### GES LAB 7

#### Justin Johnson

#### 04/2020

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*.

### PART I. Initial Setup

```
#setup
knitr::opts knit$set(root.dir = "C:/Users/justi/Downloads/School/GES 687/LAB 7/Lab 7 R Code")
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.4
## -- Attaching packages ------ tidyverse 1.3.0 --
                 v purrr
## v ggplot2 3.3.3
                              0.3.4
## v tibble 3.0.6
                   v dplyr
                              1.0.5
## v tidyr 1.1.2
                   v stringr 1.4.0
## v readr 1.4.0
                   v forcats 0.5.1
## Warning: package 'dplyr' was built under R version 4.0.4
## -- Conflicts ------ tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidycensus)
## Warning: package 'tidycensus' was built under R version 4.0.4
library(ggplot2)
#theme set(theme bw()) uncomment to use the bw theme in all gaplot maps
library(sf)
## Warning: package 'sf' was built under R version 4.0.4
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
```

```
library(sp)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
##
       discard
## The following object is masked from 'package:readr':
##
##
       col_factor
library(janitor)
## Warning: package 'janitor' was built under R version 4.0.4
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
       chisq.test, fisher.test
##
library(readr)
# installing the Bi_scale package
library(biscale)
## Warning: package 'biscale' was built under R version 4.0.5
#installing Cowplot package
library(cowplot)
## Warning: package 'cowplot' was built under R version 4.0.5
#loading package for uploading picture
library(png)
acs_variable_list = load_variables(2019, "acs5", cache= TRUE)
write.csv(acs_variable_list, 'acs_variable_list_2018.csv', row.names = FALSE)
```

#### **PART II. Questions**

#### Question 1

Use tidycensus to download 1. race/ethnicity (B03002) and 2. median household income for Baltimore City. Store this data in a new object. Choose which race/ethnicity you'd like to relate to income (Non-Hispanic Black and Non-Hispanic White work best). Which census tract has the highest *percentage* of your target race/ethnicity (and what is the percent) and which has the highest median household income (and how much is it?)? (5 points)

```
## Getting data from the 2015-2019 5-year ACS
```

## Downloading feature geometry from the Census website. To cache shapefiles for use in future
sessions, set `options(tigris\_use\_cache = TRUE)`.

| ## |                                          |   |     |  |
|----|------------------------------------------|---|-----|--|
|    |                                          | I | 0%  |  |
|    | '<br> =<br>                              | I | 2%  |  |
|    | ===<br>                                  | I | 4%  |  |
|    | <br> =====<br>                           | İ | 6%  |  |
|    | <br> =====<br>                           | I | 8%  |  |
|    | <br> ======<br>                          | I | 10% |  |
|    | <br> =======<br>                         | I | 12% |  |
|    | <br> =======<br>                         | I | 13% |  |
|    | <br> ========<br>                        | I | 15% |  |
|    | <br> ========<br>                        | l | 16% |  |
|    | <br> ==========<br>                      | Ì | 18% |  |
|    | <br> ==========<br>                      | Ì | 20% |  |
|    | <br> =================================== | I | 21% |  |
|    | <br> =================================== | I | 24% |  |
|    | <br> =================================== | Ì | 25% |  |
|    | <br> =================================== | I | 27% |  |
|    | <br> =================================== | İ | 29% |  |
|    | <br> =================================== |   | 30% |  |
|    | <br> =================================== | I | 32% |  |
|    | <br> =================================== | I | 33% |  |
|    |                                          | I | 35% |  |
|    | ====================================     | I | 37% |  |
|    | ====================================     | I | 38% |  |
|    | <br>                                     | I | 41% |  |
|    | <br>  <br>                               | İ | 43% |  |
|    |                                          | I | 46% |  |

| <br>                                     | 1       | 48%  |
|------------------------------------------|---------|------|
| <br> =================================== | 1       | 49%  |
| <br> =================================== | 1       | 51%  |
| <br>                                     | 1       | 55%  |
| <br>                                     | 1       | 57%  |
| <br>                                     | 1       | 58%  |
| <br>                                     | 1       | 60%  |
| <br>                                     | 1       | 63%  |
| <br>                                     | 1       | 66%  |
| <br>                                     | 1       | 68%  |
| <br>  <br>                               | I       | 71%  |
| <br>                                     | 1       | 74%  |
| <br>  <br>                               | I       | 78%  |
| <br>  <br>                               | I       | 79%  |
| <br>                                     | I       | 82%  |
| <br>                                     | 1       | 87%  |
| <br>                                     | 1       | 88%  |
| <br>                                     | 1       | 91%  |
|                                          | 1       | 93%  |
| <br>                                     | =       | 96%  |
| <br>                                     | ===     | 99%  |
|                                          | ====  : | 100% |

#Measuring Census Tract with highest Black Population
Baltimoretractdata\$blackprop = Baltimoretractdata\$black\_pop\_e / Baltimoretractdata\$total\_pop\_e
max(Baltimoretractdata\$black\_pop\_e)

## [1] 7141

baltdrop2 = Baltimoretractdata\$blackprop[!is.na(Baltimoretractdata\$blackprop)]
max(baltdrop2)

```
## [1] 0.9931774
```

#The highest black population belongs to census tract 1511 with a black population of 7141 peopl e. The highest proportion of black residents in a census tract belongs to census tract 2007 with a 99% black population

#Meausring Census tract with highest median income
baltdata1 = Baltimoretractdata %>% filter(!is.na(Baltimoretractdata\$med\_income\_e))
max(baltdata1\$med income e)

## [1] 195156

#The largest income belongs to census tract 2711 with a median income of \$209,688

#### Question 2

Please reproject this data to Web Mercator. (1 points)

#Transforming Baltimore Map to Web Mercator
baltdata1transform = st transform(baltdata1, 3857)

#### Question 3

Create two plots. In the first plot highlight the tract with the highest concentration of your selected race/eth. In the second plot highlight the tract with the highest median household income? (5 points)

```
# Creating New column
bidata = bi_class(baltdata1, x = blackprop, y = med_income_e, style = "quantile", dim = 3)

highlight1 = baltdata1 %>% filter(med_income_e == 195156)

highlight2 = baltdata1 %>% filter(blackprop > 0.99)

ggplot(bidata) +
  geom_sf(mapping = aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
  bi_scale_fill(pal = "bkBlue", dim = 3) +
  geom_sf(data = highlight1, fill = "yellow", color = NA) +
  labs(
    title = "Race and Income in Baltimore",
    subtitle = "Dark Blue (DkBlue) Palette") +
  bi_theme()
```

# Race and Income in Baltimore Dark Blue (DkBlue) Palette



#Census Tract with highest median income is highlighted yellow on the map

ggplot(bidata) +
 geom\_sf(mapping = aes(fill = bi\_class), color = "white", size = 0.1, show.legend = FALSE) +
 bi\_scale\_fill(pal = "DkBlue", dim = 3) +
 geom\_sf(data = highlight2, fill = "yellow", color = NA) +
 labs(
 title = "Race and Income in Baltimore",
 subtitle = "Dark Blue (DkBlue) Palette") +
 bi\_theme()

## Race and Income in Baltimore Dark Blue (DkBlue) Palette



# Census Tract with highest proportion of black residents is highlighted yellow

#### Question 4.

Create a third column using the bi\_class function from the tutorial. (2 points)

```
# Creating New column
bidata = bi_class(baltdata1, x = blackprop, y = med_income_e, style = "quantile", dim = 3)
```

#### Question 5

Create a bivariate map with your data. (3 points)

```
bivariatemap =
  ggplot() +
  geom_sf(data = bidata, mapping = aes(fill = bi_class), color = "white", size = 0.1, show.legen
d = FALSE) +
  bi_scale_fill(pal = "DkBlue", dim = 3) +
  labs(
    title = "Race and Income in Baltimore",
    subtitle = "Dark Blue (DkBlue) Palette") +
  bi_theme()
```

#### **Question 6**

Use the cowplot package and ggdraw, like in the tutorial to add a legend (2 points).

### Race and Income in Baltimore Dark Blue (DkBlue) Palette



#### Question 7

Rinse and repeat for another county of your choosing, using a *different* color scheme. Be sure to use Psuedo-Mercator (3857). (5 points)

## Getting data from the 2015-2019 5-year ACS

## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris\_use\_cache = TRUE)`.

#Measuring Census Tract with highest Black Population
Arundeltractdata\$blackprop = Arundeltractdata\$black\_pop\_e / Arundeltractdata\$total\_pop\_e
max(Arundeltractdata\$black\_pop\_e)

## [1] 7025

```
arundeldrop = Arundeltractdata$blackprop[!is.na(Arundeltractdata$blackprop)]
#Meausring Census tract with highest median income
arundeldata1 = Arundeltractdata %>% filter(!is.na(Arundeltractdata$med income e))
#Creating Bi_class Data for Arundel County
arundelbidata = bi_class(arundeldata1, x = blackprop, y = med_income_e, style = "quantile", dim
 = 3)
#Mapping Bivariate Data for Arundel
arundelbivariate =
  ggplot() +
  geom_sf(data = arundelbidata, mapping = aes(fill = bi_class), color = "white", size = 0.5, sho
w.legend = FALSE) +
  bi_scale_fill(pal = "GrPink", dim = 3) +
  labs(
    title = "Race and Income in Anne Arundel",
    subtitle = "Gray and Pink (GrPink) Palette") +
  bi_theme()
 ggplot() +
  geom sf(data = arundelbidata, mapping = aes(fill = bi class), color = "white", size = 0.5, sho
w.legend = FALSE) +
  bi_scale_fill(pal = "GrPink", dim = 3) +
  labs(
    title = "Race and Income in Anne Arundel",
    subtitle = "Gray and Pink (GrPink) Palette") +
  bi theme()
```

# Race and Income in Anne Arundel Gray and Pink (GrPink) Palette



# Race and Income in Anne Arundel Gray and Pink (GrPink) Palette



#### Question 8

Write the bi\_class output to a geojson file. (1 points)

st write(arundelbidata, "GESLab8map.geojson")

#### Question 9

Now open your Geojson output and create a QGIS map of your bivariate map. Put an image of that map here. (2 points)

### Bivariate Chloropleth Measuring the Relationship Between Race and Income in Anne Arundel County



**Bivariate QGIS** 

#### Question 10

Use qgis2web and put a link here to your github site with the webmap of your bivariate map. (3 points)

# You can access my web map by clicking on the link below:

# https://jjustin1.github.io/GES687Lab8/#10/38.9733/-76.5871

#### PART III. Reflection

#This assignment has helped with better understanding how to format maps in both R and QGIS. I became much more comfortable with learning how to edit the specific data within a map, and transforming it to drop and generate variables. This assignment would also help a lot with my final project because I learned how to better edit the colors of my maps and highlight specific areas of interest.

Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing Ctrl+Alt+1.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the *Preview* button or press *Ctrl+Shift+K* to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, *Preview* does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.