

TEORÍA LOCAL DE CURVAS PARAMETRIZADAS

Alan Reyes-Figueroa Geometría Diferencial

(AULA 03) 20.ENERO.2021

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Definimos un vector normal unitario $\mathbf{n}(s) \in \mathbb{R}^2$ de modo que las bases ortonormales $\{\mathbf{t}(s), \mathbf{n}(s)\}$ y $\{\mathbf{e}_1, \mathbf{e}_2\}$ tengan la misma orientación.

Como $\mathbf{t}(s) \cdot \mathbf{t}(s) = |\mathbf{t}(s)|^2 = 1$, diferenciando respecto de s

$$2\mathbf{t}'(s) \cdot \mathbf{t}(s) = \mathbf{t}'(s) \cdot \mathbf{t}(s) + \mathbf{t}(s) \cdot \mathbf{t}'(s) = 0.$$

Luego, $\mathbf{t}(s)$ y $\mathbf{t}'(s)$ son ortogonales, y se tiene que

$$\alpha''(s) = \mathbf{t}'(s) = \kappa(s)\mathbf{n}(s).$$

Definición

El número $\kappa(s)$ se llama la **curvatura** de α en el punto s.

El signo de $\kappa(s)$ indica la dirección en la cual rota la curva α (o su tangente). $\kappa(s) > o$ indica que la curva rota a la izquierda, $\kappa < o$ indica que rota hacia la derecha.

A la recta generada por el vector $\mathbf{n}(s)$ se le llama la recta normal.

Definición

Los puntos donde $\alpha''(s) = 0$ se llaman **puntos de inflexión**, y corresponden a aquellos puntos donde la curvatura κ cambia de signo. Se tiene el siguiente sistema de EDOs

$$\mathbf{t}'(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}), \quad \mathbf{n}'(\mathbf{s}) = -\kappa(\mathbf{s})\mathbf{t}(\mathbf{s}),$$

o en notación matricial

$$\begin{pmatrix} \mathbf{t}'(\mathbf{s}) \\ \mathbf{n}'(\mathbf{s}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \kappa(\mathbf{s}) \\ -\kappa(\mathbf{s}) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{t}(\mathbf{s}) \\ \mathbf{n}(\mathbf{s}) \end{pmatrix}.$$

Estas ecuaciones son llamadas las fórmulas de Frenet.

Fijemos $s \in I$, y sea $P = \alpha(s)$, y sea ℓ la recta normal a α en P. Tomemos otro punto de la curva $Q = \alpha(s+h)$. Consideremos la recta normal m a α en Q. Y sea C el punto de intersección de las rectas ℓ y m.

Es posible mostrar que al tomar $h \to o$, el punto C se estabiliza. Este punto resulta ser el centro de un círculo, que es tangencial a la curva en el punto P,

Definición

Este círculo con centro C tangente a la cuva α en el punto $\alpha(s) = P$ se llama el **círculo osculador** a α en s.

Ejemplo:

Consideremos un círculo de radio r> o en \mathbb{R}^2 . Su parametrización por longitud de arco es

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Luego,
$$\mathbf{t}(s) = \alpha'(s) = (-\sin\frac{s}{r}, \cos\frac{s}{r})$$
, $\mathbf{n}(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t}(s) = (-\cos\frac{s}{r}, -\sin\frac{s}{r})$
y $\alpha''(s) = (-\frac{1}{r}\cos\frac{s}{r}, -\frac{1}{r}\sin\frac{s}{r})$.
De ahí que

$$\mathbf{t}' = \frac{1}{r}\mathbf{n} \Rightarrow \kappa(\mathbf{s}) = \frac{1}{r}, \ \forall \mathbf{s}.$$

• Si α es un círculo, su curvatura $\kappa(s)$ es constante.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

- Caso $\kappa = o$: $\kappa(s) = o \Leftrightarrow \alpha''(s) = o \Leftrightarrow \alpha(s) = o + vs$ es una recta.
- Caso $\kappa >$ 0: (\Leftarrow) Acabamos de mostrar que un círculo tiene curvatura constante.

 (\Rightarrow) Considere la cantidad $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s)$. Observe que al derivar

$$\left(\alpha(s) + \frac{1}{\kappa}\mathbf{n}(s)\right)' = \mathbf{t}(s) - \frac{1}{\kappa}\kappa\mathbf{t}(s) = \mathbf{t}(s) - \mathbf{t}(s) = \mathbf{0},$$

de modo que $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s) = C$ es constante. Esto muestra que α es un trazo de circunferencia con centro en C.

• Toda curva plana regular α , con curvatura no nula en el punto s, posee un círculo centrado en C(s):

$$C(s) + \frac{1}{\kappa(s)}\mathbf{n}(s),$$

su círculo osculador.

- Este círculo es tangente a α en el punto s (punto de contacto de orden 2).
- La curva C(s) formada por todos los centros de estos círculos osculadores a α , $s \mapsto C(s) + \frac{1}{\kappa(s)} \mathbf{n}(s)$, se llama la **evoluta** o **curva focal** de α .

Proposición

Sea α una curva plana regular. El radio de círculo osculador de α en s está dado por $\rho(s) = 1/\kappa(s)$.

Teoría local de curvas en \mathbb{R}^3

Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco (α es clase C^3 y regular). Entonces $|\alpha'(s)| = 1$, para todo $s \in I$.

Como $|\alpha'(s)|$ es constante, la segunda derivada $|\alpha''(s)|$ mide la tasa de variación de la dirección de $\alpha'(s)$.

Así, $|\alpha''(s)|$ proporciona una medida de cuán rápido la curva α se aleja de la recta tangente:

Definición

Sea $\alpha: \mathbf{I} \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(s) = |\alpha''(s)|.$$

- $\kappa(s) \ge 0$, ya que corresponde a la norma de un vector.
- Si $\alpha(s)=\mathbf{u}+\mathbf{v}s$ es una recta en \mathbb{R}^3 , $\mathbf{u},\mathbf{v}\in\mathbb{R}^3$, $\mathbf{v}\neq\mathbf{0}$, entonces

$$\alpha'(s) = \mathbf{v}, \ \alpha''(s) = \mathbf{o}, \ \forall s \Rightarrow \kappa(s) = \mathbf{o}, \ \forall s.$$

• Recíprocamente, si α es una curva tal que $\kappa(s) = 0$, $\forall s$, entonces $\alpha''(s) = 0$ y por integración, $\alpha(s) = \mathbf{u} + \mathbf{v}s$ es una recta.

Observe que $\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$. Diferenciando respecto de s $2\alpha''(s) \cdot \alpha'(s) = \alpha''(s) \cdot \alpha'(s) + \alpha'(s) \cdot \alpha''(s) = 0$.

Luego, $\alpha''(s)$ y $\alpha'(s)$ son ortogonales.

Si $\alpha''(s) \neq \mathbf{0}$, podemos definir un vector unitario $\mathbf{n}(s)$ en la dirección de $\alpha''(s)$ por

$$\alpha''(s) = \kappa(s)\mathbf{n}(s).$$

Además, denotamos $\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s})$.

Tenemos entonces

$$\mathbf{n}(\mathbf{s}) \perp \mathbf{t}(\mathbf{s}), \ \ \forall \mathbf{s} \ \mathsf{donde} \ \kappa(\mathbf{s}) \neq \mathbf{0}.$$

El vector $\mathbf{t}(s)$ es el vector tangente a α en s. El vector $\mathbf{n}(s)$ se llama el vector normal a α en s. El plano generado por $\langle \mathbf{t}(s), \mathbf{n}(s) \rangle$ se llama el **plano osculador** o **plano osculante** a α en s.

Obs: Si $\alpha''(s) = \mathbf{o}$, el vector $\mathbf{n}(s) = \mathbf{o}$ y el plano osculador no está definido. Los puntos donde $\alpha''(s) = \mathbf{o}$ se llaman puntos singulares de orden 1 (los puntos donde $\alpha'(s)$ se llaman puntos singulares de orden o).

En lo que sigue, nos restringimos a curvas sin puntos singulares de orden o ó 1.

El vector unitario

$$\boldsymbol{b}(s) = \boldsymbol{t}(s) \times \boldsymbol{n}(s)$$

es normal al plano osculador y se llama el **vector binormal** a α en s.

Como $|\mathbf{b}(s)| = |\mathbf{t}(s)| \cdot |\mathbf{n}(s)| = 1$, entonces $|\mathbf{b}(s)|$ mide la tasa de variación del ángulo del plano osculador en una vecindad de s.

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

•
$$\mathbf{t}'(\mathbf{s}) = \alpha''(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}).$$

•
$$\mathbf{b}'(s) = (\mathbf{t}(s) \times \mathbf{n}(s))' = \mathbf{t}'(s) \times \mathbf{n}(s) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= (\kappa(s)\mathbf{n}(s) \times \mathbf{n}(s)) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= \mathbf{t}(s) \times \mathbf{n}'(s)$$

Luego, $\mathbf{b}'(s) \perp \mathbf{t}(s)$, y como $\mathbf{b}'(s) \perp \mathbf{b}(s)$ (¿por qué?), entonces $\mathbf{b}'(s)$ es paralelo a $\mathbf{n}(s)$.

De ahí que podemos escribir $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$.

Definición

El número τ (s) se llama la **torsión** de α en el punto s

- Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.
- Si α(s) es una curva plana, entonces α(I) está contenida en un plano, el cual coincide con el plano osculador ⟨t(s), n(s)⟩, ∀s.
 Consecuentemente, τ(s) = 0, ∀s.
- Reciprocamente, si $\tau(s) = 0$, $\forall s$, entonces $\mathbf{b}'(s) = 0 \cdot \mathbf{n}(s) = \mathbf{0} \Rightarrow \mathbf{b}(s)$ es constante, digamos $\mathbf{b}(s) = \mathbf{b}_0 \in \mathbb{R}^3$. Luego,

$$(\alpha(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}})' = \alpha'(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{t}(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{o}.$$

Luego $\alpha(s) \cdot \mathbf{b}_0$ es constante = $\mathbf{o} \Rightarrow \alpha$ es una curva contenida en un plano normal a \mathbf{b}_0 , y α es una curva plana.

Al cambiar la orientación de α , el vector tangente $\mathbf{t}(s)$ cambia de dirección, el vector normal $\mathbf{n}(s)$ no cambia $\Rightarrow \mathbf{b}(s)$ cambia de dirección. Así, la curvatura κ y la torsión τ son invariantes al cambiar orientación.

Para cada $s \in I$ hemos definido tres vectores unitarios $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$. Las derivadas de estos vectores satisfacen $\mathbf{t}'(s) = \kappa(s)\mathbf{n}(s)$, $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$. Además $\{\mathbf{t}(s),\mathbf{n}(s),\mathbf{b}(s)\}$ es una base ortonormal en cada punto $\alpha(s) \Rightarrow \mathbf{n}(s) = \mathbf{b}(s) \times \mathbf{t}(s)$ y

$$\mathbf{n}'(s) = (\mathbf{b}(s) \times \mathbf{t}(s))' = \mathbf{b}'(s) \times \mathbf{t}(s) + \mathbf{b}(s) \times \mathbf{t}'(s)$$

$$= [\tau(s)\mathbf{n}(s)] \times \mathbf{t}(s) + \mathbf{b}(s) \times [\kappa(s)\mathbf{n}(s)]$$

$$= \tau(s)[\mathbf{n}(s) \times \mathbf{t}(s)] + \kappa(s)[\mathbf{b}(s) \times \mathbf{n}(s)]$$

$$= -\kappa(s)\mathbf{t}(s) - \tau(s)\mathbf{b}(s).$$

Obtenemos entonces el sistema de EDOs

$$\mathbf{t}'(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}),$$

$$\mathbf{n}'(\mathbf{s}) = -\kappa(\mathbf{s})\mathbf{t}(\mathbf{s}) - \tau(\mathbf{s})\mathbf{b}(\mathbf{s}), \quad \forall \mathbf{s} \in I.$$

$$\mathbf{b}'(\mathbf{s}) = \tau(\mathbf{s})\mathbf{n}(\mathbf{s}),$$

que en forma matricial, se escribe como

$$\begin{pmatrix} \mathbf{t}'(s) \\ \mathbf{n}'(s) \\ \mathbf{b}'(s) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \kappa(s) & \mathbf{0} \\ -\kappa(s) & \mathbf{0} & -\tau(s) \\ \mathbf{0} & \tau(s) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{t}(s) \\ \mathbf{n}(s) \\ \mathbf{b}(s) \end{pmatrix}, \quad \forall s \in I.$$

Estas EDO se llaman las fórmulas de Frenet.

Definición

El sistema $\{t(s), n(s), b(s)\}$ se llama el **triedro de** Frenet-Serret, triedro móvil o referencial móvil.

Definición

Al plano $\langle \mathbf{t}(s), \mathbf{b}(s) \rangle$, pasando por $\alpha(s)$, se le llama **plano rectificante**, mientras que al plano $\langle \mathbf{n}(s), \mathbf{b}(s) \rangle$ se le llama el **plano normal**.

Definición

La recta generada por $\mathbf{t}(s)$ es la **recta tangente**, la recta generada por $\mathbf{n}(s)$ es la **recta normal principal**, y la recta generada por $\mathbf{b}(s)$ es la **recta binormal**.

Obs. Usualmente, una curva $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^3$, que es de clase C^3 , regular, y tal que $\kappa(s)$ y $\tau(s)$ nunca se anulan, se llama una **curva de Frenet**.

Físicamente, una curva de Frenet puede pensarse como la deformación de una recta cuando esta es enrollada por la acción de $\kappa(s)$ y torcida por la acción de $\tau(s)$.

El triedro de Frenet proporciona un marco de referencia apropiado para estudiar curvas en \mathbb{R}^3 .

Sea $\alpha:I\to\mathbb{R}^3$ una curva de Frenet (clase C^3 y regular), de modo que $\{\mathbf{t}(s),\mathbf{n}(s),\mathbf{b}(s)\}$ siempre es una base de \mathbb{R}^3 .

Consideramos la expansión de Taylor de $\alpha(s)$ alrededor de s=0

$$\alpha(\mathsf{S}) = \alpha(\mathsf{O}) + \mathsf{S}\alpha'(\mathsf{O}) + \frac{\mathsf{S}^2}{2}\alpha''(\mathsf{O}) + \frac{\mathsf{S}^3}{6}\alpha'''(\mathsf{O}) + o(\mathsf{S}^3).$$

 $(o(s^3) \text{ es un término que satisface } \lim_{s\to o} \frac{o(s^3)}{s^3} = o).$

Como
$$\alpha'(0) = \mathbf{t}(0) = \mathbf{t}, \ \alpha''(0) = \kappa(0)\mathbf{n}(0) = \kappa\mathbf{n} \ \mathbf{y}$$
$$\alpha'''(0) = (\kappa(\mathbf{s})\mathbf{n}(\mathbf{s}))'|_{\mathbf{s}=0} = \kappa'\mathbf{n} + \kappa\mathbf{n}' = \kappa'\mathbf{n} - \kappa^2\mathbf{t} - \kappa\tau\mathbf{b},$$

Al sustituir en el desarrollo de Taylor, obtenemos

$$\alpha(\mathbf{s}) = \alpha(\mathbf{0}) + \mathbf{s}\mathbf{t} + \frac{\mathbf{s}^2}{2}\kappa\mathbf{n} + \frac{\mathbf{s}^3}{6}(\kappa'\mathbf{n} - \kappa^2\mathbf{t} - \kappa\tau\mathbf{b}) + o(\mathbf{s}^3)$$

$$= \alpha(\mathbf{0}) + \left(\mathbf{s} - \frac{\kappa^2\mathbf{s}^3}{6}\right)\mathbf{t} + \left(\frac{\kappa\mathbf{s}^2}{2} - \frac{\kappa'\mathbf{s}^3}{6}\right)\mathbf{n} - \left(\frac{\kappa\tau\mathbf{s}^3}{6}\right)\mathbf{b} + o(\mathbf{s}^3).$$
Tomamos ahora un sistema de coordenasa *Oxyz*, de modo que el origen *O*

Tomamos ahora un sistema de coordeñasa *Oxyz*, de modo que el origen *C* coincide con $\alpha(0)$, $\mathbf{t} = (1, 0, 0)$, $\mathbf{n} = (0, 1, 0)$ y $\mathbf{b} = (0, 0, 1)$.

Entonces, la curva $\alpha(s) = (x(s), y(s), z(s))$ es dada por:

$$\begin{array}{rcl} x(s) & = & s - \frac{1}{6} \kappa^2 s^3 + o(s^3)_x, \\ y(s) & = & \frac{1}{2} \kappa s^2 + \frac{1}{6} \kappa' s^3 + o(s^3)_y, \\ z(s) & = & -\frac{1}{6} \kappa \tau s^3 + o(s^3)_z. \end{array}$$

Cuando s es muy pequeño, podemos aproximar la forma de $\alpha(s)$ por

$$x(s) \approx s,$$

 $y(s) \approx \frac{1}{2}\kappa s^2,$

y esperamos obtener algo parecido a $y = \frac{1}{6}\kappa\tau S^3$. $z = -\frac{1}{6}\kappa\tau X^3$, y $z^2 = \frac{2}{9}\frac{\tau^2}{\kappa}y^3$.

(b) Normal plane

(c) Rectifying plane

Forma canónica local de las curvas de Frenet.

Definición

Sea $\alpha(s): I \subseteq \mathbb{R} \to \mathbb{R}^n$ una curva regular, parametrizada por longitud de arco, y de clase C^n . α es una **curva de Frenet** si en todo punto s, los vectores $\alpha'(s), \alpha''(s), \ldots, \alpha^{(n-1)}(s)$ son l.i.

El **referencial de Frenet** de α se define como $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}$ y está únicamente determinado por

- $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ es una base ortonormal de \mathbb{R}^n .
- Para todo k = 1, ..., n 1, $\langle \mathbf{e}_1, ..., \mathbf{e}_k \rangle = \langle \alpha'(\mathbf{s}), ..., \alpha^{(k)}(\mathbf{s}) \rangle$.
- $\langle \alpha^{(k)}(s), \mathbf{e}_k \rangle > 0$, para $k = 1, \ldots, n-1$.

Obs: Se puede usar el método de Gram-Schmidt para construir el referencial de Frenet a partir de las primeras n-1 derivadas α en s.

Teorema

Sea $\alpha: I \to \mathbb{R}^n$ una curva de Frenet en \mathbb{R}^n , con referencial de Frenet $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$. Entonces, existen funciones $\kappa_1, \kappa_2, \dots, \kappa_{n-1}$, definidas en I, con $\kappa_1, \dots, \kappa_{n-1} > 0$, tales que κ_i es de clase C^{n-1-i} y

$$\begin{pmatrix} \mathbf{e}_{1}' \\ \mathbf{e}_{2}' \\ \vdots \\ \vdots \\ \mathbf{e}_{n-1}' \\ \mathbf{e}_{n}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa_{1} & 0 & 0 & \dots & 0 \\ -\kappa_{1} & 0 & \kappa_{2} & 0 & \ddots & \vdots \\ 0 & -\kappa_{2} & 0 & \kappa_{3} & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \kappa_{n-2} & 0 \\ \vdots & \ddots & 0 & -\kappa_{n-2} & \dots & \kappa_{n-1} \\ 0 & \dots & 0 & 0 & -\kappa_{n-1} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \vdots \\ \vdots \\ \mathbf{e}_{n-1} \\ \mathbf{e}_{n} \end{pmatrix}, \ \forall s.$$

Definición

 κ_i se llama la i**-ésima curvatura de Frenet**, y el sistema anterior se llaman las **fórmulas de Frenet**.

Prueba:

Como $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ es una base ortonormal de \mathbb{R}^n , podemos descomponer

$$\mathbf{e}_i' = \sum_{j=1}^n \langle \mathbf{e}_i', \mathbf{e}_j \rangle \mathbf{e}_j, \quad i = 1, \dots, n.$$

Para cada 1 $\leq i \leq n-1$, el vector \mathbf{e}_i está en el subespacio generado por $\alpha'(\mathbf{s}), \alpha''(\mathbf{s}), \ldots, \alpha^{(i)}$,

 \Rightarrow \mathbf{e}_{i}' está en el subespacio $\langle \alpha'(s), \alpha''(s), \dots, \alpha^{(i+1)}(s) \rangle = \langle \mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{i+1} \rangle$.

Luego,

$$\langle \mathbf{e}'_i, \mathbf{e}_{i+2} \rangle = \langle \mathbf{e}'_i, \mathbf{e}_{i+3} \rangle = \ldots = \langle \mathbf{e}'_i, \mathbf{e}_n \rangle = 0.$$

Definimos $\kappa_i = \langle \mathbf{e}'_i, \mathbf{e}_{i+1} \rangle$.

Por construcción del referencial de Frenet, para $1 \le i \le n-2$, el signo de $\langle \mathbf{e}_i', \mathbf{e}_{i+1} \rangle$ es el mismo signo de $\langle \alpha^{(i+1)}, \mathbf{e}_{i+1} \rangle$, el cual es positivo (condición 3).

De ahí que $\kappa_1, \kappa_2, \ldots, \kappa_{n-1} > 0$.

Por otro lado, como los \mathbf{e}_i son ortonormales, tenemos $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \mathbf{o}, \, \forall i \neq j$. Derivando en s,

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle' = \langle \mathbf{e}_i', \mathbf{e}_j \rangle + \langle \mathbf{e}_i, \mathbf{e}_j' \rangle = 0.$$

En particular, de la ecuación anterior

$$\langle \mathbf{e}_{i+1}^{\prime},\mathbf{e}_{i}
angle = \langle \mathbf{e}_{i}^{\prime},\mathbf{e}_{i+1}
angle = -\kappa_{i}.\ _{\square}$$

Comentarios:

- Una curva de Frenet rn Rⁿ está contenida en un hiperplano H si, y sólo si, κ_{n-1} = 0.
 Esto es equivalentemente a requerir que e_n sea un vector constante κ_{n-1} = 0, el cual es perpendicular a este hiperplano H.
- Como consecuencia, en ocasiones κ_{n-1} se llama la **torsión** de α .