(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Exercise 1.1

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set $A = \{1, 2, 3...13, 14\}$ defined as

$$R = \{(x, y): 3x - y = 0\}$$

(ii) Relation R in the set N of natural numbers defined as

$$R = \{(x, y): y = x + 5 \text{ and } x < 4\}$$

(iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as

 $R = \{(x, y): y \text{ is divisible by } x\}$

(iv) Relation R in the set **Z** of all integers defined as

 $R = \{(x, y): x - y \text{ is as integer}\}\$

- (v) Relation R in the set A of human beings in a town at a particular time given by
 - (a) $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$
 - **(b)** $R = \{(x, y): x \text{ and } y \text{ live in the same locality}\}$
 - (c) $R = \{(x, y): x \text{ is exactly } 7 \text{ cm taller than } y\}$
 - (d) $R = \{(x, y): x \text{ is wife of } y\}$
 - (e) $R = \{(x, y): x \text{ is father of } y\}$

Answer 1:

(i)
$$A = \{1, 2, 3 \dots 13, 14\}$$

$$R = \{(x, y): 3x - y = 0\}$$

$$\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$$

R is not reflexive since $(1, 1), (2, 2) \dots (14, 14) \notin R$.

Also, R is not symmetric as $(1, 3) \in \mathbb{R}$, but $(3, 1) \notin \mathbb{R}$. $[3(3) - 1 \neq 0]$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Also, R is not transitive as (1, 3), $(3, 9) \in R$, but $(1, 9) \notin R$. $[3(1) - 9 \neq 0]$ Hence, R is neither reflexive, nor symmetric, nor transitive.

(ii)
$$R = \{(x, y): y = x + 5 \text{ and } x < 4\} = \{(1, 6), (2, 7), (3, 8)\}$$

It is clear that $(1, 1) \notin R$.

∴ R is not reflexive.

 $(1, 6) \in R$ But, $(1, 6) \notin R$.

 \therefore R is not symmetric.

Now, since there is no pair in R such that (x, y) and $(y, z) \in R$, then (x, z) cannot belong to R.

∴ R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

(iii)
$$A = \{1, 2, 3, 4, 5, 6\}$$

 $R = \{(x, y): y \text{ is divisible by } x\}$

We know that any number (x) is divisible by itself.

So,
$$(x, x) \in \mathbb{R}$$

∴ R is reflexive.

Now.

 $(2, 4) \in \mathbb{R}$ [as 4 is divisible by 2]

But, $(4, 2) \notin R$. [as 2 is not divisible by 4]

 \therefore R is not symmetric.

Let (x, y), $(y, z) \in \mathbb{R}$. Then, y is divisible by x and z is divisible by y.

 \therefore z is divisible by x.

 \Rightarrow $(x, z) \in R$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

∴ R is transitive.

Hence, R is reflexive and transitive but not symmetric.

(iv)
$$R = \{(x, y): x - y \text{ is an integer}\}$$

Now, for every $x \in \mathbb{Z}$, $(x, x) \in \mathbb{R}$ as x - x = 0 is an integer.

∴ R is reflexive.

Now, for every $x, y \in \mathbf{Z}$, if $(x, y) \in \mathbf{R}$, then x - y is an integer.

$$\Rightarrow$$
 $-(x - y)$ is also an integer.

$$\Rightarrow$$
 $(y - x)$ is an integer.

$$\therefore (y, x) \in \mathbb{R}$$

∴ R is symmetric.

Now,

Let (x, y) and $(y, z) \in \mathbb{R}$, where $x, y, z \in \mathbb{Z}$.

$$\Rightarrow$$
 $(x - y)$ and $(y - z)$ are integers.

$$\Rightarrow x - z = (x - y) + (y - z)$$
 is an integer.

$$\therefore (x, z) \in \mathbf{R}$$

∴ R is transitive.

Hence, R is reflexive, symmetric, and transitive.

(v)

(a) $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$

$$\Rightarrow$$
 $(x, x) \in R$

[as x and x work at the same place]

∴ R is reflexive.

If $(x, y) \in \mathbb{R}$, then x and y work at the same place.

 \Rightarrow y and x work at the same place.

$$\Rightarrow$$
 $(y, x) \in \mathbb{R}$.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

∴ R is symmetric.

Now, let (x, y), $(y, z) \in R$

- \Rightarrow x and y work at the same place and y and z work at the same place.
- \Rightarrow x and z work at the same place.
- \Rightarrow $(x, z) \in \mathbf{R}$
- ∴ R is transitive.

Hence, R is reflexive, symmetric and transitive.

(b) $R = \{(x, y): x \text{ and } y \text{ live in the same locality}\}$

Clearly, $(x, x) \in \mathbb{R}$ as x and x is the same human being.

∴ R is reflexive.

If $(x, y) \in \mathbb{R}$, then x and y live in the same locality.

- \Rightarrow y and x live in the same locality.
- \Rightarrow $(y, x) \in R$
- \therefore R is symmetric.

Now, let $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$.

- \Rightarrow x and y live in the same locality and y and z live in the same locality.
- \Rightarrow x and z live in the same locality.
- $\Rightarrow (x, z) \in \mathbf{R}$
- \therefore R is transitive.

Hence, R is reflexive, symmetric and transitive.

(c) $R = \{(x, y): x \text{ is exactly 7 cm taller than } y\}$

Now, $(x, x) \notin R$

Since human being x cannot be taller than himself.

∴ R is not reflexive.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Now, let $(x, y) \in \mathbb{R}$.

 \Rightarrow x is exactly 7 cm taller than y.

Then, y is not taller than x. [Since, y is 7 cm smaller than x]

 $\therefore (y, x) \notin \mathbf{R}$

Indeed if x is exactly 7 cm taller than y, then y is exactly 7 cm shorter than x.

∴ R is not symmetric.

Now,

Let (x, y), $(y, z) \in \mathbb{R}$.

- \Rightarrow x is exactly 7 cm taller than y and y is exactly 7 cm taller than z.
- \Rightarrow x is exactly 14 cm taller than z.
- $\therefore (x, z) \notin \mathbf{R}$
- ∴ R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

(d) $R = \{(x, y): x \text{ is the wife of } y\}$

Now.

 $(x, x) \notin \mathbf{R}$

Since *x* cannot be the wife of herself.

∴ R is not reflexive.

Now, let $(x, y) \in \mathbb{R}$

 \Rightarrow x is the wife of y.

Clearly y is not the wife of x.

 $\therefore (y, x) \notin \mathbf{R}$

Indeed if x is the wife of y, then y is the husband of x.

∴ R is not transitive.

Let $(x, y), (y, z) \in \mathbb{R}$

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions)
(Class – XII)

 \Rightarrow x is the wife of y and y is the wife of z.

This case is not possible. Also, this does not imply that x is the wife of z.

- $\therefore (x, z) \notin \mathbf{R}$
- ∴ R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

(e) $R = \{(x, y): x \text{ is the father of } y\}$

 $(x, x) \notin \mathbf{R}$

As x cannot be the father of himself.

∴ R is not reflexive.

Now, let $(x, y) \notin R$.

- \Rightarrow x is the father of y.
- \Rightarrow y cannot be the father of y.

Indeed, y is the son or the daughter of y.

- $\therefore (y, x) \notin \mathbf{R}$
- \therefore R is not symmetric.

Now, let $(x, y) \in R$ and $(y, z) \notin R$.

- \Rightarrow x is the father of y and y is the father of z.
- \Rightarrow x is not the father of z.

Indeed x is the grandfather of z.

- $\therefore (x,z) \notin \mathbf{R}$
- ∴ R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

(www.tiwariacademy.com)

(Chapter – 1) (Relations and Functions) (Class – XII)

Question 2:

Show that the relation R in the set R of real numbers, defined as

 $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Answer 2:

$$R = \{(a, b): a \le b^2\}$$

It can be observed that $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$, since, $\frac{1}{2} > \left(\frac{1}{2}\right)^2$

∴ R is not reflexive.

Now, $(1, 4) \in R$ as $1 < 4^2$ But, 4 is not less than 1^2 .

$$\div (4,1) \notin \mathbb{R}$$

 \therefore R is not symmetric.

Now,

$$(3, 2), (2, 1.5) \in \mathbb{R}$$
 [as $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$]

But,
$$3 > (1.5)^2 = 2.25$$

$$\div (3, 1.5) \notin \mathbb{R}$$

∴ R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric or transitive.

www.tiwariacademy.com
A Free web support in Education