MTH 100: Worksheet 8

- 1. V is a vector space with $\dim(V)=n$. W_1 and W_2 are subspaces of V such that $\dim(W_1)=\dim(W_2)=n-1$ and $W_1\cap W_2=\{0\}$. Find n.
- 2. Given the vector space \mathbb{R}^3 , let W_1 be the set of vectors of the form (x, y, 0) and let W_2 be the set of vectors of the form (0, a, b)
 - (a) Show that W_1 and W_2 are subspaces of \mathbb{R}^3 .
 - (b) Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
 - (c) Find two distinct subspaces U_1 and U_2 of \mathbf{R}^3 such that $\mathbf{R}^3 = W_1 \bigoplus U_1 = W_1 \bigoplus U_2$ i.e. find two distinct complements of W_1 . Justify your answer.
- 3. Given the matrix A below:
 - (a) Find a basis for each of the spaces Nul A, Col A and Row A.
 - (b) Find a basis for Row A, consisting of rows of the given matrix A, different from the one in previous part.
 - (c) Is A invertible? Justify. $A = \begin{bmatrix} 2 & 6 & 3 \\ 4 & 12 & 5 \\ 13 & 39 & 17 \end{bmatrix}$
- 4. Given the matrices A and B below.
 - (a) Find a basis for the row space of A a basis for the row space of B, showing your calculations.
 - (b) Let $U = \text{Span } \{(1,2,-1,3),(2,4,-1,2),(3,6,3,-7)\}$ and Let $W = \text{Span } \{(1,2,-4,11),(2,4,-5,14)\}$ Is U = W? Justify your answer. $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & -4 & 11 \\ 2 & 4 & -5 & 14 \end{bmatrix}$
- 5. Given any $m \times n$ matrix A, show that rank $A \le \min\{m, n\}$.

Given a non-trivial example in which equality is achieved and a non-trivial example in which strict inequality holds.

1