Assignment II CSL671: ARTIFICIAL INTELLIGENCE

Kapil Thakkar (2014MCS2124) Ankit Rohilla (2014MCS2118)

February 25, 2015

1 Formulation -

Generate a boolean variable for i_{th} vertex of x_{th} subgraph as $y_{x,i}$. There are k subgraphs and n vertices.

2 Clauses/Rules -

• RULE 1 -

If two vertices i and j are in a same subgraph x, there must be an edge between them. $y_{x,i} \wedge y_{x,j} \rightarrow e_{i,j}$

• RULE 2 -

Each edge $e_{i,j}$ should be present in at least 1 subgraph x. $e_{i,j} \to (y_{1,i} \land y_{1,j}) \lor (y_{2,i} \land y_{2,j}) \ldots (y_{k,i} \land y_{k,j})$

• RULE 3 -

Each subgraph x should have at least 1 vertex. $y_{x,1} \vee y_{x,2} \vee y_{x,3} \vee y_{x,n}$

• RULE 4 -

No subgraph p can be a proper subgraph of any other subgraph q. ($y_{p,1} \land \neg y_{q,1}$) $\lor (y_{p,2} \land \neg y_{q,2}$) $\lor (y_{p,n} \land \neg y_{q,n}$)

3 Approach -

We have converted these clauses into CNF form and give it as an input to SAT solver.

Number of variables - nk + k^2 n + n^2 k (which is polynomial in the input)

Time complexity - $\mathcal{O}(k^2n + n^2k)$