

Computação

CAP 2. DADOS MULTIMÍDIA

INE5431 Sistemas multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Dados Multimídia

- Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- Principais características e requisitos das informações multimídia

CAP 2. DADOS MULTIMÍDIA

Aula 1: Introdução à Audio

Sinais de Áudio (SOM)

- Existem várias "representações" para o áudio

UFSC

Fenômeno

sonora (mecânica)

Sinal elétrico **analógico**

Sinal elétrico digital

Fenômeno: Fonte de Som

Fenômeno: Fonte de Som

Áudio

- Gerado por uma fonte que vibra causando ondas mecânicas longitudinais que alcança o tímpano
 - é uma onda de ar comprimido ou expandido cuja pressão altera no tempo e espaço

Onda Sonora

UFSC

• Forma de Onda (Waveform)

- É a representação gráfica da forma com que uma onda evolui no tempo. Características
 - Período (t) é o tempo para a realização de um ciclo
 - Frequência (f) é definida como o inverso do período
 - · representa o número de períodos em um segundo
 - medida em Hz (Hertz) ou ciclos por segundo (cps)
 - Amplitude (A) do som é define um som leve ou pesado
 - Fase (φ)
 - Relativo a posição da onda no tempo

Onda Sonora

UFSC

-/Onda sonora

- Na posição de um receptor, sons podem ser descritos por valores de pressão que variam no tempo – s(t)
- Quando a frequência do distúrbio de ar está na faixa de 20 Hz a 20.000
 Hz, o som é audível
 - Baixa frequência => grave
 - Alta frequência => agudo
- Tons: sons com frequência única

Onda Sonora x Sinal de Áudio

Problema

• É muito difícil manipular o som enquanto forma mecânica de energia

Solução

- Transformar a onda sonora em outra forma de energia mais conveniente por meio de transdutores
- A forma de energia mais adequada é a elétrica, ou seja, em um sinal de áudio

Vantagens

- Mais fácil de controlar, modificar e armazenar
- Cria inúmeras e novas possibilidades de manipulação
- Permite "ida e volta" através de transdutores como o microfone e o alto-falante

Microfone

Definição

 Dispositivo que converte sinais acústicos (ondas sonoras) em sinal elétricos: Transdutor acústico-elétrico

Funcionamento: Duas operações

- Onda sonora pressiona o diafragma, superfície capaz de sofrer pequenos deslocamentos para frente e para traz reproduzindo o movimento das partículas do ar
- Movimento do diafragma causa uma variação correspondente em uma propriedade de um circuito elétrico

Tipos de microfone

- Eletrodinâmica ou eletromagnética
 - microfones dinâmicos (bobina móvel e fixa)
- Eletrostática
 - microfones capacitivos (condensador)
- Piezoelétrica
 - microfones a cristal e microfones cerâmicos
- Resistência de contato variável
 - microfones de carvão (telefone)

Tipos de microfone

Microfone Dinâmico Bobina móvel

- A pressão do ar desloca o diafragma,
- que movimenta a bobina
- que faz variar o campo magnético dentro dela
- que induz uma corrente elétrica variável na bobina

Tipos de microfone

- Carvão (de telefone)

- A pressão do ar desloca o diafragma,
- que faz variar a densidade de partículas
- que varia a resistência elétrica
- que faz variar a corrente

Captura analógica de áudio

Série de Fourier

- Jean Baptiste Joseph Fourier (1768-1830) teve uma ideia (1807):
 - Qualquer função periódica pode ser reescrita como uma soma ponderada de senos e cossenos de diferentes frequências.
 - $F(alvo) = f_0 + f_1 + f_2 + ...$
 - A $\sin(2\pi ft + \Phi)$
 - Cada um com amplitude (A), frequência
 (f) e fase (Φ)

Série de Fourier

- O nosso "bloco de construção":
 - A $\sin(2\pi ft + \Phi)$

Série de Fourier

Sinal Analógico de áudio

- Sinal de áudio podem ser classificados em simples ou compostos

 Sinal simples n\u00e3o pode ser decomposto em componentes (tons/harmônicas)

 Sinal composto é uma soma de sinais periódicos, possivelmente infinito, de múltiplas ondas senoidais

Sinal Analógico de áudio

UFSC

- Sinais compostos
 - São raros os objetos que produzem sons com frequência única (tons)
 - Os sinais normalmente são formados por componentes de múltiplas frequências (diferentes sinais)
 - Chamados de componentes de frequência do som
 - Combinação das frequências geradas por instrumentos musicais é chamada de timbre.

Soma de Senos: Domínio da Frequência

- Análise do sinal senoidal com relação a frequência

Nível sonoro

- Nível de som (intensidade)
 - Poder do som por unidade de área
- É medido em dB (decibels)
 - Uma escala logarítmica, é a razão entre dois valores de potência
 - Indica a proporção de uma quantidade física em relação a um nível de referência

•
$$dB_{il} = 10log_{10} \left[\frac{I}{I_0} \right]$$

- I é a intensidade de som
- Io é a intensidade de som de referência (limear de audição a 1kHz de uma pessoa jovem) que é 10⁻¹² watts/m²
- No limiar de audição

$$dB_{il} = 10log_{10} \left[\frac{1*10^{-12}}{10^{-12}} \right] = 10log(1) = odB$$

Se a intensidade de som é 560 vezes maior que a intensidade de referência:

$$dB_{il} = 10log_{10} \left[\frac{560*10^{-12}}{10^{-12}} \right] = 10log(560) = 27.5dB$$

Nível sonoro

 Nível de som (intensidade) é medido em dB (decibels)

Nível sonoro

Nível de som (intensidade) é medido em dB (decibels)

Pressão do Som

- Medindo a pressão do som
 - Som é uma onda de pressão
 - Outra forma de medir o som é quanto ao montante de variação de pressão relativa à pressão atmosférica
 - $P_0 = 2x10^{-5} \text{ Newton/m}^2$
 - $dB_{spl} = 20log_{10} \left[\frac{P}{P_0} \right]$

Relação Sinal/Ruído

- Quantifica a relação entre:
 - Potência do Sinal
 - Potência do Ruído
 - Exemplo: relação entre o nível do sinal desejado e o ruído de fundo de uma música
- Mede a influência que o ruído têm na degradação do sinal.

$$SNR = \frac{P_{sinal}}{P_{ruido}}$$

$$SNR(dB) = 10 * log_{10} \left[\frac{P_{sinal}}{P_{ruido}} \right]$$

Pontos Importantes

Componentes de Frequência

- Tons são sons de frequência única
- Sons geralmente podem ser vistos como compostos de diferentes componentes de frequências com diferentes amplitudes e fases

Faixa Audível Humana

- Faixa audível é de 20Hz a 20kHz
- Humanos não tem a mesma capacidade auditiva independente da frequências
- Limiar de audição: intensidade de som necessária para ouvir certa frequência

CAP 2. DADOS MULTIMÍDIA AULA 2: REPRESENTAÇÃO DIGITAL DE ÁUDIO

INE5431 Sistemas multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Representação Digital de Áudio

UFSC

Digitalização do áudio

- Digitalização: processo envolvido na transformação de sinais analógicos em digitais
- Conversão é realizada pelos CODECs (Codificador/Decodificador)

Sinais analógicos

- Medida que varia continuamente com o tempo e/ou espaço
 - Descritos por s=f(t) ou s=f(x,y,z)

Sinais digitais

 Sequências de valores dependentes do tempo ou do espaço codificados no formato binário (o's e 1's)

Representação Digital de Áudio

- UFSC
- Sinal analógico: Contínuo no tempo e na amplitude.
 - Sinal elétrico de áudio

• Sinal digital: Discreto no tempo e na amplitude. Passos:

- Amostragem
- Quantização
- Codificação

A conversão analógica-digital implica perda de informação!

- UFSC
- Passos para conversão de sinal analógico em digital:
 - Amostragem
 - conjunto discreto de valores (analógicos) é amostrado em intervalos temporais em periodicidade constante
 - T = período de amostragem
 - 1/T = frequência de amostragem

Quanto maior a taxa de amostragem melhor é a digitalização

- b) Se a taxa de amostragem é igual a do sinal: será gerada uma constante
- C) Se a taxa é de 1.5 a taxa do sinal, vai produzir uma frequência "alias" (pseudonímia)
 - Frequência reduzida

- Quanto maior a taxa de amostragem melhor é a digitalização
 - Taxa muito baixa provoca baixa qualidade:

Taxas maiores representam melhor o sinal original

- Qual a taxa de amostragem devo utilizar?
 - Teorema de Nyquist
 - se um sinal analógico contem componentes de frequência até f Hz, a taxa de amostragem deve ser ao menos 2f Hz (frequência de Nyquist)
 - para digitalizar sons até 20 kHz → freq Nyquist =40 kHz
 - para digitalizar voz até 4 kHz → freq Nyquist =8 kHz

- Maior componente de frequência digitalizado
 - Definido pela taxa de amostragem
 - Freq Nyquist =40kHz → maior componente de frequência é 20kHz
 - Freq Nyquist =8kHz → maior componente de frequência é 4 kHz

UFSC

- Pseudonímia (aliasing)
 - Se o sinal tiver componentes de frequência maiores que a frequência de Nyquist
 - Ocorre a pseudonímia (aliasing)
 - São convertidos em frequências mais baixas na reconstrução
 - Exemplo

UFSC

- Pseudonímia (aliasing)
 - Se o sinal tiver componentes de frequência maiores que a frequência de Nyquist
 - Ocorre a pseudonímia (aliasing)
 - São convertidos em frequências mais baixas na reconstrução
 - Filtro anti-pseudonímia
 - Filtro passa baixa para eliminar as freqüências maiores que a de Nyquist

- Filtros anti-Pseudonímia (aliasing)
 - Filtros com curvas "suaves" são mais fáceis de se construir e mais baratos.
 - Filtros de curvas abruptas, além de caros, podem gerar problemas de fase e prejudicar os agudos.
 - A solução é utilizar taxas de amostragens altas, como 88.1 ou 96kHz
 - Para conseguir gravar todo o espectro audível, sem se preocupar com aliasing ou outras distorções causadas pelo filtro.
 - Conversores A/D (e D/A) utilizam oversampling, fazendo amostragens em alto taxa de amostragem
 - Depois aplicam filtros digitais precisos para fazer o down-sampling para 44.1kHz, antes de armazenar o áudio.

CAP 2. DADOS MULTIMÍDIA AULA 2: REPRESENTAÇÃO DIGITAL DE ÁUDIO (CONTINUAÇÃO)

INE5431 Sistemas multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Passos para conversão de sinal analógico em digital:

- Quantização
 - o sinal amostrado é quantificado (descontinuidade de valores)
 - Técnica que utiliza o mesmo passo de quantização é chamada modulação PCM (Pulse Coded Modulation).

- Passos para conversão de sinal analógico em digital:
 - Codificação
 - um conjunto de bits, chamado de code-word, é associado com cada valor quantificado

- UFSC
- Passos para conversão de sinal analógico em digital:
 - Codificação
 - Discretização provoca distorção devido a limitação do tamanho de bits para representar amostras
 - Provoca o Ruído de Quantização

UFSC

- Quantização
 - Conversor apresenta um número limitado de bits
 - Ocorrerá um erro de quantização

• Se traduzirá auditivamente por um ruído, ouvido na reprodução do som reconstruído (ruído de quantização)

Quantização linear

- Modulação por pulso codificado (PCM)
 - tamanho de passo de quantização na conversão A/D é constante
- PCM é simples mas não é eficiente
 - resulta em uma qualidade mais elevada na região de mais alta amplitude de sinal que na região de mais baixa amplitude
 - · alta qualidade na amplitude mais alta não aumenta a qualidade percebida

- Quantificação não linear
 - Tamanho de passo de quantização aumenta logaritmicamente com a amplitude do sinal
 - passos de quantização são menores quando a amplitude é baixa
 - é realizada uma transformação de um sinal linear em um sinal não linear

UFSC

Quantização não linear

na prática:

- uma quantização uniforme é aplicada a um sinal não linear transformado em vez de aplicar uma quantização não uniforme ao sinal linear
- processo de transformação de um sinal linear em não linear é chamado de companding
- digitalização uniforme de um sinal companded é chamado de companded PCM

UFSC

-/Sistema telefônico

- Foi projetado para transmitir frequências da voz humana
 - Voz humana tem componentes de frequência até 15Hz e 14kHz
 - Por razões econômicas a faixa de voz escolhida digitalizar sons de 300 Hz a 3.4kHz
 - garante 85% de inteligibilidade (palavras compreendidas)
- Utiliza o codec G.711
 - Quantização não linear: A-law, μ-law
 - Taxa de amostragem de 8KHz (sons até 4kHz)
 - Número de bits por amostra: 8bits

- Taxa de bits

- Produto entre taxa de amostragem e o número de bits
 - exemplo: telefonia
 - supondo uma frequência de 8 kHz e 8 bits por amostra
 - taxa de bits necessária é igual a 8000x8 = 64 kbps

Representação Digital de Áudio

- Exemplos de Qualidade de Áudio

Aplicações	Nº de canais	Largura de banda (Hz)	Taxa de amostragem	Bits por amostra	Taxa de bits
CD-Audio	2	20-20000	44.1 kHz	16	1,41 Mbps
DAT	2	10-22000	48 kHz	16	1,53 Mbps
Telefone Digital	1	300-3400	8 kHz	8	64 Kbps
Rádio digital, long play DAT	2	30-15000	32 KHz	16	1,02 Mbps

Taxa do áudio = <N° Canais>*< N° bits por amostra> * <freq. Amostragem>

Apresentação do áudio digital

UFSC

- Dados multimídia podem ser representados internamente no formato digital
 - Humanos reagem a estímulos sensoriais físicos
 - Conversão D/A é necessária na apresentação de certas informações

Apresentação do áudio digital

Para a apresentação do áudio

- é necessário realizar a transformação de uma representação artificial do som em uma forma de onda física audível pelo ouvido humano
 - utilizados Conversores Digital para Analógico (CDA)

Placas de áudio

 Conversores CAD e CDA são implementados em uma única placa

Problemas da Representação digital

UFSC

- Distorção de codificação
 - Digitalização introduz distorção
 - sinal gerado após a conversão D/A não é idêntico ao original
 - aumentando a taxa de amostragem e número de bits usado para codificação reduz a distorção
 - problema: capacidade de armazenamento limitado

Padrão MIDI

Representação simbólica da música: padrão MIDI

- Define sequências de notas, condições temporais e o "instrumento" (127) que deve executar cada nota
- Músico pode criar suas músicas no computador:
 - software especiais permitem que o músico edite notas e controles, sejam em uma partitura, seja através de gráfico que exibe as teclas dos pianos
 - as músicas editadas podem ser ouvidas pelos sequenciadores
- Arquivos MIDI são muito mais compactos que amostragens digitalizadas
 - um arquivo MIDI pode ser 1000 vezes menor que um arquivo CD áudio
- Desvantagem
 - processamento extra de informação, e imprecisão dos instrumentos de som (variam com o dispositivo usado para a apresentação)

Editores Midi

Pontos Importantes

Processo de digitalização

- Amostragem
- Quantização
- Codificação

Parâmetros de digitalização

• Efeitos na escolha da taxa de amostragem e bits por amostra na digitalização: frequência de Nyquist e pseudonímia

Quantização linear e não linear

• Entender as vantagens da quantização não linear devido as características do sistema auditivo humano

CAP 2. DADOS MULTIMÍDIA

Aula 3: Imagens – Fenômeno e sistemas de cores

Cap. 3 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta vídeoaula veremos...
 - Imagem como fenômeno e Sistemas de Cores

Sinais de Imagem

UFSC

- Existem várias "representações" para imagem e sua

percepção

Fenômeno

Sistema Visual humano

> Sinal elétrico **analógico**

Sinal **digital**

Imagem: Fenômeno

- Imagem é luz (visível)
 - A luz é uma onda/radiação eletromagnética
 - Três grandezas físicas
 - Intensidade (ou amplitude): intensidade de luz
 - **Frequência**: Comprimento de onda é a distância entre valores repetidos sucessivos em um padrão de onda
 - **Polarização**: direcionamento da luz. Na luz natural (não polarizada) o campo elétrico oscila aleatoriamente em todas as direções possíveis

Imagem: Fenômeno

- Luz visível
 - A gama de frequências às quais o sistema óptico humano é sensível.
 - □ Comprimentos de onda: 400 − 700nm.

Sistema Visual Humano

- Como é que um ser humano 'vê'?
 - Sistema ótico (olho)
 - Processamento e reconhecimento (cérebro)

A grande complexidade do nosso sistema de visão reside aqui!

Sistema visual humano

- /Formação da imagem
 - Focagem flexível (córnea e lente)
 - Luz atravessa a córnea, humor aquoso, cristalino e o humor vítreo e se dirige para a retina
 - Retina funciona como o filme fotográfico em posição invertida
 - O nervo óptico transmite o impulso nervoso provocado pelos raios luminosos ao cérebro
 - que o interpreta e nos permite ver os objetos nas posições em que realmente se encontram.
 - Nosso cérebro reúne em uma só imagem os impulsos nervosos provenientes dos dois olhos

Sistema visual humano: Luz e cor

- A nossa retina possui:

- Bastonetes Medem a intensidade da luz (luminosidade)
 - 75 a 150 milhões
 - Baixa definição (vários para um nervo)
 - Úteis para detectar movimentos e para visualização em baixa luminosidade (percepção de sombras)
- Cones Medem a frequência da luz (cor)
 - 6 a 7 milhões
 - Grande definição (nervo único)
 - Requer maior luminosidade

Sistema visual humano: Luz e cor

- Quais são as cores do vestido?
 - Somos diferentes: com diferentes sensibilidade a luminosidade
 - Azul-Preto: Cones da sua retina são mais ativos
 - Branco-Dourado: Bastonetes mais ativos

http://meucerebro.com/qual-a-cor-desse-vestido-uma-explicacao-para-essa-fantastica-ilusao-de-optica/

Sistema visual humano: Luz e cor

Cones

- Existem três tipos de cones, cada um especializado em comprimentos de luz curtos (S), médios (M) ou longos (L)
 - Chamados de cone azul, verde e vermelho
 - Definem o espectro de frequência visível (400nm a 700nm)
 - A proporção de cones L (vermelho), M (verde) e S (azul) são diferentes: a proporção é 40:20:1 (somos menos sensíveis ao azul)

E como animais vêem?

- Visão dos cães
 - Têm mais bastonetes que cones
 - Cães tem dois tipos de cones, para azul e amarelo
 - Dificultando a visualização do vermelho/verde

- Pássaros, peixes, anfíbios, répteis e insetos
 - têm 4 tipos de cones

UFSC

-/Sistemas de cores

- São tentativas de organizar informações sobre a percepção cromática humana
- Dois tipos
 - Sistemas de Síntese Aditiva
 - Cor é percebida diretamente a partir da fonte luminosa
 - Adotado por dispositivos de emissão de luz (projetor, monitor,...)
 - Síntese Subtrativa
 - Cor é percebida a partir do reflexo da luz sobre uma superfície
 - Adotado por dispositivos de impressão

- Sistema Aditivo (RGB)
 - Qualquer cor pode ser reproduzida com a mistura das três cores primárias
 - cores primárias aditivas: vermelho, verde e azul

• Sistema Subtrativo CMY

Usado em dispositivos de cópia (impressoras)

• Usam as cores secundárias: ciano (turquesa), magenta (púrpura) e o amarelo

- São as cores complementares do RGB
 - Ciano absorve o vermelho
 - Magenta absorve o verde
 - Amarelo absorve o azul
- Funciona por combinação subtrativa:
 - baseia-se não na emissão de luz, mas em sua subtração
 - absorve ou reflete a luz de determinados comprimentos de onda

UFSC

- Sistema CMYK

- Ciano-Magenta-Amarelo-Preto
- Mais usado na prática devido a deficiência do CMY para produzir o preto
 - Produz um cinza ou marrom
 - Devido à dificuldade de obter pigmentos com alta pureza de cor
 - adiciona preto como quarto pigmento básico

UFSC

Sistema HLS

- Tonalidade (Hue), Brilho (Lightness), Saturação (Saturation)
- RGB e CMY não são intuitivos para o usuário humano
 - Não é fácil definir uma cor com combinação de cores primárias
- HLS utiliza propriedades mais relevantes do ponto de vista da percepção humana
 - Luminância: mede a amplitude da vibração luminosa (sua energia)
 - Intensidade nula corresponde ao preto
 - Intensidade máxima corresponde ao branco
 - Tonalidade: mede a qualidade que distingue o azul do verde, do vermelho, etc.
 - Mede a frequência dominante da vibração luminosa
 - Saturação: Mede o grau de pureza em relação à contaminação por outras cores
 - Mistura perfeita é o branco (saturação zero)
 - Outras cores: é a quantidade de branco presente
 - Tons muitos saturados são brilhantes
 - Tons poucos saturados são pastel

- Sistema CIE 1931 XYZ
 - Permite uma definição de cor independente do dispositivo de apresentação
 - Uma cor é definida por 3 valores XYZ
 - Y identifica a luminância, X e Z a cor
 - Identificação da luminância é interessante para compressão
 - característica mais importante que a cor para a percepção humana

Pontos Importantes

Imagem é luz

- Com intensidade
- Comprimento de onda
- Espectro visível

Sistema Visual Humano

- Cones e Bastonetes
- Cones especializados em comprimento de ondas longos (R), médios (G) e curtos (B)

Sistemas de Representação de cores

- Sistema Aditivo
- Sistema Subtrativo

CAP 2. DADOS MULTIMÍDIA

Aula 4: Imagens – Fenômeno e sistemas de cores

Cap. 2 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta vídeoaula veremos...
 - Captura analógica de imagens e vídeos

- Descrevendo imagens monocromáticas com variáveis físicas
 - Objetos refletem radiações eletromagnéticas (luz) incidentes que estimulam os olhos do observador
 - imagem pode ser descrita pelo valor de intensidade de luz que é função de duas coordenadas espaciais (ou três)

- Descrevendo imagens coloridas com formas de onda
 - Luz refletida com diferentes comprimentos de onda
 - função simples não é suficiente para descrever imagens coloridas

UFSC

- Processo de conversão de imagens monocromáticas em sinais analógicos
 - Lentes da câmera focam uma imagem de uma cena em uma superfície fotossensível de sensores CCD (Charge-Coupled Device)
 - Brilho de cada ponto é convertido em uma carga elétrica
 - cargas são proporcionais ao brilho nos pontos
 - Superfície fotossensível é rastreada para capturar as cargas elétricas
 - imagem ou cena é convertida em um sinal elétrico contínuo.

UFSC

- Processo de conversão de imagens monocromáticas em sinais analógicos
 - Superfície fotossensível formada de CCDs é rastreada para capturar as cargas elétricas
 - imagem ou cena é convertida em um <u>sinal elétrico contínuo</u>.

Captura de vídeos monocromáticos

- Apenas um sinal de luminância é produzido
 - apenas a luminosidade é capturada, produzindo imagens em tons de cinza
- São usadas câmeras de Luminância
 - captam a imagem em tons de cinza
 - gera um sinal só com a luminância da imagem
 - gerado por um CCD monocromático que capta o tom de cinza que incide em cada célula do circuito
 - tipo de câmera utilizada para aplicações em visão computacional e nos casos onde a informação sobre a luminosidade da imagem é suficiente

Imagens e Vídeos Monocromáticos Analógicos

UFSC

- Dispositivo de apresentação de imagens: tubo de raios catódicos (CRT)
 - Há uma camada de fósforos fluorescentes no interior da superfície do CRT

Imagens e Vídeos Monocromáticos Analógicos

UFSC

• Dispositivo de apresentação de imagens: tubo

de raios catódicos

 Há uma camada de fósforos fluorescentes no interior da superfície do CRT

 Camada de fósforo é rastreada por um feixe de elétrons na mesma forma do processo de captura na câmera

- quando tocado pelo feixe, o fósforo emite luz em um curto espaço de tempo
- Quando quadros repetem-se suficientemente rápidos a persistência da visão resulta na reprodução de um vídeo

Vídeos Coloridos

UFSC

- Captura: Teoria Tristimulus
 - Câmera divide luz nos seus componentes vermelho, verde e azul
 - Vermelho (Red) − 700nm, Verde (Green) − 546,1nm e Azul (Blue) − 435,8nm.
 - Imagem capturada é focalizada em sensores de vermelho, verde e azul
 - convertido em separados sinais elétricos

UFSC

- Câmera de crominância (1 passo 3 CCD)
 - Capta a imagem em cores, e pode gerar sinal de vídeo composto colorido, S-vídeo ou sinal RGB
 - Tem uma qualidade de imagem profissional
 - são usados 3 CCDs com filtros separados R, G e B em cada um
 - cada filtro pode ter uma

Câmera de crominância (1 passo - 3 CCD)

Vídeos Coloridos

UFSC

- Apresentação
 - Monitores coloridos tem 3 tipos de fósforos fluorescentes
 - emitem luzes vermelha, verde e azul quando tocadas por 3 feixes de elétrons
 - · mistura das luzes emitidas produzem pontos de cor

- Modos de geração do sinal analógico
 - Sinal RGB (Red, Green, Blue)
 - sinal é separado pelas cores básicas
 - é possível ter uma imagem mais pura
 - utilizado em câmeras e gravadores profissionais, imagens geradas por computador, etc.
 - Sinal de vídeo composto colorido
 - sinais das cores (RGB) são codificados em um único sinal seguindo um determinado padrão (NTSC, PAL-M, SECAM, etc)

- Modos de geração do sinal analógico
 - Sinal de luminância e crominância ou Y/C (S-video)
 - sinal é composto por duas partes: luminância e crominância
 - imagem tem uma melhor qualidade do que no vídeo composto
 - muito usado por vídeos SVHS, laser disc, DVD e outros aparelhos que geram imagens de boa qualidade
 - Sinal YCbCr (o chamada vídeo componente)
 - Um sinal de luminância combinado com dois sinais de crominância

- Câmera de crominância (1 passo 3 CCD)
 - É utilizada em aplicações profissionais
 - onde é necessário uma imagem com boa qualidade
 - usada em produtoras e emissoras de TV
 - U-matic, BetaCAM, SVHS, Hi8, etc
 - tem um custo elevado

UFSC

- Câmera de crominância (1 passo 1 CCD)
 - Capta a imagem em cores, e gera um sinal de vídeo composto colorido, em apenas uma passagem
 - Imagem não é profissional, pois é usado um único CCD com filtros R, G ou B em cada célula
 - Tipo de câmera utilizado em aplicações multimídia ou em casos onde não é necessário uma imagem com muita qualidade
 - uma câmera do tipo doméstica (VHS, 8mm, VHS-C, etc) de baixo custo

- Câmera de crominância (3 passos 1 CCD)
 - Capta a imagem em cores em um processo a 3 passos
 - É utilizado um único CCD para captar a imagem
 - para gerar uma imagem colorida é colocado um filtro externo para cada componente R, G e B
 - para cada filtro é feito uma digitalização
 - gerando uma imagem colorida

- Câmera de crominância (3 passos 1 CCD)
 - Desvantagem: as imagens devem ser estáticas
 - é preciso trocar os filtros e fazer nova captação para os outros filtros
 - Tem uma boa qualidade de imagem
 - CCD pode ter uma boa resolução
 - Usada para aquisição de imagens de telescópio
 - onde é necessário uma imagem com alta definição e as imagens são relativamente

Pontos Importantes

Conhecimentos gerais

- Captura analógicas de imagens e vídeos
- Tipos de câmeras (analógicas)

CAP 2. DADOS MULTIMÍDIA

Aula 5: Captura de imagens digitais e seus tipos

Cap. 2 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta vídeoaula veremos...
 - Captura e representação digital de imagens
 - Tipos de imagens digitais

Imagens Digitais

Formatos de Imagens

 Imagens no computador são representadas por bitmaps Pixel

- bitmap = matriz espacial bidimensional de elementos de imagem chamados de pixels
 - reticulado cada elemento da matriz possui uma informação referente à cor associada aquele ponto específico
- pixel é o menor elemento de resolução da imagem
 - tem um valor numérico chamado amplitude
 - define ponto preto e branco, nível de cinza, ou atributo de cor (3 valores)
 - Expresso por um número de bits
 - 1 para imagens P&B, 2, 4, 8, 12, 16 ou 24 bits
- "Resolução" da imagem é o número de elementos que a imagem possui na horizontal e na vertical

Imagens Digitais

UFSC

-/Imagem (Bitmap)

 Matriz de pontos ou pixels, com resolução horizontal (eixo X) e vertical (eixo Y), para cada ponto da matriz tem-se uma cor associada (obtida de forma direta ou através de uma tabela de acesso indireto – "paleta").

Imagens Digitais: Captura

UFSC

- Câmera fotográfica digital
 - Funcionamento semelhante a uma câmera fotográfica tradicional
 - porém a imagem é armazenada de forma digital em memória
 - Imagem é digitalizada através de um CCD e armazenada de forma compactada ou não em um dispositivo de memória
 - Qualidade da imagem depende da qualidade e resolução do CCD e da compressão utilizada para armazenar a imagem digitalizada

Em vez de CCD podem ser usados sensores de CMOS (semicondutor de óxido de metal

complementar)

Imagens Digitais: Captura

- /Scanners

- digitalizam imagens a partir de imagens em papel
- Funcionamento
 - Imagem é colocada sobre uma superfície transparente
 - Sensor (digitalizador por linha) se move em direção ortogonal ao documento
 - fonte de luz e de um sensor que mede a luz refletida linha por linha, em sincronismo com o deslocamento do sensor
 - Resolução definida em dpi (pontos por polegada)

UFSC

Funcionamento do CCD

- Após a exposição as cargas na primeira fileira são transferidas a um lugar no sensor chamado registro de leitura.
 - De lá, os sinais são alimentados a um amplificador e então a um conversor analógicopara-digital.
- Uma vez que a fileira foi lida, suas cargas na fileira do registro de leitura estão suprimidas, a fileira seguinte entra, e todas as fileiras acima do marcham uma fileira abaixo

- Processo de digitalização
 - Amostragem: é espacial, e não temporal como no áudio.
 - Taxa de amostragem é relacionada a resolução do sensor
 - Quantificação: também produzir ruído de quantificação
 - Codificação: representação digital da luz/cor (RGB)

- Funcionamento do CCD: Rede de Bayer
 - Captura 50% de verde, 25% vermelho e azul
 - Percepção humana da retina usa cones M e L combinados durante a luz do dia, que é mais responsivo à luz verde

- Foveon X3 (CMOS)
 - Usa 3 camadas sobrepostas de fotorreceptores
 - Sensor capturará luz azul logo na superfície, a verde no meio e a vermelha no fundo
 - Diferentes comprimentos de ondas atravessam o silício com mais facilidade no extremo vermelho do espectro do que no "lado" correspondente aos tons de azul, com a luz verde ficando no meio do caminho

- Tipos de imagens digitais
 - Imagens binárias
 - Imagens tons de cinza
 - Imagens true color
 - Imagens baseadas em paleta

- Imagens Binárias
 - São imagens com dois níveis (como preto e branco)
 - muito usadas por dispositivos de impressão e para representar imagens de documentos monocromáticos
 - Para representar um pixel de uma imagem binária é necessário apenas 1 bit
 - informação extra sobre a cor de cada informação, a cor para o bit com valor o (zero) e a cor para o bit de valor 1
 - informação de cor é geralmente é representada em
 24 bits/cor no padrão RGB

Imagens binárias

1	1	О	0
O	1	O	1
О	1	O	1
1	1	О	1

Cor é definido na paleta

O	0,0,0
1	255,255,255

 muito usadas por dispositivos de impressão e para representar imagens de documentos monocromáticos

Imagens em Tons de Cinza

- Cada pixel define uma intensidade de luminosidade representada em um certo número de bits
- Imagem com resolução de cor de 8 bits,
 pode representar até 256 níveis de cinza (variando do preto ao branco)
- Padrões mais usados são de 16 (4 bits/pixel) e
 256 (8 bits/pixel) tons-de-cinza
 - representações com mais que 256 tons-de-cinza não são percebidas pela vista humana

- Tipos de representação de imagens coloridas
 - Cores por componente (true color),
 - cores indexadas, ou
 - · cores fixas.
- Representação vai depender do propósito e dos dispositivos que vão ser usados para trabalhar com essas imagens

- Imagens True Color
 - Cada pixel da imagem é representado por um vetor de 3 componentes de cores (RGB) com um certo número de bits para representar cada componente de cor
 - quanto maior for a resolução de cor maior a qualidade

R	G	В
75	88	107

- Imagens True Color
 - Geralmente o número de bits para cada componente RGB é igual
 - ex.: Hi-Color 15 bits (5-5-5)
 - Existem padrões onde a quantidades de bits por componentes é diferente
 - ex.: Hi-Color 16 bits (5-6-5)

8 bits por componente:

- Imagens True Color
 - Número de bits por pixel fornece a quantidade de níveis que podem ser representados
 - se n é a resolução de cor então a quantidade de níveis possíveis é de 2ⁿ níveis

Bits/pixel	Padrão	Componentes de cor RGB	Máximo de Cores		
15 bits/pixel	High Color (15 bits)	5 bits/pixel, 32 níveis por comp.	32.768 cores		
16 bits/pixel	High Color (16 bits)	5/6 bits/pixel, 32/64 níveis por comp.	65.535 cores		
24 bits/pixel	True Color (24 bits)	8 bits/pixel, 256 níveis por comp.	16.777.216 cores		

- Cores Indexadas
 - Cada pixel é representado por um índice que aponta para uma tabela de cores (paleta)
 - paleta contem as informações sobre as cores

- Cores Indexadas
 - Paleta tem em geral 24 bits para representar cada cor no formato RGB
 - pode representar n cores de um conjunto com mais de 16 milhões de cores

- Cores Indexadas
 - Paleta variável: cores são escolhidas para a imagem

• Cores Indexadas

• Número de cores e a resolução de cor da paleta podem variar

Bits/pixel	Padrão	Resolução de cor da paleta				
4 bits/pixel	16 cores indexadas	24 bits/cor				
8 bits/pixel	256 cores indexadas	24 bits/cor				

UFSC

Cores Fixas

- Cada pixel é representado por um índice que aponta para uma tabela de cores fixa
 - usado quando o dispositivo não permite a representação de muitas cores (placas de vídeos antigas ou padrões de cores)

Pontos Importantes

Conceitos de base

- Bitmap: matriz de pixels
- Pixel: menor elemento da imagem e que tem diferentes números de bits e semântica (cor RGB, índice na paleta)

Digitalização de imagens

- Amostragem espacial (resolução do CCD/CMOS)
- Quantização: PCM
- Codificação: bits representando pixel

Tipos de imagens

• Binárias, tons de cinza e os diversos tipos de imagens coloridas

CAP 2. DADOS MULTIMÍDIA

Aula 6: Representação Digital de Vídeos

Cap. 2 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta vídeoaula veremos...
 - Representação digital de vídeos

Vídeos digitais

- Vídeos digitais são...
 - Imagens em movimento
- Sensação de movimento
 - A sensação do movimento pode ser obtida pela apresentação sucessiva de imagens/gráficos
 - Quadro (Frame): uma imagem individual uma animação

Vídeos digitais

- Na produção de vídeo definimos
 - Resolução espacial das imagens. Exemplos para a proporção padrão 16:9:
 - 1080p: 1920 x 1080
 - 720p: 1280 x 720
 - 480p: 854 x 480
 - 360p: 640 x 360
 - 240p: 426 x 240

- Taxa de quadros do vídeo
 - Quadros por segundo (fps): 60,30,20,10...
- Taxa de bits
 - Define a qualidade final do vídeo e considerada na compressão
 - 1080p: 3.000 a 6.000 Kbps
 - 720p: 1.500 a 4.000 Kbps

Imagens e Gráficos Animados

- Frequência de Quadros

Fps	Comentários
<10	Apresentação sucessiva de imagens
10 à 16	Impressão de movimento mas com sensação de arrancos
>16	Movimento natural
24	Cinema
25	Padrão de TV européia
30/25	Padrão de TV americana/brasileira (PAL-M)
60	Padrão HDTV

Imagens e Gráficos Animados

- Imagens Animadas (vídeos)
 - Cenas são registradas como um sucessão de quadros:
 - capturadas da vida real com câmeras (Vídeo)
 - criadas através do computador

Imagens e Gráficos Animados

- Gráficos Animados

- Apresentação sucessiva de objetos visuais gerados pelo computador
 - numa taxa suficiente para dar a sensação de movimento
 - são mais compactas: conjunto de objetos com diretivas temporais
 - são revisáveis

Vídeos híbridos

- Técnicas avançadas permitem formas híbridas combinando vídeos e animações gráficas
 - modo ao-vivo e off-line

Pontos Importantes

Vídeo Digital

- Sequência de imagens apresentadas sucessivamente (Quadros ou Frames)
- Parâmetros: resolução espacial, taxa de quadros e taxa de bits

Taxa de Quadros

• Determina se o movimento é mais natural ou menos

CAP 2. DADOS MULTIMÍDIA

Aula 7: Representação de Caracteres

Cap. 2 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta videoaula veremos...
 - Representação de caracteres/textos

-/Caracteres

- Palavras e símbolos, falados ou escritos, são a forma mais comum de comunicação
- Meio adequado para transmitir informações essenciais de modo preciso
- Forma principal de comunicação assíncrona (defasado no tempo), e quase tempo-real (mensagens instantâneas) entre pessoas

Natureza dupla dos textos

- Conteúdo léxico, é a parte do texto que transmite o seu significado (sua semântica)
 - Caracteres abstratos: não importa a aparência dos caracteres para o entendimento da semântica
- Aparência, atributos visuais dos caracteres (fonte, tamanho, disposição na tela, etc.)
 - · A representação visual de um caractere denomina-se Glifo.
 - Caractere abstrato "A" pode ter uma infinidade de representações gráficas, incluindo "A", "A", "A", "a", "a", "a".

UFSC

Formas possíveis do texto

- Texto n\(\tilde{a}\)o formatado (plain text)
 - número de caracteres disponíveis é limitado
 - representação simples (dimensão dos caracteres é fixa e não permite diferentes fontes ou estilos)
- Texto formatado (rich text)
 - aparência mais rica, várias fontes, cores, estilos e dimensões
 - produzidos por processadores de texto
- Hipertexto
 - texto ao qual se adicionam hiperligações originando texto não linear;
 - permite navegação entre documentos de texto.

Caracteres abstratos

- São os caracteres representados apenas quanto a sua natureza léxica:
 - São agrupados em alfabetos;
 - Cada idioma ou grupo de idiomas usa um alfabeto.

Conjuntos de caracteres

- São tabelas mantidas pelo sistema operacional que consistem em uma correspondência entre os códigos e os caracteres
- Contém representações de grafemas (unidades fundamentais de um sistema de escrita) ou unidades similares a grafemas
 - Incluem maiúsculas, minúsculas, sinais de pontuação, números e símbolos matemáticos.

ABCDE

FGHIJK

LMNOP

- UFSC
- Vantagens da utilização de conjuntos de caracteres:
 - É vital guardar os caracteres na forma de códigos:
 - Para tornar o texto revisável (não imagem) e permitir a busca;
 - Para facilitar a comparação de caracteres (basta comparar códigos)
 - Permitem associar os caracteres dos teclados a representação desses caracteres:
 - Por exemplo, quando se pressiona um A no teclado, esse caractere é procurado na tabela de caracteres para depois ser apresentado no monitor.
- Normalização é o mais importante
 - Pois os códigos universais podem facilmente ser trocados entre máquinas diferentes e que usam sistemas operacionais diferentes.

UFSC

- ASCII American Standard Code for Information Interchange
 - Primeiro conjunto de caracteres normalizado (1968)
 - Adequado à língua inglesa
 - Usa 7 bits para representar cada código: 128 (27) caracteres no total
 - Insuficiente para muitas línguas (128 caracteres é limitado)

Bits	654							
<i>3210</i>	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	\	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	•	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	I	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	4	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	?
1111	SI	US	/	?	0	_	0	DEL

Exemplo:

$$A = 100 0001 (41h - 65d)$$

$$V = _{111} 0110 (76h - 118d)$$

UFSC

-/ISO 8859

- Normaliza os conjuntos de caracteres de 8 bits (10 partes):
 - ISO 8859-1: ISO Latin1, caracteres utilizados na maioria dos países da Europa Ocidental, primeiros 128 caracteres são os mesmos do ASCII de 7 bits, os restantes 128 são códigos para os idiomas europeus
 - ISO 8859-2: ISO Latin2, para outros idiomas da Europa Oriental (Checo, Eslovaco, Croata)
 - ISO 8859-5: Cirílico
 - ISO 8859-7: Grego moderno
 - ISO 8859-8: Hebreu

-/ISO 8859-1

128	Ç	144	É	160	á	176		193	Τ	209	₹	225	В	241	±
129	ü	145	æ	161	í	177	•••••	194	Т	210	π	226	Γ	242	≥
130	é	146	Æ	162	ó	178		195	F	211	Ш	227	π	243	≤
131	â	147	ô	163	ú	179	-	196	_	212	F	228	Σ	244	ſ
132	ä	148	ö	164	ñ	180	4	197	+	213	F	229	σ	245	J
133	à	149	ò	165	Ñ	181	4	198	F	214	Г	230	μ	246	÷
134	å	150	û	166	•	182	\mathbb{H}	199	⊩	215	#	231	τ	247	æ
135	ç	151	ù	167	۰	183	П	200	L	216	+	232	Φ	248	۰
136	ê	152	_	168	Š	184	Ŧ	201	F	217	T	233	Θ	249	
137	ë	153	Ö	169	_	185	4	202	┸	218	Г	234	Ω	250	
138	è	154	Ü	170	¬	186		203	ī	219		235	δ	251	$\sqrt{}$
139	ï	156	£	171	1/2	187	ī	204	l	220	-	236	œ	252	_
140	î	157	¥	172	1/4	188	ī	205	=	221	ı	237	ф	253	2
141	ì	158	_	173	i	189	Ш	206	#	222	ı	238	ε	254	
142	Ä	159	f	174	«	190	7	207	┷	223	-	239	\circ	255	
143	Å	192	L	175	»	191	٦	208	Т	224	α	240	=		

- A opção pelas variantes ISO 8859 acaba por não conseguir resolver bem o problema:
 - 7+1 bits são claramente insuficientes para representar todas as línguas (Chinês, japonês etc.)
 - E os textos multilíngue? Como se trabalha com várias línguas simultaneamente?

Unicode

- Consórcio de empresas (Adobe, Apple, Microsoft, ...) definiram Unicode
 - As linguagens HTML, XML e Java usam o Unicode.
- Padrão que permite aos computadores representar e manipular, de forma consistente, texto de qualquer sistema de escrita existente
 - Desenvolvido em conjunto com um Conjunto Universal de Caracteres (UCS Universal Character Set – ISO/IEC 10646), que contém mais de 128000 caracteres abstratos, cada um identificado por um nome não ambíguo a um número inteiro (code point)
- Unicode consiste de
 - um repertório de mais que 128000 caracteres cobrindo 100 scripts (coleção de letras e outros signos escritos usado para representar uma informação textual em um ou mais sistemas de escritas),
 - uma metodologia para codificação
 - uma enumeração de propriedades de caracteres (como caixa alta e caixa baixa)
 - um conjunto de arquivos de computador com dados de referência
 - Regras para normalização, decomposição, ordenação alfabética e renderização.

UFSC

-/Unicode

- Padrão Unicode codifica caracteres em um espaço numérico entre o a 10FFFF
- Espaço de codificação é dividida em 17 planos (numerados de o a 16)

Unicode

Layout de codificação Unicode do BMP (Plano o)

- Exemplo codificação de caractere:
 - LETRA MAIÚSCULA LATINA A, U+0041.
 - U+aaaa é um valor de código: U+ se refere a valores de código Unicode, e aaaa representa um número de quatro dígitos hexadecimais de um caractere codificado.

UFSC

Unicode

- Padrão Unicode codifica caracteres em um espaço numérico entre o a 10FFFF
- Existem alguns formatos de codificação destes valores
 - UTF-8, UTF-16 e UTF-32.
- UTF-8
 - uma forma de codificação de tamanho variável, requer de um a quatro bytes para expressar cada caractere Unicode
 - "A" é 41 (mesmo que no ASCII!)
 - α é CE 91
 - Katakana "A" é E3 82 A2
 - Gothic Ahsa é Fo 90 8C Bo

Fontes e faces

- Face é uma família de caracteres que normalmente inclui muitos tamanhos e estilos de tipos
 - Arial, Times New Roman e Courier New são exemplos de faces
- Fonte é um conjunto de caracteres de um único tamanho e estilo pertencente a uma família de face particular.
 - *Times 15 pontos itálico* é uma fonte
 - As fontes digitais são versões das fontes tradicionais (algumas do século XV)
 - As fontes podem ser vistas como tabelas de correspondência entre os caracteres abstratos e a sua representação gráfica (grifo)

Fontes

- Duas possibilidades de armazenamento
 - Armazenados em arquivos e instalados no sistema operacional:
 - Compartilhados por todos os arquivos e todas as aplicações
 - Quanto são requeridas e não existem tem de ser trocadas por fontes alternativas
 - São embutidas nos próprios arquivos:
 - Vantagem importante para o designer de uma aplicação multimídia pois é livre de usar qualquer fonte no seu trabalho.
 - Não se compartilham as fontes entre documentos que usam as mesmas fontes.

UFSC

- Tamanhos e estilos

- Tamanhos geralmente são expressos em pontos;
 - um ponto corresponde a 0,0138 polegadas ou aproximadamente 1/72 de uma polegada.
- Os estilos normais das fontes são negrito, itálico (oblíquo) e sublinhado
 - outros atributos como contorno de caracteres podem ser adicionados pelo programa.

Pontos Importantes

Mapas de caracteres

 Mantém a relação de códigos representando caracteres

Padrões de codificação

- ASCII 7 bits: inicial para o inglês
- ISO8859 (8 bits):
 - várias partes para conjuntos de idiomas diferentes,
 - não suficiente para representar vários idiomas
 - não permite multilíngue
- Unicode solução mais adotada hoje

CAP 2. DADOS MULTIMÍDIA

Aula 8: Principais características e requisitos das informações multimídia

Cap. 2 Dados Multimídia

UFSC

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- · Principais características e requisitos das informações multimídia
- Nesta vídeoaula veremos...
 - Principais características e requisitos das informações multimídia

- Requisitos de armazenamento
 - Unidade de armazenamento: será adotado o Sistema Internacional (SI)

Múltiplos do byte					V.D.E
Prefixo binário (IEC)			Prefixo do SI		
Nome	Símbolo	Múltiplo	Nome	Símbolo	Múltiplo
byte	В	2 ⁰	byte	В	10 ⁰
kibibyte	KiB	2 ¹⁰	kilobyte	kB	10 ³
mebibyte	MiB	2 ²⁰	megabyte	MB	10 ⁶
gibibyte	GiB	2 ³⁰	gigabyte	GB	10 ⁹
tebibyte	TiB	2 ⁴⁰	terabyte	ТВ	10 ¹²
pebibyte	PiB	2 ⁵⁰	petabyte	PB	10 ¹⁵
exbibyte	EiB	2 ⁶⁰	exabyte	EB	10 ¹⁸
zebibyte	ZiB	2 ⁷⁰	zettabyte	ZB	10 ²¹
yobibyte	YiB	2 ⁸⁰	yottabyte	YB	10 ²⁴

- Requisito de taxa de bits
 - Unidade de armazenamento

Name	Symbol	Multi	inle
	STA		10 M
bit per second	bit/s	1	1
Decimal prefixes (S	SI)		
kilobit per second	kbit/s	10 ³	10001
megabit per second	Mbit/s	10 ⁶	1000 ²
gigabit per second	Gbit/s	10 ⁹	10003
terabit per second	Tbit/s	10 ¹²	10004
Binary prefixes (IE	C 80000-	13)	
kibibit per second	Kibit/s	210	1024 ¹
mebibit per second	Mibit/s	2 ²⁰	10242
gibibit per second	Gibit/s	2 ³⁰	10243
tebibit per second	Tibit/s	2 ⁴⁰	10244

- -/Imagens
 - Requisito de armazenamento = HVP/8
 - H = n^o de pixels por linha, V = número de linhas, P = bits por pixel
 - imagem de 420 pixels/linha, 512 linhas e 24 bits ocupa 420*512*24/8 = 645120 B = 645,120 KBytes

420

512

- Imagens
 - Armazenamento em disco
 - Tamanho dos dados: 645.120 B
 - Tamanho em disco (Windows):
 647.168 B

Tamanho: 630 KB (645.174 bytes)
Tamanho em disco: 632 KB (647.168 bytes)

 No disco a unidade de armazenamento é uma unidade de alocação (cluster).
 Ex. 4096B

- Arquivo: 645120+54 = 645.174 B
- No disco 158 clusters de 4096B = 647.168 B

Cabeçalho (54 bytes)

Dados (645.120)

Arquivo .bmp

11010101010 10101010101

Imagens

- Taxa de bits é calculada a partir dos requisito de armazenamento e tempo de transferência
 - R= HVP/t (t = tempo de transmissão)
 - se a imagem (deve ser transmitida em 2s, a taxa de bits necessária é (420*512*24)/2 = 2,58 Mbps
 - Aumento devido aos dados do cabeçalho e sobrecarga dos protocolos (p.e. HTTP/TCP/IP na Web)

512

420

Áudios

Taxa de bits = número_de_canais * taxa_de_amostragem *
 bits_por_amostra

Aplicações	Número de canais	Taxa de amostragem	Bits por amostra	Taxa de transmissão (Kbps)
Telefone Digital	1	8000	8	64
CD-Audio	2	44100	16	1.411,2
DAT	2	48000	16	1.536
Radio digital	2	32000	16	1.024

Telefone:

- 8000 amostra/s
- 8 bits/amostra

-\Áudios

- Espaço ocupado=
 (num canais)*(amostra/s)*(bits/amostra)*duração/8
 - Telefone digital com 1 minuto (mono=> 1 canal)
 - taxa de bits = 1*8000*8 = 64Kbps
 - Espaço ocupado = 1*8000*8*60/8 = 480KB
 - Qualidade CD-Áudio com 1 minuto
 - taxa de bits = 2*44100*16 = 1,41 Mbps
 - Espaço ocupado = 2*44100*16*60/8 = 10,6 MB

Vídeos

- Taxa de bits = (HVP)*fps
- Espaço ocupado = (HVP/8)*fps*duração
 - 30 fps e imagens 720x480 com 24 bits/pixel de 1 minuto
 - taxa de bits = 720*480*24*30 = 249 Mbps
 - Espaço ocupado = 249*60/8 = 1,87 GB

Qualidade	Resolução	Bits por píxel	Taxa de quadros	Taxa de transmissão (Mbps)
DVD (PAL 4x3)	720x576	24	30	249,6
SDTV (HDMI 1.3)	704x480	48	30	486,6
HDTV (HDMI 1.3)	1920x1080	48	30	2.986

- Relações temporais e espaciais entre mídias
 - Mídias estáticas e dinâmicas estão relacionadas em uma apresentação (temporalmente e espacialmente)

- Relações espaciais
 - são definidas no momento da criação da aplicação
 - não existem muitos problemas tecnológicos associados.

UFSC

- Relações temporais

- Aplicações multimídia devem apresentar informações multimídia ao usuário de forma satisfatória
 - As informações podem ser oriundas de fontes ao vivo, como câmeras de vídeo e microfones, ou originária de servidores distribuídos
 - Busca e transmissão dos dados deve ser coordenada e apresentada de forma que as relações temporais sejam mantidas
 - É uma das principais problemáticas de sistemas multimídia: sincronização multimídia

- Relações temporais e espaciais entre mídias
 - Definição de Sincronização Multimídia
 - · Aparecimento (apresentação) temporalmente correto/desejado dos dados multimídia
- Tipos de sincronização
 - Sincronização intramídia
 - Significa que os elementos de mídia (amostras de áudio, quadros de vídeo) devem ser apresentados em instantes corretos
 - Ex.: Vídeo a 30fps (1 quadro a cada 1/30s)

- Tipos de sincronização
 - Sincronização intermídia
 - Significa que os relacionamentos temporais corretos/desejados entre os dados multimídia de uma aplicação devem ser mantidos

Vídeo 30 fps 1 quadro a cada 33,33 ms

Áudio 8000 a/s 1 amostra a cada 125 µs

- Sincronização intermídia
 - Sincronização labial: Sincronização entre o movimento dos lábios e da voz
 - Distorção é percebida facilmente devido à referência do movimento dos lábio

- Tipos de sincronização
 - Sincronização de interação
 - Significa que o evento de interação produza o efeito desejado dentro de um tempo relativamente curto

- UFSC
- Requisitos de atrasos e variações de atrasos (Jitter)
 - Atrasos fim-a-fim: soma de todos os atrasos em todos os componentes de um sistema multimídia
 - Atraso aceitável é subjetivo e depende da aplicação
 - conversações ao vivo: necessitam a manutenção da natureza interativa: limite da percepção é de 400ms
 - recuperação de informação: alguns segundos

- UFSC
- Requisitos de atrasos e variações de atrasos (Jitter)
 - Atrasos fim-a-fim: soma de todos os atrasos em todos os componentes de um sistema multimídia
 - Atraso aceitável é subjetivo e depende da aplicação
 - conversações ao vivo: necessitam a manutenção da natureza interativa: limite da percepção é de 400ms
 - recuperação de informação: alguns segundos

- Requisitos de atrasos e variações de atrasos (Jitter)
 - Variação de atraso (Jitter): mídias contínuas são transmitidos em pacotes que sofrem diferentes atrasos fim-a-fim

- Requisitos de atrasos e variações de atrasos (Jitter)
 - Para mídias contínuas a variações de atrasos deve ser pequena
 - Para garantir a sincronização: processamento e comunicação devem satisfazer requisitos tempo-real
 - Normalmente a variação de atraso é eliminada por buffers de jitter
 - Buferizam os pacotes que chegam da rede e o player retira do buffer na taxa de apresentação

- Tolerância a erros e perdas em dados multimídia
 - Erros ou perdas em dados de áudio, vídeo e imagens são tolerados
 - Percepção humana tolera perda de informações
 - Sem perda da semântica
 - Técnicas de recobrimento de erros
 - empregadas para aumentar a qualidade de áudio e vídeo

Pontos Importantes

Saber calcular taxa de bits e requisitos de armazenamento

• Para imagens, áudios e vídeos

Sincronismo Multimídia

• Saber os tipos de sincronização

Restrições de atraso

• Diferenciar limites de atrasos para aplicações conversacionais e baseadas em servidor

Tolerância a perdas de informação

• Usuário final são humanos, que toleram certa perda sem perda de semântica