Deformation to the normal bundle

Jeroen Hekking

KTH Royal Institute of Technology hekking@kth.se

February 8, 2022

Overview

- Deformation theory
- 2 Normal bundles
- Operation spaces
- Deformation to the normal bundle
- 5 Examples
- 6 End

Cotangent complex

Definition

Deformation theory

•00

Let $f:X\to Y$ be a morphism of stacks. Then f admits a cotangent complex if there is an almost connective $L_{X/Y}\in \mathrm{QCoh}(X)$ such that, for each $\eta:\mathrm{Spec}\ C\to X$ and each connective C-module M, we have an equivalence of spaces

$$\operatorname{Mod}_{\mathcal{C}}(\eta^*L_{X/Y},M)\simeq\operatorname{\sf Fib}(X(\mathcal{C}\oplus M)\to X(\mathcal{C})\times_{Y(\mathcal{C})}Y(\mathcal{C}\oplus M))$$

If such $L_{X/Y}$ exists, we define the *normal sheaf* as $N_{X/Y} := L_{X/Y}[-1]$.

Remark

Let $A \to B$ be a surjection in Alg.

- For $M \in (\operatorname{Mod}_B)_{\geq 0}$, have $\operatorname{Mod}_B(N_{B/A}, M) \simeq \operatorname{Alg}_{A/B}(B, B \oplus M[1])$. These are *small extension of B by M*.
- If $A \to B$ is discrete, then a small extension $A \to B \to B$ by a discrete B-module I is exactly a square-zero extension of $A \to B$ with ideal I.
- Upshot: $N_{Z/X} = L_{Z/X}[-1]$ classifies small / square-zero extension.

End

Relation to deformation theory

Example

Let $X = \operatorname{Spec} A$ be discrete, and let $X : \operatorname{Spec} k \to X$ be a point, with ideal $I=\mathfrak{m}_{\times}$.

- Sections of $\mathbb{V}(N_{X/k}) \to \operatorname{Spec} k$ are classified by $\operatorname{Mod}_k(N_{X/k},k) \simeq \operatorname{Mod}_k(\pi_0(N_{X/k}),k) \simeq \pi_0 N_{X/k}^{\vee}.$
- We have $\operatorname{Mod}_k(N_{X/k}, k) \simeq \operatorname{Alg}_{A/k}(k, k, k \oplus k[1])$ is also classified by square-zero extensions of k over A. Since k is field, these are extensions of the form $A \to k[\epsilon] \to k$.
- Hence $\pi_0 N_{X/k}^{\vee}$ is the Zariski tangent space $(\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$.

Cotangent complexes for algebraic stacks

Proposition

Let $f: X \to Y$ be n-algebraic. Then $L_{X/Y} \in \mathrm{QCoh}(X)$ exists.

Using the universal property of the cotangent complex, one can reduce to Y is affine, say $Y = \operatorname{Spec} A$.

Now X is n-algebraic, hence we can take an (n-1)-smooth epimorphism $g: U \to X$, where U is a scheme. Let $\eta: \operatorname{Spec} A \to X$ be given. We want to construct $\eta^* L_{X/Y}$ with the desired universal property.

Since $QCoh(X) = \lim_{Spec A \to X} Mod_A$, where the limit is taken over all smooth maps Spec $A \to X$, we can assume that there is a factorization of η through some $f: \operatorname{Spec} A \to U$.

Then we let $\eta^* L_{X/Y}$ be the fiber

$$\eta^* L_{X/Y} \to f^* L_{U/Y} \to f^* L_{U/X}$$

6/26

Normal cones and normal bundles

Let $f: Z \to X$ be a closed immersion of classical schemes, with ideal I.

- The normal cone is $\operatorname{Spec}_{\mathcal{Z}}(\bigoplus_{n} I^{n}/I^{n+1})$.
- The normal bundle is $\mathbb{V}_Z(I/I^2) = \operatorname{Spec}_Z(\operatorname{Sym} I/I^2)$.
- We always have a closed immersion from the normal cone into the normal bundle, which is an isomorphism if f is regular.
- It holds $I/I^2 \simeq \pi_1(L_{Z/X}) \simeq \pi_0(N_{Z/X})$.

End

Normal cones and normal bundles

Definition

Let X be a stack, and $M \in \mathrm{QCoh}(X)$. Write $\mathbb{V}_X(M) = \mathbb{V}(M)$ for the stack over X, defined on points $f: T \to X$ as

$$\mathbb{V}(M)(T) = \mathsf{Map}(f^*M, \mathcal{O}_T)$$

Definition

For $f: X \to Y$ a morphism between algebraic stacks, the *normal bundle* is defined as the stack $\mathbb{V}_X(N_{X/Y})$ over X.

Weil restriction

Let $f: X \to Y$ be an affine morphism of stacks. Then the pullback functor

$$f^*: \operatorname{St}_Y \to \operatorname{St}_X$$

has a right adjoint, written Res_f .

Definition

For $Z \to X$, we call $\operatorname{Res}_f(Z)$ the Weil restriction of Z along f.

The deformation space

Let $X \to Y$ be a morphism of stacks.

Definition

The deformation space $\mathfrak{D}_{X/Y}$ of f is the Weil restriction of

Deformation spaces

000000

$$X \times B\mathbb{G}_m \to Y \times B\mathbb{G}_m$$

along the zero section $Y \times B\mathbb{G}_m \to Y \times [\mathbb{A}^1/\mathbb{G}_m]$.

Virtual Cartier divisors

Definition

A virtual Cartier divisor over $X \rightarrow Y$ is a commutative diagram

in St, such that $D \to T$ is a virtual Cartier divisor.

Lemma

The map $B\mathbb{G}_m \to [\mathbb{A}^1/\mathbb{G}_m]$ classifies virtual Cartier divisors.

0000000

Virtual Cartier divisors

Suppose $f: X \to Y$ has a cotangent complex. Put $\mathfrak{N}_{X/Y} := [N_{X/Y}/\mathbb{G}_m]$.

Fundamental Lemma

For any T over Y, we have

$$\operatorname{St}_{Y}(T, N_{X/Y}) \simeq \operatorname{St}_{Y}(\mathbb{V}_{T}(\mathcal{O}_{T}[1]), X)$$

Corollary

We have a Cartesian diagram

$$N_{X/Y} \longrightarrow D_{X/Y}$$
 $\downarrow \qquad \qquad \downarrow$
 $Y \longrightarrow Y \times \mathbb{A}^1$

Virtual Cartier divisors

Remark

We also have a \mathbb{G}_m -equivariant version of the fundamental lemma. This gives us a Cartesian square

 $\mathfrak{N}_{X/Y} \to \mathfrak{D}_{X/Y}$ is then the universal virtual Cartier divisor over $X \to Y$.

In terms of blow-ups

Proposition

Let $Z \rightarrow X$ be a closed immersion. Then

$$D_{Z/X} \simeq \mathsf{Bl}_{Z imes \{0\}}(X imes \mathbb{A}^1) \setminus \mathsf{Bl}_{Z imes \{0\}}(X imes \{0\})$$

Naturality of $D_{(-)/(-)}$

Proposition

The functor

$$egin{aligned} \operatorname{St}_{[\mathbb{A}^1/\mathbb{G}_m]} & o \operatorname{\mathsf{Ar}}(\operatorname{St}) \ \mathcal{T} &\mapsto (\mathcal{T} imes_{[\mathbb{A}^1/\mathbb{G}_m]} B\mathbb{G}_m o \mathcal{T}) \end{aligned}$$

has a right adjoint, which sends $X \to Y$ to $\mathfrak{D}_{X/Y}$.

The deformation diagram

Let $f: X \to Y$ be a morphism of algebraic stacks. Then we have a diagram of Cartesian squares

Quasi-smooth morphisms

Definition

Let $f: X \to Y$ be a morphism of algebraic stack.

- Recall that $A \to B$ in Alg is locally of finite presentation if $Alg_{\Delta}(B, -)$ commutes with filtered colimit.
- Now f is locally of finite presentation if for all Spec $B \to \operatorname{Spec} A$, smooth over f, $A \rightarrow B$ is locally of finite presentation.
- A module $M \in \mathrm{QCoh}(X)$ is of Tor-amplitude [n, m] if for all discrete $E \in \mathrm{QCoh}(M)$ it holds that $\pi_i(M \otimes E) = 0$ for i outside [n, m]
- Now f is quasi-smooth if it is locally of finite presentation and $L_{X/Y}$ is of Tor-amplitude $[-\infty, 1]$.

End

Quasi-smooth morphisms

We say $A \to B$ is *finitely presented* if B can be obtained from A by a finite number of cell attachments. Now the following are equivalent:

- $A \rightarrow B$ is locally of finite presentation
- B is a retract of a finitely presented A-algebra
- $\pi_0 A \to \pi_0 B$ is finitely presented, and $L_{B/A}$ is perfect (=compact).

Example

The map $k[\epsilon] \to k$ is locally of finite presentation but not finitely presented.

Example

A closed immersion $Z \to X$ of derived schemes is guasi-smooth if and only if, Zarisksi locally on X, it is of the form Spec $A/(f_1,\ldots,f_n)\to\operatorname{Spec} A$.

Deformation space in the quasi-smooth case

Proposition

Suppose $f: X \to Y$ is quasi-smooth.

- The structure map $D_{X/Y} o Y imes \mathbb{A}^1$ is quasi-smooth
- The map $X \times \mathbb{A}^1 \to D_{X/Y}$ is quasi-smooth.
- Hence all maps in the deformation diagram are quasi-smooth.

Rees algebras

Recall that we defined the extended Rees algebra of a closed immersion Z o X as the \mathbb{Z} -graded $\mathcal{O}_X[t^{-1}]$ -algebra $R_{Z/X}^{\mathsf{ext}}$ such that

$$D_{Z/X} = \operatorname{Spec} R_{Z/X}^{\operatorname{ext}}$$

Lemma

Suppose we have a commutative diagram

in St. Then naturality of $\mathfrak{D}_{(-)/(-)}$ gives

$$D_{Z/X} \simeq D_{X'/X} \times_{D_{X'/Y}} D_{Z/V}$$

Example 1

Let $Z \to X$ correspond to $A \to B = A/(f_1, \ldots, f_n)$. Then

$$R_{B/A}^{\text{ext}} = \frac{A[t^{-1}, v_1, \dots, v_n]}{(v_1 t^{-1} - f_1, \dots, v_n t^{-1} - f_n)}$$
 $N_{B/A} = B^{\oplus n}$

Example 2

Let $Z \to X$ correspond to Spec $k \to \operatorname{Spec} k[\epsilon]$. Then

$$R_{Z/X}^{\text{ext}} \simeq \pi_0 \left(\frac{k[\epsilon, t^{-1}, v]}{(vt^{-1} - \epsilon, \epsilon v)} \right)$$

$$\mathbb{V}(N_{Z/X}) \simeq \mathbb{V}(k \oplus k[1])$$

Example 3

Let $Z \to X$ correspond to Spec $k \to \operatorname{Spec} k[x,y]/(xy^2,yx^2)$. Put $I = (x, y) \subset k[x, y]$. Then

$$R_{Z/X}^{\text{ext}} \simeq \frac{k[x,y][It,t^{-1}]}{(xy^2t,yx^2t)}$$

$$\mathbb{V}(N_{Z/X}) \simeq \mathbb{V}(k/(0,0)[u,v])$$

References

Virtual Cartier Divisors and Blow-ups

Adeel Khan (2019)

Virtual fundamental classes of derived stacks I

Adeel Kahn (2021)

K-theory and G-theory of algebraic stacks

Jacob Lurie (2004)

Derived algebraic geometry (thesis)

H. (2021)

Graded algebras, projective spectra and blow-ups in derived algebraic geometry

H., Adeel Khan, David Rydh (forthcoming)

Deformations to the normal cone and blow-ups via derived Weil restrictions

Thank you!

26 / 26

End ○•