Name: _____

CG:

A student carries out an experiment to determine the gravitational acceleration, using a pendulum, and obtains a value 9.81 m s⁻². The uncertainties in the measurements are shown.

Uncertainty in length L of pendulum = 0.7 %Uncertainty in period T of pendulum = 0.1 %

The equation for the period T of pendulum is $T = 2\pi \sqrt{\frac{L}{g}}$

How should the answer for gravitational acceleration be stated?

$$g \pm \Delta g = (\dots \pm \dots \pm \dots) \text{ m s}^{-2} [2]$$

2 The power generated by a turbine of an ideal wind turbine is given by

$$P = \frac{1}{2} k \rho (v - b)^3$$

where k is a constant of the turbine, ρ is density of the fluid, v is the velocity of the fluid.

Determine the unit k. [Hint: Power = Force x velocity]

3 The figure shows the speed and direction of a neutron just before and after collision with a nucleus.

Before collision

After collision

change in velocity = m s ⁻¹ [2				
Ulaliue III velucity — III 3 12	change in velocity	=	m s ⁻¹	[2]

4 Provide a reasonable estimate of the land area of Sentosa Island.

5

(a) Distinguish between a random error and a systematic error in the measurement of a physical quantity.

.....[2]

(b) The spring constant *k* of a spring may be determined by finding the extension of the spring and the load applied, using the apparatus shown in Fig. 7.

	ne example of a systematic error and one example of a random error which ccur in this experiment.
	[2]
(ii) Reading	gs of the position of the lower end of the spring are made using the metre rule.
Sugges	at a method by which the error in these readings may be kept to a minimum.
	[2]

MEASUREMENT Quiz Solutions

1

$$T = 2\pi \sqrt{\frac{L}{g}}$$

$$g = (2\pi)^2 \frac{L}{T^2}$$

$$\frac{\Delta g}{g} = \frac{\Delta L}{L} + 2\frac{\Delta T}{T}$$

$$\frac{\Delta g}{9.81} = 0.007 + 2(0.001)$$

$$\Delta g = 0.09 \text{ (to 1 sf)}$$

$$g = (9.81 \pm 0.09) \text{ m s}^{-2}$$
[1]

 $g = (9.81 \pm 0.09) \text{ m s}^{-2}$

2 b has the same units as v. Using P = Fv = mav, [P] = kg m s⁻² m s⁻¹ = kg m² s⁻³ [1]

> kg m² s⁻³ = [k][ρ][v³] kg m² s⁻³ = [k] kg m⁻³ m³ s⁻³ [k] = m² [1]

 $\Delta V = V_f - V_i = V_f + (-V_i)$ 3

$$\theta = 35$$
 $\theta = 35$
 $v_f = 250 \text{ m s}^{-1}$

[1] for vector diagram

$$(\Delta v)^2 = 250^2 + 400^2 - 2(250)(400)\cos 35^\circ$$

 $\Delta v = 242 \text{ m s}^{-1}$ [1]

4

Sentosa is about 2 km north-south and 3.5 km east-west. Area of such a rectangle is 6 km² By estimating that Sentosa is roughly 60% to 80% of the rectangle,

[1] explanation

	the area of the island of Sentosa is about 5 km ² . (Actual area is 4.71 km ²) An acceptable answer could be between 2 km ² and 10 km ² .	[1]	
5 (a)	Random error is an error which causes measurements to be sometimes larger than the true value and sometimes smaller than the true value while	า	[1]
	systematic error is an error which causes measurements to be either, always large than the true value, or always smaller than the true value.	r	[1]
(b) (i)	A possible systematic error is if the original (unloaded) length of the spring was misread. This would result in every extension reading (loaded length – unloaded length) to effectively be different from the true value by amount of the original length misread.		[1]
	A possible random error is the failure to read the readings at eye level each time (is parallax error).	e .	[1]
(ii)	A horizontal pointer can be attached to the bottom of the mass and positioned such that it is beside the scale of the metre rule.	1	[1]
	Ensure that the pointer and scale are aligned horizontally at eye level when taking treading. This will significantly reduce parallax error.	the	[1]