

Artificial Intelligence

Kernel Methods and SVM

Donghui Wang Al Institute@ZJU 2015.4

Contents

- Kernel methods
- Maximum margin classifiers

References:

1. Bishop. "Pattern Recognition and Machine Learning", Chapter 6,7. 2006.

Kernel Methods

Two approaches to use training data

- Use training data only in learning phase:
 - Obtain a point estimate of the parameter vector w
 - Determine a posterior distribution over w
 - Predictions for new inputs are based purely on the learned parameter vector w

Slow to learn but fast at making prediction.

- Use training data in both of learning phase and prediction phase:
 - Kept and use training data also during the prediction phase (memory-based)
 - Typically require to measure the similarity of any two vectors in input space
 - E.g. nearest neighbors classifier

Fast to learn but slow at making prediction.

Kernel function and kernel trick

• Similarity metric in feature space can be defined by *kernel function*:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$$

- The kernel is symmetric function: $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$
- The simplest example of a kernel function: $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$ $\phi(\mathbf{x}) = \mathbf{x}$
- Kernel trick (kernel substitution)
 - The general idea is that, if we have an algorithm formulated in such a way that the input vector x enters only in the form of scalar products (e.g. inner products <x, y>), then we can replace that scalar product with some other choice of kernel k(x,y) and allow new learning algorithm to work efficiently in the high dimensional feature space.
 - E.g. perceptron, SVM, PCA, CCA, Fisher's linear discriminant analysis and cluster analysis

<u>Dual representations</u>

M parameters

In linear regression model, we have regularized SSE function:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) - t_n \right\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} = \frac{1}{2} \left\| \mathbf{\Phi} \mathbf{w} - \mathbf{t} \right\|_2^2 + \frac{\lambda}{2} \left\| \mathbf{w} \right\|_2^2$$

$$\mathbf{w} = \sum_{n=1}^{N} a_n \phi(\mathbf{x}_n) = \mathbf{\Phi}^{\mathrm{T}} \mathbf{a} \qquad \Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

N×*M* design matrix

Substitute into J(w) to obtain dual representation:

$$N \times N \text{ Gram matrix}$$

$$K = \Phi \Phi^{T}$$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{T} \Phi \Phi^{T} \Phi \Phi^{T} \mathbf{a} - \mathbf{a}^{T} \Phi \Phi^{T} \mathbf{t} + \frac{1}{2} \mathbf{t}^{T} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^{T} \Phi \Phi^{T} \mathbf{a}$$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{T} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^{T} \mathbf{K} \mathbf{t} + \frac{1}{2} \mathbf{t}^{T} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^{T} \mathbf{K} \mathbf{a}$$

$$\partial J(\mathbf{a}) / \partial \mathbf{a} = 0$$

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_{N})^{-1} \mathbf{t}$$

$$K_{nm} = \phi(\mathbf{x}_{n})^{T} \phi(\mathbf{x}_{m}) = k(\mathbf{x}_{n}, \mathbf{x}_{m})$$

The prediction for a new input x:

The prediction for a new input
$$x$$
:
$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) = \mathbf{a}^{\mathrm{T}} \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

$$k(\mathbf{x}) = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}) \\ k(\mathbf{x}_2, \mathbf{x}) \\ \vdots \\ k(\mathbf{x}_N, \mathbf{x}) \end{pmatrix}$$

Constructing kernels

Methods #1:

- Choose a feature space mapping $\varphi(x)$ and use it to find the corresponding kernel.

$$k(x, x') = \phi(x)^{\mathrm{T}} \phi(x') = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

Constructing kernels

Methods #2:

 Construct kernel function directly, but we must ensure the function we choose is a valid kernel (it can be represented by a scalar product in some feature space).

Example 1:
$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathrm{T}} \mathbf{z})^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} = x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$$

 $= (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})^{\mathrm{T}} = \phi(\mathbf{x})^{\mathrm{T}}\phi(\mathbf{z})$

Construct new kernels by using simpler kernels (building blocks).

Techniques for Constructing New Kernels.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}')) k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}')) k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')) k(\mathbf{x}, \mathbf{x}') = k_2(\mathbf{x}, \mathbf{x}') k(\mathbf{x}, \mathbf{x}') = k_2(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') k(\mathbf{x}, \mathbf{x}') = k_2(\mathbf{x}, \mathbf{x}') k(\mathbf{x},$$

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Constructing kernels

Methods #2:

Construct new kernels by using simpler kernels (building blocks).

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
 $k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$
 $k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$ $k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$
 $k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$ $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$
 $k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$ $k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$
 $k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$ $k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$

• Example 2:
$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2\right)$$
 $\|\mathbf{x} - \mathbf{x}'\|^2 = \mathbf{x}^T \mathbf{x} + (\mathbf{x}')^T \mathbf{x}' - 2\mathbf{x}^T \mathbf{x}'$

$$f(\mathbf{x})$$
 Valid kernel $f(\mathbf{x}')$

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\mathbf{x}^T \mathbf{x} / 2\sigma^2\right) \exp\left(\mathbf{x}^T \mathbf{x}' / \sigma^2\right) \exp\left(-(\mathbf{x}')^T \mathbf{x}' / 2\sigma^2\right)$$

$$\exp(\mathbf{x}) = \sum_{m=0}^{\infty} \frac{\mathbf{x}^m}{m!} \quad \exp\left(\mathbf{x}^{\mathrm{T}}\mathbf{x}'/\sigma^2\right) = \sum_{m=0}^{\infty} \phi_m(\mathbf{x})^{\mathrm{T}} \phi_m(\mathbf{x}') = \psi(\mathbf{x})^{\mathrm{T}} \psi(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = \varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{x}') \quad \text{where} \quad \varphi(\mathbf{x}) = \exp\left(-\frac{\mathbf{x}^{\mathrm{T}}\mathbf{x}}{2\sigma^2}\right) \psi(\mathbf{x}). \quad \begin{array}{c} \textit{Infinite dimension} \\ \textit{dimension} \end{array}$$

The problem of kernel-based algorithms

- Training phase:
 - Must evaluate all possible pairs x_n and x_m :

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$
 $K_{nm} = \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$

- Prediction phase:
 - Must compute kernel between input data x and all training data:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) = \mathbf{a}^{\mathrm{T}} \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \lambda \mathbf{I}_{N})^{-1} \mathbf{t} \qquad \mathbf{k}(\mathbf{x}) = \begin{pmatrix} k(\mathbf{x}_{1}, \mathbf{x}) \\ k(\mathbf{x}_{2}, \mathbf{x}) \\ \vdots \\ k(\mathbf{x}_{N}, \mathbf{x}) \end{pmatrix}$$

- Can the kernel-based algorithms work more effective?
 - We shall look at kernel-based algorithm that have sparse solutions!
 - E.g. SVM

- For the two-class classification problem using linear models: $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
 - Assume the training data set is linearly separable in feature space;
 - And all data points are correctly classified, so that: $t_n y(\mathbf{x}_n) > 0$ $t_n \in \{-1, 1\}$
- The definition of the *Margin* (rescaling w and b doesn't change r)

$$r(\mathbf{w}, b) = \min_{n} \left\{ \frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} \right\} = \min_{n} \left\{ \frac{t_n(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) + b)}{\|\mathbf{w}\|} \right\}$$

• Optimization problem: find the solution of the maximum margin

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} r\left(\mathbf{w},b\right) \iff \underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_{n} \left(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_{n}) + b \right) \right] \right\}$$

- Because $r(\mathbf{w}, b) = r(\kappa \mathbf{w}, \kappa b)$, so we can set $t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) = 1$ for the point that is closest to the decision surface. Then, all data points will satisfy the constraints: $t_n y(\mathbf{x}_n) \ge 1$
- Equivalent constrained optimization problem:

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} r\left(\mathbf{w},b\right) \longleftrightarrow \underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{\frac{1}{\|\mathbf{w}\|}\right\} \longleftrightarrow \underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2}\|\mathbf{w}\|^{2}$$
subject to $t_{n}y(\mathbf{x}_{n}) \geqslant 1, \ n = 1, \dots, N.$

The margin has not been maximized.

The margin has been maximized.

Solving the constrained optimization problem:

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 \qquad \text{subject to } t_n y(\mathbf{x}_n) \geqslant 1, \ n = 1, \dots, N.$$

Introduce Lagrange multipliers $a_n \ge 0$, the Lagrange function:

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) + b) - 1\}$$
 where $\mathbf{a} = (a_1, \dots, a_N)^{\mathrm{T}}$

$$\frac{\partial L(\mathbf{w}, b, \mathbf{a})}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n) \qquad \frac{\partial L(\mathbf{w}, b, \mathbf{a})}{\partial b} = 0 \implies 0 = \sum_{n=1}^{N} a_n t_n$$

- Substitute into
$$L(w, b, a)$$
 to obtain dual representation: $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \text{ subject to } a_n \geqslant 0, \sum_{n=1}^{N} a_n t_n = 0.$$

- Use the *Sequential Minimal Optimization* (SMO) algorithm to solve above problem.
- Classify new data:

y new data:
$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b \xrightarrow{\mathbf{w} = \sum_{n} a_n t_n \phi(\mathbf{x}_n)} \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

• *Karush-Kuhn-Tucher* (KKT) conditions:

KKT conditions

$$\underset{\mathbf{x}}{\operatorname{arg\,max}} f(\mathbf{x})$$
subject to $g(\mathbf{x}) \geqslant 0$

$$\underset{\mathbf{x},\lambda}{\arg\max} \ L(\mathbf{x},\lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x})$$
 subject to $g(\mathbf{x}) \geqslant 0$, $\lambda \geqslant 0$, $\lambda g(\mathbf{x}) = 0$

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 \qquad \underset{\mathbf{w},b}{\operatorname{arg\,min}} \ L(\mathbf{w},b,\mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N a_n \left\{ t_n y(\mathbf{x}_n) + 1 \right\}$$
subject to
$$t_n y(\mathbf{x}_n) \geqslant 1$$

$$t_n y(\mathbf{x}_n) - 1 \geqslant 0$$

$$a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\} = 0$$

Thus for every data point, either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$.

• Only support vectors can make $a_n > 0$, that means we don't need to keep all training data for prediction:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

$$y(\mathbf{x}) = \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}, \mathbf{x}_m) + b$$
Support Vectors set

- Support Vector Machines (SVM) learning algorithm:
 - 1. Choose a kernel function, e.g. Gaussian kernel function.

2. Use SMO algorithm to solve
$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

- 3. Select support vectors with $a_n > 0$
- 4. Compute the threshold parameter b by using SV set: $b = \frac{1}{N_S} \sum_{n \in S} \left(t_n \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$
- 5. Use SV set to classify new data point: $y(\mathbf{x}) = \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}, \mathbf{x}_m) + b$

Overlapping class distributions:

- Slack variables $\xi_n = |t_n y(\mathbf{x}_n)| \geqslant 0$
- Now,

$$\mathop{\arg\min}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $t_n y(\mathbf{x}_n) \geqslant 1$

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

subject to $t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$

$$C > 0 , \quad \xi_n \geqslant 0$$

Soft margin

v-SVM

Hard margin

The corresponding Lagrange function:

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

KKT conditions:
$$a_n \geqslant 0$$

$$t_n y(\mathbf{x}_n) - 1 + \xi_n \geqslant 0$$

$$a_n (t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$$

$$\mu_n \geqslant 0$$

$$\xi_n \geqslant 0$$

$$\mu_n \xi_n = 0$$

$$a_{n} \geqslant 0$$

$$\xi_{n} \geqslant 0$$

$$\xi_{n} \geqslant 0$$

$$\mu_{n} \geqslant 0$$

$$\xi_{n} \geqslant 0$$

$$\xi_{n} \geqslant 0$$

$$\lambda_{n} \geqslant 0$$

$$\xi_{n} \geqslant 0$$

$$\lambda_{n} \geqslant 0$$

 $\widetilde{L}(\mathbf{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{n=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \sum_{n=1}^{N} a_n t_n = 0, \quad \sum_{n=1}^{N} a_n \geqslant \nu.$

Next: Mixture Models and EM