Bootcamp : Maths

Baptiste Rouger

September 6, 2016

Contents

_	Session 1		
	1.1	Calculus	
		1.1.1 Derivative	
	1.2	Differential equations	,
	1.3	Linear Algebra	:

Session 1 1

1.1 Calculus

Calculus: study of changes.

2 types of calculus: differential and integral calculus.

Differential: distance \rightarrow speed Integration : speed \rightarrow distance

1.1.1 Derivative

The derivative is the slope of the tangent line on a point.

Definition: The derivative of f at x_0 is the slope of the line tangent to the

$$\lim_{\Delta x \to 0}; \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

Some derivatives
$$f(x) = \frac{1}{x}(x > 0)$$

$$\frac{\Delta f}{\Delta x} = \frac{\frac{1}{x_0 + \Delta x} - \frac{1}{x_0}}{\Delta x} = -\frac{1}{x_0^2 + x_0 \Delta x}$$

$$f'(x_0) = \lim_{\Delta x \to 0}; -\frac{1}{x_0^2 + x_0 \Delta x} = -\frac{1}{x_0^2}$$

$$f(x) = x^n$$

$$f'(x) = \lim_{\Delta x \to 0}; \frac{(x + \Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0}; \frac{(\binom{n}{0}x^n \Delta x^0 + \binom{n}{1}x^n \Delta x^1 + \dots) - x^n}{\Delta x} = nx^{n-1}$$

$$(f+g)'(x) = f'(x) + g'(x)$$

Continuity

Notations:
$$f'(x) = \frac{dy}{dx} = \frac{df}{dx} = Df = \frac{d}{dx}f = y$$

Example: 400 ft, $y = 400 - 16t^2$

$$400 - 16t^2 = 0$$

$$t = 5$$

On average, 80 ft per second. But we want to know the instantenious speed when the pumpkin hits the ground:

$$f'(x) = -32t$$

$$f'(5) = -160ft.s^{-1}$$

Derivatives of composed functions

Chain rules

Higher derivatives

Implicit differntiation

- 1.2 Differential equations
- 1.3 Linear Algebra