- 1. Calcular $\lim \left(\frac{n^2-n+1}{n^2+n-2}\right)^{\frac{n^3}{n^2+1}}$
- 2. Sea $\{a_n\}$ una sucesión convergente a cero que además cumple que $a_{n+1} = a_n \left(\frac{3}{5}\right)^n$
 - a) Calcular a_1 y, utilizando los valores de la siguiente tabla, expresa a_{10} como $\frac{A}{B}$ siendo A y B números naturales:

n	6	7	8	9	10	11	12
3^n	729	2187	6561	19683	59049	177147	531441
5^n	15625	78125	390625	1953125	9765625	48828125	244140625

b) Demuestra que $\{a_n\}$ es sumable y, teniendo en cuenta los valores de la tabla anterior, expresa $\sum_{n=10}^{\infty} a_n$ como $\frac{C}{D}$ siendo C y D números naturales

Solución

1. Partiendo de que lím $\left(\frac{n^2-n+1}{n^2+n-2}\right)^{\frac{n^3}{n^2+1}} =$ lím $\left(\frac{n^2+n-2}{n^2-n+1}\right)^{\frac{-n^3}{n^2+1}}$ y teniendo en cuenta que la división de n^2+n-2 entre n^2-n+1 es

podemos asegurar que el límite coincide con

$$\lim \left(1 + \frac{2n-3}{n^2 - n + 1}\right)^{\frac{-n^3}{n^2 + 1}} = \lim \left(1 + \frac{1}{\frac{n^2 - n + 1}{2n - 3}}\right)^{\frac{-n^3}{n^2 + 1}} =$$

$$= \lim \left[\left(1 + \frac{1}{\frac{n^2 - n + 1}{2n - 3}} \right)^{\frac{n^2 - n + 1}{2n - 3}} \right]^{\frac{-(2n - 3)n^3}{(n^2 - n + 1)(n^2 + 1)}}$$

Así, el límite propuesto existe y vale e^{-2} puesto que, cuando n tiende a infinito, la expresión entre corchetes tiende a e y el exponente a -2

- 2. Teniendo en cuenta que $a_{n+1} = a_n \left(\frac{3}{5}\right)^n$, se tiene que,

■ para
$$n = 3$$
, $a_4 = a_3 - \left(\frac{3}{5}\right)^3 = a_1 - \left(\frac{3}{5} + \left(\frac{3}{5}\right)^2 + \left(\frac{3}{5}\right)^3\right)$
:

Podemos intuir que, para cualquier natural n, se tiene que $a_{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{3}{5}\right)^k$, pudiendo probar dicha igualdad por inducción ya que es evidentemente cierta para n=1 y, si suponemos que es cierta para algún natural n, se tiene que

$$a_{n+2} = a_{n+1} - \left(\frac{3}{5}\right)^{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{3}{5}\right)^k - \left(\frac{3}{5}\right)^{n+1} = a_1 - \sum_{k=1}^{n+1} \left(\frac{3}{5}\right)^k$$

Así, puesto que, tal y como se afirma en el enunciado, la sucesión a_n converge a 0 se tiene que

$$0 = \lim a_n = \lim a_{n+1} = \lim \left(a_1 - \sum_{k=1}^n \left(\frac{3}{5} \right)^k \right) = a_1 - \sum_{n=1}^\infty \left(\frac{3}{5} \right)^k = a_1 - \frac{\frac{3}{5}}{1 - \frac{3}{5}} = a_1 - \frac{3}{2}$$

de donde podemos afirmar que $a_1 = \frac{3}{2}$. Además, denotando por

$$S_n = \frac{3}{5} + \left(\frac{3}{5}\right)^2 + \left(\frac{3}{5}\right)^3 + \dots + \left(\frac{3}{5}\right)^n$$

multiplicando por $\frac{-3}{5}$ para obtener que

$$\frac{-3}{5} \cdot S_n = -\left(\frac{3}{5}\right)^2 - \left(\frac{3}{5}\right)^3 - \dots - \left(\frac{3}{5}\right)^n - \left(\frac{3}{5}\right)^{n+1}$$

y sumando ambas igualdades obtenemos que

$$\left(1 - \frac{3}{5}\right) \cdot S_n = \frac{2}{5} \cdot S_n = \frac{3}{5} - \left(\frac{3}{5}\right)^{n+1}$$

de donde, despejando convenientemente, obtenemos que $S_n = \frac{\frac{3}{5} - \left(\frac{3}{5}\right)^{n+1}}{\frac{2}{5}}$ y, operando con-

venientemente, que $S_n = \frac{3}{2} - \frac{5}{2} \cdot \left(\frac{3}{5}\right)^{n+1}$. Así, llevando esta igualdad a la expresión obtenida anteriormente obtenida para a_{n+1} , y teniendo en cuenta que $a_1 = \frac{3}{2}$, se tiene que

$$a_{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{3}{5}\right)^k = \frac{3}{2} - \left(\frac{3}{2} - \frac{5}{2} \cdot \left(\frac{3}{5}\right)^{n+1}\right) = \frac{5}{2} \cdot \left(\frac{3}{5}\right)^{n+1}$$

Así, podemos afirmar que $a_{10} = \frac{5}{2} \cdot \left(\frac{3}{5}\right)^{10} = \frac{3^{10}}{10 \cdot 5^8} = \frac{59049}{3906250}$, que la sucesión $\{a_n\}$ es sumable puesto que es geométrica de razón $\frac{3}{5} < 1$ y además

$$\sum_{n=10}^{\infty} a_n = \sum_{n=10}^{\infty} \frac{5}{2} \cdot \left(\frac{3}{5}\right)^n = \frac{5}{2} \cdot \frac{\left(\frac{3}{5}\right)^{10}}{1 - \frac{3}{5}} = \frac{5}{2} \cdot \frac{\left(\frac{3}{5}\right)^{10}}{\frac{2}{5}} = \frac{5^2 \cdot 3^{10}}{4 \cdot 5^{10}} = \frac{3^{10}}{4 \cdot 25 \cdot 5^6} = \frac{59049}{1562500}$$

- 1. Calcular $\lim \left(\frac{n^2-n-1}{n^2+2n-3}\right)^{\frac{n^3}{n^2+4}}$
- 2. Sea $\{a_n\}$ una sucesión convergente a cero que además cumple que $a_{n+1} = a_n \left(\frac{1}{5}\right)^n$
 - a) Calcular a_1 y, utilizando los valores de la siguiente tabla, expresa a_{10} como $\frac{A}{B}$ siendo A y B números naturales:

b) Demuestra que $\{a_n\}$ es sumable y, teniendo en cuenta los valores de la tabla anterior, expresa $\sum_{n=1}^{\infty} a_n$ como $\frac{C}{D}$ siendo C y D números naturales

Solución

1. Partiendo de que lím $\left(\frac{n^2-n-1}{n^2+2n-3}\right)^{\frac{n^3}{n^2+4}} = lím \left(\frac{n^2+2n-3}{n^2-n-1}\right)^{\frac{-n^3}{n^2+4}}$ y teniendo en cuenta que la división de n^2+2n-3 entre n^2-n-1 es

podemos asegurar que el límite coincide con

$$\lim \left(1 + \frac{3n-2}{n^2 - n - 1}\right)^{\frac{-n^3}{n^2 + 4}} = \lim \left(1 + \frac{1}{\frac{n^2 - n - 1}{3n - 2}}\right)^{\frac{-n^3}{n^2 + 4}} =$$

$$= \lim \left[\left(1 + \frac{1}{\frac{n^2 - n - 1}{3n - 2}} \right)^{\frac{n^2 - n - 1}{3n - 2}} \right]^{\frac{-(3n - 2)n^3}{(n^2 - n - 1)(n^2 + 4)}}$$

Así, el límite propuesto existe y vale e^{-3} puesto que, cuando n tiende a infinito, la expresión entre corchetes tiende a e y el exponente a -3

- 2. Teniendo en cuenta que $a_{n+1} = a_n \left(\frac{1}{5}\right)^n$, se tiene que,
 - $a_2 = a_1 \frac{1}{5}$
 - para n = 2, $a_3 = a_2 \left(\frac{1}{5}\right)^2 = a_1 \left(\frac{1}{5} + \left(\frac{1}{5}\right)^2\right)$

■ para
$$n = 3$$
, $a_4 = a_3 - \left(\frac{1}{5}\right)^3 = a_1 - \left(\frac{1}{5} + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^3\right)$
:

Podemos intuir que, para cualquier natural n, se tiene que $a_{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{1}{5}\right)^k$, pudiendo probar dicha igualdad por inducción ya que es evidentemente cierta para n=1 y, si suponemos que es cierta para algún natural n, se tiene que

$$a_{n+2} = a_{n+1} - \left(\frac{1}{5}\right)^{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{1}{5}\right)^k - \left(\frac{1}{5}\right)^{n+1} = a_1 - \sum_{k=1}^{n+1} \left(\frac{1}{5}\right)^k$$

Así, puesto que, tal y como se afirma en el enunciado, la sucesión a_n converge a 0 se tiene que

$$0 = \lim a_n = \lim a_{n+1} = \lim \left(a_1 - \sum_{k=1}^n \left(\frac{1}{5} \right)^k \right) = a_1 - \sum_{n=1}^\infty \left(\frac{1}{5} \right)^k = a_1 - \frac{\frac{1}{5}}{1 - \frac{1}{5}} = a_1 - \frac{1}{4}$$

de donde podemos afirmar que $a_1 = \frac{1}{4}$. Además, denotando por

$$S_n = \frac{1}{5} + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^3 + \dots + \left(\frac{1}{5}\right)^n$$

multiplicando por $\frac{-1}{5}$ para obtener que

$$\frac{-1}{5} \cdot S_n = -\left(\frac{1}{5}\right)^2 - \left(\frac{1}{5}\right)^3 - \dots - \left(\frac{1}{5}\right)^n - \left(\frac{1}{5}\right)^{n+1}$$

y sumando ambas igualdades obtenemos que

$$\left(1 - \frac{1}{5}\right) \cdot S_n = \frac{4}{5} \cdot S_n = \frac{1}{5} - \left(\frac{1}{5}\right)^{n+1}$$

de donde, despejando convenientemente, obtenemos que $S_n = \frac{\frac{1}{5} - \left(\frac{1}{5}\right)^{n+1}}{\frac{4}{5}}$ y, operando con-

venientemente, que $S_n = \frac{1}{4} - \frac{5}{4} \cdot \left(\frac{1}{5}\right)^{n+1}$. Así, llevando esta igualdad a la expresión obtenida anteriormente obtenida para a_{n+1} , y teniendo en cuenta que $a_1 = \frac{1}{4}$, se tiene que

$$a_{n+1} = a_1 - \sum_{k=1}^{n} \left(\frac{1}{5}\right)^k = \frac{1}{4} - \left(\frac{1}{4} - \frac{5}{4} \cdot \left(\frac{1}{5}\right)^{n+1}\right) = \frac{5}{4} \cdot \left(\frac{1}{5}\right)^{n+1}$$

Así, podemos afirmar que $a_{10} = \frac{5}{4} \cdot \left(\frac{1}{5}\right)^{10} = \frac{1}{4 \cdot 5^9} = \frac{1}{100 \cdot 5^7} = \frac{1}{7812500}$, que la sucesión $\{a_n\}$ es sumable puesto que es geométrica de razón $\frac{1}{5} < 1$ y además

$$\sum_{n=12}^{\infty} a_n = \sum_{n=12}^{\infty} \frac{5}{4} \cdot \left(\frac{1}{5}\right)^n = \frac{5}{4} \cdot \frac{\left(\frac{1}{5}\right)^{12}}{1 - \frac{1}{5}} = \frac{5}{4} \cdot \frac{\left(\frac{1}{5}\right)^{12}}{\frac{4}{5}} = \frac{1}{4 \cdot 4 \cdot 5^{10}} = \frac{1}{4 \cdot 25 \cdot 4 \cdot 25 \cdot 5^6} = \frac{1}{156250000}$$