

Apprentissage supervisé

Deux grandes familles d'applications

- ➤ Classification: la cible est un indice de classe $t \in \{1, ..., K\}$
 - · Exemple : reconnaissance de caractères
 - $\sqrt{\vec{x}}$: vecteur des intensités de tous les pixels de l'image \sqrt{t} : identité du caractère
- **Régression :** la cible est un nombre réel $t \in \mathbb{R}$

 - Exemple : prédiction de la valeur d'une action à la bourse

 ✓ x̄: vecteur contenant l'information sur l'activité économique de la journée

 ✓ t: valeur d'une action à la bourse le lendemain

Apprentissage supervisé avec CNN

Supervisé vs non supervisé

Apprentissage supervisé: il y a une cible

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Apprentissage non-supervisé: la cible n'est pas fournie

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Pourquoi une variable latente?

Plus facile de représenter $p(\vec{x}, y), p(\vec{x} \mid y), p(y)$ que $p(\vec{x})$

Plus d'info au tableau.

En apprentissage non-supervisé

nous nous appuierons sur

2 propriétés des réseaux de neurones

Propriété 2 Les réseaux de neurones sont d'excellentes machines pour estimer des probabilités conditionnelles. \vec{x} $\vec{x$

Comment utiliser un réseau de neurones pour apprendre la **configuration sous-jacente** de données non étiquettés?


```
Autoencodeur jouet de MNIST
       class autoencoder(nn.Module):
           def __init__(self):
               super(autoencoder, self).__init__()
              self.encoder = nn.Sequential(
                 nn.Linear(28 * 28, 128), nn.ReLU(True),
                  nn.Linear(128, 64), nn.ReLU(True),
                                                           Espace latent 2D
                  nn.Linear(64, 12), nn.ReLU(True),
              nn.Linear(2, 12), nn.ReLU(True),
                  nn.Linear(12, 64), nn.ReLU(True),
                 nn.Linear(64, 128), nn.ReLU(True),
                  nn.Linear(128, 28 * 28))
           def forward(self, x):
              z = self.encoder(x)
              x_prime = self.decoder(z)
              return x_prime
```


Au lieu d'apprendre à reproduire un signal d'entrée...

Apprendre à reproduire une distribution $p(\vec{z})$

Apprendre à reproduire une distribution $p(\bar{z}$ connue de sorte qu'un point échantillonné et décodé de cette distribution correspond à un signal reconstruit valable

Autoencodeur variationnel

Preuve au tableau (si le temps le permet)

$$\vec{x}$$
 \vec{z}
 \vec{z}

Perte encodeur

Perte décodeur

Autoencodeur variationnel D.Kingma, M.Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114v10 (Annexe B) ELBO loss: Evidence Lower Bound
$$Loss = KL(N(z;0,1),N(z;\mu,\Sigma)) - \log(P(x\mid z))$$
 Perte encodeur Perte décodeur Si on suppose que P(x|z) est gaussien
$$Loss = \frac{1}{2}\sum_{i=1}^{d}(1+\log(\sigma_i^2)+\mu_i^2-\sigma_i^2)-\lambda||\vec{x}-\vec{x}'||^2$$
 Perte encodeur Perte décodeur


```
Autoencodeur variationnel jouet MNIST: d=32 dim

class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(28 * 28 , 128), nn.ReLU(True),
            nn.Linear(28 * 29, 128), nn.ReLU(True),
            nn.Linear(49, 32*2)
        self.decoder = nn.Sequential(
            nn.Linear(22, 64), nn.ReLU(True),
            nn.Linear(22, 64), nn.ReLU(True),
            nn.Linear(64, 122), nn.ReLU(True),
            nn.Linear(64, 128), nn.ReLU(True),
            nn.Linear(64, 128), nn.ReLU(True),
            nn.Linear(64, 128), nn.ReLU(True),
            nn.Linear(128, 28 * 28))

def reparameteriz(self, % 28)
            eps = torch.exp(0.5*logvar)
            eps = torch.exp(0.5*logvar)
            eps = torch.rand_like(std)
            return mu + eps*std

def forward(self, %):
            enc x = self.encoder(x)
            mu = enc x[:,:32]
            logvar = stats[:,32:]
            z = self.reparameterize(mu, logvar)
            return self.decoder(2), mu, logvar)
```

```
Autoencodeur variationnel jouet MNIST: d=32 dim

def loss function(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return KLD + self.lambda*BCE
```


Plusieurs tutoriels, VAE

- https://ijdykeman.github.io/ml/2016/12/21/cvae.html
- https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
- https://towardsdatascience.com/deep-latent-variable-models-unravel-hidden-structuresa5df0fd32ae2
- C. Doersch, Tutorial on Variational Autoencoders, arXiv:1606.05908

GAN

Generative Adversarial Nets

On voudrait générer des images \vec{x} en échantillonnant $P(\vec{x})$

 \Rightarrow **TROP DIFFICILE** car $P(\vec{x})$ trop complexe

Comme précédemment, pour simplifier le problème, on pourrait introduire une variable latente \vec{z} et ainsi modéliser

$$P(\vec{x}, \vec{z}) = P(\vec{x} \mid \vec{z})P(\vec{z})$$

Modèle génératif

Distribution a priori

Comme pour les VAE, on utilisera une distribution *a priori* facile à échantillonner : une gaussienne!

$$P(\vec{z}) = N(\vec{z}; 0, 1)$$

Comment estimer $P(\vec{x} \mid \vec{z})$?

À l'aide d'un réseau de neurones car ce sont **d'excellentes machines** pour estimer des probabilités conditionnelles

Rappel, entropie croisée pour une régression logistique binaire:

$$L_D = \frac{1}{N} \sum_{i} -t_i \ln \left(y(\vec{x}_i) \right) - \left(1 - t_i \right) \ln \left(1 - y(\vec{x}_i) \right)$$

Le réseau discriminateur est représenté par la lettre D

$$L_D = \frac{1}{N} \sum_{i} -t_i \ln \left(D(\vec{x}_i) \right) - \left(1 - t_i \right) \ln \left(1 - D(\vec{x}_i) \right)$$

$$\vec{x}$$
 D $D(\vec{x})$

Rappel: Espérance mathématique et approximation Monte Carlo
$$IE\left[x\right] = \int xp\left(x\right)dx$$

$$IE\left[f\left(x\right)\right] = \int f\left(x\right)p\left(x\right)dx$$

Rappel: Espérance mathématique et approximation Monte Carlo

$$IE[x] = \int xp(x)dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \text{où } x_{i} \sim p(x)$$
approximation
$$Monte Carlo$$

$$IE[f(x)] = \int f(x)p(x)dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) \quad \text{où } x_{i} \sim p(x)$$

Rappel: Espérance mathématique et estimateur Monte Carlo

$$L_{D} = -\underbrace{\frac{1}{N_{reel}} \sum_{i} \ln \left(D(\vec{x}_{i})\right)}_{\text{Perte images réelles}} - \underbrace{\frac{1}{N_{sym}} \sum_{j} \ln \left(1 - D\left(G(\vec{z}_{j})\right)\right)}_{\text{Perte images synthétiques}}$$

$$L_{D} = -IE_{\vec{x} \sim P_{red}} \left[\ln \left(D(\vec{x}) \right) \right] - IE_{\vec{z} \sim P_{z}} \left[\ln \left(1 - D(G(\vec{z})) \right) \right]$$

(Loss de GAN dans la littérature)

Objectif du discriminateur

Paramètres du discriminateur

Ou encore, de façon équivalente

$$W_{D} = \arg \max_{W_{D}} \ IE_{\vec{x} - P_{red}} \left[\ln \left(D(\vec{x}) \right) \right] + IE_{\vec{z} - P_{z}} \left[\ln \left(1 - D(G(\vec{z})) \right) \right]$$

« Two player » mini-max game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

« Two player » mini-max game

Discriminateur veux D(x) = 1 pour les vrais données

Discriminateur veux D(G(x)) = 0 pour les données synthétiques

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{x}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Générateur veux D(G(x)) = 1 pour les données synthétiques

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

NOTE

dans les faits, on ne minimise pas cette loss

$$W_G = \arg\min_{W} \left[\ln \left(1 - D(G(\vec{z})) \right) \right]$$

on maximise plutôt celle-ci

$$W_G = \arg \max_{W_G} IE_{\vec{z} \sim P_z} \left[\ln \left(D \left(G(\vec{z}) \right) \right) \right]$$

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

- for number of training iterations do for k steps do

 Sample minibatch of m noise samples $\{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(m)}\}$ from noise prior $p_g(\boldsymbol{z})$.

 Sample minibatch of m examples $\{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(m)}\}$ from data generating distribution
 - $p_{ ext{data}}(m{x}).$ Update the discriminator by ascending its stochastic gradient:

$$\overline{\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]}$$

- end for Sample minibatch of m noise samples $\{z^{(1)},\dots,z^{(m)}\}$ from noise prior $p_g(z)$. Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

Deep Convolution Generative Adversarial Net (DCGAN) Generator Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Deep Convolution Generative Adversarial Net (DCGAN)

Recommandations discriminateur

- Conv stride>1 au lieu des couches de pooling
- ReLU partout sauf en sortie : tanh

Recommandations générateur

- Conv transpose au lieu de upsampling
- LeakyReLÛ partout

Autre recommandations

- · BatchNorm partout
- Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Deep Convolution Generative Adversarial Net (DCGAN)

Recommandations discriminateur

9

Rec

https://github.com/soumith/ganhacks

- .
- · Lunyree puriou

Autre recommandations

- BatchNorm partout
- Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Deep Convolution Generative Adversarial Net (DCGAN)

2	6

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:
 o disparition des gradients
 effondrement des modes
 o nne peut générer d'images à haute résolution
- Plusieurs solutions proposées:

 Wasserstein GAN (utilise "earth mover distance")

 Least Squares GAN (utilise distance d'erreur quadratique)

 Progressive GAN

 ...

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:
 disparition des gradients
 effondrement des modes
 on ne peut générer d'images à haute résolution

Si le discriminateur apprend trop vite, le générateur sera systématiquement battu, et n'apprendra rien

Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:
 o disparition des gradients

 - effondrement des modes
 on ne peut générer d'images à haute résolution

Le générateur peut apprendre à générer tout le temps la même image qui bat le discriminateur

Problèmes d'instabilité

• Si discriminateur et générateur et n'apprennent pas ensemble: Epoch 7

 $485/gan\hbox{-}discriminator\hbox{-}converging\hbox{-}to\hbox{-}one\hbox{-}output$

https://datascience.stackexchange.com/questions/29

LS GAN

Problème des GANs de base

"sigmoïde de sortie" oublie les exemples correctement classifiés et loin du plan de séparation

$$\begin{aligned} \max_{D} V(D) &= \mathbb{E}_{\mathbf{z} \sim p_{\text{sim}}(\mathbf{z})}[\log D(\mathbf{z})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log (1 - D(G(\mathbf{z})))] \\ &\underset{G}{\min} V(G) &= \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log (1 - D(G(\mathbf{z})))] \text{ or } \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} - [\log D(G(\mathbf{z}))] \end{aligned}$$

1

"Least Squares GAN" Mao et al. ICCV'17

LS GAN

Problème des GANs de base

"sigm

séparation

Le discriminateur ne s'entraîne plus lorsque les images synthétiques sont très différentes des images réelles

$$\min_{G} V(G) = \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))] \text{ or } \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} - [\log D(G(\mathbf{z}))]$$

"Least Squares GAN" Mao et al. ICCV'17

LS GAN

Quand on utilise **l'erreur quadratique**, même les exemples « trop biens classifiés » contribuent aux gradients du générateur. Le but est de rapprocher les images synthétiques des images réelles

Pour LS GAN, la sortie du réseau n'est plus une sigmoïde

$$\begin{split} \min_{D} V_{\scriptscriptstyle LSGAN}(D) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[(D(\boldsymbol{x}) - 1)^2 \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}(\boldsymbol{x})} \left[(D(G(\boldsymbol{z})))^2 \right] \\ \min_{D} V_{\scriptscriptstyle LSGAN}(G) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}(\boldsymbol{x})} \left[(D(G(\boldsymbol{z})) - 1)^2 \right], \end{split}$$

"Least Squares GAN" Mao et al. ICCV'17

detail, and skin pores.

Karas et al. A Style-Based Generator Architecture for Generativ
Adversarial Networks, CVPR 2019

Style GAN

Latent $z \in Z$ Synthesis network gNonalize

Mapping network

PC

PC

PC

PC

AdalN: adaptive instance normalization

AdalN: $(x,y) = \sigma(y) \frac{x - \mu(x)}{\sigma(x)} + \mu(y)$ Comme du batchNorm, mais dont les 2 opérateurs affines sont fournis par w(b) Style-based generator

Style GAN

Entraînement progressif comme pour progressive GAN

Gan conditionnel L'idée est d'encoder un vecteur latent \vec{z} ainsi qu'un vecteur de classe « one-hot » \vec{y} Mirza, Mehdi & Osindero, Simon. (2014). Conditional Generative Adversarial Nets. arXiv:1411.1784v1

Code pytorch pour plus de 30 modèles de GANs

https://github.com/eriklindernoren/PyTorch-GAN

Belle vidéo sur les GANs montrant	
comment on peut manipuler l'espace	
latent et comment certains les utilise	
pour produire des « deep fake »	
https://www.youtube.com/watch?v=dCKbRCUyop8	