

Equipo de trabajo y Logística

Objetivos de aprendizaje

Equipo de trabajo y Logística

Objetivos de aprendizaje

Equipo UNAL

Profesor:

 Fabio Augusto González Osorio, PhD https://dis.unal.edu.co/~fgonza/

Asistente docentes:

Juan Sebastián Malagón, MSc (c).

Asistente logística y gestión:

Jaime Esteban Garcia

Logística

Actividades académicas

Clase sincrónica

- Lunes 18:00 19:30 (1h 30 min) Cuando sea festivo, se realizará el miércoles
- Google Meet
- Fundamentos conceptuales plenaria
- Sala de chat en vivo

Trabajo autónomo:

- 7 horas/semana aproximadamente
- Estudio de recursos educativos
- Talleres guiados (Notebooks)
- Tareas
- Participación/Colaboración en foro

Tutorías sincrónicas:

- **Viernes en la tarde/noche** (1h 30 min
- Asistente docente
- Grupos pequeños
- Énfasis práctico

Logística

Aula virtual

https://uecp.edunext.io/

Jupyter Notebooks - Google Colaboratory

Programación interactiva en Python desde navegador web (Requiere cuenta de correo **Gmail**)

Comunicación con compañeros y docente

(tiempo de respuesta: hasta 1 día hábil)

Chat en vivo durante clases sincrónicas

https://campuswire.com/

Entorno de evaluación automática

Talleres

Logística

Equipo de trabajo y Logística

Objetivos de aprendizaje

Objetivos de aprendizaje

Unidad 1 - Introducción al Deep Learning

Al finalizar la unidad usted deberá ser capaz de:

Describir de manera precisa los conceptos, herramientas generales y campos de aplicación relacionados con el desarrollo de modelos de Deep Learning.

Entender los componentes específicos necesarios para la implementación práctica de modelos de Deep Learning.

Utilizar herramientas básicas de *Tensorflow* y *Keras* en Python para el diseño, implementación y evaluación de modelos básicos de aprendizaje de máquina.

Facultad de

INGENIERÍA

Profesor

Fabio Augusto González Osorio, PhD

Asistente docente

Santiago Toledo Cortes, PhD (C)

Coordinador de virtualización

Edder Hernández Forero, Ing

Diagramador PPT

Mario Andres Rodriguez Triana

Diseño gráfico

Clara Valeria Suárez Caballero Milton R. Pachón Pinzón

