

Workshop 4

COMP90051 Statistical Machine Learning Semester 2, 2024

Learning outcomes

At the end of this workshop you should:

- Be able to explain how the regularization helps to solve the issues in linear regression
- Be able to implement the Ridge Regression
- Be able to implement the Lasso Regression
- Be able to explain the bias-variance trade-off

Regularization

- Regularisation: introduce an additional condition into the system
- The original problem is to minimise $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2$
- The regularised problem is to minimise

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$
 for $\lambda > 0$

The solution is now

$$\widehat{\mathbf{w}} = (\mathbf{X}'\mathbf{X} + \mathbf{\lambda}\mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$$

- This formulation is called ridge regression
 - Turns the ridge into a deep, singular valley
 - * Adds λ to eigenvalues of X'X: makes invertible

strictly convex

Ridge vs Lasso

• For illustrative purposes, consider a modified problem: minimise $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ subject to $\|\mathbf{w}\|_2^2 \le \lambda$ for $\lambda > 0$

- Lasso (L₁ regularisation) encourages solutions to sit on the axes
 - → Some of the weights are set to zero → Solution is sparse

Bias-Variance Trade-off

- simple model
 high bias, low variance
- complex model

 low bias, high variance

Bias-Variance Trade-off

Worksheet 4

 $= o - y^T x + 2w^T x^T x + q^W C I^T + I) = 0$

5

$$2dW^{T} + 2W^{T}X^{T}X = 2y^{T}X$$

$$W^{T}(2d+2X^{T}X) = 2y^{T}X$$

$$W^{T} = O y^{T}X(atX^{T}X)$$

$$W^{T} = O y^{T}X(atX^{T}X)$$

$$W^{T} = CXXtdx^{T}X^{T}Y$$