Sprawozdanie z układów logicznych

Jan Maciuk - 272664 Michał Dudniczenko - 272677 Ćwiczenie 4 Grupa 5. Czwartek 13:15-15:00

Temat: Analiza układu synchronicznego

Ćwiczenia rozpoczęliśmy od realizacji pierwotnego układu zgodnie ze schematem, w rezultacie otrzymaliśmy układ postaci:

Proces przekształcania rozpoczęliśmy od zaprojektowania implementacji przerzutnika D za pomocą bramek NAND. Byliśmy zmuszeni użyć bardziej skomplikowanej konfiguracji master-slave, dzięki czemu uzyskaliśmy przerzutnik, który poprawnie reagował na zbocze narastające zegara, a nie na stan wysoki, jak to było w przypadku prostszej implementacji. Oto nasza implementacja:

Następnie rozpoczeliśmy już właściwy proces modyfikacji pierwotnego układu. Zamieniliśmy gotowe przerzutniki w formie bloków, na naszą implementację oraz zastąpiliśmy obecne w układzie bramki AND i OR odpowiednikami składającymi się z NAND. Układ działał w pełni poprawnie, pozostało jedynie, zgodnie ze specyfikacją pozbyć się wszystkich bramek NOT. Na początku od razu usunęliśmy 4 nadmiarowe bramki NOT, wynikające z połączenia bramek AND z OR, eliminacja bramki NOT na końcu układu możliwa była dzięki użycia zamiast niej bramki NOR, do której doprowadziliśmy zanegowane wyjścia przekaźników w odróżnieniu do wersji pierwotnej. Jedynym zadaniem do wykonania było pozbycie się bramki NOT, potrzebnej do wytworzenia zanegowane sygnału zegarowego, potrzebnego do działania implementacji przerzutników master-slave. Po większych namysłach udało się to uzyskać, dzięki użyciu bramki NAND, do której poprowadziliśmy sygnał zegarowy oraz sygnał wejściowy X. Po testach okazało się, że finalna wersja przekształconego i zminimalizowanego układu działa dokładnie tak jak ta z treści zadania. Oto wynik naszych działań:

Mając gotowy i w pełni funkcjonalny układ w symulatorze, w prosty sposób byliśmy w stanie obserwować zmiany konkretnych elementów układu, dzięki czemu na podstawie naszych obserwacji stworzyliśmy tablicę stanów-wyjść, jak i wypełniliśmy tablicę przejść-wyjść.

Tablica przejść-wyjść

y1 y2			
x	0	1	Z
0 0	0 0	10	0
0 1	0 0	11	0
10	0 0	0 1	0
11	0 0	11	1

Tablica stanów-wyjść

y1 y2				
X	0	1		
A = 00	A/0	C/0		
B = 01	A/0	D/1		
C = 10	A/0	B/0		
D = 11	A/0	D/1		

W analogiczny sposób przebiegła analiza zachowań układu dla podanej sekwencji wejściowej "111100". Zaobserwowane zachowania zanotowaliśmy w tabeli:

Analiza przejść przy zadanej sekwencji wejściowej:

czas	t _o	t ₁	t ₂	t ₃	t ₄	t ₅
х	1	1	1	1	0	0
y ₁ y ₂	0 0	1 0	0 1	1 1	0 0	0 0
Z	0	0	0	1	0	0

Synteza układu do postaci zawierającej tylko bramki NOT, AND oraz przerzutniki typu JK przebiegła bez problemów, głównie dzięki prostocie działania wspomnianych przerzutników. Zastąpiliśmy bramki OR odpowiednikami, oraz z użyciem drobnej modyfikacji z dodatkową ścieżką zanegowanego sygnału, wprowadziliśmy do układu przerzutniki JK. Po testach tu również okazało się, że układ działał dokładnie tak jak układ pierwotny. Oto wynik syntezy:

