最大似然可以用马氏距离估计吗

BY JIN 2019-02-15

假如有一维连续空间中的实验结果X,可能(先验概率均等地)产生自两个正态分布 $\mathcal{N}_1(\mu_1, \sigma_1^2)$, $\mathcal{N}_2(\mu_2, \sigma_2^2)$ 之一,想用最大似然估计法推测其来源,应该比较x在两个分布中的马氏距离 $D_i = \frac{X - \mu_i}{\sigma_i}$ 还是概率密度 $f_i(X) = \frac{1}{\sqrt{2\pi}\sigma_i}e^{-\frac{1}{2}\left(\frac{X - \mu_i}{\sigma_i}\right)^2}$?由于马氏距离在标准化正态分布中的概率密度 $g(d) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}d^2}(d \geqslant 0)$ 为严格递减函数,但却比 f_i 少了一个 $\frac{1}{\sigma_i}$ 的因子,因而可以断定当 σ 不同时两种判定方式并不等价。

按最大似然估计方法, 由于先验概率 $P^{-}(x \sim \mathcal{N}_{i})$ 均等, 在X附近取极小的区间 $\Delta_{x} \to 0$, 有

$$P(x \sim \mathcal{N}_i | X - \Delta \leqslant x \leqslant X + \Delta) = \eta P(X - \Delta \leqslant x \leqslant X + \Delta | x \sim \mathcal{N}_i) P^-(x \sim \mathcal{N}_i)$$
$$= \eta \cdot 2\Delta \cdot f_i(X) \cdot P^-(x \sim \mathcal{N}_i)$$
$$= \eta' f_i(X)$$

因此X属于第i个分布的可能性与 $f_i(X)$ 成正比例,确定最大似然时比较每个分布在X的概率密度即可。

另一方面,求马氏距离等于标准化了原正态分布,对于同样的 $\Delta_x \to 0$, $\Delta_{d_i} = \frac{\Delta_x}{\sigma_i}$ 却是一个与方差相关的量

$$\begin{split} P(x \sim \mathcal{N}_i | X - \Delta_x \leqslant x \leqslant X + \Delta_x) &= P(x \sim \mathcal{N}_i | D - \Delta_{d_i} \leqslant d_i \leqslant D + \Delta_{d_i}) \\ &= \eta \cdot 2 \frac{\Delta_x}{\sigma_i} \cdot g(D_i) \cdot P^-(x \sim \mathcal{N}_i) \\ &= \eta' \frac{g(D_i)}{\sigma_i} \end{split}$$

因此单纯比较马氏距离是错误的;应该按马氏距离求出标准正态分布的概率密度,再除以对应的标准差。而按之前的推导这正是X在每个分布中的概率密度。