

!

### general notice

Computing pairings fast is quite technical.

Better suited for papers than slides



### core idea

For  $P \in E(\mathbb{F}_p)$  and  $Q \in E^t(\mathbb{F}_p)$ , don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!



# general approach

Instead I describe the general approach, and leave all details out







## general notice

Computing pairings fast is quite technical.

Better suited for papers than slides



### core idea

For  $P \in E(\mathbb{F}_p)$  and  $Q \in E^t(\mathbb{F}_p)$ , don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!



# general approach

Instead I describe the general approach, and leave all details out

