Practice IV

Text classification

- Individually do the following
 - Load the raw version of corpus generated in practice II
 - Title and content columns must be concatenated and will be used as features
 - Section column will be used as target (class)
 - Split the corpus in train an test sets using 80% for training and 20% for testing
 - Apply text normalization
 - Create different text representations of the corpus using unigrams
 - Use different machine learning methods to train a model and predict test instances
 - Evaluate predictions of models

- Text normalization
 - For this processes you can use:
 - Tokenization
 - Text cleaning
 - Stop words
 - Lemmatization
 - You should try different step combinations or versions in order to improve the classifier performance

- Text representation
 - For this processes you can use:
 - Binarized
 - Frequency
 - TF-IDF
 - Embeddings
 - You could try SVD to generate an alternative version of text representation

- Machine learning methods
 - For this processes you can use any classifier that supports multi-class classification
 - It would help if you tuned the algorithm parameters to improve the results

Evidence

- Source code
- A report in PDF format describing the following:
 - Task to be solved
 - Text normalization process
 - Text representations
 - Machine learning methods

Evidence

A table describing the experiments performed showing the best configuration of each ML method

Machine learning method	ML method parameters	Text normalization	Text representation	Average f-score
Logistic regression	max_iter = 200	Tokenization + stopwords + lemmatization	binarized	0.85
Naïve Bayes	default	Tokenization + stopwords + lemmatization	frequency	0.88
Multilayer perceptron	hidden_layer_si zes = (200, 100)	Tokenization + text_cleaning + stopwords + lemmatization	Tf-idf + svd	0.9