Chapter 4: Linear mappings

Lecturer: Assoc. Prof. Nguyễn Duy Tân email: tan.nguyenduy@hust.edu.vn

School of Applied Mathematics and Informatics, HUST

November, 2023

Contents

- 4.1. Linear mappings
 - 4.1.1. Definitions, examples
 - 4.1.2. Kernel and image
 - 4.1.3. Injective, surjective, bijective linear mappings
- 4.2. Matrix of a linear mapping
 - 4.2.1. Matrix of a linear mapping
 - 4.2.2. Matrix of a linear endomorphism relative to a basis
 - 4.2.3. Matrix similarity
- 3 4.3. Eigenvalues and eigenvectors
 - 4.3.1. Eigenvalues and eigenvectors of matrices
 - 4.3.2. Eigenvalues and eigenvectors of linear endomorphisms
 - 4.3.2. Matrix diagonalization

4.1.1. Definitions, examples

Definition

Let V and W be vector spaces over a field K. A mapping $f:V\to W$ is called a *linear mapping* (or a linear map, or a linear transformation, or a vector space homomorphism) if it satisfies the following conditions:

- a) f(u+v)=f(u)+f(v), , $\forall u,v\in V$;
- b) f(cv) = cf(v), $\forall c \in K$, $\forall v \in V$.

A linear mapping from V to itself is called a linear endomorphism (or linear operator).

Example

Example

: The following mappings are linear:

- ② The zero mapping $f: V \to W$, $f(v) = \mathbf{0}$, $\forall v \in V$.
- **1** The identity mapping $id_V : V \to V$, $id_V(v) = v$, $\forall v \in V$.
- For a given $a \in K$, the map $f: V \to V$ given by f(v) = av.
- **⑤** For a real matrix A of size $m \times n$, the map $f: \mathcal{M}_{n \times 1}(\mathbb{R}) \to \mathcal{M}_{m \times 1}(\mathbb{R})$ given by f(X) = AX.

Example: The following mappings are not linear:

Properties

Let $f: V \to W$ be a linear mapping. Then

- f(0) = 0;
- f(-v) = -f(v), $\forall v \in V$;
- $f(c_1v_1+\cdots+c_mv_m)=c_1f(v_1)+\cdots+c_mf(v_m)$, , $\forall c_i \in K$, $\forall v_i \in V$.

Example: Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear mapping such that

$$f(1,0,0) = (1,-1,2), f(0,1,0) = (2,3,1), f(0,0,1) = (-1,2,2).$$

Find f(1, -2, 3).

Solution.

- Let $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$, v = (1,2,3). Then $v = e_1 2e_2 + 3e_3$.
- $f(v) = f(e_1 2e_2 + 3e_3) = f(e_1) 2f(e_2) + f(e_3) = (1, -1, 2) 2(2, 3, 1) + 3(-1, 2, 2) = (-6, -1, 6)$

Theorem

Let V and W be vector spaces over K. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V. Let $\{w_1, \dots, w_n\}$ be n arbitrary vectors in W. Then there exists a unique linear mapping $f: V \to W$ such that

$$f(v_1) = w_1, f(v_2) = w_2, \dots, f(v_n) = w_n.$$

(A linear map is completely determined by its values on a basis.

Operations

Definition

Let f and g be linear mappings from V to W.

• The sum of f and g is a mapping $f + g \colon V \to W$ which is given by

$$(f+g)(v)=f(v)+g(v), \quad v\in V.$$

• The product of a scalar $a \in K$ and a linear mapping f is a mapping $af : V \to W$ given by

$$(af)(v) = af(v), \quad v \in V.$$

Property

The mappings f + g and af are linear.

Proposition

Let $f: V \to W$ và $g: W \to U$ be linear mappings. Then the mapping $g \circ f: V \to U$ is also linear.

4.1.2. Kernel and image

Definition

Let $f: V \to W$ be a linear mapping.

- The set $ker(f) = \{v \in V \mid f(v) = \mathbf{0}\}$ is called the kernel of f.
- The set $im(f) = \{f(v) \mid v \in V\}$ is called the image of f.

So,
$$\ker(f) = f^{-1}(\{0\})$$
 and $\operatorname{im}(f) = f(V)$.

Property

- ker(f) is a vector subspace of V.
- im(f) is a vector subspace W.

Theorem (Rank-nullity theorem; Fundamental theorem of linear maps)

Let $f: V \to W$ be a linear mapping and dim V = n. Then

$$\dim(\operatorname{im} f) + \dim(\ker f) = n.$$

Proposition

Let $f: V \to W$ be a linear mappings. Suppose that $S = \{v_1, \dots, v_n\}$ is a spanning set of V. Then $\{f(v_1), \dots, f(v_n)\}$ is a spanning set of $\operatorname{im} f$.

Thus,

$$V = \operatorname{span}\{v_1, \ldots, v_n\} \Rightarrow f(V) = \operatorname{span}\{f(v_1), \ldots, f(v_n)\}$$

In particular, if S is a basis for V then f(S) is a spanning set of $f(V) = \operatorname{im} f$.

Definition

Let $f: V \to W$ be a linear mapping, the *rank* of f, denoted by rank(f) is defined to be the dimension of the image of f:

$$rank(f) = dim(im(f)).$$

Example

Consider the linear mapping $f: \mathbb{R}^4 \to \mathbb{R}^3$, $f(x_1, x_2, x_3, x_4) = (x_1 - x_2 + 2x_3 + x_4, 2x_1 - 2x_2 + 3x_3 + 4x_4, x_1 - x_2 + x_3 + 3x_4)$. Find a basis for $\ker(f)$ and a basis for im(f).

- $v = (x_1, x_2, x_3, x_4) \in \ker(f) \Leftrightarrow f(v) = \mathbf{0} \Leftrightarrow (x_1, x_2, x_3, x_4)$ is a solution of the system $\begin{cases} x_1 - x_2 + 2x_3 + x_4 &= 0\\ 2x_1 - 2x_2 + 3x_3 + 4x_4 &= 0\\ x_1 - x_2 + x_3 + 3x_4 &= 0 \end{cases}$
- Solve the homogeneous linear system: $\begin{vmatrix} 1 & -1 & 2 & 1 \\ 2 & -2 & 3 & 4 \\ 1 & -1 & 1 & 3 \end{vmatrix} \rightarrow \cdots \rightarrow \begin{vmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{vmatrix}.$
- This system has infinitely many solutions: $x_1 = a 5b$, $x_2 = a$, $x_3 = 2b$, $x_4 = b$. Và v = (a - 5b, a, 2b, b) = (a, a, 0, 0) + (-5b, 0, 2b, b) = a(1, 1, 0, 0) + b(-5, 0, 2, 1).
- $S = \{(1, 1, 0, 0), (-5, 0, 1, 1)\}$ is a spanning set of $\ker(f)$.
- Can check that S is linearly independent. Hence S is a basis for ker(f).

- Let $\{e_1, e_2, e_3, e_4\}$ be the standard basis for \mathbb{R}^4 .
- $\bullet \ \operatorname{im}(f) = \operatorname{span}\{f(e_1), f(e_2), f(e_3), f(e_4)\} = \operatorname{span}\{(1, 2, 1), (-1, -2, -1), (2, 3, 1), (1, 4, 3)\}.$

$$\bullet B = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -2 & -1 \\ 2 & 3 & 1 \\ 1 & 4 & 3 \end{bmatrix} \to \cdots \to C = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- A basis for im(f) is $\{(1,2,1),(0,-1,-1)\}.$
- (Another basis for im(f) is $\{(1,2,1),(2,3,1)\}.$)

4.1.3. Injective, surjective, bijective linear mappings

Proposition

Let $f: V \to W$ be a linear mapping.

- f is injective $\Leftrightarrow \ker(f) = \{\mathbf{0}\}.$
- f is surjective $\Leftrightarrow \operatorname{rank}(f) = \dim(W)$. [Nhắc lại $\operatorname{rank}(f) = \dim(\operatorname{im}(f))$.]
- If f is bijective then it inverse $f^{-1}: W \to V$ is linear and bijective.

A bijective linear mapping is also called an isomorphism.

Theorem

Let $f: V \to W$ be a linear mapping. Suppose that dim $V = \dim W = n$. The following statements are equivalent.

- f is injective.
- f is surjective.
- f is bijective.

Exercise: (CK20171-No3) Let $P_2[x]$ the vector space of all real polynomials of degree less than or equal and let $\varphi \colon P_2[x] \to \mathbb{R}^3$ be a mapping given by $\varphi(p(x)) = (p(0), p(1), p(-1))$. Is φ an isomorphism? Explain your answer?

Isomorphic vector spaces

Định nghĩa

We say that a vector space V is is isomorphic to a vector space W if there is an isomorphism $f \colon V \to W$. In this case, we also say that V and W are isomorphic.

Proposition

Let V and W be finite dimensional vector spaces. Then

V and W isomorphic \Leftrightarrow dim $V = \dim W$.

Corollary

Every real vector space of dimension n is isomorphic to \mathbb{R}^n .

4.2.1. Matrix of a linear mapping

Problem

Let $f: V \to W$ be a linear map. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V, $\mathcal{B}' = \{w_1, \dots, w_m\}$ a basis for W. Find a relation between $[f(v)]_{\mathcal{B}'}$ and $[v]_{\mathcal{B}}$.

An answer: $\exists !: [f(v)]_{\mathcal{B}'} = A[v]_{\mathcal{B}}, \forall v \in V.$

For each $v_i \in \mathcal{B}$, express $f(v_i)$ as a linear combination of vectors in \mathcal{B}' :

$$f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$f(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\dots$$

$$f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

In other words,

$$[f(v_1)]_{\mathcal{B}'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, [f(v_2)]_{\mathcal{B}'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \ldots, [f(v_n)]_{\mathcal{B}'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

Definition

Matrix
$$A = [f]_{\mathcal{B},\mathcal{B}'} = [[f(v_1)]_{\mathcal{B}'} [f(v_2)]_{\mathcal{B}'} \cdots [f(v_n)]_{\mathcal{B}'}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 is called the

(representation) matrix of f with respect to (relative to) the bases $\mathcal B$ and $\mathcal B'$.

Theorem

$$[f(v)]_{\mathcal{B}'} = A[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Moreover, if B is a matrix such that $[f(v)]_{\mathcal{B}'} = B[v]_{\mathcal{B}}, \forall v \in V$, then B = A.

Proposition (Rank of a linear map and rank of its matrix)

$$\operatorname{rank}(f)=\operatorname{rank}(A).$$

Example

Consider the linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by f(x, y, z) = (x - y + z, x + 2y - z). Find the matrix of f relative to the standard bases.

- $f(e_1) = f(1,0,0) = (1,1)$ and $[f(e_1)] = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- $f(e_2) = f(0,1,0) = (-1,2)$ and $[f(e_2)] = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- $f(e_3) = f(0,0,1) = (1,-1)$ and $[f(e_3)] = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
- The matrix of f relative to the standard bases. $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$.

Ví dụ

Consider the linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by f(x, y, z) = (x - y + z, x + 2y - z). Find the matrix of f relative to the bases $\mathcal{B} = \{v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)\}$ and $\mathcal{B}' = \{w_1 = (1, 0), w_2 = (1, 1)\}$.

- $f(v_1) = f(1,0,0) = (1,1)$ and $[f(v_1)]_{\mathcal{B}'} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- $f(v_2) = f(1,1,0) = (0,3)$ and $[f(v_2)]_{\mathcal{B}'} = \begin{bmatrix} -3\\3 \end{bmatrix}$.
- $f(v_3) = f(1,1,1) = (1,2)$ and $[f(v_3)]_{\mathcal{B}'} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- The matrix of f relative to the bases \mathcal{B} and \mathcal{B}' is $\begin{bmatrix} 0 & -3 & -1 \\ 1 & 3 & 2 \end{bmatrix}$.

Example

Suppose that a linear map
$$f: \mathbb{R}^3 \to P_2[x]$$
 has the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix}$ relative to the bases $\mathcal{B} = \{(1,1,1),(1,1,0),(0,1,1)\}$ và $\mathcal{B}' = \{1,1+x,1+x^2\}$. Find $f(2,3,2)$.

- Set $v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (0, 1, 1).$
- $[f(v_1)]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \Rightarrow f(v_1) = 1 \cdot 1 + 1 \cdot (1+x) + 2 \cdot (1+x^2) = 4 + x + 2x^2.$
- $[f(v_2)]_{\mathcal{B}'} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \Rightarrow f(v_2) = 2 \cdot 1 + (-1) \cdot (1+x) + 1 \cdot (1+x^2) = 2-x+x^2.$
- $[f(v_3)]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \Rightarrow f(v_3) = 1 \cdot 1 + 2 \cdot (1+x) + (-1) \cdot (1+x^2) = 2 + 2x x^2.$
- We have $v = v_1 + v_2 + v_3$ and

$$f(v) = f(v_1 + v_2 + v_3) = f(v_1) + f(v_2) + f(v_3)$$

= $(4 + x + 2x^2) + (2 - x + x^2) + (2 + 2x - x^2) = 8 + 2x + 2x^2$

Example

Suppose that a linea map $f: \mathbb{R}^3 \to P_2[x]$ has the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix}$ relative to the bases $\mathcal{B} = \{(1,1,1), (1,1,0), (0,1,1)\}$ and $\mathcal{B}' = \{1,1+x,1+x^2\}$. Find f(2,3,2).

• Set
$$v = (2,3,2)$$
. We have $[v]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ và

$$[f(v)]_{\mathcal{B}'} = A[v]_{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$$

•
$$f(v) = 4 \cdot 1 + 2 \cdot (1+x) + 2 \cdot (1+x^2) = 8 + 2x + 2x^2$$
.

Relations between linear maps and matrices

- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V, dim V = n.
- Let $\mathcal{B}' = \{w_1, \dots, w_m\}$ be a basis for W, dim V = m.

Then

- For any linear map $f: V \to W$, $[f]_{\mathcal{B},\mathcal{B}'}$ is a matrix of size $m \times n$.
- Conversely, for any matrix A of size $m \times n$, the exists a unique linear map $f: V \to W$ such that $[f]_{\mathcal{B},\mathcal{B}'} = A$.

Thus, there is a bijection (1-1 correspondence) between the set of linear maps form V to W and the set of matrices of size $m \times n$.

Addition and và scalar multiplication

- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V.
- Let $\mathcal{B}' = \{w_1, \dots, w_m\}$ be a basis for W.
- Let f and g be linear maps from V to W.
- Let A and B be the matrix of f and g (respectively) with respect to the bases \mathcal{B} and \mathcal{B}' .

Then

- A + B is the matrix of f + g relative to the bases \mathcal{B} and \mathcal{B}' ;
- For $c \in K$, cA is the matrix of cf relative to the bases \mathcal{B} and \mathcal{B}' .

Composition of linear maps and matrix multiplication

- Suppose V, W and U are vector spaces with basis \mathcal{B} , \mathcal{B}' và \mathcal{B}'' .
- Let $f: V \to W$ be a linear map and let A be the matrix of f relative to the bases \mathcal{B} và \mathcal{B}' .
- Let $g: W \to U$ be a linear map and let B be the matrix of g relative to the bases \mathcal{B}' và \mathcal{B}'' .
- Then BA is the matrix of $g \circ f : V \to U$ relative to the bases \mathcal{B} and \mathcal{B}'' .

Corollary

Let $f: V \to W$ be a linear map. Let A be a matrix of f relative to the bases \mathcal{B} và \mathcal{B}' . The following statements are equivalent.

- \bullet f is an isomorphism.
- A is invertible.

In this case, A^{-1} is the matrix of f^{-1} relative \mathcal{B}' and \mathcal{B} .

4.2.2. Matrix of a linear endomorphism relative to a basis

- Let $f: V \to V$ be a linear endomorphism and \mathcal{B} a basis for V.
- The matrix A of f relative the pair of matrices \mathcal{B} and $\mathcal{B}' = \mathcal{B}$ is simply called the matrix f relative to the basis \mathcal{B} .
- Thus, if $\mathcal{B} = \{v_1, \dots, v_n\}$ then

$$A = [f]_{\mathcal{B}} = [[f(v_1)]_{\mathcal{B}} \cdots [f(v_n)]_{\mathcal{B}}].$$

Property

$$[f(v)]_{\mathcal{B}} = A[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Moreover, if B is a matrix such that $[f(v)]_{\mathcal{B}} = B[v]_{\mathcal{B}}, \forall v \in V$, then B = A.

Change of basis

- Let $f: V \to V$ be a linear endomorphism.
- Let A be a matrix of f relative to a basis \mathcal{B} for V.
- Let Bbe a matrix of f relative to a basis \mathcal{B}' for V.
- Let P be the transition matrix from \mathcal{B} to \mathcal{B}' .

Theorem

$$B = P^{-1}AP$$
.

Proof: For any $v \in V$, we have $[f(v)]_{\mathcal{B}} = A[v]_{\mathcal{B}}$, $[f(v)]_{\mathcal{B}'} = B[v]_{\mathcal{B}'}$, $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$. Hence

$$[f(v)]_{\mathcal{B}} = A[v]_{\mathcal{B}} = AP[v]_{\mathcal{B}'},$$

$$[f(v)]_{\mathcal{B}} = P[f(v)]_{\mathcal{B}'} = PB[v]_{\mathcal{B}'}.$$

Thus $AP[v]_{\mathcal{B}} = PB[v]_{\mathcal{B}'}$, for every $v \in V$. This implies that AP = PB. Hence $B = P^{-1}AP$.

Example

Consider the linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x - y, x + y). Find the matrix of f relative to the basis $\mathcal{B} = \{(1,0), (1,1)\}.$

Solution 1:

- $f(1,0) = (2,1) \Rightarrow [f(1,0)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- $f(1,1) = (1,2) \Rightarrow [f(1,1)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- Matrix of f relative to \mathcal{B} is $\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$.

Solution 2:

- Let A be matrix of f relative the standard basis $\Rightarrow A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$.
- Let P be the transition matrix from the standard basis to the basis $\mathcal{B} \Rightarrow P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- The matrix of f relative to the basis \mathcal{B} is

$$P^{-1}AP = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

Example (CK20181-N2)

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear map such that f(1,1,0) = (3,3,9), f(2,-1,1) = (-1,3,1), f(0,1,1) = (1,1,3).

- a) Find the matrix of f relative to the standard basis for \mathbb{R}^3 . [b)] Find f(3,4,5).
- c) Find the dimension and a basis of ker(f).
- Let $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. [We want to find $f(e_1)$, $f(e_2)$, $f(e_3)$.]
- $f(1,1,0) = f(e_1 + e_2) = f(e_1) + f(e_2) = (3,3,9) = v_1$.
- $f(2,-1,1) = f(2e_1 e_2 + e_3) = 2f(e_1) f(e_2) + f(e_3) = (-1,3,1) = v_2$.
- $f(0,1,1) = f(e_2 + e_3) = f(e_2) + f(e_3) = (1,1,3) = v_3$.
- We obtain a system $\begin{cases} f(e_1) + f(e_2) &= v_1 \\ 2f(e_1) f(e_2) + f(e_3) &= v_2 \Leftrightarrow \\ f(e_2) + f(e_3) &= v_3 \end{cases} \begin{cases} f(e_1) &= (1, 2, 4) \\ f(e_2) &= (2, 1, 5) \\ f(e_3) &= (-1, 0, -2) \end{cases}$
- The matrix of f relative to the standard basis of \mathbb{R}^3 is $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 4 & 5 & -2 \end{bmatrix}$.

Example (CK20181-N2)

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear map such that f(1,1,0) = (3,3,9), f(2,-1,1) = (-1,3,1), f(0,1,1) = (1,1,3).

a) Find the matrix of f relative to the standard basis for \mathbb{R}^3 .

Solution 2:

• Let A be the matrix of f relative to the standard basis for \mathbb{R}^3 . Then, for every $v \in \mathbb{R}^3$, one has

$$[f(v)] = A[v].$$

$$\bullet \ A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 9 \end{bmatrix}, \quad A \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}, \quad A \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}.$$

Some exercises

- (CK20183) A linear map $f: P_2[x] \rightarrow P_2[x]$ has representation matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 3 \end{bmatrix}$ with respect to the basis $B = \{v_1, v_2, v_3\}$ với $v_1 = 1$, $v_2 = 1 + x$, $v_3 = 2 x + x^2$.
 - Find the matrix of f relative the standard basis $E = \{1, x, x^2\}$. Find $f(4 + 3x + 2x^2)$.
 - Find the dimension and a basis of ker(f).
- (CK20193) Consider a linear map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f(x_1, x_2, x_3) = (2x_1 x_2 + x_3, x_2 + 2x_3, 6x_1 2x_2 + 5x_3)$.
 - Find the matrix of f relative to the standard basis for \mathbb{R}^3 .
 - Find dim im(f) and dim ker(f).
 - Is the vector u = (1, 2, 3) in im f? Why?
- (CK20193-N2) Let $f: P_2[x] \to P_3[x]$ be a linear map which is given by f(p) = xp + 2p. Find the matrix of f with respective to the standard bases of $P_2[x], P_3[x]$.
- (CK20161) Let $f: P_2[x] \to P_2[x]$ be a linear map such that $f(1+x^2) = 2+5x+3x^2$, $f(-1+2x+3x^2) = 7(x+x^2)$, $f(x+x^2) = 3(x+x^2)$.
 - Find the matrices of f and $f^2 = f \circ f$ relative the standard basis $\{1, x, x^2\}$ of $P_2[x]$.
 - Determine the value of m such that the vector $v = 2 + mx + 5x^2$ is in Imf.

4.2.3. Matrix similarity

4.3.1. Eigenvalues and eigenvectors of matrices

4.3.2. Eigenvalues and eigenvectors of linear endomorphisms

4.3.2. Matrix diagonalization