

Towards Cohesion-Fairness Harmony: Contrastive Regularization in Individual Fair Graph Clustering

The 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2024)

Siamak Ghodsi¹, Seyed Amjad Seyedi², and Eirini Ntoutsi³

- 1 "L3S Research Center, Leibniz University Hannover, Germany "
- 2 "University of Kurdistan, Sanandaj, Iran "
- 3 "RI CODE, University of the Bundeswehr Munich, Germany "

1. Introduction

- Example
- Problem Formulation
- Fair Graph Clustering
 - Individual Fairness
- 2. Methodology
 - NMTF
 - iFairNMTF
 - Interpretability

3. Experiments

- Datasets
- Metrics
- Loss Convergence
- Fairness-Cohesion

4. Conclusions

Take-away

1. Introduction

Example

- Teacher with 10 students, 4 female 6 male.
- First day of school.
- You know only the gender and friendship of students from their last year records.
- How to divide: 2 teams (clusters) for classroom assignents?

Clustering #1

Clustering #2

Problem Formulation

Inputs

Undirected graph
$$\mathcal{G} = (V, E) \text{ where } V = \{v_1, v_2, \dots, v_n\}$$

No self-loops

$$E \subseteq V \times V$$
 is a binary set of edges

Adjacency matrix

$$A \in \mathbb{R}^{n \times n}$$
 encodes edge information

• Sensitive attribute V_s $V = \dot{\cup}_{s \in [m]} V_s$

$$V = \dot{\cup}_{s \in [m]} V_s$$

Output

Non-overlapping clustering

$$V \text{ into } k \geq 2 \longrightarrow V = C_1 \dot{\cup} \dots \dot{\cup} C_k$$

1. Introduction

Fair graph clustering: Individual Fairness

Individual fairness (in i.i.d. data literature)

identically independently distributed data

• Pair-wise node distances in the input-output space \rightarrow Lipschitz continuity condition [2, 3].

$$D(f(v_i), f(v_j)) \le L \cdot d(v_i, v_j)$$

Individual fairness in graph clustering [4]

• Distribute representation (one-hop neighbors) of each node within clusters (max-min)

$$\delta_{i} = min_{k,l \in \{1,...,K\}} \frac{|C_{k} : \cap N_{v_{i}}|}{|C_{l} : \cap N_{v_{i}}|} \qquad Balance(C_{l}) = \min_{s \neq s' \in [m]} \frac{|V_{s} \cap C_{l}|}{|V_{s'} \cap C_{l}|}$$

Example contd.

$$\bar{\delta} = 0.141$$

$$B = 0.33$$

B Group well-being?

 $\overline{\delta}$ Individual links ?

Clustering #1

Clustering #2

$$\bar{\delta} = 0.174 \uparrow$$

$$B = 0.66$$

- What about clustering quality? C#1 is better or C#2?
- ☐ What should be the **clustering quality vs fairness**?

Symmetric NMF [7]

$$\min_{oldsymbol{H}\geq 0} \lVert oldsymbol{A} - oldsymbol{H} oldsymbol{H}^{ op}
Vert_F^2,$$

$$H \in \mathbb{R}^{n \times k}$$

 $oldsymbol{H}^{ op}$

$$(A_{ij} > 0) \qquad \qquad (\mathbf{h}_i \mathbf{h}_j^\top > 0)$$

$$(A_{ij} = 0) \qquad \qquad (\mathbf{h}_i \mathbf{h}_j^\top = 0)$$

$$A_{ij} = 0) \qquad (\mathbf{h}_i \mathbf{h}_j^{\top} = 0)$$

Symmetric NMF

$$\min_{\boldsymbol{H} \geq 0} \|\boldsymbol{A} - \boldsymbol{H} \boldsymbol{H}^{\top}\|_{F}^{2}, \qquad (A_{ij} > 0) \qquad (\boldsymbol{h}_{i} \boldsymbol{h}_{j}^{\top} > 0) \\ (A_{ij} = 0) \qquad (\boldsymbol{h}_{i} \boldsymbol{h}_{j}^{\top} = 0)$$

NMTF (Tri-Factorization) [8]

$$\min_{oldsymbol{H},oldsymbol{W}\geq 0} \|oldsymbol{A} - oldsymbol{H} oldsymbol{W} oldsymbol{H}^{ op}\|_F^2, \qquad A_{ij} pprox oldsymbol{h}^{(i)} oldsymbol{W} oldsymbol{h}^{(j)}^{ op} \ oldsymbol{H} \in \mathbb{R}^{oldsymbol{n} imes oldsymbol{k}}$$
 Interpretability Factor

iFairNMTF

NMTF

iFair

$$\min_{\boldsymbol{H}, \boldsymbol{W} \geq 0} \|\boldsymbol{A} - \boldsymbol{H} \boldsymbol{W} \boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \mathcal{R}_{\boldsymbol{C}}(\boldsymbol{H})$$

$$C = P - N$$

$$\mathcal{P}_{i,j} = \begin{cases} 1, & \text{if } g_i \neq g_j \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{N}_{i,j} = \begin{cases} 1, & \text{if } g_i = g_j \\ 0, & \text{otherwise.} \end{cases}$$

$$P_{ij} = \mathcal{P}_{ij} / \sum_{r=1}^{n} \mathcal{P}_{ir},$$

$$N_{ij} = \mathcal{N}_{ij} / \sum_{r=1}^{n} \mathcal{N}_{ir},$$

iFairNMTF

$$\min_{\boldsymbol{H},\boldsymbol{W}>0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \Re_{\boldsymbol{C}}(\boldsymbol{H}),$$

$$\min_{\boldsymbol{H}} \mathcal{R}_{\boldsymbol{C}} = \sum_{i=1}^{n} \sum_{j=1}^{n} ||\boldsymbol{h}^{(i)} - \boldsymbol{h}^{(j)}||^{2} C_{ij} = \text{Tr}(\boldsymbol{H}^{\top} \boldsymbol{L} \boldsymbol{H}).$$

iFairNMTF
$$\longrightarrow \mathcal{L} = \mathcal{L}_{\mathcal{F}} + \lambda \mathcal{R}_{\mathbf{C}}$$

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H})$$

iFairNMTF (Interpretability)

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_F^2 + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H})$$

	I	II	III	IV	
Ι	2.9	0	4E-12	7E-13	
II	0	1.10	5E-08	5E-04	
III	4E-12	5E-08	2.74	0	
IV	7E-13	5E-04	0	1.91	

W

Fig. 4: Interpretability of \boldsymbol{W} factor for a 40-node graph divided to 4 clusters. Shapes indicate groups.

iFairNMTF

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \|\boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top}\|_{F}^{2} + \lambda \text{Tr}(\boldsymbol{H}^{\top}\boldsymbol{L}\boldsymbol{H}),$$

3. Experiments

Datasets

Network	V		$ oldsymbol{E} $		Sensitive	g	c	ho	
	raw	clean	raw	clean	Attribute	3	191	F	
	2,000	-	267,430	-	attribute	5	5	0.1338	
SBM	5,000	-	978,959	-	attribute	5	5	0.0783	
	10,000	-	2,603,190	-	attribute	5	5	0.0521	
Friendship	134	127	406	396	gender	2		0.04949	
Facebook	156	155	1,437	1,437	gender	2	-	0.1204	
DrugNet	293	193	284	273	ethnicity	3	-	0.01473	
NBA	403	403	8,285	8,285	nationality	2	-	0.10228	
LastFM	7,624	5,576	27,806	19,587	country	6	-	0.00126	

$$\rho = \frac{2|E|}{|V|(|V|-1)}, \qquad \rho = \frac{2m}{n(n-1)}$$

Metrics

Cohesion (Modularity) [10]

$$Q = \frac{1}{|E|} \sum_{i,j} \left(A_{ij} - \frac{deg(i)deg(j)}{|E|} \right) \delta(c_i, c_j)$$

Balance score [1, 9]

$$Balance(C_l) = \min_{s \neq s' \in [m]} \frac{|V_s \cap C_l|}{|V_{s'} \cap C_l|}$$
$$B = \frac{1}{k} \sum_{l=1}^k Balance(C_l),$$

$$B = \frac{1}{k} \sum_{l=1}^{k} Balance(C_l),$$

3. Experiments

Fairness-Cohesion

Fixed number of clusters k=5. Best value of λ for our model according to next slide. Best B is **bold-underlined** and best Acc/Q with **boldfaced gray**

Network	FairSC		sFa	$\mathbf{sFairSC}$		iFairSC		DMoN		iFairNMTF	
	В	Q	В	Q	В	Q	В	Q	В	Q	
Diaries	0.708	0.612	0.809	0.684	0.699	0.647	0.263	0.145	0.648	0.640	
Facebook	0.327	0.449	$\underline{0.602}$	0.500	0.330	0.448	0.268	0.048	0.514	0.509	
Friendship	0.391	0.483	0.485	0.627	0.374	0.392	0.183	0.140	0.631	0.669	
DrugNet	0.052	0.263	0.052	0.270	0.061	0.263	0.000	0.326	$\underline{0.124}$	0.588	
NBA	0.083	0.000	$\underline{0.323}$	0.113	0.072	0.000	0.036	0.057	0.286	0.150	
LastFM	0.065	0.003	0.056	0.035	0.066	0.002	0.000	0.526	0.069	0.600	
	B	Acc	B	Acc	B	Acc	_ B _	Acc	В	Acc	
SBM-2K	0.575	0.588			0	0.799			0.953	0.958	
SBM-5K	$\underline{0.995}$	0.998	_	_	0	0.799	_	_	0.941	0.962	
SBM-10K	0.999	0.999	_	_	0	0.600	_	_	1	1	

3. Experiments

Fairness-Cohesion (Parameter Selection)

Choice of λ is problem/dataset specific

4. Conclusion

Take-Away

- Previous works include fairness in **rigid** (hard-constrained) graph-clustering frameworks, but our model proposes a **flexible** (adjustable) degree of trade-off between individual **fairness and cohesion** (clustering objective).
- A **novel contrastive regularization** (individual fairness constraint): takes not just Lipschitz condition into account but also group membership of nodes.
- > Individual-fair by definition but also group-fair by design.
- The **first work** to incorporate fairness in an **NMF** framework.
- > It enables users/policy-makers to enforce required degree of fairness in compromise to accuracy.

Future Outlook

- Multi-objective techniques to effectively balance fairness and cohesion objectives.
- Extend to group fairness notions and fusion ideas.
- Investigating individual-level measures for further evaluation.

5. References

- [1] Kleindessner, Matthäus, et al., "Guarantees for spectral clustering with fairness constraints", In: International Conference on Machine Learning. PMLR, 2019.
- [2] Dwork, Cynthia, Hardt, Moritz, Pitassi, Toni, Reingold, O., Zemel, Richard.S, "Fairness through awareness", In: Proceedings of the 3rd ITCS Conference. pp. 214–226 (2012)
- [3] Zemel, Richard.S., Wu, Yu, Swersky, Kevin, Pitassi, Toni, Dwork, Cynthia, "Learning fair representations", In: International Conference on Machine Learning. PMLR, 2013.
- [4] Gupta, Shubham, and Ambedkar Dukkipati, "Consistency of Constrained Spectral Clustering under Graph Induced Fair Planted Partitions.", In: Advances in Neural Information Processing Systems. 2022.
- [5] Wang, Yu-Xiong, and Yu-Jin Zhang, "Nonnegative matrix factorization: A comprehensive review", In: IEEE Transactions on knowledge and data engineering 25.6 (2012): 1336-1353.
- [6] Cai, Deng, et al, "Graph regularized nonnegative matrix factorization for data representation", In: IEEE transactions on pattern analysis and machine intelligence 33.8 (2010): 1548-1560.
- [7] Ding, Chris, Xiaofeng He, and Horst D. Simon, "On the equivalence of nonnegative matrix factorization and spectral clustering", In: Proceedings of the 2005 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2005.
- [8] Pei, Y., Chakraborty, N., Sycara, K.P., "Nonnegative matrix tri-factorization with graph regularization for community detection in social networks", In: IJCAI. pp. 2083–2089. AAAI Press (2015).
- [9] Dong, Yushun, et al., "Fairness in Graph Mining: A Survey", In: arXiv preprint arXiv:2204.09888 (2022).
- [10] Chakraborty, Tanmoy, et al., "Metrics for community analysis: A survey", IN: ACM Computing Surveys (CSUR) 50.4 (2017): 1-37.
- [11] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii, "Fair clustering through fairlets", In: Advances in Neural Information Processing Systems. (2017).

Siamak Ghodsi ghodsi@l3s.de

S. Amjad Seyedi amjadseyedi@uok.ac.ir

7

@GhodsiSiamak

@siamak-ghodsi

For code and Supplemental material, refer to iFairNMTF at:

https://github.com/SiamakGhodsi/iFairNMTF

2. Methodology

Introducing NMF

Loss Convergence

$$\mathcal{L} = \mathcal{L}_{\mathcal{F}} + \lambda \mathcal{R}_{\mathbf{C}}$$

$$\min_{\boldsymbol{H},\boldsymbol{W}\geq 0} \lVert \boldsymbol{A} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{H}^{\top} \rVert_F^2$$

$$+\lambda \text{Tr}(\boldsymbol{H}^{\top} \boldsymbol{L} \boldsymbol{H}),$$

