

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2021

Práctica 10: Funciones de varias variables - Diferenciabilidad.

Notación: Hemos visto en el apunte de la Unidad 10, que las derivadas parciales de una función $f: \mathbb{R}^n \to \mathbb{R}$ se denotan por $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$. Cuando el dominio de la función es un subconjunto de \mathbb{R}^2 o \mathbb{R}^3 , normalmente usamos las letras (x,y) o (x,y,z) para denotar las variables, y en consecuencia las derivadas parciales se denotan $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$. Para abreviar la notación, estas tres derivadas parciales a su vez suelen denotarse por f_x , f_y y f_z respectivamente. En caso de que existan las derivadas parciales en todo el dominio de $f: U \to \mathbb{R}$, quedan definidas funciones $\frac{\partial f}{\partial x_i}: U \to \mathbb{R}$, que a su vez podrían ser nuevamente derivadas en alguna dirección. De esta manera, se denota

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

En la notación abreviada anterior, f_{xy} por ejemplo denota la derivada segunda $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$.

1. Represente gráficamente la curva $\alpha : \mathbb{R} \to \mathbb{R}^n$ (n=2,3) dada en cada caso. Determine en qué puntos α es derivable, calcule $\alpha'(t)$ en esos puntos y determine la recta tangente a α en t=2.

a)
$$\alpha(t) = (\cos(t), \sin(t)),$$

d)
$$\alpha(t) = (\sqrt{t^2 - 2t + 1}, t^2),$$

b)
$$\alpha(t) = (\cosh(t), \sinh(t)),$$

e)
$$\alpha(t) = (2t, |t|, 4),$$

c)
$$\alpha(t) = (2\cos(t), 3\sin(t)),$$

$$f(t) = (\cos(t) \sin(t), \sin(t) \sin(t), \cos(t)).$$

2. Sea $\alpha: \mathbb{R}^+ \to \mathbb{R}$ la curva dada por $\alpha(t) = (t\cos(t), t\sin(t))$. Determine una función $c: \mathbb{R}^+ \to \mathbb{R}$ tal que $\beta(t) = (c \cdot \alpha)(t)$ sea una curva cuya imagen esté contenida en una circunferencia de radio 1, centrada en el origen. Decida si β es una curva derivable, y donde sea posible, calcule $\beta'(t)$.

3. Determine, si existe una curva derivable $\alpha : \mathbb{R} \to \mathbb{R}$ tal que $\alpha(0) = (1,2)$ y $\alpha'(t) = \alpha(t)$ para cada $t \in \mathbb{R}$.

4. Sea $\alpha: I \to \mathbb{R}^n$ una curva derivable. Pruebe que si $\|\alpha(t)\| = c$, constante, entonces $\alpha'(t)$ es perpendicular a $\alpha(t)$ para todo $t \in I$.

Sugerencia: Observe que $\|\alpha(t)\|$ es constante si y solo si $\langle \alpha(t), \alpha(t) \rangle$ es constante.

- 5. Dé un ejemplo de una función $f:\mathbb{R}^2\to\mathbb{R}$ y un punto en el cual exista f_x , pero no f_y .
- 6. Demuestre que la función $f(x,y) = \sqrt[3]{xy}$ es continua en el origen, que las derivadas parciales existen en el origen, pero las derivadas direccionales en todas las demás direcciones no existen.
- 7. Sea

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- a) Calcule $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en todo punto $(x,y) \neq (0,0)$.
- b) Muestre que $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$
- c) Muestre que $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$, $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$.
- d) Explique por qué el resultado de c).
- 8. Consideremos las funciones

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

$$g(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2+y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- a) Muestre que son continuas en (0,0).
- b) Calcule sus derivadas parciales de primer orden en (0,0).
- c) Investigue su diferenciabilidad en (0,0).
- 9. Analice en qué puntos del plano son diferenciables las funciones:

a)
$$f(x,y) = \log(x-y)\exp(x+y)$$

b)
$$f(x,y) = (x^2 + y^2)(1 + x^2 + y^2)^{-1}$$
.

c)
$$f(x,y) = \sqrt{|xy|}$$

$$d) f(x,y) = |x| + |y|$$

10. Calcule las derivadas direccionales de las siguientes funciones en los puntos indicados y en las direcciones dadas:

a)
$$f(x,y) = e^x \cos(\pi y)$$
, $(a,b) = (0,-1)$, $v = (1,2)$

b)
$$f(x,y,z) = x^2yz$$
, $(a,b,c) = (1,0,-1)$, $v = (-1,1,0)$

c)
$$f(x,y) = \log(\sqrt{x^2 + y^2}), (a,b) = (1,0), v = (2,1)$$
.

- 11. Se afirma que hay una función f(x, y) cuyas derivadas parciales son $f_x(x, y) = x+4y$, $f_y(x, y) = 3x-y$. Determine si esto es posible.
- 12. Demuestre que las funciones $u(x,y) = e^x \cos(y), \ v(x,y) = e^x \sin(y)$ satisfacen las ecuaciones

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

13. Demuestre que las funciones del ejercicio anterior satisfacen la ecuación diferencial

$$\Delta f = f_{xx} + f_{yy} = 0.$$

 $\Delta f = f_{xx} + f_{yy}$ es llamado el *Laplaciano* de f. Las funciones cuyo laplaciano es nulo son llamadas armónicas. La ecuación $\Delta f = 0$ es la ecuación de *Laplace*. Pruebe que las siguientes funciones son armónicas:

a)
$$f(x,y) = \log(\sqrt{x^2 + y^2})$$
 b) $f(x,y) = \arctan \frac{y}{x}$

- 14. Suponga que una montaña tiene la forma de un paraboloide $z = c ax^2 by^2$ (a, b, c) constantes positivas), x, y son coordenadas en un plano de referencia y z es la altitud. En el punto (1,1), ¿en qué dirección aumenta más rápido la altitud?. Si se suelta una bolilla en (1,1,c-a-b), ¿en qué dirección comenzará a rodar?.
- 15. Una partícula se lanza desde la superficie $x^2 + y^2 z^2 = -1$ en el punto $(1;1;\sqrt{3})$ en una dirección normal a la superficie en el tiempo t=0 con una velocidad de 10 unidades por segundo. ¿Cuándo cruza el plano xy?
- 16. Halle la ecuación del plano tangente a la superficie definida por la ecuación $z=x\sin\frac{y}{x}$ en el punto $(a,b,a\sin\frac{b}{a})$ (con $a\neq 0$). Mostrar que ese plano pasa por el origen. Generalizar el resultado para cualquier superficie de la forma $z=xf(\frac{y}{x})$.
- 17. Se considera el plano x + 2y + 3z = 1 y el elipsoide $\frac{x^2}{8} + \frac{y^2}{2} + z^2 = 1$. Halle los dos planos tangentes al elipsoide y paralelos al plano dado.