2.有符号数的编码方式

最左侧一位为符号位:

0表示正数,1表示负数

正数:

0 + 二进制数

符号位0+原码

原的表示法 反码表示法 补码表示法

都相同: 符号位0 + 原码

+13: 0,1101

原码表示法: 1+原码

补码表示法: 1+补码

 $-13 = -(1101)_2$

原码表示: 1,1101

反码表示: 1,0010

补码表示: 1,0011

建立原码、补码等负数的不同表示方法,是为了计算机运 算方便, 快速。 可以证明, 以下等式总成立

(X+Y) $\stackrel{*}{\uparrow}$ $\stackrel{*}{\downarrow}$ =(X) $\stackrel{*}{\uparrow}$ $\stackrel{*}{\downarrow}$ +(Y) $\stackrel{*}{\uparrow}$ $\stackrel{*}{\downarrow}$ $\stackrel{*}{\downarrow}$

用补码作减法,可以把减法变加法。这样计算机中只有二 进制加法器和求补电路来进行加法和减滤运算。

-13: 原码为 1,01101

码为 1,10011

例 利用二进制补码计算 13-25=?

 $(13-25)_{\uparrow \mid} = (13)_{\uparrow \mid} + (-25)_{\uparrow \mid}$

13: 原码为 0,0110 -25: 补码为 1,0011

结果为13-25=-12

3. 偏移码

OLUT

偏移码的构成:补码的符号位取反

$$-13 \Longrightarrow -(1101)_2$$

原码表示: 1,1101

反码表示: 1,00100

补码表示: 1,0611

扁移码表示: 0,001

穿效十进制值(原码	偏移码	补码
10V +127	01117111	11111111	01111111
+ (26	0111110	11111110	01111110
¥ 1		i i	:
	(//	:	
) +5	00000101	10000101	00000101
+4	00000100	10000100	00000100
13	00000011	10000011	00000011
+2	00000010	10000010	00000010
+3	00000001	10000001	00000001
v o	(+0) 00000000	10000000	00000000
	(-0) 10000000		
-1	10000001	01111111	11111111
-2	10000010	01111110	11111110
-3	10000011	01111101	11111101
-4	10000100	01111100	11111100
-5	10000101	01111011	11111011
:	i	:	1
: }	:	ŧ	:
-126	11111110	00000010	10000010
-127	11111111	00000001	10000001
10V 128		00000000	10000000

偏移码在数字/模拟 (D/A) 转换中是最容易电路 实现的一种码制 (详见第9章)

本章总结

- 掌握数制之间的互相转换;
- ・理解各种代码的定义:
- ・掌握带符号的二进制数的表示方法和运算。