

ING. INFORMÁTICA – ING. EN TELECOMUNICACIONES ANÁLISIS MATEMÁTICO II

GUIA DE EJERCICIOS Nº 2 - Respuestas

Ejercicio 2

a) b) y d) Son primitivas, mientras que c) y e) no lo son.

Ejercicio 3

Ninguna es verdadera

Ejercicio 6

a)
$$\frac{-2}{\sqrt[3]{3 \times + 6}} + k$$

b)
$$\frac{-2}{3}\sqrt{4-3x} + k$$

d)
$$\arcsin\left(\frac{x}{3}\right) + k$$

e)
$$9 \operatorname{sen} (\ln x) + k$$

f)
$$\frac{1}{2} \ln \left| 2 x^3 + x^2 \right| + k$$

g)
$$\frac{1}{10} \ln \left| 5 x^2 + 10 \right| + k$$

h)
$$2e^{\sqrt{x}} - 2\sqrt{x} + k$$

i)
$$-\frac{3}{4} (\cos x)^{4/3} + k$$

j)
$$\frac{1}{4} (tg x)^{4/3} + k$$

k)
$$\frac{3}{4} (1 + \ln x)^{4/3} + k$$

$$I) - e^{\cos x} + k$$

Ejercicio 7

a)
$$\frac{x^4}{4} \ln x - \frac{x^4}{16} + k$$

b) x arctg x -
$$\frac{1}{2}$$
 ln $\left| 1 + x^2 \right| + k$

c)
$$x \operatorname{sen} x + \cos x + k$$

d)
$$\frac{\text{sen}^2 x}{2} + k$$

m)
$$\frac{-1}{2 \ln^2 x} + k$$

n)
$$\ln |\ln x + 1| + k$$

o)
$$2 \text{ tg x} + \frac{1}{\cos x} + k$$

p)
$$\frac{1}{3} e^{(3 \times 3)} + k$$

q)
$$\frac{\text{sen}^5 x}{5} + k$$

r)
$$\frac{4}{3} \left(\sqrt{x} + 2 \right)^{3/2} + k$$

s)
$$\frac{1}{2}$$
 arct (2t) + k

t)
$$\frac{-1}{60 (3 x^4 + 24 x)^5} + k$$

u)
$$\frac{\text{sen}\left(3^{x}+1\right)}{\ln 3}+k$$

e)
$$x^2 e^x - 2x e^x + 2e^x + k$$

f)
$$\frac{2}{3} x^{3/2} \ln x - \frac{4}{9} x^{3/2} + k$$

g)
$$\frac{2}{3}$$
 x $(x+3)^{3/2} - \frac{4}{15} (x+3)^{5/2} + k$

h) x arcsen x +
$$\sqrt{1 - x^2}$$
 + k

i)
$$x \ln x - x + k$$

ING. INFORMÁTICA – ING. EN TELECOMUNICACIONES ANÁLISIS MATEMÁTICO II

j)
$$\frac{2}{3}$$
 x $(x-1)^{3/2}$ - $\frac{4}{15}$ $(x-1)^{5/2}$ + k

k)
$$\frac{3^{-x}}{\ln 3}$$
 (-x - $\frac{1}{\ln 3}$) + k

1)
$$3 \ln x x^{1/3} - 9 x^{1/3} + k$$

m)
$$\ln x \frac{x^{10}}{10} - \frac{1}{100} x^{10} + k$$

n)
$$\frac{-e^x \cos x + e^x \text{senx}}{2} + k$$

o)
$$(x-1) \ln |1-x| + (1-x) + k$$

p)
$$\frac{x \operatorname{sen}(\ln x) - x \operatorname{cos}(\ln x)}{2} + k$$

Ejercicio 8

a)
$$-\frac{1}{2} \ln |x| + \frac{1}{2} \ln |x-2| + k$$

b)
$$\ln |x-3| - \ln |x-2| + k$$

c)
$$-\frac{1}{8} \ln |x+1| + \frac{1}{24} \ln |x-3| + \frac{1}{12} \ln |x+3| + k$$

d)
$$\frac{1}{4} \ln |x-1| + \frac{1}{2} \frac{1}{(x+1)} - \frac{1}{4} \ln |x+1| + k$$

e)
$$\frac{1}{3}\ln|t| - \frac{1}{12}\ln|t+3|\frac{1}{2}\frac{1}{(t+1)} - \frac{1}{4}\ln|t+1| + k$$

f)
$$x + 9 \ln |x - 3| - 4 \ln |x - 2| + k$$

Ejercicio 9

a)
$$\frac{1}{3} \ln |x^3 + 9x| + k$$

b)
$$-\frac{1}{2} e^{1/x^2} + k$$

c)
$$e^{e^x} + k$$

d)
$$\frac{1}{2} e^{(x^2+3)} + k$$

e)
$$\frac{1}{2} \ln \left| e^{2x} - 4 \right| - \frac{1}{2} \ln \left| e^{2x} - 3 \right| + k$$

f)
$$\frac{-\sin x \cos x + x}{2} + k$$

g)
$$-(x+1)e^{-x}-e^{-x}+k$$

i)
$$\frac{1}{4} \arctan\left(\frac{x}{4}\right) + k$$

j)
$$-\frac{1}{2}$$
 [(1-x) ln(1-x)-(1-x)] + k

k)
$$x \frac{\text{sen } (3x)}{3} + \frac{1}{9} \cos (3x) + k$$

1)
$$\frac{-1}{30 (1+6 \text{ tg x})^5} + k$$

m)
$$\frac{x^2}{2}$$
 arctg x - $\frac{1}{2}$ x + $\frac{1}{2}$ arctg x + k

n)
$$\ln |x| - \frac{8}{x} + \frac{1}{3x^6} + k$$

o)
$$\frac{2}{3} (\log x)^{3/2} + \lg x + k$$

p)
$$\frac{5}{12} (1+2 \ln x)^{6/5} + k$$

q)
$$3(x^2-4x+5)^{1/2}+k$$

ING. INFORMÁTICA – ING. EN TELECOMUNICACIONES ANÁLISIS MATEMÁTICO II

r)
$$e^{-x/2} \operatorname{sen}\left(\frac{x}{2}\right) - e^{-x/2} \cos\left(\frac{x}{2}\right) + k$$

t) In
$$\left| \frac{\sin x - 3}{\sin x + 3} \right|^{1/6} + k$$

s)
$$-x^2 \sqrt{4-x^2} - \frac{2}{3} (4-x^2)^{3/2} + k$$

Ejercicio 10

$$C(x) = 2x^{3/2} - 50$$

Ejercicio 11

Hay solo una curva que cumple estas condiciones. C (x) = x^3 + 1

Ejercicio 12

b)
$$5\sqrt{3}$$

Ejercicio 13

Ejercicio 15

Ejercicio 17

b)
$$\frac{75}{4}$$

f)
$$\frac{5}{2}$$

g)
$$\frac{9}{2} \pi$$

h)
$$1-\sqrt{2}$$

i)
$$\frac{1}{3}\sqrt{8} - \frac{1}{3}$$

$$j) \quad \frac{\sqrt{8}}{6}$$

k)
$$\frac{3}{2} - \frac{\sqrt{10}}{2}$$

Ejercicio 18

Ejercicio 19

k = 600 y w = 2.88 J