Astron. Astrophys. Suppl. Ser. 70, 33-48 (1987)

Photometric variability of some CP stars (*)

A. Heck (1), G. Mathys (2) and J. Manfroid (3,**)

- (1) C.D.S., Observatoire Astronomique, 11, rue de l'Université, F-67000 Strasbourg, France
- (2) Observatoire de Genève, CH-1290 Sauverny, Switzerland
- (3) Département d'Astrophysique de l'Université de Liège, avenue de Cointe 5, B-4200 Cointe-Ougrée, Belgium

Received November 12, 1986; accepted February 4, 1987

Summary. — The photometric data relative to twenty-three southern CP stars have been re-analysed. New or improved parameters of the lightcurves are presented for eleven of them.

Key words: CP stars: period — CP stars: lightcurves — CP stars: Strömgren photometry.

1. The observational material.

uvby photometry of CP stars has been carried out in December 1975 at the European Southern Observatory on La Silla with the 50 cm ESO telescope equipped with a standard single-channel photometer. Preliminary results have been published for some of the stars observed (Heck et al., 1977; Maitzen et al., 1978; Renson et al., 1978, 1984) as well as for the comparison stars (Heck and Manfroid, 1980). For most variable objects however, the data seemed to remain inconclusive.

In order to improve the quality of the final photometric values, the original observations were re-reduced using the PHOT2 programme (Manfroid and Heck, 1983, 1984). The differential data with comparison stars in the standard Strömgren system are presented in tables I to XXIII.

By combining these data with all other available material obtained by several observers during the last fifteen years, it has been possible to derive reliable lightcurves and periods for about half of the stars. The information on the observing runs used is given in table XXIV.

2. Analysis of the lightcurves.

For each star, a least-square fit of the observations has been done in each colour with the following function:

Send offprint requests to: A. Heck.

Astronomy and Astrophysics n° 1-87 July. — 3

$$m = A_0 + A_1 \sin \left[2 \pi (t - t_0) / P + \varphi_1 \right] + A_2 \sin \left[4 \pi (t - t_0) / P + \varphi_2 \right],$$

where

- m is the magnitude in the corresponding colour,
- -t, the time,
- -P, the period,
- φ_j and A_j are the phases and amplitudes to be determined.

By varying P and minimizing the scatter of the observations around the above function in each colour, the most probable period can be estimated and the corresponding lightcurve parameters obtained. For more details on the method, refer to Mathys and Manfroid (1985). The uncertainties have been empirically estimated.

This procedure worked well for eleven of the twenty-three stars. For nine of them, it was possible to take into account data obtained during other runs by various observers, often using other comparison stars and different reduction procedures. Of course, the values of the coefficient A_0 calculated separately for each of these runs did not coincide (discrepancies of the order of 0.01 magnitude). They were arbitrarily set to zero and the observational data were shifted accordingly.

This allowed the direct comparison of the various groups of data. When the data within one group failed to produce an accurate least-square fit, the value for A_0 has been set to the average magnitude. The value t_0 has been arbitrarily set to the integer value of the heliocentric Julian date of the first observation used.

Table XXV presents the data sets used for each of the eleven stars for which a good least-square fit has been

^(*) Based on observations collected at the European Southern Observatory, La Silla, Chile.

^(**) Research Associate, Belgian National Fund for Scientific Research.

achieved. The parameters of the fits are listed in table XXVI and the lightcurves are plotted in figure 1 to 11 together with the harmonic fit. In several cases, *UBV* or Geneva photometric data were used to improve or confirm the value of the period *via* the *V* magnitude (see Ref. in Tab. XXV). The normal observing sequences involved two comparison stars. However several of them proved to be variable. The retained comparison stars are also given in table XXV.

3. Notes on individual stars.

HD 29305

The value derived from all combined data,

$$P = (2.943176 \pm 0.000043) d$$

is in good agreement with the one given by Manfroid and Mathys (1985):

$$P = (2.9433 \pm 0.0004) d$$
.

The few observations carried out by Maitzen in 1971 and 1979 (Maitzen, 1981) had little influence on the determination of P, but they were nonetheless included in the fit.

HD 56022

From the December 1975 data, the value:

$$P = (0.9195 \pm 0.0013) d$$

has been obtained. It agrees well with that derived by Renson et al. (1976):

$$P = (0.90 \pm 0.02) d$$

and Hensberge et al. (1981):

$$P = (0.9183 \pm 0.0013) d$$
.

By combining the data, we got:

$$P = (0.91889 \pm 0.00003) d$$
.

HD 56455

Waelkens (1985) and Renson *et al.* (1976) proposed different values of P. Those given by Renson are not compatible with our data. On the other hand, Waelkens' determination,

$$P = (1.9346 \pm 0.0001) d$$
,

is quite plausible and we used it for the fit of the lightcurves.

HD 65987

Our December 1975 data gave:

$$P = (1.451 \pm 0.008) d$$
.

The more accurate period determined by North (1984):

$$P = (1.44962 \pm 0.00018) d$$

has been used to determine the parameters of the fits.

HD 66255

Manfroid and Mathys (1985) found for the frequency:

$$f = (0.14671 \pm 0.00149 \ n) \ d^{-1}$$

with $n = 0, \pm 1, 2, 3, ...$ on the basis of Runs 9 and 13. By combining Runs 1, 9 and 13, the uncertainty on n disappeared and the period was unequivocally determined as:

$$P = (6.8178 \pm 0.0016) d$$
.

HD 66605

Using Runs 9 and 13, Manfroid and Mathys (1985) found:

$$f = (0.44835 \pm 0.00148 \, n) \, d^{-1}$$
.

After having added Run 1, it came:

$$f = (0.44980 \pm 0.00004) d^{-1}$$

corresponding to:

$$P = (2.2232 \pm 0.0002) d$$
.

This is an excellent agreement with the previously determined value for n = 1. The only other possibility is:

$$f = (0.44705 \pm 0.00004) d^{-1}$$

but it looks much less likely. Moreover it does not agree very well with Manfroid and Mathys' (1985) determination.

HD 72968

Maitzen et al. (1978) published the following period:

$$P = (11.305 \pm 0.002) d$$

which agrees adequately with our data. Moreover it represents quite well magnetic field data. Another value quoted by Catalano and Renson (1984) can be excluded. Hence we adopted Maitzen *et al.*'s determination for the fit of the lightcurves.

HD 73340

By using the data of Runs 1, 9 and 13, we derived:

$$P = (2.66753 \pm 0.00025) d$$

which is slightly more accurate than the values previously published by Renson *et al.* (1978):

$$P = (2.6679 \pm 0.0004) d$$

and Manfroid and Mathys (1985):

$$P = (2.66745 \pm 0.0007) d$$
.

Data by Hensberge *et al.* (1976) have been included in the fit of the lightcurves, but they did not improve the derivation of the period.

HD 83368

Magnetic observations by Thompson (1983) confirmed that the period:

$$P = 1.42602 d$$

published by Renson *et al.* (1984) was in fact the half period. Using Runs 1, 9 and 13 together with Kurtz's (1982) data, we derived:

$$P = (2.85189 \pm 0.00049) d$$
.

HD 83625

Manfroid and Mathys (1985) proposed a series of possible frequencies:

$$f = (0.92435 + 0.00148 n \pm 0.00013) d^{-1}$$
.

From all combined data, the most probable value appeared to be:

$$f = (0.92720 \pm 0.00004) d^{-1}$$

corresponding to n = 2 and:

$$P = (1.07852 \pm 0.00005) d$$
.

However n = 0 cannot be totally excluded, giving

$$f = (0.92452 \pm 0.00004) d^{-1}$$
.

HD 92664

We could not improve the determination by Mégessier and Hensberge (1984):

$$P = (1.6731 \pm 0.0001) d$$
,

which has then been used in the calculations.

4. Constant stars.

Table XXVII lists the general data relative to eight stars that showed no variation during the December 1975 run. This does not exclude the possibility of long-term variations for some of them.

In fact, HD 94660 is definitely such a variable (Hensberge *et al.*, 1984). The same authors suspected HD 59256 of long-term variations. HD 101189 is also a suspected long-term variable, since it satisfies the criteria

of Hensberge *et al.* (1984): constancy over one week and $v \sin i \le 30 \text{ km s}^{-1}$. Notice also that Jakate (1979) found HD 101189 to be constant within a few thousandths of magnitude over several nights when it was used as a comparison star.

The case is different for HD 55719 which has a relatively high $v \sin i$. This is in marked contrast with the absence of short-term variations, also noted by Stift (1979) and by Jerzykiewicz and Sterken (1977). However Bonsack (1977) suggested an irregular variation of the magnetic field.

Table XXVIII presents four stars for which the data remained inconclusive. HD 50169 was suspected by Heck et al. (1977) of being a long-period variable, but short-term variations are also detected. It is probably a very peculiar star (Hensberge et al., 1981). HD 50461 presents a large scatter, but no periodicity could be found. HD 53244 shows only fluctuations in the u filter. A frequency:

$$f = (1.729 \pm 0.001) d^{-1}$$

can even be suggested, but remains highly uncertain. The case of HD 101065, the well-known Przybylski's star, could not be settled with our few observations. Short-period variations are however present (Weiss and Kreidl, 1980; Kurtz, 1981).

5. Conclusion.

We have presented photometric observations for twentythree CP stars. These observations and other data from several observers were used to derive the period and/or the parameters of the lightcurves for eleven of them.

The remaining stars are either constant, display long-term variations or have inconclusive data. One of them, HD 50169, is apparently quite peculiar and shows irregular variations.

Acknowledgements.

It is a pleasure to thank Dr. P. North for helpful discussions and Dr. P. Renson for providing a preliminary version of his catalogue of CP stars in preparation.

References

BONSACK, W. K.: 1977, Publ. Astron. Soc. Pac. 89, 613.

CATALANO, F. A., RENSON, P.: 1984, Astron. Astrophys. Suppl. Ser. 55, 371.

HECK, A., MAITZEN, H. M., RENSON, P.: 1977, Astron. Astrophys. 54, 635.

HECK, A., MANFROID, J.: 1980, Astron. Astrophys. Suppl. Ser. 42, 311.

HECK, A., MANFROID, J., RENSON, P.: 1976, Astron. Astrophys. Suppl. Ser. 25, 143.

Hensberge, H., de Loore, C., Zuiderwijk, E. J., Hammerschlag-Hensberge, G.: 1976, Astron. Astrophys. 48, 383.

HENSBERGE, H., MAITZEN, H. M., DERIDDER, G., GERBALDI, M., DELMAS, F., RENSON, P., DOOM, C., WEISS, W. W., MORGULEFF, N.: 1981, Astron. Astrophys. Suppl. Ser. 46, 151.

HENSBERGE, H., MANFROID, J., SCHNEIDER, H., MAITZEN, H. M., CATALANO, F. A., RENSON, P., WEISS, W. W., FLOQUET, M.: 1984, Astron. Astrophys. 132, 291.

JAKATE, S. M.: 1979, Astron. J. 84, 552.

JERZYKIEWICZ, M., STERKEN, C.: 1977, Acta Astron. 27, 365.

KURTZ, D. W.: 1981, Mon. Not. R. Astron. Soc. 196, 61.

KURTZ, D. W.: 1982, Mon. Not. R. Astron. Soc. 200, 807.

MAITZEN, H. M.: 1981, Comm. 27, IAU Inf. Bull. Var. Stars 1950.

MAITZEN, H. M., ALBRECHT, R., HECK, A.: 1978, Astron. Astrophys. 62, 199.

MANFROID, J., HECK, A.: 1983, Astron. Astrophys. 120, 302.

MANFROID, J., HECK, A.: 1984, Astron. Astrophys. 132, 110.

MANFROID, J., MATHYS, G.: 1985, Astron. Astrophys. Suppl. Ser. 59, 429.

MATHYS, G., MANFROID, J.: 1985, Astron. Astrophys. Suppl. Ser. 60, 17.

MÉGESSIER, C., HENSBERGE, H.: 1984, Astron. Astrophys. Suppl. Ser. 54, 483.

NORTH, P.: 1984, Astron. Astrophys. Suppl. Ser. 55, 259.

RENSON, P.: 1986, A catalogue of Ap stars, in preparation.

RENSON, P., MANFROID, J., HECK, A.: 1976, Astron. Astrophys. Suppl. Ser. 23, 413.

RENSON, P., HECK, A., MANFROID, J.: 1978, Astron. Astrophys. Suppl. Ser. 31, 199.

RENSON, P., MANFROID, J., HECK, A., MATHYS, G.: 1984, Astron. Astrophys. 131, 63.

STIFT, M.: 1979, Comm. 27, IAU Inf. Bull. Var. Stars 1586.

THOMPSON, I. B.: 1983, Mon. Not. R. Astron. Soc. 205, 43P.

UESUGI, A., FUKUDA, I.: 1981, Revised catalogue of stellar radial velocities, Proc. Seventh CODATA Conf.

WAELKENS, C.: 1985, Astron. Astrophys. Suppl. Ser. 61, 127.

WEISS, W. W., KREIDL, T. J.: 1980, Astron. Astrophys. 81, 59.

0.109

0.110

0.106

0.101

0.097

0.111

0.100

0.105

0.108

0.101

0.106

0.094

0.113

0.108

0.109

0.103 0.105

0.105

0.102

0.103

0.103

0.105

0.111

0.105

0.111

0.105

TABLE I. — Observations of HD 29305 (HD 29305 – HD TABLE III. — Observations of HD 36629 (HD 36629 – 24863).

VARIABILITY OF CP STARS

нјр	u	v	b	У	нјр	u	v
2,440,000+					2,440,000+		
2752.600	-4.116	-3.527	~3.340	-3.195	2752.631	-0.971	0.002
2752.671	-4.101	-3.531	-3.354	-3.206	2757. 616	-0.981	0.002
2753.620	-4.140	-3.541	~3.356	-3.203	2758.580	-0.978	~0.002
2753.725	-4.129	-3.543	-3.364	-3.213	2758.676	-0.975	~0.008
2754.588	-4.203	-3.568	-3.386	-3.242	2759.588	-0.986	-0.008
2754.728	-4. 206	-3.562	-3.387	-3, 237	2768. 592	-0.973	0.004
2755.599	-4.103	-3.532	-3. 351	-3.196	2770. 579	-0.977	-0.004
2755.752	-4, 114	-3.539	-3.359	-3.206	2771. 575	-0.980	~0.011
2756.573	-4.124	-3.535	-3.353	-3.200	2771.693	-0.975	-0.007
2756.631	-4.146	-3.551	-3.362	-3.214	2772. 576	-0.977	0.000
2756.732	-4.124	-3.538	-3.362	-3.213	2774. 574	-0.978	-0.003
2757.604	-4.213	-3.562	-3.379	-3.241	2775.583	-0.974	-0.006
2757. 695	-4.191	-3.558	-3.378	-3.237	2775.723	-0.970	-0.003
2758.573	-4.097	-3.524	-3.342	-3.193	2776.569	-0.978	-0.013
2758.656	-4.101	-3.533	-3.350	-3.203	2776. 627	-0.988	-0.004
2758.733	-4.101	-3.528	-3.352	-3.198	2779. 577	-0.993	-0.007
2759.585	-4.127	3.537	-3, 358	-3.222			
2759.727	-4.168	-3.556	-3.372	-3.216			
2767.570	-4.122	-3.538	-3.352	-3.197			
2767.718	-4.106	-3.531	-3.349	-3.202			
2768.589	-4.143	-3.541	-3.358	-3.215			
2770.568	-4.110	-3.536	-3.359	-3.206			
2770.682	-4.102	-3.525	-3.348	-3.196			
2771.563	-4.138	-3.539	-3.362	-3.218			
2771.693	-4, 154	-3.559	-3.379	-3.234			
2772.567	-4.206	-3.571	-3.383	-3.228			
2772.684	-4.138	~3.541	-3.368	-3.218			
2773.568	-4.115	-3.531	-3.352	-3.204			
2774.565	-4.149	-3.546	-3.365	-3. 225			
2774.668	-4.146	-3.543	-3.366	-3. 231			
2775. 572	-4.152	-3.548	-3.374	-3.226			
2776.565	-4, 117	~3.533	-3.348	-3.198			
2778.550	-4.142	-3.547	-3.367	-3.224			
2778.616	-4.140	-3.532	-3.357	-3.218			
2778, 735	-4.113	-3.529	-3.358	-3.217			
2779.550	-4.086	-3.510	-3.327	-3.182			
2779, 606	-4.100	-3.526	-3.341	-3.195			
2779.676	-4.095	-3.521	-3.342	-3.197			

Table II. — Observations of HD 33904 [HD 33904 - 1/2 (HD 33904 - 1/2 (HD 50169 - 1/2 (HD 34816 + HD 35337)]. Table IV. — Observations of HD 50169 - 1/2 (HD 50040 + HD 50405)].

	="				, -				
НЈД	u	v	b	У	нјр	u	v	b	У
2,440,000+					2,440,000+				
2752.607	-0.616	-1.343	-1.421	-1.477	2752. 718	0.160	0. 201	0.157	0. 208
2753.627	~0.619	-1.344	-1.426	-1.478	2753.652	0.147	0.183	0.149	0. 207
2754.587	-0.620	-1.345	-1.429	-1.486	2754. 664	0.179	0. 201	0.157	0. 210
2755.615	-0.619	-1.345	-1.427	-1.479	2755.719	0.177	0.196	0.157	0.198
2756. 561	-0.619	-1.346	-1.424	-1.480	2756.1676	0.150	0.188	0.148	0.211
2756, 719	-0.614	-1.348	-1.430	-1.489	2756. 764	0.162	0.187	0.159	0. 219
2757.631	-0.641	-1.354	-1.428	-1.482	2757.706	0.160	0.191	0.148	0.207
2757.701	-0.635	-1.350	-1.428	-1.481	2757.772	0.166	0.190	0.158	0. 211
2758.588	-0.627	-1.346	-1.429	-1.479	2758.710	0.166	0.198	0.166	0.213
2758.744	-0.622	-1.347	-1.434	-1.492	2759. 731	0.155	0.189	0.160	0. 220
2759. 592	-0.629	-1.348	-1.424	-1.483	2767. 619	0.167	0.191	0.163	0. 218
2759.708	-0.618	-1.344	-1.430	-1.486	2768.664	0.139	0.166	0.131	0.205
2759.765	-0.617	-1.341	-1.425	-1.488	2770. 614	0.164	0.196	0.161	0.227
2767. 599	-0.618	-1.344	-1.433	-1.484	2772. 621	0.178	0.193	0.158	0.219
2768, 581	-0.620	-1.340	-1.425	-1.487	2772. 829	0.167	0.183	0.154	0. 205
2770.572	-0.614	-1.345	-1.429	-1.487	2773.823	0.161	0.183	0.149	0.199
2771.592	-0.641	-1.350	-1.426	-1.481	2774. 821	0.167	0.193	0.163	0.217
2772. 584	-0.631	-1.348	-1.426	-1.482	2775.715	0.172	0. 201	0.162	0, 212
2772.682	-0.616	-1.341	-1.427	-1.490	2776.618	0.171	0.191	0.158	0, 213
2773.583	-0.624	-1.349	-1.430	-1. 479	2776.803	0.152	0. 202	0.163	0, 216
2773.669	-0.621	-1.347	-1.436	-1.479	2778.738	0.149	0.188	0.158	0, 220
2774. 577	-0.626	-1.346	-1.425	-1.480	2778.811	0.150	0.191	0.164	0. 223
2774.661	-0.613	-1.339	-1.422	-1.480	2779. 625	0.161	0.198	0.162	0. 221
2775.570	-0.620	-1.343	-1.426	-1.484	2779.713	0.167	0.199	0.153	0. 201
2775.708	-0.615	-1.346	-1.428	-1.488	2779, 772	0. 202	0.199	0.168	0. 208
2776.563	-0.613	-1.347	-1.428	-1.484					
2776. 621	-0.622	-1.347	-1.432	-1.486					
2778.572	-0.623	-1.339	-1.426	-1.482					
2779.570	-0.623	-1,348	-1,433	-1.486					

					•					
нјр	u	v	b	У		HJD	u	v	b	у
2,440,000+					2	2, 440, 000+				
2752 720	-1 041	-4 337	-1 100	4 044						
2752. 728 2753. 657	-1.841 -1.878	-1.337	-1.182 -1.202	-1.014		2752. 743	-0.143	-0.099	0.020	0.109
		-1. 354		-1.022		2753.668	-0.152	-0.091	0.025	0.112
2754.668	-1.855	-1.361	-1. 204	-1.023		2754. 706	-0.157	-0.097	0.020	0.109
2755. 722	-1.843	-1.357	-1.199	-1.030		2755. 731	-0.155	-0.098	0.030	0.118
2756. 683	-1.854	-1.366	-1. 210	-1.038		2756. 699	-0.142	-0.096	0.022	0.102
2757. 712	-1.848	-1.369	-1. 214	-1.041		2756.774	-0.155	-0.097	0.021	0.108
2757. 776	-1.848	-1.358	-1.197	-1.036		2757. 734	-0.152	-0.098	0.016	0.108
2758. 726	-1.846	-1.349	-1.182	-1.018		2758.616	-0.168	-0.113	0.016	0.107
2758.785	-1.862	-1.348	-1.181	-1.020		2759. 668	-0.156	-0.101	0.013	0.113
2759. 772	-1.822	-1.326	-1.173	-1.023		2759.742	-0.157	-0.104	0.016	0.110
2767.624	-1.824	-1.345	-1.195	-1.032		2767. 607	-0.152	-0.101	0.019	0.107
2767. 741	-1.872	-1.352	-1.179	-1.010		2767.764	-0.141	-0.093	0.027	0.110
2770.617	-1.847	-1.349	-1.195	-1.017		2768.631	-0.145	-0.097	0.015	0,104
2771.613	-1.892	-1.373	-1.205	-1.019		2770.594	-0.146	-0.098	0.019	0.108
2772. 611	-1.843	-1.355	-1.199	-1.027		2770.688	-0.149	-0.102	0.014	0.106
2774.603	-1.859	-1.372	-1.219	-1.040		2771.583	-0.139	-0.088	0.028	0.110
2774.825	-1.829	-1.338	-1.174	-1.008		2771.700	-0.148	-0.088	0.026	0.107
2775.615	-1.875	-1.358	-1.212	-1.058		2771.822	-0.140	-0.093	0.026	0.104
2776.600	-1.839	-1.343	-1.194	-1.028		2772. 592	-0.137	-0.099	0.024	0.109
2776.767	-1.814	-1.319	-1.167	-1.009		2772.689	-0.143	-0.099	0.021	0,111
2779.617	-1.835	-1.351	-1.191	-1.022		2772. 816	-0.147	-0.099	0.020	0, 111
						2773.588	-0.141	-0.094	0.026	0.107
						2773.674	-0.147	-0.102	0.017	0.109
						2774. 583	-0.145	-0.095	0.019	0.109
,						2774.677	-0.154	-0.094	0.013	0.104
						2774. 806	-0.145	-0.099	0.023	0, 112
						2775. 595	-0.151	-0.102	0.021	0.108
						2775. 814	-0.149	-0.102	0.010	0.103
						2776.585	-0.147	-0.102	0.020	0.111
						2776. 745	-0.144	-0.097	0.022	0.106
						2778. 593	-0.140	-0.094	0.029	0.112
						2778.752	-0.161	-0.098	0. 021	0.109
			•			2779. 584	-0.142	-0.086	0.024	0.112
						2779.655	-0.143	-0.101	0.019	0.116
						2779. 717	-0.145	-0.095	0.017	0. 105

Table VI. — Observations of HD 53244 [HD 53244 - 1/2 Table VIII. — Observations of HD 56022 [HD 56022 - 1/2 (HD 49229 + HD 56405)].

HJD	u	v	b	У	HJD	u	v	ь	у
2,440,000+					2,440,000+				
2752. 730	-1.951	-1.461	-1.340	-1.258	2752. 744	-0.144	-0.199	-0.137	-0.090
2753.664	~1.916	-1.443	-1.331	-1.257	2753. 702	-0.163	-0. 201	-0.135	-0.085
2754.657	-1.921	-1.453	-1.342	-1.266	2753, 770	-0.172	-0.205	-0.143	-0.089
2755. 729	-1.933	-1.455	-1.340	-1.263	2754. 727	-0.187	-0.210	-0.147	-0.091
2756.690	-1.934	-1.451	-1.340	-1.263	2754. 780	-0.192	-0.210	-0.148	-0.099
2757.719	-1.935	-1.455	-1.343	-1.260	2755. 751	-0. 200	-0. 215	-0.151	-0.095
2759. 723	-1.944	-1.455	-1.337	-1.257	2756. 699	-0.189	-0.210	-0.148	-0.097
2759.769	-1.944	-1.458	-1.338	-1.259	2756. 792	-0.179	-0.207	-0.149	-0.097
2767. 611	-1.917	-1.449	-1.339	-1.264	2757. 735	-0.167	-0.206	-0.147	-0.090
2767.738	-1.942	-1.455	-1.340	-1.258	2759. 669	-0.151	-0.203	-0.139	-0.087
2768.671	-1.924	-1.459	-1.340	-1.266	2759. 742	-0.153	-0. 203	-0.145	-0.088
2770.608	-1.933	-1.451	-1.337	-1.262	2767. 608	-0.192	-0. 215	-0.149	-0.091
2771.830	-1.942	~1.455	-1.344	-1.259	2767. 764	-0.183	-0. 208	-0.152	-0.098
2772.823	-1.925	-1.450	-1.337	-1.256	2768. 632	-0.186	-0, 203	-0.151	-0.101
2773.817	-1.936	-1.451	-1.344	-1.266	2770. 595	-0.161	-0. 201	-0.145	-0.091
2774. 599	-1.914	-1.445	-1.336	-1.269	2770. 689	-0.151	-0.203	-0.142	-0.087
2774. 814	-1.932	-1.451	-1.338	-1.258	2771.583	-0.146	-0.200	-0.142	-0.094
2775. 611	-1.927	-1.451	-1.331	-1.260	2771.823	-0.142	-0. 201	-0.136	-0.086
2776. 596	-1.919	-1.452	-1.338	-1.265	2772. 593	-0.138	-0.197	-0.141	-0.085
2776.764	-1.933	-1.447	-1.338	-1.259	2772. 690	-0.143	-0. 200	-0.139	-0.085
2778. 587	-1.925	-1.452	-1.347	-1.261	2772. 817	-0.147	-0.198	-0.140	-0.083
2778.789	-1.934	-1.453	-1.338	-1.260	2773. 589	-0.144	-0. 200	-0.144	-0.090
2779. 581	-1.935	-1.443	-1.332	-1.253	2773. 675	-0.141	-0. 201	-0.138	-0.087
					2774. 583	-0.139	-0.196	-0.139	-0.093
					2774. 677	-0.147	-0. 201	-0.143	-0.089
					2774. 807	-0.143	-0.198	-0.136	-0.090
					2775. 596	-0.136	-0.200	-0.137	-0.088
					2775. 815	-0.163	-0.208	-0.152	-0.095
					2776. 586	-0.142	-0.197	-0.141	-0.093
					2776. 745	-0.163	-0. 206	-0.145	-0.092
				*	2778. 595	-0.164	-0. 200	-0.137	-0.095
					2778. 753	-0. 200	-0.216	-0.153	-0.096
					2779. 585	-0.178	-0. 202	-0.149	-0.096
					2779. 656	-0.189	-0. 204	-0.152	-0.093
					2779. 717	-0.181	-0. 200	-0.151	-0.101

-0.277

-0. 269

-0.275

-0.269

-0.281

-0.279

-0.273

-0.278

-0.282

-0.277

-0. 275

-0.278

-0.283

-0.289

-0. 275

-0. 281

~0.284

TABLE IX. — Observations of HD 56455 [HD 56455 - 1/2 TABLE XI. — Observations of HD 59435 [HD 59435 - 1/2 (HD 53704 + HD 56456)]. (HD 59154 + HD 59692)].

HJ D	ų	v	b	y	нјр	u	v	b
2,440,000+					2,440,000+			
2752. 747	0.057	0. 531	0.662	0.743	2752.771	0.447	0.320	-0.015
2753, 728	0.102	0.539	0.680	0.762	2753.742	0.447	0.326	-0.010
2753. 782	0.122	0.542	0.681	0.761	2754. 734	0.445	0.314	-0.019
2754.730	0.061	0.533	0.673	0.746	2755. 762	0.456	0.328	-0.002
2754.779	0.054	0.529	0.665	0.746	2756.730	0.436	0.319	-0.019
2755.753	0.095	0.536	0.678	0.756	2757.793	0.441	0.312	-0.013
2756, 701	0.083	D. 535	0.670	0.746	2758.783	0.431	0.317	-0.010
2756.794	0.059	0,533	0.667	0.746	2767. 681	0.449	0.325	-0.008
2757.737	0.084	0.538	0.665	0.752	2768.698	0.461	0.327	-0.010
2759. 671	0.076	0.527	0.669	0.742	2769.671	0.428	0.320	-0.022
2759.728	0.076	0.532	0.667	0.743	2769.790	0.435	0.311	-0.015
2767.611	0.040	0.524	0.661	0.730	2770.675	0.443	0.327	-0.010
2767.766	0.052	0.529	0.660	0.733	2771.673	0.448	0.321	-0.002
2768.635	0.144	0.553	0.692	0.764	2772.697	0.428	0.317	-0.014
2770.598	0.146	0.544	0.684	0.762	2773.693	0.436	0.310	-0.025
2770.690	0.132	0.551	0.685	0.768	2774. 700	0.435	0.327	-0.007
2771.586	0.039	0.523	0.654	0.735	2775.745	0.452	0.323	-0.007
2771.824	0.052	0.526	0.661	0.732	2776.678	0.446	0.325	-0.011
2772. 596	0.151	0.550	0.691	0.769	2776. 811	0.446	0. 325	-0.010
2772.692	0.140	0.550	0.692	0.772	2778.614	0.432	0.321	-0.017
2772.818	0.129	0.553	0.688	0.769	2779. 599	0.435	0.325	-0.009
2773. 591	0.041	0.524	0.656	0.734				
2773.677	0.045	0.522	0.658	0.732				
2774.585	0.149	0.556	0.692	0.772				
2774. 679	0.152	0.547	0.692	0. 771				
2774.809	0.134	0.547	0.686	0.763				
2775.598	0.049	0.517	0.654	0.729				
2775.817	0.039	0.522	0.652	0.729				
2776.588	0.144	0.544	0.681	0.770				
2776. 747	0.139	0.549	0.684	0.763				
2778. 598	0.135	0.544	0.686	0.765				
2778. 755	0.126	0.543	0.682	0.769				
2779. 587	0.048	0.528	0.652	0.735				
2779.658	0.059	0.529	0.663	0.746				
2779, 719	0.046	0. 528	0.653	0.732				

TABLE X. — Observations of HD 59256 (HD 59256 – TABLE XII. — Observations of HD 65987 [HD 65987 – 1/2 HD 58377). (HD 64507 + HD 65663)].

HJD	u	v	b	У	#30 u v b y
					2,440,000+
2752.766	-0.353	-1,130	-1.198	-1.232	
2753.731	-0.355	-1.134	-1.203	-1.242	2752.786 0.608 0.783 0.805 0.874
2754. 729	-0.346	-1.127	-1.196	-1.238	2753.762 0.596 0.774 0.799 0.869
2755.757	-0.354	-1.132	-1.201	-1.238	2754.760 0.627 0.794 0.823 0.877
2756.724	-0.350	-1.129	-1.194	-1.239	2755.774 0.626 0.801 0.814 0.871
2757. 789	-0.348	-1.133	-1.198	-1.234	2757.752 0.602 0.790 0.816 0.873
2758.745	-0.350	-1.132	-1.194	-1.233	2758.689 0.624 0.783 0.806 0.867
2759.749	-0.352	-1,133	-1.197	-1.231	2759.681 0.605 0.781 0.797 0.866
2767. 675	-0.353	-1.123	-1.192	-1.235	2768.663 0.598 0.784 0.799 0.870
2768.691	-0.350	-1.130	-1.206	-1.236	2769.803 0.601 0.781 0.800 0.865
2769.665	-0.345	-1.130	-1.192	-1.238	2770.601 0.627 0.795 0.819 0.864
2769. 784	-0.348	-1.125	-1.195	-1.235	2770.835 0.612 0.786 0.812 0.870
2770.625	-0.363	-1.128	-1.199	-1.240	2772.802 0.606 0.775 0.798 0.875
2771.600	-0.352	-1.138	-1.201	-1.240	2775.780 0.611 0.776 0.806 0.869
2771.721	-0.346	-1.135	-1.201	-1.241	2776.705 0.608 0.790 0.814 0.871
2772.608	-0.350	-1.134	-1.200	-1.238	2776.814 0.604 0.785 0.805 0.868
2773.613	-0.356	-1.130	-1.200	-1.235	2779.661 0.603 0.777 0.795 0.870
2774.610	-0.381	-1.149	-1.201	-1.237	
2775.605	-0.357	-1.137	-1.206	-1.248	
2775.740	-0.351	-1.124	-1.193	-1.237	
2776. 593	-0.350	-1.128	-1.197	-1.242	
2776. 671	-0.349	-1.130	-1.193	-1.229	
2778.606	-0.356	-1.130	-1.207	-1.234	•
2778.829	-0, 370	-1.145	-1.197	-1.230	
2779. 593	-0.353	-1.133	-1.196	-1.230	

HJD	u	v	b	y	нјр	u	v	b	у
2,440,000+					2,440,000+				
2752. 806	-1.309	-0.672	-0.607	-0.589	2752. 811	-0.860	-0.850	-0.757	-0.656
2757.778	-1.266	-0.644	-0.574	~0.558	2753.787	-0.860	-0.846	-0.758	-0.659
2758.780	-1.290	-0.665	-0.590	-0.570	2754. 784	-0.881	-0.855	-0.763	-0.663
2767.712	-1.282	-0.646	-0.581	-0.564	2755. 800	-0.881	-0.862	-0.776	-0.671
2767. 772	-1.267	-0.638	-0.569	-0.570	2756.780	-0.878	-0.858	-0.762	-0.662
2767.838	-1.274	-0.644	-0.576	-0.564	2757. 765	-0.866	-0.852	-0.761	-0.658
2768.719	-1.241	-0.630	-0.564	-0.554	2758.823	-0.871	-0.846	-0.750	-0.652
2769.706	-1.225	-0.624	-0.557	-0.553	2759.810	-0.869	-0.850	-0.760	-0.655
2769.812	-1.227	-0.632	-0.562	-0.539	2767. 758	-0.889	-0.862	-0.773	-0.668
2770.702	-1.235	-0.630	-0.561	-0.549	2768.725	-0.875	-0.852	-0.763	-0.660
2770.783	-1.236	-0.630	-0.568	-0.551	2769.716	-0.860	-0.851	-0.762	-0.655
2771.698	-1.269	-0.647	-0.574	-0.560	2770. 711	-0.857	-0.845	-0.755	-0.660
2772.708	-1.279	-0.663	-0.593	-0.579	2771.724	-0.884	-0.856	-0.767	-0.658
2773.620	-1.296	-0.666	-0.597	-0.580	2772. 720	-0.864	-0.855	-0.762	-0.666
2773.686	-1,301	-0.661	-0.592	-0.577	2772. 834	-0.871	-0.858	-0.768	-0.671
2774.617	-1.265	-0.641	-0.572	-0.579	2773. 734	-0.874	-0.861	-0.769	-0.667
2774.689	-1.253	-0.634	-0.565	-0.567	2774. 709	-0.865	-0.850	-0.756	-0.663
2775.707	-1.254	-0.637	-0.566	-0.549	2775. 757	-0.856	-0.843	-0.753	-0.657
2776.667	-1.225	-0.626	-0.557	-0.551	2776.694	-0.860	-0.856	-0.758	-0.655
2776. 741	-1.222	-0.629	-0.563	-0.547	2776. 821	-0.867	-0.853	-0.763	-0.659
2779.669	-1.290	-0.666	-0.601	-0.590	2779.727	-0.874	-0.846	-0.757	-0.670

TABLE XIV. — Observations of HD 66605 (HD 66605 – TABLE XVI. — Observations of HD 73340 [HD 73340 – 1/2 (HD 71043 + HD 73127)].

HJD	u	v	b	У	нјр	u	v	b	y
2,440,000+					2,440,000+				
2752.793	-0.171	-0.571	-0.650	-0.693	2752. 819	-0.722	-0.500	-0.462	-0.435
2753.778	-0.234	-0.565	-0.666	-0.735	2753. 798	-0.747	-0.521	-0.482	-0.451
2754.774	-0.173	-0.570	-0.651	-0.687	2754. 795	-0.728	-0.507	-0.473	-0.448
2755.796	-0.221	-0.574	-0.670	-0.733	2755. 802	-0.733	-0.499	-0.458	-0.438
2756.770	-0.165	-0.559	-0.635	-0.691	2756.797	-0.767	-0.532	-0.493	-0.454
2757.757	-0.195	-0.571	-0.662	-0.716	2757. 798	-0.722	-0.494	-0.460	-0.431
2758.782	-0.185	-0.554	-0.633	-0.688	2759. 813	-0.757	-0.528	-0.488	-0.455
2767.709	-0.177	-0.548	-0.631	-0.684	2767. 763	-0.777	-0.536	-0.490	-0.450
2767.770	-0.171	-0.557	-0.635	-0.690	2768.728	-0.715	-0.498	-0.460	-0.433
2767.835	-0.183	-0.550	-0.634	-0.689	2769. 719	-0.752	-0.513	-0.482	-0.448
2768, 716	-0.183	-0.569	-0.657	-0.711	2770. 714	-0.742	-0.521	-0.482	-0.440
2769.703	-0.204	-0.554	-0.643	-0.706	2770. 798	-0.733	-0.516	-0.476	-0.442
2769.808	-0.195	-0.549	-0.643	-0.697	2771.736	-0.745	-0.501	-0.461	-0.440
2770, 699	-0.175	-0.563	-0.643	-0.689	2772. 738	-0.764	-0.531	-0.495	-0.454
2770.780	-0.173	-0.567	-0.647	-0.691	2772. 836	-0.771	-0.528	-0.493	-0.460
2771.696	-0.229	-0.557	-0.659	-0.721	2773. 763	-0.719	-0.497	-0.457	-0.433
2772, 629	-0.155	-0.559	-0.631	-0.679	2773. 827	-0.713	-0.488	-0.446	-0.438
2772.704	-0.163	-0.569	-0.639	-0.678	2774. 717	-0.730	-0.494	-0.461	-0.430
2773.616	-0.246	-0.578	-0.692	-0.745	2774. 836	-0.743	-0.507	-0.470	-0.444
2773.683	-0.227	-0.577	-0.674	-0.746	2775. 783	-0.765	-0.526	-0.489	-0.458
2774, 611	-0.169	-0.559	-0.631	-0.678	2776. 709	-0.718	-0.494	-0.456	-0.436
2774.684	-0.157	-0.556	-0.636	-0.679	2776.823	-0.743	-0.502	-0.460	-0.433
2775.703	-0.244	-0.585	-0.675	-0.725	2779.673	-0.733	-0.496	-0.458	-0.437
2776.663	-0.183	-0.560	-0.637	-0.684	2779. 816	-0.757	-0.504	-0.464	-0.433
2776.738	-0.171	-0.554	-0.634	-0.683					
2779 666	-0 177	-0 566	-0 652	-0 606					

Nº 1

TABLE XVII. —	Observations of HD	75333 (HD 75333 –	TABLE XIX. — Observations of HD 83625 [HD 83625 - 1/2
HD 72660).			(HD 82856 + HD 84461)].

HJD	u	v	b	У	нјр	u	v	b	У
2,440,000+					2,440,000+				
2752, 836	-1.002	-0.607	-0, 535	-0.512	2753.812	-0.077	0. 391	0.455	0.537
2753. 804	-0.990	-0.603	-0. 527	-0.506	2754. 822	-0.056	0. 401	0.464	0.542
2754. 802	-1.001	-0, 603	-0. 532	-0.506	2755, 820	-0.048	0.411	0.469	0.542
2755, 811	-0. 993	-0, 606	-0. 527	-0.503	2756, 819	-0.037	0.411	0.478	0.544
2756, 802	-1.007	-0.607	-0.538	-0.514	2757. 826	-0.027	0.413	0.478	0.553
2757. 805	-1.009	-0.606	-0.535	-0.510	2758, 824	-0.027			
2758, 815	-1.009	-0.609	-0.534	-0.510	2758. 824 2759. 802		0.424	0.483	0.556
2759, 836		-0.609	-0.543	-0.511		-0.059	0.391	0.460	0.541
	-0.999				2767. 803	-0.075	0.393	0.457	0.538
2767.746	-0.999	-0.609	-0.532	-0.506	2768. 739	-0.042	0.408	0.471	0.549
2768.735	-1.007	-0.606	-0.539	-0.507	2769. 731	~0.037	0.421	0.475	0.553
2769.726	-1.008	-0.607	-0.538	-0.505	2769.822	-0.046	0.407	0.475	0.551
2769.818	-1.005	-0.611	-0.537	-0.511	2770. 727	-0.020	0.420	0.487	0.556
2770.722	-1.014	-0.616	-0.544	-0.503	2770. 809	-0.034	0.421	0.479	0.553
2770.796	-1,000	-0.605	-0.534	-0.506	2771, 751	-0.039	0.409	0.477	0.552
2771.729	-1.006	-0.606	-0.529	-0.502	2771.833	-0.032	0.412	0.483	0.562
2772.726	-1.008	-0.614	-0.538	-0.502	2772. 748	-0.053	0.390	0.455	0.544
2773.747	-1.007	-0.607	-0.533	-0.504	2773, 784	-0.055	0.384	0.456	0.532
2774.713	-0.992	-0.606	-0.533	-0.506	2775, 805	-0.088	0.371	0.443	0.533
2774.834	-1.000	-0,602	-0.533	-0, 501	2776, 715	-0. 081	0.376	0.444	0.533
2775, 770	-0.996	-0.610	-0.532	-0.518	2779. 699	-0.065	0.376		
2776. 700	-1.002	-0, 612	-0.540	-0.513				0.454	0.534
					2779. 810	-0.085	0.384	0.447	0.535
2779. 798	-0.992	-0.601	-0.526	-0.511	*				

Table XX. — Observations of HD 92664 [HD 92664 – 1/2 $(HD\ 88981\ +\ HD\ 90874)$].

					(HD 00901 + H)	D 900/4) J.				
					HJD 2,440,	u 000+	v	b	У	
					2768.	745 -1.351	-0.481	-0.245	-0.086	
					2769.		-0.470	-0. 225	-0.072	
					2769.		-0.470	-0. 235	-0.073	
					2770.		-0.457	-0. 216	-0.062	
TABLE VVIII	01	4	c rrn o	2260 /7775 022			-0.498	-0.256	-0.090	
TABLE XVIII. —	Observa	nons oj	HD 83	308 (HD 833	08 — _{2772.}		-0.471	-0.228	-0.063	
HD 82578).					2773.		-0.485	-0.248	-0.081	
					2774.		-0.468	-0.216	-0.056	
HJ D	u	v	b	y	2775.	822 -1.317	-0.463	-0.220	-0.060	
2,440,000+		-			2776.	726 -1.353	-0.489	-0.241	-0.082	
					2776.	793 -1.363	-0.492	-0.249	-0.092	
2753.805	-0.270	-0.311	-0.363	-0.368	2779.	730 -1.308	-0.472	-0.233	-0.068	
2754. 802	-0. 293	-0.344	-0.358	-0.352	2779.	824 -1.371	-0.487	-0.231	-0.055	
2755. 817	-0. 295	-0.345	-0.362	-0.349						
2756. 814	-0.275	-0.305	-0.358	-0.366						
2757. 815	-0. 281	-0.331	-0.356	-0.354						
2759.808	,-0. 311	-0.340	-0.373	-0.362						
2767.800	-0. 278	-0.319	-0.364	-0.356						
2768.736	-0.302	-0.352	-0.365	-0.349						
2769.727	-0. 248	-0.311 -0.332	-0.354	-0.367						
2769. 819 2770. 723	-0. 273 -0. 268	-0.332	-0.365 -0.349	-0.361 -0.360	Table XXI. —	Observation	ons of Hi	D 94660	IHD 9466	0 - 1/2
2770. 723	-0. 208	-0.318	-0.349	-0.359	(HD 93453 + H				L	
2770.803	-0. 273	-0.345	-0.361	-0.359	(11D 93433 + 11	D 94/24) j.				
2771.831	-0. 284	-0.349	-0.358	-0. 353						
2772.744	-0. 265	-0. 326	-0.359	-0. 365	нэр		v	b	У	
2773.771	-0. 267	-0.309	-0.357	-0, 360	2,440,	000+				
2774. 720	-0.300	-0.354	-0.369	-0. 345						
2775. 802	-0.326	-0.356	-0.361	-0.353	2767.		-0.524	-0.414	-0.244	
2776. 711	-0. 265	-0.308	-0.362	-0.371	2768.		-0.515	-0.401	-0.244	
2776.826	-0.278	-0.320	-0.369	-0.369	2769.		-0.518	-0.408	-0.244	
2779.695	-0. 284	-0.333	-0.382	-0.368	2769.		-0.525	-0.412	-0.248	
							~0.520	-0.407	-0.248	
	-0, 278			-0.368	2770.					
2779.777	-0. 278 -0. 284	-0.324 -0.331	-0.370	-0.368 -0.363	2770.	821 -0.782	-0.522	-0.410	-0.246	
	-0. 278 -0. 284	-0.324		-0.368 -0.363	2770. 2771.	821 -0.782 792 -0.778	-0.522 -0.520	-0.410 -0.403	-0.246 -0.250	
2779.777		-0.324	-0.370		2770. 2771. 2772.	821 -0.782 792 -0.778 777 -0.777	-0.522 -0.520 -0.527	-0.410 -0.403 -0.406	-0.246 -0.250 -0.248	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772.	821 -0.782 792 -0.778 777 -0.777 838 -0.779	-0.522 -0.520 -0.527 -0.518	-0.410 -0.403 -0.406 -0.405	-0.246 -0.250 -0.248 -0.248	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812	-0.522 -0.520 -0.527 -0.518 -0.534	-0.410 -0.403 -0.406 -0.405 -0.414	-0.246 -0.250 -0.248 -0.248	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773. 2774.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812 781 -0.784	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523	-0.410 -0.403 -0.406 -0.405 -0.414 -0.413	-0.246 -0.250 -0.248 -0.248 -0.242 -0.247	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773. 2774.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812 781 -0.784 838 -0.785	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523	-0. 410 -0. 403 -0. 406 -0. 405 -0. 414 -0. 413	-0.246 -0.250 -0.248 -0.248 -0.242 -0.247	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773. 2774. 2774.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812 781 -0.784 838 -0.785 812 -0.785	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523 -0.522	-0. 410 -0. 403 -0. 406 -0. 405 -0. 414 -0. 413 -0. 407 -0. 408	-0. 246 -0. 250 -0. 248 -0. 248 -0. 242 -0. 247 -0. 240 -0. 242	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773. 2774. 2774. 2775.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812 781 -0.784 838 -0.785 812 -0.785 776 -0.783	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523 -0.522 -0.525 -0.521	-0. 410 -0. 403 -0. 406 -0. 405 -0. 414 -0. 413 -0. 407 -0. 408 -0. 411	-0. 246 -0. 250 -0. 248 -0. 248 -0. 242 -0. 247 -0. 240 -0. 242 -0. 246	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2773. 2774. 2774. 2775. 2776.	821 -0.782 792 -0.778 777 -0.777 838 -0.779 811 -0.812 781 -0.784 838 -0.785 812 -0.785 776 -0.783 806 -0.792	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523 -0.522 -0.525 -0.521	-0. 410 -0. 403 -0. 406 -0. 405 -0. 414 -0. 413 -0. 407 -0. 408 -0. 411 -0. 404	-0. 246 -0. 250 -0. 248 -0. 248 -0. 242 -0. 247 -0. 240 -0. 242 -0. 246 -0. 236	
2779.777		-0.324	-0.370		2770. 2771. 2772. 2772. 2773. 2774. 2774. 2775.	821 -0.782 792 -0.778 777 -0.777 811 -0.812 781 -0.784 838 -0.785 812 -0.785 812 -0.785 806 -0.799	-0.522 -0.520 -0.527 -0.518 -0.534 -0.523 -0.522 -0.525 -0.521	-0. 410 -0. 403 -0. 406 -0. 405 -0. 414 -0. 413 -0. 407 -0. 408 -0. 411	-0. 246 -0. 250 -0. 248 -0. 248 -0. 242 -0. 247 -0. 240 -0. 242 -0. 246	

 $(HD\ 101128\ +\ HD\ 101596)\,].$

HJD	u	v	b	У
2,440,000+				
2767, 816	-0.780	-0.306	-0.856	-1.209
2768.759	-0.775	-0.323	-0.860	-1.190
2769.756	-0.799	-0.319	-0.860	-1.173
2769.836	-0.783	-0.328	-0.859	-1.186
2770, 736	-0.809	-0.346	-0.873	-1.190
2770.823	-0.796	-0.327	-0.863	-1.193
2771.795	-0.798	-0.307	-0.864	-1.197
2772.737	-0.821	-0.337	-0.872	-1.199
2772. 814	-0.815	-0.326	-0.858	-1.181
2773.770	-0.817	-0.326	-0.854	-1.179
2773.830	-0.801	-0.314	-0.855	-1.190
2774.765	-0.820	-0.326	-0.856	-1.184
2774.842	-0.796	-0.325	-0.853	-1.185
2775.809	-0.820	-0.334	-0.861	-1.177
2776.779	-0.796	-0.304	-0.861	-1.195
2776.836	-0.820	-0.320	-0.860	-1.198
2778.808	-0.829	-0.329	-0.862	-1.189
2779.740	-0.784	-0.323	-0.869	-1.199
2779.817	-0.799	-0.321	-0.862	-1.183

TABLE XXII. — Observations of HD 101065 [HD 101065 – 1/2 TABLE XXIV. — Observing runs used in the analysis. The list concerns only those stars which gave positive results (reliable lightcurve).

A. Heck et al.

Run	Epoch	Tel.	Observer(s)	Ref.
1	December 1975	1	A. Heck	-
2	February-April 1970	2	S.C. Wolff & R.J. Wolff	1
3	December 1970	3	R. Albrecht	1
4	November 1971	3	H. M. Maitzen	2
5	February 1973	4	H. M. Maitzen	1
6	January 1975	5	H. Hensberge	3, 4
7	February 1975	1	A. Heck & J. Manfroid	5
8	February-March 1975	1	G. Hammerschlag-Hensberge & E. J. Zuiderwijk	3, 4
9	February 1977	1	J. Manfroid	-
10	April 1977	5	C. Mégessier	4
11	November 1977	1	J. Manfroid	-
12	February 1978	5	D. Vanbeveren	1
13	December 1978	5	& H. Hensberge J. Manfroid	-
14	November 1979	5	H. M. Maitzen	2,6
15	December 1979	5	H. Hensberge	6
16	September 1981	1	J. Manfroid	-
17	January 1982	1	J. Manfroid	-

TABLE XXIII. — Observations of HD 101189 (HD 101189 -HD 101995).

нјр	u	v	b	У
2,440,000+				
2767.823	-1.417	-1.078	-0.999	-0.952
2769.763	-1.434	-1.098	-1.009	-0.958
2770.753	-1.433	-1.086	-1.001	-0.950
2770.814	-1.427	-1.089	-1.012	-0.963
2771.739	-1.448	-1.080	-1.001	-0.936
2771.821	-1.437	-1.080	-1.000	-0.947
2772. 802	-1.421	-1.077	-0.997	-0.947
2773, 802	-1.432	-1.082	-1.008	-0.956
2774. 771	-1.463	-1.098	-0.996	-0.948
2775.818	-1.488	-1.112	-1.006	-0.945
2776.718	-1.428	-1.087	-1.008	-0.949
2776. 786	-1.429	-1.075	-1.005	-0.956
2779, 806	-1.432	-1.080	-1.007	-0.950

TABLE XXIV (continued).

Telescope codes:

- 1 Danish 50cm
- 2 Mauna Kea 60cm 3 - Bochum 60cm
- 4 ESO 1m
- 5 ESO 50cm

Reference codes:

- 1 Maitzen et al. (1978)
- 2 Maitzen (1981)
- 3 Hensberge et al. (1976)
- 4 Mégessier & Hensberge (1984)
- 5 Heck et al. (1976)
- 6 Hensberge et al. (1981)

The differential ybvu values given in Ref. 4 for HD 92664 correspond to the comparison star minus the CP star instead of the reverse as usual.

TABLE XXV. — Data sets used in the derivation of least-square fit. Columns 1 and 2 give two identifications of the CP stars. The spectrum in column 3 is taken from a preliminary version of the catalogue of Ap stars by Renson (1986). $v \sin i$ (km/sec) in column 4 has been taken from Uesugi and Fukuda (1981). C_1 and C_2 are the HD numbers of the comparison stars (Col. 5 and 6). The run number in column 7 refers to table XXIV. Column 8 gives the number n of independent observations in each run. P (days) appears in column 10 while column 11 gives bibliographical references concerning the period. The symbols used in the plots (Fig. 1 to 11) are reproduced in column 9 for each run.

HD	Other 1d.	Sp. type	v sin i	C1 (HD)	C ₂	Run	n	8	P	Ref.
29305	HR 1465	AOp Si	55	24863	_	1	38	+	2. 943176	1
		•		31203/4	-	4	6	*		
				27604	-	11	40	x		
				27604	-	13	9	0		
				27647	-	14	7			
				27604	-	16	9	Δ		
				27604	-	17	6	*		
56022	HR 2746	AOp SiCrSr	40	56456	53704	1	35	+	0.91889	1
				56456	-	7	11	Δ		
				56456	-	14	8	*		
				56456	-	15	15	*		
56455	HR 2761	A0p Si	-	56456	53704	,	35	+	1.9346	2
65987	CoD -60°976	B9p SiSr	15	65663	64507	1	16	+	1.44962	3
66255	HR 3151	A0p Si	-	66192	66210	1	21	+	6.8178	1
				66192	66210	9	41	×		
				66192	66210	13	8	0		
66605	CoD -44°3980	A0p Si	-	67363	_	1	26	+	2. 2232	1
				65211	-	9	33	x		
				65211	-	13	8	0		
72968	HR 3398	A2p SrCr	15	70574	73997	1	21	+	11.305	4
				73431	_	2	30	Δ		
				73400	-	3	23			
				73997	-	5	9	*		
HD	Other id.	Sp. type	v sin i	C ₁ (HD)	C ₂	Run	n	s	P	Ref.
73340	HR 3413	B9p Si	_	73127	71043	1	24	+	2. 66753	1
73340	HK 3413	83b 2t		74071	-	6	9	۵	2. 00733	•
				74071	-	8	7	\$		
				73127	71043	9	33	×		
				73127	71043	13	8	0		
83368	HR 3831	A7p SrCrEu	_	82578	_	1	23		2.85189	1
				82578	84552		32	x		
				82578	84552	13	8	0		
83625	CoD -53°2664	AOp SiSr	2	82856	84461	1	21	+	1.078516	1
				82856	84228	9	30	×		
				82856	84228	13	8	0		
92664	HR 4185	B9p Si	55	90874	88981	1	13	+	1.6731	5
				93194	-	6	5	-		
				93194	- ,	8	12	*		
				93194	- '	10	6	Δ		
				93194	-	12	13	*		

Reference codes:

- (1) this paper;
- (2) Waelkens (1985);
- (3) North (1984);
- (4) Maitzen et al. (1978);
- (5) Mégessier and Hensberge (1984).

TABLE XXVI. — Parameters of the least-square fit of the lightcurves (see Sect. 2 — n is the number of points used). t_{max} is the epoch of the first maximum in u after t_0 .

HD	p	t. 2,440,000+	t 2,440,000+	n		A 1	Å 2	φı	φ2	σ
29305	2. 943176	1278.0	1280.00	115	У	0.0190	0.0036	5.313	0.607	0.0047
				•	ь	0.0167	0.0033	5.300	0.456	0.0068
					v	0.0134	0.0033	5.363	0.581	0.0063
					u	0.0447	0.0138	5. 299	0.726	0.0104
56022	0.91889	2447.0	2447.05	69	y	0.0048	0.0015	2.756	1.703	0.0039
					b	0.0061	0.0017	2.756	1.793	0.0041
					v	0.0041	0.0010	2.849	2.945	0.0043
					u	0.0203	0.0069	2.787	2.420	0.0099
56455	1.9346	2752.0	2752.46	35	у	0.0189	0.0018	1.796	2.592	0.0038
					b	0.0170	0.0009	1.827	4.862	0.0040
					v	0.0132	0.0010	1.890	3.743	0.0036
					u	0.0514	0.0079	1.764	3.718	0.0103
65987	1.44962	2752.0	2752.20	16	у	0.0002	0.0026	4. 229	0.888	0.0018
					b	0.0089	0.0023	1.281	0.711	0.0037
					v	0.0107	0.0012	1.455	3.346	0.0037
					u	0.0138	0.0044	1.592	3. 247	0.0046
66255	6.8178	2752. 0	2752, 89	70	у	0.0187	0.0024	2. 338	2, 085	0.0037
					b	0.0195	0.0042	2.423	2.130	0.0032
					v	0.0194	0.0045	2.465	2. 246	0.0032
					u	0.0365	0. 0021	2. 319	0.661	0.0057
66605	2. 2232	2752.0	2753.82	67	у	0.0263	0.0058	4.657	5.867	0.0046
00003	2. 2232	2732.0	2733.02	0,	b				5. 883	
					v.	0.0173 0.0081	0.0055 0.0054	4. 982 5. 769	6.058	0.0045 0.0039
					u	0.0357	0.0084	4. 342	5. 484	0.0039
HD	P	t. 2,440,000+	t 2,440,000+	n		Aı	A2	φι	Ψz	σ
72968	11.305	618.0	619.47	83	У	0.0019	0.0070	3.698	1.446	0.0049
					ь	0.0010	0.0073	2. 371	1.383	0.0049
					v	0.0011	0.0042	2.663	1.535	0.0051
					u	0.0028	0.0084	2. 358	1.491	0.0057
73340	2.66753	2427.0	2428.87	81	у	0.0102	0.0029	5. 362	0.445	0.0038
					b	0.0172	0.0039	5. 251	0.502	0.0037
					v	0.0165	0.0050	5. 289	0.441	0.0043
					u	0.0176	0.0100	5.590	0.276	0.0067
83368	2.85189	2753.0	2753. 23	63	у	0.0010	0. 0091	5. 436	5. 284	0.0032
					b	0.0017	0.0020	0.402	4.166	0.0048
					v	0.0004	0.0223	0.905	2.388	0.0063
					u	0.0082	0.0205	1.551	2. 367	0.0081
83625	1.078516	2753.0	2753.04	59	У	0.0127	0.0045	3. 022	0.490	0.0030
					b	0.0181	0.0065	2. 925		0.0042
					v	0.0175	0.0067	2.904		0.0050
					u	0.0236	0.0046	3. 233	0.469	0.0055
92664	1.6731	2428.0	2428.89	49	У	0.0168	0.0062	6. 189	2. 519	0. 0050
					b	0.0163	0.0087	0.047		0.0053
					v	0.0155	0.0089	0.249	2. 561	0. 0051
					u	0.0364	0.0105	6.127	2. 623	0.0114

TABLE XXVII. — Stars showing no variation in December 1975 TABLE XXVIII. — Stars giving inconclusive results (see also the (see also the heading of Tab. XXV - n is the number of heading of Tab. XXV - n is the number of observations). observations).

HD	Other id.	Sp.	type	v 81n 1	C1 (HE)) C ₂	n
33904	HR 1702	В9р	MnHg	20	34816	35337	29
36629	BD -4°116	4 B3p	He w	-	36342	-	16
55719	HR 2727	A3p	SrCrEu	95	53704	-	35
59256	HR 2863	В9р	Si	-	58377	-	25
59435	BD -8°193	37 A4p	SrCrSı	-	59692	59154	21
75333	HR 3500	В9р	MnHg	30	72660	-	22
94660	· HR 4263	AOp	EuCrSi	-	94724	93453	17
101189	HR 4487	A 0 p	CrYHg	15	101495	-	13

HD	Other id.	Sp. type	v sin i	Ct (H	D) C ₂	n
50169	BD -4°1164	A3p SrCrEu	∢10	50040	50405	25
50461	BD -7°1614	B9p SiCr	-	50672	50936	21
53244	HR 2657	B8p MnHg	20	56405	49229	23
101065	CoD -46°7232	Г 3р Но	-	101396	101128	19

FIGURE 1. — uvby lightcurves of HD 29305 with P = 2.943176 d. The phase origin has been taken at taken at HJD = 2,441,278.0.

FIGURE 2. — uvby lightcurves of HD 56022 with P =The 0.91889 d. phase origin has HJD = 2,442,447.0.

46

FIGURE 3. — *uvby* lightcurves of HD 56455 with P = 1.9346 d. The phase origin has been taken at HJD = 2,442,752.0.

FIGURE 5. — uvby lightcurves of HD 66255 with P = 6.8178 d. The phase origin has been taken at HJD = 2,442,752.0.

FIGURE 4. — uvby lightcurves of HD 65987 with P = 1.44962 d. The phase origin has been taken at HJD = 2,442,752.0.

FIGURE 6. — uvby lightcurves of HD 66605 with P = 2.2232 d. The phase origin has been taken at HJD = 2,442,752.0.

FIGURE 7. — uvby lightcurves of HD 72968 with P = 11.305 d. The phase origin has been taken at HJD = 2,440,618.0.

FIGURE 9. — uvby lightcurves of HD 83368 with P = 2.85189 d. The phase origin has been taken at HJD = 2,442,753.0.

FIGURE 10. — uvby lightcurves of HD 83625 with P = 1.078516 d. The phase origin has been taken at HJD = 2,442,753.0.

48

FIGURE 11. — uvby lightcurves of HD 92664 with P = 1.6731 d. The phase origin has been taken at HJD = 2,442,428.0.