"Kerap

Lecture 7

MMSE! Guien X,, x2 - - xn. M.M.S.E. $\hat{C} = C_1 \times 1 + C_2 \times 2 + - - C_1 \times 1$ $\hat{C} = C_{xx} \cdot C_{yx} \cdot \hat{y} = \hat{C} \cdot \hat{x}$ min lell = of - ct cxx cyx

Eigen Values & Eigen Vertors $\vec{z} = eigen vertor$ $\vec{z} = eigen value$

Eigenvector EN(A-)

Charecteristics Polynomial $P(\lambda) = \prod_{i=1}^{\infty} (\lambda_i - \lambda)$.

det (A) = / \(\lambda\) = Product of eigenvalues

Eigenspore \Rightarrow $E_{\lambda} = N(A-\lambda I)$ is evalled eigenspore corresponding to λ (A- λI).

Ohim $(E_{\lambda}) = Nullity (A-<math>\lambda I$).

Diagonalization $A = T \Lambda T^{-1}$ A is diagonalizately of Experimentary of A are U.I.,

and $T = [V_1 \ V_2 \ -- V_m]$

Linearly dependent EV

fix Consider $A = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$ $\det (A - \lambda I) = (\lambda + 1)^2 = 0$ (A + I) x = 0 $= \begin{cases} 0 & 2 \\ 0 & 0 \end{cases} (x_1) = \begin{bmatrix} 2x_1 \\ 0 \end{bmatrix}$ EV=> (A+I) x=0 = $x_2 = 0$ $\lambda = 1$; algebraic mutupliedy = 2 $(A-\lambda I)\vec{x}=0 \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x = 0$ x can be any vector ≤ span [[o], [o]} geometair multiplicity = 2 IN N. De signification is not the sight thing to. itself Understanding Ergen space is more inf. then Ev. itself Understanding Ergen space is more inf. then Ev. Kon F.

· * Invertibility of Matrix > L.I. of column vectors If A: R^ > R^ is an [nxm] matrix. X () A () Y Since A is a L.T. =) A is a mapping for RM of let us assume that A is invertible DA is one to one and onto (By definition of investible mosphij) then exist a unique $y \in \mathbb{R}^m$ $y = x_1 a_1 + x_2 a_2 + - x_m a_m$ and yellow a L.C. of 'n' vector of A'
and yellow we know that for
span a Vector span of
a vectors to span a Vector span of
a vectors to they should be L.I.

Trace of an [MXM] mataix A is Thomas the sum of its eigenvalues -. Note that: Ta(A) = ant axt - ann (Sum of diagonal) If A & B are two (MXM) matrices Then $Ta(AB) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} b_{ji} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} b_{ji} a_{ij} = Ta(BA)$ AB \neq BA \Rightarrow AB(i,j) \neq BA(i,j) only \Rightarrow Ta(AB) = Ta(BA). Now Let A = T/T $\Lambda = T^{-1}AT$ Trace (1) = \(\sum_{i=1}^{\infty} \lambda_i\) Trace (T'AT) = Trace (AT T-) = Trace (A). =) [Feare $(A) = \lambda_1 + \lambda_2 + -- \lambda_m$]

Theorem: If $\lambda_1, - \lambda_n$ are distinct eigenvalues of A and $\vec{V}_1, - \vec{V}_n$ are corresponding eigenvectors then $\{\vec{V}_1, - \vec{V}_n\}$ are L.I. Corollary: If $A \in \mathbb{R}^{n \times n}$ has distinct eigenvalues $\lambda_1, \lambda_2 - \lambda_n$ then A is diagonalizable. Proof: Let $\lambda_1, \lambda_2 - - \lambda_n$ be n distinct exercises of Δ eigenvalues of A. { vi} = eigenvectors a A Fi = Xi Fi Consider the L.C. of eigenvectors C, J, + C, J, + - - C, J, = 0 If we can show that egr (1) boolds only when Ci = 0 + i that means when Ci = 0 + i that means all vis are L.I. \Rightarrow A is diagonalizable To show that $C_1 = 0$ let us multiply both sides of $(A - \lambda_2 I)(A - \lambda_3 I) - (A - \lambda_4 I)$ Suice (A-) Vb = 0, all terms disappear except for the first term, which is $c_1(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)$ $(\lambda_1-\lambda_m)v_1=0$.. All di are distinct (assumption) and V, \$0, we conclude that Ci=0, Suivilarly we can prove that all ci's Henre Proved

* Gram - Schmidt Onthogonalization. Delhanounalisation. To we have 'n' L.I. vectors {p,p2.pm} that spans a vectors space V, we can find on mornel basis vectors that spans V Let {p, p2 -- pm} le m L.I. STOP Solution rectors Pi EV Normalize fint vector Step 2: Compute the difference between the By projection of \vec{p}_2 onto \vec{q}_1 and \vec{p}_2 By the authogonal to the arthogonality theorem, this is authogonal to \vec{p}_1 of \vec{p}_2 of \vec{p}_3 and \vec{p}_4 arthogonality \vec{p}_1 is althogonal to \vec{p}_1 in arthogonality \vec{p}_2 in \vec{p}_3 in \vec{p}_4 is althogonality \vec{p}_4 in \vec Ē2 = P2 - < P2, 9, > q1

Estép 3: A veder outrogonal to 9, 2 9, 2 of 2 obtained from the error between \vec{P}_3 2 its projection outo span (\vec{q}_1,\vec{q}_2) . $\vec{e}_3 = \vec{p}_3 - \langle \vec{p}_3, \vec{q}_1 \rangle \vec{q}_1 - \langle \vec{p}_3, \vec{q}_2 \rangle \vec{q}_2$ En = PR - [1=1 < PR, 9i) 9i Pr= ER 11 ER11

* The Spectral Theorem (Self-Adjoint Matrices) This is an extremely important and poweful result on the diagonalizability of Hermitian / Symmetric materices => (Symmetric interaction)

Hermitian Matrix > A = A" > > (Ax,y)=(x,Ay)

Symmetric " => A = A" } => (Ax,y)=(x,Ay) Proposition => If A is an MXM Hernetian matrix (1) The eigenvalues of A are real. } Lemma (11) Enguirectors corresponding to distinct engeniralment one outrogonal. Yroof: Suppose AV = XV **ゲ**≠ 0 (i) XIVII2 = 3"AF. = PhAHP = (AT)" F = () ()" () ニスプカマ = > 11 12 12 $\Rightarrow \lambda = \overline{\lambda}$ $\Rightarrow \overline{\lambda}$ is real (11) Suppose Air = xir, Air=xir, faxithe $\langle A\vec{r}_1,\vec{r}_2 \rangle = \langle \vec{r}_1,A\vec{r}_2 \rangle = \langle \vec{r}_1,\lambda_2\vec{r}_2 \rangle = \lambda_2\langle \vec{r}_1,\vec{r}_2 \rangle$ (AP, P) = (NP, P2) = N(P, P2) ラ (ハーハン) 〈ア,アン = 0 マ、エグン ン、メキシン ラ 〈ア,アン = 0 マ マ、エグン

"Therefore if eigenvalues of A (Henritia/symmetry) matrix are distinct then the eigenvectors of A form set of orthogonal basis orthonormal of Rm Spectral Theorem Statement -: We can decompose any symmetrice matrix A virte tre eigen value decomposition A = UNVT where $\Lambda = \text{diag}(\lambda_1, \lambda_2 - - \lambda_m)$ and U is [ti, tiz - tin] is orthogonal materia i.e. UTU = UUT = IRAN ON U'=U' and {ti, , ti_ ... tin} are eigenvectors -Similarly $A = U \wedge U^H$ when V is wintary matrix UUH = UHU = IRM Both undary and Orthonormal matrices are norm preserving $\| Ux - Uy \|^2 = (Ux - Uy)^{r} (Ux - Uy)$ = $(x-y)^{n}$ (x-y)= 1/x-y1/2 Note: The proof of spectral theorem is straight forward when A has distinct eigenvalues. What if eigenvalues are not distud?

* When A has repeated eigenvalues Suice A is disjonalizable the eigenvectors of A are L.I. Suppose the algebraic multiplicity of one eigenvalue, is knowled! I thus should be therein. $\Rightarrow din{N(A->I)} = k$ A is not diagonizable Ex=N(A-XI) We can use Gram-Schmidt orthogonologoth to find be orthogonal eigenvectors that span Ex Grallary: The geometric multipliedly of eigenvent of A is equal to algebraic multipliedly Projection interpretation

A \$\overline{x}\$ = U\D''\overline{x}\$ = U\\\

\tau''\overline{x}\$

\overline{u''\overline{x}}\$

\overline z (艺术记记) 文 = \langle \lan = 人、くび、まンび、ナーー・

& Rotation Interpretation-U is an orthogonal Materia UTU=UUT=I $U = \begin{bmatrix} G & O & -\sin O \\ \sin O & G & O \end{bmatrix}$ for some $O \in [0, 2\pi]$ A = UNUT = gotati, scale, satati back & Positive (Servi) - définite materies tx to PD x"Ax 70 Hx PSD $\chi'' A \chi > 0$ also devoted as A>0, A>0 Theorem: A is is PD (PSD) (mon-negative)

of A are all tre (mon-negative) Proof: Suppose $x \neq 0$ $x^n A x = x^n \left(\sum_{i=1}^n \lambda_i u_i u_i^n\right) x$ = \(\frac{1}{2}\)\tag{1} \tag{1} \tag{ = \frac{1}{2} \lambda i \lambda \lambd > 0 4); >0 4 ; y > > 0 Hi

· Facti -: If A is Symmetric / Herrintian. (DA in PSD => det(A) = The lies lies >0 a A is PD => det(A)>0 (1) A is PD \Rightarrow A is immeatible (1) 97 Ais PD, A= UNUT, N=diag(1,-->m) >i>o + i tum A' = UN'U, N' = diag (11' - 1/m) $U\Lambda U^{\mathsf{T}} U\Lambda^{\mathsf{T}} U^{\mathsf{T}} = U\Lambda \Lambda^{\mathsf{T}} U^{\mathsf{T}}$ = $\bigcup \bigcup^{\mathsf{T}}$ Application > Quadratic form: (Maximum A Principle) For a PSD, Self adjoint) instains A with $(\hat{A}_{A}(\vec{z}) = \langle A\vec{z}, \vec{x} \rangle = \vec{z}^{H} A\vec{z}$ the constraint to 11 52 1 = 1 In the largest eigenvalue of A and the maximizing of is 52, the eigenvector corresponding to 11 Proof: Consider the constrained ofteningation wife Largeauge multipliers Largeauge multiple $J(\vec{x}) = \vec{x}'' A \vec{x} - \vec{x}'' \vec{x}$ $\frac{\partial J}{\partial x} = A\vec{x} - \lambda \vec{x}$ Moscininging Solution must satisfy $A\vec{x} = \lambda \vec{x}$