# <sub>1</sub> List of Figures

|    | 1              | Collection leasting                                  | ก   |
|----|----------------|------------------------------------------------------|-----|
| 2  | 1              | Collection locations                                 |     |
| 3  | 2              | Linkage map of chum salmon                           | 3   |
| 4  | 3              | MAF Histogram showing ascertainment bias             | 4   |
| 5  | 4              | Individual-based PCAs showing population structure   | 5   |
| 6  | 5              | Manhattan plot                                       | 6   |
| 7  | 6              | SUPPLEMENTAL - Centromere placemet - y plots         | 18  |
| 8  | 7              | SUPPLEMENTAL - Chum / Chinook Oxford grid            | 19  |
| 9  | 8              | SUPPLEMENTAL - PCA eigenvalues                       | 20  |
| 10 | 9              | SUPPLEMENTAL - PCA significant axes                  | 20  |
| 11 | 10             | SUPPLEMENTAL - Genome scan - Bayescan Fst            | 20  |
| 12 | 11             | SUPPLEMENTAL - Q plot - ancestry coefficients        | 20  |
|    |                |                                                      |     |
|    | T :at          | of Tables                                            |     |
| 13 | LISU           | of Tables                                            |     |
| 14 | 1              | Sample sizes. usable sequences, and genotyping rates | 7   |
| 15 | $\overline{2}$ | Genetic diversity                                    |     |
| 16 | 3              | SUPPLEMENTAL - centromere placement                  |     |
|    |                | <u> -</u>                                            |     |
| 17 | 4              | SUPPLEMENTAL - Procrustes analysis                   | -21 |

# Figures

## 19 Map of sampling locations including run timing



Figure 1: Collection locations and runtiming of chum salmon sampled near Puget Sound.

### Linkage map



Figure 2: 37 linkage groups, likely corresponding to the 37 chromosomes in the chum salmon karyotype. Paralogous loci are shown as red diamonds, non-paralogs are blue circles. Black lines connect confounded catalog entries that have been resolved into two paralogous loci. The 16 distal concentrations of paralogs form 8 pairs of homeologous chromosomes. Notice LGs 2 and 32 have distinct ancestral relationships on each end.

#### 21 Ascertainment bias



Figure 3: Folded minor allele frequency (MAF) for all loci (grey) and the subset of loci placed on the linkage map (black outline). The rightward shift in the MAF distribution shows the effect of ascertainment bias. Notice the y-axis is density-scaled to accommodate differing number of loci in each set.

### 22 Population structure



Figure 4: Population structure - Individual-based PCA from ten populations (colors) of chum salmon from Puget Sound. Population structure obtained from paralogs (a) is similar to that obtained by non-paralogs (b), especially after down-sampling to match the number of loci (c).

#### Manhattan plot

6



Figure 5: Manhattan plot of differentiation across the 37 linkage groups of chum salmon. Points are Bayescan Fst values for single loci. Population genetic statistics were calculated at each cM position by calculating an inverse distance-weighted average value from loci within a 5cM wide window centered on each position. Black outlines show loci selected as life history outliers in Bayescan. Black Lower shaded regions show genomic regions in the upper 99%, as determined by bootstrap permutation. Color codes for shaded regions: Red: LFMM qvalue, Blue: Bayescan qvalue, Green: Bayescan Fst, Purple: Weir Fst.

## Tables

## <sup>25</sup> Sequencing and genotyping

Table 1: Sample sizes. usable sequences, and genotyping rates

|                        |    | Aligned sequences |                      | Genotyping rate |      |
|------------------------|----|-------------------|----------------------|-----------------|------|
| Collection             | n  | mean              | $\operatorname{std}$ | mean            | std  |
| Hamma Hamma            | 20 | 1,419,541         | 1,427,760            | 0.87            | 0.08 |
| Lilliwaup Creek        | 20 | 2,760,125         | 999,141              | 0.98            | 0.01 |
| Nisqually Kalama Creek | 17 | 2,270,022         | 1,432,866            | 0.96            | 0.03 |
| Sherwood River Fall    | 32 | 3,235,188         | 966,091              | 0.96            | 0.04 |
| Sherwood River Summer  | 31 | 2,504,974         | 1,183,089            | 0.91            | 0.07 |
| Skookum Creek          | 11 | 1,644,932         | $637,\!844$          | 0.95            | 0.09 |
| Snohomish River        | 14 | 1,135,085         | 495,888              | 0.94            | 0.07 |
| Squakum Creek          | 8  | 999,084           | 650,927              | 0.86            | 0.08 |
| Stillaguamish River    | 13 | 710,538           | 269,873              | 0.91            | 0.06 |
| Hoodsport Hatchery*    | 8  | 509,422           | 148,391              | 0.85            | 0.08 |

<sup>\*</sup>paired-end sequencing.

## <sup>26</sup> Genetic diversity

Table 2: Genetic diversity

|                        | Heterozygosity | Ne         |
|------------------------|----------------|------------|
| Hamma Hamma            | 0.30           | 339        |
| Lilliwaup Creek        | 0.34           | 5,959      |
| Nisqually Kalama Creek | 0.32           | 161        |
| Sherwood River Fall    | 0.33           | 319        |
| Sherwood River Summer  | 0.31           | 145        |
| Skookum Creek          | 0.33           | 1,788      |
| Snohomish River        | 0.32           | 2,122      |
| Squakum Creek          | 0.31           | $\infty^*$ |
| Stillaguamish River    | 0.30           | 1,001      |
| Hoodsport Hatchery     | 0.30           | $\infty^*$ |

<sup>\*</sup>small sample size (<10)