Guiões de Cálculo I - Agrupamento 2

Guião 3

CÁLCULO INTEGRAL

Paula Oliveira

2021/22

Universidade de Aveiro

Conteúdo

6	Cal	Calculo Integral							
	6.1	Introdução ao Cálculo Integral	1						
	6.2	Partição de um intervalo	2						
	6.3	Integral definido	3						
	6.4	Critérios de Integrabilidade	6						
	6.5	Propriedades do integral definido	7						
	6.6	Integral indefinido							
		6.6.1 Primeiro Teorema Fundamental do Cálculo Integral (T.F.C.I.)	10						
		6.6.2 Segundo Teorema Fundamental do Cálculo Integral (T.F.C.I.)	11						
		6.6.3 Substituição no integral definido	12						
	6.7	Aplicação do integral de Riemann ao cálculo de áreas	14						
		6.7.1 Área compreendida entre duas curvas	15						
	6.8	Exercícios do capítulo	17						

Capítulo 6

Cálculo Integral

6.1 Introdução ao Cálculo Integral

Como calcular a área A de uma região do plano limitada pelo eixo Ox e pelo gráfico de uma função contínua não negativa definida num dado intervalo [a, b]?

Figura 6.1: Área limitada pelo gráfico de uma função, pelo eixo das abcissas e duas retas verticais.

Podemos obter valores aproximados dessa área considerando retângulos como ilustrado nas figuras 6.2, 6.3 e 6.4.

Figura 6.2: Aproximação 1.

Figura 6.3: Aproximação 2.

Figura 6.4: Aproximação 3.

 A^* , A_m e A_M são valores aproximados da área A. Podemos determinar esses valores conhecendo a função f e, sendo retângulos, as suas áreas são dadas por $comprimento \times largura$. Assim,

1.
$$A_m = \sum_{i=1}^{5} m_i(x_i - x_{i-1})$$
, onde m_i é o mínimo global de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \dots, 5$

2.
$$A_M = \sum_{i=1}^{5} M_i(x_i - x_{i-1})$$
, sendo M_i o máximo global de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \dots, 5$

3.
$$A^* = \sum_{i=1}^{5} f(x_i^*)(x_i - x_{i-1}), \text{ com } x_i^* \in [x_{i-1}, x_i], i = 1, \dots, 5.$$

Note-se que

$$A_m \le A \le A_M \qquad A_m \le A^* \le A_M$$

Intuitivamente, poder-se-á esperar que quanto maior for o número de subintervalos de [a,b] considerados, menor será o erro que se comete ao aproximar A por cada um dos processos indicados, contudo isso não será necessariamente assim, pois depende da escolha dos subintervalos...

6.2 Partição de um intervalo

Definição 6.1. Chama-se partição do intervalo [a,b], com a < b, a um conjunto finito de pontos de [a,b]

$$\mathcal{P} = \{x_0, x_1, \dots, x_n\},\,$$

tal que $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

Figura 6.5: Partição de um intervalo.

Note-se que os pontos x_0, x_1, \ldots, x_n determinam uma divisão do intervalo [a, b] em n subintervalos $[x_{i-1}, x_i]$, com $i = 1, \ldots, n$, de amplitudes $\Delta x_i = x_i - x_{i-1}$.

Definição 6.2. Chama-se amplitude ou diâmetro de uma partição $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$, e denota-se por $|\mathcal{P}|$, à maior das amplitudes dos subintervalos $[x_{i-1}, x_i]$, $i = 1, \dots, n$, isto é,

$$|\mathcal{P}| = \max \left\{ \Delta x_i : i = 1, \dots, n \right\}.$$

Exemplo 6.1. Seja $\mathcal{P} = \left\{-2, -\frac{3}{2}, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ uma partição do intervalo [-2, 1]. O diâmetro da partição é

$$|\mathcal{P}| = \max\left\{-\frac{3}{2} - (-2), -\frac{1}{2} - \left(-\frac{3}{2}\right), 0 - \left(-\frac{1}{2}\right), \frac{1}{2} - 0, 1 - \frac{1}{2}\right\} = \max\left\{\frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} = 1$$

Definição 6.3. Chama-se conjunto compatível com a partição $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ a todo o conjunto

$$\mathcal{C} = \{x_1^*, x_2^*, \dots, x_n^*\}$$

tal que, para cada $i = 1, 2, \ldots, n$

$$x_i^* \in [x_{i-1}, x_i].$$

Definição 6.4. Chama-se partição regular de amplitude $\Delta = \frac{b-a}{n}$ do intervalo [a,b], com a < b, ao conjunto de pontos

$$\mathcal{P} = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\},\,$$

$$com x_i = a + i\Delta = a + i\frac{b-a}{n}$$
, para $i = 0, \dots, n$.

Note-se que neste tipo de partições se tem:

- $x_0 = a e x_n = b$;
- $x_i x_{i-1} = \frac{b-a}{n}$; logo todos os subintervalos têm a mesma amplitude que é precisamente o diâmetro da partição.

6.3 Integral definido

Definição 6.5. Seja f uma função definida num intervalo [a,b]. Dada uma partição \mathcal{P} , definimos a Soma Superior $S_f(\mathcal{P})$ e a Soma Inferior $I_f(\mathcal{P})$ para a partição \mathcal{P} , como sendo respetivamente

1.
$$S_f(\mathcal{P}) = \sum_{i=1}^n M_i(x_i - x_{i-1})$$
, sendo M_i o supremo de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \ldots, n$

2.
$$I_f(\mathcal{P}) = \sum_{i=1}^n m_i(x_i - x_{i-1})$$
, sendo m_i o ínfimo de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \ldots, n$

caso m_i e M_i , i = 1, ..., n, existam.

Figura 6.6: Soma superior.

Figura 6.7: Soma inferior.

Definição 6.6. Sejam f uma função definida num intervalo [a,b], $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$ uma partição de [a,b] e $\mathcal{C} = \{x_1^*, x_2^*, \ldots, x_n^*\}$ um conjunto compatível com a partição \mathcal{P} . A soma de Riemann de f relativamente à partição \mathcal{P} e ao conjunto \mathcal{C} , $S_f(\mathcal{P}, \mathcal{C})$, \acute{e} o número real

$$S_f(\mathcal{P}, \mathcal{C}) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}).$$

Se f é contínua e limitada em [a,b] então $S_f(P)=S_f(P,C)$ onde C é o conjunto dos maximizantes de f em cada subintervalo determinado pela partição P. Analogamente, $I_f(P)=S_f(P,C)$ onde C é o conjunto dos minimizantes.

Exercício resolvido 6.1. Seja $f(x) = x^2$, com $x \in [0, 1]$, $\mathcal{P} = \{0, \frac{1}{3}, \frac{1}{2}, 1\}$ e $\mathcal{C} = \{x_i^* = x_{i-1} : i = 1, 2, 3\}$. Determine $S_f(\mathcal{P}, \mathcal{C})$.

Figura 6.8: Área limitada pelo gráfico da função $f(x) = x^2$.

Resolução do exercício 6.1.

$$S_f(\mathcal{P}, \mathcal{C}) = f(0) \left(\frac{1}{3} - 0\right) + f\left(\frac{1}{3}\right) \left(\frac{1}{2} - \frac{1}{3}\right) + f\left(\frac{1}{2}\right) \left(1 - \frac{1}{2}\right) = 0 \cdot \frac{1}{3} + \frac{1}{9} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{2} = \frac{31}{216}.$$

Tem sentido dizer que $S_f(\mathcal{P}, \mathcal{C})$ é um valor aproximado da área da região assinalada na figura 6.8?

Exercício 6.1 Considere a função definida na Figura 6.8.

- 1. Se $C_1 = \{x_i^* = x_i : i = 1, 2, 3\}$, determine $S_f(\mathcal{P}, C_1)$.
- 2. Se $C_2 = \{x_i^* = \frac{x_{i-1} + x_i}{2}, i = 1, 2, 3\}$, determine $S_f(\mathcal{P}, C_2)$.
- 3. Se $\mathcal{P}' = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$ e $\mathcal{C}' = \{x_i^* = x_{i-1} : i = 1, 2, 3, 4\}$ determine $S_f(\mathcal{P}', \mathcal{C}')$.

Exercício 6.2 Seja $g(x) = -x^2$, com $x \in [0,1]$, $\mathcal{P} = \{0, \frac{1}{3}, \frac{1}{2}, 1\}$ e $\mathcal{C} = \{x_i^* = x_i : i = 1, 2, 3\}$. Determine $S_g(\mathcal{P}, \mathcal{C})$.

Figura 6.9: Área limitada pelo gráfico da função $f(x) = -x^2$.

Será que neste caso tem sentido dizer que $S_g(\mathcal{P}, \mathcal{C})$ é um valor aproximado da área da região assinalada na figura 6.9?

Definição 6.7. Seja f uma função definida num intervalo [a,b]. Diz-se que f \acute{e} integrável em [a,b] se existir um número real I tal que

$$\lim_{n\to+\infty} S_f(\mathcal{P}_n,\mathcal{C}_n) = I,$$

para toda a sucessão $(\mathcal{P}_n)_{n\in\mathbb{N}}$ de partições de [a,b] com $\lim_{n\to+\infty} |\mathcal{P}_n| = 0$ e para toda a sucessão $(\mathcal{C}_n)_{n\in\mathbb{N}}$ tal que, para cada $n\in\mathbb{N}$, \mathcal{C}_n é compatível com \mathcal{P}_n .

Se f é integrável em [a,b], a este valor chamamos integral de Riemann da função f entre a e b e designa-se pelo símbolo

$$\int_{a}^{b} f(x)dx,$$

onde a é o limite inferior de integração, b é o limite superior de integração e x a variável de integração.

Observação 6.1. Na definição de integral de Riemann pressupõe-se que a < b. Dá-se, no entanto, significado a $\int_a^b f(x)dx$ quando a > b ou a = b:

- Se a > b, $\int_a^b f(x)dx = -\int_b^a f(x)dx$ (se o integral do $2^{\underline{o}}$ membro existir).
- Se a = b, $\int_a^b f(x)dx = \int_a^a f(x)dx = 0$.

Como consequência da definição 6.7, temos

Proposição 6.1. Seja f uma função limitada num intervalo [a,b] e \mathcal{P} o conjunto de todas as partições de [a,b]. Diz-se que f \acute{e} integrável em [a,b] se e só se o ínfimo das somas superiores \acute{e} igual ao supremo das somas inferiores,

$$\inf\{S(P): P \in \mathcal{P}\} = \sup\{I(P): P \in \mathcal{P}\} = I,$$

e nesse caso,

$$\int_{a}^{b} f(x) \, dx = I.$$

Se f é integrável em [a,b], para calcular $\int_a^b f(x)dx$ pode-se considerar uma qualquer sucessão de partições de [a,b] cujo diâmetro tenda para zero.

É usual considerar a sucessão $(\mathcal{P}_n)_{n\in\mathbb{N}}$ de partições regulares de [a,b] $\left(\text{com }\Delta=\frac{b-a}{n}\right)$, tal que, para cada $n\in\mathbb{N}$,

$$\mathcal{P}_n = \{x_0, x_1, \dots, x_n\},\,$$

com
$$x_i = a + i \frac{b-a}{n}$$
, $i = 0, 1, ..., n$.

Repare-se que neste caso

$$\lim_{n \to +\infty} |\mathcal{P}_n| = \lim_{n \to +\infty} \frac{b-a}{n} = 0.$$

Exercício 6.3 Seja f, tal que f(x) = c, $\forall x \in \mathbb{R}$. Sabendo que f é integrável em qualquer intervalo fechado e limitado de \mathbb{R} , mostre que, para cada $a, b \in \mathbb{R}$

$$\int_{a}^{b} c \, dx = c(b - a).$$

Exercício 6.4 Sabendo que a função dada por f(x) = 2x + 1, é integrável em [0,3], calcule

$$\int_0^3 (2x+1)dx.$$

Exemplo 6.2. Seja

$$f(x) = \begin{cases} 0, & x \in [0, 1] \cap \mathbb{Q} \\ 1, & x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

Vejamos que f não é integrável em [0,1]. Consideremos uma qualquer partição P de [0,1].

Uma vez que o supremo de f no intervalo $[x_{i-1}, x_i]$ é 1 e que o ínfimo de f nesse intervalo é 0, para todo $n \in \mathbb{N}$ resulta

$$S(P) = \sum_{i=1}^{n} 1 \times (x_i - x_{i-1}) = \sum_{i=1}^{n} (x_i - x_{i-1}) = 1 \quad \text{e} \quad I(P) = \sum_{i=1}^{n} 0 \times (x_i - x_{i-1}) = 0.$$

Logo

$$\inf\{S(P): P \in \mathcal{P}\} = 1 \neq 0 = \sup\{I(P): P \in \mathcal{P}\},\$$

onde \mathcal{P} é o conjunto de todas as partições de [0,1].

Exemplo 6.3. Seja f(x) = x, $x \in [0,1]$. Consideremos as partições regulares do intervalo [0,1] de diâmetro $\frac{1}{n}$.

Notemos que, como f é uma função crescente, o supremo de f no intervalo $[x_{i-1}, x_i]$ é $f(x_i) = x_i = \frac{i}{n}$ e o ínfimo é $f(x_{i-1}) = x_{i-1} = \frac{i-1}{n}$. Logo

1.
$$S(P) = \sum_{i=1}^{n} x_i(x_i - x_{i-1}) = \frac{1}{n^2} \sum_{i=1}^{n} i = \frac{1}{n^2} \times \frac{1+n}{2} \times n = \frac{1+n}{2n};$$

2.
$$I(P) = \sum_{i=1}^{n} x_{i-1}(x_i - x_{i-1}) = \frac{1}{n^2} \sum_{i=1}^{n} (i-1) = \frac{1}{n^2} \times \frac{0+n-1}{2} \times n = \frac{n-1}{2n};$$

e portanto,

$$\inf\{S(P): P \in \mathcal{P}\} = \frac{1}{2} = \sup\{I(P): P \in \mathcal{P}\}.$$

Logo a função é integrável em [0,1] e $\int_0^1 f(x)dx = \frac{1}{2}$.

6.4 Critérios de Integrabilidade

Nesta secção iremos apresentar alguns resultados que nos permitem determinar a integrabilidade de de algumas funções.

Teorema 6.1. Seja f uma função definida num intervalo [a,b]. Se f \acute{e} contínua em [a,b], então f \acute{e} integrável em [a,b].

Teorema 6.2. Seja f uma função definida num intervalo [a,b]. Se f é limitada em [a,b] e é descontínua apenas num número finito de pontos de [a,b], então f é integrável em [a,b].

Teorema 6.3. Seja f uma função definida num intervalo [a,b]. Se f \acute{e} monótona em [a,b], então f \acute{e} integrável em [a,b].

Teorema 6.4. Sejam f e g funções definidas em [a,b]. Se f é integrável em [a,b] e g difere de f apenas num número finito de pontos, então g é integrável em [a,b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

Teorema 6.5. Se f é integrável em [a,b], então f é limitada em [a,b].

Exemplo 6.4. A função definida por

$$f(x) = \begin{cases} \frac{1}{x^2} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

é integrável em qualquer intervalo fechado que não contenha o 0, mas não é integrável em [a,0] (a < 0) ou [0,b] (b > 0) já que não é limitada nesses intervalos, bem como em nenhum outro intervalo [a,b] tal que $0 \in [a,b]$.

O facto de f ser limitada em [a,b] não garante que f seja integrável em [a,b]. Considere-se por exemplo a função definida por

$$f(x) = \begin{cases} 0 & , x \in \mathbb{Q} \cap [0, 1] \\ 1 & , x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

que é limitada mas não é integrável (confrontar exemplo 6.2).

Exercício 6.5 Estude quanto à integrabilidade, nos respetivos domínios, as seguintes funções:

1.
$$f(x) = \begin{cases} \frac{\operatorname{sen} x}{x}, & x \in [-1, 2] \setminus \{0\} \\ 1, & x = 0 \end{cases}$$
 2. $g(x) = \begin{cases} e^x, & x \in [1, 5] \setminus \mathbb{Z} \\ x^3 + \ln x, & x \in [1, 5] \cap \mathbb{Z} \end{cases}$ 3. $h(x) = \begin{cases} 1, & 0 \le x < 1 \\ 3, & 1 \le x \le 3 \end{cases}$

$$4. \ h(x) = \begin{cases} \ln|x|, & 0 < x \le 1 \\ 0, & x = 0 \end{cases}$$

$$5. \ i(x) = \begin{cases} \operatorname{tg} x, & x \in [0, \frac{\pi}{2}[$$

$$2, & x = \frac{\pi}{2} \\ \operatorname{sen} x + \cos(2x), & x \in [\frac{\pi}{2}, \pi] \end{cases}$$

Exercício 6.6 Mostre que $\int_0^1 (x^3 - 6x) dx = -\frac{11}{4}$ sabendo que

$$\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \quad \text{e} \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

Exercício 6.7 Seja g a função definida por

$$g(x) = \begin{cases} x, & x \neq 1 \\ 2, & x = 1 \end{cases}.$$

A função g é integrável em [0,2]? Em caso afirmativo calcule $\int_0^2 g(x) dx$.

6.5 Propriedades do integral definido

Neste secção iremos apresentar algumas propriedades do integral definido que serão utilizadas para calcular alguns integrais.

Teorema 6.6. Sejam f e g funções integráveis em [a,b] e $\alpha \in \mathbb{R}$. Então αf e f+g são funções integráveis em [a,b] e

•
$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$$
.

•
$$\int_a^b \left(f(x) + g(x) \right) dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Teorema 6.7. Seja f uma função integrável em [a,b]. Então, f é integrável em qualquer subintervalo de [a,b] e se $c \in [a,b[$, f é integrável em [a,c] e [c,b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Exemplo 6.5. Seja f a função definida em [-1,1] por

$$f(x) = \begin{cases} x & \text{se} & x \in [0, 1] \\ \\ 2 & \text{se} & x \in [-1, 0[\end{cases}$$

Então

$$\int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx = \int_{-1}^{0} 2 \, dx + \int_{0}^{1} x \, dx$$

Teorema 6.8. Seja f uma função integrável em [a,b]. Se $f(x) \ge 0$ para todo o $x \in [a,b]$, então

$$\int_{a}^{b} f(x)dx \ge 0.$$

Na hipótese de f ser integrável em [a, b], será que se pode afirmar que:

1. se
$$\int_a^b f(x)dx = 0$$
 então $f(x) = 0, \forall x \in [a, b]$?

2. se
$$\int_a^b f(x)dx \ge 0$$
 então $f(x) \ge 0, \forall x \in [a,b]$?

Exemplo 6.6. Seja $f(x) = x, x \in [-1, 1]$. Temos que

$$\int_{-1}^{1} x \, dx = 0$$

e a função não é a função nula em [-1, 1].

Exemplo 6.7. Seja $f(x) = x, x \in [-1, 2]$. Temos que

$$\int_{-1}^{2} x \, dx > 0$$

e a função não é positiva em [-1, 2].

Teorema 6.9. Se f é integrável em [a,b] e se existem constantes $m, M \in \mathbb{R}$ tais que,

$$m \le f(x) \le M$$
, para todo o $x \in [a, b]$,

 $ent\~ao$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

Exemplo 6.8. Seja $f(x) = \frac{1}{1 + \sqrt{x^2 + 1}}$ em [-5, 10]. Como $0 \le f(x) \le \frac{1}{2}$, $\forall x \in [-5, 10]$, podemos afirmar que

$$0 \le \int_{-5}^{10} f(x) \, dx \le \frac{1}{2} \times 15.$$

Teorema 6.10. Se f e g são duas funções integráveis em [a,b] e se $f(x) \leq g(x)$, para todo o $x \in [a,b]$, então

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Exemplo 6.9. Sejam $f(x) = \frac{e^x}{x+1}$ e $g(x) = e^x$ definidas em [1,3].

Como $f(x) \leq g(x), \forall x \in [1, 3], \text{ temos}$

$$\int_{1}^{3} \frac{e^{x}}{x+1} \, dx \le \int_{1}^{3} e^{x} \, dx.$$

Teorema 6.11. Seja f uma função integrável em [a,b]. Então |f| é integrável em [a,b] e

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Exemplo 6.10.

$$\left| \int_0^{\pi} \sin x \, dx \right| \le \int_0^{\pi} |\sin x| \, dx.$$

Teorema 6.12. Se f e g são duas funções integráveis em [a,b], então $f \cdot g$ é integrável em [a,b].

Atenção: No teorema anterior apenas se afirma que o produto de funções integráveis é integrável, mas <u>não é verdade</u> que $\int_a^b f(x) \cdot g(x) dx = \int_a^b f(x) dx \cdot \int_a^b g(x) dx$.

Teorema 6.13. (Teorema do valor médio para integrais) Se f é uma função contínua num intervalo [a,b], então existe $c \in [a,b]$ tal que,

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Suponha que f(x) > 0, para todo $x \in [a, b]$ e interprete geometricamente o teorema dado.

6.6 Integral indefinido

Seja f uma função integrável num intervalo I e $a \in I$. Para cada $x \in I$, tem-se que f é integrável no intervalo fechado de extremos a e x sendo, portanto, possível definir a seguinte função:

$$F: I \to \mathbb{R}$$

$$x \to F(x) = \int_{a}^{x} f(t)dt$$

Note-se que esta função se anula em x = a. Porquê?

Teorema 6.14. Seja f uma função integrável num intervalo I e $a \in I$. A função definida em I por $F(x) = \int_a^x f(t)dt$ \acute{e} contínua em I.

Demonstração. Seja $x_0 \in I$ e consideremos que $x_0 < x$ (análogo se $x_0 > x$). Então, como f é integrável em I, existe $\int_a^{x_0} f(t)dt = F(x_0)$. Assim,

$$F(x) - F(x_0) = \int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt.$$

Como f é integrável em I, f é limitada neste intervalo e consequentemente é limitada em $[x_0, x]$, isto é, existem $m \in M$ em \mathbb{R} tais que

$$m \le f(t) \le M, \ \forall t \in [x_0, x].$$

Então, pelo teorema 6.9,

$$m(x - x_0) \le \int_{x_0}^x f(t)dt \le M(x - x_0).$$

Como $\lim_{x \to x_0} (x - x_0) = 0$, resulta que

$$\lim_{x \to x_0} \left(F(x) - F(x_0) \right) = 0 \Leftrightarrow \lim_{x \to x_0} F(x) = F(x_0),$$

ou seja, F é contínua em x_0 (ponto arbitrário de I).

Exemplo 6.11. Dada a função $f: \mathbb{R} \to \mathbb{R}$, definida por, $f(x) = \ln 2$, seja $F: \mathbb{R} \to \mathbb{R}$ a função definida por $F(x) = \int_0^x \ln 2 \, dt$.

Pelo exercício 6.3 podemos dizer que $F(4) = \int_0^4 \ln 2 \, dt = 4 \ln 2$ e $F(-3) = -3 \ln 2$.

Qual o valor de F(0)?

Exercício 6.8 Considere a função definida por

$$f(x) = \begin{cases} 1, & x \in [0, 1[\\ 2, & x \in [1, 2[\\ 3, & x \in [2, 3] \end{cases}$$

- a) Mostre que $F(x) = \int_0^x f(t)dt = \begin{cases} x, & x \in [0,1[\\ 2x-1, & x \in [1,2[\\ 3x-3, & x \in [2,3] \end{cases}$
- b) Verifique que F é contínua em [0,3].

Observação 6.2. Observe que

$$G(x) = \begin{cases} x, & x \in [0, 1[\\ 2x, & x \in [1, 2[\\ 3x, & x \in [2, 3] \end{cases}$$

não pode ser dado por $G(x) = \int_0^x f(t)dt$.

6.6.1 Primeiro Teorema Fundamental do Cálculo Integral (T.F.C.I.)

Teorema 6.15. Seja f uma função contínua num intervalo I e $a \in I$. Se

$$F(x) = \int_{a}^{x} f(t)dt,$$

para cada $x \in I$, então F é uma função diferenciável e F'(x) = f(x).

Demonstração. Pelo teorema 6.14, a função F é contínua em I. O Teorema do Valor Médio para Integrais (teorema 6.13) diz-nos que, no intervalo $]x_0,x[$ (supondo $x>x_0$, o caso contrário é análogo), existe c tal que

$$F(x) - F(x_0) = \int_{x_0}^{x} f(t) dt = f(c)(x - x_0)$$

e, portanto,

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} f(c).$$

Pela continuidade da função f, $\lim_{x\to x_0} f(c) = f(x_0)$. Como $\lim_{x\to x_0} \frac{F(x) - F(x_0)}{x - x_0} = F'(x_0)$, resulta que $F'(x_0) = f(x_0)$.

Corolário 1. Se f é uma função contínua em I e $a \in I$, então f tem uma primitiva em I que é dada por $F(x) = \int_a^x f(t)dt$.

O teorema 6.15 pode ser generalizado usando como extremos funções deriváveis.

Teorema 6.16. Seja f uma função contínua no intervalo J e H a função definida por

$$H(x) = \int_{g_1(x)}^{g_2(x)} f(t)dt,$$

com g_1 e g_2 definidas em $I \subseteq \mathbb{R}$ tais que $g_1(I) \subseteq J$ e $g_2(I) \subseteq J$.

Se f é contínua em J e g₁ e g₂ são deriváveis em I, então

$$H'(x) = f(g_2(x))g_2'(x) - f(g_1(x))g_1'(x),$$

para todo o $x \in I$.

Demonstração. Comecemos por observar que $H(x) = F(g_2(x)) - F(g_1(x))$ com $F(x) = \int_a^x f(t)dt$ e portanto,

$$H'(x) = (F(g_2(x)) - F(g_1(x)))' = (F(g_2(x)))' - (F(g_1(x)))'$$

e usando a derivada da função composta podemos afirmar que

$$(F(g_2(x)))' = F'(g_2(x))g_2'(x) e (F(g_1(x)))' = F'(g_1(x))g_1'(x)$$

e, finalmente, pelo teorema 6.15, como F'(x) = f(x), temos

$$H'(x) = f(g_2(x))g_2'(x) - f(g_1(x))g_1'(x).$$

Exercício 6.9

- 1. Seja $F(x) = \int_0^{\sin x} (x+1)^2 \arcsin t \, dt$ uma função definida em $[0, \frac{\pi}{2}]$. Calcule F'(x).
- 2. Determine $k \in \mathbb{R}$ de modo que F'(1) = 0, sendo F a função dada por

$$F(x) = \int_{x^2}^{k \ln x} e^{-t^2} dt.$$

- 3. Seja F a função dada por $F(x) = \int_0^x \left(\int_0^t e^{-u^2} du \right) dt$. Calcule F''(x).
- 4. Seja f uma função real de variável real contínua e positiva em \mathbb{R} . Mostre que a função F dada por

$$F(x) = \int_0^{6x - x^2} f(t)dt$$

admite um só extremo no ponto de abcissa x = 3. Classifique esse extremo.

6.6.2 Segundo Teorema Fundamental do Cálculo Integral (T.F.C.I.)

Teorema 6.17. Sejam $f:[a,b] \to \mathbb{R}$ uma função contínua e F uma primitiva de f. Então

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Habitualmente escrevemos $[F(x)]_a^b$ ou $F(x)|_a^b$ para denotar F(b) - F(a).

Demonstração. Seja

$$G: [a,b] \to \mathbb{R}$$

$$x \to G(x) = \int_a^x f(t)dt.$$

Por hipótese, F é uma primitiva de f em [a,b]. Do Primeiro T.F.C.I. podemos concluir que G é também uma primitiva de f em [a,b]. Logo, existe $c \in \mathbb{R}$ tal que, para cada $x \in [a,b]$, G(x) = F(x) + c (vimos no capítulo anterior que duas primitivas de uma mesma função apenas diferem de uma constante). Podemos determinar essa constante c. Em particular, para x = a, vem G(a) = F(a) + c. Como $G(a) = \int_a^a f(t)dt = 0$ tem-se que c = -F(a).

Por outro lado G(b) = F(b) + c e, como $G(b) = \int_a^b f(t)dt$ então,

$$\int_{a}^{b} f(t)dt = G(b) = F(b) + c = F(b) - F(a).$$

Exemplo 6.12. Vejamos alguns exemplos simples de cálculo do integral definido, usando uma primitiva da função integranda.

1.
$$\int_{-1}^{0} e^{x} dx = e^{x} \Big|_{-1}^{0} = e^{0} - e^{-1} = 1 - \frac{1}{e}.$$

2.
$$\int_{-e}^{-1} \frac{1}{x} dx = \ln|x| \Big|_{-e}^{-1} = \ln 1 - \ln e = -1.$$

3.
$$\int_{1}^{e} x \ln x dx = \frac{x^{2}}{2} \ln x \Big|_{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx = \frac{e^{2}}{2} - \frac{1}{2} \frac{x^{2}}{2} \Big|_{1}^{e} = \frac{e^{2}}{4} + \frac{1}{4}$$

Exercício 6.10 Calcule os seguintes integrais definidos:

1.
$$\int_0^5 xe^{3x^2+4}dx$$
;

$$2. \int_0^2 \frac{1}{1 + (2x)^2} dx;$$

3.
$$\int_{1}^{3} \frac{1}{x(2x+4)} dx.$$

6.6.3 Substituição no integral definido

O processo de substituição no integral definido torna-se mais simples do que nas primitivas, já que não será necessário regressar à variável inicial...se a substituição for bem feita!

Exemplo 6.13. Consideremos o integral definido $\int_0^3 \frac{x}{\sqrt{x+1}} dx$.

Podemos calcular uma primitiva da função $\frac{x}{\sqrt{x+1}}$ por substituição, usando a mudança de variável dada por $t^2 = x+1$, com t>0. Neste caso dx=2tdt e a função a primitivar será:

$$\int \frac{t^2 - 1}{t} 2t \, dt = \frac{2}{3} t^3 - 2t + C, \, C \in \mathbb{R}.$$

Regressando à variável inicial temos

$$\int \frac{x}{\sqrt{x+1}} dx = \frac{2}{3} \sqrt{(x+1)^3} - 2\sqrt{x+1} + C, \ C \in \mathbb{R}.$$

Pelo segundo T.F.C.I. (teorema 6.17) vem

$$\int_0^3 \frac{x}{\sqrt{x+1}} dx = \frac{2}{3} \sqrt{(x+1)^3} - 2\sqrt{x+1} \Big|_0^3 = \frac{8}{3}.$$

Contudo, podemos fazer a substituição diretamente no integral definido. Atendendo a que $x \in [0,3]$, pela substituição acima referida $t^2 = x + 1$, com t > 0, conduz a $t \in [1,2]$ (para x = 0 vem t = 1 e para x = 3 vem t = 2). Assim,

$$\int_0^3 \frac{x}{\sqrt{x+1}} dx = \int_1^2 \frac{t^2 - 1}{t} 2t dt = 2 \int_1^2 (t^2 - 1) dt = 2 \left(\frac{t^3}{3} - t \right) \Big|_1^2 = \frac{8}{3}.$$

Teorema 6.18. Se $f:[a,b] \to \mathbb{R}$ é contínua e $h:I \to \mathbb{R}$ é derivável, invertível e $h(I) \subseteq [a,b]$, sendo I um intervalo de \mathbb{R} , então,

$$\int_{a}^{b} f(x)dx = \int_{h^{-1}(a)}^{h^{-1}(b)} f(h(t))h'(t)dt.$$

No exemplo 6.13 a função f definida em [a,b]=[0,3] é dada por $f(x)=\frac{x}{\sqrt{x+1}}$. A função h é definida por $h(t)=t^2-1$ em I=[1,2]. A função h é invertível neste intervalo e $h^{-1}(x)=\sqrt{x+1}$, sendo $h^{-1}(a)=h^{-1}(0)=1$ e $h^{-1}(b)=h^{-1}(3)=2$. Temos então que

$$\int_0^3 \frac{x}{\sqrt{x+1}} dx = \int_1^2 \underbrace{\frac{t^2 - 1}{t}}_{f(h(t))} \underbrace{2t}_{h'(t)} dt.$$

Proposição 6.2. Sejam $D \subseteq \mathbb{R}$ um conjunto simétrico, isto é, para todo o $x \in D$, o seu simétrico também pertence a D $(-x \in D)$, e f : $D \subseteq \mathbb{R} \to \mathbb{R}$ uma função integrável em qualquer subconjunto de D do tipo [-a,a]. Então:

1. se
$$f$$
 é uma função par, isto é, $f(-x) = f(x)$, $\forall x \in D$, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$;

2. se
$$f$$
 é uma função ímpar, isto é, $f(-x) = -f(x)$, $\forall x \in D$, $\int_{-a}^{a} f(x) dx = 0$.

Demonstração. Comecemos por observar que, sendo f integrável em [-a, a],

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx.$$

Consideremos agora o integral $\int_{-a}^{0} f(x) dx$ e a mudança de variável x = -t. Então:

$$\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-t) (-dt) = -\int_{a}^{0} f(-t) dt = \int_{0}^{a} f(-t) dt.$$

1. se f é uma função par, $\int_0^a f(-t) dt = \int_0^a f(t) dt$ e portanto,

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

2. se f é uma função ímpar, $\int_0^a f(-t) \, dt = -\int_0^a f(t) \, dt$ e portanto,

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0.$$

.

6.7 Aplicação do integral de Riemann ao cálculo de áreas

Figura 6.10: Área sob o gráfico da função f.

Seja f uma função não negativa e contínua num intervalo [a,b]. A área A da região limitada pelo gráfico de f, pelo eixo Ox e pelas retas de equações x=a e x=b (ver figura 6.10) é dada por

$$A = \int_{a}^{b} f(x)dx.$$

Se f é uma função contínua num intervalo [a,b] então $\int_a^b |f(x)| dx$ é a área da região limitada pelo gráfico de f, pelo eixo Ox e pelas retas de equações x=a e x=b.

Figura 6.11: Área da região limitada pelo gráfico da função f, pelo eixo das abcissas e pelas retas x = a e x = b.

Figura 6.12: Área da região limitada pelo gráfico da função |f|, pelo eixo das abcissas e pelas retas x = a e x = b.

Exercício resolvido 6.2. Considere a função real de variável real dada por $f(x) = \frac{x^3}{2x-2}$.

- 1. Estude o sinal da função f.
- 2. Exprima, em termos de integrais definidos, a área da região do plano limitada pelo eixo Ox, pelas retas de equações x=-1 e $x=\frac{1}{2}$ e pelo gráfico de f.

Resolução do exercício 6.2. Para determinar o sinal da função f podemos construir um quadro de sinal

		0		1	
x^3	_	0	+	+	+
2x-2	_	_	_	0	+
$f(x) = \frac{x^3}{2x - 2}$	+	0	_	ND	+

Portanto, $f(x) \leq 0$, em [0,1[e f(x) > 0 em $] - \infty, 0[\cup]1, +\infty[$.

Figura 6.13: Esboço do gráfico da função f.

A área pedida é dada por

$$A = \int_{-1}^{\frac{1}{2}} |f(x)| \, dx = \int_{-1}^{0} \frac{x^3}{2x - 2} \, dx + \int_{0}^{-\frac{1}{2}} \frac{x^3}{2x - 2} \, dx$$

Figura 6.14: Área referente ao exercício 6.2.

Uma primitiva de
$$f(x) = \frac{x^3}{2x - 2}$$
 ' é $F(x) = \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^2}{2} + x + \ln|x - 1| \right)$ e portanto,

$$A = \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^2}{2} + x + \ln|x - 1| \right) \Big|_{-1}^{0} - \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^2}{2} + x + \ln|x - 1| \right) \Big|_{0}^{\frac{1}{2}} = \frac{1}{12}.$$

6.7.1 Área compreendida entre duas curvas

Sejam f e g funções contínuas em [a,b]. A área A da região do plano limitada inferiormente pelo gráfico de g e limitada superiormente pelo gráfico de f e pelas retas de equações x=a e x=b, é dada por

$$A = \int_{a}^{b} (f(x) - g(x))dx.$$

¹Note que $\frac{x^3}{2x-2} = \frac{1}{2}x^2 + \frac{1}{2}x + \frac{1}{2} + \frac{1}{2(x-1)}$.

Figura 6.15: Área compreendida entre duas funções não negativas em [a, b].

Figura 6.16: Área compreendida entre duas funções em [a, b].

Observe que, em geral, a área A da região do plano limitada pelo gráfico de f, pelo gráfico de g e pelas retas de equações x=a e x=b, é dada por

$$A = \int_{a}^{b} |f(x) - g(x)| dx.$$

Exercício resolvido 6.3. Exprima, em termos de integrais definidos, a área da região do plano delimitada pelos gráficos das funções $f(x) = \sin x$ e $g(x) = \cos x$ e pelas retas $x = -\pi$ e $x = \pi$.

Figura 6.17: Área da região definida no exercício 6.3.

Resolução do exercício 6.3. No intervalo $[-\pi,\pi]$ as duas funções intersetam-se em $-\frac{3\pi}{4}$ e em $\frac{\pi}{4}$.

A área sombreada é dada por

$$A = \int_{-\pi}^{\pi} |\sin x - \cos x| \, dx.$$

Atendendo ao gráfico e aos pontos de interseção das duas funções, podemos concluir que

$$A = \int_{-\pi}^{-\frac{3\pi}{4}} (\sin x - \cos x) \, dx + \int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\pi} (\sin x - \cos x) \, dx.$$

Assim,

$$A = (-\cos x - \sin x)|_{-\pi}^{-\frac{3\pi}{4}} + (\sin x + \cos x)|_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} - (\cos x + \sin x)|_{\frac{\pi}{4}}^{\pi} = 4\sqrt{2}.$$

Exercício 6.11 Exprima, em termos de integrais definidos, a área da região limitada pelos gráficos das funções dadas por $f(x) = \frac{1 + \cos^2 x}{1 + e^{2x}}$ e $g(x) = \frac{\cos^2 x}{1 + e^{2x}}$, em $[\ln 2, \ln 5]$.

Mostre ainda que, quaisquer que sejam $a, b \in \mathbb{R}$ com a < b, a área da região limitada pelos gráficos das duas funções em [a,b] é dada por $\frac{1}{2} \ln \left(\frac{1+e^{2a}}{1+e^{2b}} \right) + b - a$.

Exercício 6.12 Exprima, em termos de integrais definidos, a área da região do primeiro quadrante limitada pela parábola de equação $y = x^2 - 2x + 2$ e pela reta que lhe é tangente no ponto (2, 2).

6.8 Exercícios do capítulo

Exercício 6.13 Calcule os seguintes integrais definidos:

1.
$$\int_0^1 e^{-x} \cos(e^{-x}) dx$$

2.
$$\int_4^9 \frac{dx}{\sqrt{x} - 1}$$
 (Suggestão: Faça a substituição $t = \sqrt{x}$)

Exercício 6.14 Considere a função F definida por

$$F(x) = \int_{x^2}^{k \ln(x)} e^{-t^2} dt$$

- 1. Determine a expressão da derivada de F, F'(x).
- 2. Determine $k \in \mathbb{R}$ de modo a que F'(1) = 0.

Exercício 6.15 Considere a função definida em \mathbb{R} por $f(x) = xe^x$.

- 1. Diga, justificando, se a função f é integrável em qualquer intervalo $[a,b] \subset \mathbb{R}$ com b > a.
- 2. Calcule o valor da área da região limitada do plano situada entre x = -1 e x = 1 e compreendida entre o gráfico de f e o eixo das abcissas.

Exercício 6.16 Considere a função F definida por $F(x) = \int_0^{x^2} e^{-t^2} \arctan t \, dt$, para todo o $x \in \mathbb{R}$.

- 1. Determine F'(x) e o seu domínio.
- 2. Estude F quanto à existência de extremos locais.

Exercício 6.17 Considere a função F definida por $F(x) = \int_0^{x^2} t \ln(1 + e^t) dt$, para todo o $x \in \mathbb{R}$.

- 1. Justifique que F é diferenciável em \mathbb{R} e determine F'(x).
- 2. Estude F quanto à monotonia e existência de extremos locais.

Exercício 6.18 Exprima, em termos de integrais definidos, a área da região assinalada na figura

Figura 6.18: Área da região definida no exercício 6.18.

Exercício 6.19 Seja $A = \{(x, y) \in \mathbb{R}^2 : y \ge (x - 3)^2 \land y \ge x - 1 \land y \le 4\}.$

- 1. Represente geometricamente a região A.
- 2. Calcule a área da região A.

Exercício 6.20 Determine a área da região de \mathbb{R}^2 delimitada pelos gráficos de $f(x) = \sqrt{4 + x^2}$ e g(x) = x e pelas retas de equações x = -2 e x = 2.

Exercício 6.21 Considere a função F dada por

$$F(x) = \int_0^x \frac{1}{1+t^2} dt + \int_0^{\frac{1}{x}} \frac{1}{1+t^2} dt$$

para $x \in [1, +\infty[$. Determine F(1).

Exercício 6.22 Considere a função real de variável real f definida por

$$f(x) = \begin{cases} x \ln x & \text{se} \quad x > 0 \\ & & \text{onde } k \text{ \'e um n\'umero real.} \end{cases}$$

- 1. Diga, justificando, para que valores de k a função f é integrável no intervalo [-1,1].
- 2. Determine a família de primitivas $\int x \ln x \, dx$, definidas no intervalo $]0, +\infty[$.
- 3. Determine o valor da área da região limitada do plano situada entre x = 1/e e x = e e delimitada pelo gráfico de f e pelo eixo das abcissas.

Exercício 6.23 Considere a função definida por $f(x) = \int_0^x \frac{1}{1+t+t^2} dt$. Determine o subconjunto de \mathbb{R} onde o gráfico da função f tem concavidade voltada para cima.

Exercício 6.24 Prove que se f é uma função contínua em $\mathbb R$ e a é uma constante arbitrária, então

$$\int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx.$$

Soluções dos exercícios

Exercício 6.1 1.
$$S_f(\mathcal{P}, \mathcal{C}_1) = \frac{125}{216};$$
 2. $S_f(\mathcal{P}, \mathcal{C}_2) = \frac{23}{72};$ 3. $S_f(\mathcal{P}', \mathcal{C}') = \frac{7}{32}$

Exercício 6.2
$$S_f(\mathcal{P}, \mathcal{C}_1) = -\frac{125}{216}$$

Exercício 6.4
$$\int_0^3 (2x+1)dx = 12.$$

Exercício 6.5

- 1. f é contínua em [-1, 2], logo, pelo teorema 6.1 é integrável.
- 2. g e limitada em [1,5] e descontínua apenas nos inteiros $\{1,2,3,4,5\}$, logo, pelo teorema 6.2 é integrável.
- 3. h é limitada em [0,3] e descontínua em x=1, logo, pelo teorema 6.2 é integrável.
- 4. A função h não é limitada em [0,1], logo, pelo teorema 6.5 não é integrável neste intervalo.
- 5. A função i não é limitada em $[0,\pi]$ já que $\lim_{x\to \frac{\pi}{2}^-}i(x)=+\infty$, logo, pelo teorema 6.5, i não é integrável neste intervalo.

Exercício 6.7 Sim.
$$\int_0^2 g(x)dx = 2$$

Exercício 6.9

1.
$$F'(x) = 2(x+1) \int_0^{\sin x} \arcsin t \, dt + (x+1)^2 \cos x \, x.$$

2.
$$k = \frac{2}{e}$$
.

3.
$$F''(x) = e^{-x^2}$$
.

4. x = 3 é um maximizante de F.

Exercício 6.10

1.
$$\int_0^5 xe^{3x^2+4}dx = \frac{1}{6} \left(e^{79} - e^4 \right);$$

2.
$$\int_0^2 \frac{1}{1 + (2x)^2} dx = \frac{1}{2} \arctan 4;$$

3.
$$\int_{1}^{3} \frac{1}{x(2x+4)} dx = \frac{1}{4} \ln \frac{18}{10}.$$

Exercício 6.11
$$A = \int_{\ln 2}^{\ln 5} \frac{1}{1 + e^{2x}} dx$$
.

Exercício 6.12
$$A = \int_0^1 (x^2 - 2x + 2) dx + \int_1^2 (x^2 - 4x + 4) dx.$$

Exercício 6.13 1. sen
$$1 - \text{sen}\left(\frac{1}{e}\right)$$
; 2. $2(1 + \ln 2)$.

Exercício 6.14 1.
$$F'(x) = e^{-k^2 \ln^2 x} - 2xe^{-x^4}$$
; 2. $k = \frac{2}{e}$.

Exercício 6.15 1. Sim, porque é uma função contínua em \mathbb{R} , logo também o é em qualquer intervalo [a,b]. 2. 2-2/e.

19

Exercício 6.16 1. $F'(x) = 2xe^{-x^4}\arctan(x^2), x \in \mathbb{R};$ 2. F admite um mínimo absoluto em x = 0 sendo F(0) = 0. Não tem máximo.

Exercício 6.17 1. $F'(x) = 2x^3 \ln(1 + e^{x^2})$; 2. F tem um mínimo absoluto em x = 0 e é zero; é estritamente decrescente em $]-\infty,0[$ e estritamente crescente em $]0,+\infty[$.

Exercício 6.18
$$A = \int_0^1 \sqrt{1-x^2} \, dx + \int_0^{\frac{1}{2}} \sqrt{3} \, x \, dx + \int_0^{\frac{1}{2}} \sqrt{1-x^2} \, dx.$$

Exercício 6.19

1.

2.
$$A = \frac{37}{6}$$
.

Exercício 6.20
$$A = \frac{32}{3}$$
.

Exercício 6.21
$$A = \frac{\pi}{2}$$
.

Exercício 6.22 1. Para qualquer valor de k a função é secionalmente contínua (note que $\lim_{x\to 0^+} f(x)=0$), logo integrável em qualquer intervalo de números reais. Em particular, se k=0 a função é contínua. 2. $F(x)=\frac{x^2}{2}\ln x-\frac{x^2}{4}+C,\ C\in\mathbb{R};$ 3. $\frac{1}{2}+\frac{1}{4e^2}+\frac{e^2}{4}$.

Exercício 6.23 O gráfico tem a concavidade voltada para cima em $\left]-\infty,-\frac{1}{2}\right[$

Exercício 6.24 Se f é contínua em \mathbb{R} , então é integrável em qualquer intervalo da forma [0, a], com $a \in \mathbb{R}$. Efetuando a mudança de variável u = a - x (x = a - u, $dx = -1 \cdot du$, $x = 0 \Rightarrow u = a$ e $x = a \Rightarrow u = 0$), obtém-se

$$\int_0^a f(a-x) \, dx = \int_a^0 f(u)(-1) du = -\int_a^0 f(u) \, du = \int_0^a f(u) \, du = \int_0^a f(x) \, dx,$$

o que demonstra a propriedade pedida.