Fouille de Données

Data Mining

Classification - Partie 1

Série TP 3 – Decision Trees with Scikit Learn

Série TP 3 – Decision Trees with Scikit Learn

https://scikit-learn.org/stable/modules/tree.html

- sklearn.tree.DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.
- Takes as **input** two arrays: an **array X** of shape (n_samples, n_features) holding the **training samples**, and an **array Y** of integer values, shape (n_samples,), holding the **class labels** for the training samples.

- scikit-learn (sklearn) uses an optimised version of the CART algorithm:
 The Classification and Regression Tree;
- Gini index (default) or Information gain are metrics to measure the quality of a split for classification tasks in CART.
- scikit-learn implementation does not support categorical variables for now. => Transform categorical to numerical (Encoding).
- CART constructs binary trees, meaning each internal node has exactly two child nodes (left and right).
- Scikit-learn relies on pre-pruning (early stopping) through hyperparameters like: max_depth, min_samples_split, min_samples_leaf, and max_features.

- 1. Import necessary modules
- 2. Load & explore the dataset
- 3. Split the DataFrame into features (X) and target/class (y)
- 4. Create training and test sets
- 5. Encode categorical data as numbers : OneHotEncoding
- 6. Train the decision tree
- 7. Plot the decision tree
- 8. Predict and Evaluate: Accuracy & Confusion matrix
- 9. Tree Pruning

Import necessary modules : scikit-learn package

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import OneHotEncoder
from sklearn import tree
```

Load & explore the dataset : playing tennis

```
In [43]:

df = pd.read_csv('tennis.csv')
```

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
6	overcast	cool	normal	True	yes
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
9	rainy	mild	normal	False	yes
10	sunny	mild	normal	True	yes

```
df.describe()
Out[20]:
       outlook temp humidity windy play
           14 14
                      14
                               14
                                    14
 count
unique
        3
                 3
                          2 2
                                     2
   top sunny mild
                        high False
                                   yes
                          7
                                8
  freq
                 6
                                     9
In [84]:
 df['temp'].value_counts()
Out[84]:
mild.
cool 4
hot
```

Split the DataFrame into features (X) and target/class (y)

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
6	overcast	cool	normal	True	yes
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
9	rainy	mild	normal	False	yes
10	sunny	mild	normal	True	yes

Split the DataFrame into features (X) and target/class (y)

```
In [7]:

X = df[['outlook', 'temp', 'humidity', 'windy']]
y = df[['play']]
```

outlook temp humidity windy play

```
X = df[['outlook', 'temp', 'humidity', 'windy']]
y = df[['play']]
```


• Create training and test sets: 70% of it is in the training set, and 30% of it is in the testing set.

test_size = 0.3,

random_state = 42)

Encoding : Encode categorical data as numbers

Encoding : One-Hot Encoding

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1

Encoding : Label Encoding

Human-Readable

Machine-Readable

Encoding : One-Hot Encoding

```
ohe = OneHotEncoder()
```

ohe.fit(X_train)

X_train_ohe = ohe.transform(X_train).toarray()

Encoding : One-Hot Encoding

```
ohe = OneHotEncoder()
```

ohe.fit(X_train)

X_train_ohe = ohe.transform(X_train).toarray()

X_train_ohe = ohe.fit_transform(X_train).toarray()

• Encoding : One-Hot Encoding

Encoding : One-Hot Encoding

```
ohe = OneHotEncoder()
outlook temp humidity windy
ohe.fit(X_train)

X_train_ohe = ohe.transform(X_train).toarray()
```

Encoding : One-Hot Encoding

```
ohe_df = pd.DataFrame(X_train_ohe, columns=ohe.get_feature_names(X_train.columns))
ohe_df.head()
```

Out[13]:

	outlook_overcast	outlook_rainy	outlook_sunny	temp_cool	temp_hot	temp_mild	humi
0	0.0	0.0	1.0	1.0	0.0	0.0	•••
1	1.0	0.0	0.0	0.0	1.0	0.0	•••
2	0.0	0.0	1.0	0.0	1.0	0.0	•••
3	0.0	1.0	0.0	0.0	0.0	1.0	•••
4	0.0	1.0	0.0	1.0	0.0	0.0	•••

Train the decision tree & Plot

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

```
clf = DecisionTreeClassifier(criterion='entropy')
clf.fit(X_train_ohe, y_train)
```

```
humidity normal <= 0.5
                                    entropy = 0.918
                                      samples = 9
                                     value = [3, 6]
                                      class = yes
                     outlook sunny <= 0.5
                                                  entropy = 0.0
                       entropy = 0.971
                                                  samples = 4
                         samples = 5
                                                  value = [0, 4]
                         value = [3, 2]
                                                   class = yes
                          class = no
         windy_False <= 0.5
                                     entropy = 0.0
           entropy = 0.918
                                      samples = 2
             samples = 3
                                     value = [2, 0]
            value = [1, 2]
                                       class = no
             class = yes
entropy = 0.0
                         entropy = 0.0
samples = 1
                         samples = 2
value = [1, 0]
                         value = [0, 2]
 class = no
                          class = yes
```

-	humidity_normal	k	olay
	1.0		yes
	0.0		yes
	0.0		no
	0.0		no
	1.0		yes
	0.0		no
	1.0		yes
	0.0		yes
	1.0		yes

humidity_normal	<u>'</u>	play
1.0		yes
0.0		yes
0.0		no
0.0		no
1.0		yes
0.0		no
1.0		yes
0.0		yes
1.0		yes

١	outlook_sunny		play
	1.0		yes
	0.0		yes
	1.0		no
	0.0		no
	0.0		yes
	1.0		no
	1.0		yes
	0.0		yes
	0.0		yes
		1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0	1.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0

humidity_normal \	outlook_sunny	play
1.0	1.0	yes
0.0	0.0	yes
0.0	1.0	no
0.0	0.0	no
1.0	0.0	yes
0.0	1.0	no
1.0	1.0	yes
0.0	0.0	yes
1.0	0.0	yes

- 1. Import necessary modules
- 2. Load & explore the dataset
- 3. Split the DataFrame into features (X) and target/class (y)
- 4. Create training and test sets
- 5. Encode categorical data as numbers : OneHotEncoding
- 6. Train the decision tree
- 7. Plot the decision tree
- 8. Predict and Evaluate: Accuracy & Confusion matrix
- 9. Tree Pruning

Predict and Evaluate : Accuracy

```
X_test_ohe = ohe.transform(X_test)

y_preds = clf.predict(X_test_ohe)
```

```
print('Accuracy: ', accuracy_score(y_test, y_preds))
```

Accuracy: 0.6

Predict and Evaluate : Accuracy

```
y_test
    play
 9 yes
 11
     yes
 0
     no
 12
     yes
  5
      no
list(y_preds)
['yes', 'no', 'no', 'yes', 'yes']
```

Predict and Evaluate : Confusion matrix

```
cf_matrix = confusion_matrix(y_test, y_preds)
print(cf_matrix)
```

[[1 1] [1 2]]

The default order of labels in the confusion matrix is the **lexicographical order** of the unique classes in *y*.

Predict and Evaluate : Confusion matrix

[1 1]]

Predict and Evaluate : Confusion matrix

```
print(precision_score(y_test, y_preds, pos_label='yes'))
print(recall_score(y_test, y_preds, pos_label='yes'))
```

- 0.6666666666666666
- 0.6666666666666666

Predict and Evaluate : Confusion matrix

```
print(precision_score(y_test, y_preds, pos_label='no'))
print(recall_score(y_test, y_preds, pos_label='no'))
```

0.5

0.5

Tree Pruning : Elagage - Pre-Pruning Strategies

DecisionTreeClassifier

```
class sklearn.tree.DecisionTreeClassifier(*, criterion='gini',
splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None,
ccp_alpha=0.0, monotonic_cst=None)

[source]
```

Tree Pruning : Elagage - Pre-Pruning Strategies

max_depth : int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- If int, then consider min_samples_split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

Tree Pruning : Elagage - Pre-Pruning Strategies

min_samples_leaf: int or float, default=1

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.

- If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.

Tree Pruning : Elagage - Pre-Pruning Strategies

Tree Pruning : Elagage - Pre-Pruning Strategies

min_samples_split = 11

If a node has fewer samples than min_samples_split, it will not be split further.

No split!

Tree Pruning : Elagage - Pre-Pruning Strategies

min_samples_leaf = 2

If a split results in a leaf node with fewer samples than min_samples_leaf, the split is not allowed. The node is not split further and becomes a leaf node.

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0