Ecom Churn Prediction

By Murali Kadambi

The project is to build and fine tune a model that can predict if a user who adds a product item to his/her cart will proceed to purchase the item from an ecommerce website.

Assumption:

Label 0 (Abandoned Cart) is considered if the user has added an product to the cart and there is no Purchase event associated with the product, irrespective of the session id

Data Analysis

There are about 42M rows in the dataset.

Top 5 products sold

Top 5 Brands viewed

```
In [23]: # 5 most popular brands viewed apart from None
          temp df = df.select('event type', 'brand')\
                  .filter(isnull(df['brand']) == False)\
                  .groupBy('brand').count().toPandas()
          temp_df.sort_values('count', ascending=False, inplace=True)
          print('Top 5 brands viewed:')
          temp_df.head(5)
          Top 5 brands viewed:
Out[23]:
                 brand
                        count
          1732 samsung 5282775
                  apple 4122554
           486
          3230
                 xiaomi 3083763
                huawei 1111205
          2417
          2040
                lucente 655861
```

Number of Unique users

There are about 3M unique users in the dataset

```
In [25]: # Number of unique users
    df.select('user_id').distinct().count()
Out[25]: 3022290
```

Most Active User

The user 512475445 has had about 7.5k sessions and is the most active use

```
In [26]: # The most active user on the platform
#
temp_df = df.select('user_id', 'user_session').groupBy('user_id')\
.count().sort('count', ascending=False).limit(10)
temp_df.head(1)

Out[26]: [Row(user_id='512475445', count=7436)]
```

Top Category Items Sold

Avg and Max Smartphone Price

Distribution of views vs. buys in Primary Category

Funnel Diagram

Traffic Distribution

Traffic by Days of Week

Tuesday seems to have the most traffic in a week

Traffic by Hour

As can be seen below, peak traffic is around 4pm

Target Label Distribution

Label 0 is considered as Abandoned cart, whereas label 1 is considered as cart that proceeded to the Purchase flow

As can be seen below there are higher purchase events than abandoned events

Most of the abandoned carts are having electronics products, which also is the category with the most sales

Most of the abandon events happen Samsung brand products

Modeling Approach

Data was modeled with 3 models, Logistic Regression, Decision Trees, Random Forest.

Modeling Criteria: Higher Recall was preferred so that we can minimize the False Negatives, to avoid missing predicting any abandoned carts

Feature Selection

Numerical Features were selected using a correlation map. Categorical Features were selected using a Chi Square Selector using p-value of 0.05. Here hours column was dropped because of high correlation with hours_bin column

Logistic Regression

Logistic Regression model was found to give optimal decision at a threshold of 0.55

Decision Tree

Optimal Decision Tree was found by performing a grid search on the hyper parameters. The tuned model had the following hyperparameter values

Impurity: ginimaxBins: 5

Max Depth of tree: 7

• minInstancesPerNode: 100

Random Forest

Optimal Random Forest was found by performing a grid search. The tuned model had the following hyperparameter values

featureSubsetStrategy: sqrt

• Impurity: entropy

maxBins: 20maxDepth: 5

minInstancesPerNode: 5

• numTrees: 30

Feature Importance

Below are the Top 5 influential features of each of the models

Performance Metrics

Performance metrics of the models are as below:

Model/ Metrics	Precision	Recall	AUC	F1 score
Logistic Regression, threshold=0.55	0.6749	0.7548	0.6522	0.7126
Decision Trees	0.6715	0.8487	0.6035	0.7498
Random Forest	0.6459	0.9198	0.5703	0.75895

The Random Forest model has the highest Recall with 0.9198, hence this shall be selected