Příklad (3.1)

Těleso **T**, kde $T = \{\alpha, \beta, \gamma, \delta\}$, je definováno následujícími tabulkami operací.

+	α	β	γ	δ
α	γ	δ	α	β
β	δ	γ	β	α
γ	α	β	γ	δ
δ	β	α	δ	γ

+	α	β	γ	δ
α	δ	α	γ	β
β	α	β	γ	δ
γ	α	β	γ	γ
δ	β	δ	γ	α

Vyřešte nad tímto tělesem následující soustavu rovnic a určete počet řešení.

$$\left(\begin{array}{ccc|c}
\alpha & \beta & \beta & \delta & \beta & \alpha \\
\delta & \delta & \beta & \gamma & \delta & \beta \\
\alpha & \gamma & \delta & \beta & \delta & \alpha
\end{array}\right)$$

Řešení

Upravíme Gaussovou eliminací (0 = $\gamma, \beta = 1 = -\beta, \alpha = -\alpha, \delta = -\delta, \alpha = \delta^{-1}$):

$$\left(\begin{array}{ccc|c} \alpha & \beta & \beta & \delta & \beta & \alpha \\ \delta & \delta & \beta & \gamma & \delta & \beta \\ \alpha & \gamma & \delta & \beta & \delta & \alpha \end{array} \right) \sim \left(\begin{array}{ccc|c} \alpha & \beta & \beta & \delta & \beta & \alpha \\ \alpha & \alpha & \delta & \gamma & \alpha & \delta \\ \gamma & \beta & \alpha & \alpha & \alpha & \gamma \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \gamma \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \gamma \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \gamma \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \gamma \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \alpha & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \alpha & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \beta & \beta \\ \gamma & \delta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \beta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \delta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \delta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \delta & \beta & \beta \end{array} \right) \sim \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \delta & \beta & \beta \end{array} \right) = \left(\begin{array}{ccc|c} \beta & \delta & \delta & \beta \\ \gamma & \delta & \delta$$

Z tohoto tvaru už je zřejmý (z řešení homogenní SLR a řešení s nulovými volnými proměnnými) tvar řešení

$$\left\{ \begin{pmatrix} \alpha \\ \delta \\ \alpha \\ \gamma \\ \gamma \end{pmatrix} + u \begin{pmatrix} \alpha \\ \delta \\ \delta \\ \beta \\ \gamma \end{pmatrix} + v \begin{pmatrix} \delta \\ \delta \\ \delta \\ \gamma \\ \beta \end{pmatrix} : u, v \in \mathbf{T} \right\}.$$

Příklad (3.2)

Řekneme, že matice X, A spolu komutují, pokud splňují rovnost XA = AX. Najděte všechny matice X typu 2×2 nad tělesem \mathbb{Z}_5 , které komutují s maticí

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

 $\check{R}e\check{s}eni$

Zapíšeme zadání: XA = AX tj.

$$1 \cdot x_{11} + 2 \cdot x_{12} = 1 \cdot x_{11} + 1 \cdot x_{21},$$

$$1 \cdot x_{11} + 3 \cdot x_{12} = 1 \cdot x_{12} + 1 \cdot x_{22},$$

$$1 \cdot x_{21} + 2 \cdot x_{22} = 2 \cdot x_{11} + 3 \cdot x_{21},$$

$$1 \cdot x_{21} + 3 \cdot x_{22} = 2 \cdot x_{12} + 3 \cdot x_{22}.$$

Ekvivalentními úpravami rovnic získáme:

$$2 \cdot x_{12} = x_{21},$$

$$x_{11} + 2 \cdot x_{12} = x_{22},$$

$$x_{22} = x_{11} + x_{21},$$

$$x_{21} = 2 \cdot x_{12}.$$

Zřejmě první dvojice rovnic je ta samá jako druhá, tedy máme

$$x_{21} = 2 \cdot x_{12},$$

$$x_{22} = x_{11} + 2 \cdot x_{12}.$$

Zvolíme $s=x_{11}$ a $t=x_{12}$ jako volné proměnné a dostaneme množinu všech řešení

$$\left\{ \begin{pmatrix} s & t \\ 2t & t+2s \end{pmatrix} : s,t \in \mathbb{Z}_5 \right\}.$$