Continuous Control with Deep Reinforcement Learning

Timothy P. Lillicrap, et al. · 14 p · 2015

By Flavio Schneider · November 2019 · FIH zürich

Index

- What is reinforcement learning (RL)?
- How can we describe RL formally?
- How does a RL algorithm look like?

- One of the three basic paradigms of ML
- Learns intelligent behavior from reward
- Many applications
- Exploitation and exploration

Agent-Environment loop

State · Action · Reward · Policy · Goal

Pendulum Example

State · Action · Reward · Policy · Goal

State: $s_t \in S = R^{n+1}$ describes to the agent the environment completely at time t.

State Vector

$$s_t = \begin{bmatrix} Pendulum \ angle \\ Pendulum \ speed \end{bmatrix}$$

$$t = 0$$
 $t = 5$ $t = 10$ \cdots

$$s_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $s_5 = \begin{bmatrix} 20 \\ -5 \end{bmatrix}$ $s_{10} = \begin{bmatrix} -20 \\ 4 \end{bmatrix}$

State · Action · Reward · Policy · Goal

Action: $a_t \in A$ represents what the agent is going to do at time t.

Discrete Action Space

$$a_t \in A = (Left, Right) = (a^{(0)}, a^{(1)})$$

Continuous Action Space

$$a_t \in A = [-1,1]$$

State · Action · Reward · Policy · Goal

Reward: $r_t = R(s_t)$ or $r_t = R(s_t, a_t)$ is a score that tells the agent how good was the last move a_t in state s_t .

Return: $R(\tau) = \sum_{t=0}^{T} \gamma^t r_t$ where $\tau = (s_0, a_0, s_1, a_1, ...)$ is a sequence of state/action pairs and $\gamma \in (0,1)$.

Reward Function

$$r_t = R(s_t) = \begin{cases} 1 & if \ s_t[0] == 180 \\ 0 & otherwise \end{cases}$$

State · Action · Reward · Policy · Goal

Policy: $\mu(s_t) = a_t$ is the brain of the agent, a function that maps states to actions.

$$s_5 = \begin{bmatrix} 20 \\ -5 \end{bmatrix} \qquad \qquad \mu\left(\begin{bmatrix} 20 \\ -5 \end{bmatrix} \right) = \alpha_5^{(i)} = 0.83$$

State · Action · Reward · Policy · Goal

Trajectory Probability:

$$P(\tau \mid \mu) \coloneqq \prod_{t=0}^{T-1} P(s_{t+1} \mid s_t, a_t) P(\mu(s_t) = a_t)$$

Expected Return:

$$\mathbb{E}_{a_t = \mu(s_t)}[R(\tau)] = \int_{\tau} P(\tau \mid \mu) R(\tau)$$

Goal · Find Optimal Policy:

$$\mu^* \coloneqq \operatorname*{argmax}_{\mu} \mathbb{E}_{a_t = \mu(s_t)}[R(\tau)]$$

Trajectory

$$\tau = \left(s_{0}, a_{0}^{(1)}, s_{1}, a_{1}^{(0)}, \dots\right)$$

$$a_{0}^{(0)}, s_{1}, a_{1}^{(0)}, \dots\right)$$

$$a_{0}^{(0)}, s_{2}, \dots$$

$$a_{1}^{(0)}, s_{2}, \dots$$

$$a_{1}^{(0)}, s_{2}, \dots$$

$$a_{1}^{(0)}, s_{2}, \dots$$

$$a_{1}^{(0)}, s_{2}, \dots$$

$$\vdots, a_{1}^{(0)}, s_{2}, \dots$$

$$t = 0 \qquad \qquad t = 1 \qquad \qquad t = 2$$

Important Functions

Quality · Bellmann

Important Functions

Quality · Bellmann

Quality Function:

$$\mathbb{E}_{a_t=\mu(s_t)}[R(\tau)]$$

$$Q^{\mu}(s,a) \coloneqq \mathbb{E}_{s_0=s,a_0=a, a_t=\mu(s_t)}[R(\tau)]$$

Optimal Quality Function:

$$Q^*(s,a) \coloneqq \max_{\mu} Q^{\mu}(s,a)$$

Optimal Action:

$$\mu^*(s) = \underset{a}{arg\max} \, Q^*(s, a) = a^*$$

$$t = 0$$
 $t = 1$

Important Functions

Quality · Bellman

Bellman Equation:

$$Q^*(s,a) = \mathbb{E}\left[R(s,a) + \gamma \max_{a'} Q^*(s',a')\right]$$

DQN · DPG · DDPG

Question:

How can we solve any (discrete and then continuous)

reinforcement learning problem?

Idea:

Approximate $Q^*(s, a)$ using a neural network.

"Critic" Network $\cdot Q^{\mu}(s, a \mid \theta^{Q})$:

Pendulum

DQN · DPG · DDPG

Deep Q Network

- 1. Initialize randomly $Q^{\mu}(s, a \mid \theta^{Q})$
- 2. Get initial state s
- 3. Repeat:

a.
$$a = \underset{a'}{argmax} Q^{\mu}(s, a' \mid \theta^{Q})$$

- b. $a = a^{(i)}$ for $i \in \{0, ..., m\}$ random with probability ϵ
- c. Execute a and observe r = R(s, a) and s'

d.
$$Q^T(s, a, r, s') \coloneqq r + \gamma \max_{a'} Q^{\mu}(s', a' \mid \theta^Q)$$

e.
$$\theta^Q \leftarrow \theta^Q - \alpha \nabla_{\theta^Q} \left[\left(Q^T(s, a, r, s') - Q^{\mu}(s, a \mid \theta^Q) \right)^2 \right]$$

$$f.$$
 $s \leftarrow s'$

"Critic" Network $\cdot Q^{\mu}(s, a \mid \theta^{Q})$:

Bellman Equation

$$Q^*(s,a) = \mathbb{E}\left[R(s,a) + \gamma \max_{a'} Q^*(s',a')\right]$$

DQN · DPG · DDPG

Deep Q Network

- 1. Initialize randomly $Q^{\mu}(s, a \mid \theta^{Q})$
- 2. Get initial state s
- 3. Repeat:

a.
$$a = \underset{a'}{argmax} Q^{\mu}(s, a' \mid \theta^{Q})$$

- b. $a = a^{(i)}$ for $i \in \{0, ..., m\}$ random with probability ϵ
- c. Execute a and observe r = R(s, a) and s'
- d. $Q^T(s, a, r, s') \coloneqq r + \gamma \max_{a'} Q^{\mu}(s', a' \mid \theta^Q)$
- e. $\theta^{Q} \leftarrow \theta^{Q} \alpha \nabla_{\theta^{Q}} \left[\left(Q^{T}(s, a, r, s') Q^{\mu}(s, a \mid \theta^{Q}) \right)^{2} \right]$

$$f.$$
 $s \leftarrow s'$

"Critic" Network $\cdot Q^{\mu}(s, a \mid \theta^{Q})$:

Bellman Equation

$$Q^*(s,a) = \mathbb{E}\left[R(s,a) + \gamma \max_{a'} Q^*(s',a')\right]$$

DQN · DPG · DDPG

Deep Q Network

Code Structure

- 1. Initialize randomly $Q^{\mu}(s, a \mid \theta^{Q})$ and $Q^{\mu'}(s, a \mid \theta^{Q'})$
- 2. Initialize replay buffer $\mathcal{R} = S \times A \times R \times S$
- 3. Get initial state s
- 4. Repeat:
- a. Sample
- b. Train

Target "Critic" Network $\cdot Q^{\mu'}(s, a \mid \theta^{Q'})$:

DQN · DPG · DDPG

Deep Q Network

• Sample

```
i. a = \underset{a_I}{argmax} Q^{\mu}(s, a' \mid \theta^{Q})
```

ii. $a = a^{(i)}$ for $i \in \{0, ..., m\}$ random with probability ϵ

iii. Execute a and observe r and s'

iv. Store $\mathcal{R} \leftarrow \mathcal{R} \cup (s, a, r, s')$

Target "Critic" Network $\cdot Q^{\mu'}(s, a \mid \theta^{Q'})$:

DQN · DPG · DDPG

Deep Q Network

- · Train
- i. Sample random batch $\mathcal{B} \subseteq \mathcal{R}$
- ii. For each $(s, a, r, s') \in \mathcal{B}$

I.
$$Q^{T}(s, a, r, s') \coloneqq r + \gamma \max_{a'} Q^{\mu'}(s, a' \mid \theta^{Q'})$$

II.
$$\theta^Q \leftarrow \theta^Q - \alpha \nabla_{\theta^Q} \left[\left(Q^T(s, a, r, s') - Q^{\mu}(s, a \mid \theta^Q) \right)^2 \right]$$

iii. Every C steps reset $\theta^{Q'} \leftarrow \theta^{Q}$

Target "Critic" Network $\cdot Q^{\mu'}(s, a \mid \theta^{Q'})$:

DQN · DPG · DDPG

Deep Q Network

- · Train
- i. Sample random batch $\mathcal{B} \subseteq \mathcal{R}$
- ii. For each $(s, a, r, s') \in \mathcal{B}$

I.
$$Q^{T}(s, a, r, s') \coloneqq r + \gamma \max_{a'} Q^{\mu'}(s, a' \mid \theta^{Q'})$$

II.
$$\theta^Q \leftarrow \theta^Q - \alpha \nabla_{\theta^Q} \left[\left(Q^T(s, a, r, s') - Q^{\mu}(s, a \mid \theta^Q) \right)^2 \right]$$

iii. Every C steps reset $\theta^{Q'} \leftarrow \theta^{Q}$

Target "Critic" Network $\cdot Q^{\mu'}(s, a \mid \theta^{Q'})$:

DQN · DPG · DDPG Deterministic Policy Gradient

Expected Return:

$$J(\mu_{\theta}) \coloneqq \mathbb{E}_{a_t = \mu_{\theta}(s_t)}[R(\tau)]$$

Deterministic Policy Gradient Theorem:

$$\nabla_{\theta^{\mu}} J(\mu_{\theta^{\mu}}) = \mathbb{E} \left[\nabla_{a} Q^{\mu} (s, a \mid \theta^{Q}) \nabla_{\theta_{\mu}} \mu(s \mid \theta^{\mu}) \right]$$

"Critic" Network $\cdot Q^{\mu}(s, a \mid \theta^{Q})$:

"Actor" Network $\cdot \mu(s \mid \theta^{\mu})$:

DQN · DPG · DDPG

Deep DPG

Code Structure

- 1. Initialize randomly $Q^{\mu}(s, a \mid \theta^{Q})$ and $\mu(s \mid \theta^{\mu})$
- 2. Initialize $Q^{\mu\prime}(s,a\mid\theta^{Q\prime}\leftarrow\theta^{Q})$ and $\mu'(s\mid\theta^{\mu\prime}\leftarrow\theta^{\mu})$
- 3. Initialize replay buffer $\mathcal{R} = S \times A \times R \times S$
- 4. Observe initial state s
- 5. Repeat:
- a. Sample
- b. Train

"Critic" Network $Q^{\mu}(s, a \mid \theta^{Q})$

$$\begin{bmatrix} s - \\ a - \end{bmatrix} \theta^Q - Q(s, a)$$

Target "Critic" Network $Q^{\mu\prime}(s, a \mid \theta^{Q\prime})$

$$a = \theta^{Q'} - Q(s, a)$$

"Actor" Network $\mu(s \mid \theta^{\mu})$

Target"Actor" Network $\mu'(s \mid \theta^{\mu'})$

$$s - \theta^{\mu \prime} - a$$

Replay Buffer · R

DQN · DPG · DDPG

Deep DPG

• Sample:

- i. Execute $a = \mu(s \mid \theta^{\mu}) + \mathcal{N}$ and observe r and s'
- ii. Store $\mathcal{R} \leftarrow \mathcal{R} \cup (s, a, r, s')$

"Critic" Network $Q^{\mu}(s, a \mid \theta^{Q})$

$$\begin{bmatrix} s - \\ a - \end{bmatrix} \theta^Q - Q(s, a)$$

Target "Critic" Network $Q^{\mu\prime}(s, a \mid \theta^{Q\prime})$

$$a = \frac{g}{a} - Q(s, a)$$

"Actor" Network $\mu(s \mid \theta^{\mu})$

$$s - \theta^{\mu} - a$$

Target"Actor" Network $\mu'(s \mid \theta^{\mu'})$

$$s-\theta^{\mu\prime}-a$$

Replay Buffer · R

DQN · DPG · DDPG

Deep DPG

Train

i. Sample random batch $\mathcal{B} \subseteq \mathcal{R}$

ii.
$$Q^{T}(s, a, r, s') \coloneqq r + \gamma Q^{\mu'}\left(s', \overline{\mu'\left(s' \mid \theta^{\mu'}\right)} \mid \theta^{Q'}\right)$$

iii.
$$L^{Q}(\theta^{Q}) = \frac{1}{|\mathcal{B}|} \sum_{(s,a,r,s') \in \mathcal{B}} \left[Q^{T}(s,a,r,s') - Q^{\mu}(s,a \mid \theta^{Q}) \right]^{2}$$

iv.
$$\theta^Q \leftarrow \theta^Q - \alpha \nabla_{\theta^Q} L(\theta^Q)$$

$$V. \quad L^{\mu}(\theta^{\mu}) = \frac{1}{|\mathcal{B}|} \sum_{(s,a,r,s') \in \mathcal{B}} \nabla_{a} Q^{\mu}(s,a \mid \theta^{Q}) \nabla_{\theta^{\mu}} \mu(s \mid \theta^{\mu})$$

vi.
$$\theta^{\mu} \leftarrow \theta^{\mu} - \alpha \nabla_{\theta^{\mu}} L(\theta^{\mu})$$

vii.
$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$
 where $\tau \ll 1$

viii.
$$\theta^{\mu\prime} \leftarrow \tau\theta^{\mu} + (1-\tau)\theta^{\mu\prime}$$

"Critic" Network $Q^{\mu}(s, a \mid \theta^{Q})$

Target "Critic" Network $Q^{\mu\prime}(s, a \mid \theta^{Q\prime})$

"Actor" Network $\mu(s \mid \theta^{\mu})$

Target "Actor" Network $\mu'(s \mid \theta^{\mu'})$

$$s - \theta^{\mu} - a$$

$$\rightarrow s - \theta^{\mu \prime} - a$$

Replay Buffer · R

DDPG Performance

Conclusion

- + Continuous control is much more stable.
- + Same algorithm/tuning solves many (20+) problems.
- + Pseudo-Code and hyperparameters are provided.
- Computationally expensive.
- Many hyperparameters must be tuned correctly.
- Many decisions of the paper require lot of pre-knowledge.

DQN · Discrete

DDPG · Continuous

Any Questions?

References

Presented Paper:

Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

DQN Paper:

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." *arXiv preprint arXiv:1312.5602* (2013).

DPG Paper:

Silver, David, et al. "Deterministic policy gradient algorithms." 2014.

Useful Websites:

- https://spinningup.openai.com/en/latest/spinningup/rl intro.html
- https://towardsdatascience.com/deep-deterministic-policygradients-explained-2d94655a9b7b
- https://medium.com/@jonathan_hui/rl-dqn-deep-q-network-e207751f7ae4

Hyperparameters

Learning Rates $\alpha_{actor} = 10^{-4}$

 $\alpha_{critic} = 10^{-3}$

Discount Factor $\gamma = 0.99$

Target update $\tau = 0.001$

Neural network ReLU for all except last layer

of the actor that uses tanh, 2

hidden layers of 300

respectively 400 neurons.

Buffer, Batch Size 10⁶, 64

Improvements after 2015

- Paper uses batch normalization which has been found to improve only certain problems.
- An architecture with several actors can explore more of the environment.