Kryptographie und Kodierungstheorie

Definitionen

Inhaltsverzeichnis

1	Syn	nmetrische Kryptographie	2
	1.1	Klassische Kryptographische Verfahren	2
	1.2	Symmetrische Kryptosysteme	2
	1.3	Perfekte Sicherheit	3
	1.4	Blockchiffren	5
2	Asy	mmetrische Kryptographie	5
	2.1	RSA-Verschlüsselung	5
	2.2	ElGamal-Verschlüsselung	5
	2.3	Elliptische Kurven in der Kryptogaphie	
	2.4	Kryptographische Hashfunktionen	
	2.5	Kryptographische Protokolle	5
3	Quellenkodierung		5
	3.1	Eindeutig dekodierbare Kodes	5
	3.2	Diskrete gedächtnislose Quellen	
	3.3	Konstruktion von Kodes	
4	Kanalkodierung		5
	4.1	Kanäle	5
	4.2	Parameter fehlerkorrigierender Kodes	5
	4.3	Lineare Kodes	
	4.4	Zyklische Kodes	
	15	Duglität	5

1 Symmetrische Kryptographie

1.1 Klassische Kryptographische Verfahren

1.2 Symmetrische Kryptosysteme

1.2.1 Definition: (Symmetrisches) Kryptosystem

Ein Tupel $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ bestehend aus einer Klartextmenge \mathcal{M} , einer Schlüsselmenge \mathcal{K} , einer Chiffretextmenge \mathcal{C} , einer Verschlüsselungsfunktion $e: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ und einer Entschlüsslungsfunktion $d: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ heißt Kryptosystem, wenn die Mengen \mathcal{M}, \mathcal{K} und \mathcal{C} nichtleer sind und d(k, e(k, m)) = m für alle $k \in \mathcal{K}$ und $m \in \mathcal{M}$ gilt.

1.2.6 Definition: Quotient, Rest

Sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}$. Sind r und q wie in 1.2.5 gewählt, so heißt q Quotient und r Rest von a bei ganzzahliger Division durch m. Für den Quotient schreibt man dann q = [a/m] und für den Rest $r = a \mod m$

1.2.7 Definition: Restklasse

Sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}$. Die $Restklasse [a]_m$ von a modulo m wird definiert durch $[a]_m = \{a+mq|q \in \mathbb{Z}\}$ und auch als $a+\mathbb{Z}m$ geschrieben. Wenn klar ist, dass Restklassen modulo m betrachtet werden, schreibt man häufig nur a statt $[a]_m$. Die Menge $\{[a]_m|a \in \mathbb{Z}\}$ aller Restklassen modulo m wird mit \mathbb{Z}_m oder $\mathbb{Z}/m\mathbb{Z}$ bezeichnet und heit Restklassenring modulo m.

1.2.9 Definition

Seien $a, b \in \mathbb{Z}$ und sei $m \in \mathbb{N}$ sowie $n \in \mathbb{N}_0$. Dann definiert man die Summe, die Negation, die Differenz, das Produkt und die Potenz von Restklassen durch

$$[a]_m + [b]_m = [a+b]_m,$$

$$-[a]_m = [-a]_m,$$

$$[a]_m - [b]_m = [a-b]_m,$$

$$[a]_m \cdot [b]_m = [a \cdot b]_m,$$

$$[a]_m^m = [a^n]_m.$$

1.2.12 Definition: Inverses, prime Restklassengruppe

Sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}$. Gibt es $b \in \mathbb{Z}$ mit $[a]_m \cdot [b]_m = [1]_m$, so heißt $[a]_m$ invertierbar, und $[b]_m$ wird Inverses von $[a]_m$ genannt und mit $[a]_m^{-1}$ bezeichnet. Man sagt dann auch, dass b ein Inverses von a modulo m ist. Die Menge aller invertierbaren Restklassen aus \mathbb{Z}_m wird mit \mathbb{Z}_m^* bezeichnet und heißt prime Restklassengruppe.

1.2.17 Definition

- Alphabet Σ : nichtleere Menge
- Wort der Länge n über Σ : n-Tupel (s_1, \ldots, s_n) mit $s_1, \ldots, s_n \in \Sigma$. Kurz: s_1, \ldots, s_n
- Länge eines Wortes w: |w|
- Menge der Worte der Länge n über Σ : Σ^n
- $a \dots a \in \Sigma^n$: a^n
- leeres Wort ist einziges Wort der Länge 0. Schreibe auch ε .
- Menge aller nichtleeren Wörter: $\Sigma^+ = \bigcup_{n \in \mathbb{N}} \Sigma^n$
- Menge aller Wörter: $\Sigma^{0+} = \bigcup_{n \in \mathbb{N}_0} \Sigma^n$
- Verkettung: $((s_1, \ldots, s_n), (t_1, \ldots, t_m)) \mapsto (s_1, \ldots, s_n)(t_1, \ldots, t_m) = s_1 \ldots s_n t_1 \ldots t_m)$

1.3 Perfekte Sicherheit

1.3.3 Definition: Wahrscheinlichkeitsverteilung, Gleichverteilung

Gilt

 $P(X \in \Omega_2) = 1$ und $P(X \in A \cup B) = P(X \in A) + P(X \in B)$ für alle disjunkten $A, B \subseteq \Omega_2$, so heißt P^X Wahrscheinlichkeitsverteilung der Zufallsvariable X. Ist $P^X(\{a\}) = \frac{1}{|\Omega_2|}$ für alle $a \in \Omega_2$, so heißt P^X Gleichverteilung auf Ω_2 .

1.3.4 Definition: Identische Verteilung, Stochastische Unabhängigkeit

Sei

 Ω_3 eine endliche Menge und $Y:\Omega_1\to\Omega_3$ eine Zufallsvariable mit Wahrscheinlichkeitsverteilung P^Y . Gilt $\Omega_3=\Omega_2$ und $P^X=P^Y$, also $P(X\in A)=P(Y\in A)$ für alle $A\subseteq\Omega_2$ (oder äquivalent P(X=a)=P(Y=a) für alle a $in\Omega_2$), so heißen X und Y identisch verteilt. Gilt $P(X\in A,Y\in B)=P(X\in A)\cdot P(Y\in B)$ für alle $A\subseteq\Omega_2$ und $B\subseteq\Omega_3$ (oder äquivalent $P(X=a,Y=b)=P(X=a)\cdot P(Y=b)$ für alle $a\in\Omega_2$ und $b\in\Omega_3$), so heißen X und Y stochastisch unabhängig.

1.3.5 Definition: Bedingte Wahrscheinlichkeit

Seien X und Y Zufallsvariablen mit demselben Definitionsbereich und Wahrscheinlichkeitsverteilungen P^X und P^Y . Weiter seien A und B Teilmengen des Zielbereichs von X beziehungsweise Y, wobei $P(Y \in B) > 0$ gelte. Dann definiert man die bedingte Wahrscheinlichkeit von $X \in A$ unter $Y \in B$ durch

$$P(X \in A | Y \in B) = \frac{P(X \in A, Y \in B)}{P(Y \in B)}.$$

Analog werden auch Schreibweisen wie P(X = a|Y = b) definiert.

1.3.7 Definition: Erwartungswert

Sei X eine Zufallsvariable mit Wertemenge

 $\{x_1,\ldots,x_m\}\subseteq\mathbb{R}$ und Wahrscheinlichkeitsverteilung P^X . Dann definiert man den Erwartungswert von X durch

$$E(X) = \sum_{i=1}^{m} x_i P(X = x_i).$$

Betrachtet man zwei Zufallsexperimente mit drei möglichen Ausgängen, wobei die Wahrscheinlichkeiten für die einzelnen Ausgänge im einen Fall $\frac{9}{10}$, $\frac{1}{20}$ sowie $\frac{1}{20}$ und im anderen Fall jeweils $\frac{1}{3}$ sind, so hat man die Vorstellung, daß der Ausgang des zweiten Experiments unbestimmter ist als der des ersten Experiments. Diese Unbestimmtheit soll nun quantitativ gefaßt werden.

1.3.8 Definition: (Gemeinsame) Entropie

Sei $C \in \mathbb{R}$ mit C > 1 und X eine Zufallsvariable mit Wertemenge $\{x_1, \ldots, x_m\}$. Dann heißt

$$H_C^P(X) = -\sum_{i=1}^m P(X = x_i) \log_C P(X = x_i),$$

wobei man $0 \cdot \log_c 0 = 0$ setzt, *Entropie* von X (zur Basis C). Ist zusätzlich Y eine Zufallsvariable mit Wertemenge $\{y_1, \ldots, y_n\}$, so definiert man

$$H_C^P(X,Y) = -\sum_{\substack{i \in \{1,\dots,m\}\\j \in \{1,\dots,n\}}} P(X = x_i, Y = y_j) \log_C P(X = x_i, Y = y_j),$$

die gemeinsame Entropie von X und Y. Hier und bei den folgenden Bezeichnungen wird die Basis C gelegentlich weggelassen, wenn die Aussage unabhängig von der gewählten Basis gilt. (Treten in einer Aussage dabei mehrere solche Bezeichnungen auf, muss aber überall dieselbe Basis verwendet werden.) Das P kann in den Bezeichnungen ebenfalls entfallen, wenn die Abhängigkeit von P nicht betont wird.

1.3.11 Definition: Bedingte Entropie, Transinformation

Bezeichnungen wie bei Entropie. Dann definiert man

$$H_C(X|Y) = -\sum_{j=1}^n P(Y = y_j) \sum_{i=1}^m P(X = x_i|Y = y_j) \log_C P(X = x_i|Y = y_j)$$

$$= -\sum_{\substack{i \in \{1,\dots,m\}\\j \in \{1,\dots,n\}}} P(X = x_i, Y = y_j) \log_C P(X = x_i|Y = y_j),$$

die bedingte Entropie von X unter Y. Weiter definiert man $I_C(X,Y) = H_C(X) - H_C(X|Y)$, die Transinformation von X und Y.

1.3.17 Definition: Schlüsselaquivokation, Klartextäquivokation

Die Entropie H(K|C) heißt Schlüsselaquivokation, und H(M|C) heißt Klartextäquivokation.

1.4 Blockchiffren

- 2 Asymmetrische Kryptographie
- 2.1 RSA-Verschlüsselung
- 2.2 ElGamal-Verschlüsselung
- 2.3 Elliptische Kurven in der Kryptogaphie
- 2.4 Kryptographische Hashfunktionen
- 2.5 Kryptographische Protokolle
- 3 Quellenkodierung
- 3.1 Eindeutig dekodierbare Kodes
- 3.2 Diskrete gedächtnislose Quellen
- 3.3 Konstruktion von Kodes
- 4 Kanalkodierung
- 4.1 Kanäle
- 4.2 Parameter fehlerkorrigierender Kodes
- 4.3 Lineare Kodes
- 4.4 Zyklische Kodes
- 4.5 Dualität