K-Fold Cross-Validation

In K-Fold Cross Validation, we split the dataset into "K" number of folds (subsets). One chunk of data is used as test data for evaluation & the remaining part of the data is used for training the model. Each time, a different chunk will be used as the test data.

Helps in model selection

K-Fold Cross-Validation

✓ Accuracy score for SVM = 84.4 %

✓ Accuracy score for Logistic Regression = 88 %

Advantages of using K-Fold Cross-validation:

- > Better alternative for train-test split when the dataset is small
- > Better for multiclass classification problems

Iteration 1	Train	Train	Train	Train	Test
Iteration 2	Train	Train	Train	Test	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Test	Train	Train	Train
Iteration 5	Test	Train	Train	Train	Train

Instead of using K-fold from sklearn to do this Use cross_val_score it is much simplier to determine which model to use

from sklearn.model_selection import cross_val_score

```
cv_score_svc = cross_val_score(SVC(kernel = "linear"),X , Y ,cv = 5)
mean_accuracy_svc = sum(cv_score_svc)/len(cv_score_svc)
mean_accuracy_svc = mean_accuracy_svc*100
mean_accuracy_svc = round(mean_accuracy_svc,2)
print(mean_accuracy_svc)
```

Use this function

models = [LogisticRegression(max_iter = 1000), SVC(kernel = 'linear'), KNeighborsClassifier(),RandomForestClassifier()]

```
def compare_models_cross_validation():
    for model in models:
        cv_score = cross_val_score(model, X,Y, cv= 5)
        mean_accuracy = sum(cv_score)/len(cv_score)
        mean_accuracy = mean_accuracy*100
        mean_accuracy = round(mean_accuracy,2)
        print("The accuracy of the ",model, "=", mean_accuracy)
        print("-------")
```

Hyperparameter Tuning

Hyperparameter Tuning refers to the process of choosing the optimum set of hyperparameters for a Machine Learning model. This process is also called **Hyperparameter Optimization**.

Hyperparameter Tuning Types:

It used to select the best hyperparameters in the machine learning models as in Support Vector Classifier

Random Search CV

Used Only in binary calssification (accuracy score and confusion matrix)

Accuracy Score

In Classification, Accuracy Score is the ratio of number of correct predictions to the total number of input data points.


```
Accuracy Score = Number of correct predictions

Total Number of data points x 100 %
```

```
Number of correct predictions = 128 Accuracy Score = 85.3 %

Total Number of data points = 150

from sklearn.metrics import accuracy_score
```

On training data

Limitation of Accuracy Score

Accuracy Score is not reliable when the dataset has an uneven distribution of classes

Number of dog images = 800

Number of cat images = 200

Number of images predicted as dog = 1000

Number of images predicted as cat = 0

Number of correct predictions = 800

Total Number of data points = 1000

Accuracy Score = 80%

On testing data

Limitation of Accuracy Score

Accuracy Score is not reliable when the dataset has an uneven distribution of classes

Test data: Number of dog images = 200

Number of cat images = 200

Number of images predicted as dog = 400

Number of correct predictions = 200

Total Number of data points = 400

Accuracy Score =
$$\frac{200}{400}$$
 x 100 %

Confusion Matrix

Confusion Matrix is a matrix used for evaluating the performance of a Classification Model. It gives more information than the accuracy score.

Confusion Matrix

- $_{\text{Os}}^{\checkmark}$ [17] from sklearn.metrics import confusion_matrix
- [18] cf_matrix = confusion_matrix(X_train_prediction, Y_train)
 print(cf_matrix)

Heatmap for Confusion Matrix

[19] import seaborn as sns

Precision

Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

Recall

F1 Score

F1 Score is an important evaluation metric for binary classification that combines Precision & Recall. F1 Score is the ${\bf harmonic\ mean}$ of Precision & Recall.

This is a very useful metric when a dataset has imbalanced classes.

Precision, Recall & F1 Score

Creating a function for precision, recall and f1_score

```
[38] def precision_recall_f1score(true_labels, pred_labels):
         precision_value = precision_score(true_labels, pred_labels)
         recall_value = recall_score(true_labels, pred_labels)
         f1_score_value = f1_score(true_labels, pred_labels)
         print("precision =" , precision_value)
print("recall =" , recall_value)
print("f1_score =" , f1_score_value)
[39] precision_recall_f1score(Y_train,X_train_prediction)
```

precision = 0.8299319727891157 recall = 0.9242424242424242 f1_score = 0.8745519713261649

precision_recall_f1score(X_test_prediction, Y_test)

→ precision = 0.81818181818182 recall = 0.8181818181818182 f1_score = 0.8181818181818182

Otherwise can find individually similar how you find accuracy score

In Data Visualization use countplot for categorical features such as age And distplot for numerical columns like age, etc

Movie Recommendation system

- 1. Content Based Recommendation System
- **NETFLIX**
- 2. Popularity Based Recommendation System
- 3. Collaborative Recommendation System

- Content based = gives recommendation on the movies we watched
 Popularity based = gives recommendation on movies which are popular
 Collaborative = groups people who have similar taste in movies and show

For movie recommendation system we don't use ML model we use cosine similarity to find similarity in vectors