進捗報告

表 1: 実験の設定

base model	VGG19				
Optim(w)	SGD(lr=0.01, momentum=0.9)				
$Optim(\alpha)$	Adam(lr=0.005, β =(0.5, 0.999))				
Loss	Cross Entropy Loss				
dataset	cifar10				
batch size	64				

1 問題

前回同様.

初期条件として探索をベースラインの VGG19 に相当する α から始めた.

2 実験

表1に探索時の実験設定を示した.

評価段階では、表 1 に加え、SGD の学習率を、指数スケジューラ $(\gamma=0.9261:\gamma^{30}=0.1)$ で減衰させた.

- (a) descending α_j の上位から順に, round($\hat{\beta}_j$) 本の ショートカットを選んだグラフ,
- (b) threshold $\hat{\alpha}_{ij} >= 0.5$ となるショートカットを選んだグラフ,
- (c) baseline ショートカットをすべて破棄したグラフ,の3つで性能を評価した.

2.1 結果

図1にテスト精度を、表2に結果を示した.

図 2 は探索した隣接行列の重み $\hat{\alpha}_{ij} = \hat{\beta}_j * \alpha_{ij}$ である。図 3,4,5 は、図 2 からグラフ構築手法 (a)(b)(c) で得られたグラフである。ノードが各ブロックの出力を示し、エッジは太線が VGG のレイヤー、点線がショートカットを表している.

図 1: 学習中のテスト精度

図 2: 探索後の隣接行列の重み â

3 考察

予備実験で、(a) の実験を Step スケジューラ、300 epoch で行ったところ、テスト精度が 93.97 %まで伸びたので、時間があればこの設定で学習したい.

4 今後の予定

● 探索 10 回試行したグラフの比較

5 ソースコード

github の notebook リポジトリ参照. 探索中のグラフの変化は, この資料の./graph を参照.

表 2: 各条件の比較

	テスト精度	学習時間	計算時間	パラメータ数	データサイズ		
	(%)	(epoch)	(GPU-min)		train	valid	test
探索	87.24	50	120	26.30M	25000	25000	5000
(a) descending	92.14	100	100	20.85M	50000	0	10000
(b) threshold	91.83	100	100	20.27M	50000	0	10000
(c) baseline	91.79	100	100	20.04M	50000	0	10000

