Word Alignment by Fine-tuning Embeddings on Parallel Corpora

Zi-Yi Dou, Graham Neubig

EACL 2021

Overview

- Most of previous work (e.g., GIZA++ (2003), fastalign (2013)) on word alignment has worked by performing unsupervised learning on parallel text.
- Recent work (SimAlign 2020) has shown competitive word alignment performance with statistical models by using pretrained multilingual language models, even without finetuning.
- This work (AwesomeAlign) proposes objectives to combine the strength of (i) finetuning on parallel text and (i) pretrained multilingual language models.

Word Alignment

- $\mathbf{x} = \langle x_1, \cdots, x_n \rangle$ is a sentence in the source language.
- $\mathbf{y} = \langle y_1, \cdots, y_m \rangle$ is the translated sentence for \mathbf{x} in the target language.
- Find a set: $A = \{\langle x_i, y_j \rangle : x_i \in \mathbf{x}, y_j \in \mathbf{y}\}$

Such that for each pair $\langle x_i, y_j \rangle$, x_i and y_j are semantically similar within the context of the sentence.

Proposed Method: Similarity Matrix Computation

Extracting word embeddings: via a multilingual language model (e.g., mBERT, XLM-Roberta):

$$h_{\mathbf{x}} = \langle h_{x_1}, \cdots, h_{x_n} \rangle$$
 $h_{\mathbf{y}} = \langle h_{y_1}, \cdots, h_{y_m} \rangle$ source sentence target sentence

- 2 ways to compute similarity matrix:
 - > Using cosine similarity: $S = h_{\mathbf{x}} h_{\mathbf{y}}^T$; $S_{\mathbf{xy}} = \mathcal{N}(S)$ where $\mathcal{N}(S)$ is a normalization function such as: softmax, sparsemax.
 - > Using optimal transport:
 - + Each sentence is a set of points (i.e., words).
 - + Assumption: each word/point is uniformly distributed.
 - + Distance function $C(x_i, y_i)$: cosine, Euclidean, dot product.
 - + Using Sinkhorn-Knopp to compute the transition matrix $S_{\mathbf{x}\mathbf{y}}$ via minimizing:

$$\sum_{i,j} C(x_i, y_j) S_{\mathbf{x}\mathbf{y}_{ij}}$$

Proposed Method: Word Alignment Deduction

• Once we computed the transition matrix $S_{\mathbf{x}\mathbf{y}}$, the final alignment is obtained by:

$$A = (S_{\mathbf{x}\mathbf{y}} > c) * (S_{\mathbf{y}\mathbf{x}}^T > c)$$

Where c is a probability threshold (set to 0.001 in this work); $S_{\mathbf{x}\mathbf{y}}$ represents for alignment probabilities from source to target sentence while $S_{\mathbf{y}\mathbf{x}}^T$ represents for alignment probabilities from target to source sentence.

Proposed Method: Further Improvement with Finetuning Objectives

Masked Language Modeling: requires monolingual corpora for two languages.

$$L_{MLM} = \log p(\mathbf{x}|\mathbf{x}^{mask}) + \log p(\mathbf{y}|\mathbf{y}^{mask})$$

Translation Language Modeling: requires parallel sentences for two languages.

$$L_{TLM} = \log p([\mathbf{x}; \mathbf{y}] | [\mathbf{x}^{mask}; \mathbf{y}^{mask}])$$
$$+ \log p([\mathbf{y}; \mathbf{x}] | [\mathbf{y}^{mask}; \mathbf{x}^{mask}])$$

Self-training Objective: requires parallel sentences for two languages.

$$L_{SO} = \sum_{i,j} A_{ij} \frac{1}{2} (\frac{S_{\mathbf{x}\mathbf{y}_{ij}}}{n} + \frac{S_{\mathbf{y}\mathbf{x}_{ij}}}{m}) \quad \text{where} \quad A \quad \text{is obtained by the non-finetuning method.}$$

Parallel Sentence Identification: requires parallel sentences for two languages. Feeding [CLS] vector to a feedforward net to product $s(\mathbf{x}', \mathbf{y}')$ for predicting whether two sentences are parallel.

$$L_{PSI} = l \log s(\mathbf{x}', \mathbf{y}') + (1 - l) \log(1 - s(\mathbf{x}', \mathbf{y}'))$$

- Consistency Optimization: requires parallel sentences for two languages. Encouraging the agreement between the two alignment directions (i.e., source-to-target and target-to-source): $L_{CO} = -\frac{\operatorname{trace}(S_{\mathbf{xy}}^{\mathrm{T}}S_{\mathbf{yx}})}{\min(m,n)}$
- lacktriangle Minimizing the overall loss function: $L=L_{MLM}+L_{TLM}+L_{SO}+L_{PSI}+eta L_{CO}$

Results:

Model	Setting	De-En	Fr-En	Ro-En	Ja-En	Zh-En
Baseline						
SimAlign (2020)	w/o fine-tuning	18.8	7.6	27.2	46.6	21.6
fast_align (2013)	bilingual	27.0	10.5	32.1	51.1	38.1
eflomal (2016)	bilingual	22.6	8.2	25.1	47.5	28.7
GIZA++ (2003)	bilingual	20.6	5.9	26.4	48.0	35.1
Zenkel et al. (2020)	bilingual	16.0	5.0	23.4	-	-
Chen et al. (2020)	bilingual	15.4	4.7	21.2	-	-
Ours						
	w/o fine-tuning	18.1	5.6	29.0	46.3	18.4
o antmov	bilingual	16.1	4.1	23.4	38.6	15.4
α -entmax	$multilingual\ (\beta = 0)$	15.4	4.1	22.9	37.4	13.9
	$multilingual (\beta = 1)$	<i>15.0</i>	4.5	20.8	38.7	14.5
	zero-shot	16.0	4.3	28.4	44.0	13.9
	w/o fine-tuning	17.4	5.6	27.9	45.6	18.1
softmax	bilingual	15.6	4.4	23.0	38.4	15.3
softmax	$multilingual\ (\beta = 0)$	15.3	4.4	22.6	37.9	13.6
	$multilingual (\beta = 1)$	15.1	4.5	20.7	38.4	14.5
	zero-shot	15.7	4.6	27.2	43.7	14.0

Results:

	Component	De-En	Fr-En	Ro-En	Ja-En	Zh-En	Speed
Prob.	softmax	17.4	5.6	27.9	45.6	18.1	33.22
	α -entmax	18.1	5.6	29.0	46.3	18.4	32.36
ОТ	Cosine	24.4	15.7	33.7	54.0	31.1	3.36
	Dot Product	25.4	17.1	34.1	54.2	30.9	3.82
	Euclidean	20.7	15.1	33.3	53.2	29.8	3.05

Model	Layer	De-En	Fr-En	Zh-En
	7	18.7	6.1	19.1
mBERT	8	17.4	5.6	18.1
	9	18.8	6.1	20.1
XLM-15 (MLM)	4	21.1	6.8	25.3
	5	20.4	6.1	26.1
	6	23.2	7.7	33.3
	4	16.4	4.9	18.6
XLM-15 (MLM+TLM)	5	<i>16.2</i>	<i>4.7</i>	23.7
	6	18.8	5.7	26.2
	7	20.5	8.5	30.8
XLM-100 (MLM)	8	19.8	8.2	28.6
	9	19.9	8.8	29.3
	5	24.4	10.3	33.2
XLM-R	6	23.1	9.2	30.7
	7	24.7	11.5	28.1