用逐步回归法解释北京房价

李昕垚

2016年8月17日

目录

1	前言		1
2	逐步	· ·回归	1
	2.1	逐步回归结果	1
	2.2	t 检验进一步降维	2
	2.3	真实单价和拟合单价对比	2
	2.4	残差对比	3

1 前言

现阶段大家对于房价的判断基本是 **定性**的,如通过 **M2** 和 **政策**来判断房价的涨跌。本文目的是通过 **逐步回归法**定量的解释 **房价上涨的因素**。

2 逐步回归

回归分析是统计学习最重要的组成部分,虽然前提假设多,但凭借结果稳定、可解释性强等优良性质经久不衰。逐步回归法是回归方法的一种,主要用于自变量降维。如这次试验,开始时选择了 53 个自变量,通过逐步回归法可以降到 25 个,再通过参数的 p 值可以降到 3 个,方便原因的解释。

2.1 逐步回归结果

2 逐步回归 2

统计量	值	p 值
F	88.68	3.003×10^{-12}
调整后 \mathbb{R}^2	0.9821	_

2.2 t 检验进一步降维

考虑到现有模型自变量数依旧较多,通过 t 值可以进一步筛选自变量,代价是损失了少量的 R^2 。回归结果还是较为满意的,虽然损失了 R^2 ,但是回归方程整体的显著性有所提高,参数的显著性也有所提高。

统计量	值	p 值
F	234.3	2.2×10^{-16}
调整后 \mathbb{R}^2	0.9459	_

设本月成交单价为 y 元,上月新增客源单价为 x_1 元,上月 M2 为 x_2 亿元,上月国内信贷为 x_3 亿元,则回归方程为:

$$y = 1.258 \times 10^4 + 8.446 \times 10^{-1} \times x_1 - 2.785 \times 10^2 \times x_2 + 2.431 \times 10^{-2} \times x_3$$

2.3 真实单价和拟合单价对比

真实单价与拟合单价对比

2 逐步回归 3

从上图可以看出,选用 25 个变量的拟合效果非常好,选用 3 个变量的 拟合效果稍差。

2.4 残差对比

