V appello 17/1/23 — Geometria e Algebra per Informatica Prof. F. Bracci — A.A. 2021-22

Nome e Cognome (in stampatello e leggibile): _____

PARTE I: Rispondere alle seguenti domande barrando con una crocetta tutte e sole le risposte ritenute corrette. Non sono ammesse cancellature. Ogni domanda contiene almeno una (talvolta anche più di una!) risposta corretta su 4 possibili scelte. Ogni quiz è considerato corretto se sono state indicate tutte e sole le risposte corrette.

Q1) Sia V uno spazio vettoriale di dimensione n, munito di un prodotto scalare $\langle \cdot, \cdot \rangle$ e sia $L: V \to V$ una applicazione lineare. Sia v un vettore non nullo di V.

L'applicazione $V \ni w \mapsto \langle w, v \rangle$ è lineare.

Sia $w \in V$. Se $\langle L(v), L(w) \rangle \neq 0$ allora $w \notin \ker L$.

Sia $w \in V$ un vettore non nullo e n = 2. Se $\{L(v), L(w)\}$ non è una base di V, allora v, w sono linearmente dipendenti.

Sia $w \in V$ un vettore non nullo. Se $\langle v, w \rangle = 0$ allora $\langle L(v), L(w) \rangle = 0$.

Q2) Siano $\alpha, \beta \in \mathbb{R}$. Siano

$$A_{\alpha,\beta} := \left(\begin{array}{ccc} \alpha & 1 & 0 \\ 0 & \alpha - \beta & 1 \\ 0 & 0 & \beta \end{array} \right), \quad C := \left(\begin{array}{ccc} 12 & 0 & 0 \\ \tan 45 & -51 & 0 \\ -25\pi & \sqrt{1456} & -3 \end{array} \right).$$

La matrice $CA_{\alpha,\beta}C^{-1}$ è invertibile per $\alpha \neq 0$ e $\beta \in \mathbb{R}$.

Il rango di $CA_{\alpha,\beta}C^{-1}$ è ≥ 2 .

Per $\beta = 0$, $\alpha \in \mathbb{R}$, la matrice $CA_{\alpha,\beta}C^{-1}$ non è diagonalizzabile. Se $CA_{\alpha,\beta}C^{-1}$ è invertibile, allora $\alpha \neq \beta$.

Q3) Siano V, W due spazi vettoriali, dim V = n e dim W = m, con $n, m \ge 1$. Sia $T: V \to W$ un operatore lineare.

Se per ogni $w \in W$ esiste $v \in V$ tale che T(v) = w allora T è iniettiva.

Se T è biunivoca, allora n = m.

Se n > m allora T non è suriettiva.

Se T è suriettiva e $\ker T = \{\underline{0}\}$ allora n = m.

Q4) Sia V uno spazio vettoriale di dimensione $n \geq 2$. Sia $T: V \to V$ un operatore lineare e sia $\underline{0}$ il vettore nullo di V.

Se T è diagonalizzabile allora esistono una base $\{v_1, \ldots, v_n\}$ di V e $\lambda \in \mathbb{R}$ tale che $T(v_j) = \lambda v_j$ per $j = 1, \ldots, n$.

Se $\lambda \in \mathbb{R}$ è un autovalore di T, allora l'operatore lineare $T - \lambda \mathsf{Id}$ non è invertibile.

Se T non è un isomorfismo allora $\underline{0}$ è un autovettore di T.

Se 0 è un autovalore di T allora T non è biunivoco.

Q5) Siano A, B, C matrici $n \times n$.

Se AB = C e det C = 0 e det $A \neq 0$ allora det B = 0.

Se il rango di C è n e A=BC, allora il rango di A è n.

Se C = AB e C è diagonalizzabile, allora A e B sono diagonalizzabili.

Se ABC = I allora A è invertibile.

Q6) Sia $n \ge 1$. Sia A una matrice $m \times n$, $n \le m$, e sia $b \in \mathbb{R}^m$. Sia A' la matrice $m \times (n+1)$ ottenuta aggiungendo la colonna b alla matrice A.

Il sistema Ax = b, per $x \in \mathbb{R}^n$, ammette sempre infinite soluzioni.

Il rango della matrice A' è sempre uguale al rango di A.

Se n < m, esiste $b \in \mathbb{R}^m$ tale che il sistema Ax = b, per $x \in \mathbb{R}^n$, non ammette soluzione.

Se esiste $b \in \mathbb{R}^m$ tale che il sistema Ax = b, per $x \in \mathbb{R}^n$, ammette una unica soluzione, allora n = m.

Q7) Nello spazio affine \mathbb{A}^3 sia fissato un sistema di riferimento affine ortonormale con coordinate affini (x, y, z). Sia S l'insieme definito da $x = 2 + \lambda, y = 2 + \mu, z = \lambda - \mu$ al variare di $\mu, \lambda \in \mathbb{R}$.

S contiene il punto (0,0,0).

lo spazio ortogonale a TS è generato dai vettori (1,0,0) e (0,1,0).

La retta z = 0, x = y è contenuta in S.

L'equazione cartesiana di $S \ earrow \ x = 0, z = 0.$

Q8) Nel piano affine \mathbb{A}^2 sia fissato un sistema di riferimento affine ortogonale con coordinate affini (x, y). Sia r_a la retta ax - y = 1, al variare di $a \in \mathbb{R}$.

Per ogni retta s in \mathbb{A}^2 esiste $a \in \mathbb{R}$ tale che r_a è ortogonale a s.

Lo spazio tangente ad r_a non dipende da $a \in \mathbb{R}$.

Non esistono valori di a per cui $(0,0) \in r_a$.

lo spazio tangente ad r_a è generato dal vettore (1, a).

PARTE II: Risolvere il seguente problema, scrivendo le soluzioni, ben motivate, sui fogli bianchi spillati alla fine del compito.

Per $\alpha \in \mathbb{R}$ sia A_{α} la matrice definita da

$$A_{\alpha} := \begin{pmatrix} \alpha + 2 & \alpha & 2\alpha & -4\alpha - 3 \\ -\alpha & -\alpha + 2 & -2\alpha & 4\alpha + 3 \\ 0 & 0 & 2 & -6 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- (1) Determinare per quali valori di α la matrice A_{α} è invertibile.
- (2) Determinare per quali valori di α la matrice A_{α} è diagonalizzabile.
- (3) Per i valori α per cui A_{α} è diagonalizzabile, determinare la matrice di cambiamento di coordinate che rende A_{α} diagonale.

Soluzione: Parte II:

- (1) Calcolando il determinante di A_{α} (ad esempio usando il metodo di Laplace rispetto alla quarta riga), si ottiene det $A_{\alpha} = -8$. Pertanto A_{α} è invertibile per ogni α .
- (2) calcolando il polinomio caratteristico $p(\lambda)$ di A_{α} si ottiene

$$p(\lambda) = \det(A_{\alpha} - \lambda I) = (2 - \lambda)^3 (-1 - \lambda).$$

Pertanto gli autovalori sono -1,2 per ogni α . La molteplicità algebrica dell'autovalore -1 è 1 (e dunque coincide con la molteplicità geometrica). Dunque A_{α} è diagonalizzabile se e solo se la molteplicità algebrica dell'autovalore 2 (che è 3) coincide con la sua molteplicità geometrica. Quest'ultima è pari a $4-\mathrm{rango}(A_{\alpha}-2\mathrm{Id})$. Ora, la matrice $A_{\alpha}-2\mathrm{Id}$ ha rango 2 se $\alpha\neq 0$ e ha rango 1 se $\alpha=0$. Pertanto, A_{α} è diagonalizzabile solo per $\alpha=0$.

(3) Poniamo $\alpha = 0$. Il sistema $A_0\underline{x} = -\underline{x}$ ha come base delle sue soluzioni il vettore (-1, 1, -2, -1). Il sistema $A_0\underline{x} = 2\underline{x}$ ha come base delle sue soluzioni i vettori $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1)\}$. Pertanto, posta

$$C := \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

risulta $C^{-1}A_0C$ diagonale.