Лабораторна робота №3

Тема: Програмування розгалужених алгоритмів.

Мета: Навчитися знаходити алгоритмічні та програмні розв'язки до задач, які потребують застосування умовних операцій та операцій множинного вибору. Навчитися будувати блок-схеми розгалужених алгоритмів. Опанувати конструктивні особливості програмування умовних операторів та операторів множинного вибору на прикладі мов програмування високого рівня C++ та Python.

Завдання:

Перший) вибрати складність завдання;

Другий) з кожної частини (if та swith) вибрати завдання згідно варіанту та складності;

Третій) для кожного завдання побудувати блок-схему алгоритму;

Четвертий) по кожному завданню розробити програму мовою C++ або Python;

П'ятий) протестувати розроблені програми та скласти звіт до виконання лабораторної роботи.

Частина 1) Використання умовних операторів (if). Індивідуальні завдання базового рівня складності

№ вар.	Функція	№ вар.	Функція
1	$Y = \begin{cases} x^2 + 1 & \text{3a } x < 0; \\ x^2 - 1 & \text{3a } 0 \le x < 2; \\ x & \text{3a } x \ge 2 \end{cases}$	2	$Y = \begin{cases} 2x + 2 & \text{3a } x < -3; \\ 2x - 2 & \text{3a } -3 \le x \le 0; \\ x^2 & \text{3a } x > 0 \end{cases}$
3	$Y = \begin{cases} 6x + 8 & \text{3a } x \le -5; \\ x - 2 & \text{3a } -5 < x \le 3; \\ 2x^2 & \text{3a } x > 3 \end{cases}$		$Y = \begin{cases} 2x - 1 & \text{3a } x \le -4; \\ x^2 + 2 & \text{3a } -4 < x \le 5; \\ x + 3 & \text{3a } x > 5 \end{cases}$
5	$Y = \begin{cases} 6x^3 - 8 & \text{3a} x \le -8; \\ x^3 - 8 & \text{3a} -8 < x < 0; \\ 2x^2 & \text{3a} x \ge 0 \end{cases}$		$Y = \begin{cases} 2x^3 + 3x & \text{3a} & x \le -1; \\ x^2 - 4 & \text{3a} - 1 < x < 0; \\ x^3 & \text{3a} & x \ge 0 \end{cases}$

№ вар.	Функція	№ вар.	Функція
7	$Y = \begin{cases} 4x^2 + 2x & \text{3a} x \le -12; \\ 2x^2 + 2x & \text{3a} -12 < x < 3; \\ x + 1 & \text{3a} x \ge 3 \end{cases}$	8	$Y = \begin{cases} x^3 - 1 & 3a & x \le -4; \\ 2x - 1 & 3a & -4 < x \le 3; \\ 3x^3 & 3a & x > 3 \end{cases}$
9	$Y = \begin{cases} 4x+3 & \text{3a } x \le -2; \\ 2x^2 - 4 & \text{3a } -2 < x < 4; \\ x^2 - 2 & \text{3a } x \ge 4 \end{cases}$	10	$Y = \begin{cases} 2x + 4 & \text{3a } x \le -1; \\ x - 4 & \text{3a } -1 < x < 0; \\ x^3 + 4 & \text{3a } x \ge 0 \end{cases}$
11	$Y = \begin{cases} 4x^2 + 2x & 3a & x < -2; \\ 2x - 1 & 3a & -2 \le x < 3; \\ x^3 + 3 & 3a & x \ge 3 \end{cases}$	12	$Y = \begin{cases} 3x^2 + 2x & \text{3a} x < -3; \\ 2x + 1 & \text{3a} -3 \le x < 8; \\ 3x & \text{3a} x \ge 8 \end{cases}$
13	$Y = \begin{cases} 4x + 2x & \text{3a} & x \le -4; \\ x - 2x & \text{3a} & -4 < x < 2; \\ x + 2 & \text{3a} & x \ge 2 \end{cases}$	14	$Y = \begin{cases} 27x + 3 & \text{3a } x \le -6 \\ x^3 - 1 & \text{3a } -6 < x < 3 \\ x^2 + 1 & \text{3a } x \ge 3 \end{cases}$
15	$Y = \begin{cases} x^3 + 2x^2 & \text{3a} x \le -2; \\ x^2 - 1 & \text{3a} -2 < x < 3; \\ 2x + 2 & \text{3a} x \ge 3 \end{cases}$		$Y = \begin{cases} 4x^3 + 2x & \text{3a} x < -4; \\ 2x - 5 & \text{3a} -4 \le x < 4; \\ x - 3 & \text{3a} x \ge 4 \end{cases}$
17	$Y = \begin{cases} 6x^2 + 2x & \text{3a } x \le -6; \\ 2x - 6 & \text{3a } -6 < x < 4; \\ 6x + 1 & \text{3a } x \ge 4 \end{cases}$	18	$Y = \begin{cases} 27x^2 + 1 & \text{3a } x \le -3; \\ x - 2 & \text{3a } -3 < x < 5; \\ 3x + 1 & \text{3a } x \ge 5 \end{cases}$
19	$Y = \begin{cases} 8x^3 + 2 & \text{3a } x \le -1; \\ x^2 - 1 & \text{3a } -1 < x < 1; \\ x + 1 & \text{3a } x \ge 1 \end{cases}$	20	$Y = \begin{cases} 21 - x & \text{3a} & x \le -7; \\ x^2 + 3 & \text{3a} & -7 < x < 4; \\ x^2 - 3 & \text{3a} & x \ge 4 \end{cases}$
21	$Y = \begin{cases} 2x^2 + 3 & \text{3a} & x < -2; \\ x^3 - 6 & \text{3a} & -2 \le x < 0; \\ 2(x+1) & \text{3a} & x \ge 0 \end{cases}$	22	$Y = \begin{cases} 4x^3 + 4 & \text{3a } x \le -2; \\ 3x - 3 & \text{3a } -2 < x \le 3; \\ 2x_2 + 2 & \text{3a } x > 3 \end{cases}$
23	$Y = \begin{cases} x^3 + 2x & \text{3a } x \le -3; \\ 2x - 1 & \text{3a } -3 < x \le 8; \\ x^2 + 1 & \text{3a } x > 8 \end{cases}$	24	$Y = \begin{cases} 25x+1 & \text{3a} & x \le -2; \\ x^3 - 25 & \text{3a} & -2 < x < 4; \\ 24x+x^2 & \text{3a} & x \ge 4 \end{cases}$
25	$Y = \begin{cases} 26x + 4 & \text{3a } x \le -6; \\ 4x^2 + 2 & \text{3a } -6 < x < 6; \\ 2x - 3 & \text{3a } x \ge 6 \end{cases}$	26	$Y = \begin{cases} 9x^3 + 1 & \text{3a} x \le -9; \\ x^2 - 1 & \text{3a} -9 < x \le 1; \\ x + 2 & \text{3a} x > 1 \end{cases}$

№ вар.	Функція	№ вар.	Функція
27	$Y = \begin{cases} 4x^2 + 4 & \text{3a} x \le -4; \\ x^3 - 1 & \text{3a} -4 < x < 4; \\ x^2 + 1 & \text{3a} x \ge 4 \end{cases}$	28	$Y = \begin{cases} x^3 - 29 & \text{3a} x \le -3; \\ 2x + 3 & \text{3a} -3 < x \le 6; \\ x^2 + 1 & \text{3a} x > 6 \end{cases}$
29	$Y = \begin{cases} 3x+1 & \text{3a} x \le -3; \\ x^2 - 1 & \text{3a} -3 < x < 4; \\ x^3 + 1 & \text{3a} x \ge 4 \end{cases}$	30	$Y = \begin{cases} 2x^3 + 4x & \text{3a } x \le -1; \\ x + 4 & \text{3a } -1 < x < 3; \\ 2x + 2 & \text{3a } x \ge 3 \end{cases}$

Індивідуальні завдання середнього рівня складності

№ вар.	Функція	№ вар.	Функція
1	$y = \begin{cases} a^3 + \arcsin(\cos^3 bx) & \text{за} x \le a; \\ \sqrt{(a+bx)-2} + \sin x & \text{за} a < x < b; \\ \lg^2(a+bx+z) & \text{за} x \ge b, \end{cases}$ де $a = 2.5; \ b = 3.5; \ z = \sin(bx)$	2	$y = \begin{cases} a^{2b}x^2 + \sqrt{b^4 + 2.7} & \text{за } x < 0.7; \\ \arctan(3^x - px) & \text{за } x = 0.7; \\ \sqrt[3]{\ln a - px + 4.3} & \text{за } x > 0.7, \end{cases}$ де $a = 0.54; b = 0.34; p = ax + b$
3	$y = \begin{cases} (a+z)\cos^2(bx+x^3) & \text{за} & x < a; \\ a\ln(zx) + \sin^2(b^2) & \text{за} & a \le x \le b; \\ \sqrt[3]{0.3b + \sqrt{(a-z^2)}} & \text{за} & x > b, \end{cases}$ де $a = 0.1; b = 3.25; z = \cos^2(x)$	4	$y = \begin{cases} \cot(x^2 e^{3k}) + \ln rx & \text{за} x = rs; \\ \sqrt[5]{x^2} + \sqrt{ \sin k } & \text{за} x > rs; \\ \tan(kx + \tan k) & \text{за} x < rs; \end{cases}$ де $r = 2.4; s = 5; k = 0.5$
5	$y = \begin{cases} \frac{(2a+1)^2}{3.71-x^2} & \text{за} z > -0.5; \\ \sin^3 \sqrt{bz} - ax & \text{за} -0.5 \le z \le 10^{-3}; \\ \frac{\operatorname{tg}(z+x) - \operatorname{e}^x}{3.5abx} & \text{за} z > 10^{-3}, \end{cases}$ де $a = 0.3; \ b = 0.7; \ z = \cos(x+2)$	6	$y = \begin{cases} e^{ax} + f \cos^5 bx & \text{за } x \le a; \\ \cos^2 \sqrt{bx} - \ln(fx) \text{ за } a < x \le b^2; \\ \cos^2(a + bfx) & \text{за } x > b^2, \end{cases}$ де $a = 1.5; b = 1.44; f = \sqrt{b}x$
7	$y = \begin{cases} a\cos^2 x + b\sin^2 zx & \text{за } x \le a; \\ a \cdot tg\left(\sin^2 bx + z\right) & \text{за } a < x \le 4.5b; \\ \ln(ax - b) + z^2 & \text{за } x > 4.5b, \end{cases}$ де $a = 1.5; \ b = 0.7; \ z = tg tg(bx) $	8	$y = \begin{cases} \ln bzx + za^{2.5} & \text{за } a^3 < x \le b; \\ ax^2 + bz^a + \sin^2 zx & \text{за } x \le a^3; \\ \cos(ax+b) + \ln zx & \text{за } x > b, \end{cases}$ де $a = 0.5; \ b = 0.7; \ z = 0.2$

№ вар.	Функція	№ вар.	Функція
9	$y = \begin{cases} \sin(e^{a+b}) + x^2 & \text{за} a+b > x; \\ \arctan(abc) + \sqrt[3]{x} & \text{за} a+b = x; \\ \arcsin(\cos^2(\sqrt{ x })) & \text{за} a+b < x, \end{cases}$ де $a = 0.5$; $b = 1.5$; $c = 3.2$	10	$y = \begin{cases} \ln(\lg kx + mn) & \text{за } x > m+n ; \\ \sin(kmx) + \sqrt{ nx } & \text{за } x = m+n ; \\ e^{\cos x} + e^{m+n} & \text{за } x < m+n , \end{cases}$ де $m = 2.1; n = 1.9; k = 8.5$
11	$y = \begin{cases} a \sin^2 x + \cos(zx) & \text{за } x < \ln(a); \\ \cos^3(a + zx) & \text{за} & \ln(a) \le x \le b; \\ \sqrt{2.5a^3 + (b - zx^2)^6} & \text{за} & x > b, \end{cases}$ де $a = 0.1; b = 3.25; z = \cos^2(x)$	12	$y = \begin{cases} \sin(bm + \cos(nx)) & \text{за} & bm > x^2; \\ \cos(bm - \sin x) & \text{за} & bm < x^2; \\ \sqrt{e^{ \cos x } + \sqrt{ bmx }} & \text{за} & bm = x^2, \end{cases}$ де $m = 0.5; \ b = -2; \ n = 0.2$
13	$y = \begin{cases} xe^{x} + (z + 7.7abx) & \text{за } x < a; \\ tg(ax + z) + \cos^{2}bx & \text{за } a \le x \le b^{2}; \\ \ln(\sin^{2}(a + bx + zx^{2})) & \text{за } x > b^{2}. \end{cases}$ де $a = 1.5; b = -1.7; z = 1.2$	14	$y = \begin{cases} c \sin^2(b^2x) + \ln(cx + a) & \text{за } x < a; \\ a + \ln(bx) - \sin(cx) & \text{за } a \le x < b; \\ \sqrt{\left \cos(a + bx) + cx^2\right } & \text{за } x \ge b, \end{cases}$ де $a = 0.5; b = 0.7; c = 3.4$
15	$y = \begin{cases} a \sin^2 x + b \cos(zx) & \text{за} x < a^3; \\ (a + bx)^2 - \sin(zx) & \text{за} a^3 \le x \le b; \\ \sqrt{ x - \sin(bx + z) } & \text{за} x > b, \end{cases}$ де $a = 0.9; \ b = 1.25; \ z = x^2$	16	$y = \begin{cases} 2.8 \sin^2 ax - bx^3 z & \text{за } x < a; \\ z \cos(ax + b)^2 & \text{за } a \le x \le b^2; \\ e^{ 2.5ax } + zabx & \text{за } x > b^2, \end{cases}$ де $a = 0.7; b = -1.25; z = 3.5$
17	$y = \begin{cases} a + \sin bx + \cos x^2 & \text{за} x \le a; \\ \sqrt{a + bx} + \sin zx & \text{за} a < x < \ln b; \\ \ln(a + bx + z) & \text{за} x \ge \ln b, \end{cases}$ де $a = 0.2$; $b = 12.5$; $z = (2.5 + b)^2$	18	$y = \begin{cases} \sin(e^{a+b}) + x^2 & \text{за} e^{a+b} > e^x; \\ \arctan(abz) + \sqrt[3]{x} & \text{за} e^{a+b} = e^x; \\ \cos(\sqrt{ x+abz }) & \text{за} e^{a+b} < e^x, \end{cases}$ де $a = 0.7; \ b = 2.3; \ z = (x+b)^2$
19	$y = \begin{cases} \ln^2(0.5a - u) & \text{за} u < -0.5; \\ \frac{2x - a}{7\pi + x + u} & \text{за} -0.5 \le u \le 10^{-3}; \\ \lg(u + x) - e^x & \text{за} u > 10^{-3}, \end{cases}$ де $a = 2.3$; $u = \sin(x + a)$	20	$y = \begin{cases} xe^{a} + e^{ bc } & \text{за } \left 1 - x^{2} \right = a + c; \\ \sin^{2} ax + \cos bc & \text{за } \left 1 - x^{2} \right > a + c; \\ \sqrt{ab^{4} + \sqrt[5]{cx^{2}}} & \text{за } \left 1 - x^{2} \right < a + c, \end{cases}$ де $a = 0.3$; $b = 0.7$; $c = 2.7 - x$
21	$y = \begin{cases} x^2 e^{2k} + \ln rx & \text{за} & \cos x = \cos(rs); \\ \sqrt[3]{x^2} + \sqrt{ k + rsx } & \text{за} & \cos x > \cos(rs); \\ \arctan(kx + rs) & \text{за} & \cos x < \cos(rs); \end{cases}$ де $s = 0.15; r = 10; k = 0.7$	22	$y = \begin{cases} \sqrt[3]{b + \sqrt{ x + c }} & \text{за lg } a < x; \\ \cos(x - b - c) & \text{за lg } a = x; \\ \sin(x + a - b) & \text{за lg } a > x, \end{cases}$ де $a = 10; \ b = 0.7; \ c = 3.7$
23	$y = \begin{cases} a + bx + \sin^2 zx^{3.5} & \text{за } x < a; \\ a + \ln ab - zx & \text{за } a \le x \le b; \\ \sqrt{ a + \cot(zx) } + bx & \text{за } x > b, \end{cases}$ де $a = 0.2; \ b = 0.9; \ z = 1.7$	24	$y = \begin{cases} z^2 - \cos^2(x) & \text{за} x < 3.5a; \\ (a - x)^2 - bx & \text{за} 3.5a \le x \le b; \\ \sqrt{\sqrt{bx} + zx^2} & \text{за} x > b, \end{cases}$ де $a = 0.1; \ b = 2.1; \ z = abx$

№ вар.	Функція	№ вар.	Функція
25	$y = \begin{cases} 3.5 \sin^2(bx + z)^3 & \text{за} \qquad x \le a; \\ \ln(a + b^3 x) + a & \text{за} a < x \le b^{2.5}; \\ \cos^2(a^b + xz) & \text{за} x > b^{2.5}, \end{cases}$ де $a = 0.3; \ b = 1.7; \ z = 2$	26	$y = \begin{cases} (3.5a - 7.3bx)^3 & \text{за } x < -\ln a ; \\ a^b - \cos^3(zx) & \text{за} - \ln a \le x < b; \\ \sqrt{ \text{tg}a - x } - x & \text{за } x \ge b, \end{cases}$ де $a = 0.3; \ b = 3.7; \ z = 12.7/x$
27	$y = \begin{cases} \ln mx + n & \text{за } x^2 > m + n; \\ e^{\cos mx - n } & \text{за } x^2 = m + n; \\ \sqrt[3]{k^2 + \cos^2 x} & \text{за } x^2 < m + n, \end{cases}$ де $m = 2.1; n = 1.9; k = 3.5$	28	$y = \begin{cases} 2.5b^2 + ax - \cos xz & \text{за} x \le 5a; \\ \left(a^2 - x\right)^3 + \ln(xz) & \text{за} x > b; \\ \sqrt{b^2 + \left(a - x^3 z\right)^2} & \text{за} 5a < x \le b, \end{cases}$ де $a = 0.3; \ b = 1.7; \ z = 0.7$
29	$y = \begin{cases} \sqrt{\left a - \cos^2 b^3 x + c^2 \right } & \text{за } \left 1 - x^2 \right = a + c; \\ e^{0.04x} + \ln \left b^5 \cos x \right & \text{за } \left 1 - x^2 \right > a + c; \\ \cos^2 \left(b^3 x \right) + \ln \left bx - a \right & \text{за } \left 1 - x^2 \right < a + c, \end{cases}$ де $a = 0.7$; $b = 1.25$; $c = 1.3$	30	$y = \begin{cases} e^{ax} - 3.5\cos^2(z + bx) & \text{за } x \le a; \\ a + \ln a + bx - 2x & \text{за } a < x \le b; \\ a + \cos^{3.5}(a + bxz) & \text{за } x > b, \end{cases}$ де $a = 0.7$; $b = 1.25$; $z = (x + b)^2$

Індивідуальні завдання високого рівня складності

	1
№ вар.	Завдання
1	Ввести два числа і визначити, що більше: сума квадратів чи квадрат суми
	цих чисел. Відповідь вивести у вигляді повідомлення
2	Ввести значення кута в радіанах і визначити, що більше: значення синуса
	чи косинуса цього кута. Відповідь вивести у вигляді повідомлення
3	Ввести три числа і визначити серед них середнє за значенням
4	Ввести три числа і визначити серед них найменше
5	Ввести координати точки $B(x$ та $y)$ і визначити: чи належить ця точка кривій $f(x) = 6x^7 - 4.5x^5 + 4x^2$ з допустимою похибкою eps $= 10^{-3}$
	(тобто $ f(x)-y < eps$)
6	Ввести координати точок $A(x_0, y_0)$ і $B(x_1, y_1)$ і визначити яка з цих точок —
	A чи $B-\varepsilon$ найбільш віддалена від початку координат (O(0,0)). Відповідь
	вивести у вигляді повідомлення
7	Ввести значення трьох сторін трикутника a, b та c і визначити, чи ϵ цей
	трикутник прямокутним. Відповідь вивести у вигляді повідомлення
8	Ввести три числа і додатні з них піднести до квадрата, а від'ємні
	залишити без змін
9	Ввести координати точки $A(x \text{ та } y)$ і визначити: в якій чверті лежить ця
	точка. Відповідь вивести у вигляді повідомлення
10	Ввести координати точки x і y та визначити, чи лежить ця точка всередині
	кола з радіусом R . Центром кола ϵ початок координат. Відповідь вивести
	у вигляді повідомлення

N₂N₂	Завдання
11	Ввести три цілих числа (довжини сторін трикутника) і визначити,
	чи можна побудувати за цими числами трикутник
12	Ввести значення сторони квадрата A та радіус кола R і визначити, площа
	якої з цих фігур є більше. Відповідь вивести у вигляді повідомлення
13	Ввести значення трьох сторін двох трикутників — $a1,b1,c1$ і $a2,b2,c2$. Визна-
	чити, площа якого з них ϵ більше. Відповідь вивести у вигляді повідомлення
14	Ввести координати точки В (х та у) і визначити: чи належить ця точка
	кривій $f(x) = 6\cos^2 x - 0.25x^5 + 3.2x^2 - 2.7$ з припустимою похибкою
	$eps = 10^{-3}$ (тобто $ f(x) - y < eps$). Відповідь вивести у вигляді повідомлення
15	Ввести три числа і додатні з них піднести до куба, а від'ємні – замінити на 0
16	Ввести значення трьох сторін трикутника а, b, і с. Найменша зі сторін три-
	кутника ϵ стороною квадрата. Визначити, площа якої з цих фігур ϵ більша
17	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи належить ця точка до
	першої чверті. Відповідь вивести у вигляді повідомлення
18	Ввести три числа і вивести числа за модулем, більші за середнє арифметичне
19	Ввести радіанну міру кута і визначити більше зі значень тангенса або
	котангенса цього кута. Відповідь вивести у вигляді повідомлення
20	Ввести координати точки $Q(x \text{ та } y)$ і визначити, чи лежить ця точка на
	кривій $f(x) = 7 \operatorname{tg}^2 x - 0.31 x^3 + 3.2 x^2 - e^x$ з припустимою похибкою eps = 10^{-3}
21	(тобто $ f(x) - y < \text{ерs}$). Відповідь вивести у вигляді повідомлення
	Ввести три числа і визначити найбільше з них Ввести два числа і визначити, що є більше: різниця квадратів чи модуль
22	квадрата різниці цих чисел. Відповідь вивести у вигляді повідомлення
23	Ввести координати точок $A(x_0, y_0)$ та $B(x_1, y_1)$ і визначити, яка з точок $-A$
23	чи B — найменш віддалена від початку координат $O(0,0)$.
	Відповідь вивести у вигляді повідомлення
24	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи лежить ця точка всере-
	дині тора, утвореного колами із радіусами r і R із центром в точці $O(0,0)$
25	Ввести координати точки $B(x$ та $y)$ і визначити, чи лежить ця точка на
	кривій $f(x) = \begin{cases} \sin^2 x^3 & x > 1; \\ \sqrt{6 \arcsin x^7 + 4.5x^6 + 4x^2 + 2} \end{cases}$ за $ x > 1;$ із припустимою похибкою
	$eps = 10^{-3}$ (тобто $ f(x) - y < eps$). Відповідь вивести у вигляді повідомлення
26	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи лежить ця точка
	в четвертій чверті. Відповідь вивести у вигляді повідомлення
27	Ввести значення трьох сторін трикутника a, b та c і визначити, чи ϵ цей
	трикутник рівнобедреним. Відповідь вивести у вигляді повідомлення
28	Ввести три цілих числа a, b, c і визначити, чи є вони трійкою Піфагора
20	$(c^2 = a^2 + b^2)$. Відповідь вивести у вигляді повідомлення.
29	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи лежить ця точка
20	в області, обмеженій параболою $y = 2 - x^2$ та віссю абсцис
30	Ввести координати точок $A_1(x_1, y_1)$, $A_2(x_2, y_2)$, $A_3(x_3, y_3)$ і визначити, чи лежать ці точки на одній прямій. Відповідь вивести у вигляді повідомлення
	лежать ці точки на одній примій. Бідповідь вивсети у вигляді повідомлення

Частина 2) Використання операторів множинного вибору (switch)

Індивідуальні завдання базового рівня складності

№ вар.	Функція	№ вар.	Функція
1	$y = \begin{cases} 2x+1 & \text{3a } k = 1; \\ \sqrt[3]{1-x^4} & \text{3a } k = 2; \\ \lg x+5 & \text{3a } k = 3; \\ \ln\left \frac{1+x}{x^3 + \cos x}\right & \text{3a } k = 4 \end{cases}$	2	$y = \begin{cases} \frac{\lg 1 + e^{x+1.2} }{x + \sin x} & \text{3a } n = 1; \\ \frac{4\sqrt{\cos \pi + x }}{\sqrt{\cos \pi + x }} & \text{3a } n = 2; \\ \frac{1 + x^{x+1} - \lg x}{\sqrt{x^3 + \ln x }} & \text{3a } n = 3 \end{cases}$
3	$y = \begin{cases} \sin e^{x+1.2} & \text{3a } n = 1; \\ \sqrt[5]{\lg 1+x }, & \text{3a } n = 2; \\ \lg \cos x + 5\pi/4 & \text{3a } n = 3; \\ \frac{1+x^{x+1}-x}{x^3+\ln x } & \text{3a } n = 4 \end{cases}$	4	$y = \begin{cases} 7.8x^3 - \text{tg}(3.1x^2 + 4x) \text{ 3a } k = 1; \\ e^{0.85\sqrt{x}}(x^2 + 3) & \text{3a } k = 2; \\ \sin(2x + \pi) + e^{4x} & \text{3a } k = 3; \\ x\frac{\sqrt[3]{x + \cos(\pi/2 + x)}}{x^{2^x} + 0.1 \cdot 10^{-3}} & \text{3a } k = 4 \end{cases}$
5	$y = \begin{cases} \arctan(2x+1) + 1 & \text{3a} k = 1; \\ \sqrt[3]{1+x^4} & \text{3a} k = 2; \\ \cos\left(\frac{\pi}{2} - x^x\right) + e^{ x+5 } & \text{3a} k = 3; \\ \log\frac{1+x}{x^3 + \sqrt{ x }} & \text{3a} k = 4 \end{cases}$	6	$y = \begin{cases} \frac{4x^2t}{2x - 3t + 2} & \text{3a} n = 1; \\ 6.2x - \frac{\ln\sqrt{x^2 + 0.1}}{\sqrt{ 2x - \cos x }} & \text{3a} n = 2; \\ 8.3t^3 + x - 0.2 & \text{3a} n = 3 \end{cases}$
7	$y = \begin{cases} 1/x + \arctan^2 x^3 & \text{3a} M = 1; \\ 2^{x-1} + \sin^2 x + \lg x & \text{3a} M = 2; \\ \sqrt{ 1+x } - \sqrt[3]{x} & \text{3a} M = 3 \end{cases}$	8	$y = \begin{cases} 10^{-3} + \sin x^3 & \text{3a} z = 1; \\ \sqrt{1 + x} + \sin^2 x & \text{3a} z = 2; \\ \lg(1/x + \sqrt{x}) & \text{3a} z = 3 \end{cases}$
9	$y = \begin{cases} \sqrt[5]{x+1} & \text{3a } k = 1; \\ tg(\cos x + \pi/2) & \text{3a } k = 2; \\ e^{2x^2} + \sqrt{ 1-x } & \text{3a } k = 3; \\ \sin^2(x^2 + 3) & \text{3a } k = 4; \\ \cos 3x^2 & \text{3a } k = 5 \end{cases}$	10	$y = \begin{cases} 2x^{2} + \lg x & \text{3a} n = 1; \\ \cos^{2} x + 2.8\sqrt[3]{x} & \text{3a} n = 2; \\ \sin^{2} \sqrt{ x } & \text{3a} n = 3; \\ \ln\left \frac{x+1}{4}\right & \text{3a} n = 4 \end{cases}$
11	$t = \begin{cases} \sqrt{ 2^{x} - x^{2} + 0.5} & \text{3a } k = 1; \\ 1 + \arctan(x) & \text{3a } k = 2; \\ \sqrt[5]{\pi^{2} + x^{2}} & \text{3a } k = 3; \\ \lg 6.5 - x^{4} & \text{3a } k = 4 \end{cases}$	12	$y = \begin{cases} 2^{x+1} + 1 & \text{3a } k = 1; \\ \sqrt[3]{e^{x^2} + x^4} & \text{3a } k = 2; \\ \lg \sin(\pi - x) & \text{3a } k = 3; \\ \lg\frac{1+x}{x^3 + x} & \text{3a } k = 4 \end{cases}$

№ вар.	Функція	№ вар.	Функція
13	$y = \begin{cases} \sqrt{x+1} - \cos^2 x & \text{3a} k = 1; \\ e^{0.01} + \ln x^2, & \text{3a} k = 2; \\ \sqrt{x} + \sin^2(x - \pi) & \text{3a} k = 3; \\ x + \lg x & \text{3a} k = 4 \end{cases}$	14	$y = \begin{cases} 3.5x - 7.3x^{2} \text{ctgx} & \text{3a} L = 1; \\ 2.8 \ln x + e^{\sqrt{x}} & \text{3a} L = 2; \\ \sqrt[3]{3.4x} + x^{2} \sin x & \text{3a} L = 3; \\ 1.7^{x} + \cos^{2} x^{2} & \text{3a} L = 4 \end{cases}$
15	$y = \begin{cases} \sqrt{x} + e^{x} & \text{3a} L = 1; \\ \ln x + 0.8 & \text{3a} L = 2; \\ x^{2} / \lg^{2} x & \text{3a} L = 3; \\ x \cos^{2} x + \sqrt{x} & \text{3a} L = 4; \\ e^{0.8x} + x & \text{3a} L = 5 \end{cases}$	16	$y = \begin{cases} \cos^2(x + \pi/2) & \text{3a } S = 1; \\ \cot^2 \sqrt{x} + 1/x & \text{3a } S = 2; \\ 2\sin x + \ln x & \text{3a } S = 3; \\ \frac{0.8x^2}{e^x + x^x + x} & \text{3a } S = 4 \end{cases}$
17	$y = \begin{cases} \sin(e^{1+x} + 1) + x^2 & \text{3a } K = 1; \\ \sqrt{2x + \sin x } + x & \text{3a } K = 2; \\ 1/\cos x^2 + x & \text{3a } K = 3; \\ 2x - \sin^2 x & \text{3a } K = 4 \end{cases}$	18	$y = \begin{cases} 2.5a + \sin x^2 & \text{3a} N = 1; \\ \lg^2 x + 1 & \text{3a} N = 2; \\ \lg(x - \pi/4) & \text{3a} N = 3; \\ 2x + \frac{\sin x}{\sqrt{x}} & \text{3a} N = 4 \end{cases}$
19	$S = \begin{cases} \frac{\cos(\pi - x^2)}{x+1} & \text{sa} n = 1; \\ tg(\pi x^2) & \text{sa} n = 2; \\ \frac{3}{\sqrt{e^{x+1} - \ln x }} & \text{sa} n = 3; \\ x^2 - 2^x & \text{sa} n = 4 \end{cases}$	20	$y = \begin{cases} \sqrt{x} + e^{x} & \text{3a} L = 1; \\ \ln x + 0.8 & \text{3a} L = 2; \\ x^{2} + \sin^{2} x & \text{3a} L = 3; \\ x \cos x^{2} + \sqrt{x} & \text{3a} L = 4; \\ e^{0.8x} + \ln x & \text{3a} L = 5 \end{cases}$
21	$y = \begin{cases} \sqrt[3]{x+1} & \text{3a } k = 1; \\ \sin(\cos x + \pi/2) & \text{3a } k = 2; \\ e^{1+x^2} + \lg \sqrt{ 1-x } & \text{3a } k = 3; \\ \sin^3(x^2 + \pi) & \text{3a } k = 4; \\ \arccos(3-x^2) & \text{3a } k = 5 \end{cases}$	22	$y = \begin{cases} \sqrt{e^x - 1} & \text{3a } L = 1; \\ \lg x + 1/x & \text{3a } L = 2; \\ 2^{x-1} + \arcsin^2 x & \text{3a } L = 3; \\ x\cos^2 x + \sqrt{x} & \text{3a } L = 4; \\ \ln \sqrt{ x + 0.1 } & \text{3a } L = 5 \end{cases}$
23	$\left\{\frac{\sqrt{x} + e^x}{e^{0.1x} + \lg x } \right\} $ 3a $L = 1$;	24	$y = \begin{cases} \sin(x - \pi/2) & \text{3a} S = 1; \\ tg^{3} \sqrt{x} + x & \text{3a} S = 2; \\ \arcsin^{2} x + \lg x & \text{3a} S = 3; \\ \frac{2,4 - x^{2}}{e^{x} + x^{x}} & \text{3a} S = 4 \end{cases}$

№ вар.	Функція	№ вар.	Функція
25	$y = \begin{cases} e^{x^{2}} + 0.8x^{2} & \text{3a } K = 1; \\ \ln x^{2} + \sin^{2} x & \text{3a } K = 2; \\ \sqrt{ x } + \lg x & \text{3a } K = 3; \\ x + \lg^{2}(x - \pi) & \text{3a } K = 4 \end{cases}$	26	$S = \begin{cases} 4\ln x^{2} - e^{ x } & \text{3a } K = 1; \\ \cot\left(\sqrt{ \pi - x }\right) & \text{3a } K = 2; \\ \sin^{2}(x + \pi) & \text{3a } K = 3; \\ \tan\left(x + 10^{-3}\right) & \text{3a } K = 4 \end{cases}$
27	$y = \begin{cases} e^{2x} - \sin^2 x & \text{3a} S = 1; \\ \cos^2 x + \ln x & \text{3a} S = 2; \\ \sin^2 x - \ln x & \text{3a} S = 3; \\ x + \sin\sqrt{x} & \text{3a} S = 4 \end{cases}$	28	$y = \begin{cases} \cos^2 x & \text{3a} S = 1; \\ \sin x^2 + 1/x & \text{3a} S = 2; \\ 2\ln x + e^x & \text{3a} S = 3; \\ 8x^2 - \operatorname{arctg} x & \text{3a} S = 4 \end{cases}$
29	$y = \begin{cases} 3x^{2} + \arctan x & \text{3a } L = 1; \\ 0.2 \ln x + e^{\sqrt{ x }} & \text{3a } L = 2; \\ \sqrt[3]{4 - x} + x^{3} \sin x & \text{3a } L = 3; \\ 1/e^{x^{2}} + \cos^{5} x & \text{3a } L = 4 \end{cases}$	30	$y = \begin{cases} \sqrt{x^4 + 1} - \cos x & \text{3a} k = 1; \\ e^{0.1x} + \ln x^2 & \text{3a} k = 2; \\ \sqrt{5x} + \cot g^2(x - \pi) & \text{3a} k = 3; \\ x + \lg x & \text{3a} k = 4 \end{cases}$

Індивідуальні завдання середнього рівня складності

№ вар.	Функції	Варіанти параметрів
1	$y = \begin{cases} \frac{(2u+1)^2}{7\pi + x} & \text{3a} u + x > -0.5\\ \cos^2 u - \sin \frac{u}{3} & \text{3a} -0.5 \le u + x \le 10^{-3}\\ \frac{\lg(u+x) - e^x}{3.5x} & \text{3a} u + x > 10^{-3} \end{cases}$	$1 u = \sin x$ $2 u = \cos x$ $3 u = \operatorname{tg} x$
	$y = \begin{cases} abx - \cos^{2}(zx) & \text{3a} x < 3.5a; \\ (a - x)^{2} - \ln(z + x) & \text{3a} 3.5a \le x \le b; \\ \sqrt{bx - a + zx^{2}} & \text{3a} x > b \end{cases}$	1 $a = 0.4$; $b = 2.3$; $z = e^{2x}$ 2 $a = 0.2$; $b = 0.8$; $z = e^{x}$ 3 $a = 0.7$; $b = 8.1$; $z = 0.8$
3	$y = \begin{cases} \sin(bm + \cos(nx)) & \text{3a} & bm > x^2; \\ \cos(bm - \sin x) & \text{3a} & bm < x^2; \\ \sqrt{e^{ \cos x } + \sqrt{ bmx }} & \text{3a} & bm = x^2 \end{cases}$	1 $b = -1.6$; $m = 0.9$; $n = -1.4$ 2 $b = 4.5$; $m = -2$; $n = 2.2$ 3 $b = -4.5$; $m = 0.5$; $n = -1.5$

№ вар	Функції	Варіанти параметрів
4	$y = \begin{cases} a \sin^2 x + b \cos(zx) & \text{3a } x < -\ln(a); \\ a^b - \cos^3(a + zx) & \text{3a } -\ln(a) \le x \le b; \\ \sqrt{2.5a^3 + (b - zx^2)^6} & \text{3a } x > b \end{cases}$	1 $a = 0.2$; $b = 0.5$; $z = e^{ax}$ 2 $a = 0.15$; $b = 0.2$; $z = e^{2ax}$ 3 $a = 0.9$; $b = 5$; $z = e^{2.5ax}$
5	$y = \begin{cases} \sin(e^{a+b}) + x^2 & \text{3a} e^{a+b} > e^x; \\ \arctan(abc) + \sqrt[3]{x} & \text{3a} e^{a+b} = e^x; \\ \cos(\sqrt{ x+abc }) & \text{3a} e^{a+b} < e^x \end{cases}$	1 $a = 4,2;$ $b = 5.3;$ $c = 1.5$ 2 $a = -0.35;$ $b = 1.8;$ $c = -1.8$ 3 $a = 2.8;$ $b = -0.6;$ $c = 2.0$
6	$y = \begin{cases} 2.8 \sin^2 ax - bx^3 z & \text{3a} x < a; \\ z \cos(ax + b)^2 + \ln(z) & \text{3a} a \le x \le b^2; \\ e^{2.5ax} + zabx & \text{3a} x > b^2 \end{cases}$	1 $a = -5$; $b = 2.5$; $z = \ln bx^3 $ 2 $a = 3$; $b = 5$; $z = \ln bx $ 3 $a = -10$; $b = 3$, $z = \ln bx^2 $
7	$y = \begin{cases} xe^{a} + e^{ bc } & \exists a 1 - x^{2} = a + c \\ \sin^{2} ax + \cos bc & \exists a 1 - x^{2} > a + c \\ \sqrt{ab^{4} + \sqrt[5]{cx^{2}}} & \exists a 1 - x^{2} < a + c \end{cases}$	1 $a = 3.2$; $b = -0.7$; $c = 2.2$ 2 $a = 10.5$; $b = -2.5$; $c = 5.6$ 3 $a = 5.4$; $b = 3$; $c = 2.6$
8	$y = \begin{cases} \ln mx + n & \text{3a } x^2 > m + n \\ e^{\cos mx - n } & \text{3a } x^2 = m + n \\ \sqrt[3]{k^2 + \cos^2 x} & \text{3a } x^2 < m + n \end{cases}$	$ \begin{vmatrix} 1 & k = 3.1; & m = 5.15; n = -1.15 \\ 2 & k = 0.78; & m = -2.4; n = 4.36 \\ 3 & k = 1.1; & m = 0.8; & n = 0.41 \end{vmatrix} $
9	$y = \begin{cases} a \sin^2 x + b \cos(zx + a) & \text{3a} x < a^3; \\ (a + bx)^2 - \sin(a + zx) & \text{3a} a^3 \le x \le b; \\ \sqrt{x - (\sin(bx + z))} & \text{3a} x > b \end{cases}$	1 $a = 1.2$; $b = 7.2$; $z = e^x$ 2 $a = -1.5$; $b = 3.2$; $z = e^{2x}$ 3 $a = 1.7$; $b = 5.5$; $z = e^3$
10	$y = \begin{cases} \sqrt[3]{b^2 + \sqrt{ x+c }} & \text{3a } \lg a < x \\ \cos(x-b-c) & \text{3a } \lg a = x \\ \sin(x+a-b) & \text{3a } \lg a > x \end{cases}$	1 $a = 0.1$; $b = 9.8$; $c = 11.12$ 2 $a = 10$; $b = 10.05$; $c = 6.2$ 3 $a = 100$; $b = 3.03$; $c = 7.12$
11	$y = \begin{cases} \ln\left(\lg kx + mn \right) & \text{3a } 3x > m+n \\ \sin(kmx) + \sqrt{ nx } & \text{3a } 3x = m+n \\ e^{\cos x} + e^{m+n} & \text{3a } 3x < m+n \end{cases}$	1 $k = 4$; $m = -14.7$; $n = -0.6$ 2 $k = 3$; $m = 6.5$; $n = 3.15$ 3 $k = 5$; $m = -12$; $n = 0.45$

№ вар.	Функції	Варіанти параметрів
12	$y = \begin{cases} e^{ax} - 3.5\cos^2(z + bx) & \text{3a } x \le a; \\ a + \ln a + bx - 2x & \text{3a } a < x \le b^{3.5}; \\ a + \cos^{3.5}(a + bxz) & \text{3a } x > b^{3.5} \end{cases}$	1 $a = -1$; $b = 3.4$; $z = \lg bx$ 2 $a = -3.2$; $b = 5.5$; $z = \lg bx^2$ 3 $a = -5.2$; $b = 7.2$; $z = \lg bx^3$
13	$y = \begin{cases} x^2 e^{2k} + \ln rx & \text{3a } \cos x = \cos(rs) \\ \sqrt[3]{x^2} + \sqrt{ k + rsx } & \text{3a } \cos x > \cos(rs) \\ \arctan(kx + rs) & \text{3a } \cos x < \cos(rs) \end{cases}$	1 $k = 1.33$; $r = 0.85$; $s = 3.5$ 2 $k = 0.9$; $r = 3.3$; $s = 1.2$ 3 $k = 1.57$; $r = 0.75$; $s = 2.15$
14	$y = \begin{cases} 2.5b^2 + ax - 4.5\cos xz & \text{3a } x \le 5a; \\ \left(a^2 - 5.4x\right)^3 + \ln(xz) & \text{3a } x > b; \\ \sqrt{6.5b^2 + \left(a - x^3 z\right)} & \text{3a } 5a < x \le b \end{cases}$	1 $a = 0.5$; $b = 4.5$; $z = e^{ax}$ 2 $a = 0.5$; $b = 3.7$; $z = e^{2ax}$ 3 $a = 0.5$; $b = 2.7$; $z = e^{2.5ax}$
15	$y = \begin{cases} a\cos^2 x + b\sin zx & \text{3a } x \le a; \\ tg(ax + z) + \sin^2 bx & \text{3a } a < x \le 1.5b; \\ \ln(ax - b) + z^2 & \text{3a } x > 1.5b \end{cases}$	1 $a = 4.5$; $b = 8.4$; $z = tg(bx)^2$ 2 $a = 8.2$; $b = 15.2$; $z = tg(bx)^2$ 3 $a = 1.7$; $b = 0.5$; $z = tg(bx^2)$
16	$y = \begin{cases} 3.5 \sin^2(bx+z)^3 - e^{3.5a} & \text{3a} x \le a; \\ \ln(a+b^3x) + a & \text{3a} a < x \le b^{2.5}; \\ \cos^2(a^b + xz) + a^2 & \text{3a} x > b^{2.5} \end{cases}$	1 $a = 0.1$; $b = 0.5$; $z = e^{2.5ax}$ 2 $a = 1.2$; $b = 2.5$; $z = e^{2.5ax}$ 3 $a = 2.5$; $b = 1.2$; $z = e^{2.5ax}$
17	$y = \begin{cases} a + \sin bx + \cos x^2 & \text{3a} x \le a; \\ \sqrt{a + bx} + \sin zx & \text{3a} a < x < \ln b; \\ \ln (a + bx + z) & \text{3a} x \ge \ln b \end{cases}$	1 $a = -1.2$; $b = 0.75$; $z = \ln \text{tg}(bx) $ 2 $a = 0.4$; $b = 2.4$; $z = \ln \text{tg}(bx) $ 3 $a = 1.1$; $b = 6.1$; $z = \ln \text{tg}(bx) $
18	$y = \begin{cases} \sqrt{ ax - \cos^2 b^3 x + 5.1c^2 } & \text{3a } 1 - x^2 = a + c \\ e^{0.04x} + \ln b^5 \cos x & \text{3a } 1 - x^2 > a + c \\ \cos^2(b^3 x^2) + \ln bx - a^2 & \text{3a } 1 - x^2 < a + c \end{cases}$	1 $a = 3.5$; $b = -0.73$; $c = 2.5$ 2 $a = 15,4$; $b = -5.6$; $c = 3.5$ 3 $a = 5.1$; $b = 4$; $c = 2.7$
19	$y = \begin{cases} \frac{(2z+1)^2}{3.71 - x^2} & \text{3a} & z > -0.5; \\ \sin^3 z - \sin \frac{z}{3\pi} & \text{3a} & -0.5 \le z \le 10^{-3}; \\ \frac{\operatorname{tg}(z+x) - \operatorname{e}^x}{3.5x} & \text{3a} & z > 10^{-3} \end{cases}$	$1 z = \arcsin x^3$ $2 z = \arccos^2 x$ $3 z = \operatorname{tg} x$

№ вар.	Функції	Варіанти параметрів
20	$y = \begin{cases} (3.5a - 7.3bx + \sin(zx))^3 & \text{3a } x < -\ln a \\ a^b - \cos^3(a + zx) & \text{3a} - \ln a \le x < b \\ \sqrt{ \operatorname{tg} a - x } - x^2 & \text{3a} & x \ge b \end{cases}$	1 $a = 6$; $b = 3.2$; $z = e^{1.5ax}$ 2 $a = 3$; $b = 6$; $z = e^{1.5ax}$ 3 $a = 2.7$; $b = 1.8$; $z = e^{1.5ax}$
21	$y = \begin{cases} e^{ax} + f \cos^5 bx & \text{3a } x \le a; \\ a + \cos^2 bx - \ln(fx) \text{ 3a } a < x \le b^2; \\ \cos^2(a + bfx) & \text{3a } x > b^2 \end{cases}$	1 $a = 0.8$; $b = 2.4$; $f = e^{1.5ax}$ 2 $a = 1,2$; $b = 4.2$; $f = e^{2ax}$ 3 $a = 3.4$; $b = 8.1$; $f = e^{3ax}$
22	$y = \begin{cases} a + bx + \sin^2 zx^{3.5} & \text{3a} x < a; \\ a + \ln ab - zx^3 + \ln x & \text{3a} a \le x \le b^2; \\ \sqrt{ a + \cot(zx) } + b\sin x & \text{3a} x > b^2; \end{cases}$	1 $a = 0.3$; $b = 0.9$; $z = \sin x^2$ 2 $a = 4.3$; $b = 3.15$; $z = \sin x^3$ 3 $a = 6.5$; $b = 3.5$; $z = \sin^2 x$
23	$y = \begin{cases} \ln bzx + za^{2.5} & \text{3a} a^3 < x \le b; \\ ax^2 + bz^a + \sin^2 zx & \text{3a} x > b; \\ \cos(ax + b) + \ln zx & \text{3a} x \le a^3 \end{cases}$	1 $a = 1.5$; $b = 6.4$; $z = \ln bx^3 + 1.5 $ 2 $a = 1.9$; $b = 8.6$; $z = \ln bx^3 + 3 $ 3 $a = 0.6$; $b = 2.4$; $z = \ln bx^3 + 1.8 $
24	$y = \begin{cases} xe^{x} + (z + 7.7abx) & \text{3a} x < a; \\ tg(ax + z) + \cos^{2}bx & \text{3a} a \le x \le b^{2}; \\ \ln(\sin^{2}(a + bx + zx^{2})) & \text{3a} x > b^{2} \end{cases}$	1 $a = 8.7$; $b = 3.7$; $z = tg(bx)$ 2 $a = 9.3$; $b = 3.5$; $z = tg(abx)$ 3 $a = 2.1$; $b = 5.7$; $z = tg(b^2x)$
25	$y = \begin{cases} a + z \cos^{2}(bx)^{3} & \text{3a} x < a; \\ a + \sin^{2}b^{2} + \ln(zx) & \text{3a} a \le x \le b; \\ \sqrt[3]{0.3b + \sqrt{ (a - z^{2} - \cos x) }} & \text{3a} x > b \end{cases}$	1 $a = 1.5$; $b = 5.7$; $z = \ln \lg(bx) $ 2 $a = 3.7$; $b = 8.4$; $z = \ln \lg(bx) $ 3 $a = 4.4$; $b = 5.6$; $z = \ln \lg(bx) $
26	$y = \begin{cases} a^2 x^3 + \sqrt{b^4 + 1.7} & \text{3a} & x < 0.2; \\ \arctan \left(2^x - p \right) & \text{3a} & x = 0.2; \\ \sqrt[3]{\ln a + 4.3} + x & \text{3a} & x > 0.2 \end{cases}$	$\begin{vmatrix} 1 & a = 0.5; & b = 1.5; & p = -4 \\ 2 & a = -1; & b = 0.5; & p = -4 \\ 3 & a = -2; & b = 0; & p = -4 \end{vmatrix}$
27	$y = \begin{cases} c \sin(b^2 x) + b \ln(cx + a) & \text{3a} x < a; \\ a + \ln(bx) - \sin^2(a + cx) & \text{3a} a \le x < b; \\ \sqrt{\left \cos(a + bx) + cx^2\right } & \text{3a} x \ge b \end{cases}$	1 $a = 2.2$; $b = 2.4$; $c = \ln bx $ 2 $a = 1.6$; $b = 1.7$; $c = \ln bx $ 3 $a = 1.3$; $b = 4.2$; $c = \ln b^2x $

№ вар.	Функції	Варіанти параметрів
28	$y = \begin{cases} \sin(e^{a+b}) + x^2 & \text{3a} a+b > x; \\ \arctan(abc) + \sqrt[3]{x} & \text{3a} a+b = x; \\ \arcsin(\cos^2(\sqrt{ x })) & \text{3a} a+b < x \end{cases}$	$ \begin{vmatrix} 1 & a = 7,2; & b = -1.3; & c = 2.5 \\ 2 & a = 1.47; & b = 3.81; & c = 2.8 \\ 3 & a = 4.8; & b = 10.6; & c = 2.7 \end{vmatrix} $
29	$y = \begin{cases} \cot g(x^2 e^{3k}) + \ln r + x & \text{3a} x = rs; \\ \sqrt[5]{x^2} + \sqrt{ \arcsin k } & \text{3a} x > rs; \\ \arctan g(kx + \lg(rs)) & \text{3a} x < rs \end{cases}$	$ \begin{vmatrix} 1 & k = -0.3; & r = 0.85; & s = 3.5 \\ 2 & k = 0.9; & r = 3.3; & s = 1.2 \\ 3 & k = -0.7; & r = 0.75; & s = 2.15 \end{vmatrix} $
30	$y = \begin{cases} a^{3} + \arctan(\sin^{3}bx) + \cos^{2}x^{2} & \text{3a} x \le a; \\ \sqrt{(a+bx) + 2} + \sin zx & \text{3a} a < x < \ln b; \\ \arctan(a+bx+z) & \text{3a} x \ge \ln b \end{cases}$	1 $a = 1.5$; $b = 5.7$; $z = tg(bx)$ 2 $a = 3.7$; $b = 8.4$; $z = tg(bx)$ 3 $a = 4.4$; $b = 5.6$; $z = tg(bx)$

Індивідуальні завдання високого рівня складності

№ вар.	Завдання	Варіанти параметрів
1	Визначити, чи лежить точка А в області, об-	$1 \ x = 3.5; \ y = 7.2$
	меженій параболою $y = 2 - x^2$ та віссю абсцис.	2 x = -0.5; y = 1.2
	Відповідь вивести у вигляді повідомлення	$\begin{vmatrix} 3 & x = 0.72; & y = -3.12 \end{vmatrix}$
2	З трьох чисел визначити і вивести на екран	1 $a = 3$; $b = 3.5$; $c = -2.1$
	середнє за значенням з них	2 a = 2.1; b = -6.55; c = 0.1
		$3 \ a = -9; \ b = -3.7; \ c = -0.1$
3	Для точок з координатами x та y визначити,	1 $x = 3$; $y = -7$; $R = 5$;
	чи лежать вони всередині кола з радіусом R ,	2 x = 12; y = 11; R = 16;
	якщо центром кола ϵ початок координат	3 x = -9; y = 6; R = 11.
4	Задано значення трьох сторін трикутника –	$1 \ a = 3; \ b = 3.5; \ c = -2.1$
	a,b та c . Визначити, чи ϵ цей трикутник	2 a = 2.1; b = -6,55; c = 0.1
	прямокутним	3 $a = -9$; $b = -3.7$; $c = -0.1$
6	Задано значення трьох чисел – A , B , C . Под-	1 A = -3; B = 3,5; C = 0,1
	воїти ті числа, для яких $A + B + C > 0$,	2 A = 58; B = 27; C = -87
	а якщо це не так, – замінити їх на нулі	3 A = -8; B = -35; C = 42
7	Для координат точок $A(x_0, y_0)$ та $B(x_1, y_1)$	$ 1 x_0 = 2; y_0 = 2; x_1 = -4; y_1 = 0 $
	визначити, яка з точок $-A$ чи B — найменш	$2 x_0 = 8; y_0 = 9; x_1 = 12; y_1 = 1$
	віддалена від початку координат $(O(0,0))$	$3 x_0 = -3; y_0 = 0.9; x_1 = 2; y_1 = 3$
8	Для трикутників зі значеннями сторін $-a, b$	$1 \ a = 3; \ b = 3.5; \ c = 1.1$
	та c визначити, чи ϵ вони рівнобедреними	$\begin{vmatrix} 2 & a = 3; & b = 6.55; c = 6.55 \end{vmatrix}$
		$3 \ a = 0.9; \ b = 0.9; \ c = 0.9$

		-
№	Завдання	Варіанти параметрів
вар.	T	1 2 1 5
9	Для трьох цілих чисел (a, b, c) визначити,	$\begin{vmatrix} 1 & a = 3; & b = 5; & c = 4 \end{vmatrix}$
	чи ϵ вони трійкою Піфагора ($c^2 = a^2 + b^2$)	$\begin{vmatrix} 2 & a = 3; & b = 8; & c = 11 \\ 2 & a = 3; & b = 8; & c = 12 \end{vmatrix}$
10	T	$3 \ a = 13; \ b = 5; \ c = 12$
10	Для трьох точок — $A_1(x_1, y_1)$, $A_2(x_2, y_2)$ та	$1 x_1 = 2; y_1 = 2; x_2 = 4;$
	$A_3(x_3, y_3)$ – визначити, чи лежать ці точки	$y_2 = 0; x_3 = -2; y_3 = 6$
	на одній прямій	$\begin{bmatrix} 2 & x_1 = 8; y_1 = 9; x_2 = 4; \\ & & \end{bmatrix}$
11	П	$y_2 = 0; x_3 = 5; y_3 = 1$
11	Перевірити числа A та B і змінити їхній знак	1 A = -3; B = 3.5
	на протилежний, якщо вони мають різні знаки,	2 A = 58; B = 27
10	а якщо це не так, — замінити їх на нулі	3 A = -8; B = -35
12	3 трьох чисел визначити і вивести на екран	$\begin{vmatrix} 1 & a = 23; & b = 17; & c = 47 \\ 2 & a = 23; & c = 47 \end{vmatrix}$
	найменше з них	$\begin{vmatrix} 2 & a = 9; & b = -8.1; & c = 9.1 \end{vmatrix}$
1.0		$3 \ a = 36; \ b = 65; \ c = 62$
13	Для трьох чисел – x , y , z – визначити середнє	1 $x = 3.2$; $y = -7$; $z = 0.5$
	арифметичне та вивести на екран ті з чисел, які	$\begin{vmatrix} 2 & x = 2.3; y = 3; z = 2.5 \\ 2 & 2.5 \end{vmatrix}$
	за модулем є більші за середнє арифметичне	3 x = 23; y = -34; z = 89.5
14	Для точки з координатами x та y визначити, чи	$\begin{vmatrix} 1 & x = -3; & y = 27 \\ 2 & 3 & 3 \end{vmatrix}$
	лежить вона на кривій	2 x = -2; y = 56
	$f(x) = \int x^3$ 3a $ x > 1$; Howneys explains	$\begin{vmatrix} 3 & x = -1; & y = 1 \\ 4 & 2 & 27 \end{vmatrix}$
	$f(x) = \begin{cases} x^3 & \text{за} & x > 1; \\ \sqrt{2 - x^2} & \text{за} & x \le 1. \end{cases}$. Похибка складає	4 x = -3; y = -27
	$eps = 10^{-3}$, тобто $ f(x) - y < eps$	
15	Для точки з координатами x та y визначити, чи	1 $x = -2.8$; $y = 0.7$
	лежить вона в четвертій координатній чверті	2 x = 0; y = -9.5
		$3 \ x = 2; \ y = -51$
16	Для трикутника зі сторонами a, b та c ,	$1 \ a = 3; \ b = 5; \ c = 4$
	найменша зі сторін якого ϵ стороною квадрата,	$2 \ a = 13; \ b = 8; \ c = 11$
	визначити, площа якої фігури ϵ більша	$3 \ a = 10; \ b = 5; \ c = 12$
17	3 трьох чисел – x , y , z – визначити і вивести на	1 $x = -2$; $y = 1.2$; $z = 9.5$
	екран ті з цих чисел, які ϵ менші за їхн ϵ середн ϵ	2 x = 0.5; y = 2; z = -0.15
	арифметичне	3 $x = 0.4$; $y = 2.2$; $z = 9.5$
18	3 трьох чисел – x , y та z – визначити i вивести	1 x = -7.2; y = 3.14; z = -2.5
	на екран ті з цих чисел, які за модулем ϵ більші	$\begin{bmatrix} 2 & x = -4; & y = -3; & z = 9.15 \end{bmatrix}$
	за число π	3 $x = 3.14$; $y = -3.4$; $z = 0.59$
19	Для трьох цілих чисел (довжин сторін трикут-	$1 \ a = 8; \ b = 13.5; \ c = 1.1$
	ника) визначити, чи можна побудувати трику-	$2 \ a = 3; \ b = 3.56; \ c = 0.55$
	тник з цими сторонами	$3 \ a = 1.9; \ b = 0.9; \ c = 0.9$

№	Januarya	Dominum wanasamin
вар.	Завдання	Варіанти параметрів
20	Для точок $A(x_0, y_0)$ та $B(x_1, y_1)$ визначити, яка	1 $x_0 = 3$; $y_0 = 3$; $x_1 = -6$; $y_1 = 0$
	з них – A чи $B-\varepsilon$ найменш віддалена	2 $x_0 = 8$; $y_0 = 9$; $x_1 = 12$; $y_1 = 1$
	від початку координат ($O(0,0)$)	3 $x_0 = 3$; $y_0 = 0.9$; $x_1 = 2$; $y_1 = 3$
21	3 трьох чисел – a , b , c – додатні піднести до	$\begin{vmatrix} 1 & a = 0; & b = 1.5; & c = -31.1 \end{vmatrix}$
	квадрата, а від'ємні – залишити без змін	$\begin{vmatrix} 2 & a = 2; & b = -1.56; c = 2.55 \end{vmatrix}$
		$3 \ a = -1.9; \ b = 2.9; \ c = -2.9$
22	3 трьох цілих чисел – a , b , c – знайти і вивести	$1 \ a=2; b=9; \ c=474$
	на екран непарні числа	$2 \ a = 3; \ b = 0; \ c = 27$
	-	$3 \ a = 4; \ b = 11; \ c = 30$
23	Для трьох чисел $-a$, b , c – визначити	$\begin{vmatrix} 1 & a = 1; & b = 8; & c = 16 \end{vmatrix}$
	кількість коренів рівняння $ax^2 + bx + c = 0$	$\begin{vmatrix} 2 & a = -8; & b = 29.7; & c = 0.11 \end{vmatrix}$
24	т	$3 \ a = 2.5; \ b = 5; \ c = 3$
24	Для точок з координатами x та y визначити,	1 $x = 78$; $y = -71$; $R = 85$
	чи лежать вони за межами кола з радіусом R ,	$\begin{vmatrix} 2 & x = 2; & y = 11; & R = 13 \\ 2 & y = 7; & y = 6; & R = 11 \end{vmatrix}$
25	якщо центром кола є початок координат	3 x = -7; y = 6; R = 11
25	З трьох цілих чисел $-a$, b , c — знайти і вивести	$ \begin{array}{ll} 1 & a = 2; & b = 9; c = 474 \\ 2 & a = 3; & b = 0; c = 27 \end{array} $
	на екран числа, які діляться на 3 без остачі	$\begin{vmatrix} 2 & a-5, & b-6, & c-27 \\ 3 & a=4; & b=10; & c=30 \end{vmatrix}$
26	3 трьох цілих чисел – <i>a</i> , <i>b</i> , <i>c</i> – знайти і вивести	$1 \ a = 550; \ b = 175; \ c = -251$
20	на екран числа, які завершуються числом 5	$\begin{vmatrix} 1 & a - 350, & b - 175, & c - 251 \\ 2 & a = 872; & b = -56; & c = -255 \end{vmatrix}$
	на скран числа, які завершуютвея числом 3	$\begin{vmatrix} 2 & a & 672, b & -36, c & -233 \\ 3 & a = -1995; b = 259; c = 89 \end{vmatrix}$
27	З трьох чисел знайти і вивести на екран	$1 \ a = 3; \ b = -3.5; \ c = -2.1$
-	середнє за абсолютним значенням з них	$\begin{bmatrix} 2 & a = 2.1; & b = -6.55; & c = 0.1 \end{bmatrix}$
		$\begin{bmatrix} 3 & a = -9; & b = -3.7; & c = 11.1 \end{bmatrix}$
28	Для точки з координатами x та y визначити,	$1 \ x = 12.8; \ y = 0.7$
	чи лежить вона в першій координатній чверті	2 x = 0; y = -9.5
		3 x = -12; y = -51
29	3 трьох цілих чисел – a , b , c – знайти і вивести	1 $a = 2$; $b=9$; $c=474$
	на екран парні числа.	$2 \ a = 3; \ b=0; \ c=27$
		3 <i>a</i> = 4; <i>b</i> =10; <i>c</i> =30
30	Визначити для трьох варіантів координат	1 x = 0; y = -2.7
	точок з координатами x та y квадрант,	2x = -2.43; y = -2.2
	в якому вони розміщені	3 x = 0.13; y = 0.74

Вимоги до звіту:

- 1) Титульний аркуш;
- 2) Мета та постановка задачі;
- 3) Необхідні теоретичні відомості
- 4) Завдання;
- 5) Блок-схеми алгоритмів задач;
- 6) Реалізація (код програм);
- 7) Тестування програм;
- 8) Висновки до роботи.