CIS 519: Homework 4

 $\{ {\rm Ian\ MacDonald} \}$

12/07/20

Although the solutions are my own, I consulted with the following people while working on this homework: $\{Sally Hu\}$

Neural Networks

Feed Forward

Plots:

Learning Rate	Final Validation Accuracy
0.0001	41.15
0.00005	39.8
0.00001	36.3

Learning rate with best validation accuracy: 0.0001 The test accuracy of that model is 40.2

Convolutional

Plots:

Learning rate with best validation accuracy: 0.01 The test accuracy of that model is 47.9

Document Classification

Representation	k	Test Accuracy
BBoW	0.1	.86
CBoW	0.1	.8608
TF-IDF	1.0	.83

What impact does k have? That is, as the value of k goes to infinity, what will happen to $P(y \mid d)$?

k is a smoothing factor, which gives previously unseen values a low probability to occur in either class, rather than a probability of 0, allowing us to better handle documents where some tokens do not appear in the vocabulary. If the value of k goes to infinity, then $P(y \mid d)$ will converge to $\frac{1}{|V|}$, which is a uniform distribution where every element in the vocabulary has an equal chance to be a part of the document regardless of the document's classification. This makes sense intuitively, as increasing k increases the smoothness, and infinite smoothness would just be a uniform distribution.

Theory

Multivariate Exponential Naive Bayes

1.	
P(Y=A) = .429	P(Y=B) = .571
$\lambda_{A;1} = .375$	$\lambda_{B;1} = .222$
$\lambda_{A;2} = .158$	$\lambda_{B;2} = .286$

2.
$$e^{\frac{-9}{8} * e^{\frac{-15}{19} * \frac{3}{8} * \frac{3}{19}}{e^{\frac{-12}{18} * e^{\frac{-20}{14} * \frac{4}{18} * \frac{4}{14}}}$$

3. if
$$\frac{e^{\frac{-9}{8}}*e^{\frac{-15}{19}}*\frac{3}{8}*\frac{3}{19}}{e^{\frac{-12}{18}}*e^{\frac{-20}{14}}*\frac{4}{18}*\frac{4}{18}*\frac{4}{14}}*\frac{P(Y=A)}{P(Y=B)} > 1$$
, Predict Y=A

4. Classifier predicts Y=B

Work for above question:

Given p as
$$P(Y=A)$$

 $L(p) = p^3(1-p)^4$
 $L'(p) = (1-p)^4 3p^2 - 4p^3(1-p)^3$
 $0 = (1-p)^4 3p^2 - 4p^3(1-p)^3$
 $0 = p^2(1-p)^3(3-7p)$
MLE estimation for $P(Y=A)$

MLE estimation for
$$P(Y=A) = \frac{3}{7}$$

MLE estimation for $P(Y=B) = 1 - P(Y=A) = \frac{4}{7}$

$$\begin{split} \mathbf{L}(\lambda_{A;1}) &= e^{-\lambda} \lambda * e^{-3\lambda} \lambda * e^{-4\lambda} \lambda \\ \mathbf{L}(\lambda_{A;1}) &= \lambda^3 e^{-8\lambda} \end{split}$$

$$\operatorname{Log} L(\lambda_{A;1}) = \operatorname{log}(\lambda^3 e^{-8\lambda})
\operatorname{Log} L(\lambda_{A;1}) = 3ln(\lambda) + -8\lambda ln(e)
\operatorname{Log} L'(\lambda_{A;1}) = \frac{3}{\lambda} - 8
0 = \frac{3}{\lambda} - 8
\lambda_{A;1} = \frac{3}{8}$$

MLE estimation for $\lambda_{A;1}$ is .375

$$\begin{split} & \text{L}(\lambda_{A;2}) = e^{-4\lambda} \lambda * e^{-9\lambda} \lambda * e^{-6\lambda} \lambda \\ & \text{L}(\lambda_{A;2}) = \lambda^3 e^{-19\lambda} \\ & \text{Log L}(\lambda_{A;2}) = \log(\lambda^3 e^{-8\lambda} \\ & \text{Log L}(\lambda_{A;2}) = 3ln(\lambda) + -19\lambda ln(e) \\ & \text{Log L}'(\lambda_{A;2}) = \frac{3}{\lambda} - 19 \\ & 0 = \frac{3}{\lambda} - 19 \\ & \lambda_{A;2} = \frac{3}{19} \end{split}$$

MLE estimation for $\lambda_{A;2}$ is .159

$$\begin{split} & \text{L}(\lambda_{B;1}) = e^{-7\lambda}\lambda * e^{-2\lambda}\lambda * e^{-3\lambda}\lambda * e^{-6\lambda}\lambda \\ & \text{L}(\lambda_{B;1}) = \lambda^4 e^{-18\lambda} \\ & \text{Log L}(\lambda_{B;1}) = \log(\lambda^4 e^{-18\lambda} \\ & \text{Log L}(\lambda_{B;1}) = 4ln(\lambda) + -18\lambda ln(e) \\ & \text{Log L'}(\lambda_{B;1}) = \frac{4}{\lambda} - 18 \\ & 0 = \frac{4}{\lambda} - 18 \\ & \lambda_{B;1} = \frac{4}{18} \\ & \text{MLE estimation for } \lambda_{B;1} \text{ is } .222 \end{split}$$

$$L(\lambda_{B;2}) = e^{-3\lambda} \lambda * e^{-6\lambda} \lambda * e^{0\lambda} \lambda * e^{-5\lambda} \lambda$$

$$L(\lambda_{B;2}) = \lambda^4 e^{-14\lambda}$$

$$Log L(\lambda_{B;2}) = log(\lambda^4 e^{-14\lambda}$$

$$Log L(\lambda_{B;2}) = 4ln(\lambda) + -14\lambda ln(e)$$

$$Log L'(\lambda_{B;2}) = \frac{4}{\lambda} - 14$$

$$0 = \frac{4}{\lambda} - 14$$

$$\lambda_{B;2} = \frac{4}{\lambda}$$

 $\lambda_{B;2} = \frac{4}{14}$ MLE estimation for $\lambda_{B;2}$ is .286

Logic for part 3:

Logic for part 3:

$$P(Y=A|X) = \frac{P(X|Y=A)*P(Y=A)}{P(X)}$$

$$P(Y=B|X) = \frac{P(X|Y=B)*P(Y=B)}{P(X)}$$

$$\frac{P(Y=A|X)}{P(Y=B|X)} = \frac{P(X|Y=A)*P(Y=A)}{P(X|Y=B)*P(Y=B)}$$

Coin Toss

The most likely value of p is .632

Explanation:

Probability of H=p, probability of T=1-p

If flip is T, it is shown as is. If it is H, it is flipped again and then shown. Therefore, sequence to get a T can be T or HT, while to get an H is must be HH. Actual probability of seeing a H shown is p^2 , and $1-p^2$ for T.

$$L(p) = (1 - p^2)^6 (p^2)^4$$

$$L(p) = (1 - p^2)^6 (p^8)$$

$$L'(p) = (1 - p^2)^6 (8p^7) + (p^8) - 12p(1 - p^2)^5$$

$$L'(p) = (1 - p^2)^6 (8p^7) - 12p^9 (1 - p^2)^5$$

$$L'(p) = (1 - p^2)^5 (p^7)(8 - 20p^2)$$

$$L'(p) = (1 - p^2)^5 (p^7)(2 - 5p^2)$$

$$0 = (2 - 5p^2)$$

$$p = .632$$