PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

Deriving the Gradient Descent Update rule

How does Taylor series help us arrive at the right answer?

- 1. For ease of notation, let $\Delta\theta = u$
- 2. Then from Taylor series, we have:
 - a. $L(\theta + \eta u) = L(\theta) + \eta * u^T \nabla_{\theta} L(\theta)$
 - b. Rearranging: $L(\theta + \eta u) L(\theta) = \eta * u^T \nabla_{\theta} L(\theta)$
 - c. Note, that the move ηu would only be favourable if
 - $L(\theta + \eta u) L(\theta) < 0$ i. (i.e. if the new loss is less than the previous loss)
 - This implies $u^T \nabla_{\theta} L(\theta) < 0$ ii.
 - d. Now we have $u^T \nabla_{\theta} L(\theta) < 0$
 - Let β be the angle between u and $\nabla_{\theta}L(\theta)$, then we know that,
 - $-1 \le \cos(\beta) = \frac{u^T \nabla_{\theta} L(\theta)}{\|u\| * \|\nabla_{\theta} L(\theta)\|} \le 1$ ii.
 - Multiply throughout by $k = ||u|| * ||\nabla_{\theta} L(\theta)||$ iii.
 - This gives us $-k \le u^T \nabla_{\theta} L(\theta) \le k$ iv.
 - e. Thus, $L(\theta + \eta u) L(\theta) = u^T \nabla_{\theta} L(\theta) = k * cos(\beta)$ will be most negative when $cos(\beta) = -1$, i.e. when β is 180°
- 3. Gradient Descent Rule
 - a. The direction u that we intend to move in should be at 180° w.r.t, the gradient
 - b. In other words, move in a direction opposite to the gradient
- 4. Parameter Update Rule
 - a. $W_{t+1} = W_t \eta \Delta W_t$

 - b. $\mathbf{b}_{t+1} = \mathbf{b}_t + \eta \Delta \mathbf{b}_t$ c. Where $\Delta \mathbf{w}_t = \frac{\partial L(w,b)}{\partial w} at \ w = w_t$, $b = b_t$ d. Where $\Delta \mathbf{b}_t = \frac{\partial L(w,b)}{\partial b} at \ w = w_t$, $b = b_t$