- 1.) The constant of integration has no affect on the integrating factor because The integrating factor is multiplied through both sides of the equation. Because of this, and that C is a constant, we are able to cancle it out without affecting the solution.
- 2.) F = ma where a = g = 9.81 $\frac{Jv}{Jt} = g \quad \text{and} \quad \frac{dx}{dt} = v = gt \quad \therefore \quad x = \frac{1}{2}gt^2 + V_0 \quad \text{where } V_0 = 0$ $t = \sqrt{\frac{2x}{g}} \quad \text{where } t = \frac{v}{g} \quad \text{and } x = h \quad \therefore \frac{v}{g} = \sqrt{\frac{2h}{g}}$ $V = \sqrt{\frac{2gh}{g}}$
 - B.) Rate of outflow: $Va = a\sqrt{2gh}$ Rate of change of volume: $VA(h) = A(h)\frac{dh}{dt}$ Since $\frac{dh}{dt} < O$, : $a\sqrt{2gh}$ must be negative so that liquid leaving = rate of value $A(h)\frac{dh}{dt} = -a\sqrt{2gh}$
 - c.) h=3, $r_{tonk}=1$.. $A=2\pi$, $r_{out}=0.1$.. $a=\pi(0.1^2)=0.01\pi$ $A\frac{dh}{dt}=-a\sqrt{2gh}=\pi\frac{dh}{dt}=0.01\pi\sqrt{2gh}$ $A\frac{dh}{dt}=-0.01\sqrt{2g}$ $A=\pi\frac{dh}{dt}=0.01\pi\sqrt{2gh}$ $A\frac{dh}{dt}=-0.01\sqrt{2g}$ $A=\pi\frac{dh}{dt}=0.01\pi\sqrt{2gh}$ $A\frac{dh}{dt}=-0.01\sqrt{2g}$ $A=\pi\frac{dh}{dt}=0.01\pi\sqrt{2g}$ $A=\pi\frac{dh}{dt}=0.01\sqrt{2g}$ $A=\pi\frac{dh}{dt}=0.01\sqrt{2g}$

$$\frac{s(t+\Delta t)-s(t)}{\Delta t}=rs(t)+k \quad \text{i.} \quad \frac{ds}{dt}=rs(t)+k$$

$$\frac{ds}{dt} = rs(t) + k$$

$$S'(t) - rs(t) = k$$

$$\mu = e^{-rt}$$

$$\frac{d}{dt}\left[e^{-rt}s(t)\right] = \int ke^{-rt}dt$$

$$\frac{d}{dt}\left[e^{rt}s(t)\right] = \int ke^{rt}dt \qquad : \quad e^{rt}s(t) = \frac{ke^{-rt}}{r} + C$$

$$S(t) = \frac{c}{e^{-rt}} - \frac{R}{r}$$

$$S(t) = \frac{c}{e^{rt}} - \frac{R}{r} = \frac{A - \frac{R}{r}}{A - \frac{R}{r}} = 0$$

$$A = \frac{R}{r}$$

$$A = \frac{R}{r}$$

$$S(t) = \frac{k}{r} e^{rt} - \frac{k}{r}$$

$$s(t) = \frac{k}{r}e^{rt} - \frac{k}{r}$$
 : $s(t) = k\left(\frac{1}{r}e^{rt} - \frac{1}{r}\right)$

$$k = \frac{s(t)}{(\frac{1}{r}e^{t} - \frac{1}{r})}$$
 $k = 3929.68$

(·)

ONTHALL SAME

This equation is undefined at values
$$t=0$$
 and $t=3$

$$-\infty < t < 0$$
, $0 < t < 3$, $3 < t < \infty$
since $t \in TVP \ y(1) = 2$, The interval is $(0,3)$

This is undefined every $\frac{\pi}{2} + \pi n$ where $n \in \mathbb{Z}$ The interval is $\frac{\pi}{2} < t < \frac{3\pi}{2}$ or $(\frac{\pi}{2}, \frac{3\pi}{2})$ as the initial value π is within this range.

$$y' = \frac{t-y}{2t+3y}$$
 This equation is undefined when $2t+3y=0$ from this we know that $y = \frac{-2}{3}t$ is a line of discontinuity, meaning that the solution is defined everywhere other than $y = \frac{-2}{3}t$

6)
$$\begin{cases} t^{2} \frac{dy}{dt} + 2ty = y^{3} & \therefore v = y^{-2}, & \frac{dv}{dt} = -2y^{-3} \frac{dy}{dt} \\ \frac{y^{3}}{-2} + t^{2} \frac{dy}{dt} + 2ty = y^{3} & \frac{y^{-2}}{-2} \frac{dv}{dt} = \frac{dy}{dt} \\ \frac{t^{2}}{-2} \frac{dv}{dt} + 2ty^{2} = 1 & \therefore \frac{t^{2}}{-2} \frac{dv}{dt} + 2tv = 1 \\ \frac{dv}{dt} - \frac{t}{t} = -\frac{2}{t^{2}} & \therefore P = e^{\int -\frac{1}{t}} \frac{dt}{dt} = e^{\int -\frac{1}{t} \log |t|} = \frac{1}{t^{4}} \\ \frac{dv}{dt} \left[\frac{1}{t^{4}} v \right] = \int -\frac{7}{t^{2}} x \frac{1}{t^{4}} = \int -\frac{7}{t^{6}} = \int -2t^{-6} = \frac{2}{5t^{6}} + C \\ v = \frac{2}{5t} + C & \therefore \frac{1}{y^{2}} = \frac{2}{5t} + C & \therefore y = \sqrt{\frac{5t}{2}} + \frac{1}{c} \end{aligned}$$