## Ensemble models

### Decision tress involve greedy, recursive partitioning.

| TI  | PE | Response |
|-----|----|----------|
| 1.0 | M2 | good     |
| 2.0 | M1 | bad      |
|     |    |          |
| 4.5 | M5 | ?        |



Greedy, recursive partitioning along TI and PE





# Decision Tree Strengths and Weaknesses

#### **STRENGTHS**

Does not involve any distributional assumptions

Can work with missing data

Relatively computationally efficient

Transparent: produces easy to interpret output

### **WEAKNESSES**

Greedy – locally optimal, can be globally suboptimal

Tends to overfit training data

Does not handle predictor interactions

## Ensemble learning

Basic idea: combine predictions of several models

Random forest (bagging = bootstrap aggregation):

- Sample data & sample predictors
- Build multiple trees
- Model prediction = average prediction of the individual trees in the model
- Model building stops when performance on "out-of-bag" subsample stops improving

# Random Forest Strengths & Weaknesses

#### **STRENGTHS**

Does not require data preprocessing

Computationally efficient

Generally improves accuracy over individual decision tree models

Provides an indication of feature importance

### **WEAKNESSES**

Less transparent than decision tree models

Does not learn from errors

Bias towards multi-level variables

### Boosted trees

### Build multiple trees

"Learn" from mistakes by over-weighing misclassified cases when building the next tree

"Boosting" = improving model performance by adding models that focus on "errors" from previous rounds

### Errors:

- For classification problems: misclassified cases
- For prediction problems: largest error vis-à-vis actual values