

Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)

Continuous Assessment Test I – September 2022

Programme	: B.Tech.	Semester	:	Fall 2022 – 23
Course Title	: Linear Algebra and Transform Techniques	Code	:	MAT3008
		Slot	:	E1+TE1
Faculty (s)	: Dr. Poulomi De, Dr. Sushmitha P	Max. Marks	1:	50
Class Nbr.	: CH2022231001856, CH2022231001859	Time	1:	90 minutes

Answer all the Questions (5X10=50)

Q.No.	Sub. Sec.	Question Description		
1.		Solve the system of linear equations $x + y + z = 1$; $4x + 3y - z = 6$; $3x + 5y + 3z = 4$ by using LU factorization.		
2.		Find inverse of $A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 1 \\ 3 & 13 & -6 \end{bmatrix}$ using Gauss Jordan Method.	10	
3.	a b	Express the vector $(1,7,-4)$ as linear combination of $u=(1,-3,2)$ and $v=(2,-1,1)$ in the vector space V_3 of R . Determine k so that the vectors $(1,2,1)$, $(k,1,1)$ and $(1,1,2)$ are linearly independent.		
4 5.	,	Find the basis of R^4 containing the vectors $(1,2,-1,1)$ and $(0,1,2,-1)$. Hence find dimension. Find the basis of row space of		
		$A = \begin{bmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{bmatrix}$	10	

Hence verify Rank Nullity Theorem.