Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе $\mathbb{N}^{\underline{0}}$

Выполнили студенты группы

Содержание

Ι	Co	обытия и их вероятности	3
1	Эле	ементы комбинаторики. Схемы шансов	3
	1.1	Эксперименты выбора шариков	4
	1.2	Схема шансов без возвращения и с учетом порядка	5
	1.3	Схема шансов без возвращения и без учёта порядка	6
	1.4	Схема шансов с возвращением и с учётом порядка	6
	1.5	Схема шансов с возвращением и без учёта порядка	7
2	Coc	бытия, операции над ними и σ -алгебры событий	8

Исторические сведения

Возникновение теории вероятностей как науки относят к средним векам, когда появилась возможность и возникла необходимость изучения математическими методами азартных игр (таких как орлянка, кости, рулетка). Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Первоначально её основные понятия не имели строго математического описания. Задачи, из которых позже выросла теория вероятностей представляли набор некоторых эмпирических фактов о свойствах реальных событий, которые формулировались с помощью наглядных описаний. Исследуя прогнозирование выигрыша при бросании костей в письмах друг другу, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности. Решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был и методику решения изобрёл самостоятельно. Его статья, в которой он ввёл основные понятия теории вероятностей (понятие вероятности как величину шанса; математическое ожидание для дискретных случаев в виде цены шанса). В своей статье он использует (не сформулированные ещё в явном виде) теоремы сложения и умножения вероятностей. Статья была опубликована в печатном виде на двадцать лет раньше (1657 г.) издания писем Паскаля и Ферма (1679 г.). Важный вклад в теорию вероятностей внёс Якоб Бернулли, он дал доказательство закона больших чисел в простейшем случае независимых ис- пытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматике, предложенной Андреем Никола- евичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Википедия, Статья "Теория вероятностей".

Часть I

События и их вероятности

1. Элементы комбинаторики. Схемы шансов

В этом параграфе мы подсчитываем число элементарных событий или, проще говоря, исходов, шансев, которые могут возникать в результате эксперимента.

Например, при подбрасывании монеты могут произойти 2 исхода, при подбрасывании игрального кубика могут произойти 6 исходов, при извлечении карты из колоды в 54 листа могут произойти 53 исхода. Такие подсчёты изучают в разделе математики, называемом комбинаторикой.

Пусть A и B — два непересекающихся конечных множества с числом элементов m и n соответственно. Очевидны следующие две леммы.

Лемма 1.1. (о сумме). Число шансов выбрать один элемент либо из A либо из B, m.e. из объединения $A \cup B$, равно m+n.

Лемма 1.2. (о произведении). Число шансов выбрать пару элементов, один из A, а другой из B, равно mn, m.e. числу элементов в декартовом произведении $A \times B$.

Непосредственным обобщением предыдущей леммы является следующая теорема.

Теорема 1.3. Пусть A_2, A_2, \ldots, A_k — конечные непересекающиеся множества, имеющие n_1, n_2, \ldots, n_k элементов соответственно. Выберем из кажедого множества по одному элементу. Тогда общее число способов, которыми можно осуществить такой выбор, равно $n_1 n_2 \ldots n_k$.

Доказательство. Ясно, что число способов такого выбора равно числу точек (элементов) в декартовом произведении $A_1 \times A_2 \times \dots A_k$, т.е. равно $n_1 \cdot n_2 \dots n_k$.

1.1. Эксперименты выбора шариков

Рассмотрим ящик, содержащий n одинаковых шариков, на которых написаны числа $1,2,\ldots,n$. Эксперимент состоит в том, что из ящика, не глядя, по одному вынимают k шариков, где $k\leqslant n$. Обозначим через

$$(n_1, n_2, \ldots, n_k)$$

упорядоченный набор чисел, где n_1 — номер 1-го вынутого шарика, n_2 — номер 2-го шарика,..., n_k — номер k-го шарика.

Например, из 5 занумерованных шариков выбрали 3 шарика и получился набор (4, 2, 1).

Сколько имеется различных способов вынуть из ящика k шариков? На этот вопрос нельзя дать однозначный ответ, потому что такой эксперимент определён неоднозначно.

Во-первых, не определено, возвращают ли извлеченный шарик обратно в ящик. Во-вторых, не определено, какие наборы номеров считать различными и какие наборы считать одинаковыми.

Рассмотрим следующие возможные условия проведения эксперимента.

- 1. Эксперимент с возвращением. Каждый извлечённый шарик возвращается в ящик. В этом случае в наборе могут появляться одинаковые номера. Например, при выборе трёх шариков из ящика, содержащего пять шариков с номерами 1, 2, 3, 4 и 5, могут появиться наборы (3, 3, 5), (1, 2, 4) и (4, 2, 1).
- 2. Эксперимент без возвращений. Извлечённые шарики в ящик не возвращаются. В этом случае в наборе не могут встречаться одинаковые

номера. В рассмотренном выше примере набор (3,3,5) не может появиться, а наборы (1,2,4) и (4,2,1) могут.

Опишем теперь, какие наборы номеров мы будем считать различными. Существуют ровно две возможности.

- 1. Эксперимент с учётом порядка. Два набора номеров считаются различными, если они отличаются либо составом, либо порядком. В рассмотренном выше примере все наборы (3,3,5), (1,2,4) и (4,2,1) считаются различными.
- 2. *Эксперимент без учёта порядка*. Два набора номеров считаются различными, если они отличаются только составом.

В рассмотренном выше примере наборы (1,2,4) и (4,2,1) доставляют одно и тот же элементарное событие, а набор (3,3,5) — другое.

Подсчитаем теперь, сколько получится различных исходов для каждого из четырёх экспериментов. Заметим, что в литературе такие эксперименты часто называют схемами выбора или схемами шансов. Схема шансов – это условия (с возвратом или без, какие наборы различны и т.д.), при которых проводится эксперимент.

1.2. Схема шансов без возвращения и с учетом порядка

Теорема 1.4. В эксперименте без возвращения и с учётом порядка число способов выбрать k элементов из n-элементного множества равно

$$A_n^k = n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$
 (1)

Число A_n^k называется *числом размещений элементов* k на n местах. Читается: «A из n по k».

 \mathcal{A} оказательство. При выборе первого шарика имеется n возможностей При выборе первого шарика имеется n возможностей. При выборе второго шари-

Следствие 1.5. Число перестановок из n элементов равно n!.

Доказательство. Очевидно, что перестановка есть результат выбора по схеме без возвращения и с учётом порядка всех n элементов из n, т.е. общее число перестановок равно $A_n^2 = n!$.

1.3. Схема шансов без возвращения и без учёта порядка

Теорема 1.6. В эксперименте без возвращения и без учёта порядка число способов извлечь k из n-элементного множества равно

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$
 (2)

Число C_n^k называется числом сочетаний k элементов из n элементов. Читается: «C из n no k»

Доказательство. По следствию 1.5 из k элементов можно образовать k! упорядоченных наборов. Поэтому количество сочетаний (неупорядоченных наборов) в k! раз меньше, чем число размещений. Поделив A_n^k на k!, получим требуемый результат.

1.4. Схема шансов с возвращением и с учётом порядка

Теорема 1.7. В эксперименте с возвращением и с учётом порядка число способов извлечь k элементов из n-элементного множества равно n^k .

Доказательство. При выборе каждого из k шариков имеется n возможностей. По теореме 1.3 общее число наборов равно $n \cdot n \cdot n \cdot \dots \cdot n = n^k$.

1.5. Схема шансов с возвращением и без учёта порядка

Замечание 1.8. Рассмотрим для примера ящик с двумя шариками 1 и 2, из которого мы вынимаем последовательно два шарика. Без учёта порядка имеется 3 исхода:

$$\{1,1\},\{1,2\}=\{2,1\},\{2,2\}.$$

Теорема 1.9. В эксперименте с возвращением и без учёта порядка число способов извлечь k элементов из n-элементного множества равно C_{n+k-1}^k .

Доказательство. Т.к. порядок появления шариков не учитывается, то мы учитываем лишь только то, сколько раз в наборе появится i-й шарик для каждого $i=1,2,\ldots,n$. Обозначим через k_i число появлений i-го шарика в наборе. Во-первых, $0 \le k_i \le k$, а во-вторых,

$$k_1 + k_2 + \dots + k_n = k.$$

Поставим каждому исходу в соответствие набор чисел (k_11,k_2,\ldots,k_n) . Легко видеть, что это соответствие является взаимно однозначным. Такое соответствие можно рассматривать как способ нумерации наборов. (Например, исходам из замеч. 1.8 ставятся в соответствие следующие номера: $\{1,1\} \leftrightarrow (2,0),\{1,2\} \leftrightarrow (1,1)\{2,2\} \leftrightarrow (0,2)$. Рассмотрим теперь другой эксперимент. Пусть теперь имеется n урн с номерами $i=1,2,\ldots,n$, в которых размещаются k неразличимых шариков. Сколько существует способов разложить шарики по урнам? Нас интересует только количество шариков в i-й урне для каждого i. Обозначим через k_i число шариков в i-й урне. Ясно, что $0 \leqslant ki \leqslant k$, и что числа k_1 и в этом эксперименте тоже удовлетворяют уравнению

$$k_1 + k_2 + \dots + k_n = k.$$

Исходы этого эксперимента тоже взаимно однозначно описываются наборами чисел

 (k_1, k_2, \ldots, k_n) . Т.о., исходы в эксперименте с урнами и исходы предыдуще-

го эксперимента с ящиком занумерованы одним и тем же набором чисел, поэтому число исходов в обоих экспериментах одно и то же и равно числу решений этого уравнения. Вычислим это число для эксперимента с урнами. Изобразим расположение шариков в урнах с помощью схематичного рисунка. Вертикальными линиями обозначим перегородки между урнами, а кружками — шарики, находящиеся в них. Например,

На рисунке показаны 9 шариков, рассыпанные по 7 урнам: 1-я и 6-я урны содержат по 2 шарика, 2-я урна содержит 3 шарика, 3-я и 5-я урны — пустые и, наконец, 4-я и 7-я урны содержат по одному шарику.

Меняя местами шарики и стенки, можно получить все возможные расположения шариков в урнах. Другими словами, все расположения можно получить, расставляя k шариков и n-1 стенок на n-1+k местах. Число n-1+k получается следующим образом. Число стенок у n урн равно n+1, и т.к. две крайние стенки двигать нельзя, то число стенок, которые можно двигать равно n-1. Поэтому шарики могут занимать k мест, а стенки урн — оставшиеся n-1 место. По теор. 1.6 число способов расставить k шариков на n-1+k местах и затем расставить стенки на оставшихся n-1 местах равно C_{n+k-1}^k . Что и требовалось доказать.

2. События, операции над ними и σ -алгебры событий

Теория вероятностей, как и любая современная математическая теория, начинается с аксиоматических (неопределяемых) понятий. Такими являются следующие понятия.

- 2. Понятие: произойти = возникнуть = появиться.
- 3. Понятие: элементарное событие = элементарный исход = результат = uanc.

При этом считается, что в результате опыта происходит одно и только одно элементарное событие.

Определение 2.1. Множество всех элементарных событий данного эксперимента называется *пространством элементарных событий*, или часто короче *пространством*.

Будем обозначать его через Ω . Ясно, что пространство элементарных событий не пусто, $\Omega \neq \varnothing$.

Как множество пространство Ω может быть либо конечным¹, либо счётным², либо несчётным множеством³.

Определение 2.2. Конечные и счётные пространства элементарных событий называются *дискретными*.

Примеры.

- 1. Эксперимент: подбрасывание монеты. Элементарные события: o выпадение орла, p выпадение решётки. Пространство $\Omega = \{o, p\}$ является конечным множеством.
- 2. Эксперимент: одновременное подбрасывание двух монет одного достоинства. Пространство элементарных событий $\Omega = \{(o, o), (o, p), (p, p)\}$ является конечным множеством.

¹Конечное множество – множество, количество элементов которого конечно, то есть, существует неотрицательное целое число n, равное количеству элементов этого множества. В противном случае множество называется бесконечным.

 $^{^2}$ Счётное множество есть бесконечное множество, элементы которого можно пронумеровать натуральными числами. Более формально: множество Ω является счётным, если существует биекция $\Omega \leftrightarrow N$, где N обозначает множество всех натуральных чисел.

³Множество, не являющееся конечным или счетным, называется несчетным.

- 3. Эксперимент: подбрасывание одной монеты до выпадения первого орла. Пространство элементарных событий $\Omega = \{o, po, ppo, pppo, ppppo, ppppo, \dots\}$ счётное множество.
- 4. Эксперимент: на стол $\Omega = I^2 = I \times I$ садится мыльный пузырь и лопается, оставляя под собой точку (x,y). Элементарное событие: появление на плоскости точки(x,y). Пространство элементарных событий Ω несчётное множество.

Определение 2.3. Если пространство Ω содержит только одно элементарное событие, то эксперимент называется с детерминированным (определённым) исходом; в противном случае эксперимент называется со случайным исходом.

Определение 2.4. Любое подмножество $A \subset \Omega$ пространства элементарных событий называется случайным событием или просто событием. Считается, что событие A произошло, если произошло любое элементарное событие Ω , содержащееся в A, см. рис. 1.

Определение 2.5. 1) Событие Ω называется *достоверным*.

2) Событие $\varnothing \subset \Omega$ называется невозможным.

Каждое элементарное событие $\omega \in \Omega$ можно рассматривать как одноэлементное подмножество достоверного события Ω , т.е. $\{\omega\} \subset \Omega$. Для изображения событий можно использовать диаграммы Венна⁴.

Пусть A и B – события, они показаны на рис. 1.

Рис. 1: События в достоверном событии Ω .

Определение 2.6. 1) Событие $A \cup B$ называется *объединением* событий и состоит в том, что произошло хотя бы одно из событий A или B.

- 2) Событие $A \cap B$ называется nepeceчenuem событий A и B и состоит в том, что произошли оба события A и B.
- 3) Событие $A \setminus B$ называется *разностью* событий A и B и состоит в том, что событие A произошло, а B нет.

 $^{^4}$ Джон Венн (John Venn, 1834 - 1923), английский логик.

- 4) Событие $\overline{A} = \Omega \backslash A$ называется противоположным событию A и состоит в том, что событие A не произошло. Ясно, что A = A (событие, противоположное к противоположному, является исходным событием). Т.к. $\overline{\varnothing} = \Omega \backslash \varnothing$ и $\overline{\Omega} = \Omega \backslash \Omega = \varnothing$, то невозможное событие \varnothing и достоверное событие Ω являются взаимно противоположными (друг другу).
- 5) Говорят, что событие A влечёт событие B, и пишут $A \subset B$, если при наступлении события A происходит и событие B.

Определение 2.7. 1) События A и B называются hecosmecmhыmu, если $A \cup B$ является невозможным событием, т.е. $A \cup B = \emptyset$.

2) События A_1, \cdots, A_n называются *попарно несовместными*, если для любых $1 \le i < j \le n$ события A_i и A_j несовместны.

Определение 2.8. Рассмотрим множество \mathfrak{A} , элементами которого являются события пространства Ω (не обязательно все!). Множество A называется алгеброй событий, если достоверное событие Ω и любые события $A, B \in A$ удовлетворяют аксиомам:

AKC. A1. $\Omega \in \mathfrak{A}$.

AKC. A2. $A \cup B \in \mathfrak{A}$.

AKC. A3. $A \cap B \in \mathfrak{A}$.

AKC. A4. $A \setminus B \in \mathfrak{A}$.

Из аксиомы $\mathbb{A}1$ следует, что алгебра событий не может быть пустой; она всегда содержит достоверное событие Ω . А т.к. $\Omega \setminus \Omega = \emptyset$, то из аксиомы $\mathbb{A}4$ следует, что $\emptyset \in \mathfrak{A}$, т.е. любая алгебра событий \mathfrak{A} содержит вместе с достоверным и невозможное событие.

Примеры

- 1) Для любого пространства элементарных событий Ω набор из двух множеств $\mathfrak{A}_0 = \{\varnothing, \Omega\}$ удовлетворяет аксиомам $\mathbb{A}1$ – $\mathbb{A}4$, поэтому $\mathfrak{A}_0 = \{\varnothing, \Omega\}$ является алгеброй событий. Алгебра событий $\mathbb{A}0$ называется тривиальной. Это самая маленькая алгебра событий.
- 2) В этом примере эксперимент подбрасывание игральной кости. Пространство элементарных событий есть $\Omega = \{1, 2, 3, 4, 5, 6\}$. Пусть событие

 $A = \{1, 3, 5\}$ — выпадение нечётного числа очков, а событие $B = \{2, 4, 6\}$ — выпадение чётного числа очков. Множество событий $\mathfrak{A}_1 = \{\varnothing, \Omega, A, B\}$ удовлетворяет аксиомам $\mathbb{A}1$ — $\mathbb{A}4$, поэтому является алгеброй событий.

- 3) Для любого пространства элементарных событий Ω множество $\mathfrak{B}(\Omega)$ = множество всех подмножеств Ω удовлетворяет аксиомам $\mathbb{A}1$ - $\mathbb{A}4$, поэтому является алгеброй событий. Эта алгебра событий является самой большой на Ω . Для $\Omega = \{1, 2, 3, 4, 5, 6\}$ эта алгебра событий содержит 64 события.
- 4) Задайте ещё какую-нибудь алгебру событий на $\Omega = \{1, 2, 3, 4, 5, 6\}$. Сколько различных алгебр событий можно задать на этом пространстве элементарных событий?

Замечание 2.9. Из аксиом $\mathbb{A}1$ – $\mathbb{A}4$ следует, что если к конечному набору событий из любой алгебры событий применить операции объединения, пересечения и вычитания конечное число раз, то полученное событие тоже содержится в этой алгебре.

Замечание 2.10. Если пространство элементарных событий конечно, $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, то любая его алгебра событий тоже конечна. Это следует из того, что множество $\mathfrak{B}(\Omega)$ всех возможных событий, содержащихся в Ω , тоже конечно и содержит 2^n событий.

Определение 2.11. Алгебра событий $\mathfrak A$ называется σ -алгеброй, если для любого счётного набора событий $A_1,A_2,\dots\in\mathfrak A$ выполнена пятая аксиома:

AKC. A5.
$$\bigcup_{n=1}^{\infty} A_n \in \mathfrak{A}.$$

Замечание 2.12. Из аксиом $\mathbb{A}1$ – $\mathbb{A}4$ не следует, что объединение несчётного количества событий является событием из σ -алгебры. Рассмотрение несчётных объединений событий приводит к построению т.н. неизмеримых событий, вероятность наступления которых не существует. Первый пример такого неизмеримого события построил Витали⁵. При построении неизмеримого множества Витали используется аксиома теории множеств – аксиома выбора.

 $^{^5}$ Джузеппе Витали (Giuseppe Vitali, 26.08.1875 — 29.02.1932, Italy) — итальянский математик.

Аксиома выбора. Для любого произвольного набора непустых непересекающихся множеств можно составить множество, выбрав в него по одному элементу из каждого множества этого набора.

Теорема 2.13 (Теорема Витали – построение неизмеримого множества). *Существуют множества*, длина которых не может быть выражена никаким числом.

Доказательство. Для доказательства нам понадобятся лишь следующие очевидные свойства длины:

- длина дуги остается неизменной при повороте окружности вокруг центра;
- длина дуги, которая представляет собой объединение счетного количества попарно непересекающихся дуг, равна сумме длин этих дуг.

Рассмотрим стандартную (единичного радиуса) окружность S^1 . Она эквивалентна отрезку $[0,2\pi)$, т.е. её длина равна 2π . На этой окружности центральный угол в радианах равен длине дуги на которую он опирается.

Для любого рационального числа $\frac{p}{q}$, где $q\neq 0,$ рассмотрим дугу длины $\frac{2\pi p}{q}.$

Если отложить её на окружности S^1 последовательно q раз, то полученная дуга замкнётся, т.е. начало 1-ой дуги совпадёт с концом q-ой.