EL 310: Hardware Description Design

Design Lab 4: Edge Detection Hardware
(Implementing Sobel Edge Detection Algorithm using Verilog HDL)

R. Yağız Mungan (8288) & E. Selin Baytok (8088)

15.06.2007

INTRODUCTION

- 1) Implement Sobel edge detection algorithm on DIGILENT Spartan-3 starter development board
- 2) The data-path may contain at most 4 adders other than the adders to take 2's complement.

Edge Detection and Sobel Algorithm

A rapid increase in the intensity of light at a certain pixel of the image is called as an edge. Its significance in image process comes from the fact that it indicates boundaries of the objects. This rapidity can be detected once the maximum and minimum points on the first derivative of the image. After the overall gradient vector is defined a threshold value is determined; if one of the pixel values exceeds this threshold, this pixel is noted to be an edge. Sobel algorithm is employed in order to determine an approximate value for the absolute value of the gradient.

In order to determine the absolute gradient value in 2D images Sobel algorithm implies two different convolution masks such as:

Fig 1. Sobel 2D Convolution Masks

Both Gx and Gy are slid over the image in x and y directions consecutively. On each 3 x 3 matrix these masks are applied mask values are multiplied with the corresponding image matrix element. The sum of these multiplications is placed in an output matrix.

The magnitude of the gradient is then calculated using the formula:

$$|G| = \sqrt{Gx^2 + Gy^2}$$

An approximate magnitude can be calculated using:

$$|\mathbf{G}| = |\mathbf{G}\mathbf{x}| + |\mathbf{G}\mathbf{y}|$$

 $b_{22} = (a_{11}^{*}m_{11}) + (a_{12}^{*}m_{12}) + (a_{13}^{*}m_{13}) + (a_{21}^{*}m_{21}) + (a_{21}^{*}m_{21}) + (a_{22}^{*}m_{22}) + (a_{23}^{*}m_{23}) + (a_{31}^{*}m_{31}) + (a_{32}^{*}m_{32}) + (a_{33}^{*}m_{33}) + (a_{31}^{*}m_{32}) + (a_{32}^{*}m_{32}) + (a_{31}^{*}m_{32}) + (a_{32}^{*}m_{32}) + (a_{32}^{*}m_{32})$

Fig 2. A Sample Detection Calculations

Pre-Design Decisions

Main challenge of the design was the limitation on the number of adders that can be used. In order to make the calculations with given adders it was required to build a state machine and design the sequence of parallel additions in groups of four.

Also the case of border pixel is concerned. Convolution masks could not be used for the first and last column and rows. They are considered to be unchanging.

In order to use the minimum amount of memory the number of matrix elements that are to be read from ram is tried to be minimized. For instance if a matrix in Fig 2 is read from ram for the first calculation then a12, a22, a32, a13, a23, a33 are kept in registers for the next calculation.

Flow of the Code

With the reset signal all the pointers that are used to extract the 3*3 matrices from the source are assigned their initial values:

y1<=0; x1<=0; y2<=1; x2<=1; y3<=2; x3<=2:

Here x means x axis and y means y axis, thus x1,y1 refers to first column and first row. In 8 states of the FSM the matrix data are saved to registers and expended to 8bits. During the extraction of the last matrix element the additions start, since all the data required for the first 4 additions is already extracted.

```
M33<={8{data_out}};
Adder1in1<=X11;
Adder1in2<=X13;
Adder2in1<=X21;
Adder2in2<=X23;
Adder3in1<=Y11;
Adder3in2<=Y12;
Adder4in1<=Y13;
Adder4in2<=Y31;
```

All the additions are completed in 4 states of the FSM. In the 4th state of the additions the approximation of the Sobel edge detection algorithm is applied. The absolute value is checked as follows:

```
if(out1[9]==1)
Adder1in1<=~out1+1;
else
Adder1in1<=out1;</pre>
```

In the last state (13th state) the output of the Sobel edge detection algorithm is saved to the 2nd ram by reducing the data to 1bit. Also the next state of the FSM is decided based on the current location of the extracted matrix with respect to the overall picture.

After all the data is written to the 2nd ram of the Spartan FPGA, the data is displayed to a monitor, through the ports of the FPGA which only allows black and white colours.

Multiplications and additions are made combinational, however assigning of the inputs are made sequentially.

Conclusion

In this project the skills of finite state machine design with limited sources and programming the design in Verilog programming language were improved, while an understanding of edge detection and especially Sobel Edge detection algorithm was developed.

Appendix A

Synthesis Report

Release 6.2.03i - xst G.31a

Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to __projnav

 $CPU: 0.00 \ / \ 3.31 \ s \ | \ Elapsed: 0.00 \ / \ 1.00 \ s$

--> Parameter xsthdpdir set to ./xst

CPU: 0.00 / 3.31 s | Elapsed: 0.00 / 1.00 s

--> Reading design: el310_top.prj

TABLE OF CONTENTS

- 1) Synthesis Options Summary
- 2) HDL Compilation
- 3) HDL Analysis
- 4) HDL Synthesis
- 5) Advanced HDL Synthesis
 - 5.1) HDL Synthesis Report
- 6) Low Level Synthesis
- 7) Final Report
 - 7.1) Device utilization summary
 - 7.2) TIMING REPORT

* Synthesis Options Summary

---- Source Parameters

Input File Name : el310_top.prj

Input Format : mixed

Ignore Synthesis Constraint File : NO

Verilog Include Directory :

---- Target Parameters

Output File Name : el310_top

Output Format : NGC

Target Device : xc3s200-4-ft256

---- Source Options

Top Module Name : el310_top

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

ROM Style : Auto

Mux Extraction : YES

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

Resource Sharing : YES

Multiplier Style : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 8

Register Duplication : YES

Equivalent register Removal : YES

Slice Packing : YES

Pack IO Registers into IOBs : auto

General Options
Optimization Goal : Speed
Optimization Effort : 1
Keep Hierarchy : NO
Global Optimization : AllClockNets
RTL Output : Yes
Write Timing Constraints : NO
Hierarchy Separator :_
Bus Delimiter : <>
Case Specifier : maintain
Slice Utilization Ratio : 100
Slice Utilization Ratio Delta : 5
Other Options
lso : el310_top.lso
Read Cores : YES
cross_clock_analysis : NO
verilog2001 : YES
Optimize Instantiated Primitives : NO
* HDL Compilation *
Compiling source file "/s12/el310_blockram.v"
Module <el310_top> compiled</el310_top>
No errors in compilation
Analysis of file <el310_top.prj> succeeded.</el310_top.prj>
* HDL Analysis *

Analyzing top module <el310_top>.

```
Set property "resynthesize = true" for unit <el310 top>.
Analyzing module <RAMB16_S1>.
Analyzing module <vga controller 640 60>.
Module <vga controller 640 60> is correct for synthesis.
                  HDL Synthesis
Synthesizing Unit <vga controller 640 60>.
  Related source file is ../vga controller 640 60.v.
  Found 11-bit up counter for signal <vcount>.
  Found 1-bit register for signal <HS>.
  Found 11-bit up counter for signal <a href="hcount">hcount</a>.
  Found 1-bit register for signal <VS>.
  Found 1-bit register for signal <blank>.
  Found 11-bit comparator less for signal <$n0011> created at line 122.
  Found 11-bit comparator less for signal <$n0012> created at line 122.
  Found 11-bit comparator greatequal for signal <$n0013> created at line 114.
  Found 11-bit comparator less for signal <$n0014> created at line 114.
  Found 11-bit comparator greatequal for signal <$n0015> created at line 116.
  Found 11-bit comparator less for signal <$n0016> created at line 116.
  Found 1-bit register for signal <clk_25>.
  Summary:
         inferred 2 Counter(s).
         inferred 4 D-type flip-flop(s).
         inferred 6 Comparator(s).
Unit <vga_controller_640_60> synthesized.
```

Synthesizing Unit <el310_top>.

Related source file is ../s12/el310_blockram.v.

Module <el310_top> is correct for synthesis.

WARNING:Xst:1780 - Signal <M22> is never used or assigned.

WARNING:Xst:646 - Signal <out3<9>> is assigned but never used.

WARNING:Xst:646 - Signal <out4<9>> is assigned but never used.

Found finite state machine <FSM 0> for signal <state>.

States 13	
Transitions 16	
Inputs 3	1
Outputs 13	
Clock clk (rising_edge)	
Clock enable start (positive)	
Reset rst (positive)	
Reset type asynchronous	1
Reset State 000000000001	
Encoding automatic	
Implementation LUT	

Found 32-bit adder for signal <\$n0003> created at line 262.

Found 32-bit adder for signal <\$n0008> created at line 271.

Found 7-bit comparator less for signal <\$n0011> created at line 204.

Found 7-bit comparator greatequal for signal <\$n0064> created at line 204.

Found 11-bit comparator less for signal <\$n0065> created at line 90.

Found 11-bit comparator less for signal <\$n0066> created at line 90.

Found 7-bit adder for signal <\$n0074> created at line 206.

Found 7-bit adder for signal <\$n0075> created at line 207.

Found 7-bit adder for signal <\$n0076> created at line 208.

Found 9-bit adder for signal <\$n0077> created at line 187.

Found 9-bit adder for signal <\$n0078> created at line 191.

Found 7-bit comparator greater for signal <\$n0079> created at line 62.

Found 7-bit comparator less for signal <\$n0080> created at line 62.

Found 7-bit comparator greater for signal <\$n0081> created at line 62.

Found 7-bit comparator less for signal <\$n0082> created at line 62.

Found 7-bit comparator greater for signal <\$n0083> created at line 68.

Found 7-bit comparator less for signal <\$n0084> created at line 68.

Found 7-bit comparator greater for signal <\$n0085> created at line 64.

Found 7-bit comparator less for signal <\$n0086> created at line 64.

Found 7-bit comparator greater for signal <\$n0087> created at line 64.

Found 7-bit comparator less for signal <\$n0088> created at line 64.

Found 7-bit comparator greater for signal <\$n0089> created at line 70.

Found 7-bit comparator less for signal <\$n0090> created at line 70.

Found 9-bit adder carry out for signal <\$n0094>.

Found 9-bit adder carry out for signal <\$n0095>.

Found 9-bit adder carry out for signal <\$n0096>.

Found 9-bit adder carry out for signal <\$n0097>.

Found 9-bit register for signal <Adder1in1>.

Found 9-bit register for signal <Adder1in2>.

Found 9-bit register for signal <Adder2in1>.

Found 9-bit register for signal <Adder2in2>.

Found 9-bit register for signal <Adder3in1>.

Found 9-bit register for signal <Adder3in2>.

Found 9-bit register for signal <Adder4in1>.

Found 9-bit register for signal <Adder4in2>.

Found 1-bit register for signal <data in2>.

Found 7-bit up counter for signal < hcounter>.

Found 14-bit register for signal <init_addr2>.

Found 8-bit register for signal <M11>.

Found 8-bit register for signal <M12>.

Found 8-bit register for signal <M13>.

Found 8-bit register for signal <M21>.

Found 8-bit register for signal <M23>.

Found 8-bit register for signal <M31>.

Found 8-bit register for signal <M32>.

Found 8-bit register for signal <M33>.

Found 14-bit register for signal <read_addr>.

Found 1-bit register for signal <rw2>.

Found 1-bit register for signal <start>.

Found 1-bit register for signal <start2>.

```
Found 7-bit up counter for signal <vcounter>.
  Found 7-bit register for signal \langle x1 \rangle.
  Found 8-bit adder for signal <X11>.
  Found 7-bit register for signal \langle x2 \rangle.
  Found 7-bit register for signal \langle x3 \rangle.
  Found 7-bit up counter for signal <y1>.
  Found 7-bit up counter for signal <y2>.
  Found 7-bit up counter for signal <y3>.
  Found 8-bit adder for signal <Y31>.
  Found 8-bit adder for signal <Y33>.
  Found 29 1-bit 2-to-1 multiplexers.
  Summary:
         inferred 1 Finite State Machine(s).
         inferred 5 Counter(s).
         inferred 175 D-type flip-flop(s).
         inferred 14 Adder/Subtracter(s).
         inferred 16 Comparator(s).
         inferred 29 Multiplexer(s).
Unit <el310_top> synthesized.
                Advanced HDL Synthesis
Advanced RAM inference ...
Advanced multiplier inference ...
Advanced Registered AddSub inference ...
Selecting encoding for FSM_0 ...
Optimizing FSM <FSM_0> on signal <state> with one-hot encoding.
Dynamic shift register inference ...
```

HDL Synthesis Report

11

* Low Le	evel Synthesis	*		
			 	====
14-bit 2-to-1 multiplexe	er : 2			
1-bit 2-to-1 multiplexer				
# Multiplexers	: 3			
11-bit comparator greate	-			
7-bit comparator greated				
11-bit comparator less	: 6			
7-bit comparator greater	r : 6			
7-bit comparator less	: 7			
# Comparators	: 22			
1-bit register	: 21			
14-bit register	: 2			
9-bit register	: 8			
7-bit register	: 3			
8-bit register	: 8			
# Registers	: 42			
7-bit up counter	: 5			
11-bit up counter	: 2			
# Counters	: 7			
8-bit adder	: 3			
9-bit adder carry out	: 4			
32-bit adder	: 2			
7-bit adder	: 3			
9-bit adder	: 2			
# Adders/Subtractors	: 14			
# FSMs	: 1			
Macro Statistics				

 $WARNING: Xst: 1710 - FF/Latch < Adder 3 in 1_8 > (without init value) is constant in block < el 310_top >.$

WARNING:Xst:1895 - Due to other FF/Latch trimming, FF/Latch <Adder4in2_8> (without init value) is constant in block <el310 top>.

Optimizing unit <el310_top> ...

Optimizing unit <vga controller 640 60> ...

Loading device for application Xst from file '3s200.nph' in environment C:/Xilinx.

Mapping all equations...

Building and optimizing final netlist ...

Register M11 7 equivalent to M11 3 has been removed

Register M11_6 equivalent to M11_3 has been removed

Register M11_5 equivalent to M11_3 has been removed

Register M11_4 equivalent to M11_3 has been removed

Register M21_7 equivalent to M21_4 has been removed

Register M21 6 equivalent to M21 4 has been removed

Register M21 5 equivalent to M21 4 has been removed

Register M11_2 equivalent to M11_1 has been removed

Register M11_3 equivalent to M11_1 has been removed

Register M11_1 equivalent to M11_0 has been removed

Register M21_4 equivalent to M21_3 has been removed

Register M13_7 equivalent to M13_0 has been removed

Register M13_1 equivalent to M13_0 has been removed

Register M13_2 equivalent to M13_0 has been removed

Register M13_3 equivalent to M13_0 has been removed

Register M13_4 equivalent to M13_0 has been removed

Register M13_5 equivalent to M13_0 has been removed

Register M13_6 equivalent to M13_0 has been removed

Register M12_7 equivalent to M12_6 has been removed

Register M21 3 equivalent to M21 2 has been removed

Register M12_1 equivalent to M12_0 has been removed

Register M12_2 equivalent to M12_0 has been removed

Register M12_3 equivalent to M12_0 has been removed

Register M12_4 equivalent to M12_0 has been removed Register M12 5 equivalent to M12 0 has been removed Register M12 6 equivalent to M12 0 has been removed Register M33_7 equivalent to M33_0 has been removed Register M33 1 equivalent to M33 0 has been removed Register M33 2 equivalent to M33 0 has been removed Register M33_3 equivalent to M33_0 has been removed Register M33 4 equivalent to M33 0 has been removed Register M33 5 equivalent to M33 0 has been removed Register M33 6 equivalent to M33 0 has been removed Register M32 7 equivalent to M32 0 has been removed Register M32 1 equivalent to M32 0 has been removed Register M32_2 equivalent to M32_0 has been removed Register M32 3 equivalent to M32 0 has been removed Register M32 4 equivalent to M32 0 has been removed Register M32 5 equivalent to M32 0 has been removed Register M32_6 equivalent to M32_0 has been removed Register M31_7 equivalent to M31_0 has been removed Register M31_1 equivalent to M31_0 has been removed Register M31_2 equivalent to M31_0 has been removed Register M31_3 equivalent to M31_0 has been removed Register M31 4 equivalent to M31 0 has been removed Register M31_5 equivalent to M31_0 has been removed Register M31 6 equivalent to M31 0 has been removed Register M23 7 equivalent to M23 0 has been removed Register M23_1 equivalent to M23_0 has been removed Register M23_2 equivalent to M23_0 has been removed Register M23 3 equivalent to M23 0 has been removed Register M23_4 equivalent to M23_0 has been removed Register M23_5 equivalent to M23_0 has been removed Register M23 6 equivalent to M23 0 has been removed Register M21 1 equivalent to M21 0 has been removed Register M21 2 equivalent to M21 0 has been removed Found area constraint ratio of 100 (+ 5) on block el310_top, actual ratio is 17.

FlipFlop state_FFd2 has been replicated 1 time(s)

FlipFlop state FFd3 has been replicated 1 time(s)

FlipFlop state_FFd4 has been replicated 4 time(s)

FlipFlop state_FFd5 has been replicated 4 time(s)

Final Report

Final Results

RTL Top Level Output File Name : el310_top.ngr

Top Level Output File Name : el310_top

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 7

Macro Statistics:

Registers : 46

1-bit register : 22

14-bit register : 2

7-bit register : 6

8-bit register : 8

9-bit register : 8

Counters : 2

11-bit up counter : 2

Multiplexers : 3

2-to-1 multiplexer : 3

Adders/Subtractors : 19

32-bit adder : 2

7-bit adder : 8

- # 8-bit adder : 3
- # 9-bit adder : 2
- # 9-bit adder carry out : 4
- # Comparators : 22
- # 11-bit comparator greatequal: 2
- # 11-bit comparator less : 6
- # 7-bit comparator greatequal : 1
- # 7-bit comparator greater : 6
- # 7-bit comparator less : 7

Cell Usage:

- # BELS : 824
- # GND : 1
- # LUT1 : 76
- # LUT1 L : 36
- # LUT2 : 41
- # LUT2_D : 3
- # LUT2_L : 24
- # LUT3 : 61
- # LUT3_D : 2
- # LUT3_L : 12
- # LUT4 : 192
- # LUT4_D : 5
- # LUT4_L : 57
- # MUXCY : 155
- # MUXF5 : 5
- # VCC :1
- # XORCY : 153
- # FlipFlops/Latches : 215
- # FDC : 4
- # FDCE : 75
- # FDCPE : 22
- # FDE : 107

FDPE : 5

FDRE :1

FDSE : 1

RAMS : 2

RAMB16_S1 : 2

Clock Buffers : 1

BUFGP :1

IO Buffers : 6

IBUF :1

OBUF : 5

Device utilization summary:

Selected Device: 3s200ft256-4

Number of Slices: 296 out of 1920 15%

Number of Slice Flip Flops: 215 out of 3840 5%

Number of 4 input LUTs: 509 out of 3840 13%

Number of bonded IOBs: 6 out of 173 3%

Number of BRAMs: 2 out of 12 16%

Number of GCLKs: 1 out of 8 12%

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

Clock Signal	Clock buff	uffer(FF name) Load		
clk	BUFGP			
vga_cont_clk_25:Q				
Timing Summary:				
Speed Grade: -4				
Minimum period:	7.214ns (Maximur	n Frequency	y: 138.619M	
•	rrival time before c			
-	required time after			
Maximum combin	national path delay:	No path fo	una	
Timing Detail:				
All values displayed	d in nanoseconds (n	ns)		
Timing constraint: I	Default period analy	ysis for Clo	ck 'clk'	
Delay: 7.21	14ns (Levels of Log	gic = 13)		
Source: Add	der2in2_0 (FF)			
Destination: A	dder1in2_8 (FF)			
Source Clock:	clk rising			
Destination Clock:	clk rising			
Data Path: Adder2	in2_0 to Adder1in2	2_8		
	Gate Net			
Cell:in->out fa	anout Delay Dela	ay Logical	Name (Net 1	

```
FDE:C->Q
                  4 0.720 0.629 Adder2in2_0 (Adder2in2_0)
                    1 0.551 0.000 Madd n0096 inst lut2 81 (N19410)
  LUT2 D:I0->LO
                    1 0.500 0.000 Madd n0096 inst cy 8 (Madd n0096 inst cy 8)
  MUXCY:S->O
                     1 0.064 0.000 Madd_n0096_inst_cy_9 (Madd_n0096_inst_cy_9)
  MUXCY:CI->O
                     1 0.064 0.000 Madd n0096 inst cy 10 (Madd n0096 inst cy 10)
  MUXCY:CI->O
  MUXCY:CI->O
                    1 0.064 0.000 Madd n0096 inst cy 11 (Madd n0096 inst cy 11)
  MUXCY:CI->O
                    1 0.064 0.000 Madd_n0096_inst_cy_12 (Madd_n0096_inst_cy_12)
                    1 0.064 0.000 Madd n0096 inst cy 13 (Madd n0096 inst cy 13)
  MUXCY:CI->O
                    1 0.064 0.000 Madd n0096 inst cy 14 (Madd n0096 inst cy 14)
  MUXCY:CI->O
  XORCY:CI->O
                    3 0.904 0.577 Madd n0096 inst sum 15 (out2<7>)
                    1 0.551 0.000 n0001<7>1 ( n0001<7>)
  LUT1 L:I0->LO
                    0 0.500 0.000 Madd n0078 inst cy 63 (Madd n0078 inst cy 63)
  MUXCY:S->O
  XORCY:CI->O
                    1 0.904 0.240 Madd__n0078_inst_sum_64 (_n0078<8>)
  LUT4 L:I1->LO
                    1 0.551 0.000 n0054<8>16 ( n0054<8>)
  FDE:D
                  0.203
                            Adder1in2 8
                 7.214ns (5.768ns logic, 1.446ns route)
 Total
                   (80.0% logic, 20.0% route)
  _____
Timing constraint: Default period analysis for Clock 'vga_cont_clk_25:Q'
Delay:
            7.003ns (Levels of Logic = 15)
Source:
            vga_cont_hcount_15 (FF)
Destination:
             vga_cont_vcount_10 (FF)
Source Clock: vga_cont_clk_25:Q rising
Destination Clock: vga_cont_clk_25:Q rising
Data Path: vga cont hcount 15 to vga cont vcount 10
               Gate
                    Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)
  FDCPE:C->Q
                  6 0.720 0.688 vga cont hount 15 (vga cont hount 15)
```

4 0.551 0.629 vga cont n000310 (CHOICE932)

LUT4:I0->O

```
LUT3_D:I0->O
                   18  0.551  1.066  vga_cont__n000343  (vga_cont__n0003)
                    1 0.551 0.000 vga cont n000055 (vga cont n0000)
LUT3 L:I0->LO
MUXCY:S->O
                    1 0.500 0.000 vga cont vcount inst cy 65 (vga cont vcount inst cy 65)
MUXCY:CI->O
                    1 0.064 0.000 vga_cont_vcount_inst_cy_66 (vga_cont_vcount_inst_cy_66)
MUXCY:CI->O
                    1 0.064 0.000 vga cont vcount inst cy 67 (vga cont vcount inst cy 67)
MUXCY:CI->O
                    1 0.064 0.000 vga cont vcount inst cy 68 (vga cont vcount inst cy 68)
MUXCY:CI->O
                    1 0.064 0.000 vga_cont_vcount_inst_cy_69 (vga_cont_vcount_inst_cy_69)
MUXCY:CI->O
                    1 0.064 0.000 vga cont vcount inst cy 70 (vga cont vcount inst cy 70)
MUXCY:CI->O
                    1 0.064 0.000 vga cont vocunt inst cy 71 (vga cont vocunt inst cy 71)
MUXCY:CI->O
                    1 0.064 0.000 vga cont vcount inst cy 72 (vga cont vcount inst cy 72)
                    1 0.064 0.000 vga cont vcount inst cy 73 (vga cont vcount inst cy 73)
MUXCY:CI->O
MUXCY:CI->O
                    1 0.064 0.000 vga cont vcount inst cy 74 (vga cont vcount inst cy 74)
                    0 0.064 0.000 vga_cont_vcount_inst_cy_75 (vga_cont_vcount_inst_cy_75)
MUXCY:CI->O
XORCY:CI->O
                    1 0.904 0.000 vga cont vcount inst sum 75 (vga cont vcount inst sum 75)
FDCPE:D
                   0.203
                             vga cont vcount 10
Total
                7.003ns (4.620ns logic, 2.383ns route)
                  (66.0% logic, 34.0% route)
```

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'

Offset: 5.862ns (Levels of Logic = 2)

Source: rst (PAD)

Destination: Adder3in2_8 (FF)

Destination Clock: clk rising

Data Path: rst to Adder3in2_8

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

IBUF:I->O 117 1.930 1.406 rst_IBUF (rst_IBUF)

LUT2:I0->O 84 0.551 1.373 Ker120471 (N12049)

FDE:CE 0.602 Adder3in1_3

Total 5.862ns (3.083ns logic, 2.779ns route)

(52.6% logic, 47.4% route)

Timing constraint: Default OFFSET OUT AFTER for Clock 'vga cont clk 25:Q'

Offset: 11.294ns (Levels of Logic = 7)

Source: vga_cont_hcount_19 (FF)

Destination: B (PAD)

Source Clock: vga_cont_clk_25:Q rising

Data Path: vga_cont_hcount_19 to B

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDCPE:C->Q 5 0.720 0.658 vga_cont_hcount_19 (vga_cont_hcount_19)

LUT4:I0->O 4 0.551 0.629 Ker120611 (N12063)

LUT4:I3->O 1 0.551 0.000 _n0111132_F (N19298)

MUXF5:I0->O 1 0.360 0.240 _n0111132 (CHOICE236)

LUT4:I3->O 1 0.551 0.240 _n0111146 (_n0111)

LUT4:I0->O 1 0.551 0.240 pixel_out17 (CHOICE193)

LUT2:I1->O 3 0.551 0.577 pixel_out21 (R_OBUF)

OBUF:I->O 4.875 G_OBUF (G)

Total 11.294ns (8.710ns logic, 2.584ns route)

(77.1% logic, 22.9% route)

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk'

Offset: 9.953ns (Levels of Logic = 3)

Source: ram (RAM)

Destination: B (PAD)

Source Clock: clk rising

Data Path: ram to B

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

RAMB16_S1:CLK->DO0 9 2.382 0.777 ram (data_out)

LUT4:I1->O 1 0.551 0.240 pixel_out17 (CHOICE193)

LUT2:I1->O 3 0.551 0.577 pixel_out21 (R_OBUF)

OBUF:I->O 4.875 G OBUF (G)

Total 9.953ns (8.359ns logic, 1.594ns route)

(84.0% logic, 16.0% route)

CPU : $19.41 / 23.39 \text{ s} \mid Elapsed : <math>19.00 / 21.00 \text{ s}$

-->

Total memory usage is 74244 kilobytes