Et cetera

Ben Antieau, Viktor Burghardt, Noah Riggenbach, Lucy Yang

Abstract

Dumping ground for other stuff: Notes, one-off observations, stuff that we can collectively use when preparing talks, etc.

Contents

1	Talk prep
2	References

- 4 Thoughts & observations 2
- 5 Desperate Flailing 2

1 Talk prep

Questions and directions

2 References

- Involutions of Azumaya algebras by First and Williams (2020 Documenta)
- Counterexamples in involutions of Azumaya algebras by First and Williams; much more readable than
 the 2020 Documenta paper

3 Questions and directions

Question 3.1 (Morita theory for $\operatorname{Cat}_{\infty}^{\operatorname{p}}$). Let R be a Poincaré ring. Suppose given two R-algebras (suitably interpreted so their module categories are canonically endowed with R-linear Poincaré structures—perhaps \mathbb{E}_{σ}) A, B. Can we characterize

$$\hom_{\operatorname{Cat}_{\infty B}^{\operatorname{p}}}\left(\left(\operatorname{Mod}_{A}^{\omega}, \Omega_{A}\right), \left(\operatorname{Mod}_{B}^{\omega}, \Omega_{B}\right)\right)$$

in terms of something bimodule-like?

Question 3.2. On page 2 of the *Counterexamples* paper, First and Williams write that "existence of an extraordinary involution means classification of Azumaya algebras with involution...*cannot* be reduced to questions about projective modules and hermitian forms on them."

What if we replaced projective modules by perfect complexes thereof?

Question 3.3. First–Williams show (see discussion in §4 of the *Counterexamples* paper) that coarse type classify many (most?) Azumaya algebras up to (étale-local) *isomorphism*.

What is a suitable derived version of "coarse type"?

L: I make no promises re: organization but I will do my best to keep it reasonably readable

1

1

1

4 Thoughts & observations

Question 4.1. When R has the Tate Poincaré structure and $(\operatorname{Mod}_A^{\omega}, M_A, N_A, N_A \to M_A^{tC_2})$ is invertible, then by invertibility have an equivalence $\operatorname{hom}_R(A,R) \simeq N_A \otimes_R N_{A^{\operatorname{op}}}$ of $A \otimes_R A^{\operatorname{op}}$ -modules. Restricting the left-hand side along the unit map $R \to A$ gives a map $N_A \otimes_R N_{A^{\operatorname{op}}} \to \operatorname{hom}_R(R,R) \simeq R$. Is this a perfect (R-linear) pairing?

I think using that $R^{\varphi C_2} \simeq R$ and combining the linear and bilinear part conditions, we get something like

$$M_A \otimes_R M_{A^{\operatorname{op}}} \simeq (N_A \otimes_R N_{A^{\operatorname{op}}})^{\otimes_R 2}$$
 as $A \otimes_R A^{\operatorname{op}}$ -bimodules.

Is this useful?

Brauer-Severi schemes We know there is a correspondence between Azumaya algebras A over X and Brauer-Severi schemes. What does a Poincaré structure on $\operatorname{Mod}_A^{\omega}$ mean 'geometrically' for D_{coh}^b of the corresponding Brauer-Severi scheme? (Lucy: I didn't get very far here, but just typing up what I had)

- $\operatorname{Mod}_A^{\omega}$ corresponds to α -twisted sheaves on X (see Proposition 3.2.2.1 of Max Lieblich's thesis)
- The bounded derived category of α -twisted sheaves on X includes as one 'piece' of a semiorthogonal decomposition on D^b_{coh} of the corresponding Brauer-Severi scheme (see Theorem 5.1 here)

5 Desperate Flailing

This section is a cronical of my thoughts about \mathbb{G}_m^{Ω} .

Goal The goal is to build a Poincaré ring $\mathbb{G}_m^{\mathfrak{Q}} := (\operatorname{Mod}_R, \mathfrak{Q}_R)$ such that $B\mathbb{G}_m^{\mathfrak{Q}}(\underline{S}) = \operatorname{Pic}^{\mathfrak{Q}}(\underline{S})$ for any Poincaré ring \underline{S} .

Lemma 5.1. Let \underline{S} be a Poincaré ring. Then $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S,u)) = \{s \in \pi_0(S)^{\times} | s = 1 \text{ in } \pi_0(S^{C_2})\}.$

Proof. Since the functor $\operatorname{Pn}(\operatorname{Mod}_S) \to \operatorname{Mod}_S$ is conservative it follows that an element of $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S, u))$ must have underlying map an element of $\pi_0\operatorname{Aut}(S) = \pi_0(S)^{\times}$. Then in order for $s \in \pi_0(S)^{\times}$ to induce a map $(S, u) \to (S, u)$, the induced map $s^*: S^{C_2} \to S^{C_2}$ must satisfy $s^*(u) = u$. The pullback is given by multiplication by s, so this requirement translates into s being the unit, as desired.

The problem I thought existed maybe doesn't. Here is a candidate construction:

Construction 5.2. Define R to be the \mathbb{E}_{∞} ring given by $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\} \otimes_{\mathbb{S}\{z\}} \mathbb{S}$ where the map $\mathbb{S}\{z\} \to \mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$ is induced by the map $z \mapsto xy$, and the map $\mathbb{S}\{z\} \to \mathbb{S}$ is induced by $z \mapsto 1$. We can give R an \mathbb{E}_{∞} ring structure in Sp^{BC_2} by taking the trivial action on $\mathbb{S}\{z\}$ and \mathbb{S} , and taking the action induced by $x \mapsto y$ and $y \mapsto x$ on $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$. Thus in $\mathrm{CAlg}(\mathrm{Sp}^{BC_2})$ the ring R corepresents the functor $S \mapsto \{s \in \pi_0(S)^\times | s\sigma(s) = 1\}$.

Now take \underline{R} to be the Poincaré ring with underlying Borel C_2 structure as described in the previous paragraph and geometric fixed points $R^{\varphi C_2} = \mathbb{S}$ and the map $R^{\varphi C_2} \to R^{tC_2}$ given by the unit map. Endowing $R^{\varphi C_2}$ with the R-module structre given by $x,y\mapsto 1$, it remains to show that the unit map $R^{\varphi C_2} \to R^{tC_2}$ factors the Tate valued Frobenius $R\to R^{tC_2}$ in order to promote \underline{R} to a Poincaré ring. By construction of R it is then enough to show that on π_0 the Tate valued Frobenius sends $x,y\mapsto 1$ in $\pi_0(R^{tC_2})$. This map sends both x and y to $xy\in\pi_0(R^{tC_2})$. These are equal to 1 in $\pi_0(R^{tC_2})$ since the functor $(-)^{tC_2}$ is lax-monoidal so R^{tC_2} is a modules over $\mathbb{S}\{x^{\pm 1},y^{\pm 1}\}^{tC_2}\otimes_{\mathbb{S}\{z\}^{tC_2}}\mathbb{S}^{tC_2}$ which has the image of xy equal to 1.

Now consider another Poincaré ring \underline{S} . We then have that maps $\pi_0(\operatorname{Maps}(\underline{R},\underline{S}))$ is the data of a unit $s \in \pi_0(S)^{\times}$, a path $s\sigma(s) \to 1$ in $\Omega^{\infty}S$, and paths $x,y \to 1$ in $\Omega^{\infty}S^{\varphi C_2}$. This then agrees with $\mathbb{G}_m^{\mathfrak{Q}}$ by the following lemma.

Lemma 5.3. Let $S \in \operatorname{CAlg}(\operatorname{Sp}^{BC_2})$ and $s \in \pi_0(S)^{\times}$. Then $s\sigma(s) = 1$ in $\pi_0(S)$ if and only if $(s \otimes s)^*$ acts by 1 on $\pi_0(S^{hC_2}) = \pi_0(\operatorname{Hom}_{S \otimes S}(S \otimes S, S)^{hC_2})$.

Proof. Th	he 'only if'	direction	follows	from the	e fact that	the map	S^{hC_2}	\toS	is an	S-bim	odule r	nap.	Now
suppose t	that $s\sigma(s)$ =	= 1 in S.	Then be	fore taki	ng homoto	py fixed p	points '	the in	duced	map .	$s^* = id$	becau	ise S
is \mathbb{E}_{∞} . ¹													

 $^{^{1}}$ Or just \mathbb{E}_{2} .