

Análise e Síntese de Algoritmos Estruturas de Dados para Conjuntos Disjuntos. Algoritmo de Kruskal.

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, (Cap. 21 +) Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Complexidade Computacional

ro ASA @ LEIC-T 2024/2025

Resumo

Conjuntos Disjuntos

Definições

Estruturas baseadas em Listas

Estruturas baseadas em Árvores

Aplicações

Algoritmo de Kruskal

Definições

Conjuntos $\{S_1,...,S_n\}$ sem elementos em comum, ou seja, a intersecção entre quaisquer dois conjuntos é o conjunto vazio $S_i \cap S_j = \emptyset, i \neq j$

 Cada conjunto caracterizado por um representante - elemento do conjunto

Estrutura de Dados

Permite manter uma colecção de conjuntos disjuntos dinâmicos

• Consultas à estrutura de dados não altera o representante

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/41 P.T. Monteiro ASA @ LEIC-T 2024/2025 4,

Conjuntos Disjuntos

Uso de Lista ligada

Operações

Cada elemento da estrutura é representado por objecto x

- Make-Set(x)
 - Cria novo conjunto que apenas inclui elemento x (representante)
 - x aponta para o único elemento do conjunto, o representante do conjunto
- Union(x,y)
 - Realiza a união dos conjuntos que contém x e v. respectivamente S_x e S_v
 - ▶ Novo conjunto criado: $S_x \cup S_y$
 - \triangleright S_x e S_v eliminados (conjuntos disjuntos)
 - Novo representante será o representante de S_x ou S_y
- FIND-SET(X)
 - Retorna apontador para representante do conjunto que contém x

P.T. Monteiro

Organização

- Elementos de cada conjunto em lista (simplesmente) ligada
- Primeiro elemento é o representante do conjunto
- Todos os elementos incluem apontador para o representante do conjunto

Uso de Lista ligada

Heurística: União Pesada

Tempos de Execução

- Make-Set(x)
 - Criar nova lista com elemento x: O(1)
- FIND-SET(x)
 - Devolver ponteiro para representante: O(1)
- UNION(x,v):
 - Colocar elementos de x no fim da lista de y
 - Actualizar ponteiros de elementos de x para representante
- Operações sobre *n* elementos x_1, x_2, \dots, x_n
 - n operações MAKE-SET (x_i)
 - $\triangleright \Theta(n)$
 - -n-1 operações UNION (x_{i-1},x_i) , para $i=2,\ldots,n$
 - ▶ Cada operação $UNION(x_{i-1}, x_i)$ actualiza i-1 elementos
 - ► Custo das n-1 operações: $\sum_{i=1}^{n-1} i = \Theta(n^2)$
 - Número total de operações é m=2n-1Em média, cada operação requer tempo $\Theta(n)$

Uso de Lista ligada

- A cada conjunto associar o número de elementos
- Para cada operação UNION, juntar lista com menor número de elementos à lista com major número de elementos
 - Necessário actualizar menor número de ponteiros para representante
- Custo total de m operações é melhorado
- Sequência de m operações de MAKE-SET, UNION e FIND-SET (que incluem O(n)operações UNION) é: $O(m + n \log n)$

ASA @ LEIC-T 2024/2025 ASA @ LFIC-T 2024/2025 P.T. Monteiro

Uso de Lista ligada

Uso de Lista ligada

Tempos de Execução (com Heurística)

(Prova Teorema 21.1 CLRS)

- Sempre que o ponteiro para o representante de x é actualizado. x encontra-se no conjunto com menor número de elementos
 - Da 1^a vez, conjunto resultante com pelo menos 2 elementos
 - Da 2^a vez, conjunto resultante com pelo menos 4 elementos

 - Após representante de x ter sido actualizado $\lceil log \ k \rceil$ vezes, conjunto resultante tem pelo menos k elementos
- Maior conjunto tem n elementos
 - Cada ponteiro (de qualquer elemento) actualizado não mais do que $\lceil \lg n \rceil$ vezes
- Tempo total para actualizar n elementos é $O(n \log n)$
- Make-Set e Find-Set têm tempos de execução O(1)e há O(m) destas operações
- Tempo total para m operações (com n UNION) é $O(m + n \log n)$

Exemplo (usar heurística União Pesada)

for $i \leftarrow 1$ to 16 do {1},{2},{3},{4},{5},{6},{7},{8}, MAKE-SET (x_i) {9},{10},{11},{12},{13},{14},{15},{16} end for for $i \leftarrow 1$ to 15 by 2 do $\{1,2\},\{3,4\},\{5,6\},\{7,8\},\{9,10\},\{11,12\},\{13,14\},\{15,16\}$ Union (x_i, x_{i+1}) end for for $i \leftarrow 1$ to 13 by 4 do $\{1,2,3,4\}, \{5,6,7,8\}, \{9,10,11,12\}, \{13,14,15,16\}$ Union (x_i, x_{i+2}) end for Union (x_1, x_{13}) $\{1,2,3,4,13,14,15,16\},\{5,6,7,8\},\{9,10,11,12\}$ UNION (x_6, x_9) $\{1,2,3,4,13,14,15,16\},\{5,6,7,8,9,10,11,12\}$ FIND-SET (x_7) Union (x_3, x_{11}) {1,2,3,4, 13,14,15,16, 5,6,7,8, 9,10,11,12} FIND-SET (x_{14}) ASA @ LEIC-T 2024/2025

Uso de (floresta de) árvores

Uso de (floresta de) árvores

Organização

- Cada conjunto representado por uma árvore
- Cada elemento aponta apenas para antecessor na árvore
- Representante da árvore é a raíz
- Antecessor da raíz é a própria raíz

Operações

- FIND-SET: Percorrer antecessores até raíz ser encontrada O(n)
- UNION: raíz de uma árvore aponta para raíz da outra árvore O(1)

Complexidade

- Sequência de O(m) operações é O(mn)
- Pior caso ocorre quando as árvores que são apenas listas dos *n* elementos

Exemplo

Uso de (floresta de) árvores

Uso de (floresta de) árvores

Heurística: União por Categoria

(union by rank)

Numa união de dois conjuntos, colocar árvore com menos elementos a apontar para árvore com mais elementos

- Utilizar estimativa da altura de cada sub-árvore
- Categoria (rank): aproxima logaritmo do tamanho da sub-árvore e é um limite superior na altura da sub-árvore
- Numa união, raíz da árvore com menor rank aponta para raíz da árvore com maior rank

Heurística: Compressão de Caminhos

(path compression)

Em cada operação FIND-SET coloca cada nó visitado a apontar directamente para a raíz da árvore (representante do conjunto)

P.T. Monteiro

Uso de (floresta de) árvores

Make-Set(x)

$$p[x] \leftarrow x$$
 $rank[x] \leftarrow 0$

Find-Set(x)

```
if x \neq p[x] then
  p[x] \leftarrow Find-Set(p[x])
end if
return p[x]
```

Union(x, y)

Link(Find-Set(x), Find-Set(y))

Link(x, y)

```
if rank[x] > rank[y] then
  p[y] \leftarrow x
else
  p[x] \leftarrow y
  if rank[x] == rank[y] then
    rank[y] \leftarrow rank[y] + 1
  end if
end if
```

Complexidade

Execução de m operações sobre n elementos: $O(m \alpha(n))$

• $\alpha(n) \le 4$ para todos os efeitos práticos

Prova

Capítulo 21.4 do livro CLRS

Uso de (floresta de) árvores

(análise amortizada - método do potencial)

Turing Awardee Clips: Tarjan on analyzing the "union-find" data structure

https://www.youtube.com/watch?v=Hhk8ANKWGJA

ASA @ LFIC-T 2024/2025 ASA @ LFIC-T 2024/2025 P.T. Monteiro

Uso de (floresta de) árvores

Conjuntos Disjuntos: Aplicações

Exemplo (usar heurística União por categoria & compressão caminhos)

```
for i \leftarrow 1 to 16 do
   Make-Set(x_i)
end for
for i \leftarrow 1 to 15 by 2 do
   UNION(x_i, x_{i+1})
end for
for i \leftarrow 1 to 13 by 4 do
  Union(x_i, x_{i+2})
end for
Union(x_{11}, x_{13})
Union(x_6, x_{16})
FIND-SET(x_9)
```

Problema

Identificar os componentes ligados de um grafo não dirigido G = (V, E)

Connected-Components(G)

```
for each v \in G.V do
  MAKE-SET(v)
end for
for each (u, v) \in G.E do
  if FIND-SET(u) \neq FIND-SET(v) then
    UNION(u, v)
  end if
end for
```


Conjuntos Disjuntos: Aplicações

Conjuntos Disjuntos: Aplicações

Problema

Identificar ciclos num grafo não dirigido G = (V, E)

Cycle-detection(G)

```
\quad \text{for each } \textbf{v} \, \in \, \textbf{G.V do} \quad
   MAKE-SET(v)
end for
for each (u, v) \in G.E do
   if FIND-Set(u) \neq FIND-Set(v) then
     UNION(u, v)
   else
     return "Cycle found"
   end if
end for
```


Problema

Considere que está na equipa de projecto de uma rede de distribuição entre um conjunto de cidades. Foram efectuados estudos que calcularam o custo c(u, v) associado a cada ligação possível da nova rede. Pretende-se saber qual o menor custo total de uma rede que interligue todas as cidades

Solução

- Representar a rede como um grafo não-dirigido e pesado
- Função de pesos é definida pelo custo entre as possíveis ligações
- Rede de menor custo será a Árvore Abrangente de Menor Custo (MST) do grafo

P.T. Monteiro ASA @ LEIC-T 2024/2025

ASA @ LFIC-T 2024/2025

Algoritmo de Kruskal

MST-Kruskal(G,w)

for each $v \in G.V$ do

sortedE ← sortNonDecreasing(G.E)

if Find-Set(u) \neq Find-Set(v) then

for each $(u,v) \in sortedE do$

 $A = A \cup \{(u, v)\}$

Union(u, v)

Make-Set(v)

 $A = \emptyset$

end for

end if end for return A

Características

- Algoritmo greedy
- Mantém floresta (de árvores) A
- Utilização de uma estrutura de dados para representar conjuntos disjuntos
- Cada conjunto representa uma sub-árvore de uma MST
- Em cada passo é escolhido um arco leve, seguro para A

Cria conjunto para cada v

(u,v) é arco leve, seguro para A

Algoritmo de Kruskal

$$A = \{ (h,g) \}$$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f) \\ 1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

$$1 \quad \text{Matterial Approximation of the property of the prope$$

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f) \}$$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$
T. Monteiro

$$A = \{ (h,g), (i,c), (g,f), (a,b) \}$$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$
P.T. Montairo

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f) \}$$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f) \}$$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

$$1 \quad \text{Monteins} \quad \text{ASA @ IFIG-T 2024/2025}$$

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d) \}$$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$
T. Monteiro

 $A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d) \}$

$$E = (h,g), (i,c), (g,f), (a,b), (c,f), (i,g), (c,d), (i,h), (a,h), (b,c), (d,e), (e,f), (b,h), (d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$
P.T. Monteier

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h) \}$$

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h) \}$$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$
T. Monteier

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e) \}$$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$
1 2 2 4 4 6 7 7 8 8 9 10 11 14

ASA @ I.FIC-T 2024/2025

 $A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e) \}$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

B.T. Masteins

Algoritmo de Kruskal

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e) \}$$

$$A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e) \}$$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$

$$1 \quad 2 \quad 2 \quad 4 \quad 4 \quad 6 \quad 7 \quad 7 \quad 8 \quad 8 \quad 9 \quad 10 \quad 11 \quad 14$$

Algoritmo de Kruskal

ASA @ LEIC-T 2024/2025

 $A = \{ (h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e) \}$

$$E = (h,g),(i,c),(g,f),(a,b),(c,f),(i,g),(c,d),(i,h),(a,h),(b,c),(d,e),(e,f),(b,h),(d,f)$$
1 2 2 4 4 6 7 7 8 8 9 10 11 14

Complexidade

- Depende da implementação das operações sobre conjuntos disjuntos
- Inicialização: $O(E \lg E)$ devido à ordenação dos arcos
- Operações sobre os conjuntos disjuntos
 - O(V) operações de MAKE-SET
 - O(E) operações de FIND-SET e UNION
 - Com estruturas de dados adequadas (árvores com compressão de caminhos e união por categorias) para conjuntos disjuntos é possível estabelecer que $O((V+E) \alpha(V))$
 - Como $|E| \ge |V| 1$ porque o grafo é ligado, então temos $O(E \alpha(V))$
- Logo, é possível assegurar $O(E \log E)$

(maior termo)

– Dado que $|E| < |V|^2$, obtém-se também $\mathit{O}(E \, \log \, V)$ $log|E| < log|V|^2 \Leftrightarrow log|E| < 2log|V|$

ASA @ LEIC-T 2024/2025

Algoritmo de Kruskal

Exercício: Calcule a MST usando o algoritmo de Kruskal

	Α	В	С	D	Е	F
rank[v]						
$\pi[v]$						

Peso das MSTs: Número de MSTs:

P.T. Monteiro

Oldies but goldies: J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, 1956. Computes the minimum spanning tree in n*log(n) operations. en.wikipedia.org /wiki/Prim%27s ...

ASA @ LEIC-T 2024/2025

Questões? Dúvidas? ASA @ LEIC-T 2024/2025

P.T. Monteiro