IE 678 Deep Learning

02 - Feedforward Neural Networks
Part 3: Linear Layers

Prof. Dr. Rainer Gemulla

Universität Mannheim

Version: 2024-1

Recall: Supervised learning with FNNs

- Supervised learning
 - lacktriangle Learn a mapping from inputs x to outputs y
 - lackbox Training set $\mathcal{D} = \set{(x_i, y_i)}_{i=1}^N$ of input-output pairs
 - lacktriangle With FNNs: for input x_i , we want output \hat{y}_i "close" to y_i
 - Learning means adjusting the weights such that the FNN does this
- FNNs are discriminative
 - lacktriangle Given an input x, they compute an output \hat{y}
 - But they don't allow going from outputs to inputs
- Hidden layer outputs are inputs of the next layer
 - We may also think of hidden layers as features for the next layer
 - ▶ These features are not provided upfront, but learned

Linear layers

- Layers in which all layer inputs are connected with all layer outputs are called dense layers or fully-connected layers
- A dense linear layer is a layer consisting of only linear neurons
 - lacktriangledown n layer inputs $(oldsymbol{x} \in \mathbb{R}^n)$, m layer outputs $(oldsymbol{y} \in \mathbb{R}^m)$
 - $lackbox{ }$ Parameterized by weight vectors $oldsymbol{w}_1,\ldots,oldsymbol{w}_m\in\mathbb{R}^n$
 - ▶ Optionally: biases $b_1, \ldots, b_m \in \mathbb{R}$
- Outputs given by

$$y_j = \sum_i [\boldsymbol{w}_j]_i x_i + b_j = \langle \boldsymbol{w}_j, \boldsymbol{x} \rangle + b_j$$

• Example: n = 4, m = 2, no bias

The action of a linear layer

- ullet Without bias, we have: $y_j = \langle oldsymbol{w}_j, oldsymbol{x}
 angle$
- Let $m{W} \in \mathbb{R}^{n imes m}$ a weight matrix in which the j-th column equals the weights $m{w}_j$ of the j-th layer output

$$\boldsymbol{W} = \begin{pmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 & \dots & \boldsymbol{w}_m \end{pmatrix}$$

- ullet Then: $oldsymbol{y} = oldsymbol{W}^ op oldsymbol{x}$
 - Linear layers compute a matrix-vector product
- ullet For our example, $oldsymbol{W} = egin{pmatrix} oldsymbol{w}_1 & oldsymbol{w}_2 \end{pmatrix} \in \mathbb{R}^{4 imes 2}$ and

$$oldsymbol{W}^ op oldsymbol{x} = egin{pmatrix} oldsymbol{w}_1^ op \ oldsymbol{w}_2^ op \end{pmatrix} oldsymbol{x} = egin{pmatrix} \langle oldsymbol{w}_1, oldsymbol{x}
angle \ \langle oldsymbol{w}_2, oldsymbol{x}
angle \end{pmatrix} = oldsymbol{y}_1$$

Using linear layers

- Typical uses of linear layers
 - As an output layer for regression tasks
 - As a hidden layer to perform dimensionality reduction (m < n) (in ML somewhat confusingly called **linear projection**)
 - lacktriangle Likewise, as a hidden layer to increase dimensionality (m>n)
- Number of parameters: nm (without bias), nm + m (with bias)

n	m	# parameters	
64	64	4,096	
128	128	16,384	
256	256	65,536	
512	512	262,144	
1,024	1,024	1,048,576	
768	3,072	2,359,296	(T5-Base dense layer, dim up)
3,072	768	2,359,296	(T5-Base dense layer, dim down)
		I .	

Linear regression as FNN (1)

- In a linear FNN, all neurons/layers are linear
- Simplest linear FNN: single linear layer with one output

Input layer

Output layer

- Output $\hat{y} = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b$ is linear in input $\boldsymbol{x} \to \mathsf{linear}$ model
- Suppose we train this network using ERM with squared loss
 - ▶ Empirical risk is $\frac{1}{N} \sum_i (y_i \hat{y}_i)^2 \rightarrow \text{minimize}$
 - ▶ We obtain ordinary least squares (OLS) estimate for linear regression
- Suppose we train with MLE assuming i.i.d. normal errors
 - ▶ I.e., assuming $y_i = \langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b^* + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
 - ▶ Likelihood $\prod_i \mathcal{N}(y_i|\hat{y}_i, \sigma^2) \rightarrow \mathsf{maximize}$
 - ► Recall: solution is OLS estimator

Linear regression as FNN (2)

With multiple outputs, we obtain multiple linear regression

- Linear FNN (w/o hidden layer) ≡ linear regression
 - ► To determine bias and weights, any suitable linear regression library can be used
- ullet Outputs remain linear even with hidden layers (o exercise)
 - \rightarrow That's why we often want non-linearities
- For regression problems, linear layers often used as output layer

Autoencoders

- FNNs are useful for unsupervised learning as well
 - $lackbox{}$ We are given an unlabeled dataset $\mathcal{D} = \{ m{x}_i \}_{i=1}^N$ with $m{x}_i \in \mathbb{R}^D$
 - ► We don't have outputs
 - We want to find structure, or patterns, or reduce dimensionality
- ullet Idea: train FNN to predict its input, i.e., set $oldsymbol{y}_i = oldsymbol{x}_i$
 - ► The resulting FNN is called an autoencoder

Feed into supervised learner

- Why autoencoders?
 - lacktriangle Autoencoders are a technique to **learn embeddings** (z)
 - ► E.g., semi-supervised learning: train autoencoder on all inputs (labeled+unlabeled), use embeddings for supervised learner (labeled)
 - ightharpoonup E.g., clustering: use embeddings as inputs to, say, K-means
 - **E**.g., denoising: use \hat{x} instead of x
 - ▶ E.g., visualization: visualize z (e.g., using Z = 2)

Linear autoencoders

- Linear FNNs can do more than what may be expected at first glance
- A linear autoencoder uses only linear layers (in both encoder and decoder)
- A simple (but useless) linear autoencoder

Input layer (x) Hidden layer (z) Output layer (\hat{x})

Can you figure out the optimal weight matrices (such that $\hat{x}_j = x_j$)?

Bottlenecks

• Consider a linear autoencoder with $m{x} \in \mathbb{R}^D$ and one hidden layer with Z < D hidden neurons

- ► Can you still figure out the optimal weight matrices?
- A layer with few neurons is referred to as a bottleneck
 - ▶ I.e., fewer neurons than the surrounding layers
 - ightharpoonup Forces FNN to "compress" information ightharpoonup dimensionality reduction
 - ► FNNs with bottlenecks *learn* how to compress
- Since autoencoder needs to reconstruct all inputs well, the optimal "compression" depends on all training inputs
 - ightharpoonup E.g., above: 5D data (x) compressed into a 2D representation (z)

Obtaining optimal weights

- ullet We have $m{z}=m{W}_1^{ op}m{x}$ and $\hat{m{x}}=m{W}_2^{ op}m{z}=m{W}_2^{ op}m{W}_1^{ op}m{x}$
- ullet For squared error, solve $\operatorname{argmin}_{m{W}_1,m{W}_2}\left[\sum_i\sum_j(x_{ij}-\hat{x}_{ij})^2
 ight]$
- The solution can be read off the singular value decomposition (SVD) of X (covered in ML lecture)
 - Let X be the design matrix and $U_Z \mathbf{\Sigma}_Z V_Z^ op$ its size-Z truncated SVD
 - $lackbox{lack} U_Z$ is an N imes Z matrix with the first Z left-singular vectors of $oldsymbol{X}$
 - $lackbox{oldsymbol{V}}_Z$ is an D imes Z matrix with the first Z right-singular vectors of $oldsymbol{X}$
 - $lackbox{} \Sigma_Z$ is an Z imes Z matrix with the first Z singular values of $oldsymbol{X}$
 - lacktriangle An optimal solution is $oldsymbol{W}_1 = oldsymbol{V}_Z$ and $oldsymbol{W}_2 = oldsymbol{V}_Z^ op$
 - lackbox For this solution, $oldsymbol{z}_i^ op = [oldsymbol{U}_Z]_{i:} oldsymbol{\Sigma}_Z$
- This is closely related to principal component analysis (PCA)
 - Main difference: PCA centers the data so that each feature has mean 0 (sometimes: also normalize each feature)
 - lacktriangle Then $oldsymbol{W}_1$ contains the first Z principal components as its columns
 - ightharpoonup And $oldsymbol{z}_i$ contains the PCA scores for $oldsymbol{x}_i$

Example: Weather data

\boldsymbol{X}	Jan	Apr	Jul	Oct	Year
Stockholm	-0.70	8.60	21.90	9.90	10.00
Minsk	-2.10	12.20	23.60	10.20	10.60
London	7.90	13.30	22.80	15.20	14.80
Budapest	1.20	16.30	26.50	16.10	15.00
Paris	6.90	14.70	24.40	15.80	15.50
Bucharests	1.50	18.00	28.80	18.00	16.50
Barcelona	12.40	17.60	27.50	21.50	20.00
Rome	11.90	17.70	30.30	21.40	20.40
Lisbon	14.80	19.80	27.90	22.50	21.50
Athens	12.90	20.30	32.60	23.10	22.30
Valencia	16.10	20.20	29.10	23.60	22.30
Malta	16.10	20.00	31.50	25.20	23.20

Example: Weights and representation

$oldsymbol{W}_1$	1	2
Jan	0.22	-0.85
Apr	0.40	0.06
Jul	0.64	0.47
Oct	0.45	-0.18
Year	0.43	-0.14

$oldsymbol{W}_2$	Jan	Âpr	Ĵul	Ôct	Year
1	0.22	0.40	0.64	0.45	0.43
2	-0.85	0.06	0.47	-0.18	-0.14

Z	1	2
Stockholm	26.02	8.25
Minsk	28.63	10.30
London	34.76	0.00
Budapest	37.36	7.42
Paris	36.69	1.48
Bucharests	41.07	7.79
Barcelona	45.51	-3.22
Rome	47.36	-1.50
Lisbon	48.25	-5.34
Athens	51.66	-1.69
Valencia	50.30	-6.16
Malta	52.86	-5.45

Plot of representation

Bottlenecks of two neurons can be useful for visualization.

General autoencoders

- Encoder is a function (e.g., a FNN) that compresses input x to an embedding z (also called *code* or *distributed representation*)
- Decoder is a function (e.g., a FNN) that decompresses an embedding z to obtain reconstruction \hat{x}
 - ► Think: approximate "inverse" of encoder
 - ▶ Decoder may be a "reversed" architecture of the encoder (e.g., layers in reverse order but with different weights)
 - Decoder may be an entirely different network
- \bullet Simplest way to train autoencoder is to use data points x as both input and reconstruction target

Example: Representing documents

804414 newswire stories, inputs = per-document rel. frequencies of 2000 most common word stems, autoencoder = logistic hidden units + linear output units

Fig. 4. (A) The fraction of retrieved documents in the same dass as the query when a query document from the test set is used to retrieve other test set documents, averaged over all 402,207 possible queries. (B) The codes produced by two-dimensional LSA. (C) The codes produced by 2000-500-252-2252 autoencoder.

Discussion (autoencoders)

- Autoencoders are a form of representation learning
- Autoencoders are an example of unsupervised pre-training
 - ▶ I.e., learn (parts of) the weights of a network without supervision
- Many variants exists; e.g.,
 - Architecture of encoder/decoder
 - Choice of cost function
 - Construction of inputs and outputs for learning
 - Constraints on embeddings
- Examples
 - ▶ Denoising autoencoders perturb the input x with noise to obtain \tilde{x} , and then aim to reconstruct the original input x from \tilde{x} \rightarrow noise robustness
 - **Variational autoencoders** force z to follow a specified simple distribution (e.g., diagonal Gaussian) \rightarrow generative model
 - ▶ Sparse autoencoders force z to be sparse \rightarrow sparse representations