Jméno a příjmení	ID	Studijní	body ze
		skupina	cvičení
		(kroužek)	včetně prémiových

5

	1	2
C		

Σ pís.	Σ celk.

Všechny výsledky musí být uvedeny na tomto zadání a všechny výpočty, na základě kterých se k výsledkům dospělo, musí být odevzdány. Jestliže příklad nedopočítáte, napište místo výsledku rozpracováno. Jestliže místo pro výsledek bude prázdné, příklad bude hodnocen 0 body. Každý příklad je hodnocen max. deseti body.

4

Jsou-li více než tři příklady hodnoceny 0 body, je celá písemka za 0 bodů.

3

1) Pro funkci f definovanou předpisem

$$f(x) = \begin{cases} 0 & x < -1 \\ \frac{1}{2} & x = -1 \\ 1 & x \in (-1, 1) \\ 0 & x \in (1, \infty) \end{cases}$$
 určete $f^{-1}(\{0\})$ a nakreslete $(f \circ f)(x)$, $-f(-x)$ a $|f(-x)|$.

$$f^{-1}(\{0\}) =$$

(Grafy nakreslete na vlastní papíry s výpočty)

2) Do následujícího obrázku načrtněte graf funkce, pro kterou platí: $D_f = \mathbb{R}$, je lichá, v x = 0 má nespojitost 1. druhu, v x = 1 má nespojitost 2. druhu, přičemž je zde spojitá zprava, $f(1) = 0, \ f(2) = -1, \ \lim_{x \to 0^+} f(x) = 1, \ \lim_{x \to 0^+} f'(x) = -1, \ \lim_{x \to 1^+} f'(x) = -\infty, \ f'(2) = 0,$ f''(x) > 0 pro $x \in (1,2)$, f''(x) < 0 pro $x \in (0,1)$ a $x \in (2,\infty)$, pro $x \to \infty$ má asymptotu y = 2 - x. Do obrázku nakreslete i asymptoty a tečny resp. polotečny v bodech, kde je známá derivace.

- **3)** U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý (správný výsledek podtrhněte). Je-li nepravdivý, uveďte protipříklad bez protipříkladu je odpověď hodnocena jako nesprávná.
- a) Je-li funkce f spojitá na intervalu $\langle a,b\rangle$, má zde maximum i minimum.

pravdivý

nepravdivý

protipříklad:

b) Funkce f je v bodě x_0 spojitá, právě když má v bodě x_0 limitu.

pravdivý

nepravdivý

protipříklad:

c) Je-li první derivace funkce f v bodě x_0 rovna 0, potom má funkce f v x_0 extrém.

pravdivý

nepravdivý

protipříklad:

4) Je dána plocha o rovnici $2ye^y + ze^z - xe^{2x} = 3e$ a na ní bod A = [0,1,1]. Najděte rovnici tečné roviny k zadané ploše v bodě A.

 ρ :

5) Vypočítejte dvojný integrál $I = \int_{M} xy \, dx \, dy$, kde M je množina ohraničená křivkami o rovnicích

$$y = \frac{8}{x}, y = \sqrt{x} \text{ a } x = 2.$$

I =

6) Mocninná řada $\sum_{n=0}^{\infty} c_n (x-1)^n$ konverguje neabsolutně pro x=2 a diverguje pro x=0.

Rozhodněte, které z následujících tvrzení je pravdivé (správnou odpověď podtrhněte):

Řada pro x = -1 konverguje diverguje pro x = 1 konverguje diverguje pro $x = -\frac{1}{2}$ konverguje diverguje pro $x = \frac{1}{2}$ konverguje diverguje

Své odpovědi zdůvodněte! Bez zdůvodnění budou odpovědi hodnoceny jako nesprávné.