Laboratorium 7

Metody Numeryczne

Wydział Fizyki i Informatyki Stosowanej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Maciej Piwek

27 kwietnia 2021

1 Wstęp

Na laboratoriach zapoznałem się z metodą interpolacji Newtona z optymalizacją położeń węztów.

2 Metoda Newtona oraz opis problemu

Interpolacja jest to metoda numeryczna, która polega na budowaniu w danym obszarze $\Omega \subset R^n$, tzw. funkcji interpolacyjnej, która przyjmuje w nim z góry zadane wartości w ustalonych punktach nazywanych węzłami. Interpolacja stosuje się w naukach doświadczalnych, gdzie dysponuje się często skończoną liczbą danych określających badane zależności np. pozwala lokalnie przybliżyć dowolną funkcję wielomianem – , a to ułatwia analizę rozwiązań w modelach fizycznych. Zadaniem interpolacji wielomianowej posiada jednoznaczne rozwiązanie, czyli istnieje tylko jeden wielomian spełniający warunek $W_n(x_i) = f_i$, gdzie $i = 1, 2, \cdots, n$. Wzór interpolacyjny ma postać:

$$W_n(x) = \sum_{j=0}^n f^{(j)}(x_0) \prod_{i=0}^{j-1} (x - x_i)$$
(1)

gdzie:

- $-\ f^{(j)}(x_0)$ iloraz różnicowy rzędujliczony dla węzła x_0
- $-x_i$ położenia węzłów
- -n stopień wielomianu
- $W_n(x)$ wartość wielomianu dla argumentu x
- -x szukane przybliżenie wartości funkcji

Zdefiniowano funkcje:

$$f(x) = \frac{1}{1+x^2}$$
 (2)

dla której należało przeprowadzić interpolację wielomianową Newtona. Dalej wyznaczono wartości ilorazów różnicowych z godnie z tabelą:

y_0	0	0	0	0	0
y_1	$f_{x_0}^{(1)}$	0	0	0	0
y_2	$f_{x_1}^{(1)}$	$f_{x_0}^{(2)}$	0	0	0
y_3	$f_{x_2}^{(1)}$	$f_{x_1}^{(2)}$	$f_{x_0}^{(3)}$	0	0
1				٠.	0
y_n	$f_{x_{n-1}}^{(1)}$	$f_{x_{n-3}}^{(2)}$	$f_{x_{n-3}}^{(3)}$		$f_{x_0}^{(n)}$

$f_{0,0}$	0	0	0	0	0				
$f_{1,0}$	$f_{1,1}$	0	0	0	0				
$f_{2,0}$	$f_{2,1}$	$f_{2,2}$	0	0	0				
$f_{3,0}$	$f_{3,1}$	$f_{3,2}$	$f_{3,3}$	0	0				
				·					
$f_{n,0}$	$f_{n,1}$	$f_{n,2}$	$f_{n,3}$		$f_{n,n}$				

gdzie:

- $-\ y_i$ wartości funkcji w węzłach
- $-\ f_j$ ilorazy różnicowe rzędu j

Do wyznaczenia prawej tabelki użyto pseudokodu:

$$for(j = 1; j \le n; j + +)$$

$$for(i = j; i \le n; i + +)$$

$$f_{i,j} = \frac{f_{i,j-1} - f_{i-1,j-1}}{x_i - x_{i-j}}$$

3 Wykonanie Ćwiczenia

Zastosowano wzór interpolacyjny, aby wyznaczyć przybliżone wartości funkcji w przedziale $[x_{min}, x_{max}]$. Węzły indeksowano $i=0,1,2,\cdots,n$, a następnie wykonano interpolację kolejno dla n=5,10,15,20 i wyznaczono wartości funkcji f(x) w węzłach oraz obliczono dla wyznaczonych wartości wartości wielomianu:

Wyniki zestawiono na wykresach:

Rysunek 1: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=5

Rysunek 2: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=10

Rysunek 3: Wykres funkcji f(x)oraz wielomianu interpolacyjnego ${\cal W}_n(x)$ dla n=15

Rysunek 4: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=20

Proces powtórzono dla zoptymalizowanych położeń węz
łów :

$$x_i = \frac{1}{2}[(x_{min} - x_{max})cos(\pi \frac{2i+1}{2n+2}) + (x_{min} + x_{max})], \quad i = 0, 1, \dots, n$$
(3)

które są zerami wielomianów Czebyszewa.

Rysunek 5: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=5

Rysunek 6: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=10

Rysunek 7: Wykres funkcji f(x)oraz wielomianu interpolacyjnego $W_n(x)$ dla $n=15\,$

Rysunek 8: Wykres funkcji f(x) oraz wielomianu interpolacyjnego $W_n(x)$ dla n=20

4 Wnioski

- 1. Dla większego n precyzja się zwiększa i algorytm działa bardziej efektywnie
- 2. Po zoptymalizowaniu położeń węzłów, które były zerami wielomianów Czebyszewa algorytm dział dokładniej