Dualidades Tiempo - Frecuencia

- >> Series/Transformada de Fourier
 - ▶ Series → señales periódicas

- ▶ Transformada → señales aperiódicas
- >> Señales en tiempo continuo tienen espectros aperiódicos
 - La falta de periodicidad se debe a que la función exponencial $e^{(j 2 \pi F t)}$ es una función de la variable continua t, y por lo tanto no periódica en F.
 - ▶ El rango de frecuencias se extiende desde F=0 hasta $F=\pm\infty$.
- >> Señales en tiempo discreto tiene espectros periódicos
 - Las series y transformadas de Fourier de señales en tiempo discreto son periódicas de periodo $w=2\pi$.
 - ▶ El rango de frecuencias es finito y se extiende desde $w = \pi$ hasta $w = \pi$, donde $w = \pi$ corresponde a la mayor oscilación posible.
- >> Señales *periódicas* tienen espectros discretos
 - Los coeficientes de la serie de Fourier representan las "líneas" del espectro discreto. El **espaciado** entre líneas ΔF del espectro es igual al inverso del periodo Tp en el tiempo. (alternativamamente, Δf en el tiempo es el inverso del periodo N en el espectro).
 - Señales periódicas en tiempo continuo $\Delta F = 1/Tp$
 - Señales periódicas en tiempo discreto $\Delta f = 1/N$
- >> Señales aperiódicas (de energía finita) tienen espectros continuos
 - ▶ Se deriva del hecho de que X(F) y X(w) son funciones de $e^{(j 2 \pi F t)}$ y $e^{(j w n)}$, las cuales son funciones continuas de las variables F y w.

Resumen de Fórmulas de Análisis y Diseño

		Señales en tiempo continuo		Señales en tiempo discreto	
		Dominio del tiempo	Dominio de la frecuencia	Dominio del tiempo	Dominio de la frecuencia
Señales periódicas	Series de Fourier	$ \begin{array}{c c} & x_a(t) \\ & T_p \\ & T_p \end{array} $	c_k $0 \rightarrow F$	$ \begin{array}{c c} x(n) \\ \hline -N & 0 & N \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$F_0 = \frac{1}{T_p}$ $= x_a(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$	$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j(2\pi/N)kn} $	$x(n) = \sum_{k=0}^{N-1} c_k e^{j(2\pi l/N)kn}$
		Continuas y periódicas	Discretas y aperiódicas	Discretas y periódicas	Discretas y periódicas
Señales aperiódicas	Transformadas de Fourier	$X_a(t)$ $X_a(F) = \int_{-\infty}^{\infty} x_a(t)e^{-j2\pi Ft} dt$	$ \begin{array}{c} X_a(F) \\ \downarrow \\ 0 \end{array} $	$X(n)$ $-3 - 2 - 1 \ 0 \ 1 \ 2$ $X(\omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n}$	$X(\omega)$ $-2\pi - \pi = 0 \qquad \pi = 2\pi$
		<	$x_a(t) = \int_{-\infty}^{\infty} X_a(F) e^{j2\pi Ft} dF$		$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$
		Continuas y aperiódicas	Continuas y aperiódicas	Discretas y aperiódicas	Continuas y periódicas

Propiedades de la Transformada de Fourier de Señales en Tiempo Discreto

Definiciones

>> Por definición las transformadas directa e inversa de Fourier están dadas por,

$$X(w) = F\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-jwn} \qquad x(n) = F^{-1}\{X(w)\} = \frac{1}{2\pi} \int_{2\pi} X(w)e^{jwn} dw$$

■ Propiedades de simetría

 \blacktriangleright En términos generales tanto la señal x(n) como su transformada X(w) pueden ser funciones complejas,

$$x(n) = x_R(n) + j x_I(n) \Leftrightarrow X(w) = X_R(w) + j X_I(w)$$

Reemplazando en la definición de las transformadas directa e inversa, y utilizando la identidad e-jw=cos w - jsen w,

> Transformada directa

▶ Transformada inversa

$$X_{R}(w) = \sum_{n=-\infty}^{\infty} \left[x_{R}(n) \cos wn + x_{I}(n) \sin wn \right] \qquad x_{R}(n) = \frac{1}{2\pi} \int_{2\pi} \left[X_{R}(w) \cos wn - X_{I}(w) \sin wn \right] dw$$

$$X_{I}(w) = -\sum_{n=-\infty}^{\infty} \left[x_{R}(n) \sin wn - x_{I}(n) \cos wn \right] \qquad x_{I}(n) = \frac{1}{2\pi} \int_{2\pi} \left[X_{R}(w) \sin wn + X_{I}(w) \cos wn \right] dw$$

Propiedades de simetría de la Transformada de Fourier

- Propiedades de Simetría de Señales Reales: $x(n)=x_R(n)$
 - **▶** Transformada directa

$$X_{R}(w) = \sum_{n=-\infty}^{\infty} [x(n)\cos wn]$$
$$X_{I}(w) = -\sum_{n=-\infty}^{\infty} [x(n)\sin wn]$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} \left[X_R(w) \cos wn - X_I(w) \sin wn \right] dw$$

- **■** Propiedades de Simetría de Señales Reales y Pares : x(-n)=x(n)
 - \rightarrow $x(n) \cos wn \text{ es par y } x(n) \text{ sen } wn \text{ es impar}$
 - **▶** Transformada directa

▶ Transformada inversa

$$X_R(w) = x(0) + 2\sum_{n=1}^{\infty} [x(n)\cos wn] \rightarrow s. \text{ par}$$
$$X_I(w) = 0$$

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} [X_{R}(w) \cos wn] dw$$

- **Propiedades de Simetría de** Señales Reales e Impares : x(-n)=-x(n)
 - \rightarrow $x(n) \cos wn \text{ es impar y } x(n) \sin wn \text{ es par }$
 - **▶** Transformada directa

▶ Transformada inversa

$$X_R(w) = 0$$

 $X_I(w) = -2\sum_{n=1}^{\infty} [x(n) \operatorname{sen} wn] \to \operatorname{s.impar}$

$$x(n) = -\frac{1}{\pi} \int_{0}^{\pi} [X_{I}(n) \operatorname{sen} wn] dw$$

Propiedades de simetría de la Transformada de Fourier

- Propiedades de Simetría de Señales Imaginarias puras: $x(n)=j x_I(n)$
 - **▶** Transformada directa

$$X_R(w) = \sum_{n=-\infty}^{\infty} [x_I(n) \operatorname{sen} wn]$$

$$X_{I}(w) = \sum_{n=-\infty}^{\infty} [x_{I}(n)\cos wn]$$

▶ Transformada inversa

$$x(n) = \frac{1}{2\pi} \int_{2\pi} [X_R(w) \operatorname{sen} wn + X_I(w) \operatorname{cos} wn] dw$$

- Propiedades de Simetría de Señales Imaginarias pares: $x_I(-n) = x_I(n)$
 - \rightarrow x(n) cos wn es par y x(n) sen wn es impar
 - ▶ Transformada directa

$$X_R(w) = 0$$

$$X_I(w) = x_I(0) + 2\sum_{n=1}^{\infty} [x_I(n)\cos wn] \rightarrow \text{s. par}$$

▶ Transformada inversa

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} \left[X_{I}(w) \cos wn \right] dw$$

- Propiedades de Simetría de Señales Imaginarias Impares: $x_I(-n) = -x_I(n)$
 - \rightarrow x(n) cos wn es impar y x(n) sen wn es par
 - **▶** Transformada directa

$$X_R(w) = 2\sum_{n=1}^{\infty} [x_I(n) \operatorname{sen} wn] \to \text{s. impar}$$
$$X_I(w) = 0$$

▶ Transformada inversa

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} X_{R}(w) \operatorname{sen} wn \ dw$$

Propiedades de Simetría de la Transformada de Fourier en T.D.

Secuencia	DTFT
x(n)	$X(\omega)$
$x^*(n)$	$X^*(-\omega)$
$x^*(-n)$	$X^*(\omega)$
$x_R(n)$	$X_e(\omega) = \frac{1}{2}[X(\omega) + X^*(-\omega)]$
$jx_I(n)$	$X_o(\omega) = \frac{1}{2}[X(\omega) - X^*(-\omega)]$
$x_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$	$X_R(\omega)$
$x_o(n) = \frac{1}{2}[x(n) - x^*(-n)]$	$jX_I(\omega)$
	Señales reales
	$X(\omega) = X^*(-\omega)$
Cualquier señal real	$X_R(\omega) = X_R(-\omega)$
x(n)	$X_I(\omega) = -X_I(-\omega)$
	$ X(\omega) = X(-\omega) $
	$\angle X(\omega) = -\angle X(-\omega)$
$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$	$X_R(\omega)$
(real y par)	(real y par)
$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$	$jX_I(\omega)$
(real e impar)	(imaginaria e impar)

Resumen de las Propiedades de Simetría de la T.F.

Linealidad

$$x_1(n) \stackrel{F}{\longleftrightarrow} X_1(w)$$
 $x_2(n) \stackrel{F}{\longleftrightarrow} X_2(w)$
 $a_1 x_1(n) + a_2 x_2(n) \stackrel{F}{\longleftrightarrow} a_1 X_1(w) + a_2 X_2(w)$

- **Ejemplo.** Determinar la transformada de Fourier de $x(n) = a^{|n|}$ -1 < a < 1
- Solución

$$x(n) = x_{1}(n) + x_{2}(n)$$

$$x_{1}(n) = \begin{cases} a^{n} & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$\longleftrightarrow X_{1}(w) = \sum_{n=0}^{\infty} a^{n} e^{-jwn} = \frac{1}{1 - a e^{-jw}}$$

$$x_{2}(n) = \begin{cases} a^{-n} & n < 0 \\ 0 & n \ge 0 \end{cases}$$

$$\longleftrightarrow X_{2}(w) = \sum_{n=-\infty}^{-1} a^{-n} e^{-jwn} = \frac{a e^{jw}}{1 - a e^{jw}}$$

$$X_{2}(w) = \sum_{n=-\infty}^{-1} a^{-n} e^{-jwn} = \frac{a e^{jw}}{1 - a e^{jw}}$$

$$a = 0.8$$

Desplazamiento Temporal

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$
$$x(n-k) \stackrel{F}{\longleftrightarrow} e^{-jwk} X(w)$$

- >> El contenido frecuencial de una señal sólo depende de su forma.
- La magnitud del espectro no cambia, sólo se afecta su fase en una cantidad igual a -wk.

■ Reflexión Temporal

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$
$$x(-n) \stackrel{F}{\longleftrightarrow} X(-w)$$

La magnitud del espectro no cambia y su fase sólo experimenta un cambio de signo.

■ Teorema de Convolución

$$x_1(n) \stackrel{F}{\longleftrightarrow} X_1(w)$$
 $x_2(n) \stackrel{F}{\longleftrightarrow} X_2(w)$

$$x(n) = x_1(n) * x_2(n) \longleftrightarrow X(w) = X_1(w)X_2(w)$$

La convolución en el dominio temporal implica una multiplicación de los espectros frecuenciales.

Ejercicio. Determinar la convolución entre las secuencias $x_1(n)=x_2(n)=\{1, \underline{1}, 1\}$ **Solución.** Las señales son reales y pares.

$$X_{1}(w) = X_{2}(w) = 1 + 2 \cos w$$

$$X(w) = X_{1}(w) X_{2}(w) = (1 + 2 \cos w)^{2}$$

$$= 3 + 4 \cos w + 2 \cos 2w = 3 + 2(e^{jw} + e^{-jw}) + (e^{j2w} + e^{-j2w})$$

$$x(n) = x_{1}(n) * x_{2}(n) = \{1, 2, \underline{3}, 2, 1\}$$

>> Teorema de la correlación.

$$x_{1}(n) \stackrel{F}{\longleftrightarrow} X_{1}(w) \qquad x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{2}(w)$$

$$r_{x_{1}x_{2}}(n) = \sum_{k=-\infty}^{\infty} x_{1}(k) x_{2}(k-n) \stackrel{F}{\longleftrightarrow} S_{x_{1}x_{2}}(w) = X_{1}(w) X_{2}(-w)$$

- La función $S_{x1x2}(w)$ se denomina *cross-densidad espectral de energía* de las señales $x_1(n)$ y $x_2(n)$.
- **▶** Teorema de Wiener-Khintchine

Sea
$$x(n)$$
 una señal real, entonces $r_{xx}(l) \xleftarrow{F} S_{xx}(w)$

- La densidad espectral de energía de una señal de energía es la transformada de Fourier de su función de autocorrelación.
- La función de autocorrelación de una señal y su densidad espectral de energía contienen la misma información sobre la señal.
- **Ejemplo**. Determinar la densidad espectral de energía de la señal $x(n) = \mathbf{a}^n u(n)$

$$-1 < a < 1$$

Solución.
$$r_{xx}(l) = \frac{1}{1 - a^2} a^{|l|} - \infty < l < \infty$$
$$S_{xx}(w) = F\{r_{xx}(l)\} = \frac{1}{1 - a^2} F\{a^{|l|}\} = \frac{1}{1 - 2a \cos w + a^2}$$

>> Desplazamiento Frecuencial

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$e^{jw_0 n} x(n) \stackrel{F}{\longleftrightarrow} X(w - w_0)$$

La multiplicación de una secuencia x(n) por $e^{j wo n}$ equivale a un desplazamiento w_0 del espectro X(w).

>> Teorema de la Modulación

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$x(n) \cos(w_0 n) \stackrel{F}{\longleftrightarrow} \frac{1}{2} [X(w + w_0) + X(w - w_0)]$$

Esta propiedad puede verse como un *desplazamiento* [cos $w_0 n = (e^{jwo n} + e^{-jwo n})/2$], pero en la práctica se prefiere la modulación ya que x(n) cos $w_0 n$ es real.

>> Teorema de Parseval

$$x_{1}(n) \stackrel{F}{\longleftrightarrow} X_{1}(w) \qquad x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{2}(w)$$

$$\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}^{*}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{1}(w) X_{2}^{*}(w) dw$$

▶ En el caso especial de $x_1(n) = x_2(n) = x(n)$ la relación de Parseval se reduce a,

$$E_{x} = r_{xx}(0) = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(w)|^{2} dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}(w) dw$$

Multiplicación de dos Secuencias (Teorema del Enventanado)

$$x_{1}(n) \stackrel{F}{\longleftrightarrow} X_{1}(w) \qquad x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{2}(w)$$
$$x_{3}(n) = x_{1}(n)x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{3}(w) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{1}(\lambda) X_{2}(w - \lambda) d\lambda$$

La multiplicación de dos señales en el dominio del tiempo equivale a la convolución de sus transformadas de Fourier en el dominio frecuencial.

>> Diferenciación en el Dominio Frecuencial

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$n \ x(n) \stackrel{F}{\longleftrightarrow} j \frac{d \ X(w)}{dw}$$

▶ Se obtiene al derivar la definción de la transformada de Fourier;

$$\frac{dX(w)}{dw} = \frac{d}{dw} \left[\sum_{n=-\infty}^{\infty} x(n)e^{-jwn} \right]$$

$$\frac{dX(w)}{dw} = \sum_{n=-\infty}^{\infty} x(n)\frac{d}{dw}e^{-jwn} = -j\sum_{n=-\infty}^{\infty} n x(n)e^{-jwn}$$

$$j \frac{dX(w)}{dw} = F\{n x(n)\}$$

Propiedad	Dominio del tiempo	Dominio de la frecuencia
Notación	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_2(\omega)$
Linealidad	$a_1 x_1(n) + a_2 x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Desplazamiento temporal	x(n-k)	$e^{-j\omega k}X(\omega)$
Reflexión temporal	x(-n)	$X(-\omega)$
Convolución	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlación	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$ = $X_1(\omega)X_2^*(\omega)$
		$[\mathrm{si}\ x_2(n)\ \mathrm{es}\ \mathrm{real}]$
Teorema de Wiener-Khintchine	$r_{xx}(l)$	$S_{xx}(\omega)$
Desplazamiento frecuencial	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$
Modulación	$x(n)\cos\omega_0 n$	$\frac{1}{2}X(\omega+\omega_0)+\frac{1}{2}X(\omega-\omega_0)$
Multiplicación	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Diferenciación en el dominio de la frecuencia	nx(n)	$jrac{dX(\omega)}{d\omega}$
Conjugación	$x^*(n)$	$X^*(-\omega)$
Teorema de Parseval	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi}$	$X_1(\omega)X_2^*(\omega)d\omega$

Pares de Transformadas de Fourier en T.D.

Pares de Transformadas de Fourier en T.D.

Señal <i>x(n)</i>	Espectro <i>X(ω)</i>
$x(n) = \begin{cases} \frac{\omega_c}{\pi} & n = 0 \\ \frac{\sin \omega_c n}{\pi n} & n \neq 0 \end{cases}$	$X(\omega) = \begin{cases} 1, & \omega < \omega_c \\ 0, & \omega \le \omega \end{cases}$ $X(\omega) = \begin{cases} 1, & \omega < \omega_c \\ 0, & \omega \le \omega \end{cases}$
$x(n) = \begin{cases} a^n, & n \ge 0 \\ 0, & n < 0 \end{cases}$	$X(\boldsymbol{\omega}) = \frac{1}{1 - a e^{-jw}}$