Project Development Phase

Model Performance Test

Date	19 November 2022
Team ID	PNT2022TMID16818
Project Name	AI-powered Nutrition Analyzer for Fitness Enthusiasts
Maximum Marks	10 Marks

ModelPerformance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 21,885,485 Trainable params: 1,024,005 Non-trainable params: 20,861,480	Attached below
2.	Accuracy	Training Accuracy - 72%	Attached below
		Validation Accuracy - 59%	
3.	Confidence Score (Only Yolo Projects)	Class Detected - NILL Confidence Score - NILL	NILL

User Acceptance Testing

We are performing White Box Testing for select the package module.

<u>Pseudocode for select the package module is-</u>

- 1. select the package() procedure begins
- 2. READ the package name, features, offers and duration from the package database
- 3. DISPLAY the package name, features, offers and duration
- 4. DO
- 5. GET the package name, features, offers and duration
- 6. STORE the package selected to the customer's database
- 7. PROCEED to payment screen //another module
- 8. WHILE select package is NULL
- 9. //End DO...WHILE
- 10.procedure ends

FLOWGRAPH

Flowgraph

CYCLOMATIC COMPLEXITY OF RESULTANT GRAPH

V(G) = Number of regions

LINEARLY INDEPENDENT PATHS FOR FLOW GRAPHS

Path 1: 1-2-3-4-5-6-7-8-9-10

Path 2: 1-2-3-4-5-6-7-8-4-5-6-7-8-9-10

TEST ID	INPUT VALUES	ACTUAL OUTPUT	EXPECTED OUTPUT
1	Package is selected	To be observed after execution	Display the selected package
2	Package is not selected	To be observed after execution	Show the packages to select until one is selected

Performance Testing

Future Scope

- Offers payment convenience in personal training subscriptions.
- · Useful articles.
- Video instructions.
- Diet Plans.
- · Individual progress tracking.

SCREENSHOTS:


```
Image Preprocessing
        from keras.preprocessing.image import ImageDataGenerator
 Image Data Augmentation
        train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
        test_datagen=ImageDataGenerator(rescale=1./255)
Applying Image DataGenerator Functionality To Trainset And Testset
        x_train = train_datagen.flow_from_directory(
             r'/content/drive/MyDrive/Colab Notebooks/Dataset/TRAIN SET',
             target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
        x_test = test_datagen.flow_from_directory(
    r'/content/drive/MyDrive/Colab Notebooks/Dataset/TEST_SET',
             target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
     3. Adding CNN Layers
          classifier = Sequential()
          classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
          classifier.add(Flatten())
     4. Adding Dense Layers
          classifier.summary()
                                               Output Shape
                                                                                    Param #
        Layer (type)
                                                                                    896
  5. Configure The Learning Process
  6. Train The Model
[] classifier.fit generator(generator=x train, steps per_epoch = len(x train),epochs=20, validation data=x test, validation steps = len(x test))
  7. Saving The Model
```


