ARITHMETIC Chapter 15

POTENCIACIÓN

AJEDREZ

Muy conocido es el premio que pidió al rey *Schram* el inventor del juego de ajedrez, *Sessa Ebn Daher*. Pidió al rey que se le dieran tantos granos de trigo resultantes de poner I grano en la primera casilla, 2 en la segunda, 4 en la tercera, etc. hasta llegar, doblando, a la casilla 64, última del tablero.

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{64} = \frac{2^{65} - 1}{2 - 1}$$

Sumando tenemos 18 446 744 073 709 551 615, cantidad tan enorme.

Donde: P: potencia

k: base

n: exponente

CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN

Por su descomposición canónica

Cuadrado perfecto k ²	Cubo perfecto k ³
$14400 = 2^{6}.3^{2}.5^{2}$	27000= 2 ³ .3 ³ .5 ³
765625 = 5 ⁴ .7 ²	91125= 3 ⁶ .5 ³

TERMIANCIÓN EN CIFRA "0"

Cuadrado perfecto	Cubo perfecto
k ²	k ³
$14400 = 2^{6}.3^{2}.5^{2}$	27000= ₂ 3 _{.3} 3 _{.5} 3
14400	27000
n ² 2β ceros	n ³ 3β ceros

TERMINACIÓN EN CIFRA "5"

Cuando se le preguntó al padre Martín párroco de la iglesia de Nuestra Señora de los Desamparados, ¿cuántas misas había oficiado hasta el momento?, este respondió: "La cantidad de misas que he oficiado es igual a la cantidad de cuadrados perfectos comprendidos entre 78 y 260". ¿Cuántas misas ha oficiado el padre Martín?

Resolución:

$$78 < k^2 < 260$$
 $k^2 = 81;100;121;...;256$
 $k^2 = 9^2;10^2;11^2;...;16^2$
 $k = 9;10;11;...;16$

¿Cuántos números de tres cifras son cuadrados perfectos?

Resolución:

$$k^2=10^2;11^2;...;31^2$$

Si el numeral a2b5 es un cuadrado perfecto, determine el máximo valor de a + b.

Resolución:

$$\frac{1}{a2b5} = k^2$$

$$\overline{a2} = 12 = 3 \times 4$$
 $42 = 6 \times 7$
 $\overline{72} = 8 \times 9$
 $a = 7$

Determine el menor número entero, por el que se debe multiplicar a 1960, para que el producto resultante sea un cuadrado perfecto.

Resolución:

$$1960 = 2^3 \times 5^1 \times 7^2$$

$$2^3 \times 5^1 \times 7^2 \times N = k^2$$

Completamos:
$$2^1 \times 5^1$$

$$2^4 \times 5^2 \times 7^2 = k^2$$

Determine el menor número entero por el cual hay que dividir a 4752 para que el cociente resulte un cubo perfecto.

Resolución:

$$\frac{4752}{N} = k^3$$

$$= \frac{2^4 \times 3^3 \times 11^1}{2^1 \times 11^1}$$

$$= 2^3 \times 3^3 = k^3$$

$$N = 2^{1} \times 11^{1} =$$

El cubo de un número, aumentado en el propio número resulta 520. ¿Cuál es su cuadrado?

Resolución:

Sea el número: N

$$N^3 + N = 520$$

 $N (N^2 + 1) = 8 (8^2 + 1)$

$$N = 8$$

Piden:

$$N^2 = 8^2$$

La suma de la tercera y octava parte de un número es un cubo perfecto. ¿Cuál es el menor número que cumple esta condición?

Resolución:

Sea el número: 24N

$$\frac{24N}{3} + \frac{24N}{8} = k^3$$

$$8N + 3N = k^3$$

$$11N = k^3$$
 $N = 11^2 = 121$
el número: $24N = 24 \times 121 =$

Si
$$(\overline{a5})^2 = \overline{90bc}$$
, calcule $a + b + c$.

Resolución:

$$(\overline{a5})^2 = \overline{90bc}$$

$$1 = 90$$

$$a(a + 1) = 9(9 + 1)$$

$$a = 9$$

$$b = 2$$

$$c = 5$$

Piden:

$$a + b + c$$

$$9 + 2 + 5$$