Examining the robustness of a design-comparable effect size in single-case designs Qi-Wen Ding

Joint work with Li-Ting Chen, Yi-Kai Chen, Tong-Rong Yang, Yu-Shan Chiang, Cheng-Yu Hsieh, Che Cheng, Po-Ju Wu, Chao-Ying Joanne Peng

Multiple baseline design in SCED

Single-case experimental design (SCED)

- Each participant serves as their own control.
- Repeated measurements over time.
- Small sample sizes.
- Focus on within-subject changes.

Multiple baseline (MB) design

- Most commonly-used type of SCED
- Two non-overlapping phases: phase A (baseline) and phase B (intervention)
- Each participant begins the intervention at <u>different</u> time points, which helps control for time-related effects
- Replicated across participants

Pustejovsky et al. (2014)'s measure

Linear mixed effect model: random intercept and slope

For the j^{th} measurement of the i^{th} participant, the outcome Y_{ij} is modeled by:

$$Y_{ij} = \theta_{0i} + \theta_{1i} D_{ij} + \epsilon_{ij}$$

= $(\beta_0 + \gamma_{0i}) + (\beta_1 + \gamma_{1i}) D_{ij} + \epsilon_{ij}$,

where θ_{0i} = baseline level, θ_{1i} = individual binary treatment effect.

With below assumptions:

- a) Within participant: $\epsilon_i = (\epsilon_1, \dots, \epsilon_j)^\intercal \sim MN(\mathbf{0}, \Sigma)$ where Σ follows AR(1) structure.
- b) Across participants: $Var(\epsilon_{ij}) = Var(\epsilon_{hk}) = \sigma^2$ and $Cov(\epsilon_{ij}, \epsilon_{hk}) = 0, \forall i \neq h$.
- c) Random effects: $(\gamma_{0i}, \gamma_{1i}) \sim MN(\mathbf{0}, T)$ with covariance $T = \begin{bmatrix} \tau_0^2 & \tau_{10} \\ \tau 10 & \tau_1^2 \end{bmatrix}$.
- d) Level-1 errors (ε_{ij}) are independent of random effects.

Design-comparable effect size under above model

$$\delta = \frac{eta_1}{\sqrt{\sigma^2 + au_0^2}}$$
 , which is estimated by g_{AB} in eq(12) in our paper.

Simulation design

Factor	Definition	Conditions
Dist	Distribution of data	normal (0, 0)
	(skewness, kurtosis)	nearly normal (0, 0.35)
		mildly non-normal (1, 0.35)
		moderately non-normal $(1, 3)$
m	Number of participants	3, 4, 5, 6
N	Number of measurements	8, 16
ρ	Within-case reliability = $\tau_0^2/(\sigma^2 + \tau_0^2)$	0.2, 0.4, 0.6, 0.8
λ	Ratio of variance components = τ_1^2/τ_0^2	0.1, 0.5
φ	First-order autocorrelation	-0.4, -0.3 , -0.1 , 0 , 0.1 , 0.3 , 0.4

Evaluation criteria

• Relative bias of g_{AB}

• Relative bias of $Var(g_{AB})$

• Mean square error of g_{AB}

• Coverage rate of symmetric C.I. for δ

Results: relative bias of g_{AB}

Results: relative bias of $Var(g_{AB})$

Results: coverage rate of C.I. (N = 8)

N: number of measurements m: number of participants

Results: coverage rate of C.I. (N = 16)

N: number of measurements m: number of participants

Summary

- Point estimation: unbiased even for non-normal cases
- Variance estimation: overestimated, especially for normal cases
- C.I.: over-coveraged, especially for **normal** cases

Recommendations

We recommend g_{AB} for MB studies and meta-analysis when each study with **at least 16 measurements**, meets one of the following conditions:

- m=6, $\rho=.6$ or .8, and the shape, skewness, and kurtosis of data are similar to the normal or nearly normal
- $m \ge 4$, $\rho = .2$, .4, or .6, and the shape, skewness, and kurtosis of data are similar to the mildly or moderately non-normal distribution