

KLAUSUR Digitaltechnik 1

Wintersemester 2022/2023

Musterlösung

	MUSTERLOSUNC	j
Prüfungsfach:	Digitaltechnik 1	
Studiengang:	Technische Informatik	
Semestergruppe:	TIB2, IEP2	
Fachnummer:	1052032	
Erlaubte Hilfsmittel:	keine	
Zeit:	90 min.	
Гragen Sie hier bitte Ih	ren Daten ein:	
Name:	Vorname:	Matrikelnummer:

Wichtiger Hinweis für die Bearbeitung der Aufgaben:

Schreiben Sie bitte Ihre Lösungen möglichst auf die Aufgabenblätter. Sollte der vorgesehene Platz nicht reichen, verwenden Sie bitte jeweils die Rückseite.

Viel Erfolg wünscht Ihnen

Jonas Fuhrmann und Michael Koidis

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

1 Boolesche Algebra

1.1 Boolesche Gleichung

(7 Punkte)

Schaltungsanalyse

Gegeben ist die boolesche Gleichung: $Y = B \wedge \overline{A} \vee \overline{C} \wedge \overline{B} \vee C \wedge \overline{A} \vee A \wedge \overline{C}$

Zeichnen Sie dazugehörige Schaltung (2 Punkte)

Wie ist die Funktionslänge l und die Schachteltiefe k der Schaltung?

$$l = 12$$
 (1 Punkt) $k = 2$ (1 Punkt)

Funktionstabelle

Bestimmen Sie die Funktionstabelle der booleschen Gleichung $Y = B \wedge \overline{A} \vee \overline{C} \wedge \overline{B} \vee C \wedge \overline{A} \vee A \wedge \overline{C}$ (3 Punkte)

	С	В	A	$B \wedge \overline{A}$	$\overline{C} \wedge \overline{B}$	$C \wedge \overline{A}$	$A \wedge \overline{C}$	Y
0	0	0	0		1			1
1	0	0	1		1		1	1
2	0	1	0	1				1
3	0	1	1				1	1
4	1	0	0			1		1
5	1	0	1					
6	1	1	0	1		1		1
7	1	1	1					

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

1.2 Minimierung (6 Punkte)

Bestimmen Sie die disjunktive Minimalform Y_{DMF} der boolschen Gleichung $Y = \overline{A} \wedge \overline{B} \vee A \wedge B \vee B \wedge C \vee A \wedge \overline{B}$. Übertragen Sie zuerst Ihre Lösung aus Aufgabe 1.1 in die Tabelle 1, füllen dann das KV-Diagramm aus und bestimmen danach die disjunktive Minimalform Y_{DMF} .

	C	В	\boldsymbol{A}	Y
0	0	0	0	1
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	
6	1	1	0	1
7	1	1	1	

$$Y_{DMF} = \overline{A} \vee \overline{C}$$
 (3 Punkte)

Tabelle 1: Ergebnis aus Aufgabe 1.1

Zeichnen Sie die Schaltung der oben bestimmten disjunktiven Minimalform Y_{DMF} ? (1 Punkt)

Wie ist die Funktionslänge l und die Schachteltiefe k der zur disjunktiven Minimalform Y_{DMF} gehörenden Schaltung?

$$l = 2$$

$$k = 1$$
(1 Punkt)
$$(1 Punkt)$$

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2 Zahlendarstellung und Codierung

2.1 Festkommadarstellung

(12 Punkte)

Füllen Sie bitte nachfolgende Tabelle vollständig aus:

		Zahlenwerte (Dezimalzahlen)			
Binärwerte	Hex	Betragszahl Ganze Zahl Ganze Zahl Gan			
(8 Bit)	Werte	(dualcodiert)	(Betrag-Vorzeichen)	(2-er Komplement)	(Dual-Offset-Code)
0001 0010	12	18	+18	+18	-110
1000 1010	8A	138	-10	-118	+10
1111 1111	FF	255	-127	-1	+127
0000 0000	00	0	+0	+0	-128
0111 1000	78	120	+120	+120	-8

Tabelle 2: Umrechnung von Festkommazahlen

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.2 Zahlendarstellung nach IEEE 754

(5 Punkte)

Wandeln Sie die Dezimalzahl $(-3,75)_{10}$ in eine Gleitkommazahl in einfacher Genauigkeit nach IEEE 754 in hexadezimaler Schreibweise um.

Hinweis: Eine Gleitkommazahl in einfacher Genauigkeit (32 Bit) ist nach IEEE 754 wie folgt codiert:

Bits	1	8	23
	VZ von M	E + 127	$ M $ ohne m_0

- Das Bit 31 (MSB) kennzeichnet das Vorzeichen.
- Die nächsten 8 Bit 30...23 geben den Exponenten an (Offsetdarstellung um 127).
- Die nächsten 23 Bit 22...0 geben die normalisierte Mantisse ohne die Vorkomma–Eins an.

Abbildung 1: Darstellung von Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

normalisierte Zahl		0 < Exponent < max	Mantisse beliebig
denormalisierte Zahl	士	0000 0000	Mantisse nicht alle Bits 0
Null	士	0000 0000	00
Unendlich	士	1111 1111	00
NaN	±	1111 1111	Mantisse nicht alle Bits 0

Tabelle 3: Sonderfälle Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

HS Esslingen, Fakultät Informatik und Informationstechnik Seite 5 von 10 © Prof. Dr. R. Marchthaler, M. Sc. Jonas Fuhrmann, M. Sc. Michael Koidis

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.3 Blockcodes (11 Punkte)

Gegeben ist die Generatormatrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Wie viele Nachrichtenstellen m haben Codewörter die mit der obigen Generatormatrix G erzeugt werden können?

```
Die Generatormatrix hat allgemein die Dimension: m \cdot (m + k).
In diesem Fall ist die Dimension von G: 2 \cdot 6.
Somit ist m = 2 (1 Punkt)
```

Wie lautet die mit Hilfe der Generatormatrix G gezeugten Codeworte Y_0 bis Y_3 ?

Wie groß ist die Hammingdistanz des mit der Generatormatrix G erzeugten Codes?

```
d(Y1,Y2)=3, d(Y2,Y3)=4, d(Y3,Y4)=3

d(Y1,Y3)=3, d(Y2,Y4)=3

d(Y1,Y4)=4

Hammingdistanz h = 3 (3 Punkt)
```

Wie viele Bitfehler können sicher erkannt werden?

```
e* = h - 1 = 2 (1 Punkt)
```

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.4 VHDL (9 Punkte)

Gegeben ist die in VHDL beschriebene Komponente INCREMENTER. Vervollständigen Sie die Komponente so, dass die Funktion Y = (X) + 1 ausgeführt und die Condition Flags, Carry (CF), Overflow (OF), Zero (ZF) und Negative (NF) korrekt berechnet werden!

Tipp: Das Overflow Flag ist dann gesetzt, wenn das MSB des Operanden 0 und das MSB des Ergebnisses 1 entspricht.

```
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY ADDER IS
   PORT(IN1, IN2 : IN STD_LOGIC_VECTOR(2 downto 0);
         C_IN
                   : IN STD_LOGIC;
                    : OUT STD_LOGIC_VECTOR(2 downto 0);
                   : OUT STD_LOGIC;
END ADDER;
ARCHITECTURE BEHAV OF ADDER IS
   SIGNAL result: STD_LOGIC_VECTOR(3 downto 0);
   result <= STD_LOGIC_VECTOR(UNSIGNED('0' & IN1) + UNSIGNED(IN2) + C_IN);
            <= result(2 downto 0);</pre>
   C_OUT <= result(3);</pre>
END BEHAV;
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY INCREMENTER IS
   PORT(X : IN STD_LOGIC_VECTOR(2 downto 0);
         Y : OUT STD_LOGIC_VECTOR(2 downto 0);
         CF, OF, ZF, NF : OUT STD_LOGIC
   );
END INCREMENTER;
ARCHITECTURE FUNC OF INCREMENTER IS
   SIGNAL SUM : STD_LOGIC_VECTOR(2 downto 0);
                                                                                       (0.5 Punkt)
   SIGNAL C
            _____: STD_LOGIC;
BEGIN
   \begin{array}{c} \text{ADD: ENTITY work.ADDER} \\ \text{PORT MAP(} \\ \text{IN1} & => \text{ X,} \end{array}
                    => X,
                    => "000" (alt. "001")
             IN2
                                                                                         (1 Punkt)
                    => '1' (alt. '0')
             CIN
                                                                                         (1 Punkt)
             SUM
                    => SUM,
             C_{OUT} \Rightarrow C (alt. CF)
                                                                                       (0.5 Punkt)
   );
      <= SUM
   Υ
   CF <= C
                                                                                         (1 Punkt)
   OF \leftarrow (NOT X(2)) AND SUM(2)
                                                                                         (2 Punkt)
   ZF <= (NOT SUM(2)) AND (NOT SUM(1)) AND (NOT SUM(0))
                                                                                         (2 Punkt)
                                                                                         (1 Punkt)
   NF \le SUM(2)
END FUNC;
```

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

3 Hardware

Die in Abbildung 2 dargestellte 8 Bit-ALU enthält neben einem 8 Bit Addierer eine 8 Bit-Logik-Einheit, ein 8-faches AND-Gatter sowie einen Block "Status" zur Bildung des Carry-Flags (CF), Overflow-Flags (OF), Zero-Flags (Z) und Negativ-Flags (N).

Abbildung 2: Aufbau 8-Bit ALU

Die Signale haben folgende Bitbreite:

Signalname	A	В	X	Y	R	K	AR	C_0	<i>C</i> ₇	C_8	CF	OF	Z	N
Breite in Bit	8	8	8	8	8	4	1	1	1	1	1	1	1	1

Tabelle 4: Bitbreite der Signale

AR=0 sperrt das 8-fach AND-Gatter, d.h. $\mathbf{A} = \mathbf{0}$. AR=1 schaltet \mathbf{X} nach \mathbf{A} durch, d.h. $\mathbf{A} = \mathbf{X}$. Die gültigen Steuerworte \mathbf{K} sind der Tabelle 5 zu entnehmen.

Steuerwort (K)	Ergebnis für Stelle B_i	Logik-Funktion
$(0000) = 0_H$	$B_i = 0$	Kontradiktion
$(0001) = 1_H$	$B_i = 1$	Tautologie
$(0010) = 2_H$	$B_i = X_i$	Identität X
$(0011) = 3_H$	$B_i = Y_i$	Identität Y
$(0100) = 4_H$	$B_i = \overline{X}_i$	Bitweise Invertierung X
$(0101) = 5_H$	$B_i = \overline{Y}_i$	Bitweise Invertierung Y
$(1000) = 8_H$	$B_i = X_i \vee Y_i$	OR
$(1001) = 9_H$	$B_i = X_i \wedge Y_i$	AND

Tabelle 5: Wirkung des Steuersignals (K) auf B_i in Abhängigkeit von X_i und Y_i (i = 0, ..., 7).

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

3.1 ALU (9 Punkte)

Mit Hilfe der ALU in Abbildung 2 soll die Operation "sub" R=(X)-(Y) mit $X=(40)_{16}$ und $Y=(80)_{16}$ durchgeführt werden. Welche Werte müssen die Signale K, AR und C_0 annehmen, wenn die in Tabelle 5 aufgeführten Steuerworte zur Verfügung stehen?

$$K = (0101) = 5_H$$
 $AR = 1$ $C_0 = 1$ (3 Punkte)

Führen Sie ein, sub " mit $X=(40)_{16}$ und $Y=(80)_{16}$ so durch, wie sie die obige Schaltung ausführt, und vervollständigen Sie die nachfolgende Tabelle 6:

										Dezimaler Wert als		
											Betragszahl	Ganze Zahl
					Bin	ärwo	erte				im Dualcode	im 2er Kompl.
Operand 1	X=		0	1	0	0	0	0	0	0	64	+64
Operand 2	Y=		1	0	0	0	0	0	0	0	128	-128
Operand 1	A=		0	1	0	0	0	0	0	0		
Operand 2	B=		0	1	1	1	1	1	1	1		
Übertrag	C=	0	1	1	1	1	1	1	1	1		
Ergebnis	R=		1	1	0	0	0	0	0	0	192	-64

Tabelle 6: Schema für die Operation "sub" (4 Punkte)

Bestimmen Sie die Status-Flags und tragen Sie diese in die Tabelle 7 ein.

CF	OF	Z	N
1	1	0	1

Tabelle 7: Statuswort der ALU nach der Operation (2 Punkte)

Platz für Nebenrechnungen:

HS Esslingen, Fakultät Informatik und Informationstechnik Seite 9 von 10 © Prof. Dr. R. Marchthaler, M. Sc. Jonas Fuhrmann, M. Sc. Michael Koidis

Prüfungsfach:	Digitaltechnik 1	Wintersemester 2022/2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

4 Verständnisfragen

(7 Punkte)

Rechenleistung (2 Punkte)

Welche Ansätze zur Steigerung der Rechenleistung gibt es? Nennen Sie 4!

(1) Höhere Taktfrequenz	(0.5 Punkt)
(2) Pipelining-Konzept	(0.5 Punkt)
(3) Superskalares Konzept	(0.5 Punkt)
(4) Multi-Core-Konzept	(0.5 Punkt)

Speicherelemente (5 Punkte)

Erklären Sie den Unterschied zwischen **ungesteuerten**, **zustandsgesteuerten** und **flankengesteuerten** Flipflops. Warum werden in den meisten Fällen taktzustandsgesteurte Mehrspeicher-Flipflops oder flankengesteuerte Flipflops eingesetzt?

- Ungesteurtes Flipflop: Eingangssignale wirken sich zu jedem Zeitpunkt auf den Zustand des FF aus. (1 Punkt)
- Zustandsgesteuertes Flipflop: Eingangssignale wirken sich nur im aktiven Zustand des zusätzlichen Taktsignals auf den Zustand des FF aus. Das Ausgangssignal kann sich während der gesamten aktiven Taktphase ändern.

 (1 Punkt)
- Flankengesteuerten Flipflops: Das Ausgangssignal ändert sich nur während der aktiven Taktflanke (0 → 1 = positive Flanke, 1 → 0 = negative Flanke). Spätere oder frühere Änderungen der Eingangssignale beeinflussen den Ausgang nicht.

Hintereinandergeschaltete zustandsgesteurte Flipflops schalten bei T=1 durch alle FF durch. Eine Änderung am Eingang darf sich innerhalb einer aktiven Taktphase nicht auf die nachfolgende Schaltung auswirken \rightarrow Flankengestuertes FF o. Mehrspeicher FF (2 Punkt)