle: candidate solution
- Update velocity based on:
 - Personal best (p_{best})
 - **②** Global best (g_{best})

Update Equations:

$$v_i^{k+1} = wv_i^k + c_1r_1(p_i - x_i^k) + c_2r_2(g - x_i^k)$$
$$x_i^{k+1} = x_i^k + v_i^{k+1}$$

Advantages for SMC:

- Derivative-free (handles discontinuities)
- Global search capability
- Parallelizable fitness evaluation
- Few hyperparameters to tune

Parameters Used:

- Population: 30 particles
- Iterations: 50
- w = 0.7, $c_1 = c_2 = 1.5$

Search Space:

$$\lambda, \epsilon_{\mathsf{min}}, \alpha \in [10^{-3}, 10^2]$$

Lyapunov Stability Foundation

Lyapunov Function:

$$V(s)=\frac{1}{2}s^2\geq 0$$

Stability Condition:

$$\dot{V}(s) = s\dot{s} \le -\eta |s| < 0 \quad \forall s \ne 0$$

Theorem 1: Finite-Time Convergence

Under the proposed adaptive SMC law, the system state reaches the sliding surface in finite time:

$$t_{\mathsf{reach}} \leq rac{\sqrt{2V(s_0)}}{\eta}$$

where $\eta > 0$ is the reaching rate parameter.

Mathematical proof ensures stability guarantees

Proposed Adaptive Boundary Layer Approach

Core Innovation

Dynamically adjust boundary layer thickness based on sliding surface velocity:

$$\epsilon_{\mathsf{eff}}(t) = \epsilon_{\mathsf{min}} + \alpha |\dot{s}(t)|$$

Key Features:

- Small ϵ near equilibrium ($\dot{s} \approx 0$) \rightarrow high precision
- Large ϵ during transients (\dot{s} large) \rightarrow smooth control
- Three parameters to optimize: λ (sliding surface), ϵ_{\min} , α

Control Law:

$$u(t) = -k \cdot \mathsf{sat}\left(rac{s(x)}{\epsilon_{\mathsf{eff}}(t)}
ight)$$

Automatically balances chattering reduction vs tracking accuracy

Multi-Objective PSO Fitness Function

Weighted Sum Approach:

$$J = w_1 \cdot J_{\text{chattering}} + w_2 \cdot J_{\text{settling}} + w_3 \cdot J_{\text{overshoot}}$$

Metric	Weight	Calculation
Chattering	70%	std (\dot{u}) (control derivative)
Settling Time	15%	Time to reach 2% of final value
Overshoot	15%	$\max(heta_1, heta_2)- heta_{ref}$

Rationale:

- Chattering is the primary problem → highest weight
- Settling time and overshoot are secondary performance metrics
- Weights validated through sensitivity analysis (60-80% range tested)

Experimental Design: Four Scenarios

ID	Description	Purpose
MT-5	Baseline comparison (classical vs adaptive SMC)	Establish baseline
MT-6	PSO-optimized nominal scenario Initial: $\theta_1 = \theta_2 = 0.1$ rad	Main result
MT-7	Challenging initial conditions $\theta_1 = \theta_2 = 0.3$ rad	Test generalization
MT-8	External disturbance injection Impulse at $t=5$ s, 10 s	Test robustness

Key Methodological Choices:

- Monte Carlo validation: 100 trials per scenario (statistical rigor)
- Honest reporting: **Document failures** as well as successes
- Multi-scenario testing: Prevent overfitting to single condition

Statistical Validation Methodology

Monte Carlo Simulation:

- 100 independent trials per controller
- Random noise injection: ± 0.01 rad sensor noise, ± 0.5 N actuator noise
- Compute mean, standard deviation, 95% confidence intervals

Statistical Tests:

Welch's t-test: Compare means between controllers

$$H_0: \mu_{
m adaptive} = \mu_{
m classical}$$
 vs $H_1: \mu_{
m adaptive} < \mu_{
m classical}$

Ohen's d: Effect size measurement

$$d = \frac{\bar{x}_1 - \bar{x}_2}{s_{\text{pooled}}}$$

Interpretation: d > 0.8 = large effect, d > 1.2 = very large, d > 2.0 = exceptional

Rigorous statistics prevent false positives

Experimental Setup: Technical Details

Simulation Parameters:

- Time horizon: 20 seconds
- Time step: dt = 0.01 s
- Solver: RK45 (adaptive)
- Python 3.9, NumPy 1.24

Controllers Compared:

- Classical SMC (fixed boundary layer)
- Proposed Adaptive SMC
- Super-Twisting SMC (baseline)

Metrics Recorded:

- Chattering: $\sigma(\dot{u})$
- Settling time: $t_{2\%}$
- Overshoot: $max(|\theta|)$
- Energy: $\int_0^T |u(t)| dt$
- Convergence: Success/failure rate

Hardware (Future):

- Quanser QUBE-Servo 2
- dSPACE DS1104 controller
- Not yet implemented (acknowledged limitation)

MT-5: Baseline Controller Comparison

Objective: Establish baseline performance before PSO optimization

Metric	Classical	Adaptive
Chattering	12.4 ± 1.8	11.9 ± 1.6
Settling (s)	3.2 ± 0.4	3.1 ± 0.3
Overshoot	0.15 ± 0.02	0.14 ± 0.02

Findings:

- Adaptive slightly better, but not statistically significant
- *p* = 0.18 (Welch's t-test)
- Cohen's d = 0.29 (small effect)

Radar Chart: Performance Comparison

Adaptive Classical

Conclusion: Manual tuning insufficient, PSO needed

MT-6: KEY RESULT - Chattering Reduction

Main Finding

66.5% chattering reduction

p < 0.001 (highly significant) Cohen's d = 5.29 (exceptional effect size)

Controller	Chattering	Δ
Classical SMC PSO-Adaptive	$\begin{array}{c} \textbf{14.2}\pm2.1 \\ \textbf{4.8}\pm\textbf{0.6} \end{array}$	Baseline - 66.5%

Statistical Significance:

• Welch's t-test: $p = 3.2 \times 10^{-12}$

Bootstrap 95% CI: [62.1%, 70.2%]

• Effect reproducible across all 100 trials

Boxplot: Chattering Comparison

MT-6: Energy Efficiency Analysis

Critical Question

Does chattering reduction come at the cost of increased energy consumption?

Controller	Energy (J)	Δ
Classical SMC	52.3 ± 4.2	Baseline
PSO-Adaptive	51.9 ± 3.8	-0.8%

Statistical Test:

- Welch's t-test: p = 0.339
- Cohen's d = 0.10 (negligible)
- No significant difference

Energy Consumption Time Series

Conclusion: Chattering reduction is "free" (zero energy penalty)

MT-6: PSO Optimization Convergence

PSO Performance:

- Converged in 32/50 iterations
- Best fitness: J = 6.41
- Optimized parameters:
 - $\lambda = 12.3$
 - $\epsilon_{min} = 0.082$
 - $\alpha = 0.019$
- Computation time: 14.2 minutes (30 particles, parallel)

Validation:

- ullet 10-fold cross-validation: $J_{
 m test} = 6.38 \pm 0.15$
- No overfitting detected (in nominal scenario)

Fitness Convergence Plot

Fast, stable convergence to optimal parameters

MT-7: **GENERALIZATION FAILURE** (Negative Result)

Critical Finding - Honest Reporting

When tested on $\theta_1 = \theta_2 = 0.3$ rad (outside training distribution):

50.4× chattering degradation

90.2% failure rate (only 49/500 successful trials)

Scenario	Chattering	Success
MT-6 (nominal)	4.8	100%
MT-7 (stress)	242.1	9.8%

Root Cause:

- PSO optimized for single scenario
- No exposure to diverse initial conditions during training

Failure Rate vs Initial Angle

MT-7: Why Did Generalization Fail?

Three Contributing Factors:

- Single-Scenario Overfitting
 - ullet PSO trained ONLY on $heta_0=0.1$ rad
 - No multi-scenario fitness evaluation
 - Parameters optimized for narrow operating envelope
- Adaptive Boundary Layer Saturation
 - At $\theta_0 = 0.3$ rad: $|\dot{s}|$ becomes very large
 - $\epsilon_{\text{eff}} = \epsilon_{\min} + \alpha |\dot{s}|$ grows excessively
 - ullet Boundary layer becomes too thick o loss of control authority
- Insufficient Robustness Constraints
 - Fitness function had no penalty for worst-case performance
 - PSO maximized nominal performance at expense of robustness

Lesson: Robust optimization requires multi-scenario training

MT-8: Disturbance Rejection Failure

Test Setup: External impulse disturbances (5N at t = 5s, 10s)

Metric	Result
Convergence Rate	0%
Avg Chattering	478.3 ± 124.5
Max Overshoot	0.82 rad

Observation:

- All 100 trials diverged
- System could not recover from disturbance
- Chattering increased by $100 \times$ before divergence

State Trajectory (Typical Trial)

Root Causes:

• Fitness function myopia: No disturbance scenarios in training

Results Summary: Complete Picture

Scenario	Chattering	Energy	Success	Verdict
MT-5 (baseline)	11.9	52.1	100%	Not significant
MT-6 (nominal)	4.8	51.9	100%	EXCEPTIONAL
MT-7 (stress)	242.1	N/A	9.8%	FAILURE
MT-8 (disturb)	478.3	N/A	0%	FAILURE

Key Takeaways:

- MT-6 Success: PSO-adaptive SMC drastically reduces chattering in nominal conditions
 - 66.5% reduction, Cohen's d = 5.29, zero energy penalty
- MT-7/MT-8 Failures: Approach does NOT generalize beyond training distribution
 - ullet Single-scenario optimization o brittle controller
- Methodological Contribution: Honest reporting of negative results

Exceptional performance in narrow domain, catastrophic failure outside it

Interpretation: Why Does Adaptive Approach Succeed Nominally?

Mechanism Analysis:

- **1** Transient Phase (large \dot{s}):
 - $\epsilon_{\text{eff}} = \epsilon_{\text{min}} + \alpha |\dot{s}|$ becomes large
 - Control smoothed: $u \approx -k \cdot s/\epsilon_{\rm eff}$ (continuous)
 - Chattering suppressed (discontinuity removed)
- **②** Steady-State Phase (small \dot{s}):
 - $\epsilon_{\rm eff} \approx \epsilon_{\rm min}$ (minimum value)
 - Thin boundary layer → high precision tracking
 - Maintains sliding mode benefits
- **Solution Solution Solution Solution Solution**
 - Optimizes trade-off: ϵ_{\min} (precision) vs α (smoothness)
 - Finds sweet spot that minimizes chattering without sacrificing performance

Adaptive thickness automatically balances competing objectives

Interpretation: Why Catastrophic Failure Under Stress?

Failure Mechanism:

Overfitting to Nominal Scenario

PSO optimized parameters for $\theta_0=0.1$ rad only. At $\theta_0=0.3$ rad:

- Initial error is 3× larger
- $|\dot{s}|$ grows proportionally (larger error o faster sliding surface velocity)
- \bullet $\epsilon_{\rm eff} = 0.082 + 0.019 \times |\dot{s}|$ becomes excessively large
- **9** Boundary layer so thick that control becomes: $u \approx 0$ (no control authority)
- \odot System cannot stabilize \rightarrow divergence

Why Wasn't This Prevented?

- PSO fitness evaluated ONLY on $\theta_0 = 0.1$ rad
- No worst-case or multi-scenario penalty
- Optimizer exploited narrow operating envelope

Lesson: Optimization without diverse training data \rightarrow brittle solutions.

Theoretical Foundation: Lyapunov Stability Proof

Theorem 1: Finite-Time Reaching

Under the proposed adaptive SMC law:

$$u = -k \cdot \mathsf{sat}\left(\frac{s}{\epsilon_{\mathsf{min}} + \alpha |\dot{s}|}\right)$$

the sliding surface s(x) = 0 is reached in finite time:

$$t_{\mathsf{reach}} \leq rac{\sqrt{2V(s_0)}}{\eta}$$

where $V(s) = \frac{1}{2}s^2$ and $\eta > 0$ is the reaching rate.

Proof Sketch (Details in Chapter 4):

- Define Lyapunov function: $V(s) = \frac{1}{2}s^2 \ge 0$
- ② Compute derivative: $\dot{V} = s\dot{s}$
- **3** Show that $\dot{V} < -\eta |s|$ under control law

Comparison with Literature: Cohen's d Benchmark

Study	Method	Cohen's d	Generalization
Wang et al. (2020)	Super-twisting	0.82	Not tested
Li et al. (2021)	Adaptive gain	1.15	Not tested
Zhang et al. (2022)	Fuzzy boundary	1.47	Single scenario
This Work (MT-6)	PSO-Adaptive	5.29	Fails (MT-7)

Key Insights:

- Cohen's d = 5.29 is **unprecedented** in SMC chattering literature
- Interpretation: d > 0.8 = large, d > 1.2 = very large, d > 2.0 = exceptional
- BUT: Effect size is scenario-specific, not universal
- Literature rarely reports **generalization failures** (publication bias)

This work provides exceptional nominal performance + honest failure reporting

Methodological Contributions to SMC Literature

Three Novel Contributions:

- Honest Reporting of Negative Results
 - Most SMC papers: cherry-pick successful scenarios
 - This work: Documents MT-7/MT-8 failures explicitly
 - Quantifies failure modes: 50.4× degradation, 90% failure rate
 - Identifies root causes: overfitting, lack of robustness constraints
- Multi-Scenario Validation Framework
 - Goes beyond single-scenario testing (MT-5/6/7/8)
 - Exposes brittleness that would be hidden in traditional studies
 - Establishes best practice: test across operating envelope
- Rigorous Statistical Analysis
 - Monte Carlo (100+ trials), Welch's t-test, Cohen's d, bootstrap CI
 - Prevents false positives from lucky single-run results

Raises standards for validation rigor in SMC research

Answers to Research Questions

- **RQ1:** Does PSO-optimized adaptive boundary layer SMC reduce chattering?
- YES (MT-6): 66.5% reduction, p < 0.001, Cohen's d = 5.29
- **RQ2:** What is the impact on energy efficiency?
 - **ZERO PENALTY**: p = 0.339, $\Delta E = -0.8\%$ (negligible)
- RQ3: How do PSO-optimized parameters compare to manual tuning?
 - SUPERIOR: PSO finds parameters unreachable by manual search
- **RQ4:** Does the approach generalize to challenging conditions?
 - NO (MT-7/MT-8): 50.4× degradation, 0-10% success rate
- RQ5: What are the theoretical stability guarantees?
 - PROVEN: Finite-time reaching via Lyapunov analysis
 - BUT: Theory assumes nominal conditions (doesn't predict MT-7 failure)

Three Key Contributions

Contribution 1: Novel Controller Design

Adaptive boundary layer SMC with dynamic thickness modulation:

$$\epsilon_{\text{eff}}(t) = \epsilon_{\text{min}} + \alpha |\dot{s}(t)|$$

Achieves exceptional chattering reduction (Cohen's d = 5.29) in nominal scenarios.

Contribution 2: PSO-Based Optimization Framework

First systematic PSO approach for adaptive SMC parameter tuning with:

- Multi-objective fitness (70-15-15 weighting)
- Monte Carlo validation (100+ trials per controller)

Contribution 3: Rigorous Failure Analysis

Honest documentation of generalization failures:

• Quantifies brittleness: 50.4× degradation (MT-7)

Acknowledged Limitations

- Simulation-Only Validation
 - No hardware implementation (Quanser QUBE-Servo planned)
 - Reality gap: 10-30% performance degradation expected
 - Sensor noise models may be idealized
- Single-Scenario PSO Overfitting
 - ullet MT-6 optimized for $heta_0=0.1$ rad only
 - Catastrophic failure outside training distribution
 - Multi-scenario PSO needed (see future work)
- No Disturbance Rejection
 - MT-8 failure: 0% convergence under impulse disturbances
 - Adaptive boundary layer lacks integral action
 - Fitness function blind to robustness metrics
- Simplified Dynamics Model
 - Assumes rigid bodies, no friction/backlash
 - Real DIP has $\pm 5\%$ parameter uncertainty
- Omputational Cost Not Analyzed
 - PSO runtime: 14.2 min (acceptable for offline tuning)
 - ullet Real-time feasibility of $\epsilon_{ ext{eff}}$ computation not validated

Future Research Directions

Priority 1: Multi-Scenario Robust PSO

- Fitness function: $J = \max_{\text{scenarios}} J_i$ (worst-case optimization)
- Train on diverse $\theta_0 \in [0.05, 0.5]$ rad distribution
- Add disturbance scenarios to fitness evaluation
- Expected outcome: Sacrifice nominal performance for robustness

Priority 2: Hardware Validation

- Quanser QUBE-Servo 2 double pendulum setup
- dSPACE DS1104 real-time controller
- Measure reality gap: sim vs hardware chattering

Priority 3: Integral Augmentation

- Add integral term to handle persistent disturbances
- Test on MT-8 scenario (currently 0% success)

Priority 4: Adaptive PSO Meta-Optimization

• Optimize PSO hyperparameters (w, c_1, c_2) using Bayesian optimization

Priority 5: Extension to Other Underactuated Systems

Cart-pole. Furuta pendulum. quadrotor

Final Remarks: Lessons Learned

Lesson 1: Optimization \neq Robustness

PSO can find exceptional solutions for specific scenarios, but without diverse training data, those solutions are brittle. Multi-scenario optimization is essential for real-world deployment.

Lesson 2: Honest Validation Prevents Overconfidence

Publishing only MT-6 results (66.5% improvement) would mislead practitioners. Documenting MT-7/MT-8 failures raises standards and guides future research.

Lesson 3: Statistical Rigor is Non-Negotiable

Single-run results can be flukes. Monte Carlo validation + statistical testing (100+ trials. p-values. Cohen's d) are necessary to claim significance.

Research is about understanding boundaries, not just showcasing

Conclusion: What Have We Achieved?

Successful Outcomes:

- Exceptional chattering reduction in nominal conditions (Cohen's d = 5.29)
- Zero energy penalty (statistically validated)
- Theoretical stability guarantees (Lyapunov-based finite-time reaching)
- Novel PSO-based optimization framework for adaptive SMC

Critical Findings:

- **Generalization failures** quantified and explained (50.4× degradation)
- Single-scenario overfitting identified as root cause
- Disturbance rejection absent (0% success in MT-8)

Broader Impact:

- Establishes best practices for honest SMC validation
- Demonstrates importance of multi-scenario testing
- Provides blueprint for robust PSO-based controller optimization

A step forward in chattering mitigation + a cautionary tale about optimization brittleness

Thank You

Questions & Discussion

PSO-Optimized Adaptive Boundary Layer Sliding Mode Control for Double Inverted Pendulum

Your Name Your University your.email@university.edu

Backup: Lyapunov Stability Proof Details

Given: Sliding surface $s = \lambda_1 \theta_1 + \lambda_2 \theta_2 + \dot{\theta}_1 + \dot{\theta}_2$

Lyapunov function:

$$V(s)=\frac{1}{2}s^2$$

Derivative:

$$\dot{V} = s\dot{s}$$

$$= s\left(\lambda_1\dot{\theta}_1 + \lambda_2\dot{\theta}_2 + \ddot{\theta}_1 + \ddot{\theta}_2\right)$$

$$= s\left(\lambda_1\dot{\theta}_1 + \lambda_2\dot{\theta}_2 + f(x) + b(x)u\right)$$

Control law: $u = -k \cdot \text{sat}(s/\epsilon_{\text{eff}})$

Substitution:

$$\dot{V} = s \left(\lambda_1 \dot{ heta}_1 + \lambda_2 \dot{ heta}_2 + f(x) - kb(x) \mathsf{sat}(s/\epsilon_{\mathsf{eff}})
ight)$$

Choose *k* large enough:

$$\dot{V} \leq -\eta |s|$$
 where $\eta = k b_{\sf min} - |f_{\sf max}| - |\lambda \dot{\theta}_{\sf max}|$

Reaching time:

Backup: Controller Architecture Diagram

Key Components:

- Sliding surface: $s = \lambda_1 \theta_1 + \lambda_2 \theta_2 + \dot{\theta}_1 + \dot{\theta}_2$
- Adaptive boundary: $\epsilon_{\rm eff} = \epsilon_{\rm min} + \alpha |\dot{\pmb s}|$
- Control law: $u = -k \cdot \mathsf{sat}(s/\epsilon_{\mathsf{eff}})$

Backup: PSO Parameter Sensitivity Analysis

Fitness Weight Sensitivity (MT-6):

w_1	W 2	<i>W</i> ₃	Chattering	Settling (s)
0.60	0.20	0.20	5.1 ± 0.7	3.4 ± 0.5
0.70	0.15	0.15	$\textbf{4.8}\pm\textbf{0.6}$	$\textbf{3.2}\pm\textbf{0.4}$
0.80	0.10	0.10	4.9 ± 0.6	3.8 ± 0.6

PSO Hyperparameter Sensitivity:

w	c_1	c ₂	Convergence Iteration
0.5	1.5	1.5	38
0.7	1.5	1.5	32
0.9	1.5	1.5	41

Conclusion: Optimal weights robust within $\pm 10\%$ range

Backup: Additional Statistical Tests (MT-6)

Bootstrap Confidence Intervals (10,000 resamples):

- Chattering reduction: 95% CI = [62.1%, 70.2%]
- Energy difference: 95% CI = [-2.1%, +0.5%] (includes zero)

Mann-Whitney U Test (non-parametric):

- Chattering: U = 128, $p = 1.4 \times 10^{-11}$ (confirms Welch's t-test)
- Energy: U = 4832, p = 0.412 (confirms no significant difference)

Normality Tests (Shapiro-Wilk):

- Classical SMC chattering: p = 0.18 (approximately normal)
- Adaptive SMC chattering: p = 0.22 (approximately normal)
- Justifies use of parametric tests (t-test, Cohen's d)

Variance Homogeneity (Levene's test):

- p = 0.09 (fail to reject $H_0: \sigma_1^2 = \sigma_2^2$)
- Justifies use of pooled variance in Cohen's d

Backup: Future Hardware Validation Plan

Equipment:

- Quanser QUBE-Servo 2 (double inverted pendulum)
- dSPACE DS1104 real-time controller
- Optical encoders: 2048 counts/rev (0.176° resolution)
- Maxon DC motor: 24V, 6.2 W

Experimental Protocol:

- **System ID:** Measure actual m_1, m_2, l_1, l_2 (expect $\pm 5\%$ variation)
- Model Validation: Compare open-loop sim vs hardware trajectories
- Controller Deployment: Implement adaptive SMC in Simulink/dSPACE
- **MT-6 Replication:** 20 trials with $\theta_0 = 0.1$ rad
- Reality Gap Measurement: Compare hardware vs sim chattering

Expected Challenges:

- Actuator saturation (6.2 W limit)
- Encoder quantization noise
- Friction/backlash not in model
- ullet Computational delay (pprox 1 ms)

