# **finblat** ind Historical Spacecraft Dept. Present

# "SOYUZ-U" LAUNCH VEHICLE AND "SOYUZ" MANNED SPACECRAFTS (USSR)



Assembly and flight manual

#### DISCLAIMER

THIS SOFTWARE IS PROVIDED BY THE AUTHOR 'AS IS' INCLUDING ALL FAULTS AND ANY EXPRESS OR IMPLLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY LOSS(S), DAMAGE(S), OR COST(S) IN ANY CIRCUMSTANCE AS A RESULT OF ITS USE. IF YOU DO NOT AGREE TO THESE TERMS THEN YOU MAY NOT USE THIS SOFTWARE. USING THIS SOFTWARE OR ANY PART OF THIS PACKAGE WILL CONSTITUTE COMPLIANCE WITH THESE TERMS OF USAGE.

#### HISTORICAL BACKGROUND

#### SOYUZ SPACECRAFT

The manned Soyuz (rus. – Союз, eng. -"union") spacecraft was originally conceived by Sergei Korolev in 1961 as a component of the "Soyuz complex" that also included unmanned booster modules and orbiting fuel tankers and was geared toward a manned mission to the Moon. When this plan was abandoned, only the crewed vessel remained: its new primary task that of a space station ferry.

Soyuz first carried a cosmonaut in April 1967. Since then the original Soyuz ("union") craft and its subsequent generations – the Soyuz T, TM, and TMA – have flown scores of manned missions. Although modifications have made the spacecraft more efficient and reliable, the basic structure remains the same. The Soyuz spacecraft is composed of three modules: Orbital Module, Descent Module, and Instrument-Service Module. The three modules remain connected throughout the mission until after the deorbit maneuver. During ascent and orbital flight, a form-fitted thermal insulation blanket covers all three modules except for the radiator, solar arrays, and antennas.

The Soyuz spacecraft transports crews to and from the space station Salyut, Mir and ISS.

Depending upon the orbital mission, the crew of the Soyuz can consist of two or three people:

- vehicle commander in the center seat
- flight engineer in the left seat
- cosmonaut-researcher in the right seat (on three-person crews)

The vehicle commander is responsible for leadership of crew activities and overall mission success. The flight engineer is responsible for operation of spacecraft systems and implementation of flight procedures. The cosmonaut-researcher executes instructions from the commander for spacecraft systems operations, communicates with ground control, and conducts photography, videotaping and television broadcast sessions.

#### SOYUZ-U

Soyuz-U is orbital launch vehicle. The Soyuz-U is of the R-7 rocket family, originally developed from the R-7 ballistic missile, which first flew in 1957. The Soyuz rockets launch both the Progress cargo ships and manned Soyuz spacecraft. The Soyuz LV was put into operation in 1966 (Soyuz-U LV – in 1973). Since its capabilities ensure modern spacecraft insertion into orbit the LV is widely used at present. In terms of the number of launches and reliability, it is an indisputable world leader among medium-class launch vehicles.

# INTRODUCTION

The package contents parts for assembling a launch rocket "Soyuz" and manned "Soyuz"+ "Soyuz-TMA."

| Папки | Название в VAB                        | Имя файла                         |
|-------|---------------------------------------|-----------------------------------|
| Parts | Soyuz Payload Base                    | Soyuz_cargoholder_decoupler       |
|       | Адаптер                               |                                   |
|       | Soyuz Decoupler                       | Soyuz_Decoupler                   |
|       | Soyuz TMA Decoupler                   | SoyuzTMA_Decoupler                |
|       | Разделитель СА и ПАО                  |                                   |
|       | Soyuz Docking Mechanism               | Soyuz_Docking_Mechanism           |
|       | Soyuz TMA Docking Mechanism           | SoyuzTMA_Docking_Mechanism        |
|       | Стыковочный узел                      |                                   |
|       | Soyuz Heat Shield                     | Soyuz_Heatshield                  |
|       | Экран теплозащиты                     |                                   |
|       | Soyuz Instrument-Service Module (ISM) | Soyuz_Instrument_Servis_module    |
|       | Soyuz TMA Instrument-Service Module   | SoyuzTMA_Instrument_Servis_module |
|       | Приборно-агрегатный отсек (ПАО)       |                                   |
|       | Soyuz Orbital Module (OM)             | Soyuz_Orbital_module              |
|       | Soyuz TMA Orbital Module (OM)         | SoyuzTMA_Orbital_module           |
|       | Бытовой отсек (БО)                    |                                   |
|       | Soyuz Main Parachute                  | Soyuz_Para                        |
|       | Soyuz TMA Orbital Module (OM)         | SoyuzTMA_Para                     |
|       | Основной парашют                      |                                   |
|       | Soyuz Payload Shroud                  | Soyuz_payload                     |
|       | Створки головного обтекателя          |                                   |
|       | Soyuz Payload Shroud top              | Soyuz_payload_top                 |
|       | Верх створок головного обтекателя     |                                   |
|       | Soyuz Descent Module (DM)             | Soyuz_Descent_module              |
|       | Soyuz TMA Descent Module (DM)         | Soyuz_Descent_module              |
|       | Спускаемый аппарат                    |                                   |
|       | Soyuz RCS Thruster Block              | Soyuz_RCS                         |
|       | Блок двигателей маневрирования и      |                                   |
|       | ориентации                            |                                   |
|       | Soyuz Solar Panel                     | Soyuz_SolarPanel                  |
|       | Солнечная панель                      |                                   |
|       | Soyuz-U Second Stage                  | Soyuz_U_Second_stage              |
|       | Вторая ступень                        |                                   |
|       | Soyuz-U Third Stage                   | Soyuz_U_Third_stage               |
|       | Третья ступень                        |                                   |
|       | Soyuz-U Third Stage Decoupler         | Soyuz_U_Thirdstage_decoupler      |
|       | Разделитель третьей ступени           | 6 11 150                          |
|       | Soyuz-U LES                           | Soyuz_U_LES                       |
|       | Система аварийного спасения           |                                   |
|       | Soyuz-U First Stage Lateral Boosters  | Soyuz_U_firststagelateral_booster |
|       | Боковые блоки первой ступени          |                                   |

# **Bablat ind** --- Historical spacecraft dept.

| Internals | Soyuz Orbital Module     | SoyuzOrbital    |
|-----------|--------------------------|-----------------|
|           | Soyuz Descent Module     | SoyuzPod        |
|           | Soyuz TMA Orbital Module | SoyuzTMAOrbital |

For proper operation of the docking camera requires a plugin Lazor System.

For proper operation of ASAS requires a plugin Toggle-capable ASAS.

Make sure that these plugins are located in the Plugins folder.

#### SPECIFICATION

| ITEM                    | SPECIFICATION    |        |
|-------------------------|------------------|--------|
| Soyuz-U First Stage     | Liquid Fuel      | 1000   |
| Lateral Boosters (each) | Oxidizer         | 1223   |
|                         | Engine Max Power | 400    |
|                         | Isp at Sea Level | 280    |
|                         | Isp in Vacuum    | 330    |
|                         | Vectoring Range  | 0.50   |
|                         | Total Mass       | 15.11  |
|                         | Dry Mass         | 4      |
| Soyuz-U Second Stage    | Liquid Fuel      | 4000   |
|                         | Oxidizer         | 4889   |
|                         | Engine Max Power | 800    |
|                         | Isp at Sea Level | 280    |
|                         | Isp in Vacuum    | 330    |
|                         | Vectoring Range  | 0.50   |
|                         | Total Mass       | 50.445 |
|                         | Dry Mass         | 6      |
| Soyuz-U Third Stage     | Liquid Fuel      | 700    |
|                         | Oxidizer         | 856    |
|                         | Engine Max Power | 280    |
|                         | Isp at Sea Level | 280    |
|                         | Isp in Vacuum    | 330    |
|                         | Total Mass       | 10.78  |
|                         | Dry Mass         | 3      |
| Soyuz Instrumental      | Liquid Fuel      | 135    |
| Module                  | Oxidizer         | 165    |
|                         | Engine Max Power | 30     |
|                         | Isp at Sea Level | 320    |
|                         | Isp in Vacuum    | 370    |
|                         | Monopropellant   | 350    |
|                         | Electric Charge  | 1000   |
|                         | Vectoring Range  | 1.00   |
|                         | Total Mass       | 4.9    |
|                         |                  | 2      |

All parameters can be changed in the configuration files.

Soyuz-U launch vehicle is designed and configured to raise the spacecraft Soyuz to a height of 70 kilometers. 70 kilometers per the KSP is a minimum stable orbit, which is 200 kilometers in real life.

#### INSTALLATION

To install you should unpack the zip file to the directory in which the executable file (ksp.exe) is located.

If the installation is successful, you will find parts in VAB in these sections: **PODS** 



Make sure that the Plugins folder contains the following files:

- AdvSASModuleToggle.dll
- Romfarer.dll

#### **ASSEMBLY**

#### SOYUZ MANNED SPACECRAFT



Assembly of "Soyuz TMA "is similarly.

#### SOYUZ-U LAUNCH VEHICLE



# SPECIAL ASPECTS FOR ASSEMBLY

#### SOYUZ-U FIRST STAGE LATERAL BOOSTERS

Turn on 4-Symmetry Mode and place four stock radial decouplers (such as Hydraulic Detachment Manifold). Then place four First Stage Lateral Boosters.





**Place Sepratrons** 



#### SOYUZ-U LES

Place on top, LES connect to the Docking Mechanism



#### Go to "Action Groups" and set actions

| [Custom 0] | For Soyuz-U Payload Shroud (all)<br>Decouple                                                   |
|------------|------------------------------------------------------------------------------------------------|
| [Custom 9] | For Soyuz Payload Base – <b>Decouple</b> For LES <b>Activate Engine</b>                        |
| [Custom 8] | For Soyuz Orbital Module – <b>Decouple</b> For Soyuz Instrument-Service Module <b>Decouple</b> |
| [Custom 7] | For Soyuz Main Parachute <b>Deploy</b>                                                         |

#### OTHER ACTION GROUPS

Go to Action Groups and set actions

|            | -                                                          |  |
|------------|------------------------------------------------------------|--|
| [Custom 1] | For Soyuz Docking Mechanism – <b>Decouple</b>              |  |
|            | For LES Activate Engine                                    |  |
| [Custom 2] | For Soyuz-U First Stage Lateral Boosters – Shutdown Engine |  |
|            | For Radial Decoupler – <b>Decouple</b>                     |  |
|            | For Sepratrons Activate Engine                             |  |
| [Custom 3] | For Soyuz-U Payload Shroud (both) <b>Decouple</b>          |  |
| [Custom 4] | Soyuz-U Third Stage – Activate Engine                      |  |
|            | Soyuz-U Third Stage Decoupler <b>Decouple</b>              |  |

Last check.



#### MENU ITEMS

Right-click on the Soyuz Orbital Module. Press **Deploy Antenna**.

Right-click on the Soyuz ISM. Press **Deploy Antenna.** 

The antenna is not functional.
Just for beauty.



#### SPECIAL ASPECTS FOR OPERATION

#### **ASAS**

ASAS can be turned off after docking with the station to reduce the vibrating conveyor. Right click in the Soyuz Orbital Module and find the appropriate item from the menu.

#### SOLAR PANELS

When you get into orbit, expand the solar panels. Do not forget about electricity, it can be useful.

#### TRANSFER TO ORBITAL MODULE

Select an astronaut, EVA press. Fly to Orbital Module hatch, press [F]. If you want to return to the Descent Module, proceed in reverse order.

#### IVA

In IVA mode, are clickable portholes and a periscope. Periscope screen at the bottom of the dashboard.



#### **DOCKING**

Right-click on the Docking Mechanism. Press Activate Docking Camera.



#### LES (LAUNCH ESCAPE SYSTEM)

The LES is designed for bringing the crew modules away from the failed Launch Vehicle and providing conditions for guarantied operation of the landing aids while at the launch site and in the orbit injection phase.

If you have properly assembled LES and properly configured Action Groups, the procedure is as follows:

If during the launch of the threatened use LES. Press key [0] and then key [9]. When the engines stopped working, press key [8] and when the Descent module will start to decline, press key [7].

#### REENTRY

Run the deorbit burn.

Right-click on the Soyuz Decoupler. Press **Jettison**, then **Decouple**.

Right-click on the Soyuz Orbital Module. Press **Decouple**.

Right-click on the Soyuz Descent Module. Press **Jettison**.



Right-click on the Soyuz Main Parachute. Press **Deploy Chute**.



Right-click on the Soyuz Heatshield. Press **Decouple**.



| FREQUENTLY ASKED QUESTION                        |                                                                                                                                                                                                           |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Why so little fuel?                              | This is a copy of the Soyuz LV. Its mission is to deliver three astronauts into orbit. And that's all. However, you can increase the amount of fuel. To do this, you need to correct configuration files. |  |
| What are these antennas?                         | For authenticity and beauty. But it cannot be ruled out in the future appears feasible to some useful functions.                                                                                          |  |
| Docking mechanism are compatible with the stock? | Yes.                                                                                                                                                                                                      |  |
| Not working Docking Camera.                      | And you have installed the plugin <b>Lazor System</b> ? Correctly installed?                                                                                                                              |  |
| When I use the RCS, the ship is twisted.         | Place the RCS symmetrically around the center of mass.                                                                                                                                                    |  |

#### **CREDITS**

#### 3D modeling and texturing - BobCat

**Programming** – CrashnBurn

#### **Documentation, Testing and Tuning – CCCP**

Testing -- BlazingAngel665

Used information from websites:

http://www.tsenki.com

http://www.spaceref.com

http://www.aerospaceguide.net

http://www.daviddarling.info

#### APPENDIX 1

#### Ascent profile and timing



Thus, a typical ascent into orbit is:

- Set throttle at 85-90 percent.
- At 10 000 Decouple LES (press Key [1])
- At a height of 11 000 Decouple first stage (press Key [2]) and set throttle at 100 percent.
- At an altitude of 45 000 Decouple shrouds (press Key [3])
- At an altitude of 49,000 Decouple second stage (press Key [4]). At this point apocentre raised to 70 kilometers. Move to apocenter and circularized orbit.

# APPENDIX 2

Once the orbit is circularized, You have left 300 liters of fuel in the third stage. Good idea - to drop the third stage into the ocean. Not debris in orbit! If you're concerned about space, cleanliness, stock up on such things in advance:

