SOME ALGEBRAIC TOPOLOGY

XIAOLONG LIU

1 The Fundamental Group and Covering Space

Theorem 1.1 (van Kampen). Let $X = \bigcup_{\alpha} A_{\alpha}$ where A_{α} are path-connected open sets with a basepoint x_0 . Let all $A_{\alpha} \cap A_{\beta}$ are path-connected, then consider

$$\pi_1(A_{\alpha} \cap A_{\beta}) \xrightarrow{i_{\alpha\beta}} \pi_1(A_{\alpha})$$

$$\downarrow^{i_{\beta\alpha}} \qquad \qquad \downarrow^{j_{\alpha}}$$

$$\pi_1(A_{\beta}) \xrightarrow{j_{\beta}} \pi_1(X)$$

where all maps induced by inclusions. Then j_{α} induce $\Phi : *_{\alpha}\pi_1(A_{\alpha}) \to \pi_1(X)$ is surjective. If $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ are path-connected, then $\ker \Phi$ is a normal subgroup generated by all elements of form $i_{\alpha\beta}(w)i_{\beta\alpha}(w)^{-1}$ for $w \in \pi_1(A_{\alpha} \cap A_{\beta})$.

Remark 1.1. In the case of two open sets U, V with $U \cap V$ path-connected, we have the following. In the category of groups \mathfrak{Grp} , we can describe pushout of $f: G \to A$ and $g: G \to B$. We let $A *_G B$ as $A *_B/(f(a)g(a)^{-1})_{a \in G}$, then we have the following universal property in \mathfrak{Grp} :

We call it the amalgamated product of A and B with amalgam G. So in the van Kampen theorem with U, V, we have

$$\pi_1(X) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V).$$

2 Homology

2.1 Singular Homology

Theorem 2.1 (Excision Theorem). Let $Z \subset A \subset X$ where $\operatorname{cl}(Z) \subset \operatorname{int}(A)$, then the inclusion $(X-Z,A-Z) \hookrightarrow (X,A)$ induce $H_n(X-Z,A-Z) \cong H_n(X,A)$. If now we let B=X-Z we have $H_n(B,A\cap B) \cong H_n(X,A)$.

Proposition 2.1. For good pairs (X, A), map $q: (X, A) \to (X/A, A/A)$ induce $q_*: H_n(X, A) \cong H_n(X/A, A/A) \cong \widetilde{H}_n(X/A)$.

Proof. Let V be the open set deformation retracts into A, consider

$$H_n(X,A) \xrightarrow{f} H_n(X,V) \longleftarrow \xrightarrow{g} H_n(X-A,V-A)$$

$$\downarrow q_* \downarrow \qquad \qquad \downarrow q_* \downarrow \qquad \qquad \downarrow q_* \downarrow$$

$$H_n(X/A,A/A) \xrightarrow{u} H_n(X/A,V/A) \longleftarrow H_n(X/A-A/A,V/A-A/A)$$

f, u are isomorphisms by the long exact sequences of triples (X, V, A) and (X/A, V/A, A/A). And g, v are isomorphisms directly by excision. The right hand q_* is isomorphism. So is the

2.2 Cellular Homology

Theorem 2.2 (Hairly Ball). S^n has a continuous field of nonzero tangent vectors iff n is odd.

Proof. Consider such vector field v(x) and view it as centering at origin. Let |v(x)| = 1 via v(x)/|v(x)|. Consider $f_t(x) = (\cos t)x + (\sin t)v(x)$. Then $\deg(-\mathrm{id}) = \deg(\mathrm{id}) = 1$, so $(-1)^{n+1} = (\cos t)x + (\sin t)v(x)$.

Conversely if
$$n = 2k - 1$$
, then let $v(x_1, ..., x_{2k}) = (-x_2, -x_1, ..., -x_{2k}, -x_{2k-1})$.

Now we consider CW complex X with k-skeleton X_k . We have the following elementary conclusion:

Lemma 2.1. (a) $H^k(X_n, X_{n-1})$ is zero when $k \neq n$ and free abelian with basis of n-cells of X when k = n;

- (b) $H_k(X^n) = 0$ for k > n; (c) Inclusion $X^n \hookrightarrow X$ induces $H_k(X^n) \cong H_k(X)$ for k < n.

Theorem 2.3 (Cellular Boundary Formula). The map d_n in above diagram we have $d_n(e_\alpha^n) = \sum_\beta \deg(S_\alpha^{n-1} = \partial e_\alpha^n \to X^{n-1} \to S_\beta^{n-1})e_\beta^{n-1}$ where the map is the attaching map of e_α^n with the quotient map collapsing $X^{n-1} - e_\beta^{n-1}$ to a point.

2.3 Mayer-Vietoris

Theorem 2.4 (Mayer-Vietoris Sequence). Let $A, B \subset X$ with $X = \operatorname{int}(A) \cap \operatorname{int}(B)$. Then we

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{x \mapsto (x, -x)} C_n(A) \oplus C_n(B) \xrightarrow{(x, y) \mapsto x + y} C_n(A + B) \longrightarrow 0$$

Then induce the long exact sequence

$$\cdots \longrightarrow H_n(A \cap B) \xrightarrow{(i_{1*}, -i_{2*})} H_n(A) \oplus H_n(B) \xrightarrow{g_* + j_*} H_n(X)$$

$$\downarrow \partial$$

$$\cdots \longleftarrow H_{n-1}(A \cap B)$$

where $i_1: A \cap B \to A, i_2: A \cap B \to B$ and $g: A \to X, j: B \to X$.

Theorem 2.5 (Mapping Torus and Mayer-Vietoris Sequence). Let $f, g: X \to Y$ and let $Z = X \times I/((x,0) \sim f(x), (x,1) \sim g(x))$ be the mapping torus, then we have

$$\cdots \longrightarrow H_n(X) \xrightarrow{f_* - g_*} H_n(Y) \xrightarrow{i_*} H_n(Z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longleftarrow H_{n-1}(X)$$

More special case, we let $f:A\cap B\to A, g:A\cap B\to B$, then we can get the traditional Mayer-Vietoris sequence.

Theorem 2.6 (Relative Mayer-Vietoris Sequence). Let $(X,Y)=(A\cup B,C\cup D)$ with $C\subset A,D\subset B$. Then we have

$$\cdots \longrightarrow H_n(A \cap B, C \cap D) \longrightarrow H_n(A, C) \oplus H_n(B, D) \longrightarrow H_n(X, Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longleftarrow H_{n-1}(A \cap B, C \cap D)$$

derived by nine lemma and long exact sequence.

2.4 More Applications

2.4.1 Embedding and Homology

Theorem 2.7 (Invariance of Domain). If U is open in \mathbb{R}^n , then for any embedding (homeomorphic to image) $h: U \to \mathbb{R}^n$ the image h(U) is open in \mathbb{R}^n .

Proof. We will work on S^n . We just need to show that $h(D^n - \partial D^n)$ is open in S^n . Omitted. \square

2.4.2 Borsuk-Ulam Type Theorem

Theorem 2.8 (Borsuk). A map $f: S^n \to S^n$ with f(-x) = -f(x) must have odd degree.

Corollary 2.1 (Borsuk-Ulam). Every map $g: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with g(x) = g(-x).

Corollary 2.2. Whenever S^n is expressed as the union of n+1 closed sets $A_0, ..., A_n$, then at least one of these sets must contain a pair of antipodal points.

Proof. We define $d_i: S^n \to \mathbb{R}, x \mapsto \inf_{y \in A_i} |x - y|$. Let $g: S^n \to \mathbb{R}^n, x \mapsto (d_1(x), ..., d_n(x))$. By Borsuk-Ulam theorem, it obtaining a pair of antipodal points x, -x with $d_i(x) = d_i(-x), i = 1, ..., n$. If either of these distances is 0, then well done. If not, $x, -x \in A_0$, well done.

2.4.3 The Lefschetz Fixed Point Theorem

Theorem 2.9 (Lefschetz). If X is a finite simplicial complex, or more generally aretract of a finite simplicial complex and $f: X \to X$ is a map with $\tau(f) = \sum_n (-1)^n \operatorname{tr}(f_*: H_n(X) \to H_n(X)) \neq 0$, then f has a fixed point.

3 Cohomology

3.1 Orientations

Theorem 3.1. Let M be a closed connected n-manifold. Then

- (a) If M is R-orientable, then the map $H_n(M; R) \to H_n(M|x; R) \cong R$ is an isomorphism for all $x \in M$:
- (b) If M is not R-orientable, then the map $H_n(M;R) \to H_n(M|x;R) \cong R$ is injective for all $x \in M$ with image $\{r : \in R : 2r = 0\}$.

By the isomorphism $H_n(M;R) \to H_n(M|x;R) \cong R$, the element in $H_n(M;R)$ is called fundamental class if its image in any $H_n(M|x;R) \cong R$ is a generator.

Theorem 3.2. Let M be a manifold of dimension n and let $A \subset M$ be a compact subset. Then for any section $(x \mapsto \alpha_x) \in \Gamma(M, M_R)$ there exists a unique class $\alpha_A \in H_n(M|A;R)$ whose image in $H_n(M|x;R)$ is α_x for all $x \in A$. Moreover, $H_i(M|A;R) = 0, i > n$.

Sketch of the Proof. Our method is to reduce the case in to simple one.

(i) If this hold for $A, B, A \cap B$, then this is also hold of $A \cup B$. Use the MV-principle, we have:

$$0 = H_{n+1}(M|A \cap B) \longrightarrow H_n(M|A \cup B) \longrightarrow H_n(M|A) \oplus H_n(M|B) \longrightarrow H_n(M|A \cap B)$$

then this is easy to see;

- (ii) Reduce to the case $M = \mathbb{R}^n$. Actually we can let $A = \bigcup_{i=1}^m A_i$ where A_i in some \mathbb{R}^n . Then use MV-principle and induction, well done;
- (iii) Consider the case $M = \mathbb{R}^n$ and $A = \bigcup_{i=1}^m A_i$ where A_i is convex. Use the MV-principle as (ii) we can let A is convex. Then the result is trivial by $H_i(\mathbb{R}^n|A) \cong H_i(\mathbb{R}^n|x)$ naturally;
- (iv) Consider the case $M = \mathbb{R}^n$ and A be any compact. Let $\alpha \in H_i(\mathbb{R}^n|A)$ represented by z and let $C \subset \mathbb{R}^n A$ be the union of the images of the singular simplices in ∂z . Then one can cover some closed balls over A outside of C. Let K be the union of these balls and we see that the relative cycle z defines an element $\alpha_K \in H_i(\mathbb{R}^n|K)$ mapping to the given $\alpha \in H_i(\mathbb{R}^n|A)$. Use (iii) to $H_i(\mathbb{R}^n|K)$, well done.

Corollary 3.1. Let M be a closed connected n-manifold. The torsion subgroup of $H_{n-1}(M; \mathbb{Z})$ is trivial if M is orientable and $\mathbb{Z}/2\mathbb{Z}$ if M is nonorientable.

Proof. If M is orientable and if $H_{n-1}(M;\mathbb{Z})$ contained torsion, then by universal coefficient, we have

$$0 \to \mathbb{Z}/2\mathbb{Z} \to H_n(M; \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(M), \mathbb{Z}/2\mathbb{Z}) \to 0$$

Then $H_n(M; \mathbb{Z}/2\mathbb{Z})$ is bigger than $\mathbb{Z}/2\mathbb{Z}$ which is impossible.

If M is nonorientable, we let $H_{n-1}(M) = F \oplus \bigoplus_{j} \mathbb{Z}/p_{j}\mathbb{Z}$, then we have

$$0 \longrightarrow 0 \longrightarrow H_n(M; \mathbb{Z}/2\mathbb{Z}) \longrightarrow \bigoplus_j \operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}/p_j\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$\parallel$$

$$\bigoplus_j \frac{p_j\mathbb{Z} \cap 2\mathbb{Z}}{2p_j\mathbb{Z}}$$

then we have $H_{n-1}(M) = \mathbb{Z}/2\mathbb{Z}$.

Proposition 3.1. If M is a connected noncompact n-manifold, then $H_i(M; R) = 0$ for all $i \geq n$.

Proof. Let z be a cycle represent an element of $H_i(M;R)$. It has a compact image and we let U be an open set cover it with compact closure. Let $V = M - \operatorname{cl}(U)$ and consider $(M, U \cup V, V)$ we have

$$0 = H_{i+1}(M, U \cup V; R) \longrightarrow H_i(U \cup V, V; R) \longrightarrow H_i(M, V; R) = 0$$

$$\uparrow \cong \qquad \uparrow \qquad \qquad \uparrow$$

$$H_i(U; R) \longrightarrow H_i(M; R)$$

When i > n we have $H_i(U; R) = 0$ so z is a boundary in U and so in M, so $H_i(M; R) = 0$. When i = n, class $[z] \in H_n(M; R)$ defines a section $x \mapsto [z]_x$ of M_R . This section determined by the value in single point since M is connected. Also consider

$$0 = H_{n+1}(M, U \cup V; R) \longrightarrow H_n(U \cup V, V; R) \longrightarrow H_n(M, V; R)$$

$$\uparrow \cong \qquad \qquad \uparrow$$

$$H_n(U; R) \longrightarrow H_n(M; R)$$

Then since M is noncompact and z has a compact image, there must have some point x such that $[z]_x = 0$, so $[z]_x = 0$ for all $x \in M$. Then [z] = 0 in $H_n(M, V; R)$, so is in $H_n(U; R)$ and then in $H_n(M; R)$. We win.

3.2 Cap product and the Duality Theorem

First consider cohomology with compact supports.

Definition 1. Let $C_c^i(X;G)$ be the subgroup of $C^i(X;G)$ consisting of cochains $\phi: C^i(X) \to G$ for which there exists a compact set $K = K_\phi \subset X$ such that ϕ is zero on all chains in X - K. Note that $\delta \phi$ is then also zero on chains in X - K, so $\delta \phi$ lies in $C_c^{i+1}(X;G)$ and the $C_c^i(X;G)$'s for varying i form a subcomplex of the singular cochain complex of X. The cohomology groups $H_c^i(X;G)$ of this subcomplex are the cohomology groups with compact supports.

Another way we let compact $K \hookrightarrow L$ induce $(X, X - L) \hookrightarrow (X, X - K)$, then we have $C^i(X, X - K; G) \hookrightarrow C^i(X, X - L; G)$ and $H^i(X, X - K; G) \rightarrow H^i(X, X - L; G)$.

Proposition 3.2. Since $K \subset X$ are compact sets form a direct system via inclusions. Then we have

$$\varinjlim H^i(X, X - K; G) \cong H^i_c(X; G).$$

Theorem 3.3 (Poincaré Duality). Let M be a R-oriented n-manifold. First we define a map $D_M: H_c^k(M;R) \to H_{n-k}(M;R)$. Consider compact sets $K \subset L \subset M$, we have

$$H_n(M|L;R) \xrightarrow{\times} H^K(M|L;R) \xrightarrow{\cap} H_{n-k}(M;R)$$

$$\downarrow i_* \downarrow \qquad \qquad \downarrow i^* \uparrow \qquad \qquad \qquad \downarrow i_*$$

$$H_n(M|K;R) \xrightarrow{\times} H^k(M|K;R)$$

By previous theorem we can find unique elements $\mu_K \in H_n(M|K;R), \mu_L \in H_n(M|L;R)$ restricting to a given orientation of M at each point of K and L, respectively.

So we have $i_*(\mu_L) = \mu_K$ and $\mu_K \cap x = i_*(\mu_L) \cap x = \mu_L \cap i^*(x)$ for all $x \in H^k(M|K;R)$. So when K vary, we also have $H^k(M|K;R) \xrightarrow{\mu_K \cap (-)} H_{n-k}(M;R)$ which induce

$$D_M: H_c^k(M; R) = \varinjlim H^i(X|K; G) \cong H_{n-k}(M; R).$$

Remark 3.1. When M is a closed R-oriented n-manifold, if [M] is the fundamental class, we have isomorphism

$$D_M: H^k(M;R) \xrightarrow{[M] \smallfrown (-), \cong} H_{n-k}(M;R).$$

Proposition 3.3. A closed manifold of odd dimension has Euler characteristic zero.

Proof. If M is orientable, then $\operatorname{rank}(H_i(M;\mathbb{Z})) = \operatorname{rank}(H^{n-i}(M;\mathbb{Z})) = \operatorname{rank}(H_{n-i}(M;\mathbb{Z}))$ by Poincaré duality and universal coefficient theorem. If n is odd, well done.

If M is not orientable, the similar argument we have $\sum_i (-1)^i \dim H_i(M; \mathbb{Z}/2\mathbb{Z}) = 0$. Now we claim that $\sum_i (-1)^i \dim H_i(M; \mathbb{Z}/2\mathbb{Z}) = \sum_i (-1)^i \operatorname{rank}(H_i(M; \mathbb{Z}))$. Each \mathbb{Z} summand of $H_i(M; \mathbb{Z})$ gives $\mathbb{Z}/2\mathbb{Z}$ summand of $H_i(M; \mathbb{Z}/2\mathbb{Z})$; each $\mathbb{Z}/m\mathbb{Z}$ (where m even) of $H_i(M; \mathbb{Z})$ gives $\mathbb{Z}/2\mathbb{Z}$ summands of $H_i(M; \mathbb{Z}/2\mathbb{Z})$ and $H_{i+1}(M; \mathbb{Z}/2\mathbb{Z})$ which canceled; each $\mathbb{Z}/m\mathbb{Z}$ (where m odd) of $H_i(M; \mathbb{Z})$ contribute nothing. Well done.

3.3 Connection with Cup Product

By some calculation we have

$$\psi(\alpha \smallfrown \phi) = (\phi \smile \psi)(\alpha)$$

where $\alpha \in C_{k+l}(X;R), \phi \in C^k(X;R), \psi \in C^l(X;R)$. So we have

$$H^{l}(X;R) \xrightarrow{h} \operatorname{Hom}_{R}(H_{l}(X;R),R)$$

$$\downarrow \phi \downarrow \qquad (\land \phi)^{*} \downarrow$$

$$H^{k+l}(X;R) \xrightarrow{h} \operatorname{Hom}_{R}(H_{k+l}(X;R),R)$$

For closed R-orientable n-manifold M, consider an important pair:

$$H^k(M;R) \times H^{n-k}(M;R) \longrightarrow R$$

 $(\phi,\psi) \longmapsto (\phi \smile \psi)[M]$

Proposition 3.4. This pair is nonsingular for closed R-orientable manifolds when R is a field or when $R = \mathbb{Z}$ and torsion in $H^*(M; \mathbb{Z})$ is factored out.

Corollary 3.2. If M is a connected closed R-orientable n-manifold, then for each element $\alpha \in H^k(M;\mathbb{Z})$ of infinite order that is not a proper multiple of another element, there exists an element $\beta \in H^{n-k}(M;\mathbb{Z})$ such that $\alpha \smile \beta$ is a generator of $H^n(M;\mathbb{Z}) \cong \mathbb{Z}$. With coefficients in a field the same conclusion holds for any $\alpha \neq 0$.

Example 3.1 (Cohomology Ring of Projective Space). We will show that $H^*(\mathbb{C}P^n;\mathbb{Z}) \cong \mathbb{Z}[\alpha]/(\alpha^{n+1}), |\alpha| = 2$. Similar we have $H^*(\mathbb{R}P^n;\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}[\alpha]/(\alpha^{n+1}), |\alpha| = 1$. Inclusion $\mathbb{C}P^{n-1} \hookrightarrow \mathbb{C}P^n$ induce the same cohomology group of degree less than 2n-2, so by induction on n we have $H^{2i}(\mathbb{C}P^n;\mathbb{Z})$ is generated by α^i for i < n. By the corollary we can find $m\alpha^{i-1}$ such that $\alpha \smile m\alpha^{n-1} = m\alpha^n$ generates $H^{2n}(\mathbb{C}P^n;\mathbb{Z})$, so $m = \pm 1$, well done.

3.4 Other Duality

Example 3.2 (Euler Charactristic of Boundaries). Let W be a compact (2m+1)-dimensional manifold and $M = \partial W$, then $\chi(M) = 2\chi(W)$.

Proof. Consider $W \times I$ as a (2m+2)-manifold with $\partial(W \times I) = (W \times \{0\}) \cup (M \times I) \cup (W \times \{1\})$. Let $U = \partial(W \times I) - (W \times \{1\})$ and $V = \partial(W \times I) - (W \times \{0\})$. Then U, V are open in $\partial(W \times I)$. Both U, V are open in $\partial(W \times I)$. Moreover $U, V \simeq W, U \cap V \simeq M$. So by MV sequence

$$H_{i+1}(U \cup V) \longrightarrow H_{i}(U \cap V) \longrightarrow H_{i}(U) \oplus H_{i}(V) \longrightarrow H_{i}(U \cup V)$$

$$\stackrel{\downarrow}{\cong} \qquad \qquad \stackrel{\downarrow}{\cong} \qquad \qquad H_{i+1}(\partial(W \times I)) \longrightarrow H_{i}(M) \longrightarrow H_{i}(W) \oplus H_{i}(W) \longrightarrow H_{i}(\partial(W \times I))$$

Since $\chi(\partial(W \times I)) = 0$ since dim $\partial(W \times I)$ is odd. So

$$2\chi(W) = \chi(M) + \chi(\partial(W \times I)) = \chi(M),$$

well done. \Box

Corollary 3.3. If $M = \partial W$ for some compact manifold W, then $\chi(M)$ is even.

Example 3.3 (Boundary of Orientable Manifold is Orientable). Let M be a R-orientable n-manifold with boundary ∂M , then ∂M is R-orientable.

Proof. Consider a coordinate $U \cong \mathbb{H}^n$ of $x \in \partial M$. Let $V = \partial U = u \cap \partial M$, and choose $y \in \operatorname{int}(U) = U - V$. We consider R-coefficient homology group, then we have

$$\begin{split} H_n(\mathrm{int}(M),\mathrm{int}(M)-\mathrm{int}(U)) & \xrightarrow{R-\mathrm{orientable},\cong} H_n(\mathrm{int}(M),\mathrm{int}(M)-y) \\ & \xrightarrow{\mathrm{Homotopy \ by \ boundary \ collar,\cong}} H_n(M,M-y) \\ & \xrightarrow{R-\mathrm{orientable},\cong} H_n(M,M-\mathrm{int}(U)) \\ & \xrightarrow{\partial,\cong} H_n(M-\mathrm{int}(U),M-U) \\ & \xrightarrow{\mathrm{Homotopy \ by \ boundary \ collar,\cong}} H_n(M-\mathrm{int}(U),M-\mathrm{int}(U)-x) \\ & \xrightarrow{\mathrm{Excision \ of \ int}(M)-\mathrm{int}(U),\cong} H_n(\partial M,\partial M-x) \\ & \xrightarrow{R-\mathrm{orientable},\cong} H_n(\partial M,\partial M-V). \end{split}$$

Well done. \Box

Remark 3.2. In smooth case, we can calculate the transition function. See Theorem 1.3 in http://staff.ustc.edu.cn/~wangzuoq/Courses/21F-Manifolds/Notes/Lec24.pdf.

Theorem 3.4 (Poincaré Duality with Boundaries). Suppose M is a compact R-orientable n-manifold whose boundary ∂M is decomposed as the union of two compact (n-1) dimensional manifolds A and B with a common boundary $\partial A = \partial B = A \cap B$. Take fundamental class $[M] \in H_n(M, \partial M; R)$. Then for all k we have isomorphism $D_M : H^k(M, A; R) \xrightarrow{[M] \cap (-), \cong} H_{n-k}(M, B; R)$.

Corollary 3.4 (Lefschetz Duality). Suppose M is a compact R-orientable n-manifold and take fundamental class $[M] \in H_n(M, \partial M; R)$. Then for all k we have isomorphism $D_M : H^k(M, \partial M; R) \xrightarrow{[M] \smallfrown (-), \cong} H_{n-k}(M; R)$ and $D_M : H^k(M; R) \xrightarrow{[M] \smallfrown (-), \cong} H_{n-k}(M, \partial M; R)$.

Theorem 3.5 (Alexander Duality). If K is a compact, locally contractible subspace of S^n , then for all i and any abelian group G, we have

$$\widetilde{H}_i(S^n - K; G) \cong \widetilde{H}^{n-i-1}(K; G).$$

Example 3.4 (Jordan Curve). Actually we view $S^1 \subset \mathbb{R}^2$ as one-point compactification $S^1 \subset S^2$, then we use Alexander duality as

$$\widetilde{H}_0(S^2 - S^1; \mathbb{Z}) \cong \widetilde{H}^1(S^1; \mathbb{Z}) \cong \mathbb{Z},$$

so $H_0(S^2 - S^1; \mathbb{Z}) \cong \mathbb{Z}^2$, well done.

Example 3.5 (Jordan-Brouwer Separation Theorem). If $S \subset \mathbb{R}^n$ be a connected compact hypersurface, then $\mathbb{R}^n - S$ has two components.

Proof. Also we let it as in one-point compactification $S \subset S^n$. Now we didn't know whether S is orientable or not, we consider $\mathbb{Z}/2\mathbb{Z}$ as coefficient, then we use Alexander duality and Poincaré duality

$$\widetilde{H}_0(S^n - S; \mathbb{Z}/2\mathbb{Z}) \cong \widetilde{H}^{n-1}(S; \mathbb{Z}/2\mathbb{Z}) \cong H_0(S; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z},$$

well done. \Box

Example 3.6 (Compact Hypersurface as Boundary). If $S \subset \mathbb{R}^n$ be a connected compact hypersurface, then S be the boundary of some domain in \mathbb{R}^n .

Proof. Trivial by Jordan-Brouwer. \Box

Example 3.7 (Compact Hypersurface in \mathbb{R}^n is Orientable). If S be a connected compact hypersurface S in \mathbb{R}^n is orientable.

Proof 1. Since dim S=n-1, we have to calculate $H_{n-2}(S;\mathbb{Z})$. Also we let it as in one-point compactification $S\subset S^n$. WLOG we let n>1. If S is not orientable, we have $H_{n-1}(S;\mathbb{Z})=0$ and $H_{n-2}(S;\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}$, then we have

$$\mathbb{Z} \cong \widetilde{H}_0(S^n - S; \mathbb{Z}) \cong H^{n-1}(S)$$

$$\cong \operatorname{Hom}_{\mathbb{Z}}(H_{n-1}(S; \mathbb{Z}), \mathbb{Z}) \oplus \operatorname{Ext}_{\mathbb{Z}}^1(H_{n-2}(S; \mathbb{Z}), \mathbb{Z})$$

$$\cong \operatorname{Ext}_{\mathbb{Z}}^1(H_{n-2}(S; \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

which is impossible. Well done.

Proof 2. Here we give another method. Take $x \in S$ and $u \in N_x(\mathbb{R}^n/S)$ with ||u|| = 1. By Jordan-Brouwer separation theorem we may let u always in the same component when x is varying on S. Consider a non-trivial vector field X(x) = u(x). Now $i_X(\text{vol})$ restricted to S is a volume form on S where vol is the canonical volume form on \mathbb{R}^n .

Proof 3. Moreover we could prove that the normal bundle of S is trivial. See https://math.stackexchange.com/questions/863960/orientation-of-hypersurface.

References

[Ha] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[May] J.P.May, A Concise Course in Algebraic Topology, The University of Chicago Press, 1999.