

Videojuego portátil inspirado en consolas retro

Especificación de requisitos de hardware (ERH)

Autor

Lic. Jezabel Danon (jezabel.danon@gmail.com)

10/07/2025Versión A

Índice

1.	Introducción	2
	1.1. Propósito	2
	1.2. Alcance	2
	1.3. Definiciones, acrónimos y abreviaturas	2
	1.4. Referencias	2
2.	Visión general del sistema	2
	2.1. Descripción general	2
3.	Requisitos funcionales de hardware	3
4.	Requisitos no funcionales de hardware	4
	4.1. Alimentación	4
	4.2. Procesamiento	4
	4.3. Entradas	4
	4.4. Salidas	4
	4.5. Persistencia	4
5.	Lista preliminar de materiales (BOM)	4
6.	Verificación y validación	5
	6.1. Objetivo	5
	6.2. Enfoque general	5
	6.3. Matriz de V&V	5
	6.4. Trazabilidad	
	6.5 Criterio de acentación global	6

1. Introducción

1.1. Propósito

- 1. El propósito de este documento es detallar los requisitos de hardware necesarios para el desarrollo del dispositivo Videojuego portátil inspirado en consolas retro.
- 2. Sirve como referencia para los equipos de ingeniería electrónica, integración, verificación y compras.

1.2. Alcance

- 1. El documento cubre todos los bloques electrónicos del prototipo: fuente de alimentación, unidad de procesamiento (MCU STM32), módulos de entrada/salida, audio, vibración y pantalla.
- 2. Quedan fuera de alcance los aspectos de diseño y montaje de PCB, así como el diseño mecánico de la carcasa u otros componentes externos.

1.3. Definiciones, acrónimos y abreviaturas

MCU Microcontroller Unit

RTOS Real-Time Operating System

EEPROM Electrically Erasable Programmable Read-Only Memory

TFT Thin-Film Transistor display

BOM Bill of Materials

1.4. Referencias

- 1. IEEE 1233-1998 Guide for Developing System Requirements Specifications.
- 2. Hoja de datos STM32F446RE https://www.st.com
- 3. Hoja de datos DRV2605L https://www.ti.com
- 4. ERS RETRO GAME-RS-vA (Especificación de requisitos de software).

2. Visión general del sistema

2.1. Descripción general

El hardware se organiza en cinco grupos:

- 1. Unidad de procesamiento placa NUCLEO-F446RE.
- 2. Alimentación módulo conversor 9 V ightarrow 5V /3.3V + batería.
- 3. Interfaces de entrada
 - joystick analógico KY-023,
 - botones tact switch,
 - acelerómetro del MPU-6500.
- 4. Interfaces de salida

- pantalla TFT ST7735R,
- parlante 8 Ω 1 W (con amplificador LM386),
- motor de vibración con controlador DRV2605L.

5. Memoria externa - EEPROM SPI 25LC256.

Figura 1: Diagrama de bloques de alto nivel.

3. Requisitos funcionales de hardware

RETRO_GAME-RH-REQ0001: El hardware será montado sobre protoboard sin necesidad de soldadura permanente. Todos los módulos seleccionados deben poseer encapsulado tipo DIP o header estándar compatible.

RETRO_GAME-RH-REQ0002: El sistema deberá alimentarse mediante una fuente de corriente continua.

RETRO_GAME-RH-REQ0003: El sistema deberá incorporar un sensor de inclinación de al menos dos ejes.

RETRO_GAME-RH-REQ0004: Se deberá contar con un joystick analógico de dos ejes.

RETRO_GAME-RH-REQ0005: Se deberán proveer al menos cuatro botones tipo tact-switch, conectados a entradas digitales del microcontrolador.

RETRO_GAME-RH-REQ0006: El sistema deberá incluir una pantalla que permita representar texto e imágenes.

RETRO_GAME-RH-REQ0007: El sistema deberá ser capaz de generar salidas sonoras para retroalimentación.

RETRO_GAME-RH-REQ0008: El sistema deberá incluir un motor de vibración para retroalimentación háptica.

RETRO_GAME-RH-REQ0009: El sistema deberá permitir guardar y restaurar partidas mediante una memoria no volátil.

4. Requisitos no funcionales de hardware

4.1. Alimentación

RETRO_GAME-RH-REQ0010: Se requiere una tensión estabilizada de $3.3V \pm 5\%$ y $5V \pm 5\%$.

RETRO_GAME-RH-REQ0011: Corriente pico disponible: 800mA.

4.2. Procesamiento

RETRO_GAME-RH-REQ0012: MCU Cortex-M4 a 180 MHz, 512 kB Flash, 128 kB SRAM.

4.3. Entradas

RETRO_GAME-RH-REQ0013: Joystick analógico KY-023 → MCU ADC (2 canales, 12 bit).

RETRO_GAME-RH-REQ0014: Cuatro botones tipo tact switch conectados a GPIO con resistencias pull-up externas; debounce por software.

RETRO_GAME-RH-REQ0015: Sensor MPU-6500 (I²C @ 400kHz, genera interrupción "data ready" a 100Hz.

4.4. Salidas

RETRO_GAME-RH-REQ0016: Pantalla TFT 1.8 inch ST7735R; interfaz SPI a 24MHz; DMA para transferir $128 \times 160 \times 16$ bits por cuadro.

RETRO_GAME-RH-REQ0017: Audio: parlante 8 Ω 1 W amplificado por LM386; señal PWM entre 20 kHz a 50 kHz.

RETRO_GAME-RH-REQ0018: Vibración: motor ERM 3V; excitado por DRV2605L (I²C, patrones integrados).

4.5. Persistencia

RETRO_GAME-RH-REQ0019: Memoria SPI 25LC256 (256kb).

5. Lista preliminar de materiales (BOM)

Ítem	Componente	Descripción	Cant.	Notas
1	STM32 NUCLEO-	Placa de desarrollo MCU	1	Unidad de proce-
	F446RE	Cortex-M4 @ 180 MHz		samiento
2	ST7735R TFT 1.8"	Pantalla TFT 128x160 px	1	Con back-light
		SPI		LED
3	25LC256	EEPROM SPI 256kb	1	SOIC-8
4	DRV2605L	Controlador háptico I ² C	1	VSLGA-10

5	Motor ERM 3V	Vibrador cilíndrico 44,000	1	Montaje con cinta
		rpm		
6	Speaker 8 Ω 1 W	Parlante dinámico Ø 28mm	1	
7	LM386	Amplificador audio 0.7W	1	SO-8
8	GY-521 (MPU-6500)	Módulo aceleróme-	1	$I^{2}C, 3.3 V$
		${ m tro/giroscopio}$		
9	Módulo DC-DC 9 V \rightarrow	Regulador step-down dual-	1	Salida 1.2A máx.
	$\mid 5/3.3 \; ext{V}$	rail		
10	Joystick analógico KY-	Potenciómetro bi-eje + bo-	1	Salidas analógicas
	023	tón		
11	Tact switch (botón)	Pulsador SMD 4mm	4	Entradas digitales
12	Protoboard (400 pts)	Panel prototipado	1	Desarrollo
13	Cables jumper M-F /	Conductores dupont 20cm	30	Conexión del pro-
	M-M			totipo

6. Verificación y validación

6.1. Objetivo

Confirmar que cada requisito de hardware (RH-1.1 a RH-1.9) se cumple en el prototipo y que, en conjunto, el sistema satisface la función de juego portátil sin fallos perceptibles para el usuario final.

6.2. Enfoque general

- a) **Verificación** = "¿lo construí bien?" Se aplican inspección visual, lectura de hoja de datos y pruebas funcionales de laboratorio.
- b) Validación = "¿con esto cumplo la necesidad?" Se realizan ensayos de uso real (sesión de juego, demo), demostraciones en vídeo y pruebas de estrés.
- c) Cada ensayo se documentará con: fecha, responsable, equipo de medida, pasos, resultados y evidencia (fotos / capturas UART).

6.3. Matriz de V&V

Req. ID	Método de verificación	Criterio de aceptación	Método de validación
REQ0001	Comparar el cableado real con	No hay conexiones faltantes	Inspección cruzada del es-
(Montaje)	el esquema; revisar soldaduras o	ni invertidas.	quema y fotografías macro
	posición en protoboard.		del prototipo.
REQ0002	Prueba de encendido con todos	El sistema arranca sin reini-	Sesión de juego continua de
(Alimen-	los periféricos y registro de ten-	cios; V_{out} 3.3 V ± 5 %.	45 min con batería de 9 V;
tación a	sión durante el arranque.		sin cortes ni reinicios.
batería)			
REQ0003	Leer ejes X/Y por UART con	Lecturas varían suavemen-	Mover el prototipo en varios
(Aceleróme-	código de prueba; comprobar	te al inclinar el dispositivo	ángulos y observar que los
tro)	hoja de datos (al menos 2 ejes).	±90°.	valores reportados son cohe-
			rentes y estables.

RETRO_GAME-RH versión A

REQ0004	Enviar por UART los valores	Cada eje entrega un ran-	El usuario mueve la palan-
(Joystick	de ambos potenciómetros al des-	go continuo 0-4095 (ADC 12	ca y verifica, en pantalla o
analógico)	plazar la palanca.	bit).	terminal, respuesta propor-
			cional sin zonas muertas.
REQ0005	Programa de test que detecte	Todos los botones generan	Prueba interactiva: pulsar
(Botones)	flancos y muestre su estado.	evento "presión" y "libera-	cada botón; la acción asig-
		ción" $<$ 20 ms.	nada se ejecuta sin retardos
			ni rebotes perceptibles.
REQ0006	Secuencia de inicialización $+$ de-	La pantalla responde a co-	Inspección visual: gráficos se
(Pantalla	mo de texto, líneas y sprites.	mandos, sin parpadeos ni lí-	ven correctamente durante
TFT)		neas muertas.	una escena del demo de jue-
			go.
REQ0007	Señal PWM de prueba \rightarrow	Nivel audible sin distorsión	Reproducir efecto "jingle";
(Audio)	$LM386 \rightarrow parlante$	excesiva %.	usuarios confirman claridad
			y volumen adecuados.
REQ0008	Activar patrón #1 del	El motor arranca en <100	Usuario percibe vibración al
(Vibración	DRV2605L y comprobar	ms y genera 1 g (aprox.) de	recibir impacto en el juego.
ERM)	corriente.	vibración.	
REQ0009	Escribir y leer un bloque de	Los datos leídos coinciden	Guardar partida, cortar ali-
(EEPROM)	prueba; ciclar 10 veces.	byte-a-byte con lo escrito;	mentación al menos 1 h, vol-
		sin errores CRC.	ver a cargar - la partida se
			recupera idéntica.

Trazabilidad 6.4.

Cada requisito REQ000x se vincula al resultado de su prueba:

- \blacksquare TEST_BAT01 ightarrow REQ0002
- \blacksquare TEST_JOY01 \rightarrow REQ0004
- \blacksquare TEST_EEPO1 ightarrow REQ0009

Los reportes se almacenan en docs/TEST_REPORTS/fecha con evidencia fotográfica y logs UART.

6.5.Criterio de aceptación global

El hardware se considera "listo para integración con firmware" cuando:

- 1. El 100 % de los casos de prueba arriba listados pasan sin incidencias.
- 2. La validación de juego completo (sesión >45 min, batería) transcurre sin reinicios ni fallos de periféricos.