Mathematical Forecasting Methods Лекция 11

МФТИ

Весна, 2024

Напоминание: тензорная нотация

$\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$	Nth-order tensor of size $I_1 \times I_2 \times \cdots \times I_N$
$x_{i_1,i_2,\ldots,i_N}=\underline{\mathbf{X}}(i_1,i_2,\ldots,i_N)$	(i_1,i_2,\ldots,i_N) th entry of $\underline{\mathbf{X}}$
x, x, X	scalar, vector and matrix
$\underline{\mathbf{G}}$, $\underline{\mathbf{S}}$, $\underline{\mathbf{G}}^{(n)}$, $\underline{\mathbf{X}}^{(n)}$	core tensors
$\underline{\boldsymbol{\Lambda}} \in \mathbb{R}^{R \times R \times \dots \times R}$	N th-order diagonal core tensor with nonzero entries λ_r on the main diagonal
$\mathbf{A}^{\mathrm{T}},\mathbf{A}^{-1},\mathbf{A}^{\dagger}$	transpose, inverse and Moore– Penrose pseudo-inverse of a matrix A
$\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_R] \in \mathbb{R}^{I \times K}$	matrix with R column vectors $\mathbf{a}_r \in \mathbb{R}^I$, with entries a_{ir}
$A, B, C, A^{(n)}, B^{(n)}, U^{(n)}$	component (factor) matrices
$\mathbf{X}_{(n)} \in \mathbb{R}^{I_n \times I_1 \cdots I_{n-1} I_{n+1} \cdots I_N}$	mode- <i>n</i> matricization of $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$
$\mathbf{X}_{< n>} \in \mathbb{R}^{I_1 I_2 \cdots I_n \times I_{n+1} \cdots I_N}$	mode- $(1,, n)$ matricization of $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$
$\underline{\mathbf{X}}(:,i_2,i_3,\ldots,i_N)\in\mathbb{R}^{I_1}$	mode-1 fiber of a tensor \underline{X} obtained by fixing all indices but one (a vector)
$\underline{\mathbf{X}}(:,:,i_3,\ldots,i_N) \in \mathbb{R}^{I_1 \times I_2}$	slice (matrix) of a tensor \underline{X} obtained by fixing all indices but two
$\underline{\mathbf{X}}(:,:,:,i_4,\ldots,i_N)$	subtensor of \underline{X} , obtained by fixing several indices

Напоминание: тензор, моды и фибры

Напоминание: операции над тензорами

▶ Пусть есть два тензора $\underline{\mathbf{A}} \in \mathbb{R}^{I_1 \times ... \times I_N}$ $\underline{\mathbf{B}} \in \mathbb{R}^{J_1 \times ... \times J_M}$, тогда назовём их внешним произведением следующий тензор $\underline{\mathbf{A}} \circ \underline{\mathbf{B}} \in \mathbb{R}^{I_1 \times ... \times I_d \times J_1 \times ... \times J_D}$ с элементами:

$$(\underline{\mathbf{A}} \circ \underline{\mathbf{B}})_{i_1,\ldots,i_N,j_1,\ldots,j_M} = a_{i_1,\ldots,i_N} b_{j_1,\ldots,j_M}.$$

lackbox Произведение n-ой моды тензора $\underline{\mathbf{A}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ и матрицы $\mathbf{B} \in \mathbb{R}^{J \times I_n}$ даёт тензор $\underline{\mathbf{C}} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N}$ с элементами:

$$\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_{n}^{2} \mathbf{B} = \underline{\mathbf{A}} \times_{n} \mathbf{B}, \quad c_{i_{1}, \dots, i_{n-1}, j, i_{n+1}, \dots, i_{N}} = \sum_{i_{n}=1}^{I_{n}} a_{i_{1}, \dots, i_{n}, \dots, i_{N}} b_{j, i_{n}}$$

• Мультилинейное произведение (произведение Такера) тензора $\underline{\mathbf{G}}$ и матриц $\mathbf{B}^{(n)}$:

$$\underline{\boldsymbol{C}} = [\![\underline{\boldsymbol{G}}; \boldsymbol{B}^{(1)}, \dots, \boldsymbol{B}^{(N)}]\!] := \underline{\boldsymbol{G}} \times_1 \boldsymbol{B}^{(1)} \times_2 \boldsymbol{B}^{(2)} \times_3 \dots \times_N \boldsymbol{B}^{(N)}$$

Примеры и пояснения: внешнее произведение

▶ Простейший пример внешнего произведения — формирование матрицы (тензора 2-ого порядка) $\mathbf{A} \in \mathbb{R}^{m \times n}$ из двух векторов $\mathbf{a} \in \mathbb{R}^m$ и $\mathbf{b} \in \mathbb{R}^n$:

$$\mathbf{A} = \mathbf{a} \circ \mathbf{b} = egin{bmatrix} a_1b_1 & \dots & a_1b_n \\ \vdots & \ddots & \vdots \\ a_mb_1 & \dots & a_mb_n \end{bmatrix} = \mathbf{a}\mathbf{b}^\mathsf{T}, \quad \mathit{rank}(\mathbf{A}) = 1$$

• Аналогично можно построить тензор третьего порядка $\underline{\mathbf{G}} \in \mathbb{R}^{m \times n \times p}$ из трёх векторов $\mathbf{a} \in \mathbb{R}^m, \mathbf{b} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^p$ (отметим ассоциативность операции):

$$\underline{\mathbf{G}} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} = (\mathbf{a} \circ \mathbf{b}) \circ \mathbf{c} = \mathbf{A} \circ \mathbf{c}$$
$$g_{i,j,k} = a_i b_j c_k = (\mathbf{A})_{i,j} c_k$$

▶ По определению, тензор $\underline{\mathbf{G}}$ порядка N имеет ранг 1, если он представим в виде внешнего произведения N векторов:

$$\underline{\mathbf{G}} = \mathbf{a}_1 \circ \mathbf{a}_2 \circ \cdots \circ \mathbf{a}_N$$

Примеры и пояснения: произведение n-ой моды тензора

▶ Пусть имеется вектор $\mathbf{a} \in \mathbb{R}^{I_1}$ (тензор 1-ого порядка) и матрица $\mathbf{B} \in \mathbb{R}^{J \times I_1}$. Тогда результат — это линейная комбинация столбцов \mathbf{B} с коэффициентами \mathbf{a} :

$$(\mathbf{a} \times_1^2 \mathsf{B})_j = \sum_{i_1=1}^{l_1} a_{i_1} b_{j,i_1} = \sum_{i_1=1}^{l_1} b_{j,i_1} a_{i_1}, \quad \mathbf{a} \times_1 \mathsf{B} = \mathsf{Ba}$$

• Аналогично, пусть имеется матрица $\mathbf{A} \in \mathbb{R}^{I_1 \times I_2}$ (тензор 2-ого порядка) и матрица $\mathbf{B} \in \mathbb{R}^{J \times I_1}$. Тогда результат — это произведение матриц \mathbf{B} и \mathbf{A} , причем каждый столбец произведения является линейной комбинацией столбцов \mathbf{B} с коэффициентами соответствующего столбца матрицы \mathbf{A} :

$$(A \times_1^2 B)_{i_1,j} = \sum_{i_1=1}^{l_1} a_{i_1,i_2} b_{j,i_1} = \sum_{i_1=1}^{l_1} b_{j,i_1} a_{i_1,i_2}, \quad A \times_2^2 B = BA$$

Примеры и пояснения: произведение n-ой моды тензора

- Наконец, произведение n-ой моды тензора N-ого порядка $\underline{\mathbf{A}}$ и матрицы \mathbf{B} может получить следующую интерпретацию по аналогии со случаями N=1 и N=2:
- lacktriangle Зафиксируем значения индексов $i_1, ..., i_{n-1}, i_{n+1}, ..., i_N$. Обозначим $\mathbf{a} = \underline{\mathbf{A}}(i_1, ..., i_{n-1}, .., i_{n+1}, ..., i_N) \in \mathbb{R}^{I_n}$ и $\mathbf{c} = \underline{\mathbf{C}}(i_1, ..., i_{n-1}, .., i_{n+1}, ..., i_N) \in \mathbb{R}^J$ два соответствующих фибра исходного и результирующего тензоров. Тогда:

$$c_{i_1,\ldots,i_{n-1},j,i_{n+1},\ldots,i_N} = \sum_{i_n=1}^{I_n} a_{i_1,\ldots,i_n,\ldots,i_N} b_{j,i_n} \ \forall j = \overline{1,J} \Rightarrow \ \mathbf{c} = \mathsf{Ba}$$

Результирующий тензор $\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_n^2 \mathbf{B}$ имеет тот же порядок, что и исходный, и имеет такие же размерности по всем модам, кроме моды n. Все фибры тензора $\underline{\mathbf{C}}$ вдоль n-ой моды получены как линейные комбинации столбцов матрицы \mathbf{B} с коэффициентами, взятыми из соответствующего фибра исходного тензора $\underline{\mathbf{A}}$.

Дополнительная операция: произведение n-ой моды тензора на вектор

▶ Произведение *n*-ой моды тензора $\underline{\mathbf{A}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ и вектора $\mathbf{b} \in \mathbb{R}^{I_n}$ даёт тензор $\underline{\mathbf{C}} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times I_{n+1} \times \cdots \times I_N}$ с элементами:

$$\underline{\mathbf{C}} = \underline{\mathbf{A}} \bar{\mathbf{x}}_n \mathbf{b}, \quad c_{i_1, \dots, i_{n-1}, i_{n+1}, \dots, i_N} = \sum_{i_n=1}^{I_n} a_{i_1, \dots, i_n, \dots, i_N} b_{i_n}$$

- В результате операции порядок тензора снижается на 1.
- lacktriangle Эту операцию можно выразить через операцию произведения на матрицу следующим образом: рассмотрим произведение n-ой моды тензора $\underline{\mathbf{A}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ и матрицы $\mathbf{B} = \mathbf{b}^\mathsf{T} \in \mathbb{R}^{1 \times I_n}$. Оно равно:

$$\hat{\mathbf{C}} = \mathbf{A} \times_n \mathbf{B} = \mathbf{A} \times_n \mathbf{b}^\mathsf{T} \in \mathbb{R}^{I_1, \dots, I_{n-1}, 1, I_{n+1}, \dots, I_N}$$

После этого сформируем тензор $\underline{\mathbf{C}}$ следующим образом:

$$\underline{\mathbf{C}} = \underline{\hat{\mathbf{C}}}(\underbrace{:,\dots,:}_{n-1},1,:,\dots,:) = \underline{\mathbf{A}} \bar{\times}_n \mathbf{b}$$

Примеры и пояснения: произведение Такера

• С учётом формулы для произведения n-ой моды тензора выпишем элемент произведения Такера тензора $\mathbf{G} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ и фактор-матриц $\mathbf{B}^{(n)} \in \mathbb{R}^{J_n \times I_n}$:

$$\underline{\boldsymbol{C}} = [\![\underline{\boldsymbol{G}}; \boldsymbol{B}^{(1)}, \dots, \boldsymbol{B}^{(N)}]\!] := \underline{\boldsymbol{G}} \times_1 \boldsymbol{B}^{(1)} \times_2 \boldsymbol{B}^{(2)} \times_3 \dots \times_N \boldsymbol{B}^{(N)}$$

$$c_{j_1,...,j_N} = \sum_{i_N=1}^{I_N} \left(... \left(\sum_{i_2=1}^{I_2} \left(\sum_{i_1=1}^{I_1} a_{i_1,...,i_n,...,i_N} b_{j_1,i_1}^{(1)} \right) b_{j_2,i_2}^{(2)} \right) ... \right) b_{j_N,i_N}^{(N)} =$$

$$= \sum_{i_1-1}^{I_1} \cdots \sum_{i_{N-1}}^{I_N} \left(a_{i_1,...,i_N} \prod_{n=1}^{N} b_{j_n,i_n}^{(n)} \right)$$

- ▶ В формуле произведения Такера произведение \times_n может быть заменено на $\bar{\times}_n$ в случае умножения на вектор.
- lacktriangle Три полезных примера на случай матрицы lacktriangle lacktriangle (тензора 2-ого порядка) и двух векторов lacktriangle lacktriangl

$$[\![A;I,b]\!] = Ab, \quad [\![A;a,I]\!] = a^TA, \quad [\![A;a,b]\!] = a^TAb$$

Нормы

Норма Фробениуса

$$\|\underline{\mathbf{A}}\|_F = \sqrt{\sum_{i_1,\dots,i_d} |a_{i_1,\dots,i_d}|^2} = \|\mathit{vec}(\underline{\mathbf{A}})\|_2$$

Норма Чебышёва

$$\|\underline{\mathbf{A}}\|_{\mathrm{C}} = \max_{i_1,\ldots,i_d} |a_{i_1,\ldots,i_d}|$$

Операторная норма для тензора порядка N

$$N = 2 : ||A||_2 = \sup_{\|\mathbf{v}\|_2 = 1} ||\mathbf{A}\mathbf{v}||_2 = \sup_{\|\mathbf{v}\|_2 = 1} ||[\mathbf{A}; \mathbf{I}, \mathbf{v}]||_2$$

$$N>2: \|\underline{\boldsymbol{A}}\|_2 = \underset{\|\boldsymbol{v}^{(2)}\|_2=...=\|\boldsymbol{v}^{(N)}\|_2=1}{\sup} |[\![\underline{\boldsymbol{A}};\boldsymbol{I},\boldsymbol{v}^{(2)},...,\boldsymbol{v}^{(N)}]\!]|$$

Сингулярные числа и векторы

▶ Неотрицательное число $\sigma \in \mathbb{R}$ называется *сингулярным* числом для матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}$, если существуют векторы $u \in \mathbb{R}^m, \ \|u\|_2 = 1$ и $v \in \mathbb{R}^n, \ \|v\|_2 = 1$ такие, что:

$$\mathbf{A}\mathbf{v} = \sigma\mathbf{u}, \quad \mathbf{A}^{\mathsf{T}}\mathbf{u} = \sigma\mathbf{v} \tag{1}$$

Векторы \mathbf{u} и \mathbf{v} при этом называются, соответственно, *левым и правым сингулярными векторами* \mathbf{A} .

С помощью операции произведения Такера это представляется так:

$$[\![\mathbf{A};\mathbf{I},\mathbf{v}]\!] = \sigma\mathbf{u}, \quad [\![\mathbf{A};\mathbf{u},\mathbf{I}]\!] = \sigma\mathbf{v}$$

 Отметим, что равенства 1 могут быть получены как необходимые условия стационарной точки в следующей задаче оптимизации:

$$\max \mathbf{u}^{\mathsf{T}} \mathbf{A} \mathbf{v}, \quad s.t. \ \|\mathbf{u}\|_{2} = 1, \ \|\mathbf{v}\|_{2} = 1$$

Обобщение сингулярных чисел для тензоров

По аналогии с матрицами, можно определить сингулярные вектора тензора <u>А</u> порядка d как стационарные точки следующей задачи:

$$\max \, [\![\underline{\mathbf{A}}; \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, ..., \mathbf{v}^{(N)}]\!], \quad \textit{s.t.} \, \| \mathbf{v}^{(1)} \|_2 = 1, \ldots, \| \mathbf{v}^{(N)} \|_2 = 1$$

Аналогично, получим условия на сингулярные числа и сингулярные векторы (единичной длины):

$$[\![\underline{\mathbf{A}};\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(n-1)},\mathbf{I},\mathbf{v}^{(n+1)},\ldots,\mathbf{v}^{(N)}]\!] = \sigma\mathbf{v}^{(n)},\ n = \overline{1,N}$$

▶ Теорема о низкоранговом приближении: Наилучшее приближение ранга 1 для тензора $\underline{\mathbf{A}}$ по норме $\|\cdot\|_F$ имеет вид $\sigma_1\mathbf{v}^{(1)} \circ \cdots \circ \mathbf{v}^{(N)}$, где σ_1 — максимальное сингулярное число тензора, а $\mathbf{v}^{(n)}$ — соответствующие сингулярные векторы.

Каноническое разложение тензоров (CP-decomposition)

 $\mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ - тензор N-ого порядка.

► Каноническим разложением тензора <u>X</u> называется представление тензора в виде суммы тензоров ранга 1:

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{b}_{r}^{(1)} \circ \mathbf{b}_{r}^{(2)} \circ ... \circ \mathbf{b}_{r}^{(N)} = \sum_{r=1}^{R} \begin{pmatrix} N \\ 0 \\ n=1 \end{pmatrix} \mathbf{b}_{r}^{(n)}, \quad \mathbf{b}_{r}^{(n)} \in \mathbb{R}^{I_{n}}$$

▶ Определение: минимальное число слагаемых R, необходимое для канонического разложения тензора $\underline{\mathbf{A}}$, называется (каноническим) рангом $\underline{\mathbf{A}}$.

Каноническое разложение через произведение Такера

 $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ - тензор N-ого порядка, индекс i_n пробегает значения $1,\dots,I_n$ для $n=1,\dots,N$.

 Следуя формуле канонического разложения и определению операции внешнего произведения, элемент тензора <u>X</u> представляется в виде:

$$x_{i_1,i_2,...,i_N} = \sum_{r=1}^R b_{r,i_1}^{(1)} b_{r,i_2}^{(2)} \dots b_{r,i_N}^{(N)}$$

► Единичным тензором порядка *N* размера *R* будем называть тензор с единицами на диагонали:

$$\underline{\mathbf{I}}_R^N \in \mathbb{R}$$
 $\stackrel{R \times ... \times R}{\longrightarrow}$, $(\underline{\mathbf{I}}_R^N)_{r_1,...,r_N} = egin{cases} 1, & \text{если } r_1 = r_2 = \cdots = r_N \\ 0, & \text{иначе} \end{cases}$.

Далее будем опускать индексы N и R и обозначать единичный тензор символом I.

Каноническое разложение через произведение Такера

• Сформируем из векторов-элементов канонического разложения $\mathbf{b}_r^{(n)}$ следующие матрицы:

$$\mathsf{B}^{(n)} = \left[\mathsf{b}_1^{(n)}, \dots, \mathsf{b}_R^{(n)}\right] \in \mathbb{R}^{I_n \times R}, \quad n = 1, \dots, N$$

Наконец, рассмотрим произведение Такера

$$\underline{\boldsymbol{Y}} = [\![\underline{\boldsymbol{I}};\boldsymbol{B}^{(1)},\boldsymbol{B}^{(2)},\ldots,\boldsymbol{B}^{(N)}]\!] \in \mathbb{R}^{\mathit{I}_1 \times \mathit{I}_2 \times \cdots \times \mathit{I}_N}.$$

Элементы такого тензора имеют следующий вид:

$$y_{i_{1},i_{2},...,i_{N}} = \sum_{r_{1}=1}^{R} \sum_{r_{2}=1}^{R} \cdots \sum_{r_{N}=1}^{R} (\mathbf{I})_{r_{1},r_{2},...,r_{N}} \mathbf{B}_{i_{1},r_{1}}^{(1)} \mathbf{B}_{i_{2},r_{2}}^{(2)} \dots \mathbf{B}_{i_{N},r_{N}}^{(N)} =$$

$$= \mathbf{B}_{i_{1},1}^{(1)} \mathbf{B}_{i_{2},1}^{(2)} \dots \mathbf{B}_{i_{N},1}^{(N)} + \dots + \mathbf{B}_{i_{1},R}^{(1)} \mathbf{B}_{i_{2},R}^{(2)} \dots \mathbf{B}_{i_{N},R}^{(N)} =$$

$$= \sum_{r=1}^{R} b_{r,i_{1}}^{(1)} b_{r,i_{2}}^{(2)} \dots b_{r,i_{N}}^{(N)} = x_{i_{1},i_{2},...,i_{N}}$$

Каноническое разложение через произведение Такера

▶ Два способа представить каноническое разложение:

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{b}_{r}^{(1)} \circ \mathbf{b}_{r}^{(2)} \circ \dots \circ \mathbf{b}_{r}^{(N)} = [\underline{\mathbf{I}}; \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \dots, \mathbf{B}^{(N)}]$$

• Иногда на векторы канонического разложения накладывают дополнительное требование $\|\mathbf{b}_r^{(n)}\|_2=1$. Тогда слагаемые умножают на коэффициенты λ_r , и мы получаем эквивалентную форму:

$$\underline{\mathbf{X}} = \sum_{r=1}^{K} \lambda_r \mathbf{b}_r^{(1)} \circ \mathbf{b}_r^{(2)} \circ \dots \circ \mathbf{b}_r^{(N)} = [\![\underline{\Lambda}; \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \dots, \mathbf{B}^{(N)}]\!]$$

Мультииндекс

 $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ - тензор \emph{N} -ого порядка, индекс i_n пробегает значения $1,\ldots,I_n$ для $n=1,\ldots,N$.

- Рассмотрим набор индексных множеств $\mathcal{I}_n = \{1, \dots, I_n\}$ и индексное множество $\mathcal{I}_{multi} = \{1, \dots, \prod_{n=1}^N I_n\}$.
- Мультииндекс это биективное отображение из декартова произведения $\mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_N$ в \mathcal{I}_{multi} :

$$f(i_1,...,i_N) := \overline{i_1...i_N} = \hat{i}$$

- Два распространённых мультииндекса:
 - 1. Правый (лексикографический):

$$\begin{aligned} 11...111 &\leftrightarrow 1, \quad 11...112 &\leftrightarrow 2, \quad \dots, \quad 11...11 I_N &\leftrightarrow I_N, \\ 11...121 &\leftrightarrow I_N + 1, \quad 11...122 &\leftrightarrow I_N + 2, \quad \dots \end{aligned}$$

2. Левый (реверсивно-лексикографический)

$$111...11 \leftrightarrow 1$$
, $211...11 \leftrightarrow 2$, ..., $I_111...11 \leftrightarrow I_1$, $121...11 \leftrightarrow I_1 + 1$, $221...11 \leftrightarrow I_1 + 2$, ...

Развертка тензора

 $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ - тензор \emph{N} -ого порядка, индекс i_n пробегает значения $1,\ldots,I_n$ для $n=1,\ldots,N$.

▶ Левый мультииндекс (реверсивно-лексикографический):

$$\overline{i_1 i_2 \dots i_N} = i_1 + (i_2 - 1)I_1 + (i_3 - 1)I_1I_2 + \dots + (i_N - 1)I_1I_2 \dots I_{N-1}$$

ightharpoonup Развёрткой n-ой моды тензора X называется матрица

$$\mathbf{X}_{(n)} \in \mathbb{R}^{I_n \times I_1 I_2 \dots I_{n_1} I_{n+1} \dots I_N},$$

$$\left(\mathbf{X}_{(n)}\right)_{i_n,\overline{i_1...i_{n-1}i_{n+1}...i_N}} = x_{i_1,...,i_N}$$

Развертки тензора: иллюстрация

Развертки тензора: пример

- $oldsymbol{X} \in \mathbb{R}^{4 imes 3 imes 2}$ тензор 3-ого порядка
- ▶ Развёртка 1-ой моды тензора X:

$$\mathbf{X}_{(1)} \in \mathbb{R}^{4 \times 6}$$

▶ Левый мультииндекс:

$$\overline{i_2i_3} = i_2 + (i_3 - 1)I_2$$

▶ Пример <u>X</u>_{3,1,2} = 15:

$$\left(\boldsymbol{\mathsf{X}}_{(1)}\right)_{3,\overline{1,2}} = \left(\boldsymbol{\mathsf{X}}_{(1)}\right)_{3,4} = 15$$

Кронекерово произведение

▶ Кронекерово (левое) произведение векторов $\mathbf{a} \in \mathbb{R}^{I_n}$ и $\mathbf{b} \in \mathbb{R}^{I_m}$ – это вектор $\mathbf{c} \in \mathbb{R}^{I_n I_m}$ с элементами:

$$\mathbf{c} = \mathbf{a} \otimes_L \mathbf{b}, \qquad c_{\overline{i_n i_m}} = a_{i_n} b_{i_m}$$

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} a_1b_1 \\ a_2b_1 \\ \vdots \\ a_nb_1 \\ a_1b_2 \\ a_2b_2 \\ \vdots \\ a_nb_m \end{bmatrix}$$

Порядок следования элементов в векторе с соответствует левому мультииндексу (реверсивно-лексикографический).

Матричное произведение Хатри-Рао

 Пусть имеются две матрицы с одинаковым количеством столбцов:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \dots, \mathbf{a}_R \end{bmatrix} \in \mathbb{R}^{m \times R}$$
 $\mathbf{B} = \begin{bmatrix} \mathbf{b}_1, \dots, \mathbf{b}_R \end{bmatrix} \in \mathbb{R}^{n \times R}$

 Произведение Хатри-Рао матриц A и B – это матрица C со столбцами:

$$C = A \odot B = [a_1 \otimes_L b_1, \dots, a_R \otimes_L b_R] \in \mathbb{R}^{mn \times R}$$

ightharpoonup С помощью произведения Хатри-Рао удобно выражать развёртки тензоров, представленных в виде произведения Такера. Например, пусть $\underline{\mathbf{A}}$ — тензор 3-его порядка, и

$$\underline{\mathbf{A}} = [\![\underline{\mathbf{I}}; \mathbf{U}, \mathbf{V}, \mathbf{W}]\!].$$

Тогда справедливы равенства:

$$\mathbf{A}_{(1)} = \mathbf{U}(\mathbf{W} \odot \mathbf{V})^{\mathsf{T}}, \quad \mathbf{A}_{(2)} = \mathbf{V}(\mathbf{W} \odot \mathbf{U})^{\mathsf{T}}, \quad \mathbf{A}_{(3)} = \mathbf{W}(\mathbf{V} \odot \mathbf{U})^{\mathsf{T}}$$

Алгоритмы вычисления CP-разложения: ALS

▶ Приведём итеративный алгоритм нахождения канонического разложения Alternating Least Squares (ALS) на примере тензора 3-его порядка $\underline{\mathbf{A}}$ (нестрого):

```
Initialize: \mathbf{U}_{1}, \mathbf{V}_{1}, \mathbf{W}_{1} for k = 1, ..., K

1. U_{k+1} = \arg\min_{U} \|\underline{\mathbf{A}} - [\underline{\mathbf{I}}; \mathbf{U}, \mathbf{V}_{k}, \mathbf{W}_{k}]\|_{F}^{2}

2. V_{k+1} = \arg\min_{V} \|\underline{\mathbf{A}} - [\underline{\mathbf{I}}; \mathbf{U}_{k+1}, \mathbf{V}, \mathbf{W}_{k}]\|_{F}^{2}

3. W_{k+1} = \arg\min_{W} \|\underline{\mathbf{A}} - [\underline{\mathbf{I}}; \mathbf{U}_{k+1}, \mathbf{V}_{k+1}, \mathbf{W}]\|_{F}^{2}

Output: \underline{\mathbf{A}} \simeq [\underline{\mathbf{I}}; \mathbf{U}_{K}, \mathbf{V}_{K}, \mathbf{W}_{K}]
```

Алгоритмы вычисления CP-разложения: ALS

Рассмотрим подзадачу нахождения оптимальной матрицы U_{k+1} . Перейдём под знаком нормы к рассмотрению развёртки тензора вдоль 1-ой моды.

$$\begin{split} &U_{k+1} = \underset{U}{\text{arg min}} \, \|\underline{\mathbf{A}} - [\![\underline{\mathbf{I}}; \mathbf{U}, \mathbf{V}_k, \mathbf{W}_k]\!] \|_F^2 = \\ &= \underset{U}{\text{arg min}} \, \|\mathbf{A}_{(1)} - \mathbf{U}(\mathbf{W}_k \odot \mathbf{V}_k)^\mathsf{T} \|_F^2 = \\ &= \underset{U}{\text{arg min}} \, \|(\mathbf{W}_k \odot \mathbf{V}_k) \mathbf{U}^\mathsf{T} - \mathbf{A}_{(1)}^\mathsf{T} \|_F^2 \end{split}$$

Для полученной задачи выпишем решение в терминах наименьших квадратов:

$$U_{k+1}^{\mathsf{T}} = \left[(\mathbf{W}_k \odot \mathbf{V}_k)^{\mathsf{T}} (\mathbf{W}_k \odot \mathbf{V}_k) \right]^{-1} (\mathbf{W}_k \odot \mathbf{V}_k)^{\mathsf{T}} \mathbf{A}_{(1)}^{\mathsf{T}}$$

$$U_{k+1} = \mathbf{A}_{(1)} (\mathbf{W}_k \odot \mathbf{V}_k) \left[(\mathbf{W}_k \odot \mathbf{V}_k)^{\mathsf{T}} (\mathbf{W}_k \odot \mathbf{V}_k) \right]^{-1}$$

Напоминание: тензорные операции

$\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_n \mathbf{B}$	$\begin{aligned} & \text{Mode-} n \text{ product of a tensor } \underline{\mathbf{A}} \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_N} \\ & \text{and a matrix } \mathbf{B} \in \mathbb{R}^{l \times l_n} \text{ yields a tensor } \\ & \underline{\mathbf{C}} \in \mathbb{R}^{l_1 \times \cdots \times l_{n-1} \times \times l_{n+1} \times \cdots \times l_N}, \text{ with entries } \\ & c_{i_1,\dots,i_{n-1},j,i_{n+1},\dots,j_n} = \sum_{l_n=1}^{l_n} a_{i_1,\dots,i_{n-1},l_n} b_{j,i_n} \end{aligned}$
$\underline{\mathbf{C}} = [\![\underline{\mathbf{G}}; \mathbf{B}^{(1)}, \dots, \mathbf{B}^{(N)}]\!]$	Multilinear (Tucker) product of a core tensor, $\underline{\mathbf{G}}$, and factor matrices $\mathbf{B}^{(n)}$, which gives
	$\underline{\mathbf{C}} = \underline{\mathbf{G}} \times_1 \mathbf{B}^{(1)} \times_2 \mathbf{B}^{(2)} \cdots \times_N \mathbf{B}^{(N)}$
$\underline{\mathbf{C}} = \underline{\mathbf{A}} \bar{\mathbf{x}}_n \mathbf{b}$	$\begin{array}{lll} \text{Mode-}n & \text{product} & \text{of} & \text{a tensor} & \underline{A} & \in \\ \mathbb{R}^{ _{X} \sim \times I_{N} } & \text{and} & \text{vector} & \mathbf{b} & \in & \mathbb{R}^{l_{n}} & \text{yields} \\ & \text{a tensor} & \underline{C} & \in & \mathbb{R}^{l_{1} \sim \times \cdot I_{n-1} \times l_{n+1} \times \cdots \times l_{N}}, \\ & \text{with} & \text{entries} & c_{l_{1} \ldots J_{n} - l_{n+1} \ldots J_{N}} & = \\ & \sum_{l_{n}=1}^{l_{n}} a_{l_{1} \ldots J_{n-1} - l_{n} - l_{n} l_{n} + 1 \ldots J_{N}} b_{l_{n}} & = \\ & & & & & & & & & & & & & & & \\ \end{array}$
$\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_N^1 \underline{\mathbf{B}} = \underline{\mathbf{A}} \times^1 \underline{\mathbf{B}}$	$\begin{array}{lll} Mode\text{-}(N,1) & contracted & product & of & tensors \\ \underline{\mathbf{A}} \in \mathbb{R}^{1 \times l_2 \times \cdots \times l_N} & and & \underline{\mathbf{B}} \in \mathbb{R}^{1 \times l_2 \times \cdots \times l_M}, \\ with & I_N & = J_1, yields & a & tensor \\ \underline{\mathbf{C}} \in \mathbb{R}^{l_1 \times \cdots \times l_{N-1} \times l_2 \times \cdots \times l_M} & with & entries \\ \underline{\mathbf{c}}_{l_1, \dots, l_N - l_2 l_2 \dots l_M} = \sum_{l_N = 1}^{l_N} a_{l_1, \dots, l_N} b_{l_N, l_2, \dots, l_M} \end{array}$
$\underline{\mathbf{C}} = \underline{\mathbf{A}} \circ \underline{\mathbf{B}}$	Outer product of tensors $\underline{\mathbf{A}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_M}$ and $\underline{\mathbf{B}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times J_M}$ yields an $(N+M)$ thorder tensor $\underline{\mathbf{C}}$, with entries $c_{i_1,\dots,i_N,j_1,\dots,j_M} = a_{i_1,\dots,i_N} \ b_{j_1,\dots,j_M}$
$\underline{\mathbf{X}} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \in \mathbb{R}^{I \times J \times K}$	Outer product of vectors a , b and c forms a rank-1 tensor, $\underline{\mathbf{X}}$, with entries $x_{ijk} = a_i \ b_j \ c_k$
$\underline{\mathbf{C}} = \underline{\mathbf{A}} \otimes_{\mathbb{L}} \underline{\mathbf{B}}$	(Left) Kronecker product of tensors $\underline{A} \in \mathbb{R}^{l_1 \times l_2 \times \dots \times l_N}$ and $\underline{B} \in \mathbb{R}^{l_1 \times l_2 \times \dots \times l_N}$ yields a tensor $\underline{C} \in \mathbb{R}^{l_1 l_1 \times \dots \times l_N l_N}$, with entries $c \in \overline{l_1 l_1 \dots \cdot l_N l_N} = a l_{l_1 \dots , l_N} b_{l_1 \dots , l_N}$
$C = A \odot_L B$	(Left) Khatri–Rao product of matrices $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_J] \in \mathbb{R}^{I \times J}$ and $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_J] \in \mathbb{R}^{K \times J}$ yields a matrix $\mathbf{C} \in \mathbb{R}^{IK \times J}$, with columns $\mathbf{c}_j = \mathbf{a}_j \otimes_L \mathbf{b}_j \in \mathbb{R}^{IK}$

Резюме

- Каноническое разложение представляет тензор в виде суммы тензоров ранга 1. Минимальное число слагаемых в таком разложении определяет ранг тензора.
- С помощью сингулярных чисел можно определить низкоранговое приближение тензора.
- Каноническое разложение можно переписать в терминах произведения Такера.
- Операция развёртки тензора позволяет применять к ним аппарат матричной линейной алгебры.
- Один из алгоритмов нахождения канонического разложения (ALS) использует представление разложения с помощью произведения Такера, и позволяет итеративно находить матричные компоненты разложения с помощью рассмотрения развёрток тензоров.