Denoising with Generative Models

Loïs Bilat

MA3 IN - Fall 2019 - Semester Project - 12 ECTS Supervisor : Brian Sifriger

Reminder

- Low quality => high quality audio files
- Super-resolution, denoising and dereverberation
- Before midterm: Bottleneck architecture (Kuleshov, Enam, Ermon: Audio Super Resolution with Neural Networks, 2017)

What's new?

- Scheduler
- Improved Architecture
 - Discriminator network
 - Auto-encoder network
- Collaborative GAN

Scheduler

- When loss reaches a plateau, decrease learning rate
- Many parameters
 - What is a "plateau"?
 - By how much do we decrease?
 - 0 ...

Scheduler

Metric: LSD (Log-spectral distance), lower = better

(Difference in the frequency space)

$$LSD(X, X_{ref}) = \frac{1}{W} \sum_{w=1}^{W} \sqrt{\frac{1}{K} \sum_{k=1}^{N} \left(\log_{10} \frac{|X(w,k)|^2}{|X_{ref}(w,k)|^2} \right)^2}$$

LSD(Xlow,Xhigh)	LSD(Ximproved,Xhigh)	$LSD(X_{improved+scheduler}, X_{high})$
2.2235	1.6079	1.6779

Original Network

Original high quality x_h low quality x_l

Generator

$$\mathcal{L}_{L2} = rac{1}{W} \sum_{i=1}^{W} \left\| oldsymbol{x_{h,i}} - G(oldsymbol{x_l})_i
ight\|_2^2$$

$$\mathcal{L}_G = \mathcal{L}_{L2}$$

Discriminator Network

Original high quality $oldsymbol{x_h}$ low quality $oldsymbol{x_l}$

Generator

$$\mathcal{L}_{L2} = rac{1}{W} \sum_{i=1}^{W} \left\| oldsymbol{x_{h,i}} - G(oldsymbol{x_l})_i
ight\|_2^2$$

$$\mathcal{L}_G = \mathcal{L}_{L2} + \lambda_{adv} \mathcal{L}_{adv}$$

Discriminator

real or fake high quality audio?

Train using x_h -> real $G(x_l)$ -> fake Binary Cross-entropy loss

$$\mathcal{L}_{adv} = -\log D(G(\boldsymbol{x_l}))$$

Auto-encoder network

Original high quality x_h low quality x_l

Generator

$$\mathcal{L}_{L2} = rac{1}{W} \sum_{i=1}^{W} \left\| oldsymbol{x_{h,i}} - G(oldsymbol{x_l})_i
ight\|_2^2$$

$$\mathcal{L}_{adv} = -\log D(G(\boldsymbol{x_l}))$$

$$\mathcal{L}_G = \mathcal{L}_{L2} + \lambda_f \mathcal{L}_f + \lambda_{adv} \mathcal{L}_{adv}$$

Discriminator

$$\mathcal{L}_f = \frac{1}{C_f W_f} \sum_{c=1}^{C_f} \sum_{i=1}^{W_f} \left\| \phi(\boldsymbol{x_h})_{i,c} - \phi(G(\boldsymbol{x_l}))_{i,c} \right\|_2^2$$

Improved Architecture

- Fully modular:
 - Discriminator, auto-encoder, both or none
- Lots of parameters to tune
 - \circ Tune the lambdas $\mathcal{L}_G = \mathcal{L}_{L2} + \lambda_f \mathcal{L}_f + \lambda_{adv} \mathcal{L}_{adv}$
 - When do we use composite loss? (only start when discriminator/autoencoder are good enough)
 - o 3x hyperparameters (learning rate, momentum, decay, dropout, ...)
 - => hard to find the best values

Results

Log-Spectral Distance on Super-resolution 5kHz to 10kHz

- Discriminator and auto-encoder useful
- Can try Auto-Encoder + Discriminator together

Collaborative Gan

- Training as usual
- At the end, "refine" the samples
- Repeat while not good enough

Update data at one layer of G

Not working yet ...

Demo

Super-resolution

Denoising

Conclusion

- Complex architecture with many features
- Metric shows improvement, not obvious when listening
- Hyperparameter tuning required
- Running on the workstation complicated
 - o meanwhile, report started : vita.bilat.xyz