Лекція 7. Канальний рівень

Функції канального рівня

- 1. Надає протоколам верхнього рівня доступ до середовища передачі за допомогою технології, що має назву *фреймування*.
- 2. Управляє тим, як дані розміщуються у середовищі передавання і приймаються за допомогою таких технологій, як *управління доступом до середовища передавання* і виявлення помилок.

Технології

- Фреймування
- Управління доступом до середовища передавання
- Виявлення помилок

Підрівні канального рівня

Media Access Control, MAC

підрівень керування доступом до середовища передавання даних

МАС-рівень забезпечує коректне спільне використання загального середовища, надаючи його в розпорядження тієї або іншої станції мережі.

Додає адресну інформацію до фрейму, позначає початок і кінець фрейму.

Logical Link Control, LLC

підрівень логічного передавання даних

Рівень LLC відповідає за достовірну передачу кадрів даних між вузлами, а також реалізовує функції інтерфейсу з прилягаючим до нього мережевим рівнем. Фреймування кадрів, ідентифікування протоколу мережевого рівня

Фрейм – протокольний блок даних канального рівня (L2PDU)

Протоколи канального рівня

- **Ethernet** протокол локальної мережі
- Radio Ethernet протокол бездротової локальної мережі
- HDLC, High-level Data Link Control протокол високо рівневого управління каналом передачі даних
- PPP, Point-To-Point Protocol двуточковий протокол
- Frame Relay протокол технології Frame Relay

Методи доступу до середовища передавання

Media Access Control

1. Розподілене середовище передавання – Shared Media Керовані Некеровані детерміновані Не детерміновані controlled Contention-based Виникає явище, яке має назву колізії Token Ring, FDDI Ethernet, Wireless •Тільки одна станція може здійснювати передачу кадру •Станція має можливість розпочати передачу у будь-який •Якщо виникла необхідність у передачі даних станція чекає своєї черти •Наявність методів вирішення конкуренції за доступ до •Відсутність колізії •У мережі передається маркер середовища передавання

Формати кадрів канального рівня

Структура фрейму

Заголовок фрейму

Typical frame header fields include:

- Start Frame field Indicates the beginning of the frame
- Source and Destination address fields Indicates the source and destination nodes on the media
- Priority/Quality of Service field Indicates a particular type of communication service for processing
- Type field Indicates the upper layer service contained in the frame
- Logical connection control field Used to establish a logical connection between nodes
- Physical link control field Used to establish the media link
- Flow control field Used to start and stop traffic over the media
- · Congestion control field Indicates congestion in the media

Кінцівка кадру

The Role of the Trailer

Кадр протоколу Ethernet

Ethernet Protocol

A Common Data Link Layer Protocol for LANs

Field name	Preamble	Destination	Source	Туре	Data	Frame Check Sequence				
Size	8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes				

Preamble - used for synchronization; also contains a delimiter to mark the end of the timing information.

Destination Address - 48 bit MAC address for the destination node.

Source Address - 48 bit MAC address for the source node.

Type - value to indicate which upper layer protocol will receive the data after the Ethernet process is complete.

Data or payload - this is the PDU, typically an IPv4 packet, that is to be transported over the media.

Frame Check Sequence (FCS) - A value used to check for damaged frames.

Payload – корисне навантаження

Кадр протоколу РРР

Point-to-Point Protocol A Common Data Link Protocol for WANs

Frame

Field name Size (bytes)

,	Flag	Address	Control	Protocol	Data	FCS
	1 byte	1 byte	1 byte	2 bytes	variable	2 or 4 bytes

Flag - A single byte that indicates the beginning or end of a frame. The flag field consists of the binary sequence 01111110.

Address - A single byte that contains the standard PPP broadcast address. PPP does not assign individual station addresses.

Control - A single byte that contains the binary sequence 00000011, which calls for transmission of user data in an unsequenced frame.

Protocol - Two bytes that identify the protocol encapsulated in the data field of the frame.

The most up-to-date values of the protocol field are specified in the most recent Assigned Numbers Request For Comments (RFC).

Data - Zero or more bytes that contain the datagram for the protocol specified in the protocol field.

Frame Check Sequence (FCS) - Normally 16 bits (2 bytes). By prior agreement, consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

Висновки

- Data link layer забезпечує надійну передачу даних по фізичному каналу
- Він задає правила (протоколи), які визначають як саме пристрій може переслати дані в певному середовищі передавання
- Протоколи канального рівня також задають формат заголовків і кінцівок
- Кінцівка канального рівня має контрольної суму фрейму, що використовується для виявлення помилок