

TI Precision Labs – Brushed DC Motors #5

Presented and prepared by:

Pedro Arango Ramirez

Explaining Back Electromotive Force (Back EMF)

- Back EMF is the voltage in the coil of an electric motor that opposes the current flowing through the coil, when the armature rotates.
- As the motor increases in speed the back emf increases.

Visualizing Back EMF

- Current quickly rises when input voltage is introduced
- Motor begins to spin.
- Back EMF develops
- Current starts decreasing as back EMF increases
- Stability point is reached
- Result of V_{in} and V_{EMF}

Explaining Inrush Current

 Inrush current is a short-lived transient spike in current that occurs when input voltage is applied as a motor winds up to speed.

- Inductive nature of motor does not allow for current to rise instantly.
- The peak starting current can cause damage to the system if it is not regulated.

Inrush Current Control with Current Regulation

Regulation can be applied to maintain the inrush current under control. This
way current stays below the acceptable level

- Current regulation keeps the current below the threshold in a variety of ways.
- Over current protection and overtemperature protection can be triggered by inrush.

Explaining Stall Current and IPROPI

 Stall current occurs when the motor stops spinning and the back emf disappears, causing current to spike.

- The rising stall current can cause damage to the system if it is not regulated.
- There are different ways in which a stall condition can be detected.
- IPROPI uses a current mirror to create a measurable voltage drop through a desired resistor.

To find more motor driver technical resources and search products, visit www.ti.com/motor-drivers/overview.html