$12n_{0100} \ (K12n_{0100})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 10938104279u^{29} + 17799069811u^{28} + \dots + 790454724608b + 452983966639, \\ &3054129323185u^{29} - 6949903407647u^{28} + \dots + 6323637796864a - 16733471682507, \\ &u^{30} - 2u^{29} + \dots - 6u + 1 \rangle \\ I_2^u &= \langle -1.61369 \times 10^{45}u^{39} - 9.40408 \times 10^{45}u^{38} + \dots + 2.40030 \times 10^{46}b - 2.57635 \times 10^{47}, \\ &- 2.95178 \times 10^{47}u^{39} - 1.77493 \times 10^{48}u^{38} + \dots + 2.32829 \times 10^{48}a - 4.68541 \times 10^{49}, \\ &u^{40} + 6u^{39} + \dots + 666u + 97 \rangle \\ I_3^u &= \langle b, \ 5u^2 + 4a + 3u + 11, \ u^3 + 2u - 1 \rangle \\ I_4^u &= \langle -12a^2u + 91a^2 - 564au + 337b + 570a + 188u + 147, \ a^3 - 5a^2u + 7a^2 + 4au + a + 2u + 1, \ u^2 + 1 \rangle \\ I_5^u &= \langle b, \ u^3 + a + u, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle \\ I_6^u &= \langle 3b - 2a - 2, \ 4a^2 + 2a - 11, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 85 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 1.09 \times 10^{10} u^{29} + 1.78 \times 10^{10} u^{28} + \dots + 7.90 \times 10^{11} b + 4.53 \times 10^{11}, \ 3.05 \times 10^{12} u^{29} - 6.95 \times 10^{12} u^{28} + \dots + 6.32 \times 10^{12} a - 1.67 \times 10^{13}, \ u^{30} - 2u^{29} + \dots - 6u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.482970u^{29} + 1.09904u^{28} + \dots - 14.1778u + 2.64618 \\ -0.0138377u^{29} - 0.0225175u^{28} + \dots - 0.0339714u - 0.573068 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.269448u^{29} + 0.688032u^{28} + \dots - 10.5362u + 2.79507 \\ -0.306258u^{29} + 0.647053u^{28} + \dots + 0.353711u - 0.471726 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.000122070u^{29} - 0.000366211u^{28} + \dots + 1.99915u - 0.999878 \\ 0.000244141u^{29} - 0.000732422u^{28} + \dots + 1.99829u + 0.000244141 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.198114u^{29} + 0.535158u^{28} + \dots - 10.9040u + 2.84822 \\ -0.159014u^{29} + 0.310603u^{28} + \dots - 0.146693u - 0.408378 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.116259u^{29} + 0.299479u^{28} + \dots - 6.99440u + 1.41903 \\ -0.159014u^{29} + 0.310603u^{28} + \dots - 0.146693u - 0.408378 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.000244141u^{29} + 0.000732422u^{28} + \dots - 1.99829u + 0.999756 \\ -0.000488281u^{29} + 0.00146484u^{28} + \dots - 1.99658u - 0.000488281 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.469133u^{29} + 1.12155u^{28} + \dots - 14.1438u + 3.21925 \\ -0.0138377u^{29} - 0.0225175u^{28} + \dots - 0.0339714u - 0.573068 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.000122070u^{29} - 0.000366211u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.000244141u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.000122070u^{29} - 0.000366211u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.000244141u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.000122070u^{29} - 0.000366211u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000122070 \\ 0.0002441411u^{29} - 0.000732422u^{28} + \dots + 1.99915u + 0.000244141 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= \frac{5758735881521}{25294551187456}u^{29} - \frac{9442271879503}{25294551187456}u^{28} + \dots + \frac{149768918108921}{25294551187456}u - \frac{343005319822011}{25294551187456}u$

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 27u^{29} + \dots + 20513u + 256$
c_2, c_4	$u^{30} - 5u^{29} + \dots + 161u + 16$
c_3, c_6	$u^{30} + 2u^{29} + \dots - 400u - 128$
<i>C</i> ₅	$u^{30} - 6u^{29} + \dots + 240u - 64$
c_7, c_9, c_{10} c_{12}	$u^{30} + 2u^{29} + \dots + 6u + 1$
c_8, c_{11}	$4(4u^{30} + 6u^{29} + \dots + 40u - 8)$

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} - 43y^{29} + \dots - 326031937y + 65536$
c_2, c_4	$y^{30} - 27y^{29} + \dots - 20513y + 256$
c_3, c_6	$y^{30} - 12y^{29} + \dots - 181504y + 16384$
<i>C</i> ₅	$y^{30} + 16y^{29} + \dots - 44800y + 4096$
c_7, c_9, c_{10} c_{12}	$y^{30} + 12y^{29} + \dots + 20y + 1$
c_8, c_{11}	$16(16y^{30} - 220y^{29} + \dots - 2368y + 64)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.306081 + 0.971496I		
a = -0.379940 - 0.267068I	6.31796 + 4.23185I	-8.08189 - 9.05731I
b = 0.17194 + 1.49872I		
u = -0.306081 - 0.971496I		
a = -0.379940 + 0.267068I	6.31796 - 4.23185I	-8.08189 + 9.05731I
b = 0.17194 - 1.49872I		
u = 0.726332 + 0.717882I		
a = -0.266956 + 0.595547I	-3.92620 - 2.24705I	-15.5498 + 1.9306I
b = 0.470087 - 0.986044I		
u = 0.726332 - 0.717882I		
a = -0.266956 - 0.595547I	-3.92620 + 2.24705I	-15.5498 - 1.9306I
b = 0.470087 + 0.986044I		
u = 0.885171 + 0.404098I		
a = 1.67056 - 0.76180I	-2.95432 + 0.04023I	-20.3286 - 5.5388I
b = 0.819942 + 0.114529I		
u = 0.885171 - 0.404098I		
a = 1.67056 + 0.76180I	-2.95432 - 0.04023I	-20.3286 + 5.5388I
b = 0.819942 - 0.114529I		
u = 0.558846 + 0.895019I		
a = -0.770167 + 1.055880I	-0.75719 - 4.19906I	-11.33346 + 6.22509I
b = -1.031020 - 0.715634I		
u = 0.558846 - 0.895019I		
a = -0.770167 - 1.055880I	-0.75719 + 4.19906I	-11.33346 - 6.22509I
b = -1.031020 + 0.715634I		
u = -0.657049 + 0.551609I		
a = 1.23906 + 0.82471I	-10.22390 + 1.23818I	-12.68969 - 5.92681I
b = 1.83855 + 0.13734I		
u = -0.657049 - 0.551609I		
a = 1.23906 - 0.82471I	-10.22390 - 1.23818I	-12.68969 + 5.92681I
b = 1.83855 - 0.13734I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.565389 + 1.005700I		
a = -1.162420 - 0.720365I	0.05463 + 4.76238I	-11.14668 - 5.25286I
b = -1.58427 + 0.36083I		
u = -0.565389 - 1.005700I		
a = -1.162420 + 0.720365I	0.05463 - 4.76238I	-11.14668 + 5.25286I
b = -1.58427 - 0.36083I		
u = 0.843377		
a = 2.75809	-2.79129	-49.4130
b = 0.513113		
u = -0.140757 + 0.828367I		
a = 0.367813 + 0.583725I	5.58489 - 2.26037I	-14.4927 - 3.6390I
b = -0.28661 - 1.50907I		
u = -0.140757 - 0.828367I		
a = 0.367813 - 0.583725I	5.58489 + 2.26037I	-14.4927 + 3.6390I
b = -0.28661 + 1.50907I		
u = -0.631272 + 1.097650I		
a = 0.392830 - 0.018581I	-1.35975 + 8.36352I	-11.27390 - 6.50510I
b = -0.50506 - 1.57122I		
u = -0.631272 - 1.097650I		
a = 0.392830 + 0.018581I	-1.35975 - 8.36352I	-11.27390 + 6.50510I
b = -0.50506 + 1.57122I		
u = 0.604075 + 1.194270I		
a = 0.706087 - 0.904055I	-5.88204 - 8.98025I	-12.45579 + 6.40354I
b = 1.23790 + 0.84225I		
u = 0.604075 - 1.194270I		
a = 0.706087 + 0.904055I	-5.88204 + 8.98025I	-12.45579 - 6.40354I
b = 1.23790 - 0.84225I		
u = -0.630005 + 1.198400I		
a = 1.18843 + 0.82286I	1.77400 + 11.41590I	-9.49161 - 8.04508I
b = 1.46968 - 0.61664I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.630005 - 1.198400I		
a = 1.18843 - 0.82286I	1.77400 - 11.41590I	-9.49161 + 8.04508I
b = 1.46968 + 0.61664I		
u = -0.21630 + 1.42652I		
a = -0.0559978 - 0.0670005I	8.04558 + 5.22550I	7.68375 - 8.68899I
b = -0.071308 + 0.475747I		
u = -0.21630 - 1.42652I		
a = -0.0559978 + 0.0670005I	8.04558 - 5.22550I	7.68375 + 8.68899I
b = -0.071308 - 0.475747I		
u = -0.71570 + 1.32576I		
a = -1.09519 - 0.90719I	-4.4797 + 16.8602I	-12.0000 - 8.5659I
b = -1.44754 + 0.87678I		
u = -0.71570 - 1.32576I		
a = -1.09519 + 0.90719I	-4.4797 - 16.8602I	-12.0000 + 8.5659I
b = -1.44754 - 0.87678I		
u = 1.44106 + 0.58374I		
a = -0.975310 + 0.305052I	-10.25000 + 1.95101I	-14.1127 - 3.6126I
b = -1.44083 + 0.27330I		
u = 1.44106 - 0.58374I		
a = -0.975310 - 0.305052I	-10.25000 - 1.95101I	-14.1127 + 3.6126I
b = -1.44083 - 0.27330I		
u = 0.330393		
a = 0.875273	-0.684602	-14.4040
b = -0.342608		
u = 0.060190 + 0.268373I		
a = 0.19952 - 1.89319I	-0.767693 + 0.138293I	-11.78528 + 0.30985I
b = -0.726719 + 0.048459I		
u = 0.060190 - 0.268373I		
a = 0.19952 + 1.89319I	-0.767693 - 0.138293I	-11.78528 - 0.30985I
b = -0.726719 - 0.048459I		

II.
$$I_2^u = \langle -1.61 \times 10^{45} u^{39} - 9.40 \times 10^{45} u^{38} + \dots + 2.40 \times 10^{46} b - 2.58 \times 10^{47}, \ -2.95 \times 10^{47} u^{39} - 1.77 \times 10^{48} u^{38} + \dots + 2.33 \times 10^{48} a - 4.69 \times 10^{49}, \ u^{40} + 6u^{39} + \dots + 666u + 97 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.126779u^{39} + 0.762331u^{38} + \dots + 125.069u + 20.1238 \\ 0.0672286u^{39} + 0.391787u^{38} + \dots + 63.2326u + 10.7335 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.102593u^{39} + 0.627245u^{38} + \dots + 80.1048u + 12.8462 \\ 0.0338897u^{39} + 0.223578u^{38} + \dots + 43.4453u + 7.70229 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.153021u^{39} - 0.645296u^{38} + \dots + 86.5001u + 15.5286 \\ -0.0899725u^{39} - 0.492162u^{38} + \dots - 65.3776u - 10.0258 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.114842u^{39} + 0.690016u^{38} + \dots + 87.9315u + 13.8490 \\ 0.0721576u^{39} + 0.397847u^{38} + \dots + 57.2261u + 9.74529 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0427641u^{39} + 0.258615u^{38} + \dots + 68.3523u + 12.7917 \\ 0.0721576u^{39} + 0.397847u^{38} + \dots + 57.2261u + 9.74529 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0551092u^{39} + 0.267827u^{38} + \dots + 53.0009u + 0.972082 \\ 0.0961666u^{39} + 0.488952u^{38} + \dots + 41.7982u + 6.06644 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0595503u^{39} + 0.370543u^{38} + \dots + 61.8366u + 9.39035 \\ 0.0672286u^{39} + 0.391787u^{38} + \dots + 63.2326u + 10.7335 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.196886u^{39} + 1.21771u^{38} + \dots + 77.1544u + 10.6242 \\ -0.0343140u^{39} - 0.208019u^{38} + \dots - 28.2185u - 5.36491 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0728219u^{39} + 0.430060u^{38} + \cdots + 88.4314u + 10.6322$

Crossings	u-Polynomials at each crossing
c_1	$(u^{20} + 21u^{19} + \dots + 13u + 1)^2$
c_2, c_4	$(u^{20} - 3u^{19} + \dots + u - 1)^2$
c_{3}, c_{6}	$(u^{20} + u^{19} + \dots - 8u - 4)^2$
<i>C</i> ₅	$(u^{20} + 2u^{19} + \dots - 2u + 1)^2$
c_7, c_9, c_{10} c_{12}	$u^{40} - 6u^{39} + \dots - 666u + 97$
c_8, c_{11}	$u^{40} - 6u^{39} + \dots - 10066u + 3683$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{20} - 41y^{19} + \dots - 33y + 1)^2$
c_2, c_4	$(y^{20} - 21y^{19} + \dots - 13y + 1)^2$
c_3, c_6	$(y^{20} - 15y^{19} + \dots - 24y + 16)^2$
c_5	$(y^{20} + 6y^{19} + \dots - 2y + 1)^2$
c_7, c_9, c_{10} c_{12}	$y^{40} + 22y^{39} + \dots + 37176y + 9409$
c_8, c_{11}	$y^{40} + 10y^{39} + \dots - 492576812y + 13564489$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.949389 + 0.318916I		
a = 1.45882 + 0.65851I	-0.89345 - 5.67427I	-12.59597 + 5.66395I
b = 1.268400 + 0.295253I		
u = -0.949389 - 0.318916I		
a = 1.45882 - 0.65851I	-0.89345 + 5.67427I	-12.59597 - 5.66395I
b = 1.268400 - 0.295253I		
u = 0.055076 + 1.004540I		
a = 3.54069 + 5.49904I	2.43031	-15.8646 + 0.I
b = -0.610309		
u = 0.055076 - 1.004540I		
a = 3.54069 - 5.49904I	2.43031	-15.8646 + 0.I
b = -0.610309		
u = -0.261046 + 0.924940I		
a = -2.18019 - 0.55269I	2.07115 + 0.86143I	-9.55325 + 0.99952I
b = -0.439566 - 0.534727I		
u = -0.261046 - 0.924940I		
a = -2.18019 + 0.55269I	2.07115 - 0.86143I	-9.55325 - 0.99952I
b = -0.439566 + 0.534727I		
u = -0.802373 + 0.466386I		
a = -1.070220 - 0.185255I	-3.24441 - 2.97363I	-13.9234 + 2.6854I
b = -0.089922 + 1.317200I		
u = -0.802373 - 0.466386I		
a = -1.070220 + 0.185255I	-3.24441 + 2.97363I	-13.9234 - 2.6854I
b = -0.089922 - 1.317200I		
u = 0.507721 + 0.743875I		
a = -0.915680 + 0.137961I	-1.249910 - 0.191668I	-13.73570 - 0.22109I
b = -1.256010 + 0.124886I		
u = 0.507721 - 0.743875I		
a = -0.915680 - 0.137961I	-1.249910 + 0.191668I	-13.73570 + 0.22109I
b = -1.256010 - 0.124886I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.851192 + 0.285618I		
a = 0.918683 - 0.525649I	-8.58220 + 3.56941I	-15.7159 - 1.0074I
b = 1.52621 - 0.50989I		
u = 0.851192 - 0.285618I		
a = 0.918683 + 0.525649I	-8.58220 - 3.56941I	-15.7159 + 1.0074I
b = 1.52621 + 0.50989I		
u = 0.640368 + 0.940231I		
a = 0.250357 - 0.419468I	-3.24441 - 2.97363I	-13.9234 + 2.6854I
b = -0.089922 + 1.317200I		
u = 0.640368 - 0.940231I		
a = 0.250357 + 0.419468I	-3.24441 + 2.97363I	-13.9234 - 2.6854I
b = -0.089922 - 1.317200I		
u = -0.532340 + 1.015670I		
a = 1.61077 + 0.30511I	4.73160 + 1.82256I	-4.87459 - 5.12436I
b = 0.685016 - 0.443026I		
u = -0.532340 - 1.015670I		
a = 1.61077 - 0.30511I	4.73160 - 1.82256I	-4.87459 + 5.12436I
b = 0.685016 + 0.443026I		
u = -0.131384 + 1.153900I		
a = -2.89792 - 2.19839I	2.07115 - 0.86143I	-9.55325 - 0.99952I
b = -0.439566 + 0.534727I		
u = -0.131384 - 1.153900I		
a = -2.89792 + 2.19839I	2.07115 + 0.86143I	-9.55325 + 0.99952I
b = -0.439566 - 0.534727I		
u = -0.557461 + 0.561067I		
a = -1.13556 - 1.31193I	-1.249910 - 0.191668I	-13.73570 - 0.22109I
b = -1.256010 + 0.124886I		
u = -0.557461 - 0.561067I		
a = -1.13556 + 1.31193I	-1.249910 + 0.191668I	-13.73570 + 0.22109I
b = -1.256010 - 0.124886I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.353190 + 1.172280I		
a = -0.30264 - 1.50729I	-4.11381	-16.6683 + 0.I
b = 1.36144		
u = 0.353190 - 1.172280I		
a = -0.30264 + 1.50729I	-4.11381	-16.6683 + 0.I
b = 1.36144		
u = -0.574260 + 1.083700I		
a = 0.703109 + 1.169540I	-8.58220 + 3.56941I	-15.7159 - 1.0074I
b = 1.52621 - 0.50989I		
u = -0.574260 - 1.083700I		
a = 0.703109 - 1.169540I	-8.58220 - 3.56941I	-15.7159 + 1.0074I
b = 1.52621 + 0.50989I		
u = 0.211725 + 1.229800I		
a = 0.108080 + 0.199216I	2.82359 - 2.30782I	-5.88733 + 3.58910I
b = 0.078647 - 0.574169I		
u = 0.211725 - 1.229800I		
a = 0.108080 - 0.199216I	2.82359 + 2.30782I	-5.88733 - 3.58910I
b = 0.078647 + 0.574169I		
u = 0.652486 + 1.117780I		
a = 1.178370 - 0.534825I	-0.89345 - 5.67427I	-12.00000 + 5.66395I
b = 1.268400 + 0.295253I		
u = 0.652486 - 1.117780I		
a = 1.178370 + 0.534825I	-0.89345 + 5.67427I	-12.00000 - 5.66395I
b = 1.268400 - 0.295253I		
u = -1.281360 + 0.321932I		
a = -1.139100 - 0.351922I	-7.69158 - 9.88458I	-14.3825 + 5.7764I
b = -1.47182 - 0.62184I		
u = -1.281360 - 0.321932I		
a = -1.139100 + 0.351922I	-7.69158 + 9.88458I	-14.3825 - 5.7764I
b = -1.47182 + 0.62184I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.607865 + 0.225887I		
a = 0.763840 + 0.694546I	2.82359 + 2.30782I	-5.88733 - 3.58910I
b = 0.078647 + 0.574169I		
u = -0.607865 - 0.225887I		
a = 0.763840 - 0.694546I	2.82359 - 2.30782I	-5.88733 + 3.58910I
b = 0.078647 - 0.574169I		
u = -0.225404 + 1.332760I		
a = 0.222126 + 0.306934I	4.73160 - 1.82256I	-4.87459 + 5.12436I
b = 0.685016 + 0.443026I		
u = -0.225404 - 1.332760I		
a = 0.222126 - 0.306934I	4.73160 + 1.82256I	-4.87459 - 5.12436I
b = 0.685016 - 0.443026I		
u = -1.04608 + 1.04120I		
a = -0.923744 - 0.369988I	-0.28251 + 3.88098I	0
b = -1.176520 + 0.244065I		
u = -1.04608 - 1.04120I		
a = -0.923744 + 0.369988I	-0.28251 - 3.88098I	0
b = -1.176520 - 0.244065I		
u = 0.84940 + 1.32134I		
a = -0.956517 + 0.698756I	-7.69158 - 9.88458I	0
b = -1.47182 - 0.62184I		
u = 0.84940 - 1.32134I		
a = -0.956517 - 0.698756I	-7.69158 + 9.88458I	0
b = -1.47182 + 0.62184I		
u = -0.15220 + 1.73038I		
a = -0.0374057 - 0.0650581I	-0.28251 - 3.88098I	0
b = -1.176520 - 0.244065I		
u = -0.15220 - 1.73038I		
a = -0.0374057 + 0.0650581I	-0.28251 + 3.88098I	0
b = -1.176520 + 0.244065I		

III.
$$I_3^u = \langle b, 5u^2 + 4a + 3u + 11, u^3 + 2u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{5}{4}u^{2} - \frac{3}{4}u - \frac{11}{4}\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\-u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - u + 1\\-u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{9}{4}u^{2} + \frac{1}{4}u - \frac{15}{4}\\u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + u - 1\\u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{5}{4}u^{2} - \frac{3}{4}u - \frac{11}{4}\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + u\\-u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{69}{16}u^2 + \frac{47}{16}u \frac{185}{16}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
C ₄	$(u+1)^3$
<i>C</i> ₅	$u^3 - 3u^2 + 5u - 2$
c_{7}, c_{9}	$u^3 + 2u - 1$
$c_8, c_{10}, c_{11} \\ c_{12}$	$u^3 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
c_5	$y^3 + y^2 + 13y - 4$
$c_7, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.048505 - 0.268962I	7.79580 + 5.13794I	-21.2967 + 1.4416I
b = 0		
u = -0.22670 - 1.46771I		
a = 0.048505 + 0.268962I	7.79580 - 5.13794I	-21.2967 - 1.4416I
b = 0		
u = 0.453398		
a = -3.34701	-2.43213	-9.34410
b = 0		

$$\text{IV. } I_4^u = \\ \langle -12a^2u - 564au + \dots + 570a + 147, \ a^3 - 5a^2u + 7a^2 + 4au + a + 2u + 1, \ u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0356083a^{2}u + 1.67359au + \dots - 1.69139a - 0.436202 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0741840a^{2}u - 0.486647au + \dots + 0.0237389a + 0.658754 \\ -0.00593472a^{2}u + 0.721068au + \dots - 0.718101a + 1.57270 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.201780a^{2}u + 0.516320au + \dots - 0.415430a - 0.528190 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0682493a^{2}u - 1.20772au + \dots + 0.741840a - 0.913947 \\ -0.00593472a^{2}u + 0.721068au + \dots - 0.718101a + 1.57270 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0741840a^{2}u - 0.486647au + \dots + 0.0237389a - 1.34125 \\ -0.00593472a^{2}u + 0.721068au + \dots - 0.718101a + 1.57270 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \\ 0.0356083a^{2}u - 1.67359au + \dots + 2.69139a + 0.436202 \\ 0.0356083a^{2}u + 1.67359au + \dots - 1.69139a - 0.436202 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.136499a^{2}u - 0.415430au + \dots - 0.516320a + 0.172107 \\ -u \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{56}{337}a^2u + \frac{200}{337}a^2 - \frac{1284}{337}au + \frac{1312}{337}a + \frac{428}{337}u - \frac{1336}{337}au + \frac{1312}{337}au + \frac{1$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5	$u^6 + 5u^4 + 10u^2 + 1$
<i>c</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_9, c_{10} c_{12}	$(u^2+1)^3$
<i>c</i> ₈	$u^6 + 4u^5 + 8u^4 - 28u^3 + 36u^2 - 24u + 8$
c_{11}	$u^6 - 4u^5 + 8u^4 + 28u^3 + 36u^2 + 24u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2,c_4	$(y^3 - y^2 + 2y - 1)^2$
<i>C</i> 5	$(y^3 + 5y^2 + 10y + 1)^2$
c_7, c_9, c_{10} c_{12}	$(y+1)^6$
c_8, c_{11}	$y^6 + 360y^4 + 80y^2 + 64$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 0.459293 - 0.567321I	6.31400 + 2.82812I	-4.49024 - 2.97945I
b = -0.215080 + 1.307140I		
u = 1.000000I		
a = -0.300102 + 0.163008I	6.31400 - 2.82812I	-4.49024 + 2.97945I
b = -0.215080 - 1.307140I		
u = 1.000000I		
a = -7.15919 + 5.40431I	2.17641	-11.01951 + 0.I
b = -0.569840		
u = -1.000000I		
a = 0.459293 + 0.567321I	6.31400 - 2.82812I	-4.49024 + 2.97945I
b = -0.215080 - 1.307140I		
u = -1.000000I		
a = -0.300102 - 0.163008I	6.31400 + 2.82812I	-4.49024 - 2.97945I
b = -0.215080 + 1.307140I		
u = -1.000000I		
a = -7.15919 - 5.40431I	2.17641	-11.01951 + 0.I
b = -0.569840		

V.
$$I_5^u = \langle b, u^3 + a + u, u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2\\u^{3} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} - u^{2} - 3u - 2\\-u^{3} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - u^{2} - 2u - 2\\-u^{3} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u + 1\\-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^3 4u 15$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	u^4
C ₄	$(u+1)^4$
<i>c</i> ₅	$(u^2 + u + 1)^2$
c_{7}, c_{9}	$u^4 + u^3 + 2u^2 + 2u + 1$
$c_8, c_{10}, c_{11} \\ c_{12}$	$u^4 - u^3 + 2u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
c_5	$(y^2+y+1)^2$
c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^4 + 3y^3 + 2y^2 + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = 0.500000 - 0.866025I	1.64493 + 2.02988I	-13.00000 - 3.46410I
b = 0		
u = -0.621744 - 0.440597I		
a = 0.500000 + 0.866025I	1.64493 - 2.02988I	-13.00000 + 3.46410I
b = 0		
u = 0.121744 + 1.306620I		
a = 0.500000 + 0.866025I	1.64493 - 2.02988I	-13.00000 + 3.46410I
b = 0		
u = 0.121744 - 1.306620I		
a = 0.500000 - 0.866025I	1.64493 + 2.02988I	-13.00000 - 3.46410I
b = 0		

VI.
$$I_6^u = \langle 3b - 2a - 2, \ 4a^2 + 2a - 11, \ u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\\frac{2}{3}a + \frac{2}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{3}a - \frac{5}{6}\\-\frac{2}{3}a - \frac{5}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}a - 1\\-a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{3}a - \frac{5}{6}\\-\frac{2}{3}a - \frac{5}{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}a - \frac{5}{6}\\-\frac{2}{3}a - \frac{5}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a - 3\\-2a - 4 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{3}a - \frac{2}{3}\\\frac{2}{3}a + \frac{2}{3} \end{pmatrix}$$

(ii) Obstruction class = 1

 $a_9 = \begin{pmatrix} \frac{1}{2}a + 2\\ a + 3 \end{pmatrix}$

(iii) Cusp Shapes $= -\frac{15}{2}a - 5$

Crossings	u-Polynomials at each crossing
c_1	$u^2 - 3u + 1$
c_2, c_3	$u^2 + u - 1$
c_4, c_6	$u^2 - u - 1$
<i>C</i> ₅	u^2
c_{7}, c_{9}	$(u-1)^2$
<i>c</i> ₈	$4(4u^2 + 6u + 1)$
c_{10}, c_{12}	$(u+1)^2$
c_{11}	$4(4u^2 - 6u + 1)$

Crossings	Riley Polynomials at each crossing
c_1	$y^2 - 7y + 1$
$c_2, c_3, c_4 \ c_6$	$y^2 - 3y + 1$
<i>C</i> ₅	y^2
c_7, c_9, c_{10} c_{12}	$(y-1)^2$
c_8, c_{11}	$16(16y^2 - 28y + 1)$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.42705	-10.5276	-15.7030
b = 1.61803		
u = 1.00000		
a = -1.92705	-2.63189	9.45290
b = -0.618034		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{7}(u^{2}-3u+1)(u^{3}-u^{2}+2u-1)^{2}$ $\cdot ((u^{20}+21u^{19}+\cdots+13u+1)^{2})(u^{30}+27u^{29}+\cdots+20513u+256)$
c_2	$((u-1)^7)(u^2+u-1)(u^3+u^2-1)^2(u^{20}-3u^{19}+\cdots+u-1)^2$ $\cdot (u^{30}-5u^{29}+\cdots+161u+16)$
c_3	$u^{7}(u^{2} + u - 1)(u^{3} - u^{2} + 2u - 1)^{2}(u^{20} + u^{19} + \dots - 8u - 4)^{2} $ $\cdot (u^{30} + 2u^{29} + \dots - 400u - 128)$
c_4	$((u+1)^7)(u^2-u-1)(u^3-u^2+1)^2(u^{20}-3u^{19}+\cdots+u-1)^2$ $\cdot (u^{30}-5u^{29}+\cdots+161u+16)$
c_5	$u^{2}(u^{2} + u + 1)^{2}(u^{3} - 3u^{2} + 5u - 2)(u^{6} + 5u^{4} + 10u^{2} + 1)$ $\cdot ((u^{20} + 2u^{19} + \dots - 2u + 1)^{2})(u^{30} - 6u^{29} + \dots + 240u - 64)$
c_6	$u^{7}(u^{2} - u - 1)(u^{3} + u^{2} + 2u + 1)^{2}(u^{20} + u^{19} + \dots - 8u - 4)^{2}$ $\cdot (u^{30} + 2u^{29} + \dots - 400u - 128)$
c_7,c_9	$(u-1)^{2}(u^{2}+1)^{3}(u^{3}+2u-1)(u^{4}+u^{3}+2u^{2}+2u+1)$ $\cdot (u^{30}+2u^{29}+\cdots+6u+1)(u^{40}-6u^{39}+\cdots-666u+97)$
c_8	$16(4u^{2} + 6u + 1)(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{6} + 4u^{5} + \dots - 24u + 8)(4u^{30} + 6u^{29} + \dots + 40u - 8)$ $\cdot (u^{40} - 6u^{39} + \dots - 10066u + 3683)$
c_{10}, c_{12}	$(u+1)^{2}(u^{2}+1)^{3}(u^{3}+2u+1)(u^{4}-u^{3}+2u^{2}-2u+1)$ $\cdot (u^{30}+2u^{29}+\cdots+6u+1)(u^{40}-6u^{39}+\cdots-666u+97)$
c_{11}	$16(4u^{2} - 6u + 1)(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{6} - 4u^{5} + \dots + 24u + 8)(4u^{30} + 6u^{29} + \dots + 40u - 8)$ $\cdot (u^{40} - 6u^{39} + \dots - 10066u + 3683)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{7}(y^{2}-7y+1)(y^{3}+3y^{2}+2y-1)^{2}$ $\cdot (y^{20}-41y^{19}+\cdots-33y+1)^{2}$ $\cdot (y^{30}-43y^{29}+\cdots-326031937y+65536)$
c_2,c_4	$(y-1)^{7}(y^{2}-3y+1)(y^{3}-y^{2}+2y-1)^{2}$ $\cdot ((y^{20}-21y^{19}+\cdots-13y+1)^{2})(y^{30}-27y^{29}+\cdots-20513y+256)$
c_3, c_6	$y^{7}(y^{2} - 3y + 1)(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{20} - 15y^{19} + \dots - 24y + 16)^{2}$ $\cdot (y^{30} - 12y^{29} + \dots - 181504y + 16384)$
c_5	$y^{2}(y^{2} + y + 1)^{2}(y^{3} + y^{2} + 13y - 4)(y^{3} + 5y^{2} + 10y + 1)^{2}$ $\cdot ((y^{20} + 6y^{19} + \dots - 2y + 1)^{2})(y^{30} + 16y^{29} + \dots - 44800y + 4096)$
c_7, c_9, c_{10} c_{12}	$(y-1)^{2}(y+1)^{6}(y^{3}+4y^{2}+4y-1)(y^{4}+3y^{3}+2y^{2}+1)$ $\cdot (y^{30}+12y^{29}+\cdots+20y+1)(y^{40}+22y^{39}+\cdots+37176y+9409)$
c_{8}, c_{11}	$256(16y^{2} - 28y + 1)(y^{3} + 4y^{2} + 4y - 1)(y^{4} + 3y^{3} + 2y^{2} + 1)$ $\cdot (y^{6} + 360y^{4} + 80y^{2} + 64)(16y^{30} - 220y^{29} + \dots - 2368y + 64)$ $\cdot (y^{40} + 10y^{39} + \dots - 492576812y + 13564489)$