STOR 614 - Linear Programming, Spring 2019 Homework No. 4

Zhenghan Fang

May 22, 2019

Problem 1.

(a)

Phase I.

Add artificial variables y_1, y_2 .

Transform LP to canonical form.

$$\max t = 3x_1 + 2x_2 + 3x_3 - 6$$

$$s.t 2x_1 + x_2 + x_3 + y_1 = 4$$

$$x_1 + x_2 + 2x_3 + y_2 = 2$$

$$x_1, x_2, x_3, y_1, y_2 \ge 0$$

The initial tableau is as follows

t	x_1	x_2	x_3	y_1	y_2	rhs	Basic var
1	-3	-2	-3	0	0	-6	t = -6
0	2	1	1	1	0	4	$y_1 = 4$
0	1	1	2	0	1	2	$y_2 = 2$

First iteration: x_1 enters and y_1 leaves.

							Basic var
1	0	-1/2	-3/2	3/2	0	0	$t = 0$ $x_1 = 2$ $y_2 = 0$
0	1	1/2	1/2	1/2	0	2	$x_1 = 2$
0	0	1/2	3/2	-1/2	1	0	$y_2 = 0$

Second iteration: x_2 enters and y_2 leaves.

t	x_1	x_2	x_3	y_1	y_2	rhs	Basic var
							t = 0
0	1	0	-1	1	-1	2	$x_1 = 2$
0	0	1	3	-1	2	0	$x_2 = 0$

The optimal t = 0. Case 2.1. Obtain a simplex tableau for the original LP.

	z	x_1	x_2	x_3	rhs	Basic var
	1	0	0	2	2	z=2
(0	1	0	-1	2	$x_1 = 2$
(0	0	1	3	0	$x_2 = 0$

First iteration: x_3 enters and x_2 leaves.

\overline{z}	x_1	x_2	x_3	rhs	Basic var
1	0	-2/3	0	2	z=2
0	1	1/3	0	2	$x_1 = 2$
0	0	1/3	1	0	$x_3 = 0$

The original LP has an optimal solution $(x_1, x_2, x_3) = (2, 0, 0)$ and the optimal value is z = 2.

(b)

Convert to standard form.

Add artificial vriables y_1, y_2 . The phase I LP is as follows.

Convert phase I LP to canonical form.

The initial tableau of phase I LP is as follows

								Basic var
1	-2	-4	0	1	0	0	-30	t = -30
0	1/2	1/4	1	0	0	0	4	$s_1 = 4$
0	1	3	0	-1	1	0	20	$y_1 = 20$
0	1	1	0	0	0	1	10	$y_2 = 10$

First iteration: x_1 enters, s_1 leaves.

t	x_1	x_2	s_1	s_2	y_1	y_2	rhs	Basic var
1	0	-3	4	1	0	0	-14	t = -14
0	1	1/2	2	0	0	0	8	$x_1 = 8$
0	0	5/2	-2	-1	1	0	12	$y_1 = 12$
0	0	1/2	-2	0	0	1	2	$x_1 = 8$ $y_1 = 12$ $y_2 = 2$

Second iteration: x_2 enters, y_2 leaves.

t	x_1	x_2	s_1	s_2	y_1	y_2	rhs	Basic var
1	0	0	-8	1	0	6	-2	$t = -2$ $x_1 = 6$
0	1	0	4	0	0	-1	6	$x_1 = 6$
0	0	0	8	-1	1	-5	2	$y_1 = 2$
0	0	1	-4	0	0	2	4	$x_2 = 4$

Third iteration: s_1 enters, y_1 leaves.

								Basic var
1	0	0	0	0	1	1	0	t = 0
0	1	0	0	1/2	-1/2	3/2	5	$x_1 = 5$
0	0	0	1	-1/8	1/8	-5/8	1/4	$s_1 = 1/4$
0	0	1	0	-1/2	1/2	-1/2	5	$x_1 = 5$ $s_1 = 1/4$ $x_2 = 5$

The optimal t = 0. Case 2.1. Obtain a simplex tableau for the original LP.

z	x_1	x_2	s_1	s_2	rhs	Basic var
1	0	0	0	-1/2	25	z=25
0	1	0	0	1/2	5	$x_1 = 5$
0	0	0	1	-1/8	1/4	$\begin{vmatrix} x_1 = 5 \\ s_1 = 1/4 \end{vmatrix}$
0	0	1	0	-1/2	5	$x_2 = 5$

The current BFS is optimal. The optimal solution of the original LP is $(x_1, x_2) = (5, 5)$ and the optimal value is z = 25.

Problem 2.

(a)

This problem is feasible if and only if there exists k such that $b/a_k \ge 0$.

Proof. If there exists k such that $b/a_k \ge 0$, then $\{x_i = 0 \ (i \ne k), \ x_k = b/a_k\}$ is a feasible solution.

If there doesn't exist k such that $b/a_k \ge 0$, then for all $a_i \ne 0$, $b/a_i < 0$. Suppose b > 0, then all $a_i \le 0$. Then $\sum_{i=1}^n a_i x_i \le 0$, thus this problem is not feasible. If b < 0, then $\sum_{i=1}^n a_i x_i \ge 0$, and this problem is not feasible.

(b)

Let $K = \{i \mid b/a_i \ge 0\}$. The set of BFS's is $\{x_i = 0 \ (i \ne k), x_k = b/a_k \mid k \in K\}$. Thus the set of objective function values at BFS's is $\{c_k b/a_k \mid k \in K\}$.

Find

$$p = \min_{i \in K} c_i b / a_i$$

The optimal solution is $x_i = 0$ $(i \neq p), x_p = b/a_p$ and the optimal value is $c_p b/a_p$.

Problem 3.

Let z be the BFS at a certain step. In each step, replace a basis of z that is not a basis of y by a basis of y that is not a basis of z. In this way, the number of shared bases of y and z increases by 1 in each iteration. Thus we can go from x to y in a finite number of steps.

Problem 4.

Proposition 1. When formulating the phase I LP, if a non-artificial variable x satisfies:

x has coefficient 1 in an equation and zero coefficients in all the other equations. (condition 1)

then we do not need to add an artificial variable in the equation where x has coefficient 1.

When an artificial variable y becomes nonbasic, a non-artificial variable becomes basic and satisfies condition 1. By proposition 1, we can formulate a new phase I LP without y. The new phase I LP is equivalent to the LP obtained by eliminating the column of y from the old phase I LP.

Problem 5.

Use Matlab to solve the problems.

- (a) The problem is unbounded.
- (b) The optimal solution is (0, 5, 0, 1, 0, 4) and the optimal value is -74. Matlab code for revised simplex method:

```
1 %% LP (a)
2 A=[ 0 1 2 1 1 0 -5;
```

```
0 2 1 0 -2 1 0;
     1 1 -2 0 1 0 3];
5 C = -[2;3;-4;3;1;-4;6];
6 b = [2;1;3];
7 B = [4 6 1];
9 %% LP (b)
10 A = [1 0 0 -1 1 1;
1 1 0 -1 3 0;
  1 1 1 -3 0 1];
13 C = -[14; -19; 0; 21; 52; 0];
14 b = [3;4;6];
15 B = [1 2 6];
17 %% revised simplex method
18 k=0;
19 while(1)
      N = setdiff(1:length(c), B);
     k=k+1;
21
      k
22
      AB = A(:, B);
23
      AB_{inv} = inv(AB);
^{24}
25
      reduced_cost = -c.' + c(B).'*AB_inv*A
26
      coef_x = AB_{inv*A}
      rhs_z=c(B).'*AB_inv*b
      rhs_x=AB_inv*b
29
30
      t = find(reduced_cost(N) < 0);
31
      if length(t) == 0
32
          fprintf('found optimal value\n')
          break
34
      end
35
      pivot_column = N(t(1));
36
      u = AB_inv*A(:,pivot_column);
      t = find(u>0);
```

```
if length(t) == 0
fprintf('unbounded\n')

break

end

[¬,min_i] = min(rhs_x(t) ./ u(t));

pivot_row = t(min_i);

B(pivot_row) = pivot_column;

end

z=c(B).'*AB_inv*b;
```