Application of Computer-assisted Sperm Analysis (CASA) to Aquatic Species

Huiping Yang and Terrence R. Tiersch

Introduction

Computer-assisted sperm analysis (CASA) (also referred to as computer-assisted semen analysis) uses computer software to collect, detect, identify, and quantify attributes of motility in a sperm sample. It was first designed for use in humans and livestock, and is considered to be an objective, accurate approach for sperm motility assessment in mammals because it relies on actual counts and measurements rather than subjective observation and estimation. Basically, these systems comprise three components: 1) an optical system; 2) a method for image capture, and 3) data analysis and reporting. Currently, several manufacturers provide complete CASA systems or software (listed in Table 1). Based on the descriptions from the associated user manuals, the basic functions of these systems are similar and are typically based on quality standards developed for human semen put forth by the World Health Organization (World Health Organization 2010).

Table 1. Examples of commercially available systems for computer-assisted sperm analysis.

System name	Manufacturer	Location		
Medea LAB	Medea LAB	Bruckberg, Germany		
Sperm Vision	Minitube of American	Verona, WI, USA		
AndroExpert	AndroExpert	Haus am See, Switzerland		
Sperm Quality Analyzer (SQA-V)	Medical Electronic Systems	Los Angeles, CA, USA		
Integrated Semen Analysis System (ISAS)	Projects i Serveis R+D S.L.	Valencia, Spain		
Sperm Class Analyzer (SCA)	Microptic S. L.	Barcelona, Spain		
IVOS sperm analyzer	Hamilton Thorne	Beverly, MA, USA		
CEROS sperm analyzer	Hamilton Thorne	Beverly, MA, USA		
Image J	National Institutes of Health	Bethesda, MD, USA		
Hobson Sperm Tracker	Hobson Vision Ltd	Derbyshire, UK		
The CellTrak/S system	Motion Analysis Corporation	Santa Rosa, CA, USA		
Sperm Motility Quantifier (SMQ)	Wirson Scientific and Precision Equipment	Auckland Park, South Africa		
Olympus Micro Image Analysis	Olympus C&S	Czech Republic		
CASAS-QH-Q	Qinghua Tongfang	Beijing, China		
Mika motion analyzer software	Medical Technologies Montreux SA	Clarens/Montreux, Switzerland		
Image-Pro Plus 5.0	Media Cybernetics, Inc.	Bethesda, MD, USA		
Auto sperm*	MedCalc Software byba	Mariakerke, Belgium		

^{*} This device does not require image capture.

To produce accurate and reliable results by use of CASA, a series of parameters and thresholds in the system need to be properly established to ensure that sperm cells can be recorded and sorted into appropriate categories such as cell size, contrast, and identification of movement. These settings are essential for the application of CASA, and are based on characteristics such as size, shape, and swimming trajectory of sperm from each species. For most CASA systems, these settings can be validated by playing back of videos in sequence and inspecting the frames in real time to confirm if the cells were categorized correctly.

Some Characteristics of Sperm from Aquatic Species

Compared to mammalian sperm, fish sperm possess some specific characteristics and show great diversity among species. Accordingly, the CASA settings for analysis of fish sperm are different from that for mammalian sperm. With respect to size and morphology, fish sperm heads are usually around 2-5 µm, much smaller than those of mammalian sperm (8-10 um). The morphology of fish sperm, especially ultrastructure, varies enough from species to species to be used as phylogenetic criteria (Jamieson 2009).

For motility activation and swimming duration, fish sperm possess characteristics different from mammal sperm. Generally, fish sperm are quiescent in the testes, and their activation relies on the difference in osmotic pressure or ion levels between the testicular fluid and the outside environment (Morisawa and Suzuki 1980, Coward et al. 2002, Alavi and Cosson 2006) and also can be influenced by factors such as pH and temperature (Alavi and Cosson 2005). Upon activation, fish sperm show only a short swimming duration time (from 30 sec to 5 min, except for sperm from live-bearing fishes and some euryhaline fishes), while mammal sperm usually can swim for d. In addition, fish sperm move faster than the mammalian sperm, and the movement trajectory can be different.

As general approaches, collection of fish sperm samples can be performed by stripping or by crushing of testis. These latter samples can include immature sperm cells or somatic cells which require specific thresholding of parameters to distinguish them from sperm cells. Usually the parameters for recording of movement need to be set manually, and in terms of the specific values chosen, can be fairly subjective. This problem is exacerbated in aquatic species because of the great variability in sperm morphology and physiology (Jamieson 2009), and due to the short time of peak motility duration in most species (≤ 30 sec). Therefore, to achieve accurate results in aquatic species, it is necessary to establish suitable parameters concerning image capture, cell size, speed values, light intensity and contrast, and photometer settings for each species based on sperm characteristics and condition (e.g., fresh, refrigerated, or post-thaw samples).

Current Application of CASA in Aquatic Species

Genetic improvement has driven great production gains in livestock industries such as poultry and dairy, and advances have been made for aquatic species (Burnell and Allen 2009). Preservation of valuable germplasm can improve genetic resources and reproduction, and also can be applied to conservation of imperiled species. So far, sperm cryopreservation has been studied in more than 200 species since its beginning in the 1950's (Blaxter 1953), and has been applied to large-bodied aquaculture fish species and small aquarium fishes (e.g., (Yang and Tiersch 2009). However, evaluation of gamete quality is still an extremely important but highly problematic component in sperm cryopreservation. To evaluate male gamete quality, work began

241

in the late 1970's in mammals to develop objective, automated technologies to rapidly evaluate sperm movement. This led to development of CASA systems that became widely commercially available in the 1990's, and have been adopted in biomedical applications and for use with high-value livestock.

In the late-1980's CASA was first applied to use in fish. Since then (at time of this writing) there have been 62 publications addressing this topic. Of these, 56 are peer-reviewed primary research articles, and 6 are reviews. The bulk of this research addresses demonstration of the feasibility of CASA application in fish (only 2 publications address invertebrates). The types of research address the following topics: sperm characteristics, motility changes after exposure to toxic chemicals and hormone treatments, sperm enzymology, motility characteristics in relation to storage solutions (e. g. pH, buffer, and osmolality), and sperm motility after cryopreservation. Most of the research utilized fresh sperm collected by stripping or crushing of testis, and only 7 of these reports addressed thawed sperm.

Generally, no standardization of methodology exists for CASA application in fish and shellfish. Indeed, 23 of these publications did not include any statements concerning instrument settings (Table 2), and several publications mentioned only certain parameters such as definitions for progressively motile or static cells. Proper parameter settings are essential to ensure that the images collected and analyzed are the targeted sperm cells. Also, 30 of these publications did not report sperm concentration, while 11 provided a dilution ratio only. The type and depth of viewing slides for loading of samples can affect the concentrations determined by CASA, and potentially influence sperm movement. Most publications described the types of slides used, but with large variation in detail. Temperature can be a factor controlling motility, especially swimming velocity. Of the 56 reviewed publications, 26 did not report sample temperature at the time of images capture. In addition, the time interval prior to the start of image capture after motility initiation and the timing of data collection periods are critical factors for analysis of velocity and motility because fish sperm are often motile for only sec to min, and the duration of burst speed can be short (10-20 sec). Rapid sample handing followed by high speed video recording is required to monitor this window. Of the 56 publications, 46 described this in some way, but most lacked information to clarify even if the starting time and period of video capture used for analysis were within the window of maximal sperm motility.

With respect to the output parameters used for sperm quality in these publications, most reported motility, progressive motility, velocity (µm/s) including average path velocity (VAP), straight line velocity (VSL) and curvilinear velocity (VCL), and other parameters such as beat cross frequency (BCF), lateral head displacement (ALH), and swimming duration time.

Overall, the previous studies summarized in this review have demonstrated the feasibility of CASA for aquatic species, and showed that several output parameters are useful for evaluating gamete quality. However, routine application of CASA in aquatic species is limited by: 1) lack of clearly established instrument settings, especially for material other than fresh, stripped sperm of fish; 2) lack of standardized protocols, and 3) consequently because of these deficiencies, not taking advantage of the full range of analysis capabilities of these powerful instruments. These shortcomings need to be addressed by systematic evaluation of representative panels of aquatic species from freshwater, marine, euryhaline, anadromous, and catadromous habits with external and internal fertilization.

Table 2. Summary of previous publications addressing the use of CASA for aquatic species (arranged in chronological order).

		Comple	Tomp	Sperm	Clide type and	Time i	ntervals	Frames	Settings
Citation	Species	Sample type	Temp. (°C)	density	Slide type and depth	Image capture	Data analysis	per sec	reported
Boitano and Omoto 1992	Rainbow trout Oncorhynchus mykiss	Fresh	10		Regular glass slide	At 10 sec	2 sec	30	Definition of linear, arched, & circular
Toth et al. 1995	Common carp Cyprinus carpio	Fresh	23-25	Dilution ratio only	20-um μ-Cell semen chamber (Fertility Technologies)	At 12-14 sec for 1- 2 min	15-20 sec; 25-30 sec; 55-60 sec	200	Detailed listing
Christ et al. 1996	Common carp	Fresh	23-25	Hemocy- tometer	20-um μ-Cell semen chamber		15-20 sec; 55-60 sec	200	Same as above
Ciereszko et al. 1996	Lake sturgeon Acipenser fulcescens	Fresh & thawed	15	Neubauer counting chamber	20- um Microcell (Conception Technologies)	At 5 sec & 5 min for 20-30 sec	25 frames	200	
Kime et al. 1996	African catfish Clarias gariepinus	Fresh		Dilution only		At 20 sec	15 sec x 4	25	Detailed listing
Ravinder et al. 1997	Common carp	Fresh	2, 3, 25	Dilution only	10-μm Marler chamber (Fertility Technologies)	At 10 sec		25 or 60	Detailed listing
Toth et al. 1997	Lake sturgeon	Fresh	12	Dilution only	20-μm μ-cell semen analysis chamber	At 5 sec for 25 sec		200	Detailed listing
Creech et al. 1998	Fathead minnow Pimephelas promelas	Fresh	RT	60-100 sperm/view		At 10 sec x 4	2 sec	30	Cited another reference
Ciereszko et al. 1999	Muskellunge Esox masquinongy	Thawed	22		20-μm Microcell	At 15-20 sec	25 frames	200	
Linhart et al. 2000	Common carp	Thawed		Dilution only	Regular glass slide	At 10 sec	15 sec		Threshold velocity only

		Sample	Temp.	Sperm density	Slide type and	Time i	ntervals	- Frames	Settings reported
Citation	Species	type			depth	Image capture	Data analysis	per sec	
Rurangwa et al. 2001	African catfish	Fresh & thawed	RT	Dilution only	10-well multitest slide with cover slip (ICN Biomedicals)	At 0 sec to 2 min	15 sec at 5 sec after activation		Modified settings of Kime et al. 1996
Kime and Tveiten 2002	Spotted wolffish Anarhichas minor	Fresh			12-well slide* with cover slip	At 30 sec	15 sec		Detailed listing
Rurangwa et al. 2002	African catfish & common carp	Fresh			10-well multitest slide with cover slip	At 5 sec to 20 sec			Kime et al. 1996
Schoenfuss et al. 2002	Goldfish Carassius auratus	Fresh							
Van Look and Kime 2003	Goldfish	Fresh			12-well slide* with cover slip	At 0 sec	5–20 sec		Detailed listing
Elofsson et al. 2003	Fifteen-spined stickleback Spinachia spinachia	Fresh	15		12-well slide*	At 20 sec			Detailed listing
Warnecke and Pluta 2003	Common carp	Fresh & thawed	20 ± 1		10-µm chamber (Stroemberg/Mika- CMA)	At 15 sec for 5 sec	32 frames	50	Definitions of motility
Aravindaksh an et al. 2004	Spottail shiner Notropis hudsonius	Fresh		By CASA		5 sec			
Asturiano et al. 2004	European eel Anguilla anguilla	Fresh		Hemocy- tometer	Teflon-coated microwells coated with 10% BSA				

-		Sample	Temp.	Sperm	Slide type and	Time i	ntervals	Frames	Settings
Citation	Species	type	(°C)	density	depth	Image capture	Data analysis	per sec	reported
Burness et al. 2004	Bluegill Lepomis macrochirus	Fresh	20	Dilution ratio only	Improved Neubaur hemocytometer	0.5-sec readings x 6 in 90 sec	60 sec after activation		Definition of motility
Kleinkauf et al. 2004	Flounder	Fresh			12-well slide*	At 15 sec	30-45, 45- 60, & 60- 75 sec		
Le Comber et al. 2004	Three-spined stickleback Gasterosteus aculeatus	Fresh		Dilution ratio only	12-well slide*	0 to 105 sec at 15- sec intervals			Detailed listing
Vermeirssen et al. 2004	Atlantic halibut Hippoglossus hippoglossus	Fresh			PTFE-coated slide (ICN Biochemicals)				
Asturiano et al. 2005	European eel	Fresh		Hemocy- tometer					
Burness et al. 2005	Bluegill	Fresh	20 ± 1	Hemocy- tometer		10, 20, 30, 45, 60, & 120 sec for 0.5-sec	after		Definition for immotile
Dietrich et al. 2005	Rainbow trout	Fresh	20		12-well slide* with cover slip	At 5 to 20 sec		50	Detailed listing
Urbach et al. 2005	Arctic charr Salvelinus alpinus	Fresh			Micro slide with cover-slip	At 0 sec to 1.5 min		50	Contrast,cell size,VAP threshold & VSL
Babiak et al. 2006a	Atlantic halibut	Fresh	6-8	Hemocy- tometer	Counting chamber (Leja products)	At 0 to 105 sec		50	Contrast, cell size

Citation Sp		Comple	Tomn	lamn Cnaum	Slide type and	Time in	ntervals	- Frames	Settings reported
	Species	Sample type	Temp. (°C)	Sperm density	depth	Image capture	Data analysis	per sec	
Babiak et al. 2006b	Atlantic halibut	Fresh	20	Dilution ratio only	Burker's chamber	At 30 sec	0.5 sec		Defined static cells
Felip et al. 2006	European sea bass	Fresh		Dilution ratio only	Regular glass slide	At 5 sec		25	Immotile, slow, moderate, & fast
Hu et al. 2006	Amphioxus Branchiostoma belcheri	Fresh	RT	Hemocy- tometer		At 0.5, 4 & 10 min for 3 sec			Immotile, swaying, circular & progressive
Kowalski et al. 2006	European smelt Osmerus eperlanus	Fresh	4	Dilution ratio only	12-well slide*	At 4 sec for 12 sec			
Locatello et al. 2006	Guppy Poecilia reticulate	Fresh	26		12-µm microcell chamber				Static cells: VAP, VCL & VSL
Holt et al. 2007	Bluegill	Fresh	20	Dilution ratio only	Neubaur hemocytometer	At 0 to 60 sec	5-10 sec	30	
Liu et al. 2007	Red seabream Pagrus major	Fresh & thawed	18-20		10-μm chamber (20- ul)	At 10 sec		24	Defined motility
Wilson- Leedy and Ingermann 2007	Zebrafish <i>Danio</i> rerio	Fresh	20 ± 1		12-well (12-μm) slide coated with 1% polyvinyl alcohol with cover slip	At 15 sec		97	
Wojtczak et al. 2007	Common carp	Fresh		Spectro- photometer	12-well slide*	At 15 to 30 sec			
Cabrita et al. 2008	Senegalese sole Solea senegalensis	Fresh				At 15, 30, 45 & 60 sec			
Ciereszko et al. 2008	European whitefish Coregonus lavaretus	Fresh & thawed			12-well slide*	At 5 sec	15 sec		

		Comple	Tomn	Sperm density	Slide type and depth	Time intervals		- Frames	Settings
Citation	Species	Sample type	Temp. (°C)			Image capture	Data analysis	per sec	reported
Dietrich et al. 2008	Rainbow trout	Fresh	RT	Spectro- photometer	12-well slide*with cover slip	At 5 to 20 sec			Detailed listing
Fitzpatrick et al. 2008	Blue mussel <i>Mytilus trossulus</i>	Fresh		Yes	1-mm welled slide with cover slip		0.33 sec	60	
Jha et al. 2008	Blue mussel	Fresh	20		20-µm chambered slide		0.5-sec x 10	60	
Martinez- Pastor et al. 2008	Senegalese sole	Fresh				At 15, 30, 45 & 60 sec			
Singh and Singh 2008	Stinging catfish Heteropneustes fossilis	Fresh		By CASA	Slide coated with 1% polyvinyl alcohol	At 15 s			Kime et al. 1996, 2001; Chowdhury and Joy 2001 with modifications
Zilli et al. 2008	Gilthead sea bream <i>Sparus</i> aurata & Striped sea bream <i>Lithognathus</i> mormyrus	Fresh			12-well slide* with a cover slip	At 15 sec	45 sec		Detailed listing for each species
Gasparini et al. 2009	Guppy	Fresh			Glass slide coated with silicone with cover slip				Defined static cells
Krol et al. 2009	European smelt Osmerus eperlanus	Fresh		Yes	Method of Kawalski et al. 2006				
Ottesen et al. 2009	Atlantic halibut	Fresh	7		Standard counting chamber (Leja)				
Rosengrave et al. 2009a	Chinook salmon Oncorhynchus tshawytscha	Fresh	12		Regular glass slide with cover slip	At 10 & 20 sec for 0.5 sec			

Citation		Sample	Temp.	Sperm density	Slide type and	Time in	ntervals	- Frames per sec	Settings
	Species	type	(°C)		depth	Image capture	Data analysis		reported
Rosengrave et al. 2009b	Chinook salmon	Fresh				At 10 & 20 sec for 0.5 sec			Defined motility
Schoenfuss et al. 2009	Goldfish	Fresh	22						
Wilson- Leedy et al. 2009	Zebrafish	Fresh			Slides coated with 1% polyvinyl alcohol, 0.5-mm perfusion chamber (Invitrogen)	At 0 sec for 150 sec		97	Refers to Wilson-Leedy et al. 2007
Zilli et al. 2009	Gilthead sea bream	Fresh			12-well slide* with cover slip				
Dietrich et al. 2010	Vendace Coregonus albula	Fresh	6		12-well slide* with cover slip				
Groison et al. 2010	European hake <i>Merluccius</i> <i>merluccius</i>	Fresh	22			At 15 sec for 30 or 120 sec	15 sec	25	Detailed listing
Marchand et al. 2010	Mosambique tilapia Oreochromis mossambicus & African catfish	Fresh	RT		2-ul Leja chamber	At 0 sec for 50 sec	first 10 sec	30	

^{--:} Not reported. RT: Room temperature.

^{*12-}well slides: 12-well multi-test slide from ICN Biomedicals.

Outlook for Future Application of CASA in Aquatic Species

Sperm quality analysis and control are necessary components for a wide range of programs including aquaculture, cryopreservation, and environmental monitoring. Currently, germplasm cryopreservation, distribution, and development represent a multi-billion dollar global industry for improvement in livestock industries. These activities provide a working blueprint for establishing parallel industries in aquatic species, and allow adoption of the equipment originally developed for mammals for use in fish and shellfish such as CASA systems. The publications summarized in Table 2 demonstrated the potential for application of CASA in fish and shellfish. However, to fully integrate CASA into aquaculture or germplasm programs as a reliable tool for evaluation of gamete quality, more investigation is needed. An approach for integration could include the following:

- 1) As stated above, *standardized settings* are essential for collection of data used for analysis. Data collection by CASA can be entirely dependent on control of settings (such as brightness and contrast) and protocols (such as timing of data capture). Due to the specific characteristics and diversity of fish sperm compared to mammal sperm, a panel of aquatic species to represent freshwater, marine, and euryhaline habitats (including species with distinct motility characteristics such as live-bearers) needs to be evaluated at controlled conditions (e.g., concentration and temperature). Standardized procedures for CASA parameter settings need to be established, and thus can serve as templates for use with new species in the future. In addition, sperm collected by stripping or dissection of the testis (necessary in some species) in fresh, stored, and thawed conditions needs to be compared for parameter settings.
- 2) Standardized procedures for data collection and analysis are needed to ensure reliable results. This is a large problem for several reasons. For example, most fish sperm are motile for 30 sec or less. However, CASA systems are generally designed for use with mammalian sperm which can be continuously motile for d. Thus, rapid data collection is necessary for fish sperm. The interval timing and duration chosen for analysis is critical to ensure observations are made during the time of peak motility. In addition, the problems associated with proper mixing of samples with activating solutions and development of volumetric chambers suitable for use with sperm of aquatic species need to be addressed.
- 3) Identification of *output parameters* in CASA analysis is most useful for estimation of gamete quality and prediction of sperm viability during refrigerated storage and shipping, after thawing, and in use for fertilization. After locking in the settings and protocols, it will be necessary to link the output parameters available from CASA analysis to sperm fertility for use with aquatic species.
- 4) Eventual *integration of instrument settings, protocols, and output parameters* into practical methodology would be the goal for application across a broad range of aquatic species. Such an approach would allow specific, systematic and repeatable analysis profiles for sperm before freezing and after thawing, and would allow work to be directly compared across species and laboratories.

The problems encountered in navigating this pathway to standardized CASA application have been addressed previously in livestock species such as cattle, swine, and horses. As such, they could provide useful templates for planning and implementation of informed approaches relevant to aquatic species (e.g., see the Technical Guide for IVOS, TOX IVOS, and CEROS, version 12.3, August 27, 2007, Hamilton Thorne Biosciences, Beverly, MA, USA).

Acknowledgments

We thank K. Craig and A. Ziolkowski for discussion, and R. Cuevas, E. Tan and E Hu for technical assistance. This work was supported in part by funding from the Louisiana Sea Grant College Program, the USDA-SBIR program, and the National Institutes of Health. Approved by the Director of the Louisiana Agricultural Experiment Station as manuscript number 2011-244-5360.

References

- Alavi, S. M. and J. Cosson. 2006. Sperm motility in fishes. II. Effects of ions and osmolality: a review. Cell Biology International 30:1-14.
- Alavi, S. M. H. and J. Cosson. 2005. Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biology International 29:101-110.
- Aravindakshan, J., V. Paquet, M. Gregory, J. Dufresne, M. Fournier, D. J. Marcogliese and D. G. Cyr. 2004. Consequences of xenoestrogen exposure on male reproductive function in spottail shiners *Notropis hudsonius*. Toxicological Sciences 78:156-165.
- Asturiano, J. F., L. Perez, D. L. Garzon, F. Marco-Jimenez, D. S. Penaranda, J. S. Vicente and M. Jover. 2004. Physio-chemical characteristics of seminal plasma and development of media and methods for the cryopreservation of European eel sperm. Fish Physiology and Biochemistry 30:283-293.
- Asturiano, J. F., L. Perez, D. L. Garzon, D. S. Penaranda, F. Marco-Jimenez, S. Martinez-Llorens, A. Tomas and M. Jover. 2005. Effect of different methods for the induction of spermiation on semen quality in European eel. Aquaculture Research 36:1480-1487.
- Babiak, I., O. Ottesen, G. Rudolfsen and S. Johnsen. 2006a. Chilled storage of semen from Atlantic halibut, *Hippoglossus hippoglossus* L. II: Effect of spermiation advancement, catheterization of semen, and production-scale application. Theriogenology 66:2036-2046.
- Babiak, I., O. Ottesen, G. Rudolfsen and S. Johnsen. 2006b. Quantitative characteristics of Atlantic halibut, *Hippoglossus hippoglossus* L., semen throughout the reproductive season. Theriogenology 65:1587-1604.
- Blaxter, J. H. S. 1953. Sperm Storage and Cross-Fertilization of Spring and Autumn Spawning Herring. Nature 172:1189-1190.
- Boitano, S. and C. K. Omoto. 1992. Trout sperm swimming patterns and role of intracellular Ca++. Cell Motility and the Cytoskeleton 21:74-82.
- Burnell, G. M. and G. Allen. 2009. New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management. Woodhead Publishing Limited, Abington, Cambridge.
- Burness, G., S. J. Casselman, A. I. Schulte-Hostedde, C. D. Moyes and R. Montgomerie. 2004. Sperm swimming speed and energetics vary with sperm competition risk in bluegill *Lepomis macrochirus*. Behavioral Ecology and Sociobiology 56:65-70.
- Burness, G., C. D. Moyes and R. Montgomerie. 2005. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill *Lepomis macrochirus*. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology 140:11-17.
- Cabrita, E., F. Martinez-Pastor, F. Soares and M. T. Dinis. 2008. Motility activation and subpopulation analysis in *Solea senegalensis* spermatozoa. Cybium 32:185-186.

- Christ, S. A., G. P. Toth, H. W. McCarthy, J. A. Torsella and M. K. Smith. 1996. Monthly variation in sperm motility in common carp assessed using computer-assisted sperm analysis (CASA). Journal of Fish Biology 48:1210-1222.
- Ciereszko, A., K. Dabrowski, F. Lin, S. A. Christ and G. P. Toth. 1999. Effects of extenders and time of storage before freezing on motility and fertilization of cryopreserved muskellunge spermatozoa. Transactions of the American Fisheries Society 128:542-548.
- Ciereszko, A., G. J. Dietrich, M. Wojtczak, M. Sobocki, P. Hliwa, H. Kuzminski, S. Dobosz, M. Slowinska and J. Nynca. 2008. Characterization and cryopreservation of whitefish *Coregonus lavaretus* L. semen from Lake Lebsko, Poland. Fundamental and Applied Limnology 173:59-65.
- Ciereszko, A., G. P. Toth, S. A. Christ and K. Dabrowski. 1996. Effect of cryopreservation and theophylline on motility characteristics of lake sturgeon *Acipenser fulvescens* spermatozoa. Theriogenology 45:665-672.
- Coward, K., N. R. Bromage, O. Hibbitt and J. Parrington. 2002. Gamete physiology, fertilization and egg activation in teleost fish. Reviews in Fish Biology and Fisheries 12:33-58.
- Creech, M. M., E. V. Arnold, B. Boyle, M. C. Muzinich, C. Montville, D. S. Bohle and R. W. Atherton. 1998. Sperm motility enhancement by nitric oxide produced by the oocytes of fathead minnows, *Pimephelas promelas*. Journal of Andrology 19:667-674.
- Dietrich, G. J., M. Dietrich, P. Hliwa, R. Stabinski, J. Nynca, A. Andronowska and A. Ciereszko. 2010. Semen biology of vendace *Coregonus albula* L. Fish Physiology and Biochemistry 36:419-425.
- Dietrich, G. J., A. Szpyrka, M. Wojtczak, S. Dobosz, K. Goryczko, L. Zakowski and A. Ciereszko. 2005. Effects of UV irradiation and hydrogen peroxide on DNA fragmentation, motility and fertilizing ability of rainbow trout *Oncorhynchus mykiss* spermatozoa. Theriogenology 64:1809-1822.
- Dietrich, G. J., M. Wojtczak, M. Slowinska, S. Dobosz, H. Kuzminski and A. Ciereszko. 2008. Effects of ovarian fluid on motility characteristics of rainbow trout *Oncorhynchus mykiss* Walbaum spermatozoa. Journal of Applied Ichthyology 24:503-507.
- Elofsson, H., K. Van Look, B. Borg and I. Mayer. 2003. Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. Journal of Fish Biology 63:1429-1438.
- Felip, A., S. Zanuy and M. Carrillo. 2006. Comparative analysis of growth performance and sperm motility between precocious and non-precocious males in the European sea bass *Dicentrarchus labrax*, L. Aquaculture 256:570-578.
- Fitzpatrick, J. L., S. Nadella, C. Bucking, S. Balshine and C. M. Wood. 2008. The relative sensitivity of sperm, eggs and embryos to copper in the blue mussel *Mytilus trossulus*. Comparative Biochemistry and Physiology Part C -Toxicology and Pharmacology 147:441-449.
- Gasparini, C., A. V. Peretti and A. Pilastro. 2009. Female presence influences sperm velocity in the guppy. Biology Letters 5:792-794.
- Groison, A. L., C. Fauvel, M. Suquet, O. S. Kjesbu, J. R. Le Coz, I. Mayer and J. Cosson. 2010. Some characteristics of sperm motility in European hake *Merluccius merluccius* L., 1758. Journal of Applied Ichthyology 26:682-689.
- Holt, W. V., J. O'Brien and T. Abaigar. 2007. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reproduction Fertility and Development 19:709-718.

- Hu, J., S. Zhang, Y. Zhang and Y. Xu. 2006. Motility characteristics of the sperm of the amphioxus *Branchiostoma belcheri tsingtauensis* as revealed by compuster-assisted sperm analysis. Acta Zoologica Sinica 52:706-711.
- Jamieson, B. G. M. 2009. Reproductive Biology and Phylogeny of Fishes (Agnathans and Bony Fishes). Science Publisher, Enfield, NH, USA.
- Jha, M., J. Cote, W. R. Hoeh, P. U. Blier and D. T. Stewart. 2008. Sperm motility in *Mytilus edulis* in relation to mitochondrial dna polymorphisms: Implications for the evolution of doubly uniparental inheritance in bivalves. Evolution 62:99-106.
- Kime, D. E., M. Ebrahimi, K. Nysten, I. Roelants, E. Rurangwa, H. D. M. Moore and F. Ollevier. 1996. Use of computer assisted sperm analysis (CASA) for monitoring the effects of pollution on sperm quality of fish: Application to the effects of heavy metals. Aquatic Toxicology 36:223-237.
- Kime, D. E. and H. Tveiten. 2002. Unusual motility characteristics of sperm of the spotted wolffish. Journal of Fish Biology 61:1549-1559.
- Kleinkauf, A., C. Macfarlane, S. Yeates, M. G. Simpson and R. T. Leah. 2004. A biomarker approach to endocrine disruption in flounder-estrogen receptors, hepatocyte proliferation, and sperm motility. Ecotoxicology and Environmental Safety 58:324-334.
- Kowalski, R. K., P. Hliwa, A. Andronowska, J. Krol, G. J. Dietrich, M. Wojtczak, R. Stabinski and A. Ciereszko. 2006. Semen biology and stimulation of milt production in the European smelt *Osmerus eperlanus* L. Aquaculture 261:760-770.
- Krol, J., R. K. Kowalski, P. Hliwa, G. J. Dietrich, R. Stabinski and A. Ciereszko. 2009. The effects of commercial preparations containing two different GnRH analogues and dopamine antagonists on spermiation and sperm characteristics in the European smelt *Osmerus eperlanus*. Aquaculture 286:328-331.
- Le Comber, S. C., C. G. Faulkes, K. J. W. Van Look, W. V. Holt and C. Smith. 2004. Recovery of sperm activity after osmotic shock in the three-spined stickleback: Implications for pre-oviposition ejaculation. Behaviour 141:1555-1569.
- Linhart, O., M. Rodina and J. Cosson. 2000. Cryopreservation of sperm in common carp *Cyprinus carpio*: Sperm motility and hatching success of embryos. Cryobiology 41:241-250
- Liu, Q. H., J. Li, Z. Z. Xiao, F. H. Ding, D. D. Yu and X. Z. Xu. 2007. Use of computer-assisted sperm analysis (CASA) to evaluate the quality of cryopreserved sperm in red seabream *Pagrus major*. Aquaculture 263:20-25.
- Locatello, L., M. B. Rasotto, J. P. Evans and A. Pilastro. 2006. Colourful male guppies produce faster and more viable sperm. Journal of Evolutionary Biology 19:1595-1602.
- Marchand, M. J., G. M. Pieterse and I. E. J. Barnhoorn. 2010. Sperm motility and testicular histology as reproductive indicators of fish health of two feral fish species from a currently DDT sprayed area, South Africa. Journal of Applied Ichthyology 26:707-714.
- Martinez-Pastor, F., E. Cabrita, F. Soares, L. Anel and M. T. Dinis. 2008. Multivariate cluster analysis to study motility activation of *Solea senegalensis* spermatozoa: a model for marine teleosts. Reproduction 135:449-459.
- Morisawa, M. and K. Suzuki. 1980. Osmolality and potassium ion their roles in initiation of sperm motility in teleosts. Science 210:1145-1147.
- Ottesen, O. H., I. Babiak and G. Dahle. 2009. Sperm competition and fertilization success of Atlantic halibut *Hippoglossus hippoglossus* L. Aquaculture 286:240-245.

- Ravinder, K., K. Nasaruddin, K. C. Majumdar and S. Shivaji. 1997. Computerized analysis of motility, motility patterns and motility parameters of spermatozoa of carp following short-term storage of semen. Journal of Fish Biology 50:1309-1328.
- Rosengrave, P., R. Montgomerie, V. J. Metcalf, K. McBride and N. J. Gemmell. 2009a. Sperm traits in chinook salmon depend upon activation medium: implications for studies of sperm competition in fishes. Canadian Journal of Zoology-Revue Canadienne De Zoologie 87:920-927.
- Rosengrave, P., H. Taylor, R. Montgomerie, V. Metcalf, K. McBride and N. J. Gemmell. 2009b. Chemical composition of seminal and ovarian fluids of chinook salmon *Oncorhynchus tshawytscha* and their effects on sperm motility traits. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology 152:123-129.
- Rurangwa, E., A. Biegniewska, E. Slominska, E. F. Skorkowski and F. Ollevier. 2002. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility. Comparative Biochemistry and Physiology Part C -Toxicology and Pharmacology 131:335-344.
- Rurangwa, E., F. A. M. Volckaert, G. Huyskens, D. E. Kime and F. Ollevier. 2001. Quality control of refrigerated and cryopreserved semen using computer-assisted sperm analysis (CASA), viable staining and standardized fertilization in African catfish *Clarias gariepinus*. Theriogenology 55:751-769.
- Schoenfuss, H. L., J. T. Levitt, R. Rai, M. L. Julius and D. Martinovic. 2009. Treated wastewater effluent reduces sperm motility along an osmolality gradient. Archives of Environmental Contamination and Toxicology 56:397-407.
- Schoenfuss, H. L., J. T. Levitt, G. Van der Kraak and P. W. Sorensen. 2002. Ten-week exposure to treated sewage discharge has relatively minor, variable effects on reproductive behavior and sperm production in goldfish. Environmental Toxicology and Chemistry 21:2185-2190.
- Singh, P. B. and V. Singh. 2008. Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17 beta and 11-ketotestosterone, and sperm motility in *Heteropneustes fossilis* (Bloch). Chemosphere 72:422-431.
- Toth, G. P., S. A. Christ, H. W. McCarthy, J. A. Torsella and M. K. Smith. 1995. Computer-assisted motion analysis of sperm from the common carp. Journal of Fish Biology 47:986-1003.
- Toth, G. P., A. Ciereszko, S. A. Christ and K. Dabrowski. 1997. Objective analysis of sperm motility in the lake sturgeon, *Acipenser fulvescens*: activation and inhibition conditions. Aquaculture 154:337-348.
- Urbach, D., I. Folstad and G. Rudolfsen. 2005. Effects of ovarian fluid on sperm velocity in Arctic charr *Salvelinus alpinus*. Behavioral Ecology and Sociobiology 57:438-444.
- Van Look, K. J. W. and D. E. Kime. 2003. Automated sperm morphology analysis in fishes: the effect of mercury on goldfish sperm. Journal of Fish Biology 63:1020-1033.
- Vermeirssen, E. L. M., C. M. de Quero, R. J. Shields, B. Norberg, D. E. Kime and A. P. Scott. 2004. Fertility and motility of sperm from Atlantic halibut *Hippoglossus hippoglossus* in relation to dose and timing of gonadotrophin-releasing hormone agonist implant. Aquaculture 230:547-567.
- Warnecke, D. and H. Pluta. 2003. Motility and fertilizing capacity of frozen/thawed common carp *Cyprinus carpio* L. sperm using dimethyl-acetamide as the main cryoprotectant. Aquaculture 1-4:167-185.

- Wilson-Leedy, J. G. and R. L. Ingermann. 2007. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67:661-672.
- Wilson-Leedy, J. G., M. K. Kanuga and R. L. Ingermann. 2009. Influence of osmolality and ions on the activation and characteristics of zebrafish sperm motility. Theriogenology 71:1054-1062.
- Wojtczak, M., G. J. Dietrich, I. Irnazarow, P. Jurecka, M. Slowinska and A. Ciereszko. 2007. Polymorphism of transferrin of carp seminal plasma: Relationship to blood transferrin and sperm motility characteristics. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 148:426-431.
- World Health Organization. 2010. WHO laboratory manual for the examination and processing of human semen. WHO Press, World Health Organization, Geneva, Switzerland.
- Yang, H. and T. R. Tiersch. 2009. Current status of sperm cryopreservation in biomedical research fish models: zebrafish, medaka, and *Xiphophorus*. Comparative Biochemistry Physiology Part C Toxicology and Pharmacology 149:224-232.
- Zilli, L., R. Schiavone, F. Chauvigne, J. Cerda, C. Storelli and S. Vilella. 2009. Evidence for the involvement of aquaporins in sperm motility activation of the teleost gilthead sea bream *Sparus aurata*. Biology of Reproduction 81:880-888.
- Zilli, L., R. Schiavone, C. Storelli and S. Vilella. 2008. Molecular mechanisms determining sperm motility initiation in two sparids *Sparus aurata* and *Lithognathus mormyrus*. Biology of Reproduction 79:356-366.