IN THE CLAIMS:

Please amend the claims as follows:

1 (Original): A fine spherical particle having uniform molecular orientation, which comprises a compound represented by the following formula (1):

HO
$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$
 $(DH_2)_n$
 (DH_2)

wherein R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; n is an integer of 8 to 20; and m is an integer of 1 to 3.

- 2 (Original): The fine spherical particle according to claim 1, wherein the fine particle is evenly oriented in a radial pattern from the center.
- 3 (Currently Amended): The fine spherical particle according to claim 1 or 2, wherein the particle diameter of the fine particle is from 0.01 to 100 μm .
- 4 (Currently Amended): A process for producing the fine spherical particle according to any one of claims claim 1 to 3, which comprises immersing a substrate having

hydrophilicity in an aqueous solution of a salt of the compound represented by formula (1) to precipitate the fine particle under an acidic atmosphere.

- 5 (Original): The process for producing the fine spherical particle according to claim 4, wherein the salt of the compound represented by formula (1) is an alkali metal salt.
- 6 (Currently Amended): The process for producing the fine spherical particle according to claim 4 or 5, wherein the substrate comprises glass, metal, silica, mica, ceramic, earthenware, porcelain, plastic, or a composite material thereof.
- 7 (Currently Amended): The process for producing the fine spherical particle according to any one of claims claim 4 to 6, wherein the fine particle is precipitated under an acidic atmosphere of pH 5 to 6.
- 8 (Original): A spherical microcapsule in which a fine particle of a hydrophilic core substance are encapsulated inside the spherical body of the compound represented by formula (1) having uniform molecular orientation.
- 9 (Original): The spherical microcapsule according to claim 8, wherein the spherical microcapsule has a particle diameter of from 0.01 to 100 μm .
- 10 (Currently Amended): A process for producing the spherical microcapsule encapsulating a fine particle of a hydrophilic core substance according to claim 8 or 9, which

comprises immersing a hydrophilicity-treated substrate in an aqueous solution in which a metal salt of the compound represented by formula (1) and the hydrophilic core substance are dissolved; and allowing the aqueous solution to stand under an acidic atmosphere for precipitation.

11 (Original): The process for producing the spherical microcapsule according to claim 10, wherein the metal salt of the compound represented by formula (1) is an alkali metal salt.

12 (Currently Amended): The process for producing the spherical microcapsule according to claim 10 or 11, wherein the acidic atmosphere is a weakly acidic atmosphere of pH 5 to 6.

13 (Currently Amended): The process for producing the spherical microcapsule according to any one of claims claim 10 to 12, wherein the substrate is selected from glass, metal, silica, mica, a ceramic, earthenware, porcelain, plastic, and a composite material thereof.