

LINEAR REGRESSION

CS6140

Predrag Radivojac

KHOURY COLLEGE OF COMPUTER SCIENCES

NORTHEASTERN UNIVERSITY

Spring 2021

REGRESSION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, \ (\boldsymbol{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}$

Objective: find best approximator $f(x) \in \mathcal{Y}$, where $f \in \mathcal{F}$

Example: $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \mathbb{R}$

$$\circ$$
 take $f(\boldsymbol{x}) = \alpha + x_1 x_2^{\beta}$

 \circ find α and β from data

 \leftarrow nonlinear regression

$$\circ$$
 take $f(x) = w_0 + w_1 x_1 + w_2 x_2$

 \circ find w_0 , w_1 and w_2 from data

 \leftarrow linear regression

LINEAR REGRESSION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, \ (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

Objective: find best linear approximator $f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$

$$\mathcal{X} = \mathbb{R}, \ \mathcal{Y} = \mathbb{R}$$

BASIC FORMULATION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

Goal: minimize sum of squares $\sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2$

Rewrite: minimize sum of squares $\sum_{i=1}^{n} (w_0 + \sum_{j=1}^{d} w_j x_{ij} - y_i)^2$

Derive: optimal coefficients (w_0, w_1, \ldots, w_d)

BASIC FORMULATION: VECTOR NOTATION

$$\begin{array}{ll} \boldsymbol{w} = (w_0, w_1, \dots, w_d) \\ \boldsymbol{x} = (x_0 = 1, x_1, \dots, x_d) \end{array} \rightarrow \begin{array}{ll} \boldsymbol{\mathbf{w}} = [w_0 \ w_1 \ \dots \ w_d]^T \\ \boldsymbol{\mathbf{x}} = [x_0 = 1 \ x_1 \ \dots \ x_d]^T \end{array}$$

Reformulate:

Given: matrix X and vector y

Goal: minimize $(\mathbf{X}\mathbf{w} - \mathbf{y})^T(\mathbf{X}\mathbf{w} - \mathbf{y})$

SUMMARY

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, \ (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

Goal: minimize sum of squares $\sum_{i=1}^{n} (w_0 + \sum_{j=1}^{d} w_j x_{ij} - y_i)^2$

Use vector notation

Given: matrix X and vector y

Goal: minimize $(\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$

Solve

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

MAXIMUM LIKELIHOOD ESTIMATION

Assume: $Y = f(X|\omega) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and f is a linear combination of X and ω

This gives:
$$Y|\boldsymbol{x}, \boldsymbol{\omega} \sim \mathcal{N}(\sum_{j=0}^{d} \omega_{j} x_{j}, \sigma^{2})$$
 $p(y|\boldsymbol{x}, \boldsymbol{\omega}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y-\sum_{j=0}^{d} \omega_{j} x_{j})^{2}}{2\sigma^{2}}}$

MAXIMUM LIKELIHOOD ESTIMATION

Assume: $Y = f(X|\omega) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and f is a linear combination of X and ω

This gives:
$$Y|\boldsymbol{x}, \boldsymbol{\omega} \sim \mathcal{N}(\sum_{j=0}^{d} \omega_{j} x_{j}, \sigma^{2})$$
 $p(y|\boldsymbol{x}, \boldsymbol{\omega}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y-\sum_{j=0}^{d} \omega_{j} x_{j})^{2}}{2\sigma^{2}}}$

Assume: data set $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ drawn i.i.d.

Likelihood:
$$p(\boldsymbol{y}|\boldsymbol{x}_i, \boldsymbol{w}) = \prod_{i=1}^n p(y_i|\boldsymbol{x}_i, \boldsymbol{w}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \prod_{i=1}^n e^{-\frac{(y_i - \sum_{j=0}^d w_j x_{ij})^2}{2\sigma^2}}$$

Log-likelihood:
$$\log p(\boldsymbol{y}|\boldsymbol{x}_i, \boldsymbol{w}) = \sum_{i=1}^n \log p(y_i|\boldsymbol{x}_i, \boldsymbol{w}) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{\sum_{i=1}^n (y_i - \sum_{j=0}^d w_j x_{ij})^2}{2\sigma^2}$$

SUMMARY

Assume: $Y = f(X|\omega) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and f is a linear combination of X and ω

Likelihood:
$$\prod_{i=1}^{n} p(y_i|\boldsymbol{x}_i, \boldsymbol{w}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \prod_{i=1}^{n} e^{-\frac{(y_i - \sum_{j=0}^{d} w_j x_{ij})^2}{2\sigma^2}}$$

Maximize likelihood = minimize sum of squared errors

$$\mathbf{w}_{\mathrm{ML}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

ALGEBRAIC VIEW

Consider: system Ax = b

Example:

$$x_1 + 2x_2 = 3$$

 $x_1 + 3x_2 = 5$

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 3 \\ 5 \end{array}\right]$$

$$\left[\begin{array}{c}1\\1\end{array}\right]x_1 + \left[\begin{array}{c}2\\3\end{array}\right]x_2 = \left[\begin{array}{c}3\\5\end{array}\right]$$

ALGEBRAIC VIEW

Given: matrix A and vector b

Goal: find x to minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$