MathtoolsPlus Package Documentation

Eduards Abisevs

12 oktober 2024

Innehåll

1	Introduction	1
2	Theorem Environments	2
	2.1 Output	. 2
	2.2 Code	. 2
3	Example Environment	2
	3.1 Output	. 2
	3.2 Code	
4	Boxed Environments for Problem Solving	3
	4.1 Output	. 3
	4.2 Code	
5	Diagrams with TikZ	4
	5.1 Output: Horizontal Layout	. 4
	5.2 Output: Vertical Layout	. 4
	5.3 Code	
6	Switching to English	5
	6.1 Output in English	. 5
	6.2 Code in English	

1 Introduction

This document provides an overview of the custom mathtoolsplus LaTeX package, designed to assist with creating math and physics documents. The package includes:

- Custom theorem and example environments
- Boxed environments for problems and solutions

- Diagrams with TikZ
- Custom chapter and section formatting

2 Theorem Environments

2.1 Output

Sats 2.1. Låt a och b vara reella tal. Om a = b, så är $a^2 = b^2$.

Lemma 2.2. För alla reella tal x och y, så gäller $(x + y)^2 = x^2 + 2xy + y^2$.

Definition 2.1. En *funktion* är en relation mellan en mängd av indata och en mängd av möjliga utdata, där varje indata relateras till exakt ett utdata.

2.2 Code

\begin { theorem }

```
L t \( a \) och \( b \) vara reella tal. Om \( a = b \), s r \( a^2 = b^2 \). \\ end{theorem} \\ begin{lemma} F r alla reella tal \( x \) och \( y \), s g ller \( (x + y)^2 = x^2 + 2xy + y^2 \). \\ end{lemma} \\ begin{lemma} function \\ En \textit{funktion} \\ r en relation mellan en m ngd av indata och en m ngd av \\ end{definition} \\ end{definition}
```

3 Example Environment

3.1 Output

Exempel 3.1

Detta är ett grundläggande exempel utan ytterligare text.

Exempel 3.2 Lösa en ekvation

Lös $x^2 = 4$. Lösningarna är x = 2 och x = -2.

3.2 Code

4 Boxed Environments for Problem Solving

4.1 Output

Sökt:

Vi söker kraften F givet att $a = 2 \,\mathrm{m/s^2}$.

Lösning:

Med hjälp av Newtons andra lag: $F = ma = 5 \times 2 = 10 \,\text{N}$.

Svar:

Kraften är $F = 10 \,\mathrm{N}$.

4.2 Code

```
\label{lem:condition} $$ \left\{ \begin{array}{ll} answer \right\} \\ Kraften & r & ( F = 10 \ \ , \ \ \mathbb{N} \ \ ). \\ \mathbf{end} \left\{ answer \right\} $$
```

5 Diagrams with TikZ

5.1 Output: Horizontal Layout

5.2 Output: Vertical Layout

5.3 Code

```
\begin{ continuous problem} begin{ continuous problem} begin{ continuous problem} tikzpicture } \\ & draw[->] & (0,0) & (2,0) & node[below] & $x$; \\ & draw[->] & (0,0) & (0,2) & node[left] & $y$; \\ & draw & (0,0) & (1.5,1.5); \\ & end & tikzpicture \\ \\ betta & r & ett & enkelt & koordinatsystem diagram. \\ \\ end & given_diagram \\ \\ \end & given_diagram \\ \\ \end & diagram \\ \end
```

```
\label{lem:begin} $$ \left\{ \begin{array}{l} \left\{ ikzpicture \right\} \\ \left\{ draw \; (0\,,0) \; circle \; (1); \\ \left\{ draw [->] \; (-1.5\,,0) \; --- \; (1.5\,,0) \; node [right] \; \left\{ x \right\}; \\ \left\{ draw [->] \; (0\,,-1.5) \; --- \; (0\,,1.5) \; node [above] \; \left\{ y \right\}; \\ \left\{ end \left\{ tikzpicture \right\} \right\} \\ \left\{ Detta \; r \; en \; diagram \; som \; visar \; enhetscirkeln. \right\} \\ \left\{ end \left\{ given\_diagram \right\} \right. \end{aligned}
```

6 Switching to English

6.1 Output in English

Theorem 6.1. Let a and b be real numbers. If a = b, then $a^2 = b^2$.

Lemma 6.2. For any real numbers x and y, $(x + y)^2 = x^2 + 2xy + y^2$.

Definition 6.1. A function is a relation between a set of inputs and a set of possible outputs, where each input is related to exactly one output.

6.2 Code in English

```
\end{theorem} $$ \text{Let } (a \ ) \ and \ (b \ ) \ be real numbers. If \ (a = b \ ), then \ (a^2 = b^2 \ ). \ \end{theorem} $$ \text{begin \{lemma} \ For any real numbers \ (x \ ) \ and \ (y \ ), \ ((x + y)^2 = x^2 + 2xy + y^2 \ ). \ \end{lemma} $$ \text{begin \{definition} \ A \ \text{textit \{function} \ ) \ is a relation between a set of inputs and a set of possible \ \end{definition} $$ \ \ \end{definition} $$ \
```