CS 162 Notes (Winter 2017)

Justin Lubin

Contents

1	\mathbf{Asy}	nptotic Analysis
	1.1	Big-Oh Notation
		1.1.1 Definition
		1.1.2 Assumption: Constant Operations (Approximations)
		1.1.3 Non-Constant Operations
	1.2	Reducing Big-O Expressions
		1.2.1 What to Eliminate
		1.2.2 Examples
	1.3	Linear Search
		1.3.1 Code
		1.3.2 Analysis
	1.4	Binary Search
		1.4.1 Code
		1.4.2 Analysis
	1.5	Methods of Asymptotic Analysis
		1.5.1 Method 1
		1.5.2 Method 2 (Substitution Method)
	1.6	The Towers of Hanoi
		1.6.1 Gameplay
		1.6.2 Algorithmic Solution
	1.7	Mergesort
		1.7.1 Description
		1.7.2 Example
		1.7.3 Analysis
2	Alg	rithm Correctness 1
	2.1	Key Parts of an Algorithm
	2.2	Proving Correctness
		2.2.1 Example 1

4 CONTENTS

Chapter 1

Asymptotic Analysis

1.1 Big-Oh Notation

1.1.1 Definition

We have that a function $f \in O(g(n))$ if and only if there exists constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.

We have that a function $f \in \Omega(g(n))$ if and only if there exists constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \leq n_0$.

We have that a function $f \in \Theta(g(n))$ if and only if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

This notation can be used to analyze the best-case, average-case, and worse-case efficiency of an algorithm, but this class typically concerns the worst-case efficiency of an algorithm.

Note that efficiency can be a measure of time, space, or even power complexity.

1.1.2 Assumption: Constant Operations (Approximations)

- Arithmetic (fixed width)
- Assignment
- Access any array element

1.1.3 Non-Constant Operations

Control Flow	Time
Consecutive statements Conditional	Sum of time of each statement Time of test + time of the slower branch
Loop	Number of iterations * time of body
Function call Recursion	Time of function body Solve recurrence relation

1.2 Reducing Big-O Expressions

1.2.1 What to Eliminate

- Eliminate low-order terms
- Eliminate coefficients

1.2.2 Examples

```
• 4n + 5 \in O(n)

• \frac{1}{2}n\log n + 2n + 7 \in O(n\log n)

• n^3 + 2^n + 3n \in O(2^n)

• n\log(10n^2) + 2n\log n \in O(n\log n)

- Note that n\log(10n^2) = 2n\log(10n)
```

1.3 Linear Search

1.3.1 Code

```
int find(int[] arr, int arr_length, int k) {
    for (int i = 0; i < arr_length; ++i) {
        if (arr[i] == k) {
            return 1;
        }
    }
    return 0;
}</pre>
```

1.3.2 Analysis

```
• Worst case: 6 * arr_length steps -n = arr_length, so O(n)
```

1.4 Binary Search

1.4.1 Code

```
int find(int[] arr, int k, int lo, int hi) {
    return help(arr, k, 0, arr_length);
}
int find(int[] arr, int arr_length, int k) {
    int mid = (hi + lo) / 2;
    if (lo == hi) {
        return 0;
    }
```

```
if (arr[mid] == k) {
    return 1;
}
if (arr[mid] < k) {
    return help(arr, k, mid + 1, k);
} else {
    return help(arr, k, lo, mid);
}</pre>
```

1.4.2 Analysis

Let T(n) be the efficiency of find. Then, because each split takes approximately ten operations, we have that:

$$T(n) = 10 + T\left(\frac{n}{2}\right)$$

$$= 10 + \left(10 + T\left(\frac{n}{4}\right)\right)$$

$$= 10 + \left(10 + \left(10 + T\left(\frac{n}{8}\right)\right)\right)$$

$$= 10k + T\left(\frac{n}{2^k}\right).$$

To solve this, there are a couple methods.

1.5 Methods of Asymptotic Analysis

1.5.1 Method 1

We know T(1), so we should try to express this formula in terms of T(1). To do so, let $\frac{n}{2^k} = 1$, so then $k = \log n$. Then

$$T(n) = 10 \log n + T\left(\frac{n}{2^{\log n}}\right)$$
$$= 10 \log n + T(1)$$
$$= 10 \log n + 10$$
$$\in O(\log n).$$

However, this method actually gives you a big-theta approximation for T; in other words, not only is $T \in O(\log n)$, we also have that $T \in O(\log n)$.

1.5.2 Method 2 (Substitution Method)

Guess O(?), then check. For example (in this case), guess $\log n$ because we have something like $\frac{n}{2^n}$ in the formula. Then:

$$T(n) = 10 + T(n/2)$$

= $10 + \log(n/2)$

Because we have guessed that $T \in O(\log n)$, we have that $T(n) \le c \log n$ for all $n \ge n_0$, for some constants c, n_0 .

$$T(n) \le c \log n$$

$$10 + \log(n/2) \le c \log n$$

$$10 + \log(n) - \log(2) \le c \log n$$

$$\frac{10 + \log(n) - \log(2)}{\log n} \le c$$

$$\frac{10}{\log n} + 1 - \frac{\log(2)}{\log n} \le c$$

$$\frac{10}{\log n} + 1 - \frac{1}{\log n} \le c$$

Now take $n_0 = 2$, so $n \ge 2$ and thus $\log n \ge 1$ (log is base two). We then have:

$$c \ge \frac{10}{1} + 1 - \frac{1}{1}$$
$$c \ge 10$$

Therefore, $T \in O(\log n)$ because with c = 10 and $n_0 = 2$, we have that $T(n) \le c \log n$ for all $n \ge n_0$.

Note that the substituion method is more general than *Method 1*, but it does *not* give you a big-theta approximation (unlike *Method 1*).

1.6 The Towers of Hanoi

1.6.1 Gameplay

The goal of the Towers of Hanoi is to move all disks to goal peg, with the following rules:

- You can only move one disk at a time
- You can only move the top-most disk in a pile
- You cannot put a larger disk on top of a smaller one

1.6.2 Algorithmic Solution

```
\begin{array}{lll} \mbox{if } n = 1: & => T(1) \\ \mbox{move to goal (base case)} & = 1 \\ \mbox{else:} & => T(n) \\ \mbox{move top } n-1 \mbox{ disks to temporary peg} & = T(n-1) \\ \mbox{move bottom disk to goal} & + T(1) \\ \mbox{move the } n-1 \mbox{ disks to goal} & + T(n-1) \end{array}
```

1.7. MERGESORT 9

Thus, T(n) = T(n-1) + T(1) + T(n-1), with T(1) = 1. So:

$$\begin{split} T(n) &= 2T(n-1) + 1 \\ &= 2(2T(n-2) + 1) + 1 \\ &= 4T(n-2) + 3 \\ &= 4(2T(n-3) + 1) + 3 \\ &= 8T(n-3) + 7. \end{split}$$

By inspection, we have:

$$T(n) = 2^{n-1}T(1) + (2^{n-1} - 1),$$

but T(1) = 1, so we have:

$$T(n) = 2^{n-1} + 2^{n-1} - 1$$

= $2^n - 1$
 $\in \Theta(2^n)$.

1.7 Mergesort

1.7.1 Description

To mergesort a list, split the list into two and sort the sublists. To merge them back together, interleave the elements. Interleaving / merging is O(n) and there are $O(\log n)$ splits, so mergesort is $O(n \log n)$.

Mergesort is based on the trick that it is really easy to interleave two sorted lists.

1.7.2 Example

```
8 2 9 4 5 3 1 6
=> 8 2 9 4
   => 8 2
      => 8
      => 2
      merge: 2 8
   => 9 4
      => 9
      => 4
      merge: 4 9
  merge: 2 4 8 9
=> 5316
   => 5 3
      => 5
      => 3
      merge: 3 5
   => 1 6
```

=> 1 => 6 merge: 1 6 merge: 1 3 5 6 merge: 1 2 3 4 5 6 8 9

1.7.3 Analysis

We have that T(1) = 1 and T(n) = 2T(n/2) + n (split into two sublists, then mergesort them, then merge / interleave them). We then have that:

$$T(n) = 2T(n/2) + n$$

$$= 2(T(n/4) + n/2) + n$$

$$= 2T(n/4) + 2n$$

$$= 4(2T(n/8) + n/8) + 2n$$

$$= 8T(n/8) + 3n$$

$$= 2^k T(n/2^k) + kn$$

Set $n/2^k = 1$ (because we are using **Method 1**), so $k = \log n$. Then:

$$T(n) = 2^{\log n} T(n/2^{\log n}) + (\log n)n$$
$$= nT(1) + n \log n$$
$$= n + n \log n$$
$$\in \Theta(n \log n)$$

Chapter 2

Algorithm Correctness

2.1 Key Parts of an Algorithm

There are a couple key things that every algorithm needs:

- Inputs
- Outputs
- Preconditions (restrictions on input)
- Postconditions (restrictions on output)
- Step-by-step process specification (either in natural language or pseudocode)

Therefore, we can define a "correct" algorithm to be one that, given any input data that satisfies the precondition, produces output data that satisfies the postcondition and terminates (stops) in finite time.

2.2 Proving Correctness

2.2.1 Example 1

Consider the following pseudocode to swap two variables:

```
Swap1(x, y)
aux := x
x := y
y := x
```

2.2.1.1 Proof of Correctness

```
    Precondition: x = a and y = b
    Postcondition: x = b and y = a
    aux := x implies aux := a
    x := y implies x := b
    y := aux implies y := a
    Thus, x := b and y := a, so the postcondition is satisfied
```