Review 2.0

论文	FOV预测方法	CACHING POLICY	其他输入参数
基于视图合成的 360°VR缓存C-RAN系 统	莫得)	LFU + MaxMinDistance	Drcache(下载所 需数据的造成的 延迟) Popularity 等
Long term Fov Predi	convLSTM+FCN	莫得)	
003	(和命名法结合	Hot + Popularity	
005	还没看完)		
Flock - based	加权计算概率矩 阵	分组 + LRU	Fov预测:头部轨 迹数据
Fov-aware	没说)	计算可能以 q 质量 被请求的概率	视频块i在 common-Fov中 出现的概率 高质量请求视频 块i的概率
SVC-Edge caching	好像也没说)	计算cache value	Popularity, size, clock, isinfov, level

一、Caching Replace Policy

1, MaxMinDistance

计算D和N的例子: 001 P7

D越小N越小则更佳

2、计算Cache 概率

输入参数:

• 视频块i在common-Fov中出现的概率

• 用户请求视频块i为高质量的概率

得到此视频块将来要被以q的质量请求的概率05

3、式子计算cache value

4、其他用于比较的算法:

名字/论文	指标	参数
LRU	访问越久远越不容易被再次访问	最近一次访问时间
LFU	被访问次数最少的先淘汰	访问频率
KP-Optimal	预先了解所有用户的请求	
VS-RDM	randomly/手动狗头	
VS-LFU	LFU结合tile合成	
ENEV	基于马尔科夫决策的启发式方法	

5、用到的评测指标:

- Tile hit (缓存命中率)
- Bandwidth saving
- Reb(缓冲频率)
- DoR [延迟时间(以秒为单位)]
- Qua[高质量的FoV(以百分比表示)]
- cache hit ratio
- byte hit ratio
- average access latency ratio

二、Fov Prediction

预测方法:

- trajectory based
- content based

方法	具体内容	缺点
linear regression + 3 layer MLP		only 100 ∼ 500 ms
a fixation prediction network	考虑视频内容和视场位置	

方法	具体内容	缺点
LSTM		只做提前1s的预测 只有过去输入数据类型和数据分 布与未来相同的情况下才合适
深度学习强化 模型	离线通过视觉特征得到热图 在线通过过去轨迹预测	
KNN + LR	考虑了cross-users而不仅仅 是target user	
DBSCAN + SVM	服务器:密度的聚类将用户分组 客户端:SVM预测是哪一类 后进而得到查看概率	
MLP mixing + AME	针对第1,3的改进:神经机器翻译体系seq2seq model	
Flock-based	矩阵加权计算	没确定最开始看啥视频片段吧

结果参数:

- Hit rate.
- Mean Squared Error.
- Tile overlapping ratio.
- FoV center estimation from the predicted heatmap(从预测的热图中确定平均位置,进而计算hit rate 和 MSE
- QoE Metrics 计算了预测的注意分布与真实注意分布之间的KL散度 The effective rate, The duration of video freeze

三、结果变量

- 1. Average cache hit rate
- 2. Backhaul traffic load
- 3. Average latency [ms]
- 4. Quality-of-experience (QoE) (Average video quality, Average quality variations (V), Rebuffer time (T), Startup delay)

四、不同

003 - P5