

Cost Function With 2 Parameters

Cost Function With 1 Parameter

Goal: $\min_{\theta} J(\theta)$

Goal: $\min_{\theta} J(\theta)$

Goal: $\min_{\theta} J(\theta)$

Goal: $\min_{\theta} J(\theta)$

Goal: $\min_{\theta} J(\theta)$

Tangent

Goal:
$$\min_{\theta} J(\theta)$$

$$Tangent \rightarrow \frac{\partial}{\partial \theta_j} J(\theta)$$

Derivative

Partial ($\frac{\partial}{\partial}$) / Total ($\frac{d}{\partial}$)

Goal: $\min_{\theta} J(\theta)$

j = 0, j = 1

Resuming the explanation with 2 Parameters

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

}

$$j = 0, j = 1$$

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Update **MUST** be SIMULTANEOUS

Gradient Descent Algorithm Implementation

Incorrect

repeat until convergence { $for \ j = 0 \ to \ j = 1 \ \{ \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \\ \}$ }

Correct

```
repeat until convergence {
      t0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)
      t1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)
      \theta_0 \coloneqq t0
      \theta_1 \coloneqq t1
```

$$j = 0, j = 1$$

$$repeat \ until \ convergence \{$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
 $\{$

$$j = 0, j = 1$$

$$repeat \ until \ convergence \{$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
}

Update **MUST** be SIMULTANEOUS

$$j = 0, j = 1$$

$$repeat \ until \ convergence \{$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

$$\}$$

Update MUST be Learning SIMULTANEOUS Rate

$$j=0,\ j=1$$

$$repeat\ until\ convergence\ \{$$

$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\theta_1)$$

$$\}$$

$$\downarrow$$
 Update MUST be Learning Tangent SIMULTANEOUS Rate Value

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

Exercise

 As we approach a local minimum, will Gradient Descent automatically take smaller steps?

 Do we need to adjust the Learning Rate (α) manually over time?

Solution

 As we approach a local minimum, will Gradient Descent automatically take smaller steps?

Yes

• Do we need to adjust the Learning Rate (α) manually over time?

No

Let
$$\theta_0 \coloneqq 0$$
; $\theta_1 \coloneqq \theta_1 - \frac{\alpha}{d\theta_1} J(\theta_1)$

If α is too high?

Gradient Descent can overshoot the minimum; it may fail to converge, or even diverge.

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent Algorithm $-> \frac{\min}{\theta_0, \theta_1} J(\theta_0, \theta_1)$

$$j = 0, j = 1$$
 $repeat until convergence$ {
 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ }

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \longleftarrow J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \longleftarrow J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \longleftarrow h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \longleftarrow J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \longleftarrow h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)^2$$

$$\frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2} ; j \in \{0, 1\}$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \iff \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) \iff \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

List of Derivative Rules

https://www.math.ucdavis.edu/~kouba/ Math17BHWDIRECTORY/Derivatives.pdf

Power Rule: $f(x) = x^n$ then $f'(x) = nx^{n-1}$

Batch = use ALL Training Examples in each step of Gradient Descent

$$\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)$$

