Biochemie 1 Les 5

Na afloop van deze les kun je...

- Benoemen wat de meest gebruikte methoden zijn om eiwitstructuren op te helderen.
- De voor- en nadelen van deze methoden uitleggen.
- Uitleggen wat bedoeld wordt met molecular dynamics, homology modeling, threading en ab initio modeling.
- De stappen van homology modeling uitleggen.
- Een vereenvoudigd 'modeling experiment' en validatie uitvoeren m.b.v. Swiss-model (en Molprobity).

Let op

Bij deze les hoort extra literatuur.

Zie Blackboard.

Protein Data Bank

Eiwitstructuren - geschiedenis

Other Statistics -

PDB Statistics: Overall Growth of Released Structures Per Year

Bron: https://www.rcsb.org/ (Statistics, 27 september 2020)

Eiwitstructuren - methoden

PDB Data Distribution by Experimental Method and Molecular Type

X-ray

Сору			
Molecular Type 11	X-ray↓ 	NMR J↑	EM↓↑
Protein (only)	132623	11464	4014
Other	8009	92	467
Protein/NA	7035	265	1425
Nucleic acid (only)	2093	1302	47
Total	149760	13123	5953
	88,5%	7,8%	3,5%

EM NMR

Bron: https://www.rcsb.org/

27 september 2020

Cony CSV

X-ray crystallography

Zie ook:

https://www.youtube.com/watch?v=GfOyZch6llo

X-ray crystallography

- Exacte positie van elk atoom (behalve H) in de ruimte
- Eiwit moet kristal vormen, denk aan NaCl, met repeterende eenheden
- Manipulatie van eiwitten
- Niet in "oplossing"

Nuclear Magnetic Resonance (NMR)

- Bepaalt de afstand tussen H-atomen in een eiwit
- Bepaalt hoeken tussen bepaalde bindingen
- Deze hoeken en afstanden zijn niet vast, maar worden een variabele waarde gegeven, Bijv tussen 3 en 4 Å
- Hieruit worden meerdere modelstructuren berekend

Ensemble NMR structuren

- Opvallend: C-terminus is zeer variabel
- Variabiliteit in loop
- Is dit een nadeel van de techniek, of is dit een realistisch beeld?

Nuclear Magnetic Resonance (NMR)

- Hoge resolutie, maar niet geschikt voor grote eiwitten
- Eiwitten in oplossing mogelijk
- Eiwitten moeten erg zuiver zijn

Cryo Electron Microscopy

- Grote eiwitcomplexen, membraaneiwitten
- Eiwitten worden in oplossing ingevroren
- Snapshots van moleculen worden samengevoegd tot hoog resolutiebeeld
- Voordeel: geen kristallen of extreem zuivere eiwitten nodig

https://www.youtube.co m/watch?v=026rzTXb1zw

Cryo EM – "Resolution Revolution"

Afgelopen jaren is de resolutie sterk verbeterd.

 2017 Nobel Prize in Chemistry: Jacques Dubochet, Joachim Frank, and Richard Henderson

• Zie video: https://www.youtube.com/watch?v=026rzTXb1zw

Protein Data Bank

- World Wide PDB
 - Research Collaboratory for Structural Bioinformatics PDB
 - PDB Europe (EBI)
 - PDB Japan
- http://www.rcsb.org/
- mmCIF: Macromolecular Crystallographic Information Files
 - Tekstfiles met alle informatie over de eiwitstructuur
 - Elk atoom in eiwit heeft een xyz coördinaat

(vroeger: pdb files)

Eiwitstructuur bepalen met alleen de computer?

- De genetische code van de mens en veel andere organismen is bekend
- Hierdoor is ook de aminozuurvolgorde van veel "onbekende" of bekende eiwitten bekend
- Is het mogelijk om de 3D structuur van deze eiwitten te bepalen met een computer?
- Ja!
- (en nee...)

Molecular dynamics

- Methode om atomen in moleculen de juiste "configuratie" te geven
- Bereken voor elke binding en bindingshoek in molecuul "juiste" afstand en hoek. Dit wil zeggen met de laagste energie
- Trial and error
- Geschikt voor peptiden en kleine eiwitten

Molecular dynamics

- Bij de pure molecular dynamics begin je vanaf scratch:
- https://www.youtube.com/watch?v=sD6vyfTtE4U
- Grote eiwitten hebben teveel atomen en conformaties om dit vanaf scratch te doen
- Kost veel (computer)tijd, nog niet heel effectief
- In ontwikkeling!
- Folding@home en Foldit
- Molecular dynamics wordt wel gebruikt voor het optimaliseren van een bekende structuur: bijvoorbeeld het genereren van een structuur vanuit NMR data

Homology modeling

- Maakt gebruik van bekende structuren
- Eiwitsequentie is bekend
- Gebruik nu de structuur van eiwitten die je kent om de nieuwe structuur te bouwen

 Hieruit heb je een "begin" structuur die je kan verbeteren met molecular dynamics

Homology modeling (comparative modeling)

Voorwaarde: voldoende % identity

Proces homology modeling: meerdere stappen (zie volgende slides)

1. Template recognition and initial alignment

2. Alignment correction

(vaak handmatig)

3. Backbone generation

Coördinaten van template backbone (en evt. identieke zijketens) worden naar het target gekopieerd.

4. Loop modeling

B.v. wanneer het target een insert bevat.

5. Side chain modeling

Rotameren: posities van de zijketens van de aminozuren.

6. Model optimization

- Molecular dynamics simulation
- Remove big errors
- Structure moves to lowest energy conformation

7. Model validation

- Second opinion by for example PDBreport /WHAT IF
- Errors in active site? → new alignment/ template
- No errors? → Model!

Modeling for dummies

- Expasy server!
- Veel bioinformatica tools beschikbaar online

Opdracht tijdens de les:

- Uniprot: eiwit zoeken
- Swiss-model: homology modeling eiwitstructuur
- Molprobity: validatie structuur

https://swissmodel.expasy.org/interactive/Vs9muF/templates/

Wat als de sequence identity te laag is?

Modeling d.m.v. bijvoorbeeld:

- Fold recognition (threading)
- Ab initio prediction (template free modeling)

Fold recognition (threading)

- Number of protein folds limited
- Sequence of interest is parsed into subfragments and 'threaded' into a library of known folds

Ab initio prediction (template free modeling)

- Gebaseerd op twee aannames:
 - De aminozuursequentie bevat alle informatie over de 3Dstructuur
 - Globulaire eiwitten vouwen in een structuur met de laagste vrije energie
- B.v. Rosetta methode: fragmenten van 9 a.a. vergelijken met bekende structuren

Dus...

Extra literatuur bij dit college

- Zie BB
- = Tentamenstof