MA

TD Régime transitoire et sinusoïdale

Ex 1 (Régime transitoire)

- 1. Déterminer l'équation différentielle vérifiée par i en fonction de : $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q_0 = RC\omega_0$.
- 2. On pose $\lambda = \frac{1}{2Q_0}$.

Déterminer i(t) sachant que i(t = 0) = $i_0 \neq 0$ et u(t = 0) = 0.

On distinguera trois cas:

a. $\lambda = 1$

 $b, \lambda > 1$

c. $\lambda < 1$

Ex 2 (Régime transitoire)

Déterminer l'intensité du courant i(t) dans le condensateur, ainsi que la tension u(t) à ses bornes sachant que l'on ferme l'interrupteur à la date t=0 et que le condensateur n'est pas chargé initialement.

Représenter graphiquement i(t) et u(t).

Ex 3 (Régime sinusoïdale)

A.

- 1. Exprimer \underline{U} en fonction de \underline{I} , \underline{Z} , L, C et ω , pulsation du régime sinusoïdal imposé à ce circuit.
- 2. A quelle condition sur L,C et ω , $\underline{U}/\underline{I}$ et le déphasage entre u et i ne dépendent-ils pas de \underline{Z} ?

B.

On alimente le dipôle AB avec une tension sinusoïdale de pulsation ω . Déterminer l'impédance complexe de AB. Tracer $|\underline{Z}| = Z(\omega)$, puis montrer que cette courbe présente deux singularités pour les pulsations $\omega 1$ et $\omega 2$ ($\omega 1 < \omega 2$).

Ex 4 (Régime sinusoïdale)

On considère le circuit suivant aliment e entre A et B par une source de tension alternative sinusoïdale de f.e.m. : e(t) = E $\sqrt{2}$ cos ωt . Déterminer les caractéristiques du générateur de tension (modèle de Thévenin) équivalent entre F et D sachant que ω est telle que :

$$LC\omega^2 = 1$$
 et $RC\omega = 1$