

Микросборка приемопередатчика по стандарту RS-485 с гальванической развязкой 2011BB024, K2011BB024, K2011BB024K

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросборки:

- Напряжение источника питания, U_{CC} , $5.0 \pm 10 \%$ B;
- Выходное дифференциальное напряжение, U_{OD_TXD}, на выходах Y, Z передатчика RS-485 от 1,5 В до U_{CC};
- Пороговое дифференциальное напряжение, U_{TH}, на входах A и B от минус 200 до 200 мВ;
- Ток потребления в состоянии «Выключено», I_{CCZ}, не более 560 мкА;
- Динамический ток потребления, I_{OCC}, не более 170 мА;
- Скорость передачи битов данных,
 V_{DR}, не более 25 Мбит/с;
- Выходное напряжение высокого уровня, U_{OH}, на выходе Out не менее 0,7•U_{CC};
- Выходное напряжение низкого уровня U_{OL}, на выходе Out не более 0,4 В;
- Температурный диапазон:

Обозначение	Диапазон
2011BB024	минус 60 – 85 °C
K2011BB024	минус 60 – 85 °C
K2011BB024K	0 – 70 °C

Тип корпуса:

– 20-выводной металлокерамический корпус 4140.20-1.

Области применения микросборки

Микросборка 2011BB024 (далее — МСБ) предназначена для использования в аппаратуре специального назначения, в качестве приемопередатчика сигналов цифрового интерфейса RS-485. МСБ может использоваться для создания устройств высоковольтной гальванической развязки.

1 Структурная блок-схема

Приемопередатчик по стандарту RS-485 с гальванической развязкой

Рисунок 1 – Структурная блок-схема МСБ

2 Условное графическое обозначение

Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов

№ вывода корпуса	Обозначение вывода	Функциональное назначение вывода
1	NC	Не используется
2,3	Ucc1	Питание приемопередатчика
4	In	Вход логического информационного сигнала передатчика
5	Out	Выход логического информационного сигнала приемника
6	EN	Вход разрешения работы логического интерфейса приемника
7,8	GND1	Общий
9	NC	Не используется
10	NC	Не используется
11,12	GND2	Общий
13	Α	Прямой вход приемника RS-485
14	В	Инверсный вход приемника RS-485
15	nRE	Вход разрешения выхода кодера аналогового сигнала. (Активный низкий уровень)
16	DE	Вход разрешения выхода передатчика RS-485
17	Z	Инверсный выход передатчика RS-485
18	Y	Прямой выход передатчика RS-485
19	Ucc2	Питание приемопередатчика RS-485
20	NC	Не используется

4 Описание функционирования

МСБ 2011ВВ024 представляет собой преобразователь интерфейса RS-485 в цифровой сигнал и обратно.

МСБ предназначена для преобразования передаваемого сигнала интерфейса RS-485 в дифференциальный импульсный сигнал, подаваемый на первичную обмотку развязывающего трансформатора, а также преобразования принимаемого импульсного сигнала со вторичной обмотки трансформатора в выходной сигнал интерфейса RS-485. Используется для создания устройств высоковольтной гальванической развязки передаваемых сигналов с использованием импульсного трансформатора.

МСБ 2011ВВ024 содержит приемопередатчик RS-485/422 и кодер/декодер трансформаторного интерфейса. При использовании МСБ 2011ВВ024 можно создать гальванически развязанную дуплексную линию связи RS-422 (при использовании четырех проводов). Такая линия обеспечит дуплексный режим передачи данных с максимальной скоростью.

Получить линию связи по RS-485 можно используя два провода и соединив попарно выводы МСБ A с Y и B с Z. Это обеспечит полудуплексный режим передачи данных на той же скорости.

Блок-схемы приемопередатчиков по стандартам RS-485, RS-422 с гальванической развязкой представлены на рисунках ниже (Рисунок 3, Рисунок 4).

Рисунок 3 – Блок-схема преобразователя логического интерфейса в интерфейс RS-485

Рисунок 4 – Блок-схема преобразователя логического интерфейса в интерфейс RS-422

© АО «ПКК Миландр»

Таблица истинности МСБ 2011ВВ024 приведена ниже (Таблица 2).

Таблица 2 – Таблица истинности работы МСБ 2011ВВ024

Входы						В	ыходы
Дифференциальный сигнал на входах A и B (A>B = «1», B>A = «0»)	DE	nRE	En	ln	Υ	Z	Out
X	1	0	1	1	1	0	X
X	1	0	1	0	0	1	X
X	0	1	0	Х	Z	Z	Z (состояние «выключено»)
X	1	1	1	Х	Z	Ζ	0
X	0	0	0	Х	Z	Z	Z
переход «0» в «1»	Х	0	1	X	Х	Х	1
переход «1» в «0»	Х	0	1	Х	Х	Х	0
Обрыв А и/или В или замыкание А и В	Х	0	1	Х	Х	Х	0

5 Типовые схемы включения

Типовая схема включения МСБ 2011ВВ024 приведена на рисунке ниже (Рисунок 5).

МК – микроконтроллер/блок/устройство;

D – МСБ

В режиме приема / передачи данных в линию на выводы DE, nRE подаются следующие сигналы:

- Передача данных: DE = 1, nRE = 0;
- Прием данных: DE = 0, nRE = 0.

Рисунок 5 – Типовая схема включения МСБ 2011ВВ024 с интерфейсом RS-485

6 Предельно-допустимые характеристики

Таблица 3 – Предельно-допустимые режимы эксплуатации и предельные электрические режимы

	0	Норма параметра			
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим	
		не менее	не более	не менее	не более
Напряжение источника питания, В	U _{cc}	4,5	5,5	_	6
Входное напряжение высокого уровня, В, на входах DE, nRE, In, En	U _{IH}	2,0	Ucc	_	Ucc+0,3
Входное напряжение низкого уровня, B, на входах DE, nRE, In, En	U _{IL}	0	0,8	-0,3	ı
Входное напряжение синфазное, В, на выводах А, В	U_{I_R}	- 7	12	_	_
Синфазное напряжение, прикладываемое к выводам Y, Z	U _{oz}	- 7	12	_	_
Входное напряжение дифференциальное, В, на входах A, В	U _{ID}	_	±15	_	±20
Пороговое напряжение дифференциальное, мВ, на входах А, В	U _{TH}	-200	200	_	_
Выходной ток низкого уровня, мА на выходе Out	I _{OL}	ı	1	_	-
Выходной ток высокого уровня, мА на выходе Out	I _{OH}	- 1	_	_	_
Скорость передачи битов данных, Мбит/с	V_{DR}	-	25	_	_
Сопротивление нагрузки, Ом, на выводах Y, Z	R_L	54	_	_	-
Емкость нагрузки, пФ, на выходах Y, Z	C _L	_	50	_	200

7 Электрические параметры

Таблица 4 – Электрические параметры МСБ при приемке и поставке

Наименование параметра,	нное чение іетра	Норма параметра		атура ı, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение дифференциальное, В, на выходах Y, Z при R_L = 54 Ом и R_L = 100 Ом	U _{OD_TXD}	1,5	4,5	
Изменение выходного напряжения дифференциального, B, на выходах Y, Z при R_L = 54 Ом и R_L = 100 Ом	ΔU_{OD_TXD}	_	0,2	
Выходное напряжение синфазное, В, на выходах Y, Z при изменении сопротивления нагрузки от 54 до 100 Ом.	U _{OC_TXD}	_	3	
Изменение выходного напряжения синфазного, В, на выводах Y, Z при изменении сопротивления нагрузки от 54 до 100 Ом.	ΔU_{OC_TXD}	_	0,2	
Выходное напряжение высокого уровня на выходе Out, В	U _{он}	0,7•U _{CC}	_	
Выходное напряжение низкого уровня на выходе Out, В	U _{OL}	_	0,4	
Входной ток, мкА, на входах А, В	I _I	- 200	200	
Входной ток низкого, высокого уровней, мкА, на входах DE, nRE, In, EN	I _{IH} , I _{IL}	- 10	10	
Выходной ток в состоянии «Выключено», мкА, на выходах Y, Z	l _{oz}	- 10	10	25, 85,
Ток короткого замыкания, мА, на выходах Y, Z при $U_Y(U_Z) = 12$ B; $U_Y(U_Z) = -7$ В	I _{os}	_	250	- 60
Минимальный ток короткого замыкания, мА, на выходах Y, Z при: $U_Y(U_Z) = 4,5$ B; $U_Y(U_Z) = 1$ B	I _{OSmin}	20	-	
Ток потребления в состоянии «Выключено», мкА	I _{CCZ}	_	560	
Динамический ток потребления, мА	l _{occ}	_	170	
Время задержки распространения при включении, выключении, нс, от входа In до выходов Y, Z	t _{PHL1} , t _{PLH1}	_	40	
Время задержки распространения при включении, выключении, нс, от входа A, B до выхода Out	t _{PHL2} , t _{PLH2}	_	80	
Время задержки включения, нс, по сигналу nRE	t _{DHL}	_	800	
Время задержки выключения, нс, по сигналу nRE	t _{DLH}	_	250	
Время нарастания, спада сигнала, нс, на выходах Y и Z при R _L = 100 Ом на выходе Out	t _r , t _f	_	10	

8 Справочные данные

- Рабочее напряжение изоляции 2 кВ при температуре 85 °C;
- Температура срабатывания тепловой защиты 160 °C;
- Тепловое сопротивление кристалл-окружающая среда не более 22,6 °C/Вт.

9 Типовые зависимости

Рисунок 6 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 5,5 В

Рисунок 7 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 4,5 В

Рисунок 8 – Зависимость динамического тока потребления от температуры при напряжении питания 5.0 B, R_L = 54 Om, f_C = 12,5 МГц

Рисунок 9 – Зависимость выходного напряжения дифференциального от температуры при напряжении питания 4,5 В

Рисунок 10 – Зависимость времени задержки распространения при включении, выключении от входа In до выходов Y, Z от температуры при напряжении питания 4,5 В

Рисунок 11 – Зависимость времени задержки распространения при включении, выключении, от входов А, В до выхода Out для от температуры при напряжении питания 4,5 В

Рисунок 12 – Зависимость динамического тока потребления от скорости передачи данных при температуре 25 °C, R_L = 54 Ом, напряжении питания 5,0 В

Рисунок 13 – Зависимость тока потребления в состоянии «Выключено» от значения характеристик $7.\text{И}_7(7.\text{C}_4)$

10 Габаритный чертеж

Рисунок 14 – МСБ в корпусе 4140.20-1

11 Информация для заказа

Обозначение МСБ	Маркировка	Тип корпуса	Температурный диапазон
2011BB024	2011BB024	4140.20-1	минус 60 – 85 °C
K2011BB024	K2011BB024	4140.20-1	минус 60 – 85 °C
K2011BB024K	K2011BB024•	4140.20-1	0 – 70 °C

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.12.2014	0.1.0	Введена впервые	
2	26.03.2015	0.1.1	Исправлены блок-схема, условное графическое обозначение, описание выводов	2, 3
3	04.06.2015	2.0.0	Приведение в соответствие с ТУ и КД	По тексту
4	09.06.2015	2.1.0	Введены типономиналы К2011ВВ024, К2011ВВ024К	По тексту
5	17.08.2015	2.2.0	Исправления на рисунке 5	6
6	14.09.2015	2.3.0	Исправлен рисунок 2. Добавлены комментарии на рисунке 5. Добавлены справочные данные	3 7 10
7	02.10.2015	2.4.0	Исправлен рисунок 5	7
8	12.11.2015	2.5.0	Исправлены рисунки 3, 4	5