Exercises

Week 4

Programming Exercises:

Problem O4.1:

Generate and plot the scattergram of 1000 pairs of random variables $Y=(Y_1, Y_2)$, having the covariance matrix $K_1 = [2, 1; 1, 4]$, using the linear transformation of vector $X=(X_1, X_2)$ where

- a) X_1 and X_2 are independent random variables that are each uniform in the unit interval;
- b) X_1 and X_2 are independent zero-mean, unit-variance Gaussian random variables Repeat the above exercise with the covariance matrix $K_2 = [4, 1; 1, 4]$

Problem O4.2:

Let **X** be the jointly Gaussian random variables with mean = [1, 0, 2] and covariance matrix $K_1 = [3/2, 0, 1/2; 0, 1, 0; 1/2, 0, 3/2]$

- (a) Find a linear transformation A that diagonalizes the covariance matrix.
- (b) Generate 1000 triplets of Y=AX and plot the scattergrams in Matlab or Python for Y_1 and Y_2 , Y_1 and Y_3 , Y_2 and Y_3 . Confirm that the scattergrams are as expected.

Problem O4.3:

Let X_1, X_2, \dots, X_n be independent zero mean Gaussian random variables. Let $Y_k = (X_k + X_{k-1})/2$, that is, Y_k is the moving average of pairs of values of X. Assume $X_{-1} = 0$.

- (a) Find the covariance matrix of the random variables Y_{k}
- (b) Use Matlab or Python to generate a sequence of 1000 samples Y_1 , Y_2 , Y_n . How would you check that the Y_k have the correct covariance?

Repeat the above problem with $Y_k = X_k - X_{k-1}$.

Miscellaneous Problems:

Let X_1 , X_2 , ..., X_n be jointly Gaussian RVs with joint PDF specified by mean **m** and covariance matrix **K**. Show that $Z = a_1 X_1 + a_2 X_2 + ... + a_n X_n$ is a Gaussian RV.

Problem set from Textbook¹:

Problems 6.33, 6.50 (a,b), 6.54, 6.55, 6.80, 6.86

¹ Textbook: A. Leon-Garcia, *Probability, Statistics and Random Processes for Electrical Engineering*, 2008, 3rd Ed. Prentice Hall