STT 890 — Intro to MLOps — MLFlow "In-Class"

Due: Friday, September 26, 2025 11:59:59 PM All submissions should be uploaded to the designated D2L dropbox.

Omeiza Olumoye

This work will involve model registries and versioning in MLFlow. It will use the dataset reg2, which a target y and 2 potential predictor variables x1 and x2. Use scikit-learn for the linear regression (for MLFlow, this is the <u>model flavor</u>) (so you will have to split up the data).

- 1. Read through the quickstart and model registry tutorials linked in this directory.
- 2. Build 3 models:
 - a. Try a linear regression model using x1 only to predict y. Look at how well it does. Call this model model_1.
 - b. Try a linear regression model using x2 only to predict y. Look at how well it does. Call this model model 2.
 - c. Finally, use x1 and x2 to predict y. Compare the errors and \mathbb{R}^2 values to the previous model. How do they compare?
- 3. To do the version control with MLFlow, follow these steps
 - a. Create a repository in your Git for the models
 - b. Put the models there.
 - c. Register the models in MLFlow (you can use the above names or
- 4. Start and view the tracking server for the models.

Turn in a pdf of your notebook, along with a screen shot of the tracking server and the requirements.txt file.

- 1. Read through the quickstart and model registry tutorials linked in this directory. Done
- 2. Build 3 models:
 - a. Try a linear regression model using x1 only to predict y. Look at how well it does. Call this model model_x1: $y \sim 0.0556x1 + 6.699$
 - b. Try a linear regression model using x2 only to predict y. Look at how well it does. Call this model model_x2: $y \sim 0.1332x2 + 6.8825$
 - c. Finally, use x1 and x2 to predict y. Compare the errors and R^2 values to the previous model. How do they compare? model_x1_x2: $y \sim 1.8603x1 + 0.9175x2 + 0.4954$

	model_x1	model_x2	model_x1_x2
MAE	0.9189	0.9902	0.1936
MSE	1.2476	1.3742	0.0605
RMSE	1.1169	1.1723	0.2459
R^2	-197.6360	-8.5352	0.9469

Table 1: Errors and R^2

From Table 1, the third column which has the least values in all the errors signifying its superiority over models model_x1 and model_x2. model_x1_x2. As regards the R^2 value, the third model has almost perfect prediction, whereas the models model_x1 and model_x2 have an interpretability worse than the baseline model that barely predicts the mean. In the nutshell, the model model_x1_x2 is a much better model for this particular dataset.

- 3. To do the version control with MLFlow, follow these steps
 - a. Create a repository in your Git for the models. Done
 - b. Put the models there. Done
 - c. Register the models in MLFlow (you can use the above names or ...) Done
- 4. Start and view the tracking server for the models. Done

Turn in a pdf of your notebook, along with a screen shot of the tracking server and the requirements.txt file. The files are tracking_server_shot_1of4.png · · · tracking_server_shot_4of4.png; and requirement.txt will be pushed to the github repository as well.