Variable Importance Plots: An Introduction to the vip Package

by Brandon M. Greenwell and Bradley C. Boehmke

Abstract In the era of "big data", it is becoming more of a challenge to not only build state-of-the-art predictive models, but also gain an understanding of what's really going on in the data. For example, it is often of interest to know which, if any, of the predictors in a fitted model are relatively influential on the predicted outcome. Some modern algorithms—like random forests (RFs) and gradient boosted decision trees (GBMs)—have a natural way of quantifying the importance or relative influence of each feature. Other algorithms—like naive Bayes classifiers and support vector machines—are not capable of doing so and *model-agnostic approaches* are generally used to measure each predictors importance. Enter vip, an R package for constructing variable importance scores/plots for many types of supervised learning algorithms using model-specific and novel model-agnostic approaches. We'll also discuss a novel way to display both feature importance and feature effects together using sparklines, a very small line chart conveying the general shape or variation in some feature that can be directly embedded in text or tables.

Introduction

Too often machine learning (ML) models are summarized using a single metric (e.g., cross-validated accuracy) and then put into production. Although we often care about the predictions from these models, it is becoming routine to also understand the predictions! Understanding how an ML model makes its predictions helps build trust in the model and is the fundamental idea of the emerging field of *interpretable machine learning* (IML). For an in-depth discussion on IML, see Molnar (2019). In this paper, we focus on global methods for quantifying the importance of features in an ML model. Computing variable importance (VI) and communicating them through variable importance plots (VIPs) is a fundamental component of IML and is the main topic of this paper.

VI scores and VIPs can be constructed for general ML models using a number of packages. The iml package (Molnar et al., 2018) provides the FeatureImp() function which computes feature importance for general prediction models using the permutation approach (discussed later). It is written in R6 (Chang, 2019) and allows the user to specify a generic loss function or select one from a predefined list (e.g., loss = "mse" for mean squared error). It also allows the user to specify whether importance is measured as the difference or as the ratio of the original model error and the model error after permutation. The user can also specify the number of repetitions used when permuting each feature to help stabilize the variability in the procedure.

The ingredients package (Biecek, 2019) also provides permutation-based VI scores through the feature_importance() function. (Note that this function recently replaced the now deprecated DALEX function variable_importance() (Biecek, 2018).) Similar to iml::FeatureImp(), this function allows the user to specify a loss function and how the importance scores are computed (e.g., using the difference or ratio). It also provides an option to sample the training data before shuffling the data to compute importance (the default is to use n_sample = 1000). This can help speed up computation.

The caret package (Kuhn, 2017b) includes a general varImp() function for computing model-specific and filter-based VI scores. Filter-based approaches, which are described in Kuhn and Johnson (2013), do not make use of the fitted model to measure VI. They also do not take into account the other predictors in the model. For regression problems, a popular filter-based approach to measuring the VI of a numeric predictor x is to first fit a flexible nonparametric model between x and the target Y; for example, the locally-weighted polynomial regression (LOWESS) method developed by Cleveland (1979). From this fit, a pseudo- R^2 measure can be obtained from the resulting residuals and used as a measure of VI. For categorical predictors, a different method based on standard statistical tests (e.g., t-tests and ANOVAs) can be employed; see Kuhn and Johnson (2013) for details. For classification problems, an area under the ROC curve (AUC) statistic can be used to quantify predictor importance. The AUC statistic is computed by using the predictor x as input to the ROC curve. If x can reasonably separate the classes of Y, that is a clear indicator that x is an important predictor (in terms of class separation) and this is captured in the corresponding AUC statistic. For problems with more than two classes, extensions of the ROC curve or a one-vs-all approach can be used.

If you use the mlr interface for fitting ML models (Bischl et al., 2016), then you can use the getFeatureImportance() function to extract model-specific VI scores from various tree-based models (e.g., RFs and GBMs). Unlike caret, the model needs to be fit via the mlr interface; for instance, you cannot use getFeatureImportance() on a gbm model (Ridgeway, 2017) unless it was fit using

mlr.

While the **iml** and **DALEX** packages provide model-agnostic approaches to computing VI, **caret**, and to some extent **mlr**, provide model-specific approaches (e.g., using the absolute value of the *t*-statistic for linear models) as well less accurate filter-based approaches . Furthermore, each package has a completely different interface (e.g., **iml** is written in R6). The **vip** package (Greenwell and Boehmke, 2018) strives to provide a consistent interface to both model-specific and model-agnostic approaches to feature importance that is simple to use. The three most important functions exported by **vip** are described below:

- vi() computes VI scores using model-specific or model-agnostic approaches (the results are always returned as a tibble (Müller and Wickham, 2019));
- vip() constructs VIPs using model-specific or model-agnostic approaches with ggplot2-style graphics (Wickham, 2016);
- add_sparklines() adds a novel sparkline representation of feature effects (e.g., partial dependence plots) to any VI table produced by vi().

There's also a function called vint() (for variable interactions) but is experimental and will not be discussed here; the interested reader is pointed to Greenwell et al. (2018). Note that vi() is actually a wrapper around four workhorse functions, vi_model(), vi_ice(), vi_pdp(), and vi_permute(), that compute various types of VI scores. The first computes model-specific VI scores, while the latter three produce model-agnostic ones. The workhorse function that actually gets called is controlled by the method argument in vi(); the default is method = "model" which corresponds to model-specific VI (see ?vip::vi for details and links to further documentation).

Constructing VIPs in R

We'll illustrate major concepts using the Friedman 1 benchmark problem described in Friedman (1991) and Breiman (1996):

$$Y_i = 10\sin(\pi X_{1i}X_{2i}) + 20(X_{3i} - 0.5)^2 + 10X_{4i} + 5X_{5i} + \epsilon_i, \quad i = 1, 2, \dots, n,$$
 (1)

where $\epsilon_i \stackrel{iid}{\sim} N\left(0,\sigma^2\right)$. Data from this model can be generated using the mlbench.friedman1() function available in the mlbench package (Leisch and Dimitriadou, 2012). The features consist of 10 independent variables uniformly distributed on the interval [0,1]; however, only 5 out of these 10 are actually used in the true model. The code chunk below simulates 500 observations from the model in Equation (1) with $\sigma=1$ (the default); see mlbench: :mlbench.friedman1 for details.

```
# Simulate training data
set.seed(101) # for reproducibility
trn <- as.data.frame(mlbench::mlbench.friedman1(500)) # ?mlbench.friedman1</pre>
names(trn) \leftarrow gsub("^x\\.", replacement = "X", x = names(trn)) # to match notation
# Inspect data
tibble::as_tibble(trn)
#> Warning: `as.tibble()` is deprecated, use `as_tibble()` (but mind the new semantics).
#> This warning is displayed once per session.
#> # A tibble: 500 x 11
                        X1
                                      X2
                                                    Х3
                                                                      Χ4
                                                                                       X5
                                                                                                           Х6
                                                                                                                           X7
                                                                                                                                           X8
                                                                                                                                                          Х9
                                                                                                                                                                     X10
                 <dbl> 
#>
      1 0.372 0.406 0.102 0.322 0.693 0.758 0.518 0.530 0.878 0.763 14.9
#>
       2 0.0438 0.602 0.602 0.999 0.776 0.533 0.509 0.487 0.118 0.176 15.3
       3 0.710 0.362 0.254 0.548 0.0180 0.765 0.715 0.844 0.334 0.118 15.1
       4 0.658 0.291 0.542 0.327 0.230 0.301 0.177 0.346 0.474 0.283 10.7
       5 0.250 0.794 0.383 0.947 0.462 0.00487 0.270 0.114 0.489 0.311 17.6
         6 0.300
                               0.701 0.992 0.386 0.666 0.198 0.924 0.775 0.736 0.974 18.3
                               0.365 0.283 0.488 0.845 0.466
         7 0.585
                                                                                                                   0.715 0.202 0.905 0.640 14.6
         8 0.333 0.552 0.858 0.509 0.697 0.388 0.260 0.355 0.517 0.165 17.0
      9 0.622 0.118 0.490 0.390 0.468 0.360 0.572 0.891 0.682 0.717 8.54
#> 10 0.546  0.150 0.476 0.706 0.829  0.373  0.192 0.873 0.456 0.694 15.0
#> # with 490 more rows
```

From Equation (1), it should be clear that features X_1 – X_5 are the most important! (The others don't influence Y at all.) Also, based on the form of the model, we'd expect X_4 to be the most important feature, probably followed by X_1 and X_2 (both comparably important), with X_5 probably less

important. The influence of X_3 is harder to determine due to its quadratic nature, but it seems likely that this nonlinearity will suppress the variable's influence over its observed range (i.e., 0–1).

Model-specific VI

Some machine learning algorithms have their own way of quantifying the importance of each feature. We describe some of these in the subsections that follow. The issue with model-specific VI scores is that they are not necessarily comparable across different types of models. For example, directly comparing the impurity-based VI scores from tree-based models to the t-statistic from linear models.

Decision trees and tree ensembles

Decision trees probably offer the most natural model-specific approach to quantifying the importance of each feature. In a binary decision tree, at each node t, a single predictor is used to partition the data into two homogeneous groups. The chosen predictor is the one that maximizes some measure of improvement i^t . The relative importance of predictor X is the sum of the squared improvements over all internal nodes of the tree for which X was chosen as the partitioning variable; see Breiman et al. (1984) for details. This idea also extends to ensembles of decision trees, such as RFs and GBMs. In ensembles, the improvement score for each predictor is averaged across all the trees in the ensemble. Fortunately, due to the stabilizing effect of averaging, the improvement-based VI metric is often more reliable in large ensembles; see Hastie et al. (2009, p. 368). RFs offer an additional method for computing VI scores. The idea is to use the leftover out-of-bag (OOB) data to construct validation-set errors for each tree. Then, each predictor is randomly shuffled in the OOB data and the error is computed again. The idea is that if variable X is important, then the validation error will go up when X is perturbed in the OOB data. The difference in the two errors is recorded for the OOB data then averaged across all trees in the forest. Later on, we'll discuss a more general permutation method that can be applied to any supervised learning model.

To illustrate, we fit a CART-like regression tree, RF, and GBM to the simulated training data. (Note: there are a number of different packages available for fitting these types of models, we just picked popular implementations for illustration.)

```
# Load required packages
library(rpart)
                        # for fitting CART-like decision trees
library(randomForest)
                        # for fitting RFs
                         # for fitting GBMs
library(xgboost)
# Fit a single regression tree
tree <- rpart(y ~ ., data = trn)</pre>
# Fit an RF
set.seed(101)
rfo <- randomForest(y ~ ., data = trn, importance = TRUE)</pre>
# Fit a GBM
set.seed(102)
bst <- xgboost(</pre>
  data = data.matrix(subset(trn, select = -y)),
  label = trn$y,
  objective = "reg:linear",
  nrounds = 100,
  max_depth = 5,
  eta = 0.3,
  verbose = 0 # suppress printing
```

Each of the above packages include the ability to compute VI scores for all the features in the model; however, the implementation is rather package specific, as shown in the code chunk below. The results are displayed in Figure 1 (the code to reproduce these plots has been omitted but can be made available upon request).

```
# Extract VI scores from each model
vi_tree <- tree$variable.importance
vi_rfo <- rfo$variable.importance
vi_bst <- xgb.importance(model = bst)</pre>
```


Figure 1: model-specific VIPs for the three different tree-based models fit to the simulated Friedman data.

As we would expect, all three methods rank the variables X1–X5 as more important than the others. While this is good news, it is unfortunate that we have to remember the different functions and ways of extracting and plotting VI scores from various model fitting functions. This is one place where **vip** can help...one function to rule them all! Once **vip** is loaded, we can use vi() to extract a tibble of VI scores.

```
# Load required packages
library(vip)
# Compute model-specific VI scores
vi(tree) # CART-like decision tree
#> # A tibble: 10 x 2
      Variable Importance
      <chr>
                     <dbl>
#>
   1 X4
                     4234.
    2 X2
                     2513.
#>
    3 X1
                     2461.
    4 X5
                     1230.
#>
    5 X3
                      688.
#>
    6 X6
                      533.
#>
   7 X7
                      357.
#>
                      331.
   8 X9
#>
   9 X8
                      276.
#> 10 X10
                      275.
vi(rfo)
          # RF
#> # A tibble: 10 x 2
#>
      Variable Importance
#>
      <chr>
                    <dbl>
   1 X4
                    74.2
#>
    2 X2
                    59.9
#>
                    53.3
#>
   3 X1
#>
    4 X5
                    37.1
    5 X3
                    22.5
   6 X9
                    1.05
   7 X10
                     0.254
   8 X8
                    -0.408
#>
  9 X7
                    -1.56
#> 10 X6
                    -2.00
          # GBM
vi(bst)
#> # A tibble: 10 x 2
#>
      Variable Importance
#>
      <chr>
                     <dbl>
                   0.403
    1 X4
#>
    2 X2
                  0.225
#>
    3 X1
                  0.189
#>
    4 X5
                  0.0894
```

0.0682

#>

5 X3

Notice how the vi() function always returns a tibble with two columns: Variable and Importance (the exceptions are coefficient-based models which also include a Sign column giving the sign of the corresponding coefficient and permutation importance involving multiple Monte Carlo simulations, but more on that later). Also, by default, vi() always orders the VI scores from highest to lowest; this, among other options, can be controlled by the user (see ?vip::vi for details). Plotting VI scores with vip() is just as straightforward. For example, the following code can be used to reproduce Figure 1.

```
p1 <- vip(tree) + ggtitle("Single tree")
p2 <- vip(rfo) + ggtitle("Random forest")
p3 <- vip(bst) + ggtitle("Gradient boosting")
# Figure 1
grid.arrange(p1, p2, p3, nrow = 1)</pre>
```

Notice how the vip() function always returns a "ggplot" object (by default, this will be a bar plot). For large models with many features, a Cleveland dot plot is more effective (in fact, a number of useful plotting options can be fiddled with). Below we call vip() and change a few useful options (the resulting plot is displayed in Figure 2). Note that we can also call vip() directly on a "vi" objects if it's already been constructed.

```
# Load required packages
library(ggplot2) # for theme_light() function

vip(bst, num_features = 5, geom = "point", horizontal = FALSE,
    aesthetics = list(color = "red", shape = 17, size = 4)) +
    theme_light()
```


Figure 2: Illustrating various options available in vip().

Linear models

In multiple linear regression, or linear models (LMs), the absolute value of the *t*-statistic (or some other scaled variant of the estimated coefficients) is commonly used as a measure of VI. The same

¹Technically, it's a tibble with an additional "vi" class.

idea also extends to generalized linear models (GLMs). In the code chunk below, we fit an LM to the simulated trn data set allowing for all main effects and two-way interactions, then use the step() function to perform backward elimination. The resulting VIP is displayed in Figure 3.

```
# Fit a LM
linmod <- lm(y ~ .^2, data = trn)
backward <- step(linmod, direction = "backward", trace = 0)</pre>
# Extract VI scores
(vi_backward <- vi(backward))</pre>
#> # A tibble: 21 x 3
     Variable Importance Sign
#>
      <chr>
                    <dbl> <chr>
#>
   1 X4
                    14.2 POS
#>
   2 X2
                     7.31 POS
#>
  3 X1
                     5.63 POS
#>
  4 X5
                     5.21 POS
  5 X3:X5
                     2.46 POS
#>
  6 X1:X10
                     2.41 NEG
#>
#>
  7 X2:X6
                     2.41 NEG
  8 X1:X5
                     2.37 NEG
#> 9 X10
                     2.21 POS
                     2.01 NEG
#> 10 X3:X4
#> # with 11 more rows
# Plot VI scores; by default, `vip()` displays the top ten features
vip(vi_backward, num_features = length(coef(backward)),
    geom = "point", horizontal = FALSE)
```


Figure 3: Example VIP from a linear model fit to the simulated Friedman data.

One issue with computing VI scores for LMs using the *t*-statistic approach is that a score is assigned to each term in the model, rather than to each individual feature! We can solve this problem using one of the model-agnostic approaches discussed later.

Multivariate adaptive regression splines (MARS), which were introduced in Friedman (1991), is an automatic regression technique and can be seen as a generalization of LMs and GLMs. In the MARS algorithm, the contribution (or VI score) for each predictor is determined using a generalized cross-validation (GCV) statistic (though, other statistics can also be used; see ?vip::vi_model for details). An example using the earth package (Milborrow, 2017) is given below (the results are plotted in Figure 5):

```
# Load required packages
library(earth)
# Fit a MARS model
mars <- earth(y ~ ., data = trn, degree = 2, pmethod = "exhaustive")</pre>
# Extract VI scores
vi(mars, type = "gcv")
#> # A tibble: 10 x 2
      Variable Importance
#>
      <chr>
                     <dbl>
#>
   1 X4
                    100
#>
   2 X1
                     83.2
   3 X2
#>
                     83.2
                     59.3
#>
   4 X5
#>
   5 X3
                      43.5
#>
   6 X6
                       0
#>
   7 X7
                       0
   8 X8
                       0
#>
   9 X9
                       0
#> 10 X10
# Plot VI scores
vip(mars)
```


Figure 4: Example VIP from a MARS model fit to the simulated Friedman data.

To access VI scores directly in **earth**, you can use the earth::evimp() function.

Neural networks

For neural netwroks (NNs), two popular methods for constructing VI scores are the Garson algorithm (Garson, 1991), later modified by Goh (1995), and the Olden algorithm (Olden et al., 2004). For both algorithms, the basis of these VI scores is the networks connection weights. The Garson algorithm determines VI by identifying all weighted connections between the nodes of interest. Oldens algorithm, on the other hand, uses the products of the raw connection weights between each input and output neuron and sums these products across all hidden neurons. This has been shown to outperform the Garson method in various simulations. For DNNs, a similar method due to Gedeon (1997) considers the weights connecting the input features to the first two hidden layers (for simplicity and speed);

but this method can be slow for large networks. We illustrate these two methods below using vip() with the nnet package (Venables and Ripley, 2002) (see the results in Figure 5).

```
# Load required packages
library(nnet)

# Fit a neural network
set.seed(0803)
nn <- nnet(y ~ ., data = trn, size = 7, decay = 0.1, linout = TRUE)

# VIPs
p1 <- vip(nn, type = "garson")
p2 <- vip(nn, type = "olden")

# Figure 5
grid.arrange(p1, p2, nrow = 1)</pre>
```


Figure 5: Example VIPs from a single-hidden-layer NN fit to the simulated Friedman data.

Model-agnostic VI

Model-agnostic interpredibility separates interpretation from the model. Compared to model-specific approaches, model-agnostic VI methods are more flexible and can be applied to any supervised learning algorithm. In this section, we discuss model-agnostic methods for quantifying global feature importance using three different approaches: 1) partial dependence plots (PDPs), 2) *individual conditional expectation* (ICE) curves, and 3) permutation-based feature importance. For specific details on approaches 1)–2), see Greenwell et al. (2018).

PDP method

Our first model-agnostic approach is based on quantifying the "flatness" of the PDPs of each feature. PDPs help visualize the effect of low cardinality subsets of the feature space on the estimated prediction surface (e.g., main effects and two/three-way interaction effects.). PDPs provide model-agnostic interpretations and can be constructed in the same way for any supervised learning algorithm; for an overview, see Greenwell (2017). Below, we fit a projection pursuit regression (PPR) model and construct PDPs for each feature using the pdp package Greenwell (2017). The results are displayed in Figure 6. Notice how the PDPs for the uninformative features are relatively flat compared to the PDPs for features X1–X2!

```
# Load required packages
library(pdp)
```

Fit a PPR model (nterms was chosen using the caret package with 5 repeats of

```
# 5-fold cross-validation)
pp <- ppr(y ~ ., data = trn, nterms = 11)

# PDPs for all 10 features
features <- paste0("X", 1:10)
pdps <- lapply(features, FUN = function(feature) {
  pd <- partial(pp, pred.var = feature)
  autoplot(pd) +
    ylim(range(trn$y)) +
    theme_light()
})
grid.arrange(grobs = pdps, ncol = 5)</pre>
```


Figure 6: PDPs of main effects in the PPR model fit to the simulated Friedman data.

Next, we compute PDP-based VI scores for the PPR and NN models. The PDP method constructs VI scores that quantify the relative "flatness" of each PDP (by default, this is defined by computing the standard deviation of the y-axis values for each PDP). To use the PDP method, specify method = "pdp" in the call to vi() or vip():

```
# Fit a PPR model (nterms was chosen using the caret package with 5 repeats of
# 5-fold cross-validation)
pp <- ppr(y ~ ., data = trn, nterms = 11)

# Plot VI scores
p1 <- vip(pp, method = "pdp") + ggtitle("PPR")
p2 <- vip(nn, method = "pdp") + ggtitle("NN")

# Figure 7
grid.arrange(p1, p2, ncol = 2)</pre>
```

In Figure 7 we display the PDP-based feature importance for the previously obtained PPR and NN models. These VI scores essentially capture the variability in the partial dependence values for each main effect.

ICE curve method

The ICE curve method is similar to the PDP method. The only difference is that we measure the "flatness" of each ICE curve and then aggregate the results (e.g., by averaging). If there are no (substantial) interaction effects, using method = "ice" will produce results similar to using method = "pdp". However, if strong interaction effects are present, they can obfuscate the main effects and render the PDP-based approach less useful (since the PDPs for important features can be relatively flat when certain interactions are present; see Goldstein et al. (2015) for details). In fact, it is probably safest to always use method = "ice".

Below, we display the ICE curves for each feature in the PPR model using the same *y*-axis scale; see Figure 8. Again, there is a clear difference between the ICE curves for features X1–X5 and X6–X10; the later being relatively flat by comparison. Also, notice how the ICE curves within each feature are relatively parallel (if the ICE curves within each feature were perfectly parallel, the standard deviation for each curve would be the same and the results will be identical to the PDP method). In this example, the interaction term between X1 and X2 does not obfuscate the PDPs for the main effects and the results are not much different.

Figure 7: PDP-based feature importance for the PPR and NN models fit to the simulated Friedman data.

```
# ICE curves for all 10 features
ice_curves <- lapply(features, FUN = function(feature) {
  ice <- partial(pp, pred.var = feature, ice = TRUE)
  autoplot(ice, alpha = 0.1) +
    ylim(range(trn$y)) +
    theme_light()
})

# Figure 8
grid.arrange(grobs = ice_curves, ncol = 5)</pre>
```


Figure 8: ICE curves for each feature in the PPR model fit to the simulated Friedman data. The red curve represents the PDP (i.e., the averaged ICE curves).

Obtaining the ICE-based feature importance scores is also straightforward, just specify method = "ice" in the call to vip::vi() or vip::vip(). This is illustrated in the code chunk below and the results are Figure 9 are similar to those obtained using the PDP method.

```
# Plot VI scores
p1 <- vip(pp, method = "ice") + ggtitle("PPR")
p2 <- vip(nn, method = "ice") + ggtitle("NN")
# Figure 9
grid.arrange(p1, p2, ncol = 2)</pre>
```

When using method = "pdp" or method = "ice", the feature effect values are stored as attributes "pdp" and "ice", respectively. This is a convenience so that the feature effect plots (e.g., PDPs and ICE curves) can easily be reconstructed and compared with the VI scores, as demonstrated in the example below (see Figure 10):

Figure 9: ICE-based feature importance for the PPR and NN models fit to the simulated Friedman data.

```
# Construct PDP-based variable importance scores
vis <- vi(pp, method = "pdp")</pre>
#> Warning message:
#> Setting `method = "pdp"` is experimental, use at your own risk!
vis
#> # A tibble: 10 x 2
#>
      Variable Importance
#>
      <chr>
                     <dbl>
#>
    1 X4
                    2.93
#>
    2 X2
                    2.05
#>
    3 X1
                    2.04
#>
    4 X5
                    1.53
#>
    5 X3
                    1.38
#>
    6 X6
                    0.183
   7 X10
#>
                    0.139
#>
    8 X9
                    0.113
#>
  9 X8
                    0.0899
#> 10 X7
                    0.0558
# Reconstruct PDPs for all 10 features
par(mfrow = c(2, 5))
for (name in paste0("X", 1:10)) {
 plot(attr(vis, which = "pdp")[[name]], type = "l", ylim = c(9, 19), las = 1)
}
```

Permutation method

The permutation method exists in various forms and was made popular in Breiman (2001) for RFs, before being generalized and extended in Fisher and Dominici (2018). The permutation approach used in \mathbf{vip} is quite simple and is outlined in Algorithm 1 below. The idea is that if we randomly permute the values of an important feature in the training data, the training performance would degrade (since permuting the values of a feature effectively destroys any relationship between that feature and the target variable). This of course assumes that the model has been properly tuned (e.g., using cross-validation) and is not over fitting. The permutation approach uses the difference between some baseline performance measure (e.g., training R^2 , AUC, or RMSE) and the same performance measure obtained after permuting the values of a particular feature in the training data (**Note:** the model is NOT refit to the training data after randomly permuting the values of a feature). It is also important to note that this method may not be appropriate when you have, for example, highly correlated features (since permuting one feature at a time may lead to unlikely data instances).

Let X_1, X_2, \dots, X_j be the features of interest and let \mathcal{M}_{orig} be the baseline performance metric for

Figure 10: PDPs for all ten features reconstructed from the "pdp" attribute of the vis object.

the trained model; for brevity, we'll assume smaller is better (e.g., classification error or RMSE). The permutation-based importance scores can be computed as follows:

- 1. For i = 1, 2, ..., j:
 - (a) Permute the values of feature X_i in the training data.
 - (b) Recompute the performance metric on the permuted data \mathcal{M}_{perm} .
 - (c) Record the difference from baseline using $imp(X_i) = \mathcal{M}_{perm} \mathcal{M}_{orig}$.
- 2. Return the VI scores $imp(X_1)$, $imp(X_2)$,..., $imp(X_i)$.

Algorithm 1: A simple algorithm for constructing permutation-based VI scores.

Algorithm 1 can be improved or modified in a number of ways. For instance, the process can be repeated several times and the results averaged together. This helps to provide more stable VI scores, and also the opportunity to measure their variability. Rather than taking the difference in step (c), Molnar (2019, Chapter 5, Section 5.5.4) argues that using the ratio $\mathcal{M}_{perm}/\mathcal{M}_{orig}$ makes the importance scores more comparable across different problems. It's also possible to assign importance scores to groups of features (e.g., by permuting more than one feature at a time); this would be useful if features can be categorized into mutually exclusive groups, for instance, categorical features that have been *one-hot-encoded*.

To use the permutation approach in **vip**, specify method = "permute" in the call to vi() or vip(). Note that using method = "permute" requires specifying a few additional arguments (e.g., the training data, target name, etc.); see ?vi_permute for details.

An example is given below for the previously fitted PPR and NN models. Here we use R^2 (metric = "rsquared") as the evaluation metric. The results, which are displayed in Figure 11, agree with those obtained using the PDP- and ICE-based methods.

The permutation approach introduces randomness into the procedure and therefore should be run more than once if computationally feasible. Fortunately, this also allows us to compute standard errors for the estimated VI scores, as illustrated in the example below where we specify nsim =

Figure 11: Permutation-based feature importance for the PPR and NN models fit to the simulated Friedman data.

10 to request that each feature be permuted 10 times and the results averaged together. (Additionally, if nsim >1, you can set geom = "boxplot" in the call to vip() to construct boxplots of the raw permutation-based VI scores. This is useful if you want to visualize the variability in each of the VI estimates.)

```
# Use 10 Monte Carlo reps
set.seed(403) # for reproducibility
vi(pp, method = "permute", target = "y", metric = "rsquared",
  pred_wrapper = predict, nsim = 10)
# A tibble: 10 x 3
#>
     Variable Importance
                            StDev
#>
      <chr>
                   <dbl>
                            <dbl>
   1 X4
#>
                   0.586 0.0188
#>
   2 X2
                   0.416 0.0184
   3 X1
                          0.0162
#>
                   0.377
#>
   4 X5
                   0.222 0.0155
   5 X3
                   0.183 0.00936
   6 X6
                   0.0620 0.00379
   7 X8
                   0.0603 0.00378
  8 X9
                   0.0389 0.00417
#>
  9 X7
                   0.0373 0.00321
#> 10 X10
                   0.0348 0.00290
```

All available performance metrics for regression and classification can be listed using the list_metrics() function, for example:

#>		Metric	Description		Task
#>	1	auc	Area under (ROC) curve	Binary	classification
#>	2	error	Misclassification error	Binary	${\tt classification}$
#>	3	logloss	Log loss	Binary	classification
#>	4	mauc	Multiclass area under (ROC) curve	${\it Multiclass}$	classification
#>	5	mlogloss	Multiclass log loss	${\tt Multiclass}$	${\tt classification}$
#>	6	mse	Mean squared error		Regression
#>	7	r2	R squared		Regression
#>	8	rsquared	R squared		Regression
#>	9	rmse	Root mean squared error		Regression

We can also use a custom metric (i.e., loss function). Suppose for example you want to measure importance using the *mean absolute error* (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| Y_i - \widehat{f} \left(\mathbf{X}_i \right) \right|, \tag{2}$$

where $\widehat{f}(X_i)$ is the predicted value of Y_i . A simple function implementing this metric is given below (note that, according to the documentation in ?vi_permute, this function requires two arguments: actual and predicted).

```
mae <- function(actual, predicted) {
  mean(abs(actual - predicted))
}</pre>
```

To use this for computing permutation-based VI scores just pass it via the metric argument (be warned, however, that the metric used for computing permutation importance should be the same as the metric used to train and tune the model). Also, since this is a custom metric, we need to specify whether a smaller value indicates better performance by setting smaller_is_better = TRUE. The results, which are displayed in Figure 13, are similar to those in Figure 11, albeit a different scale.

```
# Figure 12
set.seed(2321) # for reproducibility
vip(nn, method = "permute", target = "y", metric = mae,
    smaller_is_better = TRUE, pred_wrapper = nnet:::predict.nnet) +
    ggtitle("Custom loss function: MAE")
```


Figure 12: Permutation-based feature importance for the NN model fit to the simulated Friedman data. In this example, permutation importance is based on the MAE metric.

Although permutation importance is most naturally computed on the training data, it may also be useful to do the shuffling and measure performance on new data! This is discussed in depth in Molnar (2019)[Chapter 5, Section 5.2]. For users interested in computing permutation importance using new data, just supply it to the train argument in the call to vi(), vip(), or vi_permute(). For instance, suppose we wanted to only use a fraction of the original training data to carry out the computations. In this case, we could simply pass the sampled data to the train argument as follows:

```
# Figure 13
set.seed(2327) # for reproducibility
vip(nn, method = "permute",
    train = trn[sample(nrow(trn), size = 400), ], # sample 400 observations
    target = "y", metric = "rmse") +
    ggtitle("Using a random subset of training data")
```

When using the permutation method with nsim >1, the default is to keep all the permutation scores as an attribute called "raw_scores"; you can turn this behavior off by setting keep = FALSE in the call to vi_permute(), vi(), or vip(). If keep = TRUE and nsim >1, you can request all permutation scores to be plotted by setting all_permutation = TRUE in the call to vip() as demonstrated in the code chunk below (see Figure 13). This let's you visually inspect the variability in the permutation scores within each feature.

Using a random subset of training data

Figure 13: Permutation-based feature importance for the NN model fit to the simulated Friedman data. In this example, permutation importance is based on a random sample of 400 training observations.

```
# Figure 14
set.seed(8264) # for reproducibility
vip(nn, method = "permute", target = "y", metric = "rmse",
    all_permutations = TRUE) +
    ggtitle("Plotting all permutation scores")
```

Plotting all permutation scores

Figure 14: Permutation-based feature importance for the NN model fit to the simulated Friedman data. In this example, all the permutation importance scores (points) are displayed for each feature along with their average (bars).

Benchmarks

In this section, we compare the performance of three implementations of permutation-based VI scores: iml::FeatureImp(), ingredients::feature_importance(), and vip::vi().

We simulated 10,000 training observations from the Friedman 1 benchmark problem and trained a random forest using the **ranger** package. For each implementation, we computed permutation-based VI scores 100 times using the **microbenchmark** package (Mersmann, 2018). For this benchmark we did not use any of the parallel processing capability available in the **iml** and **vip** implementations. The results from **microbenchmark** are displayed in Figure ?? and summarized in the output below. In this case, the **vip** package was the most efficient, followed closely by **ingredients**. It should be noted, however, that the implementations in **vip** and **iml** can be parallelized. To the best of our knowledge, this is not the case for **ingredients**.

```
Unit: seconds

expr min lq mean median uq max neval cld

ingredients 4.960832 5.658127 8.103375 5.853441 8.034572 61.61415 100 b

iml 10.636616 11.742197 14.760306 12.180391 12.961056 35.28671 100 c

vip 4.076012 4.729765 5.968943 4.838916 5.745905 20.04089 100 a
```


Figure 15: Violin plots comparing the computation time from three different implementations of permutation-based VI scores across 100 simulations.

Use sparklines to characterize feature effects

Starting with **vip** 0.1.3, we have included a new function add_sparklines() for constructing HTML-based VI tables; however, this feature requires the **DT** package (Xie et al., 2018). The primary difference between vi() and add_sparklines() is that the latter includes an Effect column that displays a sparkline representation of the partial dependence function for each feature. This is a concise way to display both feature importance and feature effect information in a single (interactive) table. See <code>?vip::add_sparklines()</code> in the code chunks below.

```
# First, compute a tibble of variable importance scores using any method
var_imp <- vi(rfo, method = "permute", metric = "rmse", target = "y")

# Next, convert to an html-based data table with sparklines
add_sparklines(var_imp, fit = rfo)</pre>
```


Figure 16: VIP with sparkline representation of feature effects fit to the simulated Friedman data.

Ames housing example

For illustration, we'll use the Ames housing data which are available in the **AmesHousing** package (Kuhn, 2017a). These data describe the sale of individual residential properties in Ames, Iowa from 2006–2010. The data set contains 2930 observations, 80 features (23 nominal, 23 ordinal, 14 discrete, and 20 continuous), and a continuous target giving the sale price of the home. The version we'll load is a cleaned up version of the original data set and treats all categorical variables as nominal (see ?AmesHousing::make_ames for details).

Using the R package **SuperLearner** (Polley et al., 2018), we trained five models using 5-fold cross-validation: a GBM using the **xgboost** package (Chen et al., 2017), an RF using the **ranger** package (Wright, 2017), a MARS model using the **earth** package, a GLMNET model using the **glmnet** package (Friedman et al., 2010), and a support vector regression model using the **kernlab** package (Karatzoglou et al., 2004). The coefficients from the meta learner indicate that the GBM contributes the most to new predictions, followed by the MARS model, RF, and the GLMNET. The support vector regression model did not contribute to the ensemble.

Load the Ames housing data

```
ames <- AmesHousing::make_ames()</pre>
X <- subset(ames, select = -Sale_Price)</pre>
y <- ames$Sale_Price</pre>
# Load required packages
library(SuperLearner)
# List of base learners
learners <- c("SL.xgboost", "SL.ranger", "SL.earth", "SL.glmnet", "SL.ksvm")</pre>
# Stack models
set.seed(840)
ctrl <- SuperLearner.CV.control(V = 5L, shuffle = TRUE)</pre>
s1 <- SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE,</pre>
                    cvControl = ctrl)
sl
#> Call:
#> SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE,
       cvControl = ctrl)
#>
#>
#>
                         Risk
#> SL.xgboost_All 527111540 0.603160823
                   658707534 0.111650583
#> SL.ranger_All
#> SL.earth_All
                   731657510 0.276895806
#> SL.glmnet_All 884821443 0.008292788
#> SL.ksvm_All
                  6782709110 0.0000000000
```

In the code chunks below we request permutation-based VI scores and add sparkline representations of the PDPs for the top ten features. For this we need to define a couple of wrapper functions. One for computing predictions (for the permutation VI scores) and one for computing averaged predictions (for the PDPs):

```
# Prediction wrapper functions
imp_fun <- function(object, newdata) {  # for permutation-based VI scores
  predict(object, newdata = newdata)$pred
}
par_fun <- function(object, newdata) {  # for PDPs
  mean(predict(object, newdata = newdata)$pred)
}</pre>
```

To speed up the process, we perform the computations in parallel by setting parallel = TRUE in the call to vi() and add_sparklines(). Note that we first need to set up a parallel backend for this to work. Both **vip** and **pdp** use **plyr** (Wickham, 2011)—which relies on **foreach** (Revolution Analytics and Weston, 2015b)—so any parallel backend supported by the **foreach** package should work. Below we use a *socket* approach with the **doParallel** backend (Revolution Analytics and Weston, 2015a) using a cluster of size five.

Figure 17: VIP with sparkline representation of feature effects for the top ten features from a Super Learner fit to the Ames housing data.

Summary

VIPs help to visualize the strength of the relationship between each feature and the response, while accounting for all the other features in the model. We've discussed two types of VI: model-specific and model-agnostic, as well as some of their strengths and weaknesses. In this paper, we showed how to construct VIPs for various types of "black box" models in R using the **vip** package. We also briefly discussed related approaches available in other R packages. Suggestions to avoid high execution times were discussed and demonstrated via examples. This paper is based on **vip** version 0.1.3. For updates that have occurred since then, see the packages NEWS file. In terms of future development, **vip** can be expanded in a number of ways. For example, we plan to incorporate the option to compute group-based permutation scores. We're also working on including a new option for efficiently computing Shapley-based VI scores via the new fastshap package. Although not discussed in this paper, the package also includes a promising statistic (similar to the PDP- and ICE-based VI scores previously discussed) for measuring the relative strength of interaction between features.

Acknowledgments

TBD.

Bibliography

- P. Biecek. Dalex: Explainers for complex predictive models in r. *Journal of Machine Learning Research*, 19(84):1–5, 2018. URL http://jmlr.org/papers/v19/18-416.html. [p1]
- P. Biecek. *ingredients: Effects and Importances of Model Ingredients*, 2019. URL https://CRAN.R-project.org/package=ingredients. R package version 0.3.3. [p1]
- B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones. mlr: Machine learning in r. *Journal of Machine Learning Research*, 17(170):1–5, 2016. URL http://jmlr.org/papers/v17/15-066.html. [p1]
- L. Breiman. Bagging predictors. *Machine Learning*, 8(2):209–218, 1996. URL https://doi.org/10.1023/A:1018054314350. [p2]
- L. Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001. URL https://doi.org/10.1023/A: 1010933404324. [p11]
- L. Breiman, J. Friedman, and R. A. O. Charles J. Stone. *Classification and Regression Trees*. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN 9780412048418. [p3]
- W. Chang. *R6: Encapsulated Classes with Reference Semantics*, 2019. URL https://CRAN.R-project.org/package=R6. R package version 2.4.0. [p1]
- T. Chen, T. He, and M. Benesty. *xgboost: Extreme Gradient Boosting*, 2017. URL https://CRAN.R-project.org/package=xgboost. R package version 0.6-4. [p17]
- W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. *Journal of the American Statistical Association*, 74(368):829–836, 1979. doi: 10.1080/01621459.1979.10481038. [p1]
- R. C. Fisher, A. and F. Dominici. Model class reliance: Variable importance measures for any machine learning model class, from the "rashomon" perspective. *arXiv preprint arXiv:1801.01489*, 2018. [p11]
- J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software*, 33(1):1–22, 2010. URL http://www.jstatsoft. org/v33/i01/. [p17]
- J. H. Friedman. Multivariate adaptive regression splines. *The Annals of Statistics*, 19(1):1–67, 1991. URL https://doi.org/10.1214/aos/1176347963. [p2, 6]
- D. G. Garson. Interpreting neural-network connection weights. *Artificial Intelligence Expert*, 6(4):46–51, 1991. [p7]
- T. Gedeon. Data mining of inputs: Analysing magnitude and functional measures. *International Journal of Neural Systems*, 24(2):123–140, 1997. URL https://doi.org/10.1007/s10994-006-6226-1. [p7]
- A. Goh. Back-propagation neural networks for modeling complex systems. *Artificial Intelligence in Engineering*, 9(3):143–151, 1995. doi: http://dx.doi.org/10.1016/0954-1810(94)00011-S. [p7]
- A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. *Journal of Computational and Graphical Statistics*, 24(1):44–65, 2015. URL https://doi.org/10.1080/10618600.2014.907095. [p9]
- B. Greenwell and B. Boehmke. vip: Variable Importance Plots, 2018. URL https://CRAN.R-project.org/package=vip. R package version 0.1.0. [p2]
- B. M. Greenwell. pdp: An r package for constructing partial dependence plots. *The R Journal*, 9(1):421–436, 2017. URL https://journal.r-project.org/archive/2017/RJ-2017-016/index.html. [p8]
- B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy. A simple and effective model-based variable importance measure. *arXiv preprint arXiv:1805.04755*, 2018. [p2, 8]
- T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition.* Springer Series in Statistics. Springer-Verlag, 2009. [p3]
- A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. Kernlab an S4 package for kernel methods in R. *Journal of Statistical Software*, 11(9):1–20, 2004. URL https://doi.org/10.18637/jss.v011.i09. [p17]

- M. Kuhn. *AmesHousing: The Ames Iowa Housing Data*, 2017a. URL https://CRAN.R-project.org/package=AmesHousing. R package version 0.0.3. [p17]
- M. Kuhn. caret: Classification and Regression Training, 2017b. URL https://CRAN.R-project.org/package=caret. R package version 6.0-76. [p1]
- M. Kuhn and K. Johnson. *Applied Predictive Modeling*. SpringerLink: Bücher. Springer New York, 2013. ISBN 9781461468493. [p1]
- F. Leisch and E. Dimitriadou. *mlbench: Machine Learning Benchmark Problems*, 2012. URL https://CRAN.R-project.org/package=mlbench. R package version 2.1-1. [p2]
- O. Mersmann. *microbenchmark: Accurate Timing Functions*, 2018. URL https://CRAN.R-project.org/package=microbenchmark. R package version 1.4-6. [p16]
- S. Milborrow. earth: Multivariate Adaptive Regression Splines, 2017. URL https://CRAN.R-project.org/package=earth. R package version 4.5.0. [p6]
- C. Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/interpretable-ml-book/. [p1, 12, 14]
- C. Molnar, B. Bischl, and G. Casalicchio. iml: An r package for interpretable machine learning. *JOSS*, 3(26):786, 2018. doi: 10.21105/joss.00786. URL http://joss.theoj.org/papers/10.21105/joss.00786. [p1]
- K. Müller and H. Wickham. *tibble: Simple Data Frames*, 2019. URL https://CRAN.R-project.org/package=tibble. R package version 2.1.1. [p2]
- J. D. Olden, M. K. Joy, and R. G. Death. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. *Ecological Modelling*, 178(3):389–397, 2004. doi: http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013. [p7]
- E. Polley, E. LeDell, C. Kennedy, and M. van der Laan. *SuperLearner: Super Learner Prediction*, 2018. URL https://CRAN.R-project.org/package=SuperLearner. R package version 2.0-24. [p17]
- Revolution Analytics and S. Weston. *doParallel: Foreach Parallel Adaptor for the 'parallel' Package*, 2015a. URL https://CRAN.R-project.org/package=doParallel. R package version 1.0.10. [p18]
- Revolution Analytics and S. Weston. *foreach: Provides Foreach Looping Construct for R*, 2015b. URL https://CRAN.R-project.org/package=foreach. R package version 1.4.3. [p18]
- G. Ridgeway. gbm: Generalized Boosted Regression Models, 2017. URL https://CRAN.R-project.org/package=gbm. R package version 2.1.3. [p1]
- W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S.* Springer, New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p8]
- H. Wickham. The split-apply-combine strategy for data analysis. *Journal of Statistical Software*, 40(1): 1–29, 2011. URL https://doi.org/10.18637/jss.v040.i01. [p18]
- H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p2]
- M. N. Wright. ranger: A Fast Implementation of Random Forests, 2017. URL https://CRAN.R-project.org/package=ranger. R package version 0.7.0. [p17]
- Y. Xie, J. Cheng, and X. Tan. DT: A Wrapper of the JavaScript Library 'DataTables', 2018. URL https://CRAN.R-project.org/package=DT. R package version 0.5. [p16]

Brandon M. Greenwell
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
ORCiD: 0000-0002-8120-0084
greenwell.brandon@gmail.com

Bradley C. Boehmke University of Cincinnati 2925 Campus Green Dr Cincinnati, OH 45221 United States of America ORCiD: 0000-0002-3611-8516 bradleyboehmke@gmail.com