

DEPANNER ELECTRIQUEMENT DES INSTALLATIONS INDUSTRIELLES AUTOMATISEES 02_TP DE DEPANNAGE

L'INSTITUT DES RESSOURCES INDUSTRIELLES

AUTOMATISMES

TUYAUTERIE

SOUDAGE

GENIE ENERGETIQUE

ORGANISATION ET PERFORMANCE INDUSTRIELLE

MANAGEMENT RESSOURCES HUMAINES

QUALITE- HYGIENE SECURITE ENVIRONNEMENT

PILOTAGE D'EQUIPEMENTS INDUSTRIELS

ROBOTIQUE MECATRONIQUE

Dépannage électrique

Table des matières

Quelques règles d'or :

1. Circuit de commande	2
1.1 Interpréter des mesures de résistance	2
1.2 Interpréter des mesures de tension en commande	3
1.3 Tp mesure en descendant	5
1.4 Tp mesure en remontant	7
1.5 Tp mesure en remontant avec conducteur défaillant	9
2. Circuit de puissance	11
2.1 Méthode de recherche d'une panne sur la puissance	11
2.2 Méthode de recherche d'une panne sur un démarrage étoile triangle	13
3. Synthèse des méthodologies de dépannage	14
4. Introduction au dépannage des maquettes	15
5. Fiches à renseigner	16

1. Circuit de commande

1.1 Interpréter des mesures de résistance

Renseigner la colonne « mesure attendue » du tableau ci-dessous puis réaliser les mesures suivantes à l'ohmmètre **hors tension** et renseigner le tableau :

Que se passe- t'il si l'on actionne :	Mesure attendue	Mesure à l'ohmmètre	Commentaire (justifier le résultat trouvé)
rien			
SB2 seul			
SB3 seul			
SB1 ou SQ3			

Conclusion:

L'utilisation de l'ohmmètre est limitée à la vérification **hors tension** de la continuité ou de la résistance d'un composant et nécessite, en amont ou en aval, de débrancher un conducteur ou d'interrompre le circuit par l'action sur un contact NC (ex : SQ3 ou SB1).

1.2 Interpréter des mesures de tension en commande

Renseigner la colonne «mesure attendue» du tableau ci-dessous puis réaliser les mesures suivantes au voltmètre **sous tension** et renseigner le tableau :

-		•	
Que se passe- t'il si l'on actionne :	Mesure attendue	Mesure au Voltmètre	Commentaire (justifier le résultat trouvé)
rien			
SB2 seul			
SB1 et SB2			
SB2 et SQ3			
SB1 seul			
SQ3 seul			

Conclusion:

La présence de la tension d'alimentation, aux bornes d'un composant, indique qu'il y a continuité du circuit d'alimentation jusqu'à ce composant. Par contre l'absence de tension, sans autres mesures au préalable, ne peut être interprétée.

Dépannage électrique

Renseigner la colonne « mesure attendue » du tableau ci-dessous puis réaliser les mesures suivantes au voltmètre **sous tension** et renseigner le tableau :

Que se passe- t'il si l'on actionne :	Mesure attendue	Mesure au Voltmètre	Commentaire (justifier le résultat trouvé)
rien			
SB2 seul			
SB2 et SQ3			

Conclusion:

La présence de la tension d'alimentation aux bornes du récepteur indique qu'il y a continuité du circuit jusqu'au récepteur et que s'il est :

- -Actionné qu'il fonctionne
- -Pas actionné qu'il est HS

1.3 Tp mesure en descendant

Réaliser le montage suivant :

Renseigner la colonne « mesure attendue » du tableau cidessous puis réaliser les mesures suivantes en descendant et

(v:	1)			en prenant comme référence la terre :					
Ī	_ E- SB1			Mesure attendue	Mesure au Voltmètre	Commentaire (justifier le résultat trouvé)			
	1 -\(\varthick{V2}\)	>2 2	V1						
	√J V3	* *-	V2						
24Vac	E –\ SB2	- <u> </u>	V3						
	X2 < SQ3 (93 3		∼ Que devie sur SB1 ?		V3 si on coupe le fil 2 ou si l'on appuie			
	X2 {	⁹ 4 4							
	X20 KM1								
0		ntée							

Cette méthode dite en descendant permet de trouver l'élément défectueux au dessus de la ligne d'ouverture.

Elle a comme avantage d'avoir un potentiel de référence (la terre) présent en tout point de l'installation.

(L'utilisation de la terre dans la méthode est valable pour les circuits TBTP mais pas pour les circuits TBTS avec transfo de séparation car la terre n'est pas reliée au neutre.

1.3.1 Tp mesure en descendant correction

Réaliser les mesures suivantes en descendant et en prenant comme référence la terre :

X2

Le test V1 permet de contrôler la présence des références et le bon fonctionnement de l'appareil, pour valider les autres mesures.

Ces mesures nous indiquent que le potentiel 24V descend jusqu'à SB2.

Si l'on coupe le fil 2 ou si l'on appuie sur SB1 le potentiel devient **flottant** :

Cette méthode dite en descendant permet de trouver l'élément défectueux au dessus de la ligne d'ouverture.

Elle a comme avantage d'avoir un potentiel de référence (la terre) présent en tout point de l'installation (on la retrouve sur toutes les masses métallique de l'installation).

(L'utilisation de la terre dans la méthode est valable pour les circuits TBTP mais pas pour les circuits TBTS

avec transfo de séparation car la terre n'est pas reliée au neutre)

1.4 Tp mesure en remontant

Renseigner la colonne «mesure attendue» du tableau ci-dessous puis réaliser les mesures suivantes en remontant et en prenant comme référence la terre :

Les mesures suivantes **V2** à **V5** : nous indiquent que le potentiel **24V** jusqu'à **SB**.....

1.4.1 Tp mesure en remontant correction

La mesure V1 en descendant, nous indique que le potentiel 24V est présent jusqu'à SB2.

Les mesures suivantes, réalisées en remontant :

Les mesures suivantes V2 à V5 : nous indiquent que le potentiel 24V remonte jusqu'à SB2.

Le circuit est ouvert (**pas de courant**), la tension d'alimentation se retrouve intégralement aux bornes de SB2.

Le potentiel 0V remonte à travers le récepteur jusqu'au conducteur n°3 de SB2.

1.5 Tp mesure en remontant avec conducteur défaillant

Le conducteur 3 est coupé.

Renseigner la colonne «mesure attendue» du tableau ci-dessous puis réaliser les mesures suivantes en remontant et en prenant comme référence la terre :

SQ3

Montée

V1 nous indique que le potentiel 24V jusqu'au contact SB2.

	Mesure attendue	Mesure au Voltmètre	Commentaire (justifier le résultat trouvé)
V2			
V3			
V4			
V5			

Le potentiel 0V	à travers le récepteur jus	qu'au
conducteur n°3 de SQ3 et comme	e le conducteur n°3 est coupé	il ne
plus jusque SB2 of	d'où la	de
la tension.		

1.5.1 Tp mesure en remontant avec conducteur défaillant correction

La mesure V1 en descendant, nous indique que le potentiel 24V est présent jusqu'à SB2.

V1 nous indique que le potentiel 24V **descend** jusqu'au contact SB2.

Le potentiel 0V **remonte** à travers le récepteur jusqu'au conducteur n°3 de SQ3 et comme le conducteur n°3 est coupé il ne **remonte** plus jusque SB2 d'où la **valeur flottante** de la tension.

Les mesures suivantes **V2** à **V4**: nous indiquent que le potentiel 24V **remonte** jusqu'à SQ3 et la borne X2.3.

Car le potentiel 0V remonte à travers le récepteur jusqu'au conducteur n°3 de SQ3.

V4=24V et V5=0V ou flottant :

indique que le zéro volt remonte jusqu'au conducteur n°3 de SQ3 à X2.3 et que le conducteur n°3 est défaillant entre la borne X2.3 et SB2

Cette méthode dite en remontant permet de trouver l'élément défectueux en dessous de la ligne d'ouverture (causée par SB2) sans devoir l'actionner, pratique lorsque le pupitre est éloigné de l'armoire (toutefois, attention au potentiel flottant).

Montée

2. Circuit de puissance

2.1 Méthode de recherche d'une panne sur la puissance

Dépannage électrique

3.1 TP Dépanner électriquement des installations.doc

2.2 Méthode de recherche d'une panne sur un démarrage étoile triangle

3. Synthèse des méthodologies de dépannage

4. Introduction au dépannage des maquettes

Plusieurs situations de fonctionnement anormal des installations ont été relevées. D'après vous, quelles sont les causes possibles des problèmes dans les circuits de commande suivants ? Comment procéder pour trouver et/ou vérifier ces hypothèses ?

ENSACHEUSE DE GRANULES

- 1. Dès la mise en service générale, le contacteur KM1 s'enclenche et permet l'extraction du produit 1.
- 2. Lorsqu'on appuie sur le bouton Extraction produit 2 S2, le contacteur KM2 s'enclenche. Il se désencienche si le bouton S2 est relâché.
- 3. L'extraction des produits ne s'arrête pas même si le poids des produits est atteint. Le tapis d'évacuation ne démarre pas.

WAGONNET

- 1. En mode automatique, le wagonnet se trouve en bas. Lorsqu'on appuie sur le bouton Marche S2, le contacteur KM1 s'enclenche mais le voyant H1 ne s'éclaire pas. Le problème est identique en mode manuel.
- 2. Lors du démarrage du wagonnet (montée ou descente), celui-ci ne bouge pas. Au bout d'un moment, le wagonnet se déplace.

BONNES PRATIQUES

U aux bornes d'un récepteur pas enclenché ⇒ récepteur HS

Les mesures à l'ohmmètre se font hors tension (consigner)

L'utilisation de l'ohmmètre est limitée à la vérification **hors tension** de la continuité ou de la résistance d'un composant et nécessite, en amont ou en aval, de débrancher un conducteur ou d'interrompre le circuit par l'action sur un contact NC

La vérification de l'isolement se fait au mégohmmètre (sinon au calibre max du multimètre)

Favoriser les mesures aux borniers pour situer la panne

Utiliser comme référence la terre ou quand cela n'est pas possible un même potentiel venant d'ailleurs (neutre des voyants...)

5. Fiches à renseigner

Fiche à renseigner suite à la résolution de pannes de différents types

RAPPORT	DI N°:			
DATE:	MACHINE :		EMPLACEMENT :	
DEBUT:	1	FIN	:	
DEFAUTS CONSTATES :				
METHODE UTILISEE :				
CAUSES POSSIBLES :				
CAUSE :				
REPARATIONS/DEPANN	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	DARD UTILISE :			
CONCLUSIONS / SUGGES	STIONS :			
DUREE DE L'INTERVENTI	ON:			

RAPPORT	DI N°:			
DATE:	MACHINE:		EMPLACEMENT :	
DEBUT :		FIN	:	
DEFAUTS CONSTATES :		l		
METHODE UTILISEE :				
CAUSES POSSIBLES :				
CAUSE :				
REPARATIONS/DEPANNA	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	DARD UTILISE :			
CONCLUSIONS / SUGGES				
DUREE DE L'INTERVENTI	<u>UN :</u>			

RAPPORT D'INTERVENTION			DI N°:	
DATE:	MACHINE:		EMPLACEMENT :	
DEBUT:		FIN	:	
DEFAUTS CONSTATES :				
METHODE UTILISEE :				
CAUSES POSSIBLES:				
CAUSE:				
REPARATIONS/DEPANN	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	DARD UTILISE :			
CONCLUSIONS / SUGGES	STIONS :			
DUREE DE L'INTERVENTI				DI NIº .
RAPPORT	D'INTERVENTIC	N(DI N°:

DATE:	MACHINE :		EMPLACEMENT :
DEBUT :		FIN	:
DEFAUTS CONSTATES :		•	
METHODE UTILISEE :			
CAUSES POSSIBLES :			
CAUSE :			
REPARATIONS/DEPANN	AGES A EFFECTUER :		
OUTILLAGE HORS STANI	DARD UTILISE :		
CONCLUSIONS / SUGGES	STIONS :		
DUREE DE L'INTERVENTI	ION :		

RAPPORT	DI N°:			
DATE:	MACHINE:		EMPLACEMENT :	
DEBUT :		FIN	:	
DEFAUTS CONSTATES :				
METHODE UTILISEE :				
CAUSES POSSIBLES :				
CAUSE:				
REPARATIONS/DEPANNA	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	DARD UTILISE :			
CONCLUSIONS / SUGGES	STIONS :			
DUREE DE L'INTERVENTI	<u>ON :</u>			

RAPPORT D'INTERVENTION				DI N°:
DATE:	MACHINE:		EMPLACEMENT :	
DEBUT :		FIN	:	
DEFAUTS CONSTATES :				
METHODE UTILISEE :				
CAUSES POSSIBLES:				
CAUSE :				
REPARATIONS/DEPANNA	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	OARD UTILISE :			
CONCLUSIONS / SUGGES				
DUREE DE L'INTERVENTI	ON:			

RAPPORT D'INTERVENTION				DI N°:
DATE:	MACHINE :		EMPLACEMENT:	
DEBUT :		FIN :	:	
DEFAUTS CONSTATES :				
METHODE UTILISEE :				
CAUSES POSSIBLES:				
CAUSE:				
REPARATIONS/DEPANNA	AGES A EFFECTUER :			
OUTILLAGE HORS STAND	DARD UTILISE :			
CONCLUSIONS / SUGGES	STIONS :			
DUREE DE L'INTERVENTI	<u>ON :</u>			

FICHE DE CONSIGNATION ET DECONSIGNATION					
LIEUX : ATELIER		INTERVENANT:			
MACHINE:		OBJETS:			
MARQUE :					
N°	Opérations effec	tuées Moyens			
	COI	NSIGNATION			
1					
2					
3					
4					
5					
DECONSIGNATION					
1					
2					
3					
4					
5					
	(6 / / / / / / / / / / / / / / / / / /				
Consignation	on effectué par (NOM et VISA) :				
Déconsigna	ation effectué par (NOM et VISA) :				

FICHE D'INTERVENTION							
Systéme :		Marque:		N°:	Service demandeur: ADI		
Cause de la demande d'interv	vention			Très urgent Urgent Normal			
				Plan fourni:	Oui 🔲	Non 🔲	
				Intervenant:			
Date de la demande:				rention: ATELIER			
Date de début de l'intervention:			Date de fin d	Date de fin de l'intervention:			
PIECES / COI	NSTITU	ANT REM	IPLACES				
Désignation		Référence		Qté	PU HT	PT HT	
Nature de l'intervention	=	_		TVA EN %:			
Mécanique ☐ Pneumatique ☐ Electrique ☐ Hydraulique ☐ Autre ☐			☐: Prix total TTC en €				
Type d'intervention							
change de composant Réglage, nettoyage, graissage Réparation Dépannage Rebut				but 🔲			
	ammation	on Reconfiguration Modification					
Taux horaire de l'intervention * Durée de l'interventio T1 T3 T heures) T2 T4 T	n (en		Coût de la main d'œuvre (en €)				
Observations, anomalies, défauts ou dégats constatés, travaux ou intervention à prévoir			Visa de réception de l'intervention :				
* Town housing 4 /T4) = 20 405/h		* Ta b.a	-i 2 (T2) - 4	T 726/h			
* Taux horaire 1 (T1) = 30,49€/h Mécanique (montage - démontage - échange - usinage - fabrication)			* Taux horaire 3 (T3) = 45,73€/h - Electricité (mise au point - diagnostic)				
* Taux horaire 2 (T2) = 38,11€/h			- Hydraulique (installation - échange)				
Electricité (montage / échange standard)			* Taux horaire 4 (T4) = 61€/h				
Hydraulique (montage - démontage)			Hydraulique (mise au noint - diagnostic - étude)				

RAPPORT D'INTERVENTION

DI N°: 1

MACHINE: DATE:

EMPLACEMENT: H305 **ENSACHEUSE DE GRANULES A RELAIS**

DEBUT: 8h00 FIN: 9h00

DEFAUTS CONSTATES:

11/05/2017

Dès la mise en service générale, le contacteur KM1 s'enclenche directement et permet l'extraction du produit 1

METHODE UTILISEE:

Hors tension et après consignation, utilisation de l'ohmmètre pour la recherche du shunt

CAUSES POSSIBLES:

Shunt:

- Contact collé (contact de S1, KM1 ou KA1 collé)
- Conducteur 12 en contact avec 2, 9,10 ou 11
- Contacteur bloqué mécaniquement enclenché

CAUSE:

Shunt entre conducteur 11 et 12 causé par le contact de KM1 qui est resté collé

REPARATIONS/DEPANNAGES A EFFECTUER:

Remplacer le contacteur KM1

OUTILLAGE HORS STANDARD UTILISE:

Un tournevis plat 5.5*1.0*125 AN ou un cruciforme PZ2

CONCLUSIONS / SUGGESTIONS :

Suite à l'analyse de l'historique de l'installation est au vu de la vétusté du matériel prévoir une période de travaux sur l'installation pour changer les contacteurs ou l'automatiser (à voir)

DUREE DE L'INTERVENTION : 1h

