```
[> restart;
[> with( Physics[Vectors] ):
    Aufgabe
```

einfaches Modell für ein Wasserstoffmolekül

Zwei positive Punktladungen mit jeweils einer Ladung +e (die beiden Wasserstoffatomkerne) befinden sich innerhalb einer Kugel vom Radius R, die eine in ihrem Volumen homogen verteilte Ladung -2e (die gemeinsame Elektronenhülle) aufweist.

Die zwei Punktladungen sind symmetrisch zum Mittelpunkt der Kugel angeordnet.

Bestimmen Sie ihren Abstand a vom Kugelmittelpunkt, bei dem die resultierende Kraft auf jede der beiden Ladungen gleich null ist.

Skizze

Die homogen geladene Kugel ist grün dargestellt. Die beiden Punktladungen sind die roten Punkte. Aus dem Unterricht bekannt: Die Teilladung innerhalb der Kugel mit Radius a wirkt auf die 'roten' Punktladungen wie konzentriert in dem Mittelpunkt. Die Teilladung außerhalb der Kugel mit Radius a wirkt in der Summe nicht auf die Punktladungen. Dieses ist in der Formel (3) ausgedrückt.

Rechnung

(a) Formeln zusammensuchen.

Die elektrische Feldstärke E einer Punktladung aus [1] mit Q = Ladung, ϵ = elektrische Feldkonstante, r = Ort. > E_[p] (r_) = Q /(4*Pi*epsilon*r^2) * r_/abs(r_); $\vec{E}_p(\vec{r}) = \frac{Q \vec{r}}{4 \pi \epsilon r^2 |\vec{r}|}$ (1)

Der Betrag der elektrischen Feldstärke
> E[p](r_) = abs(Q) /(4*Pi*epsilon*r^2);

$$E_p(\vec{r}) = \frac{|Q|}{4\pi\varepsilon r^2} \tag{2}$$

Die elektrische Feldstärke E innerhalb einer Kugel mit homogener Ladungsverteilung aus [1] mit Q = Ladung der gesamten Kugel, R = Radius der geladenen Kugel, R = Radius der geladenen Kugel, R = Radius der Kugel.

> E_[k](r_) = Q * r /(4*Pi*epsilon*R^3) * r_/abs(r_); $\vec{E}_k(\vec{r}) = \frac{Q r \vec{r}}{4 \pi \epsilon R^3 |\vec{r}|}$ (3)

Der Betrag der elektrischen Feldstärke

> E[k] (r_) = abs(Q) * r /(4*Pi*epsilon*R^3);

$$E_k(\vec{r}) = \frac{|Q| r}{4 \pi \varepsilon R^3}$$
(4)

Die Kraft F auf eine Ladung q im elektrischen E ist

$$> F_{\underline{}} = q * E_{\underline{}};$$

$$\vec{F} = q \vec{E} \tag{5}$$

Der Betrag der Kraft

$$> F = abs(q)*E;$$

$$F = |q| E \tag{6}$$

(b) Formeln anwenden.

Feldstärke E_p der Punktladung e im Abstand 2a aus Gleichung (2).

>
$$E[p] = subs(abs(Q)=e,r=2*a,rhs((2)));$$

$$E_p = \frac{e}{16 \pi \varepsilon a^2} \tag{7}$$

Feldstärke E_k der geladenen Kugel (Radius R, Ladung 2e) im Abstand a vom Kugelmittelpunkt aus Gleichung (4).

> E[k] = subs(abs(Q) = 2*e, r=a, rhs((4)));

$$E_k = \frac{e \, a}{2 \, \pi \, \varepsilon \, R^3} \tag{8}$$

Die Kräfte auf die Punktladung e sollen sich zu 0 addieren. Die Kräfte aus den beiden elektrischen Felder sind genau entgegengesetzt gerichtet, an der Skizze abgelesen.

$$> 0 = q*E[p]-q*E[k];$$

$$0 = q E_p - q E_k \tag{9}$$

$$>$$
 simplify((9)/q);

$$0 = E_p - E_k \tag{10}$$

Einsetzen der Feldstärken aus (7) und (8).

> subs ((7), (8), (10));

$$0 = \frac{e}{16\pi\varepsilon a^2} - \frac{e\,a}{2\pi\varepsilon R^3} \tag{11}$$

Gleichung auflösen nach dem gesuchten Abstand a.

> simplify((11));

$$0 = \frac{e(R^3 - 8a^3)}{16\pi\epsilon a^2 R^3}$$
 (12)

> (12)*denom(rhs((12)))/e; $0 = R^3 - 8 a^3$ (13)

> solve((13), [a], useassumptions) assuming a>0, R>0: %[1][1]; $a = \frac{R}{2}$ (14)

-Hilfsmittel

- [1] Stöcker: Taschenbuch der Physik, Verlag Harri Deutsch
- [2] Maple 17, www.maplesoft.com