TODO

Kenny Chiu September 20, 2021

1 Conceptual summary

The paper by Mouli and Ribeiro [MR21] examines the problem of extrapolating patterns learned from training data collected from a single environment to data collected from other environments. This problem context falls under the idea of domain adaptation that has been explored in recent literature [Far+20]. However, a key assumption in Mouli and Ribeiro's work that distinguishes it from previous work in the literature is that the training data come from a single environment as opposed to multiple environments. Several previously proposed methods for domain adaptation—such as Invariant Risk Minimization [Arj+20] (IRM)—rely on training data from multiple environments and therefore would fail under this problem context. Mouli and Ribeiro take a different approach by viewing extrapolation as counterfactual reasoning in a specified structural causal model (SCM) and assuming known (linear automorphism) group structures on the non-causal mechanisms. Under this formulation, Mouli and Ribeiro introduce a learning framework for the single-environment context that is able to learn invariances that do not contradict the data. In this conceptual summary, we review the key contributions of the paper by Mouli and Ribeiro [MR21] and discuss the strengths and weaknesses of their work.

1.1 Key differences from previous work

Various methods for domain adaptation have been proposed in the literature, and how the work by Mouli and Ribeiro [MR21] relates to these methods are highlighted in their paper. For example, methods based on causal inference such as IRM and *Independent Causal Mechanisms* [Par+18] broadly involve learning some internal representation of the data that is invariant to environment-specific, non-causal mechanisms. The invariant representation is learned from the training data which come from multiple environments. When the data come from a single environment, the representation cannot determine which aspects of the data are environment-specific and so the representation is unlikely to extrapolate to new environments. The learning framework proposed by Mouli and Ribeiro which does work with single-environment data has an advantage over existing methods in these settings.

Another approach for domain adaptation is based on data augmentation [CDL20] where training is done with not only the original data but also proper transformations of the data. Mouli and Ribeiro [MR21] explains that data augmentation is a type of *forced invariance* where certain transformations of the data may actually introduce contradictions (e.g., images of digits 6 and 9 are not invariant to 180° rotations). Their proposed learning framework aims to learn only the invariances that do not contradict the data.

1.2 Main contributions

TODOinclude empirical results

1.3 Limitations

TODOlimitation: known groups

2 Technical summary

3 Mini-proposals

- 3.1 Proposal 1: MY PROPOSAL TITLE
- 3.2 Proposal 2: MY OTHER PROPOSAL TITLE

4 Project report

REFERENCES REFERENCES

References

- [Arj+20] M. Arjovsky et al. Invariant Risk Minimization. 2020. arXiv: 1907.02893 [stat.ML].
- [CDL20] S. Chen, E. Dobriban, and J. Lee. "A Group-Theoretic Framework for Data Augmentation". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 21321–21333. URL: https://proceedings.neurips.cc/paper/2020/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf.
- [Far+20] A. Farahani et al. A Brief Review of Domain Adaptation. 2020. arXiv: 2010.03978 [cs.LG].
- [MR21] S. C. Mouli and B. Ribeiro. Neural Networks for Learning Counterfactual G-Invariances from Single Environments. 2021. arXiv: 2104.10105 [cs.LG].
- [Par+18] G. Parascandolo et al. Learning Independent Causal Mechanisms. 2018. arXiv: 1712.00961 [cs.LG].