Modeling Situation-Specific Effects of Multiple Mortality on Social Network Structure in Griffon Vultures (Gyps fulvus) UCLA

Kaija Gahm¹ and Noa Pinter-Wollman¹

¹UCLA Department of Ecology & Evolutionary Biology

How long does it take for a social network to recover its structure after the loss of several connected individuals?

- How does recovery differ between social situations?

Background

Eurasian griffon vultures (Gyps fulvus) are obligate scavengers and social foragers.

Poisoned carcasses can kill many vultures quickly as they assemble to eat in groups. Poisoning is a major threat to griffon vultures.

Fig. 1. Sharma et al. 2022

Social network analysis of GPS-tagged birds lets us study the population social structure. Networks differ between situations (co-flight, co-feeding, and co-roosting).

Modeling Approach (Cont'd)

Fig. 3. Rewiring after loss of a single node.

A node and all of its edges are lost. Greater probability of forming/keeping edges between mutually "bereaved" nodes (red) than "non-bereaved" nodes (blue) (Fig. 3.)

Comparison to GPS Data

- Compared baseline model dynamics to GPS data from 36 tagged vultures between 2020-10-01 and 2021-09-01. Co-feeding network only.
- Observed data has more isolated nodes, more seasonality than model output (Fig. 4).

Fig. 4. Comparison of node degree: model output vs. observed co-feeding networks.

Modeling Approach

 Agent-based model: Nodes as vultures, edges as interactions (unweighted, undirected).

Baseline network dynamics:

 Edges added/removed based on two previous time steps, discrete time (Fig. 2a-b).

Fig. 2a. Edges are added and removed based on the two previous time steps.

Fig. 2b. Probability distributions, from real feeding network data, for loss/gain of edges given their state 0/1 in the previous two timesteps.

Node removal and rewiring (Fig. 3)

- When node is lost, edges rewire.
- Higher probability of rewiring if mutually connected to the lost node (Farine 2021, "second-degree rewiring").
- Higher probability if history of connection.

Comparison to GPS Data (Cont'd)

Fig. 5. Timeline of node losses, 2020-10-01 - 2021-09-01

- 7 single-node removals (Fig. 5).
- No evidence for second-degree rewiring (opposite?). Edge history matters (Fig. 6).

Fig. 6. Probability of forming an edge, given node status after loss and edge history.

Next Steps

- 1. Define rewiring for simultaneous loss of multiple connected nodes.
- 2. Further examine loss in real data for parameterization, including multiple mortality events (though data is limited).
- Refine baseline model behavior to better capture real biology (e.g. Fig. 4).
- 4. Run model with multiple-node loss. Examine recovery time and resilience with different numbers of lost nodes.
 - a. Measure density, degree distribution, transitivity.
- 5. Compare recovery time/resilience in different behavioral situations (flying, roosting) as well as overall aggregate network.

Contact

kgahm@ucla.edu

