Exercise 3.27 Read in a photo and convert to a matrix. Perform a singular value decomposition of the matrix. Reconstruct the photo using only 5%, 10%, 25%, 50% of the singular values.

- 1. Print the reconstructed photo. How good is the quality of the reconstructed photo?
- 2. What percent of the Forbenius norm is captured in each case?

Hint: If you use Matlab, the command to read a photo is imread. The types of files that can be read are given by imformats. To print the file use imwrite. Print using jpeg format. To access the file afterwards you may need to add the file extension .jpg. The command imread will read the file in uint8 and you will need to convert to double for the SVD code. Afterwards you will need to convert back to uint8 to write the file. If the photo is a color photo you will get three matrices for the three colors used.

Exercise 3.30 Let $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ be n points in d-dimensional space and let X be the $n \times d$ matrix whose rows are the n points. Suppose we know only the matrix D of pairwise distances between points and not the coordinates of the points themselves. The set of points $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ giving rise to the distance matrix D is not unique since any translation, rotation, or reflection of the coordinate system leaves the distances invariant. Fix the origin of the coordinate system so that the centroid of the set of points is at the origin. That is, $\sum_{i=1}^n \mathbf{x_i} = 0$.

1. Show that the elements of XX^T are given by

$$\mathbf{x_i}\mathbf{x_j^T} = -\frac{1}{2}\left[d_{ij}^2 - \frac{1}{n}\sum_{k=1}^n d_{ik}^2 - \frac{1}{n}\sum_{k=1}^n d_{kj}^2 + \frac{1}{n^2}\sum_{k=1}^n\sum_{l=1}^n d_{kl}^2\right].$$

2. Describe an algorithm for determining the matrix X whose rows are the x_i .

Exercise 3.31

1. Consider the pairwise distance matrix for twenty US cities given below. Use the algorithm of Exercise 3.30 to place the cities on a map of the US. The algorithm is called classical multidimensional scaling, cmdscale, in Matlab. Alternatively use the pairwise distance matrix to place the cities on a map of China.

Note: Any rotation or a mirror image of the map will have the same pairwise distances.

	В	В	\mathbf{C}	D	D	Н	L	M	M	M
	O	U	H	A	\mathbf{E}	O	A	\mathbf{E}	I	I
	S	\mathbf{F}	I	L	N	U		M	A	M
Boston	_	400	851	1551	1769	1605	2596	1137	1255	1123
Buffalo	400	-	454	1198	1370	1286	2198	803	1181	731
Chicago	851	454	_	803	920	940	1745	482	1188	355
Dallas	1551	1198	803	_	663	225	1240	420	1111	862
Denver	1769	1370	920	663	_	879	831	879	1726	700
Houston	1605	1286	940	225	879	_	1374	484	968	1056
Los Angeles	2596	2198	1745	1240	831	1374	_	1603	2339	1524
Memphis	1137	803	482	420	879	484	1603	_	872	699
Miami	1255	1181	1188	1111	1726	968	2339	872	_	1511
Minneapolis	1123	731	355	862	700	1056	1524	699	1511	_
New York	188	292	713	1374	1631	1420	2451	957	1092	1018
Omaha	1282	883	432	586	488	794	1315	529	1397	290
Philadelphia	271	279	666	1299	1579	1341	2394	881	1019	985
Phoenix	2300	1906	1453	887	586	1017	357	1263	1982	1280
Pittsburgh	483	178	410	1070	1320	1137	2136	660	1010	743
Saint Louis	1038	662	262	547	796	679	1589	240	1061	466
Salt Lake City	2099	1699	1260	999	371	1200	579	1250	2089	987
San Francisco	2699	2300	1858	1483	949	1645	347	1802	2594	1584
Seattle	2493	2117	1737	1681	1021	1891	959	1867	2734	1395
Washington D.C.	393	292	597	1185	1494	1220	2300	765	923	934

	N	O	Р	Р	Р	S	S	S	S	D
	Y	M	Н	Н	I	t	L	F	E	C
		A	I	O	T	L	C		A	
Boston	188	1282	271	2300	483	1038	2099	2699	2493	393
Buffalo	292	883	279	1906	178	662	1699	2300	2117	292
Chicago	713	432	666	1453	410	262	1260	1858	1737	597
Dallas	1374	586	1299	887	1070	547	999	1483	1681	1185
Denver	1631	488	1579	586	1320	796	371	949	1021	1494
Houston	1420	794	1341	1017	1137	679	1200	1645	1891	1220
Los Angeles	2451	1315	2394	357	2136	1589	579	347	959	2300
Memphis	957	529	881	1263	660	240	1250	1802	1867	765
Miami	1092	1397	1019	1982	1010	1061	2089	2594	2734	923
Minneapolis	1018	290	985	1280	743	466	987	1584	1395	934
New York	-	1144	83	2145	317	875	1972	2571	2408	230
Omaha	1144	-	1094	1036	836	354	833	1429	1369	1014
Philadelphia	83	1094	-	2083	259	811	1925	2523	2380	123
Phoenix	2145	1036	2083	-	1828	1272	504	653	1114	1973
Pittsburgh	317	836	259	1828	-	559	1668	2264	2138	192
Saint Louis	875	354	811	1272	559	-	1162	1744	1724	712
Salt Lake City	1972	833	1925	504	1668	1162	-	600	701	1848
San Francisco	2571	1429	2523	653	2264	1744	600	-	678	2442
Seattle	2408	1369	2380	1114	2138	1724	701	678	-	2329
Washington D.C.	230	1014	123	1973	192	712	1848	2442	2329	-

City	Bei-	Tian-	Shang-	Chong-	Hoh-	Urum-	Lha-	Yin-	Nan-	Har-	Chang-	Shen-
	jing	jin	hai	qing	hot	qi	sa	chuan	ning	bin	chun	yang
Beijing	0	125	1239	3026	480	3300	3736	1192	2373	1230	979	684
Tianjin	125	0	1150	1954	604	3330	3740	1316	2389	1207	955	661
Shanghai	1239	1150	0	1945	1717	3929	4157	2092	1892	2342	2090	1796
Chongqing	3026	1954	1945	0	1847	3202	2457	1570	993	3156	2905	2610
Hohhot	480	604	1717	1847	0	2825	3260	716	2657	1710	1458	1164
Urumqi	3300	3330	3929	3202	2825	0	2668	2111	4279	4531	4279	3985
Lhasa	3736	3740	4157	2457	3260	2668	0	2547	3431	4967	4715	4421
Yinchuan	1192	1316	2092	1570	716	2111	2547	0	2673	2422	2170	1876
Nanning	2373	2389	1892	993	2657	4279	3431	2673	0	3592	3340	3046
Harbin	1230	1207	2342	3156	1710	4531	4967	2422	3592	0	256	546
Changchun	979	955	2090	2905	1458	4279	4715	2170	3340	256	0	294
Shenyang	684	661	1796	2610	1164	3985	4421	1876	3046	546	294	0