INTRODUCTION:

F, Cl, Br, I and At constitute the VII A group in periodic table.

- According to IUPAC convention, their group number is 17
- They are p block elements and their outer shell configuration is ns² np⁵.
- The list of element is

Element	Perio d	Symb	A.t .N o	Electronic configuration
Fluorine	2	F	9	[He]2s ² 2p ⁵ (or) 2,
Chlorine	3	Cl	17	[Ne]3s ² 3p ⁵ (or) 2,8,7
Bromine	4	Br	35	[Ar]3d ¹⁰ 4s ² 4p ⁵ (or) 2, 8, 18, 7
lodine	5	ı	53	[Kr] 4d ¹⁰ 5s ² 5p ⁵ (or) 2, 8, 18, 18, 7
Astatine	6	At	85	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵ (or) 2, 8,18,32,18,7

- Astatine is radioactive element
- F₂, Cl₂, Br₂, I₂ are known as halogens. Halogen means "Produced in the form of sea salt". e.g. Sea water has NaCl, MgCl₂, MgBr₂, NaIO₃.
- All halogens occur only in combined state. Fluorine occurs mostly as fluorspar (CaF₂) and fluorapatite 3Ca₃(PO₄)₂.CaF₂
- The are the most electro negative elements.

General characteristics and group trends:

- Density, mp, bp, bond length, vander Waal's forces of attractions and intensity of the colour of the halogens increase down the group.
- IP₁, EN, volatility, solubility in water, standard reduction potential value and non-metallic character decrease down the group.

- IP₁ of F is very high because of its small size.
- F is most electro negative element. In Paulig's scale EN of F is 4.0.
- F₂, Cl₂ are gases. Br₂ is liquid. I₂ is solid. The change in physical state is due to the increase in the vander Waal's force between the molecules down the group which is due to increase in molecular weight.
- The order of EA is Cl > F > Br > I.
- The low EA value of F is due to inter electronic repulsions and due to the small size of F atom.

The incoming electron experience greater repulsions due to high electron density in 2 p sub level.

- The order of bond energies is $Cl_2 > Br_2 > F_2 > I_2$
- F₂ is highly reactive because of its low bond energy.
- Mulliken proposed multiple bonding in Cl₂, Br₂, I₂ with p d combination. F atom has no d orbitals. So, multiple bond formation in F₂ is not possible and is the reason for the low BE of F₂.
- Coulson suggested that in F₂, the LP electrons of one atom repel the LP electrons of second F atom because of short F – F distance. High inter nuclear repulsions and inter electronic repulsions are also responsible for its low BE value.
- Of the two explanations, Coulson's view is widely accepted.

Halogens are coloured.

- > The colour of halogen is due to the absorption and transmission of light in visible region.
- > Transmitted light is the complementary colour of the absorbed light.
- Absorbed light makes electron to promote from ground state to higher energetic states.
- > As the size of the halogen atom increases, excitation energy of the electron decreases.
- > F absorbs high energetic violet light and transmits low energetic yellow light. Yellow colour is the complementary colour to violet light.
- > I absorbs low energetic yellow light and transmits violet light.
- > F₂ has pale yellow colour
- > Cl₂ is greenish yellow in colour
- > Br₂ has orange red colour
- > I2 is violet in colour

Oxidation States:

• F exhibits only –1 oxidation state in its compounds since it is the most electro – ve atom the valency of F can not be more than one due to the absence of vacant d- orbitals in valence shell.

- Cl, Br, I exhibit -1, +1, +3+5+7 oxidation states because they are less electronegative and contain vacant d –orbitals in their valence shells.
 - -1, + 1 oxidation states are possible with ground state configuration.
 - + 3, + 5, + 7 oxidation states are possible with excited state configuration.
 - +ve oxidation states are seen in only covalent compounds.
- Higher oxidation states are found is interhalogen compounds, oxides and oxo acids.
 - (a) Ground state configuration of halogen atom is

(b) 1st excited state configuration is

(c) 2nd excited state configuration is

(d) 3rd excited state configuration is

- Inter halogen compounds are formed when one halogen combines with another halogen.
- In interhalogen compounds, π bonds are not formed by the halogen atom.

SNO	Interhalogen compound	Configuration	Hybridisation	O.S. of X	No.of bonds	Shape
(i)	XA	(a)	No hybridisation	+ 1	1	Linear
(ii)	XΑ₃	(b)	sp³d	+ 3	3	Trigonal bipyramidal with 2 LP (or) trigonal pyramidal (or) T –shape
(iii)	XA ₅	(c)	sp³d²	+ 5	5	Octahedral with 1 LP (or) square pyramidal
(iv)	XA ₇	(d)	sp³d³	+ 7	7	Pentagonal bipyramidal

• <u>Note</u>: In all above molecules X is the central halogen atom which is less electronegative and A is more electronegative halogen atom.

Oxidising power:

- All the halogens are oxidising agents. Their oxidising power is high due to high EA values. The order of oxidising power is $F_2 > Cl_2 > Br_2 > l_2$ The order of S.R.P is $F_2 > Cl_2 > Br_2 > l_2$
- All S.R.P. values are +ve. S.R.P. is a measure of the ability to undergo reduction.
- Oxidising ability of halogens depends on the net energy change of the process, $\frac{1}{2}X_{2(s)}\to X_{(aq)}^-$
- The net energy change is calculated using Born- Haber cycle (or) Hess law.

$$\begin{array}{lll} \Delta H_1 + X_{2(s)} {\longrightarrow} X_{2(l)} & \Delta H_1 = & Enthalpy \ of fusion \\ \Delta H_2 + X_{2(l)} {\longrightarrow} X_{2(g)} & \Delta H_2 = & Enthalpy \ of vapourisation \\ & \frac{1}{2}D + \frac{1}{2}X_{2(g)} {\longrightarrow} X_{(g)} & & & \\ \hline{} & = & Enthalpy \ of \ dissociation \\ & e + X_{(g)} {\longrightarrow} X^-_{(g)} + E & & E = & Electron \ affinity \\ & aq + X^-_{(g)} {\longrightarrow} X^-_{(aq)} + \Delta H_3 & \Delta H_3 = & Enthalpy \ of \ hydration \\ \end{array}$$

- The net energy change of the process, $\frac{1}{2}X_{2(s)} \to X_{(aq)}^-$ is $\left(E + \Delta H_3 \frac{\Delta H_1}{2} \frac{\Delta H_2}{2} \frac{D}{2}\right)$
- Greater this value, greater is the oxidising capacity of the halogen.
- Higher oxidising capacity of F₂ is due to
 - (i) Low enthalpy of dissociation of F F due to the weakness of F F bond
 - (ii) High enthalpy of hydration of F⁻ due to its small size.