Sum Product Theorems and Applications (Spring 2022, Weikun He)

Ajorda Jiao

Contents

1 Basic additive combinatorics

2

Theorem 0.1 (Erdos-Szemeredi Theorem)

The exists an absolute constant c > 0, such that

$$\max \{ \#(A+A), \#AA \} \geqslant c(\#A)^{1+c}.$$

§1 Basic additive combinatorics

(E,+) abelian group. $A,B\subseteq E$.

Notation 1.1. $A + B := \{a + b : a \in A, b \in B\}$.

Question 1.2 (Freiman). If $\#(A+A) \leq K\#A$, for some parameter K, what can we say about A?

Observation 1.3. If A is a **arithmetic progression**, then $\#(A+A) \leq 2\#A$. If A is a **generalized A.P.** of rank r, i.e.

$$A = \{a_0 + t_1 d_1 + \dots + t_r d_r : \forall i, 1 \leqslant t_i \leqslant N_i\},\$$

then $\#(A+A) \leqslant 2^r \#A$.

Freiman Type Theorem: If $\#(A+A) \leq K \# A$, then exists

- (i) $P \subseteq E$ is a generalized arithmetic progression of rank $O_K(1)$, $\#P = O_K(\#A)$.
- (ii) $X \subseteq E$ finite, $\#X = O_K(1)$.

Such that $A \subseteq P + X$.

Theorem 1.4 (Szemerédi)

 $A \subseteq \mathbb{N}$ with positive upper density, then A contains arbitrarily long A.P.

Lemma 1.5 (Ruzsa Triangle Inequality)

 $A, B, C \subseteq (E, +)$ finite, then

$$\#(A-C)\#B \le \#(A-B)\#(B-C).$$

Proof. Construct a map $(A-C) \times B \to (A-B) \times (B-C), (x,b) \mapsto (a_x-b,b-c_x),$ where $x = a_x - b_x$ is a typical decomposition, this map is an injective.

Definition 1.6. Define the Ruzsa distance between A, B by

$$d(A,B) = \log \frac{\#(A-B)}{(\#A)^{\frac{1}{2}}(\#B)^{\frac{1}{2}}}.$$

Lemma 1.7 (Ruzsa Covering Lemma)

 $A, B \subseteq (E, +)$ finite, $K \geqslant 1$. If $\#(A + B) \leqslant K \# A$, then $\exists X \subseteq E, \# X \leqslant K$, such that $B \subset A - A + X$.

Proof. Let $X \subseteq B$ be the maximal set such that $(x+A)_{x\in X}$ is pointwise disjoint.

Notation 1.8. $\mathbb{O}(K)$ denotes some subset of cardinality $\leq K$.

Remark 1.9 — Ruzsa Covering Lemma $\iff B \subseteq A - A + \mathbb{O}\left(\frac{\#(A+B)}{\#A}\right)$.

Proposition 1.10 (Plünnecke-Ruzsa Inequality)

 $A, B \subseteq E$ finite, $K \geqslant 1$. If $\#(A+B) \leqslant K \# A$, then $\forall k, l \geqslant 0$, we have

$$\#\left(\sum_{k} B - \sum_{l} B\right) \leqslant K^{k+l} \# A,$$

where $\sum_{k} B := \underbrace{B + B + \dots + B}_{k Bs}$.

Lemma 1.11 (Petridis)

If $\#(A+B) \leq K \# A$, then $\exists A_0 \subseteq A$, such that for every $C \subset E$ finite,

$$\#(C + A_0 + B) \leq K \#(C + A_0).$$

Proof. Let $K_0 := \inf_{A' \subseteq A} \frac{\#(A'+B)}{\#A'} \leqslant K$ and $A_0 \subseteq A$ such that $K_0 = \frac{\#(A_0+B)}{\#A_0}$. Applying induction to #C, consider $C' = C \cup \{c\}$, where $c \notin C$. WLOG, assume c = 0. Then

$$\#(C'+A_0+B) = \#(C+A_0+B) + \#(A_0+B) - \#((C+A_0+B) \cap (A_0+B)).$$

Observe that $((C + A_0) \cap A_0) + B \subseteq (C + A_0 + B) \cap (A_0 + B)$. By assumption,

$$(C + A_0) \cap A_0 \subseteq A \implies \#((C + A_0) \cap A_0) + B \geqslant K_0 \#((C + A_0) \cap A_0).$$

Hence by inductive assumption.

$$\#(C' + A_0 + B) \le K_0(\#(C + A_0) + \#A_0 - \#((C + A_0) \cap A_0)) = K_0\#(C' + A_0).$$

Proof of Plünnecke-Ruzsa Inequality 1.10. Applying lemma, we have

$$\#(B+A_0) \leqslant K\#A_0$$
, $\#(B+B+A_0) \leqslant K\#(B+A_0) \leqslant K^2\#A_0$, ...

Hence, $\#\left(\sum_{k} B + A_0\right) \leqslant K^k \# A_0$. Finally, applying Ruzsa Triangle Inequality, we have

$$\#\left(\sum_{k} B - \sum_{l} B\right) \leqslant \frac{\#\left(\sum_{k} B + A_{0}\right) \#\left(\sum_{l} B + A_{0}\right)}{\#A_{0}} \leqslant K^{k+l} \#A_{0} \leqslant K^{k+l} \#A.$$

Exercise 1.12. If E is not an abelian group, does the argument still hold?