Approximations for two-dimensional discrete scan statistics in some dependent models

Alexandru Amărioarei Cristian Preda

Laboratoire de Mathématiques Paul Painlevé Département de Probabilités et Statistique Université de Lille 1, INRIA Modal Team

16th SPSR Conference 26 April, 2013, București, România

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- Error Bound
 - Approximation Error
 - Simulation Error
- Illustrative Example
 - Description of the Example
- References

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- Error Bound
 - Approximation Error
 - Simulation Error
- 4 Illustrative Example
 - Description of the Example
- 5 References

Introducing the General Model

Let T_1 , T_2 be positive integers

- Rectangular region $\mathcal{R} = [0, T_1] \times [0, T_2]$
- $(X_{ij})_{\substack{1 \leq i \leq T_1 \\ 1 \leq j \leq T_2}}$ integer r.v.'s
 - Bernoulli($\mathcal{B}(1,p)$)
 - Binomial($\mathcal{B}(n,p)$)
 - Poisson($\mathcal{P}(\lambda)$)
- X_{ij} number of observed events in the elementary subregion $r_{ii} = [i-1, i] \times [i-1, j]$

Introducing the Block-Factor Model

Consider for $1 \le i \le T_1, 1 \le j \le T_2$ the following block-factor model:

$$X_{i,j} = f\big(Y_{i,j}, Y_{i,j-1}, Y_{i,j+1}, Y_{i-1,j-1}, Y_{i-1,j}, Y_{i-1,j+1}, Y_{i+1,j-1}, Y_{i+1,j}, Y_{i+1,j+1}\big),$$

with $f: \mathbb{R}^9 \to \mathbb{R}_+$ and i.i.d. sequence

$$\{Y_{i,j} \mid 0 \le i \le T_1 + 1, 0 \le j \le T_2 + 1\}$$

Y_{0,T_2+1}	Y_{1,T_2+1}						Y_{T_1+1,T_2+1}
			$Y_{i-1,j+1}$	$Y_{i,j+1}$	$Y_{i+1,j+1}$		
			$Y_{i-1,j}$	$Y_{i,j}$	$Y_{i+1,j}$		
			$Y_{i-1,j-1}$	$Y_{i,j-1}$	$Y_{i+1,j-1}$		
$Y_{0,1}$							$Y_{\Gamma_1+1,1}$
$Y_{0,0}$	$Y_{1,0}$		-		i.	-	$Y_{T_1+1,0}$

Defining the Scan Statistic

Let m_1, m_2 be positive integers

• Define for
$$1 \le i_j \le T_j - m_j + 1$$
,

$$Y_{i_1 i_2} = \sum_{i=i_1}^{i_1+m_1-1} \sum_{j=i_2}^{i_2+m_2-1} X_{ij}$$

 $\frac{T_2}{1}$ The two dimensional scan statistic,

$$S_{m_1,m_2}(T_1,T_2) = \max_{\substack{1 \leq i_1 \leq T_1 - m_1 + 1 \\ 1 \leq i_2 \leq T_2 - m_2 + 1}} Y_{i_1 i_2}$$

 Used for testing the null hypotheses of randomness against the alternative hypothesis of clustering

- Introduction
 - Framework and Model
 - Previous Work
- - Main Idea and Tools
 - The Approximation
- - Approximation Error
 - Simulation Error
- Illustrative Example
 - Description of the Example

Bucuresti 2013

Problem and related results

Problem

Approximate the distribution of two dimensional discrete scan statistic for the block-factor model

$$\mathbb{P}\left(S_{m_1,m_2}(T_1,T_2)\leq n\right).$$

- Dependent model: no results!
- Independent model:
 - No exact formulas
 - For Bernoulli case:
 - product type approximations (Boutsikas and Koutras 2000)
 - Poisson approximations (Chen and Glaz 1996)
 - bounds (Boutsikas and Koutras 2003)
 - For binomial and Poisson cases: (Glaz 2009)
 - Product type approximation
 - Lower bound

Literature

Scan 2d block factor

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- Error Bound
 - Approximation Error
 - Simulation Error
- 4 Illustrative Example
 - Description of the Example
- 6 References

Key Idea

Haiman(2000) proposed a different approach

Main Observation

The scan statistic r.v. can be viewed as a maximum of a sequence of 1-dependent stationary r.v..

- The idea:
 - discrete and continuous one dimensional scan statistic: Haiman (2000,2007)
 - discrete and continuous two dimensional scan statistic: Haiman and Preda (2002,2006)
 - discrete three dimensional scan statistic: Amarioarei (2013)

Writing the Scan as an Extreme of 1-Dependent R.V.'s

Let
$$T_j = (L_j + 1)(m_j + 1) - 2$$
, $j \in \{1, 2\}$ positive integers

• Define for $I \in \{1, 2, \dots, L_2\}$

$$Z_{I} = \max_{\substack{1 \leq i_{1} \leq L_{1}(m_{1}+1) \\ (I-1)(m_{2}+1)+1 \leq i_{2} \leq I(m_{2}+1)}} Y_{i_{1}i_{2}}$$

- $(Z_I)_I$ is 1-dependent and stationary
- Observe

$$S_{m_1,m_2}(T_1,T_2) = \max_{1 \le l \le L_2} Z_l$$

Main Tool

Let $(Z_i)_{i>1}$ be a strictly stationary 1-dependent sequence of r.v.'s and let $q_m = q_m(x) = \mathbb{P}(\max(Z_1, \dots, Z_m) \le x)$, with $x < \sup\{u | \mathbb{P}(Z_1 \le u) < 1\}$.

Main Theorem (Haiman 1999, Amarioarei 2012)

For x such that $\mathbb{P}(Z_1 > x) = 1 - q_1 \le \alpha < 0.1$ and m > 3 we have

$$egin{split} \left|q_m - rac{6(q_1 - q_2)^2 + 4q_3 - 3q_4}{(1 + q_1 - q_2 + q_3 - q_4 + 2q_1^2 + 3q_2^2 - 5q_1q_2)^m}
ight| & \leq \Delta_1(1 - q_1)^3, \ \left|q_m - rac{2q_1 - q_2}{[1 + q_1 - q_2 + 2(q_1 - q_2)^2]^m}
ight| & \leq \Delta_2(1 - q_1)^2, \end{split}$$

- $\Delta_1 = \Delta_1(\alpha, q_1, m) = \Gamma(\alpha) + mK(\alpha)$
- $\Delta_2 = mE(\alpha, q_1, m) = m \left[1 + \frac{3}{m} + K(\alpha)(1 q_1) + \frac{\Gamma(\alpha)(1 q_1)}{m}\right]$.

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- 3 Error Bound
 - Approximation Error
 - Simulation Error
- 4 Illustrative Example
 - Description of the Example
- 6 References

First Step Approximation

Using Main Theorem we obtain

- Define $Q_2=\mathbb{P}(Z_1\leq k)$ $Q_3=\mathbb{P}(Z_1\leq k,Z_2\leq k)$
- If $1-Q_2 \leq \alpha_1 <$ 0.1 the (first) approximation

$$\mathbb{P}(S \le k) \approx \frac{2Q_2 - Q_3}{\left[1 + Q_2 - Q_3 + 2(Q_2 - Q_3)^2\right]^{L_2}}$$

where
$$S = S_{m_1, m_2}(T_1, T_2)$$

Approximation error

$$L_2E(\alpha_1,L_2)(1-Q_2)^2$$

Second Step Approximation

• For $s \in \{1, 2, \dots, L_1\}$

$$Z_s^{(2)} = \max_{\substack{(s-1)(m_1+1)+1 \leq i_1 \leq s(m_1+1) \\ 1 \leq i_2 \leq m_2+1}} Y_{i_1 i_2}$$

• Define
$$Q_{22}=\mathbb{P}(Z_1^{(2)}\leq k)$$
 $Q_{32}=\mathbb{P}(Z_1^{(2)}\leq k,Z_2^{(2)}\leq k)$

• Approximation $(1 - Q_{22} \le \alpha_2)$

$$Q_2 pprox rac{2\,Q_{22} - Q_{32}}{\left[1 + Q_{22} - Q_{32} + 2(Q_{22} - Q_{32})^2
ight]^{L_1}}$$

Error

$$L_1E(\alpha_2,L_1)(1-Q_{22})^2$$

• For $s \in \{1, 2, \dots, L_1\}$

$$Z_s^{(3)} = \max_{\substack{(s-1)(m_1+1)+1 \leq i_1 \leq s(m_1+1) \\ 1 \leq i_2 \leq 2(m_2+1)}} Y_{i_1 i_2}$$

$$Q_3 = \mathbb{P}\left(\max_{1 \le l \le L_1} Z_s^{(3)} \le k\right)$$

• Define
$$Q_{23} = \mathbb{P}(Z_1^{(3)} \le k)$$
 $Q_{33} = \mathbb{P}(Z_1^{(3)} \le k, Z_2^{(3)} \le k)$

• Approximation $(1 - Q_{23} \le \alpha_2)$

$$Q_3 pprox rac{2Q_{23} - Q_{33}}{\left[1 + Q_{23} - Q_{33} + 2(Q_{23} - Q_{33})^2\right]^{L_1}}$$

Error

$$L_1E(\alpha_2,L_1)(1-Q_{23})^2$$

Illustration of the Approximation Process

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- Error Bound
 - Approximation Error
 - Simulation Error
- 4 Illustrative Example
 - Description of the Example
- 6 References

Theoretical Approximation Error

Define for $s \in \{2,3\}$

$$H(x,y,m) = \frac{2x-y}{[1+x-y+2(x-y)^2]^m}, \ \alpha_1 = 1-Q_3, \ \alpha_2 = 1-Q_{23},$$

$$E_1 = E(\alpha_2, L_1), \ E_2 = E(\alpha_1, L_2), \ R_s = H(Q_{2s}, Q_{3s}, L_1),$$

The approximation error

$$E_{app} = L_2 F_2 B_2^2 + L_1 L_2 F_1 \left[(1 - Q_{22})^2 + (1 - Q_{23})^2 \right]$$

where B_2 is given by

$$B_2 = 1 - R_2 + L_1 F_1 (1 - Q_{22})^2$$

- Introduction
 - Framework and Model
 - Previous Work
- Description of the method
 - Main Idea and Tools
 - The Approximation
- Error Bound
 - Approximation Error
 - Simulation Error
- 4 Illustrative Example
 - Description of the Example
- 6 References

Simulation Error for Approximation Formula

If ITER is the number of simulations, we can say, at 95% confidence level,

$$\left|Q_{rt} - \hat{Q}_{rt}\right| \le 1.96 \sqrt{\frac{\hat{Q}_{rt}(1-\hat{Q}_{rt})}{ITER}} = \beta_{rt}, \ r, t \in \{2,3\}$$

where \hat{Q}_{rt} is the simulated value.

Define for $r \in \{2, 3\}$,

$$\hat{Q}_r = H\left(\hat{Q}_{2r}, \hat{Q}_{3r}, L_1\right)$$

The simulation error corresponding to the approximation formula

$$E_{sf} = L_1 L_2 (\beta_{22} + \beta_{23} + \beta_{32} + \beta_{33})$$

Simulation Error for Approximation Error

Introducing

$$\begin{split} &C_{2r} = 1 - \hat{Q}_{2r} + \beta_{2r}, \quad r \in \{2,3\}, \\ &C_{2} = 1 - \hat{Q}_{2} + L_{1}(\beta_{22} + \beta_{32}) + L_{1}F_{1}C_{22}^{2}, \end{split}$$

The simulation error corresponding to the approximation

$$E_{sapp} = L_2 F_2 C_2^2 + L_1 L_2 F_1 \left[C_{22}^2 + C_{23}^2 \right]$$

The total error

$$E_{total} = E_{app} + E_{sf} + E_{sapp}$$

- - Framework and Model
 - Previous Work
- - Main Idea and Tools
 - The Approximation
- - Approximation Error
 - Simulation Error
- Illustrative Example
 - Description of the Example

Example Model

Consider for each $1 \le i \le T_1$ and $1 \le j \le T_2$:

$$X_{ij}=\left\{egin{array}{ll} 1, & ext{if } Y_{ij}=1 ext{ and } \sum_{k\in\{-1,0,1\}}Y_{i+k,j+k}\geq 2, \\ 0, & ext{otherwise}. \end{array}
ight.$$

X_{ij}'s are dependent Bernoulli r.v.'s with parameter

$$p'=p\left[1-(1-p)^8\right]$$

• $X_{ij} = 1$ each time when $Y_{ij} = 1$ and there is at least one success in its neighborhood (horizon one)

Numerical Results

Table 1: $\mathbb{P}(S_{m_1,m_2}(T_1,T_2) \le n)$: $m_1 = 4, m_2 = 6, T_1 = 53, T_2 = 75, ITER = 10^9$

n	Sim	Approx	Eapp	E _{sim}	E_{total}	Sim	Approx
	Dep	Dep	• •			Indep	Indep
			p = 0.01	p' = 0.0	0077		
2	0.91937	0.91959	0.00351	0.00167	0.00518	0.99956	0.99921
3	0.98750	0.98748	0.00004	0.00046	0.00051	1	0.99999
4	0.99930	0.99915	0.00000	0.00010	0.00010	1	1
5	0.99993	0.99993	0.00000	0.00002	0.00002	1	1
			p = 0.1,	p' = 0.0!	5695	_	
9	0.93423	0.93247	0.00120	0.00111	0.00231	0.99957	0.99941
10	0.98847	0.98780	0.00003	0.00042	0.00045	0.99999	0.99995
11	0.99815	0.99812	0.00000	0.00015	0.00015	1	1
12	0.99971	0.99984	0.00000	0.00004	0.00004	1	1
13	0.99996	0.99999	0.00000	0.00001	0.00001	1	1

Scan 2d block factor

25 / 28

Graphical Illustration

- 🍆 Glaz, J., Naus, J., Wallenstein, S.: Scan statistic. *Springer* (2001).
- Glaz, J., Pozdnyakov, V., Wallenstein, S.: Scan statistic: Methods and Applications. Birkhauser (2009).
 - Amarioarei, A.: Approximation for the distribution of extremes of one dependent stationary sequences of random variables, arXiv:1211.5456v1 (submitted)
 - Amarioarei, A.: Approximation for the Distribution of Three-dimensional Discrete Scan Statistic, rXiv:1303.3775 (submitted)
- Boutsikas, M.V., Koutras, M.: Reliability approximations for Markov chain imbeddable systems. *Methodol Comput Appl Probab* **2** (2000), 393–412.
- Boutsikas, M. and Koutras, M. Bounds for the distribution of two dimensional binary scan statistics, Probability in the Engineering and Information Sciences, 17, 509–525, 2003.

- Chen, J. and Glaz, J. *Two-dimensional discrete scan statistics*, Statistics and Probability Letters 31, 59–68, 1996.
- Haiman, G.: First passage time for some stationary sequence. Stoch Proc Appl 80 (1999), 231–248.
- Haiman, G.: Estimating the distribution of scan statistics with high precision. *Extremes* **3** (2000), 349–361.
- Haiman, G., Preda, C.: A new method for estimating the distribution of scan statistics for a two-dimensional Poisson process. *Methodol Comput Appl Probab* 4 (2002), 393–407.
- Haiman, G., Preda, C.: Estimation for the distribution of two-dimensional scan statistics. *Methodol Comput Appl Probab* 8 (2006), 373–381.
- Haiman, G.: Estimating the distribution of one-dimensional discrete scan statistics viewed as extremes of 1-dependent stationary sequences. J. Stat Plan Infer 137 (2007), 821–828.