#### Hierarchical Models

**PSYC 573** 

University of Southern California March 3, 2022 Therapeutic Touch Example (N = 28)

### Data Points From One Person

y: whether the guess of which hand was hovered over was correct Person S01

y s1 S010 S010 S010 S01

0 S01

0 S01

0 S01

0 S01

0 S01

0 S01

#### Binomial Model

We can use a Bernoulli model:

$$y_i \sim \mathrm{Bern}( heta)$$

for 
$$i=1,\ldots,N$$

Assuming exchangeability given heta, more succint to write

$$z\sim \mathrm{Bin}(N, heta)$$

for 
$$z = \sum_{i=1}^N y_i$$

- Bernoulli: Individual trial
- Binomial: total count of "1"s

1 success, 9 failures

Posterior: Beta(2, 10)



### Multiple People



We could repeat the binomial model for each of the 28 participants, to obtain posteriors for  $\theta_1, \ldots, \theta_{28}$ 

But . . .

Do we think our belief about  $heta_1$  would inform our belief about  $heta_2$ , etc?

After all, human beings share 99.9% of genetic makeup

## Three Positions of Pooling

- No pooling: each individual is completely different; inference of  $heta_1$  should be independent of  $heta_2$ , etc
- ullet Complete pooling: each individual is exactly the same; just one ullet instead of 28  $ullet_i$ 's
- Partial pooling: each individual has something in common but also is somewhat different

## No Pooling



# Complete Pooling



# Partial Pooling



## Partial Pooling in Hierarchical Models

Hierarchical Priors:  $heta_j \sim ext{Beta2}(\mu,\kappa)$ 

Beta2: reparameterized Beta distribution

- mean  $\mu = a/(a+b)$
- concentration  $\kappa = a + b$

Expresses the prior belief:

Individual hetas follow a common Beta distribution with mean  $\mu$  and concentration  $\kappa$ 

#### How to Choose $\kappa$

If  $\kappa \to \infty$ : everyone is the same; no individual differences (i.e., complete pooling)

If  $\kappa=0$ : everybody is different; nothing is shared (i.e., no pooling)

We can fix a  $\kappa$  value based on our belief of how individuals are similar or different

A more Bayesian approach is to treat  $\kappa$  as an unknown, and use Bayesian inference to update our belief about  $\kappa$ 

Generic prior by Kruschke (2015):  $\kappa \sim$  Gamma(0.01, 0.01)



Sometimes you may want a stronger prior like Gamma(1, 1), if it is unrealistic to do no pooling

### Full Model

Model

Stan code

Model:

$$z_j \sim ext{Bin}(N_j, heta_j) \ heta_j \sim ext{Beta2}(\mu, \kappa)$$

Prior:

$$\mu \sim ext{Beta}(1.5, 1.5) \ \kappa \sim ext{Gamma}(0.01, 0.01)$$

# Shrinkage



## Multiple Comparisons?

Frequentist: family-wise error rate depends on the number of intended contrasts

Bayesian: only one posterior; hierarchical priors already express the possibility that groups are the same

Thus, Bayesian hierarchical model "completely solves the multiple comparisons problem."

[1]: see https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-solves-the-multiple-comparisons-problem/

[2]: See more in ch 11.4 of Kruschke (2015)

### Hierarchical Normal Model

#### Effect of coaching on SAT-V

| School | <b>Treatment Effect Estimate</b> | Standard Error |
|--------|----------------------------------|----------------|
| А      | 28                               | 15             |
| В      | 8                                | 10             |
| С      | -3                               | 16             |
| D      | 7                                | 11             |
| Е      | -1                               | 9              |
| F      | 1                                | 11             |
| G      | 18                               | 10             |
| Н      | 12                               | 18             |

Model Stan code

Model:

$$d_j \sim N( heta_j, s_j) \ heta_j \sim N(\mu, au)$$

Prior:

$$\mu \sim N(0,100) \ au \sim t_4^+(0,100)$$



#### **Prediction Interval**

Posterior distribution of the true effect size of a new study,  $\hat{ heta}$ 



See https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.12 for an introductory paper on random-effect meta-analysis