WHAT IS CLAIMED IS:

/AT	10g	>1
O	P)	2

1. A transconductance cell for use in a system on chip to reduce adverse effects of bulk semiconductor voltages on transconductance comprising a plurality of current sources interconnected to provide an output transconductance control voltage, and a variable load for the current sources including first and second load resistors each serially connected with one of the plurality of current sources, and a variable resistance interconnecting nodes of the load resistors, the variable resistance comprising a pair of native MOS transistors having low threshold voltages.

- The transconductance cell as defined by claim 1 wherein the first and second load resistors comprise first and second MOS transistors.
- 3. The transconductance cell as defined by claim 2 wherein the pair of native transistors are serially connected between source elements of the first and second MOS transistors.
- 4. The transconductance cell as defined by claim 3 wherein gate elements of the native MOS transistors are connected to receive a control voltage.
- 5. The transconductance cell as defined by claim 4 wherein the system on chip comprises a radio receiver, and the transconductance cell is used in a low pass filter of the radio receiver.

doseil

عسور

- 6. The transconductance cell as defined by claim 5 wherein the transconductance cell is used also in a voltage controlled oscillator.
 - 7. The transconductance cell as defined by claim 4 wherein the system on a chip comprises a radio receiver, and transconductance cell is used in a voltage controlled oscillator.
- 8. The transconductance cell as defined by claim 1 wherein the system on a chip comprises a radio receiver, the transconductance cell is used in a low pass filter of the radio receiver.
- 9. The transconductance cell as defined by claim 8 wherein the transconductance cell is used also in a voltage controlled oscillator.

1	The transconductance cell as defined by claim 1 wherein the system on		
2	chip comprises a radio receiver, and a transconductance cell is used in a voltage controlled		
3	oscillator.		
1	11. A method of reducing noise susceptibility due to bulk semiconductor		
2	voltages in a system on chip employing gyrators in filter elements comprising the steps of:		
3	a) providing a gyrator cell with resistive loads for a plurality of current		
4	sources, the resistive loads including first and second MOS transistors, and		
5	b) connecting a variable resistance between the first and second MOS		
6	transistors, the variable resistance comprising two serially connected native MOS transistors		
7	having low threshold voltages.		
1	12. The method as defined by claim 11 wherein gate elements of the native		
2	MOS transistors are connected to receive a control voltage.		
1	13. The method as defined by claim 12 wherein the system on the chip		
2	comprises a radio receiver, and wherein gyrators are used in low pass filters of the radio		
3	receiver.		
1	14. A gyrator comprising a plurality of current sources interconnected to		
2	provide output transconductance control voltages, and a variable load for the current sources		
3	including first and second load resistors, each serially connected with one of the plurality of		
4	current sources, and a variable resistance interconnecting nodes of the load resistors, the		
5	variable transistor resistance comprising a pair of native MOS transistors having low		
6	threshold voltages.		
1	15. The gyrator as defined by claim 14 wherein the first and second load		
2	resistors comprise first and second MOS transistors.		
1	16. The gyrator as defined by claim 14 wherein the pair of native		
2	transistors are serially connected between source elements of the first and second MOS		
3	*		
5	transistors.		
1	17. The gyrator as defined by claim 16 wherein gate elements of the native		
2	MOS transistors are connected to receive a control voltage.		

