Research Overview for Neutronics Group

Prof. Rachel Slaybaugh

What exactly do you do?

$$[\hat{\Omega} \cdot \nabla + \Sigma(\vec{r}, E)] \psi(\vec{r}, \hat{\Omega}, E) =$$

$$\int dE' \int d\hat{\Omega}' \, \Sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \cdot \hat{\Omega}) \psi(\vec{r}, \hat{\Omega}', E')$$

$$+ \frac{\chi(E)}{k} \int dE' \, \nu \Sigma_f(\vec{r}, E') \int d\hat{\Omega}' \, \psi(\vec{r}, \hat{\Omega}', E')$$

How do you do it?

- Deterministic methods require discretization of phase space
 - discretize more finely to improve solution quality
 - use advanced solvers to converge solution more quickly
- Monte Carlo (MC) treats phase space continuously
 - accuracy depends on number of particles simulated
 - often requires variance reduction (VR)
- Hybrid methods: create MC VR parameters using deterministic solutions

Algorithms + Architecture

Current Projects: WARP

- "Weaving All the Random Particles" (Bergmann)
- GPU-Based Monte Carlo
- Kelly has implemented and is completing testing of Woodcock Delta-tracking

Next up: adaptation for MICs (Multi Integrated Cores, e.g. Intel

XeonPhi)

Current Projects: Angle-Informed Hybrid Methods

Use adjoint relationship to create VR parameters for MC

$$\iint q^{+}(r,E)\phi(r,E)drdE = \iint q(r,E)\phi^{+}(r,E)drdE$$

$$q^+(r,E) = f(r,E)$$

$$R = \iint_{E V_f} f(r, E)\phi(r, E)drdE \longrightarrow R = \iint_{E V_S} q(r, E)\phi^+(r, E)drdE$$

Create an importance map augmented by angular information

$$\phi^{\dagger}(\mathbf{r},E) = \frac{\int \psi(\hat{\Omega},\mathbf{r},E)\psi^{\dagger}(\hat{\Omega},\mathbf{r},E)d\hat{\Omega}}{\int \psi(\hat{\Omega},\mathbf{r},E)d\hat{\Omega}}$$

Current Projects: Energy Tuning Assembly

- Develop a tailored spectrum irradiator for forensics applications at NIF
- Constraints
 - Thermonuclear weapon-like spectra
 - Geometry: ~7.5% solid angle
 - ~10¹² fissions
 - Minimize fertile/fissile material

[8] Gene Henry and Bill Dunlop

[9] J.E. Gindler et al.

Upcoming Projects: non-classical transport

- Classical Transport inherently assumes that the distances between collisions are exponentially distributed: $p(s)=\Sigma_t e^{\Sigma t}$
- Non-Classical Transport drops this assumption, generalizing the linear Boltzmann equation

$$\frac{\partial \psi}{\partial s}(\mathbf{x}, \Omega, s) + \Omega \cdot \nabla \psi(\mathbf{x}, \Omega, s) + \Sigma_{t}(\Omega, s)\psi(\mathbf{x}, \Omega, s)
= c\delta(s) \int_{0}^{\infty} P(\Omega' \cdot \Omega)\Sigma_{t}(\Omega', s')\psi(\mathbf{x}, \Omega', s') ds' d\Omega' + \delta(s) \frac{Q(\mathbf{x})}{4\pi}$$

Full PWR-900 Details

2 x 2 spatial cells/pin

17 x 17 pins/assembly

289 assemblies (132 reflector, 159 fuel of varying enrichment)

 P_0 : 1 moment

 S_{12} : 168 angle sets (MGE: S_2)

233,858,800 cells; 1 unknown/cell

44 groups: 1.73 trillion unknowns

12,544 blocks; 137,984 cores (11 sets)

RQI Can Beat PI

RQI needed less time and fewer iterations

Solver	Precond	Krylov	Eigen	Time (m)
PI	none	5.602	149	612.2
PI	w1r2v2	946	86	720 [*]
PI	w1r3v3	111	11	480*,+
RQI	w1r2v2	70	5	54.8
RQI	w1r3v3	76	6	330.4+

^{*}Exceeded wall time limit

⁺S₁₂ in MGE; different tolerances and decomposition

RQI+MGE Strong Scaling

