

PROPOSITION LOGIC

Semantic Rule
Truth Table
Properties of Sentence
Inference Method
Quantifier Sentences
Exercise

LOGIKA INFORMATIKA

Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta

Semantic Rule

- Suatu aturan yang digunakan untuk menentukan arti atau nilai kebenaran dari suatu kalimat logika
- Aturan Semantic:
 - 1. Aturan NOT (Negation Rule)
 - 2. Aturan AND (Conjunction Rule)
 - 3. Aturan OR (Disjunction Rule)
 - 4. Aturan IF-THEN (Implication Rule)
 - 5. Aturan IF AND ONLY IF (Equivalence Rule)
 - 6. Aturan IF-THEN-ELSE (Conditional Rule)

1. Negation Rule

р	~p	
true	False	
false	true	

2. Conjunction Rule

р	q	p ∧q
true	true	true
true	false	false
false	true	false
false	false	false

3. Disjunction Rule

р	q	p∨q
true	true	true
true	false	true
false	true	true
false	false	false

4. Implication Rule

р	q	p → q
true	true	true
true	false	false
false	true	true
false	false	true

5. Equivalence Rule

р	q	p ⇔ q
true	true	true
true	false	false
false	true	false
false	false	true

6. Conditional Rule

р	q	r	If p then q else r
true	true	true	true
true	true	false	true
true	false	true	false
true	false	false	false
false	true	true	true
false	true	false	false
false	false	true	true
false	false	false	false

Truth Table

Adalah suatu cara untuk menentukan nilai kebenaran dari suatu kalimat logika

Contoh 1.

Diberikan kalimat logika berikut:

not (p and (not p)) or q

Tentukan nilai kebenarannya dengan menggunakan tabel kebenaran!

Langkah:

- Ubahlah menjadi kalimat dengan simbol konvensional
- Buatlah table dengan menginterpretasi kemungkinan nilai dari setiap proposisinya

Truth Table (cont)

Jawab:

Langkah 1. Mengubah ke simbol Konvensional $\sim (p \land \sim p) \lor q$

Langkah 2. Membuat Truth Table

р	q	~p	p ∧~ p	~(p^~p)	~(p^~p)vq
true	true	false	false	true	true
true	false	false	false	true	true
false	true	true	false	true	true
false	false	true	false	true	true

Truth Table (cont)

Contoh 2.

Tentukan truth value dengan menggunakan truth table dari kalimat logika berikut: (if p then q) or (r and (not p))

Jawab:

1. $(p \rightarrow q) \lor (r \land \neg p)$

2.

Р	q	r	~p	p → q	r ∧~p	(p→q) ∨(r ∧~p)
true	true	true	false	true	false	true
true	true	false	false	true	false	true
true	false	true	false	false	false	false
true	false	false	false	false	false	false
false	true	true	true	true	true	true
false	true	false	true	true	false	true
false	false	true	true	true	true	true
false	false	false	true	true	false	true

Exercise

1. Diberikan kalimat logika:

```
If (if q then not p) then (not q and p) else
not ((p or s) if and only if ( if r then q))
```

Maka tentukan truth value-nya, jika;

- a. Interpretasi p, q, r, dan s true
- b. Interpretasi p, q, r, dan s *false*
- c. Interpretasi p dan q true, r dan s false
- d. Interpretasi p dan q *false*, r dan s *true*

Exercise (cont)

- 2. Dengan menggunakan tabel kebenaran (*truth value*), tentukan nilai kebenaran dari kalimat logika berikut:
 - a. (p and (if r then s)) if and only if ((if r then s) and p)
 - b. (if not p then not s) or ((if q then s) and p)
- 3. Dengan mengasumsikan *p* dan *r* benar, serta *q* dan *s* salah, tentukan nilai kebenaran dari setiap kalimat logika (*sentences*), berikut
 - a. (p and (if r then s)) if and only if ((if r then s) and p)
 - b. (if not p then not s) or ((if q then s) and p)
 - c. ((p or q) and not r) if and only if ((if p then r) and (if q then r)
 - d. if ((if not q then p) or not q) then (p if and only if q) else not (r and q)

Exercise (cont)

- 4. Tentukan, apakah pasangan-pasangan kalimat berikut ekuivalen:
 - a. ((not p or q) and (p or not r)) and (p or not q) dengan not (p or r)
 - b. (r or p) and ((not r or (not r or (p and q)) and (r or q))denganp and q
 - c. (p or q) and (not p and (not p and q))dengannot p and q

Properties of Sentences

- Adalah sifat-sifat yang dimiliki oleh kalimat logika
- Ada 3 sifat, yaitu:
 - 1. Valid
 - 2. Contradictory
 - 3. Satisfiable

Valid

Suatu sentence *f* disebut *valid*, jika untuk setiap interpretation I for *f*, maka *f true*

- 1. (f and g) if and only if (g and f)
- 2. f or not f
- 3. (p and (if r then s)) if only if ((if r then s) and p)
- 4. (p or q) or not (p or q)
- 5. (if p then not q) if and only if not (p and q)

Contradictory

Suatu sentence **f** disebut **contradictory**, jika untuk setiap interpretation **I** for **f**, maka **f false**

- 1. p and not p
- 2. ((p or q) and not r) if and only if ((if p then r) and (if q then r)

Satisfiable

Suatu sentence *f* disebut *satisfiable*, jika untuk suatu interpretation I for *f*, maka *f true*

- 1. if (if p then q) then q
- 2. (if p then q) and (not r and s)
- 3. (if r then q) or p

Inference Method

Suatu teknik/metode untuk menurunkan kesimpulan berdasarkan hipotesa yang diberikan, tanpa harus menggunakan tabel kebenaran

- Modus Ponens
- Modus Tolens
- Prinsip Sylogisme

Modus Ponens

$$\begin{array}{ccc}
1. & p & \rightarrow q \\
2. & p & \\
\hline
3. & q
\end{array}$$

- 1. Jika suatu bilangan habis dibagi 2 maka bilangan tersebut bilangan genap
- 2. Suatu bilangan habis dibagi 2
- 3. Bilangan tersebut adalah bilangan genap

Modus Tolens

- 1. Jika suatu bilangan habis dibagi 2 maka bilangan tersebut bilangan genap
- 2. Ada suatu bilangan ganjil
- 3. Bilangan tersebut tidak habis dibagi 2

Sylogisme

- 1. $p \rightarrow q$ 2. $q \rightarrow r$
- $3. p \rightarrow r$

- 1. Jika ia belajar dengan baik maka ia akan pandai
- 2. Jika ia pandai maka ia akan lulus ujian
- 3. Jika ia belajar dengan baik maka ia akan lulus ujian

Quantifier Sentences

Kalimat yang memuat ekspresi kuantitas obyek yang terlibat, misalnya: semua, ada, beberapa, tidak semua, dan lain-lain.

Ada dua macam, kalimat berkuantor:

- 1. Universal Quantifier
- 2. Existential Quantifier

Universal Quantifier (for all)

Terdapat kata-kata yg mempunyai makna umum dan menyeluruh.

- Notasi: ∀, dibaca semua, seluruh, setiap
- Penulisan: $\forall x \in S \rightarrow p(x)$ Semua x dalam semesta S mempunyai sifat p

- Semua orang yang hidup pasti mati
- Setiap mahasiswa pasti pandai

Existential Quantifier (for some)

Terdapat kata-kata yg mempunyai makna khusus/sebagian.

- Notasi: ∃, dibaca terdapat, ada, beberapa
- Penulisan: $\exists y \in S \rightarrow q(y)$ Terdapat y dalam semesta S mempunyai sifat q

- Ada siswa di kelas ini yang ngantuk
- Beberapa mahasiswa ada yang mendapat nilai A untuk mata kuliah Pemrograman.

Ingkaran Pernyataan Berkuantor

$$\frac{(\forall x) p(x)}{(\exists y) q(y)} = (\exists y) p(y)
= (\forall x) q(x)$$

- 1. p: Semua mahasiswa enjoy kuliah
 - ~p: Ada mahasiswa yang tidak enjoy kuliah
- 2. q: Ada pejabat yang korupsi
 - ~q: Semua pejabat tidak korupsi

Latihan

Pada suatu hari, Anda hendak pergi kuliah dan baru sadar bahwa Anda tidak memakai kacamata. Setelah diingat-ingat, ada beberapa fakta dimana Anda yakin itu benar:

- 1) Jika kacamataku ada di meja dapur, maka aku pasti sudah melihatnya ketika mengambil makanan kecil.
- 2) Aku membaca buku pemrograman di ruang tamu atau aku membacanya di dapur.
- 3) Jika aku membaca buku pemrograman di ruang tamu, maka pastilah kacamata kuletakkan di meja tamu.

- 4) Aku tidak melihat kacamataku ketika aku mengambil makanan kecil.
- 5) Jika aku membaca majalah di ranjang, maka kacamataku kuletakkan di meja samping ranjang.
- 6) Jika aku membaca buku pemrograman di dapur, maka kacamata ada di meja dapur.

Berdasar fakta-fakta tersebut, tentukan dimana letak kacamata tersebut!.

Penyelesaian

Untuk memudahkan dalam menggunakan penggunaan metode inferensi, maka kalimat-kalimat tersebut dinyatakan dengan simbol-simbol logika,

Misalnya:

- p : Kacamata ada di meja dapur.
- **q**: Aku melihat kacamataku ketika aku mengambil makanan kecil.
- r: Aku membaca buku pemrograman di ruang tamu.
- s: Aku membaca buku pemrograman di dapur
- t: Kacamata kuletakkan di meja tamu.
- u: Aku membaca buku pemrograman di ranjang.
- w: Kacamata kuletakkan di meja samping ranjang.

Dengan simbol-simbol tersebut, maka fakta-fakta di atas dapat ditulis, sebagai berikut:

- 1. $p \rightarrow q$
- $r \vee s$
- $r \rightarrow t$
- 4. ~q
- 5. $u \rightarrow w$
- 6. $s \rightarrow p$

Inferensi yang dapat dilakukan adalah:

$$1.p \rightarrow q$$

2.
$$s \rightarrow p$$

$$3. r \vee s$$

$$4. r \rightarrow t$$

Kesimpulannya: Kacamata ada di meja tamu.