Generating Colored Images from Black and White Images [using *pix2pix*]

Team Members

Rajat Rathi 160050015

Anmol Singh 160050107

Gurparkash Singh 160050112

Aim

- The aim of our project is to create a Neural Network model that can automatically generate colored images from corresponding black and white images.
- For this purpose, we have implemented the paper "Image-to-Image Translation with Conditional Adversarial Networks" published in November 2017 by Berkeley AI Research Lab.
- In the paper, the authors have designed a Generative Adversarial Network (GAN) for Domain Transfer tasks such as Edges to Photos, Day to Night, Summer to Winter, Black and White to Color etc.

GAN Overview

- GAN can be thought of as the combination of a counterfeiter and a cop in a game of cat and mouse, where the counterfeiter is learning to pass false notes, and the cop is learning to detect them. Both are dynamic; i.e. the cop is in training, too and each side comes to learn the other's methods in a constant escalation.
- With more training, the discriminator gets better at distinguishing between real and fake samples whereas the generator gets better at generating real looking samples.
- One of the primary challenges in training a GAN is that since the discriminator has a relatively easier task, it becomes too strong too quickly which causes the generator to stop learning too.

Loss Functions

$$\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x,y}[\log D(x, y)] + \\ \mathbb{E}_{x,z}[\log(1 - D(x, G(x, z))],$$

CONDITIONAL GAN LOSS

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1].$$

L1 LOSS

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

FINAL LOSS FUNCTION

Results

INPUT OUTPUT TARGET

INPUT OUTPUT TARGET

Transition with time

View GIF in Drive [https://docs.google.com/presentation/d/14NOG9s6Z6HCzzzb3QHYWQvooin-G1ZrVAn9ZzMy T9-8/edit?usp=sharing]

Transition with time (contd.)

View GIF in Drive [https://docs.google.com/presentation/d/14NOG9s6Z6HCzzzb3QHYWQvooin-G1ZrVAn9ZzMy T9-8/edit?usp=sharing]

Experimentation - Inversion of Images

Experimentation - Effect of Lambda

Lambda=20.0

Lambda=200.0

Other Experimentations / Tuning

- Some other experiments that helped :)
 - Using U-Net Generator Network instead of simple Encoder-Decoder Network.
 - Data Augmentation by randomly cropping and inverting images (results shown above)
 - Using Fuzzy target labels!! (Most helpful)
 - Having Batch Normalization and dropout in Discriminator and Decoder layers of Generator.
- And some that didn't :(
 - Training one of discriminator/generator more per epoch.
 - Training generator for higher number of epochs, keeping discriminator fixed.
 - Having higher learning rate for generator.

ENCODER-DECODER NETWORK

U-NET GENERATOR

Evaluation Metrics

- Open Country Dataset
 - o Avg. SSIM: 0.8792889071250597
 - o Avg. RMSD: 0.6651818876595532
- Forests Dataset
 - o Avg. SSIM : 0.8884571322784819
 - o Avg. RMSD: 0.6913058699378285

Performance on other tasks

- Facades
- Cityscape

Conclusion: We need to do hyperparameter tuning again for different tasks!

References

- Image-to-Image Translation with Conditional Adversarial Networks
 [https://arxiv.org/pdf/1611.07004.pdf]
- Original Generative Adversarial Networks Paper
 [https://arxiv.org/pdf/1406.2661.pdf]
- MIT-CVCL Images Dataset
 [http://cvcl.mit.edu/database.htm]
- Berkeley AI Research pix2pix Dataset
 [http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/]