Big Data Computing

Master's Degree in Computer Science 2020-2021

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

Recap from Last Lecture(s)

- Dealing with big data requires new computing tools and paradigms
- Hadoop/MapReduce → useful in all those situations where data need to be accessed sequentially
- Spark → general-purpose distributed scalable data processing engine which provides an ecosystem of services to work on (big) data

Let's Start Our Journey Into Big Data!

CLUSTERING

• A procedure to group a set of objects into classes of similar objects

- A procedure to group a set of objects into classes of similar objects
- A standard problem in many (big) data applications:
 - Categorizing documents by their topics
 - Grouping customers by their behaviors

- A procedure to group a set of objects into classes of similar objects
- A standard problem in many (big) data applications:
 - Categorizing documents by their topics
 - Grouping customers by their behaviors
- A typical example of unsupervised learning technique

- A procedure to group a set of objects into classes of similar objects
- A standard problem in many (big) data applications:
 - Categorizing documents by their topics
 - Grouping customers by their behaviors
- A typical example of unsupervised learning technique
- A method of data exploration, i.e., a way of looking for patterns of interest in data

Clustering: Intuition

Given a set of 2-dimensional data points

Clustering: Intuition

We'd like to understand their "structure" in order to find groups of data points

Clustering: Formal Definition

• Given a set of data points and a notion of distance between those

Clustering: Formal Definition

- Given a set of data points and a notion of distance between those
- Group the data points into some number of clusters so that:
 - Members of a cluster are close/similar to each other (i.e., high intra-cluster similarity)
 - Members of different clusters are dissimilar (i.e., low inter-cluster similarity)

Clustering: Practical Issues

- Object representation
 - Data points may be in very high-dimensional spaces

Clustering: Practical Issues

- Object representation
 - Data points may be in very high-dimensional spaces
- Notion of similarity between objects using a distance measure
 - Euclidean distance, Cosine similarity, Jaccard coefficient, etc.

Clustering: Practical Issues

- Object representation
 - Data points may be in very high-dimensional spaces
- Notion of similarity between objects using a distance measure
 - Euclidean distance, Cosine similarity, Jaccard coefficient, etc.
- Number of output clusters
 - Fixed apriori? Data-driven?

Data points are not always easily and clearly separable

Data points are not always easily and clearly separable

Finding a clear boundary between clusters may be hard in the real world

- Clustering in 2 dimensions looks easy
- So does clustering of a small number of data points
- What does make things hard?

- Clustering in 2 dimensions looks easy
- So does clustering of a small number of data points
- What does make things hard?

Many real-world applications involve 10s, 100s, or 1,000s of dimensions

- Clustering in 2 dimensions looks easy
- So does clustering of a small number of data points
- What does make things hard?

Many real-world applications involve 10s, 100s, or 1,000s of dimensions

In high-dimensional spaces almost all pairs of points are at the same distance

High-Dimensional Spaces

- Data in a high-dimensional space tends to be sparser than in lower dimensions
 - Data points are more dissimilar to each other

High-Dimensional Spaces

- Data in a high-dimensional space tends to be sparser than in lower dimensions
 - Data points are more dissimilar to each other
- In Euclidean space, the distance between two points is large as long as they are far apart along at least one dimension
 - The higher the number of dimensions the higher the chance this happens

High-Dimensional Spaces

- Data in a high-dimensional space tends to be sparser than in lower dimensions
 - Data points are more dissimilar to each other
- In Euclidean space, the distance between two points is large as long as they are far apart along at least one dimension
 - The higher the number of dimensions the higher the chance this happens

The Curse of Dimensionality

N = number of data points randomly (i.e., uniformly) distributed in H

We consider **edge points** whose distance from p is **at most** $\frac{l}{2}\sqrt{d}$

 $\frac{l}{2}\sqrt{3}$

The same question can be formulated in terms of the radius l of an inscribed hypersphere

 $V_h = l^d$ volume of the hypercube h V_h must roughly contain k/N points (since those are randomly distributed)

$$l^d \approx \frac{k}{N}$$
 therefore $l \approx \left(\frac{k}{N}\right)^{1/d}$

A few numbers...
$$N = 1,000; k = 10$$
 $l \approx \left(\frac{10}{1000}\right)^{1/d} = \left(\frac{1}{100}\right)^{1/d}$

d	
Ī	0.01

A few numbers...
$$N = 1,000; k = 10$$
 $l \approx \left(\frac{10}{1000}\right)^{1/a} = \left(\frac{1}{100}\right)^{1/a}$

d	1
Ī	0.01
2	0.1

A few numbers...
$$N = 1,000; k = 10$$
 $l \approx \left(\frac{10}{1000}\right)^{1/d} = \left(\frac{1}{100}\right)^{1/d}$

d	1	
	0.01	
2	0.1	
3	0.215	
10	0.631	

When d is equal 10 the length of the edge of the inscribed hypercube is already about 63% of the largest hypercube

A few numbers...
$$N = 1,000; k = 10$$
 $l \approx \left(\frac{10}{1000}\right)^{1/d} = \left(\frac{1}{100}\right)^{1/d}$

0.01
0.1
0.215
0.631
0.995

When d is equal 1,000 there is basically no difference between the two hypercubes!

The Curse of Dimensionality: Why Bother?

• Points are more likely to be located at the edges of the region

The Curse of Dimensionality: Why Bother?

- Points are more likely to be located at the edges of the region
- Nearest points are not close at all!

The Curse of Dimensionality: Why Bother?

- Points are more likely to be located at the edges of the region
- Nearest points are not close at all!
- Distance between points indistinguishable (distance concentration)
 - Hard to separate between nearest and furthest data points
 - Hard to find clusters among so many pairs that are all at approximately the same distance

03/10/21

37

Let ε define the edge (i.e., border) of our space

Let ε define the edge (i.e., border) of our space

See how the probability of picking a data point that is **not** located at the edge changes as the number of dimensions grow

Let ε define the edge (i.e., border) of our space

See how the probability of picking a data point that is **not** located at the edge changes as the number of dimensions grow

Remember:

We assume data points are uniformly distributed at random on the space

The probability of being not at the edge is just

The probability of being **not** at the edge is the probability of being not at the edge on **every single dimension**

The probability of being **not** at the edge is the probability of being not at the edge on **every single dimension**

$$(1-2\epsilon)^d$$

assuming each dimension is independent from each other

The probability of being **not** at the edge is the probability of being not at the edge on **every single dimension**

$$(1-2\epsilon)^d$$

assuming each dimension is independent from each other

$$\lim_{d \to \infty} (1 - 2\epsilon)^d = 0$$

The Curse of Dimensionality

A Notebook where the Curse of Dimensionality is (visually) explained is available at the following link:

https://github.com/gtolomei/big-data-computing/blob/master/notebooks/The Curse Of Dimensionality.ipynb

So What Can We Do?

• If data are really uniformly distributed in a high-dimensional space... nothing!

So What Can We Do?

- If data are really uniformly distributed in a high-dimensional space... nothing!
- Luckily, though, real-world (interesting) data have patterns underneath (i.e., they are **not random**!)

So What Can We Do?

- If data are really uniformly distributed in a high-dimensional space... nothing!
- Luckily, though, real-world (interesting) data have patterns underneath (i.e., they are **not random**!)
- Lower intrinsic dimensionality
 - Data often live in a sub-space even if they are represented in a high-dimensional space
 - Dimensionality reduction techniques (more on this later...)

• What does "similar" mean?

- What does "similar" mean?
- No single answer! It depends on what we want to find or emphasize in the data

- What does "similar" mean?
- No single answer! It depends on what we want to find or emphasize in the data
- Domain and representation specific

- What does "similar" mean?
- No single answer! It depends on what we want to find or emphasize in the data
- Domain and representation specific
- The similarity measure is often more important than the clustering algorithm used itself!

Notion of Similarity

• So far, we haven't really talked about the similarity between objects

03/10/21 54

Notion of Similarity

- So far, we haven't really talked about the similarity between objects
- In fact, we implicitly assumed:
 - Data live in a d-dimensional Euclidean space
 - Similarity between data is computed using Euclidean metric (i.e., distance)

03/10/21 55

Notion of Similarity

- So far, we haven't really talked about the similarity between objects
- In fact, we implicitly assumed:
 - Data live in a d-dimensional Euclidean space
 - Similarity between data is computed using Euclidean metric (i.e., distance)
- Other metrics can be used depending on the domain
 - Cosine similarity
 - Jaccard coefficient

Metric and Metric Space

X is a set δ is a function $\delta: X \times X \to [0, \infty)$, where:

- $1.\delta(x,y) \ge 0$ (non-negativity)
- $2.\delta(x,y) = 0 \Leftrightarrow x = y$ (**identity** of indiscernibles)
- $3.\delta(x,y) = \delta(y,x)$ (symmetry)
- $4.\delta(x,y) \le \delta(x,z) + \delta(z,y)$ (triangle inequality)

Then δ is called a **metric** (or distance function) and X a **metric space**

Euclidean Metric (Distance) & Euclidean Space

$$X = \mathbb{R}^d$$

 $\delta : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$
 $\mathbf{x} = (x_1, \dots, x_d) \text{ and } \mathbf{y} = (y_1, \dots, y_d) \text{ are 2 points in } \mathbb{R}^d$

$$\delta(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2} = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

• The position of a point in a Euclidean d-space is a Euclidean vector

- The position of a point in a Euclidean d-space is a Euclidean vector
- The Euclidean norm of a vector measures its length (from the origin)

- The position of a point in a Euclidean d-space is a Euclidean vector
- The Euclidean norm of a vector measures its length (from the origin)

$$||\mathbf{x}||_2 = \sqrt{x_1^2 + \dots + x_d^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

where · indicates the **dot product**

- The position of a point in a Euclidean d-space is a Euclidean vector
- The Euclidean norm of a vector measures its length (from the origin)

$$||\mathbf{x}||_2 = \sqrt{x_1^2 + \dots + x_d^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

where \cdot indicates the **dot product**

This can be just seen as the Euclidean distance between vector's tail and tip

Euclidean Norm & Euclidean Metric

Let $\mathbf{x} - \mathbf{y} = (x_1 - y_1, \dots, x_d - y_d)$ the **displacement vector** between \mathbf{x} and \mathbf{y}

Euclidean Norm & Euclidean Metric

Let $\mathbf{x} - \mathbf{y} = (x_1 - y_1, \dots, x_d - y_d)$ the **displacement vector** between \mathbf{x} and \mathbf{y}

The Euclidean distance between x and y is just the Euclidean norm of the displacement vector

Euclidean Norm & Euclidean Metric

Let $\mathbf{x} - \mathbf{y} = (x_1 - y_1, \dots, x_d - y_d)$ the **displacement vector** between \mathbf{x} and \mathbf{y}

The Euclidean distance between x and y is just the Euclidean norm of the displacement vector

$$\delta(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2 = \sqrt{(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})}$$

Euclidean Distance: I-dimensional Case

$$d = 1$$

 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d = \mathbb{R}$
 $\mathbf{x} = x, \mathbf{y} = y \text{ both } \mathbf{x} \text{ and } \mathbf{y} \text{ are scalars}$

$$\delta(\mathbf{x}, \mathbf{y}) = \delta(x, y) = \sqrt{(x - y)^2} = |x - y|$$

Euclidean Distance: I-dimensional Case

$$d = 1$$

 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d = \mathbb{R}$
 $\mathbf{x} = x, \mathbf{y} = y \text{ both } \mathbf{x} \text{ and } \mathbf{y} \text{ are scalars}$

$$\delta(\mathbf{x}, \mathbf{y}) = \delta(x, y) = \sqrt{(x - y)^2} = |x - y|$$

The Euclidean distance between any two I-d points on the real line is the absolute value of the numerical difference of their coordinates

Euclidean Distance: 2-dimensional Case

$$d = 2$$

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^d = \mathbb{R}^2$$

$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2)$$

$$\delta(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = ||\mathbf{x} - \mathbf{y}||_2$$

Euclidean Distance: 2-dimensional Case

$$d = 2$$

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^d = \mathbb{R}^2$$

$$\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2)$$

$$\delta(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = ||\mathbf{x} - \mathbf{y}||_2$$

The Euclidean distance between any two 2-d points on the Euclidean plane equals to the **Pythagorean theorem**

Minkowski Distance (LP-Norm)

Generalization of the Euclidean distance

$$\mathbf{x} = (x_1, \dots, x_d) \text{ and } \mathbf{y} = (y_1, \dots, y_d) \in \mathbb{R}^d$$

$$\delta_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Minkowski Distance (LP-Norm): p=1

L¹-Norm or Manhattan Distance

$$\delta_1(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^1\right)^{\frac{1}{1}} = \sum_{i=1}^d |x_i - y_i|^1$$

Minkowski Distance (LP-Norm): p=2

L²-Norm or Euclidean Distance

$$\delta_2(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^2\right)^{\frac{1}{2}} = \sqrt{\sum_{i=1}^d |x_i - y_i|^2}$$

Minkowski Distance (L^p-Norm): p=∞

L∞-Norm or Chebyshev Distance

$$\delta_{\infty}(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}} =$$

$$= \max\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_d - y_d|\}$$

• A measure of similarity between two non-zero vectors of an inner product space

03/10/21 74

- A measure of similarity between two non-zero vectors of an inner product space
- Measures the cosine of the angle between vectors

- A measure of similarity between two non-zero vectors of an inner product space
- Measures the cosine of the angle between vectors
- It ranges between [-1,1]

- A measure of similarity between two non-zero vectors of an inner product space
- Measures the cosine of the angle between vectors
- It ranges between [-1,1]
- It captures the orientation and not the magnitude

 θ is close to 0° $\cos(\theta) \approx 1$

similar vectors

 θ is close to 90° $\cos(\theta) \approx 0$

orthogonal vectors

 θ is close to 180° $\cos(\theta) \approx -1$

opposite vectors

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 =$$

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}||||\mathbf{y}||\cos\theta$$

$$x \cdot y = ||x||||y|| \cos \theta$$

$$\cos \theta = x \cdot y/||x||||y||$$

- Computed as in the case of 2-dimensional vectors
- If two *d*-dimensional vectors are not collinear then they span a 2-dimensional plane $E \subset \mathbb{R}^d$
- ullet This plane E inherits the dot product in \mathbb{R}^d and so becomes an ordinary Euclidean plane
- The angles in this plane are related to the dot product as they are in 2-dimensional vector geometry

Jaccard Index (Coefficient)

Measures similarity between finite sample sets

Jaccard Index (Coefficient)

Measures similarity between finite sample sets

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

$$J(A,B) = 1 \text{ if } A = B = \emptyset$$

$$0 \le J(A, B) \le 1$$

Jaccard Index (Coefficient): Interpretation

source: Wikipedia

Jaccard Distance

Complementary to the Jaccard coefficient

$$\delta_J(A, B) = 1 - J(A, B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}$$

This distance is a **metric** on the collection of all finite sets

• Clustering is an unsupervised learning technique to group "similar" data objects together

- Clustering is an unsupervised learning technique to group "similar" data objects together
- Depends on:
 - object representation
 - similarity measure

- Clustering is an unsupervised learning technique to group "similar" data objects together
- Depends on:
 - object representation
 - similarity measure
- Harder when data dimensionality gets large (curse of dimensionality)

- Clustering is an unsupervised learning technique to group "similar" data objects together
- Depends on:
 - object representation
 - similarity measure
- Harder when data dimensionality gets large (curse of dimensionality)
- Number of output clusters is part of the problem itself!