10 Cuestiones de TEORÍA (6 puntos) . Puntuación: BIEN +0.6 ptos., MAL -0.15 ptos, N.C 0

1. En las tablas adjuntas se indican algunas de las características eléctricas de dos familias lógicas A y B. Escoja la afirmación **CORRECTA**:

Familia A				
V _{IHmín}	V _{ILmáx}	V _{OHmín}	V _{OLmáx}	
2V	0.8V	2.7V	0.4V	
I _{IHmáx}	I _{ILmáx}	I _{OHmáx}	I _{OLmáx}	
20μΑ	-400μΑ	-400μA	8mA	

Familia B				
V _{IHmin}	V _{ILmáx}	V_{OHmin}	V _{OLmáx}	
3.5V	1.5V	4.95V	0.05V	
I _{IHmáx}	I _{ILmáx}	I _{OHmáx}	I _{OLmáx}	
10pA	-10pA	-0.5mA	0.5mA	

- [A] Para obtener el margen de ruido de una familia, se calculan los márgenes de ruido a nivel bajo y a nivel alto, tomándose el máximo.
- [B] El margen de ruido de la familia B es 2V
- [C] El margen de ruido de la familia A es mejor que el de la familia B
- [D] El margen de ruido de la familia A es 0.4V
- 2. Respecto del fan-out de las familias de la pregunta anterior, podemos afirmar que:
- [A] El fan-out de la familia A es 200
- [B] Para obtener el fan-out de una familia, se calculan los fan-out a nivel bajo y a nivel alto, tomándose el máximo
- [C] Para evitar retardos excesivos, el fabricante recomienda un fan-out para la familia B **menor** que el obtenido usando el típico cociente entre corrientes.
- [D] El fan-out B → A (número de entradas de componentes de la familia A que se pueden conectar a la salida de un componente de la familia B) es 25
- 3. Indique cuál es el producto potencia x retardo de un componente TTL con las siguientes características: I_{CCH} (consumo en el nivel alto de salida) = 1 mA; I_{CCL} (consumo en el nivel bajo de salida) = 3.18 mA, tp_{HL} = 1.4 ns, tp_{LH} = 3.2 ns. **NOTA**.- Considere despreciable la potencia dinámica.
- [A] 5.86 pJ
- [B] 10,45pJ
- [C] 4,81pJ
- [D] 24.04 pJ
- 4. El circuito de la figura utiliza una puerta con salida en colector abierto para generar una señal lógica compatible con familias alimentadas a Vcc=+15V. Sabiendo que I_{OLMAX}=16mA y que V_{OLMAX}=0.4V, indica cual sería el valor mínimo para la resistencia de pull-up R en este circuito.
- [A] Este tipo de conexión no es válido para una puerta en colector abierto.
- [B] R_{MIN} =0.91 kΩ
- [C] R_{MIN} =288 Ω
- [D] R_{MIN} =2.88 $k\Omega$

5. Se desea conectar la salida de una puerta TTL a la entrada de una CMOS estándar, alimentada a 3V. Indica la respuesta CORRECTA: (Nota: la puerta CMOS incluye circuitos de protección en la entrada).

Familia TTL estándar	Familia CMOS estándar	
V _{OHmin} =2.4V,	I_{IHmax} =1pA, V_{IH} =0.7* V_{DD}	
V _{OLmax} =0.4V,	I_{ILmax} =-1pA, V_{IL} =0.3* V_{DD}	
$I_{OHmax} = -400 \mu A$		
I _{OLmax} =16mA,		

- [A] Se necesita una resistencia de pull-up conectada a 3V en la salida de la TTL.
- [B] Se necesita intercalar un buffer CMOS para adaptar las corrientes.
- [C] Se necesita intercalar un buffer TTL para adaptar las corrientes.
- [D] Se puede realizar la conexión directamente.
- 6. La siguiente gráfica muestra el detalle temporal del retraso que sufre una señal al atravesar una puerta no inversora (buffer). Se puede afirmar que:
- [A] El tpd_{HL} es de 20 ns
- [B] El tpd_{LH} es de 5 ns
- [C] El tpd es de 10ns
- [D] El tf (fall time) de la salida es de 5 ns

- 7. Sea una puerta de transmisión NMOS que utiliza un transistor con $|V_T|$ =1.5V. Si aplicamos 2.5V a la tensión de entrada (V_{IN}) y 5V al terminal de puerta G. ¿Qué voltaje se obtendrá a su salida (V_{OUT}) ?
- [A] 5V
- [B] 1V
- [C] 3.5V
- [D] 2.5V

- 8. Dado el circuito CMOS de la figura, la función lógica F que implementa y el tipo de salida es:
- [A] $F = \overline{A \cdot (B + C)}$ y salida estándar.
- [B] $F = A \cdot (B + C)$ y salida drenador abierto.
- [C] $F = A + (B \cdot C)$ y salida drenador abierto.
- [D] $F = \overline{A + (B \cdot C)}$ y salida triestado.

- 9. Indicar la afirmación FALSA acerca del diseño y fabricación VLSI en tecnología CMOS:
- [A] Se suelen utilizar obleas circulares de silicio como sustrato
- [B] Los materiales usados típicamente para definir las diferentes capas en el sustrato, son: semiconductor-N, semiconductor-P, aislante (SiO₂), polisilicio y metal (aluminio o cobre)
- [C] Las máscaras son generadas a partir del layout, y proyectadas en el sustrato utilizando luz ultravioleta
- [D] En el diseño automático basado en celdas estándar, el proceso de *Placement and Routing* ubica las celdas de forma aleatoria, sin seguir ninguna estructura predefinida
- 10. Respecto al circuito de la figura, basado en puertas de transmisión CMOS, señale la respuesta **VERDADERA**:
- [A] El diseño no es correcto, pues las salidas de las 2 puertas de transmisión están conectadas entre sí.
- [B] Es un multiplexor de 2 canales.
- [C] Es una puerta AND de 2 entradas.
- [D] Es una puerta XOR de 2 entradas.

Apellidos:

SOLUCIÓN

Nombre:

1. PROBLEMA 1 (4 PTOS)

Se pretende diseñar la función $F = \overline{(A+B+C) \cdot D}$ en lógica CMOS complementaria.

A) Dibuje un esquema con transistores. Justifique el diseño. [1.5P]

- B) Dada la combinación de entradas: A = "1", B = C = D = "0", sustituya los transistores por interruptores abiertos o cerrados. [1P]
 - * Dibuje el esquema con interruptores
 - Justifique el valor de F

$$|A| = |A| = |A|$$

Hay un

Camino que

conecta

F con VDD

POR TANTO,

F="1"

- C) Modifique el diseño del apartado A) para dotar al circuito de salida triestado, añadiendo los transistores y las señales de control necesarias. [1P]
 - * Dibuje el nuevo esquema a partir del diagrama de bloques adjunto
 - Escriba la tabla de verdad resumida

- D) Se quiere comparar el diseño del apartado A) con un diseño tradicional a partir de puertas lógicas discretas. [0.5P]
 - Dibuje el circuito usando puertas lógicas de 2 entradas (no hace falta dibujar el circuito a nivel de transistor)
 - * Cuente el número de transistores y compárelo con el del diseño efectuado en el apartado A)

Nand > 4 transisiones

OR = ______ 2 transisione,

4 transisions

El diseus del gartado A) necesita la mitad de los traussissones (8), lo que implica menor área de silicio, consumo y retardo