studio del segno della funzione

scopo: lo studio del segno individua le regioni di piano in cui la funzione è positiva (+), cioè si trova nel semipiano delle ordinate positive (al di sopra dell'asse delle x), o negativa (-), cioè si trova nel semipiano delle ordinate negative (al di sotto dell'asse delle x). Lo studio del segno va svolto solo all'interno del dominio della funzione

come si cerca:

- si pone la funzione maggiore di zero
- si risolve la disequazione f(x) > 0
- si cancellano le regioni di piano dove la funzione
 NON esiste

es	empio
Studiamo il segno della seguente funzione	$f(x) = \frac{4-x}{4-x^2}$
si studia innanzitutto il dominio	$4 - x^2 \neq 0 \rightarrow \forall x \in \mathbb{R} - \{ \pm 2 \}$
si pone la funzione maggiore di zero	$f(x) = \frac{4 - x}{4 - x^2} > 0$
si risolve la disequazione $f(x) > 0$	$\frac{4-x}{4-x^{2}} > 0 \rightarrow \ \begin{array}{c} 4-x > 0 \\ 4-x^{2} > 0 \end{array} \rightarrow \ \begin{array}{c} x < 4 \\ -2 < x < 2 \end{array}$
si cancellano le regioni di piano dove la funzione non esiste: • nell'intervallo dove la funzione è negativa si cancella la parte di piano al di sopra dell'asse <i>x</i> • nell'intervallo dove la funzione è positiva si cancella la parte di piano al di sotto dell'asse <i>x</i>	

studio delle intersezioni della funzione con gli assi cartesiani

scopo: lo studio delle intersezioni della funzione con gli assi cartesiani individua i punti di contatto della funzione con l'asse x e con l'asse y. I primi sono anche detti "zeri della funzione" perché ordinata uguazle a zero

$$\begin{cases} y = f(x) \\ y = 0 \end{cases} \rightarrow f(x) = \mathbf{0}$$

intersezioni con l'asse x o zeri della funzione *come si cercano:*

- si pone la funzione uguale a zero, si risolve l'equazione
- le soluzioni dell'equazione sono gli zeri della funzione

intersezione con l'asse *y* (solo se il dominio lo consente) *come si cerca:*

- si sostituisce 0 alla *x* nella funzione
- si svolgono i calcoli e si ottiene l'ordinata del punto di intersezione con l'asse delle y

 \nearrow Osserva che l'intersezione con l'asse $\, y \,$ se esiste è unica

esempio		
Studiamo le intersezioni con gli assi cartesiani della seguente funzione	$f(x) = \frac{4-x}{4-x^2}$	si studia prima il dominio: $4 - x^2 \neq 0 \rightarrow \forall x \in \mathbb{R} - \{\pm 2\}$
cerchiamo le intersezioni con l'asse x ponendo la funzione uguale a zero	$f(x) = \frac{4 - x}{4 - x^2} = 0$	
risolviamo l'equazione; la soluzione è l'ascissa del punto di intersezione cercato	$\frac{4-x}{4-x^2} = 0 \rightarrow 4 - \frac{1}{2}$	$-x=0 \rightarrow x=4$
cerchiamo le intersezioni della funzione con l'asse y sostituendo 0 alla x nella funzione; si sviluppano i calcoli e si ottiene l'ordinata del punto cercato	$f(0) = \frac{4-0}{4-0} \to $	y = 1

Gli eventuali punti di intersezione della funzione con l'asse x si possono anche dedurre osservando il grafico dello studio del segno (vedi disegno a destra).

Due zone successive di segno opposto (A e B) sono separate da un punto (-1) di intersezione della funzione con l'asse \boldsymbol{x} (a condizione che il punto appartenga al dominio); le zone (B e C) sono separate dal punto (1) che non è un punto di intersezione con l'asse \boldsymbol{x} perché non appartiene al dominio.

Due zone successive dello stesso segno (CeD) individuano invece un punto (2) di contatto della funzione con l'asse delle x (sempre che il punto appartenga al dominio)

studio delle simmetrie di una funzione

scopo: la presenza di eventuali simmetrie semplifica la ricerca del grafico della funzione. Ciò consente di studiare analiticamente la funzione solo nel semipiano positivo delle ascisse e successivamente di ribaltarne il grafico ottenuto nel semipiano negativo, rispetto all'asse *y* se la funzione è pari, oppure rispetto all'origine se la funzione è dispari

simmetria rispetto all'asse y o simmetria pari

una funzione simmetrica rispetto all'asse delle *y* si dice **pari** *come si cerca:*

- si sostituisce (x) con (-x) nel testo della funzione
- si sviluppano i calcoli
- se f(-x) = f(x) la funzione è pari

simmetria rispetto all'origine o simmetria dispari

una funzione simmetrica rispetto **all'origine** degli assi cartesiani si dice **dispari**

come si cerca:

- dopo avere verificato che la funzione NON è pari
- si moltiplica -1 con f(-x) ottenendo -f(-x)
- si sviluppano i calcoli
- se -f(-x) = f(x) la funzione è dispari

	esempi		
1.	Studiamo la simmetria della seguente funzione	$f(x) = \frac{4-x}{4-x^2}$	si cerca prima il dominio: $4 - x^2 \neq 0 \rightarrow \forall x \in \mathbb{R} - \{\pm 2\}$
ver	rifichiamo se la funzione è pari : sostituiamo $(-x)$ n x nel testo della funzione e sviluppiamo i calcoli	$f(-x) = \frac{4 - (-x)}{4 - (-x)^2}$	$\frac{1}{2} = \frac{4+x}{4-x^2}$

confrontiamo il testo ottenuto della $f(-x)$ con quello iniziale della $f(x)$ e notiamo che sono diversi	$f(-x) \neq f(x) \rightarrow \text{la funzione } \mathbf{non} \text{ è pari}$
verifichiamo se la funzione è dis pari : moltiplichiamo" -1 " con $f(-x)$ cioè $-f(-x)$	$-f(-x) = -1 \cdot \frac{4+x}{4-x^2} = \frac{-4-x}{4-x^2}$
confrontiamo $-f(-x)$ con $f(x)$ e notiamo che sono diversi	$-f(-x) \neq f(x) \rightarrow \text{la funzione } \mathbf{non} \text{ è nemmeno dispari}$

2.	Studiamo la simmetria della seguente funzione	$f(x) = \frac{x}{4 - x^2}$	si cerca prima il dominio: $4 - x^2 \neq 0 \rightarrow \forall x \in \mathbb{R} - \{\pm 2\}$	
1	ifichiamo se la funzione è pari : sostituiamo $(-x)$ x nel testo della funzione e sviluppiamo i calcoli	$f(-x) = \frac{(-x)}{4 - (-x)^2} =$	$=\frac{-x}{4-x^2}$	
confrontiamo il testo ottenuto della $f(-x)$ con quello iniziale della $f(x)$ e notiamo che sono diversi		$f(-x) \neq f(x) \rightarrow \text{la funzione } \mathbf{non} \text{ è pari}$		
verifichiamo se la funzione è dis pari : moltiplichiamo" -1 " con $f(-x)$ cioè $-f(-x)$		$-f(-x) = -\frac{-x}{4-x^2} =$	$=\frac{x}{4-x^2}$	
con	ifrontiamo $-f(-x)$ con $f(x)$ e notiamo che sono nali	$-f(-x) = f(x) \to 1$	a funzione è dispari	

lo studio delle eventuali simmetrie di una funzione si effettua in genere dopo aver calcolato il dominio e studiato il segno della funzione. Ciò è un vantaggio perché se il grafico del dominio e del del segno sono entrambi simmetrici allora (e solo allora) la funzione potrebbe essere simmetrica e si passa a studiarne algebricamente le simmetrie. Viceversa se il grafico del dominio o il grafico del segno NON sono entrambi simmetrici la funzione NON potrà essere simmetrica.

definizione:

una funzione che ripete a intervalli regolari la sua forma si dice periodica e la dimensione dell'intervallo ripetuto si dice periodo e si indica con T

come si cerca il periodo **T** di una funzione:

- si pone f(x + T) = f(x) ottenendo una equazione
- si risolve l'equazione nell'incognita T
- il valore trovato di T è il periodo della funzione

	esempi		
1.	Calcoliamo il periodo della seguente funzione	$f(x) = \sin(5x)$	
poniamo $f(x + T) = f(x)$ ottenendo una equazione		$sin(5(x+T)) = sin(5x) \rightarrow sin(5x+5T) = sin(5x)$	
ri	solviamo l'equazione nell'incognita T	$5x + 5T = 5x + 2k\pi \rightarrow 5T = 2k\pi \rightarrow T = \frac{2}{5}k\pi$	
il periodo richiesto si trova ponendo $k=1$		$T = \frac{2}{5}k\pi \rightarrow per \ k = 1 \rightarrow T = \frac{2}{5}\pi$	
2	Calcoliamo il periodo della seguente funzione	$f(x) = \tan \left(\frac{x}{x}\right)$	

2.	Calcoliamo il periodo della seguente funzione	$f(x) = \tan\left(\frac{x}{5}\right)$
po	niamo $f(x + T) = f(x)$ ottenendo una equazione	$\tan\left(\frac{1}{5}(x+T)\right) = \tan\left(\frac{x}{5}\right) \to \tan\left(\frac{x}{5} + \frac{T}{5}\right) = \tan\left(\frac{x}{5}\right)$
ris	olviamo l'equazione nell'incognita T	$\frac{x}{5} + \frac{T}{5} = \frac{x}{5} + k\pi \to T = 5k\pi$
il p	periodo richiesto si trova ponendo $k=1$	$T = 5k\pi \rightarrow per \ k = 1 \rightarrow T = 5\pi$

osservazioni importanti

il calcolo del periodo di una funzione si effettua solo se la funzione è composta da funzioni periodiche Ricordiamo che le funzioni periodiche elementari sono: sin(x), cos(x), tan(x), cot(x). Le prime due hanno periodo uguale a 2π , le ultime due hanno periodo uguale a π , come si vede dai loro grafici qui sotto riportati. In questi casi si possono utilizzare le più semplici formule riportate di seguito per il calcolo della periodicità.

- la ricerca del periodo di una funzione si effettuata risolvendo un'equazione goniometrica. In molti casi lo svolgimento dell'equazione può risultare complesso per cui è utile ricordare alcune regole pratiche:

a) data una funzione
$$f(x)$$
 di periodo T : il periodo di $f(n \cdot x)$ è $\frac{T}{n}$ il periodo di $f(\frac{x}{n})$ è $n \cdot T$

$$sen(7x) \rightarrow T = \frac{2\pi}{7} \qquad cos(\frac{x}{5}) \rightarrow T = 10\pi \qquad tg(3x) \rightarrow T = \frac{\pi}{3} \qquad cotg(\frac{x}{4}) \rightarrow T = 4\pi$$

b) data una funzione composta dalla somma (o differenza) di funzioni periodiche il suo periodo è uguale al minimo comune multiplo dei periodi delle funzioni che la compongono

$$f(x) = \sin(7x) + \tan(3x) \to T = m.c.m. \left\{ \frac{2}{7}\pi; \frac{1}{3}\pi \right\} \to T = m.c.m. \left\{ \frac{6}{21}\pi; \frac{7}{21}\pi \right\} \to T = \frac{42}{21}\pi \to T = 2\pi$$

$$f(x) = \cot\left(\frac{x}{4}\right) - \sin(3x) \to T = m.c.m. \left\{ 4\pi; \frac{2}{3}\pi \right\} \to T = m.c.m. \left\{ \frac{12}{3}\pi; \frac{2}{3}\pi \right\} \to T = \frac{12}{3}\pi \to T = 4\pi$$

	quesiti tratti da tracce di esami di stato di liceo scientifico			
1.	"Sia $g(x) = \sin\left(\frac{3}{2}\pi x\right)$. Qual è il suo periodo?"	(Tratto dall'esame di Stato 2012 problema 1 prima domanda)		
poi	niamo $g(x + T) = g(x)$ ottenendo una equazione	$\sin\left(\frac{3}{2}\pi(x+T)\right) = \sin\left(\frac{3}{2}\pi x\right)$		
ris	olviamo l'equazione nell'incognita T	$\frac{3}{2}\pi x + \frac{3}{2}\pi T = \frac{3}{2}\pi x + 2k\pi \rightarrow \frac{3}{2}\pi T = 2k\pi \rightarrow T = \frac{4}{3}k$		
il p	periodo richiesto si trova ponendo $k=1$	$T = \frac{4}{3}$		
apı	plicando la regola pratica si ha	$sen\left(\frac{3}{2}\pi x\right) \rightarrow T = \frac{2\pi}{3\pi/2} \rightarrow T = \frac{4}{3}$		

2.	"Si determini il periodo della funzione $f(x) = \cos x$	(5x)" (Tratto dall'esame di Stato 2009 quesito 10)
poniamo $f(x + T) = f(x)$ ottenendo una equazione		$\cos(5(x+T)) = \cos(5x)$
ris	olviamo l'equazione nell'incognita T	$5x + 5T = 5x + 2k\pi \rightarrow 5T = 2k\pi \rightarrow T = \frac{2}{5}k\pi$
il p	eriodo richiesto si trova ponendo $k=1$	$T = \frac{2}{5}\pi$
арј	olicando la regola pratica si ha	$cos(5x) \rightarrow T = \frac{2\pi}{5}$