

# High-Resolution Weather Prediction with GraphCast and Implicit Neural Representations



CSED499I: Research Project I @ ML Lab

20220871 Jiwoo Hong

### Graphcast



- GNN-Based Weather Prediction System
- Multiple Resolutions from meshes M<sup>0</sup> to M<sup>6</sup>
- M<sup>6</sup> (40,962 nodes) is the highest resolution avaliable

## Generalised Implicit Neural Representations (GINR)



- Learn implicit neural representations for signals on non-Euclidean domains
- Train a neural network which maps the sprectral embedding of the graph to corresponding signal values

# Research Topic

- Enhance high-resolution weather forecasting by training GINR to predict weather conditions on a finer Graphcast mesh, using input from a coarser mesh

## • Original Dataset: ERA5

- ECMWF atmospheric reanalysis of the global climate
  - resolution: 0.25°
  - number of time: 3
  - number of pressure levels: 37

#### • Processed Dataset (using Graphcast)

- Weather prediction by Graphcast on ERA5 dataset
- Predictions on meshes M<sup>4</sup>, M<sup>5</sup>, M<sup>6</sup>
- Converted to GINR input (graph coordinates, spectral embeddings, and signals)

## • Training

- Each with 300/1k epochs, 0.001 learning rate, 8 layers
- Model '45e300/45e1k'

Input: Prediction results on M<sup>4</sup>,

Output: Signals on M<sup>5</sup>

Model '56e300/56e1k'

Input: Prediction results on M<sup>5</sup>,

Output: Signals on M<sup>6</sup>

Model '46e300/46e1k'

Input: Prediction results on M<sup>4</sup>,

Output: Signals on M<sup>6</sup>

#### Results

- Loss has converged to ~1e5 for all models
- Model '56e300' Train Results (on M<sup>6</sup>):



- Model '45e300' Predictions on M<sup>6</sup>:



- MSE of Train Result & Prediction between target
  - epoch = 300
    - Train Result MSE = 107370.383
    - Prediction MSE = 107358.695
  - epoch = 1k
    - Train Result MSE = **111771.875**
    - Prediction MSE = **111715.977**
- → Prediction is as accurate as the trained result

#### References

- Remi Lam *et al.*, Learning skillful medium-range global weather forecasting. Science 382, 1416-1421 (2023). DOI: 10.1126/science.adi2336
- Daniele Grattarola, Pierre Vandergheynst, "Generalised Implicit Neural Representations", *NeurIPS 2022*. arXiv:2205.15674

#### Code, Details

- github.com/jiwooh/CSED499I