Nationwide: Telematics Assessment Exercises

Jason Barkeloo

July 18, 2020

Table of Contents

Part 1: GPS Data - Analysis

Part 2: Modeling

Conclusion

Code location for further fleshed out examples

- ► All code for these exercises can be found via these links as ipython/jupyter notebooks located on my github in addition to attachments sent with with the presentation
 - ▶ Part 1: github: BarkelooNationwideAssessmentPart1.ipynp
 - Part 2: github: BarkelooNationwideAssessmentPart2.ipynp

Tasks to be Completed

Analysis Task:

- ▶ 1: Data Cleaning
- 2: Setting of hard braking and acceleration tresholds based on the data
- ▶ 3: Trip-by-trip Analysis and Summary

Data Set Overview:

- 9687 rows of 4 variables including:
 - trip_id: a trip number identifier
 - local_dtm: a datetime timestamp of the event entry
 - latitude: latitudinal coordinate
 - longitude: longitudinal coordinate

Datasets are loaded into pandas dataframes for further analysis

Data Cleaning, Gross Features

- ▶ 3 Large unphysical features occur in the dataset (teleportation across the globe for 2-4 seconds)
- ► These events are pruned by requiring the latitude and longitude are within 2° of the median for the data set.
- ▶ This includes an area on the order of the state of Ohio
 - Assumption: The sensors are used for checking daily driving habits and not long, rare, road trips.
 - No other points are removed under this cut just these large outliers but if this assumption is false (i.e. long-haul truck drivers use these) this would need to be adapted

Result of Gross Cleaning

- The median cut before leaves the longitude and latitude plots in a reasonable state.
- Still some very fast jumps which are coincident, typically, with a change in trip_id (GPS drift while off)
- Can calculate distance between any two points using the geodesic distance making use of geopy package
- From this data and corresponding timestamps in local_dtm plots of the speed $s = \frac{\Delta Position}{\Delta Time}$ and acceleration $a = \frac{\Delta Speed}{\Delta Time}$ can be made

Further Cleaning - Δ Position, Δ Time, Speed, Acceleration

More Features to be Cleaned

- From Δ Position, Δ Time we see the large number of drifts which account for the gps drift from trip differences
- ▶ 15 events: These jumps will not be an issue when analyzing trip by trip as the change in position starts from the first point of the trip
- Speed and Acceleration plots show an additional 3 further unphysical events. These are resultant from small gps errors for a few seconds and need to be dealt with
- Another issue comes when ΔTime between two events is 0 i.e., if the frequency drops below 1Hz and two readings are taken within a second.
 - ▶ 24 events: A 0th order approach is taken to these points and only the first is kept. An alternative would be averaging the latitude/longitude for those points. This would be a change within the same second and as such will not have much of an effect that isnt then averaged out in the acceleration

Gross Feature Cleaning - Speed and Acceleration Plots

- ▶ The clear erroneous events in the speed and acceleration curves are cleaned looking at large speed values (> 100mph) using coincidence points with these that also correspond to accelerations that are not possible by the majority of cars (> 30mph/s)
 - After these cleaning steps have occured most of the obvious points have been removed
 - Remaining oscillations are closer to the scale of the data
 - ▶ To help deal with itinerant spikes, and general noise, a rolling average using a 3 event window will be used on speed and acceleration

Speed, After Cleaning

▶ Window size 3 average helps filter noise, still keeps large fast features

Acceleration, After Cleaning

- ► Accel: Directly calculated from change in speed values
- AccelAvg: Calculated using the change in the rolling average of speed values
- AccelAvg3: Calculated using the rolling average of acceleration values

AccelAvg3 is the least spiking and as such will be used as the acceleration value going forward for threshold setting

Task 2: Setting Hard Event Thresholds

Hard Braking/Acceleration Events

- Assume Average Acceleration is normal enough (mean = 0.07, std= 2.71) to consider positive and negative accelerations half-normal distributions $\to \sigma = \bar{a} \sqrt{\pi/2}$
 - ▶ Positive Acceleration- mean: 1.71 mph/s std: 2.14 mph/s
 - ▶ Negative Acceleration- mean: -1.62 mph/s std: -2.03 mph/s
- Thresholds set at every point above 2 standard deviations away from the mean for the distributions
 - ► Hard Acceleration: >5.99 mph/s
 - ► Hard Braking: <-5.68 mph/s

Hard Event and Idle Time Definition

Hard Events

- Number of peaks beyond the threshold using the rolling average acceleration
- Using rolling average and looking for local peaks in the acceleration landscape limits multicounting of the same 'Event'

Idle Time Definition

► Total time spent with rolling average speed <1mph

Task 3: Trip-by-Trip Summaries

Trip-by-Trip Speed and Acceleration Plots

▶ Blue are raw values and Orange are rolling averages

Trip Summaries

```
Trip: 1
                                                            Trip: 9
         Hard Accel Events: 51
                                                                    Hard Accel Events: 4
         Hard Brake Events: 38
                                                                    Hard Brake Events: 7
         Idle Time: 3.05 min.
                                Total Time: 22.25 min
                                                                    Idle Time: 1.60 min.
                                                                                            Total Time: 10.97 min
         Distance Traveled: 6.83 mi
                                                                    Distance Traveled: 4.28 mi
Trin: 2
                                                            Trip: 10
         Hard Accel Events: 9
                                                                    Hard Accel Events: 8
         Hard Brake Events: 5
                                                                    Hard Brake Events: 8
         Idle Time: 1.15 min,
                                Total Time: 13.03 min
                                                                    Idle Time: 0.02 min.
                                                                                            Total Time: 1.93 min
         Distance Traveled: 7.29 mi
                                                                    Distance Traveled: 2.34 mi
Trip: 3
                                                            Trip: 11
         Hard Accel Events: 13
                                                                    Hard Accel Events: 12
         Hard Brake Events: 11
                                                                    Hard Brake Events: 11
         Idle Time: 3.45 min.
                                Total Time: 24.45 min
                                                                    Idle Time: 0.62 min,
                                                                                            Total Time: 19.20 min
         Distance Traveled: 7.77 mi
                                                                    Distance Traveled: 13.82 mi
Trip: 4
                                                            Trip: 12
         Hard Accel Events: 3
                                                                    Hard Accel Events: 12
         Hard Brake Events: 1
                                                                    Hard Brake Events: 14
         Idle Time: 0.23 min.
                                Total Time: 2.33 min
                                                                    Idle Time: 2.90 min.
                                                                                            Total Time: 16.15 min
         Distance Traveled: 1.06 mi
                                                                    Distance Traveled: 10.06 mi
Trip: 5
                                                           Trip: 13
         Hard Accel Events: 10
                                                                    Hard Accel Events: 4
         Hard Brake Events: 5
                                                                    Hard Brake Events: 3
         Idle Time: 3.07 min,
                              Total Time: 18.70 min
                                                           No Idle Time for this Trip
         Distance Traveled: 9.75 mi
                                                                    Idle Time: 0.00 min.
                                                                                          Total Time: 1.65 min
                                                                    Distance Traveled: 1.13 mi
Trip: 6
         Hard Accel Events: 19
                                                            Trip: 14
         Hard Brake Events: 9
                                                                    Hard Accel Events: 1
         Idle Time: 0.90 min.
                                Total Time: 12.60 min
                                                                    Hard Brake Events: 0
         Distance Traveled: 7.83 mi
                                                                    Idle Time: 0.15 min.
                                                                                           Total Time: 2.48 min
                                                                    Distance Traveled: 4.04 mi
Trip: 7
         Hard Accel Events: 3
                                                            Trip: 15
         Hard Brake Events: 1
                                                                    Hard Accel Events: 17
         Idle Time: 1.48 min.
                                Total Time: 4.03 min
                                                                    Hard Brake Events: 13
         Distance Traveled: 6.55 mi
                                                            No Idle Time for this Trip
                                                                    Idle Time: 0.00 min, Total Time: 4.47 min
Trip: 8
                                                                    Distance Traveled: 3.69 mi
         Hard Accel Events: 13
         Hard Brake Events: 12
                                                            Trip: 16
         Idle Time: 4.22 min,
                                Total Time: 33.73 min
                                                                     Hard Accel Events: 8
         Distance Traveled: 14.31 mi
                                                                    Hard Brake Events: 10
                                                                    Idle Time: 0.32 min.
                                                                                            Total Time: 3.37 min
                                                                    Distance Traveled: 3.80 mi
```

Part 2: Modeling - Simulated Dataset Overview

Summary of 30,000 vehicles 1Hz telematics datasets.

- Vehicle Effectively an index on the data
- ▶ Days Number of days data was collected (365 for all)
- Distance Total number of miles vehicle was driven during data collection
- HardBrakes Number of hard braking events detected
- ► HardAccelerations Number of hard acceleration events detected
- ▶ NightTime_Pct Percentage of total miles driven at night
- VehicleType str description of type of vehicle
- Loss Indicator if vehicle has been in a collision

Want to build a model that will optimize recognition of Loss events

Task 4: Statistical Significance of Loss Between Vehicle Types

- ➤ Assume loss populations are sampled from a binomial distribution with probablity LossPerType/TotalPerType a z-test can be conducted to determine if the null hypothesis (distributions are sampled from the same distribution) can be rejected.
- For a significance $\alpha=0.05$ a z-value greater than the critical value of $z_c>1.64$ implies rejection of the null hypothesis
- For repeated test the Look-Elsewhere effect should also be taken into consideration, doing this changes critical value $z_c > 2.64$

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)(1/n_1 + 1/n_2)}}$$

VehicleType	Loss		
Car	0	7955	0005
	1	1130	9085
Minivan	0	1365	1520
	1	155	1520
SUV	0	6368	7463
	1	1095	7403
Truck	0	10281	11932
	1	1651	11//2

Statsitcal Significance Between Vehicle Types

The conclusions to be drawn depend how liberal the definition of statistical significance being used is

The use of p<0.05 is somewhat arbitrary but is what will be used here as it is a standard choice of convention

- z value for Car and Minivan: 2.48
- z value for Car and SUV: 4.19
- z value for Car and Truck: 2.96
- z value for Minivan and SUV: 4.59
- z value for Minivan and Truck: 3.92
- z value for SUV and Truck: 1.62

The null hypothesis cannot be rejected for the combination of Cars and Minivans and the combination of SUVs and Trucks

The implication then is that there are 2 distributions being sampled for these simulated events

Task 5: Are Hard Brakes and Accelerations equally important in predicting risk?

Basic stats about the HardBrakes and HardAccelerations per Loss event and comparing to NoLoss events can give us insight on the separation power of these variables

Loss Events:

- ► HardBrakes mean: 170.24, median: 98
- ► HardAccelerations mean: 138.25, median: 68

NoLoss Events:

- ► HardBrakes mean: 167.44, median: 98
- ► HardAccelerations mean: 104.53, median: 56

Just looking at the median values of these loss events leads to the conclusion that Loss events have more HardAccelerations but a similar number of HardBrakes to NoLoss events

This matches my naive intution to be an indication of more aggressive driving

Model Building

Primarily employing densely connected feed forward neural networks for event classification

- ▶ 1 input layer with all potentially useful features (Distance, HardBrakes, HardAccelerations, NightTime_Pct, VehicleType)
- 2 hidden layers with 20 nodes each
- ► Each hidden layer has 20% dropout to avoid overfitting
- ▶ 1 output layer
- Activation Function: ReLU on input nodes and hidden layers with Sigmoid on the output layer
- Optimization Function: Adam (Adaptive moment estimation)
- Loss Function: Binary Cross-entropy

A training (64%)/testing(16%)/validation(16%) random set split was done to help ensure unbiased results

Naive approach Neural Network

- Naively we could just train a neural network on the data classes as given
- With enough separation power i.e., variables distinct enough in each class this can work
- ► Not the case here, only a few variables as inputs with alot of distribution overlap
- ► This would then be expected to fail with a total accuracy that trends toward the class representation of the minority class which is seen here

Neural Network with ADASYN Upsampling

▶ In order to ensure equal class representation the minority class is upscaled using synthetic data created using ADASYN over-sampling

Loss Events P(Loss Event): mean: 0.509, std: 0.079 NoLoss Events P(LossEvent): mean: 0.486, std: 0.084

Loss Event Accuracy: 62.1%

Neural Network with SMOTE Upsampling

► Another network was created and trained using SMOTE over-sampling with similar results

Loss Events P(Loss Event): mean: 0.522, std: 0.084 NoLoss Events P(LossEvent): mean: 0.493, std: 0.085

Loss Event Accuracy: 58.9%

Model Comments

- ► Neural networks have been created and trained on a limited set of input variable with success in determination of Loss events
- ► The addition of further independent input variables would help the separation of the neural network greatly.
- ▶ A bifurcation of the distributions is starting to occur with the ADASYN network, more input variables and events is likely to cause a major splitting of the distribution into likely Loss events and likely NoLoss events
- Boosted decision tree (BDT) models were also employeed in the Jupyter notebook to less successful ends

Task 4: Statistical Significance Between Vehicle Typ Task 5: Hard Brake and Acceleration Importance Model Building Data Set Enhancement

Additional Research Questions

Barkeloo

Task 4: Statistical Significance Between Vehicle Typ Task 5: Hard Brake and Acceleration Importance Model Building Data Set Enhancement

Additional Dataset Attributes

Barkeloo

Task 4: Statistical Significance Between Vehicle Type Task 5: Hard Brake and Acceleration Importance Model Building Data Set Enhancement

Estimate Sample Size Needed for Additional Research

Conclusion, Outlook

Orthogonal validation/control regions are in development