UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: KJM 1110 – Organisk kjemi I

Eksamensdag: 10. juni 2011 Tid for eksamen: 9:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En aromatisk forbindelse med bruttoformel C₉H₁₁BrO har ¹H NMR-spekteret som er vist nedenfor.

Foreslå en mulig struktur til forbindelsen. Grunngi svaret ved å vise hvordan den foreslåtte strukturen er i overensstemmelse med alle spektroskopiske data.

Oppgave 2

Et aromatisk hydrokarbon \mathbf{A} ($C_{12}H_{16}$) gir to produkter, \mathbf{B} og \mathbf{C} , ved behandling med ozon (O_3) etterfulgt av Zn i eddiksyre. Forbindelsen \mathbf{B} ($C_9H_{10}O$) har en sterk IR-absorbsjon ved 1690 cm⁻¹. Verken \mathbf{B} eller \mathbf{C} oksideres når de behandles med CrO_3/H_2SO_4 . Når forbindelsen \mathbf{B} behandles med Grignard-reagenset CH_3MgBr , etterfulgt av opparbeiding i surt vandig miljø, dannes et racemat av en kiral forbindelse \mathbf{D} som viser en bred IR-absorpsjon ved ca. 3500 cm⁻¹.

Foreslå strukturer for forbindelsene **A**, **B**, **C** og **D** som er i overensstemmelse med de opplysningene som er gitt.

Oppgave 3

Angi hvilken struktur som er den mest stabile i hvert av parene under. Svarene skal begrunnes.

a)
$$CH_3$$
 eller CH_3 CH_3

Oppgave 4

Nedenstående reaksjonsligning viser dannelsen av et acetal fra et keton og en alkohol. Denne reaksjonen er en likevektsreaksjon som katalyseres av syre.

- a) Foreslå minst tre metoder som kan benyttes for å forskyve denne likevekten mot høyre.
- b) Vis mekanismen for den syrekatalyserte dannelsen av ketalet. Bruk elektronparforskyvningspiler, og vis klart funksjonen til syrekatalysatoren.

Oppgave 5

Vi ønsker å gjennomføre disse to flertrinns syntesene. Angi reagenser og strukturer for mellomprodukter i hvert tilfelle. Reaksjonsmekanismer trengs ikke.

Oppgave 6

En mastergradsstudent ønsket å lage eteren **B** ved hjelp av en Williamson etersyntese, som vist i reaksjonsligningen nedenfor.

$$H_3C$$
 H_3C
 H_3C
 H_3C
 OCH_2CH_3
 H_3C
 OCH_2CH_3
 A
 B

Studenten lot 41,0 g av bromidet **A** reagere med et lite overskudd av $CH_3CH_2O^-Na^+i$ etanol. Reaksjonsblandingen ble opparbeidet, og rensing av produktet fra reaksjonen ved hjelp av destillasjon førte til isolasjon av 16,6 g av en fargeløs væske. Undersøkelse av dette hovedproduktet ved hjelp av NMR-spektroskopi viste at det *ikke* var det ønskete produktet **B**, men at det i stedet var et hydrokarbon **C** som har molekylformel C_9H_{16} .

- a) Hva er en sannsynlig struktur av det isolerte hovedproduktet?
- b) Forklar hvorfor den planlagte syntesen ikke ga det ønskede produktet, og foreslå med begrunnelse en bedre synteserute for **B** fra andre utgangsstoffer. (Ingen av utgangsstoffene skal ha mer enn 9 C-atomer).
- c) Hva var utbyttet (i %) av det isolerte produktet **C**, basert på mengde **A** som ble benyttet?

Atommasser som kan være til nytte i utregningene: H (1,01), C (12,01), O (16,00), Na (22,99), Br (79,90).

Oppgave 7

Gi entydige IUPAC-navn på forbindelsene A-E.

Oppgave 8

Angi hva som blir hovedproduktet i hver av reaksjons-sekvensene a)-c) nedenfor.

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type protest		
Type proton	C:(CII)	Kjemisk skift (δ)
Referanse	Si(CH ₃) ₄	0,0
Alkyl (primær)	— С H ₃	0,7-1,3
Alkyl (sekundær)	—CH ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	C=C-C	1,6-2,2
Metylketon	−c CH ₃	2,0-2,4
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—С≡С−Н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	COH	2,5-5,0
Alkohol, eter	C H	3,3-4,5
Vinylisk	C=C H	4,5-6,5
Aromatisk	Aryl—H	6,5-8,0
Aldehyd	—c(H	9,7-10,0
Karboksylsyre	—с ^о —н	11,0-12,0

Spektroskopiske data – omtrentlige IR-absorpsjoner.

11	0 1 j
Funksjonell gruppe / bindingstype	Absorbsjon cm ⁻¹
sp ³ C–H	2850-2960
sp ² C–H	3020-3100
sp C–H	3300
C=C	1640-1680
aromatisk ring	1450-1600
C≡C	2100-2260
alkohol O–H	3400-3650 (bred)
karboksylsyre O–H	2500-3100 (meget bred)
amin N–H	3300-3500
nitril C≡N	2210-2260
karbonyl C=O	1670-1780 (sterk)

Periodesystemet

1 H																	2 He
3	4]										5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106					•		•					
Fr	Ra	Ac	Rf	Ha	106												

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd.	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr