

Team Matrix - EE0005

The Problem

Profit is higher when turnover is higher

Need to know sales pattern before hand

Order inventor efficiently

Manage Manpower and staff

An accurate forecasting model can greatly increase supermarket revenue and is generally of great importance to the organization as it improves profit as well as provides insights into the way customers can be better served.

- Forecasting Revenue of Store
 - For the next month
 - Using data of other stores
- Segmented by product category

The project

Data

Walmart M5 Accuracy Data

Raw data

Sales and selling price data inventory-wise

	Hobbie_revenue_CA_1	House_revenue_CA_1	Foods_revenue_CA_1	Hobbie_revenue_CA_2	House_revenue_CA_2	Foods_revenue_CA_2	Hobbie_revenue_CA_3	House_revenue_CA_3	Foods_revenue_CA_3 I
count	1913.000000	1913.000000	1913.000000	1913.000000	1913.000000	1913.000000	1913.000000	1913.000000	1913.000000
mean	1651.024909	3126.688777	6994.523863	1130.609320	3499.558819	4470.465112	1770.127052	5500.156539	9514.429603
std	568.778895	1034.309162	1782.857772	343.722533	1185.994560	1570.008395	546.017406	1555.736262	2004.472300
min	0.000000	0.000000	0.000000	0.000000	0.000000	3.160000	0.000000	0.000000	0.000000
25%	1231.060000	2368.070000	5785.320000	879.940000	2632.260000	3442.770000	1313.200000	4347.270000	8289.990000
50%	1582.090000	3002.100000	6758.370000	1075.370000	3176.660000	4017.580000	1740.950000	5371.240000	9445.230000
75%	2028.540000	3667.160000	8077.970000	1310.280000	4191.010000	5226.680000	2158.720000	6438.420000	10807.020000
max	3985.270000	6603.990000	12279.280000	2510.150000	8595.570000	11747.110000	3485.500000	10845.120000	15586.450000
8 rows × 30 columns									

- Random Forest is an ensemble machine learning technique capable of performing both regression and classification tasks using multiple decision trees
- Removed outliers before training
- from sklearn.ensemble import RandomForestRegressor
- Test_size = 0.2
- from sklearn.metrics import mean_squared_error

Hobbie_revenue_CA_1 0.4270913320673209 House_revenue_CA_1 0.36253245428116315 Foods revenue CA 1 0.4611795862249466 Hobbie revenue CA 2 0.48152002716754067 House revenue CA 2 0.4271971157397212 Foods_revenue_CA_2 0.36787340266724894 Hobbie_revenue_CA_3 0.3992739942173556 House_revenue_CA_3 0.3922743276993896 Foods_revenue_CA_3 0.48007461600469514 Hobbie_revenue_CA_4 0.4041720486977423 House_revenue_CA_4 0.4132930524547144 Foods revenue CA 4 0.43638139223266964 Hobbie_revenue_TX_1 0.41046707501653834 House revenue TX 1 0.3705262139154396 Foods_revenue_TX_1 0.47302570562846813 Hobbie_revenue_TX_2 0.4675841880450109 House_revenue_TX_2 0.5040668710102293 Foods_revenue_TX_2 0.5186702169249429 Hobbie_revenue_TX_3 0.4773264767380756 House_revenue_TX_3 0.37397094987853396 Foods_revenue_TX_3 0.4930324074857432 Hobbie_revenue_WI_1 0.42813984473785854 House revenue WI 1 0.4123062299065458 Foods revenue WI 1 0.3468869691794831 Hobbie_revenue_WI_2 0.4508340094604097 House_revenue_WI_2 0.44553607542325385 Foods_revenue_WI_2 0.4534678547567083 Hobbie_revenue_WI_3 0.6385074314274615 House_revenue_WI_3 0.5484290797721061 Foods revenue WI 3 0.677706374286333

kaggle

RNN Prediction

- We want to predict the Revenue 1 month into the future, we shift the data 30 time-steps
- Convert data to numpy arrays
- Train_split = 0.9
- Dense with 2 layers
- 31 input and 3 output signals
- Loss function = MSE
- Warmup problem
- Using GRU dense network with 512 nodes to 3 nodes
- Batch usage
- Epoch

```
Train for 100 steps, validate on 1 samples
Enoch 1/29
Epoch 00001; val loss improved from inf to 0.01733, saving model to 23
checkpoint.keras
26 - val loss: 0.0173
Epoch 2/20
Epoch 00002: val_loss improved from 0.01733 to 0.0196, saving model t
o 23 checkpoint.keras
100/100 [=============== ] - 39s 389ms/step - loss: 0.00
71 - val loss: 0.0120
Epoch 3/20
Epoch 00003: val loss did not improve from 0.01198
Epoch 00003: ReduceLROnPlateau reducing learning rate to 0.000100000000
474974513.
58 - val loss: 0.0154
Epoch 4/20
Epoch 00004: val_loss improved from 0.01198 to 0.01755, saving model t
o 23_checkpoint.keras
100/100 [============ ] - 39s 391ms/step - loss: 0.00
41 - val_loss: 0.0114
Epoch 5/20
Epoch 00005: val_loss improved from 0.01138 to 0.01102, saving model t
o 23 checkpoint keras
38 - val loss: 0.0110
Epoch 6/20
99/100 [================================,] - ETA: 0s - loss: 0.0036
Epoch 00006; val loss improved from 0.01102 to 0.01084, saving model t
o 23_checkpoint.keras
36 - val loss: 0.0108
Froch 7/29
99/100 [================================, ] - ETA: 0s - loss: 0.0035
Epoch 00007: val loss did not improve from 0.01084
Epoch 00007: ReduceLROnPlateau reducing learning rate to 0.0001.
```

```
Epoch 00008: val_loss improved from 0.01084 to 0.01080, saving model t
o 23 checkpoint.keras
100/100 [============================] - 39s 390ms/step - loss: 0.00
34 - val_loss: 0.0108
Epoch 9/20
Epoch 00009: val loss did not improve from 0.01080
33 - val loss: 0.0110
Epoch 10/20
Epoch 00010: val loss did not improve from 0.01080
100/100 [============== ] - 39s 391ms/step - loss: 0.00
32 - val loss: 0.0114
Epoch 11/20
Epoch 00011: val_loss did not improve from 0.01080
100/100 [=============== ] - 39s 391ms/step - loss: 0.00
31 - val loss: 0.0126
Epoch 12/20
Epoch 00012: val_loss did not improve from 0.01080
100/100 [================ ] - 39s 391ms/step - loss: 0.00
31 - val loss: 0.0126
Epoch 13/20
Epoch 00013: val loss did not improve from 0.01080
100/100 [=========================== ] - 39s 390ms/step - loss: 0.00
30 - val loss: 0.0134
Epoch 00013: early stopping
CPU times: user 7min 18s, sys: 2min 37s, total: 9min 56s
Wall time: 8min 32s
```

EPOCH 0/20

0.009594 MSE

RNN usage

566.2322060647323

1183.485632666087

Thus sales forecasted with extreme accuracy

Data Processing + Joe V Akkara Data Visualization and analysis Random Forest + James Le Ngoc Canh

Thank you

Team Matrix

Quote from "The Matrix"
"There is a difference between knowing the path and walking the path."