Capítulo 5

Derivación de funciones

El concepto de derivada es una de las aplicaciones más importantes de la teoría de límites.

5.1. Definición de derivada. Recta tangente

Definición 5.1.1. Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sea $f: I \longrightarrow \mathbb{R}$ una función.

- Diremos que f es derivable en a si $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} \in \mathbb{R}$. En tal caso, la derivada de f en a es el valor $f'(a) = \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$.
- Diremos que f es derivable en I si f es derivable en todo punto de I. En ese caso, se define la función derivada de f, y se denota por f', como la función $f': I \longrightarrow \mathbb{R}$ que a cada $x \in I$ le asigna el valor f'(x).

Observación 5.1.2. Gráficamente, la pendiente de la recta secante a la gráfica de f en los puntos Q = (a, f(a)) y P = (x, f(x)) es

$$m = \tan(\alpha_{QP}) = \frac{f(x) - f(a)}{x - a},$$

donde α_{QP} es el ángulo formado entre el segmento QP y el semieje OX. Así, cuanto más se acerca x a a, es decir, $x \to a$, las pendientes van acercándose a la pendiente de la recta tangente a la gráfica de f en a, con lo que

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

es la la pendiente de la recta tangente a la gráfica de f en a.

Proposición 5.1.3. Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sea $f: I \longrightarrow \mathbb{R}$ una función derivable en a. Entonces la recta y - f(a) = f'(a)(x - a) es la recta tangente a la gráfica de f en en punto (a, f(a)).

Ejemplo 5.1.4.

1. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = 3x - 2 para todo $x \in \mathbb{R}$, y sea $a \in \mathbb{R}$. Entonces

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{(3x - 2) - (3a - 2)}{x - a} = \lim_{x \to a} \frac{3(x - a)}{x - a} = 3.$$

2. Consideremos ahora $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = x^2$ para todo $x \in \mathbb{R}$, y sea $a \in \mathbb{R}$. Así

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} \frac{(x - a)(x + a)}{x - a} = 2a.$$

3. Veamos que toda función constante tiene derivada nula. Sea $c \in \mathbb{R}$ y sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = c para todo $x \in \mathbb{R}$. Sea $a \in \mathbb{R}$,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{c - c}{x - a} = 0.$$

4. La función f(x) = |x|, para todo $x \in \mathbb{R}$, no es derivable en 0, pero es derivable en todo $a \in \mathbb{R} \setminus \{0\}$. En efecto, por definición de valor absoluto,

$$f(x) = \begin{cases} -x, & \text{si } x \le 0 \\ x, & \text{si } x > 0 \end{cases}.$$

• Si a < 0, entonces

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{-x - (-a)}{x - a} = \lim_{x \to a} \frac{-(x - a)}{x - a} = -1.$$

• Si a > 0, entonces

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x - a}{x - a} = 1.$$

 \bullet Pero, si a=0, entonces no existe $\lim_{x\to a}\frac{f(x)-f(a)}{x-a},$ ya que

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

y, sin embargo,

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x}{x} = 1.$$

Observación 5.1.5. Gráficamente, una función derivable es una función "suave". Dicho de otra forma, una función f no será derivable en los puntos donde la gráfica de f formen "picos".

5. La función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[3]{x}$, para todo $x \in \mathbb{R}$, no es derivable en 0, ya que

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x}}{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, y$$

$$\lim_{x \to 0^+} \frac{\sqrt[3]{x}}{x} \cdot \frac{\sqrt[3]{x^2}}{\sqrt[3]{x^2}} = \lim_{x \to 0^+} \frac{x}{x \sqrt[3]{x^2}} = \lim_{x \to 0^+} \frac{1}{\sqrt[3]{x^2}} = +\infty.$$

6. La función

$$f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right), & \text{si } x \neq 0\\ 0, & \text{si } x = 0 \end{cases}$$

no es derivable en 0, ya que

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \operatorname{sen}\left(\frac{1}{x}\right) - 0}{x - 0} = \lim_{x \to 0} \operatorname{sen}\left(\frac{1}{x}\right),$$

y sabemos que este límite no existe.

7. Por otra parte, la función

$$f(x) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right), & \text{si } x \neq 0\\ 0, & \text{si } x = 0 \end{cases}$$

sí es derivable en 0, ya que

$$\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{x^2\mathrm{sen}\left(\frac{1}{x}\right)-0}{x-0}=\lim_{x\to 0}x\mathrm{sen}\left(\frac{1}{x}\right)=0.$$

Anexo: Derivadas de funciones elementales

Funciones elementales	
Función $f(x)$	Derivada $f'(x)$
$f(x) = c, c \in \mathbb{R}$	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^r, r \in \mathbb{R}$	$f'(x) = rx^{r-1}$
$f(x) = \log_a(x), \ a \in \mathbb{R}^+ \setminus \{1\}$	$f'(x) = \frac{1}{x \log(a)}$
$f(x) = \log(x)$	$f'(x) = \frac{1}{x}$
$f(x) = a^x, \ a \in \mathbb{R}^+$	$f'(x) = a^x \log(a)$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \operatorname{sen}(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\operatorname{sen}(x)$
$f(x) = \operatorname{tg}(x)$	$f'(x) = \frac{1}{\cos^2(x)} = 1 + \operatorname{tg}^2(x)$
$f(x) = \arcsin(x)$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$
$f(x) = \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$
$f(x) = \arctan(x)$	$f'(x) = \frac{1}{1+x^2}$

5.2. Propiedades básicas de la función derivada

Proposición 5.2.1. Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sean $f, g : I \longrightarrow \mathbb{R}$ dos funciones derivables en a. Entonces se verifica:

- 1. $rf + sg : I \longrightarrow \mathbb{R}$ es derivable en a para todo $r, s \in \mathbb{R}$, y (rf + sg)'(a) = rf'(a) + sg'(a).
- 2. $fg: I \longrightarrow \mathbb{R}$ es derivable en a, y (fg)'(a) = f'(a)g(a) + f(a)g'(a).
- 3. Si $g(a) \neq 0$, entonces $\frac{f}{g}: I \longrightarrow \mathbb{R}$ es derivable en $a, y\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{(g(a))^2}$.

Ejemplo 5.2.2.

1. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = 5x^7 - 3x^4 + x - 3$. Por el punto 1 de la proposición anterior, sabemos que f es derivable en \mathbb{R} y, además,

$$f'(x) = 35x^6 - 12x^3 + 1.$$

2. Consideremos $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = (x-1)\mathrm{sen}(x)$. Por el punto 2 de la proposición anterior, sabemos que f es derivable en \mathbb{R} con

$$f'(x) = \operatorname{sen}(x) + (x - 1)\operatorname{cos}(x).$$

3. Sea $f(x) = \frac{3x^2-1}{x+1}$ para todo $x \neq -1$. Por el punto 3 de la proposición anterior, sabemos que f es derivable en \mathbb{R} , y

$$f'(x) = \frac{6x(x+1) - (3x^2 - 1)}{(x+1)^2} = \frac{6x^2 + 6x - 3x^2 + 1}{(x+1)^2} = \frac{3x^2 + 6x + 1}{(x+1)^2}.$$

Teorema 5.2.3. (Regla de la cadena). Sean I, J dos intervalos abiertos de \mathbb{R} y sea $a \in I$. Sean $f: I \longrightarrow \mathbb{R}$ y $g: J \longrightarrow \mathbb{R}$ dos funciones tales que $f(I) \subseteq J$. Si f es derivable en a y g es derivable en f(a), entonces $g \circ f: I \longrightarrow \mathbb{R}$ es derivable en a, y $(g \circ f)'(a) = g'(f(a))f'(a)$.

Ejemplo 5.2.4.

1. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \log(2x^2 + 4)$. Por la regla de la cadena, f es derivable en \mathbb{R} y

$$f'(x) = \frac{1}{2x^2 + 4} \cdot 4x = \frac{4x}{2x^2 + 4}.$$

2. Consideremos $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \sin^2(3x - 1)$. Por la regla de la cadena, f es derivable en \mathbb{R} , con

$$f'(x) = 2\operatorname{sen}(3x - 1)\cos(3x - 1) \cdot 3 = 6\operatorname{sen}(3x - 1)\cos(3x - 1).$$

Teorema 5.2.5. (Teorema de la derivada de la función inversa). Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sea $f: I \longrightarrow f(I)$ una función continua y biyectiva en I. Si f es derivable en a, con $f'(a) \neq 0$, entonces $f^{-1}: f(I) \longrightarrow I$ es derivable en b = f(a), y

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Ejemplo 5.2.6.

1. Sea $f:(0,\infty) \longrightarrow \mathbb{R}$, $f(x) = \log(x)$ para todo x > 0. Claramente, f es continua y biyectiva en $(0,\infty)$. Por otra parte, como f es derivable para todo $x \in (0,\infty)$, con $f'(x) = \frac{1}{x} \neq 0$ para todo x > 0, entonces $f^{-1}(y) = e^y$ es derivable para todo $y \in \mathbb{R}$. Además, tomando $y = \log(x)$, entonces

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{\frac{1}{x}} = x = e^y$$

ya que, como $y = \log(x)$, entonces $e^y = x$.

2. Sea $f: (-1,1) \longrightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ definida por $f(x) = \arcsin(x)$ para todo $x \in (-1,1)$. Veamos que $f'(x) = \frac{1}{\sqrt{1-x^2}}$ para todo $x \in (-1,1)$.

Consideremos $g:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\longrightarrow (-1,1)$ definida por $g(x)=\operatorname{sen}(x)$ para todo $x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Sabemos que g es continua y biyectiva en $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, verificando que $g'(x)=\cos(x)\neq 0$ para todo $-\frac{\pi}{2}< x<\frac{\pi}{2}$. Por lo tanto, tenemos que $g^{-1}=f$ es derivable en (-1,1).

Hallemos el valor de la derivada de f en un valor de (-1,1). Para ello, tomemos y = sen(x). Así, por el teorema anterior,

$$f'(y) = (g^{-1})'(y) = \frac{1}{g'(x)} = \frac{1}{\cos(x)}.$$

Ahora bien, como $\cos^2(x) + \sin^2(x) = 1$ para todo $x \in \mathbb{R}$, entonces $\cos(x) = +\sqrt{1 - \sin^2(x)}$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Luego, para todo $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$f'(y) = \frac{1}{\cos(x)} = \frac{1}{\sqrt{1 - \sin^2(x)}} = \frac{1}{\sqrt{1 - y^2}}.$$

Teorema 5.2.7. Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sea $f: I \longrightarrow \mathbb{R}$ una función derivable en a. Entonces f es continua en a.

Observación 5.2.8. El recíproco no es cierto. Basta con considerar la función f(x) = |x| para todo $x \in \mathbb{R}$. Vimos que f es continua en 0, pero no es derivable en 0.

5.3. Teoremas fundamentales

En esta sección del tema estudiaremos los teoremas clásicos sobre valores medios de funciones derivables. El teorema de Rolle, y los teoremas del valor medio de Cauchy y de Lagrange.

Teorema 5.3.1. (Teorema de Rolle). Sean $a, b \in \mathbb{R}$ y sea $f : [a, b] \longrightarrow \mathbb{R}$ una función continua en [a, b] y derivable en (a, b). Si f(a) = f(b), entonces existe $c \in (a, b)$ tal que f'(c) = 0.

Observación 5.3.2. Geométricamente, el teorema de Rolle afirma que si el valor de f, en dos puntos distintos de su dominio a y b, coincide, entonces debe existir un punto intermedio, a < c < b, de manera que la pendiente de la recta tangente en el punto (c, f(c)) sea nula.

Ejemplo 5.3.3.

1. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3 + x - 1$ para todo $x \in \mathbb{R}$. Comprobar que la ecuación f(x) = 0 tiene una única solución real.

Existencia: veamos primero que f(x) = 0 tiene al menos una solución real.

Consideremos $f:[0,1] \longrightarrow \mathbb{R}$ definida por $f(x)=x^3+x-1$. Como f es continua en [0,1], con f(0)=-1<0 y f(1)=1>0 entonces, por el teorema de Bolzano, existe $c\in(0,1)$ tal que f(c)=0.

Unicidad: veamos ahora que esta es la única raíz real de f(x).

Por reducción al absurdo. Supongamos que existe $d \in \mathbb{R}$, con $d \neq c$, tal que f(d) = 0.

Como $d \neq c$, podemos suponer que c < d. Consideremos entonces $f : [c, d] \longrightarrow \mathbb{R}$. Claramente f es continua en [c, d] y derivable en (c, d). Además, se verifica que f(c) = 0 = f(d). Luego, por el teorema de Rolle, existe $c' \in (c, d)$ tal que f'(c') = 0.

Sin embargo, $f'(x) = 3x^2 + 1 \neq 0$ para todo $x \in \mathbb{R}$, con lo que obtenemos una contradicción. Luego c es la única solución real de la ecuación f(x) = 0.

2. Consideremos la función $f:[0,1] \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} x, & \text{si } 0 < x < 1 \\ 2, & \text{si } x = 0, 1 \end{cases}.$$

En este caso, no existe ningún $c \in (0,1)$ tal que f'(c) = 0. Sin embargo, esto no contradice el teorema de Rolle ya que, aunque f es derivable en (0,1), no es difícil ver que f no es continua en [0,1].

Teorema 5.3.4. (Teorema del valor medio de Cauchy). $Sean\ a,b\in\mathbb{R}\ y\ sean\ f,g:[a,b]\longrightarrow\mathbb{R}$ dos funciones continuas en $[a,b]\ y\ derivables\ en\ (a,b)$. Entonces existe $c\in(a,b)\ tal\ que$

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$

Observación 5.3.5. Si se tiene que $g(a) \neq g(b)$ y que $g'(c) \neq 0$, entonces el teorema del valor medio de Cauchy puede reescribirse como

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Corolario 5.3.6. (Teorema del valor medio de Lagrange). $Sean\ a,b\in\mathbb{R}\ y\ sea\ f:[a,b]\longrightarrow\mathbb{R}$ una función continua en $[a,b]\ y\ derivable\ en\ (a,b)$. Entonces existe $c\in(a,b)\ tal\ que$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Observación 5.3.7. Geométricamente, el teorema del valor medio de Lagrange nos dice que existe un punto c en (a,b), de manera que la pendiente de la recta tangente a f en el punto (c,f(c)), f'(c), coincide con la pendiente de la recta que pasa por los puntos (a,f(a)) y (b,f(b)). Es decir, la recta secante a la gráfica de f en los puntos (a,f(a)) y (b,f(b)) es paralela a alguna recta tangente a la gráfica de f.

Ejemplo 5.3.8.

1. Sean $a, b \in \mathbb{R}$ y sea $f : [a, b] \longrightarrow \mathbb{R}$ una función continua en [a, b] y derivable en (a, b). Demostrar que, si f'(x) = 0 para todo $x \in (a, b)$, entonces f es constante en [a, b].

Sea $x \in (a, b)$. Como $[a, x] \subseteq [a, b]$, entonces $f : [a, x] \longrightarrow \mathbb{R}$ es continua en [a, x] y derivable en (a, x). Luego, por el teorema del valor medio de Lagrange, existe $c \in (a, x)$ tal que

$$f'(c) = \frac{f(x) - f(a)}{x - a}.$$

Ahora bien, como f' es nula en (a,b), entonces f'(c)=0, con lo que f(x)=f(a).

Análogamente, como $[x, b] \subseteq [a, b]$, entonces $f : [x, b] \longrightarrow \mathbb{R}$ es continua en [x, b] y derivable en (x, b). Luego, por el teorema del valor medio de Lagrange, existe $d \in (x, b)$ tal que

$$f'(d) = \frac{f(b) - f(x)}{b - x}.$$

Ahora bien, como f' es nula en (a, b), entonces f'(d) = 0, con lo que f(x) = f(b).

Por último, como $x \in (a, b)$ era un valor de (a, b) arbitrario, tenemos entonces que f(a) = f(x) = f(b) para todo $x \in (a, b)$, es decir, f es constante en [a, b].

2. Sean $a, b \in \mathbb{R}$ y sean $f, g : [a, b] \longrightarrow \mathbb{R}$ dos funciones continuas en [a, b] y derivables en (a, b). Demostrar que, si f'(x) = g'(x) para todo $x \in (a, b)$, entonces existe $c \in \mathbb{R}$ tal que f(x) = g(x) + c para todo $x \in [a, b]$.

Consideremos la función $h:[a,b] \longrightarrow \mathbb{R}$ definida por h(x)=f(x)-g(x) para todo $x \in [a,b]$. Así, es claro que h es continua en [a,b] y derivable en (a,b). Además, h'(x)=f'(x)-g'(x)=0 para todo $x \in (a,b)$.

Por el ejemplo anterior, tenemos entonces que h es constante en [a,b], es decir, existe $c \in \mathbb{R}$ tal que h(x) = c para todo $x \in [a,b]$ o, equivalentemente, f(x) = g(x) + c para todo $x \in [a,b]$.

5.4. Regla de L'Hôpital

En esta última parte del tema, usaremos la regla de L'Hôpital como herramienta para resolver indeterminaciones de límites de la forma $\frac{0}{0}$ y $\frac{\pm \infty}{\pm \infty}$. Posteriormente, veremos cómo aplicar la regla de L'Hôpital para otro tipos de inderteminaciones, convirtiéndolas previamente en alguna de las dos indeterminaciones citadas anteriormente.

Teorema 5.4.1. (Regla de L'Hôpital). Sea $c \in (a,b)$ y sean $f,g:(a,b) \longrightarrow \mathbb{R}$ dos funciones derivables en $(a,b) \setminus \{c\}$, donde $-\infty \le a < b \le +\infty$. Supongamos que $g'(x) \ne 0$ para todo $x \in (a,b) \setminus \{c\}$ y que se verifican alguna de las siguientes condiciones:

1.
$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$$
, o bien

2.
$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \pm \infty.$$

$$Si\ \underset{x\to c}{\lim}\frac{f'(x)}{g'(x)}=L,\ con\ L\in\mathbb{R}\ o\ L=\pm\infty,\ entonces\ \underset{x\to c}{\lim}\frac{f(x)}{g(x)}=L.$$

Observación 5.4.2. Claramente, la regla de L'Hôpital tiene un enunciado análogo para límites laterales y límites en el infinito.

Observación 5.4.3. El recíproco no es cierto. Para verlo, consideremos $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ definidas por $f(x) = x + \operatorname{sen}(x)$ y $g(x) = x - \operatorname{sen}(x)$, para todo $x \in \mathbb{R}$. Así, se verifica que

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x + \operatorname{sen}(x)}{x - \operatorname{sen}(x)} = \lim_{x \to \infty} \frac{1 + \frac{\operatorname{sen}(x)}{x}}{1 - \frac{\operatorname{sen}(x)}{x}} = 1,$$

sin embargo,

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{1 + \cos(x)}{1 - \cos(x)}$$

no existe, por ser la función coseno periódica con periodo 2π .

Ejemplo 5.4.4. Vamos a calcular los siguientes límites aplicando la regla de L'Hôpital.

1. Calcular $\lim_{x \to \infty} \frac{\log(x)}{x}$.

Consideremos $f, g: (0, \infty) \longrightarrow \mathbb{R}$ dadas por $f(x) = \log(x)$ y g(x) = x para todo x > 0.

Claramente, tanto f como g, son derivables en $(0, \infty)$ y $g'(x) = 1 \neq 0$ para todo x > 0.

Además, se verifica que

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty.$$

Por lo tanto, podemos aplicar el teorema anterior.

Veamos entonces si existe $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$.

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

Luego, por la regla de L'Hôpital,

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{\log(x)}{x}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=\lim_{x\to\infty}\frac{1}{x}=0.$$

2. Halla el valor de $\lim_{x\to\infty} \frac{e^x}{x^2}$, si existe.

Sean $f, g: (0, \infty) \longrightarrow \mathbb{R}$ definidas por $f(x) = e^x$ y $g(x) = x^2$ para todo x > 0. Como f y g son derivables en $(0, \infty)$, $g'(x) = 2x \neq 0$ para todo x > 0 y

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty,$$

entonces podemos aplicar la regla de L'Hôpital.

Sin embargo, en este caso

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{e^x}{2x} = \left[\frac{\infty}{\infty}\right].$$

Con lo que necesitamos aplicar la regla de L'Hôpital a las funciones derivadas f' y g'.

En este caso, como f' y g' son derivables en $(0, \infty)$, $g''(x) = 2 \neq 0$ para todo x > 0 y

$$\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} g'(x) = \infty$$

entonces, por la regla de L'Hôpital,

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{f''(x)}{g''(x)} = \lim_{x \to \infty} \frac{e^x}{2} = \infty.$$

Luego,

$$\lim_{x\to\infty}\frac{f(x)}{q(x)}=\lim_{x\to\infty}\frac{f'(x)}{q'(x)}=\lim_{x\to\infty}\frac{f''(x)}{q''(x)}=\infty.$$

3. Demostrar que $\lim_{x\to 0} \frac{2^x-1}{x} = \log(2)$.

Claramente, tanto numerador como denominador son derivables en \mathbb{R} . Además, la derivada del denominador nunca se anula en \mathbb{R} . Por lo tanto

$$\lim_{x \to 0} \frac{2^x - 1}{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0} \frac{2^x \cdot \log(2)}{1} = \log(2).$$

Corolario 5.4.5. Sea I un intervalo abierto de \mathbb{R} y sea $c \in I$. Sea $f: I \longrightarrow \mathbb{R}$ una función continua en I y derivable en $I \setminus \{c\}$. Sean $L, L' \in \mathbb{R}$, con $L \neq L'$. Entonces se verifica:

- 1. Si $\lim_{x\to c} f'(x) = L$, entonces f es derivable en c y f'(c) = L.
- 2. Si $\lim_{x\to c^-} f'(x) = L$ y $\lim_{x\to c^+} f'(x) = L'$, entonces f no es derivable en c.
- 3. Si $\lim_{x\to c^-} f'(x) = \pm \infty$ o $\lim_{x\to c^-} f'(x) = \pm \infty$, entonces f no es derivable en c.

Observación 5.4.6. Nótese que, si no existe $\lim_{x\to c^-} f'(x)$ o $\lim_{x\to c^+} f'(x)$, entonces no podemos afirmar que f no sea derivable en c.

Ejemplo 5.4.7. Consideremos la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right), & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases}.$$

Claramente, f es continua en \mathbb{R} ya que, si $x \neq 0$, entonces $f(x) = x^2 \cos\left(\frac{1}{x}\right)$ que es continua en $\mathbb{R} \setminus \{0\}$. Además, si x = 0, entonces

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right) = 0 = f(0),$$

ya que $\lim_{x\to 0} x^2 = 0$ y $\left|\cos\left(\frac{1}{x}\right)\right| \le 1$ para todo $x \in \mathbb{R} \setminus \{0\}$.

Por otra parte, si $x \neq 0$, entonces f es derivable y

$$f'(x) = 2x\cos\left(\frac{1}{x}\right) + x^2\left(-\sin\left(\frac{1}{x}\right)\cdot\left(-\frac{1}{x^2}\right)\right) = 2x\cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right)$$

y, por tanto,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right) =$$

$$\lim_{x \to 0} 2x \cos\left(\frac{1}{x}\right) + \lim_{x \to 0} \sin\left(\frac{1}{x}\right) = \lim_{x \to 0} \sin\left(\frac{1}{x}\right),$$

ya que $\lim_{x\to 0} 2x\cos\left(\frac{1}{x}\right) = 0$, por ser $\lim_{x\to 0} 2x = 0$ y $\left|\cos\left(\frac{1}{x}\right)\right| \le 1$ para todo $x \in \mathbb{R} \setminus \{0\}$.

Ahora bien, como límsen $(\frac{1}{x})$ no existe, entonces límf'(x) no existe.

Sin embargo, f es derivable en x = 0, ya que

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \cos\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0,$$

aplicando de nuevo que $\lim_{x\to 0} x = 0$ y $\left|\cos\left(\frac{1}{x}\right)\right| \le 1$ para todo $x \in \mathbb{R} \setminus \{0\}$.

Aplicación de la regla de L'Hôpital para otras indeterminaciones:

La regla de L'Hôpital también sirve para resolver indeterminaciones del tipo $0 \cdot \infty$, $\infty - \infty$, 0^0 , ∞^0 y 1^∞ siempre que, manipulando las funciones de manera adecuada, podamos transformar estas indeterminaciones en indeterminaciones de la forma $\frac{0}{0}$ y $\frac{\infty}{\infty}$.

Ejemplo 5.4.8.

1. Indeterminaciones del tipo $0 \cdot \infty$.

Si tenemos $f(x)\cdot g(x)$, suele funcionar dejar este producto como $f(x)\cdot g(x)=\frac{f(x)}{\frac{1}{g(x)}}=\frac{g(x)}{\frac{1}{f(x)}}$.

■ Por ejemplo, tenemos que $\lim_{x\to\infty} e^{-x}\log(x) = [0\cdot\infty]$. Sin embargo,

$$\lim_{x\to\infty} e^{-x} \log(x) = \lim_{x\to\infty} \frac{\log(x)}{e^x} = \left[\frac{\infty}{\infty}\right] \stackrel{\text{L'Hôp}}{=} \lim_{x\to\infty} \frac{1}{xe^x} = 0.$$

• Como $\lim_{x\to 0^+} \sqrt{x} \log(x) = [0\cdot\infty]$, entonces

$$\begin{split} \lim_{x \to 0^+} \sqrt{x} \log(x) &= \lim_{x \to 0^+} \frac{\log(x)}{x^{-\frac{1}{2}}} = \left[\frac{\infty}{\infty}\right] \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{2}x^{-\frac{3}{2}}} = \\ \lim_{x \to 0^+} \frac{-2}{x^{-\frac{1}{2}}} &= \lim_{x \to 0^+} -2\sqrt{x} = 0. \end{split}$$

2. Indeterminaciones del tipo $\infty - \infty$.

• Calcular $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right)$.

Como
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\operatorname{sen}(x)}\right) = [\infty - \infty]$$
, entonces

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\operatorname{sen}(x)} \right) = \lim_{x \to 0} \frac{\operatorname{sen}(x) - x}{x \operatorname{sen}(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0} \frac{\cos(x) - 1}{\operatorname{sen}(x) + x \cos(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{L'Hôp}}{=}$$

$$\lim_{x \to 0} \frac{-\operatorname{sen}(x)}{\cos(x) + \cos(x) - x \operatorname{sen}(x)} = \frac{0}{2} = 0.$$

3. Indeterminaciones del tipo 0^0 , ∞^0 y 1^∞ .

Debemos usar que $\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{\log(f(x)^{g(x)})} = e^{\lim_{x\to a} (g(x)\log(f(x)))}$.

•
$$\lim_{x \to 0^+} (1 + \text{sen}(4x))^{\cot g(x)} = [1^\infty].$$

$$\lim_{x \to 0^+} (1 + \operatorname{sen}(4x))^{\operatorname{cotg}(x)} = e^{\lim_{x \to 0^+} \operatorname{cotg}(x) \log(1 + \operatorname{sen}(4x))} = e^{\lim_{x \to 0^+} \frac{\log(1 + \operatorname{sen}(4x))}{\operatorname{tg}(x)}}.$$

Como

$$\lim_{x \to 0^+} \frac{\log(1 + \sin(4x))}{\operatorname{tg}(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0^+} \frac{4\cos(4x)}{1 + \sin(4x)} \cdot \cos^2(x) = 4,$$

entonces

$$\lim_{x \to 0^+} (1 + \text{sen}(4x))^{\cot g(x)} = e^{\lim_{x \to 0^+} \frac{\log(1 + \text{sen}(4x))}{\tan(x)}} = e^4.$$

■ Calcular $\lim_{x \to \infty} x^{\text{sen}(x)}$.

Como $\lim_{x\to 0^+} x^{\text{sen}(x)} = [0^0]$, entonces

$$\lim_{x \to 0^+} x^{\operatorname{sen}(x)} = e^{\lim_{x \to 0^+} \operatorname{sen}(x) \log(x)} = e^{[0 \cdot \infty]}.$$

Por otra parte,

$$\lim_{x\to 0^+} \mathrm{sen}(x) \mathrm{log}(x) = \lim_{x\to 0^+} \frac{\mathrm{log}(x)}{\frac{1}{\mathrm{sen}(x)}} = \left[\frac{-\infty}{+\infty}\right].$$

Luego, aplicando la regla de L'Hôpital,

$$\lim_{x\to 0^+} \operatorname{sen}(x) \log(x) = \lim_{x\to 0^+} \frac{\log(x)}{\frac{1}{\operatorname{sen}(x)}} \stackrel{\operatorname{L'Hôp}}{=} \lim_{x\to 0^+} \frac{\frac{1}{x}}{\frac{-\cos(x)}{\operatorname{sen}^2(x)}} =$$

$$\lim_{x \to 0^+} -\frac{\sin^2(x)}{x \cos(x)} = \lim_{x \to 0^+} -\frac{\sin(x)}{x} \cdot \operatorname{tg}(x) = -1 \cdot 0 = 0.$$

Por lo tanto

$$\lim_{x \to 0^+} x^{\operatorname{sen}(x)} = e^{\lim_{x \to 0^+} \operatorname{sen}(x) \log(x)} = e^0 = 1.$$

• Hallar $\lim_{x\to 0^+} (-\log(x))^x$.

Como

$$\lim_{x \to 0^+} \left(-\log(x) \right)^x = \left[\infty^0 \right],$$

entonces

$$\lim_{x \to 0^+} (-\log(x))^x = e^{\lim_{x \to 0^+} x \log(-\log(x))} = e^{[0 \cdot \infty]}.$$

Por otra parte,

$$\lim_{x \to 0^+} x \log\left(-\log(x)\right) = \lim_{x \to 0^+} \frac{\log\left(-\log(x)\right)}{\frac{1}{x}} = \left[\frac{\infty}{\infty}\right]$$

y, aplicando la regla de L'Hôpital,

$$\lim_{x \to 0^+} x \log \left(-\log(x) \right) = \lim_{x \to 0^+} \frac{\log \left(-\log(x) \right)}{\frac{1}{x}} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0^+} \frac{\frac{-\frac{1}{x}}{-\log(x)}}{-\frac{1}{x^2}} =$$

$$\lim_{x \to 0^+} -\frac{\frac{1}{\log(x)} \cdot \frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to 0^+} -\frac{\frac{1}{\log(x)}}{\frac{1}{x}} = \lim_{x \to 0^+} -\frac{x}{\log(x)} = 0.$$

Con lo que

$$\lim_{x \to 0^+} (-\log(x))^x = e^{\lim_{x \to 0^+} x \log(-\log(x))} = e^0 = 1.$$

Ejercicios

- 1. Calcular la derivada de las siguientes funciones usando la definición de derivada:
 - a) $f(x) = x^2 2x + 3$.
 - b) $f(x) = \frac{1}{x}$.
- 2. Calcular la derivada de las siguientes funciones:

(a)
$$f(x) = \frac{x}{1+x^2}$$

(g)
$$f(x) = \arctan\left(\frac{\operatorname{sen}(x)}{1 + \cos(x)}\right)$$

(b)
$$f(x) = \log\left(\frac{2\operatorname{tg}(x)+1}{\operatorname{tg}(x)+2}\right)$$

(h)
$$f(x) = \sqrt[3]{\frac{x-1}{x+1}}$$

(c)
$$f(x) = \sin(x - \sin(x^2))$$

(i)
$$f(x) = |x^2 - 4|$$

(d)
$$f(x) = 2^{\sec(x^2 - 3x + 7)}$$

(j)
$$f(x) = 3^{\arcsin(\sqrt{1-x^2})}$$

(e)
$$sen(x + f(x)) = f^2(x)cos(x)$$

(k)
$$f(x) = e^{\operatorname{cosec}(5x)}$$

(f)
$$x = f^2(x)\sqrt{1 - f(x)}$$

(1)
$$f(x) = x^x$$

- 3. Calcular la derivada de las siguientes funciones usando el teorema de la derivada de la función inversa:
 - $a) f(x) = \arccos(x).$
 - $b) f(x) = \operatorname{arctg}(x).$
- 4. Hallar la ecuación de la recta tangente a la función $f(x) = e^x + \log(x+1)$ en el punto (0,1).
- 5. Estudiar la derivabilidad de la siguiente función:

$$f(x) = \begin{cases} \cos(x), & \text{si } x \le 0 \\ 1 - x^2, & \text{si } 0 < x < 1 \\ \arctan(x), & \text{si } x \ge 1 \end{cases}$$

6. Estudiar la derivabilidad de la siguiente función en x = 1:

$$f(x) = \begin{cases} x^2 - 2x + 1, & \text{si } x > 1 \\ x - 1 & \text{si } x \le 1 \end{cases}.$$

7. Consideremos la siguiente función

$$f(x) = \begin{cases} \frac{3-x^2}{2}, & \text{si } x < 1\\ \frac{1}{x}, & \text{si } x \ge 1 \end{cases}.$$

- a) Estudiar su continuidad y derivabilidad.
- b) Se puede aplicar el teorema del valor medio de Lagrange en el intervalo [0, 2]? En caso afirmativo, hallar los puntos de la tesis del teorema.
- 8. Demostrar que las siguientes identidades son ciertas:
 - a) $\operatorname{arctg}(x) + \operatorname{arctg}\left(\frac{1}{x}\right) = -\frac{\pi}{2}$, si $x \in (-\infty, 0)$.
 - b) $\operatorname{arcsen}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$, si $x \in (-1, 1)$.
- 9. Sean $a, b \in \mathbb{R}$ y sea $f : [a, b] \longrightarrow \mathbb{R}$ una función continua en [a, b] y derivable en (a, b). Comprobar que si $|f'(x)| < \frac{1}{3}$ para todo $x \in (a, b)$, entonces f es contractiva en (a, b), es decir, existen una constante $C \in (0, 1)$ tal que para todo $x, y \in (a, b)$ se verifica que $|f(x) f(y)| \le C|x y|$.
- 10. La función $f(x) = 1 x^{\frac{2}{3}}$ se anula en -1 y en 1 y, sin embargo, $f'(x) \neq 0$ para todo $x \in (-1,1)$. ¿Contradice esto el Teorema de Rolle?
- 11. Hallar un valor aproximado de $\sqrt{65}$ usando el teorema del valor medio de Lagrange.
- 12. Sea $f: [-2,2] \longrightarrow \mathbb{R}$ la función dada por $f(x) = \log(5-x^2)$ para todo $x \in [-2,2]$. ¿Se pueden aplicar los teoremas de Rolle y del valor medio de Lagrange? En caso afirmativo, hallar el valor intermedio para el que se cumple el teorema.
- 13. Usar el teorema del valor medio de Lagrange para demostrar que

$$5 + \frac{1}{12} < \sqrt{26} < 5 + \frac{1}{10}.$$

- 14. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función derivable en \mathbb{R} y tal que $|f(x) f(y)| \le (x y)^2$ para todo $x, y \in \mathbb{R}$. Probar que f es una función constante.
- 15. Calcular los siguientes límites utilizando la regla de L'Hôpital:

(a)
$$\lim_{x \to 2\pi} (-1 + \cos(x))^{\operatorname{sen}(x)}$$

(d)
$$\lim_{x\to 0} \frac{\operatorname{sen}(x)-x}{x^3}$$

(b)
$$\lim_{x \to \infty} \frac{5^x + 7^x}{5^x - 7^x}$$

(e)
$$\lim_{x \to 0} \left(\frac{\operatorname{sen}(x)}{x} \right)^{\frac{\operatorname{sen}(x)}{x^3}}$$

(c)
$$\lim_{x \to \infty} x \operatorname{tg}\left(\frac{\pi}{x}\right)$$

(f)
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}}$$

16. Obtener la relación entre los valores reales a y b para que se verifique

$$\lim_{x \to \infty} \left(\frac{2x + a}{2x + b} \right)^{3x} = \pi.$$