Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Regressão

Prof. Tiago A. Almeida

Modelos preditivos

- Definição formal: dado conjunto de observações
- **D** = { $(\mathbf{x}^{(i)}, f(\mathbf{x}^{(i)})), i = 1, ..., m$ }
 - f representa uma função desconhecida: função objetivo
 - Mapeia entradas em saídas correspondentes
 - Algoritmo preditivo aprende aproximação f
 - Que permite estimar valor de f para novos objetos x

Regressão

$$y^{(i)} = f(\mathbf{x}^{(i)}) \in \Re$$

Regressão

- Regressão:
 - Meta: aprender função (curva aproximada) que relacione entradas a valores contínuos de saídas
- Exemplos:
 - Prever valor de mercado de um imóvel
 - Prever o lucro de um empréstimo bancário

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina Regressão Linear com uma Variável

Regressão: exemplo

Conjunto de treinamento (valores de imóveis)

Tamanho (x)	Valor x U\$ 1000 (y)	
2104	460	
1416	232	
1534	315	
852	178	
	2104 1416 1534 852	

Representação da hipótese (h)

Hipótese:

Representação da hipótese (h)

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

- Regressão linear com uma variável
- Regressão linear univariada

Representação da hipótese (h)

ullet Hipótese: $h_{ heta}(x) = heta_0 + heta_1(x)$

- Regressão linear com uma variável
- Regressão linear univariada

Escolha da hipótese

Conjunto de treinamento (valores de imóveis)

Та	manho (x)	Valor x U\$ 1000 (y)	
	2104	460	
	1416	232	
	1534	315	
	852	178	

Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

Parâmetros: θ_i

Como escolher bons valores para θ_i ?

Escolha de θ

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

Escolha de θ

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

Escolha de θ

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

Escolha de θ

• Hipótese:
$$h_{\theta}(x) = \theta_0 + \theta_1(x)$$

h(x) = 1.5 + 0x

Escolha de θ

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

Objetivo: encontrar θ_0, θ_1 de tal forma que $h(\mathbf{x})$ aproxima \mathbf{y} para os exemplos de treinamento.

Escolha de θ

• Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$

 $(h(\mathbf{x}))$ e as saídas esperadas (\mathbf{y}) para as amostras de treinamento.

Objetivo: encontrar θ_0, θ_1 de tal forma que $h(\mathbf{x})$ aproxima \mathbf{y} para os exemplos de treinamento.

Função Custo (J)

Erro quadrático médio

Minimizar o erro:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

$$\min_{ heta_0,\, heta_1}\;J(heta_0, heta_1)$$

Objetivo: encontrar θ_0, θ_1 de tal forma que $h(\mathbf{x})$ aproxima \mathbf{y} para os exemplos de treinamento.

Função Custo (J): Interpretação

- Hipótese: $h_{\theta}(x) = \theta_0 + \theta_1(x)$
- Parâmetros: θ_0, θ_1
- Função Custo:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

Objetivo:

$$\min_{\theta_0,\,\theta_1} \ J(\theta_0,\theta_1)$$

Função Custo (J): Interpretação

Hipótese:

$$h_{\theta}(x) = \theta_0 + \theta_1(x)$$

Parâmetros:

 θ_0, θ_1

Função Custo:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2 \qquad J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objetivo:

$$\min_{\theta_0,\,\theta_1} \ J(\theta_0,\theta_1)$$

Vamos supor que:

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min_{\theta_1} J(\theta_1)$$

Função Custo (J): Interpretação

 $J(\theta_1)$

Função Custo (J): Interpretação

Variando θ_1 obtém-se uma parábola para $J(\theta_1)$

Função Custo (J): Interpretação

Variando θ_1 obtém-se uma parábola para $J(\theta_1)$

Como deseja-se obter θ_1 que minimize $J(\theta_1)$, então θ_1 = 1 é a melhor escolha para esse exemplo, pois J(1)=0

Gradiente descendente

Repetir até convergir {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(para } \textit{j} = \textit{0 e } \textit{j} = \textit{1)}$$

}

A atualização dos θ_i deve ser "simultânea"

Gradiente descendente

Repetir até convergir {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(para } j = 0 \text{ e } j = 1\text{)}$$

Derivada

parcial

Taxa de

aprendizagem

Tingo A Almoir

Gradiente descendente

Repetir até convergir {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(para } j = 0 \text{ e } j = 1\text{)}$$
 - Se α for muito pequeno, a

Taxa de aprendizagem

convergência poderá ser lenta;

- Se a for muito grande, poderá n

- Se α for muito grande, poderá não haver convergência.

Gradiente descendente

Repetir até convergir {

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1) \quad ext{(para } j = ext{0 e } j = ext{1)}$$

}

- O método converge para um ótimo local mesmo se α for um valor fixo
- Conforme o ótimo for se aproximando, o método reduz o tamanho do passo automaticamente

Gradiente descendente para regressão linear

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
 (para j = 0 e j = 1)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2 + h_{\theta}(x) = \theta_0 + \theta_1(x)$$

Gradiente descendente para regressão linear

Repetir até convergir {

$$\theta_j := \theta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
 (para j = 0 e j = 1)

$$j = 0 : \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i)$$

$$j = 1 : \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x^i$$

Gradiente descendente para

regressão linear

Algoritmo:

repetir até convergir {
$$\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^i)-y^i)$$

$$\theta_1:=\theta_1-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^i)-y^i)x^i$$
 }

Atualizar "simultaneamente" θ_0 e θ_1

Tiago A. Almei

Gradiente descendente para regressão linear

- Observações importantes
 - GD é sensível à escala dos dados
 - É recomendável aplicar normalização por padronização para fazer com que $-1 \le x_i \le 1$

Gradiente descendente para regressão linear

- Observações importantes
 - GD é sensível à escala dos dados
 - É recomendável aplicar normalização por padronização para fazer com que $-1 \le x_i \le 1$
 - GD é <u>sensível</u> à taxa de aprendizagem
 - Recomendável testar α com ..., 0.001, 0.01, 0.1, 1, ...
 - Certifique-se de que $J(\theta)$ decresce a cada iteração. Caso contrário, reduza o valor de α

J(θ) # iterações

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Regressão Linear com Múltiplas Variáveis Regressão linear com múltiplas variáveis

Tamanho	#Cômodos	#Andares	#Anos	Valor (U\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notação:

n = quantidade de atributos

 $x^{(i)} = i^{th}$ amostra do conjunto de treinamento

 $\boldsymbol{x}_{j}^{(i)}$ = valor do atributo j da i^{th} amostra do conjunto de treinamento

Regressão linear com múltiplas variáveis

Regressão linear univariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regressão linear com múltiplas variáveis

Regressão linear univariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regressão linear multivariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Regressão linear com múltiplas variáveis

Regressão linear univariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regressão linear multivariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Para simplificar: $x_0 = 1$

Regressão linear com múltiplas variáveis

Regressão linear univariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regressão linear multivariada

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Para simplificar: $x_0 = 1$

$$h_{\theta}(x) = \theta^T x$$

Regressão linear com múltiplas variáveis

Hipótese: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parâmetros: $\theta_0, \theta_1, \dots, \theta_n$

Função de custo:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradiente descendente

Repita {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$
 }

Regressão linear com múltiplas variáveis

Algoritmo:

repetir até convergir { $\theta_j:=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^i)-y^i)x_j^i$ }

Atualizar "simultaneamente" θ

Regressão linear com múltiplas variáveis

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_0^i$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_1^i$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_2^i$$

...