	Parameters:
[3]:	A_sparse = np.ones((3,n_size)) A_sparse[0,-1] = 0 # Set last element in upper diagonal to 0. A_sparse[-1,0] = 0 # Set first element in lower diagonal to 0. A_sparse[1,1:-1] = -2 # Set diagonal elements to -2. A_sparse[1,0] = -3 # Set end elements on the diagonal to -3. A_sparse[1,-1] = -3 return A_sparse def multiply(A, x):
	Multiply a sparse tridiagonal matrix A with a vector x. Parameters:
[4]:	Test and verify that matrix multiplication is done correctly. N = 10 # Number of gridpoints # Random vector to be multiplicated. x = np.random.random(N) # Create sparse matrix A. A = create_mat(N) print(A, "\n") print(A.shape, "\n") # Create non-sparse matrix A. A_nonsparse = np.diag(A[1]) A_nonsparse[np.arange(N-1),np.arange(N-1)+1] = A[0,:-1] A_nonsparse[np.arange(N-1)+1,np.arange(N-1)] = A[2,1:]
	<pre>print(A_nonsparse, "\n") print(A_nonsparse.shape) [[1.</pre>
[5]:	[0. 0. 0. 0. 0. 0. 12. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 12. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 13.]] (10, 10) # Perform matrix multiplication with numpy built-in function. out1 = A_nonsparse @ x # My function, using the sparse matrix implementation. out2 = multiply(A,x) # Compare matrices element-wise. equal = (out1 == out2).all() if equal:
	<pre>print("Matrices are exactly equal.") else: print("Matrices are not exactly equal.") print(f"Largest elementwise relative difference between the matrices: {np.max(np.abs(out1-out2)/out1)} Matrices are not exactly equal. Largest elementwise relative difference between the matrices: 2.0233e-16 Implement a solver of linear system of equations, using the forward-elimination backward-substitution method (Tridiagonal matrix algorithm, TDMA). def tdma(A, b_vec): """ Tridiagonal matrix algorithm (Thomas Algorithm), solving a linear matrix equation Ax = b, using the forward-elimination backward-substitution method.</pre>
	Parameters:
	<pre># Make copies of A and b and rename to fit scheme used in Wikipedia article. a = A[2].copy() # Lower diagonal (a[i=0] = 0) b = A[1].copy() # Diagonal c = A[0].copy() # Upper diagonal (c[i=N-1] = 0) d = b_vec.copy() # Forward elimination. for i in range(1, N): w = a[i]/b[i-1] b[i] = b[i] - w*c[i-1] d[i] = d[i] - w*d[i-1] # Backwards substitution. x[-1] = d[-1]/b[-1] for i in range(N-2, -1, -1):</pre>
[7]:	<pre>x[i] = (d[i] - c[i]*x[i+1]) / b[i] return x Test and verify that the implemented matrix solver works.</pre>
[8]:	<pre># Compare results equal = (out1 == out2).all() if equal: print("Solutions are exactly equal.") else: print("Solutions are not exactly equal.") print(f"Largest elementwise relative difference between the solutions: {np.max(np.abs(out1-out2)/out1)} Solutions are exactly equal. Use TDMA-implementation for solving the heat diffusion problem. N = 1000 # No. of gridpoints. eps = 1 # Heat rate from radioactivity in solid material. D = 0.5 # Heat diffusion coefficient.</pre>
	T0 = 1 # Dirichlet boundary condition: Temperature at x = ±L L = 1 # Length of domain. h = 2*L/N # Grid spacing. x = np.linspace(-L+h/2, L-h/2, num=N) # Grid points # Create the appropriate matrix A. A = create_mat(N) # Get the constant vector b. tmp = np.zeros(N) tmp[[0,-1]] = 1 b = -eps*h**2/D - 2*T0*tmp # Solve for the temperature
	<pre>T = tdma(A, b) # Save results for later T_tdma = T x_tdma = x # Plotting plt.figure() plt.plot(x,T) plt.xlabel("x") plt.xlabel("x") plt.ylabel("Temperature") plt.title("Temperature profile T(x)") plt.savefig("tdma_T.pdf")</pre> Temperature profile T(x)
	18 - 16 - 12 - 10 - -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100
[9]:	Verify solution by computing the residual after multiplication with the matrix A. residual = multiply(A, T) - b print(np.max(np.abs(residual))) 6.581327415553298e-16 Jacobi iteration def jacobi(A, x, b): """ Perform a single Jacobi iteration step. Parameters:
	A: np.array Sparse representation of tridiagonal matrix A, shape=(3, n_size). x: np.array Previous Jacobi iteration step, shape=(n_size,). b: np.array Constant vector of shape=(n_size,). Returns: np.array Next Jacobi iteration step, shape=(n_size,). """ # Pre-allocations U = np.zeros_like(A) D = np.zeros_like(A)
	L = np.zeros_like(A) D_inv = np.zeros_like(A) # Decomposition of the matrix A U[0] = -A[0] # Upper diagonal D[1] = A[1] # Diagonal L[2] = -A[2] # Lower diagonal # Inverse of the diagonal matrix D D_inv[1] = 1/D[1] # Perform iteration x_next = multiply(D_inv, b) + multiply(D_inv, multiply(L+U, x)) return x_next
[11]:	Jacobi iteration, $N=8$ grid points
	<pre># Get the constant vector b. tmp = np.zeros(N) tmp[[0,-1]] = 1 b = -eps*h**2/D - 2*T0*tmp # Initialize T T = np.ones(N) plt.figure() plt.plot(x,T) for i in range(30): # Solve for the temperature T = jacobi(A, T, b) plt.plot(x,T)</pre>
	# Overplot the true solution found with the forward elimination, backward substitution. plt.plot(x_tdma, T_tdma) plt.xlabel("x") plt.ylabel("Temperature") plt.title("Temperature profile T(x)") plt.savefig("jacobi8.pdf") Temperature profile T(x)
[12]:	
	<pre>eps = 1 # Heat rate from radioactivity in solid material. D = 0.5 # Heat diffusion coefficient. T0 = 1 # Dirichlet boundary condition: Temperature at x = ±L L = 1 # Length of domain. h = 2*L/N # Grid spacing. x = np.linspace(-L+h/2, L-h/2, num=N) # Grid points # Create the appropriate matrix A. A = create_mat(N) # Get the constant vector b. tmp = np.zeros(N) tmp[[0,-1]] = 1 b = -eps*h**2/D - 2*T0*tmp</pre>
	<pre># Initialize T T = np.ones(N) plt.figure() plt.plot(x,T) for i in range(30): # Solve for the temperature T = jacobi(A, T, b) plt.plot(x,T) # Overplot the true solution found with the forward elimination, backward substitution. plt.plot(x_tdma, T_tdma) plt.xlabel("x") plt.ylabel("Tomporature")</pre>
	plt.ylabel("Temperature") plt.title("Temperature profile T(x)") plt.savefig("jacobi100.pdf") Temperature profile T(x) 20 18 14 12
[13]:	2. 1D Multigrid method (10 pts) n = 3 # Highest grid-level (grid resolution) eps = 1 # Heat rate from radioactivity in solid material. D = 0.5 # Heat diffusion coefficient. T0 = 1 # Dirichlet boundary condition: Temperature at x = ±L L = 1 # Length of domain.
	<pre>def create_Abx(n): N = 2**n + 1</pre>
[14]:	<pre>return A, b, x # Verifying that new problem formulation gives same result as in previous exercise. A, b, x = create_Abx(n) T = np.linalg.solve(A, b) plt.plot(x, T) plt.show() print(A)</pre>
	14 - 10 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100 [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
[15]:	<pre>[0. 0. 0. 0. 0. 12. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 12. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] def restriction(n): N_in = 2**n + 1</pre>
[16]:	<pre>R[-1,-1] = 3/4 R[-1,-2] = 1/4 print(R, '\n') return R def prolongation(n): N_in = 2**n + 1</pre>
[17]:	<pre>k += 1 P[0,0] = 1 P[1,0] = 1/2 P[-1,-1] = 1 P[-2,-1] = 1/2 print(P, '\n') return P</pre>
	<pre>for i in range(n+1): out = create_Abx(i) A.append(out[0]) b.append(out[1]) x.append(out[2]) # Printing the matrices. for A_i in A: print(A_i, '\n') [[1. 0.] [0. 1.]] [[1. 0. 0.] [12. 1.] [0. 0. 1.]]</pre>
	[[1. 0. 0. 0. 0.] [12. 1. 0. 0.] [0. 12. 1. 0.] [0. 0. 12. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [12. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 12. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 12. 1. 0. 0. 0. 0.] [0. 0. 12. 1. 0. 0. 0. 0.] [0. 0. 0. 12. 1. 0. 0. 0.] [0. 0. 0. 0. 12. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 12. 1. 0. 0.] [0. 0. 0. 0. 0. 0. 12. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 12. 1.]
[18]:	# Restriction matrices. R = [] for i in range(n): R.append(restriction(i+1)) [[0.75 0.25 0.] [0. 0.25 0.75]] [[0.75 0.25 0. 0. 0. 0.] [0. 0.25 0.5 0.25 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0.] [[0.75 0.25 0. 0. 0. 0. 0. 0. 0. 0.] [[0.75 0.25 0. 0. 0. 0. 0. 0. 0. 0.] [[0.75 0.25 0. 0. 0. 0. 0. 0. 0. 0.] [[0. 0.25 0.5 0.25 0. 0. 0. 0. 0.] [[0. 0. 0. 0.25 0.5 0.25 0. 0. 0. 0.] [[0. 0. 0. 0. 0.25 0.5 0.25 0. 0. 0.]
[19]:	<pre>[0. 0. 0. 0. 0. 0. 0. 0. 0.25 0.75]] # Prologation matrices. P = [] for i in range(n): P.append(prolongation(i)) [[1. 0.] [0.5 0.5] [0. 1.]] [[1. 0. 0.] [0.5 0.5 0.] [0. 1. 0.] [0. 0. 5 0.5] [0. 0. 1.]]</pre>
[20]:	[[1. 0. 0. 0. 0. 0.] [0.5 0.5 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 0.5 0.5 0. 0.] [0. 0. 1. 0. 0.] [0. 0. 0. 5 0.5 0.] [0. 0. 0. 5 0.5 0.] [0. 0. 0. 0. 5 0.5] [0. 0. 0. 0. 0.5 0.5] [0. 0. 0. 0. 0. 1.]] def jacobi_step(A, x, b): """ Perform a single Jacobi iteration step.
	Note: Not compatible with sparse matrix format above. Parameters:
[21]:	<pre>L = -np.tril(A, k=-1) D_vec = np.diag(A) D_inv = np.diag(1/D_vec) return D_inv @ b + (D_inv @ ((L+U) @ x)) def V_cycle(x, b, level, A, R, P): """ Perform a single V-cycle down to the lowest grid resolution. Solving for x for the linear equation Ax = b. Parameters: </pre>
	<pre>x: np.array Previous step's solution, vector of shape=(n_size,). b: np.array Vector b in eq Ax = b, shape=(n_size,). level: int Current grid level. Should be A: list List of A matrices for each grid resolution, down to the finest level. Ascending order, i.e. A[0] corresponds to the coarsest grid, A[-1] the finest. R: list List of restriction matrices R, in ascending order. P: list List of prologation matrices P, in ascending order.</pre> Returns:
	<pre>np.array Next iteration step of solution x, shape=(n_size,). # Relaxation step (Jacobi) x = jacobi_step(A[level], x, b) # Compute residual r = b - A[level] @ x # Restrict residual to coarser mesh r_coarse = R[level-1] @ r eps = np.zeros_like(r_coarse)</pre>
[22]:	<pre>T = np.ones_like(b[-1])</pre>
	18 - 16 - 14 - 12 - 10 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 x
	<pre># Creating matrices A for lower grids through Galerkin coarse grid approximation. A2 = [A[-1]] for i in range(n-1, -1, -1): A2.append(R[i] @ A2[-1] @ P[i])</pre>
[23]:	A2.reverse() # Printing the matrices. for A_i in A2: print(A_i, '\n') [[0.421875 0.
[23]:	<pre># Printing the matrices. for A_i in A2: print(A_i, '\n') [[0.421875 0.</pre>