

Elementary seasonal adjustment of economic data with JDemetra+: Module III – X-11 approach Dr Karsten Webel / Deutsche Bundesbank, DG Statistics

Virtual Seminar Series, 19-23 October 2020

Aims

Theory

- Basic understanding → Ideas, concepts
- Approach → X-11
- Pretreatment → RegARIMA models

Application

- Software → JDemetra+ (JD+)
- Specification → Options
- Results → Interpretation, quality assessment

Discussion

Your questions → Practical problems

Road map

Deutsche Bundesbank S3PR0018B.chart

Karsten Webel (BBk) Elementary seasonal adjustment with JD+ – 19-23 October 2020 Page 2 / 23

Unobserved component (UC) model

Decomposition

- Multiplicative → Seasonal proportional to trend-cycle

Strategy (I/II)

Basic principle of the X-11 seasonal adjustment algorithm in JDemetra+*

Workflow diagram

Section	Start	Trend- cyclical component	SI ratios	Seasonal component	Seasonally adjusted time series	Irregular component	Weights	Adjust- ment factors
B Preliminary weights of extreme values	B1	► B2	► B3	B4 → B5 -	→ B6 → B11	►B 13	→B 17	►B20
C Final weights of extreme values	C1	C2	→ C4 → C9	> C5 -	→ C6 → C11	→ C13	→ C17	→C20
D Final estimates of trend-cyclical, seasonal and irregular component	D1	D2 D7 D12	→ D4 → D8	> D5> D9 -> D10	→ D6	→ D13		

^{*} In X-13 terminology, Section A is solely devoted to the treatment of outliers and calendar effects within a regARIMA modelling framework which is done prior to the application of the X-11 core.

Deutsche Bundesbank S3PR0037D.Chart

Karsten Webel (BBk)

Elementary seasonal adjustment with JD+ - 19-23 October 2020

Strategy (II/II)

Basic principle of the X-11 seasonal adjustment algorithm* Workflow diagram, simplified version Section B Section C Section D Aim: Preliminary weights Aim: Final weights Aim: Final estimates of trend-cyclical, of extreme values of extreme values seasonal and irregular component Step 1: estimation of provisional trend-cyclical component Step 2: determination of seasonal-irregular component Step 3: estimation of seasonal component Step 4: determination of seasonally adjusted series

S3PR0023.Chart

Karsten Webel (BBk) Elementary seasonal adjustment with JD+ - 19-23 October 2020 Page 5 / 23

^{*} In X-13 terminology, Section A is solely devoted to the treatment of outliers and calendar effects within a regARIMA modelling framework which is done prior to the application of the X-11 core. Deutsche Rundeshank

Step 1: provisional trend-cycle

Preliminary trend-cycle

$$\hat{t}_t = \frac{1}{24} y_{t-6} + \frac{1}{12} y_{t-5} + \dots + \frac{1}{12} y_t + \dots + \frac{1}{12} y_{t+5} + \frac{1}{24} y_{t+6}$$

Interpretation

 Modified unadjusted figures → Smoothed by centred moving average (MA) over 13 months

Boundary issue

- MA application ~ 6 missing values (at either end)

Step 2: seasonal-irregular component

Preliminary seasonal-irregular (SI)

$$(\hat{si})_t = \frac{y_t}{\hat{t}_t}$$

Interpretation

 Modified unadjusted figures → Removal of preliminary trend-cycle

Step 3: seasonal component (I/III)

Preliminary seasonal

$$\hat{s}_t = \frac{1}{9} (\hat{s}i)_{t-24} + \frac{2}{9} (\hat{s}i)_{t-12} + \frac{3}{9} (\hat{s}i)_t + \frac{2}{9} (\hat{s}i)_{t+12} + \frac{1}{9} (\hat{s}i)_{t+24}$$

Interpretation

– Preliminary seasonal-irregular \sim Smoothed by 3×3 seasonal filter within each month

Boundary issue

Missing values → "Copy-paste" imputation

Step 3: seasonal component (II/III)

Deutsche Bundesbank Saprocesyl.chart

Step 3: seasonal component (III/III)

Deutsche Bundesbank S3PR0009M.Chart

Step 4: seasonally adjusted series

Preliminary seasonally adjusted figures

$$\hat{y}_t^{(sa)} = \frac{y_t}{\hat{s}_t}$$

Interpretation

- Modified unadjusted figures \sim Removal of preliminary seasonal

Next loop

Final UC estimates

Preliminary estimates → Refinement

User customisation

- Options → Extended
- Trend filters → Henderson types
- Seasonal filters → Period-specific
- Extreme SI ratios → Down-weighting, replacement

Boundary issue

 Symmetric Henderson & seasonal filters → Asymmetric non-centred variants

Henderson filters (I/II)

Deutsche Bundesbank Sapro196.chart

Henderson filters (II/II)

	Automatic selection rule						
I/C*	[0, 1)	[1, 3.5)	$[3.5,\infty)$				
Monthly data	9-term	13-term	23-term				
Quarterly data	5-term	5-term	7-term				

^{*} I/C is the ratio between the average absolute period-on-period changes of a temporary irregular and a temporary trend-cyclical component.

Interpretation

- I/C large → Dominance of irregular (i.e. long filter)
- I/C small → Dominance of trend-cycle (i.e. short filter)

Seasonal filters (I/III)

Deutsche Bundesbank Sapro248.Chart

Karsten Webel (BBk) Elementary seasonal adjustment with JD+ – 19-23 October 2020 Page 15 / 23

Seasonal filters (II/III)

	Automatic selection rule						
I/S*	[0, 2.5)	[2.5, 3.5]	(3.5, 5.5)	[5.5, 6.5]	$(6.5, \infty)$		
Monthly data	3×3	3	3×5	©	3×9		
Quarterly data	3×3	3	3×5	©	3×9		

^{*} I/S is the ratio between the average absolute year-on-year changes of a temporary irregular and a temporary seasonal component. $© \sim Maximum$ of five I/S recalculations under omission of the respective last year, application of the 3×5 seasonal filter if still no decision is found.

Interpretation

- I/S large → Dominance of irregular (i.e. long filter)
- I/S small → Dominance of seasonal (i.e. short filter)

Seasonal filters (III/III)

Seasonal factors (D 10) vs. SI ratios (D 8)

- Long-term evolution → Reflection
- Current end → Typical behaviour

Airline model

- Parameter estimates → Guidance
- Details → ARIMA part (Module II)

Additional information

- Data → Length
- Seasonality → Weak degree, changes (e.g. structural breaks)

Extreme SI ratios (I/IV)

Identification

- Irregular → Large deviation from expectation
- Benchmark \sim Moving standard deviation (σ_t)
- − Tolerances \sim Lower, upper σ -limit (L_{σ} , U_{σ})

Replacement value (D 9)

- Extreme SI ratio \sim Weight ∈ [0,1) (C 17)
- Four non-extreme SI ratios (same period) \sim Weight = 1

Extreme SI ratios (II/IV)

Deutsche Bundesbank saproozz.chart

Extreme SI ratios (III/IV)

Deutsche Bundesbank S3PR0089H.Chart

Extreme SI ratios (IV/IV)

Deutsche Bundesbank S3PR0089V:Chart

References (I/II)

- D F Findley, B C Monsell, W R Bell, M C Otto & B-C Chen (1998), New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program, Journal of Business & Economic Statistics 16 (2), 127-152.
- D Ladiray & B Quenneville (2001), Seasonal Adjustment with the X-11 Method, Lecture Notes in Statistics Vol. 158, Springer, New York.
 - J Shiskin & H Eisenpress (1957), Seasonal Adjustments by Electronic Computer Methods, Journal of the American Statistical Association 52 (280), 415-449.
 - J Shiskin, A H Young & J C Musgrave (1967), The X-11 Variant of the Census Method II Seasonal Adjustment Program, Technical Paper No. 15, US Department of Commerce, Bureau of the Census, Washington, DC.

References (II/II) Deutsche Bundesbank

- Deutsche Bundesbank (1970), Seasonal adjustment by the Census Method, Monthly Report 22 (3), 37-41.
- Deutsche Bundesbank (1991), Data, adjusted for seasonal and working-day variations, on the expenditure components of GNP, Monthly Report 43 (4), 35-40.
- Deutsche Bundesbank (1999), The changeover from the seasonal adjustment method Census X-11 to Census X-12-ARIMA, Monthly Report 51 (9), 39-50.
- Deutsche Bundesbank (2018), Gradual changeover to JDemetra+ software for seasonal adjustment of the official statistics, Monthly Report 70 (5), 50.