Econ 2120, Section 7 - Random vs. Fixed Effects

October 18th 2021

Table of Contents

Analysis of Variance as GLS

Estimating Unit Effects

Summary so fai

A variance decomposition

- ► Imagine we're interested in understanding the size of wage shocks over time
- ▶ We have a panel of households with their earnings. What should we do?
 - ► Can we look at the variance across all the wages we observe?
- Intuitively, we want a variance decomposition
 - How much of the observed variance is not due to unobserved differences across workers?

Example from Gottschalk and Mofitt (2002)

- ► Authors look at the rise in income inequality the rise in variance of income in US from 70s to mid 90s
- ▶ Data is a panel of male worker wages
- Permanent earnings variance (price of skill) vs Transitory variance (labor market instability, increase in cometitiveness etc.)

Example from Gottschalk and Mofitt (2002)

Fig. 1. Permanent and Transitory Variances of Male Log Earnings, 1969-1996

Working with Residuals

▶ If we have a population vector Y_i and predictors Z_i , we can form residuals from the unrestricted predictor:

$$U_i = \left(egin{array}{c} U_{i1} \ dots \ U_{iT} \end{array}
ight) = Y_i - (I \otimes X_i')\pi$$

- ▶ Recall that $Z_{ist} \in span(X_{i1}, X_{i2}, ...) \forall s, t$
- ► To start, let's model *U*_{it} as a function of some omitted variable and random shocks

$$U_{it} = A_i + V_{it}$$

with $A_i, V_{i1}, \ldots, V_{iT}$ mutually uncorrelated

Working with Residuals

Define

$$\sigma_A^2 = Var(A_i), \ \sigma_{V_t}^2 = Var(V_{it})$$

► Then it follows that

$$\Sigma_{U} = \begin{pmatrix} (\sigma_{A}^{2} + \sigma_{V_{1}}^{2}) & \sigma_{A}^{2} & \dots & \sigma_{A}^{2} \\ \sigma_{A}^{2} & (\sigma_{A}^{2} + \sigma_{V_{2}}^{2}) & \dots & \sigma_{A}^{2} \\ \vdots & \vdots & & \vdots \\ \sigma_{A}^{2} & \sigma_{A}^{2} & \dots & (\sigma_{A}^{2} + \sigma_{V_{T}}^{2}) \end{pmatrix}$$

► What assumptions have we made to get here? When might they be implausible?

Writing the Variance Decomposition as GLS

- We're interested in learning $\gamma \equiv (\sigma_A^2 \ \sigma_{V_1}^2 \ \dots \ \sigma_{V_T}^2)'$
- We can simply recast the matrix Σ_U as a vector: $vec(\Sigma_U)$
- ▶ Then, there is a known matrix *G* such that

$$vec(\Sigma_U) = G\gamma$$

Which suggests running the regression

$$E_{\Phi}^*[vec(\Sigma_U)|G]$$

The coefficients of this regression will correspond to γ under the model

Why use GLS?

- ▶ The best linear predictor guarantees our prediction is optimal
- We also know what happens when our model is mis-specified.
 - ► *G* is 'wrong' in the sense that it doesn't correspond to the unrestricted predictor
- ightharpoonup Then we interpret the estimated γ as best approximation to the unrestricted predictor in a minimum-distance sense
 - \triangleright Where the distance metric is defined for a given Φ

Example from Gottschalk and Mofitt (2002)

Possible extension:

$$U_{it} = \alpha_t A_{it} + V_{it}$$
$$A_{it} = A_{it-1} + \omega_{it}$$
$$V_{it} = \rho_t V_{it-1} + \varepsilon_{it}$$

Fig. 2. Trends in Alpha Squared and the Variance of Transitory Shocks

Table of Contents

Analysis of Variance as GLS

Estimating Unit Effects

Summary so fai

Example of Unit Effects: Teacher Effects

- Question: How much does one year of exposure to a given teacher improve test scores?
- ▶ We observe a teacher x year panel of mean test scores as well as classroom demographics

$$Y_i = (Y_{i1} \ldots Y_{iT})'$$

► What do we do?

Teacher Effects Setup

- As before calculate the residuals U_{it}
- ▶ Model errors as $U_{it} = V_i + \epsilon_{it}$
- ▶ Define $\sigma_V^2 \equiv E[V_i^2]$ and $\sigma_{st} \equiv E[\epsilon_{is}\epsilon_{it}]$
- Make three substantive restrictions: one interpretation and one statistical
 - ▶ Interpretation of the teacher effect: $E[V_i \epsilon_{it}] = 0$
 - No serial correlation: $\sigma_{st} = 0 \ \forall \ s \neq t$
 - ▶ Homoskedasticity: $\sigma_{tt} = \sigma_{\epsilon}^2 \ \forall \ t$
- What do these assumptions mean in this context?

Approach 1: Unbiased Estimator

 \triangleright A reasonable estimator for V_i would be

$$\hat{U}_{i}^{unbiased} = \bar{U}_{i} = \sum_{t=1}^{T} U_{it}/T$$

▶ It's nice in that it's both unbiased and consistent in T

$$E_i[\bar{U}_i] = V_i, \quad \lim_{T \to \infty} \bar{U}_i = V_i$$

But it turns out this estimator is not optimal under squared loss

Approach 2: Best Linear Predictor

Another estimator of interest might be

$$\hat{U}_{i,T+1}^{BLP} = E^*[U_{i,T+1}|U_{i1},\ldots,U_{iT}]$$

Why?

Under the model (using the variance decomp):

$$\hat{U}_{i,T+1} = \frac{\sigma_V^2}{\sigma_V^2 + \sigma_\epsilon^2 / T} \bar{U}_i$$

- ▶ Note that $\frac{\sigma_V^2}{\sigma_V^2 + \sigma_\epsilon^2/T} < 1$ and goes to one as $T \to \infty$
- We call this a 'shrinkage' estimator because the unbiased estimator is 'shrunk' towards its mean

Comparing the Approaches

- ► So which estimator should we prefer?
- Which estimator should you use if:
 - 1. You want to identify the best teacher
 - You want to know how well teacher effects are predicted by observables

Table of Contents

Analysis of Variance as GLS

Estimating Unit Effects

Summary so far

Summary

Many important points...

- ► Panel data can be very useful
- So far: dealing with OVB, analysis of variance, predicting the (unobserved) unit effects
- Can look at the variances, not only at the means + minimum distance
- Shrinkage