Tax avoidance and evasion in a dynamic setting

Duccio Gamannossi degl'Innocenti¹ Rosella Levaggi² Francesco Menoncin²

¹Università Cattolica del Sacro Cuore, Milano, Italy

²Università di Brescia, Brescia, Italy

Table of contents

1. Introduction

2. Model

3. Analysis

4. Conclusion

Intro

• Tax avoidance and evasion alter effective tax rates

- Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP (≈800B) in Europe (Murphy 2019) under-reporting is 18% in US (tax gap of ≈500B)

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP (≈800B) in Europe (Murphy 2019) under-reporting is 18% in US (tax gap of ≈500B)
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP (≈800B) in Europe (Murphy 2019) under-reporting is 18% in US (tax gap of ≈500B)
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion
- Tax Evasion and Avoidance tend to be stable in time, so consumption and saving decisions are likely to take non-compliance into account

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP (≈800B) in Europe (Murphy 2019) under-reporting is 18% in US (tax gap of ≈500B)
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion
- Tax Evasion and Avoidance tend to be stable in time, so consumption and saving decisions are likely to take non-compliance into account
- We develop a model to study the optimal evasion and avoidance decision in an inter-temporal setting

· Contributions in a static framework (joint avoidance/evasion):

· Contributions in a static framework (joint avoidance/evasion):

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016; 2017) explore the cases of bounded rationality and optimal enforcement
- · Contributions in a dynamic framework (only evasion):

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016; 2017) explore the cases of bounded rationality and optimal enforcement
- Contributions in a dynamic framework (only evasion):
 - Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016; 2017) explore the cases of bounded rationality and optimal enforcement
- Contributions in a dynamic framework (only evasion):
 - Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
 - Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016; 2017) explore the cases of bounded rationality and optimal enforcement
- Contributions in a dynamic framework (only evasion):
 - Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
 - Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle
 - · Bernasconi et al. (2015; 2019) study roles of uncertainty and habit

Research Goals

· Characterize optimal avoidance and evasion

Research Goals

- Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance and revenues

Research Goals

- · Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance and revenues
- Characterize optimal fiscal parameters for the government under various objectives
 - minimizing evasion
 - · minimizing non-compliance
 - maximizing revenues
 - maximizing growth

Model

Avoidance and evasion differ in their level of sophistication

· Evasion is cost-less but more risky

- · Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit

- · Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

Both f and β depend on the fiscal and tax administration specifics

• Low vulnerability to avoidance (high f, low β) when:

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

- Low vulnerability to avoidance (high f, low β) when:
 - Tax code is simpler and less ambiguous

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- · Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

- Low vulnerability to avoidance (high f, low β) when:
 - · Tax code is simpler and less ambiguous
 - Legal/investigative resources of tax authorities are higher

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- · Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

- Low vulnerability to avoidance (high f, low β) when:
 - Tax code is simpler and less ambiguous
 - Legal/investigative resources of tax authorities are higher
 - Courts have higher effectiveness

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- · Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

Both f and β depend on the fiscal and tax administration specifics

- Low vulnerability to avoidance (high f, low β) when:
 - · Tax code is simpler and less ambiguous
 - Legal/investigative resources of tax authorities are higher
 - Courts have higher effectiveness

The agent suffers from fiscal illusion

Modelling features and assumptions

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less but more risky
 - · Certainly and entirely **detected and fined** (η) upon audit
- · Avoidance costs f(a) but is successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \, \text{Successful avoidance} \leftrightarrow \text{undetected/unchallenged/deemed legitimate}$

Both f and β depend on the fiscal and tax administration specifics

- Low vulnerability to avoidance (high f, low β) when:
 - Tax code is simpler and less ambiguous
 - Legal/investigative resources of tax authorities are higher
 - Courts have higher effectiveness

The agent suffers from fiscal illusion

· The effect of compliance on revenues is overlooked

The agent's utility increases in the consumption of a **privately produced** good c_t and a **publicly produced** good g_t

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - \overline{c_m}\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

 \cdot c_m is a minimum consumption level

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1 - \delta}}{1 - \delta} + v\left(g_t\right)$$

- \cdot c_m is a minimum consumption level
- δ drives concavity of utility from c_t

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{(c_t - c_m)^{1-\delta}}{1-\delta} + \mathbf{V}(g_t)$$

- \cdot c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- $v(\bullet)$ is an increasing and concave function

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

- \cdot c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{c_t-c_m}$

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

- \cdot c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- · $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{c_t-c_m}$

• Lower risk aversion when c_t is higher (DARA)

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

- c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{c_t-c_m}$

- Lower risk aversion when c_t is higher (DARA)
- Higher risk aversion when either δ or c_m is higher

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[\mathbf{y}_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[\mathbf{y}_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - \mathbf{c}_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

Expenses:

• Consumption, c_t

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \boxed{\tau y_{t} \left(1 - e_{t} - a_{t} \right)} - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - · Share of income avoided a_t and evaded e_t

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} [dk_{t}] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - · Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\boxed{\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] \left[d\Pi_{t} \right]}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - · Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- Fine costs

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - · Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- · Fine costs
 - Expected cost of fine in case of detection is $\eta \tau y_t [e_t + (1 \beta) a_t]$

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - · Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- Fine costs
 - Expected cost of fine in case of detection is $\eta \tau y_t [e_t + (1 \beta) a_t]$
 - · Audits follow a Poisson jump process $d\Pi_t$ with frequency λ

The optimization problem

$$\max_{\left\{c_{t},e_{t},a_{t}\right\}_{t\in\left[t_{0},\infty\right[}}\mathbb{E}_{t_{0}}\left[\int_{t_{0}}^{\infty}\frac{\left(c_{t}-c_{m}\right)^{1-\delta}}{1-\delta}e^{-\rho\left(t-t_{0}\right)}dt\right]$$

under the capital dynamics:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Analysis

$$a^* = (f')^{-1} \tau \beta,$$

$$a^* = (f')^{-1} \tau \beta,$$

$$a^* = (f')^{-1} \tau \beta,$$

Where:

$$(f')^{-1}$$

Inverse of the marginal cost of avoidance

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*,$$

Where:

$$(f')^{-1}$$

Inverse of the marginal cost of avoidance

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - \mathbf{H}}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*,$$

Where:

$$(f')^{-1}$$

Inverse of the marginal cost of avoidance

$$\begin{aligned} a^* &= \left(f'\right)^{-1} \tau \beta, \\ e_t^* &= \frac{k_t - \mathbf{H}}{\tau \eta A k_t} \left[1 - \left(\lambda \eta\right)^{\frac{1}{\delta}}\right] - \left(1 - \beta\right) a^*, \end{aligned}$$

Where:

$$(f')^{-1}$$

$$H:=\tfrac{c_m}{A[\tau\beta a^*-f(a^*)+(1-\tau)]}$$

Inverse of the marginal cost of avoidance

 $H := \frac{c_m}{A[\tau \beta a^* - f(a^*) + (1-\tau)]}$ PDV of future c_m discounted by TFP corrected by tax and avoidance

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*,$$

$$c_t^* = c_m + (k_t - H) \left(\frac{\rho + \lambda}{\delta} + \frac{\delta - 1}{\delta} \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau \beta a^* - f(a^*) \right] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right)$$

 $a^* = (f')^{-1} \tau \beta$.

Where:

$$(f')^{-1}$$

$$H:=rac{c_m}{A[aueta a^*-f(a^*)+(1- au)]}$$

Inverse of the marginal cost of avoidance

PDV of future c_m discounted by

TFP corrected by tax and avoidance

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

· Avoidance balances marginal costs/benefits relative to evasion

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful
- \cdot Risk to be audited affects equally a_t and e_t

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful
- \cdot Risk to be audited affects equally a_t and e_t
 - Optimal risk management uses the tool with higher correlation

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful
- · Risk to be audited affects equally a_t and e_t
 - · Optimal risk management uses the tool with higher correlation
 - Avoidance costs are independent of audit ightarrow lower correlation

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful
- · Risk to be audited affects equally a_t and e_t
 - · Optimal risk management uses the tool with higher correlation
 - Avoidance costs are independent of audit ightarrow lower correlation
 - Evasion is used for managing the risk to be audited

Optimal avoidance and evasion

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- Two risks: to be audited and avoidance to be (un)successful
- · Risk to be audited affects equally a_t and e_t
 - · Optimal risk management uses the tool with higher correlation
 - Avoidance costs are independent of audit \rightarrow lower correlation
 - Evasion is used for managing the risk to be audited
- Optimal avoidance manages just its risk of being unsuccessful

Evasion dynamics

Consumption dynamics

a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ			
η			
β			
τ			

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ			
η			
β			
au			

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ			
η			
β			
au			

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

are expected revenues collected:

· Revenues from declaration

a*	e _t *	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ			
η			
β			
au			

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- · Expected revenues from enforcement

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η				
β				
τ				

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- Expected revenues from enforcement

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β				
τ				

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- Expected revenues from enforcement

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β	+	+/-	+	_
τ				

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- Expected revenues from enforcement

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β	+	+/-	+	_
τ	+	_	+/-	+/-

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- · Expected revenues from enforcement

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β	+	(+/-)	+	_
τ	+	_	+/-	(+/-)

 $\frac{\partial Col}{\partial Row}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \lambda \eta \tau y_{t}\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]dt$$

- · Revenues from declaration
- Expected revenues from enforcement

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m>0$

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{>}{\geq} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{>} \frac{1}{1-\beta}.$$

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \gtrless 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \leqslant \frac{1}{1 - \beta}.$$

· If the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is high, e is decreasing in β

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{\geq}{\geq} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{>} \frac{1}{1-\beta}.$$

- If the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is high, e is decreasing in β
 - The semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is higher when β is bigger

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{\geq}{=} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{=} \frac{1}{1-\beta}.$$

- If the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is high, e is decreasing in β
 - The semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is higher when β is bigger
- In countries where avoidance is more successful, reducing vulnerability to avoidance leads to more evasion

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{>}{\underset{\sim}{=}} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{\underset{\sim}{=}} \frac{1}{1-\beta}.$$

- If the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is high, e is decreasing in β
 - The semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is higher when β is bigger
- In countries where avoidance is more successful, reducing vulnerability to avoidance leads to more evasion

When $c_m > 0$ the increase in evasion is more likely than if $c_m = 0$

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Tax revenues display a Laffer curve behaviour

• When au is <u>low</u>, raising au <u>increases</u> revenues

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- · When au is <u>high</u>, raising au <u>decreases</u> revenues

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- When au is high, raising au decreases revenues
- An increase of au has three impacts on revenues:

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- \cdot When au is <u>high</u>, raising au <u>decreases</u> revenues
- An increase of au has three impacts on revenues:
 - 1. Positive Marginal tax increase

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- \cdot When au is <u>high</u>, raising au <u>decreases</u> revenues
- An increase of τ has three impacts on revenues:
 - 1. Positive Marginal tax increase
 - 2. Positive Reduction of evasion

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- When au is high, raising au decreases revenues
- An increase of au has three impacts on revenues:
 - 1. Positive Marginal tax increase
 - 2. Positive Reduction of evasion
 - 3. Negative Increase in avoidance

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- When au is <u>low</u>, raising au <u>increases</u> revenues
- \cdot When au is <u>high</u>, raising au <u>decreases</u> revenues
- An increase of au has three impacts on revenues:
 - 1. Positive Marginal tax increase
 - 2. Positive Reduction of evasion
 - 3. Negative Increase in avoidance
- \cdot The higher the β , the lower the revenue-maximizing tax rate

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Tax revenues display a Laffer curve behaviour

- When τ is <u>low</u>, raising τ <u>increases</u> revenues
- When au is high, raising au decreases revenues
- An increase of au has three impacts on revenues:
 - 1. Positive Marginal tax increase
 - 2. Positive Reduction of evasion
 - 3. Negative Increase in avoidance
- \cdot The higher the β , the lower the revenue-maximizing tax rate

In countries where avoidance is more successful, the revenue-maximizing tax rate (and revenues) are lower

The Avoidance Laffer Curve

Ratio of expected revenues collected to capital by au and $f(a_t) = \omega a_t^{\gamma}$

Conclusion

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ Avoidance costs f

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

 \cdot Increasing both f' and f lowers avoidance and evasion

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- Two components of avoidance costs:

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- Two components of avoidance costs:
 - · Knowledge costs: Effort/Expertise to identify the "loophole" to exploit

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - Cannot be told apart from those of "intended" economic activities

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - · Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - · Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

Measures to deter avoidance through f and β

Simplifying the tax system

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - deductions, exemptions and preferential treatments

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - deductions, exemptions and preferential treatments
- Increasing the litigation budget of the tax administration

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - · Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - deductions, exemptions and preferential treatments
- Increasing the litigation budget of the tax administration
- · Implementing anti-avoidance reforms at (multi)national level

Avoidance deterrence might increase evasion:

1. Avoidance probability of success β :

- 1. Avoidance probability of success β :
 - Decreasing a <u>low</u> β reduces both avoidance and evasion

- 1. Avoidance probability of success β :
 - Decreasing a <u>low</u> β reduces both avoidance and evasion
 - Decreasing a $\underline{\mathsf{high}}\ \beta$ entails an increase of evasion

- 1. Avoidance probability of success β :
 - Decreasing a <u>low</u> β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$

- 1. Avoidance probability of success β :
 - Decreasing a low β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate τ :

Avoidance deterrence might increase evasion:

- 1. Avoidance probability of success β :
 - Decreasing a low β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate τ :

Decreasing au reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

Avoidance deterrence might increase evasion:

- 1. Avoidance probability of success β :
 - Decreasing a low β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate τ :

Decreasing au reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

We develop the first dynamic model with joint avoidance/evasion

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

Leads to the emergence of a Laffer curve

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- Provides a possible interpretation for the Yitzhaki puzzle

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

Avoidance deterrence requires specific policies:

• Reduction of β or increase of f

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

- Reduction of β or increase of f
 - · Long-run: Fiscal/judiciary reforms

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

- Reduction of β or increase of f
 - Long-run: Fiscal/judiciary reforms
 - · <u>Short-run</u>: Increase of tax administration resources (legal)

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

- Reduction of β or increase of f
 - · Long-run: Fiscal/judiciary reforms
 - · <u>Short-run</u>: Increase of tax administration resources (legal)
- Reduction of τ

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

Avoidance deterrence requires specific policies:

- Reduction of β or increase of f
 - · Long-run: Fiscal/judiciary reforms
 - Short-run: Increase of tax administration resources (legal)
- Reduction of au

Avoidance deterrence might entail an increase of evasion

Thank you!

Questions?