

TA 1920-01-019

PRECISION HYDROPONIC NITROGEN DEFICIENCY **DETECTION**

Progress Report & Diskusi (Jum'at, 26 Juni 2020) Bersama Dosen Pembiming:

Dr. Pranoto Hidaya Rusmin, S.T., M.T
 Dr. Ir. Reginawanti Hindersah, M.P.
 Dr. Ir. Hilwadi Hindersah, M.Sc.

Outlines

Progress

Desain Alat

Integrasi sistem dan fungsionalitas

Kendala dan keterbatasan

Progress

1. Kunjungan ke lab hidroponik unpad, Jum'at 24 Januari 2020

<u>Progress</u>

2. Penambahan jumlah dataset terkontrol di Unpad Jatinangor (5-27 Februari 2020)

Kendala: tanaman mati saat minggu ke-4 untuk diambil sebagai dataset, diduga karna tanaman kepanasan.

Alternatif: tanam tanaman baru di Kos, namun karna kondisi Covid19 tanaman tidak bisa dilakukan pengambilan data nitrogen di UNPAD jatinangor

Progress

 3. Pencetakan extension rangka aktuator nitrogen detection deficiency (4-13 Februari 2020)

Desain Sistem aktuator

Sistem pendukung: Alat chamber dataset training

Alat digunakan untuk **pengambilan** <u>data training</u> untuk **pembuatan model** dengan lingkungan yang lebih **terkontrol (intensitas cahaya, latar belakang**)

Desain GUI/UI

Home Tab

Tampilan parameter-parameter sistem:

- User ID: NIM/Nomor ID pengguna alat
- Plant type: jenis tanaman (Lettuce/Tomat/Etc.)
- Monitoring time: waktu rutin untuk melakukan pengecekan
- Number of holes: banyak lubang di rangka hidroponik tanaman
- Set point: jarak kondisi 0 rangka kamera menuju tanaman pertama (cm)
- Increment: jarak antar tanaman

Data log pengecekan dapat disimpan ke direktori lain dengan tombol "Send Log Data to USB Drive"

Data Logger Tab

Monitoring tanaman disimpan ke dalam data tabular (.csv)

Ditampilkan ke dalam tabel dalam tab data logger

User Settings Tab

Melakukan pengaturan parameter user (dilakukan setiap pengguna/researcher baru)

- User ID: NIM/Nomor ID pengguna alat
- Plant type: jenis tanaman (Lettuce/Tomat/Etc.)
- Monitoring time: waktu rutin untuk melakukan pengecekan

Device Settings Tab

Melakukan pengaturan parameter device (dilakukan satu kali: instalasi alat di dalam lab)

- Number of holes: banyak lubang di rangka hidroponik tanaman
- **Set point**: jarak kondisi 0 rangka kamera menuju tanaman pertama (cm)
- Increment: jarak antar tanaman

Dataset hasil Lab UNPAD

	Kode	Kode sampel	Bobot	Normalitas	Volume	Volume akhir	Volume pemakaian			Hasil perhitungan
Tgl	sampel	triplo	sampel(mg)	H2SO4	awal(ml)	(ml)	(Vc)	Vb	FKA	(%N)
	RC 1766	RC 1766 A	250,1	0,0524	0	5,4	5,4	0,3	1	1,495945622
		RC 1766 B	250,3	0,0524	5,4	10,9	5,5	0,3	1	1,524059129
		RC 1766 C	250,3	0,0524	10,9	16,4	5,5	0,3	1	1,524059129
	RC 1767	RC 1767 A	250,5	0,0524	0,2	8,3	8,1	0,3	1	2,284263473
		RC 1767 B	250,7	0,0524	8,3	16,6	8,3	0,3	1	2,340965297
		RC 1767 C	250,8	0,0524	16,4	22	5,6	0,3	1	1,550271132
	RC 1768	RC 1768 A	250,7	0,0524	16,6	32,8	16,2	0,3	1	4,652668528
		RC 1768 B	250,4	0,0524	32,8	48,8	16	0,3	1	4,599648562
		RC 1768 C	250,5	0,0524	22	30,5	8,5	0,3	1	2,40140519
	RC 1769	RC 1769 A	250,8	0,0524	0,1	17,7	17,6	0,3	1	5,060318979
		RC 1769 B	250,5	0,0524	17,7	34,8	17,1	0,3	1	4,919952096
		RC 1769 C	250,7	0,0524	23,6	40,5	16,9	0,3	1	4,857502992
	RC 1770	RC 1770 A	250,3	0,0524	0,2	15,8	15,6	0,3	1	4,484250899
		RC 1770 B	250,6	0,0524	15,8	31,2	15,4	0,3	1	4,420335196
		RC 1770 C	250,7	0,0524	31,2	46,4	15,2	0,3	1	4,360047866
	RC 1771	RC 1771 A	250,4	0,0524	0,2	14,8	14,6	0,3	1	4,189488818
		RC 1771 B	250,8	0,0524	14,8	29,7	14,9	0,3	1	4,270558214
		RC 1771 C	250,5	0,0524	29,7	44,8	15,1	0,3	1	4,334243513

Rumus perhitungan Kadar Nitrogen (*Kjehdal Methode*)

Pengolahan Gambar

Masking background dengan color filtering

Prediksi Kandungan Nitrogen Tanaman

Model Mean Hue x Total Nitrogen

Nilai rata-rata variabel Hue dari gambar

Dataset korelasi

Hue

N-Total

42,34327	4,189489
42,53109	4,270558
42,46452	4,334244
39,61815	4,484251
39,51726	4,420335
39,07043	4,360048
36,99138	5,060319
36,81563	4,919952
36,54645	4,857503
37,58282	4,652669
38,18008	4,599649
38,66617	4,626159
32,18588	2,284263
31,67059	2,340965
31,7793	2,312614
31,00378	1,495946
30,9895	1,524059
31,01721	1,524059


```
R-squared: 0.9637906390790569
In [170]: plt.scatter(x,y,color='blue')
           plt.plot(x,model.predict(transformer.fit transform(x)),color='red')
           plt.title('Polynomial regression')
           plt.xlabel('Mean Hue\n\n Orde dua')
           plt.ylabel('Nitrogen')
Out[170]: Text(0, 0.5, 'Nitrogen')
                             Polynomial regression
             5.0
             4.5
             4.0
            들 3.5
           ∄ 3.0
             2.5
             2.0
             1.5
                                   Orde dua
```

```
print('R-squared:', score) # R-squared
R-squared: 0.6781306961740619
b0=model.intercept
print('intercepnya:', b0)
b1=model.coef
print('slope:', b1)
print('y = \{a\}x + \{c\}'.format(a=b1,c=b0))
intercepnya: -5.911709277437631
slope: [0.26202547]
y = [0.26202547]x + -5.911709277437631
# To Do: Calculate model score Polynomial Orde 2
score = model.score(x , y)
print('R-squared:', score)
R-squared: 0.963790639079056
# To Do: Calculate b0 and b1
b0 = model.intercept
print('intercept:', b0)
b1 = model.coef
```

To Do: Calculate model score Regresi Linear

score = model.score(x, y)

print('slope:', b1)

intercept: -72.72191405485785

slope: [3.98760094 -0.05128882]

#y=-0.05128882x^2+3.98760094x-72.72191405485785

Pemodelan regresi polynomial

```
R-squared: 0.9637906390790569
In [170]: plt.scatter(x, y, color='blue')
           plt.plot(x,model.predict(transformer.fit transform(x)),color='red')
           plt.title('Polynomial regression')
           plt.xlabel('Mean Hue\n\n Orde dua')
           plt.ylabel('Nitrogen')
Out[170]: Text(0, 0.5, 'Nitrogen')
                             Polynomial regression
             4.5
             4.0
            들 3.5
            ₹ 3.0
             2.5
             2.0
                                   Mean Hue
                                   Orde dua
```



```
R-squared: 0.9827544242436705
In [150]: plt.scatter(x,y,color='blue')
           plt.plot(x,model.predict(transformer.fit transform(x)),color='red')
           plt.title('Polynomial regression')
           plt.xlabel('Mean Hue\n\n Orde tiga')
           plt.ylabel('Nitrogen')
Out[150]: Text(0, 0.5, 'Nitrogen')
                             Polynomial regression
              5.0
              4.5
              4.0
            £ 3.5
            ₹ 3.0
             2.5
             2.0
                                   Mean Hue
                                   Orde tiga
```

```
R-squared: 0.9911036501107686
In [118]: plt.scatter(x, y, color='blue')
           plt.plot(x,model.predict(transformer.fit transform(x)),color='red')
           plt.title('Polynomial regression')
           plt.xlabel('Mean Hue\n\n Orde lima')
           plt.ylabel('Nitrogen')
Out[118]: Text(0, 0.5, 'Nitrogen')
                             Polynomial regression
             4.5
             4.0
            ₩ 3.5
           ₫ 3.0
             2.5
             2.0
                                   Mean Hue
                                   Orde lima
```

Integrasi Sistem

- Integrasi memanfaatkan ROS (Robot Operating System)-meta OS untuk mempermudah komunikasi Raspberry Pi dengan arduino.
- Prinsip integrasi yang digunakan adalah pengoperan variable dari satu set program (node) ke set program lainnya.
- Data dari UI seperti jam jadwal pengecekan harian akan dioper ke program utama.
 Saat jam di Raspberry Pi sudah sama dengan input pengguna, akan dimulai proses pengecekan (main routine).
- Pada proses pengecekan, Arduino dan Raspberry Pi saling berbagi tanda (flag), misalnya saja saat motor sudah bergerak ke posisi yang diinginkan Arduino akan mengirim flag ke program utama di Raspberry Pi. Flag akan digunakan untuk menandakan kamera dapat mengambil gambar. Setelah gambar diambil dan dioleh, Raspi mengirim tanda ke Arduino untuk melanjutkan pergerakan motor.

Integrasi Sistem

Video Simulasi Integrasi Sistem

https://www.youtube.com/watch?v=Fw4gy02gGMo

Analisa Skalabilitas

- Penggantian Raspberry Pi dengan computer dengan spesifikasi yang mencukupi.
- Penambahan rangka, mikrokontroler, dan komponen pendukung pada tiap rangka lainnya.
- Penyesuaian pada rangkaian power supply.

Prosedur Pemakaian Alat

- 1. Pemasangan rangka monitoring pada jalur tanaman dan perangkat keras pendukung lainnya (Koneksi antar hardware)
- 2. Konfigurasi parameter alat (Device Settings)
- 3. Konfigurasi parameter user (*User Settings*)
- 4. Monitoring akan otomatis dilakukan setiap harinya, berdasarkan parameter *monitoring time* yang sudah dikonfigurasi
- 5. Data dapat di-export ke storage eksternal

Keterbatasan dan Kendala yang dihadapi

- 1. Dataset warna daun selada beserta kadar nitrogen hasil pengujian lab yang didapatkan bulan November 2019 lalu berjumlah 18 data namun masih kurang memenuhi "best practice" untuk mendapatkan evaluasi model train yang general. Hal tersebut karena kamera yang digunakan untuk mengambil dataset (training) dan yang ada di alat (testing) berbeda, selain itu selada yang digunakan bukan selada yang diberi perlakuan terkontrol.
- 2. **Kesulitan dalam mengakses alat**. Alat saat ini masih terkunci di residensi labtek 8 ITB dan masih belum diketahui kapan bisa diakses. Kami juga **kesulitan mengakses Unpad untuk mengambil kadar Nitrogen kembali**, sehingga penanaman mandiri yang kami lakukan tidak terpakai. Pada saat ini, kelompok TA kami masih terpencar di kota yang berbeda **sehingga sulit berkoordinasi**.