Stat 206: Linear Models

Lecture 7

October 19, 2015

Multiple Regression: Example

n = 30 cases, response variable Y, three predictor variables X_1, X_2, X_3 .

case	Y	X1	X2	Х3
1	3.01	1.06	0.86	-1.23
2	-3.40	-0.30	-0.08	-0.48
3	2.74	1.05	0.22	-0.40
30	-1.42	2.12	-0.8	-0.62

Scatter Plot Matrix

Figure: Scatter plots between response and predictors and among predictors

All variables appear to be nonlinearity.

correlated. No obvious

Example: Scatter Plot Matrix

Figure: Scatter plots between response and predictors and among predictors

All variables appear to be positively correlated. No obvious nonlinearity.

Example: Model 1

First-order model (only additive effects, a.k.a. main effects):

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 30.$$

R summary output:

```
Call:
lm(formula = Y ~ X1 + X2 + X3. data = data)
Residuals:
   Min
            10 Median
-3.1834 -0.5663 0.1673 0.4658 2.7901
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2010
                        0.2541 4.727 6.91e-05 ***
X1
             1.1107
                       0.2672 4.156 0.000311 ***
X2
             1.7978
                       0.3287 5.469 9.78e-06 ***
Х3
             1.9596
                        0.3362
                                5.829 3.83e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.299 on 26 degrees of freedom
Multiple R-squared: 0.8883, Adjusted R-squared: 0.8754
F-statistic: 68.93 on 3 and 26 DF. p-value: 1.667e-12
```

Figure: Model 1: Residual Plots

Residuals vs. fitted values plot shows . Residuals Q-Q plot shows . Residuals boxplot shows that most of residuals are in between 3, –3.

Figure: Model 1: Residual Plots

Residuals vs. fitted values plot shows nonlinearity. Residuals Q-Q plot shows heavy-tail. Residuals boxplot shows that most of residuals are in between 3, –3.

Figure: Model 1: Residuals vs. interaction term $X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$ Plots

Residuals vs. the interaction term pattern. This term should model.

shows a clear in the

Figure: Model 1: Residuals vs. interaction term $X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$ Plots

Residuals vs. the interaction term X_1X_2 shows a clear linear pattern. This term should be included in the model.

Example: Model 2

Nonadditive model with interaction between X_1 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

```
(p = 5)
Call:
lm(formula = Y ~ X1 + X2 + X3 + X1:X2. data = data)
Residuals:
   Min
            10 Median
                                  Max
-2.6715 -0.4267 0.2715 0.6138 1.9901
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8832
                        0.2153
                                4.103 0.00038
X1
             1.5946
                        0.2421 6.587 6.69e-07 ***
                     0.2605 6.560 7.16e-07 ***
X2
            1.7091
             2.1266
                    0.2687 7.916 2.85e-08 ***
X3
X1 · X2
             1.0076
                       0 2467 4 084 0 00040 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.026 on 25 degrees of freedom
Multiple R-squared: 0.933,
                             Adjusted R-squared: 0.9223
F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14
```

Figure: Model 2: Residual Plots

Residuals vs. fitted values plot shows
. Residuals Q-Q plot shows
Residuals boxplot shows that most of residuals are in between

2, -2.

Figure: Model 2: Residual Plots

Residuals vs. fitted values plot shows no obvious nonlinearity. Residuals Q-Q plot shows no severe deviation from Normality. Residuals boxplot shows that most of residuals are in between 2, –2.

Figure: Model 2: Residuals vs. Each of $X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$ Plots

of these plots shows an obvious pattern. Model 2

seems to be

Figure: Model 2: Residuals vs. Each of $X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$ Plots

None of these plots shows an obvious pattern. Model 2 seems to be adequate.

Example: Model 3

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \beta_5 X_{i1} X_{i3} + \beta_6 X_{i2} X_{i3} + \epsilon_i, \ i = 1, \cdots, 30.$

Nonadditive model with all three two-way interaction terms:

```
(p = 7)
Call:
lm(formula = Y ~ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3, data = data)
Residuals:
   Min
            1Q Median
                                  Max
-2.7354 -0.6588 0.1868 0.6246 1.7705
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8927
                       0.2278
                                3 920 0 000687 ***
X1
            1.7179
                       0.2819 6.095 3.24e-06 ***
X2
           1.5828 0.2925
                               5.411 1.69e-05 ***
X3
           1.9982 0.3041 6.571 1.05e-06 ***
          1.1925 0.3368 3.541 0.001744 **
X1 · X2
X1:X3
           0.2227 0.4009 0.555 0.583989
X2:X3
            -0.4403
                       0.3675 -1.198 0.243074
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.038 on 23 degrees of freedom
Multiple R-squared: 0.937. Adjusted R-squared: 0.9205
F-statistic: 56.99 on 6 and 23 DF, p-value: 1.172e-12
```

Figure: Model 3: Residual Plots

Residuals vs. fitted values plot shows no obvious nonlinearity. Residuals Q-Q plot shows no severe deviation from Normality. Residuals boxplot shows that most of residuals are in between 2, –2.

Figure: Model 3: Residuals vs. Each of $X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$ Plots

None of these plots shows an obvious pattern. Model 3 seems to be adequate, but there is no obvious improvement over Model 2.

Analysis of Variance

Decomposition of total sum of squares:

Total sum of squares:

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 =$$
 , $d.f.(SSTO) =$

Error sum of squares:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = , \quad d.f.(SSE) =$$

Regression sum of squares:

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 =$$
 , $d.f.(SSR) =$

Analysis of Variance

$$\mathbf{SSTO} = \mathbf{SSE} + \mathbf{SSR}, \quad \mathbf{d.f.}(\mathbf{SSTO}) = \mathbf{d.f.}(\mathbf{SSE}) + \mathbf{d.f.}(\mathbf{SSR}).$$

Total sum of squares:

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}, \ d.f.(SSTO) = rank(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n) = n - 1.$$

Error sum of squares:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}, \quad d.f.(SSE) = rank(\mathbf{I}_n - \mathbf{H}) = \mathbf{n} - \mathbf{p}.$$

Regression sum of squares:

$$SSR = \sum_{i=1}^n (\widehat{Y}_i - \overline{Y})^2 = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}, \ \ \textit{d.f.}(SSR) = rank(\mathbf{H} - \frac{1}{n}\mathbf{J}_n) = \mathbf{p} - \mathbf{1}.$$

Sampling distributions of sums of squares (SS) under the Normal error model:

- SSE and SSR are
 Notes: use the facts that e are independent with Ŷ and Y.

 Why?
- $SSE \sim \sigma^2 \chi^2_{(n-p)}$. What is E(SSE)?
- If $\beta_1 = \cdots = \beta_{p-1} = 0$, then $SSR \sim \sigma^2 \chi^2_{(p-1)}$. What is E(SSR) in such a case?

Sampling distributions of sums of squares (SS) under the Normal error model:

- SSE and SSR are independent.
 Notes: use the facts that e are independent with Ŷ and Y.
 Why?
- $SSE \sim \sigma^2 \chi^2_{(n-p)}$. What is E(SSE)?
- If $\beta_1 = \cdots = \beta_{p-1} = 0$, then $SSR \sim \sigma^2 \chi^2_{(p-1)}$. What is E(SSR) in such a case?

Mean squares (MS): MS = SS/d.f.(SS).

MSE (mean squared error):

$$MSE = \frac{SSE}{n-p}, E(MSE) = \sigma^2.$$

MSE is an σ^2 .

estimator of the error variance

MSR:

$$MSR = \frac{SSR}{p-1}.$$

$$E(MSR) = \begin{cases} \sigma^2 & \text{if } \beta_1 = \dots = \beta_{p-1} = 0 \\ & \text{if } \text{otherwise} \end{cases}$$

• $MSTO = \frac{SSTO}{n-1}$.

Mean squares (MS): MS = SS/d.f.(SS).

MSE (mean squared error):

$$MSE = \frac{SSE}{n-p}, E(MSE) = \sigma^2.$$

MSE is an unbiased estimator of the error variance σ^2 .

MSR:

$$MSR = \frac{SSR}{p-1}.$$

$$E(MSR) = \begin{cases} \sigma^2 & \text{if } \beta_1 = \dots = \beta_{p-1} = 0 \\ > \sigma^2 & \text{if } \text{ otherwise} \end{cases}$$

•
$$MSTO = \frac{SSTO}{n-1}$$
.

F Test of Regression Relation

Under the Normal error model:

 Test whether there is a between the response variable Y and the set of X variables:

F ratio and its null distribution:

$$F^* =$$
 , $F^* \sim_{H_0}$

where $F_{p-1,n-p}$ denotes the F distribution with (p-1,n-p) degrees of freedom.

Decision rule at level α: reject H₀ if F* >

F Test of Regression Relation

Under the Normal error model

 Test whether there is a regression relation between the response variable Y and the set of X variables:

$$H_0: \beta_1 = \cdots = \beta_{p-1} = 0$$
 vs.

 H_a : not all β_k s equal zero.

F ratio and its null distribution:

$$F^* = \frac{MSR}{MSE}, \quad F^* \sim_{H_0} F_{p-1,n-p},$$

where $F_{p-1,n-p}$ denotes the F distribution with (p-1,n-p) degrees of freedom.

• Decision rule at level α : reject H_0 if $F^* > F(1-\alpha; p-1, n-p)$.

ANOVA Table

Source of Variation	SS	d.f.	MS	F*
Regression	$SSR = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}$	p – 1	$MSR = \frac{SSR}{p-1}$	$F^* = \frac{MSR}{MSE}$
Error	$SSE = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}$	n – p	$MSE = \frac{SSE}{n-p}$	
Total	$SSTO = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}$	n – 1		

Example Model 2: n = 30, p = 5.

Source of Variation	SS	d.f.	MS	F*
Regression	SSR = 366.4846	4	MSR = 91.62116	$F^* = 87.03703$
Error	SSE = 26.31672	25	MSE = 1.052669	
Total	SSTO = 392.8013	29		

Pvalue = $P(F_{4,25} > 87.037) \approx 0$, so there is a significant regression relation between Y and X_1, X_2, X_3, X_1X_2 .

Coefficient of Multiple Determination

$$R^2 := \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}.$$

- R² is the of the total variation in Y by using the X variables to explain Y.
- $0 \le R^2 \le 1$. When $R^2 = 0$? When $R^2 = 1$?
- Adding more X variables to the model will always R² because:
 - (i) SSTO
 - (ii) SSE

Coefficient of Multiple Determination

$$R^2 := \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}.$$

- R² is the proportional reduction of the total variation in Y by using the X variables to explain Y.
- $0 \le R^2 \le 1$. When $R^2 = 0$? When $R^2 = 1$?
- Adding more X variables to the model will always increase R² because:
 - (i) SSTO remains the same.
 - (ii) SSE becomes smaller.

Coefficient of multiple correlation:

$$R := \sqrt{R^2}$$
.

- When there is only one X variable, R equals to the absolute value of the (sample) correlation coefficient r between X and Y.
- In general, R is the maximum absolute (sample) correlation coefficient between Y and linear combinations of X₁,..., X_{p-1}:

$$R = \max_{c_1, \dots, c_{p-1}} |Corr(Y, c_1 X_1 + \dots + c_{p-1} X_{p-1})|.$$

Since adding more X variables can only R^2 , does this mean we should use as many X variables as possible?

- With more X variables, the model fits the observed data due to SSE.
- However, a model with many X variables that are unrelated to the response variable and/or are highly correlated with each other tends to
 - the observed data and often do a job for prediction due to sampling variability.
 - make interpretation
 - make prediction more

Since adding more X variables can only increase R^2 , does this mean we should use as many X variables as possible?

- With more X variables, the model fits the observed data better due to smaller SSE.
- However, a model with many X variables that are unrelated to the response variable and/or are highly correlated with each other tends to
 - overfit the observed data and often do a poor job for prediction due to increased sampling variability.
 - · make interpretation difficult.
 - · make prediction more costly.

Adjusted Coefficient of Multiple Determination

Adjust for of *X* variables in the model:

- R_a^2 R^2 .
- R_a^2 may become when adding more X variables into the model because:
 - the in SSE may be more than offset by the

in SSE.

Adjusted Coefficient of Multiple Determination

Adjust for the number of *X* variables in the model:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-p} \frac{SSE}{SSTO}.$$

- $R_a^2 \le R^2$.
- R_a² may become smaller when adding more X variables into the model because:
 - the decrease in SSE may be more than offset by the loss of degrees of freedom in SSE.

Example

Model 1: Y ~ X₁, X₂, X₃

$$R^2 = 0.8883, \quad R_a^2 = 0.8754$$

Model 2: Y ~ X₁, X₂, X₃, X₁X₂

$$R^2 = 0.933, \quad R_a^2 = 0.9223.$$

Model 3: Y ~ X₁, X₂, X₃, X₁X₂, X₁X₃, X₂X₃.

$$R^2 = 0.937, \quad R_a^2 = 0.9205.$$

(i) For each model, $R^2 > R_a^2$; (ii) Adding more X variable(s) increases R^2 . The increase of R^2 is much more from Model 1 to Model 2 than from Model 2 to Model 3; (iii) Model 3 has a smaller R_a^2 than Model 2.

Inferences about Regression Coefficients

LS estimators:

$$\hat{\boldsymbol{\beta}}_{p\times 1} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} =$$

$$\mathbf{E}\{\hat{\boldsymbol{\beta}}\} = \qquad , \quad \boldsymbol{\sigma^2}\{\hat{\boldsymbol{\beta}}\} =$$

$$p\times 1 \qquad \qquad \boldsymbol{\rho^2}\{\hat{\boldsymbol{\beta}}\} =$$

The standard error of $\hat{\beta}_k$, $s(\hat{\beta}_k)$, is the

of $MSE(\mathbf{X}'\mathbf{X})^{-1}$.

Inferences about Regression Coefficients

LS estimators:

$$\hat{\boldsymbol{\beta}}_{p\times 1} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}_{p\times p} \mathbf{Y}_{p\times n}.$$

$$\mathbf{E}\{\hat{\boldsymbol{\beta}}\} = \boldsymbol{\beta}, \quad \boldsymbol{\sigma}^{\mathbf{2}}\{\hat{\boldsymbol{\beta}}\} = \boldsymbol{\sigma}^{\mathbf{2}}(\mathbf{X}'\mathbf{X})^{-1}.$$

The standard error of $\hat{\beta}_k$, $s(\hat{\beta}_k)$, is the positive square-root of the (k+1)th diagonal element of $MSE(\mathbf{X}'\mathbf{X})^{-1}$.

Studentized quantity:

$$\frac{\hat{\beta}_k - \beta_k}{s\{\hat{\beta}_k\}} \sim$$

• $(1 - \alpha)$ -Confidence interval for β_k :

- Two-sided T-Test: $H_0: \beta_k = \beta_k^0$ vs. $H_a: \beta_k \neq \beta_k^0$.
- T statistic:

$$T^* =$$

At level α , the decision rule is to reject H_0 if and only if $|T^*|$

Studentized quantity:

$$\frac{\hat{\beta}_k - \beta_k}{s\{\hat{\beta}_k\}} \sim t_{(n-p)}.$$

• $(1 - \alpha)$ -Confidence interval for β_k :

$$\hat{\beta}_k \pm t(1-\alpha/2; (n-p))s\{\hat{\beta}_k\}.$$

- Two-sided T-Test: $H_0: \beta_k = \beta_k^0$ vs. $H_a: \beta_k \neq \beta_k^0$.
- T statistic:

$$T^* = \frac{\hat{\beta}_k - \beta_k^0}{s\{\hat{\beta}_k\}} \underset{H_0}{\sim} t_{(n-p)}.$$

At level α , the decision rule is to reject H_0 if and only if $|T^*| > t(1 - \alpha/2; (n - p))$.

Example: Model 2

Nonadditive model with interaction between X_1 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

```
Call:
lm(formula = Y ~ X1 + X2 + X3 + X1:X2, data = data)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8832
                        0.2153
                                4.103 0.00038 ***
             1 5946
                        0 2421 6 587 6 69e-07 ***
X1
                     0.2605 6.560 7.16e-07 ***
X2
             1.7091
             2.1266
                    0.2687
                                7.916 2.85e-08 ***
X3
X1 · X2
             1.0076
                       0.2467
                                4 084 0 00040 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.026 on 25 degrees of freedom
Multiple R-squared: 0.933,
                             Adjusted R-squared: 0.9223
F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14
```

(p = 5)

4 Model 3

Test whether there is an interaction between X_1 and X_2 . Use $\alpha = 0.01$.

- H_0 : , vs., H_a :
- T* =
- n = 30, p = 5,
- Since

 conclude that there is
 effect between X₁ and X₂.
- Alternatively, pvalue= H₀.

the null hypothesis and interaction

, so

Notes: pvalue for the two-sided alternative is in the R output.

Test whether there is an interaction between X_1 and X_2 . Use $\alpha = 0.01$.

- $H_0: \beta_4 = 0$, vs., $H_a: \beta_4 \neq 0$.
- $T^* = \frac{1.0076 0}{0.2467} = 4.084$.
- n = 30, p = 5, t(0.995; 25) = 2.787.
- Since |4.084| > 2.787, reject the null hypothesis and conclude that there is a significant interaction effect between X₁ and X₂.
- Alternatively, pvalue= $P(|t_{(25)}| > |4.084|) = 0.00040 < 0.01$, so reject H_0 .

Notes: pvalue for the two-sided alternative is in the R output.

Estimation of the Mean Response

For a given set of values of the X variables:

$$\mathbf{X}_{h} = \begin{bmatrix} 1 \\ X_{h1} \\ \vdots \\ X_{h,p-1} \end{bmatrix}$$

Corresponding mean response:

$$E(Y_h) =$$

Estimation of the Mean Response

For a given set of values of the X variables:

$$\mathbf{X}_{h} = \begin{bmatrix} 1 \\ X_{h1} \\ \vdots \\ X_{h,p-1} \end{bmatrix}$$

• Corresponding mean response:

$$E(Y_h) = X'_h \beta = \beta_0 + \beta_1 X_{h1} + \cdots + \beta_{p-1} X_{h,p-1}.$$

• $\widehat{Y}_h :=$ is an

estimator of $E(Y_h)$:

$$E(\widehat{Y}_h) =$$
 $\sigma^2(\widehat{Y}_h) =$

• Standard error of \widehat{Y}_h :

$$s(\widehat{Y}_h) =$$

• $(1 - \alpha)$ -confidence interval for $E(Y_h)$:

• $\widehat{Y}_h := \mathbf{X}'_h \hat{\boldsymbol{\beta}}$ is an unbiased estimator of $E(Y_h)$:

$$\begin{split} E(\widehat{Y}_h) &= E(\mathbf{X}_h' \hat{\boldsymbol{\beta}}) = \mathbf{X}_h' \mathbf{E} \{ \hat{\boldsymbol{\beta}} \} = \mathbf{X}_h' \boldsymbol{\beta} = E(Y_h). \\ \sigma^2(\widehat{Y}_h) &= \mathbf{X}_h' \sigma^2 \{ \hat{\boldsymbol{\beta}} \} \mathbf{X}_h = \sigma^2 \left(\mathbf{X}_h' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h \right). \end{split}$$

• Standard error of \widehat{Y}_h :

$$s(\widehat{Y}_h) = \sqrt{MSE(\boldsymbol{X}_h'(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}_h)}.$$

• $(1 - \alpha)$ -confidence interval for $E(Y_h)$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-p)s(\widehat{Y}_h).$$

Prediction of a New Observation

- $Y_{h(new)} = X'_h \beta + \epsilon_h$: with the observations Y_i s.
- Predicted value: $\widehat{Y}_h :=$

$$\sigma^2(pred) :=$$

Standard error for prediction:

$$s(pred) =$$

• $(1 - \alpha)$ -prediction interval for $Y_{h(new)}$:

Prediction of a New Observation

- $Y_{h(new)} = X_h' \beta + \epsilon_h$: independent with the observations Y_i s.
- Predicted value: $\widehat{Y}_h := \mathbf{X}_h' \hat{\boldsymbol{\beta}}$

$$\sigma^2(\textit{pred}) := \textit{Var}(\widehat{Y}_h - Y_{\textit{h(new)}}) = \sigma^2(\widehat{Y}_h) + \sigma^2(Y_{\textit{h(new)}}) = \sigma^2 \textbf{X}_h'(\textbf{X}'\textbf{X})^{-1} \textbf{X}_h + \sigma^2.$$

Standard error for prediction:

$$s(pred) = \sqrt{MSE\left[1 + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h\right]}.$$

• $(1 - \alpha)$ -prediction interval for $Y_{h(new)}$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-p)s(pred).$$

Example

Estimate the mean response when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$ under Model 2.

- X'_h =
- n = 30, p = 5:

$$\widehat{\mathbf{Y}}_h := \mathbf{X}_h' \widehat{\boldsymbol{\beta}} = 1.290,$$

$$\mathbf{X}_h' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h = 0.170, \quad MSE = 1.053,$$

$$\mathbf{s}(\widehat{\mathbf{Y}}_h) = .$$

• A 99%-confidence interval for $E(Y_h)$: t(0.995; 25) = 2.787

$$1.290 \pm 2.787 \times 0.423 = [0.111, 2.469].$$

Example

Estimate the mean response when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$ under Model 2.

•
$$\mathbf{X}'_h = \begin{bmatrix} 1 & 0.8 & 0.5 & -1 & 0.4 \end{bmatrix}$$

• n = 30, p = 5:

$$\widehat{Y}_h := \mathbf{X}_h' \widehat{\boldsymbol{\beta}} = 1.290,$$

$$\mathbf{X}_h' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h = 0.170, \quad MSE = 1.053,$$

$$s(\widehat{Y}_h) = \sqrt{1.053 \times 0.170} = 0.423.$$

• A 99%-confidence interval for $E(Y_h)$: t(0.995; 25) = 2.787

$$1.290 \pm 2.787 \times 0.423 = [0.111, 2.469].$$

Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$ under Model 2.

Standard error for prediction:

$$s(pred) =$$

• A 99%-prediction interval for Y_{hnew} :

$$1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383].$$

- R codes.
 - > newX=data.frame(X1=0.8, X2=0.5, X3=-1)
 - > predict.lm(fit2, newX, interval="confidence",
 - + level=0.99, se.fit=TRUE)
 - > predict.lm(fit2, newX, interval="prediction",
 - + level=0.99, se.fit=TRUE)

Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$ under Model 2.

Standard error for prediction:

$$s(pred) = \sqrt{1.053 \times (1 + 0.170)} = 1.1098.$$

A 99%-prediction interval for Y_{hnew}:

$$1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383].$$

- R codes.
 - > newX=data.frame(X1=0.8, X2=0.5, X3=-1)
 - > predict.lm(fit2, newX, interval="confidence",
 - + level=0.99, se.fit=TRUE)
 - > predict.lm(fit2, newX, interval="prediction",
 - + level=0.99, se.fit=TRUE)

Example: Model 3

Nonadditive model with all three second-order interaction terms:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i1}X_{i2} + \beta_{5}X_{i1}X_{i3} + \beta_{6}X_{i2}X_{i3} + \epsilon_{i}.$$

```
Call:
lm(formula = Y ~ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3, data = data)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8927
                       0.2278 3.920 0.000687 ***
X1
             1 7179
                       0 2819
                                6 095 3 24e-06 ***
X2
             1.5828
                       0.2925 5.411 1.69e-05 ***
Х3
             1.9982
                    0.3041 6.571 1.05e-06 ***
X1 · X2
             1 1925 0 3368 3 541 0 001744 **
             0 2227 0 4009 0 555 0 583989
X1 · X3
X2:X3
            -0.4403 0.3675 -1.198 0.243074
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.038 on 23 degrees of freedom
```

Multiple R-squared: 0.937. Adjusted R-squared: 0.9205 F-statistic: 56.99 on 6 and 23 DF. p-value: 1.172e-12

Compare Model 2 and Model 3.

- SSE, R², R_a² are
- In Model 3, the interaction terms X_1X_3 and X_2X_3 are
- SEs are in Model 3, i.e., sampling variability, due to
- of d.f. in Model 3 due to X variables \Longrightarrow multipliers (critical values) are
- Consequently, confidence intervals are Model 3, i.e., precise.

Compare Model 2 and Model 3.

- SSE, R², R_a² are similar.
- In Model 3, the interaction terms X₁X₃ and X₂X₃ are not significant.
- SEs are larger in Model 3, i.e., increased sampling variability, due to multicollinearity.
- Loss of d.f. in Model 3 due to more X variables ⇒ multipliers (critical values) are bigger.
- Consequently, confidence intervals are wider under Model 3, i.e., less precise.