## 1 Definitions

#### 1.1 Misc

Let 
$$m = \left\lceil \left( \frac{N}{93} \right)^{\frac{1}{d}} \right\rceil$$
, base of the counter

MSR = most significant digit region

 $C_0 = \text{starting value of counter}$ 

$$d = \lceil \log_m C_0 \rceil = \left\lfloor \frac{k}{2} \right\rfloor$$
, number of digits per row

 $C_f = m^d$ , final value of the counter

 $C_{\Delta} = C_f - C_0$ , number of rows/ times to count

 $l = \lceil \log m \rceil + 2$ , bits needed to encode each digit in binary, plus 2 for MSR and MSD

### 1.2 Determining the starting value $C_0$

...therefore, let  $d = \lfloor \frac{k}{2} \rfloor$ ,  $m = \lceil \left( \frac{N}{93} \right)^{\frac{1}{d}} \rceil$ ,  $l = \lceil \log m \rceil + 2$ ,  $C_0 = m^d - \lfloor \frac{N-3l-76}{3l+90} \rfloor$ , where d is the number of digits per row of the counter, m is the base of the counter, l is the number of bits needed to encode each digit in binary plus 2 for indicating whether a digit is in the MSR and is the MSD in that region, and  $C_0$  is the start of the counter in decimal.

In general, the height of a digit region is 3l+90. There are two cases when the height is different, namely in the first and last digit regions, where the height is 3l+91 and 3l+75, respectively. Let h be the height of the construction before any filler/roof tiles are added. If we define  $\mathcal{C}_{\Delta}$  as the number of Counter unit rows, then  $h = (\mathcal{C}_{\Delta} - 1)(3l+90) + (3l+91) + (3l+75)$ , simplifying to  $\mathcal{C}_{\Delta}(3l+90) + 3l+76$ . So then the maximum height of the counter is  $m^d(3l+90) + 3l+76$ . Since our goal is to end with a rectangle of height N, we need to pick a base such that the counter can increment so many times that when it stops, it is at least N.

**Lemma 1.** 
$$N \leq m^d(3l+90) + 3l + 76$$
.

Proof.

$$N = 93 \left(\frac{N}{93}\right) = 93 \left(\left(\frac{N}{93}\right)^{\frac{1}{d}}\right)^{d} \le 93 \left[\left(\frac{N}{93}\right)^{\frac{1}{d}}\right]^{d}$$
$$= 93m^{d} \le 3lm^{d} + 90m^{d} \le 3lm^{d} + 90m^{d} + 3l + 76$$
$$= m^{d}(3l + 90) + 3l + 76$$

#### 1.3 Filling in the gaps

...this means that the number of Counter unit rows  $\mathcal{C}_{\Delta}$  is  $m^d - \mathcal{C}_0$ , where we have defined  $\mathcal{C}_0$  as the starting value of the counter. To choose the best starting value, we find the value for  $\mathcal{C}_{\Delta}$  that gets h as close to N without exceeding N. It follows from the equation  $h = \mathcal{C}_{\Delta}(3l+90) + 3l + 76$ , that  $\mathcal{C}_{\Delta} = \left\lfloor \frac{N-3l-76}{3l+90} \right\rfloor$ . Thus,  $\mathcal{C}_0 = m^d - \left\lfloor \frac{N-3l-76}{3l+90} \right\rfloor$ . As a result of each digit requiring a width of 2 tiles, if k is odd, one additional tile column must be added. The number of filler tiles needed for the width is  $k \mod 2$ , and the number of filler tiles for the height is  $N-3l-76 \mod 3l+90$ .

# 2 General counter



(a) A "clean" counter (b) Read digit 1 in the (c) Read digit 2 in the (d) Read digit 3 in the row, before any reading current row, write digit current row, write digit has started.

1 in the next row.

2 in the next row.

3 in the next row.

Figure 1: This illustrates how a counter reads and writes a digit region, in a general sense. The counter starts in the rightmost digit region by reading the bottommost digit within that region. After reading digit 1 in the current row, the corresponding digit region in the next row be started in the next row. The counter writes the first digit in the next row, and then returns to the second digit in the current digit region. Once all the digits in the current digit region are read and written into the next row, the counter can then do one of the following: continue reading digits by moving on to the next digit region, cross back all the way to the right of the rectangle and start reading the next row, or halt.