

Name: Chong-kwon Kim

SCONE Lab.

Stochastic Process

- A stochastic process X = {X(t): t ∈T} is a collection of random variables
 - Trace how the value of a random variable changes as the time flows
 - Example: Average daily temperature,
 - # received cacao-talk messages/day # empty bins as balls are thrown to n bins

Space (State)

- Values of rv
- Discrete
 - Discrete state process
- Continuous

• Time

- Discrete
 - Discrete time process
 - X_t as X(t)
- Continuous

Markov Chain

Definition: Markov Chain

A discrete time process X_1 , X_2 ,... is a Markov chain if

$$\Pr(X_t = a_t \mid X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0)$$

$$= \Pr(X_t = a_t | X_{t-1} = a_{t-1})$$

Markov property
Memoryless property

Transition probability

$$P_{i,j} = \Pr(X_t = j | X_{t-1} = i)$$

Transition matrix

$$\mathbf{P} = \begin{pmatrix} P_{0,0} & P_{0,1} & \cdots & P_{0,j} & \cdots \\ P_{1,0} & P_{1,1} & \cdots & P_{1,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ P_{i,0} & P_{i,1} & \cdots & P_{i,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

Markov Chain - Directed Graph

Transition from state 0 to state 3 in exactly three steps

$$0-1-0-3$$
: $\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{3}{4} = 3/32$

$$0-1-3-3$$
: $\frac{1}{4} \cdot 1/6 \cdot \frac{1}{4} =$

$$0-3-1-3: \frac{3}{4} \cdot \frac{1}{2} \cdot 1/6 =$$

$$0-3-3-3$$
: $\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} =$

Transition Probability

- Let $p_i(t)$ be the probability that $X_t = i$
- Let a vector $\bar{p}(t) = (p_0(t), p_1(t), p_2(t), \cdots)$ be a distribution of states at time t

$$p_i(t) = \sum_{j} p_j(t-1) \cdot P_{j,i}$$
$$\bar{p}(t) = \bar{p}(t-1) \cdot P$$

m-step transition probability

$$P_{i,j}^{(m)} = \Pr(X_{t+m} = j | X_t = i)$$

- Let $P^{(m)}$ be the m-step transition matrix
 - (i, j) component of $P^{(m)}\left(P_{i,j}^{(m)}\right)$ is $P_{i,j}^{m}$
- Show that $P^{(m)} = P^{m}$ m—time multiplication of P

SAT Problem - Preliminary

Boolean expression (formula)

- Expression built from variables using AND(^, *), OR(v, +) and NOT(-) operators
 - Precedence order: NOT→AND→OR
- A formula $(x+\bar{y}) \cdot (x+y)$ is TRUE if x=T
- Variable (x, y) is called literal and (x+y), $(x+\overline{y})$ are called clause
 - A clause is OR of literals
- CNF(Conjunctive Normal Form): AND of Clauses

SAT (Satisfiability) problem

- Are there T/F assignments (Truth assignment) to variables(literals) that make the formula TRUE?
- $-(x+\overline{y})*(x+y)$
- $(x+y)*(x+\overline{y})*(\overline{x}+y)*(\overline{x}+\overline{y})$

2-SAT Problem

- K-SAT
 - Each clause has exactly k literals
- 2-SAT
 - Example

SAT is NP-Hard But, 2-SAT is Polynomial, $O(n^3)$

•
$$(x \lor \neg y) \land (x \lor y) \land (y \lor z) \land (\neg x \lor \neg z) \rightarrow (x+\bar{y}) \cdot (x+y) \cdot (y+z) \cdot (\bar{x}+\bar{z})$$

Start with
$$(\bar{x}+\bar{z})=F$$
 $(x+\bar{y})=F$ $x=T$ $y=T$ $y=T$ $z=T$ Change $y=T\rightarrow F$ $z=T$

$$(x+y) = F$$

Change $x=F \rightarrow T$
 $y=F$
 $z=T$
 $(x+z) = F$
 $x=T$
 $y=F$
Change $z=T \rightarrow F$
 $(y+z) = F$
 $x=T$
Change $y=F \rightarrow T$
 $z=F$

Probabilistic 2-SAT Algorithm

Algorithm

- 1. Start w/ arbitrary truth assignment
- 2. Repeat up to $2mn^2$ before a solution S is found
 - (a) Choose an unsatisfied clause randomly
 - (b) Choose one literal randomly and switch its value
- 3. If found, return the solution, ow the formula is unsatisfiable

Papadimitriou. On selecting a satisfying truth assignment. IEEE FOCS, 1991

A Monte Carlo algorithm that may give incorrect answer m: controls the error probability

Notations

- S be a satisfying assignment
- Ai: Truth assignment after i-th change
- Xi: # variables in Ai that are identical to S
- Obviously, $Pr(X_{i+1} = 1 \mid X_i = 0) = 1$

Probabilistic 2-SAT Algorithm

Algorithm

- 1. Start w/ arbitrary truth assignment
- 2. Repeat up to $2mn^2$ before a solution S is found
 - (a) Choose an unsatisfied clause randomly
 - (b) Choose one literal randomly and switch its value
- 3. If found, return the solution, ow the formula is unsatisfiable

Papadimitriou. On selecting a satisfying truth assignment. IEEE FOCS, 1991

A Monte Carlo algorithm that may give incorrect answer m: controls the error probability

Unsatisfiable

Unsatisfiable

Satisfiable → Find solution in 2mn² steps

OR

Unsatisfiable

Probability of failure?

MC to derive prob.

Lab.

2-SAT Algorithm - Analysis

- Notations
 - S be a satisfying assignment
 - Ai: Truth assignment after i-th change
 - Xi: # variables in Ai that are identical to S
- Obviously, $Pr(X_{i+1} = 1 \mid X_i = 0) = 1$
- Suppose now that $1 \le X_i \le n-1$
 - Consider Ai (where Xi = j) and a unsatisfied clause
 - One or both literals in the clause have different assign'ts between Ai and S
 - → $\Pr(X_{i+1} = j+1 \mid X_i = j) \ge 1/2$
 - → $\Pr(X_{i+1} = j-1 \mid X_i = j) \le 1/2$
- The transition probabilities are not fixed
- → We fix them pessimistically and define a Markov chain based on Yi (reflects pessimistic case)

$$Pr(Y_{i+1} = 1 | Y_i = 0) = 1$$

 $Pr(Y_{i+1} = j+1 | Y_i = j) = 1/2$
 $Pr(Y_{i+1} = j-1 | Y_i = j) = 1/2$

Define a Markov Chain

State: # variables matched in Ai and S

- Define
 - Zj: Random variable, # steps required to reach state n starting from state i
 - hj: Expectation of Zj

• From a set of equations

$$h_n = 0$$
 $h_0 = h_1 + 1$
 $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$, for $0 < j \le (n-1)$

Inductively show that $h_i = h_{i+1} + 2i + 1$

Finally,

$$h_0 = h_1 + 1 = h_2 + 1 + 3 = \sum_{i=0}^{n-1} 2i + 1 = n^2$$

• Claim

- The probability of failure is at most $(\frac{1}{2})^m$

Proof

- Consider the algorithm as m repetitions of $2n^2$ steps
- Each repetition starts at a certain state j (≠ n)
 - Z: Random variable of # steps to reach the state n
 - $h_i \leq n^2$
 - Pr $(Z > 2n^2) \le n^2/2n^2 = \frac{1}{2}$
 - \rightarrow Prob. of not finding a solution after $2n^2$ steps is at most 1/2
- → Pr(All m repetitions fail) $\leq (\frac{1}{2})^m$

Now, you can read Papadimitriou's paper!!

3-SAT Problem

- 2-SAT is Polynomial
- 3-SAT Polynomial also?

No, But, there is an algorithm whose Average is Polynomial

3-SAT Algorithm

- 1. Start w/ arbitrary truth assignment
- 2. Repeat up to m before a solution S is found
 - (a) Choose randomly an unsatisfied clause
 - (b) Choose one literal randomly and switch its value
- 3. If found, return the solution, ow the formula is unsatisfiable

U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, IEEE FOCS, 1999.

S_{eoul} N_{ational} U_{niversity} 2018-04-04

3-SAT Problem

• Like 2-SAT, define

- Ai and Xi
 - → $\Pr(X_{i+1} = j+1 \mid X_i = j) \ge 1/3$
 - → $Pr(X_{i+1} = j-1 \mid X_i = j) \le 2/3$
- Also define pessimistic Yi as before

$$Y_0 = X_0$$

 $Pr(Y_{i+1} = 1 \mid Y_i = 0) = 1$
 $Pr(Y_{i+1} = j+1 \mid Y_i = j) = 1/3$
 $Pr(Y_{i+1} = j-1 \mid Y_i = j) = 2/3$

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2 \cdot h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1$, for $0 \le j \le (n-1)$

→ h_j = 2^{n+2} - 2^{j+2} - 3(n-j)

 $h_i = \Theta(2^n)$

3-SAT Algorithm

• Strategies for 2-SAT and 3-SAT

Observations

- 1. #correct variables from random truth assignment is?
- 2. From the initial state, 3-SAT becomes worse as more steps are taken

Instead of one long steps, run multiple short runs with different initial assignments

17

3-SAT Algorithm

Modified 3-SAT Algorithm

- 1. Repeat up to m times, before satisfied
 - (a) Start w/ arbitrary truth assignment
 - (b) Repeat up to 3n times, before satisfied
 - i) Choose an unsatisfied clause randomly
 - ii) Choose one literal randomly and switch its value
- 2. If found, return the solution, ow the formula is unsatisfiable

Analysis

- Define j: # incorrect variables
- q_i = Pr(Reach to S after correcting j incorrect variables)

Seoul National University

18

3-SAT Algorithm - Analysis

Analysis

- The probability to reach S, even if k downward moves are included, is at least

$$\binom{j+2k}{k} (\frac{2}{3})^k (\frac{1}{3})^{j+k}, k = 0, 1, 2, \dots, j$$

$$\Rightarrow q_j \ge \min_{k=0,1,\dots,j} \left\{ \binom{j+2k}{k} \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j+k} \right\}$$

$$\geq {3j \choose j} {(\frac{2}{3})^j} {(\frac{1}{3})^{2j}} \qquad \sqrt{2\pi m} {(\frac{m}{e})^j}$$

$$\geq \frac{c}{\sqrt{j}} {(\frac{27}{4})^j} {(\frac{2}{3})^j} {(\frac{1}{3})^{2j}}$$

$$\geq \frac{c}{\sqrt{j}} \frac{1}{2^j}$$

$$c = \sqrt{3}/8\sqrt{\pi}$$

$$\geq {3j \choose j} (\frac{2}{3})^j (\frac{1}{3})^{2j} \qquad \text{Apply Sterling's Formula} \\ \sqrt{2\pi m} (\frac{m}{e})^m \leq m! \leq 2\sqrt{2\pi m} (\frac{m}{e})^m$$

$$C = \sqrt{3}/8\sqrt{\pi}$$

 $- q \ge \sum_{i=0}^{n} \Pr(j \text{ mismatches in a random assignment}) \cdot q_i$

$$\geq \frac{1}{2^n} + \sum_{j=1}^n \binom{n}{j} (\frac{1}{2})^n \frac{c}{\sqrt{j}} \frac{1}{2^j}$$
 $q \geq \frac{c}{\sqrt{n}} (\frac{3}{4})^n$

$$q \ge \frac{c}{\sqrt{n}} \left(\frac{3}{4}\right)^n$$

Analysis

- With one random assignment, reach to S with the probability at least q
- Repeat with new random assignment until SUCCESS
 - Geometric distribution with parameter q
 - → # trials until SUCCESS = 1/q

Note:
$$q \ge \frac{c}{\sqrt{n}} \left(\frac{3}{4}\right)^n$$

- Each repetition requires at most 3n steps
- Expected # steps until SUCCESS is $O(n^{3/2}(\frac{4}{3})^n)$

b repetitions of $2 \cdot \frac{3}{c} \cdot n^{3/2} (\frac{4}{3})^n$ step batch $\Pr(\text{Failure}) \leq 2^{-b}$