DBSCAN Density-Based Spatial Clustering of Applications with Noise

Reference:

M.Ester, H.P.Kriegel, J.Sander and Xu.

A density-based algorithm for discovering clusters in large spatial databases, Aug 1996

Density-Based Clustering – Basic Idea

Clusters are dense regions in the data space, separated by regions of lower object density

Density-based Approaches

Why Density-Based Clustering methods?

- Clusters can have arbitrary shapes and sizes, can even identify clusters contained within other clusters
- The number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Can be supported by a spatial index structures
- DBSCAN the first density based clustering
- OPTICS density based cluster-ordering
- DENCLUE a general density-based description of cluster and clustering

Why Use Density-Based Clustering?

Results of a k-medoid algorithm for k=4

Results of a k-means algorithm for k=4, wrongly converging in 6 steps

DBSCAN in a nutshell

Intuition for the formalization of the basic idea:

- For any point in a cluster, the local point density around that point has to exceed some threshold
- The set of points from one cluster is spatially connected

Local point density at a point p is defined by two parameters:

- ε radius for the neighborhood of point p: $N_{\varepsilon}(p) := \{q \text{ in data set } D \mid distance(p, q) \le \varepsilon\}$
- MinPts minimum number of points in the given neighborhood N(p)

• ϵ -Neighborhood – Objects within a radius of ϵ from an object.

$$N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$$

• "High density" - ε-Neighborhood of an object contains at least *MinPts* of objects.

$\underline{For\ MinPts = 4}$

Density of p is "high": N $\varepsilon(p) = 4$

Density of q is "low": N $\varepsilon(q) = 3$

- A point is a core point if it has more than MinPts within ϵ . These are points at the interior of a cluster
- A border point has fewer than MinPts within ϵ , but is within ϵ of a core point
- A noise point is any point that is not a core point nor a border point

$$\varepsilon = 1$$
 unit, MinPts = 5

Directly density-reachable

• An object q is directly density-reachable from object p if q is within the ε-Neighborhood of p and p is a core object.

- q is directly density-reachable from p
- p is not directly densityreachable from q (for MinPts > 3)
- Direct density reachability is asymmetric.

Density-reachable:

• An object p is density-reachable from q w.r.t ϵ and MinPts if there is a chain of objects $p_1,...,p_n$, with $p_1=q$, $p_n=p$ such that p_{i+1} is directly density-reachable from p_i w.r.t ϵ and MinPts for all 1 <= i <= n

- q is density-reachable from p
- p is not density- reachable from q (for MinPts > 3)
- Transitive closure of direct density-reachability, still asymmetric

Density-connectivity

• Object p is density-connected to object q w.r.t ϵ and MinPts if there is an object o such that both p and q are density-reachable from o w.r.t ϵ and MinPts

- P and q are density-connected to each other by r
- Density-connectivity is symmetric

- **Cluster**: A cluster **C** is defined as a maximal set of density-connected points. The set **C** satisfies:
 - Maximality: For all p, q if $p \in C$ and if q is density-reachable from p w.r.t ε and MinPts, then also $q \in C$.
 - Connectivity: for all $p, q \in C$, p is density-connected to q w.r.t ε and MinPts in D.
 - Note: cluster contains core objects as well as border objects
- Noise: objects which are not directly density-reachable from any core object

DBSCAN pseudo code

- select a point p
- Retrieve all points density-reachable from ${\it p}$ w.r.t ϵ and ${\it MinPts}$
- If **p** is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point in the dataset
- Continue the process until all of the points have been processed

Result is independent of the order of processing the points.

Example

MinPts = 4

Determining the Parameters ε and MinPts

- Cluster: Point density higher than specified by ε and *MinPts*
- Idea: use the point density of the least dense cluster in the dataset as parameters but how to determine this?
- Heuristic: look at the distances to the k-nearest neighbor

- Function *k-distance*(*p*): distance from *p* to the its *k*-nearest neighbor
- k-distance plot: k-distances of all objects, sorted in decreasing order

Determining the Parameters arepsilon and MinPts

• Example of a *k*-distance plot

- Heuristic method:
 - Fix a value for *MinPts*
 - User selects "border object" *o* from the *MinPts-distance* plot; ε is set to *MinPts-distance*(o)