1.2 Set Representation and Manipulation

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM **Updated:** 2019-10-15 6:59 PM

Author: SUKHJIT MANN

Tags: Complement, Disjoint, Partition, Universal, Venn

Cornell Notes

Topic:

1.2 Set Representation and

Manipulation

Course: BSc Computer Science

Class: Discrete Mathematics-

Lecture

Date: October 14, 2019

Essential Question:

What is the visual representation of a set and on the other hand how can the said set be manipulated and partitioned?

Questions/Cues:

- What is the universal set?
- What is a Venn Diagram?
- What is a compliment of a set?
- What is the union of a set and its complement?
- What is the Venn Diagram Representation of the union, intersection, set difference and symmetric difference of two sets?
- What are De Morgan's Laws?
- What is De Morgan's first and second law?
- What is the Set identity of Commutativity?
- What is the Set identity of Associativity?
- What is the set identity of Distributivity?
- What is the partition of an object?
- What are disjoint sets?
- What is the partition of a set?

Notes

- Universal Set = set containing everything, denoted by **U**
- Venn Diagram = to visualize possible relations among collection of sets

U is called the universal set and it contains everything. A \sqsubseteq U $\,$ (A is in red).

- Given A, Complement of $\overline{A}=$ contains all elem. in $\textbf{\textit{U}}$, not in A o $\overline{A}=$ U A
- $\overline{A} \cup A = U$

 $A \cap B$

A-B

 $A \oplus B$

 $A \cup B - (A \cap B)$

- De Morgan's Laws = how math statements and concepts related through their opposites
 - o In set theory, DMLs' relate to interaction and union of set through their complements

$$\overline{AUB} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

- Commutativity = operation in which order of element doesn't affect result
 - $\circ A \cup B = B \cup A$

 - $A \cap B = B \cap A$ $A \oplus B = B \oplus A$
 - $\circ~$ Set difference is **NOT** commutative, $A-B \! \neq \! B-A$

- Associativity = grouping of elements in operation, where the grouping doesn't effect the result
 - \circ $(A \cup B) \cup C = A \cup (B \cup C)$
 - \circ $(A \cap B) \cap C = A \cap (B \cap C)$
 - \circ $(A \oplus B) \oplus C = A \oplus (B \oplus C)$
 - \circ Set difference is **NOT** associative, $(A-B)-C \neq A-(B-C)$
- Distributivity = multiplying a sum by number gives same result as multiplying each # and adding the products together
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Union	Name	Intersection
A U B = B U A	commutative	$A \cap B = B \cap A$
(A U) B U C = A U (B U C)	associative	$(A \cap) B \cap C = A \cap (B \cap C)$
$AU(B \cap C) = (AUB) \cap (AUC)$	distributive	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	$\overline{A \cap B} = \overline{A} \ \overline{U} \ \overline{B}$
$A \stackrel{\mathbf{U}}{\mathbf{U}} \emptyset = A$ $A \stackrel{\mathbf{U}}{\mathbf{U}} U = U$	identities	$ \begin{array}{ll} A \cap \emptyset = \emptyset \\ A \cap U = A \end{array} $
$ \begin{array}{ccc} A & \overline{U} & \overline{A} = U \\ \overline{U} = \emptyset \end{array} $	complement	$ \frac{A \cap \overline{A} = \emptyset}{\overline{\emptyset} = U} $
$\overline{\overline{A}} = A$	double complement	
$A U (A \cap B) = A$	absorption	$A \cap (A \cup B) = A$
$A - B = A \cap \overline{B}$	set difference	7

Show that: $(A \cap B) \overline{U} \overline{B} = B \cap \overline{A}$

 $\overline{(A \cap B) \cup B} = \overline{(A \cap B) \cap B}$ $= \overline{(A \cap B) \cap B}$ $= \overline{(A \cup B) \cap B}$ $= B \cap \overline{(A \cup B)}$ $= B \cap \overline{(A \cup B)$

- Partition of an obj = a subdivision of obj into parts, so that parts are completely separated from each other, yet together they form whole object
- Dis-joint sets = A and B are disjoint \leftrightarrow $A \cap B = \emptyset$
- Partition of Set = Partit. of A is set of subsets A_i of A
 - \circ all subsets A_i are disjointed

 $= B \cap \overline{A}$

 \circ the union of all subsets A_i = A

Summary

In this week, we learned that sets can be visually represented by Venn Diagrams, manipulated by set identities to be simplified and subdivided into partitions to represent segments of a whole set.