European Football

(Known as soccer)
Justin O'Donnell, Brian Pascente, Carson Holscher,
Jacob Richardson

Basics of Soccer

Basics of Soccer Data

Shot location (distance and angle to goal), body part used (foot, head, etc.), type of assist (cross, through ball, etc.), defensive pressure, and game context (e.g. counterattack, set-piece)

XA - the player who passed the ball before is credited with the xG of the shot that follows

xGBuildUp - If the player touches the ball before the shot is taken, then the xG is added to that player. This resets every time to other team gains possession

xGChain - Combination of xG, xA, and xGBuildup

Production per value (PPV)

 Our goal is to predict the value of soccer players based on all of their data from the season prior. This is to simulate when a team wants to buy another team's player and predict how good they will be.

Literature Review

- Gained inspiration for what features and models to use, as many used Random Forests, Gradient Boosting, SVM, and even Neural Networks
- Many had features to be expected like age, height, market value
- Some predictors had weather conditions and injury/psychological evaluation
- One paper discussed player price optimization as a target, which was our main inspiration for our finalized target

Dataset

min	utes_played	goals	npg	assists	хG	хA	npxG	position_x	shots	key_passes	yellow_cards	red_cards
128	2423	0	0	2	0.886058	1.697511	0.886058	MS	21	22	8	0
106	2189	0	0	3	0.217996	1.706203	0.217996	DMS	8	17	2	0
331	996	2	2	0	1.234667	0.534926	1.234667	MS	7	8	2	0
167	2986	1	1	0	1.824859	1.692150	1.824859	DS	22	4	5	0
425	3017	0	0	2	0.134310	0.932408	0.134310	DS	8	12	4	0
xGBuildup xGChain market_value_in_eur				eur he	ight_in_cm	age_in_mo	nths_2015	points_per_ga	nme pla	ayer_performa	nce_valuation_st	tandardized
8.497885	10.142531	800000.000000		0000	177.000000 3		26.000000	1.314	570	0.039118		
5.533055	6.569234	100000.000000		0000	180.000000 2		92.000000	1.213	235			0.136234
1.861821	2.912522	1600000.000000		0000	186.000000		44.000000	1.364	035			-0.368572
5.403009	5.606335	400000.000000		0000	193.000000		51.000000	1.967	105			-0.075814
9.725240	10.318017	2000000.000000		0000	182.000000 2		53.000000	1.157	895	-0.		-0.414862

Model Performance (R²)

Gradient Boost	0.5018265603
KNN	0.2747
Ridge	0.10
Forest	0.11721429293514218
Lasso	0.06

KNN + PCA and Feature Engineering

Gradient Boost

```
param grid = {
    'n_estimators': [100, 200, 300, 500],
    'learning_rate': [0.01, 0.05, 0.1, 0.2],
     'max_depth': [3, 4, 5, 6, 7]
Best Parameters: {'learning rate': 0.01, 'max depth': 3, 'n_estimators': 300}
                    MSE: 0.0296159665
                    MAF: 0.1215287545
```

Feature Importance:

Importance

0.489266 0.110448

0.098139

0.095581

market value in eur

shots

goals

Actual vs Predicted Values

Demo Example 1:

```
data = pd.DataFrame([
    'minutes played': 2823,
    'goals': 6,
    'npg': 6,
    'assists': 7,
    'xG': 2.794280,
    'xA': 5.305932,
    'npxG': 2.794280,
    'position_x': 'F M S',
    'shots': 65,
    'key passes': 65,
    'yellow cards': 7,
    'red_cards': 1,
    'xGBuildup': 4.623076,
    'xGChain': 8.855647,
    'market value in eur': 300000.0,
    'height_in_cm': 173.0,
    'age in_months_2015': 345.0,
    'points per game': 1.184211
    11)
```

Predicted performance valuation: 0.2902878596

Jason Puncheon Good Player

Expected: 0.258462

Demo Example 2:

```
data = [{
    'minutes played': 2682,
    'goals': 12,
    'npg': 12,
    'assists': 7,
    'xG': 9.096988,
    'xA': 10.388413,
    'npxG': 9.096988,
    'position x': 'M',
    'shots': 66.
    'key_passes': 92,
    'yellow_cards': 8,
    'red_cards': 0,
    'xGBuildup': 16.633573,
    'xGChain': 29.144278,
    'market_value_in_eur': 50000.0,
    'height_in_cm': 178.0,
    'age_in_months_2015': 341.0,
    'points_per_game': 1.927632
```


Predicted performance valuation: 0.4036456920

David Silva Very Good Player Expected: 11.3

Demo Example 3:

```
data = [{
    'minutes played': 1092,
    'goals': 0,
    'npg': 0,
    'assists': 1,
    'xG': 0.106066,
    'xA': 0.344920,
    'npxG': 0.106066,
    'position_x': 'D S',
    'shots': 7,
    'key passes': 8,
    'yellow cards': 0,
    'red cards': 0,
    'xGBuildup': 2.098642,
    'xGChain': 2.395614,
    'market_value_in_eur': 1800000.0,
    'height_in_cm': 179.0,
    'age in months 2015': 267.0,
    'points_per_game': 1.169173
```


Predicted performance valuation: -0.4100520727

Bad Player Massadio Haidara Expected: -0.461564

Demo 4: Random player

Future Work

- Probably look into aggregating model results. The author of one paper that we read used a combination of random forest regression, support vectors & gradient boosting.
- Remove the bench players when evaluating higher performing players.
- Fix the joins so that we don't unnecessarily delete a good chunk of our data, due to team names.
- Procure a more complete dataset (such as the one used for FIFA)

Lessons

- Overfitting is very easy to do in the real world
- There's no perfect metric for what makes a good soccer player. Your best bet for figuring it out is common sense, but that'll only get you so far.
- A few bad assumptions can severely affect your model's performance

Questions?