ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Impurity impacts on the purification process in oxy-fuel combustion based CO₂ capture and storage system

H. Li ^{a,*}, J. Yan ^{a,b}, J. Yan ^c, M. Anheden ^c

- ^a Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- ^b School of Sustainable Development of Society and Technology, Mälardalen University, SE-721 23 Västerås, Sweden
- ^c Vattenfall Research and Development AB, SE-162 87 Stockholm, Sweden

ARTICLE INFO

Article history: Received 15 October 2007 Received in revised form 14 April 2008 Accepted 6 May 2008 Available online 7 July 2008

Keywords: Thermodynamic properties Impurity impacts Purification Oxy-fuel combustion CO₂ capture and storage

ABSTRACT

Based on the requirements of CO_2 transportation and storage, non-condensable gases, such as O_2 , N_2 and Ar should be removed from the CO_2 -stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO_2 -streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO_2 purity of separation product and CO_2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO₂; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of SO₂, and CO_2 purity of separation is more sensitive to the variation of SO₂, and CO_2 purity of separation is more sensitive to the variation of SO₂.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Oxy-fuel combustion is one of the promising approaches to CO₂ capture [1-5]. Since the combustion takes place in a low-nitrogen environment, it produces a flue gas that consists of mainly H₂O and CO₂. Therefore a simplified flue gas processing (CO₂ processing), which is essential to achieve a low cost for CO₂ capture, can be used instead of conventional means of CO₂ capture, like chemical absorption [6]. Fig. 1 shows the process scheme of CO₂ capture and storage (CCS) system based on oxy-fuel combustion capture. After preliminary flue gas cleaning, the flue gas contains around 75% [7] by volume CO₂ at atmosphere pressure. Firstly it is necessary to remove H₂O to reduce corrosion and to avoid ice or hydrate formation in the following processing steps. The moisture removal is achieved by compressed moisture condensation and dehydration, which are combined with initial CO2 compression. After drying, the CO₂-stream may go through a purification/liquefaction procedure, in which the non-condensable gases such as N₂, O₂ and Ar will be separated by physical separation to give >95 mol% of CO₂ [7]. Here compression, dehydration and purification/liquefaction are so-called CO₂ processing, which purpose is to provide a dense/liquid CO₂-stream for economic transport and storage,

and to meet a specification required by operation and safety. Finally CO₂-streams will be transported to storage reservoir by vessels or pipeline.

Compared with other approaches for CO_2 capture, such as precombustion capture and post-combustion capture, relatively high levels of impurities are expected in the captured CO_2 -stream from oxy-fuel combustion [5,7–9]. So it presents more challenges for the flue gas cleaning and processing procedures [6]. Oryshchyn [10] and White [11] have studied the processes of cleaning SO_2 and NO_x ; here we mainly focus on the removal of non-condensable gases.

Our previous results [12] show that impurities will affect the thermodynamic properties of CO₂-fluids greatly, and further affect on the design and operation of different CCS processes. Since the purification involves more significant phase changes of CO₂-streams, it is more meaningful to understand the impurity impacts on the purification process. However only a few of preliminary studies were addressed so far [13,14].

This paper is to investigate the impurity impacts on the $\rm CO_2$ purification in the oxy-fuel combustion based CCS system, including the impurity impacts on the thermodynamic properties of $\rm CO_2$ -streams under the operating conditions of purification, and the impurity impacts on the system parameters, such as the operation conditions of separation, the energy consumption of compression and condensation, $\rm CO_2$ purity of the purification product and $\rm CO_2$ recovery rate, which is defined as

^{*} Corresponding author. Tel.: +46 8 790 6528; fax: +46 8 7230858. E-mail addresses: hailong@ket.kth.se (H. Li), jinyue@kth.se (J. Yan).

Nomen	clature		
a, b C, c	parameters in Peng–Robinson EOS heat capacity	CRR DP	CO ₂ Recovery Rate dew point
H, h P R	enthalpy pressure gas constant	GERG EOS PSRK	GERG EOS equation of state Predictive-Redlich-Kwong-Soave
S, s T	entropy temperature	VLE	vapor liquid equilibrium
v W, w	molar volume work	Subscrip Ae, Be	ts component labels
x X	mole fraction in liquid phase total mole fraction	i p	component labels isobaric
$y \\ \alpha_{AB}$	mole fraction in vapor phase relative volatility	S T	isentropic isothermal
η	efficiency		
Abbrevi			
BP CCS	bubble point CO ₂ capture and storage		

Fig. 1. Process scheme of CCS system based on oxy-fuel combustion capture.

$$CRR = \frac{(Mole \ flow \times CO_2 Mole \ fraction)_{Production}}{(Mole \ flow \times CO_2 Mole \ fraction)_{Feed}} \tag{1}$$

Two configurations of purification were analyzed, including flash and distillation. The comparison results give some insights to and guidelines regarding the design and optimization for ${\rm CO_2}$ purification system.

2. Impurity impacts on thermodynamic properties

Normally the purification process includes three steps: CO₂-stream compression, CO₂-stream condensation and non-condensable gas separation. By changing the thermodynamic properties of CO₂-mixtures, impurities have great impacts on system design, operation and optimization. In Table 1, we summarized the relationships between thermodynamic properties and some system parameters of CO₂ purification. For example: the variation of impurity content would vary the VLE properties of CO₂-mixtures, which mainly mean the boiling and condensing behaviors. Since the

Table 1The relationship between thermodynamic properties and purification parameters

		Operation conditions	Energy consumption	Configuration	Separation performance
VLE	Dew point (DP)	√	\checkmark		
	Bubble point (BP)	\checkmark	\checkmark		\checkmark
	Difference of DP and BP	\checkmark	\checkmark	\checkmark	
	Heat capacity		\checkmark		
	Enthalpy and entropy		\checkmark		

physical separation can only be carried out above the mixture's condensing pressure, or below its condensing temperature, when the VLE properties are changed, correspondingly the operation conditions of the CO₂ compression/purification (e.g. the discharge pressure of compression and the condensation temperature)

Table 2Calculation methods for the thermodynamic properties of different CO₂-mixtures

	VLE	Enthalpy	Entropy
CO ₂ /O ₂ CO ₂ /N ₂ CO ₂ /Ar CO ₂ /SO ₂	PSRK GERG2004 GERG2004	GERG2004 GERG2004 GERG2004 PSRK	GERG2004 GERG2004 GERG2004 PSRK

should also be changed. Since the CO_2 purity of the separation product is the CO_2 mole fraction of saturated liquid, when the boiling behavior is changed, the performance of separation would be changed. In addition the variation of impurity content would also vary the enthalpy, entropy and heat capacity of CO_2 -mixtures. Since the energy consumptions of compression and refrigeration are decided by the enthalpy and entropy changes in those

Fig. 2. Phase diagrams of CO_2/Ar , CO_2/N_2 , and CO_2/O_2 based on the temperature and composition ranges of purification.

processes, as a result, impurities would affect the energy consumption. Therefore in order to understand the impurities' impacts on the purification system, their impacts on the thermodynamic properties must be known previously.

Generally the main impurities from oxy-fuel combustion are water, non-condensable gases, such as N_2 , O_2 and Ar, and SO_2 [6]. Since the moisture (H_2O) has been removed before the purification procedure, only the impurities, N_2 , O_2 , Ar and SO_2 , are studied in this paper. The possible ranges of impurity mole fraction are: Ar (0-5%), N_2 (0-15%), O_2 (0-7%) and SO_2 (0-1.5%). In order to analyze the impacts of impurities reasonably, the possible temperature and pressure windows are defined based on the operation conditions of the CO_2 purification: the temperature range: 218.15 to 248.15 K and pressure range: 2 to 5 MPa [7]. To pursue high accuracy, vari-

ous EOS have been used to calculate the thermodynamic properties of different CO₂-mixtures. According to the evaluation of the calculation methods on the thermodynamic properties of CO₂ and CO₂-mixtures [15–17], PSRK [18] and GERG2004 EOS [19] were employed to do the calculations in this study. More details are summarized in Table 2.

2.1. Impacts on VLE

Phase diagrams of binary CO_2 -mixtures, like CO_2/Ar , CO_2/N_2 and CO_2/O_2 are shown in Fig. 2. In the area marked A, both CO_2 and impurities are in the liquid phase; in the area marked as C, they are in the gas phase; in the area marked as B, which is between A and C, two phases co-exist.

Fig. 3. The relative volatilities of the non-condensable components regarding CO_2 .

Fig. 4. Heat capacity of different components at different temperatures.

Fig. 5. Enthalpies of different CO₂-mixtures in gas phase.

Compared with the saturated state of pure CO_2 , it is quite clear that the increment of non-condensable gases makes both the boiling pressure and condensing pressure of CO_2 -mixtures rise. And at high purity of CO_2 , for example $CO_2 > 70$ mol%, impurities have more remarkable impacts on bubble point than on dew point as indicated on the right side of Fig. 2.

The dew points of CO_2 -mixtures determine the operating conditions of purification. Although non-condensable impurities have quite similar impacts on the dew points of CO_2 -mixtures, comparatively the variation of N_2 impacts are bigger than those of O_2 and Ar. At a certain temperature, for example 223.15 K, if the impurities increase from 0 mol% to 5 mol%, the condensing pressure is increased by 0.429 bar by N_2 , 0.423 bar by O_2 and 0.424 bar by Ar, compared with pure CO_2 . It implies that condensing CO_2 -streams containing N_2 may be more difficult compared with other impurities with the same concentration. In addition, if the impurity mole fractions are within their possible ranges mentioned above, the dew point curves of all binary CO_2 -mixtures at different temperatures are almost linear and parallel, which means the increment of condensing pressure is approximately proportional to the mole fraction of impurities.

The bubble points of CO₂-mixtures determine the purity of purification product, because the CO2 mole fraction in saturated liquid is the CO₂ purity of the purification products. From Fig. 2, it is easy to see that at a certain temperature, the saturated mole fractions of CO₂ in the liquid phase of CO₂/N₂, CO₂/O₂ and CO₂/Ar go down along with the increment of pressure almost linearly. This means that the purity of CO₂ products is inverse proportion to the operating pressure that the higher the operating pressure is, the lower the CO₂ purity of product is. Comparatively the CO₂ purity of the purification products from separating CO₂/N₂ is less sensitive to the change of operating conditions than those from separating CO_2/O_2 and CO_2/Ar . For example at 223.15 K, if operating pressure is increased by 1 MPa, for the separation of CO_2/N_2 , CO_2/O_2 and CO₂/Ar, CO₂ purity in liquid phase is decreased by around 1.53%, 2.0% and 1.9%, respectively. In addition, in the possible impurity concentration ranges all bubble point curves at different temperatures are parallel, except those of CO₂/N₂. This implies CO₂ purity of the purification products may be increased by raising operating temperature, except separating CO_2/N_2 .

The difference between bubble and dew point indicates how easily the impurity could be separated. McCabe [20] points out that the mixtures with wide temperature differences can be separated easily. In addition, another parameter: relative volatility can be used to evaluate if the impurity could be separated. Relative volatility is defined as [20]

$$\alpha_{AB} = \frac{y_{Ae}/x_{Ae}}{y_{Be}/x_{Be}} \tag{2}$$

where α_{AB} is the relative volatility of component A compared to component B when the two component mixture under equilibrium conditions, y_{Ae} is the mole fraction of component A in vapor, x_{Ae} is the mol fraction of component A in liquid phase, y_{Be} and x_{Be} are the mol fractions of component B in vapor and liquid phase, respectively. Fig. 3 shows the relative volatilities of the non-condensable components regarding CO_2 . All of these display that N_2 could be much easily separated from the CO_2 -mixtures compared to the separation of Ar and O_2 .

 SO_2 has opposite impacts on the VLE properties of CO_2 -mixtures compared with O_2 , N_2 and Ar, because it would be condensed with CO_2 . This means that SO_2 will exist in the purification process studied here. Since SO_2 has a higher critical point than CO_2 , the presence of SO_2 in CO_2 -mixtures will increase the condensing

Table 3Basic parameters of compression

Parameters	Value	
Compression type	Isothermal and isentropic	
Stage	Single	
Isentropic efficiency	85%	
Suck T and P	293.15 K and 0.1013 MPa	
Discharging P	3 MPa	
Discharging T of cooling	293.15 K	
Flow rate	600 kg/h [24]	
Reference composition (mol) [7]		
CO ₂	76%	
O_2	6% (±3%)	
N_2	15% (±7%)	
Ar	2.5% (±2%)	
SO_2	0.5% (0-1.5%)	

temperature if the pressure is constant; or decrease the condensing pressure if the temperature is constant.

2.2. Impacts on the heat capacity

Heat capacity is a key parameter in the enthalpy and entropy calculation, so it is tightly related to the energy consumption of refrigeration. For mixtures, it can be calculated by

$$C_{\text{mixture}} = \sum_{i}^{n} C_{i} \times X_{i}$$
 (3)

where C_i is the heat capacity of pure component. There is an empirical equation on calculations of heat capacity [21].

$$C = C_1 + C_2 \left[\frac{C_3}{T} / \sinh\left(\frac{C_3}{T}\right) \right]^2 + C_4 \left[\frac{C_5}{T} / \cosh\left(\frac{C_5}{T}\right) \right]^2 \quad J/(kmol \ K)$$
(4)

Fig. 4 shows the heat capacities (C_i) of different pure substances at different temperatures. It indicates that C_{SO_2} is larger than C_{CO_2} , while C_{Ar} , C_{N_2} and C_{O_2} are smaller than C_{CO_2} . At the same operating temperature, the presence of SO_2 will increase; while the presence of Ar, O_2 and O_2 will lower the heat capacities of CO_2 -mixtures (C_{mix}). Therefore, more heat duty is needed when cooling or heating the CO_2 -mixtures containing SO_2 than the CO_2 -mixtures containing Ar, O_2 and O_2 and O_2 and O_3 and O_4 and O_4 and O_4 have quite similar heat capacities, which are impacted by temperature slightly.

2.3. Impacts on enthalpy

Fig. 5 shows the calculated enthalpies of different CO₂-mixtures at 303 K and 30 bar. It is clear that only SO₂ increases CO₂-mixture's enthalpy, which is mainly due to its higher heat capacity than that of CO₂. However, the enthalpy and entropy changes during the process are more important than the absolute enthalpy and

Fig. 6. Isothermal compression work and isentropic compression work at different compositions.

Fig. 7. Discharging temperature of isentropic compression at different compositions.

Fig. 8. Cooling duty required by isentropic compression.

Fig. 9. Process flow-sheet diagram of 2-stage-flash system.

Table 4Parameters of 2-stage-flash system

Parameters	Value
Flow rate	600 kg/h
Stage	2
Temperature of FEED	293.15 K
Operating pressure	3 MPa
Discharging temperature of Condenser 1	248.15 K
Discharging temperature of Condenser 2	218.15 K
Reference composition of FEED (mol%)	
CO_2	76%
O_2	6% (±3%)
N_2	15% (±7%)
Ar	2.5% (±2%)
SO ₂	0.5% (0-1.5%)

entropy values. Therefore more discussion about the impacts of impurities on enthalpy and entropy will be done in the following analysis on energy consumption.

3. Impurity impacts on purification process

With the understanding of impurity impacts on the thermodynamic properties of CO_2 -streams, we analyzed impurity impacts on purification process by simulating compression, condensation and non-condensable gas separation theoretically.

3.1. Impacts on the compression

Generally compression can be achieved in a number of ways, like undergoing an isothermal path, a polytropic path or an isotropic path. If we ignore the changes of kinetic energy and potential energy, the theoretical compression work required for a reversible steady flow process can be calculated by

$$w = \int v dP \tag{5}$$

where w is the compression work, v is volume, and P is pressure.

Theoretically the work required to compress a gas reversibly from a state to a final pressure is reduced as the compression path approaches the isothermal from the isotropic. However in an actual compression process, the isothermal compression is difficult to be realized and consequently it is a polytropic process. Due to the diversification of polytropic compression, the impurity impacts on isothermal compression and isentropic compression can only be studied instead. The results will give some insights regarding the impacts on polytropic compression.

With equations of state (EOS), the required work for an isothermal compression can be easily calculated from Eq. (5). For gas compression applications, the most frequently used equations of state are cubic EOSs, which include Redlich–Kwong, Peng–Robinson and Soave–Redlich–Kwong, Benedict–Webb–Rubin, Benedict–Webb–Rubin–Starling and Lee–Kessler–Ploecker [22]. It should be noted that the cubic equations are the most effective ways from a computational point of view, because the solution is found directly rather than through an iteration. In this study Peng–Robinson [23] EOS is chosen, so the theoretical isothermal compression work and isentropic compression work is

$$w_{T} = (P_{2}v_{2} - P_{1}v_{1}) + RT \ln \left(\frac{v_{1} - b}{v_{2} - b}\right) + \frac{\sqrt{2}a}{2b} \coth \left(\frac{\sqrt{2}(-2v_{2} - 2b)}{4b}\right) - \frac{\sqrt{2}a}{2b} \coth \left(\frac{\sqrt{2}(-2v_{1} - 2b)}{4b}\right)$$
(6)

$$w_{S} = \int_{T_{1}}^{T_{2}} \sum y_{i} c_{p,i}^{0} dT + h(T_{1}, P_{1}) - h(T_{2}, P_{2}) / \eta_{isentropic}$$
 (7)

Some basic parameters related to the calculation are summarized in Table 3. In the calculations done in Section 3, only the mole fractions of one impurity and CO_2 were varied at the same time, while the mole fractions of other components were kept constant at the reference concentration.

Fig. 6 shows the isothermal compression work and the isentropic compression work at different compositions. Both the isothermal compression work and the isentropic compression work drop along with the increment of SO₂ and decrements of O₂, N₂ and Ar,

almost linearly. Meanwhile comparatively the isothermal compression work is more sensitive to the change of SO_2 . When the mole fraction of SO_2 is changed by 1%, W_T is changed by 0.18 kW. However the isentropic compression work is more sensitive to the change of Ar. When the mole fraction of Ar is changed by 1%, W_S is changed by 0.36 kW.

Fig. 7 shows the discharging temperatures of isentropic compression of CO₂-mixtures with the variations of different impurities. The increments of mole fractions of all impurities except SO₂ will result in a higher discharging temperature. Ar has more significant impacts than other non-condensable gases. Due to the high discharging temperature of isentropic compression, cooling

Fig. 10. Change of CO₂ purity of 2-stage-flash product with feed composition.

Fig. 11. Change of CRR of 2-stage-flash product with feed composition.

Fig. 12. Change of condensing duty of 2-stage-flash with feed composition.

is needed before CO_2 -stream is liquefied. Since the cooling duty is determined by the discharging temperature, the trends impurities affect the cooling duty (shown in Fig. 8) are similar to those on the discharging temperature (shown in Fig. 7). Because SO_2 has much larger heat capacities than other components, the cooling duty is more sensitive to the variations of SO_2 .

3.2. Impacts on non-condensable gas separation

The principle of physical separation is that to non-azeotropic mixtures, the composition of a component in either liquid or gas phase can be increased or decreased by varying the temperature or pressure. Since all of CO_2/N_2 , CO_2/O_2 and CO_2/Ar are non-azeotropic, CO_2 -streams is able to be purified by such physical separation methods, like flash or distillation.

3.2.1. Flash system

Fig. 9 shows the process flow-sheet diagram of a 2-stage-flash system. The compressed CO₂-stream, FEED, first passes through Condenser 1 where it is cooled and partially condensed, then the liquid and vapor phases are separated in Flash 1; since the vapor from Flash 1, Stream 3, still contains a large proportion of CO₂, it goes into Condenser 2, being further cooled and partially condensed; and then Stream 5 is separated in Flash 2. The process is simulated by an in-house computer program. Some basic parameters related to the calculation are summarized in Table 4.

Figs. 10 and 11 show the changes of the CO_2 purity and CRR of the 2-stage-flash separation with feed compositions. Under the same operating conditions, the CO_2 purity of the purification product decreases when the mole fractions of impurities in FEED increase. SO_2 results in more influences than by others. For example, when the mole fraction of impurity is increased by 1%, the CO_2 purity of product is decreased by 1.38% by SO_2 , 0.25% by Ar, 0.09% by O_2 and 0.03% by N_2 , respectively. As to CRR, it also decreases when the mole fractions of impurities in FEED increase.

Due to the low condensing temperature, refrigeration is required, which means high energy consumption. Theoretical condensation duty is the sum of the enthalpy changes in Condenser 1 and Condenser 2. Because the flow rates of purification products

Fig. 13. Process flow-sheet diagram of distillation system.

Table 5 Parameters of distillation system

Parameters	Value
Flow rate	600 kg/h
Temperature of FEED	293.15 K
Operating pressure	3 MPa
Number of plates	5
CRR	92.15%
Reference composition of FEED (%mol)	
CO_2	76%
O_2	6% (±3%)
N_2	15% (±7%)
Ar	2.5% (±2%)
SO_2	0.5% (0-1.5%)

are varying with the compositions of FEED and operating conditions, it is more meaning to study the condensing duty recovering 1 kmol CO₂, instead of the total condensing duty. The results are shown in Fig. 12. Generally the condensing duty rises almost linearly along with the increments of mole fraction of impurities; and if the mole fraction of impurity rises by 1%, averagely the condensing duty is increased by 0.059 kW/kmolCO₂ by SO₂, 0.057 kW/kmolCO₂ by Ar, 0.064 kW/kmolCO₂ by O₂ and 0.066 kW/kmolCO₂ by N₂. It verifies the conclusion given above that condensation may cost more energy if more N₂ is included.

3.2.2. Distillation column

Fig. 13 shows the process flow-sheet diagram of distillation system. CO_2 -stream is fed in the middle of column and condensed partly at the top. When the liquid CO_2 -mixture flows downward, it is heated by fed CO_2 -stream and non-condensable gases are separated. The simulations on distillation are carried out in Aspen Plus. Some basic parameters related to the calculation are summarized in Table 5. Here the CRR of distillation is set as 92.15%, which is got by running 2-stage-flash at the reference composition of FEED.

From Fig. 14 it is easy to see that the increments of impurity mole fraction decrease the CO_2 purity of distillation product, and the increment of SO_2 has much more important impacts than other

impurities. Fig. 15 shows the change of the distillation condensing duty with feed compositions. If the mole fraction of impurity rises by 1%, averagely the condensing duty recovering 1 kmol CO_2 is increased by 0.088 kW by SO_2 , 0.030 kW by Ar, 0.031 kW by O_2 and 0.032 kW by N_2 .

We compared the performances of the 2-stage-flash system and the distillation column in Fig. 16. Results show that running at the same CRR and TPX conditions of FEED, the distillation column requires less energy, about 21% less, than the 2-stage-flash system. In addition the distillation column can produce a stream with higher $\rm CO_2$ purity than the 2-stage-flash system, which is important to reduce the volume to be transported and benefit the transportation process.

Fig. 14. Change of CO₂ purity of distillation product with feed composition.

Fig. 15. Change of condensing duty of distillation with feed compositions.

Fig. 16. Performance comparison between 2-stage-flash and distillation column.

4. Discussions

For an optimum purification process in CCS, we desire stable operation, low energy consumption, simple configurations and high CO₂ purity in product, when CRR is kept consistent.

From the view point of stable operation: in general the concentration variations of all components may vary the purification process in all aspects, but in different degrees. Comparatively the non-condensable gases have quite similar impacts on the condensing conditions, SO₂ has more severe impacts on the CO₂ purity of product, and Ar has more obvious impacts on compression work. In order to stabilize the operation, the fraction fluctuations of impurities must be avoided, especially those of SO₂ and Ar.

From the view point of energy consumption, firstly because the increments of non-condensable gases may increase both compression work and the condensation duty of separation, the air leakage and excess oxygen in combustion should be controlled in a low level, secondly it should make the actual compression path approach the isothermal compression, which means that the compressors with good cooling or the multi-stage compression with intercooling are more desirable; and thirdly the distillation column is more preferable than flash systems.

From the view points of configuration and CO_2 purity of product, there is a conflict that simple configuration and high CO_2 purify cannot be achieved at the same time. Compared with the flash systems, the distillation columns have more complicated configurations, but are capable of producing CO_2 -streams with higher CO_2 purity.

5. Conclusions and recommendations

Due to the existence of impurities, the thermodynamic properties of CO₂-streams are changed clearly, and consequently the design and operation of purification process in the oxy-fuel combustion are significantly impacted. The conclusions can be drawn as follows:

 The presence of non-condensable gases makes condensation more difficult and results in the increased pressure require-

- ments for the condensation of the CO_2 -mixtures. Comparatively the operating conditions are more sensitive to the concentration variations of N_2 than those of O_2 and Ar.
- (2) Separating N_2 from CO_2 is much easier than separating O_2 and Ar. Under the same purification conditions, separating CO_2/N_2 has a higher CO_2 purity in the product, compared with separating CO_2/O_2 and CO_2/Ar .
- (3) The presence of SO₂ results in higher heat capacities of CO₂-mixtures while the presences of O₂, Ar and N₂ give lower heat capacities of CO₂-mixtures. Thus, the enthalpy and entropy of CO₂-streams are increased with the increment of SO₂, while decreased with the increment of O₂, Ar and N₂.
- (4) Comparatively the isothermal compression work is more sensitive to the concentration variations of SO₂; while the isentropic compression work is more sensitive to the concentration variations of Ar. Moreover in order to save energy, it is much more desirable to compress CO₂-mixtures containing non-condensable gases in the process which is close to isothermal compression.
- (5) Compared to flash column, distillation column requires less condensation duty. The energy saving is around 21% if CRR is 92.15%.

Acknowledgement

Financial supports from Swedish Energy Agency (STEM), EU and Vattenfall are gratefully acknowledged.

References

- [1] Novak R, Lang G. Method for carbon dioxide recovery from a feed stream, Patent EP0964215; 1999.
- [2] Buhre BJP, Elliott LK, Sheng CD, Gupts RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energ Combust Sci 2005;31:283–307.
- [3] IPCC Special report on carbon dioxide capture and storage; 2005.
- [4] Heggum G, Weydahl T, Roald W, Mølnvik M, Austegard A. CO₂ conditioning and transportation, carbon dioxide capture for storage in deep geologic formations, vol. 2. Elsevier Inc.; 2005.
- [5] Kvamsdal HM, Jordal K, Bolland O. A quantitative comparison of gas turbine cycles with CO₂ capture. Energy 2007;32:10–24.

- [6] Yan J, Anheden M, Lindgren G, Stroberg L. Conceptual development of flue gas cleaning for CO₂ capture from coal-fired oxyfuel combustion power plant. In: Eighth international conference on greenhouse gas control technologies, June 19–22, Trondheim, Norway; 2006.
- [7] IEA Greenhouse Gas R&D Programme. Oxy combustion processes for CO₂ capture from power plants. Report No. 2005/09; 2005.
- [8] IEA Greenhouse Gas R&D Programme. Potential for improvement in gasification combined cycle power generation with capture of CO₂. Report No. PH4/19; 2003.
- [9] IEA Greenhouse Gas R&D Programme. Improvement in power generation with post-combustion capture of CO₂. Report No. PH4/33; 2004.
- [10] Oryshchyn D, Ochs T, Gerdemann S, Summers C, Patrick B. Developments in integrated pollutant removal for low-emission oxy-fuel combustion. In: Eighth international conference on greenhouse gas control technologies (GHGT-8), June, Trondheim, Norway; 2006.
- [11] White V, Allam R, Miller E, Purification of oxyfuel-derived CO₂ for sequestration or EOR. In: Eighth international conference on greenhouse gas control technologies (GHGT-8), June, Trondheim, Norway; 2006.
- [12] Li H, Yan J. Impact of impurities in CO₂-fluids on CO₂ transport process. In: Proceedings of GT2006, ASME turbo expo 2006: power for land, sea and air, May 8–11, Barcelona, Spain; 2006.
- [13] Li H, Yan J. Preliminary study on CO₂ processing in CO₂ capture from oxy-fuel combustion. In: Proceedings of GT2007, ASME turbo expo 2007: power for land, sea and air, May 14–17, Montreal Canada; 2007.
- [14] Aspelund A, Jordal K. Gas conditioning the interface between CO₂ capture and transport. Int J Greenhouse Gas Control 2007;1(3):343–54.

- [15] Li H, Ji X, Yan J. A new modification on RK EOS for gaseous CO_2 and gaseous mixtures of CO_2 and H_2O . Int J Energ Res 2006;30(3): 135–48
- [16] Li H, Yan J. Comparative study of equations of state (EOS) for CO₂ transportation in pipeline. In: Eighth international conference on greenhouse gas control technologies, June 19–22, Trondheim, Norway; 2006.
- [17] Li H, Yan J, Yan J, Anheden M. Evaluation of existing methods for the thermodynamic property calculation of CO₂-mixtures. Vatterfall Report; 2007.
- [18] Holderbaum T, Gmehling J. PSRK a group contribution equation of state based on UNIFAC. Fluid Phase Equilibr 1991;70:251–65.
- [19] Kunz O, Klimeck R, Wagner W, Jaeschke M. The GERG-2004 wide-range reference equation of state for natural gases. GERG technical monograph. Düsseldorf: Forschr.-Ber.VDI-Verlag; 2005.
- 20] McCabe WL, Smith JC. Unit operations of chemical engineering. McGraw-Hill Kogakusha Ltd.; 1976.
- [21] Perry RH, Green DW. Perry's chemical engineer's handbook. McGraw-Hill; 1997.
- [22] Mokhatab S, Poe WA, Speight JG. Handbook of natural gas transmission and processing. Elsevier Inc.; 2006.
- [23] Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam 1976;15:59–64.
- [24] Zanganeh KE, Shafeen A, Gupta M, Salvador C, Pearson B. Comparative performance evaluation of CO₂ compression and capture units for fossil fuel plants. In: Eighth international conference on greenhouse gas control technologies, June 19–22, Trondheim, Norway; 2006.