ECE 442/510 Internet of Things and Cyber Physical Systems

Lecture 5: Temperature Sensing System using
Bluetooth (Lab 3)
Summer 2022

ThingSpeak

- ThingSpeak (http://www.thingspeak.com)
 - The Free Open IoT Platform with MATLAB Analytics

Collect

Send sensor data privately to the cloud

Analyze

Analyze and visualize your data with MATLAB

Act

Trigger a reaction (Tweet, alarm, motor, LED, etc.)

IoT Project Idea – Temperature Monitoring System

Collect Arduino with Wi-Fi and temperature sensor

Temperature Sensor Wi-Fi Module

Analyze

Watch out for temperature above threshold

Act

Send an alarm

Broadcast message through Social Media

ThingSpeak Concepts

Channel

A place to store and retrieve data that is organized into fields

Field

Location in a channel where a variable is stored

Write API Key

API key that allows writing data to a channel

Read API Key

API key that allows reading data from a channel

MATLAB Analytics

 Run MATLAB directly on thingspeak.com for analysis and visualization of your data

Apps

Add-on functionality to ThingSpeak including API to other services

ThingSpeak Specs

ThingSpeak Specs

	FREE For small non-commercial projects and for evaluation of the service	ACADEMIC For academic use by faculty, staff, or researchers at degree-granting institutions ⁽¹⁾			
Scalable for larger projects	No. Annual usage is capped.	~			
Number of messages	3 million/year (~8,200/day) ⁽²⁾	33 million/year per unit (~90,000/day per unit) ⁽²⁾			
Message update interval limit	Every 15 seconds	Every second			
MATLAB Compute Timeout	20 seconds	60 seconds			
Number of simultaneous MQTT subscriptions	Limited to 3	50 per unit			
Private channel sharing	Limited to 3 shares	Unlimited			
Technical Support	Forum	Standard MathWorks support			

Toolboxes supported: https://www.mathworks.com/help/thingspeak/matlab-toolbox-access.html

References for ThingSpeak

- Deep Learning with MATLAB resources: https://www.mathworks.com/discovery/deep-learning.html
- Free 2-hour Online Deep Learning Training: https://matlabacademy.mathworks.com/
- Deep Learning Blog: https://blogs.mathworks.com/deep-learning/
- MathWorks Open IoT Platform ThingSpeak: https://thingspeak.com/
- IoT Blog: https://blogs.mathworks.com/iot/
- Maker Community: https://www.mathworks.com/matlabcentral/maker.html

- Enable Wi-Fi on Arduino UNO
 - ESP8266 Wi-Fi module serially connected to the board (Tx/Rx)
 - 802.11 b/g/n with 2.4 GHz support
- Connect a sensor to the Arduino UNO
 - Temperature sensor (TMP36) to Analog Input
 - Operating range -40C to +125C

Create Channel on ThingSpeak

☐ ThingSpeak™	Channels →	Apps ▼	Community	Support	-	Commercial Use	How to Buy	Account →	Sign Out		
loT Arduino WiFi Temperature Readings											
Channel ID: 512170 Author: Access: Private			IoT Arduino W	iFi Temperatu	re Readings						
Private View Public Viev	v Channel Se	ettings	Sharing	API Keys [ata Import / Export	t					
Channel Settings Help											
Percentage complete	50%				eight fields that ca	the data that a ThingSpeak a in hold any type of data, plus	three fields for lo	cation data and	one for		
Channel ID	status data. Once you collect data in a channel, you can use ThingSpeak apps to ana visualize it.						analyze and				
Name	IoT Arduino WiFi	i Temperature	e Readings		Channel Settings						
Description	Description IoT Arduino WiFi Temperature Readings				Channel Name: Enter a unique name for the ThingSpeak channel.						
					 Description: Enter a description of the ThingSpeak channel. Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak 						
Field 1	Temperature					ck the box to enable the field n have up to 8 fields.	, and enter a field	name, Each Thii	пдореак		
Field 2				Metadata: Enter information about channel data, including JSON, XML, or CSV data.							
						keywords that identify the ch		-			
Field 3						pecify the position of the sen or example, the latitude of the	_		ecimal		
Field 4					-	Specify the position of the se r example, the longitude of t	7		decimal		
Field 5						specify the position of the ser ne elevation of the city of Lon	_	collects data in n	neters. For		
Field 6						rnal Site: If you have a websi	te that contains in	formation abou	t your		
Field 7					 Video URL: If you have a YouTube[™] or Vimeo[®] video that displays your channel information, specify the full path of the video URL. 						
Field 8											

API Key for exchanging data with Arduino over Wi-Fi

Collected data can be seen on ThingSpeak.com

Lab 3 Temperature Sensing System using Bluetooth

Lab explanation

https://youtu.be/ATuXLkguspo

Temperature Sensing System using Bluetooth

- Utilize your obtained skills on Arduino (Lab 1) and Raspberry Pi (Lab2)
- Connect an ambient temperature sensor to Arduino using Analog Input Pin
- Connect Arduino and Raspberry Pi wirelessly using Bluetooth
 - C programming on Arduino
 - Python programming on Raspberry Pi
- Connect Raspberry Pi to ThingSpeak
 - Display collected temperature sensor data from Arduino to the web

Hardware Set Up on Arduino

- Connect LM35 temperature sensor to Arduino
 - V_{cc} to 5V on Arduino
 - GND to GND on Arduino
 - V_{out} to one of Analog Input Pins #0 #5

- Connect DHT11 temperature/humidity sensor to Arduino
 - V_{cc} to 5V on Arduino
 - GND to GND on Arduino
 - Data to one of Digital I/O Pins

** DO NOT CONNECT TO PIN #0 and #1

Hardware Set Up on Arduino

- Connect HC-06 Bluetooth module to Arduino
 - V_{cc} to 5V on Arduino
 - GND to GND on Arduino
 - RxD to one of Digital I/O Pins
 - TxD to one of Digital I/O Pins
 - ** DO NOT CONNECT TO PIN #0 and #1

Bluetooth Set Up using Arduino

• Use example code from Arduino IDE called "SoftwareSerialExample"

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(TxD of BT module, RxD of BT module); // RxD of Arduino, TxD of Arduino
void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 mySerial.begin(9600);
 while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB port only
 Serial.println("Start Communication");
void loop() { // run over and over
 if (mySerial.available()) {
   Serial.write(mySerial.read());
 if (Serial.available()) {
   mySerial.write(Serial.read());
```

Modify this code to appropriate PINs for your TxD and RxD to HC-06

Bluetooth Set Up using Arduino

- Type "AT" and click on "SEND". If your connection is set up correctly, you should have the same output like below:
 - make sure your Serial Monitor's baud rate matches with you code

Bluetooth Set Up using Arduino

- Use AT commands to configure your HC-06 module
- Follow directions specified in Lab 3 Manual Procedure.
 - Change Bluetooth Module Name
 - Change Bluetooth Pairing PIN number
 - Change Bluetooth Communication Baud Rate

Command	Reply	Comment			
AT	OK	Testing Communication Establishment			
AT+VERSION	OKlinvorV1.8	Firmware version			
AT+NAMElab3BTmodule	OKsetname	Sets the name of the Bluetooth module to "lab3BTmodule"			
AT+PIN1234	OKsetPIN	Sets the PIN to 1234			
AT+BAUD1	OK1200	Sets the baud rate to 1200			
AT+BAUD2	OK2400	Sets the baud rate to 2400			
AT+BAUD3	OK4800	Sets the baud rate to 4800			
AT+BAUD4	OK9600	Sets the baud rate to 9600 (default)			
AT+BAUD5	OK19200	Sets the baud rate to 19200			
AT+BAUD6	OK38400	Sets the baud rate to 38400			
AT+BAUD7	OK57600	Sets the baud rate to 57600			
AT+BAUD8	OK115200	Sets the baud rate to 115200			
AT+BAUD9	OK230400	Sets the baud rate to 230400			
AT+BAUDA	OK460800	Sets the baud rate to 460800			
AT+BAUDB	OK921600	Sets the baud rate to 921600			
AT+BAUDC	OK1382400	Sets the baud rate to 1382400			

Temperature Sensing using Arduino

- Write your own C program on Arduino IDE to retrieve value from LM35 sensor
- Convert retrieved value to Fahrenheit by using given equations

temperature_{celsius} =
$$\frac{\left(\frac{raw_sensor_value}{1024}\right) \times 5000}{10}$$
 temperature_{fahrenheit} =
$$\frac{(temperature_{celsius} \times 9)}{5} + 32$$

Use write(val) function to send data to HC-06

Expected output is like below:

```
Communication Start

$1.22F Bluetooth transmission complete

80.34F Bluetooth transmission complete

80.34F Bluetooth transmission complete

80.34F Bluetooth transmission complete

81.22F Bluetooth transmission complete

81.22F Bluetooth transmission complete

80.34F Bluetooth transmission complete

80.34F Bluetooth transmission complete

80.34F Bluetooth transmission complete
```

Temperature Sensing using Arduino

- Write your own C program by utilizing DHT library on Arduino IDE to retrieve value from DHT11 sensor
- Convert retrieved value to Fahrenheit by using given equations

$$temperature_{fahrenheit} = \frac{(temperature_{celsius} \times 9)}{5} + 32$$

Use write(val) function to send data to HC-06

Expected output is like below:

Bluetooth and Python using RPi

- Need to identify HC-06's MAC address
 - You can find this using Raspberry Pi's Bluetooth device by scanning

```
pi@raspberrypi:~ $ bluetoothctl
[NEW] Controller B8:27:EB:24:53:79 raspberrypi [default]
[bluetooth] # pairable on
Changing pairable on succeeded
[bluetooth] # agent on
Agent registered
[bluetooth] # default-agent
Default agent request successful
[bluetooth] # scan on
Discovery started
[CHG] Controller B8:27:EB:24:53:79 Discovering: yes
[NEW] Device 12:E7:C6:D2:71:89 OfficeJet 5200 series
[NEW] Device 6D:CF:3D:11:0E:53 6D-CF-3D-11-0E-53
[NEW] Device 6B:4A:92:8B:B2:6C 6B-4A-92-8B-B2-6C
[NEW] Device 2C:41:A1:2C:8C:5C LE-Bose Micro SoundLink
[NEW] Device 20:15:07:27:50:83 20-15-07-27-50-83
[CHG] Device 20:15:07:27:50:83 LegacyPairing: no
[CHG] Device 20:15:07:27:50:83 Name: ECE442LAB3 YI
[CHG] Device 20:15:07:27:50:83 Alias: ECE442LAB3 YI
[CHG] Device 20:15:07:27:50:83 LegacyPairing: yes
[CHG] Device 6B:4A:92:8B:B2:6C RSSI: -91
[bluetooth] # pair 20:15:07:27:50:83
Attempting to pair with 20:15:07:27:50:83
[CHG] Device 20:15:07:27:50:83 Connected: yes
Request PIN code
[agent] Enter PIN code: 1234
[CHG] Device 20:15:07:27:50:83 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 20:15:07:27:50:83 ServicesResolved: yes
[CHG] Device 20:15:07:27:50:83 Paired: yes
Pairing successful
[CHG] Device 20:15:07:27:50:83 ServicesResolved: no
[CHG] Device 20:15:07:27:50:83 Connected: no
[bluetooth] # exit
Agent unregistered
[DEL] Controller B8:27:EB:24:53:79 raspberrypi [default]
pi@raspberrypi:~ $
```

Bluetooth and Python using RPi

- Raspberry Pi out-of-the-box does not have full Bluetooth development support
 - You need to install packages separately

Bluetooth for Python

- sudo apt update
- sudo apt install bluetooth libbluetooth-dev
- sudo python3 -m pip install pybluez

ThingSpeak for Python

• sudo python3 -m pip install thingspeak

Arduino, RPi and ThingSpeak

- Create your own channel at ThingSpeak.com
- Obtain your channel's ID
- Obtain your channel's Write API Key under "API Keys" tab
- Modify given "lab3.py" code and run your Python code on RPi
 - HC-06 MAC address
 - ThingSpeak Channel ID, Write API Key

