# Лабораторная работа № 3.3.4 Эффект Холла в полупроводниках

Илья Прамский

Декабрь 2023

**Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках.

**Оборудование:** электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

### 1 Теоретическая справка

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).



Рис. 1 — Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью  $\langle \vec{v} \rangle$  в электромагнитном поле, действует сила Лоренца:

$$\vec{F} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона,  $\vec{E}$  - напряженность электрического поля,  $\vec{B}$  - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани B, заряжая ее отрицательно. На грани A накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля  $E_z$ , направленного от A к B, которое действует на электроны с силой  $F_E = eE_z$ . В установившемся режиме  $F_E = F_B$ , поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathcal{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа  $R_X = \frac{1}{ne}$  называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок,  $b_e$   $b_p$  - их подвижности.

## 2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания  $A_1$ . Разъем  $K_1$  позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа  $K_2$  вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром  $_2$ .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов  $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла  $\mathcal{E}_X$  может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:



Рис. 2 — Схема установки для исследования эффекта Холла в полупроводниках

$$\mathcal{E}_X = U_{34} \pm U_0$$

.

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку  $\mathcal{E}_X$  можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение  $U_{35}$  между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где  $L_{35}$  - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

# 3 Ход работы

Параметры образца: a=2,2 мм,  $L_{35}=3$  мм, l=2,5 мм.

При помощи милливеберметра измерим магнитное поле, создаваемое электромагнитом при разных значениях подаваемого в него тока  $I_M$ . В дальнейшем при помощи этого графика будем находить значение B из  $I_M$ .

| I, A | В, Тл  |
|------|--------|
| 0    | 0,02   |
| 0,2  | 0,2104 |
| 0,4  | 0,4175 |
| 0,6  | 0,603  |
| 0,8  | 0,7807 |
| 1    | 0,8785 |
| 1,2  | 0,9618 |
| 1,4  | 1,015  |
| 1,58 | 1,056  |



Теперь построим графики зависимости ЭДС Холла  $\mathcal{E}_X$  от B при различных токах I, текущих через образец.

| IO MA | Im, A | U34, мкВ | В, Тл | ЕХолла, мкВ         | IO MA | Im, A | U34, мкВ Е | , Тл  | ЕХолла, мкВ         | IO MA | Im, A | U34, MKB E | 3, Тл | <b>Е</b> Холла, мкВ |
|-------|-------|----------|-------|---------------------|-------|-------|------------|-------|---------------------|-------|-------|------------|-------|---------------------|
| 0,14  | 0,20  | 11       | 0,21  | 4                   | 0,6   | 0,20  | 46         | 0,21  | 21                  | 1     | 0,20  | 77         | 0,21  | 35                  |
|       | 0,40  | 16       | 0,42  | 9                   |       | 0,40  | 68         | 0,42  | 43                  | -     | 0,40  | 113        | 0,42  | 71                  |
|       | 0,60  | 22       | 0,60  | 15                  |       | 0,60  | 91         | 0,60  | 66                  |       | 0,60  | 148        | 0,60  | 106                 |
|       | 0,80  | 26       | 0,78  | 19                  |       | 0,80  | 109        | 0,78  | 84                  |       | 0,80  | 182        | 0,78  | 140                 |
|       | 1,00  | 29       | 0,88  | 22                  |       | 1,00  | 124        | 0,88  | 99                  |       | 1,00  | 208        | 0,88  | 166                 |
|       | 1,20  | 31       | 0,96  | 24                  |       | 1,20  | 133        | 0,96  | 108                 |       | 1,20  | 222        | 0,96  | 180                 |
|       | 1,40  | 33       | 1,02  | 26                  |       | 1,40  | 141        | 1,02  | 116                 |       | 1,40  | 235        | 1,02  | 193                 |
|       | 1,60  | 35       | 1,06  | 28                  |       | 1,56  | 146        | 1,05  | 121                 |       | 1,55  | 243        | 1,05  | 201                 |
| IO MA | Im, A | U34, мкВ | В, Тл | ЕХолла, мкВ         | 10 mA | Im, A | U34, мкВ Е | 3, Тл | <b>Е</b> Холла, мкВ |       |       |            |       |                     |
| 0,31  | 0,20  | 24       | 0,21  | 11                  | 0,74  | 0,20  | 56         | 0,21  | 24                  |       |       |            |       |                     |
|       | 0,40  | 36       | 0,42  | 23                  |       | 0,40  | 84         | 0,42  | 52                  |       |       |            |       |                     |
|       | 0,60  | 46       | 0,60  | 33                  |       | 0,60  | 111        | 0,60  | 79                  |       |       |            |       |                     |
|       | 0,80  | 56       | 0,78  | 43                  |       | 0,80  | 134        | 0,78  | 102                 |       |       |            |       |                     |
|       | 1,00  | 64       | 0,88  | 51                  |       | 1,00  | 152        | 0,88  | 120                 |       |       |            |       |                     |
|       | 1,20  | 68       | 0,96  | 55                  |       | 1,20  | 165        | 0,96  | 133                 |       |       |            |       |                     |
|       | 1,40  | 72       | 1,02  | 59                  |       | 1,40  | 173        | 1,02  | 141                 |       |       |            |       |                     |
|       | 1,57  | 75       | 1,06  | 62                  |       | 1,56  | 180        | 1,05  | 148                 |       |       |            |       |                     |
| IO MA | Im, A | U34, мкВ | В, Тл | <b>Е</b> Холла, мкВ | IO MA | Im, A | U34, мкВ Е | 3, Тл | <b>Е</b> Холла, мкВ |       |       |            |       |                     |
| 0,44  | 0,20  | 34       | 0,21  | 15                  | 0,86  | 0,20  | 67         | 0,21  | 30                  |       |       |            |       |                     |
|       | 0,40  | 49       | 0,42  | 30                  |       | 0,40  | 98         | 0,42  | 61                  |       |       |            |       |                     |
|       | 0,60  | 67       | 0,60  | 48                  |       | 0,60  | 128        | 0,60  | 91                  |       |       |            |       |                     |
|       | 0,80  | 80       | 0,78  | 61                  |       | 0,80  | 155        | 0,78  | 118                 |       |       |            |       |                     |
|       | 1,00  | 92       | 0,88  | 73                  |       | 1,00  | 176        | 0,88  | 139                 |       |       |            |       |                     |
|       | 1,20  | 98       | 0,96  | 79                  |       | 1,20  | 192        | 0,96  | 155                 |       |       |            |       |                     |
|       | 1,40  | 104      | 1,02  | 85                  |       | 1,40  | 202        | 1,02  | 165                 |       |       |            |       |                     |
|       | 1,57  | 107      | 1,06  | 88                  |       | 1,56  | 208        | 1,05  | 171                 |       |       |            |       |                     |



Теперь рассмотрим формулу (1):

$$\mathcal{E}_X = R_x \cdot \frac{I \cdot B}{a} \Rightarrow \frac{\mathcal{E}_X}{B} = \frac{R_X}{a} \cdot I$$

Построим график зависимости  $K = \frac{\mathcal{E}_X}{B}$  от I, при помощи коэффициента пропорциональности этой линейной зависимости найдем значение постоянной Холла.

| К, мкВ/Тл | IO, MA |
|-----------|--------|
| 27,74     | 0,14   |
| 60,06     | 0,31   |
| 87,79     | 0,44   |
| 118,89    | 0,60   |
| 147,13    | 0,74   |
| 169,15    | 0,86   |
| 199,08    | 1,00   |

График зависимости К от 10



Получается коэффициент пропорциональности равен  $k=198,86\frac{_{
m MKB}}{_{
m MA\cdot Tn}}.$ 

Значит, 
$$R_X = a \cdot k = 437, 49 \cdot 10^{-6} \frac{B \cdot \text{м}}{A \cdot \text{T}_{\pi}}$$
.

Теперь разберёмся с характером проводимости



Из вышеприведённого рисунка видно, что Холловские частицы двигаются к клемме 4. Теперь посмотрим показания вольтметра без магнитного поля и с магнитным полем.  $U_{\text{без}}=20~\text{мкB}$   $U_{\text{c}}=125~\text{мкB}$ . Знак у напряжения положительны, а это значит, что разность потенциалов  $\varphi_3-\varphi_4>0$ , из чего следует, что Холловское поле направлено от клеммы 3 к клемме 4. Такое возможно только если Холловскими частицами являются электроны.

Найдем теперь концентрацию электронов в образце  $n = \frac{1}{R_x \cdot e} = 1428, 6 \cdot 10^{19} \text{м}^{-3}$ .

Теперь, подключив потенциальные концы 3 и 5 к вольтметру, измерим падение напряжения  $U_{3,5}$  при токе через образец равном  $I_0=1$  мА. Получилось  $U_{3,5}=1,74$  мВ. Тогда по формуле (2) найдем значение проводимости материала образца.  $\sigma=313,5\frac{1}{\mathrm{O}_{\mathrm{M}\cdot\mathrm{M}}}$ .

И наконец, зная значения проводимости и концентрации, найдем подвижность электронов в образце по формуле

$$b = \frac{\sigma}{e \cdot n} = 1372 \frac{\text{cm}^2}{B \cdot \text{c}}$$

Итоговая таблица

| Rx, 10^(-6), м^3/Кл | Знак носителя | n, *10^19 m^(-3) | $\sigma$ , (OM *M)^(-1) | b, cm^2/(B * | c)   |
|---------------------|---------------|------------------|-------------------------|--------------|------|
| 437,49              | -             | 1428,6           | 313,5                   |              | 1372 |

#### 4 Вывод

В ходе работы был исследован эффект Холла в полупроводнике, сделанном из Германия, измерены его основные параметры, такие как: постоянная Холла, подвижность, концентрация носителей тока, а также проводимость, также был исследован характер проводимости, выяснено какие частицы в нашем случае являются Холловскими. Значения по порядку совпадают со справочными, однако некоторые из них достаточно сильно отличаются от табличных. Это различие вызвано тем, что данный полупроводник имеет в себе примеси, которые, как и было получено, могут сильно изменить характеристики материала.