Algoritmo Inserción

Algoritmo natural usado para ordenadar n elementos de numerados de forma arbitraria. Requiere $O(n^2)$ operaciones para ordenar una lista de n elementos.

Inicialmente se tiene un solo elemento, que obviamente es un conjunto ordenado. Después, cuando hay k elementos ordenados de menor a mayor, se toma el elemento k+1 y se compara con todos los elementos ya ordenados, deteniéndose cuando se encuentra un elemento menor (todos los elementos mayores han sido desplazados una posición a la derecha) o cuando ya no se encuentran elementos (todos los elementos fueron desplazados y este es el más pequeño). En este punto se inserta el elemento k+1 debiendo desplazarse los demás elementos.

Pasos a seguir para medir la eficiencia:

- 1. Average: Generar vector de enteros aleatorio
- 2. Best Case Scenario: Generar vector de enteros ordenado
- 3. Worst Case Sceneario: Generar vector de enteros ordenados al reves
- 4. Guardamos tiempos antes de ejecutar y despues de ejecutar el algortimo
- 5. Calcular tiempo.

Información

Hardware usado (CPU, velocidad de reloj, memoria RAM, ...)

```
## Stapps
## Architecture: 28.56
## Control of the Control of the Control of 19:39:46
## Architecture: 28.56
## Control of the Control of th
```

Compilador utilizado y opciones de compilación

```
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/5/lto-wrapper
Target: x86_64-linux-gnu
gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.9)
```

Compilación

```
g++ -std=c++11 ./src/$PROGRAMA.cpp -o ./bin/$PROGRAMA
Usamos el siguiente script:
# Variables:
PROGRAMA=$1
SALIDA=./data/tiempo_best_case_$1.dat
MENSAJE_INICIO="Se inicia la ejecución del algoritmo $1:"
MENSAJE_FINAL="Fin de la ejecución. Se ha creado un fichero con los resultados."
# Se genera el ejecutable con el algoritmo de ordenación:
g++ -std=c++11 ./src/$PROGRAMA.cpp -o ./bin/$PROGRAMA
echo "$MENSAJE_INICIO"
# Variables:
INICIO=1000
FIN=30000
INCREMENTO=1000
i=$INICIO
echo > $SALIDA
while [ $i -le $FIN ]
do
   echo Vector size = $i
   echo "`./bin/$PROGRAMA $i 10000`" >> $SALIDA
   i=$((i+$INCREMENTO))
done
rm -fr ./bin/$PROGRAMA
echo "$MENSAJE_FINAL"
```

Sistema operativo

Desarrollo completo del cálculo de la eficiencia teórica y gráfica.

Calculo de eficiencia O(n^2)

Best Case

Br = 2 +
$$\sum_{i=1}^{n-1} 2 + 2 + 4 + 3 + 2 = 13n - 11$$

Worst Case

W_T = 2 + $\sum_{i=1}^{n-1} 4 + 4 + (\sum_{i=1}^{n-1} 4 + 2 + 4) + 3 + 2 = 1$

= 2 + $\sum_{i=1}^{n-1} 3 + \sum_{i=1}^{n-1} \frac{1}{10} = 1$

= 2 + 13 (n-1) + $\sum_{i=1}^{n-1} 10i = 1$

= $2 + 13 - 13 + 10 (\frac{n}{2}(n-1)) = 1$

= $5n^2 + 8n - 11$

Average Case

At = 0 for este case, estudiarenes primero el nº de vaces

promedo que entra en el while

$$\sum_{i=1}^{n-1} \frac{1}{i} = \frac{1}{i} (i-1) \frac{1}{2} = \frac{1}{2}$$

Por tento:

= $2 + 13 (n-1) + \sum_{i=1}^{n-1} \sum_{i=1}^{n-1} 10 = 1$

= $2 + 13 (n-1) + 10 \sum_{i=1}^{n-1} \frac{1}{2} = 1$

= $\frac{1}{2} (5n^2 + 3ln) - 16$

Eficiencia Empirica

Hemos tomado multiples medidas y sobre esto hemos realizado los ajustes y graficas.

Ejemplo de medidas Worst Case

El algoritmo de inserción es cuadratico junto con los otros dos, burbuja y selección pero aun asi hay diferencias en este caso el numero de comparaciones e intercambios que se hacen.

1000 0.00487127 2000 0.0175072 3000 0.028667 4000 0.063623 5000 0.0773883 6000 0.111883 7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189 12000 0.418797	N Elementos	Tiempo
3000 0.028667 4000 0.063623 5000 0.0773883 6000 0.111883 7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	1000	0.00487127
4000 0.063623 5000 0.0773883 6000 0.111883 7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	2000	0.0175072
5000 0.0773883 6000 0.111883 7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	3000	0.028667
6000 0.111883 7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	4000	0.063623
7000 0.142794 8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	5000	0.0773883
8000 0.187937 9000 0.247467 10000 0.299123 11000 0.373189	6000	0.111883
9000 0.247467 10000 0.299123 11000 0.373189	7000	0.142794
10000 0.299123 11000 0.373189	8000	0.187937
11000 0.373189	9000	0.247467
	10000	0.299123
12000 0.418797	11000	0.373189
	12000	0.418797
13000 0.50118	13000	0.50118
14000 0.583927	14000	0.583927
15000 0.662768	15000	0.662768
16000 0.75421	16000	0.75421
17000 0.852025	17000	0.852025

18000	0.948132
19000	1.07889
20000	1.18116
21000	1.31908
22000	1.44115
23000	1.58941
24000	1.70263
25000	1.90796
26000	2.0077
27000	2.17487
28000	2.34309
29000	2.47959
30000	2.71084

Parámetros usados para el cálculo de la eficiencia empírica y gráfica.

Para el calculo de las gráficas hemos usado el script:

```
#!/bin/bash

#Variables:
OUTPUT=./data/grafica_tiempo_average_case_insercion.png
TITULO="Algoritmo Insercionn Average Case"
XLABEL="Longitud del Vector"
YLABEL="Tiempo (segundos)"
LEYENDA="Algoritmo Insercionn O(n^2)"
FICHERO_DATOS="./data/tiempo_average_case_insercion.dat"
COLOR=blue

gnuplot<<FIN
# Terminal para png:
set terminal pngcairo enhanced font 'Verdana,10'
set border linewidth 1.5</pre>
```

```
# Estilo de linea y color:
set style line 1 lc rgb '$COLOR' lt 1 lw 2 pt 7 pi 0 ps 0.5
set pointintervalbox 0

# Nombre de la imagen resultante:
set output '$OUTPUT'

# Titulo y ejes:
set title "$TITULO" enhanced font 'Verdana,14'
set xlabel "$XLABEL"
set ylabel "$YLABEL"
set autoscale

plot "$FICHERO_DATOS" title '$LEYENDA' with linespoints ls 1
FIN
```

Average

Worst Case

Best Case

Ajuste de la curva teórica a la empírica: mostrar resultados del ajuste y gráfica.

Grafica de comparacion con todos los casos

Algoritmo Insercion Total Case

Comparacion con los otros dos algoritmos

Comparación de los 3 peores tiempos

Ajuste

Ajuste

```
Mon Mar 5 19:10:36 2018
FIT:
       data read from "data/insercion/tiempo_worst_case_insercion.dat"
        format = z
        #datapoints = 30
        residuals are weighted equally (unit weight)
function used for fitting: f(x)
 f(x)=a^*x^*2 + b^*x + c
fitted parameters initialized with current variable values
                      delta/lim lambda a
                                                        b
          chisq
  0 1.7515977662e+01 0.00e+00 2.80e-01
                                            1.158524e-09
                                                             3.538991e-<mark>08</mark>
                                                                            9.311173
   6 4.9433033151e-03 -2.06e-02 2.80e-07 3.034647e-09 -1.675779e-06
                                                                            9.95043
After 6 iterations the fit converged.
```

```
final sum of squares of residuals : 0.0049433
rel. change during last iteration : -2.06321e-07
degrees of freedom (FIT_NDF)
                                                  : 27
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0135309
variance of residuals (reduced chisquare) = WSSR/ndf : 0.000183085
Final set of parameters
                                Asymptotic Standard Error
= 3.03465e-09 +/- 3.693e-11 (1.217%)

= -1.67578e-06 +/- 1.18e-06 (70.41%)

= 0.00995044 +/- 0.007934 (79.74%)
a
b
С
correlation matrix of the fit parameters:
              a b c
               1.000
a
             -0.970 1.000
b
             0.770 -0.882 1.000
С
```