CSIR UGC NET EXAM (Dec 2018), Q.49

Ojjas Tyagi - MA20BTECH1102/CS20BTECH11060

April 8, 2021

CSIR UGC NET EXAM (Dec 2018), Q.49

Question

Let $X \ge 0$ be a random variable on (Ω, \mathcal{F}, P) with E(X) = 1. Let $A \in \mathcal{F}$ be an event with 0 < P(A) < 1. Which of the following defines another probability measure on (Ω, \mathcal{F}) ?

4 Q(B) =
$$\begin{cases} P(A|B), & \text{if } P(B) > 0 \\ 0, & \text{if } P(B) = 0 \end{cases}$$

Sample space Ω

Definition

Set of all possible outcomes of a random experiment

Event space \mathcal{F}

Events

Subsets of Ω which are of interest

σ -algebra

A collection $\mathcal F$ of subsets of Ω is called a σ -algebra if:

- $\phi \in \mathcal{F}$
- ② if $A \in \mathcal{F}$ then $A^C \in \mathcal{F}$
- ③ if $A_1, A_2, ...$ is a countable collection of subsets in \mathcal{F} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ Last point also allows us to state that(Using De Morgan's law): if $A_1, A_2, ...$ is a countable collection of subsets in \mathcal{F} , then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$ Subsets in \mathcal{F} called \mathcal{F} -measurable sets

Measurable space

 (Ω, \mathcal{F}) is known as a measurable space

Measure

Definition

A measure is a function $\mu : \mathcal{F} \to [0, \infty)$ such that:

- ② if $A_1, A_2, ...$ is a countable collection of disjoint \mathcal{F} -measurable sets, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

Measure space

The triple $(\Omega, \mathcal{F}, \mu)$ is called a measure space.

if $\mu(\Omega) < \infty$ then μ is called a finite measure.

Probability measure

A probability measure \mathbb{P} on (Ω,\mathcal{F}) is a measure with the special property:

$$\mathbb{P}(\Omega) = 1$$

Random variables & Borel sets

Borel sets

A Borel set is any set that can be formed from open sets through the operations of countable union, countable intersection, and complement on some set X.

Alternatively a borel set is a member of the borel σ algebra which is the smallest σ -algebra containing all open sets on some set X and is denoted by $\mathcal{B}(X)$.

i.e if $B \in \mathcal{B}(X)$ then B is a borel set in X.

\mathcal{F} -measurable functions

A function $X:\Omega\to\mathbb{R}$ is said to be \mathcal{F} -measurable if for every $B\in\mathcal{B}(\mathbb{R})$, the pre-image $X^{-1}(B)\in\mathcal{F}$ Where $X^{-1}(B)=\{\omega\in\Omega|X(\omega)\in B\}$

Random variable

A random variable X on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$

Solution

Probability measure

Any probability measure $\mathbb P$ on $(\Omega,\mathcal F)$ is a function from $\mathcal F$ to [0,1] with the following properties

- If A_1, A_2 are disjoint \mathcal{F} -measurable sets then $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

Conditions

Now we know that $E(XI_B) \ge 0 \ \forall B$ as $X \ge 0$ also that for $Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$ to be valid probability measure

$$E(XI_B) = E(X \times 1) = 1 \text{ when } B = \Omega$$
 (1)

$$E(XI_B) = E(X \times 0) = 0$$
 when $B = \phi$ (2)

Let
$$B' = \bigcup_{i=1}^{\infty} A_i$$
 ,where A_i are disjoint sets $\in \mathcal{F}$

$$\Longrightarrow E(XI_{B'}) = \sum_{i=1}^{\infty} E(XI_{A_i})$$
 (3)

Proof

Now to prove that (3) is true

$$E(XI_B) = \sum_{\omega \in \Omega} X(\omega)P(\omega) \times I_B(\omega)$$
 (4)

Now $I_B(\omega)$ is indicator function which

is 1 if
$$\omega \in B$$
 and 0 if $\omega \notin B$ (5)

$$\Longrightarrow E(XI_B) = \sum_{\omega \in B} X(\omega) P(\omega) \tag{6}$$

$$\implies \sum_{i=1}^{\infty} E(XI_{A_i}) = \sum_{i=1}^{\infty} \sum_{\omega \in A_i} X(\omega) P(\omega)$$
 (7)

$$\Longrightarrow \sum_{\omega \in B'} X(\omega) P(\omega) = E(X I'_B) \tag{8}$$

This proves that (3) is true

Similarly to prove (1) and (2)

if
$$B = \phi$$

$$\Longrightarrow E(XI_B) = \sum_{\omega \in \Omega} X(\omega)P(\omega) \times 0 = 0$$
(9)

Also if $B = \Omega$

$$\implies E(XI_B) = \sum_{\omega \in \Omega} X(\omega)P(\omega) \times 1 = E(X) = 1$$
 (10)

This proves that (1) and (2) are true

Answer

Correct answer

Now using (1),(2) and (3) we can state that

$$Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$$

is a well defined probability measure. \implies option 3 is correct answer.

