Hierarchical Clustering

Abner Cardoso, Anderson Oliveira, Anderson Uchôa, Bruno Yusuke, Guilherme Marques and Hugo Villamizar

What is hierarchical clustering?

- Is the most common clustering technique
- Produces a hierarchy of nested clusters
- The hierarchy be visualized as a dendrogram: a tree like diagram that records the sequences of merges or splits

Agglomerative approach (aka bottom-up)

- Suppose we have five items, a, b, c, d, and e.
- Initially, we consider one cluster for each item
- Then, at each step we merge together the most similar clusters, until we generate one cluster

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Compute the proximity matrix
- Let each data point be a cluster
- Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
- Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
- Different approaches to defining the distance between clusters distinguish the different algorithms

Divisive approach (aka top-down)

- We start from one cluster containing the five elements
- Then, at each step we split one cluster to improve intra cluster similarity, until all the elements are contained in one cluster
- Top-down clustering requires a method for splitting a cluster

Comparison between the algorithms

Agglomerative	Divisive	Reason
Less complex	More Complex	We need a <u>flat clustering</u> to split each cluster
Less efficient in some cases	More efficient in some cases	Using an efficient flat algorithm like <u>K-Means</u> , divisive algorithms are linear in the number of patterns and clusters
Less accurate	More accurate	Agglomerative considers local distribution and Divisie considers global distribution

Stores the distances between each point.

ID	А	В	С
Α	0	3	1
В	3	0	5
С	1	5	0

- Stores the distances between each point.
- As clustering proceeds, rows and columns are merged and the distance is updated. (Merge with smaller pairwise distance)

ID	А	В	С
Α	0	3	1
В	3	0	5
С	1	5	0

- Stores the distances between each point.
- As clustering proceeds, rows and columns are merged and the distance is updated.
- At each iteration, as merge occurs, the table becomes smaller.

ID	AC	В
AC	0	3
В	3	0

- Stores the distances between each point.
- As clustering proceeds, rows and columns are merged and the distance is updated.
- In the end, with all clusters merged, the distance becomes 0.

ID	ABC
ABC	0

Similarity Matrix

- Stores the similarity between each point. (Values between 0 and 1)
- As clustering proceeds, rows and columns are merged and the similarity is updated. (Merge with most similar pairwise)

ID	А	В	С
Α	1	0	0.85
В	0	1	0.5
С	0.85	0.5	1

Metric / Linkage criterias

- Which clusters should be combined (for agglomerative)?
- Or where the cluster should be split (for divisive)?
- Using a good Metric (measure of distance between pairs), such as:
 - Euclidean Distance, Manhattan Distance, City Block Distance.
- Choose a Linkage criteria (measure the similarity between pairwise clusters), such as:
 - Ward, Single, Average and Complete Linkage

- Linkage criteria
- Single: Merges clusters based on minimum distance between two points from two different clusters.

 Single: Merges clusters based on minimum distance between two points from two different clusters.

- Linkage criteria: Single Linkage
- Advantages:
 - Can handle non-elliptical shapes
- Limitation:
 - Sensitive to noise and outliers
 - May cause chaining effect

• Linkage criteria: Single Linkage

 Complete: Merges clusters based on maximum distance between two points from two different clusters.

 Complete: Merges clusters based on maximum distance between two points from two different clusters.

- Linkage criteria: Complete Linkage
- Advantages:
 - Less susceptible to noise and outliers
- Limitation:
 - Tends to break large clusters

 Average: Merges clusters based on average distance between all points in one group to all points in other group

 Average: Merges clusters based on average distance between all points in one group to all points in other group

- Linkage criteria: Average Linkage
- Advantages:
 - Less susceptible to noise and outliers
- Limitation:
 - Can't handle complicated forms

Ward: Merge the pair of clusters that leads to minimum increase in total within-cluster variance.

Ward: Merge the pair of clusters that leads to minimum increase in total within-cluster variance.

- Linkage criteria: Ward's Linkage
- Advantages:
 - Less susceptible to noise and outliers
 - Can be used to initialize K-means
- Limitation:
 - Biased towards globular clusters

Diagram representing a tree.

Shows the hierarchical relationship between the clusters.

Dendrogram is the main output of Hierarchical Clustering.

Pros

It shows all the possible linkages between clusters

General overview of the data

No need to preset the number of clusters

Cons...

Examples

https://github.com/gpmarques/hierarchical_clustering

Conclusions

- Advantages:
 - Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

Disadvantages:

 They do not scale well: time complexity of at least O(n2), where n is the number of total objects

References

- http://web.mit.edu/6.S097/www/resources/Hierarchical.pdf
- Slides of Prof. Pier Luca Lanzi
- Finding groups in data an introduction to cluster analysis, book.
- http://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf

Hierarchical Clustering

Abner Cardoso, Anderson Oliveira, Anderson Uchôa, Bruno Yusuke, Guilherme Marques and Hugo Villamizar