

Offline Gait Synthesis using Whole-Body Dynamics

Offline Gait Synthesis using Whole-Body Dynamics

Hybrid Zero Dynamics (HZD)

Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, 2007

• Find periodic trajectory of actuated outputs $y_d(q, \alpha)$ s.t. unactuated DoF exhibit stable periodic behavior

Offline Gait Synthesis using Whole-Body Dynamics

Hybrid Zero Dynamics (HZD)

Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, 2007

• Find periodic trajectory of actuated outputs $y_d(q, \alpha)$ s.t. unactuated DoF exhibit stable periodic behavior

Precomputed Stable Periodic Trajectories

Offline Gait Synthesis using Whole-Body Dynamics

Hybrid Zero Dynamics (HZD)

Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, 2007

• Find periodic trajectory of actuated outputs $y_d(q, \alpha)$ s.t. unactuated DoF exhibit stable periodic behavior

Precomputed Stable Periodic Trajectories

Online Gait Synthesis using MPC

Offline Gait Synthesis using Whole-Body Dynamics

Hybrid Zero Dynamics (HZD)

Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, 2007

Find periodic trajectory of actuated outputs $y_d(q, \alpha)$ s.t. unactuated DoF exhibit stable periodic behavior

Precomputed Stable Periodic Trajectories

Online Gait Synthesis using MPC

S-LIP Model, Centroidal Dynamics

A Unified MPC Framework for Whole-Body Dynamic Locomotion and Manipulation, Jean-Pierre Sleiman, 2021

Simplified/Reduced Model Dynamics

Whole-Body Nonlinear MPC

Whole-Body Nonlinear MPC

Reduced computational cost via HZD Reference & Terminal

Whole-Body Nonlinear MPC

Reduced computational cost via HZD Reference & Terminal

Experimental validation on planar biped AMBER-3M

- $x = (q_b, q_j, \dot{q}_b, \dot{q}_j)^T$
- $u = (\lambda_c, \ddot{q}_j)$ $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$

- $x = (q_b, q_i, \dot{q}_b, \dot{q}_i)^T$
- $u = (\lambda_c, \ddot{q}_j)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

- $x = (q_b, q_i, \dot{q}_b, \dot{q}_i)^T$
- $u = (\lambda_c, \ddot{q}_i)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \frac{\ddot{q}_j}{q_j})^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\begin{pmatrix} D_{bb} & D_{bj} \\ D_{jb} & D_{jj} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_j \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cj} \end{pmatrix} \lambda_c$$

- $x = (q_b, q_j, \dot{q}_b, \dot{q}_j)^T$
- $u = (\lambda_c, \ddot{q}_j)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\frac{\begin{pmatrix} D_{bb} & D_{bj} \\ D_{jb} & D_{jj} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_j \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cj} \end{pmatrix} \lambda_c$$

- $x = (q_b, q_i, \dot{q}_b, \dot{q}_i)^T$
- $u = (\lambda_c, \ddot{q}_i)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\frac{\begin{pmatrix} D_{bb} & D_{bj} \\ D_{Jb} & D_{JJ} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_J \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cJ} \end{pmatrix} \lambda_c$$

$$\ddot{q}_b = D_{bb}^{-1} (-D_{bj} \ddot{q}_j - C_b \dot{q} + J_{cb} \lambda_c)$$

Exclude inverse dynamics from MPC prediciton

- $x = (q_b, q_j, \dot{q}_b, \dot{q}_j)^T$
- $u = (\lambda_c, \ddot{q}_i)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\frac{\begin{pmatrix} D_{bb} & D_{bj} \\ D_{Jb} & D_{JJ} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_J \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cJ} \end{pmatrix} \lambda_c$$

$$\ddot{q}_b = D_{bb}^{-1} (-D_{bj} \ddot{q}_j - C_b \dot{q} + J_{cb} \lambda_c)$$

Recover torques via inverse dynamics

$$\tau = J_c^T F_c - D \ddot{q} - C \dot{q} - G$$

Exclude inverse dynamics from MPC prediciton

- $x = (q_b, q_i, \dot{q}_b, \dot{q}_i)^T$
- $u = (\lambda_c, \ddot{q}_i)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\frac{\begin{pmatrix} D_{bb} & D_{bj} \\ D_{Jb} & D_{JJ} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_J \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cJ} \end{pmatrix} \lambda_c$$

$$\ddot{q}_b = D_{bb}^{-1} (-D_{bj} \ddot{q}_j - C_b \dot{q} + J_{cb} \lambda_c)$$

Recover torques via inverse dynamics

$$\tau = J_c^T F_c - D \ddot{q} - C \dot{q} - G$$

Focus computation on unactuated DoF

Exclude inverse dynamics from MPC prediciton

- $x = (q_b, q_j, \dot{q}_b, \dot{q}_j)^T$
- $u = (\lambda_c, \ddot{q}_i)$
- $\dot{x} = (\dot{q}_b, \dot{q}_j, \ddot{q}_b, \ddot{q}_j)^T$
- Dynamics Formulation via Euler Lagrange

$$D(q) \ddot{q} + C(q, \dot{q}) \dot{q} = B \tau + J_c^T(q) \lambda_c$$

$$\frac{\begin{pmatrix} D_{bb} & D_{bj} \\ D_{Jb} & D_{JJ} \end{pmatrix} \begin{pmatrix} \ddot{q}_b \\ \ddot{q}_j \end{pmatrix} + \begin{pmatrix} C_b \\ C_J \end{pmatrix} \dot{q} = \begin{pmatrix} 0 \\ I \end{pmatrix} \tau + \begin{pmatrix} J_{cb} \\ J_{cJ} \end{pmatrix} \lambda_c$$

$$\ddot{q}_b = D_{bb}^{-1} (-D_{bj} \ddot{q}_j - C_b \dot{q} + J_{cb} \lambda_c)$$

Recover torques via inverse dynamics

$$\tau = J_c^T F_c - D \ddot{q} - C \dot{q} - G$$

→ Whole-Body nonlinear dynamics/constraints

Results - Simulation

Reduce Computational Cost via Horizon Shortening

Time

Reduce Computational Cost via Horizon Shortening

ETH zürich

Reduce Computational Cost via Horizon Shortening

MPC Terminal Cost Visualization 2s Horizon

No Terminal

Heuristic Terminal

HZD Terminal

Results - Metrics

Results - Metrics

Ryzen 9 5950x at 10 SQP Iterations

Horizon Length [s]	2.0	1.0	0.5	0.2
MPC Frequency [Hz]	270	480	670	850

Results - Metrics

Ryzen 9 5950x at 10 SQP Iterations

Horizon Length [s]	2.0	1.0	0.5	0.2
MPC Frequency [Hz]	270	480	670	850

Horizon Length

Reduce computational complexity through terminal

Results

Results – MPC & HZD Terminal

Reparametrized Whole-Body NMPC Formulation

Reparametrized Whole-Body NMPC Formulation

Significant Horizon shortening through HZD Terminal

Reparametrized Whole-Body NMPC Formulation

Significant Horizon shortening through HZD Terminal

Hardware Demonstration of Whole-Body Online Planning

Thank you for your Attention!

Noel Csomay-Shanklin, AMBER-lab, Caltech

Andrew J. Taylor, AMBER-lab, Caltech

Prof. Dr. Aaron Ames, AMBER-lab, Caltech

Ruben Grandia, RSL, ETH Zurich

Dr. Farbod Farshidian, RSL, ETH Zurich

Prof. Dr. Marco Hutter, RSL, ETH Zurich

Questions?

Results – Comparison to Lumped Mass Model

Results - Simulation

Outlook

- Add impact maps to MPC formulation
- Investigate theoretical properties of using HZD terminal components
- Full computational comparison between centroidal MPC, whole-body MPC and the proposed reparametriced whole-body MPC.
- Transfer approach to 3D bipedal platform

Goal

Dynamic, stable and robust locomotion

- Wide range of behaviors
- Diverse environments

Goal

Dynamic, stable and robust locomotion

- Wide range of behaviors
- Diverse environments

Legged Robot Dynamics

- Hybrid
- Nonlinear
- Underactuated

$$\mathbf{\dot{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$$

Discrete

