Micro-programmed Control Unit

(Computer 2 described in Computer System Architecture-Morris Mano)

INDEX

TOPIC	PAGE NO.				
MICROINSTRUCTION	1				
ALU	8				
DATA REGISTER	10				
PROGRAM COUNTER	11				
ADDRESS REGISTER	12				
CAR	12				
SBR	13				
Figure of computer 2	15				

Tool used- logisim

1-MICROINSTRUCTION FORMAT

The 20 bits of the microinstruction are divided into four functional part the three fields F1,F2 and F3 specify micro-operation for computer the CD field select the status bit conditions.the BR field specifies the type of branch to be used.the AD field cotains the branch address.the address field is 7 bit wide,since they control memory has 128=2^7words.

Figure 7-5 Computer instructions.

(a) Instruction format

Symbol	Opcode	Description				
ADD	0000	$AC \leftarrow AC + M [EA]$				
BRANCH	0001	If $(AC < 0)$ then $(PC \leftarrow EA)$				
STORE	0010	$M[EA] \leftarrow AC$				
EXCHANGE	0011	$AC \leftarrow M[EA], M[EA] \leftarrow AC$				

EA is the effective address

(b) Four computer instructions

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

Figure 7-6 Microinstruction code format (20 bits).

16 bit input instruction given to the ram ,to perform any operation we write instruction code in ram. there is no change possible in rom, initially we fixed operation and write their sub routine in rom Each operation have atmost 4 memory space in rom, therefore we can perform 32 operation in computer 2 because the size of rom is 128 words.sub routine of fetch and indirect address is said to memory location 64-68,if we want to add any operation in our system simply write all there sub routine in rom.

Data size in rom is 20 bit. size of each of F1,F2 and F3 is 3 bit,so we can perform 7+7+7=21 operation atmost. because first bit of each of F1,F2 and F3 is nop.size of CD and BR is 2 bit,because there is four conditional bit and four branching statements.

If output of CD is true then branching statement executes otherwise control moves to next statement of sub routine .

We have four condition symbol (bit)

1-U is unconditional branchdih always 1

2-I is indirect address bit dr(15)

3-s is sign bit of ac ac(15)

4-z is zero value in ac(ac=0)

We have four branch conditional (bit)

1-JMP (car<-AD if condition=1

Car<- car+1,if condition=0)</pre>

2-CALL(car<-ad,sbr<-car+1 if condition=1

Car<-car+1 if condition=0)</pre>

3-RET-(car<-sbr(return from sub routine))

4-MAP-(car(2-5)<-dr(11-14),car(0,1,6)<-0)

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

F1	Microoperation	Symbol		
000	None	NOP		
001	$AC \leftarrow AC + DR$	ADD		
010	$AC \leftarrow 0$	CLRAC		
011	$AC \leftarrow AC + 1$	INCAC		
100	$AC \leftarrow DR$	DRTAC		
101	$AR \leftarrow DR(0-10)$	DRTAR		
110	$AR \leftarrow PC$	PCTAR		
111	$M[AR] \leftarrow DR$	WRITE		
F2	Microoperation	Symbol		
000	None	NOP		
001	$AC \leftarrow AC - DR$	SUB		
010	$AC \leftarrow AC \lor DR$	OR		
011	$AC \leftarrow AC \land DR$	AND		
100	$DR \leftarrow M[AR]$	READ		
101	$DR \leftarrow AC$	ACTDR		
110	$DR \leftarrow DR + 1$	INCDR		
111	$DR(0-10) \leftarrow PC$	PCTDR		
F3	Microoperation	Symbol		
000	None	NOP		
001	$AC \leftarrow AC \oplus DR$	XOR		
010	$AC \leftarrow \overline{AC}$	COM		
011	$AC \leftarrow \text{shl } AC$	SHL		
100	$AC \leftarrow \operatorname{shr} AC$	SHR		
101	$PC \leftarrow PC + 1$	INCPC		
110	$PC \leftarrow AR$	ARTPC		
111	Reserved			

	CD	Condition	Symbol	Comments			
STR	00 Always = 1		U no	Unconditional branch			
	01	DR(15)	ofoles:	Indirect address bit			
	10	AC(15)	S	Sign bit of AC			
6 87	11	AC = 0	Z	Zero value in AC			
BR	Sym	bol	AC - MA	Function			
00	JMI	P CAR ←	AD if condi	tion = 1			
01	CA	LL $CAR \leftarrow$	AD , $SBR \leftarrow$	condition = 0 - $CAR + 1$ if condition = 1			
10	RE'			condition = 0 n from subroutine)			
11	MA	P CARCO_	$5) \leftarrow DR(11.$	-14), $CAR(0,1,6) \leftarrow 0$			

TABLE 7-2 Symbolic Microprogram (Partial)

Label	Microoperations	CD	BR	AD	
ia 180ana 900th	ORG 0				
ADD:	NOP	I	CALL	INDRCT	
	READ	U	JMP	NEXT	
	ADD	U	JMP	FETCH	
	ORG 4				
BRANCH:	NOP	S	JMP	OVER	
	NOP	U	JMP	FETCH	
OVER:	NOP	I	CALL	INDRCT	
	ARTPC	U	JMP	FETCH	
	ORG 8				
STORE:	NOP	I	CALL	INDRCT	
	ACTDR	U	JMP	NEXT	
	WRITE	U	JMP	FETCH	
	ORG 12				
EXCHANGE:	NOP	I	CALL	INDRCT	
	READ	U	JMP	NEXT	
	ACTDR, DRTAC	U	JMP	NEXT	
or OCA orbitol	WRITE	U	JMP	FETCH	
	ORGAL MINISTRA	dress l	instant.		
EETCH.	ORG 64	UL VI			
FETCH:	PCTAR	U	JMP	NEXT	
	READ, INCPC	U	JMP	NEXT	
INDDCT.	DRTAR	U	MAP		
INDRCT:	READ	U	JMP	NEXT	
學學學學學	DRTAR	U	RET		

LDA-

002C3 NOP I CALL INDRCT

10012 READ U JMP NEXT

80040 DRTAC U JMP FETCH

SUBTRACT002C3 NOP I CALL INDRCT
10016 READ U JMP NEXT
04040 SUB U JMP FETCH

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Micro Routine	Address		Binary Microinstruction					
	Decimal	Binary	F1	F2	F3	CD	BR	AD
ADD	0	0000000	000	000	000	01	01	1000011
	1	0000001	000	100	000	00	00	0000010
	2	0000010	001	000	000	00	00	1000000
	3	0000011	000	000	000	00	00	1000000
BRANCH	4	0000100	000	000	000	10	00	0000110
	5	0000101	000	000	000	00	00	1000000
	6	0000110	000	000	000	01	01	1000011
u ou DA bras	(0) 7	0000111	000	000	110	00	00	1000000
STORE	8	0001000	000	000	000	01	01	1000011
	9	0001001	000	101	000	00	00	0001010
	10	0001010	111	000	000	00	00	1000000
	11	0001011	000	000	000	00	00	1000000
EXCHANGE	12	0001100	000	000	000	01	01	1000011
	13	0001101	001	000	000	00	00	0001110
	14	0001110	100	101	000	00	00	0001111
一种思想到	15	0001111	111	000	000	00	00	1000000
FETCH	64	1000000	110	000	000	00	00	1000001
	65	1000001	000	100	101	00	00	1000001
	66	1000010	101	000	000	00	11	0000000
INDRCT	67	1000011	000	100	000	00	00	1000100
	68	1000100	101	000	000	00	10	0000000

ALU-

Load operations:

- 1-add- AC<-AC+DR
- 2-DRTAC-AC<-DR
- 3-SUB- AC<-AC-DR
- 4-OR-AC<-AC||DR
- 5-AND-AC<-AC^DR
- 6-XOR- AC<-AC (+) DR
- 7-COM-AC<-AC'

8-SHL-AC<-SHL(AC)

9-SHR-AC<-SHR(AC)

CLEAR OPERATION-

CLRAC -AC<-0

INCREMENT OPERATION-

INCAC- AC<-AC+1

ALU- the airthmetic logic shift unit is shown in above fig. ,instead of using gate to generate the control signal, operations like AND,ADD,and DR.these input now come from the output of the decoder associated by the decoders like AND,ADD etc operations.

DATA REGISTER-

LOAD OPERATION-

1-ACTDR-DR<-AC

2-PCTDR-DR(0-10)<-PC

INCREMENT OPERATION

INCDR -DR<-DR+1

It is 16 bit data register which take input from multiplexer to select data of PC ,RAM and AC. Output is transferred to the AC through ALU to perform any arithmetic and logical operation

Between DR and AC.data from RAM can not be directly shifted to RAM, first it comes to DR then to AC.

PROGRAM COUNTER-

LOAD OPERATION-

ARTPC-PC<-AR

INCREMENT OPERATION

INCPC-PC<-PC+1

PC is used to store address of next instruction so size of PC is 11 bit alike AR.

LOAD OPERATION-1-DRTAR-AR<-DR(0-10)

2-PCTAR-AR<-PC

AR is used to store address of current instruction during program execution of RAM ,size of AR is 11 bit input of AR is from either PC or DR output is always towards PC .it is always associated with RAM.

CAR- it is 7 bit control address register with specifies the address of micro instruction in control memory ROM. It maintains the sequence of microinstruction tu be executed in RAM.input from CAR ,external map(RAM),incrementer, SBR or address part of CONTROL MEMORY and output is associated with CONTROL MEMORY.

SBR- 7 bit sub routine register which holds next address of CAR(incremented by 1).it is used for branching. Sub routine register can become source for transferring the address for the return to main sub routine

CONTROL MEMORY- it is non volatile memory,once instruction code is set in control memory then can never be change again,so it is necssary to write all instruction in ROM to perform operation .

Fig. P1
Join both p1 and p2 to each other to get the computer 2.

Figure for computer 2