

TouchGFX

Создание проекта в TouchGFX Designer

Программы для лабораторной работы

STM32 CubeMX 6.2.1

- H7 Cube Firmware package 1.9.0
- X-CUBE-TOUCHGFX 4.17
- STM32 CubeIDE 1.6.1
- STM32 Cube Programmer 2.6.0

STM32H7B3I-DK Discovery kit

- STM32H7B
 - 1.4 Мбайт RAM
 - 2 Мбайт flash
 - **DPI** интерфейс (LTDC)
- Дисплей
 - DPI интерфейс
 - Сенсорная панель
 - RGB888 (24-бит) и RGB565 (16-бит)
 - 480х272 WQVGA разрешение
- 16 Мбайт SDRAM

Этап 1: Макет UI

Этап 1 - цели

- Реализация базового GUI
- Виджеты
 - Изображение
 - Анимированное изображение

Начало работы в подготовленном проекте

- 1. Запустите TouchGFX 4.17
- 2. Создайте новый проект

Начало работы в подготовленном проекте

- 1. Выберите отладочную плату STM32H7B3I-DK
- 2. Выберите название проекта и расположение проекта
- 3. Нажмите кнопку "Create"

- 1. Выберите виджет "Image"
- 2. Справа, нажмите на появившуюся строку "Image"
- 3. Нажмите "+" для добавления изображений

В диалоговом окне выбора файлов:

- 1 Выберите папку с изображениями ...\Assets нажмите "Open"
- Выберите все файлы (Ctrl+A или "Organize->Select all"), далее нажмите "Open"

Добавление элементов GUI: Верхняя панель

- 1. Нажмите на **Image**
- 2. На правой панели нажмите на **IMAGE**
- 3. Выберите **top_bar.png** из списка

Добавление элементов GUI: Верхняя панель

- 1. Переименуйте изображение в *top_bar*
- 2. На правой панели можно изменить положение виджета [0, 0]

Добавление элементов GUI: анимированное изображение

- 1. Выберите виджет Animated Image
- 2. Переименуйте виджет на *animatedLogo*

Добавление элементов GUI: анимированное изображение

- 1. Установите на First Image ani_01.png
- 2. Установите на Last Image ani_11.png

Добавление элементов GUI: анимированное изображение

- 1. Установите Location на X = 20 и Y = 140
- 2. Активируйте loop animation
- 3. Установите Update interval на 100ms

Сборка и проверка

- 1. Нажмите кнопку Generate Code button
- 2. Нажмите кнопку Run Simulator
- 3. Подключите отладочную плату и загрузите ПО, нажав на кнопку Run Target

Этап 2: Переключения

Этап 2 - цели

- Использование общих виджетов
 - Flex buttons
- Добавление взаимодействий
- Использование нескольких экранов

Добавление элементов GUI: flex button

Добавление элементов GUI: flex button

Добавление элементов GUI: flex button

- 1. Нажмите "+" и выберите **Text**
- 2. Установите **POSITION** X = 0, Y = 9
- 3. Измените **Text** на **Next**
- 4. Установите цвета:

Text color Released to white Text Color Pressed to black

Добавление экрана

1. Создайте новый экран, нажав на "+"

Добавление элементов GUI: копирование виджетов

- 1. Нажмите на buttonTransition (Screen1) потом удерживая Ctrl выделите виджеты top_bar и background
- 2. В меню выберите Edit->Copy или <Ctrl+C> для копии выделенных элементов
- 3. Нажмите на Screen2 и выберите в меню Edit->Paste или <Ctrl+V>

Переименование кнопки на Screen2

Создание перехода: c Screen1 на Screen2

- 1. Выберите Screen1
- 2. Нажмите на Interactions
- 3. Нажмите на "+" для добавления нового взаимодействия

Настройка перехода: c Screen1 на Screen2

- 1. Переключите **Trigger** в **Button is clicked**
- 2. Переключите Choose clicked source в buttonTransition
- 3. Переключите Action в Change screen
- 4. Переключите Choose screen в Screen2
- 5. Переключите Transition в Slide
- 6. Переключите Transition Direction в East
- 7. Переключите Interaction Name в GoToScreen2

Hастройка перехода: c Screen2 на Screen1

- 1. На экране screen2 нажмите "+"
- 2. Переключите **Trigger** в **Button is clicked**
- 3. Переключите Choose clicked source в buttonTransition
- 4. Переключите Action в Change screen. Переключите Choose screen в Screen1
- 5. Переключите Transition в Slide
- 6. Переключите **Transition Direction** в **West**
- 7. Переключите Interaction Name в GoToScreen1

Run and test

- 1. Нажмите кнопку Generate Code button
- 2. Нажмите кнопку Run Simulator
- 3. Подключите отладочную плату и загрузите ПО, нажав на кнопку Run Target

Протестируйте переключение с одного экрана на другой через нажатие кнопки

```
File download complete
Time elapsed during download operation: 00:00:10.431

Hard reset is performed
Done
Done
```


Этап 3: взаимодействие с событиями системы: датчик температуры

Этап 3 - цели

- Использование виджета Progress Image
- Использование CubeMX для конфигурации АЦП и получения внутренней температуры
- Работа с архитектурой model view presenter (MVP) и взаимодействие GUI с системой

Добавление элементов GUI: Image progress

- 1. Выберите Screen1 и нажмите на виджет Image Progress
- 2. Измените **NAME** на *temperatureBar*
- 3. Измените **LOCATION** на x=100 и Y = 70

Добавление элементов GUI: Image progress

Добавление элементов GUI: Image progress

Добавление надписи под шкалой прогресса

Добавление надписи под шкалой прогресса

Сгенерированный код

Код сгенерированный TouchGFX

GUI binary inputs (images, texts, fonts)

Working directory for simulator and target compilation

All the cpp files generated from the assets directory + GUI files that should not be modified (in gui_generated)

GUI files that can be modified to implement interactions and customize

Simulator compilation scripts

Display HW initialisation (LTDC, DMA2D, ...)

target

Открытие STM32CubeIDE

- Перейдите в [папка проекта]\STM32CubeIDE
- Двойным нажатием на .project, включите STM32CubeIDE

Запустите проект вCubeIDE

- 1 Выберите workspace для CubeIDE
- 2 Закройте информационное окно

Внутри CubeIDE

Build Button

Настройте внешний загрузчик Н7В

> 📭 STM32H7B3I_DISCO (in STM32CubeIDE)

- 1. Нажмите на проект
- 2. Нажмите Run, Debug As
- Выберите STM32 Cortex-M
 C/C++ Application
- 4. Выберите Debugger
- Нажмите External loader, далее Scan и выберите отладку_STM32H7B3I-DISCO.stldr
- 6. Нажмите **Оk**

Отладка - запуск

• Запустите приложение, нажав на зеленый треугольник

• Проверьте результат на отладке:

Инициализация АЦП в CubeMX

Откройте папку [название проекта] \STM32H7B3I-DK.ioc

Name ^	Date modified	Туре	Size
Drivers	02/26/2020 1:27 PM	File folder	
- EWARM	02/26/2020 1:27 PM	File folder	
☐ gcc	02/26/2020 1:27 PM	File folder	
MDK-ARM	02/26/2020 1:27 PM	File folder	
Middlewares	02/26/2020 1:27 PM	File folder	
STM32CubelDE	03/05/2020 5:30 PM	File folder	
TouchGFX	03/05/2020 3:26 PM	File folder	
.extSettings	01/06/2020 3:16 PM	EXTSETTINGS File	1 KE
myproject	03/05/2020 2:04 PM	MYDROJECT File	16 KB
✓ MX STM32H7B3I-DK.ioc	03/05/2020 2:37 PM	STM32CubeMX	18 KB

Настройка ADC2 в CubeMX

- 1. Откройте секцию Analog
- 2. Выберите **ADC2**
- 3. Разрешите **Temperature Sensor Channel**
- 4. Установите предделитель Asynchronous clock divided by 8
- 5. Установите разрешение в 16-бит
- 6. В секции **Rank** установите **Sampling time** в 32.5 cycles

Сгенерируйте код в CubeMX

• Нажмите кнопку Generate Code

• Закройте всплывшее окно в CubeIDE

• Закройте окно в TouchGFX Designer через нажатие на **Yes**

Model::tick() is called on each frame rendering (TGFX framework)

UML

Шаг 1: получение внутренней температуры

```
Core\Src\main.cpp (on disk)
Application\User\main.cpp (in CubeIDE)
```

• Новая функция

TEMP SENSOR GetValue(): start the ADC conversion and retrieve the current junction

temperature value

```
uint32_t TEMP_SENSOR_GetValue(void)
            TEMP110_CAL_VALUE ((uint16_t*)((uint32_t)0x08FFF818))
   #define
             TEMP30_CAL_VALUE ((uint16_t*)((uint32_t)0x08FFF814))
   #define
   #define TEMP110
                               110.0f
   #define TEMP30
                               30.0f
   if (HAL_ADC_Start(&hadc2) == HAL_OK)
     if (HAL_ADC_PollForConversion(&hadc2, 1000) == HAL OK)
         return (int32_t)(((TEMP110 - TEMP30)*
             (HAL_ADC_GetValue(&hadc2) - (*TEMP30_CAL_VALUE)))/
             ((*TEMP110_CAL_VALUE) - (*TEMP30_CAL_VALUE))
                       + TEMP30);
  return 0xFFFFFFF:
```


Шаг 2: Обновление модели

Шаг 2: Обновление модели

TouchGFX\gui\src\model\Model.cpp (on disk)
Application\User\gui\Model.cpp (in CubeIDE)

• Добавление новых методов

- Model::getTempValue()
 Retrieve the temperature from the main application through the TEMP SENSOR GetValue() function
- Model::setScanJunctionTemp()
 Enable scan of the temperature in the tick loop of the model

• Обновление метода

- Model::tick()
 - Get current temperature from application
 - Notify the presenter of a new temperature value

```
int Model::getTempValue()
#ifndef SIMULATOR
return TEMP_SENSOR_GetValue();
#else
 // Implementation for simulator
  return 25;
#endif /*SIMULATOR*/
extern "C" {
extern uint32 t TEMP SENSOR GetValue(void);
void Model::setScanJunctionTemp(bool scanEnabled)
    scanJunctionTemp = scanEnabled;
```

```
void Model::tick()
{
    tickCounter++;
    if (((tickCounter % 20) == 0) &&(scanJunctionTemp))
    {
       if (modelListener!= 0)
       {
            modelListener->newJunctionTempValue(getTempValue());
       }
    }
}
```


...\Model.hpp (in CubeIDE)

• Обновление класса

Шаг 2: Обновление модели

```
class Model
public:
  Model();
  void bind(ModelListener* listener)
    modelListener = listener;
  void tick();
  void setScanJunctionTemp(bool scanEnabled);
  int getTempValue();
protected:
  ModelListener* modelListener;
  bool scanJunctionTemp = false;
  int tickCounter;
#endif // MODEL HPP
```


Шаг 2: Обновление модели

...\ModelListener.hpp (in CubeIDE)

• Обновление класса

```
class ModelListener
public:
  ModelListener(): model(0) {}
  virtual ~ModelListener() {}
  void bind(Model* m)
    model = m;
 virtual void newJunctionTempValue(int value){};
protected:
  Model* model;
#endif // MODELLISTENER_HPP
```


Шаг 2: Обновление представителя

Шаг 2: Обновление представителя

TouchGFX\gui\src\screen1_screen\Screen1Presenter.cpp (on disk)
Application\User\gui\Screen1Presenter.cpp (in CubeIDE)

- Добавление нового метода
 - Screen1Presenter::newJunctionTempValue():calls the setJunctionTempValue() method of the Screen1View instance

```
void Screen1Presenter::newJunctionTempValue(int value)
{
    view.setJunctionTempValue(value);
}
```

- Обновление метода
 - Screen1Presenter::activate():enable the scan of the temperature in the Model when the presenter is activated

```
void Screen1Presenter::activate()
{
    model->setScanJunctionTemp(true);
}
```


Шаг 2: Обновление представителя

...\Screen1Presenter.hpp (in CubeIDE)

• Обновление класса

```
class Screen1Presenter: public touchgfx::Presenter,
public ModelListener
public:
  Screen1Presenter(Screen1View& v);
 virtual void activate();
 virtual void deactivate();
 virtual ~Screen1Presenter() {};
 virtual void newJunctionTempValue(int value);
private:
  Screen1Presenter();
  Screen1View& view;
};
#endif // SCREEN1PRESENTER HPP
```


Обновление представления

Обновление представления

TouchGFX\gui\src\screen1_screen\Screen1View.cpp (on disk)
Application\User\gui\Screen1View.cpp (in CubeIDE)

- Добавление нового метода
 - Screen1View::setJunctionTempValue():
 - Check if temperature as changed
 - Update the temperatureBar

```
void Screen1View::setJunctionTempValue(int value)
{
    if (lastTempValue!= value)
    {
        lastTempValue = value;
        temperature Bar. setValue(value);
        temperatureBar.invalidate();
    }
}
```


Обновление представления

...\Screen1View.hpp (in CubeIDE)

• Обновление класса

```
class Screen1View: public Screen1ViewBase
public:
  Screen1View();
  virtual ~Screen1View() {}
  virtual void setupScreen();
  virtual void tearDownScreen();
  void setJunctionTempValue(int value);
protected:
  int lastTempValue;
#endif // SCREEN1VIEW_HPP
```


Спасибо!

Отладочные платы

NUCLEO-H7A3ZI-Q

https://www.compel.ru/infosheet/ST/NUCLEO-H7A3ZI-Q

STM32H735G-DK

https://www.compel.ru/infosheet/ST/STM32H735G-DK

STM32H750B-DK

https://www.compel.ru/infosheet/ST/STM32H750B-DK

STM32H747I-DISCO

https://www.compel.ru/infosheet/ST/STM32H747I-DISCO

Вопросы по техническим характеристикам и особенностям работы компонентов направляйте своему менеджеру Компэл или по адресу msk@compel.ru

Заказы на поставку компонентов от 1шт. оформляются здесь www.electronshik.ru

Просчитать оптовую поставку или заказать образцы поможет ваш менеджер Компэл или специалист по адресу

msk@compel.ru

