Teoria	Es. 1	Es. 2	Es. 3	Es. 4

Analisi Matematica 1 Docente: C. Rizzi		Prima prova in itinere 21 novembre 2016
Cognome:	Nome:	Matricola:

Tutte le risposte devono essere giustificate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e, in caso di necessità, sul retro. I fogli di brutta non devono essere consegnati. La prova di teoria viene valutata nel suo complesso. Durante la prova non è consentito l'uso di libri, quaderni, calcolatrici e telefoni.

Teoria 1.

- i) Dare la definizione di successione $\{a_n\}_{n\in\mathbb{N}}$ convergente.
- ii) Enunciare e dimostrare il teorema di permanenza del segno per successioni.

Teoria 2.

- i) Enunciare il principio di induzione.
- ii) Dimostrare che per ogni $n\in\mathbb{N},$ il numero n^2+n+3 è dispari.

Teoria 3.

- i) Dare la definizione di funzione iniettiva.
- ii) Dimostrare che una funzione $f:A\subset\mathbb{R}\longrightarrow\mathbb{R}$ iniettiva è invertibile.
- iii) Determinare il più grande intervallo su cui la funzione $f(x) = \sqrt{|x-2| + |x| + 2}$.

Esercizio 1.

Studiare la funzione

$$f(x) = \arctan\left(\frac{|x^2 - 1|}{2x^2}\right)$$

Riportare in tabella i risultati e il grafico. Riportare i calcoli fondamentali sul retro del foglio.

Dominio D di f :		
Segno e zeri di f :		
Insieme di continuità (o studio della prolungabile continuità):		
Limiti agli estremi di D :		
Eventuali asintoti:		
Insieme di derivabilità D' :		
Derivata prima f' :		
Studio e natura degli eventuali punti di non derivabilità:		
Eventuali punti di massimo e/o minimo:		

Grafico presunto $\Gamma(f)$:				

Esercizio 2.

Calcolare, al variare del parametro $a \in \mathbb{R}$, il seguente limite

$$\lim_{x \to 0} \frac{\sqrt{a^2 + x} - |a|}{\sin^a(2x) \cdot \ln(\cos(x))}$$

Esercizio 3.

Determinare il luogo geometrico dei punti $z\in\mathbb{C}$ tali che

$$(z-1)^3 = 9(\overline{z}-1)$$

e rappresentare graficamente le soluzioni nel piano di Gauss. Determinare le soluzioni complesse del seguente sistema

$$\begin{cases} |z - i| \le 3 \\ (z - 1)^3 = 9(\overline{z} - 1) \end{cases}$$

Esercizio 4.

Calcolare estremo superiore ed estremo inferiore (ed eventualmente massimo e minimo) dell'insieme

$$A = \left\{ x = \log_{\frac{1}{2}} \left(\frac{n}{n+1} \right) \mid n \in \mathbb{N} \right\}$$