Statistical Methods: Lecture 6

Lecture Overview

Basics of Hypothesis Testing

Testing claims: proportions

Basics of Hypothesis Testing: additional information

Testing a Claim

Aim: test a claim, i.e., "hypothesis". 2 sorts: null hypothesis / alternative hypothesis.

E.g., coin tossing. Test: "unbiased" vs. "biased". Toss 100 times.

Outcome not "fitting" claim (null hypothesis)? Then reject it.

- ► 47×H, 53×1\$ $\hat{p}_{100} = 0.47$ fair?
- ► 5×H, 95×1\$ $\hat{p}_{100} = 0.05$ biased
- ► 37×H, 63×1\$ $\hat{p}_{100} = 0.37$ —fair/biased??

To test hypotheses we need data (from experiments).

Claim: coin is fair (unbiased) (vs. claim: coin favors tails) Experiment: toss coin 100 times Outcome: $37 \times \text{heads}$, $63 \times \text{tails}$

Probability of 37 heads or less assuming claim is true?

If coin is fair, this probability is < 0.01.

- ⇒ Result "37 heads" unlikely with a fair coin.
- \Rightarrow Deviation statistically significant at level 1.

Conclusion: based on outcome it is unlikely that coin is fair.

Now we are considering test for p, later we will consider tests for μ and other tests.

2 hypotheses:

Null hypothesis

 H_0 : population parameter = hypothetical value

Alternative hypothesis

Depending on the claim we choose one out of three:

```
H_a: \begin{cases} \text{population parameter} < \text{hypothetical value} & \text{left-tailed test} \\ \text{population parameter} > \text{hypothetical value} & \text{right-tailed test} \\ \text{population parameter} \neq \text{hypothetical value} & \text{two-tailed test} \end{cases}
```

Left- and right-tailed tests: one-sided tests, two-tailed test: two-sided test.

Measure "fitting"

Aim: find probability of

"if H_0 were true, the experiment outcome is at least as extreme as observation."

- ls $\hat{p}_{100} = 0.37$ likely if we assume that p = 0.5?
- ▶ Is $\bar{x}_n = 145.85$ likely if we assume that $\mu = 155$?

Problem?

Sample statistic's (proportion/mean) distribution depends on parameter to be tested (see CLT).

Solution?

Basics of Hypothesis Testing

000000

- Test statistic ... is a random variable used for deciding about H_0 . Convert sample statistic by pretending H_0 is true ((null) hypothetical value).

Aim: distribution of test statistic under H_0 (null hypothesis). Must not depend on true p (next time: μ) but can depend on n.

Example: Test statistic for testing about p H_0 : p = 0.4, i.e. hypothetical value $p_0 = 0.4$.

sample statistic
$$\hat{P}_n$$
 \Rightarrow test statistic $\frac{\hat{P}_n - 0.4}{\sqrt{\frac{0.4 \cdot 0.6}{n}}}$

(i.e. insert hypothetical value $p_0=0.4$ into $\frac{P_n-p_0}{\sqrt{\frac{p_0(1-p_0)}{p_0(1-p_0)}}}$) What do we know about this test statistic?

Five steps of hypothesis testing

- 0. identify population parameter
- 1. formulate H_0 and H_a and choose significance level α
- 2. collect data
- 3a. choose test statistic and identify its distribution under H_0
- 3b. calculate the value of test statistic based on data
- 3c. find P-value (depending on which alternative): probability under H₀ that test statistic has more extreme values than observed value
 - 4. formulate, based on P-value and α , conclusion regarding H_0 : reject (small P-value) or not (large P-value)

Significance level

Denoted by α , small, usually 0.05, but also 0.01 or 0.1.

Be careful

Hypothesis testing is asymmetric: if H_0 not rejected, we still do not "accept it"!

Example: Fair coin?

37 out of 100 coin tosses were heads. Claim: the coin is biased towards tails.

Step 0: Identify population parameter: population proportion of heads p

Step 1: Formulate H_0 and H_1 and choose significance level α :

 $H_0: p = 0.5$ vs. $H_1: p < 0.5$ with significance level $\alpha = 0.05$.

Other examples

More than 60% of students have a Snapchat account

 $H_0: p = 0.6$

 $H_1: p > 0.6$

20% of Dutch citizens support VVD

 $H_0: p = 0.2$

 $H_1: p \neq 0.2$

Less than 35% of women smoke

 $H_0: p = 0.35$

 $H_1: p < 0.35$

Step 2: Collect data: $37 \times H$, $63 \times T$

Step 3a: Choose test statistic and identify its distribution under H_0 :

Use that the sampling distribution of the sample proportion approximately has a $N(p, \frac{p(1-p)}{2})$ distribution. A good test statistic is

$$Z = \frac{\hat{P}_n - p}{\sqrt{\frac{p(1-p)}{n}}}$$

where p=0.5 is the claimed value from H_0 . Under H_0 , $Z \sim N(0,1)$ approximately (if n is large enough).

Be careful

We use the claimed value (under H_0), and not \hat{p}_n .

Step 3b: Calculate the value of the test statistic based on data:

It follows from the data that $\hat{p}_n = 0.37$, so the observed value of the test statistic is

$$z = \frac{0.37 - 0.5}{\sqrt{\frac{0.5 \cdot 0.5}{100}}} = -2.6$$

Step 3c: Find *P*-value:

We observed z = -2.6.

What is the probability of "test statistic takes even more extreme values"?

Our test is left-tailed: $H_1: p < 0.5$ That means we have to compute

$$P(Z \le -2.6) = 0.0047.$$

Step 4: Conclude:

The *P*-value is smaller than the significance level $\alpha=0.05$, so H_0 is rejected. We have enough evidence to confirm the coin is baised towards tails.

Calculation of P-value

If the test is

- left-tailed: P-value = area to the left of z,
- right-tailed: P-value = area to the right of z,
- two-tailed & z < 0: P-value = $2 \times$ area to the left of z,
- two-tailed & z > 0: P-value = $2 \times$ area to the right of z.

P-value and conclusion

- ▶ If P-value $\leq \alpha$: reject H_0 .
- ▶ If P-value > α : do not reject H_0 .

Another example

Claim(s): (Not) 10% of population is left-handed Data: n = 750 people surveyed, 92 are left-handed

- 0. identify population parameter
- 1. formulate H_0 and H_a and choose significance level α
- 2. collect data
- 3a. choose test statistic and identify its distribution under H_0
- 3b. calculate value of test statistic based on data
- 3c. find P-value (depending on H_a)
- 4. formulate conclusion regarding H_0 : reject or do not reject H_0

Another example

Null hypothesis: 10% of population is left handed Data: n = 750 people surveyed, 92 are left-handed

0: population parameter: population proportion p

1: $H_0: p = 0.1$ $H_a: p \neq 0.1$ significance level $\alpha = 0.01$

2: data: check; (but H_0 , H_a , and α need to be chosen before collecting data.)

3: Calculate score, where claimed value $p_0 = 0.1$

$$z = \frac{\hat{p}_n - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{\frac{92}{750} - 0.1}{\sqrt{\frac{0.1 \cdot 0.9}{750}}} \approx 2.07$$

Under H_0 : test statistic has approx. N(0,1)-distribution.

Test: two-tailed, and z > 0. Hence,

$$P$$
-value = $2 \cdot P(Z \ge 2.07) = 2 \cdot (1 - P(Z \le 2.07)) = 2 \cdot 0.0192 = 0.0384$.

4: conclusion?

Recall:

Claim: 20% of Dutch citizens support VVD — $H_0: p=0.2$ $H_a: p\neq 0.2$ Claim: Less than 35% of women smoke — $H_0: p=0.35$ $H_a: p<0.35$

Claims and hypotheses

More examples of translating claims into hypotheses in the book. Careful: H_0 AND H_a both consist of competing claims.

No golden rule for choosing hypotheses; ... some guidelines:

- present/typical situation is in H₀,
- ▶ hypothesis you wish to reject is in *H*₀,
- ightharpoonup hypothesis you wish to confirm is in H_a .

Three approaches to hypothesis testing

- confidence interval method (not used here)
- P-value method
- critical value method

Methods: P-value vs critical value

Same conclusions. Critical value sometimes simpler.

Critical region: all extreme scores for which H_0 is rejected (at significance level α).

Critical region: depends on α , distribution of test statistic and H_a .

Critical regions

Fix α and look at density of test statistic's distribution. If test is

- ▶ left-tailed: critical region = extreme left tail
- two-tailed: critical region = both extreme left AND right tails
- ▶ right-tailed: critical region = extreme right tail

- ightharpoonup area of purple region = α
- \blacktriangleright total area of blue regions = α , hence each part has area = $\alpha/2$
- ightharpoonup area of red region = α

Critical regions: test about proportion

Test statistic's distribution approx. N(0,1) under H_0 .

For instance, for $\alpha = 0.05$, we reject H_0 if

- ightharpoonup z < -1.645 (left-tailed test),
- ightharpoonup z < -1.96 OR $z \ge 1.96$ (two-tailed test),
- ightharpoonup z > 1.645 (right-tailed test).

Example: Fair coin?

Only step 3 is different when the critical region is used instead of the P-value.

We test H_0 : p = 0.5 vs. H_1 : p < 0.5 with significance level $\alpha = 0.05$.

The test statistic is

$$Z=rac{\hat{P}_n-p}{\sqrt{rac{p(1-p)}{n}}}\sim N(0,1)$$
 under H_0

The test is left-tailed, so the critical region is $z \le -1.645$.

We compute

$$z = \frac{0.37 - 0.5}{\sqrt{\frac{0.5 \cdot 0.5}{100}}} = -2.6.$$

The observed value lies in the critical region, therefore H_0 is rejected. We have enough evidence to confirm the coin is biased towards tails.

Example: Left-handed people

Only step 3 is different when the critical region is used instead of the P-value.

We test $H_0: p = 0.1$ vs. $H_1: p \neq 0.1$ with significance level $\alpha = 0.01$.

The test statistic is

$$Z = \frac{P_n - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1) \text{ under } H_0$$

The test is two-tailed, so the critical region is $z \le -2.575$ or $z \ge 2.575$. (See Table 2; now $\alpha = 0.01$.)

We compute

$$z = \frac{92/750 - 0.1}{\sqrt{\frac{0.1 \cdot 0.9}{750}}} \approx 2.07.$$

The observed value does not lie in the critical region, therefore H_0 is not rejected. We do not have enough evidence to confirm that the percentage of left-handed people is unequal to 10%.

Since hypothesis testing is based on data, randomness can cause errors.

	H_0 true	H_0 false
Reject H ₀	Type I error	correct
Do not reject H_0	correct	Type II error

- ▶ Type I error: mistake of rejecting H_0 when it is true. Probability of a type I error $\leq \alpha$ (α is called the significance level).
- ▶ Type II error: mistake of not rejecting H_0 when it is false. Its probability is denoted by β .

Properties of two errors

- Probability of type I error is fixed.
- ▶ Prob. of type II error depends on $(\alpha,)$ n and actual value of population parameter. Usually decreases with n.