Smart ALEC

Architecture for Learning Enabled Correlation

What are we trying to solve with ALEC?

- Dealing with 100s, or even 1000s of alarms
 - Owner of the owner owner of the owner of the owner of the owner owner
- Alert fatigue

WHO?

- CTO of The OpenNMS Group
- Started as a user of the project
- Lead developer on ALEC

What is a situation?

A situation is a **collection of alarms** that share the same **root cause**

Legend	
	Situation
\bigcirc	Alarm

What is an alarm?

An alarm is a **state machine** used to track interesting **events**

Legend

Event

Alarm

ALEC leverages existing features in OpenNMS

- Fault Management
- Performance Management
- Network & Topology Discovery

Example 1 - Power Supply In/Out

Cisco Nexus Series 6000

Time	Source	Event
21:37:48	Poll	PowerSupply Module 2- N2200-PAC-400W Out
21:38:43	Poll	PowerSupply Module 2- N2200-PAC-400W In
21:44:28	Syslog	%PFMA-2-FEX_PS_REMOVE: Fex 118 Power Supply 2 removed
21:44:48	Syslog	%PFMA-2-FEX_PS_FOUND: Fex 118 Power Supply 2 found
21:44:49	SNMP Trap	cefc power status down
21:44:49	SNMP Trap	cefc FRU inserted
21:44:49	SNMP Trap	cefc power status up

Example 2 - BGP Peer Down

Cisco ASR 1002-X Router

Time	Source	Event
19:01:21	Syslog	%BGP-3-NOTIFICATION: sent to neighbor 10.0.0.1 4/0 (hold time expired) 0 bytes
19:01:21	Syslog	%BGP-5-ADJCHANGE: neighbor 10.0.0.1 vpn vrf REDACTED Down BGP Notification sent
19:01:22	SNMP Trap	BGP down trap
19:01:22	SNMP Trap	Cisco BGP backward transition trap
19:01:22	SNMP Trap	Cisco BGP down trap
19:01:43	Poll	BGP Neighbor connection lost between 10.0.0.1 and 10.0.0.2
19:02:12	Syslog	%BGP-5-ADJCHANGE: neighbor 10.0.0.1 vpn vrf REDACTED Up
19:02:14	Poll	BGP Neighbor connection restablished between 10.0.0.1 and 10.0.0.2

ALEC & OpenNMS Integration

ALEC - High Level Architecture

Abstract Inventory Model

Simple Model Example

Rules Engine

```
Object
    // RULE #1
     rule "FirstPortDown"
                                                                                                                                                                   Working Memory
       when
        $group : Group(owner.type == "Card", numberServiceAffecting == 1, serviceAffectingTrend == CountTrend.INCREASING)
        not ModelObject(type == "Card", id == $group.getOwner().getId(), operationalState == OperationalState.NSA)
                                                                                                                                                                         RuleBase
20
       then
                                                                                                                                                   Class: Card
        actionMgr.log("RULE #1");
                                                                                                                                            Model NSA
        actionMgr.synthesizeAlarm($group.getOwner(), OperationalState.NSA, Severity.MINOR, $group.getId());
     end
                                                                                                                                            Object
24
     // RULE #2
     rule "CardDown"
       when
28
        $group : Group(owner.type == "Card", numberServiceAffecting == numberMembers, serviceAffectingTrend == CountTrend.INCREASING)
        not ModelObject(type == "Card", id == $group.getOwner().getId(), operationalState == OperationalState.SA)
30
       then
                                                                                                                                                      SA
        actionMgr.log("RULE #2");
                                                                                                                                                                                           Model
                                                                                                                                      Model
        actionMgr.synthesizeAlarm($group.getOwner(), OperationalState.SA, Severity.MAJOR, $group.getId());
                                                                                                                                                                                           Object
                                                                                                                                     Object
     end
                                                                                                                                                                                        A Class: Port
34
                                                                                                                                                   Class: Port
                                                                                                                                Class: Port.
    // RULE #3
     rule "CardDownReport"
                                                                                                                                                               Group
                                                                                                                                                                                   Group
       when
38
        $group: Group(owner.type == "Card", numberServiceAffecting == numberMembers, serviceAffectingTrend == CountTrend.INCREASING)
        not ReportObjectImpl(owner.type == "Card", owner.id == $group.getOwner().getId())
40
       then
        actionMgr.log("RULE #3");
41
                                                                                                                                                                         Model
                                                                                                                                                                         Object
42
        actionMgr.createReport($group);
43
     end
                                                                                                                                                                      Class: Link
```

Class: NetworkElement
Model

ETL Pipeline

- Pull from existing solution using public APIs
- Make events, alarms & situations easy to access and analyze

Given the same events, what situations would we produce?

```
karaf@root()> opennms-alec:process-alarms --alarms-in /home/jesse/labs/ato19/alarms.xml --inventory-in /home/jesse/labs/ato19/inventory.
xml --engine dbscan --situations-out /tmp/sim.situations.xml
Tick at Tue Dec 25 00:07:30 EST 2018 (1545714450000) - 0.00% complete - 0ms elapsed
Tick at Tue Dec 25 00:08:00 EST 2018 (1545714480000) - 0.03% complete - 2ms elapsed
Tick at Tue Dec 25 00:08:30 EST 2018 (1545714510000) - 0.07% complete - 5ms elapsed
Tick at Tue Dec 25 00:09:00 EST 2018 (1545714540000) - 0.10% complete - 6ms elapsed
Tick at Tue Dec 25 00:09:30 EST 2018 (1545714570000) - 0.14% complete - 8ms elapsed
Situation with id acf191cd-5643-493c-b6c4-e206071b91fc has 2 alarms.
Tick at Tue Dec 25 00:10:00 EST 2018 (1545714600000) - 0.17% complete - 9ms elapsed
Tick at Tue Dec 25 00:10:30 EST 2018 (1545714630000) - 0.21% complete - 11ms elapsed
Tick at Tue Dec 25 00:11:00 EST 2018 (1545714660000) - 0.24% complete - 12ms elapsed
Tick at Tue Dec 25 00:11:30 EST 2018 (1545714690000) - 0.28% complete - 15ms elapsed
Tick at Tue Dec 25 00:12:00 EST 2018 (1545714720000) - 0.31% complete - 23ms elapsed
Tick at Tue Dec 25 00:12:30 EST 2018 (1545714750000) - 0.35% complete - 25ms elapsed
Tick at Tue Dec 25 00:13:00 EST 2018 (1545714780000) - 0.38% complete - 27ms elapsed
Tick at Tue Dec 25 00:13:30 EST 2018 (1545714810000) - 0.42% complete - 29ms elapsed
Tick at Tue Dec 25 00:14:00 EST 2018 (1545714840000) - 0.45% complete - 31ms elapsed
Situation with id 2a793cle-b32c-43c3-878f-929db14ac67d has 2 alarms.
Tick at Tue Dec 25 00:14:30 EST 2018 (1545714870000) - 0.49% complete - 40ms elapsed
Tick at Tue Dec 25 00:15:00 EST 2018 (1545714900000) - 0.52% complete - 42ms elapsed
Tick at Tue Dec 25 00:15:30 EST 2018 (1545714930000) - 0.56% complete - 44ms elapsed
Situation with id 67622d45-29a4-4336-bbad-1032cb47fbbb has 2 alarms.
Tick at Tue Dec 25 00:16:00 EST 2018 (1545714960000) - 0.59% complete - 46ms elapsed
Tick at Tue Dec 25 00:16:30 EST 2018 (1545714990000) - 0.63% complete - 48ms elapsed
```

How do we compare two differents sets of situations?

Legend

Situation

Alarm

Peer-based scoring strategy

Engine 1

Engine 2

Alarms	Peers Matched	Divider
A1	1	2
A2	1	2
A3	0	2
A4	1	2
A5	1	2
A6	0	1
A7	0	1
A8	0	1
Total	4	13

Score: 30.77%

Situations contain alarms that are close in both space and time

Clustering

- Build generic graph
- Define a **distance** function
- Leverage knownclustering algorithms

Graph-based Model

Distance

$$d(a_1, a_2) = \alpha((\beta | t(a_1) - t(a_2) | \frac{1}{60} + (1 - \beta) dg(a_1, a_2))$$

where:

- ullet a_1 and a_2 are the points representing the alarms
- $lpha \in (0,\infty)$ is a scaling constant (directly related to ϵ)
- ullet $eta \in [0,1]$ is a weighting constant
 - \circ When β is closer to 0, more weight is given to the temporal component
 - \circ When β is closer to 1, more weight is given to the spatital component
- ullet $t(a_k)$ returns the time (timestamp in seconds) of the last occurrence of the given alarm
- ullet $dg(a_i,a_j)$ returns the normalized distance on the shortest path between the vertices for a_i and a_k
 - o If both alarms are on the same vertex, then the distance is 0
 - \circ If there is no path between both alarms, then the distance is ∞

DBSCAN-based Engine - Unsupervised ML

- Use DBSCAN against the graph with our distance function to build clusters
- Tune parameters to maximize score on training set
 - Epsilon, alpha, beta
 - BOBYQA
- Test against data outside of training set

Field Results w/ DBSCAN Engine

- ~80% score when compared to existing solution
- Good at clustering intra-node alarms
- Mixed results with inter-node alarms
- Difficult to tune for specific scenarios
 - Can only adjust model & weights, constants are global

Can we use *deep learning* to improve results?

Binary Classification Problem

- Use existing graph
- Compare alarms to others **nearby**
- For each pair, ask if these are **related** or not

Deep Learning Model

Input Features	Туре
А Туре	Categorical
В Туре	Categorical
Same Instance?	Binary
Same Parent?	Binary
Share Ancestor?	Binary
Time Delta	Numerical
Distance On Graph	Numerical
ID Similarity (Levenshtein)	Numerical
Label Similarity (Levenshtein)	Numerical

Output Features	Туре
Related?	Binary

Field Results w/ Deep Learning Engine

- ~70% score when compared to existing solution
 - Currently inferior to DBSCAN engine need more neurons!
- Possible to train for specific scenarios with labeled data (user feedback)
- Can be improved with more R&D

Thank You

Learn more at:

alec.opennms.com