Information And Communication Tutorial 9-03-2025

- 1. Construct the standard array for a (7,4) Hamming Code. What are your observations with respect to the set of coset leaders? What are d_{\min} and error correcting capability of this code?
- 2. For the given standard array:

Row # (Leader)	Codewords			
Row 0 (leader 0000)	0000,	1011,	0111,	1100
Row 1 (leader 0001)	0001,	1010,	0110,	1101
Row 2 (leader 0010)	0010,	1001,	0101,	1110
Row 0 (leader 0000) Row 1 (leader 0001) Row 2 (leader 0010) Row 3 (leader 0100)	0100,	1111,	0011,	1000

- (a) Construct the Generator matrix and Parity Check matrix for these codes.
- (b) Decode the vector '1101'.
- (c) Calculate the probability of error if the codeword '1011' is transmitted.
- (d) What are d_{\min} and error correcting capability of this code?
- 3. Prove that the Maximum Likelihood (ML) decoder and the Standard Array decoder yield the same decoding result when the probability of a bit error is p<0.5
- 4. Consider a (5,2) linear code with the following generator matrix:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Assume transmission over a Binary Symmetric Channel (BSC) with crossover probability p=0.2. Given the received vector r=10110, perform Maximum Likelihood (ML) decoding to determine the most likely transmitted codeword.