# Санкт-Петербургский Политехнический Университет Высшая школа прикладной математики и вычислительной физики, ФизМех 01.03.02 Прикладная математика и информатика

# Отчет по курсовой работе "Решение интегралов с помощью методов средних прямоугольников и Лобатто" дисциплина "Численные методы"

Выполнил студент гр. 5030102/20003 Преподаватель

Жохов О. Д. Козлов К.Н.

# Содержание

| 1 | Формулировка задачи и её формализация                         | 3  |
|---|---------------------------------------------------------------|----|
|   | 1.1 Формализация задачи                                       | 3  |
|   | 1.2 Постановка задачи                                         |    |
| 2 | Алгоритмы методов и условия применимости                      | 4  |
|   | 2.1 Условия применимости                                      | 4  |
|   | 2.2 Алгоритм метода средних прямоугольников                   | 4  |
|   | 2.3 Алгоритм метода Лобатто                                   |    |
| 3 | Тестовые примеры                                              | 5  |
| 4 | Подготовка контрольных тестов и модульная структура программы | 8  |
|   | 4.1 Контрольные тесты                                         | 8  |
|   | 4.2 Модульная структура программы                             |    |
| 5 | Численный анализ решения                                      | 10 |
|   | 5.1 Графики                                                   | 10 |
|   | 5.2 Анализ графиков                                           |    |
| 6 | Выволы                                                        | 13 |

# 1 Формулировка задачи и её формализация

#### 1.1 Формализация задачи

Для вычисления интегралов с помощью квадратурных формул, включая метод средних прямоугольников, сначала определяется интеграл. Затем выбирается формула, определяются узлы и веса. Вычисляется сумма, используя значения функции в узлах и веса. Полученное значение дает приближенный результат.

#### 1.2 Постановка задачи

Требуется найти значение интеграла Римана функции  $f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x$  на отрезке [-2;0] с помощью формулы средних прямоугольников и Лобатто и исследовать:

- 1. Зависимость фактической ошибки от заданной точности.
- 2. Зависимость количества вызовов подынтегральной функции от заданной точности.
- 3. Зависимость фактической погрешности от количества вызовов подынтегральной функции.

## 2 Алгоритмы методов и условия применимости

#### 2.1 Условия применимости

 $f\in C^2([a,b])$ 

#### 2.2 Алгоритм метода средних прямоугольников

- 1. Разбить отрезок [a,b] на n равных частей длины h=(b-a)/n
- 2. Для каждого і прямоугольника найти значение  $x_i$ , соответсвующее середине его стороны по оси х
- 3. Вычислить значения функции найденных точках
- 4. Найти площадь каждого прямоугольника  $S_i = h * f(x_i)$
- 5. Сложить значения площадей всех треугольников для приближённого значения интеграла.

#### 2.3 Алгоритм метода Лобатто

- 1. Выбрать отрезок интегрирования [a,b] и заданную точность  $\delta$ .
- 2. Задать узлы и веса для квадратур Лобатто на 4 и 5 узлов. Фиксированные узлы концы отрезка интегрирования.
- 3. Вычислить значения функции в узлах на отрезке [a,b] для квадратур на 4 и 5 узлов:  $I_4$  и  $I_5$ .
- 4. Найти разность  $|I_5 I_4|$ . Если эта разность меньше заданной точности  $\delta$ , взять  $I_5$  как приближенное значение интеграла на данном отрезке.
- 5. Иначе разделить отрезок [a, b] на две части [a, mid] и [mid, b], где  $\text{mid} = \frac{a+b}{2}$ . Рекурсивно применить функцию поиска приближенного значения интеграла на каждом отрезке, точность  $\delta$  на каждом в 2 раза меньше, чем на текущем шаге.
- 6. Взять сумму значений интегралов на каждом подотрезке для получения приближенного значения на всём интервале.

3 Тестовые примеры

Q=-2, 
$$\beta = 0$$
.  
 $N = 1$ :  $\Delta_1 = |S_1 - S_0| = 1,267$ .  
 $X_0 = -1$ ;  $f(X_0) = -1 + 3,2 + 1,5 + 7 = 10,7$   
 $S_1 = 10,7 \cdot 2 = 21,4$   
 $N = 2$ :  $\Delta_2 = |S_2 - S_0| = 1,192$   
 $N_0 = -1,5$ ;  $f(N_0) = (-1,5)^5 + 3,2 \cdot 1,5 + 1,5 \cdot 1,5^2 + 7 \cdot 1,5 = 11,118$   
 $N_1 = -0,5$ ;  $N_2 = 1,2375$   
 $N_3 = -0,5$ ;  $N_3 = 1,2375$   
 $N_4 = -1,25$ ;  $N_3 = 1,292$   
 $N_3 = -0,25$ ;  $N_3 = 1,293$   
 $N_3 = 1,$ 

Рис. 1: Тестовый пример для метода средних прямоугольников



Рис. 2: Тестовый пример для метода Лобатто

# 4 Подготовка контрольных тестов и модульная структура программы

#### 4.1 Контрольные тесты

Для исследования методов будем рассматривать точности вычисления от  $\epsilon = 10^{-7}$  до  $\epsilon = 10^{-7}$  функции  $f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x$  на отрезке [-2;0].

#### 4.2 Модульная структура программы

значения подынтегральной функции из памяти

```
typedef struct {
    double value;
    int degree;
} integral;
- структура, представляющая из себя интеграл со своим значенеим и степенью (количествмо
итераций для получения приближённого значения)
    double f(double x)
- возвращает значение функции в точке х
   integral square(int n, double a, double b, double prev,
   double delta, int counter)
- функция, принимающая на вход степень интеграла, начало и конец отрезка, значение ин-
теграла на предыдущей итерации и заданную точность. Возвращает значение интеграла на
новой итерации
typedef struct {
    double x:
    double fx;
} Node;
- структура, хранящая вычисленные значения функции
typedef struct {
    Node* cache;
    int cache_size;
    int function_calls;
} lobatto_data;
- структура, хранящая данные о методе Лобатто
double get_from_cache(Node* cache, int cache_size, double x)
- функция, возвращающая ранее вычисленное значение подынтегральной функции в точке
void add_to_cache(Node** cache, int* cache_size, double x, double fx)
- функция, добавляющая вычисленное значение подынтегральной функции в точке
double cached_f(lobatto_data* data, double x)
```

double lobatto\_4(lobatto\_data\* data, double a, double b)

- функция, соединяющая механизмы работы функций добавления в память и возвращения

- функция вычисления интеграла методом Лобатто для 4 слагаемых на отрезке double lobatto\_5(lobatto\_data\* data, double a, double b)
- функция вычисления интеграла методом Лобатто для 5 слагаемых на отрезке double adaptive\_lobatto(lobatto\_data\* data, double a, double b, double delt
- функция вычисления интеграла методом Лобатто для заданной точности с использованием адаптивной сетки

# 5 Численный анализ решения

# 5.1 Графики



Рис. 3: Зависимость фактической ошибки от заданной точности



Рис. 4: Зависимость количества вызовов подынтегральной функции от заданной точности



Рис. 5: Зависимость фактической ошибки от количества вызовов подынтегральной функции

#### 5.2 Анализ графиков

- 1. По рисунку 3 видно, что оба метода достигают заданной точности.
- 2. По рисунку 4 видно, что метод лобатто справляется с достижением заданной точности за меньшее количество итераций, чем метод средних прямоугольников. Тенденция к повышению количества итераций при уменьшении заданной точности наблюдается у обоих методов.
- 3. По рисунку 5 видно, что при одинаковом количестве итераций метод Лобатто имеет меньшее отклонение от фактического значения интеграла, нежели метод средних прямоугольников.

## 6 Выводы

- 1. Метод средних прямоугольников проще в написании, чем метод Лобатто, однако имеет меньшую вычислительную мощность и точность решения.
- 2. Метод Лобатто лучше подходит для вычисления приближённых значений интегралов с высокой заданной точностью