Identifying Token-Level Dialectal Features in Social Media

Jeremy Barnes, Samia Touileb, Petter Mæhlum, Pierre Lison

Dialectal variation in Norway

- Dialect (geolect, topolect) a language variety the indicates where a speaker is from
- In Norwegian, such variation is common and the distribution of dialectal features often overlap imperfectly, making it difficult to define dialect zones
- We avoid this controversial step by trying to predict dialect features directly

Motivation

- Most NLP datasets with dialectal variation:
 - Classification of dialects into predefined categories
 - Geolocation
 - Other NLP tasks performed on the dialectal data
- But we wanted to model the distribution of features themselves
 - o In text, so we decided on token-level (although some of the features can span several tokens)

```
y'all fixin' to leave?

subj-pron lexical lexical g-drop
```

'are you-pl about to leave?'

Tweet collection

- Collected 2,455 dialectal tweets (human annotated)
- First attempt using Twitter API + confining search to Norway didn't work
- Instead queried for dialect features
 - Found users who commonly used these features
 - Gathered their tweets and expanded by collecting tweets from their followers
- Annotators then filtered non-dialectal tweets

Annotated dialectal features

- Taken from features found in the Store Norske Leksikon

- Did not include features that are not observable in written texts.
 - variation in toneme patterns
 - pronunciation of 'L'

- Added a few more to deal with social media use

Annotated dialectal features

- Subject pronoun
- 2. Object pronoun
- 3. Copula
- 4. Contraction
- 5. Palatalization
- 6. Present marker deletion
- 7. Apocope
- 8. Voicing
- 9. Vowel shift
- 10. Lexical variation

- 11. Demonstrative pronoun use
- 12. Shortening
- 13. Grammatical gender
- 14. Marked
- 15. H-V changes
- 16. Adjectival declension
- 17. Nominal declension
- 18. Verb conjugation
- 19. Functional words
- 20. Phonemic spelling
- 21. Interjection

Subject pronoun

Apocope

... og dem/de blir aldrig eldre ... (5) Æ e her for å vinn/vinne '... and they never get older ...' 'I am here to win' ...

t alor rort at

Voicing

(2) Det e/er rart at ...

Copula

(6) Eg kommer ikkje tebage/tilbake 'I won't come back' ...

'It is weird that ...'

Annotation procedure

Annotators - three hired research assistants with background in linguistics

- First 50 tweets annotated independently by two annotators
 - Group discussion to find sources of disagreement and refine guidelines
 - These were then adjudicated by a third annotator

Regular group meetings to discuss difficulties and further refine guidelines

Dataset Statistics

		2.00		W To Fig.
	train	dev	test	total
number of tweets	1,655	300	500	2,455
number of tokens	40,483	7,563	12,597	60,643
average number of tokens per tweet	24.5	25.2	25.2	24.7
average number of annotations per tweet	4.5	4.4	4.5	4.5
average number of annotations per token	0.2	0.2	0.2	0.2
average number of labels per annotated token	1.2	1.2	1.2	1.2

IAA: y = 0.63, and y = 0.64

vowel shift pronoun subject **Statistics** high functional copula present marker deletion phonemic spelling nominal declension contraction · mid pronoun object marked shortening apocope conjugation h v voicing adjectival declension lexical low palatalization interjection demonstrative pronoun gender -

200

0

400

600

800

1000

1200

1400

1600

Coocurrence of labels

28

29

20

15 121

wel-shift

3

57 14 3

5

1

6

1 2

1 14

35

23

12 19

18 2

20 65 7 1

1

32 21 46

honemic om-delet

121

ortening

Experimental setup

Rule-based labeling functions applied directly to test set

- 2. Weak labeling Labeling functions applied to larger set of unlabeled tweets
 - a. Use aggregation function (majority vote or HMM) to create silver data
 - b. Train a BERT model on this silver data

- 3. Train a Pretrained Language Model directly on the available training data
 - a. To determine the effect of the contextual embeddings, we also train an SVM using the non-contextualized word embeddings from the same BERT model as features

Rule-based weak learning

Particularly useful for low-resource settings: no training data, only expert knowledge

We created 39 hand-crafted functions of 3 types:

- 1. Heuristic functions
 - a. Labels that can be detected programmatically
- 2. Lexicon functions
 - a. Labels to be applied to relatively small, closed classes
- 3. Dictionary-based functions
 - a. Labels that require checking with standard dictionaries

Heuristic examples

Lexicon-based

```
def high_prec_pron_subj(doc):
    subj_pron = ["æ", "æg", "jæ", "jæi", "je", "ej"]
    i = 0
    while i < len(doc):
        tok = doc[i]
        if tok.text.lower() in subj_pron:
            yield i, i+1, "pronoun_subject"
        i += 1</pre>
```

Dictionary-based

```
class VowelshiftAnnotator(SpanAnnotator):
   def init (self, name, bokmal, nynorsk):
       super(VowelshiftAnnotator, self). init (name)
       self.bokmal = bokmal
       self.shifts = {"au": ["ø", "o"],
                       "jø": ["e"],
                       "øu": ["au"],
                      "æ": ["e", "a"],
                      "a": ["e"],
                       "iæ": ["e"]
                       "je": ["ø"]
                       "o": ["u"],
                       "ei": ["e"]
                       "e": ["ei", "i"],
                      "øu": ["au"],
                      "å": ["o"]
   def replacenth(self, string, sub, wanted, n):
       where = [m.start() for m in re.finditer(sub, string)][n-1]
       before = string[:where]
       after = string[where:]
       after = after.replace(sub, wanted, 1)
       newString = before + after
       return newString
       shifted = []
       for shift, shiftbacks in self.shifts.items():
           if shift in token:
               count = token.count(shift)
               for shiftback in shiftbacks:
                       shifted.append(self.replacenth(token, shift, shiftback, i))
                       shifted.append(token.replace(shift, shiftback))
       return shifted
```

Weak supervision

skweak

Gain recall by applying previous functions to unlabeled data.

Fully supervised models

Best case scenario: we have enough data to train our models

- BiLSTM
- NorBERT
- NB-BERT-base

Although the problem is multi-label, early experiments gave problems.

Therefore, we instead merge multi-labels and predict a total of 159 labels

['functional', 'contraction'] -> 'functional_contraction'

Results

Model	Dev	Test
'Vowel shift'	3.7	4.4
Labeling functions (MV-aggregated)	15.6	16.4
NB-BERT fine-tuned on HMM-aggregated weak labels NB-BERT fine-tuned on MV-aggregated weak labels	$ \begin{array}{rrr} 14.1 & \pm 0.3 \\ 29.7 & \pm 0.6 \end{array} $	21.2 ± 0.7 33.3 ± 0.7
SVM + NB-BERT embeddings (gold labels) BiLSTM fine-tuned on train (gold labels) NorBERT fine-tuned on train (gold labels)	$\begin{array}{r} 45.5 \\ 38.5 & \pm 3.4 \\ 42.0 & \pm 6.0 \end{array}$	47.7 45.5 ± 0.0 52.9 ± 1.3
NB-BERT fine-tuned on train (gold labels)	54.9 ± 0.8	58.4 ± 0.4

Error analysis

- the model confuses most labels with the label 'Ø'
- 'vowel shift' is regularly over-predicted
- Many of the labels are context sensitive - a non-contextualized baseline performs much worse

Error analysis

- correlation between frequency in the training corpus and F1,
 - although there are outliers such as vowel shift.
 - This may be due to the range of heterogeneous contexts in which vowel shift can occur.
- Other labels such as functional or h-v are more difficult than expected, likely due to the number of possible forms
- Frequent multi-label tokens are correctly predicted, but the models struggle to generalize

Label	Precision	Recall	F_1
copula	94.5	94.8	94.7
pron. subj.	82.9	74.3	78.4
pm deletion	72.4	79.9	76.0
pron. obj.	88.2	63.8	74.0
h-v	67.4	69.0	68.2
functional	71.2	63.9	67.3
voicing	73.7	58.3	65.1
аросоре	75.5	53.6	62.7
nom. decl.	66.0	55.6	60.4
dem. pro.	60.0	60.0	60.0
contraction	77.1	45.8	57.4
vowel shift	58.4	55.3	56.8
phon. spelling	40.7	36.5	38.5
shortening	41.3	35.2	38.0
adj. decl.	36.8	28.0	31.8
palatalization	75.0	20.0	31.6
interjection	30.0	25.0	27.3
conjugation	24.3	15.8	19.1
marked	6.7	8.0	7.3
lexical	50.0	3.0	5.7
gender	0.0	0.0	0.0

Conclusion and future work

- New dataset for token-level dialect feature detection in Norwegian
- For many of these labels, context is necessary to properly identify them

- We would like to / encourage others to use the data in order to
 - explore the distribution of these dialectal features in different online communities using the learned models.
 - predict regional dialects based on the token-level features

Thanks to:

- TekstHub for funding
- Alexandra Wittemann and Marie Emerentze Fleisje for annotation

Contact info

https://github.com/jerbarnes/nordial

- jeremy.barnes@ehu.eus
- <u>samia.touileb@uib.no</u>
- pettemae@ifi.uio.no
- plison@nr.no