D M I

AP2: Deuxième Année Cycle Préparatoire

Analyse 3: Espace Métrique

ENSA d'Al-Hoceima Année 2020/2021 S 3

Correction de Série $n^{\circ}1$

– Espace mètrique –

Exercice 3

Soit $d_1, d_2, ..., d_n : E \times E \to [0, \infty[$ des semi-distances sur E.

- 1°) Montrer que $d = \sum_{i=1}^{n} d_i$ et $d' = \max_{1 \le i \le n} d_i$ sont des semi-distances.
- 2°) Soit $d: E \times E \to [0, \infty[$ une semi-distance sur E et $\alpha: E' \to E$ quelconque. Montrer que d' définie par $d'(x', y') = d(\alpha(x'), \alpha(y'))$ est une semi-distance sur E'.

correction 3

- 1°) Pour montrer que d est une semi-distance il faut vérifier que
- i) Si x = y alors d(x, y) = 0.
- ii) $d(x,y) = d(y,x), \forall x, y \in E$.
- iii) $d(x,z) \le d(x,y) + d(y,z), \forall x, y, z \in E$.

Montrons que $d = \sum_{i=1}^{n} d_i$ et $d' = \max_{1 \le i \le n} d_i$ sont des semi-distances.

Pour $d = \sum_{i=1}^{n} d_i$ comme d_i une semi-distance sur E pour $1 \le i \le n$ Alors

- i) Si x = y alors $d_i(x, y) = 0$ donc $d(x, y) = \sum_{i=1}^n d_i(x, y) = 0$ pour $1 \le i \le n$ Donc Si x = y alors d(x, y) = 0.
- ii) Pour $1 \leq i \leq n$ on a $d_i(x,y) = d_i(y,x), \forall x,y \in E$ donc $\sum_{i=1}^n d_i(x,y) = \sum_{i=1}^n d_i(y,x), \forall x,y \in E$ Alors $d(x,y) = d(y,x), \forall x,y \in E$.
- iii) On écrit

$$d(x,z) = \sum_{i=1}^{n} d_i(x,z) \le \sum_{i=1}^{n} (d_i(x,y) + d_i(y,z)) \le \sum_{i=1}^{n} d_i(x,y) + \sum_{i=1}^{n} d_i(y,z) = d(x,y) + d(y,z)$$

Alors $d(x, z) \le d(x, y) + d(y, z), \forall x, y, z \in E$.

Pour $d' = \max_{1 \le i \le n} d_i, \forall 1 \le i \le n$

- i) Evident
- ii) Evident
- iii) comme $d' = \max_{1 \leq i \leq n} d_i$ est une semi -distance sur E, alors $\exists 1 \leq j \leq n$ telque $d'(x,y) = \max_{1 \leq i \leq n} d_i(x,y) = d_j(x,y)$ on a d_j est une semi -distance sur E alors $\forall x,y,z \in E; d_j(x,z) \leq d_j(x,y) + d_j(y,z)$ d'ou $d'(x,z) = \max_{1 \leq i \leq n} d_i(x,z) = d_j(x,z) \leq d_j(x,y) + d_j(y,z) = \max_{1 \leq i \leq n} d_i(x,y) + \max_{1 \leq i \leq n} d_i(y,z)$ alors $d'(x,z) \leq d'(x,y) + d'(y,z)$
 - 2°) On a
 - i) Si x' = y' alors $\alpha(x') = \alpha(y')$ d'où $d(\alpha(x'), \alpha(y')) = d'(x', y') = 0$
- ii) $d'(x', y') = d(\alpha(x'), \alpha(y')) = d(\alpha(y'), \alpha(x')) = d'(y', x')$ car d est une semi-distance.
- iii) On écrit

$$d'(x',z') = d(\alpha(x'),\alpha(z')) \le d(\alpha(x'),\alpha(y')) + d(\alpha(y'),\alpha(z')) = d'(x',y') + d'(y',z')$$

Exercice 4

Soit $X =]0, +\infty[$ pour $x, y \in X,$ on note

$$d(x,y) = \mid \frac{1}{x} - \frac{1}{y} \mid$$

- 1°) Montrer que d est une distance sur X.
- 2°) L'espace métrique (X, d) est-il complet?

correction 4

1°) Soit
$$X =]0, +\infty[$$
 pour $x, y \in X,$ $d(x, y) = |\frac{1}{x} - \frac{1}{y}|$

On montre que d est une distance sur X.

pour tout $x, y, z \in X$, on a

i)

$$\begin{split} d(x,y) &= 0 &\Leftrightarrow & |\frac{1}{x} - \frac{1}{y}| = 0 \\ &\Leftrightarrow & \frac{1}{x} - \frac{1}{y} = 0 \\ &\Leftrightarrow & x = y. \end{split}$$

ii)
$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{y} - \frac{1}{x} \right| = d(y,x)$$

iii)
$$d(x,z) = |\frac{1}{x} - \frac{1}{z}| = |(\frac{1}{x} - \frac{1}{y}) + (\frac{1}{y} - \frac{1}{z})| \le |\frac{1}{x} - \frac{1}{y}| + |\frac{1}{y} - \frac{1}{z}| = d(x,y) + d(y,z)$$

donc d est une distance sur X.

 2°) L'espace (X, d) est donc un espace métrique, il n'est pas complet, car: Dans (X, d), prenons la suite $(U_n)_{n\geq 1}$ par $U_n = n$ est de Cauchy car $d(U_n, U_m) = |\frac{1}{n} - \frac{1}{m}|$ tend vers 0 lors que n et m tendent vers ∞ , il est clair que cette suite ne converge pas dans (X, d) (elle n'est pas bornée), donc elle ne converge pas dans $(]0, +\infty[, d)$. Ainssi l'espace métrique $(]0, +\infty[, d)$ n'est pas complet.

Exercice 5

Montrer que:

1°) On a
$$\overline{A} \subset B \Rightarrow A^{\circ} \subset B^{\circ}$$
 et $\overline{A} \subset \overline{B}$

$$2^{\circ}$$
) $x \in A^{\circ} \Leftrightarrow \exists \varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$

$$3^{\circ}$$
) $x \in \overline{A}$, $\Leftrightarrow \forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \mathcal{O}$

- 4°) A ouvert $\Leftrightarrow A = A^{\circ}$
- 5°) A fermé $\Leftrightarrow A = \overline{A}$
- 6°) A ouvert \Leftrightarrow A est une union de boules ouvertes.

correction 5

- 1°) On montre que $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$ et $\overline{A} \subset \overline{B}$
- i) Si $A \subset B$ tous les ouverts contenus dans A sont contenus dans B. En particulier A° est un ouvert contenu dans B donc $A^{\circ} \subset B^{\circ}$.
- ii) On supose que $A \subset B$ et $x \in \overline{A}$, Donc il existe une suite d'élément de A (donc de B) qui converge vers x, Donc $x \in \overline{B}$ alors en deduire que $\overline{A} \subset \overline{B}$.

 2°) $x \in A^{\circ} \Leftrightarrow \exists \varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$

 \Rightarrow Si $x \in A^{\circ}$ comme A° est ouvert, par définition d'un ouvert il exixte $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset A^{\circ}$.

 \Leftarrow S'il existe $\varepsilon > 0$ tel que $B(x,\varepsilon) \subset A$ comme $B(x,\varepsilon)$ est ouvert, on a $B(x,\varepsilon) \subset \{ \cup \vartheta : \vartheta \text{ ouvert et } \vartheta \subset A \} = A^{\circ}$.

$$3^{\circ}$$
) $x \in \overline{A}$, $\Leftrightarrow \forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \mathcal{O}$

 \Rightarrow Soit $x \in \overline{A}$ et $\varepsilon > 0$. Montrons que $B(x,\varepsilon) \cap A \neq \emptyset$. Par l'absurde si $B(x,\varepsilon) \cap A = \emptyset$ alors $B(x,\varepsilon) \subset \mathbb{C}_E A$. Comme $B(x,\varepsilon)$ est ouvert $\Rightarrow B(x,\varepsilon)$ est dans l'intérieur de $\mathbb{C}_E A$ qui est égal à $\mathbb{C}_E \overline{A}$.

Par suite $x \in \mathcal{C}_E \overline{A}$ ce qui contredit l'hypothése que $x \in \overline{A}$. On a ainsi prouvé que $B(x,\varepsilon) \cap A \neq \emptyset$

 \Leftarrow Supposons que $\forall \varepsilon > 0, B(x, \varepsilon) \cap A \neq \emptyset$ et montrons alors que $x \in \overline{A}$. Par l'absurde suppoons que $x \notin \overline{A}$. Alors $x \in \mathcal{C}_E \overline{A}$ et puisque $\mathcal{C}_E \overline{A}$ est ouvert $\exists \varepsilon_0 > 0$ tel que $B(x, \varepsilon_0) \subset \mathcal{C}_E \overline{A}$.

On a donc $B(x, \varepsilon_0) \cap \overline{A} = \emptyset$. Mais $A \subset \overline{A}$ donc $B(x, \varepsilon_0) \cap A = \emptyset$. Cette contradiction montre alors que notre hypothése était fausse et donc que $x \in \overline{A}$.

$$4^{\circ}$$
 et 5°) A ouvert $\Leftrightarrow A=A^{\circ}$ et A fermé $\Leftrightarrow A=\overline{A}$

- Par définition on a $A^{\circ} \subset A \subset \overline{A}$
- Si $A \subset A^{\circ}$ alors A est contenu dans le plus grand ouvert qui'il contient, il est donc égal à cet ouvert donc est ouvert.
- Si A est ouvert, il est bien le plus grand ouvert qu'il contient.

Alors $A \subset A^{\circ}$

Donc A ouvert $\Leftrightarrow A = A^{\circ}$

- Si A est fermé, il est le plus petit fermé qui le contient $(\overline{A} \subset A)$.
- Réciproquement, s'il est le plus petit fermé que le contient il est fermé.

Donc $A = \overline{A} \Leftrightarrow A$ est fermé

 6° A ouvert \Leftrightarrow A est une union de boules ouvertes.

 $A \text{ ouvert} \Leftrightarrow A = A^{\circ}$

il suffit de montrer que $A^{\circ} = \bigcup \theta_i$ tel que $\theta_i \subset A$.

$$x \in A^{\circ} \quad \Leftrightarrow \quad A \in \vartheta(x)$$

$$\Leftrightarrow \quad \exists i \in I \quad \text{tel que } x \in \theta_i \subset A$$

$$\Leftrightarrow \quad x \in \cup_{i \in I} \theta_i.$$

Alors A ouvert \Leftrightarrow A est une union de boules ouvertes.