A $\rightarrow E = \{ [z] \}$ $y,z \in [x]$ iff $\forall w \ y v \in A \ iff \ z v \in A$ DFA based on equivalence classes: F = (E, Z, [e], S, F) $F = \{ [x] \mid [x] \cap A \neq \emptyset$ S([x], a) = [xa] $Lemma: F on input x ends up in state [x].

proof: By induction on <math>|x| = longth \ v \in X$ Base step: $|x| = 0 \iff x = E$, automata is in state

There shows assume $longth \in X$

Induction step: assume for |x| < n.

Consider x, |x| = n. Let x = ya, |y| = n-1.

On reading y, f ends up in [y].

=) S([y], a) = [ya] = [x].

L[n] ∈ F. On ready x ∉ A, Frends up in

We know that any vantomata accepting A will have number of states $\geq |E|$.

Therefore, F is a DFA with minimum number of states acapting A.

[x] & [x] & F.

Lemma: There is a regular set with an accepting NFA having n states and any DFA that acapts the set has at least 2^{n-1} states.

There is a regular set with an accepting NFA having n states and any DFA that acapts the set has at least 2^{n-1} states.

There is a regular set with an accepting NFA having n states and any DFA that acapts the set has at least 2^{n-1} states.

There is a regular set with an accepting NFA that acapts the set has at least 2^{n-1} states.

set of states of corresponding DFA is 26

If |a|=n then # states of DFA = 2

Let $w \in \{0, 1\}^{\infty}$, |w| = n+1 $E_w = \{7w \mid x \in \{0, 1\}^{\infty}\}$ Defeath E_v is contained in an againalance class induced by A.

Let xw, $yw \in E_v$.

tor any z, xwz e A iff wz e A

D Different Ew's are contained in different

agnivelence classes

Consider E_{ω} l E_{ω} , for $\omega \neq \omega'$.

Let $\omega \in F_{\omega}$ l $\omega' \in E_{\omega'}$ Suppose ω, ω' differ on k^{th} bit from right. k^{th} bit from right for $\omega = 1$ $l \leq n+1$ Consider $\omega = 0$ $l \leq n+1$

iff yuze A.

No of equivalence classes $\geq No H E_{W}$'s = Z X