ICCS342 - Lecture 14

Decision Tree and Random Forest

Sunsern Cheamanunkul

Slides adapted from lecture slides by Michael I. Jordan, UC — Berkeley, and lecture slides by Tom Mitchell, CMU

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$L_r = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{r} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{w} + b) + \sum_{i=1}^{r} \alpha_i$$

$$\alpha_i \ge 0, \forall i$$

$$\mathbf{w} = \sum_{i=1}^{r} \alpha_i y_i \mathbf{x}_i, \sum_{i=1}^{r} \alpha_i y_i = 0$$

$$\nabla \hat{g}(\theta_t) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(x_i, y_i; \theta_t) + \nabla r(\theta_t),$$

$$\theta_{t+1} = \theta_t - \eta_t \nabla \ell(x_{i(t)}, y_{i(t)}; \theta_t) - \eta_t \cdot \nabla r(\theta_t)$$

$$\mathbb{E}_{u(t)} [\ell(x_{i(t)}, y_{i(t)}; \theta_t)] = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; \theta_t).$$

what other programmers think I do

what I think I do

>>> from scipy import SVM

what I really do

Decision Tree

Example: Play tennis?

- Each node tests an attribute Xi
- Each branch from a node selects a value for Xi
- Each leaf node predicts y

Top-Down Induction of Decision Trees

[ID3, C4.5, Quinlan]

node = Root

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Which attribute to select?

Gini Impurity

 Given a set of items with J classes, suppose i ∈ {1,2,3,..,J}, and let p_i be the fraction of items labeled with class i in the set:

$$Gini(p) = \sum_{i=1}^{J} p_i (1 - p_i)$$

Gini Impurity

Example: $S = \{1,1,2,2,3\}$ $p_1 = 2/5$, $p_2 = 2/5$, $p_3 = 1/5$

Gini Impurity of S

- = 2/5(1-2/5) + 2/5(1-2/5) + 1/5(1-1/5)
- = 6/25 + 6/25 + 4/25
- = 16/25 = 0.64

Which split is better?

Information Entropy

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

- Quantifies "randomness"
- High entropy —> more random
- Low entropy —> less random
- When b=2, H(X) is the expected number of bits to encode the random variable X

Sample Entropy

- S is a sample of training examples.
- p_⊕ is the proportion of positive examples in S.
- p_⊙ is the proportion of negative examples in S.
- Entropy measures the impurity of S:
- $H(S) = -p_{\oplus} \log_2 p_{\oplus} p_{\ominus} \log_2 p_{\ominus}$

Information Gain

- Based on Shannon Entropy
- IG calculates effective change in entropy after making a decision based on the value of an attribute.
- For decision trees, it's ideal to base decisions on the attribute that provides the largest change in entropy, the attribute with the highest gain.

Information Gain

Also known as Mutual Information:

$$I(X,A) = H(X) - H(X|A) \label{eq:interpolation}$$
 where

$$H(X|A) = \sum_{a} P(A=a)H(X|A=a)$$

 IG is the expected reduction in entropy of the target variable X, due to sorting on variable A

Exercise: Play tennis?

Outlook	Tem	Humid	Windy	Play	Outlook	Tem	Humid	Windy	Play
Sunny	Hot	High	FALSE	NO	Sunny	Mild	High	FALSE	NO
Sunny	Hot	High	TRUE	NO	Sunny	Cool	Norm	FALSE	YES
Overcast	Hot	High	FALSE	YES	Rainy	Mild	Norm	FALSE	YES
Rainy	Mild	High	FALSE	YES	Sunny	Mild	Norm	TRUE	YES
Rainy	Cool	Norm	FALSE	YES	Overcast	Mild	High	TRUE	YES
Rainy	Cool	Norm	TRUE	NO	Overcast	Hot	Norm	FALSE	YES
Overcast	Cool	Norm	TRUE	YES	Rainy	Mild	High	TRUE	NO

Which attribute is the best classifier?

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Overfitting in Decision Trees

Consider adding a noisy training example: Sunny, Hot, Normal, Strong, PlayTennis=No What effect on tree?

Overfitting

Consider error of hypothesis h over

- training data: $error_{train}(h)$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

Overfitting in Decision Tree Learning

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Effect of Reduced-Error Pruning

Ensemble Learning

 Combines a set of weak hypotheses (classifiers) to create a strong classifier that obtains better performance than a single one. Bootstrapping

Learning about population from sample

Bagging

Random Forest

More detailed in Python notebook