

an qu'aire 2 R/cois/ (2) er cousé plangée is mum principal d'ordre P si ar l'équation. sin is Constant, on obtient En di flixen (8 h2) Hax = 7 6 h tero le résultat riod

Puisque AT << To, C'est la fonction f(t) = loxeratoret)
qui module les variation Mapides de q(y) = los (ATT To Vot) Ti = 1 : peciode à la fonction lente f(r) 194 mooules E (5) Te = 1 : période de le fontien Hoped= g(k) (modulei) 3 [] = 16 \$ = 1,9 2 10 m | [] = = 30 10 m 2 2 (T2 = 0,26) (DT = 6,2 10 m) (V2 = 4,86 10 m) FHP = Significance Fas = SisdlaB; over \{\vec{df} = -dfe\vec{e}{2} \rightarrow Fas is B; b us Pour les portions PQ et SH dP et B Don't coliniaires => FpQ = FsH = 0. Conclusion La résultante des faces F_{q_s} THE TU Les forces qui s'exceunt sur HPEF Qs formant un couple de moment = elaFAP+ = QAFos = 2 is ab Be Uz Si Do désigne le moment dynamique en 0, on a Do = C + Cn. ·III - 2 -On l'axe (02) est un axe de symittie du Hotor > 2) Do = dLo = J du vz, soit par projection Du (02): Jdw = 2is abbo - Co

_14900-	
III-3- La fem induite est calculée par la circulation du champ électronateur En = ve à B, de lang	
$\frac{1}{2} \int_{H}^{B} \left(\vec{u} \wedge \vec{B} \right) d\vec{r} = \int_{B}^{B} \alpha \vec{u} \vec{B} = \left[\left(\vec{u} \nabla \vec{u} + \vec{u} \nabla \vec{B} \right) \cdot \vec{B} \right] d\vec{z} = -15 m B d$	
$\exists \exists \exists \left[\left(\vec{u} \wedge \vec{B} \right) \vec{d} \right] = \int_{-\infty}^{\infty} au B_{\sigma} \left[\left(\vec{u} \otimes \wedge \left(-\vec{u} \right) \right) \cdot \left(-\vec{u} \right) \right] d\vec{c} = -2 \circ u B d$	9,5
Jour les portion PQ et SH df et B dont courreuces Jes fem contres pondantes soxt nulles.	
E = - 2 UI 0 b Bo E = - 2 UI 0	
Bo; Cela revient à mègliger le phenomine dauto-inquelle	
III-4- E = Ris + 2 wab Boil foi des Mou@ mailles	1
$\frac{\delta}{\delta} \Rightarrow \frac{du}{dt} + \frac{u}{\xi} = \frac{1}{J} \left(\frac{2abb_o E}{R} - C_o \right); \xi = \frac{JR}{4a^2b^2 B_o^2}$	
$\overline{II}_{-5-b} = 0$ n posant $\underline{u}_{-5-b} = \frac{1}{5} \left(\frac{2abB_0E}{R} - C_0 \right)$, l'équation	
différentielle devient, du + 40 = 40 =	
$u(t) = u_0 \left(1 - e^{-\frac{t}{\xi}}\right), \text{avec}$	(0,5)
$u_{\circ} = \frac{R}{4 \operatorname{q}^{2} \operatorname{b}^{2} \operatorname{B}^{2}} \left(\frac{2 \operatorname{ab} \operatorname{B}_{\circ} \operatorname{E}}{R} - C_{\circ} \right)$	

- Lage 10-				
methods: (c, c) +	$E = E_{\chi} u_{\chi} = E_{ot} e^{-\left(\frac{1-i}{8}\right)} Z e^{-iut} u_{\chi}$ $\Delta E = \left(\frac{1-i}{8}\right)^{\frac{1}{2}} E = -iu E$ $L'equation de propagation donne: \left(\frac{1-i}{8}\right)^{\frac{1}{2}} + \frac{1}{10} \delta iu u_{\chi} \Rightarrow S = \sqrt{\frac{2}{10}} X u_{\chi} Le champ electrique propose peut escipter dans le metal à condition de prinde S = \sqrt{\frac{2}{10}} X u_{\chi}$	- Q		
2 dP > = (4) ou (5) [<] < d re > = (4) ou (5) [<] < d re > = (5) ou (6) < d re > = (7) ou (7) < d re > = (7) ou (8) < d re > = (8) ou (8) < d re > = (9) ou (8)	$P_{mou} = \delta E_{ot} \cdot S = \delta E_{ot} $	2		
Expression de Gr. (1)	$M = \int \frac{dH}{dV} dV = \int \frac{2\pi k}{C^2} \frac{7^3}{e^{\frac{k_BT}{k_BT}} - 1}$ $E_n posant $	(1,5)		

$$\frac{1}{V} - f - Q - \frac{dN}{d\lambda} = \frac{dN}{d\lambda} \cdot \frac{d\lambda}{d\lambda} = \frac{C}{\lambda^2} \cdot \frac{dN}{d\lambda} = \frac{2\pi h c^2}{\lambda^2} \cdot \frac{d\lambda}{\lambda^2} = \frac{\pi c}{\lambda^2 k_B^2 r} - \frac{1}{4}$$
Om acceptera decisive $\frac{dN}{d\lambda} = \frac{dM}{d\lambda} \cdot \frac{d\lambda}{d\lambda} = \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} = \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} = \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} \cdot \frac{dM}{d\lambda} = \frac{dM}{d\lambda} \cdot \frac{dM}{$

- I age = -

IV - 9.

$$\lambda_{B} = 0, H Hm; \lambda_{R} = 0, 8 Hm; V_{B} = \frac{C}{\lambda_{B}}; V_{R} = \frac{C}{\lambda_{R}}$$

$$\frac{P_{\text{visible}}}{P} = \frac{\frac{7}{8} \frac{2\pi h}{c^2}}{\frac{2\pi h}{c^2}} = \frac{\frac{7}{87} \frac{3\pi}{c^2}}{\frac{2\pi h}{c^2}} = \frac{17}{6}$$

On pose $x = \frac{\hat{h} p}{k_{BT}} / x_{B} = \frac{\hat{h} c}{\lambda_{B} k_{BT}} / x_{R} = \frac{\hat{h} c}{\lambda_{A} k_{BT}}$

$$\frac{P_{\text{visible}}}{P} = \frac{\int_{x_R}^{x_B} \frac{x^3}{e^{x} - 1} dx}{\int_{s}^{\infty} \frac{x^3}{e^{x} - 1} dx} = \frac{15}{\pi^4} e^{-\frac{x_R}{2}(x_S^3 + 3x_R^2)}$$

Puisque xB = 2 xB = 14

AN: Prisible = 6,88.10 => Prisible 6,88 W

La partie visible du Mayonnement émis por la lampe me Constitue qu'une fraction très petite de la totolité de la puissance Mayonnée. En plaçant un verne anticalonique, on protège donc l'interféromètre Contre le Mayonnement IR sans perdèce en luminosité. (c'est indiqué par l'énoncé!)

Fin du Contigé

(2)

2