HOMEWORK 3

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE AND JOYCE GOMEZ)

Axiom 1.2. There exists an integer 0 such that whenever $m \in \mathbb{Z}$, m + 0 = m.

Negation. For all integers n there exists some $m \in \mathbb{Z}$ such that $m + n \neq m$

Axiom 1.3. There exists an integer 1 such that $1 \neq 0$ and whenever $m \in \mathbb{Z}$, $m \cdot 1 = m$.

Negation. For all integers n, n = 0 and there exists some $m \in \mathbb{Z}$ such that $m \cdot n \neq m$

Axiom 1.4. For each $m \in \mathbb{Z}$, there exists an integer, denoted by -m, such that m + (-m) = 0.

Negation. There exists some $m \in \mathbb{Z}$ such that for all integers denoted by -m, $m + (-m) \neq 0$.

Axiom 1.5. Let m, n, and p be integers. If $m \cdot n = m \cdot p$ and $m \neq 0$, then n = p.

Negation. There exists some m, n, and $p \in \mathbb{Z}$ such that $m \cdot n = m \cdot p$ and $m \neq 0$, and $n \neq p$.

Proposition 2.2. For $m \in \mathbb{Z}$, one and only one of the following is true:

- (i) $m \in \mathbb{N}$
- (ii) - $m \in \mathbb{N}$
- (iii) m = 0.

Proof. Suppose first m = 0. By proposition 1.22, -0 = 0. Since $0 \notin \mathbb{N}$, we can conclude that $-0 \notin \mathbb{N}$. Therefore both (ii) and (iii) fail. We may now assume that $m \neq 0$. We argue by contradiction that m and -m are not both elements of \mathbb{N} . Suppose toward a contradiction that $m \in \mathbb{N}$ and $-m \in \mathbb{N}$. By our axiom for \mathbb{N} , \mathbb{N} is closed under addition. $m + (-m) \in \mathbb{N}$. We infer that $0 \in \mathbb{N}$. By our axiom, $0 \notin \mathbb{N}$, so we have a contradiction. We conclude that m and -m are not both in \mathbb{N} .

Date: February 6, 2017.

Proposition 2.3. $1 \in \mathbb{N}$

Proof. Suppose toward a contradiction $1 \notin \mathbb{N}$. By our axiom, either $1 \in \mathbb{N}$, 1 = 0, or $-1 \in \mathbb{N}$. We know $1 \neq 0$ by our axioms for the integers. We conclude that either $1 \in \mathbb{N}$ or $-1 \in \mathbb{N}$. Our reductio assumption implies $-1 \in \mathbb{N}$. The set \mathbb{N} is closed under multiplication. Thus (-1)n is a natural number for any $n \in \mathbb{N}$. Then $(-1)(-1) \in \mathbb{N}$. By proposition 1.20, $(-1)(-1) = 1 \cdot 1 = 1$ by multiplicative identity. Therefore $1 \in \mathbb{N}$ by contradiction. □

Proposition 2.7. Let $m, n, p, q \in \mathbb{Z}$:

- (i) If m < n then m + p < n + p.
- (ii) If m < n and p < q then m + p < n + q.
- (iii) If 0 < m < n and 0 then <math>mp < nq.
- (iv) If m < n and p < 0 then np < mp.

Proof. (i) We observe $n - m \in \mathbb{N}$ by definition. Consider n + p - (m + p) = n + p + (m + p). By proposition 1.25.1, this is equal to n + p - m - p. We can rearrange this using commutativity to be n - m + p - p. After applying axiom 1.4, we know n - m + p - p = n - m + 0 = n - m by axiom 1.2. Since $n - m \in \mathbb{N}$, we conclude that $n + p - (m + p) \in \mathbb{N}$, so m + p < n + p.

- (ii) Observe that $n m \in \mathbb{N}$ and $q p \in \mathbb{N}$. Consider n + q (m + p) = n + q + -(m + p). By axiom 1.25.1, n + q + -(m + p) = n + q m p. After applying commutativity and associativity, we can see that n + q m p = (n m) + (q p). Since \mathbb{N} is closed under addition and $(n m) \in \mathbb{N}$ and $(q p) \in \mathbb{N}$, we conclude $(n m) + (q p) \in \mathbb{N}$. Therefore m + p < n + q.
- (iii) We're given 0 < m, m < n, 0 < p, and $p \le q$. Let's make several observations. Since 0 < m, $m 0 \in \mathbb{N}$. As m 0 = m by the identity element of addition, we conclude $m \in \mathbb{N}$. Since m < n, we also have that $m n \in \mathbb{N}$. Since 0 < p, we have $p 0 \in \mathbb{N}$, so $p \in \mathbb{N}$. We finally have that $p \le q$. Hence either p < q or p = q. We here have two cases.

Case 1: p = q holds. Consider nq - mp. Observe that nq - mp = nq - mq. Factoring, we have that nq - mq = (n - m)q. By our observations, $p \in \mathbb{N}$. Since \mathbb{N} is closed under multiplication, $(n - m)q \in \mathbb{N}$. We deduce that $nq - mp \in \mathbb{N}$. Hence mp < nq.

Case 2: p < q holds. We have $q - p \in \mathbb{N}$. Consider nq - mp. Clearly nq - mp = nq - mq + mq - mp. nq - mq + mq - mp = (n - m)q + m(q - p). We have that $m \in \mathbb{N}$, $n - m \in \mathbb{N}$, and $q - p \in \mathbb{N}$. We also see that 0 , so <math>0 < q by transitivity of <, therefore $q = q - 0 \in \mathbb{N}$. Since \mathbb{N} is closed under multiplication and addition we infer that $(n - m)q + m(q - p) \in \mathbb{N}$. Therefore, $nq - mp \in \mathbb{N}$, so mp < nq.

(iv) Let's make several observations. $n - m \in \mathbb{N}$, and $0 - p \in \mathbb{N}$ by definition. Thus $-p \in \mathbb{N}$. $-p(n - m) \in \mathbb{N}$, because \mathbb{N} is closed under multiplication. By distributivity, $-pn + (-p)(-m) \in \mathbb{N}$. By proposition 1.25, $-pn + (-p)(-m) = (-1)pn + (-1)p(-1)m \in \mathbb{N}$. By cor 1.21 (-1)(-1) = 1. We have that $1 \cdot mp + -(np) \in \mathbb{N}$ by 1.25, we conclude that $mp - np \in \mathbb{N}$. Therefore mp < np.

Proposition 2.8. Let $m, n \in \mathbb{Z}$. Exactly one of the following is true: m < n, m = n, m > n.

Proof. Let's first observe the first case, m < n. By definition, this means that $n - m \in \mathbb{N}$. Proposition 2.2 states that $-(n - m) \notin \mathbb{N}$ and $n - m \neq 0$. -(n - m) = -(n + (-m)) = (-1)(n + (-m)) by proposition 1.25. We can then distribute and see that (-1)(n + (-m)) = (-1)n + (-1)(-m). After reapplying 1.25, (-1)n + (-1)(-m) = -n + m. -n + m = m - n by commutativity and the definition of subtraction. Therefore $-(n - m) = (m - n) \notin \mathbb{N}$. This means $m \not > n$. $n - m \neq 0$ tells us that $m \neq n$, as they are not additive inverses.

In the event that m=n, we know that m-n=m-m=m+(-m)=0 thanks to the additive inverse axiom. 2.2 also tells us that $m-n\notin\mathbb{N}$ and its negation, $n-m\notin\mathbb{N}$. Therefore $m\not\preceq n$ and $m\not\preceq n$.

Finally, in the event that m > n we know that $m - n \in \mathbb{N}$. Proposition 2.2 states that $-(m - n) \notin \mathbb{N}$ and $m - n \neq 0$. -(m - n) = -(m + (-n)) = (-1)(m + (-n)) by proposition 1.25. We can then distribute and see that (-1)(m + (-n)) = (-1)m + (-1)(-n). After reapplying 1.25, (-1)m + (-1)(-n) = -m + n. -m + n = n - m by commutativity and the definition of subtraction. Therefore $-(m - n) = (n - m) \notin \mathbb{N}$. This means $m \not< n$. $m - n \neq 0$ tells us that $m \neq n$, as they are not additive inverses.

Proposition 2.10. The equation $x^2 = -1$ has no solution in \mathbb{Z} .

Proof. Suppose towards a contradiction that $x^2 = -1$ has a solution in \mathbb{Z} . By definition, this means $\mathbf{x} \cdot \mathbf{x} = -1$. Let $\mathbf{m} \in \mathbb{Z}$ and $\mathbf{m} \neq 0$. Suppose $\mathbf{m} \in \mathbb{N}$. Because \mathbb{N} is closed under multiplication $m^2 = \mathbf{m} \cdot \mathbf{m} \in \mathbb{N}$. On the other hand, suppose $-\mathbf{m} \in \mathbb{N}$. By proposition 1.20, $m^2 = \mathbf{m} \cdot \mathbf{m} = (-\mathbf{m})(-\mathbf{m}) \in \mathbb{N}$, thanks to \mathbb{N} being closed under multiplication. We conclude $m^2 \in \mathbb{N}$ for all $\mathbf{m} \in \mathbb{Z}$ if $\mathbf{m} \neq 0$. Therefore, $\mathbf{x} \in \mathbb{Z}$ which means $-1 \in \mathbb{N}$, which is absurd since -1 < 0, so it is a negative integer. By definition \mathbb{N} only contains positive integers.

Proposition 2.12. For all $m, n, p \in \mathbb{Z}$:

- (i) -m < -n if and only if m > n.
- (ii) If p > 0 and mp < np then m < n.

- (iii) If p < 0 and mp < np then n < m.
- (iv) If $m \le n$ and $0 \le p$ then $mp \le np$.
- *Proof.* (i) Let's first prove that if -m < -n, then m > n. By definition, -n (-m) ∈ \mathbb{N} . That is, -n + -(-m) ∈ \mathbb{N} . Appealing to prop. 1.22, -(-m) = m. We conclude that -n + m ∈ \mathbb{N} . By commutativity, m n ∈ \mathbb{N} , hence n < m. We need to prove the other implication. That is, if n < m, then -m < -n. By definition, m n ∈ \mathbb{N} . By commutativity, m n = -n + m. Using proposition 1.22 m = -(-m), so -n + -(-m) ∈ \mathbb{N} . By definition, -n (-m) ∈ \mathbb{N} . Therefore, -m < -n.
- (ii) We have p>0, so $p-0\in\mathbb{N}$ and therefore $p\in\mathbb{N}$. By definition, $np-mp\in\mathbb{N}$. np-mp=np+-mp. By proposition 1.2, $np+-mp=(n+-m)\cdot p$. Appealing to commutativity, $p(n-m)\in\mathbb{N}$. By proposition 2.11(proved below), we conclude that $n-m\in\mathbb{N}$. Therefore m< n.
- (iii)We have p<0, so 0 $p=0+(-p)\in\mathbb{N}$ and therefore $(-p)\in\mathbb{N}$ by proposition 1.7. By definition, n(-p) m(-p) $\in\mathbb{N}$. n(-p) m(-p) = n(-p) + -m(-p) = n(-p) + mp by proposition 1.20. By proposition 1.2 and 1.25, n(-p) + mp = -np + mp = $(-n+m)\cdot p$. Appealing to commutativity, $p(m+-n)\in\mathbb{N}$. By proposition 2.11(proved below), we conclude that $m-n\in\mathbb{N}$. Therefore n< m.
- (iv) Here we have several different cases to consider.
- Case 1. p = 0. $m \cdot 0 = n \cdot 0 = 0$ by proposition 1.14, therefore mp = np.
- Case 2. m=n. By applying the additive inverse, we can see that n-m=0. We can multiply p on both sides on the left to get $p(n-m)=p\cdot 0=0$. If we distribute we can see mp np = 0. This means mp = np by definition.
- **Case 3.** m < n. By definition, this means $n m \in \mathbb{N}$. Because $p 0 = p \in \mathbb{N}$ by our axioms for the integers, $p(n m) \in \mathbb{N}$ because \mathbb{N} is closed under multiplication. If we distribute and apply commutativity, $p(n m) = p(n + -m) = pn pm = np mp \in \mathbb{N}$. This means mp < np by definition.

Proposition 2.11. Let $m \in \mathbb{N}$ and $n \in \mathbb{Z}$. If $m \cdot n \in \mathbb{N}$, then $n \in \mathbb{N}$. Proof. By proposition 2.2, exactly one of the following hold: n = 0, $n \in \mathbb{N}$, or $-n \in \mathbb{N}$.

Case 1. n = 0. Since n = 0, $m \cdot 0 \in \mathbb{N}$. By proposition 1.14, $m \cdot 0 = 0$. Therefore, $0 \in \mathbb{N}$, which is absurd. We conclude that this is impossible.

Case 2. $n \in \mathbb{N}$. Since we're trying to prove this, we're done.

Case 3 -n $\in \mathbb{N}$. Since $m \in \mathbb{N}$, $m \cdot (-n) \in \mathbb{N}$ because \mathbb{N} is closed under multiplication. $m \cdot n + m(-n) \in \mathbb{N}$ because \mathbb{N} is closed under addition.

Using distributivity, $m(n+(-n)) \in \mathbb{N}$. Thus $m \cdot 0 \in \mathbb{N}$, but this implies $0 \in \mathbb{N}$, which is absurd.