

Cameras and Projection

CS 355: Interactive Graphics and Image Processing

- To get 2D pictures of a 3D world, you have to use projection
 - Orthographic
 - Perspective

Orthographic Projection

Orthographic projection is just dropping a dimension.

Used in technical drawings, etc.

Orthographic Projection

3D point in homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Orthographic projection is just dropping a dimension.

Lacking Perspective

Camera Obscura

Many graphics systems assume a simple pinhole camera model

Pinhole camera model

Pinhole Cameras

Geometric Model

Geometric Model

Camera Coordinates

$$\frac{x}{f} = \frac{X}{Z}$$

$$\frac{y}{f} = \frac{Y}{Z}$$

$$(x,y) = \left(\frac{fX}{Z}, \frac{fY}{Z}\right)$$

Note: this is the projected coordinate in real-world units. To get actual pixel location, have to scale by pixel density and apply offset to image origin (more on this later...)

Homogenous Coordinates

 Homogeneous coordinates are used to represent all 3D points along the ray that falls on the same 2D projection:

$$\left[\begin{array}{c} x \\ y \\ 1 \end{array}\right] \sim \left[\begin{array}{c} \alpha \ x \\ \alpha \ y \\ \alpha \end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} X/Z \\ Y/Z \\ 1 \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ f \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Alternative Form

One way (some implementation advantages):

$$\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ f \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Another way (some conceptual advantages):

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Coming up...

- World to camera transformations
- Specifying camera pose
- Clipping space
- Screen transformation