IIT CS536: Science of Programming

Homework 3: Statements, Semantics, Errors and Hoare Triples

My Dinh

1 Statement Syntax

Task 1.1 (Written, 8 points)

```
x:=0;
i:=0;
while(i<size(a)){
    x:=x+a[i];
    i:=i+1
}</pre>
```

2 Semantics

Task 2.1 (Written, 10 points)

a) Steps of evaluation

```
 \begin{array}{ccc} \langle s, \{n=5\} \rangle \\ \to & \langle b; s, \{n=5\} \rangle \\ \to & \langle n:=3*n+1; s, \{n=5\} \rangle \\ \to^2 & \langle s, \{n=16\} \rangle \\ \to^2 & \langle n:=n/2; s, \{n=16\} \rangle \\ \to^2 & \langle s, \{n=8\} \rangle \\ \to^2 & \langle n:=n/2; s, \{n=8\} \rangle \\ \to^2 & \langle s, \{n=4\} \rangle \\ \to^2 & \langle s, \{n=4\} \rangle \\ \to^2 & \langle s, \{n=2\} \rangle \\ \to^2 & \langle s, \{n=2\} \rangle \\ \to^2 & \langle s, \{n=1\} \rangle \\ \to & \langle skip, \{n=1\} \rangle \end{array}
```

b) $M(s, \sigma)$ is $\Sigma_5 = \{\{n = 1\}\}.$

Task 2.2 (Written, 12 points)

```
a) \{\perp_d\}
```

b)
$$\Sigma_3 = \{\{n = 0\}\}$$

c)
$$\{n = -1\}$$

d)
$$\{x = 1, a = [0, 3, 2, 1], y = 3\}$$

e)
$$\{x = -1, a = [0, 3, 2, 1], z = 0\}$$

f)
$$\{\perp_e\}$$

3 Hoare triples

Task 3.1 (Written, 16 points)

a) Unsatisfied.

Because the final state $\{i = 0, x = 6\}$ does not satisfy i > 0.

b) Satisfied.

Because the starting state $\{i=3, x=1\}$ satisfies i>0 and the program terminates then the final state $\{i=0, x=6\}$ satisfies $i\geq 0 \land x\geq 1$.

c) Satisfied.

Because the starting state $\{i=3, x=1\}$ satisfies i>0, then the program terminates and the final state $\{i=0, x=6\}$ satisfies $i\geq 0 \land x\geq 1$.

d) Satisfied.

Because the starting state $\{i = -1, x = 1\}$ does not satisfy i > 0 (a contradiction).

e) Satisfied.

Because the starting state $\{i = -1, x = 1\}$ does not satisfy i > 0 (a contradiction).

f) Unsatisfied.

Because the final state $\{i=0, x=0\}$ does not satisfy $i \geq 0 \land x \geq 1$.

g) Unsatisfied.

Because the final state $\{i = 0, x = 6\}$ does not satisfy x = i!.

h) Satisfied.

Because the starting state $\{i=3, x=1, k=3\}$ satisfies $i>0 \land i=k$ and the program terminates then the final state $\{i=0, x=6, k=3\}$ satisfies x=k!.

Task 3.2 (Written, 12 points)

- a) Valid
- b) Invalid. Fix precondition: $[x \ge 0 \land y > 0]$ z := x/y $[z \ge 0]$.
- c) Valid
- d) Invalid. Fix precondition: $\{i \ge 0 \land |a| > i \land (\forall i.(0 \le i \land i < |a|) \rightarrow a[i] \ge 0)\}$ x := a[i] $\{x \ge 0\}$.

Task 3.3 (Written, 7 points)

The triple is

$$[n \ge 0 \land ((n = 2k \land r = 1) \lor (n = 2k + 1 \land r = -1))] m := n;$$
 while $n \ne 0 \{r := r * -2; n := n - 1\}[r = 2^m]$

4 One more wrap-up question

Task 4.1 (Written, 0 points)

I spent about 2 to 3 hours on this homework, in total of 1 hour of actual working time.