O Pêndulo Física Experimental I

Ernesto González 52857 Gonçalo Jesus 52874 Patricia Magalhães 52871 Tiago Pereira 53107

29 de Abril, 2019

O pêndulo simples

Um pêndulo simples é um sistema que pode oscilar devido à ação gravitacional, procurando o estado mais baixo de energia, e que está configurado por uma massa pontual *m* suspensa de um ponto fixo por um fio inextensível e de massa desprezável.

Figura: Pêndulo simples

O pêndulo simples

Na ausência de atrito, a massa descreve um movimento harmónico simples:

$$\theta = \theta_{\max} \sin(\omega t + \phi_0)$$

Este tipo de movimentos têm associados uma frequência angular, ω que depende do comprimento do fio, ℓ :

$$\omega = \sqrt{\frac{g}{\ell}} \iff T = 2\pi\sqrt{\frac{\ell}{g}}$$

O pêndulo físico

Um pêndulo físico consiste num corpo rígido suspenso de um ponto fixo. Para pequenas oscilações temos

$$heta = heta_{ extit{max}} \sin(\omega t + \phi_0)$$
 e $T = 2\pi \sqrt{rac{ ext{I}}{ ext{mgh}}}$

O estudo das Figura 1 e Figura 2 revela uma importante diferença entre o pêndulo simples e o pêndulo físico. Para um pêndulo físico a força restauradora $F_g \sin \theta$ da força gravitacional tem um braço de distância h ao ponto pivot, em vez do comprimento do fio ℓ .

Objetivo Da Experiência

- Estudar o movimento periódico de um pêndulo quase simples;
- Determinar a aceleração da gravidade;
- Estudar o movimento de um pêndulo físico.
- Determinar o momento de inércia de um pêndulo físico

Equipamento

- Suporte universal;
- Pêndulo de comprimento variável;
- Fita métrica (incerteza associada de $\pm 0.0005m$);
- Craveira (incerteza associada de $\pm 0.00002m$);
- Cronómetro (incerteza associada $\pm 0.01s$);
- Barra metálica de secção retangular;
- Interface com foto-porta e programa DataStudio;
- Balança Digital (incerteza associada $\pm 0.00001kg$);

Estudo Do Pêndulo Simples - Procedimento

Usando o suporte universal, prendeu-se uma ponta do fio à garra e a outra à esfera, permitindo que esta oscilasse. O comprimento inicial do pêndulo $\ell=0.4500\pm0.0005m$. Em cada lançamento, soltou-se o pêndulo a uma distância de $0.0500\pm0.0005m$ ao eixo de equilíbrio, o que garantiu oscilações com pequenos ângulos.

Período Do Pêndulo

Calculou-se o período do pêndulo a partir da medida de 1 período, 10 períodos e 30 períodos com o cronómetro manual.

Periodos	Tempo(s)											
1	1.22	1.25	1.32	1.37	1.24	1.32	1.39	1.29	1.23	1.31	1.36	1.25
10	13.60	13.64	13.72	13.83	13.62	13.72	-	-	-	-	-	-
30	41.32	40.68	41.07	-	-	-	-	-	-	-	-	-

Tabela: Períodos de 1,10 e 30 oscilações

$$T_1 = (1.30 \pm 0.02)s$$
 $T_{10} = (1.37 \pm 0.01)s$ $T_{30} = (1.37 \pm 0.01)s$

Cronómetro e DataStudio

As medições dos períodos com o cronómetro apresentam valores pouco diferentes aos períodos de aquisição automática cronometrado com o DataStudio para um mesmo comprimento do pêndulo de $\ell=0.4500\pm0.0005m$.

Periodos	$\sigma_{manual}(s)$	$T_{manual}(s)$	rel.	$T_{automatico}(s)$	$\sigma_{automatico}(s)$
1	0.02	1.30	_	_	_
10	0.01	1.37	>	1.3481	0.0001
30	0.01	1.37	>	1.34180	0.00004

Tabela: Comparação entre períodos manuais e de automáticos

Cronómetro e DataStudio

Dos dois processos, o que nos permite ter uma menor incerteza é o processo automático, isto porque o tempo de reação humana é $(0.4\pm0.02)s$ podendo conduzir a erros experimentais. A este facto junta-se a incerteza do cronómetro ($\sigma=0.01s$) ser muito maior que a da foto-porta ($\sigma=0.0001s$) pelo que é mais favorável à experiência proceder à utilização da foto-porta associada ao DataStudio para tratamento de dados.

Período Do Pêndulo

Se apenas tivéssemos um cronómetro manual e quiséssemos obter uma incerteza menor que 1%, precisariamos uma maior amostra de dados. Quantos mais períodos forem medidos e mais repetições forem feitas, menor será a incerteza do período médio calculado.

Como varia o período do movimento?

O período é aproximadamente constante no decorrer do movimento Período ao longo do tempo

Como varia a velocidade num dado ponto?

Com o decorrer do tempo, a velocidade tangencial diminui devido à resistência do ar.

O sistema é conservativo?Como varia a amplitude do movimento?

O sistema não é conservativo.

Período e Comprimento do Pêndulo

Procedeu-se à medição do período do pêndulo, fazendo variar o comprimento do mesmo.

$\ell(10^{-2}m)$	T(s)	$\sigma_T(s)$
40.00	1.2657	0.0002
45.00	1.3481	0.0001
53.00	1.4553	0.0009
64.00	1.5980	0.0003
87.50	1.8740	0.0002
95.50	1.9581	0.0035

Tabela: Comprimentos de pêndulo e período associado

Sabemos que $T=2\pi\sqrt{\frac{\ell}{g}}$. Comparemos com os resultados da experiência

Dependência do período com comprimento do pêndulo

PL22 Grupo 3

O Pêndulo

$\ell(m)$	$T_{medido}(s)$	$T_{esperado}(s)$	$ T_{medido} - T_{esperado} (s) $
0.4000	1.266	1.269	0.003
0.4500	1.348	1.346	0.002
0.5300	1.455	1.461	0.005
0.6400	1.598	1.605	0.007
0.8750	1.875	1.878	0.003
0.9550	1.958	1.960	0.003

Tabela: Comprimento do pêndulo e períodos associados

Para se obter uma relação de linearidade $T^2(\ell)=rac{4\pi^2}{g}\ell$

Dependência do período com comprimento do pêndulo

Aceleração da gravidade em laboratório

O gráfico tem equação y=3.9373x+0.0540, donde $m=\frac{4\pi^2}{g}\iff g=10.0268$

$$\Delta g = \sqrt{\left|\frac{\partial g}{\partial m} \Delta m\right|^2} = \left(\frac{2\pi}{m}\right)^2 \Delta m = 0.2012 ms^{-2}$$

Logo

$$g = (10.0 \pm 0.2) ms^{-2}$$

Dependência do período com comprimento do pêndulo

Obtivemos um gráfico de y = 0.49227x + 0.69474 Donde resulta

$$log\left(\frac{2\pi}{\sqrt{g}}\right) = 0.69474 \iff g = 9.83821 ms^{-2}$$

$$\Delta g = \sqrt{\left|\frac{\partial g}{\partial b}\Delta b\right|^2} = \frac{8\pi^2}{e^{2b}}\Delta b = 0.1554$$
ms⁻²

Logo

$$g = (9.8 \pm 0.2) ms^{-2}$$

O Pêndulo

Aceleração da gravidade em laboratório

Linearização
$$T^2$$
 $g=(10.0\pm0.2)ms^{-2}$ Isto deixa um $Erro$ $relativo(\%)=2.24\%$ face ao valor padrão $g_0=9.80665ms^{-2}$

Linearização $ln~g=(9.8\pm0.2)ms^{-2}$ Isto deixa um *Erro* relativo(%)=0.32% face ao valor padrão $g_0=9.80665ms^{-2}$

Com a linearização *ln* obtemos não só uma menor incerteza, como também um menor erro relativo.

Estudo de um pêndulo físico

Para o estudo do pêndulo físico usou-se uma régua com uma das extremidades pendurada no suporte universal, permitindo a régua oscilar. Registou-se o período de oscilação usando o DataStudio. Para garantir oscilações com pequenos ângulos, soltou-se a régua desde uma distância de $0.0500 \pm 0.0005m$ ao eixo de equilíbrio.

Dimensões da régua

Dimensões da régua:

$$\label{eq:comprimento} \begin{split} &\text{comprimento - } 0.5000 \pm 0.0005 m \\ &\text{largura - } 0.0200 \pm 0.0005 m \\ &\text{massa - } 0.05661 \pm 0.00001 kg \end{split}$$

Medição do período do pêndulo físico

Run	T(s)			
1	1.13 ± 0.01			
2	1.18 ± 0.01			
3	1.19 ± 0.01			
4	1.15 ± 0.01			

Tabela: Períodos do pêndulo físico

Média Período:
$$T=1.16s$$

$$s_T=\sqrt{\frac{(0.03)^2+(0.02)^2+(0.03)^2+(0.01)^2}{3}}=0.03s$$

$$\sigma=\sqrt{(0.03)^2+(0.01)^2}=0.03s$$

$$T=(1.16\pm0.03)s$$

PL22 Grupo 3

O Pêndulo

Momento de Inércia - Experimental

Atendendo a
$$T=2\pi\sqrt{\frac{1}{dMg}}\iff I=\left(\frac{T}{2\pi}\sqrt{dMg}\right)^2$$
 Temos

$$I = \left(\frac{1.16}{2\pi}\sqrt{0.238 \times 0.05661 \times 9.80665}\right)^2 = 0.004503 \textit{Kgm}^2$$

$$\Delta I(T, m, d) = \sqrt{\left(\frac{\partial I}{\partial T} \Delta T\right)^{2} + \left(\frac{\partial I}{\partial m} \Delta m\right)^{2} + \left(\frac{\partial I}{\partial d} \Delta d\right)^{2}} = 0.000233 Kgm^{2}$$

Logo I =
$$(4.5 \pm 0.2) \times 10^{-3} Kgm^2$$

Momento de Inércia - Teórico

Sabemos que $I=\frac{1}{12}m(a^2+b^2)+md^2$, o que para a nossa régua resulta em $I=0.004388 Kgm^2$

$$\Delta I(m, a, b, d) = \sqrt{\left(\frac{\partial I}{\partial m}\Delta m\right)^{2} + \left(\frac{\partial I}{\partial a}\Delta a\right)^{2} + \left(\frac{\partial I}{\partial b}\Delta b\right)^{2} + \left(\frac{\partial I}{\partial d}\Delta d\right)^{2}}$$

$$= 0.000015 Kgm^{2}$$

Logo I = $(4.39 \pm 0.02) \times 10^{-3} \text{Kgm}^2$. O erro é menor para a determinação do momento de inércia através da massa e das medidas.

Momento de Inércia do pêndulo físico

Portanto

- A partir do período temos $I = (4.5 \pm 0.2)x10^{-3} Kgm^2$.
- A partir das dimensões do pêndulo temos $I = (4.39 \pm 0.02) \times 10^{-3} Kgm^2$.

Estudo de um pêndulo físico

O período e a frequência de oscilação relacionam-se com o momento de inércia do corpo I, a distância do ponto de suspensão ao centro de gravidade d, a massa do corpo M e a aceleração da gravidade g:

$$\omega = \sqrt{\frac{dMg}{I}} \iff T = 2\pi\sqrt{\frac{I}{dMg}}$$

O pêndulo simples consiste num caso específico do pêndulo físico, em que a massa está toda concentrada pontualmente na extremidade oscilante do fio, fio esse com massa desprezável.

Estudo de um pêndulo físico

Num pêndulo simples temos $d = \ell$ e $I = M\ell^2$, resultando

$$T = 2\pi \sqrt{\frac{I}{dMg}} \wedge d = \ell \wedge I = M\ell^2 \iff$$
 $\iff T = 2\pi \sqrt{\frac{M\ell^2}{\ell Mg}} \iff T = 2\pi \sqrt{\frac{\ell}{g}}$

Bibliografia

- WALKER, Jearl. Fundamentals of Physics. 10ed. 2014
- AGOSTINHO, Rui; CRUZ, Maria Margarida. Pêndulo. 2017