Corrigé de l'épreuve de Compilation Session ordinaire -- Février 2018

Exercice 1

- 1. (0|1)*101(0|1)*
- 2. 1*01*
- 3. (0|1)*1(0|1)
- 4. ((0|1)(0|1))*(0|1)

Exercice 2

1. L'ensemble des états : $E = \{0, 1, 2, 3, 4, 5\}$.

L'alphabet : $A = \{0, 1\}$.

La nature de M : Non déterministe, car il contient des ε-transitions.

2. ε -clôture({3}) = {3, 4, 5}

 ε -clôture($\{0, 5\}$) = $\{0, 1, 2, 5\}$.

3. $\delta'(\{3\}, 0) = \epsilon\text{-clôture}(\delta(3, 0) \cup \delta(4, 0) \cup \delta(5, 0)) = \epsilon\text{-clôture}(\{3\}) = \{3, 4, 5\}$ $\delta'(\{0, 5\}, 1) = \epsilon\text{-clôture}(\delta(0, 1) \cup \delta(1, 1) \cup \delta(2, 0) \cup \delta(5, 1)) = \epsilon\text{-clôture}(\{0, 2, 4\})$ $= \{0, 1, 2, 4\}$

4. L'arbre de calcul de M pour le mot w = 0:

- Oui, l'automate M accepte le mot w = 0, car il existe un chemin de l'état initial 0 vers un état final (l'état 4) dont l'étiquette est $\varepsilon = \varepsilon \varepsilon 0 \varepsilon = 0$.
- Il y a un seul chemin d'acceptation du mot w=0 dans M.

Exercice 3

1. L'AFND obtenu par l'algorithme de **Thompson** :

2. Déterminisation de M₁:

- $q_0 := \varepsilon$ -clôture($\{0\}$) = $\{0, 1, 2, 4, 7\}$
- $\delta(q_0, 0) = \{1, 2, 3, 4, 6, 7, 8\} = q_1; \, \delta(q_0, 1) = \{1, 2, 4, 5, 6, 7\} = q_2$
- $\delta(q_1, 0) = \{1, 2, 3, 4, 6, 7, 8, 9\} = q_3; \delta(q_1, 1) = q_2$
- $\delta(q_2, 0) = q_1; \delta(q_2, 1) = q_2$
- $\delta(q_3, 0) = q_3$; $\delta(q_3, 1) = q_2$

L'AFD M2 obtenu est:

3. Minimisation de M₂ par l'algorithme de **Hopcroft & Ullman**:

- L'AFD est déjà simplifié.
- Partition $\Pi_0 := \{ \#0, \#1 \}$ avec : $\#0 = \{ q_0, q_1, q_2 \}$ et $\#1 = \{ q_3 \}$.

Groupes	Etats	0	1
	q_0	#0	#0
#0	q_1	#1	#0
	q_2	#0	#0
#1	q_3	#1	#0

- Partition Π_1 := {#0, #1, #2} avec : #0 = {q₀, q₂}, #1 = {q₁} et #2 = {q₃}.

Groupes	Etats	0	1
#0	$egin{array}{c} q_0 \ q_2 \end{array}$	#1 #1	#0 #0
#1	q_1	#2	#0
#2	q_3	#2	#0

On numérote les états : #0 := 0, #1 := 1 et #2 := 2. La table des transitions de l'AFD minimal M_3 est :

δ	0	1
0	1	0
1	2	0
2	2	0

L'état initial est $q_0 = 0$ et l'ensemble des états finaux est $F = \{2\}$. L'AFD minimal M_3 obtenu est :

- 4. Une grammaire hors-contexte qui génère le langage L à partir de l'AFD minimal M₃ :
 - $V = \{S, A, B\}$
 - $T = \{0, 1\}$
 - $P = \{S \to 0A \mid 1S, A \to 0B \mid 1S, B \to 0B \mid 1S \mid \epsilon\}$
 - Axiome: S

Exercice 4

- 1. Les éléments de G:
 - $V = \{S, A, B\}$
 - $T = \{a, b\}$
 - $P = \{S \rightarrow AB, A \rightarrow Aa \mid bB, B \rightarrow a \mid Sb\}$
 - Axiome: S
- 2. Un arbre de dérivation pour la forme $\alpha = baSb$:

3. Une dérivation gauche pour le mot w = baa:

$$\mathbf{S} \Rightarrow_{lm} \mathbf{A} \mathbf{B} \Rightarrow_{lm} \mathbf{b} \mathbf{B} \mathbf{B} \Rightarrow_{lm} \mathbf{b} \mathbf{a} \mathbf{B} \Rightarrow_{lm} \mathbf{b} \mathbf{a} \mathbf{a}$$

Une dérivation droite pour le mot w = baa:

$$S \Rightarrow_{rm} AB \Rightarrow_{rm} Aa \Rightarrow_{rm} bBa \Rightarrow_{rm} baa$$

4. La grammaire G n'est pas LL(1), car elle est récursive à gauche à cause de la règle :

$$A \rightarrow Aa$$

Exercice 5

1. Les ensembles Premiers (First) et les ensembles Suivants (Follow) de G:

	S	A	В
First	{0, 1, a, b}	{0, a}	{1, b}
Follow	{\$ }	{1, a, b, \$}	{0, a, b, \$}

2. La table d'analyse LL(1) de G:

	a	b	0	1	\$
S	$S \to A$	$S \rightarrow B$	$S \to A$	$S \to B$	
A	$A \rightarrow aABb$		$A \rightarrow 0$		
В		$B \rightarrow bBAa$		$B \rightarrow 1$	

3. La pile d'analyse LL(1) de G pour le mot w = a01b:

Pile	Entrée	Règles
\$S	a01b\$	$S \to A$
\$A	a01b\$	$A \rightarrow aABb$
\$bBAa	a01b\$	
\$bBA	01b\$	$A \rightarrow 0$
\$bB0	01b\$	
\$bB	1b\$	$B \rightarrow 1$
\$b1	1b\$	
\$b	b\$	
\$	\$	Accept.

L'arbre de dérivation de w :

4. La nouvelle grammaire G' n'est pas LL(1), car elle est non factorisée à gauche à cause des règles :

$$B \rightarrow 1 \mid 1S0$$

