NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N5534 NAFO SCR Doc. 08/33

SCIENTIFIC COUNCIL MEETING - JUNE 2008

A Revised ASPIC Based Assessment of Redfish in NAFO Divisions 3LN

bv

A. M. Ávila de Melo¹, R. Duarte¹, D. Power², and R. Alpoim¹

¹ Instituto Nacional de Recursos Biológicos (INRB/IPIMAR) Av. Brasília 1449-006, Lisboa, Portugal

² Science, Oceans and Environment Branch, Department of Fisheries and Oceans P. O. Box 5667, St. John's, NL, Canada A1C 5X1

Abstract

There are two species of redfish in Divisions 3L and 3N, the deep-sea redfish (*Sebastes mentella*) and the Acadian redfish (*Sebastes fasciatus*) that have been commercially fished and reported collectively as redfish in fishery statistics. Redfish in Div. 3LN is regarded as a management unit composed of two Grand Bank populations from those two very similar redfish species. The present assessment is based on the results of a non-equilibrium surplus production model (ASPIC Prager, 1994, 2004 and 2007), adjusted to a standardized catch rate series (Power, 1997) and to most of the stratified-random bottom trawl surveys conducted by Canada and Russia in various years and seasons in Div. 3L and Div. 3N, from 1978 onwards. All input series consist of annual observed values and were given equal weight in the analysis. As regards Canadian surveys, only Campelen data and Engel data converted into Campelen equivalents are used in this assessment.

The assessment was preceded by an exploratory analysis with different data formulations derived from the available data series, and a sensitive and retrospective analysis with the chosen input formulation. The assessment was then carried out with ASPIC on bootstrap mode (1000 trials based on the random re-sampling of *cpue* and survey log residuals) giving bias corrected estimates of model parameters, relative biomass (B/B_{msy}) and relative fishing mortality (F/F_{msy}) trajectories, with associated 50% and 80% confidence intervals. Biomass and fishing mortality rates were finally projected (2008-2012/2013) under a low constant catch regime (5000 ton). The stock trajectory related to the surplus production analysis shows a biomass rapidly declining to bellow B_{msy} when fishing mortality rate rises from just above to well above F_{msy} (1986-1987), and a biomass rapidly returning to above B_{msy} after fishing mortality drops to well bellow F_{msy} (1993-1994). A constant catch level of 5000 ton will keep the redfish in Div. 3LN in its present safe zone, with the lower 80% CL of relative biomass well above the B_{msy} level and the upper 80% CL of relative fishing mortality rate well bellow the F_{msy} level. Finally, in order to test if these projection results are robust or if they might be affected by differences on results from previous assessment, the same projection exercise was performed starting one year earlier (2007). Regardless the retrospective bias between the two assessments both runs shown the stock at the same high level relative to B_{msy} , five-six years after the reopening of a directed fishery at a small scale of 5000 ton.

Introduction

There are two species of the genus *Sebastes* that have been commercially fished in Div. 3LN, the deep sea redfish (*Sebastes mentella*), with a maximum abundance at depths greater than 300m, and Acadian redfish (*Sebastes fasciatus*), preferring shallower waters of less than 400m. Due to their external resemblance *S. mentella* and *S. fasciatus* are commonly designated as beaked redfish.

Beaked redfish are viviparous with the larvae eclosion occurring right before or after birth, long living and slow growing, with females attaining size of 50% maturity at 30-34cm (Power, 2001). Both species have pelagic and demersal concentrations as well as a long recruitment process to the bottom. Their external characteristics are very similar, making them difficult to distinguish, and as a consequence they are reported collectively as "redfish" in the commercial fishery statistics. For the same reason *S. mentella* and *S. fasciatus* are treated as a single species in the Grand Bank surveys carried out by Canada, Russia and more recently by EU-Spain.

This redfish assessment regards the beaked redfish in Div. 3LN as a management unit composed of two Grand Bank fish populations of two very similar species. Nevertheless, it is accepted that in this management unit *S. mentella* is the dominant population, representing almost 100% of the commercial catch and the major proportion of the exploitable redfish biomass in Divisions 3L and 3N.

The 2007 assessment (Ávila de Melo *et al.*, 2007) was based on a non-equilibrium surplus production model (ASPIC Prager, 1994, 2004 and 2007), adjusted to a standardized catch rate series (Power, 1997) and two series of stratified bottom trawl surveys on Div. 3L and Div. 3N, covering from 1991 onwards almost the entire area of redfish distribution in north and south east Grand Bank. The assessment was preceded by an exploratory analysis of different data formulations derived from the available data series, using a traffic light framework to evaluate the diagnostics of the ASPIC runs. In order to reduce non explained variability and improve the fit of the ASPIC model to the available biomass indices two different categories of the data set formulations were considered; one based on the original annual values of each biomass index and the other where the annual values were smoothed by 3-year moving averages. The results of the exploratory analysis lead to the conclusion that the use of moving average formulations allowed a better ASPIC FIT than the one with the observed annual data series. So the moving average formulation incorporating both CPUE and spring and autumn survey series in their full extension was the one chosen to pursue with last year assessment.

STACFIS recognized ASPIC as a useful tool to carry out an analytic assessment of the 3LN redfish stock (NAFO 2007), but didn't accept the 2007 assessment based on two major concerns regarding the chosen input formulation:

"Regardless of the wide inter-annual variability of the observed CPUE and survey data and poorer fit of the model, the original values of each biomass index provide very similar results namely as regards relative biomass and fishing mortality trajectories and should be used instead of moving averages;

From the early 1980s to the beginning of the 1990s, when catches were quickly raised from a previous average level of 21 000 tons (1965-1985) to a much higher average level of 41 500 tons (1986-1992), including a peak of 79 000 tons in 1987, available survey data from Canadian summer survey on Div. 3L (1978-1979, 1981, 1984-1985, 1990-1991 and 1993) and Russian trawl survey on Div. 3LN (1983-1993) suggests that stock size suffered a substantial reduction. However throughout this period stock dynamics from ASPIC basically rely on the CPUE series. In order to capture the full extent of this former stock decline ASPIC input should include the observed biomass indices from the two above mentioned survey series.

Therefore, STACFIS recommends that a revised ASPIC model utilizing (1) the original values of cpue and survey indices and (2) incorporating additional Canadian 3L summer and Russian 3LN survey series be evaluated during the interim assessment of redfish in Div. 3LN at the June 2008 Scientific Council meeting".

The present assessment goes beyond the 2007 STACFIS guidelines, incorporating most of the survey biomass indices available for this redfish stock, not only from the Canadian summer survey on Div. 3L and Russian bottom trawl survey on Div. 3LN, but also from the Canadian winter and autumn surveys on Div. 3L, with all input series presented as annual observed data.

Nominal catches and TAC's

Reported catches from Div. 3LN declined from 45 000 to 10 000 ton on the first years of catch records (1959-1964) and oscillated over 21 years afterwards (1965-1985) around 21 000 tons average level. Catches increased sharply to a 79,000 tons high in 1987 and fall steadily afterwards to 450 tons in 1996. From 1986 till 1993 reported catches exceeded TAC's, but in the rest of the years prior to the close of the fishery catches fell well bellow annual TAC's. The NAFO Fisheries Commission implemented a moratorium on directed fishing for this stock since in 1998.

Catch increased to 900 tons in 1998, the first year under a moratorium on directed fishing, with a further increase to 3 100 tons in 2000. Catches declined in 2001-2003 and were stable in 2004-2005 at 650 tons level. Catch almost reached the historic low level in 2006 with 496 tons, but recorded over a tree times fold increase in the final year, with a STACFIS catch estimate of 1664 tons (Table 1, Fig. 1).

Description of the fishery

In the early 1980's the former USSR, Cuba and Canada were the primary fleets directing for redfish in Div. 3LN. The rapid expansion of the fishery was due to the entry of EU-Portugal in 1986 and South Korea in 1987, along with various re-flagged fleets. In the early 1990's Russia and the Baltic mid-water trawlers, together with South Korea and Portuguese bottom trawlers, were still responsible for the bulk of fishing effort, concentrated by that time on the "Beothuk Knoll" (Div. 3LMN border, southwest of the Flemish Cap).

South Korea left the area by the end of 1993 and from 1994 onwards the other fleets reduced effort substantially on Div. 3LN. The quick decline of redfish catch rates was the main reason for this reduction of redfish fishing effort, and justified its partial shift southeast to Div. 3O. Since 1994 most of the redfish catches in NAFO Divisions 3L and 3N were taken as by-catch of the Greenland halibut fishery pursued from the northern slopes of the Sackville Spur in Div. 3L through Flemish Pass till the canyons of northern Grand Bank in Div. 3N. The EU-Spain and EU-Portugal bottom- trawl fleets became the main fleets responsible for the 3LN redfish by-catch over moratorium years, with EU Portugal recently taking most of the by-catch (2006 and 2007).

Commercial Fishery Data

Catch and Effort

On the 1997 assessment (Power, 1997) catch/effort data for Div. 3L and Div. 3N from 1959 to 1995 were analyzed with a multiplicative model (Gavaris, 1980) in order to derive a catch rate series for each division standardized for country-gear-tonnage class, NAFO division, month, and amount of by-catch associated with each observation. Both CPUE series shows much within year variability over time, with no statistically difference between the catch rates for most of the years. The assessment considered that catch rate indices for Div. 3L and Div. 3N were not reflective of year to year changes in population abundance but they may be indicative of trends/patterns over longer periods of time.

This assessment recovers the predicted effort series in fishing hours for Div. 3L and Div. 3N from the 1997 multivariate analysis, in order to derive a single annual catch rate for Div. 3LN: for each year of the 1959-1994 interval this standardized catch rate is given by the ratio between the sum of Div. 3L and Div. 3N STATLANT catch (thousand tons) and the sum of Div. 3L and Div. 3N predicted effort (fishing hours) (Table 2). Annual catch rate for Div. 3LN was finally scaled (difference between each observation and the mean, scaled to the standard deviation of the series) in order to be presented on Fig. 2. Catch rates for Div. 3LN were above average from 1959 till 1965, increasing on the first years of the time series, oscillate around the average on the intermediate years and start declining from 1987 onwards. On the final years, 1990-1994, catch rates were stable at a minimum level well bellow average.

Commercial fishery sampling

Most of the commercial length sampling data available for the 3LN beaked redfish stocks came, since 1990, from the Portuguese fisheries and has been annually included in the Portuguese research reports on the NAFO SCS Document series (Vargas *et al.*, 2008). Taking into account that the majority of the length sampling was from depths greater than 400m, these data should represent *S. mentella* catches. Length sampling data from Spain and Russia were used to estimate the length composition of the commercial catches for those fleets in 2003-2005 and 2003-2007 respectively (González *et al.*, 2006; Vaskov *et al.*, 2008). The 1990-2007 per mille length composition of the Portuguese trawl catch was applied to the rest of the commercial catches (Table 3a). In all cases the 3LN beaked redfish length weight relationships, used to compute each absolute length frequency vector of the 3LN redfish commercial catch (Table 3b), were derived from individual length /weight observations collected annually through the sampling on board of the Portuguese by-catches from both Divisions 3L and 3N (Alpoim and Vargas, 2004; Vargas *et al.*, 2008). The 1998 length weight relationship was applied to the previous years, back to 1990.

The annual mean length of the catch was calculated as a weighted mean of catch numbers at length for each year (Table 3a). The overall mean length of the 1990-2007 catch (arithmetic mean of the annual mean lengths of the commercial catch) was used to derive the anomalies in the mean length on the 3LN beaked redfish commercial catch over this period (Table 3a, Fig. 3). The proportion of small redfish (less than 20cm) in the catch is presented as well, in Table 3a. The purpose of the first exercise (length anomalies) was to detect eventual shifts in the length structure of the commercial catch or by-catch that could reflect changes in the exploitable stock structure. As for the second exercise (proportion of small redfish), a sudden and important increase on the proportion of small redfish in the catch could be regarded as signal of the income of a good recruitment.

Stability in the length structure of the catch/by-catch is observed through the 1990-2007 interval, with no clear pattern on length anomalies detected over time (Fig. 3). Higher negative anomalies are coupled with higher proportions of small redfish in 1991, 1998, 2003 and 2006 suggesting the income in those years of above average recruitments to the exploitable stock, from year classes 4-5 years back in time.

Research Surveys

From 1978 till 1990 several stratified-random bottom trawl surveys have been conducted by Canada in various years and seasons in Div. 3L. However only since 1991 Canadian stratified-random surveys covered both Div. 3L and Div. 3N on a regular annual basis: a spring survey (May-Jun.) and an autumn survey (Sep.-Oct. 3N/Nov.-Dec. 3L for most years). The design of the Canadian surveys was based on a stratification scheme down to 732 m for Div. 3LN (Doubleday, 1981). From 1996 onwards the stratification scheme has been updated to include depths down to 1 464 m (800 fathoms) (Bishop, 1994), but only the autumn surveys have swept strata bellow 732 m depth, most on Div. 3L.

Up until the autumn of 1995 the Canadians surveys were conducted with an Engels 145 high lift otter trawl with a small mesh liner (29 mm) in the codend and tows planned for 30 minute duration. Starting with the autumn 1995 survey in Div. 3LN, a Campelen 1800 survey gear was adopted with a 12 mm liner in the codend and 15 minute tows utilizing SCANMAR. A comparison of the generated data with the original Engel data suggested overall trends in abundance were the same except that the relative measure of abundance estimated for the Campelen trawl conversions were higher (Power and Parsons, 1998).

According to the headers on the original spreadsheets with Canadian survey abundance and biomass data, all surveys on Div. 3L have Engel data converted into Campelen equivalents from 1985 onwards with the exception of the spring survey (conversion since 1980). However for the summer survey the first year of conversion of Engel data remains unclear, since the same figures for the years prior to 1985 on the original spreadsheet with the Canadian summer survey data had been published as Campelen trawl equivalent units as well (Power and Parsons, 1999). So, two alternate series of biomass indices are considered in the assessment for the Canadian summer survey in Div. 3L, one starting in 1978 and the other in 1985.

Abundance and biomass indices have been converted into Campelen equivalents since the start of Canadian surveys on Div. 3N, in 1991. Campelen equivalent data series extended till 1994 (autumn surveys in Div. 3L and Div. 3N) or 1995 (spring surveys in Div. 3L and Div. 3N) and are coupled with the following original Campelen series starting since then. No spring survey was carried out in 2006 on Div. 3N. As regards Canadian surveys, only Campelen data and Engel data converted into Campelen equivalents are used in this assessment.

Since 1983 Russian bottom trawl surveys in NAFO Div. 3LMNO turn to stratified-random, following the above mentioned Canadian stratification for Sub area 3. On 1984 standard tows were set to half hour at 3.5 knots, with a standard gear. From 1984 till 1990, vessels conducting this survey were of the same tonnage class (the BRMT series) with the exception of 1985, when a vessel of smaller tonnage class (PST series) was employed. This smaller category was later employed on the 1991 and 1993 surveys. On 1992 and 1994 no survey was carried out in Div. 3N. On 1995 the Russian bottom trawl series in NAFO Sub area 3 was discontinued (Bulatova *et al.*, 1997).

On 1992 redfish results of the 1984-1991 stratified-random surveys in Div. 3LN by Russia were revised according to standard methodology (Power and Vaskov, 1992). Mean number and mean weight per standard tow were estimated from successful sets only, each tow being adjusted to 1.8 n mi. distance before analysis. Overall mean estimates by year and division were derived from the respective means by strata (weighted by the stratum area) and presented with associated 95% CI's. Survey abundance and survey biomass are finally tabulated by year and division. However in 1994, a Russian research document presents new figures for redfish bottom survey abundance and biomass from the same Russian survey series in Div. 3LN (1984-1991, plus the results of the 1993 survey) (Vaskov, 1994). No details are given regarding the method and the strata used to derive these new figures. The two series (Power, 1984-1991; Vaskov, 1984-1991 and 1993) are considered as alternate biomass indices for Div. 3LN combined from Russian stratified-random surveys.

All the available survey biomass results from the Canadian and Russian stratified-random bottom trawl surveys are presented in Table 4. About 96% of the available biomass data are included in the exploratory analysis preceding the assessment and 88% incorporated in the final framework of the ASPIC assessment.

In 1995 EU-Spain started a new stratified-random bottom trawl spring (May-June) survey on NAFO Regulatory Area of Div. 3NO. Despite changes on the depth contour of the survey, all strata in the NRA till 732m were covered every year, following the standard stratification. From 1998 onwards the Spanish survey was extended to 1464 m (with the exception of 2001, with 1116m depth limit) and in 2004 expanded to the Regulatory Area of Div. 3L. From 1995 till 2000 the survey was carried out by the Spanish stern trawler *C/V Playa de Menduiña* using a *Pedreira* bottom trawl net. In 2001 the *R/V Vizconde de Eza*, trawling with a *Campelen* net, replaced the commercial stern trawler. In order to maintain the data series obtained since 1995, comparative fishing trials were conducted in spring 2001 to develop conversion factors between the two fishing vessel and gear combinations. Former American plaice and Greenland halibut survey indices from C/V *Playa de Menduíña* were transformed to R/V *Vizconde de Eza* units (*González et al.*, 2004), but so far this exercise has not been carried out for beaked redfish. That is the main reason why the Spanish survey data are not yet included in the assessment suite.

Survey biomass and female spawning biomass

All available survey biomass results from the Canadian and Russian stratified-random bottom trawl surveys are presented in Table 4. About 96% of these biomass data are included in the exploratory analysis preceding the assessment and 88% incorporated in the final framework of the ASPIC assessment.

The 1991-2007 spring and autumn survey indices for Div. 3LN combined (biomass and female SSB) are also presented on Table 4. Biomass indices for redfish, derived either from commercial or survey catch rates, typically show large inter-annual variability, too drastic to be only explained by changes in stock abundance from one year to the next. These fluctuations are caused not only by the schooling behaviour of redfish, but also by a wide and "non-uniform" distribution within their geographical and depth limits (all redfish species present both demersal and pelagic concentrations). That is why it is generally accepted that a redfish biomass index represents better a stock trajectory on the long term than the stock size on a short term basis. In order to smooth the wide inter annual variability of the indices, turn the survey series comparable and facilitate the detection of trends within stock dynamics, the survey biomass series used in the assessment and the female SSB survey series were standardized (difference between each observation and the mean scaled to the standard deviations of the series) and so presented on Figure 4a and 4b. From the mid 1980s to the beginning of the 1990s, when catches quickly raised from a previous average level of 21 000 tons (1965-1985) to a much higher level of 41 500 tons (1986-1992), Canadian survey data in Div. 3L and Russian bottom trawl surveys in Div. 3LN suggests that stock size suffered a substantial reduction. Redfish survey bottom biomass in Div. 3LN remained bellow the average level until 1998 and increase to above average level

afterwards. A punctual decline is observed in 2002-2004, followed by a consistent increase of the remaining biomass indices over the most recent years.

In order to estimate spring and autumn female spawning survey biomass by division, Div. 3L and Div. 3N female proportion and maturity at length vectors (Power 2001; Ávila de Melo et al., 2005) were applied to the respective 1991-2007 spring and autumn survey abundances at length. Female spawners and stock abundance at length by division were used to calculate female spawning and stock biomass for Div. 3L and Div. 3N as sum of products (SOP), using the 3M *Sebastes sp.* annual length weight relationships (Ávila de Melo et al., 2007). The SOP ratios (SSB/stock biomass) by division were then applied to the respective swept area survey biomasses to give estimates of the 1991-2007 spring and autumn female SSB in Div. 3L and Div. 3N. Finally the sum of these two indices for each survey series gave the spring and autumn female spawning biomass for Div. 3LN combined.

The 1991-2007 standardized female SSB series showed patterns similar to correspondent total survey biomass series over the years, with all observations bellow average before 1998 and most above average afterwards (Fig.4b).

Abundance at length

Spring and autumn survey abundance at length, for Div. 3LN combined, are presented in Table 5a and 5b. Survey abundance at length for each division, year and survey is derived from the correspondent mean number per tow at length, expanded to the survey abundance estimated by the swept area method. The overall 1991-2007 mean length for each survey series (arithmetic mean of the annual mean lengths of the survey abundances at length) was used to derive the spring and autumn survey length anomalies for the stock over this period (Table 5a and 5b, Fig. 5a and 5b). On both survey series all/most of the anomalies during the first half of the 1990's were negative while all were positive between 1996 and 2000. This shift on the survey catch length structure to larger individuals could reflect a relatively high survival of the year classes through the second half of the 1990's. From 2001 onwards length anomalies are either positive or negative with no clear pattern on the spring survey, whereas on the autumn survey most became closer to the overall mean. The lack of a clear pattern on length residuals from both surveys suggests stability on population structure over recent years. With the exception of 1991 and 1992 on the autumn survey, when a couple of large negative residuals are observed probably as a consequence of a pulse on recruitment from the late 1980's, no further signs of other pulses on recruitment are detected.

ASPIC assessment suite

A non-equilibrium surplus production model (ASPIC; Prager, 1994, 2004 and 2007) was used to assess the status of the stock. The model was adjusted to the STACFIS catches (1959-2007, with catches conditioned on *cpue* series) and to the following

Input series:

I1 (Statlant CPUE)	Standardized cpue for Div. 3LN, ₁₉₅₉₋₁₉₉₄
I2 (3LN spring survey)	Canadian spring survey biomass for Div. 3LN, 1991-2005, 2007
I3 (3LN autumn survey)	Canadian autumn survey biomass for Div. 3LN, 1991, 1993-1994, 1996-2007
I4 _{Power} (3LN Power russian survey)	Russian srping survey biomass for Div. 3LN , 1984-1991 (Power and Vaskov,1992) versus
I4 _{Vaskov} (3LN Vaskov russian survey)	Russian srping survey biomass for Div. 3LN , 1984-1991 and 1993 (Vaskov,1994)
I5 (3L winter survey)	Canadian winter survey biomass for Div. 3L, 1985-1986 and 1990
I6 (3L summer survey)	Canadian summer survey biomass for Div. 3L, 1985, 1990-1991and 1993 versus
I6 (3L full summer survey)	Canadian summer survey biomass for Div. 3L, 1978-1979, 1981,1984-1985, 1990-1991and 1993
I7 (3L autumn survey)	Canadian autumn survey biomass for Div. 3L, 1985-1986, 1990-1994, 1996-2006

All input series consist of annual observed values and were given equal weight in the analysis. On the rest of the analysis each Canadian series is referred by its season and division(s), while the Russian series is referred by its country name. The model assumes that all catchability coefficients are constant over time. Because of the

imprecision associated with the estimate of catchability for the various indices, absolute estimates of stock size and fishing mortality are normalized to the stock size and fishing mortality at MSY (B_{msy} and F_{msy} respectively). That is why normalized estimates are included in ASPIC output and used in the printer plots trajectories of biomass and fishing mortality. In a production model fishing mortality refers to catch/biomass ratio.

Basic assumptions

In this assessment the ASPIC version 5.16 fit the logistic form of the production model (Schaefer, 1954). Being K the carrying capacity stock biomass, r the intrinsic rate of stock biomass increase, C the catch biomass, MSY and Bmsy the long term yield and biomass associated with Fmsy, the model basic assumptions are:

1) A logistic population growth over time of the unexploited stock (Schaefer, 1954)

$$dB_{t} / dt = rB_{t} - (r/K)B_{t}^{2}$$
 (1)

2) For an exploited stock catch is also incorporated in the population growth

$$dB_t / dt = rB_t - (r / K)B_t^2 - C_t$$
 (2)

3) The biological reference points are

a.
$$MSY = rK/4 \tag{3}$$

b.
$$Bmsy = K/2 \tag{4}$$

c.
$$Fmsy = r/2$$
 (5)

Starting with user guesses for the key parameters, Initial Biomass (as a ratio to *Bmsy*), *K*, *MSY* and catchability coefficients for each biomass index, ASPIC generate iteratively estimates of expected biomass indices for each series of observed indices. The key parameters of the model are found by a minimization routine for log squared residuals of *cpue* and biomass from each input survey series.

A summary of the ASPIC model (Prager, 1994) can be found on the 2003 assessment of redfish in Div. 3M (Ávila de Melo *et al.*, 2003).

Input file settings

The ASPIC Ver. 5.16 (Prager, 2005) requires from the user a set of initial definitions/starting guess /constraints that have been specified in the input file as follows:

<u>Line 1</u>: Both FIT and BOT program modes were used. Starting guesses and minimum and maximum bounds were kept constant from FIT to BOT mode.

<u>Line 2</u>: Fit the LOGI STIC (Schaefer) model with condition fitting on YLD (yield) and SSE (sum of squared errors) as objective function.

Line 4: 1000 Number of bootstrap trials when running on BOT mode.

<u>Line 11</u>: OdO No penalty term in objective function for B1>K (biomass on the 1st year of the assessment greater than carrying capacity biomass).

<u>Line 12</u>: 7 data series are to be analyzed as biomass index of the stock (Statlant CPUE, five Canadian and one Russian surveys).

<u>Line 13</u>: 1d0 1d0 1d0 1d0 1d0 1d0 When computing the objective function the squared residuals of each one of the 7 data series have equal weight.

<u>Line 14</u>: 0. 5d0 Starting guess for BI/K = 0.5, the biomass on the 1st year of the assessment is at B_{msy} level.

<u>Line 15</u>: 2. Od4 Starting guess for MSY = 20000 ton. Between 1965 and 1985 catches oscillated with no trend around 21000, catch rates declined when catches were raised above that level.

<u>Line 16</u>: 2. 000E+05 Starting guess for carrying capacity K = 200000 ton, twice the highest observed level of survey biomass (autumn survey average 1998, 2000-2001).

Line 17: 9.007E-06 0.658d0 1.0d0 0.658d0 0.322d0 0.275d0 0.275d0 Starting guess of catchability for: STATLANT cpue (derived from *q* of Statlant CPUE for Div. 3M redfish ASPIC assessment, Ávila de Melo *et al.* 2003); spring survey in Div. 3LN combined (average size of spring survey biomass relative to autumn survey biomass, 1991-2005); autumn survey in Div. 3LN combined (a conservative guess, assuming that autumn survey biomass is a proxy of absolute stock biomass); Russian survey in Div. 3LN combined (all Russian surveys in Div. 3LMNO were made between March and July, so the same starting guess for catchability as the Canadian spring survey); winter survey in Div. 3L (average spring survey in Div. 3LN ratio times average spring in Div. 3LN/autumn Div. 3LN ratio); summer and autumn survey in Div. 3L (average autumn survey Div. 3L/Div. 3LN ratio).

<u>Line 18</u>: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 All key parameters of the model (B1/K, MSY, K, q_{cpue} , $q_{spring3LN}$, $q_{autumn3LN,}$, $q_{Russiann3LN,}$, $q_{winter3L}$, $q_{summer3L}$, and $q_{autumn3L}$) are estimated by the ASPIC program and not kept constant at the starting guess.

<u>Line 19</u> and <u>Line 20</u>: minimum and maximum bounds on the estimate of MSY (5000-50000 ton) and K (100000-500000 ton) respectively. All ASPIC runs on FIT mode gave final estimates of these parameters far from either constraint. The number of bootstrap trials discarded due to parameter estimates falling outside their bounds is minimal.

Line 22: 49 Total number of years in the data sets included in the input file, from 1959 to 2007.

The rest of the settings of the input file were kept with the default options of the ASPIC Ver.5.16. The input file with the formulation used in the assessment, retrospective analysis and projections is presented on Appendix 1.

Exploratory analysis

The 1992 autumn biomass index for Div. 3N and the 1995 autumn index for Div. 3L have anomalously high magnitudes, while staying between relatively low indices from the neighbouring years. The original mean weights per tow have also associated anomalously high errors (highest of each survey series). So survey biomass from these years and divisions were considered outliers of the respective survey series and excluded from the analysis.

Due to the short time overlap between *cpue* and surveys in Div. 3LN combined (1991-2007, 4 years on 49 years of data) the assessment assumes that *cpue* time series, Russian survey and 3L summer and winter surveys basically represent the abundance of the stock during the former period prior to 1990, while 3L autumn survey and surveys in Div. 3LN combined basically represent the abundance of the stock during the more recent period of the 1990's and 2000's. With such a short time overlap, the two pair-wise negative correlations found among STATLANT cpue and the survey series for Div. 3LN combined, each series based on just four pairs of observations, have been disqualified to halt the ASPIC assessment. Therefore only negative correlations between the model and any of the input series of biomass indices, or between surveys overlapping most of the years, were considered a violation of the fundamental assumption of ASPIC that all indices reflect the abundance dynamics of the stock.

Three ASPIC $_{2008}$ formulations, corresponding to three possible arrangements of the alternate Russian and summer in Div. 3L survey series (see table above), were run on FIT mode in order to explore the goodness of fit of the model under three different input survey data:

ASPIC_{Power,2008}

ASPIC_{Power,fullsummer,2008}

ASPIC_{Vaskov,2008}

I1 (Statlant CPUE)+I2 (3LN spring survey)+I3 (3LN autumn survey)+I4Power (3LN Power russian survey)+I5 (3L winter survey)+I6 (3L summer survey)+I7(3L autumn survey)

I1 (Statlant CPUE)+I2 (3LN spring survey)+I3 (3LN autumn survey)+I4Power (3LN Power russian survey)+I5 (3L winter survey)+I6 (3L summer survey full series)+I7(3L autumn survey)

I1 (Statlant CPUE)+I2 (3LN spring survey)+I3 (3LN autumn survey)+I4Vaskov (3LN Vaskov russian survey)+I5 (3L winter survey)+I6 (3L summer survey)+I7(3L autumn survey)

Besides the correlation between alternate Russian and summer series with those which overlap with them, and between ASPIC estimated and observed annual values from each data series (R squared in CPUE) other parameters were used as diagnostics of the FIT outputs from the three formulations considered:

- Number of restarts required for convergence: The routine used in ASPIC to minimize the objective function can stop at a local minima. In order to find a true minimum of the objective function, which is kept constant regardless the initial values of the key parameters, ASPIC program has a restarting algorithm that requires the same solution to be found several times in a row before it is accepted (Prager, 2005). The shorter the number of restarts the quicker is the convergence the better is the fit of the model to the data series.
- Estimated contrast index (ideal = 1.0): C* = (Bmax-Bmin)/K. A wider contrast on the biomass trajectory reflects wider coverage by the stock exploitation history of the Yield/Biomass curve defined by the ASPIC underlying surplus production model.
- Estimated nearness index (ideal = 1.0): $N^* = 1 |\min(B-Bmsy)|/K$. Being a production model centred on MSY, the biomass trajectory given by ASPIC should pass at least once through B_{msy} .
- TOTAL OBJECTIVE FUNCTION. Measuring the overall size of the of *cpue* and survey residuals the least squares objective function points out how close model estimates are to observed data.

An overview of the exploratory analysis (Table 6a) lead to the main conclusion that no significant improvement on ASPIC FIT diagnostics is obtained either by using the non documented figures for the Russian survey series (with an extra point on 1993) from Vaskov (1994) or the full series of the summer survey in Div. 3L, which the first four points (1978, 1979, 1981 and 1984) remained unclear if expressed in original Engel or converted Campelen units.

All runs of the three ASPIC₂₀₀₈ formulations gave very similar results, both for model parameters (Table 6b) and B/B_{msy} and F/F_{msy} trajectories (Fig. 6a and 6b), framing a very similar picture of the stock:

- Carrying capacity (*K*) at 263000-285000 ton
- Level of biomass on the 1st year of the assessment higher than B_{msy} (70-73% of K)
- Relatively low rate of stock biomass increase (r), 0.34-0.39
- MSY at 24000-25000 ton
- Relatively low F_{msy} , 0.17-0.19
- Fishing mortality on the last year of the assessment (2007) near zero and biomass at the beginning of next year near *K*
- Very close B/B_{msy} and F/F_{msy} trajectories

The consistency on the outputs between the three formulations left both the lack of references regarding the Russian survey series by Vaskov (1994) and the doubts regarding the units on the first years of summer survey in Div. 3L as the justification for choosing the ASPIC_{Power2008} formulation to pursue with the 2008 assessment. A secondary reason is that this formulation gives a slightly more conservative result in terms of stock dynamics, namely as regards relative biomass trajectory (Fig. 6a). The input file for the selected ASPIC₂₀₀₈ formulation is presented as Appendix 1.

Sensitivity analysis

Different starting guesses for key parameters or different random number seeds were used to run the $ASPIC_{Power2008}$ formulation. The purpose was to check if the model was sensitive to changes in the starting "region" of key parameters (or number seed) used to initialize the search of a solution that minimizes the *cpue* and survey log squared residuals. Four starting options were tested against the standard starting option specified on $ASPIC_{Power2008}$ input file (Table 7a):

- 25% above and bellow the default random number seed (Input file, line 21)
- an "optimistic start" given by -25% *cpue* and survey catchabilities together with +25% *MSY*, *K* and *B1/K*,
- and a pessimistic start given by +25% cpue and survey catchabilities together with -25% MSY, K and B1/K.

The FIT parameter solutions from each of these four options are compared with the standard FIT solution on Table 7b. The four different starting options arrived to the same or very similar solutions, showing that the ASPIC results given by the selected formulation are robust and independent of the values chosen for the input parameters used to initialize the model.

Retrospective Analysis

A 2008-2004 retrospective analysis with the ASPIC_{Power2008} formulation was carried out in order to check for patterns on bias of relative biomass and fishing mortality estimates. Going back in time the results present an over bias on biomass and an under bias on fishing mortality, but without the typical pattern of increasing bias as each assessment stop one year sooner (Table 8a, 8b and 8c; Fig. 7a and 7b). In fact the upper and lower limit of the analysis (2008-2004) showed similar B/B_{msy} and F/F_{msy} trajectories while the assessments from the last couple of years (2008-2007) fell more apart. The closest results are from the runs of intermediate years (2006 and 2007).

Moreover the largest biases are not found at recent years but through the second half of the 1990's-beginning of 2000's (Fig. 7c). How fast and how far stock biomass recovers after taking off from the depressed level of the mid 1990's is what marks the difference between the assessments included in this retrospective analysis. Not the stock dynamics on the final years, when the difference between biomass and fishing mortality results from sequential assessments tend to smooth as a consequence of a very low level of catches. The consistency of terminal biomass retrospective results will later on be reflected on consistency of medium term projections from consecutive years.

Assessment results

The ASPIC₂₀₀₈ formulation runs on both deterministic (FIT) and bootstrap (BOT) mode using 1000 trials. Deterministic results are presented on Appendix 2, with a summary of diagnostics and parameters included on Table 6a and 6b under ASPIC_{Power,2008}. Bootstrap results are presented on Appendix 3, with a summary on Table 9. Despite the negative correlations among STATLANT cpue and both spring and autumn survey biomass for Div. 3LN combined (conditioned by the very small number of pair-wise observations and not regarded as an assessment constraint), correlation among these surveys is relatively high $(r^2 > 0.5)$. Correlation is high $(r^2 > 0.7)$ among Canadian surveys in Div. 3L and between those and the Russian survey in Div. 3LN The model has a poor fit to either to CPUE or most of the survey data due to the usual wide inter annual variability of redfish abundance indices (Appendix 2). Apart the Canadian spring survey for Div. 3LN combined, where residuals seem to be randomly distributed, negative/positive patterns on residuals between observed and model generated values are present for the rest of the input series. Nevertheless these poor diagnostics seem to have little impact on the consistency of the assessment, taking into account the bootstrap results (Appendix 3 and Table 9): generally small bias of the point estimates (< 5%) for most parameters. The high level of bias on the absolute and relative (to MSY) equilibrium yield for 2008 is due to a status quo fishing mortality close to zero, leading to a very small equilibrium catch for last year+1. The impact of survey/CPUE residuals on biomass and fishing mortality is minimal as well, with B/B_{ms}, and F/F_{msy} bias corrected trajectories practically undistinguishable from their deterministic ones (Fig. 8a and 8b).

The model results suggest a maximum sustainable yield (*MSY*) of 25000 ton (80% CL = 21800, 26600 ton) that can be produced with a fishing mortality of 0.18 (80% CL = 0.12, 0.23) when stock biomass is at B_{msy} level. This magnitude of F_{msy} is consistent with the results of the yield per recruit analysis for redfish in Div. 3LN presented on the 1999 assessment of this resource ($F_{0.1} = 0.12$, $F_{max} = 0.22$) (Power and Parsons, 1999). Relative biomass oscillated 13-30% above B_{msy} for most of the former years up to 1987, supporting an average level of catches just bellow MSY (1960-1985 average level of catch at 21000 ton). Apart the 1971-1973 interval, when fishing mortality was at (or slightly above) F_{msy} , fishing mortality oscillated within bounds bellow F_{msy} (35-80%) until 1985. Between 1986 and 1990 catches were higher than MSY (29000-79000 ton), pushing fishing mortality to well above F_{msy} from 1986 till 1993. Those eight years of heavy over-fishing determine the fall of biomass from 26% above B_{msy} in 1987 to 35% bellow in 1994, when a minimum stock size is recorded. Long living/slow growing species such as redfish can not sustain over-fishing but for short periods of time: the quick decline of stock biomass through the second half of the 1980's – first half of the 1990's was followed by a drop on catch and fishing mortality. Since 1996 both were kept at low to very low levels. Over the moratorium years biomass was allowed to increase and is now (2007) well above B_{msy} (80% CL = 1.55, 1.96 B_{msy}) (Table 9, Fig. 8a and 8b).

Catch versus surplus production (Appendix 2, ESTIMATED POPULATION TRAJECTORY NON BOOTSTRAPPED, 8th column from the left) trajectories are presented on Fig. 9. From 1960 till 1985 catches form a scattered cloud of points up and down surplus production curve but always within its vicinity. On 1986-1987 catches rise well above the surplus production and though declining continuously since then were still above equilibrium yield in 1993. Estimated catch has been well bellow surplus production levels since 1994.

ASPIC projections

Regardless the input formulations, the starting guess scenario or the mode of the model runs, the main conclusion of this assessment is that at present the biomass of redfish in Div. 3LN is well above B_{msy} , while fishing mortality is well bellow F_{msy} . From ASPIC results the status of the stock allows its exploitation, but this is a first attempt to pursue an analytical assessment of this stock. Therefore these results should be treated with caution.

<u>Underlying assumptions for the low catch option</u>

Redfish in Div. 3LN has been under moratorium over the past ten years. A stepwise approach to direct fishery should start by a low exploitation regime associated with a high probability of keeping the stock biomass within its present safe zone. From the ASPIC bootstrap results (Table 9 and Appendix 3, ESTIMATES FROM BOOTSTRAPPED ANALYSIS, Line 22) this safe zone can be defined as $B/B_{msy} = > 1.55$, the bias-corrected 80% lower confidence limit of relative biomass at the beginning of 2008.

An ASPIC medium term projection was carried out under constant catch instead of constant fishing mortality. The reason for this option relates to the proposed approach to reopen the fishery keeping the biomass well above B_{msy} , until future assessments confirms a positive answer of the stock to exploitation as suggested by the present assessment. This strategy turns the analysis of medium term projections under a range of F_{msy} percentages useless, since the purpose is to keep a fishing mortality within a low level able to maintain the present stock size.

The catch options for medium term projections should include in principle MSY (25000 ton) and a catch of 21000 ton, a "real world" proxy of MSY corresponding to the average level of catches sustained by the stock over 25 years (1960 -1985). However the purpose of this exercise is not to compare the impact of different full exploitation regimes on the stock but to predict how biomass and fishing mortality react to the beginning of exploitation, just at the actual surplus production level. Therefore ASPIC projection was carried out with a constant catch of 5000 tons. This level of catch is a conservative proxy of the actual equilibrium yield (75% of the bias corrected equilibrium yield for 2008) (Table 9).

The ASPICP program

ASPIC has an auxiliary program, ASPICP, to provide not only bias corrected estimates of biomass and fishing mortality on an annual basis for the assessment time interval (with associated 50% and 80% confidence limits) but also provides projections of these trajectories to the future. ASPICP reads information from the 1000 trials of the BOOTSRAP results kept in a .BIO file and project each of these trials a number of years ahead, under an annual $F_{status\ quo}$ multiplier or yield. These constraints are specified by the user in a .CTL file (Appendix 4) that controls the projection.

The ASPICP run with a 2008 *status quo* catch (2007 level of 1700 ton) and an annual catch of 5000 ton for the rest of the years (2009-2012). Results are stored in a .PRJ file presented in Appendix 5.

Projection results

The bias corrected 1959–2012/ 2013 trajectories of biomass and fishing mortality rate (relative to B_{msy} and F_{msy} .), with associated 80% lower and upper CL's are presented in Table 10a and 10b, Appendix 5 and Fig. 10a and 10b. From the ASPICP results a low exploitation regime of 5000 ton will keep biomass at the same high level, between 1.84 B_{msy} at the beginning of 2008 and 1.87 B_{msy} at the beginning of 2013 (80% CL's, 1.74 -1.91 B_{msy}). , Meanwhile fishing mortality will increase from $0.04F_{msy}$ in 2008 to $0.11~F_{msy}$ in 2012 (80% CL's, 0.10-0.13 F_{msy}). In other words, a constant catch level of 5000 ton will keep the stock size of redfish in Div. 3LN in its present safe zone, with the lower 80% CL of relative biomass well above the B_{msy} level. At the same time fishing mortality rate will remain at a (very) low level, with an upper 80% CL well bellow F_{msy} .

In order to test if these projection results are robust or if they might be affected by differences on results from previous assessment, the same projection exercise was performed till the same year of 2013, but starting one year earlier (2007). The ASPICP run with the bootstrap results of the 2007 assessment using the same ASPIC $_{Power}$ formulation, but for the 1959-2006 interval. A *status quo* catch was adopted for 2007 (= 2006 level of 500 ton) followed by an annual catch of 5000 ton for the rest of the years (2008-2012). The bias corrected 2007-2013 B/B_{msy} trajectories from the two consecutive ASPICP $_{2008}$ and ASPICP $_{2007}$ runs are very similar (Table 11, Fig. 11). Regardless the retrospective bias between the two last assessments both runs shown the stock at the same high level relative to B_{msy} , five-six years after the reopening of a directed fishery at a small scale of 5000 ton.

Reference Points under Precautionary Approach

The ASPIC bias corrected results were input under the precautionary framework (Fig. 12). The stock trajectory presented under this precautionary approach framework shows a stock rapidly declining to bellow B_{msy} when fishing mortality rate rises from just above to well above F_{msy} (1986-1987), and a stock rapidly returning to above B_{msy} after fishing mortality drops to well bellow F_{msy} (1993-1994).

The NAFO SC Study Group recommendations from the meeting in Lorient in 2004 (SCS Doc. 04/12), as regards Limit Reference Points (LRP's) for stocks evaluated with surplus production models, considered F_{lim} at F_{msy} and F_{target} at 2/3 F_{msy} . The Study Group also considered that the biomass giving production of 50% MSY was a suitable B_{lim} . Under the Schaeffer model used in the present ASPIC assessment this is 30% B_{msy} . However the stock biomass decline of the late 1980's – early 1990's didn't reach such level, having a minimum at 35% B_{msy} . Taking into account that bellow this level the dynamics of the stock is unknown, a B_{lim} = 35% B_{msy} can be regarded as first attempt to have a biomass LRP for redfish in Div. 3LN.

REFERENCES

- Alpoim, R., and J. Vargas, 2004. Length-weight relationships of the Portuguese commercial catches in NAFO, 1998-2003. *NAFO SCR Doc.* 04/40 Ser. No N4991, 10pp.
- Ávila de Melo, A.M., R. Alpoim and F. Saborido-Rey, 2003. An assessment of beaked redfish (*S. mentella and S. fasciatus*) in NAFO Div. 3M. *NAFO SCR Doc.* 03/45 Ser. No N4863, 72p.
- Ávila de Melo, A. M., Power, D. And R. Alpoim, 2005. An assessment of the status of the redfish resource in NAFO Divisions 3LN. NAFO SCR Doc. 05/52, Serial No. N5138, 19 pp.
- Ávila de Melo, A. M., Duarte, R., Power, D. and R. Alpoim, 2007. An ASPIC Based Assessment of Redfish in NAFO Divisions 3LN. NAFO SCR Doc. 07/38, Serial No. N5390, 51 pp.
- Ávila de Melo, A., Saborido-Rey, F. and R. Alpoim, 2007. An XSA based assessment of beaked redfish (*S. mentella and S. fasciatus*) in NAFO Division 3M. NAFO SCR Doc. 07/47, Serial No. N5399, 43 pp.
- Bishop, C. A., 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. *NAFO SCR. Doc.* 94/43 (rev.). Ser. No N2413.
- Bulatova A. Yu., Vaskov A. A., Kiseleva and P. I. Savvatimsky 1997: Review of Russian Bottom Trawl Surveys in the NAFO Subareas 0, 2 and 3 for 1954-95. NAFO Sci. Coun. Studies, 30: 51-55.
- Doubleday, 1981. Manual of groundfish surveys in the Northwest Atlantic. . NAFO Sci. Coun. Studies 2, 55p.
- Gavaris, S., 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. *Canadian Journal of Fisheries and Aquatic Science* 37, 2272-2275.
- González, F., del Río, J. L., Murua, H., Román E., Casas, M. and G. Ramilo, 2006. Spanish research report for 2005. NAFO SCS Doc. 06/09, Serial Number N5232. 25 pp.
- González Troncoso, D., C. González and X. Paz, 2004. American plaice biomass and abundance from the surveys conducted by Spain in the NAFO Regulatory Area of Divisions 3NO, 1995-2003. NAFO SCR 04/9, Serial Number N4954, 22 pp.
- González Troncoso, D., E. Román and X. Paz, 2004. Results for Greenland halibut from the surveys conducted by Spain in the NAFO Regulatory Area of Divisions 3NO, 1996-2003. NAFO SCR 04/11, Serial No N4956, 16 pp.
- NAFO, 2007. Northwest Atlantic Fisheries Organization Scientific Council Reports 2007. Dartmouth, Nova Scotia, Canada, 279 pp.
- Power, D. and A. A Vaskov, 1992. Abundance and biomass estimates of redfish (*S. mentella*) in Div. 3LN from Russian groundfish surveys from 1984-91. NAFO SCR Doc. 92/59. Serial No. N2113. 9 pp.
- Power, D., 1997. Redfish in NAFO Divisions 3LN. NAFO SCR Doc. 97/64, Serial No. N2898.
- Power, D. and D. Maddock Parsons, 1998. Canadian research survey data conversions for redfish in Div. 3LN based on comparative fishing trials between an Engel 145 Otter Trawl and a Campelen 1800 shrimp trawl. NAFO SCR Doc. 98/71. Serial No. N3063. 21 pp.
- Power, D. and D. Maddock Parsons, 1999. The status of the redfish resource in NAFO Div. 3LN. SCR Doc. 99/65. Serial No. N4124. 27 pp.
- Power, D., 2001. An assessment of the status of the redfish resource in NAFO Divisions 3LN. NAFO SCR Doc. 01/62, Serial No. N4440, 22 pp.

- Power, D., 2003. An assessment of the status of the redfish resource in NAFO Divisions 3LN. NAFO SCR Doc. 03/55, Serial No. N4873, 21 pp.
- Praguer, M. H., 1994. A suite of extensions to no-equilibrium surplus-production model. *Fish. Bull. U.S.*, 90(4): 374-389.
- Praguer, M. H., 2004. User's manual for ASPIC: a stock production model incorporating covariates (ver. 5) and auxiliary programs. *NMFS Beaufort Laboratory Document* BL-2004-01, 25pp.
- Praguer, M. H., 2007. Quick reference to ASPIC Suite 5.x. http://www.sefsc.noaa.gov/mprager/index.html as consulted in 25/01/07.
- Vargas, J., Alpoim, R., E. Santos, and A.M. Ávila de Melo, 2008. Portuguese research report for 2007. *NAFO SCS Doc.* 08/5 Ser. No N5495, 47 pp.
- Vaskov, A.A., 1994. Assessment of redfish stocks in Divisions 3LN from trawl acoustic survey data, 1993. NAFO SCR Doc. 94/13, Serial No. N2376, 9 pp.
- Vaskov, A.A., Pochtar, M.V., Skryabin, I.A., Sigaev, I.K. and V.A. Rikhter, 2008. Russian research report for 2007. NAFO SCS Doc. 08/06, Serial No. N5496, 28 pp.

Table 1: Summary of catch and TAC's of redfish in Div. 3LN estimated from various sources

		trom various so		
YEAR	3L	3N	TOTAL	TAC
1959	34107	10478	44585	
1960	10015	16547	26562	
1961	8349	14826	23175	
1962 ^a	3425	18009	21439	
1963 ^a	8191	12906	27362	
1964 ^a	3898	4206	10261	
1965	18772	4694	23466	
1966	6927	10047	16974	
1967	7684	19504	27188	
1968 ^a	2378	15265	17660	
1969 ^a	2344	22356	24750	
1970 ^a	1029	13359	14419	
1971 ^a	10043	24310	34370	
1972	3095	25838	28933	
1973	4709	28588	33297	
1974	11419	10867	22286	28000
1975	3838	14033	17871	20000
1976	15971	4541	20513	20000
1977	13452	3064	16516	16000
1978	6318	5725	12043	16000
1979	5584	8483	14067	18000
1980	4367	11663	16030	25000
1981	9407	14873	24280	25000
1982	7870	13677	21547	25000
1983	8657	11090	19747	25000
1984	2696	12065	14761	25000
1985	3677	16880	20557	25000
1986	27833	14972	42805	25000
1987 ^b	30342	40949	79031	25000
1988 ^b	22317	23049	53266	25000
1989 ^b	18947	12902	33649	25000
1990 ^b	15538	9217	29105	25000
1991 ^b	8892	12723	25815	14000
1992 ^b	4630	10153	27283	14000
1993 ^{b,c}	5897	9077	21308	14000
1994 ^{b,c}	379	2274	5741	14000
1995	292	1697	1989	14000
1996	112	339	451	11000
1997	151	479	630	11000
1998	494	405	899	0
1999 ^b	518	1318	2318	0
2000 ^{b,c}	657	819	3141	0
2001 ^b	653	245	1442	0
2001 2002 ^b	651	327	1216	0
2002	584	327 751	1334	0
2003	401	236	637	0
2004	581	78	659	0
2006	53	444	496	0
2007 ^b	118	1546	1664	0
2001	110	1040	1004	U

a Includes catch that could not be identified by division

b includes estimates of unreported catches

c Catch could not be precisely estimate due to discrepancies in figures from available sources: average of the range of the different catch estimates.

Table 2: Redfish STATLANT catch and predicted effort for Div. 3L and Div. 3N, 1959-1994 (Power,1997).

Annual catch rate for Div. 3LN, 1959-1994.

7.41	nual catch rat	e for DIV. 3LN L	1, 1959-1994. 31	N	3L	.N	3LN
Year	STATLANT	Predicted	STATLANT	Predicted	STATLANT	Predicted	CPUE
	Catch	EFFORT	Catch	EFFORT	Catch	EFFORT	annual
1959	34107	22604	10478	8659	44585	31263	1.426
1960	10015	5690	16547	10892	26562	16582	1.602
1961	8349	3610	14826	10049	23175	13659	1.697
1962	3425	2049	18009	11090	21434	13139	1.631
1963	8191	3973	12906	8958	21097	12931	1.632
1964	3898	1491	4206	2981	8104	4472	1.812
1965	18772	8190	4694	2551	23466	10741	2.185
1966	6927	4615	10047	4915	16974	9530	1.781
1967	7684	3793	19504	10569	27188	14362	1.893
1968	2378	1446	15265	17684	17643	19130	0.922
1969	2344	1354	22356	17109	24700	18463	1.338
1970	1029	499	13359	10026	14388	10525	1.367
1971	10043	5207	24310	20320	34353	25527	1.346
1972	3095	1877	25838	18982	28933	20859	1.387
1973	4709	2078	28588	18186	33297	20264	1.643
1974	11419	11907	10867	5374	22286	17281	1.290
1975	3838	2443	14033	8265	17871	10708	1.669
1976	15971	11335	4541	4537	20512	15872	1.292
1977	13452	10461	3064	2738	16516	13199	1.251
1978	6318	5961	5725	4925	12043	10886	1.106
1979	5584	3517	8483	6176	14067	9693	1.451
1980	4367	2873	11663	6229	16030	9102	1.761
1981	9407	6020	14873	9216	24280	15236	1.594
1982	7870	4812	13677	8160	21547	12972	1.661
1983	8657	4960	11090	7734	19747	12694	1.556
1984	2696	1804	12065	12263	14761	14067	1.049
1985	3677	2104	16880	16858	20557	18962	1.084
1986	27833	15247	14972	15057	42805	30304	1.413
1987	34212	22369	44819	29517	79031	51886	1.523
1988	26267	19629	26999	24453	53266	44082	1.208
1989	19847	10567	13802	14884	33649	25451	1.322
1990	17713	16774	11392	18513	29105	35287	0.825
1991	8892	12329	12723	20052	21615	32381	0.668
1992	4630	2452	10153	13755	14783	16207	0.912
1993	5897	1576	9077	17116	14974	18692	0.801
1994	379	410	2274	2900	2653	3310	0.802

Table 3a: Length composition (absolute frequencies in '000s) of the 3LN redfish commercial catch, 1990-2007.

Length	1990	1991	1992	1993	1994	1995	1996	1997	1998
10									
11									
12	12								
13	6								
14	21								
15	28	28							
16	73	103	9						
17	199	394	28			2			
18	286	1034	412		5	2		0	1
19	445	2157	1291	5	6	3	1	0	2
20	720	3313	2375	_	16	14	4	2	13
21	1309	3780	2943	235	287	9		11	57
22	2081	4922	3600	714	683	65	6	17	151
23	3212	7340	4358	1141	594	64	17	34	277
24	4164	7575	5552	2565	708	99	9	64	296
25	5216	6944	4981	5237	944	100	9	98	248
26	5560	5981	5145	5115	1297	277	12	118	221
27	5410	6197	4579	5433	1404	330	35	144	218
28	5217	5322	4063	5004	1182	300	75	114	173
29	4712	3354	4637	4437	1188	263	76	114	154
30	4751	4043	3911	3283	1011	310	182	114	120
31	4551	2695	3711	2964	912	313	197	154	129
32	3943	2478	2187	2313	944	309	98	146	119
33	3082	1582	1355	2291	596	226	67	131	110
34	2737	1179	1569	1527	526	189	30	71	66
35	2100	928	1604	1059	363	182	35	24	19
36	1681	831	1895	923	202	102	23	19	18
37	1416	580	1571	766	196	160	7	14	11
38	1128	482	1303	807	158	171	5	10	8
39	729	363	1114	489	124	100	11	3	3
40	458	292	790	505	69	144	2	4	3
41	321	188	558	320	49	63	3	1	2
42	255	117	420	306	23	1	1	1	0.09
43	237	68	203	137	15	3	2	2	0.03
43	157	83	203 85	175	7	3	2	1	0.10
45	84	33	76	107	1	3	2	0.07	'
46	58	8	32	9	3	3	2	0.10	0.02
46	24	0	9	47	0.22			0.10	0.02
48	11	2	8	47 5	0.22	3		0.15	
49	6	2	1	3	0.07	3		0.15	
50	O		ļ		0.07				
50	1	25			2				
52	2	25			2				
52	1								
53 54	2								
		74404	00075	47040	40547	0045	040	4 44 4	0.400
no ('000)	66410	74421	66375	47918	13517	3815	910	1411	2422
weight (tons)	29105	25815	27283	21308	5741	1989	451	630	899
mean weight (g)	438	347	411	445	425	521	496	446	371
mean length	29.3	26.6	28.4	29.6	29.1	31.6	31.2	29.8	27.4
length anomalies	0.23	-2.5	-0.7	0.5	0.0	2.5	2.1	0.7	-1.7
%lengths <20cm	1.6%	5.0%	2.6%	0.0%	0.1%	0.2%	0.1%	0.0%	0.1%

Table 3a: cont.

Length	1999	2000	2001	2002	2003	2004	2005	2006	2007
10									
11					0.03				
12					0.03				
13					1			0.00	
14					1			0.00	
15 16			1	0	5 8			10 24	
17	0	1	2	1	o 21	1	2	34	
18	U	1	1	1	44	2	4	65	
19	16	4	4	3	90	6	9	99	47
20	47	6	18	14	151	15	11	182	157
21	80	10	52	41	218	28	13	300	84
22	150	26	102	81	269	35	11	347	163
23	128	46	118	101	277	41	16	340	232
24	120	85	114	132	258	54	35	210	182
25	178	195	114	154	261	85	61	147	232
26	318	364	126	204	309	157	138	111	216
27	555	546	170	248	324	190	181	99	129
28	712	943	188	289	286	184	201	88	557
29	673	1003	179	289	245	184	223	62	450
30	520	1027	236	294	225	178	176	60	387
31	413	564	289	295	204	107	109	35	348
32	434	315	303	276	189	108	91	28	637
33	383	237	298	216	196	95	83	19	335
34	268	217	218	132	149	73	71	17	268
35	141	129	212	83	112	51	63	10	133
36	89	60	121	37	62	36	56	5	120
37	82	78	82	18	41	17	31	2	4
38	51	50	55	11	22	10	15	1	3
39	37	47	30	3	14	9	8	0.01	25
40	23	23	18	2	7	5 2	8 4	0.32	25
41 42	19 13	12 15	10 7	1 2	2 3	1	2	0.00 0.00	1
42	3	9	4	2	2	2	6	0.00	0.1
44	3	1	3	1	2	1	3		0.1
45	3	2	1	'	0.1	1	1		0.1
46	0.24	1	1		2	0.2	0		0.1
47	0.21	0.48	0.20		0.04	0.80	2		
48		0.10	0.20		0.01	0.00	0.04		
49							0.0.		
50									
51					0.26				
52									
53									
54					0.31				
no ('000)	5457	6020	3075	2929	3999	1681	1632	2295	4734
weight (tons)	2318	2617	1442	1216	1334	637	659	497	1729
mean weight (g)	425	435	469	415	334	379	404	217	365
mean length	29.9	30.1	30.8	29.5	27.5	29.5	30.1	23.9	29.4
length anomalies	0.8	1.0	1.7	0.4	-1.6	0.4	1.0	-5.2	0.3
%lengths <20cm	0.3%	0.1%	0.2%	0.2%	4.2%	0.5%	0.9%	10.1%	1.0%

Table 3b: Length weight relationships from 3LN Sebastes sp. commercial sampling data used in the computation of 3LN catch parameters.

(Alpoim and Vargas, 2004; Vargas et al., 2005-2008)

Year	а	b
1990-1998	0.1115	2.4353
1999	0.0689	2.5588
2000	0.0979	2.4602
2001	0.0769	2.5298
2002	0.0447	2.6885
2003	0.0095	3.1279
2004	0.0208	2.8851
2005	0.0208	2.8851
2006	0.0611	2.5597
2007	0.0207	2.8946

Table 4: Survey biomass from all stratified bottom trawl surveys on Div. 3L and Div.3N, 1978-2007(shaded observations included in the ASPIC assessment suite,

observations in brackets excluded). Survey female SSB from spring and autumn Canadian surveys on Div. 3LN, 1991-2007 (two last columns on the right) Canadian Russian Canadian Canadian Div. 3LN Div. 3LN Div. 3LN Div. 3LN Div. 3L Div. 3L Div. 3L Div. 3N Div. 3N Div. 3N Div. 3LN Div. 3LN Div. 3L I5_{winter} 12_{spring} I3_{autumi} I6_{summer} I7_{autumn} 18_{spring} 19_{spring} I10_{autumn} I2_{springSSB} I3_{autumnSSE} I4_{Power} 14_{Vasko} I11_{summe} 311.2 1978 1979 227.8 1980 40.3 1981 261.4 1982 1983 1984 277.7 215.9 199.4 1985 94.0 85.9 90.2 161.0 98.2 105.3 1986 63.0 46.8 36.6 17.1 1987 70.3 60.8 1988 44.9 40 1989 10.9 12.3 1990 8.4 7.1 18.2 92.8 20.7 1991 10.6 37.9 18.7 14.5 37.6 13.7 6.3 4.4 24.2 47.6 5.2 1.5 2.7 2.3 1992 10.1 (136.4)13.4 7.4 (123.0)1993 22.6 19.2 30.3 20.8 6.0 6.5 16.1 13.2 129.8 5.8 4.3 1994 4.2 31.8 7.2 2.3 1.9 24.6 0.7 5.4 5.9 (90.7)1995 (50.1)3.3 2.6 40.7 1.0 22.8 2.9 3.1 1996 16.0 4.7 16.8 6.0 11.3 1997 14.9 70.7 19.5 9.3 5.7 2.1 8.6 51.1 1998 59.4 112.2 18.5 27.6 31.8 93.7 10.9 15.6 72.0 40.2 1999 61.5 38.9 21.3 33.1 10.2 14.1 2000 87.8 100.5 24.9 36.2 51.7 75.5 17.6 15.7 2001 41.6 132.6 28.6 26.2 15.4 104.0 9.2 16.2 50.1 38.2 4.9 2002 31.0 11.9 9.1 21.8 9.0 2003 27.7 71.9 15.0 17.2 3.8 9.4 10.5 56.9 12.1 2004 79.6 49.9 9.3 14.4 65.3 40.6 18.2 2005 66.5 58.6 16.7 36.5 29.9 41.9 9.0 11.9 2006 27.2 35.3 13.2 91.9 64.7

57.5

174.1

44.7

67.2

40.9

14.2

2007

218.8

124.8

Table 5a: 3LN spring survey abundance at length, 1991-2007 (thousands).

Table 5a: 3LN spring survey	abundance	at length, i	331-2007 (illousarius).	•			
Length	1991	1992	1993	1994	1995	1996	1997	1998
4								
5								
6						466		20
7						228		39
8						149	685	8
9	849					298	360	39
10	1149			500		296	251	113
11	798	381	122	316		478	730	533
12	558	2988	1304	501		806	722	455
13		7925	2397	462	108	919	540	172
14		5192	5646	494	272	408	1871	561
15		2862	11061	1228	278	712	1859	895
16		382	13648	1611	967	846	1129	1505
17	3864	419	8798	2831	2852	1592	1201	2045
18		1111	2720	2801	4295	4354	1860	2124
19	7747	2480	2475	1266	5026	9475	3280	2848
20	4521	2574	3841	763	2708	10903	4711	9468
21	3481	3559	5756	853	1818	12106	6367	24836
22	5146	1690	5304	717	1337	13832	7008	34249
23	7250	1732	5713	1132	1259	16619	8191	31104
24		2721	4761	1439	1361	12491	10669	28361
25	3365	2865	3400	1700	1005	8315	9469	21270
26		3250	3703	1522	1601	5648	7757	19508
27	1426	2411	4481	1014	1694	5102	4047	16076
28	952	1834	3286	775	1437	4897	2760	12714
29	1037	1506	2877	699	1154	4260	1871	9626
30	607	1048	2607	461	722	3320	1801	6118
31	534	1014	2970	304	474	2229	1354	6512
32	417	810	3088	234	548	1563	995	6155
33	369	825	2621	132	265	757	637	5685
34	399	540	2161	146	144	337	438	3286
35		544	1503	102	105	167	160	970
36	190	366	880	132	113	105	77	659
37	222	216	696	121	151	117	42	402
38		219	669	78	101	32	88	82
39	130	300	726	28	70	59	4	82
40	118	220	483	46	62	28		216
41	45	77	371	0	15	15		15
42	88	85	216	8	46	4		20
43	69	85	83	47	27	35	15	201
44	45	77	189	27	31		31	12
45	57	62				15	15	15
46		46	51			15	46	
47		4	20		15		15	
48	11	31	31					
49		31						
50								
abundance (millions)	66.0	54.5	110.7	24.5	32.1	124.0	83.1	249.0
biomass ('000 tons)	10.6	10.1	22.6	4.2	5.9	22.8	14.9	59.4
mean length (cm)	21.6	21.6	22.6	21.6	22.7	23.4	23.5	25.1
length anomalies (cm)	-1.7	-1.7	-0.7	-1.7	-0.6	0.1	0.2	1.8

Table 5a: cont

Table 5a: cont.										
Lenç		1999	2000	2001	2002	2003	2004	2005	2006 ⁽¹⁾	2007
	4							40		
	5				62		31			
	6	16	185	109	170	293	804	108		154
	7	656	795	1512	472	2059	2399	540	309	3452
	8	3280	378	1302	1072	1684	1236	950	602	9327
	9	5878	89	484	1525	1525	2208	2891	494	2625
	10	1343	166	240	2517	1202	4106	4893	633	886
	11	309	402	116	1085	418	2910	7296	1235	1683
	12	430	191	451	1645	1449	1653	8756	1343	2296
	13	517	412	346	853	1102	1330	9684	1575	1908
	14	369	353	1073	533	1279	639	7710	2903	1928
	15	179	1207	1741	766	2631	1235	7437	5775	3631
	16	774	2063	1666	1371	3567	1335	7357	8060	5993
	17	703	2651	3337	2595	6196	2764	8647	10731	14187
	18	3440	2954	5241	6444	8659	3668	16473	12769	24588
	19	2989	6491	8252	8160	15503	8994	31508	14607	26944
	20	5395	11472	9589	11325	21130	11904	33704	19192	26004
	21	16819	22819	14394	13957	23795	16955	33184	26681	43667
	22	31066	42444	15553	14930	19308	16583	30969	30001	68146
	23	38231	52730	15592	15596	15146	20421	30647	23763	87379
	24	45397	54039	14842	16048	10830	17002	28563	19146	96979
	25	21478	34955	10153	12608	8066	14655	24308	10685	78850
	26	30238	27243	10044	11223	6898	24394	18439	5466	90999
	27	21651	21635	11334	8886	5109	38931	20028	6300	81120
	28	15676	14299	10225	7495	3557	43212	15249	2764	36970
	29	14330	15399	10373	6418	2782	24423	11907	3258	38024
	30	6697	13924	9530	3736	2705	18143	8832	2640	30267
	31	5727	13111	10453	3588	2199	13712	5769	2038	30138
	32	4310	13224	8903	2238	2360	9705	3036	1868	21975
	33	3259	6491	5180	1378	1979	3487	2012	1328	9163
	34	2039	5984	3032	980	1015	5390	1618	371	8158
	35	877	3590	975	455	642	2248	832	262	7223
	36	537	1019	300	212	228	476	592	139	9422
	37	269	663	382	93	82	877	222	31	1894
	38	102	504	101	43	35	75	112	46	1945
	39	67	186	140	59	32	43	86	0	193
	40	79	199	23	45	94	23	12	0	115
	41	51	16	0	15		4	15	46	59
	42	66	31	63	15	45	15	8	31	24
	43	0	31	28		15	15		46	8
	44	27	31	28			0	15		23
	45	0.4	31	15			8			
	46	31	15							
	47									
	48									
	49									
	50	205.0	0747	407.4	100.5	175.6	212.5	201:	0.17.	005 -
abundance (millions)		285.3	374.4	187.1	160.6	175.6	318.0	384.4	217.1	868.3
biomass ('000 tons)	\dashv	61.5	87.8	41.6	31.0	27.7	79.6	66.5	35.3	228.6
mean length (cm)		24.7	25.5	25.2	23.5	22.0	25.7	22.2	21.9	25.1
ength anomalies (cm)	ivisio	1.4	2.2	1.9	0.2	-1.3	2.4	-1.1	-1.4	1.7

⁽¹⁾ Survey data only from Division 3L

Table 5b: 3LN autumn survey abundance at length, 1991-2007 (thousands).

Le	ength	1991	1992 ⁽²⁾	1993	1994	1995	1996	1997	1998
	4								
	5				15	243	66	75	17
	6					259	419	626	
	7	203				139	103	16	39
	8	1299				111	76	227	47
	9	1237				241	168	918	251
	10	7273		92	31	293	291	1613	214
	11	22263	371	64	31	214	406	1070	203
	12	62498	62	371	0	242	118	373	275
	13	109476	3189	456	335	305	293	768	595
	14	33919	27936	1768	551	515	1434	1017	894
	15	14047	104299	1332	2362	969	739	926	1736
	16	7819	113967	3258	3697	1617	969	1037	1377
	17	7870	106449	5285	12985	9655	863	1386	7058
	18	16212	95897	8711	28686	37959	2335	1767	12588
	19	32254	71578	6427	29297	72230	5280	8721	10094
	20	27223	113848	3908	15293	78338	6758	23419	40553
	21	15830	148631	5308	7702	43446	6878	49398	75450
	22	7924	153399	6377	5120	27694	6418	52015	103747
	23	6144	89709	6578	6494	20177	6963	46245	103927
	24	8384	28664	5161	5456	10338	5086	37485	71785
	25	8951	14231	3944	6807	12971	4598	35505	42836
	26	6607	13420	4115	8670	8576	4519	33288	23682
	27	4025	14708	4357	7830	17498	2987	26053	23132
	28	3779	8777	4235	8402	17645	2829	13431	21289
	29	2528	4861	3500	7625	16465	2807	5507	15372
	30	2112	3344	2760	6195	12821	2379	4260	9646
	31	1961	3232	1945	4553	16433	3516	2886	6359
	32	1315	2391	1897	2710	10724	2300	2434	5377
	33	1213	3301	1668	1603	7330	1280	1310	4524
	34	1117	1433	1283	916	3477	583	636	4940
	35	1288	717	1042	610	1985	230	346	2537
	36	1185	596	799	297	1180	135	382	1097
	37	1005	386	459	211	338	74	320	606
	38	1167	401	427	257	401	16	120	199
	39	787	228	308	274	576	24	142	112
	40	663	93	237	119	75	24	97	35
	41	221	124	154	0	20	24	163	40
	42	135	77	132	15	20			
	43	102	31	37	32	32			35
	44	129	46	99			49	67	17
	45	46	15	69	15	36	33	34	17
	46	24	46			12	16	17	
	47	15	15	15	8		12		
	48								
	49		15						
	50	15							
abundance (millions)		422	1130	89	175	434	74	356	593
biomass ('000 tons)		37.9	136.4	19.2	31.8	90.7	16.0	70.7	112.2
mean length (cm)		16.4	19.7	23.4	22.2	22.7	23.5	23.5	23.5
length anomalies (cm)		-6.1	-2.8	0.9	-0.3	0.2	1.0	1.0	1.0

⁽²⁾ Including original Div. 3N survey data

Table 5b: cont.

Length	1999	2000	2001	2002	2003	2004	2005	2006	2007
4									
5		118	440	233	1090	34		84	234
6	251	482	937	932	2428	85	133	1418	512
7	50	675	755	868	2185	61	162	1831	2222
8	37	603	2114	1624	2715	620	908	466	2914
9	438	622	3147	1292	2096	1281	2236	829	8312
10	171	389	4324	1131	2863	1720	1574	1457	8497
11	402	232	2846	2846	1838	1047	3957	1709	7526
12	786	202	1283	2257	1124	1132	9943	3083	6351
13	868	321	1056	2086	1497	1437	11091	3970	5871
14	2472	589	445	2560	1457	1015	10310	8256	9045
15	1548	3653	407	1896	1950	538	8462	13285	21881
16	717	4668	11014	2146	8394	880	6084	20910	40242
17	1143	5483	31422	4703	15466	1985	5713	27174	51163
18	3183	7038	57684	9077	26300	5471	7249	23007	43357
19	6551	11929	74240	13656	39434	8226	10930	24341	35091
20	9087	31700	80546	12557	46149	9796	15984	26792	45869
21	15328	50192	65583	16499	43651	13141	25649	36447	55969
22	23115	66827	130049	20161	40404	13640	23902	49628	61547
23	28995	60122	118401	23556	40085	16741	29789	71776	84208
24	26962	53001	85166	25378	32339	15467	20365	67363	81982
25	29823	50556	64492	21327	21740	13073	15826	34947	57414
26	27500	40214	39712	19867	18303	10438	12714	32335	39978
27	25590	21893	33741	16414	17872	9402	10858	19109	26126
28	24786	17449	20399	10516	14177	12141	12472	11650	19085
29	16315	16404	14954	7233	7874	13958	12661	10147	13205
30	11341	12158	11078	5064	4974	12274	9866	7475	7643
31	7621	10211	9148	5083	3803	9071	7348	9530	6404
32	6313	7170	5257	4618	3559	6791	5215	7469	4179
33	5641	5032	4337	3830	3377	4639	4906	4870	3623
34	4544	3391	2777	2678	2199	2961	3943	2096	2183
35	3255	1306	1662	1440	1183	1761	2721	1118	1067
36	1538	1111	675	581	508	1260	1456	537	416
37	339	516	631	334	200	765	1298	444	847
38	184	330	282	82	113	392	385	136	275
39	272	228	215	62	116	666	228	55	40
40	67	151	180	129		308	60	116	17
41	82	67	85			76	85	61	103
42		67	0	16		232	60		0
43	50		4	19		99			0
44	50	4		16					0
45	50	76		16					63
46		18	17					16	
47	17								
48	17								
49									
50									
abundance (millions)	288	487	882	245	413	195	297	526	755
biomass ('000 tons)	72.0	100.5	132.6	50.1	71.9	49.9	58.6	91.9	124.8
mean length (cm)	25.3	23.9	22.3	23.3	21.8	24.9	22.5	22.3	21.4
length anomalies (cm)	2.8	1.4	-0.2	8.0	-0.7	2.4	0.0	-0.2	-1.1

Table: 6a: Diagnostics for three $\mathsf{ASPIC}_{\mathsf{2008}}$ formulations.

	correlation among input series 14/11 14/15 14/16 14/17 16/									
	14/11 14/15 14/16 14/17									
ASPIC _{Power,2008}	0.108	0.908	0.840	0.794	0.885					
ASPIC _{Power,fullsummer,2008}			0.964		0.733					
ASPIC _{Vaskov,2008}	0.133	0.961	0.726	0.845						

		R so	uared in C	PUE							
	I1	11 12 13 14 15 16 17									
ASPIC _{Power,2008}	0.097	0.274	0.239	0.231	0.402	0.787	0.124				
ASPIC _{Power,fullsummer,2008}	0.039	0.278	0.254	0.250	0.416	0.640	0.119				
ASPIC _{Vaskov,2008}	0.133	0.261	0.262	0.252	0.398	0.768	0.119				

	N restarts	contrast	nearness	Total obj.
		index	index	function
ASPIC _{Power,2008}	47	0.766	1.000	25.24
ASPIC _{Power,fullsummer,2008}	33	0.793	1.000	26.28
ASPIC _{Vaskov,2008}	16	0.758	1.000	25.99

Table 6b: Deterministic estimates of ASPIC parameters for three ASPIC_{2008} formulations

	K	B1/K	r	MSY	Fmsy	F _{lastyear/} Fmsy	B _{lastyear+1/} Bmsy
ASPIC _{Power,2008}	283800	0.70	0.344	24440	0.172	0.0379	1.880
ASPIC _{Power,fullsummer,2008}	262600	0.73	0.385	25290	0.193	0.0358	1.917
ASPIC _{Vaskov,2008}	285200	0.72	0.343	24480	0.172	0.0377	1.886

Table7a: Parameter seeds of sensitivity analysis for ASPIC₂₀₀₈

	Standard	-25%seed	+25%seed	Pessimistic	Optimistic
B1/K	0.5d0	0.5d0	0.5d0	0.375	0.625
MSY	2.0d4	2.0d4	2.0d4	15000	25000
K	2.00E+05	2.00E+05	2.00E+05	1.50E+05	2.50E+05
q _{cpue}	9.01E-06	9.01E-06	9.01E-06	1.13E-05	6.76E-06
q _{3LNspring}	0.658	0.658	0.658	0.823	0.494
q _{3LNautumn}	1	1	1	1.250	0.750
q _{3LNRussia}	0.658	0.658	0.658	0.823	0.494
q _{3Lwinter}	0.322	0.322	0.322	0.403	0.242
q _{3Lsummer}	0.275	0.275	0.275	0.344	0.206
q _{3Lautumn}	0.275	0.275	0.275	0.344	0.206
Random seed	3941285	2955964	4926606	3941285	3941285

Table 7b: Key parameter results from sensitivity analysis of ASPIC₂₀₀₈

	Standard	-25%seed	+25%seed	Pessimistic	Optimistic
K	283800	283800	284300	284100	284100
B1/K	0.70	0.70	0.70	0.7024	0.70
r	0.344	0.344	0.344	0.3438	0.344
MSY	24440	24440	24420	24430	24430
Fmsy	0.172	0.1722	0.172	0.1719	0.1719
F _{lastyear/} Fmsy	0.0379	0.0379	0.0380	0.03795	0.0379
B _{lastyear+1/} Bmsy	1.880	1.880	1.879	1.879	1.879

Table 8a: $ASPIC_{2007-2004}$ over bias of B/B_{msy} referred to $Aspic_{2008}$ results

	ASPIC ₂₀₀₇	ASPIC ₂₀₀₆	ASPIC ₂₀₀₅	ASPIC ₂₀₀₄
1959	10%	10%	7%	2%
1960	9%	9%	7%	2%
1961	9%	9%	7%	2%
1962	9%	9%	7%	2%
1963	9%	9%	7%	2%
1964	9%	9%	7%	2%
1965	9%	9%	7%	2%
1966	9%	8%	7%	2%
1967	8%	8%	6%	3%
1968	8%	8%	6%	2%
1969	8%	8%	6%	3%
1970	8%	7%	6%	3%
1971	7%	7%	6%	3%
1972	7%	7%	5%	2%
1973	7%	7%	5%	2%
1974	7%	7%	5%	2%
1975	8%	7%	6%	3%
1976	8%	8%	6%	3%
1977	8%	8%	6%	3%
1978	8%	8%	6%	3%
1979	8%	8%	6%	3%
1980	8%	8%	6%	3%
1981	7%	7%	5%	3%
1982	7%	6%	5%	3%
1983	6%	6%	5%	3%
1984	6%	6%	5%	2%
1985	6%	6%	4%	2%
1986	5%	5%	4%	2%
1987	5%	5%	4%	2%
1988	3%	3%	2%	1%
1989	2%	2%	2%	0%
1990	3%	3%	2%	0%
1991	5%	5%	4%	0%
1992	8%	8%	5%	0%
1993	12%	12%	8%	0%
1994	18%	18%	12%	0%
1995	24%	23%	16%	2%
1996	27%	26%	18%	4%
1997	29%	28%	20%	5%
1998	29%	28%	20%	6%
1999	27%	26%	19%	7%
2000	24%	23%	17%	7%
2001	21%	20%	15%	6%
2002	17%	17%	13%	5%
2003	14%	13%	10%	5%
2004	11%	10%	8%	4%
2005	8%	8%	7%	
2006	6%	6%		
2007	5%			

Table 8b: ${\rm ASPIC_{2007\text{-}2004}}$ under bias of ${\rm F/F_{msy}}$ referred to ${\rm Aspic_{2008}}$ results

	ASPIC ₂₀₀₇	ASPIC ₂₀₀₆	ASPIC ₂₀₀₅	ASPIC ₂₀₀₄
1959	-15%	-14%	-11%	-4%
1960	-14%	-14%	-11%	-4%
1961	-14%	-14%	-11%	-4%
1962	-14%	-14%	-11%	-4%
1963	-14%	-14%	-11%	-4%
1964	-14%	-14%	-11%	-5%
1965	-14%	-14%	-11%	-5%
1966	-14%	-13%	-10%	-5%
1967	-13%	-13%	-10%	-5%
1968	-13%	-13%	-10%	-5%
1969	-13%	-13%	-10%	-5%
1970	-13%	-13%	-10%	-5%
1971	-13%	-12%	-10%	-5%
1972	-12%	-12%	-9%	-5%
1973	-12%	-12%	-10%	-5%
1974	-13%	-12%	-10%	-5%
1975	-13%	-13%	-10%	-5%
1976	-13%	-13%	-10%	-5%
1977	-14%	-13%	-10%	-5%
1978	-13%	-13%	-10%	-5%
1979	-13%	-13%	-10%	-5%
1980	-13%	-12%	-10%	-5%
1981	-12%	-12%	-9%	-5%
1982	-12%	-12%	-9%	-5%
1983	-12%	-11%	-9%	-5%
1984	-12%	-11%	-9%	-5%
1985	-11%	-11%	-9%	-5%
1986	-11%	-11%	-8%	-4%
1987	-10%	-9%	-7%	-4%
1988	-9%	-9%	-6%	-3%
1989	-9%	-9%	-7%	-2%
1990	-10%	-10%	-7%	-2%
1991	-12%	-12%	-9%	-3%
1992	-15%	-14%	-10%	-3%
1993	-19%	-18%	-13%	-3%
1994	-23%	-22%	-16%	-3%
1995	-26%	-25%	-19%	-5%
1996	-27%	-26%	-20%	-7%
1997	-27%	-27%	-20%	-8%
1998	-27%	-26%	-20%	-8%
1999	-25%	-25%	-19%	-8%
2000	-23%	-23%	-18%	-8%
2001	-21%	-21%	-16%	-8%
2002	-19%	-18%	-15%	-7%
2003	-16%	-16%	-13%	-6%
2004	-14%	-14%	-11%	
2005	-13%	-12%		
2006	-11%			

Table 8c: Retrospective estimates of ASPIC parameters, 2008-2004

	K	B1/K	r	MSY	Fmsy	F _{2003/} Fmsy	B _{2003+1/} Bmsy
ASPIC ₂₀₀₈	283800	0.70	0.344	24440	0.172	0.0342	1.645
ASPIC ₂₀₀₇	254600	0.77	0.410	26100	0.205	0.0286	1.820
ASPIC ₂₀₀₆	255400	0.77	0.408	26040	0.204	0.0287	1.816
ASPIC ₂₀₀₅	261300	0.75	0.392	25630	0.196	0.0298	1.781
ASPIC ₂₀₀₄	269700	0.72	0.371	25040	0.186	0.0320	1.710

Table 9: Summary of the ASPIC_{2008} results from bootstrapped analysis

Param	Point	Bias	Estimated bias in pt	Estimated relative		ed approximate	confidence	e limits	Inter- quartile	Relative
name	estimate	corrected	estimate	bias	80% lower	80% upper	50% lower	50% upper	range	IQ range
B1/K	0.7033	0.770	0.067	9.5%	0.502	1.216	0.585	0.906	0.322	0.458
K	283800	289451	5651	2.0%	236600	383900	259300	329500	70220	0.247
MSY	24440	25051	611	2.5%	21780	26600	22850	25330	2484	0.102
Ye(2008)	5519	6606	1087	19.7%	2178	15670	3295	9964	6669	1.208
Y.@Fmsy	45950	46200	250	0.5%	33400	52700	40480	49300	8821	0.192
Bmsy	141900	144725	2825	2.0%	118300	192000	129600	164800	35110	0.247
Fmsy	0.172	0.181	0.009	5.0%	0.117	0.225	0.139	0.196	0.058	0.334
B./Bmsy	1.880	1.836	-0.044	-2.4%	1.552	1.959	1.756	1.933	0.177	0.094
F./Fmsy	0.038	0.039	0.001	2.4%	0.033	0.053	0.035	0.043	0.008	0.215
Ye./MSY	0.226	0.276	0.051	22.4%	0.080	0.694	0.129	0.428	0.299	1.322

Table 10a: B/Bmsy bias corrected trajectory 1959-2013 from ASPIC 2008 bootstrap results, with associated 80% CL's.

	bootstrap results, with associated 80% CL's.						
	Point	Estimated	Bias	Approx 80%	Approx 80%		
Year	estimate	bias	corrected	lower CL	upper CL		
1959	1.407	0.134	1.541	1.003	2.431		
1960	1.246	0.066	1.312	0.867	1.995		
1961	1.222	0.035	1.257	0.856	1.830		
1962	1.222	0.015	1.237	0.858	1.714		
1963	1.235	0.002	1.237	0.866	1.641		
1964	1.206	-0.008	1.198	0.841	1.554		
1965	1.295	-0.014	1.281	0.923	1.596		
1966	1.287	-0.019	1.268	0.913	1.542		
1967	1.323	-0.022	1.301	0.954	1.552		
1968	1.288	-0.025	1.263	0.935	1.486		
1969	1.320	-0.026	1.294	0.973	1.502		
1970	1.301	-0.026	1.275	0.958	1.461		
1971	1.353	-0.026	1.327	1.008	1.502		
1972	1.267	-0.026	1.241	0.944	1.395		
1972	1.225	-0.026	1.241	0.944	1.344		
1973	1.225	-0.025 -0.024	1.200	0.908	1.269		
1974	1.156	-0.024	1.132	0.861	1.288		
1975	1.167	-0.022	1.145	0.903	1.200		
1976	1.207	-0.020 -0.019	1.187	0.903	1.340		
1977							
	1.272	-0.018	1.254	0.966	1.419		
1979	1.343	-0.018	1.325	1.034	1.495		
1980	1.392	-0.019	1.373	1.099	1.546		
1981	1.423	-0.021	1.402	1.131	1.569		
1982	1.395	-0.021	1.374	1.124	1.524		
1983	1.389	-0.021	1.368	1.134	1.509		
1984	1.396	-0.020	1.376	1.145	1.509		
1985 1986	1.434 1.429	-0.019	1.415	1.183	1.549		
1987	1.429	-0.018 -0.017	1.411 1.262	1.189 1.084	1.536 1.358		
1987	0.891	-0.017	0.874	0.810	0.920		
1989	0.679	-0.017	0.664	0.659	0.920		
1909	0.573	-0.013	0.578	0.565	0.757		
1991	0.524	-0.012	0.514	0.490	0.601		
1992	0.470	-0.010	0.463	0.421	0.551		
1993	0.394	-0.005	0.389	0.333	0.489		
1994	0.348	-0.003	0.345	0.269	0.470		
1995	0.413	0.002	0.343	0.209	0.470		
1996	0.413	0.002	0.532	0.371	0.710		
1997	0.662	0.009	0.679	0.465	0.710		
1998		0.017	0.840	0.559	1.112		
1999	0.982	0.022	1.003	0.664	1.321		
2000	1.137	0.021	1.151	0.760	1.482		
2001	1.137	0.014	1.131	0.854	1.611		
2001	1.420	-0.011	1.409	0.961	1.719		
2002	1.543	-0.025	1.518	1.083	1.805		
2003	1.645	-0.035	1.610	1.172	1.860		
2005	1.730	-0.042	1.688	1.283	1.905		
2006	1.797	-0.046	1.751	1.380	1.934		
2007	1.849	-0.046	1.803	1.477	1.955		
2008	1.880	-0.044	1.836	1.552	1.959		
2009	1.903	-0.041	1.862	1.615	1.962		
2010	1.900	-0.037	1.863	1.659	1.941		
2011	1.898	-0.032	1.866	1.696	1.928		
2012	1.896	-0.028	1.869	1.714	1.919		
2013	1.895	-0.023	1.872	1.740	1.913		

Table 10b: F/Fmsy bias corrected trajectory 1959-2012 from ASPIC $_{2008}$ bootstrap results, with associated 80% CL's.

	Point	Estimated	Bias	Approx 80%	Approx 80%
Year	estimate	bias	corrected	lower CL	upper CL
					.,,
1959	1.380	0.032	1.412	0.843	1.973
1960	0.881	0.032	0.913	0.571	1.278
1961	0.776	0.032	0.808	0.534	1.127
1962	0.714	0.031	0.745	0.514	1.038
1963	0.918	0.043	0.961	0.681	1.321
1964	0.336	0.015	0.351	0.255	0.481
1965	0.744	0.031	0.775	0.580	1.058
1966	0.532	0.021	0.553	0.421	0.754
1967	0.852	0.032	0.885	0.684	1.205
1968	0.554	0.020	0.574	0.449	0.772
1969	0.773	0.026	0.799	0.629	1.069
1970	0.444	0.014	0.458	0.363	0.604
1971	1.075	0.031	1.106	0.884	1.455
1972	0.951	0.028	0.979	0.786	1.283
1973	1.146	0.034	1.180	0.949	1.544
1974	0.785	0.023	0.808	0.647	1.060
1975	0.616	0.017	0.633	0.503	0.833
1976	0.690	0.019	0.708	0.558	0.933
1977	0.541	0.014	0.555	0.438	0.737
1978	0.377	0.009	0.386	0.305	0.517
1979	0.421	0.009	0.430	0.343	0.572
1980 1981	0.466	0.009 0.013	0.475	0.382	0.631
1981	0.705 0.633	0.013	0.718 0.644	0.582 0.525	0.942 0.841
1982	0.580	0.010	0.588	0.325	0.769
1984	0.380	0.005	0.432	0.358	0.769
1985	0.588	0.005	0.593	0.496	0.773
1986	1.298	0.010	1.308	1.105	1.682
1987	3.030	0.022	3.052	2.650	3.827
1988	2.802	0.022	2.824	2.514	3.409
1989	2.176	0.018	2.194	1.950	2.586
1990	2.142	0.019	2.161	1.891	2.543
1991	2.130	0.021	2.151	1.824	2.552
1992	2.593	0.039	2.632	2.126	3.204
1993	2.355	0.068	2.423	1.753	3.039
1994	0.618	0.025	0.644	0.443	0.865
1995	0.174	0.008	0.182	0.122	0.254
1996	0.031	0.001	0.033	0.021	0.047
1997	0.035	0.002	0.037	0.023	0.054
1998		0.002	0.043	0.028	0.066
1999	0.089	0.005	0.094	0.062	0.146
2000	0.106	0.006	0.112	0.076	0.176
2001	0.044	0.003	0.046	0.032	0.072
2002	0.034 0.034	0.002 0.002	0.035 0.036	0.026 0.027	0.055
2003 2004	0.034 0.015	0.002	0.036	0.027	0.055 0.024
2004 2005	0.015	0.001	0.016	0.013	0.024
2005	0.013	0.001	0.010	0.013	0.023
2007	0.011	0.000	0.011	0.033	0.010
2007	0.036	0.001	0.039	0.032	0.050
2009	0.108	0.001	0.109	0.095	0.141
2010	0.108	0.001	0.108	0.096	0.138
2011	0.108	0.000	0.108	0.097	0.135
2012	0.108	0.000	0.108	0.098	0.133

Table 11: Bias corrected B/Bmsy trajectories from two consecutive ASPIC projections under a constant catch of 5000 ton

Year		ASPICP ₂₀₀₈	ASPICP ₂₀₀₇
	2007	1.803	1.894
	2008	1.836	1.918
	2009	1.862	1.906
	2010	1.863	1.901
	2011	1.866	1.897
	2012	1.869	1.895
	2013	1.872	1.896

Appendix 1:

ASPIC input file for the ASPICPower2008 formulation, including the complete series of each biomass index.

```
## Run type (FIT, BOT, or IRF)
"3LN redfish"
                                                                                                     ## See notes at end of this file
                                                                                                     ## Verbosity on screen (0-3); add 10 for SUM & PRN
files
1000
## Number of bootstrap trials, <= 1000 0 20000
                                                                                                    ## 0=no MC search, 1=search, 2=repeated srch; N trials
## Convergence crit. for simplex
## Convergence crit. for restarts, N restarts
## Conv. crit. for F: N steps/yr for gen. model
1d-8
3d-8
1d-4
            6
24
6d0
0d0
                                                                                                     ## Maximum F when cond. on yield
## Stat weight for Bl>K as residual (usually 0 or 1)
                                                                                                    ## Stat weight for Bl>K as residual (usually 0 or 1
## Number of fisheries (data series)
## Statistical weights for data series
## Bl/K (starting guess, usually 0 to 1)
## MSY (starting guess)
## K (carrying capacity) (starting guess)
## q (starting guesses -- 1 per data series)
## Estimate flags (0 or 1) (Bl/K,MSY,K,q1...qn)
## Min and max constraints -- MSY
## Min and max constraints -- K
## Random number seed (large integer)
1d0 1d0 1.d0 1.d0 1.d0
                                                1.d0 1.d0
0.5d0
2.000E+05
9.007E-06 0.658d0 1.0d0 0.658d0 0.322d0 0.275d0 0.275d0 1 1 1 1 1 1 1 1 1 1
0.5d4 5.0d4
1.0d5 5.0d5
                                                                                                    ## Random number seed (large integer)
## Number of years of data
## Title for first series
3941285
49
'Statlant CPUE'
1001
1959
1960
               1.602
                               26562
1962
               1.631
                               21439
1963
1964
               1.632
                               27362
10261
1965
               2.185
                               23466
1966
               1.781
                                16974
1967
               1 893
                               27188
1968
1969
               1.338
                               24750
1970
1971
               1.367
                                14419
                               34370
1972
               1.387
                               28933
1974
               1.290
                               22286
1975
1976
               1.292
                               20513
1977
               1.251
                               16516
1978
                               12043
               1.106
1979
               1.451
                               14067
               1.761
1981
                               24280
1982
1983
               1.661
1.556
                               21547
19747
1984
               1.049
                               14761
1986
               1 413
                               42805
1987
1988
               1.208
                               53266
1989
1990
               0.825
                               29105
1991
               0.668
                               25815
                               21308
5741
1993
               0.801
1994
               -0.001
                               1989
1995
               -0.001
-0.001
1996
                                451
1997
                                630
1998
               -0.001
                               899
2000
               -0.001
                                3141
2001
2002
               -0.001
-0.001
                               1442
1216
2003
               -0.001
                               1334
2004
                -0.001
                                637
2005
               -0.001
                               659
2006
                -0.001
2007
               -0.001
                               1728
'3LN spring survey'
               -0.001
1959
1960
               -0.001
1961
               -0.001
1963
               -0.001
               -0.001
-0.001
1964
1965
1966
               -0.001
                -0.001
1968
               -0.001
1969
1970
               -0.001
-0.001
1971
               -0.001
1972
               -0.001
1973
               -0.001
                -0.001
1975
               -0.001
```

```
-0.001
-0.001
-0.001
-0.001
1977
1978
1979
1980
                    -0.001
-0.001
1981
1982
                    -0.001
1983
                    -0.001
-0.001
-0.001
-0.001
1984
1985
1986
1987
1988
1989
                    -0.001
-0.001
1990
                    -0.001
                            10642.0
10066.0
22573.0
4162.0
5856.0
22812.0
1991
1992
1993
1994
1995
1996
1997
1998
1999
                            14928.0
59402.0
61496.0
2000
2001
                            87842.0
41573.2
30958.9
2002
                            27700.0
79631.0
2003
2004
2005
                             66462.0
                    -0.001
2006
2007 218847.0
'3LN autumn survey'
'12'
                   -0.001
-0.001
-0.001
-0.001
1960
1961
1962
1963
1964
                    -0.001
-0.001
                    -0.001
-0.001
-0.001
1965
1966
1967
1968
1969
                    -0.001
-0.001
1970
                    -0.001
1971
                    -0.001
1972
1973
1974
                    -0.001
-0.001
-0.001
                   -0.001
-0.001
-0.001
-0.001
-0.001
1975
1976
1977
1978
1979
1980
1981
                    -0.001
-0.001
                    -0.001
-0.001
1982
1983
                    -0.001
-0.001
-0.001
1984
1985
1986
1987
1988
                    -0.001
-0.001
1989
                    -0.001
1990
                    -0.001
                   -0.001
37886.0
-0.001
19233.0
31757.0
-0.001
15968.0
70660.0
112225.0
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
                            71986.0
100461.0
2001
2002
                            132565.7
50122.6
                            71889.0
49907.0
2003
2003
2004
2005
                            58561.0
2006
2007
                            91883.4
                            124758.0
'3LN Power russian survey'
'11'
                   -0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
                    -0.001
-0.001
1969
1970
                    -0.001
-0.001
1970
1971
1972
1973
1974
1975
                    -0.001
-0.001
-0.001
                    -0.001
-0.001
1976
                    -0.001
```

```
-0.001
-0.001
-0.001
-0.001
1977
1978
1979
1980
                     -0.001
-0.001
1981
1982
                      -0.001
1983
                              215883.0
93996.0
62975.0
70298.0
1984
1985
1986
1987
                     70298.0
44884.0
12268.0
8365.0
18680.0
1988
1989
1990
1991
1992
1993
1994
                     -0.001
-0.001
1995
1996
                     -0.001
-0.001
                     -0.001
-0.001
-0.001
-0.001
-0.001
1997
1998
1999
2000
2001
2002
2003
                      -0.001
2004
                      -0.001
-0.001
2005
2006
                       -0.001
2007 -0.001
'3L winter survey'
                     -0.001
-0.001
-0.001
-0.001
1960
1961
1962
1963
1964
                     -0.001
-0.001
                     -0.001
-0.001
-0.001
1965
1966
1967
1968
1969
                     -0.001
-0.001
1970
                     -0.001
-0.001
1971
1972
1973
1974
                     -0.001
-0.001
-0.001
                     -0.001
-0.001
-0.001
-0.001
-0.001
1975
1976
1977
1978
1979
1980
1981
                      -0.001
-0.001
                     -0.001
-0.001
1982
1983
1984
1985
                      -0.001
                         90245.0
36568.0
1986
                     -0.001
-0.001
-0.001
1987
1988
1989
1990
                              18202.0
                     -0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
                      -0.001
-0.001
2001
2002
                     -0.001
-0.001
                      -0.001
-0.001
-0.001
2003
2003
2004
2005
2006
2007
                 -0.001
-0.001
'3L summer survey'
                     -0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
                     -0.001
-0.001
1970
1971
1972
1973
1974
1975
                     -0.001
-0.001
-0.001
                     -0.001
-0.001
1976
                      -0.001
```

```
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
1977
1978
1979
1980
1981
1982
 1983
 1984
                                             -0.001
                                           -0.001 161038.0  
-0.001 -0.001  
-0.001 -0.001  
92840.0  
37572.0  
-0.001  
20838.0  
-0.001  
-0.001  
-0.001
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
                                           -0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
1995
1996
1997
1998
1999
2000
2001
 2002
 2003
 2004
2005
2006
2007 -0.001
'3L autumn survey
                                           -0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
 1960
1961
1962
1963
1964
1964
1965
1966
1967
1968
1969
1970
1971
                                           -0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001

-0.001
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1983
1984
1985
1986
1987
1988
 1989
 1990
                                           20743.0
13665.0
13424.0
6011.0
7173.0
-0.001
4691.0
19544.0
18522.0
38861.0
24917.0
28568.7
11888.0
15007.0
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
                                   11888.0
15007.0
9293.0
16650.0
27218.4
57546.0
2003
2004
2005
2006
2007
```

Appendix 2:

ASPIC2008 results on FIT mode

3LN redfish

ASPIC -- A Surplus-Production Model Including Covariates (Ver. 5.16)

Author: Michael H. Prager; NOAA Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road; Beaufort, North Carolina 28516 USA

Mike.Prager@noaa.gov Reference: Prager, M. H. 1994. A suite of extensions to a nonequilibrium surplus-production model. Fishery Bulletin 92: 374-389.

FIT program mode LOGISTIC model mode YLD conditioning SSE optimization

ASPIC User's Manual is available gratis from the author.

Monday, 05 May 2008 at 17:09:11

Input file: aspic.inp

CONTROL PARAMETERS (FROM INPUT FILE)

Operation of ASPIC: Fit logistic (Schaefer) model by direct optimization.

Number of bootstrap trials:
Bounds on MSY (min, max): 5.000E+03 Number of years analyzed: Number of data series: 49 7 Number of data Series.

Objective function:
Relative conv. criterion (simplex):
Relative conv. criterion (restart):
Relative conv. criterion (effort):
Maximum F allowed in fitting: Least squares 1.000E-08 3.000E-08 Bounds on K (min, max):
Monte Carlo search mode, trials: 1.000E+05 5.000E+05 20000 Random number seed: 1.000E-04 Identical convergences required in fitting: 6.000

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS)

error code 0

Normal convergence

WARNING: Negative correlations detected between some indices. A fundamental assumption of ASPIC is that all indices represent the abundance of the stock. That assumption appears to be violated. Number of restarts required for convergence: 47

CORRELATION AMONG INPUT SERIES EXPRESSED AS CPUE (NUMBER OF PAIRWISE OBSERVATIONS BELOW)

1 Statlant CPUE 1.000 2 3LN spring survey -0.019 1.000 -0.748 0.593 3 3LN autumn survey 4 3LN Power russian survey 0.108 0.000 0.000 1.000 5 3L winter survey 0.178 0.000 0.000 0.908 1.000 6 3L summer survey 0.885 -1.000 1.000 0.840 7 3L autumn survey 0.794 15 3

GOODNESS-OF-FIT AND WEIGHTING (NON-BOOTSTRAPPED ANALYSIS)

		Weighted		Weighted	Current	Inv. var.	R-squared
Loss comp	onent number and title	SSE	N	MSE	weight	weight	in CPUE
Loss(-1)	SSE in yield	0.000E+00					
Loss(0)	Penalty for B1 > K	0.000E+00	1	N/A	0.000E+00	N/A	
Loss(1)	Statlant CPUE	2.732E+00	36	8.035E-02	1.000E+00	2.040E+00	0.097
Loss(2)	3LN spring survey	6.901E+00	16	4.929E-01	1.000E+00	3.325E-01	0.274
Loss(3)	3LN autumn survey	3.165E+00	15	2.435E-01	1.000E+00	6.732E-01	0.239
Loss(4)	3LN Power russian survey	3.778E+00	8	6.297E-01	1.000E+00	2.603E-01	0.231
Loss(5)	3L winter survey	4.514E-01	3	4.514E-01	1.000E+00	3.631E-01	0.402
Loss(6)	3L summer survey	6.723E-01	4	3.362E-01	1.000E+00	4.876E-01	0.787
Loss(7)	3L autumn survey	7.542E+00	19	4.437E-01	1.000E+00	3.694E-01	0.124
TOTAL OBJ	JECTIVE FUNCTION, MSE, RMSE:	2.52420119E+01		2.774E-01	5.267E-01		
Estimated	d contrast index (ideal = 1.0):	0.7660		C* = (Bmax -	Bmin)/K		
Estimated	d nearness index (ideal = 1.0):	1.0000		N* = 1 - m	in(B-Bmsy) /K		

MODET.	DADAMETED	FOTTMATES	(NON_ROOTSTP & DDFD)

Parameter	<u> </u>	Estimate	User/pgm guess	2nd guess	Estimated	User guess
B1/K MSY K phi	Starting relative biomass (in 1959) Maximum sustainable yield Maximum population size Shape of production curve (Bmsy/K)	7.033E-01 2.444E+04 2.838E+05 0.5000	5.000E-01 2.000E+04 2.000E+05 0.5000	6.568E-01 1.613E+04 1.800E+05	1 1 0	1 1 1
	- Catchability Coefficients by Data Serie	s				
q(1)	Statlant CPUE	8.795E-06	9.007E-06	8.557E-04	1	1
q(2)	3LN spring survey	2.336E-01	6.580E-01	1.012E+00	1	1
q(3)	3LN autumn survey	3.946E-01	1.000E+00	6.978E-01	1	1
q(4)	3LN Power russian survey	3.231E-01	6.580E-01	7.339E-01	1	1
q(5)	3L winter survey	2.590E-01	3.220E-01	1.001E+00	1	1
q(6)	3L summer survey	6.668E-01	2.750E-01	6.196E-01	1	1
q(7)	3L autumn survey	1.296E-01	2.750E-01	1.140E+00	1	1

MANAGEMENT and DERIVED PARAMETER ESTIMATES (NON-BOOTSTRAPPED)

PIANAGEPIEI	VI did DERIVED PARAMETER ESTIMATES (NON BO			
Parameter	<mark>r</mark>)	Estimate	Logistic formula	General formula
MSY Bmsy Fmsy	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY	2.444E+04 1.419E+05 1.722E-01	K/2 MSY/Bmsy	K*n**(1/(1-n)) MSY/Bmsy
n g	Exponent in production function Fletcher's gamma	2.0000 4.000E+00		[n**(n/(n-1))]/[n-1]
B./Bmsy F./Fmsy Fmsy/F.	Ratio: B(2008)/Bmsy Ratio: F(2007)/Fmsy Ratio: Fmsy/F(2007)	1.880E+00 3.791E-02 2.638E+01		
Y.(Fmsy) Ye.	Approx. yield available at Fmsy in 2008 as proportion of MSY Equilibrium yield available in 2008 as proportion of MSY	4.595E+04 1.880E+00 5.519E+03 2.258E-01	MSY*B./Bmsy 4*MSY*(B/K-(B/K)**2) 	MSY*B./Bmsy g*MSY*(B/K-(B/K)**n)
fmsy(1)	- Fishing effort rate at MSY in units of e Statlant CPUE	ach CE or CC se 1.958E+04	eries Fmsy/q(1)	Fmsy/q(1)

3LN redfish

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)

		Estimated	Estimated	Estimated	Observed	Model	Estimated	Ratio of	Ratio of
	Year	total	starting	average	total	total	surplus	F mort	biomass
Obs	or ID	F mort	biomass	biomass	yield	yield	production	to Fmsy	to Bmsy
1	1959	0.238	1.996E+05	1.876E+05	4.458E+04	4.458E+04	2.186E+04	1.380E+00	1.407E+00
2	1960	0.152	1.769E+05	1.751E+05	2.656E+04	2.656E+04	2.310E+04	8.809E-01	1.246E+00
3	1961	0.134	1.734E+05	1.734E+05	2.318E+04	2.318E+04	2.323E+04	7.758E-01	1.222E+00
4	1962	0.123	1.735E+05	1.744E+05	2.144E+04	2.144E+04	2.316E+04	7.139E-01	1.222E+00
5	1963	0.158	1.752E+05	1.731E+05	2.736E+04	2.736E+04	2.326E+04	9.180E-01	1.235E+00
6	1964	0.058	1.711E+05	1.776E+05	1.026E+04	1.026E+04	2.288E+04	3.355E-01	1.206E+00
7	1965	0.128	1.837E+05	1.832E+05	2.347E+04	2.347E+04	2.238E+04	7.439E-01	1.295E+00
8	1966	0.092	1.826E+05	1.853E+05	1.697E+04	1.697E+04	2.215E+04	5.319E-01	1.287E+00
9	1967	0.147	1.878E+05	1.852E+05	2.719E+04	2.719E+04	2.216E+04	8.524E-01	1.323E+00
10	1968	0.095	1.828E+05	1.851E+05	1.766E+04	1.766E+04	2.217E+04	5.539E-01	1.288E+00
11	1969	0.133	1.873E+05	1.859E+05	2.475E+04	2.475E+04	2.209E+04	7.730E-01	1.320E+00
12	1970	0.077	1.846E+05	1.884E+05	1.442E+04	1.442E+04	2.181E+04	4.443E-01	1.301E+00
13	1971	0.185	1.920E+05	1.856E+05	3.437E+04	3.437E+04	2.211E+04	1.075E+00	1.353E+00
14	1972	0.164	1.798E+05	1.767E+05	2.893E+04	2.893E+04	2.297E+04	9.510E-01	1.267E+00
15	1973	0.197	1.738E+05	1.687E+05	3.330E+04	3.330E+04	2.356E+04	1.146E+00	1.225E+00
16	1974	0.135	1.641E+05	1.648E+05	2.229E+04	2.229E+04	2.380E+04	7.850E-01	1.156E+00
17	1975	0.106	1.656E+05	1.685E+05	1.787E+04	1.787E+04	2.358E+04	6.158E-01	1.167E+00
18	1976	0.119	1.713E+05	1.727E+05	2.051E+04	2.051E+04	2.329E+04	6.896E-01	1.207E+00
19	1977	0.093	1.741E+05	1.774E+05	1.652E+04	1.652E+04	2.291E+04	5.407E-01	1.227E+00
20	1978	0.065	1.805E+05	1.856E+05	1.204E+04	1.204E+04	2.211E+04	3.767E-01	1.272E+00
21	1979	0.072	1.905E+05	1.942E+05	1.407E+04	1.407E+04	2.112E+04	4.207E-01	1.343E+00
22	1980	0.080	1.976E+05	1.998E+05	1.603E+04	1.603E+04	2.037E+04	4.658E-01	1.392E+00
23	1981	0.121	2.019E+05	1.999E+05	2.428E+04	2.428E+04	2.036E+04	7.053E-01	1.423E+00
24	1982	0.109	1.980E+05	1.975E+05	2.155E+04	2.155E+04	2.068E+04	6.333E-01	1.395E+00
25	1983	0.100	1.971E+05	1.976E+05	1.975E+04	1.975E+04	2.067E+04	5.802E-01	1.389E+00
26	1984	0.073	1.981E+05	2.009E+05	1.476E+04	1.476E+04	2.022E+04	4.266E-01	1.396E+00
27	1985	0.101	2.035E+05	2.032E+05	2.056E+04	2.056E+04	1.989E+04	5.875E-01	1.434E+00
28	1986	0.223	2.028E+05	1.915E+05	4.280E+04	4.280E+04	2.141E+04	1.298E+00	1.429E+00
29	1987	0.522	1.814E+05	1.515E+05	7.903E+04	7.903E+04	2.403E+04	3.030E+00	1.279E+00
30	1988	0.483	1.264E+05	1.104E+05	5.327E+04	5.327E+04	2.314E+04	2.802E+00	8.910E-01
31	1989	0.375	9.632E+04	8.980E+04	3.365E+04	3.365E+04	2.113E+04	2.176E+00	6.787E-01
32	1990	0.369	8.380E+04	7.888E+04	2.910E+04	2.910E+04	1.961E+04	2.142E+00	5.905E-01
33	1991	0.367	7.430E+04	7.038E+04	2.582E+04	2.582E+04	1.823E+04	2.130E+00	5.236E-01
34	1992	0.447	6.671E+04	6.110E+04	2.728E+04	2.728E+04	1.650E+04	2.593E+00	4.701E-01
35	1993	0.406	5.593E+04	5.255E+04	2.131E+04	2.131E+04	1.474E+04	2.355E+00	3.941E-01
36	1994	0.106	4.937E+04	5.393E+04	5.741E+03	5.741E+03	1.504E+04	6.181E-01	3.479E-01
37	1995	0.030	5.867E+04	6.620E+04	1.989E+03	1.989E+03	1.746E+04	1.744E-01	4.134E-01
38	1996	0.005	7.414E+04	8.384E+04	4.510E+02	4.510E+02	2.031E+04	3.123E-02	5.224E-01
39	1997	0.006	9.400E+04	1.049E+05	6.300E+02	6.300E+02	2.273E+04	3.487E-02	6.624E-01
40	1998	0.007	1.161E+05	1.277E+05	8.990E+02	8.990E+02	2.414E+04	4.089E-02	8.181E-01
41	1999	0.015	1.393E+05	1.504E+05	2.318E+03	2.318E+03	2.430E+04	8.949E-02	9.819E-01
42	2000	0.018	1.613E+05	1.716E+05	3.141E+03	3.141E+03	2.333E+04	1.063E-01	1.137E+00
43	2001	0.008	1.815E+05	1.917E+05	1.442E+03	1.442E+03	2.139E+04	4.368E-02	1.279E+00
44	2002	0.006	2.015E+05	2.105E+05	1.216E+03	1.216E+03	1.871E+04	3.355E-02	1.420E+00
45	2003	0.006	2.190E+05	2.264E+05	1.334E+03	1.334E+03	1.575E+04	3.421E-02	1.543E+00
46	2004	0.003	2.334E+05	2.397E+05	6.370E+02	6.370E+02	1.282E+04	1.543E-02	1.645E+00
47	2005	0.003	2.456E+05	2.505E+05	6.590E+02	6.590E+02	1.012E+04	1.528E-02	1.730E+00
48	2006	0.002	2.550E+05	2.589E+05	4.960E+02	4.960E+02	7.835E+03	1.113E-02	1.797E+00
49	2007	0.007	2.624E+05	2.647E+05	1.728E+03	1.728E+03	6.147E+03	3.791E-02	1.849E+00
50	2008		2.668E+05						1.880E+00

RESULTS FOR DATA SERIES # 1 (NON-BOOTSTRAPPED)

Statlant CPUE

Data type CC: CPUE-catch series Series weight: 1.000 Observed Estimated Resid in Obs Year CPUE CPUE F yield yield log scale weight 1959 1.426E+00 1.650E+00 0.2377 4.458E+04 4.458E+04 0.14576 1.000E+00 1.602E+00 1.697E+00 1.540E+00 1.525E+00 0.1517 2.656E+04 2.318E+04 2.656E+04 2.318E+04 -0.03958 -0.10656 1960 1.000E+00 1.000E+00 1961 1962 1.631E+00 1.534E+00 0.1230 2.144E+04 2.144E+04 -0.06161 1.000E+00 1.522E+00 2.736E+04 -0.06969 1.000E+00 0.0578 1.026E+04 1.026E+04 1964 1.812E+00 1.562E+00 -0.14869 1.000E+00 2.185E+00 1.781E+00 1.611E+00 1.630E+00 0.1281 0.0916 2.347E+04 1.697E+04 2.347E+04 1.697E+04 -0.30486 -0.08875 1.000E+00 1.000E+00 1965 1966 1967 1.893E+00 1.629E+00 0.1468 2.719E+04 2.719E+04 -0.15035 1.000E+00 1.628E+00 1.766E+04 766E+04 0.56862 11 12 1969 1.338E+00 1.635E+00 0.1331 2.475E+04 2.475E+04 0.20053 1.000E+00 1970 1.367E+00 1.657E+00 0.0765 1.442E+04 1.442E+04 0.19263 1.000E+00 13 1971 1.632E+00 3.437E+04 3.437E+04 0.19287 1.000E+00 1.346E+00 0.1852 14 1972 1 387E+00 1 554E+00 0.1638 2 893E+04 2.893E+04 0 11351 1 000E+00 1.484E+00 1.000E+00 15 16 1.643E+00 0.1973 3.330E+04 3.330E+04 -0.10185 0.11680 1974 1.290E+00 1.450E+00 0.1352 2.229E+04 2.229E+04 1.000E+00 1975 .669E+00 1.482E+00 0.1061 1.787E+04 .787E+04 -0.11877 1.000E+00 18 1976 1.292E+00 1.519E+00 0.1188 2.051E+04 2.051E+04 0.16190 1.000E+00 1977 1.560E+00 0.0931 0.22064 1.000E+00 20 1978 1.106E+00 1.633E+00 0.0649 1.204E+04 1.204E+04 0.38946 1.000E+00 21 1979 1.451E+00 1.708E+00 0.0724 1.407E+04 1.407E+04 0.16290 1.000E+00 1.757E+00 0.0802 603E+04 -0.00200 1.000E+00 22 1980 1.761E+00 1.603E+04 23 1981 1.594E+00 1.758E+00 0.1215 2.428E+04 2.428E+04 0.09786 1.000E+00 1.737E+00 0.04499 24 25 1.738E+00 1983 1.556E+00 0.0999 1.975E+04 1.975E+04 0.11064 1.000E+00 1984 1985 1.767E+00 1.787E+00 1.476E+04 2.056E+04 1.000E+00 1.000E+00 26 27 .049E+00 0.0735 1.476E+04 0.52134

2.056E+04

4.280E+04

7.903E+04

5.327E+04

3.365E+04

2.910E+04

2.582E+04

2.728E+04

2.131E+04

5.741E+03

1.989E+03

4.510E+02

6.300E+02

8.990E+02

2.318E+03

3 141E+03

1.442E+03

1.216E+03

1.334E+03

6.370E+02

6.590E+02

4.960E+02

1.728E+03

0.49980

0.17577

-0.13399

-0.21879

-0.51517

-0.17330

-0.07614

-0.54997

-0.52515

0.00000

0.00000

0.00000

0.00000

0.00000

0 00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

-0.52900

1.000E+00

1 000E+00

1.000E+00

1.000E+00

1.000E+00 1.000E+00

1.000E+00

1.000E+00

4.280E+04

5.327E+04

3.365E+04

2.910E+04

2.582E+04

2.728E+04

2.131E+04

5.741E+03

1.989E+03

4.510E+02

6.300E+02

8.990E+02

2.318E+03

3 141E+03

1.216E+03

6.370E+02

6.590E+02

1.728E+03

442E+03

334E+03

903E+04

0.1012

0.2235

0.4827

0.3747

0.3690

0.3668

0.4466

0.4055

0.1064

0.0300

0.0054

0.0060

0.0070

0.0154

0.0183

0.0075

0.0058

0.0059

0.0026

0.0019

0.0065

1.685E+00

1.332E+00

9.706E-01 7.898E-01

6.937E-01

6.190E-01

5.373E-01

4.622E-01

4.744E-01

5.823E-01

9.225E-01

1.123E+00

1.323E+00

1 509E+00

1.686E+00

1.851E+00

1.991E+00

2.108E+00

2.203E+00

2.328E+00

.374E-01

1.084E+00

1.413E+00

1.208E+00

8.250E-01

6 680E-01

9.120E-01

8.010E-01

8.020E-01

.322E+00

28

30

31

32

33

34

35

36

37

39

40

41

42

44

45

46

47

49

1986

1988

1989

1990

1991

1992

1993

1994

1995

1997

1998

1999

2000

2002

2003

2004

2005

2007

^{*} Asterisk indicates missing value(s).

UNWEIG	HTED LOG RE	SIDUAL PLOT	FOR DAT	A SERIES	# 1						
		-1	-0.75	-0.5				0.25		0.75	1
		
Year	Residual										
1959	0.1458							=====			
	-0.0396						==				
1961	-0.1066						====				
	-0.0616						==				
	-0.0697						===				
	-0.1487										
	-0.3049				==	=====					
	-0.0888						====				
1967	-0.1503 0.5686										
1968	0.5686							======== =======			
1969											
	0.1926							======= =======			
1971 1972	0.1929 0.1135							====== =====			
	-0.1018						====				
1973	0.1168						====	 -====			
	-0.1188										
1975	0.1619							 =====			
1977	0.1019							====== =======			
1977	0.2206							========= =========================			
1978								 ======			
	0.1629							======			
1000	0.0020										
1981	0.0979							====			
1982 1983	0.0450 0.1106							== ====			
1983											
1984	0.5213 0.4998							======== ===========================			
1985								======== =======			
1986	0.1758 -0.1340						=====				
	-0.1340										
	-0.2188						======				
	-0.5152										
1990	-0.1733					-					
	-0.5290										
	-0.5500										
1993	-0.5252										
1995	0.0000										
1995	0.0000										
1990	0.0000										
1998	0.0000										
1999	0.0000										
2000	0.0000										
2000	0.0000										
2001	0.0000										
2002	0.0000										
2003	0.0000										
2004	0.0000										
2006 2007	0.0000										
2007	0.0000							l 			

RESULTS FOR DATA SERIES # 2 (NON-BOOTSTRAPPED)

Data	t.vpe	T1:	Abundance	index	(annual	average)	

3LN spring survey
Series weight: 1.000

Data	cypc ii.	Abandance in	iden (dilliddi o	verage					belies weight.	1.000
		Observed	Estimated	Estim	Observed	Model	Resid in	Statist		
Obs	Year	effort	effort	F	index	index		weight		
1	1959	0.000E+00	0.000E+00		*	4.381E+04	0.00000	1.000E+00		
2	1960	0.000E+00	0.000E+00		*	4.089E+04	0.00000	1.000E+00		
3	1961	0.000E+00	0.000E+00		*	4.051E+04	0.00000	1.000E+00		
4	1962	0.000E+00	0.000E+00		*	4.072E+04	0.00000	1.000E+00		
5	1963	0.000E+00	0.000E+00		*	4.042E+04	0.00000	1.000E+00		
6	1964	0.000E+00	0.000E+00		*	4.147E+04	0.00000	1.000E+00		
7	1965	0.000E+00	0.000E+00		*	4.278E+04	0.00000	1.000E+00		
8	1966	0.000E+00	0.000E+00		*	4.328E+04	0.00000	1.000E+00		
9	1967	0.000E+00	0.000E+00		*	4.325E+04	0.00000	1.000E+00		
10	1968	0.000E+00	0.000E+00		*	4.323E+04	0.00000	1.000E+00		
11	1969	0.000E+00	0.000E+00		*	4.342E+04	0.00000	1.000E+00		
12	1970	0.000E+00	0.000E+00		*	4.401E+04	0.00000	1.000E+00		
13	1971	0.000E+00	0.000E+00		*	4.335E+04	0.00000	1.000E+00		
14	1972	0.000E+00	0.000E+00		*	4.126E+04	0.00000	1.000E+00		
15	1973	0.000E+00	0.000E+00		*	3.940E+04	0.00000	1.000E+00		
16	1974	0.000E+00	0.000E+00		*	3.850E+04	0.00000	1.000E+00		
17	1975	0.000E+00	0.000E+00		*	3.936E+04	0.00000	1.000E+00		
18	1976	0.000E+00	0.000E+00		*	4.034E+04	0.00000	1.000E+00		
19	1977	0.000E+00	0.000E+00		*	4.142E+04	0.00000	1.000E+00		
20	1978	0.000E+00	0.000E+00		*	4.335E+04	0.00000	1.000E+00		
21	1979	0.000E+00	0.000E+00		*	4.535E+04	0.00000	1.000E+00		
22	1980	0.000E+00	0.000E+00		*	4.667E+04	0.00000	1.000E+00		
23	1981	0.000E+00	0.000E+00		*	4.668E+04	0.00000	1.000E+00		
24	1982	0.000E+00	0.000E+00		*	4.614E+04	0.00000	1.000E+00		
25	1983	0.000E+00	0.000E+00		*	4.615E+04	0.00000	1.000E+00		
26	1984	0.000E+00	0.000E+00		*	4.692E+04	0.00000	1.000E+00		
27	1985	0.000E+00	0.000E+00		*	4.745E+04	0.00000	1.000E+00		
28	1986	0.000E+00	0.000E+00		*	4.473E+04	0.00000	1.000E+00		
29	1987	0.000E+00	0.000E+00		*	3.537E+04	0.00000	1.000E+00		
30	1988	0.000E+00	0.000E+00		*	2.577E+04	0.00000	1.000E+00		
31	1989	0.000E+00	0.000E+00		*	2.097E+04	0.00000	1.000E+00		
32	1990	0.000E+00	0.000E+00		*	1.842E+04	0.00000	1.000E+00		
33	1991	1.000E+00	1.000E+00		1.064E+04	1.644E+04	-0.43479	1.000E+00		
34	1992	1.000E+00	1.000E+00		1.007E+04	1.427E+04	-0.34893	1.000E+00		
35	1993	1.000E+00	1.000E+00		2.257E+04	1.227E+04	0.60941	1.000E+00		
36	1994	1.000E+00	1.000E+00		4.162E+03	1.260E+04	-1.10741	1.000E+00		
37	1995	1.000E+00	1.000E+00		5.856E+03	1.546E+04	-0.97092	1.000E+00		
38	1996	1.000E+00	1.000E+00		2.281E+04	1.958E+04	0.15270	1.000E+00		
39	1997	1.000E+00	1.000E+00		1.493E+04	2.450E+04	-0.49532	1.000E+00		
40	1998	1.000E+00	1.000E+00		5.940E+04	2.982E+04	0.68931	1.000E+00		
41	1999	1.000E+00	1.000E+00		6.150E+04	3.512E+04	0.56008	1.000E+00		
42	2000	1.000E+00	1.000E+00		8.784E+04	4.007E+04	0.78492	1.000E+00		
43	2001	1.000E+00	1.000E+00		4.157E+04	4.477E+04	-0.07411	1.000E+00		
44	2002	1.000E+00	1.000E+00		3.096E+04	4.915E+04	-0.46226	1.000E+00		
45	2003	1.000E+00	1.000E+00		2.770E+04	5.288E+04	-0.64657	1.000E+00		
46	2004	1.000E+00	1.000E+00		7.963E+04	5.598E+04	0.35236	1.000E+00		
47	2005	1.000E+00	1.000E+00		6.646E+04	5.850E+04	0.12756	1.000E+00		
48	2006	0.000E+00	0.000E+00		*	6.046E+04	0.00000	1.000E+00		
49	2007	1.000E+00	1.000E+00		2.188E+05	6.181E+04	1.26423	1.000E+00		

^{*} Asterisk indicates missing value(s).

UNWEIG	SHTED LOG RE			# 2	0	0.5	L	1.5	2
Year	Residual								
1959	0.0000				- 1				
1960	0.0000				i				
1961	0.0000				i				
1962	0.0000				- 1				
1963	0.0000				- 1				
1964	0.0000				- 1				
1965	0.0000				- 1				
1966	0.0000				- 1				
	0.0000				- 1				
1968	0.0000				- 1				
1969	0.0000				- 1				
1970	0.0000				- 1				
1970	0.0000				- 1				
1971	0.0000				- 1				
1972	0.0000				- 1				
1973					- 1				
1974	0.0000				- 1				
	0.0000				- !				
1976	0.0000				- 1				
1977	0.0000				- 1				
1978	0.0000				- !				
1979	0.0000				. !				
1000	0.0000				ļ				
1981	0.0000				ļ				
1982	0.0000				ļ				
1983	0.0000				ļ				
1984	0.0000								
1985	0.0000								
1986	0.0000								
1987	0.0000								
	0.0000								
1989	0.0000								
1990									
	-0.4348			======	===				
1992	-0.3489			====	===				
	0.6094					=========			
	-1.1074		=====		===				
	-0.9709		===		===				
1996	0.1527					===			
	-0.4953			======	===				
1998	0.6893					===========			
1999	0.5601					========			
2000	0.7849				j	=========			
2001	-0.0741				= j				
	-0.4623				=== j				
2003	-0.6466			========	=== İ				
2004	0.3524				i	======			
2005	0.1276				i	===			
2006	0.0000				i				
2007	1.2642				i				

RESULTS FOR DATA SERIES # 3 (NON-BOOTSTRAPPED)

3LN autumn survey

Data type I2: Abundance index (end of year)

Series weight: 1.000

		Observed	Estimated	Estim	Observed	Model	Resid in	Statist
Obs	Year	effort	effort	F	index	index	log index	weight
1	1959	0.000E+00	0.000E+00		*	6.978E+04	0.00000	1.000E+00
2	1960	0.000E+00	0.000E+00		*	6.842E+04	0.00000	1.000E+00
3	1961	0.000E+00	0.000E+00		*	6.844E+04	0.00000	1.000E+00
4	1962	0.000E+00	0.000E+00		*	6.912E+04	0.00000	1.000E+00
5	1963	0.000E+00	0.000E+00		*	6.750E+04	0.00000	1.000E+00
6	1964	0.000E+00	0.000E+00		*	7.248E+04	0.00000	1.000E+00
7	1965	0.000E+00	0.000E+00		*	7.205E+04	0.00000	1.000E+00
8	1966	0.000E+00	0.000E+00		*	7.410E+04	0.00000	1.000E+00
9	1967	0.000E+00	0.000E+00		*	7.211E+04	0.00000	1.000E+00
10	1968	0.000E+00	0.000E+00		*	7.389E+04	0.00000	1.000E+00
11	1969	0.000E+00	0.000E+00		*	7.284E+04	0.00000	1.000E+00
12	1970	0.000E+00	0.000E+00		*	7.576E+04	0.00000	1.000E+00
13	1971	0.000E+00	0.000E+00		*	7.092E+04	0.00000	1.000E+00
14	1972	0.000E+00	0.000E+00		*	6.857E+04	0.00000	1.000E+00
15	1973	0.000E+00	0.000E+00		*	6.473E+04	0.00000	1.000E+00
16	1974	0.000E+00	0.000E+00		*	6.533E+04	0.00000	1.000E+00
17	1975	0.000E+00	0.000E+00		*	6.758E+04	0.00000	1.000E+00
18	1976	0.000E+00	0.000E+00		*	6.867E+04	0.00000	1.000E+00
19	1977	0.000E+00	0.000E+00		*	7.120E+04	0.00000	1.000E+00
20	1978	0.000E+00	0.000E+00		*	7.517E+04	0.00000	1.000E+00
21	1979	0.000E+00	0.000E+00		*	7.795E+04	0.00000	1.000E+00
22	1980	0.000E+00	0.000E+00		*	7.966E+04	0.00000	1.000E+00
23	1981	0.000E+00	0.000E+00		*	7.812E+04	0.00000	1.000E+00
24	1982	0.000E+00	0.000E+00		*	7.778E+04	0.00000	1.000E+00
25	1983	0.000E+00	0.000E+00		*	7.814E+04	0.00000	1.000E+00
26	1984	0.000E+00	0.000E+00		*	8.029E+04	0.00000	1.000E+00
27	1985	0.000E+00	0.000E+00		*	8.003E+04	0.00000	1.000E+00
28	1986	0.000E+00	0.000E+00		*	7.159E+04	0.00000	1.000E+00
29	1987	0.000E+00	0.000E+00		*	4.989E+04	0.00000	1.000E+00
30	1988	0.000E+00	0.000E+00		*	3.800E+04	0.00000	1.000E+00
31	1989	0.000E+00	0.000E+00		*	3.306E+04	0.00000	1.000E+00
32	1990	0.000E+00	0.000E+00		*	2.931E+04	0.00000	1.000E+00
33	1991	1.000E+00	1.000E+00		3.789E+04	2.632E+04	0.36425	1.000E+00
34	1992	0.000E+00	0.000E+00		*	2.207E+04	0.00000	1.000E+00
35	1993	1.000E+00	1.000E+00		1.923E+04	1.948E+04	-0.01263	1.000E+00
36	1994	1.000E+00	1.000E+00		3.176E+04	2.315E+04	0.31630	1.000E+00
37	1995	0.000E+00	0.000E+00		*	2.925E+04	0.00000	1.000E+00
38	1996	1.000E+00	1.000E+00		1.597E+04	3.708E+04	-0.84261	1.000E+00
39	1997	1.000E+00	1.000E+00		7.066E+04	4.580E+04	0.43353	1.000E+00
40	1998	1.000E+00	1.000E+00		1.122E+05	5.497E+04	0.71368	1.000E+00
41	1999	1.000E+00	1.000E+00		7.199E+04	6.365E+04	0.12313	1.000E+00
42	2000	1.000E+00	1.000E+00		1.005E+05	7.161E+04	0.33850	1.000E+00
43	2001	1.000E+00	1.000E+00		1.326E+05	7.948E+04	0.51154	1.000E+00
44	2002	1.000E+00	1.000E+00		5.012E+04	8.638E+04	-0.54433	1.000E+00
45	2003	1.000E+00	1.000E+00		7.189E+04	9.207E+04	-0.24745	1.000E+00
46	2004	1.000E+00	1.000E+00		4.991E+04	9.688E+04	-0.66329	1.000E+00
47	2005	1.000E+00	1.000E+00		5.856E+04	1.006E+05	-0.54120	1.000E+00
48	2006	1.000E+00	1.000E+00		9.188E+04	1.035E+05	-0.11912	1.000E+00
49	2007	1.000E+00	1.000E+00		1.248E+05	1.053E+05	0.17003	1.000E+00

 $[\]ensuremath{^{\star}}$ Asterisk indicates missing value(s).

UNWEI	HTED LOG RES	SIDUAL	PLOT	FOR D	ATA S	ERIES	# 3										
		-1		-0.75	-	0.5		-0.2	5	(0	0.25		0.5		0.75	1
											l					1	
Year	Residual											 					
1959	0.0000										l						
1960	0.0000										ĺ						
1961	0.0000										İ						
1962	0.0000										i						
1963	0.0000										i						
1964	0.0000										i						
1965	0.0000										i						
1966	0.0000										i						
1967	0.0000										i						
1968	0.0000										i						
1969	0.0000										i						
1970	0.0000										i						
1971	0.0000										i						
1972	0.0000										i						
1973	0.0000										i						
1974	0.0000										i						
1975	0.0000										i						
1976	0.0000										i						
1977	0.0000										l						
1978	0.0000										l						
1979	0.0000										l						
1980	0.0000										!						
1981	0.0000										!						
1982	0.0000										!						
1983	0.0000										!						
1984	0.0000										!						
1985	0.0000										!						
1986	0.0000										!						
1987	0.0000										!						
1987	0.0000										!						
1988	0.0000										!						
1989											!						
1990	0.0000										!						
1991											====	 	===				
1992	0.0000										!						
1993	-0.0126									=	!						
1994	0.3163										====	 	=				
	0.0000										!						
1996	-0.8426		==:		=====	:=====		====:	=====		!						
1997	0.4335										!						
1998	0.7137											====	====	=====	=====		
1999	0.1231										====						
2000	0.3385																
2001	0.5115										====	 	====				
2002	-0.5443				=		====										
2003	-0.2474																
2004	-0.6633			=													
2005	-0.5412				=		====	====									
2006	-0.1191								==								
2007	0.1700										====						

3LN redfish Page10

RESULTS FOR DATA SERIES # 4 (NON-BOOTSTRAPPED)

3LN Power russian survey

Data	type	T1:	Abundance	index	(annual	average)

		Observed	Estimated	Estim	Observed		Resid in		
bs	Year	effort	effort	F	index	index	log index	weight	
1	1959	0.000E+00	0.000E+00		*	6.060E+04	0.00000	1.000E+00	
2	1960	0.000E+00	0.000E+00		*	5.656E+04	0.00000	1.000E+00	
3	1961	0.000E+00	0.000E+00		*	5.604E+04	0.00000	1.000E+00	
4	1962	0.000E+00	0.000E+00		*	5.633E+04	0.00000	1.000E+00	
5	1963	0.000E+00	0.000E+00		*	5.591E+04	0.00000	1.000E+00	
6	1964	0.000E+00	0.000E+00		*	5.736E+04	0.00000	1.000E+00	
7	1965	0.000E+00	0.000E+00		*	5.917E+04	0.00000	1.000E+00	
8	1966	0.000E+00	0.000E+00		*	5.987E+04	0.00000	1.000E+00	
9	1967	0.000E+00	0.000E+00		*	5.983E+04	0.00000	1.000E+00	
.0	1968	0.000E+00	0.000E+00		*	5.981E+04	0.00000	1.000E+00	
L1	1969	0.000E+00	0.000E+00		*	6.006E+04	0.00000	1.000E+00	
12	1970	0.000E+00	0.000E+00		*	6.088E+04	0.00000	1.000E+00	
.3	1971	0.000E+00	0.000E+00		*	5.996E+04	0.00000	1.000E+00	
.4	1972	0.000E+00	0.000E+00		*	5.707E+04	0.00000	1.000E+00	
.5	1973	0.000E+00	0.000E+00		*	5.451E+04	0.00000	1.000E+00	
.6	1974	0.000E+00	0.000E+00		*	5.326E+04	0.00000	1.000E+00	
.7	1975	0.000E+00	0.000E+00		*	5.444E+04	0.00000	1.000E+00	
. 8	1976	0.000E+00	0.000E+00			5.580E+04	0.00000	1.000E+00	
9	1977	0.000E+00	0.000E+00			5.730E+04	0.00000		
			0.000E+00		4			1.000E+00	
0	1978	0.000E+00	0.000E+00			5.997E+04	0.00000	1.000E+00	
1	1979	0.000E+00	0.000E+00		*	6.273E+04	0.00000	1.000E+00	
2	1980	0.000E+00	0.000E+00		*	6.456E+04	0.00000	1.000E+00	
13	1981	0.000E+00	0.000E+00		*	6.457E+04	0.00000	1.000E+00	
4	1982	0.000E+00	0.000E+00		*	6.382E+04 6.384E+04	0.00000	1.000E+00	
15	1983	0.000E+00	0.000E+00		*		0.00000	1.000E+00	
6	1984	1.000E+00	1.000E+00		2.159E+05		1.20188	1.000E+00	
7	1985	1.000E+00	1.000E+00		9.400E+04		0.35911	1.000E+00	
8	1986	1.000E+00	1.000E+00		6.298E+04	6.188E+04	0.01757	1.000E+00	
9	1987	1.000E+00	1.000E+00		7.030E+04	4.893E+04	0.36237	1.000E+00	
0	1988	1.000E+00	1.000E+00		4.488E+04	3.565E+04	0.23022	1.000E+00	
1	1989	1.000E+00	1.000E+00		1.227E+04	2.901E+04	-0.86066	1.000E+00	
2	1990	1.000E+00	1.000E+00		8.365E+03	2.548E+04	-1.11395	1.000E+00	
3	1991	1.000E+00	1.000E+00		1.868E+04	2.274E+04	-0.19662	1.000E+00	
4	1992	0.000E+00	0.000E+00		*	1.974E+04	0.00000	1.000E+00	
5	1993	0.000E+00	0.000E+00		*	1.698E+04	0.00000	1.000E+00	
6	1994	0.000E+00	0.000E+00		*	1.742E+04	0.00000	1.000E+00	
7	1995	0.000E+00	0.000E+00		*	2.139E+04	0.00000	1.000E+00	
8	1996	0.000E+00	0.000E+00		*	2.709E+04	0.00000	1.000E+00	
9	1997	0.000E+00	0.000E+00		*	3.389E+04	0.00000	1.000E+00	
0	1998	0.000E+00	0.000E+00		*	4.124E+04	0.00000	1.000E+00	
1	1999	0.000E+00	0.000E+00		*	4.859E+04	0.00000	1.000E+00	
2	2000	0.000E+00	0.000E+00		*	5.543E+04	0.00000	1.000E+00	
3	2001	0.000E+00	0.000E+00		*	6.193E+04	0.00000	1.000E+00	
4	2002	0.000E+00	0.000E+00		*	6.799E+04	0.00000	1.000E+00	
5	2002	0.000E+00	0.000E+00		*	7.315E+04	0.00000	1.000E+00	
6	2003	0.000E+00	0.000E+00		*	7.744E+04	0.00000	1.000E+00	
17	2004	0.000E+00	0.000E+00		*	8.093E+04	0.00000	1.000E+00	
18	2005	0.000E+00	0.000E+00		*	8.363E+04	0.00000	1.000E+00	
±8 19	2006		0.000E+00				0.00000		
9	2007	0.000E+00	0.000E+00		•	8.551E+04	0.00000	1.000E+00	

^{0.000}E+00 * Asterisk indicates missing value(s).

UNWEIG	HTED LOG RE								
		-2 	-1.5	-1	-0.5	0 0.5	. 1	1.5	.
Year	Residual		·	·	· ' ' ·	· · · · · ·	· '	·	·
1959	0.0000					1			
1960	0.0000								
1961	0.0000								
1962	0.0000								
1963	0.0000					1			
1964	0.0000					1			
1965	0.0000					1			
1966	0.0000					1			
1967	0.0000					1			
1968	0.0000								
1969	0.0000					1			
1970	0.0000								
1971	0.0000								
1972	0.0000								
1973	0.0000								
1974	0.0000								
1975	0.0000								
1975	0.0000								
1977	0.0000								
1977	0.0000								
1978	0.0000								
1980	0.0000								
1981	0.0000								
1982	0.0000								
1983	0.0000								
1984	1.2019					=========			
1985	0.3591								
1986	0.0176								
1987	0.3624					======			
1988	0.2302					=====			
1989	-0.8607					!			
1990	-1.1140					!			
1991	-0.1966				===	=			
1992	0.0000								
1993	0.0000								
1994	0.0000								
1995	0.0000								
1996	0.0000								
1997	0.0000								
1998	0.0000								
1999	0.0000								
2000	0.0000								
2001	0.0000								
2002	0.0000								
2003	0.0000								
2004	0.0000								
2005	0.0000								
2006	0.0000								
2007	0.0000					T			

RESULTS FOR DATA SERIES # 5 (NON-BOOTSTRAPPED)

Data type IO: Abundance index (start of year)

3L winter survey

		Observed	Estimated	Estim	Observed	Model	Resid in	Statist
Obs	Year	effort	effort	F	index	index	log index	weight
1	1959	0.000E+00	0.000E+00		*	5.169E+04	0.00000	1.000E+00
2	1960	0.000E+00	0.000E+00		*	4.580E+04	0.00000	1.000E+00
3	1961	0.000E+00	0.000E+00		*	4.491E+04	0.00000	1.000E+00
4	1962	0.000E+00	0.000E+00		*	4.492E+04	0.00000	1.000E+00
5	1963	0.000E+00	0.000E+00		*	4.537E+04	0.00000	1.000E+00
6	1964	0.000E+00	0.000E+00		*	4.431E+04	0.00000	1.000E+00
7	1965	0.000E+00	0.000E+00		*	4.757E+04	0.00000	1.000E+00
8	1966	0.000E+00	0.000E+00		*	4.729E+04	0.00000	1.000E+00
9	1967	0.000E+00	0.000E+00		*	4.863E+04	0.00000	1.000E+00
10	1968	0.000E+00	0.000E+00		*	4.733E+04	0.00000	1.000E+00
11	1969	0.000E+00	0.000E+00		*	4.850E+04	0.00000	1.000E+00
12	1970	0.000E+00	0.000E+00		*	4.781E+04	0.00000	1.000E+00
13	1971	0.000E+00	0.000E+00		*	4.973E+04	0.00000	1.000E+00
14	1972	0.000E+00	0.000E+00		*	4.655E+04	0.00000	1.000E+00
15	1973	0.000E+00	0.000E+00		*	4.501E+04	0.00000	1.000E+00
16	1974	0.000E+00	0.000E+00		*	4.248E+04	0.00000	1.000E+00
17	1975	0.000E+00	0.000E+00		*	4.288E+04	0.00000	1.000E+00
18	1976	0.000E+00	0.000E+00		*	4.436E+04	0.00000	1.000E+00
19	1977	0.000E+00	0.000E+00		*	4.507E+04	0.00000	1.000E+00
20	1978	0.000E+00	0.000E+00		*	4.673E+04	0.00000	1.000E+00
21	1979	0.000E+00	0.000E+00		*	4.934E+04	0.00000	1.000E+00
22	1980	0.000E+00	0.000E+00		*	5.116E+04	0.00000	1.000E+00
23	1981	0.000E+00	0.000E+00		*	5.229E+04	0.00000	1.000E+00
24	1982	0.000E+00	0.000E+00		*	5.127E+04	0.00000	1.000E+00
25	1983	0.000E+00	0.000E+00		*	5.105E+04	0.00000	1.000E+00
26	1984	0.000E+00	0.000E+00		*	5.129E+04	0.00000	1.000E+00
27	1985	1.000E+00	1.000E+00		9.024E+04	5.270E+04	0.53789	1.000E+00
28	1986	1.000E+00	1.000E+00		3.657E+04	5.253E+04	-0.36216	1.000E+00
29	1987	0.000E+00	0.000E+00		*	4.699E+04	0.00000	1.000E+00
30	1988	0.000E+00	0.000E+00		*	3.274E+04	0.00000	1.000E+00
31	1989	0.000E+00	0.000E+00		*	2.494E+04	0.00000	1.000E+00
32	1990	1.000E+00	1.000E+00		1.820E+04	2.170E+04	-0.17574	1.000E+00
33	1991	0.000E+00	0.000E+00		*	1.924E+04	0.00000	1.000E+00
34	1992	0.000E+00	0.000E+00		*	1.728E+04	0.00000	1.000E+00
35	1993	0.000E+00	0.000E+00		*	1.448E+04	0.00000	1.000E+00
36	1994	0.000E+00	0.000E+00		*	1.278E+04	0.00000	1.000E+00
37	1995	0.000E+00	0.000E+00		*	1.519E+04	0.00000	1.000E+00
38	1996	0.000E+00	0.000E+00		*	1.920E+04	0.00000	1.000E+00
39	1997	0.000E+00	0.000E+00		*	2.434E+04	0.00000	1.000E+00
40	1998	0.000E+00	0.000E+00		*	3.006E+04	0.00000	1.000E+00
41	1999	0.000E+00	0.000E+00		*	3.608E+04	0.00000	1.000E+00
42	2000	0.000E+00	0.000E+00		*	4.177E+04	0.00000	1.000E+00
43	2001	0.000E+00	0.000E+00		*	4.700E+04	0.00000	1.000E+00
44	2002	0.000E+00	0.000E+00		*	5.217E+04	0.00000	1.000E+00
45	2003	0.000E+00	0.000E+00		*	5.670E+04	0.00000	1.000E+00
46	2004	0.000E+00	0.000E+00		*	6.043E+04	0.00000	1.000E+00
47	2005	0.000E+00	0.000E+00		*	6.359E+04	0.00000	1.000E+00
48 49	2006	0.000E+00	0.000E+00		*	6.604E+04	0.00000	1.000E+00
49	2007	0.000E+00	0.000E+00		•	6.794E+04	0.00000	1.000E+00

^{*} Asterisk indicates missing value(s).

UNWEI	GHTED LOG RE	SIDUAL PI	LOT FOR DAT	TA SERIES	# 5	0 0 25	0 5	0.75	1
		- <u>1</u>	-0.75	-0.5	-0.25	0 0.25	0.5	0.75	1
Year	Residual	1 .		·	·	· · · · · · · · · · · · · · · · · · ·			'
1959	0.0000					1			
1960	0.0000								
1961	0.0000								
1962	0.0000								
1963	0.0000								
1964	0.0000					ļ			
1965	0.0000								
1966	0.0000								
1967	0.0000					ļ			
1968	0.0000								
1969	0.0000								
1970	0.0000								
1971	0.0000								
1972	0.0000								
1973	0.0000								
1974	0.0000								
1975	0.0000								
1976	0.0000								
1977	0.0000								
1978	0.0000					İ			
1979	0.0000					İ			
1980	0.0000					İ			
1981	0.0000								
1982	0.0000								
1983	0.0000								
1984	0.0000								
1985	0.5379								
1986	-0.3622				=========	!			
1987	0.0000								
1988	0.0000								
1989	0.0000								
1990	-0.1757				======	- l			
1991	0.0000					-			
1992	0.0000					1			
1993	0.0000								
1994	0.0000								
1995	0.0000								
1995	0.0000								
1997	0.0000								
1997									
	0.0000								
1999	0.0000								
2000	0.0000								
2001	0.0000								
2002	0.0000								
2003	0.0000					1			
2004	0.0000								
2005	0.0000					ļ			
2006	0.0000								
2007	0.0000								

RESULTS FOR DATA SERIES # 6 (NON-BOOTSTRAPPED)

RESULTS FOR DATA SERIES # 6 (NON-BOOTSTRAPPED)	3L summer survey
Data type I1: Abundance index (annual average)	Series weight: 1.000

		Observed	Estimated	Estim	Observed	Model	Resid in	Statist
Obs	Year	effort	effort	F	index	index	log index	weight
1	1959	0.000E+00	0.000E+00		*	1.251E+05	0.00000	1.000E+00
2	1960	0.000E+00	0.000E+00		*	1.167E+05	0.00000	1.000E+00
3	1961	0.000E+00	0.000E+00		*	1.156E+05	0.00000	1.000E+00
4	1962	0.000E+00	0.000E+00		*	1.163E+05	0.00000	1.000E+00
5	1963	0.000E+00	0.000E+00		*	1.154E+05	0.00000	1.000E+00
6	1964	0.000E+00	0.000E+00		*	1.184E+05	0.00000	1.000E+00
7	1965	0.000E+00	0.000E+00		*	1.221E+05	0.00000	1.000E+00
8	1966	0.000E+00	0.000E+00		*	1.235E+05	0.00000	1.000E+00
9	1967	0.000E+00	0.000E+00		*	1.235E+05	0.00000	1.000E+00
10	1968	0.000E+00	0.000E+00		*	1.234E+05	0.00000	1.000E+00
11	1969	0.000E+00	0.000E+00		*	1.240E+05	0.00000	1.000E+00
12	1970	0.000E+00	0.000E+00		*	1.256E+05	0.00000	1.000E+00
13	1971	0.000E+00	0.000E+00		*	1.237E+05	0.00000	1.000E+00
14	1972	0.000E+00	0.000E+00		*	1.178E+05	0.00000	1.000E+00
15	1973	0.000E+00	0.000E+00		*	1.125E+05	0.00000	1.000E+00
16	1974	0.000E+00	0.000E+00		*	1.099E+05	0.00000	1.000E+00
17	1975	0.000E+00	0.000E+00		*	1.124E+05	0.00000	1.000E+00
18	1976	0.000E+00	0.000E+00		*	1.152E+05	0.00000	1.000E+00
19	1977	0.000E+00	0.000E+00		*	1.183E+05	0.00000	1.000E+00
20	1978	0.000E+00	0.000E+00		*	1.238E+05	0.00000	1.000E+00
21	1979	0.000E+00	0.000E+00		*	1.295E+05	0.00000	1.000E+00
22	1980	0.000E+00	0.000E+00		*	1.332E+05	0.00000	1.000E+00
23	1981	0.000E+00	0.000E+00		*	1.333E+05	0.00000	1.000E+00
24	1982	0.000E+00	0.000E+00		*	1.317E+05	0.00000	1.000E+00
25	1983	0.000E+00	0.000E+00		*	1.318E+05	0.00000	1.000E+00
26	1984	0.000E+00	0.000E+00		*	1.339E+05	0.00000	1.000E+00
27	1985	1.000E+00	1.000E+00		1.610E+05	1.355E+05	0.17297	1.000E+00
28	1986	0.000E+00	0.000E+00		*	1.277E+05	0.00000	1.000E+00
29	1987	0.000E+00	0.000E+00		*	1.010E+05	0.00000	1.000E+00
30	1988	0.000E+00	0.000E+00		*	7.358E+04	0.00000	1.000E+00
31	1989	0.000E+00	0.000E+00		*	5.987E+04	0.00000	1.000E+00
32	1990	1.000E+00	1.000E+00		9.284E+04	5.259E+04	0.56833	1.000E+00
33	1991	1.000E+00	1.000E+00		3.757E+04	4.693E+04	-0.22236	1.000E+00
34	1992	0.000E+00	0.000E+00		*	4.074E+04	0.00000	1.000E+00
35	1993	1.000E+00	1.000E+00		2.084E+04	3.504E+04	-0.51958	1.000E+00
36	1994	0.000E+00	0.000E+00		*	3.596E+04	0.00000	1.000E+00
37	1995	0.000E+00	0.000E+00		*	4.414E+04	0.00000	1.000E+00
38	1995	0.000E+00	0.000E+00		*	5.590E+04	0.00000	1.000E+00
39	1996	0.000E+00	0.000E+00		*	6.994E+04	0.00000	1.000E+00
40	1997	0.000E+00	0.000E+00		*	8.512E+04	0.00000	1.000E+00
41	1998	0.000E+00	0.000E+00		*	1.003E+05	0.00000	1.000E+00
41	2000	0.000E+00 0.000E+00	0.000E+00 0.000E+00		*	1.003E+05 1.144E+05	0.00000	1.000E+00
					*			
43	2001	0.000E+00	0.000E+00		*	1.278E+05	0.00000	1.000E+00
44	2002	0.000E+00	0.000E+00		*	1.403E+05	0.00000	1.000E+00
45	2003	0.000E+00	0.000E+00		*	1.510E+05	0.00000	1.000E+00
46	2004	0.000E+00	0.000E+00		*	1.598E+05	0.00000	1.000E+00
47	2005	0.000E+00	0.000E+00			1.670E+05	0.00000	1.000E+00
48	2006	0.000E+00	0.000E+00		*	1.726E+05	0.00000	1.000E+00
49	2007	0.000E+00	0.000E+00		*	1.765E+05	0.00000	1.000E+00

^{*} Asterisk indicates missing value(s).

UNWEIG	HTED LOG RE									
		-1 	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
Year	Residual		. , .	'			· ' ' ·			'
1959	0.0000									
1960	0.0000					i				
1961	0.0000									
1962	0.0000									
1963	0.0000									
1964	0.0000									
1965	0.0000									
1966	0.0000									
1967	0.0000									
1968	0.0000									
1969	0.0000									
1970	0.0000									
1971	0.0000									
1972	0.0000									
1973	0.0000									
1974	0.0000									
1975	0.0000									
1976	0.0000									
1977	0.0000									
1978	0.0000									
1979	0.0000									
1980	0.0000									
1981	0.0000									
1982	0.0000									
1983	0.0000									
1984	0.0000									
1985	0.1730						====			
1986	0.0000									
1987	0.0000									
1988	0.0000									
1989	0.0000					- 1				
1990	0.5683						========			
1991	-0.2224				=====					
1992	0.0000									
1993	-0.5196				=========	===				
1994	0.0000									
1995	0.0000									
1996	0.0000									
1997	0.0000									
1998	0.0000									
1999	0.0000					- 1				
2000	0.0000									
2000	0.0000									
2001	0.0000									
2002	0.0000									
2003	0.0000									
2005	0.0000									
2005	0.0000									
2007	0.0000									
2007	0.0000									

RESULTS FOR DATA SERIES # 7 (NON-BOOTSTRAPPED)

Data type	T1:	Abundance	index	(annual	average)	

Seri	.es w	eignt	 1.000

		Observed	Estimated	Estim	Observed	Model	Resid in	Statist	
Obs	Year	effort	effort	F	index	index	log index	weight	
1	1959	0.000E+00	0.000E+00		*	2.431E+04	0.00000	1.000E+00	
2	1960	0.000E+00	0.000E+00		*	2.269E+04	0.00000	1.000E+00	
3	1961	0.000E+00	0.000E+00		*	2.248E+04	0.00000	1.000E+00	
4	1962	0.000E+00	0.000E+00		*	2.259E+04	0.00000	1.000E+00	
5	1963	0.000E+00	0.000E+00		*	2.243E+04	0.00000	1.000E+00	
6	1964	0.000E+00	0.000E+00		*	2.301E+04	0.00000	1.000E+00	
7	1965	0.000E+00	0.000E+00		*	2.373E+04	0.00000	1.000E+00	
8	1966	0.000E+00	0.000E+00		*	2.401E+04	0.00000	1.000E+00	
9	1967	0.000E+00	0.000E+00		*	2.400E+04	0.00000	1.000E+00	
10	1968	0.000E+00	0.000E+00		*	2.399E+04	0.00000	1.000E+00	
11	1969	0.000E+00	0.000E+00		*	2.409E+04	0.00000	1.000E+00	
12	1970	0.000E+00	0.000E+00		*	2.442E+04	0.00000	1.000E+00	
13	1971	0.000E+00	0.000E+00		*	2.405E+04	0.00000	1.000E+00	
14	1972	0.000E+00	0.000E+00		*	2.289E+04	0.00000	1.000E+00	
15	1973	0.000E+00	0.000E+00		*	2.186E+04	0.00000	1.000E+00	
16	1974	0.000E+00	0.000E+00		*	2.136E+04	0.00000	1.000E+00	
17	1975	0.000E+00	0.000E+00		*	2.184E+04	0.00000	1.000E+00	
18	1976	0.000E+00	0.000E+00		*	2.238E+04	0.00000	1.000E+00	
19	1977	0.000E+00	0.000E+00		*	2.298E+04	0.00000	1.000E+00	
20	1978	0.000E+00	0.000E+00		*	2.405E+04	0.00000	1.000E+00	
21	1979	0.000E+00	0.000E+00		*	2.516E+04	0.00000	1.000E+00	
22	1980	0.000E+00	0.000E+00		*	2.589E+04	0.00000	1.000E+00	
23	1981	0.000E+00	0.000E+00		*	2.590E+04	0.00000	1.000E+00	
24	1982	0.000E+00	0.000E+00		*	2.560E+04	0.00000	1.000E+00	
25	1983	0.000E+00	0.000E+00		*	2.561E+04	0.00000	1.000E+00	
26	1984	0.000E+00	0.000E+00		*	2.603E+04	0.00000	1.000E+00	
27	1985	1.000E+00	1.000E+00		9.823E+04	2.633E+04	1.31676	1.000E+00	
28	1986	1.000E+00	1.000E+00		1.712E+04	2.482E+04	-0.37143	1.000E+00	
29	1987	0.000E+00	0.000E+00		*	1.963E+04	0.00000	1.000E+00	
30	1988	0.000E+00	0.000E+00		*	1.430E+04	0.00000	1.000E+00	
31	1989	0.000E+00	0.000E+00		*	1.164E+04	0.00000	1.000E+00	
32	1990	1.000E+00	1.000E+00		2.074E+04	1.022E+04	0.70776	1.000E+00	
33	1991	1.000E+00	1.000E+00		1.366E+04	9.120E+03	0.40432	1.000E+00	
34	1992	1.000E+00	1.000E+00		1.342E+04	7.917E+03	0.52803	1.000E+00	
35	1993	1.000E+00	1.000E+00		6.011E+03	6.809E+03	-0.12467	1.000E+00	
36	1994	1.000E+00	1.000E+00		7.173E+03	6.989E+03	0.02600	1.000E+00	
37	1995	0.000E+00	0.000E+00		*	8.579E+03	0.00000	1.000E+00	
38	1996	1.000E+00	1.000E+00		4.691E+03	1.086E+04	-0.83986	1.000E+00	
39	1997	1.000E+00	1.000E+00		1.954E+04	1.359E+04	0.36319	1.000E+00	
40	1998	1.000E+00	1.000E+00		1.852E+04	1.654E+04	0.11302	1.000E+00	
41	1999	1.000E+00	1.000E+00		3.886E+04	1.949E+04	0.69017	1.000E+00	
42	2000	1.000E+00	1.000E+00		2.492E+04	2.223E+04	0.11401	1.000E+00	
43	2001	1.000E+00	1.000E+00		2.857E+04	2.484E+04	0.13982	1.000E+00	
44	2002	1.000E+00	1.000E+00		1.189E+04	2.727E+04	-0.83031	1.000E+00	
45	2003	1.000E+00	1.000E+00		1.501E+04	2.934E+04	-0.67041	1.000E+00	
46	2004	1.000E+00	1.000E+00		9.293E+03	3.106E+04	-1.20670	1.000E+00	
47	2005	1.000E+00	1.000E+00		1.665E+04	3.246E+04	-0.66758	1.000E+00	
48	2006	1.000E+00	1.000E+00		2.722E+04	3.354E+04	-0.20895	1.000E+00	
49	2007	1.000E+00	1.000E+00		5.755E+04	3.430E+04	0.51752	1.000E+00	

 $[\]ensuremath{^{\star}}$ Asterisk indicates missing value(s).

UNWEIG	SHTED LOG RE					,				•
		-2 	-1.5		-0.5		0.5	1	1.5	2
Year	Residual						·································			·
1959	0.0000						I			
1960	0.0000						! 			
1961	0.0000						 			
1962	0.0000						 			
1963	0.0000						 			
1964	0.0000						 			
1965	0.0000						 			
1966	0.0000						 			
1967	0.0000						 			
1968	0.0000						 			
1969	0.0000						 			
1970	0.0000						 			
1971	0.0000						 			
1972	0.0000						 			
1973	0.0000						 			
1974	0.0000						 			
1975	0.0000						 			
1976	0.0000						 			
1977	0.0000						 			
1978	0.0000						 			
1979	0.0000						 			
1980	0.0000						 			
1980	0.0000						 			
1981	0.0000						 			
1982	0.0000						 			
1983							 			
1984	0.0000 1.3168						 			
	-0.3714						=========	======	==	
1986	0.0000				=		 			
	0.0000						 			
1988	0.0000						 			
1989	0.0000						 			
1990	0.7078						======== ======			
1991	0.4043						!			
	-0.1247					==	========			
1993	0.0260					==	 =			
1995							-			
	0.0000 -0.8399						 			
				_			 ======			
1997 1998	0.3632						!			
	0.1130						==			
1999	0.6902									
2000	0.1140						==			
2001	0.1398						===			
	-0.8303			=						
	-0.6704				======					
2004	-1.2067									
2005	-0.6676									
2006	-0.2089					====				
2007	0.5175						=======			

3LN redfish

30000. -:

40000. -:

1950.

1956.

1950.

1956.

1962.

1968.

1974.

1980.

1986.

1992.

1998.

1974.

1980.

1986.

1992.

2004. 2010.

3LN redfish

3LN redfish Page 21 Observed (O) and Estimated (*) CPUE for Data Series # 7 -- 3L autumn survey 120000. -: 100000. -: 0 80000. -60000. -0 40000. -20000. -: 0. -: : : 2004. 2010. 1968. 1956. 1962. 1950. 1974. 1980. 1986. 1992. 1998. Time Plot of Estimated F/Fmsy and B/Bmsy (dashed line = 1.0) 3.6 -:

Elapsed time: 0 hours, 0 minutes, 11 seconds.

Appendix 3

ESTIMATES FROM BOOTSTRAPPED ANALYSIS

		Estimated	Estimated	Inter-					
Param	Point	bias in pt	relative		ected approxi			quartile	Relative
name	estimate	estimate	bias	80% lower	80% upper	50% lower	50% upper	range	IO range
name	CBCIMACC	CBCIMACC	Dias	OO O TOWCI	oos apper	JOS TOWET	Jos uppci	range	ig range
B1/K	7.033E-01	6.704E-02	9.53%	5.015E-01	1.216E+00	5.846E-01	9.064E-01	3.218E-01	0.458
K	2.838E+05	5.651E+03	1.99%	2.366E+05	3.839E+05	2.593E+05	3.295E+05	7.022E+04	0.247
q(1)	8.795E-06	3.444E-07	3.92%	6.678E-06	1.038E-05	7.505E-06	9.528E-06	2.023E-06	0.230
q(2)	2.336E-01	9.439E-03	4.04%	1.815E-01	2.910E-01	2.031E-01	2.596E-01	5.651E-02	0.242
q(3)	3.946E-01	1.864E-02	4.72%	2.984E-01	4.807E-01	3.377E-01	4.300E-01	9.230E-02	0.234
q(4)	3.231E-01	1.311E-02	4.06%	2.385E-01	4.288E-01	2.739E-01	3.738E-01	9.988E-02	0.309
q(5)	2.590E-01	1.454E-02	5.62%	1.689E-01	3.781E-01	2.050E-01	3.163E-01	1.114E-01	0.430
q(6)	6.668E-01	1.911E-02	2.87%	4.329E-01	9.140E-01	5.232E-01	7.848E-01	2.616E-01	0.392
q(7)	1.296E-01	5.160E-03	3.98%	1.020E-01	1.536E-01	1.111E-01	1.401E-01	2.892E-02	0.223
1. /									
MSY	2.444E+04	6.111E+02	2.50%	2.178E+04	2.660E+04	2.285E+04	2.533E+04	2.484E+03	0.102
Ye(2008)	5.519E+03	1.087E+03	19.69%	2.178E+03	1.567E+04	3.295E+03	9.964E+03	6.669E+03	1.208
Y.@Fmsy	4.595E+04	2.495E+02	0.54%	3.340E+04	5.270E+04	4.048E+04	4.930E+04	8.821E+03	0.192
Bmsy	1.419E+05	2.825E+03	1.99%	1.183E+05	1.920E+05	1.296E+05	1.648E+05	3.511E+04	0.247
Fmsy	1.722E-01	8.557E-03	4.97%	1.165E-01	2.251E-01	1.386E-01	1.961E-01	5.753E-02	0.334
-									
fmsy(1)	1.958E+04	2.733E+02	1.40%	1.443E+04	2.428E+04	1.671E+04	2.205E+04	5.341E+03	0.273
fmsy(2)	7.374E-01	2.792E-02	3.79%	4.987E-01	1.039E+00	6.019E-01	8.882E-01	2.863E-01	0.388
fmsy(3)	4.365E-01	1.135E-02	2.60%	2.957E-01	5.889E-01	3.611E-01	5.143E-01	1.532E-01	0.351
fmsy(4)	5.331E-01	1.760E-02	3.30%	3.880E-01	7.131E-01	4.543E-01	6.172E-01	1.629E-01	0.306
fmsy(5)	6.651E-01	4.732E-02	7.12%	4.270E-01	9.999E-01	5.339E-01	8.274E-01	2.934E-01	0.441
fmsy(6)	2.583E-01	1.900E-02	7.36%	1.793E-01	3.777E-01	2.101E-01	3.148E-01	1.047E-01	0.405
fmsy(7)	1.329E+00	3.205E-02	2.41%	9.316E-01	1.755E+00	1.098E+00	1.537E+00	4.391E-01	0.330
_									
B./Bmsy	1.880E+00	-4.436E-02	-2.36%	1.552E+00	1.959E+00	1.756E+00	1.933E+00	1.770E-01	0.094
F./Fmsy	3.791E-02	9.033E-04	2.38%	3.285E-02	5.267E-02	3.518E-02	4.333E-02	8.155E-03	0.215
Ye./MSY	2.258E-01	5.052E-02	22.37%	8.041E-02	6.938E-01	1.294E-01	4.280E-01	2.986E-01	1.322
q2/q1	2.656E+04	6.371E+02	2.40%	1.971E+04	3.482E+04	2.270E+04	3.060E+04	7.898E+03	0.297
q3/q1	4.486E+04	1.321E+03	2.94%	3.458E+04	5.965E+04	3.839E+04	5.168E+04	1.329E+04	0.296
q4/q1	3.673E+04	6.501E+02	1.77%	2.671E+04	4.913E+04	3.065E+04	4.226E+04	1.161E+04	0.316
q5/q1	2.944E+04	9.384E+02	3.19%	1.976E+04	4.503E+04	2.399E+04	3.705E+04	1.305E+04	0.443
q6/q1	7.582E+04	2.824E+02	0.37%	5.326E+04	1.088E+05	6.434E+04	9.263E+04	2.829E+04	0.373
q7/q1	1.474E+04	3.042E+02	2.06%	1.145E+04	1.842E+04	1.278E+04	1.643E+04	3.652E+03	0.248

INFORMATION FOR REPAST (Prager, Porch, Shertzer, & Caddy. 2003. NAJFM 23: 349-361)

Unitless limit reference point in F (Fmsy/F.): 26.38

CV of above (from bootstrap distribution): 0.1544

NOTES ON BOOTSTRAPPED ESTIMATES:

- Bootstrap results were computed from 1000 trials.

 Results are conditional on bounds set on MSY and K in the input file.

 All bootstrapped intervals are approximate. The statistical literature recommends using at least 1000 trials for accurate 95% intervals. The default 80% intervals used by ASPIC should require fewer trials for equivalent accuracy. Using at least 500 trials is recommended.

 Bias estimates are typically of high variance and therefore may be misleading.

Trials replaced for lack of convergence: 0
Trials replaced for q out-of-bounds: 31
Trials replaced for K out-of-bounds: 28 Trials replaced for MSY out of bounds: Residual-adjustment factor: 1.0535

Elapsed time: 4 hours, 10 minutes, 41 seconds.

Appendix 4:

control file of ASPIC projection 2008-2012

```
'Projection with 5000 Y'
                          ## Projection title
                ## BIO file to read
'aspic.bio'
'red3LN.prj'
                 ## Projection file to write
0d0
                     ## Not used at present; set to 0d0
0
                      ## Years to drop at start of plots
5
                      ## Years of projections
1700 Y
                       ## Specification for projection year 1.
5000 Y
                       ## Specification for projection year 2.
5000 Y
                       ## Specification for projection year 3.
5000 Y
                      ## Specification for projection year 4.
5000 Y
                      ## Specification for projection year 5.
```

Note: the years of projection should have on each line:

- 1. A real number, the projected yield or effort.
 - If yield, it is in the same units as for the initial fit.
 - If effort, it is a unitless number: the multiple of the effort in the last year of the fit.
- 2. A character $\!^*1$ indicator of whether the number is effort or yield.
 - This should be the capital letter 'Y' or 'F'.
- 3. Comments if desired may follow the letter, but must be delimited from it by at least one space.

Appendix 5:

.prj file with ASPIC projection results 2008-2012 under a constant 2009-2012 catch of 5000 ton

Results from ASPICP.EXE, version 3.16 3LN redfish Projection with 5000 Y

07 May 2008 at 16:18.29 Page 1

USER CONTROL INFORMATION (FROM INPUT FILE)

Control (CTL) file read was:
Biomass (BIO) file read was:
Output file (this file) written was:
Production-model type:
Number of years of projections:
Type of confidence intervals:
Confidence interval smoothing: aspicp.ctl aspic.bio aspicp.prj Logistic Bias-corrected percentile

Year	Input data	User data type
2008	1.700E+03	TAC
2009	5.000E+03	TAC
2010	5.000E+03	TAC
2011	5.000E+03	TAC
2012	5.000E+03	TAC

TRAJECTORY OF RELATIVE BIOMASS B/Bmsy (BOOTSTRAPPED)

								Inter-	
	Point	Estimated	Relative	Approx 80%	Approx 80%	Approx 50%	Approx 50%	quartile	Relative
Year	estimate	bias	bias	lower CL	upper CL	lower CL	upper CL	range	IQ range
1959	1.407E+00	1.341E-01	9.53%	1.003E+00	2.431E+00	1.003E+00	2.431E+00	6.437E-01	0.458
1960	1.246E+00	6.592E-02	5.29%	8.668E-01	1.995E+00	8.668E-01	1.995E+00	5.590E-01	0.449
1961	1.222E+00	3.453E-02	2.83%	8.561E-01	1.830E+00	8.561E-01	1.830E+00	5.062E-01	0.414
1962	1.222E+00	1.508E-02	1.23%	8.580E-01	1.714E+00	8.580E-01	1.714E+00	4.476E-01	0.366
1963	1.235E+00	1.881E-03	0.15%	8.657E-01	1.641E+00	8.657E-01	1.641E+00	4.145E-01	0.336
1964	1.206E+00	-7.737E-03	-0.64%	8.412E-01	1.554E+00	8.412E-01	1.554E+00	3.847E-01	0.319
1965	1.295E+00	-1.369E-02	-1.06%	9.229E-01	1.596E+00	9.229E-01	1.596E+00	3.651E-01	0.282
1966	1.287E+00	-1.907E-02	-1.48%	9.128E-01	1.542E+00	9.128E-01	1.542E+00	3.404E-01	0.265
1967	1.323E+00	-2.223E-02	-1.68%	9.540E-01	1.552E+00	9.540E-01	1.552E+00	3.140E-01	0.237
1968	1.288E+00	-2.480E-02	-1.93%	9.345E-01	1.486E+00	9.345E-01	1.486E+00	2.921E-01	0.227
1969	1.320E+00	-2.553E-02	-1.93%	9.727E-01	1.502E+00	9.727E-01	1.502E+00	2.754E-01	0.209
1970	1.301E+00	-2.620E-02	-2.01%	9.583E-01	1.461E+00	9.583E-01	1.461E+00	2.564E-01	0.197
1971	1.353E+00	-2.568E-02	-1.90%	1.008E+00	1.502E+00	1.008E+00	1.502E+00	2.564E-01	0.189
1972	1.267E+00	-2.608E-02	-2.06%	9.437E-01	1.395E+00	9.437E-01	1.395E+00	2.294E-01	0.181
1973	1.225E+00	-2.495E-02	-2.04%	9.081E-01	1.344E+00	9.081E-01	1.344E+00	2.161E-01	0.176
1974	1.156E+00	-2.371E-02	-2.05%	8.557E-01	1.269E+00	8.557E-01	1.269E+00	2.077E-01	0.180
1975	1.167E+00	-2.155E-02	-1.85%	8.606E-01	1.288E+00	8.606E-01	1.288E+00	2.117E-01	0.181
1976	1.207E+00	-1.972E-02	-1.63%	9.026E-01	1.340E+00	9.026E-01	1.340E+00	2.096E-01	0.174
1977	1.227E+00	-1.884E-02	-1.54%	9.278E-01	1.365E+00	9.278E-01	1.365E+00	2.055E-01	0.168
1978	1.272E+00	-1.829E-02	-1.44%	9.658E-01	1.419E+00	9.658E-01	1.419E+00	2.033E-01 2.078E-01	0.163
1979	1.343E+00	-1.839E-02	-1.37%	1.034E+00	1.495E+00	1.034E+00	1.495E+00	2.189E-01	0.163
1980	1.392E+00	-1.943E-02	-1.40%	1.099E+00	1.546E+00	1.099E+00	1.546E+00	2.113E-01	0.152
1981	1.423E+00	-2.059E-02	-1.45%	1.131E+00	1.569E+00	1.131E+00	1.569E+00	2.113E-01 2.049E-01	0.132
1982	1.425E+00 1.395E+00	-2.059E-02	-1.53%	1.124E+00	1.524E+00	1.124E+00	1.524E+00	1.880E-01	0.135
1983	1.389E+00	-2.141E-02 -2.093E-02	-1.51%	1.134E+00	1.509E+00	1.134E+00	1.509E+00	1.787E-01	0.135
1984	1.396E+00	-1.993E-02	-1.43%	1.145E+00	1.509E+00	1.145E+00	1.509E+00	1.757E-01	0.126
									0.126
1985 1986	1.434E+00	-1.873E-02	-1.31%	1.183E+00	1.549E+00	1.183E+00	1.549E+00	1.803E-01	0.126
	1.429E+00 1.279E+00	-1.801E-02 -1.728E-02	-1.26% -1.35%	1.189E+00 1.084E+00	1.536E+00 1.358E+00	1.189E+00 1.084E+00	1.536E+00 1.358E+00	1.707E-01 1.316E-01	0.113
1987									
1988	8.910E-01	-1.698E-02	-1.91%	8.104E-01	9.202E-01	8.104E-01	9.202E-01	4.369E-02	0.049
1989	6.787E-01	-1.496E-02	-2.20%	6.585E-01	7.371E-01	6.585E-01	7.371E-01	3.766E-02	0.055
1990	5.905E-01	-1.234E-02	-2.09%	5.652E-01	6.567E-01	5.652E-01	6.567E-01	4.582E-02	0.078
1991	5.236E-01	-9.757E-03	-1.86%	4.896E-01	6.005E-01	4.896E-01	6.005E-01	5.514E-02	0.105
1992	4.701E-01	-7.056E-03	-1.50%	4.214E-01	5.513E-01	4.214E-01	5.513E-01	6.285E-02	0.134
1993	3.941E-01	-4.846E-03	-1.23%	3.330E-01	4.892E-01	3.330E-01	4.892E-01	7.921E-02	0.201
1994	3.479E-01	-2.475E-03	-0.71%	2.689E-01	4.703E-01	2.689E-01	4.703E-01	9.969E-02	0.287
1995	4.134E-01	2.361E-03	0.57%	3.040E-01	5.720E-01	3.040E-01	5.720E-01	1.314E-01	0.318
1996	5.224E-01	9.475E-03	1.81%	3.714E-01	7.098E-01	3.714E-01	7.098E-01	1.778E-01	0.340
1997	6.624E-01	1.709E-02	2.58%	4.645E-01	9.056E-01	4.645E-01	9.056E-01	2.422E-01	0.366
1998	8.181E-01	2.194E-02	2.68%	5.586E-01	1.112E+00	5.586E-01	1.112E+00	3.130E-01	0.383
1999	9.819E-01	2.119E-02	2.16%	6.643E-01	1.321E+00	6.643E-01	1.321E+00	3.676E-01	0.374
2000	1.137E+00	1.405E-02	1.24%	7.595E-01	1.482E+00	7.595E-01	1.482E+00	4.014E-01	0.353
2001	1.279E+00	2.284E-03	0.18%	8.542E-01	1.611E+00	8.542E-01	1.611E+00	4.210E-01	0.329
2002	1.420E+00	-1.141E-02	-0.80%	9.607E-01	1.719E+00	9.607E-01	1.719E+00	4.115E-01	0.290
2003	1.543E+00	-2.461E-02	-1.59%	1.083E+00	1.805E+00	1.083E+00	1.805E+00	3.870E-01	0.251
2004	1.645E+00	-3.522E-02	-2.14%	1.172E+00	1.860E+00	1.172E+00	1.860E+00	3.479E-01	0.212
2005	1.730E+00	-4.224E-02	-2.44%	1.283E+00	1.905E+00	1.283E+00	1.905E+00	3.068E-01	0.177
2006	1.797E+00	-4.573E-02	-2.54%	1.380E+00	1.934E+00	1.380E+00	1.934E+00	2.614E-01	0.145
2007	1.849E+00	-4.617E-02	-2.50%	1.477E+00	1.955E+00	1.477E+00	1.955E+00	2.184E-01	0.118
2008	1.880E+00	-4.436E-02	-2.36%	1.552E+00	1.959E+00	1.552E+00	1.959E+00	1.770E-01	0.094
2009	1.903E+00	-4.099E-02	-2.15%	1.615E+00	1.962E+00	1.615E+00	1.962E+00	1.433E-01	0.075
2010	1.900E+00	-3.684E-02	-1.94%	1.659E+00	1.941E+00	1.659E+00	1.941E+00	1.100E-01	0.058
2011	1.898E+00	-3.215E-02	-1.69%	1.696E+00	1.928E+00	1.696E+00	1.928E+00	8.626E-02	0.045
2012	1.896E+00	-2.750E-02	-1.45%	1.714E+00	1.919E+00	1.714E+00	1.919E+00	7.096E-02	0.037
2013	1.895E+00	-2.318E-02	-1.22%	1.740E+00	1.913E+00	1.740E+00	1.913E+00	5.726E-02	0.030

Results from ASPICP.EXE, version 3.16 3LN redfish Projection with 5000 Y

07 May 2008 at 16:18.29 Page 2

TRAJECTORY OF RELATIVE FISHING MORTALITY RATE ${\tt F/Fmsy}$ (BOOTSTRAPPED)

								Inter-	
	Point	Estimated	Relative	Approx 80%	Approx 80%	Approx 50%	Approx 50%	quartile	Relative
Year	estimate	bias	bias	lower CL	upper CL	lower CL	upper CL	range	IQ range
1959	1.380E+00	3.151E-02	2.28%	8.434E-01	1.973E+00	8.434E-01	1.973E+00	5.879E-01	0.426
1960	8.809E-01	3.163E-02	3.59%	5.711E-01	1.278E+00	5.711E-01	1.278E+00	3.687E-01	0.418
1961	7.758E-01	3.202E-02	4.13%	5.335E-01	1.127E+00	5.335E-01	1.127E+00	3.099E-01	0.399
1962	7.139E-01	3.112E-02	4.36%	5.144E-01	1.038E+00	5.144E-01	1.038E+00	2.722E-01	0.381
1963	9.180E-01	4.280E-02	4.66%	6.807E-01	1.321E+00	6.807E-01	1.321E+00	3.404E-01	0.371
1964	3.355E-01	1.520E-02	4.53%	2.551E-01	4.812E-01	2.551E-01	4.812E-01	1.200E-01	0.371
1965	7.439E-01	3.121E-02	4.19%	5.800E-01	1.058E+00	5.800E-01	1.058E+00	2.457E-01	0.330
1966	5.319E-01	2.117E-02	3.98%	4.207E-01	7.535E-01	4.207E-01	7.535E-01	1.661E-01	0.312
1967	8.524E-01	3.243E-02	3.80%	6.841E-01	1.205E+00	6.841E-01	1.205E+00	2.503E-01	0.312
1967	5.539E-01	3.243E-02 2.004E-02		4.488E-01		4.488E-01	7.720E-01		0.294
			3.62%		7.720E-01			1.555E-01	
1969	7.730E-01	2.609E-02	3.38%	6.293E-01	1.069E+00	6.293E-01	1.069E+00	2.057E-01	0.266
1970	4.443E-01	1.369E-02	3.08%	3.630E-01	6.042E-01	3.630E-01	6.042E-01	1.164E-01	0.262
1971	1.075E+00	3.126E-02	2.91%	8.840E-01	1.455E+00	8.840E-01	1.455E+00	2.749E-01	0.256
1972	9.510E-01	2.755E-02	2.90%	7.858E-01	1.283E+00	7.858E-01	1.283E+00	2.395E-01	0.252
1973	1.146E+00	3.373E-02	2.94%	9.486E-01	1.544E+00	9.486E-01	1.544E+00	2.831E-01	0.247
1974	7.850E-01	2.326E-02	2.96%	6.465E-01	1.060E+00	6.465E-01	1.060E+00	1.963E-01	0.250
1975	6.158E-01	1.748E-02	2.84%	5.030E-01	8.329E-01	5.030E-01	8.329E-01	1.590E-01	0.258
1976	6.896E-01	1.873E-02	2.72%	5.583E-01	9.332E-01	5.583E-01	9.332E-01	1.820E-01	0.264
1977	5.407E-01	1.401E-02	2.59%	4.375E-01	7.372E-01	4.375E-01	7.372E-01	1.463E-01	0.271
1978	3.767E-01	9.035E-03	2.40%	3.051E-01	5.169E-01	3.051E-01	5.169E-01	1.043E-01	0.277
1979	4.207E-01	9.202E-03	2.19%	3.425E-01	5.719E-01	3.425E-01	5.719E-01	1.169E-01	0.278
1980	4.658E-01	9.248E-03	1.99%	3.817E-01	6.309E-01	3.817E-01	6.309E-01	1.239E-01	0.266
1981	7.053E-01	1.271E-02	1.80%	5.819E-01	9.419E-01	5.819E-01	9.419E-01	1.772E-01	0.251
1982	6.333E-01	1.023E-02	1.62%	5.254E-01	8.405E-01	5.254E-01	8.405E-01	1.540E-01	0.243
1983	5.802E-01	8.155E-03	1.41%	4.847E-01	7.688E-01	4.847E-01	7.688E-01	1.377E-01	0.237
1984	4.266E-01	5.051E-03	1.18%	3.576E-01	5.636E-01	3.576E-01	5.636E-01	9.904E-02	0.232
1985	5.875E-01	5.727E-03	0.97%	4.961E-01	7.731E-01	4.961E-01	7.731E-01	1.360E-01	0.231
1986	1.298E+00	1.035E-02	0.80%	1.105E+00	1.682E+00	1.105E+00	1.682E+00	2.783E-01	0.214
1987	3.030E+00	2.178E-02	0.72%	2.650E+00	3.827E+00	2.650E+00	3.827E+00	5.626E-01	0.186
1988	2.802E+00	2.199E-02	0.78%	2.514E+00	3.409E+00	2.514E+00	3.409E+00	4.349E-01	0.155
1989	2.176E+00	1.839E-02	0.85%	1.950E+00	2.586E+00	1.950E+00	2.586E+00	3.104E-01	0.143
1990	2.142E+00	1.862E-02	0.87%	1.891E+00	2.543E+00	1.891E+00	2.543E+00	3.292E-01	0.154
1991	2.130E+00	2.086E-02	0.98%	1.824E+00	2.552E+00	1.824E+00	2.552E+00	3.720E-01	0.175
1992	2.593E+00	3.871E-02	1.49%	2.126E+00	3.204E+00	2.126E+00	3.204E+00	5.592E-01	0.216
1993	2.355E+00	6.821E-02	2.90%	1.753E+00	3.039E+00	1.753E+00	3.039E+00	6.494E-01	0.276
1994	6.181E-01	2.548E-02	4.12%	4.430E-01	8.650E-01	4.430E-01	8.650E-01	2.195E-01	0.355
1995	1.744E-01	7.565E-03	4.34%	1.220E-01	2.540E-01	1.220E-01	2.540E-01	7.218E-02	0.414
1996	3.123E-02	1.395E-03	4.47%	2.121E-02	4.683E-02	2.121E-02	4.683E-02	1.357E-02	0.435
1997	3.487E-02	1.663E-03	4.77%	2.332E-02	5.412E-02	2.332E-02	5.412E-02	1.598E-02	0.458
1998	4.089E-02	2.113E-03	5.17%	2.775E-02	6.571E-02	2.775E-02	6.571E-02	1.920E-02	0.470
1999	8.949E-02	4.963E-03	5.55%	6.185E-02	1.461E-01	6.185E-02	1.461E-01	4.234E-02	0.473
2000	1.063E-01	6.161E-03	5.80%	7.585E-02	1.756E-01	7.585E-02	1.756E-01	4.840E-02	0.455
2001	4.368E-02	2.530E-03	5.79%	3.218E-02	7.227E-02	3.218E-02	7.227E-02	1.858E-02	0.425
2002	3.355E-02	1.852E-03	5.52%	2.564E-02	5.513E-02	2.564E-02	5.513E-02	1.319E-02	0.393
2003	3.421E-02	1.728E-03	5.05%	2.713E-02	5.506E-02	2.713E-02	5.506E-02	1.203E-02	0.352
2004	1.543E-02	6.854E-04	4.44%	1.263E-02	2.419E-02	1.263E-02	2.419E-02	4.830E-03	0.313
2005	1.528E-02	5.739E-04	3.76%	1.285E-02	2.327E-02	1.285E-02	2.327E-02	4.282E-03	0.280
2006	1.113E-02	3.400E-04	3.06%	9.520E-03	1.630E-02	9.520E-03	1.630E-02	2.747E-03	0.247
2007	3.791E-02	9.033E-04	2.38%	3.285E-02	5.267E-02	3.285E-02	5.267E-02	8.155E-03	0.215
2008	3.676E-02	6.474E-04	1.76%	3.226E-02	4.978E-02	3.226E-02	4.978E-02	7.144E-03	0.194
2009	1.076E-01	1.299E-03	1.21%	9.544E-02	1.414E-01	9.544E-02	1.414E-01	1.877E-02	0.174
2010	1.077E-01	7.746E-04	0.72%	9.629E-02	1.376E-01	9.629E-02	1.376E-01	1.719E-02	0.160
2011	1.078E-01	3.134E-04	0.29%	9.714E-02	1.352E-01	9.714E-02	1.352E-01	1.597E-02	0.148
2012	1.079E-01	-8.419E-05	-0.08%	9.766E-02	1.330E-01	9.766E-02	1.330E-01	1.511E-02	0.140
				02	01		01	02	

Note: no yield(s) were estimated in the projection.

Page 3

Results from ASPICP.EXE, version 3.16 3LN redfish Projection with 5000 Y 07 May 2008 at 16:18.29

TRAJECTORY OF ABSOLUTE BIOMASS (BOOTSTRAPPED)

								Inter-	
	Point	Estimated	Relative	Approx 80%	Approx 80%	Approx 50%	Approx 50%	quartile	Relati
ear	estimate	bias	bias	lower CL	upper CL	lower CL	upper CL	range	IQ ran
959	1.996E+05	1.903E+04	9.53%	1.333E+05	3.154E+05	1.333E+05	3.154E+05	8.884E+04	0.4
960	1.769E+05	1.034E+04	5.85%	1.162E+05	2.730E+05	1.162E+05	2.730E+05	7.990E+04	0.4
961	1.734E+05	6.015E+03	3.47%	1.156E+05	2.549E+05	1.156E+05	2.549E+05	7.276E+04	0.4
62	1.735E+05	3.198E+03	1.84%	1.182E+05	2.452E+05	1.182E+05	2.452E+05	6.652E+04	0.3
63	1.752E+05	1.201E+03	0.69%	1.244E+05	2.412E+05	1.244E+05	2.412E+05	5.978E+04	0.3
64	1.711E+05	-2.502E+02	-0.15%	1.248E+05	2.345E+05	1.248E+05	2.345E+05	5.484E+04	0.3
965	1.837E+05	-1.368E+03	-0.74%	1.411E+05	2.419E+05	1.411E+05	2.419E+05	5.039E+04	0.3
966	1.826E+05	-2.183E+03	-1.20%	1.452E+05	2.373E+05	1.452E+05	2.373E+05	4.821E+04	0.3
67	1.878E+05	-2.748E+03	-1.46%	1.542E+05	2.412E+05	1.542E+05	2.412E+05	4.617E+04	0.3
68	1.828E+05	-3.103E+03	-1.70%	1.534E+05	2.355E+05	1.534E+05	2.355E+05	4.378E+04	0.3
69	1.873E+05	-3.317E+03	-1.77%	1.613E+05	2.394E+05	1.613E+05	2.394E+05	4.313E+04	0.3
70	1.846E+05	-3.420E+03	-1.85%	1.614E+05	2.368E+05	1.614E+05	2.368E+05	3.998E+04	0.3
71	1.920E+05	-3.448E+03	-1.80%	1.695E+05	2.416E+05	1.695E+05	2.416E+05	3.768E+04	0.1
72	1.798E+05	-3.384E+03	-1.88%	1.583E+05	2.275E+05	1.583E+05	2.275E+05	3.605E+04	0.3
73	1.738E+05	-3.269E+03	-1.88%	1.541E+05	2.195E+05	1.541E+05	2.195E+05	3.483E+04	0.
74	1.641E+05	-3.151E+03	-1.92%	1.457E+05	2.074E+05	1.457E+05	2.074E+05	3.264E+04	0.
75	1.656E+05	-3.064E+03	-1.85%	1.488E+05	2.068E+05	1.488E+05	2.068E+05	3.078E+04	0.
76	1.713E+05	-3.030E+03	-1.77%	1.561E+05	2.110E+05	1.561E+05	2.110E+05	2.897E+04	0.
77	1.741E+05	-3.030E+03	-1.75%	1.600E+05	2.110E+05 2.146E+05	1.600E+05	2.110E+05 2.146E+05	2.817E+04	0.
78	1.805E+05	-3.080E+03	-1.71%	1.667E+05	2.146E+05 2.197E+05	1.667E+05	2.197E+05	2.617E+04 2.693E+04	0.
79	1.905E+05	-3.158E+03	-1.66%	1.765E+05	2.276E+05	1.765E+05	2.197E+05 2.276E+05	2.590E+04	0.
80	1.976E+05	-3.156E+03	-1.63%		2.332E+05	1.834E+05	2.332E+05	2.569E+04	0.
				1.834E+05					0.
81	2.019E+05	-3.229E+03	-1.60%	1.873E+05	2.371E+05	1.873E+05	2.371E+05	2.582E+04	
82	1.980E+05 1.971E+05	-3.107E+03 -2.891E+03	-1.57%	1.825E+05	2.326E+05	1.825E+05	2.326E+05	2.588E+04	0.
83			-1.47%	1.810E+05	2.315E+05	1.810E+05	2.315E+05	2.530E+04	
84	1.981E+05	-2.635E+03	-1.33%	1.810E+05	2.313E+05	1.810E+05	2.313E+05	2.527E+04	0.
985	2.035E+05	-2.376E+03	-1.17%	1.848E+05	2.335E+05	1.848E+05	2.335E+05	2.569E+04	0.
986	2.028E+05 1.814E+05	-2.093E+03	-1.03%	1.832E+05 1.610E+05	2.330E+05	1.832E+05	2.330E+05	2.671E+04 2.651E+04	0.
187		-1.692E+03	-0.93%		2.095E+05	1.610E+05	2.095E+05		
88	1.264E+05	-1.201E+03	-0.95%	1.082E+05	1.532E+05	1.082E+05	1.532E+05	2.407E+04	0.
89	9.632E+04	-8.564E+02	-0.89%	8.026E+04	1.206E+05	8.026E+04	1.206E+05	2.200E+04	0.
90	8.380E+04	-6.207E+02	-0.74%	6.970E+04	1.058E+05	6.970E+04	1.058E+05	2.027E+04	
91	7.430E+04	-4.167E+02	-0.56%	6.189E+04	9.473E+04	6.189E+04	9.473E+04	1.893E+04	0.
92	6.671E+04	-2.163E+02	-0.32%	5.583E+04	8.630E+04	5.583E+04	8.630E+04	1.704E+04	0.
93	5.593E+04	-3.087E+01	-0.06%	4.414E+04	7.488E+04	4.414E+04	7.488E+04	1.664E+04	0.
94	4.937E+04	1.353E+02	0.27%	3.723E+04	6.889E+04	3.723E+04	6.889E+04	1.747E+04	0.
95	5.867E+04	3.731E+02	0.64%	4.421E+04	8.015E+04	4.421E+04	8.015E+04	1.944E+04	0.
96	7.414E+04	7.105E+02	0.96%	5.593E+04	9.686E+04	5.593E+04	9.686E+04	2.224E+04	0.
97	9.400E+04	9.695E+02	1.03%	7.157E+04	1.183E+05	7.157E+04	1.183E+05	2.377E+04	0.
98	1.161E+05	8.450E+02	0.73%	8.881E+04	1.416E+05	8.881E+04	1.416E+05	2.753E+04	0.
99	1.393E+05	9.720E+01	0.07%	1.095E+05	1.648E+05	1.095E+05	1.648E+05	2.879E+04	0.
00	1.613E+05	-1.261E+03	-0.78%	1.309E+05	1.859E+05	1.309E+05	1.859E+05	2.798E+04	0.
01	1.815E+05	-2.964E+03	-1.63%	1.525E+05	2.030E+05	1.525E+05	2.030E+05	2.491E+04	0.
02	2.015E+05	-4.670E+03	-2.32%	1.825E+05	2.267E+05	1.825E+05	2.267E+05	2.159E+04	0.
03	2.190E+05	-6.060E+03	-2.77%	2.063E+05	2.510E+05	2.063E+05	2.510E+05	2.324E+04	0.
04	2.334E+05	-6.910E+03	-2.96%	2.200E+05	2.717E+05	2.200E+05	2.717E+05	2.551E+04	0.
05	2.456E+05	-7.159E+03	-2.92%	2.303E+05	2.861E+05	2.303E+05	2.861E+05	2.655E+04	0.
06	2.550E+05	-6.865E+03	-2.69%	2.362E+05	2.974E+05	2.362E+05	2.974E+05	2.863E+04	0.
07	2.624E+05	-6.151E+03	-2.34%	2.392E+05	3.062E+05	2.392E+05	3.062E+05	3.252E+04	0.
80	2.668E+05	-5.157E+03	-1.93%	2.350E+05	3.097E+05	2.350E+05	3.097E+05	3.688E+04	0.
009	2.701E+05	-4.020E+03	-1.49%	2.343E+05	3.158E+05	2.343E+05	3.158E+05	4.330E+04	0.
10	2.696E+05	-2.840E+03	-1.05%	2.302E+05	3.218E+05	2.302E+05	3.218E+05	4.775E+04	0.
11	2.693E+05	-1.699E+03	-0.63%	2.282E+05	3.261E+05	2.282E+05	3.261E+05	5.170E+04	0.
12	2.691E+05	-6.507E+02	-0.24%	2.266E+05	3.301E+05	2.266E+05	3.301E+05	5.453E+04	0.
13	2.689E+05	2.834E+02	0.11%	2.265E+05	3.341E+05	2.265E+05	3.341E+05	5.722E+04	0.3

Results from ASPICP.EXE, version 3.16 3LN redfish Projection with 5000 Y 07 May 2008 at 16:18.29 Page 4

TRAJECTORY OF ABSOLUTE FISHING MORTALITY RATE (BOOTSTRAPPED)

Point Estimated bias Diase Approx 80% Approx 50% Approx 50% Approx 50% Questionate Diase										
Section Sect									Inter-	
1959 2.377E-01 1.078E-02 4.53% 1.521E-01 3.600E-01 1.521E-01 3.600E-01 1.096 1.517E-01 9.142E-03 6.03% 1.015E-01 2.287E-01 1.015E-01 2.287E-01 6.136E-01 1.336E-01 8.596E-03 6.43% 1.015E-01 2.287E-01 1.015E-01 2.287E-01 6.33 1.962 1.336E-01 8.596E-03 6.43% 9.255E-02 1.980E-01 9.255E-02 1.980E-01 5.3 1.962 1.336E-01 1.336E-01 3.34E-02 1.775E-01 8.48E-02 1.775E-01 8.48E-02 1.775E-01 8.48E-02 1.775E-01 8.48E-02 1.758E-01 1.538E-01 2.206E-01 5.1 1.965 1.281E-01 7.278E-03 5.68% 4.300E-02 7.700E-02 4.500E-02 7.700E-02 1.630E-01 3.3 1.966 9.160E-02 4.892E-03 5.34% 7.094E-02 1.135E-01 7.708E-02 1.630E-01 3.3 1.966 9.160E-02 4.892E-03 5.34% 7.094E-02 1.135E-01 7.708E-02 1.630E-01 3.3 1.966 9.160E-02 4.6138E-03 5.34% 7.094E-02 1.135E-01 1.770E-01 1.139E-01 1.770E-01 3.2 1.966 9.130E-02 4.6138E-03 4.63% -7.094E-02 1.135E-01 1.770E-01 1.139E-01 1.770E-01 3.2 1.996 9.331E-01 6.031E-03 4.53% 1.034E-01 1.535E-01 1.034E-01 1.770E-01 3.2 1.996 9.331E-01 6.031E-03 4.53% 1.034E-01 1.535E-01 1.034E-01 1.535E-01 2.6 1.997 0.7.651E-02 3.183E-03 4.16% 6.026E-02 8.726E-02 6.026E-02 8.726E-02 1.463E-01 3.3 1972 1.638E-01 6.584E-03 4.00% 1.298E-01 1.638E-01 1.034E-01 1.535E-01 2.098E-01 3.3 1972 1.638E-01 6.584E-03 4.03% 1.258E-01 1.638E-01 1.298E-01 3.638E-02 1.1978 0.1978									quartile	Relative
1960 1.517E-01 9.142E-03 6.03% 1.015E-01 2.287E-01 1.015E-01 2.287E-01 1.960E-01 5.3 1962 1.230E-01 7.948E-03 6.45% 8.488E-02 1.775E-01 8.848E-02 1.775E-01 4.4 1963 1.581E-01 1.047E-02 6.62% 1.153E-01 2.206E-01 1.153E-01 2.206E-01 5.1 1964 5.779E-02 3.597E-03 5.68% 4.300E-02 7.700E-02 4.300E-02 7.700E-02 1.6 1965 1.281E-01 7.278E-03 5.68% 9.753E-02 1.600E-01 7.75E-01 1.6 1966 9.160E-02 4.892E-03 5.60% 9.753E-02 1.630E-01 9.75DE-01 1.6 1967 1.468E-01 7.485E-03 5.10% 7.094E-02 1.135E-01 1.70E-01 1.2 1968 9.540E-02 4.613E-03 4.53% 7.094E-02 1.120E-01 7.433E-02 1.120E-01 2.2 1968 9.540E-02 4.613E-03 4.53% 7.094E-02 1.120E-01 7.433E-02 1.120E-01 9.7 1969 1.331E-01 6.031E-03 4.53% 1.034E-01 1.55E-01 7.435E-01 1.70E-01 3.2 1970 7.651E-02 3.183E-03 4.15% 6.026E-02 8.726E-02 8.726E-02 1.4 1971 1.852E-01 7.415E-03 4.00% 1.463E-01 2.09E-01 3.3 1972 1.638E-01 6.584E-03 4.02% 1.291E-01 1.799E-01 1.799E-01 3.7 1973 1.973E-01 7.959E-03 3.92% 1.059E-01 2.23E-01 1.20E-01 2.0 1974 1.352E-01 5.298E-03 3.92% 1.056E-01 2.158E-01 1.291E-01 1.854E-01 2.0 1975 1.061E-01 3.804E-03 4.02% 1.559E-01 2.23E-01 1.559E-01 2.22E-01 3.6 1974 1.352E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-02 1.589E-02 1.589E-03 3.92% 1.076E-01 1.513E-01 2.076E-02 1.59E-01 3.3 1979 1.312E-02 2.862E-03 3.09E-03 3.592% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.245E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.345E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.245E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.345E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.345E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.076E-01 1.513E-01 2.09E-01 3.3 1979 7.245E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 2.09E-01 3.3 1979 7.345E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 1.076E-01 1.513E-01 1.09E-01 1.513E-01 2.09E-01 3.3 1979 7.245E-01 5.298E-03 3.92% 1.096E-01 3.30E-01 1.09E-01 1.513E-01 3.09E-01 3.09E-01 3.09E-01 3.09E-01 3.09E-01	ear	estimate	bias	bias	lower CL	upper CL	lower CL	upper CL	range	IQ range
1961 1,336E-01 8,596E-03 6,43% 9,255E-02 1,980E-01 9,255E-02 1,980E-01 5,3 1962 1,230E-01 1,047E-02 6,62% 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 1,153E-01 2,266E-01 3,3 1,666E-01 7,266E-03 5,68% 9,753E-02 1,630E-01 9,753E-02 1,630E-01 3,3 1,666E-01 7,468E-03 5,10% 1,198E-01 1,770E-01 1,139E-01 1,770E-01 3,2 1,666E-01 7,468E-03 5,10% 1,198E-01 1,770E-01 1,139E-01 1,770E-01 3,2 1,666E-01 7,468E-03 5,10% 1,198E-01 1,770E-01 1,139E-01 1,770E-01 3,2 1,666E-01 7,468E-03 4,68% 7,433E-02 1,120E-01 7,433E-02 1,120E-01 2,0 1,666E-01 7,468E-03 4,68% 7,433E-02 1,120E-01 1,770E-01 3,2 1,666E-01 7,468E-03 4,68% 7,433E-02 1,120E-01 1,770E-01 1,770E-01 3,2 1,666E-01 7,468E-03 4,68% 7,433E-02 1,120E-01 1,770E-01	959	2.377E-01	1.078E-02	4.53%	1.521E-01	3.600E-01	1.521E-01	3.600E-01	1.061E-01	0.446
1962	960	1.517E-01	9.142E-03	6.03%	1.015E-01	2.287E-01	1.015E-01	2.287E-01	6.504E-02	0.429
1964 5.779E-02 3.597E-03 6.23 4.300E-02 7.700E-02 1.153E-01 2.206E-01 5.1 1965 1.281E-01 7.278E-03 5.34 4.300E-02 7.700E-02 1.630E-01 9.753E-02 1.630E-01 3.3 1966 9.160E-02 4.892E-03 5.348 7.094E-02 1.158E-01 9.753E-02 1.630E-01 3.3 1966 9.160E-02 4.892E-03 5.348 7.094E-02 1.158E-01 7.70E-01 1.159E-01 7.70E-01 3.2 1967 1.466E-01 7.485E-03 5.108 1.199E-01 1.770E-01 1.139E-01 1.770E-01 3.2 1968 9.540E-02 4.613E-03 4.848 7.434E-02 1.120E-01 7.433E-01 1.770E-01 3.2 1969 1.331E-01 6.031E-03 4.538 1.034E-01 1.535E-01 1.034E-01 1.555E-01 2.0 1999 7.651E-02 3.183E-03 4.168 6.026E-02 8.726E-02 6.026E-02 8.726E-02 8.726E-02 1.4 1971 7.651E-02 3.183E-03 4.008 1.463E-01 1.854E-01 1.034E-01 1.535E-01 2.0 1972 1.636E-01 6.584E-03 4.008 1.463E-01 1.854E-01 1.291E-01 2.099E-01 3.3 1972 1.636E-01 6.584E-03 4.008 1.463E-01 1.854E-01 1.291E-01 1.854E-01 3.0 1974 1.352E-01 7.455E-03 4.008 1.555E-01 2.23E-01 3.6 1974 1.352E-01 5.298E-03 3.928 1.076E-01 1.533E-01 1.076E-01 1.513E-01 1.772E-01	961	1.336E-01	8.596E-03	6.43%	9.255E-02	1.980E-01	9.255E-02	1.980E-01	5.367E-02	0.402
1965 1.281E-01 7.278E-03 5.68 9.753E-02 1.630E-01 9.753E-02 1.163E-01 3.3 1966 9.160E-02 4.892E-03 5.348 7.094E-02 1.135E-01 7.094E-02 1.135E-01 2.2 1967 1.468E-01 7.485E-03 5.108 1.139E-01 1.70E-01 1.139E-01 1.70E-01 3.2 1968 9.540E-02 4.613E-03 4.848 7.433E-02 1.120E-01 7.433E-02 1.120E-01 2.0 1869 1.331E-01 6.031E-03 4.848 7.433E-02 1.120E-01 7.433E-02 1.120E-01 2.0 1870 7.651E-02 3.183E-03 4.168 6.026E-02 8.726E-02 8.726E-02 8.726E-02 8.726E-02 8.726E-02 8.7	962	1.230E-01	7.948E-03	6.46%	8.848E-02	1.775E-01	8.848E-02	1.775E-01	4.404E-02	0.358
1965	963	1.581E-01	1.047E-02	6.62%	1.153E-01	2.206E-01	1.153E-01	2.206E-01	5.167E-02	0.327
1966 9,160E-02 4,892E-03 5,34% 7,094E-02 1,135E-01 7,094E-02 1,135E-01 2,23E-01 1,468E-01 7,485E-03 5,10% 1,19F-01 1,70F-01 1,139E-01 1,70F-01 3,2 1,135E-01 1,135E-01 2,6 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,135E-01 1,20E-01 2,0 1,135E-01 1,13	964	5.779E-02	3.597E-03	6.23%	4.300E-02	7.700E-02	4.300E-02	7.700E-02	1.653E-02	0.286
1966 9.540E-02 4.613E-03 4.84% 7.43E-02 1.120E-01 1.770E-01 2.0 1969 1.331E-01 6.031E-03 4.84% 7.433E-02 1.120E-01 1.034E-01 1.535E-01 2.6 1970 7.651E-02 3.183E-03 4.16% 6.026E-02 8.726E-02 6.026E-02 8.726E-02 1.9 1970 7.651E-02 3.183E-03 4.16% 6.026E-02 8.726E-02 6.026E-02 8.726E-02 1.9 1971 1.852E-01 7.415E-03 4.00% 1.463B-01 2.099E-01 1.463E-01 2.099E-01 3.3 1972 1.638E-01 6.584E-03 4.02% 1.291E-01 1.854E-01 1.291E-01 1.854E-01 2.099E-01 3.3 1973 1.973E-01 7.959E-03 4.03% 1.559E-01 2.223E-01 1.291E-01 1.854E-01 2.223E-01 1.091E-01 1.854E-01 3.6 1974 1.352E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 1.076E-01 1.513E-01 2.233E-01 1.076E-01 1.513E-01 2.099E-01 3.8 1975 1.61E-01 3.804E-03 3.59% 8.519E-02 1.298E-01 9.582E-02 1.298E-01 1.72E-01 1.7 1976 1.188E-01 3.930E-03 3.31% 9.582E-02 1.298E-01 9.582E-02 1.298E-01 1.72E-01 1.7 1976 6.487E-02 1.823E-03 3.07% 7.576E-02 1.010E-01 9.582E-02 1.298E-01 1.8 1977 9.312E-02 2.862E-03 3.07% 7.576E-02 1.010E-01 9.582E-02 1.298E-01 1.8 1978 6.487E-02 1.823E-03 2.81% 5.381E-02 7.014E-02 5.381E-02 7.014E-02 8.5 1979 7.245E-02 1.891E-03 2.61% 6.108E-02 7.822E-02 6.799E-02 8.634E-02 9.0 1980 8.022E-02 2.002E-03 2.50% 6.799E-02 8.634E-02 6.799E-02 8.634E-02 9.0 1981 1.215E-01 2.985E-03 2.99% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3 1983 9.993E-02 2.262E-03 2.266% 8.532E-02 1.091E-01 8.532E-02 1.091E-01 1.231E-01 1.91E-01 1.2612E-03 2.39% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3984 7.48E-02 1.536E-03 2.99% 6.364E-02 8.576E-02 1.187E-01 9.273E-02 1.187E-01 1.991E-01 1.250E-01 1.998E-01 1.532E-02 3.668 8.000E-02 1.188E-01 1.033E-01 1.315E-01 1.404E-01 6.044E-01 5.738E-03 1.996 8.826E-02 1.194E-01 6.044E-01 5.738E-03 1.996 8.826E-02 1.194E-01 6.044E-01 5.738E-03 1.996 8.826E-02 1.194E-01 6.044E-01 7.693E-02 1.091E-01 1.250E-01 1.998E-01 1.250E-01 1.998E-01 1.250E-01 1.2998E-01 1.2998E-01 1.2998E-01 1.2998E-01 1.	965	1.281E-01	7.278E-03	5.68%	9.753E-02	1.630E-01	9.753E-02	1.630E-01	3.314E-02	0.259
1968 9,540E-02 4,613E-03 4,84% 7,433E-02 1,120E-01 7,433E-02 1,120E-01 2,0 1970 7,651E-02 3,183E-03 4,16% 6,026E-02 8,726E-02 8,726E-02 8,726E-02 1,4 1971 1,852E-01 7,415E-03 4,00% 1,463E-01 2,099E-01 1,463E-01 2,099E-01 3,1 1973 1,973E-01 7,959E-03 4,03% 1,559E-01 2,223E-01 1,559E-01 2,223E-01 3,6 1973 1,973E-01 7,959E-03 4,03% 1,559E-01 2,223E-01 1,559E-01 2,223E-01 3,6 1974 1,352E-01 3,804E-03 3,93% 1,559E-01 2,223E-01 1,559E-01 2,223E-01 3,6 1975 1,061E-01 3,804E-03 3,93% 8,519E-02 1,172E-01 8,519E-02 1,172E-01 1,513E-01 1,513E-01 3,930E-03 3,31% 9,582E-02 1,172E-01 8,519E-02 1,172E-01 1,976 1,188E-01 3,930E-03 3,31% 9,582E-02 1,100E-01 7,576E-02 1,010E-01 1,318E-01 1,948E-02 1,298E-01 2,23E-03 3,07% 7,576E-02 1,010E-01 7,576E-02 1,010E-01 7,576E-02 1,010E-01 1,388E-02 1,298E-03 2,61% 6,108E-02 7,822E-02 6,108E-02 7,822E-02 9,0 1980 8,022E-02 2,002E-03 2,50% 6,799E-02 8,634E-02 5,381E-02 7,822E-02 9,0 1980 8,022E-02 2,002E-03 2,50% 6,799E-02 8,634E-02 6,799E-02 8,634E-02 8,834E-02 9,0 1980 8,022E-02 2,002E-03 2,50% 6,799E-02 8,634E-02 6,799E-02 8,634E-02 8,034E-02 9,0 1980 1,091E-01 2,612E-03 2,93% 9,273E-02 1,187E-01 9,273E-02 1,187E-01 1,315E-01 1,31	966	9.160E-02	4.892E-03	5.34%	7.094E-02	1.135E-01	7.094E-02	1.135E-01	2.211E-02	0.241
1999	967	1.468E-01	7.485E-03	5.10%	1.139E-01	1.770E-01	1.139E-01	1.770E-01	3.281E-02	0.223
1970	968	9.540E-02	4.613E-03	4.84%	7.433E-02	1.120E-01	7.433E-02	1.120E-01	2.038E-02	0.214
1971	969	1.331E-01	6.031E-03	4.53%	1.034E-01	1.535E-01	1.034E-01	1.535E-01	2.692E-02	0.202
1972 1.638E-01 6.584E-03 4.02% 1.291E-01 1.854E-01 1.291E-01 1.854E-01 3.0 1973 1.973E-01 7.959E-03 4.03% 1.559E-01 2.223E-01 1.559E-01 2.223E-01 3.6 6.1974 1.352E-01 5.298E-03 3.92% 1.076E-01 1.513E-01 1.076E-01 1.513E-01 2.3 1975 1.061E-01 3.804E-03 3.59% 8.519E-02 1.172E-01 8.519E-02 1.172E-01 1.7 1976 1.188E-01 3.930E-03 3.31% 9.582E-02 1.298E-01 9.582E-02 1.298E-01 1.8 1977 9.312E-02 2.862E-03 3.07% 7.576E-02 1.010E-01 7.576E-02 1.010E-01 1.3 1978 6.487E-02 1.891E-03 2.81% 5.381E-02 7.014E-02 5.381E-02 7.014E-02 8.5 1979 7.245E-02 1.891E-03 2.61% 6.108E-02 7.822E-02 6.108E-02 7.014E-02 8.5 1979 7.245E-02 1.891E-03 2.61% 6.108E-02 7.822E-02 6.108E-02 7.822E-02 9.0 1980 8.022E-02 2.002E-03 2.50% 6.799E-02 8.634E-02 6.108E-02 7.822E-02 9.0 1980 8.022E-02 2.002E-03 2.50% 6.799E-02 8.634E-02 6.799E-02 8.634E-02 9.8 1981 1.215E-01 2.985E-03 2.46% 1.033E-01 1.315E-01 1.033E-01 1.315E-01 1.4 1982 1.091E-01 2.612E-03 2.39% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3 1983 9.993E-02 2.262E-03 2.29% 6.364E-02 8.070E-02 6.364E-02 8.070E-02 8.9 1985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.091E-01 8.532E-02 1.091E-01 1.2 1984 7.348E-02 1.536E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.118E-01 1.2 1986 2.235E-01 1.278E-03 1.99% 1.941E-01 5.50E-01 1.941E-01 2.500E-01 3.0 1987 5.218E-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 8.5 1988 4.827E-01 1.523E-02 3.46% 2.992E-01 4.490E-01 1.294E-01 2.500E-01 3.904E-01 5.715E-01 9.50E-01 1.941E-01 2.50E-01 1.941E-01 2.50E-01 1.941E-01 2.50E-01 1.941E-01 2.50E-01 1.941E-01 2.50E-01 3.0 1987 5.218E-01 1.523E-02 3.46% 2.982E-01 4.490E-01 2.962E-01 4.490E-01 8.5 1988 4.827E-01 1.523E-02 3.46% 2.982E-01 4.490E-01 2.962E-01 4.490E-01 8.5 1999 3.747E-01 1.305E-02 3.46% 2.889E-01 4.490E-01 2.962E-01 4.490E-01 8.5 1999 3.747E-01 1.305E-02 3.46% 2.889E-01 4.490E-01 2.962E-01 4.490E-01 1.277E-02 3.46% 2.889E-01 5.748E-01 2.982E-01 4.490E-01 1.277E-02 3.46% 2.982E-01 4.490E-01 2.962E-01 4.490E-01 1.294E-01 3.00E-01 1.277E-02 3.46% 2.982E-03 3.968E-02 2.962E-01 4.490E-01 3.00E-01 3.00	970	7.651E-02	3.183E-03	4.16%	6.026E-02	8.726E-02	6.026E-02	8.726E-02	1.441E-02	0.188
1973	971	1.852E-01	7.415E-03	4.00%	1.463E-01	2.099E-01	1.463E-01	2.099E-01	3.382E-02	0.183
1975 1.061E-01 3.804E-03 3.92% 1.076E-01 1.513E-01 1.076E-01 1.513E-01 1.7 1976 1.188E-01 3.930E-03 3.31% 9.582E-02 1.298E-01 9.582E-02 1.298E-01 1.8 1977 9.312E-02 2.862E-03 3.07% 7.576E-02 1.010E-01 7.576E-02 1.010E-01 1.3 1978 6.487E-02 1.823E-03 2.81% 5.381E-02 7.014E-02 5.381E-02 7.014E-02 8.5 1979 7.245E-02 1.891E-03 2.61% 6.108E-02 7.822E-02 6.108E-02 7.822E-02 9.0 1980 8.022E-02 2.002E-03 2.50% 6.799E-02 8.634E-02 6.799E-02 8.634E-02 9.0 1981 1.215E-01 2.985E-03 2.46% 1.033E-01 1.315E-01 1.033E-01 1.315E-01 1.4 1982 1.091E-01 2.612E-03 2.39% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3 1983 9.993E-02 2.62EE-03 2.26% 8.532E-02 1.091E-01 8.532E-02 1.091E-01 1.2 1984 7.348E-02 1.536E-03 2.09% 6.364E-02 8.070E-02 6.364E-02 8.070E-02 8.9 1985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.181E-01 1.2 1986 2.235E-01 4.452E-03 1.99% 1.941E-01 2.500E-01 1.941E-01 2.500E-01 3.0 1987 5.218E-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 8.5988 4.827E-01 1.35E-01 1.35E-01 1.308E-01 972	1.638E-01	6.584E-03	4.02%	1.291E-01	1.854E-01	1.291E-01	1.854E-01	3.005E-02	0.183	
1975 1.061E-01 3.804E-03 3.59\ 8.519E-02 1.172E-01 8.519E-02 1.172E-01 1.7	973	1.973E-01	7.959E-03	4.03%	1.559E-01	2.223E-01	1.559E-01	2.223E-01	3.602E-02	0.183
1976	974	1.352E-01	5.298E-03	3.92%	1.076E-01	1.513E-01	1.076E-01	1.513E-01	2.378E-02	0.176
1977 9.312E-02 2.862E-03 3.07% 7.576E-02 1.010E-01 7.576E-02 1.010E-01 1.3 1978 6.487E-02 1.891E-03 2.61% 5.381E-02 7.014E-02 5.381E-02 7.014E-02 8.5 1979 7.245E-02 1.891E-03 2.61% 6.108E-02 7.822E-02 6.108E-02 7.822E-02 9.0 1980 8.022E-02 2.002E-03 2.50% 6.799E-02 8.634E-02 6.799E-02 8.634E-02 9.8 1981 1.215E-01 2.985E-03 2.46% 1.033E-01 1.315E-01 1.033E-01 1.315E-01 1.4 1982 1.091E-01 2.6612E-03 2.39% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3 1983 9.993E-02 2.262E-03 2.26% 8.532E-02 1.091E-01 8.552E-02 1.091E-01 1.2 1984 7.348E-02 1.536E-03 2.99% 6.364E-02 8.070E-02 8.9 1985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.118E-01 1.2 1986 2.235E-01 4.452E-03 1.99% 1.941E-01 2.500E-01 1.941E-01 2.500E-01 3.0 1987 5.218E-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 8.5 1988 4.827E-01 1.523E-02 3.16% 3.904E-01 5.715E-01 3.904E-01 5.715E-01 9.6 1989 3.747E-01 1.305E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.490E-01 8.6 1991 3.668E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.490E-01 8.6 1991 3.668E-01 1.266E-02 3.78% 3.400E-01 5.244E-01 1.549E-01 1.1 1993 4.655E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.491E-01 1.1 1993 3.004E-01 5.728E-03 5.38% 7.663E-02 1.90E-01 7.693E-02 1.90E-01 1.1 1994 1.064E-01 5.728E-03 5.38% 7.663E-02 1.90E-01 7.693E-02 1.90E-01 1.1 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1996 5.379E-03 1.566E-04 3.10% 4.189E-03 7.033E-03 5.871E-03 9.053E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 5.516E-04 3.50% 5.738E-03 6.204E-03 5.88 2002 5.778E-03 2.194E-04 3.55% 5.078E-03 6.204E-03 5.88 2003 5.892E-03 2.194E-04 3.73% 5.078E-03 6.204E-03 5.88 2004 2.557E-03 9.923E-05 3.73% 5.078E-03 6.204E-03 5.448E-03 7.235E-03 6.204E-03 5.88 2004 2.557E-03 9.923E-05 3.73% 5.641E-03 7.336E-03 5.443E-03 7.245E-03 6.204E-03 5.88 2003 5.892E-03 2.194E-04 3.75% 5.078E-03 6.204E-03 5.448E-03 7.235E-03 6.004E-03 5.448E-03 7.245E-03 6.204E-03 5.88 2004 5.657E-03 5.992E-03 2.150E-04 3.50% 5.641E-	975	1.061E-01	3.804E-03	3.59%	8.519E-02	1.172E-01	8.519E-02	1.172E-01	1.732E-02	0.163
1978	976	1.188E-01	3.930E-03	3.31%	9.582E-02	1.298E-01	9.582E-02	1.298E-01	1.805E-02	0.152
1979	977	9.312E-02	2.862E-03	3.07%	7.576E-02	1.010E-01	7.576E-02	1.010E-01	1.329E-02	0.143
1980	978	6.487E-02	1.823E-03	2.81%	5.381E-02	7.014E-02	5.381E-02	7.014E-02	8.596E-03	0.132
1981 1,215E-01 2,985E-03 2,46% 1,033E-01 1,315E-01 1,033E-01 1,315E-01 1,4	979	7.245E-02	1.891E-03	2.61%	6.108E-02	7.822E-02	6.108E-02	7.822E-02	9.027E-03	0.125
1981 1,215E-01 2,985E-03 2,46% 1,033E-01 1,315E-01 1,033E-01 1,315E-01 1,4	980	8.022E-02	2.002E-03	2.50%	6.799E-02	8.634E-02	6.799E-02	8.634E-02	9.827E-03	0.123
1982 1.091E-01 2.612E-03 2.39% 9.273E-02 1.187E-01 9.273E-02 1.187E-01 1.3 1983 9.993E-02 2.262E-03 2.26% 8.532E-02 1.091E-01 8.532E-02 1.091E-01 1.2 1984 7.348E-02 1.536E-03 2.09% 6.364E-02 8.070E-02 6.364E-02 8.070E-02 8.9 1985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.118E-01 1.2 2.500E-01 1.0 1986 2.235E-01 4.452E-03 1.96% 8.826E-02 1.118E-01 2.500E-01 1.0 1.2 1987 5.218E-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 5.715E-01 3.904E-01 4.406E-01 4.416E-01 4.416E-01 4.899E-01 4.466E-01 4.416E-01 4.899E-01 4.466E-01 4.436E-01 4.990E-01	981	1.215E-01	2.985E-03	2.46%	1.033E-01	1.315E-01	1.033E-01	1.315E-01	1.478E-02	0.122
1984 7.348E-02 1.536E-03 2.09% 6.364E-02 8.070E-02 8.070E-02 8.970E-02 8.970E-02 8.91985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.118E-01 1.2080E-01 1.941E-01 2.500E-01 1.941E-01 2.500E-01 1.941E-01 2.500E-01 1.941E-01 2.500E-01 1.941E-01 2.500E-01 3.00E-01 1.941E-01 2.500E-01 4.411E-01 6.014E-01 8.526E-02 3.488 2.962E-01 4.490E-01 2.962E-01 4.490E-01 5.715E-01 9.6 1.988 3.747E-01 1.305E-02 3.48% 2.962E-01 4.490E-01 2.962E-01 4.490E-01 2.962E-01 4.490E-01 2.962E-01 4.490E-01 2.962E-01 4.490E-01 8.6 1990 3.690E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.416E-01 8.6 1991 3.668E-01 1.268E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.491E-01 1.1 1993 4.055E-01 5.78E-03 3.78% 3.402E-01 5.491E-01 5.44E-01 1.944E-01 <td>982</td> <td>1.091E-01</td> <td>2.612E-03</td> <td>2.39%</td> <td>9.273E-02</td> <td>1.187E-01</td> <td>9.273E-02</td> <td></td> <td>1.329E-02</td> <td>0.122</td>	982	1.091E-01	2.612E-03	2.39%	9.273E-02	1.187E-01	9.273E-02		1.329E-02	0.122
1985 1.012E-01 1.987E-03 1.96% 8.826E-02 1.118E-01 8.826E-02 1.118E-01 1.2 1986 2.235E-01 4.452E-03 1.99% 1.941E-01 2.500E-01 1.941E-01 2.500E-01 3.0 1987 5.218E-01 1.27EE-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 4.411E-01 6.014E-01 5.715E-01 3.0 1989 3.747E-01 1.523E-02 3.16% 3.904E-01 5.715E-01 3.904E-01 5.715E-01 9.6 1999 3.690E-01 1.27TE-02 3.46% 2.889E-01 4.490E-01 2.962E-01 4.490E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.856E-01 4.389E-01 2.856E-01 4.389E-01 5.491E-01 1.1 1992 4.466E-01 1.68F-02 3.78% 3.402E-01 5.491E-01 5.491E-01 1.1 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 <td>983</td> <td>9.993E-02</td> <td>2.262E-03</td> <td>2.26%</td> <td>8.532E-02</td> <td>1.091E-01</td> <td>8.532E-02</td> <td>1.091E-01</td> <td>1.219E-02</td> <td>0.122</td>	983	9.993E-02	2.262E-03	2.26%	8.532E-02	1.091E-01	8.532E-02	1.091E-01	1.219E-02	0.122
1986 2.235E-01 4.452E-03 1.99% 1.941E-01 2.500E-01 1.941E-01 2.500E-01 3.0 1987 5.21BE-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 8.5 1988 4.827E-01 1.523E-02 3.16% 3.904E-01 5.715E-01 3.904E-01 5.715E-01 9.6 1989 3.747E-01 1.305E-02 3.46% 2.9862E-01 4.490E-01 2.962E-01 4.490E-01 8.4 1990 3.690E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.416E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.856E-01 4.389E-01 2.856E-01 4.389E-01 8.6 1992 4.666E-01 1.687E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.244E-01 1.2 1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.608E-02 1.404E-01 3.908E-02 1.404	984	7.348E-02	1.536E-03	2.09%	6.364E-02	8.070E-02	6.364E-02	8.070E-02	8.937E-03	0.122
1987 5.218E-01 1.278E-02 2.45% 4.411E-01 6.014E-01 4.411E-01 6.014E-01 8.5 1988 4.827E-01 1.523E-02 3.16% 3.904E-01 5.715E-01 3.904E-01 5.715E-01 9.6 1989 3.747E-01 1.305E-02 3.46% 2.962E-01 4.490E-01 2.962E-01 4.490E-01 2.466E-01 4.416E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.886E-01 4.416E-01 4.88PE-01 4.416E-01 8.6 1992 4.466E-01 1.667E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.491E-01 5.491E-01 1.2 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 1994 1.064E-01 5.728E-03 5.33% 7.693E-02 1.404E-01 3.3 1.95 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 1.404E-01 3.3	985	1.012E-01	1.987E-03	1.96%	8.826E-02	1.118E-01	8.826E-02	1.118E-01	1.273E-02	0.126
1988 4.827E-01 1.523E-02 3.16% 3.904E-01 5.715E-01 3.904E-01 5.715E-01 9.6 1989 3.747E-01 1.305E-02 3.48% 2.962E-01 4.490E-01 2.962E-01 4.490E-01 8.4 1990 3.690E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.416E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.856E-01 4.389E-01 2.856E-01 4.389E-01 5.491E-01 1.1 1992 4.466E-01 1.67E-02 3.78% 3.402E-01 5.244E-01 5.244E-01 5.491E-01 1.1 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 7.693E-02 1.404E-01 7.693E-02 1.404E-01 7.693E-02 1.404E-01 7.693E-02 1.404E-01 7.033E-03 1.1 1.2 1.994 1.064E-01 7.693E-02 1.404E-01 7.033E-03 1.4 1.2 1.994 1.064E-01 7.033E-03 4.189E-03 7.033E-03 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	986	2.235E-01	4.452E-03	1.99%	1.941E-01	2.500E-01	1.941E-01	2.500E-01	3.043E-02	0.136
1989 3.747E-01 1.305E-02 3.48% 2.962E-01 4.490E-01 2.962E-01 4.490E-01 8.4 1990 3.690E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.416E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.856E-01 4.389E-01 2.856E-01 4.389P-01 8.6 1992 4.466E-01 1.687E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.244E-01 1.2 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.368E-02 9.0 1996 5.379E-03 1.568E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1998 7.042E-03 1.512E-04 2.53% 4.876E-03 7.928E-03 4.876E-03	987	5.218E-01	1.278E-02	2.45%	4.411E-01	6.014E-01	4.411E-01	6.014E-01	8.559E-02	0.164
1990 3.690E-01 1.277E-02 3.46% 2.889E-01 4.416E-01 2.889E-01 4.416E-01 8.6 1991 3.668E-01 1.246E-02 3.40% 2.856E-01 5.491E-01 2.856E-01 4.389E-01 5.491E-01 3.402E-01 5.491E-01 3.402E-01 5.491E-01 1.1 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.3 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1996 5.379E-03 1.668E-04 3.10% 4.189E-03 7.033E-03 4.189E-03 7.033E-03 1.4 1997 6.006E-03 1.51E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.931E-02 2.14E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-03 8.658E-03 8.8 2002 5.778E-03 <td>988</td> <td>4.827E-01</td> <td>1.523E-02</td> <td>3.16%</td> <td>3.904E-01</td> <td>5.715E-01</td> <td>3.904E-01</td> <td>5.715E-01</td> <td>9.648E-02</td> <td>0.200</td>	988	4.827E-01	1.523E-02	3.16%	3.904E-01	5.715E-01	3.904E-01	5.715E-01	9.648E-02	0.200
1991 3.668E-01 1.246E-02 3.40% 2.856E-01 4.389E-01 2.856E-01 4.389E-01 8.6 1992 4.466E-01 1.687E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.491E-01 1.2 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 5.244E-01 1.2 <td>989</td> <td>3.747E-01</td> <td>1.305E-02</td> <td>3.48%</td> <td>2.962E-01</td> <td>4.490E-01</td> <td>2.962E-01</td> <td>4.490E-01</td> <td>8.469E-02</td> <td>0.226</td>	989	3.747E-01	1.305E-02	3.48%	2.962E-01	4.490E-01	2.962E-01	4.490E-01	8.469E-02	0.226
1992 4.466E-01 1.687E-02 3.78% 3.402E-01 5.491E-01 3.402E-01 5.491E-01 5.244E-01 1.1 1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.2 1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.3 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1996 5.379E-03 1.668E-04 3.10% 4.189E-03 7.033E-03 4.189E-03 7.033E-03 1.5 1997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 3.01% 1.612E-02 2.214E-02 1.931E-02 1.32E-03 1.5 2000 1.831E-02 5.56E-04 3.01% 1.612E-02 2.214E-02 1.931E-02	990	3.690E-01	1.277E-02	3.46%	2.889E-01	4.416E-01	2.889E-01	4.416E-01	8.638E-02	0.234
1993 4.055E-01 2.038E-02 5.03% 2.978E-01 5.244E-01 2.978E-01 5.244E-01 1.244E-01 1.2 1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.3 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 2.259E-02 3.968E-02 2.259E-02 3.968E-02 2.259E-02 3.968E-02 2.259E-02 3.968E-03 4.189E-03 7.033E-03 1.4 1.4 1.4 1.997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1.998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1.931E-02 1.322E-02 1.931E-02 1.931E-02 2.1931E-02 1.931E-02 2.14E-02 2.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>991</td> <td>3.668E-01</td> <td>1.246E-02</td> <td>3.40%</td> <td>2.856E-01</td> <td>4.389E-01</td> <td>2.856E-01</td> <td>4.389E-01</td> <td>8.684E-02</td> <td>0.237</td>	991	3.668E-01	1.246E-02	3.40%	2.856E-01	4.389E-01	2.856E-01	4.389E-01	8.684E-02	0.237
1994 1.064E-01 5.728E-03 5.38% 7.693E-02 1.404E-01 7.693E-02 1.404E-01 3.3 1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1996 5.379E-03 1.668E-04 3.10% 4.189E-03 7.033E-03 4.189E-03 7.033E-03 1.4 1997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 3.322E-02 1.931E-02 3.0 2000 1.831E-02 5.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02 2.914E-02 2.94 2001 7.522E-03 2.533E-04 3.55% 6.724E-03 8.658E-03 6.724E-03 8.658E-03 6.724E-03 8.658E-03 6.204E-03 8.658E-03 8.8 2002 5.778E-03 2.194E-04 <td>992</td> <td>4.466E-01</td> <td>1.687E-02</td> <td>3.78%</td> <td>3.402E-01</td> <td>5.491E-01</td> <td>3.402E-01</td> <td>5.491E-01</td> <td>1.141E-01</td> <td>0.256</td>	992	4.466E-01	1.687E-02	3.78%	3.402E-01	5.491E-01	3.402E-01	5.491E-01	1.141E-01	0.256
1995 3.004E-02 1.258E-03 4.19% 2.259E-02 3.968E-02 2.259E-02 3.968E-02 9.0 1996 5.379E-03 1.668E-04 3.10% 4.189E-03 7.033E-03 4.189E-03 7.033E-03 4.189E-03 7.033E-03 1.5 1997 6.006E-03 1.521E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.931E-02 1.931E-02 3.0 2000 1.831E-02 5.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02 2.214E-02 2.252E-03 8.658E-03 6.724E-03 8.5858E-03 8.8 2002 5.778E-03 2.076E-04 3.59% 5.078E-03 6.235E-03 5.078E-03 6.204E-03 5.8 2003 5.892E-03 2.194E-04 3.72% 5.078	993	4.055E-01	2.038E-02	5.03%	2.978E-01	5.244E-01	2.978E-01	5.244E-01	1.259E-01	0.311
1996 5.379E-03 1.668E-04 3.10% 4.189E-03 7.033E-03 4.189E-03 7.033E-03 1.4 1997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.322E-02 1.931E-02 3.0 2000 1.831E-02 2.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02 2.14E-02 2.14E-02 2.14E-02 2.14E-02 2.14E-02 2.14E-02 2.14E-02 2.214E-02 2.574E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.658E-03 8.6724E-03 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.078E-03 6.235E-03 8.658E-03	994	1.064E-01	5.728E-03	5.38%	7.693E-02	1.404E-01	7.693E-02	1.404E-01	3.338E-02	0.314
1997 6.006E-03 1.521E-04 2.53% 4.876E-03 7.928E-03 4.876E-03 7.928E-03 1.5 1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.322E-02 1.931E-02 3.15 1.5 2000 1.831E-02 5.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-03 8.658E-03 8.658E-03 8.8 2002 5.778E-03 2.076E-04 3.59% 5.079E-03 6.235E-03 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.078E-03 6.235E-03 6.0 6.0 2.252E-03 2.816E-03 2.818E-03 2.818E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-0	995	3.004E-02	1.258E-03	4.19%	2.259E-02	3.968E-02	2.259E-02	3.968E-02	9.074E-03	0.302
1998 7.042E-03 1.712E-04 2.43% 5.871E-03 9.053E-03 5.871E-03 9.053E-03 1.5 1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.322E-02 1.931E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-03 8.658E-03 8.8 2002 5.778E-03 2.0523E-04 3.55% 6.724E-03 8.658E-03 6.724E-03 8.658E-03 8.8 2003 5.892E-03 2.194E-04 3.72% 5.078E-03 6.235E-03 5.078E-03 6.235E-03 6.235E-03 6.235E-03 6.235E-03 2.818E-03 2.268E-03 2.818E-03 2.255E-03 2.816E-03 2.275E-03 2.816E-03 2.255E-03 2.816E-03 <td>996</td> <td>5.379E-03</td> <td>1.668E-04</td> <td>3.10%</td> <td>4.189E-03</td> <td>7.033E-03</td> <td>4.189E-03</td> <td>7.033E-03</td> <td>1.474E-03</td> <td>0.274</td>	996	5.379E-03	1.668E-04	3.10%	4.189E-03	7.033E-03	4.189E-03	7.033E-03	1.474E-03	0.274
1999 1.541E-02 4.080E-04 2.65% 1.322E-02 1.931E-02 1.322E-02 1.931E-02 3.0 2000 1.831E-02 5.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-02 2.214E-03 8.658E-03 8.6724E-03 8.658E-03 8.6724E-03 8.658E-03 8.6724E-03 8.658E-03 8.6724E-03 8.658E-03 8.6724E-03 8.658E-03 8.672E-03 8.672E-03 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.078E-03 6.235E-03 6.024E-03 5.078E-03 6.235E-03 6.024E-03 5.078E-03 6.235E-03 2.818E-03 2.818E-03 2.818E-03 2.818E-03 2.818E-03 2.818E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.7736E-03 2.816E-03 2.7736E-03 2.816E-03 2.7736E-03 2.104E-03 2.086E-03 2.104E-03 2.086E-03 2.816E-03 2.7736E-03 2.816E-03 2.7746E-03 2.7746E-03 2.7746E-03	997	6.006E-03	1.521E-04	2.53%	4.876E-03	7.928E-03	4.876E-03	7.928E-03	1.540E-03	0.256
2000 1.831E-02 5.516E-04 3.01% 1.612E-02 2.214E-02 1.612E-02 2.214E-02	998	7.042E-03	1.712E-04	2.43%	5.871E-03	9.053E-03	5.871E-03	9.053E-03	1.598E-03	0.227
2001 7.522E-03 2.523E-04 3.35% 6.724E-03 8.658E-03 6.724E-03 8.658E-03 8.658E-03 8.8 2002 5.778E-03 2.076E-04 3.59% 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.8 2003 5.892E-03 2.194E-04 3.72% 5.078E-03 6.235E-03 5.078E-03 6.235E-03 6.235E-03 6.024E-03 2.818E-03 2.268E-03 2.818E-03 2.268E-03 2.818E-03 2.255E-03 2.816E-03 2.736E-03 2.150E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.641E-03 7.245E-03 9.2 2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 9.2	999	1.541E-02	4.080E-04	2.65%	1.322E-02	1.931E-02	1.322E-02	1.931E-02	3.034E-03	0.197
2002 5.778E-03 2.076E-04 3.59% 5.079E-03 6.204E-03 5.079E-03 6.204E-03 5.89 2003 5.892E-03 2.194E-04 3.72% 5.078E-03 2.6125E-03 5.078E-03 6.235E-03 6.078E-03 2.35E-03 2.618E-03 2.268E-03 2.818E-03 2.268E-03 2.818E-03 2.258E-03 2.818E-03 2.258E-03 2.818E-03 2.25E-03 2.816E-03 2.7 2005 2.631E-03 9.590E-05 3.65% 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.7 2006 1.916E-03 6.682E-05 3.49% 1.640E-03 2.086E-03 1.640E-03 2.086E-03 2.1 2007 6.529E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.443E-03 7.245E-03 7.245E-03 9.2	000	1.831E-02	5.516E-04	3.01%	1.612E-02	2.214E-02	1.612E-02	2.214E-02	2.945E-03	0.161
2003 5.892E-03 2.194E-04 3.72% 5.078E-03 6.235E-03 5.078E-03 6.235E-03 6.235E-03 6.235E-03 6.078E-03 6.235E-03 6.078E-03 6.268E-03 2.818E-03 2.268E-03 2.818E-03 2.255E-03 2.816E-03	001		2.523E-04	3.35%	6.724E-03	8.658E-03	6.724E-03	8.658E-03	8.827E-04	0.117
2004 2.657E-03 9.923E-05 3.73% 2.268E-03 2.818E-03 2.268E-03 2.818E-03 2.7 2005 2.631E-03 9.590E-05 3.65% 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.7 2006 1.916E-03 6.682E-05 3.49% 1.640E-03 2.086E-03 1.640E-03 2.086E-03 2.1 2007 6.529E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.641E-03 7.336E-03 8.1 2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 9.2	002	5.778E-03	2.076E-04	3.59%	5.079E-03	6.204E-03	5.079E-03	6.204E-03	5.803E-04	0.100
2005 2.631E-03 9.590E-05 3.65% 2.255E-03 2.816E-03 2.255E-03 2.816E-03 2.7 2006 1.916E-03 6.682E-05 3.49% 1.640E-03 2.086E-03 1.640E-03 2.086E-03 2.1 2007 6.529E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.641E-03 7.336E-03 7.245E-03 9.2 2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 9.2	003								6.025E-04	0.102
2006 1.916E-03 6.682E-05 3.49% 1.640E-03 2.086E-03 1.640E-03 2.086E-03 2.1 2007 6.529E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.641E-03 7.336E-03 7.336E-03 8.1 2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 7.245E-03	004	2.657E-03	9.923E-05	3.73%	2.268E-03	2.818E-03	2.268E-03	2.818E-03	2.706E-04	0.102
2007 6.529E-03 2.150E-04 3.29% 5.641E-03 7.336E-03 5.641E-03 7.336E-03 8.1 2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 9.2	005	2.631E-03	9.590E-05	3.65%	2.255E-03	2.816E-03	2.255E-03	2.816E-03	2.740E-04	0.104
2008 6.331E-03 1.950E-04 3.08% 5.443E-03 7.245E-03 5.443E-03 7.245E-03 9.2	006	1.916E-03	6.682E-05	3.49%	1.640E-03	2.086E-03	1.640E-03	2.086E-03	2.129E-04	0.111
	007	6.529E-03	2.150E-04	3.29%	5.641E-03	7.336E-03	5.641E-03	7.336E-03	8.152E-04	0.125
	800	6.331E-03	1.950E-04	3.08%	5.443E-03	7.245E-03	5.443E-03	7.245E-03	9.267E-04	0.146
	009	1.853E-02	5.325E-04	2.87%	1.571E-02	2.151E-02	1.571E-02	2.151E-02	3.057E-03	0.165
	010		4.952E-04		1.542E-02		1.542E-02		3.363E-03	0.181
	011	1.857E-02	4.565E-04		1.523E-02		1.523E-02		3.595E-03	0.194
2012 1.859E-02 4.198E-04 2.26% 1.502E-02 2.209E-02 1.502E-02 2.209E-02 3.7	012	1.859E-02	4.198E-04	2.26%	1.502E-02	2.209E-02	1.502E-02	2.209E-02	3.742E-03	0.201

07 May 2008 at 16:18.29

Page 5

NOTE: Estimates beginning in 2009 depend on the user projection data listed on page 1.

07 May 2008 at 16:18.29 Page 6

Results from ASPICP.EXE, version 3.16 $3 LN \ red fish$ Projection with 5000 Y

Time Plot of F/Fmsy (#) with 80% Bias-Corrected (BC) Confidence Interval (^v) (Dashed reference line is 1.0)

NOTE: Estimates beginning in 2008 depend on the user projection data listed on page 1.