Orientamento Geometrico, A.A. 2024-2025 Corso di Laurea Magistrale in Matematica

Dipartimento di Matematica "F. Enriques"

UNIVERSITÀ DEGLI STUDI DI MILANO

15 maggio 2024

Perché la geometria/cos'è la geometria?

Idea

- Non la geometria ma le geometrie (strumenti diversi=geometrie diverse);
- Partendo da uno spazio topologico e, raffinandolo con ulteriori strutture, possiamo introdurre nuovi oggetti geometrici, che vogliamo studiare.

Perché la geometria/cos'è la geometria?

Idea

- Non la geometria ma le geometrie (strumenti diversi=geometrie diverse);
- Partendo da uno spazio topologico e, raffinandolo con ulteriori strutture, possiamo introdurre nuovi oggetti geometrici, che vogliamo studiare.

Le domande fondamentali

- Cos'è un oggetto geometrico?
- Cos'è una proprietà geometrica?
- Come identificarle e poi studiarle?

Cos'è un oggetto geometrico?

Si parte da uno spazio topologico che richiediamo possegga una struttura locale speciale. Tale struttura locale caratterizzerà la nostra geometria.

Cos'è un oggetto geometrico?

Si parte da uno spazio topologico che richiediamo possegga una struttura locale speciale. Tale struttura locale caratterizzerà la nostra geometria.

Localmente, possiamo richiedere varie strutture:

- aperti di \mathbb{R}^n (con metrica);
- aperti di \mathbb{C}^n (con struttura olomorfa e metrica);
- un insieme di ideali primi in un anello commutativo (con un'opportuna topologia).

Cos'è un oggetto geometrico?, II

... ma l'osservazione cruciale è che dal locale dobbiamo passare al **globale**:

Cos'è un oggetto geometrico?, II

... ma l'osservazione cruciale è che dal locale dobbiamo passare al **globale**:

Cercheremo di capire come trovare invarianti/proprietà della nostra struttura,

Se abbiamo, ad esempio, che (ristretta all'intersezione)

- $\varphi_{\mathcal{M},\beta} \circ \varphi_{\mathcal{M},\alpha}^{-1}$ omeo \Longrightarrow var. topologica;
- $\varphi_{\mathcal{M},\beta} \circ \varphi_{\mathcal{M},\alpha}^{-1}$ diffeo \Longrightarrow var. differenziabile;
- $\varphi_{\mathcal{M},\beta} \circ \varphi_{\mathcal{M},\alpha}^{-1}$ biolomorfismo \Longrightarrow var. complessa;
- fascio strutturale ⇒ schema.

Cos'è un oggetto geometrico?, III

... ma l'osservazione cruciale è che dal locale dobbiamo passare al **globale**.

Cos'è un oggetto geometrico?, III

... ma l'osservazione cruciale è che dal locale dobbiamo passare al globale.

Cercheremo di capire come trovare invarianti/proprietà delle nostre strutture **globali** (per caratterizzare e classificare i vari oggetti della geometria che abbiamo deciso di studiare), una volta imposta la struttra locale.

- per una varietà topologica, $\pi_n(X)$;
- per una var.ietà differenziabile, $H_{dR}^*(X)$;
- per una varietà complessa, $H^{p,q}_{dR}(X,\mathbb{C})$;
- per una varietà algebrica, $H_{dR}^*(X,\mathcal{F})$.

Relatività e geoemetria

La nuova intuizione di Einstein

La geometria è intrinsecamente legata anche alla realtà fisica: la gravità è la curvatura dello spazio-tempo.

Dobbiamo quindi necessariamente capire/studiare la struttura differenziale e metrica dello spazio-tempo.

Varietà di Calabi-Yau e stringhe

Teoria delle stringhe

Per conciliare la gravità con le altre forze fondamentali occorre una nuova geometria.

Varietà di Calabi-Yau: varietà complesse che vivono in spazi proiettivi con speciali proprietà metriche.

Servono: 4 + 6 = 10 dimensioni reali (le 6 dimensioni reali sono in realtà 3 complesse).

Come studio proprietà geometriche?

Ad una varietà possiamo associare inviarianti algebrici più facili da calcolare:

Strumenti diversi=geometrie diverse

Orientamento geo. diff.

Orientamento geo. algebrica (complessa)

Primo semestre

- Geometria Algebrica Proiettiva (approccio classico alle varietà algebricge)
- Geometria degli Schemi
- Geometria Differenziale (teoria di base delle varietà differenziabili e della curvatura)
- Topologia algebrica (studio di omologia, coomologia, omotopia)
- Varietà complesse (varietà olomorfe, teoria di Hodge)
- Geometria Superiore 2 (teoria delle categoria triangolabili)

Secondo semestre

- Geometria Complessa (curve algebriche)
- Geometria Riemanniana (geometria delle varietà Riemanniane e studio della curvature)
- Geometria Superiore 1 (fibrati vettoriali, K-teoria)
- Gruppi di Lie (studio di gruppi e algebre di Lie)
- Superfici algebriche (superfici algebriche, cenni di geometria algebrica/positività in dimensione superiore)
- Topologia differenziale (studio di proprietà differenziali stabili per piccole perturbazioni)

Corsi da tenere in considerazione

- Geometria 5 (mutuato dalla triennale)
- Algebra commutativa
- Teoria delle Categorie
- Analisi complessa
- Analisi reale
- Dall'orientamento analitico: equazioni alle derivate parziali, elementi di analisi funzionale.

Orientamento differenziale: una proposta

- Geometria Differenziale;
- Geometria Riemaniana;
- Gruppi di Lie;
- Topologia algebrica;
- Topologia differenziale.

Orientamento differenziale: una proposta

- Geometria Differenziale;
- Geometria Riemaniana;
- Gruppi di Lie;
- Topologia algebrica;
- Topologia differenziale.

A cui affiancare:

- Analisi reale e complessa;
- Equazioni alle derivate parziali, elementi di analisi funzionale.

Orientamento algebrico: una proposta

Corsi di natura generale:

- Geometria Algebrica Proiettiva;
- Geometria degli Schemi;
- Geometria Superiore 1;
- Varietà complesse;
- Topologia algebrica;
- Geometria Superiore 2.

Orientamento algebrico: una proposta

Corsi di natura generale:

- Geometria Algebrica Proiettiva;
- Geometria degli Schemi;
- Geometria Superiore 1;
- Varietà complesse;
- Topologia algebrica;
- Geometria Superiore 2.

Corsi che studiano/classificano classi di esempi:

- Geometria complessa (il caso delle curve);
- Superfici Algebriche (il caso delle superfici).

Orientamento algebrico: una proposta

Corsi di natura generale:

- Geometria Algebrica Proiettiva;
- Geometria degli Schemi;
- Geometria Superiore 1;
- Varietà complesse;
- Topologia algebrica;
- Geometria Superiore 2.

Corsi che studiano/classificano classi di esempi:

- Geometria complessa (il caso delle curve);
- Superfici Algebriche (il caso delle superfici).

A cui affiancare:

- Analisi complessa;
- Algebra commutativa.

Oltre i corsi

- Algant Pizza Seminar;
- Seminario di geometria algebrica;
- Seminario di geometria aritmetica;
- Gruppi di lavoro organizzati ogni semestre dai diversi gruppi di ricerca;
- Interazione diretta coi ricercatori del dipartimento (esplorare nuovi argomenti, avviamento alla ricerca);
- Preparazione della tesi di laurea.