MyGenWashy: Modernizing Old Appliances

We have developed generic electronics for washing machines that modernize old appliances and integrate them into a Smart Home for monitoring and energy efficiency.

Smart electronics can transform old physically working washing machines into sustainable, repaired & more intelligent appliances than before.

AISLER

Mariahilfer i

By Clemens, Thomas & Patrick
Powered by Mayer Makes, IoT Austria & Mariahilfer i

www.mayermakes.at

Goal of the Hackathon

Generic electronic components

Development of a universal control system for washing machines

Gain knowledge

Understanding and documenting the components of a washing machine

Smart Home Integration

Connection to modern home automation systems

Open Product Pass => http://odpp.at/ (July 2025)

Create & customize digital documentation for CURRENT products Circular economy

What have we learned?

Security Functions

Surprisingly **simple** and effective **security mechanisms** in **AEG** and **Chinese control board**.

Established design

Many identical components like

Darlington ULN2003 driver for relay

control

Price optimisation

High-quality washing machines have achieved an excellent price/component ratio. The main difference: Interface

Surprising discoveries

Water level control – by air pressure!?

Simple air membrane and air pressure => That was unexpected!

Direct control

230V circuit without complex electronics => simplicity is King!

Security system

Mechanical protection against overflow and overheating => Safety first – also on Chinese generic boards!

Conclusions

Sophisticated technology

The **operating principle** of a washing machine is **fully developed** and **optimized**

Circular Economy

High-quality machines can simply continue to be operated with new electronics. QED ©

Sustainability: Refabrication, Pimp

Replacing the electronics of an old washing machine with a **generic** one that has more **energy-saving** functions and is **easier** to control. This **saves resources** and **reduces electronic waste!**

Results of the Hackathon

Schematic for circuit v1/3

<u>GitHub - mayermakes/MyGenWashy: Generic washing Machine</u> <u>Controller - Result of the TuttleButtle Hackathon 2025</u>

Component list v1/3

Complete component documentation

Board v1/3

PCB design for the MadWashyMax Edition

Smart Home Integration

PCB design for the MadWashyMax Edition (intermediate Version here – will be updated once PCB Board v1 is here ...)


```
esphome:
 name: mygenwashy-v2
                                                             fan: #Washing Machine Rince Speed
 friendly name: MyGenWashy-v2
                                                               - platform: speed
esp32:
                                                                 output: pwm motor
 board: esp32dev
                                                                 name: "Motor Rotor Speed 3"
 framework:
                                                                 icon: mdi:fan-speed-3
    type: arduino
                                                               - platform: speed
logger:
                                                                 output: pwm motor
 level: VERBOSE
                                                                 name: "Motor Stator Speed 2"
                                                                 icon: mdi:fan-speed-2
output:
 - platform: gpio
                                                             sensor:
   pin: GPIO32
                                                               - platform: ntc #NTC
   id: relay pin 1 relay cold water valve
                                                                 sensor: resistance sensor
  - platform: qpio
                                                                 calibration: #datasheet - or calkibrated - user instrcutions - MrWashyBalls
   pin: GPIO33
                                                                   \#-10.0 \text{kOhm} -> 25^{\circ}\text{C}
   id: relay pin 2 relay pump
                                                                   \#-27.219kOhm -> 0°C
  - platform: gpio
                                                                   \#-14.674kOhm -> 15°C
   pin: GPIO25
                                                                   b constant: 3950
   id: relay pin 3 relay montor stator
                                                                   reference temperature: 25°C
 - platform: gpio
                                                                   reference resistance: 10kOhm
   pin: GPIO26
                                                                 name: "Water Temperature (NTC)"
   id: relay_pin_4_relay_montor_aktor
                                                                 icon: mdi:thermometer-snowflake
  - platform: ledc #PWM Motor Speed
   pin: GPIO27
                                                               - platform: resistance
    frequency: 1000 Hz
                                                                 id: resistance sensor
    id: pwm motor
                                                                 sensor: source sensor
switch:
                                                                 configuration: DOWNSTREAM
 - platform: output
                                                                 resistor: 5 kOhm #Messen
    id: switch relay cold water valve
                                                                 name: Resistance Sensor
    name: "R1 - Kaltwasserventil"
    icon: mdi:Water
                                                               - platform: adc
    output: relay pin 1 relay cold water valve
                                                                 id: source sensor
    restore mode: RESTORE DEFAULT OFF
                                                                 pin: GPIO35
  - platform: output
                                                                 update interval: 60s
    id: switch relay relay pump
   name: "R2 - Wasser abpumpen"
                                                               - platform: gpio
    icon: mdi:Pump
    output: relay pin 2 relay pump
                                                                   number: GPIO34
  - platform: output
                                                                   mode: INPUT
    id: switch relay montor stator
                                                                   inverted: false
    name: "R3 - Motor Stator"
                                                                 name: "Umdrehungssignal"
    icon: mdi:Motor
                                                                 filters:
   output: relay pin 3 relay montor stator
                                                                   - delayed on: 10ms
  - platform: output
                                                                   - delayed off: 10ms
    id: switch relay pin 4 relay montor aktor
                                                                 icon: mdi:counter
    name: "R4 - Motor Aktor"
    icon: mdi:MotorAktor
```

output: relay pin 4 relay montor aktor

ESPHome & Home Assist

ESPHome - Home Assistant

mygenwashy-v1.yaml

remarks:
Motor driver & NTC
calibration will follow in
v2

OnPrem Smart Home

Post-apocalyptic SmartHome integration made possible without stealing your data

Minimal Arch / i2c Bus / OnPrem Smart Home

	A	В	С	D	E 4	▶ G	
1	÷	Funktion	─ Sensor/Acto ─	Volt =	typ- esphom =	Cold Wash	=
2	WARM	Hot Water Valve (n/a)	Actor ▼	230V?	switch •	No ▼	þ
3	MAIN	Cold Water Valve	Actor ▼	230V?	switch •	Yes •	
4	RINSE	Rinse Valve	Actor ▼	230V?	switch •	Yes •	
5	DRAIN	Drain Pump	Actor ▼	230V?	switch •	Yes •	þ
6	LOCK	Control Wire Door Live (do not open door)	Sensor ▼	0-230V	binary 🔻	n/a ▼	þ
7	ROTOR	Motor	Actor ▼	0-230V	switch •	Yes •	D
8	ROTOR	Motor	Actor ▼	0-230V	switch •	n/a ▼	þ
9	STATOR	Motor	Actor ▼	0-230V	switch •	Yes •	D
10	STATOR	Motor	Actor ▼	0-230V	switch •	n/a ▼	Ò
11	HEAT	Heat Pipe	Actor ▼	0-230V	switch •	No •	Ò
12	HEAT	Heat Pipe	fix ▼	NULL	fix ▼	No ▼	þ
13	HIGH LVL	Max Water	Sensor ▼	0-230V	binary 🔻	n/a ▼	þ
14	DOOR ZERO	Door Closed	Sensor ▼	0-230V	binary 🔻	ZERO ▼	þ
15	LOW LVL	Min Water for Heat	Sensor ▼	0-230V	binary 🔻	n/a ▼	Ò
16	TEMP SENSOR	Temperature Sensor / NTC / MCU	Sensor ▼	0-3,3v	DAC 🕶	Yes •	
17	TEMP SENSOR	Temperature Sensor / NTC / MCU	Sensor ▼	0-3,3v	DAC 🔻	yes ▼	þ
18	SPEED	Similar Hall	Sensor ▼	0-3,3v	Digital 🔻	Yes •	þ
19	SPEED	Similar Hall	Sensor ▼	0-3,3v	n/a ▼	Yes •	þ
20	LINE	L-Live (Phase)	n/a ▼	230V	n/a ▼	n/a ▼	þ
21	ZERO	N -Naught (Null leiter)	n/a ▼	NULL	n/a ▼	n/a ▼	þ

Modified MadWashyMax

Hardware modification

Installing the new control board in the existing washing machine

Software integration

Control via Home Assistant with individual programs. Energy savings.

Location

The modified washing machine is in operation @Mariahilfer i

Follow-Ups & Spin-Offs

Open Digital Product Pass – ODPP

Examples of 4 household appliances incl. MadWashyMax => in July check http://odpp.at/

Energy-optimized water heating

Real-time control for maximum

efficiency

Washing quality monitoring

StartUp idea for monitoring cleaning

performance

EnergyMate
Control with dynamic electricity
prices (StartUp)

Future vision

Promoting sustainability
Extend the service life of household appliances. Washing
machine => e-toothbrush => washing machine etc...

Build a community => http://odpp.at/ (July)
Share knowledge and experiences.

Driving innovation forward

Develop new applications for existing technology. Which can be used TODAY by anyone!

Our project shows how we can use open source technology to reduce e-waste and create new business models at the same time

AUSTRIA

Clemens Mayer MAYER MAKES e.U.

Clemens.mayer@mayermakes.at

www.mayermakes.at

Professional Maker since 2020 (Foundign of MAYER MAKES e.U. 2017) Autodidact

Commercial Filming Diploma
Certified 3D printing Trainer
Certified CE Productcoordinator
Host of the Element14 Community Youtube Channel www.community.element14.com/presents

Founder smander.com

Consulting and Services regarding CE compliance. Specialized on the needs of Small Businesses, Start-Ups and Open Source Hardware.

CE-Product Coordinator CERTIFICATION N° CE24NOE0004 BODY

Experience:

Various electronics projects in collaboration with nationnal and international companies.
Several hundred projects fully documented and open source.

DI Patrick Ch. AWARTPrincipal Solution Architect

p@awart.net +43 664 88 55 13 77

Sprachen: D, E, F

stolzer Vater von 2 Kindern (Bea hat mit 4

Jahren löten gelernt)

Hobby: Hiking/Volleyball/ MTB

Kreislaufwirtschaftliche Entwicklung im

Bestand Energiegemeinschaften &

Lastprofil-optimierung

Co-Gründer Mariahilfer i Nov 2024 360°

Gräzl-Resilienz

Ausbildung:

- Master TU Wien / Technische Informatik 2001
- Data Science / Hopkins Universität 2017

Kernkompetenzen:

- Innovation Lead / Guide for Digital Transformation
- KI Experte & Data Scientist
- Wissensmanagement
- Complex System Assessment / Evaluation
- Al Roadmap & Strategiefindung
- Smart Product Use Case Entwicklung, Bewertung,
 Spezifizierung und Umsetzungsverantwortung
- Python / Node js / IoT / ... / (No-)SQL / Elastic Stack / diverse Programmier & Abfragesprachen von C über X++ und lua bis mircopython der letzten 35 Jahre.

Fortbildung, Kurse & Zertifizierungen:

- Google Advanced Al Solutions 2019
- Azure ML 2018
- Scrum Master 2018
- Zertifizierter Innovationsmanager 2008
- Microsoft Certified Professional 2013

Projekte / Erfahrung:

Maßgebliche fachliche Leitung von Digitalen
Transformationsprojekten in den Branchen SmartCity,
eGoverment, Public Health & Krisenmanagement Systeme seit 25 Jahren.

- Von der Vision über die Prozess- &
 Anforderungsanalyse bis hin zum Go Live
- Strategieentwicklung und Umsetzung
- DPP / Digitaler Produktpass
- ODPP / Offener DPP
- Kintsugi Repair Cafe
- (u.a. Wohn Interieur)
- KI-Wissensmanagement

JOIN US for v2, v3 & StartUps!

Get in touch and participate in our future projects advancing open source and reusability

Patrick Awart

Thomas Losert

Open Digital Product Pass => http://odpp.at/ (July 2025) contribute@odpp.at

Clemens Mayer

www.mayermakes.at

MANY Thx go to:

Albert (pixs, Transport, Vids, PPT!), Johanna (Washing machine!), Birgit (UX Feedback & Requirements Feedback), Boots Owen (Many Many Useful tips!!!) check out: https://youtu.be/f2Fo3-SVfDs Farnell – components Aisler – PC Board Infineon – Al Boards **Gorenje – CircThread Inspiration for ODPP!** D. (crimping!) Kintsugi Repair Café (Space!) CargoBike! Gemma, CoPilot, etc. Cool Al Pictures raising the Adrenalin Levels! Elektra and Nescafe Coffee machine **RuSZ: David & Dagmar – Aligning** Elektro Kuchling: Feedback of current sales practice & Inspiration on ReUse Ideas Generic (!!!) Water Adapter from WaterFront lying around – you saved us!

!!! Let's keep up the great Work & Vibes!!!