Two-player zero sum game

M(r,c) is the payout to each player

	сІ	c2	c 3
rl	(2,-2)	(,-)	(- ,)
r2	(3,-3)	(0,0)	(-2,2)
r3	(- ,)	(2,-2)	(,-)
r4	(0,0)	(0,0)	(,-)

Both players want to maximize their payout.

Two-player zero sum game

M(r,c) is the amount row player gets (from column player) M(r,c) is the payout to each player

	сІ	c2	c 3
rl	2		-
r2	3	0	-2
r3	-	2	
r4	0	0	

	сl	c2	c 3
rl	(2,-2)	(,-)	(- ,)
r2	(3,-3)	(0,0)	(-2,2)
r3	(- ,)	(2,-2)	(,-)
r4	(0,0)	(0,0)	(,-)

Row player trying to maximize Column player trying to minimize

Both players want to maximize their payout.

Who plays first? Two options

What if the row player first announces their "move", then column player responds?

	cl	c2	c 3
rl	2		-
r2	3	0	-2
r3	-	2	I
r4	0	0	

Row player trying to maximize Column player trying to minimize

Results in (r4,c1) or (r4,c2) (Row) payoff equals 0.

 $\max_{r \in [R]} \min_{c \in C} M(r, c) = 0$

Play order

"Solve order"

To play first, row player must calculate $\min M(1,c)$, $\min M(2,c)$, $\min M(3,c)$ and play the move that maximizes those.

Let's reverse roles: now column player first

	cl	c2	c3
rl	2		-
r2	3	0	-2
r3	-	2	I
r4	0	0	

Row player trying to maximize Column player trying to minimize

Results in (c3,r3) or (c3,r4) (Row) payoff equals 1.

 $\min_{c \in C} \max_{r \in [R]} M(r, c) = 1$

Play order

"Solve order"

To play first, column player must calculate $\max_{r} M(r,1)$, $\max_{r} M(r,2)$, etc and play the move that minimizes those.

$$\min \max_{c \in C} M(r, c) = 1$$

$$c \in C \quad r \in [R]$$

$$\max \min_{r \in [R]} M(r, c) = 0$$

$$r \in [R] \quad c \in C$$

Theorem:
$$\min \max_{c \in [C]} M(r,c) \ge \max_{r \in [R]} \min_{c \in [C]} M(r,c)$$

Proof:
$$\max_{r \in [R]} M(r, c) \ge M(r', c)$$
 for any r', c

$$\min_{c \in [C]} \max_{r \in [R]} M(r,c) \ge \min_{c \in [C]} M(r',c) \text{ for any } r'$$

A "pure" strategy is a commitment to play a single action.

For "pure strategies", advantageous to go second.

A "mixed" strategy is a distribution over actions.

Row player announces a distribution p over their actions.

Column player announces a distribution q over their actions.

Then, $r \sim p, c \sim q$ and a payoff M(r, c) is realized.

Expected payoff is
$$\mathbb{E}_{r \sim p, c \sim q}[M(r, c)] = p^T M q$$

Theorem:
$$\min \max_{q \in \Delta_C} p \in \Delta_R$$
 $\min p^T Mq = \max_{p \in \Delta_R} \min_{q \in \Delta_C} p^T Mq = v^*$

$$\exists p \in \Delta_R \ \forall q \in \Delta_C \ p^T M q \ge v^*$$

$$\exists q \in \Delta_C \forall p \in \Delta_R \ p^T M q \leq v^*$$

Value of the game

For "mixed strategies", order does not matter!

Zero-sum games [edit]

The minimax theorem was first proven and published in 1928 by John von Neumann, who is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved. [4]

Formally, von Neumann's minimax theorem states:

Let $X\subset\mathbb{R}^n$ and $Y\subset\mathbb{R}^m$ be compact convex sets. If $f:X imes Y o\mathbb{R}$ is a continuous function that is concave-convex, i.e.

 $f(\cdot,y):X o\mathbb{R}$ is concave for fixed y, and $f(x,\cdot):Y o\mathbb{R}$ is convex for fixed x.

Then we have that

$$\max_{x \in X} \min_{y \in Y} f(x,y) = \min_{y \in Y} \max_{x \in X} f(x,y).$$

Sion's minimax theorem

From Wikipedia, the free encyclopedia

In mathematics, and in particular game theory, **Sion's minimax theorem** is a generalization of John von Neumann's minimax theorem, named after Maurice Sion. It states:

Let X be a compact convex subset of a linear topological space and Y a convex subset of a linear topological space. If f is a real-valued function on X imes Y with

 $f(x,\cdot)$ upper semicontinuous and quasi-concave on Y , $orall x \in X$, and

 $f(\cdot,y)$ lower semicontinuous and quasi-convex on X, $orall y \in Y$

then,

$$\min_{x\in X}\sup_{y\in Y}f(x,y)=\sup_{y\in Y}\min_{x\in X}f(x,y).$$