Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- **Ensemble methods**
- Model selection
- Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Eager learning (the previously discussed methods)
 - Given a set of training set, constructs a classification model
 before receiving a new test tuple to classify
 - Lazy learning
 - Simply stores training data (or only minor processing) and just waits until a test tuple is given
- Lazy: much less time in training but more time in predicting

Lazy vs. Eager Learning

Accuracy

- A eager method must commit to a single hypothesis that covers the entire instance space
- A lazy method effectively uses a richer hypothesis space since it uses many local functions

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing (i.e., lazy evaluation)
 - Until a new instance is received to be classified
- Typical example: <u>k-nearest neighbor approach</u>

The k-Nearest Neighbor Algorithm

- All instances correspond to points in n-D space
 - A distance, dist(X₁, X₂), is defined over the space
- k-nearest neighbors are retrieved in terms of the distance
- The test sample is classified by the class label of a majority of the k-nearest neighbors

Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- **Ensemble methods**
- Model selection
- Summary

What Is Prediction?

- (Numerical) prediction is similar to classification
 - construct a model
 - use the model to predict a continuous value for a given input
- Prediction is different from classification
 - Classification is to predict a categorical class label
 - Prediction is to predict a value in a continuous space by using a modeled continuous-valued function

What Is Prediction?

- Major methods for prediction: regression
 - Models the relationship between one or more predictor variables (i.e., independent variables) and a response variable (i.e., dependent variable)
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods
 - Generalized linear model, Poisson regression, log-linear models, regression trees

Linear regression:

 Involves a response variable y and a single predictor variable x (linear function)

$$y = w_0 + w_1 x$$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

Training

To estimates the best-fitting straight line

$$y = w_0 + w_1 x$$

w₀ and w₁ need to be estimated by using the training data

- Least square method
 - To estimates the best-fitting straight line

$$y = w_0 + w_1 x$$

- Least square method
 - To estimates the best-fitting straight line

$$y = w_0 + w_1 x$$

$$w_1 = \frac{\sum_{i=1}^{|D|} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{|D|} (x_i - \overline{x})^2}$$

$$w_0 = \overline{y} - w_1 \overline{x}$$

Multiple linear regression

- Involves more than one predictor variable
 - $X = \langle x_1, x_2, x_3, ..., x_n \rangle$: predictor variables
 - y: response variable
- Training data is composed of the form $(\mathbf{X_1}, \mathbf{y_1}), (\mathbf{X_2}, \mathbf{y_2}), ..., (\mathbf{X_{|D|}}, \mathbf{y_{|D|}})$
- Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
- Solutions
 - By extension of the least square method
 - By using tools such as SAS and S-Plus

Nonlinear Regression

- Some nonlinear models
 - Can be formulated by a polynomial function
 - Ex: $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$
- A polynomial regression model can be transformed into linear regression model
- For example, the above formula is convertible to a linear one with new variables: $x_2 = x^2$, $x_3 = x^3$

$$y = w_0 + w_1 x + w_2 x_2 + w_3 x_3$$

Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- **Ensemble methods**
- Model selection
- Summary

Classifier Accuracy Measures

Confusion matrix

CM_{i,i}, an entry, indicates # of tuples in class i that are labeled by the classifier as class *j*

Classified

		C_1	C_2
Ground truth	C_1	True positive	False negative
	C_2	False positive	True negative

classes	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.52

- Accuracy of a classifier M, acc(M): percentage of tuples (in a test set) that are correctly classified by the model M (=(6954+2588)/10,000)
 - Error rate (misclassification rate) of M = 1 acc(M)

Classifier Accuracy Measures

Classified

		C_1	C_2
Ground truth	C_1	True positive	False negative
	C_2	False positive	True negative

classes	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.52

Alternative accuracy measures (e.g., for cancer diagnosis)

```
sensitivity = t-pos/pos (recall) /* true positive recognition rate */
specificity = t-neg/neg /* true negative recognition rate */
precision = t-pos/(t-pos + f-pos)

accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)

= t-pos/(pos+neg) + t-neg/(pos+neg) = (t-pos+t-neg)/(pos+neg)
```

Predictor Error Measures

- Measure predictor accuracy
 - Measures how far off the predicted value is from the actual known value (i.e., ground truth)
- Loss function: measures the error between y_i and the predicted value y_i'
 - Absolute error: | y_i y_i'|
 - Squared error: $(y_i y_i')^2$

Predictor Error Measures

- Test error (generalization error): the average loss over the test set
 - Mean absolute error: $\frac{\sum\limits_{i=1}^{d}|y_i-y_i'|}{d}$ Mean squared error: $\frac{\sum\limits_{i=1}^{d}(y_i-y_i')^2}{d}$
 - Relative absolute error: $\frac{\sum\limits_{i=1}^{d} \mid y_i y_i \mid}{\sum\limits_{i=1}^{d} \mid y_i \overline{y} \mid}$ Relative squared error: $\frac{\sum\limits_{i=1}^{d} (y_i y_i \mid)^2}{\sum\limits_{i=1}^{d} (y_i \overline{y})^2}$
 - The mean squared-error exaggerates the presence of outliers
 - Square-root mean squared error, similarly, square-root relative squared error are popularly used
 - To get the same magnitude as the predicted quantity

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times
 - Accuracy = avg. of the k accuracies obtained

- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets,
 each having approximately equal size
 - At ith iteration, use D_i as a test set and others as a training set

- Leave-one-out:
 - Special case of cross-validation, for small sized data
 - k folds where k = # of tuples
- Stratified cross-validation
 - Special case of cross-validation
 - Folds are stratified so that class distribution in each fold is approximately the same as that in the initial data

Bootstrap

- Works well with a small data set (i.e., insufficient training samples)
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, but it is re-added to the training set for being equally likely to be selected again

- .632 bootstrap: common one among bootstrap methods
 - Given a whole data set of d samples, it is sampled d times, with replacement, resulting in a training set of d samples
 - The data samples that did not make it into the training set end up forming the test set
 - About 63.2% of the original data will end up in the bootstrap (i.e., training set), and the remaining 36.8% will form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure k times, overall accuracy of the model:

$$acc(M) = \sum_{i=1}^{\kappa} (0.632 \times acc(M_i)_{test_set} + 0.368 \times acc(M_i)_{train_set})$$

Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - **Ensemble:** combining a set of heterogeneous classifiers

Bagging: Bootstrap Aggregation

Analogy

Diagnosis based on multiple doctors' majority vote

Training

- Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
- A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X

Bagging: Bootstrap Aggregation

Prediction

 Can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple

Accuracy

- Often significant better than a single classifier derived from D
- For noise data: not considerably worse, more robust
- Improved accuracy in prediction

Boosting

Analogy

- Consult several doctors, based on a combination of weighted diagnoses — weight based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - Weights are used in sampling for building a training set (bootstrap)
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention (in sampling) to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy

Summary

- What is classification / prediction?
- Decision tree induction
- Bayesian classification
- Rule-based classification
- Associative classification
- Lazy learners (k-NN classifiers)
- Prediction (regression)
- Accuracy and error measures
- Ensemble methods

