| Please check the examination deta                | ils below | before ente | ering your candidate information |
|--------------------------------------------------|-----------|-------------|----------------------------------|
| Candidate surname                                |           |             | Other names                      |
| Pearson Edexcel International Advanced Level     | Centre    | Number      | Candidate Number                 |
| <b>Wednesday 7</b>                               | No        | oven        | nber 2018                        |
| Morning (Time: 2 hours 30 minute                 | es)       | Paper Re    | eference WMA02/01                |
| Core Mathemat                                    | ics       | C34         |                                  |
| You must have:<br>Mathematical Formulae and Stat | istical 7 | Tables (Blu | ue) Total Marks                  |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

## Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
   there may be more space than you need.
- You should show sufficient working to make your methods clear.
   Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

## **Information**

- The total mark for this paper is 125.
- The marks for each question are shown in brackets
   use this as a guide as to how much time to spend on each question.

## **Advice**

- Read each guestion carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶



P53789A
©2018 Pearson Education Ltd.
1/1/1/1/1/



- (a) Write  $\cos \theta + 4 \sin \theta$  in the form  $R \cos (\theta \alpha)$ , where R and  $\alpha$  are constants, R > 0 and  $0 < \alpha < \frac{\pi}{2}$ . Give the exact value of R and give the value of  $\alpha$  in radians to 3 decimal places.
  - (3)

(b) Hence solve, for  $0 \le \theta < \pi$ , the equation

$$\cos 2\theta + 4\sin 2\theta = 1.2$$

giving your answers to 2 decimal places.

**(5)** 

| Question 1 continued | Leave<br>blank |
|----------------------|----------------|
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      | Q1             |
| (Total 8 marks)      |                |
| (Total & Illal Ks)   |                |



## 2. A curve C has equation

$$x^3 - 4xy + 2x + 3y^2 - 3 = 0$$

| Find an | equation  | of the | normal 1 | to $C$ at      | the   | point | (-3, | 2), | giving | your | answer | in | the | form |
|---------|-----------|--------|----------|----------------|-------|-------|------|-----|--------|------|--------|----|-----|------|
| ax + by | c + c = 0 | where  | a, b and | <i>c</i> are i | integ | gers. |      |     |        |      |        |    |     |      |

(7)

| Question 2 continued | blank |
|----------------------|-------|
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      | Q2    |
|                      |       |
| (Total 7 marks)      |       |



| Given |
|-------|
|       |

 $\cos \theta^{\circ} = p$ , where p is a constant and  $\theta^{\circ}$  is acute

use standard trigonometric identities to find, in terms of p,

(a)  $\sec \theta^{\circ}$ 

**(1)** 

Leave blank

(b)  $\sin(\theta - 90)^{\circ}$ 

**(2)** 

(c)  $\sin 2\theta^{\circ}$ 

**(3)** 

Write each answer in its simplest form.

6



| estion 3 continued |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |



DO NOT WRITE IN THIS AREA



Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = 8x - xe^{3x}$ ,  $x \ge 0$ 

The curve meets the x-axis at the origin and cuts the x-axis at the point A.

(a) Find the exact x coordinate of A, giving your answer in its simplest form.

**(2)** 

The curve has a maximum turning point at the point M.

(b) Show, by using calculus, that the x coordinate of M is a solution of

$$x = \frac{1}{3} \ln \left( \frac{8}{1+3x} \right) \tag{5}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{3} \ln \left( \frac{8}{1 + 3x_n} \right)$$

with  $x_0 = 0.4$  to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 3 decimal places.

(3)

|                      | Le |
|----------------------|----|
| Question 4 continued | bl |
| Question 4 continued |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |
|                      |    |



| Question 4 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

|                      | Leave<br>blank |
|----------------------|----------------|
| Question 4 continued |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      | Q4             |
| (Total 10 marks)     |                |



5.

$$f(x) = \frac{4x^2 + 5x + 3}{(x+2)(1-x)^2} \equiv \frac{A}{(x+2)} + \frac{B}{(1-x)} + \frac{C}{(1-x)^2}$$

(a) Find the values of the constants A, B and C.

**(4)** 

- (b) (i) Hence find  $\int f(x) dx$ .
  - (ii) Find the exact value of  $\int_0^{\frac{1}{2}} f(x) dx$ , writing your answer in the form  $p + \ln q$ , where p and q are constants.

| - 4 |  |
|-----|--|
| -   |  |
|     |  |

| uestion 5 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



| Question 5 continued |   |
|----------------------|---|
|                      | _ |
|                      | _ |
|                      | _ |
|                      |   |
|                      |   |
|                      |   |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      |   |
|                      |   |
|                      | _ |
|                      |   |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      |   |
|                      |   |
|                      |   |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |
|                      | _ |

| Question 5 continued | ы                | eave<br>lank |
|----------------------|------------------|--------------|
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  |              |
|                      |                  | 0.5          |
|                      |                  | Q5           |
|                      | (Total 10 marks) |              |



**6.** (a) Use binomial expansions to show that, for  $|x| < \frac{1}{2}$ 

$$\sqrt{\frac{1+2x}{1-x}} \approx 1 + \frac{3}{2}x + \frac{3}{8}x^2 \tag{6}$$

(b) Find the exact value of  $\sqrt{\frac{1+2x}{1-x}}$  when  $x = \frac{1}{10}$ 

Give your answer in the form  $k\sqrt{3}$ , where k is a constant to be determined.

**(1)** 

(c) Substitute  $x = \frac{1}{10}$  into the expansion given in part (a) and hence find an approximate value for  $\sqrt{3}$ 

Give your answer in the form  $\frac{a}{b}$  where a and b are integers. (2)

|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 6 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

|                      | Leave<br>blank |
|----------------------|----------------|
| Question 6 continued |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      | 06             |
|                      | <b>Q6</b>      |
| (Total 9 marks)      |                |



7. A curve has equation

$$y = \ln(1 - \cos 2x), \quad x \in \mathbb{R}, 0 < x < \pi$$

Show that

(a) 
$$\frac{dy}{dx} = k \cot x$$
, where k is a constant to be found. (4)

Hence find the exact coordinates of the point on the curve where

(b) 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sqrt{3}$$

**(4)** 

| astion 7 continued |  |
|--------------------|--|
| estion 7 continued |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |



| Question 7 continued |  |  |
|----------------------|--|--|
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |

| Question 7 continued |                 | blank |
|----------------------|-----------------|-------|
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 | 07    |
|                      |                 | Q7    |
|                      | (Total 8 marks) |       |



**8.** (i) Find  $\int x \sin x \, dx$ 

(3)

(ii) (a) Use the substitution  $x = \sec \theta$  to show that

$$\int_{1}^{2} \sqrt{1 - \frac{1}{x^{2}}} \, dx = \int_{0}^{\frac{\pi}{3}} \tan^{2}\theta \, d\theta$$
(3)

(b) Hence find the exact value of

$$\int_1^2 \sqrt{1 - \frac{1}{x^2}} \, \mathrm{d}x$$

(4)

|                      |   | Le<br>bl |
|----------------------|---|----------|
| Question 8 continued |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      | _ |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |
|                      |   |          |



| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

| Question 8 continued |               | blank |
|----------------------|---------------|-------|
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               |       |
|                      |               | Q8    |
| (Tot                 | tal 10 marks) |       |



9. A rare species of mammal is being studied. The population *P*, *t* years after the study started, is modelled by the formula

$$P = \frac{900e^{\frac{1}{4}t}}{3e^{\frac{1}{4}t} - 1}, \quad t \in \mathbb{R}, \quad t \geqslant 0$$

Using the model,

(a) calculate the number of mammals at the start of the study,

**(1)** 

(b) calculate the exact value of t when P = 315

Give your answer in the form  $a \ln k$ , where a and k are integers to be determined.

**(4)** 

(c) (i) Find  $\frac{dP}{dt}$ 

(ii) Hence find the value of  $\frac{dP}{dt}$  when t = 8, giving your answer to 2 decimal places.



| uestion 9 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 9 continued | blank     |
|----------------------|-----------|
|                      | _         |
|                      | _         |
|                      | _         |
|                      |           |
|                      |           |
|                      | -         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      |           |
|                      |           |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      |           |
|                      |           |
|                      |           |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      | _         |
|                      |           |
|                      |           |
|                      | _         |
|                      | -         |
|                      | -         |
|                      | -         |
|                      | <b>Q9</b> |
| (Total 9 marks       | )         |





Figure 2

Figure 2 shows a sketch of part of the graph with equation y = g(x), where

$$g(x) = \frac{3x - 4}{x - 3}, \quad x \in \mathbb{R}, \quad x < 3$$

The graph cuts the x-axis at the point A and the y-axis at the point B, as shown in Figure 2.

(a) State the range of g.

**(1)** 

- (b) State the coordinates of
  - (i) point A
  - (ii) point B

**(2)** 

(c) Find gg(x) in its simplest form.

**(3)** 

(d) Sketch the graph with equation y = |g(x)|

On your sketch, show the coordinates of each point at which the graph meets or cuts the axes and state the equation of each asymptote.

(3)

(e) Find the exact solution of the equation |g(x)| = 8

**(3)** 



|                       |   | Leave |
|-----------------------|---|-------|
|                       |   | blank |
| Question 10 continued |   |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       | . |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       | . |       |
|                       |   |       |
|                       | . |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |



| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 10 continued |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       | Q10            |
| (Total 12 marks)      |                |



11. Relative to a fixed origin O, the line  $l_1$  is given by the equation

$$l_1: \quad \mathbf{r} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\4\\3 \end{pmatrix}$$

where  $\lambda$  is a scalar parameter.

The line  $l_2$  passes through the origin and is parallel to  $l_1$ 

(a) Find a vector equation for  $l_2$ 

**(2)** 

The point A and the point B both lie on  $l_1$  with parameters  $\lambda = 0$  and  $\lambda = 3$  respectively.

Write down

- (b) (i) the coordinates of A,
  - (ii) the coordinates of B.

**(2)** 

(c) Find the size of the acute angle between OA and  $l_1$ 

Give your answer in degrees to one decimal place.

**(3)** 

The point D lies on  $l_2$  such that OABD is a parallelogram.

(d) Find the area of OABD, giving your answer to the nearest whole number.

(3)



|                      | L |
|----------------------|---|
| uestion 11 continued | ŀ |
| testion 11 continued |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      | 1 |



Leave blank

| Question 11 continue | :d |  |  |
|----------------------|----|--|--|
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |
|                      |    |  |  |

|                       | Leave |
|-----------------------|-------|
|                       | blank |
| Question 11 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       | 011   |
|                       | Q11   |
| /TT ( 140 1 )         |       |
| (Total 10 marks)      |       |



DO NOT WRITE IN THIS AREA



Figure 3

Figure 3 shows a sketch of part of the curve C with parametric equations

$$x = 7t^2 - 5,$$
  $y = t(9 - t^2),$   $t \in \mathbb{R}$ 

(a) Find an equation of the tangent to C at the point where t = 1

Write your answer in the form ax + by + c = 0, where a, b and c are integers.

**(5)** 

The curve C cuts the x-axis at the points A and B, as shown in Figure 3

- (b) (i) Find the x coordinate of the point A.
  - (ii) Find the x coordinate of the point B.

**(3)** 

The region R, shown shaded in Figure 3, is enclosed by the loop of the curve C.

(c) Use integration to find the area of R.

**(5)** 

|                      | I |
|----------------------|---|
| uestion 12 continued | ' |
| uosion 12 commucu    |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |



Leave blank

| Question 12 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 12 continued |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       | 0.12           |
|                       | Q12            |
| (Total 13 marks)      |                |



13. The volume of a spherical balloon of radius rm is Vm<sup>3</sup>, where  $V = \frac{4}{3}\pi r^3$ 

(a) Find 
$$\frac{dV}{dr}$$
 (1)

Given that the volume of the balloon increases with time t seconds according to the formula

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{20}{V(0.05t+1)^3}, \qquad t \geqslant 0$$

(b) find an expression in terms of r and t for  $\frac{dr}{dt}$  (3)

Given that V = 1 when t = 0

(c) solve the differential equation

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{20}{V(0.05t+1)^3}$$

giving your answer in the form  $V^2 = f(t)$ .

**(6)** 

(d) Hence find the radius of the balloon at time t = 20, giving your answer to 3 significant figures.

**(3)** 

|                       | L |
|-----------------------|---|
| Duration 12 continued | b |
| Question 13 continued |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       | — |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       | _ |
|                       |   |
|                       | 1 |



Leave blank

| Question 13 continued |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |

|                       | L |
|-----------------------|---|
| Duration 12 continued | b |
| Question 13 continued |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       | — |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       | _ |
|                       |   |
|                       | 1 |



| Question 13 continued      | biank |
|----------------------------|-------|
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            | Q13   |
| (Total 13 marks)           |       |
| TOTAL FOR PAPER: 125 MARKS |       |
| END                        |       |