Visual Question Answering

000

Ajit Deshpande A59003350

Parthasarathi Kumar A59003519

Motivation and Problem Definition

- Given a image and question pair, the model needs to predict a corresponding answer.
- Interesting problem at the intersection of vision and NLP.
- Has applications like system for the visually imapired.

Dataset Overview

- VQA Dataset
 - Training Set has 82,783 images from the MSCOCO dataset
 - Each image is 640X480
 - Each image has 3 associated questions
 - Each question has 10 answers from 10 annotators
 - Validation Set 40,504 images and
 Test Set 81,434 images

Question: How many horns does the animal on the left have? Answers: ['2', '2', '2', '2', '1', '2', '2', '2'] Most Common Answer: 2

-----Image-----

Method Overview

Method Details - Text and Image Encoding

- Typical VQA systems have an image encoding component and question/text encoding component.
- CNN based feature encoder pretrained ResNet model
- Questions are padded and made of same length.
- String mapped to embeddings for passing to a LSTM based system

Fusion Strategy - Tiled Attention Model

- Create tiles of the text feature vector
- Repeat the text feature vector to make it the same size as image feature vector
- Add the two feature vectors

Fusion Strategy - Stacked Attention Model

Based on attention where the question embedding used to retrieve the image feature.

Combined with question embedding to create a refined embedding.

Process repeated twice to mimic effective attention over the image features based on question.

Quantitative Results - Training Curves

Quantitative Results - Validation Curves

Model	Training Accuracy	Validation Accuracy
Tiled Attention Model	0.672	0.472
Stacked Attention Model	0.518	0.455

Qualitative Results

System performs well on questions that have a strong relation with the image, "What" type questions?

Question -> What is he doing?

Stacked Answer -> surfing
Tiled Answer -> surfing

Ground truth Answer -> surfing

Question -> What room are they in?

Stacked Answer -> kitchen
Tiled Answer -> kitchen
Ground truth Answer -> kitchen

Question -> What game system are they playing?

Stacked Answer -> wii

Qualitative Results

Failure cases involve questions that are subjective / ambiguous or associated with image features that are difficult to observe

Question -> What color is the volleyball net?

Stacked Answer -> yellow Tiled Answer -> blue

Ground truth Answer -> red

Stacked Answer -> wood Tiled Answer -> wood Question -> What color is the girls sweater?

Question -> Overcast or sunny?

Stacked Answer -> sunny
Tiled Answer -> sunny
Ground truth Answer -> overcast

Question -> How many boats are in the water?

Question -> Is the person going uphill or downhill?

Stacked Answer -> man Tiled Answer -> downhill Ground truth Answer -> uphill

Conclusion

• We explored the problem of VQA with 2 different attention mechanisms.

- Extension of this work would be to analyse the intermediate attention maps to understand where the images focus to predict the answer the question
- Explore more sophisticated attention based architectures like transformers.
- Explore the literature of visual grounding to improve the VQA performance by intermediate supervision on the attention maps generated by the fusion component.

Thank You!