Journal Club Oct 5, 2021

Jakob Schlör

Universität Tübingen

machine in climate science

Oct 5, 2021

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Calibrate, emulate, sample

- ^a California Institute of Technology, Pasadena, CA, United States of America
- ^b Arizona State University, Tempe, AZ, United States of America

Published: July 8, 2020

Online talks

 AI FOR GOOD DISCOVERY: AI-Accelerated Climate M odeling by Tapio Schneider at Caltech

- ISDA 2019: Ensemble Kalman inversion derivative freeoptimization 1 by Andrew M. Stuart
- ISDA 2019: Ensemble Kalman inversion derivative freeoptimization 2 by Andrew M. Stuart
- Dynamics Days 2020: Ensemble Kalman Inversion As A Dynamical System - Andrew Stuart

In short:

Question:

Model parameter estimation and uncertainty quantification from observational data

Results:

Using Kalman inversion, Gaussian process emulation and Bayesian inference allows parameter estimation of expensive to evaluate models

Impact:

Improve prediction ability and uncertainty estimation of Global Circulation Models (GCMs)

Motivation

- Climate models require parameter estimation based on observational data
- Noisy data requires uncertainty estimation of parameters
- Typical Bayesian inversion methods (MCMC) are not feasible

Schneider et al., GRL (2017)

Bayesian Inversion

Find θ from y where $G: \mathcal{U} \mapsto \mathcal{Y}, \eta$ is noise and

$$y = G(\theta) + \eta$$

with $\eta \sim N(0, \Gamma_y), \theta \sim N(0, \Gamma_\theta)$

i.e. estimate the posterior distribution:

$$p(\theta|y) = \pi^y(\theta)$$

Method: Calibrate-Emulate-Sample (ECS)

- 1) Calibrate: Ensemble Kalman sampling (EKS) for experimental design
- 2) Emulate: Gaussian Process (GP) to emulate parameter-data map
- 3) Sample: Markov Chain Monte Carlo (MCMC) sampling for posterior estimation

Method: Calibrate-Emulate-Sample

- 1) Calibrate: Ensemble Kalman sampling (EKS) for experimental design
- 2) Emulate: Gaussian Process (GP) to emulate parameter-data map
- 3) Sample: Markov Chain Monte Carlo (MCMC) sampling for posterior estimation

1. Ensemble Kalman Inversion

Data assimilation method for state estimation of noisily timedependent problems.

- Derivative-free optimization
- Iterative
- NJ model evaluations required
 (N: num. of iterations, J: num. of particles)

Update procedure:

$$\frac{d\theta^{(j)}}{dt} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle \mathcal{G}\left(\theta^{(k)}\right) - \overline{\mathcal{G}}, \mathcal{G}\left(\theta^{(j)}\right) - y \right\rangle_{\Gamma_{y}} \left(\theta^{(k)} - \overline{\theta}\right)$$

Output pairs drawn from approx. posterior:

$$\left\{\theta_n^{(i)}, G(\theta_n^{(i)})\right\}_{i=1}^{J} \quad \text{Experimental design}$$

Method: Calibrate-Emulate-Sample

- 1) Calibrate: Ensemble Kalman sampling (EKS) for experimental design
- 2) Emulate: Gaussian Process (GP) to emulate parameter-data map
- 3) Sample: Markov Chain Monte Carlo (MCMC) sampling for posterior estimation

Emulate: Gaussian Process (GP)

Approximate expensive-to-evaluate model G

$$y = \mathcal{G}^{(M)}(\theta) + \eta$$

by Gaussian process:

$$\mathcal{G}^{(M)}(\theta) \sim \mathcal{N}\left(m(\theta), \Gamma_{\text{GP}}(\theta)\right)$$
with $k_l(\theta, \theta') = \sigma_l^2 \exp\left(-\frac{1}{2} \|\theta - \theta'\|_{D_l}^2\right) + \lambda_l^2 \delta_\theta\left(\theta'\right)$

Example of the Lorenz 63 model https://www.youtube.com/watch?v=qSrfb9Dy6e4

The GP is trained on the input-output pairs from the last EKS iteration $\left\{\theta_n^{(i)}, G(\theta_n^{(i)})\right\}_{i=1}^J$

Method: Calibrate-Emulate-Sample

- 1) Calibrate: Ensemble Kalman sampling (EKS) for experimental design
- 2) Emulate: Gaussian Process (GP) to emulate parameter-data map
- 3) Sample: Markov Chain Monte Carlo (MCMC) sampling for posterior estimation

Sample - MCMC

Estimation of model output distribution based on MCMC sampling of $\, heta$

Algorithm:

- 1. Choose $\theta_0 = \theta_J$
- 2. Propose a new pareameter choice $\theta_{n+1}^* = \theta_n + \zeta_n$
- 3. Set $\theta_{n+1} = \theta_{n+1}^*$ with probability $a(\theta_n, \theta_{n+1}^*)$
- 4. $n \rightarrow n+1$, return to 2

Acceptance probability:

$$a\left(\theta,\theta^{*}\right) = \min\left\{1, \exp\left[\left(\Phi^{(M)}\left(\theta^{*}\right) + \frac{1}{2}\left\|\theta^{*}\right\|_{\Gamma_{\theta}}^{2}\right) - \left(\Phi^{(M)}\left(\theta\right) + \frac{1}{2}\left\|\theta\right\|_{\Gamma_{\theta}}^{2}\right)\right]\right\}$$
with
$$\Phi_{\mathrm{GP}}^{(M)}(\theta) = \frac{1}{2}\|y - m(\theta)\|_{\Gamma_{\mathrm{GP}}(\theta) + \Gamma_{y}}^{2} + \frac{1}{2}\log\det\left(\Gamma_{\mathrm{GP}}(\theta) + \Gamma_{y}\right)$$

Method: Calibrate-Emulate-Sample

- 1) Calibrate: Ensemble Kalman sampling (EKS) for experimental design
- 2) Emulate: Gaussian Process (GP) to emulate parameter-data map
- 3) Sample: Markov Chain Monte Carlo (MCMC) sampling for posterior estimation

Example: Linear problem

Example on a 2-dimensional linear model: $y = G \theta^\dagger + \eta$

Calibrate: 20 iteration of EKS with J particles

2) Emulate: Train GP on EKS of last iteration

3) Sampling: MCMC to apptoximate posterior

Time-average data

In chaotic dynamical systems data may only be available in time-averaged form.

Dynamical system

Time - average

$$\dot{z} = F(z; \theta),$$

$$z(0) = z_0$$

$$\dot{z} = F(z;\theta),
z(0) = z_0$$

$$\mathcal{G}_{\tau}(\theta; z_0) = \frac{1}{\tau} \int_{T_0}^{T_0 + \tau} \varphi(z(t;\theta)) dt$$

$$\Rightarrow y = G_{\tau}(\theta, z_0) + \eta
= G_{\tau}(\theta) + \eta$$

$$y = G_{\tau}(\theta, z_0) + \tau$$
$$= G_{\tau}(\theta) + \eta$$

Assumption: Ergodicity

Initial conditions play no role in time averages over the infinite time horizon, i.e. initial condition lead to random errors for finite times.

Example: Lorenz 63

Dynamical system: $\dot{x} = 10(y - x)$

 $\dot{y} = rx - y - xz$

 $\dot{z} = xy - bz$

Parameter: $\theta = [r, b]^{\top}$

https://en.wikipedia.org/wiki/Lorenz_system

Example: Lorenz 63

Dynamical system: $\dot{x} = 10(y - x)$

 $\dot{y} = rx - y - xz$

Sample

 $\dot{z} = xy - bz$

Parameter: $\theta = [r, b]^{\top}$

Notes:

- MCMC on the noisy data is less efficient in terms of acceptance rate
- Less model evaluations

Example: Simplified ESM

Aqua planet ESM: Simplified Betts-Miller Scheme

Moisture Conservation:
$$\frac{\partial q}{\partial t} + \mathbf{v} \cdot \nabla q = -\frac{q - q_{ref}(T; \theta)}{\tau_q(q, T; \theta)}$$

Energy Conservation:
$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \frac{T - T_{ref}(q, T; \theta)}{\tau_T(q, T; \theta)} + \text{RAD} + \dots$$

https://youtu.be/qSrfb9Dy6e4?t=938

Figure 9: Comparison between the GCM statistics at the true parameters θ^{\dagger} and the trained B-GP emulator predictions at θ^{\dagger} . Blue: GCM mean (dots) averaged over 600 30-day runs, with the error bars marking a 95% confidence interval from variances on the diagonal of Γ . Dark red: predicted mean (line) and 95% confidence interval (shaded region) produced by the B-GP emulator.

Conclusion

Calibrate-emulate-sample approach is advantageous

- Requires modest number of runs of expensive-to-evaluate models
- Finds optimal parameters even with noisy data
- MCMC allows uncertainty estimation by evaluating the GP model

Outlook

- Replace GP by NN for high-dimensional parameter learning
- Generalize for structural model errors

Ensemble Kalman Inversion

Ensemble Kalman method

State Space Model:

Dynamics Model:
$$v_{n+1} = \Psi(v_n) + \xi_n, \quad n \in \mathbb{Z}^+$$

Data Model:
$$y_{n+1} = Hv_{n+1} + \eta_{n+1}, \quad n \in \mathbb{Z}^+$$

Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$

Optimization approach:

Predict:
$$\widehat{v}_{n+1} = \Psi(v_n), \quad n \in \mathbb{Z}^+$$

Model/Data Compromise:
$$J_n(v) = \frac{1}{2} |v - \hat{v}_{n+1}|_{\widehat{C}}^2 + \frac{1}{2} |y_{n+1} - Hv|_r^2$$

Optimize:
$$v_{n+1} = \operatorname{argmin}_v J_n(v)$$

Inverse Problem

Problem Statement

Find \boldsymbol{u} from \boldsymbol{y} where $G: \mathcal{U} \mapsto \mathcal{Y}$, η is noise and

$$y = G(\underline{u}) + \eta.$$

Optimization
$$\Phi(u) = \frac{1}{2}|y - G(u)|_{\Gamma}^2 + \frac{1}{2}|u|_{\Sigma}^2$$
; Probability $e^{-\Phi(u)}$

Dynamical Formulation Iterative inversion: see [9], [11], [16]

Dynamics Model: $u_{n+1} = u_n, n \in \mathbb{Z}^+$

Dynamics Model: $w_{n+1} = G(u_n), n \in \mathbb{Z}^+$

Data Model: $y_{n+1} = w_{n+1} + \eta_{n+1}, \quad n \in \mathbb{Z}^+$

Inverse Problem

Dynamical Formulation

Dynamics Model: $u_{n+1} = u_n$, $n \in \mathbb{Z}^+$

Dynamics Model: $w_{n+1} = \mathsf{G}(u_n), \quad n \in \mathbb{Z}^+$

Data Model: $y_{n+1} = w_{n+1} + \eta_{n+1}, \quad n \in \mathbb{Z}^+$

State Space Estimation Formulation

Reformulate: $v = (u, w), \quad \Psi(v) = (u, G(u)), \quad H = (\mathbf{p}, I)$

Dynamics Model: $v_{n+1} = \Psi(v_n), \quad n \in \mathbb{Z}^+$

Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}, \quad n \in \mathbb{Z}^+$

Employ EnKF with $y_{n+1} \equiv y$.

Inverse Problem

Iteration $n \mapsto n+1$

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uw} (C_n^{ww} + \Gamma)^{-1} (y - G(u_n^{(j)}))$$