

izzz dagram mragrarda direatta demorata

Clocking for Serial Links

Saurabh Saxena

Department of Electrical Engineering

Indian Institute of Technology Madras

Serial Link Applications

Serial Link Components

- Transmitter
- Channel
- Receiver
- \square Serial links with embedded clock \Rightarrow RCK is recovered from received data
- ☐ Clock Recovery (CR) + Data sampler = CDR

Serial Link Waveforms

Clock and Data Recovery

Goals

- Map application requirements to CDR specifications
- ☐ Optimal architecture choice based on CDR specifications
 - Exposure to different CDR architectures
 - Develop intuition for design tradeoffs
 - Awareness to practical considerations

Overview

- Performance metrics
- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables
- □ Frequency detectors

CDR Performance Metrics

Jitter Tolerance (JTOL)

☐ Maximum tolerable peak-to-peak sinusoidal input jitter for a given BER

☐ JTOL varies with frequency of the sinusoidal input

JTOL Mask

☐ Increase data input sinusoidal jitter until BER exceeds target

Jitter Transfer (JTRAN)

☐ Amount of jitter attenuation provided by CDR

JTRAN Mask

☐ Modulate data input with sinusoidal jitter & measure resulting output jitter

Jitter Generation (JGEN)

☐ Amount of output jitter when fed with clean data

Jitter Generation (JGEN)

☐ Amount of output jitter when fed with clean data

Need: Design CDR for given JTOL corner frequency, JTRAN BW, and JGEN

Phase Locked Loop based CDR

- ☐ Building blocks similar to a PLL
- ☐ Phase detector should tolerate missing transitions

- ☐ Negative edge of recovered clock locks to data edge
- ☐ Positive edge samples data in the middle of the eye

Linear (Hogge) Phase Detector^[1]

- \square Error output (D_F - D_R) is difference of 2 pulses
 - Pulse width of D_F is proportional to phase error
 - Pulse width of D_R is fixed and is equal to $T_{RCK}/2$
- \square Area under D_E - D_R is proportional to phase error
 - Area is zero when RCK is aligned with D_{IN}

CDR Using Hogge Phase Detector

- ☐ Type-II response
 - 2 integrators one in the loop filter and the other is VCO
- ☐ Zero static phase offset (ideally)
 - CP output should be zero in steady state
 - Implies input phase error = 0

Choosing Loop Parameters

$$\mathrm{LG}(\mathrm{s}) = \mathrm{K}_{\mathrm{PD}} \cdot \left(\mathrm{R} + \frac{1}{\mathrm{sC}}\right) \cdot \frac{\mathrm{K}_{\mathrm{VCO}}}{\mathrm{s}}$$

$$\omega_{\mathrm{z}} = rac{1}{\mathrm{RC}}, \; \omega_{\mathrm{p}1} = 0, \; \omega_{\mathrm{p}2} = 0$$

$$\Phi_{
m M} = rctan\left(rac{\omega_{
m ugf}}{\omega_{
m z}}
ight)$$

Jitter Transfer Function (JTRAN)

$$\begin{split} H_{\mathrm{JTRAN}}(s) &= \frac{\Phi_{\mathrm{RCK}}(s)}{\Phi_{\mathrm{DIN}}(s)} \\ &= \frac{1 + \mathrm{sRC}}{1 + \mathrm{sRC} + \mathrm{s}^2 \cdot \frac{\mathrm{C}}{\mathrm{K}_{\mathrm{VCO}}\mathrm{K}_{\mathrm{PD}}}} \\ &\equiv \frac{1 + \mathrm{s}/\omega_{\mathrm{z}}}{(1 + \mathrm{s}/\omega_{\mathrm{PL}})(1 + \mathrm{s}/\omega_{\mathrm{PH}})} \end{split} \qquad \begin{aligned} \omega_{\mathrm{z}} &= 1/RC \\ \omega_{\mathrm{pl}} &\approx 1/RC \\ \omega_{\mathrm{Pl}} &\approx 1/RC \\ \omega_{\mathrm{Pl}} &\approx \mathrm{K}_{\mathrm{VCO}} \cdot \mathrm{K}_{\mathrm{PD}} \cdot \mathrm{R} \end{aligned}$$

JTRAN BW =
$$\omega_{\text{-3dB}} \approx \omega_{\text{PH}} \approx K_{\text{VCO}} \cdot K_{\text{PD}} \cdot R$$

Phase Noise Analysis of Linear CDR (I)

 $\mathbf{S}_{\mathbf{\Phi}_{\mathbf{PD}}}$: PD's noise PSD

 $\mathbf{S_{I_{CP}}}$: Charge-pump's noise PSD

 $\mathbf{S}_{\mathbf{V_{B}}}$: Resistor's noise PSD

 $\mathbf{S}_{\Phi_{\mathbf{VCO}}}$ VCO's noise PSD

$$lacksquare ext{NTF}_{ ext{PD}} = rac{1}{ ext{K}_{ ext{PD}, ext{L}}} imes rac{ ext{LG}}{1+ ext{LG}}$$

$$\mathbf{NTF_{CP}} = \frac{1}{\mathbf{K_{PD,L}I_{CP}}} \times \frac{\mathbf{LG}}{1 + \mathbf{LG}}$$

$$oxed{\Box} \; \mathrm{JGEN} = rac{\mathrm{T_{RCK}}}{2\pi} \sqrt{\int_0^\infty \mathrm{S_{\Phi_{RCK}}^{Total}} \mathrm{df}}$$

where
$$S_{\Phi_{BCK}}^{Total} = \sum S_i \times |NTF_i|^2$$

S_i: ith noise source

Phase Noise Analysis of Linear CDR (II)

☐ Design Example:

- DR = 2.5Gb/s, f_{RCK} = 2.5GHz, K_{VCO} = 2π Grad/s/V, Phase margin = 85° , JTRAN BW < 1MHz
- I_{CP} = 1.26 μA, R = 5 kΩ, C₁ = 2.76 nF
- VCO's noise dominates in low JTRAN BW designs

Linear CDR Drawbacks

- ☐ JTRAN peaking vs large loop filter capacitor
- ☐ Coupled JTRAN and JTOL

☐ Hogge PD non-idealities

Jitter Peaking^[2]

☐ Zero in feed-forward path → inevitable peaking

$$\begin{aligned} \mathbf{H_{JTRAN}} &= \frac{1 + \mathrm{sRC}}{1 + \mathrm{sRC} + \mathrm{s^2} \cdot \frac{\mathrm{C}}{\mathrm{K_{VCO}K_{PD}}}} \\ \omega_{z} &= 1/\mathsf{RC} \end{aligned}$$

$$\omega_{\mathtt{PH}} pprox \mathbf{K}_{\mathtt{VCO}} \cdot \mathbf{K}_{\mathtt{PD}} \cdot \mathbf{R}$$

 $\omega_{ t PL} pprox 1/{ t RC}$

$$\textbf{Jitter Peaking [dB]} \; \approx \; \frac{8.686}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}\mathsf{CR}^2} \; \approx \; \frac{8.686}{\omega_{\mathsf{-3dB}}\mathsf{CR}} = \frac{8.686\omega_{\mathbf{z}}}{\omega_{\mathsf{-3dB}}}$$

Jitter Tracking

JTRACK BW = $\omega_{\text{-3dB}} \approx \omega_{\text{PH}} \approx K_{\text{VCO}} \cdot K_{\text{PD}} \cdot R$

Jitter Tolerance (JTOL)

$$egin{aligned} ig|\Phi_{ extsf{DIN}} &< 0.5\, extsf{UI} \ \Phi_{ extsf{DIN}} & imes extsf{H}_{ extsf{JTRACK}}(extsf{s}) < 0.5\, extsf{UI} \ &\Longrightarrow \Phi_{ extsf{DIN}} &< rac{0.5\, extsf{UI}}{ extsf{H}_{ extsf{JTRACK}}(extsf{s})} \ \end{pmatrix}$$

$$egin{aligned} \mathbf{H}_{ exttt{JTOL}}(\mathbf{s}) \ = \ rac{\mathbf{0.5} \left(\mathbf{1} + \mathbf{s}/\omega_{ exttt{PL}}
ight) \left(\mathbf{1} + \mathbf{s}/\omega_{ exttt{PH}}
ight)}{\mathbf{s^2}/\omega_{ exttt{PL}}\omega_{ exttt{PH}}} \end{aligned}$$

Coupled JTRAN/JTOL Behavior

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$\mathbf{H}_{\mathsf{JTRACK}}(\mathsf{s}) = rac{\mathsf{s}^2 \cdot rac{\mathsf{C}}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}}}{1 + \mathsf{sRC} + \mathsf{s}^2 \cdot rac{\mathsf{C}}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}}}$$

 \square Both JTRAN and JTOL are governed by ω_{PH}

Hogge PD Non-idealities: Offset [2]

☐ FF₁ clock-to-Q delay introduces phase offset

Hogge PD Non-idealities: DDJ^[2]

- \square D_F/D_R pulses not aligned in time
 - "Tri-wave" on V_C causes Data Dependent Jitter (DDJ)
- ☐ See [2] for modified Hogge PD to mitigate offset and DDJ

Bang-Bang Phase Detector (BBPD)[3]

S1 and S3 are data samples

S2 is edge sample

BBPD Characteristics: w/o Jitter

Average Phase Detector Output

Useful range : $\pm \pi$

 $\mathrm{Gain}\; K_{\mathrm{PD}}|_{\Delta \mathrm{T}=0} = \infty$

BBPD Characteristics: w/ Jitter^[4]

$$\begin{split} \overline{V_{PD}(\Delta T)} &= -V_o \cdot P(V_{PD} = -V_o) \\ &+ V_o \cdot P(V_{PD} = V_o) \end{split}$$

$$\mathrm{K_{PD}} = rac{\mathrm{d} \overline{\mathrm{V_{PD}}(\Delta \mathrm{T})}}{\mathrm{d} \Delta \mathrm{T}} = rac{2 \mathrm{V_o}}{\sqrt{2 \pi} \sigma_\mathrm{j}} \mathrm{e}^{\left(-rac{\Delta \mathrm{T}}{\sqrt{2} \sigma_\mathrm{j}}
ight)^2}$$

Full-rate Bang-Bang CDR

- ☐ Type-II response
- Near-zero static phase offset
- ☐ Insensitive to charge-pump non-idealities
- \square VCO & PD operate at full-rate or data rate ($F_{VCO} = F_{DIN}$)
 - Could become a speed bottleneck
 - Solution: Half-rate bang-bang CDR

Half-rate CDR Waveforms

Half-Rate Bang-Bang CDR

- ☐ Topology same as full-rate architecture
- Requires quadrature VCO
- Lower loop update rate → higher loop latency
- □ Non-linear loop dynamics due to non-linear BBPD's gain. To ensure stability^[5]

Damping factor
$$\zeta = \frac{\Delta \Phi_{\mathrm{RCK}} \; \mathrm{due} \; \mathrm{to} \; \mathrm{prop.} \; \mathrm{path}}{\Delta \Phi_{\mathrm{RCK}} \; \mathrm{due} \; \mathrm{to} \; \mathrm{integ.} \; \mathrm{path}} \; = \; \frac{\mathsf{2RC}}{\mathsf{T}_{\scriptscriptstyle \mathsf{UPDATE}}} \gg 1$$

Bang-Bang CDR Drawbacks

- □ Coupled JTRAN and JTOL□ Jitter peaking□ Large loop filter area

Similar to linear CDR

☐ JGEN caused by limit cycles due to BBPD's behavior

JTRAN dependence on input jitter

JTRAN BW
$$\approx K_{PD} \cdot K_P \cdot K_{VCO}$$

$${\rm Gain}\; K_{\rm PD}|_{\Delta T=0} = \frac{2V_o}{\sqrt{2\pi}\sigma_j} \implies {\rm JTRAN\;BW} \propto \frac{1}{\sigma_j}$$

Overview

- Performance metrics
- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- ☐ Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables
- ☐ Frequency detectors

Eliminating Loop Filter Capacitor

☐ Map CP + LF into digital domain directly

- ☐ Digital accumulator replaces loop filter capacitor
 - Large time constant with small area
 - Infinite DC gain → ideal Type-II behavior
 - PVT insensitive
 - Easy to reconfigure for loop dynamics control

Simple Digital CDR^[6]

Simple Digital CDR^[6]

- ☐ Loop filter must operate at data rate
- **□** Need:
 - Wide operand high-speed adders
 - High speed/resolution Digital to Analog Converter (DAC)

Reducing Speed Requirements (I)

Decimated !!PD's Output

- \square DLF operates at lower speed, f_{RCK}/P . It delays feedback in the loop
- ☐ Increased loop delay adversely affects phase-margin, jitter peaking, & JTOL
- □ <u>Observation</u>: Proportional path dominates jitter

Reducing Speed Requirements (II)

- ☐ Fast proportional path
 - Minimize latency → reduce dithering jitter
- ☐ High resolution integral path
 - Minimize tracking jitter
- Minimal hardware penalty
 - Needs only 2-level high-speed PDAC
- lue IDAC implemented using $\Delta\Sigma$ techniques
- ☐ Proportional and integral controls summed in VCO

Analog vs. Digital CDRs

- ☐ Analog CDR using linear PD
 - Well-controlled loop dynamics
 - PD non-idealities degrade timing margin/BER
 - Large loop filter capacitor
 - Sensitive to Consecutive Identical Digits (CIDs)^[7]
- ☐ Digital CDR using bang-bang PD
 - Non-linear loop dynamics (JTRAN depends on jitter)
 - Bang-bang PD maximizes timing margin
 - No large capacitor (small area)
 - Sensitive to Consecutive Identical Digits (CIDs)
- ☐ Can we combine the advantages?

Hybrid Analog/Digital CDR^[8]

- □ Proportional path sets loop bandwidth (JTRAN)
 - Fixed gain leads to linear loop dynamics
 - Eliminates phase quantization error
- ☐ Digital integral path sets steady state
 - Makes it insensitive to linear PD phase offset
 - Accumulator filters BBPD quantization error
 - BBPD's offset causes ripple on the proportional path

Overview

- Performance metrics
- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- ☐ Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables
- ☐ Frequency detectors

Multi-Lane Chip-to-Chip Links

- ☐ Source synchronous clocking is common
- BUT many standards mandate embedded clocking
 - Examples: PCIe, XAUI, SATA, etc.
 - Clock & data recovery is required for each lane of the multi-lane link

Multi-Lane CDR Challenges

Oscillators in Multi-Lane CDRs

- Oscillator's properties needed in multi-lane CDR
 - Good phase noise performance w/ low o/p jitter
 - Multiple sampling clock phases for sub-rate CDRs
 - Independent & wide frequency tuning range for each lane
 - Lower power consumption
 - Small chip-area

	LC Oscillator Ring Oscillator		
1	Excellent phase noise	Poor phase noise	
2	Low power consumption	Large power consumption compared to LC osc.	
3	Limited frequency tuning range	Wide frequency tuning range	
4	Reduced # of clock phases for sub-rate CDRs	Easily available clock phases for sub-rate CDRs	
5	Large chip-area	Small chip-area	

Both LC/ring-oscillators are not suited standalone for multi-lane CDRs

Phase of Analog/Digital Oscillator

Digital Oscillator Requirements in CDR

- ☐ Available clock frequency, f_{ava}=1/T
- ☐ Desired clock frequency, f_{des}=1/0.9T
- \square A 2π phase accumulation marks the rising or falling clock edges

Digital Oscillator w/ Desired Transitions

- ☐ Add accumulated phase to f_{ava} periodically
- Phase rotators, phase interpolators, etc. are used to add/subtract phase for desired frequency

Limitations of Digital Phase Addition

- Minimum phase addition has a lower bound
 - Leads to increased o/p jitter
 - Demands a lower CDR bandwidth
- ☐ Track desired frequency w/ reduced update rate

Phase Interpolator (PI)

- □ PI interpolates I/P clock → intermediate O/P clock
- \square O/P phase \propto n-bit phase control word (PCW)
- Phase resolution is limited by # of bits
- # of PIs increase with # of o/p phases required

Practical Dual-Loop CDR^[9]

DPA: Digital Phase Accumulator

MPG: Multi Phase Generator

- \square Phase interpolator (Φ_{INT}) improves DPA resolution
- Multi-phase generator is not inside CDR loop
- ☐ Accumulator + PI = Digitally Controlled Oscillator

PI-based Multi-Lane Chip-to-Chip Link^[10-14]

High Speed Multi-phase Reference Clock

BBPD based Sub-rate Digital CDR w/ Embedded PLL[13]

Proportional Control in Digital CDR w/ Embedded PLL (I)

$$\begin{split} LG_{\mathrm{prop,cdr}}(s) &= \left. \frac{\Phi_{\mathrm{out}}}{\Phi_{\mathrm{in}}} \right|_{\mathrm{prop,cdr}} \\ &= \left. \frac{K_{\mathrm{bbpd}}f_{\mathrm{ref}}}{s} \times \frac{N_{\mathrm{r}}LG_{\mathrm{RPLL}}(s)}{1 + LG_{\mathrm{RPLL}}(s)} \left[\frac{K_{\mathrm{pc,pr}} + \frac{K_{\mathrm{pc,ir}}f_{\mathrm{ref}}}{s}}{K_{\mathrm{pr}} + \frac{K_{\mathrm{ir}}f_{\mathrm{ref}}}{s}} \right] \end{split}$$

Integral Control in Digital CDR w/ Embedded PLL (II)

Overview

- Performance metrics
- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- ☐ Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables
- ☐ Frequency detectors

Long Haul Communication w/ Repeaters

■ Repeater requirements

- Tolerate large input jitter present on DIN (high JTOL)
- Filter input jitter (low JTRAN BW) w/ minimal peaking
- Re-transmit with low jitter (low JGEN)

Conventional Type-II CDR in Repeaters

- \square ω_{τ} is cause for jitter peaking in forward path but must for stability
- ☐ High JTRACK BW (or JTOL corner freq.) → high JTRAN BW
- □ Inadequate filtering of Φ_{DIN} → more R_{CLK} jitter → Retransmission with more jitter

How to Eliminate Jitter Peaking?

- ☐ Main Idea:
 - Retain ω_7 in loop for stability
 - Remove ω_7 from forward path to eliminate peaking

Add to VCO's Output Phase (I)

☐ No zero in feed-forward path

Add to VCO's Output Phase (II)

$$\mathbf{LG}(\mathbf{s}) = \frac{\mathbf{K_{PD}K_{vco}}}{\mathbf{s^2C}} \left(\mathbf{1} + \frac{\mathbf{sK_{\phi}}}{\mathbf{K_{vco}}} \right) = \frac{\mathbf{K}}{\mathbf{s^2}} \left(\mathbf{1} + \mathbf{s}/\omega_{\mathbf{z}} \right)$$

$$\mathbf{H_{JTRAN}} = \frac{\mathbf{\Phi_{RCLK}(s)}}{\mathbf{\Phi_{DIN}(s)}} = \frac{\mathbf{LG(s)}}{\mathbf{1} + \mathbf{LG(s)}} \frac{\mathbf{1}}{(\mathbf{1} + \mathbf{s}/\omega_{\mathbf{z}})} = \frac{\mathbf{K_{PD}K_{vco}}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi}} + \mathbf{K_{PD}K_{vco}}}$$

$$\mathbf{H_{JTRACK}} = rac{\mathbf{\Phi_{E}(s)}}{\mathbf{\Phi_{DIN}(s)}} = rac{\mathbf{1}}{\mathbf{1} + \mathbf{LG(s)}} = rac{\mathbf{s^2}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi} + K_{PD}K_{vco}}}$$

- ☐ Phase is added to output clock, RCLK
- \square Loop can be stable with no jitter peaking (ζ >0.707)

Decoupled JTRAN & JTRACK/JTOL

$$\begin{split} \mathbf{H_{JTRAN}(s)} &= \frac{\Phi_{RCLK}(s)}{\Phi_{DIN}(s)} = \frac{\mathbf{K_{PD}K_{vco}}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi} + K_{PD}K_{vco}}} \\ \mathbf{H_{JTRACK}(s)} &= \frac{\Phi_{E}(s)}{\Phi_{DIN}(s)} = \frac{\mathbf{s^2}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi} + K_{PD}K_{vco}}} \end{split}$$

- \square ω_{pl} (\approx K_{PD}K $_{\Phi}$ /C) limits JTRAN bandwidth \square ω_{ph} (\approx K_{VCO}/K $_{\Phi}$) limits JTRACK or JTOL bandwidth

Add to Input Phase (II)[15]

$$\mathbf{LG}(\mathbf{s}) = \frac{\mathbf{K_{PD}K_{vco}}}{\mathbf{s^2C}} \left(\mathbf{1} + \frac{\mathbf{sK_{\phi}}}{\mathbf{K_{vco}}} \right) = \frac{\mathbf{K}}{\mathbf{s^2}} \left(\mathbf{1} + \mathbf{s}/\omega_{\mathbf{z}} \right)$$

$$\mathbf{H_{JTRAN}(s)} = \frac{\mathbf{\Phi_{RCLK}(s)}}{\mathbf{\Phi_{DIN}(s)}} = \frac{\mathbf{LG(s)}}{1 + \mathbf{LG(s)}} \frac{1}{(1 + \mathbf{s}/\omega_{\mathbf{z}})} = \frac{\mathbf{K_{PD}K_{vco}}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi}} + \mathbf{K_{PD}K_{vco}}}$$

$$\mathbf{H_{JTRACK}(s)} = rac{\mathbf{\Phi_{E}(s)}}{\mathbf{\Phi_{DIN}(s)}} = rac{\mathbf{1}}{\mathbf{1} + \mathbf{LG(s)}} = rac{\mathbf{s^2}}{\mathbf{s^2C} + \mathbf{sK_{PD}K_{\phi} + K_{PD}K_{vco}}}$$

- Phase is added to input data, DIN
- JTRAN and JTOL/JTRACK are decoupled

How to Add Phase to Input/Output?

- ☐ Phase Interpolator (PI)
- ☐ Phase Rotating Phase-Locked Loop (PRPLL)
- ☐ Delay Line

PRPLL's Basic Principle

- $\blacksquare \Phi_{Pl}$ is an external phase added to PLL
- \blacksquare In steady state of PLL, $\Phi_{\text{OUT}} = \Phi_{\text{IN}} \Phi_{\text{PI}}$
- \blacksquare Ring oscillator (VCO) generates multiple output clock phases shifted by $\Phi_{\rm Pl}$ and used in CDR

Phase-Rotating Phase-Locked Loop

- □ PLL generates multiple clock phases (I/Q/Ib/Qb)
- ☐ Phase added to output clock in XOR-PD through Dpl
- \square D_{PI}[5:4] select I_M & Q_M from clock phases I,Q,Ib,Qb
- \square D_{PI}[3:0] change weight of I_M & Q_M in XOR-PD

How to Add Phase to Input/Output?

- ☐ Phase Interpolator (PI)
- ☐ Phase Rotating Phase-Locked Loop (PRPLL)
- ☐ Delay Line

Delay Line

■ Voltage Controlled Delay Line (VCDL)

$$\Phi_{ ext{OUT}} = \Phi_{ ext{IN}} + ext{K}_{ ext{VCDL}}. ext{V}_{ ext{CTRL}}$$

☐ Digitally Controlled Delay Line (DCDL)

$$\Phi_{OUT} = \Phi_{IN} + K_{DCDL} \cdot D_{PI}$$

Comparison b/w Phase Addition Methods

	PI	PRPLL	Delay Line
Architecture	Open loop	Closed loop	Open loop
Range	Infinite	Infinite	Limited
Φ added to CLK	Yes	Yes	Yes
Φ added to Data	No	No	Yes
Hardware for sub-rate CDRs	Increases	No change	Increases for CLK, No change for Data

lacktriangledown Φ addition in data path adds to data dependent ISI

CDR Examples w/ JTRAN & JTOL Decoupling

- ☐ Digital clock & data recovery using phase-rotating phase-locked loop (PRPLL)
- ☐ Digital clock & data recovery using digitally controlled delay line in data path

Block Diagram of 5Gb/s PRPLL-based Digital CDR^[21]

- ☐ Input jitter is filtered at recovered clock O/P, RCLK
- ☐ Input jitter is tracked at sampling clock, SCLK, using phase-rotating phase-locked loop (PRPLL)
- □ Recovered clock is a reference for PRPLL

Linearized Model of PRPLL-based Digital CDR

$$\mathbf{LG_{PRPLL}(s)} = \mathbf{K_{PD}LF(s)} \frac{\mathbf{K_{VCO2}}}{\mathbf{s}}$$

 \square ρ is input transition density

Loop Analysis of PRPLL-based Digital CDR

Approximating,
$$\frac{\mathbf{LG_{PRPLL}(s)}}{1+\mathbf{LG_{PRPLL}(s)}}{\approx}1$$

$$\mathbf{H_{IN2RCLK}} = \frac{\mathbf{\Phi_{RCLK}(s)}}{\mathbf{\Phi_{DIN}(s)}} = \frac{\rho \mathbf{K_{BBPD}f_{ACC}K_{I}K_{DCO}}}{\mathbf{s^2 + s\rho K_{BBPD}f_{ACC}K_{P}K_{PR}} + \rho \mathbf{K_{BBPD}f_{ACC}K_{I}K_{DCO}}}$$

$$\mathbf{H_{IN2SCLK}} = \frac{\mathbf{\Phi_{SCLK}(s)}}{\mathbf{\Phi_{DIN}(s)}} = \frac{\mathbf{s}\rho\mathbf{K_{BBPD}}\mathbf{f_{ACC}}\mathbf{K_{P}}\mathbf{K_{PR}} + \rho\mathbf{K_{BBPD}}\mathbf{f_{ACC}}\mathbf{K_{I}}\mathbf{K_{DCO}}}{\mathbf{s^2} + \mathbf{s}\rho\mathbf{K_{BBPD}}\mathbf{f_{ACC}}\mathbf{K_{P}}\mathbf{K_{PR}} + \rho\mathbf{K_{BBPD}}\mathbf{f_{ACC}}\mathbf{K_{I}}\mathbf{K_{DCO}}}$$

$$\omega_{\mathbf{p1}} = rac{\mathbf{K_{PP}}}{2} \left(1 - \sqrt{1 - rac{4\mathbf{K_{INT}}}{\mathbf{K_{PP}^2}}}
ight) pprox rac{\mathbf{K_{INT}}}{\mathbf{K_{PP}}} = rac{\mathbf{K_{I}K_{DCO}}}{\mathbf{K_{P}K_{PR}}}$$

$$\omega_{\mathbf{p2}} = rac{\mathrm{K_{PP}}}{2} \left(1 + \sqrt{1 - rac{4 \mathrm{K_{INT}}}{\mathrm{K_{PP}^2}}}
ight) pprox \mathrm{K_{PP}} =
ho \mathrm{K_{BBPD}} \mathrm{f_{ACC}} \mathrm{K_{P}} \mathrm{K_{PR}}$$

$$lacksquare$$
 No peaking for $\mathbf{Q_P} = rac{\sqrt{K_{INT}}}{K_{PP}} \leq rac{1}{\sqrt{2}}$

 \square In general, ω_{p1} limits JTRAN bandwidth and ω_{p2} limits JTRACK bandwidth

PRPLL-based Digital CDR Measurement Results (I)

K _{PR}	2π/64 rad/s		
K _{DCO}	2π x 10 ⁵ rad/s/LSB		
K _P	0.5		
K _I	0.25		
f _{ACC}	f _{VCO} /4		
DCO's PN	-100 dBc/Hz @1M		
DCO's DAC	0.4 MHz/LSB		

PRPLL-based Digital CDR Measurement Results (II)

K _{PR}	2π/64 rad/s		
K _{DCO}	2π x 10 ⁵ rad/s/LSB		
K _P	0.5		
K _I	0.25		
f _{ACC}	f _{VCO} /4		
DCO's PN	-100 dBc/Hz @1M		
DCO's DAC	0.4 MHz/LSB		

CDR Examples w/ JTRAN & JTOL Decoupling

- ☐ Digital clock & data recovery using phase-rotating phase-locked loop (PRPLL)
- ☐ Digital clock & data recovery using digitally controlled delay line in data path

Block Diagram of a 4-10Gb/s Half-Rate Digital CDR^[22]

DCDL: Digitally Controlled Delay Line

- Decoupled JTRAN/JTOL w/ no jitter peaking
 - JTRAN=K_{DCO}/K_{DCDI} (Doesn't depend on BBPD gain)
- □ DCDL using CMOS buffers for low power
- Wide-range fractional-N PLL based low noise DCO
- ☐ Digital CDR realized in TSMC 65nm CMOS process

Recovered Clock of CDR locked at 10Gb/s

 \square 2.2 ps_{rms} jitter for 5GHz recovered clock (R_{CLK})

Measured Jitter Transfer Function (JTRAN)

- ☐ CDR is locked to 10Gb/s input data
- □ JTRAN bandwidth ≈ 0.2MHz

Measured Jitter Tolerance (JTOL)

□ JTOL measured w/ BER threshold of 10⁻¹² & PRBS7 data 10Gb/s

Overview

- Performance metrics
- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- ☐ Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables
- ☐ Frequency detectors

Frequency & Phase Tracking in CDRs

Reference-less CDR

- Reference extracted from incoming random data
- Continuous data-rate
- Requires *frequency extraction* from random data

Role of FLL: Frequency Domain View

Frequency Detector

- ☐ Rotational frequency detector^[22-24]
- ☐ Quadri-correlator frequency detector^[25-26]
- ☐ Stochastic reference clock generator^[27]

- Miscellaneous FDs
 - Strobed linear PD^[27]
 - Counting based FDs [28-29]

Frequency Detector

- ☐ Rotational frequency detector^[22-24]
- ☐ Quadri-correlator frequency detector^[25-26]
- Stochastic reference clock generator^[27]

- Miscellaneous FDs
 - Strobed linear PD^[27]
 - Counting based FDs^[28-29]

Accumulation – Alternating Data

Accumulator rolls over after 2048 UI

Accumulation – Random Data

With random input accumulator rolls over after 4096 UI

Extracting Clock from Counter Output

 \square MSB can be used for ref. clock w/ 1/F_{REF}=4096UI

PSD of NRZ Random Data

PSD After First Divide-by-2 Stage

PSD After Two Divide-by-2 Stages

PSD After Ten Divide-by-2 stages

Frequency Locking Loop^[28]

FLL only Mode

□ PRBS patterns have *imbalance* in the $1\rightarrow0$, $0\rightarrow1$ transitions

Theoretical
$$\Delta F [ppm] \approx \frac{10^6}{2^N}$$

☐ Ex: PRBS7 imbalance = 1/127

Improved by scrambling

Principle of Frequency Detection_{1/4}

 \Box BBPD output changes sign at $\Delta\Phi$ =n π

Principle of Frequency Detection_{2/4}

 \square N_P is consecutive Early or Late number in π interval

Principle of Frequency Detection_{3/4}

$$\Delta F_2 < \Delta F_1$$
 leads to $N_{P2} > N_{P1}$

Principle of Frequency Detection_{4/4}

 $\Delta F \propto 1/N_p \rightarrow$ Can be used for frequency detection

BBPD-based Frequency-Locked Loop^[29]

- No explicit frequency detector
- Immune to input transition density ρ
- Unlimited frequency acquisition range

Frequency Acquisition Process_{1/3}

DCO starts from its lowest frequency

Frequency Acquisition Process_{2/3}

Increment F_{DCO} at each $E \rightarrow L$ or $L \rightarrow E$ transition

Frequency Acquisition Process_{3/3}

Lock is achieved when N_p≥N_{TH}

Transition Density Dependence w/ Jitter

ρ	0.1	0.5	1.0
$\Phi_{ m j=0}$ Δ F/F $_{ m DIN}$ [ppm]	100	500	1000
Φ_{j} = $\pi/4$ Δ F/F _{DIN} [ppm]	75	375	750

 $N_{TH}=N_p=500$, $\Delta F<1000$ ppm when $0\leq \rho \leq 1$

Residual Frequency Error

□ N_{TH}≥500, residual frequency error within 1000ppm

Summary

- ☐ Basic analog/digital clock and data recovery design for given jitter metrics
- Benefits analog and digital CDRs are exploited in hybrid analog/digital CDRs

- ☐ Multi-lane CDRs with local sampling clock & global low jitter recovered clock
- ☐ CDRs in repeaters with decoupled JTRAN & JTOL bandwidth
- ☐ FDs with simple counting of received signal transitions or !!PD outputs

- 1. C. Hogge, "A self correcting clock recovery circuit," J. Lightwave Technol., pp. 1312-1314, Dec. 1985.
- 2. L. DeVito, "A versatile clock recovery architecture and monolithic implementation," in Monolithic Phase-Locked Loops and Clock Recovery Circuits, B. Razavi, Ed. Wiley-IEEE Press, 1996, pp. 405-420.
- 3. J. Alexander, "Clock recovery from random binary signals," Electr. Lett., pp. 541-542, Oct. 1975.
- 4. J. Lee and B. Razavi, "Analysis and modeling of bang-bang clock and data recovery circuits," *IEEE J. Solid-State Circuits*, pp. 1571-1580, Sep. 2004.
- 5. R. Walker, et al., "A 2-Chip 1.5 Gigabaud serial link interface," *IEEE J. Solid-State Circuits*, pp. 1805-1811, Dec. 1992.
- 6. J. Sonntag and J. Stonick "A digital clock and data recovery architecture for multi-gigabit/s binary links", *IEEE J. Solid-State Circuits*, pp.1867-1875, Aug. 2006.
- 7. M. Talegaonkar, R. Inti, P. Hanumolu, "Digital clock and data recovery circuit design: Challenges and tradeoffs", *IEEE Custom Integrated Circuits Conference*, 2011.
- 8. W. Yin, R. Inti, A. Elshazly, and P. Hanumolu, "A TDC-less 7mW 2.5Gb/s digital CDR with linear loop dynamics and offset-free data recovery," in *ISSCC Dig. Tech. Papers*, pp. 440-442, Feb. 2011.
- 9. S. Sidiropoulos and M. Horowitz, "A semidigital dual delay-locked loop," *IEEE J. Solid-State Circuits*, 1683–1692, 1997.

- 10. M. Y. He and J. Poulton, "A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver," *IEEE J. Solid-State Circuits*, vol. 41, no. 3, pp. 597–606, Mar. 2006.
- 11. B. Raghavan *et al.*, "A sub-2W 39.8-to-44.6Gb/s transmitter and receiver chipset with SFI-5.2 interface in 40nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2013, pp. 32–33.
- 12. U. Singh *et al.*, "A 780mW 4×28Gb/s transceiver for 100GbE gearbox PHY in 40nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2014, pp. 40–41.
- 13. P. Upadhyaya *et al.*, "A 0.5-to-32.75Gb/s flexible-reach wireline transceiver in 20nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2015, pp. 1–3.
- 14. S. Saxena, et al., "A 2.8 mW/Gb/s, 14 Gb/s Serial Link Transceiver," IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1399-1411, May 2017.
- 15. T. Lee and J. Bulzacchelli, "A 155-MHz clock recovery delay-and phase-locked loop," *IEEE J. Solid-State Circuits*, pp. 1736-1746, Dec. 1992.
- 16. J. Kenney, et al., "A 9.95–11.3-Gb/s XFP transceiver in 0.13-μm CMOS," *IEEE J. Solid-State Circuits*, vol. 41, no. 12, pp. 2901–2910, Dec. 2006.

- 17. T. Toifl, et al., "A 0.94-ps-RMS-Jitter 0.016-mm² 2.5-GHz multiphase generator PLL with 360 degree digitally programmable phase shift for 10-Gb/s serial links," *IEEE J. Solid-State Circuits*, vol. 40, no. 12, pp. 2700–2712, Dec. 2005.
- 18. T. Toifl, et al., "A 72-mW 0.03-mm² inductorless 40-Gb/s CDR in 65-nm SOI CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2007, vol. 38, pp. 226–228.
- 19. W. Yin, et al., "A 0.7-to-3.5-GHz 0.6-to-2.8-mW highly digital phase-locked loop with bandwidth tracking," *IEEE J. Solid-State Circuits*, vol. 46, no. 8, pp. 1870–1880, Aug. 2011.
- 20. D. Dalton *et al.*, "A 12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback," *IEEE J. Solid-State Circuits*, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
- 21. J. Kenney *et al.*, "A 6.5-Mb/s to 11.3-Gb/s continuous-rate clock and data recovery," in *Proc. IEEE Custom Integrated Circuits Conf. (CICC)*, Sep. 2014, pp. 1–4.
- 22. G. Shu *et al.*, "A reference-less clock and data recovery circuit using phase-rotating phase-locked loop," *IEEE J. Solid-State Circuits*, vol. 49, no. 4, pp. 1036–1047, Apr. 2014.
- 23. G. Shu, et al., "A 4-to-10.5-Gb/s continuous-rate digital clock and data recovery with automatic frequency acquisition," *IEEE J. Solid-State Circuits*, vol. 51, no. 2, pp. 428-439, Feb. 2016.

- 22. D. Richman, "Color-Carrier Reference Phase Synchronization Accuracy in NTSC Color Television," Proceedings of the IRE, vol. 42, no.1, pp.106-133, Jan. 1954.
- 23. A. Pottbacker, et al., "A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s," *IEEE J. Solid-State Circuits*, pp.1747,1751, Dec 1992
- 24. D. Dalton, et al., "A 12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback," *IEEE J. Solid-State Circuits*, pp. 2713–2725, Dec. 2005.
- 25. F. M. Gardner, "Properties of frequency difference detectors," *IEEE Trans. Comm.*, vol. COM-36, no. 2, pp. 131–138, Feb. 1985.
- 26. N. Kocaman, et al., "An 8.5–11.5-Gbps SONET transceiver With reference-less frequency acquisition," *IEEE J. Solid-State Circuits*, pp. 1875–1884, Aug. 2013.
- 27. S. Huang, et al., "An 8.2-to-10.3 Gb/s full-rate linear reference-less CDR without frequency detector in 0.18μm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb 2014, pp. 152–153.
- 28. R. Inti, et al., "A 0.5-to-2.5 Gb/s reference-less half-rate digital CDR with unlimited frequency acquisition range and improved input duty-cycle error tolerance," *IEEE J. Solid-State Circuits*, pp. 3150–3162, Dec. 2011.
- 29. G. Shu, et al., "A 4-to-10.5 Gb/s 2.2 mW/Gb/s continuous-rate digital CDR with automatic frequency acquisition in 65 nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb 2014, pp. 150–151.

