Supervised Learning

Johanni Brea

Introduction to Machine Learning

Table of Contents

- 1. Our Datasets for Supervised Learning
- 2. Data Generating Processes and Noise
- 3. How Does Supervised Learning Work?

Handwritten Digit Classification (MNIST)

our goal: assign the correct digit class to images 5 0 419 2131435

input X: 28x28 = 784 pixels with values between 0 (black) and 1 (white) output Y: digit class 0, 1, . . . , 9

Spam Detection with the Enron Dataset

spam

Subject: follow up

here 's a question i' ve been wanting to ask you, are you feeling down but too embarrassed to go to the doc to get your m / ed 's?

here 's the answer , forget about your local p harm . acy and the long waits , visits and embarassments . . do it all in the privacy of your own home , right now . http://chopin.manilamana . com / p / test / duet it 's simply the best and most private way to obtain the stuff you need without all the red tape .

ham

Subject: darrin presto

amy:

please follow up as soon as possible with darrin presto regarding a real time interview. i forwarded his resume to you last week. he can be reached at 509 - 946 - 7879 thanks greq

Our goal: classify new emails as spam or "ham" (not spam).

input X: sequences of characters (emails), output Y: label spam or ham

Wind Speed Prediction

- ➤ SwissMeteo data: hourly measurements for 5 years from different stations (Bern, Basel, Luzern, Lugano, etc.).
- ➤ Our goal: given measurements at different stations, predict wind speed in Luzern 5 hours later.

Wind Speed Prediction

time	BAS_pressure	LUG_pressure		LUZ_pressure	LUZ_wind_peak
$x_{11} = 2015010100$	$x_{12} = 997.1$	$x_{13} = 998.6$		$x_{1p} = 980.0$	$y_1 = 13.0$
$x_{21} = 2015010101$	$x_{22} = 997.3$	$x_{23} = 998.8$		$x_{2p} = 979.9$	$y_2 = 6.8$
:	:	:	٠.	:	
$x_{n1} = 2017123123$	$x_{n2} = 972.7$	$x_{n3} = 981.5$		$x_{np} = 957.5$	$y_n = 11.9$

- ▶ p input variables $X = (X_1, X_2, ..., X_p)$ e.g. X_1 time, X_2 BAS_pressure, X_3 LUG_pressure also called: predictors, independent variables, features
- output variable Y e.g. LUZ_wind_peak also called: response, dependent variable
- n measurements or data points

Always Look at Raw Data!

- on diagonal: 1D histogram
- lower triangle: scatter plot & trend line
- upper triangle: 2D histogram

Observations

- 1. LUZ_wind_peak has a long tail.
- 2. For low pressures there are outliers of strong wind.
- 3. Pressure in Basel and Luzern is highly correlated.
- 4. ...

Wind Speed Prediction

- ▶ The higher the pressure in Luzern, the less probable it is to have strong winds.
- There is no function LUZ_wind_peak = $f(LUZ_pressure)$ that can describe this data; instead we use conditional probability densities $p(LUZ_wind_peak | LUZ_pressure)$.

Table of Contents

- 1. Our Datasets for Supervised Learning
- 2. Data Generating Processes and Noise
- 3. How Does Supervised Learning Work?

Data Generating Processes

It is useful to think of our datasets as samples from **data generating processes** for the input X and the conditional output Y|X.

- MNIST X: people write digits → people take standardized photos thereof. Y|X: different people label the same photo X.
- Spam X: people write emails.
 Y|X: different people classify the same email X as spam or not.
- ▶ Weather X: the weather acts on sensors in weather stations. Y|X: the weather evolves from X and is measured again 5 hours later.

Using samples from these data generating processes, supervised learning aims at learning something about the conditional processes, i.e how Y depends on X.

Where Does Noise Come From?

For most data generating processes we **cannot measure all factors** that determine the outcome.

- ⇒ same values of the measured factors can cause different outcomes.
- MNIST Different persons may label the same handwritten digit differently.
- ▶ **Spam** What is spam for somebody, may not be spam for someone else.
- ▶ **Weather** Even when all considered weather stations measure exactly the same values at time t_1 and t_2 , the full state of the weather at t_1 differs most likely from the one at t_2 .

In machine learning we treat the effect of unmeasured factors as noise with certain probability distributions.

Table of Contents

- 1. Our Datasets for Supervised Learning
- 2. Data Generating Processes and Noise
- 3. How Does Supervised Learning Work?

How Does Supervised Learning Work?

Function Family

- We change the parameters.
- The machine computes \hat{y} given parameters θ and x.

For example

$$\hat{y} = f_{\theta}(x) = \theta_{O} + \theta_{1}x$$

When we change the parameters θ_0 and θ_1 , we change the way \hat{y} depends on x.

How Does Supervised Learning Work?

Loss Minimizing Machine

- We specify
 - 1. the training data
 - the function family (model)
 - 3. the loss function $L(y, \hat{y})$
 - 4. the optimizer
- The machine changes the parameters with the help of the optimizer until the loss is minimal.

For example: linear regression

Training Loss and Test Loss

- ▶ **Training Set** \mathcal{D} : Data used by the machine to tune the parameters.
- ▶ Training Loss of Function $f: \mathcal{L}(f, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f(x_i))$
- ► Test Loss of Function f at x for a Conditional Data Generating Process: $\mathbb{E}_{Y|x}[L(Y, f(x))] = \text{expected loss under the conditional generating process.}$
- ► Test Loss of Function f for a Joint Data Generating Process: $E_{X,Y}[L(Y, f(X))] = \text{expected loss under the joint generating process.}$
- ▶ **Test Set** \mathcal{D}_{test} : Data from the same generating process as the training set, not used for parameter tuning.
- ▶ Test Loss of Function f for a Test Set \mathcal{D}_{test} : $\mathcal{L}(f, \mathcal{D}_{test})$ = same computation as for the training loss but for a test set.

Blackboard: Linear Regression as a Loss Minimizing Machine

Data Generating Process

$$y = 2x - 1 + \varepsilon$$
, $F[\varepsilon] = 0 \quad Var[\varepsilon] = \sigma^{-2}$

Training Data

 $(x_1 = 0, y_1 = -1), (x_2 = 2, y_2 = 4), (x_3 = 2, y_3 = 3))$

Function Family

 $\hat{y} = \theta_0 + \theta_1 \times L$

Loss Function

 $L(\theta) = L(\theta_1, \theta_2) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_0 - \theta_0)^2 + (3 - \theta_0 - 2\theta_0)^2)$

Optimizer: Default

Solution:
$$\hat{\theta}_{o} = -1$$
, $\hat{\theta}_{i} = 2.25$, $L(\hat{\theta}) = \frac{e}{3} \cdot 0.5^{2}$

Test Low at x_{o} :

$$E[(2x_{o}-4+\epsilon+1-2.25x_{o})^{2}] = (0.25x_{o})^{2} + 0^{2}$$

Test Data:
$$((x_{o}=1, y_{o}=0), (x_{z}=2, y_{z}=3), (x_{o}=3, y_{o}=5), (x_{o}=0, y_{o}=1))$$

$$\Rightarrow (Empirical) Test Low = \frac{1}{4}(0.25^{2}+0.5^{2}+0.75^{2}+0^{2})$$

Quiz

Suppose we have training data $\mathcal{D} = ((0,1),(2,9))$ and test data $\mathcal{D}_{test} = ((0,0),(3,20))$, define a function family $f(x) = \theta_0 + \theta_1 x^2$ and loss function $L(y,\hat{y}) = |y - \hat{y}|$.

Correct or wrong?

- 1. The training loss is minimal for $\hat{\theta}_0 = 1$ and $\hat{\theta}_1 = 2$.
- 2. The test loss of $f(x) = 1 + 2x^2$ at x = 0 for the conditional data generating process is 1.
- 3. The test loss of $f(x) = 1 + 2x^2$ for the test set is 1.

Supervised Learning with MLJ: Linear Regression

```
model = LinearRegressor()  # function family, loss function and optimizer
mach = machine(model, X, y)  # training data with input X and output y
fit!(mach)  # fit the machine
fitted_params(mach)  # inspect the fitted parameters
ŷ = predict(mach)  # make predictions on the training data
ŷtest = predict(mach, Xtest)  # make predictions on the test data
```


Which Loss Functions Should We Use?

- Is the mean squared error always a good loss?
- What kind of loss would be good in a classification setting (e.g. MNIST)?
- ► How should we choose the loss when we know something about the noise distribution?

All these questions have a straight-forward answer, if we use a **family of probability distributions** (instead of a family of functions) and estimate the parameters with a **maximum likelihood approach** (instead of minimizing a hand-picked loss).

How Does Supervised Learning Work?

Likelihood Maximizing Machine

- We specify
 - the training data
 - the family of probability distributions (model)
 - 3. the optimizer
- The machine changes the parameters with the help of the optimizer until the likelihood of the parameters is maximal.

For example: linear regression

The Likelihood Function

For a family of conditional probability distributions $P(y|x, \theta)$ and training data $\mathcal{D} = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$ the **likelihood function** is defined as

$$\ell(\theta) = \prod_{i=1}^n P(y_i|x_i,\theta).$$

This is the probability of all the responses y_i given all the inputs x_i for a given value of the parameters θ .

In practice it is usually more convenient to work with the log-likelihood function

$$\log \ell(\theta) = \sum_{i=1}^{n} \log P(y_i|x_i,\theta)$$

The Normal, Bernoulli and Categorical Distribution

Normal

$$p(y|x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-f(x))^2}{2\sigma^2}}$$

f(x): a number mean: f(x)

variance: σ^2

mode: f(x)

Bernoulli

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$p(B|x) = 1 - p_A = \sigma(-f(x))$$

mode: A if $p_A > p_B$

Categorical

$$p(C_i|x) = p_{C_i} = s(f(x))_i$$

f(x): a vector of K numbers softmax function

$$s(x)_i = \frac{e^{x_i}}{\sum_{j=1}^K e^{x_j}}$$

mode: X with largest p_X .

Blackboard: The Normal, Bernoulli and Categorical Distribution

Normal
$$f(x) = 1, \ r = 2$$

$$Pr(y \in [-0.05, 0.05]) \approx 0.1; \frac{1}{\sqrt{2\pi^2 \cdot 2}} e^{-\frac{(0-1)^2}{2 \cdot 2^2}} \approx 0.017$$

$$Essnowlli$$

$$f(x) = 3 \qquad Pr(y = A) = \frac{1}{1 + e^{-3}} \approx 0.95$$

$$Pr(y = B) \approx \frac{1}{1 + e^3} \approx 0.05$$

$$f(x) = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \qquad Pr(y = A) = \frac{e^3}{e^3 + e^2 + e^4 + e^6} \approx 0.84$$

$$Pr(y = D) = \frac{e^0}{e^3 + e^{-2} + e^4 + e^6} \approx 0.04$$

Blackboard: Maximum Likelihood Estimation

Data Generating Procest

$$P(y=\lambda|x) = \text{Bernoulli}(2x-1)$$
 $y=A$ if $P(2x-1) > E$, $E \sim Uniform([0,1])$

Training Data

 $\{(x_1=0, y_1=8), (x_2=2, y_2=A), (x_3=3, y_3=8)\}$

Family of Distributions

 $P(y=A|x,\theta) = O(\theta_0+\theta_1x)$

Log-Likelihood Function
$$\log \ell(\theta) = \log \ell(\theta_{\bullet}, \theta_{\bullet}) = \sum_{i=1}^{n} \log P(y_i | x_i, \theta)$$

$$= \log V(-\theta_{\bullet}) + \log V(\theta_{\bullet} + 2\theta_{\bullet}) + \log V(-\theta_{\bullet} - 3\theta_{\bullet})$$

$$Optimizer : Default$$

$$Solution : \hat{\theta}_{\bullet} \approx -1.3 \quad \hat{\theta}_{\bullet} \approx 0.3 \quad \log \ell(\hat{\theta}) \approx -1.3$$

$$Test Log-Likelihood \quad at x_0 : E[\log P(Y|X_{\bullet})]$$

$$V(2x_{\bullet} - 1) \cdot \log V(0.3x_{\bullet} - 1.3) + V(-2x_{\bullet} + 1) \cdot \log V(-0.3x_{\bullet} + 1.3)$$

$$P(Y = A|X_{\bullet}) \quad P(Y = A|X_{\bullet}, \hat{\theta}) \quad P(Y = B|X_{\bullet}) \quad P(Y = B|X_{\bullet}, \hat{\theta})$$

Supervised Learning with MLJ: Linear Classification

```
model = LogisticClassifier() # distribution family and optimizer
mach = machine(model, X, y) # training data with input X and output v
fit!(mach)
                           # fit the machine
                           # inspect the fitted parameters
fitted_params(mach)
  = predict(mach)
                            # predicted probabilities on the training data
\hat{p}_a = pdf.(\hat{p}_a, "A") # predicted probabilities of class "A"
v = predict_mode(mach)
                           # class with highest predicted probability
```


Nomenclature

For some models (families of probability distributions) with linear function f(x) we see occasionally specific names for the likelihood maximizing machine.

- Gaussian (normal distribution): Linear Regression
- Bernoulli: Logistic Regression or Linear Binary Classification
- Categorical: Multinomial Logistic Regression or Multiclass Linear Regression (or Classification)
- ▶ Poisson: Poisson Regression

Later we will see that there are natural generalizations for all these models with non-linear f(x), where f(x) is for example given by a neural network.

Summary

We use a training set to find a conditional distribution that captures some regularities of the conditional data generation process. The goal is to find a conditional distribution that minimizes the test loss of the joint data generation process. With a test set we can assess how close we are at reaching this goal.

Supervised Learning as Lo	oss Minimization
---------------------------	------------------

Supervised Learning as Likelihood Maximization

We provide

- training data
- 2. function family
- 3. loss function
- optimizer

It is not (always) obvious what kind of loss function to take for classification problems or regression problems with a specific noise distributions

We provide

- training data
- 2. probability distribution family
- optimizer

The negative log-likelihood function of the parameters implicitly defines a loss function.

We take the binomial for binary classification problems and the categorical for other classification problems. Regression with other noise distribution is also possible.

Suggested Reading

The following chapters from "An Introduction to Statistical Learning" (second edition, https://www.statlearning.com) are complementary to the material presented in this lecture. It is not mandatory to read them, but maybe it helps to better understand the material of this lecture.

- ➤ 3.1 Simple Linear Regression
- 4.1 An Overview of Classification
- 4.2 Why Not Linear Regression?
- 4.3 Logistic Regression

