CustomerSegmentationEDA Report

December 6, 2023

Customer Segmentation Exploratory Data Analysis This dataset is of customers from supermarket mall and through membership cards, we have some basic data about customers like Customer ID, age, gender, annual income and spending score. Spending Score is something assigned to the customer based on some defined parameters like customer behavior and purchasing data, etc.

Dataset link: https://www.kaggle.com/datasets/kandij/mall-customers

```
[]: import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
[]: ogdata = pd.read_csv("Mall_Customers.csv")
     data = ogdata
[]: data.head()
[]:
        CustomerID
                      Genre
                             Age
                                   Annual Income (k$)
                                                        Spending Score (1-100)
     0
                       Male
                              19
                                                    15
                                                                             39
     1
                  2
                       Male
                              21
                                                    15
                                                                             81
     2
                  3
                     Female
                              20
                                                    16
                                                                              6
     3
                     Female
                              23
                                                                             77
                                                    16
                     Female
                              31
                                                    17
                                                                             40
     data.describe()
[]:
                                      Annual Income (k$)
                                                           Spending Score (1-100)
            CustomerID
                                Age
     count
            200.000000
                         200.000000
                                              200.000000
                                                                        200.000000
            100.500000
                          38.850000
                                               60.560000
                                                                         50.200000
     mean
     std
             57.879185
                          13.969007
                                               26.264721
                                                                         25.823522
     min
              1.000000
                          18.000000
                                               15.000000
                                                                          1.000000
                                                                         34.750000
     25%
             50.750000
                          28.750000
                                               41.500000
     50%
            100.500000
                          36.000000
                                               61.500000
                                                                         50.000000
     75%
            150.250000
                          49.000000
                                               78.000000
                                                                         73.000000
            200.000000
                          70.000000
                                              137.000000
     max
                                                                         99.000000
[]: data.shape
```

```
[]: (200, 5)
    data.size
[]: 1000
     data.isna().sum()
[]: CustomerID
                                0
     Genre
                                0
                                0
     Age
     Annual Income (k$)
                                0
     Spending Score (1-100)
     dtype: int64
[]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 200 entries, 0 to 199
    Data columns (total 5 columns):
     #
         Column
                                  Non-Null Count
                                                   Dtype
         ----
     0
         CustomerID
                                   200 non-null
                                                    int64
     1
         Genre
                                   200 non-null
                                                   object
     2
         Age
                                   200 non-null
                                                   int64
         Annual Income (k$)
                                  200 non-null
                                                   int64
         Spending Score (1-100)
                                  200 non-null
                                                   int64
    dtypes: int64(4), object(1)
    memory usage: 7.9+ KB
[]:|data = data.rename(columns={"Genre": "Gender", "Annual Income (k$)":__
      →"Annual_Income", "Spending Score (1-100)": "Spending_Score"})
     data.head()
[]:
        {\tt CustomerID}
                    Gender
                             Age
                                  Annual_Income
                                                  Spending_Score
                 1
                       Male
                              19
                                                              39
                                              15
                 2
                       Male
                              21
                                                              81
     1
                                              15
     2
                 3 Female
                                                                6
                              20
                                              16
     3
                 4 Female
                              23
                                              16
                                                               77
                    Female
                              31
                                              17
                                                              40
[]: data["Gender"].unique()
[]: array(['Male', 'Female'], dtype=object)
    Gender is statistical data, so replacing Male with 1 and Female with 0
[]: data["Gender"] = data["Gender"].replace(["Male", "Female"], [1,0])
     data.head()
```

[]:	${\tt CustomerID}$	Gender	Age	Annual_Income	Spending_Score
0	1	1	19	15	39
1	2	1	21	15	81
2	3	0	20	16	6
3	4	0	23	16	77
4	5	0	31	17	40

0.0.1 VISUALIZATION

```
[]: plt.figure(figsize=(15 , 6))
   plt.subplot(1,3,1)
   sns.histplot(data["Annual_Income"], bins=30, kde=True)
   plt.xlabel('Annual_Income')
   plt.subplot(1,3,2)
   sns.histplot(data["Age"], bins=30, kde=True)
   plt.xlabel('Age')
   plt.subplot(1,3,3)
   sns.histplot(data["Spending_Score"], bins=30, kde=True)
   plt.xlabel('Spending_Score')
   plt.show()
```


Here, from these histograms, we can observe that the values are distributed such that the vast majority of the values lay in the middle with some exceptions in the extremes.

plt.show()

From this boxplot, we can identify the minimum, first quartile (25%), median (50%), third quartile (75%) as well as the maximum annual income for each age value.

From this countplot, we can conclude that number of females are more than male for the given data.

Age vs Spending Score

```
[]: sns.lmplot(x = "Age", y = "Spending_Score", data = data, hue = "Gender")
  plt.title('Age vs Spending Score')
  plt.xlabel('Age')
  plt.ylabel('Spending Score')
  plt.show()
```


From this graph, we can observe that young people (specifically upto age 40) spend more than old people. This is also quite predictable trend.

Age vs Annual Income

```
[]: sns.lmplot(x = "Age", y = "Annual_Income", data = data, hue = "Gender")
  plt.title('Age vs Annual Income')
  plt.xlabel('Age')
  plt.ylabel('Annual Income')
  plt.show()
```


From this graph, we can observe that people in 30s, 40s and 50s have more annual income than other people. We can also see that Males comparatively have a high income than Female.

Annual Income vs Spending Score

```
[]: sns.lmplot(x = "Annual_Income", y = "Spending_Score", data = data, hue = U Gender")

plt.title('Annual Income vs Spending Score')

plt.xlabel('Annual Income')

plt.ylabel('Spending Score')

plt.show()
```


From this graph, we can observe that people with either high income or lowest income tend to have high spending score, especially women. The vast majority lies in the middle, having decent income as well as decent spending capability.

```
[]: sns.pairplot(data, vars=["Age", "Annual_Income", "Spending_Score"], whind="scatter", hue="Gender", palette="viridis")
plt.show()
```


In this pairplot, we can observe the relation between different variables in our dataset, using gender as the parameter to segregate.

Thank you

Customer Segmentation EDA by Chiranjeev Sehgal.