Implementation of Lexical Analysis

Lecture 4

Written Assignments

- WA1 assigned today
- · Due in one week
 - By 5pm
 - Turn in
 - In class
 - In box outside 411 Gates
 - · Electronically

Tips on Building Large Systems

- KISS (Keep It Simple, Stupid!)
- · Don't optimize prematurely
- Design systems that can be tested
- It is easier to modify a working system than to get a system working

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

There is variation in regular expression notation

```
 Union: A | B
 Option: A + ε
 Range: 'a'+'b'+...+'z'
 ≡ A + B
 ≡ A?
```

Excluded range:

complement of
$$[a-z] \equiv [^a-z]$$

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate $s \in L(R)$

- But a yes/no answer is not enough!
- · Instead: partition the input into tokens
- · We adapt regular expressions to this goal

Regular Expressions => Lexical Spec. (1)

- 1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('
 - •

Regular Expressions => Lexical Spec. (2)

2. Construct R, matching all lexemes for all tokens

$$R = Keyword + Identifier + Number + ...$$

= $R_1 + R_2 + ...$

Regular Expressions => Lexical Spec. (3)

3. Let input be $x_1...x_n$ For $1 \le i \le n$ check $x_1...x_i \in L(R)$

- 4. If success, then we know that $x_1...x_i \in L(R_j)$ for some j
- 5. Remove $x_1...x_i$ from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- · How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $X_1...X_K \in L(R)$

- Rule: Pick longest possible string in L(R)
 - The "maximal munch"

Ambiguities (2)

- · Which token is used? What if
 - $x_1...x_i \in L(R_i)$ and also
 - $X_1...X_i \in L(R_k)$

- Rule: use rule listed first (j if j < k)
 - Treats "if" as a keyword, not an identifier

Error Handling

- What if
 No rule matches a prefix of input?
- Problem: Can't just get stuck ...
- · Solution:
 - Write a rule matching all "bad" strings
 - Put it last (lowest priority)

Summary

- Regular expressions provide a concise notation for string patterns
- · Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- · A finite automaton consists of
 - An input alphabet Σ
 - A set of states 5
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state → input state

Finite Automata

Transition

$$s_1 \rightarrow a s_2$$

Is read

In state s_1 on input "a" go to state s_2

- If end of input and in accepting state => accept
- Otherwise => reject

Finite Automata State Graphs

A state

The start state

An accepting state

· A transition

A Simple Example

· A finite automaton that accepts only "1"

Another Simple Example

- A finite automaton accepting any number of
 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- · What language does this recognize?

Epsilon Moves

· Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

• Input: 1 0 0

Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language NFA can be simpler than DFA

DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M

• For ε

For input a

Regular Expressions to NFA (2)

For AB

• For *A* + *B*

Regular Expressions to NFA (3)

• For **A***

Example of RegExp -> NFA conversion

 Consider the regular expression (1+0)*1

The NFA is

NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $5 \rightarrow a 5'$ to DFA iff
 - 5' is the set of NFA states reachable from any state in 5 after seeing the input a, considering ϵ -moves as well

NFA to DFA. Remark

- · An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states

- How many subsets are there?
 - $2^N 1 = finitely many$

NFA -> DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

	0	1
5	T	C
T	T	U
U	Т	U

Implementation (Cont.)

 NFA -> DFA conversion is at the heart of tools such as flex

- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations