

IMPERIAL COLLEGE OF ENGINEERING

Boikali, Khulna

AFFILIATED BY RAJSHAHI UNIVERSITY

(CODE: 385)

Submitted by,

STUDENT'S NAME : TERESA JENCY BALA

DEPARTMENT : COMPUTER SCIENCE & ENGINEERING

ID NUMBER : 19 385 20 113

SUBJECT CODE : APEEII32

SUBJECT NAME : ELECTRICAL CIRCUIT AND ELECTRONICS LAB

Assignment no-01

Submitted to.

MD. ABU BAKER SIDDIK ABIR,
LECTURER, ICE

Date: 5th April, 2019

Day: Friday

INDEX:

Contents	Page no
1. Name of Experiments	01
2. Objectives of Experiments	02-03
3. Figures of Experiments	04-07
4. Outlines	08-09
5. Applications	10-11
6. List of all apparatus(Names & Ratings)	12

Name of Experiments:

- 1. Introduction to lab Equipments
- 2. Verification of Ohm's Law
- 3. Verification of series and parallel circuit configuration
- 4. Experiment on:
 - a. Connection of Wattmeter
 - b. Identify CC & PC coil
 - c.Energy meter and bill calculation
- 5. Experiment on RLC series circuit configuration

Experiments Objectives:

Expt. 1:

- 1. To know about different electrical meters
- 2. To know names and uses of meters in circuit lab
- 3. Advantages and disadvantages of AC and DC
- 4. Defining electrical and electronics devices

Expt. 2:

- 1. To be introduced with Ohm's law
- 2. To Justify Ohm's Law
- 3. To be familiar with different circuit configuration

Expt. 3:

- 1. To be introduced with series circuit
- 2. To be introduced with parallel circuit
- 3. To know about current flow and voltage difference in series and parallel circuit

Expt. 4:

- To understand connection mechanism of Wattmeter.
- 2. How to identify CC and PC coil in wattmeter
- 3. How to calculate electric bill and use of energy meter.

Expt. 5:

- 4. To be introduced with RLC (Resistive, Inductive and Capacitive) Series circuit.
- 5. To be introduced with impedance
- Understand relation between impedance and frequency.
- 7. Know about capacitive and inductive reactance.

Experimental Figures:

Experiment 2:

Figure-1: Voltmeter and ammeter in parallel and series connection respectively with rheostat.

Experiment 3:

Figure-2: Two bulbs connected in series

Figure-3: Two bulbs connected in parallel

Experiment 4:

Figure-4: Wattmeter connection diagram

Figure-5: Circuit connection of Energy Meter

Experiment 5:

Figure-6: RLC series circuit

Outlines

Experiment-1:

- 1. The meters used in circuit lab are electrical instruments used to measure different units. Examples: current (Amp), voltage (Volt), power (watt), potential.
- 2. Differentiate between Electrical and Electronics devices.
- 3. Understand AC and DC advantages and disadvantages.

Experiment-2:

- 1. Understand Ohm's Law and draw its graph with equation.
- 2. Connecting and using Ammeter and Voltmeter in Circuit to measure current and voltage.
- 3. Supply DC power to circuit and connect the rheostat properly to get current flow.

Experiment-3:

- 1. Familiar with different kinds of circuit: series, parallel and mixed.
- 2. Examine different elements of circuit.
- 3. Defining Electrical power and electrical energy.
- 4. Practical application of voltage and current divider rule.

Experiment-4:

- 1. Defining power factor with equation.
- 2. Vector diagram of different loads.
- 3. Measuring Electric bill.
- 4. Wattmeter coil identification.

Experiment-5:

- 5. Understand RLC circuit.
- 6. Know about impedance.
- 7. Relation between frequency and impedance,
- 8. Inductive and capacitive reactance.

Application

Experiment-01:

- 1. Using electrical measuring meters in practical fields.
- 2. AC and DC connection in practical design.

Experiment-02:

- 1. Ohm's law helps us in determining voltage, current or impedance or resistance of a linear electric circuit when the other two quantities are known to us. It also makes power calculation simpler.
- 2. Ohm's law makes us realize designing any electronic or electrical circuits without resistor is impossible.

Experiment-03:

 In designing circuit for and house or office understanding the connection of electrical elements in series, parallel or mixed circuit.

Experiment-04:

- Calculating electric bill and check if the electric meter in giving accurate reading.
- 2. Power measuring using wattmeter in practical fields

Experiment-05:

- 1. RLC series connection in circuit.
- 2. Impedance check and relation of frequency with impedance checking.

Apparatus List

Serial	Name	Rating
No.		
1.	Rheostat	(0-100)Ω
2.	DC Power Supply	(0-30)V
3.	Flexible wire	
4.	Bulb-01	100W-220V
5.	Bulb-02	40W- 220V
6.	Switch(one-way)	
7.	Multimeter	
8.	Inductive load(Electrical	
	Ballast)	
9.	Capacitive load	2.5µF
10.	Resistive load(bulb)	
11.	Power Meter(Power Source)	
12.	Ammeter	
13.	Voltmeter	

