BÖLÜM 6. Z -DÖNÜŞÜMÜ

6.1 Giriş

Ayrık-zamanlı sistemlerin analizi z-dönüşümünün kullanılmasıyla basitleşir.

Gerçekten de fark denklemleriyle gösterilen sistem modeli z - dönüşümü ile üzerinde kolaylıkla işlem yapılabilecek cebrik denklemlere dönüşür.

Örneğin, ayrık-zamanlı sistemin giriş ve çıkış işaretleri arasındaki konvolüsyon bağıntısı, uygun z -dönüşümlerinin çarpımıyla gerçekleştirilir.

Bu bölümde, bir dizinin z -dönüşümü gösterilimi ve dizi özellikleri ile z -dönüşümünün özellikleri arasındaki ilişki tartışılacaktır.

6.2 z -dönüşümünün tanımı

x(n) dizisinin z -dönüşümü aşağıdaki gibi tanımlanır.

$$X(z) = \sum_{n=-\infty}^{\infty} x(n).z^{-n}$$

Burada z karmaşık değerli bir değişkeni göstermektedir. Yukarıda verilmiş olan z -dönüşümü tanımı sadece z nin yakınsak olduğu z değerleri için tanımlanır. x(n) dizisinin z dönüşümü bazen de basitleştirilmiş bir notasyonla aşağıdaki şekillerde gösterilebilir.

$$X(z) = Z[x(n)]$$
 veya $x(n) \leftrightarrow X(z)$

 $Z[\bullet]$, z -dönüşümüne ilişkin dönüşüm kuralını gösteren matematiksel bir operatördür.

Yakınsaklık bölgesi

Tüm dizilerin z -dönüşümü yakınsak değildir. Diğer bir deyişle, tüm z değerleri için z -dönüşümü yakınsak olmaz. Verilen herhangi bir dizinin z -dönüşümünün yakınsak olduğu z değerlerinin karmaşık düzlemde oluşturduğu küme, o dönüşümün yakınsaklık bölgesi olarak adlandırılır.

Düzenli yakınsaklık, aşağıda verildiği gibi dizinin mutlak değerlerinin toplamının sonlu olmasını gerektirir.

$$\sum_{n=-\infty}^{\infty} \left| x(n).z^{-n} \right| < \infty$$

Bu eşitsizliği sağlayan tüm z -değerleri yakınsaklık b**ölgesini** oluşturur.

İlk slaytta tanımlanan z -dönüşümü X(z) , bir Laurent serisidir.

Kompleks değişkenler teorisinden bilindiği üzere, bir Laurent serisinin yakınsaklık bölgesi R, halka şeklindedir.

Yani, halkanın iç ve dış yarıçapı r_1 ve r_2 olarak verilirse, $r_1 < |z| < r_2$ yakınsaklık bölgesi R halkasını gösterir. x(n) dizisinin $+\infty$ ve $-\infty$ arasındaki davranışına göre r_1 ve r_2 sınır değerleri belirlenir.

Bu halka içerisinde X(z), z nin analitik bir fonksiyonudur. Bu nedenle, X(z) nin kutupları ve tekil noktaları R bölgesi dışındadır.

Bu durum bir sonraki slaytta şekil 6.1 de gösterilmiştir.

Şekil 6.1 Mümkün olan yakınsaklık bölgesi formları: a) Sağ taraflı dizi; b) Sol taraflı dizi; c) İki taraflı dizi

Eğer n < 0 için x(n) = 0 ise, z dönüşüm kuralı ifadesinde z nin sadece negatif üstel kuvvetleri bulunur. Bu durumda, $r_2 = \infty$ olur. Yakınsaklık bölgesi R, r_1 yarıçaplı bir çemberin dışı olur ve $|z| > r_1$ şeklinde gösterilir. n > 0 için x(n) = 0 ise, z dönüşüm kuralı ifadesinde z nin sadece pozitif üstel kuvvetleri bulunur. Bu durumda, $r_1 = 0$ olup, yakınsaklık bölgesi R, $|z| < r_2$ gibi bir çemberin içinde kalan bölgedir.

6.3 z -dönüşümünün özellikleri

z -dönüşümünün özelliklerini teoremler yardımıyla açıklayacağız.

Teorem 6.1 (Laurent Teoremi).

Şekil 6.2 X(z) nin z -düzlemindeki analitik bölgesi

a.) X(z) şekil 6.2 de gösterildiği gibi, yarıçapları r_1 ve r_2 ve merkezi z_0 da olan bir halka $(r_1 < |z - z_0| < r_2)$ üzerinde analitik ve tek değerli bir fonksiyon olsun.

Bu durumda X(z), z_0 noktası civarında Laurent serisiyle aşağıdaki denklemdeki gibi gösterilebilir.

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot (z - z_0)^{-n}$$

Yukarıda verilen denklemdeki x(n) katsayıları ise kontur entegrali yardımıyla aşağıdaki gibi elde edilir.

$$x(n) = \frac{1}{2\pi j} \oint_{\Gamma} X(z) . (z - z_0)^{n-1}$$

Burada Γ , halka içinde saat yönünün tersi yönlü ve içteki çemberi çevreleyen kapalı bir kontoru gösterir.

- b) X(z) nin tekil olduğu noktalara varıncaya kadar sürekli olarak r_2 nin çapını artırırken r_1 in çapını küçülterek elde edilen açık halkanın içinde Laurent serisi yakınsaktır ve X(z) yi temsil eder.
- c) Yakınsaklık halkası içinde X(z) nin Laurent serisi tektir. Bununla beraber, aynı merkezli farklı halkalarda X(z) nin farklı Laurent serileri olabilir.
- X(z) nin iki polinomun oranı biçiminde z nin rasyonel bir fonksiyonu olması en çok karşılaşılan durumdur. Pay polinomun kökleri X(z) yi sıfır yapacağından X(z) nin sıfırları olarak adlandırılır. Payda polinomunun kökleri olan z değerlerinde ise X(z) nin değeri sonsuz olacağından, X(z) nin kutupları olarak adlandırılır. Yakınsaklık tanımından dolayı kutuplar yakınsaklık bölgesi dışında olmalıdır. Bu durum bir sonraki slaytta verilmiştir.

$$X(z) = \sum_{n=-\infty}^{\infty} x(n).z^{-n} = \frac{A(z)}{B(z)}$$

Yukarıda verilen şekildeki gösterimde, A(z)=0 denkleminin kökleri sıfırları, B(z)=0 ın kökleri ise kutupları oluşturacaktır. Kutuplar payda polinomu B(z) nin kökleri dışında, yani z=0 veya $z=\infty$ da da bulunabilir.

Örnek 6.1 $x(n) = \delta(n)$ dizisinin z -dönüşümünü bulunuz.

Cevap 6.1 Dönüşüm aşağıdaki şekilde verilir.

$$X(z) = \sum_{n=-\infty}^{\infty} \delta(n).z^{-n} = 1$$

Yakınsaklık bölgesi $0 \le |z| \le \infty$ olduğundan X(z) tüm z - düzleminde yakınsaktır. Şekil 6.4 te X(z) = 1 için yakınsaklık bölgesi gösterilmektedir.

Şekil 6.4 $x(n) = \delta(n)$ birim impuls dizisi için yakınsaklık bölgesi

Örnek 6.2 Sağ taraflı üstel $x(n) = a^n u(n)$ dizisi için z -dönüşümünü bulunuz.

Cevap 6.2 Dönüşüm aşağıdaki şekilde verilir.

$$X(z) = \sum_{n=0}^{\infty} a^{n} . z^{-n} = \sum_{n=0}^{\infty} (a . z^{-1})^{n}$$

Burada $\left|a.z^{-1}\right| < 1$ için seri yakınsak olur ve X(z) aşağıdaki gibi verilir.

$$X(z) = \frac{1}{1 - a \cdot z^{-1}} = \frac{z}{z - a}$$

 $\left|a.z^{-1}\right| < 1$ koşulundan $\left|z\right| > \left|a\right|$ yazılabilir. Şekil 6.5 te gösterildiği gibi yakınsaklık bölgesi a yarıçaplı dairenin dışında kalan bölgedir. X(z) nin z=0 da bir sıfırı ve z=a da bir kutbu vardır.

Şekil 6.5 $x(n) = a^n u(n)$ dizisi için sıfır-kutup diyagramı ve yakınsaklık bölgesi

Örnek 6.3 Aşağıdaki sol taraflı dizinin z-dönüşümünü bulunuz.

$$x(n) = \begin{cases} 0, & n \ge 0 & \text{için} \\ -b^n, & n \le -1 & \text{için} \end{cases}$$

Cevap 6.3 x(n) nin z-dönüşümü aşağıdaki gibi yazılabilir.

$$X(z) = \sum_{n=-\infty}^{-1} -b^n . z^{-n} = \sum_{n=1}^{\infty} -b^{-n} . z^n = 1 - \sum_{n=0}^{\infty} b^{-n} . z^n = 1 - \sum_{n=0}^{\infty} (b^{-1} . z)^n$$

Eğer $|b^{-1}.z| < 1$ veya |z| < b ise son verilen seri yakınsar. Böylece aşağıdaki ifade elde edilir.

$$X(z) = 1 - \frac{1}{1 - b^{-1} \cdot z} = \frac{-b^{-1} \cdot z}{1 - b^{-1} \cdot z} = \frac{z}{-b + z} = \frac{z}{z - b}$$

Şekil 6.6 da görüleceği gibi yakınsaklık bölgesi b yarıçaplı dairenin içinde kalan alandır.

Şekil 6.6 $x(n) = -b^n u(-n-1)$ dizisi için sıfır-kutup diyagramı ve yakınsaklık bölgesi

Son iki örnekteki dizilere ait z-dönüşümlerinin incelenmesinden, sadece z-dönüşümünün sıfırları ve kutupları yardımıyla dizileri belirlemenin mümkün olmadığı görülmektedir. Gerçekten a=b alınması halinde, son iki örnekte verilen sağ ve sol taraflı dizilerin z- dönüşümleri aynı olmaktadır. Farklı olan özellik ise yakınsaklık bölgeleridir. O halde dizilerin yakınsaklık bölgeleri de verilmelidir.

Örnek 6.4 Aşağıda verilen iki taraflı dizinin z-dönüşümünü bulunuz.

$$x(n) = \begin{cases} a^n, & n \ge 0 & \text{için} \\ -b^n, & n < 0 & \text{için} \end{cases}$$

Cevap 6.4 x(n) nin z -dönüşümü aşağıdaki gibi yazılabilir.

$$X(z) = \sum_{n=-\infty}^{\infty} x(n).z^{-n} = \sum_{n=-\infty}^{-1} -b^{n}.z^{-n} + \sum_{n=0}^{\infty} a^{n}.z^{-n}$$

 $\left| a.z^{-1} \right| < 1$ ve $\left| b^{-1}.z \right| < 1$ koşullarının sağlanması durumunda aşağıdaki ifadeye gelinir.

$$X(z) = \frac{z}{z-b} + \frac{z}{z-a} = \frac{z(2z-a-b)}{(z-a).(z-b)}$$

Yakınsaklık bölgesi şekil 6.7 deki gibi yarıçapları a ve b olan halka içindedir. Yani, |a| < |b| ise, |a| < |z| < |b| yakınsaklık bölgesidir.

Şekil 6.7 $x(n) = a^n u(n) - b^n u(-n-1)$ dizisi için sıfır-kutup diyagramı ve yakınsaklık bölgesi

Teorem 6.2 (Doğrusallık). $x_1(n)$ ve $x_2(n)$ herhangi iki dizi olsun ve z -dönüşümleri aşağıdaki gibi verilmiş olsun.

$$Z[x_1(n)] = X_1(z)$$

$$Z[x_2(n)] = X_2(z)$$

 $\frac{a}{y}$ e $\frac{b}{y}$ herhangi iki sabit katsayı ise aşağıdaki bağıntı yazılabilmelidir.

$$X_3(z) = Z[ax_1(n) + bx_2(n)] = aX_1(z) + bX_2(z)$$

$$Z[ax_1(n) + bx_2(n)] = \sum_{n=-\infty}^{\infty} [ax_1(n) + bx_2(n)] z^{-n}$$

$$= a \cdot \sum_{n=-\infty}^{\infty} x_1(n) \cdot z^{-n} + b \cdot \sum_{n=-\infty}^{\infty} x_2(n) \cdot z^{-n} = aX_1(z) + bX_2(z)$$

 $X_3(z)$ nin yakınsaklık bölgesi en azından $X_1(z)$ ve $X_2(z)$ nin yakınsaklık bölgelerinin arakesitini kapsar. Yani sonuç aşağıda gösterildiği gibi olur.

$$R_{x_3}\supset (R_{x_1}\cap R_{x_2})$$

 R_{x_1} ve R_{x_2} nin sınırında bulunan bir kutbun, doğrusallık toplamı sonucu ortaya çıkan bir sıfır ile yok edilmesi durumunda R_{x_3} yakınsaklık bölgesi $(R_{x_1}\cap R_{x_2})$ den daha geniş olur.

Çok kullanılan z -dönüşüm çiftleri Tablo 6.1 de gösterilmiştir.

Tablo 6.1 Standart -Dönüşümleri

Table 6.1 statidati Defieşettileti			
Dizi	z -Dönüşümü	Yakınsaklık Aralığı	
$\mathcal{S}(n)$	1	Tüm z	
$\delta(n-m), m>0$	Z ^{-m}	z < 0, yani $z = 0$ hariç tüm z	
$\delta(n+m), m>0$	z**	$ z < \infty$, yani $z = \infty$ hariç tüm z	
u(n)	$\frac{1}{1-z^{-1}}$	z > 1	
-u(-n-1)	$\frac{1}{1-z^{-i}}$	z < 1	
a*u(n)	$\frac{1}{1-az^{-1}}$	z > a	
$-a^{*}u(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	
u(n)cosnθ	$\frac{1-z^{-1}\cos\theta}{1-2z^{-1}\cos\theta+z^{-2}}$	z >1	
u(n)sin nθ	$\frac{z^{-1}\sin\theta}{1-2z^{-1}\cos\theta+z^{-2}}$	z >1	
$u(n)r^*\cos n\theta$	$\frac{1-rz^{-1}\cos\theta}{1-2rz^{-1}\cos\theta+r^{2}z^{-2}}$	z > r	
u(n)r* sin nθ	$\frac{rz^{-1}\sin\theta}{1-2rz^{-1}\cos\theta+r^2z^{-2}}$	z > r	

İşaret	z-Domeni	Yakınsama Bölgesi (YB)	
x(n)	X(z)	$\text{YB: } r_2 < z < r_1$	
$x_1(n)$	$X_1(z)$	YB ₁	
$x_2(n)$	$X_2(z)$	YB ₂	
$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	En azından YB₁ ∩ YB₂	
x(n-k)	$z^{-k}X(z)$	YB ile $z \neq 0$ veya $z \neq \infty$	
nx(n)	$-z\frac{\partial}{\partial z}\big(X(z)\big)$	YB	
x(-n)	$X(z^{-1})$	$\left \frac{1}{r_1} < z < \frac{1}{r_2}\right $	
$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	En azından YB₁ ∩ YB₂	
$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a	
$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	

6. Aşağıda verilen fark denklemini;

$$x(k) + \frac{1}{3}x(k-1) = u(k) + u(k-1)$$
 $k \ge 0$, $u(k) = \left(\frac{1}{3}\right)^k$

a. İki yanlı z dönüşümü ile

b. Bir yanlı z dönüşümü ile

$$k \ge 0$$
 için $u(k) = \left(\frac{1}{3}\right)^k$, $x(-1) = 3$ koşulları altında ve

c. k → k+1 ötelenmesi uygulayarak çözünüz.

a.
$$X(z) = \frac{(1+z^{-1})}{\left(1+\frac{1}{3}z^{-1}\right)} \cdot \frac{1}{\left(1-\frac{1}{3}z^{-1}\right)}$$

b.
$$X_{u}(z) = \frac{1+z^{-1}}{1+\frac{1}{3}z^{-1}}U(z) - \frac{1}{1+\frac{1}{3}z^{-1}}$$

c.
$$X_{u}(z) = \frac{z+1}{\left(z+\frac{1}{3}\right)} \cdot \frac{1}{1-\frac{1}{3}z^{-1}} - \frac{z}{\left(z+\frac{1}{3}\right)}$$

$$6 - x(n) = (\frac{1}{2})^{n} u(n) - u(n-10) x(x) = 1$$

$$7 - x(n) = (\frac{1}{2})^{n} u(n) - u(n-10) x(x) = 1$$

$$8 = x(n) = 2^{n} u(n)$$

9-
$$x(n) = (-\frac{1}{2})^{2}u(n)$$

10- $x(n) = a^{n-1}u(n-1)$
11- $x(n) = (3.2^{n}-4.3^{n})u(n)$
12- $(0) = (w-n) u(n)$

23)
$$x(n) = (\frac{1}{3})^{n} u(n) + 2^{n} u(-n-1)$$

 $y(n) = s.(\frac{1}{3})^{n} u(n) - 5(\frac{2}{3})^{n} u(n)$

$$24) = \chi(n) = u(n) \qquad H(2) = 1.$$

$$y(n) = n. u(n) \qquad y(n) \quad \text{forh Lenklaw if edus'}$$

25)
$$\times (2) = \frac{1}{(1-\frac{1}{5}\frac{\pi^{4}}{2})(1+3\frac{\pi^{4}}{2})} + (1+\frac{3}{3}\frac{\pi^{4}}{2})$$

$$27 - y(n) - 2y(n-1) + y(n-2) = x(n) + x(n)$$

$$(+(z)=)$$
 $(+z)=\frac{1+z^{-1}}{(1-z^{-1})}$

$$28 - h(n) = (0,5)^2 \cdot u(n) \times (n) = 8(n-3)$$

$$y(n)$$
 2 donogen ! le ben
 $y(n) = (0,5)^{n-3} U(n-3)$

