(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-200026

(43)公開日 平成9年(1997)7月31日

(51) Int.Cl. ⁶		識別記号	庁 内整理番号	F 1			技術表示箇所
H03K	19/00			H03K	19/00	A	
G06F	1/04	301		G06F	1/04	3 0 1 C	
	1/10		9199-5K	H 0 3 K	19/173		
H 0 3 K	19/0948			G06F	1/04	3 3 0 A	
	19/173			H03K	19/094	В	
				審査請	求 未請求	請求項の数3 〇Ⅰ	. (全 8 頁)

(21)出願番号 特願平8-8435

(22)出願日 平成8年(1996)1月22日 (71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 栗田 敏明

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 弁理士 柿本 恭成

(54) 【発明の名称】 LSI論理回路

(57) 【要約】

【課題】 消費電力の低減化を図る。

【解決手段】 制御回路22は、切り替えピン14-1, 14-2が示す果たすべき機能にしたがって、該機 能を果たすべき機能ブロックをアクティブにするため に、その機能ブロックに対応する出力信号をし、それ以 外の機能ブロックをインアクティブするためにその機能 ブロックに対応する出力信号をIIにする。ORゲート2 3-A~23-Dは、制御回路22の出力信号とパワー オンリセット端子に入力されるリセット信号を入力し て、論理和を取り、機能ブロック21-A~21-Dの リセット端子に出力する。ORゲート24-A~24-Dは、制御回路22の出力信号とメリンクロックピンに に入力される外部クロック信号を入力して、論理和を取 り、ドライバ25-A~25-Dを介して、機能ブロッ ク21-A~21-Dのクロック端子に出力する。機能 ブロック21-A~21-Dは、クロック信号にしたが って動作する。

- 25-A25-B25-C25-D: クロックスキューおよびファンアクト 対策用クロックドライバ

本発明の実施形態のLSI論理回路

l

【特許請求の範囲】

【請求項1】 クロック信号に基づいて動作する複数の 機能ブロックと、

実行すべき機能を示す複数ビットの切り替え信号を入力 して、該切り替え信号が示す機能を実行するために動作 するべき前記1つもしくは複数の機能ブロックをアクテ イブするために、その機能ブロックに対応する制御信号 を第1の論理レベルにし、その機能では実行する必要の ない機能ブロックをインアクティブにするために、その ルにする制御回路と、

外部クロック信号と前記各機能ブロックに対応する前記 制御信号とを入力し、前記制御信号が第1の論理レベル を示す時、該制御信号に対応する機能ブロックの前記グ ロック信号をアクティブにするために、前記外部クロッ ク信号を出力し、前記制御信号が第2の論理レベルを示 す時、該制御信号に対応する機能ブロックの前記クロッ ク信号をインアクティブにするために、第3の論理レベ ルの信号を出力するクロック停止回路とを、

備えたことを特徴とするLS工論理回路。

【請求項2】 前記クロック停止回路の出力信号を入力 して、前記機能ブロックの前記クロック信号を出力する クロックスキュー対策用かファンアウト対策用の少なく ともいずれかの対策用のクロックドライバを設けたこと を特徴とする請求項1記載のLS1論理回路。

【請求項3】 前記機能ブロックは、

リセット端子を持つ順序回路を有し、

外部リセット信号と前記機能ブロックに対応する前記制 御信号とを入力して、前記制御信号が第1の論理レベル を示す時、前記外部リセット信号を該制御信号に対応す。 る機能プロックの前記リセット端子に出力し、前記制御 信号が第2の論理レベルを示す時、該制御信号に対応す る機能ブロックをリセットするリセット制御回路を設け たことを特徴する請求項1記載のLSI論理回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、LSI論理回路に 関するものであり、特に、CMOS LSIなどのLS 工論理回路における消費電力の低減化に関するものであ

[0002]

【従来の技術】図2は、従来のCMOS LSIで構成 したLSI論理回路を示す構成図である。一般に、CM OS LSIの回路構成は、図2に示すように、LSI 論理回路5の順序回路5-1を構成するフリップフロッ プをパワーオンリセットピン2に入力されるリセット信 号により初期化しておく。そして、メインクロックピン 2に外部クロックを入力して、該外部クロックを配線遅 延差によるクロックスキュー対策およびファンアウト対 2

し、データ入力ピン1-1、…からデータを入力して、 LSI 論理回路5の順序回路5 1及び組み合わせ回路 5-2をクロックに同期して動作させる。

[0003]

【発明が解決しようとする課題】しかしながら、従来の LSI論理回路では、以下のような課題があった。LS 1論理回路が持っている機能のうちの一部の機能を使用 したい場合、つまり、LSI動作モードにより一部の回 路のみを動作させて他の回路は動作させたくない場合で 機能ブロックに対応する前記制御信号を第2の論理レベ 10 おいても、回路全てがシステム・クロックに同期して動 作してしまう。このため、動作させたくない回路も動作 して論理レベルが逐次変化して、電流が流れ、消費電力 が増加する。さらに、LSI論理回路をCMOSで構成 した場合には、論理レベルが変化することにより電源か らグラウンドに貫通電流が流れてしまい、LSI論理回 路全体の消費電力を増加させてしまうという問題点があ った。

[0004]

【課題を解決するための手段】第1の発明は、前記課題 20 を解決するために、クロック信号に基づいて動作する複 数の機能ブロックと、実行すべき機能を示す複数ビット の切り替え信号を入力して、該切り替え信号が示す機能 を実行するために動作するべき前記1つもしくは複数の 機能ブロックをアクティブするために、その機能ブロッ クに対応する前記制御信号を第1の論理レベルにし、そ の機能では実行する必要のない機能ブロックをインアク ティブにするために、その機能ブロックに対応する前記 制御信号を第2の論理レベルにする制御回路と、外部ク ロック信号と前記機能ブロック数分の制御信号とを入力 30 し、前記制御信号が第1の論理レベルを示す時、該制御 信号に対応する機能ブロックの前記クロック信号をアク ティブにするために、前記外部クロック信号を出力し、 前記制御信号が第2の論理レベルを示す時、該制御信号 に対応する機能ブロックの前記クロック信号をインアク ティブにするために、第3の論理レベルの信号を出力す るクロック停止回路とを備えている。以上のように、L S1論理回路を構成したので、切り替え信号が示す機能 に従って、この機能を実行するべき機能ブロックが動作 して、その機能を実行するのに必要のない機能ブロック 40 のクロック信号がインアクティブとなり、その機能ブロ ックは動作しない。そのため、その動作しない機能ブロ ックの消費電力は低減される。従って、前記課題を解決 できるのである。

[0005]

【発明の実施の形態】図1は、本発明の実施形態のLS I 論理回路を示す構成図である。本実施形態のLSI論 理回路が従来のLS工論理回路と異なる点は、第1に、 LSI論理回路の機能をブロックに分割した時に、1つ 機能を持ち単独で動作させるモードがあるもの、又は単 策用のクロックドライバ4を介してクロック端子に入力 50 独で動作するモードがない場合でも、他のモジュールと

一体で動作するモードが複数個ある場合は、各モジュー ルを1機能ブロックとして機能ブロックを分割している ことである。第2に、実現するべき機能を示す切り替え 信号を入力して、該切り替え信号が示す機能を果たすた めに動作するべき機能ブロックをアクティブにして、そ れ以外の機能ブロックをインアクティブにする制御回路 と、動作させない機能ブロックの順序回路をリセットす るとともにクロックを停止して、動作させる機能ブロッ クの順序回路のみみパーワオンリセット信号とクロック 信号を入力するクロック停止回路とリセット制御回路と を設けたことである。以下、本実施形態のLSI論理回 路の構成を説明する。

【0006】まず、LSI論理回路20を機能ブロック 毎に分割する。その分割の方法としては、その分割され たブロックが1つの機能を持ち、単独で動作させるモー ドがあるものをエブロックとして構成する。もしくは、 単独で動作させるモードがない場合でも他のモジュール と一体で動作するモードが複数ある場合に、そのモジュ ールを1機能ブロックとして分割する。図 Tに示すLS Ⅰ論理回路では、一例として、機能Ⅰ~機能4の4個の 機能のモードに分類し、機能ブロックを21-A~21 -Dの4個に分割した場合を示している。図1に示すL S 1 論理回路 2 0 は、複数のデータ入力ピン 1 1 - 1、 11-2、11-3、…、パワーオンリセットピン1 2、メインクロックピン13、切り替えピン14-1、 14 2に接続されている。LSI論理回路20は、機 能ブロック21-A, 21-B, 21-C, 21-D、 モードの数を表すに必要なビット数分(ここでは、モー 下数を4個としてので、2ビット)の入力端子と機能ブ ロック数分(ここでは、4個)の出力端子を持つ制御回 路22、機能ブロック数分の2入力ORゲート23-A ~23-D、機能ブロック数分の2入力ORゲート24 -A~24-D、及び機能ブロック数分のクロックドラ $\frac{1}{1}$ イバ25-A~25-Dを備えている。

【0007】データ入力ピン11-1、11-2、…、 は、機能ブロック21-A~21-Dに入力に接続され ている。パワーオンリセットピン12は、ORゲート2 3 A~23 Dの一方の入力に接続されている。メイ ンクロックピン13は、機能ブロック数分のクロックラ インを介して、ORゲート24-A~24-Dの一方の 入力に接続されている。切り替えピン14-1は、制御 回路22のD1入力に接続されている。切り替えピン1 4-2は、制御回路22のD2入力に接続されている。 制御回路22のA出力は、ORゲート23-A及びOR ゲート24-Aの他方の入力に接続されている。制御回 路22のB出力は、ORゲート23-B及びORゲート 24-Bの他方の入力に接続されている。制御回路22 のC出力は、ORゲート23-C及びORゲート24-Cの他方の入力に接続されている。制御回路22のD出 力は、ORゲート23 D及びORゲート24 Dの他 50 させるべき機能ブロックの順序回路のリセット端子に

4

方の入力に接続されている。ORゲート23-Aの出力 は、機能ブロック21 Aの順序回路のリセット入力に 接続されている。ORゲート23-Bの出力は、機能ブ ロック21-Bの順序回路のリセット入力に接続されて いる。ORゲート23-Cの出力は、機能ブロック21 - Cの順序回路のリセット入力に接続されている。OR ゲート23-Dの出力は、機能ブロック21-Dの順序 回路のリセット入力に接続されている。

【0008】ORゲート24-Aの出力は、クロックド 10 ライバ25-Aの入力に接続され、さらに、クロックド ライバ25-Aの出力は、機能ブロック21-Aの順序 回路のクロック端子に接続されている。ORゲート24 -Bの出力は、クロックドライバ25-Bの入力に接続 され、さらに、クロックドライバ25 Bの出力は、機 能ブロック21-Bの順序回路のクロック端子に接続さ れている。ORゲート24-Cの出力は、クロックドラ イバ25-Cの入力に接続され、さらに、クロックドラ イバ25-Cの出力は、機能ブロック21-Cの順序回 路のクロック端子に接続されている。ORゲート21-20 Dの出力は、クロックドライバ25-Dの入力に接続さ れ、さらに、クロックドライバ25-Dの出力は、機能 ブロック21-Dの順序回路のクロック端子に接続され ている。

【0009】図3は、図1のLSI論理回路の機能の一 例を示す図である。本実施形態では、LSI論理回路の 機能を機能1~機能4の4個のモードに分類している。 機能1は、機能ブロック21-A, 21-B, 21-D を同時に動作させて、機能ブロック21-Cは動作させ ないモードである。機能2は、機能ブロック21-Aの 30 みを動作させて、機能ブロック21-B, 21-C, 2 1-Dを動作させないモードである。機能3は、機能ブ ロック21-B,21-Cを動作させて、機能ブロック 21-A, 21-Dを動作させないモードである。機能 4は、機能ブロック21-Dのみ動作させて、機能ブロ ック21-A~21-Cを動作させないモードである。 機能ブロック21-A~21-Dは、リセット端子とク ロック端子とを持ち、クロックに非同期でリセットさ れ、クロック端子に入力されるクロック信号に基づいて 動作する順序回路と組み合わせ回路とを有するブロック 40 回路である。

【0010】制御回路22は、複数個のモードの中か ら、切り替えピン14-1,14-2に入力される切り 替え信号が示すモードの時に動作する機能ブロックをア クティブして、動作しない機能ブロックをインアクティ ブにするデコーダである。ここでは、モードの個数を4 $(=2^2$) 個としているので、制御回路22の入力は切 り替えピン14-1,14-2の2個であり、制御回路 22の出力は、機能ブロック21-A~21-Dの個数 の4個である。ORゲート23-A~23-Dは、動作

6

は、パワーオンリセットピン12より入力されるリセッ 下信号を出力して、動作させない機能ブロックの順序回 路はリセットするリセット制御回路である。ORゲート 24-A~24-Dは、動作させるべき機能ブロックの 順序回路のクロック端子には、メインクロックピン13 より入力される外部クロック信号を出力して、動作させ ない機能ブロックの順序回路のクロック端子には、日を 出力するクロック停止回路である。クロックドライバ2 5-A~25-Dは、配線遅延により順序回路の誤動作 なまりを防止するファンアウト対策用のドライバであ

【0011】図4は、図1中の制御回路22の構成図で ある。図4に示すように、制御回路22は、EX OR ゲート22-1とORゲート22-2とを有している。 DI入力は、EX-ORゲート22-1の一方の入力に 接続されている。DI入力の反転信号は、ORゲート2 2-2の一方の入力に接続されている。D2入力は、E X-ORゲート22-1の他方の入力、及びORゲート 22-2の他方の入力に接続されている。図5は、図1 の動作説明図である。図5に示すように、機能工は、切 り替えピンD 1=0、D 2=0、機能 2は、D 1=0、 D2-1,機能3は、D1-1, D2-0,機能4は、 D1=1, D2=0を表すものとする。以下、図5を参 照しつつ、図1の動作(a) \sim (d)の説明をする。

【0012】(a) 機能1

図5に示すように、機能工を実行するために、LS工論 理回路20に接続される図示しない回路(例えば、AS 1Cなど)で切り替えピンD1-0, D2-0にする。 図4に示す制御回路22は、A出力をD1(=0)の論 理レベルに等しいL(第1の論理レベル)、B出力をD 2(=0)の論理レベルに等しいL(第1の論理レベ ル)、C出力をORゲート22-2により、D1の反転 信号(=1)とD2との論理和を取りII(第2の論理レ ベル)、D出力をEX-ORゲート22-1により、D 1とD2との排他的論理和を取りL(第1の論理レベ ル)にする。ORゲート23-Aは、Lの出力Aとパワ ーオンリセットピン12に入力されるパワーオンリセッ 下信号との論理和を取り、パワーオンリセット信号を機 能ブロック21-Aの順序回路のリセット端子に出力す る。ORゲート23-Bは、Lの出力Bとパワーオンリ セットピン12に入力されるパワーリセット信号との論 理和を取り、パワーリセット信号を機能ブロック21-Bの順序回路のサセット端子に出力する。

【0013】ORゲート23-Cは、Hの出力Cとバワ ーオンリセットピン12に入力されるパワーオンリセッ 下信号との論理和を取り、ITを機能ブロック21-Cの 順序回路のリセット端子に出力する。ORゲート23-Dは、Lの出力Dとパワーオンリセットピン12に入力 されるパワーオンリセット信号との論理和を取り、パワー

ーオンリセット信号を機能ブロック21-Dの順序回路 のリセット端子に出力する。ORゲート24 Aは、L の出力Aとメインクロックピン13に入力される外部ク ロック信号との論理和を取り、クロック信号をクロック ドライバ25-Aを介して、機能ブロック21-Aの順 序回路のクロック端子に出力する。OR ゲート24-B は、Lの出力Bとメインクロックピン13に入力される 外部クロック信号との論理和を取り、クロック信号をク ロックドライバ25-Bを介して、機能ブロック21-をグ防止するためのクロックスキュー、及びクロックの 10 Bの順序回路のクロック端子に出力する。ORゲート2 4-Cは、日の出力Cとメインクロックピン13に入力 される外部クロック信号との論理和を取り、II(第3の 論理レベル)をクロックドライバ25-Cを介して、機 能ブロック21 Cのクロック端子に出力して、クロッ ク入力をインアクティブにする。

> 【0014】ORゲート24-Dは、Lの出力Dとメイ ンクロックピン13に入力される外部クロック信号との **論理和を取り、クロック信号をクロックドライバ25**-Dを介して、機能ブロック21-Dのクロック端子に出 20 力する。機能ブロック21-A、21-B、21-Dの 順序回路は、パワーオンリセットピン12に入力される パワーオンリセット信号によって、リセットされる。そ して、機能ブロック21-A、21-B、21-Dは、 データ入力ピン11-1,11-2、…に入力されるデ 一夕を入力して、メインクロックピン13に入力される クロックにしたがって、動作して機能工を実行する。こ の時、機能ブロック21-A、21-B、21-Dのク ロック端子には、クロックスキュー対策用及びファンア ウト対策用のクロックドライバ25-A、21-B、2 1-Dから直接クロック信号が入力されるので、クロッ クスキュー及びファンアウトが問題になることがない。 一方、機能ブロック21-Cのリセット端子には、IIが 入力されて、リセットされるとともに、クロック端子 は、II固定となり、機能ブロック21-Cは動作しな い。この時、機能ブロック21-Cの消費電力は、クロ ック及びリセット以外のデータピンD1、D2、…の変 化のみで生じる極めて小さな数値となり、機能工におけ る総消費電力が低減される。

【0015】(b) 機能2

40 図5に示すように、機能2を実行するために、LSI論 理回路20に接続される図示しない回路(例えば、AS 1Cなど)で切り替えピンD1−0, D2−1にする。 図4に示す制御回路22は、A出力をD1(=0)のレ ベルに等しいL、B出力をD2(-1)のレベルに等し いII、C出力をII、D出力をIIにする。ORゲート23 一Aは、機能ブロック21-Aの順序回路のリセット端 子にパワーオンリセットピン12より入力されたパワー オンリセット信号を出力する。ORゲート23-Bは、 機能ブロック21-Bの順序回路のリセット端子に口を - *50* 出力する。ORゲート23 Cは、機能ブロック21

Cの順序回路のサセット端子に口を出力する。ORゲー ト23 Dは、機能ブロック21 Dの順序回路のリセ ット端子に口を出力する。ORゲート24-Aは、クロ ックドライバ25-Aを介して、機能ブロック21-A の順序回路のクロック端子にメインクロックピン13よ り入力され外部クロック信号を出力する。ORゲート2 A-Bは、クロックドライバ25-Bを介して、機能ブ ロック21-Bの順序回路のクロック端子に口を出力す る。ORゲート24-Cは、クロックドライバ25-C を介して、機能ブロック21-Cの順序回路のクロック。 端子に口を出力する。ORゲート2月-Dは、クロック ドライバ25-Dを介して、機能ブロック21-Dの順 序回路のクロック端子に口を出力する。

【0016】機能ブロック21 Aは、パワーオンリセ ットピン12に入力されるパワーオンリセット信号によ って、リセットされる。そして、機能ブロック21-A は、データ入力ピン11-1, 11-2、…に入力され るデータを入力して、メインクロックピン13に入力さ れるクロックにしたがって、動作して機能2を実行す る。この時、機能ブロック21-Aのクロック端子に は、クロックスキュー対策用及びファンアウト対策用の クロックドライバ25-Aから直接クロック信号が入力。 されるので、クロックスキュー及びファンアウトが問題 になることがない。一方、機能ブロック21-B、21 -C、21-Dの順序回路のサセット端子には、Hが入 力されて、リセットされるとともに、クロック端子は、 口固定となり、機能ブロック21-B、21-C、21 -Dは動作しない。この時、機能ブロック21-B、2 I-C、21-Dの消費電力は、クロック及びリセット 以外のデータピンD 1、D 2、…の変化のみで生じる極 30 【 0 0 2 0 】 (d) 機能 4 めて小さな数値となり、機能2における総消費電力が大 幅に低減される。

【0017】(c) 機能3

図5に示すように、機能3を実行するために、LSI論 理回路20に接続される図示しない回路(例えば、AS TCなど)で切り替えピンDT=1, D2=0にする。図オに示す制御回路22は、A出力をD1(-1)のレ ベルに等しいII、B出力をD2(=0)のレベルに等し いし、C出力をし、D出力を口にする。ORゲート23 - Aは、機能ブロック21-Aの順序回路のリセット端。 子にIIを出力する。ORゲート23-Bは、機能ブロッ ク21-Bの順序回路のリセット端子にパワーオンリセ ットピン12に入力されたパワーオンリセット信号を出 力する。ORゲート23-Cは、機能ブロック21-C の順序回路のリセット端子にパワーオンリセットピンエ 2に入力されたパワーオンサセット信号を出力する。O Rゲート23-Dは、機能ブロック21-Dの順序回路 のリセット端子にIIを出力する。

【0018】ORゲート24-Aは、クロックドライバ 25 Aを介して、機能ブロック21 Aの順序回路の 50 ート24 Cは、クロックドライバ25 Cを介して、

クロック端子にHを出力する。ORゲート24-Bは、 クロックドライバ25 Bを介して、機能ブロック21 -Bの順序回路のクロック端子にメインクロックピン1 3より入力された外部クロック信号を出力する。OR ゲ ート24-Cは、クロックドライバ25-Cを介して、 機能ブロック21-Cの順序回路のクロック端子にメイ ンクロックピン13より入力された外部クロック信号を 出力する。ORゲート24-Dは、クロックドライバ2 5-Dを介して、機能ブロック21-Dの順序回路のク - 10 - ロック端子に口を出力する。機能ブロック21-B、2 1-Cは、パワーオンリセットピン12に入力されるバ ワーオンリセット信号によって、リセットされる。そし て、機能ブロック21-B、21-Cは、データ入力ピ ン 1 1 1, 1 1 2、…に入力されるデータを入力し

て、メインクロックピン13に入力されるクロックにし

たがって、動作して機能3を実行する。

8

【0019】この時、機能ブロック21-B、21-C のクロック端子には、クロックスキュー対策用及びファ ンアウト対策用のクロックドライバ25-B、25-C 20 から直接クロック信号が入力されるので、クロックスキ ュー及びファンアウトが問題になることがない。一方、 機能ブロック21-A、21-Dの順序回路のリセット 端子には、口が入力されて、リセットされるとともに、 クロック端子は、II固定となり、機能ブロック21ー A、21-Dは動作しない。この時、機能ブロック21 A、21 Dの消費電力は、クロック及びリセット以 外のデータピンD1、D2、…の変化のみで生じる極め て小さな数値となり、機能2における総消費電力が低減 される。

図5に示すように、機能4を実行するために、LSI論 理回路20に接続される図示しない回路(例えば、AS 1Cなど)で切り替えピンD1-1, D2-1にする。 図4に示す制御回路22は、A出力をD1(=1)のレ ベルに等しいII、B出力をD2(-0)のレベルに等し いII、C出力をII、D出力をLにする。ORゲート23 - Aは、機能ブロック21-Aの順序回路のサセット端 子にHを出力する。ORゲート23 Bは、機能ブロッ ク21-Bの順序回路のサセット端子に口を出力する。 40 ORゲート23-Cは、機能ブロック21-Cの順序回 路のリセット端子にIIを出力する。ORゲート23-D は、機能ブロック21-Dの順序回路のリセット端子に バワーオンリセットピン12に入力されたパワーオンリ セット信号を出力する。

【0021】ORゲート24-Aは、クロックドライバ $25-\Lambda$ を介して、機能ブロック $21-\Lambda$ の順序回路の クロック端子に口を出力する。ORゲート24-Bは、 クロックドライバ25-Bを介して、機能ブロック21 -Bの順序回路のクロック端子に日を出力する。ORゲ

出力する。ORゲート24 Dは、クロックドライバ2

5-Dを介して、機能ブロック21-Dの順序回路のク

ロック端子にメインクロックピン13より入力された外

部クロック信号を出力する。機能ブロック21-Dは、

パワーオンリセットピン12に入力されるパワーオンリ

セット信号によって、リセットされる。そして、機能ブ

2、…に入力されるデータを入力して、メインクロック

ロック21-Dは、データ入力ピン11-1, 11-

機能4を実行する。

【0022】この時、機能ブロック21-Dのクロック 端子には、クロックスキュー対策用及びファンアウト対 策用のクロックドライバ25 Dから直接クロック信号 が入力されるので、クロックスキュー及びファンアウト が問題になることがない。一方、機能ブロック21-A、21-B、21-Cの順序回路のサセット端子に は、IIが入力されて、リセットされるとともに、クロッ ク端子は、11固定となり、機能ブロック21-A、21 -B、21-Cは動作しない。この時、機能ブロック2 1-A、21-B、21-Cの消費電力は、クロック及 びリセット以外のデータピンD1、D2、…の変化のみ で生じる極めて小さな数値となり、機能2における総消 費電力が大幅に低減される。以上説明したように、本実 施形態によれば、LSI論理回路を機能毎に分割し、切 り替えピンにて、未使用時の機能ブロックへ入力される クロックを口に固定し、リセットをアクティブ状態(こ こでは、II)に固定することにより、各機能毎に動作す る順序回路を限定して、LSI論理回路全体の消費電力 削減の効果が期待できる。

【0023】なお、本希明は、上記実施形態に限定され ず種々の変形が可能である。その変形例としては、例え ば次のようなものがある。

(1) 上記実施形態では、4つの機能、機能ブロック 数が4個の場合を説明したが、n (n≥2)個の機能ブ ロック、m (n ≥ m ≥ 2 の整数) 個の機能の場合にも、 勿論、適用可能である。この場合は、切り替えピンの数 を L とした時に、 $2^{-1} \ge m$ として、 L ビットの切り替え 信号が示す機能を果たすために動作するべき機能ブロッ クに対応する田力信号を、例えば、Lにして、それ以外 40 【図5】図1の動作説明図である。 の機能ブロックをインアクティブにするために、その機 能ブロックに対応する出力信号を、例えば、口にするよ うに、制御回路を組み合わせ回路で構成すればよい。

(2) LSI論理回路は、CMOS以外のBiCMO Sなどで構成した場合も、機能ブロックをインアクティ ブにすることにより、論理レベルが変化することによる 電流が流れることが少なくなり、消費電力を低減するこ とができる。

【0024】(3) 上記実施形態では、イクアクティ ブにする機能ブロックのリセット、クロックともにIIで 50 22 10

固定したが、一般的には、順序回路のトランジスタ構成 による消費電力の特性に合わせて最も低消費電力化が実 現できる値に固定する。例えば、リセット状態でクロッ クをLに固定した方が低消費電力化が図れる様なトラン ジスタ回路によって順序回路が構成されている場合に は、クロックラインに挿入したORゲートをNORゲー トにして非動作時には、クロックをしに固定する。

- (4) 上記実施形態では、クロック非同期型のリセッ ト機能の順序回路についてて説明したが、クロック同期 ピン13に入力されるクロックにしたがって、動作して 10 型のリセット機能の順序回路についても、動作させない ものについては、クロックを停止させて、リセット端子 をIIまたはLで固定することにより同様の利点が得られ
 - (5) データピンD1、D2、…から入力されるデー タに対しても、制御回路の出力とデータピンDI、D 2、…から入力されるデータとのORを取り、動作させ ない機能ブロックについては、口固定入力するようにし てもよい。
 - (6) 上記実施形態では、LSI論理回路20を1チ 20 ップで構成して、切り替えピン14-1、14-2及び データピン11-1、11-2、…に接続される回路を 別チップで構成する例を示したが、制御回路22及びデ ータピンD1、D2、…に接続される回路をそのLSI 論理回路20のチップ内に設けてもよい。

[0025]

【発明の効果】以上詳細に説明したように、第1~第3 の発明によれば、機能を示す切り替え信号を入力して、 該切り替え信号が示す機能を実行するために制御信号を 生成する制御回路と、機能を実行する必要の無い機能ブ 30 ロックのクロック入力を停止するクロック停止回路を設 けたので、必要の無い機能ブロックは動作しないので、 消費電力を低減させることができる。

【図面の簡単な説明】

【図1】本発明の実施形態のLSI論理回路の構成図で

【図2】従来のLSI論理回路の構成図である。

【図3】図1のLSI論理回路の機能の一例を示す図で ある。

【図4】図1中の制御回路の構成図である。

【符号の説明】

 $11 - 1, 11 - 2, \cdots$ データ入 力ピン パワーオ 1.2 ンリセットピン 1.3 メインク ロックピン

14-1, 14-2切り替え ピン

制御回路

11 12

【図1】

11-1,11-2,11-3…: データ入力ピン

12: パワーオンリセットピン 13: メインクロックピン 14-1,14-2: 切り替えピン

20: LSI論理回路

25-A,25-B,25-C,25-D: クロックスキューおよびファンアウト

対策用クロックドライバ

本発明の実施形態のLSI論理回路

[図3]

機能名	動作させるブロック					
WEED I	Α	В	С	D		
機能1	0	0		0		
機能2	0					
機能3		0	0			
機約				0		
습計	4 通 り					

LSI論理回路の機能の一例

[図4]

【図5】

機能名	切りか	えピン	劉細同終出力	アクティブになる機能ブロック		
10XHE/1	D1 D2			ファスインICののMRBフロッフ 		
機能1	0	0	A=B=D=L C=H	A,B,D		
機能2	0	1	A=L B=C=D=H	А		
機能3	1	0	B=C=L A=D=H	B.C		
機能4	1	1	D=L A=B=C=H	D		
	以下、切りかえピン数を最高、分割したブロック数(ここでは4) に着やせば、アクティブになる機能ブロックはすべての組合わせを 実現できる。					

図1の動作説明図