CPSC 540: Machine Learning Kernel Density Estimation, Factor Analysis

Mark Schmidt

University of British Columbia

Winter 2017

Admin

- Assignment 2:
 - 2 late days to hand it in tonight.
- Assignment 3:
 - Due Feburary 27.

Comments on TensorFlow Talk

- Most of the talk focused on large-scale issues, which I won't cover:
 - Synchronous vs. asynchronous (540 course project topic in 2014).
 - Issues related to distributed data/parameters.
- Some models were mentioned that I'm planning to get to:
 - Word2vec.
 - RNNs.
 - LSTMs.
 - Sequence-to-sequence.
 - Neural machine translation.

• The classic mixture of Gaussians model uses a PDF of the form

$$p(x^i|\Theta) = \sum_{c=1}^k \underbrace{p(z^i = c|\Theta)}_{\text{prob(cluster)}} \underbrace{p(x^i|z^i = c,\Theta)}_{\text{prob}(x) \text{ given cluster}},$$

• The classic mixture of Gaussians model uses a PDF of the form

$$p(x^i|\Theta) = \sum_{c=1}^k \underbrace{p(z^i = c|\Theta)}_{\text{prob(cluster)}} \underbrace{p(x^i|z^i = c,\Theta)}_{\text{prob}(x) \text{ given cluster}},$$

where each mixture component is a multivariate Gaussian,

$$p(x^{i}|z^{i}=c,\Theta) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_{c}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i}-\mu_{c})^{T}\Sigma_{c}^{-1}(x^{i}-\mu_{c})\right),$$

• The classic mixture of Gaussians model uses a PDF of the form

$$p(x^i|\Theta) = \sum_{c=1}^k \underbrace{p(z^i = c|\Theta)}_{\text{prob(cluster)}} \underbrace{p(x^i|z^i = c,\Theta)}_{\text{prob}(x) \text{ given cluster}},$$

where each mixture component is a multivariate Gaussian,

$$p(x^{i}|z^{i}=c,\Theta) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_{c}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i}-\mu_{c})^{T}\Sigma_{c}^{-1}(x^{i}-\mu_{c})\right),$$

and we model the mixture probabilities as categorical,

$$p(z^i = c|\Theta) = \pi_c.$$

• The classic mixture of Gaussians model uses a PDF of the form

$$p(x^i|\Theta) = \sum_{c=1}^k \underbrace{p(z^i = c|\Theta)}_{\text{prob(cluster)}} \underbrace{p(x^i|z^i = c,\Theta)}_{\text{prob}(x) \text{ given cluster}},$$

where each mixture component is a multivariate Gaussian,

$$p(x^{i}|z^{i}=c,\Theta) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_{c}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i}-\mu_{c})^{T}\Sigma_{c}^{-1}(x^{i}-\mu_{c})\right),$$

and we model the mixture probabilities as categorical,

$$p(z^i = c|\Theta) = \pi_c.$$

- Finding the optimal parameter $\Theta = \{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$ is NP-hard.
 - But EM updates for improving parameters use analytic form of Gaussian MLE.

• EM update for mixture models is often written in terms of responsibilitites,

$$r_c^i \triangleq p(z^i = c | x^i, \Theta^t) = \frac{p(x^i | z^i = c, \Theta^t) p(z^i = c, \Theta^t)}{\sum_{c'=1}^k p(x^i | z^i = c', \Theta^t) p(z^i = c', \Theta^t)},$$

a number between 0 and 1 giving probability that cluster c generated x^i .

• EM update for mixture models is often written in terms of responsibilitites,

$$r_c^i \triangleq p(z^i = c | x^i, \Theta^t) = \frac{p(x^i | z^i = c, \Theta^t) p(z^i = c, \Theta^t)}{\sum_{c'=1}^k p(x^i | z^i = c', \Theta^t) p(z^i = c', \Theta^t)},$$

a number between 0 and 1 giving probability that cluster c generated x^i .

• For mixture of Gaussian, EM updates takes the form

$$\pi_c^{t+1} = \frac{1}{n} \sum_{i=1}^n r_c^i \qquad \qquad \text{(proportion of examples soft-assigned to cluster } c)$$

$$\mu_c^{t+1} = \frac{\sum_{i=1}^n r_c^i x^i}{n \pi_c^{t+1}} \qquad \qquad \text{(mean of examples soft-assigned to cluster } c)$$

$$\Sigma_c^{t+1} = \frac{\sum_{i=1}^n r_c^i (x^i - \mu_c^{t+1}) (x^i - \mu_c^{t+1})^T}{n \pi_c^{t+1}} \qquad \qquad \text{(covariance of examples soft-assigned to } c).$$

• EM update for mixture models is often written in terms of responsibilitites,

$$r_{c}^{i} \triangleq p(z^{i} = c | x^{i}, \Theta^{t}) = \frac{p(x^{i} | z^{i} = c, \Theta^{t}) p(z^{i} = c, \Theta^{t})}{\sum_{c'=1}^{k} p(x^{i} | z^{i} = c', \Theta^{t}) p(z^{i} = c', \Theta^{t})},$$

a number between 0 and 1 giving probability that cluster c generated x^i .

• For mixture of Gaussian, EM updates takes the form

$$\pi_c^{t+1} = \frac{1}{n} \sum_{i=1}^n r_c^i \qquad \qquad \text{(proportion of examples soft-assigned to cluster c)}$$

$$\mu_c^{t+1} = \frac{\sum_{i=1}^n r_c^i x^i}{n \pi_c^{t+1}} \qquad \qquad \text{(mean of examples soft-assigned to cluster c)}$$

$$\sum_c^{t+1} = \frac{\sum_{i=1}^n r_c^i (x^i - \mu_c^{t+1}) (x^i - \mu_c^{t+1})^T}{n \pi^{t+1}} \qquad \qquad \text{(covariance of examples soft-assigned to c)}.$$

- Derivation is tedious (see notes on webpage).
 - Uses distributive law, probabilities sum to one, Lagrangian, weighted Gaussian MLE.
- We get k-means if $r_c^i = 1$ for most likely cluster, and Σ_c is constant across c.

 EM for fitting mixture of Gaussians in action: https://www.youtube.com/watch?v=B36fzChfyGU

- K-means is special case of "hard EM" for mixture of Gaussians (common Σ_c).
 - But EM allows points to be assigned to be multiple clusters

- K-means is special case of "hard EM" for mixture of Gaussians (common Σ_c).
 - But EM allows points to be assigned to be multiple clusters
 - ullet General Σ_c in mixture of Gaussians allow non-convex clusters.

- K-means is special case of "hard EM" for mixture of Gaussians (common Σ_c).
 - But EM allows points to be assigned to be multiple clusters
 - ullet General Σ_c in mixture of Gaussians allow non-convex clusters.

- K-means is special case of "hard EM" for mixture of Gaussians (common Σ_c).
 - But EM allows points to be assigned to be multiple clusters
 - ullet General Σ_c in mixture of Gaussians allow non-convex clusters.

- K-means is special case of "hard EM" for mixture of Gaussians (common Σ_c).
 - But EM allows points to be assigned to be multiple clusters
 - General Σ_c in mixture of Gaussians allow non-convex clusters.

Outline

- Monotonicity of EM
- 2 Kernel Density Estimation
- Factor Analysis

Expectation Maximization

- \bullet EM considers learning with observed variables O and hidden variables H.
- In this case the "observed" marginal log-liklihooed has a nasty form,

$$\log p(O|\Theta) = \log \left(\sum_{H} p(O, H|\Theta)\right).$$

Expectation Maximization

- \bullet EM considers learning with observed variables O and hidden variables H.
- In this case the "observed" marginal log-liklihooed has a nasty form,

$$\log p(O|\Theta) = \log \left(\sum_{H} p(O, H|\Theta)\right).$$

- EM applies when "complete" likelihood, $p(O, H|\Theta)$, has a nice form.
- EM iterations take the form

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H} \alpha_{H} \log p(O, H | \Theta) \right\},$$

where
$$\alpha_H = p(H|O, \Theta^t)$$
.

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• Proof:

$$-\log p(O|\Theta) = -\log \left(\sum_{h} p(O, H|\Theta) \right)$$

$$= -\log \left(\sum_{H} \alpha_{H} \frac{p(O, H|\Theta)}{\alpha_{H}} \right) \qquad \text{(for } \alpha_{H} \neq 0\text{)}$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• Proof: $-\log p(O|\Theta) = -\log \left(\sum_{h} p(O, H|\Theta)\right)$ $= -\log \left(\sum_{H} \alpha_{H} \frac{p(O, H|\Theta)}{\alpha_{H}}\right) \qquad \qquad \text{(for } \alpha_{H} \neq 0\text{)}$

 $\leq -\sum_{T} \alpha_H \log \left(\frac{p(O, H|\Theta)}{\alpha_H} \right),$

because $-\log(z)$ is convex.

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

Using that log turns multiplication into addition we get

$$-\log p(O|\Theta) \le -\sum_{H} \alpha_{H} \log \left(\frac{p(O, H|\Theta)}{\alpha_{H}}\right)$$

$$= -\sum_{H} \alpha_{H} \log p(O, H|\Theta) + \sum_{H} \alpha_{H} \log \alpha_{H}$$

$$Q(\Theta|\Theta^{t})$$
negative entropy

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• Using that log turns multiplication into addition we get

$$\begin{split} -\log p(O|\Theta) & \leq -\sum_{H} \alpha_{H} \log \left(\frac{p(O,H|\Theta)}{\alpha_{H}}\right) \\ & = -\sum_{H} \alpha_{H} \log p(O,H|\Theta) + \sum_{H} \alpha_{H} \log \alpha_{H} \\ & \underbrace{Q(\Theta|\Theta^{t})}_{\text{negative entropy}} \\ & = -Q(\Theta|\Theta^{t}) - \text{entropy}(\alpha), \end{split}$$

which we can use to bound $\log p(O|\Theta^{t+1})$.

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• To bound $p(O|\Theta^t)$ we use definition of conditional,

$$p(H|O, \Theta^t) = \frac{p(O, H|\Theta^t)}{p(O|\Theta^t)}$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• To bound $p(O|\Theta^t)$ we use definition of conditional,

$$p(H|O,\Theta^t) = \frac{p(O,H|\Theta^t)}{p(O|\Theta^t)} \quad \text{or} \quad \log p(O|\Theta^t) = \log p(O,H|\Theta^t) - \log p(H|O,\Theta^t).$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• To bound $p(O|\Theta^t)$ we use definition of conditional,

$$p(H|O,\Theta^t) = \frac{p(O,H|\Theta^t)}{p(O|\Theta^t)} \quad \text{or} \quad \log p(O|\Theta^t) = \log p(O,H|\Theta^t) - \log p(H|O,\Theta^t).$$

ullet Multiply by $lpha_H$ and sum equality over H values,

$$\sum_{H} \alpha_H \log p(O|\Theta^t) = \sum_{H} \alpha_H \log p(O, H|\Theta^t) - \sum_{H} \alpha_H \log p(H|O, \Theta^t).$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

• To bound $p(O|\Theta^t)$ we use definition of conditional,

$$p(H|O,\Theta^t) = \frac{p(O,H|\Theta^t)}{p(O|\Theta^t)} \quad \text{or} \quad \log p(O|\Theta^t) = \log p(O,H|\Theta^t) - \log p(H|O,\Theta^t).$$

• Multiply by α_H and sum equality over H values,

$$\sum_{H} \alpha_H \log p(O|\Theta^t) = \sum_{H} \alpha_H \log p(O, H|\Theta^t) - \sum_{H} \alpha_H \log p(H|O, \Theta^t).$$

• Using the EM definition of α_h we have

$$\log p(O|\Theta^t) \underbrace{\sum_{H} \alpha_H}_{-1} = Q(\Theta^t|\Theta^t) + \mathsf{entropy}(\alpha).$$

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

Thus we have the two bounds.

$$\begin{split} \log p(O|\Theta) &\geq Q(\Theta|\Theta^t) + \mathsf{entropy}(\alpha) \\ \log p(O|\Theta^t) &= Q(\Theta^t|\Theta^t) + \mathsf{entropy}(\alpha). \end{split}$$

Subtracting these and using $\Theta = \Theta^{t+1}$ gives the result.

The iterations of the EM algorithm satisfy

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

Thus we have the two bounds

$$\begin{split} \log p(O|\Theta) &\geq Q(\Theta|\Theta^t) + \mathsf{entropy}(\alpha) \\ \log p(O|\Theta^t) &= Q(\Theta^t|\Theta^t) + \mathsf{entropy}(\alpha). \end{split}$$

Subtracting these and using $\Theta = \Theta^{t+1}$ gives the result.

- Inequality holds for any choice of Θ^{t+1} .
 - ullet Approximate M-steps are ok: we just need to decrease Q to improve likelihood.
- Implies entropy of α_H gives tightness of bound.
 - If variables are "predictable" then the bound is tight and we get "hard" EM.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.
- How do you choose number of mixtures k?
 - Use cross-validation or other model selection criteria.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.
- How do you choose number of mixtures k?
 - Use cross-validation or other model selection criteria.
- Can you make it robust?
 - Use mixture of Laplace of student t distributions.

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.
- How do you choose number of mixtures k?
 - Use cross-validation or other model selection criteria.
- Can you make it robust?
 - Use mixture of Laplace of student t distributions.
- Are there alternatives to EM?
 - Could use gradient descent on NLL.
 - Spectral and other recent methods have some global guarantees.

Outline

- Monotonicity of EM
- 2 Kernel Density Estimation
- Factor Analysis

• The classic parametric mixture model has the form

$$p(x) = \sum_{c=1}^{k} p(z=c)p(x|z=c).$$

• The classic parametric mixture model has the form

$$p(x) = \sum_{c=1}^{k} p(z=c)p(x|z=c).$$

• A natural way to define a non-parametric mixture model is

$$p(x) = \sum_{i=1}^{n} p(z=i)p(x|z=i),$$

where we have one mixture for every training example i.

• The classic parametric mixture model has the form

$$p(x) = \sum_{c=1}^{k} p(z=c)p(x|z=c).$$

• A natural way to define a non-parametric mixture model is

$$p(x) = \sum_{i=1}^{n} p(z=i)p(x|z=i),$$

where we have one mixture for every training example i.

• Common example: z is uniform and x|z is Gaussian with mean x^i ,

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x|x^{i}, \sigma^{2}I),$$

and we use a shared covariance $\sigma^2 I$ (with σ estimated by cross-validation).

• The classic parametric mixture model has the form

$$p(x) = \sum_{c=1}^{k} p(z=c)p(x|z=c).$$

• A natural way to define a non-parametric mixture model is

$$p(x) = \sum_{i=1}^{n} p(z=i)p(x|z=i),$$

where we have one mixture for every training example i.

• Common example: z is uniform and x|z is Gaussian with mean x^i ,

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x|x^{i}, \sigma^{2}I),$$

and we use a shared covariance $\sigma^2 I$ (with σ estimated by cross-validation).

• This is a special case of kernel density estimation or Parzen window.

Histogram vs. Kernel Density Estimator

• Think of kernel density estimator as a smooth version of histogram:

Parzen Window vs. Gaussian and Mixture of Gaussian

Parzen Window vs. Gaussian and Mixture of Gaussian

Parzen Window vs. Gaussian and Mixture of Gaussian

Kernel Density Estimation

• The 1D kernel density estimation (KDE) model uses

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_{\sigma}(x - x^{i}),$$

where the PDF k is the "kernel" and the parameter σ is the "bandwidth".

Kernel Density Estimation

• The 1D kernel density estimation (KDE) model uses

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_{\sigma}(x - x^{i}),$$

where the PDF k is the "kernel" and the parameter σ is the "bandwidth".

• In the previous slide we used the (normalized) Gaussian kernel,

$$k_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad k_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$

Kernel Density Estimation

• The 1D kernel density estimation (KDE) model uses

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_{\sigma}(x - x^{i}),$$

where the PDF k is the "kernel" and the parameter σ is the "bandwidth".

• In the previous slide we used the (normalized) Gaussian kernel,

$$k_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad k_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$

• Note that we can add a bandwith σ to any PDF k_1 , using

$$k_{\sigma}(x) = \frac{1}{\sigma} k_1 \left(\frac{x}{\sigma}\right),$$

which follows from the change of variables formula for probabilities.

• Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$k_1(x) = \frac{3}{4} (1 - x^2) \mathcal{I}[|x| \le 1].$$

- This kernel has two nice properties:
 - Epanechnikov showed that it is asymptotically optimal in terms of squared error.
 - It can be much faster to use since it only depends on nearby points.
 - You can use fast methods for computing nearest neighbours.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$k_1(x) = \frac{3}{4} (1 - x^2) \mathcal{I}[|x| \le 1].$$

- This kernel has two nice properties:
 - Epanechnikov showed that it is asymptotically optimal in terms of squared error.
 - It can be much faster to use since it only depends on nearby points.
 - You can use fast methods for computing nearest neighbours.
- It is non-smooth at the boundaries but many smooth approximations exist.
 - Quartic, triweight, tricube, cosine, etc.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Multivariate Kernel Density Estimation

• The multivariate kernel density estimation (KDE) model uses

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_R(x - x^i),$$

• The most common kernel is again the Gaussian,

$$k_I(x) = \frac{1}{\sqrt{2\pi^{\frac{d}{2}}}} \exp\left(-\frac{\|x\|^2}{2}\right).$$

Multivariate Kernel Density Estimation

• The multivariate kernel density estimation (KDE) model uses

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_R(x - x^i),$$

• The most common kernel is again the Gaussian,

$$k_I(x) = \frac{1}{\sqrt{2\pi^{\frac{d}{2}}}} \exp\left(-\frac{\|x\|^2}{2}\right).$$

 \bullet We can add a bandwith matrix R to any kernel using

$$k_R(x) = \frac{1}{|R|} k_1(R^{-1}x)$$
 (generalizes $k_{\sigma}(x) = \frac{1}{\sigma} k_1\left(\frac{x}{\sigma}\right)$),

and multivariate Gaussian with covariance Σ corresponds to $R = \Sigma^{\frac{1}{2}}$.

- To reduce number of parameters, we typically:
 - Use a product of independent distributions and use $R = \sigma I$ for some σ .

Monotonicity of EM Kernel Density Estimation Factor Analysis

Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
 - Fit a KDE to the training examples, and then for test example \hat{x} :
 - Run gradient descent starting from \hat{x} .
 - Clusters are points that reach same local minimum.
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Monotonicity of EM Kernel Density Estimation Factor Analysis

Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
 - Fit a KDE to the training examples, and then for test example \hat{x} :
 - Run gradient descent starting from \hat{x} .
 - Clusters are points that reach same local minimum.
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- Not sensitive to initialization, no need to choose k, can find non-convex clusters.
- Similar to density-based clustering from 340.
 - But doesn't require uniform density within cluster.
 - And can be used for vector quantization.

Outline

- Monotonicity of EM
- 2 Kernel Density Estimation
- Factor Analysis

Expectation Maximization with Many Discrete Variables

EM iterations take the form

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H} \alpha_{H} \log p(O, H | \Theta) \right\},$$

and with multiple MAR variables $\{H_1, H_2, \dots, H_m\}$ this means

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} \alpha_H \log p(O, H|\Theta) \right\},$$

Expectation Maximization with Many Discrete Variables

EM iterations take the form

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H} \alpha_{H} \log p(O, H | \Theta) \right\},$$

and with multiple MAR variables $\{H_1, H_2, \dots, H_m\}$ this means

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} lpha_H \log p(O, H | \Theta)
ight\},$$

- In mixture models, EM sums over all 2^n possible cluster assignments.
- In binary semi-supervised learning, EM sums over all 2^t assignments to \tilde{y} .

Expectation Maximization with Many Discrete Variables

EM iterations take the form

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H} \alpha_{H} \log p(O, H | \Theta) \right\},$$

and with multiple MAR variables $\{H_1, H_2, \dots, H_m\}$ this means

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} \left\{ \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} lpha_H \log p(O, H|\Theta)
ight\},$$

- In mixture models, EM sums over all 2^n possible cluster assignments.
- In binary semi-supervised learning, EM sums over all 2^t assignments to \tilde{y} .
- But conditional independence allows efficient calculation in the above cases.
 - The H are independent given $\{O, \Theta\}$ which simplifies sums (see EM notes).
 - We'll cover general case when we discuss probabilistic graphical models.

 \bullet If H is continuous, the sums are replaced by integrals,

$$\begin{split} \log p(O|\Theta) &= \log \left(\int_{H} p(O,H|\Theta) dH \right) & \text{(log-likelihood)} \\ \Theta^{t+1} &= \operatorname*{argmax}_{\Theta} \left\{ \int_{H} \alpha_{H} \log p(O,H|\Theta) dH \right\} & \text{(EM update)}, \end{split}$$

where if have 5 hidden varialbes \int_{H} means $\int_{H_1}\int_{H_2}\int_{H_3}\int_{H_4}\int_{H_5}.$

• Even with conditional independence these might be hard.

• If H is continuous, the sums are replaced by integrals,

$$\begin{split} \log p(O|\Theta) &= \log \left(\int_{H} p(O,H|\Theta) dH \right) & \text{(log-likelihood)} \\ \Theta^{t+1} &= \operatorname*{argmax}_{\Theta} \left\{ \int_{H} \alpha_{H} \log p(O,H|\Theta) dH \right\} & \text{(EM update)}, \end{split}$$

where if have 5 hidden varialbes \int_H means $\int_{H_1} \int_{H_2} \int_{H_3} \int_{H_4} \int_{H_5}$.

- Even with conditional independence these might be hard.
- Gaussian assumptions allow efficient calculation of these integrals.
 - We'll cover general case when we get discuss Bayesian statistics.

- In mixture models, we have a discrete latent variable z:
 - In mixture of Gaussians, if you know the cluster z then p(x|z) is a Gaussian.

- In mixture models, we have a discrete latent variable z:
 - In mixture of Gaussians, if you know the cluster z then p(x|z) is a Gaussian.
- In latent-factor models, we have continuous latent variables z:
 - In probabilistic PCA, if you know the latent-factors z then p(x|z) is a Gaussian.

- In mixture models, we have a discrete latent variable z:
 - In mixture of Gaussians, if you know the cluster z then p(x|z) is a Gaussian.
- In latent-factor models, we have continuous latent variables z:
 - ullet In probabilistic PCA, if you know the latent-factors z then p(x|z) is a Gaussian.
- But what would a continuous z be useful for?
- Do we really need to start solving integrals?

Monotonicity of EM Kernel Density Estimation Factor Analysis

Today: Continuous-Latent Variables

• Data may live in a low-dimensional manifold:

http://isomap.stanford.edu/handfig.html

• Mixtures are inefficient at representing the 2D manifold.

- ullet PCA replaces X with a lower-dimensional approximation Z.
 - ullet Matrix Z has n rows, but typically far fewer columns.

- ullet PCA replaces X with a lower-dimensional approximation Z.
 - Matrix Z has n rows, but typically far fewer columns.
- PCA is used for:
 - Dimensionality reduction: replace X with a lower-dimensional Z.

- ullet PCA replaces X with a lower-dimensional approximation Z.
 - Matrix Z has n rows, but typically far fewer columns.
- PCA is used for:
 - Dimensionality reduction: replace X with a lower-dimensional Z.
 - Outlier detection: if PCA gives poor approximation of x^i , could be outlier.
 - Basis for linear models: use Z as features in regression model.

- ullet PCA replaces X with a lower-dimensional approximation Z.
 - Matrix Z has n rows, but typically far fewer columns.
- PCA is used for:
 - Dimensionality reduction: replace X with a lower-dimensional Z.
 - Outlier detection: if PCA gives poor approximation of x^i , could be outlier.
 - Basis for linear models: use Z as features in regression model.
 - Data visualization: display z^i in a scatterplot.
 - Factor discovering: discover important hidden "factors" underlying data.

ullet PCA approximates the original matrix by factor-loadings Z and latent-factors W,

$$X \approx ZW$$
.

where $Z \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{k \times d}$, and we assume columns of X have mean 0.

ullet We're trying to split redundancy in X into its important "parts".

ullet PCA approximates the original matrix by factor-loadings Z and latent-factors W,

$$X \approx ZW$$
.

where $Z \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{k \times d}$, and we assume columns of X have mean 0.

- We're trying to split redundancy in X into its important "parts".
- ullet We typically take k << d so this requires far fewer parameters:

- Also computationally convenient:
 - Xv costs O(nd) but Z(Wv) only costs O(nk+dk).

• Using $X \approx ZW$, PCA approximates each examples x^i as

$$x^i \approx W^T z^i$$
.

• Using $X \approx ZW$, PCA approximates each examples x^i as

$$x^i \approx W^T z^i$$
.

- Usually we only need to estimate W:
 - \bullet If using least squares, then given W we can find z^i from x^i using

$$z^{i} = \underset{z}{\operatorname{argmin}} \|x^{i} - W^{T}z\|^{2} = (WW^{T})^{-1}Wx^{i}.$$

ullet Using Xpprox ZW, PCA approximates each examples x^i as

$$x^i \approx W^T z^i$$
.

- Usually we only need to estimate W:
 - \bullet If using least squares, then given W we can find z^i from x^i using

$$z^{i} = \underset{z}{\operatorname{argmin}} \|x^{i} - W^{T}z\|^{2} = (WW^{T})^{-1}Wx^{i}.$$

- We often assume that W^T is orthogonal:
 - This means that $WW^T = I$.
 - In this case we have $z^i = Wx^i$.
- In standard formulations, solution only unique up to rotation:
 - ullet Usually, we fit the rows of W sequentially for uniqueness.

Two Classic Views on PCA

ullet PCA approximates the original matrix by latent-variables Z and latent-factors W,

$$X \approx ZW$$
.

where $Z \in \mathbb{R}^{n \times k}$. $W \in \mathbb{R}^{k \times d}$.

• Two classical interpretations/derivations of PCA:

Two Classic Views on PCA

ullet PCA approximates the original matrix by latent-variables Z and latent-factors W,

$$X \approx ZW$$
.

where $Z \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{k \times d}$.

- Two classical interpretations/derivations of PCA:
 - lacktriangledown Choose latent-factors W to minimize error ("synthesis view"):

$$\underset{Z \in \mathbb{R}^{n \times k}, W \in \mathbb{R}^{k \times d}}{\operatorname{argmin}} \|X - ZW\|_F^2 = \sum_{i=1}^n \sum_{j=1}^d (x_j^i - (w_j)^T z^i)^2.$$

Two Classic Views on PCA

ullet PCA approximates the original matrix by latent-variables Z and latent-factors W,

$$X \approx ZW$$
.

where $Z \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{k \times d}$.

- Two classical interpretations/derivations of PCA:
 - Choose latent-factors W to minimize error ("synthesis view"):

$$\underset{Z \in \mathbb{R}^{n \times k}, W \in \mathbb{R}^{k \times d}}{\operatorname{argmin}} \|X - ZW\|_F^2 = \sum_{i=1}^n \sum_{j=1}^d (x_j^i - (w_j)^T z^i)^2.$$

 \bigcirc Choose orthogonal latent-factors W to maximize variance ("analysis view"):

$$\begin{split} \underset{W \in \mathbb{R}^{k \times d}}{\operatorname{argmax}} &= \sum_{i=1}^{n} \|z^i - \mu_z\|^2 = \sum_{i=1}^{n} \|Wx^i\|^2 \\ &= \operatorname{Tr}(WX^TXW^T) = n\operatorname{Tr}(W^TWS) \end{split} \qquad \text{($z^i = Wx^i$ and $\mu_z = 0$)}$$

Probabilistic PCA

• With zero-mean ("centered") data, in PCA we assume that

$$x \approx W^T z$$
.

• In probabilistic PCA we assume that

$$x \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I).$$

(we can actually use any Gaussian density for z)

Probabilistic PCA

• With zero-mean ("centered") data, in PCA we assume that

$$x \approx W^T z$$
.

• In probabilistic PCA we assume that

$$x \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I).$$

(we can actually use any Gaussian density for z)

• Since z is hidden, our observed likelihood integrates over z,

$$p(x|W) = \int_{z} p(x, z|W)dz.$$

- Looks ugly, but can be computed due to the Gaussians assumptions:
 - This marginal distribution is Gaussian.

• From the assumptions of the previous slide we have

$$p(x|z,W) \propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2}\right), \quad p(z) \propto \exp\left(-\frac{z^Tz}{2}\right).$$

• From the assumptions of the previous slide we have

$$p(x|z,W) \propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2}\right), \quad p(z) \propto \exp\left(-\frac{z^Tz}{2}\right).$$

$$p(x, z|W) = p(x|z, W)p(z|W)$$

• From the assumptions of the previous slide we have

$$p(x|z,W) \propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2}\right), \quad p(z) \propto \exp\left(-\frac{z^Tz}{2}\right).$$

$$p(x, z|W) = p(x|z, W)p(z|W)$$

= $p(x|z, W)p(z)$ $(z \perp W)$

• From the assumptions of the previous slide we have

$$p(x|z,W) \propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2}\right), \quad p(z) \propto \exp\left(-\frac{z^Tz}{2}\right).$$

$$p(x, z|W) = p(x|z, W)p(z|W)$$

$$= p(x|z, W)p(z) \qquad (z \perp W)$$

$$\propto \exp\left(-\frac{(x - W^T z)^T (x - W^T z)}{2\sigma^2} - \frac{z^T z}{2}\right)$$

• From the assumptions of the previous slide we have

$$p(x|z,W) \propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2}\right), \quad p(z) \propto \exp\left(-\frac{z^Tz}{2}\right).$$

$$\begin{split} p(x,z|W) &= p(x|z,W)p(z|W) \\ &= p(x|z,W)p(z) & (z \perp W) \\ &\propto \exp\left(-\frac{(x-W^Tz)^T(x-W^Tz)}{2\sigma^2} - \frac{z^Tz}{2}\right) \\ &= \exp\left(-\frac{x^Tx - x^TW^Tz - z^TWx + z^TWW^Tz}{2\sigma^2} + \frac{z^Tz}{2}\right) \end{split}$$

• So the "complete" likelihood satsifies

$$p(x,z|W) \propto \exp\left(-\frac{x^Tx - x^TW^Tz - z^TWx + z^TWW^Tz}{2\sigma^2} + \frac{z^Tz}{2}\right)$$

• So the "complete" likelihood satsifies

$$\begin{split} p(x,z|W) &\propto \exp\left(-\frac{x^Tx - x^TW^Tz - z^TWx + z^TWW^Tz}{2\sigma^2} + \frac{z^Tz}{2}\right) \\ &= \exp\left(-\frac{1}{2}\left(x^T\left(\frac{1}{\sigma^2}I\right)x + x^T\left(\frac{1}{\sigma^2}W^T\right)z + z^T\left(\frac{1}{\sigma^2}W\right)x + z^T\left(\frac{1}{\sigma^2}WW^T + I\right)z\right)\right), \end{split}$$

• So the "complete" likelihood satsifies

$$\begin{aligned} p(x,z|W) &\propto \exp\left(-\frac{x^T x - x^T W^T z - z^T W x + z^T W W^T z}{2\sigma^2} + \frac{z^T z}{2}\right) \\ &= \exp\left(-\frac{1}{2}\left(x^T \left(\frac{1}{\sigma^2}I\right)x + x^T \left(\frac{1}{\sigma^2}W^T\right)z + z^T \left(\frac{1}{\sigma^2}W\right)x + z^T \left(\frac{1}{\sigma^2}WW^T + I\right)z\right)\right), \end{aligned}$$

• We can re-write the exponent as a quadratic form,

$$p(x, z|W) \propto \exp\left(-\frac{1}{2}\begin{bmatrix}z^T & x^T\end{bmatrix}\begin{bmatrix}\frac{1}{\sigma^2}WW^T + I & -\frac{1}{\sigma^2}W\\ -\frac{1}{\sigma^2}W^T & \frac{1}{\sigma^2}I\end{bmatrix}\begin{bmatrix}z\\x\end{bmatrix}\right),$$

• So the "complete" likelihood satsifies

$$p(x, z|W) \propto \exp\left(-\frac{x^T x - x^T W^T z - z^T W x + z^T W W^T z}{2\sigma^2} + \frac{z^T z}{2}\right)$$
$$= \exp\left(-\frac{1}{2}\left(x^T \left(\frac{1}{\sigma^2}I\right)x + x^T \left(\frac{1}{\sigma^2}W^T\right)z + z^T \left(\frac{1}{\sigma^2}W\right)x + z^T \left(\frac{1}{\sigma^2}WW^T + I\right)z\right)\right),$$

• We can re-write the exponent as a quadratic form,

$$p(x,z|W) \propto \exp\left(-\frac{1}{2}\begin{bmatrix}z^T & x^T\end{bmatrix}\begin{bmatrix}\frac{1}{\sigma^2}WW^T + I & -\frac{1}{\sigma^2}W\\ -\frac{1}{\sigma^2}W^T & \frac{1}{\sigma^2}I\end{bmatrix}\begin{bmatrix}z\\x\end{bmatrix}\right),$$

• This has the form of a Gaussian distribution.

$$p(v|W) \propto \exp\left(-\frac{1}{2}v^T\Sigma^{-1}v\right),$$

with
$$v=\begin{bmatrix}z\\x\end{bmatrix}$$
, $\mu=0$, and $\Sigma^{-1}=\begin{bmatrix}\frac{1}{\sigma^2}WW^T+I & -\frac{1}{q^2}W\\-\frac{1}{\sigma^2}W^T & \frac{1}{\sigma^2}I\end{bmatrix}$.

• Remember that if we write multivariate Gaussian in partitioned form,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

then the marginal distribution p(x) (integrating over z) is given by

$$x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$$

Monotonicity of EM Kernel Density Estimation Factor Analysis

Manipulating Gaussians

• Remember that if we write multivariate Gaussian in partitioned form,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

then the marginal distribution p(x) (integrating over z) is given by

$$x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$$

• Remember that if we write multivariate Gaussian in partitioned form,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

then the marginal distribution p(x) (integrating over z) is given by

$$x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$$

• For probabilistic PCA we assume $\mu_x = 0$, but we partitioned Σ^{-1} instead of Σ .

• Remember that if we write multivariate Gaussian in partitioned form,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

then the marginal distribution p(x) (integrating over z) is given by

$$x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$$

- For probabilistic PCA we assume $\mu_x = 0$, but we partitioned Σ^{-1} instead of Σ .
- To get Σ we can use a matrix inversion lemma,

$$\Sigma = \begin{bmatrix} \frac{1}{\sigma^2} W W^T + I & -\frac{1}{\sigma^2} W \\ -\frac{1}{\sigma^2} W^T & \frac{1}{\sigma^2} I \end{bmatrix}^{-1} = \begin{bmatrix} W^T W + \sigma^2 I & W^T \\ W & I \end{bmatrix},$$

which gives that solution to integrating over z is

$$x|W \sim \mathcal{N}(0, W^TW + \sigma^2 I).$$

• Negative log-likelihood of observed data has the form

$$-\log p(x|W) = \frac{n}{2} \text{Tr}(SC) + \frac{n}{2} \log |C| + \text{const.},$$

where
$$C = W^T W + \sigma^2 I$$
 and $S = X^T X$.

• Negative log-likelihood of observed data has the form

$$-\log p(x|W) = \frac{n}{2} \text{Tr}(SC) + \frac{n}{2} \log |C| + \text{const.},$$

where $C = W^T W + \sigma^2 I$ and $S = X^T X$.

- Not convex, but non-global stationary points are saddle points.
- Regular PCA is obtained as limit of $\sigma \to 0$ (as $\log |C| \to 0$).

• Negative log-likelihood of observed data has the form

$$-\log p(x|W) = \frac{n}{2} \mathrm{Tr}(SC) + \frac{n}{2} \log |C| + \mathrm{const.},$$

where $C = W^T W + \sigma^2 I$ and $S = X^T X$.

- Not convex, but non-global stationary points are saddle points.
- Regular PCA is obtained as limit of $\sigma \to 0$ (as $\log |C| \to 0$).
- Can reduce cost from $O(d^3)$ to $O(k^3)$ with matrix inversion/determinant lemmas:
 - Allows us to work with WW^T instead of W^TW .
- We can get p(z|x, W) using that conditional of Gaussians is Gaussian.

• Negative log-likelihood of observed data has the form

$$-\log p(x|W) = \frac{n}{2} \text{Tr}(SC) + \frac{n}{2} \log |C| + \text{const.},$$

where $C = W^T W + \sigma^2 I$ and $S = X^T X$.

- Not convex, but non-global stationary points are saddle points.
- Regular PCA is obtained as limit of $\sigma \to 0$ (as $\log |C| \to 0$).
- Can reduce cost from $O(d^3)$ to $O(k^3)$ with matrix inversion/determinant lemmas:
 - Allows us to work with WW^T instead of W^TW .
- ullet We can get p(z|x,W) using that conditional of Gaussians is Gaussian.
- We could consider different distribution for $x^i|z^i$ (but integrals are ugly):
 - E.g., Laplace of student if you want it to be robust.
 - E.g., logistic or softmax if you have discrete x_i^i .

Generalizations of Probabilistic PCA

- Why do we need a probabilistic interpretation of PCA?
 - Good excuse to play with Gaussian identities and matrix formulas?

Generalizations of Probabilistic PCA

- Why do we need a probabilistic interpretation of PCA?
 - Good excuse to play with Gaussian identities and matrix formulas?
- We now understand that PCA fits a Gaussian with restricted covariance:
 - Hope is that $W^TW + \sigma I$ is a good approximation of full covariance X^TX .

Monotonicity of EM Kernel Density Estimation Factor Analysis

Generalizations of Probabilistic PCA

- Why do we need a probabilistic interpretation of PCA?
 - Good excuse to play with Gaussian identities and matrix formulas?
- We now understand that PCA fits a Gaussian with restricted covariance:
 - Hope is that $W^TW + \sigma I$ is a good approximation of full covariance X^TX .
 - We can do fancy things like mixtures of PCA models.

Figure 8: Comparison of an 8-component diagonal variance Gaussian mixture model with a mixture of PPCA model. The upper two plots give a view perpendicular to the major

http://www.miketipping.com/papers/met-mppca.pdf

• Lets us understand connection between PCA and factor analysis.

Monotonicity of EM Kernel Density Estimation Factor Analysis

Factor Analysis

- Factor analysis (FA) is a method for discovering latent-factors.
- Historical applications are measures of intelligence and personality traits.
 - Some controversy, like trying to find factors of intelligence due to race.

(without normalizing for socioeconomic factors)

Trait	Description
Openness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

https://new.edu/resources/big-5-personality-traits

But a standard tool and widely-used across science and engineering.

Factor Analysis

ullet FA approximates the original matrix by latent-variables Z and latent-factors W,

$$X \approx ZW$$
.

• Which should sound familiar...

Factor Analysis

ullet FA approximates the original matrix by latent-variables Z and latent-factors W,

$$X \approx ZW$$
.

- Which should sound familiar...
- Are PCA and FA the same?
 - Both are more than 100 years old.
 - People are still fighting about whether they are the same:
 - Doesn't help that some software packages run PCA when you call FA.

• In probabilistic PCA we assume

$$x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

and we obtain PCA as $\sigma \to 0$.

• In probabilistic PCA we assume

$$x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

and we obtain PCA as $\sigma \to 0$.

In FA we assume

$$x|z \sim \mathcal{N}(W^T z, \mathbf{D}), \quad z \sim \mathcal{N}(0, I),$$

where D is a diagonal matrix.

In probabilistic PCA we assume

$$x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

and we obtain PCA as $\sigma \to 0$.

In FA we assume

$$x|z \sim \mathcal{N}(W^T z, \mathbf{D}), \quad z \sim \mathcal{N}(0, I),$$

where D is a diagonal matrix.

- The difference is that you can have a noise variance for each dimension.
- Repeating the previous exercise we get that

$$x \sim \mathcal{N}(0, W^TW + D).$$

- We can write non-centered versions of both models:
 - Probabilistic PCA:

$$z = x / z \sim \mathcal{N}(W^T z + \mu, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

• Factor analysis:

$$x|z \sim \mathcal{N}(W^T z + \mu, D), \quad z \sim \mathcal{N}(0, I),$$

where D is a diagonal matrix.

- We can write non-centered versions of both models:
 - Probabilistic PCA:

$$x|z \sim \mathcal{N}(W^T z + \mu, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

Factor analysis:

$$x|z \sim \mathcal{N}(W^T z + \mu, \mathbf{D}), \quad z \sim \mathcal{N}(0, I),$$

where D is a diagonal matrix.

• A different perspective is that these models assume

$$x = W^T z + \epsilon$$
,

where PPCA has $\epsilon \sim \mathcal{N}(\mu, \sigma^2 I)$ and FA has $\epsilon \sim \mathcal{N}(\mu, D)$.

• So in FA has extra degrees of freedom in variance of individual variables.

Monotonicity of EM Kernel Density Estimation Factor Analysis

PCA vs. Factor Analysis

http:

// stats.stack exchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-principal-component-analysis-and-analysis-and-analysis-and-analysis-analysi-analys

Remember in 340 that difference with PCA and ISOMAP/t-SNE was huge.

Factor Analysis Discussion

- No closed-form solution for FA, and can find different local optima.
- Unlike PCA, FA doesn't change if you scale variables.
 - FA doesn't chase large-noise features that are uncorrelated with other features.

Factor Analysis Discussion

- No closed-form solution for FA, and can find different local optima.
- Unlike PCA, FA doesn't change if you scale variables.
 - FA doesn't chase large-noise features that are uncorrelated with other features.
- Unlike PCA, FA changes if you rotate data.
- Similar to PCA, objective only depends on W^TW so you can rotate/mirror the factors

$$W^T W = W^T \underbrace{Q^T Q}_{I} W = (WQ)^T (WQ),$$

for an orthogonal matrix Q.

• So you can't interpret multiple factors as being unique.

Summary

• Monotonicity of EM: EM is guaranteed not to decrease likelihood.

- Monotonicity of EM: EM is guaranteed not to decrease likelihood.
- Kernel density estimation: Non-parametric continuous density estimation method.

- Monotonicity of EM: EM is guaranteed not to decrease likelihood.
- Kernel density estimation: Non-parametric continuous density estimation method.
- PCA is a classic method for dimensionality reduction.

Nonotonicity of EM Kernel Density Estimation Factor Analysis

- Monotonicity of EM: EM is guaranteed not to decrease likelihood.
- Kernel density estimation: Non-parametric continuous density estimation method.
- PCA is a classic method for dimensionality reduction.
- Probabilistic PCA is a continuous latent-variable probabilistic generalization.

Nonotonicity of EM Kernel Density Estimation Factor Analysis

- Monotonicity of EM: EM is guaranteed not to decrease likelihood.
- Kernel density estimation: Non-parametric continuous density estimation method.
- PCA is a classic method for dimensionality reduction.
- Probabilistic PCA is a continuous latent-variable probabilistic generalization.
- Factor analysis extends probabilistic PCA with different noise in each dimension.
- Next time: the algorithm we didn't cover in 340 from the list of "The 10 Algorithms Machine Learning Engineers Need to Know".

Bonus Slide: Mixture of Experts

• Classic generative model for supervised learning uses

$$p(y^i|x^i) \propto p(x^i|y^i)p(y^i),$$

and typically $p(x^i|y^i)$ is assumed by Gaussian (LDA) or independent (naive Bayes).

Bonus Slide: Mixture of Experts

• Classic generative model for supervised learning uses

$$p(y^i|x^i) \propto p(x^i|y^i)p(y^i),$$

and typically $p(x^i|y^i)$ is assumed by Gaussian (LDA) or independent (naive Bayes).

• But we could allow more flexibility by using a mixture model,

$$p(x^{i}|y^{i}) = \sum_{c=1}^{k} p(z^{i} = c|y^{i})p(x^{i}|z^{i} = c, y^{i}).$$

Bonus Slide: Mixture of Experts

• Classic generative model for supervised learning uses

$$p(y^i|x^i) \propto p(x^i|y^i)p(y^i),$$

and typically $p(x^i|y^i)$ is assumed by Gaussian (LDA) or independent (naive Bayes).

• But we could allow more flexibility by using a mixture model,

$$p(x^{i}|y^{i}) = \sum_{c=1}^{k} p(z^{i} = c|y^{i})p(x^{i}|z^{i} = c, y^{i}).$$

• Instead of a generative model, we could also take a mixture of regression models,

$$p(y^{i}|x^{i}) = \sum_{c=1}^{k} p(z^{i} = c|x^{i})p(y^{i}|z^{i} = c, x^{i}).$$

- Called a "mixture of experts" model:
 - Each regression model is an "expert" for certain values of x^i .