CLAIMS

A method comprising:
generating an edge map from scanned image data; and
analyzing the edge map to determine a plurality of boundaries; and
evaluating the boundaries based on a set of rules to identify a plurality of
objects.

- 2. A method as recited in claim 1, wherein the analyzing further comprises taking a Hough transform of the scanned image to determine the boundaries.
- 3. A method as recited in claim 1, wherein a first object of the objects is aligned with respect to another object of the objects.
- 4. A method as recited in claim 1, wherein at least one subset of the objects are rectangular in shape.
- 5. A method as recited in claim 1, wherein at least one subset of the plurality of objects are photographs.
- 6. A computer readable medium comprising computer-executable instructions to perform a method as recited in claim 1.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	-
24	

7. A method for detecting one or more objects in image data, the method comprising:

generating an edge map from the image data; and

analyzing the edge map to determine a plurality of boundaries of the one or more objects.

- **8.** A method as recited in claim 7, wherein the one or more objects are photographs.
- 9. A method as recited in claim 7, wherein the one or more objects are rectangular in shape.
- 10. A method as recited in claim 7, further comprising segmenting the one or more objects based on the set of boundaries.
- 11. A method as recited in claim 7, wherein the edge map comprises an array of elements, each element representing a respective pixel of the image data; and

wherein the generating further comprises:

estimating a background color of a scanner lid;

for each pixel of at least one subset of the image data:

identifying an absolute difference between a value of a current pixel and the background color; and

25

if the absolute difference is greater than a predetermined threshold, indicating that a corresponding array element represents a pixel of the at least one subset of image data that belongs to an edge.

12. A method as recited in claim 7:

wherein the edge map comprises an array of elements, each element representing a respective pixel of the image data;

wherein the analyzing further comprises:

transforming the array of elements to produce a set of domain peaks, each domain peak corresponding to a straight line of a set of straight lines; and determining which of the straight lines belong to the

set of boundaries based on a set of rules.

13. A method as recited in claim 12, wherein the determining further comprises:

identifying a boundary set that indicates an object at a distinct angle as compared to an orientation of a previously found object;

identifying a boundary set that indicates an object having a same dimension as a previously found object; and

identifying pairs of parallel and perpendicular boundaries that indicate an object that satisfies a substantially non-background interior condition with a previously found object.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

14. A method as recited in claim 12:

wherein the edge map comprises an array of elements, each element representing a respective pixel of the image data; and

wherein the transforming further comprises taking a Hough transform of the array of elements to produce the set of domain peaks.

A method as recited in claim 7: 15.

wherein the edge map comprises an array of elements, each element representing a respective pixel of the image data;

wherein the analyzing further comprises:

transforming the array elements to produce a set of domain peaks, each domain peak corresponding to a straight line of a set of straight lines; and

determining which of the straight lines belong to the set of boundaries based on a set of rules, the set of rules comprising rules that are directed to:

identifying a first object with a first dimension; and seeking a same sized object with a second dimension that corresponds to the first dimension

A method as recited by claim 15, wherein the identifying comprises: **16.** determining a background color;

determining a candidate object; and

if an interior portion of the candidate object is not consistent with the background color, concluding that the candidate object is the first object.

17. A method as recited in claim 15, wherein a line of the straight lines corresponds to a candidate object, the seeking further comprising:

detecting a first image to background transition that corresponds to the first image, and a second image to background transition that corresponds to the line; and

if the first image to background transition does not coincide with the second image to background transition, assigning the line to be a boundary of a different object.

- 18. A computer readable medium comprising a computer program configured to perform a method as recited in claim 1.
- 19. A method for detecting whether image data represents more than one object, the method comprising:

determining a background color of a scanner lid;

identifying a set of transitions between the background color and other colors that correspond to the image data; and

analyzing the set of transitions to detect a set of image data characteristics; estimating based on a set of one or more rules, a number of objects based on the set of image data characteristics.

20. A method as recited in claim 19, wherein the objects are rectangular in shape.

1	21.	A method as recited in claim 19, wherein the image data is scanned						
2.	preview ima	ge data.						
3								
4	22.	A method as recited in claim 19, wherein the analyzing further						
5	comprises to	aking a Hough transform of the set of transitions to detect the set of						
6	image data characteristics.							
7								
8	23.	A method as recited in claim 19, further comprising:						
9	calcu	lating a set of boundaries that delineate the objects based on the set of						
10	image data o	characteristics; and						
11	segm	enting the objects from the image data based on the set of boundaries.						
12								
13	24.	A method as recited in claim 19, wherein the identifying further						
14	comprises:							
15	for ea	ach row(i) of image data:						
16		calculating a left(i) transition from background data to image data;						
17		calculating a right(i) transition from image data to background data;						
18		determining a difference(i) between right(i) transition and left(i)						
19	transi	tion;						
20	for ea	ach column(j) of image data:						
21		calculating a top(j) transition from background data to image data;						
22		calculating a bottom(j) transition from image data to background						
23	data;							
24		determine a difference(j) between bottom(j) transition and top(j)						
25	transi	ition;						

generating a first histogram from each difference(i); generating a second histogram from each difference(j); and

using a set of characteristics that are displayed by the first and second histograms display to determine whether the image data represents one objects or more than one object.

25. A method as recited in claim 19, further comprising:

generating a first histogram representing horizontal transitions from the transitions;

generating a second histogram representing vertical transitions from the transitions;

the first and second histograms displaying a set of peaks that identify whether the image data comprises more than one object; and

the set of rules comprising the following rules:

- (a) if the set of peaks comprises only a single peak, classifying the image data as containing only a single object;
- (b) if the set of peaks comprises only two peaks, classifying the image data as containing multiple objects;
- (c) classifying the image data as comprising multiple objects if there is a gap in either the first histogram or the second histogram; and
- (d) if neither (a), (b), or (c) apply, classifying the image data as comprising multiple objects.

2	executable program that performs a method as recited in claim 19.
3	
4	27. A device for detecting multiple objects in image data, the device
5	comprising:
6	a processor configured to execute computer program instructions for:
7	generating an edge map from the image data;
8	analyzing the edge map to determine a set of boundaries of the one
9	or more objects; and
10	segmenting the one or more objects based on the set of boundaries.
11	
12	28. A device as recited in claim 27, wherein the analyzing further
13	comprises taking a Hough transform of the edge map to determine the set of
14	boundaries.
15	
16	29. A device as recited in claim 27, wherein the analyzing further
17	comprises:
18	determining a set of transitions between the set of boundaries and a
19	background color;
20	identifying a set of characteristics from the set of transitions, the set of
21	characteristics being used to indicate whether the image data comprises a single
22	object or whether the image data comprises a plurality of objects; and
23	if the image data corresponds to a plurality of objects, assigning particular
24	ones of the set of boundaries to particular ones of the plurality of objects based
25	on a set of rules.

One or more computer-readable media containing a computer

19.

26.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

.19

20

21

22

23

24

25

30. A device as recited in claim 29, wherein the set of rules comprises rules that are directed to:

determining a background color of a scanner lid;

determining a candidate object;

determining that the candidate object is a first object, the first object having a first dimension if an interior portion of the candidate object is not consistent with the background color; and

seeking a same sized object with a second dimension that corresponds to the first dimension.

31. A device as recited in claim 29, wherein the set of rules comprises rules that are directed to:

determining a background color of a scanner lid;

determining a first candidate object;

if an interior portion of the first candidate object is not consistent with the background color, determining that the first candidate object is a first object, the first object having a first dimension; and

seeking a same sized object with a second dimension that corresponds to the first dimension, the seeking comprising:

identifying a boundary of the set of boundaries that corresponds to a second candidate object;

detecting a first image to background transition that corresponds to the first object, and a second image to background transition that corresponds to the boundary; and

lee@hayes ptc 509-324-9256 31 0403011707 MS1-719US.PAT.APP.DOC

if the first image to background transition does not coincide with the second 1 image to background transition, assigning the boundary to the same sized object. 2 3 A device as recited in claim 29, wherein the identifying further **32.** 4 comprises: 5 for each row(i) of image data: 6 calculating a left(i) transition from background data to image data; 7 calculating a right(i) transition from image data to background data; 8 determine a difference(i) between right(i) transition and left(i) 9 transition; 10 for each column(j) of image data: 11 calculating a top(j) transition from background data to image data; 12 calculating a bottom(j) transition from image data to background 13 data; 14 determine a difference(j) between bottom(j) transition and top(i) 15 transition; 16 generating a first histogram from each difference(i); 17 generating a second histogram from each difference(j); and 18 wherein the first and second histograms display the set of characteristics. 19 20 21 22 23 24 25

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

33. A device as recited in claim 29, wherein the set of rules is a first set of rules, and wherein the set of characteristics indicate a set of peaks that are used to identify whether the image data comprises a single object or a plurality of objects based on a second set of rules, the second set of rules comprising rules that are directed to:

- (a) if the set of peaks comprises only a single peak, classifying the image data as containing only a single object;
- (b) if the set of peaks comprises only two peaks, classifying the image data as containing a plurality of objects;
- (c) if there is a gap in either the first histogram or the second histogram, then classifying the image data as comprising containing a plurality of objects; and
- (d) if neither (a), (b), or (c) apply, classifying the image data as comprising containing a plurality of objects.
- 34. A computer readable storage medium comprising a program module for detecting multiple objects in image data, wherein the program module performs acts comprising:

generating an edge map from the image data; and analyzing the edge map to determine a set of boundaries of the one or more

35. A computer readable storage medium as recited in claim 34, wherein the one or more objects are photographs.

objects.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

36.	A	computer	readable	storage	medium	as	recited	in	claim	34
wherein the	one (or more ob	jects are re	ectangula	r in shape					

- 37. A computer readable storage medium as recited in claim 34, wherein the program module further performs acts comprising segmenting the one or more objects based on the set of boundaries.
- 38. A computer readable storage medium as recited in claim 34, wherein the edge map comprises an array of elements, each element representing a respective pixel of the image data; and

wherein the generating further comprises:

estimating a background color of a scanner lid;

for each pixel of the image data:

identifying an absolute difference between a value of the pixel and the background color; and

if the absolute difference is greater than a predetermined threshold, indicating that a corresponding array element represents a pixel of the image data that belongs to an edge.

39. A computer readable storage medium as recited in claim 34, wherein the analyzing further comprises:

transforming the array elements to produce a set of domain peaks, each domain peak corresponding to a straight line of a set of straight lines; and

determining which of the straight lines belong to the set of boundaries based on a set of rules.

	40.	A	computer	readable	storage	medium	as	recited	in	claim	39,
where	ein the	trans	sforming fu	urther com	prises ta	king a Ho	ugh	transfor	m (of the a	rray
of elements to produce the set of domain peaks.											
	41.	A	computer	readable	storage	medium	as	recited	in	claim	34,
wherein the analyzing further comprises:											

transforming the array elements to produce a set of domain peaks, each domain peak corresponding to a straight line of a set of straight lines; and

determining which of the straight lines belong to the set of boundaries based on a set of rules, the set of rules comprising rules that are directed to:

identifying a first object with a first dimension; and seeking a same sized object with a second dimension that corresponds to the first dimension.

42. A computer readable storage medium as recited in claim 41, wherein the identifying comprises:

determining a background color of a scanner lid; determining a candidate object; and

if an interior portion of the candidate object is not consistent with the background color, concluding that the candidate object is the first object.

43. A computer readable storage medium as recited in claim 41, wherein a line of the straight lines corresponds to a candidate object, the seeking further comprising:

detecting a first image to background transition that corresponds to the first image, and a second image to background transition that corresponds to the line; and

if the first image to background transition does not coincide with the second image to background transition, assigning the line to be a boundary of a different object.

44. A computer comprising one or more computer-readable media as recited in claim 34.