Data Mining with Titanic dataset

Crisp-DM

- Business Understanding เป็นช่วงของการทำความเข้าใจในธุรกิจ ในที่นี้คือ คนที่มี Feature แบบไหนถึงจะมีชีวิตรอด
- 2. **Data Understanding** เป็นช่วงทำความเข้าใจในข้อมูล โดยเป็นการทำความเข้าใจกับข้อมูลที่จัดเก็บ รวบรวมข้อมูล ศึกษาและทำความคุ้นเคยกับข้อมูล ตลอดจนประเมินคุณภาพของข้อมูลที่ได้มา
- 3. **Data Preparation Phase** ช่วงเตรียมข้อมูล โดยเตรียมข้อมูลดิบที่จะต้องใช้ในขั้นตอนที่เหลือ ตลอดจนเลือกตัวแปรที่ต้องการมาวิเคราะห์ให้เหมาะสม อีก ทั้งแปลงรูปแบบของตัวแปรให้อยู่ในรูปแบบเดียวกัน เพื่อให้ข้อมูลพร้อมสำหรับการนำไปใช้ไปสร้างแบบจำลอง
- 4. Model Phase ช่วงสร้างแบบจำลอง โดยเป็นการคัดเลือก แบบจำลองที่เหมาะสม ปรับปรุงตัวแปร ลักษณะแบบจำลองเพื่อให้ได้ผลลัพธ์ที่ดีที่สุด อาจจะใช้ เทคนิคหลายๆเทคนิคเข้ามาช่วยวิเคราะห์ได้ ถ้าจำเป็น ก็สามารถย้อนกลับไปช่วงการเครียมข้อมูล เพื่อเตรียมข้อมูลให้เหมาะสมกับการสร้างแบบจำลองใหม่ได้
- 5. Evaluation Phase ช่วงประเมินผล โดยเป็นการประเมินแบบจำลองที่ใช้ในการวิเคราะห์ทั้งหมด ประเมินว่าแบบจำลองไหนตอบโจทย์ในขั้นตอนแรกได้ดี ที่สุด ตรวจสอบความถูกต้องและสภาพแวดล้อมต่างๆ ตัดสินใจในการนำผลลัพธ์ไปใช้
- 6. Deployment Phase โดยเป็นการนำไปใช้งานจริง รวมถึงนำเสนอตัวอย่างจากการนำไปใช้จริง

Crisp-DM with Titanic dataset

1.1. Business Understanding

ให้แบ่งกลุ่มของคนที่มีอยู่ใน dataset ว่าลักษณะแบบไหนถึงจะมีชีวิตรอด หรือ ไม่มีชีวิตรอด

1.2 Data Understanding

import csv file ซึ่งเป็นเซทของข้อมูล ไททานิค โดยใช้ python tools ในการทำเหมืองข้อมูล พบว่ามีทั้งหมด 891 แถว และ มี 12 คอลัมน์ โดยข้อมูลแต่ละแถวคือ ข้อมูล ของผู้โดยสารเรือแต่ละคน และข้อมูลของแต่ละคอลัมน์มีดังต่อไปนี้

- 1. 'PassengerId' คือ หมายเลขผู้โดยสาร
- 2. 'Survived' คือ ผู้รอดชีวิต โดย 1 เป็นการรอดชีวิต ส่วน 0 คือผู้เสียชีวิต
- 3. 'Pclass' คือ สถานะภาพทางเศรษฐกิจและสังคม แบ่ง ได้เป็น การศึกษา + อาชีพ + ราชได้
- 4. 'Name' คือ ชื่อของผู้โดยสาร
- 'Sex' คือ เพศ
- 6. 'Age' คือ อาขุ
- 7. 'SibSp' คือ จำนวนความสัมพันธ์ของผู้โดยสารที่มาด้วยกัน เช่น พี่น้อง หรือ คู่สมรส
- 8. 'Parch' คือ จำนวนความสัมพันธ์ของผู้โดยสารที่มาด้วยกัน เช่น พ่อ แม่ ถูก
- 9. 'Ticket' คือ หมายเลขตั๋ว
- 10. 'Fare' คือ ค่า โดยสาร
- 11. 'Cabin' คือ หมายเลขห้องโดยสาร
- 12. 'Embarked' คือ ท่าเรือที่รับผู้โดยสารขึ้นเรือ

รายละเอียดจะเพิ่มเติมให้รูปต่อไป

1. import necessary library

```
In [1]: # Imports

# pandas
import pandas as pd

# numpy, matplotlib, seaborn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
import graphviz

*matplotlib inline
```

2. Read In and Explore the Data

```
In [2]: 1 # get titanic & test csv files as a DataFrame
2 df = pd.read_csv("./titanic_data_set/train.csv")
3
4 # preview the data
5 df.head(5)
```

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male		1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

3. Data Analysis

```
1 # columns
       print(df.columns, '\n', df.shape)
      dtype='object')
       (891, 12)
In [4]: 1 # samples
        3 df.sample(5)
Out[4]:
          Passengerld Survived Pclass
                                                          Sex Age SibSp Parch
                832
                                      Richards, Master. George Sibley
                                                              0.83
                                                                              29106
                                                                                   18.7500
                                                                                         NaN
                                                                                                  s
                                                          male
       831
                            1 Frauenthal, Mrs. Henry William (Clara Heinshei... female NaN
       334
                335
                                                                         0 PC 17611 133.6500
                                                                                         NaN
                                                                                                  S
                152
                                     Pears, Mrs. Thomas (Edith Wearne) female 22.00
                                                                             113776
                                                                                   66.6000
                                                                                          C2
                                                                                                  s
       479
                480
                                           Hirvonen, Miss. Hildur E female 2.00
                                                                         1 3101298
                                                                                   12.2875
                                               Coleff, Mr. Satio male 24.00
                                                                     0
                                                                         0 349209
                                                                                                  s
       514
                515
                                                                                   7.4958
                                                                                         NaN
 In [5]:
               # there are some null values that need to be cleaned
            3 df.info()
           <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
          PassengerId 891 non-null int64
          Survived
                           891 non-null int64
                           891 non-null int64
          Pclass
          Name
                           891 non-null object
                          891 non-null object
          Sex
                          714 non-null float64
          Age
                          891 non-null int64
          SibSp
                           891 non-null int64
          Parch
          Ticket
                           891 non-null object
                           891 non-null float64
          Fare
          Cabin
                          204 non-null object
          Embarked
                          889 non-null object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.6+ KB
```

Type of Features

- Numerical Features: Age (Continuous), Fare (Continuous), SibSp (Discrete), Parch (Discrete)
- Categorical Features: Survived, Sex, Embarked, Pclass
- Alphanumeric Features: Ticket, Cabin

		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Ų,	count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.000000	891	891.000000	204	889
u	ınique	NaN	NaN	NaN	891	2	NaN	NaN	NaN	681	NaN	147	3
	top	NaN	NaN	NaN	Collyer, Mr. Harvey	male	NaN	NaN	NaN	347082	NaN	C23 C25 C27	s
	freq	NaN	NaN	NaN	1	577	NaN	NaN	NaN	7	NaN	4	644
	mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381594	NaN	32.204208	NaN	NaN
	std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806057	NaN	49.693429	NaN	NaN
	min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000000	NaN	0.000000	NaN	NaN
	25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000000	NaN	7.910400	NaN	NaN
	50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000000	NaN	14.454200	NaN	NaN
	75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000000	NaN	31.000000	NaN	NaN
	max	891.000000	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000000	NaN	512.329200	NaN	NaN

4. Data Visualization

Pclass Feature

Higher class could survive more.

Pclass Feature ผู้ที่รอดชีวิตส่วนใหญ่คือ กลุ่มคนที่ไม่ได้มาเป็นครอบครัว

Sex Feature

Female are more likely to survive.

Sex Feature ผู้ที่รอดชีวิตส่วนใหญ่คือ ผู้หญิง

Age Feature

Baby and children are more likely to survive.

Age Feature ผู้ที่รอดชีวิตส่วนใหญ่คือ เด็ก

SibSp Feature

```
In [10]: 1 sns.barplot(df['SibSp'], df['Survived'], data=df)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x10bf1f7f0>

```
0.6
0.5
0.4
0.0
0.3
0.2
0.1
0.0
0 1 2 3 4 5 8
```

```
In [11]:  #map each of the sip groups to a numerical value
sipSp_mapping = {0: 0, 1: 1, 2: 1}

df['SibSpGroup'] = df['SibSp'].map(sipSp_mapping)
df['SibSpGroup'] = df['SibSpGroup'].fillna(2)
df['SibSpGroup'] = df['SibSpGroup'].astype('int')
```

In [12]: 1 sns.barplot(df['SibSpGroup'], df['Survived'], data=df)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x10d5627b8>

Combine SipSp to groups.

SibSp Feature ผู้ที่รอดชีวิตส่วนใหญ่คือ คนที่มาเป็นคู่จะมีโอกาสรอดสูงกว่า

Fare Feature


```
In [15]: 1 labels = [1, 2, 3, 4]
2 df['FareGroup'] = pd.cut(df['Fare'], 4, labels=labels)
3 
4 sns.barplot(df['FareGroup'], df['Survived'], data=df)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x10d7ba2b0>

Rich has higher chance to survive.

Fare Feature ผู้ที่รอดชีวิตส่วนใหญ่มาจากค่าโดยสารแพงมากสุด

Cabin Feature

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x10d87d0b8>

One who has a cabin might mean he is rich.

Cabin Feature ผู้ที่รอดชีวิตส่วนใหญ่คือ ผู้ที่มีหมายเลขห้องโดยสาร

Embark Feature

```
In [17]: 1 sns.barplot(df['Embarked'], df['Survived'], data=df)
Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x10d92aac8>
```

Embarked

Embark Feature ผู้ที่รอคชีวิตส่วนใหญ่มาจากท่าเรือ Cherbourge

1.3 Data Preparation Phase

0.3

Cleaning data จากการกำจัดค่า null และจัดให้ข้อมูลอยู่ในรูปของตัวเลข integer เพราะ library python รับแต่ค่า integer

5. Cleaning Data

Find null values

```
In [18]:
             df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 16 columns):
                        891 non-null int64
         PassengerId
         Survived
                         891 non-null int64
         Pclass
                         891 non-null int64
         Name
                         891 non-null object
         Sex
                         891 non-null object
                         891 non-null float64
         Age
                         891 non-null int64
         SibSp
         Parch
                         891 non-null int64
                        891 non-null object
         Ticket
         Fare
                         891 non-null float64
         Cabin
                         204 non-null object
         Embarked
                         889 non-null object
         AgeGroup
                         891 non-null category
         SibSpGroup
                         891 non-null int64
         FareGroup
                        891 non-null category
                         891 non-null int64
         hasCabin
         dtypes: category(2), float64(2), int64(7), object(5)
         memory usage: 99.8+ KB
```

Pclass Feature

Do nothing.

Age Feature

Fill null value by predicting from their titles.

```
In [19]:
             df['Name'].head(10)
Out[19]:
         0
                                         Braund, Mr. Owen Harris
         1
              Cumings, Mrs. John Bradley (Florence Briggs Th...
         2
                                          Heikkinen, Miss. Laina
         3
                   Futrelle, Mrs. Jacques Heath (Lily May Peel)
         4
                                        Allen, Mr. William Henry
                                                Moran, Mr. James
         6
                                         McCarthy, Mr. Timothy J
         7
                                  Palsson, Master. Gosta Leonard
         8
              Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
         9
                             Nasser, Mrs. Nicholas (Adele Achem)
         Name: Name, dtype: object
```

Age เติมอายุที่หายไปโดยทำนายจากชื่อนำหน้าว่าควรจะอยู่ในกลุ่มคนอายุเท่าไหร่

```
df['Title'] = df.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
pd.crosstab(df['Title'], df['Sex'])
                 # some of these are outlier.
Out[20]:
                  Sex female male
                  Title
                  Capt
                             0
                             0
                   Col
                  Don
                    Dr
                 Lady
                 Major
                                  40
                Master
                                   0
                  Mlle
                 Mme
                             0
                                 517
                           125
                                   0
                                   6
                             0
                             0
```

```
In [21]: 1 #replace various titles with more common names
           3 df['Title'] = df['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Ra
           5 df['Title'] = df['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal')
           6 df('Title'] = df['Title'].replace('Mlle', 'Miss')
7 df['Title'] = df['Title'].replace('Ms', 'Miss')
8 df['Title'] = df['Title'].replace('Mme', 'Mrs')
          10 sns.barplot(df['Title'], df['Survived'])
Out[21]: <matplotlib.axes. subplots.AxesSubplot at 0x10da76860>
           1.0
           0.8
            0.4
           0.2
 In [22]:
              1 #map each of the title groups to a numerical value
                3 title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Royal": 5, "Rare": 6}
               5 df['Title'] = df['Title'].map(title_mapping)
                6 df['Title'] = df['Title'].fillna(0)
 In [23]:
               1 # check results
                2 df[['Title']].sample(5)
 Out[23]:
                    Title
               456
                       1
               760
```

```
In [24]:
           1 # find age group for each title by mode
              age value = {}
              for n in range(6):
                  age_value[n+1] = df[df['Title'] == n+1]['AgeGroup'].mode()
          [Young Adult]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
          [Young Adult]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
          [Young Adult, Adult]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
          [Adult]
          Categories (9, object): [Unknown < Baby < Preschool < Primary School ... College < Young Adult < Adult < Senior]
In [25]: 1  # age title maping from previous result
2  age title_mapping = {1: "Young Adult", 2: "Young Adult", 3: "Adult", 4: "Baby", 5: "Young Adult", 6: "Adult"}
3  # fill na with previous result
            df.AgeGroup = df.AgeGroup.replace("Unknown", df["Title"].map(age_title_mapping))
In [53]: 1 df.AgeGroup.head()
Out[53]: 0
```

```
In [27]: 1  # change agegroup's data type from category to int
2  age_mapping = {'Baby': 1, 'Preschool': 2, 'Primary School': 3, 'Elementary School': 4, 'College': 5, 'Young Adu
3  df.AgeGroup = df.AgeGroup.map(age_mapping)
```

Name: AgeGroup, dtype: int64

Sex Feature

SibSp, Parch ไม่ต้องทำอะไรเพราะเป็นเลขอยู่แล้ว

SibSp Feature

Use SibSpGroup instead.

Parch Feature

Do nothing.

fare feature จัดกลุ่มค่าโดยสารเป็น 4 กลุ่ม

Fare Feature

```
In [29]:
           1 #map Fare values into groups of numerical values
           3 df['FareGroup'] = pd.cut(df['Fare'], 4, labels = [1, 2, 3, 4]).astype(int)
            4 df[['Fare', 'FareGroup']].sample(10)
Out[29]:
                  Fare FareGroup
                 7.7500
           593
           326
                 6.2375
           527 221.7792
                10.5000
            84
                53.1000
           724
                19.9667
           601
                 7.8958
           196
                 7.7500
                61.9792
            54
           822
                 0.0000
                               1
```

Cabin Feature

Use 'hasCabin' instead of 'Cabin'

Embark Feature

Drop unneeded columns

1.4 Model Phase

การแบ่งข้อมูลในการเทรนตั้งแต่คนแรก - คนที่ 700 ส่วนที่เหลือเป็นค่าในการนำไปทคสอบ โดยแบ่งข้อมูลออกเป็น

- 1. กลุ่ม x train คือ คอลัมน์ทั้งหมดยกเว้นคอลัมน์ Survived ที่จะนำมาเทรน
- 2. กลุ่ม x_test คือ คอลัมน์ทั้งหมดยกเว้นคอลัมน์Survived ที่จะนำมาทดสอบ
- 3. y train คือ คอลัมน์ Survived เท่านั้น ที่จะนำมาเทรน
- 4. y_test คือ คอลัมน์Survivedเท่านั้น ที่จะนำมาทดสอบ

6. Using ML Models

split data

เช็กข้อมูลว่าไม่มี null และเป็น integer ทุกคอลัมน์

```
In [40]:
            X train.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 702 entries, 0 to 701
        Data columns (total 8 columns):
        Pclass 702 non-null int64
        Sex
                     702 non-null int64
        Parch
                     702 non-null int64
                     702 non-null int64
        Embarked
                     702 non-null int64
        AgeGroup
                     702 non-null int64
         SibSpGroup
        FareGroup
                      702 non-null int64
        hasCabin
                      702 non-null int64
        dtypes: int64(8)
        memory usage: 44.0 KB
In [41]:
            X_test.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 190 entries, 701 to 890
        Data columns (total 8 columns):
        Pclass
                      190 non-null int64
         Sex
                      190 non-null int64
        Parch
                     190 non-null int64
        Embarked
                     190 non-null int64
                     190 non-null int64
        AgeGroup
        SibSpGroup
                     190 non-null int64
        FareGroup
                     190 non-null int64
                   190 non-null int64
        hasCabin
```

dtypes: int64(8)
memory usage: 12.0 KB

3-Nearest Neighbor classification

with majority vote method

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
model_knn = knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
In [46]:
            1 from sklearn.metrics import confusion_matrix
            2 cm = confusion_matrix(y_test, y_pred)
            3 print(cm)
            4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0
             4
           [[77 13]
           [22 43]]
           precision = 0.7741935483870968
In [48]:
            1 y_pred = knn.predict(X_real_test)
            2 cm = confusion_matrix(y_real_test, y_pred)
            3 print(cm)
            4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0]
           [[104 16]
            [ 18 52]]
           precision = 0.8210526315789474
```

3-NN ใค้ความแม่นยำ 77.42 % จาก training data พอทคสอบข้อมูลใหม่ได้ 82.11 %

Naive Bayes classification

```
In [50]:
          1 from sklearn.naive_bayes import GaussianNB
             gnb = GaussianNB()
             model_gnb = gnb.fit(X_train, y_train)
          4 y_pred = gnb.predict(X_test)
In [51]:
          1 cm = confusion_matrix(y_test, y_pred)
          2 print(cm)
          3 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0]
         [[76 14]
          [20 45]]
         precision = 0.7806451612903226
         1 y_pred = gnb.predict(X_real_test)
           2 cm = confusion_matrix(y_real_test, y_pred)
          3 print(cm)
          4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0]
         [[103 17]
          [ 18 52]]
         precision = 0.8157894736842105
```

Naïve Bayes ใค้ความแม่นยำ 78.06 % จาก training data พอทคสอบข้อมูลใหม่ได้ 81.58 %

Random Forest classification

```
In [53]:
          1 from sklearn.ensemble import RandomForestClassifier
           2 rf = RandomForestClassifier()
           model_rf = rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
          1 cm = confusion_matrix(y_test, y_pred)
In [54]:
           print(cm)
           3 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0
         [[74 16]
          [23 42]]
         precision = 0.7483870967741936
In [55]: 1 y_pred = rf.predict(X_real_test)
           2 cm = confusion_matrix(y_real_test, y_pred)
           3 print(cm)
           4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0
         [[100 20]
          [ 16 54]]
         precision = 0.8105263157894737
```

Random Forest ใค้ความแม่นยำ 74.84 % จาก training data พอทคสอบข้อมูลใหม่ได้ 81.05 %

หลังจากใช้ 3NN, Naïve Bayes, Random forest พบว่า 3NN มีความแม่นยำสูงที่สุดที่ 82.11% ทีนี้ลองใช้ 10 fold-cv คูบ้าง

7. Using 10-Fold-CV

```
In [49]:

1  # Necessary imports:
2  from sklearn.cross_validation import cross_val_predict
```

Naive Bayes classification

```
In [72]:
                   1 from sklearn.model_selection import cross_val_score
                    2 scores = cross_val_score(model_gnb, predictors, target, cv=10)
                          print(scores)
                    4 print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
                  [0.77464789 0.67605634 0.78873239 0.75714286 0.77142857 0.84285714
                   0.71428571 0.72857143 0.85714286 0.7826087 ]
                  Accuracy: 0.77 (+/- 0.10)
                   predicted = cross_val_predict(model_gnb, X_real_test, y_real_test)
In [73]:
                     2 cm = confusion_matrix(y_real_test, predicted)
                          print(cm)
                    4 | print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0] | cm[0][0
                         4
                  [[119 1]
                    [61 9]]
                  precision = 0.6736842105263158
                   3-Nearest Neighbor classification
In [64]:
                     1 from sklearn.model selection import cross val score
                     2 scores = cross_val_score(model_knn, predictors, target, cv=10)
                     3 print(scores)
                     4 print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
                   [0.76056338 0.76056338 0.8028169 0.74285714 0.75714286 0.84285714
                    0.78571429 0.77142857 0.77142857 0.75362319]
                  Accuracy: 0.77 (+/- 0.06)
In [71]:
                    predicted = cross val predict(model knn, X real test, y real test)
                     2 cm = confusion_matrix(y_real_test, predicted)
                     3 print(cm)
                     4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0]
                   [[104 16]
                    [ 24 46]]
                  precision = 0.7894736842105263
                      Random Forest classification
 In [126]:
                         1 from sklearn.model selection import cross val score
                               scores = cross_val_score(model_rf, predictors, target, cv=10)
                               print(scores)
                         4 print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
                      [0.69014085 0.77464789 0.74285714 0.74285714 0.82857143 0.88571429
                        0.81428571 0.77142857 0.82857143 0.73913043]
                      Accuracy: 0.78 (+/- 0.11)
 In [127]:
                        1 predicted = cross_val_predict(model_rf, X_real_test, y_real_test)
                         2 cm = confusion_matrix(y_real_test, predicted)
                         3 print(cm)
                         4 print('\nprecision = ' + str((cm[0][0] + cm[1][1])/ (cm[0][1] + cm[1][0] + cm[0][0] + cm[1][1])))
                      [[109 11]
```

[20 51]]

precision = 0.837696335078534

5. Evaluation Phase หลังจากการใช้โมเคล พบว่าการแบ่งข้อมูลธรรมคามีความแม่นยำสูงกว่าแบบ 10 fold cv ประมาณ 10% แต่อาจจะเกิด over fitting เราจึง
เลือกใช้การแบ่งข้อมูลแบบ 10 fold cv โดยโมเคลที่ให้ค่าความแม่นยำสูงสุดคือ Random Forest classification ที่ 83.77 จึงสรุปได้ว่าควรใช้ Random forest แบบ 10fold-
cv
6. Deployment Phase งานฉบับนี้ยังไม่ถึงช่วงนี้

References

http://digi.library.tu.ac.th/thesis/it/0729/03chapter2.pdf	http://dig	i.librarv.tu.a	c.th/thesis/it/	0729/03cha	nter2.ndf
--	------------	----------------	-----------------	------------	-----------

https://www.kaggle.com/omarelgabry/a-journey-through-titanic?scriptVersionId = 447802/notebook

http://scikit-learn.org/stable/modules/naive_bayes.html

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors. KNeighbors Classifier.html

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble. Random Forest Classifier.html

https://www.sanyamkapoor.com/machine-learning/confusion-matrix-visualization/

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.str.extract.html

http://www.ritchieng.com/machinelearning-one-hot-encoding/

https://towards datascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

 $http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html$

http://scikit-learn.org/stable/modules/cross_validation.html

https://stackoverflow.com/questions/41458834/how-is-scikit-learn-cross-val-predict-accuracy-score-calculated and the second of the second of