Sage 480 Final Project

Melissa Jones

May 22, 2013

1 Introduction

This paper is an overview of the basics of linear optimization. This paper will be some notes from a previous class for the use by my group in reviewing linear optimization

2 Basics of Linear Programs

2.1 Linear Program in Tableaux format

The Primal Linear program is of the form,

$$\max: c^T x$$
 subject to: $Ax \le b$
$$x \ge 0$$

Consider the given function and constraints,

max:
$$3x_1 + 2x_2 - 4x_3 = z$$

subject to:
 $x_1 + 4x_2 \le 5$
 $2x_1 + 4x_2 - 2x_3 \le 6$
 $x_1 + x_2 - 2x_3 \le 2$

Where the coefficients of the objective function is c^T . The coefficients of the constraint functions is matrix A and the inequality values is matrix b.

Use these matrices to create a Tableaux of the form

$$\left[\begin{array}{ccc} A & I & b \\ c & 0 & 0 \end{array}\right]$$

So the tableaux form of our example is:

2.2 Dual to the Primal

Let me first introduce some theories that will be useful in efficiently solving our linear optimization problem.

- 1. Weak-Duality Theorem: Let P be a primal problem and D be its dual. If x if P-feasible and y is D-feasible, then c^Tx^Ty If we find a pair (\bar{x}, \bar{y}) such that \bar{x} is P-feasible and \bar{y} is D-feasible and $c^T\bar{x} = b^T\bar{y}$, then \bar{x} is P-optimal and \bar{y} is D-optimal.
- 2. Corollary: if P is unbounded then D is infeasible. Likewise, if D is unbounded then P is infeasible.
- 3. Strong Duality Theorem: if either P or D have a finite optimal value, then so does the other, and in fact the optimal values coinside.

The dual to the primial initial tableaux,

$$\begin{aligned} & \text{min: } b^T y \\ & \text{subject to: } A^T \geq c \\ & y \geq 0 \end{aligned}$$

Referring back to our example, the dual is:

In order for a primal linear program to be dual feasible the objective function must have all non-positive coefficients. That is $c^T \leq 0$. Therefore our example is not dual feasible.