Introduction aux Arbres de Décision Rappel : Indice de Gini Exemple : Deux Attributs

Conclusion
Apprentissage par Ensemble: Random Forest
Conclusion sur les Random Forests

Exercice d'Application : Construction d'une Forêt Aléa

Principe de construction Exemple Illustratif

II : Apprentissage par Ensemble : Random Forest

Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests Exercice d'Application : Construction d'une Forêt Aléa

Qu'est-ce qu'une Random Forest? (1/2)

Définition : Une **Random Forest** est un ensemble de **plusieurs arbres de décision** construits à partir de :

- Bootstrap (Bagging) :
 - Création de plusieurs échantillons de taille égale à celle de l'ensemble initial, tirés **avec remise**.
 - Chaque échantillon peut ainsi contenir des doublons et ignorer certains exemples originaux.
- **Sélection aléatoire d'attributs** à chaque division (Random Subspace) :
 - Au lieu de tester tous les attributs, on en choisit **un** sous-ensemble aléatoire pour chaque nœud.
 - Cela augmente la diversité entre les arbres.

Conclusion sur les Random Forests
Exercice d'Application : Construction d'une Forêt Aléa

Qu'est-ce qu'une Random Forest? (2/2)

Vote majoritaire ou moyenne

- Classification : la prédiction finale est le *vote majoritaire* de tous les arbres.
- **Régression** : la prédiction finale est la *moyenne* des prédictions.

Apprentissage par Ensemble: Random Forest
Conclusion sur les Random Forests
Exercice d'Application: Construction d'une Forêt Aléa

Pourquoi utiliser une Random Forest? (1/2)

Avantages:

- Meilleure robustesse : la variance du modèle est réduite par le vote/moyenne.
- Réduction du risque de sur-apprentissage (overfitting) par rapport à un arbre unique.
- Facile à utiliser : peu d'hyperparamètres critiques (nombre d'arbres, nombre d'attributs aléatoires, etc.).

Apprentissage par Ensemble : Random Forest
Conclusion sur les Random Forests
Exercice d'Application : Construction d'une Forêt Aléa

Pourquoi utiliser une Random Forest? (2/2)

Limites:

- Moins interprétable qu'un arbre unique (il est plus complexe de visualiser une "forêt").
- Peut être **coûteux en mémoire** et en temps de calcul pour un très grand nombre d'arbres.

Idée générale

Plus on a d'arbres *indépendants*, plus la **moyenne** de leurs erreurs se compense, améliorant la qualité globale.

Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests Exercice d'Application : Construction d'une Forêt Aléa

Bagging: Bootstrap Aggregation (1/2)

Étapes clés pour construire une Random Forest (exemple de classification) :

- Échantillons Bootstrap :
 - À partir de l'ensemble d'origine (taille N), on forme M sous-échantillons également de taille N, mais tirés avec remise.
 - Chaque sous-échantillon est utilisé pour entraîner un arbre de décision.
- Arbres aléatoires :
 - À chaque nœud, au lieu de tester tous les attributs, on en sélectionne un sous-ensemble (exemple : \sqrt{d} parmi d attributs).
 - On choisit l'attribut qui maximise la réduction du Gini parmi ceux sélectionnés.

Introduction aux Arbres de Décision Rappel : Indice de Gini Exemple : Deux Attributs Conclusion

Principe de construction Exemple Illustratif

Apprentissage par Ensemble : Random Forest
Conclusion sur les Random Forests
Exercice d'Application : Construction d'une Forêt Aléa

Bagging: Bootstrap Aggregation (2/2)

- **3** Vote majoritaire:
 - Pour prédire une classe, on combine les prédictions de chaque arbre par un vote.
 - En régression, on prend la moyenne des valeurs prédites.

Note

Le Bagging seul réduit déjà la variance. La **sélection aléatoire d'attributs** $ajout\acute{e}e$ évite que tous les arbres se ressemblent trop (cas de Bagging pur).

Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests

Exercice d'Application : Construction d'une Forêt Aléa

Exemple : Mini-données (construction d'une Forêt) (1/2)

Données simplifiées (8 exemples):

ID	Taille (m)	Poids (kg)	Jouer (Oui/Non)
1	1.50	60	Oui
2	1.80	80	Non
3	1.65	70	Oui
4	1.70	75	Non
5	1.55	62	Oui
6	1.90	90	Non
7	1.60	68	Oui
8	1.75	72	Non

Table – Jeu de données fictif

• Attributs : Taille, Poids.

Introduction aux Arbres de Décision Rappel : Indice de Gini Exemple : Deux Attributs Conclusion

Principe de construction Exemple Illustratif

Apprentissage par Ensemble : Random Forest
Conclusion sur les Random Forests
Exercice d'Application : Construction d'une Forêt Aléa

Exemple : Mini-données (construction d'une Forêt) (2/2)

Étape 1 : Échantillons Bootstrap

On forme 3 échantillons (puisqu'on veut 3 arbres). Chaque échantillon est obtenu par ${\bf tirage}$ avec ${\bf remise}$ de 8 exemples :

Échantillon #1: {1,2,2,3,5,5,7,8} Échantillon #2: {2,4,4,5,6,6,7,8} Échantillon #3: {1,1,2,3,6,7,8,8}

Remarque

Chaque échantillon est de taille 8 (même que l'ensemble initial), mais contient des **doublons** et éventuellement **omet** certains exemples (OOB – Out Of Bag).

Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests Exercice d'Application : Construction d'une Forêt Aléa

Exemple : Construction des Arbres (Étape 2)

- Pour chaque échantillon, on construit un arbre de décision en utilisant la sélection aléatoire d'attributs.
- Si on a 2 attributs (Taille, Poids):
 - À chaque nœud, on peut en tirer 1 au hasard (ou parfois les 2).
 - On choisit celui qui **maximise** la réduction de l'impureté (Gini).
- Ainsi, on obtient 3 arbres différents, chacun "surapprenant" potentiellement à sa portion de données, **mais** de façon distincte.

Conséquence

Les corrélations entre arbres diminuent (ils ne sont pas "clones"), améliorant la robustesse du vote final.

Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests Exercice d'Application : Construction d'une Forêt Aléa

Exemple: Prédiction (Étape 3)

Pour un nouvel exemple (Taille = 1.65, Poids = 72):

- Arbre 1 prédit "Oui".
- Arbre 2 prédit "Non".
- Arbre 3 prédit "Oui".

Vote majoritaire = Oui (2votes sur 3)

Conclusion sur les Random Forests

- Une Random Forest est une forêt d'arbres de décision entraînés sur des échantillons bootstrap, avec une sélection aléatoire d'attributs.
- Chaque arbre est "instable" mais le **vote** ou la **moyenne** confère une grande **stabilité** à la forêt.
- Réduction de l'overfitting, bonne performance pratique.

Exercice: Construire Trois Arbres d'une Forêt Aléatoire

Objectif: Comprendre le fonctionnement des forêts aléatoires en construisant trois arbres à partir de sous-échantillons tirés par Bootstrap.

Données initiales:

ID	Revenu mensuel	Historique de crédit	Décision
1	Faible	Mauvais	Refusée
2	Moyen	Bon	Approuvée
3	Élevé	Mauvais	Refusée
4	Faible	Bon	Approuvée
5	Élevé	Bon	Approuvée
6	Moyen	Mauvais	Refusée
7	Faible	Mauvais	Refusée
8	Élevé	Bon	Approuvée

Table – Données simplifiées pour une demande de prêt (8 exemples, 2 attributs).

Introduction aux Arbres de Décision Rappel : Indice de Gini Exemple : Deux Attributs Conclusion Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests

Exercice d'Application : Construction d'une Forêt Aléa

Trois Échantillons Bootstrap

Échantillon 1 = $\{1, 2, 3, 4, 4, 7, 8, 8\}$

ID	Revenu mensuel	Historique de crédit	Décision
1	Faible	Mauvais	Refusée
2	Moyen	Bon	Approuvée
3	Élevé	Mauvais	Refusée
4	Faible	Bon	Approuvée
4	Faible	Bon	Approuvée
7	Faible	Mauvais	Refusée
8	Élevé	Bon	Approuvée
8	Élevé	Bon	Approuvée

Table – Échantillon 1 (tirage avec remise)

Échantillon 2 = $\{1, 2, 2, 5, 5, 5, 6, 8\}$

ID	Revenu mensuel	Historique de crédit	Décision
1	Faible	Mauvais	Refusée
2	Moyen	Bon	Approuvée
2	Moyen	Bon	Approuvée
5	Élevé	Bon	Approuvée
5	Élevé	Bon	Approuvée
5	Élevé	Bon	Approuvée
6	Moyen	Mauvais	Refusée
8	Élevé	Bon	Approuvée

Table – Échantillon 2 (tirage avec remise)

Échantillon 3 = $\{1, 3, 3, 4, 6, 6, 7, 8\}$

ID	Revenu mensuel	Historique de crédit	Décision
1	Faible	Mauvais	Refusée
3	Élevé	Mauvais	Refusée
3	Élevé	Mauvais	Refusée
4	Faible	Bon	Approuvée
6	Moyen	Mauvais	Refusée
6	Moyen	Mauvais	Refusée
7	Faible	Mauvais	Refusée
8	Élevé	Bon	Approuvée

Table – Échantillon 3 (tirage avec remise)

Étape 2 : Construction de 3 Arbres de Décision

- 1 Indice de Gini initial : Calculez le Gini de chacun des trois échantillons 1, 2, 3 (présentés auparavant).
- 2 Sélection Aléatoire d'Attributs :
 - À chaque nœud, choisissez au hasard l'un des deux attributs (Revenu mensuel ou Historique de crédit).
 - Calculez le Gain de Gini et effectuez la division si elle réduit l'impureté.
- **3** Compléter les trois arbres : Continuez les divisions jusqu'à obtenir des feuilles pures (classe "Approuvée" ou "Refusée") ou presque pures.

Rappel

La Random Forest utilise **Bagging** (tirages avec remise) et la **sélection aléatoire d'attributs** pour construire des arbres variés (réduisant le sur-apprentissage).

Introduction aux Arbres de Décision Rappel : Indice de Gini Exemple : Deux Attributs Conclusion Apprentissage par Ensemble : Random Forest Conclusion sur les Random Forests

Etape 3 : Décision Majoritaire

Nouveau point à prédire :

Exercice d'Application : Construction d'une Forêt Aléa

(Revenu mensuel = Moyen, Historique de crédit = Bon)

- Arbre 1, Arbre 2, Arbre 3 : Déterminez la classe prédite (Approuvée ou Refusée) par chacun des trois arbres.
- 2 Vote majoritaire:

Décision finale = majorité(votes "Approuvée", votes "Refusée").

Omparez la décision finale à ce que donnerait un seul arbre pris isolément.

Note

La Random Forest combine les prédictions pour **réduire l'instabilité** d'un arbre unique et améliorer la **robustesse** du modèle.