Non-Autoregressive Island in Autoregressive World

Mikhail Arkhipov MIPT

Autoregressive Approaches

- Use probability chain rule to factorize joint distribution
- Intrinsically sequential
- Exposure Bias due to Teacher Forcing
- Best metrics among other generative models

$$p(\mathbf{y}|\mathbf{x}) = \prod p(y_i|\mathbf{y}_{< i}, \mathbf{x}) = p(y_0|\mathbf{x})p(y_1|y_0, \mathbf{x})p(y_2|y_0, y_1, \mathbf{x})...$$

[Gu et al. 18] https://arxiv.org/pdf/1711.02281.pdf

Non-Autoregressive Approaches

- Assume that target probability factorizes
- Intrinsically parallel
- Lower quality compared to autoregressive counterparts

[Gu et al. 18] https://arxiv.org/pdf/1711.02281.pdf

Noisy Parallel Approximate Decoding for Conditional Recurrent Language Model

$$\mathbf{h}_{t} = \phi \left(\mathbf{h}_{t-1} + \epsilon_{t}, \mathbf{E} \left[x_{t} \right], f(Y, t) \right),$$

$$\epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma_t^2 \mathbf{I}).$$

$$\sigma_t = \frac{\sigma_0}{t}$$

Noisy Parallel Approximate Decoding for Conditional Recurrent Language Model

		Va	lid	Test-1		
Strategy	# Parallels	NLL↓	BLEU↑	NLL↓	BLEU↑	
Greedy	1	27.879	15.5	26.4928	16.66	
NPAD	5	21.5984	16.09	24.3863	17.51	
NPAD	10	21.054	16.33	23.6942	17.81	
NPAD	<u>50</u>	20.4463	16.71	23.0111	18.03	

Noisy Parallel Approximate Decoding for Conditional Recurrent Language Model

		Valid		Tes	t-1
Strategy	σ_0	NLL↓	BLEU↑	NLL↓	BLEU↑
Greedy	-	27.879	15.5	26.4928	16.66
Sto. Sampling	-	22.9818	15.64	26.2536	16.76
NPAD	0.1	21.125	16.06	23.8542	17.48
NPAD	0.2	20.6353	16.37	23.2631	17.86
NPAD	0.3	20.4463	16.71	23.0111	18.03
NPAD	0.5	20.7648	16.48	23.3056	18.13

Table 1: Effect of noise injection. For both stochastic sampling and NPAD, we used 50 parallel samplers. For NPAD, we used the greedy decoding as an inner-decoding strategy.

Non-Autoregressive Neural Machine Translation

Non-Autoregressive Neural Machine Translation

$$p_{\mathcal{N}\mathcal{A}}(Y|X;\theta) = \sum_{f_1,...,f_{T'}\in\mathcal{F}} \left(\prod_{t'=1}^{T'} p_F(f_{t'}|x_{1:T'};\theta) \cdot \prod_{t=1}^{T} p(y_t|x_1\{f_1\},..,x_{T'}\{f_{T'}\};\theta) \right)$$

$$\mathcal{L}_{\text{FT}} = \lambda \left(\underbrace{\mathbb{E}_{f_{1:T'} \sim p_F} \left(\mathcal{L}_{\text{RKL}} \left(f_{1:T'} \right) - \mathcal{L}_{\text{RKL}} \left(\bar{f}_{1:T'} \right) \right)}_{\mathcal{L}_{\text{RL}}} + \underbrace{\mathbb{E}_{f_{1:T'} \sim q} \left(\mathcal{L}_{\text{RKL}} \left(f_{1:T'} \right) \right)}_{\mathcal{L}_{\text{BP}}} \right) + (1 - \lambda) \mathcal{L}_{\text{KD}}$$

Non-Autoregressive Neural Machine Translation

Models	WMT14		WM	IT16	IWSLT16		
	En→De	$De{\rightarrow}En$	$En{ ightarrow}Ro$	$Ro{\rightarrow}En$	En→De	Latency /	Speedup
NAT	17.35	20.62	26.22	27.83	25.20	39 ms	$15.6 \times$
NAT (+FT)	17.69	21.47	27.29	29.06	26.52	39 ms	$15.6 \times$
NAT (+FT + NPD s = 10)	18.66	22.41	29.02	30.76	27.44	79 ms	$7.68 \times$
$\mathrm{NAT} \ (+FT + \mathrm{NPD} \ s = 100)$	19.17	23.20	29.79	31.44	28.16	257 ms	$2.36 \times$
Autoregressive $(b=1)$	22.71	26.39	31.35	31.03	28.89	408 ms	$1.49 \times$
Autoregressive $(b=4)$	23.45	27.02	31.91	31.76	29.70	607 ms	$1.00 \times$

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

src	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .					
t = 0 $t = 1$ $t = 2$	The departure of the French combat com The departure of French combat troops were the withdrawal of French combat troops	vas completed on 20 November.				
$y_i^{(t)}$	oserved tokens $= \argmax_w P(y_i = w X, Y_{obs}^{(t)})$ $= \max_w P(y_i = w X, Y_{obs}^{(t)})$	Observed tokens $y_i^{(t)} = y_i^{(t-1)}$ $p_i^{(t)} = p_i^{(t-1)}$				

[Ghazvininejad et al. 19] Constant-time machine translation with conditional masked language models

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Model	Dimensions	Iterations	WM	T'14	WMT'16	
	(Model/Hidden)		EN-DE	DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30		0 7 7 0 0	(- 1 0 - 7
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99
Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			12-30-22-30
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		-

[Ghazvininejad et al. 19] Constant-time machine translation with conditional masked language models

Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement

[Lee, Mansimov, Cho 18] <u>Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement</u>

Training objective

$$J_{\text{LVM}}(\theta) = -\sum_{l=0}^{L+1} \left(\sum_{t=1}^{T} \log p_{\theta}(y_{t}^{*} | \hat{Y}^{l-1}, X) \right),$$

$$J_{\text{DAE}}(\theta) = -\sum_{t=1}^{T} \log p_{\theta}(y_{t}^{*} | \tilde{Y}, X).$$

$$J(\theta) = -\sum_{l=0}^{L+1} \left(\alpha_{l} \sum_{t=1}^{T} \log p_{\theta}(y_{t}^{*} | \hat{Y}^{l-1}, X) \right)$$

$$+ (1 - \alpha_{l}) \sum_{t=1}^{T} \log p_{\theta}(y_{t}^{*} | \tilde{Y}, X)$$

$$,$$
(4)

[Lee, Mansimov, Cho 18] Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement

Results

\$21)		I	WSLT'1	16 En-D)e	V	VMT'10	6 En-Ro)	V	VMT'1	4 En-De	•	MS	COC	
25:		$En{\rightarrow}$	$\text{De}{\rightarrow}$	GPU	CPU	En→	$\text{Ro}{\rightarrow}$	GPU	CPU	En→	$\text{De}{\rightarrow}$	GPU	CPU	BLEU	GPU	CPU
AR	b = 1 $b = 4$	28.64 28.98		70.3 63.8		l	31.55 32.06			23.77 24.57		54.0 44.9	15.8 7.0		4.3 3.6	2.1 1.0
NAT	FT FT+NPD	26.52 28.16	_	_			29.06 31.44	_		17.69 19.17		_	-		_	_
Our Model	$i_{dec} = 1$ $i_{dec} = 2$ $i_{dec} = 5$ $i_{dec} = 10$		30.23 31.85	573.0 423.8 189.7 98.8	110.9 52.8	27.10 28.86	28.15	332.7 194.4	62.8 29.0	13.91 16.95 20.26 21.61	20.39 23.86	393.6	83.3 49.6 23.1 12.3	20.12 20.88 21.12 21.24	17.1 12.0 6.2 2.0	8.9 5.7 2.8 1.2
J	Adaptive	27.01	32.43	125.9	29.3	29.66	30.30	118.3	16.5	21.54	25.43	107.2	20.3	21.12	10.8	4.8

[Lee, Mansimov, Cho 18] Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement

Latent-Variable Non-Autoregressive Neural Machine Translation with Deterministic Inference Using a Delta Posterior

[Shu et al. 19] <u>Latent-Variable Non-Autoregressive Neural Machine Translation</u>

Training

$$\log p(y|x) = \log \int p(y|z, x)p(z|x)dz$$

$$\mathcal{L}(\omega, \phi, \theta) = \mathbb{E}_{z \sim q_{\phi}} \left[\log p_{\theta}(y|x, z) \right] - \text{KL} \left[q_{\phi}(z|x, y) || p_{\omega}(z|x) \right]$$

$$\mathbb{E}_{z \sim q_{\phi}} \left[\sum_{i=1}^{|y|} \log p_{\theta}(y_i|x, z, l_y) + \log p_{\theta}(l_y|z) \right]$$
$$- \sum_{k=1}^{|x|} \mathrm{KL} \left[q_{\phi}(z_k|x, y) || p_{\omega}(z_k|x) \right].$$

[Shu et al. 19] Latent-Variable Non-Autoregressive Neural Machine Translation

Inference

Algorithm 1 Deterministic Iterative Inference

```
Inputs: x: \text{source sentence} \\ T: \text{maximum step} \\ \mu_0 = \mathbb{E}_{p_\omega(z|x)}\left[z\right] \\ y_0 = \underset{y_0}{\operatorname{argmax}} \log p_\theta(y|x, z = \mu_0) \\ \text{for } t \leftarrow 1 \text{ to } T \text{ do} \\ \mu_t = \mathbb{E}_{q_\phi(z|x,y_{t-1})}\left[z\right] \\ y_t = \underset{y_t}{\operatorname{argmax}} \log p_\theta(y|x, z = \mu_t) \\ \text{if } y_t = y_{t-1} \text{ then} \\ \text{break} \\ \text{output } y_t
```

[Shu et al. 19] Latent-Variable Non-Autoregressive Neural Machine Translation

Posterior Collapse. KL -> 0

$$q_{\phi}(z|x) \simeq q_{\phi}(z) = \mathcal{N}(a, b)$$

$$\sum_{k=1}^{|x|} \max(b, \text{KL}[q_{\phi}(z_k|x, y)||p_{\omega}(z_k|x)]),$$

$$b = \begin{cases} 1, & \text{if } s < M/2\\ \frac{(M-s)}{M/2}, & \text{otherwise} \end{cases}$$

Tackle Target Length

Results

	ASPEC Ja-En			WMT'14 En-De		
	BLEU(%)	speedup	wall-clock (std)	BLEU(%)	speedup	wall-clock (std)
Base Transformer, beam size=3	27.1	1x	415ms (159)	26.1	1x	602ms (274)
Base Transformer, beam size=1	24.6	1.1x	375ms (150)	25.6	1.3x	461ms (219)
Latent-Variable NAR Model	13.3	17.0x	24ms (2)	11.8	22.2x	27ms (1)
+ knowledge distillation	25.2	17.0x	24ms (2)	22.2	22.2x	27ms (1)
+ deterministic inference	27.5	8.6x	48ms (2)	24.1	12.5x	48ms (8)
+ latent search	28.3	4.8x	86ms (2)	25.1	6.8x	88ms (8)

[Shu et al. 19] Latent-Variable Non-Autoregressive Neural Machine Translation

Fast Decoding in Sequence Models Using Discrete Latent Variables

- The function ae(y, x) will autoencode y into a shorter sequence $l = l_1, \ldots, l_m$ of discrete latent variables using the discretization bottleneck from Section 2.
- The latent prediction model lp(x) (a Transformer) will autoregressively predict l based on x.
- The decoder ad(l, x) is a parallel model that will decode y from l and the input sequence x.

Fast Decoding in Sequence Models Using Discrete Latent Variables

Model	BLEU
Baseline Transformer [1]	27.3
Baseline Transformer [2]	23.5
Baseline Transformer [2] (no beam-search)	22.7
NAT+FT (no NPD) [2]	17.7
LT without rescoring $\left(\frac{n}{m} = 8\right)$	19.8
NAT+FT (NPD rescoring 10) [2]	18.7
LT rescornig top-10 $\left(\frac{n}{m} = 8\right)$	21.0
NAT+FT (NPD rescoring 100) [2]	19.2
LT rescornig top-100 $\left(\frac{n}{m} = 8\right)$	22.5

FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow

[Ma et al. 19] FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow

Training

$$\log P_{\theta}(\mathbf{y}|\mathbf{x}) \ge \mathrm{E}_{q_{\phi}(\mathbf{z}|\mathbf{y},\mathbf{x})}[\log P_{\theta}(\mathbf{y}|\mathbf{z},\mathbf{x})] - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{y},\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})).$$

$$q_{\phi}(\mathbf{z}|\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{T} \mathcal{N}(\mathbf{z}_{t}|\mu_{t}(\mathbf{x}, \mathbf{y}), \sigma_{t}^{2}(\mathbf{x}, \mathbf{y}))$$

- Zero initialization
- Token dropout

[Ma et al. 19] FlowSeg: Non-Autoregressive Conditional Sequence Generation with Generative Flow

Inference

argmax decoding

$$\mathbf{z}^* = \underset{\mathbf{z} \in \mathcal{Z}}{\operatorname{argmax}} p_{\theta}(\mathbf{z}|\mathbf{x})$$

 $\mathbf{y}^* = \underset{\mathbf{y}}{\operatorname{argmax}} P_{\theta}(\mathbf{y}|\mathbf{z}^*, \mathbf{x})$

- NPD decoding: Sample length (from src encoder) and latent, rescore with AR
- Importance Weighted

$$\mathbf{z}_{i} \sim p_{\theta}(\mathbf{z}|\mathbf{x}), \forall i = 1, \dots, N$$

$$\hat{\mathbf{y}}_{i} = \underset{\mathbf{y}}{\operatorname{argmax}} P_{\theta}(\mathbf{y}|\mathbf{z}_{i}, \mathbf{x})$$

$$\mathbf{z}_{i}^{(k)} \sim q_{\phi}(\mathbf{z}|\hat{\mathbf{y}}_{i}, \mathbf{x}), \forall k = 1, \dots, K$$

$$P(\hat{\mathbf{y}}_{i}|\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} \frac{P_{\theta}(\hat{\mathbf{y}}_{i}|\mathbf{z}_{i}^{(k)}, \mathbf{x})p_{\theta}(\mathbf{z}_{i}^{(k)}|\mathbf{x})}{q_{\phi}(\mathbf{z}_{i}^{(k)}|\hat{\mathbf{y}}_{i}, \mathbf{x})}$$

[Ma et al. 19] FlowSeq

Results

	WMT2014 WMT2016								
Models	EN-DE	DE-EN	EN-RO	RO-EN					
Autore	Autoregressive Methods								
Transformer-base	27.30	-8	-	-					
Our Implementation	27.16	31.44	32.92	33.09					
	Raw Data								
CMLM-base (refinement 4)	22.06		30.89	2-2					
CMLM-base (refinement 10)	24.65		32.53	_					
FlowSeq-base (IWD $n = 15$)	20.20	24.63	30.61	31.50					
FlowSeq-base (NPD $n = 15$)	20.81	25.76	31.38	32.01					
FlowSeq-base (NPD $n = 30$)	21.15	26.04	31.74	32.45					
FlowSeq-large (IWD $n = 15$)	22.94	27.16	31.08	32.03					
FlowSeq-large (NPD $n = 15$)	23.14	27.71	31.97	32.46					
FlowSeq-large (NPD $n = 30$)	23.64	28.29	32.35	32.91					
Knowl	edge Disti	llation							
NAT-IR (refinement 10)	21.61	25.48	29.32	30.19					
NAT w/ FT (NPD $n = 10$)	18.66	22.42	29.02	31.44					
NAT-REG (NPD $n = 9$)	24.61	28.90	-	-					
LV NAR (refinement 4)	24.20	-8	-	-					
CMLM-small (refinement 10)	25.51	29.47	31.65	32.27					
CMLM-base (refinement 10)	26.92	30.86	32.42	33.06					
FlowSeq-base (IWD $n = 15$)	22.49	27.40	30.59	31.58					
FlowSeq-base (NPD $n = 15$)	23.08	28.07	31.35	32.11					
FlowSeq-base (NPD $n = 30$)	23.48	28.40	31.75	32.49					
FlowSeq-large (IWD $n = 15$)	24.70	29.44	31.02	31.97					
FlowSeq-large (NPD $n = 15$)	25.03	30.48	31.89	32.43					
FlowSeq-large (NPD $n = 30$)	25.31	30.68	32.20	32.84					

[Ma et al. 19] FlowSeq

On the Discrepancy between Density Estimation and Sequence Generation

		BLE	U (†)	LL	(†)
		RAW	DIST.	RAW	DIST.
	TR-S	24.54	24.94	-1.77	-2.36
Ш	TR-B	28.18	27.86	-1.44	-2.19
WMT'14 En→DE	TR-L	29.39	28.29	-1.35	-2.23
Z.	GA-B	15.74	24.54	-1.51	-2.44
4 H	GA-L	17.33	25.53	-1.47	-2.24
<u> </u>	FL-S	18.17	21.98	-1.41	-2.13
MT	FL-B	18.57	21.82	-1.23	-2.05
\geqslant	FL-B ^(*)	18.55	21.45		
	$FL-L^{(*)}$	20.85	23.72		

[Lee et al. 20] https://arxiv.org/pdf/2002.07233.pdf

Spasibo