Binomial Coefficients and Logarithms Activity - Solutions

Binomial Coefficients

Definition: $\pi_{n}\{k\} = \frac{n!}{k!(n-k)!}$ for all $n \ge k \ge 0$

Example 1: Calculate: \$\binom{10}{3}\$

Solution: $\$\$ = $\frac{10!}{3!(10-3)!} = \frac{10!}{3!(10-3)!} = \frac{10!}{3!(10-3)!} = \frac{10!}{3!}$

 $\cdot 7!$ = $\frac{10 \cdot 9 \cdot 8}{3!} = \frac{720}{6} = 120$ \$

Answer: 120

Example 2: How many 8-bit strings contain exactly 3 zeros?

Solution: We need to choose 3 positions out of 8 total positions for the zeros. The remaining 5 positions will

contain ones.

Number of ways = $\frac{8!}{3!(8-3)!} = \frac{8!}{3! \cdot 5!} = \frac{6}{3 \cdot 5!} = \frac{6}{3 \cdot 5!}$

 $\cdot 1$ = $\frac{336}{6} = 56$ \$

Answer: 56 strings

Example 3: Use the definition to simplify each of the following:

a) \$\binom{n}{0}\$

Solution: $\frac{n}{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \cdot n!} = 1$

Answer: 1

b) \$\binom{n}{n}\$

Solution: $\frac{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n! \cdot 0!} = \frac{n!}{n! \cdot 0!} = \frac{1}{n! \cdot 0!}$

Answer: 1

Example 4: Suppose a string of n characters contains only two possible characters: * and |. Write an expression for the number of n-bit strings that contain exactly 2 *'s. Simplify your

expression to be written as a polynomial.

Solution: We need to choose 2 positions out of n positions for the * characters.

Number of strings = $\frac{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n-1)(n-2)!}{2 \cdot (n-2)!} = \frac{n-2}{2!}$

1)}{2}\$

Expanding: $\frac{n^2 - n}{2} = \frac{1}{2}n^2 - \frac{1}{2}n^2$

Answer: $\frac{1}{2}n^2 - \frac{1}{2}n$ or $\frac{n(n-1)}{2}$

Logarithms

Definition: $y = \log_b x \cdot b^y = x$ **Notation**: We use y = x to represent $\log_2 x$.

Example 1: Use the definition to determine each of the following:

a) \$\lg 32\$

Solution: We need to find y such that $2^y = 32$ Since $32 = 2^5$, we have 32 = 5

Answer: 5

b) \$\lg 1024\$

Solution: We need to find y such that $2^y = 1024$ Since $1024 = 2^{10}$, we have 1024 = 10

Answer: 10

c) \$\lg 1\$

Solution: We need to find y such that $2^y = 1$ Since $1 = 2^0$, we have | 1 = 0

Answer: 0

d) \$\log_3 81\$

Solution: We need to find y such that $3^y = 81$ \$ Since $81 = 3^4$ \$, we have $\log_3 81 = 4$ \$

Answer: 4

e) \$\log 100,000\$

Solution: We need to find y such that $10^y = 100,000$ Since $100,000 = 10^5$, we have 100,000 = 5

Answer: 5

Example 2: Use powers of 2 to calculate:

a) \$\lfloor \lg 70 \rfloor\$

Solution: We need the largest integer k such that $2^k \leq 70$ \$2^6 = 64 \leq 70 < 128 = 2^7\$ Therefore \$\lfloor \lq 70 \rfloor = 6\$

Answer: 6

b) \$\lceil \lg 1100 \rceil\$

Solution: We need the smallest integer k such that $2^k \leq 1100 \leq 2^{11}$ Therefore $\left| 1100 \right| \leq 1100 \leq 2048 = 2^{11}$

Answer: 11

Example 3: Use a calculator and the change of base formula to calculate:

Change of Base Formula: $\log_a x = \frac{\log_c x}{\log_c a}$

a) \$\log_3 687\$

Solution: $\frac{687}{\log 3} = \frac{687}{\log 3} = \frac{2.8370}{0.4771} \cdot 5.95$

Answer: ≈ 5.95

b) \$\log_5 791\$

Solution: $\$\log_5 791 = \frac{1}{\log 5} = \frac{2.8982}{0.6990} \cdot 4.15$

Answer: ≈ 4.15

Example 4: Use properties of logs to simplify each of the following:

Properties:

- $\log_a(xy) = \log_a x + \log_a y$
- $\log_a(x^r) = r\log_a x$

a) \$\lg(8n)\$

Solution: $\$ \lg(8n) = \lg(8) + \lg(n) = \lg(2^3) + \lg(n) = 3 \lg(2) + \lg(n) = 3 \gcd 1 + \lg(n) = 3 + \lg(n) = 3 \gcd 1$

Answer: $$3 + \lg(n)$$

b) \$\lg(n^2)\$

Solution: $\$ \lg(n^2) = 2\lg(n)\$$

Answer: $2 \lg(n)$

c) \$\lg(n^{10})\$

Solution: $\$\log(n^{10}) = 10\lg(n)$ \$

Answer: $10\lg(n)$

d) $\log(\sqrt{n})$

Solution: $\frac{1}{2} \log(n^{1/2}) = \frac{1}{2} \log(n)$

Answer: $\frac{1}{2} \lg(n)$

e) \$\lg(n^n)\$

Solution: $\$\log(n^n) = n\log(n)$

Answer: $n\lg(n)$

Example 5: Binary Search Algorithm Analysis

Problem: Determine the number of times the while loop is executed in the worst case for binarySearch algorithm.

Solution: In binary search, each iteration of the while loop reduces the search space by half. Starting with n elements:

- After 1 iteration: n/2 elements remain
- After 2 iterations: n/4 elements remain
- After 3 iterations: n/8 elements remain
- After k iterations: n/2^k elements remain

The loop continues until we have 1 or fewer elements to search, so we need: $\frac{n}{2^k}$ \geq 2^k \$\$\\geq 2^k \$\$

Therefore, the maximum number of iterations is $k = \lceil \log(n) \rceil + 1$.

Examples given:

- Search 3770 student records: $\left(\frac{3770}{rfloor} + 1 = \frac{11 + 1}{12}\right)$
- Search 332,000,000 people: \$\lfloor \lg(332,000,000) \rfloor + 1 = \lfloor 28.31 \rfloor + 1 = 28 + 1 = 29\$ iterations

Answer: $| \g(n) \r + 1$ iterations in the worst case

Course content developed by Declan Gray-Mullen for WNEU with Claude