```
In [1]:
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    import seaborn as sns
    import matplotlib.pyplot as plt
```

In [3]: income_df=pd.read_csv(r"C:\Users\Admin\Downloads\16th,17th\16th,17th\Descriptive

In [4]: income_df

Out[4]:

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income
0	5000	8000	3	2000	64200
1	6000	7000	2	3000	79920
2	10000	4500	2	0	112800
3	10000	2000	1	0	97200
4	12500	12000	2	3000	147000
5	14000	8000	2	0	19656(
6	15000	16000	3	35000	167400
7	18000	20000	5	8000	216000
8	19000	9000	2	0	21888(
9	20000	9000	4	0	220800
10	20000	18000	4	8000	278400
11	22000	25000	6	12000	279840
12	23400	5000	3	0	292032
13	24000	10500	6	0	316800
14	24000	10000	4	0	244800
15	25000	12300	3	0	246000
16	25000	20000	3	3500	261000
17	25000	10000	6	0	258000
18	29000	6600	2	2000	348000
19	30000	13000	4	0	385200
20	30500	25000	5	5000	351360
21	32000	15000	4	0	44544(
22	34000	19000	6	0	330480
23	34000	25000	3	4000	469200
24	35000	12000	3	0	466200
25	35000	25000	4	0	449400
26	39000	8000	4	0	556920
27	40000	10000	4	0	412800
28	42000	15000	4	0	488880
29	43000	12000	4	0	619200
30	45000	25000	6	0	523800
31	45000	40000	6	3500	507600
32	45000	10000	2	1000	437400
33	45000	22000	4	2500	610200
34	46000	25000	5	3500	596160
35	47000	15000	7	0	456840

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income
36	50000	20000	4	0	570000
37	50500	20000	3	0	58176(
38	55000	45000	6	12000	600600
39	60000	10000	3	0	59040(
40	60000	50000	6	10000	59040(
41	65000	20000	4	5000	64740(
42	70000	9000	2	0	756000
43	80000	20000	4	0	107520(
44	85000	25000	5	0	114240(
45	90000	48000	7	0	88560(
46	98000	25000	5	0	115248(
47	100000	30000	6	0	1404000
48	100000	50000	4	20000	1032000
49	100000	40000	6	10000	1320000

In [5]: income_df.head()

Out[5]:

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income
0	5000	8000	3	2000	64200
1	6000	7000	2	3000	79920
2	10000	4500	2	0	112800
3	10000	2000	1	0	97200
4	12500	12000	2	3000	147000
4					>

In [6]: income_df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Mthly_HH_Income	50 non-null	int64
1	Mthly_HH_Expense	50 non-null	int64
2	No_of_Fly_Members	50 non-null	int64
3	Emi_or_Rent_Amt	50 non-null	int64
4	Annual_HH_Income	50 non-null	int64
5	<pre>Highest_Qualified_Member</pre>	50 non-null	object
6	No_of_Earning_Members	50 non-null	int64

dtypes: int64(6), object(1)

memory usage: 2.9+ KB

In [7]: income df.shape Out[7]: (50, 7) In [8]: income_df.describe() Out[8]: Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt Annual_HH_Inco 5.0000006count 50.000000 50.000000 50.000000 50.000000 41558.000000 18818.000000 4.060000 3060.000000 4.900190€ mean 3.201358€ std 26097.908979 12090.216824 1.517382 6241.434948 5000.000000 2000.000000 1.000000 0.000000 6.420000€ min 25% 23550.000000 10000.000000 3.000000 0.000000 2.587500€

15500.000000

25000.000000

50000.000000

In [9]: income_df.describe().T

35000.000000

50375.000000

100000.000000

50%

75%

max

Out[9]:

25% 50% 75% count mean std min 50375.0 Mthly_HH_Income 50.0 41558.00 26097.908979 5000.0 23550.0 35000.0 Mthly_HH_Expense 50.0 18818.00 12090.216824 2000.0 10000.0 15500.0 25000.0 No_of_Fly_Members 50.0 4.06 1.517382 1.0 3.0 4.0 5.0 **Emi or Rent Amt** 50.0 3060.00 6241.434948 0.0 0.0 0.0 3500.0 Annual_HH_Income 50.0 490019.04 320135.792123 64200.0 258750.0 447420.0 594720.0 14 No_of_Earning_Members 50.0 1.46 0.734291 1.0 1.0 2.0 1.0

4.000000

5.000000

7.000000

0.000000

3500.000000

35000.000000

4.474200€

5.947200€

1.404000€

In [10]: income_df.isna().any()

Out[10]: Mthly_HH_Income False Mthly HH Expense False No_of_Fly_Members False Emi_or_Rent_Amt False Annual HH Income False Highest Qualified Member False No_of_Earning_Members False dtype: bool

```
In [11]: income df.isna().all()
Out[11]: Mthly HH Income
                                      False
         Mthly_HH_Expense
                                      False
         No_of_Fly_Members
                                      False
         Emi_or_Rent_Amt
                                      False
         Annual HH Income
                                      False
         Highest_Qualified_Member
                                      False
         No_of_Earning_Members
                                      False
         dtype: bool
In [12]: |income_df["Mthly_HH_Expense"].mean()
Out[12]: 18818.0
In [13]: |income_df["Mthly_HH_Income"].mean()
Out[13]: 41558.0
In [14]: income df["Mthly HH Expense"].median()
Out[14]: 15500.0
In [23]: mth_exp_tmp=pd.crosstab(index=income_df["Mthly_HH_Expense"],columns="count")
         mth_exp_tmp.reset_index(inplace=True)
         mth_exp_tmp[mth_exp_tmp['count']==income_df.Mthly_HH_Expense.value_counts().max()
Out[23]:
          col_0 Mthly_HH_Expense count
            18
                          25000
                                    8
```

```
In [30]: f,ax=plt.subplots(figsize=(6,4))
income_df["Highest_Qualified_Member"].value_counts().plot(kind='bar')
```

Out[30]: <Axes: >


```
In [31]: income_df.plot(x="Mthly_HH_Income", y="Mthly_HH_Expense")
```

Out[31]: <Axes: xlabel='Mthly_HH_Income'>


```
In [32]: | IQR=income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-income_df["Mthly_HH_Expense"].quantile(0.75)-i
```

Out[32]: 15000.0

In [36]: pd.DataFrame(income_df.iloc[:,0:5].std().to_frame()).T

Out[36]:

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income
0	26097.908979	12090.216824	1.517382	6241.434948	320135.792123
4					•

In [37]: pd.DataFrame(income_df.iloc[:,0:4].var().to_frame()).T

Out[37]:

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	
0	6.811009e+08	1.461733e+08	2.302449	3.895551e+07	

In [38]: income_df["Highest_Qualified_Member"].value_counts().to_frame().T

Out[38]:

	Graduate	Under-Graduate	Professional	Post-Graduate	Illiterate
Highest_Qualified_Member	19	10	10	6	5

In [39]: income_df["No_of_Earning_Members"].value_counts().plot(kind='bar')

Out[39]: <Axes: >

In [41]: coeff_var_stockA=10/15
 coeff_var_stockB=5/10
 print(coeff_var_stockA)
 print(coeff_var_stockB)

0.5