Data Processing using Excel

The script directory contains the python scripts to calculate the DFT and labeling the services. We use Excel to perform various transformations, cleaning, and join operations.

- 1. Merge the LocationProbe.csv file from each day into a single file.
- 2. Processing AccelerometerSensor.csv
 - a. Open the file in Excel
 - b. Transform the timestamp column to have 4 decimal places

c. Add a new column - Magnitude based on the squared sum of x, y, and z coordinate values.

d. Extract the timestamp and Magnitude values into a new file to be used as input for DFT calculation. Name it 'forDFT.csv'

	C3	÷	(3)	\bigcirc	(=	JX
4	Α			В		(
1	timestamp		mag	nitud	de	
2	1387869468.8	997	11.	691	309	
3	1387869468.9	113	11.8	303	748	
4	1387869468.9	231	11.8	303	748	
5	1387869468.9	349	12.0	301	189	
6	1387869468.9	469	13.2	0630	034	
7	1387869468.9	597	14.1	2090	048	
8	1387869468.9	714	14.2	9950	084	
9	1387869468.9	832	13.8	3738	802	
0	1387869468.9	948	12.9	7818	818	
1	1387869469.0	066	12.4	357	357	
12	1387869469.0	183	12.0	747	555	
3	1387869469 0	1295	11.6	4139	569	

3. Invoke DFT python script. The output is a new file with timestamp, magnitude and DFT coefficients for 1Hz, 2Hz, and 3Hz. Rename the output file as AccewithDFT.csv

4. Transform the timestamp column format to have 4 decimal places in the AccewithDFT.csv

- 5. Add a new worksheet in AccewithDFT.csv and name it "Location"
- 6. Open the LocationProbe.csv file and copy 3 columns "Timestamp", "mSpeed" and "mAccuracy" contents into the "Location" worksheet

		-	
	A	В	С
1	timestamp	mAccuracy	mSpeed
2	1387869466	6	0
3	1387869469	16	0
4	1387869469	905	0
5	1387869469	905	0
6	1387869469	905	0
1 2 3 4 5 6 7 8	1387869470	16	0
8	1387869470	905	0
9	1387869471	16	0
10	1387869474	16	0
11	1387869478	16	0
12	1387869478	905	0
13	1387869480	16	0
14	1387869484	16	0
15	1387869485	16	0
16	1387869485	905	0
17	1387869485	905	0
18	1387869485	905	0

- 7. Format the timestamp column in the "Location" worksheet to have 4 decimal places
- 8. Add a new column "t1" to contain rounded values from the timestamp column. We use a =ROUND(A2,0) formulae. Repeat it for all rows.

SQRT $\Rightarrow \bigotimes \bigcirc (fx) = rouf(a2,0)$						
4	A	В	(ROUND(number, num_digits)			
1	timestamp	t1	mAccuracy	mSpeed		
2	1387869466.0350	=round(a2,0)	6	0		
3	1387869468.8700	,	16	0		
4	1387869468.8850		905	0		

9. Going back the first worksheet containing the accelerometer and DFT data, we add a new column – Speed.

- 10. The speed column values are fetched from the "Location" worksheet, for the corresponding match in timestamp values. This is the join operation that we perform in Excel.
- 11. Add a formula =VLookUp() to fetch values from the "speed" column in the "Location" worksheet by matching "timestamp" column in the Acceleration worksheet and "t1" column in the "Location" worksheet.

fx =VLOOKUP(A2,Location!B:D,3,FALSE)							
C D E							
DFT_E1	DFT_E2	DFT_E3	Speed				
136.686705	139.957767	139.9 1	400				
144.88921	154.717869	157.27008					
130.188327	130.188327	126.902099					

- 12. Repeat this formulae for the entire speed column
- 13. Add a new column "Accuracy"
- 14. Add a formula =VLookUp() to fetch values from the "accuracy" column in the "Location" worksheet by matching "timestamp" column in the Acceleration worksheet and "t1" column in the "Location" worksheet.

fx =VLOOKUP(A2,Location!B:D,2,FALSE)							
C D E F G							
OFT_E1	DFT_E2	DFT_E3	Speed	Accuracy			
136.686705	139.957767	139.957767	0	4 16			
144.88921	154.717869	157.27668	0				
130.188327	130.188327	126.902099	0.8789924				
190.610632	188.24077	218.256882	1.0514463				
157.004430	140 000473	127 507470	^				

- 15. Repeat this formulae for the entire accuracy column
- 16. Now our columns should be in the order Timestamp, Magnitude, DFT_E1, DFT_E2, DFT_E3, Speed, Accuracy.

4	A	В	C	D	E	F	G	
1	timestamp	magnitude	DFT_E1	DFT_E2	DFT_E3	Speed	Accuracy	
2	1387869469.0000	11.691309	136.686705	139.957767	139.957767	0	16	
3	1387869485.0000	12.0369934	144.88921	154.717869	157.27668	0	16	
4	1387869493.0000	11.41001	130.188327	130.188327	126.902099	0.8789924	6	
5	1387869499.0000	13.8061809	190.610632	188.24077	218.256882	1.0514463	6	
6	1387869522.0000	12.5691861	157.984439	146.690473	127.597478	0	905	

17. We copy all rows and used the "paste special" feature to paste only the values into a new file. This is used to remove all references and formula mapping that existed in the previous worksheet.

18. Add a filter on the "Speed" column and select only "NA" values to be displayed

- 19. Delete all "NA" rows. These are rows for which data could not be joined between the LocationProbe and AccelerometerSensor files.
- 20. Remove all filters and export worksheet as a CSV file. Lets name it "AcceJoinedData.csv"
- 21. Invoke the addLabel Python script and use "AcceJoinedData.csv" file in the script as input.
- 22. The output of the script is another CSV file with the "label" column appended to our joined CSV file. Let us name the resultant file "ProcessedData.csv"

- 23. Open the "ProcessedData.csv" and apply filters on the "label" column. Select all "NA" rows and delete them.
- 24. Save this file as ProcessedAllData1.csv

25. Invoke SVM:

1. If this is the first file, then we directly train our model using it as the training set. From the command line, we invoke the R-script svmTraining.R with the file path and other parameters as below

Rscript svmTraining.R rocessed_Data_file> <kernel> <classification_type> <model_file_name>

Eg. Rscript svmTraining.R acee_combined.csv linear C-classification mode_of_transport_model

```
Shrikanths-MacBook-Air:jetty-distribution-9.1.0.v20131115 shri$
_model
Loading required package: class
Warning message:
package 'e1071' was built under R version 3.0.2
[1] "temp_data_dm_service/ProcessedAllData.csv"
[2] "linear"
[3] "C-classification"
[4] "mode_of_transport_model"
[1] "modelName: "
[1] "models/mode_of_transport_model.RData"
svm.default(x = x, y = y, type = c_type, kernel = kerneltype)
Parameters:
  SVM-Type: C-classification
SVM-Kernel: linear
       cost: 1
      gamma: 0.1428571
Number of Support Vectors: 156
 (68 56 21 11)
Number of Classes: 4
Levels:
auto bus stationary walking
```

- 2. If this is not the first file, we first invoke the SVM_test script and evaluate our model for the accuracy.
- 3. Now merge this file with the previous training data and train the SVM model again.

Rscript Rscripts/svmTesting.R <test_Data_Set> <model_file_path> <prediction_out_file> <matrix_file_path>

Eg. Rscript Rscripts/svmTesting.R Data2.csv models/mode_of_transport_model.RData predict.csv matrix.csv