

CLASSIFICATION

Problem setting

Classification methods subdivide data into several, distinct classes. More formally:

- ▶ Data $x_1, x_2,$
- ► Each observations falls into one of *K* categories (the *classes*).
- ► Learning task: Find a classification function

$$f: \mathbf{X} \to \{1, \dots, K\}$$
.

▶ Input of the learning problem: Correctly categorized examples $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$.

Approach

- ► Define:
 - 1. A set of possible classification functions f (the *hypothesis set*).
 - 2. A *cost function* which assumes a large value when mistakes are made.
- ▶ To find a good classifier, search the hypothesis class for the *f* which keeps costs as small as possible.
- ▶ Different types of errors can be more or less expensive.

USPS DATA

Each digit: 16×16 pixels, i.e. $x \in \mathbb{R}^{256}$

CANCER DIAGNOSIS

REGRESSION

Linear regression

Nonlinear regression

Shrinkage

Shrinkage methods make regression less susceptible to idiosyncracies of a specific data set.

- $ightharpoonup \ell_2$ shrinkage: Reduce variability of solutions between data sets.
- $ightharpoonup \ell_1$ shrinkage: Weed out unimportant dimensions in high-dimensional data.

Peter Orbanz · Statistical Machine Learning

DIMENSION REDUCTION

Task

- ▶ Input: A high-dimensional data set.
- Output: A low-dimensional representation of the data which preserves important structure.

Illustration: From 3D to 2D

Peter Orbanz · Statistical Machine Learning

CLUSTERING

Example: Image Segmentation

Peter Orbanz · Statistical Machine Learning