

Лекция 5

1. Выполнение операций и восстановление данных

Память

Операции для синхронизации различных пространств памяти

- М ← D(Obj) загрузить страницу, содержащую Obj, с диска в буферное пространство.
- D ← M(Obj) сохранить страницу, содержащую Obj, на диск из буфера ОП.
- T(v, Tx) ← M(Obj) копировать Obj в переменную v транзакции Tx:
 - > если Оbj не в M, то сначала M ← D(Obj).
- M(Obj) ← T(v, Tx) копировать значение v из транзакции Тх в Obj:
 - > если Оbj не в M, то сначала M ← D(Obj).
- WriteLog сохранить лог на диск из соответствующего буфера.

SELECT * FROM ROOMS;

Room

Room_ID	Address	Room_Num	Size
1	Kronverksky, 49	374	20
2	Kronverksky, 49	375	25

Задача: переименовать аудитории

Room

Room_ID	Address	Room_Num	Size
1	Kronverksky, 49	374	20
2	Kronverksky, 49	375	25

BEGIN;

UPDATE ROOM SET Room Num = 1331

WHERE Room_Num = 374;

UPDATE ROOM SET Room Num = 1330

WHERE Room Num = 375;

COMMIT;

BEGIN;

*Выполнение операции UPDATE сильно упрощено

UPDATE ROOM
SET Room_Num = 1331
WHERE Room_Num = 374;

 $T(v_{Room}, Tx) \leftarrow M(Room_{374});$

 $V_{Room}(Room_Num) = 1331;$

 $M(Room_{374}) \leftarrow T(v_{Room}, Tx);$

UPDATE ROOM

SET Room Num = 1330

WHERE Room_Num = 375;

 $T(v_{Room}, Tx) \leftarrow M(Room_{375});$

 $V_{Room}(Room_Num) = 1330;$

 $M(Room_{375}) \leftarrow T(v_{Room}, Tx);$

 $D \leftarrow M(Room_{374}), M(Room_{375})$

COMMIT;

Операция	Пам. тр.	Буферное пространство	Диск
$T(V_R, Tx) \leftarrow M(R_{374})$	374	R ₃₇₄ =374, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$V_R(Room_Num) = 1331;$	1331	R ₃₇₄ =374, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$M(R_{374}) \leftarrow T(v_R, Tx);$	1331	R ₃₇₄ =1331, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$T(V_R, Tx) \leftarrow M(R_{375});$	375	R ₃₇₄ =1331, R ₃₇₅ =375	R ₃₇₄ =374, R ₃₇₅ =375
$V_R(Room_Num) = 1330;$	1330	R ₃₇₄ =1331, R ₃₇₅ =375	R ₃₇₄ =374, R ₃₇₅ =375
$M(R_{375}) \leftarrow T(V_R, Tx);$	1330	R ₃₇₄ =1331, R ₃₇₅ =1330	R ₃₇₄ =374, R ₃₇₅ =375
$D \leftarrow M(R_{374})$	1330	R ₃₇₄ =1331, R ₃₇₅ =1330	R ₃₇₄ =1331, R ₃₇₅ =375
$D \leftarrow M(R_{375})$	1330	R ₃₇₄ =1331, R ₃₇₅ =1330	R ₃₇₄ =1331, R ₃₇₅ =1330

«Незапланированный» отказ работы экземпляра

Операция	Пам. тр.	Буферное пространство	Диск
$T(V_R, Tx) \leftarrow M(R_{374})$	374	R ₃₇₄ =374, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$V_R(Room_Num) = 1331;$	1331	R ₃₇₄ =374, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$M(R_{374}) \leftarrow T(v_R, Tx);$	1331	R ₃₇₄ =1331, R ₃₇₅ = -	R ₃₇₄ =374, R ₃₇₅ =375
$T(V_R, Tx) \leftarrow M(R_{375});$	375	R ₃₇₄ =1331, R ₃₇₅ =375	R ₃₇₄ =374, R ₃₇₅ =375
$V_R(Room_Num) = 1330;$	1330	R ₃₇₄ =1331, R ₃₇₅ =375	R ₃₇₄ =374, R ₃₇₅ =375
$M(R_{375}) \leftarrow T(V_R, Tx);$	1330	R ₃₇₄ =1331, R ₃₇₅ =1330	R ₃₇₄ =374, R ₃₇₅ =375
D ← M(R ₃₇₄)	1330	R ₃₇₄ =1331, R ₃₇₅ =1330	R ₃₇₄ =1331, R ₃₇₅ =375
D ← M(R ₃₇₅)	1000	1004 5 1000	β0

Если система «упадет» в данный момент — проблема!

2. UNDO-журнал

Логирование

• Для предотвращения ситуаций, связанных с появлением несогласованных данных можно использовать — журнал (лог).

- СУБД сохраняет информацию об изменениях и фиксациях данных в журнале:
 - первоначально запись сохраняется в соответствующем буфере (буфере журнала);
 - буфер журнала синхронизируется с файлами журнала на диске (WriteLog);

Журнал отмены

• Один из вариантов ведения журнала — журнал отмены, UNDO LOG

Возможные записи в журнале отмены:

- BEGIN Тх -- начало транзакции;
- Тх: R, old_val -- изменение: транзакция Тх
 - -- переписывает значение
 - -- old_val в R;
- СОММІТ Тх -- успешное завершение транзакции;
- > ABORT Тх -- преждевременное завершение транз-ии;
- > START CHKn: T_n, ..., T_m -- начало создания контр. точки
- > END CHKn -- завершение создания контр. точки

Журнал отмены

Правила записи в UNDO LOG:

- Запись изменения данных (Tx: R, old_val) записывается в журнал (на диск) ДО сохранения обновленного значения на диске.
- СОММІТ Тх должен быть добавлен в журнал (на диск)
 ПОСЛЕ обновления всех файлов данных, связанных с изменениями данной транзакции (после синхронизации буферного пространства данных с файлами данных).

Операция	Диск	Журнал
		BEGIN T1;
$T(V_R, Tx) \leftarrow M(R_{374})$	R ₃₇₄ =374, R ₃₇₅ =375	
$V_R(Room_Num) = 1331;$	R ₃₇₄ =374, R ₃₇₅ =375	
$M(R_{374}) \leftarrow T(V_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₄ , 374
$T(V_R, Tx) \leftarrow M(R_{375});$	R ₃₇₄ =374, R ₃₇₅ =375	
$V_R(Room_Num) = 1330;$	R ₃₇₄ =374, R ₃₇₅ =375	
$M(R_{375}) \leftarrow T(V_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₅ , 375
WriteLog		записи на диске
D ← M(R ₃₇₄)	R ₃₇₄ =1331, R ₃₇₅ =375	
D ← M(R ₃₇₅)	R ₃₇₄ =1331, R ₃₇₅ =1330	
		COMMIT T1
WriteLog		COMMIT на диске

Использование журнала отмены для восстановления данных (1)

Действия при восстановлении данных (1):

- СУБД сканирует журнал от новых записей до старых. Отдельно фиксируются транзакции:
 - Группа 1: для которых есть запись COMMIT Тх;
 - > Группа 2: транзакции для которых есть запись ABORT Тх, незавершенные транзакции.
- Когда в журнале встречается запись изменения (Тх: R, old_val), анализируется Тх. Если Тх:
 - из группы 1 действия не предпринимаются.
 - у из группы 2: для R восстанавливается old_val (происходит отмена изменений).

Использование журнала отмены для восстановления данных (2)

Действия при восстановлении данных (2):

- СУБД записывает ABORT Тх для каждой незавершенной транзакции из группы 2.
- Запускается операция WriteLog, чтобы записи вида ABORT Тх оказались в журнале.

Пример (UNDO LOG)

Операция	Диск	Журнал
		BEGIN T1;
$T(V_R, Tx) \leftarrow M(R_{374})$	R ₃₇₄ =374, R ₃₇₅ =375	
$V_R(Room_Num) = 1331;$	R ₃₇₄ =374, R ₃₇₅ =375	
$M(R_{374}) \leftarrow T(V_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₄ , 374
$T(V_R, Tx) \leftarrow M(R_{375});$	R ₃₇₄ =374, R ₃₇₅ =375	
$V_R(Room_Num) = 1330;$	R ₃₇₄ =374, R ₃₇₅ =375	
$M(R_{375}) \leftarrow T(V_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₅ , 375
WriteLog		записи на диске
D ← M(R ₃₇₄)	R ₃₇₄ =1331, R ₃₇₅ =375	

Произошел сбой!

Пример (UNDO LOG)

Операция	Диск	Журнал
		BEGIN T1;
$T(v_R, Tx) \leftarrow M(R_{374})$	R ₃₇₄ =374, R ₃₇₅ =375	Возвращаем
$V_R(Room_Num) = 1331;$	R ₃₇₄ =374, R ₃₇₅ =375	первоначальное значение
$M(R_{374}) \leftarrow T(v_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₄ , 374
$T(v_R, Tx) \leftarrow M(R_{375});$	R ₃₇₄ =374, R ₃₇₅ =375	
$V_R(Room_Num) = 1330;$	R ₃₇₄ =374, R ₃₇₅ =375	
$M(R_{375}) \leftarrow T(V_R, Tx);$	R ₃₇₄ =374, R ₃₇₅ =375	T1: R ₃₇₅ , 375
WriteLog		\записи на диске
D ← M(R ₃₇₄)	R ₃₇₄ =1331, R ₃₇₅ =375	

Возвращаем первоначальное значение

Контрольные точки

- Для восстановления данных нужна какая-то стартовая точка, чтобы не анализировать транзакции с самого начала работы с БД.
- Контрольная точка (checkpoint) точка синхронизации, во время которой происходит синхронизация данных из буферов с соответствующими файлами на диске.

Контрольные точки

Создание контрольной точки не одномоментно:

- 1) В журнал добавляется START CHKn: T_n , ..., T_m , фиксируется на диске через WriteLog.
- 2) Ожидание завершения транзакций, которые работали в момент создания контрольной точки (T_n, ..., T_m). В это время могут начинаться другие транзакции.
- 3) В журнал добавляется END CHKn, фиксируется на диске через WriteLog.
- 4) Записи перед START CHKn, у которой есть END CHKn, могут быть удалены.

UNDO LOG и контрольные точки

Действия при восстановлении данных (3):

- СУБД сканирует журнал и встречает запись END CHKn: Tn, ..., Tm (а не START CHKn):
 - Значит установка контрольной точки п завершена;
 - Сканирование журнала до записи START CHKn, так как незавершенные транзакции могут быть только после записи START CHKn:
 - х среди транзакций, которые начали работу после начала установки контрольной точки.
 - Остальные действия как раньше.

UNDO LOG и контрольные точки

Действия при восстановлении данных (4):

- СУБД сканирует журнал и встречает запись START CHKn: Tn, ..., Tm (а не END CHKn):
 - Значит установка контрольной точки п не завершена (проблема во время установки);
 - Сканирование журнала до первой записи из самой ранней транзакции среди Tn, ..., Tm:
 - х такая запись будет до START CHKn;
 - > Остальные действия как раньше.

Недостатки UNDO LOG

- Нельзя завершить транзакцию (зафиксировать COMMIT в журнале) до записи изменений данных в файлы данных.
- Много операций ввода-вывода с диском, так как надо синхронизировать данные для каждой транзакции.