Übung 3

Max Wisniewski, Alexander Steen

Aufgabe 1.

Ein minimal aufspannender Baum G = (V, E) ergibt sich aus V siehe Modell und E siehe beigefügtem Zettel.

Aufgabe 2.

1. Zu zeigen: $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$

Beweis:

Induktionsanfang: $n = r \in \mathbb{N}$

$$\sum_{i=r}^{r} \binom{i}{r} = \binom{r}{r} = 1 = \binom{r+1}{r+1}$$

Induktionsschritt: $n+1 > r \in \mathbb{N}$

$$\sum_{i=r}^{n+1} \binom{i}{r} = \sum_{i=r}^{n} \binom{i}{r} + \binom{n+1}{r}$$

$$\stackrel{IV}{=} \binom{n+1}{r+1} + \binom{n+1}{r}$$

$$\stackrel{Rekur.}{=} \binom{n+2}{r+1}$$

2. Zu zeigen: $|M| = \binom{n+r-1}{r-1}$, mit $M = \{(k_1, \dots, k_r) \in \mathbb{N}^r | \sum_{i=1}^r k_i = n\}$, für $n, r \in \mathbb{N}, r \geq 1$.

Beweis: Sei $n \in \mathbb{N}$.

Induktionsanfang: r = 1

$$|M| = 1 = \binom{n}{0} = \binom{n+r-1}{r-1}$$

Induktionsschritt: r + 1 > 1

$$|M| = |\{(k_1, \dots, k_r, k_{r+1}) \in \mathbb{N}^{r+1} | \sum_{i=1}^{r+1} k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, 0) | \sum_{i=1}^r k_i = n \}| + |\{(k_1, \dots, k_r, 1) | \sum_{i=1}^r k_i = n - 1 \}|$$

$$+ \dots + |\{(k_1, \dots, k_r, n - 1) | \sum_{i=1}^r k_i = 1 \}| + |\{(k_1, \dots, k_r, n) | \sum_{i=1}^r k_i = 0 \}|$$

$$= |\{(k_1, \dots, k_r, n) | \sum_{i=1}^r k_i = 1 \}| + |\{(k_1, \dots, k_r, n) | \sum_{i=1}^r k_i = 0 \}|$$

$$= |\{(k_1, \dots, k_r, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{(k_1, \dots, k_r, k_r) | \sum_{i=1}^r k_i = n \}|$$

$$= |\{$$

Aufgabe 3

Wir betrachten den Namen **Max**: Wir können 3! = 6 verschiedene Worte damit bilden. Wir betrachten den Namen **Alexander**: Wir können damit $\frac{9!}{2 \cdot 2} = 90720$ verschiedene Worte bilden. Die Division durch vier ergibt sich aus den doppelten Buchstaben des Namens (nämlich zwei doppelte).

Aufgabe 4

Sei M eine Menge mit $|M| =: n \in \mathbb{N}$ Elementen. Z.z. Die Hälfe der Teilmengen von M hat eine gerade Anzahl von Elementen.

Beweis durch Induktion über n:

Induktionsanfang: n = 1

Sei o.B.d.A $M = \{a\}$. Dann ist

$$2^M = \{\emptyset, a\}$$

wobei die Teilmenge \emptyset eine gerade Anzahl von Elementen hat (nämlich Null) und die Teilmenge M eine ungerade Anzahl von Elementen hat. Damit besitzt die Hälfte aller Teilmengen eine gerade Kardinalität.

Induktionsschritt: n > 1

Sei o.B.d.A. $M = M' \cup \{a\}$. Die Teilmengen von M sind nun die Teilmengen von M' zusammen mit den um $\{a\}$ erweiterten Teilmengen von M'.

Sei hierfür $2^M + A$ für zwei Mengen M, A definiert als $2^M + A := \{m \cup A | m \in 2^M\}$. Dann ist

$$2^M = 2^{M'} \cup (2^{M'} + \{a\})$$

Die Hälfte der Mengen von $2^{M'}$ hat nach Induktionsvoraussetzung eine gerade Kardinalität. Die Hälfte der Mengen von $2^{M'} + \{a\}$ hat ebenfalls eine gerade Kardinalität, da in jede Menge von $2^{M'}$ jeweils ein Element hinzugefügt wird und dadurch die Mengen von $2^{M'} + \{a\}$, die vorher eine ungerade Kardinalität basaßen nun eine gerade Kardinalität besitzen und andersherum. Da Vereinigung disjunkt ist, besitzen nun auch die Hälfte der Mengen von 2^M eine gerade Anzahl von Elementen.