Deep Learning and Explainability

University of Victoria - PHYS-555

Explainable or Interpretable?

Terminology (as of today)

- **Interpretability**: a *passive* characteristic of a model referring to the level at which it makes sense to humans.
- # Explainability: an active characteristic of a model, denoting any action or procedure taken by a model with the intent of clarifying or detailing its internal functions.
- Explainable AI (XAI) is a set of tools and frameworks to help humans understand predictions made by AI systems.

Motivation

Model understanding is absolutely critical in several domains -- particularly those involving *high stakes decisions*

Linear Models

- Both Logistic regression and linear regression are easily interpretable with the weights
- Proceed with caution with the scale and correlation of features.
 See <u>scikit-learn</u> pitfall example.

.

Prediction of rented bikes

Decision Trees - Global Explanations

Features Importance with Mean Decrease Impurity

Permutation Importance

Ex: scikit-learn RF with Titanic dataset

Power / Interpretability Tradeoff?

Power / Interpretability Tradeoff?

Achieving Model Understanding

Take 1: Build inherently interpretable predictive models

Achieving Model Understanding

Take 2: Explain pre-built models in a post-hoc manner

Inherently Interpretable Models vs. Post hoc Explanations

If you *can build* an interpretable model which is also adequately accurate for your setting, DO IT!

Otherwise, *post hoc explanations* come to the rescue!

What is an Explanation?

What is an Explanation?

Definition: Interpretable description of the model behavior

What is an Explanation?

Definition: Interpretable description of the model behavior

User

Local vs. Global Explanations

Global explanation may be too complicated

Local vs. Global Explanations

Global explanation may be too complicated

٧

Local vs. Global Explanations

Global explanation may be too complicated

Definition: Interpretable description of the model behavior in a target neighborhood.

Local Explanations

Definition: Interpretable description of the model behavior in a target neighborhood.

User

Local Explanations vs. Global Explanations

Explain individual predictions

Explain complete behavior of the model

Help unearth biases in the *local neighborhood* of a given instance

Help shed light on *big picture biases* affecting larger subgroups

Help vet if individual predictions are being made for the right reasons

Help vet if the model, at a high level, is suitable for deployment

Being Model-Agnostic...

No access to the internal structure...

Not restricted to specific models

Practically easy: not tied to PyTorch, Tflow, etc.

Study models that you don't have access to!

LIME: Sparse, Approximate Linear Explanations

LIME

 Approximate model with something explainable (e.g. linear model)

• The approximation only needs to hold locally, i.e. on similar inputs.

LIME Example - Images

LIME is quite customizable:

- How to perturb?
- Distance/similarity?
- How *local* you want it to be?
- How to express explanation

Predict Wolf vs Husky

Predict Wolf vs Husky

We've built a great snow detector...

Shapley Values (from Game Theory)

Main Analogy:

Features are "players" who play the cooperative game of making a prediction

- Prediction can be explained by assuming that each feature value of the instance is a "player" in a game.
- The contribution of each player is measured by adding and removing the player from all subsets of the rest of the players.
- The Shapley Value for one player is the weighted sum of all its contributions.

SHAP: Shapley Values as Importance

Marginal contribution of each feature towards the prediction, averaged over all possible permutations.

Fairly attributes the prediction to all the features.

Explanation by Occlusion

Three input images (top). Notice that the occluder region is shown in grey. As we slide the occluder over the image we record the probability of the correct class and then visualize it as a heatmap (shown below each image). For instance, in the left-most image we see that the probability of Pomeranian plummets when the occluder covers the face of the dog, giving us some level of confidence that the dog's face is primarily responsible for the high classification score. Conversely, zeroing out other parts of the image is seen to have relatively negligible impact.

Feature/Pixel Attribution

A standard neural network implicitly "focus" its attention on relevant input features to obtain the target outputs.

Can we check where it focused?

See the <u>CNN Explainer demo</u>

Saliency Maps / Feature Attribution

Task: Classification

Network: CNN

Neural Network Jacobian

x = input vector, size k

y = output vector, size m

J = m X k Jacobian

Compute with back-prop:

set output 'errors' = output activations

$$J_{ij} = \frac{\partial y_i}{\partial x_j}$$

$$J = egin{bmatrix} rac{\partial y_1}{\partial x_1} & \cdots & rac{\partial y_1}{\partial x_k} \ dots & \ddots & dots \ rac{\partial y_m}{\partial x_1} & \cdots & rac{\partial y_m}{\partial x_k} \end{bmatrix}$$

Saliency Map Overview

Saliency Map Overview

What parts of the input are most relevant for the model's prediction: 'Junco Bird'?

Saliency Map Overview

What parts of the input are most relevant for the model's prediction: 'Junco Bird'?

- Feature Attribution
- 'Saliency Map'
- Heatmap

Input-Gradient

Baehrens et. al. 2010; Simonyan et. al. 2014.

Input-Gradient

Junco Bird

Baehrens et. al. 2010; Simonyan et. al. 2014.

SmoothGrad

Input

Model

SmoothGrad

$$\frac{1}{N} \sum_{i}^{N} \nabla_{(x+\epsilon)} F_i(x+\epsilon)$$

Gaussian noise

Average Input-gradient of 'noisy' inputs.

Smilkov et. al. 2017

Integrated Gradients

$$(x - \tilde{x}) \times \int_{\alpha=0}^{1} \frac{\partial F(\tilde{x} + \alpha \times (x - \tilde{x}))}{\partial x}$$

Baseline input

Path integral: 'sum' of interpolated gradients

Sundararajan et. al. 2017

Recap

Input

LIME SHAP

49

Recap

Limitations to post-hoc explainability

- Faithfulness/Fidelity
 Some explanation methods do not 'reflect' the underlying model.
- **Fragility**Post-hoc explanations can be easily manipulated.
- Stability
 Slight changes to inputs can cause large changes in explanations.
- **Useful in practice?**Unclear if a data scientist (ML engineer)/end-user can use explanations to isolate errors, improve 'trust' or simulate the model.

Sanity Checks

Sanity Checks for Saliency Map

Model parameter randomization test

compares the output of a saliency method on a trained model with the output of the saliency method on a randomly initialized untrained network of the same architecture.

Data randomization test

compares a given saliency method applied to a model trained on a labeled data set with the method applied to the same model architecture but trained on a copy of the data set in which we randomly permuted all labels.

"We find that reliance, solely, on visual assessment can be misleading.

Through extensive experiments we show that some existing saliency methods are independent both of the model and of the data generating process."

Sanity Check 1: Replace Weight with Random Layer

Sanity Check 2: Replace the Trained Model with Bogus

See Adebayo+ (2018)

Baked-in interpretable CNN

Because this part of the bird colored sparrow that part looks like Why is this bird classified as a clay-colored sparrow? looks like looks like looks like

of a prototypical clay-

Baked-in interpretable CNN

<u>Chen+ (2019)</u>
Take any "standard" black box CNN...
And transform it to be interpretable

Influence Functions

- Remove specific data points or features, and measure their influence on a performance metric
- Largest change in performance indicates the most influential data points or features

New Journal of Physics

The open access journal at the forefront of physics

Dawid+ (2020)

PAPER · OPEN ACCESS

Phase detection with neural networks: interpreting the black box

Anna Dawid^{4,1,2} (D), Patrick Huembeli² (D), Michal Tomza¹ (D), Maciej Lewenstein^{2,3} (D) and Alexandre Dauphin² (D)

Published 12 November 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

Structural Methods

Causal Machine Learning tries to make sense on the data generation process

Symbolic Regression tries to find the best mathematical expression to match a dataset

Model Transparency

 Specify training set, metrics, limitations

Mitchell+ (2018)

Model Card creation tool.

Model Card for Breast Cancer Wisconsin (Diagnostic) Dataset

Model Details

Overview

This model predicts whether breast cancer is benign or malignant based on image measurements.

Version

name: bba6bec9-9d5c-4f0e-a291-72125c2c534a date: 2020-09-25

Owners

· Model Cards Team, model-cards@google.com

References

- https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
- https://minds.wisconsin.edu/bitstream/handle/1793/59692/TR1131.pdf

Considerations

Intended Users

- · Medical professionals
- ML researchers

Use Cases

Breast cancer diagnosis

Limitations

· Breast cancer diagnosis

Ethical Considerations

 Risk: Manual selection of image sections to digitize could create selection bias Mitigation Strategy: Automate the selection process

Resources

- Tutorial: <u>Interpretable Machine Learning MLSS</u>, Kim (2021)
- Book: *Interpretable Machine Learning*, Molnar (2023)
- Software: shap, interpret.ml, captum, PySR, causalml