Analisi di euristiche per il calcolo del grado di autosimmetria di funzioni booleane non completamente specificate

Alessio Bardelli, 544270

Università di Pisa Dipartimento di Informatica

A.A. 2019/2020

Introduzione al lavoro svolto

- Processo di sintesi di una funzione booleana.
- Minimizzazione di una funzione booleana.
- Regolarità di una funzione booleana.
- Grado di autosimmetria.
- L'obiettivo di questa tesi.

Richiami sulle funzione booleane non compl. specificate

Sia $f: \{0,1\}^n \rightarrow \{0,1,*\}$ una funzione booleana.

Richiami sulle funzione booleane non compl. specificate

Sia $f: \{0,1\}^n \to \{0,1,*\}$ una funzione booleana.

Definizione

L'insieme $f^{\text{on}} = \{x \in \{0,1\}^n \mid f(x) = 1\}$ è detto On-Set di f.

Definizione

L'insieme $f^{\text{off}} = \{x \in \{0,1\}^n \mid f(x) = 0\}$ è detto Off-Set di f.

Definizione

L'insieme $f^{dc} = \{x \in \{0,1\}^n \mid f(x) = *\}$ è detto Dc-Set di f.

Richiami sulle funzione booleane non compl. specificate

Sia $f:\{0,1\}^n \to \{0,1,*\}$ una funzione booleana.

Definizione

L'insieme $f^{\text{on}} = \{x \in \{0,1\}^n \mid f(x) = 1\}$ è detto On-Set di f.

Definizione

L'insieme $f^{\text{off}} = \{x \in \{0,1\}^n \mid f(x) = 0\}$ è detto Off-Set di f.

Definizione

L'insieme $f^{dc} = \{x \in \{0,1\}^n \mid f(x) = *\}$ è detto Dc-Set di f.

Definizione

La funzione f si dice non completamente specificata se e solo se $f^{dc} \neq \emptyset$.

4□▶
4□▶
4□▶
4□▶
4□▶
•

Rappresentazione di una funzione booleana

• Tabelle di verità e espressione booleane: entrambi inadatti.

Rappresentazione di una funzione booleana

- Tabelle di verità e espressione booleane: entrambi inadatti.
- Rappresentate tramite i Binary Decision Diagram (BDD). Di particolare interesse per i nostri scopi sono i Reduced Ordered BDD (ROBDD).

ROBDD per la funzione $f(x_1, x_2, y_1, y_2) = (x_1 \Leftrightarrow y_1) \land (x_2 \Leftrightarrow y_2)$.

Definizione

Una funzione booleana $f:\{0,1\}^n \to \{0,1\}$ è detta chiusa rispetto ad un vettore $\alpha \in \{0,1\}^n$ se $\forall \ \omega \in \{0,1\}^n, \omega \oplus \alpha \in f^{on} \Leftrightarrow \omega \in f^{on}$.

Definizione

Una funzione booleana $f:\{0,1\}^n \to \{0,1\}$ è detta chiusa rispetto ad un vettore $\alpha \in \{0,1\}^n$ se $\forall \ \omega \in \{0,1\}^n, \omega \oplus \alpha \in f^{on} \Leftrightarrow \omega \in f^{on}$.

- Ogni funzione f è chiusa rispetto al vettore nullo.
- Una funzione f che è chiusa rispetto a due vettori differenti $\alpha_1, \alpha_2 \in \{0,1\}^n$, risulta essere chiusa rispetto alla loro somma $\alpha_1 \oplus \alpha_2$.

Definizione

Una funzione booleana $f:\{0,1\}^n \to \{0,1\}$ è detta chiusa rispetto ad un vettore $\alpha \in \{0,1\}^n$ se $\forall \ \omega \in \{0,1\}^n, \omega \oplus \alpha \in f^{on} \Leftrightarrow \omega \in f^{on}$.

- Ogni funzione f è chiusa rispetto al vettore nullo.
- Una funzione f che è chiusa rispetto a due vettori differenti $\alpha_1, \alpha_2 \in \{0,1\}^n$, risulta essere chiusa rispetto alla loro somma $\alpha_1 \oplus \alpha_2$.

Definizione

L'insieme $L_f = \{\beta \mid f \text{ è chiusa rispetto a } \beta\}$ è lo spazio vettoriale di f.

Definizione

Una funzione booleana $f:\{0,1\}^n \to \{0,1\}$ è detta chiusa rispetto ad un vettore $\alpha \in \{0,1\}^n$ se $\forall \ \omega \in \{0,1\}^n, \omega \oplus \alpha \in f^{on} \Leftrightarrow \omega \in f^{on}$.

- Ogni funzione f è chiusa rispetto al vettore nullo.
- Una funzione f che è chiusa rispetto a due vettori differenti $\alpha_1, \alpha_2 \in \{0,1\}^n$, risulta essere chiusa rispetto alla loro somma $\alpha_1 \oplus \alpha_2$.

Definizione

L'insieme $L_f = \{\beta \mid f \text{ è chiusa rispetto a } \beta\}$ è lo spazio vettoriale di f.

Definizione

Una funzione booleana è detta k-autosimmetrica se il suo spazio vettoriale L_f ha dimensione k.

Autosimmetria generalizzata

Se f su n variabili è k-autosimmetrica, allora può essere proiettata su una funzione più piccola f_k che dipende solo da n-k variabili e ha un on-set più piccolo.

Autosimmetria generalizzata

Se f su n variabili è k-autosimmetrica, allora può essere proiettata su una funzione più piccola f_k che dipende solo da n-k variabili e ha un on-set più piccolo.

Definizione

$$S = \{ \alpha \mid \forall \ \omega \in \{0,1\}^n, \ \omega \in f^{on} \Rightarrow \omega \oplus \alpha \in f^{on} \cup f^{dc} \}.$$

Autosimmetria generalizzata

Se f su n variabili è k-autosimmetrica, allora può essere proiettata su una funzione più piccola f_k che dipende solo da n-k variabili e ha un on-set più piccolo.

Definizione

$$S = \{ \alpha \mid \forall \ \omega \in \{0,1\}^n, \ \omega \in f^{on} \Rightarrow \omega \oplus \alpha \in f^{on} \cup f^{dc} \}.$$

Definizione

Sia f una funzione booleana non completamente specificata, sia L_S il più grande spazio vettoriale contenuto nell'insieme S. Il grado di autosimmetria di f è pari alla dimensione di L_S .

Algoritmo enumerativo esatto

Ricerca esaustiva di uno spazio vettoriale contenuto in S, in ordine di dimensione decrescente a partire da $d = \lfloor \log_2 |S| \rfloor$.

Algoritmo enumerativo esatto

Ricerca esaustiva di uno spazio vettoriale contenuto in S, in ordine di dimensione decrescente a partire da $d = \lfloor \log_2 |S| \rfloor$.

- Si devono enumerare tutti i possibili sottoinsiemi di *i* vettori linearmente indipendenti di *S*.
- Il numero di tali sottoinsiemi è limitato superiormente dal coefficiente binomiale gaussiano $\binom{r}{i}_2 = \mathcal{O}(2^{i(r-i)})$. Dove r è il numero massimo di vettori L.I. di S e 1 < i < d.

Algoritmo enumerativo esatto

Ricerca esaustiva di uno spazio vettoriale contenuto in S, in ordine di dimensione decrescente a partire da $d = \lfloor \log_2 |S| \rfloor$.

- Si devono enumerare tutti i possibili sottoinsiemi di *i* vettori linearmente indipendenti di *S*.
- Il numero di tali sottoinsiemi è limitato superiormente dal coefficiente binomiale gaussiano $\binom{r}{i}_2 = \mathcal{O}(2^{i(r-i)})$. Dove r è il numero massimo di vettori L.I. di S e $1 \leq i \leq d$.
- complessità computazionale esponenziale.

Euristica di espansione L_0

Funzione completamente specificata f_0 definita come $f_0^{on} = f^{on}$ e $f_0^{off} = f^{dc} \cup f^{off}$. Si consideri lo spazio vettoriale L_0 della funzione f_0 .

Euristica di espansione L_0

Funzione completamente specificata f_0 definita come $f_0^{on} = f^{on}$ e $f_0^{off} = f^{dc} \cup f^{off}$. Si consideri lo spazio vettoriale L_0 della funzione f_0 .

Teorema

Lo spazio vettoriale L_0 è contenuto nell'insieme S.

Euristica di espansione L_0

Funzione completamente specificata f_0 definita come $f_0^{on}=f^{on}$ e $f_0^{off}=f^{dc}\cup f^{off}$. Si consideri lo spazio vettoriale L_0 della funzione f_0 .

Teorema

Lo spazio vettoriale L_0 è contenuto nell'insieme S.

- Partendo dallo spazio vettoriale L_0 , si decide di volta in volta se è possibile espanderlo con lo spazio affine $A=\alpha\oplus L_S$, dove α è un mintermine scelto dallo spazio $S\backslash L_S$. L_S inizialmente è uguale a L_0 .
- Tale approccio ha una complessità computazionale che potrebbe risultare esponenziale in $|f_0|$.

Euristica di espansione L_0 e L_1

- f_0 e f_1 funzioni completamente specificate tali che: $f_0^{on} = f^{on}$ e $f_1^{on} = f^{on} \cup f^{dc}$.
- L_0 e L_1 gli spazi vettoriali associati a f_0 e f_1 .

Euristica di espansione L_0 e L_1

- f_0 e f_1 funzioni completamente specificate tali che: $f_0^{on} = f^{on}$ e $f_1^{on} = f^{on} \cup f^{dc}$.
- L_0 e L_1 gli spazi vettoriali associati a f_0 e f_1 .

Teorema

Lo spazio vettoriale L_1 è contenuto nell'insieme S.

Euristica di espansione L_0 e L_1

- f_0 e f_1 funzioni completamente specificate tali che: $f_0^{on} = f^{on}$ e $f_1^{on} = f^{on} \cup f^{dc}$.
- L_0 e L_1 gli spazi vettoriali associati a f_0 e f_1 .

Teorema

Lo spazio vettoriale L_1 è contenuto nell'insieme S.

Si espandono i due spazi vettoriali L_0 e L_1 per poi restituire come risultato lo spazio espanso che ha dimensione maggiore e che è cotenuto in S.

Euristica di contrazione della copertura lineare

Definizione

La copertura lineare di un'insieme è il più piccolo spazio vettoriale che contiene l'insieme considerato.

Euristica di contrazione della copertura lineare

Definizione

La copertura lineare di un'insieme è il più piccolo spazio vettoriale che contiene l'insieme considerato.

- Si calcolano i vettori L.I. di S, tramite la Gauss-Jordan Elimination.
- Sono una base, che chiamiamo B, per la copertura lineare di S.
- Si procede considerando tutti i possibili sottoinsiemi di vettori appartenenti alla base B, in ordine di dimensione decrescente a partire da $d = \lfloor \log_2 |S| \rfloor$.
- Se lo spazio vettoriale generato dai vettori considerati è contenuto in S, abbiamo finito.

Introduzione alla sperimentazione effettuata:

- Funzioni fornite secondo lo standard Espresso.
- Gestione dei BDD tramite la libreria CUDD.
- Algoritmi implementati in C.

	Euristica di esp. di L ₀			Euristica di contrazione			Algo. enumerativo esatto		
Funzione, n, m	k	Max	Time	k	Max	Time	k	Max	Time
alu2, 10, 8	3.375	7	4.177	3.375	7	4.909	3.375	7	5.027
alu3, 10, 8	2.750	6	3.288	2.750	6	3.451	2.750	6	3.396
apla, 10, 12	4.417	6	41.733	3.250	6	53.136	-	-	-
b10, 15, 11	2.636	15	10.006	2.636	15	11.351	2.636	15	54.840
bcc, 26, 45	10.755	14	59.558	10.755	14	53.864	10.755	14	60.919
bcd.div3, 4, 4	1.500	2	0.203	1.500	2	0.792	1.500	2	0.903
bench, 6, 8	1.875	3	1.937	1.750	3	3.759	2.000	3	210.973
dekoder, 4, 7	1.285	2	0.403	1.000	1	1.523	1.285	2	1.489
dk17, 10, 11	5.727	7	21.873	4.909	7	37.886	-	-	-
dk27, 9, 9	6.444	8	5.436	6.222	8	12.677	-	-	-
dk48, 15, 17	11.588	12	131.919	11.941	13	10212.934	-	-	=
exam, 10, 10	4.100	10	28.322	4.000	10	47.231	-	-	=
exp, 8, 18	1.444	8	2.101	1.444	8	6.809	1.444	8	7.699
exps, 8, 38	0.395	4	2.490	0.263	3	13.520	-	-	=
fout, 6, 10	0.100	1	0.260	0.100	1	3.208	0.100	1	2.999
inc, 7, 9	1.888	4	0.778	1.888	4	2.415	1.888	4	2.179
18err, 8, 8	4.000	8	0.432	4.000	8	2.006	4.000	8	1.826
p1, 8, 18	3.222	8	15.285	2.883	8	18.098	3.500	8	90.018
p3, 8, 14	3.786	8	11.309	3.375	8	13.451	4.071	8	87.273
pdc, 16, 40	9.875	14	757.339	9.600	14	5976.430	-	-	=.
spla, 16, 46	3.978	13	27899.712	3.695	13	7807.671	-	-	=
t2, 17, 16	9.500	13	22.802	9.062	12	1035.178	-	-	=
t4, 12, 8	6.875	8	19.487	7.000	10	35.667	-	-	=
test4, 8, 30	0.633	1	19.609	0.666	2	28.654	0.700	2	34.740
x1dn, 27, 6	12.500	16	846.334	13.000	16	136.116	-	-	-
wim, 4, 7	1.285	2	0.361	1.000	1	1.350	1.285	2	2.591
Totale	115.933	200	29907.154	112.064	200	25524.086	-	-	-

	All zeros test			All ones test			Euristica di esp. di L ₀ e L ₁		
Funzione, n, m	k	Max	Time	k	Max	Time	k	Max	Time
alu2, 10, 8	2.750	6	1.805	1.125	6	2.513	3.375	7	13.702
alu3, 10, 8	2.750	6	1.095	0.625	2	2.836	2.750	6	9.439
apla, 10, 12	0.166	1	1.439	0.083	1	2.713	4.500	6	77.206
b10, 15, 11	2.545	15	5.534	1.181	3	6.710	2.636	15	25.076
bcc, 26, 45	10.755	14	36.243	10.755	14	39.360	10.755	14	143.765
bcd.div3, 4, 4	0.500	2	0.130	0.250	1	0.130	1.500	2	0.432
bench, 6, 8	0.000	0	0.686	0.000	0	0.875	1.875	3	3.501
dekoder, 4, 7	0.000	0	0.252	0.285	1	0.133	1.285	2	0.756
dk17, 10, 11	0.090	1	0.877	0.090	1	1.029	5.727	7	41.845
dk27, 9, 9	0.333	1	0.468	0.111	1	0.503	6.555	8	10.377
dk48, 15, 17	0.176	2	1.620	0.058	1	1.805	11.647	12	237.318
exam, 10, 10	1.000	10	3.342	1.100	10	4.545	4.200	10	56.728
exp, 8, 18	1.111	8	1.605	0.000	0	3.232	1.444	8	12.900
exps, 8, 38	0.184	1	5.946	0.131	1	7.379	0.395	4	28.519
fout, 6, 10	0.000	0	1.135	0.000	0	0.923	0.100	1	4.366
inc, 7, 9	0.777	3	0.496	0.888	3	0.524	1.888	4	1.983
18err, 8, 8	3.000	8	0.884	4.000	8	0.501	4.000	8	2.720
p1, 8, 18	1.111	8	1.624	0.000	0	3.452	3.277	8	28.023
p3, 8, 14	1.428	8	1.153	0.000	0	1.625	3.857	8	20.813
pdc, 16, 40	3.275	14	10.387	0.000	0	22.038	10.000	14	1724.054
spla, 16, 46	2.521	13	9.754	2.521	13	8.678	3.978	13	51957.550
t2, 17, 16	8.625	12	1.213	8.187	11	1.248	9.625	14	41.546
t4, 12, 8	2.250	3	0.810	2.250	3	0.900	6.875	8	27.282
test4, 8, 30	0.000	0	19.946	0.000	0	8.826	0.633	1	78.493
×1dn, 27, 6	9.166	13	2.894	3.000	3	5.923	12.833	16	1091.619
wim, 4, 7	0.142	1	0.140	0.285	1	0.125	1.285	2	0.789
Totale	54.655	150	111.478	36.925	84	128.526	116.995	201	55640.802

Dalla sperimentazione che ho effettuato emerge quanto segue:

- Per il 36.1% delle funzioni testate non è disponibile il grado di autosimmetria ottimo.
- Il 71.5% delle funzioni testate sono risultate essere autosimmetriche.
- L'euristica di espansione di L_0 e L_1 è quella che ha rilevato l'autosimmetria maggiore.
- L'euristica di contrazione della copertura lineare è quella più efficiente e con il miglior rapporto qualità del risultato su tempo di esecuzione.

Conclusioni

Rimane un problema teorico molto interessante quello di definire, in modo efficiente, lo spazio vettoriale più grande contenuto in un dato insieme di vettori booleani.

Ringraziamenti

Grazie a tutti per l'attenzione!