## Tema nr. 1

1. Să se găsească cel mai mic număr pozitiv u > 0, de forma  $u = 10^{-m}$  care satisface proprietatea:

$$1 +_c u \neq 1$$

unde prin  $+_c$  am notat operația de adunare efectuată de calculator. Numărul u se numește *precizia mașină*.

2. Operația  $+_c$  este *neasociativă*: fie numerele x=1.0, y=u, z=u, unde u este precizia mașină calculată anterior. Să se verifice că operația de adunare efectuată de calculator este neasociativă:

$$(x +_{c} y) +_{c} z \neq x +_{c} (y +_{c} z).$$

Să se găsească un exemplu pentru care operația de înmulțire  $x_c$  este neasociativă.

3. Înmulțirea matricelor booleene (*Algoritmul celor patru ruși*) - Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1976), The Design and Analysis of Computer Algorithms, Addison-Wesley.

Fie  $A,B \in \{0,1\}^{n \times n}$  două matrice pătratice de dimensiune n cu elemente în  $\{0,1\}$ . Se cere să se calculeze matricea produs  $C = A \cdot B \in \{0,1\}^{n \times n}$ . Operațiile de adunare și înmulțire pe  $\{0,1\}$  sunt următoarele:

| _ | + | 0 | 1 | _ | × | 0 | 1 |  |
|---|---|---|---|---|---|---|---|--|
|   | 0 | 0 | 1 | _ | 0 | 0 | 0 |  |
|   | 1 | 1 | 1 | _ | 1 | 0 | 1 |  |

Presupunând că n se divide la  $\log n$ , se împart matricele A și B în submatrice de dimensiune  $n \times \log n$  respectiv  $\log n \times n$  astfel:



Matricea produs  $C=A \cdot B$  se poate calcula, folosind partitionarea de mai sus, astfel:

$$C = \sum_{i=1}^{\frac{n}{\log n}} A_i B_i \in \left\{0,1\right\}^{n \times n}.$$

Fiecare linie din matricea produs  $C_i = A_i B_i$  este obținută sumând anumite linii ale matricei B, (alegerea liniilor din B care se sumează este în funcție de elementele nenule ale liniilor din matricea A).

$$A_i = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 0 \ 0 & 0 & 0 \ 1 & 0 & 0 \ 1 & 1 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{bmatrix} \hspace{1cm} B_i = egin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \ \end{bmatrix}$$

Ideea algoritmului celor 4 ruși pentru a obține matricea booleană  $C_i = A_i B_i$  este de a calcula toate cele n variante posibile de sume ale liniilor matricei B, liniile matricei  $C_i$  se găsesc alegând varianta corespunzătoare liniei din  $A_i$  care se folosește pentru calculul liniei respective din  $C_i$ .

Se notează cu  $m = \lfloor \log n \rfloor$  și  $p = \lceil \frac{n}{m} \rceil$  unde cu  $\lfloor x \rfloor$  am notat partea întreagă a numărului x, i.e. cel mai mare număr întreg  $\leq x$  iar  $\lceil x \rceil$  este cel mai mic număr întreg  $\geq x$ .

Pentru un vector boolean  $v \in \{0,1\}^n$   $v = (v_1, v_2, ..., v_n)$ ,  $v_k \in \{0,1\}$  se notează cu NUM(v) numărul întreg care are reprezentarea în baza 2  $v_n v_{n-1} \cdots v_1$ .

## Algoritmul celor 4 ruși de calcul al matricei produs C=AB

- 1. Se împarte matricea A în submatricele  $A_1$ ,  $A_2$ ,...,  $A_p$  unde coloanele matricei  $A_i$  sunt coloanele matricei A de la m(i-1)+1 la mi pentru  $1 \le i < p$  iar  $A_p$  conține coloanele rămase din A la care se adaugă suplimentar, dacă este necesar, coloane de 0-uri pentru ca și submatricea  $A_p$  să aibă m coloane.
- 2. Se împarte matricea B în submatricele  $B_1$ ,  $B_2$ ,...,  $B_p$  unde liniile matricei  $B_i$  sunt liniile matricei B de la m(i-1)+1 la mi pentru  $1 \le i < p$  iar  $B_p$  conține liniile rămase din B la care se adaugă suplimentar, dacă este necesar, linii de 0-uri pentru ca și submatricea  $B_p$  să aibă m linii.
- 3. Se calculează matricele produs  $C_i = A_i B_i$  astfel:

for i=1,p// se calculează toate sumele posibile ale liniilor matricei  $B_i$ :  $b_1^{(i)}, b_2^{(i)}, ..., b_m^{(i)}$   $sum\_linii\_B(0) = \underbrace{\begin{bmatrix} 0 \ 0 \cdots 0 \end{bmatrix}}_n;$ for  $j=1,2^m-1$ fie k astfel încât  $2^k \le j < 2^{k+1};$   $sum\_linii\_B(j) = sum\_linii\_B(j-2^k) + b_{k+1}^{(i)};$ 

linia r din matricea produs  $C_i$  este  $sum\_linii\_B(NUM(a_r^{(i)}))$  unde  $a_r^{(i)}$  este linia r a matricei  $A_i$ ,  $1 \le r \le n$ .

4. Matricea produs C se obține sumând toate matricele  $C_i$  obținute la pasul 3.

Fie  $A, B \in \mathbb{R}^{n \times n}$  două matrice reale pătratice de dimensiune n. Elementele matricei produs  $C = A * B \in \mathbb{R}^{n \times n}$  se calculează folosind formula clasică:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
,  $i, j = 1, ..., n$ .

Folosind modul clasic de calcul al produsului a două matrice, complexitatea algoritmului este de ordinul  $\mathcal{O}(n^3)$  iar metoda celor 4 ruși are o complexitate de calcul de ordinul  $\mathcal{O}(n^3/\log n)$ .