Introduction to Epidemiology Data Analysis with R

Introductions

• Dr. Elza Rechtman (Course co-director)

Elza.Rechtman@mssm.edu

• Dr. Joselyn Chávez-Fuentes (Course co-director)

joselyn.chavez-fuentes@mssm.edu

Kristie Oluyemi (Teaching assistant)

kristie.oluyemi@icahn.mssm.edu

Course details

- Course Blackboard: learn.mssm.edu
- Tuesdays 6:15 pm 8:45 pm
- 12 sessions
- Hybrid format
 - In Person: Annenberg 11-40
 - Zoom: https://mssm.zoom.us/j/85798543780

Course schedule (1)

Week 1	01/3/2023	Get up and running with R and RStudio	 The basic data analysis cycle Download and install R Download and install RStudio Install a set of R packages called the Tidyverse Understand the environment interface Where and how to get help Building scripts R studio project
Week 2	01/10/2023	Introduction to coding with R (I)	 Create and name a vector Create and name matrices Create and name factors
Week 3	01/17/2023	Introduction to coding with R (II)	 Create, name, and subset lists Create and name a data frame
Week 4	01/24/2023	Data transformation (I)	 dplyr basics Tibbles Filter rows Arrange rows Select columns Add new variables
Week 5	01/31/2023	Data transformation (II)	 Combining multiple operations with the pipe Missing values Counts Summary functions Grouping and ungrouping
Week 6	02/07/2023	Data Wrangling using the Tidyverse (I)	 Tidy data Pivoting Separating and uniting Missing values Mutating joins Filtering joins Factors: modifying order and levels

Course schedule (2)

Week 7	02/14/2023	Basic Statistical analyses	• t.test • GLM
Week 8	02/21/2023	Data Visualization (I)	 Understand what geometries and mappings are The layered grammar of graphics Create visualizations using the x, y, color, size, alpha, and shape properties. Facets Geometric objects
Week 9	02/28/2023	Data Visualization (II)	 Statistical transformations Position adjustments Coordinate systems Themes
Week 10	03/07/2023	Exploratory Data Analysis	 Introduction Variation and covariation Patterns Build simple linear regression models
Week 11	03/14/2023	Modeling basics for Epidemiology research studies	 Formulas Model families Adjust for confounders Model interactions
Week 12	03/21/2023	Final Project Presentations and Course Wrap-up	Present and discuss the final student epidemiology project using R

Grading

- Pass/Fail Grading System
- To pass, you need to:
 - Attend 80% of classes
 - Submit 80% of the assignments
 - Present a final project

Questions

Week 1 Get up and running with R and RStudio

Getting started with R

• What is R?

- R is an open-source language widely used as a statistical software and data analysis tool to:
 - Manage and clean data
 - Carry out statistical analyses
 - Produce high-quality figures for research communications

• Why R?

- Free & open source
- Great community
- 9000+ free packages

What is RStudio?

An integrated development environment (IDE) for R

O'REILLY° R for Data Science VISUALIZE, MODEL, TRANSFORM, TIDY, AND IMPORT DATA Hadley Wickham & Garrett Grolemund

https://r4ds.had.co.nz/

A typical data science project :

Downloading and installing R

- Download and install R: http://lib.stat.cmu.edu/R/CRAN/
 - Windows
 - Download R for Windows
 - Base
 - Download R 4.2.2 for Windows
 - Run this program and step through the installation wizard that appears.
 - The wizard will install R into your program files folders and place a shortcut in your Start menu.
 - Mac
 - Download R for MacOS
 - R-4.2.2.pkg
 - An installer will download to guide you through the installation process

Downloading and installing RStudio

- Download and install RStudio: https://www.rstudio.com/products/rstudio/
- Download Rstudio Desktop
 - Windows
 - Download RSTUDIO-2022.12.0-353.EXE
 - Install through the installation wizard
 - Mac
 - Download RSTUDIO-2022.12.0-353.DMG
 - An installer will download to guide you through the installation process

RStudio Desktop

- 1. Open Rstudio
- 2. Start a new script

Your turn!

In the console pane, solve:

- 5 + 2 =
- 6 X 3 =
- 7² =
- $\sqrt{9}$ =

Using variables

- Type in the console a <- 5
- Check your environment
- Type in the console a*2

- Type in the console b <- seq(from = 0, to = 50)
- b²

RStudio settings which you can adjust

- **Restore workspace:** By default, R saves your workspace, which is no longer considered best practice. To change:
 - Tools > Global Options >
 - Uncheck "Restore .RData into Workspace on startup"
 - Set "Save .RData on exit" to Never
- **Appearance:** By default, RStudio comes with a white background and black text. To change:
 - Tools > Global Options > Appearance > Editor theme
- Auto-complete: By default, the "auto-complete" option is enabled. To change:
 - Tools > Global Options > Code" and uncheck "Insert matching parens/quotes

Writing a script

- A script is a sequence of commands stored in an .R file
- R execute scripts sequentially line-by-line
- Comments start with #

```
@ example.R ×
     Run Source - =
     # load packages
     library(tidyverse)
      library(janitor)
     # import data
     data <- read_csv("COVID_19_0421.csv")</pre>
     # Clean data
     data_clean = data %>%
 10
       filter(INFECTION_STATUS == "COVID-19") %>%
       select(ID, AGE, SEX, RACE, ETHNICITY, FACILITY, INFECTION_STATUS) %>%
 11
 12
       drop_na(c(ID:SEX)) %>%
 13
       slice(c(1:500)) %>%
 14
       clean_names()
 15
 16
     # Plot data
 17
     p1 \leftarrow ggplot(data\_clean, aes(x = age, y = bmi)) +
 18
       geom_point()
 19
     #Statistical test
     mod <- glm(bmi ~ age + sex, data = data_clean)</pre>
 22
     summary(mod)
 22
      (Top Level) $
24:1
                                                                               R Script $
```

Tips for writing a script

- Keyboard Shortcuts to run your script
 - Windows: Control + Enter
 - Mac: Command + Enter
- Don't spend time memorizing functions that can easily be looked up and copied (you will be mostly copy-pasting and adapting existing R code)
- Don't worry about making mistakes you can't do anything wrong!

Packages

- A Package is a collection of functions that are not included in the standard R installation (base-R)
- Install the tidyverse package using install.packages()
- Load the tidyverse package using library()

Getting help

- Error messages:
 - Google the error message.
 - copy-paste solutions into your R script and then modify it.
- RStudio's built in Help type ? and the command (for example ?read_csv).
- Help drop-down menu at the top of the RStudio window

Your turn!

- Choose any number
- Add 2 to it
- Multiply the result by 3
- Subtract 6 from the answer
- Divide what you get by 3

What did you get?

What if you would choose a different number and run the same steps? Can you think of a way to write a script for this process?

RStudio Projects

- Keep data and scripts in the same folder
- Keep files from each project separated
- Set the working directory
- Scripts and output files will be automatically saved in your Rstudio project folder

Let's create an R project

- 2 Methods
 - New Directory
 - Existing Directory

Your turn!

- 1. Create an R project called "Week_1"
- 2. Open the project
- 3. Open a script
- 4. Write a script in which you:
 - 1. Assign the number **81** to a variable called **a**
 - 2. Create a new variable **b** that equals the square root of **a**
 - 3. Save the script under the name "my_first_script.R"
- 5. Close the R project
- 6. Reopen the R project and run your script

Import data into R

- Download "Sinai_covid.csv" from Blackoard and save it in your R project folder.
- In your Script Pane type:

```
library(tidyverse)
Sinai_covid <- read_csv("Sinai_covid.csv")
View(Sinai covid)</pre>
```

Writing to a file

readr also comes with functions for writing data back to disk: write_csv()

Assignment 1

- 1. Download R script "Assignment1.R"
- 2. Save the script in the R project folder we created ("Week_1")
- 3. Open R project "Week_1"
- 4. Open the script "Assignment1.R"
- 5. Complete all the questions
- 6. Save the script under a new name "Assignment1_FirstName_LastName.R"
 - For example, for me, it would be: "Assignment1_Elza_Rechtman.R"
- 7. Upload your assignment by next Monday, March 9 at 5 pm.