Universal algebra over locally presentable categories

Yuto Kawase

RIMS, Kyoto University

November 24, 2024. Categories in Tokyo 1st

 \leftarrow Today's slides

This work is supported by JSPS KAKENHI Grant Numbers JP24KJ1462.

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

Relativization via monads

Theorem ([Lin69])

There is an equivalence

$$\mathbf{Th}^S \simeq \mathbf{Mnd}_{\mathrm{f}}(\mathbf{Set}^S).$$

Here,

 \mathbf{Th}^{S} : the category of S-sorted equational theories,

 $\mathbf{Mnd}_{\mathbf{f}}(\mathbf{Set}^S)$: the category of finitary monads on \mathbf{Set}^S .

S-sorted equational theory = finitary monad on \mathbf{Set}^S

↓ generalize

Relative algebraic theories

Informal definition [Kaw23]

```
𝒜: a (locally presentable) category
```

An *A*-relative algebraic theory consists of:

- ullet a set Ω of partial operators;
- $\bullet \text{ a set } E \text{ of } \underline{\text{implications}} \qquad \cdots (\underbrace{\text{YYY}}_{\text{postcondition}} \text{ whenever } \underbrace{\text{XXX}}_{\text{precondition}})$

such that

- For each operator $\omega \in \Omega$, its domain must be defined by "A's language."
- For each implication in E, its precondition must be written in " $\mathscr A$'s language."

 \mathbf{Set}^S -relative algebraic theories = S-sorted equational theories

A generalized Linton theorem

Theorem ([Kaw23; Kaw24])

For a locally κ -presentable category $\mathscr A$, there is an equivalence

$$\mathbf{Th}_{\kappa}^{\mathscr{A}} \simeq \mathbf{Mnd}_{\kappa}(\mathscr{A}).$$

Here,

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}$: the category of \mathscr{A} -relative (κ -ary) algebraic theories, $\mathbf{Mnd}_{\kappa}(\mathscr{A})$: the category of κ -ary monads on \mathscr{A} .

1/1 5/25

Example: small categories

Example

A small category consists of:

- a base quiver $\operatorname{mor}\mathscr{C} \xrightarrow{\operatorname{d}} \operatorname{ob}\mathscr{C};$
- a total operator id: $ob\mathscr{C} \to mor\mathscr{C}$;
- \bullet a partial operator $\circ \colon \mathrm{mor}\mathscr{C} \times \mathrm{mor}\mathscr{C} \to \mathrm{mor}\mathscr{C}$ such that

$$g \circ f$$
 is defined iff $d(g) = c(f)$

which satisfy the following:

- d(id(x)) = x and c(id(x)) = x;
- $d(g \circ f) = d(f)$ and $c(g \circ f) = c(g)$ whenever d(g) = c(f);
- $f \circ id(d(f)) = f$ and $id(c(f)) \circ f = f$;
- ullet $(h \circ g) \circ f = h \circ (g \circ f)$ whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.

Further examples

Example			
		algebras over \sim	
small categories	~ →	quivers	
UDO semirings	~→	posets	
partial Boolean algebras	~ →	graphs	
monoid-graded rings	~ →	monoid-graded sets	
generalized complete metric spaces	~ →	generalized metric spaces	
Banach spaces	~ →	pointed metric spaces	

A technical remark

Definition ([PV07])

- (κ -ary) partial Horn theory \cdots a logical theory based on <u>multi-sorts</u>, <u>partial</u> functions, relations, and (partial) Horn implications.
- Mod S · · · the category of models of a partial Horn theory S.

Theorem ([PV07])

TFAE for a category \mathcal{A} :

- **1** \mathscr{A} is locally κ -presentable.

We actually define S-relative algebraic theories for partial Horn theories S.

 \rightsquigarrow \mathscr{A} -rel. alg. theory = \mathbb{S} -rel. alg. theory where $\mathscr{A} \simeq \mathbf{Mod} \, \mathbb{S}$.

Relativization of universal algebra

2 Birkhoff's variety theorem

Filtered colimit elimination

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 (Ω, E) : a single-sorted algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub.

TFAE:

- $\bullet \ \mathscr{E} \subseteq \mathbf{Alg}(\Omega,E) \text{ is definable by equations.}$
- $② \ \mathscr{E} \subseteq \mathbf{Alg}(\Omega,E) \ \text{is closed under products, subobjects, and quotients}.$

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$.

closed under subobjects: $B\subseteq A$: sub, $A\in\mathscr{E}\implies B\in\mathscr{E}.$

closed under quotients: A woheadrightarrow B: surj, $A \in \mathscr{E} \implies B \in \mathscr{E}$.

A generalized Birkhoff's theorem

Theorem ([Kaw23; Kaw24])

 (Ω,E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E}\subseteq \mathbf{Alg}(\Omega,E)$: fullsub.

TFAE:

- $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E) \text{ is closed under products, } \underline{\mathbf{closed subobjects, }} \underline{(U, \kappa)\mathbf{-pure}} \\ \underline{\mathbf{quotients, and }} \kappa\mathbf{-filtered colimits.}$

	single-sorted alg. $(\mathbf{Set}$ -relative alg.)	$\mathscr{A} ext{-relative alg.}$		
_	products	~ →	products	
	subobjects	~ →	closed subobjects	
	quotients	~ →	(U,κ) -pure quotients	
		~ →	κ -filtered colimits (new)	

What are closed subobjects and (U, κ) -pure quotients?

 $\begin{array}{cccc} \mathscr{A} & \cdots & \text{a locally } \kappa\text{-presentable category} \\ (\Omega,E) & \cdots & \text{an } \mathscr{A}\text{-rel. alg. theory} \\ \mathbf{Alg}(\Omega,E) & \stackrel{U}{\longrightarrow} \mathscr{A} & \cdots & \text{the forgetful functor} \end{array}$

Informal definition

- **4** A subalg. $B \subseteq A$ in $\mathbf{Alg}(\Omega, E)$ is closed if:
 - For every relation R in "the language of \mathscr{A} ,"

$$R(\vec{b})$$
 holds in $UA \implies R(\vec{b})$ holds in UB .

- $A \xrightarrow{p} B$ in $Alg(\Omega, E)$ is a (U, κ) -pure quotient if:
 - For every κ -ary formula in "the language of \mathscr{A} ,"

$$\varphi(\vec{b}) \text{ holds in } UB \quad \Rightarrow \quad \exists \vec{a} \overset{Up}{\longmapsto} \vec{b} \text{ s.t. } \varphi(\vec{a}) \text{ holds in } UA.$$

Example

\mathbf{Pos} ... the category of posets. a Pos-rel. alg. theory defined by (Ω,\varnothing) ···

 $\Omega := \{\ominus\}, \quad x \ominus y \text{ is defined iff } x \ge y.$ $\mathbf{Alg}(\Omega,\varnothing) \xrightarrow{U} \mathbf{Pos} \cdots$ the forgetful functor.

In $\mathbf{Alg}(\Omega,\varnothing)$, under $x\ominus y:=x-y$ in \mathbb{N} ,

• $\{0 \le 2 \ 3\} \subseteq \{0 < 1 < 2 < \cdots\}$... subalgebla, but **not** closed.

• $\{0 \le 2 \le 4\} \subseteq \{0 < 1 < 2 < \cdots\}$ ··· closed subalgebla.

 $\bullet \left\{ \begin{array}{c} 0 & 0 \\ \wedge \\ 1 & 1 \\ & \wedge \\ 2 \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 0 \\ \wedge \\ 1 \\ \wedge \\ 2 \end{array} \right\} \quad \cdots \text{ surjection, but not a } (U,\aleph_0)\text{-pure quotient.}$

 $\bullet \left\{ \begin{array}{cccc} 0 & 0 & 0 & \cdots \\ & \wedge & \wedge & \\ & 1 & 1 & \cdots \\ & & \wedge & \\ & & 2 & \cdots \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 0 \\ \wedge \\ 1 \\ \wedge \\ 2 \\ \wedge \end{array} \right\} \quad \cdots \quad \underbrace{(U,\aleph_0)\text{-pure quotient,}}_{\text{but not }(U,\aleph_1)\text{-pure quotient.}}$

Filtered colimits are necessary

Example ($\mathbf{Set}^{\mathbb{N}}$ -relative algebra [ARV12])

$$\mathscr{E} := \{1\} \cup \{A \in \mathbf{Set}^{\mathbb{N}} \mid \exists m \in \mathbb{N}. \ A_m = \varnothing\}.$$

 $\mathscr{E} \subseteq \mathbf{Set}^{\mathbb{N}}$ is closed under...

- √ products
- \checkmark closed subobjects = sort-wise injections
- \checkmark pure quotients = sort-wise surjections
- × filtered colimits

Example (\mathbf{Set}_{ω} -relative algebra [Kaw25])

 \mathbf{Set}_{ω} · · · the category of sets with countably many constants $(c_n)_n$.

$$\mathscr{E} := \{1\} \cup \{A \in \mathbf{Set}_{\omega} \mid \exists i, j \text{ s.t. } c_i \neq c_j \text{ in } A\}.$$

 $\mathscr{E} \subseteq \mathbf{Set}_{\omega}$ is closed under...

- √ products
- $\checkmark \quad \mathsf{closed} \ \mathsf{subobjects} = \mathsf{subalgebras}$
- \checkmark pure quotients = surjections that do not merge any constants
- × filtered colimits

The filtered colimit elimination problem

However, filtered colimits are not required for Set-rel. alg. in Birkhoff's theorem.

Question

Why can filtered colimits be eliminated in the case of Set-relative algebras?

Answer

The category Set satisfies a "noetherian" condition.

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

A noetherian condition for categories

Definition ([Kaw25])

A category $\mathscr A$ satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Example

Set satisfies ACC.

Proof.

Let $A_0 \to A_1 \to \cdots$ be an ω -chain of sets.If there is no map $A_0 \leftarrow A_1$, then $A_0 = \varnothing$ and $A_1 \neq \varnothing$.Thus, a map $A_1 \leftarrow A_2$ exists.

More generally,

Proposition

 \mathbf{Set}^S satisfies ACC \Leftrightarrow the set S is finite.

Filtered colimit elimination

RecallTheorem ([Kaw25; Kaw24])

 (Ω,E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E}\subseteq \mathbf{Alg}(\Omega,E)$: fullsub. If \mathscr{A} satisfies ACC,

TFAE:

- **②** $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under <u>products</u>, <u>closed subobjects</u>, $\underline{(U, \kappa)}$ -pure quotients, and κ -filtered colimits.and κ -filtered colimits.

Some applications of filtered colimit elimination

Corollary

- Set satisfies ACC.
 - → fil.colim.elim. holds for single-sorted alg.
 - → The classical Birkhoff theorem [Bir35]
- Setⁿ satisfied ACC.
 - → fil.colim.elim. holds for finite-sorted alg.
 - → This subsumes a result in [ARV12].
- Pos satisfied ACC.
 - → fil.colim.elim. holds for ordered alg.
 - → This subsumes a result in [Blo76].
- ullet \mathbf{Met}_{∞} , the category of generalized metric spaces, satisfied ACC.
 - → fil.colim.elim. holds for metric alg.
 - → This subsumes a result in [Hin16].

Filtered colimit elimination: sketch of proof

fullsub $\mathscr{E}\subseteq \mathbf{Alg}(\Omega,E)$: closed under products, closed sub, (U,κ) -pure quo. $(A_J)_{J\in\mathbb{I}}$: a κ -filtered diagram s.t. $A_J\in\mathscr{E}$.

For each $J \in \mathbb{I}$, we can construct a "nice" wide sub-diagram $J \in \mathbb{I}_J \subseteq \mathbb{I}$.

 \rightsquigarrow $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under κ -filtered colimits.

Weak converse

Theorem ([Kaw25])

 \mathscr{A} : a l.f.p. category. Assume that, for every fullsub. of \mathscr{A} , closure under filtered colimits follows from the others: $\mathbf{P}(\mathsf{products})$, $\mathbf{S}(\mathsf{closed\ sub})$, $\mathbf{H}(\aleph_0\text{-pure\ quo})$. Then.

- $\bullet \ \, \text{The full sub} \,\, \mathscr{A}_{\mathrm{fp,c}} := \{ \text{finitely presentable } \, \text{connected objs} \} \subseteq \mathscr{A} \,\, \text{satisfies ACC}.$
- ② If $\varnothing \xrightarrow{!} 1$ in $\mathscr A$ is strongly monic, the fullsub $\mathscr A_{\mathrm{fp}} := \{ \text{finitely presentable objs} \} \subseteq \mathscr A \text{ satisfies ACC. }$

Sketch of proof:

Let $A_0 \to A_1 \to A_2 \to \cdots$ in \mathscr{A}_{fp} . Consider

$$\mathscr{E} := \{ X \mid \exists n. \ X \xrightarrow{\exists} A_n \} \subset \mathscr{A}.$$

Using finite presentability, its HSP-closure can be computed as

$$\mathbf{HSP}(\mathscr{E}) = \mathbf{S}(1) \cup \mathbf{H}(\mathscr{E}).$$

Since
$$A_n + A_n \in \mathscr{E}$$
 $(\forall n)$, $B := \underset{n \in \mathbb{N}}{\operatorname{Colim}} (A_n + A_n) \in \mathbf{HSP}(\mathscr{E})$.

The additional conditions ensure that $B \notin \mathbf{S}(1)$. $\therefore B \in \mathbf{H}(\mathscr{E})$

$$A_0 \to A_1 \to A_2 \to \cdots \quad \text{in } \mathscr{A}_{\mathrm{fp}}$$

$$\mathscr{E} := \{ X \mid \exists n. \ X \stackrel{\exists}{\to} A_n \} \quad \subseteq \mathscr{A}$$

$$B := \underset{n \in \omega}{\mathrm{Colim}} (A_n + A_n) \in \mathbf{H}(\mathscr{E})$$

Thus, we have:

Thus, $A_0 \to A_1 \to A_2 \to \cdots$ eventually "stabilizes."

Open problems

Open problem 1

Is there any locally presentable category that satisfies filtered colimit elimination but not ACC?

More precisely, is there any κ -ary partial Horn theory $\mathbb S$ for some κ that satisfies the following conditions?

- Every full subcategory of $\mathbf{Mod}\,\mathbb{S}$ is closed under κ -filtered colimits whenever it is closed under products, \mathbb{S} -closed subobjects, and κ -pure quotients.
- \bullet The category $\mathbf{Mod}\,\mathbb{S}$ does not satisfy ACC.

The next one is weaker than 1 and independent of partial Horn theories:

Open problem 2

Is there any locally finitely presentable category that does not satisfy ACC but satisfies it for the full subcategory of finitely presentable objects?

Thank you!

Today's slides

My homepage

References I

- [AR04] J. Adámek and J. Rosický. "On pure quotients and pure subobjects". In: Czechoslovak Math. J. 54(129).3 (2004), pp. 623–636.
- [AR94] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
- [ARV12] J. Adámek, J. Rosický, and E. M. Vitale. "Birkhoff's variety theorem in many sorts". In: Algebra Universalis 68.1-2 (2012), pp. 39–42.
- [Adá+21] J. Adámek et al. "Finitary monads on the category of posets". In: *Math. Structures Comput. Sci.* 31.7 (2021), pp. 799–821.
- [BH12] B. van den Berg and C. Heunen. "Noncommutativity as a colimit". In: Appl. Categ. Structures 20.4 (2012), pp. 393–414.
- [BMW12] C. Berger, P.-A. Melliès, and M. Weber. "Monads with arities and their associated theories". In: J. Pure Appl. Algebra 216.8-9 (2012), pp. 2029–2048.
- [Bir35] G. Birkhoff. "On the structure of abstract algebras". In: Math. Proc. Cambridge Philos. Soc. 31.4 (1935), pp. 433–454.
- [Blo76] S. L. Bloom. "Varieties of ordered algebras". In: J. Comput. System Sci. 13.2 (1976), pp. 200–212.
- [BG19] J. Bourke and R. Garner. "Monads and theories". In: Adv. Math. 351 (2019), pp. 1024–1071.
- [CV98] A. Carboni and E. M. Vitale. "Regular and exact completions". In: J. Pure Appl. Algebra 125.1-3 (1998), pp. 79–116.
- [Gol03] J. S. Golan. Semirings and Affine Equations over Them: Theory and Applications. Vol. 556. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, pp. xiv+241.

References II

[Hin16]

[Kaw23]

[PV07]

[Ros21]

[Wea95]

	[math.CT].
[Kaw24]	Y. Kawase. Relativized universal algebra via partial Horn logic. 2024. arXiv: 2403.19661 [math.CT].
[Kaw25]	Y. Kawase. "Filtered colimit elimination from Birkhoff's variety theorem". In: <i>J. Pure Appl. Algebra</i> 229.1 (2025), Paper No. 107794, 25.
[Lin69]	F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.
[LP23]	R. B. B. Lucyshyn-Wright and J. Parker. "Diagrammatic presentations of enriched monads and varieties for a subcategory of arities". In: <i>Appl. Categ. Structures</i> 31.5 (2023), Paper No. 40, 39.

Appl. Logic 145.3 (2007), pp. 314-353.

W. Hino. Varieties of metric and quantitative algebras. 2016. arXiv: 1612.06054 [cs.L0].

Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382

E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Ann. Pure

J. Rosický. "Metric monads". In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535-552.

N. Weaver. "Quasi-varieties of metric algebras". In: Algebra Universalis 33.1 (1995), pp. 1-9.