ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2012

Algorithms

- ▶ Informally, an algorithm can be viewed as
 - a well-defined computational procedure that
 - takes a set of values as input
 - produces a set of values as output
 - a solution to a computational problem
 - whose statement specifies the intended relationship between inputs and outputs
 - and the algorithm being the specific computational procedure that achieves this relationship
- ▶ the prototypical computational problem is *sorting*
 - problem specification
 - ▶ input: a sequence *S* of *n* numbers (s_0, s_1, \ldots, s_n)
 - output: a permutation S' of the input sequence $(s'_0, s'_1, \dots, s'_n)$
 - constraint: the elements of the output sequence must satisfy

$$s_0' \leq s_1' \leq \ldots \leq s_n'$$

- problem instance: $S = (0, \pi, 1, e, 2, 16)$
- ightharpoonup invalid input: (0, i, 1)
 - why is this bad? which implicit property of S does it violate? what is the set of valid inputs?

Correctness

- ▶ once again informally, an algorithm is *correct* if
 - ▶ it terminates for all valid input
 - upon termination on valid input, the output satisfies the constraints expressed in the problem statement
- equivalently, we say that the algorithm solves the computational problem
- after correctness has been established, algorithms are classified according to their demands on computational resources
 - running time complexity
 - a measure of the number of instructions necessary to solve the problem
 - and, occasionally
 - amount of auxiliary storage
 - network bandwidth or other communication infrastructure requirements
 - for parallel algorithms: speedup and efficiency
- algorithms are often specified using *pseudocode*
 - a loose language with mostly notational constraints
 - a mixture of reasonable looking code with whatever expressive method makes the point clear
 - hence, the use of human languages to convey meaning that might be too difficult to code up, or would obscure the point, is perfectly acceptable

A sorting algorithm

Algorithm 1: INSERTION-SORT(*S*)

1 for
$$j \leftarrow 2$$
 to $length[S]$ do
2 | $key \leftarrow S[j]$
3 | $i \leftarrow j - 1$
4 | while $i > 0$ and $S[i] > key$ do
5 | $S[i+1] \leftarrow S[i]$
6 | $i \leftarrow i - 1$
7 | $S[i+1] \leftarrow key$

- ▶ valid inputs:
 - empty sequence, singlet, other sequences of finite length
 - ▶ what kinds of objects in S?
- walk through it by hand with S = (5, 2, 4, 6, 1, 3)

Pseudocode conventions

- ▶ the symbol "▷" indicates a comment through to the end of the line
- block structure is indicated by the indentation level
- all variables are local; no global variables, unless explicitly marked
- ▶ $i \leftarrow j \leftarrow k$ assigns the rightmost expression to all the other variables
- ▶ indexing: S[i]; slicing: S[i..j]
- conditionals, looping constructs, function calls should be familiar
- compound objects have attributes or fields that are referenced using indexing, e.g. length[S]
- variables assigned to objects or containers are references
- parameters passed to procedures by assignment

Python implementation

direct translation of pseudocode in python, with no attempt to improve

```
def insertion_sort(S):
    for j in range(1, len(S)):
        key = S[j]
        i = j-1
        while i>=0 and S[i]>key:
        S[i+1] = S[i]
        i = i-1
        S[i+1] = key
```

minor adjustments to loop indices are required since python lists are zero based

Analyzing algorithms

- algorithm analysis is the computation of resource requirements
 - memory, communication bandwidth, computational time
- need a model for the implementation environment
 - ► RAM: random access machine
 - an abstraction of a single processor sequential execution machine that has access to a single block of memory with uniform access cost
 - even though the model is extermely simple, algorithm analysis remains a hard problem, full of subtleties
- ▶ in general, we seek to relate the running time to input size
 - definition of input size is problem dependent could be number of items to sort, or number of grid points in a mesh, etc.
 - running time is proportional to the number of primitive steps executed
 - different lines have different costs
 - but each execution of a given line is assumed to cost the same
- exercise: decorate Alg. 1 with the number of times each line is executed

Runtime complexity of INSERTION-SORT

▶ summing up the number of times each line of Alg. 1 gets executed:

$$T(n) = c_2 n^2 + c_1 n + c_0$$

where the c_i are constants related to the cost of the various lines

- ightharpoonup note that it is a quadratic function of n
- ▶ best case: input *S* is already sorted
- worst case: input S is reverse-sorted
- average case: assume a random S and compute an expectation value for the number of executions of each line
 - still a quadratic function of n
- we quantify the run time complexity of INSERTION-SORT by saying that it is asymptotically bound by n^2
 - \triangleright concentrating on the highest power of n
 - disregarding the multiplicative constants that are strongly dependent on the execution model, rather than the quality of the algorithm

Asymptotic bounds

- most often, run time complexity analysis is reduced to constructing asymptotic bounds on execution time as the input size $n \to \infty$
 - ► i.e., finding a simpler function of the input size with similar behavior for large *n*
- we say that $f = \Theta(g)$ if there are constants c_1 , c_2 such that

$$c_1g(n) \le f(n) \le c_2g(n)$$

for sufficiently large n

Upper and lower bounds

bounded from above: we say that f = O(g) if there is a constant c such that $f(n) \le cg(n)$ for sufficiently large n

bounded from below: we say that $f = \Omega(g)$ if there is a constant c such that $cg(n) \le f(n)$ for sufficiently large n

Designing algorithms

- ► INSERTION-SORT is *incremental*:
 - ▶ having sorted S[i..j], put S[j] in its proper place
 - ▶ how would you break this up into tasks that can be executed in parallel?
- ▶ one alternative is *divide-and-conquer*: MERGE-SORT
 - ► divide: split S into two parts of roughly equal length
 - conquer: sort the subsequences recursively
 - combine: merge the two sorted subsequences to produce the sorted output

Sorting by divide-and-conquer

Algorithm 2: MERGE-SORT(S, p, r)

1 if
$$p < r$$
 then
2 $q \leftarrow \lfloor (p+r)/2 \rfloor$
3 MERGE-SORT (S, p, q)
4 MERGE-SORT $(S, q+1, r)$
5 MERGE (S, p, q, r)

- exercise: write MERGE; can be done in $\Theta(r-p+1)$
- ► analysis of running time:
 - involves solving a recurrence relation
 - worst case:

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{array} \right\} \to \Theta(n \log n)$$

▶ is this a better candidate for parallel sorting?

