

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Prädikatenlogik: Semantik

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Die Signatur $\Sigma = \{k(\cdot), q(\cdot), d(\cdot), kl(\cdot), gr(\cdot), in(\cdot,\cdot)\}$ liegt fest.

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Die Signatur $\Sigma = \{k(\cdot), q(\cdot), d(\cdot), kl(\cdot), gr(\cdot), in(\cdot,\cdot)\}$ liegt fest.

Die Wahrheit ist abhängig von

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Die Signatur $\Sigma = \{k(\cdot), q(\cdot), d(\cdot), kl(\cdot), gr(\cdot), in(\cdot,\cdot)\}$ liegt fest.

Die Wahrheit ist abhängig von

▶ einer Interpretation $\mathcal{D} = (D, I)$

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Die Signatur $\Sigma = \{k(\cdot), q(\cdot), d(\cdot), kl(\cdot), gr(\cdot), in(\cdot, \cdot)\}$ liegt fest.

Die Wahrheit ist abhängig von

- einer Interpretation $\mathcal{D} = (D, I)$
- ► einer Variablenbelegung β

Einführendes Beispiel 2


```
int max = 0;
if (a.length > 0) max = a[0];
int i = 1;
while (i < a.length) {
    if (a[i] > max) max = a[i];
    ++i;
}
```

Einführendes Beispiel 2


```
1    int max = 0;
2    if ( a.length > 0 ) max = a[0];
3    int i = 1;
4    while ( i < a.length ) {
5        if ( a[i] > max ) max = a[i];
6        ++i;
7    }
Nachbedingung:
(\forall int j;(j>=0 & j<a.length -> max>=a[j])
```

Einführendes Beispiel 2


```
int max = 0:
       if (a.length > 0) max = a[0];
3
       int i = 1:
       while ( i < a.length ) {
5
          if (a[i] > max) max = a[i];
6
         ++i:
  Nachbedingung:
   (\forall int j;(j \ge 0 \& j < a.length <math>-> max > = a[j])
  &
   (a.length>0 \rightarrow
   \exists int j:(j>=0 \& j < a.length \& max=a[j]))
```


Definition

Es sei Σ eine Signatur der PL1.

Definition

Es sei Σ eine Signatur der PL1.

Eine Interpretation \mathcal{D} von Σ ist ein Paar (D, I) mit

1. D ist eine beliebige, nichtleere Menge

Definition

Es sei Σ eine Signatur der PL1.

- 1. D ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die

Definition

Es sei Σ eine Signatur der PL1.

- 1. D ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - ▶ jeder Konstanten c ein Element $I(c) \in D$

Definition

Es sei Σ eine Signatur der PL1.

- 1. D ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - ▶ jeder Konstanten c ein Element $I(c) \in D$
 - ▶ für $n \ge 1$: jedem n-stelligen Funktionssymbol f eine Funktion $I(f): D^n \to D$

Definition

Es sei Σ eine Signatur der PL1.

- 1. *D* ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - ▶ jeder Konstanten c ein Element $I(c) \in D$
 - ▶ für $n \ge 1$: jedem n-stelligen Funktionssymbol f eine Funktion $I(f): D^n \to D$
 - ▶ jedem 0-stelligen Prädikatsymbol P einen Wahrheitswert $I(P) \in \{\mathbf{W}, \mathbf{F}\}$

Definition

Es sei Σ eine Signatur der PL1.

- 1. *D* ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - ▶ jeder Konstanten c ein Element $I(c) \in D$
 - ▶ für $n \ge 1$: jedem n-stelligen Funktionssymbol f eine Funktion $I(f): D^n \to D$
 - ▶ jedem 0-stelligen Prädikatsymbol P einen Wahrheitswert $I(P) \in \{\mathbf{W}, \mathbf{F}\}$
 - für n ≥ 1: jedem n-stelligen Prädikatsymbol p eine n-stellige Relation I(p) ⊆ Dⁿ zuordnet.

Beispiel-Interpretation (Tarski's World)

$$P_{\Sigma} = \{k(), q(), d(), kl(), gr(), in(,)\}$$

$$D_{Bsp} = \{Q_1, \dots, Q_6\} \cup \{K_1, K_2, K_3, D_1, D_2, D_3\}$$

$$I_{Bsp}(q) = \{Q_1, \dots, Q_6\}, I_{Bsp}(k) = \{K_1, K_2, K_3\}, I_{Bsp}(d) = \{D_1, D_2, D_3\}$$

$$I_{Bsp}(in) = \{(K_1, Q_1), (K_1, Q_3), (K_2, Q_1), (K_2, Q_2), (K_3, Q_2), (K_3, Q_3), (D_3, D_1), (Q_5, D_2)\}$$

Variablenbelegung

Definition

Es sei (D, I) eine Interpretation von Σ .

Eine *Variablenbelegung* (oder kurz *Belegung* über *D*) ist eine Funktion

$$\beta$$
 : $Var \rightarrow D$.

Variablenbelegung

Definition

Es sei (D, I) eine Interpretation von Σ .

Eine *Variablenbelegung* (oder kurz *Belegung* über *D*) ist eine Funktion

$$\beta$$
 : $Var \rightarrow D$.

Zu β , $x \in Var$ und $d \in D$ definieren wir die *Modifikation* von β an der Stelle x zu d:

$$\beta_x^d(y) = \begin{cases} d & \text{falls } y = x \\ \beta(y) & \text{falls } y \neq x \end{cases}$$

Auswertung von Termen

Definition Auswertungsfunktion

Sei (D, I) Interpretation von Σ , β Variablenbelegung über D. Wir definieren eine Funktion $val_{D,I,\beta}$, mit

$$val_{D,I,eta}(t) \in D$$
 für $t \in Term_{\Sigma}$ $val_{D,I,eta}(A) \in \{\mathbf{W},\mathbf{F}\}$ für $A \in For_{\Sigma}$

Auswertung von Termen

Definition Auswertungsfunktion

Sei (D, I) Interpretation von Σ , β Variablenbelegung über D. Wir definieren eine Funktion $val_{D,I,\beta}$, mit

$$val_{D,I,eta}(t) \in D$$
 für $t \in \mathit{Term}_{\Sigma}$ $val_{D,I,eta}(A) \in \{\mathbf{W},\mathbf{F}\}$ für $A \in \mathit{For}_{\Sigma}$

Definition Auswertung von Termen

$$\begin{array}{lll} \mathit{val}_{D,I,\beta}(x) & = & \beta(x) \text{ für } x \in \mathit{Var} \\ \mathit{val}_{D,I,\beta}(f(t_1,\ldots,t_n)) & = & (\mathit{I}(f))(\mathit{val}_{D,I,\beta}(t_1),\ldots,\mathit{val}_{D,I,\beta}(t_n)) \end{array}$$

1.
$$val_{D,I,\beta}(\mathbf{1}) = \mathbf{W}$$

 $val_{D,I,\beta}(\mathbf{0}) = \mathbf{F}$
 $val_{D,I,\beta}(s \doteq t) :=$

1.
$$val_{D,I,\beta}(\mathbf{1}) = \mathbf{W}$$

 $val_{D,I,\beta}(\mathbf{0}) = \mathbf{F}$
 $val_{D,I,\beta}(s \doteq t) := \begin{cases} \mathbf{W} \text{ falls } val_{D,I,\beta}(s) = val_{D,I,\beta}(t) \\ \mathbf{F} \text{ sonst} \end{cases}$

1.
$$val_{D,I,\beta}(\mathbf{1}) = \mathbf{W}$$
 $val_{D,I,\beta}(\mathbf{0}) = \mathbf{F}$
 $val_{D,I,\beta}(s \doteq t) := \begin{cases} \mathbf{W} \text{ falls } val_{D,I,\beta}(s) = val_{D,I,\beta}(t) \\ \mathbf{F} \text{ sonst} \end{cases}$
 $val_{D,I,\beta}(P) := I(P) \text{ für 0-stellige Prädikate } P$
 $val_{D,I,\beta}(p(t_1,\ldots,t_n)) := I(P) \text{ für 0-stellige Prädikate } P$


```
1. val_{D,I,\beta}(\mathbf{1}) = \mathbf{W}
val_{D,I,\beta}(\mathbf{0}) = \mathbf{F}
val_{D,I,\beta}(s \doteq t) := \begin{cases} \mathbf{W} \text{ falls } val_{D,I,\beta}(s) = val_{D,I,\beta}(t) \\ \mathbf{F} \text{ sonst} \end{cases}
val_{D,I,\beta}(P) := I(P) \text{ für 0-stellige Prädikate } P
val_{D,I,\beta}(p(t_1,\ldots,t_n)) := \begin{cases} \mathbf{W} \text{ falls } (val_{D,I,\beta}(t_1),\ldots,val_{D,I,\beta}(t_n)) \in I(p) \\ \mathbf{F} \text{ sonst} \end{cases}
```


Definition		

Definition

2. $val_{D,I,\beta}(X)$ für $X \in \{\neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B\}$ wie in der Aussagenlogik.

- 2. $val_{D,l,\beta}(X)$ für $X \in \{\neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B\}$ wie in der Aussagenlogik.
- 3. $val_{D,I,\beta}(\forall xA) :=$

```
\left\{ \begin{array}{l} \textbf{W} \text{ falls für alle } d \in \textit{D} : \textit{val}_{\textit{D},\textit{I},\beta_{\textit{x}}^{\textit{d}}}(\textit{A}) = \textbf{W} \\ \textbf{F} \text{ sonst} \end{array} \right.
```


- 2. $val_{D,l,\beta}(X)$ für $X \in \{\neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B\}$ wie in der Aussagenlogik.
- 3. $val_{D,I,\beta}(\forall xA) :=$ $\begin{cases} \mathbf{W} \text{ falls für alle } d \in D : val_{D,I,\beta_x^d}(A) = \mathbf{W} \\ \mathbf{F} \text{ sonst} \end{cases}$

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$egin{aligned} extit{val}_{\mathcal{D}_{Bsp},eta}(\ x\) &= Q_1 \in \emph{I}(q), \ ext{also} \ extit{val}_{\mathcal{D}_{Bsp},eta}(\ q(x)\) &= \mathbf{W}. \end{aligned}$$

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$egin{aligned} extit{val}_{\mathcal{D}_{\mathcal{B}\mathsf{sp}},eta}(\ x\) &= Q_1 \in \mathit{I}(q), \ ext{also} \ extit{val}_{\mathcal{D}_{\mathcal{B}\mathsf{sp}},eta}(\ q(x)\) &= \mathbf{W}. \end{aligned}$$

Sei die Interpretation $\mathcal{D}_{Bsp} = (D_{Bsp}, I_{Bsp})$ und die Variablenbelegung $\beta(x) = Q_1$. Werte darin die Formel aus:

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$egin{aligned} extit{val}_{\mathcal{D}_{\mathcal{B}sp},eta}(\ x\) &= Q_1 \in \emph{I}(q) \ ext{also} \ extit{val}_{\mathcal{D}_{\mathcal{B}cp},eta}(\ q(x)\) &= \mathbf{W}. \end{aligned}$$

 $egin{aligned} \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},eta}(\ x\) &= \mathit{Q}_1 \in \mathit{I}(q), \\ \mathsf{also} & (\mathit{K}_1, \mathit{Q}_1) \in \mathit{I}_{\mathit{Bsp}}(\mathit{in}) \ \mathsf{und} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},eta}(\ q(x)\) &= \mathbf{W}. \end{aligned}$ Wähle K_1 als Belegung für y .

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$val_{\mathcal{D}_{Bsp},\beta}(\ x\)=Q_1\in I(q),$$
 also
$$val_{\mathcal{D}_{Bsp},\beta}(\ q(x)\)=\mathbf{W}.$$
 Wähle K_1 als Belegung für y .
$$(K_1,Q_1)\in I_{Bsp}(in) \text{ und } K_1\in I_{Bsp}(kl),$$
 also
$$val_{\mathcal{D}_{Bsp},\beta_{V}^{K_1}}(\ (in(y,x)\wedge kl(y))\)=\mathbf{W},$$

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$\begin{array}{l} \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ x\) = \mathit{Q}_1 \in \mathit{I}(q), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \mathit{q}(x)\) = \mathbf{W}. \\ \end{array} \begin{array}{l} \mathsf{W\ddot{a}hle}\ \mathit{K}_1 \ \mathit{als}\ \mathsf{Belegung}\ \mathsf{f\ddot{u}r}\ \mathit{y}. \\ (\mathit{K}_1,\mathit{Q}_1) \in \mathit{I}_{\mathit{Bsp}}(\mathit{in})\ \mathsf{und} \\ \mathit{K}_1 \in \mathit{I}_{\mathit{Bsp}}(\mathit{kI}), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta_y^{\mathit{K}_1}}(\ (\mathit{in}(y,x) \land \mathit{kI}(y))\) = \mathbf{W}, \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \exists \mathit{y}(\mathit{in}(y,x) \land \mathit{kI}(y))\) = \mathbf{W} \end{array}$$

Sei die Interpretation $\mathcal{D}_{Bsp} = (D_{Bsp}, I_{Bsp})$ und die Variablenbelegung $\beta(x) = Q_1$. Werte darin die Formel aus:

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$\begin{array}{l} \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ x\) = \mathit{Q}_1 \in \mathit{I}(q), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \mathit{q}(x)\) = \mathbf{W}. \end{array} \\ \begin{array}{l} \mathsf{W\"{a}hle}\ \mathit{K}_1 \ \mathit{als}\ \mathsf{Belegung}\ \mathsf{f\"{u}r}\ \mathit{y}. \\ (\mathit{K}_1,\mathit{Q}_1) \in \mathit{I}_{\mathit{Bsp}}(\mathit{in}) \ \mathit{und} \\ \mathit{K}_1 \in \mathit{I}_{\mathit{Bsp}}(\mathit{kl}), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta_y^{\mathit{K}_1}}(\ (\mathit{in}(y,x) \land \mathit{kl}(y))\) = \mathbf{W}, \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \exists \mathit{y}(\mathit{in}(y,x) \land \mathit{kl}(y))\) = \mathbf{W} \end{array}$$

Insgesamt

$$val_{\mathcal{D}_{\mathsf{Bsn}},\beta}(q(x) \to \exists y (\mathit{in}(y,x) \land \mathit{kl}(y))) = \mathbf{W}$$

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.
- 3. Ist $A \in For_{\Sigma}$ geschlossen, dann gilt $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.
- 3. Ist $A \in For_{\Sigma}$ geschlossen, dann gilt $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$

Beweis: Durch strukturelle Induktion unter Ausnutzung der Definition von val.

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.
- 3. Ist $A \in For_{\Sigma}$ geschlossen, dann gilt $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$

Beweis: Durch strukturelle Induktion unter Ausnutzung der Definition von val.

Konsequenz: Ist $A \in For_{\Sigma}$ geschlossen, schreiben wir $val_{\mathcal{D}}(A)$ statt $val_{\mathcal{D},\beta}(A)$.

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.
- 3. Ist $A \in For_{\Sigma}$ geschlossen, dann gilt $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$

Beweis: Durch strukturelle Induktion unter Ausnutzung der Definition von val.

Konsequenz: Ist $A \in For_{\Sigma}$ geschlossen, schreiben wir $val_{\mathcal{D}}(A)$ statt $val_{\mathcal{D},\beta}(A)$.

Notation: $\mathcal{D} \models \mathcal{A}$ bedeutet $val_{\mathcal{D}}(A) = \mathbf{W}$.

Arithmetische Strukturen

Signatur $\Sigma_{arith} = \{0, 1, +, *, <\}$

Arithmetische Strukturen

Signatur
$$\Sigma_{arith} = \{0, 1, +, *, <\}$$

Struktur 1: Die mathematischen ganzen Zahlen

$$\mathcal{Z} = (\mathbb{Z}, \overset{\mathbb{Z}}{+}, \overset{\mathbb{Z}}{*}, \overset{\mathbb{Z}}{<}).$$

Arithmetische Strukturen

Signatur
$$\Sigma_{arith} = \{0, 1, +, *, <\}$$

Struktur 1: Die mathematischen ganzen Zahlen

$$\mathcal{Z} = (\mathbb{Z}, \overset{\mathbb{Z}}{+}, \overset{\mathbb{Z}}{*}, \overset{\mathbb{Z}}{<}).$$

Struktur 2: Die ganzen Zahlen in Java (int)

$$\mathcal{Z}_{Jint} = (\mathbb{Z}_{Jint}, \overset{J}{+}, \overset{J}{*}, \overset{J}{<}).$$

$$n + m :=$$
nächste Folie

$$n*m$$
 := nächste Folie

$$n \stackrel{J}{<} m : \Leftrightarrow n \stackrel{\mathbb{Z}}{<} m$$

Für $n, m \in [int_MIN, int_MAX]$ definiere

$$n \overset{J}{+} m := int_MIN \overset{\mathbb{Z}}{+} (int_HALFRANGE \overset{\mathbb{Z}}{+} (n \overset{\mathbb{Z}}{+} m)) \overset{\mathbb{Z}}{\%} int_RANGE$$

Für $n, m \in [int_MIN, int_MAX]$ definiere

$$n \overset{J}{+} m := int_MIN \overset{\mathbb{Z}}{+} (int_HALFRANGE \overset{\mathbb{Z}}{+} (n \overset{\mathbb{Z}}{+} m)) \overset{\mathbb{Z}}{\%} int_RANGE$$

wobei $int_HALFRANGE = 2^{31}$ und $int_RANGE = 2^{32}$.

Für $n, m \in [int_MIN, int_MAX]$ definiere

$$n + m := int_MIN + (int_HALFRANGE + (n + m)) + int_RANGE$$
 $n + m := int_MIN + (int_HALFRANGE + (n + m)) + int_RANGE$
wobei $int_HALFRANGE = 2^{31}$ und $int_RANGE = 2^{32}$.

Für $n, m \in [int_MIN, int_MAX]$ definiere

$$n + m := int_MIN + (int_HALFRANGE + (n + m)) + int_RANGE$$
 $n + m := int_MIN + (int_HALFRANGE + (n + m)) + int_RANGE$
wobei $int_HALFRANGE = 2^{31}$ und $int_RANGE = 2^{32}$.

Dann gilt z.B.

$$int_MAX \stackrel{J}{+} 1 = int_MIN$$
 und $int_MIN \stackrel{J}{+} (-1) = int_MAX$

Formel	φ
1 0111101	Ψ

$$\mathcal{Z} \models \phi \quad \mathcal{Z}_{\textit{jint}} \models \phi$$

$$\forall x \exists y (x < y)$$

$$\forall x \forall y ((x+1) * y = x * y + y)$$

$$\exists x (0 < x \land x + 1 < 0)$$

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	
$\forall x \forall y ((x+1) * y = x * y + y)$		
$\exists x (0 < x \land x + 1 < 0)$		

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$		
$\exists x (0 < x \land x + 1 < 0)$		

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$	ja	
$\exists x (0 < x \land x + 1 < 0)$		

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$	ja	ja
$\exists x (0 < x \land x + 1 < 0)$		

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$	ja	ja
$\exists x (0 < x \land x + 1 < 0)$	nein	

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$	ja	ja
$\exists x (0 < x \land x + 1 < 0)$	nein	ja

Substitutionslemma für Terme

Theorem

Σ sei eine Signatur, \mathcal{D} eine Interpretation für Σ ,

 β , β' Belegungen,

 σ eine Substitution und $t \in Term_{\Sigma}$.

Substitutionslemma für Terme

Theorem

 Σ sei eine Signatur, \mathcal{D} eine Interpretation für Σ , β , β' Belegungen, σ eine Substitution und $t \in Term_{\Sigma}$.

Dann gilt

$$val_{\mathcal{D},\beta}(\sigma(t)) = val_{\mathcal{D},\beta'}(t).$$

Substitutionslemma für Terme

Theorem

 Σ sei eine Signatur, \mathcal{D} eine Interpretation für Σ , β , β' Belegungen, σ eine Substitution und $t \in Term_{\Sigma}$.

Dann gilt

$$val_{\mathcal{D},\beta}(\sigma(t)) = val_{\mathcal{D},\beta'}(t).$$

wobei

$$\beta'(x) = val_{\mathcal{D},\beta}(\sigma(x))$$

für alle $x \in Var$.

Strukturelle Induktion nach t.

Induktionsanfang

Fall
$$t = x \in Var$$
:

$$val_{\mathcal{D},\beta}(\sigma(x)) = \beta'(x)$$
 Def. von β'
= $val_{\mathcal{D},\beta'}(x)$ Def. von $val(x)$

Fall
$$t = f(t_1, ..., t_n)$$
:

$$val_{\mathcal{D},\beta}(\sigma(f(t_1,\ldots,t_n)))$$

Fall
$$t = f(t_1, ..., t_n)$$
:
 $val_{\mathcal{D},\beta}(\sigma(f(t_1, ..., t_n)))$
 $= val_{\mathcal{D},\beta}(f(\sigma(t_1), ..., \sigma(t_n)))$

Fall
$$t = f(t_1, ..., t_n)$$
:

$$val_{\mathcal{D},\beta}(\sigma(f(t_1, ..., t_n)))$$

$$= val_{\mathcal{D},\beta}(f(\sigma(t_1), ..., \sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta}(\sigma(t_1)), ..., val_{\mathcal{D},\beta}(\sigma(t_n)))$$

Fall
$$t = f(t_1, ..., t_n)$$
:
$$val_{\mathcal{D},\beta}(\sigma(f(t_1, ..., t_n)))$$

$$= val_{\mathcal{D},\beta}(f(\sigma(t_1), ..., \sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta}(\sigma(t_1)), ..., val_{\mathcal{D},\beta}(\sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta}(t_1), ..., val_{\mathcal{D},\beta}(t_n))$$
(nach Induktionsannahme)

Fall
$$t = f(t_1, ..., t_n)$$
:
$$val_{\mathcal{D},\beta}(\sigma(f(t_1, ..., t_n)))$$

$$= val_{\mathcal{D},\beta}(f(\sigma(t_1), ..., \sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta}(\sigma(t_1)), ..., val_{\mathcal{D},\beta}(\sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta'}(t_1), ..., val_{\mathcal{D},\beta'}(t_n))$$
(nach Induktionsannahme)
$$= val_{\mathcal{D},\beta'}(f(t_1, ..., t_n))$$

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

```
\sigma_{1} \quad \{x/a, z/b\}
\sigma_{2} \quad \{x/(x+z), z/(x+z)\}
\sigma_{3} \quad \{x/(x+y), z/a\}
\sigma_{4} \quad \{y/(x+y)\}
\sigma_{5} \quad \{x/z\}
```


Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

$$\begin{array}{lll} \sigma_1 & \{x/a,z/b\} & \textit{kollisionsfrei} \\ \sigma_2 & \{x/(x+z),z/(x+z)\} \\ \sigma_3 & \{x/(x+y),z/a\} \\ \sigma_4 & \{y/(x+y)\} \\ \sigma_5 & \{x/z\} \end{array}$$

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

$$\sigma_1$$
 $\{x/a,z/b\}$ kollisionsfrei σ_2 $\{x/(x+z),z/(x+z)\}$ kollisionsfrei σ_3 $\{x/(x+y),z/a\}$ σ_4 $\{y/(x+y)\}$ σ_5 $\{x/z\}$

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

$$\begin{array}{lll} \sigma_1 & \{x/a,z/b\} & \textit{kollisionsfrei} \\ \sigma_2 & \{x/(x+z),z/(x+z)\} & \textit{kollisionsfrei} \\ \sigma_3 & \{x/(x+y),z/a\} & \textit{Kollision} \\ \sigma_4 & \{y/(x+y)\} \\ \sigma_5 & \{x/z\} & \end{array}$$

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

$$\sigma_1$$
 $\{x/a,z/b\}$ kollisionsfrei σ_2 $\{x/(x+z),z/(x+z)\}$ kollisionsfrei σ_3 $\{x/(x+y),z/a\}$ Kollisionsfrei σ_4 $\{y/(x+y)\}$ kollisionsfrei σ_5 $\{x/z\}$

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \land \exists y (p(x,y) \land p(z,y) \rightarrow p(x,y))$$

$$\begin{array}{lll} \sigma_1 & \{x/a,z/b\} & \textit{kollisionsfrei} \\ \sigma_2 & \{x/(x+z),z/(x+z)\} & \textit{kollisionsfrei} \\ \sigma_3 & \{x/(x+y),z/a\} & \textit{Kollision} \\ \sigma_4 & \{y/(x+y)\} & \textit{kollisionsfrei} \\ \sigma_5 & \{x/z\} & \textit{kollisionsfrei} \end{array}$$

Substitutionslemma für Formeln

Theorem

 Σ sei eine Signatur, \mathcal{D} eine Interpretation für Σ , β , β' Belegungen, $A \in For_{\Sigma}$ und σ eine für A kollisionsfreie Substitution.

Dann gilt:

$$val_{\mathcal{D},\beta}(\sigma(A)) = val_{\mathcal{D},\beta'}(A),$$

wobei

$$\beta'(x) = val_{\mathcal{D},\beta}(\sigma(x))$$

für alle $x \in Var$.

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

Außerdem: $\sigma_X(x) = x$, $\sigma_X(y) = \sigma(y)$ für $y \neq x$.

$$val_{\beta}(\sigma(\exists xA)) = \mathbf{W}$$

gdw $val_{\beta}(\exists x\sigma_{x}(A)) = \mathbf{W}$

Anwendung von σ

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

Außerdem: $\sigma_x(x) = x$, $\sigma_x(y) = \sigma(y)$ für $y \neq x$.

$$val_{\beta}(\sigma(\exists xA)) = \mathbf{W}$$

gdw $val_{\beta}(\exists x \sigma_x(A)) = \mathbf{W}$ Anwendung von σ

gdw $val_{\beta_v^d}(\sigma_x(A)) = \mathbf{W}$ für ein $d \in D$ Def. von val

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

$$val_{eta}(\sigma(\exists xA)) = \mathbf{W}$$
 gdw $val_{eta}(\exists x\sigma_x(A)) = \mathbf{W}$ Anwendung von σ gdw $val_{eta_x^d}(\sigma_x(A)) = \mathbf{W}$ für ein $d \in D$ Def. von val gdw $val_{(eta_x^d)''}(A) = \mathbf{W}$ Ind.-Vor.
$$wo \ (\beta_x^d)''(v) = val_{od}(\sigma_x(v)) \text{ für alle } v.$$

wo
$$(\beta_X^d)''(y) = val_{\beta_X^d}(\sigma_X(y))$$
 für alle y .

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

$$\begin{array}{lll} & val_{\beta}(\sigma(\exists xA)) = \mathbf{W} \\ \text{gdw} & val_{\beta}(\exists x\sigma_x(A)) = \mathbf{W} & \text{Anwendung von } \sigma \\ \text{gdw} & val_{\beta_x^d}(\sigma_x(A)) = \mathbf{W} \text{ für ein } d \in D & \text{Def. von } val \\ \text{gdw} & val_{(\beta_x^d)''}(A) = \mathbf{W} & \text{Ind.-Vor.} \\ & & \text{wo } (\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y)) \text{ für alle } y. \\ \text{gdw} & val_{(\beta')^d}(A) = \mathbf{W} & \text{Lücke} \end{array}$$

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

$$\begin{array}{lll} & val_{\beta}(\sigma(\exists xA)) = \mathbf{W} \\ \mathrm{gdw} & val_{\beta}(\exists x\sigma_x(A)) = \mathbf{W} & \mathrm{Anwendung\ von\ } \sigma \\ \mathrm{gdw} & val_{\beta_x^d}(\sigma_x(A)) = \mathbf{W} \mathrm{ für\ ein\ } d \in D & \mathrm{Def.\ von\ } val \\ \mathrm{gdw} & val_{(\beta_x^d)''}(A) = \mathbf{W} & \mathrm{Ind.-Vor.} \\ & & \mathrm{wo\ } (\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y)) \mathrm{ \ für\ alle\ } y. \\ \mathrm{gdw} & val_{(\beta')_x^d}(A) = \mathbf{W} & \mathrm{L\"{ucke}} \\ \mathrm{gdw} & val_{\beta'}(\exists xA) = \mathbf{W} & \mathrm{Def.\ von\ } val \\ \end{array}$$

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_x^d)'' = (\beta')_x^d$$

$$y = x$$
:

$$(\beta_x^d)''(x) = val_{\beta_x^d}(\sigma_x(x))$$
 Def. von $(\beta_x^d)''$

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_x^d)'' = (\beta')_x^d$$

$$y = x$$
:

$$(\beta_X^d)''(x) = val_{\beta_X^d}(\sigma_X(x))$$
 Def. von $(\beta_X^d)''$
= $val_{\beta_X^d}(x)$ Def. von σ_X

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_x^d)'' = (\beta')_x^d$$

$$y = x$$
:

$$(\beta_x^d)''(x) = val_{\beta_x^d}(\sigma_x(x))$$
 Def. von $(\beta_x^d)''$
 $= val_{\beta_x^d}(x)$ Def. von σ_x
 $= \beta_x^d(x)$ Def. von val für Variable

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_X^d)'' = (\beta')_X^d$$

$$y = x$$
:

$$(\beta_X^d)''(x) = val_{\beta_X^d}(\sigma_X(x))$$
 Def. von $(\beta_X^d)''$
 $= val_{\beta_X^d}(x)$ Def. von σ_X
 $= \beta_X^d(x)$ Def. von val für Variable
 $= d$ Def. der modifizierten Belegung

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_x^d)'' = (\beta')_x^d$$

$$y = x$$
:

$$(\beta_X^d)''(x) = val_{\beta_X^d}(\sigma_X(x))$$
 Def. von $(\beta_X^d)''$
 $= val_{\beta_X^d}(x)$ Def. von σ_X
 $= \beta_X^d(x)$ Def. von val für Variable
 $= d$ Def. der modifizierten Belegung
 $= (\beta')_X^d(x)$ Def. der modifizierten Belegung

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

$$y \neq x$$
, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y))$$

Def. von $(\beta_x^d)''$

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y))$$

= $val_{\beta_x^d}(\sigma(y))$

Def. von $(\beta_X^d)''$ Def. von σ_X

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$\begin{array}{lll} (\beta_{x}^{d})''(y) & = & val_{\beta_{x}^{d}}(\sigma_{x}(y)) & \text{Def. von } (\beta_{x}^{d})'' \\ & = & val_{\beta_{x}^{d}}(\sigma(y)) & \text{Def. von } \sigma_{x} \\ & = & val_{\beta}(\sigma(y)) & \text{da } x \text{ nicht in } \sigma(y) \text{ vorkommt} \end{array}$$

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y))$$

$$= val_{\beta_x^d}(\sigma(y))$$

$$= val_{\beta}(\sigma(y))$$

Def. von $(\beta_x^d)''$ Def. von σ_x da x nicht in $\sigma(y)$ vorkommt Kollisionsfreiheit von σ

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y)) \qquad \text{Def. von } (\beta_x^d)''$$

$$= val_{\beta_x^d}(\sigma(y)) \qquad \text{Def. von } \sigma_x$$

$$= val_{\beta}(\sigma(y)) \qquad \text{da } x \text{ nicht in } \sigma(y) \text{ vorkommt}$$

$$\text{Kollisionsfreiheit von } \sigma$$

$$= \beta'(y) \qquad \text{Def. von } \beta'$$

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y))$$
 Def. von $(\beta_x^d)''$
 $= val_{\beta_x^d}(\sigma(y))$ Def. von σ_x
 $= val_{\beta}(\sigma(y))$ da x nicht in $\sigma(y)$ vorkommt
Kollisionsfreiheit von σ
 $= \beta'(y)$ Def. von β'
 $= (\beta')_x^d(y)$ Def. der modifizierten Belegung

Sir Anthony "Tony" Hoare

Sir C.A.R. Hoare (* 1934)
Studied philosophy at Oxford U.
Graduated from Moscow State U., 1959
Programmer for Elliott Brothers, 1960
Prof. of CS at Queen's U. Belfast, 1968
An axiomatic basis for computer
programing
Communications ACM, 1969
Oxford U. Programming Research, 1977
Microsoft Research, Cambridge, now

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Die Zuweisungsregel besagt, daß

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Die Zuweisungsregel besagt, daß

▶ ausgehend von einem Zustand, in dem die Formel $\{x/s\}A$ wahr ist,

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Die Zuweisungsregel besagt, daß

- ausgehend von einem Zustand, in dem die Formel {x/s}A wahr ist,
- ▶ nach Ausführung der Programmstücks x := s

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Die Zuweisungsregel besagt, daß

- ausgehend von einem Zustand, in dem die Formel {x/s}A wahr ist,
- ▶ nach Ausführung der Programmstücks x := s
- ▶ ein Zustand erreicht wird, in dem die Formel A gilt.

Hintergrund-Interpretation \mathcal{H} . Programmzustand = Variablenbelegung β .

Hintergrund-Interpretation \mathcal{H} .

Programmzustand = Variablenbelegung β .

Gelte $val_{\mathcal{H},\beta}(\{x/s\}A) = W$

Nach der Zuweisung x := s wird ein Zustand β' erreicht

$$\beta'(x) := val_{\mathcal{H},\beta}(s)$$

$$\beta'(y) := \beta(y) \text{ für } y \neq x$$

Hintergrund-Interpretation \mathcal{H} .

Programmzustand = Variablenbelegung β .

Gelte $val_{\mathcal{H},\beta}(\{x/s\}A) = W$

Nach der Zuweisung x := s wird ein Zustand β' erreicht

$$\beta'(x) := val_{\mathcal{H},\beta}(s)$$

 $\beta'(y) := \beta(y) \text{ für } y \neq x$

Die Regel behauptet $val_{\mathcal{H},\beta'}(A) = W$.

Hintergrund-Interpretation \mathcal{H} .

Programmzustand = Variablenbelegung β .

Gelte $val_{\mathcal{H},\beta}(\{x/s\}A) = W$

Nach der Zuweisung x := s wird ein Zustand β' erreicht

$$\beta'(x) := val_{\mathcal{H},\beta}(s)$$

 $\beta'(y) := \beta(y) \text{ für } y \neq x$

Die Regel behauptet $val_{\mathcal{H},\beta'}(A) = W$.

Das ist gerade die Aussage des Substitutionslemmas für die Formel A ist und die Substitution $\sigma = \{x/s\}$.

Anwendung des Substitutionslemmas

Theorem

Sei Σ eine Signatur, $\mathcal D$ eine Interpretation für Σ , β eine Belegung und σ eine für A kollisionsfreie Substitution mit $\sigma(y) = y$ für alle Variablen $y \neq x$, dann gilt:

Anwendung des Substitutionslemmas

Theorem

Sei Σ eine Signatur, $\mathcal D$ eine Interpretation für Σ , β eine Belegung und σ eine für A kollisionsfreie Substitution mit $\sigma(y) = y$ für alle Variablen $y \neq x$, dann gilt:

► $val_{\mathcal{D},\beta}(\forall xA \rightarrow \sigma(A)) = W$

Anwendung des Substitutionslemmas

Theorem

Sei Σ eine Signatur, $\mathcal D$ eine Interpretation für Σ , β eine Belegung und σ eine für A kollisionsfreie Substitution mit $\sigma(y) = y$ für alle Variablen $y \neq x$, dann gilt:

- $ightharpoonup val_{\mathcal{D},\beta}(\forall xA \to \sigma(A)) = W$
- ▶ $val_{\mathcal{D},\beta}(\sigma(A) \to \exists xA) = W.$

Wir nehmen an, daß $val_{\mathcal{D},\beta}(\forall xA) = W$ gilt, d.h.

$$\mathit{val}_{\mathcal{D},\beta_x^d}(A) = \ \mathit{W} \ \mathrm{für \ alle} \ \mathit{d} \in \mathit{D}.$$

Wir nehmen an, daß $val_{\mathcal{D},\beta}(\forall xA) = W$ gilt, d.h.

$$val_{\mathcal{D},\beta_{\mathbf{v}}^{\mathbf{d}}}(\mathbf{A}) = \mathbf{W}$$
 für alle $\mathbf{d} \in \mathbf{D}$.

Zu zeigen ist

$$\mathit{val}_{\mathcal{D},\beta}(\sigma(A)) = W$$

Wir nehmen an, daß $val_{\mathcal{D},\beta}(\forall xA) = W$ gilt, d.h.

$$val_{\mathcal{D},\beta_x^d}(A) = W \text{ für alle } d \in D.$$

Zu zeigen ist

$$val_{\mathcal{D},\beta}(\sigma(A)) = W$$

Nach dem Substitutionslemma ist das gleichbedeutend mit $val_{\mathcal{D},\beta'}(A) = W$

wobei

$$\beta'(y) = val_{\mathcal{D},\beta}(\sigma(y)) = \begin{cases} \beta(y) \text{ falls } x \neq y \\ val_{\mathcal{D},\beta}(\sigma(x)) \text{ falls } y = x \end{cases}$$

Wir nehmen an, daß $val_{\mathcal{D},\beta}(\forall xA) = W$ gilt, d.h.

$$val_{\mathcal{D},\beta_{\mathbf{v}}^{\mathbf{d}}}(A) = W \text{ für alle } d \in D.$$

Zu zeigen ist

$$val_{\mathcal{D},\beta}(\sigma(A)) = W$$

Nach dem Substitutionslemma ist das gleichbedeutend mit $val_{\mathcal{D},\beta'}(A) = W$

wobei

$$\beta'(y) = val_{\mathcal{D},\beta}(\sigma(y)) = \begin{cases} \beta(y) \text{ falls } x \neq y \\ val_{\mathcal{D},\beta}(\sigma(x)) \text{ falls } y = x \end{cases}$$

Also $\beta' = \beta_x^d$, wenn man $d = val_{\mathcal{D},\beta}(\sigma(x))$ wählt.

Die zweite Aussage läßt sich analog beweisen.

Der Modellbegriff

Den Modell- und Folgerungsbegriff definieren wir nur für Formeln und Formelmengen ohne freie Variablen. Das ist mit Abstand der häufigste Anwendungsfall. Der Fall mit freien Variablen wird ausführlich in den Übungsaufgaben im Skript behandelt.

Der Modellbegriff

Den Modell- und Folgerungsbegriff definieren wir nur für Formeln und Formelmengen ohne freie Variablen. Das ist mit Abstand der häufigste Anwendungsfall. Der Fall mit freien Variablen wird ausführlich in den Übungsaufgaben im Skript behandelt.

Definition

Der Modellbegriff

Den Modell- und Folgerungsbegriff definieren wir nur für Formeln und Formelmengen ohne freie Variablen. Das ist mit Abstand der häufigste Anwendungsfall. Der Fall mit freien Variablen wird ausführlich in den Übungsaufgaben im Skript behandelt.

Definition

Fine Interpretation \mathcal{D} über Σ nennen wir ein **Modell** einer Formel A ohne freie Variablen über Σ , wenn $val_{\mathcal{D}}(A) = W$.

Der Modellbegriff

Den Modell- und Folgerungsbegriff definieren wir nur für Formeln und Formelmengen ohne freie Variablen. Das ist mit Abstand der häufigste Anwendungsfall. Der Fall mit freien Variablen wird ausführlich in den Übungsaufgaben im Skript behandelt.

Definition

- ► Eine Interpretation \mathcal{D} über Σ nennen wir ein **Modell** einer Formel A ohne freie Variablen über Σ, wenn $val_{\mathcal{D}}(A) = W$.
- ▶ \mathcal{D} heißt **Modell** einer Formelmenge M ohne freie Variablen, wenn für jede Formel $B \in M$ gilt $val_{\mathcal{D}}(B) = W$.

Der logische Folgerungsbegriff

Definition

Es sei $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$, beide ohne freie Variablen.

$$M \models_{\Sigma} A :\Leftrightarrow$$

Jedes Modell von M ist auch Modell von A.

Lies: **Aus** M **folgt** A (über Σ).

Kurznotationen:

$$\models$$
 statt \models_{Σ} , \models *A* für $\emptyset \models$ *A*,

$$B \models A \text{ für } \{B\} \models A.$$

Bemerkungen zum Modellbegriff

$$M \models A \quad \text{gdw} \quad M \cup \{\neg A\}$$

hat kein Modell

Definition

 $A \in For_{\Sigma}$ heißt

Definition

 $A \in For_{\Sigma}$ heißt

► allgemeingültig $gdw \models A$

Definition

A ∈ For_∑ heißt

- ▶ allgemeingültig gdw |= A
- ► erfüllbar gdw ¬A ist nicht allgemeingültig.

Theorem

1. Die folgenden Aussagen sind äquivalent:

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.
 - 1.3 $val_{\mathcal{D}}(A) = W$ für alle \mathcal{D} .

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.
 - 1.3 $val_{\mathcal{D}}(A) = W$ für alle \mathcal{D} .
- 2. Die folgenden Aussagen sind äquivalent:

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.
 - 1.3 $val_{\mathcal{D}}(A) = W$ für alle \mathcal{D} .
- 2. Die folgenden Aussagen sind äquivalent:
 - 2.1 A erfüllbar

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.
 - 1.3 $val_{\mathcal{D}}(A) = W$ für alle \mathcal{D} .
- 2. Die folgenden Aussagen sind äquivalent:
 - 2.1 A erfüllbar
 - 2.2 Es gibt \mathcal{D} mit $val_{\mathcal{D}}(A) = W$

1. $\neg \forall x A \leftrightarrow \exists x \neg A$,

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$,
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$,
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$
- 5. $\forall x(A \land B) \leftrightarrow \forall xA \land \forall xB$

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$
- 5. $\forall x(A \land B) \leftrightarrow \forall xA \land \forall xB$
- 6. $\exists x (A \lor B) \leftrightarrow \exists x A \lor \exists x B$

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$,
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$
- 5. $\forall x(A \land B) \leftrightarrow \forall xA \land \forall xB$
- 6. $\exists x(A \lor B) \leftrightarrow \exists xA \lor \exists xB$
- 7. $\forall \vec{y}(A \land QxB \leftrightarrow Qx(A \land B))$, falls $x \notin Frei(A)$ und \vec{y} alle freie Variablen in $A \land QxB$ sind.

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$,
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$
- 5. $\forall x(A \land B) \leftrightarrow \forall xA \land \forall xB$
- 6. $\exists x(A \lor B) \leftrightarrow \exists xA \lor \exists xB$
- 7. $\forall \vec{y}(A \land QxB \leftrightarrow Qx(A \land B))$, falls $x \notin Frei(A)$ und \vec{y} alle freie Variablen in $A \land QxB$ sind.
- 8. $\forall \vec{y} (A \lor QxB \leftrightarrow Qx(A \lor B))$, falls $x \notin Frei(A)$ und \vec{y} alle freie Variablen in $A \land QxB$ sind.

Zeige

Für alle \mathcal{D}, β gilt $val_{\mathcal{D},\beta}(A \to \forall xB) = val_{\mathcal{D},\beta}(\forall x(A \to B))$ Voraussetzung: $x \notin Frei(A)$.

Falls $val_{\mathcal{D},\beta}(A \to \forall xB) = W$, dann folgt unmittelbar aus der Definition von val: $val_{\mathcal{D},\beta}(\forall x(A \to B)) = W$ (Übung).

Zeige

Für alle \mathcal{D}, β gilt $val_{\mathcal{D},\beta}(A \to \forall xB) = val_{\mathcal{D},\beta}(\forall x(A \to B))$ Voraussetzung: $x \notin Frei(A)$.

Falls $val_{\mathcal{D},\beta}(A \to \forall xB) = W$, dann folgt unmittelbar aus der Definition von val: $val_{\mathcal{D},\beta}(\forall x(A \to B)) = W$ (Übung).

Sei jetzt
$$val_{D,I,\beta}(\forall x(A \to B)) = W$$
, d. h. für alle $d \in D$: $(val_{D,\beta_x^d}(A) = W \Rightarrow val_{D,I,\beta_x^d}(B) = W)$. (*)

Zeige

Für alle \mathcal{D}, β gilt $val_{\mathcal{D},\beta}(A \to \forall xB) = val_{\mathcal{D},\beta}(\forall x(A \to B))$ Voraussetzung: $x \notin Frei(A)$.

Falls $val_{\mathcal{D},\beta}(A \to \forall xB) = W$, dann folgt unmittelbar aus der Definition von val: $val_{\mathcal{D},\beta}(\forall x(A \to B)) = W$ (Übung).

Sei jetzt
$$val_{D,I,\beta}(\forall x(A \to B)) = W$$
, d. h. für alle $d \in D$: $(val_{D,\beta_x^d}(A) = W \Rightarrow val_{D,I,\beta_x^d}(B) = W)$. (*)

Angenommen, es wäre $val_{D,I,\beta}(A \to \forall xB) = F$. Dann gilt also $val_{D,\beta}(A) = W$ und $val_{D,\beta}(\forall xB) = F$ es gibt also ein $e \in D$ mit $val_{D,\beta_x^e}(B) = F$.

Zeige

Für alle \mathcal{D}, β gilt $val_{\mathcal{D},\beta}(A \to \forall xB) = val_{\mathcal{D},\beta}(\forall x(A \to B))$ Voraussetzung: $x \notin Frei(A)$.

Falls $val_{\mathcal{D},\beta}(A \to \forall xB) = W$, dann folgt unmittelbar aus der Definition von val: $val_{\mathcal{D},\beta}(\forall x(A \to B)) = W$ (Übung).

Sei jetzt
$$val_{D,I,\beta}(\forall x(A \to B)) = W$$
, d. h. für alle $d \in D$: $(val_{D,\beta_x^d}(A) = W \Rightarrow val_{D,I,\beta_x^d}(B) = W)$. (*)

Angenommen, es wäre $val_{D,I,\beta}(A \to \forall xB) = F$. Dann gilt also $val_{D,\beta}(A) = W$ und $val_{D,\beta}(\forall xB) = F$ es gibt also ein $e \in D$ mit $val_{D,\beta}(B) = F$.

Wegen $x \notin Frei(A)$ gilt auch $val_{\mathcal{D},\beta_{\chi}^{e}}(A) = W$. Aus (*) folgt somit der Widerspruch: $val_{\mathcal{D},\beta_{\chi}^{e}}(B) = W$.

Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

Anders gesagt:

Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

Anders gesagt:

$$\left. \begin{array}{l} \text{Transitivit"at} \\ \text{Symmetrie} \\ \text{Endlosigkeit} \end{array} \right\} \models \text{Reflexivit"at} \\$$

Die Antwort ist

JA

2. Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

$$\neg \exists x (a < x \land c(x) \land \forall y (a \le y < x \rightarrow b(y))$$

$$\models$$

$$\exists x (a < x \land \neg c(x) \land \forall y (a \le y < x \rightarrow \neg b(y))$$

2. Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

$$\neg \exists x (a < x \land c(x) \land \forall y (a \le y < x \rightarrow b(y))$$

$$\models$$

$$\exists x (a < x \land \neg c(x) \land \forall y (a \le y < x \rightarrow \neg b(y))$$

Gegenbeispiel:

$$\begin{array}{ccccc}
a & p_1 & p_2 \\
\cdot & < & \cdot & < & \cdot \\
b(a) & \neg b(p_1) & \neg b(p_2) \\
\neg c(a) & \neg c(p_1) & c(p_2)
\end{array}$$