

CUDA C++ Programming Guide

Design Guide

Table of Contents

Chapter 1. Introduction	1
1.1. The Benefits of Using GPUs	1
1.2. ${\sf CUDA}^{\circledR}$: A General-Purpose Parallel Computing Platform and Programming Mo	odel 2
1.3. A Scalable Programming Model	3
1.4. Document Structure	5
Chapter 2. Programming Model	7
2.1. Kernels	7
2.2. Thread Hierarchy	8
2.3. Memory Hierarchy	10
2.4. Heterogeneous Programming	11
2.5. Compute Capability	14
Chapter 3. Programming Interface	15
3.1. Compilation with NVCC	15
3.1.1. Compilation Workflow	16
3.1.1.1 Offline Compilation	16
3.1.1.2. Just-in-Time Compilation	16
3.1.2. Binary Compatibility	17
3.1.3. PTX Compatibility	17
3.1.4. Application Compatibility	17
3.1.5. C++ Compatibility	18
3.1.6. 64-Bit Compatibility	18
3.2. CUDA Runtime	19
3.2.1. Initialization	19
3.2.2. Device Memory	20
3.2.3. Device Memory L2 Access Management	23
3.2.3.1. L2 cache Set-Aside for Persisting Accesses	23
3.2.3.2. L2 Policy for Persisting Accesses	23
3.2.3.3. L2 Access Properties	25
3.2.3.4. L2 Persistence Example	25
3.2.3.5. Reset L2 Access to Normal	26
3.2.3.6. Manage Utilization of L2 set-aside cache	27
3.2.3.7. Query L2 cache Properties	27
3.2.3.8. Control L2 Cache Set-Aside Size for Persisting Memory Access	27
3.2.4. Shared Memory	27
3.2.5. Page-Locked Host Memory	33

3.2.5.1. Portable Memory	33
3.2.5.2. Write-Combining Memory	33
3.2.5.3. Mapped Memory	34
3.2.6. Asynchronous Concurrent Execution	35
3.2.6.1. Concurrent Execution between Host and Device	35
3.2.6.2. Concurrent Kernel Execution	35
3.2.6.3. Overlap of Data Transfer and Kernel Execution	36
3.2.6.4. Concurrent Data Transfers	
3.2.6.5. Streams	36
3.2.6.6. CUDA Graphs	40
3.2.6.7. Events	49
3.2.6.8. Synchronous Calls	49
3.2.7. Multi-Device System	49
3.2.7.1. Device Enumeration	49
3.2.7.2. Device Selection	50
3.2.7.3. Stream and Event Behavior	50
3.2.7.4. Peer-to-Peer Memory Access	51
3.2.7.5. Peer-to-Peer Memory Copy	51
3.2.8. Unified Virtual Address Space	52
3.2.9. Interprocess Communication	52
3.2.10. Error Checking	53
3.2.11. Call Stack	54
3.2.12. Texture and Surface Memory	54
3.2.12.1. Texture Memory	54
3.2.12.2. Surface Memory	63
3.2.12.3. CUDA Arrays	67
3.2.12.4. Read/Write Coherency	67
3.2.13. Graphics Interoperability	67
3.2.13.1. OpenGL Interoperability	68
3.2.13.2. Direct3D Interoperability	70
3.2.13.3. SLI Interoperability	75
3.2.14. External Resource Interoperability	75
3.2.14.1. Vulkan Interoperability	76
3.2.14.2. OpenGL Interoperability	83
3.2.14.3. Direct3D 12 Interoperability	84
3.2.14.4. Direct3D 11 Interoperability	89
3.2.14.5. NVIDIA Software Communication Interface Interoperability (NVSCI)	97
3.2.15. CUDA User Objects	101

3.3. Versioning and Compatibility	103
3.4. Compute Modes	
3.5. Mode Switches	105
3.6. Tesla Compute Cluster Mode for Windows	105
Chapter 4. Hardware Implementation	107
4.1. SIMT Architecture	107
4.2. Hardware Multithreading	109
Chapter 5. Performance Guidelines	110
5.1. Overall Performance Optimization Strategies	
5.2. Maximize Utilization	110
5.2.1. Application Level	110
5.2.2. Device Level	111
5.2.3. Multiprocessor Level	111
5.2.3.1. Occupancy Calculator	113
5.3. Maximize Memory Throughput	115
5.3.1. Data Transfer between Host and Device	115
5.3.2. Device Memory Accesses	116
5.4. Maximize Instruction Throughput	120
5.4.1. Arithmetic Instructions	120
5.4.2. Control Flow Instructions	
5.4.3. Synchronization Instruction	
5.5. Minimize Memory Thrashing	126
Appendix A. CUDA-Enabled GPUs	128
Appendix B. C++ Language Extensions	129
B.1. Function Execution Space Specifiers	129
B.1.1global	129
B.1.2device	
B.1.3host	129
B.1.4. Undefined behavior	130
B.1.5noinline andforceinline	130
B.2. Variable Memory Space Specifiers	131
B.2.1device	131
B.2.2constant	131
B.2.3shared	131
B.2.4managed	132
B.2.5restrict	132
B 3 Ruilt-in Vactor Types	13/

Program	mina	Interface
Program	IIIIIII	mileriace

3.2.4. **Shared Memory**

As detailed in <u>Variable Memory Space Specifiers</u> shared memory is allocated using the __shared__ memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread Hierarchy and detailed in Shared Memory. It can be used as scratchpad memory (or software managed cache) to minimize global memory accesses from a CUDA block as illustrated by the following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication that does not take advantage of shared memory. Each thread reads one row of A and one column of B and computes the corresponding element of C as illustrated in Figure 7. A is therefore read B.width times from global memory and B is read A.height times.

```
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
   int width;
   int height;
   float* elements;
} Matrix;
// Thread block size
#define BLOCK SIZE 16
// Forward declaration of the matrix multiplication kernel
global void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
   // Load A and B to device memory
   Matrix d A;
   d_A.width = A.width; d_A.height = A.height;
   size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d A.elements, size);
   cudaMemcpy(d A.elements, A.elements, size,
              cudaMemcpyHostToDevice);
   Matrix d B;
   d B.width = B.width; d B.height = B.height;
    size = B.width * B.height * sizeof(float);
   cudaMalloc(&d B.elements, size);
    cudaMemcpy(d B.elements, B.elements, size,
               cudaMemcpyHostToDevice);
    // Allocate C in device memory
   Matrix d C;
   d C.width = C.width; d C.height = C.height;
    size = C.width * C.height * sizeof(float);
   cudaMalloc(&d C.elements, size);
   // Invoke kernel
   dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
   MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);
   // Free device memory
   cudaFree(d A.elements);
   cudaFree(d B.elements);
   cudaFree(d C.elements);
// Matrix multiplication kernel called by MatMul()
global void MatMulKernel (Matrix A, Matrix B, Matrix C)
```

```
// Each thread computes one element of C
// by accumulating results into Cvalue
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)</pre>
   Cvalue += A.elements[row * A.width + e]
            * B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;
```

Matrix Multiplication without Shared Memory Figure 7.

The following code sample is an implementation of matrix multiplication that does take advantage of shared memory. In this implementation, each thread block is responsible for computing one square sub-matrix C_{sub} of C and each thread within the block is responsible for computing one element of C_{sub} . As illustrated in Figure 8, C_{sub} is equal to the product of two rectangular matrices: the sub-matrix of A of dimension (A.width, block_size) that has the same row indices as C_{sub} , and the sub-matrix of B of dimension (block_size, A.width) that has the

same column indices as C_{sub} . In order to fit into the device's resources, these two rectangular matrices are divided into as many square matrices of dimension block size as necessary and C_{sub} is computed as the sum of the products of these square matrices. Each of these products is performed by first loading the two corresponding square matrices from global memory to shared memory with one thread loading one element of each matrix, and then by having each thread compute one element of the product. Each thread accumulates the result of each of these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a lot of global memory bandwidth since A is only read (B.width / block size) times from global memory and B is read (A.height / block size) times.

The Matrix type from the previous code sample is augmented with a stride field, so that submatrices can be efficiently represented with the same type. <u>device</u> functions are used to get and set elements and build any sub-matrix from a matrix.

```
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
    int width;
    int height;
   int stride;
   float* elements;
} Matrix;
// Get a matrix element
 _device__ float GetElement(const Matrix A, int row, int col)
    return A.elements[row * A.stride + col];
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
                           float value)
   A.elements[row * A.stride + col] = value;
// Get the BLOCK SIZExBLOCK SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
  device Matrix GetSubMatrix (Matrix A, int row, int col)
   Matrix Asub;
   Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
   Asub.elements = &A.elements[A.stride * BLOCK SIZE * row
                                         + BLOCK SIZE * col];
   return Asub;
// Thread block size
#define BLOCK SIZE 16
// Forward declaration of the matrix multiplication kernel
global void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
    // Load A and B to device memory
 Matrix d A;
```

```
d A.width = d A.stride = A.width; d A.height = A.height;
    size t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d A.elements, size);
    cudaMemcpy(d_{\overline{A}}.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    d B.width = d B.stride = B.width; d B.height = B.height;
    sīze = B.width * B.height * sizeof(float);
    cudaMalloc(&d B.elements, size);
    cudaMemcpy(d B.elements, B.elements, size,
    cudaMemcpyHostToDevice);
    // Allocate C in device memory
   Matrix d C;
    d C.width = d C.stride = C.width; d C.height = C.height;
   s\bar{i}ze = C.widt\bar{h} * C.height * sizeof(float);
   cudaMalloc(&d C.elements, size);
    // Invoke kernel
   dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
   dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
   MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);
   // Read C from device memory
   cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);
    // Free device memory
   cudaFree(d A.elements);
   cudaFree(d B.elements);
    cudaFree(d C.elements);
// Matrix multiplication kernel called by MatMul()
  global void MatMulKernel (Matrix A, Matrix B, Matrix C)
    // Block row and column
    int blockRow = blockIdx.y;
   int blockCol = blockIdx.x;
    // Each thread block computes one sub-matrix Csub of C
   Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
   float Cvalue = 0;
    // Thread row and column within Csub
   int row = threadIdx.y;
   int col = threadIdx.x;
    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {</pre>
        // Get sub-matrix Asub of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);
        // Get sub-matrix Bsub of B
       Matrix Bsub = GetSubMatrix(B, m, blockCol);
       // Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
```

```
// Load Asub and Bsub from device memory to shared memory
    // Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
    Bs[row][col] = GetElement(Bsub, row, col);
    // Synchronize to make sure the sub-matrices are loaded
    // before starting the computation
    syncthreads();
    // Multiply Asub and Bsub together
    for (int e = 0; e < BLOCK_SIZE; ++e)</pre>
        Cvalue += As[row][e] \overline{*} Bs[e][col];
    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads();
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
```

Figure 8. Matrix Multiplication with Shared Memory

