

# NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2022

#### **WISKUNDE: VRAESTEL II**

#### **NASIENRIGLYNE**

Tyd: 3 uur 150 punte

Hierdie nasienriglyne is opgestel vir gebruik deur eksaminators en hulpeksaminators van wie verwag word om almal 'n standaardiseringsvergadering by te woon om te verseker dat die riglyne konsekwent vertolk en toegepas word by die nasien van kandidate se skrifte.

Die IEB sal geen bespreking of korrespondensie oor enige nasienriglyne voer nie. Ons erken dat daar verskillende standpunte oor sommige aangeleenthede van beklemtoning of detail in die riglyne kan wees. Ons erken ook dat daar sonder die voordeel van die bywoning van 'n standaardiseringsvergadering verskillende vertolkings van die toepassing van die nasienriglyne kan wees.

#### **LET WEL:**

- Indien 'n kandidaat 'n vraag meer as een keer beantwoord, sien slegs die EERSTE poging na.
- Deurlopende akkuraatheid is op alle aspekte van die nasienmemorandum van toepassing.

#### **AFDELING A**

#### VRAAG 1

| (a)(1) | Onderste kwartiel: 5,8 mm<br>Boonste kwartiel: 6,0 mm    | $Q_1 = 5.8 \text{ mm}$<br>$Q_3 = 6.0 \text{ mm}$ |
|--------|----------------------------------------------------------|--------------------------------------------------|
|        | IQR = 6.0 - 5.8                                          | IQR = 0,2 mm                                     |
|        | = 0,2 mm                                                 |                                                  |
| (a)(2) | $P_{50}$ : 50% × 400 = 200 <sup>ste</sup>                | 5,9 mm                                           |
|        | $P_{50} = 5.9 \text{ mm}$                                |                                                  |
| (a)(3) | 100×100%                                                 | 25% defektief                                    |
|        | $\frac{1}{400} \times 100\%$                             |                                                  |
|        | = 25% defektief                                          |                                                  |
| (b)(1) | Negatief skeef.                                          | Negatief skeef                                   |
|        |                                                          |                                                  |
| (b)(2) | 25% lê tussen Q <sub>1</sub> en die mediaan (2 tot 5) en | Onwaar                                           |
|        | 25% lê tussen Q3 en eindpunt. Dus is bewering            |                                                  |
|        | onwaar.                                                  |                                                  |
| (b)(3) | $Q_3 + 1.5 \times IQR = 6 + 1.5 \times 4 = 12$           | 6                                                |
|        | Die leerder is nie 'n uitskieter nie.                    | 4                                                |
|        |                                                          | 12 en nie 'n uitskieter nie                      |

|     | ·                                                |                                                  |
|-----|--------------------------------------------------|--------------------------------------------------|
| (a) | $\tan \theta = -\frac{1}{3}$                     | $\tan \theta = -\frac{1}{3}$                     |
|     | $\theta = 18,4^{\circ}$                          | θ = 18,4°                                        |
| (b) | $m_{AB} = -\frac{1}{3}$                          | $m_{AB} = -\frac{1}{3}$                          |
|     | $y = -\frac{1}{3}x + c  \text{vervang } (-3;10)$ | $10 = -\frac{1}{3}\left(-\frac{3}{1}\right) + c$ |
|     | $10 = -\frac{1}{3}\left(-\frac{3}{1}\right) + c$ | $y = -\frac{1}{3}x + 9$                          |
|     | <i>c</i> = 9                                     |                                                  |
|     | $y = -\frac{1}{3}x + 9$                          |                                                  |
|     | Alternatief:                                     | 1                                                |
|     | $m_{AB} = -\frac{1}{3}$                          | $m_{AB} = -\frac{1}{3}$                          |
|     | $y - y_1 = m(x - x_1)$                           | $y-y_1=m(x-x_1)$                                 |
|     | $y-10=-\frac{1}{3}(x+3)$                         | $y-10=-\frac{1}{3}(x+3)$                         |
| (c) | $m_{AD} = 3$                                     | $m_{AD}=3$                                       |
|     | y = 3x + c vervang $(-3;10)$                     | 10 = 3(-3) + c                                   |
|     | 10 = 3(-3) + c                                   | y=3x+19                                          |
|     | c=19                                             |                                                  |
|     | y = 3x + 19                                      |                                                  |
|     | Alternatief:                                     |                                                  |
|     | $m_{AD} = 3$                                     |                                                  |
|     | $y - y_1 = m(x - x_1)$                           | $m_{AD}=3$                                       |
|     | y - 10 = 3(x+3)                                  | $y-y_1=m(x-x_1)$                                 |
|     | y 10 – 5(x ± 5)                                  | y-10=3(x+3)                                      |

| (4)(1) | 1                                                             | <b>D</b> ( )                                                   |
|--------|---------------------------------------------------------------|----------------------------------------------------------------|
| (d)(1) | Vir D(x;y): $3x+19=-\frac{1}{3}x-1$                           | D(x,y):                                                        |
|        | $\frac{10}{3}x = -20$ $x = -6$ $\therefore y = 1$             | $3x+19=-\frac{1}{3}x-1$ $x=-6$ ∴ y=1 Vervang in: hulle waardes |
|        | D(-6;1) en $A(-3;10)$                                         | $\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}$                               |
|        | Lengte AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$            | Lengte AD = $3\sqrt{10}$                                       |
|        | Lengte AD = $\sqrt{90}$ = $3\sqrt{10}$                        |                                                                |
|        | ≈ 9,5 eenhede                                                 |                                                                |
| (d)(2) | Vergelyking van lyn BC word gegee as $x = 6$                  | vervang $x = 6$ in                                             |
|        | Vir B(x,y) vervang $x = 6$ in $y = -\frac{1}{3}x + 9$         | $y = -\frac{1}{3}x + 9$                                        |
|        | ∴ <i>y</i> = 7                                                | ∴ <i>y</i> = 7                                                 |
|        | ∴B(6;7)                                                       |                                                                |
|        |                                                               | $AB = 3\sqrt{10}$                                              |
|        | Gebruik afstandsformule: lengte $AB = \sqrt{90} = 3\sqrt{10}$ | $AD = 3\sqrt{10}$                                              |
|        | Lengte AD = $3\sqrt{10}$ uit (d)                              | Gevolgtrekking                                                 |
|        | ∴ ∆ABD is gelykbenig                                          |                                                                |

| (a)(1) | x + 6 = 41                                    | x + 6 = 41          |
|--------|-----------------------------------------------|---------------------|
|        | x = 35                                        | <i>x</i> = 35       |
| (a)(2) | {25;38;41;44;48}                              | {25;38;41;44;48}    |
|        | Gebruik sakrekenaar: SA = 7,8                 | SA = 7,8            |
| (a)(3) | Gemiddelde = 39,2                             | Gemiddelde = 39,2   |
|        | SA-variasiewydte: $31,4 \le x \le 47$         | $31,4 \le x \le 47$ |
|        | ∴3 punte                                      | 3 punte             |
| (b)(1) | Negatief                                      | Negatief            |
| (b)(2) | S = -1,8(10) + 22,7                           | S = -1.8(10) + 22.7 |
|        | S = 4,7                                       | S = 4,7             |
|        | Óf 4 óf 5 oproepe                             |                     |
| (b)(3) | S = -1,8(3) + 22,7                            | S = 17,3            |
|        | S = 17,3 indien gemodelleer op die regressie- | swakker             |
|        | vergelyking.                                  |                     |
|        | Dit is egter gegee dat                        |                     |
|        | S=8 wanneer temp 3 °C is                      |                     |
|        | Dus sal korrelasie steeds negatief wees, maar |                     |
|        | swakker.                                      |                     |
|        |                                               |                     |
|        | Alternatief:                                  |                     |
|        | Die korrelasie sal effens toeneem (minder     |                     |
|        | negatief verder van -1 af).                   |                     |

| (a) | Periode: 120°                                                  | Periode: 120°                                 |
|-----|----------------------------------------------------------------|-----------------------------------------------|
| (b) | $y = \cos(x-30^{\circ})$<br>$y = \cos(180^{\circ}-30^{\circ})$ | $\left[-\frac{\sqrt{3}}{2};1\right]$          |
|     |                                                                | $\begin{bmatrix} -\frac{1}{2}, \end{bmatrix}$ |
|     | $y = -\frac{\sqrt{3}}{2}$                                      |                                               |
|     | Waardegebied = $\left[-\frac{\sqrt{3}}{2};1\right]$            |                                               |
| (c) | 2                                                              |                                               |
|     | 1                                                              |                                               |
| (c) | $\sin 3x = \cos(x - 30^{\circ})$ by punte A en B               | Sien grafiek                                  |
| (d) | $\cos(x-30^\circ) > \sin 3x$ vir:                              |                                               |
|     | $0^{\circ} \le x \le 120^{\circ}$                              |                                               |

BLAAI ASSEBLIEF OM

# **VRAAG 5**

| (a)    | $\hat{C}_2 = x \ (\angle \text{ in dieselfde seg.})$ $\hat{D}_3 = x \ (\text{gelykbenige } \Delta)$                                                                                                                                                                                         | $\hat{C}_2 = x$<br>( $\angle$ in dieselfde seg.)<br>$\therefore \hat{D}_3 = x$                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| (b)(1) | $ \hat{C}_1 + \hat{D}_2 = 180^\circ - 94^\circ  \text{(binne} \angle e \ van \ \Delta \text{)} $ $ \hat{C}_1 = \hat{D}_2  \text{(CO en OD is radii)} $ $  \text{(hoeke teenoor gelyke sye)} $ $ \therefore \hat{D}_2 = \frac{180^\circ - 94^\circ}{2} $ $ \therefore \hat{D}_2 = 43^\circ $ | $\hat{C}_1 + \hat{D}_2 = 180^{\circ} - 94^{\circ}$<br>$\therefore \hat{D}_2 = 43^{\circ}$                                                 |
| (b)(2) | $\begin{split} \hat{O}_2 &= 360^\circ - 94^\circ  (\angle e \text{ om punt}) \\ \hat{O}_2 &= 266^\circ \\ \hat{B}_1 + \hat{B}_2 &= \frac{266^\circ}{2}  (\angle \text{ by middelpunt}) \\ \hat{B}_1 + \hat{B}_2 &= 133^\circ \end{split}$                                                   | $\hat{O}_2 = 266^{\circ}$ $\hat{B}_1 + \hat{B}_2 = \frac{266^{\circ}}{2}$ ( $\angle$ by middelpunt) $\hat{B}_1 + \hat{B}_2 = 133^{\circ}$ |
| (b)(3) | $2x+133^\circ=180^\circ$ (binne∠e van $\Delta$ )<br>$x=23\frac{1}{2}^\circ$                                                                                                                                                                                                                 | $2x+133^{\circ} = 180^{\circ}$ (binne \( \section \text{van } \Delta  \) $x = 23 \frac{1}{2}^{\circ}$                                     |

IEB Copyright © 2022

| (a) | $\hat{C}_1 = 90^{\circ}$ ( $\angle$ in half                                                          | fsirkel)                                                            | $\hat{C}_1 = 90^{\circ}$<br>( $\angle$ in halfsirkel)                                 |
|-----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| (b) | $\hat{D} = 180^{\circ} - 38^{\circ}$ (teenoorst. $\angle$ e koordevierh.)<br>$\hat{D} = 142^{\circ}$ |                                                                     | D = 142°<br>(teenoorst. ∠e koordevierh.)                                              |
| (c) | Ê <sub>1</sub> = 52°                                                                                 | 0°) (binne∠e van Δ)<br>noorst. ∠e koordevierh.)                     | $\hat{E}_1 = 52^{\circ}$ $\hat{B} = 128^{\circ}$ (teenoorst. $\angle$ e koordevierh.) |
| (d) | AF = FC $AF = 4$ $BC = 5$ $BF = 3  eenhede$                                                          | (lyn van middelpunt<br>loodreg op koord)<br>(gegee)<br>(Pythagoras) | AF = 4<br>(lyn van middelpunt loodreg op<br>koord)<br>∴BF = 3 eenhede                 |

| (a) | Te bewys: Oppervlakte $\triangle PQR = \frac{1}{2}pq \sin \hat{R}$                 | skets                                                                                         |
|-----|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|     | Bepaal: <i>y</i> -koördinaat van Q                                                 | $\sin \hat{R} = \frac{y}{r}$                                                                  |
|     | $ sin \hat{R} = \frac{y}{r} $ $ y = r sin \hat{R} $ $ y = p sin \hat{R} $          | $y = p \sin \hat{R}$<br>Vervang waardes in:<br>$\Delta PQR = \frac{1}{2} basis \times hoogte$ |
|     | Oppervlakte $\triangle PQR = \frac{1}{2}basis \times hoogte$                       |                                                                                               |
|     | $=\frac{1}{2}q(p\sin\hat{R})$                                                      |                                                                                               |
|     | $=\frac{1}{2}pq\sin\hat{R}$                                                        |                                                                                               |
| (b) | Oppervlakte $\triangle DBC = \frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ}$ | $= \frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ}$                                      |
|     | (gelyksydige $\Delta$ ) = $16\sqrt{3}$                                             | 3×(15×8)                                                                                      |
|     | Oppervlakte van prisma                                                             | 16√3                                                                                          |
|     | $= 3 \times (15 \times 8) + 2 \times (16\sqrt{3})$                                 | = 415,4                                                                                       |
|     | = 415,4 eenhede                                                                    |                                                                                               |

# **AFDELING B**

| (a) | $1-2\sin^2 x = -\frac{1}{7} \text{ vir } [x \in -180^\circ; 90^\circ]$                                                                                                                                                                                | $\cos 2x = -\frac{1}{7}$                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\cos 2x = -\frac{1}{7}$                                                                                                                                                                                                                              | Verwysingshoek: 98,2°                                                                                                                                    |
|     | Verwysingshoek: $98,2^{\circ}$<br>$2x = \pm 98,2^{\circ} + k360^{\circ}$ ( $k \in \mathbb{Z}$ )<br>$x = \pm 49,1^{\circ} + k180^{\circ}$ ( $k \in \mathbb{Z}$ )<br>$x \in \{-49,1^{\circ};49,1^{\circ};-130,9^{\circ}\}$                              | $2x = \pm 98,2^{\circ} + k360^{\circ}  (k \in Z)$ $x = \pm 49,1^{\circ} + k180^{\circ}  (k \in Z)$ $x \in \{-49,1^{\circ};49,1^{\circ};-130,9^{\circ}\}$ |
|     | Alternatief:<br>$1-2\sin^2 x = -\frac{1}{7} \text{ vir } [x \in -180^\circ; 90^\circ]$                                                                                                                                                                | $\sin x = \pm \sqrt{\frac{4}{7}}$                                                                                                                        |
|     | $\sin x = \pm \sqrt{\frac{4}{7}}$ , gevolglik                                                                                                                                                                                                         | Verwysingshoek:<br>$x = \pm 49,1^{\circ} + k180^{\circ} \text{ (k } \in \mathbb{Z}\text{)}$                                                              |
|     | $x = \pm 49.1^{\circ} + k180^{\circ} \text{ (k } \in \mathbb{Z}\text{) of}$<br>$x = \pm 49.1^{\circ} + k360^{\circ} \text{ (k } \in \mathbb{Z}\text{)}$<br>$x \in \{-49.1^{\circ}; 49.1^{\circ}; -130.9^{\circ}\}$                                    | $x = \pm 49,1^{\circ} + k360^{\circ}  (k \in \mathbb{Z})$<br>$x \in \{-49,1^{\circ};49,1^{\circ};-130,9^{\circ}\}$                                       |
| (b) | $= (-\cos\theta)(-\sin^3\theta) - (-\tan\theta)(\cos\theta)(\cos^3\theta)$ $= \cos\theta \cdot \sin^3\theta + \left(\frac{\sin\theta}{\cos\theta}\right)(\cos\theta)(\cos^3\theta)$ $= \cos\theta \cdot \sin^3\theta + \sin\theta \cdot \cos^3\theta$ | $ -\sin^{3}\theta \\ -\tan\theta \\ \cos^{3}\theta \\ \left(\frac{\sin\theta}{\cos\theta}\right) $                                                       |
|     | $= \sin\theta \cos\theta \left(\sin^2\theta + \cos^2\theta\right)$ $= \sin\theta \cos\theta (1)$ $= \sin\theta \cos\theta$                                                                                                                            | $(\cos\theta)$<br>= $\sin\theta\cos\theta$                                                                                                               |

| (a) | $(x+3)^2 + (y-4)^2 = 25$<br>C(-3;4) $r = 5$   | $(x+3)^2 + (y-4)^2 = 25$    |
|-----|-----------------------------------------------|-----------------------------|
|     | C(-3;4) $r=5$                                 | Voltooiing van die vierkant |
|     |                                               | C(-3;4)                     |
|     |                                               | <i>r</i> = 5                |
| (b) | Vir punte A en B: vervang $x = 2y - 21$       |                             |
|     | in verg. van sirkel                           | $(2y-21)^2 + y^2 +$         |
|     | $(2y-21)^2 + y^2 + 6(2y-21) - 8y = 0$         | 6(2y-21)-8y=0               |
|     | $4y^2 - 84y + 441 + y^2 + 12y - 126 - 8y = 0$ | $y^2 - 16y + 63 = 0$        |
|     | $5y^2 - 80y + 315 = 0$                        | y = 7 of $y = 9$            |
|     | $y^2 - 16y + 63 = 0$                          | B(-7;7)                     |
|     | (y-7)(y-9)=0                                  | A(-3;9)                     |
|     | y = 7 of $y = 9$                              |                             |
|     | $\therefore B(x,7)$                           |                             |
|     | ∴ B(-7;7)                                     |                             |
|     |                                               |                             |
|     | A(x;9) vervang in vergelykings                |                             |
|     | ∴ A (-3;9)                                    |                             |

| 1.3743 | Dr. D. Leat.                                                                              |                                                    |
|--------|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| (c)(1) | Vir D: laat $y = 0$                                                                       | D(-6;0)                                            |
|        | $x^2 + 6x = 0$                                                                            |                                                    |
|        | x(x+6) = 0<br>x = 0 of $x = -6$                                                           | Midpt AD $\left(-\frac{9}{2}; \frac{9}{2}\right)$  |
|        | X = 0 of $X = -6$                                                                         | 2,2)                                               |
|        | ∴D(-6;0)                                                                                  |                                                    |
|        | en $A(-3;9)$ uit (b)                                                                      |                                                    |
|        | Midpt AD $\left(\frac{-3-6}{2}; \frac{9+0}{2}\right)$                                     |                                                    |
|        | Midpt AD $\left(-\frac{9}{2}; \frac{9}{2}\right)$                                         |                                                    |
| (c)(2) | Toets vir saamlynigheid: Indien CB deur die                                               |                                                    |
|        | middelpunt gaan, dan $m_{CB} = m_{CP}$                                                    | $m_{CB} = -\frac{3}{4}$                            |
|        | Gebruik: $B(-7;7)$ en middelpunt $(-3;4)$                                                 | •                                                  |
|        | $m - \frac{4-7}{}$                                                                        | $m_{CP} = \frac{\frac{9}{2} - 4}{\frac{9}{2} + 3}$ |
|        | $m_{CB} = \frac{4-7}{-3+7}$                                                               | $m_{CP} = \frac{2}{9}$                             |
|        | $m_{CB} = -\frac{3}{4}$                                                                   | $-\frac{3}{2}+3$                                   |
|        | 4                                                                                         |                                                    |
|        | $\frac{9}{2}$ - 4                                                                         | $m_{CB} \neq m_{CP}$                               |
|        | $m_{CP} = \frac{2}{\Omega}$                                                               | Gevolgtrekking                                     |
|        | $m_{CP} = \frac{\frac{9}{2} - 4}{-\frac{9}{2} + 3}$                                       |                                                    |
|        | $m_{CP} = -\frac{1}{3}$ dus nie saamlynig nie, want:                                      |                                                    |
|        | $m_{CB} \neq m_{CP}$                                                                      |                                                    |
|        | Alternatief:                                                                              |                                                    |
|        | Bepaal die vergelyking van die reguitlyn BC:<br>Gebruik: $B(-7;7)$ en middelpunt $(-3;4)$ | Reguitlynvergelyking om te toets                   |
|        | $m_{CB} = \frac{4-7}{-3+7}$                                                               | 3                                                  |
|        | $m_{CB} = -\frac{3}{4}$                                                                   | $m_{CB} = -\frac{3}{4}$                            |
|        |                                                                                           | 7                                                  |
|        | $y = -\frac{3}{4}x + c$ vervang punt B(-7;7) of C(-3;4)                                   | $c = \frac{7}{4}$                                  |
|        | $c=\frac{7}{4}$                                                                           | $LK = \frac{9}{2}$                                 |
|        | $y = -\frac{3}{4}x + \frac{7}{4}$                                                         | Gevolgtrekking                                     |
|        | Vervang midpt AD $\left(-\frac{9}{2}; \frac{9}{2}\right)$ om te toets of AD               |                                                    |
|        | op CD lê                                                                                  |                                                    |
|        | $LK = \frac{9}{2}$ en RK = $\frac{41}{8}$                                                 |                                                    |
|        | LK≠RK, dus gaan CB nie deur die middelpunt van lyn AD nie.                                |                                                    |

| (d) | Sirkel (1): $(x+3)^2 + (y-4)^2 = 25$                                                                                                                                               | Middelpunt (2): (3;-4)                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|     | Sirkel (2): $(x-3)^2 + (y+4)^2 = 25$<br>Middelpunt (1): $(-3;4)$<br>Middelpunt (2): $(3;-4)$<br>Afstand tussen middelpunte: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>= 10 eenhede | Afstand tussen middelpunte<br>= 10 eenhede<br>Som van radii: 5 + 5<br>= 10 eenhede<br>sirkels sny/raak |
|     | Som van radii: 5 + 5 = 10 eenhede  Die leerder is korrek dat die sirkels by 'n punt raak, aangesien die afstand tussen die middelpunte gelyk is aan die som van die radii.         |                                                                                                        |

In ∆DCF:

$$DC = DF = 1.2 \text{ m}$$

Gebruik kosinusreël:

$$CF^2 = (1,2)^2 + (1,2)^2 - 2(1,2)(1,2)\cos 42^\circ$$

 $CF^2 = 0.7397 \, \text{m}$ 

$$CF = 0.86 \, \text{m}$$

In ∆ADF:

$$(AF)^2 = (2,2)^2 + (1,2)^2$$
 (Pythagoras)  
AF = 2.506

AF=AC

In ∆ACF:

$$\cos F \, \hat{A} \, C = \frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

 $\cos \hat{A}C = 0.9411...$ 

#### Alternatief:

In ∆DCF:

$$DC = DF = 1.2 \text{ m}$$

$$\therefore D\hat{C}F = \frac{180^{\circ} - 42^{\circ}}{2} \quad (\angle e \text{ teenoor} = \text{sye})$$

$$\frac{\mathsf{CF}}{\sin 42^{\circ}} = \frac{1,2}{\sin 69^{\circ}}$$

$$CF = 0.86 \, \text{m}$$

In ∆ADF:

$$(AF)^2 = (2,2)^2 + (1,2)^2$$
 (Pythagoras)

$$AF = 2.506$$

AF=AC

In ∆ACF:

$$\cos F \, \hat{A} \, C = \frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

$$\cos \hat{A} C = 0.9411...$$

$$DC = DF = 1.2 \text{ m}$$

$$CF^2 = (1,2)^2 + (1,2)^2 -$$

$$2(1,2)(1,2)\cos 42^{\circ}$$

$$CF = 0.86$$

$$(AF)^2 = (2,2)^2 + (1,2)^2$$

(Pythagoras)

$$AF = 2,506$$

$$\frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

$$DC = DF = 1.2 \text{ m}$$

$$\therefore D\hat{C}F = \frac{180^{\circ} - 42^{\circ}}{2} \quad (\angle e \text{ teenoor} = \text{sye})$$

$$\frac{CF}{\sin 42^{\circ}} = \frac{1,2}{\sin 69^{\circ}}$$

$$CF = 0.86$$

$$(AF)^2 = (2,2)^2 + (1,2)^2$$

(Pythagoras)

$$AF = 2.506$$

$$\frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

| (a) | $1+\sin 2x+\sin^2 x-\cos^2 x$                                                                                                                                                                                                                                                                                                                                                                                                         | $(2\sin x\cos x)$                                                                                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{1+2\sin x.\cos x+\cos 2x}{}$                                                                                                                                                                                                                                                                                                                                                                                                   | $(\cos^2 x - \sin^2 x)$                                                                                                                                      |
|     | $= \frac{1 + (2\sin x \cos x) + \sin^2 x - \cos^2 x}{1 + 2\sin x \cos x + (\cos^2 x - \sin^2 x)}$                                                                                                                                                                                                                                                                                                                                     | numerator: $\sin^2 x + \cos^2 x$<br>vereenvoudig                                                                                                             |
|     | $= \frac{\sin^2 x + \cos^2 x + 2\sin x \cos x + \sin^2 x - \cos^2 x}{\cos^2 x + \sin^2 x + 2\sin x \cos x + \cos^2 x - \sin^2 x}$ $= \frac{2\sin^2 x + 2\sin x \cos x}{2\cos^2 x + 2\sin x \cos x}$ $= \frac{2\sin x (\sin x + \cos x)}{2\sin x (\sin x + \cos x)}$                                                                                                                                                                   | $= \frac{2\sin^2 x + 2\sin x \cos x}{2\cos^2 x + 2\sin x \cos x}$ faktoriseer                                                                                |
|     | $= \frac{2\sin x(\sin x + \cos x)}{2\cos x(\cos x + \sin x)}$ $= \tan x$ $= RK$                                                                                                                                                                                                                                                                                                                                                       | $=\frac{2\sin x(\sin x + \cos x)}{2\cos x(\cos x + \sin x)}$                                                                                                 |
| (b) | Nie geldig nie vir:<br>$2\cos x(\cos x + \sin x) = 0$<br>$2\cos x = 0$ of $\cos x + \sin x = 0$<br>Vir: $\cos x = 0$ en $\tan x$ ongedefinieerd:<br>$\therefore x = \pm 90^{\circ} + k360^{\circ}$ ( $k \in \mathbb{Z}$ )<br>Alternatief: $x = 90^{\circ} + k180^{\circ}$ ( $k \in \mathbb{Z}$ )<br>of $\sin x = -\cos x$<br>$\frac{\sin x}{\cos x} = -1$<br>$\tan x = -1$<br>$x = -45^{\circ} + k180^{\circ}$ ( $k \in \mathbb{Z}$ ) | $1+2\sin x\cos x+\cos 2x=0$ $\cos x=0 \text{ en tan } x \text{ is }$ $\operatorname{ongedefinieerd}$ $\cos x+\sin x=0$ $k\in \mathbb{Z}$ Algemene oplossings |
|     | Vir tan: $x = 90^{\circ} + k180^{\circ}$ $(k \in \mathbb{Z})$                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |

| (a) | Bewys: $\frac{CF}{FG} = \frac{GE}{EA}$ $\frac{CF}{FG} = \frac{CD}{DA}  ( yn   \text{ een sy van } \Delta); DF//AG$ $\frac{CD}{DA} = \frac{GE}{EA}  ( yn   \text{ een sy van } \Delta); ED  GC$ $\therefore \frac{CF}{FG} = \frac{GE}{EA}$ | $\frac{CF}{FG} = \frac{CD}{DA}$ ( yn   een sy van $\Delta$ ) Rede $\frac{CD}{DA} = \frac{GE}{EA}$ ( yn   een sy van $\Delta$ ) $\therefore \frac{CF}{FG} = \frac{GE}{EA}$ |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | $\frac{CF}{FG} = \frac{2}{1}  (gegee)$ $\therefore \frac{GE}{EA} = \frac{2}{1}$ Maar EA = $\frac{1}{3}$ GA $\frac{EG}{\frac{1}{3}GA} = \frac{2}{1}$ $\therefore GE = \frac{2}{3}GA$ $\therefore GE:GA = 2:3$                              | $\frac{GE}{EA} = \frac{2}{1}$ $\frac{EG}{\frac{1}{3}GA} = \frac{2}{1}$ $\therefore GE:GA = 2:3$                                                                           |
| (c) | GE = $\frac{2}{3}$ GA (bewys)<br>GE = $\frac{2}{3} \left(\frac{1}{2}AB\right)$ (G is die middelpunt)<br>GE = $\frac{1}{3}AB$<br>$\therefore$ DF = $\frac{1}{3}AB$ (DF = EG)<br>$\therefore$ DF:AB = 1:3                                   | $GE = \frac{2}{3}GA  (bewys)$ $GE = \frac{2}{3}\left(\frac{1}{2}AB\right)$ (G is die middelpunt) $DF = EG$ $\therefore DF:AB = 1:3$                                       |

| (a) | Bewys: ΔFEB is gelykvormig aan ΔFGC                                                                                                                                                                                                                                                                                                                                                                                                | $\hat{E}_2 = \hat{G}_1$ (gegee)                                                                                                                                                                                                                                                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | In $\triangle FEB$ en $\triangle FGC$ $\hat{E}_2 = \hat{G}_1  \text{(gegee 90°)}$ $\hat{B}_1 = \hat{C}_2  \text{(raaklyn-koord-stelling)}$ $\therefore \triangle FEB / / / \triangle FGC  (\angle; \angle; \angle)$                                                                                                                                                                                                                | $\hat{B}_1 = \hat{C}_2$ (raaklyn-koord-stelling)<br>$\therefore \Delta FEB /// \Delta FGC$<br>$(\angle; \angle; \angle)$                                                                                                                                                                                                                |
| (b) | Bewys: $FG^2 = FE \times FD$ In $\triangle FDC$ en $\triangle FGB$ $\hat{D}_2 = \hat{G}_2  (gegee)$ $\hat{C}_1 = \hat{B}_2  (raaklyn-koord-stelling)$ $\therefore \triangle FDC /// \triangle FGB  (\angle; \angle; \angle)$ $\frac{FD}{FG} = \frac{DC}{GB} = \frac{FC}{FB}  (gelykvormige \triangle e)$ Uit (a): $\frac{FE}{FG} = \frac{EB}{GC} = \frac{FB}{FC}$ $\frac{FD}{FG} = \frac{FG}{FE}$ $\therefore FG^2 = FE \times FD$ | $ \hat{C}_1 = \hat{B}_2  (raaklyn-koord-stelling) $ Rede $ \therefore \Delta FDC /\!\!// \Delta FGB $ $ (\angle; \angle; \angle) $ $ \frac{FD}{FG} = \frac{DC}{GB} = \frac{FC}{FB} $ $ (gelykvormige \Delta e) $ $ \frac{FE}{FG} = \frac{EB}{GC} = \frac{FB}{FC} $ $ \frac{FD}{FG} = \frac{FG}{FE} $ $ \therefore FG^2 = FE \times FD $ |

IEB Copyright © 2022

(a) Gegee:  $2\cos 2\alpha + \sin 2\alpha = R\cos(2\alpha - \beta)$ 

 $RK = R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$ 

 $= R \sin 2\alpha \sin \beta + R \cos 2\alpha \cos \beta$ 

 $\therefore 2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$ 

 $2\cos 2\alpha = R\cos 2\alpha \cos \beta$ 

 $\therefore R\cos \beta = 2$ 

en

 $\sin 2\alpha = R \sin 2\alpha \sin \beta$ 

 $\therefore R \sin \beta = 1$ 

Kwadreer en tel op:

 $R^2 \cos^2 \beta = 4$  en  $R^2 \sin^2 \beta = 1$ 

 $R^2(\cos^2\beta + \sin^2\beta) = 5$ 

 $R^2 = 5$ 

 $R = \sqrt{5}$  aangesien R > 0

Los op vir enigeen:

 $R\sin\beta = 1$  en  $R\cos\beta = 2$ 

 $\sin \beta = \frac{1}{\sqrt{5}}$ 

 $\therefore \beta = 26,6^{\circ}$ 

Alternatief:

Gegee:  $2\cos 2\alpha + \sin 2\alpha = R\cos(2\alpha - \beta)$ 

 $RK = R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$ 

 $= R \sin 2\alpha \sin \beta + R \cos 2\alpha \cos \beta$ 

 $\therefore 2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$ 

 $2\cos 2\alpha = R\cos 2\alpha \cos \beta$ 

 $\therefore R\cos\beta = 2$ 

en

 $\sin 2\alpha = R \sin 2\alpha \sin \beta$ 

 $\therefore$  R sin  $\beta = 1$ 

 $\therefore$  tan  $\beta = \frac{1}{2}$ 

 $\beta = 26.6^{\circ}$ 

 $\therefore R = \frac{2}{\cos 26.6^{\circ}} = 2,237 \approx 2,2$ 

 $R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$ 

 $R\cos\beta = 2$ 

 $R \sin \beta = 1$ 

 $R^2(\cos^2\beta + \sin^2\beta) = 5$ 

 $R = \sqrt{5}$ 

 $\sin \beta = \frac{1}{\sqrt{5}}$ 

 $\beta = 26.6^{\circ}$ 

 $R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$ 

 $R\cos\beta = 2$ 

 $R \sin \beta = 1$ 

 $\therefore$  tan  $\beta = \frac{1}{2}$ 

 $\beta = 26,6^{\circ}$ 

 $\therefore R = \frac{2}{\cos 26,6^{\circ}} = 2,237 \approx 2,2$ 

=  $2\cos 2\alpha + \sin 2\alpha + 2$ Dus is maksimum  $\sqrt{5} + 2$ 

#### Alternatief: $\frac{2}{R}\cos 2\alpha + \frac{1}{R}\sin 2\alpha = \sin(2\alpha + \beta)$ Gegee: $2\cos 2\alpha + \sin 2\alpha = R\cos(2\alpha - \beta)$ $x^2 + y^2 = r^2$ $\frac{2}{R}\cos 2\alpha + \frac{1}{R}\sin 2\alpha = \cos(2\alpha - \beta)$ $\therefore 2^2 + 1^2 = R^2$ $x^2 + y^2 = r^2$ $R = \sqrt{5}$ $\therefore 2^2 + 1^2 = R^2$ $\sin \beta = \frac{1}{\sqrt{5}}$ $R = \sqrt{5}$ $2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$ $\beta = 26,6^{\circ}$ $\sin 2\alpha = R \sin 2\alpha \sin \beta$ $1 = \sqrt{5} \sin \beta$ $\sin \beta = \frac{1}{\sqrt{5}}$ $\therefore \beta = 26,6^{\circ}$ (b) $4\cos^2\alpha + \sin 2\alpha$ $=2\cos 2\alpha + \sin 2\alpha + 2$ $= 2(\cos 2\alpha + 1) + \sin 2\alpha$

Totaal: 150 punte

maksimum is  $\sqrt{5} + 2$