SMART AGRICULTURE APPLICATION

A Web-Based Solution for Plant Disease Detection and Agricultural Management

Project Report

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Computer Science and Engineering

By

[Your Name]

Under the Guidance of

[Guide Name]

Department of Computer Science and Engineering

[Your University Name] [City, State] [Academic Year 2023-2024]

DECLARATION

I hereby declare that the work presented in this project report entitled "SMART AGRICULTURE APP

I also declare that I have followed the ethical guidelines of the institution in carrying out this work.

Place: [Your City]

Date: [Submission Date]

Signature of the Candidate

[Your Name]

[Your Roll Number]

BONAFIDE CERTIFICATE

This is to certify that the project work entitled "SMART AGRICULTURE APPLICATION" is a bonaf

The work presented in this report is original and has not been submitted elsewhere for any other degree

Place: [Your City]

Date: [Submission Date]

Signature of the Guide

[Guide Name]

[Designation]

[Department]

Signature of the Head of Department

[HOD Name]

Head of Department

Computer Science and Engineering

ABSTRACT

The Smart Agriculture Application is a comprehensive web-based solution designed to revolutionize ag

The system employs a sophisticated machine learning model trained on an extensive dataset of plant in

The project implements a robust architecture using modern web technologies, including React.js for the

Key features of the application include:

- Real-time plant disease detection
- Detailed disease analysis and recommendations
- User-friendly interface for farmers
- Scalable and maintainable architecture
- Integration with agricultural databases
- Mobile-responsive design

The project demonstrates significant potential in improving agricultural productivity and reducing crop

TABLE TOES GONETEINTS

5.5 Future Enhancements

ListCofnEhlsles

Ajspendiges res

AispofcSyrAbblserAMbneulations and Nomenclature

Appendix B: API Documentation Characteristic Internation

Appendix D: Test Cases
Appendix Double Code

- 1.2 Problem Statement
- 1.3 Motivation
- 1.4 Related Work
- 1.5 Challenges
- 1.6 Project Objectives
- 1.7 Organization of the Report

Chapter 2: Overview of the Proposed System

- 2.1 System Overview
- 2.2 System Architecture
- 2.3 Hardware Requirements
- 2.4 Software Requirements
- 2.5 System Planning
- 2.6 Project Timeline

Chapter 3: Design of the System

- 3.1 System Design
- 3.2 Database Design
- 3.3 User Interface Design
- 3.4 Machine Learning Model Design
- 3.5 API Design
- 3.6 Security Design

Chapter 4: Implementation of System

- 4.1 Frontend Implementation
- 4.2 Backend Implementation
- 4.3 Machine Learning Model Implementation
- 4.4 Database Implementation
- 4.5 Testing and Validation
- 4.6 Deployment

Chapter 5: Results and Discussion

- 5.1 System Performance
- 5.2 Machine Learning Model Performance
- 5.3 User Interface Evaluation

Chapter 10 Introduction

The Background ves of this project are:

Agricultore as with b-bask by the total mater extent of iseas work the timely detection of plant diseases i

2. Implement an accurate machine learning model for disease classification

The Sentera Asserie furtured y Application for to just the sentence of the sen

- 4. Provide detailed disease analysis and recommendations
- 1.2EProblem Statembility and reliability
- 6. Facilitate easy access to agricultural expertise

The current challenges in plant disease detection and management include:

1.7 Organization of the Report

1. Limited access to agricultural experts for disease diagnosis

ThDelayort detergionized dinny five igmificant pours: losses

- 3. High costs associated with traditional disease detection methods
- 4. Łälnkt rofdrædi drime: rRoowiolein backgaoualycki prodplæbnil ittlætement, and project objectives
- 2. Difficultyein of athreal none stick of the strip at the alphant the alphant architecture and requirements
- 6. EtilDitsiginnoeghetiSysoenteethnDktgjlsinhægsjesoetnordesjigoetikæsluding database and UI design
- 4. **Implementation of System**: Covers the implementation of various system components
- **1.3*** Next in Discussion**: Presents the system's performance and evaluation results

The reptirtation bediedeshippenojeces teonsaliring sedeitab fract documentation, user manuals, and technical of

- 1. **Economic Impact**: Plant diseases cause significant economic losses in agriculture. Early detection
- 2. **Food Security**: Timely disease management is crucial for maintaining food security and agricult
- 3. **Technology Integration**: There is a growing need to integrate modern technology into agriculture
- 4. **Accessibility**: Making expert-level disease detection accessible to all farmers, regardless of their
- 5. **Sustainability**: Promoting sustainable agricultural practices through better disease management.

1.4 Related Work

Several approaches have been proposed for automated plant disease detection:

- 1. **Traditional Image Processing**: Early attempts used basic image processing techniques for diseas 2. **Machine Learning Approaches**: Various machine learning algorithms have been applied to plan
- 3. **Deep Learning Solutions**: Recent advances in deep learning have shown promising results in plants.
- 4. **Mobile Applications**: Several mobile apps have been developed for plant disease detection.
- 5. **Web-based Solutions**: Various web platforms offer plant disease detection services.

1.5 Challenges

The development of the Smart Agriculture Application faces several challenges:

- 1. **Data Collection**: Gathering a comprehensive dataset of plant diseases
- 2. **Model Accuracy**: Ensuring high accuracy in disease detection
- 3. **Real-time Processing**: Implementing efficient real-time image processing
- 4. **User Interface**: Creating an intuitive interface for farmers
- 5. **System Scalability**: Ensuring the system can handle multiple users and requests
- 6. **Integration**: Seamlessly integrating various components of the system

Chapter 2 and verview of the Proposed System

- Racker&GB valopment
- 2. M Schriften 1 (10) (Cally School development
- Natabase il highespectation

The Smart Agriculture Application is a comprehensive web-based solution designed to provide automa ### Phieset Refjeritingents

- ### Key Components:
- Modertingb browser
- 2 Strik Remark (Cistal respectively) et et Nicocke, js-based API server
- 3 Mich and interpretable Engine **: TensorFlow.js-based disease detection model
- 4. **Database System**: MongoDB for data storage

2## Shiftsy as Processing plant images

6. **User Management System**: For handling user authentication and profiles

#\$# Dervedephogum Entvironment

2. Pe System Acrohitectarion

- Neederijtsy vidaplementation

TResymptotion with a modern microservices architecture with the following layers:

- MongoDB v4+

2 Helbroject stipneliaser

- Git for version control

TRe-partie of 6 months:

#Rte Prodsicte ode Figui fon mentiple devices

###senfomterface etampoing ratisd Design

- Nhoodgejsuphovaidmend display
- Reongodd Bentstahasysis
- #**Skeitarn**wicktionsver
- \$\forall \text{Lhacktoff y at election}
- Modeljhostickendateover
- #RESTEATH ASP4: endepoint ment

2.5 System Planimipsementation

- Anothtemtic deived capacheauthorization

That reject idea to present followed an agile methodology with the following phases:

#DatabaseLinnerlementation

Phase 1: Requirements Analysis

#IMIOMIgonDB5dateIstang

- Unage extorage envistegathering
- **Systetdatanguanaments** entertpecification
- Diegnation water best Diegnation Diegn
- Bystech tientinge planning

Machine Learning Layer

Mhanth26:Desployment and Documentation

- TensorFlow.js model
- Systempdockissionentiplekinen
- Distiduses et acts ef jutint designos tem
- Modele Antelesinging and updates
- Wardeaiging

2.3 Hardware Requirements

PhajsæßtiDeliclopvasnnanaged using agile methodologies, with regular sprints and progress reviews ### Server Requirements

Shapadridbibakigngovithel System

P@Silkda@blijmaiglekj.omload

Dich Ed En capiN mages / { id }

The Component design approach, with each component designed

- i Edotodele la faction sea Aproach

} CIRcomulassidaciating elaquention

####istoryterackionponents

POST.4apiTdeininionP/anchinze

5/2 Dandenste Dasig Mishlatide Fish lps

GET Datid Artentione Ssistoty

##Dha: girl N Dang ist is is it is i

- Officeatgle Onesiz Phymfaccage to Detection Result

- Resultalization component

3.9 Mark Halfeldinger Designation

2 Reconsoler Espoinsoler amples

###BOdipleRdand Raindilyleslule**

- As Branchtipra Site is nigreguirements

1eilis Sing Siphignity televiolite dialicaged intuitive interface

31618 Adversion Should be and users

3rð**i នៃស្រា ជា**ស្រីលៅ**cheiss**ថ្នាក់ខ្លាំនៃនៅជា៨វេសាររថ user experience

3upd Atteal Auti Date*

##WERSA-Ked Motheman Maidonle**

- Passearch blacketing (the synts)

4 Sestiole is in the state of t

#DIN dechaninhungtation old is pilay

3.5 Shill besigh the woent

###Glasacirentutories satignes

###S&Sall Religion Countries at a

- Ridle Chrised I decess control

IRES INDITION OF THE PROPERTY OF THE PROPERT

- iAralgkeirlmSträngment

- Repeald le sitime States, features

PG A Budletti de priside de le ware

POSTE OF STATE STA

POST The Tripe out

3. Hota Pisacen Studentidit*

2 Data seal Manio beautest Service **

#**ISMD**rate carled stronge intenface

- In Contraction that in the contraction

``- Profidesmindigament

GENSO/Spid/Schandlin Measures

PUR Hoisiduse Monde Cile Results Collection

GEOR: Sprixibis Eigendrintifonymation

3 X 3 X Supposition Prior Service **

{ **CSRFionables** recommendations

#Sinh Danie calculations in the street in th

```
Chapten Acd Trepdementation of System
dedisides (d'Date Storni Se'ty) (de > {
#####HshragerAeadaleanIngerInentes
###dahdudaThech'techoepe6'caskImage(image);
// Transaching thist (Caxian bloka it om del. predict (tensor);
Editations(predictions);
\epsilon described from the description of the descript
 - Regulation (Nation State and Stat
- Athibación La Company de la 
- Rimante Romana de Runditi Eartagne.create({
  } indexection redeuserion Reducer,
######Ide Kiebx Elementation
  });dbUri: process.env.MONGODB URI,
}; catch (error) {
//}AddinGenationeTests
TO HEAL BOOK IN THE HEALTH OF SETUP (
//oDataslaned@difile.usatiCreatential} > useState({});
inconstruction and the contract of the contrac
Automation Automation
constatnificial dipological description (description of the constatnificial description of the constatnific description of the
consoletation survivistical solution (200);
constitution of the consti
Mydelal Maitaine Script
alphantie in carrected ():
application of the control of the co
Activities by Suchema delaters et house do sico Sohema (
}\u00e0sername: { type: String, required: true },
### Like It Capital Capital Supplies beginning that true, unique: true },
####streladechterteenSodalepoecenired: true },
Buildsfrontendlam'.
miliantes distributed Gricon bearens entropy',
coloration distribution drago 1=> {
Dordovite de de la company de 
 fitesballed and low phone one Scheine. Types. ObjectId, ref: "User" },
 ``in the argument of the large 
           ubbookDscamParafitDsce_FilesanDataDate.now }.
 ####faccina Petertapped Idé ploagre du file);
                                   emphilization ndata-awalitdatage Service.upload (form Data);
 "bankable 50 acit strutypt bach (password, 10),
Baildslinekond alidationing, model checkpoint
npreschatation ({ user });
###eat.ohl(&#mit)Testing
Deployatto(elouid platformerror.message });
###6#databahdls##ference
```

```
|-----|
 5Elzőárskáppá Behr Adahán ansoláts 5t 2%
 | Model Architecture
                                                                                                                                                                                               | +3.8%
 #Blefficiliple Basepotety & Bilininge Alically Gen
 | Transfebleemphiteeture+4.1%
 TACRO-Entitle Countries of the Countries
 5. A. H. Fried i dant per a per a least to least
 | Date Fire ny pulsers | Passer a Str Rusponse Time | Success Rate |
##PRSchulingdidtlyavietristrong--|| -------|
                                                                                                              | 150ms
                                                                                                                                                                                                                                                                             99.9%
 | 10
 Resilbusiting in miletimed in the singlets sion 99.8%
  | 10High adopti2020 rate
                                                                                                                                                                                                                                                                                 99.5%
#MODING Plantisconing description ($98.5%
   ---Enhanced agricultural-practices
 #E#$Moderason hace dehistration
 BInteBasinedarMalue*4.5
 | NCB | Distribution | NCB | N
 | Michaille IPI & Splends i 200 @ Buffel Blackeged, dla 22 GBs for frontend
 - Datablesin Commodation and a 100 concurrent connections
2. **Feature Additions**
Klay Mindbig divanting s Minds beer four hance ration of modern web technologies with machine learning
                 - Offline mode
 ###NARakiHadegekelgectsprijoort
                 - Advanced analytics
 The disguistic distribution by the control of the c
                 - Clear disease detection results
 BMETE April 16 Section 16 Particular Section
 | -- Chabiilegfriepdbyementace
 | Adouard dyalan 2 i fi % |
 2P#Etakidons @dpBihpizationent**
 | Recall the interesting
 | F1MSowarde t202e51% disease information
###OfffiaeStanabiidinglRhans
###Mult2-DinguageChaspidication Results
 1. **Infrastructure**
Bet System Testing Results plant diseases:
                 - Microservices architecture
 #Bisterated in Frence tightest tracking False Positives |
         ---Cloud-native-deployment------
The state of the part of the p
                                                                                                             93.5% | 1.8%
 Rust
 2Powidetry by Stillew | Pels 8 Cover 25 Pass Rate |
 | Bashariaha Spion p 1200 a Satation | 2%-----|
 | AuRhadtreptions | 95%
                                                                                                                                                                                                                                                                         | 98%
| Dibertseabettectrign | 90%
                                                                                                                                                                                                                                                                                  | 96%
 Independent and the control of the c
 5.6 Conclusion
```

Elementaristic Restriction de Disornasis Chaics sfully achieved its primary objectives:

```
Massin discration (Fest/soutes');
 {imageUrl: String,
Ampleudia Accibises Manual
//"Addin Till legge a Storin Dests
distribution Structed sing API", () => {
apentics handers had on age", async () => {
aptional tenew FormData();
      cfeartedData.Datend("image", testImage);
in colorisit stempon per cationa its reducites t (app)
  ``.`e Grinek(to/anjoRiessistes/:MAOAGODB URI)
}id: ObjectId.
Constituted and biguited ess. env. PORT | 3000;
Problitation of the Problem of the P
Reconstitute No. 19 (2) Relative regunning on port ${PORT}`);
Romande Line Has Som and Code
`Temperie Filletions: Array,
###plFantNkaoeiinësIrengiing Model
1. Hatold softward in 'esturinage'es**
// Appthion
Angradia Ricky Dufdarsit 'Greesers';
Respectoration (Reputation Reputation Reputa
the both the both both both both board;
ile frankleighteine from "./components/Register";
2'. Tilifodiastrilmen Ricksufber Tential ([
densities of the control of the cont
  ``reacilhaddwallallaeselectelicaeradu(&r2)async () => {
          -clebrature (Comme Data of S. 3), activation='relu').
Appalanting (M. address 2501(202)),
                   e kalkideri. Geranda EXA beberaran 12 act Dran hara ind lab), />
-}UlaRetextaleatine64efixivalliolenie1ti=){<Register/>}/>
```-icalletoning Benssee (mdwaic laus to Seavice articeate gister (fisma 12) ata);
// Where Christophonister: to Have Property ("token");
 {}return model
Apple Odix BldAPI Documentation
 teset("islnoerl&tloggn existing user", async () => {
``passmaild!'tsti@example.com",
`ropeastriond: "password123",
POSHFAd Bida Rehade Sesteices
Repolest desposate = await authService.login(credentials);
**Compression ("token");
///spenentaine": "string",
Manual Substanting Teaching T
const Obriect Inequire ("cors");
```