Esercizi di Termodinamica Seminario 3, 05/05/2021

Stefano Mangini stefano.mangini01@universitadipavia.it

1 Trasformazione isoterma

Due moli di ossigeno vengono compresse isotermicamente a $T=15\,^{\circ}\mathrm{C}$ da un volume iniziale $V_i=15\,\mathrm{L}$ ad un volume finale di $V_f=6\,\mathrm{L}$. Calcolare: (a) la pressione finale del gas; (b) la variazione di energia interna; (c) il lavoro compiuto dal gas. Si consideri l'ossigeno come un gas perfetto. [7,98 bar; $0\,\mathrm{J}$; $-4388,16\,\mathrm{J}$]

2 Trasmissione di calore

Siri ha la febbre e beve $V=0.20\,\mathrm{L}$ di acqua alla temperatura di $T=14\,^{\circ}\mathrm{C}$. Per portarsi alla stessa temperatura del corpo di Siri, l'acqua deve assorbire $5\,\mathrm{kcal}$. Qual è la temperatura di Siri? [39 $^{\circ}\mathrm{C}$]

3 Ciclo termodinamico I

Un litro di gas perfetto alla pressione di $P=1\,\mathrm{atm}$ viene espanso isotermicamente fino a quando il suo volume è raddoppiato. Poi è compresso al volume originale a pressione costante e successivamente compresso isotermicamente alla sua pressione originale. Descrivere le trasformazioni nel piano P-V e calcolare il lavoro complessivo eseguito dal gas. (1 atm = $101\,325\,\mathrm{Pa}$)

4 Ciclo termodinamico II

Due moli di un gas perfetto sono contenute inizialmente in un volume $V_A=5.5\,\mathrm{L}$ alla pressione $P_A=3\,\mathrm{atm}$. Il sistema subisce successivamente una trasformazione dallo stato iniziale A allo stato finale C composta da una trasformazione isobara AB con $V_B=3\,V_A$ una trasformazione isocora BC con $P_C=P_B/3$. Si calcoli: (a) il lavoro totale L_{AC} svolto nell'intera trasformazione; (b) il calore totale Q_{AC} scambiato nell'intera trasformazione. [3343,725 J; 3343,725 J]

5 Uomo di Carnot

Se si considera l'organismo umano come una macchina termica che lavora con un rendimento del 20% secondo un ciclo di Carnot, il cui refrigerante è l'ambiente esterno a $T_1 = 10$ °C, quale temperatura dovrebbe assumere l'organismo? [80,8 °C]

6 Ghiaccio fondente

Un pezzetto di ghiaccio di massa m_1 e alla temperatura di $T_1=250\,\mathrm{K}$ viene immerso in $m_2=60\,\mathrm{g}$ di acqua a temperatura di $T_2=330\,\mathrm{K}$. Se il sistema è contenuto in un recipiente a pareti adiabatiche, (a) si determini per quali valori della massa m il pezzetto di ghiaccio fonde completamente; (b) calcolare la temperatura di equilibrio del sistema se la massa del cubetto di ghiaccio vale $m_1=35\,\mathrm{g}$. $(c_{H_2O}=4186\,\mathrm{J/(kg\,K)};$ $c_{\mathrm{ghiaccio}}=2090\,\mathrm{J/(kg\,K)};$ $\lambda=333.5\,\mathrm{kJ/kg})$ [$m_1<37.84\,\mathrm{g};$ 275.83 K]

7 Scioglimento dei ghiacciai

Un cubetto di ghiaccio galleggia in un bicchiere riempito a raso con dell'acqua. Dopo un po' di tempo il cubetto di ghiaccio fonde completamente: il livello dell'acqua cresce, diminuisce o rimane costante? [Rimane costante]

8 Entorpia di fusione

Un blocco di ghiaccio la di massa $m=235\,\mathrm{g}$ si fonde in acqua, la temperatura resta a $T=0\,^{\circ}\mathrm{C}$ durante tutto il processo. Calcolare: (a) la variazione di entropia per il ghiaccio; (b) la variazione di entropia dell'ambiente. [287 J/K, $-287\,\mathrm{J/K}$]