Algoritmy a programování

Rekurze

```
while pos > startpos: Vojtěch Vonásek
    parentpos = (pos - 1) >> 1
    parent = heap[parentnos]
if parent < neDepartment of Cybernetics
        heap[poFaculty of Electrical Engineering
            Czech Technical University in Prague
'Maxheap variant of _siftup'
                                                                           1/33
```

Rekurze

Rekurze: definice problému pomocí jednoduší varianty stejného problému, odkaz sama na sebe

Implementační pohled

- Rekurzivní volání je pokud funkce volá sebe samu
- Více funkcí se volá navzájem

Algoritmický pohled

- Rekurze je způsob řešení problémů
- Rozděl a panuj (Divide and Conquer)
 - řešení problému je založeno na řešení jednodušší varianty stejného problému
- Rekurzivní definice matematických funkcí

```
def f(x):
    return f(x-1)

def a(x):
    b(x)

def b(x):
    a(x)
```

$$x_{n+1}=rx_n(1-x_n)$$

$$F_n = F_{n-1} + F_{n-2}$$

 $F_0 = F_1 = 1$

Rekurze: implementační pohled

- Funkce volá samu sebe
- Bez ukončovací podmínky vzniká nekonečný cyklus
- Prakticky je počet volání omezen operačním systémem ($\sim 10^3$ volání)
- Překročení tohoto limitu vede na chybu programu

```
def f(x): #nekonecna rekurze
return f(x-1)

f(10)
```

```
f(x)
[Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded
```

Při použití rekurze je třeba vždy uvést ukončovací podmínku

Rekurze: implementační pohled

Při použití rekurze je třeba vždy uvést ukončovací podmínku

```
def f(n):
    if n > 0:
        return 1+f(n-1)
    return 0

print( f(-1) )
print( f(0) )
print( f(5) )
print( f(6) )
```

```
0
0
5
6
```

Rekurze: omezení počtu volání

- Argument se snižuje, f(n) \rightarrow f(n-1) \rightarrow f(n-2) \rightarrow ...
- Je třeba zespoda omezit na Nmin

```
def f(n):
    if n > Nmin:
        f(n-1)
    else
        return
```

- Argument se zvyšuje, $f(n) \rightarrow f(n+1) \rightarrow f(n+2) \rightarrow \dots$
- Je třeba shora omezit na Nmax

```
def f(x): #pocet volani je omezen
if x < Nmax:
    return f(x+1)
else:
    return</pre>
```

Rekurze: faktoriál

0! = 11! = 12! = 23! = 64! = 245! = 120

- Součástí rekurzivní definice je tzv. základní (bázový) případ: 0! = 1! = 1

```
    Základní případ slouží jako ukončovací podmínka

_{1}|def f(n):
     if n == 0 or n == 1: #basic case
           return 1
     return n * f(n-1)
```

```
for i in range(6):
   print(i,"!"=",f(i), sep="")
```

Herdiziviii deliilide.
$$H = H \cdot (H - 1)!$$

• Rekurzivní definice:
$$n! = n \cdot (n-1)!$$

Rekurze: umocňování

• Přímá definice: $x^n = \prod_{i=1}^n x = x \cdot x \cdot \cdots x_i$

Rekurzivní definici: xⁿ = x · xⁿ⁻¹

Základní případ: x⁰ = 1

```
def prod_iterative(x,n):
    result = 1
```

- for _ in range(n):
- result = result * x
- return result

2.0000000000000004

1024

- 9 print(prod_iterative(2,10))

- print(prod_iterative(10,0))

Rekurze: umocňování

- Přímá definice: $x^n = \prod_{i=1}^n x = \underbrace{x \cdot x \cdots x}_n$
 - Rekurzivní definici: xⁿ = x · xⁿ⁻¹
 - Základní případ: x⁰ = 1

```
def prod_recursive(x,n):
    if n == 0:
        return 1
    return x * prod_recursive(x,n-1)

print(prod_recursive(10,0))
print(prod_recursive(2,10))
print(prod_recursive(2**(0.5),2))
```

```
1024
2.0000000000000000004
```

Rekurze: řetězec pozpátku

- Vstup je řetězec, úkolem je uložit (vypsat) ho v opačném pořadí
- ahoj → joha

Klasické řešení přes cyklus

Projdeme string pozpátku, např. for cyklem

```
def reverseIterative(x):
    result = ""

for i in range(len(x)-1,-1,-1):
    result += x[i]

return result

print( reverseIterative("PYTHON") )
```

```
NOHTYP
```

Rekurze: řetězec pozpátku

- Vstup je řetězec, úkolem je uložit (vypsat) ho v opačném pořadí
- ahoj → joha

Rekurzivní přístup

- Základní případ: pokud vstup je prázdný string, vracíme prázdný string
- Jinak: otočíme znaky x[1:] a přidáme k nim první znak x[0]

```
def reverseRecursive(x):
    if len(x) == 0:
        return ""
    return reverseRecursive(x[1:]) + x[0]

print( reverseRecursive("PYTHON") )
```

```
NOHTYP
```

Existuje řetězec, kde rekurzivní řešení selže?

Rekurze: cyklus

Každý cyklus lze nahradit rekurzí

Klasický cyklus $0, 1, \dots n-1$

```
def countUp(n):
    for i in range(n):
        print(i)

countUp(5)
```

```
0
1
2
3
4
```

Rekurze: cyklus

Každý cyklus lze nahradit rekurzí

Rekurzivní přístup výpočtu $0, 1, \ldots, n-1$

- Vnitřní funkce countUpInner volá sebe sama dokud aktuální hodnota je menší než maximum
- Uživatel může zavolat buď countUpInner(n,0) nebo countUpRecursive(n)

```
0
1
2
3
4
```

Jaká je nevýhoda rekurzivního řešení oproti for+range?

- Výpis všech permutací M
- Řešení rekurzí
- Pro každý prvek m_i ∈ M:
 - najdi všechny permutace $M \setminus \{m_i\}$
 - před každou přidej m_i

```
def printPermutation(prefix, items):
    if len(items) == 0:
        print(prefix, end="u") #print on one line
    for i in range(len(items)):
        printPermutation(prefix + items[i], items[:i]+items[i+1:])

7 y = ['a','b','c','d']
8 printPermutation("",y)
```

abcd abdc acbd acdb adbc adcb bacd badc bcad bdac bdca cabd cadb cbad cbda cdab cdba dabc dacb dbac dbca dcab dcba

Program pouze vypisuje, ale neukládá výsledek

- Upravíme předchozí program tak, aby ukládal nalezené permutace
- Místo print(prefix) uložíme do pole výsledků
- Použijeme globální proměnnou globalResult

```
globalResult = []

def makePermutation(prefix, items):
    if len(items) == 0:
        globalResult.append(prefix)
    for i in range(len(items)):
        makePermutation(prefix + items[i], items[:i]+items[i+1:])

y = ['a','b','c','d']
makePermutation("",y)
print(globalResult)
```

```
['abcd', 'abdc', 'acbd', 'acdb', 'adbc', 'adcb', 'bacd', 'badc', 'bcad', 'bcda', 'bdac', 'bdca', 'cabd', 'cadb', 'cbad', 'cbda', 'cdab', 'dcba', 'dcba']
```


- Upravíme předchozí program tak, aby ukládal nalezené permutace
- Místo print (prefix) uložíme do pole výsledků
- Použijeme globální proměnnou globalResult

```
globalResult = []

def makePermutation(prefix, items):
    if len(items) == 0:
        globalResult.append(prefix)
    for i in range(len(items)):
        makePermutation(prefix + items[i], items[:i]+items[i+1:])

y = ['a','b','c','d']
makePermutation("",y)
print(globalResult)
```

- Skrytý předpoklad: pole globalResult existuje a je prázdné
- Pokud by došlo k volání savePermutation z jiné rekurzivní funkce, hrozí přepsání dat
- Použití globálních proměnných není vhodné, snažíme se nepoužívat

 Správné řešení: použijeme další argument funkce savePermutation, do kterého budeme ukládat výsledek

- Nepoužívá globální proměnné
- Je zaručena existence pole pro výsledky (při prvním volání savePermutation)

Program hledá permutaci pole, ale funguje i na řetězce

```
['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']
```

Rekurze: výpis pole

 Vypíšeme první prvek a dále rekurzivně zbytek pole dokud je vstup neprázdný

```
1 def printRecursively(x): #x is list
      if len(x) != 0:
          print(x[0], end="||")
          printRecursively(x[1:])
4
      else:
          print() #empty list is printed as empty line
6
7
8 \mid a = list(range(-10,10,3))
9 print(a)
printRecursively(a)
11 print("*")
```

```
[-10, -7, -4, -1, 2, 5, 8]
-10 -7 -4 -1 2 5 8
*
```

Rekurze

3

x[n]

```
Součet řady x_i, i = 0, \ldots, n-1
```

- Přímá definice: $s = x_0 + x_1 + \ldots + x_{n-1}$
- Rekurzivní definice: $sum(n) = sum(n-1) + x_n$
- Základní případ: sum(1) = x₀

if len(x) == 0: return 0

```
sum(n)
def sumRecursively(x): #x is list
     if len(x) == 1: #basic case
```

sum(n-1)

3 4 -8 -1 7

```
return x[0]
     return sumRecursively(x[:-1]) + x[-1]
 a = [2,4,6]
9 print( sumRecursively(a) )
 12
```

Mince

- Vstupem je hodnota a seznam mincí, úkolem je určit všechny kombinace mincí, které dávají požadovanou hodnotu
- Příklad: c = (1, 2, 5), amount = 5 $(5 \times 1 \text{CZK})$ nebo $(3 \times 1 \text{CZK} + 1 \times 2 \text{CZK})$ nebo $(1 \times 1 \text{CZK} + 2 \times 2 \text{CZK})$ nebo $(1 \times 5 \text{CZK})$

Mince: postup

Rekurzivní řešení: skládáme částku amount z mincí $c_i, c_{i+1}, \dots c_n$

- Zkusíme minci c_i , snížíme částku na $amount c_i$, řešíme s mincemi $c_i, c_{i+1}, \dots c_n$
- Nebo: nepoužijeme c_i , řešíme úlohu *amout* s mincemi c_{i+1}, \ldots, c_n

```
def allChanges(amount, coins, result, i):
      if amount == 0:
          for i in range(len(result)):
               if result[i] != 0:
4
                   print(coins[i], "CZK_ux", result[i], end=", ")
           print()
6
      else:
           if coins[i] <= amount:
8
               result[i] += 1
               allChanges(amount - coins[i], coins, result, i)
10
               result[i] -= 1
           if i < len(coins)-1:
               allChanges (amount, coins, result, i+1)
|5| \text{ coins} = [1,2,5,10]
|s| = [0] * len(coins)
17 allChanges(12, coins, s, 0)
```

Mince: postup

Rekurzivní řešení: skládáme částku amount z mincí $c_i, c_{i+1}, \dots c_n$

- Zkusíme minci c_i , snížíme částku na $amount c_i$, řešíme s mincemi $c_i, c_{i+1}, \dots c_n$
- Nebo: nepoužijeme c_i , řešíme úlohu *amout* s mincemi c_{i+1}, \ldots, c_n

```
1 CZK x 12,
1 CZK x 10, 2 CZK x 1,
 CZK x 8, 2 CZK x 2,
 CZK \times 7, 5 CZK \times 1,
 CZK \times 6, 2 CZK \times 3,
1 CZK x 5, 2 CZK x 1, 5 CZK x 1,
1 CZK x 4, 2 CZK x 4,
 CZK x 3, 2 CZK x 2, 5 CZK x 1,
1 CZK x 2, 2 CZK x 5,
1 CZK x 2, 5 CZK x 2,
1 CZK x 2, 10 CZK x 1,
 CZK x 1, 2 CZK x 3, 5 CZK x 1,
2 CZK x 6,
2 CZK x 1, 5 CZK x 2,
2 CZK x 1, 10 CZK x 1,
```

Mince:

- Hledáme nejmenší počet mincí (o známých hodnotách), které poskládají vstupní částku
- Příklad: mince (1, 2, 5), částka 10 CZK, řešení: 2 x 5 CZK (jiné řešení bude potřebovat více mincí)
- Greedy ("hladové") řešení: preferujeme sumu poskládat z mincí vyšší hodnoty

```
def solve(amount, result, coins):
      if amount == 0:
          return
      for i in range(len(coins)-1,-1,-1):
          c = coins[i]
6
          if c <= amount:
              num = amount // c
7
               amount %= c
              result.append([num, c])
               solve(amount, result, coins[:i]+coins[i:])
10
               break
 result = []
12
 solve(37, result, [1,2,5,10])
14 for item in result: #item is [numberOfCoin, coin ]
      number. coin = item
15
      print(coin, "LCZKLIXLI", number)
16
                                                                       18/33
```

Mince:

- Hledáme nejmenší počet mincí (o známých hodnotách), které poskládají vstupní částku
- Příklad: mince (1, 2, 5), částka 10 CZK, řešení: 2 x 5 CZK (jiné řešení bude potřebovat více mincí)
- Greedy ("hladové") řešení: preferujeme sumu poskládat z mincí vyšší hodnoty

```
10 CZK x 3
5 CZK x 1
2 CZK x 1
```

Mergesort

- Třídící algoritmus využívající principle divide-and-conquer
- Pole je rozděleno na dvě poloviny
- Každá se setřídí (rekurzivně)
- Výsledné pole jsou spojeny


```
1 def mergeSort(a):
      if len(a) <= 1:
          return a
      half = len(a) // 2
4
      left = mergeSort(a[:half]) #sort the first half
5
      right = mergeSort(a[half:]) #sort the second half
6
      return joinSortedArrays(left,right)
7
  def joinSortedArrays(a,b):
      result = []
                  #new temporary array
        =
      i = 0:
      while i < len(a) and j < len(b):
14
          if a[i] < b[j]:</pre>
               result.append(a[i])
               i += 1
16
          else:
               result.append(b[j])
                 += 1
      result += a[i:]
      result += b[i:]
      return result
```

Mergesort: spojení polí

Spojení dvou seřazených polí

```
def joinSortedArrays(a,b):
2
      result = []
                   #new temporary array
3
          0;
      while i < len(a) and j < len(b):
6
           if a[i] < b[j]:</pre>
               result.append(a[i])
7
8
                 += 1
           else:
9
               result.append(b[j])
      result += a[i:]
      result += b[j:]
      return result
14
```


Mergesort


```
from mergeSort import mergeSort

a = [2,-1,0,5,7,7,1]
b = mergeSort(a)
print(a)
print(b)
```

```
[2, -1, 0, 5, 7, 7, 1]
[-1, 0, 1, 2, 5, 7, 7]
```

https://www.youtube.com/watch?v=991E5jwQXC8

Mergesort

Graf volání mergeSort(array[start:end]) pro seřazení pole o délce
 n = 16 prvků

Mergesort: vlastnosti

- Algoritmus potřebuje pomocné pole
- Velikost tohoto pole je n
- Řazení není in-place
- Mergesort je stabilní
- Spojení dvou polí složitost $\mathcal{O}(n)$
- Počet úrovní je ∼ log₂ n
- Složitost $\mathcal{O}(n \log n)$

Quick sort

- Rychlé třídění (T. Hoare, 1959)
- V poli určíme jeden prvek pivot
- Partitioning částečné setřídění tak aby prvky "před" pivotem byly menší než pivot (a prvky "za" pivotem budou větší)

$$x = [\underbrace{\ldots a_i \ldots}_{a_i \leq p} p \underbrace{\ldots a_j \ldots}_{a_j \geq p}]$$

• Rekurzivně setřídíme obě části $[\ldots a_i \ldots]$ a $[\ldots a_j \ldots]$

Quick sort

- Rekurzivní volání QuickSort
- Uživatel používá quickSort(a), kde a je pole
- Rekurze je řešena funkcí quickSortInternal(a,low, high), kde low a high určuje část pole pro seřazení

```
def quickSortInternal(a, low, high):
    if low >= 0 and high >= 0 and low < high:
        pivot = partition(a,low, high)
        quickSortInternal(a, low, pivot)
        quickSortInternal(a, pivot+1, high)

def quickSort(a):
    quickSortInternal(a, 0, len(a)-1)</pre>
```

Quick sort: částečné setřídění

- Vstupem je pole, první prvek (low) a poslední prvek (high)
- Pivot je v polovině rozsahu low:high
- Procházíme prvky zleva (od low) dokud a[i] < pivot

Pak procházíme prvky

- zprava (od high) dokud a[j] > pivot
- Pokud se indexy i a j potkají, menší z nich je nový pivot
- Jinak vyměníme prvky a[i] a a[j]
- Výsledkem částečného setřídění je nový pivot
- Platí, že prvky před pivotem jsou menší nebo rovno než pivot (a prvky za pivotem jsou větší nebo rovno pivot)

```
def partition(a, low, high):
       pivot = a[(low + high) // 2]
         = 10w - 1
         = high+1
       while True:
           i += 1
           while a[i] < pivot:
8
               i += 1
           while a[j] > pivot:
10
11
           if i >= j:
12
               return j
13
           a[i], a[j] = a[j], a[i]
14
```

Quick sort: vlastnosti

- In-place třídění
- Rekurzivní postup
- Quicksort není stabilní (většina implementací)
- Quicksort je jednoduchý na pochopení, ale je snadné udělat chybu při implementaci (další přednáška)
- Průměrná složitost $\mathcal{O}(n \log n)$
- Nejhorší složitost O(n²)

Quick sort: varianty

Introsort

Quicksort + detekce + heapsort

QuickSort + InsertionSort

• Hlavní třídění probíhá QuickSortem, pokud při rekurzivním volání dojde k řazení krátkého pole (\sim 10 položek), přepne se na InsertionSort

Rekurze: převod na nerekurzivní formu

- Každé rekurzivní řešení je možné zapsat nerekurzivně, ale může to být těžké
- Je třeba pamatovat si kontext jednotlivých volání (vnitřní proměnné a argumenty volání funkcí)
- Zde se využívá datová struktura zásobník (viz další přednášky)

Visualizace

Opačně seřazené pole Poznáte algoritmy podle průběhu?

Visualizace

Opačně seřazené pole Poznáte algoritmy podle průběhu?

Visualizace

Opačně seřazené pole Poznáte algoritmy podle průběhu?

