WEEK 3

NEURAL NETWORKS AND DEEP LEARNING

- \triangleright X₁,X₂, X₃ are the input layers which are given the index 0.
- > Next we have the hidden layers having index 1.
- > Lastly we have the Output layer having index 2 which predicts the y[^].
- > This is a 2 layer Neural Network.

NEURAL NETWORK REPRESENTATION

Each hidden layer has two partitions. One has the Z value $Z=w^{T}x + b$ and the next one is A which is the activation function. A=sigmoid(z)

- > The left layer denotes: $Z^{[1]}_{1} = W^{[1]T}_{1}X + b^{[1]}_{1}$
- ightharpoonup The right layer denotes $A^{[1]}_1 = \sigma(Z^{[1]}_1)$
- ➤ The superscript denotes the layer number whereas the subscript denotes the node in that layer.

$$\frac{1}{2} = \begin{bmatrix} -\omega_{1}^{(i)} & -\omega_{2}^{(i)} & -\omega_{2}^$$

☑ Share

Recap of vectorizing across multiple examples

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$