k-Means Clustering

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

June 22, 2019

Selayang Pandang

1 Clustering

2 Evaluasi

Bahan Bacaan

- 1 VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: k-Means Clustering) http://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.11-K-Means.ipynb
- "Clustering dengan k-Means." Cerita Tentang Data. 14 November 2017. https://tentangdata.wordpress.com/ 2017/11/14/clustering-dengan-k-means/

Clustering

Clustering

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?
- Apa kesamaan dari elemen di tiap subpopulasi?
- Bisa digunakan untuk menemukan pencilan

Jenis-jenis Clustering

- Tujuan:
 - Monothetic: common property
 - Polythetic: kemiripan data dengan pengukuran jarak
- Irisan:
 - Hard clustering
 - Soft clustering
- Flat vs hierarchical

Metode Clustering

Metode clustering yang akan dibahas dalam kuliah ini:

- K-D Trees: monothetic, hard boundaries, hierarchical
- k-Means: polythetic, hard boundaries, flat
- Gaussian mixtures (EM algorithm): polythetic, soft boundaries, flat
- Agglomerative clustering: polythetic, hard boundaries, hierarchical

Clustering dengan K-D Trees

Gambar: Monothetic, hard boundaries, hierarchical

k-Means

- Jumlah k ditentukan dari awal
- Tidak memerlukan label
- Menggunakan centroid, i.e. rata-rata nilai dari objek yang masuk dalam cluster tersebut
- Mencari centroid terdekat dari tiap objek

Contoh Data

Gambar: Contoh data dalam 2D [VanderPlas, 2016]

Hasil k-Means

Gambar: Setelah algoritma k-Means dijalankan [VanderPlas, 2016]

Algoritma: Expectation-Maximization

- 1 Inisialisasi k centroid secara acak
- 2 Ulangi hingga konvergen
 - A. E-step: Masukkan tiap titik/objek ke centroid terdekat

$$\arg\min_{j} \ D(x_i, c_j)$$

B. M-step: Ubah nilai *centroid* menjadi rata-rata dari tiap titik/objek

$$c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_i} x_i(a)$$
, for $a = 1..d$

Visualisasi EM

Gambar: Konvergensi klaster tercapai hanya dalam tiga iterasi [VanderPlas, 2016]

Perhatikan bahwa algoritma ini sangat bergantung pada inisialisasi *centroid*!

Properti dari k-Means

Meminimalkan jarak agregat intra-klaster

$$V = \sum_{j} \sum_{x_i \to c_j} D(c_j, x_i)^2$$

- Konvergensi ke minimum lokal
- Poin yang berdekatan mungkin masuk ke klaster yang berbeda

Berapa nilai k yang optimal?

Menentukan Nilai k

- Gunakan label kelas, e.g. 10 untuk MNIST
- Gunakan V untuk menggambarkan scree plot

$$V = \sum_{j} \sum_{x_i \to c_j} D(c_j, x_i)^2$$

lalu gunakan *elbow method*, i.e. nilainya dapat dicari dengan menggunakan nilai optimal turunan kedua

Scree Plot

Gambar: Secara visual, scree plot menunjukkan nilai optimal k = 4

Evaluasi

Evaluasi Klaster

- Ekstrinsik: untuk mengerjakan tugas lain
 - Representasi gambar dengan fitur berupa klaster
 - Menemukan pencilan
- Intrinsik: untuk diri sendiri
 - Memahami data deskriptif
 - Klaster \sim kelas, e.g. MNIST \rightarrow 10 klaster
 - Perbandingan pasangan data dari klaster oleh manusia

Evaluasi Intrinsik: Klaster ~ Kelas

- Klaster $c_1, c_2, ..., c_K$
- Kelas $R_1, R_2, ..., R_N$
- Cocokkan R_i dengan c_j , hitung akurasi atau F1
 - Bagaimana jika $N \neq K$?
 - Ada banyak cara, paling mudah dengan pendekatan greedy

Contoh Evaluasi Intrinsik

Gambar: Confusion matrix dari MNIST clustering [VanderPlas, 2016]

Contoh Evaluasi Intrinsik

	G1	G2	G3	G4	G5	G6
C1	1	7	0	1	4	0
C2	0	0	0	0	2	7
C3	0	0	2	0	0	0
C4	3	1	0	0	1	0

Gambar: Klaster karakter dalam Julius Caesar

Evaluasi Intrinsik: Perbandingan Antarpasangan

- Pasangan x_i, x_j apakah seharusnya berada dalam klaster yang sama?
- Hitung error, akurasi, F1
 - FN: pasangan x_i, x_j yang harusnya cocok, tapi berada dalam klaster yang lain (e,h)
 - FP: pasangan x_i, x_j yang harus tidak cocok, tapi berada dalam klaster yang sama (c,d)

Aplikasi Clustering

- Pemelajaran fitur [Coates, 2012]
- Kompresi gambar [VanderPlas, 2016]
- Sistem rekomendasi

Aplikasi: Pemelajaran fitur

Gambar: Centroids dari CIFAR-10 dengan dan tanpa pemutihan [Coates, 2012]

Aplikasi: Kompresi gambar

Gambar: Gambar yang akan dikompresi dengan *clustering* [VanderPlas, 2016]

Klaster warna

Gambar: Clustering warna dengan kompresi [VanderPlas, 2016]

Klaster warna

Gambar: Clustering warna dengan kompresi [VanderPlas, 2016]

Hasil kompresi gambar

Gambar: Kompresi dengan faktor hingga 1 juta dengan *clustering* [VanderPlas, 2016]

Salindia ini dibuat dengan sangat dipengaruhi oleh Lavrenko (2014)

Referensi

Jake VanderPlas (2016)

In Depth: k-Means Clustering

http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/05.

11-K-Means.ipynb

Adam Coates & Andrew Y. Ng (2012)

Learning feature representations with k-means.

Neural networks: Tricks of the trade (pp. 561-580). Springer Berlin Heidelberg.

Terima kasih