CLAIMS

What is claimed is:

1	 A method for fabricating an etched grooved GaN-based permeable-base
2	transistor device, comprising:
3	opening a window for helium implantation on a hydride vapor phase epitaxy
4	(HVPE) grown n ⁺ GaN quasi-substrate layer, using optical lithography;
5	implanting helium on the n+ GaN quasi-substrate layer over the window for helium
6	implantation, so as to provide an insulating layer for contact pads of the
7	device;
8	opening a window for collector fingers using E-beam lithography;
9	depositing an ohmic metallization layer over the window for the collector fingers;
10	lifting-off ohmic metallization, thereby forming the collector fingers;
11	opening a window for a self-aligned base recess using optical lithography; and
12	etching to recess a base layer to an n- GaN quasi-substrate layer grown on the n+
13	GaN quasi-substrate layer, wherein the etching is performed with a ramp
14	down in chuck bias voltage.
1	2. The method of claim 1 further comprising:
2	opening a window for a collector contact pad, using optical lithography;
3	depositing a high quality silicon nitride layer over the window for a collector
4	contact pad; and
5	lifting-off or wet chemical etching the high quality silicon nitride layer, thereby
6	forming a silicon nitride collector contact pad.
ì	3. The method of claim 2 wherein the high quality silicon nitride layer is about
2	1000-2000Å thick, and is deposited over the window for helium implantation via plasma
3	enhanced chemical vapor deposition (PECVD).
1	4. The method of claim 2 further comprising:
2	opening a window for Ti metallization of the collector contact pad using optical
3	lithography;

4 5	depositing Ti over the window for Ti metallization of the collector contact pad; and lifting-off Ti metallization, thereby forming a Ti collector contact pad.
1	5. The method of claim 4 further comprising:
2	opening a window for a second Ti metallization of the collector contact pad using
3	optical lithography;
4	depositing Ti over the window for the second Ti metallization of the collector
5	contact pad; and
6 7	lifting-off second Ti metallization, thereby forming a Ti cap over the collector contact pad.
1	6. The method of claim 2 wherein depositing Ti over the window for Ti
2	metallization of the collector contact pad includes depositing Ti/Au at thicknesses of about
3	500Å/1000Å, respectively, using e-beam evaporation.
1	7. The method of claim 1 wherein the ramp down in chuck bias voltage is
2	about -200 VDC or more, the method further comprising:
3	depositing conformal silicon nitride for passivation of the recessed base layer;
4 5	directionally etching to remove silicon nitride on planes parallel to the n ⁺ GaN quasi-substrate layer;
5	depositing a base metallization layer; and
7	lifting-off base metallization, thereby forming a base contact pad.
1	8. The method of claim 7 wherein an anneal is performed post-base.
2	metallization so as to provide the base contact pad with low reverse current leakage and
3	low contact resistance.
	9. The method of claim 1 further comprising:
l	
2	opening an emitter etch/contact window using optical lithography;
3	etching an emitter recess to the n ⁺ GaN quasi-substrate layer;
ţ	depositing an emitter ohmic metallization layer over the etched emitter recess; and
5	lifting-off emitter ohmic metallization, thereby forming an emitter contact pad.

each about 0.2 μm wide.

l	10. The method of claim 1 wherein the emitter ohmic metallization layer
2	includes at least one of titanium, aluminum, nickel, and gold.
1	11. The method of claim 1 further comprising:
2	opening a window for RF test pad metallization using optical lithography;
3	depositing an RF test pad metallization layer; and
4	lifting-off RF test pad metallization, thereby providing RF test pads.
1	12. The method of claim 1 wherein the helium implantation is achieved with an
2	implant depth of about 2 μm.
1	13. The method of claim 1 wherein the ohmic metallization layer over the
2	window for the collector fingers is Ti/Ni with thicknesses of 100Å and 400Å, respectively.
I	14. The method of claim 1 wherein the device has a plurality of collector
2	fingers about 0.2 μ m wide and having a finger pitch between 1:1 and 1:3.
1	15. An etched grooved GaN-based permeable-base transistor device,
2	comprising:
3	a GaN emitter region having a thickness of about 6 to 10 μ m, and grown on (0001)
4	sapphire using hydride vapor-phase epitaxy (HVPE) and He implantation
5	under base and collector contact pads at an implant angle of about 7°;
6	a GaN base region having a thickness of about 1 to 2 μm, and grown on the GaN
7	emitter region using molecular beam epitaxy (MBE); and
8	a GaN collector region having a thickness of about 0.1 to 0.3 μm, and a plurality of
9	collector fingers having finger sidewall angles of about 80° to 85° for 1:1
10	and 1:3 finger spacing, wherein the collector region is grown on the GaN
11	base region using MBE.
1	16. The device of claim 1 wherein the device has ten or more collector fingers

l	17. The device of claim 1 wherein spacing between each collector finger is
2	smaller than 1 μm.
1	18. The device of claim 1 wherein the each collector finger has two adjacen
2	base contacts, the base contacts having a width substantially equivalent to the gate length
3	of the device.
1	19. An etched grooved GaN-based permeable-base transistor device
2	comprising:
3	a GaN emitter region grown using hydride vapor-phase epitaxy (HVPE);
4	a GaN base region grown on the GaN emitter region using molecular beam epitaxy
5	(MBE); and
6	a GaN collector region grown on the GaN base region using MBE, and having a
7	collector pad region and a plurality of collector fingers, wherein the
8	collector fingers have a first height in the collector pad region and a second
9	height out of the collector pad region, with the first and second heights
0	configured so as to prevent disconnect between the collector fingers and the
1	collector pad region.
1	20. The device of claim 19 wherein the device has ten or more collector fingers
2	each about 0.2 μm wide.
1	21. A method for fabricating an etched grooved GaN-based permeable-base
2	transistor device, comprising:
3	opening a window for a base recess; and
4	etching to recess a base layer to an n- GaN quasi-substrate layer grown on the n+
5	GaN quasi-substrate layer, wherein the etching is performed with a ramp
6	down in chuck higs voltage