

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

ОТЧЕТ

по Лабораторной работе №1
по курсу «Математическая статистика»
на тему: «Гистограмма и эмпирическая функция
распределения»

Студент группы ИУ7-63Б		Паламарчук А. Н.
	(Подпись, дата)	(Фамилия И.О.)
П		С ПС
Преподаватель		Саркисян П. С.
	(Подпись, дата)	(Фамилия И.О.)

Содержание

1	${ m 3a}$ д	дание	3
	1.1	Цель работы	3
	1.2	Содержание работы	3
2 Теоретическая часть			
	2.1	Формулы для вычисления величин M_{max} , M_{min} , R , $\hat{\mu}$, S^2	4
	2.2	Эмпирическая плотность и гистограмма	4
	2.3	Эмпирическая функция распределения	5
3	Пра	актическая часть	6
	3.1	Результаты расчетов	6

1 Задание

1.1 Цель работы

Цель работы: построение гистограммы и эмпирической функции распределения.

1.2 Содержание работы

- 1) Для выборки объёма n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - 1) вычисление максимального значения M_{\max} и минимального значения M_{\min} ;
 - 2) размаха R выборки;
 - 3) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - 4) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - 5) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - 6) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2) Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретическая часть

2.1 Формулы для вычисления величин M_{max} , M_{min} , R, $\hat{\mu}$, S^2

Пусть $\vec{x}=(x_1,\dots,x_n)$ — выборка из генеральной совокупности X, где n — объём данной выборки. Расположим компоненты $x_i,\,i=\overline{1,n}$ в порядке неубывания:

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$
 (2.1)

Вариационным рядом, построенным по выборке $\vec{x} = (x_1, \dots, x_n)$, называют вектор $(x_{(1)}, \dots, x_{(n)})$.

Минимальное значение выборки рассчитывается по формуле (2.2); максимальное — (2.3). Размах выборки рассчитывается по формуле (2.4); выборочное среднее — (2.5), исправленная выборочная дисперсия — (2.6).

$$M_{\min} = x_{(1)} = \min_{x_i \in \vec{x}} x_i \tag{2.2}$$

$$M_{\max} = x_{(n)} = \max_{x_i \in \vec{x}} x_i \tag{2.3}$$

$$R = M_{\text{max}} - M_{\text{min}}. (2.4)$$

$$\hat{\mu}(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2.5}$$

$$S^{2}(\vec{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2}$$
(2.6)

2.2 Эмпирическая плотность и гистограмма

Пусть $\vec{x}=(x_1,\ldots,x_n)$ — реализация выборки из генеральной совокупности X, где n — объём данной выборки.

При большом объеме п выборки значения x_i группируют в интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}, x_{(n)}]$ делят на m равновеликих промежутков по формуле (2.7):

$$J_i = [x_{(1)} + (i-1) \cdot \Delta, \ x_{(1)} + i \cdot \Delta), i = \overline{1; m-1}$$
 (2.7)

Последний промежуток определяется по формуле (2.8):

$$J_m = [x_{(1)} + (m-1) \cdot \Delta, x_{(n)}]$$
(2.8)

Ширина каждого из таких промежутков определяется по формуле (2.9).

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m} \tag{2.9}$$

Интервальным статистическим рядом, отвечающим выборке \vec{x} , называют таблицу 2.1, в которой n_i — число элементов выборки, попавших в J_i , $i=\overline{1,m}$

Таблица 2.1 – Интервальный статистический ряд

Пусть для выборки $\vec{x}=(x_1,\ldots,x_n)$ построен интервальный статистический ряд $(J_i,\,n_j),\,i=\overline{1,m}.$

Эмпирической плотностью, отвечающей выборке \vec{x} , называют функцию:

$$f_n(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m} \\ 0, x \notin J \end{cases}$$
 (2.10)

где J_i — полуинтервал статистического ряда, n_i — количество элементов выборки, входящих в полуинтервал.

Гистограмма — это график эмпирической функции плотности.

2.3 Эмпирическая функция распределения

Пусть $\vec{x}=(x_1,\dots,x_n)$ — выборка из генеральной совокупности X, где n— объём данной выборки. Обозначим $l(t,\vec{x})$ — число элементов выборки \vec{x} , которые имеют значения меньше t.

Эмпирической функцией распределения, отвечающей выборке \vec{x} , называют отображение $F_n: R \to R$, определенное правилом:

$$F_n(t) = \frac{l(t, \vec{x})}{n} \tag{2.11}$$

3 Практическая часть

3.1 Результаты расчетов

Индивидуальный вариант №14

Результаты расчетов для выборки приведены на формулах (3.1), (3.2), (3.3), (3.4), (3.5), (3.6).

$$M_{\min} = 0.09$$
 (3.1)

$$M_{\text{max}} = 5.47$$
 (3.2)

$$R = 5.38$$
 (3.3)

$$\hat{\mu}(\vec{x}) = 3.055 \tag{3.4}$$

$$S^2(\vec{x}) = 1.055 \tag{3.5}$$

$$m = 8 \tag{3.6}$$

На рисунке 3.1 представлены гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с выборочным математическим ожиданием $\hat{\mu}$ и выборочной дисперсией S^2 .

Рисунок 3.1 – Гистограмма и график функции плотности распределения вероятностей.

На рисунке 3.2 представлены график эмпирической функции распределения и функции распределения нормальной случайной величины с выборочным математическим ожиданием $\hat{\mu}$ и выборочной дисперсией S^2 .

Рисунок 3.2 – Графики эмпирической функции распределения и функции распределения нормальной случайной величины.