Arc Plate:

Diameter = 160mm

Diameter of arc slots = 3mm

Mass = 63.27 grams

Volume = 63265.19 cubic millimeters

Surface area = 42769.41 square millimeters

Principal axes of inertia and principal moments of inertia: (grams * square millimeters)

Taken at the center of mass.

$$Ix = (1.00, 0.00, 0.00)$$
 $Px = 105645.96$ $Iy = (0.00, 1.00, 0.00)$ $Py = 105645.96$ $Iz = (0.00, 0.00, 1.00)$ $Pz = 211162.74$

Moments of inertia: (grams * square millimeters)

Taken at the center of mass and aligned with the output coordinate system.

$$Lxx = 105645.94$$
 $Lxy = 0.00$ $Lxz = 0.00$ $Lyx = 0.00$ $Lyx = 105645.97$ $Lyz = 0.00$ $Lzx = 0.00$ $Lzy = 0.00$ $Lzz = 211162.74$

Moments of inertia: (grams * square millimeters)

Taken at the output coordinate system.

$$lxx = 105645.94$$
 $lxy = 0.00$ $lxz = 0.00$ $lyx = 0.00$ $lyz = 105645.97$ $lyz = 0.00$ $lzx = 0.00$ $lzz = 211162.74$

Output shaft:

Diameter = 8mm

Density = 0.00 grams per cubic millimeter

Mass = 1.93 grams

Volume = 1926.93 cubic millimeters

Surface area = 1208.18 square millimeters

Principal axes of inertia and principal moments of inertia: (grams * square millimeters)

Taken at the center of mass.

Moments of inertia: (grams * square millimeters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (grams * square millimeters)

Taken at the output coordinate system.

$$lxx = 3444.88$$
 $lxy = -0.02$ $lxz = -0.31$ $lyx = -0.02$ $lyy = 3444.87$ $lyz = 0.38$ $lzx = -0.31$ $lzy = 0.38$ $lzz = 12.45$