Final project

PREDICTIVE ANALYSIS FOR FRAUD DETECTION

OUR TEAM

INTRODUCTION

PaySim:

a financial mobile money simulator devised for fraud detection.

As analysts, we can benefit from this simulated data to conduct fraud analytics overcoming the lack of public access to private records.

DATA ANALYTICS STEPS

COLLECT DATA

Data available on <u>Kaggle</u>

CLEAN DATA

Exploration Transformation

ANALYZE DATA

Modeling Prediction

INTERPRET RESULTS

Evaluation

Classification

- **Target**: Is it a fraud operation?
- Features: relevant columns

		Ground truth		
		+	-	
Predicted	+	True positive (TP)	False positive (FP)	Precision = TP / (TP + FP)
	-	False negative (FN)	True negative (TN)	
		Recall = TP / (TP + FN)		Accuracy = (TP + TN) / (TP + FP + TN + FN)

Distribution of numeric variables isFraud amount isFlaggedFraud 20 20 2.0 15 15 1.5 10 10 1.0 0.5 0.25 0.50 0.75 1.00 _{1e-8} oldbalanceDest 1e-8 newbalanceDest 1e-7 newbalanceOrig 3.0 2.5 2.0 1.5 1.0 oldbalanceOrg 3.0 2.5 0.0025 2.0 0.0020 1.5 1.0 0.0010 0.5

Histograms generated by its counts normalized to form a probability density. The area under each histogram sums to 1.

FIRST SIGHT ANALYSIS I

FIRST SIGHT ANALYSIS II

In order of frequency:
CASH_OUT (35 %) > PAYMENT (34 %) > CASH_IN (22 %) > TRANSFER (8 %) > DEBIT (1 %)

Valid (not-fraud): 99% (6,354,407 cases)

Flagged as Fraud: 0.0003 % (16 cases)

Fraud: 0.1 % (8,213 cases)

Frauds failed to flag: 8197 cases!

FIRST SIGHT ANALYSIS III

COLUMN NAME	r
amount	0.077
isFlaggedFraud	0.044
step	0.032
oldbalanceOrg	0.010
newbalanceDest	0.001
oldbalanceDest	-0.006
newbalanceOrig	-0.008

Low linear correlation with the target

Fraud vs. Valid

FIRST SIGHT ANALYSIS IV

A. Amount of each transaction

- ★ Fraud: 0 1.0 million (in local currency)
- ★ Valid: mostly < 0.2 million (in local currency)

C. Operation time

- ★ Fraud: Generally active over the entire month
- ★ Valid: Less active after the first two weeks of the month

B. Type of transaction

- ★ Fraud: Transfer, Cash out
- ★ **Valid**: Cash_out, Payment, Cash_in, Transfer, Debit

D. Client - Recipient type of each transaction

CC: Customer - Customer

CB: Customer - Business

BC: Business - Customer

BB: Business - Business

MODELING

LOGISTIC REGRESSION

NEURAL NETWORK

RANDOM FOREST

XGBOOST

EVALUATION METRICS

Confusion matrix

Table that is used to describe the performance of a classification model

Area under curve

Curve that shows the tradeoff between precision and recall for different threshold

Recall rate

Out of all the positive classes, how much we predicted correctly. It should be high as possible.

Logistic Regression

Logistic Regression

Sequential model

- Input: 10 features (4453834 samples)
- # Dense layers: 3-5
- # neurons: (32-24)-16-8-1
- # epochs: 3-8

Neural Network

XGBoost

High rate of TP and FN

Recall score: 0.78

RESULTS - RECALL SCORES LOGISTIC REGRESSION 0.985 0.45 **XGBOOST** 0.676 Random 0.78 forest Neural network

Conclusion

We detected fraudulent transactions
with high precision and high recall
by building highly functioning
predictive classifier models

Future directions

- 1.Optimize the present models
- 2.Predict on more complicated data

Questions?

Our notebooks: https://github.com/CodeOp-tech/projectfraud-paysim

Hyojung Lee & Maria Gayà

www.codeop.com

