### **EEE-1212:Digital Logic Design Lab**

1<sup>st</sup> Year 2<sup>nd</sup> Semester Session: 2015-2016

**Experiment Number: 10** 

### **Name of the Experiment:**

Design and construction of a 4 to 2 bit encoder

# **Submitted by:**

**Group:** 3

Nusrat Munia Roll: SK-03 Palash Roy Roll: JH-24

Abdullahil Baki Arif

Roll: SH-36

### **Prepared by:**

Palash Roy Roll: JH-24

**Experiment Date**: 6<sup>th</sup> November 2016 **Submission Date**: 22<sup>th</sup> November 2016

## **Submitted to:**

Dr.Suraiya Pervin, Professor, Dept. of CSE, DU
 Ms. Iffat Anjum, Lecturer, Dept. of CSE, DU

#### **Experiment Name:**

Design and construction of a 4 to 2 bit encoder

#### **Objectives:**

The objectives of this lab is to understand the internal circuity of 4 to 2 bit encoder and implement 4 to 2 bit encoder circuit and testing the encoder circuit by comparing with truth table.

#### **Theory:**

The opposite of this decoding process is called encoding and is performed by a logic circuit called an encoder. An encoder has a number of input lines, only one of which is activated at a given time, and produces an N-bit output code, depending on which input is activated. If a encoder has  $2^N$  input lines then we can say it has N output lines.

We saw that a binary-to-octal decoder (3-line-to-8-line decoder) accepts a three-bit input code and activates one of eight output lines corresponding to that code. An octal-to-binary encoder (8-line-to-3-line encoder) performs the opposite function: it accepts eight input lines and produces a three-bit output code corresponding to the activated input. Similarly a 4 line to 2 line decoder accepts four bit input code and produces a two-bit output code corresponding to the activated input.



Fig: General Encoder Diagram

### **Instruments:**

- i) A trainer board
- ii) 3 IC(s) IC-7486, IC-7408, IC-7400
- iii) Connecting wires

## **Procedure:**

- i) At first we placed the integrated circuit with IC-7408 ,IC-7486 and IC-7400 on a breadboard properly. This IC(s) are placed across the gap in the center of the breadboard .
- ii) Then we connected the inputs to the IC- 7408 logic with the logic sources and its output from IC-7408 to the logic indicator.
- iii) Gave biasing to the ICs with the VCC(5 volt) and GND(0 volt), and do necessary connections according to the circuit diagram .
- iv) For various input combinations we observe the output for each one is applied.
- v) The output of the circuit will be shown on the LED. (LED Off = 0, LED On = 1).

#### Result:

| Input |       |       |       | Output |       |
|-------|-------|-------|-------|--------|-------|
| $I_3$ | $I_2$ | $I_1$ | $I_0$ | $O_1$  | $O_0$ |
| 0     | 0     | 0     | 1     | 0      | 0     |
| 0     | 0     | 1     | 0     | 0      | 1     |
| 0     | 1     | 0     | 0     | 1      | 0     |
| 1     | 0     | 0     | 0     | 1      | 1     |

$$O_{1} = \overline{I_{3}} \ I_{2} \ \overline{I_{1}} \ \overline{I_{0}} + I_{3} \ \overline{I_{2}} \ \overline{I_{1}} \ \overline{I_{0}}$$

$$= \overline{I_{1}} \ \overline{I_{0}} \ (\overline{I_{3}} \ I_{2} + I_{3} \ \overline{I_{2}})$$

$$= \overline{I_{1}} \ \overline{I_{0}} \ ( I_{3} \ \oplus I_{2} )$$

$$O_{0} = \overline{I_{3}} \quad \overline{I_{2}} \quad I_{1} \quad \overline{I_{0}} + I_{3} \quad \overline{I_{2}} \quad \overline{I_{1}} \quad \overline{I_{0}}$$

$$= \overline{I_{2}} \quad \overline{I_{0}} \quad (\overline{I_{3}} \quad I_{1} + I_{3} \quad \overline{I_{1}} \quad )$$

$$= \overline{I_{1}} \quad \overline{I_{0}} \quad (I_{3} \quad \oplus I_{1} \quad )$$

#### **Discussion:**

In this experiment we have to implement 4 line to 2 line encoders. But we faced some problems when we do this experiment.

- i) At first we started work with IC-7400 in place of IC-7486. So we didn't get proper output for a long time. We didn't understand what mistakes we have done. Then we check the IC no after a long time started our work perfectly.
- ii) In this experiment we have to use 3 IC(s) at the same time. So we need too many IC(s) wires to connect the IC(s) among themselves.

But we figured them out and completed our experiment successfully.