Answers to Odd-Numbered Section Exercises

EXERCISES FOR CHAPTER 1

Section 1.1: Describing a Set

```
1.1 Only (d) and (e).
```

1.3 (a)
$$|A| = 5$$
, (b) $|B| = 11$, (c) $|C| = 51$, (d) $|D| = 2$, (e) $|E| = 1$, (f) $|F| = 2$

1.5 (a)
$$A = \{-1, -2, -3, \ldots\} = \{x \in \mathbb{Z} : x \le -1\}$$

(b)
$$B = \{-3, -2, \dots, 3\} = \{x \in \mathbb{Z} : -3 \le x \le 3\} = \{x \in \mathbb{Z} : |x| \le 3\}$$

(c)
$$C = \{-2, -1, 1, 2\} = \{x \in \mathbb{Z} : -2 \le x \le 2, x \ne 0\} = \{x \in \mathbb{Z} : 0 < |x| \le 2\}$$

1.7 (a)
$$A = \{\cdots, -4, -1, 2, 5, 8, \cdots\} = \{3x + 2 : x \in \mathbb{Z}\}$$

(b)
$$B = \{\dots, -10, -5, 0, 5, 10, \dots\} = \{5x : x \in \mathbb{Z}\}$$

(c)
$$C = \{1, 8, 27, 64, 125, \dots\} = \{x^3 : x \in \mathbb{N}\}\$$

1.9 $A = \{2, 3, 5, 7, 8, 10, 13\}$

$$B = \{x \in A : x = y + z, \text{ where } y, z \in A\} = \{5, 7, 8, 10, 13\}$$

 $C = \{r \in B : r + s \in B \text{ for some } s \in B\} = \{5, 8\}$

Section 1.2: Subsets

- **1.11** Let $r = \min(c a, b c)$ and let I = (c r, c + r). Then I is centered at c and $I \subseteq (a, b)$.
- **1.13** See Figure 1.

Figure 1 Answer for Exercise 1.13

- **1.15** $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, A\}$
- **1.17** $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0, \emptyset\}, \{0, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, A\}; |\mathcal{P}(A)| = 8$
- **1.19** (a) $S = {\emptyset, {1}}.$ (b) $S = {1}.$
 - (c) $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4, 5\}\}.$ (d) $S = \{1, 2, 3, 4, 5\}.$
- **1.21** $B = \{1, 4, 5\}.$

Section 1.3: Set Operations

1.23 Let $A = \{1, 2, ..., 6\}$ and $B = \{4, 5, ..., 9\}$. Then $A - B = \{1, 2, 3\}$, $B - A = \{7, 8, 9\}$ and $A \cap B = \{4, 5, 6\}$. Thus $|A - B| = |A \cap B| = |B - A| = 3$. See Figure 2.

Figure 2 Answer for Exercise 1.23

- **1.25** (a) $A = \{1\}, B = \{\{1\}\}, C = \{1, 2\}.$
 - **(b)** $A = \{\{1\}, 1\}, B = \{1\}, C = \{1, 2\}.$
 - (c) $A = \{1\}, B = \{\{1\}\}, C = \{\{1\}, 2\}.$
- **1.27** Let $U = \{1, 2, ..., 8\}$ be a universal set, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$. Then $A B = \{1, 2\}$, $B A = \{5, 6\}$, $A \cap B = \{3, 4\}$ and $\overline{A \cup B} = \{7, 8\}$. See Figure 3.

Figure 3 Answer for Exercise 1.27

- **1.29** (a) The sets \emptyset and $\{\emptyset\}$ are elements of A. (b) |A| = 3.
 - (c) All of \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$ are subsets of A. (d) $\emptyset \cap A = \emptyset$.
 - (e) $\{\emptyset\} \cap A = \{\emptyset\}$. (f) $\{\emptyset, \{\emptyset\}\} \cap A = \{\emptyset, \{\emptyset\}\}$.
 - **(g)** $\emptyset \cup A = A$. **(h)** $\{\emptyset\} \cup A = A$. **(i)** $\{\emptyset, \{\emptyset\}\} \cup A = A$.
- **1.31** $A = \{1, 2\}, B = \{2\}, C = \{1, 2, 3\}, D = \{2, 3\}.$
- **1.33** $A = \{1\}, B = \{2\}.$ Then $\{A \cup B, A \cap B, A B, B A\}$ is the power set of $\{1, 2\}.$
- **1.35** Let $U = \{1, 2, ..., 8\}$, $A = \{1, 2, 3, 5\}$, $B = \{1, 2, 4, 6\}$ and $C = \{1, 3, 4, 7\}$. See Figure 4.

Figure 4 Answer for Exercise 1.35

Section 1.4: Indexed Collections of Sets

- $\bigcup_{X \in S} X = A \cup B \cup C = \{0, 1, 2, \dots, 5\} \text{ and } \bigcap_{X \in S} X = A \cap B \cap C = \{2\}.$
- Since |A| = 26 and $|A_{\alpha}| = 3$ for each $\alpha \in A$, we need to have at least nine sets of cardinality 3 for their union to be A; that is, in order for $\bigcup_{\alpha \in S} A_{\alpha} = A$, we must have $|S| \ge 9$. However, if we let $S = \{a, d, g, j, m, p, s, v, y\}$, then $\bigcup_{\alpha \in S} A_{\alpha} = A$. Hence the smallest cardinality of a set S with $\bigcup_{\alpha \in S} A_{\alpha} = A$ is 9.
- (a) $\{A_n\}_{n \in \mathbb{N}}$, where $A_n = \{x \in \mathbb{R} : 0 \le x \le 1/n\} = [0, 1/n]$.
 - **(b)** $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{a \in \mathbb{Z} : |a| \le n\} = \{-n, -(n-1), \dots, (n-1), n\}$.
- **1.43** $\bigcup_{r \in \mathbb{R}^+} A_r = \bigcup_{r \in \mathbb{R}^+} (-r, r) = \mathbb{R}; \; \bigcap_{r \in \mathbb{R}^+} A_r = \bigcap_{r \in \mathbb{R}^+} (-r, r) = \{0\}.$ **1.45** $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} (-\frac{1}{n}, 2 \frac{1}{n}) = (-1, 2); \; \bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, 2 \frac{1}{n}) = [0, 1].$

Section 1.5: Partitions of Sets

- **1.47** (a) S_1 is not a partition of A since 4 belongs to no element of S_1 .
 - (b) S_2 is a partition of A.
 - (c) S_3 is not a partition of A because 2, for example, belongs to two elements of S_3 .
 - (d) S_4 is not a partition of A since S_4 is not a set of subsets of A.
- **1.49** $A = \{1, 2, 3, 4\}.$ $S_1 = \{\{1\}, \{2\}, \{3, 4\}\} \text{ and } S_2 = \{\{1, 2\}, \{3\}, \{4\}\}.$
- **1.51** Let $S = \{A_1, A_2, A_3\}$, where $A_1 = \{x \in \mathbf{Q} : x > 1\}$, $A_2 = \{x \in \mathbf{Q} : x < 1\}$ and $A_3 = \{1\}$.
- **1.53** Let $S = \{A_1, A_2, A_3, A_4\}$, where $A_1 = \{x \in \mathbb{Z} : x \text{ is odd and } x \text{ is positive}\}$, $A_2 = \{x \in \mathbb{Z} : x \text{ is odd and } x \text{ is negative}\}, A_3 = \{x \in \mathbb{Z} : x \text{ is even and } x \text{ is nonnegative}\},$ $A_4 = \{x \in \mathbf{Z} : x \text{ is even and } x \text{ is negative}\}.$
- **1.55** $|\mathcal{P}_1| = 2$, $|\mathcal{P}_2| = 3$, $|\mathcal{P}_3| = 5$, $|\mathcal{P}_4| = 8$, $|\mathcal{P}_5| = 13$, $|\mathcal{P}_6| = 21$.

Section 1.6: Cartesian Products of Sets

- **1.57** $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.$
- **1.59** $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, A\}, A \times \mathcal{P}(A) = \{(a, \emptyset), (a, \{a\}), (a, \{b\}), (a, A), (b, \emptyset), (b, \{a\}), (b, \{b\}), (b, A)\}.$
- **1.61** $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}, \mathcal{P}(B) = \{\emptyset, B\}, A \times B = \{(1, \emptyset), (2, \emptyset)\},$ $\mathcal{P}(A) \times \mathcal{P}(B) = \{ (\emptyset, \emptyset), (\emptyset, B), (\{1\}, \emptyset), (\{1\}, B), (\{2\}, \emptyset), (\{2\}, B), (A, \emptyset), (A, B) \}.$
- **1.63** $S = \{(3,0),(2,1),(1,2),(0,3),(-3,0),(-2,1),(-1,2),(2,-1),(1,-2),(0,-3),(-2,-1),(-1,-2)\}.$ See Figure 5.

Figure 5 Answer for Exercise 1.63

1.65 $A \times B = [-1, 3] \times [2, 6]$, which is the set of all points on and within the square bounded by x = -1, x = 3, y = 2 and y = 6.

EXERCISES FOR CHAPTER 2

Section 2.1: Statements

- 2.1 (a) A false statement (b) A true statement (c) Not a statement (d) Not a statement (an open sentence) (e) Not a statement (f) Not a statement (an open sentence) (g) Not a statement
- **2.3** (a) False. Ø has no elements. (b) True (c) True
 - (d) False. $\{\emptyset\}$ has \emptyset as its only element. (e) True (f) False. 1 is not a set.
- **2.5** (a) $\{x \in \mathbb{Z} : x > 2\}$ (b) $\{x \in \mathbb{Z} : x \le 2\}$
- **2.7** 3, 5, 11, 17, 41, 59
- **2.9** P(n): $\frac{n-1}{2}$ is even. P(n) is true only for n=5 and n=9.

Section 2.2: The Negation of a Statement

- **2.11** (a) $\sqrt{2}$ is not a rational number.
 - **(b)** 0 is a negative integer.
 - (c) 111 is not a prime number.
- **2.13** (a) The real number r is greater than $\sqrt{2}$.
 - **(b)** The absolute value of the real number *a* is at least 3.
 - (c) At most one angle of the triangle is 45° .
 - (d) The area of the circle is less than 9π .
 - (e) The sides of the triangle have different lengths.
 - (f) The point P lies on or within the circle C.

Section 2.3: The Disjunction and Conjunction of Statements

2.15 See Figure 6.

P	Q	$\sim Q$	$P \land (\sim Q)$
T	T	F	F
T	F	T	T
\overline{F}	T	F	F
\overline{F}	F	T	F

Figure 6 Answer for Exercise 2.15

- **2.17** (a) $P \vee Q$: 15 is odd or 21 is prime. (True)
 - **(b)** $P \wedge Q$: 15 is odd and 21 is prime. (False)
 - (c) $(\sim P) \vee Q$: 15 is not odd or 21 is prime. (False)
 - (d) $P \wedge (\sim Q)$: 15 is odd and 21 is not prime. (True)

Section 2.4: The Implication

- **2.19** (a) $\sim P$: 17 is not even (or 17 is odd). (True)
 - **(b)** $P \vee Q$: 17 is even or 19 is prime. (True)
 - (c) $P \wedge Q$: 17 is even and 19 is prime. (False)
 - (d) $P \Rightarrow Q$: If 17 is even, then 19 is prime. (True)

- **2.21** (a) $P \Rightarrow Q$: If $\sqrt{2}$ is rational, then 22/7 is rational. (True)
 - **(b)** $Q \Rightarrow P$: If 22/7 is rational, then $\sqrt{2}$ is rational. (False)
 - (c) $(\sim P) \Rightarrow (\sim Q)$: If $\sqrt{2}$ is not rational, then 22/7 is not rational. (False)
 - (d) $(\sim Q) \Rightarrow (\sim P)$: If 22/7 is not rational, then $\sqrt{2}$ is not rational. (True)
- **2.23** (a), (c), (d) are true.
- **2.25** (a) true. (b) false. (c) true. (d) true. (e) true.
- 2.27 Cindy and Don attended the talk.
- **2.29** Only (c) implies that $P \vee Q$ is false.

Section 2.5: More on Implications

- **2.31** (a) $P(x) \Rightarrow Q(x)$: If |x| = 4, then x = 4. $P(-4) \Rightarrow Q(-4)$ is false. $P(-3) \Rightarrow Q(-3)$ is true. $P(1) \Rightarrow Q(1)$ is true. $P(4) \Rightarrow Q(4)$ is true. $P(5) \Rightarrow Q(5)$ is true.
 - **(b)** $P(x) \Rightarrow Q(x)$: If $x^2 = 16$, then |x| = 4. True for all $x \in S$.
 - (c) $P(x) \Rightarrow Q(x)$: If x > 3, then 4x 1 > 12. True for all $x \in S$.
- **2.33** (a) True for (x, y) = (3, 4) and (x, y) = (5, 5), false for (x, y) = (1, -1).
 - **(b)** True for (x, y) = (1, 2) and (x, y) = (6, 6), false for (x, y) = (2, -2).
 - (c) True for $(x, y) \in \{(1, -1), (-3, 4), (1, 0)\}$ and false for (x, y) = (0, -1).

Section 2.6: The Biconditional

- **2.35** $P \Leftrightarrow Q$: The integer 18 is odd if and only if 25 is even. (True)
- **2.37** The real number |x 3| < 1 if and only if $x \in (2, 4)$. The condition |x 3| < 1 is necessary and sufficient for $x \in (2, 4)$.
- **2.39** (a) True for all $x \in S \{-4\}$. (b) True for $x \in S \{3\}$. (c) True for $x \in S \{-4, 0\}$.
- **2.41** True if n = 3.
- **2.43** $P(1) \Rightarrow Q(1)$ is false (since P(1) is true and Q(1) is false).
 - $Q(3) \Rightarrow P(3)$ is false (since Q(3) is true and P(3) is false).
 - $P(2) \Leftrightarrow Q(2)$ is true (since P(2) and Q(2) are both true).
- **2.45** True for all $n \in S \{11\}$.

Section 2.7: Tautologies and Contradictions

2.47 The compound statement $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction since it is false for all combinations of truth values for the component statements P and Q. See the truth table below.

P	Q	$\sim Q$	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (P \land Q)$
T	T	F	T	F	F
T	F	T	F	T	F
F	T	F	F	F	F
F	F	T	F	F	F

2.49 The compound statement $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology since it is true for all combinations of truth values for the component statements P, Q, and R. See the truth table below.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$P \Rightarrow R$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
T	T	T	T	T	T	T	T
T	F	Т	F	T	F	T	T
F	T	T	T	T	Т	T	T
F	F	T	T	T	Т	T	T
T	T	F	Т	F	F	F	T
T	F	F	F	T	F	F	T
F	T	F	Т	F	F	T	T
F	F	F	T	T	Т	T	T

 $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$: If P implies Q and Q implies R, then P implies R.

Section 2.8: Logical Equivalence

2.51 (a) See the truth table below.

P	Q	$\sim P$	$\sim Q$	$P \Rightarrow Q$	$(\sim P) \Rightarrow (\sim Q)$
T	T	F	F	T	T
T	F	F	T	F	T
F	Т	T	F	T	F
F	F	T	T	T	T

Since $P \Rightarrow Q$ and $(\sim P) \Rightarrow (\sim Q)$ do not have the same truth values for all combinations of truth values for the component statements P and Q, the compound statements $P \Rightarrow Q$ and $(\sim P) \Rightarrow (\sim Q)$ are not logically equivalent. Note that the last two columns in the truth table are not the same.

- **(b)** The implication $Q \Rightarrow P$ is logically equivalent to $(\sim P) \Rightarrow (\sim Q)$.
- **2.53** (a) The statements $P \Rightarrow Q$ and $(P \land Q) \Leftrightarrow P$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P and Q. See the truth table.

	P	Q	$P \Rightarrow Q$	$P \wedge Q$	$(P \land Q) \Leftrightarrow P$
	T	T	T	T	T
	T	F	F	F	F
ĺ	F	Т	T	F	T
	F	F	T	F	T

(b) The statements $P \Rightarrow (Q \lor R)$ and $(\sim Q) \Rightarrow ((\sim P) \lor R)$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P, Q and R. See the truth table.

P	Q	R	$\sim P$	$\sim Q$	$Q \vee R$	$P \Rightarrow (Q \vee R)$	$(\sim P) \vee R$	$(\sim Q) \Rightarrow ((\sim P) \lor R)$
T	T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T	T
F	T	T	Т	F	T	T	T	T
F	F	T	T	T	T	T	T	T
T	T	F	F	F	T	T	F	T
T	F	F	F	T	F	F	F	F
F	Т	F	Т	F	T	T	T	T
F	F	F	T	T	F	T	T	T

2.55 The statements $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P, Q and R. See the truth table.

P	Q	R	$P \vee Q$	$(P \lor Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
T	T	T	T	T	T	T	T
T	F	T	Т	T	Т	T	T
F	T	T	T	T	T	T	T
F	F	T	F	T	Т	Т	T
T	T	F	T	F	F	F	F
T	F	F	Т	F	F	Т	F
F	Т	F	Т	F	T	F	F
F	F	F	F	T	T	T	T

2.57 Since there are only four different combinations of truth values of P and Q for the second and third rows of the statements S_1 , S_2 , S_3 , S_4 , and S_5 , at least two of these must have identical truth tables and so are logically equivalent.

Section 2.9: Some Fundamental Properties of Logical Equivalence

- **2.59** (a) Both $x \neq 0$ and $y \neq 0$.
 - **(b)** Either the integer *a* is odd or the integer *b* is odd.
- **2.61** Either $x^2 = 2$ and $x \neq \sqrt{2}$ or $x = \sqrt{2}$ and $x^2 \neq 2$.
- **2.63** If 3n + 4 is odd, then 5n 6 is odd.

Section 2.10: Quantified Statements

- **2.65** $\forall x \in S, P(x)$: For every odd integer x, the integer $x^2 + 1$ is even. $\exists x \in S, Q(x)$: There exists an odd integer x such that x^2 is even.
- **2.67** (a) There exists a set A such that $A \cap \overline{A} \neq \emptyset$.
 - **(b)** For every set A, we have $\overline{A} \not\subset A$.
- **2.69** (a) False, since P(1) is false. (b) True, for example, P(3) is true.
- **2.71** (a) $\exists a, b \in \mathbb{Z}, ab < 0 \text{ and } a + b > 0.$
 - **(b)** $\forall x, y \in \mathbf{R}, x \neq y$ implies that $x^2 + y^2 > 0$.
 - (c) For all integers a and b either $ab \ge 0$ or $a + b \le 0$. There exist real numbers x and y such that $x \ne y$ and $x^2 + y^2 < 0$.
 - (d) $\forall a, b \in \mathbb{Z}$, $ab \ge 0$ or $a + b \le 0$. $\exists x, y \in \mathbb{R}$, $x \ne y$ and $x^2 + y^2 \le 0$.
- **2.73** (b) and (c) imply that $P(x) \Rightarrow Q(x)$ is true for all $x \in T$.
- **2.75** Let $S = \{3, 5, 11\}$ and P(s, t) : st 2 is prime.
 - (a) $\forall s, t \in S, P(s, t)$.
 - (b) False since P(11, 11) is false.
 - (c) $\exists s, t \in S, \sim P(s, t)$.
 - (d) There exist $s, t \in S$ such that st 2 is not prime.
 - (e) True since the statement in (a) is false.
- **2.77** (a) There exists a triangle T_1 such that for every triangle T_2 , $r(T_2) \ge r(T_1)$.
 - **(b)** $\forall T_1 \in A, \exists T_2 \in B, \sim P(T_1, T_2).$
 - (c) For every triangle T_1 , there exists a triangle T_2 such that $r(T_2) < r(T_1)$.
- **2.79** (a) There exists $b \in B$ such that for every $a \in A$, a b < 0.
 - **(b)** Let b = 10. Then 3 10 = -7 < 0, 5 10 = -5 < 0 and 8 10 = -2 < 0.

Section 2.11: Characterizations of Statements

- **2.81** An integer n is odd if and only if n^2 is odd.
- **2.83** (a) a characterization. (b) a characterization. (c) a characterization.
 - (d) a characterization. (Pythagorean theorem) (e) not a characterization. (Every positive number is the area of some rectangle.)

EXERCISES FOR CHAPTER 3

Section 3.1: Trivial and Vacuous Proofs

- **3.1** *Proof* Since $x^2 2x + 2 = (x 1)^2 + 1 \ge 1$, it follows that $x^2 2x + 2 \ne 0$ for all $x \in \mathbb{R}$. Hence the statement is true trivially.
- **3.3 Proof** Note that $\frac{r^2+1}{r} = r + \frac{1}{r}$. If $r \ge 1$, then $r + \frac{1}{r} > 1$; while if 0 < r < 1, then $\frac{1}{r} > 1$ and so $r + \frac{1}{r} > 1$. Thus $\frac{r^2+1}{r} \le 1$ is false for all $r \in \mathbf{Q}^+$ and so the statement is true vacuously.
- **3.5 Proof** Since $n^2 2n + 1 = (n-1)^2 \ge 0$, it follows that $n^2 + 1 \ge 2n$ and so $n + \frac{1}{n} \ge 2$. Thus the statement is true vacuously.
- **3.7 Proof** Since $(x y)^2 + (x z)^2 + (y z)^2 \ge 0$, it follows that $2x^2 + 2y^2 + 2z^2 2xy 2xz 2yz \ge 0$ and so $x^2 + y^2 + z^2 \ge xy + xz + yz$. Thus, the statement is true vacuously.

Section 3.2: Direct Proofs

3.9 Proof Let x be an even integer. Then x = 2a for some integer a. Thus

$$5x - 3 = 5(2a) - 3 = 10a - 4 + 1 = 2(5a - 2) + 1.$$

Since 5a - 2 is an integer, 5x - 3 is odd.