Lorentz Transformations

ct'= 8(ct-Bx)

25,09.24 y¹=y

x'= 8(x-Bct) B=V/C

an event (ct, κ) (ct', κ)

$$\delta = \frac{1}{\sqrt{1-\beta^2}} \Rightarrow |\beta| < 1$$

1) if 181 << 1 they go to Gallileau transformations x = x-vt , t'=t

2 Simultaneity is NOT universal! if △t=0 ≠ △t'=0

3 Dt>0 \$ Dt'>0 either!

(4) Lengths? Durations? L= \(\int 1-\beta^2\) Le \(\tau = \frac{T_0}{\lambda 1-\beta^2}\)

· Measuring A Rod ...

event left event right

 $\begin{pmatrix} ct = 0 \\ x = 0 \end{pmatrix} \qquad \begin{pmatrix} ct = 0 \\ x = L \end{pmatrix}$

 $\begin{pmatrix} ct' = 0 \\ x' = 0 \end{pmatrix} \begin{pmatrix} ct' = \chi(ct - \beta L) = -\beta \chi \\ \chi' = L \\ \chi' = \chi(x - \beta ct) \end{pmatrix} L_0$

Length Contraction:

L= 81 -> L= VI-B2 L0

6' measures the red shorter! Sees even right eprilier

Is there a shape change perpendicular to motion?

No! It'd be a paradax.

Think of roilroad & wheels, barrel & bomb examples!

Measuring Duration (Dilation)

tic tac

 $\begin{pmatrix}
ct = 0 \\
x = 0
\end{pmatrix}
\begin{pmatrix}
ct = cT_0 \\
x = 0
\end{pmatrix}$

 $G' \begin{pmatrix} ct' = 0 \\ x' = 0 \end{pmatrix} \begin{pmatrix} ct' = cT = \chi(cT_0 - \beta/k) \\ x' = \chi(\chi - \beta(T_0) = -vT) \end{pmatrix}$

 $T = 8T_0 = \frac{T_0}{\sqrt{1-\beta^2}}$

Observers agree on the "area" of the universe.

Why Twin Problem doesn't work.

Two inertial observers meet only once. Chelative velocities const.)
Ly No acceleration.

Invariant Interval

Consider two events seperorted

G: (cst, Dx, Dy, D3)

G': (cat', Δx', Δy', Δz')

under Lorentz transformations.

 $\Delta S^{2} = c^{2} \Delta t^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2} = c^{2} \Delta t^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2}$

△s²>0 time-like interval

 $\triangle s^2 < 0$ space-like interval (NO causal relation possible)

 $\Delta s^2 = 0$ light-like (null)"

Proposition 1: If two events are spacelike soperated,
There is a "physical" inertial also. s.t. these
events occur simultaneously.

Say for
$$G'$$
 $\Delta t'=0$ $\beta = \frac{C\delta t}{\Delta x}$ is $|\beta|<1$?

$$c^2 \Delta t^2 - \Delta x^2 < 0$$

$$\Delta x^2 \left(\frac{c^2 \Delta t^2}{\Delta x^2} - 1\right) < 0$$

if $\Delta t'=0$ in one frame, it is different in the expressions.