Q-learning - umelá inteligencia na obzore?

Ing. Michal CHOVANEC Fakulta riadenia a informatiky

Apríl 2016

Obsah

- Reinforcement learing
- Q-learning algoritmus
- Možnosti aproximácie

Reinforcement learing

- Zistenie stavu
- Výber akcie
- Vykonanie akcie
- Prechod do d'alšieho stavu
- Získanie odmeny alebo trestu
- Učenie sa zo získanej skúsenosti

Výhody

Definuje sa čo robiť, nie ako to robiť

- vďaka odmeňovacej funkcií
- agent sa môže naučiť všetky detaily problému

Lepšie konečné riešenie

- založené na skutočnej skúsenosti, nie skúsenosti programátora
- treba menej ľudského času na nájdenie dobrého riešenia

Voľba stratégie, 2 stavy

Odmeny sú známe v každom prechode

Ohodnotenie ciest:

- Q(S0, S1) = 1
- Q(S0, S1) = 0.3

Najlepšia cesta: S0, S1

Voľba stratégie, viac stavov

Ohodnotenie ciest:

- Q(S0, S1, S3) = 1 + (-10) = -9
- Q(S0, S1, S4) = 1 + 3 = 4
- Q(S0, S2, S4) = 0.3 + () 1) = -0.7
- Q(S0, S1, S3, S2, S4) = 1 + (-10) + 100 + (-1) = 90
 - ...

Voľba stratégie, viac stavov

Ohodnotenie ciest:

- Q(S0, S2, S3) = 0.4 + 2 = 2.4
- Q(S0, S1, S3) = 1 + 1 = 2
- Q(S0, S1, S1, S1) = 1 + 1 + 1 = 3
- Q(S0, S1, S1, S1, S1) = 1 + 1 + 1 + 1 = 4

Zabúdanie Q' = R + 0.9Q

Ohodnotenie ciest:

- Q(S0, S2, S3) = 2 + 0.9 * 0.4 = 2.36
- Q(S0, S1, S3) = 1 + 0.9 * 1 = 1.9
- Q(S0, S1, S1, S1) = 1 + 0.9 * (1 + 0.9 * 1) = 2.71
- Q(S0, S1, S1, S1, S1) = 1 + 0.9*(1 + 0.9*(1 + 0.9*1)) = 3.439
- Q(S0, S1, S1, S1, S1, S1, ...) = 10 < ---
- $Q(S0, S1, S1, S1, S1, S1, ..., S3) = 10.8 \le -$

Reinforcement learing

Čo potrebuje agent?

- Určiť stav
- Vybrať známu akciu
- Dostať odmenu (aj nulovú)
- Pamätať si

Čo nepotrebuje agent?

- Dané správanie
- Vedieť kam sa vykonaním akcie dostane
- Mať model prostredia
- Nenulovú odmenu v každom prechode

Reinforcement learing

Čo ak odmeny NIE sú známe v každom prechode ?

- šachy, go, pacman
- chôdza, pohyb mechanického ramena

Ilustračný príklad - inicializácia

Ilustračný príklad - prechod do ďalšieho stavu

Ilustračný príklad - prechod do ďalšieho stavu

Ilustračný príklad - prechod do cieľového stavu

Ilustračný príklad - ďalšie prechody

Ilustračný príklad - konečný stav algoritmu :)

Q-learning algoritmus

Daná je množina stavov $\mathbb S$ a akcií $\mathbb A$, kde $\mathbb S \in \mathbb R^{n_s}$ a $\mathbb A \in \mathbb R^{n_a}$, kde n_s a n_a sú rozmery stavového vektora a vektora akcií. Je známa podmnožina východiskových stavov $\mathbb S_0$.

Existuje prechodová funkcia

$$s(n+1) = \lambda(s(n), a(n)) \tag{1}$$

zo stavu s(n) použitím akcie a(n) - táto funkcia je ale agentovi neznáma.

Odmeňovacia funkcia

Daná je funkcia ohodnotení

$$Q(s(n),a(n)) = R(s(n),a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1),a(n-1))$$

kde

- R(s(n), a(n)) je odmeňovacia funkcia s hodnotami v $\langle -1, 1 \rangle$,
- Q(s(n-1), a(n-1)) je odmeňovacia funkcia v stave s(n-1) pre akciu a(n-1),
- γ je odmeňovacia konštanta a platí $\gamma \in (0,1)$.

Odmeňovacia funkcia

Implementačné problémy

Problémy tabuľkovej interpretácie Q(s(n), a(n)):

- pre veľké n_s alebo n_a narastajú pamäťové nároky,
- o nevyplnených Q(s(n), a(n)) nevieme povedať nič,
- pre rozsiahle stavové priestory ťažko vypočítateľné,
- ako aproximovať Q(s(n), a(n))?

Aproximácia neurónovou sieťou

Utopická predstava :

Prečo nedáva správne výsledky?

Hypotéza

Na základe experimetov - Snowball problém

Pre korektné vyplnenie hodnôt v s_{n-1} sa vyžaduje korektá hodnota v s_n

$$Q(s(1), a(1)) = R(s(1), a(1)) + \gamma \max_{a(0) \in \mathbb{A}} Q(s(0), a(0))$$

$$Q(s(2), a(2)) = R(s(2), a(2)) + \gamma \max_{a(1) \in \mathbb{A}} Q(s(1), a(1))$$

. . .

Učenie doprednej siete

- Nie je homogénne!
- V priebehu učenia Q(s(n), a(n)) chaoticky osciluje okolo požadovanej hodnoty.
- Ani po 10-mil. iteráciach sa hodnota neustáli na požadovanej hodnote.

Je možné zostaviť neurónovú sieť, ktorá sa dá naučiť lokálne?

Rozklad Q(s(n), a(n)) na bázické funkcie

$$f_i^1(s(n), a(n)) = e^{-\sum_{i=1}^{n_s} \beta_{aji}(n)(s_i(n) - \alpha_{aji}(n))^2}$$

$$f_j^2(s(n), a(n)) = \frac{1}{1 + \sum_{i=1}^{n_s} \beta_{aji}(n)(s_i(n) - \alpha_{aji}(n))^2}$$

$$f_j^3(s(n), a(n)) = e^{-\sum\limits_{i=1}^{n_s} \beta_{aji}(n)|s_i(n) - \alpha_{aji}(n)|}$$

$$f_j^4(s(n), a(n)) = \sum_{i=1}^m \sum_{j=1}^{n_s} \beta_{aji}(n) (s_i(n) - \alpha_{aji}(n))^k$$

Voľba bázických funkcií

Vzhľadom na charakter učiaceho algoritmu

$$Q(s(n),a(n)) = R(s(n),a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1),a(n-1))$$

boli zvolené bázické funkcie (parameter *n* pre prehľadnosť vynechaný)

$$f_{j}^{1}(s, a) = e^{-\sum_{i=1}^{n_{s}} \beta_{aji}(s_{i} - \alpha_{aji})^{2}}$$

$$f_{j}^{2}(s, a) = \frac{1}{1 + \sum_{i=1}^{n_{s}} \beta_{aji}(s_{i} - \alpha_{aji})^{2}}$$

Aproximácia

Pre symetrické prechody medzi stavmi možno zjednodušiť na

$$f_j^1(s,a) = e^{-\beta_{aj} \sum\limits_{i=1}^{n_s} (s_i - \alpha_{aji})^2}$$

$$f_j^2(s,a) = \frac{1}{1 + \beta_{aj} \sum\limits_{i=1}^{n_s} (s_i - \alpha_{aji})^2}$$

a ich lineárna kombinácia

$$Q^{x}(s,a) = \sum_{i=1}^{l} w_{ja} f_{j}^{x}(s,a)$$

kde / je počet bázických funkcií a x je voľba typu bázickej funkcie.

Aproximácia - nová bázická funkcia

Tabuľka pre vybrané hodnoty - umožní zachytit skokovú zmenu Gaussova krivka - dokáže pokryť nenulovými hodnotami celý definyčný obor

$$P_i(s(n), a(n)) = \begin{cases} r_{ai} & \text{if } s(n) = \alpha_i^1 \\ 0 & \text{inak} \end{cases}$$
 (2)

$$H_{j}(s(n), a(n)) = w_{aj} e^{-\beta_{aj} \sum_{i=1}^{n_{s}} (s_{i}(n) - \alpha_{aji}^{2})^{2}}$$
(3)

$$Q(s(n), a(n)) = \sum_{i=1}^{J} P_i(s(n), a(n)) + \sum_{j=1}^{J} H_j(s(n), a(n))$$
(4)

Aproximácia - nová bázická funkcia

Bloková schéma syntézy testovaného riešenia

Schéma priebehu experimentov

Návrh experimentov - podmienky

- 50000 iterácií učenia
- rozmer s je $n_s = 2$, rozmer a je $n_a = 2$
- predpis funkcie ohodnotení

$$Q(s(n), a(n)) = \ lpha Q(s(n-1), a(n-1)) \ (1-lpha)(R(s(n), a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q(s(n-1), a(n-1))$$

- $R(s(n), a(n)) \in \langle -1, 1 \rangle$ náhodná mapa s 1 cieľovým stavom
- $\gamma = 0.98 \text{ a } \alpha = 0.7$
- hustota referenčného riešenia = 1/32 (4096 stavov)
- počet akcií v každom stave = 8
- hustota riedkej tabuľky = 1/8 (1:16 pomer)
- počet bázických funkcií / = 64
- rozsah parametrov
 - $\alpha_{ja}(n) \in \langle -1, 1 \rangle$
 - $\beta_{ja}(n) \in \langle 0, 200 \rangle$
 - $w_{ia}(n) \in \langle -4, 4 \rangle$

Návrh experimentov - podmienky

 $Q_{rt}(s(n),a(n))$ referenčná funkcia Q (funkcia 0), kde $t\in\langle 0,19\rangle$ je číslo trialu

 $Q_{jt}(s(n), a(n))$ testované funkcie Q a $j \in \langle 1, 5 \rangle$. Celková chyba behu trialu t je

$$e_{jt} = \sum_{s,a} (Q_{rt}(s,a) - Q_{jt}(s,a))^2$$

priemerná, minimálna, maximálna chyba a smerodatná odchylka

$$\bar{a}_j = \frac{1}{20} \sum_t e_{jt}$$

$$e_j^{min} = \min_t e_{jt}$$

$$e_j^{max} = \max_t e_{jt}$$

$$\sigma_j^2 = \frac{1}{20} \sum_t (\bar{a}_j - e_{jt})^2$$

Funkcia R(s, a), mapa 1 - Výsledky experimentov

pre každý stav je zvolená rovnaka množina akcií. Ďalej platí s = (s[0], s[1]).

Mapa najlepších akcií - Výsledky experimentov

Funkcia voľby najlepšej z 8 akcií v stave s = (s[0], s[1]).

Obr. : sparse table

Obr.: linear combination Gauss

Mapa najlepších akcií - Výsledky experimentov

Funkcia voľby najlepšej z 8 akcií v stave s = (s[0], s[1]).

Obr. : sparse table + linear combination Gauss

Obr. : linear combination Kohonen function

Chybové funkcie - Výsledky experimentov

$$e_{jt}(s) = (Q_{rt}(s, a - Q_{jt}(s, a))^2$$

Obr. : sparse table

Obr.: linear combination Gauss

Chybové funkcie - Výsledky experimentov

$$e_{jt}(s) = (Q_{rt}(s, a - Q_{jt}(s, a))^2$$

Obr. : sparse table + linear combination Gauss

Obr. : linear combination Kohonen function

max Q(s, a) - Výsledky experimentov

Obr. : reference table

Obr. : sparse table + linear combination Gauss

Priebeh trialov - Výsledky experimentov

Mapa 0 - Výsledky experimentov

Mapa 1 - Výsledky experimentov

Mapa 2 - Výsledky experimentov

Mapa 3 - Výsledky experimentov

Porovnanie s ostatnými

1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

Obr. : Dráha robotov, funkcia 2 - Gauss

Obr. : Dráha robotov, funkcia 6 -Peak and Hill

Ďakujem za pozornosť

michal.chovanec@yandex.ru https://github.com/michalnand/q_learning

