DYNAMIC PROGRAMMING: OPTIMAL BINARY SEARCH TREE

Instructor: Dr Tarunpreet Bhatia Assistant Professor, CSED TIET

Cost of search in BST

Input: $keys[] = \{10, 12, 16\}$

If given no. of Nodes are n, then.

- Different No. of BST= Catalan(n) = $\frac{2nc_n}{(n+1)} = \frac{(2n)!}{(n+1)! n!}$
- Different No. of Binary Trees are = n! * Catalan(n)

Cost of search in BST

Input: keys[] = $\{10, 12, 16\}$ freq[] = $\{3, 2, 5\}$

Possible BSTs with 3 keys

Possible BST with keys (A, B, C)

 A
 B
 C

 Prob.
 0.6
 0.3
 0.1

Possible BSTs with 3 keys

• Possible BST with keys (A, B, C)

1.5

0.6 0.6

comp

weighted

prob

1.7

1.7

2.2

2.5

OBST

- OBST is one special kind of advanced tree.
- It focus on how to reduce the cost of the search of the BST.
- It may not have the lowest height!
- Two variants: One with successful search only and other with successful and unsuccessful search.

OBST

- It has n keys (representation k₁,k₂,...,k_n) in sorted order (so that k₁<k₂<...<k_n), and we wish to build a BST from these keys with minimum expected cost. For each k_i, we have a probability p_i that a search will be for k_i.
- In contrast of, some searches may be for values not in k_i, and so we also have n+1 "dummy keys" d₀,d₁,...,d_n representating not in k_i.
- In particular, d₀ represents all values less than k₁, and d_n represents all values greater than k_n, and for i=1,2,...,n-1, the dummy key d_i represents all values between k_i and k_{i+1}.
- The dummy keys are leaves (external nodes), and the data keys mean internal nodes.

By Figure (a), we can calculate the expected search cost node by node:

Node#	Depth	probability	cost
k1	1	0.15	0.30
k2	0	0.10	0.10
k3	2	0.05	0.15
k4	1	0.10	0.20
K5	2	0.20	0.60
d0	2	0.05	0.15
d1	3	0.10	0.30
d2	3	0.05	0.20
d3	3	0.05	0.20
d4	3	0.05	0.20
d5	3	0.10	0.40

Cost=
Probability
*
(Depth+1)

Example

- And the total cost = (0.30 + 0.10 + 0.15 + 0.20 + 0.60 + 0.15 + 0.30 + 0.20 + 0.20 + 0.20 + 0.40) = 2.80
- So Figure (a) costs 2.80 ,on another, the Figure (b) costs 2.75, and that tree is really optimal.
- We can see the height of (b) is more than (a), and the key k5 has the greatest search probability of any key, yet the root of the OBST shown is k2.(The lowest expected cost of any BST with k5 at the root is 2.85)

Critical Observation: If an optimal BST T has a subtree T' containing keys k_i , ..., k_j , then this **must be** the optimal BST for the subproblem with keys k_i , ..., k_j and dummy keys d_{i-1} , d_i , ..., d_j .

• Given keys $k_i, ..., k_i$, one of these keys, say k_r ($I \le r$ ≤i), will be the root of an optimal subtree containing these keys. The left subtree of the root k_r will contain the keys $(k_i, ..., k_{r-1})$ and the dummy keys $(d_{i-1}, ..., d_{r-1})$ ₁), and the right subtree will contain the keys $(k_{r+1},...,$ k_i) and the dummy keys $(d_r, ..., d_i)$. As long as we examine all candidate roots k_r, where i ≤r ≤j, and we determine all optimal binary search trees containing k_i ,..., k_{r-1} and those containing k_{r+1} ,..., k_i , we are guaranteed that we will find an OBST.

- The easy case occurs when j=i-1. Then we have just the dummy key d_{i-1}. The expected search cost is e[i,i-1]= q_{i-1}.
- When j ≥ 1, we need to select a root k_r from among k_i,...,k_j and then make an OBST with keys k_i,...,k_{r-1} its left subtree and an OBST with keys k_{r+1},...,k_j its right subtree. By the time, what happens to the expected search cost of a subtree when it becomes a subtree of a node? The answer is that the depth of each node in the subtree increases by 1.
- By the second statement, the excepted search cost of this subtree increases by the sum of all the probabilities in the subtree. For a subtree with keys k_i,...,k_j let us denote this sum of probabilities as w(i, i)

- e[i, j] is the expected cost of searching an optimal BST containing the keys $k_i, ..., k_i$. Ultimately, we wish to compute e[1, n].
- For subtree with keys k_i , ..., k_j denote $w(i, j) = \sum_{x=i...j} p_x + \sum_{x=i-1...j} q_x$
- If k_r is the root of the optimal subtree containing k_i , ..., k_j , we have $e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$ which is equivalent to

$$e[i, j] = e[i, r-1] + e[r+1, j] + w(i, j)$$

because $w(i, j) = w(i, r-1) + p_r + w(r+1, j)$

Must add because the depth of each node in the left and right subtrees increases by one in the big tree.

- We will need one other table for efficiency. Rather than compute the value of w(i,j) from scratch, every time we are computing e[i,j] ---- we store these values in a table w[1..n+1,0..n].
- For the base case, we compute w[i,i-1] = q_{i-1} for 1≤ i ≤ n.
- For j ≥ i, we compute:

$$w[i, j] = w[i, j-1] + p_i + q_i$$

OBST (Successful and Unsuccessful Search)

- It needs 3 tables to record probabilities, cost, and root.
 - e[1...n+1, 0...n]: Cost
 - w[1...n+1, 0...n] : Sum of probability
 - root[1...n, 1...n] : Used to construct OBST

Recursive formula

$$e[i, j] = \begin{cases} q_{i-1} & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i, r-1] + e[r+1, j]\} + w[i, j] & \text{if } i \le j \end{cases}$$

```
OPTIMAL-BST(p, q, n)
       for i \leftarrow 1 to n+1
             do e[i, i-1] \leftarrow q_{i-1}
                                                              Time Complexity:
  3
                  w[i, i-1] \leftarrow q_{i-1}
                                                              O(n^3)
       for l \leftarrow 1 to n
             do for i \leftarrow 1 to n-l+1
                       do j \leftarrow i + l - 1
                           e[i, j] \leftarrow \infty
                           w[i, j] \leftarrow w[i, j-1] + p_i + q_j
  9
                           for r \leftarrow i to i
                                 do t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
 10
                                     if t < e[i, j]
 12
                                        then e[i, j] \leftarrow t
^{-13}
                                               root[i, j] \leftarrow r
 14
       return e and root
```

Example

How do we organize a binary search tree so as to minimize the number of nodes visited in all searches, given that we know how often each key occurs?

i	0	1	2	3
pi		1	2	4
qi	1	1	1	2

Example

i	0	1	2	3
pi		1	2	4
qi	1	1	1	2

CONSTRUCT-OPTIMAL-BST

- Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST(root) which, given the table root, outputs the structure of an optimal binary search tree.
- For the example, your procedure should print out the structure corresponding to the OBST shown below.

 k_2 is the root k_1 is the left child of k_2 d_0 is the left child of k_1 d_1 is the right child of k_1 k_5 is the right child of k_2 k_4 is the left child of k_5 k_3 is the left child of k_4 d_2 is the left child of k_3 d_3 is the right child of k_3 d_4 is the right child of k_4 d_5 is the right child of k_5

CONSTRUCT-OPTIMAL-BST

We need to do is just a pre-order tree walk of the OBST.

```
CONSTRUCT - OPTIMAL - BST(root)
     n \leftarrow root. length
     r \leftarrow root[1][n]
     `print` k_r is the root
     CONSTRUCT - OPTIMAL - BST - AUX(root, 1, r - 1, r, left)
     CONSTRUCT - OPTIMAL - BST - AUX(root, r + 1, n, r, right)
CONSTRUCT-OPTIMAL-BST-AUX(root,i,j,p,s)
     if i \leq j
          r \leftarrow root[i][j]
          `print` k_r is the \langle s \rangle child of k_p
          CONSTRUCT - OPTIMAL - BST - AUX(root, i, r - 1, r, left)
          CONSTRUCT - OPTIMAL - BST - AUX(root, r + 1, j, r, right)
     'else'
          print d_i is the \langle s \rangle child of k_p
```

Try this!

Input: keys[] = $\{10, 20, 30, 40\}$ freq[] = $\{4, 2, 6, 3\}$

Try This!

i	0	1	2	3	4	5	6	7
pi		0.04	0.06	0.08	0.02	0.10	0.12	0.14
qi	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05