Scilab Textbook Companion for Fundamentals of Electric Drives and Control by B. R. Gupta and V. Singhal¹

Created by
Karan Singh
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Vinesh Saini
Cross-Checked by
Lavitha Pereira & Mukul Kulkarni

May 27, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals of Electric Drives and Control

Author: B. R. Gupta and V. Singhal

Publisher: S. K. Kataria & Sons, New Delhi

Edition: 1

Year: 2013

ISBN: 978-93-5014-381-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Fundamentals of Electric Drive	5
3	Dynamics of Electric Drives	7
4	Selection of Motor Power Rating	16
5	DC Motor Drives	26
6	AC Motor Drives	60

List of Scilab Codes

Exa 1.1	Electrical Energy and Rating	5
Exa 3.1	Moment of Inertia and Load Torque	7
Exa 3.2	equivalent inertia and load of motor	7
Exa 3.3	kw rating and distance	8
Exa 3.4	acceleration	9
Exa 3.5	diameter	10
Exa 3.6	inertia and torque	11
Exa 3.7	torque and moment	12
Exa 3.9		12
Exa 3.10		13
Exa 3.11	operating speed	14
Exa 3.12		15
Exa 4.1		16
Exa 4.2	temperature and time constant	17
Exa 4.3	temperature heating and cooling time constant	18
Exa 4.4	temperature rise	19
Exa 4.5	temperature rise and heating time constant	19
Exa 4.6	proper size of motor	20
Exa 4.7		21
Exa 4.8	ratio	21
Exa 4.9		22
Exa 4.10	continuous rating	23
Exa 4.11		23
Exa 4.12	continuous rating	24
Exa 4.13		24
Exa 5.1		26
Exa 5.2		27
Exa 5.3		27

Exa 5.4	speed and resistance
Exa 5.5	braking resistance
Exa 5.6	Energy Dissipated
Exa 5.7	Resistance and Breaking Torque
Exa 5.8	Speed of Motor
Exa 5.9	Find Resistance to be added
Exa 5.10	Speed at Full load and Torque
Exa 5.11	New Value of Field Current
Exa 5.12	Field Current Firing Angle
Exa 5.13	Torque Developed and Motor Speed
Exa 5.14	Firing Angle of Converter
Exa 5.15	Input Power Speed and Torque
Exa 5.16	Average Voltage Power and Speed
Exa 5.17	Speed Torque Characteristics
Exa 5.18	No Load Speed and Firing Angle
Exa 5.19	Power fed back
Exa 5.20	Find back emf
Exa 5.21	Compute Speed and Torque
Exa 5.22	RMS current and Power factor 45
Exa 5.23	Time taken by the motor
Exa 5.24	Max and Min Armature Current and Excursion 46
Exa 5.25	Avg Motor Current and Speed
Exa 5.26	Armature current and firing angle 48
Exa 5.27	Torque and Armature Current
Exa 5.28	Motor Current and Torque
Exa 5.29	Firing Angle of Converter
Exa 5.30	Speed of Motor
Exa 5.31	On time of chopper
Exa 5.32	Braking Current and Resistance
Exa 5.33	Torque Speed and PF
Exa 5.34	Find Motor Speed
Exa 5.35	Duty Cycle of Chopper
Exa 5.36	Resistance and Braking Torque
Exa 5.37	Find Motor Speed
Exa 5.38	Torque Speed and PF
Exa 5.39	On Time of chopper
Exa 5.40	Current Drawn and Resistance
Exa 5.41	Find Firing Angle

Exa 6.1	Speed and Torque
Exa 6.2	Slip Speed Power
Exa 6.3	Poles Slip and Copper Loss
Exa 6.4	Applied voltage and starting current
Exa 6.5	Motor current Line Current and Torque Ratio
Exa 6.6	Braking Current and Torque
Exa 6.7	Starting Time and Energy
Exa 6.8	Torque Current and Voltage
Exa 6.9	Slip for max Torque
Exa 6.10	Starting Torque
Exa 6.11	Find Torque
Exa 6.12	Stator Applied Voltage
Exa 6.13	Find Torque
Exa 6.14	Torque Ratio and Current Ratio
Exa 6.15	Find motor speed
Exa 6.16	Average torque and speed
Exa 6.17	Value of Vdc
Exa 6.18	Torque and applied voltage
Exa 6.19	Torque Speed Current and frequency
Exa 6.20	Find Motor Speed
Exa 6.20.1	Find Maximum Torque
Exa 6.21	Power Output Torque and Speed

Chapter 1

Fundamentals of Electric Drive

Scilab code Exa 1.1 Electrical Energy and Rating

```
1 //Example No. 1.1
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 J=12;//journey per hour
9 Load=5500; //{\rm Kg}
10 t_{up}=1.5; //min
11 W_cage=500; //Kg
12 t_down = 1.25; //min
13 h=50; //m
14 Wb=3000; //Kg(Balance weight)
15 Eff_hoist=0.8;
16 Eff_motor = 0.85;
17 g=9.81; // gravity constant
18 E_{upward}=(Load+W_{cage}-Wb)*g*h;//J
19 E_downward=(Wb-W_cage)*g*h; //J
20 Edj=E_upward+E_downward; //J(Energy\ used\ in\ double
      journey)
```

Chapter 3

Dynamics of Electric Drives

Scilab code Exa 3.1 Moment of Inertia and Load Torque

```
1 //Example No. 3.1
2 clc;
3 clear;
4 close;
6 //Given Data :
7 MoI=0.3; //\text{Kg-m}^2
8 T=20; //N-m
9 MoIshaft=10; //in \text{ Kg-m}^2
10 LostT=10; //\%
11
12 //Solution :
13 MoItotal=MoI+MoIshaft; //in \text{ Kg-m}^2
14 LoadTorque=T-T*LostT/100; //in N-m
15 disp(MoItotal, "Total Moment of Inertia in Kg-m^2:"
      );
16 disp(LoadTorque, "Load Torque in N-m : ");
```

Scilab code Exa 3.2 equivalent inertia and load of motor

```
1 //Example No. 3.2
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 n=0.1; // teeth ratio
9 ETAg=90/100; // efficiency
10 J0=0.4; //\text{Kg-m}^2
11 J1=10; //\text{Kg-m}^2
12 TL=50; //N-m
13 N=1400; // speed in rpm
14
15 // Solution :
16 J=J0+n^2*J1; //Kg-m^2
17 T=n*TL/ETAg; //N-m
18 MotorSpeed=2*%pi*N/60; // \text{rad} / \text{sec}
19 Pdev=MotorSpeed*T; //Watt
20 disp(J, "Equivalent Inertia in Kg-m^2 : ");
21 disp(T,"Load Torque referred to motor side in N-m:"
22 disp(Pdev, "Power developed by motor in watt: ");
```

Scilab code Exa 3.3 kw rating and distance

```
1 //Example No. 3.3
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 v=60;//Km/hr
9 w=400;//KN
```

```
10 friction=5; //N/KN weight
11 tan_theta=1/100; //inclination
12 g=9.81; // gravity constant
13
14 // Solution :
15 sin_theta=tan_theta;
16 W_{sin_theta=w*1000*sin_theta;//N}
17 R=friction*W_sin_theta/10; //frictional resistance in
18 P=W_sin_theta+R; //N
19 v = 60 * 1000 / 60 / 60; //m/s
20 Power=P*v; //Watt
21 disp(Power/1000, "Final KW rating of the motor of
      train : ");
22 Force=P; //down the inclined force in N
23 u=v;//initial velocity in m/s
24 v=0; // final velocity in m/s
25 \text{ m=w*1000/g;}//\text{in Kg}
26 KE=1/2*m*u^2; //in Joule
27 d=KE/P; // distance in meter
28 disp(d," Distance covered in meter: ");
```

Scilab code Exa 3.4 acceleration

```
1 //Example No. 3.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 MotorOutput=200;//KW
9 v=60;//Km/hr
10 w=400;//KN
11 friction=5;//N/KN weight
```

Scilab code Exa 3.5 diameter

```
//Example No. 3.5
clc;
clc;
clear;
close;
format('v',6);

//Given Data :
    MotorSpeed=200;//rpm
    d1=50;//diameter of motor pulley in cm
    MachineSpeed=100;//rpm

//Solution :
d2=MotorSpeed/MachineSpeed*d1;//diameter of machine pulley in cm

disp(d2,"Diameter of machine pulley in cm : ");
```

Scilab code Exa 3.6 inertia and torque

```
1 //Example No. 3.6
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 v=1.2; // belt conveyer speed in m/s
9 TransRate=100;//rate of transportation of material
      in tons/hour
10 l=200; //length of belt in meter
11 MotorSpeed=1200; //rpm
12 MoI=0.1; //Moment of Inertia in Kg-m<sup>2</sup>
13
14
15 // Solution :
16 // Part A
17 TransRate=TransRate*1000/60/60; //rate of
      transportation of material in Kg/sec
18 TransTime=1/v;//in sec
19 omega=MotorSpeed*2*%pi/60;//rad/sec
20 M=TransRate*TransTime; //\mathrm{Kg}
21 J=M*(v/omega)^2; //Kg-m^2
22 disp(J,"Load Inertia in Kg-m<sup>2</sup>: ");
23
24 // Part B
25 t=8; //sec
26 \text{ a=v/t;} //\text{m/s}^2
27 TorqueInertai=MoI*omega/t;/N-m
28 F=M*a;//N
29 Tload=F*v/omega; //N-m
30 TotalTorque=Tload+TorqueInertai;//N-m
```

```
31 disp(TotalTorque, "Total Torque in N-m: ");
```

Scilab code Exa 3.7 torque and moment

```
1 //Example No. 3.7
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 \text{ w} = 400; //\text{Kg}
9 v=1; //m/s
10 MotorSpeed=1000; //rpm
11 MoI=0.5; //Moment of Inertia in Kg-m<sup>2</sup>
12 winch=0.3; //\text{Kg-m}^2
13 Tnl=80; //N-m
14 Speed_nl=1000; //\text{rpm}
15 g=9.81; // gravity constant
16
17 //Solution :
18 mass=w*g;//N
19 omega=MotorSpeed*2*%pi/60;//rad/sec
20 TotTorque=Tnl+mass*v/omega; //N-m
21 disp(TotTorque, "Total Motor Torque in N-m: ");
22 J=MoI+winch+w*(v/omega)^2; //\text{Kg-m}^2
23 disp(J," Moment of Inertia referred to motor shaft in
      Kg-m^2 : ");
```

Scilab code Exa 3.9 torque and power

```
1 //Example No. 3.9
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 Jmotor=0.3; //\text{Kg-m}^2
9 Jgd_load=15; //Kg-m^2(Inertia gear driven load)
10 GSRratio=0.1; // gear speed reduction ratio
11 Jbd_load=0.6; //Kg-m^2(Inertia belt driven load)
12 d1=10; //cm(diameter of driver pulley)
13 d2=30; //cm(diameter of driven pulley)
14 MotorSpeed=1440; //rpm
15 Tload1=100; //N-m
16 Tload2=35; /N-m
17
18 // Solution :
19 MotorSpeed=MotorSpeed*2*%pi/60; //rad/sec
20 Speed_gd=GSRratio*MotorSpeed;//rad/sec
21 Speed_bd=MotorSpeed*d1/d2; //rad/sec
22 //Equating Kinetic Energies
23 //1/2*J*MotorSpeed^2=1/2*Jmotor*MotorSpeed^2+1/2*
      Jgd_load*speed_gd^2+1/2*Jbd_load*speed_bd^2
24 J=(1/2*Jmotor*MotorSpeed^2+1/2*Jgd_load*Speed_gd
      ^2+1/2*Jbd_load*Speed_bd^2)*2/MotorSpeed^2
25 disp(J," Moment of Inertia referred to motor shaft in
     Kg-m^2 : ");
26 //Equating power of motor
27 //T*(MotorSpeed)=Tload1*Speed_gd+Tload2*Speed_bd
T = (Tload1 * Speed_gd + Tload2 * Speed_bd) / MotorSpeed; //N-m
29 disp(T, "Torque in N-m: ");
30 Pdev=T*MotorSpeed; //watt
31 disp(Pdev, "Power developed by the motor in watts:"
     );
```

Scilab code Exa 3.10 equivalent moment and torque

```
1 //Example No. 3.10
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data:
8 MotorSpeed=1440; //rpm
9 Jmotor=0.4; //\text{Kg-m}^2
10 Jdc_load=0.6; //Kg-m^2(Inertia directly coupled load)
11 w_tl=100; //kg(weight of transratioonal load)
12 F_res=1.2; //N/Kg(Friction resistance for
      translational load)
13 v = 10; //m/s
14 T_RotLoad=1.5; //N_m
15 g=9.81; // gravity constant
16
17 //Solution :
18 MotorSpeed=MotorSpeed*2*%pi/60;//rad/sec
19 F_horz=w_tl*F_res; //N(horizontal force of
      translational load)
20 mass=w_tl*g;//N
J=Jmotor+Jdc_load+mass*(v/MotorSpeed)^2; //Kg-m^2
22 disp(J," Moment of Inertia at motor shaft in Kg-m^2:
23 T=T_RotLoad+F_horz*v/MotorSpeed;//N-m
24 disp(T, "Torque at motor shaft in N-m:");
```

Scilab code Exa 3.11 operating speed

```
1 //Example No. 3.11
2 clc;
3 clear;
4 close;
5 format('v',6);
```

Scilab code Exa 3.12 operating speed

```
1 //Example No. 3.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 // Given Data :
8 / T = 15 - 0.5 * omega_m
9 //TL=0.5*omega_m^2
10
11 //Solution :
12 P=[1 1 -30]; // Polynomial for omega_m calculated by
      equating T=TL
13 omega_m=roots(P);//rad/sec
14 disp(omega_m(2), "Operating speed in rad/sec at which
       system has steady state stability: ");
```

Chapter 4

Selection of Motor Power Rating

Scilab code Exa 4.1 time constant and temperature

```
1 / Example No. 4.1
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 \text{ P=30; } / \text{KW}
9 theta1=30; // degree C
10 t1 = 40; //min
11 theta2=45; // degree C
12 t2=80; //min(t2=2*t1)
13 disp("theta=theta_f*(1-\exp(-t/T))");
14 //Let \exp(-t1/T)=a then \exp(-t2/T)=a^2
15 // \text{theta1} / \text{theta2} = (1-a) / (1-a^2)
16 //a^2 * theta1 - a * theta2 + theta2 - theta1 = 0
17 P=[theta1 - theta2 theta2 - theta1]; // Polynomial for a
18 \ a=roots(P);
19 a=a(2);//discarding value 1 as it cant give value of
```

```
T
20 T=-t1/log(a);//min
21 disp(T,"Thermal time constant in min: ");
22 theta_f=theta1/(1-exp(-t1/T));//degreeC
23 disp(theta_f,"Final temperature rise in degree C: ");
```

Scilab code Exa 4.2 temperature and time constant

```
1 //Example No. 4.2
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 \text{ P=30; } / \text{KW}
9 theta1=20; // degree C
10 t1=30; //min
11 theta2=30; // degree C
12 t2=60; //min(t2=2*t1)
13 disp("theta=theta_f*(1-exp(-t/T))");
14 //Let \exp(-t1/T)=x then \exp(-t2/T)=x^2
15 // \text{theta} 1 / \text{theta} 2 = (1-x) / (1-x^2)
16 / x^2 + theta1 - x + theta2 + theta2 - theta1 = 0
17 P=[theta1 -theta2 theta2-theta1]; // Polynomial for a
18 x = roots(P);
19 x=x(2); // discarding value 1 as it cant give value of
20 T=-t1/log(x); //min
21 disp(T, "Thermal time constant in min: ");
22 theta_f=theta1/(1-\exp(-t1/T)); //\deg reeC
23 disp(theta_f, "Final temperature rise in degree C:"
      );
```

Scilab code Exa 4.3 temperature heating and cooling time constant

```
1 //Example No. 4.3
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 P = 30; / KW
9 theta1=54-30; // degree C
10 t1=1; //hour
11 theta2=67-30; // degree C
12 t2=2; //hour (t2=2*t1)
13 disp("theta=theta_f*(1-exp(-t/T))");
14 //Let \exp(-t1/T)=a then \exp(-t2/T)=a^2
15 // \text{theta1} / \text{theta2} = (1-a) / (1-a^2)
16 / a^2 + theta_1 - a + theta_2 + theta_2 - theta_1 = 0
17 P=[theta1 -theta2 theta2-theta1]; // Polynomial for a
18 = roots(P);
19 a=a(2); // discarding value 1 as it cant give value of
20 T=-t1/log(a); //hour
21 theta_f=theta1/(1-\exp(-t1/T)); //\deg reeC
22 theta_steady=theta_f+30; //degreeC
23 disp(theta_steady, "Final steady state temperature in
       degree C: ");
24 disp(T," Heating time constant in hour: ");
25 theta2=theta_f;//degree C
26 t=2.7; //hour
27 theta=40-30; // degree C
28 Tdash=-t/log(theta/theta2);//hour
29 disp(Tdash, "Cooling time constant in hour: ");
```

Scilab code Exa 4.4 temperature rise

```
1 // Example No. 4.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 // Given Data :
8 T=110; //min
9 Tdash=150; //min
10 t = 30; //min
11 tdash=45; //min
12 theta_f=50; // degree C
13 // theta = theta_f - (theta_f - theta_1) * exp(-t/T)
14 / theta1 = theta * exp(-tdash/Tdash);
15 theta=(theta_f-theta_f*\exp(-t/T))/(1-\exp(-tdash/T)
      Tdash)*exp(-t/T));//degreeC
16 disp(theta," Maximum temperature rise of the motor in
       degree C: ");
```

Scilab code Exa 4.5 temperature rise and heating time constant

```
1 //Example No. 4.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 theta1=20;//degreeC
9 theta2=28;//degreeC
```

```
10 dthetaBYdt1=0.08; //degreeC/min
11 dthetaBYdt2=0.06; //degreeC/min
12 //theta=theta_f -(theta_f-theta1)*exp(-t/T)
13 //dtheta/dt=(theta_f-theta)/T
14 //dthetaBYdt1/dthetaBYdt2=(theta_f-theta1)/(theta_f-theta2)
15 theta_f=(theta2*dthetaBYdt1-theta1*dthetaBYdt2)/(dthetaBYdt1-dthetaBYdt2)
16 disp(theta_f, "Final temperature rise in degree C:");
17 T=(theta_f-theta1)/dthetaBYdt1; //min
18 disp(T, "Heating time constant in min:");
```

Scilab code Exa 4.6 proper size of motor

```
1 //Example No. 4.6
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 cycle1=50; //hp
9 t1=20; //sec
10 cycle2=100; //hp
11 t2=20; //sec
12 cycle3=150; //hp
13 t3=10; //sec
14 cycle4=120; //hp
15 t4=20; //sec
16 cycle5=0; //hp
17 t5=15; //sec
18 hp_rms=sqrt((cycle1^2*t1+cycle2^2*t2+cycle3^2*t3+
      cycle4^2*t4+cycle5^2*t5)/(t1+t2+t3+t4+t5));//hp
19 disp(hp_rms, "hp(rms) for the motor: ");
```

Scilab code Exa 4.7 maximum temperature rise

```
1 //Example No. 4.7
    2 clc;
    3 clear;
    4 close;
    5 format('v',6);
     6
     7 // Given Data :
    8 t_{on} = 15; //min
    9 t_off=25; //min
 10 T = 100; //min
 11 Tdash=140; //min
12 theta_f=55; // degree C
 13
14 // theta=theta_f -(theta_f-theta1)*exp(-t/T)
15 // theta1 = theta * exp(-tdash/Tdash);
 16 theta_max=theta_f*[1-exp(-t_on/T)]/(1-exp(-(t_off/exp(-(t_off/exp(-(t_on/T)))/(1-exp(-(t_on/T)))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T)))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T)))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/T))/(1-exp(-(t_on/
                                   Tdash+t_on/T)));//degreeC
17 disp(theta_max, "Maximum temperature rise in degree C
                                         : ");
```

Scilab code Exa 4.8 ratio

```
1 //Example No. 4.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
```

```
8 Rating=100; //KW
9 alfa=0.9; // unitless
10 ts=20; // min
11 T=100; // min
12 S=sqrt((1+alfa)/(1-exp(-ts/T)));
13 ShortTimeRating=S*Rating; //KW
14 disp(ShortTimeRating, "Short time rating in KW: ");
15 // Answer is wrong in the textbook.
```

Scilab code Exa 4.9 time and intermittent periodic duty rating

```
1 //Example No. 4.9
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ T=80; } //\min
9 Tdash=110; //\min
10 Rating=50; //KW
11 ts=15; //min
12 S = sqrt(1/(1 - exp(-ts/T)));
13 ShortTimeRating=S*Rating; //KW
14 disp(ShortTimeRating, "Short time rating of motor in
     KW : ");
15 t_off=20; //min
16 S=sqrt((1-exp(-(ts/T+t_off/Tdash)))/(1-exp(-(ts/T)))
      )
17 DutyRating=S*Rating; //KW
18 disp(DutyRating,"Intermittent periodic duty rating
      in KW : ");
```

Scilab code Exa 4.10 continuous rating

```
1 //Example No. 4.10
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data:
8 T=90; //min
9 t = 25; //min
10 ShortTimeRating=50; //KW
11 Eff=80/100; // Efficiency
12 //Let full load rating is P KW and Losses=Pc
13 //CuLoss = (P/(P*Eff))^2 \& alfa = Pc/CuLoss
14 alfa=(Eff)^2;//unitless
15 S = sqrt(((1+alfa)/(1-exp(-t/T))-alfa));
16 ContinuousRating_fl=ShortTimeRating/S;//KW
17 disp(ContinuousRating_fl, "Continuous rating of motor
       in KW : ");
```

Scilab code Exa 4.11 half hour rating

```
1 //Example No. 4.11
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 Rating=25; //KW
9 T=90; //min
10 ts=30; //min
11 S=sqrt(1/(1-exp(-ts/T)));
12 HalfHourRating=S*Rating; //KW
```

Scilab code Exa 4.12 continuous rating

```
1 //Example No. 4.12
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data:
8 T = 60; //min
9 t = 20; //min
10 ShortTimeRating=300; //W
11 Eff=80/100; // Efficiency
12 //Let full load rating is PKW and Losses=Pc
13 //CuLoss = (P/(P*Eff))^2 \& alfa = Pc/CuLoss
14 alfa=(Eff)^2;//unitless
15 S = sqrt(((1+alfa)/(1-exp(-t/T))-alfa));
16 ContinuousRating_fl=ShortTimeRating/S;//KW
17 disp(ContinuousRating_fl, "Continuous rating of motor
       in W : ");
```

Scilab code Exa 4.13 moment of inertia

```
1 //Example No. 4.13
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
7 // Given Data :
8 P=6; // poles
9 f=50; //Hz
10 MoI=9.5; //\text{Kg-m}^2
11 Tr=550; //N-m
12 S=5/100; //Slip
13 Tmax = 720; //N-m
14 T_LH = 1020; //N—m
15 th=12; // \sec c
16 Tmin = 220; //N - m
17 Snl=3/100; //No load slip
18 Ns=120*f/P; //rpm
19 Nnl=Ns-Ns*Snl;//rpm
20 Nrated=Ns-Ns*S;//rpm
21 omega_mo=Nnl*2*%pi/60; //rad/s
22 omega_mr=Nrated*2*%pi/60; // rad/s
J=[Tr/(omega_mo-omega_mr)]*[th/log((T_LH-Tmin)/(T_LH)]
      -Tmax))];//\text{Kg-m}^2
24 MoI_flywheel=J-MoI; //\text{Kg-m}^2
25 disp(MoI_flywheel,"Moment of inertia of flywheel in
      Kg-m^2 : ");
  //Answer in the book is wrong.
```

Chapter 5

DC Motor Drives

Scilab code Exa 5.1 armature resistance and torque

```
1 //Example No. 5.1
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 T=10; //turns
9 Coil=144; //no. of coils
10 R=0.011; //ohm
11 fi=0.05; //Wb(flux per pole)
12 N = 200; //rpm
13 par_paths=2; // for wave winding
14 T_path=Coil*T/par_paths;//no. of turns in each
      parallel path
15 R_path=R*T_path; //ohm
16 Ra=R_path/par_paths; //ohm(armature resistance)
17 disp(Ra, "Armature resistance in ohm: ");
18 p=12; // poles
19 emf=par_paths*Coil*T*p*fi*N/60/2; //V
20 R1=1000; //ohm
```

```
21 IL=emf/R1; //A
22 Ia=IL; //A
23 T=par_paths*Coil*T*p*fi*Ia/2/%pi/par_paths; //N-m
24 disp(T, "Torque in N-m : ");
```

Scilab code Exa 5.2 speed and torque

```
1 //Example No. 5.2
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 Ia=110; //A
9 V = 480; //volt
10 Ra=0.2; //ohm
11 p=6;//poles
12 C=864; // conductors
13 fi=0.05; //Wb(flux per pole)
14 back_emf=V-(Ia*Ra); //Volt
15 N=back_emf*60*p/C/p/fi;/rpm
16 disp(N, "Speed in rpm : ");
17 T=C*p*fi*Ia/2/\%pi/p;//N-m
18 disp(T, "Torque in N-m: ");
```

Scilab code Exa 5.3 voltage

```
1 //Example No. 5.3
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
6
7 //Given Data :
8 Ia=100; //A
9 V=200; // volt
10 N=600; //rpm
11 Ra=0.05; //ohm
12 Eff=85/100; //
13 Ia1=Ia*Eff; //armature current in separately excited dc motor
14 emf=V-Ia*Ra; //V(motoring mode induced emf)
15 N1=500; //rpm(generating mode speed)
16 Gen_emf=emf*N1/N; //V
17 Vo=Gen_emf-Ia1*Ra; //V
18 disp(Vo," Voltage of source in Volt : ");
```

Scilab code Exa 5.4 speed and resistance

```
1 //Example No. 5.4
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 Ia1=10; //A
9 V1 = 200; //volt
10 N1=1800; //\text{rpm}
11 Ra=0.6; //ohm
12 Rfield=360; //ohm
13 V2 = 180; // volt
14 I_line=20; //A
15 // \text{fi} 2 = V2/V1 * \text{fi} 1
16 fi2BYfi1=V2/V1;
17 / Ia1 * fi1 = Ia2 * fi2
18 Ia2=Ia1/fi2BYfi1;//A
```

```
19 Eb1=V1-Ia1*Ra; //V
20 Eb2=V2-Ia2*Ra; //V
21 //Eb1/Eb2=fi1*N1/fi2/N2
22 N2=N1/(Eb1/Eb2*fi2BYfi1); //rpm
23 disp(N2, "Motor speed after supply voltage decreases in rpm:");
24 Ifield=V2/Rfield; //A
25 Ia=I_line-Ifield
26 //V2=Ia*(R+Ra)
27 R=V2/Ia-Ra; //ohm
28 disp(R, "Additional resistance in ohm:");
```

Scilab code Exa 5.5 braking resistance

```
1 //Example No. 5.5
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 Ia1=10; //A
9 V1 = 200; //volt
10 N1=1800; //\text{rpm}
11 Ra=0.6; //ohm
12 Rfield=360; //ohm
13 V2 = 180; //volt
14 I_line=20; //A
15
16 Ia=Ia1-V1/Rfield; //A(At changeover time)
17 emf=V1-Ia*Ra;//volt
18 Ifield=emf/Rfield; //A(At changeover time)
19 Iout=Ia1-Ifield; //A
20 Rbraking=emf/Iout;//ohm(Braking Resistance)
21 disp(Rbraking, "Braking resistance in ohm: ");
```

Scilab code Exa 5.6 Energy Dissipated

```
1 //Example No. 5.6
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 Ia1=10; //A
9 V1 = 200; //volt
10 N1=1800; //\text{rpm}
11 Ra=0.6; //ohm
12 Rfield=360; //ohm
13 V2=180; // volt
14 I_line=20;/A
15 // Part (a)
16 Ia=Ia1-V1/Rfield; //A(At changeover time)
17 emf=V1-Ia*Ra; //volt
18 Ifield=emf/Rfield; //A(At changeover time)
19 Iout=Ia1-Ifield; //A
20 Rbraking=emf/Iout;//ohm(Braking Resistance)
21
22 I_initial=Iout; //A(Inotial current)
23 t=30; //sec(time taken to stop)
24 I_change_rate=I_initial/t; //A/s
25
  //i=I_initial -I_change_rate*t , for 0 < t < 30 (during
      braking time)
26 E_dissipated=integrate('(I_iinitial'2+(I_iinitial/30)
      ^2/3*t^2-2*I_{initial}*I_{initial}/30*t)*Rbraking','t
      ',0,t);/W_s
27 disp(E_dissipated, "Part(a) Energy dissipated in
      watts-sec : ");
28 // Part (b)
```

Scilab code Exa 5.7 Resistance and Breaking Torque

```
1 //Example No. 5.7
2 clc;
3 clear:
4 close;
5 format('v',7);
7 // Given Data :
8 I = 50; //A
9 V = 200; //volt
10 N = 1000; //rpm
11 Ra=0.2; //ohm
12 Eb=V-I*Ra;//V
13 Rt = (V+Eb)/2/I; //ohm(Total resistance required)
14 disp(Rt-0.5, "Additional resistance required to limit
       the current in ohm: ");
15 omega_m=N/60*2*%pi; // rad/s
16 T=Eb*2*I/omega_m;//N-m
17 disp(T, "Braking torque in N-m:");
18 Eb=0; // for speed=0
19 I=V/Rt; //A
20 //T proportional to I(for separately excited motor)
21 T=T*(I/100); //N-m
22 disp(T, Torque when speed decreased to zero in N-m:
       ");
```

Scilab code Exa 5.8 Speed of Motor

```
1 //Example No. 5.8
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 Ra=0.2; //ohm
9 Rf = 100; //ohm
10 N=500; //\text{rpm}
11 Rb=2; //ohm
12 E1=100; //V
13 If 1=2; //A
14 If 2=2.5; //A
15 If 3=3; //A
16 E2=125; //V
17 E3=150; //V
18 //Ib = Rf * If 1 / 2
19 //Ia = If + Ib; //A
20 omega_m=N/60*2*%pi; // rad/s
21 Kefi1=E1/omega_m;
22 Kefi2=E2/omega_m;
23 Kefi3=E3/omega_m;
24 T1=E1/omega_m*51*If1; //N-m
25 T2=E2/omega_m*51*If2; //N-m
26 T3=E3/omega_m*51*If3; //N-m
27 Tload=300; //N-m
28 \text{ Kefi} = 2.36;
29 If = 2.482; //A
30 Ia=51*If;//A
31 E=If*Rf/2+Ia*Ra;//V
32 \text{ N=E/Kefi;} //\text{rad/s}
```

```
33 N=N*60/2/%pi;//rpm
34 disp(N, "Speed of motor in rpm : ");
```

Scilab code Exa 5.9 Find Resistance to be added

```
1 //Example No. 5.9
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 E1=200; //V
9 E2=300; //V
10 E3=400; //V
11 E4=500; //V
12 E5=600; //V
13 E6=700; //V
14 Ia1=20;//A
15 Ia2=30; //A
16 Ia3=40; //A
17 Ia4=50; //A
18 Ia5=60; //A
19 Ia6=70; //A
20 Rt = 0.6; //ohm
21 Tload=600; //N-m
22 omega_m=Tload*2*%pi/60; // rad/s
23 Kefi1=E1/omega_m;
24 Kefi2=E2/omega_m;
25 Kefi3=E3/omega_m;
26 Kefi4=E4/omega_m;
27 Kefi5=E5/omega_m;
28 Kefi6=E6/omega_m;
29 T1=E1/omega_m*Ia1;//N-m
30 T2=E2/omega_m*Ia2;//N-m
```

```
31 T3=E3/omega_m*Ia3;//N-m
32 \text{ T4=E4/omega_m*Ia4;}/N-m
33 T5=E5/omega_m*Ia5; //N-m
34 \quad T6=E6/omega_m*Ia6; //N-m
35 subplot(1,2,1);
36 plot([Ia1 Ia2 Ia3 Ia4 Ia5 Ia6], [Kefi1 Kefi2 Kefi3
      Kefi4 Kefi5 Kefi6])
37 title('Ia Vs Kefi');
38 xlabel("Ia(A)");
39 ylabel("Kefi");
40 subplot(1,2,2);
41 plot([Ia1 Ia2 Ia3 Ia4 Ia5 Ia6],[T1 T2 T3 T4 T5 T6])
42 title('Ia Vs T');
43 xlabel("Ia(A)");
44 ylabel("T(N-m)");
45 //From the graph :
46 T=600; //N-m
47 Ia=63;//A
48 Kefi=9.8;
49 E=Kefi*omega_m; //V
50 R=E/Ia; //ohm
51 \text{ Rdb} = R - Rt
52 disp(Rdb, "Resistance for dynamic braking in ohm: ")
```

Scilab code Exa 5.10 Speed at Full load and Torque

```
1 //Example No. 5.10
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 V=240;//V
```

```
9 Ra=0.4; //ohm
10 N1=600; //\text{rpm}
11 If1=25; //A
12 Radd=1; //ohm
13 // If1 = If2
14 //T1=T2 leads to If1*Ia1=If2*Ia2: Ia1=Ia2
15 Ia1=25; //A
16 Ia2=25; //A
17 Eb1=V-Ia1*Ra;//V
18 Eb2=V-Ia2*(Ra+Radd); //V
19 N2=N1*Eb2/Eb1; //rpm
20 disp(N2, "Speed at full load torque in rpm: ");
21 / T3 = 2 * T1
22 // If3 = If1
23 Ia3=2*Ia1; //A
24 Eb3=V-Ia3*(Ra+Radd); //V
25 \text{ N3=N1*Eb3/Eb1;}/\text{rpm}
26 disp(N3, "Speed at twice the full load torque in rpm
27 Eb4=0; //V(at speed zero Eb=0)
28 Ia4=V/(Ra+Radd); //V
29 T4ByT1=Ia4/Ia1;//(field constant)
30 disp("Stalling torque is "+string(T4ByT1)+" times of
       full load torque.");
```

Scilab code Exa 5.11 New Value of Field Current

```
1 //Example No. 5.11
2 clc;
3 clear;
4 close;
5 format('v',5);
6
7 //Given Data:
8 V=250;//V
```

```
9 Ra=1; //ohm
10 Ia1=25; //A
11 N1=900; //rpm
12 If=2; //A
13 N2=1100; //rpm
14 Eb1=V-Ia1*Ra; //V
15 // If1*Ia1=If2*Ia2
16 //Eb2=V-Ia2*Ra; //V
17 //-Ia2^2*Ra+Ia2*V-Eb1*Ia1*N2/N1=0;
18 polynomial=[-Ra V -Eb1*Ia1*N2/N1];
19 Ia2=roots(polynomial); //A
20 Ia2=Ia2(2); //A(wide range not allowed)
21 If2=Ia1/Ia2*If; //A
22 disp(If2, "New value of field current in A: ");
```

Scilab code Exa 5.12 Field Current Firing Angle

```
1 //Example No. 5.12
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 V = 230; //V
9 f=50; //Hz
10 Rf = 200; //ohm
11 Ra=0.3; //ohm
12 T=50; //N-m
13 N = 900; //\text{rpm}
14 Kv=0.8; //V/A-rad/s
15 Kt = 0.8; //N-m/A^2
16 Vm = V * sqrt(2); //V
17 Vf = 2 * Vm / \%pi; //V
18 If=Vf/Rf; //A
```

```
19 disp(If, "Field current in A:");
20 / T = Kt * If * Ia
21 Ia=T/Kt/If;//A
22 omega=N*2*\%pi/60;//rad/s
23 Eb=Kv*omega*If; //V
24 Va=Eb+Ia*Ra; //V
25 / Va=Vm/\%pi*(1+cosd(alfa_a))
26 alfa_a=acosd(Va/Vm*\%pi-1); //degree
27 disp(alfa_a, Fringe angle of converter in degree : "
     );
28 Pout=Ia*Va;/W
29 Iin=sqrt(2/2/180*Ia^2*integrate('1', 'omega', alfa_a
      ,180));
30 VAin=V*Iin; //VA
31 pf_in=Pout/VAin;//lagging
32 disp(pf_in, "Power factor of convertyer(lagging): ")
```

Scilab code Exa 5.13 Torque Developed and Motor Speed

```
1 //Example No. 5.13
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 V=230;//V
9 f=50;//Hz
10 Rf=200;//ohm
11 Ra=0.25//ohm
12 Kv=1.1;//V/A-rad/s
13 Kt=1.1;//N-m/A^2
14 alfa_a=45;//degree
15 Ia=50;//A
16 alfa_f=0;
```

```
17  Vf = 2 * V * sqrt (2) / %pi * cosd (alfa_f); //V
18  Va = 2 * V * sqrt (2) / %pi * cosd (alfa_a); //V
19  If = Vf / Rf; //A
20  T = Kt * Ia * If; //N—m
21  disp(T, "Torque developed in N—m: ");
22  Eb = Va - Ia * Ra - 2; //V
23  omega = Eb / Kv / If; // rad / s
24  N = omega * 60 / 2 / %pi; // rpm
25  disp(N, "Motor speed in rpm: ");
```

Scilab code Exa 5.14 Firing Angle of Converter

```
1 //Example No. 5.14
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 V = 400; //V
9 Ra=0.3//ohm
10 Rf = 250; //ohm
11 Ia=50; //A
12 Kv=1.3; //V/A-rad/s
13 N = 1200; //rpm
14 alfa_f=0;
15 Vf = 3*sqrt(3)*V*sqrt(2)/sqrt(3)/%pi*cosd(alfa_f);//V
16 If=Vf/Rf; //A
17 Eb=Kv*If*2*\%pi*N/60;//V
18 Va=Eb+Ia*Ra; //V
19 alfa_a=acosd(Va/3/sqrt(3)/V/sqrt(2)*sqrt(3)*%pi);//
      degree
20 disp(alfa_a, Fringe angle of converter in degree : "
      );
```

Scilab code Exa 5.15 Input Power Speed and Torque

```
1 //Example No. 5.15
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 V = 500; //V
9 Ia = 200; //A
10 Ra=0.1/ohm
11 Kv=1.4; //V/A-rad/s
12 Kt = 1.4; //N-m/A^2
13 If = 2; //A
14 cycle=0.5; // sec
15 Pin=cycle*V*Ia/1000; //KW
16 disp(Pin, "Input power in KW: ");
17 Va=cycle*V;//V
18 Eb=Va-Ia*Ra;//V
19 omega=Eb/Kv/2; // rad/s
20 N=omega*60/2/%pi;//rpm
21 disp(N, "Speed in rpm : ");
22 T=Kt*2*Ia;//N-m
23 disp(T, "Torque in N-m:");
```

Scilab code Exa 5.16 Average Voltage Power and Speed

```
1 //Example No. 5.16
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
7 // Given Data :
8 Ra=0.1/ohm
9 Rb=7.5//ohm
10 Kv=1.4; //V/A-rad/s
11 Ia=120; //A
12 If = 1.6; //A
13 cycle=0.35; // sec
14
15 Vavg=Rb*Ia*(1-cycle);/V
16 disp(Vavg, "Average voltage across chopper in volt :
      ");
17 Pb=Ia^2*Rb*(1-cycle)^2;/W
18 disp(Pb, "Power dissipated in watts: ");
19 emf = Vavg + Ra * Ia; //V
20 omega=emf/Kv/If; // rad/s
21 N=omega*60/2/%pi;//rpm
22 disp(N, "Speed in rpm : ");
23 //Answer of Pb & speed is wrong in the book.
```

Scilab code Exa 5.17 Speed Torque Characteristics

```
1 //Example No. 5.17
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 V=220;//V
9 f=50;//Hz
10 L=0.012;//H
11 Ra=0.72;//ohm
12 K=2;//V/rad/s
```

```
13 T = 60; //N - m
14 alfa=90; //degree
15 Va=3*sqrt(3)*V*sqrt(2)/2/%pi*(1+cosd(alfa));//V
16 Ia=5; //A
17 disp(Ia, "Armature Current in A: ");
18 T1=Ia*K; //N-m
19 disp(T1, "Torque in N-m : ");
20 Eb=Va-Ia*Ra;//V
21 omega=Eb/K; //rad/s
22 N1=omega*60/2/%pi; //rpm
23 disp(N1, "Speed in rpm : ");
24 disp("");
25 Ia=10; //A
26 disp(Ia, "Armature Current in A: ");
27 T2=Ia*K; //N-m
28 disp(T2, "Torque in N-m : ");
29 Eb=Va-Ia*Ra; //V
30 omega=Eb/K; //rad/s
31 N2=omega*60/2/%pi;//rpm
32 disp(N2, "Speed in rpm : ");
33 Ia=20; //A
34 disp(Ia, "Armature Current in A: ");
35 T3=Ia*K; //N-m
36 disp(T3, "Torque in N-m : ");
37 Eb=Va-Ia*Ra;//V
38 omega=Eb/K; //rad/s
39 N3=omega*60/2/%pi;//rpm
40 disp(N3, "Speed in rpm : ");
41 Ia=30; //A
42 disp(Ia, "Armature Current in A: ");
43 T4=Ia*K; //N-m
44 disp(T4, "Torque in N-m : ");
45 Eb=Va-Ia*Ra;//V
46 omega=Eb/K; //rad/s
47 N4=omega*60/2/%pi;//rpm
48 disp(N4, "Speed in rpm : ");
49 plot([T1 T2 T3 T4],[N1 N2 N3 N4]);
50 title ('Speed Torque Characteristics');
```

```
51 xlabel('Torque(N-m)');
52 ylabel('speed(RPM)');
```

Scilab code Exa 5.18 No Load Speed and Firing Angle

```
1 //Example No. 5.18
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 V = 400; //V
9 f=50; //Hz
10 I = 50; //A
11 Ra=0.1; //ohm
12 K = 0.3; //V/rpm
13 Ia=5; //A
14 alfa=30; // degree
15 Vavg=3*sqrt(3)*V*sqrt(2)/sqrt(3)/2/%pi*(1+cosd(alfa)
      );//V
16 Eb=Vavg-Ia*Ra; //V
17 N=Eb/K; //rpm
18 disp(N,"No load speed in rpm: ");
19 Speed=1600; //rpm
20 Eb=Speed*K; //V
21 Vin=Eb+I*Ra;//V
22 alfa=acosd(Vin/3/sqrt(3)/V/sqrt(2)*sqrt(3)*2*%pi-1);
      //degree
23 disp(alfa, "Fringe angle in degree : ");
```

Scilab code Exa 5.19 Power fed back

```
1 //Example No. 5.19
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 V = 230; //V
9 f = 50; //Hz
10 Rf = 200; //ohm
11 Ra = 0.25 / \text{ohm}
12 Kv=1.1; //V/A-rad/s
13 Kt = 1.1; /N-m/A^2
14 alfa_a=45; // degree
15 Ia=50; //A
16 alfa_f=0;
17 Vf = 2*V*sqrt(2)/\%pi*cosd(alfa_f);//V
18 Va=2*V*sqrt(2)/\%pi*cosd(alfa_a);//V
19 If=Vf/Rf; //A
20 T=Kt*Ia*If; //N-m
21 Eb=Va-Ia*Ra-2; //V
22 omega=Eb/Kv/If; // rad/s
23 Eg=-Eb; //V
24 Va=Eg+Ia*Ra+2;/V
25 alfa=acosd(Va/2/V/sqrt(2)*%pi);//degree
26 disp(alfa, Fringe angle to converter in degree: ");
27 P=abs(Va)*Ia; //W(power fed back to source)
28 disp(P,"Power fed back to source in Watts:");
29 //Answer wrong in the book.
```

Scilab code Exa 5.20 Find back emf

```
1 //Example No. 5.20
2 clc;
3 clear;
```

```
4 close;
5 format('v',7);
6
7 //Given Data :
8 V=240;//V
9 alfa=100;//degree
10 Ra=6//ohm
11 Ia=1.8;//A
12 Vm=V*sqrt(2);//V
13 Vdc=Vm/%pi*(1+cosd(alfa));//Volt
14 Eb=Vdc-Ia*Ra;//V
15 disp(Eb, "Back emf in volt : ");
```

Scilab code Exa 5.21 Compute Speed and Torque

```
1 0//Example No. 5.21
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data :
8 V1 = 230; //V
9 N1=1500; //\text{rpm}
10 Ra=1; //ohm
11 Ia=10; //A
12 \text{ T=5; } / \text{N-m}
13 / V = K * omega + Ia * Ra
14 K=V1/(N1*2*\%pi/60+Ia*Ra);//V-s/rad or N-m/A
15 Ia=T/K;/A
16 alfa1=30;//degree
17 V=2*V1*sqrt(2)/%pi*cosd(alfa1);//Volt
18 omega=(V-Ia*Ra)/K; // rad/s
19 N=omega*60/2/%pi;//rpm
20 disp(N, "Parrt(a) Speed in rpm: ");
```

```
21 alfa=45; // degree
22 N=950; //rpm
23 V=2*V1*sqrt(2)/%pi*cosd(alfa); // Volt
24 Ia=(V-K*2*%pi/60*N)/Ra; //A
25 T=K*Ia; //N-m
26 disp(T, "Part(b) Torque in N-m:");
27 // Answer is wrong in the book.
```

Scilab code Exa 5.22 RMS current and Power factor

```
1 / \text{Example No.} 5.22
2 clc;
3 clear;
4 close;
5 format('v',6);
7 //Given Data :
8 V1 = 500; //V
9 N1=1500; //\text{rpm}
10 Ia=100; //A
11 V2=350; //V
12 Ra=1.1; //ohm
13 alfa=45;//degree
14 N2 = 1200; //rpm
15 //V = K*omega+Ia*Ra
16 K = (V1 - Ia * Ra) / (N1 * 2 * \%pi / 60); //V - s / rad or N - m / A
17 V=3*sqrt(3)*V2*sqrt(2)/2/%pi/sqrt(3)*(1+cosd(alfa));
      //Volt
18 Ia=(V-K*N2*2*\%pi/60)/Ra;//A
19 disp(Ia, "RMS soirce current in A: ");
20 Vin_rms=Ia*sqrt(120/180); //V
21 Iavg=Ia/3;/A
22 disp(Iavg, "Average thyristor current in A: ");
23 Irms=Ia/sqrt(3); //A
24 disp(Irms, "RMS thyristor current in A:");
```

```
25 pf_in=V*Ia/sqrt(3)/V2/Vin_rms;//lagging
26 disp(pf_in,"Input power factor)lagging: ");
```

Scilab code Exa 5.23 Time taken by the motor

```
1 //Example No. 5.23
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 T1=40; //N-m
9 \text{ N1=500; } / \text{rpm}
10 J=0.01; //N-m_sec^2/rad
11 T2=100; //N-m
12 N2 = 1000; //rpm
13 disp("Te=J*d(omega)/dt+D*omega+TL");
14 d_{omegaBYdt} = (T2-T1)/J; //
15 //t=omega/d_omegaBYdt+A;
16 omega1=N1*2*%pi/60; // \text{rad/s}
17 t=0; //s(initial time)
18 A=t-omega1/d_omegaBYdt;//
19 omega2=N2*2*\%pi/60;//rad/s
20 t=omega2/d_omegaBYdt+A; //s
21 disp(t, "Time taken by the motor in sec: ");
```

Scilab code Exa 5.24 Max and Min Armature Current and Excursion

```
1 //Example No. 5.24
2 clc;
3 clear;
4 close;
```

```
5 format('v',9);
7 //Given Data :
8 \text{ f=400;} //\text{Hz}
9 V = 200; //V
10 T=30; //N-m
11 N = 1000; //rpm
12 R = 0.2; //ohm
13 L=2; / \text{mH}
14 Kv=1.5; //V-\sec/rad
15 Kt=1.5; //N-m/A
16 Ia=T/Kt;//A
17 omega=N*2*%pi/60; // \text{rad/s}
18 Eb=Kv*omega; //V
19 alfa=(Eb+Ia*R)/V;
20 T=1/f*1000; //ms
21 Ton=alfa*T; //ms
22 Toff=T-Ton; //ms
23 Imax=V/R*[(1-exp(-alfa*T*10^-3*R/(L*10^-3)))/(1-exp
      (-T*10^-3*R/(L*10^-3)))]-Eb/R;//A
24 disp(Imax,"(a) Maximum motor armature current in A:
  Imin=V/R*[(exp(alfa*T*R/L)-1)/(exp(T*R/L)-1)]-Eb/R;
25
26 disp(round(Imin),"(a) Minimum motor armature current
       in A : ");
27 Iexc=Imax;//A
28 disp(Iexc,"(b) Excursion of armature current in A:
       ");
```

Scilab code Exa 5.25 Avg Motor Current and Speed

```
1 //Example No. 5.25
2 clc;
3 clear;
```

```
4 close;
5 format('v',9);
7 // Given Data :
8 V = 230; //V
9 f=50; //Hz
10 Rf = 1.5; //ohm
11 Kt = 0.25; //N-m/A
12 T = 25; //N - m
13 Kv = 0.25; //V - sec/rad
14 Vdc=2*sqrt(2)*V/\%pi;//V
15 Em=Vdc; //V
16 Ia=sqrt(T/Kt);//A
17 disp(Ia, "Average motor current in A: ")
18 omega_m=(Em-Ia*Rf)/Kv/Ia;//rad/s
19 N=omega_m*60/2/\%pi;//RPM
20 disp(N, "Motor speed in RPM: ");
```

Scilab code Exa 5.26 Armature current and firing angle

```
1 //Example No. 5.26
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 V1=675;//V
9 alfa1=90.5;//degree
10 N1=350;//rpm
11 Ia1=30;//A
12 N2=500;//rpm
13 Rf=0.22;//ohm
14 Ra=0.22;//ohm
15 Ia2=Ia1*N2/N1;//A
```

```
disp(Ia2, "Armature current of converter in A : ");
Va1=V1*sqrt(2)/%pi*(1+cosd(alfa1));//V
Eb1=Va1-Ia1*(Ra+Rf);//V
//Eb1/Eb2=Ia1*N1/(Ia2*N2)
//Eb2=Va2-Ia2*(Ra+Rf)
Va2=Eb1*Ia2*N2/(Ia1*N1)+Ia2*(Ra+Rf);//V
alfa2=acosd(Va2/V1/sqrt(2)*%pi-1);//degree
disp(alfa2, "Fringe angle of converter in degree : ");
;
```

Scilab code Exa 5.27 Torque and Armature Current

```
1 //Example No. 5.27
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 V1 = 230; //V
9 P=15; //hp
10 N=1500; //\text{rpm}
11 V2 = 220; //V
12 Ke=0.03; //V/A-s
13 Kt = 0.03; //N-m/A^2
14 alfa=45; //degree
15 Vm = V1 * sqrt(2); //V
16 omega=N*2*%pi/60; // \text{rad/s}
17 T=4*Kt*Vm^2*cosd(alfa)^2/(%pi^2*(Ke*omega)^2);//N-m
18 Ia=sqrt(T/Kt);//A
19 disp("part (a) : ");
20 disp(T, "Torque in N-m: ");
21 disp(Ia, "Armature current in A: ");
22 disp("part (b) : ");
23 Ia=Vm*(1+cosd(alfa))/(%pi*(Ke*omega));//A
```

```
24 T=Kt*Ia^2; //N-m
25 disp(Ia, "Armature current in A: ");
26 disp(T, "Torque in N-m: ");
```

Scilab code Exa 5.28 Motor Current and Torque

```
1 //Example No. 5.28
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data:
8 V1 = 230; //V
9 N=1000; //\text{rpm}
10 P=15; //hp
11 Rt = 0.2; //ohm
12 Ke=0.03; //V/A-s
13 Kt = 0.03; //N-m/A^2
14 alfa=30; // degree
15 Vm = V1 * sqrt(2); //V
16 omega=N*2*%pi/60; // rad/s
17 V=Vm/\%pi*(1+cosd(alfa));/V
18 / V = Ke * Ia * omega + Ia * Rt
19 Ia=V/(Ke*omega+Rt);//A
20 disp(Ia," Motor current in A: ");
21 T=Kt*Ia^2; //N-m
22 disp(T, "Torque in N-m:");
```

Scilab code Exa 5.29 Firing Angle of Converter

```
1 //Example No. 5.29
2 clc;
```

```
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 V = 220; //V
9 Vin = 230; //V
10 N1=1500; //\text{rpm}
11 Ia1=10; //A
12 Ra=3; //ohm
13 N2 = 600; //rpm
14 E1=V-Ia1*Ra; //V
15 E2=E1*N2/N1;/V
16 Ia2=Ia1/2; //A(because of Tnew=T/2)
17 Vapp=E2+Ia2*Ra; //V
18 alfa=acosd(Vapp*%pi/2/sqrt(2)/Vin);//degree
19 disp(alfa, "Firing angle of converter in degree: ");
```

Scilab code Exa 5.30 Speed of Motor

```
1 //Example No. 5.30
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 V=230;//V
9 N=870;//rpm
10 Ia=100;//A
11 Ra=0.05;//ohm
12 T=400;//N-m
13 E=V-Ia*Ra;//V
14 Vgen=V+Ia*Ra;//V
15 N2=N*Vgen/E;//rpm
```

```
16 disp(N2, "Motor speed in rpm : ");
```

Scilab code Exa 5.31 On time of chopper

```
1 //Example No. 5.31
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 // Given Data :
8 V = 220; //V
9 P=2.2; /KW
10 N1=1000; //\text{rpm}
11 Ra=2; //ohm
12 f = 250; //Hz
13 alfa=0.9; // \text{cycle}
14 N2 = 1200; //rpm
15 N3=800; //\text{rpm}
16 Ia1=P*1000/V; //A
17 Ia2=Ia1*N2/N1; //A
18 Eb2=alfa*V-Ia2*Ra; //V
19 Eb3=Eb2*N3/N2; //V
20 Ia3=Ia1*N3/N1; //A
21 alfa3=(Eb3+Ia3*Ra)/V;//cycle
22 ton=alfa3/f; // sec
23 disp(ton, 'On time of chopper in sec : ');
```

Scilab code Exa 5.32 Braking Current and Resistance

```
1 //Example No. 5.32
2 clc;
3 clear;
```

```
4 close;
5 format('v',9);
7 // Given Data :
8 V = 230; //V
9 N1 = 1000; //rpm
10 Ia1=100; //A
11 Ra=0.1; //ohm
12 Rf = 0.1; //ohm
13 N2=800; //rpm
14 Ia2=sqrt(2)*Ia1;//A(As T2=2*T1 & T proportional to
      Ia^2)
15 Eb1=V-Ia1*(Ra+Rf); //V
16 Eb2=N2*Ia2/(N1*Ia1)*Eb1; //V
17 / Eb2 = Ia2 * (Ra + Rf + Rbraking)
18 Rbraking=Eb2/Ia2-Ra-Rf;//ohm
19 disp(Rbraking, 'Braking resistance in ohm : ');
20 Ibraking=Eb2/Rbraking; //A
21 disp(Ibraking, 'Braking current in A : ');
22 //Braking current is not calculated in the textbook
      but asked in the example.
```

Scilab code Exa 5.33 Torque Speed and PF

```
1 //Example No. 5.33
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 P=6;//poles
9 V=220;//V
10 f=50;//Hz
11 Ra=0.2;//ohm
```

```
12 Rf = 150; //ohm
13 Z=150; //no. of conductors
14 fi=0.02027; //Wb(flux)
15 alfa=0;//degree
16 alfa_a=45; // degree
17 Ia=25; //A
18 A=2; //
19 T=Z*P*fi*Ia/(2*\%pi*A); //N-m
20 disp(T, "Totque in N-m: ");
21 Vm = V * sqrt(2); //V
22 Vdc=2*Vm/\%pi*cosd(alfa_a);/V
23 Eb=Vdc-Ia*Ra; //V
24 N=Eb*60*A/(Z*P*fi);//rpm
25 disp(N, "Speed in rpm : ");
26 Pout=Vdc*Ia; //W
27 pf=Pout/V/Ia; //lagging
28 disp(pf, 'Lagging power factor: ');
```

Scilab code Exa 5.34 Find Motor Speed

```
1 //Example No. 5.35
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 V1=200;//V
9 N1=940;//rpm
10 Ra=0.02;//ohm
11 Ia=100;//A
12 N2=500;//rpm
13 Eb1=V1-Ia*Ra;//V
14 //Eb1/Eb2=N1/N2
15 //Eb2=V2-Ia*Ra;//V
```

```
16 V2=Eb1*N2/N1+Ia*Ra;//V
17 cycle=V2/V1;
18 disp(cycle,"Duty cycle : ");
```

Scilab code Exa 5.35 Duty Cycle of Chopper

```
1 //Example No. 5.35
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 V1 = 200; //V
9 N1 = 940; //rpm
10 Ra=0.02; //ohm
11 Ia=100; //A
12 N2 = 500; //rpm
13 Eb1=V1-Ia*Ra; //V
14 / Eb1/Eb2=N1/N2
15 / Eb2 = V2 - Ia*Ra; / /V
16 V2=Eb1*N2/N1+Ia*Ra;/V
17 cycle=V2/V1;
18 disp(cycle, "Duty cycle: ");
```

Scilab code Exa 5.36 Resistance and Braking Torque

```
1 //Example No. 5.36
2 clc;
3 clear;
4 close;
5 format('v',9);
```

```
7 // Given Data :
8 V1 = 220; //V
9 Ra=0.05; //ohm
10 N1=1000; //\text{rpm}
11 Ia=100; //A
12 N2=500; //\text{rpm}
13 Eb=V1-Ia*Ra; //V
14 Ib=2*Ia;//A
15 Rb = (V1 + Eb) / Ib - Ra; //ohm
16 disp(Rb, "Resistance to be added in ohm: ");
17 Tb=Eb/(N1*2*%pi/60)*Ib; //N-m
18 disp(Tb, "Initial braking torque in N-m:");
19 Eb2=Eb*N2/N1; //V
20 Ib2=(V1+Eb2)/(Ra+Rb); //A
21 Tb2=Eb2/(N2*2*%pi/60)*Ib2;//N-m
22 disp(Tb2, "Initial braking torque in N-m:");
```

Scilab code Exa 5.37 Find Motor Speed

```
1 //Example No. 5.37
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 V1=230;//V
9 N1=870;//rpm
10 Ia=100;//A
11 Ra=0.05;//ohm
12 T=400;//N-m
13 Eb=V1-Ia*Ra;//V
14 Vgen=V1+Ia*Ra;//V
15 N2=N1*Vgen/Eb;//rpm
16 disp(N2,"Speed in rpm:");
```

Scilab code Exa 5.38 Torque Speed and PF

```
1 //Example No. 5.38
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 P = 10; /KW
9 V1 = 230; //V
10 N1=1200; //\text{rpm}
11 Ra=0.5; //ohm
12 Ke=0.182; //V/rpm
13 V2 = 260; //V
14 alfa=30; // degree
15 Ia=30; //A
16 Vm = V2 * sqrt(2); //V
17 Vdc=2*Vm/\%pi*cosd(alfa);//V
18 Eb=Vdc-Ia*Ra; //V
19 Kt=Ke*60/2/%pi; //N-m/A
20 T=Kt*Ia; //N-m
21 disp(T, "Torque in N-m : ");
22 \text{ N2=Eb/Ke;}/\text{rpm}
23 disp(N2, "Speed in rpm : ");
24 Pout=Vdc*Ia; //W
25 pf=Pout/V2/Ia; //lagging power factor
26 disp(pf, "Lagging power factor: ");
```

Scilab code Exa 5.39 On Time of chopper

```
1 //Example No. 5.39
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 P=2.2; /KW
9 V = 220; //V
10 N1=1000; //\text{rpm}
11 Ra=2; //ohm
12 f = 250; //Hz
13 alfa=0.9; //duty cycle
14 N2=1200; //rpm
15 N3=800; //\text{rpm}
16 Ia1=P*1000/V; //A
17 Ia2=Ia1*N2/N1; //A
18 Eb1=alfa*V-Ia2*Ra; //V
19 Eb2=Eb1*N3/N2; //V
20 Ia3=Ia1*N3/N1; //A
21 alfa3=(Eb2+Ia3*Ra)/V;//cycle
22 ton=alfa3/f; // sec
23 disp(ton*1000, 'On time of chopper in milli seconds:
       <sup>'</sup>);
```

Scilab code Exa 5.40 Current Drawn and Resistance

```
1 //Example No. 5.40
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 V=220;//V
```

```
9 Eff1=85/100; // Efficiency
10 Eff2=80/100; // Efficiency
11 Load=400; // Kg
12 t=2.5; // ms
13 Ra=0.1; // ohm
14 g=9.81; // constant for gravity acceleration
15 Pout=Load*g*t; // W
16 IL=Pout/V/Eff1/Eff2; // A
17 disp(IL, "Current drawn in ohm:");
18 Eb=V-IL*Ra; // V
19 R=(V+Eb)/IL-Ra; // ohm
20 disp(R, "Resistance to be added in ohm:");
```

Scilab code Exa 5.41 Find Firing Angle

```
1 //Example No. 5.41
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 V1 = 220; //V
9 N1=1500; //\text{rpm}
10 I=10; //A
11 Ra=3; //ohm
12 V2 = 230; //V
13 N2 = 600; //rpm
14 Eb1=V1-I*Ra; //V
15 Eb2=Eb1*N2/N1; //V
16 Ia=I/2; //A(at half rated torque)
17 Vm = V1 * sqrt(2); //V
18 alfa=acosd((Eb2+Ia*Ra)*%pi/2/Vm);//degree
19 disp(alfa, "Firing angle in degree : ");
```

Chapter 6

AC Motor Drives

Scilab code Exa 6.1 Speed and Torque

```
1 //Example No. 6.1
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 V = 400; // volt
9 P=4; //poles
10 f = 50; //Hz
11 Pout=10; //hp
12 Pout=Pout *735.5; //W
13 Snl=1/100;//No load Slip
14 Sfl=4/100; // Full load slip
15 Ns=120*f/P; //rpm
16 disp(Ns, "Synchronous speed in rpm: ");
17 N=Ns*(1-Snl); //rpm
18 disp(N, "Speed at no load in rpm: ");
19 N=Ns*(1-Sfl); //rpm
20 disp(N, "Speed at full load in rpm : ");
21 f2=Sf1*f;//Hz
```

Scilab code Exa 6.2 Slip Speed Power

```
1 //Example No. 6.2
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ P=6;}//\text{poles}
9 f1=50; //Hz
10 Pg=80; //KW
11 f2=100; // alternation/min
12 f2=f2/60; //Hz
13 Ns=120*f1/P; //rpm
14 Ns=Ns/60; //rps
15 S=f2/f1; //Slip
16 disp(S, "Slip is : ");
17 N = Ns * (1-S); //rps
18 disp(N*60, "Motor speed in rpm : ");
19 Pm = Pg * (1-S); //KW
20 disp(Pm, "Developed mechanical power in KW: ");
21 CuLoss=S*Pg; //KW
22 CuLoss_per_phase=CuLoss/3;/KW
23 disp(CuLoss_per_phase*1000,"Rotor Copper Loss per
      phase in W: ");
24 I2=65; //A
25 r2=CuLoss_per_phase*1000/I2^2;//ohm/phase
```

```
26 disp(r2,"Rotor resistance per phase in ohm : ");
27 T=Pg*1000/2/%pi/Ns;//N-m
28 disp(T,"Torque developed in N-m : ");
```

Scilab code Exa 6.3 Poles Slip and Copper Loss

```
1 //Example No. 6.3
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 N = 288; //rpm
9 f=50; //Hz
10 CuLoss=275; //W
11 Ns=300; //\text{rpm} (For S=0.03:0.05)
12 P = 120 * f / Ns; // poles
13 disp(P,"No. of poles : ");
14 S=(Ns-N)/Ns;//Slip
15 disp(S, "Slip : ");
16 S=2*S; // (as rotor reistance doubled, slip is doubled
17 disp(S, "Slip for full load if rotor resistance
      doubled : ");
18 / CuLoss=I2^2*r2
19 Culoss=2*Culoss; //KW(rotor resistance doubled &
      current constant)
20 disp(CuLoss," New value of rotor copper loss in watt
     : ");
```

Scilab code Exa 6.4 Applied voltage and starting current

```
1 //Example No. 6.4
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 T_directStartBYTfl=1.5; //ratio
9 K=sqrt(T_directStartBYTfl); // Ratio of full load
      torque to starting torque direct starting
10 // Vapplied=1/K* Vline
11 VappliedBYVline=1/K;
12 disp("Applied voltage is "+string(VappliedBYVline)+"
       times of Line voltage.");
13 LineCurrentBYIfl=1/K^2*4; //V
14 disp("Line current at starting is "+string(
     LineCurrentBYIf1)+" times of full load current.")
```

Scilab code Exa 6.5 Motor current Line Current and Torque Ratio

```
//Example No. 6.5
clc;
clc;
clear;
close;
format('v',6);

//Given Data :
    Ist=300;//A
    X=50/100;//tapping
    Imotor=X*Ist;//A
    disp(Imotor, "Motor current in A : ");
    Iline=X^2*Ist;//A
    disp(Iline, "Line current in A : ");
    ratio=X^2;//Ratio of starting Torque 50% tapping to
```

```
full voltage torque
15 disp(ratio, "Ratio of starting Torque 50% tapping to
    full voltage torque : ");
```

Scilab code Exa 6.6 Braking Current and Torque

```
1 //Example No. 6.6
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 V = 400; //volt
9 P=8; //pole
10 f = 50; //Hz
11 r1=1.2; //ohm
12 r2dash=1.2; //ohm
13 x1=2.5; //ohm
14 x2dash=2.5;/ohm
15 N = 720; //rpm
16 Ns=120*f/P; //rpm
17 S=(Ns-N)/Ns;//full load slip
18 S2=2-S; // Slip during plugging
19 V1=V/sqrt(3); //V
20 I2dash=V1/sqrt((r1+r2dash/S2)^2+(x1+x2dash)^2);//A(
      Initial braking current)
21 disp(I2dash, "Initial Braking current in A: ");
22 Ifl=V1/sqrt((r1+r2dash/S)^2+(x1+x2dash)^2);//A(Full
      load current)
23 RatioCurrent=I2dash/Ifl;//ratio of initial braking
      current to full load current
24 disp("Braking curent is "+string(RatioCurrent)+"
      times of full load current.");
25 Tfl=3*Ifl^2*r1/(2*\%pi*S*Ns/60);//N-m
```

```
26 T2dash=3*I2dash^2*r2dash/(2*%pi*S2*Ns/60); //N-m(
                           initail braking T)
27 disp(T2dash,"Initial Braking torque in N-m:");
28 RatioT=T2dash/Tfl;//ratio of initial braking Torque
                          to full load Torque
29 disp("Braking Torque is "+string(RatioT)+" times of
                                                 load Torque.");
30 //Let R be the additional resistance
31 I2dash=2*Ifl;//A
\frac{32}{12} = \frac{1}{12} \frac{1}{12
                            ^2);//A(Initial braking current)
33 R = (sqrt(V1^2/I2dash^2-(x1+x2dash)^2)-r1-r2dash/S2)*
                          S2; //in ohm
34 \text{ Ractual=R/2^2; //ohm}
35 disp(Ractual," Actual additional rotor resistance per
                               phase in ohm : ");
36 \text{ T_braking} = 3*I2dash^2*(r2dash+R)/(2*\%pi*S2*Ns/60); //N
                          -m(initail braking T)
37 disp(T_braking, "Braking torque in N-m : ");
38 TbBYTfl=T_braking/T2dash; // ratio
39 disp(TbBYTfl," Ratio of braking torque to full load
                          torque : ");
```

Scilab code Exa 6.7 Starting Time and Energy

```
1 //Example No. 6.7
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 V=400;//volt
9 P=8;//pole
10 f=50;//Hz
```

```
11 r1=0.1; //ohm
12 r2dash=0.1; //ohm
13 x1=0.4; //ohm
14 x2dash=0.4; //ohm
15 J=10; //Kg-m^2
16 Sm=r2dash/sqrt(r1^2+(x1+x2dash)^2)
17 Ns = 2 * f/P; //rps
18 omega_ms=2*%pi*Ns; // rad/s
19 V1=V/sqrt(3); //V
20 Tmax=1.5*V1^2/(2*\%pi*Ns)*[1/(r1+sqrt(r2dash^2+(2*
     x2dash)^2))];//N-m
21 tau_m=J*omega_ms/Tmax;//sec
22 ts=tau_m*(1.5*Sm+0.25/Sm);//sec
23 disp(ts, "Starting time in sec : ");
24 E=0.5*J*omega_ms^2; //Watt-s
25 Etot=2*E; //Watts-s
26 disp(Etot/1000, "Energy dissipated during starting in
      KW-s : ");
27 tb=tau_m*(0.7/Sm+0.334*Sm); // sec
28 disp(tb,"Pluggingfg time in sec: ");
29 E=1.4*J*omega_ms^2; //Watt-s
30 E=2*E/1000; //KW-s(taking cU loss into account)
31 disp(E, "Energy dissipated during plugging in KW-s:
     ");
```

Scilab code Exa 6.8 Torque Current and Voltage

```
1 //Example No. 6.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 V=400;//volt
```

```
9 P=4; //pole
10 f=50; //Hz
11 r1=0.64; //ohm
12 r2=0.08; //ohm
13 x1=1.1; //ohm
14 x2=0.12; //ohm
15 T1=40; //N-m
16 N = 1440; //rpm
17 n=2*f/P; //rps
18 n=n*60; //rpm
19 N1=1300; //\text{rpm}
20 Tload=T1*(N1/N)^2; //N-m
21 disp(Tload, "Load torque in N-m : ");
22 S=(n-N1)/n;//slip
23 r2dash=r2*2^2; //ohm
24 x2dash=x2*2^2;//ohm
25 / \text{Tload} = 3*I2dash^2*r2dash/(2*\%pi*S*n/60)
26 I2dash=sqrt(Tload/3/r2dash*(2*%pi*S*n/60));//A
27 I2=2*I2dash; //A
28 disp(I2, "Rotor current in A: ");
29 I1=I2dash; //A
30 V1=I1*(r1+r2dash+r2dash*(1-S)/S+%i*(x1+x2dash)); //
      Vplt
31 StatorVoltage=abs(V1)*sqrt(3);//Volt
32 disp(StatorVoltage, "Stator Applied Voltage in V: ")
```

Scilab code Exa 6.9 Slip for max Torque

```
1 //Example No. 6.9
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
7 // Given Data:
   8 V = 400; // volt
   9 \text{ P=4;} // \text{pole}
10 f = 50; //Hz
11 r1 = 0.64; //ohm
12 r2=0.08; //ohm
13 x1=1.1; //ohm
14 x2=0.12; //ohm
15 T1=40; //N-m
16 N = 1440; //rpm
17 N1=1300; //\text{rpm}
18 r2dash=r2*2^2; //ohm
19 x2dash=x2*2^2; //ohm
20 S=r2dash/sqrt(r1^2+(x1+x2dash)^2);//slip
21 disp(S, "Slip for maximum torque at 50 Hz:");
22 V1=V/sqrt(3);//volt/phase
23 ns = 2*f/P; //rps
24 \text{ Tmax} = 1.5 * V1^2/(2 * \%pi * ns) * [1/(r1 + sqrt(r1^2 + (x1 + x2dash) + (x1 + x2dash)
                               )^2))];/Nm
25 disp(Tmax, "Maximum torque at 50 Hz in N-m:");
26 \text{ n=ns*(1-S); //rps}
27 N=n*60; //rpm
28 disp(N, "Speed at 50 Hz in rpm: ");
29 f = 25; //Hz
30 \text{ x} 1 = \text{x} 1 / 2; //\text{ohm}
31 \text{ x2dash} = \text{x2dash}/2; //\text{ohm}
32 \text{ S=r2dash/sqrt(r1^2+(x1+x2dash)^2);//slip}
33 disp(S, "Slip for maximum torque at 25 Hz : ");
34 V1=V1/2; //volt/phase
35 \text{ ns}=2*f/P;//rps
36 \text{ Tmax} = 1.5 * V1^2/(2 * \%pi * ns) * [1/(r1 + sqrt(r1^2 + (x1 + x2dash) + (x1 + x2dash)
                               )^2))];/Nm
37 disp(Tmax, "Maximum torque at 25 Hz in N-m:");
38 \text{ n=ns*(1-S); //rps}
39 N=n*60; //rpm
40 disp(N, "Speed at 25 Hz in rpm: ");
```

Scilab code Exa 6.10 Starting Torque

```
1 //Example No. 6.10
   2 clc;
   3 clear;
   4 close;
   5 format('v',7);
   7 // Given Data :
   8
   9
10 V = 400; //volt
11 P=4; //pole
12 f = 50; //Hz
13 r1=0.64; //ohm
14 r2=0.08; //ohm
15 x1=1.1; //ohm
16 \text{ x} 2 = 0.12; //\text{ohm}
17 T1=40; //N-m
18 N = 1440; //rpm
19 N1=1300; //\text{rpm}
20 r2dash=r2*2^2; //ohm
21 x2dash=x2*2^2;//ohm
22 S=r2dash/sqrt(r1^2+(x1+x2dash)^2);//slip
23 V1=V/sqrt(3);//volt/phase
24 ns=2*f/P;//rps
25 \text{ Tst} = 3 \times V1^2 \times r2 \text{ dash} / (2 \times \text{pi} \times ns \times [(r1 + r2 \text{ dash})^2 + (x1 + r2 
                             x2dash)^2]);/N-m
26 disp(Tst, "Starting torque at 50 Hz in N-m:");
27 f = 25; //Hz
28 \text{ x1=x1/2; //ohm}
29 x2dash=x2dash/2;/ohm
30 V1=V1/2; // volt/phase
31 \text{ ns}=2*f/P;//rps
```

```
32 Tst=3*V1^2*r2dash/(2*%pi*ns*[(r1+r2dash)^2+(x1+x2dash)^2]);//N-m
33 disp(Tst, "Starting torque at 25 Hz in N-m:");
```

Scilab code Exa 6.11 Find Torque

```
1 //Example No. 6.11
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 V = 400; // volt
9 P=4; //pole
10 f = 50; //Hz
11 r2dash=1; //ohm/phase
12 // Neglecting r1, x1, x2
13 f1=400; //Hz
14 S=4/100; //Slip
15 t2=1.5; //ms
16 t2=t2*10^-3; //sec
17 t=1/f1; //sec
18 t1=t-t2; //sec
19 R=2; //ohm(additional resistance)
20 R2dash=(r2dash*t1+(r2dash+R)*t2)/t;/ohm
21 V1=V/sqrt(3);//volt
22 T=3*V1^2*S/R2dash;//N-m
23 disp(T, "Torque in synch.watts: ");
```

Scilab code Exa 6.12 Stator Applied Voltage

```
1 //Example No. 6.12
```

```
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 V1 = 400; // volt
9 P=4; //pole
10 f = 50; //Hz
11 Sm=10/100; // slip
12 S1=0.04; // slip
13 N2 = 900; //rpm
14
15 / r2 dash = 0.01 * x2; / / ohm / phase
16 \text{ r2dash} = 0.01
17 \text{ r1dash} = 0.1
18 Ns = 120 * f/P; //rpm
19 N1 = Ns * (1 - S1); //rpm
20 S2=(Ns-N2)/Ns;//slip
21 T2ByT1 = (N2/N1)^2;
22 /T=3/(2*\%pi*ns)*[V1^2/((rdash/S2)^2+xdash^2)]*(
      rdash/S2)
23 //T2/T1=V2^2/V1^2*S1/S2*[(1+625*r1dash^2)/(1+6.25*
      r1dash^2)]
24 V2=sqrt(T2ByT1*V1^2*S2/S1/[(1+625*r1dash^2)/(1+6.25*
      r1dash^2)]);//volt
25 disp(V2, "Stator applied voltage in volts: ");
```

Scilab code Exa 6.13 Find Torque

```
1 //Example No. 6.13
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
6
7  //Given Data :
8  P=4; //pole
9  f=50; //Hz
10  S=4/100; //slip
11  T=1000; //synch. Watts
12  f1=25; //Hz
13  Tnew=T*f/f1; //synch. watts
14  disp(Tnew, "Torque in synch. Watts : ");
```

Scilab code Exa 6.14 Torque Ratio and Current Ratio

```
1 //Example No. 6.14
2 clc;
3 clear;
4 close;
5 format('v',6);
7 //Given Data :
8 \text{ P=4; //pole}
9 f = 50; //Hz
10 r1 = 0.04; //ohm
11 r1dash=0.04; //ohm
12 r2dash = 0.04; //ohm
13 x1=0.2; //ohm
14 x2dash=0.2; //ohm
15 f1=20; //Hz
16 k=f1/f; //ratio of frequencies
17 Tmax20BYTmax50 = (r1 + sqrt(r1^2 + (x1 + x2dash)^2))/(r1/k + r1)
      sqrt((r1/k)^2+(x1+x2dash)^2));
18 disp(Tmax20BYTmax50," Ratio of max torque at 20 Hz to
       max Torque at 50 Hz: ");
  Tst20BYTst50 = ((r1+r2dash)^2+(x1+x2dash)^2)/k/((r1/k+x2dash)^2)/k
      r2dash/k)^2+(x1+x2dash)^2);
20 disp(Tst20BYTst50, "Ratio of starting torque at 20 Hz
```

```
to starting Torque at 50 Hz : ");

21 //at 20 Hz :

22 x11=x1*f1/f; //ohm

23 x22dash=x2dash*f1/f; //ohm

24 Ir20ByIr50=(f1/f)*[sqrt((r1+r2dash/r1dash)^2+(x1+x2dash)^2)]/[sqrt((r1+r2dash/r1dash)^2+(x11+x22dash)^2)];

25 disp(Ir20ByIr50, "Ratio of rotor current at 20 Hz to rotor current at 50 Hz : ");

26 //Answer of rotor current ratio is wrong in the book
```

Scilab code Exa 6.15 Find motor speed

```
1 //Example No. 6.15
2 clc;
3 clear;
4 close;
5 format('v',5);
6
7 // Given Data :
8 \text{ P=4;}//\text{pole}
9 f = 50; //Hz
10 S = 0.04; //slip
11 r1=0.04; //ohm
12 r1dash=0.04; //ohm
13 r2dash=0.04; //ohm
14 x1=0.2; //ohm
15 x2dash=0.2; //ohm
16 f1=30; //Hz
17 k=f1/f; // ratio of frequencies
18 S1=k*S; //slip
19 / \text{For } 50 \text{ Hz}
20 /T=3*V1^2*S*r2dash/(2*\%pi*ns)/[(S*r1+r2dash)^2+S
       ^2*(x1+x2dash)^2];
```

Scilab code Exa 6.16 Average torque and speed

```
1 //Example No. 6.16
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ P=6;}//\text{pole}
9 f=50; //Hz
10 S=0.04; // slip
11 Ton=40; //N-m
12 Toff = 30; //N - m
13 t_onBYt_off=1;
14 disp("Part(a) : ");
15 Ns = 2 * f / P * 60; / rpm
16 N = Ns * (1 - S); //rpm
17 Tavg=(Ton+Toff)/2;/N-m
18 disp(Tavg, "Average torque in N-m: ");
19 Navg=sqrt((N^2)*Tavg/Ton);//rpm
20 disp(Navg, "Average speed in rpm: ");
21 disp("Part(b) : ");
22 \text{ N1} = 800; //\text{rpm}
```

```
23 T=Ton*(N1/N)^2; //N-m

24 Tavg=32; //N-m

25 //Tavg=32=(Ton*t_on+T*t_off)/(t_on+t_off); //N-m

26 tonBYtoff=(T-Tavg)/(Tavg-Ton); //

27 disp(tonBYtoff, "Ratio ton/toff is:");
```

Scilab code Exa 6.17 Value of Vdc

```
1 //Example No. 6.17
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 Vrms=415; // volt
9 f=50; //Hz
10 Vdc=Vrms/sqrt(1/%pi*integrate('1','t',0,2*%pi/3));
11 disp(Vdc," Value of Vdc in Volts : ");
```

Scilab code Exa 6.18 Torque and applied voltage

```
1 //Example No. 6.18
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 V=400;//volt
9 f=50;//Hz
10 P=4;//poles
11 N1=1350;//rpm
```

```
12 N2=900; //rpm
13 Rs=1.5; //ohm
14 R=4; //ohm
15 X=4; //ohm
16 ns=2*f/P*60; //rpm
17 S=(ns-N1)/ns; //slip
18 T=3/2/%pi/(ns/60)*[(V/sqrt(3))^2*(P/S)/((Rs+P/S)^2+(R+X)^2)]
19 T2=T*(N2/N1)^2; //N-m
20 disp(T2, "Torque at 900 rpm in N-m:");
21 Snew=(ns-N2)/ns; //slip
22 V=sqrt((T2/3*2*%pi*(ns/60))*((Rs+P/Snew)^2+(R+X)^2) /(P/Snew))*sqrt(3)
23 disp(V, "Voltage at speed of 900 rpm in Volts:");
```

Scilab code Exa 6.19 Torque Speed Current and frequency

```
1 //Example No. 6.19
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 V = 415; // volt
9 P=4; //pole
10 f = 50; //Hz
11 N = 1370; //rpm
12 r1=2; //ohm
13 r2dash=3;//ohm
14 x1=3.5; //ohm
15 x2dash=3.5;//ohm
16 X0 = 55; //ohm
17 Ns = 120 * f/P; //rpm
18 S=(Ns-N)/Ns;//slip
```

```
19 Nfl=Ns-N; //\text{rpm}
20 disp("Part(a) : ");
21 disp(Nfl, "Full load slip speed in rpm: ");
Z = (r1 + \%i * x1) + \%i * X0 * (r2dash/S + \%i * x2dash) / (r2dash/S + \%i * x2dash/S +
                          *(X0+x2dash));/ohm
23 Istator=V/sqrt(3)/abs(Z);//A
24 disp(Istator, "Stator current in A: ");
25 I2dash=Istator*(%i*X0/(r2dash/S+%i*(X0+x2dash)));//A
26 Tfl=3*abs(I2dash)^2*r2dash/2/%pi/S/(Ns/60);/N-m
27 disp(Tfl, "Motor torque in N-m:");
28 disp("Part(b) : ");
29 //Torque is equal so stator current will be same.
30 disp(Istator, "Stator current in A: ");
31 N = 1200; //rpm
32 \text{ Ns=N+Nfl}; //\text{rpm}
33 f_inv=4*Ns/120; //Hz
34 disp(f_inv, "Inverter frequency in Hz: ");
```

Scilab code Exa 6.20 Find Motor Speed

```
//Example No. 6.20(page no. 196)
clc;
clear;
close;
format('v',7);

//Given Data :
   Is=6;//A
   f=40;//Hz
   SlipSpeed=100;//rpm
   V=415;//volt
   P=4;//pole
   r1=2;//ohm
   r2dash=3;//ohm
   x1=3.5;//ohm
```

Scilab code Exa 6.20.1 Find Maximum Torque

```
1 //Example No. 6.20 (page no. 205)
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 Pout = 2500; //hp
9 V = 2300; //volt
10 P = 20; //pole
11 f = 50; //Hz
12 Xs = 1.77; //ohm/phase
13 Pout=Pout *735.5/1000; //KW
14 V=V/sqrt(3); //Volt/phase
15 cos_theta=1;
16 I=Pout*10^3/3/V/cos_theta;//A
17 Ixs=I*Xs;//V
18 E=sqrt(V^2+Ixs^2);//V
19 Pout_max=3*V*E/Xs/1000; //KW
20 Tmax=Pout_max*1000; //synch. Watts
```

```
21  ns=2*f/P;//rps
22  Tmax=Pout_max*1000/2/%pi/ns;//N-m
23  disp(Tmax,"Maximum torque in N-m: ");
```

Scilab code Exa 6.21 Power Output Torque and Speed

```
1 //Example No. 6.21
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 Pout = 2500; //hp
9 V1 = 2300; //volt
10 P = 20; //pole
11 f = 50; //Hz
12 Xs=1.77; //ohm/phase
13 Pout=Pout *735.5/1000; //KW
14 V=V1/sqrt(3);//Volt/phase
15 cos_theta=1;
16 I=Pout*10^3/3/V/cos\_theta;//A
17 Ixs=I*Xs;//V
18 E=sqrt(V^2+Ixs^2);/V
19 del=acosd(V/E);//degree
20 Pout=3*V*E/Xs*cosd(del);/W
21 disp(Pout, "Part(a) Power output in W:");
22 T=Pout; //synch. Watts
23 N=300; //\text{rpm}
24 ns=N/60; //rps
25 T=T/2/\%pi/ns;//N—m
26 disp(T, "Part(a) Torque in N-m:");
27 f1 = 25; //Hz
28 N1=2*f1/P*60; //rpm
29 disp(N1, "Part(b) Speed in rpm : ");
```

```
30 T=T*(N1/N)^2;//N-m
31 disp(T,"Part(b) Torque in N-m : ");
32 Vapplied=V1*f1/f;//Volts
33 disp(Vapplied,"Part(b) Applied voltage in volts : ")
   ;
34 Pout=T*2*%pi*N1/60;//W
35 disp(Pout/1000,"Part(b) Power output in KW : ");
```