Numeral Systems

- 1. Convert Base 10 {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} → Base K
 - 1.1. Base 10 \rightarrow Base 2 {0; 1}

$$0.125 \times 2 = 0.25$$

 $0.25 \times 2 = 0.5$
 $0.5 \times 2 = 1.0$

Result: 21.125 (10) = 10101.001 (2)

1.2. Base 10 \Rightarrow Base 16 {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F} 923 (10) \Rightarrow Y (16)

Result: $923_{(10)} = 39B_{(16)}$

1.3. Base 10 \rightarrow Base 8 {0; 1; 2; 3; 4; 5; 6; 7}

2. Convert Base 2 → Base 10

$$10110_{(b)} \rightarrow X_{(d)}$$

$$1x2^{4} + 0x2^{3} + 1x2^{2} + 1x2^{1} + 0x2^{0}$$

$$10110_{b} = 22_{d}$$

Result: $10110_{(b)} = 22_{(d)}$

$$10.110_{(b)} \rightarrow Y_{(d)}$$

$$1x2^{1} + 0x2^{0} + 1x2^{-1} + 1x2^{-2} + 0x2^{-3}$$

$$10.110_{b} = 2.75_{d}$$

Result: $10.110_{(b)} = 2.75_{(d)}$

3. Convert Base 2 $\leftarrow \rightarrow$ Base 16

3.1. Base 16 \rightarrow Base 2

15AF
$$_{(16)} \rightarrow X_{(2)}$$

Result: 15AF $_{(16)}$ = 1010110101111 $_{(2)}$

3.2. Base 2 \rightarrow Base 16

1010110111111 ₍₂₎ → Y ₍₁₆₎

Result: 1010110111111 $_{(2)}$ = 15BF $_{(16)}$

4. Convert Base 2 ←→ Base 8

1010110111 (2) → X (8)

Result: 1010110111 (2) = 1267 (8)

5. Addition

$$1110_{(2)} + 1000_{(2)} = ?$$

Result: 1110 $_{(2)}$ + 1000 $_{(2)}$ = 10110 $_{(2)}$

$$11.011_{(2)} + 10.110_{(2)} = ?$$

Result: $11.011_{(2)} + 10.110_{(2)} = 110.001_{(2)}$

$$82BA_{(16)} + B781_{(16)} = ?$$

Result: 82BA $_{(16)}$ + B781 $_{(16)}$ = 13A3B $_{(16)}$

6. Multiple

Result: 1011 $_{(2)}$ x 10 $_{(2)}$ = 10110 $_{(2)}$

1

1

Result: 234A $_{(16)}$ x AB $_{(16)}$ = 17926E $_{(16)}$

7. Subtract

0

0

Result: 1010 $_{(2)}$ - 111 $_{(2)}$ = 11 $_{(2)}$

Result: F121 $_{(16)}$ – B781 $_{(16)}$ = 39A0 $_{(16)}$

8. Divide

Result: $11101_{(2)}$: $101_{(2)}$ = 101 (remainder = 100).

9. Two's complement notation systems

Leftmost bit: sign bit

One's complement: Changing all the 0s to 1s, all the 1s to 0s.

Two's complement: Add 1 to the one's complement.

$$-5_{(10)} \rightarrow Binary?$$

Result: $-1x2^7 + 1x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = -5$

$$5-5=5+(-5)=0$$

5 (1 byte)

One's complement of 5

1 | 1 | 1 | 1 | 1 | 0 | 1 | 0

+

1

Two's complement of 5

1 1 1 1 0 1 1

+ 5

0 0 0 0 0 1 0 1

Result 1 0 0 0 0 0 0 0 0

6 bit - sized interger.

 $001100 (12) \rightarrow 110100 (-12)$

001001 (9) → 110111 (-9)

0 0 1 1 0 0 (12)

1 1 1 1 0 1 (-3)

1 1 0 1 0 0 (-12)

1 1 1 1 0 1 (-3)