1. INTRODUCTION to the ASSIGNMENT

ENEL434 Electronics 2

ENEL434 Electronics 2

KWE-1

Page 2

Summary

- Overview
- · Important Dates
- UHF Amplifier Design
- Components
- Overview of Microwave Office
- · Impedance transformer design

The purpose of these lectures are to give you ideas that you may consider when attempting to meet the assignment requirements.

They are not meant to be prescriptive.

KWE-1

Page 3

Overview

- In this assignment you will work in group of two to design, build and test a narrowband UHF amplifier
- · Each group will be assigned a centre frequency
- You may use microstripline and lumped components
- AWR Microwave Office (MWO) will be used for simulation and PCB layout

ENEL434 Electronics 2

KWE-1

Page 4

Important Dates

18 July 2008: Form teams of two

Email to Kim Eccleston with CC to partner

8 August 2008: Detailed circuit design checked

22 August 2008: PCB layout

8 Sept 2008: PCBs available for collection

10 Oct 2008: Demonstration of amplifier

16 Oct 2008: Submission of group report

KWE-1

Page 5

Amplifier Design

- Design method based upon S-parameters (ie ENEL434)
- · Transistor S-parameters obtained from simulation or data sheet
- Impedance transformers and / or matching networks can be designed using the Smith chart
- In this assignment you will be using the BFR92A Si NPN RF small-signal transistor

- Most of the design calculations are concentrated at the amplifier centre frequency.
- Simulations are used to establish whether or not the circuit is stable at other frequencies.

ENEL434 Electronics 2

KWE-1

Page 6

Amplifier Design

- There are three main aspects to the design:
 - 1. Bias circuit design
 - 2. RF design
 - 3. Layout
- The first two are often inter-related
- Layout has a bearing on RF performance
- Simulation should be pervasively used throughout
- Conclusion: design is largely an iterative process

KWE-1

Page 7

Amplifier - RF Design

Input

- N1 and N2 are lossless impedance transformers and comprise inductors. capacitors and transmission lines.
- The above circuit is applicable for the RF signals and bias circuitry is either assumed to have negligible effect around the centre frequency or be incorporated into the "active device" 2-port element.
- The S-parameters of the "active device" 2-port are S_{11} , S_{12} , S_{21} and S_{22} .

ENEL434 Electronics 2

KWE-1

Page 8

Amplifier - RF Design

$$\Gamma_1 = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} \qquad \qquad \Gamma_2 = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1 - S_{11}\Gamma_S}$$

$$\Gamma_2 = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1-S_1\Gamma}$$

Available Gain

$$G_A = \frac{P_o}{P_A} = \frac{|S_{21}|^2 (1 - |\Gamma_S|^2)}{|1 - S_{11}\Gamma_S|^2 - |S_{22} - \Delta\Gamma_S|^2}$$

Power Gain

$$G_{P} = \frac{P_{L}}{P_{I}} = \frac{\left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|1 - S_{22}\Gamma_{L}\right|^{2} - \left|S_{11} - \Delta\Gamma_{L}\right|^{2}}$$

Transducer Gain

$$G_{T} = \frac{P_{L}}{P_{A}} = \frac{\left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{S}\right|^{2}\right) \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{S}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{S}\Gamma_{L}\right|^{2}}$$

KWE-1

Page 9

Amplifier - RF Design

Suppose we have an amplifier terminated as shown. The S-parameters of the amplifier are $S_{\rm 11},\,S_{\rm 12},\,S_{\rm 21},$ and $S_{\rm 22}.$

What are the values of Γ_{S} and Γ_{L} ?

What is the transducer gain of this amplifier when terminated as shown? How is this result useful?

ENEL434 Electronics 2

KWE-1

Page 10

Amplifier - RF Design

- The idea is to select Γ_S and Γ_L so that:
 - 1. Gain is optimised
 - 2. Magnitudes of Γ_1 and Γ_2 are both less than unity
 - 3. Magnitudes of $\Gamma_{\rm in}$ and $\Gamma_{\rm out}$ are low
- Non-zero S₁₂ may cause $|\Gamma_1|$ > 1 for certain values of Γ_L and $|\Gamma_2|$ > 1 for certain values of Γ_S .
- S-parameters of transistor are bias dependent.
- S-parameters of transistor and N1 and N2 are frequency dependent.
- Unconditionally stable transistor: stable for any value of Γ_S and Γ_L.
- **Conditionally stable** transistor: stable only for certain values of Γ_S and Γ_L .
- A transistor is typically conditionally stable at low frequencies and unconditionally stable above a certain frequency.

ENEL434 Electronics 2 KWE-1

Amplifier - RF Design

Page 11

- Unconditionally stable transistor: use simultaneous conjugate matching as this maximises gain and both input and output are matched.
- Conditionally stable transistor:
 - 1. Select Γ_S first then use conjugate matching at the output

Input mismatched Output matched

N1 is NOT a matching network

N2 is a matching network

OR

2. Select Γ_L first then use conjugate matching at the input

Input matched Output mismatched

N1 is a matching network

N2 is NOT a matching network

6

KWE-1

Page 14

Amplifier - RF Design

- You do not need to have unconditional stable transistor to design an amplifier that works – but it is useful if it is.
- Suggestion: Select transistor bias so that it is UNCONDITIONALLY STABLE around the centre frequency. The transistor need not be unconditionally stable at all frequencies.
- You do not need to have an unconditionally stable amplifier so long it
 is stable when terminated with a 50 Ω generator and load.

KWE-1

Page 15

Feeding Bias to RF Transistors

The transistors must be provided with dc bias or they will not work.

But this needs to be done carefully so that:

- RF signal only goes to the transistor and not leak into the power supply.
- DC only goes to the transistor and not to other parts of the circuit
 particularly the amplifier ports. nb. A circuit that sends dc to the ports
 will NOT be tested.
- Bias circuits do not perturb the RF signals. ie the bias circuitry appears invisible to the RF signal.
- Even though you don't intend operating the amplifier outside its pass-band, the circuit must be stable at low RF frequencies. Resistive loading of transistor at low frequencies by bias circuitry can be designed to achieve this.

ENEL434 Electronics 2

KWE-1

Page 16

Feeding Bias to RF Transistors

There are basically three options:

- 1. Isolate the bias circuitry at RF
 - Designed to be "invisible" to RF (at centre frequency)
 - Requires extra quarter-wave stubs or RF chokes
 - May cause stability problems

- Run bias through inherent shunt inductances or short-circuit stubs of the matching circuits
 - Will appear "invisible" to RF (at centre frequency)
 - Does not require additional elements

KWE-1

Page 21

Components

Components in this project can be classified into three groups:

- Ones that will see the RF signal and need to operate at high RF frequencies:
 - Transistor Use BFR92A
 - Networks N1 and N2 Use microstripline (stubs and transmission lines);
 - Bias feeding Use surface mount components
- 2. Ones that need to operate at low RF frequencies:
 - Parts of the bias circuits Use surface mount components
- 3. Ones that only see DC:
 - Bias circuitry where no RF is expected Use any component.

The problem is that the distinction between groups 2 and 3 is not obvious. Simulation plays an important role here.

KWE-1

Page 23

Capacitors

DC block, decoupling and by-pass capacitors must have low parasitic series inductance if they are to have negligible impedance for RF signals.

SURFACE MOUNT / CHIP CERAMIC CAPACITORS – are best for DC blocking, supply decoupling, emitter by-pass, and other places where RF (both low and high frequency) is anticipated.

1206 type parasitic series inductance of about 1 nH – but check data sheet

You need to account for parasitic inductance in simulations

DISC CERAMIC are suitable up to 100 MHz (provided leads are cut short) for for non-critical parts of the bias circuitry.

ENEL434 Electronics 2

KWE-1

Page 24

Capacitors

DC block and by-pass capacitors must have parasitic series low inductance if they are to have negligible impedance for RF signals.

POLYESTER / MYLAR and **ELECTROLYTIC** - can be used in the "DC" part of the bias circuitry

KWE-1

Page 25

Resistors

Similarly, resistors that see RF must have low parasitic series inductance if they are to have negligible impedance for RF signals.

CHIP RESISTORS - are best where RF (both low and high frequency) is anticipated.

CYLINDRICAL RESISTORS – can be used in the "DC" parts of the bias circuitry.

ENEL434 Electronics 2

KWE-1

Page 26

Microstripline

- Microstripline haves as a transmission line whose behaviour is more predictable than ordinary pcb interconnects.
- Comprises two conductors separated by a dielectric.
- The bottom conductor (ground plane) and covers one side and is grounded.
- The top conductor is floating and forms the interconnects.
- The transmission line parameters (Z_o and ν_p) of microstripline are essentially dependent on W, h and ϵ_r and to a lesser extent t.
- Electrical behaviour is easily be accounted for in Microwave Office.

- 1. Wire length (2 π RN) is much less than λ .
- 2. Inter-turn capacitance is small. Which means increasing d.

The above formulae is only approximate. You would not bet your life on it. Only for use below 200 MHz.

KWE-1

Page 29

BNC Connectors

ENEL434 Electronics 2

KWE-1

Page 30

Microwave Office

- Start -> All Programs -> AWR 2006 -> AWR Design Environment
- See WebCT for MWO file examples to get you started. Read "Design Notes" in these files.
- There are two types of simulations that are relevant to ENEL434:
 - Small-signal **AC** analysis (define ports and frequency)
 - DC analysis to check transistor bias
- The simulation will only be as good as the comprehensiveness and accuracy of models used to represent circuit and physical artifacts.
- In RF design simulation is a serious matter and is used to establish whether the circuit will work properly or work diabolically wrong.

KWE-1

Page 35

Microwave Office

Remember

- When using S-parameter data, the actual bias needs to be match the bias conditions under which the S-parameter data file was obtained for the simulation to be valid.
- The MWO file "ENEL434 2008 Transistor Simulation.emp" contains:
 - LS model of BFR92A
 - Substrate model
 - Schematics for transistor S-parameter extraction
 - Footprints of BFR92A and 0805 packages
- To include microstriplines for transmission lines, stubs and interconnects.

KWE-1

Page 37

Impedance Transformer Design

- Assume all transmission lines have characteristic impedance Z_o
- Fact 1: Admittances y_S and y_N lie on the same VSWR circle.
- Fact 2: $Re(y_N) = 1$ and $Im(y_N)$ is due to the stub.
- The context of the "Load end" and "Generator end" is for the duration of Smith chart calculations and using the following design sequence.

ENEL434 Electronics 2

KWE-1

Page 38

Impedance Transformer Design

• If we want conjugate matching at the input:

$$\Gamma_{\rm S} = \Gamma_{\rm 1}^*$$

and N1 is a matching network.

• Otherwise Γ_S could be arbitrary ($\Gamma_S \neq \Gamma_1^*$) to obtain a different outcome. In this case N1 would NOT be a matching network.

ENEL434 Electronics 2 KWE-1 Page 48

Impedance Transformer Design

- In this example, we have designed N1 to transform Γ = 0 to Γ_S = Γ_1^* . This is a special case of impedance transformation.
- Matching would only be achieved if $\Gamma_1 = \Gamma_S^*$.
- IF after N1 is implemented, the value of the transistor load (Γ_L) is changed, then the input will be mismatched as Γ_1 is dependent on Γ_L .

KWE-1

Page 49

Impedance Transformer Design

- We could have designed N1 so that it transforms Γ_1 to Γ_{in} = 0.
- · This approach would be the classic stub-matching method.
- Using this approach, N1 is constrained to be only a matching circuit and we would find that $\Gamma_S = \Gamma_1^*$.
- The solution for N1 would have been exactly the same as above.

ENEL434 Electronics 2

KWE-1

Page 50

Impedance Transformer Design

Remember:

- Only perform matching if you have decided that is what you want.
- Perform impedance transformation (Γ = 0 to desired value of Γ = $\Gamma_{\rm S}$) for all other cases.
- Never perform matching when you have chosen Γ_S to be something other than Γ_1^* .
- Same rules apply at output.
- Γ₁ is function of Γ_L and Γ₂ is function of Γ_S.
- Transistor S-parameters are frequency and BIAS dependent.
- Simultaneous conjugate matching can only be obtained for an unconditionally stable active 2-port (transistor and emitter circuit).
- Simulate N1 and N2 separately to see if they do as you expect.

KWE-1

Page 51

Remember

- Simulate final circuit layout
- In the CorelDraw layout file, copper tracks must be black (on white background)
- RF circuits cannot be bread-boarded
- RF circuits cannot be tested with conventional laboratory equipment
- RF circuit testing can only be done under supervision using specialised equipment
- It is not possible to modify RF circuitry using jumpers or cutting tracks.
 Errors can only be corrected by redesign and manufacture
- Adhere to file naming conventions stated in assignment guidelines

ENEL434 Electronics 2

KWE-1

Page 52

References

D. M. Pozar, Microwave Engineering, 3rd Ed., John Wiley, 2005. [Basic coverage of microwave amplifiers.]

G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice-Hall, 1997.

[In depth coverage of microwave amplifiers and technology.]