8.1 La fonction carré

8.1.1 Définition et premières propriétés

Définition 1.8.

La fonction carré est la fonction f qui à tout réel x associe son carré soit $f(x) = \underline{\hspace{1cm}}$ et on appelle parabole $\mathscr P$ la courbe représentative de cette fonction carré.

Propriétés 1.8.

- 1. Un carré est toujours positif ou nul dans \mathbb{R} . Pour tout réel x, on a $x^2 \geqslant 0$: la parabole \mathscr{P} est toujours située au dessus de l'axe des abscisses.
- 2. Un nombre et son opposé ont le même carré. Pour tout réel x, on a $x^2 = (-x)^2$: la parabole \mathscr{P} est symétrique par rapport à l'axe des ordonnées : on dit que la fonction carré est paire.

8.1.2 Sens de variation de la fonction carrée

Propriétés 2.8.

La fonction carrée est :

- 1. strictement décroissante sur $]-\infty$; 0]; autrement dit, la fonction carrée ne conserve pas l'ordre des réels négatifs : si $u < v \leq 0$ alors ______.
- 2. strictement croissante sur $[0; +\infty[$; autrement dit, la fonction carrée conserve l'ordre des réels positifs: si $0 \le u < v$ alors _____

On résume ces variations dans un tableau :

x	$-\infty$	0	$+\infty$
Variation de x^2			

Application 1.8. Sans calcul, comparer les carrés de :

1.
$$\pi$$
 et 3, 15

2.
$$-0.96 \text{ et } -0.8$$

3.
$$0, 2 \text{ et } -0, 3$$

Propriétés 3.8.

- 1. Si k < 0, comme un carré est positif, l'équation $x^2 = k$ n'a pas de solution.
- 2. Si k = 0, l'équation $x^2 = 0$ a pour unique solution x = 0.
- 3. Si k > 0, $x^2 = k \Leftrightarrow x^2 k = 0 \Leftrightarrow \left(x + \sqrt{k}\right) \left(x \sqrt{k}\right) = 0$.

On obtient les deux solutions $x = -\sqrt{k}$ ou $x = \sqrt{k}$.

Illustrations.

 $x^2 = 0$ a pour unique solution 0 $x^2 = k$ a deux solutions $-\sqrt{k}$ ou \sqrt{k}

Application 2.8. Résoudre graphiquement les équations suivantes :

1.
$$x^2 = 16$$

2.
$$x^2 = -2$$

3.
$$x^2 = 0$$

8.2 La fonction racine carré

8.2.1 Définition et courbe représentative

Définition 2.8.

La fonction $racine \ carr\'e$ est la fonction qui à tout réel x positif ou nul associe sa racine carr\'e :

$$x \longmapsto \sqrt{x}$$

8.2.2 Sens de variation

Propriété.

La fonction racine carré conserve l'ordre dans les réels positifs.

Autrement dit, si $0 \le u < v$ alors $\sqrt{u} < \sqrt{v}$: la fonction racine carré est donc *strictement croissante* sur $[0; +\infty[$.

x	0	$+\infty$
Variation de \sqrt{x}	0	

ightharpoonup Application 3.8. Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$\sqrt{x} < 2$$

2.
$$\sqrt{x} - 3 \ge 0$$

Propriétés 4.8.

Pour tous nombres réels a et b positifs :

1.
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

2. Si
$$b \neq 0$$
, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

3. Si
$$a$$
 et b sont non nuls, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

ATTENTION! En général on a $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.

Application 4.8.

- 1. Écrire $\sqrt{75}$ sous la forme $a\sqrt{3}$.
- 2. Simplifier $\sqrt{\frac{9}{25}}$.
- 3. Démontrer que $(\sqrt{3}-1)(\sqrt{3}+1)$ est un entier.