Hoja 8

Geometría Afín III:

Posición relativa de variedades lineales. Operaciones con variedades lineales.

1. En $\mathbb{A}^3(\mathbb{R})$, considera los conjuntos

$$L = \{(x, y, z) : x + 2y - z = 1\} \quad \text{y} \quad M = \{(x, y, z) : x - y + 2z = 2 \text{ y } x - z = 1\}.$$

- a) Demuestra que L y M son variedades lineales.
- b) Determina si L y M se cortan, son paralelas, o se cruzan. Si se cortan, halla su intersección.
- **2.** En $\mathbb{A}^4(\mathbb{R})$, consider los conjuntos

$$L_1 = \{(x, y, z, w) : x = 1, y = 2\}$$
 y $L_2 = \{(x, y, z, w) : z = -2, w = 3\}.$

- a) Demuestra que L_1 y L_2 son variedades lineales.
- b) Determina si L_1 y L_2 se cortan, son paralelas, o se cruzan. Si se cortan, halla su intersección.
- 3. En el espacio afín $\mathbb{A}^3(\mathbb{R})$ estudia la posición relativa de las variedades lineales

$$L_1 = (1,0,0) + \langle (0,2,1) \rangle$$
, y $L_2 = \{(x,y,z) : x + 2y + z = 1\}$.

Describe las variedades lineales intersección y suma.

4. Encuentra, si existe, la recta que corta a las rectas

$$s = \begin{cases} x - y + z = 0 \\ x + 2y + 3z + 4 = 0 \end{cases}$$
 y
$$t = \begin{cases} x + y + 3z - 1 = 0 \\ x + 2z - 5 = 0 \end{cases} ,$$

y pasa por P = (1, 6, -3).

- 5. Decide, de manera razonada, si los siguientes resultados son verdaderos o falsos:
- a) Dos rectas paralelas en $\mathbb{A}^n(\mathbb{R})$ o bien son coincidentes, o bien no se cortan.
- b) Dos rectas en $\mathbb{A}^2(\mathbb{R})$ que no se cortan deben ser paralelas.
- c) En $\mathbb{A}^n(\mathbb{R})$ con $n \geq 3$ dos rectas que no se cortan no tienen por qué ser paralelas.
- 6. Sea \mathbb{A} un espacio afín de dimensión n y $L_1, L_2 \subset \mathbb{A}$ subespacios afines. Demuestra que si la dimensión de L_1 es n-1 y la dimensión de $L_2 \geq 1$, entonces L_1 y L_2 no se pueden cruzar.
- 7. En el espacio afín (A, V, φ) de dimensión n, sean $L_1 = a_1 + V_1$ y $L_2 = a_2 + V_2$ dos subespacios afines. Demuestra que si $V = V_1 \oplus V_2$, entonces L_1 y L_2 se cortan en un punto.

Geometría Afín IV: Aplicaciones afines.

8. Calcula las ecuaciones de la aplicación afín $T: \mathbb{A}^2(\mathbb{R}) \to \mathbb{A}^2(\mathbb{R})$ que cumple $T(1,1) = (2,3), \ T(3,2) = (3,8)$ y T(2,3) = (1,7), si existe.

- 9. Sea $f: \mathbb{A} \longrightarrow \mathbb{A}$ una aplicación afín. Se dice que una variedad lineal $L \subset \mathbb{A}$ es invariante por f si para todo $Q \in L$ se tiene que $f(Q) \in L$.
- a) Demuestra que si L es invariante por f entonces \overrightarrow{L} es un subespacio invariante por \overrightarrow{f} ;
- b) Ilustra, mediante un ejemplo, que el recíproco del apartado anterior no tiene por qué ser cierto.
- 10. Sea $f: \mathbb{A} \to \mathbb{A}$ una aplicación afín tal que \overrightarrow{f} tiene 1 como autovalor. Demuestra, mediante un ejemplo, que esa condición no es suficiente para que f tenga puntos fijos.
- 11. Sea $f: \mathbb{A} \longrightarrow \mathbb{A}'$ una aplicación afín. Demostrar
- a) Si $L \subset \mathbb{A}$ es una variedad lineal, entonces $f(L) \subset \mathbb{A}'$ es una variedad lineal tal que $\overrightarrow{f(L)} = \overrightarrow{f}(\overrightarrow{L})$. En particular dim f(L) = rango(f).
- b) Si $M \subset \mathbb{A}'$ es una variedad lineal tal que $f^{-1}(M) \neq \emptyset$, entonces $f^{-1}(M) \subset \mathbb{A}$ es una variedad lineal tal que $\overrightarrow{f^{-1}(M)} = (\overrightarrow{f})^{-1}(\overrightarrow{M}).$
- c) f transforma variedades lineales paralelas en variedades lineales paralelas. En particular f transforma puntos alineados en puntos alineados.
- 12. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación definida por $f(x,y) = \frac{1}{5}(3x 4y + 8, -4x 3y + 16)$.
- a) Calcular la matriz de f con respecto al sistema referencia canónico de $\mathbb{A}^2(\mathbb{R})$.
- b) Demostrar que f es una simetría y calcular los elementos geométricos que la determinan.
- 13. Calcula las ecuaciones, si existe, de la homotecia $f: \mathbb{A}^2(\mathbb{R}) \to \mathbb{A}^2(\mathbb{R})$ en los siguientes casos:
- **a)** f(1,1) = (-3,0) y f(-1,0) = (-1,1). **b)** f(1,1) = (4,2) y f(-1,0) = (-2,-1)
- 14. Consideramos las rectas en \mathbb{R}^2 :

$$r_1: x + 2y - 4 = 0$$
 y $r_2: x = 2y$.

Calcular la expresión analítica con respecto al sistema referencia canónico de $\mathbb{A}^2(\mathbb{R})$ de:

- a) la simetría sobre r_1 en la dirección de r_2 .
- **b)** la proyección sobre r_1 en la dirección de r_2 .
- **15.** En $\mathbb{A}^3(\mathbb{R})$, con $\alpha \in \mathbb{R}$, consideramos los puntos

$$A_1 = (1, 1, 0), A_2 = (2, 0, 2), A_3 = (1, 2, \alpha), A_4 = (3, 4, -1),$$

$$B_1 = (2, 1, 0), B_2 = (2, 2, 1), B_3 = (1, 1, 0), B_4 = (3, 0, 0).$$

a) Halla los valores de α para los que existe una aplicación afín $f \colon \mathbb{A}^3(\mathbb{R}) \to \mathbb{A}^3(\mathbb{R})$ tal que $f(A_i) = B_i$, i = 1, 2, 3, 4.

Para aquellos valores de α para los que f es una aplicación afín:

- b) Demuestra que $\mathcal{R}_1 = \{A_1, A_2, A_3, A_4\}$ y $\mathcal{R}_2 = \{B_1, B_2, B_3, B_4\}$ son sistemas de referencia baricéntri- $\cos \det \mathbb{A}^3(\mathbb{R}).$
- c) Calcula la matriz con respecto \mathcal{R}_1 y \mathcal{R}_2 de la aplicación afín f.