Homework Assignment - 4

Submitted By Fahd Humayun 168000889 (fh186)

Ouestion - 1:

Instruction	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp 1:0	Jump
andi \$t0,\$t1,12	0	1	0	1	0	0	0	11	0
lw \$t0,12(\$12)	0	1	1	1	1	0	0	00	0
sw \$t4, 12(\$12)	X	1	X	0	0	1	0	00	0

The MIPS single cycle implementation diagram and control signals need to be modified to deal with immediate instructions such as *andi*, *ori* etc. The ALU Control needs to generate 0000 as an input to ALU to perform *AND* operation, and as *ALUOp* 00 is used for *lw* and *sw* that generates 0010 ALU Control input to perform *ADD* operation, 01 is used for *branch* that generates 0110 to perform *SUB* operation, and 10 is used for the R-type instructions that depends on the *funct* field of the R-type to determine what type of arithmetic operation to perform, therefore, assume the modification yields 11 as *ALUOp* signal for *andi* instruction that would generate 0000 as ALU Control input to the ALU.

Ouestion - 2:

In the instruction swi \$t1, \$t2(\$t4)\$ registers \$t2\$ and \$t4\$ needs to be added to generate the address and \$t1\$ has the data that needs to be stored in the memory, so, the REGISTERS component of the <math>datapath of single cycle MIPS needs to have $Read\ register\ 3$ as an additional input and $Read\ data\ 3$ as an additional output, where the $Read\ register\ 3$ will take in as an input $instruction\ [15-11]$ bits (treating the instruction as R-type where instruction bits 15-11 will represent $rd\ ($t1$ in this case)) $Read\ register\ 1$ and 2 will be used for the registers $$t2, and\ $t4$ as an operands to the ALU to be added and to compute the address of the memory. To the existing $datapath\ (un-pipelined)$ the input to MEMORY for $Write\ data\ comes\ from\ the\ REGISTERS\ output\ i.e.\ Read\ data\ 2$, so, a multiplexor can be added that takes as input $Read\ data\ 2$ and $Read\ data\ 3$ and then used as an input to the MEMORY's $Write\ data$, where, this multiplexor can be controlled with an additional control signal/line from the CONTROL unit named as RegtoMem. If RegtoMem is 1 then it will write the data from $Read\ data\ 3$ and if it is 0 then it will use the $Read\ data\ 2$ to write in the

Fahd Humayun 1 | 9

memory. The table below shows all of the control signals that the CONTROL unit needs to generate to execute the instruction given and figure below shows the portion/parts of *datapath* where the changes are/have been needed.

PS: for a store instruction the ALU needs to perform an addition operation so the funct fields of this instruction (as this instruction can be treated as R-type) can be don't care as the CONTROL unit will generate ALUOp 00 to generate ALU Control input 0010 for addition (assuming the opcode of this instruction will generate the control signals as required)

RegtoMem	RegDst	ALUSTC	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp	Jump
1	X	0	X	0	0	1	0	00	0

Question - 3:

To along the second		Clock Cycles														
Instructions	1	2	3	4	5	6	7	8	9	10	11					
add \$1, \$3, \$5	IF	ID	EX	MEM	WB											
and \$10, \$8, \$3		IF	ID	EX	MEM	WB										
lw \$4, 16(\$3)			IF	ID	EX	MEM	WB									
sub \$11,\$2,\$7				IF	ID	EX	MEM	WB								
sw \$2,100(\$6)					IF	ID	EX	MEM	WB							

Question - 4 (a):

Instructions		Clock Cycles														
instructions	1	2	3	4	5	6	7	8	9	10	11					
add R3, R2, R7	IF	ID	EX	MEM	WB											
lw R4,20(R3)		IF	ID	EX	MEM	WB										
and R6, R5, R4			IF	ID	EX	MEM	WB									
sw R3, -40(R5)				IF	ID	EX	MEM	WB								
add R4, R6, R3					IF	ID	EX	MEM	WB							
sub R5, R6, R4						IF	ID	EX	MEM	WB						

The shaded stages show the data availability and the dependency of data.

1. R7 is ready in WB stage of *add R*3, *R*2, *R*7 instruction i.e. clock cycle 5 and it is needed in ID stage of *lw R*4,20(*R*3) instruction i.e. clock cycle 3.

Similarly,

- 2. R4 is ready in the instruction lw R4,20(R3) at clock cycle 6 while it is needed in the instruction and R6, R5, R4 at clock cycle 4.
- 3. R6 is ready in the instruction *and R*6, *R*5, *R*4 at clock cycle 7 while it is needed in the instruction *add R*4, *R*6, *R*3 at clock cycle 6.
- 4. R4 is ready in the instruction *add R*4, *R*6, *R*3 at clock cycle 9 while it is needed in the instruction *sub R*5, *R*6, *R*4 at clock cycle 7.

Question - 4 (b):

								(Clock Cy	cles							
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
add R3, R2, R7	IF	ID	EX	МЕМ	WB												
		Stall	Stall	Stall	Stall	Stall											
			Stall	Stall	Stall	Stall	Stall										
lw R4,20(R3)				IF	ID	EX	MEM	WB									
					Stall	Stall	Stall	Stall	Stall								
						Stall	Stall	Stall	Stall	Stall							
and R6, R5, R4							IF	ID	EX	MEM	WB						
sw R3, -40(R5)								IF	ID	EX	MEM	WB					
									Stall	Stall	Stall	Stall	Stall				
add R4, R6, R3										IF	ID	EX	MEM	WB			
											Stall	Stall	Stall	Stall	Stall		
												Stall	Stall	Stall	Stall	Stall	
sub R5, R6, R4													IF	ID	EX	МЕМ	WB

- 17 clock cycles needed to run the given code.

Question - 4 (c):

Instruvetions		Clock Cycles														
Instructions	1	2	3	4	5	6	7	8	9	10	11					
add R3, R2, R7	IF	ID	EX ,	МЕМ	WB											
lw R4,20(R3)		IF	ID	EX	MEM \	WB										
			Stall	Stall	Stall	Stall	Stall									
and R6, R5, R4				IF	ID	EX	MEM	WB								
sw R3, -40(R5)					IF	ID	EX	МЕМ	WB							
add R4, R6, R3						IF	ID	EX .	MEM	WB						
sub R5, R6, R4							IF	ID	EX	MEM	WB					

- 11 clock cycles needed to run the given code.

Question - 4 (d):

Turatum ati ana		Clock Cycles														
Instructions	1	2	3	4	5	6	7	8	9	10	11					
add R3, R2, R7	IF	ID	EX	MEM 1	<i>MEM</i> 2	WB										
lw R4,20(R3)		IF	ID	EX	MEM 1	<i>MEM</i> 2	WB									
and R6, R5, R4			IF	ID	EX	MEM 1	<i>MEM</i> 2	WB								
sw R3, -40(R5)				IF	ID	EX	MEM 1	MEM 2	WB							
add R4, R6, R3					IF	ID	EX	MEM 1	<i>MEM</i> 2	WB						
sub R5, R6, R4						IF	ID	EX	MEM 1	<i>MEM</i> 2	WB					

- 1. R3 available in clock cycle (CC) 6 in instruction 1 and needed in CC3 in instruction 2.
- 2. R4 available in CC7 in instruction 2 and needed in CC4 in instruction 3.
- 3. R3 available in CC6 in instruction 1 and needed in CC5 in instruction 4.
- 4. R6 available in CC8 in instruction 3 and needed in CC6 in instruction 5.
- 5. R4 available in CC10 in instruction 5 and needed in CC7 in instruction 6.

Without forwarding 22 clock cycles:

T	Clock Cycles																					
Instructions	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
add R3, R2, R7	IF	ID	EX	MEM1	MEM2	WB																
		X	Χ	Χ	X	Χ	Χ															
			Χ	Χ	Χ	Χ	Χ	Χ														
				Χ	X	Χ	Χ	X	Х													
lw R4, 20(R3)					IF	ID	EX	MEM1	MEM2	WB												
						Χ	Χ	Χ	Χ	Χ	Χ											
							Χ	Х	Х	Χ	Χ	Х										
								X	Х	Χ	Χ	Х	Χ									
and R6, R5, R4									IF	ID	EX	MEM1	MEM2	WB								
sw R3, -40(R5)										IF	ID	EX	MEM1	MEM2	WB							
											Χ	Х	Χ	Х	Χ	Χ						
												Χ	Χ	Х	Χ	Χ	Χ					
add R4, R6, R3													IF	ID	EX	MEM1	MEM2	WB				
														X	Χ	Χ	Χ	Χ	Χ			
															Χ	Χ	Χ	Χ	Χ	Χ		
																Χ	Χ	Х	Х	Χ	Χ	
sub R5, R6, R4																	IF	ID	EX	MEM1	MEM2	WB

With forwarding 13 clock cycles:

Instructions						Cl	ock Cycl	les					
instructions	1	2	3	4	5	6	7	8	9	10	11	12	13
add R3, R2, R7	IF	ID	EX	<i>MEM</i> 1	МЕМ 2	WB							
lw R4,20(R3)		IF	ID	EX	MEM 1	MEM 2	WB						
			Stall	Stall	Stall	Stall	Stall	Stall					
				Stall	Stall	Stall	Stall	Stall	Stall				
and R6, R5, R4					IF	ID	\downarrow EX	MEM 1	<i>MEM</i> 2	WB			
sw R3, -40(R5)						IF	ID	EX	MEM 1	<i>MEM</i> 2	WB		
add R4, R6, R3							IF	ID	EX	MEM 1	<i>MEM</i> 2	WB	
sub R5, R6, R4								IF	ID	EX	MEM 1	ME M2	WB

Question - 5:

Load instructions immediately followed by an instruction that uses the value just loaded in requires 1 stall/NOP.

Store instruction immediately preceded by an R-type instruction that computes the value that is written to memory does not need any stall.

ALU instruction immediately followed by another ALU instruction that uses the value just computed also does not need any stall.

Ideal CPI = 1

Total CPI = 1 + (30%)(40%) (number of stalls) = 1 + (0.30)(0.40)(1) = 1.12

IPC = 1 / CPI = 1/1.12 = 0.893 instructions/cycle