Introduction

Week 1

Plan for today

- Introductions
- Course information
- Brief introduction to course topics

Course information

Email: <u>msullivan@lst.uni-saarland.de</u>

- Main communication platforms: Microsoft Teams (chat, questions, etc.) and course website (schedule, assignments, etc.)
 - Please join the Team [155270] Semantic Theory SoSe 25 after this session
 - Course website: https://mjs227.github.io/courses/semantic-theory-25

Course information

- There will be 10 exercises throughout the semester
 - o To be admitted to the exam, you need to hand in 7 of them

- Your grade for the final exam will be your grade for the course
 - Final exam date: 15.07.2025
 - Registration deadline: 08.07.2025

Schedule

Week	Reading	Tuesday	Wednesday	
Week 1: April 15-16	None	Introduction	No lecture	
Week 2: April 22-23	 Logic in Action, Ch. 4 (Sec. 4.5-4.6) Elements of Formal Semantics, Ch. 2 	Predicate Logic	Overflow (if necessary)	
Week 3: April 29-30	Elements of Formal Semantics, Ch. 3 (Parts 1-2)	Type Theory	Exercise 1: Predicate Logic	
Week 4: May 6-7	Elements of Formal Semantics, Ch. 3 (Part 3)	Lambda Calculus	Exercise 2: Type Theory	
Week 5: May 13-14	Generalized Quantifiers (Stanford Encyclopedia of Philosophy)	Generalized Quantifiers	Exercise 3: Lambda Calculus	
Week 6: May 20-21	Event-Based Semantics (Lasersohn, 2012)	Event Semantics	Exercise 4: Generalized Quantifiers	
Week 7: May 27-28	None	Lexical Semantics	Exercise 5: Event Semantics	
Week 8: June 3-4	Dynamic Semantics (Stanford Encyclopedia of Philosophy)	Dynamic Semantics	Exercise 6: Lexical Semantics	
Week 9: June 10-11	Discourse Representation Theory (Stanford Encyclopedia of Philosophy)	DRT	Exercise 7: Dynamic Semantics	
Week 10: June 17-18	None	Presuppositions in DRT	Exercise 8: DRT	
Week 11: June 24-25	None	Implicature	Exercise 9: Presuppositions in DRT	
Week 12: July 1-2	None	Current Issues and Applications	Exercise 10: Implicature	
Week 13: July 8-9	None	Exam Review	Take-home Practice Exam	
Week 14: July 15-16	None	Exam	No lecture	

Course Materials

- The slides provide the main course material.
- For additional background reading, we will use several online resources (readings listed on the course website):
 - Logic in Action, J. van Benthem, H. van Ditmarsch, J. van Eijck and J. Jaspars, 2016. http://logicinaction.org/
 - Elements of Formal Semantics (Ch. 1-3), Yoad Winter, Edinburgh University Press, 2016.
 - https://www.phil.uu.nl/~yoad/efs/main.html
 - Stanford Encyclopedia of Philosophy, Edward N. Zalta (principal editor).
 - https://plato.stanford.edu/

Semantic Theory

Semantic Theory: the study of (linguistic) meaning

What does "meaning" mean?

Formal semantics

- Goal of Formal Semantics:
 - To explain how meaning derives from linguistic form
 - using formal mathematical principles

Course Overview

- Part I (Weeks 2-6): Sentence semantics (Montague semantics)
- Part II (Week 7): Lexical semantics
- Part III (Weeks 8-11): Discourse semantics
- Part IV (Week 12): Current issues in Semantic Theory

Sentence Semantics

Part I

Truth-conditional semantics

A basic semantic principle:

"For two sentences A and B, if in some possible situation A is true and B is false, A and B must have different meanings."

(M. Cresswell, 1975)

- Applied to logical representations:
 - For a logical formula α and a sentence A:
 If in some possible situation corresponding to a model structure M, sentence A is true, and α is not, or vice versa, then α is not an appropriate meaning representation for A.

Truth-conditional semantics

- To know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true
 - i.e. sentence meaning = truth-conditions
- Interpretation:
 - Translate sentences into logical formulas:
 - "every student works" $\mapsto \forall x[student'(x) \rightarrow work'(x)]$
 - Interpret these formulas in a logical model:

$$[\![\forall x(student'(x) \rightarrow work'(x))]\!]^{M,g} = 1 \text{ iff } V_M(student') \subseteq V_M(work')$$

Step 1: from sentence to formula

- Propositional logic: Propositions as basic atoms
 - Syntax: propositions (p, q, ...), logical connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$
 - Semantics: truth tables, truth conditions

p	9	p & q	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

- **Predicate logic**: Predicates and arguments
 - Syntax:
 - predicates & terms (love'(j', m'), mortal'(x), ...)
 - \blacksquare quantifiers ($\forall x \phi$, $\exists x \phi$)
 - logical connectives $(\land, \lor, \neg, \rightarrow, \leftrightarrow)$
 - o Semantics: model structures and variable assignments
- Type theory: Higher-order predicate logic with type-theoretic denotations

Step 1': from words to sentence meaning

The principle of compositionality:

"The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined"

(Partee, 1993)

Step 2: from formula to model

Model-theoretic interpretation of first-order predicate logic:

"every student works"

$$[[\forall x(student'(x) \rightarrow work'(x))]]^{M,g} = 1 \text{ iff } V_M(student') \subseteq V_M(work')$$

Lexical Semantics

Part II

Zooming in: the meaning of words

• "student" → student' ... what does the 'stand for?

- Structured approaches to the lexicon: lexical meaning defined as relations between concepts in a model
 - a "student" is someone who studies
 - a "bachelor" is a man who is not married

Topics in lexical semantics

- Verb alternatives and semantic roles
 - "the window broke"
 - "a rock broke the window."
 - "John broke the window with a rock"

- Monotonicity and generalised quantifiers
 - "<u>all</u> children came home late" ⇒ "<u>all</u> children came home"
 - "no children came home late" ⇒ "no children came home"

Discourse Semantics

Part III

Beyond the sentence boundary: limitations of sentence-level semantics

Anaphora

- "John hit Bill. He hit him back."
- "If a farmer owns a donkey, he feeds it."

Presuppositions

- "Bill regrets that his cat has died."
- o "Bill doesn't regret that his cat has died."

Discourse relations

- "John fell. Mary helped him up."
- o "John fell. Mary pushed him."

Dynamic Semantics

- Revisiting the idea of meaning as truth-conditions
 - There is more to meaning than truth-conditions

- Meaning is context-dependent
 - Meaning is dynamic: it keeps changing
 - Solution: meaning = context-change potential

Discourse Representation Theory

Representational, mentalist approach to semantics

"if a professor owns a book, he reads it"

 $\rightarrow \forall x \forall y [professor(x) \land book(y) \land own(x,y) \rightarrow read(x,y)]$

Current Issues in Semantic Theory

Part IV

Current issues in Semantic Theory

Where is the border between semantics and pragmatics?

 What do (or: can) formal semantic theories say about the way meaning is stored and created in the human brain?

How can we use formal semantics for practical purposes?

Why does this matter?

- Semantic representations for LLMs: e.g. Zhou et al. (2020), Zhang et al. (2020), Wu, Peng, and Smith (2021), and Prange, Schneider, and Kong (2022), etc.
 - Semantically-augmented LMs improve over baseline models, without using additional training data

- Semantic-theoretic correctness ensures representational consistency:
 - Semantic Theory allows us to verify that our representational framework is accurately modeling meaning

Why does this matter?

- We need semantic concepts to evaluate LLMs:
 - o e.g. NLI, code (?)

- ... and to determine what they're doing wrong
 - If our goal is human-like LMs, we need to understand human-like language use