To find the following machine learning regression method using r^2 value

1. MULTIPLE LINEAR REGRESSION:

R^2 value = 0.935

2. SUPPORT VECTOR MACHINE:

			RBF (NON		
	HYPER	LINEAR	LINEAR)	POLY	SIGMOID
SL. NO	PARAMETER	(r value)	(r value)	(r value)	(r value)
		-		-	
1	C10	0.039644947	-0.056807593	0.053667205	-0.054719583
				-	
2	C100	0.106468196	-0.050726023	0.019802139	-0.030453515
3	C500	0.592897727	-0.024323348	0.114684807	0.070572145
4	C1000	0.780283988	0.006768344	0.266163709	0.18506862
5	C2000	0.876772169	0.067515543	0.481002816	0.397065287
6	C3000	0.895674469	0.123227566	0.63700642	0.591363021

SVM Regression best model from Linear and Hyper parameter (C=3000) **R^2 value** = 0.895

3. DECISION TREE:

SL. NO	CRITERION	SPLITTER	R VALUE
1	squared_error	best	0.908316699
2	squared_error	random	0.937352199
3	friedman_mse	best	0.926004364
4	friedman_mse	random	0.861108577
5	absolute_error	best	0.95664675
6	absolute_error	random	0.9288036
7	poisson	best	0.9203655
8	poisson	random	0.710068909

Decision Tree Regression best model from CRITRERION "absolute_error" and SPLITTER "best" **R^2 value** = 0.956