Exercice 01

1. On utilise la relation de conjugaison : $\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'}$ d'où $\frac{1}{x_{A}} = \frac{1}{x_{A'}} - \frac{1}{f'}$

avec
$$x_{A'} > 0$$
, il vient : $\frac{1}{x_A} = \frac{1}{3,00 \text{ m}} - \frac{1}{45,0 \times 10^{-3} \text{ m}}$

ce qui conduit à $x_A = -4,57 \times 10^{-2}$ m.

La matrice doit se situer à $4,57 \times 10^{-2}$ m de la lentille modélisant le système optique du vidéoprojecteur.

2. On utilise la relation de grandissement : $\gamma = \frac{y_{B'}}{y_B} = \frac{x_{A'}}{x_A}$ d'où $y_{B'} = y_{B} \times \frac{x_{A'}}{x_{A}}$

avec
$$x_A < 0$$
, il vient : $y_{B'} = 15.2 \times 10^{-3} \text{ m} \times \frac{3.00 \text{ m}}{-4.57 \times 10^{-2} \text{ m}}$ ce qui conduit à $y_{B'} = -0.998 \text{ m}$.

La hauteur de l'image est 0,998 m.

Le signe « moins » dans le grandissement signifie que l'image est renversée par rapport à l'objet.

3. On calcule le nouveau grandissement : $\gamma = \frac{y_{B'}}{v_{P}}$

d'où
$$\gamma = \frac{-1,50 \text{ m}}{15,2 \times 10^{-3} \text{ m}}$$

ce qui conduit à $\gamma = -9.87 \times 10^{1}$.

D'après la relation de grandissement :

$$x_{A'} = x_A \times \frac{y_{B'}}{y_B}$$

d'où $x_{A'} = -4,57 \times 10^{-2} \text{ m} \times \frac{-1,50 \text{ m}}{15,2 \times 10^{-1} \text{ m}}$

qui conduit à $x_{A'} = 4,51$ m.

Il faudrait placer l'écran à 4,51 m du vidéoprojecteur pour avoir une image de 1,50 m de hauteur.

4. Un système optique avec une distance focale variable permet de modifier le grandissement et de mieux ajuster les dimensions de l'image à celles de l'écran sans déplacer le vidéoprojecteur ou l'écran.

(1) Utiliser la relation de conjugaison

D'après la relation de conjugaison :

$$\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'} \text{ soit } \frac{1}{f'} = \frac{1}{33,3 \text{ cm}} - \frac{1}{-20,0 \text{ cm}}$$

d'où f' = 12,5 cm

7 Utiliser la relation de conjugaison (2)

D'après le schéma : $x_A = -6.0$ cm ; f' = 10.0 cm D'après la relation de conjugaison :

$$\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'} \text{ d'où } \frac{1}{x_{A'}} = \frac{1}{x_A} + \frac{1}{f'} = \frac{1}{-6.0 \text{ cm}} + \frac{1}{10.0 \text{ cm}}$$
d'où $x_{A'} = -15 \text{ cm}$

8 Calculer un grandissement

Le grandissement est :
$$\gamma = \frac{y_{B'}}{y_B} = \frac{-1.0 \text{ cm}}{2.0 \text{ cm}} = -0.50$$

Le grandissement est -0,50

9 Utiliser la formule du grandissement

1. D'après la relation de grandissement:

$$\gamma = \frac{y_{B'}}{y_{B}}$$
 soit $\gamma = \frac{-4.5 \text{ cm}}{3.0 \text{ cm}} = -1.5$

2. D'après la relation de grandissement :

$$\gamma = \frac{y_{B'}}{y_B} = \frac{x_{A'}}{x_A}$$

 $\gamma = \frac{y_{\rm B'}}{y_{\rm B}} = \frac{x_{\rm A'}}{x_{\rm A}}$ On isole l'abscisse $x_{\rm A'}$ correspondant à la position de l'image :

$$x_{A'} = \gamma' \times x_A$$

 $x_{A'} = -1.5 \times (-5.0)$ cm
 $x_{AJ} = 7.5$ cm

L'image est située à 7,5 cm de la lentille.

16 Prévoir les caractéristiques d'une image

1. D'après la relation de grandissement: $\gamma = \frac{y_{B'}}{y_{B}} = \frac{x_{A'}}{x_{A}}$.

Les données nous indiquent que $x_A = -5.0$ cm et que :

$$x_{A'} = -10 \text{ cm} \cdot \text{Ainsi} : \gamma = \frac{x_{A'}}{x_A} = \frac{-10 \text{ cm}}{-5.0 \text{ cm}} = 2.0$$

2. Le grandissement est positif. L'image obtenue est donc droite et virtuelle. La valeur absolue du grandissement est supérieure à un: l'image est donc plus grande que l'objet.

17 Déterminer les caractéristiques d'une image

Par construction graphique, on constate que l'image A'B' donnée par la lentille mince convergente est renversée par rapport à l'objet, réelle et plus grande que l'objet.

29 Où la lentille est-elle ? (30 min)

1. a. b. et c.

d. On a $x_A = -3.0$ cm mesurés donc -6.0 cm réels. On a $x_{A'} = -6.0$ cm mesurés donc -12.0 cm réels. La distance focale vaut f' = 6.0 cm mesurés donc 12.0 cm réels. Le grandissement est égal à $\gamma = \frac{x_{A'}}{x_A} = -\frac{12.0 \text{ cm}}{(-6.0) \text{ cm}} = 2.0.$

2. L'image obtenue est droite, virtuelle et agrandie.

3. Vérification de la relation de conjugaison :

$$\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{(-12,0) \text{ cm}} + \frac{1}{6,0 \text{ cm}} = \frac{1}{12 \text{ cm}}$$

Par ailleurs, f' = 12 cm.

On vérifie donc que $\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'}$

Vérification de la relation de grandissement :

$$\gamma = \frac{x_{A'}}{x_A} = \frac{-12.0 \text{ cm}}{-6.0 \text{ cm}} = 2.0$$

$$\frac{y_{B'}}{v_D} = \frac{2.0 \text{ cm}}{1.0 \text{ cm}} = 2.0$$

On vérifie que $\frac{y_{B'}}{y_{B}} = \frac{x_{A'}}{x_{A}}$

30

1. D'après les données de l'énoncé, on a :

$$\overline{OA} = -1,71 \text{ cm}$$
; $f' = 17,0 \text{ mm} = 1,70 \text{ cm}$;

$$\overline{AB} = 1,2 \text{ mm}.$$

On applique la relation de conjugaison :

$$\frac{1}{\overline{OA'}} = \frac{1}{\overline{OA}} + \frac{1}{f'} = \frac{1}{-1,71} + \frac{1}{1,70} \approx 0,00344 \text{ cm}^{-1}$$

soit OA' = 291 cm = 2,91 m.

Il faut positionner l'écran à environ 2,90 m de l'objectif.

2. On applique les relations de grandissement :

$$\overline{A'B'} = \overline{\gamma} \times \overline{AB} = \frac{OA'}{\overline{OA}} \times \overline{AB} = \frac{291}{-1,71} \times 1,2$$

 $= -2.1 \times 10^{2}$ mm = -21 cm.

La lettre projetée à l'écran a une hauteur de 21 cm.

3. Le grandissement $\overline{\gamma}$ étant négatif, l'image sera renversée par rapport à l'objet, le texte doit donc être écrit à l'envers sur la plaque LCD.