北京邮电大学 2017-2018 学年第二学期

《高等数学》(下)期末考试试题

考试注意事项: 学生必须将答题内容做在答题纸上, 做在试题纸上均无效

一. 填空题(本大题共10小题,每小题4分,共40分)

1. 设级数
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + n} - \sqrt{n^2 - n}}{n^p}$$
 收敛,则 p 的取值范围是______.

- 2. 已知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径是 3,则幂级数 $\sum_{n=0}^{\infty} na_n (x-1)^{n+1}$ 的收敛区间是
- 3. 设 z = z(x,y) 是由方程 $x^2 + y^2 z = \varphi(x+y+z)$ 所确定的函数,其中 φ 是可导函数,且 $\varphi' \neq -1$,则 dz =_______.
- 4. 曲线 $\Gamma: \begin{cases} x^2+y^2+z^2=6, \\ x+y+z=0 \end{cases}$ 在点 $M_0(1,1,-2)$ 处的法平面方程
- 5. 设 f(x,y) 有连续的偏导数,满足 $f(1,2)=1, f_x'(1,2)=2, f_y'(1,2)=3,$ $\varphi(x)=f(x,2f(x,2x)), 则 \varphi'(1)=\underline{\qquad}.$
 - 6. 设D是由y=x, x=0, y=1所围区域,则 $\iint_D \arctan y dx dy =$ ______.
 - 7. 设 $f(x, y, z) = x^3 + y^3 + xye^z$, 则 **div(grad** $f)|_{(1,1,1)} = ______$.
- 8. 设曲线积分 $\int_L xy^2 dx + y\varphi(x)dy$ 与路径无关,若是 φ 具有连续的导数,且 $\varphi(0) = 0$,则 $\varphi(x) =$ ______.

10. 设 S 表 示 半 球 面 $z = \sqrt{1 - x^2 - y^2}$ 的 上 侧 , 则 曲 面 积 分 $I = \iint_S (1 - xy - z) dx dy = \underline{\hspace{1cm}}.$

二 (8分). 设 $z = f(x+y,xy) + y\varphi(xy)$, 其中 f,φ 有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x^2} \ \pi \ \frac{\partial^2 z}{\partial x \partial y}.$

三(8分). 计算二重积分 $I = \iint_D |y-x^2| dxdy$, 其中积分区域 D 为正方形 $-1 \le x \le 1, 0 \le y \le 2$.

四 (8 分). 试求幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{9^n} x^{2n}$ 的收敛域及和函数.

五 (8 分). 计算曲线积分 $I = \oint_L \frac{ydx - (x-1)dy}{(x-1)^2 + y^2}$, 其中(1) L 为圆周

 $x^2 + y^2 - 2y = 0$ 的正向; (2) L 为椭圆 $4x^2 + y^2 - 8x = 0$ 的正向.

六 (8 分). 在球面 $x^2 + y^2 + z^2 = 1$ 上取 $A(1,0,0), B(0,1,0), C\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$

大圆弧 $\widehat{AB},\widehat{BC},\widehat{CA}$ 围成的位于第一卦限内的球面块记为 S , 计算 $I=\iint_{\mathcal{S}}(x^2+z^2)dS.$

七 (10 分) 在半径为 R 的上半球 $x^2 + y^2 + z^2 \le R^2$ ($0 \le z \le R$) 内嵌入有最大体积的母线平行于 z 轴的圆柱, 求这圆柱的半径和高.

八 (10 分). 计算曲面积分 $I = \iint_S \frac{axdydz + (z+a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 S 为下半球

面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的下侧, a > 0 为常数.