

3.4 Medians and Order Statistics

- Decrease and Conquer 原理
- Selection Problem

Decrease and Conquer 原理

· 原始河题划分为若的题划分为原始,将原则是一种,将是一种,是一种,并不是一种,并不是一种,并不是一种。 计算问题

例如:折半查找 $T(n)=T(\lfloor n/2 \rfloor)+1$

非常有效的一种方法,通常用于解决优化问题

Decrease and Conquer 原理

- 与Divide and Conquer的不同
 - 一分治方法: 递归求解每一个子问题, 然后通过合并各个子问题的解最后得到原始问题的解
 - 减治方法: 仅通过求解某一个子问题的解得到原始问题的解

Medians and Order Statistics

• The i^{th} order statistic problem

- − Input: set *S* of *n* (distinct) elements, and a number *k*.
- Output: element x in S that is greater than exactly k-1 elements in S.
- Special order statistics
 - The 1st order statistic is the *minimum* in S
 - The n^{th} order statistic is the maximum in S
 - The *median* in *S* is at
 - -(n+1)/2 when n is odd
 - -n/2 and n/2+1 when n is even

Selection Problem

Problem

- Input: set A of n (distinct) elements, and a number k.
- Output: element x in A that is greater than exactly k-l elements in A, i.e the kth smallest element.

The straightforward algorithm:

step 1: Sort the *n* elements

step 2: Locate the k^{th} element in the sorted list.

Time complexity: $O(n \log n)$

Main Idea

- $-S=\{a_1, a_2, ..., a_n\}$
- Let $p \in S$, 用p 将S 划 分为3 个子 集合 S_1 , S_2 , S_3 :
 - $S_1 = \{ a_i \mid a_i < p, 1 \le i \le n \}$
 - $S_2 = \{ a_i \mid a_i = p, 1 \le i \le n \}$
 - $S_3 = \{ a_i \mid a_i > p, 1 \le i \le n \}$
- 3 种情况:
 - $A|S_1|>k$, 则在集合 S_1 中搜索第k小的元素.
 - 否则, $K_1|S_1| + |S_2| > k$, 则 P 是S 中第k 小的元素.
 - 否则,在 S_3 中搜索第 $(k |S_1| |S_2|)$ 小的元素.

- · 如何选择p?

 - 排序每一个组
 - 找到元素p: 它是 [n/5]个组的中位数 的中位数

算法步骤:

O(n)

Step 1: 划分S为[n/5]个组. 每组包含5个元素. 若最后一组不足5个元素,则用 ∞ 补足.

Step 2: 排序每组5个元素,并确定每一分组的中位数. O(n)

Step 3: 计算[n/5]个中位数的中位数p. T(n/5)

Step 4: p将 S 划 分为三个子集合 S_1 , S_2 及 S_3 , S_1 中元素均小于p, S_2 中元素均等于p, S_3 中元素均大于p. O(n)

Step 5: $A|S_1| \ge k$, 则递归地在 S_1 中搜索第 k小元素;

否则,若 $|S_1| + |S_2| \ge k$,则 p 即为S中第 k小元素;

否则,令 $k'=k-|S_1|-|S_2|$,递归地在 S_3 中搜索第k'小元素.

Performance Analysis (粗略)

Each 5-element subset is sorted in non-decreasing sequence.

"大约"至少 |S//4 个元素小于 等于p

算法步骤:

O(n)

Step 1: 划分S为[n/5]个组. 每组包含5个元素. 若最后一组不足5个元素,则用 ∞ 补足.

Step 2: 排序每组5个元素,并确定每一分组的中位数. O(n)

Step 3: 计算[n/5]个中位数的中位数p. T(n/5)

Step 4: p将 S 划 分为三个子集合 S_1 , S_2 及 S_3 , S_1 中元素均小于p, S_2 中元素均等于p, S_3 中元素均大于p. O(n)

Step 5: $A|S_I| \ge k$, 则递归地在 S_I 中搜索第 k小元素;

T(3n/4)

否则,若 $|S_1| + |S_2| \ge k$,则 p 即为S中第 k小元素;

否则,令 $k'=k-|S_1|-|S_2|$,通归地在 S_3 中搜索第k'小元素.

Performance Analysis (粗略)

• 算法复杂性分析

 $\Rightarrow T(n) \le cn + T(19n/20)$

$$\begin{split} T(n) &= T(3n/4) + T(n/5) + O(n) \\ \text{Let } T(n) &= a_0 + a_1 n + a_2 n^2 + \dots \;, \; a_1 \neq 0 \\ T(3n/4) &= a_0 + (3/4) a_1 n + (9/16) a_2 n^2 + \dots \\ T(n/5) &= a_0 + (1/5) a_1 n + (1/25) a_2 n^2 + \dots \\ T(3n/4 + n/5) &= T(19n/20) = a_0 + (19/20) a_1 n + (361/400) a_2 n^2 + \dots \\ T(3n/4) &+ T(n/5) = a_0 + a_0 + (19/20) a_1 n + (241/400) a_2 n^2 + \dots \\ &\leq a_0 + T(19n/20) \end{split}$$

Performance Analysis (粗略)

```
\Rightarrow T(n) \le cn + T(19n/20)
  \leq cn + (19/20)cn + T((19/20)^2n)
 \leq cn + (19/20)cn + (19/20)^2cn + \dots + (19/20)^pcn + T((19/20)^{p+1}n),
   (19/20)^{p+1}n \le 1 \le (19/20)^p n
  = cn (1+19/20+(19/20)^2+...+(19/20)^p)+b
  \leq 20 \ cn + b
  = O(n)
```


Time complexity analysis

- 比用于划分的元素x更大的元素数量至少是:

$$3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

- 因此,最坏情况下,此x更小的元素的数量最多是:

$$n$$
-((3 n /10)-6) =7 n /10+6.

- 同理,比χ更大的元素的数量 最多也是:

$$7n/10+6$$

- 1. Divide n elements in A into $\lfloor n/5 \rfloor$ groups of 5 elements each, at most one group has $(n \mod 5)$ elements.
- O(n)
- 2. Find median of each group by sorting first.
- O(n)

O(n)

- 3. Use Select recursively to find the median x of the $\lceil n/5 \rceil$ medians. In case of having two medians, take the lower.
- $T(\lceil n/5 \rceil)$
- 4. Exchange *x* with the last element in *A* and apply Partition subroutine. Let *k* be the number of elements on the low side of the partition including *x*.
- 5. If i = k, return x. Otherwise, use Select recursively to find the i^{th} smallest element on the low side if $i \le k$, or the $(i k)^{th}$ smallest element on the high side if i > k.

$$T(n) \le \begin{cases} \theta(1) & \text{if } n \le 140 \\ T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & \text{if } n > 140 \end{cases}$$

Now we have

$$T(n) \le \begin{cases} \theta(1) & \text{if } n \le 140 \\ T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & \text{if } n > 140 \end{cases}$$

- Using inductive method, we can prove $T(n) \le cn$ for some c and n > 140.
- Thus, the worst case time complexity is T(n)=O(n).

$$T(n) = \theta(1)$$
 if $n \le c$
 $T(n) = aT(n/b) + D(n) + C(n)$ if $n > c$

3.5 Finding the closest pair of points

优化combine阶段,降低T(n)=aT(n/b)+f(n)中的f(n)

问题定义

输入: Euclidean 空间上的n个点的集合Q

输出: $A, B \in Q$,

 $Dis(A, B)=Min\{Dis(P_i, P_j) \mid P_i, P_j \in Q\}$

 $Dis(P_i, P_j)$ 是Euclidean距离: 如果 $P_i = (x_i, y_i), P_j = (x_j, y_j),$ 则

$$Dis(P_i, P_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

一维空间算法

- 利用排序的算法
 - 算法
 - · 把Q中的点排序

- 通过有序集合的线性扫描找出最近点对
- 时间复杂性
 - T(n)=O(nlogn)

一维空间算法(续)

• Divide-and-conquer算法

边界条件:

1. 如果Q中仅包含2个点,则返回这个点对;

Divide:

2. 求Q中点的中位数m;

3. 用Q中点坐标中位数m把Q划分为两个大小相等的子集合 Q_1 ={ $x \in Q \mid x \le m$ }, Q_2 ={ $x \in Q \mid x > m$ }

Conquer:

4. 递归地在 Q_1 和 Q_2 中找出最接近点对 (p_1, p_2) 和 (q_1, q_2)

Merge:

5. 在 (p_1, p_2) 、 (q_1, q_2) 和某个 (p_3, q_3) 之间选择最接近点对(x, y),其中 p_3 是 Q_1 中最大点, q_3 是 Q_2 中最小点。

(x, y)是Q中最接近点对

• 时间复杂性

- Divide 阶段需要O(n)时间
- Conquer 阶段需要2T(n/2) 时间
- -Merge阶段需要O(n)时间
- 递归方程

$$T(n) = O(1) \qquad n = 2$$

$$T(n) = 2T(n/2) + O(n) \qquad n \ge 3$$

- 用Master定理求解T(n) $T(n) = O(n\log n)$

二维空间算法

• Divide-and-conquer算法

Assume: Q中点已经分别按X坐标和Y坐标排序后存储在X和Y中.

边界 条件:

1. 如果Q中仅包含3个点,则返回最近点对,结束;

Divide:

- 2. 计算Q中各点x-坐标的中位数m;
- 3. 用垂线 $l: x=m \times Q$ 划分成两个大小相等的子集 合 Q_L 和 Q_R , Q_L 中点在l左边, Q_R 中点在l右边;
- 4. 把X划分为 X_L 和 X_R ; 把Y划分为 Y_L 和 Y_R ;

Conquer:

- 5. 递归地在 Q_L 、 Q_R 中找出最近点对: $(p_1, p_2) \in Q_L$, $(q_1, q_2) \in Q_R$
- 6. $d=\min\{Dis(p_1, p_2), Dis(q_1, q_2)\};$

Merge:

- 1. 在临界区查找距离小于d的最近点对 $(p_l, q_r), p_l \in Q_L$, $q_r \in Q_R$;
- 2. 若找到,则 (p_1, q_r) 是Q中最近点对,否则 (p_1, p_2) 和 (q_1, q_2) 中距离最小者为Q中最近点对.

关键是 (p_l,q_r) 的搜索方法及其搜索时间

• (p_l, q_r) 搜索算法

1.
$$Z_L = \{Q_L \, \text{中左临界区点}\};$$
 $Z_R = \{Q_R \, \text{中右临界区点}\};$

• 时间复杂性 O(6n)=O(n)

- (p_l, q_r) 搜索算法
 - 1. $Z_L = \{Q_L \, \text{中左临界区点}\};$ $Z_R = \{Q_R \, \text{中右临界区点}\};$
 - 2. For $\forall p(x_p, y_p) \in Z_L$ Do
 - 3. For $\forall q(x_q, y_q) \in Z_R$ Do $(y_p d \le y_q \le y_p + d)$ *这样点至多6个*\
 - 4. If Dis(p, q) < d
 - 5. Then d=Dis(p, q), 记录(p, q);
 - 6. 如果d发生过变化,与最后的d对应的点对即为 (p_l,q_r) , 否则不存在 (p_l,q_r) .

• 时间复杂性 O(6n)=O(n)

- · (p₁, q_r)搜索算法
 - 1. $Z_L = \{Q_L \, \text{中左临界区点}\};$ $Z_R = \{Q_R \, \text{中右临界区点}\};$
 - 2. For $\forall p(x_p, y_p) \in Z_L$ Do
 - 3. For $\forall q(x_q, y_q) \in Z_R$ Do $(y_p d \le y_q \le y_p + d)$ *这样点至多6个*\
 - 4. If Dis(p, q) < d
 - 5. Then d=Dis(p, q), 记录(p, q);
 - 6. 如果d发生过变化,与最后的d对应的点对即为 (p_l,q_r) , 否则不存在 (p_l,q_r) .

• 时间复杂性

- Divide 阶段需要O(n)时间
- Conquer 阶段需要2T(n/2) 时间
- -Merge阶段需要O(n)时间
- 递归方程

$$T(n) = O(1) \qquad n \le 3$$

$$T(n) = 2T(n/2) + O(n) \qquad n > 3$$

- 用Master定理求解T(n)

$$T(n) = O(n\log n)$$

(p_l, q_r) 的搜索时间:

- $\stackrel{\text{\hbox{$\cal E$}}}{=} (p,q)$ 是最近点对而且 $p \in Q_L$, $q \in Q_R$, dis(p,q) < d, (p,q)只能在下图的区域D.

定理1. 对于左临界区中的每个点p,p-右邻域中至多包含6个点。

证明: 把p-右邻域划分为6个(d/2)×(2d/3)的

矩形。

若p-右邻域中点数大于6, 由鸽巢原理,至少有一个矩形中有两个点.设为u、v,则 $(x_u-x_v)^2+(y_u-y_v)^2\leq (d/2)^2+(2d/3)^2=25d^2/36$ 即 $Dis(u,v)\leq 5d/6 < d$,与d的定义矛盾。

• (p₁, q_r)搜索算法 Input: Y_I , Y_R , dOutput: result 1. 扫描 Y_L 得到 Q_L 中左临界区点,保持y坐标排序,得到 Z_L 2. 扫描 Y_R 得到 Q_R 中左临界区点,保持y坐标排序,得到 Z_R 3. result=null; 4. *top-R*=0; 5. **for** top-L=0 to $Z_L.length-1$ 6. **while** $Z_L[top-L].y > Z_R[top-R].y + d$ 7. **if** $top_{R} = Z_L length_1$ **if** $top-R=Z_R.length-1$ 7. 8. return result; 9. $top-R \leftarrow top-R+1;$ 10. if $Z_I[top-L].y \ge Z_R[top-R].y - d$ and $Z_I[top-L].y \le Z_R[top-R].y + d$ 11. for i=0 to $min\{5, Z_R.length -top-R-1\}$ 12. if $dist(Z_I[top-L], Z_R[top-R+i]) < d$ 13. $result=(Z_I[top-L], Z_R[top-R+i]);$ 15. $d=dist(Z_I[top-L], Z_R[top-R+i]);$

16. return result;

 $Z_L[top-L].y>Z_R[top-R].y+d$,即5>0+4, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d,top-R增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y < Z_R[top-R].y - d, Z_R$ 中后续元素y值都不比 $Z_R[top-R].y$ 小,因此它们与 $Z_L[top-L]$ 的距离必然大于d, top-L增加1

 $Z_L[top-L].y < Z_R[top-R].y - d, Z_R$ 中后续元素y值都不比 $Z_R[top-R].y$ 小,因此它们与 $Z_L[top-L]$ 的距离必然大于d, top-L增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$,为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素),随后top-L增长1,top-R不变

 $Z_L[top-L].y>Z_R[top-R].y+d$, Z_L 中后续元素y值都不比 $Z_L[top-L].y$ 小,因此它们与 $Z_R[top-R]$ 的距离必然大于d, top-R增加1

 $Z_L[top-L].y < Z_R[top-R].y - d, Z_R$ 中后续元素y值都不比 $Z_R[top-R].y$ 小,因此它们与 $Z_L[top-L]$ 的距离必然大于d, top-L增加1

 $Z_L[top-L].y \geq Z_R[top-R].y - d$ 并且 $Z_L[top-L].y \leq Z_R[top-R].y + d$, 为当前 $Z_L[top-L]$ 连 续检验最多6个 Z_R 中的元素(如果 Z_R 中有足够多的剩余元素), 随后top-L增长1, top-R不变. 算法结束.

· (p_l, q_r)搜索算法时间复杂性

- 获取 Z_L 和 Z_R 需要O(n)时间
- 每次使得top-L增加1或者top-R增加1需要消耗常数时间
- 算法结束时, top-L和top-R总共增长O(n),外层for循环耗时O(n)
- 算法时间复杂性为O(n)

```
(p<sub>1</sub>, q<sub>r</sub>)搜索算法
 Input: Y_I, Y_R, d
 Output: result
 1. 扫描Y_1得到Q_1中左临界区点, 保持Y坐标排序, 得到Z_1
 2. 扫描Y_R得到Q_R中左临界区点,保持y坐标排序,得到Z_R
 3. result=null;
 4. top-R=0;
 5. for top-L=0 to Z_I.length-1
 6.
       while Z_I[top-L].y > Z_R[top-R].y + d
           if top-R=Z_R.length-1
              return result:
 9.
           top-R \leftarrow top-R+1;
 10.
       if Z_I[top-L].y \ge Z_R[top-R].y - d and Z_I[top-L].y \le Z_R[top-R].y + d
 11.
           for i=0 to min\{5, Z_p.length -top-R-1\}
 12.
               if dist(Z_I[top-L], Z_R[top-R+i]) < d
 13.
                   result=(Z_I[top-L], Z_R[top-R+i]);
 15.
                  d=dist(Z_I[top-L], Z_R[top-R+i]);
 16. return result:
```


Assume:

Q中点已经分别按x坐标和y坐标排序后存储在X和Y中.

- 1. X=接x排序Q中点;
- 2. Y=按y排序Q中点;
- 3. FindCPP(*X*, *Y*).

时间复杂性= $O(n\log n)$ +T(FindCPP)= $O(n\log n)$