一百零五學年度 0311 微積分 (二) 期初考 The 105th academic year course 0311 Calculus(2) firstterm examination

	date: Mar 31, 2017
Student ID No.	Name
學號 :	
說明 Description:	
Before answer	食查所取得之試卷與答案卷是否正確。 ing questions, please check if the test papers and answer ou get are correct.
Testing time i	分鐘。試卷加答案卷、答案卡共計 7 頁。 s 110 minutes. Test papers, answer sheets, and answer pages in total.
將不做爲微積 The test pape total score of 1	題與填充題,總分共計 100 分, 占學期成績之 20%。考卷成績分獎給獎依據。 er includes choices and fill-in-the-blanks, and there is a 00 points, accounting for 20% of the semester grade. The esult will not be considered for awarding the Calculus
不予計分。 Be sure to fill cards. When	医卡與答案卷填入相關個人資料。答題時請依題號作答,否則 related personal information in answer sheets and answer answering questions, please answer the question by its per, or, no score.
P.S. 難易度提示 Di	fficulty hint: easy <normal<hard <math="">\star \star \star</normal<hard>
	Questions start from the next page

- ◎ 單選擇題 (單選十題, 每題五分, 共五十分, 答錯不倒扣。) Single-choice (10 questions, each 5 points, 50 points in total, no penalty for wrong answers.)
- 1. Find the **power series** representation of $\ln \frac{1}{2+x}$. $(A) \sum_{n=1}^{\infty} \frac{1}{n2^n} x^n. \quad (B) \sum_{n=1}^{\infty} \frac{1}{n2^n} x^n \ln 2.$
 - (C) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n$. (D) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n \ln 2$.

Solution:
$$\ln \frac{1}{2+x} = \int \frac{-1}{2+x} dx = -\frac{1}{2} \int \frac{1}{1-(-\frac{x}{2})} dx$$

$$= -\frac{1}{2} \int \sum_{n=0}^{\infty} (-\frac{x}{2})^n dx = -\frac{1}{2} \sum_{n=0}^{\infty} \int (-\frac{x}{2})^n dx$$

$$= -\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \frac{x^{n+1}}{n+1} + C = \sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n + C,$$

$$\ln \frac{1}{2+0} = -\ln 2 = C, \ln \frac{1}{2+0} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n - \ln 2.$$
[Quick Sol]
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n,$$

$$\ln \frac{1}{2+x} = -\ln 2(1+\frac{x}{2}) = -\ln(1+\frac{x}{2}) - \ln 2$$

$$= -\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\frac{x}{2})^n - \ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n - \ln 2.$$
[Quicker Sol]
$$x = 2, \sum_{n=1}^{\infty} \frac{1}{n2^n} x^n = \infty, \sum_{n=1}^{\infty} \frac{1}{n2^n} x^n - \ln 2 = \infty, \sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n = -\ln 2,$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n - \ln 2 = -\ln 4 = \ln \frac{1}{2+x}.$$

2. Find the first three **nonzero** terms of the Maclaurin series of
$$\frac{e^x}{1+x}$$
. \star §11.10

(A)
$$1 + \frac{x^2}{2} + \frac{x^3}{3}$$
. (B) $1 - \frac{x^2}{2} + \frac{x^3}{3}$.

(C)
$$1 + \frac{x^2}{2} - \frac{x^3}{3}$$
. (D) $1 - \frac{x^2}{2} - \frac{x^3}{3}$.

Solution:
$$\frac{e^x}{1+x} = e^x \frac{1}{1+x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \sum_{n=0}^{\infty} (-x)^n$$
$$= \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots\right) \left(1 - x + x^2 - x^3 + \cdots\right)$$
$$= 1 + \left(1 - 1\right)x + \left(\frac{1}{2} - 1 + 1\right)x^2 + \left(\frac{1}{6} - \frac{1}{2} + 1 - 1\right)x^3 + \cdots$$
$$= 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots$$

- 3. Find the number of points of intersection of the curves $r = \cos \theta$ and $r = \sin 2\theta$.
 - **(A) 3.** (B) 4. (C) 5. (D) 6.

Solution:
$$r = \cos \theta = \sin 2\theta = 2 \sin \theta \cos \theta$$
 (collision),
& $r = \cos \theta = -\sin 2\theta = -2 \sin \theta \cos \theta$.
 $\cos \theta = 0$ or $\sin \theta = \frac{1}{2}$ or $\sin \theta = -\frac{1}{2}$, $\theta = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{2}$, $\frac{11\pi}{6}$.
 $(\frac{\sqrt{3}}{2}, \frac{\pi}{6}) = (-\frac{\sqrt{3}}{2}, \frac{7\pi}{6})$, $(0, \frac{\pi}{2}) = (0, \frac{3\pi}{2})$, $(\frac{\sqrt{3}}{2}, \frac{11\pi}{6}) = (-\frac{\sqrt{3}}{2}, \frac{5\pi}{6})$,

4. Find the **limit** of the sequence
$$\left\{\frac{2^n}{n!}\right\}$$
.

* §11.1

$$(A) \ \boxed{0.}$$

(C)
$$\infty$$
.

(C)
$$\infty$$
. (D) does not exist.

Solution:
$$\frac{2^n}{n!} = \frac{2}{1} \left(\frac{2}{2} \cdots \frac{2}{n-1} \right) \frac{2}{n} < \frac{2}{1} \cdot 1 \cdot \frac{2}{n} = \frac{4}{n} \to 0 \text{ as } n \to \infty.$$
 (Ex 11.1.55)

5. Find the area of the region inside the four-leaved rose $r=2\cos2\theta$ and outside the circle r = 1.

(A)
$$\boxed{\frac{2\pi}{3} + \sqrt{3}}$$
 (B) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$

(B)
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

(C)
$$\frac{2\pi}{3} - \sqrt{3}$$
 (D) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$

(D)
$$\frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

- 6. Find the **tangent** line of the polar curve $r = \sec \theta \tan \theta$ at $\theta = \frac{\pi}{4}$. $\star \S 10.3$
 - (A) x = 0.
- (B) y = 0.
- (C) y = 2x 1. (D) y = -2x 1.

Solution:

$$x = r\cos\theta = \tan\theta,$$

$$y = r\sin\theta = \tan^2\theta$$

$$y = r \sin \theta = \tan^2 \theta,$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}} = \frac{2 \tan \theta \sec^2 \theta}{\sec^2 \theta (\neq 0)} = 2 \tan \theta.$$

$$y = \frac{dy}{dx}\Big|_{\theta=\pi/4} (x - \tan\frac{\pi}{4}) + \tan^2\frac{\pi}{4}$$
$$= 2 \cdot 1(x - 1) + 1^2 = 2x - 1.$$

[Quick Sol]
$$y=x^2, \frac{dy}{dx}=2x. \text{ When } \theta=\frac{\pi}{4}, (x,y)=(1,1) \text{ and } \frac{dy}{dx}=2.$$
 Tangent line: $y=2(x-1)+1=2x-1.$

- 7. Let $a_1 = 3$, $a_{n+1} = \frac{1}{1 a_n}$ for $n \ge 2$. Find the **limit** $\lim_{n \to \infty} a_n$. ** §11.1
 - (A) 0. (B) 1. (C) ∞ . (D) does not exist.

Solution: Solve $x = \frac{1}{1-x}$, no real solution for x. $\{a_n\} = 3, -\frac{1}{2}, \frac{2}{3}, 3, -\frac{1}{2}, \frac{2}{3}, \ldots, \lim_{n \to \infty} a_n \text{ does not exist.}$ (Ex 11.1.82)

- 8. Find the arc length of the polar curve $\theta = \sec^{-1} r$ for $1 \le r \le 3$.
- §10.4

- (A) $2\sqrt{2}-1$
 - (B) 2
- (C) $2\sqrt{2}$
- (D) 3

Solution:
$$r = \sec \theta$$
, $\sqrt{r^2 + (r')^2} = \sqrt{\sec^2 \theta + \sec^2 \theta \tan^2 \theta} = \sec^2 \theta$,

$$L = \int_0^{\sec^{-1} 3} \sqrt{r^2 + (r')^2} d\theta$$

$$= \int_0^{\sec^{-1} 3} \sec^2 \theta d\theta$$

$$= \tan \theta \Big|_0^{\sec^{-1} 3} = \tan(\sec^{-1} 3) = 2\sqrt{2}.$$

[Quick Sol] $x = r \cos \theta = 1, \sqrt{3^2 - 1^2} = 2\sqrt{2}$.

- 9. Find the value of p for which the series $\sum \frac{\ln n}{n^p}$ is divergent. ** $\S 11.3 +$ (B) $|p \leq 1.|$ (C) $p \in \mathbb{R}$. (D) does not exist. 11.4
 - **Solution:** $1 < \ln n < \frac{n^{\varepsilon}}{\varepsilon}$ for $\varepsilon > 0$ and $n \ge 3$. (Ex 11.3.32)

$$\frac{1}{n^p} < \frac{\ln n}{n^p} < \frac{n^{\varepsilon}}{\varepsilon n^p} = \frac{1}{\varepsilon n^{p-\varepsilon}}$$

$$\begin{split} &\frac{1}{n^p} < \frac{\ln n}{n^p} < \frac{n^{\varepsilon}}{\varepsilon n^p} = \frac{1}{\varepsilon n^{p-\varepsilon}}, \\ &\frac{1}{n^p} \text{ and hence } \frac{\ln n}{n^p} \text{ diverges for } p \leq 1, \\ &\frac{1}{n^{p-\varepsilon}} \text{ and hence } \frac{\ln n}{n^p} \text{ converges for } p - \varepsilon > 1 \iff p > 1. \end{split}$$

10. Find the **interval** of convergence of
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (x-2)^n.$$

(A)
$$(0,4]$$
. (B) $(-4,0]$. (C) $[0,4)$. (D) $[-4,0)$.

Solution:
$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}(x-2)^{n+1}}{(n+1)2^{n+1}}}{\frac{(-1)^n(x-2)^n}{n2^n}} \right| = \lim_{n \to \infty} \frac{n}{n+1} \frac{|x-2|}{2} = \frac{|x-2|}{2}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (x-2)^n \text{ converges if } \frac{|x-2|}{2} < 1 \iff |x-2| < 2 \text{ and }$$

$$\text{diverges if } \frac{|x-2|}{2} > 1 \iff |x-2| > 2 \text{ by Ratio T.}$$

$$R = 2, \ 0 < x < 4.$$
If $x = 4$,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (x-2)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (= -\ln 2) \text{ converges.}$$
If $x = 0$,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (x-2)^n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges.}$$

$$I = (0, 4].$$

◎ 多選擇題 (多選五題, 每題五分, 共二十五分。錯一個選項扣兩分, 錯兩個選項以上不給分, 分數不倒扣。)

Multiple-choice (5 questions, each 5 points, 25 points in total. One wrong option deducts 2 points, more than one wrong option gets no points, and no penalty for wrong answers.)

(A)
$$\boxed{\sum \frac{1}{n^{2+1/n}}}$$
 (B)
$$\sum (-1)^n \sin\left(\frac{\pi}{n}\right)$$
 (C)
$$\boxed{\sum \frac{\sin^3 n}{n^3}}$$
 (D)
$$\sum (-1)^n \frac{n^n}{2^n n!}$$

(B)
$$\sum (-1)^n \sin\left(\frac{\pi}{n}\right)$$

(C)
$$\sum \frac{\sin^3 n}{n^3}.$$

(D)
$$\sum (-1)^n \frac{n^n}{2^n n!}$$

Solution:
$$\left|\frac{1}{n^{2+1/n}}\right| = \frac{1}{n^{2+1/n}}$$
 and $\lim_{n\to\infty} \frac{1/n^{2+1/n}}{1/n^2} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = 1$, then $\sum \frac{1}{n^2}$ and hence $\sum \frac{1}{n^{2+1/n}}$ absolutely converges by LCT.

$$\left| (-1)^n \sin\left(\frac{\pi}{n}\right) \right| = \sin\left(\frac{\pi}{n}\right) \text{ and } \lim_{n \to \infty} \frac{\sin(\pi/n)}{1/n} = \pi,$$

then $\sum \frac{1}{n}$ and hence $\sum \sin\left(\frac{\pi}{n}\right)$ diverges by LCT. $\sin\left(\frac{\pi}{n}\right) \searrow 0$, then $\sum (-1)^n \sin\left(\frac{\pi}{n}\right)$ is convergent by AST.

$$\therefore \sum_{n} (-1)^n \sin\left(\frac{\pi}{n}\right) \text{ is conditionally convergent.}$$

$$\left|\frac{\sin^3 n}{n^3}\right| \leq \frac{1}{n^3}$$
, then $\sum \frac{1}{n^3}$ and hence $\sum \left|\frac{\sin^3 n}{n^3}\right|$ converges by CT.

$$\therefore \sum \frac{\sin^3 n}{n^3} \text{ is absolutely convergent.}$$

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1} (n+1)^{n+1} / 2^{n+1} (n+1)!}{(-1)^n n^n / 2^n n!} \right| = \lim_{n \to \infty} \frac{1}{2} (1 + \frac{1}{n})^n = \frac{e}{2} > 1,$$

$$\sum_{n \to \infty} \left| \frac{n^n}{2^n n!} \right| \text{ diverges by Ratio T.}$$

$$\sum (-1)^n \frac{n^n}{2^n n!} \text{ diverges by Ratio T.}$$

12. Let $\sum a_n$ be a **convergent** series and let f be a **continuous** function

on \mathbb{R} . Which of the following statements is **always true**?

(A)
$$\{|a_n|\}$$
 is convergent.

(B)
$$\{f(a_n)\}\$$
 is convergent.

(C)
$$\sum |a_n|$$
 is convergent.

(C)
$$\sum |a_n|$$
 is convergent. (D) $\sum f(a_n)$ is convergent.

Solution:
$$\sum a_n$$
 converges $\implies \lim a_n = 0 \iff \lim |a_n| = 0.$

$$\sum_{\substack{n \text{ (Conditionally converges but } \sum \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{\substack{n \text{ diverges.}}} \frac{1}{n} \text{ diverges.}}$$

$$\sum a_n \text{ converges } \implies \lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(0).$$

$$\sum_{\substack{n < n \\ \text{(Or } f(0) \neq 0, \text{ by T4D.)}}} \frac{1}{n^3} \text{ converges and } f(x) = \sqrt[3]{x}, \text{ but } \sum_{\substack{n < n \\ n}} f(\frac{1}{n^3}) = \sum_{\substack{n < n \\ n}} \frac{1}{n} \text{ diverges.}$$

1	13.	Find all	\boldsymbol{n} for	which	applies	the n	nethod	of the	Rema	inder	Estimate

for the Integral Test to approximate(逼近) $\frac{\pi^2}{6}$ by the series $\sum \frac{1}{n^2}$ with accuracy(準確) to within 0.01 ($|R_n| \le 0.01$).

(A) 10. **(B)** 100. **(C)** 101. **(D)** 200.

Solution: $R_n \le \int_n^\infty \frac{1}{x^2} dx = \lim_{t \to \infty} \int_n^t \frac{1}{x^2} dx = \lim_{t \to \infty} \left[\frac{-1}{x} \right]_n^t$ = $\lim_{t \to \infty} \left(\frac{1}{n} - \frac{1}{t} \right) = \frac{1}{n} \le 0.01, \ n \ge 100.$ $\spadesuit R_{99} \approx 0.01005, \ R_{100} \approx 0.00995, \ R_{101} \approx 0.00985.$

14. Suppose that both
$$\sum c_n 2^n$$
 and $\sum c_n (-1)^n$ are convergent.

Find all possible interval of convergence of $\sum c_n(x-3)^n$. \star §11.8

(A) (2,4). (B) [2,4]. (C) (1,5). (D) [1,5].

Solution: $\sum c_n(x-3)^n$ converges for $x-3=2 \iff x=5$ and $x-3=-1 \iff x=2$. The radius of convergence $R \ge 2$, and the interval of convergence $(1,5] \subseteq I$.

15. Determining the convergence of
$$\sum_{n=2}^{n} \frac{1}{n(\ln n)^2}$$
 by the following steps:

- Step 1. $\frac{1}{x(\ln x)^2}$ is continuous, positive, and decreasing for x > 1.
- Step 2. $\int_{1}^{\infty} \frac{1}{x(\ln x)^2} dx$ is convergent.
- Step 3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ is convergent by the Integral Test.

Step 4.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} = \int_2^{\infty} \frac{1}{x(\ln x)^2} dx.$$

Which of the above steps is **incorrect**?

** §11.3

Solution:
$$\frac{d}{dx} \frac{1}{x(\ln x)^2} = -\frac{\ln x + 2x}{x^2(\ln x)^4} < 0 \text{ for } x > 1.$$
 (Ex 11.3.22)
$$\int \frac{dx}{x(\ln x)^2} = \frac{-1}{\ln x} + C,$$

$$\int_1^{\infty} \frac{1}{x(\ln x)^2} dx = \int_1^2 \frac{1}{x(\ln x)^2} dx + \int_2^{\infty} \frac{1}{x(\ln x)^2} dx$$

$$= \lim_{t \to 1^+} \int_t^2 \frac{1}{x(\ln x)^2} dx + \lim_{s \to \infty} \int_2^s \frac{1}{x(\ln x)^2} dx$$

$$= \lim_{t \to 1^+} \left(\frac{1}{\ln t} - \frac{1}{\ln 2}\right) + \lim_{s \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln s}\right) = \infty + 0 = \infty.$$

$$\sum_{n=2}^n \frac{1}{n(\ln n)^2} \approx 2.10974, \int_2^{\infty} \frac{1}{x(\ln x)^2} dx = \frac{1}{\ln 2} \approx 1.44270.$$

- ◎ 填空題 (五題, 每題五分, 共二十五分, 答錯不倒扣。) Fill-in-the-blank (5 questions, each worth 5 points, 25 points in total, no penalty for wrong answers.)
- 16. Find the sum of the series $\sum \frac{1}{n^2+3n}$. \star §11.2

Solution:
$$\frac{11}{18}$$
. (Ex 11.2.45)
$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{i^2 + 3i} = \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{3} \left(\frac{1}{i} - \frac{1}{i+3} \right)$$

$$= \lim_{n \to \infty} \frac{1}{3} \left[\left(\frac{1}{1} - \frac{1}{\cancel{4}} \right) + \left(\frac{1}{2} - \frac{1}{\cancel{5}} \right) + \left(\frac{1}{3} - \frac{1}{\cancel{5}} \right) + \cdots + \left(\frac{1}{n-2} - \frac{1}{n+1} \right) + \left(\frac{1}{n-1} - \frac{1}{n+2} \right) + \left(\frac{1}{\cancel{n}} - \frac{1}{n+3} \right) \right]$$

$$= \lim_{n \to \infty} \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} \right)$$

$$= \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} \right) = \frac{11}{18}.$$

17. Find the **interval** of convergence of the Maclaurin series of $\ln \frac{1}{1-x}$. \star §11.9

Solution:
$$[-1,1)$$
.

$$\ln \frac{1}{1-x} = \int \frac{1}{1-x} dx = \int \sum_{n=0}^{\infty} x^n dx = \sum_{n=0}^{\infty} \int x^n dx$$

$$= \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} + C = \sum_{n=1}^{\infty} \frac{x^n}{n} + C. \text{ Take } x = 0, \ln \frac{1}{1-0} = 0 = C.$$

$$\ln \frac{1}{1-x} = \sum \frac{x^n}{n} \text{ with } R = 1, -1 < x < 1.$$
If $x = 1, \sum \frac{1}{n}$ diverges. If $x = -1, \sum \frac{(-1)^n}{n}$ converges. $I = [-1, 1)$.

18. Find the **radius** of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} (x-3)^{2n}$. **\frac{\psi}{\}11.8

Solution: \sqrt{e} .

$$\lim_{n \to \infty} \left| \frac{(n+1)!(x-3)^{2(n+1)}/(n+1)^{n+1}}{n!(x-3)^{2n}/n^n} \right| = \lim_{n \to \infty} \frac{(x-3)^2}{(1+1/n)^n} = \frac{(x-3)^2}{e}.$$
by Ratio T, converges if $\frac{(x-3)^2}{e} < 1 \iff |x-3| < \sqrt{e}$ and diverges

if
$$\frac{(x-3)^2}{e} > 1 \iff |x-3| > \sqrt{e}$$
.

- When $x = 3 \pm \sqrt{e}$, $\sum \frac{n!e^n}{n^n}$ diverges. $I = (3 \sqrt{e}, 3 + \sqrt{e})$.)
- 19. Let $f(x) = x \cos x$. Evaluate the value of $f^{(101)}(0)$.

§11.10

Solution: 101.

$$x\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n+1}$$
. $2n+1 = 101$, $n = 50$, $c_{101} = \frac{f^{(101)}(0)}{101!}$,

$$f^{(101)}(0) = 101!c_{101} = 101!\frac{(-1)^{50}}{100!} = 101.$$

[Another sol]

 $f' = \cos x - x \sin x, \ f'' = -2 \sin x - x \cos x, \ f''' = -3 \cos x + x \sin x,$

$$f''' = 4\sin x + x\cos x, \dots$$

Guess $f^{(n)}(x) = n(\cos x)^{(n-1)} + x(\cos x)^{(n)}$.

$$f^{(n+1)}(x) = (f^{(n)})'(x) = (n(\cos x)^{(n-1)} + x(\cos x)^{(n)})'$$

$$= n(\cos x)^{(n)} + (\cos x)^{(n)} + x(\cos x)^{(n+1)}$$

$$= (n+1)(\cos x)^{(n+1-1)} + x(\cos x)^{(n+1)}$$
, by induction.

$$f^{(101)}(0) = 101(\cos x)^{(100)}(0) + 0 \cdot (\cos x)^{(101)}(0) = 101\cos 0 = 101.$$

20. Find the **third**-degree Taylor polynomial
$$T_3(x)$$
 of $\sin x$ at $\frac{\pi}{2}$.

Solution:
$$1 - \frac{1}{2}(x - \frac{\pi}{2})^{2}.$$

$$T_{3}(x) = f(\frac{\pi}{2}) + f'(\frac{\pi}{2})(x - \frac{\pi}{2}) + \frac{1}{2!}f''(\frac{\pi}{2})(x - \frac{\pi}{2})^{2} + \frac{1}{3!}f'''(\frac{\pi}{2})(x - \frac{\pi}{2})^{3}$$

$$= \sin(\frac{\pi}{2}) + \cos(\frac{\pi}{2})(x - \frac{\pi}{2}) - \frac{1}{2!}\sin(\frac{\pi}{2})(x - \frac{\pi}{2})^{2} - \frac{1}{3!}\cos(\frac{\pi}{2})(x - \frac{\pi}{2})^{3}$$

$$= 1 + 0 \cdot (x - \frac{\pi}{2}) - \frac{1}{2!} \cdot 1 \cdot (x - \frac{\pi}{2})^{2} - \frac{1}{3!} \cdot 0 \cdot (x - \frac{\pi}{2})^{3}$$

$$= 1 - \frac{1}{2}(x - \frac{\pi}{2})^{2}.$$
[Quick sol]
$$\sin x = \sin(\frac{\pi}{2} + x - \frac{\pi}{2}) = \sin(\frac{\pi}{2})\cos(x - \frac{\pi}{2}) + \cos(\frac{\pi}{2})\sin(x - \frac{\pi}{2})$$

$$= 1 \cdot \cos(x - \frac{\pi}{2}) + 0 \cdot \sin(x - \frac{\pi}{2}) = \cos(x - \frac{\pi}{2})$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!}(x - \frac{\pi}{2})^{2n} = 1 - \frac{1}{2!}(x - \frac{\pi}{2})^{2} + \frac{1}{4!}(x - \frac{\pi}{2})^{4} + \cdots,$$

$$T_{3}(x) = 1 - \frac{1}{2}(x - \frac{\pi}{2})^{2}.$$

⊕ 加分題 (共十五分。總分超過100分以100分計。)

Bonus (15 points in total. The total score more than 100 points will only get 100 points.)

(a). Match functions with power series. (Each blank 1 pt.)

* ~ **

$(A) \sum_{\substack{n=0\\ \infty}}^{\infty} x^n$	$(J) \sum_{\substack{n=0\\ \infty}}^{\infty} (-1)^n x^n$	$(S) \sum_{n=0}^{\infty} {1 \choose n} x^n$
(B) $\sum x^{2n}$	(K) $\sum_{n=0}^{\infty} (-1)^n x^{2n}$	(T) $\sum_{n=0}^{\infty} {\binom{\overline{2}}{n}} (-1)^n x^n$
$(C) \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(L) $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$	(U) $\sum_{n} {\binom{-\frac{1}{2}}{n}} x^n$
$ \begin{array}{c} $	$(M) \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$	$(V) \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} (-1)^n x^n$
$(E) \sum_{n=1}^{\infty} \frac{x^n}{n}$	(N) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n}$	$(W) \sum_{n=0}^{\infty} {2 \choose n} x^{2n}$
$(F) \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$	(O) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	(X) $\sum_{n=0}^{\infty} {1 \choose 2} (-1)^n x^{2n}$
$(G) \sum_{n=1}^{\infty} \frac{x^{2n}}{2n}$	$(P) \sum_{i} (-1)^{n-i} \frac{1}{2n}$	$(Y) \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} x^{2n}$
(H) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$	(Q) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$(X) \sum_{n=0}^{\infty} {1 \over 2 \choose n} (-1)^n x^{2n}$ $(Y) \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} x^{2n}$ $(Z) \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} (-1)^n x^{2n}$
(II) $\sum_{n=0}^{\infty} \frac{(2n+1)!}{(2n+1)!}$ (I) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$	(R) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	

(Hint: Fill uppercase alphabet as A, B, \cdots .)

(i)
$$e^x =$$
 C

(ii)
$$\frac{1}{1-x} = A$$

(iii)
$$\tan^{-1} x =$$
 R

(viii)
$$\sqrt{1+x} =$$
 S

(ix)
$$\ln(1+x) =$$
 N

(v)
$$\frac{1}{1+x^2} = \boxed{K}$$

$$(x) \quad \cos x \quad = \boxed{\qquad O \qquad } .$$

(b). Sketch the polar curves. (Each graph ${f 1}$ ${f pts.})$

 $\star \sim {}^{\star}_{\star\star}$

(xii)
$$r = 2\cos 2\theta$$

(xiii)
$$r = 2\cos 3\theta$$

(xiv) $r = 1 + \cos \theta$

 $(xv) r = 2\sin 2\theta$

◈ 挑戰題 (共五分。總分超過100分以100分計。)

Challenge (5 points in total. The total score more than 100 points will only get 100 points.)

The sequence $\{a_n\}$ is defined by the recurrence relation(遞迴關係)

$$a_1 = 1,$$
 $a_2 = 2,$ $a_n = \frac{3a_{n-1} - a_{n-2}}{2}$ for $n \ge 3$.

(
$$\alpha$$
). [2 pts] Find the **limit** $\lim_{n\to\infty} a_n =$ 3

(β). [3 pts] Find the **formula** of
$$a_n = \begin{bmatrix} 3 - \frac{1}{2^{n-2}} \end{bmatrix}$$
.

Solution:

2
$$a_3 = 3$$
 $a_2 - a_1$
2 $a_4 = 3$ $a_3 - a_2$
 \vdots
2 $a_{n-1} = 3$ $a_{n-2} - a_{n-3}$
2 $a_n = 3$ $a_{n-1} - a_{n-2}$
2 $a_n = 2$ $a_2 - a_1 + a_{n-1}$.

If $\{a_n\}$ converges with $\lim_{n\to\infty} a_n = a$, then $2a = 2 \times 2 - 1 + a$, a = 3.

$$a_n \nearrow (a_{n+1} = \frac{3a_n - a_{n-1}}{2} > \frac{3a_n - a_n}{2} = a_n)$$
 is easy, but $a_n \le 3$ is hard, \therefore cannot apply MCT.

[Method of Iteration]

$$a_n - a_{n-1} = \frac{1}{2}(a_{n-1} - a_{n-2}) = \dots = \frac{1}{2^{n-2}}(a_2 - a_1) = \frac{1}{2^{n-2}},$$

$$a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1$$

$$= \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \dots + 1 + a_1$$

$$= \sum_{i=0}^{n-2} \frac{1}{2^i} + 1 = 3 - \frac{1}{2^{n-2}},$$

$$\lim a_n = 3.$$

Solution: (Method of Power Series)

Let
$$f(x) = \sum_{n=1}^{\infty} a_n x^n$$
.

Let $f(x) = \sum_{n=1}^{\infty} a_n x^n = a_1 x + a_2 x^2 + a_3 x^3 + \cdots$

$$-) \frac{3x}{2} f(x) = \frac{3a_1}{2} x^2 + \frac{3a_2}{2} x^3 + \cdots$$

$$+) \frac{x^2}{2} f(x) = \frac{a_1}{2} x^3 + \cdots$$

$$(1 - \frac{3x}{2} + \frac{x^2}{2}) f(x) = a_1 x + (a_2 - \frac{3a_1}{2}) x^2 + \sum_{n \ge 3} (a_n - \frac{3a_{n-1} - a_{n-2}}{2}) x^n$$

$$= x + \frac{x^2}{2},$$

$$f(x) = \frac{x + x^2/2}{(1 - x)(1 - x/2)} = \frac{3x}{1 - x} - \frac{2x}{1 - x/2}$$

$$= 3 \sum_{n=1}^{\infty} x^n - 4 \sum_{n=1}^{\infty} \frac{x^n}{2^n} = \sum_{n=1}^{\infty} \left[3 - \frac{4}{2^n} \right] x^n,$$

$$a_n = 3 - \frac{1}{2^{n-2}}, \lim_{n \to \infty} a_n = 3.$$

Solution: (Method of Characteristic Polynomial)
Assume
$$a_n = x^n$$
, $x \neq 0$, $x^n = \frac{3x^{n-1} - x^{n-2}}{2}$, $x^2 = \frac{3x - 1}{2}$.

Solve characteristic polynomial $x^2 = \frac{3x - 1}{2} \implies x = 1, \frac{1}{2}$.

 \implies general solution $a_n = a \times 1^n + b \times (\frac{1}{2})^n$.

Solve boundary condition:
$$\begin{cases} n = 1, & a + \frac{1}{2} b = a_1 = 1, \\ n = 2, & a + \frac{1}{4} b = a_2 = 2, \end{cases}$$

$$\implies \begin{cases} a = 3, \\ b = -4, \implies a_n = 3 - 4(\frac{1}{2})^n, \lim_{n \to \infty} a_n = 3. \end{cases}$$

Questions End