Задача 34.

Рабочее вещество тепловой машины совершает цикл Карно между изотермами T и T_1 ($T_1 > T$) (рис. 2). Холодильником является резервуар, температура которого постоянна и равна $T_2 = 200~{\rm K}~(T_2 < T)$. Теплообмен между рабочим веществом и холодильником осуществляется посредством теплопроводности. Количество теплоты, отдаваемое в единицу времени холодильнику, $q = \alpha(T-T_2)$, где $\alpha = 1 {\rm kBt/K}$. Теплообмен рабочего вещества с нагревателем происходит непосредственно при $T_1 = 800$

Рис.2

К. Полагая, что продолжительность изотермических процессов одинакова, а адиабатических - весьма мала, найдите температуру "холодной" изотермы T, при которой мощность тепловой машины наибольшая. Определите наибольшую мощность тепловой машины.

Решение:

За время т холодильник получает количество теплоты

$$Q_{x} = a(T - T_{2})\tau \tag{1}$$

К.п.д. цикла Карно

$$\eta = \frac{Q_H - Q_x}{Q_H} = \frac{T_1 - T}{T_1} \tag{2}$$

Полезная работа тепловой машины за цикл равна

$$A = \mathcal{Q}_H - \mathcal{Q}_{\mathsf{x}} = \mathcal{Q}_H \left(1 - \frac{T}{T_1} \right) \tag{3}$$

Преобразуем (3), выразив $Q_{\rm H}$ через $Q_{\rm x}$, используя (2):

$$A = Q_{x} \left(1 - \frac{T}{T_{1}} \right) \frac{T_{1}}{T} \tag{4}$$

Подставив в (4) $Q_{\rm x}$ из (1), получаем

$$A = \alpha (T - T_2) \tau \left(\frac{T_1}{T} - 1\right) \tag{5}$$

Полное время цикла, за которое совершается эта работа, равно 2 $^{\mathfrak{t}}$, следовательно, мощность равна

$$N = \frac{A}{2\tau} = \frac{a\tau(T - T_2)\left(\frac{T_1}{T} - 1\right)}{2\tau} = \frac{a}{2}\left(T_1 - \frac{T_2T_1}{T} - T + T_2\right)$$
(6)

$$N \equiv N_{\text{max}}$$
 при $\frac{dN}{dt} = 0$ и $\frac{d^2N}{dt^2} < 0$

$$\frac{dN}{dt} = \frac{T_2 T_1}{T^2} - 1 = 0 \tag{7}$$

Из (7) видно, что
$$N=N_{\rm max}$$
 при $T=\sqrt{T_2T_1}=400$ K.

$$N_{\max} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1T_2} + T_2 \right) = 100$$
 кВт. *Ответ:* наибольшая мощность машины равна 100 кВт.