Assignment -2

DATA VISUALISATION AND PRE-PROCESSING

Assignment Date	27 September 2022
Student Name	GOKULRAJ S
Student Roll Number	612419104011
Maximum Marks	2 Marks

Question-1:

Download the Dataset

SOLUTION:

Question-2:

Loading dataset

```
df = pd.read_csv("Churn_Modelling.csv")
df
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52

Question-3:

- 1. Visualizations
- a) Univariate Analysis

SOLUTION:

b) Bi-Variate Analysis

c) Multi - Variate Analysis

SOLUTION:

```
sns.lmplot("Tenure", "NumOfProducts", df, hue="NumOfProducts", fit reg=False);
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y, data. From version FutureWarning

Question-4:

Perform descriptive statistics on the dataset.

SOLUTION:

df.describe()

df.describe()												
	RowNumber	RowNumber CustomerId		CreditScore Age		Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary		
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	1	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881		
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818		
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000		
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000		
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000		
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500		
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000		

Question-5:

Handle the Missing values.

SOLUTION:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

```
False
        False
        False
3
        False
4
        False
9995
        False
9996
        False
9997
        False
9998
        False
9999
        False
Name: Gender, Length: 10000, dtype: bool
```

Question-6:

Find the outliers and replace the outliers.

SOLUTION:

```
sns.boxplot(df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the FutureWarning (matplotlib.axes._subplots.AxesSubplot at 0x7f6d4aaf7110)


```
df['Age']
 0
          42
 1
          41
 2
          42
 3
          39
 4
          43
 9995
          39
 9996
          35
 9997
          36
 9998
          42
```

df['Age']=np.where(df['Age']>50,40,df['Age'])

Name: Age, Length: 10000, dtype: int64

SOLUTION:

```
sns.boxplot(df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, th
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f6d4b7e8990>

SOLUTION:

```
df['Age']=np.where(df['Age']<20,35,df['Age'])
df['Age']</pre>
```

```
0
        42
        41
1
        42
        39
        43
9995
9996
        35
9997
        36
9998
        42
9999
Name: Age, Length: 10000, dtype: int64
```

Question-7:

Check for Categorical columns and perform encoding.

SOLUTION:

pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]).hea

)	nOfProducts	HasCrCard	IsActiveMember	•••	Gender_41	Gender_42	Gender_43	Gender_44	Gender_45	Gender_46	Gender_47	Gender_48	Gender_49	Gender_50
	1	1	1		0	1	0	0	0	0	0	0	0	0
	1	0	1		1	0	0	0	0	0	0	0	0	0
	3	1	0		0	1	0	0	0	0	0	0	0	0
	2	0	0		0	0	0	0	0	0	0	0	0	0
	1	1	1		0	0	1	0	0	0	0	0	0	0

0		RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	•••	Gender_41	Gender_42	Gende
	0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0	1	
	1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1		1	0	
	2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0	1	
	3	4	15701354	Boni	699	France	1	0.00	2	0	0		0	0	
	4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0	0	

5 rows × 45 columns

Question-8:

- Split the data into dependent and independent variables.
- a) Split the data into Independent variables.

SOLUTION:

```
X = df.iloc[:, :-1].values
print(X)
```

```
[[1 15634602 'Hargrave' ... 1 1 101348.88]
  [2 15647311 'Hill' ... 0 1 112542.58]
  [3 15619304 'Onio' ... 1 0 113931.57]
  ...
  [9998 15584532 'Liu' ... 0 1 42085.58]
  [9999 15682355 'Sabbatini' ... 1 0 92888.52]
  [10000 15628319 'Walker' ... 1 0 38190.78]]
```

b) Split the data into Dependent variables

```
Y = df.iloc[:, -1].values
    print(Y)

[1 0 1 ... 1 1 0]
```

Question-9:

Scale the independent variables

SOLUTION:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["CustomerId"]] = scaler.fit transform(df[["CustomerId"]])
print(df)
      RowNumber CustomerId Surname CreditScore Geography Gender Age \
                                   619 France Female
              0.275616 Hargrave
 0
           1
           2 0.326454
 1
                         Hill
                                     608 Spain Female 41
           3 0.214421
                                     502 France Female 42
 2
                          Onio
 3
           4 0.542636
                          Boni
                                     699 France Female 39
                                     850 Spain Female 43
           5 0.688778 Mitchell
 4
                                    771 France Male 39
516 France Male 35
          . . .
               ... ...
        9996 0.162119 Obijiaku
 9995
 9996
        9997 0.016765 Johnstone
                                     709 France Female 36
         9998 0.075327 Liu
 9997
 9998
         9999 0.466637 Sabbatini
                                     772 Germany Male 42
     10000 0.250483 Walker 792 France Female
 9999
                                                          28
     Tenure Balance NumOfProducts HasCrCard IsActiveMember \
 0
        2
                0.00
                             1
                                       1
 1
         1 83807.86
                             1
                                                   1
         8 159660.80
                             3
                                       1
                                                   0
 3
        1
                0.00
                             2
                                                   0
 4
        2 125510.82
                             1
                                       1
                                                   1
               . . .
                            . . .
        . . .
                                     . . .
 9995 5 0.00
9996 10 57369.61
                             2
                                       1
                             1
                                      1
                                                   1
        7
                             1
                                      0
 9997
             0.00
                                                   1
 9998
        3 75075.31
                             2
                                      1
                                                   0
 9999 4 130142.79
                             1
                                     1
     EstimatedSalary Exited
          101348.88
 0
 1
          112542.58
 2
         113931.57
                      1
 3
          93826.63
                      0
```

79084.10

...

0

4

Question-10:

Split the data into training and testing

1. List item

```
from sklearn.model_selection import train_test_split

train_size=0.8

X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']

X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5

X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```