NC State University

Department of Electrical and Computer Engineering

ECE 463/563: Fall 2022 (Rotenberg)

Project #3: Dynamic Instruction Scheduling

by

<< Darsh Kiran Asher >>

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this project."

Student's electronic signature: Darsh Kiran Asher

(sign by typing your name)

Course number: 563

(463 or 563?)

1. **Graphs** [10 points]: Keep ROB_SIZE fixed at 512 entries so that it is not a resource bottleneck. For each benchmark (gcc and perl), make a graph with IPC on the y-axis and IQ_SIZE on the x-axis. Use IQ_SIZE = 8, 16, 32, 64, 128, and 256. Plot 4 different curves (lines) on the graph: one curve for each of WIDTH = 1, 2, 4, and 8. Title the two graphs "gcc, ROB=512" and "perl, ROB=512", respectively.

2. Graph Analysis [2 points]:

Using the data in the graphs above, for each WIDTH (1, 2, 4, and 8), find the minimum IQ_SIZE that still achieves within 5% of the IPC of the largest IQ_SIZE (256). This exercise should give four optimized IQ_SIZE's per benchmark, one optimized for each of WIDTH = 1, 2, 4, and 8. Tabulate the results of this exercise as follows:

	"Optimized IQ_SIZE per WIDTH" Minimum IQ_SIZE that still achieves within 5% of the IPC of the largest IQ_SIZE	
	gcc	perl
WIDTH = 1	8	8

WIDTH = 2	8	13
WIDTH = 4	24	35
WIDTH = 8	64	81

Grading rubric: Each cell in the table is worth 0.25 points.

3. Discussion [2 points]:

- O The goal of a superscalar processor is to achieve an IPC that is close to WIDTH, which is the peak theoretical IPC of the processor. As we increase WIDTH, we observe that a clarger IQ is needed to achieve this goal. This is because, with greater WIDTH, the IQ needs to look cfarther in the dynamic instruction stream to find cmore independent instructions that can issue in parallel to WIDTH execution lanes, each cycle.
- For WIDTH=8, perl's "optimized IQ_SIZE" is <a href="less than<a href="less than "less th

Why might this be the case?

- a. Perhaps perl has more> data-dependent instructions within a fixed window of instructions, such that it mailto:document-window in the dynamic instruction stream to get the same number of independent instructions as gcc.
- b. Perhaps perl has fewer long-latency instructions within a fixed window of instructions as compared to gcc.
- c. All of the above: both a and b are plausible explanations.

Answer: <c>

7.3.1. Effect of ROB SIZE

4. **Graphs [6 points]:** For each benchmark (gcc and perl), make a graph with IPC on the y-axis and ROB_SIZE on the x-axis. Use ROB_SIZE = 32, 64, 128, 256, and 512. Plot 4 different curves (lines) on the graph: one curve for each of WIDTH = 1, 2, 4, and 8. For a given WIDTH, use the optimized IQ_SIZE for that WIDTH, as obtained from the table in Section 7.3.1. Title the two graphs "gcc, optimized IQ_SIZE per WIDTH" and "perl, optimized IQ_SIZE per WIDTH", respectively.

