Exercice 1:

Soit $x \in \mathbb{R}$.

- 1. (a) Montrer que $\left\lfloor x+\frac{1}{2}\right\rfloor = \left\lfloor x\right\rfloor$ ou $\left\lfloor x+\frac{1}{2}\right\rfloor = \left\lfloor x\right\rfloor + 1$.

 Indication: on pourra montrer $\left\lfloor x\right\rfloor \leqslant \left\lfloor x+\frac{1}{2}\right\rfloor \leqslant \left\lfloor x\right\rfloor + 1$.
 - (b) Montrer que $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.
- 2. Pour tout entier naturel n, on pose $S_n(x) = \sum_{k=0}^n \left| \frac{x+2^k}{2^{k+1}} \right|$.
 - (a) Pour tout entier naturel n, déduire de la question précédente une expression simple de $S_n(x)$.
 - (b) Calculer $\lim_{n \to +\infty} S_n(x)$.

Exercice 2:

1. Montrer:

$$\forall t \in]1, +\infty[, \ln(t) > 2 \times \frac{t-1}{t+1}.$$

- 2. En déduire : pour tous réels x et y tels que 0 < x < y, $\frac{y-x}{\ln(y)-\ln(x)} < \frac{x+y}{2}$.
- 3. Pour tout entier naturel n non nul, on pose $T_n = \sum_{k=1}^n \frac{k}{\ln\left(1+\frac{1}{k}\right)}$. Montrer: $T_n < \frac{n(n+1)(4n+5)}{12}$.

Exercice 3:

 $\overline{\text{Soit } (u_n)_{n\in\mathbb{N}^*}}$ la suite définie par : $\forall n\in\mathbb{N}^*, u_n=\sum\limits_{k=1}^n\frac{1}{n+k}.$

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par : $\forall n\in\mathbb{N}^*,\ v_n=\frac{1}{n}\sum\limits_{k=1}^n\cos\left(\frac{1}{\sqrt{n+k}}\right)$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 2. Montrer: $\forall n \in \mathbb{N}^*, u_n \leq 1$. Que pouvons-nous conclure sur la suite $(u_n)_{n \in \mathbb{N}^*}$?
- 3. (a) Démontrer : $\forall x \in \mathbb{R}, \ 1 \frac{x^2}{2} \leqslant \cos x \leqslant 1$.
 - (b) Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.