Joshua Mitchell; MATH 5374; HW 4; 6.1, 6.3,

6.1

If P is an orthogonal projector, then I-2P is unitary. Prove this algebraically, and give a geometric interpretation.

In other words, we want to show:

$$(I-2P)(I-2P)^* = I$$

Recall that if P is an orthogonal projector, then $P = P^*$.

$$(I - 2P)(I - 2P)^*$$

$$= (I - 2P)(I - 2P^*)$$

$$= I^2 - 2P - 2P^* + 4PP^*$$

$$= I^2 - 4P + 4PP$$

$$= I^2 - 4P + 4P$$

$$= I^2$$

$$= I$$

Hence, I - 2P is unitary.

The geometric interpretation is this:

I − P is a comp projector to P. Since they project onto opposite spaces and I − P is already unitary, scaling the vectors subtracted from I doesn't change the direction, which still makes it orthogonal.

6.3

Give $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.

 \Rightarrow (beginning with A*A is non-singular) A*A is non-singular implies that

$$\sigma_n > \sigma_{n-1} > \dots > \sigma_1 > 0$$

By Theorem 5.4, σ 's of A are the square roots of A*A. Thus,

$$\sigma_i = \sqrt{\lambda_i}$$

and

$$\sigma_i^2 = \lambda_i > 0$$

for $i := 1 \dots n$

Since all n eigenvalues are greater than 0 and m \geq n, A has full rank.

 \Leftarrow (beginning with A has full rank)

A has full rank implies that

$$\lambda_n \ge \lambda_{n-1} \ge \dots \ge \lambda_1 > 0$$

displaymath

Notice:

$$A^*A = A^2 = (XVX^{-1})^2 = XV^2X^{-1}$$

Since all eigenvalues of A are nonzero, that means all entries of \mathbf{V}^2 are nonzero.

Since all entries of V^2 are non-zero, that means that A^2 is full rank.

Since A^2 is full rank, that implies A^2 and A^*A are non-singular.