An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems

Simone Silvetti, Alberto Policriti, Luca Bortolussi

silvetti.simone@spes.uniud.it
silvetti@esteco.com

13th International Conference on integrated Formal Methods

Outline

- Overview
 - Model Based Development
 - Signal Temporal Logic
 - Search-Based Testing
- Domain Estimation Problem
 - Algorithm Idea
- Test Case & Results
- Challenges & Further studies

Overview

Model Based Development

Methodology based on a computational model of a real target system

- used at the early stage of the design phase
- used at the end to verify the compliance of the real system

Motivations

- reducing the time of prototyping
- reducing the cost of development

Models

Software: Block Diagram Systems I abView 3 (0.3) + 0.0 Simulink

Computational Models

- Hybrid Systems
- CPS
- Automata
- Statistical Models

Problem

Too Much Complexity \Rightarrow no standard Model checking techniques.

Solution

Black Box Assumption and Search-based approach.

Simulink Model

Simulink Model - Inputs

Simulink Model - Outputs

Simulink Model - Continuous Dynamics

Simulink Model - Finite State Machine

Black Box Assumption

Inputs & Outputs

The Inputs are Piece Wise Constant (PWC) Functions, the Outputs are PWC functions (Gear) or Continuous Functions.

Black Box Assumption

Black Box Assumption

- less information
- an more general approach (interesting by an industrial point of view)

The requirements: Signal Temporal Logic (STL)

Signal temporal logic is:

- a linear continuous time temporal logic.
- the atomic predicates are of the form $\mu(\vec{X}) := [g(\vec{X}) \geq 0]$ where $g : \mathbb{R}^n \to \mathbb{R}$ is a continuous function.
- the syntax is

$$\phi := \bot \mid \top \mid \mu \mid \neg \phi \mid \phi \lor \phi \mid \phi \mathbf{U}_{[T_1, T_2]} \phi, \tag{1}$$

Example

$$\phi_1 := F_{[0,50]}|X_1 - X_2| > 10$$

- The Booleans semantics: if a given path satisfies or not a given STL formula.
- The Quantitative semantics: How much a given path satisfies or not a given STL formula.

Search-Based Testing

Falsification

- Goal: Find the input functions (1) which violate the requirements (4)
- Problems
 - Falsify with a low number of simulations ⇒ Active Learning
 - Functional Input Space(!!) ⇒ Adaptive Space Parameterization

Fixed Parameterization

n adaptive control points \Rightarrow n variable to optimize

Fixed Parameterization

n fixed control points \Rightarrow n variable to optimize

Adaptive Parameterization

n adaptive control points ⇒ 2n variable to optimize

Domain Estimation Problem

Domain Estimation Problem

Consider a function $\rho:\Theta\to\mathbb{R}$ and an interval $I\subseteq\mathbb{R}$. We define the *domain estimation problem* as the task of identifying the set:

$$\mathcal{B} = \{ \theta \in \Theta | f(\theta) \in I \} \subseteq \Theta \tag{2}$$

In practice, if $\mathcal{B} \neq \emptyset$, we will limit us to identify a subset $\mathcal{B} \subseteq \mathcal{B}$ of size n.

Falsification ~ Domain estimation problems

$$\mathcal{B} = \{\theta \in \Theta | \rho(\theta) \in (-\infty, 0)\} \subseteq \Theta$$

Gaussian Processes

Gaussian Processes

Definition

A random variable $f(\theta), \theta \in \Theta$ is a GP

$$f \sim \mathcal{GP}(m, k) \iff (f(\theta_1), f(\theta_2), \dots, f(\theta_n)) \sim \mathcal{N}(\mathbf{m}, K)$$

where $\mathbf{m} = (m(\theta_1; h_1), m(\theta_2; h_1), \dots, m(\theta_n; h_1))$ and $K_{ij} = k(f(\theta_i), f(\theta_j); h_2)$

Prediction

$$\{f(\theta_1), \dots, f(\theta_n), f(\theta')\} \sim \mathcal{N}(\mathbf{m}', K')$$

$$\mathbb{E}(f(\theta')) = (k(\theta', \theta_1), \dots, k(\theta', \theta_N))K_N^{-1}r$$

$$var(f(\theta')) = k(\theta', \theta') - K(\theta, r)K_N^{-1}K(\theta, r)^T$$

Domain Estimation Problem

Domain Estimation Problem

- Train Set: $K(\rho) = \{(\theta_i, \rho(\theta_i))\}_{i \le n}$ (the partial knowledge)
- Gaussian Process: $\rho_K(\theta) \sim GP(m_K(\theta), \sigma_K(\theta))$ (the partial model)

$$P(
ho_K(heta) < 0) = CDF\left(rac{0 - m_K(heta)}{\sigma_K(heta)}
ight)$$

Simple Idea

Iteratively explore the area which is more probable to falsify the system by sampling from $P(\rho_K(\theta) < 0)$.

Algorithm - I

Algorithm - II

Aglorithm - III

Algorithm - IV

Algorithm - V

Algorithm - VI

Algorithm - VII

Algorithm - VIII

Algorithm - IX

Algorithm - X

Algorithm - XI

Probabilistic Approximation Semantics

Definition (\mathcal{L}_0 and \mathcal{L})

 \mathcal{L}_0 : [\subset STL]: atomic propositions + ϕ_1 **U** $_T\phi_2$, $\mathbf{F}_T\phi$, $\mathbf{G}_T\phi$, that cannot be equivalently written as Boolean combinations of simpler formulas;

$$\mathbf{F}_T(\phi_1 \vee \phi_2) \equiv \mathbf{F}_T \phi_1 \vee \mathbf{F}_T \phi_2 \not\in \mathcal{L}_0$$

 \mathcal{L} : the boolean connective closure of \mathcal{L}_0 .

Definition (Probabilistic Approximation Semantics of \mathcal{L})

The probabilistic approximation function $\gamma: \mathcal{L} \times \textit{Path}^{\mathcal{M}} \times [0, \infty) \to [0, 1]$ is defined by:

- $\gamma(\phi, \theta, t) = P(f_{K(\phi)}(\theta) > 0)$
- $\gamma(\neg \psi, \theta, t) = 1 \gamma(\psi, \theta, t)$
- $\gamma(\psi_1 \wedge \psi_2, \theta, t) = \gamma(\psi_1, \theta, t) * \gamma(\psi_2, \theta, t)$

Test Case & Results

Automotive Requirements

- $\phi_1(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(v \leq \bar{v} \wedge \omega \leq \bar{\omega})$ (in the next 30 seconds the engine and vehicle speed never reach $\bar{\omega}$ rpm and \bar{v} km/h, respectively)
- $\phi_2(\bar{v}, \bar{\omega}) = \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega}) \rightarrow \mathbf{G}_{[0,10]}(v \leq \bar{v})$ (if the engine speed is always less than $\bar{\omega}$ rpm, then the vehicle speed can not exceed \bar{v} km/h in less than 10 sec)
- $\phi_3(\bar{v},\bar{\omega}) = \mathbf{F}_{[0,10]}(v \geq \bar{v}) \to \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega})$ (the vehicle speed is above \bar{v} km/h than from that point on the engine speed is always less than $\bar{\omega}$ rpm)

	Adaptive DEA		Adaptive GP-UCB		S-TaLiRo		
Req	nval	times	nval	times	nval	times	Alg
φ ₁ φ ₁ φ ₂ φ ₂ φ ₂ φ ₃ φ ₃	$\begin{array}{c} 4.42\pm0.53\\ 6.90\pm2.22\\ 3.24\pm1.98\\ 10.14\pm2.95\\ 8.52\pm2.90\\ 5.02\pm0.97\\ 7.70\pm2.36 \end{array}$	2.16 ± 0.61 5.78 ± 3.88 1.57 ± 1.91 12.39 ± 6.96 9.13 ± 5.90 2.91 ± 1.20 7.07 ± 3.87	$\begin{array}{c} \textbf{4.16} \pm \textbf{2.40} \\ 8.7 \pm 1.78 \\ 7.94 \pm 3.90 \\ 23.9 \pm 7.39 \\ 13.6 \pm 3.48 \\ 5.44 \pm 3.14 \\ 10.52 \pm 1.76 \end{array}$	0.55 ± 0.30 1.52 ± 0.40 1.55 ± 1.23 9.86 ± 4.54 4.12 ± 1.67 0.91 ± 0.67 2.43 ± 0.92	5.16 ± 4.32 39.64 ± 44.49 12.78 ± 11.27 59 ± 42 43.1 ± 39.23 10.04 ± 7.30 $11 + 9.10$	0.57 ± 0.48 4.46 ± 4.99 1.46 ± 1.28 6.83 ± 4.93 4.89 ± 4.43 1.15 ± 0.84 1.25 ± 1.03	UR SA CE SA SA CE UR

Conditional Safety Property

Falsification of Conditional Safety Property

$$G_T(\phi_{cond} \rightarrow \phi_{safe})$$

Goal: exploring cases in which the formula is falsified but the antecedent condition holds **Domain Estimation Approach:**

- sampling to achieve ϕ_{cond}
- ullet sampling to falsify $\phi_{\it safe}$

Adding one sampling routine in the Domain Estimation Algorithm.

A formula which cannot be falsified!

$$G_{[0.30]}(\omega \le 3000 \rightarrow v \le 100)$$

- GP-UCB: 43% of input satisfying $\omega <$ 3000
- DEA: 87% of input satisfying $\omega \leq$ 3000

Challenges & Further studies

Results

Our Approach

- permits to reduce the minimum number of evaluations needed to falsify a model (respect to the state-of-art S-TaLiro Toolbox ¹)
- can be easily customize to solve Conditional Safety Property

Further Studies

- Analyzing the sparse approximation techniques which reduces the computational cost of the Gaussian Processes
- Improving the sampling approach of Domain Estimation Algorithm (MCMC, etc..)

34 / 35

¹Annpureddy, Yashwanth, et al. "S-taliro: A tool for temporal logic falsification for hybrid systems".International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2011.

Thank You