Genética Quantitativa - Homework

Vitória Bizão Murakami

Mostre que w1 do modelo de Cockerham pode ser obtido a partir de uma regressão linear da dosagem alélica após transformação baseada em polinôminios ortogonais. Use o algoritmo do Narula (1979).

O modelo F_2 – metric de Cockerham considera uma população F_2 , onde:

Genótipo	Número Alelo A	Frequência (n_i)
G_0 (aa)	0	f_0
G_1 (Aa)	1	f_1
G_2 (AA)	2	f_2

Como estamos considerando uma população F_2 , as frequências f_0 , f_1 e f_2 possuem valores de 0.25, 0.5 e 0.25, respectivamente.

A partir do moldelo do Narula, na transformação realizada para se evitar a multicolinearidade, o primeiro passo é encontrar os coeficientes ortogonais ξ_{1i} , que será a variável observada (X_i) somada à uma constante a_{11} .

Então substituindo os valores de X_i , temos:

Genótipo	X_i	Frequência (n_i)	$\xi_{1i} = X_i + a_{11}$
G_0 (aa)	0	1/4	$0 + a_{11}$
G_1 (Aa)	1	1/2	$1 + a_{11}$
G_2 (AA)	2	1/4	$2 + a_{11}$

Em seguida, multiplicamos esses valores por n_i , ou seja, a coluna 2 pela 3, dessa forma, temos:

Genótipo	X_i	Frequência (n_i)	$\xi_{1i} = X_i + a_{11}$	$\xi_{1i}n_i$
G_0 (aa) G_1 (Aa)	0 1	$\frac{1/4}{1/2}$	$0 + a_{11} \\ 1 + a_{11}$	$(0+a_{11}) \cdot \frac{1}{4} = \frac{a_{11}}{4} $ $(1+a_{11}) \cdot \frac{1}{2} = \frac{1}{2} + \frac{2a_{11}}{4}$
G_2 (AA)	2	1/4	$2 + a_{11}$	$(2+a_{11}).\frac{1}{4}=\frac{1}{2}+\frac{a_{11}}{4}$

E como uma propriedade fundamentais para que ocorra ortogonolidade é que:

$$\sum_{i} \xi_{1i} n_i = 0$$

conseguimos encontrar a_{11} :

$$\frac{a_{11}}{4} + \frac{1}{2} + \frac{2a_{11}}{4} + \frac{1}{2} + \frac{a_{11}}{4} = 0$$

$$1 + \frac{4a_{11}}{4} = 0$$

Portanto, $a_{11}=-1$. E os valores de ξ_{1i} :

Genótipo	ξ_{1i}	
$ \begin{array}{c} G_0 \text{ (aa)} \\ G_1 \text{ (Aa)} \\ G_2 \text{ (AA)} \end{array} $	$0 + a_{11} = -1$ $1 + a_{11} = 0$ $2 + a_{11} = 1$	

Ou seja, os novos valores que comporão a matrix X será -1, 0 e 1, os mesmo de w_1 obtido por Cockerham, portanto w_1 pode ser obtido a partir de uma regressão linear baseada em polinômios ortogonais.