CMSE 823 – Numerical Linear Algebra

Final Exam

Alexander Harnisch

Problem 1

(a)

For $A \in \mathbb{C}^{m \times n}$:

$$||A||_{\infty} \le \sqrt{n} ||A||_2. \tag{1}$$

Proof. First, using the definition [2, (3.2)] of the 2-norm and infinity norm for any $x \in \mathbb{C}^n$:

$$||x||_2^2 = \sum_{i=1}^n x_i^2 \le n \max_{1 \le i \le m} x_i^2 = n ||x||_{\infty}^2.$$

And thus

$$||x||_2 \le \sqrt{n} ||x||_{\infty} \Leftrightarrow \frac{1}{||x||_{\infty}} \le \frac{\sqrt{n}}{||x||_2}, \quad x \ne 0.$$
 (2)

Additionally, we have

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i| \le \sqrt{\sum_{i=1}^n x_i^2} = ||x||_2 \Leftrightarrow \frac{1}{||x||_2} \le \frac{1}{||x||_{\infty}}, \quad x \ne 0.$$
 (3)

Combining these results with the definition of the induced matrix norm [2, (3.6)], we find the inequality

$$||A||_{\infty} = \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} \stackrel{(3)}{\leq} \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{||Ax||_2}{||x||_{\infty}} \stackrel{(2)}{\leq} \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{\sqrt{n} ||Ax||_2}{||x||_2} = \sqrt{n} ||A||_{\infty}.$$

We also find the inequality

$$||A||_2 \le \sqrt{m} ||A||_{\infty}.$$

Proof.

$$\|A\|_2 = \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} \overset{(2)}{\leq} \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{\sqrt{m} \|Ax\|_\infty}{\|x\|_2} \overset{(3)}{\leq} \sup_{x \in \mathbb{C}^n, \, x \neq 0} \frac{\sqrt{m} \|Ax\|_\infty}{\|x\|_\infty} = \sqrt{m} \|A\|_\infty$$

(b)

The inequality (1) is sharp.

Proof. To show that the inequality is sharp, it is sufficient to find an example for which equality holds. Such an example is:

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

 $||M||_{\infty} = 2$ and $||M||_{2} = \sqrt{2}$ so

$$||M||_{\infty} = \sqrt{2}||M||_2.$$

Problem 2

Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. A^*A is non-singular if and only if A has full rank.

Proof. The rank of A is the number of non-zero singular values [2, Theorem 5.1]. Let the SVD of A be $A = U\Sigma V^*$. Then it follows, that A is of full rank if and only if Σ is of full rank and

$$A^*A = V\Sigma^*U^*U\Sigma V^* = V\Sigma^*\Sigma V^* = V\Sigma^2 V^*.$$

This is an eigenvalue decomposition (similarity transformation). Therefore, A^*A is of full rank if and only if Σ^2 is of full rank, which is of full rank if and only if Σ is of full rank. Σ is diagonal and its diagonal entries are the singular values of A, so Σ is of full rank if and only if A is of full rank. A^*A is a square matrix, so it is non-singular if and only if it has full rank. We conclude that A^*A is non-singular if and only if A is of full rank. \square

Problem 3

Let $A \in \mathbb{C}^{m \times m}$, and let a_j be its j-th column. Then:

$$|\det(A)| \le \prod_{j=1}^{m} ||a_j||_2.$$
 (4)

Proof. Let A = QR be the QR decomposition of A. Let q_j be the j-th column of Q and r_{ij} be the (i, j) entry of R.

From $a_j = \sum_{i=1}^j r_{ij}q_i$ [2, (7.3)] and $r_{ij} = q_i^*a_j$ for $i \neq j$ [2, (7.7)] and the fact that the columns of Q are orthonormal, it follows directly, that:

$$||a_j||_2^2 = \left(\sum_{i=1}^j r_{ij}q_i\right)^2 = \sum_{i=1}^j r_{ij}^2 = \sum_{i=1}^j |q_i^*a_j|^2.$$
 (5)

With that, we find:

$$\det(A)^{2} = \det(A^{*}A) = \det(R^{*}Q^{*}QR) = \det(R^{*}R) = \det(R)^{2}$$

$$= \prod_{j=1}^{m} |r_{jj}|^{2} \stackrel{[2, (7.7)]}{=} \prod_{j=1}^{m} |q_{j}^{*}a_{j}|^{2}$$

$$\leq \prod_{j=1}^{m} \sum_{i=1}^{j} |q_{i}^{*}a_{j}|^{2} \stackrel{(5)}{=} \prod_{j=1}^{m} ||a_{j}||_{2}^{2}$$

Taking the square root gives (4).

Problem 4

(a)

The primary textbook gives a formal definition of the Singular Value decomposition [2, pp. 28-29]. The existence and uniqueness is stated and proven [2, Theorem 4.1]. A slide titled "SVD: Theorem" can be found in [1]. It states, that

- 1. Every matrix $A \in \mathbb{C}^{m \times n}$ has an SVD.
- 2. The singular values $\{\sigma_i\}$ are uniquely determined.
- 3. If $A \in \mathbb{C}^{m \times n}$ and the singular values σ_i are distinct, then the left and right singular vectors $\{u_i\}$ and $\{v_i\}$ are uniquely determined up to complex signs (i.e. complex scalar factors of modulus 1).

This is the same as Theorem 4.1 in [2].

(b)

Let $A \in \mathbb{C}^{m \times n}$. Set $\sigma = ||A||_2$. There are vectors $v \in \mathbb{C}^n$ and $u \in \mathbb{C}^m$ with $||v||_2 = ||u||_2 = 1$ such that $Av = \sigma u$.

Proof. Let $A = U\Sigma V^*$ be the SVD of A. Σ is diagonal and its entries are the singular values of A. $\sigma = ||A||_2$ is the largest singular value of A [2, Theorem 5.3]. Thus:

$$AV = U\Sigma \Rightarrow Av = \sigma u, \tag{6}$$

where v is the right and u the left normalized singular vector corresponding to the largest singular value σ of A.

This proof might be circular, depending on how the SVD theorem stated above has been proven. An alternative proof is the compactness argument of the induced 2 norm used in the proof of Theorem 4.1 in [2]. This proof is also given in [1]. It goes as follows:

Proof. By definition, we have

$$||A||_2 = \sup_{||y||_2=1} ||Ay||_2.$$

Since the function $||Ay||_2$ is continuous on the compact set $\{y \in \mathbb{C}^n : ||y||_2 = 1\}$, there exists $x \in \mathbb{C}^n$ with $||x||_2 = 1$, so that

$$||A||_2 = \sup_{||y||_2=1} ||Ay||_2 = \max_{||y||_2=1} ||Ay||_2 = ||Ax||_2.$$

Let v = x so that $||v||_2 = 1$. Let z = Ax. Define $u = \frac{z}{||z||_2}$. Then

$$||z||_2 = \sigma = ||A||_2, \quad z = \sigma u.$$

Thus $Av = \sigma u$, where both u and v are normalized.

(c)

A reduced SVD of

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 2 \end{bmatrix}$$

is

$$A = U\Sigma V^* = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

To make it a full SVD, we only need to make the columns of U a full basis of \mathbb{R}^3 by adding the column $(0,1,0)^{\mathsf{T}}$ and adding a row of zeros to Σ .

Just as a brief justification of the result: For this simple matrix I could come up with the SVD in my head by knowing that Σ is a diagonal matrix with the square roots of the eigenvalues of $A^{\top}A$ on its diagonal [2, Theorem 5.4].

Problem 5

We want to solve the least-squares problem $\min_{x \in \mathbb{R}^2} ||Ax - b||_2$, where $b = (0, 0, 3, 2)^{\top}$ and

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 2 & 1 \\ 0 & 2 \end{bmatrix}$$

using Algorithm 11.2 defined in [2]. The result can be cross-checked numerically and by using [2, (11.12)].

1. The first step is to compute the QR decomposition of A. This can most conveniently be achieved by Gram-Schmidt Orthogonalization or Householder Triangularization. Let's choose the former, because it requires less typing:

$$q_1' = a_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$r_{11} = ||q_1'|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$q_{1} = \frac{q'_{1}}{\|q'_{1}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$$

$$r_{12} = q_{1}^{\top} a_{2} = \frac{1}{\sqrt{5}} (-1+2) = \frac{1}{\sqrt{5}}$$

$$q'_{2} = a_{2} - r_{12}q_{1} = \begin{bmatrix} -1\\0\\1\\2 \end{bmatrix} - \frac{1}{5} \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -6\\0\\3\\10 \end{bmatrix}$$

$$r_{22} = \|q'_{2}\| = \sqrt{5.8}$$

$$q_{2} = \frac{q'_{2}}{\|q'_{2}\|} = \frac{1}{5\sqrt{5.8}} \begin{bmatrix} -6\\0\\3\\10 \end{bmatrix}$$

And thus:

$$A = QR = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{6}{5\sqrt{5.8}} \\ 0 & 0 \\ \frac{2}{\sqrt{5}} & \frac{3}{5\sqrt{5.8}} \\ 0 & \frac{10}{5\sqrt{5.8}} \end{bmatrix} \begin{bmatrix} \sqrt{5} & \frac{1}{\sqrt{5}} \\ 0 & \sqrt{5.8} \end{bmatrix}.$$

2. Compute $y = Q^*b = Q^\top b$:

$$y^{\top} = b^{\top} Q = \begin{bmatrix} 0 & 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{6}{5\sqrt{5.8}} \\ 0 & 0 \\ \frac{2}{\sqrt{5}} & \frac{3}{5\sqrt{5.8}} \\ 0 & \frac{10}{5\sqrt{5.8}} \end{bmatrix} = \begin{bmatrix} \frac{6}{\sqrt{5}} & \frac{29}{5\sqrt{5.8}} \end{bmatrix}$$

3. Solve Rx = y for x, which solves $\min_{x \in \mathbb{R}^2} ||Ax - b||_2$.

$$\begin{bmatrix} \sqrt{5} & \frac{1}{\sqrt{5}} \\ 0 & \sqrt{5.8} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{6}{\sqrt{5}} \\ \frac{5}{5\sqrt{5.8}} \end{bmatrix}$$

Note that $\sqrt{5.8} = \frac{\sqrt{145}}{5} = \frac{29}{5\sqrt{5.8}}$, thus the solution is

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Problem 6

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite with n = j + k. Partition A into the following 2 b 2 blocks:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} is $j \times j$ and A_{22} is $k \times k$. Let R_{11} be the Cholesky factor of A_{11} : $A_{11} = R_{11}^{\top} R_{11}$, where R_{11} is upper-triangular with positive main-diagonal entries. Let $R_{12} = (R_{11}^{-1})^{\top} A_{12}$ and let $\tilde{A}_{22} = A_{22} - R_{12}^{\top} R_{12}$.

(a)

 A_{11} is positive definite.

Proof. We know that A is positive definite:

$$x^{\top} A x > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

From that it follows, that for

$$\tilde{x} \in \left\{ (y,0)^\top | y \in \mathbb{R}^j \right\} \subset \mathbb{R}^n$$

we get

$$\tilde{x}^{\top} A \tilde{x} = y^{\top} A_{11} y > 0.$$

We conclude that if A is positive definite, A_{11} is also positive definite.

(b)

$$\tilde{A}_{22} = A_{22} - A_{21}A_{11}^{-1}A_{12}$$

Proof. We know, that $A_{11} = R_{11}^{\top} R_{11}$, $R_{12} = (R_{11}^{-1})^{\top} A_{12}$ and $\tilde{A}_{22} = A_{22} - R_{12}^{\top} R_{12}$. We also know, that $A_{21} = A_{12}^{\top}$, because A is symmetric. With that: $R_{12}^{\top} = A_{12}^{\top} R_{11}^{-1} = A_{21} R_{11}^{-1}$ and it follows, that

$$R_{12}^{\top}R_{12} = A_{21}R_{11}^{-1}(R_{11}^{-1})^{\top}A_{12} = A_{21}(R_{11}^{\top}R_{11})^{-1}A_{12} = A_{21}A_{11}^{-1}A_{12}$$

and thus $\tilde{A}_{22} = A_{22} - A_{21}A_{11}^{-1}A_{12}$.

(c)

 A_{22} is positive definite. An informal proof is given by [2, p. 175]. However, I'll still write out a formal proof:

Proof. We can factorize A as follows:

$$A = UDU^{\top} \begin{bmatrix} \mathbb{I}_j & 0 \\ A_{21}A_{11}^{-1} & \mathbb{I}_k \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & \tilde{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbb{I}_j & A_{11}^{-1}A_{12} \\ 0 & \mathbb{I}_k \end{bmatrix}$$

Which is a similarity transformation of A, because U is invertible:

$$U^{-1} = \begin{bmatrix} \mathbb{I}_j & 0 \\ -A_{21}A_{11}^{-1} & \mathbb{I}_k \end{bmatrix}.$$

So D can be written as $D = U^{-1}A(U^{-1})^T$ and it follows that

$$y^{\mathsf{T}} D y = y^{\mathsf{T}} U^{-1} A (U^{-1})^T y = x^{\mathsf{T}} A x > 0, \quad y \neq 0$$

with $x = (U^{-1})^{\top}y$. So D is positive definite if and only if A is positive definite. The lower right 2 by 2 block of D is A_{22} and it is uncoupled from the upper left block of D, because the upper right and lower left blocks are zero. Therefore, by the same argument used in (a), A is positive definite if and only if A_{11} and A_{22} are both positive definite. \square

Problem 7

If $A \in \mathbb{R}^{m \times m}$ is symmetric and positive definite, then solving the linear system Ax = b amounts to computing

$$x = \sum_{i=1}^{m} \frac{c_i}{\lambda_i} v_i,$$

where λ_i are the eigenvalues of A and v_i are the corresponding eigenvectors, and c_i are some constants determined by b and v_i .

Proof. We know that A is symmetric and therefore unitarily diagonalizable [2, Theorem 24.7] and all its eigenvalues are positive real numbers (if $Ax = \lambda x$ for $x \neq 0$, we have $x^{T}Ax = \lambda x^{T}x > 0$). So we can write A as

$$A = Q\Lambda Q^{\top}, \quad QQ^{\top} = \mathbb{I}_m.$$

The columns of Q are the normalized eigenvectors of A v_i and Λ is diagonal with A's eigenvalues λ_i on its diagonal. Thus:

$$Ax = b \Leftrightarrow Q\Lambda Q^{\mathsf{T}}x = b$$

and it follows

$$x = \Lambda^{-1}(Q^{\top}b)Q = \Lambda^{-1}cQ = \sum_{i=1}^{m} \frac{c_i}{\lambda_i} v_i, \quad c_i = v_i^{\top}b.$$

Problem 8

Let $A \in \mathbb{C}^{m \times n}$, $m \geq n$, with linearly independent columns:

$$A = [a_1, \dots, a_n].$$

We want to find eigenvalues and eigenvectors of the projection matrix

$$P = \mathbb{I} - A(A^*A)^{-1}A^* = \mathbb{I} - AA^+.$$

Let the SVD of A be $A=U\Sigma V^*$. So $A^*A=V\Sigma U^*U\Sigma V^*=V\Sigma^2 V^*$. And the pseudoinverse of A becomes

$$A^{+} = (A^{*}A)^{-1}A^{*} = V\Sigma^{-1}U^{*}.$$

So AA^+ is the orthogonal projector onto the range of A. That means P is the orthogonal projector onto the nullspace of A.

Proof.

$$PA = (\mathbb{I} - A(A^*A)^{-1}A^*)A = A - AV\Sigma^{-1}U^*U\Sigma V^* = A - AV\Sigma^{-1}\Sigma V^* = 0$$

So we conclude that any vector, that lies in the nullspace of A, is an eigenvector of P with eigenvalue 1. Conversely, any vector inside the range of A is an eigenvector of P with eigenvalue 0. So all of A's columns a_i are eigenvectors of P with eigenvalue 0 (as proven above). And all multiples of the m-n linearly independent vectors which, together with the n a_i vectors, form a full basis of \mathbb{R}^m , are eigenvectors of P with eigenvalue 1.

References

- [1] Jianliang Qian. Lecture Slides for CMSE 823 Numerical Linear Algebra. 2020.
- [2] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997. ISBN 0-89871-361-7.