MT00 - Chapitre 2 Résolution des systèmes linéaires

Elias Khoury

Printemps 2024

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

Conditions aux limites

 $\forall t > 0, \ u(0,t) = u(L,t) = u_{\text{ext}}$

Conditions initiales

 $\forall x \in]0, L[, u(x, 0) = u_{ext}]$

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

- u(x, t): température (K) à l'abscisse x (m) et au temps t (s),
- ρ : masse volumique (kg.m⁻³),
- c: capacité calorifique (J.kg⁻¹K⁻¹)
- λ : conductivité thermique (W.m⁻¹.K⁻¹)
- f: flux interne de chaleur (W.m $^{-3}$)

Conditions aux limites

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

- u(x, t): température (K) à l'abscisse x (m) et au temps t (s),
- ρ : masse volumique (kg.m⁻³),
- c: capacité calorifique (J.kg⁻¹K⁻¹),
- λ : conductivité thermique (W.m⁻¹.K⁻¹)
- f: flux interne de chaleur (W.m⁻³)

Conditions aux limites

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

- u(x, t): température (K) à l'abscisse x (m) et au temps t (s),
- ρ : masse volumique (kg.m⁻³),
- c : capacité calorifique (J.kg⁻¹K⁻¹),
- λ : conductivité thermique (W.m⁻¹.K⁻¹)
- f: flux interne de chaleur (W.m⁻³)

Conditions aux limites

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

- u(x, t): température (K) à l'abscisse x (m) et au temps t (s),
- ρ : masse volumique (kg.m⁻³),
- c : capacité calorifique (J.kg⁻¹K⁻¹),
- λ : conductivité thermique (W.m⁻¹.K⁻¹)
- f: flux interne de chaleur (W.m⁻³)

Gonditions aux limites

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

- u(x, t): température (K) à l'abscisse x (m) et au temps t (s),
- ρ : masse volumique (kg.m⁻³),
- c : capacité calorifique (J.kg⁻¹K⁻¹),
- λ : conductivité thermique (W.m⁻¹.K⁻¹)
- f: flux interne de chaleur (W.m⁻³)

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

Conditions aux limites

$$\forall t > 0, \ u(0,t) = u(L,t) = u_{ext}$$

Conditions initiales

$$\forall x \in]0, L[, \ u(x,0) = u_{ext}$$

$$\rho c \frac{\partial u}{\partial t}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ x \in]0, L[, \ t > 0,$$

Conditions aux limites

$$\forall t > 0, \ u(0,t) = u(L,t) = u_{ext}$$

Conditions initiales

$$\forall x \in]0, L[, u(x,0) = u_{ext}$$

Solution stationnaire

• Hypothèse : $\forall t>0$, f(x,t)=f(x) $\Longrightarrow \lim_{t\to\infty} u(x,t)=u(x),$ $\rho c \frac{\partial u}{\partial t}(x,t)-\lambda \frac{\partial^2 u}{\partial x^2}(x,t)=f(x), \ x\in]0, L[,\ t>0,$

u est solution de l'équation

$$-\lambda u''(x) = f(x), x \in]0, L[$$

$$u(0) = u(L) = u_{ext}$$

Printemps 2024

Solution stationnaire

• Hypothèse : $\forall t > 0$, f(x,t) = f(x) $\Longrightarrow \lim_{t \to \infty} u(x,t) = u(x),$ $\rho c \frac{\partial u}{\partial x^2}(x,t) - \lambda \frac{\partial^2 u}{\partial x^2}(x,t) = f(x), \ x \in]0, L[,\ t > 0,$

u est solution de l'équation

$$-\lambda u''(x) = f(x), x \in]0, L[,$$

$$u(0) = u(L) = u_{ext}$$

4/46

E. Khoury MT00-Ch2 Printemps 2024

Approximation de la solution stationnaire

• Discrétisation de l'intervalle [0, L] :

$$x_k = kh, h = \frac{L}{n}$$

- On cherche une approximation de $u(x_k)$ pour $k=0,\ldots,n$
- Moyen : approximation de la dérivée seconde de $u(x_k)$:

$$u(x_k + h) = u(x_k) + hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_1(h),$$

$$u(x_k - h) = u(x_k) - hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_2(h),$$

Approximation de la solution stationnaire

• Discrétisation de l'intervalle [0, L] :

$$x_k = kh, \ h = \frac{L}{n}$$

- On cherche une approximation de $u(x_k)$ pour k = 0, ..., n
- Moyen : approximation de la dérivée seconde de u(x_k) :

$$u(x_k + h) = u(x_k) + hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_1(h),$$

$$u(x_k - h) = u(x_k) - hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_2(h),$$

Approximation de la solution stationnaire

Discrétisation de l'intervalle [0, L] :

$$x_k = kh, h = \frac{L}{n}$$

- On cherche une approximation de $u(x_k)$ pour $k = 0, \dots, n$
- Moyen : approximation de la dérivée seconde de $u(x_k)$:

$$u(x_k + h) = u(x_k) + hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_1(h),$$

$$u(x_k - h) = u(x_k) - hu'(x_k) + \frac{h^2}{2}u''(x_k) + h^2\varepsilon_2(h),$$

Approximation de la solution stationnaire

$$u''(x_k) = \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} + \varepsilon(h), \ k = 1, \ldots, n-1$$

- Hypothèse : $u_{ext} = 0$
- Équation de la chaleur stationnaire en x_k , $k=1,\ldots,n-1$:

$$-\lambda \frac{-2u(x_1) + u(x_2)}{h^2} = f(x_1) + \lambda \varepsilon(h),$$

$$-\lambda \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} = f(x_k) + \lambda \varepsilon(h), k = 2, \dots, n-2$$

$$-\lambda \frac{u(x_{n-2}) - 2u(x_{n-1})}{h^2} = f(x_{n-1}) + \lambda \varepsilon(h)$$

 \implies si on néglige $\varepsilon(h)$, on peut approcher $u(x_k), k=1,\ldots,n-1$

E. Khoury MT00-Ch2 Printemps 2024 6/46

Approximation de la solution stationnaire

$$u''(x_k) = \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} + \varepsilon(h), \ k = 1, \dots, n-1$$

- Hypothèse : $u_{ext} = 0$
- Équation de la chaleur stationnaire en x_k , k = 1, ..., n 1:

$$-\lambda \frac{-2u(x_1) + u(x_2)}{h^2} = f(x_1) + \lambda \varepsilon(h),$$

$$-\lambda \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} = f(x_k) + \lambda \varepsilon(h), k = 2, \dots, n-2$$

$$-\lambda \frac{u(x_{n-2}) - 2u(x_{n-1})}{h^2} = f(x_{n-1}) + \lambda \varepsilon(h)$$

 \implies si on néglige $\varepsilon(h)$, on peut approcher $u(x_k), k=1,\ldots,n-1$

E. Khoury MT00-Ch2 Printemps 2024 6/46

Approximation de la solution stationnaire

$$u''(x_k) = \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} + \varepsilon(h), \ k = 1, \dots, n-1$$

- Hypothèse : $u_{ext} = 0$
- Équation de la chaleur stationnaire en x_k , k = 1, ..., n-1:

$$-\lambda \frac{-2u(x_1) + u(x_2)}{h^2} = f(x_1) + \lambda \varepsilon(h),$$

$$-\lambda \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} = f(x_k) + \lambda \varepsilon(h), k = 2, \dots, n-2$$

$$-\lambda \frac{u(x_{n-2}) - 2u(x_{n-1})}{h^2} = f(x_{n-1}) + \lambda \varepsilon(h)$$

 \implies si on néglige $\varepsilon(h)$, on peut approcher $u(x_k)$, $k=1,\ldots,n-1$

Approximation de la solution stationnaire

$$u''(x_k) = \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} + \varepsilon(h), \ k = 1, \dots, n-1$$

- Hypothèse : $u_{ext} = 0$
- Équation de la chaleur stationnaire en x_k , k = 1, ..., n-1:

$$-\lambda \frac{-2u(x_1) + u(x_2)}{h^2} = f(x_1) + \lambda \varepsilon(h),$$

$$-\lambda \frac{u(x_{k-1}) - 2u(x_k) + u(x_{k+1})}{h^2} = f(x_k) + \lambda \varepsilon(h), k = 2, \dots, n-2$$

$$-\lambda \frac{u(x_{n-2}) - 2u(x_{n-1})}{h^2} = f(x_{n-1}) + \lambda \varepsilon(h)$$

 \implies si on néglige $\varepsilon(h)$, on peut approcher $u(x_k)$, $k=1,\ldots,n-1$

E. Khoury MT00-Ch2 Printemps 2024 6/46

Approximation de la solution stationnaire

- On pose $v = [v_1, \dots, v_{n-1}]^{\top}$ où v_k est l'approximation de $u(x_k)$
- v est solution du système d'équations linéaires

$$-\frac{\lambda}{h^2}\begin{pmatrix} -2 & 1 & & & 0\\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & 1 & -2 & 1\\ 0 & & & 1 & -2 \end{pmatrix}\begin{pmatrix} v_1\\ v_2\\ \vdots\\ v_{n-2}\\ v_{n-1} \end{pmatrix} = \begin{pmatrix} f(x_1)\\ f(x_2)\\ \vdots\\ f(x_{n-2})\\ f(x_{n-1}) \end{pmatrix},$$

$$v_0 = v_n = 0.$$

Approximation de la solution stationnaire (avec Scilab)

```
L=1; n=50; h=L/n; lambda=1;
A=zeros(n-1,n-1);
A(1,1:2) = [-2 1];
for i=2:n-2:
   A(i,i-1:i+1) = [1 -2 1];
end
A(n-1, n-2:n-1) = [1 -2];
A=-A*lambda/h^2;
x=linspace(h,L-h,n-1);
f = (x > L/4 \& x < L/3)';
v=A\f; // Resolution du systeme
plot(x, v, "o")
```

Approximation de la solution stationnaire (avec Scilab)

Méthode de Cramer

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$Ax = b \Longleftrightarrow x_i = \frac{\det(A_1, \dots, A_{i-1}, b, A_{i+1}, \dots, A_n)}{\det A}, \ i = 1, \dots, n.$$

Le calcul de chaque déterminant nécessite *nn*! opérations :

$$\det A = \sum_{\sigma \in S(\{1,\dots,n\})} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$

 \Rightarrow calcul de x en n(n+1)! opérations

Exemple pour n = 16

5.690998810¹⁵ opérations soit plus de 15 heures sur un GPU à 10¹¹ FLOPS (100 GFLOPS)!

Méthode de Cramer

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$Ax = b \Longleftrightarrow x_i = \frac{\det(A_1, \ldots, A_{i-1}, b, A_{i+1}, \ldots, A_n)}{\det A}, i = 1, \ldots, n.$$

Le calcul de chaque déterminant nécessite nn! opérations :

$$\det A = \sum_{\sigma \in S(\{1,\dots,n\})} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$

- \Rightarrow calcul de x en n(n+1)! opérations
- Exemple pour n = 16

5.690998810¹⁵ opérations soit plus de 15 heures sur un GPU à 10¹¹ FLOPS (100 GFLOPS)!

Méthode de Cramer

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$Ax = b \Longleftrightarrow x_i = \frac{\det(A_1, \ldots, A_{i-1}, b, A_{i+1}, \ldots, A_n)}{\det A}, i = 1, \ldots, n.$$

Le calcul de chaque déterminant nécessite *nn*! opérations :

$$\det A = \sum_{\sigma \in S(\{1,\dots,n\})} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$

 \Rightarrow calcul de x en n(n+1)! opérations

• Exemple pour n = 16:

5.690998810¹⁵ opérations soit plus de 15 heures sur un GPU à 10¹¹ FLOPS (100 GFLOPS)!

10/46

E. Khoury MT00-Ch2 Printemps 2024

Résolution d'un système triangulaire

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ triangulaire inférieure avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$A = \left(\begin{array}{cccc} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & & \ddots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array} \right), \quad j > i \Rightarrow a_{ij} = 0.$$

Solution

$$x_1 = \frac{b_1}{a_{11}},$$

 $x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j\right) / a_{ii}, i = 2, \dots, n$

E. Khoury MT00-Ch2 Printemps 2024 11/46

Résolution d'un système triangulaire

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ triangulaire inférieure avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$A = \left(egin{array}{cccc} a_{11} & & & & & & \\ a_{21} & a_{22} & & & & & \\ \vdots & & \ddots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}
ight), \quad j > i \Rightarrow a_{ij} = 0.$$

Solution

$$x_1 = \frac{b_1}{a_{11}},$$

 $x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j\right) / a_{ii}, i = 2, ..., n$

E. Khoury MT00-Ch2 Printemps 2024 11/46

Résolution d'un système triangulaire

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ triangulaire supérieure avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{array} \right), \quad i > j \Rightarrow a_{ij} = 0.$$

Solution

$$x_n = \frac{b_n}{a_{nn}}, \quad x_i = \left(b_i - \sum_{j=i+1}^n a_{ij}x_j\right)/a_{ii}, \ i = 1, \dots, n-1$$

Nombre d'opérations :
$$2 \times \frac{n(n-1)}{2} + n = n^2$$

E. Khoury MT00-Ch2 Printemps 2024 12/46

Résolution d'un système triangulaire

• $A \in \mathcal{M}_{n,n}(\mathbb{R})$ triangulaire supérieure avec det $A \neq 0$, $b \in \mathbb{R}^n$

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{array} \right), \quad i > j \Rightarrow a_{ij} = 0.$$

Solution

$$x_n = \frac{b_n}{a_{nn}}, \quad x_i = \left(b_i - \sum_{j=i+1}^n a_{ij}x_j\right)/a_{ii}, i = 1, \dots, n-1$$

Nombre d'opérations :
$$2 \times \frac{n(n-1)}{2} + n = n^2$$

E. Khoury MT00-Ch2 Printemps 2024 12/46

Principe de l'algorithme

Construire $U \in \mathcal{M}_{n,n}(\mathbb{R})$ triangulaire supérieure et $y \in \mathbb{R}^n$ tels que

$$Ax = b \iff Ux = y$$

• Exemple:

$$x_1$$
 +2 x_2 + x_4 = 0
 $2x_1$ +6 x_2 + x_3 +2 x_4 = -1
 $-x_1$ +4 x_3 -2 x_4 = 1
 x_1 +6 x_2 +5 x_3 +4 x_4 = 4

Principe de l'algorithme

• Étape 1 :

$$x_1$$
 +2 x_2 + x_4 = 0
 $2x_1$ +6 x_2 + x_3 +2 x_4 = -1
 $-x_1$ +4 x_3 -2 x_4 = 1
 x_1 +6 x_2 +5 x_3 +4 x_4 = 4

$$x_1 + 2x_2 + x_4 = 0$$

Principe de l'algorithme

Étape 1 :

$$x_1$$
 $+2x_2$ $+x_4$ = 0
 $2x_1$ $+6x_2$ $+x_3$ $+2x_4$ = -1 $L_2 \leftarrow L_2 - 2L_1$
 $-x_1$ $+4x_3$ $-2x_4$ = 1
 x_1 $+6x_2$ $+5x_3$ $+4x_4$ = 4

$$x_1 +2x_2 +x_3 = 0$$

 $+2x_2 +x_3 = -1$

14/46

Principe de l'algorithme

Étape 1 :

$$x_1$$
 $+2x_2$ $+x_4$ = 0
 $2x_1$ $+6x_2$ $+x_3$ $+2x_4$ = -1
 $-x_1$ $+4x_3$ $-2x_4$ = 1 $L_3 \leftarrow L_3 + L_1$
 x_1 $+6x_2$ $+5x_3$ $+4x_4$ = 4

E. Khoury MT00-Ch2 Printemps 2024 14/46

Principe de l'algorithme

Étape 1 :

$$x_1$$
 $+2x_2$ $+x_4$ = 0
 $2x_1$ $+6x_2$ $+x_3$ $+2x_4$ = -1
 $-x_1$ $+4x_3$ $-2x_4$ = 1
 x_1 $+6x_2$ $+5x_3$ $+4x_4$ = 4 $L_4 \leftarrow L_4 - L_1$

$$\Rightarrow \begin{array}{ccccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & +2x_2 & +4x_3 & -x_4 & = 1 \\ & +4x_2 & +5x_3 & +3x_4 & = 4 \end{array}$$

14/46

Principe de l'algorithme

• Étape 2 :

$$x_1$$
 $+2x_2$ $+x_4$ = 0
 $+2x_2$ $+x_3$ = -1
 $+2x_2$ $+4x_3$ $-x_4$ = 1
 $+4x_2$ $+5x_3$ $+3x_4$ = 4

$$\begin{array}{ccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \end{array}$$

Principe de l'algorithme

Étape 2 :

$$x_1$$
 $+2x_2$ $+x_4$ $= 0$
 $+2x_2$ $+x_3$ $= -1$
 $+2x_2$ $+4x_3$ $-x_4$ $= 1$ $L_3 \leftarrow L_3 - L_2$
 $+4x_2$ $+5x_3$ $+3x_4$ $= 4$

$$\Rightarrow \begin{array}{ccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & & +3x_3 & -x_4 & = 2 \end{array}$$

Principe de l'algorithme

• Étape 2 :

$$\Rightarrow \begin{array}{ccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & & +3x_3 & -x_4 & = 2 \\ & & +3x_3 & +3x_4 & = 6 \end{array}$$

15/46

E. Khoury MT00-Ch2 Printemps 2024

Principe de l'algorithme

• Étape 3 :

$$x_1$$
 $+2x_2$ $+x_4$ $= 0$
 $+2x_2$ $+x_3$ $= -1$
 $+3x_3$ $-x_4$ $= 2$
 $+3x_3$ $+3x_4$ $= 6$

$$\Rightarrow \begin{array}{cccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & & +3x_3 & -x_4 & = 2 \end{array}$$

Principe de l'algorithme

• Étape 3 :

$$\Rightarrow \begin{array}{cccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & & +3x_3 & -x_4 & = 2 \\ & & & +4x_4 & = 4 \end{array}$$

Principe de l'algorithme

$$\begin{array}{cccccccc} x_1 & +2x_2 & & +x_4 & = 0 \\ & +2x_2 & +x_3 & & = -1 \\ & & +3x_3 & -x_4 & = 2 \\ & & & +4x_4 & = 4 \end{array}$$

$$x_4 = 1$$

Principe de l'algorithme

$$x_1$$
 +2 x_2 + x_4 = 0
+2 x_2 + x_3 = -1
+3 x_3 - x_4 = 2
+4 x_4 = 4

$$x_4 = 1, \quad x_3 = 1$$

Principe de l'algorithme

$$x_1$$
 +2 x_2 + x_4 = 0
+2 x_2 + x_3 = -1
+3 x_3 - x_4 = 2
+4 x_4 = 4

$$x_4 = 1$$
, $x_3 = 1$, $x_2 = -1$

Principe de l'algorithme

$$x_1$$
 +2 x_2 + x_4 = 0
+2 x_2 + x_3 = -1
+3 x_3 - x_4 = 2
+4 x_4 = 4

$$x_4 = 1$$
, $x_3 = 1$, $x_2 = -1$, $x_1 = 1$

Principe de l'algorithme (sous forme matricielle)

• Étape 1 :

$$A^{(1)} = \begin{pmatrix} \boxed{1} & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix}, \ b^{(1)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix}$$

$$A^{(2)} = \left(\begin{array}{ccc} 1 & 2 & 0 & 1 \\ & & & \\ \end{array} \right), \ b^{(2)} = \left(\begin{array}{ccc} & 0 \\ & \\ \end{array} \right)$$

Principe de l'algorithme (sous forme matricielle)

• Étape 1 :

$$A^{(1)} = \begin{pmatrix} \boxed{1} & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix}, \ b^{(1)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix} \ \ \begin{matrix} L_2 \leftarrow L_2 - 2L_1 \end{matrix}$$

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ & & & \end{pmatrix}, b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ \end{pmatrix}$$

Principe de l'algorithme (sous forme matricielle)

• Étape 1 :

$$A^{(1)} = \begin{pmatrix} \boxed{1} & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix}, \ b^{(1)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix} \ L_3 \leftarrow L_3 + L_1$$

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -1 \end{pmatrix}, \ b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

E. Khoury

Principe de l'algorithme (sous forme matricielle)

• Étape 1 :

$$A^{(1)} = \begin{pmatrix} \boxed{1} & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix}, b^{(1)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix} \quad L_4 \leftarrow L_4 - L_1$$

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 4 & 5 & 3 \end{pmatrix}, b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix}$$

E. Khoury MT00-Ch2 Printemps 2024 18/46

Principe de l'algorithme (sous forme matricielle)

• Étape 2 :

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 4 & 5 & 3 \end{pmatrix}, b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix}$$

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ & & & \end{pmatrix}, \ b^{(3)} = \begin{pmatrix} 0 \\ -1 \\ \end{pmatrix}$$

Principe de l'algorithme (sous forme matricielle)

Étape 2 :

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 4 & 5 & 3 \end{pmatrix}, b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix} L_3 \leftarrow L_3 - L_2$$

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix}, \ b^{(3)} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$$

19/46

Principe de l'algorithme (sous forme matricielle)

Étape 2 :

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 4 & 5 & 3 \end{pmatrix}, b^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 4 \end{pmatrix} \quad L_4 \leftarrow L_4 - 2L_2$$

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & 3 \end{pmatrix}, \ b^{(3)} = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 6 \end{pmatrix}$$

Principe de l'algorithme (sous forme matricielle)

• Étape 3 :

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & 3 \end{pmatrix}, b^{(3)} = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 6 \end{pmatrix}$$

$$A^{(4)} = U = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix}, b^{(4)} = y = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$$

E. Khoury MT00-Ch

Principe de l'algorithme (sous forme matricielle)

• Étape 3 :

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & 3 \end{pmatrix}, b^{(3)} = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 6 \end{pmatrix}$$

$$A^{(4)} = U = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 4 \end{pmatrix}, b^{(4)} = y = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$

E. Khoury MT00-Ch2 Printemps 2024 20/46

Étape k pour une matrice $n \times n$

$$\mathcal{A}^{(k)} = \left(egin{array}{cccccc} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & dots \\ & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & & dots \\ & & a_{jk}^{(k)} & \dots & a_{jn}^{(k)} \\ & & & dots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{array}
ight)$$

21/46

Étape k pour une matrice $n \times n$

$$A^{(k)} = \left(egin{array}{ccccc} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & \vdots \\ & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & \vdots & & \vdots \\ & & a_{jk}^{(k)} & \dots & a_{jn}^{(k)} \\ & & \vdots & & \vdots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{array}
ight)$$

Si le **pivot** $a_{kk}^{(k)} \neq 0$

E. Khoury MT00-Ch2 Printemps 2024 21/46

Étape k pour une matrice $n \times n$

$$A^{(k)} = \left(egin{array}{ccccc} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & \vdots \\ & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & \vdots & & \vdots \\ & a_{ik}^{(k)} & \dots & a_{in}^{(k)} \\ & & \vdots & & \vdots \\ & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{array}
ight) L_i \leftarrow L_i - rac{a_{ik}^{(k)}}{a_{kk}^{(k)}} L_k$$

Si le **pivot** $a_{kk}^{(k)} \neq 0$, alors pour i = k + 1, ..., n:

E. Khoury MT00-Ch2 Printemps 2024 21/46

Étape k pour une matrice $n \times n$

$$A^{(k)} = \begin{pmatrix} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & \vdots \\ & & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & \vdots & & \vdots \\ & & a_{ik}^{(k)} & \dots & a_{in}^{(k)} \\ & & \vdots & & \vdots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{pmatrix} L_i \leftarrow L_i - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} L_k$$

Si le **pivot** $a_{kk}^{(k)} \neq 0$, alors pour i = k + 1, ..., n:

$$a_{ik}^{(k+1)} = 0$$
 et $a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}$, pour $j = k+1, \ldots, n$.

- **4□ ▶ 4回 ▶ 4**重 ▶ ◆ 重 ・ **夕** ♀ ⊙

E. Khoury MT00-Ch2 Printemps 2024 21/46

1: pour k = 1 jusqu'à n - 1 faire

14: fin pour

- 1: **pour** k = 1 jusqu'à n 1 **faire**
- 2: $\operatorname{si} |a_{kk}| < \varepsilon \operatorname{alors}$
- 3: Arrêter l'algorithme et donner un message d'erreur
- 4: sinon

- 13: **fin si**
- 14: fin pour

- 1: **pour** k = 1 jusqu'à n 1 **faire**
- 2: $\operatorname{si} |a_{kk}| < \varepsilon \text{ alors}$
- 3: Arrêter l'algorithme et donner un message d'erreur
- 4: sinon
- 5: **pour** i = k + 1 jusqu'à n **faire**

- 12: **fin pour**
- 13: **fin si**
- 14: fin pour

pour k = 1 jusqu'à n − 1 faire
 si |a_{kk}| < ε alors
 Arrêter l'algorithme et donner un message d'erreur
 sinon
 pour i = k + 1 jusqu'à n faire
 c ← a_{ik}/a_{kk}
 a_{ik} ← 0
 b_i ← b_i − cb_k

- 12: fin pour
- 13: **fin si**
- 14: fin pour

```
1: pour k = 1 jusqu'à n - 1 faire
       si |a_{kk}| < \varepsilon alors
          Arrêter l'algorithme et donner un message d'erreur
 3:
       sinon
 4:
          pour i = k + 1 jusqu'à n faire
 5:
             c \leftarrow a_{ik}/a_{kk}
 6:
 7:
             a_{ik} \leftarrow 0
            b_i \leftarrow b_i - cb_k
 8:
             pour j = k + 1 jusqu'à n faire
 9:
10:
                a_{ii} \leftarrow a_{ij} - ca_{kj}
11:
             fin pour
12:
          fin pour
       fin si
13:
14: fin pour
```

```
1: pour k = 1 jusqu'à n - 1 faire
       si |a_{kk}| < \varepsilon alors
          Arrêter l'algorithme et donner un message d'erreur
 3:
       sinon
 4:
          pour i = k + 1 jusqu'à n faire
 5:
             c \leftarrow a_{ik}/a_{kk}
 6:
7:
            a_{ik} \leftarrow 0
          b_i \leftarrow b_i - cb_k
 8:
       pour j = k + 1 jusqu'à n faire
 9:
10:
              a_{ii} \leftarrow a_{ii} - ca_{ki}
11:
             fin pour
12:
          fin pour
       fin si
13:
14: fin pour
15: si |a_{nn}| < \varepsilon alors
       Arrêter l'algorithme et donner un message d'erreur
17: fin si
```

Nombre d'opérations

Quel est le nombre d'opérations de l'algorithme de Gauss?

Nombre d'opérations

Quel est le nombre d'opérations de l'algorithme de Gauss?

Proposition

Le nombre d'opérations pour de l'algorithme de Gauss (élimination et remontée) est de l'ordre de n^3 .

Nombre d'opérations

Quel est le nombre d'opérations de l'algorithme de Gauss?

Proposition

Le nombre d'opérations pour de l'algorithme de Gauss (élimination et remontée) est de l'ordre de n^3 .

 Pour n = 16, avec la remontée, on obtient moins de 2000 opérations et un temps de calcul de 0,016μs

Nombre d'opérations

Permutation de lignes

• L'algorithme de Gauss échoue dès qu'il existe k tel que $a_{kk}^{(k)} = 0$

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 3 & 1 & 1 \end{array}\right), \ b = \left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

Permutation de lignes

• L'algorithme de Gauss échoue dès qu'il existe k tel que $a_{kk}^{(k)} = 0$

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

• Il suffit d'échanger les lignes {1,2}

$$A^{(1)} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}, b^{(1)} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Permutation de lignes

• L'algorithme de Gauss échoue dès qu'il existe k tel que $a_{kk}^{(k)}=0$

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Il suffit d'échanger les lignes {1,2} ou {1,3}

$$A^{(1)} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}, b^{(1)} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Permutations de lignes

$$\mathcal{A}^{(k)} = \left(egin{array}{ccccc} a_{11}^{(k)} & \ldots & a_{1k}^{(k)} & \ldots & a_{1n}^{(k)} \\ & \ddots & & & dots \\ & & a_{kk}^{(k)} & \ldots & a_{kn}^{(k)} \\ & & dots & & dots \\ & & a_{ik}^{(k)} & \ldots & a_{in}^{(k)} \\ & & dots & & dots \\ & & a_{nk}^{(k)} & \ldots & a_{nn}^{(k)} \end{array}
ight)$$

Proposition

Si det $A \neq 0$ alors

$$\forall k \in \{1, ..., n\}, \ \exists i \in \{k, ..., n\}, \ a_{ik}^{(k)} \neq 0.$$

Permutations de lignes

$$\mathcal{A}^{(k)} = \left(egin{array}{ccccc} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & dots \\ & & 0 & \dots & a_{kn}^{(k)} \\ & & dots & & dots \\ & & 0 & \dots & a_{nn}^{(k)} \\ & & dots & & dots \\ & & 0 & \dots & a_{nn}^{(k)} \end{array}
ight)$$

Proposition

Si det $A \neq 0$ alors

$$\forall k \in \{1, ..., n\}, \exists i \in \{k, ..., n\}, a_{ik}^{(k)} \neq 0.$$

Permutations de lignes

$$A^{(k)} = \begin{pmatrix} a_{11}^{(k)} & \dots & a_{1k}^{(k)} & \dots & a_{1n}^{(k)} \\ & \ddots & & & \vdots \\ & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & \vdots & & \vdots \\ & a_{mk}^{(k)} & \dots & a_{mn}^{(k)} \\ & \vdots & & \vdots \\ & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{pmatrix} L_k \leftarrow L_m$$

En pratique, on permute systématiquement les lignes $\{k, m\}$ où

$$\forall i \in \{k,\ldots,n\}, |a_{m,k}| \geq |a_{i,k}|$$

E. Khoury MT00-Ch2 Printemps 2024 26/46

Permutation de lignes

$$A^{(1)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix} \begin{array}{c} L_1 \leftarrow L_2 \\ L_2 \leftarrow L_1 \end{array}$$

$$A^{(2)} = \left(egin{array}{ccccc} 2 & 6 & 1 & 2 \\ & & & \\ & & & \end{array}
ight)$$

Permutation de lignes

$$A^{(1)} = \begin{pmatrix} 2 & 6 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix} \quad L_2 \leftarrow L_2 - \frac{1}{2}L_1$$

$$A^{(2)} = \left(\begin{array}{cccc} 2 & 6 & 1 & 2 \\ 0 & -1 & -\frac{1}{2} & 0 \end{array}\right)$$

Permutation de lignes

$$A^{(1)} = \begin{pmatrix} 2 & 6 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix} \quad L_3 \leftarrow L_3 + \frac{1}{2}L_1$$

$$A^{(2)} = \left(\begin{array}{cccc} 2 & 6 & 1 & 2 \\ 0 & -1 & -\frac{1}{2} & 0 \\ 0 & 3 & \frac{9}{2} & -1 \end{array}\right)$$

Permutation de lignes

$$A^{(1)} = \begin{pmatrix} 2 & 6 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix} \quad L_4 \leftarrow L_4 - \frac{1}{2}L_1$$

$$A^{(2)} = \begin{pmatrix} 2 & 6 & 1 & 2 \\ 0 & -1 & -\frac{1}{2} & 0 \\ 0 & 3 & \frac{9}{2} & -1 \\ 0 & 3 & \frac{5}{2} & 3 \end{pmatrix}$$

Ecriture matricielle de l'élimination de Gauss

Notations

On note:

- $U = A^{(n)}$,
- A_i la ligne numéro i de la matrice A,
- $\ell_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}$ utilisé pour éliminer x_k de l'équation i > k.

Ecriture matricielle de l'élimination de Gauss

Notations

On note:

- $U = A^{(n)}$,
- A_i la ligne numéro i de la matrice A,
- $\ell_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ utilisé pour éliminer x_k de l'équation i > k.
- Pour n = 2 les seules opérations effectuées sont :

$$\begin{aligned} \underline{A}_{2}^{(1)} &= \underline{A}_{2} \\ \underline{A}_{2}^{(2)} &= \underline{A}_{2}^{(1)} - \ell_{21} \underline{A}_{1}^{(1)} \end{aligned}$$

Ecriture matricielle de l'élimination de Gauss

Notations

On note:

- $U = A^{(n)}$,
- \underline{A}_i la ligne numéro i de la matrice A,
- $\ell_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ utilisé pour éliminer x_k de l'équation i > k.
- Pour n = 2 les seules opérations effectuées sont :

$$\underline{\underline{A}}_{2}^{(1)} = \underline{\underline{A}}_{2}
\underline{\underline{A}}_{2}^{(2)} = \underline{\underline{A}}_{2}^{(1)} - \ell_{21}\underline{\underline{A}}_{1}^{(1)} \qquad \Rightarrow \qquad \underline{\underline{A}}_{1} = \underline{\underline{U}}_{1}, \quad \underline{\underline{A}}_{2} = \ell_{21}\underline{\underline{U}}_{1} + \underline{\underline{U}}_{2}$$

28/46

Ecriture matricielle de l'élimination de Gauss

Notations

On note:

- $U = A^{(n)},$
- A_i la ligne numéro i de la matrice A,
- $\ell_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ utilisé pour éliminer x_k de l'équation i > k.
- Pour n = 2 les seules opérations effectuées sont :

$$\underline{\underline{A}}_{2}^{(1)} = \underline{\underline{A}}_{2}
\underline{\underline{A}}_{2}^{(2)} = \underline{\underline{A}}_{2}^{(1)} - \ell_{21}\underline{\underline{A}}_{1}^{(1)} \qquad \Rightarrow \qquad \underline{\underline{A}}_{1} = \underline{\underline{U}}_{1}, \quad \underline{\underline{A}}_{2} = \ell_{21}\underline{\underline{U}}_{1} + \underline{\underline{U}}_{2}$$

Relations valables pour tout *n*

28/46

Ecriture matricielle de l'élimination de Gauss

Pour n = 3 les opérations effectuées sur la ligne 3 sont

$$\underline{A}_{3}^{(1)} = \underline{A}_{3}
\underline{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31} \underline{A}_{1}^{(1)}
\underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32} \underline{A}_{2}^{(2)}$$

E. Khoury MT00-Ch2 Printemps 2024 29/46

Ecriture matricielle de l'élimination de Gauss

• Pour n = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(1)} = \underline{A}_{3}
+\underline{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)}
\underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

E. Khoury MT00-Ch2 Printemps 2024 29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(1)} = \underline{A}_{3}
+ \underline{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

E. Khoury MT00-Ch2 Printemps 2024 29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(1)} = \underline{A}_{3}
+ \underline{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

$$\underline{\textit{A}}_{3}^{(3)} = \underline{\textit{A}}_{3}^{(1)} - \ell_{31}\underline{\textit{A}}_{1}^{(1)} - \ell_{32}\underline{\textit{A}}_{2}^{(2)}$$

29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(1)} = \underline{A}_{3}
+ \underline{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

$$\underline{\underline{A}}_{3}^{(3)} = \underline{\underline{A}}_{3}^{(1)} - \ell_{31}\underline{\underline{A}}_{1}^{(1)} - \ell_{32}\underline{\underline{A}}_{2}^{(2)}$$

$$\underline{\underline{U}}_{3} = \underline{\underline{A}}_{3} - \ell_{31}\underline{\underline{U}}_{1} - \ell_{32}\underline{\underline{U}}_{2}$$

29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(1)} = \underline{A}_{3}
+ \mathbf{A}_{3}^{(2)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

$$\underline{A}_{3}^{(3)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)} - \ell_{32}\underline{A}_{2}^{(2)}
\underline{U}_{3} = \underline{A}_{3} - \ell_{31}\underline{U}_{1} - \ell_{32}\underline{U}_{2}
\underline{A}_{3} = \underline{\ell}_{31}\underline{U}_{1} + \ell_{32}\underline{U}_{2} + \underline{U}_{3}$$

29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(t)} = \underline{A}_{3}
+ \underline{A}_{3}^{(2)} = \underline{A}_{3}^{(t)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

$$\underline{A}_{3}^{(3)} = \underline{A}_{3}^{(1)} - \ell_{31}\underline{A}_{1}^{(1)} - \ell_{32}\underline{A}_{2}^{(2)}
\underline{U}_{3} = \underline{A}_{3} - \ell_{31}\underline{U}_{1} - \ell_{32}\underline{U}_{2}
\underline{A}_{3} = \underline{\ell}_{31}\underline{U}_{1} + \ell_{32}\underline{U}_{2} + \underline{U}_{3}$$

$$\underline{A}_1 = \underline{U}_1,
\underline{A}_2 = \ell_{21}\underline{U}_1 + \underline{U}_2,
\underline{A}_3 = \ell_{31}\underline{U}_1 + \ell_{32}\underline{U}_2 + \underline{U}_3$$

29/46

Ecriture matricielle de l'élimination de Gauss

• Pour *n* = 3 les opérations effectuées sur la ligne 3 sont

$$\mathbf{A}_{3}^{(t)} = \underline{A}_{3}
+ \mathbf{A}_{3}^{(2)} = \underline{A}_{3}^{(t)} - \ell_{31}\underline{A}_{1}^{(1)}
+ \underline{A}_{3}^{(3)} = \underline{A}_{3}^{(2)} - \ell_{32}\underline{A}_{2}^{(2)}$$

$$\begin{split} \underline{A}_{3}^{(3)} &= \underline{A}_{3}^{(1)} - \ell_{31} \underline{A}_{1}^{(1)} - \ell_{32} \underline{A}_{2}^{(2)} \\ \underline{U}_{3} &= \underline{A}_{3} - \ell_{31} \underline{U}_{1} - \ell_{32} \underline{U}_{2} \\ \underline{A}_{3} &= \underline{\ell}_{31} \underline{U}_{1} + \ell_{32} \underline{U}_{2} + \underline{U}_{3} \end{split}$$

$$\begin{split} \underline{\underline{A}}_1 &= \underline{\underline{U}}_1, \\ \underline{\underline{A}}_2 &= \ell_{21} \underline{\underline{U}}_1 + \underline{\underline{U}}_2, \\ \underline{\underline{A}}_3 &= \ell_{31} \underline{\underline{U}}_1 + \ell_{32} \underline{\underline{U}}_2 + \underline{\underline{U}}_3 \end{split}$$

$$A = \left(\begin{array}{cc} 1 & & \\ \ell_{21} & 1 & \\ \ell_{31} & \ell_{32} & 1 \end{array} \right) \left(\begin{array}{c} \underline{\underline{U}}_1 \\ \underline{\underline{U}}_2 \\ \underline{\underline{U}}_3 \end{array} \right)$$

29/46

Proposition

Soit A une matrice $n \times n$ inversible. Si l'algorithme de Gauss peut être appliqué à la matrice A sans permutations de lignes, alors il existe une une factorisation unique

$$A = LU$$
,

où $U = A^{(n)}$ et L est une matrice triangulaire inférieure dont les termes diagonaux sont égaux à 1.

Proposition

Soit A une matrice $n \times n$ inversible. Si l'algorithme de Gauss peut être appliqué à la matrice A sans permutations de lignes, alors il existe une une factorisation unique

$$A = LU$$
,

où $U = A^{(n)}$ et L est une matrice triangulaire inférieure dont les termes diagonaux sont égaux à 1.

Démonstration

On montre que

$$\underline{A}_{j} = \sum_{k=1}^{j-1} \ell_{jk} \underline{U}_{k} + \underline{U}_{j}, j = 1, \dots n, \text{ où } \ell_{jk} = \frac{a_{jk}^{(k)}}{a_{kk}^{(k)}}.$$

Unicité?

Unicité

Nous avons besoin des deux résultats préliminaires suivants :

Lemme

Soient A et B deux matrices triangulaires inférieures. Leur produit AB est triangulaire inférieure et on a

$$(AB)_{ii} = a_{ii}b_{ii}$$
.

Lemme

Soit A une matrice triangulaire inférieure inversible. Alors A^{-1} est triangulaire inférieure et

$$(A^{-1})_{ii}=\frac{1}{a_{ii}}.$$

31/46

E. Khoury MT00-Ch2 Printemps 2024

Algorithme

```
1: pour k = 1 jusqu'à n - 1 faire
       si |a_{kk}| < \varepsilon alors
 2:
          Arrêter l'algorithme et donner un message d'erreur
 3:
       sinon
 4:
          pour i = k + 1 jusqu'à n faire
 5:
            \ell_{ik} \leftarrow a_{ik}/a_{kk}
 6:
             a_{ik} \leftarrow 0
 8:
             pour i = k + 1 jusqu'à n faire
                a_{ii} \leftarrow a_{ii} - \ell_{ik} a_{ki}
 9:
             fin pour
10:
11:
          fin pour
       fin si
12.
13: fin pour
14: si |a_{nn}| < \varepsilon alors
       Arrêter l'algorithme et donner un message d'erreur
16: fin si
```

Algorithme

6:
$$\ell_{ik} \leftarrow a_{ik}/a_{kk}$$

Exemple

$$A^{(1)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 6 & 1 & 2 \\ -1 & 0 & 4 & -2 \\ 1 & 6 & 5 & 4 \end{pmatrix} \begin{array}{c} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 + 1L_1 \\ L_4 \leftarrow L_4 - 1L_1 \end{array}$$

$$L = \left(\begin{array}{ccc} 1 & & \\ 2 & 1 & \\ -1 & & 1 \\ 1 & & & 1 \end{array}\right)$$

Exemple

$$A^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ & 2 & 1 & 0 \\ & 2 & 4 & -1 \\ & 4 & 5 & 3 \end{pmatrix} \begin{array}{c} L_3 \leftarrow L_3 - 1L_2 \\ L_4 \leftarrow L_4 - 2L_2 \end{array}$$

$$L = \left(\begin{array}{cccc} 1 & & \\ 2 & 1 & \\ -1 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right)$$

Exemple

$$A^{(3)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ & 2 & 1 & 0 \\ & & 3 & -1 \\ & & 3 & 3 \end{pmatrix} L_4 \leftarrow L_4 - 1L_3$$

$$L = \left(\begin{array}{cccc} 1 & & \\ 2 & 1 & \\ -1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{array}\right)$$

Exemple

$$U = A^{(4)} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ & 2 & 1 & 0 \\ & & 3 & -1 \\ & & & 4 \end{pmatrix}$$

$$L = \left(\begin{array}{cccc} 1 & & \\ 2 & 1 & \\ -1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{array}\right)$$

Utilisation pratique

$$Ax = b \iff LUx = b$$

 $\iff Ly = b, Ux = y$

- Factorisation de A
- 2 Résolution de Ly = b

« descente »

1 Résolution de Ux = y

« remontée »

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

E. Khoury MT00-Ch2

Utilisation pratique

$$Ax = b \iff LUx = b$$

 $\iff Ly = b, Ux = y$

- Factorisation de A
- 2 Résolution de Ly = b

« descente »

In the second Résolution de Ux = y

« remontée ›

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

34/46

E. Khoury MT00-Ch2

Utilisation pratique

$$Ax = b \iff LUx = b$$
$$\iff Ly = b, \ Ux = y$$

- Factorisation de A
- 2 Résolution de Ly = b
- « descente »

3 Résolution de Ux = y

« remontée >

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

Printemps 2024

Utilisation pratique

$$Ax = b \iff LUx = b$$
$$\iff Ly = b, \ Ux = y$$

- Factorisation de A
- ② Résolution de Ly = b

descente »

1 Résolution de Ux = y

« remontée »

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

Utilisation pratique

$$Ax = b \iff LUx = b$$
$$\iff Ly = b, Ux = y$$

- Factorisation de A
- **2** Résolution de Ly = b
- 3 Résolution de Ux = y

« descente »

« remontée :

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

Utilisation pratique

$$Ax = b \iff LUx = b$$

 $\iff Ly = b, Ux = y$

- Factorisation de A
- 2 Résolution de Ly = b
- « descente »

1 Résolution de Ux = y

« remontée »

Utilisation pratique

$$Ax = b \iff LUx = b$$

 $\iff Ly = b, Ux = y$

- Factorisation de A
- **2** Résolution de Ly = b « descente »
- **3** Résolution de Ux = y **« remontée »**

Pour résoudre le système avec un nouveau second membre, seules la « descente » et la « remontée » sont nécessaires!

Printemps 2024

Matrice de permutation

• Soit σ une permutation de $\{1, 2, ..., n\}$ et $\{e_1, ..., e_n\}$ la base canonique de \mathbb{R}^n . La matrice de permutation P associée à σ est définie par

$$P = (e_{\sigma(1)} e_{\sigma(2)} \dots e_{\sigma(n)})$$

Proposition

Si A est inversible alors il existe U triangulaire supérieure, L une matrice triangulaire inférieure dont les termes diagonaux sont égaux à 1 et P une matrice de permutation tels que

$$PA = LU$$
.

Attention : la factorisation n'est plus unique et *P* n'est pas connue à l'avance!

E. Khoury MT00-Ch2 Printemps 2024 35/46

Matrice de permutation

• Soit σ une permutation de $\{1,2,\ldots,n\}$ et $\{e_1,\ldots,e_n\}$ la base canonique de \mathbb{R}^n . La matrice de permutation P associée à σ est définie par

$$P = (e_{\sigma(1)} e_{\sigma(2)} \dots e_{\sigma(n)})$$

Proposition

Si A est inversible alors il existe U triangulaire supérieure, L une matrice triangulaire inférieure dont les termes diagonaux sont égaux à 1 et P une matrice de permutation tels que

$$PA = LU$$
.

Attention : la factorisation n'est plus unique et *P* n'est pas connue à l'avance!

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{1, 2, 3\}$

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

Initialement, il n'y a pas de permutation

Printemps 2024

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{3, 2, 1\}$

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

Étape 1 : échange des lignes 1 et 3

36/46

E. Khoury MT00-Ch2 Printemps 2024

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{3, 2, 1\}$

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{3} & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ \frac{1}{3} & \frac{5}{3} \\ 1 & 1 \end{pmatrix}$$

Étape 1 : élimination

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{3, 1, 2\}$

$$\begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ \frac{1}{3} & & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ & 1 & 1 \\ & \frac{1}{3} & \frac{5}{3} \end{pmatrix}$$

Étape 2 : échange des lignes 2 et 3

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{3, 1, 2\}$

$$\begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ \frac{1}{3} & \frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ & 1 & 1 \\ & & \frac{4}{3} \end{pmatrix}$$

Étape 2 : élimination

Exemple

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)$$

• Permutation : $\sigma = \{3, 1, 2\}$

$$PA = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ \frac{1}{3} & \frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ & 1 & 1 \\ & & \frac{4}{3} \end{pmatrix}$$

Fin de l'algorithme!

Utilisation pratique

$$Ax = b$$

E. Khoury MT00-Ch2 Printemps 2024 37/46

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

E. Khoury MT00-Ch2 Printemps 2024 37/46

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

 $\iff LUx = Pb$

E. Khoury MT00-Ch2 Printemps 2024 37/46

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

 $\iff LUx = Pb$
 $\iff Ly = Pb, Ux = y$

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

 $\iff LUx = Pb$
 $\iff Ly = Pb, Ux = y$

Factorisation de A

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

 $\iff LUx = Pb$
 $\iff Ly = Pb, Ux = y$

- Factorisation de A
- Résolution de Ly = Pb « descente »

Utilisation pratique

$$Ax = b \iff PAx = Pb$$

 $\iff LUx = Pb$
 $\iff Ly = Pb, Ux = y$

- Factorisation de A
- 2 Résolution de Ly = Pb
- « descente »
- 3 Résolution de Ux = y
- « remontée »

Dans Scilab

```
-->A=[0 1 1;1 1 2;3 2 1]
-->[L,U,P]=lu(A)
   0. 0. 1.
   1. 0. 0.
   0. 1. 0.
   3. 2. 1.
   0. 1. 1.
   0. 0. 1.3333333
             0.
                        0.
   0.
                        0.
   0.3333333
           0.3333333
```

Algorithme de Doolittle

• But : identifier les coefficients de *L* et *U* en considérant

$$A = LU$$

comme une équation.

39/46

E. Khoury MT00-Ch2 Printemps 2024

Algorithme de Doolittle

• But : identifier les coefficients de L et U en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\begin{pmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 \\ \ell_{21} & 1 \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{pmatrix}$$

On identifie, dans l'ordre:

39/46

E. Khoury MT00-Ch2 Printemps 2024

Algorithme de Doolittle

• But : identifier les coefficients de *L* et *U* en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\begin{pmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{pmatrix}$$

On identifie, dans l'ordre :

▶ \underline{A}_1 et $\underline{L}_1 U$ puis A_1 et LU_1

Algorithme de Doolittle

• But : identifier les coefficients de *L* et *U* en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\left(\begin{array}{ccc} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{array} \right) = \left(\begin{array}{ccc} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 \end{array} \right) \left(\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{array} \right)$$

On identifie, dans l'ordre:

▶ \underline{A}_1 et $\underline{L}_1 U$ puis \underline{A}_1 et $\underline{L}U_1$

Algorithme de Doolittle

• But : identifier les coefficients de L et U en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\left(\begin{array}{ccc} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{array} \right) = \left(\begin{array}{ccc} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 \end{array} \right) \left(\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{array} \right)$$

On identifie, dans l'ordre :

- ▶ \underline{A}_1 et $\underline{L}_1 U$ puis A_1 et LU_1
- \blacktriangleright \underline{A}_2 et \underline{L}_2U puis A_2 et LU_2

Algorithme de Doolittle

• But : identifier les coefficients de L et U en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\left(\begin{array}{ccc} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{array} \right) = \left(\begin{array}{ccc} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 \end{array} \right) \left(\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{array} \right)$$

On identifie, dans l'ordre :

- ▶ \underline{A}_1 et \underline{L}_1U puis A_1 et LU_1
- ▶ \underline{A}_2 et \underline{L}_2U puis \underline{A}_2 et $\underline{L}\underline{U}_2$

Algorithme de Doolittle

• But : identifier les coefficients de *L* et *U* en considérant

$$A = LU$$

comme une équation.

• Exemple pour n = 3:

$$\left(\begin{array}{ccc} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{array} \right) = \left(\begin{array}{ccc} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 \end{array} \right) \left(\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{array} \right)$$

On identifie, dans l'ordre:

- $ightharpoonup \underline{A}_1$ et \underline{L}_1U puis A_1 et LU_1
- \underline{A}_2 et \underline{L}_2U puis A_2 et LU_2
- ► <u>A</u>₃ et <u>L</u>₃U

Algorithme de Doolittle

```
1: pour i = 1 jusqu'à n faire
     pour j = i jusqu'à n faire
2:
3:
4:
     fin pour
     pour j = i + 1 jusqu'à n faire
5:
6:
7:
     fin pour
8: fin pour
```

Algorithme de Doolittle

```
    pour i = 1 jusqu'à n faire
    pour j = i jusqu'à n faire
    Identifier a<sub>ij</sub> et (LU)<sub>ij</sub>, en déduire u<sub>ij</sub>
    fin pour
    pour j = i + 1 jusqu'à n faire
    fin pour
    fin pour
    fin pour
```

Algorithme de Doolittle

```
    pour i = 1 jusqu'à n faire
    pour j = i jusqu'à n faire
    u<sub>ij</sub> ← a<sub>ij</sub> - ∑<sub>k=1</sub><sup>i-1</sup> ℓ<sub>ik</sub>u<sub>kj</sub>
    fin pour
    pour j = i + 1 jusqu'à n faire
    fin pour
    fin pour
```

Algorithme de Doolittle

```
    pour i = 1 jusqu'à n faire
    pour j = i jusqu'à n faire
    u<sub>ij</sub> ← a<sub>ij</sub> - ∑<sub>k=1</sub><sup>i-1</sup> ℓ<sub>ik</sub>u<sub>kj</sub>
    fin pour
    pour j = i + 1 jusqu'à n faire
    Identifier a<sub>ji</sub> et (LU)<sub>ji</sub>, en déduire ℓ<sub>ji</sub>
    fin pour
    fin pour
```

40/46

Algorithme de Doolittle

```
1: pour i = 1 jusqu'à n faire
2: pour j = i jusqu'à n faire
3: u_{ij} \leftarrow a_{ij} - \sum_{k=1}^{i-1} \ell_{ik} u_{kj}
4: fin pour
5: pour j = i + 1 jusqu'à n faire
6: \ell_{ji} \leftarrow (a_{ji} - \sum_{k=1}^{i-1} \ell_{jk} u_{ki})/u_{ii}
7: fin pour
8: fin pour
```

E. Khoury MT00-Ch2 Printemps 2024 40/46

Conditions

Définition

Soit *A* une matrice $n \times n$, on appelle sous-matrice principale d'ordre k de la matrice *A* et on note $[A]_k$ la matrice $k \times k$

$$[A]_k = \left(\begin{array}{ccc} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{array}\right)$$

E. Khoury MT00-Ch2 Printemps 2024 41/46

Conditions

Définition

Soit *A* une matrice $n \times n$, on appelle sous-matrice principale d'ordre k de la matrice *A* et on note $[A]_k$ la matrice $k \times k$

$$[A]_k = \left(\begin{array}{ccc} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{array}\right)$$

Théorème

Soit A une matrice $n \times n$ inversible. Si toutes les sous-matrices principales de A sont régulières alors la factorisation LU de A est possible sans échange de lignes.

E. Khoury MT00-Ch2 Printemps 2024 41/46

La factorisation $A = LDL^{\top}$

Existence, algorithme

Théorème

Soit A une matrice $n \times n$ symétrique et inversible. Si toutes les sous-matrices principales de A sont régulières alors elle admet une décomposition unique sous la forme

$$A = LDL^{\top}$$
,

où L est triangulaire inférieure à diagonale unité et D est une matrice diagonale.

La factorisation $A = LDL^{T}$

Existence, algorithme

Théorème

Soit A une matrice $n \times n$ symétrique et inversible. Si toutes les sous-matrices principales de A sont régulières alors elle admet une décomposition unique sous la forme

$$A = LDL^{\top}$$
,

où L est triangulaire inférieure à diagonale unité et D est une matrice diagonale.

• Algorithme : on identifie A_j et $(LDL^{\top})_j$ pour $j=1,\ldots,n$

42/46

Matrices définies positives

Définition

Soit A une matrice $n \times n$ symétrique. La matrice A est définie positive si

$$\forall x \in \mathbb{R}^n, x \neq 0 \Longrightarrow x^{\top} Ax > 0$$

Matrices définies positives

Définition

Soit A une matrice $n \times n$ symétrique. La matrice A est définie positive si

$$\forall x \in \mathbb{R}^n, x \neq 0 \Longrightarrow x^{\top} Ax > 0$$

Proposition

Une condition nécessaire et suffisante pour que A (symétrique) soit définie positive (respectivement semi-définie positive) est que toute ses valeurs propres soit strictement positives (respectivement positives ou nulles).

43/46

Matrices définies positives

Définition

Soit A une matrice $n \times n$ symétrique. La matrice A est définie positive si

$$\forall x \in \mathbb{R}^n, x \neq 0 \Longrightarrow x^{\top} Ax > 0$$

Proposition

Une condition nécessaire et suffisante pour que A (symétrique) soit définie positive (respectivement semi-définie positive) est que toute ses valeurs propres soit strictement positives (respectivement positives ou nulles).

Exemple

$$A = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right)$$

Factorisation de Cholesky, existence, unicité

Théorème

Soit A une matrice $n \times n$ symétrique. Si A est définie positive alors toutes ses sous-matrices principales sont régulières

Factorisation de Cholesky, existence, unicité

Théorème

Soit A une matrice $n \times n$ symétrique. Si A est définie positive alors toutes ses sous-matrices principales sont régulières

Théorème

Soit A une matrice $n \times n$ symétrique. Si A est définie positive alors il existe une unique matrice B triangulaire inférieure ayant des éléments diagonaux positifs telle que

$$A = BB^{\top}$$

Algorithme

•
$$a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$$
 d'où $b_{11} = \sqrt{a_{11}}$

E. Khoury MT00-Ch2 Printemps 2024 45/46

Algorithme

- $a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$ d'où $b_{11} = \sqrt{a_{11}}$
- $A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$

45/46

Algorithme

- $a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$ d'où $b_{11} = \sqrt{a_{11}}$
- $A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$

•
$$a_{22} = \underline{B}_2(B^\top)_2 = b_{21}^2 + b_{22}^2$$
 d'où $b_{22} = \sqrt{a_{22} - b_{21}^2}$

45/46

Algorithme

- $a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$ d'où $b_{11} = \sqrt{a_{11}}$
- $A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$
- $a_{22} = \underline{B}_2(B^\top)_2 = b_{21}^2 + b_{22}^2$ d'où $b_{22} = \sqrt{a_{22} b_{21}^2}$
- $A_2 = B(B^{\top})_2 = b_{21}B_1 + b_{22}B_2 \Leftrightarrow B_2 = \frac{1}{b_{22}}(A_2 b_{21}B_1)$

45/46

Algorithme

- $a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$ d'où $b_{11} = \sqrt{a_{11}}$
- $A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$
- $a_{22} = \underline{B}_2(B^\top)_2 = b_{21}^2 + b_{22}^2$ d'où $b_{22} = \sqrt{a_{22} b_{21}^2}$
- $A_2 = B(B^{\top})_2 = b_{21}B_1 + b_{22}B_2 \Leftrightarrow B_2 = \frac{1}{b_{22}}(A_2 b_{21}B_1)$

•
$$a_{jj} = \underline{B}_j(B^\top)_j = \sum_{k=1}^j b_{jk}^2$$
 d'où $b_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$

45/46

Algorithme

- $a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$ d'où $b_{11} = \sqrt{a_{11}}$
- $A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$
- $a_{22} = \underline{B}_2(B^\top)_2 = b_{21}^2 + b_{22}^2$ d'où $b_{22} = \sqrt{a_{22} b_{21}^2}$
- $A_2 = B(B^{\top})_2 = b_{21}B_1 + b_{22}B_2 \Leftrightarrow B_2 = \frac{1}{b_{22}}(A_2 b_{21}B_1)$

•
$$a_{jj} = \underline{B}_j(B^\top)_j = \sum_{k=1}^j b_{jk}^2$$
 d'où $b_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$

$$\bullet \ \ A_{j} = B(B^{\top})_{j} = \sum_{k=1}^{j} b_{jk} B_{k} \Leftrightarrow B_{j} = \frac{1}{b_{jj}} (A_{j} - \sum_{k=1}^{j-1} b_{jk} B_{k})$$

Algorithme

•
$$a_{11} = \underline{B}_1(B^\top)_1 = b_{11}^2$$
 d'où $b_{11} = \sqrt{a_{11}}$

•
$$A_1 = B(B^T)_1 = b_{11}B_1 \Leftrightarrow B_1 = \frac{1}{b_{11}}A_1$$

•
$$a_{22} = \underline{B}_2(B^\top)_2 = b_{21}^2 + b_{22}^2$$
 d'où $b_{22} = \sqrt{a_{22} - b_{21}^2}$

•
$$A_2 = B(B^{\top})_2 = b_{21}B_1 + b_{22}B_2 \Leftrightarrow B_2 = \frac{1}{b_{22}}(A_2 - b_{21}B_1)$$

•
$$a_{jj} = \underline{B}_j(B^\top)_j = \sum_{k=1}^j b_{jk}^2$$
 d'où $b_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$

•
$$A_j = B(B^\top)_j = \sum_{k=1}^j b_{jk} B_k \Leftrightarrow B_j = \frac{1}{b_{jj}} (A_j - \sum_{k=1}^{j-1} b_{jk} B_k)$$

•
$$b_{nn} = \sqrt{a_{nn} - \sum_{k=1}^{n-1} b_{nk}^2}$$

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

E. Khoury MT00-Ch2

Algorithme

1: $b_{11} \leftarrow \sqrt{a_{11}}$

2: **pour** i = 2 jusqu'à n **faire**

4: fin pour

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour** i = 2 jusqu'à n **faire**

3:
$$b_{i1} \leftarrow \frac{a_{i1}}{b_{11}}$$

4: fin pour

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour** i = 2 jusqu'à n **faire**

3:
$$b_{i1} \leftarrow \frac{a_{i1}}{b_{11}}$$

4: fin pour

5: **pour**
$$j = 2$$
 jusqu'à $n - 1$ **faire**

10: fin pour

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour** i = 2 jusqu'à n **faire**

3:
$$b_{i1} \leftarrow \frac{a_{i1}}{b_{11}}$$

4: fin pour

5: **pour** j = 2 jusqu'à n - 1 **faire**

6:
$$b_{jj} \leftarrow \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$$

10: fin pour

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour**
$$i = 2$$
 jusqu'à n **faire**

3:
$$b_{i1} \leftarrow \frac{\overline{a_{i1}}}{b_{11}}$$

4: fin pour

5: **pour**
$$j = 2$$
 jusqu'à $n - 1$ **faire**

6:
$$b_{jj} \leftarrow \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$$

7: **pour**
$$i = j + 1$$
 jusqu'à n **faire**

- 9: **fin pour**
- 10: fin pour

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour** $i = 2$ jusqu'à n **faire**
3: $b_{i1} \leftarrow \frac{a_{i1}}{b_{11}}$
4: **fin pour**
5: **pour** $j = 2$ jusqu'à $n - 1$ **faire**
6: $b_{jj} \leftarrow \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$
7: **pour** $i = j + 1$ jusqu'à n **faire**
8: $b_{ij} \leftarrow \frac{1}{b_{jj}} (a_{ij} - \sum_{k=1}^{j-1} b_{jk} b_{ik})$
9: **fin pour**
10: **fin pour**

Algorithme

1:
$$b_{11} \leftarrow \sqrt{a_{11}}$$

2: **pour** $i = 2$ jusqu'à n **faire**
3: $b_{i1} \leftarrow \frac{a_{i1}}{b_{11}}$
4: **fin pour**
5: **pour** $j = 2$ jusqu'à $n - 1$ **faire**
6: $b_{jj} \leftarrow \sqrt{a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2}$
7: **pour** $i = j + 1$ jusqu'à n **faire**
8: $b_{ij} \leftarrow \frac{1}{b_{jj}} (a_{ij} - \sum_{k=1}^{j-1} b_{jk} b_{ik})$
9: **fin pour**
10: **fin pour**
11: $b_{nn} \leftarrow \sqrt{a_{nn} - \sum_{k=1}^{n-1} b_{nk}^2}$