Young-modulusz meghatározása szilárd testek hosszanti alakváltozásának vizsgálatával.

1. A gyakorlat célja:

- szilárd testek rugalmas alakváltozásának kísérleti tanulmányozása;
- vonalas szilárd testek nyújtási rugalmassági moduluszának kísérleti meghatározása

2. A rugalmas alakváltozás elméleti alapjai

A szilárd testekre ható külső erők különböző mértékű alakváltozásokat eredményeznek. Az alkalmazott igénybevétel természete és nagysága függvényében a testek alakváltozása jelenthet megnyúlást, összenyomódást, csavarodást, elhajlást és nyíródást.

Ha az alakváltozás elegendően kicsi, általában az erőhatás megszűnése után a testek igyekeznek visszanyerni eredeti alakjukat. Ez a jelenség azzal magyarázható, hogy az alakváltozás során az anyagban belső rugalmas erők keletkeznek. Ezek az erők a test eredeti alakjának visszaállításának irányában hatnak. A testeknek ilyen természetű viselkedését rugalmas viselkedésnek, a jelenséget rugalmasságnak nevezzük.

A testek rugalmas viselkedése az anyag felépítésében meghatározó szerepet betöltő atomi kölcsönhatási erők természetére vezethető vissza. A kölcsönhatásban levő atomok egyensúlyi állapotában a vonzó- és taszítóerők azonos értékűek és ellentétes irányításúak. A részecskék közti kölcsönhatási erők változnak a távolság függvényében. Ezért az anyagok nyújtásánál vonzási erők jelentkeznek, míg az összenyomást taszító jellegű erők fellépése kíséri.

Szilárd anyagok *rugalmas alakváltozásának* vizsgálata céljából ismerkedjünk meg a *lineáris megnyúlás* fogalmával.

3. A kísérlet fizikai alapjai

Kísérleti tapasztalat szerint a rugalmas szilárd testek viselkedését *Hooke-törvénye* írja le, amely érvényes a *rugalmas alakváltozás határán belül*.

Tekintsünk egyik végén rögzített, l_0 hosszúságú, S_0 keresztmetszetű huzalt, amelynek szabad végére egy változó nagyságú F nyújtó erő hat.

Hooke-törvény értelmében az anyagban létrehozott megnyúlás Δl értéke (hossz-változás) egyenesen arányos a kezdeti l_0 hosszal és a ható F erővel, fordítottan arányos a ható erőre merőleges keresztmetszet S_0 területével, valamint függ a nyújtott test anyagi minőségétől:

$$\Delta l = \frac{1}{E} \cdot \frac{F \cdot l_0}{S_0} \tag{1}$$

A kifejezésben szereplő *E* arányossági tényező a huzal anyagi minőségére jellemző állandó. Ezt az állandót az illető anyag *Young–féle nyújtási rugalmassági moduluszának* nevezzük. Az egyenlet tényezőinek átrendezése után írhatjuk, hogy:

$$\frac{\Delta l}{l_0} = \frac{1}{E} \cdot \frac{F}{S_0},\tag{2}$$

amelyben $\Delta l/l_0 = \lambda$ arányt relatív lineáris megnyúlásnak, az $F/S_0 = \sigma$ arányt rugalmas húzófeszültségnek nevezzük. Ezekkel a jelölésekkel Hooke-féle törvényt az alábbi alakban is írhatjuk:

$$\lambda = -\frac{\sigma}{E} \tag{3}$$

Az anyagok összenyomása esetén az $F/S_0=p$ arányt nyomófeszültségnek, vagy röviden nyomásnak nevezzük, ahol az F hatóerő merőleges az S_0 felületre.

A terhelésnek alávetett anyag harántirányú méretváltozást is szenved: $\Delta d/d_0$. Húzáskor az anyag harántirányú méretcsökkenést, nyomáskor harántirányú méretnövekedést szenved. A harántirányú és hosszirányú relatív méretváltozás arányának jellemzésére használt μ együtthatót Poisson-féle aránynak nevezik:

$$\mu = \frac{\frac{-\Delta d}{d_0}}{\frac{\Delta l}{l_0}} = \frac{-\Delta d}{d_0} \cdot \frac{1}{\lambda} \tag{4}$$

Fémek esetén a Poisson-együttható értéke $\mu \approx 0.3 \dots 0.4$ nagyságú.

A fenti kifejezések értelmében, kísérletileg mérhető mennyiségek segítségével meghatározhatjuk valamely vonalas szilárd test *rugalmassági-moduluszát*:

$$E = \frac{1}{\frac{\Delta l}{l_0}} \cdot \frac{F}{S_0} = \frac{1}{\Delta l} \cdot \frac{l_0 \cdot F}{S_0}$$
 (5)

Kísérleti körülményeink értelmében, első közelítésben állandónak tekintve a huzal S_0 keresztmetszetének területét, a relatív megnyúlás és a külső feszítőerő mérése útján meghatározhatjuk a nyújtási rugalmassági modulusz értékét.

A szakirodalomban gyakran használt mennyiség a rugalmassági modulusz reciproka, k = 1/E, amelyet *rugalmassági együtthatónak* neveznek.

4. A kísérleti mérés menete

A lineáris megnyújtás jelenségének szemléltetésére alkalmas kísérleti elrendezést az 1. ábrán láthatjuk.

Egy állandó S_0 keresztmetszetű, néhány méter hosszúságú és néhány tized milliméter átmérőjű fémhuzalt egy külső F erővel terhelünk és mérjük a terhelés okozta Δ l megnyúlást.

Kísérletünk során a tanulmányozott huzal egyik végét rögzített helyzetű satuban fogjuk be, míg a huzal csigán átvetett másik végét kezdetben addig terheljük, amíg a huzal könnyedén feszített állapotba kerül. Ehhez kis tömegű súlyokat használunk, amelyekkel a mérlegtányért terheljük és a csigán levő mutató helyzetére igazítjuk a skála nullpontját. Ezzel a beállítással a kezdeti feltételeket megválasztottuk és alaphelyzetnek tekintjük. Kísérletünkben a mérések eredménye nagyban függ a lineáris megnyúlás pontos mérésétől, mivel a megnyúlás néhány tized mm értékű. Ennek érdekében a megnyúlás pontosabb mérése céljából egy hosszú mutatóval ellátott csigás kijelzőt használunk.

A huzalt a mérlegtányérra helyezett m tömeggel terheljük. Így a terhelő F erő nagyságát a súlyerő G=mg képviseli. A huzal rögzítési pontja és a csiga tengelye közti l_0 hosszúságú rész Δ lmegnyúlása rágörbül az r sugarú csiga

peremére, miközben a csiga α szöggel elfordul. Az elfordulási szög α értékét jelzi a mutató, amely egy fokbeosztású skála előtt mozdul el, így a szöget közvetlenül fokban olvashatjuk le.

A síkmértanból ismert összefüggést használva, amely értelmében a körív hossza arányos a középponti szöggel:

$$\Delta l = r \cdot \alpha,\tag{6}$$

ahol az α az elfordulás radiánban, így 1° = $\frac{\pi}{180}$ = $\frac{3,14159}{180}$ = 0,01745rad.

1. Ábra A Young-modulusz meghatározásához használt kísérleti berendezés fényképe

Mérőszalaggal megmérjük a huzal l_0 kezdeti hosszát, amely a satuba befogott résztől a csiga forgástengelyének középpontjáig terjed. Csavarmikrométerrel megmérjük a huzal d átmérőjét és a mérési adatokat táblázatban rögzítjük. A huzal szabad végén elhelyezett mérlegtányért előterheljuk a huzal kiegyenesedéséig. Ezután fokozatosan növekvő súlyokkal terheljük, majd leolvassuk a mutató elfordulási szögét.

Minden tanulmanyozott anyagra három különböző terhelésre megismételjük a mérést és a mérési adatokat táblázatba foglaljuk. A meghatározás pontosságának növelése céljából, a mért mennyiségek átlagértékét képezve kiszámítjuk a huzal *E* rugalmassági moduluszát.

<u>Megjegyzés:</u> Fokozatosan növelve terheljük a tanulmányozott huzalt, ügyelve arra, hogy ne haladjuk meg a vizsgált anyagra jellemző *rugalmas-plasztikus* alakváltozás határértékét, amelynél az illető anyagra jellemző σ_{α} arányossági tényező változást mutat. Ebből a célból a terhelés alkalmazása után néhány perc elteltével eltávolítjuk a terhelést és ellenőrizzük, hogy a kezdeti értékek visszaálltak-e vagy sem. Utóbbi esetben a terhelés meghaladta a rugalmas viselkedés tartományát és a mérési adatokat kizárjuk a táblázatunkból.

1. Táblázat: Kísérleti mérési adatok táblázata (a mért adatok fehér, a számított adatok szürke háttérrel vannak megkülönböztetve)

Huzal	l ₀ (m)	d (mm)	S_0 (mm^2)	m (kg)	F (N)	σ (N/m^2)	α (fok)	∆l (mm)	λ	E (N/m^2)	$\frac{E_{k\ddot{\text{o}}z\acute{\text{e}}p}}{(N/m^2)}$
acél											
réz											
Kantál (72% Fe +22% Cr +6 % Al)											
damil											

2. Táblázat: A műszaki gyakorlatban használt néhány szilárd anyagra jellemző Young-modulusz, Poisson-arány, illetve a hang terjedési sebessége (szakirodalomban közölt értékek alapján)

A	Е	μ	Hangsebesség (m/s)	
Anyag	(N/m2)	(Poisson-szám)	$t = 18 \mathscr{C}$ -on	
Alumínium (Al)	6,3-7,5	0,34	5200	
Réz (Cu)	10-13	0,35	3700	
Bronz (réz-ötvözet: Cu 90% + Sn 10%)	10,6	0,34	3600	
Sárgaréz (réz-ötvözet: Cu 72% + Zn 25% + Pb 3%)	8-10	0,35	3200	
Acél (vas-ötvözet)	20-22	0,29	5100	
Öntvény-acél	7,5-13	0,26	3600	
Konstantán (Cu 60%+Ni 40%)	16,6		4300	
Ólom (Pb)	1,5-1,7	0,45	1300	
Nikkel (Ni)	20-22	0,3	4900	
Fa	0,4-1,8		34000	
Üveg	5-8	0,20,3	5000	

5. További feladatok

A kísérleti mérések alapján meghatározott húzó-feszültség σ , illetve relatív megnyúlás λ , felhasználásával ábrázoljuk a mechanikai húzó-feszültség – megnyúlás $\lambda = f(\sigma)$ diagramját!

- 2. A mérési eredmények adataival szerkesztett ábra alapján vonjunk le következtetéseket a tapasztalati összefüggésre vonatkozóan.
- 3. Hasonlítsuk össze az általunk kísérletileg meghatározott *E* rugalmassági modulusz értékét a szakirodalomban közölt értékkel és értelmezzük az eredmények helyességét, valamint a mérések hibakorlátait.