```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import json
import requests

from sklearn.linear_model import LinearRegression

df = pd.read_csv('/content/dados_esgoto.csv')
df_limpo = df[df["populacao_urbana_atendida_agua_ibge"].notna()]
df

ano id_municipio sigla_uf_populacao_atendida_agua_ibge"
```

→	ano	id_municipio s	igla_uf popu	ulacao_atendida_agua populacao	_atentida_esgoto po	opulacao_urbana populac	ao_urbana_residente_agua populacao_urb	oana_atendida_agua populacao_u	rbana_atendida_agua_ibge populacao_urba	nna_residente_esgoto investimento_re	ecurso_one
0	2018	2705606	AL	5276.0	3000.0	7665.0	7665.0	5276.0	12615.0	7665.0	
1	2018	2707107	AL	18502.0	8292.0	14245.0	14245.0	14238.0	24891.0	14245.0	
2	2021	2709152	AL	39000.0	28000.0	37674.0	37674.0	37500.0	44570.0	37674.0	
3	2017	2709301	AL	51589.0	45617.0	50799.0	50799.0	50740.0	66477.0	50799.0	
4	2021	2902104	ВА	35540.0	20700.0	20874.0	20874.0	20820.0	54903.0	20874.0	
11925	1 2022	1300805	AM	30805.0	NaN	NaN	NaN	NaN	33080.0	NaN	
11925	2022	2102077	MA	4678.0	NaN	NaN	NaN	NaN	12212.0	NaN	
11925	3 2022	1506104	PA	10000.0	NaN	NaN	NaN	NaN	10851.0	NaN	
11925	4 2022	2500577	РВ	0.0	NaN	NaN	NaN	NaN	2953.0	NaN	
11925	5 2022	4311734	RS	2800.0	NaN	NaN	NaN	NaN	3131.0	NaN	

119256 rows × 133 columns

```
fig = px.scatter(
    df_limpo,
    x="populacao_atentida_esgoto", # Changed 'populacao_atendida_esgoto' to 'populacao_atentida_esgoto'
    y="populacao_urbana",
    size="populacao_urbana_atendida_agua_ibge",
    color="sigla_uf",
    hover_data=["populacao_atendida_agua", "populacao_urbana_atendida_agua", "populacao_urbana_residente_esgoto"],
    animation_frame="ano",
    size_max=55, # você pode ajustar esse valor,
)

fig.update_layout(
    plot_bgcolor = "Black",
)
```

fig.show()

15/05/2025, 16:54

 $\overline{\Rightarrow}$


```
fig = px.line(
    df_limpo,
    x="populacao_atentida_esgoto", # Changed 'populacao_atendida_esgoto' to 'populacao_atentida_esgoto'
    y="populacao_urbana",
    color="sigla_uf",
    animation_frame="ano",
    title = "Gráfico de progressão: População Urbana X População Com Saneamento Básico"
)

fig.update_layout(
    plot_bgcolor = "Black",
    font_color = "Black"
)
fig.show()
```

Gráfico de progressão: População Urbana X População Com Saneamento Básico

Usaremos o próximo gráfico de regressão linear para estreitar uma relação entre o crescimento da população e o acesso a água.

```
df_limpo = df[["populacao_urbana", "populacao_urbana_atendida_agua"]].dropna()
x_1 = pd.DataFrame(df_limpo["populacao_urbana"])
y_1 = pd.DataFrame(df_limpo["populacao_urbana_atendida_agua"])
rgr_1 = LinearRegression()
rgr_1.fit(x_1, y_1)
      ▼ LinearRegression ① ?
     LinearRegression()
COLOR_1 = "orange"
COLOR_2 = "black"
sns.set_style("whitegrid")
plt.figure()
# Accessing the 'populacao_urbana' column from x_1 to ensure consistent shapes
plt.title(f'Correlation = {round(x_1["populacao_urbana"].corr(df_limpo["populacao_urbana_atendida_agua"]),3)}', fontsize = 14)
# Using x_1 and the corresponding predictions for plotting
plt.scatter(x_1["populacao_urbana"], df_limpo["populacao_urbana_atendida_agua"], color=COLOR_1,s=200)
plt.plot(x_1["populacao_urbana"], rgr_1.predict(x_1), color=COLOR_2)
```

[<matplotlib.lines.Line2D at 0x7bd9721168d0>]

Temos pela regressão que a correlação GERAL dos periodos analisados pela planilha é que a quantidade de pessoas com acesso a água é equivalente a 99,7% da população urbana., devido ao preenchimento, interpolação ou outros critérios de limpeza, a porcentagem sobe um pouco, sendo considerado uma média de 98,75 de pessoas com acesso a água em relação a população total.

Faremos um gráfico para representação do crescimento da população com acesso á esgoto. Iremos usar uma aplicação demonstrando a ampliação das redes de esgoto nos estados do Brasil.

E com esse gráfico é possivel observar a progreção da população urbana atendida pelas redes de esgoto ao decorrer do tempo

15/05/2025, 16:54

200k