Тема : Аффинные преобразования евклидовых пространств

 ${f 1}^{0}$. Определение аффинного пространства и эталонного афинного пространства. $\mathbf{2}^{0}$. Аффинная система координат, координатный изоморфизм в эталонное пространство. Изоморфизм аффинных пространств одинаковой размерности. 3^{0} . Связь аффинных координат точки в двух разных аффинных координатных системах. 4^{0} . Определение аффинного преобразования и его общий вид в произвольном базисе аффинного пространства. Примеры. ${f 5}^0$. Свойства аффинных преобразований. Группа \mathbb{A}^n . Подгруппа собственных преобразований. 6° . Плоскости и прямые в аффинном пространстве. Параллельные плоскости. Критерий аффинного преобразования. Лемма о геометрических свойствах аффинного преобразования. 7^{0} . Метрика аффинного пространства в случае, когда ассоциированное с ним векторное пространство евклидово. Теорема об основном свойстве аффинного преобразования.

- 1^{0} . Пусть \mathbb{A} это аффинное пространство, связанное с конечномерным векторным пространством X, $\dim X = n$. По определению, это означает, что любым двум точкам \dot{A} и $\dot{\boldsymbol{B}}$ из \mathbb{A} сопоставляется вектор из \boldsymbol{X} с началом в точке \dot{A} и концом в точке \dot{B} , то есть вектор \overrightarrow{AB} . При этом выполняются следующие две аксиомы:
- i) для $orall\, \dot{A} \in \mathbb{A}$ и $orall\, a \in X$ существует единственная точка \dot{B} из \mathbb{A} такая, что $\overrightarrow{AB} = a$;

ii) для любых трех точек \dot{A} , \dot{B} , \dot{C} из \mathbb{A} вы-

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \quad \Leftrightarrow \quad \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0.$$

В частности, взяв в равенстве треугольника $\dot{A}=\dot{B}=\dot{C}$, получим соотношение $\overrightarrow{AA}=0$. Если же взять $\dot{A}=\dot{C}$, то получим

$$\overrightarrow{AB} = -\overrightarrow{BA}$$
.

Размерность аффинного пространства \mathbb{A} по определению полагается равной размерности связанного с ним векторного пространства X, то есть

$$\dim \mathbb{A} = \dim X = n$$
.

Векторное пространство X называют также ассоциированным с аффинным пространством \mathbb{A} .

В качестве важного примера рассмотрим эталонное аффинное пространство \mathbb{R}^n .

Обозначение здесь применяется то же самое, что и для вещественного координатного пространства \mathbb{R}^n .

В случае, если эти две структуры все таки требуется разделить в проводимых построениях, будем применять для них обозначения $\mathbb{R}^n_{\mathsf{a} \mathsf{d} \mathsf{d} \mathsf{d}}$ и $\mathbb{R}^n_{\mathsf{B} \mathsf{e} \mathsf{K}}$ соответственно.

Tочками эталонного аффинного пространства $\mathbb{R}^n_{aфф}$ условимся называть вектор-столбцы следующего вида:

$$\dot{A} = egin{pmatrix} x^1 \ x^2 \ \vdots \ x^n \end{pmatrix},$$
 где $x^j \in \mathbb{R},$ $j=1,2,\ldots,n.$

Ассоциированное с аффинным пространством $\mathbb{R}^n_{a d d}$ векторное пространство X совладает с вещественным координатным про-

странством $\mathbb{R}^n_{\mathsf{BeK}}$, образуемого вектор-столбцами следующего вида:

$$ec{a} = \left(egin{array}{c} a^1 \ a^2 \ dots \ a^n \end{array}
ight),$$
 где $a^j \in \mathbb{R},$ $j=1,2,\ldots,n.$

Взяв в аффинном пространстве $\mathbb{R}^n_{\mathsf{a} \mathsf{d} \mathsf{d}}$ про-

извольную пару точек

$$\dot{A}=egin{pmatrix}x^1\x^2\x^n\end{pmatrix}$$
 , and $\dot{B}=egin{pmatrix}y^1\y^2\y^n\end{pmatrix},$

сопоставим ей следующий вектор из ассоци-

ированного линейного пространства:

$$ec{a}=\overrightarrow{AB}=egin{pmatrix} y^1-x^1\ y^2-x^2\ dots\ y^n-x^n \end{pmatrix}\in\mathbb{R}^n_{\mathsf{BeK}}.$$

Пользуясь этим соглашением, проверим справедливость аксиомы i) аффинного простран-

ства. Пусть

$$\dot{A}=egin{pmatrix}x^1\x^2\ dots\x^n\end{pmatrix}\in\mathbb{R}^n_{\mathsf{a}\mathsf{d}\mathsf{d}}$$
 и $ec{a}=egin{pmatrix}a^1\a^2\ dots\x^n\end{pmatrix}\in\mathbb{R}^n_{\mathsf{BeK}}.$

Тогда точка
$$\dot{B}=\left(egin{array}{c} x^1+a^1 \\ x^2+a^2 \\ \vdots \\ x^n+a^n \end{array} \right)$$
 принадлежит $\mathbb{R}^n_{\mathsf{a} \varphi \varphi}$

и при этом $\overrightarrow{AB} = \overrightarrow{a}$. Точка \overrightarrow{B} с указанным свойством единственна в пространстве $\mathbb{R}^n_{\mathsf{a} \varphi \varphi}$.

Проверим еще, что и аксиома ii) также выполняется. Пусть выбраны три точки

$$\dot{A}=egin{pmatrix} x^1\ x^2\ \vdots\ x^n \end{pmatrix}, \quad \dot{B}=egin{pmatrix} y^1\ y^2\ dots\ y^n \end{pmatrix}$$
 , where $\dot{C}=egin{pmatrix} z^1\ z^2\ dots\ z^n \end{pmatrix}.$

Тогда в соответствии с принятым правилом

образования векторов получим

$$egin{aligned} \overrightarrow{AB} + \overrightarrow{BC} &= egin{pmatrix} y^1 - x^1 \ y^2 - x^2 \ dots \ y^n - x^n \end{pmatrix} + egin{pmatrix} z^1 - y^1 \ z^2 - y^2 \ dots \ z^n - y^n \end{pmatrix} = \ &= egin{pmatrix} z^1 - x^1 \ z^2 - x^2 \ dots \ z^n - x^n \end{pmatrix} = \overrightarrow{AC}. \end{aligned}$$

Таким образом, равенство треугольника так-

же выполнено и, следовательно, $\mathbb{R}^n_{a \varphi \varphi}$ с введенной выше структурой представляет собой аффинное пространство.

Размерность этого аффинного пространства совпадает с размерностью ассоциированного с ним линейного пространства $\mathbb{R}^n_{\mathsf{BeK}}$, то есть

$$\dim \mathbb{R}^n_{\mathsf{a} \diamond \diamond} = n.$$

 2^{0} . Пусть \mathbb{A} — это произвольное аффинное пространство, с которым ассоциированно линейное пространство X над полем вещественных чисел,

$$\dim X = n < \infty$$
.

Выберем в пространстве X произвольный базис

$$B = \{e_1, e_2, \dots, e_n\}.$$

Определение. Аффинной системой координат в пространстве \mathbb{A} называется совокупность, состоящая из фиксированной точки $\dot{\mathbf{o}}$, лежащей в \mathbb{A} , и векторов e_1, e_2, \ldots, e_n выбранного базиса.

Для обозначения указанной в предыдущем определении аффинной системы координат используется символ

$$\dot{O}e_1e_2\dots e_n$$
.

Пользуясь аксиомой i) аффинного пространства, каждый из векторов e_1, e_2, \ldots, e_n выбранного базиса возможно отложить от начальной точки ዕ координатной системы. Действуя таким образом, получаем графическую визуализацию понятия аффинной системы коородинат.

Получаемая при этом картина во многом схожа с привычным нам изображением де-

картовой системы координат. Однако имеются и существенные отличия: в произвольном аффинном пространстве отсутствует понятие угла между векторами.

Взяв произвольную точку \dot{A} из пространства \dot{A} , образуем вектор с началом в точке \dot{O} координатной системы и концом в \dot{A} . Этот вектор \overrightarrow{OA} называется радиус-вектором точки \dot{A} в выбранной аффинной системе координат.

Радиус-вектор \overrightarrow{OA} принадлежит линейному пространству X и, следовательно, допускает однозначное представление в виде линейной комбинации базисных векторов e_1, e_2, \ldots, e_n :

$$\overrightarrow{OA} = a^1 e_1 + a^2 e_2 + \dots + a^n e_n.$$

Скаляры a^1, a^2, \dots, a^n в этом разложении — это вещественные числа.

Говорят, что вектор $(a^1, a^2, ..., a^n)$ из \mathbb{R}^n задает координаты точки \dot{A} в системе $\dot{O}e_1 ... e_n$.

Рассмотрим отображение $I_c: \mathbb{A} \mapsto \mathbb{R}^n_{\mathsf{a} \varphi \varphi}$, определяемое следующим соотношением:

$$I_{m{c}}: \dot{A} \in \mathbb{A} \mapsto ec{a} = \left(egin{array}{c} a^1 \ a^2 \ dots \ a^n \end{array}
ight) \in \mathbb{R}^n_{ ext{a} m{\phi}},$$

где вектор $\vec{a}=\uparrow(a^1,a^2,\dots,a^n)$ задает *коорди*наты точки \dot{A} в системе $\dot{O}e_1\dots e_n$.

Определенное указанным образом отобра-

жение I_c взаимно однозначно отображает аффинное пространство \mathbb{A} на эталонное аффинное пространство $\mathbb{R}^n_{aфф}$ и называется κo -ординатным изоморфизмом.

Теорема (об изоморфизме). Любые два аффинных пространства одинаковой размерности изоморфны друг другу.

 3^0 . Пусть в аффинном пространстве $\mathbb A$ взяты две системы координат:

$$\dot{O}e_1e_2\dots e_n$$
-"старая"; $\dot{ ilde{O}} ilde{e}_1 ilde{e}_2\dots ilde{e}_n$ -и "новая".

Возьмем произвольную точку \dot{M} из \mathbb{A} и установим связь координат этой точки в выбранных координатных системах.

Если аффинные координаты точки \dot{M} в старой системе $\dot{O}e_1e_2\dots e_n$ — это вещественные числа x^1,x^2,\dots,x^n , то радиус-вектор \overrightarrow{OM}

этой точки представим как следующая линейная комбинация:

$$\overrightarrow{OM} = \sum_{j=1}^n x^j e_j = [e_1 e_2 \dots e_n] \left[egin{array}{c} x^1 \ x^2 \ x^n \end{array}
ight].$$

Аналогично, если аффинные координаты точки \dot{M} в новой системе $\dot{\tilde{O}}\tilde{e}_1\tilde{e}_2\dots\tilde{e}_n$ — это вещественные числа $\tilde{x}^1,\tilde{x}^2,\dots,\tilde{x}^n$, то ее радиусвектор $\overrightarrow{\tilde{O}M}$ представим как следующая ли-

нейная комбинация:

$$\overrightarrow{ ilde{O}M} = \sum_{j=1}^n ilde{x}^j ilde{e}_j = [ilde{e}_1 ilde{e}_2 \dots ilde{e}_n] egin{bmatrix} ilde{x}^1 \ ilde{x}^2 \ ilde{x}^n \end{bmatrix}.$$

Любые два базиса ассоциированного линейного пространства \boldsymbol{X} связаны между собой соотношениями вида

$$[\tilde{e}_1\tilde{e}_2\dots\tilde{e}_n]=[e_1e_2\dots e_n]\cdot C, \qquad \qquad (B\mapsto \tilde{B})$$

где C — это квадратная матрица размера $n \times n$, называемая матрицей перехода от старого базиса B к новому \tilde{B} .

Столбцы матрицы перехода C представляют собой координаты новых базисных векторов $ilde{e}_j,\ j=1,2,\ldots,n$, в разложении по старому базису e_1,e_2,\ldots,e_n .

Отметим, что матрица C тогда и только тогда является матрицей перехода от одного базиса к другому, когда C обратима.

Теорема. Следующие утверждения эквивалентны между собой:

 \otimes Квадратная матрица $oldsymbol{C}$ обратима.

⊗ Столбцы квадратной матрицы *С* линейно независимы.

 \otimes Строки квадратной матрицы C линейно независимы.

 \otimes Определитель матрицы C ненулевой.

Взяв произвольный вектор e из линейного пространства X, разложим его по векторам

нового базиса (\tilde{B}) :

$$e = \sum_{j=1}^n ilde{x}^j ilde{e}_j = [ilde{e}_1 ilde{e}_2 \dots ilde{e}_n] egin{array}{c} ilde{x}^1 \ ilde{x}^2 \ ilde{x}^n \ ilde{x}^n \end{array}
ight].$$

Подставляя сюда выражение $(B \mapsto \tilde{B})$ векторов нового базиса (\tilde{B}) через старый (B) с помощью матрицы перехода C, приходим к разложению вектора e по векторам старого

базиса (B):

$$e = [e_1 e_2 \dots e_n] \cdot C egin{array}{c} ilde{x}^1 \ ilde{x}^2 \ ilde{x}^n \ ilde{x}^n \ ilde{x}^n \ ilde{x}^{j} e_j. \end{array}$$

Учитывая, что любой вектор раскладывается по векторам базиса (\boldsymbol{B}) единственно возможным образом, заключаем из последнего равенства, что координаты вектора \boldsymbol{e} в разных базисах линейного пространства связа-

ны между собой следующими соотношения-ми:

$$egin{pmatrix} x^1 \ dapprox x^n \end{pmatrix} = C egin{pmatrix} ilde{x}^1 \ dapprox ilde{x}^n \end{pmatrix}.$$

Здесь C, как и прежде, матрица перехода от базиса (B) к базису (\tilde{B}) .

Получим аналогичные соотношения для аффинных координат произвольной точки \dot{M} из пространства A. C этой целью воспользуемся разложениями

$$\overrightarrow{OM} = \sum_{j=1}^{n} x^{j} e_{j} = [e_{1}e_{2} \dots e_{n}] \left[egin{array}{c} x^{1} \ \vdots \ x^{n} \end{array}
ight],$$

$$egin{aligned} \overrightarrow{ ilde{O}M} &= \sum_{j=1}^n ilde{x}^j ilde{e}_j = [ilde{e}_1 ilde{e}_2 \dots ilde{e}_n] & dash ilde{x}^n \ dash ilde{x}^n & dash \end{aligned},$$

а также разложением радиус-вектора $o ilde{o}$ точ-

ки $\dot{\tilde{O}}$ по старому базису (B):

Здесь (b^1, b^2, \dots, b^n) — аффинные координаты точки $\dot{\tilde{O}}$ в старой системе координат.

Подставим представленные выше разложения векторов \overrightarrow{OM} , $\overrightarrow{\widetilde{OM}}$ и \overrightarrow{OO} в равенство тре-

угольника $\overrightarrow{OM} = \overrightarrow{\tilde{O}M} + \overrightarrow{O\tilde{O}}$. Тогда получим

$$egin{array}{c} [e_1e_2\ldots e_n] & egin{array}{c} x^1 \ dots \ x^n \ \end{bmatrix} = [e_1e_2\ldots e_n]\cdot C & egin{array}{c} ilde{x}^1 \ dots \ ilde{x}^n \ \end{bmatrix} + egin{array}{c} ilde{x}^n \ \end{bmatrix}$$

$$+\left[e_{1}\ldots e_{n}
ight]egin{bmatrix}b^{1}\ dots\begin{bmatrix}b^{1}\ dots\begin{bmatrix}b^{1}\ dots\begin{bmatrix}c\ dots\begin{bmatrix} ilde{x}^{1}\ dots\begin{bmatrix}c\ dots\begin{bmatrix}b^{1}\ dots\begin\begin{bmatrix}b^{1}\ dots\begin\begin{bmatrix}b^{1}\ dots\begin\begin{bmatrix}b^{1}\ dots\begin\begin\begin{bmatrix}b^{1}\ dots\begin\begin{bmatrix}b^{1}\ dots\begin\begin\begin{bmatrix}b^{1}\ dots\begin\be$$

Пользуясь однозначностью разложения радиус-вектора \overrightarrow{OM} по базису (B), получаем следующие соотношения между аффинными координатами точки \dot{M} в разных аффинных системах координат:

$$\left[egin{array}{c} x^1 \ dash x^n \end{array}
ight] = C \left[egin{array}{c} ilde{x}^1 \ dash ilde{x}^n \end{array}
ight] + \left[egin{array}{c} b^1 \ dash b^n \end{array}
ight]. \hspace{1cm} (OB \mapsto ilde{O} ilde{B})$$

Здесь C, как и прежде, обозначает матрицу перехода от базиса (B) к базису (\tilde{B}) .

Если точки \dot{o} и $\dot{\tilde{o}}$ совпадают, то координаты

радиус- вектора \overrightarrow{oo} нулевые:

$$b^1 = b^2 = \dots = b^n = 0.$$

Формулы перехода $OB \mapsto \tilde{O}\tilde{B}$ в этом случае совпадают с формулами $(B \mapsto \tilde{B}).$

Если базисы (B) и \tilde{B} совпадают, то матрица перехода C является единичной, C = E.

 4^0 . Пусть точкам \dot{M} и \dot{N} в аффинном пространстве $\mathbb A$ соответствуют радиус-векторы

$$\overrightarrow{ON} = \sum_{j=1}^{n} y_j e_j = [e_1 e_2 \dots e_n] \left| egin{array}{c} y_1 \ dots \ y_n \end{array}
ight|,$$

и при этом их координаты связаны соотно-

шениями

$$egin{pmatrix} y_1 \ y_2 \ y_n \end{pmatrix} = C egin{pmatrix} x_1 \ x_2 \ y_n \end{pmatrix} + egin{pmatrix} b_1 \ b_2 \ y_n \end{pmatrix}. \qquad ext{(Aff)}$$

Здесь C — это квадратная невырожденная матрица размера $n \times n$, $\det C \neq 0$, а векторстолбец $\vec{b} = \uparrow (b_1, b_2, \dots, b_n)$ принадлежит \mathbb{R}^n .

Вводя обозначения

$$y=egin{pmatrix} y_1\ y_2\ dots\ y_n \end{pmatrix}, \quad x=egin{pmatrix} x_1\ x_2\ dots\ x_n \end{pmatrix} \quad ext{ M} \quad b=egin{pmatrix} b_1\ b_2\ dots\ b_n \end{pmatrix},$$

запишем соотношения (Aff) в укороченном векторном виде

$$y = Cx + b \quad \Leftrightarrow \quad (\dot{M} \mapsto \dot{N}). \tag{Aff'}$$

Определение. Преобразование аффинного пространства А в себя, задаваемое формулой

$$y = Cx + b \quad \Leftrightarrow \quad (\dot{M} \mapsto \dot{N}),$$

где C — это квадратная невырожденная матрица размера $n \times n$, $\det C \neq 0$, а вектор-столбец $\vec{b} = \uparrow (b_1, b_2, \dots, b_n)$ принадлежит \mathbb{R}^n , называется аффинным.

Отметим, что векторы x и y в формуле (Aff') представляют собой координаты точек \dot{M} и \dot{N} в наперед выбранной аффинной системе координат $\dot{O}e_1e_2\dots e_n$.

Возникает вопрос: останется ли это преобразование $\dot{M} \mapsto \dot{N}$ аффинным, если изначально выбрать в \mathbb{A} какую-либо другую аффинную систему координат $\dot{\tilde{O}}\tilde{e}_1\tilde{e}_2\dots\tilde{e}_n$?

Теорема (общий вид аффинного преобразования). Преобразование (Aff') аффинного пространства \mathbb{A} в себя в любой аффинной системе координат $\mathring{\tilde{O}}\tilde{e}_1\tilde{e}_2...\tilde{e}_n$ записывается в следующем виде:

$$\tilde{y} = \tilde{C}\tilde{x} + \tilde{b},$$
 (Aff")

где $ilde{C}$ — это квадратная невырожденная матрица размера $n \times n$, $\det ilde{C} = \det C \neq 0$, а векторстолбец $ilde{b}$ принадлежит \mathbb{R}^n .

Доказательство. В пространстве А рассмотрим две системы координат:

$$\dot{O}e_1e_2\dots e_n$$
-"Старую"; $\dot{ ilde{O}} ilde{e}_1 ilde{e}_2\dots ilde{e}_n$ -и "новую".

Векторы новой системы связаны с векторами старой линейными соотношениями вида

$$[\tilde{e}_1\tilde{e}_2\dots\tilde{e}_n]=[e_1e_2\dots e_n]\cdot T. \hspace{1cm} (B\mapsto \tilde{B})$$

Здесь T — квадратная невырожденная матрица размера $n \times n$, $\det T \neq 0$. Пусть радиус-

вектор \overrightarrow{oo} точки $\dot{\widetilde{o}}$ раскладывается в сумму

$$\overrightarrow{OO} = \sum_{j=1}^{n} a_j e_j.$$

Тогда старые координаты x точки \dot{M} связаны с ее новыми координатами \tilde{x} следующими соотношениями:

$$x=T ilde{x}+a, \hspace{1.5cm} (\dot{M})$$

где $a = \uparrow (a_1, a_2, \dots, a_n)$. Аналогичные равенства

имеют место и для координат точки \dot{N} :

$$y = T ilde{y} + a.$$
 (\dot{N})

Учитывая, что y = Cx + b и подставляя сюда разложения (\dot{M}) и (\dot{N}) , получаем

$$T\tilde{y} + a = C(T\tilde{x} + a) + b \Leftrightarrow T\tilde{y} = CT\tilde{x} + Ca - a + b.$$

Умножая обе части полученного векторного равенства слева на матрицу $oldsymbol{T^{-1}}$, получаем

$$\tilde{y} = T^{-1}CT\tilde{x} + T^{-1}(Ca - a + b).$$

Вводя обозначения

$$ilde{C} = T^{-1}CT$$
 и $ilde{b} = T^{-1}(Ca-a+b),$

получаем окончательно $ilde{m{y}} = ilde{m{C}} ilde{m{x}} + ilde{m{b}}$. Кроме того имеем равенства

$$\det \tilde{C} = (\det T^{-1}) \det C(\det T) = \det C.$$

Как видно из полученных формул, матрицы C и \tilde{C} в общем случае друг с другом не совпадают, то есть представление аффинного

преобразования зависит от выбранной координатной системы. При этом определитель матрицы в формуле общего вида аффинного преобразования от базиса никак не зависит, то есть этот определитель является инвариантом.

 5^0 . Сформулируем некоторые наиболее важные свойства множества аффинных преобразований пространства.

 $(AT)_1$: Любое преобразование

$$\dot{M}(x_1,x_2,\ldots,x_n)\mapsto \dot{N}(y_1,y_2,\ldots,y_n),$$

задаваемое формулой

$$y = Cx + b, (Aff)$$

где C — это квадратная невырожденная матрица размера $n \times n$, $\det C \neq 0$, а вектор-столбец $\vec{b} = \uparrow (b_1, b_2, \ldots, b_n)$ принадлежит \mathbb{R}^n , является

взаимно однозначным. Обратное к нему преобразование

$$x = C^{-1}y - C^{-1}b (Aff^{-1})$$

также является аффинным.

 $(AT)_2$: Последовательное выполнение двух аффинных преобразований

$$\dot{M}(x_1,\ldots,x_n)\mapsto \dot{N}(y_1,\ldots,y_n)\mapsto \dot{L}(z_1,\ldots,z_n),$$

где $y = C_1 x + b_1$ и $z = C_2 y + b_2$, также является аффинным преобразованием:

$$z = C_2(C_1x + b_1) + b_2 = (C_2C_1)x + (C_2b_1 + b_2).$$

Это координатное преобразование называется композицией, или произведением, преобразований $y=C_1x+b_1$ и $z=C_2y+b_2$.

 $(AT)_3$: Произведение аффинных преобразований ассоциативно.

 $(AT)_4$: Тождественное преобразование $\dot{M}\mapsto \dot{M}$ является аффинным: ему соответствует матрица C=E и нулевой вектор b.

Свойства $(AT)_1$ – $(AT)_4$ означают, что все аффинные преобразования пространства образуют группу. Для обозначения этой группы используется символ \mathbb{A}^n .

Определение. Преобразование аффинного пространства \mathbb{A} в себя, задаваемое формулой y = Cx + b, где C — это квадратная невырожденная матрица размера $n \times n$, $\det C > 0$, называется собственным.

Композиция (произведение) двух собственных аффинных преобразований — это снова собственное преобразование. Это означает,

что собственные преобразования образуют подгруппу в \mathbb{A}^n .

 6^0 . Пусть \dot{M} — это фиксированная точка аффинного пространства \mathbb{A} , с которым ассоциировано векторное пространство X,

$$\dim X = n < +\infty$$
.

Пусть кроме того в X выбрано какое-нибудь подпространство Y, $Y\subset X$.

Определение. Подмножество P точек аф-финного пространства \mathbb{A} , задаваемое равенством

$$P=\dot{M}+Y=\{\dot{N}\in\mathbb{A}\mid\dot{N}=\dot{M}+y,\;y\in Y\},$$

называется плоскостью в \mathbb{A} , или аффинным подпространством. При этом размерностью этого аффинного подпространства называется число $m = \dim Y \leqslant n$.

В условиях данного определения говорят также, что плоскость P проходит через точку \dot{M} в направлении подпространства Y. Само же подпространство Y называют направлянощим для плоскости P.

Если $m=\dim Y=0$, то множество $P=\dot{M}+Y$ — это точка \dot{M} . Если $m=\dim Y=n-1$, то $P=\dot{M}+Y$ называют гиперплоскостью.

Если же $m = \dim Y = 1$, то множество $P = \dot{M} + Y$ — это прямая.

Пусть \dot{N} принадлежит прямой $P = \dot{M} + Y$, причем $\dot{N} \neq \dot{M}$. Тогда P состоит из точек вида $\dot{M} + \lambda \overrightarrow{MN}$, где λ — вещественный параметр, а вектор \overrightarrow{MN} принадлежит Y. В частности, если $\lambda=1$, то $\dot{M}+\lambda \overrightarrow{MN}=\dot{N}$. По этой причине говорят, что прямая P проходит через точки \dot{M} и \dot{N} .

 $\underline{\mathsf{Упражнения}}.$ 1. Доказать, что если $\dot{M} \in P$ и $\dot{N} \in P$, то вектор \overrightarrow{MN} принадлежит Y.

2. Доказать, что если $\dot{M} \in P$, $\dot{N} \in P$ и $\dot{L} \in P$ то справедливы включения

$$|\dot{M}+\overrightarrow{NL}\in P, \quad |\dot{N}+\overrightarrow{ML}\in P, \quad |\dot{L}+\overrightarrow{MN}\in P.$$

3. Доказать, что если множество $P \subset \mathbb{A}$ обладает свойствами 1 и 2, то это множество — плоскость.

Если есть плоскость $P \subset \mathbb{A}$ с направляющим пространством Y, то

$$Y=\{\overrightarrow{NL}\mid \dot{N}\in P,\ \dot{L}\in P\}.$$

Теорема. Всякая плоскость $P = \dot{M} + Y$ в аффинном пространстве \mathbb{A} сама является аффинным пространством с ассоциированным векторным пространством $Y \subset X$.

Определение. Любые две плоскости аффинного пространства в направлении одного и того же линейного пространства $Y \subset X$ называются параллельными.

Параллельные плоскости $\dot{M}+Y$ и $\dot{N}+Y$ совпадают тогда и только тогда, когда вектор \overrightarrow{MN} принадлежит Y.

Упражнение. Доказать, что при аффинном преобразовании y = Cx + b, где C — это квадратная невырожденная матрица размера $n \times n$, $\det C \neq 0$, всякая прямая аффинного пространства отображается в прямую.

Теорема. Взаимнооднозначное преобразование аффинного пространства в себя, при котором всякая прямая отображается в прямую того же пространства, является аффинным преобразованием.

Доказательство этой теоремы не является простым и здесь не приводится.

Лемма. При аффинном преобразовании параллельные плоскости переходят в параллельные плоскости. Пересекающиеся плоскости пространства переходят в пересекающиеся. Прямая, пересекающая плоскость, переходит в прямую, пересекающую плос-KOCTb.

 7^{0} . Отдельный интерес представляет случай, когда ассоциированное с аффинным пространством \mathbb{A} векторное пространство X представляет собой евклидово пространство.

В этом случае в пространстве \mathbb{A} появляется метрическая структура: для любых двух точек из \mathbb{A} определено расстояние меду ними. Если \dot{M} и \dot{N} — точки из \mathbb{A} , то расстоянием

между ними называется вещественное число

$$ho(\dot{M},\dot{N})=\sqrt{(\overrightarrow{MN},\overrightarrow{MN})}=\|\overrightarrow{MN}\|,$$

где $(\overrightarrow{MN}, \overrightarrow{MN})$ представляет собой скалярное произведение вектора \overrightarrow{MN} на себя в евклидовом пространстве X.

Величина же $\|\overrightarrow{MN}\| = (\overrightarrow{MN}, \overrightarrow{MN})^{1/2}$ называется нормой вектора \overrightarrow{MN} в евклидовом пространстве X.

Функция $\rho(\dot{M}, \dot{N})$ обладает следующими важными свойствами:

$$1)$$
. $ho(\dot{M},\dot{N})\geqslant 0$ и при ЭТОМ $ho(\dot{M},\dot{N})=0 \;\Leftrightarrow\; \dot{M}=\dot{N}$;

2).
$$ho(\dot{M},\dot{N}) =
ho(\dot{N},\dot{M})$$
 (СИММЕТРИЧНОСТЬ);

3). Для любых трех точек \dot{M} , \dot{N} и \dot{L} справедливо следующее *неравенство треугольника*:

$$ho(\dot{M},\dot{N})\leqslant
ho(\dot{M},\dot{L})+
ho(\dot{L},\dot{N}).$$

Указанные три свойства означают, что бинарная функция $ho(\dot{M}, \dot{N})$ задает на прямом произведении $\mathbb{A} \times \mathbb{A}$ метрику.

Отметим, что в случае общего аффинного преобразования расстояние между двумя точками аффинного пространства не сохраняется. Однако всегда справедливо следующее утверждение. **Теорема** (основное свойство аффинных преобразований). Аффинное преобразование евклидова пространства сохраняет отношение длин направленных отрезков, лежащих на одной прямой аффинного пространства.