CMT 428 Final Quiz

Module 1: Introduction to Big Data and Hadoop

1.	What i	s a primary challenge in Big Data?
	0	a) Data accuracy
	0	b) Data variety
	0	c) Data analysis speed
	0	d) Data storage costs
2.	Which	component is the core storage system of Hadoop?
	0	a) MapReduce
	0	b) HDFS
	0	c) Spark
	0	d) Sqoop
3.	The Ha	adoop ecosystem primarily addresses:
	0	a) Financial data processing
	0	b) Real-time data analysis
	0	c) Large-scale data storage and processing
	0	d) Multimedia data management
4.	Which	Hadoop component is responsible for processing data?
	0	a) HDFS
	0	b) Oozie
	0	c) MapReduce
	0	d) Flume
5.	Which	of these is a characteristic of Big Data?
	0	a) Volume
	0	b) Simplicity
	0	c) Accuracy
	0	d) Flexibility
6.	HDFS	is optimized for:
	0	a) High-speed networking
	0	b) Real-time data transactions

 \circ c) Large files and sequential data access

- o d) Multimedia content
 7. In Hadoop, data redundancy is achieved through:

 a) Compression algorithms
 b) Replication in HDFS
 c) Data encryption
 - o d) File sharding
- 8. Which is a core function of the Hadoop Distributed File System (HDFS)?
 - o a) Data streaming
 - o b) Job scheduling
 - o c) Fault tolerance
 - o d) User authentication

Module 2: Hadoop Cluster Setup and Management

- 9. Which command initiates Hadoop installation?
 - o a) hadoop init
 - o b) start-hadoop
 - o c) hadoop-install
 - o d) start-all.sh
- 10. Hadoop cluster management primarily involves:
 - o a) Data replication only
 - o b) Monitoring and maintaining cluster health
 - o c) Developing data models
 - o d) Setting up networking layers
- 11. Which tool in Hadoop helps monitor cluster performance?
 - o a) HBase
 - o b) Hive
 - o c) Oozie
 - o d) Hadoop Metrics
- 12. The primary configuration files in Hadoop are:
 - o a) core-site.xml, hdfs-site.xml, mapred-site.xml
 - o b) config.xml, hadoop-site.xml, cluster-site.xml
 - o c) hadoop-env.xml, system.xml, data.xml

- o d) core.xml, spark-site.xml, cluster.xml
- 13. Which is NOT part of Hadoop's default security model?
 - o a) Data encryption
 - o b) User authentication
 - o c) Role-based access control
 - o d) Replication
- 14. Hadoop's cluster architecture is designed to:
 - o a) Prioritize security over performance
 - o b) Handle multiple small files efficiently
 - o c) Work on low-cost commodity hardware
 - o d) Support real-time processing natively
- 15. In a Hadoop cluster, the NameNode is responsible for:
 - o a) Storing data blocks
 - o b) Managing file system metadata
 - o c) Running MapReduce tasks
 - o d) Scheduling resources
- 16. The purpose of Hadoop's Secondary NameNode is:
 - o a) Data redundancy
 - o b) Backup of the NameNode metadata
 - o c) Running MapReduce jobs
 - o d) Managing data encryption

Module 3: MapReduce Programming

- 17. The purpose of the Map function in MapReduce is to:
 - o a) Sort data
 - o b) Filter data
 - o c) Break down data into key-value pairs
 - o d) Aggregate data
- 18. Which component handles the execution of a MapReduce job?
 - o a) Task Tracker
 - o b) Job Tracker
 - o c) YARN Resource Manager

0	d) DataNode
19. MapRe	educe is primarily designed for:
0	a) Real-time processing
0	b) Batch processing
0	c) Streaming data
0	d) Data visualization
20. In a Ma	apReduce job, the Reduce phase is used to:
0	a) Filter data
0	b) Sort data
0	c) Aggregate and summarize results
0	d) Shuffle data
21. Which	optimization strategy minimizes data movement in MapReduce?
0	a) Indexing
0	b) Sorting
0	c) Localizing data processing to nodes
0	d) Increasing data replication
22. MapRe	educe applications are typically written in:
0	a) C++
0	b) Python
0	c) Java
0	d) HTML
23. A com	biner in MapReduce helps by:
0	a) Filtering unnecessary data
0	b) Minimizing data transfer between Map and Reduce phases
0	c) Sorting data
0	d) Aggregating final results
24. Which	is an example of a MapReduce design pattern?
0	a) Fork-Join
0	b) Shuffle-Sort
0	c) Search-Sort
0	d) Mapper-Reducer

Module 4: Hadoop Ecosystem Tools

25. Which Hadoop tool is primarily used for data warehousing?				
0	a) Pig			
0	b) HBase			
0	c) Hive			
0	d) Oozie			
26. Pig Latin is associated with:				
0	a) Hive			
0	b) Pig			
0	c) HBase			
0	d) Flume			
27. HBase is best described as a:				
0	a) NoSQL database			
0	b) Real-time analytics tool			
0	c) Data import tool			
0	d) Data warehousing tool			
28. Sqoop is used in Hadoop for:				
0	a) Data processing			
0	b) Data import/export			
0	c) Data security			
0	d) Data replication			
29. Flume is primarily responsible for:				
0	a) Running batch jobs			
0	b) Real-time data streaming			

30. Oozie is a tool for:

o a) Data analytics

o c) Job scheduling

o d) File replication

- o b) Workflow management
- o c) NoSQL storage
- o d) Data security

31. Hive supports querying data using:

- o a) Pig Latin
- o b) SQL-like syntax
- o c) JSON
- o d) YAML

32. The HBase data model is based on:

- o a) Key-value pairs
- o b) Relational tables
- o c) Hierarchical structure
- o d) JSON format

Module 5: Advanced Hadoop Topics

- 33. YARN in Hadoop is primarily used for:
 - o a) Data replication
 - o b) Resource management
 - o c) File organization
 - o d) Security

34. Spark is preferred over MapReduce for:

- o a) Data warehousing
- o b) Real-time, in-memory processing
- o c) Batch processing only
- o d) File system organization

35. Kafka is used in Hadoop for:

- o a) Real-time data streaming
- o b) Data replication
- o c) Workflow management
- o d) Query processing

36. Tuning Hadoop performance is essential to:

- o a) Reduce storage space
- o b) Maximize job execution efficiency
- o c) Enhance user interface
- o d) Limit data access

37. Which of the following is a method of performance optimization in Haddop?			
0	a) Reducing data block size		
0	b) Increasing replication factor		
0	c) Using compression		
0	d) Decreasing node count		
20 Anacha Spark programma data in:			

- 38. Apache Spark processes data in:
 - o a) Real-time
 - o b) Sequential batches
 - o c) Text format only
 - o d) Network layers
- 39. What does YARN stand for?
 - o a) Yet Another Resource Negotiator
 - o b) Yielding Analysis Resource Node
 - o c) Yearly Access Resource Network
 - o d) Yet Another Resource Network
- 40. Which framework supports in-memory processing?
 - o a) Oozie
 - o b) Spark
 - o c) Hive
 - o d) HBase

Answers

- 1. b) Data variety
- 2. b) HDFS
- 3. c) Large-scale data storage and processing
- 4. c) MapReduce
- 5. a) Volume
- 6. c) Large files and sequential data access
- 7. b) Replication in HDFS
- 8. c) Fault tolerance
- 9. d) start-all.sh
- 10. b) Monitoring and maintaining cluster health
- 11. d) Hadoop Metrics
- 12. a) core-site.xml, hdfs-site.xml, mapred-site.xml
- 13. a) Data encryption
- 14. c) Work on low-cost commodity hardware
- 15. b) Managing file system metadata
- 16. b) Backup of the NameNode metadata
- 17. c) Break down data into key-value pairs
- 18. b) Job Tracker
- 19. b) Batch processing
- 20. c) Aggregate and summarize results
- 21. c) Localizing data processing to nodes
- 22. c) Java
- 23. b) Minimizing data transfer between Map and Reduce phases
- 24. d) Mapper-Reducer
- 25. c) Hive
- 26. b) Pig
- 27. a) NoSQL database
- 28. b) Data import/export
- 29. b) Real-time data streaming
- 30. b) Workflow management

- 31. b) SQL-like syntax
- 32. a) Key-value pairs
- 33. b) Resource management
- 34. b) Real-time, in-memory processing
- 35. a) Real-time data streaming
- 36. b) Maximize job execution efficiency
- 37. c) Using compression
- 38. a) Real-time
- 39. a) Yet Another Resource Negotiator
- 40. b) Spark