1 Decision Theory Review

1.1 Loss functions

• We assume $L(\theta, a)$ is defined for all $(\theta, a) \in \Theta \times A$, and $L(\theta, a) \geq B > -\infty$

• Squared-error loss

- SEL: $L(\theta, a) = (\theta - a)^2$

– Weighted SEL: $L(\theta, a) = w(\theta)(\theta - a)^2$

– Quadratic loss: $L(\theta, \mathbf{a}) = (\theta - \mathbf{a})' \mathbf{Q} (\theta - \mathbf{a})$ where \mathbf{Q} is positive definite

• Linear loss

 $-A = \Theta \subset \mathbf{R}$

$$L(\theta, a) = \begin{cases} K_0(\theta - a) & \theta - a \ge 0 \\ K_1(a - \theta) & \theta - a < 0 \end{cases}$$
 (1)

• Linex loss

$$-4 = \Theta \subset B$$

$$L(\theta, a) = e^{c(\theta - a)} - c(\theta - a) - 1, \quad c \neq 0$$
 (2)

- Entropy loss
- $-A = \Theta$

$$L(\theta, a) = - \operatorname{E}_{\theta} \left[\log \frac{p_{\theta}(X)}{p_{\theta}(X)} \right] \tag{3}$$

1.2 Unbiasedness

ullet Decision rule $\delta: \mathcal{X} \to \mathcal{A}$ is unbiased under $L(\theta, a)$ if

$$E_{\theta} L(\theta, \delta) \le E_{\theta} L(\theta', \delta) \quad \forall \theta, \theta' \in \Theta$$
 (4)

1.3 Bayes, Minimax

• Frequentist risk of rule δ :

$$R(\theta, \delta) = \mathcal{E}_{\theta} L(\theta, \delta) = \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x)$$

• Bayes risk

$$r(\pi, \delta) = E^{\pi} R(\theta, \delta) = \int_{\Theta} \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x) d\pi(\theta)$$
 (6)

• Rule δ_1 is R-better than δ_2 if

$$R(\theta, \delta_1) \le R(\theta, \delta_2) \quad \forall \theta$$
 (7)

 $\exists \theta \text{ s.t.} \quad R(\theta, \delta_1) < R(\theta, \delta_2)$

ullet $\delta_1, \, \delta_2$ R-equivalent if

$$R(\theta, \delta_1) = R(\theta, \delta_2) \quad \forall \theta$$

• Rule δ is a Bayes rule wrt proper prior π if

$$r(\pi, \delta) = \inf_{\delta^* \in \mathcal{D}} r(\pi, \delta^*)$$
 (10)

and we write it $\delta^\pi,$ and $r(\pi)=r(\pi,\delta^\pi)$

- If $r(\pi) = \infty$, any rule is Bayes

A Bayes rule can be found by choosing an action to minimize the posterior expected loss for all x in the support of the marginal

$$m(A) = \int P_{\theta}(A) d\pi(\theta) \tag{11}$$

that is

$$\delta^{\pi}(x) = \arg \inf_{a \in \mathcal{A}} \int_{\Theta} L(\theta, a) d\pi(\theta|x) \quad \forall x$$
 (12)

- $\bullet\,$ If π is improper, a rule satisfying this condition is a generalized Bayes rule
- δ is admissible if there is no R-better rule, inadmissable if there is
- δ is minimax if it minimizes $\sup_{\theta} R(\theta, \delta^*)$ among all rules $\delta^* \in \mathcal{D}$, ie,

$$\sup_{\theta \in \Theta} R(\theta, \delta) = \inf_{\delta^* \in \mathcal{D}} \sup_{\theta \in \Theta} R(\theta, \delta^*)$$
 (13)

- If Θ discrete, prior π s.t. $\pi(\theta) > 0 \ \forall \theta \in \Theta$, and $r(\pi) < \infty$, then δ^{π} admissible
- If Bayes rule unique, it is admissible
- Blyth Theorem: If Θ discrete, δ a rule, and \exists sequence of generalized priors π_n s.t. $\liminf \pi_n(\theta) > 0 \ \forall \theta, \ r(\pi_n) < \infty, \ r(\pi_n, \delta) r(\pi_n) \to 0$, then δ admissible
- If π proper such that $r(\pi) = \sup_{\theta \in \Theta} R(\theta, \delta^{\pi})$, then δ^{π} minimax; if unique Bayes wrt π , it is also unique minimax
- Generalized Bayes rule with constant (finite) risk is minimax, called an equalizer
- Admissible rule with constant risk is minimax
- Unique minimax is admissible
- Minimax need not be admissible
- · Admissible need not be Bayes
- Minimax need not be Bayes

1.4 Complete classes

- Class of rules $\mathcal C$ is essentially complete if $\forall \delta \not\in \mathcal C$, $\exists \delta' \in \mathcal C$ R-better or R-equivalent to
- \mathcal{C} complete if $\forall \delta \not\in \mathcal{C}$, $\exists \delta' \in \mathcal{C}$ R-better than δ
- ullet C is minimal complete if complete and no proper subset complete

2 Probability Background I

2.1 Maximum Likelihood Principle

- \bullet X a sample, $\theta \in \Theta$ unknown, $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ is the family of X
- Maximum likelihood principle says we should choose estimate

$$\hat{\theta} = \arg\max_{\theta \in \Theta} a(\theta) L_x(\theta) \tag{14}$$

• For point estimation, $a(\theta) = \text{constant} \neq 0$, so MLE is

$$\hat{\theta} = \arg\max_{\theta \in \Theta} L_x(\theta) \tag{15}$$

• For testing problem $a(\theta) = 0$ for incorrect decision

2.2 Sufficient statistics

- T = T(X) is sufficient for X or $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ or θ if conditional distribution of X given T(X) is independent of θ
- T(X) ≡ X is always sufficient
- Factorization Criterion: If family $\mathcal P$ of dists of X is dominated by σ -finite measure μ , p_{θ} the pdf of P_{θ} wrt μ , then T = T(X) is sufficient for $\mathcal P$ iff \exists non-negative functions p_{θ} the pdf of P_{θ} wrt μ , then $T = q_{\theta}(t), \ \theta \in \Theta$, and h(x), such that

$$p_{\theta}(x) = q_{\theta}(T(x))h(x) \quad (a.e.\mu) \tag{16}$$

- Under same conditions, if T sufficient, then $\forall \theta^*, \theta, p_{\theta}(x)/p_{\theta^*}(x)$ is a function only of T(x). Conversly, if \exists fixed θ^* with $p_{\theta^*}(x) > 0$ s.t. $\forall \theta, p_{\theta}(x)/p_{\theta^*}(x)$ is a function only of T(x), then T sufficient
- Koopman-Darmois family: X = (X_1,\ldots,X_n) , X_i iid $f_{\theta}(x)$, $f_{\theta}(x) = \exp\{P(\theta) + xQ(\theta) + R(x)\}$, Q a 1-1 function θ ; $\sum_i X_i$ sufficient
- Bayes sufficiency: If under a prior π on Θ , $\pi(\theta) > 0 \ \forall \theta$, posterior $\pi(\theta|x)$ exists, depends only on T(x) nd θ , then T is sufficient for θ . Conversely, if T is sufficient for θ , then under any prior π , the posterior $\pi(\theta|x)$ (if it exists) depends only on T(x) and

2.3 Minimal sufficient statistics

- Sufficient statistic S is minimal sufficient for $\mathcal P$ if \forall sufficient T, there is measurable function f of T such that S=f(T) (a.e. $\mathcal P$)
- Any 1-1 measurable function of minimal suff. S is also minimal sufficient
- Criterion for minimal sufficiency: Let S(X) be a statistic, π a prior on Θ s.t.

$$0 < m_{\pi}(x) = \int p_{\theta}(x) d\pi(\theta) < \infty \quad (a.e.\mu)$$
 (17)

If $\forall x, x'$,

$$\frac{p_{\theta}(x)}{m_{\pi}(x)} = \frac{p_{\theta}(x')}{m_{\pi}(x')} \iff S(x) = S(x')$$
(18)

then S is minimal sufficient for θ

- If $p_{\theta}(x) > 0 \ \forall \theta, x$, then we can pick arbitrary θ^* , π singular measure with mass 1 at θ^*
- If $\pi(\theta) > 0 \ \forall \theta$, this is equivalent to checking if

$$\pi(\theta|x) = \pi(\theta|x') \iff S(x) = S(x') \tag{19}$$

• Corollary: Let S be a statistic.

1. If $L_x(\theta) > 0 \ \forall (x, \theta)$, and if for any pair (x, x')

$$S(x) = S(x') \iff \frac{L_x(\theta)}{L_{x'}(\theta)}$$
 is constant (26)

then S is minimal sufficient

2. If S sufficient, $S(x)=S(x')\ \forall x,x'$ satisfying $L_X(\theta)=CL_{x'}(\theta),\ C=C(x,x')$ a constant, then S minimal sufficient

3 Probability Background II

3.1 Expoenential family

(5)

(9)

• Exponential family has density

$$p_{\theta}(x) = C(\theta) \exp \left\{ \sum_{j=1}^{k} Q_j(\theta) T_j(x) \right\} h(x)$$
 (21)

with respect to σ -finite measure μ over $\mathcal X$ such that $p_{\theta}>0$ for all $x\in \mathcal X$. Also, the unnormalized density (ie, without $C(\theta)$) must have a finite integral over $\mathcal X$ for all $\theta\in\Theta$

- Then by factorization, a sufficient statistic for θ is $(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i))$
- ullet We can get canonical form by absorbing h(x) into $d\mu$, treat $(Q_1(heta),\ldots,Q_k(heta))$ as a parameter in \mathbf{R}^k so that

$$p_{\theta}(x) = C(\theta) \exp \left\{ \sum_{j=1}^{k} \theta_{j} T_{j}(x) \right\}$$
 (22)

• Then, for the canonical exponential family, the natural parameter space is

$$\Omega = \left\{ \theta \in \mathbf{R}^{k} : \int \exp[\theta \cdot T(x)] d\mu(x) < \infty \right\}$$
(23)

and this is convex

 $T(\mathbf{X})$ is minimal sufficient for θ if there is $\theta^* \in \Theta$ such that $Q_1(\theta) - Q_1(\theta^*), \ldots, Q_k(\theta) - Q_k(\theta^*)$ are linearly independent functions of $\theta \in \Theta$.

3.2 Complete statistics

- Statistic V(X) is ancillary for θ if its distribution does not depend on θ and first-order ancillary if $E_{\theta}V(X)$ is constant, independent of θ
- A statistic T is complete for θ if any real valued measurable function g of T is such that

$$E_{\theta}g(T) = 0 \quad \forall \theta \implies g(T) = 0 \quad (a.e.\mathcal{P})$$
 (24)

- ullet If the implication holds for all bounded real valued measurable g, then T is boundedly
- For the exponential family, T(X) is complete if the interior of Ω is nonempty

3.3 Bounded completeness and sufficiency

• Bahadur's Theorem: If a sufficient statistic is boundedly complete, then it is minimal

3.4 Basu's Theorem

• Suppose $X \sim P_{\theta}$, and T is a complete and sufficient statistic for θ . Then T is independent of any ancillary statistic of X for θ

4 Uniformly Most Powerful Tests I

- The rejection region of a test ϕ is $\{x:\phi(x)=1\}$, boundary region $\{x:0<\phi(x)<1\}$, acceptance region $\{x:\phi(x)$
- The power function of φ is

$$\beta(\theta) = \beta_{\phi}(\theta) = E_{\theta}\phi(X) \tag{25}$$

ullet The significance level / size α of ϕ is

$$\alpha = \alpha_{\phi} = \sup_{\theta \in \Theta_0} \beta_{\phi}(\theta) \tag{26}$$

4.1 Nevman-Pearson Lemma

$$H_0: X \sim P_0 \text{ vs. } H_1: X \sim P_1$$
 (27)

Suppose P_0 , P_1 have densities p_0 , p_1 wrt dominating measure μ (eg $\mu = P_0 + P_1$). 1. There exists test ϕ , constant k such that

$$E_0\phi(X) = \alpha \tag{28}$$

- $\phi(x) = \begin{cases} 1 & p_1(x) > kp_0(x) \\ 0 & p_1(x) < kp_0(x) \end{cases}$ (29)
- 2. Any test satisfying these two for some k is most powerful at level α • MP test uniquely determined except on boundary set $\{x: p_1(x) = kp_0(x)\}$ where it can be any function $0 \le \phi(x) \le 1$ as long as it has size α
- \bullet The test $\phi(x)=\mathbf{1}\{p_1(x)/p_0(x)>k\}$ is MP at level $P_0(p_1(X)/p_0(X)\leq k)$ • Critical value k is any $(1-\alpha)$ quantile of $p_1(X)/p_0(X)$ under P_0 , can be constant on the boundary where the ratio equals k
- \bullet For any $t \in [0,1]$ the $t{\rm th}$ quantile of df F is any number x such that

$$F(x-) \le t \le F(x) \tag{30}$$

(30)

• x is a tth quantile $\iff x \in [F^*(t), F^{\#}(t)]$ where

$$F^*(t) = \inf\{x : F(x) \ge t\}, \quad F^{\#}(t) = \sup\{x : F(x) \le t\}$$
 (31)

- \bullet If F continuous and strictly increasing, then F^* and $F^\#$ are identical to $F^{-1}.$ We refer to F^* as the inverse of F
- Also, if U ~ U(0, 1), then F*(U) ~ F
- Corollary: If 0 < α < 1, β is the power of the MP level α test, then α < β unless $P_0=P_1$

5 Uniformly Most Powerful Tests II

5.1 MLR and UMP tests of composite hypotheses

- Let $C_{\alpha} = \{\phi: \phi \text{ is of size } \alpha\}$. ϕ_0 is uniformly most powerful of size α if it has size α and $\beta_{\phi_0}(\theta) \geq \beta_{\phi}(\theta) \ \forall \theta \in \Theta_1$ and $\phi \in C_{\alpha}$
- If there is real-valued function T(X) such that for any $\theta < \theta'$, distributions P_{θ} , $P_{\theta'}$ are distinct, the likelihood ratio $p_{\theta'}(x)/p_{\theta}(x) = g(T(X))$ where g is a nondecreasing function, then $\mathcal P$ has the MLR in T.
- It is trivial to see that T is sufficient.
- If $\Theta=\{\theta_0,\theta_1\},$ then MLR is satisfied by choosing $T(x)=p_{\theta_1}(x)/p_{\theta_0}(x)$
- Theorem: Suppose X has density $p_{\theta}(x)$ with MLR in $T(x), 0 \le \alpha \le 1$. Then
 - 1. There is a UMP α -level test of $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ of the form

$$\phi(x) = \begin{cases} 1 & T(x) > C \\ \gamma & T(x) = C \\ 0 & T(x) < C \end{cases}$$

$$(32)$$

where C, γ chosen so that $E_{\theta_0} \phi(X) = \alpha$.

- 2. One such choice is $C=(1-\alpha)$ th quantile of T(X) under P_{θ_0} , and $\gamma=(\alpha-P_{\theta_0}\{T(X)>C\})/P_{\theta_0}\{T(X)=C\}$ if $P_{\theta_0}\{T(X)=C\}>0$, else γ can be any number in [0,1].
- 3. The power function of ϕ is strictly increasing for all θ for which $0 < \beta(\theta) < 1$
- 4. For all θ' the test is UMP for $H_0':\theta\leq\theta'$ vs $H_1':\theta>\theta'$ where $\alpha'=\beta(\theta')$
- 5. For any $\theta < \theta_0$, the test minimizes $\beta(\theta)$ among level α tests
- Corollary: If real-parameter family p_{θ} with df F_{θ} has MLR in T(x)=x, then for all x, $F_{\theta}(x)$ is strictly decreasing in θ for which $0 < F_{\theta}(x) < 1$
- Theorem: UMP test for $H_0: \theta \ge \theta_0$ vs $H_1: \theta < \theta_0$ is

$$\phi(x) = \begin{cases} 1 & T(x) < C \\ \gamma & T(x) = C \\ 0 & T(x) > C \end{cases}$$

$$(33)$$

and the power function $\beta(\theta)$ is strictly increasing, and for any $\theta<\theta_0$, it minimizes $\beta(\theta)$ among level α tests

ullet Note this is just $1-\phi$ for the original UMP with the hypotheses switched

5.2 Generalized NP lemma

• For $H_0:\theta\not\in (\theta_1,\theta_2)$ vs $H_1:\theta\in (\theta_1,\theta_2)$ where $\theta_1<\theta_2$, if $p_\theta(x)=c(\theta)\exp[\theta T(x)]h(x)$, a UMP level α test is

$$\phi(x) = \begin{cases} 1 & C_1 < T(x) < C_2 \\ \gamma_i & T(x) = C_i, & i = 1, 2 \\ 0 & T(x) < C_1, & T(x) > C_2 \end{cases} \tag{34}$$

where C_1 , C_2 , γ_1 , γ_2 chosen so that $\beta_\phi(\theta_1) = \beta_\phi(\theta_2) = \alpha$. Then ϕ minimizes $\beta_\phi(\theta)$ among level α tests. For $0 < \alpha < 1$, $\beta_\phi(\theta)$ has a maximum at a point $\theta_0 \in (\theta_1, \theta_2)$, and decreases strictly as θ tends away from θ_0 in either direction, unless there are two values t_1 , t_2 such that $P_0(T(X) = t_1$ or $t_2) = 1$ for all θ

5.3 Hellinger Distance and Consistency of NP-type tests

 \bullet The Hellinger distance $\mathcal{H}(P,\,Q)$ betwen $P,\,Q$ is

$$\mathcal{H}^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p} - \sqrt{q})^{2} d\mu = 1 - \int \sqrt{pq} d\mu = 1 - \rho(P,Q)$$
 (35)

where $\rho(P,Q)=\int\sqrt{pq}d\mu$ is the affinity between P,Q

The total variation distance between P, Q is

$$||P - Q||_1 = \int |p - q| d\mu \tag{36}$$

- $\bullet \ 0 \leq \rho(P,Q) \leq 1, \ \mathcal{H}^2(P,Q) = 0 \iff p = q \text{ a.e. } \mu \iff \rho(P,Q) = 1$
- The following relationship holds

$$\mathcal{H}^{2}(P,Q) \le \frac{1}{2} \|P - Q\|_{1} \le \mathcal{H}(P,Q) [2 - \mathcal{H}^{2}(P,Q)]^{1/2} = [1 - \rho^{2}(P,Q)]^{1/2}$$
 (37)

 \bullet For NP test of $H_0: X \sim P$ vs $H_1: X \sim Q$ of the form

$$\phi(x) = \begin{cases} 1 & q(x) > Cp(x) \\ 0 & q(x) < Cp(x) \end{cases}$$

$$(38)$$

for C > 0, then

$$\alpha_{\phi} \le C^{-1/2} \rho(P, Q), \quad 1 - \beta_{\phi} \le C^{1/2} \rho(P, Q)$$
 (39)

6 Unbiasedness for Hypothesis Testing I

6.1 Unifromly Most Powerful Unbiased Tests

- Suppose $X \sim P_{\theta}$ for some $\theta \in \Theta$, and ϕ is level α for $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$ where $\{\Theta_0, \Theta_1\}$ is a partition of Θ .
- ϕ is unbiased if $\beta_{\phi}(\theta) \leq \alpha \ \forall \theta \in \Theta_0$ and $\beta_{\phi}(\theta) \geq \alpha \ \forall \theta \in \Theta_1$
- If ϕ is UMP, it is unbiased because it has size α and its power cannot be less than that of randomized $\phi^*(x)=\alpha$
- ϕ is uniformly most powerful unbiased at level α if it is unbiased and $\beta_{\phi}(\theta) \geq \beta_{\phi'}(\theta)$ $\forall \theta \in \Theta_1$ and all unbiased level- α tests ϕ'
- Any UMP test is UMPU
- $\bullet \ \ \text{Test} \ \phi \ \text{is similar on the boundary at level} \ \alpha \ \text{if} \ \beta_\phi(\theta) = \alpha \ \forall \theta \in \Theta_B := \overline{\Theta}_0 \cap \overline{\Theta}_1$
- If a test unbiased and has continuous power function, it is similar on the boundary
- If Θ is finite, or has no cluster points (eg Θ is set of integers), then $\beta_{\phi}(\theta)$ continuous
- Suppose P_{θ} such that power $\beta_{\phi}(\theta)$ is continuous for all tests and ϕ_0 is a level α test of $H_0:\theta\in\Theta_0$ vs $H_1:\theta\in\Theta_1$. If ϕ_0 is uniformly most powerful among all tests similar on the boundary at level α , then ϕ_0 UMPU

6.2 Application to one-parameter exponential families

- Consider $p_{\theta}(x) = c(\theta) \exp[\theta T(x)]h(x)$
 - 1. $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0$
 - 2. $H_0: \theta \not\in (\theta_1, \theta_2)$ vs $H_1: \theta \in (\theta_1, \theta_2)$
 - 3. $H_0:\theta\in[\theta_1,\theta_2]$ vs $H_1:\theta\not\in[\theta_1,\theta_2]$
 - 4. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$
- By NP lemma, there is a UMP test for 1, by generalized NP, we have UMP for 2.
- Note that for this exponential family, all power functions $\beta_\phi(\theta)$ are continuous and smooth in θ
- Theorem: The test

$$\phi(x) = \begin{cases} 1 & T(x) < C_1 \text{ or } T(x) > C_2 \\ \gamma_i & T(x) = C_i, & i = 1, 2 \\ 0 & C_1 < T(x) < C_2 \end{cases}$$
(40)

where C, γ satisfy $\beta_\phi(\theta_1)=\beta_\phi(\theta_2)=\alpha$ is UMPU for 3 at level α . If $\alpha\in(0,1)$, no UMP test exists

• Further, if we also have $\mathrm{E}_{\theta_0} \, \phi(X) = \alpha$, $\mathrm{E}_{\theta_0} [T(X) \phi(X)] = \alpha \, \mathrm{E}_{\theta_0} \, T(X)$, then ϕ is UMPU for 4. If T has a symmetric distribution, then $\mathrm{E}_{\theta_0} \, \phi(X) = \alpha$, $C_2 = 2\alpha - C_1$ and $\gamma_1 = \gamma_2$ determine the constants. If $\alpha \in (0,1)$, no UMP test exists

7 Unbiasedness for Hypothesis Testing II

7.1 Neyman Structur

- In the presence of nuisance parameter ϑ , we can condition on a sufficient statistic for ϑ —which frees the distribution from ϑ —we can write $\psi_t(x)$ if T(x)=t.
- We want to consider $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$ which is equivalent to $H_0: (\theta, \vartheta) \in \Omega_0$ vs $H_1: (\theta, \vartheta) \in \Omega_1$ where $\Omega_i = \{(\theta, \vartheta): \theta \in \Theta_i\}$
- A test satisfying $\mathbf{E}_{\theta}\left(\phi|T\right)=\alpha\ \forall \theta\in\Theta_{B}$ has Neyman structure wrt T
- Critical function ϕ is similar wrt $\mathcal P$ if $\operatorname{E}_P \phi = \alpha$ is independent of $P \in \mathcal P$
- Let T be sufficient for \mathcal{P} , and $\mathcal{P}^T=\{P^T:P\in\mathcal{P}\}$ where P^T is the dist of T when $X\sim P$. Critical function ϕ has Neyman structure wrt T if $\mathrm{E}(\phi|T)=\alpha$ a.e. \mathcal{P}^T
- If ϕ has Neyman structure wrt T, it is similar wrt \mathcal{P}
- Theorem: Let T be sufficient for \mathcal{P} . Then all critical functions that are similar wrt \mathcal{P} have Neyman structure wrt $T\iff \mathcal{P}^T$ is bounded complete
- Theorem: The UMPU conditional test is: Suppose $X \sim P_{\theta,\vartheta}$, T a statistic of X, and we want to test $H_0: \theta \in \Theta_1$ vs $H_1: \theta \in \Theta_1$. Further, suppose that
 - The distributions $P_{ heta,\vartheta}$ have continuous power functions for every test
 - For each fixed θ , T is sufficient for ϑ
 - For each fixed $\theta \in \Theta_B$, T is boundedly complete for ϑ
 - For each t,θ being the only parameter for the conditional distribution of X given $T=t,\ \psi_t$ is a level- α test of H_0 vs H_1 , and is UMP among all tests that are similar on the boundary at level α

Then $\phi(x) = \psi_{T(x)}(x)$ is UMPU.

7.2 UMPU tests for multiparameter exponential families

• For test 1, $\phi_1(x) = \phi(U(x), \mathbf{T}(x))$ with

$$\phi(u, \mathbf{t}) = \begin{cases} 1 & u > C(\mathbf{t}) \\ \gamma(\mathbf{t}) & u = C(\mathbf{t}) \\ 0 & u < C(\mathbf{t}) \end{cases}$$
(41)

is UMPU where $C(\mathbf{t}), \gamma(\mathbf{t})$ are such that $\mathbf{E}_{\theta_0}[\phi(U, \mathbf{t}) | \mathbf{T} = \mathbf{t}] = \alpha \ \forall \mathbf{t}$

• For test 2, $\phi_2(x) = \phi(U(x), \mathbf{T}(x))$, with

$$\phi(u, \mathbf{t}) = \begin{cases} 1 & C_1(\mathbf{t}) < u < C_2(\mathbf{t}) \\ \gamma_i(\mathbf{t}) & u = C_i(\mathbf{t}), i = 1, 2 \\ 0 & u < C_1(\mathbf{t}) \text{ or } u > C_2(\mathbf{t}) \end{cases}$$
(42)

where C, γ chosen so that $\mathbf{E}_{\theta_i}[\phi(U, \mathbf{t})|\mathbf{T} = \mathbf{t}] = \alpha \ \forall \mathbf{t}, \ i = 1, 2$

• For test 3, $\phi_3(x) = \phi(U(x), \mathbf{T}(x))$, with

$$\phi(u, \mathbf{t}) = \begin{cases} 1 & u < C_1(\mathbf{t}) \text{ or } u > C_2(\mathbf{t}) \\ \gamma_i(\mathbf{t}) & u = C_i(\mathbf{t}), i = 1, 2 \\ 0 & C_1(\mathbf{t}) < u < C_2(\mathbf{t}) \end{cases}$$
(43)

where C, γ chosen so that $\mathbf{E}_{\theta_i}[\phi(U,\mathbf{t})|\mathbf{T}=\mathbf{t}]=\alpha \ \forall \mathbf{t}, \ i=1,2$

• For test 4, use the same as for test 3 with C, γ such that $\mathbf{E}_{\theta_0}[\phi(U,\mathbf{t})|\mathbf{T}=\mathbf{t}]=\alpha \ \forall \mathbf{t}$ and $\mathbf{E}_{\theta_0}[U\phi(U,\mathbf{t})|\mathbf{T}=\mathbf{t}]=\alpha \ \mathbf{E}_{\theta_0}[U|\mathbf{T}=\mathbf{t}) \ \forall \mathbf{t}$.

7.3 UMPU unconditional tests

- Under the same assumptions as for the conditional tests, suppose we can find statistic $V = h(U, \mathbf{T})$ which is independent of \mathbf{T} when $\theta \in \Theta_B$, such that $h(u, \mathbf{t})$ is strictly increasing in u for fixed \mathbf{t} :
 - Test 1: $\phi_1(x) = \psi(V(x)),$

$$\phi(v) = \begin{cases} 1 & v > C \\ \gamma & v = C \\ 0 & v < C \end{cases}$$

$$(44)$$

is UMPU where C,γ independent of ${\bf t}$ such that $E_{\textstyle\theta_0}\,\phi(V)=\alpha$

- Test 3: $\phi_3(x) = \phi(V(x))$ with

$$\phi(v) = \begin{cases} 1 & v < C_1 \text{ or } v > C_2 \\ \gamma_i & v = C_i, i = 1, 2 \\ 0 & C_1 < v < C_2 \end{cases}$$
(45)

is UMPU where C,γ independent of ${\bf t}$ and ${\bf E}_{\theta_1}$ $\phi(V)={\bf E}_{\theta_2}$ $\phi(V)=\alpha$

- Test 2: $\phi_2(x; \alpha) = 1 \phi_3(x; 1 \alpha)$ is UMPU
- The series of the same as for test 3 with C, γ independent of \mathbf{t} such that $\mathrm{E}_{\theta_0} [V\phi(V)] = \alpha \, \mathrm{E}_{\theta_0} V$ and $\mathrm{E}_{\theta_0} [V\phi(V)] = \alpha \, \mathrm{E}_{\theta_0} V$