Komplexe Zahlen

Die Gaußsche Zahlenebene

Komplexe Zahlen stellen wir uns vor als Punkte auf einer Ebene (Gaußsche Zahlenebene)

$$sind = \frac{b}{r} \Rightarrow b = r \cdot sind$$

$$cosd = \frac{a}{r} = a = r \cdot sind$$

$$a + ib = r \cdot (cosd + i \cdot sind)$$

Wiederholung: Einheitskreis, Bogenmaß, sin, cos

d in Gred 0 30 45 60 30 d in Boscamas 0
$$\frac{1}{1}$$
60 $\frac{1}{1}$ 74 $\frac{1}{1}$ 3 $\frac{1}{1}$ 2 $\frac{1}{2}$ 18 $\frac{1}{2}$ 18 $\frac{1}{2}$ 18 $\frac{1}{2}$ 10 $\frac{1}{2}$ 18 $\frac{1}{2}$ 10 $\frac{1}{2}$ 18 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 18 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 18 $\frac{1}{2}$ 10 $\frac{$

Am Einheitskreis können wir ablesen:

$$Sm(2T-d) = -Smd$$
, $Sm(T-d) = Smd$, $Sm(\frac{T}{2}-d) = cosd$, $cos(\frac{T}{2}-d) = cosd$, $cos(\frac{T}{2}-d) = Smd$

Addition und Multiplikation komplexer Zahlen

Addition wie Vektoraddition, Multiplikation: die Beträge werden multipliziert, die Winkel (Argumente) addiert.

Falls die komplexen Zahlen auf dem reellen Zahlenstrahl liegen, sind dies die für reelle Zahlen

Es gelten die üblichen Rechenregeln.

$$2_1 = 3 + 2i$$
, $2_2 = -7 + 8i$ $2_1 + 2_2 = 3 - 7 + (2 + 8)i = -4 + 10i$
 $2_1 \cdot 2_2 = (3 + 2i)(-7 + 8i) = -21 + 24i - 14i + 16i^2 = -21 - 16 + 10i = -37 + 10i$

Konjugiert komplexe Zahl

Konjugiert komplexe Zahl = Spiegelung an der reellen Achse

Kehrwert

Kehrwert umformen mit 3.Binomischer Forme

$$\frac{A}{Z_{1}} = \frac{1}{3+2i} = \frac{A \cdot (3-2i)}{(3+2i)(3-2i)} = \frac{3-7i}{3+4i} = \frac{3}{A3} - \frac{2}{A3}i$$

$$\frac{Z_{2}}{Z_{1}} = \frac{-7+8i}{3+2i} = \frac{(-7+8i)(3-2i)}{9+4i} = \frac{-21+14i+24i-46i^{2}}{A3} = \frac{-21+A6}{A3} + \frac{38}{A3}i = \frac{-5}{A3} + \frac{39}{A3}i$$

Potenzen

Wurzeln

Teilmengen von **C**

-
$$M = \left\{2 \in \mathbb{C} : \left| \frac{2-5i}{2+3} \right| \ge 1 \text{ and } 2 \ne -3\right\}$$

$$\left|2-5i\right| = \left|2+3\right|$$
2 had an Si den gleinen Abstand vie $2m-3$.

6 = 25 - 9 = 8

Eulersche Formel

Mittels Potenzreihenentwicklung lässt sich zeigen:

Häufig wird die Polardarstellung einer komplexen Zahl notiert als: $\mathcal{Z}=\Upsilon\cdot \mathbf{C}$