2017 Repair dental restorations

Contents

Pa	aquetes	2
Da	Dataset clean	2 2 3
1.	No-treatment MA (6) Data selection	4 4 5 5 6
2.	No-treatment SC (6) Data selection	8 8 9 9 10
3.	No-treatment TS (3) Data selection	12 12 13 13 14
4.	Replacement MA (5) Data selection	16 16 17 17 18
5.	Replacement SC (5) Data selection	20 20 21 21 22
6.	Replacement TS (5) Data selection	24 24 25 25 26
Ci	itations	28

Data extracted was tabulated in a google sheet. Then exported as csv file and imported in R (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.)

Data cleaning and organization was done with package tidyverse (Hadley Wickham (2017). tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse).

The package meta (Guido Schwarzer (2007), meta: An R package for meta-analysis, R News, 7(3), 40-45.) was used for the meta-analysis. A funnel plot was used to detect publication bias. The heterogenicity between studies was checked with I2 and visualized with a Baujat plot (Baujat B, Mahé C, Pignon JP, Hill C (2002), A graphical method for exploring heterogeneity in meta-analyses: Application to a meta-analysis of 65 trials. Statistics in Medicine, 30, 2641–2652.). We grouped the studies with same intervention and control and considered any adverse outcome. A random effect meta-analysis using odds-ratio as outcome was performed with a Mantel-Haenzel method. A forest plot was used to visualize the overall effect of the interventions, with a 95% confidence interval.

Paquetes

Dataset

```
df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRSKuBlcQTVJK2fZyZ4Nvf4SwSqVrxcfAGhNhl6d")
## Parsed with column specification:</pre>
```

```
## Parsed with column specification:
## cols(
##
     Comparison = col_character(),
##
     Material = col_character(),
##
     firstAuthor = col_character(),
##
     year = col_character(),
##
     paper = col_character(),
     quality = col_character(),
##
##
     intervention_a = col_character(),
##
     intervention_b = col_character(),
##
     EvA = col_character(),
##
     TotalA = col_character(),
##
     EvB = col_character(),
##
     TotalB = col_character(),
##
     Outcome = col_character(),
##
     Comments = col character()
## )
```

Data cleaning

glimpse(df)

```
## Observations: 55
## Variables: 14
                   <chr> "Sealants vs no-treatment Kz", "Sealants vs rep...
## $ Comparison
## $ Material
                   <chr> "Composite", NA, NA, "Composite", NA, NA, "Comp...
## $ firstAuthor
                   <chr> "Gordan", "Gordan", NA, "Gordan", "Gordan", NA,...
## $ year
                   <chr> "2009", "2011", NA, "2009", "2011", NA, "2009",...
                   <chr> "a", NA, NA, "b", NA, NA, "f", "g", NA, "b", "b...
## $ paper
                   <chr> NA, NA, NA, NA, NA, NA, NA, "----....
## $ quality
## $ intervention a <chr> "Sealant", "Sealant", NA, "Sealant", "Sealant", ...
## $ intervention_b <chr> "No-treatment", "Replacement", NA, "No-treatmen...
                   <chr> "2", NA, NA, "0", NA, NA, "7", "1", "----...
## $ EvA
                   <chr> "7", NA, NA, "7", NA, NA, "11", "11", "----...
## $ TotalA
## $ EvB
                   <chr> "5", NA, NA, "1", NA, NA, "5", "1", "----...
```

```
## $ TotalB
                    <chr> "13", NA, NA, "13", NA, NA, "13", "13", "----...
## $ Outcome
                     <chr> "MA", NA, NA, "SC", NA, NA, "MA", "SC", "----...
## $ Comments
                    <chr> NA, "SC-secondary caries", "PS-postoperative se...
Clean dataset from empty rows, strange symbols, etc
df <- df %>% filter(str_detect(df$Comparison, "vs"),
                      trimws(EvA) != "",
                     !str_detect(EvA, "\\?"),
                     !str detect(EvA, "%") )
## Warning: package 'bindrcpp' was built under R version 3.4.2
df$firstAuthor <- str_trim(df$firstAuthor, "right")</pre>
Select only relevant columns
df <- df %>% select(Comparison:Outcome) %>%
  select(-quality)
create a new column id
df <- mutate(df, id = paste(firstAuthor, ", ", year, paper))</pre>
```

Dataset clean

Converting factors to numeric variables

```
glimpse(df)
```

```
## Observations: 33
## Variables: 13
## $ Comparison
                    <chr> "Sealants vs no-treatment Kz", "Sealants vs no-...
## $ Material
                    <chr> "Composite", "Composite", "Composite", "Composi...
                    <chr> "Gordan", "Gordan", "Gordan", "Gordan", "Gordan...
## $ firstAuthor
                    <chr> "2009", "2009", "2009", "2009", "2011", "2011", ...
## $ year
                    <chr> "a", "b", "f", "g", "b", "b", "b", "d", "e", "f...
## $ paper
## $ intervention_a <chr> "Sealant", "Sealant", "Refinishing", "Refinishi...
## $ intervention_b <chr> "No-treatment", "No-treatment", "No-treatment", ...
                    <chr> "2", "0", "7", "1", "1", "1", "1", "0", "0", "1...
## $ EvA
                    <chr> "7", "7", "11", "11", "14", "14", "14", "14", "...
## $ TotalA
                    <chr> "5", "1", "5", "1", "7", "7", "7", "7", "1", "1...
## $ EvB
## $ TotalB
                    <chr> "13", "13", "13", "19", "19", "19", "14",...
                    <chr> "MA", "SC", "MA", "SC", "MA", "SC", "TS", "MA",...
## $ Outcome
## $ id
                    <chr> "Gordan , 2009 a", "Gordan , 2009 b", "Gordan...
df$EvA <- as.integer(df$EvA)</pre>
df$TotalA <- as.integer(df$TotalA)</pre>
df$EvB <- as.integer(df$EvB)</pre>
df$TotalB <- as.integer(df$TotalB)</pre>
df <- df %>%
  mutate(groups = paste(Comparison, Outcome))
summary(df)
```

Comparison Material firstAuthor
Length:33 Length:33 Length:33

```
Class :character
                       Class : character
                                           Class : character
##
    Mode :character
                       Mode :character
                                           Mode : character
##
##
##
        year
##
                          paper
                                           intervention_a
    Length:33
                       Length:33
                                           Length:33
##
    Class : character
                                           Class : character
##
                       Class :character
##
    Mode :character
                       Mode :character
                                           Mode : character
##
##
##
                                             TotalA
##
    intervention_b
                            EvA
                                                              EvB
    Length:33
                       Min.
                                                        Min.
                                                                : 0.00
##
                             : 0.000
                                         Min.
                                               : 7.0
##
    Class :character
                       1st Qu.: 1.000
                                         1st Qu.:14.0
                                                         1st Qu.: 1.00
##
    Mode :character
                       Median : 2.000
                                         Median:15.0
                                                        Median: 2.00
##
                                               :20.7
                       Mean
                              : 4.455
                                         Mean
                                                        Mean
                                                                : 5.03
##
                       3rd Qu.: 7.000
                                         3rd Qu.:20.0
                                                         3rd Qu.: 7.00
                                               :66.0
##
                       Max.
                               :45.000
                                                                :35.00
                                         Max.
                                                        Max.
                                                               groups
##
        TotalB
                      Outcome
                                             id
##
   Min.
           :13.00
                    Length:33
                                        Length:33
                                                            Length:33
    1st Qu.:14.00
                    Class : character
                                        Class : character
                                                            Class : character
  Median :19.00
                    Mode :character
                                        Mode :character
                                                           Mode :character
##
   Mean
           :21.94
##
##
    3rd Qu.:22.00
  Max.
           :58.00
```

Create groups for comparisons

Any intervention (Sealant, Refinishing or Repair) vs grouped comparison and grouped outcome

```
df <- mutate(df, groups = paste( intervention_b, Outcome))
table(df$groups)</pre>
```

```
##
## No-treatment all parameters
                                              No-treatment MA
##
                                                             6
                No-treatment SC
##
                                              No-treatment SR
##
                               6
                                                             1
##
                No-treatment TS
                                  Replacement all parameters
##
##
                 Replacement MA
                                               Replacement SC
##
                               5
##
                 Replacement TS
##
                               5
```

1. No-treatment MA (6)

```
data_meta <- df %>%
  filter(groups == "No-treatment MA")
```


Contribution to overall heterogeneity

```
summary(meta1)
## Number of studies combined: k = 6
##
##
                                         95%-CI
                                                    z
                                                       p-value
## Random effects model 1.0181 [0.3054; 3.3946] 0.03
                                                        0.9767
##
## Quantifying heterogeneity:
   tau^2 = 1.5285; H = 1.95 [1.29; 2.95]; I^2 = 73.8% [40.2%; 88.5%]
##
##
## Test of heterogeneity:
        Q d.f. p-value
##
                 0.0018
##
    19.10
             5
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
meta1
##
                                OR
                                               95%-CI %W(random)
## Gordan 2009 Sealant
                            0.6400 [0.0880; 4.6554]
## Gordan 2009 Refinishing 2.8000 [0.5321; 14.7350]
```

```
## Moncada 2015 Sealant 0.0345 [0.0017; 0.6894]
                                                          9.8
## Estay 2017 Refinishing 0.2864 [0.0836; 0.9813]
                                                          19.6
## Fernandez 2015 Sealant 12.0000 [2.1471; 67.0674]
                                                         16.4
## Estay 2017 Refinishing 1.4082 [0.6730; 2.9464]
                                                          22.6
## Number of studies combined: k = 6
##
                                        95%-CI z p-value
##
                            OR
## Random effects model 1.0181 [0.3054; 3.3946] 0.03 0.9767
##
## Quantifying heterogeneity:
## tau^2 = 1.5285; H = 1.95 [1.29; 2.95]; I^2 = 73.8% [40.2%; 88.5%]
## Test of heterogeneity:
       Q d.f. p-value
## 19.10
          5 0.0018
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
forest.meta(meta1,
      comb.fixed = FALSE,
       sortvar = year,
       # LEFT
      label.left = "Seal or ref.",
col.label.left = "darkgreen",
       # RIGHT
                        = "No treatment",
      label.right
       col.label.right = "darkred")
```


2. No-treatment SC (6)

```
data_meta <- df %>%
  filter(groups == "No-treatment SC")
data_meta
## # A tibble: 6 x 14
##
                         Comparison Material firstAuthor year paper
##
                              <chr>>
                                                    <chr> <chr> <chr>
## 1
                                                   Gordan 2009
       Sealants vs no-treatment Kz Composite
## 2 Refinishing vs no-treatment Kz Composite
                                                   Gordan 2009
                                                                    g
       Sealants vs no-treatment Ag
                                      Amalgam
                                                  Moncada 2015
## 4 Refinishing vs no-treatment Kz Composite
                                                    Estay
                                                           2017
                                                                    k
       Sealants vs no-treatment Kz Composite
## 5
                                                Fernandez
                                                           2015
                                                                    b
## 6 Refinishing vs no-treatment Ag
                                      Amalgam
                                                    Estay 2017
## # ... with 9 more variables: intervention_a <chr>, intervention_b <chr>,
      EvA <int>, TotalA <int>, EvB <int>, TotalB <int>, Outcome <chr>,
## #
      id <chr>, groups <chr>
```


Contribution to overall heterogeneity

Gordan 2009 Refinishing 1.2000 [0.0663;

```
summary(meta1)
## Number of studies combined: k = 6
##
                                                     p-value
##
                                         95%-CI
## Random effects model 1.286 [0.4991; 3.3137] 0.52
                                                       0.6024
##
## Quantifying heterogeneity:
   tau^2 = 0; H = 1.00 [1.00; 1.26]; I^2 = 0.0% [0.0%; 36.7%]
##
##
##
  Test of heterogeneity:
##
       Q d.f.
               p-value
    2.00
            5
                0.8487
##
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
meta1
##
                                OR
                                               95%-CI %W(random)
## Gordan 2009 Sealant
                           0.5556 [0.0200; 15.4620]
```

21.7233]

10.7

```
## Moncada 2015 Sealant 0.3103 [0.0116; 8.2917]
                                                          8.3
## Estay 2017 Refinishing 5.0571 [0.1952; 131.0509]
                                                           8.5
## Fernandez 2015 Sealant 0.8889 [0.1119; 7.0614]
                                                           20.9
## Estay 2017 Refinishing 1.8333 [0.4372;
                                             7.6869]
                                                           43.6
## Number of studies combined: k = 6
##
##
                           OR
                                        95%-CI z p-value
## Random effects model 1.286 [0.4991; 3.3137] 0.52 0.6024
##
## Quantifying heterogeneity:
## tau^2 = 0; H = 1.00 [1.00; 1.26]; I^2 = 0.0% [0.0%; 36.7%]
## Test of heterogeneity:
      Q d.f. p-value
              0.8487
## 2.00
         5
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
forest.meta(meta1,
       comb.fixed = FALSE,
       sortvar = year,
       # LEFT
      label.left = "Seal or refinishing",
col.label.left = "darkgreen",
       # RIGHT
      label.right
                         = "No treatment",
       col.label.right = "darkred")
```


3. No-treatment TS (3)

```
data_meta <- df %>%
 filter(groups == "No-treatment TS")
data_meta
## # A tibble: 3 x 14
##
                         Comparison Material firstAuthor year paper
##
                              <chr>>
                                         <chr>
                                                     <chr> <chr> <chr>
                                                   Moncada 2015
## 1
       Sealants vs no-treatment Ag
                                      Amalgam
                                                                     f
                                                     Estay 2017
## 2 Refinishing vs no-treatment Kz Composite
                                                     Estay 2017
## 3 Refinishing vs no-treatment Ag
                                      Amalgam
## # ... with 9 more variables: intervention_a <chr>, intervention_b <chr>,
       EvA <int>, TotalA <int>, EvB <int>, TotalB <int>, Outcome <chr>,
       id <chr>, groups <chr>
meta1 <- metabin(EvA, TotalA,</pre>
                 EvB, TotalB,
                 data = data_meta,
                 sm="OR", method.tau = "DL",
```

```
comb.fixed = FALSE,
studlab = paste(firstAuthor, year, intervention_a))
```


Contribution to overall heterogeneity

```
summary(meta1)
## Number of studies combined: k = 3
##
                                                     z p-value
##
                                           95%-CI
## Random effects model 3.1616 [0.6856; 14.5791] 1.48
                                                         0.1400
##
## Quantifying heterogeneity:
    tau^2 = 0; H = 1.00 [1.00; 2.27]; I^2 = 0.0\% [0.0%; 80.6%]
##
##
## Test of heterogeneity:
       Q d.f. p-value
##
   1.07
            2
                0.5850
##
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
meta1
##
                              OR
                                              95%-CI %W(random)
## Moncada 2015 Sealant
                          1.0000 [0.0563; 17.7510]
## Estay 2017 Refinishing 8.9394 [0.4045; 197.5585]
                                                           24.4
```

```
## Estay 2017 Refinishing 3.6774 [0.3992; 33.8804]
                                                    47.4
##
## Number of studies combined: k = 3
##
                                        95%-CI
                                                  z p-value
## Random effects model 3.1616 [0.6856; 14.5791] 1.48 0.1400
## Quantifying heterogeneity:
## tau^2 = 0; H = 1.00 [1.00; 2.27]; I^2 = 0.0\% [0.0%; 80.6%]
##
## Test of heterogeneity:
      Q d.f. p-value
##
## 1.07 2 0.5850
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
forest.meta(meta1,
      comb.fixed = FALSE,
      sortvar = year,
      # LEFT
      label.left = "Seal or refinish",
      col.label.left
                       = "darkgreen",
      # RIGHT
      label.right
                        = "No treatment",
      col.label.right
                       = "darkred")
```


4. Replacement MA (5)

```
data_meta <- df %>%
  filter(groups == "Replacement MA")
data_meta
## # A tibble: 5 x 14
##
                     Comparison Material firstAuthor year paper
##
                          <chr>
                                    <chr>
                                                <chr> <chr> <chr>
       Repair vs replacement Ag
                                  Amalgam
                                               Gordan 2011
                                              Moncada 2015
## 2 Sealants vs replacement Ag
                                  Amalgam
## 3
       Repair vs replacement Kz Composite
                                                      2017
                                                                 d
                                                Estay
       Repair vs replacement Ag
                                  Amalgam
                                                Estay 2017
       Repair vs replacement Kz Composite
                                               Gordan 2009
                                                                 С
## # ... with 9 more variables: intervention_a <chr>, intervention_b <chr>,
       EvA <int>, TotalA <int>, EvB <int>, TotalB <int>, Outcome <chr>,
       id <chr>, groups <chr>
meta1 <- metabin(EvA, TotalA,
                 EvB, TotalB,
                 data = data_meta,
```

```
sm="OR", method.tau = "DL",
comb.fixed = FALSE,
studlab = paste(firstAuthor, year, intervention_a))
```


Contribution to overall heterogeneity

```
summary(meta1)
## Number of studies combined: k = 4
##
                                                     z p-value
##
                                          95%-CI
## Random effects model 0.7996 [0.2774; 2.3052] -0.41
                                                         0.6789
##
## Quantifying heterogeneity:
   tau^2 = 0.5096; H = 1.34 [1.00; 2.31]; I^2 = 44.1\% [0.0%; 81.3%]
##
##
## Test of heterogeneity:
##
       Q d.f. p-value
    5.37
            3
                0.1467
##
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
meta1
##
                            OR
                                           95%-CI %W(random)
## Gordan 2011 Repair
                        0.1319 [0.0141; 1.2354]
                                                        16.1
## Moncada 2015 Sealant
                            NA
                                                         0.0
## Estay 2017 Repair
                        0.6222 [0.1554; 2.4920]
                                                        28.9
```

```
## Estay 2017 Repair 2.7045 [0.6384; 11.4576] 27.7
## Gordan 2009 Repair 0.8750 [0.2020; 3.7907] 27.3
## Number of studies combined: k = 4
##
##
                            OR
                                         95%-CI
                                                     z p-value
## Random effects model 0.7996 [0.2774; 2.3052] -0.41 0.6789
##
## Quantifying heterogeneity:
## tau^2 = 0.5096; H = 1.34 [1.00; 2.31]; I^2 = 44.1\% [0.0%; 81.3%]
## Test of heterogeneity:
      Q d.f. p-value
##
## 5.37 3 0.1467
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
forest.meta(meta1,
       comb.fixed = FALSE,
       sortvar = year,
       # LEFT
      label.left = "Seal or repair",
                         = "darkgreen",
       col.label.left
       # RIGHT
       label.right
                        = "No treatment",
       col.label.right = "darkred")
```


5. Replacement SC (5)

```
data_meta <- df %>%
  filter(groups == "Replacement SC")
data_meta
## # A tibble: 5 x 14
##
                     Comparison Material firstAuthor year paper
##
                          <chr>
                                    <chr>
                                                <chr> <chr> <chr>
      Repair vs replacement Ag
                                  Amalgam
                                               Gordan 2011
                                              Moncada 2015
## 2 Sealants vs replacement Ag
                                  Amalgam
## 3
      Repair vs replacement Kz Composite
                                                Estay 2017
      Repair vs replacement Ag
                                  Amalgam
                                                Estay 2017
      Repair vs replacement Kz Composite
                                               Gordan 2009
                                                                d
## # ... with 9 more variables: intervention_a <chr>, intervention_b <chr>,
      EvA <int>, TotalA <int>, EvB <int>, TotalB <int>, Outcome <chr>,
       id <chr>, groups <chr>
meta1 <- metabin(EvA, TotalA,
                 EvB, TotalB,
                 data = data_meta,
```

```
sm="OR", method.tau = "DL",
comb.fixed = FALSE,
studlab = paste(firstAuthor, year, intervention_a))
```


Contribution to overall heterogeneity

```
summary(meta1)
## Number of studies combined: k = 4
##
                                                      z p-value
##
                                          95%-CI
## Random effects model 0.9363 [0.1065; 8.2309] -0.06
                                                          0.9526
##
## Quantifying heterogeneity:
    tau^2 = 2.9848; H = 1.61 [1.00; 2.78]; I^2 = 61.4% [0.0%; 87.1%]
##
##
## Test of heterogeneity:
##
       Q d.f. p-value
    7.77
            3
                0.0511
##
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
meta1
                                             95%-CI %W(random)
##
                             \mathtt{OR}
## Gordan 2011 Repair
                         0.1319 [0.0141;
                                            1.2354]
                                                          28.7
## Moncada 2015 Sealant
                                                           0.0
                             NA
```

```
## Estay 2017 Repair
                      5.7273 [0.5312; 61.7487]
                                                     27.6
## Estay 2017 Repair 6.5152 [0.2925; 145.1132]
                                                     22.4
## Gordan 2009 Repair 0.1634 [0.0062; 4.3051]
                                                     21.3
## Number of studies combined: k = 4
##
##
                                       95%-CI
                                                  z p-value
## Random effects model 0.9363 [0.1065; 8.2309] -0.06 0.9526
##
## Quantifying heterogeneity:
## tau^2 = 2.9848; H = 1.61 [1.00; 2.78]; I^2 = 61.4\% [0.0%; 87.1%]
## Test of heterogeneity:
##
      Q d.f. p-value
## 7.77
         3 0.0511
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
forest.meta(meta1,
      comb.fixed = FALSE,
      sortvar = year,
      # LEFT
                      = "Seal or repair",
      label.left
      col.label.left = "darkgreen",
      # RIGHT
      label.right
                       = "No treatment",
      col.label.right = "darkred")
```


6. Replacement TS (5)

```
data_meta <- df %>%
  filter(groups == "Replacement TS")
data_meta
## # A tibble: 5 x 14
##
                     Comparison Material firstAuthor year paper
##
                          <chr>
                                    <chr>
                                                <chr> <chr> <chr>
      Repair vs replacement Ag
                                  Amalgam
                                               Gordan 2011
                                              Moncada 2015
## 2 Sealants vs replacement Ag
                                  Amalgam
## 3
      Repair vs replacement Kz Composite
                                                Estay 2017
                                                                f
      Repair vs replacement Ag
                                  Amalgam
                                                Estay 2017
      Repair vs replacement Kz Composite
                                               Gordan 2009
                                                                е
## # ... with 9 more variables: intervention_a <chr>, intervention_b <chr>,
      EvA <int>, TotalA <int>, EvB <int>, TotalB <int>, Outcome <chr>,
      id <chr>, groups <chr>
meta1 <- metabin(EvA, TotalA,
                 EvB, TotalB,
                 data = data_meta,
```

```
sm="OR", method.tau = "DL",
comb.fixed = FALSE,
studlab = paste(firstAuthor, year, intervention_a))
```


Contribution to overall heterogeneity

```
summary(meta1)
## Number of studies combined: k = 3
##
##
                                         95%-CI
                                                    z p-value
## Random effects model 0.369 [0.0875; 1.5561] -1.36
                                                        0.1745
##
## Quantifying heterogeneity:
##
    tau^2 = 0; H = 1.00 [1.00; 2.73]; I^2 = 0.0\% [0.0%; 86.5%]
##
## Test of heterogeneity:
##
       Q d.f. p-value
    1.55
            2
                0.4617
##
##
## Details on meta-analytical method:
  - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
meta1
##
                            OR
                                           95%-CI %W(random)
## Gordan 2011 Repair
                        0.1319 [0.0141; 1.2354]
                                                        41.4
## Moncada 2015 Sealant 1.1538 [0.0654; 20.3419]
                                                        25.2
## Estay 2017 Repair
                                                         0.0
                            NA
```

```
## Estay 2017 Repair
                       0.5588 [0.0464; 6.7269]
                                                     33.5
## Gordan 2009 Repair
                                                      0.0
                           NA
## Number of studies combined: k = 3
##
##
                          OR
                                      95%-CI
                                                 z p-value
## Random effects model 0.369 [0.0875; 1.5561] -1.36
##
## Quantifying heterogeneity:
## tau^2 = 0; H = 1.00 [1.00; 2.73]; I^2 = 0.0% [0.0%; 86.5%]
## Test of heterogeneity:
      Q d.f. p-value
## 1.55 2 0.4617
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
forest.meta(meta1,
      comb.fixed = FALSE,
      sortvar = year,
      # LEFT
      label.left = "Seal or repair",
                       = "darkgreen",
      col.label.left
      # RIGHT
      label.right
                        = "No treatment",
      col.label.right
                      = "darkred")
```


Citations

citation()

```
##
## To cite R in publications use:
##
     R Core Team (2017). R: A language and environment for
##
##
     statistical computing. R Foundation for Statistical Computing,
     Vienna, Austria. URL https://www.R-project.org/.
##
##
## A BibTeX entry for LaTeX users is
##
##
     @Manual{,
       title = {R: A Language and Environment for Statistical Computing},
##
##
       author = {{R Core Team}},
       organization = {R Foundation for Statistical Computing},
##
##
       address = {Vienna, Austria},
##
       year = {2017},
##
       url = {https://www.R-project.org/},
##
     }
##
```

```
## We have invested a lot of time and effort in creating R, please
## cite it when using it for data analysis. See also
## 'citation("pkgname")' for citing R packages.
citation(package = "tidyverse")
## To cite package 'tidyverse' in publications use:
##
##
    Hadley Wickham (2017). tidyverse: Easily Install and Load the
     'Tidyverse'. R package version 1.2.1.
##
##
    https://CRAN.R-project.org/package=tidyverse
## A BibTeX entry for LaTeX users is
##
##
     @Manual{,
       title = {tidyverse: Easily Install and Load the 'Tidyverse'},
##
##
       author = {Hadley Wickham},
       year = {2017},
##
       note = {R package version 1.2.1},
##
       url = {https://CRAN.R-project.org/package=tidyverse},
     }
##
citation(package = "meta")
##
## To cite package 'meta' in publications use:
##
##
     Guido Schwarzer (2007), meta: An R package for meta-analysis, R
    News, 7(3), 40-45.
##
## A BibTeX entry for LaTeX users is
##
##
     @Article{,
       title = {meta: {A}n {R} package for meta-analysis},
##
##
       author = {Guido Schwarzer},
       journal = {R News},
##
       year = \{2007\},\
##
##
       volume = \{7\},
       number = \{3\},
##
       pages = \{40--45\},
##
##
     }
## URL https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf
```