

CANONICAL MAPS

Why

How do equivalence classes and functions relate?

Definition

We can associate to each element of a set its equivalence class under an equivalence relation. Let X denote a set and R an equivalence relation. We call the function $f: X \to X/R$ defined by f(x) = x/R the canonical map from X to X/R.

Conversely, if f is an arbitrary function from X onto Y, we can naturally define an equivalence relation R in X so that for $a,b \in X$, $aRb \longleftrightarrow f(a) = f(b)$ f was onto, so for each $y \in Y$, there exists an $x \in X$ with f(x) = y. Now let $g: Y \to X/R$ be defined by g(y) = x/R. The values of g are the subset X which are mapped to the same value under f. Moreover, the function g is one-to-one.

