5XCCO Biopotential and Neural Interface Circuits

Acquisition of neural signals

Eugenio Cantatore

Outline

- Basic neurophysiology
- Example of a Neural Field Potential acquisition system
- Examples of Action Potentials acquisition systems

Neuron structure

Synapses

Source: Action potential - Wikipedia

Action potential

Charges at rest state

Source: Neuroscience For Kids - action potential

Neural signals with application examples

Deep Brain Stimulation

- Parkinson's disease
- Essential tremor
- Dystonia
- Epilepsy
- Obsessive-compulsive disorder
- Amazing DBS Before & After |
 225-769-2200 | Baton Rouge
 Parkinson's Specialists YouTube

Neural signals with application examples

2934

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 12, DECEMBER 2007

A 2 μ W 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials

Tim Denison, Kelly Consoer, Wesley Santa, Al-Thaddeus Avestruz, John Cooley, and Andy Kelly, Member, IEEE

- Medtronic work, meant for future applications:
 - Neuro prosthesis
 - Closed-loop neuromodulation (Epilepsy, Parkinson's)

Based on a capacitive-feedback amplifier

Main properties of capacitive-feedback amplifier

$$A_0 = \frac{C_1}{C_2} \text{ (in band)}$$

$$f_{HP} = \frac{1}{2\pi R C_2}$$

$$f_{LP} \approx \frac{g_m}{2\pi A_0 C_L}$$

$$v_{IRN}^2 = \left(\frac{C_1 + C_2 + C_P}{C_1}\right)^2 v_{OTA}^2$$

$$Z_{in} \approx \frac{1}{j\omega C_1}$$

• Important trade-offs:

- To improve 1/f noise, increase area of OTA input transistors
- This increases C_p and thus worsens V_{IRN}

Important trade-offs:

- To improve 1/f noise, apply chopping
- Chopping increases the frequency of the signal applied to C₁ and thus results in larger input current and lower input impedance

Intermezzo: chopping in time domain

 Chopping duty cycle must be exactly 50% to avoid a DC component in the modulated offset at the output.

Source: K. Makinwa, Dynamic-Offset Cancellation Techniques in CMOS

Intermezzo: chopping in frequency domain

Source: K. Makinwa, Dynamic-Offset Cancellation Techniques in CMOS

- Drawbacks of chopping:
 - The amplifier must have large bandwidth to cope with the chopped signal
 - Due to incomplete settling the gain when chopping is applied is not A₀

- Drawbacks of chopping:
 - The amplifier must have large bandwidth to cope with the chopped signal
 - Due to incomplete settling the gain when chopping is applied is not A₀

Source: K. Makinwa, Dynamic-Offset Cancellation Techniques in CMOS

To restore an accurate gain:

- Resistor ratio accurately determines the gain
- Miller capacitance help to suppress ripple
- DC gain of first stage must be large enough to suppress V_{OS2} at input
- Higher chopping frequency reduces ripple

Source: K. Makinwa, Dynamic-Offset Cancellation Techniques in CMOS

- To restore an accurate gain:
 - Apply feedback

- Using an integrator in the feedback
 - Feedback in the chopped domain enables use of capacitors as passives
 - A high-pass behavior can be obtained

Resulting schematic

- To restore an accurate gain:
 - Apply feedback
 - Feedback in the chopped domain enables use of capacitors as passives

Amplifier schematic

Implementation of Rb

Implementation results

Specifications and their experimental validation

BIOPOTENTIAL AMPLIFIER SPECIFICATIONS

Specification	Value	Units/Comments	
Supply Voltage	1.7 to 3.3	Volts	
Supply Current	1.0	uA	
Gain	40 (min)	dB	
Noise	1.5	μV rms, 0.05 to 100Hz	
CMRR	> 80	dB (DC to 60Hz)	
Nonlinearity	< 0.1%	Harmonic Distortion	
Aliasing	< -40	dB (compared to baseband)	
Functional Range	20 to 45	Celsius	
High-Pass Corners	0.05, 0.4, 2.5	Hz, no external components	
Electrode	15, 50	mV (DC headroom)	
Polarization			
Lowpass Corner Freq	150	Hz / corner frequency	

KEY BIOPOTENTIAL AMPLIFIER RESULTS

Specification	Value	Units/Comments
Supply Voltage	1.8 to 3.3	Volts
Supply Current	1.0	uA
Gain	41, 50.5	dB (High polarization),
		(Diagnostic)
Noise	0.95	μV rms , 0.05 to 100Hz
CMRR	> 80	SE dB (DC to 60Hz)
	> 100	DE dB (DC to 100Hz)
Nonlinearity	< 0.1%	Harmonic Distortion (5 mV input)
Aliasing	< -50	dB (compared to baseband)
NEF	4.6 / 5.4	Diagnostic / Sense-Stim Modes
High-Pass	0.05, 0.4,	Hz, digitally programmable
Corners	2.5	No external components
Lowpass Corner	180	Hz (-6dB, 2-pole filter)

Exercise 1

- Discuss whether this statement is correct or not and explain your answer:
 - In a biopotential interface circuit using chopping, the chopping frequency must be larger if the required total input integrated noise level is reduced

Exercise 1: answer

- The statement is correct:
 - In a circuit using chopping the residual noise after applying chopping is due to white noise (slide 15)
 - To reduce the input integrated noise, thus, one must lower the white noise level (for instance, from green to blue here below), e.g. increasing the current in the input transistors
 - − This approach decreases the thermal noise but has little effect on the 1/f noise. Therefore, the noise corner is pushed to higher frequencies ($f_{c1} \rightarrow f_{c2}$). To be effective, chopping must be performed at frequencies higher than the noise corner, thus the chopping frequency must increase.

Neural signals with application examples

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 1, JANUARY 2007

123

A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System

Reid R. Harrison, Member, IEEE, Paul T. Watkins, Student Member, IEEE, Ryan J. Kier, Student Member, IEEE, Robert O. Lovejoy, Daniel J. Black, Student Member, IEEE, Bradley Greger, Member, IEEE, and Florian Solzbacher, Member, IEEE

University of Utah work, related to Utah array development

System overview

Block diagram

Chip photos

Single channel amplifier schematic

Pseudo resistors (diode-connected PMOS in off bias):

- + Very large R_{eq} ≈ 100GΩ
- + Very compact

- Very nonlinear
- Extreme PVT dependance
- Light dependent
- Leakage dependent

Measurement results:

Integrated Neural Interface IC Measured Performance			
Power/command signal frequency	2.64 MHz		
Minimum required receive coil voltage amplitude	5.7 V (peak)		
3.3-V voltage regulator dropout ($I_L = 3 \text{ mA}$)	250 mV		
Load regulation (I _L = 2-10 mA)	0.15 %		
Line regulation ($V_{unreg} = 3.5 \text{ V} - 8.0 \text{ V}$)	<0.30 %/V		
Maximum command input data rate (ASK)	6.5 kbps		
Number of Channels/Electrodes	88 signal, 12 ground		
Neural Signal Amplifier Gain	60.1 dB (1.1 – 5 kHz)		
Input Referred Noise	5.1 μVrms		
Individual Amplifier Supply Current	12.8 μΑ		
ADC resolution (LSB = 2.4 µV electrode referred)	9 bits		
ADC sampling rate	15.0 kSamples/s		
ADC INL/DNL error (codes 50-511)	±0.8 LSB/ ±0.6 LSB		
Spike detector threshold resolution (LSB = $4.8~\mu V$ electrode referred)	7 bits		
FSK data transmission frequency	433 MHz		
FSK data rate	330 kbps		
Received signal power at distance of 13 cm	-86 dBm		
Total chip power dissipation	13.5 mW		
Total chip area (0.5-µm, 2P3M CMOS)	27.3 mm ²		

248 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 1, JANUARY 2014

An Implantable 455-Active-Electrode 52-Channel CMOS Neural Probe

Carolina Mora Lopez, Alexandru Andrei, Srinjoy Mitra, Marleen Welkenhuysen, Wolfgang Eberle, *Senior Member, IEEE*, Carmen Bartic, Robert Puers, *Fellow, IEEE*, Refet Firat Yazicioglu, *Member, IEEE*, and Georges G. E. Gielen, *Fellow, IEEE*

Shank probe with high count of measurement sites

Shank probe with high count of measurement sites

Interference and cross-talk issues

Interference and cross-talk issues

Active electrodes

System block diagram

Measured results

Parameter	Measured Value					
	[33]	[4]	[13]	[10]	[39]	This Work
		Prob	e Shank			
No./Type Electrodes		8 ^A	64	257^{B}		455
		Passive	Passive	Passive		Active
Electrode Area (µm²)		100	108	1963.5		78.6/491
Electrode Pitch (µm)		100	28	60		35
Crosstalk (dB)			-84			-44.8
, ,		Readout	Electronic	es .		
No./Type Channels	1^{D}	8	64	128	96 ^D	52
	1	Integrated	Hybrid ^C	Hybrid ^C		Integrated
Supply Voltage (V)	0.5	3	3		1.2	1.8
Total Power/Ch (µW)	5.04	94.5	351.6	39.1	67.7	27.84
Total Area/ Ch (mm ²)	0.013	0.625	0.45		0.26	0.19
Analo		End (Pixel Ar	mplifier +	Recording	Channel)	
Power (µW)	5.04 ^E	68			35	7.02
Input Noise (μV _{rms})	4.9	8.9	2	3.7	2.2	3.2
NEF	5.99	16			4.5	3.08
$PEF = NEF^2 \cdot V_{DD}$	17.96	771			24.3	17.13
Gain	32	1000	194	70.8	630	30-4000
HP Corner (Hz)	300	300	1.3	1	1/280	0.5/200/300/500
LP Corner (Hz)	10000	10000	6400	10000	10000	200/6000
THD	2%					1% (@ 18mV _{pp})
CMRR/PSRR (dB)	75/64		83/84			60/76
		A	lDC			
Resolution/ENOB (bit)	8/7.2	5/			10/9.7	10/9.2
DNL (LSB)	0.55	0.33			0.29/-0.37	0.23/-0.15
INL (LSB)		0.5			0.28/-0.33	0.42/-0.35
Sam. Rate (kS/s)	20	160 (8 Ch)			31.25	120 (4 Ch)

A 3-D array of 256 sites is achieved by mechanical assembly of 4 multi-shank (8) probes.

^B In a multi-shank (4) probe with 1028 sites.

^C Hybrid: Readout circuits are in a separate ASIC.

D Neural recording ASIC, not integrated with a neural probe.

E Includes ADC.

- Pros: possible to follow brain functioning with neuron resolution
- Cons: difficult to do this for a long time in chronic implants

Source: Steinmetz et al., Science 372, 258 (2021)

Exercise 2

- Answer the following questions:
 - a) Why is it possible in the paper by Harrison to avoid chopping and in the one by Denison not?
 - b) In the paper by Harrison, why is it a very good idea to add after the amplifier a Gm-C high pass filter?
 - c) In the same paper, why the same impedance used in the feedback branch is added between ground and the positive input of the amplifier?
 - d) Which amplifier is more efficient, the one by Denison or the one by Harrison?
 - e) Why does the paper by Mora Lopez use a PMOS common source in the active electrode amplifier?

Exercise 2: answers

- a) As the paper by Harrison deals with Action Potentials, which are signals at relatively high frequency (>100Hz), he can filter out the low frequency spectrum and get rid of the 1/f noise in this way. The paper by Denison deals with NFPs, which are at very low frequency (their spectrum extends below 1Hz), and thus Denison cannot use this method to attenuate the effect of 1/f noise.
- b) The Gm-C filter indeed implements the high-pass behavior that cancels at the output the 1/f noise added by the electronics.
- In this way, the impedance seen from the input V_{in} to ground is made as similar as possible (matching) to the one seen from V_{ref} to ground. Then, if a common mode disturbance is applied to V_{in} and V_{ref} , it will appear at the differential amplifier inputs still as common mode and will be rejected by the CMRR. An imbalance between the two branches would results in a different voltage at the amplifiers inputs for the same input disturbances at V_{in} and V_{ref} , and thus parts of the input common node would be converted to a differential signal and would propagate to the output. Please note that the amplifier output is low impedance (and thus almost at ground for the signal) due to the feedback applied.
- d) Calculate the NEF for both amplifiers to answer this question. The BW by Harrison is 1.1kHz-5kHz.
- e) Because it needs to implement an amplifier that is very compact, due to the space restrictions in the neural probe.

Summary

- Capacitive feedback amplifiers for neural interfaces
- Design trade-offs
- Advantages and problems caused by chopping
- Active vs. passive electrodes