The problem is that the block matrix $(A_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ is not equal to the original matrix A. First of all, the block matrix is $m \times n$ and its entries are matrices, but the matrix A is $M \times N$ and its entries are scalars. But even if we think of the block matrix as an $M \times N$ matrix of scalars, some rows and some columns of the original matrix A may have been permuted due to the choice of the partitions $S = S_1 \cup \cdots \cup S_m$ and $T = T_1 \cup \cdots \cup T_n$; see Example 6.3.

We propose to denote the block matrix $(A_{ij})_{1 \le i \le m, 1 \le j \le n}$ by [A]. This is not entirely satisfactory since all information about the partitions of S and T are lost, but at least this allows us to distinguish between A and a block matrix arising from A.

To be completely rigorous we may proceed as follows. Let $[m] = \{1, ..., m\}$ and $[n] = \{1, ..., n\}$.

Definition 6.9. For any two finite sets of indices S and T, an $S \times T$ matrix A is an $S \times T$ -indexed family with values in K, that is, a function

$$A \colon S \times T \to K$$
.

Denote the space of $S \times T$ matrices with entries in K by $M_{S,T}(K)$.

An $S \times T$ matrix A is an $S \times T$ -indexed family $(a_{st})_{(s,t) \in S \times T}$, but the standard representation of a matrix by a rectangular array of scalars is not quite correct because it assumes that the rows are indexed by indices in the "canonical index set" [m] and that the columns are indexed by indices in the "canonical index set" [n]. Also the index sets need not be ordered, but in practice they are, so if $S = \{s_1, \ldots, s_m\}$ and $T = \{t_1, \ldots, t_n\}$, we denote an $S \times T$ matrix A by the rectangular array

$$A = \begin{pmatrix} a_{s_1t_1} & \cdots & a_{s_1t_n} \\ \vdots & \ddots & \vdots \\ a_{s_mt_1} & \cdots & a_{s_mt_n} \end{pmatrix}.$$

Even if the index sets are not ordered, the product of an $R \times S$ matrix A and of an $S \times T$ matrix B is well defined and C = AB is an $R \times T$ matrix (where R, S, T are finite index sets); see Proposition 6.13.

Then an $m \times n$ block matrix X induced by two partitions $S = S_1 \cup \cdots \cup S_m$ and $T = T_1 \cup \cdots \cup T_n$ is an $[m] \times [n]$ -indexed family

$$X \colon [m] \times [n] \to \prod_{(i,j) \in [m] \times [n]} \mathcal{M}_{S_i,T_j}(K),$$

such that $X(i,j) \in M_{S_i,T_j}(K)$, which means that X(i,j) is an $S_i \times T_j$ matrix with entries in K. The map X also defines the $M \times N$ matrix $A = (a_{st})_{s \in S, t \in T}$, with

$$a_{st} = X(i, j)_{st},$$