Football Games Continued

The Raw Data Graph

Table 1: Effect of Moratoriums on Alcohol Offenses and Sexual Assaults (OLS).

				Specification (2)		
	(1)	(2)	(3)	Weekends (4)	Weekdays (5)	
Panel A: Alcohol Offenses						
In Moratorium	-0.125**	-0.123**	-0.131***	-0.238**	-0.038	
	(0.047)	(0.051)	(0.046)	(0.106)	(0.026)	
Observations	55115	55115	55115	23643	31472	
Mean of Dependent Variable	0.464	0.464	0.464	0.828	0.190	
Wild Bootstrap P-Value	0.004	0.010	0.006	0.014	0.175	
Panel B: Sexual Assaults						
In Moratorium	-0.009**	-0.010	-0.007	-0.017*	-0.004	
	(0.004)	(0.006)	(0.006)	(0.010)	(0.006)	
Observations	55115	55115	55115	23643	31472	
Mean of Dependent Variable	0.049	0.049	0.049	0.058	0.042	
Wild Bootstrap P-Value	0.022	0.152	0.253	0.094	0.518	
FE: Day of Week	X	X	X	X	X	
FE: Holiday	X	X	X	X	X	
FE: Game Day	X	X	X	X	X	
FE: Semester (Spring/Fall)	X	X		X	X	
FE: University	X					
FE: Academic Year	X					
FE: University by Academic Year		X		X	X	
FE: University by Academic Year by Semester			X			

Note:

Estimates are obtained using OLS. Standard errors shown in paranthesis are clustered by university (37 clusters) and each offense is defined as per-25000 enrolled students. P-values from 1000 wild cluster bootstrap iterations are shown for the In Moratorium coefficient as suggested by @cameron_bootstrap-based_2008 in cases with a small number of clusters (typically lower than 30). This analysis is near, but not below this threshold. Holiday controls include controls for Veterans Day, Thanksgiving, Labor Day, Halloween, and MLK Day. Christmas/New Years/July 4th are not included since these holidays are not on any university's academic calendar. Game Day controls consist of university football games within each university. Weekends include Friday-Sunday while Weekdays include Monday-Thursday. A moratorium is a temporary halt on fraternity-related activities with alcohol. Specification (2) is the preferred specification due to the flexibility of the fixed effects and the conservativeness of the estimates. Significance stars correspond to clustered standard erorrs.

(ref:abel-citation) Cameron, Gelbach, and Miller (2008)

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

Note:

A footnote in which I would like to cite (ref:abel-citation)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." The Review of Economics and Statistics 90 (3): 414–27. https://doi.org/10.1162/rest.90.3.414.