Examen du 1er février 2013-14H00

durée : 3 heures

PARTIE I

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité.

Soit $(\varepsilon_m)_{m\geq 1}$ une suite décroissante, de limite nulle et telle que $\varepsilon_1=1$. Posons $A_0:=\mathbb{R}-[-1,1]$ et pour tout $m\in\mathbb{N}^*,\,A_m:=[-\varepsilon_m,-\varepsilon_{m+1}[\cup]\varepsilon_{m+1},\varepsilon_m]$.

Soit ν une mesure σ -finie sur $\mathcal{B}(\mathbb{R} - \{0\})$ telle que $\int_{\mathbb{R} - \{0\}} \min(1, |x|) \nu(dx) < \infty$ et pour tout $m \in \mathbb{N}$, $\nu(A_m) > 0$. Posons pour tout $m \in \mathbb{N}$, $\lambda_m := \nu(A_m)$ et $\nu_m := \frac{\mathbf{1}_{A_m} \nu}{\nu(A_m)}$.

Soit, pour tout $m \geq 0$, $(N_t^{(m)})_{t\geq 0}$ un processus de Poisson de paramètre λ_m . On suppose ces processus indépendants. Soit, pour tout $m \geq 0$, $(Y_n^{(m)})_{n\geq \mathbb{N}^*}$ une suite de variables indépendantes de loi ν_m . On suppose ces suites indépendantes dans leur ensemble et indépendantes des processus de Poissons précédents.

Enfin, pour tout $m \geq 0$, Soit $(X_t^{(m)})_{t\geq 0}$ le processus de Poisson composé défini par

$$X_t^{(m)} := \sum_{1 \le k \le N_t^{(m)}} Y_k^{(m)} \qquad \forall t \ge 0, m \in \mathbb{N} .$$

- 1) Montrer que pour tout $t \geq 0$, la série (commençant à m = 1) $\sum_{m \geq 1} X_t^{(m)}$ converge dans $L^1(\Omega, \mathcal{F}, \mathbb{P})$ et $\mathbb{P} p.s$. vers une variable \tilde{X}_t .
- 2) Le processus $(\tilde{X}_t)_{t\geq 0}$ est-il un processus de Lévy? (on demande un argument non basé sur la question suivante)
- 3) Trouver la fonction caractéristique de \tilde{X}_t , pour tout $t \geq 0$ et retrouver le résultat précédent.

Posons, pour tout $t \ge 0$, $X_t := \tilde{X}_t + X_t^{(0)}$.

4) Trouver la fonction caractéristique de X_t , pour tout $t \geq 0$.

- 5) On suppose ν symétrique, i.e. $\nu([x,y]) = \nu([-y,-x])$ pour tout y > x > 0.
- a) Montrer que ν_m est symétrique pour tout $m \in \mathbb{N}$ et donner une interprétation portant sur $Y_1^{(m)}$.
- b) Montrer que, pour tout $t \geq 0$ et tout $m \in N$, la loi de $X_t^{(m)}$ est symétrique.
- c) Montrer que, pour tout $t \geq 0$, la loi de X_t est symétrique.
- 6) On suppose ν portée par $[0, +\infty[$, i.e. $\nu([-\infty, 0]) = 0$. Reprendre les questions 5a),
- 5b) et 5c) en remplaçant "symétrique" par "portée par $[0, +\infty[$ ".

PARTIE II

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et (S, \mathcal{S}) un espace mesuré. Soit N une mesure de Poisson sur $\Omega \times \mathcal{S}$ d'intensité ν , σ -finie, sur \mathcal{S} . On rappelle que pour toute fonction f mesurable positive sur S,

$$\mathbb{E}(\mathrm{e}^{-N(f)}) = \exp\left(\int_{S} (\mathrm{e}^{-f(x)} - 1)\nu(dx)\right). \tag{1}$$

- 1) Soit f une fonction positive mesurable sur S.
- a) Montrer que si min $(1, f) \in L^1(\nu)$, alors $N(f) < +\infty$, \mathbb{P} -p.s.

Pour tout $\lambda \geq 0$ posons, $\varphi(\lambda) = \mathbb{E}(e^{-\lambda N(f)})$.

- b) On suppose que $\mathbb{E}(N(f)) < +\infty$. Montrer que φ , puis $\log \varphi$ sont dérivables à droite en 0 et en déduire que $f \in L^1(\nu)$.
- c) On suppose que $f \in L^1(\nu)$. Montrer que $\mathbb{E}(N(f)) < +\infty$.

Soit $(X_t)_{t\geq 0}$ un processus de Lévy càd-làg à valeurs dans \mathbb{R}^+ et N la mesure de Poisson associée sur $\mathcal{B}(\mathbb{R}^+\times]0,+\infty[)$, d'intensité $\lambda\otimes\nu$.

Posons, pour tout $t \ge 0$ et tout $1 > \varepsilon > 0$,

$$\tilde{X}_t := X_t - \int_{[0,t]\times]1,+\infty[} x \, N(\cdot, ds dx) \,,$$

$$Y_t^{\varepsilon} := \int_{[0,t]\times]\varepsilon,1]} x \, N(\cdot, ds dx) \,.$$

- 2) a) Pourquoi peut-on affirmer que, pour \mathbb{P} -presque tout ω , les temps de sauts de $(\tilde{X}_t(\omega))_{t\geq 0}$ et de $(Y_t^{\varepsilon}(\omega))_{t\geq 0}$ sont distincts?
- b) Expliquer pourquoi $(X_t)_{t\geq 0}$ et $(Y_t^{\varepsilon})_{t\geq 0}$ sont des processus de Lévy.
- 3) Montrer que pour tout $t \geq 0$, $\mathbb{E}((Y_t^{\varepsilon})^2) < +\infty$, puis en déduire le même résultat pour la variation $V_{[0,t]}(Y^{\varepsilon})$.

- 4) Montrer que $(\tilde{X}_t)_{t\geq 0}$ et $(Y_t^{\varepsilon}(\omega))_{t\geq 0}$ sont indépendants.
- 5) Montrer que pour tout $\lambda \geq 0$,

$$\mathbb{E}(e^{-\lambda \tilde{X}_1}) \le \exp\left(\int_{]\varepsilon,1]} (e^{-f(x)} - 1)\nu(dx)\right).$$

- 6) Montrer que $\int_{[0,1]} x\nu(dx) < +\infty$.
- 7) Montrer que pour tout $t \geq 0$, $Y_t := \int_{[0,t]\times]0,1]} x \, N(\cdot, ds dx)$ est bien défini et est la limite dans L^1 de $(Y_t^{\varepsilon})_{0<\varepsilon<1}$ $(\varepsilon \to 0)$.
- 8) Montrer que $(\tilde{X}_t Y_t)_{t \geq 0}$ est un processus de Lévy, puis que c'est un mouvement brownien, noté $(B_t)_{t \geq 0}$. On admettra dans la suite que ce mouvement brownien est indépendant de la mesure aléatoire N.
- 9) Soit U, V des variables aléatoires indépendantes. On suppose que $\mathbb{P}(U < -M) > 0$ pour tout M > 0. Montrer que U + V ne peut être positive \mathbb{P} -p.s.
- 10) Montrer que $(B_t)_{t\geq 0}$ est en fait le processus nul.
- 11) Montrer que $(X_t)_{t\geq 0}$ a des trajectoires \mathbb{P} -p.s. croissantes.