Breast Cancer Prediction

Code available here: https://github.com/mtvz42/Breast Cancer Prediction/tree/main

Project goal: Predict whether a breast tumor is benign or malignant by building multiple ML classification algorithms to help physicians classify new breast tumor measurements.

Dataset: Breast Cancer Wisconsin Dataset

https://www.kaggle.com/datasets/rahmasleam/breast-cancer?select=breast-cancer.csv

Author: Matteo Vezzelli, PhD(c)

https://www.linkedin.com/in/matteovezzelli/

Background

Breast cancer: most prevalent cancer among women globally.

Disease begins when cells in the breast grow uncontrollably, forming tumors. Tumorst can be detected via X-ray or felt as lumps.

Good **article** to start with: https://mayoclinic.elsevierpure.com/en/publications/breast-cancer-6

From the X-ray image, the tumours can be measured in different characteristics:

- radius of the tumor.
- **perimeter** of the tumor.
- area of the tumor.
- **texture** of the tumor's surface (variation in pixel intensity within the tumor region).
- smoothness of the tumor's surface (how much it deviates from being spherical).
- compactness of the tumor (how compact the shape is, related to the ratio of perimeter to are).
- etc. (the full list of features is available in the code notebook).
- diagnosis: benign or malignant: this is what we want to predict based on all measurements.

X-Ray image Harbeck et al, 2019

EDA and Feature Engineering

Dataset: Breast Cancer Wisconsin Dataset

569 measurements (rows)

	id	diagnosis	radius_mean	texture_mean
0	842302	М	17.99	10.38
1	842517	М	20.57	17.77
2	84300903	М	19.69	21.25
3	84348301	М	11.42	20.38
4	84358402	М	20.29	14.34

32 features (columns)

0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	•••		
12	•••		

EDA and Feature Engineering

Encoding	LabelEncoder
diagnosis 569 non-null object	B (Bening): 0
diagnosis 309 non-nun object	M (Malignant): 1

	diagnosis	1.00
Correlation with diagnosis	concave points_worst	0.79
	perimeter_worst	0.78
	concave points_mean	0.78
	radius_worst	0.78
	perimeter_mean	0.74
	area_worst	0.73
	radius_mean	0.73
	area_mean	0.71
	concavity_mean	0.70

Exploratory Data Analysis

Correlation between features (without id, diagnosis)

Strong correlations among features like radius_mean, perimeter_mean, area_mean, indicating larger tumors tend to have proportional measurements.

Next: data distributions...

EDA and Feature Engineering

Dataset split

X: all features without id, diagnosis

y: diagnosis

y distribution

0: 62.7%

1: 37.2%

Unbalanced distribution

Split the train and test sets using one of the following:

- StratifiedShuffleSplit
- train_test_split with the stratify parameter

X distribution

	count	mean	std	min	25%	50%	75%	max
radius_mean	569.0	14.13	3.52	6.98	11.70	13.37	15.78	28.11
texture_mean	569.0	19.29	4.30	9.71	16.17	18.84	21.80	39.28
perimeter_mean	569.0	91.97	24.30	43.79	75.17	86.24	104.10	188.50
area_mean	569.0	654.89	351.91	143.50	420.30	551.10	782.70	2501.00
smoothness_mean	569.0	0.10	0.01	0.05	0.09	0.10	0.11	0.16
compactness_mean	569.0	0.10	0.05	0.02	0.06	0.09	0.13	0.35

Different value scales. Each model has a better way of scaling:

- StandardScaler for Logistic Regression, SVM
- MinMaxScaler for KNN
- No scaling for Decision Trees, Random Forest, Extra Trees, XGBoost

Each model was built using:

- **GridSearchCV** for hyperparameter tuning and cross-validation
- Function to calculate the execution time of the training
- Scoring F1

Models:

- Logistic Regression
- KNN
- SVM
- Decision Trees
- Random Forest
- Extra Trees
- XGBoost (not run due to a bug in the libraries)

Logistic Regression					
Metric	Class 0	Class 1	Mean		
Precision	0.97	0.98	0.98		
Recall	0.99	0.95	0.97		
F1-score	0.98	0.97	0.97		
Support	107	64	171		
Best parameters	C=1, penalty=l2, solver=liblinear				
Test set accuracy	0.968				
CV score	0.964				

Class 0 recall: 0.99 (1 case)

Class 1 recall: 0.95 (3 cases), most important metric: malignant tumor classified as bening

KNN					
Metric	Class 0	Class 1	Mean		
Precision	0.96	1	0.98		
Recall	1	0.94	0.97		
F1-score	0.98	0.97	0.97		
Support	107	64	171		
Best parameters	metric=manhattan, n_neighbors=3, weights= uniform				
Test set accuracy	0.968				
CV score	0.968				

Class 0 recall: 1 (0 cases), better that Logistic Regression

Class 1 recall: 0.94 (4 cases), worse than Logistic Regression

SVM						
Metric	Class 0	Class 1	Mean			
Precision	0.97	1	0.99			
Recall	1	0.95	0.98			
F1-score	0.99	0.98	0.98			
Support	107	64	171			
Best parameters	C=0.1, gamma=1, kernel=linear					
Test set accuracy	0.976					
CV score	0.958					

Class 0 recall: 1 (0 cases), same as KNN

Class 1 recall: 0.95 (3 cases), better than Logistic Regression

Decision Tree						
Metric	Class 0	Class 1	Mean			
Precision	0.91	0.95	0.93			
Recall	0.97	0.84	0.91			
F1-score	0.94	0.89	0.92			
Support	107	64	171			
Best parameters	class_weight=None, criterion=gini, max_depth= 6, max_features=log2, min_samples_leaf=1					
Test set accuracy	0.893					
CV score	0.918					

Class 0 recall: 0.97 (3 cases), worse that others

Class 1 recall: 0.84 (10 cases), worse than others

Random Forest						
Metric	Class 0	Class 1	Mean			
Precision	0.94	1	0.97			
Recall	1	0.89	0.95			
F1-score	0.97	0.94	0.96			
Support	107	64	171			
Best parameters	bootstrap=True, class_weight=None, criterion= entropy, max_depth=7, max_features=sqrt, min_samples_leaf=1, n_estimators=50					
Test set accuracy	0.942					
CV score	0.955					

Class 0 recall: 1 (0 cases), same as SVM

Class 1 recall: 0.89 (7 cases), worse than SVM

Extra Trees						
Metric	Class 0	Class 1	Mean			
Precision	0.95	1	0.97			
Recall	1	0.91	0.95			
F1-score	0.97	0.95	0.96			
Support	107	64	171			
Best parameters	criterion=gini, max_depth=15, max_features=log2, min_samples_leaf=1, min_samples_split=2, n_estimators=50					
Test set accuracy	0.951					
CV score	0.961					

Class 0 recall: 1 (0 cases), same as SVM

Class 1 recall: 0.91 (6 cases), worse than SVM

Summary

Model	Test Accuracy	F1-score (Class 0)	F1-score (Class 1)	Execution Time (s)
Logistic Regression	0.9683	0.9815	0.9683	25.5064
KNN	0.9677	0.9817	0.9677	11.5324
SVM	0.9760	0.9862	0.9760	14.9485
Decision Tree	0.8926	0.9412	0.8926	41.5725
Random Forest	0.9421	0.9683	0.9421	818.2637
Extra Trees	0.9508	0.9727	0.9508	55.4807

- The best model in terms of accuracy and F1 score is **SVM**.
- Note also that the higher execution time is for Random Forest, which took more than 800 seconds
 (13 minutes). It's very important to balance the accuracy of the model with the computational cost.
 Sometimes it is fair to reduce accuracy to speed up training.

Summary

ROC curve and AUC score for SVM

The SVM model performs very well in a binary classification, with the ROC curve closer to the upper left part (meaning a high true positive rate and a very low false positive rate).

The area under the curve is 0.998, very close to 1, which means an excellent model that correctly classifies the classes.

	Ranking	T-Statistic	p-value
symmetry_worse	1	-5.5738	1.8696e-07
texture_worse	2	-7.0766	7.5496e-11
smoothness_worst	3	-5.4987	1.7750e-07
concavity_worst	4	-12.5671	3.1665e-21
texture_se	5	-0.3590	7.2022e-01

T-test: a large absolute value indicates a strong difference in means between benign and malignant classes. **p-value**: if < 0.05 suggests this difference is statistically significant.

symmetry_worst: highly relevant feature for classification.

texture_worst: highly relevant feature for classification.

smoothness_worst: highly relevant feature for classification.

concavity_worst: one of the most important features for classification.

texture_se: is not a significant feature for classification.

Relationship between top features and target variable

Relationship between top features and target variable

Relationship between top features and target variable

It can be seen that for each relevant feature, the malignant tumour (1) has the high mean value for that feature. This is not the case for texture_se, which is not a relevant feature.

Correlation analysis among top features

From the correlation matrix of the top features, the most correlated (<0.5) are symmetry_worst and concavity_worst, which are relevant features for classification. However, the correlation is not very strong.

Partial Dependency Plot (PDP)

As expected, all features (except texture_se) increase the likelihood of a malignant tumour.

Note that the labels range is -1 to 1 because of feature scaling.

Conclusion

Breast Tumour Classification Analysis

Objective: Predict whether a tumour is benign or malignant based on feature measurements.

Approach:

- Data exploration and analysis.
- Evaluation of various ML models.
- Best model: SVM with 97.6% test accuracy.
 - Misclassifications: 0 benign as malignant, 3 malignant as benign.
 - F1 Scores: Class 0 (benign) 98.6%, Class 1 (malignant) 97.6%.

Key Features Influencing Malignant Tumour Classification:

- **symmetry_worst**: Tumour shape irregularity.
- texture_worst: Pixel intensity variation.
- smoothness_worst: Surface deviation from sphericity.
- concavity_worst: Areas of inward curvature.

Conclusion

Further improvements

- Wait for the XGBoost bug to be fixed and add this model to the analysis.
- Change the **scaling method** to check if the model performance improves.
- Improve the SVM model by removing some irrelevant features.
- Combine different models in an ensemble learning algorithm to achieve better recall.
- Implement some other feature explanation such as **LIME** or **SHAP** methods.
- Build a **deep learning** model.