Do causal sets have symmetries?

Christoph Minz¹

¹Institut für Theoretische Physik, Universität Leipzig

Seventeenth Marcel Grossmann Meeting 8-12 July 2024, Pescara

Electronic tools for causal sets and research in their symmetries

- LATEX-package 'causets' to draw Hasse diagrams (of causal sets and partially ordered sets in general),
- Online tool to help finding the LATEX-macros,
- Preprint "Local symmetries in partially ordered sets".

[CTAN 2020]

ctan.org/pkg/causets,

[M 2024] c-minz.github.io,

[M 2024] arXiv:2406.14533.

Content

- Symmetries of spacetime manifolds vs. sprinkled causal sets
- 2 Local symmetries of (finite) partially ordered sets
- Causal sets of regular geometric polytopes
- 4 Local symmetries in causets

Content

Sprinkling process on spacetime manifolds and (pre-)compact subsets

A sprinkle on a spacetime ${\cal M}$

ullet Probability space $\left(Q,\mathcal{B}(Q),\mu\right)$

$$\bullet \ Q := \left\{ S \subset M \ \middle| \ \forall U \subseteq M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel σ -algebra $\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

- ullet Probability space $\left(Q_U,\mathcal{B}(Q_U),\mu_U\right)$
- $Q_{U,n} := \{ S \subset U \mid |S| = n \}$
- $\bullet \ \mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n \left(\Sigma_{U,n}^{-1}(B_n) \right)$

Math. review: [Fewster-Hawkins-M-Rejzner 2021].

Invariance under spacetime symmetries

Let Λ be a symmetry transformation of the spacetime. For example, $\Lambda \in \mathcal{P}_+^{\uparrow}$, a proper orthochronous Poincaré transformation in Minkowski spacetime.

The volume measure is invariant:

$$u \circ \Lambda =
u \qquad \qquad \mu_{\Lambda U} = \mu_U \,.$$

A sprinkle in Minkowski spacetime does not pick out a preferred frame of reference [Bombelli–Henson–Sorkin 2006].

Remark: A preferred past structure assigns a unique direction to each element in a causal set, but this is a random distribution on the hyperboloid, for all elements of a sprinkle.

[Dable-Heath-Fewster-Rejzner-Woods 2020, FHMR 2021]

Definition of local symmetries in posets

Singleton-symmetric elements

Let P be a poset. Two elements $a, b \in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad (\Leftrightarrow J_*^{\pm}(a) = J_*^{\pm}(b)).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- \Rightarrow Taking the quotient of a poset P by this symmetry yields a *retract* $P \otimes \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\bullet = (\bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet \bullet) \oslash \bullet = \dots$$

Example (Parallel-series compositions)

Generalisation to Q-symmetric elements

Let Q be a finite poset, and $r \in \mathbb{N}$, r > 2. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some 1 < q < r:

 $a \sim_n b$ if $a \not\sim_j b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_j c$ and $c \sim_{j-n} b$; a is (Q, r)-symmetric to b if there exists an

 $n \in \mathbb{N}_0$ such that $a \sim_n b$.

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Example (Parallel-series compositions — cont.)

Definition (Locally symmetric posets)

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q,r)-symmetric and (Q,r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \geq 2$ such that P is locally (Q,r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of (Q_i,r_i) -symmetries such that $\hat{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \ldots \neq P$, and P is locally unsymmetric if it is not locally symmetric.

All posets that are (Q,r)-retractable to some poset R form a class of $symmetry\ extensions$

$$[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$$

Two elements are prime (Q,r)-symmetric if they are not (Q',r')-symmetric by another smaller $Q' \subset Q$ or smaller r' < r. For example:

$$\bigwedge \hspace{-.5cm} \bigwedge \hspace{-.5cm} \oslash \cdots = \bigwedge \hspace{-.5cm} \bigwedge \hspace{-.5cm} \bigcirc \bigwedge \hspace{-.5cm} A = \bigwedge \hspace{-.5cm} \bigwedge \hspace{-.5cm} \bigcirc : = :$$

$$\bigwedge \hspace{-.5cm} \bigwedge \hspace{-.5cm} \bigcirc : \bullet = : .$$

Example (Posets of bipartite graphs)

$$[\textbf{I}\odot \bullet]' = \left\{ \textbf{A}, \textbf{V}, \textbf{A}, \textbf{M}, \textbf{V}, \\ \textbf{A}, \textbf{M}, \textbf{W}, \textbf{V}, \dots \right\}.$$

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Regular polygons have dihedral symmetry.

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at $t=0.\,$ The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of simplices that embed (1+d)-dimensional Minkowski spacetime

Theorem (Simplices)

The d-simplex is (d-2)-simplex-retractable to the (d+2)-chain.

Theorem (Preservation of layers)

For any (Q,r)-symmetric poset P, the symmetry quotient P/(Q,r) preserves layers.

Local symmetries vs. Kleitman-Rothschild orders

In the large n behaviour, posets with a small number of layers dominate [Kleitman-Rothschild 1975].

Example (Some Kleitman-Rothschild orders have local symmetries)

Fig. 1 from [Carlip-Carlip-Surya 2023] is singleton-symmetric, retracting to the (0,1,2)-faces subset of the 3-simplex, which in turn retracts to the 3-chain,

"Very unsymmetric" posets

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \setminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \setminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).

		-		- (,		`	,
	1	2	3	4	5	6	7	u_n
1	1							1
2	0	1						1
3	0	1	1					2
4	0	1	3	1				5
5	0	1	11	6	1			19
6	0	3	47	41	10	1		102
7	0	9	266	332	106	15	1	729

 p_n Number of all posets with cardinality n.

 u_n Number of all locally unsymmetric posets.

 s_n Number of all 1-stable locally unsymmetric posets.

Local symmetries vs. sprinkled causal sets

Theorem (Sprinkles have no symmetries)

A sprinkle in d-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr(|\mathsf{S} \cap I_t| = 0) = \frac{\rho^n \nu(I_t)^n}{n!} e^{-\rho \nu(I_t)}.$$

For S to be total locally unsymmetric the region I_t could at most contain a finite number n of elements. We can choose t arbitrarily large (even $t \to \infty$) so that this probability vanishes no matter how small $\varepsilon > 0$ is and how large (but finite) n is.

Summary: local symmetries

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

Example (Local symmetries of the wedge)

Online tool to support the use of the package

To help finding the right macro, go to my website c-minz.github.io/assets/html/proset-editor.html

