

LC²MOS Latchable 4/8 Channel High Performance Analog Multiplexers

ADG428/ADG429

FEATURES

44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (60 Ω typ) Low Power Consumption (1.6 mW max) Low Charge Injection (<4 pC typ) Fast Switching Break Before make Switching Action Plug-In Replacement for DG428/DG429

APPLICATIONS

Automatic Test Equipment
Data Acquisition Systems
Communication Systems
Avionics and Military Systems
Microprocessor Controlled Analog Systems
Medical Instrumentation

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG428 and ADG429 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels respectively. On-chip address and control latches facilitate microprocessor interfacing. The ADG428 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG429 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the control inputs, address and enable inputs are TTL compatible over the full specified operating temperature range. This makes the part suitable for bus-controlled systems such as data acquisition systems, process controls, avionics and ATEs because the TTL compatible address latches simplify the digital interface design and reduce the board space required.

The ADG428/ADG429 are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

The ADG428/ADG429 are improved replacements for the DG428/DG429 Analog Multiplexers.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

- Extended Signal Range
 The ADG428/ADG429 are fabricated on an enhanced LC²MOS process giving an increased signal range that extends to the supply rails.
- 2. Low Power Dissipation
- 3. Low Ron
- 4. Single/Dual Supply Operation
- 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG428/ADG429 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.

ADG428/ADG429-SPECIFICATIONS1

 $\textbf{DUAL SUPPLY} \ \ (\textbf{V}_{DD} = +15 \ \textbf{V}, \ \textbf{V}_{SS} = -15 \ \textbf{V}, \ \textbf{GND} = \textbf{0} \ \textbf{V}, \ \overline{\textbf{WR}} = \textbf{0} \ \textbf{V}, \ \overline{\textbf{RS}} = 2.4 \ \textbf{V} \ \textbf{unless otherwise noted})$

	B Version -40°C to		T Version -55°C to			
Parameter	25°C	+85°C	25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}		V_{SS} to V_{DD}	V	
R_{ON}	60		60		Ω typ	$V_{\rm D} = \pm 10 \text{ V}, I_{\rm S} = -1 \text{ mA}$
$\Delta R_{ m ON}$	100 10	125	100 10	125	Ω max % max	$-10 \text{ V} < \text{V}_{\text{S}} < 10 \text{ V}, \text{I}_{\text{S}} = -1 \text{ mA}$
LEAKAGE CURRENTS						
Source OFF Leakage I _S (OFF)	±0.03	±0.3	±0.03	±0.3	nA typ	$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V};$
	±0.5	±50	± 0.5	±50	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)						$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V};$
ADG428	± 0.07		± 0.07		nA typ	Test Circuit 3
ADC 420	±1	±100	±1	± 100	nA max	
ADG429	±0.05 ±1	±0.5 ±50	±0.05 ±1	±0.5 ±50	nA typ nA max	
Channel ON Leakage ID, IS (ON)	- 1	± 30	<u> </u>	± 30	IIA IIIax	$V_S = V_D = \pm 10 \text{ V};$
ADG428	±1	±100	±1	±100	nA max	Test Circuit 4
ADG429	±1	±50	± 1	±50	nA max	Total Grant T
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INI}		0.8		0.8	V max	
Input Current						
$ m I_{INL}$ or $ m I_{INH}$	±0.1	±1	±0.1	±1	μA max	$V_{IN} = 0$ or V_{DD}
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²						
t _{TRANSITION}	110		110		ns typ	$R_{L} = 1 \text{ M}\Omega, C_{L} = 35 \text{ pF};$
	250	300	250	300	ns max	$V_{S1} = \pm 10 \text{ V}, V_{S8} = \mp 10 \text{ V};$
						Test Circuit 5
t_{OPEN}		10		10	ns min	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
(ENI WID)	115		115			$V_S = +5 \text{ V}$; Test Circuit 6
t_{ON} (EN, \overline{WR})	115 150	225	115 150	225	ns typ ns max	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$; $V_S = +5 \text{ V}$; Test Circuit 7
t_{OFF} (EN, \overline{RS})	105	223	105	223	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
topp (Liv, ro)	150	300	150	300	ns max	$V_S = +5 \text{ V}$; Test Circuit 7
tw, Write Pulse Width	130	100	230	100	ns min	13 13 1, 2 552 552 552
t _S , Address, Enable Setup Time		100		100	ns min	
t _H , Address, Enable Hold Time		10		10	ns min	
t _{RS} , Reset Pulse Width		100		100	ns min	$V_S = +5 \text{ V}$
Charge Injection	4		4		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$ Test Circuit 10
OFF Isolation	-75		-75		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$;
	-60		-60		dB min	$V_S = 7 \text{ V rms}, V_{EN} = 0 \text{ V}; \text{ Test Circuit } 11$
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$; Test Circuit 12
C _s (OFF)	11		11		pF typ	f = 1 MHz
C_D (OFF)	10		4.0			f = 1 MHz
ADG428	40		40		pF typ	
ADG429 C_D , C_S (ON)	20		20		pF typ	f = 1 MHz
C_D, C_S (ON) ADG428	54		54		pF typ	1 - 1 141112
ADG429	34		34		pF typ	
POWER REQUIREMENTS					, , , F	$V_{IN} = 0 \text{ V}, V_{EN} = 0 \text{ V}$
I _{DD}	20		20		μA typ	1 V - 0 V VEN - 0 V
-עע	100		100		μA max	
${ m I}_{ m SS}$	0.001		0.001		μA typ	
	5		5		μA max	

NOTES

1 Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY ($V_{DD} = +12$ V, $V_{SS} = 0$ V, GND = 0 V, $\overline{WR} = 0$ V, $\overline{RS} = 2.4$ V unless otherwise noted)

	B Ve		T Ver			
Parameter	25°C	-40°C to +85°C	25°C	-55°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 to V_{DD}		0 to V_{DD}	V	
R_{ON}	90	DD	90	DD	Ω typ	$V_D = +10 \text{ V}, I_S = -500 \mu\text{A}$
AD	10	200	10	200	Ω max % max	$0 \text{ V} < \text{V}_{\text{S}} < 10 \text{ V}, \text{I}_{\text{S}} = -1 \text{ mA}$
ΔR _{ON}	10		10		70 IIIax	$0 \text{ V} < \text{V}_{\text{S}} < 10 \text{ V}, \text{I}_{\text{S}} = -1 \text{ IIIA}$
LEAKAGE CURRENTS	10.005		10.005			XI - 10 XI/0 XI XI - 0 XI/10 XI
Source OFF Leakage I _S (OFF)	± 0.005 ± 0.5	±50	± 0.005 ± 0.5	±50	nA typ nA max	$V_D = 10 \text{ V/0 V}, V_S = 0 \text{ V/10 V};$ Test Circuit 2
Drain OFF Leakage I _D (OFF)	1 -0.5	± 30	1 -0.5	± 30	III III III III	$V_D = 10 \text{ V/0 V}, V_S = 0 \text{ V/10 V};$
ADG428	±0.015		±0.015		nA typ	Test Circuit 3
	±1	± 100	±1	± 100	nA max	
ADG429	±0.008		±0.008		nA typ	
	±1	±50	±1	±50	nA max	II II 10 II/0 II
Channel ON Leakage I _D , I _S (ON) ADG428	±0.02		±0.02		n A tym	$V_S = V_D = 10 \text{ V/0 V};$ Test Circuit 4
ADG428	± 1	±100	± 0.02	±100	nA typ nA max	rest Circuit 4
ADG429	±0.01	_100	± 0.01	±100	nA max	
	±1	±50	±1	±50	nA max	
D IGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0	±1	0	± 1	μA max	$V_{IN} = 0 \text{ or } V_{DD}$
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²	250		250			D 1 NO 0 25 E
ttransition	250 350	450	250 350	450	ns typ	$R_L = 1 M\Omega, C_L = 35 pF;$
	330	450	350	450	ns max	$V_{S1} = 10 \text{ V/0 V}, V_{S8} = 0 \text{ V/10 V};$ Test Circuit 5
t _{OPEN}	25	10	25	10	ns min	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
						$V_S = +5 \text{ V}$; Test Circuit 6
t_{ON} (EN, \overline{WR})	200		200		ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
(E) (D O)	300	400	300	400	ns max	$V_S = +5 \text{ V}$; Test Circuit 7
t_{OFF} (EN, \overline{RS})	80 300	400	80 300	400	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$; $V_S = +5 \text{ V}$; Test Circuit 7
tw, Write Pulse Width	300	100	300	$\frac{400}{100}$	ns max ns min	V _S = +5 V; Test Circuit I
t _S , Address, Enable Setup Time		100		100	ns min	
t _H , Address, Enable Hold Time		10		10	ns min	
t _{RS} , Reset Pulse Width		100		100	ns min	$V_S = +5 V$
Charge Injection	4		4		pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$ Test Circuit 10
OFF Isolation	-75		-75		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$;
	-60		-60		dB min	$V_S = 7 \text{ V rms}, V_{EN} = 0 \text{ V}; \text{ Test Circuit } 11$
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$; Test Circuit 12
C_{S} (OFF)	11		11		pF typ	f = 1 MHz
C_D (OFF)	**		**		Priyp	f = 1 MHz f = 1 MHz
ADG428	40		40		pF typ	
ADG429	20		20		pF typ	
$C_D, C_S (ON)$					_	f = 1 MHz
ADG428 ADG429	54 34		54 34		pF typ	
	34		34		pF typ	** ***
POWER REQUIREMENTS	20		20			$V_{\rm IN}$ = 0 V, $V_{\rm EN}$ = 0 V
${ m I}_{ m DD}$	20 100		20 100		μΑ typ μΑ max	
Nome	100		100		ры шах	

NOTES

¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS1

$(T_A = +25^{\circ}C \text{ unless otherwise noted.})$
V_{DD} to V_{SS} +44 V
V_{DD} to GND0.3 V to +25 V
V_{SS} to GND
Analog, Digital Inputs ² V_{SS} – 2 V to V_{DD} + 2 V or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Industrial (B Version)
Extended (T Version)55°C to +125°C
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
Cerdip Package, Power Dissipation900 mW
θ_{JA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +300°C
Plastic Package, Power Dissipation
θ_{JA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +260°C
PLCC Package, Power Dissipation800 mW
θ _{JA} , Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)+215°C
Infrared (15 sec)+220°C
NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

 2 Overvoltages at A, EN, \overline{WR} , \overline{RS} , S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG428BN	-40°C to +85°C	N-18
ADG428BP	-40°C to +85°C	P-20A
ADG428TQ	-55°C to +125°C	Q-18
ADG429BN	-40°C to +85°C	N-18
ADG429BP	-40°C to +85°C	P-20A
ADG429TQ	-55°C to +125°C	Q-18

NOTES

ADG428 PIN CONFIGURATIONS

ADG429 PIN CONFIGURATIONS

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-4-

¹To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers

²N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip.

TERMINOLO	GY				
V_{DD}	Most positive power supply potential.				
V_{SS}	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.				
GND	Ground (0 V) reference.				
R_{ON}	Ohmic resistance between D and S.				
ΔR_{ON}	Difference between the $R_{\rm ON}$ of any two channels.				
I _S (OFF)	Source leakage current when the switch is off.				
I_D (OFF)	Drain leakage current when the switch is off.				
I_D , I_S (ON)	Channel leakage current when the switch is on.				
$V_D(V_S)$	Analog voltage on terminals D, S.				
C _S (OFF)	Channel input capacitance for "OFF" condition.				
C_D (OFF)	Channel output capacitance for "OFF" condition.				
C_D , C_S (ON)	"ON" switch capacitance.				
C_{IN}	Digital input capacitance.				
t _{ON} (EN)	Delay time between the 50% and 90% points of the digital input and switch "ON" condition.				
t _{OFF} (EN)	Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.				
t _{TRANSITION}	Delay time between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.				
t _{OPEN}	"OFF" time measured between 80% points of both switches when switching from one address state to another.				
V_{INL}	Maximum input voltage for logic "0".				
$V_{\rm INH}$	Minimum input voltage for logic "1".				
$I_{\rm INL}$ $(I_{\rm INH})$	Input current of the digital input.				
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.				
Off Isolation	A measure of unwanted signal coupling through an "OFF" channel.				
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.				
I_{DD}	Positive supply current.				
I_{SS}	Negative supply current.				

ADG428 Truth Table								
A2	A1	A0	EN	WR	RS	ON SWITCH		
Latching								
X	X	X	X	g	1	Maintains Previous Switch Condition		
Rese	et							
X	X	X	X	X	0	NONE (Latches Cleared)		
Tran	nsparen	t Opera	ation					
X	X	X	0	0	1	NONE		
0	0	0	1	0	1	1		
0	0	1	1	0	1	2		
0	1	0	1	0	1	3		
0	1	1	1	0	1	4		
1	0	0	1	0	1	5		
1	0	1	1	0	1	6		

ADG429 Truth Table

A1	A0	EN	WR	RS	ON SWITCH PAIR
Latch	ing				
X	X	X	g	1	Maintains Previous Switch Condition
Reset					
X	X	X	X	0	NONE (Latches Cleared)
Trans	parent	Operatio	n		
X 0	X 0	0 1	0	1 1	NONE 1
0	1	1	0	1	2
1 1	0	1 1	0	1	3 4

REV. A -5-

TIMING DIAGRAMS

Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while \overline{WR} is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of \overline{WR} .

Figure 2 shows the Reset Pulse Width, t_{RS}, and the Reset Turnoff Time, t_{OFF} , (\overline{RS}) .

Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tr = tf = 20 ns.

Typical Characteristics

Figure 3. R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

Figure 4. R_{ON} as a Function of V_D (V_S) for Different **Temperatures**

Figure 5. R_{ON} as a Function of V_D (V_S): Single Supply Voltage

Figure 6. R_{ON} as a Function of V_D (V_S) for Different Temperatures

-6-REV. A

Figure 7. Positive Supply Current vs. Switching Frequency

Figure 8. Switching Time vs. V_{IN} (Bipolar Supply)

Figure 9. Switching Time vs. Bipolar Supply

Figure 10. Negative Supply Current vs. Switching Frequency

Figure 11. Switching Time vs. V_{IN} (Single Supply)

Figure 12. Switching Time vs. Single Supply

REV. A -7-

ADG428/ADG429-Typical Characteristics

Figure 13. OFF Isolation vs. Frequency

Figure 14. Leakage Currents as a Function of V_D (V_S)

Figure 15. Crosstalk vs. Frequency

Figure 16. Leakage Currents as a Function of VD (VS)

-8- REV. A

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 3. I_D (OFF)

Test Circuit 4. I_D (ON)

Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}

REV. A _9_

Test Circuit 6. Break-Before-Make Delay, topen

Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

Test Circuit 8. Write Turn-On Time, t_{ON} WR)

-10- REV. A

Test Circuit 9. Reset Turn-Off Time, t_{OFF} (\overline{RS})

Test Circuit 10. Charge Injection

Test Circuit 11. OFF Isolation

Test Circuit 12. Crosstalk

REV. A -11-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

PLCC (P-20A)

Plastic DIP (N-18)

Cerdip (Q-18)

