

République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Virtuelle de Tunis

Laboratoire de recherche en Informatique, Modélisation et

Traitement de

l'Information et de la Connaissance

Soutenance de Projet de fin d'étude

Pour l'obtention du diplôme de mastère professionnel en business Analytics and data science (BADS)

Détection et classification automatisées des tumeurs cérébrales à l'aide de techniques d'apprentissage profond

Réalisé Par :

Dhaouadi Ibtihel

Devant le jury :

Président : Mme Bedoui Khaoula

Rapporteur: Mr Zouaoui Slim

Encadrant : Mr. Ghazouani Haythem

Année Universitaire: 2023 - 2024

évaluation

Introduction

Déploiement

Segmentation : modélisation et

Compréhension des besoins

Compréhension et préparation des données

Classification: modélisation et évaluation

Introduction

- Contexte
- → Objectif
- Méthodologie

Compréhension des besoins

- les défis du diagnostic manuel
- Les avantages d'un système automatisé

Compréhension et préparation des données

- Description du jeu de données
- Les classes
- les étapes de préparation

Classification: modélisation et évaluation

- → Présentation des modèles testés
- **Evaluation des performances**
- Comparaison et meilleur modèle

Segmentation : modélisation et évaluation

- Introduction au modèle U-Net
- **Evaluation des performances**
- → Visualisation des résultats

Déploiement

Conclusion et perspectives

In

Introduction

contexte

objectif

méthodologie

Les tumeurs cérébrales représentent un défi médical majeur en raison de leur diversité et de la complexité de leur diagnostic. Face à l'augmentation des données médicales et au manque de

l'intelligence artificielle offre une opportunité unique d'automatiser l'analyse des images IRM, permettant ainsi de fournir une aide précieuse, rapide et fiable aux professionnels de santé.

contexte

méthodologie

L'objectif principal de ce projet est de développer un système <u>robuste</u> et <u>fiable</u> capable de <u>détecter</u>, <u>classifier</u> et <u>segmenter</u> les tumeurs cérébrales à partir d'images IRM en utilisant des réseaux neuronaux convolutifs (CNN) et des techniques de transfert d'apprentissage.

La méthodologie CRISP-DM (Cross-Industry Standard Process for Data Mining)

2 Compréhension des besoins

🖝 les défis du diagnostic manuel

Les avantages d'un système automatisé

Les tumeurs cérébrales varient largement en forme, taille et caractéristiques,

Complexité et diversité

Volume de données le grand nombre d'images IRM à analyser est un défi pour les radiologues

le manque d'experts qualifiés ralentit le diagnostic. Ressources limitées Variabilit é interexperts Les diagnostics peuvent différer d'un radiologue à l'autre, en fonction de leur expertise ou de leur fatique.

les défis du diagnostic manuel

Un système permettrait un diagnostic plus rapide et plus précis en réduisant les erreurs humaines.

Réduction des erreurs

Gain de temps

Un diagnostic plus rapide et précis permettrait de débuter le traitement des patients plus tôt

Un système automatisé pourrait être déployé dans des régions éloignées ou en développement

Compréhension et préparation des données

F Présentation du jeu de données

les classes

les étapes de préparation

kaggle

Input (93.08 MB)

- Data Sources
 - Brain Tumor Classification
 - 🗀 Testing
 - glioma_tumor
 - meningioma_tumor
 - → no_tumor
 - D pituitary_tumor
 - → □ Training
 - , 🖂 glioma_tumor
 - , meningioma_tumor
 - , 🗆 no_tumor • D pituitary_tumor

plan

anatomique :

Présentation du jeu de données 🛮 🖝 les classes

les étapes de préparation

Classe: No-Tumor

les images IRM de patients ne présentant aucune tumeur visible

Sagittal Coronal

et

Présentation du jeu de données 🛮 🖝 les classes

les étapes de préparation

cervea

u

Classe: Glioma-Tumor

Ce sont les tumeurs cérébrales les plus courantes, provenant des cellules gliales du cerveau

Présentation du jeu de données 🛮 🖝 les classes

les étapes de préparation

Pie-mere

Dure-mere (2 couches)

Arachnoïde

Classe: meningioma-Tumor

Ce type de tumeur se forme dans les méninges, qui sont les membranes protectrices recouvrant le cerveau et

Coronal

cervea u Cerveau Moelle épinière

Présentation du jeu de données

les étapes de préparation

Classe: pituitary-Tumor

des images d'IRM des tumeurs de l'hypophyse

Coronal

Présentation du jeu de données

Recadrage des images

Image Originale

Image Recadrée (sans espaces vides)

Sompréhension et préparation des données

Présentation du jeu de données

les classes

🖝 les étapes de préparation

Redimensionnement

Most frequent Train images shapes:

- (512, 512, 3): 2341

- (236, 236, 3): 79

- (225, 225, 3): 43

225x225 pixels

Présentation du jeu de données

les classes

🖝 les étapes de préparation

Normalisation

La normalisation des images est importante pour s'assurer que les valeurs des pixels sont dans une gamme qui permet une meilleure convergence pendant l'entraînement du

l'entraînement du modèle.

Présentation du jeu de données

les classes

🖝 les étapes de préparation

Mélanger les données

Présentation du jeu de données

les classes

répartition

Répartition des images d'entrainement et de test.

Compréhension et préparation des données

Présentation du jeu de données

les classes

🖝 les étapes de préparation

Encodage One-Hot

no_tumor

pituitary_tumor

meningioma_tumor

glioma _tumor

One-Hot encoding

classe 1	classe 2	classe 3	classe 4
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Compréhension et préparation des données

Présentation du jeu de données

Augmentation des données

```
# Définir les paramètres d'augmentation des données
train_datagen = ImageDataGenerator(
    rotation_range=30,
    width_shift_range=0.,
    height_shift_range=0.,
    shear_range=0.2,
    zoom_range=0.05,
    horizontal_flip=True,
    vertical_flip=False,
    fill_mode='nearest'
)
```


Classification: modélisation et évaluation

Classification : modélisation et évaluation

Frésentation des modèles testés

Evaluation des performances

Comparaison et meilleur modèle

Evaluation des performances

Comparaison et meilleur modèle

Utilisation de Kaggle Notebook pour l'entraînement des modèles, avec un accès aux **GPU** pour accélérer le calcul et l'entraînement des réseaux de neurones et qui facilite également l'accès aux **datasets**.

Classification : modélisation et évaluation

Frésentation des modèles testés

Evaluation des performances

Comparaison et meilleur modèle

```
#le modèle CNN
CNN_model = Sequential()
CNN_model.add(Conv2D(16, (3,3), activation='relu', input_shape=shape))
CNN_model.add(MaxPooling2D(2,2))
CNN_model.add(Dropout(8.2))
CNN_model.add(Conv2D(32, (3,3), activation='relu'))
CNN_model.add(MaxPooling2D(2,2))
CNN_model.add(Dropout(8.2))
CNN_model.add(Conv2D(64, (3,3), activation='relu'))
CNN_model.add(MaxPooling2D(2,2))
CNN_model.add(Dropout(0.2))
CNN_model.add(Conv2D(128, (3,3), activation='relu'))
CNN_model.add(MaxPooling2D(2,2))
CNN_model.add(Dropout(8.2))
CNN_model.add(Conv2D(512, (3,3), activation='relu'))
CNN_model.add(MaxPooling2D(2,2))
CNN_model.add(Dropout(0.2))
CNN_model.add(Flatten())
CNN_model.add(Dense(512, activation='relu'))
CNN_model.add(Dropout(8.5))
CNN_model.add(Dense(len(classes), activation='softmax'))
```


F Présentation des modèles testés

Evaluation des performances

Comparaison et meilleur modèle

Classification : modélisation et évaluation

Présentation des modèles testés

Evaluation des performances

Comparaison et meilleur modèle

convergence

plus rapide et
 des courbes

CNN model

InceptionResnet model

Classification: modélisation et évaluation

Présentation des modèles testés **Evaluation des performances**

Comparaison et meilleur modèle

CNN model

InceptionResnet model

Présentation des modèles testés **Evaluation des performances**

Comparaison et meilleur modèle

Classification Re	eport:				Classification Rep	ort:			
	precision	recall	f1-score	support		precision	recall	f1-score	support
no_tumor	0.92	0.86	0.89	42	no_tumor	1.00	1.00	1.00	51
pituitary_tumor	0.99	0.94	0.96	97	pituitary_tumor	0.99	1.00	0.99	85
meningioma_tumor	0.94	0.77	0.84	94	meningioma_tumor	0.99	0.99	0.99	101
glioma_tumor	0.75	0.95	0.83	93	glioma_tumor	1.00	0.99	0.99	89
accuracy			0.88	326	accuracy			0.99	326
macro avg	0.90	0.88	0.88	326	macro avg	0.99	0.99	0.99	326
weighted avg	0.90	0.88	0.88	326	weighted ava	0.99	0.99	0.99	326

CNN model

InceptionResnet model

Présentation des modèles testés **Evaluation des performances**

Comparaison et meilleur modèle

CNN model

InceptionResnet model

Présentation des modèles testés

Nom du modèle		Entrain	ement		Test				
Nom du modele	Perte	Precision	F1-score	Rappel	Perte	Précision	F1-score	Rappel	
Simple CNN	17.54%	93.70%	94.15%	93.08%	29.77%	88.04%	88.54%	87.73%	
DenseNet121	0.99%	99.58%	99.58%	99.58%	5.96%	98.77%	98.77%	98.77%	
InceptionResNetV2	0.42%	99.81%	99.81%	99.81%	4.08%	99.39%	99.39%	99.39%	
MobileNetV1	0.49%	99.85%	99.85%	99.77%	9.26%	98.77%	98.77%	98.77%	
EfficientNetB0	0.96%	99.62%	99.62%	99.62%	5.94%	98.47%	98.47%	98.47%	
Xception	1.40%	99.39%	99.46%	99.39%	7.75%	98.16%	98.46%	98.16%	
InceptionV3	2.21%	99.08%	99.08%	99.08%	7.72%	97.85%	97.85%	97.85%	
ResNet50	3.39%	98.81%	98.81%	98.81%	5.76%	98.77%	98.77%	98.47%	
ResNet101	7.09%	97.47%	97.62%	97.28%	17.72%	93.56%	93.54%	93.25%	

☞ Dataset et préparation

modèle U-Net

Evaluation des performances Visualisation des résultats

Total : 4237 images

T Dataset et préparation

modèle U-Net

Evaluation des performances

Visualisation des résultats

répartition des données

Diviser les données en ensembles d'entrainement (75%) et de validation (25%)
images_train, images_val, masks_train, masks_val, labels_train, labels_val = train_test_split(
 images, masks, labels, test_size=0.3, random_state=42, stratify=labels, shuffle=True
)

Augmentation des données

```
def train_generator(images, masks, batch_size, seed=42):
    image_datagen = ImageDataGenerator(
        rotation_range=20,
        width_shift_range=0.1,
        height_shift_range=0.1,
        shear_range=0.1,
        zoom_range=0.1,
        horizontal_flip=True,
        fill_mode='nearest'
    mask_datagen = ImageDataGenerator(
        rotation_range=20,
        width_shift_range=0.1,
        height_shift_range=0.1,
        shear_range=0.1,
        zoom_range=0.1,
        horizontal_flip=True,
        fill_mode='nearest'
```


Dataset et préparation

r modèle U-Net

Evaluation des performances

Visualisation des résultats

Dataset et préparation

remodèle U-Net

Evaluation des performances

Visualisation des résultats

Dataset et préparation

modèle U-Net 🖝 Evaluation des performances

Visualisation des résultats

Les paramètres utilisés pour l'entrainement :

Nombre d'époque : 100

taille de lot : 32

Générateur d'augmentation

callbacks:

ModelCheckpoint, EarlyStopping

Validation Loss: 0.0054

Validation Accuracy: 0.9946

Validation Dice Coefficient: 0.8619

Validation Toll Coefficient: 0.7584

Dataset et préparation modèle U-Net

Evaluation des performances Visualisation des résultats

image d'entrée

Masqué réel

Masque prédit

Masque reel

Masque predit

Masque réel

Masque prédit

S Déploiement

Tkinter

Windows | Frames | Widgets | Python

Project by Dhaouadi Ibtihel

Brain tumor Detection and classification **Upload Image** Reset Detection Original Image preprocessed image Mask Image Segmented image Tumor Type: glioma_tumor Elapsed Time: 0.44 seconds Classification Trust: 99.98% Tumor Size: 825.0 pixels

↓ Save Result

Conclusion et perspectives

Conclusion

Ce projet a démontré le potentiel des techniques d'apprentissage profond, notamment les réseaux neuronaux convolutifs et le transfert d'apprentissage, pour améliorer la classification et la segmentation des tumeurs cérébrales à partir d'images IRM.

🖝 les perspectives d'amélioration

À l'avenir, il serait pertinent d'élargir l'ensemble de données pour inclure une plus grande diversité de cas et d'étendre le système à d'autres types de tumeurs cérébrales ou à des pathologies cérébrales variées.

Merci pour votre attention

