# ALTERNATIVE SIMPLEX METHOD (DUAL SIMPLEX METHOD)

Recall that the method deals with situations where we have a simplex tableau with the following features:

- Some of the right-hand side values  $(b_i)$  are negative
- All the reduced costs satisfy the optimality condition.

The method <u>attempts to restore feasibility</u> (make the right-hand side values non-negative) without forcing the reduced costs to violate the optimality condition.

Dual simplex algorithm is just the <u>opposite</u> of the primal simplex algorithm.

If it fails, the conclusion is that the problem is infeasible.

#### **Procedure:**

## 1. Find a negative basic variable.

If there is none we have the optimal solution; if there is more than one <u>find the most negative</u>. Suppose this variable is the basic variable in the r. constraint. This gives the variable to come out of the basis.

## 2. In row r look for negative coefficients a'rj.

If there are none there is no feasible solution to the problem. For negative coefficients  $a'_{rj}$  in this row find the

$$\min \left| \frac{c_j^{'}}{a_{rj}^{'}} \right| \bullet$$

3. Carry out the usual Simplex Transformation with a'rs as pivot.

Dual simplex method differs from the Simplex Method only in the way in which it selects the variables to leave and enter (in that order) the basis.

# **Example:**

**Min Z** = 
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t. 
$$x_1 + 3 \quad x_3 \ge 3$$
  
 $x_2 + 2 \quad x_3 \ge 5$   
 $x_1, x_2, x_3 \ge 0$ 

**Min Z** = 
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t. 
$$-x_1 - 3 x_3 \le -3$$
  
 $-x_2 -2 x_3 \le -5$   
 $x_1, x_2, x_3 \ge 0$ 

$$-x_1$$
 -  $3x_3$  +  $x_4$  = -3  
 $-x_2$  -  $2x_3$  +  $x_5$  = -5

 $NBV = (x_1, x_2, x_3)$   $BV(x_4, x_5) = -3, -5$  (No feasible)

# **Full Simplex Solution**

**Min Z** = 
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t. 
$$x_1 + 3 x_3 \ge 3$$
  
 $x_2 + 2 x_3 \ge 5$   
 $x_1, x_2, x_3 \ge 0$ 

$$x_1 +$$
  $3 x_3 -x_4 + x_6 = 3$   
 $+ 2x_3 -x_5 + x_7 = 5$ 

$$\mathbf{w} = \mathbf{x_6} + \mathbf{x_7}$$

$$-w - x_1 - x_2 - 5x_3 + x_4 + x_5 = -8$$

## **Dual Problem**

Max 
$$Z' = 3y_1 + 5y_2$$

s.t. 
$$y_1 \le 4$$
  
 $y_2 \le 6$   
 $3y_1 + 2y_2 \le 18$ 

$$y_1,y_2 \ge 0$$

# Two-phase(Full) simplex

| BASIS                 | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | <b>X</b> <sub>6</sub> | X <sub>7</sub> | RHS | RATIO |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------------|-----|-------|
| $\mathbf{x}_{6}$      | 1                     | 0                     | 3<                    | -1             | 0              | 1                     | 0              | 3   | 1     |
| <b>X</b> <sub>7</sub> | 0                     | 1                     | 2                     | 0              | -1             | 0                     | 1              | 5   | 2.5<  |
| -w                    | -1                    | -1                    | -5<                   | 1              | 1              | 0                     | 0              | -8  |       |
| -Z                    | 4                     | 6                     | 18                    | 0              | 0              | 0                     | 0              | 0   |       |
| $\mathbf{x}_3$        | 1/3                   | 0                     | 1                     | -1/3           | 0              | 1/3                   | 0              | 1   |       |
| <b>X</b> <sub>7</sub> | 2/3                   | 1                     | 0                     | 2/3            | -1             | -2/3                  | 1              | 3   | 3<    |
| -w                    | 2/3                   | -1                    | 0                     | -2/3           | 1              | 5/3                   | 0              | -3  |       |
| -Z                    | -2                    | 6                     | 0                     | 6              | 0              | -6                    | 0              | -18 |       |
| $\mathbf{x}_3$        | 1/3                   | 0                     | 1                     | -1/2           | 0              | 1/3 /                 | 0 /            | 1   |       |
| $\mathbf{x}_2$        | -2/3                  | 1                     | 0                     | 2/3            | -1             | 2/3                   | 1/             | 3   |       |
| -w                    | 0                     | 0                     | 0                     | 0              | 0              | /1                    | <u>/1</u>      | 0   |       |
| -Z                    | 2                     | 0                     | 0                     | 2              | 6              | <b>/ -2</b>           | /-6            | -36 |       |

# **Dual Solution (with simplex)**

| BASIS                 | $\mathbf{y}_1$ | $\mathbf{y}_2$ | <b>y</b> <sub>3</sub> | <b>y</b> 4 | <b>y</b> 5 | RHS       | RATIO |
|-----------------------|----------------|----------------|-----------------------|------------|------------|-----------|-------|
| <b>y</b> <sub>3</sub> | 1              | 0              | 1                     | 0          | 0          | 4         | -     |
| <b>y</b> 4            | 0              | 1<             | 0                     | 1          | 0          | 6         | 6<    |
| <b>y</b> 5            | 3              | 2              | 0                     | 0          | 1          | 18        | 9     |
| Z'                    | -3             | -5<            | 0                     | 0          | 0          | 0         |       |
| $\mathbf{y}_3$        | 1              | 0              | 1                     | 0          | 0          | 4         | 4     |
| $\mathbf{y}_2$        | 0              | 1              | 0                     | 1          | 0          | 6         | -     |
| <b>y</b> <sub>5</sub> | 3              | 0              | 0                     | -2         | 1          | 6         | 2     |
| Z'                    | -3             | 0              | 0                     | 5          | 0          | <b>30</b> |       |
| $y_3$                 | 0              | 0              | 1                     | 2/3        | -1/3       | 2         |       |
| $\mathbf{y}_2$        | 0              | 1              | 0                     | 1          | 0          | 6         |       |
| $\mathbf{y}_1$        | 1              | 0              | 0                     | -2/3       | 1/3        | 2         |       |
| Z'                    | 0              | 0              | 0                     | 3          | 1          | 36        |       |

# **NEW SOLUTION (Alternative Simplex)**

Initial tableau for the alternative simplex method

| BASIS          | <b>x</b> <sub>1</sub> | $\mathbf{X}_2$ | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | RHS | 1 |
|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----|---|
| $\mathbf{x_4}$ | -1                    | 0              | -3                    | 1                     | 0                     | -3  |   |
| <b>X</b> 5     | 0                     | -1<            | -2                    | 0                     | 1                     | -5< | - |
| <b>-Z</b>      | 4                     | 6              | 18                    | 0                     | 0                     | 0   |   |
| <b>RATIO</b>   |                       | 6<             | 9                     |                       |                       |     | ı |

**Leaving variable x**<sub>5</sub>

**Entering variable x**<sub>2</sub>

Initial and the first tableau for the alternative simplex method



Leaving variable x<sub>4</sub>

**Entering variable x**<sub>3</sub>

Initial and the first two table for the alternative simplex method

| BASIS            | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | RHS |
|------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----|
| $\mathbf{X_4}$   | -1                    | 0                     | -3                    | 1              | 0                     | -3  |
| $X_5$            | 0                     | -1<                   | -2                    | 0              | 1                     | -5< |
| <b>-Z</b>        | 4                     | 6                     | 18                    | 0              | 0                     | 0   |
| <b>RATIO</b>     |                       | 6<                    | 9                     |                |                       |     |
| $\mathbf{X_4}$   | -1                    | 0                     | -3<                   | 1              | 0                     | -3< |
| $\mathbf{X}_2$   | 0                     | 1                     | 2                     | 0              | -1                    | 5   |
| <b>-Z</b>        | 4                     | 0                     | 6                     | 0              | 6                     | -30 |
| <b>RATIO</b>     | 4                     |                       | 2<                    |                |                       |     |
| $\mathbf{X}_3$   | 1/3                   | 0                     | 1                     | -1/3           | 0                     | 1   |
| $\mathbf{X}_{2}$ | -2/3                  | 1                     | 0                     | 2/3            | -1                    | 3   |
| <b>-Z</b>        | 2                     | 0                     | 0                     | 2              | 6                     | -36 |

## **Solution:**

$$X_1 = 0$$
;  $X_2 = 3$ ;  $X_3 = 1$   $Z_{min} = 36$ 

# **Example:**

**Min Z** = 
$$x_1 + x_2$$

s. t. 
$$x_1 + 2x_2 \ge 6$$
  
 $2x1 + x_2 \ge 6$   
 $7x_1 + 8x_2 \le 56$   
 $x_1, x_2 \ge 0$ 

$$-Z + x1 + x2 = 0$$

$$-x_1-2x_2+x_3 = -6$$
  
 $2x_1-x_2+x_4=-6$   
 $7x_1+8x_2+x_5=56$ 

| BASIS                 | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> 4 | <b>X</b> 5 | RHS |
|-----------------------|-----------------------|-----------------------|-----------------------|------------|------------|-----|
| <b>X</b> <sub>3</sub> | -1                    | -2                    | 1                     | 0          | 0          | -6  |
| <b>X</b> <sub>4</sub> | -2                    | -1                    | 0                     | 1          | 0          | -6< |
| $\mathbf{x}_5$        | 7                     | 8                     | 0                     | 0          | 1          | 56  |
| -Z                    | 1                     | 1                     | 0                     | 0          | 0          | 0   |
| RATIO                 | 0.5<                  | 1                     |                       |            |            |     |
| <b>X</b> <sub>3</sub> | 0                     | -3/2<                 | 1                     | -1/2       | 0          | -3  |
| $\mathbf{x}_1$        | 1                     | 1/2                   | 0                     | -1/2       | 0          | 3   |
| <b>X</b> 5            | 0                     | 9/2                   | 0                     | 7/2        | 1          | 35  |
| -Z                    | 0                     | 1/2                   | 0                     | 1/2        | 0          | -3  |
| RATIO                 |                       | 1/3                   |                       |            |            |     |
| $\mathbf{x}_2$        | 0                     | 1                     | -2/3                  | 1/3        | 0          | 2   |
| $\mathbf{x}_1$        | 1                     | 0                     | 1/3                   | -2/3       | 0          | 2   |
| <b>X</b> <sub>5</sub> | 0                     | 0                     | 3                     | 2          | 1          | 26  |
| -Z                    | 0                     | 0                     | 1/3                   | 1/3        | 0          | -4  |

$$x_1 = 2$$
  $x_2 = 2$   $x_3 = x_4 = 0$   $x_5 = 26$   $Z_{min} = 4$ 

## **Example: Different Approximations**

**Max Z** = 
$$x_1 + 2 x_2$$

s.t. 
$$3 x_1 + x_2 \le 6$$
  
 $2x1 + x_2 = 5$   
 $x_1, x_2 \ge 0$ 

### **Two-Phase Simplex**

$$Z-x_1-2x_2 = 0$$
  
 $3x_1 + x_2 + x_3 = 6$   
 $2x_1 + x_2 + x_4 = 5$   
 $W = x_4$   
 $-W-2x_1-x_2 = -5$ 

#### **Big-M Simplex**

$$Z-x_1-2x_2 + M x_4 = 0$$

$$Z-x_1-2x_2 + M (5-2x_1-x_2) = 0$$

$$Z + (-2M-1)x_1 + (-M-2)x_2 = -5M$$

$$3x_1 + x_2 + x_3 = 6$$

$$2x_1 + x_2 + x_4 = 5$$

#### **Dual Model**

s. t. Min Z' = 
$$6y_1 + 5 y_2$$
  
 $y_1 + 2 y_2 \ge 1$   
 $y_1 + y_2 \ge 2$   
 $y_1, y_2 \ge 0$ 

## **Alternative Simplex for Dual Model**

$$-3y_1 - 2y_2 \le -1$$
  
 $-y_1 - y_2 \le -2$   
 $-Z' + 6y_1 + 5y_2 = 0$   
 $-3y_1 - 2y_2 + y_3 = -1$   
 $-y_1 - y_2 + y_4 = -2$ 

**Two-Phase** 

| BASIS                 | <b>X</b> <sub>1</sub> | $\mathbf{x}_2$ | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | RHS | RATIO |
|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----|-------|
| <b>X</b> <sub>3</sub> | 3<                    | 1              | 1                     | 0                     | 6   | 2<    |
| $\mathbf{x_4}$        | 2                     | 1              | 0                     | 1                     | 5   | 2.5   |
| -w                    | -2<                   | -1             | 0                     | 0                     | -5  |       |
| Z                     | -1                    | -2             | 0                     | 0                     | 0   |       |
| $\mathbf{x}_1$        | 1                     | 1/3            | 1/3                   | 0                     | 2   | 6     |
| $\mathbf{x_4}$        | 0                     | 1/3<           | -2/3                  | 1                     | 1   | 3<    |
| -w                    | 0                     | -1/3<          | 2/3                   | 0                     | -1  |       |
| Z                     | 0                     | -5/3           | 1/3                   | 0                     | 2   |       |
| $\mathbf{x}_1$        | 1                     | 0              | 1                     | -1/                   | 1   | 1<    |
| $\mathbf{x}_2$        | 0                     | 1              | -2                    | 3/                    | 3   |       |
| -W                    | 0                     | 0              | 0                     | /1                    | 0   |       |
| Z                     | 0                     | 0              | -3                    | 5                     | 7   |       |
| <b>X</b> <sub>3</sub> | 1                     | 0              | 1                     |                       | 1   |       |
| $\mathbf{x}_2$        | 2                     | 1              | 0                     |                       | 5   |       |
| Z                     | 3                     | 0              | 0                     |                       | 10  |       |

$$x_1 = 0$$
  $x_2 = 5$   $Z_{max} = 10$ 

**Big-M** 

| BASIS                 | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | RHS | RATIO |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----|-------|
| <b>X</b> <sub>3</sub> | 3<                    | 1                     | 1                     | 0              | 6   | 2<    |
| $\mathbf{x_4}$        | 2                     | 1                     | 0                     | 1              | 5   | 2.5   |
| Z                     | -2M-1                 | -M-2                  | 0                     | 0              | -5M |       |
| $\mathbf{x}_1$        | 1                     | 1/3                   | 1/3                   | 0              | 2   | 6     |
| <b>X</b> <sub>4</sub> | 0                     | 1/3<                  | -2/3                  | 1              | 1   | 3<    |
| Z                     | 0                     | -M/3-5/3              | 2M/3+1/3              | 0              | 2   |       |
| $\mathbf{x_1}$        | 1                     | 0                     | 1                     | -1             | 1   | 1<    |
| $\mathbf{x}_2$        | 0                     | 1                     | -2                    | 3              | 3   |       |
| Z                     | 0                     | 0                     | -3                    | M+5            | 7   |       |
| <b>X</b> <sub>3</sub> | 1                     | 0                     | 1                     | -1             | 1   |       |
| $\mathbf{x}_2$        | 2                     | 1                     | 0                     | -2             | 5   |       |
| Z                     | 3                     | 0                     | 0                     | M+2            | 10  |       |

$$x_1 = 0$$
  $x_2 = 5$   $Z_{max} = 10$ 

# **Alternative Simplex for Dual Model**

| BASIS          | $\mathbf{y}_1$ | $\mathbf{y}_2$ | <b>y</b> 3 | <b>y</b> 4 | RHS         | RATIO |
|----------------|----------------|----------------|------------|------------|-------------|-------|
| $\mathbf{y_3}$ | -3             | -2             | 1          | 0          | -1          |       |
| $\mathbf{y}_4$ | -1             | -1<            | 0          | 1          | <b>-2</b> < |       |
| -Z'            | 6              | 5              | 0          | 0          | 0           |       |
| RATIO          | 6              | 5<             |            |            |             |       |
| $y_3$          | -1             | 0              | 1          | 2          | 3           |       |
| $\mathbf{y}_2$ | 1              | 1              | 0          | -1         | 2           |       |
| - <b>Z</b> '   | 1              | 0              | 0          | 5          | -10         |       |
|                |                |                |            |            | _           | _     |



$$x_1 = 0$$
  $x_2 = 5$ 
 $-Z'_{min} = Z_{max} = 10$