......

465990-HS2025-0:

Theoretical ecology and evolution, research practical Introduction

Claudia Bank 14 Oct 2025

About me

Diplom in Mathematics from University of Bielefeld (Germany) - Modeling recombination

PhD in Population Genetics from Vetmeduni Vienna (Austria) with some months at UT Austin (Texas) - **Modeling speciation**

Postdoc at EPFL (Switzerland) with some months at UC Berkeley (California) - **Evaluating fitness** landscape models with experimental data

Group Leader at the Gulbenkian Science Institute in Oeiras (Portugal) - Evolutionary Dynamics

Since 1 Oct 2020: Professor at IEE, Head of Division Theoretical Ecology and Evolution

(Since 1 Aug 2024: Institute Director, IEE)

Email: claudia.bank@unibe.ch

Website: <u>banklab.github.io</u>

Co-Teacher intro

Dr. Franziska Brenninger (Evolving Interactions)

Russ Jasper (THEE)

Julio Ayala (THEE)

Dr. Ana-Hermina Ghenu (IBU)

About you (<1 min/person)

Name

Study program, year and field of study

Something that fascinates you about biology OR Your favorite course so far

"All models are wrong, but some are useful."

-George Box

Learning Outcomes of the next 3 weeks

Upon completion of this course the students are able to...

- Write small pieces of code in R to analyze data/a model and to visualize results
- Follow the most important steps for reproducible (computational) research
- Interpret data/results related to the course projects
- Define and use common terms related to the course projects
- Criticize model assumptions
- Phrase theory questions and hypotheses
- Present and discuss modeling, data analysis, and coding challenges and solutions

Why is this important?

Ecology and evolution are built on models & theory

Models help build intuition and testable hypotheses

Models are everywhere and come in different complexities (often underlying "big data" studies too)

Model choice/approach/assumptions crucially affect results

Almost no way to get around coding in biology today

Presenting and discussing a problem is often its solution

Reproducibility is key to good scientific work (and helps you too)

Our expectations

Talk to us! Ask if anything is unclear and give feedback, especially if you feel bored or overwhelmed.

Be on time for check-ins and pay attention during tutorials

First try out things on your own, then ask for help - both equally important!

Embrace the experience - I am expecting fun 3 weeks

Friendly teamwork and collaboration

Use Teams for virtual communication - preferably share questions with group rather than via PM

The learning zone model

Our hope

Grading criteria

Presence during check-ins and tutorials

Active participation during discussions

Completed project (see Data Management Plan)

Quality of code, report, & presentation

5 ECTS credits ≈ 125-150 hours of work, of which ≈ 63 during the official practical hours

Your expectations

Why did you choose this practical?

What do you expect to learn?

Schedule

Week 1 - coding camp & getting to know your project

Week 2 - getting & visualizing results

Week 3 - writing & preparing presentation

Key dates:

30 October 9:15: your presentations to the THEE lab

7 Nov 23:59: share project folder with draft of report

14 Nov 23:59: return feedback to your colleagues

5 Dec 23:59: share final version of project folder & report

Rough schedule for this week

Tuesday: warming up to coding; reproducibility

Wednesday: brainstorming of topics; meet & greet your project

Thursday: first steps of your analysis

General structure:

Daily check in at 9:15 (or 8:15 on some days). Other check-ins as discussed & required. At least one of us will always be present at the lab during the practical hours. (Anyone working early?)

Lunch break from ~12:00-13:00

7 steps to modeling a biological problem

For more, check out Otto & Day: A Biologist's Guide to Mathematical Modeling in Ecology and Evolution: https://press.princeton.edu/books/hardcover/9780691123448/a-biologists-guide-to-mathematical-modeling-in-ecology-and-evolution

You find Chapter 2 in our shared folder; it provides the guideline to the 7 steps we will be going through in the practical.

Evolutionary rescue - our "grand" topic of the year

A population that is doomed to extinction survives because of the spread of beneficial genetic change(s)

Our suggestion: we provide you with the basic code for a model and you modify, extend, and analyze it according to your interests

Materials

Orr, H. A. & Unckless, R. L. The population genetics of evolutionary rescue. PLoS genetics 10, e1004551 (2014).

Orr, H. A. & Unckless, R. L. Population Extinction and the Genetics of Adaptation. The American Naturalist 172, 160–169 (2008).

Alexander, Helen K., Guillaume Martin, Oliver Y. Martin, and Sebastian Bonhoeffer. 2014. "Evolutionary Rescue: Linking Theory for Conservation and Medicine." Evolutionary Applications 7 (10): 1161–79.

What the dynamics of evolutionary rescue look like from a modeling point of view

Sudden environmental change at time 0 that leads to a negative mean fitness/growth rate

How likely is it that a new or existing beneficial mutation can rescue the population from extinction?

Eco-evolutionary features of the model

The beneficial mutation has to establish before the population size is too small (eco-evo feedback # 1)

Genetic composition of the population changes growth rate (eco-evo feedback # 2)

We consider new mutations (i.e. the beneficial mutation appears after the environmental change) in comparison to existing mutations ("standing genetic variation")

Parameters of the model

Initial population size: N_0

Rate of population decline: r (growth rate R = 1 - r)

Selection coefficient of the beneficial mutation: s > r

Mutation rate to the beneficial mutation: u

Initial frequency of the beneficial mutation: p_0

The math coming out of this model

Probability of evolutionary rescue through a new mutation:

$$P_{\text{new}} = 1 - \exp\left(-\frac{2N_0u(s-r)}{r}\right)$$

Probability of evolutionary rescue through an existing mutation:

$$P_{\mathsf{stand}} = 1 - \exp\left(-2N_0 p_0(s - r)\right)$$

Total rescue probability: $P_{\text{total}} = P_{\text{new}} + P_{\text{stand}}$

When does standing variation rescue the population more likely than a new mutation? $p_0 > \frac{u}{r}$

Why evolutionary rescue matters in the face of climate change

CAN ANIMALS ADAPT TO CLIMATE CHANGE?

https://www.youtube.com/watch?v=ZCKRjP DMII

Genetic rescue: human-facilitated evolutionary rescue

Adapting to pollution

Oziolor et al. show that Gulf killifish rapidly adapted to toxicants in a polluted region of the Gulf of Mexico after mating with a related fish species, Atlantic killifish. This hybridization resulted in the exchange of adaptive genes

2 A new variant is introduced by mating with a different species.

3 The new variant enables adaptation and the population recovers.

An example from the wild

Pfennig, K. S. How to survive in a human-dominated world. Science 364, 433–434 (2019).

Oziolor, E. M. et al. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364, 455–457 (2019).

Time for action

Download the file evolutionary-rescue-basic-discrete-time.Rmd from https://github.com/banklab/
THEErp2025 and save a copy under a new name on your computer. Open the file in RStudio and "knit" the file to read the html output; this might require (automatic) installation of some packages.

Read the document and follow its instructions. We will continue there.