Multi-Scale Simulation of Interfacial Phenomena and Nano-Particle Placement in Polymer Matrix Composites

John Kieffer
Department of Materials Science and Engineering
University of Michigan

Acknowledgement:

Mechanics of Multifunctional Materials & Microsystems Program (Byung-Lip (Les) Lee) Polymer Composites Program (Charles Lee)

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE AUG 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	RED 2 to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Multi-Scale Simulation of Interfacial Phenomena and Nano-Partic Placement in Polymer Matrix Composites			o-Particle	5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE igan,Department of arbor,MI,48109	` '	nd	8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
Grantees'/Contrac Microsystems Held	otes ad Multifunctional M tors' Meeting for Al 1 30 July - 3 August S. Government or I	FOSR Program on 1 2012 in Arlington, V	Mechanics of Mu VA. Sponsored by	ltifunctional	Materials &	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 31	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Interfaces: Cradle of Materials Functionality

M. Shtein, pers. comm.

5<mark>00 mm</mark>

20kV X1,800 10µm 0023

Battery Anode: dendrite growth v=2.4nm/s
E. Garcia, Purdue U.

A. Tuteja, UM

MEMS Sandia National Labs

P. Podsiadlo et al. Biomacro. 6, 2914 (2005)

Simulation-Based Predictive Design

Outline

- Simulation Approach
 - Accurate force field models
- Generating Realistic Structures
 - Types of Structure Formation Processes
- Structural Ubiquities
 - Surface Patterning
 - Pronounced Layering
 - Densification of Polymer Near Interface
 - Formation of Gaps and Voids
- □ Property Prediction & Analysis of Governing Principles
 - Interfacial Strength Models
 - Thermal Boundary Resistance
- Summary and Outlook

Simulation Framework

☐ Realistic structural models that account for nano-scale features are needed to predict interfacial properties

☐ Models generated using reactive molecular dynamics

simulations

□ Accurate description of atomic interaction models

Reactive force field

variable coordination & coordination-dependent angular constraints

covalent attractive 4 10**

Coulomb

Cu polymer Cu polymer Cu
Sink Source

Density Functional Theory Calculations

Local structure; Force field parameterization

Reactive Molecular Dynamics Simulations

Extended structure; Reaction Mechanisms; Predict Thermomechanical properties

Coarse-Grain Particle Dynamics Simulations

Accelerated simulation of structural evolution

Validation, Verification and Interpretation

Generating Realistic Structural Models of Interfaces

Vapor deposition In situ polymerization

- Pronounced layering of polymer near interfaces affects mechanical properties
- Polymer chains span layers in "staircase" pattern

Adhesive forces can cause local

Generating Realistic Interfacial Structures

Three methods proved successful:

1. Juxtaposition of truncated bulk structures followed by relaxation

2. Simulation of the deposition process of thin layers

3. Simulation of the polymerization

process near a

substrate.

18% 54% 74% 40%

Polymerization of polyethylene in the gap between two Cu surfaces at various degrees of cure. Simulation involves a heuristic bonding scheme.

Vapor deposition of CuPc on Ag. Molecules reorganize on the surface before the next one arrives.

Materials Simulation Repertoire

Systematic exploration of the chemical nature and structural complexity of interface systems

- ❖ Force field optimization based on the results from first-principles quantum mechanical calculations
- Development and verification of the structure generation strategy
- Property prediction and validation with known experimental data
- Structural analysis and identification of structure property correlations

Alkane/Metal: Simulation Details

- Structure generated with random linear alkanes near fcc [100] surface
- ☐ Target thickness of 50 Å
- NPT phase required for structural stability

Surface Pattering – Chain Length

- ❖Alkanes of length n
- Chain segments in direct surface contact are shown
- ❖Pattern no longer change appearance beyond threshold n

2D Pair Correlation Functions

- ☐ Slice projected into 2 dimensions before pcf calculated
- □ Normalized according to overall average number density
- ☐ Upper: Nickel Lower: Lead Left to Right: n=10, n=20, n=50

Density Profiles Across Polymer Layer

Voids present in the structures are reflected in the density profiles Average density of bulk alkanes shown by dotted orange line

Surface Pattering – Substrate Lattice

Deposition of Polyimide on Si (100)

DFT optimized interaction potential for **PMB** molecule in bulk and with substrate

- Silicon bulk and surface
- (2x1) dimer-reconstruction of the surface
- Surface steps on reconstructed surface

Polyimide on Si (100): Contact/ Non-Contact

Non-contact versus Contact Adhesion

- Relaxation from a high-temperature state to a glassy state with under-critical interface coupling
- b) Relaxation from a high-temperature state to a glassy state with interface coupling in excess of the critical

J. E. Lennard-Jones, "Cohesion", Proc. Phys. Soc. 43, 461 (1931).

$$\varepsilon_{Si} < \varepsilon_{Si}^c$$

$$\varepsilon_{Si} > \varepsilon_{Si}^c$$

Energetics of PMB Layers on Si(001)

$$U_{S_{i}-PI}^{R}(z_{0}) = 4\pi\varepsilon\rho_{S_{i}} \left\{ \frac{\sigma^{12}}{360} \left(\frac{1}{z_{0}^{8}} - \frac{1}{R_{c}^{8}} \right) \right\}$$

$$U_{Si-PI}^{A} = 4\pi \varepsilon \rho_{Si} \left\{ \frac{\sigma^{6}}{12} \left(\frac{1}{z_{0}^{2}} - \frac{1}{R_{c}^{2}} \right) \right\}$$

Simulated behavior (within the classical model of Si-PMB interfaces) is described well by the de Boer-Hamaker model with:

- No relaxation at the interface
- Provides reference states

$$F_{I} = \frac{1}{24\pi} \left(\frac{3\pi C \rho_{o} \rho_{Si}}{z_{0}^{3}} \right)$$

Void Formation Near Free Surface

Energy Regimes of *a***-PMB-Si(001) Interfaces: Adhesive Energy Transition**

- A non-contact regime holds for small coupling strength
- The transition from non-contact to contact regime is characterized by an abrupt change in W_s, with rapid increase with coupling strength
- The rapid increase is due to density and order variations
- For large values of the coupling strength, a slow increase is observed due to density saturation, with $W_{\rm s}\sim \mathcal{E}_{\rm Si}^{\alpha}$, where a ≈ 0.5

Density profiles of a-PMB-Si(001) Interfaces

- Density profiles dynamically evolve during relaxation with non-zero coupling between adherent and substrate
- Interface relaxation (both density and ordering) largely define the adhesive behavior

Peak density grows with coupling strength (1 vs. 2) but saturates at larger couplings (3 vs. 4)

Structural Order at a-PMB-Si(001) Interfaces

- Parallel ordering of PMB molecules with respect to the interface plane is preferred for large coupling strengths
- At the interface, the ordering along grooves formed by 2x1 surface reconstruction is favored
- Free surface acts as a repulsive wall

Order Parameter

$$S_{ua} = \frac{3}{2} \langle \cos(\theta)^2 \rangle - \frac{1}{2}$$

Polymerization Method

- Variation of method proposed by Varshney¹
- More efficient than oneby-one reaction²
- Less stress than static/ all-at-once algorithm²
- □ Depending on cutoff, should not reach 100% cure, which is realistic
- 1. V. Varshney et. al., Macromolucules, 41 (18), 2008
- 2. C.K. Knox et. al, Army Sci. Conf. Proc. 2009

Polyethylene Bulk & Interface Structure

- Reaction probability has minimal effect on the final structure of polyethylene
 - Agrees with experimental study of chain growth polymers like PE and DCPD
- Maximum chain length uncorrelated with reaction probability:
 - **♦** 50%: 692; 75%: 811; 100%: 591

Copper Substrate; blue unreacted, yellow reacted

Reaction process does not prevent layering effects

Epoxy Reaction Paths

Epoxy Cure Simulations

Total RDFs as a function of the degree of cure

Growth Behavior of CuPc

Growthbehavior beforeforce fieldoptimization

Z.H. Cheng et. al., JPC (2007)

- ❖Monolayer deposition of CuPc forms crystalline patterns on both (100) and (111) surfaces
- ❖This growth behavior was only observed after force field optimization

Crystalline vs. Amorphous CuPc

350

- CuPc molecule is deposited on Au(111)
- TBR is smaller at the amorphous-CuPc/Au than the crystalline-CuPc/Au interface

			Fr	actional Coordina	ates	
	(0 0	.2 (0.4 0	.6	0.8 1
	50					
	100					
5	150					
פומוח	200					
2	250					
	300	Soline of Color		97 2000 00000000000000000000000000000000	ra mentangangangangan	Carrier to 1 20.002

	Amorphous- CuPc/Au	Crystalline- CuPc/Au
TBR (10 ⁻⁸ m ² K/W)	1.96 ± 0.24	2.36 ± 0.20

Thermal conductivity	MD (W/ mK)	Exp (W/ mK)
Amorphous CuPc	0.323 ± 0.005	0.32
crystalline- CuPc	0.388 ± 0.004	0.39

Adhesion Strength vs. Acoustic Mismatch Model

Ag has a larger TBR than Au in experiments. Adhesion strength dominates!

Acoustic Mismatch Model:

$$TBR \propto \frac{1}{\tau_b} = \frac{(Z_1 + Z_2)^2}{4Z_1 Z_2}$$
$$Z = \rho \cdot u_p = \sqrt{\rho \cdot E}$$

For two substrates with the bulk moduli of Ag and Au respectively, the atomic weight of the substrate is changed while keeping interactions the same.

Bulk Modulus (GPa)	100	180
Lattice Constant (Å)	4.09	4.08
Atomic Weight (g/mol)	107.8682	196.97
$TBR^4 (10^{-8} \text{ m}^2\text{K/W})$	7.8 ± 1.6	5.4 ± 1.4

⁴ Y. Jin, et al. APL **98** 093305 2011

Interface in Properties Only

Adhesion Strength Dominates TBR

- ☐ Free surface energy for CuPc from Exp³: 0.035 J/m² and Work of adhesion for CuPc is 0.07 J/m²
- Work of adhesion: CuPc/Al > CuPc/Au > CuPc/Ag
- ☐ The adhesion between CuPc/Au or CuPc/Ag is weaker than CuPc/CuPc²
- □ Agrees with the peel off test results from experiment²

³ H. X. Wei, et al. APL **97**, 083302 2010

² Y. Jin, et al. MRS Spring Meeting 2011

Phonon Coupling at CuPc/Au Interface

- For CuPc/Au system, 1 layer of Au atoms are perturbed
- Atomic velocity differences between perturbed and unperturbed systems are recorded to calculate phonon frequency spectrum

Summary & Outlook

- □ Reproduce process to generate realistic structures for property predictions and interpretation of experiments
- ☐ Findings thus far reveal:
 - Predominance of polymer layering near interfaces (staircase patterns, surface-bulk separation, surface domains, void formation)
 - Transition between contact and non-contact adhesion
 - Thermal boundary resistance (phonon velocity, mechanical impedance, structural impedance)
- Ongoing work:
 - Quantify structural signatures in materials responses
 - Thermosets
 - Interfacial modulus
 - Controlling interfacial properties

Functional molecular layers, for monitoring, sensing, or energy harvesting

