MATH 70 WORKSHEET 3 SOLUTIONS

Instructions: This worksheet is due on Gradescope at 11:59 p.m. Eastern Time on Sunday, October 4. You are encouraged to work with others, but the final results must be your own. Please give complete reasoning for all worksheet answers.

- 1. (4 points) Let $\mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
 - (a) Prove that $0\mathbf{v} = \mathbf{0}$. In a similar way one can prove that $c\mathbf{0} = \mathbf{0}$ for any c.

Solution:

Suppose
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
. Then $0\mathbf{v} = 0 \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} 0v_1 \\ \vdots \\ 0v_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$.

(b) Assume $c\mathbf{v} = \mathbf{0}$. Prove that if $c \neq 0$ then $\mathbf{v} = \mathbf{0}$.

Solution:

We assume that
$$c\mathbf{v} = \begin{bmatrix} cv_1 \\ \vdots \\ cv_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
. That is, $cv_i = 0$ for all i in $\{1, \dots, n\}$. If $c \neq 0$, we know from arithmetic of real numbers that $v_i = 0$. This is true for all i and so $\mathbf{v} = \mathbf{0}$

enumerate This proves that $c\mathbf{v} = \mathbf{0}$ if and only if c = 0 or $\mathbf{v} = \mathbf{0}$.

(**Note:** you can use the algebraic properties of \mathbb{R}^n in your proofs for this problem.)

(c) (8 points) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\mathbf{u} \in \operatorname{Span}(S)$. Show \mathbf{u} has a unique representation as a linear combination of vectors from S if and only if S is a linearly independent set.

Note: This statement is a bi-conditional (an if and only if) so requires the following two statements to be proven:

- (i) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and \mathbf{u} be in Span(S). Show if \mathbf{u} has a unique representation as a linear combination of vectors from S then S is a linearly independent set.
- (ii) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and \mathbf{u} be in $\mathrm{Span}(S)$. If S is a linearly independent set then \mathbf{u} has a unique representation as a linear combination of vectors from S.

¹© Copyright Zachary Faubion, Xiaozhe Hu, Todd Quinto, Abiy Tasissa, and Tufts University.

Solution:

 (\Rightarrow) (By contrapositive.) Assume that S is linearly dependent and let

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0}$$

be a linear combination of vectors from S with $x_i \neq 0$ for at least one i. Since \mathbf{u} is in the $\mathrm{Span}(S)$ we also have

$$y_1\mathbf{v}_1 + y_2\mathbf{v}_2 + \dots + y_n\mathbf{v}_n = \mathbf{u}.$$

Examine the following computation:

$$\mathbf{u} = \mathbf{u} + \overrightarrow{\mathbf{0}}$$

$$= (y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n) + (x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n)$$

$$= (y_1 + x_1) \mathbf{v}_1 + (y_2 + x_2) \mathbf{v}_2 + \dots + (y_n + x_n) \mathbf{v}_n$$

Since there is at least one $x_i \neq 0$ then for at least one i we have $y_i \neq y_i + x_i$. This means that $y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \ldots + y_n \mathbf{v}_n$ and $(y_1 + x_1) \mathbf{v}_1 + (y_2 + x_2) \mathbf{v}_2 + \ldots + (y_n + x_n) \mathbf{v}_n$ are different linear combinations. Since both equal \mathbf{u} we have shown there are at least two different representations for \mathbf{u} meaning \mathbf{u} does not have a unique representation.

 (\Leftarrow) (by contrapositive) Assume that **u** has at least two different linear representations say,

$$\mathbf{u} = \sum_{i=1}^{n} x_i \mathbf{v}_i$$

$$\mathbf{u} = \sum_{i=1}^{n} y_i \mathbf{v}_i$$
for $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in S and for at least one $i, x_i \neq y_i$.

Then we have

$$\overrightarrow{\mathbf{0}} = \mathbf{u} - \mathbf{u} = \left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) - \left(\sum_{i=1}^{n} y_i \mathbf{v}_i\right) = \sum_{i=1}^{n} (x_i - y_i) \mathbf{v}_i$$

and since for at least one i, $x_i \neq y_i$ we have $x_i - y_i \neq 0$. This gives us a linear combinations of vectors from S equal to $\overrightarrow{\mathbf{0}}$ with at least one nonzero scalar. So, S is linearly dependent.

(\Leftarrow) ALTERNATIVE: since $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set, we know that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots c_n\mathbf{v}_n = \overrightarrow{\mathbf{0}}$ iff $c_1 = c_2 = \dots = c_n = 0$.

Thus, if matrix A has columns $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$, then $A\mathbf{x} = \overrightarrow{\mathbf{0}}$ only has the trivial solution

Thus if $\mathbf{u} \in \mathrm{Span}(S)$, the equation $A\mathbf{x} = \mathbf{u}$ has a unique solution.

Thus $\mathbf{u} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n$ is the unique representation of \mathbf{u} as the vectors in S.

(d) (4 points) If the columns of the $m \times n$ matrix A span \mathbb{R}^m and are also linearly independent, what can you conclude about the relation between the dimensions, m and n, of A?

Solution:

Since the columns of A are linearly independent, we know that the matrix A has a pivot position in every column. Since the columns of A span all of \mathbb{R}^m , we know that A has a pivot position in every row. Therefore, the number of rows must equal the number of columns, and m = n.

(e) (4 points) Show that the set of vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3\}$ in \mathbb{R}^3 is linearly dependent, but that any set containing 3 of them is linearly independent. The vector \mathbf{e}_i represents the vectors with all zeros except in position i where it has a 1.

Solution:

- (i) We have that $\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3=1\mathbf{e}_1+1\mathbf{e}_2+1\mathbf{e}_3$ so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3,\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3\}$ is linearly dependent.
- (ii) We have by above proof that $\{e_1, e_2, e_3\}$ is linearly independent.
- (iii) Suppose we have the set $S = \{\mathbf{e}_i, \mathbf{e}_j, \mathbf{e}_i + \mathbf{e}_j + \mathbf{e}_k\}$ Where i, j, k are either 1,2,3 and not equal. Then,

$$a\mathbf{e}_{i} + b\mathbf{e}_{j} + c(\mathbf{e}_{i} + \mathbf{e}_{j} + \mathbf{e}_{k}) = \overrightarrow{\mathbf{0}} \implies$$

$$(a - c)\mathbf{e}_{i} + (b - c)\mathbf{e}_{j} - c\mathbf{e}_{k} = \overrightarrow{\mathbf{0}} \implies$$

$$a - c = 0, \quad b - c = 0, \quad c = 0 \implies$$

$$a = 0, \quad b = 0, \quad c = 0$$

So S must be linearly independent.