

Sumário

- 1. Um retorno às retas paralelas
- 2. O Baricentro
- 3. O Incentro
- 4. O Circuncentro
- 5. O Ortocentro

Um retorno às retas paralelas

Teorema

Teorema 1

Se do ponto médio do lado de um triângulo, traçarmos uma paralela a um dos lados, esta passará pelo ponto médio do terceiro lado.

- ▶ **Hipótese:** $AD = DB \ e \ \overline{DE} \parallel \overline{BC}$.
- ightharpoonup Tese: AE = EC.

Pelo ponto E, que a paralela ao lado \overline{BC} corta o lado \overline{AC} , trace um segmento paralelo ao lado \overline{AB} , cortando o lado \overline{BC} .

i) Qual teorema garante que BD = FE?

ii) Sendo $\overline{AB} \parallel \overline{EF}$, cortadas pela transversal \overline{AC} , como podemos relacionar os ângulos $\widehat{ADE} = \widehat{EFC}$?

iii) Como $\overline{DA} \parallel \overline{FE} \in \overline{DE} \parallel \overline{FC}$, como podemos relacionar os ângulos $\widehat{ADE} \in \widehat{EFC}$?

- iv) Dos itens anteriores, o que garante a congruência dos triângulos DAE e FEC?
- ightharpoonup Da congruência acima, o que garante que AE = EC?

Teorema

Teorema 2

O segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado.

- ▶ **Hipótese:** AD = DB e AE = EC.
- ▶ Tese: $\overline{DE} \parallel \overline{BC}$.

- 1. Pelo ponto médio de \overline{AB} , D, traçamos uma reta paralela ao lado \overline{BC} .
- 2. Pelo Teorema 1, essa reta corta o lado \overline{AC} no seu ponto médio, E.
- 3. Como pelos pontos distintos D e E passa uma única reta, o segmento \overline{DE} deve estar contido na reta traçada, o que implica em também ser paralelo ao lado \overline{BC} .

Corolário

Corolário 1

No triângulo anterior, tem-se $DE = \frac{BC}{2}$.

Dica: Basta considerar a paralela \overline{EF} ao segmento \overline{DB} e usar os teoremas anteriores.

O Baricentro

Baricentro - Medianas

Teorema 3

As três medianas de um triângulo interceptam-se num mesmo ponto que divide cada mediana em duas partes tais que a parte que contém o vértice é o dobro da outra.

Figura 1: $\overline{AI} = \frac{2}{3}\overline{AD}$, $\overline{BI} = \frac{2}{3}\overline{BN}$ e $\overline{CI} = \frac{2}{3}\overline{CM}$

Pelos pontos médios M e N trace um segmento de reta que, pelo Teorema 2, é paralelo ao lado \overline{BC} . Além disso, pelo corolário do mesmo teorema, $\overline{MN} = \frac{\overline{BC}}{2}$.

▶ Pelos pontos médios de \overline{BI} e \overline{CI} , trace um segmento \overline{PO} . Por que esse segmento também é paralelo ao lado \overline{BC} ?

- Considerando o triângulo ACI, o segmento que une os pontos médios dos lados AC e
 CI é paralelo ao lado AI (Teorema 2).
- Analogamente, considerando o triângulo ABI, o segmento que une os pontos médios dos lados \overline{AB} e \overline{BI} é paralelo ao lado \overline{AI} , pelo mesmo teorema.
- ► Como $\overline{MP} \parallel \overline{AI}$ e $\overline{NO} \parallel \overline{AI}$, segue que \overline{MP} e \overline{NO} são paralelas.

- ► Conclua que os lados paralelos são congruentes.
- O quadrilátero MNOP é um paralelogramo.

▶ Se é um paralelogramo, suas diagonais se bissecam, então $\overline{MI} = \overline{IO}$ e $\overline{NI} = \overline{IP}$.

► Como $\overline{IP} = \overline{BP}$, $\overline{BN} = \overline{BP} + \overline{IP} + \overline{IN} = \overline{IP} + \overline{IP} + \overline{IP} = 3\overline{IP}$, segue que

$$\overline{IP} = \frac{\overline{BN}}{3} \Rightarrow \overline{BI} = \overline{BP} + \overline{IP} = 2\overline{IP} = \frac{2}{3}\overline{BN}.$$

Por outro lado, se G é o ponto de interseção entre as medianas \overline{BN} e \overline{AD} , então

$$\overline{BG} = \frac{2}{3}\overline{BN} = \overline{BI}.$$

► Como \overline{BI} e \overline{BG} estão sobre o mesmo segmento (\overline{BN}) , com a mesma distância ao ponto inicial B, podemos concluir que

$$\overline{BI} = \overline{BG}$$

ou seja, os pontos *l* e *G* coincidem e as três medianas concorrem num mesmo ponto.

Aplicações

- O ponto de interseção (ou ponto de encontro, ou ponto de concurso) das três medianas de um triângulo é o **baricentro** do triângulo.
- ► Ele também pode ser chamado de **centróide**, **centro de massa** ou **centro de gravidade**, porque é o ponto de equilíbrio.
- ► Isso significa que, se colocar o dedo embaixo de uma figura plana triangular com a ponta bem no baricentro, a figura não cai.
- Por ele ser o ponto onde a força da gravidade atua em um corpo, é nele que podemos equilibrar as forças de atração. Graças a esse conceito, é que as construções de diversos formatos se mantêm em pé, foram criados foguetes e trajes espaciais, máquinas, etc.

O Incentro

Incentro - Bissetrizes

Teorema 4

As três bissetrizes internas de um triângulo interceptam-se num mesmo ponto que está a igual distância dos lados do triângulo.

Figura 2: $d(S, \overline{AC}) = d(S, \overline{AB}) = d(S, \overline{BC})$

Novamente, queremos demonstrar duas afirmações:

- As bissetrizes \overline{AG} , \overline{BF} e \overline{CE} concorrem num mesmo pontos S.
- As distâncias de S aos lados \overline{AB} , \overline{BC} e \overline{AC} possuem a mesma medida:

$$\overline{SH} = \overline{SK} = \overline{SJ}$$
.

- ► Considera as bissetrizes \overline{AG} e \overline{BF} dos ângulos A e B, respectivamente.
- ▶ Os dois segmentos se interceptam num ponto S. A distância desse ponto aos lados \overline{AB} e \overline{AC} são dados pelos comprimentos \overline{SH} e \overline{SJ} .

- Solution of triangulos SHA e SJA são congruentes ((L) \overline{AS} lado em comum, (A) $S\hat{A}H = S\hat{A}J$ e (A) $A\hat{H}S = A\hat{J}S$).
- ► Com isso, os lados opostos aos ângulos congruentes *SÂH* e *SÂJ* são congruentes, de onde segue que

$$\overline{SH} = \overline{SJ}.$$
 (1

- Considerando o segmento \overline{SK} , perpendicular ao lado \overline{BC} , obtemos que a distância de S ao lado \overline{BC} é dado pelo comprimento de \overline{SK} .
- ► Os triângulos *SHB* e *SKB* são congruentes ((L) \overline{SB} lado em comum, (A) $S\hat{B}H = S\hat{B}K$ e (A) $B\hat{K}S = B\hat{H}S$).

► Com isso, os lados opostos aos ângulos congruentes *SBH* e *SAK* são congruentes, de onde segue que

$$\overline{SH} = \overline{SK}.$$
 (2)

▶ Portanto,de (1) e de (2), segue que $\overline{SJ} = \overline{SH} = \overline{SK}$, como queríamos.

Por fim, queremos mostrar que a bissetriz CE também passa pelo ponto S.

▶ Tome o segmento \overline{CS} . Vamos mostrar que $J\hat{C}S = K\hat{C}S$.

Com efeito, os triângulos SJC e SKC são congruentes, pelo caso particular do triângulo retângulo ((H) \overline{SC} hipotenusa em comum e (C) $\overline{SJ} = \overline{SK}$ cateto em comum).

► Com isso, os ângulos opostos aos lados congruentes \overline{SJ} e \overline{SK} , são congruentes:

$$J\hat{C}S = K\hat{C}S.$$
 (3)

▶ Logo, o segmento \overline{CS} está contido na bissetriz \overline{CE} .

▶ Portanto, $\overline{AG} \cap \overline{BF} \cap \overline{CE} = \{S\}$, como queríamos demonstrar.

O Incentro

- Como veremos na próxima aula, a circunferência é o conjunto de pontos do plano que estão a uma mesma distância de um ponto dado, chamado de centro da circunferência.
- O ponto de interseção (ou ponto de encontro ou ponto de concurso) das três bissetrizes internas de um triângulo é o incentro do triângulo.
- O incentro é o centro da circunferência inscrita no triângulo.

O Circuncentro

Circuncentro - Mediatrizes

Teorema 5

As mediatrizes dos lados de um triângulo interceptam-se num mesmo ponto que está a igual distância dos vértices do triângulo.

Figura 3: $\overline{AO} = \overline{BO} = \overline{CO}$

▶ Seja *O* o ponto de interseção entre as mediatrizes de \overline{AC} e \overline{AB} .

► Como os triângulos *ANO* e *CNO* são congruentes (LAL), temos que os lados opostos aos ângulos retos são congruentes e, portanto,

$$\overline{AO} = \overline{CO}$$
.

Analogamente, os triângulos AOM e BOM são congruentes (LAL). Assim, os lados opostos aos ângulos retos são congruentes e, portanto,

$$\overline{AO} = \overline{BO}$$
.

Com isso, concluímos que

$$\overline{AO} = \overline{CO} = \overline{BO}$$
.

- Resta-nos mostrar que a mediatriz de \overline{BC} também passa pelo ponto O.
- ightharpoonup De fato, considere o segmento \overline{OD} .

► Como $\overline{CO} = \overline{BO}$, o triângulo BOC é isósceles. Como o segmento \overline{OD} é a mediana relativa ao lado BC, é também a mediatriz desse segmento, como queríamos.

O Circuncentro

- O ponto de interseção (ou ponto de encontro ou ponto de concurso) das mediatrizes dos lados de um triângulo é o **circuncentro** do triângulo.
- O circuncentro é o centro da circunferência circunscrita ao triângulo.

O Ortocentro

Ortocentro - Alturas

Teorema 6

As três retas suportes das alturas de um triângulo interceptam-se num mesmo ponto.

Figura 4: $\overline{AO} = \overline{BO} = \overline{CO}$

Veja na bibliografia: Fundamentos de Matemática Elementar, vol. 9. (Click para baixar)