폭행몬 [폭언하는 행위는 몬참아]

NLP 미니프로젝트 최종발표

22. 8. 5.

10_조**_@10_**조**_**#이정훈#이태훈#정새롬#정준녕

목차

- 1. 배경 및 동기
 - 1) task 선정배경 및 이유
 - 2) 기대효과
- 2. 실행 계획
 - 1) DS 관점에서의 문제 정의
 - 2) 데이터셋 소개 및 활용 방안
 - 3) 프로젝트 프로세스
 - 4) 세부 일정
- 3. 진행 결과
- 4. 요약 및 결론

1. 배경 및 동기 - task 선정 배경 및 이유

2021년 1차 학교폭력 실태조사 [단위: %]

https://news.mt.co.kr/mtview.php?no=2019051316474551634

코로나19 장기화로 원격/비대면 교육 확대 → 사이버 폭력 비중 증가

1. 배경 및 동기 - task 선정 배경 및 이유

학생 화상 상담 서비스 전면 실시

온라인 또래상담 관련 플랫폼 확장 및 콘텐츠 제작·보급

교원 원격상담 역량 강화 연수 프로그램 제공

학교폭력 피해 사실을 알 수 있는 도구의 부재

유년/청소년기 학생들의 **학교/사이버 폭력 인지를 위한 보조적 시스템** 구현

사이버폭력 등의 폭력적 행태나 장난식으로 협박성 발언하는 등의 것 구별

1. 배경 및 동기 - 기대효과

학교 밖에서 발생하는 학교폭력을 줄일 수 있다

사이버 폭력에 대한 유무를 정확히 파악할 수 있다 (어린 아이들의 경우, 피해자 상태 자각 어려움)

학부모 입장에서 사이버 폭력을 확인할 수 있다 (피해자가 학부모에게 말하지 않는 경우가 많음)

개인적 확인을 통해 개인정보 유출을 방지

2. 실행 계획 - DS관점에서의 문제 정의

- 모델
 - o 회귀(Regression)
 - 분류(Classification)

- NLP 처리
 - 형태소 분석(morphological analysis)
 - 구문 분석(syntactic analysis)
 - 시멘틱 분석(semantic analysis)
 - 실용 분석(pragmatic analysis)

2. 실행 계획 - 데이터셋 소개 및 활용방안

•Github(korean UnSmile Dataset) data(.tsv) [약 **18,000개**, 혐오 10,000, 악플/욕설 4,000 클린 4,600개 데이터] : <u>사이트</u>

12	문장	여성/가 족	남성	성소수 자	인종/국 적	연령	지 역	종교	기타 혐 오	악플/욕 설	clean	개인지 칭
0	일안하는 시간은 쉬고싶어서 그런게 아닐까	0	0	0	0	0	0	0	0	0	1	0
1	아동성범죄와 페도버는 기록바 끊어져 영원히 고통 받는다. 무슬림 50퍼 근 친이다	0	0	0	0	0	0	1	0	0	0	0
2	루나 솔로앨범 나왔을 때부터 머모 기운 있었음 ㅇㅇ Keep o doin 진짜 띵	0	0	0	0	0	0	0	0	0	1	0

항목	문장 수
혐오표현	10,139
악플/욕설	3,929
Clean	4,674
Total	18,742

- •AI-Hub(텍스트 윤리검증) data(.txt) [약 **450,000개**, 비윤리 250,000, 윤리 200,000개 데이터] : <u>사이트</u>
 - 2만개 샘플링 후 Unsmile Dataset 합쳐서 학습 계획

{댓글에 빠순이들 몰려와서 즈그 주인님 쉴드치는 꼴 좀 봐!이래서 인방충~ 인방충~ 하는거 구나!쉴드가 아니라 국가가 면제해준거야.} {에로배우들을 데려다가 아이돌을 만드네!쟤네들은 표정이 딱 야동인데..}

{솔직히 여자 48kg이상은 나가 디져야 하는 거 아닙!그렇게 따지면 남자 170cm이하도 겨 나오면 안되지!짜져라 이 돼지 꿀꿀아}

•DC 인사이드 크롤링 후 일부 데이터 활용하여 시스템 내 채팅파일로 입력

2. 실행 계획 - 데이터셋 소개 및 활용방안

데이터셋 이름	텍스트 윤리검증	한국어 혐오표현 데이터셋
출처	Al-Hub	Smilegate (Github)
파일형식	json	.tsv
데이터 수(총합)	363,154	15,005
윤리 데이터 수	162,948	3,741
비윤리 데이터 수	200,206	11,264
사용 데이터 수	셔플 후 20,000개 샘플링	전체 셋 사용

→ 총 **35,005** 개 dataset 학습 예정, 세부적인 칼럼 통일 필요 (문장단위 폭력여부 판단 목적)

2. 실행 계획 - 세부 일정

- Project Gantt Chart

	July							August				
	25	26	27	28	29	30	31	1	2	3	4	5
프로젝트 기획												
데이터 구축												
Baseline 모델 설계												
프로젝트 중간 발표												
학습 및 성능평가, 모델 수정												
Flask 적용, 웹페이지 구현												
발표자료 작성												

2. 실행 계획 - 프로젝트 프로세스

- 1. BERT 관련 선행연구문헌 탐색/참고하여 Baseline 모델 설계
 - a. BERT, KR-BERT 관련 키워드 검색
 - b. PyTorch Classification 구현 검색
- 2. 세부절차
 - a. 데이터 전처리
 - b. 형태소 분석기 별 소요시간/성능 평가
 - c. 하이퍼파라미터 별 성능 영향여부 확인
 - d. 학습데이터 증가에 따른 성능변화 경향 파악
- 3. 웹페이지 구현

- 데이터 전처리
 - 윤리 데이터셋 : json → csv로 **파일 형태 변환**
 - 각 데이터 **컬럼 명**을 clean, violence로 **통일**
 - 윤리 데이터 셋에서 clean 과 violence 비율에 맞춰서 데이터를 통합

데이터 가공	폭력 (1)	비폭력 (0)
윤리 세트 약 20,000개	Т	F
smilegate 약 18,000개	clean 외	clean

■ 이후 랜덤으로 train, valid 데이터 나누어서 저장

데이터 통일 기준

- clean, violence의 값이 명확하지 않은 문장 재처리
 - 항상 같은 값을 가지도록 random.seed의 값 통일
- 파일 변환, **순수 한글 데이터 추출**을 위해 특수문자, 이모지, 영문 제거

- Baseline 모델(bert-base-uncased) 설계
 - o Baseline 참고
 - https://arxiv.org/abs/1810.04805
 - https://luv-bansal.medium.com/fine-tuning-bert-for-text-classification-in-pytorch-503d97342db2
 - https://mccormickml.com/2019/07/22/BERT-fine-tuning/
 - o KR-BERT 참고
 - snunlp/KR-BERT: KoRean based BERT pre-trained models
 (KR-BERT) for Tensorflow and PyTorch (github.com)
 - □ 파이썬 스크립트로 모듈화 진행

모델 트리 구조

- 형태소 분석기 별 소요시간/성능 평가
- 목적 : 최적의 형태소 분석기 찾기 [0 : clean, 1 : violence]
 - 1차 : **Konlpy** 간 성능 비교 (okt, kkma, komoran, hannanum, mecab)
 - 2차: mecab 내 사용 품사간 성능 비교(체언, 용언, 관형사, 조사, 부사)
 - 3차: mecab, khaiii(카이), kiwi 간 성능 비교
 - 4차 : BERT vs KR-BERT 모델 성능 비교
 - 번외 : **형태소 분석기** 에러 원인 분석
 - ⇒ 성능 비교 후 최고 모델을 확인 후 웹페이지 구현 시 반영

Pretrained-Model, max length, batch size 별 성능 영향여부 확인

BERT: bert-based-uncased [1]

KR-BERT: snunlp/KR-BERT-char16424 [2]

작은 vocabulary, 적은 parameters, 적은 training dataset으로도 좋은 성능을 보임

한국어의 특성을 반영하여, 어근과 접사를 나누어 학습시킴

	Mulitlingual KR-BERT character BERT BidirectionalWordPic		Mulitlingual		er	KR-BERT sub- character WordPiece
냉장고 nayngcangko "refrigerator"	냉#장#고 nayng#cang#ko	0.0	냉장고 nayngcangko			
춥다 chwupta "cold"	[UNK]	줍#다 [UNK] chwup#ta		추#ㅂ다 chwu#pta		
뱃사람 paytsalam "seaman"	[UNK]	뱃#사론 payt#sala	-	배#ㅅ#사람 pay#t#salam		
마이크 maikhu "microphone"	마#이#크 ma#i#khu	마이크 maikhu	마이크 maikhu			
	Model		Masked	LM Accuracy		
Kobert			0.750			
KR-BERT chara	acter BidirectionalV	0.779				
KR-BERT sub-	character Bidirectio	0.769				

Model	Masked LM Accuracy
Kobert	0.750
KR-BERT character BidirectionalWordPiece	0.779
KR-BERT sub-character BidirectionalWordPiece	0.769

형태소 분석기 실험 및 과정(1차)

● Konlpy간 성능 비교 (okt, kkma, komoran, hannanum, mecab)

		4 = =			
	1 ep	och	4 ep	och	속도비교 (1 epoch)
	0	1	0	1	(1 epoch)
원본문장	0.48 0.81 0.46 0.81		-	-	
okt			0.57	0.81	1분 15초
kkma	0.47	0.80	0.60	0.81	40초
komoran	0.54	0.79	0.61	0.81	14분 30초
hannanum	0.47 0.80		0.59	0.81	2분 30초
mecab	0.41	0.41 0.81		0.81	5초

- > 1 → 4 에폭 증가 시, 0 에 대한 성능이 개별적으로 약 7 ~ 20 % 까지 증가
- ➤ **mecab 형태소** 분석기가 가장 **빠른 속도**로 진행

형태소 분석기 실험 및 과정(2차)

• mecab 내 사용 품사간 성능 비교(체언,용언,관형사,조사)

	f1-score						
mecab	1 epoch						
	0	1					
체언, 용언	0.41	0.81					
체언, 용언, 관형사, 부사	0.47	0.80					
체언, 용언, 관형사, 부사, 조사	0.47	0.81					

➤ 품사가 많을수록 0에서 학습성능 향상

형태소 분석기 실험 및 과정(3차)

● mecab vs khaiii(카이) vs kiwi 간 성능 비교

		4 epoch		
	f1-sc	core		속도비교
	0		accuracy	
mecab	0.62	0.81	0.75	5초
khaiii	0.6	0.81	0.74	24초
kiwi*	0.62	0.8	0.74	44초

- ▶ 성능 부분에서는 큰 차이가 없음을 알 수 있다.
- ➤ mecab 형태소 분석기가 가장 빠른 속도로 진행
- * Kiwi : 지능형 한국어 형태소 분석기(Korean Intelligent Word Identifier) : 빠른 속도와 범용적인 성능의 형태소 분석기

형태소 분석기 실험 및 과정(4차)

BERT vs KR-BERT 모델 성능 비교

			BE	RT	KR-BERT							
형태소		1 epoch 4 epoch			1 epoc	h	4 epoch					
분석기	f1-score			f1-s	core		f1-s	core		f1-s		
	0	1	accuracy	0	0 1 acc		0	1	accuracy	0	1	accuracy
mecab	0.47	0.81	0.72	0.62	0.81	0.75	0.68	0.85	0.79	0.69	0.84	0.79
khaiii				0.6	0.81	0.74	0.71	0.86	0.82	0.71	0.85	8.0
kiwi				0.62	0.8	0.74	0.73	0.86	0.82	0.71	0.86	0.81

- ➤ 4 epoch 기준, BERT보다 KR-BERT의 성능이 우수
- ➤ KR-BERT 모델 : mecab보다 kiwi의 성능이 우수

형태소 분석기 실험 및 과정(번외)

🌘 형태소 분석기 에러 발생

	precision	recall	f1-score	support
O 1	0.00 0.67	0.00 1.00	0.00 0.80	2278 4586
accuracy macro avg weighted avg	0.33 0.45	0.50 0.67	0.67 0.40 0.54	6864 6864 6864

문제 발생 예시

- ➤ 모델이 모든 예측을 1로 하는 문제 발생
- > okt, kkma, komoran, hannanum 형태소 분석기에서 모두 문제 발생

형태소 분석기 실험 및 과정(번외)

• 원인 찾기

	원인 찾기	결과
1	컬럼 타입이 다른가	no
2	파일 저장하는 과정에서 문제 발생?	no
3	텍스트 전처리 + 형태소 분석기 사용	문제 발생
4	텍스트 전처리만 사용	문제 발생
5	형태소 분석기만 사용	no
6	에폭이 낮아서(학습이 부족해서) 나타날까? (에폭을 1에서 4로 늘려도 문제는 동일)	no

- ▶ 텍스트 전처리 과정에서 문제가 발생함을 파악
- ▶ 텍스트 전처리 코드를 수정하여 문제를 해결

Pretrained Model, max length, batch size 별 성능 영향여부 확인

	f1-score						
	BE	RT	KR-BERT				
max length/ batch size	0	1	0	1			
128 / 32	0.41	0.81	0.74	0.87			
128 / 16	0.44	0.81	0.73	0.86			
256 / 32	0.41	0.81	0.74	0.87			
256 / 16	0.36	0.81	0.73	0.86			

- ➤ KR-BERT 모델이 학습 성능이 전반적으로 우수, 0에서 뛰어난 향상 보임 (30%↑)
- ➤ max length : 성능차이 미미, 그에 반해 학습시간이 128에서 2배 빠름
- ➤ batch size : 전반적으로 **약간의 성능 향상** (BERT : -3 ~ 5%, KR-BERT : 1%)

학습데이터 증가에 따른 성능변화 경향 파악

	BERT, 4 epoch, batch size 32, max length 128					
	baselin	e (10%)	Data 50%		Data 100%	
Target	0	1	0	1	0	1
f1-score	0.41	0.81	0.72	0.78	0.74	0.79
소요시간	약 3	32분	약 2 시간 51 분		약 5 시간 54 분	
환경	Colab (T	esla T4)	Colab Pro (Tesla T4)			

➤ 데이터 셋 증가에 따라, 성능 향상하는 경향 확인, 소요시간도 비례해서 증가
□ Data 100% 모델 채택

3. 웹페이지 구현 순서도

예시 화면

예시 화면

웹 페이지 개선할 사항

- ➤ 채팅파일 선택과 결과 출력을 동일 페이지 내 구현하도록 개선 필요
 - 현재, **채팅파일 선택**과 **결과 출력** 페이지가 별도 존재, 결과 확인 후 파일 선택을 위해 채팅파일 선택 페이지로 이동
- ➤ 결과 산정 소요시간 단축
 - 채팅파일 약 6MB(문장 12.2만건) 기준 40분 소요
 - 반복문으로 각 문장을 하나씩 처리하기 때문에 소요시간이 증가
 - 모델입력 데이터 형식 : 문장 → 채팅파일 단위 입력 및 비율 계산으로 개선
- ➤ 페이지 디자인 개선 및 웹 서비스 적용 (AWS)

WandB 연동, 모델 별 성능 비교

epoch 수, 데이터 셋, 형태소 분석기 처리 등 다중모델 간 비교

overfitting 되는 경향 확인 (valid accuracy 감소, **10 epochs**)

➤ WandB 활용, 개별모델 학습 경과 및 경향 확인

요약 및 향후 계획

- 요약
 - 사이버 폭력의 증가에 따라, 이를 **예방하기 위한 실질적인 장치 필요**
 - BERT모델 기반으로 채팅내역 내 폭력성인지 시스템 구현
 - 형태소 분석기 : BERT : mecab / KR-BERT : kiwi
 - 성능도 준수하며, 속도 측에서 큰 장점을 가짐
 - KR-BERT 사용 시, 어근/접사의 분리 학습으로, BERT대비 성능 향상
 - 선정된 우수 조건 반영 및 학습 시 최종적으로 82 % 성능 확보
- 향후 계획
 - 데이터 셋 규모/성능의 비례관계 확인, 향후 성능개선을 위해 관련 데이터를 수집 계획 중
 - o WandB sweep 활용, 하이퍼 파라미터(learning rate, eps) 탐색 진행
 - o early stopping, save best weights 구현 및 PyTorch Ignite 적용
 - KR-BERT 모델 저장 및 불러오기 구현

Questions?

Thanks!

Example codes will be available at

https://github.com/NLP-yd10/CheckViolence.

