CS361 HW7 Ahram Kim 114055134

CS 361 – Homework 7 Total possible points: 75

(20 points) Create a state-diagram representation of a Turing Machine M₁ that accepts the language
 A = {w over {0, 1, #}* | w contains an equal number of 0's and 1's}. 10# ∈ A, 01#10 ∈ A, and #001 ∉ A.

2. Consider the TM M₂ defined by the set of transitions shown below. Here we use B to indicate the tape's "blank symbol."

δ	В	а	b	С
q 0	q ₁ ,B,R			
q ₁	q ₂ ,B,L	q ₁ ,a,R	q ₁ ,c,R	q ₁ ,c,R
q ₂		q₂,a,L		q₂,c,L

a. (10 points) Give the **state diagram** of M₂ (assuming q₂ is a final state)

CS361 HW7 Ahram Kim 114055134

b. (4 points) **Describe** the result of a computation in M_2 (i.e., explain in your own words what M_2 does given a string). Do *not trace the computation*, instead provide a high level overview of the language associated with M_2

B changes to c and accepts every string.

c. (3 points) Trace the computation of "BaabcaB"

q0 B a a b c a B	
B a q1 a b c a B	
B a a q1 b c a B	
Baacq1caB	
Baaccq1aB	
Baaccaq1 B	
Baaccaq2 B	
B a a c c q2 a B	
B a a c q2 c a B	
B a a q2 c c a B	
В а q2 а с с а В	
B q2 a a c c a B	
Accept!	

d. (3 points) **Trace** the computation of "BbcbB"

q0 B b c b B	
B c q1 c b B	
Bccq1bB	
Bcccq1B	
B c c c q2 B	
B c c q2 c B	
B c q2 c c B	
B q2 c c c B	
Accept!	

CS361 HW7 Ahram Kim 114055134

(20 points) Construct a state-diagram representation of a Turing Machine M₃ with input alphabet {a, b} that accepts strings of the form ww^R (where w is a string over {a, b}). The final configuration should be q_f ww^R B.

4. (15 points) Give a description¹ of a TM M₄ that decides language B = {w over {0, 1}* | w contains twice as many 1's as 0's}. For example: 101 ∈ B, 011 ∈ B, and 001 ∉ B

There are three ways to get TM accepted that w contains twice as many 1's as 0's.

- 1. The first one is '011'. If I find the string 0, I pass the state until I find one string 1 and then I pass again until I find the second string 1. Other strings will stay before they are. And I go back to the beginning of the tape and find another string which accepted that w contains twice as many 1's as 0's.
- 2. The second string is '101'. If I find the string 1, I pass the state until I find the string 0 and then I pass again the state until I find the second string 1. Other string will stay before they are.

 And I go back to the beginning of the tape and find another string which accepted that w contains twice as many 1's as 0's.
- 3. The third string is '110'. If I find the string 1, I pass the state until I find the second string 1 and then I pass the state again until I find the string 0. Other strings will stay before they are. And I go back to the beginning of the tape and find another string which accepted that w contains twice as many 1's as 0's.

If I can't find any string left, its done with final state.