Announcement

- Take-home Exam 1 example answer is uploaded.
 - Average: 78.7

- Quiz 4
 - Opens at 9am on 14 Mar, 2023
 - Closes at 6:30pm on 20 March 2023
 - Covers Week 7 and 8 lecture slides

CS5321 Network Security Week9: DoS Attacks

Daisuke MASHIMA

http://www.mashima.us/daisuke/index.html 2022/23 Sem 2

Agenda

- (Traditional) Denial-of-service attacks and defence
- SIFF (IEEE S&P 2004)
 - Enabling receiver to stop misbehaving senders
- Crossfire (IEEE S&P 2013)
 - How to disrupt the Internet itself with botnets?

Denial-of-service (DoS) attacks

- Definition of the denial-of-service problem
 - A group of authorized users of a specified service is said to deny service to another group of authorized users if the former group makes the specified service unavailable to the latter group for a period of time which exceeds the intended (and advertised) service maximum-waiting time

Gligor, "A NOTE ON THE DENIAL-OF-SERVICE PROBLEM," IEEE Security & Privacy, 1983

Not considered as a security problem until late 80s

Elephant in the room

Recent news

TECH

Cyberattack hits Ukrainian banks and government websites

PUBLISHED WED, FEB 23 2022-11:08 AM EST | UPDATED WED, FEB 23 2022-6:15 PM EST

Г 2 № ТV

Shepard Smith
UP NEXT | Shark Tank 08:00

Global Ransom DDoS Campaig

Published on 04 Sep 2020 Updated on 02 Jul 2021

There have been reports of a new global ransom distrifinance, travel and e-commerce industries.

Targeted organisations may receive an extortion email infrastructure if the ransom was not paid. The threat ac demands have gone up from 1 BTC or 2 BTC in 2019,

KEY POINTS

- Several Ukrainian government websites were offline on Wednesday as a result of a mass distributed denial of service attack, a Ukrainian official said.
- A DDoS attack is when a hacker floods a victim's network or server with traffic so that others are unable to access it.
- The source of the attack is not yet confirmed but the outages come as Russia has
 positioned troops to be able to invade Ukraine.

TRENDING NOW

Economi against I after talk end with

DoS attacks in the Internet

Amplification Attacks

Amplification DDoS attacks

So popular!

UDP-based DDoS accounts for 83% of all DDoS attacks.

https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020

Recent Amplification Attacks

World record DDoS attack hits 1.7 Tbps, thanks to Memcached flaw

A massive reflection/amplification DDoS attack hit an undisclosed US-based company, setting a new record just days after a similar attack took down GitHub.

By Brandon Vigliarolo | March 6, 2018, 6:20 AM PST

How to mitigate amplification attacks?

- Prevent IP spoofing?
 - Not effective unless achieving 100% prevention
- Fixing (or removing) vulnerable amplifiers?
 - Distributed, owned by third parties, lack of incentives
- Blocking target protocol at destinations?
 - Potential collateral damage

(Feb 2019)

DDoS defense

- Two practical commercial solutions:
 - 1. Cloud-based traffic scrubbing
 - 2. Content-distribution network (CDN)
 - Good enough?
 - Significant cost (market monopoly)
 - Cannot handle Crossfire-like attacks
 - Security issues (e.g., TLS keys, sensitive data distributed on replicas)

Collaborative defenses

- Size of an attack is often beyond the capacity of single ISP
- IETF standard to construct a standard channel between ISPs
- Challenge: ISPs are competitors

<u>Traffic scrabbing example</u> (by Akamai)

CDN Concept

A DDoS solution: *empowering receivers to authorize flows*SIFF (IEEE S&P 2004)

SIFF: Stateless Internet Flow Filter

- Fundamental problem: receiver has no control over who can send traffic to it
- We want to enable receiver to stop misbehaving senders
- Challenges:
 - Need per-flow state in network?
 - Where to filter?
 - Need trust relationship between ISPs?
 - Routers need to authenticate receiver requests to stop flows?

Overview of SIFF

- Goal: enable receiver to control its incoming traffic
- Key ideas
 - Path fingerprints for traffic authorization
 - path fingerprint is used as a *capability*
 - Only clients who know their path fingerprint get authorization
 - Authorized or "privileged" packets get priority over nonprivileged packets
 - in bandwidth DoS, privileged packets are undisturbed by nonprivileged packets

Overview of SIFF (cont'd)

- Create two Internet packet classes
 - Unprivileged (best-effort): Signaling and legacy traffic
 - Privileged: Receiver controlled traffic flows
- Privileged packets given priority at routers
 - Privileged packets never dropped by unprivileged packet flooding
- Privileged packet flooding is impossible (with high probability)

SIFF Handshake

- 1. Client C sends *best-effort (i.e., unprivileged)* packet to server S, arriving packet accumulates **capability**
- If S wants to allow C to send privileged traffic, S sends capability back to C
- 3. C includes capability in packets to send at *privileged* level

SIFF Marking: *Unprivileged* Packets

- SIFF routers mark unprivileged packets
- Marking should be unpredictable
 - Hash with key known only to each router
- Markings unique to Sender/Receiver pair
 - Add source IP and destination IP to hash
- Hash calculation must be done in hardware for performance
- Server sends the *capability* back to client if it *allows* this flow

SIFF Marking: *Privileged* Packets

- SIFF routers verify marking in the header
 - Correct marking: router rotates it into the MSB
 - Incorrect marking: router drops packet
- Without receiver help, sender does not learn capability, cannot send privileged traffic
- IP Spoofing: capability does not reach attacker

Problem: Static Privilege

- Once received, Sender can abuse capability
- Goal: Dynamic Privilege
 - Expire capabilities over time
- Solution: Key switching
 - Routers change keys periodically, but maintain x > 1 valid keys foreach time window
 - Receiver automatically gets new capabilities

Receiver-controlled Flows

- As packet flow caries on, receiver receives updated markings
- If receiver wants to continue to enable sender to send privileged traffic, receiver sends updated marking as capability to sender
- If receiver wants to terminate malicious flow, receiver simply stops updating sender with new capability, and routers will soon stop the flow early in network

SIFF Performance

- DDoS: Attackers flood "forged (guessed)" privileged traffic
 - Probability of fooling a SIFF router:

$$P(x,z) = 1 - (1 - 1/2^z)^x$$

Probability of fooling d SIFF routers: P(x,z)^d

- z = number of bits per router mark
- x = number of marksin router's window
- T_k = time between router key changes

SIFF Summary

- DoS-less sender/receiver communication
 - Receivers can stop malicious flows
 - 1 unprivileged packet establishes privileged connection
- Lightweight at routers (stateless)
 - Small constant state/processing per packet
- Incremental deployment/backward compatible
- No trust required between ISPs
- No authentication required at routers

Limitations of SIFF

- Not distinguish bad/good senders
 - E.g., An attacker could rotate machines for persistent attack
- Router upgrade is required.
 - Path that does not have SIFF router may become congested by attack.
- Collusion attack is still a risk.
 - If a malicious sender colludes with some intermediate router en route, the router could (partly) help the sender forge capability.
- Only granularity of host, not service
- Flooding the EXP packets? (a.k.a. Denial-of-Capability attack)

Solutions to Denial-of-Capability attacks?

- Desired property: fairness among senders
 - Each client has similar chance to send EXP packets to servers
 - But how to achieve fairness?
 - Source IP address?
- Portcullis (2007): *Proof-of-work* scheme for fairness of EXPs
 - Introduce "puzzle" to solve before sender sends packets

Non-traditional DDoS attacks

Non-traditional attacks:

- Link-flooding: flood network links in the core of the Internet (e.g., Tier-1 or Tier-2 ISPs) to degrade the communication of end-point servers
- Indirect: the locus of the attack (i.e., flooded links) is different from the ultimate targets; e.g., end-point servers
- Academic studies: link cuts [Bellovin'03], link-flooding [Studer'09]
- Real-world instances: Spamhaus (2013), ProtonMail (2015)

ProtonMail DDoS attack (Nov. 3 - 10, 2015)

Extremely long recovery process (1 week)

- ✓ Indirect attack => ISP collaboration, manual operations
- ✓ Adaptive adversary in real-time

The Crossfire Attack

A **link-flooding attack** that degrades/cuts off network connections of **scalable N-server** area **persistently**

Scalable N-Server areas

- **N** = small (e.g., 1 -1000 servers), medium (e.g., all servers in a US state), large (e.g., the West Coast of the US)

> Persistent:

- attack traffic is indistinguishable from legitimate
 - low-rate, changing sets of flows
 - attack is "moving target" for same N-server area
 - changes target links before triggering alarms

Definitions

• Target area chosen servers

Area containing chosen target servers e.g., an organization, a city, a state, or a country

Target link

Network link selected for flooding

Decoy server

Publicly accessible servers surrounding the target area

Attack Flows => Indistinguishable from Legitimate

1-Link Crossfire

Attack Flows => Alarms Not Triggered

suspend flows in t < T_{det} sec & resume later

link-failure detection latency, T_{det}

IGP routers: 217 sec/80 Gbps - 608 sec/60 Gbps

BGP routers: **1,076 sec**/80Gbps – **11,119 sec**/60 Gbps

t = 40 - 180 sec => Alarms are Not Triggered

n-Link Crossfire

n links traversed by a large number of persistent paths to a target area.

Experiments Geographical Distribution of Traceroute Nodes

- 1,072 traceroute nodes
 - 620 PlanetLab nodes + 452 Looking Glass servers

ATTACK STEP 1: RECONNAISSANCE

ATTACK STEP 2: TARGET-LINK SELECTION

Find *n* links whose congestion maximizes connectivity *damage*

=> maximum coverage problem

ATTACK STEP 3: FLOODING

Degraded Connectivity

* Degradation Ratio (target link set) = # degraded bot-to-target area paths # all bot-to-target area paths

- Flooding a few target links causes high degradation (DR*)
 - 10 links => DR: 74 90% for Univ1 and Univ2
 - 15 links => DR: 53% (33%) for Virginia (West Coast)

How to mitigate Crossfire?

- Remove chock points?
 - Known to be the inherent problem of Internet routing

- Rerouting?
 - e.g., Can a destination network create on-demand detours to avoid the congested links?
 - Routing Around Congestion (RAC) [IEEE S&P 2018]

Routing Around Congestion (RAC):

Rerouting using BGP poisoning [Smith et al., S&P '18]

Not sufficient against adaptive attackers, who detects a detour and adjust attacks

Summary

DoS problem

 Attacks are so prevalent; they don't make news anymore (unless record breaking new attacks!)

Amplification attack

Plenty of vulnerable services that amplify attack traffic

SIFF

Receiver has no control over who can send traffic to it

Crossfire: DDoS attack against Internet core

- It is possible to flood network links in the Internet core
- Significant damage by careful selection of link targets
- Still largely an open problem!

Questions?

Next week: Anonymous Communication

Paper to read

• "Tor: The Second-Generation Onion Router." (USENIX Security 2004)