

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

#### Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

#### **About Google Book Search**

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

## **BIBLIOGRAPHIC RECORD TARGET**

## Graduate Library University of Michigan

## **Preservation Office**

| Storage Number:                                                     |
|---------------------------------------------------------------------|
|                                                                     |
| 04                                                                  |
| $\Gamma$ B RT a BL m T/C DT 07/18/88 R/DT 07/18/88 CC STAT mm E/L 1 |
| a 10008256                                                          |
| :  a (RLIN)MIUG84-B20851                                            |
| :  a (CaOTULAS)160402413                                            |
| c MiU   d MiU                                                       |
| ):  a QA533  b .D85                                                 |
| a Durell, Fletcher,  d 1859-  e ed.                                 |
| a Logarithmic and trigonometric tables,   c ed. by Fletcher Durell. |
| a New York,  b C. E. Merrill co.,  c 1911.                          |
| :  a 114 p.  c 25 cm.                                               |
| :  a With his Plane trigonometry. New York, 1911.                   |
| 0:  a Logarithms                                                    |
| 0:  a Trigonometry  x Tables                                        |
| c EM  s 9124                                                        |
|                                                                     |
|                                                                     |
|                                                                     |

# Scanned by Imagenes Digitales Nogales, AZ

On behalf of Preservation Division The University of Michigan Libraries

| Date work Began: | Hosted by Google |
|------------------|------------------|
| Camera Operator: |                  |





JOHN NAPIER OF MERCHISTON

From the portrait painted from life in 1616, now in the gallery of the University of Edinburgh. Reproduced for Durell's Trigonometry by permission of the University authorities. (See page 169.)

## PLANE

## TRIGONOMETRY

BY

## FLETCHER DURELL, Ph.D.

HEAD OF THE MATHEMATICAL DEPARTMENT
THE LAWRENCEVILLE SCHOOL



NEW YORK
CHARLES E. MERRILL CO.
44-60 EAST TWENTY-THIRD STREET

1911

## Durell's Mathematical Series

| Plane Geometry 341 pages, 12mo, half leather 75 cents                      |
|----------------------------------------------------------------------------|
| Solid Geometry 213 pages, 12mo, half leather 75 cents                      |
| Plane and Solid Geometry 514 pages, 12mo, half leather \$1.25              |
| Plane Trigonometry 184 pages, 8vo, cloth \$1.00                            |
| Plane Trigonometry and Tables 298 pages, 8vo, cloth \$1.25                 |
| Plane Trigonometry, with Surveying and Tables In preparation               |
| Plane and Spherical Trigonometry, with Tables 351 pages, 8vo, cloth \$1.40 |
| Plane and Spherical Trigonometry, with Surveying and Tables In preparation |
| Logarithmic and Trigonometric Tables 114 pages, 8vo, cloth                 |

Copyright, 1910, by Charles E. Merrill Co.

[3]

#### PREFACE

The principal object in writing this book has been the same as that which has governed the author in writing other mathematical text-books; viz., to bring out the fundamental utilities which underlie and grow out of the principles presented. Not only is the fundamental source of new power in Trigonometry frequently emphasized, but each new process is taken up, not arbitrarily, but for the sake of the economy or new power which it gives.

Among other special features of the book, the following may be mentioned:

Under each case in the solution of triangles two groups of examples are given; one with the degree divided sexagesimally, and the other with the degree divided decimally. The inclusion of the examples in terms of the decimally divided degree meets the new requirements of Harvard, Yale, and Princeton.

A chapter is given on logarithms and their properties. Practical examples are included in this chapter which are not only interesting in themselves, but which afford a review of and a correlation with other branches of mathematics.

When use is made of the line equivalents of the trigonometric ratios, it is specially shown that such treatment is merely a convenient substitute for the ratio treatment, and the method of this substitution is shown and its processes carefully safeguarded.

A chapter is given in which the applications of trigonometry are reduced to a system.

The subject-matter of the text-book is enlivened and made more vital and human by a chapter on the history of trigonometry.

Attention is also called to the method in which logarithmic work is arranged. This form of tabulation is used, for instance, in the designing room in the United States Navy Department and by engineers in general. Among the advantages of this method of arranging logarithmic work are the following:

- (1) It abbreviates the work by omitting the equality marks.
- (2) It includes within itself the actual numbers whose logarithms are being used.
- (3) It facilitates the correction of mistakes by including and presenting in order all the steps of a logarithmic reduction.
- (4) The arrangement of the work is such that after the pupil has acquired facility in logarithmic computation, some of the steps in the tabulation may be omitted without changing the general form of tabulation.

The author wishes to express his especial indebtedness to Mr. Howard Smith of the Hill School, Pottstown, Pa., to whom most of the examples are due, and who has made important suggestions concerning other parts of the work. The writer is also under obligation to his colleague, Mr. J. H. Keener, to whom the examples in the General Review Exercise are mainly due. Professor William Betz of the East Rochester High School, Rochester, N.Y., Dr. Henry A. Converse of the Polytechnic Institute, Baltimore, Md., and Professor William H. Metzler of Syracuse University have also aided the writer by important corrections and suggestions.

FLETCHER DURELL.

LAWRENCEVILLE, N.J., January 10, 1910.

## TABLE OF CONTENTS

| CHAPTER I                                           |   | -197   |
|-----------------------------------------------------|---|--------|
| Logarithms                                          | • | PAGE 7 |
| CHAPTER II                                          |   |        |
| DEFINITIONS. TRIGONOMETRIC FUNCTIONS                |   | . 24   |
| CHAPTER III                                         |   |        |
| RIGHT TRIANGLES                                     |   | . 52   |
| CHAPTER IV                                          |   |        |
| GONIOMETRY                                          | • | . 73   |
| CHAPTER V                                           |   |        |
| Goniometry (Continued)                              | • | . 93   |
| CHAPTER VI                                          |   |        |
| Oblique Triangles                                   | • | . 107  |
| CHAPTER VII                                         |   |        |
| Practical Applications                              | • | . 131  |
| CHAPTER VIII                                        |   |        |
| CIRCULAR MEASURE. GRAPHS OF TRIGONOMETRIC FUNCTIONS |   | • 142  |
| CHAPTER IX                                          |   |        |
| Inverse Trigonometric Functions                     | • | . 152  |
| CHAPTER X                                           |   |        |
| Computation of Tables. Trigonometric Series         | • | . 157  |
| CHAPTER XI                                          |   |        |
| HISTORY OF TRIGONOMETRY                             |   | . 162  |

## PLANE TRIGONOMETRY

#### CHAPTER I

#### LOGARITHMS

1. The logarithm of a number is the exponent of that power of another number, taken as the base, which equals the given number.

Thus,  $1000 = 10^3$ , hence  $\log 1000 = \frac{3}{2}$ , 10 being taken as the base; again, if 8 be taken as the base,  $4 = 8^{\frac{3}{3}}$ , hence  $\log 4 = \frac{2}{3}$ ; also, if 5 be taken as the base,  $\log 125 = 3$ ,  $\log \frac{1}{25} = -2$ , etc.

The base used is sometimes stated in the context as above; but, when desirable, it is indicated by writing it as a small subscript to the word log.

Thus the above expressions might be written,

or

$$\log_{10} 1000 = 3$$
;  $\log_8 4 = \frac{2}{3}$ ;  $\log_5 125 = 3$ ;  $\log_5 \frac{1}{2.5} = -2$ ; etc.

In general, by the definition of a logarithm,

$$number = (base)^{logarithm},$$

$$N=B^{l}$$
; hence  $\log_{B}N=l$ .

2. Uses or Utility of Logarithms. One of the principal uses of logarithms is to simplify numerical work. For instance, by logarithms the numerical work of multiplying two numbers is converted into the simpler work of adding the logarithms of these numbers. To illustrate this principle we may take the simple case of multiplying two numbers which are exact powers of 10, as 1000 and 100. Thus

$$1000 = 10^{3}$$

$$100 = 10^{2}$$

$$1000 \times 100 = 10^{5} = 100,000$$

hence

the multiplication being performed by the addition of exponents.

Similarly, if 
$$384 = 10^{2.58433} +$$
 and  $25 = 10^{1.33794} +$ ,

384 may be multiplied by 25 by adding the exponents of  $10^{2.58433+}$  and  $10^{1.39794+}$ , thus obtaining  $10^{3.98227+}$ , and then getting from a table of logarithms the value of  $10^{3.98227+}$ , viz. 9600.

In like manner, by the use of logarithms, the process of dividing one number by another is converted into the simpler process of subtracting one exponent, or log, from another; the process of involution is converted into the simpler process of multiplication; and the extraction of a root into the simpler process of division.

The saving of labor effected by the use of logarithms can be increased by committing to memory the logs of certain much used numbers as of 2, 3, ... 9,  $\pi$ ,  $\sqrt{\pi}$ ,  $\frac{1}{\pi}$ ,  $\sqrt{2}$ ,  $\sqrt{3}$ , etc.

Also by use of the *slide rule*, the practical use of logarithms is reduced to sliding one rod along another and reading off the number corresponding to the terminal position of one end of a rod. If the teacher can find time, it will be a useful exercise to teach the class the use of the slide rule in connection with the study of this chapter.

3. Systems of Logarithms. Any positive number except unity may be made the base of a system of logarithms.

Two principal systems are in use:

1. The Common (or Decimal) or Briggsian System, in which the base is 10. This system is used almost exclusively when logarithms are employed to facilitate numerical computations.

2. The system termed **Natural** or **Napierian**, in which the base is 2.7182818<sup>+</sup>. This system is generally used in algebraic processes, as in demonstrating the properties of algebraic expressions, etc.

#### EXERCISE I

- **1.** Give the value of each of the following:  $\log_3 9$ ,  $\log_3 27$ ,  $\log_4 64$ ,  $\log_4 \frac{1}{16}$ ,  $\log_3 \frac{1}{9}$ ,  $\log_3 \frac{1}{81}$ ,  $\log_{10} \frac{1}{10}$ ,  $\log_{10} .01$ ,  $\log_{10} .001$ .
  - **2.** Also of  $\log_2 32$ ,  $\log_2 \frac{1}{32}$ ,  $\log_2 \frac{1}{128}$ ,  $\log_4 8$ ,  $\log_8 16$ .
  - 3. Simplify  $\log_2 4 + \log_3 9 + \log_{10} .1 \log_3 \frac{1}{9}$ .
- **4.** Write out the value of each power of 2 up to  $2^{20}$  (thus  $2^1 = 2$ ,  $2^2 = 4$ ,  $2^3 = 8$ , etc.) in the form of a table.
- 5. By means of this table multiply 32 by 8, converting the multiplication into an addition of exponents.
- **6.** In like manner convert each of the following multiplications into an addition:  $32 \times 16$ ;  $64 \times 32$ ;  $1024 \times 16$ ;  $512 \times 64$ .
- **7.** Also convert each of the following divisions into a subtraction:  $1024 \div 16$ ;  $512 \div 64$ ;  $32768 \div 1024$ .
- **8.** Also convert each of the following involutions into a multiplication:  $(32)^3$ ;  $(64)^2$ ;  $(32)^4$ .
- **9.** Also convert each of the following root extractions into a division:  $\sqrt[3]{64}$ ;  $\sqrt[5]{1024}$ ;  $\sqrt[4]{4096}$ .
- 10. Let the pupil make up two examples like those in Ex. 6; in Ex. 8; in Ex. 9.
- 11. Let the pupil construct a table of powers of 3 and make up similar examples concerning it.

#### COMMON SYSTEM

4. Characteristic and Mantissa. If a given number, as 384, be not an exact power of the base, its logarithm, as 2.58433<sup>+</sup>, consists of two parts, the whole number called the *characteristic*, and the decimal part called the *mantissa*.

To obtain a rule for determining the characteristic of a given number (the base being 10), we have,

 $10,000 = 10^4$ , hence  $\log 10,000 = 4$ ;  $1000 = 10^3$ , hence  $\log 1000 = 3$ ;  $100 = 10^2$ , hence  $\log 100 = 2$ ;  $10 = 10^1$ , hence  $\log 10 = 1$ . Hence any number between 1000 and 10,000 has a logarithm between 3 and 4; that is, the log consists of 3 and a fraction. But every integral number between 1000 and 10,000 contains four digits. Hence every integral number containing four figures has 3 for a characteristic.

Similarly every number between 100 and 1000, and therefore containing three figures to the left of the decimal point, has 2 for a characteristic; every number between 10 and 100 (that is, every number containing two integral figures) has 1 for a characteristic; and every number between 1 and 10 (that is, every number containing one integral figure) has 0 for a characteristic.

Hence, the characteristic of an integral or mixed number is one less than the number of figures to the left of the decimal point.

#### 5. Characteristic of a Decimal Fraction.

$$\begin{split} &1=10^{0}. \quad \therefore \log \, 1=0\,;\\ &.1=\frac{1}{10}=10^{-1}. \quad \therefore \log \, .1=-1\,;\\ &.01=\frac{1}{100}=\frac{1}{10^{2}}=10^{-2}. \quad \therefore \log \, .01=-2\,;\\ &.001=\frac{1}{1000}=\frac{1}{10^{3}}=10^{-3}. \quad \therefore \log \, .001=-3, \text{ etc.} \end{split}$$

Hence the logarithm of any number between .1 and 1 (as of .4 for instance) will lie between -1 and 0 and hence will consist of -1 plus a positive fraction; also the logarithm of every number between .01 and .1 (as of .0372 for instance) will be between -2 and -1, and hence will consist of -2 plus a positive fraction; and so on.

Hence, the characteristic of a decimal fraction is negative, and is numerically one more than the number of zeros between the decimal point and the first significant figure.

There are two ways in common use for writing the characteristic of a decimal fraction.

Thus, (1)  $\log .0384 = \overline{2.58433}$ , the minus sign being placed over the characteristic 2, to show that it alone is negative, the mantissa being positive.

Or (2) 10 is added to and subtracted from the log, giving  $\log .0384 = 8.58433 - 10$ .

In practice the following rule is used for determining the characteristic of the logarithm of a decimal fraction:

Take one more than the number of zeros between the decimal point and the first significant figure, subtract it from 10, and annex -10 after the mantissa.

#### EXERCISE 2

Give the characteristic of:

| <b>1.</b> 452.      | <b>6</b> 08267.     | <b>11.</b> 7.        |
|---------------------|---------------------|----------------------|
| <b>2</b> . 16730.   | <b>7</b> . 1.0042.  | <b>12</b> . 6267.3.  |
| <b>3.</b> 767.5.    | <b>8</b> . 7.92631. | <b>13</b> 000227.    |
| <b>4</b> . 64.56.   | <b>9</b> 007.       | <b>14</b> . 100.58.  |
| <b>5</b> . 9.22678. | <b>10</b> 0000625.  | <b>15</b> . 23,7621. |

**16.** How many figures to the left of the decimal point (or how many zeros immediately to the right) are there in a number the characteristic of whose logarithm is  $3?\ 2?\ 5?\ 1?\ 0?\ 4?\ 8-10?\ 7-10?\ 9-10?$ 

17. Can you make up a rule for fixing the decimal point in the number which corresponds to a given logarithm?

6. Mantissas of numbers are computed by methods, usually algebraic, which lie outside the scope of this book. After being computed the mantissas are arranged in tables, from which they are taken when needed. In this connection it is important to note that

The position of the decimal point in a number affects only the characteristic, not the mantissa, of the logarithm of the number.

Thus, if 
$$\log 6754 = 3.82956$$

$$\log 67.54 = \log \frac{6754}{100} = \log \frac{10^{3.82956}}{10^2} = \log 10^{1.82956} = 1.82956.$$
In general  $\log 6754 = 3.82956$ 
 $\log 675.4 = 2.82956$ 
 $\log 67.54 = 1.82956$ 
 $\log 6.754 = 0.82956$ 
 $\log 0.6754 = 9.82956 - 10$ 
 $\log 0.06754 = 8.82956 - 10$ , etc.

7. Direct Use of a Table of Logarithms; that is given a number, to find its logarithm. For methods in detail see Introduction to Logarithmic Tables (Arts. 2–5 and 17).

#### EXERCISE 3

Using five-place tables find the logarithm of each of the following numbers:

| <b>1</b> . 7627.   | <b>10</b> 00672.     | <b>19</b> . 17.6287. |
|--------------------|----------------------|----------------------|
| <b>2.</b> 6720.    | <b>11</b> 000007.    | <b>20</b> . 42.      |
| <b>3</b> . 82.     | <b>12</b> . 400000.  | <b>21</b> 000001.    |
| <b>4</b> . 7862.   | <b>13</b> . 14.6235. | <b>22</b> 0186789.   |
| <b>5</b> . 75.     | <b>14</b> 00226725.  | <b>23</b> . 32679.   |
| <b>6</b> . 157.    | <b>15</b> . 87.      | <b>24</b> . 3267.9.  |
| <b>7</b> . 36278.  | <b>16</b> 76.        | <b>25</b> . 326.79.  |
| <b>8</b> . 67.222. | <b>17</b> 000125.    | <b>26.</b> 32.679.   |
| <b>9</b> . 3.3427. | <b>18</b> . 100.25.  | <b>27</b> . 3.2679.  |

**28.** Commit to memory the mantissa for each of the following: 2, 3, 5,  $\pi$ . Then write at sight the log of each of the following, 200, 3000, 50,  $100 \pi$ , 20, .002, 30, .0005,  $\frac{\pi}{100}$ , .3, .2,  $10 \pi$ , 20,000.

Using four-place tables, find the logarithm of each of the following:

| <b>2</b> 9. | 12.67.    | 36.         | 24.68.    | <b>43</b> . | .000036775. |
|-------------|-----------|-------------|-----------|-------------|-------------|
| 30.         | 762.8.    | <b>37.</b>  | .11116.   | 44.         | .0026382.   |
| 31.         | 42.68.    | 38.         | 11.685.   | <b>4</b> 5. | 28966.      |
| 32.         | 1.2267.   | <b>3</b> 9. | .0012678. | <b>4</b> 6. | 19.572.     |
| 33.         | .0263.    | <b>4</b> 0. | 965.3.    | <b>47</b> . | .8625.      |
| 34.         | .0012678. | 41.         | 1.4676.   | <b>48</b> . | .0100267.   |
| 35.         | 1.0026.   | <b>42</b> . | 1.7628.   | <b>4</b> 9. | 2.225.      |
|             |           |             | 1 . 11    |             |             |

**50**. Work Ex. 28 for four-place tables.

8. Inverse Use of a Table of Logarithms; that is, given a logarithm, to find the number corresponding to it (called its antilogarithm). See Introduction to the Logarithmic Tables (Arts. 6 and 17).

#### **EXERCISE 4**

Using five-place tables, find the antilogarithm of each of the following:

. 1.41863. . 7.68416. . 6.59068. . 2.19756. . 9.22321 – 10. . 5.74706—**10**. **6.** 6.42857 – 10. 9. 8.00400. . 0.98349. . Find antilog of 3.21678. . Find log of 2.34578. . Find antilog of 6.00371. . Find antilog of 2.34578. **17.** Find log of 6.00371. . Find log of 1.03678. . Find antilog of 1.03678. . Find antilog of 4.98672. **19.** Find log of 4.98672. . Find log of 3.21678.

Find the number corresponding to each of the following logarithms, using four-place tables.

**29**. 2.6575. **20**. 1.4082. **23**. 9.1546—10. **26**. 8.0283—10. **21**. 2.7332. **24**. 2.0326. **27**. 7.1170—10. **30**. 4.3490 **- 10**. **28.** 5.0019 – 10. **31**. 2.8177. **22**. 3.2335. **25**. 1.0135. **32.** Find antilog of 2.3041. 35. Find antilog of 0.4975. **36.** Find antilog of 1.6924. **33**. Find log of 2.3041. **34**. Find log of 0.4975. **37**. Find log of 1.6924.

#### COMPUTATIONS BY USE OF LOGARITHMS

9. Properties of Logarithms used in Numerical Computations. It is shown in algebra that

$$a^x \cdot a^y = a^{x+y}$$
; and also that  $(a^x)^p = a^{px}$ .

Using these properties of exponents, it can be shown that

1.  $\log (mn) = \log m + \log n$ . 3.  $\log m^p = p \log m$ .

2.  $\log \left(\frac{m}{n}\right) = \log m - \log n$ . 4.  $\log \sqrt[p]{m} = \frac{\log m}{p}$ .

For  $m = 10^x$ .  $\therefore \log m = x$ .

 $n = 10^y$ .  $\therefore \log n = y$ .  $\therefore mn = 10^{x+y} \text{ or } \log mn = x + y = \log m + \log n.$ (1)

Also 
$$\frac{m}{n} = \frac{10^x}{10^y} = 10^{x-y}$$
, or  $\log \frac{m}{n} = x - y = \log m - \log n$ . (2)

Also 
$$m^p = (10^x)^p = 10^{px}$$
.  $\therefore \log m^p = px = p \cdot \log m$ , (3)

and 
$$\sqrt[p]{m} = 10^{\frac{x}{p}}$$
  $\therefore \log \sqrt[p]{m} = \frac{x}{p} = \frac{\log m}{p}$ . (4)

Hence:

## I. To multiply numbers:

Add their logarithms and find the antilogarithm of the sum. This will be the product of the numbers.

#### II. To divide one number by another:

Subtract the logarithm of the divisor from the logarithm of the dividend and obtain the antilogarithm of the difference. This will be the quotient.

### III. To raise a number to a required power:

Multiply the logarithm of the number by the index of the required power and find the antilogarithm of the product.

### IV. To extract the required root of a number:

Divide the logarithm of the number by the index of the required root and find the antilogarithm of the quotient.

Ex. 1. Multiply 561.75 by .03286 by the use of logarithms.

$$\begin{array}{c} \log \left(561.75 \times .03286\right) = \log 561.75 + \log .03286 \\ \log 561.75 = 2.74954 \\ \log .03286 = 8.51667 - 10 \\ \mathrm{antilog} \ 1.26621 = 18.4591, \ \ \textit{Product}. \end{array}$$

The following, however, is the arrangement of work used by many practical computers. It has the advantage of showing all the steps in a complex logarithmic computation. (See p. 12, etc.)

 $Answer = 18.4591 \log 1.26621$ 

Observe that "561.75 log 2.74954" reads "561.75, its log is 2.74954," etc.

Ex. 2. Compute the amount of \$1 at 5 per cent compound interest for 20 years.

The amount of \$1 at 5% for 20 years =  $(1.05)^{20}$ . 1.05 log 0.02119; 20 log 0.42380 Amount = **2.65338** log 0.42380.

If the student will compute the value of  $(1.05)^{20}$  by continued multiplication, and compare the labor in such a process with that involved in the above process, he will have a good illustration of the usefulness of logarithms.

Ex. 3. Extract approximately the cube root of 532.768.

532.768 log 2.72653  $\frac{1}{3}$  log 0.90884. Root =**8.1066** log 0.90884.

10. Cologarithm. In operations involving division, instead of subtracting the logarithm of the divisor, it is usual to add its cologarithm. The cologarithm of a number is obtained by subtracting the logarithm of the number from 10-10. Hence adding the cologarithm of the divisor gives the same result as subtracting its logarithm. The use of the cologarithm saves figures, and gives a more orderly and compact statement of the work.

The cologarithm of a number is obtained directly from a table of logarithms by the following rule:

Subtract each figure of the logarithm of the given number from 9 except the last significant figure, which subtract from 10.

Ex. 1. Find the colog of 37.16.

 $\log 37.16 = 1.57008.$  Hence, colog 37.16 = 8.42992 - 10.

Ex. 2. Divide 52678 by 37.16 by the use of the cologarithm of the divisor.

 $52678 \log 4.72163$  $37.16 \log 1.57008 \operatorname{colog} 8.42992 - 10.$  $Quotient = 1417.58 \log 3.15155.$ 

11. In the extraction of the root of a decimal number it is best to add to and subtract from the logarithm of the decimal

number such a multiple of 10 that the last term of the quotient shall be 10.

Ex. Extract the seventh root of .0854329.

$$.0854329 \log 8.93162 - 10$$

$$\frac{60 - 60}{7)68.93162 - 70}$$

$$Root = .703667 \log 9.84737 - 10$$

12. Computations involving Negative Numbers. In computing, by the use of logarithms, the value of expressions containing one or more negative factors, first, determine the sign of the result; second, determine the magnitude of the result by treating all the factors as if they were positive and using logarithms.

Ex. Compute 
$$\frac{-876}{795}$$
.

The result must be negative, since a negative number divided by a positive number gives a negative quotient.

The magnitude of the result is determined by computing the value of  $\frac{876}{795}$ .

#### EXERCISE 5

Compute by means of five-place logarithms the value of each of the following:

1.  $85 \times 627$ .

**2.**  $26.27 \times 52.67$ .

3.  $8.25 \times 25675$ .

4.  $\frac{1768}{211.6}$ .

- 5.  $45 \times 27.68 \times .0967 \times 4.2678$ .
- 6.  $(2.67)^3$ .
- 7.  $\frac{27.8675}{18.678}$
- 8.  $(.5278)^7$ .
- 9.  $\sqrt[3]{156.78}$ . Also, if you can, extract the cube root of 156.78 without the use of logarithms. About how much more work in this process than in the logarithmic process? Which process is more likely to be accurate, the long or the short one?
  - 10.  $\sqrt[4]{.86785}$ . Also extract the square root of the square root of

.86785. About how much longer is this process than the logarithmic work?

**11.** 
$$\sqrt[7]{-76.526}$$
. **12.**  $\sqrt[3]{-.00021}$ . **13.**  $\sqrt[5]{-.00062367 \times 7.867}$ .

Find the compound interest on:

- 14. \$15375 for 20 years at 6%. Make the computation without the use of logs. What fraction of the work is avoided by the use of logs?
  - **15.** \$ 323.50 for 12 years at 8%.
- 16. In 1623 the Dutch bought Manhattan Island from the Indians for \$24. What would this sum amount to at the present time, if it had been placed on interest at 6%, the interest to be compounded annually?
- 17. By aid of the logs committed to memory in Ex. 28, page 12, compute each of the following:  $\frac{200}{376}$ ;  $\frac{100 \pi}{58}$ ;  $\frac{300 \times 500}{\pi}$ .
- 18. Also obtain the colog of 43560 (the number of square feet in an acre) and use it to find the area in acres of a field 200 ft.  $\times$  300 ft.; one 300 ft.  $\times$  500 ft.; one 1000 ft.  $\times$  2000 ft.

Using four-place logarithms, compute the value of the following:

19. 
$$1.2634 \times 26.42$$
.

**20.** 
$$.001467 \times 96.8 \times 47.37$$
.

**21.** 
$$556.85 \times .00016277 \times 4.6$$
.

**22**. 
$$(12.67)^3$$
.

**23**. 
$$(3.176)^7$$
.

**24.** 
$$\sqrt{\frac{22.93}{16.91}}$$
.

**25.** 
$$\frac{.0016666}{.00042635}$$
.

26. 
$$\sqrt[3]{42.67 \times .10126 \times 9.2}$$
.

- **27.**  $\sqrt[5]{.0000073}$ .
- 28. Work Exs. 17 and 18 by the four-place tables.
- 29. Why are four-place logarithmic tables sufficiently accurate for the work of a carpenter or land surveyor?

Find the compound interest on:

- **30**. \$359.67 for 8 years at 6%.
- **31.** \$100 for 37 years at 4%.
- 32. \$4962.75 for 16 years at 5%. Try to compute this without the use of logs. About how much longer is the process without logs? Which process is more likely to be accurate?
- 13. Complex Computations. By the use of the properties of logarithms demonstrated in Art. 9, the value of a complex numerical expression may be computed.

Ex. 1. Compute 
$$\sqrt{\frac{215}{67 \times 52}}$$
 by the use of logarithms.

$$\log \sqrt{\frac{215}{67 \times 52}} = \frac{1}{2} \log \frac{215}{67 \times 52} = \frac{1}{2} (\log 215 + \text{colog } 67 + \text{colog } 52).$$

Before looking up the logarithm of any number in the table, it is important to make a scheme or outline of the work, leaving blank the places which are to be filled in by logs taken from the table. Thus the preliminary outline for Ex. 1 would be as follows:

After looking up and inserting the logarithms and completing the computation, the work will appear as follows:

$$215 \log 2.33244$$

$$67 \log 1.82607 \operatorname{colog} 8.17393 - 10$$

$$52 \log 1.71600 \operatorname{colog} 8.28400 - 10$$

$$2)\overline{18.79037 - 20}$$

$$Answer = .248422 \log 9.39519 - 10$$

One advantage of the above method of tabulating logarithmic work is that without essential change in the form of the tabulating, the work may be presented in the above complete form, or in a more condensed form (at the option of the teacher), as by omitting the logs of 67 and 52 and giving only their respective cologs in the tabulation.

Ex. 2. Compute 
$$\frac{\sqrt{21.8} \cdot \sqrt[3]{.03678}}{.28756}$$
 by the use of logarithms.  
 $\frac{21.8 \log 1.33846}{.03678 \log 8.56561 - 10 \frac{1}{3} \log 9.52187 - 10}{\frac{.28756 \log 9.45873 - 10 \cos 0.54127}{Answer = 5.39975 \log 0.73237}$ 

14. Exponential Equations. An exponential equation is one in which the unknown quantity occurs in the exponent of some term or factor, as  $a^x = b$ . An equation of this kind can often be solved by the use of logarithms.

Ex. Find the value of x in the equation  $.3^x = 2$ .

Taking the logarithm of each member of the equation,

$$x \log .3 = \log 2.$$

Hence\* 
$$x = \frac{\log 2}{\log .3} = \frac{0.30103}{9.47712 - 10} = \frac{0.30103}{-0.52288} = -.575^+, Ans.$$

#### EXERCISE 6

Using five-place tables, compute the value of the following:

(Do not fail to make an outline of the work in each example before looking up any logarithms.)

1. 
$$\frac{\sqrt{21.82} \times \sqrt[3]{.0071725}}{.92678}$$
 3.  $\sqrt{\frac{.59 \times 2209}{47 \times .3481}}$  2.  $\frac{(\sqrt[5]{.26728})^3}{(.06756)^2}$  4.  $\sqrt{(.19678)^2 - (.06756)^2}$ 

3. 
$$\sqrt{\frac{.59 \times 2209}{47 \times .3481}}$$

**2.** 
$$\frac{(\sqrt[5]{.26728})^3}{(.06756)^2}$$

4. 
$$\sqrt{(.19678)^2 - (.072567)^2}$$

5. 
$$\frac{(\sqrt{278.2} \times 2.578)^2}{\sqrt[3]{.00231} \times \sqrt{76.19}}.$$

6. 
$$\sqrt[5]{\frac{267.85 \times 7 \times .000925 \times 468.765}{(21.67)^2 \times .00096725 \times \sqrt{567.256}}}$$

7. Using the logarithms committed to memory in Ex. 28, Exercise 3, compute each of the following:

$$\sqrt{\frac{300 \times 500}{\pi}}; \quad \sqrt[3]{\frac{300 \pi}{31416}}; \quad \sqrt{\frac{200 \times 30}{37 \pi}}.$$

$$\sqrt[3]{\frac{300 \, \pi}{3 \, 1416}};$$

$$\sqrt{\frac{200\times30}{37\pi}}$$

8. If there are 39.37 inches in a meter, convert the following into feet: 500 meters; 7294 meters; 300 meters (height of Eiffel Tower). What logs used in the first of these computations could be retained and used in the other computations?

Solve for x:

9. 
$$6^x = 67$$
.

11. 
$$2.8^x = .1967$$
.

**10.** 
$$14^{2x+3} = 2167$$
.

12. 
$$.85^x = .01978$$
.

\*If the teacher prefers, the remainder of the work for this example may be arranged as follows:

$$\log x + \log (\log .3) = \log (\log 2).$$

$$\therefore \log x = 1 \cdot \log 2 - 1 \cdot \log .3.$$

$$2 \log 0.301031 \cdot \log 9.47861 - 10.$$

.3 log 9.47712 
$$-$$
 10 (or  $-$  .52288) l · log ( $-$ ) 9.71840  $-$  10 colog 0.28160.  $x = -$  .5757+ log  $\overline{9.76021} -$  10.

13. Find the side of a square whose area is equal to that of a parallelogram whose base is 22.678 and whose altitude is 17.375.

14. Find the side of a square whose area is equal to that of a circle whose radius is 13.56.

15. Calculate the value of K in the equation,

$$K = \sqrt{s(s-a)(s-b)(s-c)},$$

when  $s = \frac{a+b+c}{2}$ , and a = 17.6, b = 21.675, c = 26.427.

**16.** Calculate the value of b in the equation,  $b = \sqrt{a^2 - c^2}$ , when a = .17623 and c = .12673. (Use  $b = \sqrt{(a+c)(a-c)}$ , etc.)

17. Find the volume of a sphere whose radius is 14.7, if  $V = \frac{4}{3} \pi R^3$  and  $\pi = 3.1416$ .

**18.** Given t = 8, a = 32.17, find s, if  $s = \frac{1}{2} at^2$ .

**19.** Given  $s = \frac{a+b+c}{2}$  and a = .1732, b = .14326, c = .2242, find

$$h$$
, if  $h = \frac{2}{c}\sqrt{s(s-a)(s-b)(s-c)}$ .

**20.** Given R = 14.16 and  $\pi = \frac{2.2}{7}$ , find S, if  $S = 4 \pi R^2$ .

**21.** Given  $\pi = \frac{2.2}{7}$  and D = 23.8, find V, when  $V = \frac{1}{6} \pi D^3$ .

**22.** In how many years will \$1\$ at compound interest at 5% amount to \$25?

Using four-place tables, compute the value of the following:

**23.** 
$$\sqrt[3]{\frac{529}{67 \times 51.8}}$$
.

**25.** 
$$\frac{16.78}{12.97} \sqrt{\frac{12.97}{16.78}}$$

**24.** 
$$\sqrt{\frac{.3756 \times .265}{.227 \times .1678}}$$
.

**26**. 
$$\sqrt[3]{(125)^2 - (67)^2}$$
.

**27.** 
$$\frac{47.326}{.10021} \sqrt{\frac{55400 \times 8}{123456 \times .007}}$$
.

**28**. 
$$\sqrt[3]{.2167} \times \sqrt[5]{\frac{21.67}{32.77}} \times \sqrt{\frac{.16765}{1.76364}}$$

**29.** 
$$\left\{\sqrt{\frac{\sqrt{12.673} (26.72)^2}{(36.27)^{\frac{1}{2}} \times .01267}}\right\}^3$$
.

Solve for x:

**30.** 
$$2^x = 19$$
.

**32.** 
$$19.38^{3x} = 81672$$
.

**31**. 
$$4^{2x-3} = 11^{x+1}$$
.

33. 
$$.17^x = .4782$$
.

- **34**. Find the side of a square whose area is equal to that of a rectangle whose base is 17.628 and whose altitude is 8.263.
- **35.** Find the volume of a sphere whose radius is 1.1124, using  $V = \frac{4}{3} \pi R^3$  and  $\pi = \frac{22}{7}$ .
  - **36.** Given t = 12 and g = 32.17, find s, if  $s = \frac{1}{2}gt^2$ .
  - 37. Work Exs. 16-19 above by the use of four-place tables.
  - 38. Work Exs. 7 and 8 above by the use of four-place tables.

#### GENERAL PROPERTIES OF SYSTEMS OF LOGARITHMS

15. The logarithm of unity in any system of logarithms is zero.

For, if a be the base,

$$1 = a^0$$
.  $\log_a 1 = 0$ .

16. The logarithm of the base in any system of logarithms is unity.

For 
$$a = a^1$$
.  $\therefore \log_a a = 1$ .

17. The logarithm of zero in any system whose base is greater than unity is negative infinity; that is, as the number approaches 0, the logarithm approaches negative infinity.

For, since 
$$a > 1$$
,  $0 = \frac{1}{\infty} = \frac{1}{a^{\infty}} = a^{-\infty}$ .  $\therefore \log 0 = -\infty$ .

But in any system whose base is less than unity, the logarithm of zero is positive infinity.

For, since 
$$a < 1, 0 = a^{\infty}$$
.  $\log_a 0 = \infty$ .

18. Logarithm of a Product, Quotient, Power, and Root in any system.

If a be taken as the base, and m and n be any two numbers, it can be shown in a manner similar to that used in Art. 9 that

- $1. \log_a mn = \log_a m + \log_a n.$
- 2.  $\log_a \frac{m}{n} = \log_a m \log_a n$ . [Let the pupil supply the proof. See Art. 9; use
- 3.  $\log_a m^p = p \log_a m$ .
- 4.  $\log_a \sqrt[p]{m} = \frac{\log_a m}{p}$ .

19. Changing the Base of a System of Logarithms. Given the logarithm of a given number, r, to a base a, to find the logarithm of r to another base k, we use the following formula:

by definition of a logarithm.

Take the logarithm of each member of (1) to base a, then  $x \log_a k = \log_a r$ .

Hence, 
$$x = \frac{\log_a r}{\log_a k}$$
, or  $\log_k r = \frac{\log_a r}{\log_a k}$ .

It follows as a special case that if r = a,

$$\log_k a = \frac{1}{\log_a k}$$
, or  $\log_k a \cdot \log_a k = 1$ .

Ex. Find the logarithm of .7 to the base 5. By the formula just proved,

$$\begin{split} \log_5.7 = & \frac{\log_{10}.7}{\log_{10} 5} = \frac{9.84510 - 10}{0.69897} \\ = & \frac{-0.1549}{0.69897} = -0.2216^+, \, \textit{Ans.} \end{split}$$

#### **EXERCISE 7**

In working the first twelve examples in the following exercise use four-place tables in solving the even-numbered examples, and five-place tables in solving the odd-numbered examples.

Find the value of:

| 1. | $\log_5 60.$        | 5.         | $\log_{\sqrt{3}} \sqrt{5}$ . | 9.  | $\log_2.7261$ .         |
|----|---------------------|------------|------------------------------|-----|-------------------------|
| 2. | $\log_6 9.3.$       | 6.         | $\log_{80} 18.$              | 10. | $\log_{.021}.08275$ .   |
| 3. | $\log_{3.7} 26.2$ . | <b>7</b> . | $\log_{1.8} .17362.$         | 11. | $\log_{1.2}.9267.$      |
| 4. | $\log_4 .93.$       | 8.         | $\log_{.8}.2631.$            | 12. | $\log_7 \sqrt{3.1416}.$ |

Find without the use of tables:

**13**.  $\log_3 27$ .

**15**.  $\log_9 \frac{1}{81}$ .

**17.**  $\log_2 .125$ .

**14**.  $\log_2 32$ .

**16.**  $\log_{\frac{1}{16}} 8$ .

**18**.  $\log_2.0625$ .

19. Find the base of the system of logarithms in which the log of 16 = 4.

**20.** If the log of  $27 = \frac{3}{4}$ , find the base.

**21.** If  $\frac{1}{2}$  = the log of 5, find the base.

**22.** Given the log of  $5\frac{1}{16} = -\frac{4}{3}$ , find the base.

23. If the log of 64 = 1.2, find the base.

**24**. In how many years will a sum of money double itself at 4% compound interest? at 6%?

25. If \$1520 amounts to \$10,701.46 in 40 years at compound interest, what is the rate per cent?

26. Who invented logarithms, and when (see p. 169)? Find out all you can about this man and the way in which he invented logarithms.

27. What nation first divided the circle into 360 degrees, and one degree into 60 minutes?

#### CHAPTER II

#### DEFINITIONS. TRIGONOMETRIC FUNCTIONS

20. Source of New Power. Illustrations. A spring of water is situated at the point A and a house at B. It is desired to find the length of a pipe needed to connect B with A, A and B being separated by a swamp. How can the length of the pipe be determined without going through the swamp?



If the swamp is situated as in Fig. 1, so that a point C can be taken where CA and CB form a right angle, then CA and CB can be measured and the length of AB computed by the methods of plane geometry. Let the pupil compute AB of Fig. 1.

But if the swamp is situated as in Fig. 2, the above method of computing AB cannot be followed. However, if we take a convenient point C in Fig. 2 and measure the lines AC, CB, and the  $\angle C$ , the distance AB can be computed provided we have a table giving the ratios of the sides of all possible right triangles. Thus from this table we form the triangle given (on enlarged scale) in Fig. 3. Then by the properties of similar triangles we have the proportion 10:5.2=420 yd. AD.

From this proportion AD is obtained; afterward AB may be computed from the right triangle ADB by geometry.

Hence the source of new power in trigonometry is a set of tables giving the ratio of each pair of sides in all possible right triangles.

By the aid of such tables it will be found that we are able

to find the unknown parts of many triangles which cannot be solved by ordinary geometry. Thus it will be found that if one side AB (Fig. 4) and any two angles (as A and B) of a triangle be known, the other sides (AC and CB) may be computed. By this method, for instance, the



Fig. 4.

distance from the earth to the moon is computed. (For other illustrations of the new power given by trigonometry see Chapter VII.)

21. Trigonometry, as first considered, is that branch of mathematics which determines the remaining parts of a triangle from certain given parts.

Thus it will be found that if any three parts of a triangle are given, provided one of them is a side, the remaining parts may be determined.

Later the word trigonometry comes to have a more extended meaning so as to cover the theory of the functions of angles in general wherever these angles may be found. Hence it comes to include much of the theory of wave motion and therefore of particular cases of wave motion, as of sound, light, and electricity. It also becomes largely algebraic in nature.

Plane Trigonometry treats of plane triangles.

See if you can find the derivation of the word trigonometry.

22. Trigonometric Functions of an Acute Angle. The fundamental tools or instruments used in trigonometry are the functions of an angle now to be described and defined.

From any point B in one side of an acute angle BAC let fall a perpendicular BC to the other side, forming the right triangle ABC.



Then the ratio  $\frac{BC}{AB}$  is termed the sine of the angle A.

Similarly, cosine 
$$A = \frac{AC}{AB}$$
, cotangent  $A = \frac{AC}{BC}$ , cosecant  $A = \frac{AB}{BC}$ , tangent  $A = \frac{BC}{AC}$ , secant  $A = \frac{AB}{AC}$ , versed sine  $A = 1 - \frac{AC}{AB}$ , coversed sine  $A = 1 - \frac{BC}{AB}$ ,

or, in general, in a right triangle:

The sine of an acute angle is the ratio of the opposite leg to the hypotenuse.

The cosine is the ratio of the adjacent leg to the hypotenuse.

The tangent is the ratio of the opposite leg to the adjacent leg.

The cotangent is the ratio of the adjacent leg to the opposite leg.

The secant is the ratio of the hypotenuse to the adjacent leg.

The cosecant is the ratio of the hypotenuse to the opposite leg.

The versed sine is 1 minus the cosine.

The coversed sine is 1 minus the sine.

These eight ratios are called the trigonometric ratios, or the trigonometric functions.

The versed sine and the coversed sine are used so little in

elementary work that we confine our attention mainly to the other six functions. Hence when we speak of the "six functions" we mean the first six trigonometric functions as given above.

The abbreviations sin, cos, tan, cot, sec, csc, vers, covers, are ordinarily used for the eight functions.

The cosine, cotangent, cosecant, and coversed sine are termed the co-functions of the sine, tangent, secant, and versed sine respectively.

In the above triangle (Fig. 6), denoting the side AB by c, AC by b, and BC by a, we have

 $\sec A = \frac{c}{7}$ 

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$

$$\cot A = \frac{b}{a}$$

$$\sin B = \frac{b}{c}$$

$$\cos B = \frac{a}{c}$$

$$\cot B = \frac{a}{b}$$

$$\cot B = \frac{a}{b}$$

$$\cot B = \frac{b}{a}$$

$$\cot B = \frac{a}{b}$$

Or using abbreviations,

 $\sin A = \frac{a}{c}$ 

sin of either acute  $\angle = \frac{\bot \text{ opp.}}{\text{hyp.}}$ , cot of either acute  $\angle = \frac{\bot \text{ adj.}}{\bot \text{ opp.}}$  cos of either acute  $\angle = \frac{\bot \text{ adj.}}{\text{hyp.}}$ , sec of either acute  $\angle = \frac{\text{hyp.}}{\bot \text{ adj.}}$  tan of either acute  $\angle = \frac{\bot \text{ opp.}}{\bot \text{ adj.}}$ , csc of either acute  $\angle = \frac{\text{hyp.}}{\bot \text{ opp.}}$ 

The method of indicating a power of a trigonometric function is shown by the following example: for "the square of the sine of the angle A," that is, for " $(\sin A)^2$ ," we write " $\sin^2 A$ ." How then would "the cube of  $\cos A$ " be written? "The *n*th power of  $\tan A$ ?"

In this book unless the contrary is stated, in the right triangle ABC, the letter C is supposed to be placed at the vertex of the right angle.

- 23. Utility of the Trigonometrical Ratios. It will be found that the numerical value of the above trigonometrical ratios for every angle from 0° to 90° may be computed and arranged in tables whence they may be taken and used when needed. These numerical values are used by what is virtually the geometrical principle of similar triangles in solving triangles. Later, however, they become units and elements which can be variously grouped and used in many kinds of algebraic processes.
  - 24. The value of a trigonometric function of an angle depends only on the size of the angle, not on the length of the lines chosen to



form the ratios.

Thus, by similar triangles (in Fig.7),  $\sin A = \frac{B'C'}{AB'} = \frac{BC}{AB} = \frac{B''C''}{AB''}, \text{ etc.}$ 

25. Given two sides of a right triangle, to compute the trigonometric functions for both acute angles of the triangle.

Ex. If in a right triangle a = 3, and b = 4, find c and the trigonometric ratios of each acute angle.

The hypotenuse 
$$c = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$
  
Hence  $\sin A = \frac{3}{5} \sin B = \frac{4}{5}$   
 $\cos A = \frac{4}{5} \cos B = \frac{3}{5}$   
 $\tan A = \frac{3}{4} \tan B = \frac{4}{3}$   
etc. etc.



In studying trigonometry (and indeed in all mathematical work) the pupil should make the capital letter a in the printed form  $\mathcal{A}$  and not in the script form  $\mathcal{C}$ . In other words, he should make the small and capital letters as unlike as possible, and hence make them unlike in shape as well as in size. The reason for this is that the small and capital letters have entirely different meanings; and if as written by the pupil they have the same shape, the pupil is continually mistaking the small letter for the large, and *vice versa*. Similarly the capital letter c should always be written in the form  $\mathcal{L}$  and not C.

#### **EXERCISE 8**

1. Write the functions of the acute angle B (Fig. 6) in terms of a, b, c. (Let the teacher invert the triangle in various ways.)

2. Construct a right triangle in which a = 8, b = 6, c = 10, and write out the functions of A in this triangle; also of B.

Determine the value of the functions of A in the rt.  $\triangle ABC$ , whose sides are a, b, c, if:

3. 
$$a = 6$$
,  $b = 8$ .

**6**. 
$$a = 39$$
,  $b = 80$ .

**4.** 
$$a = 8$$
,  $b = 15$ .

7. 
$$a = .09$$
,  $c = .41$ .

5. 
$$a = 12$$
,  $c = 13$ .

8. 
$$b = 12$$
,  $c = 16.9$ .

9. Find the value of the functions of B in Exs. 3-8.

10. In Ex. 2 find the value of

(1) 
$$\sin A \tan A$$
.

(4) 
$$1 + \tan^2 A$$
.

(7) 
$$\tan A - \frac{\sin A}{\cos A}$$
.

(2) 
$$\sin^2 A + \cos^2 A$$
.  
(3)  $\sin A \csc A$ .

(8) 
$$\cos A \sec A$$
.

By the use of squared paper construct the angle whose

11. Tangent = 
$$\frac{3}{4}$$
.

**16.** sine 
$$=\frac{2}{3}$$
.

12. Tangent = 
$$\frac{1}{2}$$
.

**17.** cosine 
$$=\frac{1}{5}$$
.

13. Tangent 
$$= 1$$
.

18. secant 
$$=\sqrt{3}$$
.

**14.** Tangent 
$$= 4$$
.

19. 
$$cosecant = 5$$
.

**15.** Tangent = 
$$\sqrt{3}$$
.

20. Construct with a protractor an angle of 23°. Then construct a right triangle with sides of convenient length having 23° for one of its angles. Measure the sides of this right triangle and hence find sin 23°. Compare this value with the value of sin 23° given in Table V. Determine and test cos 23° and tan 23° in the same way.

- 21. Treat 37° in the same way; also 52°.
- **22.** On Fig. 2 (p. 24) compute the numerical value of AD; then of CD and DB; then of AB.
  - 23. On Fig. 3, what is the value of  $\sin A'$ ?
- **24.** On Fig. 6, if AB = 125,  $\angle B = 27^{\circ}$ , and  $\sin 27^{\circ} = .454$ , compute AC.
- 25. Can you suggest some practical problem similar to that given in Art. 20, which could be solved by trigonometry and not by geometry? What is the source of new power in trigonometry which enables us to do this?
- 26. If by the methods of trigonometry we are able to solve any triangle in which one side and any two angles are given, suggest some practical problem which could be solved by this means (and not by geometry).

In a rt.  $\triangle$ , given:

- **27.**  $a = \sqrt{p^2 + q^2}$ ,  $b = \sqrt{2pq}$ , find sin A and cos A.
- **28.** a=2 mn,  $c=m^2+n^2$ , determine  $\sin A$ ,  $\sec A$ , and  $\tan A$ .
- **29.** b = 2 pq,  $c = p^2 + q^2$ , find tan A, sin A, esc A.
- **30.**  $a = \sqrt{m^2 + mn}$ ,  $b = \sqrt{mn + n^2}$ , find all the functions of B.
- **31.** If  $a = 2\sqrt{mn}$  and c = m + n, find all the functions of B.
- **32.** If a = 60 and c = 61, find sec A,  $\tan B$ ,  $\cot B$ ,  $\sin A$ .
- **33.** If b = 2.64 and c = 2.65, find the functions of B.
- **34.** If a = 2b, find the functions of A.
- **35.** If  $b = \frac{2}{3}c$ , find the functions of A.
- **36.** If  $a+b=\frac{4}{3}c$ , find the functions of B.
- **37.** If  $a-b=\frac{7}{13}c$ , find the functions of A.
- **38.** Find the functions of B, if a = 4 d and b = 3 d.

By use of squared paper construct a rt.  $\triangle$ , given:

- **39.** c = 4 and  $\tan A = \frac{3}{2}$ .
- **40.** b = 3 and  $\sin A = \frac{3}{4}$ .
- **41**. Find b if  $\cos A = .36$  and c = 4.5.
- **42.** On Fig. 8,  $\sin A = \text{what}$ ?  $\cos B = \text{what}$ ? Does  $\sin A = \cos B$ ? In like manner, show that  $\cos A = \sin B$ ,  $\tan A = \cot B$ ,  $\cot A = \tan B$ ,  $\sec A = \csc B$ ,  $\csc A = \sec B$ .
  - 43. Show the same on Fig. 6.

**44.** In Fig. 6, since c is the hypotenuse, it is evident that it is greater than either leg. Hence sin A, or  $\frac{a}{c}$ , is always less than 1.

What other function of A is always less than 1? Which functions of A are always greater than 1? Which may be either greater or less than 1?

- **45.** Which of the six functions are always proper fractions? improper fractions? may be either proper or improper fractions? Verify this on Fig. 8.
- **46.** If A is any acute angle, is it correct to say that  $\sec A$  is always greater than  $\sin A$ ? Why?
- **47.** The values of which of the six functions of A (on Fig. 6) have c for a denominator? a? b?
- **48.** How many of the above examples can you work at sight (*i.e.* for how many can you give results without the use of pencil and paper)?
- 26. Functions of the Complement of an Angle. From Fig. 6 (page 26).

 $\sin A = \frac{a}{c}; \text{ also } \cos B = \frac{a}{c}.$ Hence,  $\sin A = \cos B$ 

Hence,  $\sin A = \cos B$ ,

 $\sin A = \cos (90^{\circ} - A), \text{ since } B = 90^{\circ} - A.$ 

Let the pupil show in like manner that

 $\cos A = \sin B = \sin (90^{\circ} - A),$ 

 $\tan A = \cot B = \cot (90^{\circ} - A),$ 

 $\sec A = \csc B = \csc (90^{\circ} - A).$ 

Hence, in general,

or

and

Any trigonometric function of an angle is equal to the cofunction of the complement of the angle.

By the use of this property,

Any trigonometric function of an angle between 45° and 90° can be reduced to the function of an angle between 0° and 45°.

Thus,  $\sin 88^{\circ} 10' = \cos 1^{\circ} 50'$ .

## **EXERCISE 9**

Express each of the following trigonometric functions as a function of the complementary angle:

sin 60°.

2. cos 15°.

3.  $\tan 65^{\circ} 24'$ .

4. cot 55° 36′.

9. Given  $\tan 60^\circ = \sqrt{3}$ , find  $\cot 30^\circ$ .

**10.** Given  $\sin 30^{\circ} = \frac{1}{2}$ , find  $\cos 60^{\circ}$ .

11. Given  $\cos A = \frac{x}{y}$ , find  $\sin (90^\circ - A)$ .

**12.** Given  $\sin A = p$ , find  $\cos (90^{\circ} - A)$ .

13. How many of the examples in this exercise can you work at sight?

### RELATIONS OF TRIGONOMETRIC FUNCTIONS OF AN ANGLE

27. Three pairs of reciprocals exist among the trigonometric functions of an acute angle, viz.:

sin and csccos and sectan and cot

For



$$\frac{a}{c} \times \frac{c}{a} = 1. \quad \therefore \sin A \times \csc A = 1.$$

5. esc 21° 24′ 30″.

6. sec 84° 16′.

7. sin 89° 59′.

8. cos 1° 18′.

$$\frac{b}{c} \times \frac{c}{b} = 1. \quad \therefore \cos A \times \sec A = 1.$$

$$\frac{a}{b} \times \frac{b}{a} = 1$$
.  $\therefore \tan A \times \cot A = 1$ .

28. Four equations connect the trigonometric functions of an acute angle in important ways.



Dividing (1) by  $c^2$ ,

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$
, or  $\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$ ;

that is,

$$\sin^2 A + \cos^2 A = 1.$$

Dividing (1) by  $b^2$ ,

$$\frac{a^2}{b^2} + 1 = \frac{c^2}{b^2}$$
, or  $(\frac{a}{b})^2 + 1 = (\frac{c}{b})^2$ ;

that is,

$$\tan^2 A + 1 = \sec^2 A.$$

Let the student prove in like manner that

$$\cot^2 A + 1 = \csc^2 A.$$

Also from Fig. 9.

$$\frac{a}{b} = \frac{a}{c} \div \frac{b}{c};$$

that is,

$$\tan A = \frac{\sin A}{\cos A}.$$

29. Hence nine (or more) formulas give important values for the trigonometric functions. For from the results of Arts. 27 and 28 we readily obtain, for instance,

$$\sin A = \sqrt{1 - \cos^2 A}.$$
  $\cot A = \frac{\cos A}{\sin A}.$   $\cot A = \frac{\sin A}{\sin A}.$   $\cot A = \frac{\sin A}{\cos A}.$   $\cot A = \frac{1}{\cos A}.$   $\cot A = \frac{1}{\cos A}.$   $\cot A = \frac{1}{\sin A}.$   $\cot A = \frac{1}{\cot A}.$   $\cot A = \frac{1}{\sin A}.$ 

30. One trigonometric function of an angle being given, the other functions may be found in either of two ways.

ALGEBRAIC METHOD. By use of the formulas of Art. 29 and equations of Art. 28.

Ex. 1. If  $\sin A = \frac{2}{3}$ , find the other trigonometric functions of A.

$$\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{1}{3}\sqrt{5}.$$

$$\tan A = \frac{\sin A}{\cos A} = \frac{2}{3} \div \frac{\sqrt{5}}{3} = \frac{2}{\sqrt{5}} = \frac{2}{5}\sqrt{5}.$$

$$\cot A = \frac{1}{\tan A} = \frac{\sqrt{5}}{2}.$$

$$\sec A = \frac{1}{\cos A} = 1 \div \frac{\sqrt{5}}{3} = \frac{3}{\sqrt{5}} = \frac{3}{5}\sqrt{5}.$$

$$\csc A = \frac{1}{\sin A} = 1 \div \frac{2}{3} = \frac{3}{2}.$$

$$\operatorname{vers} A = 1 - \cos A = 1 - \frac{1}{3}\sqrt{5}.$$

$$\operatorname{covers} A = 1 - \sin A = 1 - \frac{2}{3} = \frac{1}{3}.$$

Ex. 2. If  $\tan x = 2$ , find the other functions of x.

$$\sec^{2} x = 1 + \tan^{2} x. \quad (Art. 28.)$$

$$\therefore \sec^{2} x = 1 + 4 = 5.$$

$$\sec x = \sqrt{5}.$$

$$\cos x = \frac{1}{\sec x} = \frac{1}{\sqrt{5}} = \frac{1}{5}\sqrt{5}.$$

$$\sin x = \sqrt{1 - \cos^{2} x} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{5}\sqrt{5}, \text{ etc.}$$

Geometric Method. This consists of constructing a right triangle by use of the given function and deriving the required functions from the right triangle.

Ex. 3. Given  $\sin A = \frac{2}{3}$ , obtain the other trigonometric functions of A by use of the right triangle.

Construct a right triangle whose hypotenuse is 3 and altitude is 2, as ABC.



Then 
$$AC = \sqrt{3^2 - 2^2} = \sqrt{9 - 4} = \sqrt{5}$$
.

Then from the figure by the definitions of the trigonometric ratios

$$\begin{cases} 2 & \cos A = \frac{\sqrt{5}}{3}; & \tan A = \frac{2}{\sqrt{5}} = \frac{2}{5}\sqrt{5}; & \cot A = \frac{\sqrt{5}}{2}; \\ \sec A = \frac{3}{\sqrt{5}} = \frac{3}{5}\sqrt{5}; & \csc A = \frac{3}{2}; & \operatorname{vers} A = 1 - \frac{\sqrt{5}}{3}; \\ & \operatorname{covers} A = 1 - \frac{2}{3} = \frac{1}{3}. \end{cases}$$

As the sides of a right triangle are all positive in sign, in studying the trigonometry of the right triangle we neglect the  $\pm$  sign usually placed before a square root radical sign, and take any square root radical as normally plus. When we come to study angles in general, as in Chapters IV and V, it will be necessary carefully to consider whether the sign before a given radical sign is to be taken as + or - (see Art. 61).

#### **EXERCISE 10**

Find by means of the formulas the values of the other functions of A, given:

| 1. | $\sin A = \frac{15}{17}.$ | 5. | $\cot A = m$ .       | 9.  | $\tan A = 0$ .      |
|----|---------------------------|----|----------------------|-----|---------------------|
| 2. | $\tan A = \frac{12}{5}$ . | 6. | $\csc A = \sqrt{5}.$ | 10. | $\sin A = 1$ .      |
| 3. | $\sec A = \frac{41}{9}$ . | 7. | $\sin A = 0$ .       | 11. | $\sec A = \infty$ . |
| 4. | $\cos A = \frac{2}{3}$ .  | 8. | $\cos A = 0$ .       | 12. | $\sin x = 5 p$ .    |

Find by geometric methods (squared paper may be used to advantage in constructing diagrams) the other functions of A (or x), given:

13. 
$$\tan A = \frac{3}{4}$$
.16.  $\cot A = \frac{3}{2}$ .19.  $\tan A = m$ .14.  $\cos A = \frac{5}{13}$ .17.  $\sin A = \frac{1}{2}$ .20.  $\sin A = \frac{1}{2}\sqrt{2}$ .15.  $\csc A = \frac{17}{15}$ .18.  $\sec A = 4$ .21.  $\cos x = 1$ .

Find by both methods the other functions of the angle named when:

22. 
$$\csc A = \frac{41}{40}$$
.27.  $\cos A = \frac{5}{8}$ .23.  $\tan A = \frac{2 mn}{m^2 - n^2}$ .28.  $\sec A = \frac{4}{\sqrt{6} - \sqrt{2}}$ .24.  $\cot A = \sqrt{2} + 1$ .29.  $\cos A = K$ .25.  $\sin A = 1$ .30.  $\cot 15^\circ = 2 + \sqrt{3}$ .

Express each of the other trigonometric functions of A in terms of:

31. 
$$\sin A$$
.
 38. Given  $\sin A = \frac{3}{4}$ , find  $\cot A$ .

 32.  $\cos A$ .
 39. Given  $\cos A = \frac{3}{80}$ , find  $\csc A$ .

 33.  $\tan A$ .
 40. Given  $\tan A = \sqrt{3}$ , find  $\sin A$ 

 34.  $\cot A$ .
 41. Given  $\csc A = \frac{8}{5}$ , find  $\cot A$ .

 35.  $\sec A$ .
 42. Given  $\sec A = \frac{2}{7}$ , find  $\cot A$ .

 36.  $\csc A$ .
 43. Given  $\cot A = \sqrt{2} - 1$ , find  $\cos A$ .

 37.  $\cot A$ .
 44. Given  $\cot A = \sqrt{6}$ , find  $\csc A$ .

- **45.** Transform the expression  $\sin^2 A + \cos A$  so that the only trigonometric function contained in it shall be  $\cos A$ .
  - **46.** Transform  $(1 + \tan^2 A)$  sec A so that it shall contain only  $\cos A$ .
- **47.** Transform  $(\tan A + \cot A) \sec A \cos A$  so that it shall contain only  $\sin A$  and  $\cos A$ .
- **48.** Transform the equation  $\cos^2 x \sin^2 x = \sin x$  so that it shall contain only  $\sin x$ .
  - **49.** Transform  $\tan x = 2 + \cot x$  so that it shall contain only  $\tan x$ .
- 50. Which of the six functions are always less than 1? Which are always greater than 1? Which may be either greater or less than 1? How can you use this principle in testing the accuracy of examples like Exs. 1-30 of this Exercise?
  - 51. How many of the above examples can you work at sight?

## 31. Trigonometric Identities.

As stated in algebra, an *identity* is an equality which is true for all values of the unknown quantity (or quantities) contained in it.

Thus  $(x+2)(x-2)=x^2-4$  is an identity, since it is true for all values of x, as for  $x=0, 1, 2, 3, \dots$ , or -1, -2, etc.

An equation proper (or a conditional equation) is an equality which is true only for a certain special value (or values) of the unknown quantity (or quantities).

Thus  $x^2 - x = 2 x - 2$  is true only when x = 1 or 2, and hence is an equation proper, or conditional equation.

The equality mark used in equations is =, and that used in identities is  $\equiv$ . However, in elementary mathematics it is customary to use the mark = for both equations and identities and let the context decide whether we are dealing with an identity or an equation.

Similarly in geometry the word "circle" is sometimes used to denote an area and sometimes a line (the circumference), the context deciding in each case what is meant. So 8" may mean either 8 inches or 8 seconds of angle, etc.

Relations of identity among trigonometrical functions may be proved in either of two ways.

FIRST METHOD. By use of the formulas for the functions given in Arts. 28 and 29 (and particularly those which reduce the function to sine and cosine) an expression may

be proved identical with another, by reducing one of the given expressions directly to the form of the other.

Ex. 1. Prove 
$$\cot^2 A \cos^2 A = \cot^2 A - \cos^2 A$$
.

$$\cot^2 A \cos^2 A = \frac{\cos^2 A}{\sin^2 A} \cos^2 A$$

$$= \frac{(1 - \sin^2 A) \cos^2 A}{\sin^2 A}$$

$$= \frac{\cos^2 A}{\sin^2 A} - \frac{\sin^2 A \cos^2 A}{\sin^2 A}$$

$$= \cot^2 A - \cos^2 A.$$

Instead of proving an identity by reducing one member of the identity to the form of the other, it is sometimes more advantageous to reduce both expressions to a common third form, and hence infer their identity by Ax. 1.

Thus we may start with  $\cot^2 A \cos^2 A = \cot^2 A - \cos^2 A$  and transform it as follows:

$$\begin{split} \frac{\cos^2 A}{\sin^2 A} &\cos^2 A = \frac{\cos^2 A}{\sin^2 A} - \cos^2 A, \\ &\frac{\cos^4 A}{\sin^2 A} = \frac{\cos^2 A - \cos^2 A \sin^2 A}{\sin^2 A} \cdot \\ &\frac{\cos^4 A}{\sin^2 A} = \frac{\cos^2 A \left(1 - \sin^2 A\right)}{\sin^2 A} \cdot \\ &\frac{\cos^4 A}{\sin^2 A} = \frac{\cos^4 A}{\sin^2 A} \cdot \end{split}$$

Since the last is plainly an identity, we infer that

$$\cot^2 A \, \cos^2 A = \cot^2 A - \cos^2 A$$

is also an identity.

 $\mathbf{or}$ 

SECOND METHOD. By use of the values of the functions obtained by applying the definitions of the functions to the right triangle (Art. 22, Fig. 6).

Ex. 2. Prove 
$$\frac{\sin A}{\cos A \tan^2 A} = \cot A$$
.

Substitute  $\frac{a}{c}$  for  $\sin A$ ;  $\frac{b}{c}$  for  $\cos A$ ;  $\frac{a}{b}$  for  $\tan A$ ;  $\frac{b}{a}$  for  $\cot A$ . Then

$$\frac{\sin A}{\cos A \tan^2 A} = \frac{\frac{a}{c}}{\frac{b}{c} \cdot \frac{a^2}{b^2}} = \frac{b}{a} = \cot A.$$

#### EXERCISE II

Prove each of the following identities:

(In the solution of identities, the first of the two methods given above is to be preferred, since its use helps fix in mind the fundamental equations and formulas given in Arts. 28 and 29.)

1. 
$$\cos A \tan A = \sin A$$
.

2. 
$$\sin A \sec A = \tan A$$
.

3. 
$$\cos A \csc A = \cot A$$
.

4. 
$$\cos A = \sin A \cot A$$
.

5. 
$$\sin A = \cos A \tan A$$
.

6. 
$$\frac{1 + \cos A}{\sin A} = \frac{\sin A}{1 - \cos A}$$

7. 
$$\frac{1 + \sin A}{\cos A} = \frac{\cos A}{1 - \sin A}$$

8. 
$$\sin^2 A - \cos^2 A = 2 \sin^2 A - 1$$
.

9. 
$$(1 - \sin^2 A) \tan^2 A = \sin^2 A$$
.

**10.** 
$$(\tan A + \cot A) \sin A \cos A = 1$$
.

**11.** 
$$(1 - \sin^2 A) \csc^2 A = \cot^2 A$$
.

**12.** 
$$(\sin A + \cos A)^2 = 1 + 2 \sin A \cos A$$
.

**13.** 
$$(\sin A + \cos A)^2 + (\sin A - \cos A)^2 = 2$$
.

**14.** 
$$(\csc^2 A - 1) \sin^2 A = \cos^2 A$$
.

15. 
$$\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \sec A \csc A.$$

16. 
$$\frac{\cot^2 A}{1 + \cot^2 A} = \cos^2 A$$
.

17. 
$$\tan A + \cot A = \sec A \csc A$$
.

**18.** 
$$\tan A + \cot A = \frac{\sec^2 A + \csc^2 A}{\sec A \times \csc A}$$

**19.** 
$$\sin^4 A - \cos^4 A = \sin^2 A - \cos^2 A$$
.

**20.** 
$$\frac{\sin A}{1 - \cot A} + \frac{\cos A}{1 - \tan A} = \sin A + \cos A$$
.

21. 
$$\sqrt{\frac{1-\cos A}{1+\cos A}} = \csc A - \cot A.$$

**22.** 
$$\frac{1 + \tan A}{1 + \cot A} = \frac{1 - \tan A}{\cot A - 1}$$

$$23. \cot A + \tan A = \frac{1}{\sin A \cos A}.$$

**24.** 
$$\tan^2 A - \sin^2 A = \tan^2 A \sin^2 A$$
.

**25.** 
$$\csc^4 A - 2 \csc^2 A = \cot^4 A - 1$$
.

**26.** 
$$\sec^4 A (1 - \sin^4 A) = 2 \tan^2 A + 1$$
.

27. 
$$\frac{\csc A}{\tan A + \cot A} = \cos A.$$

28. 
$$\frac{1-\cot^2 A}{1+\cot^2 A} = \sin^2 A - \cos^2 A$$
.

29. 
$$\frac{\cot A - \cos A}{\cot A \cos A} = \frac{\cot A \cos A}{\cot A + \cos A}$$

**30.** 
$$1 - \cot^4 A = 2 \csc^2 A - \csc^4 A$$
.

**31.** 
$$\sqrt{1-\sin^2 A} \tan A = \sin A$$
.

**32.** 
$$\sin^6 A + \cos^6 A = 1 - 3\sin^2 A \cos^2 A$$
.

33. 
$$\cos^3 A - \sin^3 A = (\cos A - \sin A)(1 + \sin A \cos A)$$
.

**34.** Reduce 
$$\tan^6 x \sec^4 x$$
 to the form  $(\tan^8 x + \tan^6 x) \sec^2 x$ .

## Transform:

35. 
$$\tan^8 x$$
 into  $(\tan^6 x - \tan^4 x + \tan^2 x - 1)\sec^2 x + 1$ .

**36.** 
$$\sec^{10} y$$
 into  $\sec^2 y$   $(1 + 4 \tan^2 y + 6 \tan^4 y + 4 \tan^6 y + \tan^8 y)$ .

37. 
$$\sqrt{1+\sin x}$$
 into  $\frac{\cos x}{\sqrt{1-\sin x}}$ 

38. 
$$\frac{1}{1+\sin x}$$
 into  $\sec^2 x - \sec x \tan x$ .

39. 
$$\frac{1+\sin x}{\cos^2 x}$$
 into  $\sec^2 x + \sec x \tan x$ .

- **40.** See if you can make up or discover any other trigonometrical identities for yourself.
  - 41. How many of the above examples can you work at sight?

## TRIGONOMETRIC FUNCTIONS OF PARTICULAR ANGLES

32. Functions of 45°. The trigonometric functions of 30°, 45°, and 60° are used so frequently that it is of service to determine their values and commit these values to

It is helpful to notice that we determine these values in each case by the use of a right angle, the hypotenuse of which is taken as 1.

Fig. 11.

Let ABC (Fig. 11) be an isosceles right triangle, the hypotenuse of which, AB, is 1. Then, by geometry, each leg is  $\frac{1}{2}\sqrt{2}$  (for  $\angle B = 45^{\circ}$ ,  $\therefore AC = BC$ ; but  $\overline{AC}^2 + \overline{BC}^2 = 1^2$ ,  $\therefore 2\overline{BC}^2 = 1^2$ , etc.).

By the definitions of the trigonometric functions,

$$\sin 45^{\circ} = (\frac{1}{2}\sqrt{2}) \div 1 = \frac{1}{2}\sqrt{2}.$$

$$\cos 45^{\circ} = (\frac{1}{2}\sqrt{2}) \div 1 = \frac{1}{2}\sqrt{2}.$$

$$\tan 45^{\circ} = \frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}} = 1.$$

$$\cot 45^{\circ} = \frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}} = 1.$$

$$\sec 45^{\circ} = 1 \div \frac{\sqrt{2}}{2} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

$$\csc 45^{\circ} = 1 \div \frac{\sqrt{2}}{2} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

33. Functions of 30° and 60°. Let ABD (Fig. 12) be an equilateral triangle in which the length of one side is 1. Let AC be  $\bot BD$ .

Then, by geometry

$$\angle BAD = 60^{\circ}$$
,  
 $\angle BAC = 30^{\circ}$ 

and

$$\angle BAC = 30^{\circ}$$
.

Also AC bisects BD, hence  $BC = \frac{1}{2}$ .

$$AC = \sqrt{AB^2 - BC^2} = \sqrt{1 - \frac{1}{4}} = \frac{1}{2}\sqrt{3}.$$

Then in the right triangle ABC,

$$\sin 30^{\circ} = \frac{1}{2}.$$
  
 $\cos 30^{\circ} = \frac{1}{2}\sqrt{3}.$ 



$$\tan 30^{\circ} = \frac{\frac{1}{2}}{\frac{1}{2}\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}.$$

$$\cot 30^{\circ} = \frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}} = \sqrt{3}.$$

$$\sec 30^{\circ} = \frac{1}{\frac{1}{2}\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3}.$$

$$\csc 30^{\circ} = \frac{1}{\frac{1}{2}} = 2.$$

Let the pupil write out in like manner the functions of  $60^{\circ}$  (that is, of  $\angle ABC$  in the  $\triangle ABC$ ).

Of the results obtained in Arts. 32 and 33 those which are most used may be conveniently arranged in a table thus:

|     | 30°                   | 45°                   | 60°                   |
|-----|-----------------------|-----------------------|-----------------------|
| sin | $\frac{1}{2}$         | $\frac{1}{2}\sqrt{2}$ | $\frac{1}{2}\sqrt{3}$ |
| cos | $\frac{1}{2}\sqrt{3}$ | $\frac{1}{2}\sqrt{2}$ | $\frac{1}{2}$         |
| tan | $\frac{1}{3}\sqrt{3}$ | 1                     | $\sqrt{3}$            |

34. Functions of 0°. Let ABC (Fig. 13) be a right triangle in which the hypotenuse AB = 1 and the angle BAC is small and is diminished and made to approach 0° as a limit. Then if AB remains fixed in length, BC approaches zero and AC approaches 1.

At the limit, 
$$\sin 0^{\circ} = \frac{0}{1} = 0. \qquad \qquad \sec 0^{\circ} = \frac{1}{1} = 1.$$
 
$$\cos 0^{\circ} = \frac{1}{1} = 1. \qquad \qquad \csc 0^{\circ} = \frac{1}{0} = \infty.$$
 
$$\tan 0^{\circ} = \frac{0}{1} = 0. \qquad \qquad \text{vers } 0^{\circ} = 1 - 1 = 0.$$
 
$$\cot 0^{\circ} = \frac{1}{0} = \infty. \qquad \qquad \text{covers } 0^{\circ} = 1 - 0 = 1.$$

35. Functions of 90°. Let ABC (Fig. 14) be a right triangle in which BAC is nearly a right angle and approaches  $90^{\circ}$  as a limit. AB remains fixed in length; hence BC approaches 1 as a limit and AC approaches 0.

Fig. 14.

At the limit, At the limit,  $\sin 90^\circ = \frac{1}{1} = 1. \qquad \qquad \sec 90^\circ = \frac{1}{0} = \infty \ .$  $\cos 90^\circ = \frac{0}{1} = 0.$   $\csc 90^\circ = \frac{1}{1} = 1.$ 

$$\tan 90^{\circ} = \frac{1}{0} = \infty$$
.  $\text{vers } 90^{\circ} = 1 - 0 = 1$ .

vers 
$$90^{\circ} = 1 - 0 = 1$$
.

$$\cot 90^\circ = \frac{0}{1} = 0$$

$$\cot 90^{\circ} = \frac{0}{1} = 0.$$
  $\cot 90^{\circ} = 1 - 1 = 0.$ 

The results obtained in Arts. 34 and 35 may be conveniently arranged in a table thus:

|     | 0° | 90° |
|-----|----|-----|
| sin | 0  | 1   |
| cos | 1  | 0   |
| tan | 0  | . ∞ |
| cot | 8  | 0   |
| sec | 1  | 8   |
| csc | 8  | 1   |

# 36. Representation of the Trigonometric Functions of an Acute Angle by Lines. If a quadrant of a circle OAB



Fig. 15.

be drawn with center O and radius OBequal to 1, the sine of any angle AOP' is  $\frac{M'P'}{OP'} = \frac{M'P'}{1} = M'P'.$ 

Similarly the sine of  $\angle AOP = MP$ , and sine of  $\angle AOP'' = M''P''$ .

In other words the sine of any angle AOP in a quadrant whose radius is 1 is

represented by the perpendicular let fall from P upon the radius OA.

Hence it is easy to see that, since MP is the sine of  $\angle AOP$ , if AOP becomes very small and  $\doteq 0$ ,  $MP \doteq 0$ , and at the limit sin  $0^{\circ} = 0$ . Also if  $\angle AOP''$  increases and  $\doteq 90^{\circ}$ ,  $\sin \angle AOP''$  or  $M''P'' \doteq OB$  or 1. Hence at the limit  $\sin 90^{\circ} = 1$ .

Similarly 
$$\cos \angle AOP' = \frac{OM'}{OP'} = \frac{OM'}{1} = OM.'$$
 Hence also

 $\cos \angle AOP = OM$ ,  $\cos \angle AOP'' = OM$ ." In other words the cosine of any angle AOP in a quadrant whose radius is 1 is represented by the part of OA intercepted between O and the foot of the line representing the sine.

Hence  $\cos 0^{\circ} = OA$  or 1, and as  $\angle AOP$  changes from  $0^{\circ}$  to  $90^{\circ}$ , the cosine changes from 1 to 0.

Similarly, (Fig. 16),

$$\tan \angle AOT = \frac{AT}{OA} = \frac{AT}{1} = AT.$$

$$\sec \angle AOT = \frac{OT}{OA} = \frac{OT}{1} = OT.$$

$$\cot \angle AOT = \tan \angle BOR$$

$$= \frac{BR}{OB} = \frac{BR}{1} = BR.$$

$$\csc \angle AOT = \sec \angle BOR$$

$$\operatorname{esc} \angle AOI = \operatorname{sec} \angle BOR$$
$$= \frac{OR}{OB} = \frac{OR}{1} = OR.$$





The various lines which represent the trigonometric functions of an acute angle AOP may be combined in a single figure (Fig. 17). Let the pupil find the lines on the figure which represent vers  $\angle AOP$  and covers  $\angle AOP$ .

37. Tables of Trigonometric Functions of Angles from 0° to 90° called Natural Functions. By methods which will be explained later (see Art. 116) the values of the trigonometric

functions for angles of every degree and minute from 0° to 90° may be calculated. These values are arranged in tables called Tables of Natural Trigonometric Functions.

#### **EXERCISE 12**

By the use of squared paper, construct the following angles, making use of their natural functions:

- 1.  $30^{\circ}$ . (Use  $\sin 30^{\circ} = \frac{1}{2}$ .)
- 2. 45°.
- 60°.
- **4.** If  $\tan 61^{\circ} 37' = 1.85$ , construct the angle  $61^{\circ} 37'$  on squared paper.

By use of the table of natural tangents, construct:

- **5**. 42° 30′.
- 6. 56° 37′.
- 7. 47.24°.
- **8**. 72.37°.

By use of the table of natural sines, construct:

- 9. 61° 23′.
- **10**. 47° 15′.
- 11. 52.35°.
- 12. 63.84°.

Find the numerical value of:

- 13.  $2 \sin 30^{\circ} + \cos 60^{\circ} + \sin 90^{\circ}$ .
- **14.**  $b \tan 30^{\circ} + c \cot 60^{\circ} + a \tan 0^{\circ}$ .
- **15.**  $4 \tan 0^{\circ} + 4 \sin^2 45^{\circ} + 2 \cos 45^{\circ}$ .
- **16.**  $\tan 30^{\circ} \cos 90^{\circ} 4 \sin 60^{\circ} + \cos^2 0^{\circ}$ .
- 17.  $\tan 30^{\circ} \cot 30^{\circ} 2 \sin 45^{\circ} \tan 45^{\circ} 6 \cos 60^{\circ} \cot 45^{\circ} + \sin 90^{\circ}$ .
- **18.**  $\sec 60^{\circ} \cos 60^{\circ} \tan 30^{\circ} \cot 60^{\circ} + \tan 60^{\circ} \cot 30^{\circ} 20 \sin 30^{\circ}$ .
- **19.** Show that  $(\sin 60^{\circ} \sin 45^{\circ})(\cos 30^{\circ} + \cos 45^{\circ}) = \frac{1}{4}$ .

If  $P = 0^{\circ}$ ,  $Q = 30^{\circ}$ ,  $R = 45^{\circ}$ ,  $S = 60^{\circ}$ ,  $T = 90^{\circ}$ , find the value of each of the following expressions:

- **20**.  $\sin Q + \cos R 1$ .
- **21.**  $\tan^2 P + \tan^2 Q + \tan^2 R$ .
- 22.  $\cos P \cos Q \cos R + \sin R \sin S \sin T$ .
- **23.**  $\sec P + 2 \sin Q + 2 \cos^2 R + \frac{1}{3} \tan^2 S + \csc T$ .
- **24.** Does twice the tangent of  $45^{\circ}$  = the tan of  $90^{\circ}$ ? Why?
- **25.** Does  $\sin 30^{\circ} + \sin 45^{\circ} = \sin 75^{\circ}$ ?
- **26**. Does  $\cot 30^{\circ} + \cot 45^{\circ} = \cot 75^{\circ}$ ?
- 27. Draw a diagram showing the trigonometric functions as lines when  $\angle AOP$  is less than 45°.
  - **28.** Also when  $\angle AOP$  is greater than 45°.
  - **29.** Also when  $\angle AOP$  equals 45.°

- **30.** Given that x is greater than  $45^{\circ}$  and less than  $90^{\circ}$ , show on a diagram similar to Fig. 17 that  $\tan x$  is greater than  $\cot x$ .
- **31.** Given that x is less than 45°, show that  $\sec x$  is less than  $\csc x$ .
  - **32.** Show that  $\cos x$  is always less than  $\cot x$ .
  - **33.** Show that  $\sin x < \tan x < \sec x$ .
  - **34.** Show that  $\cot x < \csc x$ .
- 35. If a flagstaff is at a distance of 150 ft. and the angle of elevation (see Art. 88) of the top of the flagstaff is 30°, find the height of the flagstaff.
- **36.** Find its height if the angle of elevation of the top (at the same distance) is  $45^{\circ}$ . Is  $60^{\circ}$ .
  - 37. Make up two examples similar to Ex. 35.
- 38. The Washington Monument is 555 ft. high. At a certain place the angle of elevation of its top is 30°. Find the distance of the monument from this place.
- **39.** At a certain spot 165 ft. from the top of a particular part of Niagara Falls the angle of depression (see Art. 88) of the bottom of the falls is 45°. What is the perpendicular extent of the falls?
- **40.** How many of the examples in this exercise can you work at sight?
- 38. Many trigonometric equations involving only acute angles may now be solved.
- Ex. 1. Find the value of x which satisfies the equation  $\sin x = \frac{1}{2}$ .

Since  $\sin 30^{\circ} = \frac{1}{2}$ , in the given equation  $x = 30^{\circ}$ , Ans.

Ex. 2. Solve  $\sin x = \cos x$ .

Dividing each member by  $\cos x$ ,  $\tan x = 1$ .

$$\therefore x = 45^{\circ}, Ans.$$

Ex. 3. Solve  $\tan x - 1 = 2 \sin x - 2 \cos x$ .

Substituting for tan x,  $\frac{\sin x}{\cos x} - 1 = 2 \sin x - 2 \cos x$ .

Hence,  $\sin x - \cos x = 2 \sin x \cos x - 2 \cos^2 x.$ 

Factoring,  $(\sin x - \cos x)(1 - 2\cos x) = 0$ .

Hence,  $\sin x - \cos x = 0$ .  $\therefore \tan x = 1$ ,  $x = 45^{\circ}$ .

Also  $1-2\cos x = 0$ .  $\cos x = \frac{1}{2}$ ,  $x = 60^{\circ}$ .

Hence,  $x = 45^{\circ}, 60^{\circ}, Ans.$ 

Ex. 4. Given  $\sin x = \cos 4x$ , find x.

By Art. 26 we may substitute for  $\sin x$  its equal,  $\cos (90^{\circ} - x)$ .

Then

$$\cos (90^{\circ} - x) = \cos 4 x.$$
  
∴  $90^{\circ} - x = 4 x.$   
 $5x = 90^{\circ}.$   
 $x = 18^{\circ}, Ans.$ 

#### EXERCISE 13

Solve each of the following equations:

1. 
$$\tan^2 x = 3$$
.

2. 
$$\sin^2 x = \frac{3}{4}$$
.

3. 
$$\cot x = 3 \tan x$$
.

**4.** 
$$\cot^2 x = \frac{1}{2}$$
.

5. 
$$\sqrt{1-\sin^2 x} = 1 + \sin x$$
.

6. 
$$\sec^2 x = 2$$
.

7. 
$$\tan x + \cot x = 2$$
.

**8.** 
$$\sec x = \sqrt{2} \tan x$$
.

9. 
$$\cos^2 x - \sin^2 x = \sin x$$
.

10. 
$$\tan^2 x + 2 \sec^2 x = 11$$
.

11. 
$$3 \cot^2 x + \cot x = 4$$
.

**23.** 
$$\sin x = \cos 5 x$$
.

**24.** 
$$\tan y = \cot 8 y$$
.

**25.** 
$$\cos \frac{1}{2} x = \sin x$$
.

12. 
$$2 \sin y + \csc y = 3$$
.

13. 
$$2 \sin x \sqrt{3} + 4 \cos x = 5$$
.

**14.** 
$$\sec x = 2 \tan x$$
.

**15.** 
$$4\sin^2 x - \tan^2 x = \cot^2 x$$
.

**16.** 
$$\cot x + 2 \tan x = \frac{5 \sec x}{2}$$

**17.** 
$$3\cos x + \tan x = 1 + 3\sin x$$

**18.** 
$$\tan x = 2 \cot x - 1$$
.

**19.** 
$$\csc y = 2 \cot y$$
.

**20.** 
$$2 \sin x + \cos x = 2$$
.

**21.** 
$$2 \sec x - \cos x = 1$$
.

**22.** 
$$\sin^2 x + \sin x = \frac{2}{3}$$
.

**26.** 
$$\sec (45^{\circ} + x) = \csc x$$
.

**27.** 
$$\sin y = \cos ny$$
.

**28.** 
$$\sin 3x = \cos 2x$$
.

29. If a church steeple is at a distance of 80 ft., and the steeple is 80 ft. high, find the angle of elevation of the top of the steeple.

30. If the height of the steeple is 80.5 ft. and the distance of the base is 100 ft., see if you can find the angle of elevation of the top of the steeple by use of the table of natural tangents (pp. 91–96 of the tables).

31. Make up an example similar to Ex. 29.

32. Make up an example similar to Ex. 30.

**33.** In a right triangle given c = 62, a = 31, find A.

**34.** Given c = 150, a = 75, find B.

**35.** Given c = 120,  $b = 60 \sqrt{3}$ , find A.

**36.** How many of the examples in this exercise can you work at sight?

39. Tables of Logarithms of the Trigonometric Functions from 0° to 90°. In performing numerical work involving trigonometric functions, it is usually more expeditious to proceed by the use of logarithms. Hence the logarithms of the natural trigonometric functions have been obtained once for all and arranged in tables called Tables of Logarithmic Trigonometric Functions. The use of these tables is explained in the Introduction to the Tables (Arts. 7–11).

#### **EXERCISE 14**

By the use of five-place tables, find:

| Бу | the use of five-place tables, find. |     |                                   |
|----|-------------------------------------|-----|-----------------------------------|
| 1. | log sin 26° 18′.                    | 9.  | log sin 4° 6′ 55″.                |
| 2. | log cos 12° 16′.                    | 10. | $\log \cos 17^{\circ} 17' 30''$ . |
| 3. | log tan 36° 18′.                    | 11. | log cot 37° 28′ 50″.              |
| 4. | $\log \cot 76^{\circ} 18'$ .        | 12. | $\log \sin 78^{\circ} 59' 30''$ . |
| 5. | log tan 55° 16′.                    | 13. | $\log \tan 86^{\circ} 46' 5''$ .  |
| 6. | log tan 15° 18′.                    | 14. | $\log \tan 4^{\circ} 44' 50''$ .  |
| 7. | log cos 86° 52′.                    | 15. | $\log \cos 45^{\circ} 48' 48''$ . |
| 8. | log tan 36°.                        | 16. | $\log \cot 60^{\circ} 52' 6''$ .  |

- 17. We have proved (see Art. 33) that  $\sin 30^{\circ} = .5$ . Obtain  $\log .5$  and thus show that the value of  $\log \sin 30^{\circ}$  as given in the table is correct.
- 18. Similarly verify the value of  $\log \sin 45^{\circ}$ , and of  $\log \tan 60^{\circ}$ , as given in the table.
- 19. In the rt.  $\triangle$  ABC, a=b tan A. (Why?) If  $A=18^{\circ}$  16' and b=18.63, find a.
- **20.** In the rt.  $\triangle ABC$ ,  $b = c \cos A$ . (Why?) Find b if c = 18.675 and  $A = 36^{\circ} 36' 36''$ .

By the use of four-place \* tables, find:

 21. log sin 15.3°.
 24. log tan 78.8°.

 22. log cos 47.5°.
 25. log sin 27.35°.

 23. log cot 33.7°.
 26. log cos 26.36°.

<sup>\*</sup>When the term "four-place tables" is used in connection with angles, the four-place logarithmic tables for the decimally divided degree are meant. See Arts. 18–19 of the tables.

27. log tan 63.78°.

29. log cos 40.16°.

28. log cot 12.65°.

- **30**. log cot 29.23°.
- **31.** In the rt.  $\triangle$  *BAC*,  $b=a \cot A$ . (Why?) If  $A=18.67^{\circ}$  and a=.2167 feet, find b.
- 32. In the rt.  $\triangle$  ABC,  $a=c \sin A$ . (Why?) If c=17.65 and  $A=59.72^{\circ}$ , find a. Also find b, if  $b=c \cos A$ .

#### **EXERCISE 15**

Using five-place tables, find A, given:

- 1.  $\log \sin A = 9.59632 10$ .
- **2.**  $\log \tan A = 9.73777 10.$
- 3.  $\log \cos A = 9.90951 10$ .
- 4.  $\log \cot A = 10.07029 10$ .
- 5.  $\log \sin A = 9.96159 10$ .
- 6.  $\log \tan A = 0.44540$ .

- 7.  $\log \cos A = 9.53390 10$ .
- **8.**  $\log \tan A = 1.06575$ .
- 9.  $\log \sin A = 9.95788 10$ .
- **10**.  $\log \cot A = 1.02921$ .
- **11.**  $\log \sin A = 8.84501 10$ .
- **12.**  $\log \cos A = 8.84501 10$ .

By use of four-place tables, find A, given:

- **13.**  $\log \sin A = 9.6495 10.$
- **20.**  $\log \cos A = 9.8409 10.$
- **14**.  $\log \cos A = 9.8063 10$ .
- **21.**  $\log \tan A = 0.2575$ .
- **15**.  $\log \tan A = 9.7384 10$ .
- **22.**  $\log \cot A = 2.0248$ .
- **16**.  $\log \cot A = 0.4755$ .
- **23**.  $\log \tan A = 1.5718$ .
- **17.**  $\log \cot A = 9.8248 10.$
- **24.**  $\log \sin A = 9.9596 10.$  **25.**  $\log \cos A = 9.3129 10.$
- **18.**  $\log \tan A = 0.4422$ .
- **19**.  $\log \cos A = 9.6351 10$ .
- **26.**  $\log \cot A = 0.5881$ .

## EXERCISE 16

By use of five-place tables find:

- 1.  $\log \sin 0^{\circ} 56' 18''$ .
- 2. log tan 1° 16′ 37″.
- 3. log cos 88° 13′ 26″.
- 4. log tan 88° 54′ 50″.
- 5. log cot 1° 18′ 36″.
- 6. log cos 89° 7′ 19″.7. log sin 1° 6′ 12″.
- 8. log cot 88° 16′ 32″.

- Find the angle A if:
- **9**.  $\log \tan A = 7.88154 10$ .
- **10.**  $\log \cos A = 8.28910 10.$
- **11.**  $\log \sin A = 8.09600 10$ .
- **12.**  $\log \cot A = 7.90390 10.$
- **13.**  $\log \tan A = 3.05992$ . **14.**  $\log \cot A = 2.88206$ .
- **15.**  $\log \sin A = 6.88800 10.$
- **16.**  $\log \cos A = 7.63702 10.$

For "angle whose log sin is" we may write "∠log sin," or "antilog sin," hence find:

**17.** 
$$\angle \log \sin 9.82627 - 10$$
.

**18.** 
$$\angle \log \tan 10.90261 - 10.$$

**19.** 
$$\angle \log \cos 9.06000 - 10.$$

**23.** In the 
$$\triangle$$
 ABC,  $a = c \sin A$ . 18' 48."

**20**. 
$$\angle \log \cot 8.09599 - 10$$
.

**21.** 
$$\angle \log \cos 8.09599 - 10$$
.

**22.** 
$$\angle \log \tan = 2.77651$$
.

Find a if 
$$c = 18.6$$
 and  $A = 26^{\circ}$ 

Find the value of the following:

**24.** 
$$\frac{528.7 \times \cos 83^{\circ} \, 16' \, 24'' \times \tan^{2} 75^{\circ} \, 18' \, 24''}{672 \cot^{2} 18^{\circ} \, 32' \, 54'' \times \sin 69^{\circ} \div \cos^{2} 15^{\circ} \, 16' \, 34''}$$

**25.** 
$$\frac{265 \times \tan 65^{\circ} 18' \times \cos^{2} 14^{\circ} 28' 12''}{19 \cot^{2} 11^{\circ} 16' 24'' \times \sin 75^{\circ} 15' 45'' \times .7}$$

By use of four-place tables, find:

**27.** 
$$\log \sin 0.762^{\circ}$$
.

Find angle A if:

**34.** 
$$\log \cot A = 8.1067 - 10.$$

**35.** 
$$\log \tan A = 8.2574 - 10$$
.

**36.** 
$$\log \cos A = 8.1360 - 10$$
.

**37.** 
$$\log \sin A = 8.0440 - 10$$
.

**38.** 
$$\log \tan A = 2.1080$$
.

**39.** 
$$\log \cot A = 2.0532$$
.

**40.** 
$$\log \sin A = 7.9100 - 10.$$

41 
$$\log \log 4 - 70032$$
 10

**41.** 
$$\log \cos A = 7.9932 - 10.$$

**41.** 
$$\log \cos H = 1.0002 = 10$$
.

**49.** In the rt. 
$$\triangle ABC$$
,  $a = c$  s

# Find:

**44.** 
$$\angle \log \cot 8.1078 - 10.$$

**45.** 
$$\angle \log \tan 8.0295 - 10.$$
 **46.**  $\angle \log \cos 8.0959 - 10.$ 

**47.** 
$$\angle \log \sin 8.0371 - 10.$$

**49**. In the rt. 
$$\triangle ABC$$
,  $a = c \sin A$ . (Why?) Find  $a$  if  $c = 126.27$ , and  $A = 1.267^{\circ}$ .

**50.** In the rt. 
$$\triangle ABC$$
,  $b = a \cot A$ . (Why?) Find b if  $a = 0.4267$ , and  $A = 2.166^{\circ}$ .

**51.** Find the value of 
$$\frac{632.7 \times \cos 78.16^{\circ} \times \tan^{2} 71.62^{\circ}}{426.8 \times \sin 13.25^{\circ} \times \cot^{2} 12.47^{\circ} \times .8}$$

**52.** Find the value of 
$$\frac{326 \times \tan 38.25 \times \cos^2 88.627}{43 \times \cot 0.826^{\circ} \times \sin^2 2.467^{\circ}}$$

## **EXERCISE 17. REVIEW**

**1.** In the right  $\triangle ABC$ , given  $\tan A = \frac{8}{15}$  and a = 16, find b, c, and the other functions of A.

2. If 
$$\cos A = \frac{8}{17}$$
, find the value of  $\frac{\sin A + \tan A}{\cos A - \cot A}$ .

3. Show that  $\cos 60^{\circ} \cos 30^{\circ} + \sin 60^{\circ} \sin 30^{\circ} = \cos 30^{\circ}$ .

**4.** Show that 
$$\frac{\cot 45^{\circ} + \cot 90^{\circ}}{1 - \cot 45^{\circ} \cot 90^{\circ}} = 1$$
.

(Work Exs. 5-12 without the use of tables.)

- 5. Which is greater, sin 49° or cos 49°?
- **6.** If  $\sin A = \frac{3}{5}$ , is A greater or less than 45°?
- 7. If  $\tan A = 2$ , is A greater or less than  $60^{\circ}$ ?
- 8. Which is the greater, tan 37° or cot 37°?

9. If 
$$A = 60^{\circ}$$
, show that  $\sin \frac{1}{2} A = \sqrt{\frac{1 - \cos A}{2}}$ .

**10.** If 
$$A = 60^{\circ}$$
, show that  $\cot \frac{1}{2} A = \sqrt{\frac{1 + \cos A}{1 - \cos A}}$ .

**11.** Which is greater,  $\sin 45^{\circ}$  or  $\frac{1}{2} \sin 90^{\circ}$ ?  $\sin 60^{\circ}$  or  $2 \sin 30^{\circ}$ ?  $\tan 30^{\circ}$  or  $\frac{1}{2} \tan 60^{\circ}$ ?

12. If  $x = 30^{\circ}$  and  $y = 60^{\circ}$ , show that  $\sin x \cos y + \cos x \sin y = \sin (x + y)$ .

13. Prove 
$$\frac{1 + \cot A}{1 - \cot A} = \frac{\sec A + \csc A}{\sec A - \csc A}$$

**14.** Prove 
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{\sin^2 A}{\cos^2 A}$$
.

**15.** Prove 
$$\frac{1 + \cos A}{1 - \cos A} = (\csc A + \cot A)^2$$
.

**16.** If 
$$x = 30^\circ$$
, show that  $\tan 2 x = \frac{2 \tan x}{1 - \tan^2 x}$ .

- **17.** If  $x = 30^{\circ}$ , show that  $\sin 3x = 3 \sin x 4 \sin^3 x$ .
- **18.** If  $x = 30^{\circ}$ , show that  $\cos 3x = 4 \cos^3 x 3 \cos x$ .

Solve the following trigonometric equations:—

- **19**.  $\tan x + 3 \cot x = 4$ .
- **20**.  $2 \sec^2 x \tan^2 x = 5$ .
- **21.**  $3 \csc^2 x 2 \cot x = 4$ .

If  $P = 0^{\circ}$ ,  $Q = 30^{\circ}$ ,  $R = 45^{\circ}$ ,  $S = 60^{\circ}$ ,  $T = 90^{\circ}$ , find the value of:

**22.** 
$$\cos^2 Q + \cos^2 S + \cos^2 T + 2 \cos Q \cos S \cos T$$
.

**23.** 
$$\sec Q(1 + \tan R) - \sin^3 T(\cos R + \sin S \cos Q)$$
.

**24.** 
$$\frac{1+\tan^2 S}{2-\tan^2 R} + 3(\cos P \sin^2 R - \sin S)$$
.

**25.** If 
$$25 \sin A = 7$$
, find cot A and  $\csc A$ .

**26.** If 
$$p \cot \theta = \sqrt{r^2 - p^2}$$
, find  $\sin \theta$ .

27. If i denotes the angle of incidence of a ray of light falling on a piece of glass, and r the angle of refraction, then  $\sin i = \frac{3}{2} \sin r$ . Find r when  $i = 27^{\circ} 17'$ .

**28.** If at a distance of 300 ft. the angle of elevation of the top of one of the big trees of California is 45°, how tall is the tree?

29. If at a distance of 300 ft. the angle of elevation of the top of a tree were 42°, see if you can find out how tall the tree would be. (Why are we able to determine this height by trigonometry and not by geometry?)

30. Who first, and at what date, defined the sine of an angle as the ratio between two lines (see p. 165)? Give the different substitutes for this idea of the sine that had been used before this time. Why is the ratio definition of the sine superior to each of these?

**31.** Explain the origin and literal meaning of the word sine (see p. 166).

32. Who first invented each of the other trigonometric ratios, and at what time (see pp. 162, 164)?

33. Give some of the various names used for these ratios, with the names of the inventors of these names.

34. What nation first used the trigonometrical identity

$$\sin^2 A + \cos^2 A = 1$$
 (see p. 172)?  $\tan x = \frac{\sin x}{\cos x}$ ?

35. Give an account of the computation of trigonometric tables (see pp. 168–170).

## CHAPTER III

## RIGHT TRIANGLES

40. Two Cases arise in the trigonometrical solution of right triangles.

CASE I. Given one side and an acute angle.

Case II. Given two sides.

In each of these cases it will be observed that three parts are really given, since the right angle is known.

## Case I

41. The solution of Case I is effected as follows:

Subtract the given angle from 90°. This will give the unknown angle.

The unknown sides may then be found by means of the following:

- 1. Either  $leg = (sine \ of \angle opposite) \times hypotenuse$ .
- 2. Either  $leg = (cosine \ of \angle \ adjacent) \times hypotenuse$ .
- 3. Either  $leg = (tangent \ of \angle \ opposite) \times other \ leg$ .
- 4. Hypotenuse = (secant of either acute  $\angle$ ) × (leg adjacent to that  $\angle$ ).

Also (either leg) = (cot of  $\angle$  adjacent) × (other leg); hyp. = (csc of either acute  $\angle$ ) × (leg opposite that  $\angle$ ).



Similarly it may be proved that:

 $b = c \sin B$ ,  $b = c \cos A$ ,  $b = a \tan B$ , and  $c = b \sec A$ .

Ex. 1. Given  $A = 55^{\circ} 43' 29''$ , c = 415.18, find the remaining parts of the right triangle.

We first draw a diagram (Fig. 19) of the triangle to be solved, and on this diagram write the known magnitudes (415.18 for c, and 55° 43′ 29″ for A). We also indicate the parts to be computed (a, b, B) by annexing the = mark to each of these. During the numerical computation, as soon as the result for any part is ascertained, this result should be entered on the diagram after the proper = mark.

∠B = 90° − 55° 43′ 29″ = **34**° **16′ 31**″.  

$$a = 415.18 \sin 55^{\circ} 43′ 29″$$
. (Art. 41, 1)  
∴  $\log a = \log 415.18 + \log \sin 55^{\circ} 43′ 29″$ .  
 $415.18 \log 2.61824$   
 $\frac{55^{\circ} 43′ 29″ \log \sin 9.91716 - 10}{a = 343.085 \log 2.53540}$   
Also  $b = 415.18 \cos 55^{\circ} 43′ 29″$ . (Art. 41, 2)  
∴  $\log b = \log 415.18 + \log \cos 55^{\circ} 43′ 29″$ .  
 $415.18 \log 2.61824$   
 $\frac{55^{\circ} 43′ 29″ \log \cos 9.75064 - 10}{b = 233.821 \log 2.36888}$   
(As a check use  $a = b \tan A$ .)



Ex. 2. Given a = .0723,  $B = \overline{31}^{\circ} 47' 7''$ , find the remaining parts of the right triangle.



$$\angle A = 90^{\circ} - 31^{\circ} 47' 7'' = 58^{\circ} 12' 53''.$$

$$b = .0723 \tan 31^{\circ} 47' 7''$$

$$.0723 \log 8.85914 - 10$$

$$31^{\circ} 47' 7'' \log \tan 9.79216 - 10$$

$$b = .448022 \log 8.65130 - 10$$

$$c = .0723 \sec 31^{\circ} 47' 7''$$

$$= \frac{.0723}{\cos 31^{\circ} 47'' 7'}$$

.9723 log 8.85914 — 10 31° 47′ 7″ log cos 9.92943 — 10 colog cos 0.07057

$$c = 0.850567$$
 log  $8.92971 - 10$  (As a check use  $b = c \cos A$ .)

Ex. 3. By use of four-place tables solve the right triangle in which b = 21.635,  $A = 47.23^{\circ}$ .



42. First Estimates. Graphical Solutions. In the solutions of triangles fully one half the mistakes commonly made, and those the most important ones, are eliminated by making a rough mental forecast of the results before proceeding with the exact numerical work.

Thus in solving Ex. 1 of Art. 41, the pupil should first of all observe that, the hypotenuse being 415.18, each of the legs will be less than 415.18; and also that, since angle B is less than angle A, side b must be less than side a. If then as a result of his exact numerical calculation, the pupil finds a leg greater than 415.18, or a less than b, he knows at once that a mistake has been made.

Similarly it is useful, by means of the rule and protractor, to make a drawing according to scale of the triangle to be solved, and from the figure to determine as accurately as possible the dimensions of the unknown parts by measuring them according to scale. Such results should be accurate enough to aid in eliminating any large errors in the numerical work. (Indeed, if the work be neatly done, the results obtained from the diagram will be accurate enough for many practical purposes.)

43. Exact checks of the numerical accuracy of the work of solving right triangles are obtained by calculating some side or angle of the triangle by a formula different from those already used in the computation, and observing whether the results thus obtained accord with those obtained in the first solution.

Thus, to check the accuracy of the solution given for Ex. 1, Art. 41, determine whether  $\tan A = \frac{a}{b}$ ; that is, compute the value of the fraction  $\frac{343.085}{233.821}$  and also obtain from the table the value of  $\tan 55^{\circ} 43' 29''$  and observe whether these two values accord.

### EXERCISE 18

State at sight the formula value of x (or of x and y) in each of the following triangles:

Thus in Ex. 1, (1),  $x = 208 \sin 40^{\circ}$ .



3. Make up an example similar to Ex. 2.

By use of five-place tables solve each of the following triangles, given: (In working each example outline all the work carefully before looking up any logs—see Ex. 1, p. 18.)

4. 
$$A = 28^{\circ}$$
,  $b = 12$ .

**6.** 
$$A = 46^{\circ} 18', b = 48.527.$$

**5**. 
$$A = 78^{\circ}$$
,  $c = 26.735$ .

7. 
$$A = 28^{\circ} 17'$$
,  $c = 24.16$ .

- **8.**  $B = 54^{\circ} 43' \ c = 1123.$
- **10**.  $A = 38^{\circ} 16' 24''$ , c = 3.6289.
- 9.  $B = 37^{\circ} 19'$ , b = 293.8.
- **11**.  $B = 72^{\circ} 16' 42''$ , a = 22.684.
- **12.** Given c = .52684,  $B = 63^{\circ} 18' 48''$ ; find a.
- **13.** Given  $A = 37^{\circ} 25' 20''$ , c = .356; find b.

Find the remaining parts in each of the following right triangles, given:

- **14**.  $A = 63^{\circ} 28' 40''$ , a = 256.43.
- **15**. c = 13.867,  $A = 87^{\circ} 16' 30''$ .
- **16**.  $A = 51^{\circ} 9' 6''$ , c = .19678.
- **17**. a = 126.78,  $A = 26^{\circ} 18' 36''$ .
- **18.** Given  $A = 5^{\circ} 16' 32''$ , b = .96156; find c.
- **19.** Given  $A = 37^{\circ} 14' 15''$ , b = 217; find a.
- 20. If the top of the Statue of Liberty in New York harbor is 301 ft. above the water surface, and a boat in the harbor finds the angle of elevation of the top of the statue to be 12°, how far is the boat from the statue?
- 21. If a certain point on the brink of the Grand Cañon of the Colorado is known to be a horizontal distance of 3 miles from the Colorado River and the angle of depression of the river is 17°, how deep is the cañon at that place and how far from the observer is the river in a straight line?
- 22. Which of the examples in Exercise 22 are you able to solve by Case I? Solve one of these.
- 23. Make up a similar practical problem for yourself and solve it, as for instance one concerning the Bunker Hill monument (221 ft. high).

Solve the following right triangles, by use of four-place tables, having given:

- **24.**  $A = 32.6^{\circ}, b = 18.$
- **28**.  $A = 37.67^{\circ}$ , c = 126.7.
- **25.**  $A = 56^{\circ}$ , c = 2.678.
- **29**.  $B = 76.25^{\circ}$ ,  $\alpha = .926$ .
- **26**.  $B = 38.2^{\circ}$ , c = .7685.
- **30**.  $A = 21.32^{\circ}$ , a = 16.256.
- **27.**  $B = 82.5^{\circ}$ , a = 12.56.
- 31.  $B = 66.27^{\circ}$ , b = .0087.
- **32.** Given c = .6243,  $B = 51.25^{\circ}$ ; find a.
- **33**. Given  $A = 77.26^{\circ}$ , c = .5163; find b.
- **34.** Given  $B = 39.29^{\circ}$ , b = 41.67; find a.

Find the remaining parts in each of the following right triangles, given:

**35.** 
$$c = 13.13$$
,  $A = 88.17$ °.

**36.** 
$$B = 42.16^{\circ}$$
,  $a = .5252$ .

**37.** Given 
$$A = 5.26^{\circ}$$
,  $b = 128.6$ ; find c.

**38.** Given 
$$B = 87.267^{\circ}$$
,  $c = 22.67$ ; find  $a$ .

**39.** Given 
$$A = 4.276^{\circ}$$
,  $a = 26.32$ ; find b.

Solve without the use of tables, having given:

**41.** 
$$A = 30^{\circ}, b = 7.$$

**45.** 
$$A = 60^{\circ}$$
,  $a = 2000$ .

**42.** 
$$A = 45^{\circ}$$
,  $c = 12$ .

**46**. 
$$B = 30^{\circ}$$
,  $c = 1200$ .

**43**. 
$$B = 60^{\circ}$$
,  $b = 25$ .

**47.** 
$$A = 45^{\circ}$$
,  $b = 200$ .

**44.** 
$$B = 30^{\circ}$$
,  $a = 1000$ .

**48.** 
$$A = 30^{\circ}$$
,  $c = 20 d$ .

**49.** Solve Exs. 6 and 7 of this exercise without the use of logarithms (*i.e.* by the use of the Tables of Natural Sines, etc., pp. 91–96).

**50**. How many of Exs. 41–48 can you solve at sight without drawing a figure?

**51.** On the figure if  $\angle ADB$  and DCB are right  $\angle s$ , find BD, BC, and DC at sight.

**52.** On Fig. 52, p. 93, if OP = 1, what is the value of OQ? of PQ? of QN? of ON?



## Case II

## TWO SIDES GIVEN

# 44. The Solution of Case II is effected as follows:

Find one of the angles of the given triangle by using that one of the following trigonometric ratios which contains the two given sides:

1. sine of either acute 
$$\angle = \frac{\perp opp}{hyp}$$
.

2. cosine of either acute 
$$\angle = \frac{\perp adj}{hyp}$$
.

3. tangent of either acute 
$$\angle = \frac{\perp opp}{\perp adj}$$
.

Find the remaining parts of the triangle by Case I (but if the hypotenuse and a leg are given, the other leg may be found by one of the formulas,  $a = \sqrt{(c+b)(c-b)}$ ,  $b = \sqrt{(c+a)(c-a)}$ ).

Ex. 1. Given a = 317, c = 438, find the remaining parts of the right triangle ABC.

$$\sin A = \frac{317}{438}. \qquad (Art. 44, 1)$$
Hence  $\log \sin A = \log 317 + \operatorname{colog} 438$ 

$$317 \log 2.50106$$

$$438 \log 2.64147 \operatorname{colog} 7.35853 - 10$$

$$A = 46^{\circ} 21' 55'' \log \sin 9.85959 - 10$$

$$B = 90^{\circ} - 46^{\circ} 21' 55'' = 43^{\circ} 38' 5''.$$

$$b = 438 \cos 46^{\circ} 21' 55''. \qquad (Art. 41, 2)$$

$$438 \log 2.64147$$

$$46^{\circ} 21' 55'' \log \cos 9.83888 - 10$$

$$b = 302.24 \log 2.48035$$

$$\left(\text{As a check use } \tan A = \frac{a}{b}.\right)$$

Ex. 2. By use of four-place tables, solve the right triangle in which a = 3.104, b = 2.965.



45. Sources of Power in Trigonometrical Solution of Triangles. There is danger that the pupil form mechanical habits of solving triangles without realizing the nature or

meaning of what he is doing. He should constantly realize that he is able to do what he is doing because some one before him has computed the legs of every possible right triangle whose hypotenuse is 1, and the other parts when each leg is 1, and arranged the results in tables (natural sines, etc.,) and that he uses these results (and therefore uses the work done in computing them) by the geometrical principle of similar triangles. Also that some one else has made the pupil's work easier by looking up the logarithms of all the numbers in the natural tables and arranging them in other tables, and that the pupil is using this work also.

46. Special Case. Given the hypotenuse and a leg nearly equal, the angle between them will be very small. If this angle be found directly from the parts given, it will be found in terms of the cosine. Since the cosine of a small angle changes slowly as the angle varies, such a solution will not be accurate in the last figures. A more accurate solution is obtained by first calculating the third side by the use of the formula  $a = \sqrt{(c+b)(c-b)}$  and finding the angle mentioned in terms of the sine.

Ex. Given c = 412, b = 410, solve the triangle.

By the formula, 
$$a = \sqrt{(412 + 410)(412 - 410)}$$
  
 $= \sqrt{822 \times 2}$ .  
 $\therefore \log a = \frac{1}{2} (\log 822 + \log 2)$ .  
 $822 \log 2.91487$   
 $2 \log 0.30103$   
 $2)3.21590$   
 $a = 40.546 \log 1.60795$   
 $40.546 \log 1.60795$   
 $40.546 \log 1.60795$   
 $412 \operatorname{colog} 7.38510 - 10$   
 $A = 5^{\circ} 38' 52'' \log \sin 8.99305 - 10$   
 $B = 90^{\circ} - 5^{\circ} 38' 52'' = 84^{\circ} 21' 8''$ .

#### **EXERCISE 19**

Using five-place tables, solve in full the following right triangles, given:

(In working each example outline all the work carefully before looking up any logs—see Ex. 1, p. 18.)

**1.** 
$$c = 18.4$$
,  $a = 10.7$ .

**5**. 
$$c = .89672$$
,  $a = .68425$ .

**2.** 
$$c = 37.266$$
,  $a = 20.46$ .

**6.** 
$$b = 14.222$$
,  $c = 21.678$ .

**3.** 
$$a = 26.725$$
,  $c = 39.626$ .

7. 
$$a = .0628$$
,  $b = .0487$ .

**4.** 
$$a = 5$$
,  $b = 6$ .

**8**. 
$$a = .1777$$
,  $c = .25643$ .

9. Given 
$$a = 4$$
 yd.,  $b = 9$  ft., find  $A$ .

**10.** Given 
$$a = 8.701$$
 yd.,  $b = 21.645$  yd., find  $\angle A$ .

**11.** Given 
$$b = .26725$$
,  $c = .39626$ , find  $\angle B$ .

12. Solve in full if 
$$a = 6$$
,  $b = 6$ .

**13.** Find A if 
$$a = .02678$$
,  $b = .05537$ .

**14.** Solve in full if 
$$c = 117.32$$
,  $a = 112.67$ .

Suggestion. First use  $b = \sqrt{c^2 - a^2} = \sqrt{(c+a)(c-a)}$ .

**15.** Solve in full if 
$$b = 358$$
,  $c = 362$ .

**16**. Solve in full if 
$$a = 26.63$$
,  $c = 27.99$ .

17. If the Mt. Washington railway at a certain place rises 3596 ft. for 3 mi. of the length of the track, what angle on the average does the track make with the horizon?

18. The carpenter's rule for constructing  $\frac{3}{4}$  of a right angle is to construct a right triangle whose legs are 5 and 12 inches and take the greater acute angle in the triangle. How far is this from being correct?

19. Which of the examples in Exercise 22 are you able to solve by the methods of Case II? Solve two of these.

20. Make up a similar practical problem for yourself and solve it.

Solve by use of four-place tables, having given:

**21.** 
$$c = 23.7$$
,  $a = 15.7$ .

**25.** 
$$b = 6.7$$
,  $c = 9.7$ .

**22.** 
$$c = .562$$
,  $b = .3962$ .

**26.** 
$$b = .12675$$
,  $a = .14296$ .

**23**. 
$$a = 33.29$$
,  $b = 27.28$ .

**27.** 
$$c = 132.96, b = 100.82.$$

**24.** 
$$a = 5$$
,  $b = 8$ .

**28.** 
$$a = .07282$$
,  $c = .11111$ .

**29.** 
$$a = 2367$$
,  $b = 1827.6$ .

- **30.** Given a = 11, c = 16, find A.
- **31.** Given a = 27.82, b = 33.67, find B.
- **32.** Given c = 156.7, b = 148.2, solve in full.

First use 
$$a = \sqrt{c^2 - b^2} = \sqrt{c + b(c - b)}$$
.

- **33.** Given c = 862, a = 854, solve in full.
- **34.** Given a = 98.6, b = 63.4, find A.
- **35.** Given c = .4367, b = .1967, find B.
- 36. Work Exs. 17-20 by the four-place tables.

Without the use of tables solve in full each of the following right triangles, given:

**37.** 
$$a = 13$$
,  $b = 13$ .

**41.** 
$$c = 6$$
,  $a = 3\sqrt{3}$ .

**38.** 
$$c = 18$$
,  $a = 9$ .

**42.** 
$$c = \sqrt{2}, b = 1.$$

**39.** 
$$c = 200$$
,  $b = 100$ .

**43.** 
$$c = 100$$
,  $a = 50\sqrt{3}$ .

**40.** 
$$a = \sqrt{3}$$
,  $b = 1$ .

**44.** 
$$a+c=18, b=6\sqrt{3}.$$

- 45. Solve Exs. 3 and 4 of this Exercise without the use of logarithms.
- **46.** How many of Exs. 37–43 are you able to solve at sight without drawing a figure?
- 47. Isosceles Triangles. If certain parts of an isosceles triangle be given, the unknown parts may often be determined by dividing the isosceles triangle into two equal right triangles by means of a perpendicular drawn from the vertex to the base, and by solving one of the right triangles thus formed.
- Ex. 1. If the vertex angle of an isosceles triangle is  $42^{\circ} 30'$  and a leg is 47.6, find the base.

Draw the altitude *OD*. Then  $\angle AOD = 21^{\circ}15'$ .

Hence, in the right  $\triangle$  AOD, we have a side and an acute angle given, to find the base AD (Case I). Hence

$$AD = 47.6 \sin 21^{\circ} 15'$$
.

$$47.6 \log 1.67761$$

$$21^{\circ} 15' \log \sin 9.55923 - 10$$

$$AD = 17.252 \log 1.23684$$

$$AB = 2 AD = 34.504$$
.



Ex. 2. By use of four-place tables, solve the isosceles triangle whose base is 12.25 and vertex angle  $28.22^{\circ}$ .



Draw the altitude 
$$AD$$
.

Then 
$$\angle BAD = \frac{1}{2}(28.22^{\circ}) = 14.11^{\circ}.$$
  
 $\angle B = 90^{\circ} - 14.11^{\circ} = 75.89^{\circ}.$   
 $AB = 6.125 \text{ sec } 75.89^{\circ} = \frac{6.125}{\cos 75.89^{\circ}}$   
 $6.125 \log 0.7872$   
 $75.89^{\circ} \text{ colog cos } 0.6130$   
 $AB = 25.129 \log 1.4002$ 

48. A regular polygon may be divided into equal right tri-

angles by lines drawn from the center to the vertices and by the apothems to the sides. Hence if certain parts of a regular polygon are given, the remaining parts may often be determined by dividing the polygon into right triangles and solving one of these triangles.

It is to be observed that one of the right triangles, as ACD of Fig. 27, has



Fig. 27.

the radius of the circle circumscribed about the polygon for its hypotenuse AC, and the radius of the inscribed circle, CD, for a leg. Hence,  $\angle ACA' = \frac{360^{\circ}}{n}$ , where n denotes the number of sides of the polygon, and  $\angle ACD$  of the right triangle  $=\frac{180^{\circ}}{n}$ .

### **EXERCISE 20**

Using five-place tables, solve each of the following isosceles triangles, given:

- 1. Base = 120, base  $\angle = 60^{\circ}$ .
- **2**. Leg = 216, vertex  $\angle$  = 110°.
- 3. Base  $\angle = 56^{\circ} 18'$ ,  $\log = 8.7265$ .
- **4.** Base  $\angle = 38^{\circ} 17' 50''$ , altitude = 31.42.

- 5. Base  $\angle = 55^{\circ} 18' 24''$ , altitude = 762.89.
- **6.** Base = 8.2364, altitude = 7.8.
- 7. Vertex  $\angle = 113^{\circ} 17'$ , base = .12692.
- **8.** Altitude = 4835, base = 9248.
- 9. One side of a regular pentagon is 12. Find the apothem, radius, perimeter, and area of the pentagon.
- 10. One side of a regular decagon is 1. Find the apothem, radius, perimeter, and area of the decagon.
- 11. The radius of a circle is 16 feet. Find the side, anothem, and area of a regular inscribed dodecagon.
- 12. Find the same magnitudes for a regular dodecagon which is circumscribed about a circle whose radius is 17.
- 13. The diagonal of a regular pentagon is 14; find the side, anothem, perimeter, and area of the pentagon.
- 14. The apothem of a regular heptagon is 0.69786; find the perimeter and area of the heptagon.

If m denotes the base, h the altitude, l the leg, C the vertex angle, and D the base angle of an isosceles triangle, find:

- **15**. h, m, and C, in terms of D and l.
- **16**. D, l, and C, in terms of m and h.
- 17. D, C, and m, in terms of h and l.
- **18**. C, h, and l, in terms of D and m.
- 19. D, h, and l, in terms of C and m.
- **20.** Solve the isosceles triangle in which a leg = 2.62731 and the altitude = 1.76683.
- 21. If a chord 22.67 ft. in length subtends an arc 127° 23′, what is the radius of the circle?
- **22**. If the radius of a circle is 105.27 ft., what is the length of a chord which subtends an arc of 54° 13′?
- 23. The side of a regular polygon of fourteen sides inscribed in a circle is 21.6 ft.; find the side of a regular twenty-sided polygon inscribed in the same circle.
- **24.** The radius of a circle is R; show that each side of a regular inscribed polygon of n sides is  $2R\sin\left(\frac{180^{\circ}}{n}\right)$ , and that each side of a regular circumscribed polygon is  $2R\tan\left(\frac{180^{\circ}}{n}\right)$ .

- **25.** Each side of a regular polygon of n sides is m; show that the radius of the circumscribed circle is equal to  $\frac{m}{2}\csc\left(\frac{180^{\circ}}{n}\right)$ , and the radius of the inscribed circle is equal to  $\frac{m}{2}\cot\left(\frac{180^{\circ}}{n}\right)$ .
- **26.** If the chord of an arc of 36° is 24, find the chord of an arc of 12° in the same circle.
- 27. If the chord of an arc of 48° is 36, find the chord of an arc of 66° in the same circle.

Using four-place tables, solve the isosceles triangle in which:

- **28.** Leg = 36.72, base  $\angle = 32.6$ .
- **29**. Base = 1600, base  $\angle = 67.4^{\circ}$ .
- **30.** Vertex  $\angle = 117.72^{\circ}$ , altitude = 17.83.
- **31.** Base = .7368, altitude = .4864.
- **32.** Altitude = 112.67, leg = 128.7.
- **33.** Leg = 67.87, base  $\angle = 32.73^{\circ}$ .
- **34**. Altitude = .11683, base  $\angle = 76.18^{\circ}$ .
- **35**. Base = 31.26, altitude = 21.73.
- **36**. Vertex  $\angle = 151.7^{\circ}$ , leg = .4363.
- 37. One side of a regular octagon is 14. Find the apothem and area of the octagon.
- **38**. The apothem of a regular pentagon is 19.7. Find the perimeter of the pentagon.
- **39.** A regular decagon is inscribed in a circle whose radius is 1.76. Find the side and apothem of the decagon.
- **40.** Find the magnitude of the various parts of a regular heptagon circumscribed about a circle whose radius is 21.
- 41. The diagonal connecting two alternate vertices of a regular dodecagon is 18. Find the side, apothem, and area of the dodecagon.
- 42. If a chord of 37.82 ft. subtends an arc of 118.3°, find the radius of the circle.
- **43.** If the radius of a circle is 100, what is the length of a chord which subtends an arc of 67.7°?

Without the use of the tables, solve the following:

- 44. The base of an isosceles triangle is 50, and the vertex angle is 120°. Find the base angle and altitude.
- **45**. The leg of an isosceles triangle is 100, and the altitude is 50. Find the base angle and base.
- **46.** The altitude of an isosceles triangle is **10**, and the base angle is **60°.** Find a leg and the base.
- **47**. The leg of an isosceles triangle is  $6\sqrt{2}$ , and the base is 12. Find the base angle, vertex angle, and altitude.
- **48**. The radius of a circle is 2. Find the number of degrees in an arc which subtends a chord whose length is  $2\sqrt{3}$ .
  - 49. The diagonal of a square is 10. Find the side of the square.
  - 50. How many of Exs. 44-49 can you work at sight?

#### AREAS

49. General Method of computing Area of a Right Triangle. If b denote the base, a the altitude, and K the area of a right triangle, by geometry  $K = \frac{1}{2}ab$ .

$$\therefore \log K = \log a + \log b + \operatorname{colog} 2.$$

Ex. 1. Given  $A = 37^{\circ} 19'$ , b = 308, find the area of the right triangle.

To find  $\log a$  and then the area we proceed as follows:

$$a = 308 an 37^{\circ} 19'.$$
 (Art. 41)  
 $308 \log 2.48855$   
 $37^{\circ} 19' \log an 9.88210 - 10$   
 $a \log 2.37065$   
 $308 \log 2.48855$   
 $2 \operatorname{colog} 9.69897 - 10$   
 $K = 36155 \log 4.55817$ 
 $K = 36155 \log 4.55817$ 

Ex. 2. Find the area of a right triangle in which the hypotenuse is 417 and the base 356.

$$a = \sqrt{c^2 - b^2} = \sqrt{(417)^2 - (356)^2}$$
  
=  $\sqrt{(417 + 356)(417 - 356)} = \sqrt{773 \times 61}$   
 $\therefore \log a = \frac{1}{2} (\log 773 + \log 61).$ 



$$K = \frac{1}{2} ab. \therefore \log K = \log a + \log b + \operatorname{colog} 2.$$

$$773 \log 2.88818 \frac{1}{2} \log 1.44409$$

$$61 \log 1.78533 \frac{1}{2} \log 0.89267$$

$$356 \log 2.55145$$

$$2 \operatorname{colog} 9.69897 - 10$$

$$K = 38652.7 \log 4.58718$$

Ex. 3. By use of four-place tables find the area of the right triangle in which  $A = 37.32^{\circ}$  and b = 308 (see Fig. 28).

$$\log K = \log a + \log 308 + \operatorname{colog} 2.$$

To find  $\log a$ ,

$$a = 308 \tan 37.32^{\circ}$$
.

 $308 \log 2.4886$   $37.32^{\circ} \log \tan 9.8821$   $a \log 2.4886$   $308 \log 2.4886$   $2 \operatorname{colog} 9.6990 - 10$   $K = 36167 \log 4.5583$ 

50. Formulas for Area of a Right Triangle. The area of a right triangle may often be obtained more readily by the use of a formula involving only the particular parts of the triangle given. Denoting the area of a right triangle by K, let the pupil show that

When the two legs are given,  $K = \frac{1}{2} ab$ .

When an acute angle and the hypotenuse are given,

$$K = \frac{1}{2} c^2 \sin A \cos A$$
 (or  $= \frac{1}{2} c^2 \sin B \cos B$ ).

When the hypotenuse and a leg are given,

$$K = \frac{1}{2} a\sqrt{(c+a)(c-a)}$$
 (or  $= \frac{1}{2} b\sqrt{(c+b)(c-b)}$ ).

When an acute angle and a leg are given,

$$K = \frac{1}{2} a^2 \tan B \text{ (or } = \frac{1}{2} b^2 \tan A),$$
  
 $K = \frac{1}{2} a^2 \cot A \text{ (or } = \frac{1}{2} b^2 \cot B).$ 

or

By geometry, what is the method or formula for computing the area of an isosceles triangle? of a regular polygon? The formulas given above for computing the area of a right triangle are sometimes useful in computing the area of an isosceles triangle, or of a regular polygon.

### **EXERCISE 21**

Using five-place tables, compute the area of the right triangle in which:

1. 
$$A = 28^{\circ} 18', b = 216$$
.

**5**. 
$$B = 63^{\circ} 18'$$
,  $c = 124.72$ .

**2**. 
$$B = 72^{\circ}$$
,  $a = 196$ .

**6.** 
$$a = 192.7, b = 212.97.$$

**3.** 
$$A = 21^{\circ} 16' 30''$$
,  $c = 31.967$ .

7. 
$$a = 0.73216$$
,  $c = .9125$ .

**4.** 
$$c = 46.72$$
,  $b = 32.54$ .

8. 
$$c = 927.8 \text{ ft.}, b = 759.8 \text{ ft.}$$

**9.** Given 
$$a = 2.5$$
 and  $K = 4.27$ , find  $b$ ,  $c$ , and  $A$ .

**10.** Given 
$$K = 7.256$$
 and  $A = 26^{\circ}$  18', find a, b, and c.

**11.** Given 
$$K = 55.686$$
 and  $c = 15.67$ , find  $a, b,$  and  $A$ .

Compute the area of the isosceles triangle in which:

**12.** Base = 
$$12.67$$
, leg =  $9.267$ .

**13**. Base = 
$$.67892$$
, altitude =  $.26217$ .

**14.** Base angle = 
$$68^{\circ} 18'$$
, leg =  $.2892$ .

**15.** Vertex angle = 
$$105^{\circ} 17'$$
, altitude =  $13.67$ .

**16**. Vertex angle = 
$$113^{\circ} 18'$$
, leg 25.6.

17. Given area = 16.72 and base = 6.37, find altitude, leg, and base angle.

18. Given area = .9273 and base angle =  $27^{\circ} 18'$ , find leg, base, and altitude.

19. Given area = 22.76 and vertex angle =  $117^{\circ} 55'$ , find leg, base, and altitude.

20. Find the area of the regular pentagon whose perimeter is 3.35.

21. Find the area of the regular dodecagon whose another is 1.7267.

22. Find the area of a regular heptagon inscribed in a circle whose radius is 0.7516.

23. Given a regular octagon whose apothem is 2.27; find the difference between its area and that of the inscribed circle.

**24.** Given n = 9 and K = 30, find r, c, and R.

**25.** Given n = 11 and K = 35, find the perimeter.

**26.** Given n=5 and K=37, find p and R.

27. If n denotes the number of sides, R the radius, and C the central angle of any regular polygon, prove that  $K = nR^2 \sin \frac{1}{2} C \cos \frac{1}{2} C$ .

Using four-place tables, find the area of each of the following right triangles, given:

**28.** 
$$A = 34.6^{\circ}$$
,  $a = 67.8$ . **32.**  $b = 8.42$ ,  $c = 11.26$ .

**29**. 
$$B = 84^{\circ}$$
,  $a = 100$ . **33**.  $B = 39.24^{\circ}$ ,  $c = 23.68$ .

**30.** 
$$A = 18.62^{\circ}, b = 72.36.$$
 **34.**  $c = 5000, a = 3000.$ 

**31.** 
$$a = .16376, b = .19762.$$
 **35.**  $A = 47^{\circ}, a = .0087.$ 

Solve the following right triangles, given:

**36**. 
$$b = 6.37, K = 26.38$$
.

**37**. 
$$K = 1200$$
,  $A = 63.18^{\circ}$ .

**38.** 
$$K = .4962, c = .1635.$$

Find the area of each of the following isosceles triangles, given:

**39.** Base = 
$$.7262$$
, leg =  $.5263$ .

**40**. Altitude = 
$$12.36$$
, leg =  $17.27$ .

**41**. Altitude = 
$$86.27$$
, base =  $111.63$ .

**42.** Base angle = 
$$42.67^{\circ}$$
, leg =  $17.43$ .

**43.** Vertex angle = 
$$100.24^{\circ}$$
, altitude =  $8.217$ .

**44.** Vertex angle = 
$$78.32^{\circ}$$
, leg =  $.6526$ .

In an isosceles triangle:

- **45.** Given area = 192.67 and base = 43.64, find altitude, leg, and base angle.
- **46.** Given area = 0.7362 and base angle =  $37.43^{\circ}$ , find leg, base, and altitude.
- 47. Given area = 1367.8 and vertex angle =  $113.28^{\circ}$ , find base, leg, and altitude.
- **48.** Given area = .1025, and leg = .4916, find the base, altitude, and angle at the base.
  - **49.** Find the area of a regular decagon whose perimeter is 27.63.
  - 50. Find the area of a regular pentagon whose anothem is .4782.
- **51.** Find the area of a regular heptagon inscribed in a circle whose radius is 116.2.
- **52**. Given the side of a regular octagon as 5.33, find the difference between the area of the octagon and that of the circumscribed circle.

In a regular polygon:

- **53**. Given n = 7 and K = 14, find c, r, and R.
- **54.** Given n = 11 and K = 1000, find r, c, and R.
- **55.** Given n = 9 and K = 47, find r, c, and R.
- **56.** Given n = 14 and K = 800, find the perimeter.

Without the use of the tables, find the area of each of the following right triangles, given:

**57.** 
$$a = 100$$
 and  $A = 60^{\circ}$ .

**61.** 
$$a = 80$$
 and  $c = 160$ .

**58.** 
$$b = 600$$
 and  $c = 1200$ .

**62.** 
$$b = 40$$
 and  $c = 40\sqrt{2}$ .

**59.** 
$$a = 26.3$$
 and  $b = 21.2$ .

**63.** 
$$c = 4000$$
 and  $A = 30^{\circ}$ .

**60.** 
$$B = 60^{\circ}$$
 and  $a = 90$ .

**64**. 
$$A = 45^{\circ}$$
,  $b = 120$ .

Also of each of the following isosceles triangles, given:

**65.** Vertex 
$$\angle = 120^{\circ}$$
,  $\log = 100$ .

**67.** Leg = 
$$40$$
, altitude =  $20$ .

**66.** Base 
$$\angle = 30^{\circ}$$
, base = 200.

**68.** Vertex 
$$\angle = 90^{\circ}$$
,  $\log = 400$ .

#### **EXERCISE 22. APPLICATIONS**

Solve, using either set of tables:

- 1. The angle of elevation (see Art. 88) of the top of a cliff, measured from a point 225 ft. from the base, is 60°. How high is the cliff?
- **2.** At a point 170 ft. from a tower, and on a level with its base, the angle of elevation of the top of the tower is found to be  $70^{\circ}$  18'  $\lceil 70.3^{\circ} \rceil$ . What is the height of the tower?
- **3.** The angle of elevation of the sun is  $65^{\circ}$  30'  $[65.5^{\circ}]$  and the length of a tree's shadow, on a level plane, is 52 ft. Find the height of the tree.
- 4. If the Eiffel Tower is 984 ft. high, what will be the angle of elevation of its top, when viewed at a distance of a mile?
- 5. The length of a kite string is 700 ft., and the angle of elevation of the kite is 44° 36′ [44.6°]. Find the height of the kite supposing the kite string to be straight.
- 6. One of the equal sides of an isosceles triangle is 62.8 ft., and one of the equal angles is 52° 18′ 36″ [52.31°]. Find the base, altitude, and area of the triangle.
- **7.** What is the elevation of the sun, if a tree 82.6 ft. high casts a shadow 105.8 ft. long on a horizontal plane?

8. A ladder, 25 ft. long, leans against a house and reaches to a point 21.6 ft. from the ground. Find the angle between the ladder and the house, and the distance the foot of the ladder is from the house.

Why are we able to solve an example like this by trigonometry when we are not able to do so by geometry?



9. The Washington Monument is 555 ft. high. How far apart are two observers who from points due west of the monument observe its angles of elevation to be 25° and 48° 17′ [48.28°] respectively?

10. If the Grand Cañon of the Colorado is 5000 ft. deep, what will be the angle of depression of the river flowing through it when viewed from the brink of the cañon at a horizontal distance of 3 mi.?

11. If a hillside has a slope of 7°, a dam 10 ft. high will force the water how far back up the hillside?

12. A tower 125 ft. high stands on the bank of a river. The angle subtended by the tower at the edge of the opposite bank is  $23^{\circ}31'$  [23.52°]. Find the width of the river.

13. What is the height of a hill if its angle of elevation taken at the foot of the hill is  $40^{\circ} 18' [40.3^{\circ}]$  and if this angle taken 150 yd. from the foot of the hill and on a level with the foot is  $28^{\circ} 42' [28.7^{\circ}]$ ?

14. From the summit of a hill, there are observed two consecutive milestones on a straight horizontal road running from the base of the hill. The angles of depression (see Art. 88) are found to be 12° and 7° respectively. Find the height of the hill.

15. A valley is crossed by a horizontal bridge, whose length is l. The sides of the valley make angles m and n with the plane of the horizon. Show that the height of the bridge above the bottom of the valley is  $\frac{l}{\cot m + \cot n}$ .

16. Upon a hill overlooking the sea stands a tower 70 ft. high. From a ship the angle of elevation of the base and top of the tower are respectively 15° 4' [15.07°] and 15°40' [15.67°]. What is the height of the hill and the horizontal distance of the ship from the tower?

**17**. Given:

$$\angle AKF = \angle ARK = \angle RTF = 90^{\circ}.$$
  
  $\angle KAR = 60^{\circ} \text{ and } AR = 12.$ 

Without the use of the tables find the length of all the other lines in the figure.



- **18.** A boy standing m feet behind and opposite the middle of a football goal, sees that the angle of elevation of the nearer crossbar is A, and the angle of elevation of the crossbar at the other end of the field is C. Prove that the length of the field is m (tan A cot C-1).
- 19. A railroad embankment is 7 ft. high. If the top of the embankment is 8 ft. wide and the sides slope at an angle of 43°, what will be the width of the base?
- 20. If the Metropolitan Life Insurance building of New York City is 700 ft. high, how far from the building is an observer when the angle of elevation of the top of the building is 7° 36′ [7.6°]?
- 21. A man standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank is 60°; when he retires 50 m. from the edge of the river, the angle of elevation is 30°. Without the use of the tables find the height of the tree and the width of the river.

**22.** Given: 
$$KP = 6 \text{ m.}$$
;

$$\angle K = \angle F = 60^{\circ}$$
;  $\angle SRN = 45^{\circ}$ ;

and RNTP a square.

Without the use of the tables find the lengths of KR, PR, RS, ST, SF, and TF.



- 23. A tower and a monument stand on the same horizontal plane. The height of the tower is 35.6 m. and the angles of depression of the top and base of the monument, as observed from the top of the tower, are respectively 5° 16′ 48″ [5.28°] and 8° 18′ 30″ [8.3°]. How high is the monument?
- 24. A flagstaff stands on the roof of a building. From a point A on the ground the angles of elevation of the foot and the top of the flagstaff are 37° and 46°, respectively. From a point B, 250 ft. farther off and in line with A and the base of the building immediately below the flagstaff, the angle of elevation of the top of the flagstaff is  $27^{\circ}$  30′ [27.5°]. Find the length of the flagstaff.
- 25. From the top of a lighthouse, 150 ft. above the sea level, the angle of depression of a buoy situated between the lighthouse and the shore was 62° 14′ [62.23°] and that of a point on the shore in a straight line with the buoy was 12° 10′ [12.17°]. Find the distance, in feet, of the buoy from the shore.
- 26. The base of a rectangle is 50.62 and its diagonal is 71.6. Find the altitude of the rectangle and the angle which the diagonal makes with the base.



27. Given:

$$OA = 1$$
,  
 $\angle ABO = \angle BCO = 90^{\circ}$ .

Express AB, OB, BC, OC in terms of trigonometric functions of x and y.

City is 612 ft. high. Make up some problem concerning this which can be solved by trigonometry.

- 29. The diagonals of a rhombus are 42.28 and 30.58. Find the sides and angles.
- 30. Make up (or collect) as many different examples as you can showing the practical uses of the solution of right triangles by trigonometry, each example being distinct from the rest either in principle or in the field of its application.
- 31. Who first, and at what date, taught the trigonometric solution of triangles in the same general way as is done at present?

## CHAPTER IV

## **GONIOMETRY**

#### TRIGONOMETRIC FUNCTIONS OF ANGLES IN GENERAL

51. Angles greater than 90°. In solving oblique triangles, angles greater than 90° may occur. Hence it is important to learn what the trigonometric functions of an obtuse angle are. Similarly the radius of a rotating wheel, as in a dynamo, generates angles greater than 360° and by successive rotations generates angles unlimited in size.

In astronomy, the heavenly bodies, by successive rotations about an axis, and by revolutions in an orbit, also generate angles unlimited in size.

Hence a general method is needed of determining the trigonometric functions of angles unlimited in size.

52. The Four Quadrants. Definitions. Let AC (Fig. 30) be the horizontal diameter of a circle ABCD, and BD the diameter perpendicular to AC.

Then AOB, BOC, COD, and DOA are termed the first, second, third, and fourth quadrants of the circle.

On Fig. 31 the four parts into which a plane is divided by the lines XX' and YY' are also termed quadrants and are numbered in the same order as the quadrants of a circle.



In treating of the properties of angles in general, it is convenient, wherever possible, to let the angles start at the same place, as OA (that is, to have the vertex and a side in common).

Let the rotating radius start in the position OA and rotate toward the position OB (in the direction contrary to that in which the hands of a clock move, or counter-clockwise).

The  $\angle AOP_1$ ,  $AOP_2$ ,  $AOP_3$ ,  $AOP_4$  are called angles in the first, second, third, and fourth quadrants respectively.

The initial line of an angle is the rotating radius, which generates the angle, in its first position, as AO.

The terminal line of an angle is the rotating radius in its final position, as  $OP_2$  for  $\angle AOP_2$ .

By continuing the rotation of OA, angles greater than 360° will be generated. If two angles differ by 360°, or by any exact multiple of 360°, they will have the same terminal line.

Coterminal angles are angles which have the same terminal line, as 37°, 397°, and 757°.

In general an angle is said to be of or in that quadrant in which its terminal line lies.

53. Negative Angles. In algebra it is shown that negative quantity is quantity exactly opposite in some respect, as, for instance, in direction, from other quantity taken as positive. Hence if the rotating radius move from the position OA (Fig. 30) toward the position OD (that is, in the same direction with the hands of a clock, or clockwise), a negative angle, as the acute  $\angle AOP_4$ , will be generated. If the radius continue to rotate in this direction, a whole series of negative angles will be formed similarly.

# 54. Rectangular Coördinates. In order to define the



trigonometric functions of angles greater than 90°, and of negative angles, two straight lines, XX' and YY' (Fig. 31), intersecting at the point O and perpendicular to each other, are taken and called **axes**. The signs of other lines used are determined by their position with

reference to these axes Lines drawn from YY' to the right (and  $\parallel XX'$ ) are taken as +; lines drawn from YY' to the left (and  $\parallel XX'$ ) are taken as -. Lines drawn from XX' above (and  $\parallel YY'$ ) are taken as +; lines drawn from XX' below (and  $\parallel YY'$ ) are taken as -.

The **origin** is the point in which the axes intersect, as the point O on Fig. 31.

The **ordinate** of a point is the distance of the point above or below the axis XX'. The **abscissa** of a point is the distance of the point to the right or left of the YY' axis. Thus, the ordinate of  $P_1$  is  $M_1P_1$ ; the abscissa of  $P_1$  is  $OM_1$ .

**Coördinates** is the general term for abscissa and ordinate of a point. The coördinates of a point may be written together in parenthesis with abscissa first and a comma between. Thus if  $OM_1 = a$ , and  $M_1P_1 = b$ , the coördinates of  $P_1$  are (a, b).

The distance of a point is the line drawn from the origin to the point, thus on Fig. 31 the distance of  $P_1$  is  $OP_1$ . The distance of a point is independent of sign.

# 55. Definitions of Trigonometric Functions of Any Angle.



If we regard an angle as formed by an initial line and a line drawn from the origin to a point whose abscissa and ordinate are considered, then

sine of an angle = ratio of ordinate to distance; cosine of an angle = ratio of abscissa to distance;

tangent of an angle = ratio of ordinate to abscissa; cotangent of an angle = ratio of abscissa to ordinate; secant of an angle = ratio of distance to abscissa; cosecant of an angle = ratio of distance to ordinate.

Thus in Figs. 32, 33, 34, 35, 
$$\sin \angle XOP_1 = \frac{M_1P_1}{OP_1}$$
,

$$\sin \angle XOP_2 = \frac{M_2P_2}{OP_2}$$
,  $\sin \angle XOP_3 = \frac{M_3P_3}{OP_3}$ ,  $\sin \angle XOP_4 = \frac{M_4P_4}{OP_4}$ .

Let the pupil point out in like manner the other trigonometric functions of the angles  $XOP_1$ ,  $XOP_2$ ,  $XOP_3$ ,  $XOP_4$ .

# 56. Trigonometric Functions represented by Lines.

If a circle (Fig. 36) be drawn with O as a center and a radius OA, equal to 1, and with  $M_1P_1$ ,  $M_2P_2$ ,  $M_3P_3$ ,  $M_4P_4$ , perpendicular to XX',



$$\sin \angle AOP_1 = \frac{M_1P_1}{OP_1} = \frac{M_1P_1}{1} = M_1P_1.$$

Similarly,  $\sin \angle AOP_2 = M_2P_2$ ;  $\sin \angle AOP_3 = M_3P_3$ ; and  $\sin \angle AOP_4 = M_4P_4$ . Or, in the circle as described, the sine of an angle is represented by a line drawn from the terminal end of the arc intercepted by the angle, and perpendicular to the horizontal diameter.

Similarly if (in Fig. 37)  $N_1P_1$ ,  $N_2P_2$ ,  $N_3P_3$ ,  $N_4P_4$  are perpendicular to YY',

$$\cos \angle AOP_1 = \frac{N_1 P_1}{OP_1} = \frac{N_1 P_1}{1} = N_1 P_1;$$

$$\cos \angle AOP_2 = N_2P_2$$
;  $\cos \angle AOP_3 = N_3P_3$ ;  $\cos \angle AOP_4 = N_4P_4$ .

Or, in the circle as described, the cosine of an angle is represented by a line drawn from the terminal end of the arc intercepted by the angle, and perpendicular to the vertical diameter.

Similarly (in Fig. 38), if TT' is tangent to the circle at A,

$$\tan \angle AOP_1 = \frac{AT_1}{OA} = \frac{AT_1}{1} = AT_1;$$

$$\tan \angle AOP_2 = AT_2$$
;  $\tan \angle AOP_3 = AT_3$ ;  $\tan \angle AOP_4 = AT_4$ .

Or in the circle as described, the tangent of an angle is represented by a line drawn touching the initial end of the arc intercepted by the angle, and terminated by the radius to the other end of the arc, produced.







Fig. 39.

Similarly (in Fig. 39), if  $R_1R_4$  is tangent to the circle at the point B,

$$\cot \angle AOP_1 = \tan \angle BOR_1 = \frac{BR_1}{OR} = \frac{BR_1}{1} = BR_1;$$

 $\cot \angle AOP_2 = BR_2$ ;  $\cot \angle AOP_3 = BR_3$ ;  $\cot \angle AOP_4 = BR_4$ ; or in the circle as described the cotangent of an angle is represented by a line which is the tangent of the complement of the given angle.

On Fig. 38 the secants of the four angles used are readily shown to be represented by  $OT_1$ ,  $OT_2$ ,  $OT_3$ ,  $OT_4$ ; or, in general, the secant of an angle is represented by a line drawn from the center through the terminal end of the arc intercepted by the angle, and terminated by the tangent.

Similarly on Fig. 39 the cosecants of the four angles used are represented by  $OR_1$ ,  $OR_2$ ,  $OR_3$ ,  $OR_4$ ; or, in general, the cosecant of an angle is represented by a line which is the secant of the complement of the angle.

It will be convenient to draw a figure for an angle in each quadrant showing the lines which represent the functions of that angle.



The lines which represent the various trigonometric functions of an angle are not the same as the trigonometric functions which they represent, but they have many of the same properties as the functions or ratios. It is often easier to perceive these properties by the use of the lines, than by the use of the ratios which the lines represent.

In deriving the properties of the trigonometric functions of angles greater than 90° we shall derive them from the lines representing the functions; but in such cases we give some specimen proofs showing how these properties may be derived from the ratio definitions (of Art. 55), and in other cases leave it as an exercise for the pupil to derive the proofs from the ratios if the teacher considers it desirable.

57. Signs of the Trigonometric Functions in the Different Quadrants. Of the lines representing the sines of angles in the different quadrants, viz.  $M_1P_1$ ,  $M_2P_2$ ,  $M_3P_3$ ,  $M_4P_4$  (Fig. 36), the first two are above the horizontal axis, and are therefore plus in sign; the last two are below, and therefore minus. Hence the signs of the sines of angles in the four quadrants are respectively +, +, -, -.

The students may obtain the same results from Figs. 32–35 by using the general definitions of trigonometric functions given in Art. 55.

Similarly in Fig. 37 the cosine lines  $N_1P_1$ ,  $N_2P_2$ ,  $N_3P_3$ ,  $N_4P_4$  are +, -, -, +, respectively; and in Fig. 38 the tangent lines  $AT_1$ ,  $AT_2$ ,  $AT_3$ ,  $AT_4$  are +, -, +, -, respectively.

Since the sine of a quantity and of its reciprocal must be the same, the sign of the cotangent in the various quadrants must be the same as that of the tangent; that of the secant, the same as the cosine; that of the cosecant, the same as the sine.

Or, proceeding geometrically, on Fig. 39, the cotangent lines  $BR_1$ ,  $BR_2$ ,  $BR_3$ ,  $BR_4$  are +, -, +, -.

The secant is considered as plus when it is drawn in the same direction from the center as the terminal radius (thus  $OT_2$ , Fig. 38, is opposite in direction from  $OP_2$  and is therefore negative). Hence the secant lines  $OT_1$ ,  $OT_2$ ,  $OT_3$   $OT_4$  have the signs +, -, -, +, respec-

tively. Similarly the cosecant lines (Fig. 39)  $OR_1$ ,  $OR_2$ ,  $OR_3$ ,  $OR_4$  have the signs +, +, -, -.

The results thus obtained may be arranged in a table as follows:

|                       | I | II | III | IV |
|-----------------------|---|----|-----|----|
| sine and cosecant     | + | +  | . – | _  |
| cosine and secant     | + | _  | _   | +  |
| tangent and cotangent | + |    | +   | -  |

#### **EXERCISE 23**

In which quadrant is each of the following angles?

| 1. | 123°. | 6.         | 415°.            | 11.         | 1111°.             |
|----|-------|------------|------------------|-------------|--------------------|
| 2. | 155°. | <b>7</b> . | $-18^{\circ}$ .  | 12.         | 222°.              |
| 3. | 215°. | 8.         | $-125^{\circ}$ . | 13.         | $-1826^{\circ}\!.$ |
| 4. | 285°. | 9.         | 612°.            | 14.         | $2625^{\circ}.$    |
| 5. | 338°. | 10         | . — 500°.        | <b>15</b> . | $-1500^{\circ}.$   |

16. Find the signs of the functions of the angles in Exs. 1, 3, and 5.

19. 100°.

Give two positive and two negative angles each of which is coterminal with:

In which quadrant does an angle lie:

**18**.  $-30^{\circ}$ .

17. 25°.

- 27. If its sin is positive and cos negative?
- 28. If its tan is positive and sin negative?
- 29. If its cot is negative and cos negative?
- **30.** If its esc is negative and cot positive?
- **31.** If its cos is positive and tan negative?
- 32. If its sec is negative and tan negative?
- **33.** A railroad embankment is 9 ft. high and 43 ft. wide at the base. If each of its sides makes an angle of 27° 15′ [27.25°] with the horizontal, how wide is the top of the embankment?

**20**.  $-100^{\circ}$ .

- **34.** If a railroad embankment is 7 ft. high and 28 ft. 9 in. wide at the top, and one side has a slope of 23° 30′ [23.5°] and the other a slope of 32° 45′ [32.75°], how wide is the base?
  - 35. Make up a similar example for yourself.
- 58. Functions of  $0^{\circ}$ ,  $90^{\circ}$ ,  $180^{\circ}$ ,  $270^{\circ}$ ,  $360^{\circ}$ . In Arts. 34 and 35 it is shown that  $\sin 0^{\circ} = 0$  and  $\sin 90^{\circ} = 1$ . Similar results are readily perceived for other quadrants by the use of a figure showing the sines as lines in the different quadrants.

Thus in Fig. 44 in the first quadrant the sine increases from 0 to 1; in the second quadrant it decreases from 1 to 0; in the third it decreases from 0 to -1; in the fourth quadrant it increases from -1 to 0. Hence the sines of  $0^{\circ}$ ,  $90^{\circ}$ ,  $180^{\circ}$ ,  $270^{\circ}$ ,  $360^{\circ}$ , in order, are 0, 1, 0, -1, 0. Similarly in the first quadrant (Fig. 45) the cosine decreases from 1 to 0; in the second quadrant it decreases from 0 to -1; in the third quadrant it increases from -1 to 0; in the fourth quadrant it increases from 0 to 1. Hence the cosines of 0°, 90°, 180°, 270°, 360°, in order, are 1, 0, -1, 0, 1.



Similarly from Fig. 38, or from the formula  $\tan x = \frac{\sin x}{\cos x}$ , it is clear that the tangent in the different quadrants changes from 0 to  $\infty$ ; from  $-\infty$  to 0; from 0 to  $\infty$ ; from  $-\infty$  to 0. Hence the tangents

of 0°, 90°, 180°, 270°, 360°, in order, are  $0, \pm \infty, 0, \pm \infty, 0$ . The changes in the value of the cotangent, the secant, and the cosecant, and the values of these functions for the above-mentioned angles may be obtained from geometrical figures in like manner, but these values are obtained more readily from the reciprocal formulas

$$\cot = \frac{1}{\tan}; \ \sec = \frac{1}{\cos}; \ \csc = \frac{1}{\sin}.$$
 Thus, 
$$\sec 180^{\circ} = \frac{1}{\cos 180^{\circ}} = \frac{1}{-1} = -1.$$

Obtaining the values of the required functions thus and arranging all the results obtained in a table, we have

|        | 0° | 90° | 180° | 270° | 360° |
|--------|----|-----|------|------|------|
| $\sin$ | 0  | 1   | 0    | -1   | 0    |
| cos    | 1  | 0   | -1   | 0    | 1    |
| tan    | 0  | ω   | . 0  | 00   | 0    |
| cot    | ∞  | 0   | 8    | 0    | 8    |
| sec    | 1  | ∞   | -1   | ∞    | 1    |
| csc    | ω  | 1   | ω    | -1   | ∞    |

In the above table  $\infty$  is to be taken as + or - according to the side from which it is approached (see Art. 57).

## **EXERCISE 24**

Find the numerical value of:

- 1.  $5 \sin 90^{\circ} + 7 \cos 180^{\circ} + 8 \sin 30^{\circ}$ .
- 2.  $m \sin 0^{\circ} + p \cos 90^{\circ} + c \cot 360^{\circ}$ .
- 3.  $b \cos 90^{\circ} c \tan 180^{\circ} + b \cot 270^{\circ}$ .
- **4.**  $(a^2 c^2) \cos 180^\circ + 4 ac \sin 90^\circ$ .
- 5.  $2 \tan 0^{\circ} \sin 90^{\circ} 4 \sec 0^{\circ} \sin 270^{\circ} + 5 \csc 90^{\circ} \cos 0^{\circ} \cot 270^{\circ}$ .
- **6.**  $a \cos 180^{\circ} \sec 360^{\circ} b \tan 180^{\circ} \sin 270^{\circ} a \sin 90^{\circ} \sec 0^{\circ} + b \sin 90^{\circ} \cos 270^{\circ}$ .
  - 7.  $m \sin 270^{\circ} \csc 90^{\circ} + n \cos 180^{\circ} \csc 270^{\circ} \cot 270^{\circ} m \sec 180^{\circ}$ .
  - **8.**  $6 \text{ m csc } 90^{\circ} \cos^{2} 0^{\circ} 17 \text{ n sec}^{2} 0^{\circ} \cot^{2} 270^{\circ} + 3 \text{ m sin } 270^{\circ} \sec 360^{\circ}$ .
  - 9. Show that

$$4\cos^2 45^\circ \sec 0^\circ + 6\tan^2 30^\circ \sin 270^\circ + 12\cot^2 45^\circ \cos 180^\circ - 4\tan^2 45^\circ \csc 270^\circ = -8.$$

59. Trigonometric Functions of Angles greater than 360°. It is evident that the trigonometric functions of angles from 360° to 720° are the same in order as those from 0° to 360°. Similarly for every succeeding 360°, the functions repeat themselves.

Hence to find the functions of an angle greater than 360°, Divide the angle by 360° and find the required trigonometric function of the remainder.

Ex.  $\sin 766^{\circ} = \sin (2 \times 360^{\circ} + 46^{\circ}) = \sin 46^{\circ}$ .

60. Formulas for the Acute Angle extended to any Angle. The equations and formulas proved in Arts. 27–29 concerning the function of an acute angle are true for the functions of any angle.

Thus, on each of the Figs. 40–43,  $\overline{MP}^2 + \overline{OM}^2 = \overline{OP}^2$ .

That is,  $\sin^2 x + \cos^2 x = 1.$ 

Also in each quadrant the  $\triangle$  OMP, OAT, OBR are similar.

$$\therefore AT: OA = MP: OM, \text{ or } \tan x: 1 = \sin x: \cos x,$$
or
$$\tan x = \frac{\sin x}{\cos x}.$$

Let the pupil prove in like manner,

$$\sin x = \frac{1}{\csc x}, \cos x = \frac{1}{\sec x}.$$

Or these results may be proved directly from the ratio definitions of the trigonometric functions of any angle.

For if angle XOP of Figs. 32–35 be denoted by x, in any quadrant

$$\overline{\text{abs. }P}^2 + \overline{\text{ord. }P}^2 = \overline{\text{dist. }P}^2,$$

$$\therefore \left(\frac{\text{abs. } P}{\text{dist. } P}\right)^2 + \left(\frac{\text{ord. } P}{\text{dist. } P}\right)^2 = 1.$$

Hence,

$$\sin^2 x + \cos^2 x = 1.$$

Let the pupil prove in a similar manner that

$$tan^{2} x + 1 = sec^{2} x$$
, and  $cot^{2} x + 1 = csc^{2} x$ .

Also 
$$\tan x = \frac{\text{ord. } P}{\text{abs. } P} = \frac{\frac{\text{ord. } P}{\text{dist. } P}}{\frac{\text{abs. } P}{\text{dist. } P}} = \frac{\sin x}{\cos x}, \text{ or } \tan x = \frac{\sin x}{\cos x}.$$

Also, 
$$\frac{\text{ord. }P}{\text{dist. }P} \times \frac{\text{dist. }P}{\text{ord. }P} = 1$$
,  $\frac{\text{abs. }P}{\text{dist. }P} \times \frac{\text{dist. }P}{\text{abs. }P} = 1$ ,  $\frac{\text{ord. }P}{\text{abs. }P} \times \frac{\text{abs. }P}{\text{ord. }P} = 1$ ;

or  $\sin x \times \csc x = 1$ ,  $\cos x \times \sec x = 1$ ,  $\tan x \times \cot x = 1$ .

- 61. One function of an angle being given, the other functions may be found in a manner similar to that used in Art. 30. Owing to the fact that for angles less than 360°, two angles correspond to any given function, two sets of answers are found in each example.
  - Ex. 1. Given  $\cos x = -\frac{4}{5}$ , find the other functions of x.

By the table of signs (Art. 57) a negative cosine occurs in both the second and third quadrants.

2d quadrant. 
$$\sin x = \sqrt{1 - (\frac{4}{5})^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5},$$

$$\tan x = \frac{\sin x}{\cos x} = -\frac{3}{4}, \text{ etc.}$$
3d quadrant.  $\sin x = \sqrt{1 - (\frac{4}{5})^2} = \sqrt{\frac{9}{25}} = -\frac{3}{5},$ 

$$\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4}, \text{ etc.}$$

Ex. 2. Given  $\tan x = 2$ , find the remaining functions of x.

The positive tangent occurs (see Art. 57) in both the first and third quadrants.

1st quadrant. 
$$\sec^2 x = 1 + \tan^2 x = 1 + 4 = 5$$
,  $\sec x = \sqrt{5}$ ,  $\cos x = \frac{1}{\sec x} = \frac{1}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$ , etc.

3d quadrant.  $\sec^2 x = 1 + 4$ ,  $\sec x = -\sqrt{5}$ ,  $\cos x = \frac{1}{-\sqrt{5}} = -\frac{1}{5}\sqrt{5}$ , etc.

In case solutions are sought by the geometrical method, the following figures may be used in Exs. 1 and 2 respectively.



#### **EXERCISE 25**

1. Find the numerical value of sin 390°; also of cos 390°, tan 390°, and see 390°.

2. Find the numerical value of  $\cos 780^{\circ}$ ; also of  $\tan 780^{\circ}$ ,  $\sin 780^{\circ}$ , and  $\cot 780^{\circ}$ .

3. Find the values of sin, cos, tan, and cot of the following angles:

4. 1860°.

6.  $-675^{\circ}$ .

8.  $-1740^{\circ}$ .

**5.**  $-330^{\circ}$ .

7. 750°.

**9**. 2205°.

**10.** Given  $\cos x = -\frac{3}{5}$ , find the other functions of x.

**11.** Given  $\tan x = -\frac{1.5}{8}$ , find the other functions of x.

12. Given  $\sin x = -\frac{5}{13}$ , find the other functions of x.

13. Given  $\cot x = 2$  and  $\sin x$  negative, find the other functions of x.

14. Given sec x = -m and  $\tan x$  negative, find the other functions of x.

15. Given  $\tan x = -3$ , find the other functions of x when x is an angle in the fourth quadrant.

16. Given  $\sec x = -6$ , find the other functions of x if  $\tan x$  is positive.

17. Verify geometrically the results obtained in Exs. 10-16.

**18.** Given  $\cot y = \frac{2}{5}\sqrt{5}$  and  $\cos y$  negative, find  $\sin y$  and  $\csc y$ .

19. Given  $\tan x = -\frac{1}{3}\sqrt{3}$  and  $\cos x$  positive, find the other functions of x.

**20.** If  $\theta$  is in the second quadrant and if cosec  $\theta = \frac{13}{5}$ , find the value of  $\frac{\cot \theta + \sec \theta}{\tan \theta + \cos \theta}$ .

**21.** Find the value of  $\frac{\cos \theta + \cot \theta}{\csc \theta + \sec \theta}$ , if  $\theta$  is in the fourth quadrant and  $\tan \theta = -\frac{12}{5}$ .

62. Trigonometric Functions of  $90^{\circ} + x$  in terms of functions of x. The trigonometric functions of  $90^{\circ} + x$  may be reduced to functions of x by use of the following formulas:

 $\sin (90^{\circ} + x) = \cos x.$ 

 $\cot (90^\circ + x) = -\tan x.$ 

 $\cos (90^{\circ} + x) = -\sin x$ .

 $\sec (90^{\circ} + x) = -\csc x.$ 

 $\tan (90^{\circ} + x) = -\cot x$ .

 $\csc (90^{\circ} + x) = \sec x.$ 



Fig. 48 α.

For, let  $\angle AOP$  (Fig 48 a) be any angle x in the first quadrant. Let POQ be a right angle. Let OP = OQ = 1.

Then  $\angle RQO = \angle MOP$ . (sides  $\bot$ )

$$\therefore \triangle RQO = \triangle MOP$$
. (hyp. and acute  $\angle =$ )

$$\therefore \sin (90^\circ + x) = RQ = OM = \cos x.$$

$$\cos(90^\circ + x) = OR = -PM = -\sin x.$$

$$\tan (90^{\circ} + x) = \frac{\sin (90^{\circ} + x)}{\cos (90^{\circ} + x)} = \frac{\cos x}{-\sin x} = -\cot x.$$

Let the pupil supply the proofs for  $\cot (90^{\circ} + x)$ ,  $\sec (90^{\circ} + x)$ , and  $\csc (90^{\circ} + x)$ .

The same results may readily be obtained for angles ending in the second, third, and fourth quadrants by use of the following diagrams.



Fig. 48 b.



Fig. 48 c.



Fig. 48 d.

Ex. 1. Find the value of sin 300°.

$$\sin 300^{\circ} = \sin (90^{\circ} + 210^{\circ}) = \cos 210^{\circ}$$
  
=  $-\sin 120^{\circ} = -\cos 30^{\circ} = -\frac{1}{2}\sqrt{3}$ .

Ex. 2. Reduce tan  $923^{\circ}$  to a function of an angle less than  $90^{\circ}$ .

$$\tan 923^{\circ} = \tan (720^{\circ} + 203^{\circ}) = \tan 203^{\circ}$$
 (Art. 59)  
=  $-\cot 113^{\circ} = \tan 23^{\circ}$ .

Ex. 3. Simplify  $\cos (630^{\circ} + A)$ .

$$\cos (630^{\circ} + A)' = \cos (270^{\circ} + A)$$

$$= -\sin (180^{\circ} + A)$$

$$= -\cos (90^{\circ} + A) = \sin A.$$

#### **EXERCISE 26**

Find the numerical value of:

**1**. sin 210°.

**4**. cot 150°.

**7.** tan 210°.

**2.** cos 300°.

**5**. sec 1215°.

8. sin 330°.

3. tan 120°.

**6**. sec 900°.

**9.**  $\cos 240^{\circ}$ .

10.  $\cos 225^{\circ} + 3 \sin 330^{\circ} - \tan 225^{\circ}$ .

11.  $\cot 840^{\circ} - 3 \tan 420^{\circ} + 2 \sec 480^{\circ}$ .

Express each of the following trigonometric ratios in terms of a ratio of some positive angle not greater than 45°:

**12**. sin 142°.

**18**. cos 110°.

**24.**  $\sin (280^{\circ} 16')$ .

**13**. tan 163°.

**19**. sin 567°:

**25.** cot (2100° 17′).

**14**. cos 310°.

**20**. cot 1415°.

26. esc 1325°.27. cos 82°.

15. sec 185°.16. cot 265°.

**21**. csc 1200°.

28. tan 1060°.

17. tan 315°.

**23**. tan 428°.

29. tan 840°.

**30.** Prove  $\sin 330^{\circ} \cos 390^{\circ} = \cos 570^{\circ} \sin 510^{\circ}$ .

**31.** Prove tan 45° sec 1080° cos 570° sin 510°

 $-\sin 330^{\circ} \tan 225^{\circ} \cos 390^{\circ} = 0.$ 

**32.** Find the value of  $6 \sec^2 1080^\circ \tan^2 135^\circ \sin 1890^\circ + 8 \cot 45^\circ \cos 1140^\circ + \csc 630^\circ \tan 225^\circ \cos 720^\circ \sin 1830^\circ$ .

Simplify the following expressions:

33.  $5 \sin (90^{\circ} + x) - 6 \cos (180^{\circ} + x)$ .

**34.**  $a \sin (90^{\circ} + x) + b \cos (270^{\circ} + x) - c \tan (180^{\circ} + x)$ .

**35.**  $p \sin (180^{\circ} + x) \cos (180^{\circ} + x)$ .

**36.**  $(a+b) \sin (270^{\circ} + x) - (a-b) \cos (270^{\circ} + x)$ .

63. Trigonometric Functions of a Negative Angle. The trigonometric functions of a negative angle may be converted into functions of a positive angle by use of the following formulas:

 $\sin\left(-x\right) = -\sin x.$ 

 $\cot (-x) = -\cot x.$ 

 $\cos\left(-x\right)=\cos x.$ 

 $\sec (-x) = \sec x.$ 

 $\tan (-x) = -\tan x.$ 

 $\csc\left(-x\right)=-\csc x.$ 

For let  $\angle AOP$  (Fig. 49) be a positive angle, x, and  $\angle AOQ$  an equal negative angle. Let OP = OQ = 1.

Then the right triangles OMP and OMQ are equal.



Hence,  

$$\sin(-x) = MQ = -MP = -\sin x$$

$$\cos(-x) = OM = \cos x$$

$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x}$$

$$= -\tan x.$$

Let the pupil supply the proofs for  $\cot(-x)$ ,  $\sec(-x)$ , and  $\csc(-x)$ .

The same results are readily obtained for angles in the other quadrants by the use of appropriate diagrams.

Ex. 1. Find the numerical value of  $\cos (-225^{\circ})$ .

$$\cos (-225^{\circ}) = \cos 225^{\circ},$$
  
=  $-\sin 135^{\circ}$   
=  $-\cos 45^{\circ} = -\frac{1}{2}\sqrt{2}$ , Ans. (Art. 62)

Ex. 2. Simplify  $\cot (180^{\circ} - A)$ .

$$\begin{split} \cot{(180^\circ-A)} &= -\tan{(90^\circ-A)}, \\ &= \cot{(-A)} = -\cot{A}, \ \mathit{Ans}. \end{split}$$

64. Reduction Tables and General Rules. Some of the reductions made by the methods of the preceding articles are used so frequently that it is convenient to collect the results obtained by them, and arrange them in tables for future reference. Thus

$$\sin (90^{\circ} - x) = \cos x.$$
  $\sin (180^{\circ} - x) = \sin x.$   
 $\cos (90^{\circ} - x) = \sin x.$   $\cos (180^{\circ} - x) = -\cos x.$   
 $\tan (90^{\circ} - x) = \cot x.$   $\tan (180^{\circ} - x) = -\tan x$   
 $\cot (90^{\circ} - x) = \tan x.$   $\cot (180^{\circ} - x) = -\cot x$   
 $\sec (90^{\circ} - x) = \csc x.$   $\sec (180^{\circ} - x) = -\sec x$   
 $\csc (90^{\circ} - x) = \sec x.$   $\csc (180^{\circ} - x) = \csc x$ 

Let the pupil form similar tables for the functions of  $270^{\circ} - x$ ,  $360^{\circ} - x$ ,  $180^{\circ} + x$ ,  $270^{\circ} + x$ .

Or the following general rule may be used:

Each function of  $180^{\circ} \pm x$  or  $360^{\circ} \pm x$  is equal in absolute value to the like-named function of x; but each function of  $90^{\circ} \pm x$  or  $270^{\circ} \pm x$  is equal in absolute value to the co-named function of x.\*

For example,  $\sin (180^{\circ} + x)$  and  $\sin x$  by the above rule are equal in absolute value. But it must also be remembered that they are opposite in sign. For if, for instance, x is acute,  $180^{\circ} + x$  is an angle in the third quadrant and therefore  $\sin (180^{\circ} + x)$  is negative. But x meantime would be an angle in the first quadrant, hence  $\sin x$  would be positive. Hence, in general,

$$\sin (180^\circ + x) = -\sin x.$$

Let the pupil show in like manner that, by the above rule,  $\sin (360^{\circ} - x) = -\sin x$ ; also that  $\sin (270^{\circ} - x) = -\cos x$ .

In applying the above general rule to any particular example it will be found that the algebraic sign of the result is the same as the sign of the original function.

Thus,  $\sin 330^\circ = \sin (360^\circ - 30^\circ) = -\sin 30^\circ$ , the short way of determining the sign of  $\sin 30^\circ$  being to note that  $\sin 330^\circ$  is negative since 330° is in the fourth quadrant and that  $\sin 30^\circ$  must have the same sign as  $\sin 330^\circ$ .

If geometrical proofs for the above reduction formulas are desired, such proofs may be obtained by following the methods of Art. 62. But

in such proofs, when constructing an angle like  $180^{\circ} + x$ , or  $270^{\circ} + x$  on the diagram, it is an advantage to construct the  $180^{\circ}$ , or  $270^{\circ}$  first, beginning with the initial line, and then to annex the angle x to the  $180^{\circ}$ , or  $270^{\circ}$ , after it has been constructed.

Thus, to prove that  $\tan (270^{\circ}+x) = -\cot x$  when x is an angle in the second quadrant (i.e. an obtuse angle) we first take (Fig. 50) the positive angle AOB' (270°) and annex to it  $\angle B'OP'$  (=x or  $\angle AOP$ ). Then



<sup>\*</sup> At this point it is often advantageous to have the class study the solution of Case I of oblique-angled triangles (Arts. 74, 79). This shows the pupil an important application of the preceding principle and introduces variety into the course of study.

 $(270^{\circ} + x) = \angle AOT$  (as indicated by the long bent arrow), and tan  $(270^{\circ} + x) = AT$ . Also cot x (or cot AOP) = BR.

But 
$$\angle B'OT = \angle AOR$$
 (construction)

Subtracting 90° from each of these angles we have

$$\angle AOT = \angle BOP$$
.  $\therefore \triangle AOT = \triangle BOP$ . (leg and acute  $\angle =$ )

$$\therefore AT = BR$$
, in absolute magnitude. (hom. sides of =  $\triangle$ )

 $\therefore$  tan  $(270^{\circ} + x)$  and cot x are equal in absolute magnitude.

P B N A

Fig. 51.

But AT and BR are opposite in sign.

$$\therefore \tan (270^{\circ} + x) = -\cot x.$$

Similarly, to prove  $\sin 270^{\circ} - x = -\cos x$  when x is an angle in the second quadrant (Fig. 51) we take  $\angle AOB'$  (270°) and from it deduct  $\angle B'OP'$  (=  $\angle AOP$  or x). Hence,  $\sin (270^{\circ} - x) = MP'$ , while  $\cos x = NP$ .

Since  $\triangle OMP' = \triangle ONP$ , MP' and NP are equal in absolute magnitude. They are also opposite in sign.

$$\sin (270^{\circ} - x) = -\cos x$$
.

#### **EXERCISE 27**

Find the numerical value of:

- **1.**  $\sin (-225^{\circ})$ . **4.**  $\cot (-210^{\circ})$ .
- **7.** sec  $(-240^{\circ})$ .

- **2.**  $\tan (-300^{\circ})$ .
- **5.**  $\tan (-600^{\circ})$ .
- 8.  $\tan (-150^{\circ})$ .

- 3.  $\cos{(-120^{\circ})}$ .
- 6.  $\sin (-900^{\circ})$ .
- 9.  $\sin (-135^{\circ})$ .

Reduce the functions of the following negative angles to the functions of positive angles not greater than  $45^{\circ}$ :

**10**. 
$$-119^{\circ}$$
.

13. 
$$-15^{\circ}$$
.

11. 
$$-81^{\circ}$$
.

**14**. 
$$-253^{\circ}$$
.

**17**. 
$$-216^{\circ} 43'$$
.

**12**. 
$$-195^{\circ}$$
.

**15**. 
$$-1000^{\circ}$$
.

**19.** Show that 
$$\sin 420^{\circ} \cos 390^{\circ} = 1 - \cos (-300^{\circ}) \sin (-330^{\circ})$$
.

**20.** That 
$$3 \tan (-60^\circ) \cot (-210^\circ) + 9 \sin (-240^\circ) \cos (-150^\circ) = \frac{9}{4}$$
.

By the general rule stated in Art. 64 reduce each of the following to a function of x:

**21.** 
$$\cos (180^{\circ} + x)$$
.

**23.** 
$$\cos(270^{\circ} - x)$$
.

**25.** sec 
$$(180^{\circ} - x)$$
.

**22.** 
$$\sin(270^{\circ} + x)$$
.

**24.** 
$$\tan (180^{\circ} + x)$$
.

**26.** 
$$\csc(270^{\circ} + x)$$
.

Simplify the following expressions:

- **27.**  $5 \sin (90^{\circ} x) + 8 \cos (180^{\circ} x)$ .
- **28.**  $a \sin(270^{\circ} x) b \cos(270^{\circ} x) + c \tan(180^{\circ} x)$ .
- **29.**  $m \cos (180^{\circ} + A) + p \cot (180^{\circ} A) + q \tan (270^{\circ} + A)$ .
- **30.**  $\sin(270^{\circ} + x)\cos(270^{\circ} x)\sin(180^{\circ} x)$ .
- 31.  $\sin(x-90^\circ) + \cot(x-90^\circ) + \tan(x-180^\circ)$ .
- 65. General Solutions of Trigonometric Equations. If there be no limit to the size of an angle, an indefinite number of angles will satisfy every trigonometric equation (see Art. 38).
  - Ex. 1. Solve  $\sin x = \frac{1}{2}$ .

There are two angles less than 360° whose sine is  $\frac{1}{2}$ , viz.: 30° and 150°. If 360°, or any multiple of 360°, be added to, or subtracted from, each of these angles, the sine is unchanged.

Hence, in the above example,  $x = 30^{\circ} \pm n (360^{\circ})$ ,  $150^{\circ} \pm n (360^{\circ})$ , where n = 0 or any positive integer.

Ex. 2. Solve  $\tan x = \pm \sqrt{3}$ .

$$x = \begin{cases} 60^{\circ} \pm n(360^{\circ}), 120^{\circ} \pm n(360^{\circ}), \\ 240^{\circ} \pm n(360^{\circ}), 300^{\circ} \pm n(360^{\circ}). \end{cases} Ans$$

Ex. 3. Solve  $\sin^2 x = \cos^2 x$ .

$$\begin{aligned} 1 - \cos^2 x &= \cos^2 x. \\ 2\cos^2 x &= 1. \\ \cos x &= \pm \frac{1}{2}\sqrt{2}. \\ x &= \begin{cases} 45^\circ \pm n(360^\circ), \ 315^\circ \pm n(360^\circ), \\ 135^\circ \pm n(360^\circ), \ 225^\circ \pm n(360^\circ). \end{cases} \end{aligned}$$

Or more briefly,  $x = \pm n(180^{\circ}) \pm 45^{\circ}$ . Ans.

The pupil should observe that the values of x in a trigonometric equation differ in an important respect from the values of x in an algebraic equation. Thus, in an algebraic equation the values of x are the roots of the equation and the number of values which x has equals the degree of the given equation. Whereas, for instance in Ex. 3 above, the roots are the values of  $\cos x$ , while the values of x are inferred from the values of x and may be unlimited in number no matter what the degree of the original trigonometric equation.

#### **EXERCISE 28**

Solve the following trigonometrical equations, for values of x or  $\theta$ .

1. 
$$\sin x = \frac{1}{2}$$
.

2. 
$$\cos^2 x = \frac{3}{4}$$
.

3. 
$$\tan^2 x = 1$$
.

**4.** 
$$\tan x = \frac{1}{3} \cot x$$
.

5. 
$$\sin x + \csc x = \frac{5}{2}$$
.

6. 
$$\tan^2 x - \sec x = 1$$
.

7. 
$$2\cos^2 x - 3\sin x = 0$$
.

8. 
$$\tan x + \cot x = 2$$
.

9. 
$$\cot x + \csc^2 x = 3$$
.

**10.** 
$$2\sqrt{3} \cot \theta - \frac{3}{4} \csc^2 \theta = 1$$
.

11. 
$$\tan \theta + \sec^2 \theta = 3$$
.

12. 
$$\cos^2 \theta + \cot^2 \theta = 3 \sin^2 \theta$$
.

13. 
$$\frac{1}{2} \cot \theta - \cos \theta + \sin \theta = \frac{1}{2}$$
.

**14.** 
$$\sec^2 \theta \csc^2 \theta + 2 \csc^2 \theta = 8$$
.

**15.** 
$$2\sqrt{3} \tan \theta = 3 \sec^2 \theta - 6$$
.

**16.** 
$$4 \sec^2 \theta - 7 \tan^2 \theta = 3$$
.

17. 
$$\cot \theta + 2 \tan \theta = \frac{5}{2} \sec \theta$$
.

**18.** 
$$\sin \theta + \sqrt{3} \cos \theta = 2$$
.

- 19. A ship starting from a certain point sailed at the average rate of 9.25 mi. per hour on a course 22° 15′ [22.25°] north of east. At the end of 7 hr. 45 min., how far east of her starting point would she be? How far north?
- 20. If a railroad embankment is 11 ft. high, 76 ft. wide at the base, and 49 ft. wide at the top, and its two sides have the same slope, find the angle at which each side slopes.
- **21.** In an oblique triangle ABC,  $A = 127^{\circ} 36'$  [127.6°], AB = 472 ft., AC = 374 ft. By dividing the triangle into right triangles and solving, find BC.
- **22.** P is a spring of water, Q is a house, and R is a barn. If QR = 217 ft.,  $\angle PQR = 63^{\circ} 40' [63.67^{\circ}]$ ,  $\angle PRQ = 58^{\circ} 15' [58.25^{\circ}]$ , find the distance of the spring from the house and also from the barn, by solving right triangles only.

# CHAPTER V

# GONIOMETRY (Continued)

66. Formulas for  $\sin(x+y)$  and  $\cos(x+y)$ . In Fig. 52 let AOQ be an angle x, and QOP an angle y, the sum of x and y being less than a right angle.

Let 
$$OP = 1$$
. Draw  $PM \perp OA$ ,  $PQ \perp OQ$ ,  $QR \perp PM$ .

Then 
$$\angle RPQ = \angle x$$
 (sides  $\bot$ ),  
 $PQ = \sin y$ ,  $OQ = \cos y$ .  
 $\sin (x+y) = PM = QN + PR$ .

In rt.  $\triangle OQN$ ,  $QN = \sin x OQ$  (Art. 41) =  $\sin x \cos y$ .

In rt.  $\triangle RPQ$ ,  $PR = \cos x PQ = \cos x \sin y$ .

Hence,  $\sin (x+y) = \sin x \cos y + \cos x \sin y$ .

Also on Fig. 52,  $\cos(x+y) = OM = ON - RQ$ .

In rt.  $\triangle OQN$ ,  $ON = \cos x OQ = \cos x \cos y$ .

In rt.  $\triangle RPQ$ ,  $RQ = \sin x PQ = \sin x \sin y$ .

Hence,  $\cos (x+y) = \cos x \cos y - \sin x \sin y$ .

If x and y be acute angles whose sum is an obtuse angle, the above proofs will hold good without any change except that it



Fig. 53.

is necessary to notice that in the statement  $\cos(x+y) = OM = ON - RQ$ , OM is a negative line and is obtained by subtracting the positive line RQ from the smaller positive line ON. See Fig. 53.

If either x or y is obtuse, the above formulas may be proved as follows:

Taking x and y as still acute,

$$\sin (90^\circ + x + y) = \cos (x + y)$$

$$= \cos x \cos y - \sin x \sin y.$$
(Art. 62)

But 
$$\cos x = \sin (90^{\circ} + x), -\sin x = \cos (90^{\circ} + x).$$
 (Art. 62)

$$\therefore \sin (90^{\circ} + x + y) = \sin (90^{\circ} + x) \cos y + \cos (90^{\circ} + x) \sin y.$$

Replacing  $90^{\circ} + x$  by x',

 $\sin (x' + y) = \sin x' \cos y + \cos x' \sin y$ , where x' is an obtuse angle.

In like manner the formula can be extended to the case where y is an obtuse angle. The formula for  $\cos(x+y)$  may also be extended in like manner.

By successive additions of  $90^{\circ}$  to x and y, these angles may thus be made any angles however large. In like manner the formulas may be shown to be true when x and y are diminished by any integral multiple of  $90^{\circ}$ . Hence, the above formulas are true when x and y are any angles.

Ex. Taking the functions of  $30^{\circ}$ ,  $45^{\circ}$ ,  $60^{\circ}$  as known, find  $\sin 75^{\circ}$ .

$$\begin{aligned} \sin 75^{\circ} &= \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ} \\ &= \frac{1}{2} \sqrt{2} \cdot \frac{1}{2} \sqrt{3} + \frac{1}{2} \sqrt{2} \cdot \frac{1}{2} \\ &= \frac{1}{4} \sqrt{2} \left( \sqrt{3} + 1 \right), \ \textit{Ans.} \end{aligned}$$

67. Formulas for  $\sin (x-y)$  and  $\cos (x-y)$ . In Fig. 54 let AOQ be a positive acute angle x, and POQ a smaller angle y, subtracted from x.



Then 
$$\angle AOP = x - y$$
.  
Let  $OP = 1$ ; draw  $PM \perp OA$ ,  $PQ \perp OQ$ ,  $QN \perp OA$ ,  $PR \perp QN$ .  
Then  $\angle RQP = \angle x$ . (sides  $\perp$ )  
Also  $PQ = \sin y$ ,  $OQ = \cos y$ .  
 $\sin (x - y) = PM = QN - RQ$ .

In rt.  $\triangle OQN$ ,  $QN = \sin x OQ = \sin x \cos y$ .

In rt.  $\triangle RQP$ ,  $RQ = \cos x PQ = \cos x \sin y$ .

Hence,  $\sin (x-y) = \sin x \cos y - \cos x \sin y$ .

Also on Fig. 54,

$$\cos (x - y) = OM = ON + RP.$$

In rt.  $\triangle OQN$ ,  $ON = \cos x OQ = \cos x \cos y$ .

In rt.  $\triangle RQP$ ,  $RP = \sin x PQ = \sin x \sin y$ .

Hence, 
$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$
.

By the same method as that used in Art. 66 these formulas can be proved true when x and y are any angles.

Ex. Obtain the numerical value of cos 15°.

$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ}),$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{2}\sqrt{2} \cdot \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{2} \cdot \frac{1}{2}$$

$$= \frac{1}{4}\sqrt{6} + \frac{1}{4}\sqrt{2}, \quad Ans.$$

68. Formulas for  $\tan (x+y)$  and  $\tan (x-y)$ . By Art. 66,

$$\tan(x+y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y - \sin x \sin y}$$

Divide both numerator and denominator of the last fraction by  $\cos x \cos y$ .

Then, 
$$\tan(x+y) = \frac{\frac{\sin x \cos y}{\cos x \cos y} + \frac{\cos x \sin y}{\cos x \cos y}}{\frac{\cos x \cos y}{\cos x \cos y} - \frac{\sin x \sin y}{\cos x \cos y}}$$

or, 
$$\tan (x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Similarly, let the pupil show that

$$\tan (x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y},$$

and 
$$\cot (x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$
.

Ex. Find the numerical value of tan 105°.

$$\tan 105^{\circ} = \tan (60^{\circ} + 45^{\circ})$$

$$= \frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \tan 45^{\circ}}$$

$$= \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} = -2 - \sqrt{3}, \quad Result.$$

### **EXERCISE 29**

- **1.** If  $\sin x = \frac{4}{5}$ ,  $\cos x = \frac{3}{5}$ ,  $\sin y = \frac{5}{13}$ ,  $\cos y = \frac{12}{13}$ , find the value of  $\sin (x + y)$ .
  - **2.** Also of  $\sin(x-y)$ ,  $\cos(x+y)$ , and  $\cos(x-y)$ .
- 3. Find  $\sin (x + 45^{\circ})$ ,  $\cos (30^{\circ} x)$ , and  $\sin (x 60^{\circ})$  in terms of  $\sin x$  and  $\cos x$ .
  - **4.** If  $\tan x = \frac{1}{2}$ , and  $\tan y = 2$ , find the value of  $\tan (x + y)$ .
  - **5.** If cot x = -2, and cot  $y = \frac{1}{2}$ , find the value of cot (x y).

Find the numerical value of:

- 6. cos 75°.
- 8. sin 105°.
- 10. sin 15°.

- 7. tan 75°.
- 9. cot 105°.
- 11. cos 105°.
- **12.** Putting  $90^{\circ} = 60^{\circ} + 30^{\circ}$ , find  $\sin 90^{\circ}$ ; also  $\cos 90^{\circ}$ .
- 13. State in general language the formulas proved thus far in this chapter (thus for  $\sin (x + y) = \sin x \cos y + \cos x \sin y$ , say "the sine of the sum of two angles equals sine of the 1st angle times cosine of the 2d plus cosine of 1st times sine of 2d").
  - **14.** Find tan  $(45^{\circ} + y)$ , and also tan  $(45^{\circ} y)$ , in terms of tan y.
  - **15.** Find cot  $(60^{\circ} + y)$ , and also cot  $(30^{\circ} + y)$ , in terms of cot y.
  - **16.** Show that  $\sin (60^{\circ} + 45^{\circ}) + \cos (60^{\circ} + 45^{\circ}) = \cos 45^{\circ}$ .

Prove the following identities:

**17.** 
$$\cot (45^{\circ} + A) = \frac{\cot A - 1}{1 + \cot A}$$

**18.** 
$$\cot (45^{\circ} - A) = \frac{\cot A + 1}{\cot A - 1}$$

- **19.**  $\sin (60^{\circ} + A) \sin (60^{\circ} A) = \sin A$ .
- **20.**  $\cos x \sin x = \sqrt{2} \cos (x + 45^{\circ}).$
- **21.**  $\cos x + \sin x = \sqrt{2} \cos (x 45^{\circ}).$
- 22. Find the smallest value of x which will satisfy the equation  $\tan (x + 45^{\circ}) + \cot (x 45^{\circ}) = 0$ .

# 69. Functions of the Double Angle. In the formula

$$\sin (x+y) = \sin x \cos y + \cos x \sin y$$

let y have the value x;

then,

or,

$$\sin(x+x) = \sin x \cos x + \cos x \sin x$$

 $\sin 2 x = 2 \sin x \cos x.$ 

Similarly from the formulas for  $\cos(x+y)$ ,  $\tan(x+y)$ , and  $\cot(x+y)$ , let the pupil obtain

$$\cos 2 x = \cos^2 x - \sin^2 x.$$

$$\tan 2x = \frac{2\tan x}{1-\tan^2 x}$$

$$\cot 2 x = \frac{\cot^2 x - 1}{2 \cot x}$$

Substituting  $1 - \sin^2 x$  for  $\cos^2 x$  in the formula for  $\cos 2 x$ ,  $\cos 2 x = 1 - 2 \sin^2 x$ .

Substituting  $1 - \cos^2 x$  for  $\sin^2 x$  in the same formula,

$$\cos 2 x = 2 \cos^2 x - 1$$
.

Ex. Find cos 120° from the functions of 60°.

$$\cos 120^{\circ} = \cos 2 \times 60^{\circ}$$

$$= \cos^{2} 60^{\circ} - \sin^{2} 60^{\circ}$$

$$= (\frac{1}{2})^{2} - (\frac{1}{2}\sqrt{3})^{2}$$

$$= \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}, \quad Ans.$$

## **EXERCISE 30**

- **1.** Given  $\sin 30^\circ = \frac{1}{2}$ , and  $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ , find  $\sin 60^\circ$ . Also  $\cos 60^\circ$ .
  - 2. Given  $\tan 30^{\circ} = \frac{1}{3}\sqrt{3}$ , find  $\tan 60^{\circ}$ .
  - 3. By the formulas of Art. 69, find the value of  $\sin 120^{\circ}$  and  $\tan 120^{\circ}$ .

Prove the following identities:

4. 
$$\sin 2 A = \frac{2 \tan A}{1 + \tan^2 A}$$

$$6. \quad \frac{\sin 2x}{\sin x} - \frac{\cos 2x}{\cos x} = \sec x.$$

5. 
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

7. 
$$\frac{1 + \sin 2\theta}{1 - \sin 2\theta} = \frac{(\tan \theta + 1)^2}{(\tan \theta - 1)^2}$$

- 8. State the formulas for  $\sin 2x$  and  $\cos 2x$  in general language.
- 9. Find  $\sin 3x$  in terms of  $\sin x$ .
- 10. Find  $\cos 3x$  in terms of  $\cos x$ .
- **11.** Find  $\tan 3x$  in terms of  $\tan x$ .
- 12. Prove  $\sin 4 \theta = 4 \sin \theta \cos \theta 8 \sin^3 \theta \cos \theta$ .
- **13**. Given  $\tan \theta = \frac{5}{3}$ , find  $\tan 2\theta$ .
- **14.** Given  $\cos \theta = \frac{3}{5}$ , find  $\cot 2\theta$ .

In a right triangle, C being the right angle, prove:

15.  $\tan B = \cot A$ .

**16.** 
$$\tan 2 A = \frac{2 ab}{b^2 - a^2}$$
. **17.**  $\sin (A - B) + \cos 2 A = 0$ .

**18.** Show that 
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
, and  $\sin^2 2x = \frac{1 - \cos 4x}{2}$ .

19. Show that 
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
, and  $\cos^2 2x = \frac{1 + \cos 4x}{2}$ .

- 20. Using the results of Exs. 18 and 19, transform  $\sin^4 x$  into  $\frac{1}{8}\cos 4x \frac{1}{2}\cos 2x + \frac{3}{8}$ .
- **21.** Also transform  $\cos^4 x$  into an expression in terms of  $\cos 2 x$  and  $\cos 4 x$ .
  - **22.** Also show that  $\cos^6 x$  may be changed to the form  $\frac{1}{16} (5 + 8 \cos 2 x 2 \sin^2 2 x \cos 2 x + 3 \cos 4 x).$

# 70. Functions of the Half Angle.

From Art. 69, 
$$\cos 2A = 1 - 2 \sin^2 A$$
.  
Hence,  $2 \sin^2 A = 1 - \cos 2A$ .  
Let  $A = \frac{1}{2}x$ ; then  $2A = x$ .  
Hence,  $2 \sin^2 \frac{1}{2}x = 1 - \cos x$ .  
 $\therefore \sin \frac{1}{2}x = \pm \sqrt{\frac{1 - \cos x}{2}}$ .  
Similarly, from  $\cos 2A = 2 \cos^2 A - 1$ ,  
we obtain,  $\cos \frac{1}{2}x = \pm \sqrt{\frac{1 + \cos x}{2}}$ .

Also 
$$\tan \frac{1}{2}x = \frac{\sin \frac{1}{2}x}{\cos \frac{1}{2}x} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}.$$

$$\therefore \tan \frac{1}{2}x = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}.$$

This formula may be reduced to another convenient form, thus:

$$\tan \frac{1}{2}x = \sqrt{\frac{(1 - \cos x)^2}{(1 + \cos x)(1 - \cos x)}} = \sqrt{\frac{(1 - \cos x)^2}{1 - \cos^2 x}} = \frac{1 - \cos x}{\sin x}.$$

$$\therefore \tan \frac{1}{2}x = \frac{1 - \cos x}{\sin x}.$$

Similarly,

$$\cot \frac{1}{2} x = \frac{1 + \cos x}{\sin x}.$$

Ex. Find tan  $22\frac{1}{2}^{\circ}$  from the functions of 45°.

$$\tan 22\frac{1}{2}^{\circ} = \frac{1 - \cos 45^{\circ}}{\sin 45^{\circ}} = \frac{1 - \frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}} = \frac{2 - \sqrt{2}}{\sqrt{2}} = \sqrt{2} - 1, \quad Ans.$$

### **EXERCISE 31**

**1.** State the formulas for  $\sin \frac{1}{2} A$ ,  $\cos \frac{1}{2} A$ , and  $\tan \frac{1}{2} A$  in general language.

- **2.** Given  $\cos 30^{\circ} = \frac{1}{2}\sqrt{3}$ , find  $\sin 15^{\circ}$ ,  $\tan 15^{\circ}$ ,  $\cos 15^{\circ}$ .
- 3. Given  $\sin 45^\circ = \frac{1}{2}\sqrt{2}$ , find  $\cot 22\frac{1}{2}^\circ$ ,  $\cos 22\frac{1}{2}^\circ$ ,  $\sin 22\frac{1}{2}^\circ$ .
- **4.** Given  $\cos 90^{\circ} = 0$ , find the functions of  $45^{\circ}$ .
- **5.** Given  $\sin A = \frac{2}{3}$ , and A acute, find  $\cos \frac{1}{2} A$ ,  $\cot \frac{1}{2} A$ ,  $\tan \frac{1}{2} A$ .
- **6.** Given  $\cos \theta = a$ , find  $\cos \frac{\theta}{2}$ ,  $\cot \frac{\theta}{2}$ ,  $\tan \frac{\theta}{2}$ .

Prove the following identities:

7. 
$$\tan \frac{1}{2}A = \frac{\sin A}{1 + \cos A}$$
 9.  $\sec^2 \frac{\theta}{2} = \frac{2 \sec \theta}{\sec \theta + 1}$ 

9. 
$$\sec^2 \frac{\theta}{2} = \frac{2 \sec \theta}{\sec \theta + 1}$$

$$8. \cot \frac{1}{2}A = \frac{\sin A}{1 - \cos A}.$$

$$\mathbf{10.} \ \csc^2 \frac{\theta}{2} = \frac{2 \sec \theta}{\sec \theta - 1}.$$

- 11.  $\sin \frac{1}{2}A + \cos \frac{1}{2}A = \sqrt{1 + \sin A}$ .
- **12.** Express  $\cos A$ ,  $\sin A$ , and  $\cot A$ , in terms of  $\cos 2 A$ .
- 13. Find the value of  $\frac{\tan \frac{1}{2} x + \sec x}{\cot \frac{1}{2} x + \cos x}$  if x is in the second quadrant and  $\sin x = \frac{3}{5}$ .

14. If x is in the fourth quadrant and  $\csc x = -\frac{5}{4}$ , find the numerical value of  $\frac{\sin \frac{1}{2} x + \sec x}{\cot \frac{1}{2} x + \cos x}$ .

**15.** In a right triangle show that 
$$\tan \frac{1}{2}A = \sqrt{\frac{c-b}{c+b}}$$
.

- **16.** By use of this formula solve the right triangle in which c = 122 and a = 120 (that is, the Ex. of Art. 46).
- 17. If the diagonal of a rectangle is 171 in. and one side of the rectangle is 13 ft. 7 in., find the angle between the diagonal and side.
  - 18. Make up and solve a similar example for yourself.

# 71. Sum or Difference of Two Sines or of Two Cosines (Logarithmic Formulas).

Adding and subtracting the formulas of Art. 66, and also those of Art 67,

$$\sin (x+y) + \sin (x-y) = 2\sin x \cos y \quad . \quad . \quad (a)$$

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y \quad . \quad . \quad (b)$$

$$\cos(x+y) + \cos(x-y) = 2\cos x \cos y \quad . \quad . \quad (c)$$

$$\cos(x+y) - \cos(x-y) = -2\sin x \sin y . . . (d$$

If we let 
$$x+y=A$$
, and  $x-y=B$ ,  
then  $x=\frac{1}{2}(A+B)$ , and  $y=\frac{1}{2}(A-B)$ .

Hence, by substitution in (a), (b), (c), (d),

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$
 . . (1)

$$\sin A - \sin B = 2 \cos \frac{1}{2}(A + B) \sin \frac{1}{2}(A - B)$$
 . . (2)

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$
. (3)

$$\cos A - \cos B = -2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$
 . (4)

These formulas enable us to convert the sum or difference of two sines, and also of two cosines, into a product of two functions, and hence open the way in certain examples for us to save labor by the use of logarithms.

Convert  $\sin 50^{\circ} + \sin 30^{\circ}$  into a product. Ex.

By formula (1),

$$\sin 50^{\circ} + \sin 30^{\circ} = 2 \sin \frac{1}{2} (50^{\circ} + 30^{\circ}) \cos \frac{1}{2} (50^{\circ} - 30^{\circ})$$
  
=  $2 \sin 40^{\circ} \cos 10^{\circ}$ .

#### **EXERCISE 32**

#### Prove

1. 
$$\sin 40^{\circ} + \sin 10^{\circ} = 2 \sin 25^{\circ} \cos 15^{\circ}$$
.

2. 
$$\sin 60^{\circ} + \sin 30^{\circ} = \sqrt{2} \cos 15^{\circ}$$
.

3. 
$$\cos 80^{\circ} - \cos 20^{\circ} = -\sin 50^{\circ}$$
.

4. 
$$\frac{\sin 33^{\circ} + \sin 3^{\circ}}{\cos 33^{\circ} + \cos 3^{\circ}} = \tan 18^{\circ}$$
. 6.  $\frac{\sin 5 x + \sin x}{\cos 5 x + \cos x} = \tan 3 x$ .

$$6. \frac{\sin 5 x + \sin x}{\cos 5 x + \cos x} = \tan 3 x$$

5. 
$$\frac{\cos 27^{\circ} + \cos 3^{\circ}}{\sin 27^{\circ} + \sin 3^{\circ}} = \cot 15^{\circ}$$
. 7.  $\frac{\cos 80^{\circ} + \cos 20^{\circ}}{\sin 80^{\circ} - \sin 20^{\circ}} = \sqrt{3}$ .

7. 
$$\frac{\cos 80^{\circ} + \cos 20^{\circ}}{\sin 80^{\circ} - \sin 20^{\circ}} = \sqrt{3}.$$

8. 
$$\frac{\sin A + \sin B}{\cos A - \cos B} = -\cot \frac{1}{2}(A - B).$$

9. 
$$\frac{\cos 4 x + \cos 2 x}{\sin 2 x + \sin 4 x} = \cot 3 x$$
.

$$10. \ \frac{\sin A - \sin B}{\cos A - \cos B} = -\cot \frac{A + B}{2}.$$

11. 
$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$$
.

12. 
$$\sin x + \sin 3x + \sin 5x = \frac{\sin^2 3x}{\sin x}$$

- 13. Given  $\sin A = \frac{1}{2}$  and  $\sin B = \frac{1}{4}$ , find  $\sin (A + B)$ ,  $\sin (A B)$ ,  $\cos A = \frac{1}{4}$ (A+B), cos (A-B), sin 2 A, sin 2 B, cos 2 A, cos 2 B, when A and B are both in the first quadrant.
- **14.** Find the numerical value of  $\sin (60^{\circ} + 30^{\circ})$ . Also of  $\sin 60^{\circ}$  $+\sin 30^{\circ}$ . Show geometrically why  $\sin (60^{\circ} + 30^{\circ})$  does not equal  $\sin 60^{\circ} + \sin 30^{\circ}$ .

Reduce each of the following to a form adapted to logarithmic computation (that is, to products or quotients):

15. 
$$\frac{\sin 37^{\circ} + \sin 22^{\circ}}{\cos 38^{\circ} - \cos 16^{\circ}}$$

$$16. \ \frac{\sin 4A - \sin 2A}{\cos 6A}.$$

- 17.  $\sin^2 A \sin^2 B$ .
- **18.** Compute the value of the expression in Ex. 16 when  $A = 14^{\circ}$ . Also of that of Ex. 17 when  $A = 38^{\circ}$  and  $B = 24^{\circ}$ .
  - 19. Make up for yourself an example similar to Ex. 17.

72. Complex Trigonometrical Identities. Besides those already arrived at, many other complex relations between the trigonometrical functions may be proved. Usually these relations are proved to the best advantage by reducing the two expressions, which are compared, to some common form, and hence inferring their identity by Ax. 1 (see Art. 31).

In most cases it is best to reduce given functions to sine and cosine.

Ex. 1. Prove that 
$$\frac{1 - \cos 2A}{\sin 2A} = \tan A.$$
$$\frac{1 - (1 - 2\sin^2 A)}{2\sin A\cos A} = \frac{\sin A}{\cos A}.$$
$$\frac{2\sin^2 A}{2\sin A\cos A} = \frac{\sin A}{\cos A}.$$
$$\frac{\sin A}{\cos A} = \frac{\sin A}{\cos A}.$$

Or if the teacher prefers, the proof may be put in the following form:

$$\frac{1-\cos 2\;A}{\sin 2\;A} = \frac{1-(1-2\;\sin^2 A)}{2\sin A\;\cos A} = \frac{2\;\sin^2 A}{2\sin A\;\cos A} = \frac{\sin A}{\cos A} = \tan A.$$

Ex. 2. Prove 
$$\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B$$
.  
 $(\sin A \cos B + \cos A \sin B)(\sin A \cos B - \cos A \sin B) = \sin^2 A - \sin^2 B$ .  
 $\sin^2 A \cos^2 B - \cos^2 A \sin^2 B = \sin^2 A - \sin^2 B$ .  
 $\sin^2 A (1 - \sin^2 B) - (1 - \sin^2 A) \sin^2 B = \sin^2 A - \sin^2 B$ .  
 $\sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 A \sin^2 B = \sin^2 A - \sin^2 B$ .

73. Functions of the Angles of a Triangle. If the sum of three angles is 180°, the functions of the angles have important relations.

Ex. If 
$$A + B + C = 180^{\circ}$$
, prove that  $\sin A + \sin B + \sin C$   
=  $4 \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C$ .  
 $A + B = 180^{\circ} - C$  and  $\frac{1}{2} (A + B) = 90^{\circ} - \frac{1}{2} C$ .

 $\sin^2 A - \sin^2 B = \sin^2 A - \sin^2 B.$ 

Hence 
$$\sin \frac{1}{2} (A + B) = \sin (90^{\circ} - \frac{1}{2} C) = \cos \frac{1}{2} C.$$
  
 $\sin A + \sin B + \sin C = \sin A + \sin B + \sin [180^{\circ} - (A + B)]$   
 $= \sin A + \sin B + \sin (A + B)$   
 $= 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$   
 $+ 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A + B) \text{ (Arts. 69, 71)}$   
 $= 2 \sin \frac{1}{2} (A + B) [\cos \frac{1}{2} (A - B) + \cos \frac{1}{2} (A + B)]$   
 $= 4 \cos \frac{1}{2} C \cos \frac{1}{2} A \cos \frac{1}{2} B.$ 

#### **EXERCISE 33**

Prove the following identities:

1. 
$$\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{\sin 2\theta + 1}{\cos 2\theta}$$

**2.** 
$$2\cos(45^{\circ} + \frac{1}{2}A)\cos(45^{\circ} - \frac{1}{2}A) = \cos A$$
.

3. 
$$\cos (A+B) \cos (A-B) = \cos^2 B - \sin^2 A$$
.

4. 
$$\tan (45^{\circ} + x) - \tan (45^{\circ} - x) = 2 \tan 2x$$
.

5. 
$$(\sqrt[4]{1+\sin x} - \sqrt{1-\sin x})^2 = 4\sin^2\frac{1}{2}x$$
.

6. 
$$\frac{\cos(x+y) + \cos(x-y)}{\cos x \cos y} = \frac{\cos(x-y) - \cos(x+y)}{\sin x \sin y}$$

7. 
$$\frac{\tan (45^{\circ} + \frac{1}{2}A) + \tan (45^{\circ} - \frac{1}{2}A)}{\tan (45^{\circ} + \frac{1}{2}A) - \tan (45^{\circ} - \frac{1}{2}A)} = \csc A.$$

8. 
$$\frac{\cos 3 A}{\sin A} + \frac{\sin 3 A}{\cos A} = 2 \cot 2 A$$
.

9. 
$$\frac{\cos A - \sin A}{\cos A + \sin A} = \sec 2 A - \tan 2 A$$
.

10. 
$$\tan \theta = \frac{\sin \theta + \sin 2 \theta}{1 + \cos \theta + \cos 2 \theta}$$

11. 
$$\frac{\cot \theta - 1}{\cot \theta + 1} = \frac{1 - \sin 2 \theta}{\cos 2 \theta}$$

12. 
$$\frac{1-\tan^2\frac{1}{2}x}{1+\tan^2\frac{1}{2}x}=\cos x$$
.

If  $A + B + C = 180^{\circ}$ , prove that

**13**. 
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C$$
.

14. 
$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$
.

**15**. 
$$\cos(A+B+C) = -\cos 2 C$$
.

### **EXERCISE 34. REVIEW**

- 1. Given  $\cos \theta = -\frac{3}{5}$  and  $\theta$  is in the third quadrant, find  $\csc \theta$ ,  $\cot \theta$ ,  $\sin \frac{1}{2} \theta$ ,  $\tan (180^{\circ} - \theta)$ ,  $\sin (-\theta)$ .
  - 2. Given  $\tan \frac{1}{2}x = 2$  (and x acute), find  $\sin x$ .
  - 3. Given  $\sin 2x = \frac{1}{2}\sqrt{3}$ , find  $\cot \frac{1}{2}x$ .
  - **4.** Given  $\cos \frac{1}{2}x = \frac{3}{4}$ , find  $\sin 2x$  and  $\tan 2x$ .
  - 5. Given  $\cot 30^{\circ} = \sqrt{3}$ , find  $\cos 15^{\circ}$ , esc 15°, and  $\tan 15^{\circ}$ .
- **6.** Given sin  $A = \frac{3}{5}$  and A acute, cos  $B = \frac{1}{2}$  and B acute, find (a)  $\sin(A-B)$ ; (b)  $\cos(A+B)$ ; (c)  $\cos(A-B)$ ; (d)  $\sin 2B$ ; (e)  $\cos 2B$ ;  $(f) \tan 2B$ ;  $(g) \cot 2A$ ;  $(h) \tan (A-B)$ ;  $(i) \cot (A+B)$ ;  $(j) \cos \frac{1}{2}B$ .
- 7. Given  $\cot \theta = -2$  and  $\theta$  is the second quadrant, find (a)  $\sec \theta$ ; (b)  $\tan (180^{\circ} - \theta)$ ; (c)  $\cot (180^{\circ} + \theta)$ ; (d)  $\cos (-\theta)$ .
  - 8. Find sin, cos, tan, cot, of:

(a) 
$$\left(x - \frac{\pi}{2}\right)$$
; (b)  $(\pi - \theta)$ ; (c)  $\left(x - \frac{3\pi}{2}\right)$ ; (d)  $(\pi + x)$ ; where  $\pi = 180^{\circ}$ .

Prove the following:

$$9. \tan x = \frac{1 - \cos 2x}{\sin 2x}.$$

$$12. \frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x.$$

10. 
$$\tan \frac{1}{2} A = \frac{1 - \cos A}{\sin A}$$
.

13. 
$$\frac{\sin (A+B)}{\cos A \cos B} = \tan A + \tan B.$$

11. 
$$\frac{2 \sin A - \sin 2 A}{2 \sin A + \sin 2 A} = \frac{1 - \cos A}{1 + \cos A}$$
.

14. 
$$\frac{\sin 21^\circ + \sin 5^\circ}{\cos 21^\circ + \cos 5^\circ} = \tan 13^\circ$$
.

15. 
$$\frac{\cos 9 \theta + \cos 5 \theta + \cos \theta}{\sin 9 \theta + \sin 5 \theta + \sin \theta} = \cot 5 \theta.$$

16. 
$$\cos^2 x \tan^2 x + \sin^2 x \cot x^2 = 1$$
.

19. 
$$\frac{\tan x + \cot x + 1}{\tan x + \cot x - 1} = \frac{2 + \sin 2x}{2 - \sin 2x}$$

17. 
$$\frac{\cos 75^{\circ} + \cos 15^{\circ}}{\sin 75^{\circ} - \sin 15^{\circ}} = \sqrt{3}$$
.

$$20. \ \frac{\cos 2 x + 1}{\cos 2 x - 1} = -\cot^2 x.$$

**18.** 
$$\frac{\sin A + \sin B}{\cos B - \cos A} = \cot \frac{1}{2}(A - B).$$

**18.** 
$$\frac{\sin A + \sin B}{\cos B - \cos A} = \cot \frac{1}{2}(A - B)$$
. **21.**  $\frac{\sin (x + y)}{\sin (x - y)} = \frac{\cot x + \cot y}{\cot y - \cot x}$ 

**22.** 
$$\cos A = \frac{2}{\tan\left(\frac{\pi}{4} + \frac{A}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{A}{2}\right)}$$

**23.** 
$$\frac{\sin(x+y)\sin(x-y)}{\cos^2 x \cos^2 y} = \tan^2 x - \tan^2 y$$

**24.** 
$$\cos 5 x + \cos 3 x = 2 \cos 4 x \cos x$$
.

**25.** 
$$\frac{\sin 2x + 1}{\sin 2x - 1} = \frac{2\tan x + \tan^2 x + 1}{2\tan x - \tan^2 x - 1}$$

**26.** 
$$\sin(45^{\circ} + x) + \sin(45^{\circ} - x) = \sqrt{2}\cos x$$
.

27. 
$$\frac{1 + \cot^2\left(\frac{\pi}{4} + x\right)}{1 - \cot^2\left(\frac{\pi}{4} + x\right)} = \csc 2 x.$$
28. 
$$\frac{1 - \cot^2\left(\frac{\pi}{4} - x\right)}{1 + \cot^2\left(\frac{\pi}{4} - x\right)} = -\sin 2 x.$$

29. 
$$\frac{1 + \cos x + \cos 2x}{\cos x} = \frac{\sin x + \sin 2x}{\sin x}$$

**30.** 
$$\cos 12 x + \cos 6 x + \cos 4 x + \cos 2 x = 4 \cos 5 x \cos 4 x \cos 3 x$$
.

31. 
$$\tan\left(45^{\circ} + \frac{x}{2}\right) = \sqrt{\frac{1 + \sin x}{1 - \sin x}}$$

**32.** 
$$(\sin x \cos y - \cos x \sin y)^2 + (\cos x \cos y + \sin x \sin y)^2 = 1$$
.

**33.** 
$$\cos^2 \frac{1}{2} x (\tan \frac{1}{2} x - 1)^2 = 1 - \sin x$$
.

**34.** Find the value of  $\frac{\csc \theta + \cos \theta}{\sec \theta + \sin \theta}$  when  $\cot \theta = -\frac{1}{2}$ , and  $\theta$  is in quadrant II.

**35.** Find the value of  $\frac{\tan \theta + \cos \theta}{\cot \theta + \sec \theta}$  when  $\sin \theta = -\frac{4}{5}$  and  $\theta$  is in the 3d quadrant.

**36.** Simplify 
$$\cos 300^{\circ} - \cot \left( \frac{3\pi}{2} + 60^{\circ} \right) + \cot 150^{\circ} - \tan \left( -\frac{\pi}{4} \right)$$

37. Simplify 
$$\sin 660^{\circ} + \tan \left( \frac{3\pi}{2} - 60^{\circ} \right) + \cot 330^{\circ} + \cos \left( -30^{\circ} \right)$$
.

38. Simplify:

$$(a-b)\sin\frac{\pi}{2} - (a+b)\tan 225^{\circ} + (a^2+b^2)\cot\frac{3\pi}{2} - a\cos\left(\frac{-3\pi}{2}\right)$$

**39.** If  $\tan 2\theta = \frac{24}{7}$ , find  $\tan \theta$  and  $\sin \theta$ ,  $\theta$  being in the 3d quadrant.

**40.** Prove 
$$\frac{\sin{(A+B)}}{\sin{(A-B)}} = \frac{\tan{A} + \tan{B}}{\tan{A} - \tan{B}} = \frac{\cot{B} + \cot{A}}{\cot{B} - \cot{A}}.$$

**41.** If A is an angle in the second quadrant and  $\sin A = \frac{3}{5}$ , find the value of  $\sin 2 A + \cos 2 A$ .

If  $A + B + C = 180^{\circ}$ , prove:

**42.** 
$$\sin A + \sin B - \sin C = 4 \sin \frac{1}{2} A \sin \frac{1}{2} B \cos \frac{1}{2} C$$
.

**43.** 
$$\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C = \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C$$
.

**44.** 
$$\sin 2 A + \sin 2 B + \sin 2 C = 4 \sin A \sin B \sin C$$
.

**45.** 
$$\cos 2 A + \cos 2 B + \cos 2 C = -(4 \cos A \cos B \cos C + 1)$$
.

**46.** 
$$\tan A - \cot B = \sec A \csc B \csc C$$
.

In a right triangle, C being the right angle, prove

**47.** 
$$\sin^2 \frac{1}{2}B = \frac{c-a}{2c}$$
.

**49.** 
$$\tan \frac{1}{2} A = \frac{a}{a+c}$$

**48.** 
$$\left(\cos\frac{1}{2}A + \sin\frac{1}{2}A\right)^2 = \frac{a+c}{c}$$
 **50.**  $\cos^2\frac{1}{2}A = \frac{b+c}{2c}$ 

**50.** 
$$\cos^2 \frac{1}{2} A = \frac{b+c}{2c}$$

Using  $\sin x \cos x = \frac{1}{2} \sin 2x$ ,  $\sin^2 x = \frac{1 - \cos 2x}{2}$ ,  $\cos^2 x = \frac{1 + \cos 2x}{2}$ , transform:

- **51.**  $\sin^2 x \cos^2 x$  into  $\frac{1}{8}(1 \cos 4x)$ .
- **52.**  $\sin^4 x \cos^2 x$  into  $\frac{1}{16}(1-\cos 4x) \frac{1}{8}\sin^2 2x \cos 2x$ .
- > 53.  $\sin^4 x \cos^4 x$  into an expression in terms of the cosines of even multiples of x.
  - **54.**  $\sin^8 x$  into an expression of the same general kind as in Ex. 53.
  - **55.** What nation first used the formula for  $\sin \frac{1}{2} A$ ?
  - **56.** What man discovered the formula for  $\sin 2A$ ?
- **57.** Who first published the formulas for  $\sin(A-B)$  and  $\cos (A - B)$ , and at what date?

### CHAPTER VI

### OBLIQUE TRIANGLES

### TRIGONOMETRIC PROPERTIES OF OBLIQUE TRIANGLES

74. Law of Sines in a triangle. In any triangle the sides are to each other as the sines of the angles opposite.





In Fig. 55 the angles A and B are both acute.

In Fig. 56 the angle A is acute, and angle ABC obtuse.

Let CD, denoted by p, be the altitude in each triangle.

In Fig. 55, in the rt. 
$$\triangle ACD$$
,  $p = b \sin A$ ; (Art. 41)

in the rt. 
$$\triangle CBD$$
,  $p = a \sin B$ ; (Art. 41)

$$\therefore b \sin A = a \sin B. \tag{Ax. 1}$$

In Fig. 56, in the rt.  $\triangle ACD$ ,  $p = b \sin A$ ;

in the rt. 
$$\triangle BCD$$
,  $p = a \sin (180^{\circ} - \angle ABC)$   
=  $a \sin \angle ABC$ . (Art. 64)

Hence in  $\triangle ABC$  in both figures,  $b \sin A = a \sin B$ ,

or 
$$a:b=\sin A:\sin B$$
.

In like manner, 
$$b:c=\sin B:\sin C$$
,

and 
$$a: c = \sin A : \sin C$$
.

Or, collecting results,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

75. Law of Tangents in a triangle. In any triangle the sum of any two sides is to their difference as the tangent of half the sum of the angles opposite the given sides is to the tangent of half the difference of these angles.

In a triangle 
$$ABC$$
 (Figs. 55 and 56),  
 $a:b=\sin A:\sin B.$  (Art. 74)

By composition and division,

$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B}$$

$$= \frac{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)}{2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}.$$
(Art. 71)

Or, 
$$\frac{a+b}{a-b} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$$
.

In like manner,

and 
$$\frac{b+c}{b-c} = \frac{\tan\frac{1}{2}(B+C)}{\tan\frac{1}{2}(B-C)},$$
$$\frac{c+a}{c-a} = \frac{\tan\frac{1}{2}(C+A)}{\tan\frac{1}{2}(C-A)}.$$

It is also helpful to have a geometric proof of the Law of Tangents. This may be obtained as follows:



In a given triangle ABC (CB > AC), produce AC to D, making CD = CB or a. On CB mark off CE = AC or b. Draw the straight line DB. Then AD = CD + CA = a + b. Also EB = CB - CE = a - b.  $\angle DCB$ , being an exterior angle of  $\triangle ACE$ , = x + x = 2x.

Also  $\angle DCB$ , being an exterior angle of  $\triangle ACB$ , = A + B (of  $\triangle ACB$ ).  $\therefore 2x = A + B$  (Ax. 1), or  $x = \frac{1}{2}(A + B)$ .

Also,  

$$\angle FAB = A - x = A - \frac{1}{2}(A + B)$$
  
 $= \frac{1}{2}(A - B).$ 

Also  $\triangle ADF$  and EFB are similar (two  $\triangle$  equal).

$$\therefore \angle AFD = \angle EFB. \quad \therefore AF \perp DB.$$

In  $\triangle AFD$  and EFB, DF : FB = a + b : a - b.

In  $\triangle AFD$  and AFB,

$$\tan x : \tan \angle FAB = \frac{DF}{AF} : \frac{FB}{AF} = DF : FB.$$

By Ax. 1,

$$\begin{aligned} a + b &: a - b = \tan x : \tan \angle FAB \\ &= \tan \frac{1}{2}(A + B) : \tan \frac{1}{2}(A - B). \end{aligned}$$

# 76. Law of Cosines in a triangle.

In the triangle ABC, Fig. 55, by geometry,

$$a^2 = b^2 + c^2 - 2 c \times AD.$$

But in the rt.  $\triangle ACD$ ,  $AD = b \cos A$ .

$$\therefore a^2 = b^2 + c^2 - 2 bc \cos A.$$

If A is an obtuse angle, Fig. 58, by geometry,

$$a^2 = b^2 + c^2 + 2 c \times AD.$$

But in the rt.  $\triangle ACD$ ,

$$AD = b \cos \angle CAD = b \cos (180^{\circ} - A) = -b \cos A.$$

$$\therefore a^2 = b^2 + c^2 - 2 bc \cos A.$$

Hence in either case,

$$2 bc \cos A = b^2 + c^2 - a^2,$$

or

$$\cos A = rac{b^2 + c^2 - a^2}{2 bc}.$$

In like manner it may be proved that



$$\cos B = \frac{a^2 + c^2 - b^2}{2 ac}, \cos C = \frac{a^2 + b^2 - c^2}{2 ab}.$$

77. Formulas derived from the Cosine Formula. The formula for  $\cos A$  in Art. 76 has a numerator which is primarily a sum and difference, hence logarithms cannot be used in computing numerical values from it. In order to put this formula in such a shape that its value can be computed by the aid of logarithms, it is necessary to transform the numerator of the fraction into a product. This is done

by the use of the formula for the cosine, or of that for the sine of a half angle (Art. 70). Thus:

$$\begin{split} 2\cos^2\frac{1}{2}A &= 1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2bc} \\ &= \frac{2bc + b^2 + c^2 - a^2}{2bc} = \frac{(b+c)^2 - a^2}{2bc} \\ &= \frac{(b+c+a)(b+c-a)}{2bc}. \end{split}$$

Let 2s = a + b + c; then, subtracting 2a from each member,

$$2s-2a=b+c-a$$
.

Hence,

$$2\cos^2\frac{1}{2}A = \frac{2s(2s-2a)}{2bc}$$
,

or

$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}.$$

In like manner,

$$\cos \frac{1}{2} B = \sqrt{\frac{s(s-b)}{ac}}, \cos \frac{1}{2} C = \sqrt{\frac{s(s-c)}{ab}}.$$

Also from Art. 70,

$$2 \sin^2 \frac{1}{2} A = 1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2 bc}$$

$$= \frac{2 bc - b^2 - c^2 + a^2}{2 bc} = \frac{a^2 - b^2 + 2 bc - c^2}{2 bc}$$

$$= \frac{a^2 - (b - c)^2}{2 bc} = \frac{(a + b - c)(a - b + c)}{2 bc}$$

$$= \frac{(2 s - 2 c)(2 s - 2 b)}{2 bc} = \frac{4(s - b)(s - c)}{2 bc}.$$

Hence,  $\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}$ .

In like manner,

$$\sin \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{ac}}, \sin \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{ab}}.$$

Dividing the formula for  $\sin \frac{1}{2} A$  by that for  $\cos \frac{1}{2} A$ ,

$$\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

Similarly,

$$\tan \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \text{ and } \tan \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}.$$

#### **EXERCISE 35**

1. Prove that the diameter of a circle circumscribed about a triangle is equal to any side of the triangle divided by the sine of the angle opposite that side.

2. By means of the property of sines, prove that the bisector of an angle of a triangle divides the opposite side into segments which are proportional to the sides forming the given angle.

3. In any triangle ABC, prove that  $a = b \cos C + c \cos B$ . State this property in words. Write the two similar formulas for b and c. What does the above formula become when  $C = 90^{\circ}$ ?

**4.** Prove that the radius of an inscribed circle of a triangle is equal to  $\frac{c \sin \frac{1}{2} A \sin \frac{1}{2} B}{\cos \frac{1}{2} C}$  where c is one side of the triangle and A and B are the angles adjacent to c, and C is the angle opposite c.

5. Prove 
$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$
 if  $s = \frac{a+b+c}{2}$ .

- **6.** Prove  $\cos A = \frac{s(s-a) (s-b)(s-c)}{bc}$ .
- 7. Find the form to which the formula  $\frac{a+b}{a-b} = \frac{\tan\frac{1}{2}(A+B)}{\tan\frac{1}{2}(A-B)}$  reduces, and describe the nature of the triangle, when (I)  $C=90^{\circ}$ , (II)  $A-B=90^{\circ}$ , and B=C.
- **8.** What does  $a^2 = b^2 + c^2 2$  be cos A become when (I)  $A = 90^\circ$ , (III)  $A = 0^\circ$ , (III)  $A = 180^\circ$ ? What does the triangle become in each of these cases?
- 9. What does  $\frac{a}{b} = \frac{\sin A}{\sin B}$  become when A is a right angle? When B is a right angle?

#### SOLUTION OF OBLIQUE TRIANGLES

- 78. Cases in the Solution of Oblique Triangles. Four cases occur in the solution of oblique triangles according as the parts given are
  - I. One side and two angles.
  - II. Two sides and the included angle.
  - III. Three sides.
  - IV. Two sides and an angle opposite one of them.

## CASE I. ONE SIDE AND TWO ANGLES GIVEN

# 79. To solve Case I use the law of sines (Art. 74), thus:

Subtract the sum of the two given angles from  $180^{\circ}$ ; this will give the third angle.

The unknown sides may then be found by the following proportion:

 $unknown \ side : known \ side = sine \ of \ angle \ opposite \ the \ unknown \ side : sine \ of \ angle \ opposite \ the \ known \ side.$ 

In solving oblique triangles by the use of logarithms it is of special importance to make an outline or skeleton of the work before looking up any logarithms, and then to do all the work connected with the use of the tables together.

Ex. 1. Given  $A=67^{\circ} 21'$ ,  $B=57^{\circ} 48'$ , b=367. Solve the oblique triangle ABC.

#### Solution



$$C = 180^{\circ} - (67^{\circ} 21' + 57^{\circ} 48') = 54^{\circ} 51'.$$

Then by the law of sines (Art. 74),

$$\frac{a}{367} = \frac{\sin 67^{\circ} 21'}{\sin 57^{\circ} 48'} \qquad \frac{c}{367} = \frac{\sin 54^{\circ} 51'}{\sin 57^{\circ} 48'} \qquad \frac{a}{c} = \frac{\sin 67^{\circ} 21'}{\sin 54^{\circ} 21'}$$

Before looking up any logarithms in the tables the pupil should outline the work as follows:

| $-367 \log \ldots$                              | $367 \log \ldots$      | $c \log \ldots$        |
|-------------------------------------------------|------------------------|------------------------|
| $67^{\circ} 21' \log \sin \ldots$               | 54° 51′ log sin        | 67° 21′ log sin        |
| $57^{\circ} 48' \operatorname{colog sin} \dots$ | 57° 48′ colog sin      | 54° 51′ colog sin      |
| $a = \dots \log \dots$                          | $c = \dots \log \dots$ | $a = \dots \log \dots$ |

The pupil can then look up all the logarithms at once and fill in the above tabulated form. (Any logarithm occurring more than once on being taken from the tables should be entered uniformly wherever it belongs.) Proceeding thus, he should obtain

(Check)

 $\begin{array}{r}
 c \log 2.54947 \\
 67^{\circ} 21' \log \sin 9.96541 - 10 \\
 \underline{54^{\circ} 51' \operatorname{colog} \sin 0.08743} \\
 a \log 2.60231
 \end{array}$ 

Ex. 2. Solve the triangle ABC, given  $A = 18.29^{\circ}$ ,  $B = 83.11^{\circ}$ , and b = 7641.



$$C = 180^{\circ} - (18.29^{\circ} + 83.11^{\circ}) = 78.6^{\circ}.$$

Then by the law of sines (Art. 74),

$$\frac{a}{7641} = \frac{\sin 18.29^{\circ}}{\sin 83.11^{\circ}} \\ 7641 \log 3.8832 \\ 18.29^{\circ} \log \sin 9.4967 - 10 \\ \frac{83^{\circ} 11' \operatorname{colog} \sin 0.0032}{a = 2416.11 \log 3.3831} \\ \frac{c}{7641} = \frac{\sin 78.6^{\circ}}{\sin 83.11^{\circ}} \\ 7641 \log 3.8832 \\ 78.6^{\circ} \log \sin 9.9913 - 10 \\ \frac{83.11^{\circ} \operatorname{colog} \sin 0.0032}{c = 7546 \log 3.8777}$$

 $\frac{a}{c} = \frac{\sin 18.29^{\circ}}{\sin 78.6^{\circ}}$   $c \log 3.8777$   $18.29^{\circ} \log \sin 9.4967 - 10$   $\frac{78.6^{\circ} \operatorname{colog} \sin 0.0087}{a \log 3.3831}$ 

The accuracy of the work in Exs. 1 and 2 might also have been checked by use of the formula  $a^2 = b^2 + c^2 - 2bc \cos A$ , or

of 
$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}$$
.

In general in solving oblique triangles the accuracy of the work in any one case can be checked by applying to the results obtained one of the rules or formulas of the other cases.

#### **EXERCISE 36**

Find the remaining parts of the triangle, given:

**1.** 
$$a = 12.632$$
,  $A = 65^{\circ} 35'$ ,  $B = 73^{\circ} 18'$ .

**2.** 
$$a = 300$$
,  $B = 10^{\circ} 18'$ ,  $C = 35^{\circ} 22'$ .

**3.** 
$$b = 1000$$
,  $B = 49^{\circ} 18'$ ,  $C = 72^{\circ} 50'$ .

**4.** 
$$c = 1640.22$$
,  $C = 18^{\circ} 25'$ ,  $B = 52^{\circ} 16'$ .

5. 
$$A = 66^{\circ} 18' 36'', B = 43^{\circ} 43' 48'', c = .87654$$
.

**6.** 
$$C = 100^{\circ} 18' 42''$$
,  $B = 50^{\circ} 40' 16''$ ,  $c = 114.682$ .

**7.** 
$$C = 22^{\circ} 18' 24''$$
,  $B = 58^{\circ} 12' 24''$ ,  $a = 1.26984$ .

**8.** 
$$A = 68^{\circ} 15' 20'', B = 43^{\circ} 18' 36'', a = 1.8263.$$

9. 
$$B = 57^{\circ} 23' 12''$$
,  $A = 54^{\circ} 21' 18''$ ,  $c = .20814$ .

10. Given a = 5.267,  $A = 30^{\circ}$ ,  $B = 45^{\circ}$ , solve without using the tables.

11. Given c = 1000,  $A = 60^{\circ}$ ,  $B = 45^{\circ}$ , find a and b without using tables.

12. In a parallelogram given a diagonal d, and the angles m and n which this diagonal makes with the sides, find the sides. Find the sides when d = 14.632, and  $m = 38^{\circ}$  18', and  $n = 12^{\circ}$  32'.

Using four-place tables, find the unknown parts, having given:

**13**. 
$$a = 14.26$$
,  $A = 52.16^{\circ}$ ,  $B = 71.11^{\circ}$ .

**14.** 
$$c = 200$$
,  $C = 18.16^{\circ}$ ,  $B = 80.52^{\circ}$ .

**15.** 
$$b = .7125$$
,  $A = 116.18^{\circ}$ ,  $C = 38.25^{\circ}$ .

**16.** 
$$a = 63.28$$
,  $B = 63.28^{\circ}$ ,  $C = 36.82^{\circ}$ .

**17.** 
$$b = 4000$$
,  $B = 17.28^{\circ}$ ,  $C = 82.26^{\circ}$ .

**18.** 
$$c = 8$$
,  $A = 79.26^{\circ}$ ,  $B = 99.99^{\circ}$ .

**19.** 
$$a = 19.28$$
,  $B = 42.8^{\circ}$ ,  $C = 19.53^{\circ}$ .

**20**. 
$$c = .2265$$
,  $B = 71.28^{\circ}$ ,  $A = 52.85$ .

**21**. 
$$b = 176.8$$
,  $C = 9.82^{\circ}$ ,  $B = 68.22^{\circ}$ .

**22.** 
$$a = 4812$$
,  $B = 75.6^{\circ}$ ,  $C = 48.71$ .

**23**. 
$$b = 14.267$$
,  $C = 110.6^{\circ}$ ,  $A = 41.63^{\circ}$ .

**24.** 
$$c = 712.8$$
,  $B = 44.18^{\circ}$ ,  $A = 79.22$ .

Without the use of tables, solve, having given:

**25.** 
$$a = 100$$
,  $B = 60^{\circ}$ ,  $A = 60^{\circ}$ .

**27.** 
$$a = 500$$
,  $A = 75^{\circ}$ ,  $B = 60^{\circ}$ .

**26**. 
$$A = 120^{\circ}$$
,  $B = 30^{\circ}$ ,  $c = 200$ .

**28.** 
$$b = 200$$
,  $A = 105^{\circ}$ ,  $c = 45^{\circ}$ .

Solve Exs. 29-31 by either set of tables.

- **29.** A ship S can be seen from two points M and N on the shore. The distance MN is 700 ft., and the angles SMN and SNM are 57° 42′ [57.7°] and 75° 18′ [75.3°] respectively. Find the distance of the ship from M.
- 30. A balloon is directly over a straight road, and between two points on the road from which it is observed. The distance between the two points is 2652 yd., and the angles of elevation of the balloon as seen from the two points are 58° 50′ [58.83°] and 47° 24′ [47.4°] respectively. Find the distance of the balloon from each of the given points, and also the height of the balloon from the ground.
- 31. Which examples in Exercise 41 can be worked by Case I? Work such of these examples as the teacher may direct.
- 32. Make up some practical problem which can be solved by the method of Case I and solve it.

# CASE II. TWO SIDES AND THE INCLUDED ANGLE GIVEN

80. To solve Case II we have the following method by the use of the law of tangents (Art. 75):

Subtract the given angle from 180°; divide the remainder by 2. The result will be half the sum of the unknown angles.

One half of their difference may then be found by the following proportion:

 $tan \frac{1}{2}$  the difference of the unknown angles:  $tan \frac{1}{2}$  their sum = difference of the two given sides: their sum.

Then  $\frac{1}{2}$  sum of unknown  $\angle + \frac{1}{2}$  their difference

= greater unknown  $\angle$ .

 $\frac{1}{2}$  sum of unknown  $\angle - \frac{1}{2}$  their difference

 $= smaller unknown \angle.$ 

The third side is found by Case I.

Ex. 1. Given a = 4527, b = 3465,  $C = 66^{\circ}$  6′ 28″, solve the triangle.\*



$$a+b=7792.$$
  
 $a-b=1062.$   
 $A+B=180^{\circ}-66^{\circ}$  6' 28  
 $=113^{\circ}$  53' 32".  
 $\frac{1}{2}$   $(A+B)=56^{\circ}$  56' 46".

By the law of tangents (Art. 75),

tan 
$$\frac{1}{2}(A-B)$$
: tan  $\frac{1}{2}(A+B) = a-b$ :  $a+b$ , tan  $\frac{1}{2}(A-B)$ : tan  $56^{\circ}$   $56'$   $46'' = 1062$ :  $7992$ .

 $\therefore$  tan  $\frac{1}{2}(A-B) = \frac{1062 \tan 56^{\circ} 56' 46''}{7992}$ .

$$1062 \log 3.02612$$

$$56^{\circ} 56' 46'' \log \tan 0.18659$$

$$7992 \log 3.91266 - 10 \operatorname{colog} 6.09734 - 10$$

$$\frac{1}{2} (A - B) = 11^{\circ} 32' 28'' \log \tan 9.31005 - 10$$

$$\frac{1}{2} (A + B) = 56^{\circ} 56' 46''$$

$$\frac{1}{2} (A - B) = 11^{\circ} 32' 28''$$

$$A = 68^{\circ} 29' 14''$$

$$B = 45^{\circ} 24' 18''$$

The side c may now be found by Case I.

Thus we have 
$$\frac{c}{3465} = \frac{\sin 66^{\circ} 6' 28''}{\sin 45^{\circ} 24' 18''}$$

Thus given a = 5, b = 6,  $C = 60^{\circ}$ , find c.

$$c = \sqrt{a^2 + b^2 - 2 ab \cos C} = \sqrt{25 + 36 - 60 \times \frac{1}{2}} = \sqrt{31} = 5.5775$$
.

<sup>\*</sup> If only the third side, c, is required, and the numbers representing the other sides, a and b, are small, the solution may often be readily effected by the formula of Art. 76 without the use of logs.

 $\frac{3465 \log 3.53970}{66^{\circ} \ 6' \ 28'' \log \sin 9.96109 - 10}{45^{\circ} \ 24' \ 18'' \log \sin 9.85254 - 10 \operatorname{colog} \sin 0.14746}{c = \mathbf{4448.9} \log 3.64825}$ 

(What checks can you suggest for the work?)

Ex. 2. Given c = 30.15, a = 18.159,  $B = 54.22^{\circ}$ , solve the triangle.

$$\begin{aligned} c + a &= 48.309, \\ c - a &= 11.991, \\ C + A &= 180^{\circ} - 54.22^{\circ} \\ &= 125.78^{\circ}, \\ \frac{1}{2} \left( C + A \right) &= 62.89^{\circ}. \end{aligned}$$

By Art. 75,

that is,

 $\tan \frac{1}{2}(C-A) : \tan \frac{1}{2}(C+A) = c - a : c + a;$  $\tan \frac{1}{2}(C-A) : \tan 62.89^{\circ} = 11.991 : 48.309.$ 

$$\therefore \tan \frac{1}{2} (C - A) = \frac{11.991 \tan 62.89^{\circ}}{48.309}$$

 $62.89^{\circ} \log \tan 0.2908$   $48.309 \log 1.6840 \operatorname{colog} 8.3160 - 10$   $\frac{1}{2} (C - A) = 25.87^{\circ} \log \tan 9.6857 - 10$   $\frac{1}{2} (C + A) = 62.89^{\circ}$   $\frac{1}{2} (C - A) = 25.87^{\circ}$   $C = 88.76^{\circ}$ 

$$C = 88.76^{\circ}$$
  
 $A = 37.02^{\circ}$ 

 $11.991 \log 1.0789$ 

The side b may now be found by Case I.

$$\frac{b}{18.591} = \frac{\sin 54.22^{\circ}}{\sin 37.02^{\circ}}$$

$$18.159 \log 1.2591$$

$$54.22^{\circ} \log \sin 9.9092 - 10$$

$$37.02^{\circ} \log \sin 9.7797 - 10 \operatorname{colog} \sin 0.2203$$

$$b = \mathbf{24.467} \log 1.3886$$

(What checks can you suggest for the work?)

#### **EXERCISE 37**

Using five-place tables, solve the following triangles, having given:

- 1.  $a = 27.7, b = 18.6, C = 68^{\circ}$ .
- **2**. b = 400, c = 250,  $A = 68^{\circ} 18'$ .
- 3.  $A = 30^{\circ} 12' 20''$ , b = .24135, c = .35627.
- **4.**  $B = 63^{\circ} 35' 30''$ , a = .062788, c = .077325.
- **5.**  $A = 123^{\circ} 16' 30''$ , b = 2.1625, c = 3.1536.
- **6**.  $A = 52^{\circ} 6'$ , b = 420, c = 200.
- 7.  $C = 60^{\circ}$ , b = 9, a = 7. Find c only.

Suggestion.  $c = \sqrt{a^2 + b^2 - 2 \ ab \cos C}$ .

- **8.** c = 26.369, b = 17.268,  $A = 32^{\circ} 18' 30''$ .
- **9.**  $B = 168^{\circ} 18' 39'', c = 186.27, a = 132.91.$

Using four-place tables, solve the following triangles, having given:

- **10.** a = 200, b = 260,  $C = 51.82^{\circ}$ .
- **11.** b = 1.763, c = 1.112, A = 28.16°.
- **12.** a = .3782, c = .412, B = 112.18°.
- **13.** b = 11.65, a = 8.26,  $C = 12.12^{\circ}$ .
- **14.** a = 1720, c = 642, B = 78.63°.
- **15**. b = 9, c = 6,  $A = 60^{\circ}$ . Find a only.

Suggestion.  $a = \sqrt{b^2 + c^2 - 2bc \cos A}$ .

- **16.**  $c = \sqrt{7}$ ,  $b = \sqrt{11}$ ,  $A = 1688^{\circ}$ . Find C, B, and a.
- **17.** b = 79.23, a = 100.6,  $C = 68.25^{\circ}$ .
- **18**. a = 1200, b = 2100,  $C = 43.18^{\circ}$ .
- 19. a = 12, c = 15,  $B = 45^{\circ}$ . Find b without the use of tables.

Solve the following, using either set of tables:

**20.** Two trees M and P are on opposite sides of a pond. The distance of M from a point K is 159.6 ft., the distance of P from K is 216.8 ft., and the angle MKP is 75° 18′ [75.3°]. Find the distance between the trees.

21. The length of a lake subtends at a certain point an angle of 120°, and the distances of this point from the two extremities of the lake are 2 and 3 miles respectively. Find the length of the lake.

22. The point O is acted on by a force OA of 12 pounds and a force OB of 17 pounds, and the angle between the lines of direction of the two forces is 120° 43′ [120.72°]. What will be the resultant force and what angle will it make with each of the original forces? (Use the principle of the parallelogram of forces.)



23. Two trains leave the same station at the same time on straight tracks intersecting at an angle of 21° 12′ [21.2°]. If the trains travel at the rate of 40 and 50 miles an hour respectively, how far apart will they be in 10 minutes?

**24.** The sides of a parallelogram are 172.43 and 101.31 and the angle included by them is  $61^{\circ} 16' \lceil 61.27^{\circ} \rceil$ . Find the two diagonals.

25. In Exercise 41 which examples can be worked by the methods of Case II? Work such of these as the teacher may direct.

26. Make up some practical problem which can be solved by the method of Case II and solve it.

## CASE III. THREE SIDES GIVEN

81. The Solution of Case III is effected by the use of the formulas proved in Art. 77.

In case it is desired to find only one of the angles of a given triangle it will be best to use that one of the formulas of Art. 77 which will give the required angle most accurately. The cosine formula may be stated in general language thus:

The cosine of one half of any angle of a triangle is equal to the square root of one half the sum of the three sides multiplied by one-half the sum minus the side opposite, divided by the product of the other two sides. Thus

$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}, \cos \frac{1}{2} B = \sqrt{\frac{s(s-b)}{ac}}, \cos \frac{1}{2} C = \sqrt{\frac{s(s-c)}{ab}}.$$

Ex. 1. If in the triangle ABC, a = 123, b = 113, c = 103, find the angle A.

$$s = \frac{1}{2}(123 + 113 + 103) = 169.5.$$

$$s - a = 169.5 - 123 = 46.5.$$

$$cos \frac{1}{2}A = \sqrt{\frac{169.5 \times 46.5}{113 \times 103}}.$$

$$169.5 \log 2.22917$$

$$46.5 \log 1.66745$$

$$113 \operatorname{colog} 7.94692 - 10$$

$$103 \operatorname{colog} 7.98716 - 10$$

$$2)19.83070 - 20$$

$$\frac{1}{2}A = 34^{\circ} 37' 22'' \log \cos 9.91535 - 10$$

$$\therefore \angle A = \mathbf{69^{\circ} 14' 44''}.$$

In case the half angle  $(\frac{1}{2}A)$  to be computed is small, it is best not to use the formula for  $\cos \frac{1}{2}A$ . Why?

In case the half angle to be computed is close to 90°, it is best not to use the formula for  $\sin \frac{1}{2} A$ . Why?

In case it is desired to find all three angles of a triangle, it is best to use the tangent formula of Art. 77. For it will be found that by that method it is necessary to employ the logarithms of but four different numbers, whereas by either of the other formulas it is necessary to use the logarithms of seven different numbers. It is a further advantage to transform the tangent formula thus:

$$\tan \frac{1}{2} A = \sqrt{\frac{(s-a)(s-b)(s-c)}{s(s-a)^2}} = \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$
Let  $\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = r$ . Then
$$\tan \frac{1}{2} A = \frac{r}{s-a}, \tan \frac{1}{2} B = \frac{r}{s-b}, \tan \frac{1}{2} C = \frac{r}{s-c}.$$

To test the accuracy of the work add the angles obtained. Their sum should differ very slightly from 180°.

Ex. 2. If in the triangle ABC, a = 123, b = 113, c = 103, find the three angles of the triangle.

The fact that the sum of the angles of the triangle as computed differs from 180° by four seconds is due to the fact that the logarithms used are only approximately correct in the last figure. When five-place tables are used, as in the above solution, the sum of the angles obtained should not differ from 180° by more than six or seven seconds.

Ex. 3. Find the three angles of the triangle in which a = 26.16, b = 29.15, c = 32.24.

$$\begin{array}{c} s = 43.775 \quad s-b = 14.625 \\ s-a = 17.615 \quad s-c = 11.535 \\ \end{array} \qquad \begin{array}{c} 17.615 \log 1.2459 \\ 14.625 \log 1.1651 \\ 11.535 \log 1.1620 \\ 11.535 \log 1.1620 \\ 43.775 \\ \end{array} \\ \begin{array}{c} 11.535 \log 1.1620 \\ 43.775 \quad 108.587 - 10 \\ 2)1.8317 \\ r \log 0.9159 \\ \hline 17.615 \operatorname{colog} 8.7541 - 10 \\ \frac{1}{2}A = 2\overline{5.07}^{\circ} \log \tan 9.6700 - 10 \\ \hline r \log 0.9159 \\ 14.625 \operatorname{colog} 8.8349 - 10 \\ \frac{1}{2}B = 29.39^{\circ} \log \tan 9.7508 - 10 \\ \end{array} \qquad \begin{array}{c} 17.615 \log 1.2459 \\ 14.625 \log 1.1651 \\ 2)1.8317 \\ r \log 0.9159 \\ \hline 11.535 \operatorname{colog} 8.9280 - 10 \\ \frac{1}{2}C = 3\overline{5.54}^{\circ} \log \tan 9.8539 - 10 \\ \end{array} \\ \begin{array}{c} A = 50.14^{\circ} \\ B = 58.78^{\circ} \\ C = 71.08^{\circ} \\ \hline 180^{\circ} \quad (check) \end{array}$$

#### **EXERCISE 38**

By use of five-place tables solve each of the following triangles, having given:

In g given:

1. 
$$\begin{cases}
a = 54, \\
b = 47, \\
c = 38.
\end{cases}$$
5. 
$$\begin{cases}
a = 100, \\
b = 125, \\
c = 140.
\end{cases}$$
9. 
$$\begin{cases}
a = \sqrt{14}, \\
b = \sqrt{19}, \\
c = \sqrt{33}.
\end{cases}$$
2. 
$$\begin{cases}
a = 2.6, \\
b = 3.7, \\
c = 2.8.
\end{cases}$$
6. 
$$\begin{cases}
a = 1.57, \\
b = 1.7, \\
c = 1.266.
\end{cases}$$
10. 
$$\begin{cases}
a = 4.1409, \\
b = 4.9935, \\
c = 1.8181.
\end{cases}$$
3. 
$$\begin{cases}
a = .117, \\
b = .261, \\
c = .217.
\end{cases}$$
7. 
$$\begin{cases}
a = 17.03, \\
b = 12.585, \\
c = 11.085.
\end{cases}$$
11. 
$$\begin{cases}
a = 2.6, \\
b = 5.7, \\
c = 7.8.
\end{cases}$$
4. 
$$\begin{cases}
a = 122.6, \\
b = 169.4, \\
c = 95.2.
\end{cases}$$
8. 
$$\begin{cases}
a = 113, \\
b = 147, \\
c = 48.
\end{cases}$$
12. 
$$\begin{cases}
a = 17.51, \\
b = 12.575, \\
c = 23.645.
\end{cases}$$
13. 
$$\begin{cases}
a = 79.38, \\
b = 48.16, \\
c = 50.
\end{cases}$$
14. 
$$\begin{cases}
a = 2, \\
b = 3, \\
c = 4.
\end{cases}$$
 Find the largest angle.  $c = 4$ .

15. The sides of a triangle are 10, 17, and 25. Find the smallest angle in the triangle.

16. The sides of a triangle are 3, 4, and 5.5. Find the sine of the smallest angle.

17. The sides of a triangle are 1.1, 1.3, 1.6. Find the cosine of the largest angle.

18. The sides of a triangle are 18, 21, and 25 ft. Find the length of the perpendicular from the vertex of the largest angle to the opposite side.

19. By use of four-place tables solve Exs. 1–18.

20. The distances between three towns, P, Q, R, are as follows: PQ = 51, QR = 65, PR = 20. If R is due east from P, what is the direction of each place from every other place? If R is N.E. from P, what would each of these directions be?

21. What angle is subtended by an island 2 miles long as viewed from a point 3 miles distant from one end of the island and 4 miles from the other end?

22. Make up two practical problems which can be solved by the method of Case III and solve them,

# CASE IV. GIVEN TWO SIDES AND AN ANGLE OPPOSITE ONE OF THEM

82. The Solution of Case IV, like that of Case I, is effected by the use of the law of sines (Art. 74). But it has been shown in geometry that when two sides and an angle opposite of the same of the

site one of them are given, several special cases arise in the construction of the triangle.

Thus in the triangle ABC (Fig. 64) let the given parts be the angle A and the sides a and b.



Then under the following conditions the following triangles may be constructed:

- I. If given  $\angle A$  is obtuse
  - and 1.  $side\ opp.\ A > side\ adj.$  . . . . one  $\triangle$ 
    - 2.  $side\ opp.\ A < side\ adj.$  . . . . no  $\triangle$
- II. If given  $\angle A$  is right (same results as in I).
- III. If given  $\angle A$  is acute
  - and 1.  $side\ opp. > side\ adj.$  . . . one  $\triangle$ .
    - 2. side  $opp.=side\ adj.$  . . one isosceles  $\triangle$ .
    - 3. side opp. < side adj.

The case last mentioned (3) subdivides into three special cases as follows:

- (1) side opp. > (side adj.)  $\times$  (sin given  $\angle$ ) . . . two  $\triangle$
- (2) side  $opp. = (side \ adj.) \times (sin \ given \ \angle)$  . one right  $\triangle$ .
- (3) side opp.  $\langle (side\ adj.) \times (sin\ given\ \angle) . . . . no \triangle$

In practice, the cases of no solution and of one right triangle or one isosceles triangle as the solution do not often occur. Hence we usually need merely a method of discriminating between the cases where one oblique triangle or two oblique triangles form the solution. We may state this test in the form of question and answer thus:

Q. In general, when are there two solutions in Case IV?

Ans. When the side opposite the given angle is less than the other given side.

Q. In this case, how may the two triangles be constructed?

Ans. Take the vertex between the two given sides as a center, and describe an arc, using the smaller side as radius.



It is usual so to letter the figure that the vertex of the given angle comes at the left end of the unknown base. Thus given  $\angle C = 38^{\circ}$ , b = 152, c = 103, we have Fig. 65.

Hence, in solving examples in Case IV,

Observe whether the side opposite the given angle is less than the other given side; if it is, there are, in general, two solutions, which construct by taking the vertex between the given sides as a center and describing an arc with the smaller side as radius.

In either case find the unknown angle opposite the known side by the use of the following proportion: sine of unknown  $\angle$  opp. known side: sine of known  $\angle$ 

= side opp.  $unknown \angle$ : side opp.  $known \angle$ .

In case there are two solutions, use in one triangle the angle obtained from the table, and in the other triangle the supplement of this angle.

Find the third angle and third side by Case I.

Ex. 1. Given a = 84, b = 48.5,  $A = 21^{\circ} 31'$ , solve the triangle.

Since the side opposite the given angle, 84, is greater than the other given side, 48.5, there is but one solution.

$$\frac{\sin B}{\sin 21^{\circ} 31'} = \frac{48.5}{84}.$$

$$\therefore \sin B = \frac{48.5 \sin 21^{\circ} 31'}{84}.$$

$$\frac{48.5 \log 1.68574}{21^{\circ} 31' \log \sin 9.56440 - 10}$$

$$\frac{84 \log 1.92428 \operatorname{colog} 8.07572 - 10}{B = 12^{\circ} 13' 33'' \log \sin 9.32586 - 10}.$$

$$C = \frac{180^{\circ} - (\dot{A} + B)}{12^{\circ} 13' 33'' \log \sin 9.32586 - 10}.$$
By Case I we find  $c = 127.211$ .

Ex. 2. 
$$a = 22$$
,  $b = 34$ ,  $A = 30^{\circ} 20'$ , solve the triangle.

Since the side  $\alpha$  opposite the given angle A is less than the other given side (A being acute, and  $22 > 34 \sin 30^{\circ} 20'$ ) there are two solutions to the given triangle. In this case it is well to draw the smaller triangle separately as well as the general figure.



By the law of sines (Art. 74),

$$\frac{\sin B}{\sin 30^{\circ} \ 20'} = \frac{34}{22}. \qquad \therefore \sin B = \frac{34 \sin 30^{\circ} \ 20'}{22}.$$

$$34 \log 1.53148$$

$$30^{\circ} \ 20' \log \sin 9.70332 - 10$$

$$22 \log 1.34242 \operatorname{colog} 8.65758 - 10$$

$$B = 51^{\circ} \ 18' \ 27'' \log \sin 9.89238 - 10$$

$$\therefore \text{ on Fig. 67a, } B' = 180^{\circ} - 51^{\circ} \ 18' \ 27''$$

$$= 128^{\circ} \ 41' \ 33''.$$
Hence by Case I we find  $c = 43.098.$ 

To complete the solution of  $\triangle AC'B'$  (Fig. 67a).

$$C' = 180^{\circ} - (A + B')$$
  
=  $180^{\circ} - 159^{\circ} 1' 33'' = 20^{\circ} 58' 27''$ .

Then by Case I we find c' = 15.5926.

(What checks can be used in the case of each of the two triangles?)

Ex. 3. Given a = 22, b = 34,  $A = 30.33^{\circ}$ , solve the triangles

Since the side a opposite the given angle A is less than the other given side (A being acute and  $22 > 34 \sin 30.33^{\circ}$ ), there are two solutions. In this case it is well to draw the smaller triangle separately as well as the general figure.





By the law of sines (Art. 74),

$$\frac{\sin B}{\sin 30.33^{\circ}} = \frac{34}{22}$$
.  $\therefore \sin B = \frac{34 \sin 30.33^{\circ}}{22}$ .

$$34 \log 1.5315$$
 
$$30.33^{\circ} \log \sin 9.7033 - 10$$
 
$$\underline{22 \log 1.3424 \operatorname{colog} 8.6576 - 10}$$
 
$$\underline{B = 51.32^{\circ} \log \sin 9.8924 - 10}$$

To complete the solution of 
$$\triangle ACB$$
,  $\angle ACB = 180^{\circ} - (30.33^{\circ} + 51.32^{\circ})$   
= 98.35°.

Hence by Case I, obtain c = 43.1.

$$\therefore \angle B' = 180^{\circ} - 51.32^{\circ} = 128.68^{\circ}.$$

To complete the solution of  $\triangle AC'B'$  (Fig. 68a),

we have 
$$C' = 180^{\circ} - (30.33^{\circ} + 128.68^{\circ}) = 20.99^{\circ}.$$

Hence, by Case I, find c' = 15.6.

#### **EXERCISE 39**

State the number of solutions for each of the following and construct a figure for each example, lettering it according to the method specified in Art. 82:

**1**. 
$$A = 30^{\circ}$$
,  $b = 50$ ,  $a = 60$ .

5. 
$$C = 80^{\circ}$$
,  $b = 16$ ,  $c = 15.5$ .

**2**. 
$$B = 30^{\circ}$$
,  $a = 100$ ,  $b = 70$ .

**6**. 
$$B = 54^{\circ}$$
,  $a = 23$ ,  $b = 36$ .

3. 
$$C = 45^{\circ}$$
,  $a = 60$ ,  $c = 60$ .

7. 
$$C = 30^{\circ}$$
,  $a = 18$ ,  $c = 9$ .

**4.** 
$$A = 60^{\circ}$$
,  $b = 12$ ,  $a = 10$ .

**8.** 
$$B = 50^{\circ}$$
,  $a = 50$ ,  $b = 37$ .

9.  $A = 75.16^{\circ}$ , c = 18, a = 17.6.

Using five-place tables, solve the following triangles, having given:

**10**. 
$$A = 38^{\circ} 18'$$
,  $b = 120.6$ ,  $a = 138.7$ .

**11.** 
$$A = 61^{\circ} 18', c = 23.7, a = 21.25.$$

**12**. 
$$C = 104^{\circ} 13' 48''$$
,  $b = 115.72$ ,  $c = 165.28$ .

**13**. 
$$B = 22^{\circ} 22'$$
,  $a = .6728$ ,  $b = .81434$ .

**14**. 
$$A = 47^{\circ} 19'$$
,  $a = 100$ ,  $c = 120$ .

**15.** 
$$B = 15^{\circ} 30' 12''$$
,  $a = 1200$ ,  $b = 590$ .

**16**. 
$$C = 78^{\circ} 18' 18''$$
,  $a = .26725$ ,  $c = .37926$ .

**17**. 
$$B = 26^{\circ} 18' 36''$$
,  $a = 28.604$ ,  $b = 12.678$ .

**18**. 
$$A = 131^{\circ} 18' 24''$$
,  $a = .8888$ ,  $c = .4128$ .

**19**. 
$$C = 31^{\circ} 31' 15''$$
,  $b = 11.111$ ,  $c = 8.267$ .

Using four-place tables, solve the following triangles, having given:

**20.** 
$$B = 32.37^{\circ}$$
,  $b = 126.6$ ,  $a = 138.7$ .

**21.** 
$$A = 57.366^{\circ}$$
,  $c = 22.7$ ,  $a = 20.672$ .

**22.** 
$$B = 105.273^{\circ}, b = 306.72, c = 241.8.$$

**23**. 
$$C = 26.223^{\circ}$$
,  $a = 66.35$ ,  $c = 82.59$ .

**24.** 
$$B = 14.3^{\circ}$$
,  $a = 20.17$ ,  $b = 17.8$ .

**25**. 
$$A = 22.37^{\circ}$$
,  $c = 300$ ,  $a = 200$ .

**26**. 
$$B = 63.31^{\circ}$$
,  $c = 7.67$ ,  $b = 9.54$ .

**27**. 
$$C = 49.31^{\circ}$$
,  $b = .17634$ ,  $c = .15678$ .

- 28. In a parallelogram, one side is 167, one diagonal is 295.6, and the angle included by the diagonals is 24° 18′ [24.3°]. Find the other side and other diagonal, and also the angles of the parallelogram.
- 29. If the angle between two forces is 154° 20′ [154.33°], one of the forces is 960 pounds, and the resultant of the two forces is 440.46 pounds, find the other force.

#### AREA OF AN OBLIQUE TRIANGLE

83. I. Given two sides and the included angle, to find the area of a triangle, use the rule:

The area of a triangle equals one half the product of any two sides multiplied by the sine of the angle included by these sides.

For let the given sides be a and c.

In Fig. 69a, let  $\angle B$  be acute; in Fig. 69b, let  $\angle ABC$  be obtuse.





Let p be the perpendicular from C to AB or AB produced. In each figure, the area of  $\triangle ABC = \frac{1}{2}c \times p$ .

In Fig. 69a, in the rt. 
$$\triangle CBD$$
,  $p = a \sin B$ . (Art. 41)  
In Fig. 69b in the rt.  $\triangle CBD$ ,  $p = a \sin (180^{\circ} - \angle ABC)$   
=  $a \sin ABC$ . (Art 64)

Hence, in each figure, if we denote area of  $\triangle ABC$  by K,

$$K = \frac{1}{2}ac \sin B$$
.

In case the given parts are a, b, C, or b, c, A, let the pupil state what the formula becomes.

Let the pupil also state these formulas in general language.

Ex. 1.  $A = 66^{\circ}$  4′ 19″, b = 21.66, c = 36.94, find the area of the triangle ABC.



By the formula 
$$K = \frac{1}{2}bc \sin A$$
,  
 $K = \frac{1}{2}(21.66 \times 36.94 \times \sin 66^{\circ} 4' 19'')$ .  
 $\therefore \log K = \log 21.66 + \log 36.94 + \log \sin 66^{\circ} 4' 19'' + \operatorname{colog} 2$ .  
 $21.66 \log 1.33566$ 

 $36.94 \log 1.56750$   $66^{\circ} 4' 19'' \log \sin 9.96097 - 10$   $2 \operatorname{colog} 9.69897 - 10$   $Area = 365.682 \log 2.56310$ 

Ex. 2. Given  $A = 66.07^{\circ}$ , b = 21.66, c = 36.94, find the area of the triangle *ABC*.

By the above rule,

$$K = \frac{1}{2} (21.66 \times 36.94 \times \sin 66.07^{\circ}).$$

$$\therefore \log K = \log 21.66 + \log 36.94 + \log \sin 66.07^{\circ} + \operatorname{colog} 2.$$

$$21.66 \log 1.3357$$

$$36.94 \log 1.5675$$

$$66.07^{\circ} \log \sin 9.9610 - 10$$

$$2 \operatorname{colog} 9.6990 - 10$$

$$Area = 365.75 \log 2.5632$$

84. II. Given two angles and a side, find the third angle as usual. Let the given side be a, then a second side c may be determined as follows:

$$c: a = \sin C: \sin A$$
.

$$\therefore c = \frac{a \sin C}{\sin A} = \frac{a \sin C}{\sin \left[180^{\circ} - (B+C)\right]} = \frac{a \sin C}{\sin (B+C)}$$

Substituting this result in the formula for K in Art. 83,

$$K = \frac{a^2 \sin B \sin C}{2 \sin (B+C)}.$$

Hence the area may be found by substituting directly in this last formula.

85. III. Given three sides. In this case we know from plane geometry that

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
.

86. IV. In case two sides and an angle opposite one of them are given, to find the area it is necessary to find the log sin of the angle included between the two given sides by the method of Case IV (Art. 82), and then proceed as in Art. 83. In some cases two answers may occur (see Art. 82).

#### **EXERCISE 40**

Using either five-place or four-place tables, find the area of the following triangles, having given:

**1.** 
$$a = 16.7, b = 21.6, C = 36^{\circ} 18' 24'' [36.31^{\circ}].$$

**2.** 
$$a = .86$$
,  $B = 52^{\circ} 18' [52.3^{\circ}]$ ,  $C = 66^{\circ} 42' [66.7^{\circ}]$ .

- 3. a = 18, b = 14, c = 24.
- **4.** b = 200, c = 150,  $A = 72^{\circ} 18' 30'' [72.31^{\circ}]$ .
- **5.** b = 600,  $A = 18^{\circ} 26' [18.43^{\circ}]$ ,  $C = 31^{\circ} 44' [31.73^{\circ}]$ .
- **6.** b = 14.7, a = 18.6,  $A = 74^{\circ}18'$  [74.3°].
- 7. a = .8167, b = .68256, c = .72623.
- **8.** a = 100, c = 125,  $B = 170^{\circ} 16'$  [170.27°].
- 9.  $b = 62.8, c = 47.2, A = 60^{\circ}.$
- **10.** Given  $A = 29^{\circ} 32' 16'' [29.54^{\circ}]$ , b = 500, and a = 300, find the difference in area between the two triangles which contain these parts.
- 11. In a parallelogram, given two adjacent sides, c and d, and the included angle A, obtain a formula for the area of the parallelogram in terms of the given parts.
- 12. Prove that the area of any quadrilateral is equal to one half the product of its diagonals and the sine of their included angle.
- 13. Two sides of a parallelogram are 30 and 40 respectively, and their included angle is 60°. Find the area of the parallelogram without the use of tables.
- 14. The diagonals of a quadrilateral are 17.6 and 20.5, intersecting at an angle of 36° 18′ [36.3°]. Find the area of the quadrilateral.

## CHAPTER VII

### PRACTICAL APPLICATIONS

- 87. Instruments for Measuring Angles. In order to determine unknown heights or distances it is important to have an instrument for measuring angles either in the horizontal or in the vertical plane. Horizontal angles can be measured by the Surveyor's Compass. Both horizontal and vertical angles can be measured by the Transit Instrument.
- 88. An angle of elevation is the angle between a line drawn from the eye of the observer to the point observed and the horizontal plane through the eye of the observer, when this angle is above the horizontal plane.

Thus, on Fig. 71, ACB is the angle of elevation of A as viewed from C.

An angle of depression is the angle between a line drawn from the eye of the observer to the point observed and the horizontal plane through the eye of the observer, when this angle is below the horizontal plane.

Thus, on Fig. 71, DAC is the angle of depression of C as viewed from A.

# 89. I. To determine the Height of an Accessible Object above a Horizontal Plane.

In Fig. 71 let AB be the object whose altitude is sought, and EF the horizontal plane, and C the point of observation.

In the right triangle ABC, what line shall we measure? What angle? How then can AB be computed?



II. To find the Distance on a Horizontal Plane to an Inaccessible Object whose Height is Known. In Fig. 71, let ABbe the inaccessible object whose height is known; let EF be the horizontal plane and C the position of the observer. the right triangle ABC, what side is known? What angle can be measured? How then can BC be computed?

# III. To determine the Height of an Inaccessible Object above a Horizontal Plane.



Let AB, Fig. 72, be the altitude which is to be measured, and EF the horizontal plane. Place the transit instrument at D and measure the angle of elevation ADB.

Measure the distance DC toward B, and measure the angle ACB. By solving the triangle ACD the line AC is found. By solving the right triangle ACB, AB is found.

In case it is desired to compute AB by means of right triangles alone, the solution may be effected by dropping a perpendicular CP from C to AD and solving the right triangles DCP, CPA, and CAB (let the pupil supply the exact steps in this process).

Or we may proceed by the use of natural tangents thus:

On Fig. 72, in 
$$\triangle$$
  $DAB$ ,  $DB = AB \tan \angle DAB$ , in  $\triangle CAB$ ,  $CB = AB \tan \angle CAB$ .

Subtracting, DB–CB,

or 
$$DC = AB (\tan \angle DAB - \tan \angle CAB)$$
.

Hence 
$$AB = \frac{DC}{\tan \angle DAB - \tan \angle CAB}$$
.

In case it is not possible to move directly from D toward B, we may proceed as follows: Measure  $\angle ADB$  (Fig. 73).

Measure the line DC in the horizontal plane in any convenient direction from D. Measure  $\angle BDC$  and DCB.

Then in the triangle DCB, DB may be computed (How?). Afterward in the triangle ADB compute AB (How?).



# 92. IV. To determine the Height of an Inaccessible Object on an Inclined Plane.

Let DF (Fig. 74) be the horizontal plane, DB the inclined



plane, and AB the object whose height is sought. If we measure the  $\angle ADC$  and ACB, and the distance DC, we may then compute AC (How?). If we then measure  $\angle BDF$ , we may compute  $\angle CAB$  (How?). Then AB may be computed (How?).

# 93. V. To find the Distance of an Inaccessible Object.

Let A (Fig. 75) be the position of the observer and let it be required to determine the distance from A to B.

Let the pupil determine what measurements and computations are necessary in accordance with the figure.



94. VI. To find the Distance between two Objects separated by an Impassable Barrier (and possibly invisible to each other).



Let it be required to find the distance between A and B (Fig. 76), which are separated by a swamp or a mountain for instance. Take a station C from which both A and B are visible. Measure the angle C and the lines CA and CB. In the triangle ABC, compute AB (How?).

# 95. VII. To find the Distance between two Objects, both Inaccessible and lying in the Horizontal Plane.

Let A and B (Fig. 77) be two inaccessible objects (as two islands off the shore CD). Measure the line CD and the  $\triangle ACD$ , BCD, ADC, BDC. In the triangle ACD, compute AC; in the triangle BCD, compute BC; in the triangle ABC, compute ABC.



- 96. Range Finders. In war, both on land and sea, the use of a range finder to determine the distance of an enemy is becoming general. The essential principle of such an instrument is the finding of the distance of an inaccessible object by the solution of a triangle in which a side (called a base line) and the two angles which include the side are known (see Art. 93). On land a convenient base line is taken and measured. In naval warfare, the distance between two points on the vessel is utilized as a base line. In the range finder the triangle employed is not usually solved by numerical computation, but by some mechanical method, which gives the result sought much more expeditiously.
- 97. Coast and Geodetic Survey. The essential parts of the work of the coast and geodetic survey are as follows:

1. The measurement of a base line AB (Fig. 78) at least 4 or 5 miles long, so accurately that the error shall not exceed  $\frac{1}{10}$  of an inch per mile.

- 2. The choice of a convenient station P and the measurement of the angles PAB and PBA, and the computation of PA and PB in the triangle PAB.
- 3. The choice of another station Q, the measurement of the angles QBP and QPB, and hence the computation of PQ and QB.
- 4. Proceeding in like manner from station to station till convenient points, *C* and *D*, are reached, and the length of the line *CD* computed.
- 5. The careful measurement of CD and the comparison of its computed length with the result of the measurement. This final measurement of CD serves as a test of the accuracy of all the inter-



Fig. 78.

vening work. By carrying these measurements far enough, a considerable arc of a great circle of the earth may be measured, and from this arc the radius or diameter of the earth computed.

98. Distance of the Sun and Stars. The usual method of determining the distance of the sun from the earth consists essentially in taking a line (AB, Fig. 79) nearly equal to the



diameter of the earth as a base line, and observing from each end of AB the angle made by a line drawn to some convenient planet P. The distance of the planet

may then be computed by Art. 93. The ratio of the distance of the sun to that of the planet from the earth being

known by an astronomical law, the distance of the sun is The distance of the sun from the earth readily determined. is thus found to be approximately 93,800,000 miles.

The distances of the fixed stars are found by taking the diameter of the earth's orbit as a base line, measuring the angles made by this line with lines drawn from its ends to a fixed star, and making the necessary computations.

Thus the trigonometrical solution of a triangle in which a side and the two angles adjacent to it are known is seen to have very wide practical applications.

Trigonometry also has 99. Application to Navigation. many applications to different departments of applied As an illustration of these science.

> applications we will briefly indicate its method of use in navigation.



Fig. 80.

If a ship should sail from R to B on the diagram (Fig 80), crossing each meridian at the same angle, for certain purposes the  $\triangle ARB$  (AB being the arc of a parallel of latitude) could be regarded as a plane triangle and solved,

when necessary, by the methods of plane trigonometry. This form of navigation is called Plane Sailing.

The departure between two meridians is the arc of a parallel of latitude comprehended between the two meridians. Thus, AB is a departure between PAP' and PBP'. dently the departure between two given meridians diminishes with the distance from the equator.

The difference of longitude between two places is the angle at the pole (or the arc on the equator) included between the meridians of the two given places. Thus the difference of longitude for A and D is the angle RPS, or arc RS.

In Parallel Sailing a vessel sails due east or west (i.e. on a parallel of latitude) as from A to B. The difference of longitude corresponding to the course sailed may be found by the formula

 $diff. of longitude = departure \times sec. latitude.$ 

For on Fig. 80,

diff. long.: dep. = arc 
$$RS$$
: arc  $AB = OR$ :  $CA = OA$ :  $CA = \frac{OA}{CA}$ : 1 = sec. lat: 1.

 $\therefore$  diff. long.:departure = sec. lat.: 1.

In Middle Latitude Sailing a ship sails between two places in a course oblique to a parallel of latitude. For short distances (especially near the equator) sufficient accuracy is obtained by regarding the departure as measured on the parallel of latitude midway between the parallels of the two places, and computing the difference of longitude by the formula  $diff.\ long. = departure \times sec.\ mid.\ lat.$ 

### **EXERCISE 41**

- **1.** In Exercise 22 point out the examples which are solved by the method of Art. 89.
  - 2. Also those which are solved by the method of Art. 90.
  - 3. Also those solved by principles contained or implied in Art. 91.
- 4. The angle of elevation of the top of a tree measured from a point 213.5 ft. from its foot is observed to be 18°. Find the height of the tree.
- 5. A water tower 92.5 ft. high stands on a horizontal plane. An observer finds the angle of elevation of the top of the tower to be 52°. Find the distance of the observer from the base of the tower.
- 6. Pike's Peak when viewed from a certain point on the Colorado plain has an angle of elevation of 15° 48′ [15.8°]. Two miles farther off the angle of elevation is 11° 59′ [11.98°]. What is the altitude of the mountain above the Colorado plain? If the Colorado plain is 5176 ft. above sea level, what is the altitude of Pike's Peak above sea level?
- **7.** From the top of a hill 350 ft. high the angle of depression of the top of a tower which is known to be 150 ft. high is 57°. What is the distance from the foot of the tower to the top of the hill?



- **8.** A man standing west of a tree, on the same horizontal plane, observes its angle of elevation to be 48°; he goes north 50 yd. and finds its angle of elevation to be 41°. Find the height of the tree.
- **9.** The angle subtended by a tower on an inclined plane, is at a certain point on the plane 56°; 200 ft. further down it is 28°. The inclination of the plane is 7°. Find the height of the tower.
- 10. From the top and bottom of a castle which is 75 ft. high the angles of depression of a ship at sea are 19° and 15° respectively. Find the distance of the ship from the bottom of the castle.
- 11. A monument 70 ft. high and a tower stand on the same horizontal plane. The angle of elevation of the top of the tower at the top of the monument is 20° 40′ 12″ [20.67°], at the base of the monument it is 53° 31′ 12″ [53.52°]. Find the height of the tower and its distance from the monument.
- 12. The three angles of a triangle are to each other as 11:13:6 and the longest side is 11. Find the other two sides.
- 13. Two mountains, A and B, are respectively 12 and 16 mi. from a point C, and the angle ACB is  $72^{\circ}18'$  [72.3°]. Find the distance between the mountains.
- 14. In a parallelogram one side is 16.9 and a diagonal is 30.72, and the angle included by the diagonals is 26° 36′ [26.6°]. Find the other side and the other diagonal, also the angles of the parallelogram.
- 15. A flagstaff 50 ft. in height stands on a tower. From a position near the base of the tower, and on the same horizontal plane, the angles of elevation of the top and bottom of the flagstaff are 41° 36′ [41.6°] and 22° 18′ [22.3°], respectively. Find the distance and height of the tower.
- 16. The diagonals of a parallelogram are 12.5 and 12.8 ft. respectively, and their included angle is 52° 16′ [52.27°]. Find the sides of the parallelogram.
- 17. The sides of a triangle are 11, 13, and 16. Find the cosine of the largest angle.
- **18.** From a point 4 mi. from one end of an island and 7 mi. from the other, the island subtends an angle of 33° 33′ 33″ [33.56°]. Find the length of the island.
- 19. Two buoys are 1500 yd. apart. The angles formed by lines from a boat to each buoy form angles with the line between the buoys of 77° 18′ [77.3°] and 51° 16′ [51.27°], respectively. Find the distance of the boat from the nearer buoy.

- **20.** Two straight roads cross each other at an angle of  $48^{\circ}$  24' [ $48.4^{\circ}$ ] at the point M. Four miles from M on one road is the town of P, and 6 miles from M on the other road is the town of K. How far apart are P and K? (Two answers.)
- 21. The diagonals of a quadrilateral are 47.6 and 61.23 rd., respectively, and the angle included by the diagonals is 43° 10′ [43.17°]. Find the area of the quadrilateral.
- 22. To find the distance between two trees T and T', on opposite sides of a river, a line TK and the angles T'TK and T'KT are measured and found to be 412 ft., 62° 30′ [62.5°], and 57° 32′ [57.53°], respectively. Find the distance TT.
- 23. Two objects which are invisible from each other on account of a hill are visible from a station whose distances from the objects are 367 yd. and 514 yd., respectively, and the angle at the station subtended by the distance between the objects is 57° 36′ [57.6°]. Find the distance between the objects.
- 24. Given a circle with radius 19.8 ft. Find the area inclosed between two parallel chords on opposite sides of the center whose lengths are 25.6 and 31.7.
- 25. Wishing to find the distance between two trees T and T', separated by a marsh, I take TK on the prolongation of TT' through T, 89 yd. in length, and then take KP, 165 yd. in length, at right angles to KT. The angle T'PT is found to be 33° 36′ 36″ [33.61°]. Find the distance from T to T'.
- 26. Two yachts start at the same time from the same point, and sail one due west at the rate of 9.75 mi. per hour, and the other due northwest at the rate of 11.5 mi. per hour. How far apart will they be at the end of 2 hr. sail?
- 27. In order to find the distance from a rock R to a buoy B, distances RK and KP are measured to points K and P from which both rock and buoy can be seen, the distance RK being 2500 m., and KP being 3600 m. The following angles are then measured:  $\angle BKR = 38^{\circ} 48'$  [38.8°],  $\angle BKP = 75^{\circ} 54'$  [75.9°], and  $\angle BPK = 79^{\circ} 30'$  [79.5°]. Find the distance from the rock to the buoy.
- 28. A ship sails due east 416 mi. in latitude 40° 23′. Find the difference in longitude which she makes.
- 29. A ship leaves latitude 30° 16′ N., longitude 43° 17′ W., and sails N.E. 350 mi. Find the difference of latitude and departure which she makes.

Hence find her new latitude and longitude.

**30.** A flagstaff 30 ft. high stands on the top of a building. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are observed to be 41° and 36° respectively. Assuming the ground to be level, find the height of the building.

31. A tower stands on a hillside whose inclination to the horizon is 11°; a line is measured straight up the hill from the base of the tower 110 ft. in length and, at the upper extremity of the line, the tower subtends an angle of 52°. Find the height of the tower.

32. A rock 60 ft. high stands on the top of a hill whose side is inclined 21° to the horizon. An observer standing on the hillside below the rock finds the angle of elevation of the top of the rock to be 64°, and a second observer, farther down the slope, and in direct line with the first observer, finds the angle of elevation of the top of the rock to be 42°. Find the distance between the observers, and the distance from the first observer to the base of the rock.



33. A point at O is acted on by a force which gives a velocity of 1376 ft. per second along OA, and by another force which gives O a velocity of 1135 ft. per second along OB.  $\angle AOX = 30^\circ$ ,  $\angle BOX = 101^\circ$ . What will be the magnitude and direction of the resultant velocity?

**34.** Show that the projection of OA plus the projection of OB on X'OX equals the projection of the resultant of OA and OB on X'OX.

35. If, in the figure of Ex. 33, OA = 200 and the resultant = 300, find OB, the angles being unchanged.

**36.** A tower 190 ft. high stands on the seashore. From its top the angle of depression of two boats are 8° and 11° respectively. From the bottom of the tower the angle subtended by the distance between the boats is 101°. Find the distance between the boats.

37. A man on the opposite side of a river from two trees P and Q wishes to determine the distance between the trees. He measures a distance AB, 287 ft. He also measures the angles PAB, QAB, PBA, and PBQ and finds them 31°, 36°, 51°, and 42°, respectively. Find the distance between the trees.

38. Two straight paths cross each other at an angle of 68°. A line is drawn so as to inclose, with the two paths, an acre of ground. This line cuts one of the paths at a distance of 52 yd. from the point of

intersection of the two paths. What angle does this line make with each path?

- 39. A tower 135 ft. high stands at one corner of a triangular garden. From the top of the tower the angles of depression of the other two corners of the garden are 56°18′ [56.3°] and 19°36′ [19.6°], respectively. The side of the garden opposite the tower subtends, from the top of the tower, an angle of 66°. Find the length of the sides of the garden.
- **40.** Two towers are 144 ft. apart. The angle of elevation of one observed from the base of the other is twice that of the first observed from the base of the second; but from a point midway between the towers, the angles of elevation of the tops of the towers are complementary. Find the height of the towers. (Do not use logarithms.)
- 41. A railroad embankment is 9 ft. high. The length of the slope of the embankment on each side is 14 ft. Find the angle which the slope makes with the horizontal, and also find the width of the embankment at the base if the top is 8 ft. wide.
- **42.** Given the triangle ABC, whose sides are AB=87.6 yd., AC=112.7 yd., and BC=121.6 yd. A point D is taken on the line AC produced through C, so that the angle BDC is  $18^{\circ}$  37' 48'' [18.63°]. Find the distance DC.
- 43. The area of a triangle is 3 acres and two of its sides are 92.6 and 26.72 rd. Find the angle between these sides.
- 44. A shooting star is observed at two places 200 mi. apart on the earth's surface; the angle of elevation of the star at one station is 27° and at the other is 63°, the star being in the same plane with the two stations and the center of the earth. Taking the radius of the earth as 3956 mi. find the height of the shooting star above the earth's surface and hence the height of the earth's atmosphere. (What is a shooting star? What causes its light?)
- 45. Show how to solve each of the cases in oblique triangles by dividing the oblique triangle into right triangles and using the methods of solving right triangles given in Chapter III. Why do we not ordinarily use this method of solving oblique triangles?
- **46.** Make up (or collect) all the different examples you can showing practical applications of trigonometry, each example being distinct in principle or in field of application from the other examples.

### CHAPTER VIII

# CIRCULAR MEASURE. GRAPHS OF TRIGONOMETRIC FUNCTIONS

100. Radians, or the Circular Measure of Angles. The method of measuring angles by taking a right angle as the unit, dividing the right angle into 90 degrees, dividing each degree into 60 minutes, etc., is called the *sexagesimal* method and originated in Babylonia (see Art. 127) in very early times. It continues to be generally used in spite of its awkwardness because of the extensive tables and large number of results stated in terms of it which have been accumulated.

However, the advantages of the decimal division of any unit are so great that it is a growing custom to divide the degree of angle into tenths and hundredths instead of minutes and seconds (see many examples in this book).

Also within the past century it has become customary in many kinds of work (especially algebraic or theoretic work)



Fig. 81.

to use a unit of angle different from the right angle, called the radian, and to divide this unit decimally.

A radian is the angle which, when its vertex is placed at the center of a circle, intercepts an arc equal to the radius of the circle.

Thus if the arc AC (Fig. 8) equals the radius AB, the angle ABC is a

radian, or the unit angle in the so-called circular method of measuring angles.

Hence, to determine the number of radians in an angle whose arc and radius are given, we have the relation

no. of radians in an angle =  $\frac{arc}{radius}$ , or, denoting the number of radians in an angle by  $\rho$ , the subtended arc by a, and the radius of the circle by R,  $\rho = \frac{a}{R}$ .



Fig. 82.

Ex. 1. Find the number of radians in an angle AOB whose arc is 13 and radius 5.

We have, 
$$\angle AOB = \frac{1.3}{5} = 2.6$$
 radians, Ans.

From the above relation it follows that

Any two of the three quantities, number of radians in an angle, arc, and radius, being given, the other may be found.

Ex. 2. An angle containing 2.4 radians subtends an arc 14 in. long. Find the radius.

Substituting for  $\rho$  and a in the formula  $\rho = \frac{a}{R}$ ,

$$2.4 = \frac{14 \text{ in.}}{R}$$
  $\therefore R = \frac{14 \text{ in.}}{2.4} = 5.83^{+} \text{ in.}, Ans.$ 

# 101. I. Converting Degrees into Radians.

The number of radians about a point in a plane

$$= \frac{\text{circumference}}{\text{radius}}$$
$$= \frac{2 \pi R}{R} = 2 \pi.$$

.. 
$$360^{\circ} = 2 \pi$$
, or  $6.2832$  radians.  $45^{\circ} = \frac{\pi}{4}$ , or  $0.7854$  radians.  $180^{\circ} = \pi$ , or  $3.1416$  radians.

$$90^{\circ} = \frac{\pi}{2}$$
, or 1.5708 radians.  $30^{\circ} = \frac{\pi}{6}$ , or 0.5236 radians.

$$60^{\circ} = \frac{\pi}{3}$$
, or 1.0472 radians.  $1^{\circ} = \frac{\pi}{180}$ , or .01745 radians.

144

### TRIGONOMETRY

Hence to convert degrees into radians

Multiply the given number of degrees by  $\frac{\pi}{180}$  (or by .01745<sup>+</sup>).

Ex. 1. How many radians in 26° 17′ 36"?

$$26^{\circ} \ 17' \ 36'' = 26.293^{+\circ}$$
  
=  $(26.293^{+})(.01745)$  radians.  
=  $0.45882^{+}$  radians,  $Ans$ .

Ex. 2. Simplify  $\sin\left(\frac{\pi}{6} + x\right)$ .

$$\sin\left(\frac{\pi}{6} + x\right) = \sin\frac{\pi}{6}\cos x + \cos\frac{\pi}{6}\sin x \tag{Art. 66}$$

$$=\frac{1}{2}\cos x + \frac{1}{2}\sqrt{3}\sin x$$
, Ans. (Art. 33)

Where the meaning is evident from the context, it is customary to abbreviate " $\pi$  radians" into " $\pi$ ." Thus also we abbreviate " $\sin \frac{\pi}{6}$ " radians" into " $\sin \frac{\pi}{6}$ " and similarly for other expressions.

## 102. II. Converting Radians into Degrees.

Since

$$2 \pi \text{ radians} = 360^{\circ}$$
  
 $1 \text{ radian} = \frac{180^{\circ}}{\pi}$ ,

or

1 radian = 
$$57.29579^{+\circ}$$
  
=  $57^{\circ} 17' 45''$   
=  $206265''$ .

Hence to convert radians into degrees

Multiply the given number of radians by  $\frac{180^{\circ}}{\pi}$  (or 57.3°-).

Ex. Convert 2.5 radians into degrees, minutes, and seconds.

$$2.5 \text{ radians} = 2.5 \times (57.2958^{\circ} -)$$
  
=  $143.2395^{\circ}$   
=  $143^{\circ} 14' 22''$ , Ans.

Hence, if the number of degrees in an angle be denoted by A, the number of radians in it by  $\rho$ , etc., any two of the



CIRCULAR MEASURE

four quantities A,  $\rho$ , a, R being given (provided one of them is a or R), the other two may be found by substitution of the two given quantities in the two equations

$$\rho = \frac{a}{R}$$
 and  $A = \rho \left(\frac{180^{\circ}}{\pi}\right)$ .

103. The solution of a right triangle containing an angle less than 2° may often be conveniently effected by the use of radians. For the sine or tangent of a small angle may be taken as equivalent to the number of radians in the angle (i.e. the circular measure of the angle) without appreciable error (see Art. 115).

Thus  $\sin A = A$  (in radians) when A is a small angle, is an approximation frequently used in Physics, and the result is accurate to within the probable degree of error in measurement.

Ex. If a railroad track has a rise of 1 ft. in every 2000 ft. in its length, what angle does it make with the horizontal?

Denoting the required angle by A,

$$\sin A = \frac{1}{2000} = \text{no. radians in } A \text{ approximately.}$$

$$\therefore A = \frac{1}{2000} \times 206265'' = 103^{+11} = 1'43'', \text{ Ans.}$$

### **EXERCISE 42**

1. Reduce the following angles to circular measure, expressing the results as fractions of  $\pi$ :

2. Express the following angles in degrees:

$$\frac{\pi}{6}$$
,  $\frac{\pi}{4}$ ,  $\frac{\pi}{3}$ ,  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{5}$ ,  $\frac{3\pi}{5}$ ,  $\frac{7\pi}{5}$ ,  $\frac{8\pi}{15}$ .

- 3. What decimal part of a radian is 1°? 16"? 2'15"? 5°14'?
- **4.** How many degrees (minutes and seconds) in 2 radians? 3.2 radians? .003 radians?
- 5. A circle has a radius of 14 inches. How many radians are there in an angle at the center subtended by an arc 21 in. long? By an arc 7 in. long?

- **6.** In a circle of radius R, an arc 3 ft. 6 in. subtends an angle of 1.5 radians. Find R.
- 7. One angle of a triangle is 30°, and the circular measure of another angle is 1.5 radians. Find the third angle in degrees. Also in radians.
- 8. The difference between two angles is  $\frac{\pi}{6}$  and their sum is 110°. Find the angles in degrees; in radians.
- 9. Find both in radians and degrees the complement and supplement of the following angles:

$$\frac{\pi}{6}$$
,  $\frac{\pi}{3}$ ,  $\frac{\pi}{4}$ ,  $\frac{\pi}{9}$ ,  $\frac{5\pi}{18}$ .

10. Write out the trigonometric ratios of the following angles:

$$\frac{\pi}{6}$$
,  $\frac{\pi}{3}$ ,  $\frac{\pi}{4}$ ,  $\frac{\pi}{2}$ ,  $\frac{3\pi}{4}$ ,  $\frac{7\pi}{6}$ ,  $\frac{7\pi}{4}$ .

- 11. How many radians in an angle whose arc is 12 and radius 10? How many degrees?
  - **12.** Show that  $\sin(x + \frac{1}{3}\pi) + \sin(x \frac{1}{3}\pi) = \sin x$ .

Supply the two missing quantities in each of the following:

|    | ρ   | a      | R           | A      |
|----|-----|--------|-------------|--------|
| 13 | 2.5 | 10 in. |             |        |
| 14 | .25 |        | 50 in.      |        |
| 15 |     | 12 ft. | 1 ft. 6 in. |        |
| 16 |     |        | 42 in.      | 1° 30′ |
| 17 |     | 100    |             | 37°    |

- 18. If a railroad track has a rise of 1 ft. in 750 ft., what angle does the track make with the horizontal?
- 19. If a railroad makes an angle of 1° 30′ with the horizontal, what is its rise in one half mile?
- **20.** An irrigating ditch should have a fall of at least  $\frac{1}{4}$  in. per rod. What angle does the bottom of the ditch make with the horizontal?
- 21. If the moon is at a distance of 240,000 mi. from the earth and the radius of the moon subtends an angle of 16' as seen from the earth, what is the radius of the moon in miles?
- 22. If the sun is at a distance of 92,800,000 mi. from the earth, and the diameter of the sun subtends an angle of 32.4' as viewed from the earth, what is the radius of the sun in miles?
- 23. The planet Mars has a diameter of 4200 miles. When Mars is nearest the earth, its diameter subtends an angle of 24.5" as seen from

the earth. What is the distance of Mars from the earth at such a time?

- **24.** Find the numerical value of  $3 \sin \frac{\pi}{4} 4 \cos \frac{\pi}{6} \tan \frac{\pi}{3} + \cot \frac{\pi}{2}$ .
- 25. Make up two practical problems in each of which a right triangle is solved by the use of radians as in Exs. 17-21.

We shall now illustrate the use of radians, or the circular measure of angles, (1) in tracing the graphs of trigonometric functions, (2) in solving trigonometric equations.

### GRAPHS OF TRIGONOMETRIC FUNCTIONS

104. Graph of  $\sin x$ . To form what is called the graph of  $\sin x$  use the equation  $y = \sin x$  and also a pair of rectangular axes (see Art. 54). In the equation  $y = \sin x$ , let x have convenient successive values and find the corresponding values of y. Lay off each corresponding pair of values of x and y as the abscissa and ordinate of a point. Draw a continuous curve through the terminal points thus located.

It is usually convenient to make the scale of the drawing such that a unit space of the cross-section paper stands for  $\frac{\pi}{6}$  or .5236<sup>+</sup>.

Thus, if we desire to make a graph of  $y = \sin x$  we may take the following corresponding values of x and y:

$$x = 0, y = 0.$$

$$x = \frac{\pi}{6}, y = \frac{1}{2} = .5.$$

$$x = -\frac{\pi}{6}, y = -\frac{1}{2} = -.5.$$

$$x = -\frac{\pi}{6}, y = -\frac{1}{2} = -.5.$$

$$x = -\frac{\pi}{3}, y = -\frac{1}{2}\sqrt{3} = -.86^{+}.$$

$$x = -\frac{\pi}{2}, y = 1.$$

$$x = -\frac{\pi}{2}, y = -1.$$

$$x = -\frac{\pi}{2}, y = -1.$$

$$x = -\frac{\pi}{2}, y = -1.$$

$$x = -\frac{\pi}{3}, y = -\frac{1}{2}\sqrt{3} = -.86^{+}.$$

$$x = -\frac{5\pi}{6}, y = -\frac{1}{2} = -.5.$$

$$x = \pi, y = 0, \text{ etc.}$$

$$x = -\pi, y = 0, \text{ etc.}$$

Using these results, the curve AOBCDE (Fig. 83) is obtained as the graph of  $\sin x$ . Such a figure shows at a glance the changes in the values of  $\sin x$  as x changes in value.



105. Graphs of Other Trigonometric Functions. By treating the equations  $y = \cos x$ ,  $y = \tan x$ ,  $y = \sec x$ , etc, similarly, the graphs of the other trigonometric functions may be constructed.



It is important to observe in constructing the graph of  $\tan x$ , that, as  $x = \frac{\pi}{2}$ ,  $y = \text{either} + \infty$  or  $-\infty$ . For as we proceed from x = 0 and make  $x = \frac{\pi}{2}$ ,  $y = +\infty$ ; but as we proceed from  $x = \pi$  and make  $x = \frac{\pi}{2}$ ,  $y = -\infty$ . Hence we

obtain as part of the graph of  $\tan x$  the curve AOB, CO'D of Fig. 84.

#### **EXERCISE 43**

Graph each of the following:

| 1.         | $y = \sin x$ .            | 9.  | $y = \tan \frac{1}{2} x$ . |
|------------|---------------------------|-----|----------------------------|
| 2.         | $y = \cos x$ .            | 10. | $y = \sin x + \cos x$ .    |
| 3.         | $y = \tan^2 x$ .          | 11. | $y = \sin x - \cos x$ .    |
| 4.         | $y = \cot x$ .            | 12. | $y = \sqrt{\sin x}$ .      |
| 5.         | $y = \sec x$ .            | 13. | $y = \sin^2 x$ .           |
| 6.         | $y = \csc x$ .            | 14. | $y=1+\sin x$ .             |
| <b>7</b> . | $y = \sin \frac{1}{2} x.$ | 15. | $y = 1 - \cos x$ .         |
| 8.         | $y = \sin 2 x$ .          | 16. | $y = x + \sin x$ .         |

- 106. Solutions of Trigonometric Equations. Answers not greater than  $360^{\circ}$ , *i.e.* than  $2\pi$  radians.
- Ex. 1. Find the values of x less than  $2\pi$  radians which shall satisfy the equation  $\sin x = \frac{1}{2}$ .

Since  $\sin 30^{\circ} = \frac{1}{2}$ , and also  $\sin 150^{\circ} = \frac{1}{2}$ ,

$$x = \frac{\pi}{6}$$
 or  $\frac{5\pi}{6}$  radians, Ans.

Ex. 2. Solve  $4\cos x - 3\sec x = 0$  for values of x less than  $2\pi$ .

$$\begin{split} 4\cos x - \frac{3}{\cos x} &= 0. \\ 4\cos^2 x - 3 &= 0. \\ \cos x &= \pm \frac{1}{2}\sqrt{3}. \\ x &= 30^\circ, \ 150^\circ, \ 210^\circ, \ 330^\circ, \\ x &= \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{7\pi}{6}, \ \frac{11\pi}{6} \ \text{radians}, \ \textit{Ans}. \end{split}$$

## 107. Answers Unlimited.

Hence,

or

Ex. 1. Solve the equation  $\cos x = \frac{1}{2}$ .

One value of x is 60° and another value is -60°. But if 360° be added to or subtracted from the value of an angle, the value of the function is unchanged.

Hence,  $x = 2 n\pi \pm \frac{\pi}{3}$  radians, where n is zero or any positive or negative integer.

Ex. 2. Solve the equation  $\sin x - \csc x + \frac{3}{2} = 0$ .

Solving the equation, we obtain,

$$\sin x = -2, \frac{1}{2}$$
.

Since the sine of an angle cannot be greater than 1, no angle corresponds to the value -2.

For

$$\sin x = \frac{1}{2},$$

$$x = 2 n\pi + \frac{\pi}{6}$$
,  $(2 n + 1)\pi - \frac{\pi}{6}$ , Ans.

### **EXERCISE 44**

Solve each of the following equations, expressing the answers in radians, by use of  $\pi$ .

1. 
$$\cot^2 \theta = -3$$
.

**2.** 
$$\tan^2 \theta = 3$$
.  
**3.**  $\cot^2 \theta = 1$ .

**4.** 
$$\sin^2 \theta = \frac{3}{4}$$
.

5. 
$$\cot \theta = 2 \cos \theta$$
.

6. 
$$\cos \theta + \sec \theta = \frac{5}{2}$$
.

7. 
$$3 \sin^2 x + \cos^2 x = \frac{3}{2}$$
.

8. 
$$3 \cot^2 x + \tan^2 x = 4$$
.

9. 
$$\cos x = \sin 2x$$
.

**10**. 
$$\cos 2x + \sin x = 4 \sin^2 x$$
.

**11.** 
$$\sin 2x = \tan^2 x$$
.

12. 
$$\frac{\cot x + 1}{\cot x - 1} = \cos 2x$$
.

13. 
$$2 \sin^2 x - \sin x = \sin 2x - \cos x$$
.

**14.** 
$$\cos 2x + \cos x = 0$$
.

**15**. 
$$\tan (45^{\circ} + x) + \tan (45^{\circ} - x) = 4$$
.

**16.** 
$$2 \csc^2 x - \sqrt{3} \cot x = 5$$
.

**17.** 
$$\sin 3 x = \sin 5 x + \sin x$$
.

**18.** 
$$\cos 3 x + \cos x = \cos 2 x$$
.

19. 
$$\sin 5 x - \sin x = \cos 3 x$$
.

**20.** 
$$\cos 3 x - \cos x = -\sin 2 x$$
.  
**21.**  $\sin 5 x + \sin 3 x + \sin x = 0$ .

**22.** 
$$\cos 5 x + \cos 3 x + \cos x = 0$$
.

## 108. Simultaneous Trigonometric Equations.

Ex. 1. Solve 
$$x \sin y = a$$
  
 $x \cos y = b$  for  $x$  and  $y$ .

Dividing the first equation by the second,

$$\tan y = \frac{a}{b}$$
  $\therefore y = \angle$  whose  $\tan is \frac{a}{b}$ , Ans.

(For a briefer way of expressing this result see Chapter IX.)

From this result the value of y may be obtained. When y is known x can be obtained from either of the original equations.

Thus 
$$x = \frac{a}{\sin y}$$
, or  $x = \frac{b}{\cos y}$ .

Ex. 2. Solve for x and y the equations,

$$\begin{cases} x \cos A + y \sin A = a. & \dots & \dots & \dots \\ x \sin A - y \cos A = b. & \dots & \dots & \dots \end{cases}$$

Multiply equation (1) by  $\cos A$ , then

$$x\cos^2 A + y\sin A\cos A = a\cos A. \quad . \quad . \quad . \quad . \quad . \quad (3)$$

Multiply equation (2) by  $\sin A$ , then

$$x\sin^2 A - y\sin A\cos A = b\sin A \quad . \quad . \quad . \quad . \quad . \quad (4)$$

Add (3) and (4), using the fact that  $\sin^2 A + \cos^2 A = 1$ .

then 
$$x = a \cos A + b \sin A$$
, and similarly,  $y = a \sin A - b \cos A$ .

### **EXERCISE 45**

Solve for x and  $\theta$ , or for x and y:

1. 
$$\begin{cases} x \cos \theta = 86.65, \\ x \sin \theta = 50. \end{cases}$$

3. 
$$\begin{cases} x \tan \theta = 816.95, \\ x \sin \theta = 426.3. \end{cases}$$
4. 
$$\begin{cases} x \sin y = 4, \\ x \cos y = 8. \end{cases}$$

2. 
$$\begin{cases} x \sin \theta = 118.96, \\ x \cos \theta = 160.78. \end{cases}$$

$$4. \quad \begin{cases} x \sin y = 4 \\ x \cos y = 8 \end{cases}$$

5. 
$$\begin{cases} x \sin 30^{\circ} + y \cos 45^{\circ} = 53.28, \\ x \cos 30^{\circ} + y \sin 45^{\circ} = 71.58. \end{cases}$$

6. 
$$\begin{cases} x \sin 48^\circ + y \cos 19^\circ = 2634.1, \\ x \cos 48^\circ + y \sin 19^\circ = 1320.3. \end{cases}$$

6. 
$$\begin{cases} x \sin 48^{\circ} + y \cos 19^{\circ} = 2634.1, \\ x \cos 48^{\circ} + y \sin 19^{\circ} = 1320.3. \end{cases}$$
7. 
$$\begin{cases} \sin x + \sin y = 1.573, \quad \text{[Use Art. 71.]} \\ \cos x + \cos y = 1.207. \end{cases}$$

8. 
$$\begin{cases} \sin x - \sin y = .2154, \\ \cos x - \cos y = - .1231. \end{cases}$$
9. 
$$\begin{cases} x \sin (\theta - 21.5^{\circ}) = 771.1, \\ x \cos (\theta - 32.5^{\circ}) = 766. \end{cases}$$
10. 
$$\begin{cases} x \cos A - y \sin A = a, \\ x \sin A + y \cos A = b. \end{cases}$$

9. 
$$\begin{cases} x \sin (\theta - 21.5^{\circ}) = 771.1 \\ x \cos (\theta - 32.5^{\circ}) = 766. \end{cases}$$

10. 
$$\begin{cases} x \cos A - y \sin A = a, \\ x \sin A + y \cos A = b. \end{cases}$$

### CHAPTER IX

### INVERSE TRIGONOMETRIC FUNCTIONS

109. Anti-sine.



- If y is an angle and x its sine, the relation between x and y may be expressed in either of two ways:
- (1)  $x = \sin y$ , or (2)  $y = \sin^{-1} x$ , which reads "y is the angle whose sine is x" or "y is the antisine of x."

One or the other of methods (1) or (2) is used according as the angle, or its sine, has the leading place in the discussion. Thus if the angle, or y, is more prominent,  $x = \sin y$ is used; but if the sine, x, is more prominent,  $y = \sin^{-1} x$  is used.

The pupil should carefully discriminate between  $\sin^{-1} x$  and the -1power of sin x. The latter is expressed thus,  $(\sin x)^{-1}$ . Thus,  $\frac{1}{\sin x}$  $(\sin x)^{-1}$ , and not  $\sin^{-1} x$ . But  $(\sin x)^{-2}$  may be written  $\sin^{-2} x$ .

110. Other Anti-trigonometric Functions. Similarly  $\cos^{-1} x$ means "the angle whose cosine is x";  $tan^{-1}x$  means "the angle whose tangent is x." Let the pupil state the meaning of  $\cot^{-1} x$ ,  $\csc^{-1} x$ ,  $\text{vers}^{-1} x$ .

It is evident that  $\sin (\sin^{-1} x) = x$ , since the sine of the angle whose sine is x must be x. Similarly  $\cos(\cos^{-1} x) = x$ , etc.

Hence there is a similarity in form between  $a(a^{-1})x = x$ , and  $\sin(\sin^{-1}x) = x$ . It is because of this similarity that the system of symbols described above is used to express the anti-trigonometric functions.

A much better symbolism for "y equals the angle whose sine is x" would seem to be " $y = \angle \sin x$ ," and if the pupil has difficulty in grasping the principles of this chapter, it may be well for him to use this latter method of writing inverse functions till he becomes familiar with their nature.

111. Values of Inverse Trigonometric Functions. The direct and inverse trigonometric functions have an important difference with reference to the number of values which satisfy them.

Thus, if  $y = \sin 30^{\circ}$ , y has a single value,  $\frac{1}{2}$ ; but if  $x = \sin^{-1}\frac{1}{2}$ , x can have an indefinite number of values, viz.:  $30^{\circ}$ ,  $150^{\circ}$ ,  $390^{\circ}$ ,  $510^{\circ}$ , etc.; or

$$x = 2 n \pi + \frac{\pi}{6}$$
,  $(2 n + 1)\pi - \frac{\pi}{6}$  (See Art. 107, Ex. 2.)

For many purposes it is customary to limit the values of an inverse circular function to the smallest value that will satisfy a given expression.

Thus, if 
$$\theta = \tan^{-1} 1$$
, we take  $\theta = 45^{\circ}$ .

# 112. Given an Anti-trigonometric Function, to find the other Related Functions.

Ex. 1. Given  $\theta = \tan^{-1} \frac{2}{3}$ , find  $\sin \theta$ ; that is, find  $\sin (\tan^{-1} \frac{2}{3})$ .

 $\theta = \tan^{-1} \frac{2}{3}$  may be converted into the form  $\tan \theta = \frac{2}{3}$  for which a diagram may be constructed (Fig. 86).

$$\therefore \sin \theta = \frac{2}{\sqrt{13}} = \frac{2}{13} \sqrt{13}.$$

$$\therefore \sin (\tan^{-1} \frac{2}{3}) = \frac{2}{13} \sqrt{13} \ Ans.$$



Ex. 2. Find 
$$\sin 2(\cos^{-1} \frac{1}{3})$$
.

Let x be the angle whose cosine is  $\frac{1}{3}$ .

Then 
$$\cos x = \frac{1}{3}$$
,  $\sin x = \sqrt{1 - \frac{1}{9}} = \frac{2}{3}\sqrt{2}$ .

$$\therefore \sin 2x = 2\sin x \cos x = 2(\frac{2}{3}\sqrt{2})\frac{1}{3} = \frac{4}{9}\sqrt{2}.$$

Hence, 
$$\sin 2(\cos^{-1}\frac{1}{3}) = \frac{4}{9}\sqrt{2}$$
, Ans.

Ex. 3. If  $\theta = \tan^{-1} a$ , express the direct and inverse functions of  $\theta$  in terms of a.



Ordinarily only the positive value of each radical is used.

## 113. Inverse Trigonometric Functions of Two Angles.

Ex. 1. Find  $\sin (\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{2}{3})$ . Let  $x = \sin^{-1} \frac{1}{2}$ .

$$\therefore \sin x = \frac{1}{2},$$

$$\cos x = \frac{1}{2}\sqrt{3}.$$

$$\text{Let } y = \cos^{-1}\frac{2}{3}.$$

$$\cos y = \frac{2}{3},$$

 $\therefore \sin y = \frac{1}{3}\sqrt{5}$ .





Then  $\sin (\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{2}{3}) = \sin (x + y) = \sin x \cos y + \cos x \sin y$  $= \frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \sqrt{3} \cdot \frac{1}{3} \sqrt{5}$   $= \frac{1}{6} (2 + \sqrt{15}), Ans.$ 

Ex. 2. Prove that 
$$\sin^{-1} a + \cos^{-1} a = \frac{\pi}{2}$$
.  
Using the method of Ex. 1, show that 
$$\sin(\sin^{-1} a + \cos^{-1} a) = 1 = \sin \frac{\pi}{3}.$$

Ex. 3. Show that 
$$\tan^{-1} a + \tan^{-1} b = \tan^{-1} \frac{a+b}{1-ab}$$
.





$$b = \tan^{-1} \frac{a + b}{1 - ab}.$$
Let  $x = \tan^{-1} a.$ 

$$\therefore a = \tan x,$$

$$y = \tan^{-1} b.$$

$$\therefore b = \tan y.$$
But
$$\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}.$$

: 
$$\tan (\tan^{-1} a + \tan^{-1} b) = \frac{a+b}{1-ab}$$
, or  $\tan^{-1} a + \tan^{-1} b = \tan^{-1} \frac{a+b}{1-ab}$ .

114. Solution of Trigonometric Equations by Use of Inverse Trigonometric Functions. It is sometimes useful to express the answer obtained by solving a trigonometric equation in terms of an inverse function.

Ex. Solve 
$$6 \cos^2 x - \cos x = 2$$
.  
Factoring,  $(2 \cos x + 1)(3 \cos x - 2) = 0$ .  
 $\therefore \cos x = -\frac{1}{2}, \frac{2}{3}$ .  
 $\therefore x = \cos^{-1}(-\frac{1}{2}), \cos^{-1}\frac{2}{3}, Ans$ .

### **EXERCISE 46**

If the pupil has any difficulty in grasping any one of the following problems, it will be well for him to translate the symbols of the problem into general language before attempting the solution. Thus Ex. 2 would read "find the cosine of the angle whose cotangent is  $\frac{3}{4}$ ," and might be written in the form "find  $\cos \angle \cot \frac{3}{4}$ " (see Art. 110).

Express the following angles first in degrees and then in radians:

1.  $\cos^{-1}\frac{1}{2}\sqrt{2}$ ,  $\tan^{-1}\sqrt{3}$ ,  $\sin^{-1}\frac{1}{2}$ ,  $\sec^{-1}\sqrt{2}$ ,  $\csc^{-1}\frac{2}{3}\sqrt{3}$ ,  $\cot^{-1}\sqrt{3}$ .  $\cos^{-1}\frac{1}{2}$ ,  $\sec^{-1}2$ ,  $\sin^{-1}\frac{1}{2}\sqrt{3}$ ,  $\cot^{-1}\frac{1}{3}\sqrt{3}$ ,  $\tan^{-1}\frac{1}{3}\sqrt{3}$ .

Find the value of:

**2.** 
$$\cos(\cot^{-1}\frac{3}{4})$$
.

3. 
$$\tan (\sin^{-1} \frac{5}{13})$$
.

**4.** 
$$\sec(\tan^{-1}\frac{8}{15})$$
.

5. 
$$\sin(\cot^{-1} \alpha)$$
.

6. 
$$\cot\left(\cos^{-1}\frac{a}{b}\right)$$
.

7. 
$$\tan(2\sin^{-1}\frac{1}{2})$$
.

Show that:

7. 
$$\tan(2\sin^{-1}\frac{1}{2})$$
.

15. 
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
.

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$$
. 16.  $\tan^{-1}2 + \tan^{-1}\frac{1}{2} = \frac{\pi}{2}$ .

17. 
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{77}{85}$$
.

**18.** 
$$\cos^{-1}\frac{3}{5} + \cos^{-1}\frac{5}{13} = \cos^{-1}\left(-\frac{3}{6}\frac{3}{5}\right)$$
.  
**19.**  $\tan^{-1}\frac{3}{4} + \tan\frac{8}{15} = \tan^{-1}\frac{7}{2}\frac{7}{6}$ .

**20.** 
$$\cot^{-1} a + \cot^{-1} b = \cot^{-1} \frac{ab-1}{b+a}$$
.

$$a = -1 \cdot \sqrt{2}$$
  $a = -1 \cdot 2 \cdot \sqrt{2}$   $a = -1$ 

**8.** 
$$\sin(2 \tan^{-1} \frac{5}{12})$$
.  
**9.**  $\cos(2 \sec^{-1} \frac{17}{8})$ .

**10.** 
$$\sin{(\frac{1}{2}\cos^{-1}{\frac{1}{2}})}$$
.

**10.** 
$$\sin\left(\frac{1}{2}\cos^{-1}\frac{1}{3}\right)$$

**11.** 
$$\cot(\frac{1}{2}\tan^{-1}\frac{1}{8})$$
.  
**12.**  $\sin(3\sin^{-1}\frac{1}{2})$ .

13. 
$$\sin(\sin^{-1}\frac{1}{2}-\cos^{-1}\frac{2}{3})$$
.

14. 
$$\tan(\tan^{-1}2 + \cot^{-1}3)$$
.



Prove that:

**21**. 
$$\sin(\sin^{-1}\frac{4}{5}+\cot^{-1}\frac{4}{3})=1$$
.

**22.** 
$$(\cos^{-1}\frac{15}{17} + \tan^{-1}\frac{5}{12}) = \sin^{-1}\frac{171}{221}$$
.

**23.** 
$$\sin(2\tan^{-1}x) = \frac{2x}{1+x^2}$$
.

**24.** 
$$\sin^{-1} x = \cot^{-1} \frac{\sqrt{1-x^2}}{x}$$
.

**25.** 
$$\cos^{-1} a - \cos^{-1} b = \cos^{-1} (ab + \sqrt{1 - a^2 - b^2 + a^2 b^2}).$$

**26.** 
$$3\cos^{-1}x = \cos^{-1}(4x^3 - 3x)$$
.

**27.** 
$$3 \sin^{-1} x = \sin^{-1} (3 x - 4 x^3).$$

**28.** 
$$\tan^{-1} a - \tan^{-1} b = \frac{a-b}{1+ab}$$
.

**29.** 
$$\sin^{-1} a + \sin^{-1} b = \cos^{-1} (\sqrt{1 - a^2 - b^2 + a^2 b^2 - ab}).$$

Express the value of each of the following in its most general form:

**30.** 
$$\sin^{-1}\frac{1}{2}$$
.

**35.** 
$$\cos^{-1} \frac{1}{8} \sqrt{3}$$
.

**31**. 
$$\tan^{-1} \frac{1}{3} \sqrt{3}$$
.

**36.** 
$$\tan^{-1} \infty$$
.

**32.** 
$$\cos^{-1}\frac{1}{2}\sqrt{2}$$
.

**37**. 
$$\cot^{-1}\sqrt{3}$$
.

**33.** 
$$\cot^{-1} \frac{1}{3} \sqrt{3}$$
.

**38.** 
$$\sec^{-1}\sqrt{2}$$
.

**34.** 
$$\sin^{-1}\frac{1}{2}\sqrt{3}$$
.

**39.** 
$$\sin^{-1}(-\frac{1}{2})$$
.

**40.** Prove that 
$$\tan(2\tan^{-1}a) = \frac{2a}{1-a^2}$$
.

**41.** Prove 
$$\sin(2 \tan^{-1} a) = \frac{2 a}{1 + a^2}$$
.

**42.** If 
$$\cos^{-1} x = 2 \cos^{-1} x$$
, find x.

**43**. Express the following angles in the inverse notation:  $30^{\circ}$ ,  $60^{\circ}$ ,  $90^{\circ}$ ,  $45^{\circ}$ ,  $0^{\circ}$ ;  $n 180^{\circ}$ ,  $n 90^{\circ}$ .

Can each of these angles be expressed in more than one way in the inverse notation?

**44.** Who first, and at what time, brought inverse circular functions into use in their present form (see p. 173)?

45. At what time did the circular method of measuring angles come into use (see p. 167)?

## CHAPTER X

# COMPUTATION OF TABLES

### TRIGONOMETRIC SERIES

115. Limiting values of  $\frac{\sin x}{x}$  and  $\frac{\tan x}{x}$ . It is important to determine the values which  $\frac{\sin x}{x}$  and  $\frac{\tan x}{x}$  approach when  $x \doteq 0$ , x being the value of an angle expressed in circular measure (radians).

Take any angle AOP (Fig. 92) less than 90° and denote it by x; construct the angle AOP' equal to AOP, and draw the tangents PT and P'T. These tangents will meet at I on OA produced. Draw PP'.

Then OT is  $\bot$  to PP' at its middle point M.

By geometry, are PP' > chord PP'; also are PP' < PT + P'T.

Hence are PA > PM, and are PA < PT.

$$\therefore \frac{\operatorname{arc} PA}{OP} > \frac{PM}{OP}$$
, and  $\frac{\operatorname{arc} PA}{OP} < \frac{PT}{OP}$ .

 $\therefore x > \sin x$ , and  $x < \tan x$ .

$$\therefore \frac{x}{\sin x} > 1$$
, and  $\frac{x}{\sin x} < \frac{1}{\cos x}$ .

$$\therefore \cos x < \frac{\sin x}{x} < 1.$$

157

Fig. 92.

As  $x \doteq 0$ ,  $\cos x \doteq 1$ , hence  $\frac{\sin x}{x} \doteq 1$ , since  $\frac{\sin x}{x}$  lies between  $\cos x$  and 1.

Hence as 
$$x \doteq 0$$
, limit  $\left(\frac{\sin x}{x}\right) = 1$ .

This result may also be stated thus, as x = 0,  $\sin x = x$ .

Also 
$$\frac{\tan x}{x} = \frac{\sin x}{x \cos x} = \left(\frac{\sin x}{x}\right) \left(\frac{1}{\cos x}\right)$$
.

But as 
$$x \doteq 0$$
,  $\frac{\sin x}{x} \doteq 1$ , and  $\frac{1}{\cos x} \doteq \frac{1}{1}$  or 1.

Hence 
$$\frac{\tan x}{x} = 1 \times 1$$
, or 1.

Or, as 
$$x = 0$$
, limit  $\left(\frac{\tan x}{x}\right) = 1$ .

Since the number of radians in  $x = \frac{\operatorname{arc} AP}{OA}$ , it follows that as the angle  $x \doteq 0$ , the number of radians in  $x \doteq \sin x$ , and also  $\doteq \tan x$ .

In practical work, when  $x < 2^{\circ}$ ,  $\sin x$  and  $\tan x$  may be taken as  $= \rho$  without appreciable error.

116. Computation of the Tables of Trigonometric Functions. Since, as x = 0,  $\sin x$  and x approach equality (Art. 115), the circular measure of a small angle is the same as the sine of that angle to a large number of decimal places. By the use of methods which are beyond the scope of this book it is found that the value of  $\sin 1$  and the circular measure of 1 coincide for the first fourteen decimal places. Hence in constructing tables which are to be correct for the first five decimal places, there will be no error in taking

$$\sin 1' = 1'$$
 (in radians).

But, by Art. 101,

$$1' = \frac{3.141592^+}{180 \times 60}$$
 radians =  $.0002908882^+$  radians.

Hence  $\sin 1' = .0002908882^{+}$ .

But 
$$\cos 1' = \sqrt{1 - \sin^2 1'} = \sqrt{1 - (.0002908882^+)^2}$$
  
= .9999999577<sup>+</sup>.  
 $\sin 2' = 2 \sin 1' \cos 1' = 2 \times (.0002909^-)(.9999999577^+)$ 

$$= .000582^{+}.$$

$$\sin 3' = \sin (2' + 1') = \sin 2' \cos 1' + \cos 2' \sin 1'.$$

From this the value of sin 3' may be computed.

In like manner the sines of all angles less than 90° may be obtained.

The cosines of these angles may be obtained similarly, or by use of the formula  $\cos x = \sin (90^{\circ} - x)$ .

The tangents of these angles may be computed by the use of the formula  $\tan x = \frac{\sin x}{\cos x}$ . To obtain the cotangents, the formula  $\cot x = \tan (90^{\circ} - x)$  may be used.

The above method of computing sines and cosines may be abbreviated thus:

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y. \quad (Art. 71)$$

Let x = a + 2b, and y = b. Then, by substitution,

$$\sin(a+3b) + \sin(a+b) = 2\sin(a+2b)\cos b$$
.

Whence

$$\sin(a+3b) = 2\sin(a+2b)\cos b - \sin(a+b)$$
. (1)

In like manner,

$$\cos(a+3b) = 2\cos(a+2b)\cos b - \cos(a+b)$$
. (2)

Let b = 1' in (1) and (2).

$$\sin(a+3') = 2\sin(a+2')\cos(1'-\sin(a+1'))$$
. (3)

$$\cos(a+3') = 2\cos(a+2')\cos(1'-\cos(a+1'))$$
. (4)

Letting a = -1', 0, 1', 2', . . . in succession, we obtain from (3)  $\sin 2' = 2 \sin 1' \cos 1'$ .

 $\sin 3' = 2 \sin 2' \cos 1' - \sin 1'$ .

 $\sin 4' = 2 \sin 3' \cos 1' - \sin 2'$ , etc.

Similarly from (4),  $\cos 2' = 2 \cos 1' - 1$ .  $\cos 3' = 2 \cos 2' \cos 1' - \cos 1'$ .  $\cos 4' = 2 \cos 3' \cos 1' - \cos 2'$ , etc.

117. Computation by the Use of Series. The computation of the numerical values of the trigonometric functions is, however, performed much more expeditiously by the use of certain trigonometric series than by the above method. The demonstration of these series lies beyond the scope of this work. The series are as follows:

$$\sin x = x - \frac{x^3}{3} + \frac{x^5}{15} - \frac{x^7}{7} + \cdots$$

$$\cos x = 1 - \frac{x^2}{12} + \frac{x^4}{14} - \frac{x^6}{16} + \cdots$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^3}{315} + \cdots$$

The student is aided in recalling these series by the fact that  $\sin(-x) = -\sin x$  (Art. 63); hence  $\sin x$  must equal a series composed of odd powers of x. The same is true of  $\tan x$ . But since  $\cos(-x) = \cos x$ ,  $\cos x$  must equal a series composed of even powers of x.

118. Analytical Trigonometry. Theory of Functions. When trigonometry is treated in the way indicated in certain preceding articles, it ceases to be merely an instrument for solving triangles and becomes the theory of quantities varying in certain periodic or rhythmic ways.

Also by the use of the so-called imaginary quantities, the subject of trigonometry is still further extended. Thus, for instance, denoting  $\sqrt{-1}$  by the symbol i, it is shown that

$$(\cos x + i\sin x)^n = \cos nx + i\sin nx$$

(called De Moivre's Theorem).

By the aid of this theorem and similar principles, trigonometry gains much additional power. This branch of the subject is termed analytical trigonometry (though it is sometimes treated as a part of higher algebra).

When trigonometry is extended in these various ways, it is also looked upon as a part of the larger subject, the theory of functions.

### **EXERCISE 47**

1. By use of De Moivre's Theorem obtain the formulas for  $\sin 3x$ and  $\cos 3 x$ .

By use of this theorem we obtain

$$(\cos x + i \sin x)^3 = \cos 3x + i \sin 3x$$

But

$$(\cos x + i \sin x)^3 = \cos^3 x + 3 i \sin x \cos^2 x + 3 i^2 \sin^2 x \cos x + i^3 \cos^3 x.$$

$$\therefore \cos 3 x + i \sin 3 x = \cos^3 x - 3 \sin^2 x \cos x + i (3 \cos^2 x \sin x - \sin^3 x).$$

By a theorem of algebra, in an identical equation containing both real and imaginary quantities, the sum of the reals in one member is equal to the sum of the reals in the other member, and so with imaginaries. Hence,

$$\cos 3 x = \cos^3 x - 3 \sin^2 x \cos x = 4 \cos^3 x - 3 \cos x$$
  
$$\sin 3 x = 3 \cos^2 x \sin x - \sin^3 x = 3 \sin x - 4 \sin^3 x$$

In like manner, by De Moivre's Theorem, prove:

2. 
$$\begin{cases} \sin 4x = 2 \sin 2x (1 - 2 \sin^2 x), \\ \cos 4x = 8 \cos^4 x - 8 \cos^2 x + 1. \end{cases}$$

2. 
$$\begin{cases} \sin 4 x = 2 \sin 2 x (1 - 2 \sin^2 x), \\ \cos 4 x = 8 \cos^4 x - 8 \cos^2 x + 1. \end{cases}$$
3. 
$$\begin{cases} \sin 5 x = 16 \sin^5 x - 20 \sin^3 x + 5 \sin x, \\ \cos 5 x = 16 \cos^5 x - 20 \cos^3 x + 5 \cos x. \end{cases}$$

4. 
$$\sin 7 x = 7 \sin x - 56 \sin^3 x + 112 \sin^5 x - 64 \sin^7 x$$
.

5. 
$$\cos nx = \cos^n x - \frac{n(n-1)}{2} \cos^{n-2} x \sin^2 x + \frac{n(n-1)(n-2)(n-3)}{4} \cos^{n-4} x \sin^4 x + \cdots$$

**6.** 
$$\sin nx = n \cos^{n-1} x \sin x - \frac{n(n-1)(n-2)}{3} \cos^{n-3} x \sin^3 x$$

$$+ \frac{n (n-1) (n-2) (n-3) (n-4)}{|5|} \cos^{n-5} x \sin^5 x + \cdots$$

7. 
$$\tan 2 x = \frac{2 \tan x}{1 - \tan^2 x}$$

8. Find the value of  $\sin 225^{\circ}$  by use of the formula for  $\sin 5x$  in Ex. 3.

### CHAPTER XI

### HISTORY OF TRIGONOMETRY

119. Epochs in the History of Trigonometry. The beginnings, or germs, of Trigonometry are found in the Rhind Papyrus, now preserved in the British Museum. This papyrus, the oldest known mathematical document, was written by a scribe named Ahmes about 1400 B.C., and is a copy, so the writer states, of a more ancient work, dating, say, 3000 B.C., or several centuries before the time of Moses. In dealing with pyramids, Ahmes makes use of two of the trigonometrical ratios, viz.: that between a lateral edge of a pyramid and diagonal of the base, corresponding to the cosine of an angle; and another which corresponds to the trigonometrical tangent of the angle made by the lateral face of a pyramid with the plane of the base.

This use of ratios is, however, too crude to be regarded as scientific trigonometry. We have the following principal epochs in the scientific development of Trigonometry:

- 1. Greek (at Island of Rhodes and Alexandria), 150 B.C.-200 A.D.
  - 2. Arab (in western Asia and in Spain), 650 A.D.-1200 A.D.
  - 3. Hind o, 450 A.D.-1100 A.D.
  - 4. European, 1200 A.D.—

We shall also find the three following principal stages in the development of trigonometry:

I. (150 B.C.-1400 A.D.) Spherical Trigonometry studied as a part of Astronomy, with incidental use of Plane Trigonometry.

- II. (1400 A.D.-1700 A.D.) Plane and Spherical Trigonometry studied as a part of Geometry.
- III. (1700 A.D.- ) Trigonometry as an independent science.

### PRINCIPAL MAKERS OF TRIGONOMETRY

- 120. Hipparchus. The founder of trigonometry as a science was Hipparchus, a Greek, born about 180 B.C. in Bithynia in the northern part of Asia Minor. Hipparchus studied at Alexandria and afterward retired to the Island of Rhodes, where he did his principal work. He was primarily an astronomer and determined, for instance, the length of the year to within six minutes. He created trigonometry as a tool or aid in his astronomical work. Hence the trigonometry used by him was almost exclusively spherical.
- 121. Prolemy (87 A.D.-165 A.D.). The next great name in the history of trigonometry is that of Ptolemy, also a Greek. He lived and did his work in Egypt at Alexandria. Like Hipparchus, Ptolemy was primarily an astronomer and used trigonometry merely as an aid in his astronomical investigations. He wrote a treatise on mathematical and astronomical topics, now known as the *Almagest*,\* which was the standard authority in astronomy for 1200 years. The *Almagest* contains thirteen books, the first of which treats mainly of trigonometry.
- 122. Regiomontanus (or Johann Müller, 1436–1476 A.D.) was a German and studied at the University of Vienna. After doing important work in Germany he was called to Rome by the Pope to reform the calendar and was assassinated while in that city. The ephemerides calculated by



<sup>\*</sup> Ptolemy entitled his work μεγίστη μαθηματική συντάξις, or "Greatest Mathematical Collection." The book was translated by the Arabs into their language and used by them as a text-book. The name *Almagest* comes from a blending of the Arabic article "al" (the) with the Greek word μεγίστη (greatest).

Regiomontanus were used by Columbus in crossing the Atlantic. Regiomontanus wrote a text-book entitled *De Triangulis*, in which he freed the subject of trigonometry from its astronomical bondage. Though he made trigonometry a part of geometry, he presented the subject essentially in the form in which it is customary even yet to make a first presentation of it to pupils.

Several other Germans, as Pitiscus, Rheticus, and several French and English mathematicians made important contributions to the development of trigonometry, but the thinker who first put the subject on a firm modern basis was

123. Euler (1707–1783), born in Basle, Switzerland. Euler's life as a scientific worker was spent mainly at St. Petersburg and Berlin. Through his writings and influence trigonometry was established as an independent science.

Since Euler, a large number of mathematicians have made contributions to trigonometry in the larger sense, that is, considered as a branch of the theory of functions, which has been mentioned merely in an incidental way in this book.

# HISTORY OF TRIGONOMETRICAL FUNCTIONS AND THEIR NOTATION

124. Sine. During all the early history of trigonometry, the trigonometric functions were regarded as lines, not as ratios.

Hipparchus (120 B.C.) used but one trigonometric function. This was the chord subtended by double the angle, and it therefore corresponded in a general way to the sine of an angle. Thus, the angle AOP was regarded as determined by the chord PQ.

Ptolemy (150 A.D.) treated angles by the same method as Hipparchus, that is, by use of the chord of the double angle.

This method introduced unnecessary labor in two ways: first, it made it necessary to double each angle dealt with, in

order to get the required chord; second, it made it necessary to divide by two each angle obtained as the result of a process.

The **Hindoo**s regarded an angle as determined by the semichord of twice the angle; thus by them in the above figure the angle AOP would be regarded as determined by PR. This is the method which is used at present when the sine is regarded as a line.

The Arabs also determined the angle by the semichord of twice the angle, one of their writers remarking that the use of the semichord "saves the continual doubling" mentioned above.

Rheticus (Germany, 1514–1576) was the first to consider the right triangle OPR as independent of any arc or circle. He defined the trigonometric functions as ratios of the sides of the right triangle, but this improvement was not adopted by other mathematicians until the time of Euler.

Euler also defined the sine and other trigonometric functions as ratios between the sides of a right triangle. He was thus able to make them functions of the angle only and to treat them as pure numbers. In this way, trigonometry became an independent science.

125. Other Functions. The Egyptians used the cosine and cotangent, in effect.

Hero, of Alexandria (110 B.C.), in effect, used a table of cotangents by which to determine the areas of regular polygons.

The Hindoos used the versed sine and cosine as well as the

The Arabs invented the tangent, cotangent, and secant, though these functions were afterward neglected and reinvented in Europe.

Regiomontanus rediscovered the tangent and cotangent.

Rheticus, using the simple right triangle, had the secant and cosecant suggested to him by it.

126. Notation of the Trigonometric Functions. The Egyptians used the word *segt* for both the ratios employed by them (cosine and tangent).

The Hindoos called the chord jiva; the semi-chord, or sine, ardhajya, and later, jiva also; the cosine they termed katijya, and the versed sine utkramajya.

The Hindoo word for sine, jiva, the Arabs transliterated as jiba, which resembled an Arabic word, jaib, meaning an indentation or gulf. The Arabs in time substituted the latter familiar word for the former artificial one. Hence, when the Arabic mathematical works were translated into Latin, the term jaib was designated by the Latin word sinus (which means "gulf").

Later, Rheticus, in his use of the right triangle, termed the sine the *perpendicular*, and the cosine the *basis*.

By others the cosine was sometimes termed the *sinus* rectus secundus, and sometimes the complementi sinus.

Gunter (England, 1580–1626) was the first to use the word cosine, which he obtained by contracting the words "complementi sinus."

The Arabs called the tangent *umbra*, and the secant, *diameter umbrae*, as a result of their use of these functions in connection with the shadows of tall objects.

Later in Europe the tangent was sometimes spoken of as the *umbra recta*, and the cotangent as the *umbra versa*.

The words tangent and secant for the corresponding trigonometric functions were first used by Thomas Finck (Denmark, 1583).

Gunter, who invented the word *cosine*, also invented the word *cotangent*.

Girard (Holland, 1590–1633) was the first to use the abbreviations sin, tan, sec, etc. These abbreviations, however, were not generally accepted till they were taken up (1748) by Simpson in England and Euler in Germany.

### HISTORY OF TRIGONOMETRICAL TABLES

127. History of Methods of Measuring Angles. The division of the circumference of a circle into 360 degrees, each degree into 60 minutes, and each minute into 60 seconds, is due to the Babylonians. This system of angular measurement was transmitted from the Babylonians to the Greeks, Hindoos, and Arabs. The terms minutes and seconds are derived from their Latin names which were in full "partes minute prime" and "partes minute secunde."

This so-called sexagesimal notation also came to be applied to other lines and quantities than the circumference of a circle as we shall see later.

The Hindoos developed the Babylonian sexagesimal method into a rude form of the circular method of measuring angles (see Art. 128). The circular method in its present form (use of radians, etc.) came into use in the early part of the eighteenth century.

The inventors of the metric system of weights and measures at the time of the French Revolution proposed to divide the right angle into 100 equal parts called "grades," and to subdivide the grade decimally, but this system never came into practical use. At present the custom of dividing a right angle into 90 degrees, and then dividing each degree decimally (instead of into minutes and seconds), is growing in favor.

128. Notation used in Trigonometric Tables. As decimal fractions in their present form are a comparatively modern invention, in the early history of Trigonometry the values of the trigonometrical functions were necessarily expressed in some other way. Thus the Greeks used sexagesimal fractions in expressing the lengths of the lines which were their trigonometrical functions. Ptolemy divided the diameter of the circle into 120 equal parts, each of these parts into 60 minutes, and each minute into 60 seconds.

For instance, where we would write sine  $18^{\circ} = .3090$ , Ptolemy wrote chord  $36^{\circ} = 37^{\circ}$  4′ 55″.

The Hindoos divided the radius of the circle into 3148

equal parts, 3148 being the number of minutes in an arc equal to the radius. Hence the Hindoos made an approach to the circular measure for angles, the number denoting the radius, however, in their use of the relations being determined by the angle rather than the unit angle by the radius.

Regiomontanus in forming his tables first used a radius of 600,000, but later he used a purely decimal scale, 10,000,000 being the radius. Hence his work may be regarded as a transition from the sexagesimal to the decimal scale.

129. Computation of Trigonometrical Tables. Hipparchus (120 B.C.) computed a table of chords for different angles. This table, however, has been lost.

Ptolemy in his *Almagest* gives a table of chords (computed in sexagesimal fractions carried out to a point equivalent to 5 decimal places) for every  $\frac{1}{2}$ ° of the quadrant, the table being remarkably accurate.

Hero of Alexandria (110 B.C.) gives a table of cotangents calculated for  $\cot\left(\frac{2\pi}{n}\right)$  when  $n=3, 4, \ldots 12$ .

The Hindoos (530 A.D.) computed a table of sines for every  $3\frac{3}{4}^{\circ}$  of the quadrant.

The Arabs (Bagdad, 980 A.D.) formed a table of sines for every  $\frac{1}{2}$ °, and also a table of tangents and cotangents.

The printing press was invented about the year 1450. Shortly afterward the Germans took up the problem of computing very full and exact trigonometric tables, and to their industry we owe our tables essentially in their present form.

Peuerbach (1423–1461), teacher of Regiomontanus, computed a table of sines for every 10' with 600,000 as a radius (i.e. six-place tables).

Regiomontanus constructed a table of sines with 6,000,000 and another with 10,000,000 as the radius.

Regiomontanus also constructed a table of tangents for every 1' with 100,000 as a radius.

Apian (1495-1552) made a table of sines for every 1' with a radius equal to 100,000.

Rheticus computed tables of sines, tangents, and secants for every 10" with radius equal to 10,000,000,000; and later a table of sines with radius equal to 10<sup>15</sup>. He began tables of tangents and secants on the same scale, but died before completing them. In this work he employed several computers for twelve years and spent large sums of money. When completed by his pupil, Otho, and published, these tables made a volume of 1468 pages.

Pitiscus (1561–1613) computed tables of sines, tangents, secants, cosines, cotangents, cosecants, with radius equal to  $10^{25}$ . By annexing tables of proportional parts, he facilitated interpolations.

It is to be remembered that each time we use trigonometric tables we use again the labor of these indefatigable workers; or, to put it another way, by a species of kindly foresight on the part of these men we find a large part of our work already done for us by them.

Lord Napier of Scotland published his invention of logarithms in 1614. Immediately upon this invention, logarithmic tables of sines, cosines, tangents, and cotangents were formed. These tables were printed in 1633.

# 130. Methods of Computing Trigonometric Tables. Hip-

parchus and Ptolemy in constructing their tables of chords used the theorem of geometry which reads "If a quadrilateral be inscribed in a circle, the product of the diagonals equals the sum of the products of the opposite sides;" i.e. (Fig. 94)  $AC \times BD = BC \times AD + CD \times AB$ . By means of this theorem, if the chords of two



Fig. 94.

arcs are known (as of 45°, 30°), the chords of the sum and of the difference of those arcs (i.e. of 75° and 15°) can be com-

puted. Hence the theorem in a rough way is equivalent to the trigonometrical formulas for  $\sin (A \pm B)$  and  $\cos (A \pm B)$  (Art. 71). The theorem was also applied by Ptolemy to the problem of finding the chord of half an arc when the chord of the whole arc was known.

Both the Hindoos and Germans in computing their tables of trigonometric functions used methods which were essentially the same as those given in Art. 116. As has been said, much more expeditious methods are now at the service of the computer, and these methods have been used in verifying and correcting the tables as at first computed.

### SOLUTION OF TRIANGLES

131. Greeks (see Ptolemy's Almagest, Book 1) made spherical trigonometry primary and fundamental. Plane trigonometry was developed only as a part or detail of spherical trigonometry. The methods of solving spherical triangles used by the Greeks were mainly geometrical and comparatively awkward. These methods are derived from the principles of projection, and when applied to right spherical triangles become equivalent to four of the ten formulas which are included in Napier's Rule for Circular Parts.

In plane trigonometry, as treated by the Greeks, a right triangle was solved by inscribing the triangle in a circle. An oblique triangle was solved by resolving it into right triangles. The fundamental principle in the solution of plane oblique triangles, viz. that the sides are to each other as the double chords of double the angles opposite (i.e. as sines of angles opposite) was used implicitly by Ptolemy, but was not stated by him in so many words. In one of the examples solved in the Almagest, three sides of an oblique triangle are given, and the triangle is solved by finding the segments of one of the sides made by a perpendicular on it from the opposite vertex.

To show how spherical trigonometry led the Greeks to plane trigonometry, we may mention one of the problems occurring in their treatment of the former subject, viz: To divide a given arc into two parts so that the chords of the doubles of those arcs shall have a given ratio.

Stated in terms of modern notation this problem is, Given x+y=a given angle (j), to find x and y so that  $\frac{\sin x}{\sin y} = \frac{a}{b}$ . Stated with reference to the triangle ABC, this problem becomes one in Case II of oblique plane triangles; for  $\angle C = 180^{\circ} - (x+y) = 180^{\circ} - j$ ,  $\angle A = x$ ,  $\angle B = y$ ; BC = a; AC = b.

The **Hindoos**, like the Greeks, made use of trigonometry only as an aid in the study of astronomy. They solved both plane and spherical triangles, but treated plane trigonometry as a mere detail of spherical trigonometry.

132. The Arabs also gave spherical trigonometry the leading place in the study of the subject. They simplified Ptolemy's method of solving spherical triangles, discovered that in spherical triangles  $\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$ , and to the four of the ten formulas included in Napier's Rule for Circular Parts, which Ptolemy had implicitly known, added two others, viz.:

 $\cos B = \cos b \sin A$ ,  $\cos c = \cot A \cot B$ .

The Arabs, however, developed no general theory for the solution of plane or spherical triangles.

133. Regiomontanus separated plane from spherical trigonometry and made plane trigonometry primary. In his treatise he begins with the right triangle, solves it by using the sine function only, and then solves equilateral and isosceles triangles by resolving them into right triangles. He also solves oblique triangles much as is done at present. His treatment of spherical trigonometry, however, is far less general and satisfactory.

Romanus (Belgium, 1561–1625) condensed the twenty-six cases of spherical trigonometry then in use into six cases.



- 134. Lord Napier (Scotland, 1550–1617) reduced the solution of right spherical triangles to ideal simplicity by his Rule for Circular Parts. This has been commended as perhaps "the happiest example of artificial memory that is known." He also simplified the solution of oblique spherical triangles by his discovery of the formulas known as Napier's Analogies.
- 135. Notation of Triangles. To Euler is due the method of denoting the angles of a triangle by the capital letters A, B, C, and the sides opposite by the small letters a, b, c.
- 136. The theory of the complete spherical triangle, that is, of the triangle in which the length of the sides is not necessarily less than 180°, was developed by Gauss (Germany, 1777–1855) and Moebius (Germany, 1790–1868), but such triangles are not much used in practice.
- 137. Spheroidal trigonometry, that is, the theory of triangles on the surface of a spheroid has great practical importance because of its use in surveying large portions of the earth's surface, as in the coast and geodetic surveys in different countries.

#### DEVELOPMENT OF GONIOMETRY

- 138. Greeks. As has been stated (Art. 130), the geometrical methods used by the Greeks in constructing tables of chords were in a rough way equivalent to a use of the formulas for  $\sin (A \pm B)$ ,  $\cos (A \pm B)$ , and  $\sin \frac{1}{2} A$ .
  - 139. The Hindoos knew the identical equation

$$\sin^2 A + \cos^2 A = 1.$$

They also used the formula  $\sin \frac{1}{2} A = \sqrt{1719(3438 - \cos A)}$ , where 3438 is the radius of the circle. This is equivalent to the formula  $\sin \frac{1}{2} A = \sqrt{\frac{1 - \cos A}{2}}$ .

In computing trigonometric tables they appear to have used the formula

$$\sin(n+1) a - \sin na = \sin na - \sin(n-1) a - \sin na \csc a.$$

This formula is not quite accurate and was probably arrived at inductively.

140. The Arabs knew the relations

$$\tan \phi = \frac{\sin \phi}{\cos \phi}, \cot \phi = \frac{\cos \phi}{\sin \phi},$$

and were also able to solve an equation like  $\tan \phi = a$ , obtaining  $\sin \phi = \frac{a}{\sqrt{1+a^2}}$ .

141. Rheticus obtained the formulas

$$\sin 2 A = 2 \sin A \cos A,$$
  

$$\sin 3 A = 3 \sin A - 4 \sin^3 A.$$

Romanus discovered the formula for  $\sin (A + B)$ .

The formulas for  $\sin (A - B)$  and  $\cos (A \pm B)$  were published by Pitiscus (1599).

142. Vieta (France, 1540-1603) gave the general formulas for  $\sin nA$  and  $\cos nA$  in terms of  $\sin A$  and  $\cos A$ .

#### OTHER PROCESSES

143. Trigonometrical Series. The series for  $\sin x$  and  $\cos x$  in terms of powers of x and for  $\sin^{-1} x$  in terms of  $\sin x$  were known to Sir Isaac Newton before the year 1669.

Those for  $\tan x$  and  $\sec x$  in terms of powers of x and for  $\tan^{-1} x$  in terms of powers of  $\tan x$  were discovered by Gregory (England, 1638–1675) in 1670.

144. Inverse Circular Functions in their general form were introduced by John Bernouilli (1667–1748).

145. Use of  $\sqrt{-1}$  or *i*. John Bernouilli first treated trigonometry as a branch of analysis. Among other algebraic methods he introduced the use of  $\sqrt{-1}$ , or *i*, into trigonometry and obtained real results by its use. For instance, by employing  $\sqrt{-1}$  he obtained a series for  $\tan n\phi$  in term of powers of  $\tan \phi$ .

This use of i was followed up by Euler, who among other results obtained the formula

$$(\sin x + i\cos x)^n = \sin nx + i\cos nx$$

known as De Moivre's Theorem.

#### EXERCISE 48. GENERAL REVIEW

- 1. Simplify  $\log_2 4 + 5 \log_3 9 + \frac{1}{2} \log_{10} .1 \log_{10} \sqrt{.001}$ .
- **2.** Compute the value of x from the equation  $5 x^3 = \sqrt[4]{.2784}$ .
- 3. Also from  $\cos x = (.9387)^{\frac{3}{2}}$ .
- **4.** Also from  $\tan x = \frac{(7.605)^3 \sqrt{14.82}}{(27.32)^{\frac{5}{2}}}$ .
- 5. If x is an angle in the first quadrant and  $\cos x = \frac{8}{17}$ , find the value of  $\frac{\sin x + \tan x}{\cos x \cot x}$ .
- 6. If x is an angle in the first quadrant and  $2\cos x = 2 \sin x$ , find the value of  $\tan x$ .
  - 7. If  $\tan x = \frac{a}{b}$ , find  $\sin 2x$ .
  - **8.** If  $\sin y = a$  and  $\tan y = b$ , prove that  $(1 a^2)(1 + b^2) = 1$ .
- **9.** ABCD is a square. D is joined to E, the midpoint of AB. Find the trigonometric ratios of  $\angle ECD$ .
- 10. Determine the numerical value of sin 18° by use of the geometric method of inscribing a regular decagon in a circle.
- 11. If A is an angle in the first quadrant and  $\tan A = \frac{p}{q}$ , find the value of  $\frac{p\cos A q\sin A}{p\cos A + q\sin A}$ .
- 12. Which of the following statements are possible and which impossible:
  - (1)  $16 \sin x = 1$ . (2)  $4 \sec \theta = 1$ . (3)  $7 \tan y = 30$ .

- 13. Prove that  $\sec x + \tan x = \frac{\sec^2 x + \sec x \tan x}{\tan x + \sec x} + \tan x$ .
- 14. Prove that  $\frac{\text{vers}^2 x}{\sin x} = \frac{2 \sin x}{1 + \cos x} \sin x.$
- 15. Find the numerical value of  $3 \tan^3 30^\circ \sec^3 60^\circ \sin^2 90^\circ \tan^2 45^\circ + 5 \cos 90^\circ$ .
  - **16.** If  $\tan^2 45^\circ \cos^2 60^\circ = y \sin 45^\circ \cos 45^\circ \tan 60^\circ$ , find y.

17. If 
$$x \sin \frac{\pi}{6} \cos^2 \frac{\pi}{4} = \frac{\cos^2 \frac{\pi}{6} \sec \frac{\pi}{3} \tan \frac{\pi}{4}}{\csc^2 \frac{\pi}{4} \cos \frac{\pi}{6}}$$
, find  $x$ .

Solve each of the following right triangles, given:

**18**. 
$$A = 36^{\circ} 18' 6'' [36.3^{\circ}], b = 217.9 \text{ ft.}$$

**19.** 
$$b = 315.92$$
 ft.,  $c = 814.23$  ft. **21.**  $B = 12^{\circ} 15'$  [12.25°],  $c = 1001.4$ .

**20.** 
$$c = 900$$
,  $b = 887$ .

**22**. 
$$A = 1^{\circ} 20' [1.33^{\circ}], c = 872.56.$$

- 23. In a right triangle b=426,  $A=38^{\circ}45'$  [38.75°]. Find a+c and the area.
- 24. The hypotenuse of a right triangle is 5 ft. and one angle of the triangle is 30°. Solve the triangle and find the area without the use of tables.
- 25. The area of a regular polygon of 11 sides is 80. Find the side, radius, and apothem of the polygon.
- **26.** In an isosceles triangle the leg is 21.7 and the area 32.51. Solve the triangle.
- **27.** The legs of a right triangle are to each other as 5:9. Find the angles of the triangle.
- **28.** On the steepest part of the Mt. Washington railway (Jacob's Ladder), there is a rise of  $13\frac{1}{2}$  inches for every 3 ft. of track. What angle does the track make with the horizontal? At this rate what would be the rise in one mile of track?

Show that in a right triangle:

**29.** 
$$\cos 2 A = \frac{b^2 - a^2}{c^2}$$
 **30.**  $\sin 3 A = \frac{3 ac^2 - a^3}{c^3}$ 

31.  $(\sin A - \sin B)^2 + (\cos A + \cos B)^2 = 2$ .

32. Find the other trigonometric functions of A, when  $\cos A = -\frac{1}{2}$  and A lies between 540° and 630°.

33. Given  $\sec x = -\frac{5}{4}$  and x in the third quadrant, find the value of  $\frac{\sin x + \tan x}{\cos x + \cot x}$ .

**34.** Find the trigonometric functions of  $180^{\circ} + x$  and of  $270^{\circ} - x$  when  $\tan x = \frac{1}{4}$ .

**35.** For what values of x between  $0^{\circ}$  and  $360^{\circ}$  is  $\sin x + \cos x$  positive, and for what values is it negative?

36. Find the numerical value of

 $3\sin^2 225^\circ + 4\sin(-120^\circ)\tan 150^\circ - \frac{1}{2}\cos^2 330^\circ\cot 750^\circ + 5\sin^2 180^\circ.$ 

**37.** For each of the following angles state which of the three principal trigonometric ratios are positive:

- (1) 460°.
- $(2) 220^{\circ}$ .
- (3)  $-1200^{\circ}$ .
- $(4) \ \frac{13 \,\pi}{6} \cdot$

38. Trace the changes in sign and magnitude of

 $\sin A$  between 0° and 360°.

 $\csc A$  between 0 and  $\pi$ .

 $\cos x$  between  $\pi$  and  $2\pi$ .

 $\tan A$  between  $-90^{\circ}$  and  $-270^{\circ}$ .

- **39.** If A is in the third quadrant and  $\tan A = \frac{5}{12}$ , find the value of  $\sin 2 A$ .
- **40.** Express the cosine of an angle in the second quadrant in terms of (a) each of the other trigonometric functions of the given angle, (b) the cosine of the complement of the angle.
- **41.** If  $\sin A = \frac{12}{13}$  and  $\sin B = \frac{3}{5}$ , and A and B are both acute, find the numerical value of  $\tan (A + B)$ ; also of  $\tan (A B)$ .
- **42.** If x is an angle in the second quadrant and  $\sin x = \frac{3}{5}$ , find the value of  $\sin 2x + \cos 2x$ .
  - **43**. Express  $2\cos\frac{2\theta}{3}\cos\frac{5\theta}{3}$  as a sum or difference.
  - **44.** If  $\sin \frac{1}{2} x = \frac{1}{4}$ , find the numerical value of  $\cos x$ . Also of  $\tan x$

Prove that:

**45.**  $\sin^2(A+B) - \sin^2(A-B) = \sin 2 A \sin 2 B$ .

**46.**  $\frac{\sin 4 x + \sin 3 x}{\cos 3 x - \cos 4 x} = \cot \frac{1}{2} x.$  **47.**  $\sin 50^{\circ} + \sin 10^{\circ} = \sin 70^{\circ}.$ 

**48**. 
$$\sin^2 15^\circ + \cos^2 15^\circ = 1$$
.

**49**. 
$$\cos 55^{\circ} + \sin 25^{\circ} = \sin 85^{\circ}$$
.

50. 
$$\frac{\sin A + \sin 2 A + \sin 3 A}{\cos A + \cos 2 A + \cos 3 A} = \tan 2 A.$$

**51.** 
$$\frac{1 - \tan^2(45^\circ - x)}{1 + \tan^2(45^\circ - x)} = \sin 2x.$$

$$\mathbf{52.} \quad \frac{\cos\left(\frac{\pi}{4}-\theta\right)-\cos\left(\frac{\pi}{4}+\theta\right)}{\sin\left(\frac{2\,\pi}{3}\,\theta+\right)-\sin\left(\frac{2\,\theta}{3}-\theta\right)}+\sqrt{2}=0.$$

Solve each of the following oblique triangles, given:

**53.** 
$$A = 30^{\circ} 18' 12'' [39.3^{\circ}], b = 3294, c = 2846.$$

**54.** 
$$A = 76^{\circ} 24' 36'' [76.41^{\circ}], B = 48^{\circ} 42' [48.7^{\circ}], c = 1012.$$

**55.** 
$$a = 850$$
,  $b = 760$ ,  $c = 590$ .

**56.** 
$$B = 46^{\circ} 18' [46.3^{\circ}], b = 213.76, a = 192.72.$$

• 57. 
$$b = 927$$
,  $A = 79^{\circ}$ ,  $B = 21^{\circ} 17' 12'' [21.29^{\circ}]$ .

**58.** 
$$a = \sqrt{3}, b = \sqrt{2}, c = \sqrt{5}.$$

**59.** 
$$A = 51^{\circ} 30' [51.5^{\circ}], a = 294.6, b = 301.7.$$

**60.** 
$$a = 926.8$$
,  $b = 842.5$ ,  $C = 46^{\circ} 27' [46.45^{\circ}]$ .

**61.** Solve the triangle in which K = 20.602, a = 214.2, and b = 315.8.

**62.** The diagonals of a parallelogram are 347 and 264 ft., and the area of the parallelogram is 40.437 sq. ft. Find the sides and angles of the parallelogram.

**63**. The diagonals of a quadrilateral are 34 and 56, and they intersect at an angle of 67°. Find the area of the quadrilateral.

Solve the following equations for answers not greater than  $360^{\circ}$  or less than  $0^{\circ}$ :

**64.** sec 
$$x + \tan x = \pm \sqrt{3}$$
.

67. 
$$2 \sin x \sin 3 x - \sin^2 2 x = 0$$
.

**65.** 
$$\sec^2 x + \cot^2 x = \frac{13}{3}$$
.

68. 
$$\sin 2\theta + \sin \theta = \cos 2\theta + \cos \theta$$
.

**66.** 
$$\sin 2 x = \sqrt{3} \cos x$$
.

**69.** 
$$\sin 2 y + \sqrt{3} \cos 2 y = 1$$
.

**70.** 
$$\sin(60^{\circ} - x) - \sin(60^{\circ} + x) = \frac{1}{2}\sqrt{3}$$
.

71. Give the answers to Exs. 64-70, in the unlimited form.

72. If  $2\cos^2 x - 7\cos x + 3 = 0$ , show that there is only one value for  $\cos x$ .

73. Find the least possible positive value of  $\theta$  which will satisfy the equation  $2\sqrt{3}\cos^2\theta = \sin\theta$ .

- **74.** Solve  $\sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x$ .
- **75.** If  $\sin 3x + \sin 2x = \sin x$ , find  $\tan x$ .

**76.** Find the length of an arc intercepted by an angle of 2.2 radians at the center of a circle whose radius is 5 ft. How many degrees in this angle?

77. Two angles of a triangle are .5 and .4 radians. Find the third angle in radians and in degrees.

78. The sum of two angles is 2 radians, their difference is 10°. How many radians are there in each of these angles?

**79.** Prove 
$$\cos\left(\frac{3\pi}{2} + x\right) - \cos\left(\frac{3\pi}{2} - x\right) = 2\sin x$$
.

**80.** Find the numerical value of  $\frac{3}{2}\sin^2\frac{\pi}{6} + 4\cos^2\frac{5\pi}{4} - \frac{1}{3}\tan^2\frac{3\pi}{4}$ .

**81.** If 
$$\sin\left(x+\frac{\pi}{6}\right)\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}$$
, find  $x$ .

82. Simplify 
$$\tan\left(\frac{7\pi}{4} - x\right) + \tan\left(\frac{3\pi}{4} + x\right)$$
.

83. An angle of 30° at the center of a circle subtends an arc AB of length  $\frac{\pi}{3}$  ft. Find the length of the perpendicular dropped from A on BC.

**84.** Express each of the following angles in degrees:  $\sin^{-1}\frac{1}{2}$ ;  $\cos^{-1}\frac{1}{2}\sqrt{2}$ ;  $\tan^{-1}(-1)$ ;  $\sin^{-1}(-1)$ ;  $\cos^{-1}(-\frac{1}{2}\sqrt{3})$ .

- **85.** Find tan  $(\cot^{-1}\frac{1}{2})$ .
- **86.** Prove that  $\tan^{-1}2 + \tan^{-1}\frac{1}{2} = \frac{\pi}{2}$ .
- 87. Find the value of x, if  $\tan^{-1} x + 2 \cot^{-1} x = \frac{2 \pi}{3}$ .
- **88.** How many degrees in  $\sin^{-1}(-\frac{1}{2}\sqrt{2})$ ? How many radians?
- **89.** Prove  $\sin^{-1} a = \sec^{-1} \frac{1}{\sqrt{1-a^2}}$

**90.** Solve the following for x and y:

$$\sin^{-1} x + \sin^{-1} y = 120^{\circ}.$$
  $\cos^{-1} x - \cos^{-1} y = 60^{\circ}.$ 

- 91. At a point 50 ft. from the base of a tower the angle of elevation of the top of the tower was found by the use of a transit instrument to be 68° 18′ [68.3°]. If the height of the instrument above the ground was 4.75 ft., what was the height of the tower?
- 92. If the railway up Pike's Peak rises 7552 ft. in  $8\frac{3}{4}$  mi., what angle does the railway make with the horizon on the average?
- 93. Two towers are 240 and 80 ft. high, respectively. From the foot of the second the angle of elevation of the top of the first is 60°. Find, without the use of tables, the angle of elevation of the second from the foot of the first.
- 94. An unknown force combined with one of 128 lb. produces a resultant force of 200 lb. The resultant makes an angle of 18° 24′ [18.4°] with the known force. Find the magnitude of the unknown force and the angle which it makes with the known force.
- 95. A tree 82 ft. high stands at one corner of a garden which is in the form of an equilateral triangle. The distance from the top of the tree to the midpoint of the opposite side of the garden is 112 ft. Find a side of the garden.
- 96. If the earth's radius (3956 mi.) as viewed from the sun subtends an angle of 8.8", find the distance of the earth from the sun.
- 97. In a circle whose radius is 13.7, find the area of a segment whose angle is  $\frac{4 \pi}{11}$  radians.
- 98. In order to determine the breadth of a river, a base line of 500 yd. was measured on one shore, and at each end of the base line the angle included between the base line and a line to a rod on the other bank was measured. These angles were found to be 53° and 79° 12′ [79.2°], respectively. What was the breadth of the river?
- 99. If a barn is  $40 \times 80$  ft., and the pitch of the roof is  $45^{\circ}$ , find the length of the rafters and the area of the entire roof, the horizontal projection of the cornice being 1 ft.
- 100. If the sun's angle of elevation is 60°, what angle must a stick make with the horizontal in order that its shadow on a horizontal plane may be the largest possible.



- 101. If a railroad rises 1 ft. for every 1000 ft. of its length, what angle does it make with the horizontal?
- 102. In surveying a circular railroad curve successive chords of 100 ft. each are laid off. Find the radius of the curve, if the angle between two successive chords is 177°.
- 103. If the diagonal of a regular pentagon is 32.835, what is the radius of the circumscribed circle?
- **104.** The angle x is in the third quadrant and  $\cos x = -\frac{3}{5}$ ; find the value of  $\csc x$ ,  $\tan x$ ,  $\sin \frac{1}{2}x$ ,  $\tan (180^{\circ} x)$ , and  $\sin x$ .
- 105. Find all the values of x between  $0^{\circ}$  and  $360^{\circ}$  which satisfy the equation  $\sin (30^{\circ} x) = \cos (30^{\circ} + x)$ .
- **106.** If x is an angle in the second quadrant, prove geometrically that  $\tan (270^{\circ} + x) = -\cot x$ .
- 107. One angle of a rhombus is 60° and the opposite diagonal is 5 inches. Without the use of tables find the sides of the rhombus and its area.
- 108. Give a general formula for all angles whose sine is  $\frac{1}{2}$ . Is  $-\frac{1}{2}$ . Is -1.
  - **109.** Express  $\cos 2x$  in terms of each of the functions of x.
  - **110.** Express  $\cos A \cos B$  as a sum.
  - 111. If  $\cos A = h$ , and  $\tan A = k$ , find the equation connecting h and k.
- 112. How many radians in each interior angle of a regular hexagon? In each exterior angle? How many degrees in each of these angles?
  - **113.** Prove that  $\cos^{-1}\frac{63}{65} + .2 \tan^{-1}\frac{1}{5} = \sin^{-1}\frac{3}{5}$ .
  - **114.** If  $\sin x = \frac{2}{3}$ , find  $\frac{\tan^2 x + \cos^2 x}{\tan^2 x \cos^2 x}$ .
- 115. In the isosceles right triangle ABC, D is the midpoint of AC. Prove without the use of tables that  $\cot \angle ABD$ :  $\cot \angle DBC = 2:3$ .
- 116. If  $\theta$  lies between 180° and 270°, and  $3 \tan \theta = 4$ , find the value of  $2 \cot \theta = -5 \cos \theta + \sin \theta$ .
- **117.** Is it possible to have an angle whose tan is 503? Whose cos is  $\frac{4}{3}$ ? Whose secant is  $\frac{1}{3}$ ? Whose sine is 23?
  - **118.** Show that  $\cos 80^{\circ} + \cos 40^{\circ} \cos 20^{\circ} = 0$ .
  - **119.** That  $2 \sin \left( x + \frac{\pi}{4} \right) \sin \left( x \frac{\pi}{4} \right) = \sin^2 x \cos^2 x$ .

- **120.** If  $\sin (60^{\circ} x) \sin (60^{\circ} + x) = \frac{1}{2}\sqrt{3}$ , find  $\tan 2x$ .
- 121. Express  $2 \sin 9 A \sin A$  in the form of a sum or difference.
- **122.** Find the value of  $\sin^{-1}\frac{1}{2} + 3\tan^{-1}\frac{1}{3}\sqrt{3} 2\cot^{-1}1 + \sec^{-1}1$ , using values between 0° and 90°.
- 123. If  $\tan 2x = \frac{24}{7}$ , find  $\tan x$  and  $\sin x$ , it being given that x is an angle in the third quadrant.
  - 124. Find by inspection one value of x when  $\cos (10^{\circ} + A) \cos (10^{\circ} A) + \sin (10^{\circ} + A) \sin (10^{\circ} A) = \cos x$ .
- 125. A surveyor standing on a bank of a river observes the angle subtended by a flagpole on the opposite bank to be  $33^{\circ}10'$  [33.17°] and when he retires 120 ft. from the bank he finds the angle to be  $18^{\circ}16'$  [18.27°]. Find the width of the river.
  - **126.** Develop  $\cos(270^{\circ} x y)$  in the shortest way.
- 127. What is the angle of elevation of the sun when the length of the shadow of a pole is  $\sqrt{3}$  times the height of the pole?
- 128. If  $\tan A = \frac{3}{4}$  and  $\sin B = \frac{12}{13}$ , and A is in the third quadrant and B in the second, find  $\sin (A + B)$ ,  $\cos (A + B)$ ,  $\tan (A + B)$ .
- 129. At the Panama Canal the Gatun dam has three different slopes: the ratio of the horizontal to the vertical near the base is 16 to 1; in the middle of the dam this ratio is 8 to 1; and at the top the ratio is 4:1. What three different angles does the surface of the dam make with the horizontal?
- **130.** If A is an angle in the first quadrant, and  $\sec^2 A \csc^2 A 4 = 0$ , find the numerical value of  $\cot A$ .
- 131. If  $\theta$  is an angle in the third quadrant, and  $\sec^2 \theta = 2 + 2 \tan \theta$ , find  $\sin \theta$ .
- 132. Find all the values of x between  $0^{\circ}$  and  $500^{\circ}$  which satisfy the equation  $\tan (45^{\circ} x) + \cot (45^{\circ} x) = 4$ .
  - **133.** Graph  $y = \sin^{-1} x$ .
- **134.** Also,  $y = \tan^{-1} x$ .
- 135. From the top of a mountain 3 mi. high, the angle of depression of the horizon is  $2^{\circ}$  13' 50'' [2.23°]. Hence determine the diameter of the earth.
  - 136. Can an angle exist such that  $9 \sin 2x + 3 \sin x = 20$ ? Why?
  - 137. Find the numerical value of  $\tan^2 \frac{2\pi}{3} + \cos^2 \frac{7\pi}{4} + \sin^2 \frac{\pi}{6}$ .
- 138. Find the sines of all angles less than  $2\pi$  whose tangents are equal to  $\cos 135^{\circ}$ .

**139.** Given 
$$\cos\left(\frac{\pi}{2} + x\right) = a$$
, find  $\cot\left(\frac{3\pi}{2} + x\right)$ .

**140.** What is the most general value of x which satisfies both of the equations  $\cot x = -\sqrt{3}$  and  $\csc x = -2$ .

**141.** Show that 
$$2\sin(\frac{\pi}{4} + A)\cos(\frac{\pi}{4} + B) = \cos(A + B) + \sin(A - B)$$
.

- 142. Find the length of a circular arc whose radius is 5 ft. and whose subtending angle is 3 units of circular measure.
- 143. In the triangle ABC, B is 45°, and C is 120°, and a is 40. Without the use of tables find the length of the perpendicular drawn from A to BC produced.

144. Prove that 
$$\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x.$$

145. When 
$$y = \frac{11 \pi}{4}$$
, find the numerical value of  $\sin^2 y - \cos^2 y + 2 \tan y - \sec^2 y$ .

**146.** Prove the identity 
$$\sin^{-1} y + \tan^{-1} y = \sin^{-1} \frac{y(1+\sqrt{1-y^2})}{\sqrt{1+y^2}}$$
.

- **147.** Is  $\sin x 2\cos x + 3\sin x 6 = 0$  a possible equation?
- 148. A vertical pole stands at the center of a circular millpond and rises 100 ft. above the surface of the water. From a point on the shore the angle of elevation of the top of the pole is 20°. Find the area of the pond.
- 149. When the planet Venus is most brilliant, its diameter subtends an angle of 40'' as seen from the earth. If the diameter of the planet is 7600 mi., what is the distance of the planet from the earth at such a time?
  - 150. Verify the statement

$$\frac{4}{3}\cot^2\frac{\pi}{6} + 3\sin^2\frac{\pi}{3} - 2\csc^2\frac{\pi}{3} - \frac{3}{4}\tan^2\frac{\pi}{6} = \frac{10}{3}$$

**151.** Find the value of 
$$\sin x$$
, if  $\tan\left(\frac{\pi}{3} + x\right) \tan\left(\frac{\pi}{3} - x\right) + 2 = 0$ .

152. What sign has  $\sin x \cos x$  for the following values of x: 140°, 278°, -356°, -1125°?

**153.** If  $1 + \sin^2 x = 3 \sin x \cos x$ , find  $\tan x$ .

**154.** If *i* denotes the angle of incidence of a ray of light falling on water, and *r* the angle of refraction, and  $\frac{\sin i}{\sin r} = 1.423$ , find *r* when  $i = 34.37^{\circ}$ .

- **155.** When is  $\sin x = \frac{a^2 + b^2}{2ab}$  possible, and when impossible?
- 156. Show that

$$\sin(2\alpha - \beta)\cos(\alpha - 2\beta) - \cos(2\alpha - \beta)\sin(\alpha - 2\beta) = \sin(\alpha + \beta).$$

- **157.** Solve  $\sin 2x \cos 2x \sin x + \cos x = 0$ .
- **158.** Solve  $x = \sin^{-1} \frac{1}{2} + \tan^{-1} 1$ .
- **159.** Trace the changes in sign and magnitude of  $\frac{\sin 3\theta}{\cos 2\theta}$  as x increases from 0 to  $\frac{\pi}{2}$ .
- 160. Two trains leave a railroad crossing at the same time on straight tracks, including an angle of  $21^{\circ} 12'$  ( $21.2^{\circ}$ ). If they travel at the rate of 40 and 50 mi. per hour respectively, how far apart will they be in 45 min.?
  - **161.** Show that  $\frac{\cos 2 B + \cos 2 A}{\cos 2 B \cos 2 A} = \cot (A + B) \cot (A B)$ .
  - **162.** In a right triangle show that  $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \frac{2\sin A}{\sqrt{\cos 2B}}$ .
  - **163.** Prove  $\frac{\tan\left(\frac{\pi}{4} + \frac{1}{2}A\right) + \tan\left(\frac{\pi}{4} \frac{1}{2}A\right)}{\tan\left(\frac{\pi}{4} + \frac{1}{2}A\right) \tan\left(\frac{\pi}{4} \frac{1}{2}A\right)} = \csc A.$
- **164.** In any triangle prove that  $c = a \cos B + b \cos A$ , and hence show that  $\sin(A + B) = \sin A \cos B + \cos A \sin B$ .
- 165. Determine the angles in a right triangle in which a > b, and c a = a b.
  - **166.** Prove  $\cos^2(x-y) 2\cos(x-y)\cos x \cos y = \sin^2 x \cos^2 y$ .
  - 167. If  $\sin x \cos x + 4\cos^2 x = 2$ , find the ratio of  $\tan x$  to  $\sec x$ .
  - **168.** If  $A+B=225^\circ$ , prove that  $\left(\frac{\cot A}{1+\cot A}\right)\left(\frac{\cot B}{1+\cot B}\right)=\frac{1}{2}$ .
- 169. The shadow of a tower is found to be 60 ft. larger when the sun's altitude is 30° than when it is 45°. Find the height of the tower without the use of tables.
- 170. A workman is told to make a triangular enclosure having 50, 41, and 21 yd. as its sides. If he makes the first side one yard too long, of what length must he make the other two sides in order to inclose the required area, and keep the perimeter of the triangle unchanged?
- 171. If  $\sin A$  is a geometric mean between  $\sin B$  and  $\cos B$ , prove  $\cos 2A = 2\sin (45^{\circ} B)\cos (45^{\circ} + B)$ .

- 172. If the diameter of the earth's orbit about the sun is 186,000,000 miles, and this diameter when viewed from the nearest fixed star subtends an angle of 1.52", find the distance of the star from the earth.
- 173. In a circle whose radius is 111.3 find the area inclosed between two parallel chords, on the same side of the center whose lengths are 129.3 and 97.4.

**174.** If 
$$2 \tan^{-1} x = \cos^{-1} \frac{1 - a^2}{1 + a^2} - \cos^{-1} \frac{1 - b^2}{1 + b^2}$$
, find  $x$ .

- **175.** If  $\tan^2(180^\circ x) \sec(180^\circ + x) = 5$ , find  $\cos x$ .
- 176. In order to fix the distance between two islands C and D, a base line, AB, 900 ft. long, is measured on the shore. Also,  $\angle BAC$  was found to be 110° 50′ [110.83°],  $\angle DAB$ , 67° 51′ [67.85°],  $\angle CBA$ , 49° 51′ [49.85°],  $\angle ABD$ , 85° 19′ [85.32°]. What was the distance between the islands?

# LOGARITHMIC AND TRIGONOMETRIC TABLES

#### EDITED BY

#### FLETCHER DURELL, Ph.D.

HEAD OF THE MATHEMATICAL DEPARTMENT
THE LAWRENCEVILLE SCHOOL



NEW YORK
CHARLES E. MERRILL CO.
44-60 EAST TWENTY-THIRD STREET
1911

## Durell's Mathematical Series

| Plane Geometry 341 pages, 12mo, half leather 75 cents                      |
|----------------------------------------------------------------------------|
| Solid Geometry 213 pages, 12mo, half leather 75 cents                      |
| Plane and Solid Geometry 514 pages, 12mo, half leather \$1.25              |
| Plane Trigonometry 184 pages, 8vo, cloth \$1.00                            |
| Plane Trigonometry and Tables 298 pages, 8vo, cloth \$1.25                 |
| Plane Trigonometry, with Surveying and Tables In preparation               |
| Plane and Spherical Trigonometry, with Tables 351 pages, 8vo, cloth \$1.40 |
| Plane and Spherical Trigonometry, with Surveying and Tables In preparation |
| Logarithmic and Trigonometric Tables 114 pages, 8vo, cloth                 |

Copyright, 1910, by Charles E. Merrill Co.

[3]

# CONTENTS

| Tramp op man | NOV TO TAXAG                                                                                      | PAGE<br>5 |
|--------------|---------------------------------------------------------------------------------------------------|-----------|
| TABLES:      | TION TO TABLES                                                                                    | 9         |
| I ABLES:     | Five-place Logarithms of Numbers 1-10,000                                                         | 21        |
| II.          | LOGARITHMS AND COLOGARITHMS OF MUCH-USED NUMBERS                                                  | 40        |
| III.         | FIVE-PLACE LOGARITHMS OF THE SINE, COSINE, TANGENT, AND COTANGENT FOR EACH MINUTE OF THE QUADRANT | 41        |
| IV.          | AUXILIARY FIVE-PLACE TABLE FOR SMALL ANGLES                                                       | 87        |
| v.           | FOUR-PLACE TABLE OF THE NATURAL SINE, COSINE, TANGENT, AND COTANGENT FOR EVERY TEN MINUTES OF     |           |
|              | THE QUADRANT                                                                                      | 91        |
| VI.          | Four-place Logarithms of Numbers 1-2000                                                           | 97        |
| VII.         | Four-place Logarithms of the Trigonometric Functions for Angles of the Quadrant expressed by the  |           |
|              | DECIMALLY DIVIDED DEGREE                                                                          | 103       |
| VIII.        | Conversion of Minutes and Seconds into Decimal                                                    |           |
|              | Parts of a Degree                                                                                 | 114       |
| IX.          | Conversion of Decimal Parts of a Degree into                                                      |           |
|              | MINUTES AND SECONDS                                                                               | 114       |

#### INTRODUCTION TO TABLES

1. Number of Decimal Places in Tables. All trigonometric work is based on the results of measurements. But no measurement is accurate beyond the sixth or seventh figure; this is owing to the limitations of our eyesight and sense of touch-perception, and to the ultimate imperfections in all our instruments of measurement.

Thus a mile (63,360 inches) can be measured to within  $\frac{1}{10}$  inch of its true length; an inch can be measured only to within a millionth part of itself, etc. So great a degree of accuracy, however, can be obtained only by applying every possible refinement of accuracy. Ordinary measuring, such, for instance, as that done by a carpenter, is accurate only to the second or third figure, that is, to within  $\frac{1}{100}$  or  $\frac{1}{1000}$  part. Hence it would be absurd for a carpenter or surveyor to use a number like 7.382654 ft.; 7.38+ ft. is sufficient.

In 6,543,786, if the figure 6 to the right is  $\frac{1}{8}$  inch long, how long would the figure 6 on the left be if its length were made proportional to its value?

Hence four-place tables are sufficiently accurate for all ordinary work (such as is done by a land surveyor, or in a physical laboratory under ordinary circumstances). Five-place tables give all the accuracy required except in very rare cases, when six- or seven-place tables may be used. But the latter cases are beyond the scope of this book.

#### TABLE I. FIVE-PLACE LOGARITHMS OF NUMBERS 1-10,000 (pp. 21-39)

2. General Description of Table I. Table I consists of two parts. Part I occupies p. 21 and gives the logarithms (both characteristic and mantissa) of numbers 1–100. Part II occupies pp. 22–39, contains mantissas only, and gives these for all numbers from 1 to 10,000.

In using Part II the characteristic of each logarithm must be determined and supplied in accordance with the methods stated in Arts. 4 and 5 of Durell's Plane Trigonometry.

#### DIRECT USE OF TABLE I

3. To find the mantissa for a number containing four figures. In the given table the left-hand column (headed N) is a column of ordinary numbers. The first three figures of the given number whose mantissa is sought are found in this column. In the top row of each page are the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The fourth figure of the given number is found here.

Hence, to obtain the mantissa of 3647, for instance, we take 364 in the first column on page 27 and look along the row beginning with 364 till we come to the column headed 7. The mantissa thus obtained is .56194.

The first two figures of the row of mantissas, viz. 56, are supposed to be repeated in connection with each mantissa that follows till another complete mantissa is given. The use of a \* indicates that the first two figures of the mantissa are to be taken from the beginning of the line of mantissas which follows.

Thus, the mantissa of 1125 is .05115, not .04115.

If the number whose mantissa is sought contains less than four figures, in using the tables we regard enough zeros as annexed to the given figures to make up four figures. In Chapter I of Durell's Plane Trigonometry it is shown that doing this does not affect the mantissa.

Thus, to find the mantissa of 271, we find the mantissa of 2710, viz. .43297.

Similarly the mantissa of 7 is the same as that of 7000, viz. .84510.

4. To find the mantissa of a number containing five or six figures. Interpolation. The method consists in finding the mantissa for the first four figures and adding a correction for

the fifth, or for the fifth and sixth figures. This correction is computed on the assumption that the differences in logarithms are proportional to the differences in the numbers to which they belong. Though this proportion is not strictly accurate, it is sufficiently accurate for practical purposes.

#### Ex. Find the mantissa of 1581.47.

| m. for $1582 = .19921$ | Mantissa of $1581 = .19893$      |      |
|------------------------|----------------------------------|------|
| m. for $1581 = .19893$ | $.00028 \times .47 = .00013$     |      |
| Diff. for $1 = .00028$ | Mantissa of $1581.47 = .19906$ , | Ans. |

For since an increase of 1 in the number makes an increase of .00028 in the mantissa, an increase of .47 in the number will make an increase of .47 of .00028, that is, of .00013 in the logarithm.

As in the mantissa, so in the correction only five places of figures may be used. If the figure in the sixth place of the correction is 5 or a larger number, the figure in the fifth place of the correction is to be increased by 1; if less than 5, the figures after the fifth place are to be rejected. Thus if the above correction had been .000135 it would have been treated as .00014. If it had been .0001346 it would have been treated as 0.00013.

The difference between the mantissas of two successive numbers is called the tabular difference.

Hence, in general, to find a mantissa for a number containing five or six figures:

Obtain from the table the mantissa for the first four figures, and also that for the next higher number, and subtract;

Multiply the difference between the two mantissas by the fifth figure (or fifth and sixth figures) expressed as a decimal, and add the result to the mantissa for the first four figures.

# 5. Hence, to find the log of a given number:

Determine the characteristic by Art. 4 or 5, Chapter I; Neglect the decimal point (in the given number) and obtain from the table the mantissa for the given figures. Ex. 1. Find log 3.62057.

Ex. 2. Find log .078546.

For examples to be worked by the pupil, see the first part of Exercise 3 of Durell's Plane Trigonometry.

#### INVERSE USE OF TABLE I

# 6. To find an antilogarithm, that is, to find the number corresponding to a given logarithm.

Since the characteristic depends only on the position of the decimal point and not on the figures forming the given number, the characteristic is neglected at the outset of the process of finding the antilogarithm.

(a) If the given mantissa can be found in the table:

Take from the table the figures corresponding to the mantissa of the given logarithm;

Use the characteristic of the given logarithm to fix the decimal point in the number obtained from the table.

## Ex. 1. Find the antilogarithm of 1.44138.

The figures corresponding to the mantissa .44138 are 2763. Since the characteristic is 1, there are two figures at the left of the decimal point.

Hence the antilog 1.44138 = 27.63. Or, if  $\log x = 1.44138$ , x = 27.63.

(b) In case the given mantissa does not occur in the table:

Obtain from the table the next lower mantissa with the corresponding four figures of the antilogarithm;

Subtract the tabular mantissa from the given mantissa;

Divide this difference by the difference between the tabular mantissa and the next higher mantissa in the table;

**Annex** the quotient to the four figures of the antilogarithm obtained from the table;

Use the characteristic to place the decimal point in the result.

#### Ex. 1. Find the antilog of 2.42376.

The mantissa .42376 does not occur in the table, and the next lower mantissa is .42374. The difference between .42376 and .42374 is .00002.

If a difference of 16 in the last two figures of the mantissa makes a difference of 1 in the fourth figure of the antilog, a difference of 2 in the last figure of the mantissa will make a difference of  $\frac{2}{16}$  of 1 or .125 (or .13) with respect to the fourth figure of the antilog. Hence we have

antilog 
$$2.42376 = 265.313^{-}$$
 Ans.  $\frac{374}{16)2.00(.13^{-}}$   $\frac{16}{40}$ 

Ex. 2. If  $\log x = 7.26323 - 10$ , find x.

Nearest less mantissa = .26316, whose number is 1833. Tab. diff. = 24.  $7 \div 24 = .29^+$ . Hence x = .00183329, Ans.

The first part of Exercise 4 of Durell's Plane Trigonometry should be worked at this point.

# TABLE II. LOGARITHMS AND COLOGARITHMS OF MUCH-USED NUMBERS (p. 40)

This table explains itself.

TABLE III. FIVE-PLACE LOGARITHMS OF TRIGONOMETRIC FUNC-TIONS FOR EVERY MINUTE OF THE QUADRANT (pp. 41-86)

7. Description of Table III. This table gives the logarithms of the sine, cosine, tangent, and cotangent of each minute of angle from  $0^{\circ}$  up to  $90^{\circ}$ .

Where -10 is a part of the characteristic of the log function it is omitted for the sake of economy of space. This omission occurs at the end of the log function of each angle except for log tangents from  $45^{\circ}$  to  $90^{\circ}$ , and log cotangents from  $0^{\circ}$  to  $45^{\circ}$ .

For angles between 0 and 45°, the required functions are printed at the top of the columns, the number of degrees at the top of the page, and the number of minutes in the left-hand column.

For angles between 45° and 90°, the required function is printed at the bottom of the columns, the number of degrees at the bottom of the page, and the number of minutes in the right-hand column.

```
Thus, \log \sin 26^{\circ} 37' = 9.65130 - 10 (p. 68). \log \tan 67^{\circ} 48' = 0.38924 (p. 64). \log \sin 58^{\circ} 16' = 9.92968 - 10 (p. 73). \log \cot 12^{\circ} 23' = 0.65845 (p. 54).
```

Let the pupil determine why each column of the table has the name of a trigonometric function at the top and the name of the corresponding co-function at the bottom of the column.

Let him also determine why -10 is to be annexed at the end of some log trigonometric functions as taken from the tables, and not at the end of others.

#### DIRECT USE OF TABLE III

- 8. Given the degrees, minutes, and seconds of an angle, to find a logarithmic trigonometric function of the angle. After finding the log function for the given number of degrees and minutes, the log function for the given number of degrees, minutes, and seconds is found by interpolation.
  - Ex. 1. Find the log sin  $37^{\circ}$  42' 53''.

The log sin  $37^{\circ}$  42' is 9.78642, and the difference between this and log sin  $37^{\circ}$  43' is 16.

Since an increase of 1' in the angle makes an increase of 16 in the

last two places of the log sin, an increase of 53" or  $\frac{53}{60}$  of 1' will make an increase of  $\frac{53}{60}$  of 16 in the log of the function.

Hence we have

log sin 37° 
$$42' = 9.78642 - 10$$
  
Diff. for  $53'' = \frac{53}{60}$  of  $16 = 14$   
log sin 37°  $42'$   $53'' = 9.78656 - 10$ 

Ex. 2. Find the log sin 53° 27′ 18″.

#### Ex. 3. Find log cos 23° 48′ 12″.

Since the cosine of an angle decreases as the angle increases, the log of 23° 49′ is less than the log cos 23° 48′. Hence the correction for 12″ must be subtracted from the log cos 23° 48′.

Thus log cos 23° 48' = 9.96140 - 10  
Diff. for 
$$12'' = \frac{12}{60}$$
 of  $5 = \frac{1}{100}$  log cos 23° 48'  $12'' = 9.96139 - 10$ 

Ex. 4. Find log cot 57° 18′ 43″.

$$\begin{array}{c} \log \cot 57^{\circ} \ 18' = 9.80753 - 10 \\ \text{Diff. for } 43'' = 28 \times \frac{43}{60} = 20 \\ \log \cot 57^{\circ} \ 18' \ 43'' = 9.80733 - 10 \end{array}$$

## Hence, in general,

Obtain from the table the log function for the given number of degrees and minutes;

Also obtain from the table the log function for the angle, 1 minute greater; find the difference between these two log functions; multiply this difference by  $\frac{no.\ seconds}{60}$ ; this will give the correction for seconds;

Add the correction for seconds in case of sine and tangent (direct functions);

Subtract the correction in case of cosine and cotangent (complementary functions).

9. Log Secants. To find the log secant of an angle, use the formula  $\sec x = \frac{1}{\cos x}$   $\therefore \log \sec x = 0 + \operatorname{colog} \cos x$ .

Thus log see  $39^{\circ}$  28' 23" = colog cos 39° 28' 23". But log cos 39° 28' 23" = 9.88757 - 10. colog cos 39° 28' 23" or log see 39° 28' 23" = 0.11243.

10. Log Functions of Angles greater than 90°. By the methods of Chapter IV, a trigonometric function of any angle greater than 90° can be reduced to a trigonometric function of an angle less than 90°.

Thus, since  $\sin A = \sin (180^{\circ} - A)$ ,  $\sin 113^{\circ} 27' = \sin 66^{\circ} 33'$ .  $\therefore \log \sin 113^{\circ} 27' = \log \sin 66^{\circ} 33' = 9.96256 - 10$ .

Also  $\cos A = -\cos (180^{\circ} - A)$ .

Hence,  $\log \cos A = \log \cos (180^{\circ} - A)(n)$ , the small n being annexed to show that the function whose  $\log$  is being used is a negative quantity.

Thus  $\log \cos 142^{\circ} 18' = \log \cos 37^{\circ} 42' (n) = 9.78642 - 10 (n)$ .

At this point work the first part of Exercise 14 of Durell's Plane Trigonometry.

#### INVERSE USE OF TABLE III

11. Given the logarithm of a function to find the corresponding acute angle (or find antilog sin, antilog cos, etc. or  $\angle log \sin$ ,  $\angle log \cos$ , etc.) Obtain from the table, if possible, the number of degrees and minutes corresponding to the given logarithmic function.

Ex. If log tan A = 9.92535 - 10, find the angle A.

By consulting the table, tangent column, we find that  $A=40^{\circ}$  6'. Or antilog tan  $9.92535-10=40^{\circ}$  6'.

If the given logarithmic function does not occur in the table:

Obtain from the table the next less logarithm of the same function, noting the corresponding number of degrees and minutes; subtract this logarithm from the given logarithm;

Divide the difference so obtained by the tabular difference for 1' and multiply by 60"; the result will be the correction, in seconds, to be added in case of sine and tangent, and subtracted in case of cosine and cotangent, to the angle already noted.

Ex. 1. Find antilog  $\sin 9.78538 - 10$ .

$$\angle \log \sin 9.78538 - 10 = 37^{\circ} 35' + \frac{9.78527 - 10}{11}$$

Since a difference of 16 in the log makes a difference of 1' (or of 60'') in the angle, a difference of 11 in the log makes a difference of  $\frac{11}{16}$  of 60'', or 41'', in the angle.

$$\therefore$$
 antilog sin 9.78538 – 10 = 37° 35′ 41″, Ans.

Ex. 2. Find antilog  $\cos 9.96623 - 10$ .

antilog cos 
$$9.96623 - 10 = 22^{\circ} \cdot 19' - \frac{9.96619 - 10}{\frac{4}{5}}$$
 of  $60'' = 48''$ 

antilog cos  $9.96623 - 10 = 22^{\circ} 18' 12''$ , Ans.

Ex. 3. Find antilog cot 0.57603.

antilog cot 
$$0.57603 = 14^{\circ} 52' - \frac{0.57601}{\frac{2}{51}}$$
 of  $60'' = 2''$  antilog cot  $0.57603 = 14^{\circ} 51' 58''$ , Ans.

Ex. 4. Find antilog  $\cos 9.60172 - 10$ .

antilog cos 
$$9.60172-10=66^{\circ}\ 27'-\frac{9.60157-10}{\frac{15}{29}}$$
 of  $60''=31'',$  antilog cos  $9.60172-10=66^{\circ}\ 26'\ 29'',\ Ans.$ 

At this point work the first part of Exercise 15 of Durell's Trigonometry.

TABLE IV. AUXILIARY FIVE—PLACE TABLE FOR SMALL ANGLES
(pp. 87-89)

12. The Auxiliary Table of Logarithms of Sine and Tangent for Small Angles is needed because when an angle is smaller than 2°, the logarithms of the sine and tangent vary so rapidly that ordinary methods of interpolation are not sufficiently accurate. (The same is true for the cosine, cotangent, and tangent when the angle is between 88° and 90°, but there are other indirect methods of meeting such cases.)

Table IV is based on Art. 115 of Plane Trigonometry, where it is shown that the sine (or tangent) of a small angle is approximately the same in value as the number of radians in the angle. Hence, for example, to find sine 1° 21′ 37″, we divide the number of seconds in 1° 21′ 37″ by the number of seconds in a radian, viz. 206,265. This process is facilitated by Table IV. The column headed " in this table gives the number of seconds in each angle containing an exact number of minutes, and hence is an aid in converting any given angle into seconds.

In the column headed S' is given the log of 206,265 (viz. 5.31443), modified by a slight correction owing to the change in the slight differences between the sine of a small angle and the radian measure of that angle. Similarly the column headed T' gives log of 206,265 in use of the tangent. (The columns headed S and T give the cologs corresponding to the S' and T' columns.) The column headed log sin gives the log sin or final answer for each even minute, these numbers being needed also in guiding the work in the inverse use of the table. Hence—

#### 13. To find the log sin or tangent of an angle less than 2°.

Find the number of seconds in the given angle and find the log of this number in Table I;

Add to this log the corresponding log in column S or T according as the log sin or log tan is desired.

Ex. Find log sin 1° 26′ 13″.

$$1^{\circ} 26' 13'' = 5173''$$

$$\log 5173 = 3.71374$$

$$S \text{ (or colog } 206265) = 4.68553 - 10$$

$$\therefore \log 1^{\circ} 26' 13'' = 8.39927 - 10, Ans.$$

# 14. To find the angle corresponding to a given log sine or log tangent (less than 8.54282 - 10).

Look up in the L. Sin column the number nearest in size to the given  $\log$ ; and set down the number on the same row with this in column S' or T', according as the given function is a sine or tangent;

Add the given log function to the number set down from the table;

Find the antilog of the result; this will be the number of seconds in the required angle.

#### Ex. Find antilog tan 8.39307.

In L. Sin column, the nearest number is 8.39310. Corresponding to this is T' = 5.31434

Given 
$$\tan = 8.39307$$
  
antilog  $13.70741 = 5098''$   
 $= 1^{\circ} 24' 58''$ , Ans.

The reason for the above process is seen from the fact that  $\sin$  of required  $\angle = \frac{5098''}{206265''}$ .

 $\therefore 206265 \times (\text{sin of required } \angle) = 5098$ ".

 $\log 206265 + 8.39307 = \log 5098$ ".

15. Other Uses of the Auxiliary Table IV. The log cosine of an angle between 88° and 90° changes so rapidly as to make direct interpolation inaccurate. In such cases use the formula  $\cos A = \sin (90^{\circ} - A)$ .

Thus, for example,  $\log \cos 88^{\circ} 47' = \log \sin 1^{\circ} 13'$ , and the value of  $\log \sin 1^{\circ} 13'$  can be obtained by Art. 14.

The log cot A, when A is between 88° and 90°, may be obtained similarly.

Also, if A is an angle between 88° and 90°, the log tan A changes so rapidly that interpolation is inaccurate.

In this case use 
$$\tan A = \frac{1}{\cot A}$$
.

 $\log \tan A = \operatorname{colog} \cot A = \operatorname{colog} \tan (90^{\circ} - A).$ 

Thus, for example, log tan 88° 47′ = colog tan 1° 13′, etc. At this point work the first part of Exercise 16 of Durell's Trigonometry.

TABLE V. FOUR-PLACE TABLE OF THE NATURAL SINE, COSINE, TANGENT, AND COTANGENT FOR EVERY TEN MINUTES OF THE QUADRANT (pp. 91-96)

## 16. Method of using Table V.

By natural trigonometric functions are meant the actual numerical (not logarithmic) values of these functions. Thus  $\frac{1}{2}$  is the natural sine of 30°. Interpolation for this table is made in the same general way as for Table V.

Ex. Find natural sine 27° 48′.

N. Sine 27° 40′ = 0.4643  

$$\frac{8}{10}$$
 of 26 = 21  
N. Sine 27° 48′ = 0.4664, Ans.

TABLE VI. FOUR-PLACE TABLE OF LOGARITHMS OF NUMBERS 1-2000 (pp. 97-101)

#### 17. Method of using Table VI.

In using the four-place log of a number, when the first significant figure of the number is 1, use pp. 100–101; otherwise use pp. 98–99.

In finding the antilog of a four-place log, if the given log is less than .3010, use pp. 100-101; otherwise use pp. 98-99.

At this point work the latter part of Exercises 3 and 4 of Durell's Plane Trigonometry.

- TABLE VII. FOUR-PLACE LOGARITHMIC TABLE OF THE TRIGONO-METRIC FUNCTIONS FOR ANGLES OF THE QUADRANT EXPRESSED IN DECIMALLY DIVIDED DEGREES (pp. 103-113)
- 18. Method of using Table VII. The explanation of the methods of using Table III given in Arts. 8–11 of this Introduction apply in general to the use of Table VII.

Hence we need only illustrate by examples the application of these methods to the table in hand.

Ex. 1. Find log sin 48.34°.

$$\begin{array}{ll} \log \sin 48.4^{\circ} = 9.8738 - 10 & \log \sin 48.3^{\circ} = 9.8731 - 10 \\ \log \sin 48.3^{\circ} = \underline{9.8731 - 10} & \underline{\frac{4}{10}} \text{ of } 7 = \underline{3} \\ \log \sin 48.34^{\circ} = \underline{9.8734 - 10}, \, Ans. \end{array}$$

Ex. 2. Find the antilog tan 0.2165.

$$\angle \log \tan 0.2165 = 58.7^{\circ +}$$

$$\frac{2161}{4}$$

$$4 \text{ of } 10 = 2^{+}$$

$$\angle \log \tan 0.2165 = 58.72^{\circ}, Ans.$$

At this point work the latter part of Exercises 14 and 15 of Durell's Trigonometry.

19. Four-place Log Functions of Angles near  $0^{\circ}$  or  $90^{\circ}$ . As is explained in Art. 12 of this Introduction, when an angle is less than  $2^{\circ}$ , the logarithms of the sine and tangent vary so rapidly that ordinary methods of interpolation are not sufficiently accurate. To get an accurate log function in this case we use the result obtained in Art. 106 of Plane Trigonometry, viz: sine or tangent of a very small  $\angle x$ 

= no. radians in 
$$\angle x$$
, or =  $\frac{\angle x \text{ in degrees}}{57.296^{\circ}}$ .

$$\therefore \log \sin \text{ (or tan) of small } \angle x = \log x + \text{colog } 57.296$$
$$= \log x + 8.2419 - 10.$$

Also when x is small cot 
$$x = \frac{1}{\tan x} = \frac{57.296^{\circ}}{x \text{ in degrees}}$$
.

 $\therefore$  log cot small  $\angle x = 1.7581 + \text{colog } x$ .

Interpolation also is not accurate for log cos, log tan, log cot, of angles between 88° and 90°.

When A is an angle between 88° and 90° proceed as follows:

$$\cos A = \sin (90^{\circ} - A).$$

- :.  $\log \cos A = \log \sin (90^{\circ} A) = 8.2419 10 + \log (90^{\circ} A)$ .  $\cot A = \tan (90^{\circ} A)$ .
- $\therefore \log \cot A = \log \tan (90^{\circ} A) = 8.2419 10 + \log (90^{\circ} A).$   $\tan A = \frac{1}{\cot A}. \quad \therefore \log \tan A = 1.7581 \log (90^{\circ} A).$ 
  - Ex. 1. Find sin 0.876°.

$$\log 0.876^{\circ} = 9.9425 - 10$$

$$\operatorname{colog} 57.296^{\circ} = 8.2419 - 10$$

$$\therefore \log \sin 0.876^{\circ} = 8.1844 - 10, Ans.$$

Ex. 2. Find  $\angle \log \sin 7.9592 - 10$ .

$$17.9592 - 20$$

$$8.2419 - 10$$

$$antilog 9.7173 - 10 = 0.522^{\circ}$$

$$\therefore \angle \log \sin 7.9592 - 10 = 0.522^{\circ}, Ans.$$

At this point work the latter part of Exercise 16 of Durell's Trigonometry.

TABLE VIII. TABLE FOR CONVERTING MINUTES AND SECONDS INTO THE DECIMAL PART OF A DEGREE (p. 114)

20. The method of using Table VIII is evident from the form of the table, but it should be remembered that in each

decimal equivalent ending in a significant figure the last figure is supposed to repeat indefinitely.

Hence, for example, we have  $36^{\circ} 46' = 36.766^{\circ+}$ =  $36.77^{\circ}$ Also  $35^{\circ} 43' = 35.716^{\circ}$  $20'' = .006^{\circ}$  $\therefore 35^{\circ} 43' 20'' = 35.722^{\circ}$ =  $35.72^{\circ}$ , Ans.

TABLE IX. TABLE FOR CONVERTING THE DECIMAL PARTS OF A DEGREE INTO MINUTES AND SECONDS (p. 114)

21. The method of using Table IX is also evident from the table itself.

# TABLE I

# COMMON LOGARITHMS

### OF NUMBERS

PART I

Logarithms (with Characteristics) of Numbers 1-100

| N.              | Log                                                                           | N.                    | Low                              | N.             | Log.                             | N.             | Log.                             |
|-----------------|-------------------------------------------------------------------------------|-----------------------|----------------------------------|----------------|----------------------------------|----------------|----------------------------------|
| л.              | Log.                                                                          | 14.                   | Log.                             | 74.            | nug.                             | 17.            | Lug.                             |
| 0               | Infinity                                                                      | 30                    | 1.47 712                         | 60             | <b>1.</b> 77 815                 | 90             | 1.95 424                         |
| 1 ·<br>2<br>. 3 | 0.00 000<br>0.30 103<br>0.47 712                                              | 31<br>32<br>33        | 1.49 136<br>1.50 515<br>1.51 851 | 61<br>62<br>63 | 1.78 533<br>1.79 239<br>1.79 934 | 91<br>92<br>93 | 1.95 904<br>1.96 379<br>1.96 848 |
| 4<br>5<br>6     | 0.60 206<br>0.69 897<br>0.77 815                                              | 34<br>35<br>36        | 1.53 148<br>1.54 407<br>1.55 630 | 64<br>65<br>66 | 1.80 618<br>1.81 291<br>1.81 954 | 94<br>95<br>96 | 1.97 313<br>1.97 772<br>1.98 227 |
| 7<br>8<br>9     | 0.84 510<br>0.90 309<br>0.95 424                                              | 37<br>38<br>39        | 1.56 820<br>1.57 978<br>1.59 106 | 67<br>68<br>69 | 1.82 607<br>1.83 251<br>1.83 885 | 97<br>98<br>99 | 1.98 677<br>1.99 123<br>1.99 564 |
| 10              | 1.00 000                                                                      | 40                    | 1.60 206                         | 70             | 1.84 510                         | 100            | 2.00 000                         |
| 11<br>12<br>13  | 1.04 139<br>1.07 918<br>1.11 394                                              | 41<br>42<br>43        | 1.61 278<br>1.62 325<br>1.63 347 | 71<br>72<br>73 | 1.85 126<br>1.85 733<br>1.86 332 |                |                                  |
| 14<br>15<br>16  | 1.14 613<br>1.17 609<br>1.20 412                                              | 44<br>45<br>46        | 1.64 345<br>1.65 321<br>1.66 276 | 74<br>75<br>76 | 1.86 923<br>1.87 506<br>1.88 081 |                | -                                |
| 17<br>18<br>19  | $\begin{array}{c} 1.23\ 04\overline{5} \\ 1.25\ 527 \\ 1.27\ 875 \end{array}$ | 47<br>48<br>49        | 1.67 210<br>1.68 124<br>1.69 020 | 77<br>78<br>79 | 1.88 649<br>1.89 209<br>1.89 763 |                |                                  |
| 20              | 1.30 103                                                                      | 50                    | 1.69 897                         | 80             | 1.90 309                         |                |                                  |
| 21<br>22<br>23  | 1.32 222<br>1.34 242<br>1.36 173                                              | 51<br>52<br>53        | 1.70 757<br>1.71 600<br>1.72 428 | 81<br>82<br>83 | 1.90 849<br>1.91 381<br>1.91 908 |                |                                  |
| 24<br>25<br>26  | 1.38 021<br>1.39 794<br>1.41 497                                              | <b>54</b><br>55<br>56 | 1.73 239<br>1.74 036<br>1.74 819 | 84<br>85<br>86 | 1.92 428<br>1.92 942<br>1.93 450 |                |                                  |
| `27<br>28<br>29 | 1.43 136<br>1.44 716<br>1.46 240                                              | 58<br>59              | 1.75 587<br>1.76 343<br>1.77 085 | 87<br>88<br>89 | 1.93 952<br>1.94 448<br>1.94 939 |                |                                  |
| 30              | <b>1.47</b> 73.9                                                              | 60                    | 1.77 815                         | 90             | 1.95 424                         | l              |                                  |

Part II

Mantissas of Numbers 1–10,000

| N.                    | 0                              | 1                 | 2                        | 3                         | 4                         | 5                         | 6                         | 7                         | 8                         | 9                         |
|-----------------------|--------------------------------|-------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 100                   | 00 000                         | 043               | 087                      | 130                       | 173                       | 217                       | 260                       | 303                       | 346                       | 389                       |
| 01                    | 432                            | 475               | 518                      | 561                       | 604                       | 647                       | 689                       | 732                       | 775                       | 817                       |
| 02                    | 860                            | 903               | 945                      | 988                       | *030                      | *072                      | *115                      | *157                      | *199                      | *242                      |
| 03                    | 01 284                         | 326               | 368                      | 410                       | 452                       | 494                       | 536                       | 578                       | 620                       | 662                       |
| 04                    | 703                            | 745               | 787                      | 828                       | 870                       | 912                       | 953                       | 995                       | *036                      | *078                      |
| 05                    | 02 119                         | 160               | 202                      | 243                       | 284                       | 325                       | 366                       | 407                       | 449                       | 490                       |
| 06                    | 531                            | 572               | 612                      | 653                       | 694                       | 735                       | 776                       | 816                       | 857                       | 898                       |
| 07                    | 938                            | 979               | *019                     | *060                      | *100                      | *141                      | *181                      | *222                      | *262                      | *302                      |
| 08                    | 03 342                         | 383               | 423                      | 463                       | 503                       | 543                       | 583                       | 623                       | 663                       | 703                       |
| 09                    | 743                            | 782               | 822                      | 862                       | 902                       | 941                       | 981                       | *021                      | *060                      | *100                      |
| 110<br>11<br>12<br>13 | 04 139<br>532<br>922<br>05 308 | 571<br>961<br>346 | 218<br>610<br>999<br>385 | 258<br>650<br>*038<br>423 | 297<br>689<br>*077<br>461 | 336<br>727<br>*115<br>500 | 376<br>766<br>*154<br>538 | 415<br>805<br>*192<br>576 | 454<br>844<br>*231<br>614 | 493<br>883<br>*269<br>652 |
| 14                    | 690                            | 729               | 767                      | 80 <del>5</del>           | 843                       | 881                       | 918                       | 956                       | 994                       | *032                      |
| 15                    | 06 070                         | 108               | 145                      | 183                       | 221                       | 258                       | 296                       | 333                       | 371                       | 408                       |
| 16                    | 446                            | 483               | 521                      | 558                       | 595                       | 633                       | 670                       | 707                       | 744                       | 781                       |
| 17                    | 819                            | 856               | 893                      | 930                       | 967                       | *004                      | *041                      | *078                      | *115                      | *151                      |
| 18                    | 07 188                         | 225               | 262                      | 298                       | 335                       | 372                       | 408                       | 445                       | 482                       | 518                       |
| 19                    | 555                            | 591               | 628                      | 664                       | 700                       | 737                       | 773                       | 809                       | 846                       | 882                       |
| <b>120</b>            | 918                            | 954               | 990                      | *027                      | *063                      | *099                      | *135                      | *171                      | *207                      | *243                      |
| 21                    | 08 279                         | 314               | 350                      | 386                       | 422                       | 458                       | 493                       | 529                       | 565                       | 600                       |
| 22                    | 636                            | 672               | 707                      | 743                       | 778                       | 814                       | 849                       | 884                       | 920                       | 955                       |
| 23                    | 991                            | *026              | *061                     | *096                      | *132                      | *167                      | *202                      | *237                      | *272                      | *307                      |
| 24                    | 09 342                         | 377               | 412                      | 447                       | 482                       | 517                       | 552                       | 587                       | 621                       | 656                       |
| 25                    | 691                            | 726               | 760                      | 795                       | 830                       | 864                       | 899                       | 934                       | 968                       | *003                      |
| 26                    | 10 037                         | 072               | 106                      | 140                       | 175                       | 209                       | 243                       | 278                       | 312                       | 346                       |
| 27                    | 380                            | 415               | 449                      | 483                       | 517                       | 551                       | 585                       | 619                       | 653                       | 687                       |
| 28                    | 721                            | 755               | 789                      | 823                       | 857                       | 890                       | 924                       | 958                       | 992                       | *025                      |
| 29                    | 11 059                         | 093               | 126                      | 160                       | 193                       | 227                       | 261                       | 294                       | 327                       | 361                       |
| <b>130</b>            | 394                            | 428               | 461                      | 494                       | 528                       | 561                       | 594                       | 628                       | 661                       | 694                       |
| 31                    | 727                            | 760               | 793                      | 826                       | 860                       | 893                       | 926                       | 959                       | 992                       | *024                      |
| 32                    | 12 057                         | 090               | 123                      | 156                       | 189                       | 222                       | 254                       | 287                       | 320                       | 352                       |
| 33                    | 385                            | 418               | 450                      | 483                       | 516                       | 548                       | 581                       | 613                       | 646                       | 678                       |
| 34                    | 710                            | 743               | 775                      | 808                       | 840                       | 872                       | 90 <del>5</del>           | 937                       | 969                       | *001                      |
| 35                    | 13 033                         | 066               | 098                      | 130                       | 162                       | 194                       | 226                       | 258                       | 290                       | 322                       |
| 36                    | 354                            | 386               | 418                      | 450                       | 481                       | 513                       | 545                       | 577                       | 609                       | 640                       |
| 37                    | 672                            | 704               | 735                      | 767                       | 799                       | 830                       | 862                       | 893                       | 925                       | 956                       |
| 38                    | 988                            | *019              | *051                     | *082                      | *114                      | *145                      | *176                      | *208                      | *239                      | *270                      |
| 39                    | 14 301                         | 333               | 364                      | 395                       | 426                       | 457 =                     | 489                       | 520                       | 551                       | 582                       |
| 140<br>41<br>42<br>43 | 613<br>922<br>15 229<br>534    | 953<br>259<br>564 | 675<br>983<br>290<br>594 | 706<br>*014<br>320<br>625 | 737<br>*045<br>351<br>655 | 768<br>*076<br>381<br>685 | 799<br>*106<br>412<br>715 | 829<br>*137<br>442<br>746 | *168<br>473<br>776        | *198<br>503<br>806        |
| 44                    | 836                            | 866               | 897                      | 927                       | 957                       | 007                       | *017                      | *047                      | *077                      | *107                      |
| 45                    | 16 137                         | 167               | 197                      | 227                       | 256                       | 26                        | 316                       | 346                       | 376                       | 406                       |
| 46                    | 435                            | 465               | 495                      | 524                       | 554                       | 584                       | . 513                     | 643                       | 673                       | 702                       |
| 47                    | 732                            | 761               | 791                      | 820                       | 850                       | 879                       | 909                       | 938                       | 967                       | 997                       |
| 48                    | 17 026                         | 056               | 085                      | 114                       | 143                       | 173                       | 202                       | 231                       | 260                       | 289                       |
| 49                    | 319                            | 348               | 377                      | 406                       | 435                       | 464                       | 498                       | 522                       | 551                       | 580                       |
| <b>150</b>            | 609                            | 638               | 667                      | 696                       | 725                       | 754                       | 782                       | 811                       | 840                       | 869                       |
| N.                    | 0                              | 1                 | 2                        | 3                         | 4                         | 5                         | 6                         | 7                         | 8                         | 9                         |

| N.               | 0                      | 1                  | 2                      | 3                   | 4           | 5                       | 6           | 7                      | 8                      | 9                       |
|------------------|------------------------|--------------------|------------------------|---------------------|-------------|-------------------------|-------------|------------------------|------------------------|-------------------------|
| 150              | 17 609                 | 638                | 667                    | 696                 | 725         | 754                     | 782         | 811                    | 840                    | 869                     |
| 51               | 898                    | 926                | 955                    | 984                 | *013        | *041                    | *070        | *099                   | *127                   | *156                    |
| 52<br>53         | 18 184<br>469          | 213<br>498         | 241<br>526             | 270<br>554          | 298<br>583  | 327<br>611              | 355<br>639  | 384<br>667             | 412<br>696             | 441<br>724              |
|                  |                        |                    |                        |                     |             |                         |             |                        |                        |                         |
| 54<br>55         | 752<br>19 033          | 780<br>061         | 808<br>089             | 837<br>117          | 865<br>145  | 893<br>173              | 921<br>201  | 949<br>229             | 977<br>257             | *005<br>28 <del>5</del> |
| 56,              | 312                    | 340                | 368                    | 396                 | 424         | 451                     | 479         | 507                    | 535                    | 562                     |
| 57_              | 590                    | 618                | 645                    | 673                 | 700         | 728                     | 756         | 783                    | 811                    | 838                     |
| 58<br>59         | 866<br>20 140          | 893<br>167         | 921<br>194             | 948<br>222          | 976<br>249  | *003<br>276             | *030<br>303 | *058<br>330            | *085<br>358            | *112<br>385             |
| 160              | 412                    | 439                | 466                    | 493                 | 520         | 548                     | 575         | 602                    | 629                    | 656                     |
| 61               | 683                    | 710                | 737                    | 763                 | 790         | 817                     | 844         | 871                    | 898                    | 925                     |
| 62<br>63         | 952<br>21 219          | 978<br>245         | *005<br>272            | *032<br>299         | *059<br>325 | *085<br>352             | *112<br>378 | *139<br>405            | *165<br>431            | *192<br>458             |
|                  |                        |                    |                        |                     |             |                         | İ           |                        |                        |                         |
| 64<br>65         | 484<br>748             | 5 <b>11</b><br>775 | 537<br>801             | 564<br>827          | 590<br>854  | 617<br>880              | 643<br>906  | 669<br>932             | 696<br>958             | 722<br>985              |
| 66               | 22 011                 | 037                | 063                    | 089                 | 115         | 141                     | 167         | 194                    | 220                    | 246                     |
| 67               | 272                    | 298                | 324                    | 350                 | 376         | 401                     | 427         | 453                    | 479                    | 505                     |
| 68               | 531                    | 557<br>814         | 583<br>840             | 608<br>866          | 634<br>891  | 660<br>917              | 686<br>943  | 712<br>968             | 737<br>994             | 763<br>*019             |
| 69<br><b>170</b> | 789<br>23 045          | 070                | 096                    | 121                 | 147         | 172                     | 198         | 223                    | 249                    | 274                     |
| 71               | 300                    | 325                | 350                    | 376                 | 401         | 426                     | 452         | 477                    | 502                    | 528                     |
| 72<br>73         | 553<br>80 <del>5</del> | 578<br>830         | 603<br>855             | 629<br>880          | 654<br>905  | 679<br>930              | 704<br>955  | 729<br>980             | 754<br>*005            | 779<br>*030             |
| 1 1              |                        |                    | ĺ                      | -                   |             |                         |             |                        |                        |                         |
| 74<br>75         | 24 055<br>304          | 080<br>329         | 105<br>353             | 130<br>378          | 155<br>403  | 180<br>428              | 204<br>452  | 229<br>477             | 25 <del>4</del><br>502 | 279<br>527              |
| 76               | 551                    | 576                | 601                    | 625                 | 650         | 674                     | 699         | 724                    | 748                    | 773                     |
| 77               | 797                    | 822                | 846                    | 871                 | 895         | 920                     | 944         | 969                    | 993                    | *018                    |
| . 78<br>79       | 25 042<br>285          | 066<br>310         | 091<br>334             | 115<br>358          | 139<br>382  | 164<br>406              | 188<br>431  | 212<br>45 <del>5</del> | 237<br>479             | 261<br>503              |
| 180              | 527                    | 551                | 575                    | 600                 | 624         | 648                     | 672         | 696                    | 720                    | 744                     |
| 81               | 768                    | 792                | 816                    | 840                 | 864         | 888                     | 912         | 935                    | 959                    | 983                     |
| 82<br>83         | 26 007<br>245          | 031<br>269         | 055<br>293             | 079<br>3 <b>1</b> 6 | 102<br>340  | 126<br>364              | 150<br>387  | 174<br>411             | 198<br>435             | 221<br>458              |
| 1                |                        | l                  |                        | ' '                 |             | ĺ                       | 1           |                        | -                      |                         |
| 84<br>85         | 482<br>717             | 505<br>741         | 529<br>764             | 553<br>788          | 576<br>811  | 600<br>834              | 623<br>858  | 647<br>881             | 670<br>905             | 694<br>928              |
| 86               | 951                    | 975                | 998                    | *021                | *045        | *068                    | *091        | *114                   | *138                   | *161                    |
| 87               | 27 <b>1</b> 84         | 207                | 231                    | 254                 | 277         | 300                     | 323         | 346                    | 370                    | 393                     |
| 88<br>89         | 416<br>346             | 439<br>669         | 462<br>692             | 485<br>715          | 508<br>738  | 531<br>761              | 554<br>784  | 577<br>807             | 600<br>830             | 623<br>852              |
| 190              | $-\frac{370}{875}$     | 898                | 921                    | 944                 | 967         | 989                     | *012        | *035                   | *058                   | *081                    |
| äΤ               | 28 103                 | 126                | 149                    | 171                 | 194         | 217                     | 240         | 262                    | 285                    | 307                     |
| 92<br>93         | 330<br>556             | 353<br>578         | 375<br>601             | 398<br>623          | 421<br>646  | 443<br>668              | 466<br>691  | 488<br>713             | 511<br>735             | 533<br>758              |
|                  |                        | 1                  | 1                      | İ                   |             |                         |             | İ                      |                        |                         |
| 94<br>95         | 780<br>29 003          | 803<br>026         | 82 <del>5</del><br>048 | 847<br>070          | 870<br>092  | $892 \\ 11\overline{5}$ | 914<br>137  | 937<br>159             | 959<br>181             | 981<br>203              |
| 96               | 226                    | 248                | 270                    | 292                 | 314         | 336                     | 358         | 380                    | 403                    | 425                     |
| 97               | 447                    | 469                | 491                    | 513                 | 535         | 557                     | 579         | 601                    | 623                    | 645                     |
| 98<br>99         | 667<br>885             | 688<br>907         | 710<br>929             | 732<br>951          | 754<br>973  | 776<br>994              | 798<br>*016 | 820<br>*038            | 842<br>*060            | 863<br>*081             |
| 200              | 30 103                 | 125                | 146                    | 168                 | 190         | 211                     | 233         | 255                    | 276                    | 298                     |
| N.               | 0                      | 1                  | 2                      | 3                   | 4           | 5                       | 6           | 7                      | 8                      | 9                       |
|                  | <u> </u>               |                    |                        |                     | 00.7        | <u> </u>                | l           | 1                      |                        | 1                       |

| 200<br>01<br>02  | 30 103        | 10F               |                    |                        |                    |             |              |                         |                        |             |
|------------------|---------------|-------------------|--------------------|------------------------|--------------------|-------------|--------------|-------------------------|------------------------|-------------|
|                  |               | 125               | 146                | 168                    | 190                | 211         | 233          | <b>2</b> 5 <del>5</del> | 276                    | 298         |
|                  | 320           | 341               | 363                | 384                    | 406                | 428         | 449          | 471                     | 492                    | 514         |
| 03               | 535<br>750    | 557<br><b>771</b> | 578<br>79 <b>2</b> | 600<br>814             | 621<br>835         | 643<br>856  | 664<br>878   | 685<br>899              | 707<br>920             | 728<br>942  |
|                  |               |                   | ,                  |                        |                    |             |              |                         |                        |             |
| 04<br>05         | 963<br>31 175 | 984<br>197        | *006<br>218        | *027<br>239            | *048<br>260        | *069<br>281 | *091<br>302  | *112<br>323             | *133<br>345            | *154<br>366 |
| 06               | 387           | 408               | 429                | 450                    | 471                | 492         | 513          | 534                     | 555                    | 576         |
| 0.17             | 507           | 010               | 000                | 000                    | 001                | F00         | 700          | P44                     | POE                    | Por         |
| 07<br>08         | 597<br>806    | 618<br>827        | 639<br>848         | 660<br>869             | 68 <b>1</b><br>890 | 702<br>911  | 723<br>931   | 744<br>952              | 76 <del>5</del><br>973 | 785<br>994  |
| 09               | 32 015        | 035               | 056                | 077                    | 098                | 118         | 139          | 160                     | 181                    | 201         |
| 210              | 222           | 243               | 263                | 284                    | 305                | 325         | 346          | 366                     | 387                    | 408         |
| 11<br>12         | 428<br>634    | 449<br>654        | 469<br>675         | 490<br>69 <del>5</del> | 510<br>715         | 531<br>736  | 552<br>756   | 572<br>777              | 593<br>797             | 613<br>818  |
| 13               | 838           | 858               | 879                | 899                    | 919                | 940         | 960          | 980                     | *001                   | *021        |
| 14               | 00 041        | 000               | 000                | 100                    | 100                | 140         | 100          | 100                     | 000                    | 004         |
| 14<br>15         | 33 041<br>244 | 062<br>264        | 082<br>284         | 102<br>304             | 122<br>325         | 143<br>345  | 163<br>365   | 183<br>385              | 203<br>405             | 224<br>425  |
| 16               | 445           | 465               | 486                | 506                    | 526                | 546         | 566          | 586                     | 606                    | 626         |
| 17               | 646           | 666               | 686                | 706                    | 726                | 746         | 766          | 786                     | 806                    | 826         |
| 18               | 846           | 866               | 885                | 905                    | 925                | 945         | 965          | 985                     | *005                   | *025        |
| 19               | 34_044_       | 064               | 084                | 104                    | 124                | 143         | 163          | 183                     | 203                    | 223         |
| 220              | 242           | 262               | 282                | 301                    | 321                | 341         | 361          | 380                     | 400                    | 420         |
| 21<br>22         | 439<br>635    | 459<br>655        | 479<br>674         | 498<br>694             | 518<br>713         | 537<br>733  | 557<br>753   | 577 - 772               | 596<br>792             | 616<br>811  |
| 23               | 830           | 850               | 869                | 889                    | 908                | 928         | 947          | 967                     | 986                    | *005        |
| 24               | 35 025        | 044               | 064                | 083                    | 102                | 122         | 141          | 160                     | 180                    | 199         |
| 25               | 218           | 238               | 257                | 276                    | 295                | 315         | 334          | 353                     | 372                    | 392         |
| 26               | 411           | 430               | 449                | 468                    | 488                | 507         | 526          | 545                     | 564                    | 583         |
| 27               | 603           | 622               | 641                | 660                    | 679                | 698         | 717          | 736                     | 755                    | 774         |
| 28               | 793           | 813               | 832                | 851                    | 870                | 889         | 908          | 927                     | 946                    | 965         |
| 29<br><b>230</b> | 984<br>36 173 | *003<br>192       | *021<br>211        | *040<br>229            | *059<br>248        | *078<br>267 | *097         | *116<br>305             | *135<br>324            | *154        |
| 31               | 361           | 380               | 399                | 418                    | 436                | 455         | 474          | 493                     | 511                    | 530         |
| 32               | 549           | 568               | 586                | 605                    | 624                | 642         | 661          | 680                     | 698                    | 717         |
| 33               | 736           | 754               | 773                | 791                    | 810                | 829         | 847          | 866                     | 884                    | 903         |
| 34               | 922           | 940               | 959                | 977                    | 996                | *014        | *033         | *051                    | *070                   | *088        |
| 35               | 37 107        | 125               | 144                | 162                    | 181                | 199         | 218          | 236                     | 254                    | 273         |
| 36               | 291           | 310               | 328                | 346                    | 365                | 383         | 401          | 420                     | 438                    | 457         |
| 37               | 475           | 493               | 511                | 530                    | 548                | 566         | 585          | 603                     | 621                    | 639         |
| 38<br>39         | 658<br>840    | 676<br>858        | 694<br>876         | 712<br>894             | 731<br>912         | 749<br>931  | ; 767<br>949 | 785<br>967              | 803<br>585             | 822<br>*003 |
| 240              | 38 021        | 039               | 057                | 075                    | 093                | 112         | 130          | 148                     | 169                    | 184         |
| 41               | 202           | 220               | 238                | 256                    | 274                | 292         | 310          | 328                     | 346                    | 364<br>543  |
| 42               | 382           | 399               | 417                | 435                    | 453                | 471<br>650  | 489          | 507                     | 525<br>703             | 543<br>721  |
| 43               | 561           | 578               | 596                | 614                    | 632                | 650         | 668          | 686                     | 103                    | 121         |
| 44               | 739           | 757               | 775                | 792                    | 810                | 828         | 846          | 863                     | 881                    | 899         |
| 45<br>46         | 917<br>39 094 | 934<br>111        | 952<br>129         | 970<br>146             | 987<br>164         | *005<br>182 | *023<br>199  | *041<br>217             | *058<br>235            | *076<br>252 |
|                  |               |                   | '•                 |                        |                    |             |              |                         |                        |             |
| 47<br>48         | 270<br>445    | 287<br>463        | 305<br>480         | 322<br>498             | 340<br>515         | 358<br>533  | 375<br>550   | 393<br>568              | 410<br>585             | 428<br>602  |
| 49               | 620           | 637               | 655                | 672                    | 690                | 707         | 724          | 742                     | 759                    | 777         |
| 250              | 794           | 811               | 829                | 846                    | 863                | 881         | 898          | 915                     | 933                    | 950         |
| N.               | 0             | 1                 | 2                  | 3                      | 4                  | 5           |              | 7                       | 8                      | 9           |

| N.        | 0                      | 1                  | 2           | 3                      | 4                  | 5           | 6                   | 7                      | 8           | 9                 |
|-----------|------------------------|--------------------|-------------|------------------------|--------------------|-------------|---------------------|------------------------|-------------|-------------------|
| 250       | 39 794                 | 811                | 829         | 846                    | 863                | 881         | 898                 | 915                    | 933         | 950               |
| 51        | 967                    | 985                | *002        | *019                   | *037               | *054        | *071                | *088                   | *106        | *123              |
| 52<br>53  | 40 140<br>312          | 157<br>329         | 175<br>346  | 192<br>364             | 209<br>381         | 226<br>398  | 243<br>415          | 261<br>432             | 278<br>449  | 295<br>466        |
| 54        | 483                    | 500                | 518         | 535                    | 552                | 569         | 586                 | 603                    | 620         | 637               |
| 55        | 654                    | 671                | 688         | 705                    | 722                | 739         | 756                 | 773                    | 790         | 807               |
| 56        | 824                    | 841                | 858         | 875                    | 892                | 909         | 926                 | 943                    | 960         | 976               |
| 57        | 993                    | *010               | *027        | *044                   | *061               | *078        | *095                | *111                   | *128        | * <b>1</b> 45     |
| 58<br>59  | 4 <b>1</b> 162<br>330  | 179<br>347         | 196<br>363  | 212<br>380             | 229<br>397         | 246<br>414  | 263<br>430          | 280<br>447             | 296<br>464  | 313<br>481        |
| 260       | 497                    | 514                | 531         | 547                    | 564                | 581         | 597                 | 614                    | 631         | 647               |
| 61        | 664                    | 681                | 697         | 714                    | 731                | 747         | 764                 | 780                    | 797         | 814               |
| 62        | 830                    | 847                | 863         | 880                    | 896                | 913         | 929                 | 946                    | 963         | 979               |
| 63        | 996                    | *012               | *029        | *045                   | *062               | *078        | *095                | *111                   | *127        | *144              |
| 64        | 42 160                 | 177                | 193         | 210                    | 226                | 243         | 259                 | 275                    | 292         | 308               |
| 65<br>66  | 32 <del>5</del><br>488 | 341<br>504         | 357<br>521  | 374<br>537             | 390<br>553         | 406<br>570  | 423<br>586          | 439<br>602             | 455<br>619  | 472<br>635        |
|           |                        |                    |             |                        |                    |             |                     | _                      |             |                   |
| 67<br>68  | 651<br>813             | 667<br>830         | 684<br>846  | 700<br>862             | 716<br>878         | 732<br>894  | 749<br>911          | $76\overline{5}$ $927$ | 781<br>943  | 797<br><b>959</b> |
| 69        | 975                    | 991                | *008        | *024                   | *040               | *056        | *072                | *088                   | *104        | *120              |
| 270       | 43 136                 | 152                | 169         | 185                    | 201                | 217         | 233                 | 249                    | 265         | 281               |
| 71        | 297                    | 313                | 329         | 345                    | 361                | 377         | 393                 | 409                    | 425         | 441               |
| 72<br>73  | 457<br>616             | 473<br>632         | 489<br>648  | 50 <del>5</del><br>664 | 52 <b>1</b><br>680 | 537<br>696  | 553<br>7 <b>1</b> 2 | 569<br>727             | 584<br>743  | 600<br>759        |
| 1 1       | 775                    |                    |             |                        |                    |             |                     |                        |             | Ì                 |
| 74<br>75  | 933                    | 79 <b>1</b><br>949 | 807<br>965  | 823<br>981             | 838<br>996         | 854<br>*012 | 870<br>*028         | 886<br>*044            | 902<br>*059 | 917<br>*075       |
| 76        | 44 091                 | 107                | 122         | 138                    | 154                | 170         | 185                 | 201                    | 217         | 232               |
| 77        | 248                    | 264                | 279         | 295                    | 311                | 326         | 342                 | 358                    | 373         | 389               |
| 78        | 404                    | 420                | 436         | 451                    | 467                | 483         | 498                 | 514                    | 529         | 545               |
| 79        | 560                    | 576                | 592         | 607                    | 623                | 638         | 654                 | 669                    | 685         | 700               |
| 280<br>81 | $\frac{716}{871}$      | 731<br>886         | 747<br>902  | 762<br>917             | 778<br>932         | 793<br>948  | 809<br>963          | 824<br>979             | 840<br>994  | 855<br>*010       |
| 82        | 45 025                 | 040                | 056         | 071                    | 086                | 102         | 117                 | 133                    | 148         | 163               |
| 83        | 179                    | 194                | 209         | 225                    | 240                | 255         | 271                 | 286                    | 301         | 317               |
| 84        | 332                    | 347                | 362         | 378                    | 393                | 408         | 423                 | 439                    | 454         | 469               |
| 85        | 484                    | 500                | 515         | 530                    | 545                | 561         | 576                 | 591                    | 606         | 621               |
| 86        | 637                    | 652                | 667         | 682                    | 697                | 712         | 728                 | 743                    | 758         | 773               |
| 87        | 788                    | 803                | 818         | 834                    | 849                | 864         | 879                 | 894                    | 909         | 924               |
| 88<br>89  | 939<br>46 090          | 954<br>105         | 969<br>130  | 984<br>135             | *000<br>150        | *015<br>165 | *030<br>180         | *045<br>195            | *060<br>210 | *075<br>225       |
| 290       | 240                    | 255                | 270         | 285                    | 300                | 315         | 330                 | 345                    | 359         | 374               |
| 91        | 389                    | 404                | 419         | 434                    | 449                | 464         | 479                 | 494                    | 509         | 523               |
| 92        | 538                    | 553                | 568         | 583                    | 598<br>746         | 613         | 627                 | 642                    | 657<br>805  | * 672             |
| 93        | 687                    | 702                | 716         | 731                    |                    | 761         | 776                 | 790                    |             | 820               |
| 94<br>05  | 835                    | 850                | 864         | 879                    | 894                | 909         | 923                 | 938                    | 953         | 967               |
| 95<br>96  | 982<br>47 129          | 997<br>144         | *012<br>159 | *026<br>173            | *041<br>188        | *056<br>202 | *070<br>217         | *085<br>232            | *100<br>246 | *114<br>261       |
| 97        | 276                    | 290                | 305         |                        | 334                | l           |                     | 1                      |             |                   |
| 97<br>98  | 422                    | 436                | 451         | 319<br>465             | 480                | 349<br>494  | 363<br>509          | 378<br>524             | 392<br>538  | 407<br>553        |
| 99        | 567                    | 582                | 596         | 611                    | 625                | 640         | 654                 | 669                    | 683         | 698               |
| 300       | 712                    | 727                | 741         | 756                    | 770                | 784         | 799                 | 813                    | 828         | 842               |
| N.        | ္ 0                    | 1                  | 2           | 3                      | 4                  | 5           | 6                   | 7                      | 8           | 9                 |

| N.               | 0                     | 1                      | 2           | 3                      | 4           | 5           | 6           | 7                    | 8           | 9           |
|------------------|-----------------------|------------------------|-------------|------------------------|-------------|-------------|-------------|----------------------|-------------|-------------|
| 300              | 47 712                | 727                    | 741         | 756                    | 770         | 784         | 799         | 813                  | 828         | 842         |
| 01               | 857                   | 871                    | 885         | 900                    | 914         | 929         | 943         | 958                  | 972         | 986         |
| 02<br>03         | 48 00 <u>1</u><br>144 | 015<br>159             | 029<br>173  | 044<br>187             | 058<br>202  | 073<br>216  | 087<br>230  | 101<br>244           | 116<br>259  | 130<br>273  |
| 04               | 287                   | 302                    | 316         | 330                    | 344         | 359         | 373         | 387                  | 401         | 416         |
| 05               | 430                   | 444                    | 458         | 473                    | 487         | 501         | 515         | 530                  | 544         | 558         |
| 06               | 572                   | 586                    | 601         | 615                    | 629         | 643         | 657         | 671                  | 686         | 700         |
| 07               | 714                   | 728                    | 742         | 756                    | 770         | 785         | 799         | 813                  | 827         | 841         |
| 08<br>09         | 855<br>996            | 869<br>*010            | 883<br>*024 | 897<br>*038            | 911<br>*052 | 926<br>*066 | 940<br>*080 | 954<br>* <b>0</b> 94 | 968<br>*108 | 982<br>*122 |
| 310              | 49 136                | 150                    | 164         | 178                    | 192         | 206         | 220         | 234                  | 248         | 262         |
| 11               | 276                   | 290                    | 304         | 318                    | 332         | 346         | 360         | 374                  | 388         | 402         |
| 12<br>13         | 415<br>554            | 429<br>568             | 443<br>582  | 457<br>596             | 471<br>610  | 485<br>624  | 499<br>638  | 513<br>651           | 527<br>665  | 541<br>679  |
|                  |                       |                        |             |                        |             |             |             | 1                    |             |             |
| 14<br>15         | 693<br>831            | 707<br>845             | 721<br>859  | 734<br>872             | 748<br>886  | 762<br>900  | 776<br>914  | 790<br>927           | 803<br>941  | 817<br>955  |
| 16               | 969                   | 982                    | 996         | *010                   | *024        | *037        | *051        | *065                 | *079        | *092        |
| 17               | 50 106                | 120                    | 133         | 147                    | 161         | 174         | 188         | 202                  | 215         | 229         |
| 18               | 243                   | 256                    | 270         | 284                    | 297         | 311         | 325         | 338                  | 352         | 365         |
| 19               | 379                   | 393                    | 406         | 420                    | 433         | 447         | 461         | 474                  | 488         | 501         |
| <b>320</b><br>21 | 51 <u>5</u><br>651    | 529<br>664             | 542<br>678  | 556<br>691             | 569<br>705  | 583<br>718  | 596<br>732  | 610<br>745           | 623<br>759  | 637<br>772  |
| 22               | 786                   | 799                    | 813         | 826                    | 840         | 853         | 866         | 880                  | 893         | 907         |
| 23               | 920                   | 934                    | 947         | 961                    | 974         | 987         | *001        | *014                 | *028        | *041        |
| 24               | $51\ 05\overline{5}$  | 068                    | 081         | 095                    | 108         | 121         | 135         | 148                  | 162         | 175         |
| 25<br>26         | 188<br>322            | 202<br>335             | 215<br>348  | 228<br>362             | 242<br>375  | 255<br>388  | 268<br>402  | 282<br>415           | 295<br>428  | 308<br>441  |
|                  |                       |                        |             |                        |             | l           |             | -                    |             |             |
| 27<br>28         | 455<br>587            | 468<br>601             | 481<br>614  | 49 <del>5</del><br>627 | 508<br>640  | 521<br>654  | 534<br>667  | 548<br>680           | 561<br>693  | 574<br>706  |
| 29               | 720                   | 733                    | 746         | 759                    | 772         | 786         | 799         | 812                  | 825         | 838         |
| 330              | 851                   | 865                    | 878         | 891                    | 904         | 917         | 930         | 943                  | 957         | 970         |
| 31<br>32         | 983<br>52 114         | 996<br>127             | *009<br>140 | *022<br>153            | *035<br>166 | *048<br>179 | *061<br>192 | *075<br>205          | *088<br>218 | *101<br>231 |
| 33               | 244                   | 257                    | 270         | 284                    | 297         | 310         | 323         | 336                  | 349         | 362         |
| 34               | 375                   | 388                    | 401         | 414                    | 427         | 440         | 453         | 466                  | 479         | 492         |
| 35               | 504                   | 517                    | 530         | 543                    | 556         | 569         | 582         | 595                  | 608         | 621         |
| 36               | 634                   | 647                    | 660         | 673                    | 686         | 699         | 711         | 724                  | 737         | 750         |
| 37               | 763                   | 776                    | 789         | 802                    | 815         | 827         | 840         | 853                  | 866         | 879         |
| 38<br>39         | 892<br>53 020         | 905                    | 917<br>046  | 930<br>058             | 943         | 956<br>084  | 969         | 982<br>110           | 994<br>122  | *007<br>135 |
| 340              | 148                   | 161                    | 173         | 186                    | 199         | 212         | 224         | 237                  | 250         | 263         |
| 41               | 275                   | 288                    | 301         | 314                    | 326         | 339         | 352         | 364                  | 377         | 390         |
| 42<br>43         | 403<br>529            | 415<br>542             | 428<br>555  | 441<br>567             | 453<br>580  | 466<br>593  | 479<br>605  | 491 °                | 504<br>631  | 517<br>643  |
|                  | ľ                     |                        |             |                        |             | l           |             |                      |             |             |
| 44<br>45         | 656<br>782            | 668                    | 681<br>807  | 694<br>820             | 706<br>832  | 719<br>845  | 732<br>857  | 744<br>870           | 757<br>882  | 769<br>895  |
| 46               | 908                   | 920                    | 933         | 945                    | 958         | 970         | 983         | 995                  | *008        | *020        |
| 47               | 54 033                | 045                    | 058         | 070                    | 083         | 095         | 108         | 120                  | 133         | 145         |
| 48               | 158                   | 170                    | 183         | 195                    | 208         | 220         | 233         | 245                  | 258         | 270         |
| 49<br><b>350</b> | 283<br>407            | 29 <del>5</del><br>419 | 307<br>432  | 320                    | 332<br>456  | 345<br>469  | 357<br>481  | 370<br>494           | 382<br>506  | 394<br>518  |
|                  |                       | -                      |             |                        |             | -           |             |                      |             |             |
| N.               | 0                     | 1                      | 2           | 3                      | 4           | 5           | 6           | 7                    | 8           | 9           |

| N.               | 0                    | 1                   | 2           | 3           | 4           | 5                   | 6                  | 7           | 8                  | 9           |
|------------------|----------------------|---------------------|-------------|-------------|-------------|---------------------|--------------------|-------------|--------------------|-------------|
| 350              | 54 407               | 419                 | 432         | 444         | 456         | 469                 | 481                | 494         | 506                | 518         |
| 51               | 531                  | 543                 | 555         | 568         | 580         | 593                 | 605                | 617         | 630                | 642         |
| 52<br>53         | 654<br>777           | 667<br>790          | 679<br>802  | 691<br>814  | 704<br>827  | 716<br>839          | 728<br>85 <b>1</b> | 741<br>864  | 753<br>876         | 765<br>888  |
| 50               |                      |                     |             |             |             |                     |                    | 001         |                    |             |
| 5 <b>4</b><br>55 | 900<br>55 023        | 913<br>035          | 925<br>047  | 937<br>060  | 949<br>072  | 962<br>084          | 974<br>096         | 986<br>108  | 998<br><b>121</b>  | *011        |
| 56               | 145                  | 157                 | 169         | 182         | 194         | 206                 | 218                | 230         | 242                | 133<br>255  |
|                  |                      |                     |             |             |             |                     |                    |             |                    |             |
| 57<br>58         | 267<br>388           | 279<br>400          | 291<br>413  | 303<br>425  | 315<br>437  | 328<br>4 <b>4</b> 9 | 340<br>461         | 352<br>473  | 364<br>485         | 376<br>497  |
| 59               | 509                  | 522                 | 534         | 546         | 558         | 570                 | 582                | 594         | 606                | 618         |
| 360              | 630                  | 642                 | 654         | 666         | 678         | 691                 | 703                | 715         | 727                | 739         |
| 61               | 751                  | 763                 | 775         | 787         | 799         | 811                 | 823                | 835         | 847                | 859         |
| 62<br>63         | 871<br>991           | 883<br>*003         | 895<br>*015 | 907<br>*027 | 919<br>*038 | 931<br>*050         | 943<br>*062        | 955<br>*074 | 967<br>*086        | 979<br>*098 |
|                  |                      |                     |             |             |             |                     |                    |             |                    |             |
| 64<br>65         | 56 110<br>229        | 122<br>241          | 134<br>253  | 146<br>265  | 158<br>277  | 170<br>289          | 182<br>301         | 194<br>312  | 205<br>324         | 217<br>336  |
| · 65<br>66       | 348                  | 360                 | 372         | 384         | 396         | 407                 | 419                | 431         | 443                | 455         |
|                  | 4.05                 |                     |             |             |             | 500                 |                    | 540         | F.0.1              | F.70        |
| 67<br>68         | 467<br>585           | 478<br>597          | 490<br>608  | 502<br>620  | 514<br>632  | 526<br>644          | 538<br>656         | 549<br>667  | 56 <b>1</b><br>679 | 573<br>691  |
| 69               | 703                  | 714                 | 726         | 738         | 750         | 761                 | 773                | 785         | 797                | 808         |
| 370              | 820                  | 832                 | 844         | 855         | 867         | 879                 | 891                | 902         | 914                | 926         |
| 71               | 937                  | 949                 | 961         | 972         | 984         | 996                 | *008               | *019        | *031               | *043        |
| 72<br>73         | 57 054<br><b>171</b> | 066<br>183          | 078<br>194  | 089<br>206  | 101<br>217  | 113<br>229          | 124<br>241         | 136<br>252  | 148<br>264         | 159<br>276  |
|                  |                      |                     |             |             | ,           | l                   |                    |             |                    |             |
| 74<br>75         | 287<br>403           | 299<br>4 <b>1</b> 5 | 310<br>426  | 322<br>438  | 334<br>449  | 345<br>461          | 357<br>473         | 368<br>484  | 380<br>496         | 392<br>507  |
| 75<br>76         | 519                  | 530                 | 542         | 553         | 565         | 576                 | 588                | 600         | 611                | 623         |
| 77               | 634                  | 646                 | CE7         | 660         | 680         | 692                 | 703                | 715         | 726                | 738         |
| 77<br>78         | 749                  | 646<br>761          | 657<br>772  | 669<br>784  | 795         | 807                 | 818                | 830         | 841                | 852         |
| 79               | 864                  | 875                 | 887         | 898         | 910         | 921                 | 933                | 944         | 955                | 967         |
| 380              | 978                  | 990                 | *001        | *013        | *024        | *035                | *047               | *058        | *070               | *081        |
| 81<br>82         | 58 092<br>206        | 104<br>218          | 115<br>229  | 127<br>240  | 138<br>252  | 149<br>263          | 161<br>274         | 172<br>286  | 184<br>297         | 195<br>309  |
| 83               | 320                  | 331                 | 343         | 354         | 365         | 377                 | 388                | 399         | 410                | 422         |
| 04               | 400                  | 144                 | 450         | 407         | 478         | 400                 | 501                | 512         | 524                | 535         |
| 84<br>85         | 433<br>546           | 444<br>557          | 456<br>569  | 467<br>580  | 591         | 490<br>602          | 614                | 625         | 636                | 647         |
| <b>8</b> 6       | 659                  | 670                 | 681         | 692         | 704         | $71\overline{5}$    | 726                | 737         | 749                | 760         |
| 87               | 771                  | 782                 | 794         | 805         | 816         | 827                 | 838                | 850         | 861                | 872         |
| 88               | 883                  | 894                 | 906         | 917         | 928         | 939                 | 950                | 961         | 973                | 984         |
| 89               | 995                  | *006                | *017        | *028        | *040        | *051                | *062               | *073        | *084               | *095        |
| <b>390</b><br>91 | 59 106<br>218        | 229                 | 129         | 140         | 151<br>262  | 162                 | 173<br>284         | 184<br>295  | 195<br>306         | 207<br>318  |
| 91               | 329                  | 340                 | 351         | 251<br>362  | 373         | 273<br>384          | 395                | 406         | 417                | 428         |
| 93               | 439                  | 450                 | 461         | 472         | 483         | 494                 | 506                | 517         | 528                | 539         |
| 94               | 550                  | 561                 | 572         | 583         | 594         | 60 <del>5</del>     | 616                | 627         | 638                | 649         |
| 95               | 660                  | 671                 | 682         | 693         | 704         | $71\overline{5}$    | 726                | 737         | 748                | 759         |
| 96               | 770                  | 780                 | 791         | 802         | 813         | 824                 | 835                | 846         | 857                | 868         |
| 97               | 879                  | 890                 | 901         | 912         | 923         | 934                 | 945                | 956         | 966                | 977         |
| 98               | 988                  | 999                 | *010        | *021        | *032        | *043                | *054               | *065        | *076<br>184        | *086        |
| 99<br><b>400</b> | 60 097<br>206        | 108                 | 119<br>228  | 130         | 141<br>249  | 152<br>260          | 163<br>271         | 173<br>282  | 293                | 195<br>304  |
|                  |                      |                     |             |             |             |                     |                    |             |                    |             |
| N.               | 0                    | 1                   | 2           | 3           | 4           | 5                   | 6                  | 7           | 8                  | 9           |

| N.               | 0                  | 1                  | 2                  | 3                  | 4               | 5                      | 6                      | 7           | 8                  | 9                       |
|------------------|--------------------|--------------------|--------------------|--------------------|-----------------|------------------------|------------------------|-------------|--------------------|-------------------------|
| 400              | 60 206             | 217                | 228                | 239                | 249             | 260                    | 271                    | 282         | 293                | 304                     |
| 01<br>02         | 314<br>423         | 325<br>433         | 336<br>444         | 347<br>455         | 358<br>466      | 369<br>477             | 379<br>487             | 390<br>498  | 401<br>509         | 412<br>520              |
| 03               | 531                | 541                | 552                | 563                | 574             | 584                    | 595                    | 606         | 617                | 627                     |
| 04               | 638                | 649                | 660                | 670                | 681             | 692                    | 703                    | 713         | 724                | 735                     |
| 05<br>06         | 746<br><b>8</b> 53 | 756<br>863         | 767<br>874         | 778<br>885         | 788<br>895      | 799<br>906             | 810<br>917             | 821<br>927  | 83 <b>1</b><br>938 | 842<br>949              |
|                  | 8                  |                    |                    |                    |                 |                        |                        |             |                    |                         |
| 07<br>08         | · 959<br>61 066    | 970<br>077         | 981<br>087         | 99 <b>1</b><br>098 | *002<br>109     | *013<br>119            | *023<br>130            | *034<br>140 | *045<br>151        | *055<br>162             |
| 09               | 172                | 183<br>289         | 194                | 204                | 215             | 225                    | 236<br>342             | 247         | 257                | 268<br>374              |
| <b>410</b><br>11 | 278<br>384         | 395                | 300<br>405         | 310<br>416         | 321<br>426      | 331<br>437             | 448                    | 352<br>458  | 363<br>469         | 479                     |
| 12               | 490                | 500                | 511                | 521                | 532             | 542                    | 553                    | 563         | 574                | 584                     |
| 13               | 595                | 606                | 616                | 627                | 637             | 648                    | 658                    | 669         | 679                | 690                     |
| 14<br>15         | 700<br>805         | 711<br>815         | 721<br>826         | 731<br>836         | 742<br>847      | 752<br>857             | 763<br>868             | 773<br>878  | 784<br>888         | 794<br>899              |
| <b>1</b> 6       | 909-               | 920                | 930                | 941                | 951             | 962                    | 972                    | 982         | 993                | *003                    |
| 17               | 62 014             | 024                | 034                | 045                | 055             | 066                    | 076                    | 086         | 097                | 107                     |
| 18<br>19         | 118<br>221         | 128<br>232         | 138<br>242         | 149<br>252         | 159<br>263      | 170<br>273             | 180<br>284             | 190<br>294  | 201<br>304         | 211<br>315              |
| 420              | 325                | 335                | 346                | 356                | 366             | 377                    | 387                    | 397         | 408                | 418                     |
| 21<br>22         | 428<br>531         | 439<br>542         | 449<br>552         | 459<br>562         | 469<br>572      | 480<br>583             | 490<br>593             | 500<br>603  | 511<br>613         | 521<br>624              |
| 23               | 634                | 644                | 655                | 665                | 675             | 685                    | 696                    | 706         | 716                | 726                     |
| 24               | 737                | 747                | 757                | 767                | 778             | 788                    | 798                    | 808         | 818                | 829                     |
| 25<br>26         | 839<br>941         | 849<br>95 <b>1</b> | 859<br>96 <b>1</b> | 870<br>972         | 880<br>982      | 890<br>992             | 900<br>*002            | 910<br>*012 | 921<br>*022        | 931<br>*033             |
|                  |                    |                    |                    |                    |                 | Ī                      |                        |             |                    |                         |
| 27<br>28         | 63 043<br>144      | $\frac{053}{155}$  | 063<br>165         | 073<br>175         | 083<br>185      | 094<br>195             | 104<br>205             | 114<br>215  | 124<br>225         | 134<br>236              |
| 29               | 246                | 256                | 266                | 276                | 286             | 296                    | 306                    | 317         | 327                | 337                     |
| <b>430</b><br>31 | 347<br>448         | 357<br>458         | 367<br>468         | 377<br>478         | 387<br>488      | 397<br>498             | 407<br>508             | 417<br>518  | 428<br>528         | 438<br>538              |
| 32<br>33         | 548<br>649         | 558<br>659         | 568<br>669         | 579<br>679         | 589<br>689      | 599<br>699             | 609<br>709             | 619<br>719  | 629<br>729         | 639<br>739              |
|                  |                    |                    |                    |                    | l               |                        |                        |             |                    | 1                       |
| 34<br>35         | <b>7</b> 49<br>849 | 759<br>859         | 769<br>869         | 779<br>879         | 789<br>889      | 799<br>899             | 809<br>909             | 819<br>919  | 829<br>929         | 839<br>939              |
| 36               | 949                | 959                | 969                | 979                | 988             | 998                    | *008                   | *018        | *028               | *038                    |
| 37               | 64 048             | 058                | 068                | 078                | 088             | 098                    | 108                    | 118         | 128                | 137                     |
| 38<br>39         | 147<br>246         | 157<br>256         | 167<br>266         | 177<br>276         | 187<br>286      | 197<br>296             | 207<br>306             | 217<br>316  | 326                | 237<br>335              |
| 440              | 345                | 355                | 365                | 375                | 385             | 395                    | 404                    | 414         | 424                | 434                     |
| 41<br>42         | 444<br>542         | 454<br>552         | 464<br>562         | 473<br>572         | 483             | 493<br>591             | 503<br>601             | 513<br>611  | 523<br>621         | 532                     |
| 43               | 542<br>640         | 552<br>650         | 660                | 670                | 582<br>680      | 689                    | 699                    | 709         | 719                | 631<br>729              |
| 44               | 738                | 748                | 758                | 768                | 777             | 787                    | 797                    | 807         | 816                | 826                     |
| 45<br>46         | . 836<br>933       | 846<br>943         | 856<br>953         | 865<br>963         | 875<br>972      | 88 <del>5</del><br>982 | 89 <del>5</del><br>992 | 904<br>*002 | 914<br>*011        | 924<br>*021             |
|                  |                    |                    |                    | + 4                |                 |                        |                        |             |                    |                         |
| 47<br>48         | 65 031<br>128      | 040<br>137         | 050<br>147         | 060<br>157         | 070<br>167      | 079<br>176             | 089<br>186             | 099<br>196  | 108<br>205         | $118 \\ 21\overline{5}$ |
| 49               | 225                | 234                | 244                | 254                | 263             | 273                    | 283                    | 292         | 302                | 312                     |
| 450<br>N.        | 321                | 331                | 341                | 350<br><b>3</b>    | 360<br><b>4</b> | 369<br><b>5</b>        | 379                    | 389         | 398                | 408<br><b>9</b>         |
| и.               | · ·                | 1                  | 4                  | 1                  |                 |                        | 0                      |             |                    | Ü                       |
|                  |                    |                    |                    | Ĺ                  | [28]            |                        |                        |             |                    |                         |

| N.                 | 0                             | 1           | 2           | , <b>3</b>        | 4           | 5                   | 6           | 7           | 8           | 9                      |
|--------------------|-------------------------------|-------------|-------------|-------------------|-------------|---------------------|-------------|-------------|-------------|------------------------|
| 450                | 65 321                        | 331         | 341         | 350               | 360         | 369                 | 379         | 389         | 398         | 408                    |
| 51<br>52           | 418<br>514                    | 427         | 437         | 447               | 456         | 466                 | 475         | 485         | 495         | 504                    |
| 53                 | 610                           | 523<br>619  | 533<br>629  | 543<br>639        | 552<br>648  | 562<br>658          | 571<br>667  | 581<br>677  | 591<br>686  | 600<br>696             |
| - 54               | 706                           | 715         | 725         | 734               | 744         | 753                 | 763         | 772         | 782         | 792                    |
| 55<br>56           | 801                           | 811         | 820         | 830               | 839         | 849                 | 858         | 868         | 877         | 887                    |
|                    | 896                           | 906         | 916         | 925               | 935         | 944                 | 954         | 963         | 973         | 982                    |
| 57<br>58           | 992<br>66 087                 | *001<br>096 | *011<br>106 | *020<br>115       | *030<br>124 | *039<br>134         | *049<br>143 | *058<br>153 | *068<br>162 | *077<br>172            |
| 59                 | 181                           | 191         | 200         | 210               | 219         | 229                 | 238         | 247         | 257         | 266                    |
| <b>460</b><br>61   | $\frac{276}{370}$             | 285<br>380  | 389         | 304<br>398        | 314<br>408  | 323 /<br>417        | 332<br>427  | 342<br>436  | 351<br>445  | 361<br>45 <del>5</del> |
| 62                 | 464                           | 474         | 483         | 492               | 502         | 511                 | 521         | 530         | 539         | 549                    |
| 63                 | 558                           | 567         | 577         | 586               | 596         | 605                 | 614         | 624         | 633         | 642                    |
| 64                 | 652                           | 661         | 671         | 680               | 689         | 699                 | 708         | 717         | 727         | 736                    |
| 65<br>66           | 745<br>839                    | 755<br>848  | 764<br>857  | 773<br>867        | 783<br>876  | 792<br>885          | 801<br>894  | 811<br>904  | 820<br>913  | 829<br>922             |
| 67                 |                               |             | , ,         |                   | -           |                     |             | 997         | *006        | *015                   |
| 68                 | 93 <u>2</u><br>67 02 <u>5</u> | 941         | 950<br>043  | 960<br>052        | 969<br>062  | 978<br>071          | 987<br>080  | 089         | 099         | 108                    |
| 69<br>4 <b>7</b> 0 | 117                           | 127         | 136         | 145               | 154         | 164                 | 173         | 182         | 191         | 201                    |
| <b>470</b><br>71   | $\frac{210}{302}$             | 219<br>311  | 228<br>321  | 330               | 339         | 256<br>348          | 265<br>357  | 274<br>367  | 284<br>376  | 293<br>385             |
| 72                 | 394                           | 403         | 413         | 422               | 431         | 440                 | 449         | 459         | 468         | 477                    |
| 73                 | 486                           | 495         | 504         | 514               | 523         | 532                 | 541         | 550         | 560         | 569                    |
| 74                 | 578                           | 587         | 596         | 605               | 614         | 624                 | 633         | 642         | 651         | 660                    |
| 75<br>76           | 669<br>761                    | 679<br>770  | 688<br>779  | 697<br><b>788</b> | 706<br>797  | 715<br>806          | 724<br>815  | 733<br>825  | 742<br>834  | 752<br>843             |
| 77                 | 852                           | 861         | 870         | 879               | 888         | .897                | 906         | 916         | 925         | 934                    |
| 78                 | 943                           | -952        | 961         | 970               | 979         | 988                 | 997         | *006        | *015        | *024                   |
| 79<br><b>480</b>   | 68 034<br>124                 | 043<br>133  | 052<br>142  | 061<br>151        | 070<br>160  | 079<br>169          | 088<br>178  | 097<br>187  | 106<br>196  | 115<br>205             |
| 81                 | 215                           | 224         | 233         | 242               | 251         | 260                 | 269         | 278         | 287         | 296                    |
| 82                 | 30 <u>5</u><br>39 <u>5</u>    | 314<br>404  | 323         | 332               | 341         | 350<br>440          | 359<br>449  | 368<br>458  | 377         | 386                    |
| 83                 |                               |             | 413         | 422               | 431         |                     |             |             | 467         | 476                    |
| 84<br>85           | 485<br>574                    | 494<br>583  | 502<br>592  | 511<br>601        | 520<br>610  | 529<br>619          | 538<br>628  | 547<br>637  | 556<br>646  | 565<br>655             |
| 86                 | 664                           | 673         | 681         | 690               | 699         | 708                 | 717         | 726         | 735         | 744                    |
| 87                 | 753                           | 762         | 771         | 780               | 789         | 797                 | 806         | 815         | 824         | 833                    |
| 88<br>89           | 842<br>931                    | 851<br>940  | 860<br>949  | 869<br>958        | 878<br>966  | 886<br>975          | 895<br>984  | 904<br>993  | 913<br>*002 | 922<br>*011            |
| 490                | 69 020                        | 028         | 037         | 046               | 055         | 064                 | 073         | 082         | 090         | 099                    |
| 91                 | 108                           | 117         | 126         | 135               | 144         | 152                 | 161         | 170         | 179         | 188                    |
| 92<br>93           | 197<br>28 <del>5</del>        | 205<br>294  | 214<br>302  | 223<br>311        | 232<br>320  | 241<br>329          | 249<br>338  | 258<br>346  | 267<br>355  | 276<br>364             |
|                    | · ·                           |             |             |                   |             |                     |             | •           |             |                        |
| 94<br>95           | 373<br>461                    | 381<br>469  | 390<br>478  | 399<br>487        | 408<br>496  | 4 <b>1</b> 7<br>504 | 425<br>513  | 434<br>522  | 443<br>531  | 452<br>539             |
| 96                 | 548                           | 557         | 566         | 574               | 583         | 592                 | 601         | 609         | 618         | 627                    |
| 97                 | 636                           | 644         | 653         | 662               | 671         | 679                 | 688         | 697         | 705         | 714                    |
| 98<br>99           | 723<br>810                    | 732<br>819  | 740<br>827  | 749<br>836        | 758<br>845  | 767<br>854          | 775<br>862  | 784<br>871  | 793<br>880  | 801<br>888             |
| 500                | 897                           | 906         | 914         | 923               | 932         | 940                 | 949         | 958         | 966         | 975                    |
| N.                 | 0                             | 1           | 2           | 3                 | 4           | 5                   | 6           | 7           | 8           | 9                      |

| N.               | 0             | 1           | 2           | 3          | 4           | 5                              | 6                      | 7          | 8           | 9           |
|------------------|---------------|-------------|-------------|------------|-------------|--------------------------------|------------------------|------------|-------------|-------------|
| 500              | 69 897        | 906         | 914         | 923        | 932         | 940                            | 949                    | 958        | 966         | 975         |
| 01               | 984           | 992         | *001        | *010       | *018        | *027                           | *036                   | *044       | *053        | *062        |
| 02<br>03         | 70 070<br>157 | 079<br>165  | 088<br>174  | 096<br>183 | 105<br>191  | 114<br>200                     | 122<br>209             | 131<br>217 | 140<br>226  | 148<br>234  |
| 03               | 107           | 100         | 1/7         | 1.100      | 131         | 200                            | 200                    | 211        | 220         | 201         |
| 04               | 243           | 252         | 260         | 269        | 278         | 286                            | 295                    | 303        | 312         | 321         |
| 05               | 329<br>415    | 338<br>424  | 346<br>432  | 355<br>441 | 364<br>449  | 37 <b>2</b><br>458             | 381<br>467             | 389<br>475 | 398<br>484  | 406<br>492  |
| 06               | 410           | 444         | 434         | 441        | 449         | 400                            | 407                    | 475        | 404         | 432         |
| 07               | 501           | 509         | 518         | 526        | 535         | 544                            | 55 <b>2</b>            | 561        | 569         | 578         |
| 08               | 586           | 595         | 603         | 612        | 621         | 629                            | 638                    | 646        | 655         | 663         |
| 09<br><b>510</b> | 672<br>757    | 680<br>766  | 689<br>774  | 697<br>783 | 706<br>791  | 714<br>800                     | 723<br>808             | 731<br>817 | 740<br>825  | 749<br>834  |
| 11               | 842           | 851         | 859         | 868        | 876         | 885                            | 893                    | 902        | 910         | 919         |
| 12               | 927           | 935         | 944         | 952        | 961         | 969                            | 978                    | 986        | 995         | *003        |
| 13               | 71 012        | 020         | 029         | 037        | 046         | 054                            | 063                    | 071        | 079         | 088         |
| 14               | 096           | 105         | 113         | 122        | 130         | 139                            | 147                    | 155        | 164         | 172         |
| 15               | 181           | 189         | 198         | 206        | 214         | 223                            | 231                    | 240        | 248         | 257         |
| 16               | 265           | 273         | 282         | 290        | 299         | 307                            | 315                    | 324        | 332         | 341         |
| 177              | 240           | OFF         | 200         | 074        | 202         | 201                            | 200                    | 400        | 410         | 425         |
| 17<br>13         | 349<br>433    | 357<br>441  | 366<br>450  | 374<br>458 | 383<br>466  | 39 <u>1</u><br>47 <del>5</del> | 399<br>483             | 408<br>492 | 416<br>500  | 508         |
| 19               | 517           | 525         | 533         | 542        | 550         | 559                            | 567                    | 575        | 584         | 592         |
| 520              | 600           | 609         | 617         | 625        | 634         | 642                            | 650                    | 659        | 667         | 675         |
| 21               | 684           | 692         | 700         | 709        | 717         | 725                            | 734                    | 742        | 750         | 759         |
| 22               | 767           | 775         | 784<br>867  | 792<br>875 | 800         | 809<br>892                     | 817<br>900             | 825<br>908 | 834<br>917  | 842<br>925  |
| 23               | 850           | 858         | 007         | 0/0        | 883         | 094                            | 900                    | 900        | 917         | 920         |
| 24               | 933           | 941         | 950         | 958        | 966         | 975                            | 983                    | 991        | 999         | *008        |
| 25<br>00         | 72 016        | 024         | 032         | 041        | 049         | 057                            | 066                    | 074        | 082         | 090         |
| 26               | 099           | 107         | 115         | 123        | 132         | 140                            | 148                    | 156        | 165         | 173         |
| 27               | 181           | 189         | 198         | 206        | 214         | 222                            | 230                    | 239        | 247         | 255         |
| 28               | 263           | ° 272       | 280         | 288        | 296         | 304                            | 313                    | 321        | 329         | 337         |
| 29<br><b>530</b> | 346<br>428    | 354<br>436  | 362         | 370<br>452 | 378<br>460  | 387<br>469                     | 39 <del>5</del><br>477 | 403        | 411 493     | 419<br>501  |
| 31               | 509           | 518         | 526         | 534        | 542         | 550                            | 558                    | 567        | 575         | 583         |
| 32               | 591           | 599         | 607         | 616        | 624         | 632                            | 640                    | 648        | 656         | 665         |
| 33               | 673           | 681         | 689         | 697        | 705         | 713                            | 722                    | 730        | 738         | 746         |
| 24               | 754           | 762         | 770         | 779        | 707         | 795                            | 803                    | 811        | 819         | 827         |
| 34<br>35         | 835           | 843         | 852         | 860        | 787<br>868  | 876                            | 884                    | 892        | 900         | 908         |
| 36               | 916           | 925         | 933         | 941        | 949         | 957                            | 965                    | 973        | 981         | 989         |
| 27               | 007           | *000        | *014        | *022       | *020        | *038                           | *046                   | *054       | *062        | *070        |
| 37<br>38         | 997<br>73 078 | *006<br>086 | 094         | 102        | *030<br>111 | 119                            | 127                    | 135        | 143         | 151         |
| 39               | 159           | 167         | 175         | 183        | 191         | 199                            | 207                    | 215        | 223         | 231         |
| 540              | 239           | 247         | 255         | 263        | 272         | 280                            | 288                    | 296        | 304         | 312         |
| 41               | 320           | 328         | 336         | 344        | 352         | 360                            | 368                    | 376        | 384         | 392         |
| 42<br>43         | 400<br>480    | 408         | 416<br>496  | 424<br>504 | 432<br>512  | 440<br>520                     | 448<br>528             | 456<br>536 | 464<br>544  | 472<br>552  |
| 43               | 400           | 400         | 490         | 304        | 312         | 020                            | 020                    | 550        | 044         | 002         |
| 44               | 560           | 568         | 576         | 484        | 592         | 600                            | 608                    | 616        | 624         | 632         |
| 45<br>46         | 640           | 648         | 656         | 664        | 672         | 679<br>759                     | 687<br>767             | 695<br>775 | 703<br>783  | 711<br>791  |
| 46               | 719           | 727         | 735         | 743        | 751         | 109                            | 101                    | 113        | / ′03       | 131         |
| 47               | 799           | 807         | 815         | 823        | 830         | 838                            | 846                    | 854        | 862         | 870         |
| 48<br>40         | 878           | 886         | 894         | 902        | 910         | 918                            | 926                    | 933        | 941         | 949         |
| 49<br><b>550</b> | 957<br>74 036 | 965         | 973         | 981        | 989         | 997<br>076                     | *00 <del>5</del>       | *013       | *020<br>099 | *028<br>107 |
| 550              | 14 030        | 044         | 052         | 000        | 068         | 0/6                            | UO4                    | 034        | 099         | 101         |
| N.               | • 0           | 1           | 2           | 3          | 4           | 5                              | 6                      | 7          | 8           | 9           |
| -                |               |             | <del></del> |            |             |                                |                        |            |             |             |

| N.               | 0                      | 1                   | 2                      | 3                      | 4           | 5                      | 6           | 7           | 8           | 9            |
|------------------|------------------------|---------------------|------------------------|------------------------|-------------|------------------------|-------------|-------------|-------------|--------------|
| 550              | 74 036                 | 044                 | 052                    | 060                    | 068         | 076                    | 084         | 092         | 099         | 107          |
| 51               | 115                    | 123                 | 131                    | 139                    | 147         | 155                    | 162         | 170         | 178         | 186          |
| - 52             | 194                    | 202                 | 210                    | 218                    | 225         | 233                    | 241         | 249         | 257<br>335  | 265<br>343   |
| 53               | 273                    | 280                 | 288                    | 296                    | 304         | 312                    | 320         | 327         | 335         | 343          |
| 54               | 351                    | 359                 | 367                    | 374                    | 382         | 390                    | 398         | 406         | 414         | 421          |
| 55<br>56         | 429<br>507             | 437<br>5 <b>1</b> 5 | 44 <del>5</del><br>523 | 453<br>53 <b>1</b>     | 461<br>539  | 468<br>547             | 476<br>554  | 484<br>562  | 492<br>570  | 500<br>578   |
| . 56             | 507                    | . 515               | 020                    | 551                    | 555         | 547                    | 334         | 002         | 0,0         | 0,0          |
| 57               | 586                    | 593                 | 601                    | 609                    | 617         | 624                    | 632         | 640         | 648         | 656<br>733   |
| 58<br>59         | 663<br>741             | 671<br>749          | 679<br>757             | 687<br>764             | 695<br>772  | 702<br>780             | 710<br>788  | 718<br>796  | 726<br>803  | 811          |
| 560              | 819                    | 827                 | 834                    | 842                    | 850         | 858                    | 865         | 873         | 881         | 889          |
| 61               | 896                    | 904                 | 912                    | 920                    | 927         | 935                    | 943         | 950         | 958         | 966          |
| 62<br>63         | 974<br>75 051          | 981                 | 989<br>066             | 997<br>074             | *005<br>082 | *012<br>089            | *020<br>097 | *028<br>105 | *035<br>113 | *043<br>120  |
| 63               | 79 031                 | 059                 | 066                    | 074                    | 002         | 009                    | 037         | 103         | 113         | 120          |
| 64               | 128                    | 136                 | 143                    | 151                    | 159         | 166                    | 174         | 182         | 189         | 197          |
| 65<br>66         | 20 <del>5</del><br>282 | 213<br>289          | 220<br>297             | 228<br>30 <del>5</del> | 236<br>312  | 243<br>320             | 251<br>328  | 259<br>335  | 266<br>343  | 274<br>351   |
| 1 1              |                        | 200                 |                        |                        |             | 1                      |             |             |             |              |
| 67               | 358<br>435             | 366<br>442          | 374<br>450             | 381<br>458             | 389<br>465  | 397<br>473             | 404<br>481  | 412<br>488  | 420<br>496  | 427<br>504   |
| 68<br>69         | 511                    | 519                 | 526                    | 534                    | 542         | 549                    | 557         | 565         | 572         | 580          |
| 570              | 587                    | 595                 | 603                    | 610                    | 618         | 626                    | 633         | 641         | 648         | 656          |
| 71               | 664                    | 671                 | 679                    | 686                    | 694         | 702                    | 709         | 717         | 724         | 732          |
| 72<br>73         | 740<br>815             | 747<br>823          | 755<br>83 <b>1</b>     | 762<br>838             | 770<br>846  | 778<br>853             | 785<br>861  | 793<br>868  | 800<br>876  | 808<br>884   |
|                  |                        |                     |                        |                        | 1           | Į.                     |             |             |             |              |
| 74<br>75         | 891<br>967             | 899<br>974          | 906<br>982             | 914<br>989             | 921<br>997  | 929<br>*005            | 937<br>*012 | 944<br>*020 | 952<br>*027 | 959<br>*035  |
| 76               | 76 042                 | 050                 | 057                    | 065                    | 072         | 080                    | 087         | 095         | 103         | 110          |
| 77               | 110                    | 105                 | 100                    | 140                    | 140         | 155                    | 102         | 170         | 170         | 105          |
| 77<br>78         | 118<br>193             | 125<br>200          | 133<br>208             | 140<br>215             | 148<br>223  | 155<br>230             | 163<br>238  | 170<br>245  | 178<br>253  | 185<br>260   |
| 79               | _268                   | 275                 | 283                    | 290                    | 298         | 305                    | 313         | 320         | 328         | 335          |
| 580              | 343                    | 350                 | 358                    | 365                    | 373         | 380                    | 388         | 395         | 403         | 410          |
| 81<br>82         | 418<br>492             | 425<br>500          | 433<br>507             | 440<br>515             | 448<br>522  | 45 <del>5</del><br>530 | 462<br>537  | 470<br>545  | 477<br>552  | 485<br>559   |
| 83               | 567                    | 574                 | 582                    | 589                    | 597         | 604                    | 612         | 619         | 626         | 634          |
| 84               | 641                    | 649                 | 656                    | 664                    | 671         | 678                    | 686         | 693         | 701         | 708          |
| 85               | 716                    | 723                 | 730                    | 738                    | 745         | 753                    | 760         | 768         | 775         | 782          |
| 86               | 790                    | 797                 | 805                    | 812                    | 819         | 827                    | 834         | 842         | 849         | 856          |
| 87               | 864                    | 871                 | 879                    | 886                    | 893         | 901                    | 908         | 916         | 923         | 930          |
| 88               | 938                    | 945                 | 953                    | 960                    | 967         | 975                    | 982         | 989         | 997         | *004         |
| 89<br><b>500</b> | 77 012                 | 019                 | 026                    | 034                    | 041         | 048                    | 056         | 063         | 070         | 078          |
| <b>590</b><br>91 | 085<br>159             | 093<br>166          | 100                    | 107<br>181             | 115         | 122<br>195             | 129<br>203  | 137<br>210  | 144<br>217  | 151 .<br>225 |
| 92               | 232                    | 240                 | 247                    | 254                    | 262         | 269                    | 276         | 283         | 291         | 298          |
| 93               | 305                    | 313                 | 320                    | 327                    | 335         | 342                    | 349         | 357         | 364         | 371          |
| 94               | 379                    | 386                 | 393                    | 401                    | 408         | 415                    | 422         | 430         | 437         | 444          |
| 95               | 452                    | 459                 | 466                    | 474                    | 481         | 488                    | 495         | 503         | 510         | 517          |
| 96               | 525                    | 532                 | 539                    | 546                    | 554         | 561                    | 568         | 576         | 583         | 590          |
| 97               | 597                    | 60 <del>5</del>     | 612                    | 619                    | 627         | 634                    | 641         | 648         | 656         | 663          |
| 98<br>99         | 670<br>743             | 677<br>750          | 68 <del>5</del><br>757 | 692<br>764             | 699<br>772  | 706<br><b>7</b> 79     | 714         | 721         | 728         | 735          |
| 600              | 815                    | 822                 | 830                    | 837                    | 844         | 851                    | 786<br>859  | 793<br>866  | 801<br>873  | 808          |
|                  |                        | -                   |                        |                        |             | <del> </del>           |             |             |             | -            |
| N.               | 0                      | 1                   | 2                      | 3                      | 4           | 5                      | 6           | 7           | 8           | 9            |

| N.             | 0                    | 1                 | 2                 | 3                 | 4                      | 5                  | 6                  | 7                  | 8                                  | 9                               |
|----------------|----------------------|-------------------|-------------------|-------------------|------------------------|--------------------|--------------------|--------------------|------------------------------------|---------------------------------|
| 600            | 77 815               | 822               | 830               | 837               | 844                    | 851                | 859                | 866                | 873                                | 880                             |
| 01<br>02       | *887<br>960          | 895<br>967        | 902<br>974        | 909<br><b>981</b> | 916<br>988             | 924<br>996         | 931<br>*003        | 938<br>*010        | 945<br>*017                        | 95 <u>2</u><br>*02 <del>5</del> |
| 03             | 78 032               | 039               | 046               | 053               | 061                    | 068                | 075                | 082                | .089                               | 097                             |
| 04<br>05<br>06 | 104<br>176<br>247    | 111<br>183<br>254 | 118<br>190<br>262 | 125<br>197<br>269 | 132<br>204<br>276      | 140<br>211<br>283  | 147<br>219<br>290  | 154<br>226<br>297  | 161<br>233<br>305                  | 168<br>240<br>312               |
|                |                      |                   |                   |                   | (                      |                    |                    |                    |                                    |                                 |
| 07<br>08<br>09 | 319<br>390<br>462    | 326<br>398<br>469 | 333<br>405<br>476 | 340<br>412<br>483 | 347<br>419<br>490      | 355<br>426<br>497  | 362<br>433<br>504  | 369<br>440<br>512  | 376<br>447<br>519                  | 383<br>45 <del>5</del><br>526   |
| 610            | 533                  | 540               | 547               | 554               | 561                    | 569                | 576                | 583                | 590                                | 597                             |
| 11<br>12       | 604<br>675           | 611<br>682        | 618<br>689        | 625<br>696        | 633<br>704             | 640<br>71 <b>1</b> | 647<br>718         | 654<br>725         | 661<br>732                         | 668<br>739                      |
| 13             | 746                  | 753               | 760               | 767               | 774                    | 781                | 789                | 796                | 803                                | 810                             |
| 14<br>15<br>16 | 817<br>888<br>958    | 824<br>895<br>965 | 831<br>902<br>972 | 838<br>909<br>979 | 845<br>916<br>986      | 852<br>923<br>993  | 859<br>930<br>*000 | 866<br>937<br>*007 | 873<br>944<br>*014                 | 880<br>951<br>*021              |
| 17             | 79 029               | 036               | 043               | 050               | 057                    | 064                | 071                | 078                | 085                                | 092                             |
| 18             | 099                  | 106               | 113               | 120               | 127                    | 134                | 141                | 148                | <b>1</b> 55                        | 162                             |
| 19             | 169                  | 176               | 183               | 190               | 197                    | 204                | 211                | 218                | 225                                | 232                             |
| 620<br>21      | 239<br>309           | 246<br>316        | 253<br>323        | 260<br>330        | 267<br>337             | 274<br>344         | 281<br>351         | 288<br>358         | 295<br>365                         | 302                             |
| 22<br>23       | 379<br>449           | 386<br>456        | 393<br>463        | 400<br>470        | 407<br>477             | 414<br>484         | 421<br>491         | 428<br>498         | 43 <del>5</del><br>50 <del>5</del> | 442<br>511                      |
| 24             | 518                  | 525<br>505        | 532               | 539               | 546                    | 553                | 560                | 567                | 574                                | 581                             |
| 25<br>26       | 588<br>657           | 595<br>664        | 602<br>671        | 609<br>678        | 616<br>685             | 623<br>692         | 630<br>699         | 637<br>706         | 644<br>713                         | 650<br>720                      |
| 27<br>28       | 727<br>796           | 734<br>803        | 741<br>810        | 748<br>817        | 754<br>824             | 761<br>831         | 768<br>837         | 775<br>844         | 782<br>851                         | 789<br>858                      |
| 29             | 865                  | 872               | 879               | 886               | 893                    | 900                | 906                | 913                | 920                                | 927                             |
| 630            | 934                  | 941               | 948               | 955               | 962                    | 969                | 975                | 982                | 989                                | 996                             |
| 31<br>32<br>33 | 80 003<br>072<br>140 | 010<br>079<br>147 | 017<br>085<br>154 | 024<br>092<br>161 | 030<br>099<br>168      | 037<br>106<br>175  | 044<br>113<br>182  | 051<br>120<br>188  | 058<br>127<br>195                  | 06 <del>5</del><br>134<br>202   |
| 34             | 209                  | 216               | 223               | 229               | 236                    | 243                | 250                | 257                | 264                                | 271                             |
| 35<br>36       | 277<br>346           | 284<br>353        | 291<br>359        | 298<br>366        | 30 <del>5</del><br>373 | 312<br>380         | 318<br>387         | 325<br>393         | 332<br>400                         | 339<br>407                      |
| 37<br>38<br>39 | 414<br>482<br>550    | 421<br>489<br>557 | 428<br>496<br>564 | 434<br>502<br>570 | 441<br>509<br>577      | 448<br>516<br>584  | 455<br>523<br>591  | 462<br>530<br>598  | 468<br>536<br>604                  | 475<br>543<br>611               |
| 640            | 618                  | 625               | 632               | 638               | 645                    | 652                | 659                | 665                | 672                                | 679                             |
| 41             | 686                  | 693               | 699               | 706               | 713                    | 720                | 726                | 733                | 740                                | 747                             |
| 42<br>43       | 754<br>821           | 760<br>828        | 767<br>835        | 774<br>841        | 781<br>848             | 787<br>855         | 794<br>862         | 801<br>868         | 808<br>875                         | 814<br>882                      |
| 44<br>45       | 889<br>956           | 895<br>963        | 902<br>969        | 909<br>976        | 916<br>983             | 922<br>990         | 929<br>996         | 936<br>*003        | 943<br>*010                        | 949<br>*017                     |
| 46             | 81 023               | 030               | 037               | 043               | 050                    | 057                | 064                | 070                | 077                                | 084                             |
| 47             | 090                  | 097               | 104               | 111               | 117                    | 124                | 131                | 137                | 144                                | 151                             |
| 48<br>49       | 158<br>224           | 164<br>231        | 171<br>238        | 178<br>245        | 184<br>251             | 191<br>258         | 198<br>265         | 204                | 211<br>278                         | 218<br>285                      |
| 650            | 291                  | 298               | 305               | 311               | 318                    | 325                | 331                | 338                | 345                                | 351                             |
| N.             | 0                    | 1                 | 2                 | -3                | 4                      | 5                  | 6                  | 7                  | 8                                  | 9                               |

| N.         | • 0           | 1                      | 2           | 3                        | 4                      | 5                       | 6                  | 7                              | 8           | 9                   |
|------------|---------------|------------------------|-------------|--------------------------|------------------------|-------------------------|--------------------|--------------------------------|-------------|---------------------|
| 650        | 81 291        | 298                    | 305         | 311                      | 318                    | 325                     | 331                | 338                            | 345         | <b>3</b> 5 <b>1</b> |
| 5 <b>1</b> | 358           | 365                    | 371         | 378<br>445               | 385                    | 391<br>458              | 398                | 405                            | 411         | 418                 |
| 52<br>53   | 425<br>491    | 431<br>498             | 438<br>505  | 511                      | 451<br>518             | 525                     | 465<br>531         | 471<br>538                     | 478<br>544  | 485<br>551          |
| 54         | 558           | 564                    | 571         | 578                      | 584                    | 591                     | 598                | 604                            | 611         | 617                 |
| 55         | 624           | 631                    | 637         | 644                      | 651                    | 657                     | 664                | 671                            | 677         | 684                 |
| 56         | 690           | 697                    | 704         | 710                      | 717                    | 723                     | 730                | 737                            | 743         | 750                 |
| 57         | 757           | 763                    | 770         | 776                      | 783                    | 790                     | 796                | 803                            | 809         | 816                 |
| 58<br>59   | 823<br>889    | 829<br>895             | 836<br>902  | 842<br>908               | 849<br>915             | 856<br>921              | 862<br>928         | 869<br>93 <del>5</del>         | 875<br>941  | 882<br>948          |
| 660        | 954           | 961                    | 968         | 974                      | 981                    | 987                     | 994                | *000                           | *007        | *014                |
| 61<br>62   | 82 020<br>086 | 027<br>092             | 033<br>099  | 040<br>105               | 046<br>112             | 053<br>119              | 060<br>125         | 066<br>132                     | 073<br>138  | 079<br>145          |
| 63         | 151           | 158                    | 164         | 171                      | 178                    | 184                     | 191                | 197                            | 204         | 210                 |
| 64         | 217           | 223                    | 230         | 236                      | 243                    | 249                     | 256                | 263                            | 269         | 276                 |
| 65         | 282           | 289                    | 295         | 302                      | 308                    | 315                     | 321                | 328                            | 334         | 341                 |
| 66         | 347           | 354                    | 360         | 367                      | 373                    | 380                     | 387                | 393                            | 400         | 406                 |
| 67<br>68   | 413<br>478    | 419<br>484             | 426<br>491  | 432<br>497               | 439<br>504             | 445<br>510              | 452<br>517         | 458<br>523                     | 465<br>530  | 471<br>536          |
| 69         | 543           | 549                    | 556         | 562                      | 569                    | 575                     | 582                | 588                            | 595         | 601                 |
| 670        | 607           | 614                    | 620         | 627                      | 633                    | 640                     | 646                | 653                            | 659         | 666                 |
| 71<br>72   | 672<br>737    | 679<br>743             | 685<br>750  | 692<br>756               | 698<br>763             | 705<br>769              | 71 <b>1</b><br>776 | 718<br>782                     | 724<br>789  | 730<br>795          |
| 73         | 802           | 808                    | 814         | 821                      | 827                    | 834                     | 840                | 847                            | 853         | 860                 |
| 74         | 866           | 872                    | 879         | 885                      | 892                    | 898                     | 905                | 911                            | 918         | 924                 |
| 75<br>76   | 930<br>995    | 937<br>*00 <b>1</b>    | 943<br>*008 | 9 <del>5</del> 0<br>*014 | 956<br>*020            | 963<br>*027             | 969<br>*033        | 975<br>*040                    | 982<br>*046 | 988                 |
| i i        |               |                        |             |                          |                        |                         |                    |                                |             | *052                |
| 77<br>78   | 83 059<br>123 | 065<br>129             | 072<br>136  | 078<br>142               | 08 <del>5</del><br>149 | $091 \\ 15\overline{5}$ | 097.<br>161        | 104<br>168                     | 110<br>174  | 117<br>181          |
| 79         | 187           | 193                    | 200         | 206                      | 213                    | 219                     | 225                | 232                            | 238         | 245                 |
| 680        | 251           | 257                    | 264         | 270                      | 276                    | 283                     | 289                | 296                            | 302         | 308                 |
| 81<br>82   | 315<br>378    | 321<br>385             | 327<br>391  | 334<br>398               | 340<br>404             | 347<br>410              | 353<br>417         | 359<br>423                     | 366<br>429  | 372<br>436          |
| 83 *       | 442           | 448                    | 455         | 461                      | 467                    | 474                     | 480                | 487                            | 493         | 499                 |
| 84         | 506           | 512                    | 518         | 525                      | 531                    | 537                     | 544                | 550                            | 556         | 563                 |
| 85<br>86   | 569<br>632    | 575<br>639             | 582<br>645  | 588<br>651               | 594<br>658             | 601<br>664              | 607<br>670         | 613<br>677                     | 620<br>683  | 626<br>689          |
|            |               |                        |             |                          |                        |                         |                    |                                |             | 1                   |
| 87<br>88   | 696<br>759    | 702<br>765             | 708<br>771  | 71 <del>5</del><br>778   | 721<br>784             | 727<br>790              | 734<br>797         | 740<br>803                     | 746<br>809  | 753<br>816          |
| 89         | 822           | 828                    | 835         | 841                      | 847                    | 853                     | 860                | 866                            | 872         | 879                 |
| 390        | 885           | 891                    | 897         | 904                      | 910                    | 916                     | 923                | 929                            | 935         | 942                 |
| 91<br>92   | 948<br>84 011 | 954<br>017             | 960<br>023  | 967<br>029               | 973<br>036             | 979<br>042              | 985<br>048         | 99 <u>2</u><br>05 <del>5</del> | 998<br>061  | *004<br>067         |
| 93         | 073           | 080                    | 086         | 092                      | 098                    | 105                     | 111                | 117                            | 123         | 130                 |
| 94         | 136           | 142                    | 148         | 155                      | 161                    | 167                     | 173                | 180                            | 186         | 192                 |
| 95<br>96   | 198<br>261    | 20 <del>5</del><br>267 | 211<br>273  | 217<br>280               | 223<br>286             | 230<br>292              | 236<br>298         | 242<br>305                     | 248<br>311  | 255<br>317          |
| 1 1        |               |                        |             |                          |                        |                         |                    |                                |             |                     |
| 97<br>98   | 323<br>386    | 330<br>392             | 336<br>398  | 342<br>404               | 348<br>410             | 354<br>417              | 361<br>423         | 367<br>429                     | 373<br>435  | 379<br>442          |
| 99         | 448           | 454                    | 460         | 466                      | 473                    | 479                     | 485                | 491                            | 497         | 504                 |
| 700        | 510           | 516                    | 52 <b>2</b> | 528                      | 535                    | 541                     | 547                | 553                            | 559         | 566                 |
| N.         | 0             | 1                      | 2           | 3                        | 4                      | 5                       | 6                  | 7                              | 8           | 9                   |

| N.                   | 0                 | 1                      | 2                          | 3          | 4               | 5           | 6                       | 7                          | 8                      | 9           |
|----------------------|-------------------|------------------------|----------------------------|------------|-----------------|-------------|-------------------------|----------------------------|------------------------|-------------|
| 700                  | 84 510            | 516                    | 522                        | 528        | 53 <del>5</del> | 541         | 547                     | 553                        | 559                    | 566         |
| 01                   | 572               | 578                    | 584                        | 590        | 597             | 603         | 609<br>671              | 615                        | 621                    | 628<br>689  |
| 02<br>03             | 634<br>696        | 640<br>702             | 646<br>708                 | 652<br>714 | 658<br>720      | 665<br>726  | 733                     | 677<br>739                 | 683<br>745             | 751         |
| 04<br>05             | 757<br>819        | 763<br>825             | 770<br>831                 | 776<br>837 | 782<br>844      | 788<br>850  | 794<br>856              | 800<br>862                 | 807<br>868             | 813<br>874  |
| 06                   | 880               | 887                    | 893                        | 899        | 905             | 911         | 917                     | 924                        | 930                    | 936         |
| 07<br>08             | 942<br>85 003     | 948<br>009             | 954<br>016                 | 960<br>022 | 967<br>028      | 973<br>034  | 979<br>040              | 985<br>046                 | 991<br>052             | 997<br>058  |
| 09<br><b>710</b>     | $\frac{065}{126}$ | 071<br>132             | 077<br>138                 | 083<br>144 | 089<br>150      | 095<br>156  | 101                     | 107                        | 114<br>175             | 120<br>181  |
| 11                   | 187               | 193                    | 199                        | 205        | 211             | 217         | 224                     | 230                        | 236                    | 242         |
| 12<br>13             | 248<br>309        | 254<br>315             | 260<br>321                 | 266<br>327 | 272<br>333      | 278<br>339  | 28 <del>5</del><br>345  | 291<br>352                 | 297<br>358             | 303<br>364  |
| 14                   | 370               | 376                    | 382                        | 388        | 394             | 400         | 406                     | 412                        | 418                    | 425         |
| 15<br>16             | 431<br>491        | 437<br>497             | 443<br>503                 | 449<br>509 | 455<br>516      | 461<br>522  | 467<br>528              | 473<br>534                 | 479<br>540             | 485<br>546  |
| 17                   | 552               | 558                    | 564                        | 570        | 576             | 582         | 588                     | 594                        | 600                    | 606         |
| 18<br>19             | 612<br>673        | 618<br>679             | 62 <u>5</u><br>68 <u>5</u> | 631<br>691 | 637<br>697      | 643<br>703  | 649<br>709              | 655<br>715                 | 661<br>721             | 667<br>727  |
| 720                  | 733               | 739                    | 745                        | 751        | 757             | 763         | 769                     | 775                        | 781                    | 788         |
| 21                   | 794               | 800                    | 806                        | 812        | 818             | 824         | 830                     | 836                        | 842                    | 848         |
| 22<br>23             | 854<br>914        | 860<br>920             | 866<br>926                 | 932<br>932 | 938<br>938      | 884<br>944  | 890<br>9 <del>5</del> 0 | 896<br>956                 | 902                    | 908<br>968  |
| 24                   | 974<br>86 034     | 980<br>040             | 986<br>046                 | 992<br>052 | 998<br>058      | *004        | *010<br>070             | *016                       | *022<br>082            | *028<br>088 |
| 25<br>2 <del>6</del> | 094               | 100                    | 106                        | 112        | 118             | 064<br>124  | 130                     | 076<br>136                 | 141                    | 147         |
| 27                   | 153               | 159                    | 165                        | 171        | 177             | 183         | 189                     | 195                        | 201                    | 207         |
| 28<br>29             | 213<br>273        | 219<br>279             | 225<br>285                 | 231<br>291 | 237<br>297      | 243<br>303  | 249<br>308              | 25 <del>5</del><br>314     | 261<br>320             | 267<br>326  |
| 730                  | 332               | 338                    | 344                        | 350        | 356             | 362         | 368                     | 374                        | 380                    | 386         |
| 31                   | 392               | 390                    | 404                        | 410        | 415             | 421         | 427                     | 433                        | 439                    | 445         |
| 32<br>33             | 451<br>510        | 457<br>516             | 463<br>522                 | 469<br>528 | 475<br>534      | 481<br>540  | 487<br>546              | 493<br>552                 | 499<br>558             | 504<br>564  |
| 34                   | 570               | 576                    | 581                        | 587        | 593             | 599         | 605                     | 611                        | 617                    | 623         |
| 35<br>36             | 629<br>688        | 63 <del>5</del><br>694 | 641<br>700                 | 646<br>705 | 652<br>711      | 658<br>717  | 664<br>723              | 670<br>729                 | 676<br>735             | 682<br>741  |
| 37                   | 747               | 753                    | 759                        | 764        | 770             | 776         | 782                     | 788                        | 794                    | 800         |
| 38<br>39             | 806<br>864        | 812<br>870             | 817<br>876                 | 823<br>882 | 829<br>888      | 835<br>894  | 841<br>900              | 847<br>906                 | 853<br>911             | 859<br>917  |
| 740                  | 923               | 929                    | 935                        | 941        | 947             | 953         | 958                     | 964                        | 970                    | 976         |
| 41                   | 982               | 988                    | 994                        | 999        | *005            | *011        | *017                    | *023                       | *029                   | *035        |
| 42<br>43             | 87 040<br>099     | 046<br>105             | 052<br>111                 | 058<br>116 | 064<br>122      | 070<br>128  | 075<br>134              | 081<br>140                 | 087<br>146             | 093<br>151  |
| 44                   | 157               | 163                    | 169                        | 175        | 181             | 18 <u>6</u> | 192                     | 198                        | 204                    | 210         |
| 45<br>46             | 216<br>274        | 221<br>280             | 227<br>286                 | 233<br>291 | 239<br>297      | 245<br>303  | 251<br>309              | 25 <u>6</u><br>31 <u>5</u> | 262<br>320             | 268<br>326  |
| 47                   | 332               | 338                    | 344                        | 349        | 355             | 361         | 367                     | 373                        | 379                    | 384         |
| 48<br>49             | 390<br>448        | 396<br>454             | 402<br>460                 | 408        | 413<br>471      | 419<br>477  | 42 <del>5</del><br>483  | 431<br>489                 | 437<br>49 <del>5</del> | 442<br>500  |
| 750                  | 506               | 512                    | 518                        | 523        | 529             | 535         | 541                     | 547                        | 552                    | 558         |
| N.                   | 0                 | 1                      | 2                          | 3          | 4               | 5           | 6                       | 7                          | 8                      | 9           |

| N.               | 0                      | 1                            | 2          | 3          | 4                      | 5           | 6           | 7           | ′8          | 9           |
|------------------|------------------------|------------------------------|------------|------------|------------------------|-------------|-------------|-------------|-------------|-------------|
| 750              | 87 506                 | 512                          | 518        | 523        | 529                    | 535         | 541         | 547         | 552         | 558         |
| 51<br>52         | 564<br>622             | 570<br>628                   | 576<br>633 | 581<br>639 | 587<br>645             | 593<br>651  | 599<br>656  | 604<br>662  | 610<br>668  | 616<br>674  |
| 53               | 679                    | 685                          | 691        | 697        | 703                    | 708         | 714         | 720         | 726         | 731         |
| 54               | 737                    | 743                          | 749        | 754        | 760                    | 766         | 772         | 777         | 783         | 789         |
| 55<br>56         | 795<br>852             | 800<br>858                   | 806<br>864 | 812<br>869 | 818<br>875             | 823<br>881  | 829<br>887  | 835<br>892  | 841<br>898  | 846<br>904  |
| 57               | 910                    | 915                          | 921        | 927        | 933                    | 938         | 944         | 950         | 955         | 961         |
| 58<br>59         | 967<br>88 024          | 973<br>030                   | 978<br>036 | 984<br>041 | 990<br>047             | 996<br>053  | *001<br>058 | *007<br>064 | *013<br>070 | *018<br>076 |
| 760              | 081                    | 087                          | 093        | 098        | 104                    | 110         | 116         | 121         | 127         | 133         |
| 61               | 138                    | 144                          | 150        | 156        | 161                    | 167         | 173         | 178         | 184         | 190         |
| 62<br>63         | 195<br>252             | 201<br>258                   | 207<br>264 | 213<br>270 | 218<br>275             | 224<br>281  | 230<br>287  | 235<br>292  | 241<br>298  | 247<br>304  |
| 64               | 309                    | 315                          | 321        | 326        | 332                    | 338         | 343         | 349         | 355         | 360         |
| 65               | 366                    | 372                          | 377        | 383        | 389                    | 395         | 400         | 406         | 412         | 417         |
| 66               | 423                    | 429                          | 434        | 440        | 446                    | 451         | 457         | 463         | 468         | 474         |
| 67<br>68         | 480<br>536             | 485<br>542                   | 491<br>547 | 497<br>553 | 502<br>559             | 508<br>564  | 513<br>570  | 519<br>576  | 525<br>581  | 530<br>587  |
| 69<br>770        | 593                    | 598                          | 604        | 610        | 615                    | 621         | 627         | 632         | 638         | 643         |
| 770<br>71        | 649<br>705             | $\frac{65\overline{5}}{711}$ | 660<br>717 | 666<br>722 | 672<br>728             | 677<br>734  | 683<br>739  | 689<br>745  | 694<br>750  | 700<br>756  |
| 72               | 762                    | 767                          | 773        | 779        | 784                    | 790         | 795         | 801         | 807         | 812         |
| 73               | 818                    | 824                          | 829        | 835        | 840                    | 846         | 852         | 857         | 863         | 868         |
| 74<br>75         | 874<br>930             | 880<br>936                   | 885<br>941 | 891<br>947 | 897<br>953             | 902<br>958  | 908<br>964  | 913<br>969  | 919<br>975  | 925<br>981  |
| 76               | 986                    | 992                          | 997        | *003       | *009                   | *014        | *020        | *025        | *031        | *037        |
| 77               | 89 042                 | 048                          | 053        | 059        | 064                    | 070         | 076         | 081         | 087         | 092         |
| 78<br>79         | 098<br>154             | 104<br>159                   | 109<br>165 | 115<br>170 | 120<br>176             | 126<br>182  | 131<br>187  | 137<br>193  | 143<br>198  | 148<br>204  |
| 780              | 209                    | 215                          | 221        | 226        | 232                    | 237         | 243         | 248         | 254         | 260         |
| 81<br>82         | 265<br>321             | 271<br>326                   | 276<br>332 | 282<br>337 | 287<br>343             | 293<br>348  | 298<br>354  | 304<br>360  | 310<br>365  | 315<br>371  |
| 83               | 376                    | 382                          | 387        | 393        | 398                    | 404         | 409         | 415         | 421         | 426         |
| 84               | 432                    | 437                          | 443        | 448        | 454                    | 459         | 465         | 470         | 476         | 481         |
| 85<br>86         | 487<br>542             | 492<br>548                   | 498<br>553 | 504<br>559 | 509<br>564             | 515<br>570  | 520<br>575  | 526<br>581  | 531<br>586  | 537<br>592  |
|                  |                        |                              |            |            |                        |             |             |             |             |             |
| 87<br>88         | 597<br>653             | 603<br>658                   | 609<br>664 | 614<br>669 | 620<br>675             | 625<br>680  | 631<br>686  | 636<br>691  | 642<br>697  | 647<br>702  |
| 89               | 708                    | 713                          | 719        | 724        | 730                    | 735         | 741         | 746         | 752         | 757         |
| <b>790</b><br>91 | 763                    | 768<br>823                   | 774<br>829 | 779<br>834 | 78 <del>5</del><br>840 | 790<br>845  | 796<br>851  | 801<br>856  | 807<br>862  | 812<br>867  |
| 92               | 873                    | 878                          | 883        | 889        | 894                    | 900         | 905         | 911         | 916         | 922         |
| 93               | 927                    | 933                          | 938        | 944        | 949                    | 955         | 960         | 966         | 971         | 977         |
| 94<br>95         | 982<br>90 037          | 988<br>042                   | 993<br>048 | 998<br>053 | *004<br>059            | *009<br>064 | *015<br>069 | *020<br>075 | *026<br>080 | *031<br>086 |
| 96               | 091                    | 097                          | 102        | 108        | 113                    | 119         | 124         | 129         | 135         | 140         |
| 97               | 146                    | 151                          | 157        | 162        | 168                    | 173         | 179         | 184         | 189         | 195         |
| 98<br>99         | 200<br>25 <del>5</del> | 206<br>260                   | 211<br>266 | 217<br>271 | 222<br>276             | 227<br>282  | 233<br>287  | 238<br>293  | 244<br>298  | 249<br>304  |
| 800              | 309                    | 314                          | 320        | 325        | 331                    | 336         | 342         | 347         | 352         | 358         |
| N.               | 0                      | 1                            | 2          | 3          | 4                      | 5           | 6           | 7           | 8           | 9           |

| N.               | 0             | 1                      | 2          | 3          | 4                       | 5                            | 6          | 7          | 8           | 9                       |
|------------------|---------------|------------------------|------------|------------|-------------------------|------------------------------|------------|------------|-------------|-------------------------|
| 800              | 90 309        | 314                    | 320        | 325        | 331                     | 336                          | 342        | 347        | 352         | 358                     |
| 01<br>02         | 363<br>417    | 369<br>423             | 374<br>428 | 380<br>434 | 385<br>439              | 390<br>445                   | 396<br>450 | 401<br>455 | 407<br>461  | 412<br>466              |
| 03               | 472           | 477                    | 482        | 488        | 493                     | 499                          | 504        | 509        | 515         | 520                     |
| 04               | 526           | 531                    | 536        | 542        | 547                     | 553                          | 558        | 563        | 569         | 574                     |
| 05<br>06         | 580<br>634    | 58 <del>5</del><br>639 | 590<br>644 | 596<br>650 | 60 <b>1</b><br>655      | 607<br>660                   | 612<br>666 | 617<br>671 | 623<br>677  | 628<br>682              |
| 07               | 687           | 693                    | 698        | 703        | 709                     | 714                          | 720        | 725        | 730         | 736                     |
| 08<br>09         | 741<br>795    | 747<br>800             | 752<br>806 | 757<br>811 | 763<br>816              | 768<br>822                   | 773<br>827 | 779<br>832 | 784<br>838  | 789<br>843              |
| 810              | 849           | 854                    | 859        | 865        | 870                     | 875                          | 881        | 886        | 891         | 897                     |
| 11<br>12         | 902<br>956    | 907<br>961             | 913<br>966 | 918<br>972 | 924<br>977              | 929<br>982                   | 934<br>988 | 940<br>993 | 945<br>998  | 950<br>*004             |
| 13               | 91 009        | 014                    | 020        | 025        | .030                    | 036                          | 041        | 046        | 052         | 057                     |
| 14<br>15         | 062<br>116    | 068<br>121             | 073<br>126 | 078<br>132 | 084<br>137              | 089 ·<br>142                 | 094<br>148 | 100<br>153 | 105<br>158  | 110<br>164              |
| 16               | 169           | 174                    | 180        | 185        | 190                     | 196                          | 201        | 206        | 212         | 217                     |
| 17               | 222           | 228                    | 233        | 238        | 243                     | 249                          | 254        | 259        | 265         | 270                     |
| 18<br>19         | 275<br>328    | 281<br>334             | 286<br>339 | 291<br>344 | 297<br>3 <del>5</del> 0 | $\frac{302}{35\overline{5}}$ | 307<br>360 | 312<br>365 | 318<br>371  | 323<br>376              |
| 820<br>21        | 381<br>434    | 387                    | 392<br>445 | 397<br>450 | 403<br>455              | 408<br>461                   | 413        | 418        | 424         | 429                     |
| 22               | <b>4</b> 87   | 492                    | 498        | 503        | 508                     | 514                          | 466<br>519 | 524        | 477<br>529  | 535                     |
| 23               | 540           | 545                    | 551        | 556        | 561                     | 566                          | 572        | 577        | 582         | 587                     |
| 24<br>25         | 593<br>645    | 598<br>651             | 603<br>656 | 609<br>661 | 614<br>666              | 619<br>672                   | 624<br>677 | 630<br>682 | 635         | 640<br>693              |
| 26               | 698           | 703                    | 709        | 714        | 719                     | 724                          | 730        | 735        | 740         | 745                     |
| 27<br>28         | 751<br>803    | 756<br>808             | 761<br>814 | 766<br>819 | 772<br>824              | 777<br>829                   | 782<br>834 | 787<br>840 | 793<br>845  | 798<br>850              |
| 29               | 855           | 861                    | 866        | 871        | 876                     | 882                          | 887        | 892        | 897         | 903                     |
| <b>830</b><br>31 | 908<br>960    | 913<br>965             | 918<br>971 | 924        | 929                     | 934<br>986                   | 939<br>991 | 944        | 950<br>*002 | 95 <del>5</del><br>*007 |
| 32<br>33         | 92 012<br>065 | 018<br>070             | 023<br>075 | 028<br>080 | 033<br>085              | 038<br>091                   | 044<br>096 | 049<br>101 | 054<br>106  | 059<br>111              |
| 34               | 117           | 122                    | 127        | 132        | 137                     | 143                          | 148        | 153        | 158         | 163                     |
| 35               | 169           | 174                    | 179        | 184        | 189                     | 195                          | 200        | 205        | 210         | 215                     |
| 36               | 221           | 226                    | 231        | 236        | 241                     | 247                          | 252        | 257        | 262         | 267                     |
| 37<br>38         | 273<br>324    | 278<br>330             | 283<br>335 | 288<br>340 | 293<br>345              | 298<br>350                   | 304<br>355 | 309<br>361 | 314         | 319<br>371              |
| 39<br><b>840</b> | 376<br>428    | 381<br>433             | 387        | 392<br>443 | 397<br>449              | 402<br>454                   | 407        | 412        | 418         | 423                     |
| 41               | 480           | 485                    | 438        | 495        | 500                     | 505                          | 459<br>511 | 464<br>516 | 469<br>521  | 526                     |
| 42<br>43         | 531<br>583    | 536<br>588             | 542<br>593 | 547<br>598 | 552<br>603              | 557<br>609                   | 562<br>614 | 567<br>619 | 572<br>624  | 578<br>629              |
| 44               | 634           | 639                    | 645        | 650        | 655                     | 660                          | 665        | 670        | 675         | 681                     |
| 45<br>46         | 686<br>737    | 691<br>742             | 696<br>747 | 701<br>752 | 706<br>758              | 711<br>763                   | 716<br>768 | 722<br>773 | 727<br>778  | 732<br>783              |
|                  |               |                        |            | ĺ          |                         |                              |            |            |             |                         |
| 47<br>48         | 788<br>840    | 793<br>845             | 799<br>850 | 804<br>855 | 809<br>860              | 814<br>865                   | 819<br>870 | 824<br>875 | 829<br>881  | 834<br>886              |
| 49<br><b>850</b> | 891<br>942    | 896<br>947             | 901        | 906        | 911                     | 916<br>967                   | 921        | 927<br>978 | 932         | 937                     |
| N.               | 0             | 1                      | 2          | 3          | 4                       | 5                            | 6          | 7          | 8           | 9                       |
| 74.0             |               |                        |            | 1          | 99.7                    | _ <u></u>                    |            | •          | 0           | 9                       |

|                  |                                   |                        |                    | 3           | 4           | 5                      | 6           | 7                  | 8                      | 9                      |
|------------------|-----------------------------------|------------------------|--------------------|-------------|-------------|------------------------|-------------|--------------------|------------------------|------------------------|
| 850              | 92 942                            | 947                    | 952                | 957         | 962         | 967                    | 973         | 978                | 983                    | 988                    |
| 51               | 993                               | 998                    | *003               | *008        | *013        | *018                   | *024        | *029               | *034                   | *039                   |
| 52<br>53         | 93 04 <u>4</u><br>09 <del>5</del> | 049<br>100             | 054<br>105         | 059<br>110  | 064<br>115  | 069<br>120             | 075<br>125  | 080<br>131         | 085<br>136             | 090<br>141             |
|                  | 140                               |                        |                    | 101         |             |                        |             |                    | '                      |                        |
| 54<br>55         | 146<br>197                        | 151<br>202             | 156<br>207         | 161<br>212  | 166<br>217  | 171<br>222             | 176<br>227  | 181<br>232         | 186<br>237             | 192<br>242             |
| 56               | 247                               | 252                    | 258                | 263         | 268         | 273                    | 278         | 283                | 288                    | 293                    |
| 57               | 298                               | 303                    | 308                | 313         | 318         | 323                    | 328         | 334                | 339                    | 344                    |
| 58<br>59         | 349<br>399                        | 354                    | 359<br>409         | 364<br>414  | 369<br>420  | 374<br>42 <del>5</del> | 379         | 384                | 389<br>440             | 394<br>44 <del>5</del> |
| 860              | 450                               | 404<br>45 <del>5</del> | 460                | 465         | 470         | 475                    | 430         | 435                | 490                    | 495                    |
| 61               | 500                               | 505                    | 510                | 515         | 520         | 526                    | 531         | 536                | 541                    | 546                    |
| 62               | 55 <b>1</b><br>60 <b>1</b>        | 556                    | 561<br><b>611</b>  | 566         | 571         | 576                    | 581         | 586                | 591                    | 596                    |
| 63               |                                   | 606                    | 011                | 616         | 621         | 626                    | 631         | 636                | 641                    | 646                    |
| 64<br>65         | 651<br>702                        | 656<br>707             | 661<br>712         | 666<br>717  | 671<br>722  | 676<br>727             | 682<br>732  | 687<br>737         | 692<br>742             | 697<br>747             |
| 66               | 752                               | 757                    | 762                | 767         | 772         | 777                    | 782         | 787                | 792                    | 797                    |
| 67               | 802                               | 807                    | 812                | 817         | 822         | 827                    | 832         | 837                | 842                    | 847                    |
| 68               | <b>8</b> 52                       | 857                    | 862                | 867         | 872         | 877                    | 882         | 887                | 892                    | 897                    |
| 69<br><b>870</b> | 902                               | 907                    | 912                | 917         | 922         | 927                    | 932         | 937                | 942                    | 947                    |
| 71               | 952<br>94 002                     | 957                    | 962                | 967<br>017  | 972         | 977                    | 982         | 987                | 992                    | 997                    |
| 72               | 052                               | 057                    | 062                | 067         | 072         | 077                    | 082         | 086                | 091                    | 096                    |
| 73               | 101                               | 106                    | 111                | 116         | 121         | 126                    | 131         | 136                | 141                    | 146                    |
| 74               | 151                               | 156                    | 161                | 166         | 171         | 176                    | 181         | 186                | 191                    | 196                    |
| 75<br>76         | 201<br>250                        | 206<br>255             | 211<br>260         | 216<br>265  | 221<br>270  | 226<br>275             | 231<br>280  | 236<br>285         | 240<br>290             | 245<br>295             |
|                  |                                   |                        |                    |             |             |                        |             |                    |                        |                        |
| 77<br>78         | 300<br>349                        | 305<br>354             | 310<br>359         | 315<br>364  | 320<br>369  | 325<br>374             | 330<br>379  | 335<br>384         | 340<br>389             | 345<br>394             |
| <b>7</b> 9       | 399                               | 404                    | 409                | 414         | 419         | 424                    | _429        | 433                | 438                    | 443                    |
| 880              | 448                               | 453                    | 458                | 463         | 468         | 473<br>522             | 478         | 483                | 488<br>537             | 493<br>542             |
| 81<br>82         | 498<br>547                        | 503<br>55 <b>2</b>     | 507<br>55 <b>7</b> | 512<br>562  | 517<br>567  | 571                    | 527<br>576  | 532<br>58 <b>1</b> | 586                    | 591                    |
| 83               | 596                               | 601                    | 606                | 611         | 616         | 621                    | 626         | 630                | 635                    | 640                    |
| 84               | 645                               | 650                    | 655                | 660         | 665         | 670                    | 675         | 680                | 685                    | 689.                   |
| 85<br>86         | 694<br><b>743</b>                 | 699<br>748             | 704<br>753         | 709<br>758  | 714<br>763  | 719<br>768             | 724<br>773  | 729<br>778         | 734<br>783             | 738<br>787             |
|                  |                                   |                        |                    |             |             |                        |             |                    |                        |                        |
| 87<br>88         | 792<br>841                        | 797<br>846             | 802<br>851         | 807<br>856  | 812<br>861  | 817<br>866             | 822<br>871  | 827<br>876         | 832<br>880             | 836<br>885             |
| 89               | 890                               | 895                    | 900                | 905         | 910         | 915                    | 919         | 924                | 929                    | 934                    |
| 890              | 939                               | 944                    | 949                | 954         | 959         | 963                    | 968         | 973                | 978                    | 983                    |
| 91<br>92         | 988<br>95 036                     | 993<br>041             | 998<br>046         | *002<br>051 | *007<br>056 | *012<br>061            | *017<br>066 | *022<br>071        | *027<br>075            | *032<br>080            |
| 93               | 085                               | 090                    | 095                | 100         | 105         | 109                    | 114         | 119                | 124                    | 129                    |
| 94               | 134                               | 139                    | 143                | 148         | 153         | 158                    | 163         | 168                | 173                    | 177                    |
| 95               | <b>1</b> 82                       | 187                    | 192                | 197         | 202         | 207                    | 211         | 216                | 221                    | 226                    |
| 96               | 231                               | <b>2</b> 36            | 240                | 245         | 250         | 255                    | 260         | 265                | 270                    | 274                    |
| 97               | 279                               | 284                    | 289                | 294         | 299         | 303                    | 308         | 313                | 318                    | 323                    |
| 98<br>99         | 328<br>376                        | 332<br>381             | 337<br>386         | 342<br>390  | 347<br>395  | 352<br>400             | 357<br>405  | 361<br>410         | 366<br>41 <del>5</del> | 371<br>419             |
| 900              | 424                               | 429                    | 434                | 439         | 444         | 448                    | 453         | 458                | 463                    | 468                    |
| N.               | · · O                             | 1                      | 2                  | 3           | 4           | - 5                    | 6           | 7                  | 8                      | 9                      |

| 900 95 424 429 434 439 444 448 453 458 468 468 468 01 472 477 482 487 492 497 501 506 511 516 516 02 521 525 530 535 540 545 550 554 559 564 03 569 574 578 583 588 593 598 602 607 612 04 617 622 626 631 636 641 646 650 655 670 674 679 684 689 694 698 703 708 606 713 718 722 727 732 737 742 746 751 756 671 771 771 772 772 772 772 772 772 774 746 751 756 771 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 774 746 751 756 774 746 751 756 774 746 751 756 774 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 756 744 746 751 754 746 751 756 744 746 751 754 746 751 756 744 746 751 754 746 751 756 744 751 754 746 751 756 744 751 754 746 751 756 744 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 751 754 746 746 751 754 746 746 746 746 746 746 746 746 746 74 | N.  | 0                         | 1   | 2   | 3    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   | 6   | 7   | 8   | 9   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------|-----|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| 02         521         525         530         535         540         545         550         554         559         564         662         607         607         612           04         617         622         626         631         636         641         646         650         655         660           05         665         670         674         679         684         889         694         698         703         708           06         713         718         722         727         732         737         742         746         751         756           08         809         813         818         823         828         832         837         842         847         852           990         866         861         866         871         875         880         885         890         895         899           910         904         909         914         918         923         928         933         393         842         294         911         195         999         904         909         905         995         999         905         996         909                                                                                                                                                                                                                                                                                                                | 900 | 95 424                    | 429 | 434 | 439  | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 448 | 453 | 458 | 463 | 468 |
| 03         569         574         578         583         588         593         598         602         607         612           04         617         622         628         631         636         641         646         650         655         660           05         665         670         674         679         684         689         694         698         703         708           06         713         718         722         727         732         737         742         746         751         786           07         761         766         770         775         780         785         789         794         799         804           08         809         881         818         823         832         832         832         832         832         832         895         899           910         904         909         914         918         923         928         933         938         942         947           11         952         967         961         966         971         976         980         985         990         985         930 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                              |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 04         617         622         626         631         636         641         646         650         655         665           05         665         670         674         679         684         689         694         698         703         708           06         713         718         722         727         732         737         742         746         751         786           07         761         766         770         775         780         785         789         794         799         804           08         809         813         818         823         828         837         842         847         852           90         856         861         866         871         875         880         885         890         885         890         885         890         895         991         942         947         11         952         957         961         966         971         976         980         985         990         995         194         11         199         904         4019         114         118         123         128         123         128                                                                                                                                                                                                                                                                                                        |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 06         713         718         722         727         732         737         742         746         751         756           07         761         766         770         775         780         785         789         794         799         804           08         809         813         818         823         828         832         837         847         852           99         804         909         914         918         923         928         933         938         942         947           11         952         957         961         966         971         976         980         985         990         995           12         999         9004         4099         914         4019         114         118         123         128         999         995           12         999         9004         4009         114         118         123         128         993         995           14         095         099         104         109         114         118         123         128         133         137         122         126         121         150                                                                                                                                                                                                                                                                                                                        |     | i                         |     | !   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1   | ĺ   |     |     |
| 07         761         766         770         775         780         785         789         794         799         804           08         809         813         818         823         828         832         837         842         847         852           990         904         909         914         918         923         928         933         938         942         947           11         952         957         961         966         971         976         980         985         990         955           12         999         *004         *009         *014         *019         *023         *228         *033         *038         942         947           13         96         47         052         057         061         066         071         076         080         085         990         955           14         095         099         104         109         114         118         123         128         133         137         132         227         232           17         237         242         246         251         256         261         1                                                                                                                                                                                                                                                                                                                        |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 88         809         813         818         823         828         832         837         842         847         847         885         890         895         895         895         895         895         895         895         895         895         895         895         895         895         890         995         990         994         909         914         918         923         928         933         938         942         947           11         952         957         961         966         971         976         980         985         990         995           12         999         *004         *009         *014         *019         *023         *028         *033         *038         *042           14         095         099         104         109         114         118         123         128         133         137         125           16         190         194         199         204         209         243         218         228         246         251         256         261         265         270         275         280           18         284                                                                                                                                                                                                                                                                                                          | 06  | 713                       | 718 | 722 | 727  | 732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 737 | 742 | 746 | 751 | 756 |
| 910         856         861         866         871         875         880         885         890         885         899           910         904         909         914         918         923         928         933         938         942         947           11         952         957         961         966         971         976         980         985         990         995           12         999         *004         *009         *014         *019         #023         *028         *933         *808         *808           14         095         099         104         109         114         *118         *123         *128         *133         *133         *137         *135         *16         *142         *147         *152         *156         *161         *161         *171         *175         *180         *182         *242         *246         *251         *256         *261         *265         *270         *275         *280           17         237         242         246         251         256         *261         *265         *270         *275         *280           18         284 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>                                                                                                                                                                            |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     | 1   |     |
| 910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 12         999         *004         *002         057         061         066         071         076         080         085         *090           14         095         099         104         109         114         113         123         128         133         135           15         142         147         152         156         161         166         171         175         180         185           16         190         194         199         204         209         243         218         223         227         232           17         237         242         246         251         256         261         265         270         275         280           19         332         336         341         346         350         355         360         365         369         327           920         379         384         388         393         398         402         407         412         417         421           21         426         431         435         440         445         450         454         459         464         468           22 <th>910</th> <td>904</td> <td>909</td> <td>914</td> <td>918</td> <td>923</td> <td>928</td> <td>933</td> <td>938</td> <td>942</td> <td>947</td>                                                                                                                                                                                     | 910 | 904                       | 909 | 914 | 918  | 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 928 | 933 | 938 | 942 | 947 |
| 13         96 047         052         057         061         066         071         076         080         085         090           14         095         099         104         109         114         113         123         128         133         137           15         142         147         152         156         161         166         171         175         180         185           16         190         194         199         204         209         243         218         223         227         232           17         237         242         246         251         256         261         265         270         275         280           18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         350         355         360         365         369         374           920         379         384         383         393         402         407         412         417         421           21         462         431 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                      |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 14         095         099         104         109         114         118         123         128         133         137           15         142         147         152         156         161         166         171         175         180         185           16         190         194         199         204         209         213         218         223         227         232           17         237         242         246         251         256         261         265         270         275         280           18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         350         355         360         365         369         374           920         379         384         388         393         398         402         407         412         417         421           21         426         431         435         440         445         450         454         459         464         468           22         473                                                                                                                                                                                                                                                                                                                                       |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 15         142         147         152         156         161         166         171         175         180         185           16         190         194         199         204         209         213         218         223         227         232           17         237         242         246         251         256         261         265         270         275         280           18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         350         355         360         365         369         374           920         379         384         388         393         398         402         407         412         417         421         421         421         417         421         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         422         427         4                                                                                                                                                                                                                                                                                                        |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     | ľ   |     |     |
| 16         190         194         199         204         209         213         218         223         227         232           17         237         242         246         251         256         261         265         270         275         280           18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         355         360         365         369         374           920         379         384         388         393         398         402         407         412         417         421           21         426         431         435         440         445         450         454         459         464         468           222         473         478         483         487         492         497         501         506         511         515           23         520         525         530         534         539         544         548         553         558         562           24         567         572                                                                                                                                                                                                                                                                                                                                      |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         350         355         360         365         369         374           920         379         384         388         393         398         402         407         412         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         412         417         421         417         425         555         562         562         566         661         666         670         675         581         586         591         595         600         605         609         703           25         614                                                                                                                                                                                                                                                                                            |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 18         284         289         294         298         303         308         313         317         322         327           19         332         336         341         346         350         355         360         365         369         374           920         379         384         388         393         398         402         407         412         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         417         421         412         417         421         417         425         555         562         562         566         661         666         670         675         581         586         591         595         600         605         609         703         703         731         775                                                                                                                                                                                                                                                                                 | 17  | 237                       | 242 | 246 | 251  | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 261 | 265 | 270 | 275 | 280 |
| 920         379         384         388         393         398         402         407         412         417         421           21         426         431         435         440         445         450         454         459         464         468           22         473         478         483         487         492         497         501         506         511         515           23         520         525         530         534         539         544         548         553         558         562           24         567         572         577         581         586         591         595         600         605         665           26         661         666         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750           28         755         759         764         769         774         778         783         788         792         797           29         802                                                                                                                                                                                                                                                                                                                                       | 18  | 284                       | 289 | 294 | 298  | 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 308 | 313 | 317 | 322 | 327 |
| 21         426         431         435         440         445         450         454         459         464         468           22         473         478         483         487         492         497         501         506         511         515         515         520         525         530         534         539         544         548         553         558         562           24         567         572         577         581         586         591         595         600         605         609         25         614         619         624         628         633         638         642         647         652         656         26         661         666         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750         764         769         774         778         783         788         792         797         29         802         806         811         816         820         825         830         831 <td< th=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                           |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 22         473         478         483         487         492         497         501         506         511         515         528         520         525         530         534         539         544         548         553         558         562           24         567         572         577         581         586         591         595         600         605         609         25         614         619         624         628         633         638         642         647         652         656         656         2656         666         660         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750         299         802         806         811         816         820         825         830         834         839         844         930         848         853         858         862         867         872         876         881         86         890         31         385         906         965         970         974                                                                                                                                                                                                                                                                                    |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 24         567         572         577         581         586         591         595         600         605         609           25         614         619         624         628         633         638         642         647         652         656           26         661         666         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750           28         755         759         764         769         774         778         783         788         792         797           29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942                                                                                                                                                                                                                                                                                                                                       |     |                           |     | 483 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 25         614         619         624         628         633         638         642         647         652         656           26         661         666         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750           28         755         759         764         769         774         778         783         788         792         797           29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         932         932         932         932         932         932         932         932         932         932         932         932         934         930         941         949<                                                                                                                                                                                                                                                                                                                | 23  | 520                       | 525 | 530 | 534  | 539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 544 | 548 | 553 | 558 | 562 |
| 26         661         666         670         675         680         685         689         694         699         703           27         708         713         717         722         727         731         736         741         745         750           28         755         759         764         769         774         778         783         788         792         797           29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97                                                                                                                                                                                                                                                                                                                                 | 24  | 567                       | 572 | 577 | 581  | 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 591 | 595 | 600 | 605 | 609 |
| 27         708         713         717         722         727         731         736         741         745         750         759         764         769         774         778         783         788         792         797         29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97         035         039         044         049         053         058         063         067         072         077           35         081         086         090 <td< th=""><th></th><td></td><td>619</td><td>624</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                             |     |                           | 619 | 624 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 28         755         759         764         769         774         778         783         788         792         797           29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97 035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           36                                                                                                                                                                                                                                                                                                                                         | 26  | 661                       | 666 | 670 | 675  | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 685 | 689 | 694 | 699 | 703 |
| 29         802         806         811         816         820         825         830         834         839         844           930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97 035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           37         174         179         183         188         192         197         202         206         211         216           38                                                                                                                                                                                                                                                                                                                                         |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 930         848         853         858         862         867         872         876         881         886         890           31         895         900         904         909         914         918         923         928         932         937           32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97         035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38<                                                                                                                                                                                                                                                                                                                                |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 32         942         946         951         956         960         965         970         974         979         984           33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97 035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940                                                                                                                                                                                                                                                                                                                                         |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     | 890 |
| 33         988         993         997         *002         *007         *011         *016         *021         *025         *030           34         97         035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41<                                                                                                                                                                                                                                                                                                                                |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 34         97 035         039         044         049         053         058         063         067         072         077           35         081         086         090         095         100         104         109         114         118         123           36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                      |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 35         081         086         090         095         100         104         109         114         118         123           36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405         410         414         419         424         428         433         437         442         447           43         451                                                                                                                                                                                                                                                                                                                                       |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     | l   |     |     |
| 36         128         132         137         142         146         151         155         160         165         169           37         174         179         183         188         192         197         202         206         211         216           38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405         410         414         419         424         428         433         437         442         447           43         451         456         460         465         470         474         479         483         488         493           44         497                                                                                                                                                                                                                                                                                                                                       |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405         410         414         419         424         428         433         437         442         447           43         451         456         460         465         470         474         479         483         488         493           44         497         502         506         511         516         520         525         525         534         539           45         543         548         552         557         562         566         571         575         580         585           46         589                                                                                                                                                                                                                                                                                                                                       |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 38         220         225         230         234         239         243         248         253         257         262           39         267         271         276         280         285         290         294         299         304         308           940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405         410         414         419         424         428         433         437         442         447           43         451         456         460         465         470         474         479         483         488         493           44         497         502         506         511         516         520         525         529         534         539           45         543         548         552         557         562         566         571         575         580         585           46         589                                                                                                                                                                                                                                                                                                                                       | 37  | 174                       | 179 | 183 | -188 | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197 | 202 | 206 | 211 | 216 |
| 940         313         317         322         327         331         336         340         345         350         354           41         359         364         368         373         377         382         387         391         396         400           42         405         410         414         419         424         428         433         437         442         447           43         451         456         460         465         470         474         479         483         488         493           44         497         502         506         511         516         520         525         529         534         539           45         543         548         552         557         562         566         571         575         580         585           46         589         594         598         603         607         612         617         621         626         630           47         635         640         644         649         653         658         663         667         672         676           48         681                                                                                                                                                                                                                                                                                                                                       | 38  | 220                       | 225 | 230 | 234  | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 243 | 248 | 253 | 257 | 262 |
| 41       359       364       368       373       377       382       387       391       396       400         42       405       410       414       419       424       428       433       437       442       447         43       451       456       460       465       470       474       479       483       488       493         44       497       502       506       511       516       520       525       529       534       539         45       543       548       552       557       562       566       571       575       580       585         46       589       594       598       603       607       612       617       621       626       630         47       635       640       644       649       653       658       663       667       672       676         48       681       685       690       695       699       704       708       713       717       722         49       727       731       736       740       745       749       754       759       763       768                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |     |     |      | market and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sam |     |     |     |     |     |
| 42       405       410       414       419       424       428       433       437       442       447         43       451       456       460       465       470       474       479       483       488       493         44       497       502       506       511       516       520       525       529       534       539         45       543       548       552       557       562       566       571       575       580       585         46       589       594       598       603       607       612       617       621       626       630         47       635       640       644       649       653       658       663       667       672       676         48       681       685       690       695       699       704       708       713       717       722         49       727       731       736       740       745       749       754       759       763       768         950       772       777       782       786       791       795       800       804       809       813                                                                                                                                                                                                                                                                                                                                                                                                                               |     | Annual Control of Control |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 44     497     502     506     511     516     520     525     529     534     539       45     543     548     552     557     562     566     571     575     580     585       46     589     594     598     603     607     612     617     621     626     630       47     635     640     644     649     653     658     663     667     672     676       48     681     685     690     695     699     704     708     713     717     722       49     727     731     736     740     745     749     754     759     763     768       950     772     777     782     786     791     795     800     804     809     813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42  | 405                       | 410 | 414 | 419  | 424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 428 | 433 | 437 | 442 | 447 |
| 45         543         548         552         557         562         566         571         575         580         585           46         589         594         598         603         607         612         617         621         626         630           47         635         640         644         649         653         658         663         667         672         676           48         681         685         690         695         699         704         708         713         717         722           49         727         731         736         740         745         749         754         759         763         768           950         772         777         782         786         791         795         800         804         809         813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43  | 451                       | 456 | 460 | 465  | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 474 | 479 | 483 | 488 | 493 |
| 46       589       594       598       603       607       612       617       621       626       630         47       635       640       644       649       653       658       663       667       672       676         48       681       685       690       695       699       704       708       713       717       722         49       727       731       736       740       745       749       754       759       763       768         950       772       777       782       786       791       795       800       804       809       813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 47     635     640     644     649     653     658     663     667     672     676       48     681     685     690     695     699     704     708     713     717     722       49     727     731     736     740     745     749     754     759     763     768       950     772     777     782     786     791     795     800     804     809     813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 48     681     685     690     695     699     704     708     713     717     722       49     727     731     736     740     745     749     754     759     763     768       950     772     777     782     786     791     795     800     804     809     813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| 49     727     731     736     740     745     749     754     759     763     768       950     772     777     782     786     791     795     800     804     809     813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| <b>950</b> 772 777 782 786 791 795 800 804 809 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                           |     |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |
| N. 0 1 2 3 4 5 6 7 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                           |     |     |      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |     | 809 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N.  | 0                         | 1   | 2   | 3    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   | 6   | 7   | 8   | 9   |

| N.       | 0.                 | 1                   | 2          | 3                      | 4                      | 5                      | 6                   | 7           | 8                  | 9                      |
|----------|--------------------|---------------------|------------|------------------------|------------------------|------------------------|---------------------|-------------|--------------------|------------------------|
| 950      | 97 772             | 777                 | 782        | 786                    | 791                    | 795                    | 800                 | 804         | 809                | 813                    |
| 51<br>52 | 818<br>864         | 823<br>868          | 827<br>873 | 832<br>877             | 836<br>882             | 841<br>886             | 845<br>891          | 850<br>896  | 855<br>900         | 859<br>90 <del>5</del> |
| 53       | 909                | 914                 | 918        | 923                    | 928                    | 932                    | 937                 | 941         | 946                | 950                    |
| 54       | 95 <del>5</del>    | 959                 | 964        | 968                    | 973                    | 978                    | 982                 | 987         | 991                | 996                    |
| 55       | 98 000             | 005                 | 009        | 014                    | 019                    | 023                    | 028                 | 032         | 037                | 041                    |
| 56       | 046                | 050                 | 055        | 059                    | 064                    | 068                    | 073                 | 078         | 082                | 087                    |
| 57       | 091<br>137         | 096                 | 100        | 105                    | 109                    | 114                    | 118                 | 123         | 127                | 132<br>177             |
| 58<br>59 | 182                | 141<br>186          | 146<br>191 | 150<br>195             | 155<br>200             | 159<br>204             | 164<br>209          | 168<br>214  | 173<br>218         | 223                    |
| 960      | 227                | 232                 | 236        | 241                    | 245                    | 250                    | 254                 | 259         | 263                | 268                    |
| 61<br>62 | 272<br>318         | 277<br>322          | 281<br>327 | 286<br>331             | 290<br>336             | 29 <del>5</del><br>340 | 299<br>345          | 304<br>349  | 308<br>354         | 313<br>358             |
| 63       | 363                | 367                 | 372        | 376                    | 381                    | 385                    | 390                 | 394         | 399                | 403                    |
| 64       | 408                | 412                 | 417        | 421                    | 426                    | 430                    | 435                 | 439         | 444                | 448                    |
| 65       | 453                | 457                 | 462        | 466                    | 471                    | 475                    | 480<br>505          | 484         | 489                | 493                    |
| 66       | 498                | 502                 | 507        | 511                    | 516                    | 520                    | 525                 | 529         | 534                | 538                    |
| 67<br>68 | 543<br>588         | 547<br>592          | 552<br>597 | 556<br>601             | 56 <b>1</b><br>605     | 565<br>610             | 570<br>6 <b>1</b> 4 | 574<br>619  | 579<br>623         | 583<br>628             |
| 69       | 632                | 637                 | 641        | 646                    | 650                    | 655                    | 659                 | 664         | 668                | 673                    |
| 970      | 677                | 682                 | 686        | 691                    | 695                    | 700                    | 704                 | 709         | 713                | 717                    |
| 71<br>72 | 722<br>767         | 726<br>771          | 731<br>776 | 735<br>780             | 740<br>784             | 744<br>789             | 749<br>793          | 753<br>798  | 758<br>802         | 762<br>807             |
| 73       | 811                | 816                 | 820        | 825                    | 829                    | 834                    | 838                 | 843         | 847                | 851                    |
| 74       | 856                | 860                 | 865        | 869                    | 874                    | 878                    | 883                 | 887         | 892                | 896                    |
| 75       | 900                | 905                 | 909        | 914                    | 918                    | 923                    | 927                 | 932         | 936                | 941                    |
| 76       | 945                | 949                 | 954        | 958                    | 963                    | 967                    | 972                 | 976         | 981                | 985                    |
| 77<br>78 | 989<br>99 034      | 994<br>038          | 998<br>043 | *003<br>047            | *007<br>052            | *012<br>056            | *016<br>061         | *021<br>065 | *025<br>069        | *029<br>074            |
| 78<br>79 | 078                | 083                 | 043        | 092                    | 096                    | 100                    | 105                 | 109         | 114                | 118                    |
| 980      | 123                | 127                 | 131        | 136                    | 140                    | 145                    | 149                 | 154         | 158                | 162                    |
| 81<br>82 | 167<br>211         | 171<br>216          | 176<br>220 | 180<br>224             | 18 <del>5</del><br>229 | 189<br>233             | 193<br>238          | 198<br>242  | 202<br>247         | 207<br>251             |
| 83       | 255                | 260                 | 264        | 269                    | 273                    | 277                    | 282                 | 286         | 291                | 295                    |
| 84       | 300                | 304                 | 308        | 313                    | 317                    | 322                    | 326                 | 330         | 335                | 339                    |
| 85<br>86 | 344                | 348                 | 352        | 357                    | 361                    | 366<br>410             | 370<br>4 <b>1</b> 4 | 374<br>419  | 379<br>423         | 383<br>427             |
| 86       | 388                | 392                 | 396        | 401                    | 405                    | 410                    | 414                 | 419         |                    |                        |
| 87<br>88 | 432<br>476         | 436<br>480          | 441<br>484 | 44 <del>5</del><br>489 | 449<br>493             | 454<br>498             | 458<br>502          | 463<br>506  | 467<br>5 <b>11</b> | 471<br>5 <b>1</b> 5    |
| 89       | 520                | 524                 | 528        | 533                    | 537                    | 542                    | 546                 | 550         | 555                | 559                    |
| 990      | 564                | 568                 | 572        | 577                    | 581                    | 585                    | 590                 | 594         | 599                | 603                    |
| 91<br>92 | 607<br>65 <b>1</b> | 612<br>656          | 616<br>660 | 621<br>664             | 625<br>669             | 629<br>673             | 634<br>677          | 638<br>682  | 642<br>686         | 647<br>691             |
| 93       | 695                | 699                 | 704        | 708                    | 712                    | 717                    | 721                 | 726         | 730                | 734                    |
| 94       | 739                | 743                 | 747        | 752                    | 756                    | 760                    | 765                 | 769         | 774                | 778                    |
| 95       | 782                | 787                 | 791        | 795                    | 800                    | 804                    | 808                 | 813         | 817<br>86 <b>1</b> | 822<br>865             |
| 96       | 826                | 830                 | 835        | 839                    | 843                    | 848                    | 852                 | 856         |                    |                        |
| 97<br>98 | 870<br>913         | 874<br>9 <b>1</b> 7 | 878<br>922 | 883<br>926             | 887<br>930             | 891<br>935             | 896<br>939          | 900<br>944  | 904<br>948         | 909<br>952             |
| 99       | 957                | 961                 | 965        | 970                    | 974                    | 978                    | 983                 | 987         | 991                | 996                    |
| 1000     | 00 000             | 004                 | 009        | 013                    | 017                    | 022                    | 026                 | 030         | 035                | 039                    |
| N.       | 0                  | 1                   | 2          | 3                      | 4                      | 5                      | 6                   | 7           | 8                  | 9                      |

TABLE II

LOGS AND COLOGS OF CERTAIN MUCH-USED NUMBERS

| Number       | LOGARITHM | Cologarithm  |
|--------------|-----------|--------------|
| 2            | 0.3010300 | 9.6989700-10 |
| 3            | 0.4771213 | 9.5228787-10 |
| $\sqrt{2}$   | 0.1505150 | 9.8494850-10 |
| $\sqrt{3}$   | 0.2385607 | 9.7614393-10 |
| $\pi$        | 0.4971499 | 9.5028501-10 |
| $\pi^2$      | 0.9942997 | 9.0057003-10 |
| $2\pi$       | 0.7981799 | 9.2018201-10 |
| $\sqrt{\pi}$ | 0.2485749 | 9.7514251-10 |
| 57.2957795   | 1.7581226 | 8.2418774-10 |
| 206264.806   | 5.3144251 | 4.6855749-10 |

## FIVE PLACE

| 2            | 0.30103 | 9.69897-10 |
|--------------|---------|------------|
| 3            | 0.47712 | 9.52288-10 |
| $\sqrt{2}$   | 0.15052 | 9.84948-10 |
| $\sqrt{3}$   | 0.23856 | 9.76144-10 |
| $\pi$        | 0.49715 | 9.50285-10 |
| $\pi^2$      | 0.99430 | 9.00570-10 |
| $2\pi$       | 0.79818 | 9.20182-10 |
| $\sqrt{\pi}$ | 0.24857 | 9.75143-10 |
| 57.2957795   | 1.75812 | 8.24188-10 |
| 206264.806   | 5.31443 | 4.68557-10 |
|              | l       |            |

## FOUR PLACE

| 2            | 0.3010 | 9.6990-10 |
|--------------|--------|-----------|
| 3            | 0.4771 | 9.5229-10 |
| $\sqrt{2}$   | 0.1505 | 9.8495–10 |
| $\sqrt{3}$   | 0.2386 | 9.7614-10 |
| $\pi$        | 0.4971 | 9.5029-10 |
| $\pi^2$      | 0.9943 | 9.0057-10 |
| 2 π          | 0.7982 | 9.2018-10 |
| $\sqrt{\pi}$ | 0.2486 | 9.7514–10 |
| 57.2956695   | 1.7581 | 8.2419-10 |
| 206264.806   | 5.3144 | 4.6858-10 |
| 1            |        | 1         |

## TABLE III

## FIVE-PLACE LOGARITHMS

OF THE

SINE, COSINE, TANGENT, AND COTANGENT

 $\mathbf{FOR}$ 

EACH MINUTE OF THE QUADRANT

|             | ,                      | L. Sin.               | L. Tang.                         | L. Cotg.                         | L. Cos.                                      |                  |              |
|-------------|------------------------|-----------------------|----------------------------------|----------------------------------|----------------------------------------------|------------------|--------------|
|             |                        |                       |                                  |                                  |                                              |                  |              |
|             | 0<br>1                 | ∞<br>6.46 373         | ∞<br>6.46 373                    | ∞<br>3.53 627                    | 0.00 000<br>0.00 000                         | <b>60</b><br>59  |              |
|             | 2                      | 6.76 476              | 6.76 476                         | 3.23 524                         | 0.00 000                                     | 58               |              |
|             | 3<br>4                 | 6.94 085<br>7.06 579  | 6.94 085<br>7.06 579             | 3.05 915<br>2.93 421             | 0.00 000<br>0.00 000                         | 57<br>56         |              |
|             | 5                      | 7.16 270              | 7.16 270                         | 2.83 730                         | 0.00 000                                     | 55               |              |
|             | 6                      | 7.24 188              | 7.24 188                         | 2.75 812                         | 0.00 000                                     | 54               |              |
|             | 7<br>8                 | 7.30 882<br>7.36 682  | 7.30 882<br>7.36 682             | 2.69 118<br>2.63 318             | 0.00 000<br>0.00 000                         | 53<br>52         |              |
|             | 9                      | 7.41 797              | 7.41 797                         | 2.58 203                         | 0.00 000                                     | 51               |              |
|             | 10                     | 7.46 373              | 7.46 373                         | 2.53 627                         | 0.00 000                                     | 50               |              |
|             | 11<br>12               | 7.50 512<br>7.54 291  | 7.50 512<br>7.54 291             | 2.49 488<br>2.45 709             | 0.00 000<br>0.00 000                         | 49<br>48         |              |
|             | 13                     | 7.57 767              | 7.57 767                         | 2.42 233                         | 0.00 000                                     | 47               |              |
|             | 14<br>15               | 7.60 985<br>7.63 982  | 7.60 986<br>7.63 982             | 2.39 014 2.36 018                | 0.00 000                                     | 46<br>45         |              |
|             | 16                     | 7.66 784              | 7.66 785                         | 2.33 215                         | 0.00 000                                     | 45               |              |
|             | 17                     | 7.69 417              | 7.69 418                         | 2.30 582                         | 9.99 999                                     | 43               |              |
| l           | 18<br>19               | 7.71 900<br>7.74 248  | 7.71 900<br>7.74 248             | 2.28 100<br>2.25 752             | 9.99 999<br>9.99 999                         | 42<br>41         |              |
|             | 20                     | 7.76 475              | 7.76 476                         | 2.23 524                         | 9.99 999                                     | 40               |              |
|             | 21                     | 7.78 594              | 7.78 595                         | 2.21 405                         | 9.99 999                                     | 39               |              |
|             | 22<br>23               | 7.80 615<br>7.82 545  | 7.80 615<br>7.82 546             | 2.19 385<br>2.17 454             | 9.99 999<br>9.99 999                         | 38<br>37         |              |
|             | 24                     | 7.84 393              | 7.84 394                         | 2.15 606                         | 9.99 999                                     | 36               |              |
|             | 25<br>26               | 7.86 166<br>7.87 870  | 7.86 167<br>7.87 871             | 2.13 833<br>2.12 129             | 9.99 999<br>9.99 999                         | 35<br>34         |              |
|             | 27                     | 7.89 509              | 7.89 510                         | 2.10 490                         | 9.99 999                                     | 33               |              |
| 0.0         | 28                     | 7.91 088              | 7.91 089                         | 2.08 911                         | 9.99 999                                     | 32               |              |
| $0^{\circ}$ | <b>30</b> 30 <b>30</b> | 7.92 612              | 7.92 613                         | 2.07 387                         | 9.99 998                                     | 31<br><b>30</b>  | $89^{\circ}$ |
|             | 31                     | 7.95 508              | 7.95 510                         | 2.04 490                         | 9.99 998                                     | 29               |              |
|             | 32<br>33               | 7.96 887<br>7.98 223  | 7.96 889<br>7.98 225             | $2.03\ 111$ $2.01\ 775$          | 9.99 998<br>9.99 998                         | 28<br>27         |              |
|             | 34                     | 7.99 520              | 7.99 522                         | 2.00 478                         | 9.99 998                                     | 26               |              |
|             | 35                     | 8.00 779              | 8.00 781                         | 1.99 219                         | 9.99 998                                     | 25               |              |
|             | 36<br>37               | 8.02 002<br>8.03 192  | 8.02 004<br>8.03 194             | 1.97 996<br>1.96 806             | 9.99 998<br>9.99 997                         | 24<br>23         |              |
|             | 38                     | 8.04 350              | 8.04 353                         | 1.95 647                         | 9.99 997                                     | 22               |              |
|             | 39<br><b>40</b>        | 8.05 478<br>8.06 578  | 8.05 481<br>8.06 581             | 1.94 519                         | 9.99 997                                     | 21<br><b>20</b>  |              |
|             | 41                     | 8.07 6 <del>5</del> 0 | 8.07 653                         | 1.93 419<br>1.92 347             | 9.99 997                                     | 2 <b>0</b><br>19 |              |
|             | 42                     | 8.08 696              | 8.08 700                         | 1.91 300                         | 9.99 997                                     | 18               |              |
|             | 43<br>44               | 8.09 718<br>8.10 717  | 8.09 722<br>8.10 720             | 1.90 278<br>1.89 280             | 9.99 997<br>9.99 996                         | 17<br>16         |              |
|             | 45                     | 8.11 693              | 8.11 696                         | 1.88 304                         | 9.99 996                                     | 15               |              |
|             | 46<br>47               | 8.12 647              | 8.12 651                         | 1.87 349<br>1.86 41 <del>5</del> | 9.99 996                                     | 14               |              |
|             | 47<br>48               | 8.13 581<br>8.14 495  | 8.13 585<br>8.14 <del>5</del> 00 | 1.85 500                         | 9.99 996<br>9.99 996                         | 13<br>12         |              |
|             | 49                     | 8.15 391              | 8.15 395                         | 1.84 60 <del>5</del>             | 9.99 996                                     | 11               |              |
|             | <b>50</b><br>51        | 8.16 268<br>8.17 128  | 8.16 273<br>8.17 133             | 1.83 727<br>1.82 867             | 9.99 995<br>9.99 995                         | 10<br>9          |              |
|             | 5 <b>2</b>             | 8.17 971              | 8.17 976                         | 1.82 024                         | 9.99 99 <u>5</u>                             | 8                |              |
|             | 53<br>54               | 8.18 798<br>8.19 610  | 8.18 804<br>8.19 616             | 1.81 196<br>1.80 384             | 9.99 99 <del>5</del><br>9.99 99 <del>5</del> | 7<br>6           |              |
|             | 55                     | 8.20 407              | 8.20 413                         | 1.79 587                         | 9.99 994                                     | 5                |              |
|             | 56                     | 8.21 189              | 8.21 195                         | <b>1</b> .78 805                 | 9.99 994                                     | 4                |              |
|             | 57<br>58               | 8.21 958<br>8.22 713  | 8.21 964<br>8.22 720             | 1.78 036<br>1.77 280             | 9.99 994<br>9.99 994                         | 3<br>2           |              |
|             | 59                     | 8.23 456              | 8.23 462                         | 1.76 538                         | 9.99 994                                     | 1                |              |
|             | 60                     | 8.24 186              | 8.24 192                         | 1.75 808                         | 9.99 993                                     | 0                |              |
|             |                        | L. Cos.               | L. Cotg.                         | L. Tang.                         | L. Sin.                                      | . 1              |              |
|             |                        |                       | _                                | 197                              |                                              |                  |              |

|    | 1                                 | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                             |              |
|----|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------|--------------|
|    | 0<br>1<br>2<br>3                  | 8.24 186<br>8.24 903<br>8.25 609<br>8.26 304             | 8.24 192<br>8.24 910<br>8.25 616<br>8.26 312             | 1.75 808<br>1.75 090<br>1.74 384<br>1.73 688             | 9.99 993<br>9.99 993<br>9.99 993<br>9.99 993             | <b>60</b><br>59<br>58<br>57 |              |
|    | 5<br>6<br>7<br>8                  | 8.26 988<br>8.27 661<br>8.28 324<br>8.28 977<br>8.29 621 | 8.26 996<br>8.27 669<br>8.28 332<br>8.28 986<br>8.29 629 | 1.73 004<br>1.72 331<br>1.71 668<br>1.71 014<br>1.70 371 | 9.99 992<br>9.99 992<br>9.99 992<br>9.99 992<br>9.99 992 | 56<br>55<br>54<br>53<br>52  |              |
|    | 9<br>10<br>11<br>12               | 8.30 255<br>8.30 879<br>8.31 495<br>8.32 103             | 8.30 263<br>8.30 888<br>8.31 505<br>8.32 112             | 1.69 737<br>1.69 112<br>1.68 495<br>1.67 888             | 9.99 991<br>9.99 991<br>9.99 991<br>9.99 990             | 51<br>50<br>49<br>48        |              |
|    | 13<br>14<br>15<br>16<br>17        | 8.32 702<br>8.33 292<br>8.33 875<br>8.34 450<br>8.35 018 | 8.32 711<br>8.33 302<br>8.33 886<br>8.34 461<br>8.35 029 | 1.67 289<br>1.66 698<br>1.66 114<br>1.65 539<br>1.64 971 | 9.99 990<br>9.99 990<br>9.99 990<br>9.99 989<br>9.99 989 | 47<br>46<br>45<br>44<br>43  |              |
|    | 18<br>19<br><b>20</b><br>21       | 8.35 578<br>8.36 131<br>8.36 678<br>8.37 217             | 8.35 590<br>8.36 143<br>8.36 689<br>8.37 229             | 1.64 410<br>1.63 857<br>1.63 311<br>1.62 771             | 9.99 989<br>9.99 989<br>9.99 988<br>9.99 988             | 42<br>41<br><b>40</b><br>39 |              |
|    | 22<br>23<br>24<br>25              | 8.37 750<br>8.38 276<br>8.38 796<br>8.39 310             | 8.37 762<br>8.38 289<br>8.38 809<br>8.39 323<br>8.39 832 | 1.62 238<br>1.61 711<br>1.61 191<br>1.60 677<br>1.60 168 | 9.99 988<br>9.99 987<br>9.99 987<br>9.99 987<br>9.99 986 | 38<br>37<br>36<br>35<br>34  |              |
| 1° | 26<br>27<br>28<br>29<br><b>30</b> | 8.39 818<br>8.40 320<br>8.40 816<br>8.41 307<br>8.41 792 | 8.40 334<br>8.40 830<br>8.41 321<br>8.41 807             | 1.59 666<br>1.59 170<br>1.58 679<br>1.58 193             | 9.99 986<br>9.99 985<br>9.99 985                         | 33<br>32<br>31<br><b>30</b> | $88^{\circ}$ |
|    | 31<br>32<br>33<br>34              | 8.42 272<br>8.42 746<br>8.43 216<br>8.43 680             | 8.42 287<br>8.42 762<br>8.43 232<br>8.43 696             | 1.57 713<br>1.57 238<br>1.56 768<br>1.56 304             | 9.99 985<br>9.99 984<br>9.99 984<br>2.99 984             | 29<br>28<br>27<br>26        |              |
|    | 35<br>36<br>37<br>38<br>39        | 8.44 139<br>8.44 594<br>8.45 044<br>8.45 589<br>8.45 930 | 8.44 156<br>8.44 611<br>8.45 061<br>8.45 507<br>8.45 948 | 1.55 844<br>1.55 389<br>1.54 939<br>1.54 493<br>1.54 052 | 9.99 983<br>9.99 983<br>9.99 983<br>9.99 982<br>9.99 982 | 25<br>24<br>23<br>22<br>21  |              |
|    | 40<br>41<br>42<br>43<br>44        | 8.46 366<br>8.46 799<br>8.47 226<br>8.47 650<br>8.48 069 | 8.46 385<br>8.46 817<br>8.47 245<br>8.47 669<br>8.48 089 | 1.53 615<br>1.53 183<br>1.52 755<br>1.52 331<br>1.51 911 | 9.99 982<br>9.99 981<br>9.99 981<br>9.99 981<br>9.99 980 | 20<br>19<br>18<br>17<br>16  |              |
|    | 45<br>46<br>47<br>48<br>49        | 8.48 485<br>8.48 896<br>8.49 304<br>8.49 708<br>8.50 108 | 8.48 505<br>8.48 917<br>8.49 325<br>8.49 729<br>8.50 130 | 1.51 495<br>1.51 083<br>1.50 675<br>1.50 271<br>1.49 870 | 9.99 980<br>9.99 979<br>9.99 979<br>9.99 979<br>9.99 978 | 15<br>14<br>13<br>12<br>11  |              |
|    | 50<br>51<br>52<br>53              | 8.50 504<br>8.50 897<br>8.51 287<br>8.51 673             | 8.50 527<br>8.50 920<br>8.51 310<br>8.51 696             | 1.49 473<br>1.49 080<br>1.48 690<br>1.48 304             | 9.99 978<br>9.99 977<br>9.99 977<br>9.99 977             | 10<br>9<br>8<br>7           |              |
|    | 54<br>55<br>56<br>57<br>58        | 8.52 055<br>8.52 434<br>8.52 810<br>8.53 183<br>8.53 552 | 8.52 079<br>8.52 459<br>8.52 835<br>8.53 208<br>8.53 578 | 1.47 921<br>1.47 541<br>1.47 165<br>1.46 792<br>1.46 422 | 9.99 976<br>9.99 976<br>9.99 975<br>9.99 975<br>9.99 974 | 5<br>4<br>3<br>2            |              |
|    | 59<br><b>60</b>                   | 8.53 919<br>8.54 282                                     | 8.53 945<br>8.54 308                                     | 1.46 055<br>1.45 692                                     | 9.99 974<br>9.99 974                                     | 0                           |              |
|    |                                   | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                  | ,                           |              |

|             | ,               | L. Sin.                          | L. Tang.                              | L. Cotg.                         | L. Cos.                           |                 |              |
|-------------|-----------------|----------------------------------|---------------------------------------|----------------------------------|-----------------------------------|-----------------|--------------|
|             | 0<br>1          | 8.54 282<br>8.54 642             | 8.54 308<br>8.54 669                  | 1.45 692<br>1.45 331             | 9.99 974<br>9.99 973              | <b>60</b><br>59 |              |
|             | 2 3             | 8.54 999<br>8.55 354             | 8.55 027<br>8.55 382                  | 1.44 973<br>1.44 618             | 9.99 973<br>9.99 972              | 58<br>57        |              |
|             | 4               | 8.55 705                         | 8.55 734                              | 1.44 266                         | 9.99 972                          | 56              |              |
|             | 5<br>6          | 8.56 054<br>8.56 400             | 8.56 083<br>8.56 429                  | 1.43 917<br>1.43 571             | 9.99 971<br>9.99 971              | 55<br>54        |              |
|             | 7<br>8          | 8.56 743<br>8.57 084             | 8.56 773<br>8.57 <b>11</b> 4          | 1.43 227<br>1.42 886             | 9.99 970<br>9.99 970              | 53<br>52        |              |
|             | 9<br><b>10</b>  | 8.57 42 <b>1</b><br>8.57 757     | 8.57 452<br>8.57 788                  | 1.42 548<br>1.42 212             | 9.99 969                          | 51<br><b>50</b> |              |
| 1 1         | 11<br>12        | 8.58 089                         | 8.58 121<br>8.58 451                  | 1.41 879<br>1.41 549             | 9.99 968                          | 49              |              |
|             | 13              | 8.58 419<br>8.58 747             | 8.58 779                              | 1.41 221                         | 9.99 968<br>9.99 967              | 48<br>47        |              |
|             | 14<br>15        | 8.59 072<br>8.59 39 <del>5</del> | 8.59 105<br>8.59 428                  | 1.40 895<br>1.40 572             | 9.99 967                          | 46<br>45        |              |
|             | 16<br>17        | 8.59 715<br>8.60 033             | 8.59 749<br>8.60 068                  | 1.40 251<br>1.39 932             | 9.99 966<br>9.99 966              | 44<br>43        |              |
|             | 18<br>19        | 8.60 349<br>8.60 66 <b>2</b>     | 8.60 384<br>8.60 698                  | 1.39 616<br>1.39 302             | 9.99 96 <del>5</del><br>9.99 964  | 42<br>41        |              |
|             | 20              | 8.60 973                         | 8.61 009                              | 1.38 991                         | 9.99 964                          | 40              |              |
|             | 21<br>22        | 8.61 282<br>8.61 589             | 8.61 319<br>8.61 626                  | 1.38 681<br><b>1</b> .38 374     | 9.99 963<br>9.99 963              | 39<br>38        |              |
|             | 23<br>24        | 8.61 894<br>8.62 196             | 8.61 931<br>8.62 234                  | 1.38 069<br>1.37 766             | 9.99 962<br>9.99 962              | 37<br>36        |              |
|             | 25<br>26        | 8.62 497<br>8.62 79 <del>5</del> | 8.62 535<br>8.62 834                  | 1.37 46 <del>5</del><br>1.37 166 | 9.99 961<br>9.99 961              | 35<br>34        |              |
|             | 27              | 8.63 091                         | 8.63 131                              | 1.36 869                         | <b>9.</b> 99 96 <b>0</b>          | 33              |              |
|             | 28<br>29        | 8.63 385<br>8.63 678             | 8.63 426<br>8.63 718                  | 1.36 574<br>1.36 282             | 9.99 960<br>9.99 959              | 32<br>31        | O INIO       |
| $2^{\circ}$ | <b>30</b><br>31 | 8.63 968<br>8.64 256             | 8.64 009<br>8.64 298                  | 1.35 991<br>1.35 702             | 9.99 959<br>9.99 958              | <b>30</b><br>29 | $87^{\circ}$ |
|             | 32<br>33        | 8.64 543<br>8.64 827             | 8.64 585<br>8.64 870                  | 1.35 41 <del>5</del><br>1.35 130 | 9.99 958<br>9.99 957              | 28<br>27        |              |
|             | 34              | 8.65 110                         | 8.65 154                              | 1.34 846                         | 9.99 956                          | 26              |              |
|             | 35<br>36        | 8.65 391<br>8.65 670             | 8 65 43 <u>5</u><br>8.65 7 <b>1</b> 5 | 1.34 56 <del>5</del><br>1.34 285 | 9.99 956<br>9.99 955              | 25<br>24        |              |
|             | 37<br>38        | 8.65 947<br>8.66 223             | 8.65 993<br>8.66 269                  | 1.34 007<br>1.33 731             | 9.99 95 <b>5</b><br>9.99 954      | 23<br>22        |              |
|             | 39<br><b>40</b> | 8.66 497<br>8.66 769             | 8.66 543<br>8.66 816                  | 1.33 457<br>1.33 184             | 9.99 954<br>9.99 953              | 21<br><b>20</b> |              |
|             | 41<br>42        | 8.67 039<br>8.67 308             | 8.67 087<br>8.67 356                  | 1.32 913<br>1.32 644             | 9.99 952<br>9.99 952              | 19<br>18        |              |
|             | 43<br>44        | 8.67 575<br>8.67 841             | 8.67 624                              | 1.32 376<br>1.32 110             | 9.99 951                          | 17<br>16        |              |
|             | 45              | 8.68 104                         | 8.67 890<br>8.68 154                  | 1.31 846                         | 9.99 951<br>9.99 9 <del>5</del> 0 | 15              |              |
|             | 46<br>47        | 8.68 367<br>8.68 627             | 8.68 417<br>8.68 678                  | 1.31 583<br>1.31 322             | 9.99 949<br>9.99 949              | 14<br>13        |              |
|             | 48<br>49        | 8.68 886<br>8.69 144             | 8.68 938<br>8.69 196                  | 1.31 062<br>1.30 804             | 9.99 948<br>9.99 948              | 12<br>11        |              |
|             | <b>50</b><br>51 | 8.69 400<br>8.69 654             | 8.69 453<br>8.69 708                  | 1.30 547<br>1.30 292             | 9.99 947<br>9.99 946              | <b>10</b><br>9  |              |
|             | 52              | 8.69 907                         | 8.69 962                              | 1.30 038                         | 9.99 946                          | 8               |              |
|             | 53<br>54        | 8.70 159<br>8.70 409             | 8.70 214<br>8.70 465                  | 1.29 786<br>1.29 535             | 9.99 945<br>9.99 944              | 7<br>6          |              |
|             | 55<br>56        | 8.70 658<br>8.70 905             | 8.70 714<br>8.70 962                  | 1.29 286<br>1.29 038             | 9.99 944<br>9.99 943              | 5<br>4          |              |
|             | 57<br>58        | 8.71 151<br>8.71 395             | 8.71 208<br>8.71 453                  | 1.28 792<br>1.28 547             | 9.99 942<br>9.99 942              | 3<br>2          |              |
|             | 59<br><b>60</b> | 8.71 638                         | 8.71 697                              | 1.28 303                         | 9.99 941                          | 1               |              |
|             | 60              | 8.71 880<br><b>L. Cos.</b>       | 8.71 940<br><b>L. Cotg.</b>           | 1.28 060<br><b>L. Tang.</b>      | 9.99 940<br><b>L. Sin.</b>        | 0               |              |
|             |                 | 2. 003.                          |                                       | 14 Tange                         | 11 Nills                          |                 | <u> </u>     |

| П           | '                               | L. Sin.                                                              | L. Tang.                                                 | L. Cotg.                                                  | L. Cos.                                                  |                                   |              |
|-------------|---------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------|
|             | 0<br>1<br>2<br>3<br>4           | 8.71 880<br>8.72 120<br>8.72 359<br>8.72 597<br>8.72 834             | 8.71 940<br>8.72 181<br>8.72 420<br>8.72 659<br>8.72 896 | 1.28 060<br>1.27 819<br>1.27 580<br>1.27 341<br>1.27 104  | 9.99 940<br>9.99 940<br>9.99 939<br>9.99 938<br>9.99 938 | <b>60</b><br>59<br>58<br>57<br>56 | -            |
|             | 5<br>6<br>7<br>8                | 8.73 069<br>8.73 303<br>8.73 535<br>8.73 767<br>8.73 997             | 8.73 132<br>8.73 366<br>8.73 600<br>8.73 832<br>8.74 063 | 1.26 868<br>1.26 634<br>1.26 400<br>1.26 168<br>1.25 937  | 9.99 937<br>9.99 936<br>9.99 936<br>9.99 935<br>9.99 934 | 55<br>54<br>53<br>52<br>51        |              |
|             | 10<br>11<br>12<br>13<br>14      | 8.74 226<br>8.74 454<br>8.74 680<br>8.74 906<br>8.75 130             | 8.74 292<br>8.74 521<br>8.74 748<br>8.74 974<br>8.75 199 | 1.25 708<br>1.25 479<br>1.25 252<br>1.25 026<br>1.24 801  | 9.99 934<br>9.99 933<br>9.99 932<br>9.99 932<br>9.99 931 | 50<br>49<br>48<br>47<br>46        |              |
|             | 15<br>16<br>17<br>18<br>19      | 8.75 130<br>8.75 353<br>8.75 575<br>8.75 795<br>8.76 015<br>8.76 234 | 8.75 423<br>8.75 645<br>8.75 867<br>8.76 087<br>8.76 306 | 1.24 577<br>1.24 355<br>1.24 133<br>1.23 913<br>1.23 694  | 9.99 930<br>9.99 929<br>9.99 929<br>9.99 928<br>9.99 927 | 45<br>44<br>43<br>42<br>41        | ·            |
|             | 20<br>21<br>22<br>23<br>24      | 8.76 451<br>8.76 667<br>8.76 883<br>8.77 097<br>8.77 310             | 8.76 525<br>8.76 742<br>8.76 958<br>8.77 173<br>8.77 387 | 1.23 475<br>1.23 258<br>1.23 042<br>1.22 827<br>1.22 613  | 9.99 926<br>9.99 926<br>9.99 925<br>9.99 924<br>9.99 923 | 40<br>39<br>38<br>37<br>36        |              |
| <b>o</b> o  | 25<br>26<br>27<br>28<br>29      | 8.77 522<br>8.77 733<br>8.77 943<br>8.78 152<br>8.78 360             | 8.77 600<br>8.77 811<br>8.78 022<br>8.78 232<br>8.78 441 | 1.22 400<br>1.22 189<br>1.21 978<br>1.21 768<br>1.21 559  | 9.99 923<br>9.99 922<br>9.99 921<br>9.99 920<br>9.99 920 | 35<br>34<br>33<br>32<br>31        | 0.00         |
| $3^{\circ}$ | 30.<br>31.<br>32.<br>33.<br>34. | 8.78 568<br>8.78 774<br>8.78 979<br>8.79 183<br>8.79 386             | 8.78 649<br>8.78 855<br>8.79 061<br>8.79 266<br>8.79 470 | 1.21 351<br>1.21 145<br>1.20 939<br>1.20 734<br>1.20 530  | 9.99 919<br>9.99 918<br>9.99 917<br>9.99 917<br>9.99 916 | 30<br>29<br>28<br>27<br>26        | $86^{\circ}$ |
|             | 35<br>36<br>37<br>38<br>39      | 8.79 588<br>8.79 789<br>8.79 990<br>8.80 189<br>8.80 388             | 8.79 673<br>8.79 875<br>8.80 076<br>8.80 277<br>8.80 476 | 1.20 327<br>1.20 125<br>1.19 924<br>1.19 723<br>1.19 524  | 9.99 915<br>9.99 914<br>9.99 913<br>9.99 913<br>9.99 912 | 25<br>24<br>23<br>22<br>21        |              |
|             | 40<br>41<br>42<br>43<br>44      | 8.80 585<br>8.80 782<br>8.80 978<br>8.81 173<br>8.81 367             | 8.80 674<br>8.80 872<br>8.81 068<br>8.81 264<br>8.81 459 | 1.19 326<br>1.19 128<br>1.18 932<br>1.18 736<br>1.18 541  | 9.99 911<br>9.99 910<br>9.99 909<br>9.99 909<br>9.99 908 | 20<br>19<br>18<br>17<br>16        |              |
|             | 45<br>46<br>47<br>48<br>49      | 8.81 560<br>8.81 752<br>8.81 944<br>8.82 134<br>8.82 324             | 8.81 653<br>8.81 846<br>8.82 038<br>8.82 230<br>8.82 420 | ,1.18 347<br>1.18 154<br>1.17 962<br>1.17 770<br>1.17 580 | 9.99 907<br>9.99 906<br>9.99 905<br>9.99 904<br>9.99 904 | 15<br>14<br>13<br>12<br>11        |              |
|             | 50<br>51<br>52<br>53<br>54      | 8.82 513<br>8.82 701<br>8.82 888<br>8.83 075<br>8.83 261             | 8.82 610<br>8.82 799<br>8.82 987<br>8.83 175<br>8.83 361 | 1.17 390<br>1.17 201<br>1.17 013<br>1.16 825<br>1.16 639  | 9.99 903<br>9.99 902<br>9.99 901<br>9.99 900<br>9.99 899 | 10<br>9<br>8<br>7<br>6            |              |
|             | 55<br>56<br>57<br>58<br>59      | 8.83 446<br>8.83 630<br>8.83 813<br>8.83 996<br>8.84 177             | 8.83 547<br>8.83 732<br>8.83 916<br>8.84 100<br>8.84 282 | 1.16 453<br>1.16 268<br>1.16 084<br>1.15 900<br>1.15 718  | 9.99 898<br>9.99 898<br>9.99 897<br>9.99 896<br>9.99 895 | 5<br>4<br>3<br>2<br>1             |              |
|             | 60                              | 8.84 358<br><b>L. Cos.</b>                                           | 8.84 464<br><b>L. Cotg.</b>                              | 1.15 536<br><b>L. Tang.</b>                               | 9.99 894<br><b>L. Sin.</b>                               | 0                                 |              |
|             |                                 | 2. 005.                                                              | ·                                                        | 1. Tang.                                                  | 1. 711.                                                  |                                   |              |

[45]

| П          | '                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                             |     |
|------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------|-----|
|            | 0<br>1<br>2<br>3           | 8.84 358<br>8.84 539<br>8.84 718<br>8.84 897             | 8.84 464<br>8.84 646<br>8.84 826<br>8.85 006             | 1.15 536<br>1.15 354<br>1.15 174<br>1.14 994             | 9.99 894<br>9.99 893<br>9.99 892<br>9.99 891             | <b>60</b><br>59<br>58<br>57 |     |
|            | 5<br>6<br>7                | 8.85 075<br>8.85 252<br>8.85 429<br>8.85 605             | 8.85 185<br>8.85 363<br>8.85 540<br>8.85 717             | 1.14 815<br>1.14 637<br>1.14 460<br>1.14 283             | 9.99 891<br>9.99 890<br>9.99 889<br>9.99 888             | 56<br>55<br>54<br>53        |     |
|            | 8<br>9<br><b>10</b><br>11  | 8.85 780<br>8.85 955<br>8.86 128<br>8.86 301             | 8.85 893<br>8.86 069<br>8.86 243<br>8.86 417             | 1.14 107<br>1.13 931<br>1.13 757<br>1.13 583             | 9.99 887<br>9.99 886<br>9.99 885<br>9.99 884             | 52<br>51<br><b>50</b><br>49 |     |
|            | 12<br>13<br>14             | 8.86 474<br>8.86 645<br>8.86 816                         | 8.86 591<br>8.86 763<br>8.86 935                         | 1.13 409<br>1.13 237<br>1.13 065                         | 9.99 883<br>9.99 882<br>9.99 881                         | 48<br>47<br>46              | ,   |
|            | 15<br>16<br>17<br>18<br>19 | 8.86 987<br>8.87 156<br>8.87 325<br>8.87 494<br>8.87 661 | 8.87 106<br>8.87 277<br>8.87 447<br>8.87 616<br>8.87 785 | 1.12 894<br>1.12 723<br>1.12 553<br>1.12 384<br>1.12 215 | 9.99 880<br>9.99 879<br>9.99 879<br>9.99 878<br>9.99 877 | 45<br>44<br>43<br>42<br>41  |     |
|            | 20<br>21<br>22<br>23<br>24 | 8.87 829<br>8.87 995<br>8.88 161<br>8.88 326<br>8.88 490 | 8.87 953<br>8.88 120<br>8.88 287<br>8.88 453<br>8.88 618 | 1.12 047<br>1.11 880<br>1.11 713<br>1.11 547<br>1.11 382 | 9.99 876<br>9.99 875<br>9.99 874<br>9.99 873<br>9.99 872 | 40<br>39<br>38<br>37<br>36  |     |
| <b>4</b> ° | 25<br>26<br>27<br>28<br>29 | 8.88 654<br>8.88 817<br>8.88 980<br>8.89 142<br>8.89 304 | 8.88 783<br>8.88 948<br>8.89 111<br>8.89 274<br>8.89 437 | 1.11 217<br>1.11 052<br>1.10 889<br>1.10 726<br>1.10 563 | 9.99 871<br>9.99 870<br>9.99 869<br>9.99 868<br>9.99 867 | 35<br>34<br>33<br>32<br>31  | 85° |
| 仕          | 30<br>31<br>32<br>33<br>34 | 8.89 464<br>8.89 625<br>8.89 784<br>8.89 943<br>8.90 102 | 8.89 598<br>8.89 760<br>8.89 920<br>8.90 080<br>8.90 240 | 1.10 402<br>1.10 240<br>1.10 080<br>1.09 920<br>1.09 760 | 9.99 866<br>9.99 865<br>9.99 864<br>9.99 863<br>9.99 862 | 30<br>29<br>28<br>27<br>26  | 00  |
|            | 35<br>36<br>37<br>38<br>39 | 8.90 260<br>8.90 417<br>8.90 574<br>8.90 730<br>8.90 885 | 8.90 399<br>8.90 557<br>8.90 715<br>8.90 872<br>8.91 029 | 1.09 601<br>1.09 443<br>1.09 285<br>1.09 128<br>1.08 971 | 9.99 861<br>9.99 860<br>9.99 859<br>9.99 858<br>9.99 857 | 25<br>24<br>23<br>22<br>21  |     |
|            | 40<br>41<br>42<br>43<br>44 | 8.91 040<br>8.91 195<br>8.91 349<br>8.91 502<br>8.91 655 | 8.91 185<br>8.91 340<br>8.91 495<br>8.91 650<br>8.91 803 | 1.08 815<br>1.08 660<br>1.08 505<br>1.08 350<br>1.08 197 | 9.99 856<br>9.99 855<br>9.99 854<br>9.99 853<br>9.99 852 | 20<br>19<br>18<br>17<br>16  |     |
|            | 45<br>46<br>47<br>48<br>49 | 8.91 807<br>8.91 959<br>8.92 110<br>8.92 261<br>8.92 411 | 8.91 957<br>8.92 110<br>8.92 262<br>8.92 414<br>8.92 565 | 1.08 043<br>1.07 890<br>1.07 738<br>1.07 586<br>1.07 435 | 9.99 851<br>9.99 850<br>9.99 848<br>9.99 847<br>9.99 846 | 15<br>14<br>13<br>12<br>11  |     |
|            | 50<br>51<br>52<br>53<br>54 | 8.92 561<br>8.92 710<br>8.92 859<br>8.93 007<br>8.93 154 | 8.92 716<br>8.92 866<br>8.93 016<br>8.93 165<br>8.93 313 | 1.07 284<br>1.07 134<br>1.06 984<br>1.06 835<br>1.06 687 | 9.99 845<br>9.99 844<br>9.99 843<br>9.99 842<br>9.99 841 | 10<br>9<br>8<br>7<br>6      |     |
|            | 55<br>56<br>57<br>58<br>59 | 8.93 301<br>8.93 448<br>8.93 594<br>8.93 740<br>8.93 885 | 8.93 462<br>8.93 609<br>8.93 756<br>8.93 903<br>8.94 049 | 1.06 538<br>1.06 391<br>1.06 244<br>1.06 097<br>1.05 951 | 9.99 840<br>9.99 839<br>9.99 838<br>9.99 837<br>9.99 836 | 5<br>4<br>3<br>2<br>1       |     |
|            | 60                         | 8.94 030                                                 | 8.94 195                                                 | 1.05 805                                                 | 9.99 834                                                 | 0                           | 1   |
|            |                            | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                  | ,                           |     |

|            | ,                                 | L. Sin.                                                              | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |              |
|------------|-----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------|
|            | 0<br>1<br>2<br>3<br>4             | 8.94 030<br>8.94 174<br>8.94 317<br>8.94 461<br>8.94 603             | 8.94 195<br>8.94 340<br>8.94 485<br>8.94 630<br>8.94 773 | 1.05 805<br>1.05 660<br>1.05 515<br>1.05 370<br>1.05 227 | 9.99 834<br>9.99 833<br>9.99 832<br>9.99 831<br>9.99 830 | <b>60</b><br>59<br>58<br>57<br>56 |              |
|            | 5<br>6<br>7<br>8<br>9             | 8.94 746<br>8.94 887<br>8.95 029<br>8.95 170                         | 8.94 917<br>8.95 060<br>8.95 202<br>8.95 344<br>8.95 486 | 1.05 083<br>1.04 940<br>1.04 798<br>1.04 656<br>1.04 514 | 9.99 829<br>9.99 828<br>9.99 827<br>9.99 825<br>9.99 824 | 55<br>54<br>53<br>52              |              |
|            | 10<br>11<br>12<br>13<br>14        | 8.95 310<br>8.95 450<br>8.95 589<br>8.95 728<br>8.95 867<br>8.96 005 | 8.95 627<br>8.95 767<br>8.95 908<br>8.96 047<br>8.96 187 | 1.04 373<br>1.04 233<br>1.04 092<br>1.03 953<br>1.03 813 | 9.99 823<br>9.99 822<br>9.99 821<br>9.99 820<br>9.99 819 | 51<br>50<br>49<br>48<br>47<br>46  |              |
|            | 15<br>16<br>17<br>18              | 8.96 143<br>8.96 280<br>8.96 417<br>8.96 553<br>8.96 689             | 8.96 325<br>8.96 464<br>8.96 602<br>8.96 739<br>8.96 877 | 1.03 675<br>1.03 536<br>1.03 398<br>1.03 261<br>1.03 123 | 9.99 817<br>9.99 816<br>9.99 815<br>9.99 814<br>9.99 813 | 45<br>44<br>43<br>42<br>41        |              |
|            | 20<br>21<br>22<br>23<br>24        | 8.96 825<br>8.96 960<br>8.97 095<br>8.97 229<br>8.97 363             | 8.97 013<br>8.97 150<br>8.97 285<br>8.97 421<br>8.97 556 | 1.02 987<br>1.02 850<br>1.02 715<br>1.02 579<br>1.02 444 | 9.99 812<br>9.99 810<br>9.99 809<br>9.99 808<br>9.99 807 | 40<br>39<br>38<br>37<br>36        |              |
| <b>5</b> ° | 25<br>26<br>27<br>28<br>29        | 8.97 496<br>8.97 629<br>8.97 762<br>8.97 894<br>8.98 026             | 8.97 691<br>8.97 825<br>8.97 959<br>8.98 092<br>8.98 225 | 1.02 309<br>1.02 175<br>1.02 041<br>1.01 908<br>1.01 775 | 9.99 806<br>9.99 804<br>9.99 803<br>9.99 802<br>9.99 801 | 35<br>34<br>33<br>32<br>31        | $84^{\circ}$ |
| Э          | 30<br>31<br>32<br>33<br>34        | 8.98 157<br>8.98 288<br>8.98 419<br>8.98 549<br>8.98 679             | 8.98 358<br>8.98 490<br>8.98 622<br>8.98 753<br>8.98 884 | 1.01 642<br>1.01 510<br>1.01 378<br>1.01 247<br>1.01 116 | 9.99 800<br>9.99 798<br>9.99 797<br>9.99 796<br>9.99 795 | 30<br>29<br>28<br>27<br>26        | 04           |
|            | 35<br>36<br>37<br>38<br>39        | 8.98 808<br>8.98 937<br>8.99 066<br>8.99 194<br>8.99 322             | 8.99 015<br>8.99 145<br>8.99 275<br>8.99 405<br>8.99 534 | 1.00 985<br>1.00 855<br>1.00 725<br>1.00 595<br>1.00 466 | 9.99 793<br>9.99 792<br>9.99 791<br>9.99 790<br>9.99 788 | 25<br>24<br>23<br>22<br>21        |              |
|            | 40<br>41<br>42<br>43<br>44        | 8.99 450<br>8.99 577<br>8.99 704<br>8.99 830<br>8.99 956             | 8.99 662<br>8.99 791<br>8.99 919<br>9.00 046<br>9.00 174 | 1.00 338<br>1.00 209<br>1.00 081<br>0.99 954<br>0.99 826 | 9.99 787<br>9.99 786<br>9.99 785<br>9.99 783<br>9.99 782 | 20<br>19<br>18<br>17<br>16        |              |
|            | 45<br>46<br>47<br>48<br>49        | 9.00 082<br>9.00 207<br>9.00 332<br>9.00 456<br>9.00 581             | 9.00 301<br>9.00 427<br>9.00 553<br>9.00 679<br>9.00 805 | 0.99 699<br>0.99 573<br>0.99 447<br>0.99 321<br>0.99 195 | 9.99 781<br>9.99 780<br>9.99 778<br>9.99 777<br>9.99 776 | 15<br>14<br>13<br>12<br>11        |              |
|            | <b>50</b><br>51<br>52<br>53<br>54 | 9.00 704<br>9.00 828<br>9.00 951<br>9.01 074<br>9.01 196             | 9.00 930<br>9.01 055<br>9.01 179<br>9.01 303<br>9.01 427 | 0.99 070<br>0.98 945<br>0.98 821<br>0.98 697<br>0.98 573 | 9.99 775<br>9.99 773<br>9.99 772<br>9.99 771<br>9.99 769 | 10<br>9<br>8<br>7<br>6            |              |
|            | 55<br>56<br>57<br>58<br>59        | 9.01 318<br>9.01 440<br>9.01 561<br>9.01 682<br>9.01 803             | 9.01 550<br>9.01 673<br>9.01 796<br>9.01 918<br>9.02 040 | 0.98 450<br>0.98 327<br>0.98 204<br>0.98 082<br>0.97 960 | 9.99 768<br>9.99 767<br>9.99 765<br>9.99 764<br>9.99 763 | 5<br>4<br>3<br>2<br>1             |              |
|            | 60                                | 9.01 923<br><b>L. Cos.</b>                                           | 9.02 162<br><b>L. Cotg.</b>                              | 0.97 838<br><b>L. Tang.</b>                              | 9.99 761<br><b>L. Sin.</b>                               | 0                                 |              |
|            |                                   |                                                                      |                                                          | 17 7                                                     |                                                          |                                   | <u> </u>     |

|             | <del>-,</del> 1 | T C!                         | T //                             | T 'C '                       | T. C                    |                  |              |
|-------------|-----------------|------------------------------|----------------------------------|------------------------------|-------------------------|------------------|--------------|
|             |                 | L. Sin.                      | L. Tang.                         | L. Cotg.                     | L. Cos.                 |                  |              |
|             | 0<br>1          | 9.01 923<br>9.02 043         | 9.02 162<br>9.02 283             | 0.97 838<br><b>0.97 717</b>  | 9.99 761<br>9.99 760    | <b>60</b><br>59  |              |
| 1 1         | 2               | 9.02 163                     | 9.02 404                         | 0.97 596                     | 9.99 759                | 58               |              |
| 1 1         | 3               | 9.02 283<br>9.02 402         | 9.02 525<br>9.02 645             | 0.97 475<br>0.97 355         | 9.99 757<br>9.99 756    | 57<br>56         |              |
|             | <u>4</u><br>5   | 9.02 520                     | 9.02 766                         | 0.97 234                     | 9.99 755                | 55               |              |
|             | 6               | 9.02 639                     | 9.02 885                         | 0.97 115                     | ≠ 9.99 <sup>5</sup> 753 | 54               |              |
|             | 7<br>8          | 9.02 757<br>9.02 874         | 9.03 00 <b>5</b><br>9.03 124     | 0.96 995<br>0.96 876         | 9.99 752<br>9.99 751    | 53<br>52         |              |
|             | 9               | 9.02 992                     | 9.03 242                         | 0.96 758                     | 9.99 749                | 51               |              |
| 11          | 10              | 9.03 109                     | 9.03 361                         | 0.96 639                     | 9.99 748                | 50               |              |
|             | 11<br>12        | 9.03 226<br>9.03 342         | 9.03 479<br>9.03 597             | 0.96 521<br>0.96 403         | 9.99 747<br>9.99 745    | 49<br>48         |              |
|             | 13              | 9.03 458                     | 9.03 714                         | 0.96 286                     | 9.99 744                | 47               |              |
|             | 14<br>15        | 9.03 574<br>9.03 690         | 9.03 832<br>9.03 948             | 0.96 168                     | 9.99 742                | 46<br>45         |              |
|             | 16              | 9.03 805                     | 9.03 948                         | 0.95 935                     | 9.99 741                | 44               |              |
| î l         | 17              | 9.03 920                     | 9.04 181                         | 0.95 819                     | 9.99 738                | 43               |              |
|             | 18<br>19        | 9.04 034<br>9.04 149         | 9.04 297<br>9.04 413             | 0.95 703<br>0.95 587         | 9.99 737<br>9.99 736    | 42<br>41         |              |
|             | 20              | 9.04 262                     | 9.04 528                         | 0.95 472                     | 9.99 734                | 40               |              |
|             | 21<br>22        | 9.04 376<br>9.04 49 <b>0</b> | 9.04 643<br>9.04 758             | 0.95 357<br>0.95 242         | 9.99 733<br>9.99 731    | 39<br>38         |              |
|             | 23              | 9.04 603                     | 9.04 873                         | 0.95 127                     | 9.99 730                | 37               |              |
|             | 24              | 9.04 715                     | 9.04 987                         | 0.95 013                     | 9.99 728                | 36               |              |
|             | 25<br>26        | 9.04 828<br>9.04 94 <b>0</b> | 9.05 101<br>9.05 214             | 0.94 899<br><b>0</b> .94 786 | 9.99 727<br>9.99 726    | 35<br>34         |              |
|             | 27              | 9.05 052                     | 9.05 328                         | 0.94 672                     | 9.99 724                | 33               |              |
| 00          | · 28<br>29      | 9.05 164<br>9.05 275         | 9.05 44 <b>1</b><br>9.05 553     | 0.94 559<br>0.94 447         | 9.99 723<br>9.99 721    | 32<br>31         | 0.00         |
| $6^{\circ}$ | 30              | 9.05 386                     | 9.05 666                         | 0.94 334                     | 9.99 720                | 30               | $83^{\circ}$ |
|             | 31              | 9.05 497<br>9.05 607         | 9.05 778                         | 0.94 222                     | 9.99 718<br>9.99 717    | 29<br>28         |              |
|             | 32<br>33        | 9.05 717                     | 9.05 890<br>9.06 002             | 0.94 110<br>0.93 998         | 9.99 716                | 27               |              |
|             | 34              | 9.05 827                     | 9.06 113                         | 0.93 887                     | 9.99 714                | 26               |              |
|             | 35<br>36        | 9.05 937<br>9.06 046         | 9.06 224<br>9.06 33 <del>5</del> | 0.93 776<br>0.93 665         | 9.99 713<br>9.99 711    | 25<br>24         | •            |
|             | 37              | 9.06 155                     | 9.06 445                         | <b>0</b> .93 55 <b>5</b>     | 9.99 710                | 23               |              |
|             | 38<br>39        | 9.06 264<br>9.06 372         | 9.06 556<br>9.06 666             | 0.93 444<br>0.93 334         | 9.99 708<br>9.99 707    | 22<br>21         | l            |
|             | 40              | 9.06 481                     | 9.06 775                         | 0.93 225                     | 9.99 705                | 20               | 1            |
|             | 41              | 9.06 589                     | 9.06 885                         | 0.93 115                     | 9.99 704                | 19               |              |
|             | 42<br>43        | 9.06 696<br>9.06 804         | 9.06 994<br>9.07 103             | 0.93 006<br>0.92 897         | 9.99 702<br>9.99 701    | 18<br><b>1</b> 7 |              |
|             | 44              | 9.06 911                     | 9.07 211                         | 0.92 789                     | 9.99 699                | 16               |              |
|             | 45<br>46        | 9.07 018<br>9.07 124         | 9.07 320<br>9.07 428             | 0.92 680<br>0.92 572         | 9.99 698<br>9.99 696    | 15<br>14         |              |
|             | 47              | 9.07 231                     | 9.07 536                         | 0.92 464                     | 9.99 695                | 13               |              |
|             | 48<br>49        | 9.07 337<br>9.07 442         | 9.07 643<br>9.07 751             | 0.92 357<br>0.92 249         | 9.99 993<br>9.99 692    | 12<br>11         |              |
|             | 50              | 9.07 548                     | 9.07 858                         | 0.92 249                     | 9.99 690                | 10               |              |
|             | 5 <b>1</b>      | 9.07 653                     | 9.07 964                         | 0.92 036                     | <b>9</b> .99 689        | 9                |              |
|             | 52<br>53        | 9.07 758<br>9.07 863         | 9.08 07 <b>1</b><br>9.08 177     | 0.91 929<br>0.91 823         | 9.99 687<br>9.99 686    | 8<br>7           |              |
|             | 54              | 9.07 968                     | 9.08 283                         | 0.91 717                     | 9.99 684                | 6                |              |
|             | 55<br>56        | 9.08 072<br>9.08 176         | 9.08 389<br>9.08 495             | 0.91 611<br>0.91 505         | 9.99 683<br>9.99 681    | 5<br>4           |              |
|             | 57              | 9.08 280                     | 9.08 600                         | 0.91 400                     | 9.99 680                | 3                |              |
|             | 58<br>50        | 9.08 383<br>9.08 486         | 9.08 705                         | $0.91\ 29\overline{5}$       | 9.99 678                | 2                |              |
|             | 59<br><b>60</b> | 9.08 589                     | 9.08 810                         | 0.91 190                     | 9.99 677<br>9.99 675    | 0                |              |
|             |                 | L. Cos.                      | L. Cotg.                         | L. Tang.                     | L. Sin.                 | ,                |              |
|             |                 | 0000                         |                                  | 187                          | > 1110                  |                  |              |

|    | 1                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                                   |     |
|----|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|-----|
|    | <b>0</b> 1 2 3 4                 | 9.08 589<br>9.08 692<br>9.08 795<br>9.08 897<br>9.08 999             | 9.08 914<br>9.09 019<br>9.09 123<br>9.09 227<br>9.09 330             | 0.91 086<br>0.90 981<br>0.90 877<br>0.90 773<br>0.90 670             | 9.99 675<br>9.99 674<br>9.99 672<br>9.99 670<br>9.99 669             | <b>60</b><br>59<br>58<br>57<br>56 |     |
|    | 5<br>6<br>7<br>8                 | 9.09 101<br>9.09 202<br>9.09 304<br>9.09 405<br>9.09 506             | 9.09 434<br>9.09 537<br>9.09 640<br>9.09 742<br>9.09 845             | 0.90 566<br>0.90 463<br>0.90 360<br>0.90 258                         | 9.99 667<br>9.99 666<br>9.99 664<br>9.99 663<br>9.99 661             | 55<br>54<br>53<br>52<br>51        |     |
|    | 10<br>11<br>12<br>13             | 9.09 606<br>9.09 707<br>9.09 807<br>9.09 907                         | 9.09 947<br>9.10 049<br>9.10 150<br>9.10 252                         | 0.90 155<br>0.90 053<br>0.89 951<br>0.89 850<br>0.89 748             | 9.99 659<br>9.99 658<br>9.99 656<br>9.99 65 <del>5</del>             | <b>50</b><br>49<br>48<br>47       |     |
|    | 14<br>15<br>16<br>17<br>18<br>19 | 9.10 006<br>9.10 106<br>9.10 205<br>9.10 304<br>9.10 402<br>9.10 501 | 9.10 353<br>9.10 454<br>9.10 555<br>9.10 656<br>9.10 756<br>9.10 856 | 0.89 647<br>0.89 546<br>0.89 445<br>0.89 344<br>0.89 244<br>0.89 144 | 9.99 653<br>9.99 651<br>9.99 650<br>9.99 648<br>9.99 647<br>9.99 645 | 46<br>45<br>44<br>43<br>42<br>41  |     |
|    | 20<br>21<br>22<br>23<br>24       | 9.10 501<br>9.10 599<br>9.10 697<br>9.10 795<br>9.10 893<br>9.10 990 | 9.10 856<br>9.11 056<br>9.11 155<br>9.11 254<br>9.11 353             | 0.89 044<br>0.88 944<br>0.88 845<br>0.88 746<br>0.88 647             | 9.99 643<br>9.99 642<br>9.99 640<br>9.99 638<br>9.99 637             | 40<br>39<br>38<br>37<br>36        |     |
| 70 | 25<br>26<br>27<br>28<br>29       | 9.11 087<br>9.11 184<br>9.11 281<br>9.11 377<br>9.11 474             | 9.11 452<br>9.11 551<br>9.11 649<br>9.11 747<br>9.11 845             | 0.88 548<br>0.88 449<br>0.88 351<br>0.88 253<br>0.88 155             | 9.99 635<br>9.99 633<br>9.99 632<br>9.99 630<br>9.99 629             | 35<br>34<br>33<br>32<br>31        | 82° |
|    | 30<br>31<br>32<br>33<br>34       | 9.11 570<br>9.11 666<br>9.11 761<br>9.11 857<br>9.11 952             | 9.11 943<br>9.12 040<br>9.12 138<br>9.12 235<br>9.12 332             | 0.88 057<br>0.87 960<br>0.87 862<br>0.87 765<br>0.87 668             | 9.99 627<br>9.99 625<br>9.99 624<br>9.99 622<br>9.99 620             | 30<br>29<br>28<br>27<br>26        | 02  |
|    | 35<br>36<br>37<br>38<br>39       | 9.12 047<br>9.12 142<br>9.12 236<br>9.12 331<br>9.12 425             | 9.12 428<br>9.12 525<br>9.12 621<br>9.12 717<br>9.12 813             | 0.87 572<br>0.87 475<br>0.87 379<br>0.87 283<br>0.87 187             | 9.99 618<br>9.99 617<br>9.99 615<br>9.99 613<br>9.99 612             | 25<br>24<br>23<br>22<br>21        |     |
|    | 40<br>41<br>42<br>43<br>44       | 9.12 519<br>9.12 612<br>9.12 706<br>9.12 799<br>9.12 892             | 9.12 909<br>9.13 004<br>9.13 099<br>9.13 194<br>9.13 289             | 0.87 091<br>0.86 996<br>0.86 901<br>0.86 806<br>0.86 711             | 9.99 610<br>9.99 608<br>9.99 607<br>9.99 605<br>9.99 603             | 20<br>19<br>18<br>17<br>16        |     |
|    | 45<br>46<br>47<br>48<br>49       | 9.12 985<br>9.13 078<br>9.13 171<br>9.13 263<br>9.13 355             | 9.13 384<br>9.13 478<br>9.13 573<br>9.13 667<br>9.13 761             | 0.86 616<br>0.86 522<br>0.86 427<br>0.86 333<br>0.86 239             | 9.99 601<br>9.99 600<br>9.99 598<br>9.99 596<br>9.99 595             | 15<br>14<br>13<br>12<br>11        |     |
|    | 50<br>51<br>52<br>53<br>54       | 9.13 447<br>9.13 539<br>9.13 630<br>9.13 722<br>9.13 813             | 9.13 854<br>9.13 948<br>9.14 041<br>9.14 134<br>9.14 227             | 0.86 146<br>0.86 052<br>0.85 959<br>0.85 866<br>0.85 773             | 9.99 593<br>9.99 591<br>9.99 589<br>9.99 588<br>9.99 586             | 10<br>9<br>8<br>7<br>6            |     |
|    | 55<br>56<br>57<br>58<br>59       | 9.13 904<br>9.13 994<br>9.14 085<br>9.14 175<br>9.14 266             | 9.14 320<br>9.14 412<br>9.14 504<br>9.14 597<br>9.14 688             | 0.85 680<br>0.85 588<br>0.85 496<br>0.85 403<br>0.85 312             | 9.99 584<br>9.99 582<br>9.99 581<br>9.99 579<br>9.99 577             | 5<br>4<br>3<br>2<br>1             |     |
|    | 60                               | 9.14 356<br><b>L. Cos.</b>                                           | 9.14 780 ·                                                           | 0.85 220<br>T. Tang                                                  | 9.99 575                                                             | 0                                 |     |
|    | <u> </u>                         | L. Cos.                                                              | L. Cotg.                                                             | L. Tang.                                                             | L. Sin.                                                              |                                   |     |

|             | ,               | T 01                         | T. Domes                     | T. (Co.4                         | T C                              |                 | _            |
|-------------|-----------------|------------------------------|------------------------------|----------------------------------|----------------------------------|-----------------|--------------|
|             |                 | L. Sin.                      | L. Tang.                     | L. Cotg.                         | L. Cos.                          |                 |              |
|             | 0<br><b>1</b>   | 9.14 356<br>9.14 445         | 9.14 780<br>9.14 872         | 0.85 220<br>0.85 128             | 9.99 575<br>9.99 574             | <b>60</b><br>59 |              |
|             | 2               | 9.14 535                     | 9.14 963                     | 0.85 037                         | 9.99 572                         | 58              | ł            |
|             | 4               | 9.14 624<br>9.14 714         | 9.15 054<br>9.15 145         | 0.84 946<br>0.84 85 <del>5</del> | 9.99 570<br>9.99 568             | 57<br>56        |              |
|             | 5               | 9.14 803                     | 9.15 236                     | 0.84 764                         | 9.99 566                         | 55              |              |
|             | 6<br><b>7</b>   | 9.14 891<br>9:14 980         | 9.15 327<br>9.15 417         | 0.84 673<br>0.84 583             | 9.99 565<br>9.99 563             | 54<br>53        |              |
|             | 8               | 9.15 069                     | 9.15 508                     | 0.84 492                         | 9.99 561                         | 52<br>51        |              |
|             | 9<br><b>10</b>  | 9.15 157<br>9.15 245         | 9.15 598                     | 0.84 402<br>0.84 312             | 9.99 559<br>9.99 557             | 51<br><b>60</b> |              |
|             | 11              | 9.15 333                     | 9.15 777                     | 0.84 223                         | 9.99 556                         | 49              |              |
|             | 12<br>13        | 9.15 421<br>9.15 508         | 9.15 867<br>9.15 956         | 0.84 133<br>0.84 044             | 9.99 554<br>9.99 552             | 48<br>47        | l            |
|             | 14              | 9.15 596                     | 9.16 046                     | 0.83 954                         | 9.99 550                         | 46              |              |
|             | 15<br>16        | 9.15 683<br>9.15 770         | 9.16 135<br>9.16 224         | 0.83 865<br>0 83 776             | 9,99 548<br>9.99 546             | 45<br>44        |              |
|             | 17              | 9.15 857                     | 9.16 312                     | 0.83 688                         | 9.99 545                         | 43 -            | ĺ            |
|             | 18<br>19        | 9.15 944<br>9.16 030         | 9.16 401<br>9.16 489         | 0.83 599<br>0.83 511             | 9.99 543<br>9.99 541             | 42<br>41        | 1            |
|             | 20              | 9.16 116                     | 9.16 577                     | 0.83 423                         | 9.99 539                         | 40              |              |
|             | 21<br>22        | 9.16 203<br>9.16 289         | 9.16 665<br>9.16 753         | 0.83 33 <del>5</del><br>0.83 247 | 9.99 537<br>9.99 535             | 39<br>38        |              |
|             | 23              | 9.16 374                     | 9.16 841                     | 0.83 159                         | 9.99 533                         | 37              | į.           |
|             | 24<br>25        | 9.16 460                     | 9.16 928                     | 0.83 072                         | 9.99 532                         | 36<br>35        |              |
|             | 26              | 9.16 631                     | 9.17 103                     | 0.82 897                         | 9.99 528                         | 34              |              |
|             | 27<br>28        | 9.16 716<br>9.16 801         | 9.17 19 <b>0</b><br>9.17 277 | 0.82 810<br>0.82 723             | 9.99 526<br>9.99 524             | 33<br>32        |              |
| $8^{\circ}$ | 29              | 9.16 886                     | 9.17 363                     | 0.82 637                         | 9.99 522                         | 31              | $81^{\circ}$ |
| Ĭ           | <b>30</b><br>31 | 9.16 970<br>9.17 05 <b>5</b> | 9.17 450<br>9.17 536         | 0.82 550<br>0.82 464             | 9.99 520<br>9.99 518             | <b>30</b><br>29 |              |
|             | 32              | 9.17 139                     | 9.17 622                     | 0.82 378                         | 9.99 517                         | 28              |              |
|             | 33<br>34        | 9.17 223<br>9.17 307         | ,9.17 708<br>9.17 794        | 0.82 292<br>0.82 206             | 9.99 51 <del>5</del><br>9.99 513 | 27<br>26        |              |
|             | 35              | 9.17 391                     | 9.17 880                     | 0.82 120                         | 9.99 511                         | 25              |              |
|             | 36<br>37        | 9.17 474<br>9.17 558         | 9.17 965<br>9.18 051         | 0.82 03 <del>5</del><br>0.81 949 | 9.99 509<br>9.99 507             | 24<br>23        |              |
|             | 38<br>39        | 9.17 641<br>9.17 724         | 9.18 136<br>9.18 221         | 0.81 864                         | 9.99 505<br>9.99 503             | 22<br>21        |              |
|             | 40              | 9.17 807                     | 9.18 306                     | 0.81 779                         | 9.99 501                         | 20              |              |
|             | 41              | 9.17 890                     | 9.18 391                     | 0.81 609                         | 9.99 499                         | 19              |              |
|             | 42<br>43        | 9.17 973<br>9.18 055         | 9.18 475<br>9.18 560         | 0.81 52 <del>5</del><br>0.81 440 | 9.99 497<br>9.99 495             | 18<br>17        |              |
|             | 44              | 9.18 137                     | 9.18 644                     | 0.81 356                         | 9.99 494                         | 16              |              |
|             | 45<br>46        | 9.18 220<br>9.18 302         | 9.18 728<br>9.18 812         | 0.81 272<br>0.81 188             | 9.99 492<br>9.99 490             | 15<br>14        |              |
|             | 47              | 9.18 383                     | 9.18 896                     | 0.81 104                         | 9.99 488                         | 13<br>12        |              |
|             | 48<br>49        | 9.18 465<br>9.18 547         | 9.18 979<br>9.19 063         | 0.81 021<br>0.80 937             | 9.99 486<br>9.99 484             | 11              |              |
|             | 50              | 9.18 628                     | 9.19 146                     | 0.80 854                         | 9.99 482                         | 10              |              |
|             | 51<br>52        | 9.18 709<br>9.18 79 <b>0</b> | 9.19 229<br>9.19 312         | 0.80 771<br>0.80 68 <b>8</b>     | 9.99 480<br>9.99 478             | 9<br>8          | ľ            |
|             | 53<br>54        | 9.18 871<br>9.18 952         | 9.19 395<br>9.19 478         | 0.80 60 <del>5</del><br>0.80 522 | 9.99 476<br>9.99 474             | 7<br>6          |              |
|             | 55              | 9.19 033                     | 9.19 561                     | 0.80 439                         | 9.99 472                         | 5               |              |
|             | 56              | 9.19 11 <b>3</b><br>9.19 193 | 9.19 643<br>9.19 725         | 0.80 357<br>0.80 <b>2</b> 75     | 9.99 470<br>9.99 468             | 4<br>3          |              |
|             | 57<br>58        | 9.19 273                     | 9.19 807                     | 0.80 193                         | 9.99 466                         | 2               |              |
|             | 59<br><b>60</b> | 9.19 353                     | 9.19 889                     | 0.80 111                         | 9.99 464                         | 0               |              |
|             | 00              |                              |                              |                                  |                                  | ,               |              |
|             |                 | L. Cos.                      | L. Cotg.                     | L. Tang.                         | L. Sin.                          | لــــــــا      |              |

|    | 1                          | L. Sin.                                                  | L. Tan.                                                  | L. Cotg.                                                 | L. Cos.                                                  |                             |     |
|----|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------|-----|
|    | 0<br>1<br>2<br>3<br>4      | 9.19 433<br>9.19 513<br>9.19 592<br>9.19 672             | 9.19 971<br>9.20 053<br>9.20 134<br>9.20 216             | 0.80 029<br>0.79 947<br>0.79 866<br>0.79 784             | 9.99 462<br>9.99 460<br>9.99 458<br>9.99 456             | <b>60</b><br>59<br>58<br>57 |     |
|    | 5<br>6<br>7<br>8           | 9.19 751<br>9.19 830<br>9.19 909<br>9.19 988<br>9.20 067 | 9.20 297<br>9.20 378<br>9.20 459<br>9.20 540<br>9.20 621 | 0.79 703<br>0.79 622<br>0.79 541<br>0.79 460<br>0.79 379 | 9.99 454<br>9.99 452<br>9.99 450<br>9.99 448<br>9.99 446 | 56<br>55<br>54<br>53<br>52  |     |
|    | 9<br>10<br>11<br>12<br>13  | 9.20 145<br>9.20 223<br>9.20 302<br>9.20 380<br>9.20 458 | 9.20 701<br>9.20 782<br>9.20 862<br>9.20 942<br>9.21 022 | 0.79 299<br>0.79 218<br>0.79 138<br>0.79 058<br>0.78 978 | 9.99 444<br>9.99 442<br>9.99 440<br>9.99 438<br>9.99 436 | 51<br>50<br>49<br>48<br>47  |     |
|    | 14<br>15<br>16<br>17<br>18 | 9.20 535<br>9.20 613<br>9.20 691<br>9.20 768<br>9.20 845 | 9.21 102<br>9.21 182<br>9.21 261<br>9.21 341<br>9.21 420 | 0.78 898<br>0.78 818<br>0.78 739<br>0.78 659<br>0.78 580 | 9.99 434<br>9.99 432<br>9.99 429<br>9.99 427<br>9.99 425 | 46<br>45<br>44<br>43<br>42  |     |
|    | 19<br>20<br>21<br>22<br>23 | 9.20 922<br>9.20 999<br>9.21 076<br>9.21 153<br>9.21 229 | 9.21 499<br>9.21 578<br>9.21 657<br>9.21 736<br>9.21 814 | 0.78 501<br>0.78 422<br>0.78 343<br>0.78 264<br>0.78 186 | 9.99 423<br>9.99 421<br>9.99 419<br>9.99 417<br>9.99 415 | 41<br>40<br>39<br>38<br>37  |     |
|    | 24<br>25<br>26<br>27<br>28 | 9.21 306<br>9.21 382<br>9.21 458<br>9.21 534<br>9.21 610 | 9.21 893<br>9.21 971<br>9.22 049<br>9.22 127<br>9.22 205 | 0.78 107<br>0.78 029<br>0.77 951<br>0.77 873<br>0.77 795 | 9.99 413<br>9.99 411<br>9.99 409<br>9.99 407<br>9.99 404 | 36<br>35<br>34<br>33<br>32  |     |
| 9° | 29<br>30<br>31<br>32<br>33 | 9.21 685<br>9.21 761<br>9.21 836<br>9.21 912<br>9.21 987 | 9.22 283<br>9.22 361<br>9.22 438<br>9.22 516<br>9.22 593 | 0.77 717<br>0.77 639<br>0.77 562<br>0.77 484<br>0.77 407 | 9.99 402<br>9.99 400<br>9.99 398<br>9.99 396<br>9.99 394 | 31<br>30<br>29<br>28<br>27  | 80° |
|    | 34<br>35<br>36<br>37<br>38 | 9.22 062<br>9.22 137<br>9.22 211<br>9.22 286<br>9.22 361 | 9.22 670<br>9.22 747<br>9.22 824<br>9.22 901<br>9.22 977 | 0.77 330<br>0.77 253<br>0.77 176<br>0.77 099<br>0.77 023 | 9.99 392<br>9.99 390<br>9.99 388<br>9.99 385<br>9.99 383 | 26<br>25<br>24<br>23<br>22  |     |
|    | 39<br>40<br>41<br>42<br>43 | 9.22 435<br>9.22 509<br>9.22 583<br>9.22 657<br>9.22 731 | 9.23 054<br>9.23 130<br>9.23 206<br>9.23 283<br>9.23 359 | 0.76 946<br>0.76 870<br>0.76 794<br>0.76 717<br>0.76 641 | 9.99 381<br>9.99 379<br>9.99 377<br>9.99 375<br>9.99 372 | 21<br>20<br>19<br>18<br>17  |     |
|    | 44<br>45<br>46<br>47<br>48 | 9.22 805<br>9.22 878<br>9.22 952<br>9.23 025<br>9.23 098 | 9.23 435<br>9.23 510<br>9.23 586<br>9.23 661<br>9.23 737 | 0.76 565<br>0.76 490<br>0.76 414<br>0.76 339<br>0.76 263 | 9.99 370<br>9.99 368<br>9.99 366<br>9.99 364<br>9.99 362 | 16<br>15<br>14<br>13<br>12  |     |
|    | 50<br>51<br>52<br>53       | 9.23 171<br>9.23 244<br>9.23 317<br>9.23 390<br>9.23 462 | 9 23 812<br>9.23 887<br>9.23 962<br>9.24 037<br>9.24 112 | 0.76 188<br>0.76 113<br>0.76 038<br>0.75 963<br>0.75 888 | 9.99 359<br>9.99 357<br>9.99 355<br>9.99 353<br>9.99 351 | 11<br>10<br>9<br>8<br>7     |     |
|    | 54<br>55<br>56<br>57<br>58 | 9.23 535<br>9.23 607<br>9.23 679<br>9.23 752<br>9.23 823 | 9.24 186<br>9.24 261<br>9.24 335<br>9.24 410<br>9.24 484 | 0.75 814<br>0.75 739<br>0.75 665<br>0.75 590<br>0.75 516 | 9.99 348<br>9.99 346<br>9.99 344<br>9.99 342<br>9.99 340 | 6<br>5<br>4<br>3<br>2       |     |
|    | 59<br><b>60</b>            | 9.23 895<br>9.23 967                                     | 9.24 558<br>9.24 632                                     | 0.75 442<br>0.75 368                                     | 9.99 337<br>9.99 335                                     | 1<br>0                      |     |
|    |                            | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                  |                             |     |

| 1                          | L. Sin.                                                                                                                                                                                                                                                                                                          | L. Tang.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L. Cotg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L. Cos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0                          | 9.23 967                                                                                                                                                                                                                                                                                                         | 9.24 632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>60</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 1                          | 9.24 039                                                                                                                                                                                                                                                                                                         | 9.24 706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 2                          | 9.24 110                                                                                                                                                                                                                                                                                                         | 9.24 779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 3                          | 9.24 181                                                                                                                                                                                                                                                                                                         | 9.24 853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 4                          | 9.24 253                                                                                                                                                                                                                                                                                                         | 9.24 926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 5                          | 9.24 324                                                                                                                                                                                                                                                                                                         | 9.25 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 6                          | 9.24 39 <del>5</del>                                                                                                                                                                                                                                                                                             | 9.25 073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 7                          | 9.24 466                                                                                                                                                                                                                                                                                                         | 9.25 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 8                          | 9.24 536                                                                                                                                                                                                                                                                                                         | 9.25 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 9                          | 9.24 607                                                                                                                                                                                                                                                                                                         | 9.25 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 10                         | 9.24 677                                                                                                                                                                                                                                                                                                         | 9.25 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 <b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 11                         | 9.24 748                                                                                                                                                                                                                                                                                                         | 9.25 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 74 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 12                         | 9.24 818                                                                                                                                                                                                                                                                                                         | 9.25 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 13                         | 9.24 888                                                                                                                                                                                                                                                                                                         | 9.25 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 14                         | 9.24 958                                                                                                                                                                                                                                                                                                         | 9.25 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 15                         | 9.25 028                                                                                                                                                                                                                                                                                                         | 9.25 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 16                         | 9.25 098                                                                                                                                                                                                                                                                                                         | 9.25 799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 17                         | 9.25 168                                                                                                                                                                                                                                                                                                         | 9.25 871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 18                         | 9.25 237                                                                                                                                                                                                                                                                                                         | 9.25 943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74 057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 19                         | 9.25 307                                                                                                                                                                                                                                                                                                         | 9.26 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 20                         | 9.25 376                                                                                                                                                                                                                                                                                                         | 9.26 086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>40</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 21                         | 9.25 445                                                                                                                                                                                                                                                                                                         | 9.26 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 22                         | 9.25 514                                                                                                                                                                                                                                                                                                         | 9.26 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 23                         | 9.25 583                                                                                                                                                                                                                                                                                                         | 9.26 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 24                         | 9.25 652                                                                                                                                                                                                                                                                                                         | 9.26 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 25                         | 9.25 721                                                                                                                                                                                                                                                                                                         | 9.26 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79° |
| 26                         | 9.25 790                                                                                                                                                                                                                                                                                                         | 9.26 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 27                         | 9.25 858                                                                                                                                                                                                                                                                                                         | 9.26 58 <del>5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 28                         | 9.25 927                                                                                                                                                                                                                                                                                                         | 9.26 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 29                         | 9.25 995                                                                                                                                                                                                                                                                                                         | 9.26 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 30                         | 9.26 063                                                                                                                                                                                                                                                                                                         | 9.26 797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 31                         | 9.26 131                                                                                                                                                                                                                                                                                                         | 9.26 867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 32                         | 9.26 199                                                                                                                                                                                                                                                                                                         | 9.26 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 33                         | 9.26 267                                                                                                                                                                                                                                                                                                         | 9.27 008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 34                         | 9.26 335                                                                                                                                                                                                                                                                                                         | 9.27 078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 35                         | 9.26 403                                                                                                                                                                                                                                                                                                         | 9.27 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 36                         | 9.26 470                                                                                                                                                                                                                                                                                                         | 9.27 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 37                         | 9.26 538                                                                                                                                                                                                                                                                                                         | 9.27 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 38                         | 9.26 605                                                                                                                                                                                                                                                                                                         | 9.27 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 39                         | 9.26 672                                                                                                                                                                                                                                                                                                         | 9.27 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 40                         | 9.26 739                                                                                                                                                                                                                                                                                                         | 9.27 496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 41                         | 9.26 806                                                                                                                                                                                                                                                                                                         | 9.27 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 42                         | 9.26 873                                                                                                                                                                                                                                                                                                         | 9.27 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 43                         | 9.26 940                                                                                                                                                                                                                                                                                                         | 9.27 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 44                         | 9.27 007                                                                                                                                                                                                                                                                                                         | 9.27 773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 45                         | 9.27 073                                                                                                                                                                                                                                                                                                         | 9.27 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 46                         | 9.27 140                                                                                                                                                                                                                                                                                                         | 9.27 911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 47                         | 9.27 206                                                                                                                                                                                                                                                                                                         | 9.27 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 48                         | 9.27 273                                                                                                                                                                                                                                                                                                         | 9.28 049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 49                         | 9.27 339                                                                                                                                                                                                                                                                                                         | 9.28 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 50                         | 9.27 405                                                                                                                                                                                                                                                                                                         | 9.28 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 51                         | 9.27 471                                                                                                                                                                                                                                                                                                         | 9.28 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 52                         | 9.27 537                                                                                                                                                                                                                                                                                                         | 9.28 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 53                         | 9.27 602                                                                                                                                                                                                                                                                                                         | 9.28 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 54                         | 9.27 668                                                                                                                                                                                                                                                                                                         | 9.28 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.99 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 55<br>56<br>57<br>58<br>59 | 9.27 734<br>9.27 799<br>9.27 864<br>9.27 930<br>9.27 995                                                                                                                                                                                                                                                         | 9.28 527<br>9.28 595<br>9.28 662<br>9.28 730<br>9.28 798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 405<br>0.71 338<br>0.71 270<br>0.71 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.99 207<br>9.99 204<br>9.99 202<br>9.99 200<br>9.99 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>4<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 60                         | 9.28 060<br><b>L. Cos.</b>                                                                                                                                                                                                                                                                                       | 9.28 865<br><b>L. Cotg.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.71 135<br><b>L. Tang.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.99 195<br><b>L. Cos.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                            | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>44<br>45<br>46<br>47<br>48<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49 | O         9.23 967           1         9.24 039           2         9.24 110           3         9.24 181           4         9.24 253           5         9.24 324           6         9.24 536           7         9.24 466           8         9.24 536           9         9.24 607           10         9.24 677           11         9.24 748           12         9.24 818           13         9.24 958           15         9.25 028           16         9.25 098           17         9.25 168           18         9.25 237           19         9.25 307           20         9.25 376           21         9.25 445           22         9.25 576           21         9.25 445           22         9.25 583           24         9.25 583           24         9.25 583           24         9.25 583           24         9.25 790           27         9.25 858           28         9.25 790           27         9.25 858           28 <t< th=""><th>O         9.23 967         9.24 632           1         9.24 039         9.24 776           2         9.24 110         9.24 779           3         9.24 181         9.24 926           5         9.24 324         9.25 000           6         9.24 395         9.25 073           7         9.24 466         9.25 146           8         9.24 536         9.25 219           9         9.24 607         9.25 292           10         9.24 677         9.25 365           11         9.24 748         9.25 437           12         9.24 818         9.25 510           13         9.24 888         9.25 582           14         9.24 958         9.25 582           14         9.24 958         9.25 727           16         9.25 098         9.25 727           16         9.25 098         9.25 727           16         9.25 307         9.26 015           20         9.25 376         9.26 086           21         9.25 445         9.26 158           22         9.25 514         9.26 229           23         9.25 583         9.26 301           24         9.25 790<!--</th--><th>0         9.23 967         9.24 632         0.75 368           1         9.24 100         9.24 779         0.75 294           2         9.24 110         9.24 779         0.75 221           3         9.24 181         9.24 853         0.75 147           4         9.24 523         9.24 926         0.75 074           5         9.24 324         9.25 073         0.74 927           7         9.24 466         9.25 146         0.78 854           8         9.24 536         9.25 129         0.74 708           8         9.24 536         9.25 129         0.74 781           9         9.24 607         9.25 365         0.74 488           9.24 607         9.25 365         0.74 4708           10         9.24 677         9.25 365         0.74 490           13         9.24 818         9.25 582         0.74 490           13         9.24 888         9.25 582         0.74 473           14         9.24 958         9.25 655         0.74 490           13         9.24 888         9.25 872         0.74 273           16         9.25 98         9.25 877         0.74 273           17         9.25 168         9.25 877</th><th>O         9.23 967         9.24 632         0.75 368         9.99 335           1         9.24 039         9.24 770         0.75 224         9.99 335           2         9.24 110         9.24 779         0.75 221         9.99 331           3         9.24 181         9.24 853         0.75 147         9.99 326           4         9.24 253         9.24 926         0.75 074         9.99 324           5         9.24 324         9.25 000         0.75 000         9.99 324           6         9.24 536         9.25 146         0.74 827         9.99 322           7         9.24 666         9.25 146         0.74 781         9.99 319           8         9.24 536         9.25 219         0.74 781         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 313           11         9.24 748         9.25 510         0.74 490         9.99 308           14         9.24 988         9.25 562         0.74 418         9.99 304           15         9.25 028         9.25 727         0.74 273         9.99 301           16         9.25 028<!--</th--><th>                                     </th></th></th></t<> | O         9.23 967         9.24 632           1         9.24 039         9.24 776           2         9.24 110         9.24 779           3         9.24 181         9.24 926           5         9.24 324         9.25 000           6         9.24 395         9.25 073           7         9.24 466         9.25 146           8         9.24 536         9.25 219           9         9.24 607         9.25 292           10         9.24 677         9.25 365           11         9.24 748         9.25 437           12         9.24 818         9.25 510           13         9.24 888         9.25 582           14         9.24 958         9.25 582           14         9.24 958         9.25 727           16         9.25 098         9.25 727           16         9.25 098         9.25 727           16         9.25 307         9.26 015           20         9.25 376         9.26 086           21         9.25 445         9.26 158           22         9.25 514         9.26 229           23         9.25 583         9.26 301           24         9.25 790 </th <th>0         9.23 967         9.24 632         0.75 368           1         9.24 100         9.24 779         0.75 294           2         9.24 110         9.24 779         0.75 221           3         9.24 181         9.24 853         0.75 147           4         9.24 523         9.24 926         0.75 074           5         9.24 324         9.25 073         0.74 927           7         9.24 466         9.25 146         0.78 854           8         9.24 536         9.25 129         0.74 708           8         9.24 536         9.25 129         0.74 781           9         9.24 607         9.25 365         0.74 488           9.24 607         9.25 365         0.74 4708           10         9.24 677         9.25 365         0.74 490           13         9.24 818         9.25 582         0.74 490           13         9.24 888         9.25 582         0.74 473           14         9.24 958         9.25 655         0.74 490           13         9.24 888         9.25 872         0.74 273           16         9.25 98         9.25 877         0.74 273           17         9.25 168         9.25 877</th> <th>O         9.23 967         9.24 632         0.75 368         9.99 335           1         9.24 039         9.24 770         0.75 224         9.99 335           2         9.24 110         9.24 779         0.75 221         9.99 331           3         9.24 181         9.24 853         0.75 147         9.99 326           4         9.24 253         9.24 926         0.75 074         9.99 324           5         9.24 324         9.25 000         0.75 000         9.99 324           6         9.24 536         9.25 146         0.74 827         9.99 322           7         9.24 666         9.25 146         0.74 781         9.99 319           8         9.24 536         9.25 219         0.74 781         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 313           11         9.24 748         9.25 510         0.74 490         9.99 308           14         9.24 988         9.25 562         0.74 418         9.99 304           15         9.25 028         9.25 727         0.74 273         9.99 301           16         9.25 028<!--</th--><th>                                     </th></th> | 0         9.23 967         9.24 632         0.75 368           1         9.24 100         9.24 779         0.75 294           2         9.24 110         9.24 779         0.75 221           3         9.24 181         9.24 853         0.75 147           4         9.24 523         9.24 926         0.75 074           5         9.24 324         9.25 073         0.74 927           7         9.24 466         9.25 146         0.78 854           8         9.24 536         9.25 129         0.74 708           8         9.24 536         9.25 129         0.74 781           9         9.24 607         9.25 365         0.74 488           9.24 607         9.25 365         0.74 4708           10         9.24 677         9.25 365         0.74 490           13         9.24 818         9.25 582         0.74 490           13         9.24 888         9.25 582         0.74 473           14         9.24 958         9.25 655         0.74 490           13         9.24 888         9.25 872         0.74 273           16         9.25 98         9.25 877         0.74 273           17         9.25 168         9.25 877 | O         9.23 967         9.24 632         0.75 368         9.99 335           1         9.24 039         9.24 770         0.75 224         9.99 335           2         9.24 110         9.24 779         0.75 221         9.99 331           3         9.24 181         9.24 853         0.75 147         9.99 326           4         9.24 253         9.24 926         0.75 074         9.99 324           5         9.24 324         9.25 000         0.75 000         9.99 324           6         9.24 536         9.25 146         0.74 827         9.99 322           7         9.24 666         9.25 146         0.74 781         9.99 319           8         9.24 536         9.25 219         0.74 781         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 315           10         9.24 677         9.25 365         0.74 635         9.99 313           11         9.24 748         9.25 510         0.74 490         9.99 308           14         9.24 988         9.25 562         0.74 418         9.99 304           15         9.25 028         9.25 727         0.74 273         9.99 301           16         9.25 028 </th <th>                                     </th> |     |

|     | ′                                 | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                              |                             |     |
|-----|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|-----|
|     | 0<br>1<br>2<br>3                  | 9.28 060<br>9.28 125<br>9.28 190<br>9.28 254             | 9.28 865<br>9.28 933<br>9.29 000<br>9.29 067             | 0.71 135<br>0.71 067<br>0.71 000<br>0.70 933             | 9.99 195<br>9.99 192<br>9.99 190<br>9.99 187                         | <b>60</b><br>59<br>58<br>57 |     |
|     | 5<br>6<br>7<br>8                  | 9.28 319<br>9.28 384<br>9.28 448<br>9.28 512<br>9.28 577 | 9.29 134<br>9.29 201<br>9.29 268<br>9.29 335<br>9.29 402 | 0.70 866<br>0.70 799<br>0.70 732<br>0.70 665<br>0.70 598 | 9.99 185<br>9.99 182<br>9.99 180<br>9.99 177<br>9.99 175             | 56<br>55<br>54<br>53<br>52  |     |
|     | 9<br>10<br>11<br>12<br>13         | 9.28 641<br>9.28 705<br>9.28 769<br>9.28 833<br>9.28 896 | 9.29 468<br>9.29 535<br>9.29 601<br>9.29 668<br>9.29 734 | 0.70 532<br>0.70 465<br>0.70 399<br>0.70 332<br>0.70 266 | 9.99 172<br>9.99 170<br>9.99 167<br>9.99 16 <del>5</del><br>9.99 162 | 51<br>50<br>49<br>48<br>47  |     |
|     | 14<br>15<br>16<br>17<br>18        | 9.28 960<br>9.29 024<br>9.29 087<br>9.29 150<br>9.29 214 | 9.29 800<br>9.29 866<br>9.29 932<br>9.29 998<br>9.30 064 | 0.70 200<br>0.70 134<br>0.70 068<br>0.70 002<br>0.69 936 | 9.99 160<br>9.99 157<br>9.99 155<br>9.99 152<br>9.99 150             | 46<br>45<br>44<br>43<br>42  |     |
|     | 19<br>20<br>21<br>22<br>23        | 9.29 277<br>9.29 340<br>9.29 403<br>9.29 466<br>9.29 529 | 9.30 130<br>9.30 195<br>9.30 261<br>9.30 326<br>9.30 391 | 0.69 870<br>0.69 805<br>0.69 739<br>0.69 674<br>0.69 609 | 9.99 147<br>9.99 145<br>9.99 142<br>9.99 140<br>9.99 137             | 41<br>40<br>39<br>38<br>37  |     |
|     | 24<br>25<br>26<br>27<br>28        | 9.29 591<br>9.29 654<br>9.29 716<br>9.29 779<br>9.29 841 | 9.30 457<br>9.30 522<br>9.30 587<br>9.30 652<br>9.30 717 | 0.69 543<br>0.69 478<br>0.69 413<br>0.69 348<br>0.69 283 | 9.99 135<br>9.99 132<br>9.99 130<br>9.99 127<br>9.99 124             | 36<br>35<br>34<br>33<br>32  |     |
| 11° |                                   | 9.29 903<br>9.29 966<br>9.30 028<br>9.30 090<br>9.30 151 | 9.30 782<br>9.30 846<br>9.30 911<br>9.30 975<br>9.31 040 | 0.69 218<br>0.69 154<br>0.69 089<br>0.69 025<br>0.68 960 | 9.99 122<br>9.99 119<br>9.99 117<br>9.99 114<br>9.99 112             | 31<br>30<br>29<br>28<br>27  | 78° |
|     | 35<br>35<br>36<br>37<br>38        | 9.30 213<br>9.30 275<br>9.30 336<br>9.30 398<br>9.30 459 | 9.31 104<br>9.31 168<br>9.31 233<br>9.31 297<br>9.31 361 | 0.68 896<br>0.68 832<br>0.68 767<br>0.68 703<br>0.68 639 | 9.99 109<br>9.99 106<br>9.99 104<br>9.99 101<br>9.99 099             | 26<br>25<br>24<br>23<br>22  |     |
|     | 39<br><b>40</b><br>41<br>42       | 9.30 521<br>9.30 582<br>9.30 643<br>9.30 704             | 9.31 425<br>9.31 489<br>9.31 552<br>9.31 616             | 0.68 575<br>0.68 511<br>0.68 448<br>0.68 384             | 9.99 096<br>9.99 093<br>9.99 091<br>9.99 088                         | 21<br>20<br>19<br>18        |     |
|     | 43<br>44<br>45<br>46<br>47        | 9.30 765<br>9.30 826<br>9.30 887<br>9.30 947<br>9.31 008 | 9.31 679<br>9.31 743<br>9.31 806<br>9.31 870<br>9.31 933 | 0.68 321<br>0.68 257<br>0.68 194<br>0.68 130<br>0.68 067 | 9.99 086<br>9.99 083<br>9.99 080<br>9.99 078<br>9.99 075             | 17<br>16<br>15<br>14<br>13  | ā   |
|     | 48<br>49<br><b>50</b><br>51<br>52 | 9.31 068<br>9.31 129<br>9.31 189<br>9.31 250<br>9.31 310 | 9.31 996<br>9.32 059<br>9.32 122<br>9.32 185<br>9.32 248 | 0.68 004<br>0.67 941<br>0.67 878<br>0.67 815<br>0.67 752 | 9.99 072<br>9.99 070<br>9.99 067<br>9.99 064<br>9.99 062             | 12<br>11<br>10<br>9<br>8    |     |
|     | 53<br>54<br>55<br>56<br>57        | 9.31 370<br>9.31 430<br>9.31 490<br>9.31 549<br>9.31 609 | 9.32 311<br>9.32 373<br>9.32 436<br>9.32 498<br>9.32 561 | 0.67 689<br>0.67 627<br>0.67 564<br>0.67 502<br>0.67 439 | 9.99 059<br>9.99 056<br>9.99 054<br>9.99 051<br>9.99 048             | 7<br>6<br>5<br>4<br>3       |     |
|     | 58<br>59<br><b>60</b>             | 9.31 669<br>9.31 728<br>9.31 788                         | 9.32 623<br>9.32 685<br>9.32 747                         | 0.67 377<br>0.67 315<br>0.67 253                         | 9.99 046<br>9.99 043<br>9.99 040                                     | 2<br>1<br>0                 |     |
|     |                                   | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                              | ,                           |     |

|              |                 |                      | ·                            |                      | ,,                                |                 |     |
|--------------|-----------------|----------------------|------------------------------|----------------------|-----------------------------------|-----------------|-----|
|              | ′               | L. Sin.              | L. Tang.                     | L. Cotg.             | L. Cos.                           |                 |     |
|              | 0               | 9.31 788             | 9.32 747                     | 0.67 253             | 9.99 040                          | 60              |     |
|              | $\frac{1}{2}$   | 9.31 847<br>9.31 907 | 9.32 810<br>9.32 872         | 0.67 190<br>0.67 128 | 9.99 038<br>9.99 035              | 59<br>58        |     |
|              | 3               | 9.31 966             | 9.32 933                     | 0.67 067             | 9.99 032                          | 57              |     |
|              | 5               | 9.32 025             | 9.32 995                     | 0.67 005<br>0.66 943 | 9.99 030<br>9.99 027              | 56<br>55        |     |
|              | 6               | 9.32 143             | 9.33 119                     | 0.66 881             | 9.99 024                          | 54              |     |
|              | 7               | 9.32 202             | 9.33 180                     | 0.66 820             | 9.99 022                          | 53              |     |
|              | 8<br>9          | 9.52 261<br>9.32 319 | 9.33 242<br>9.33 303         | 0.66 758<br>0.66 697 | 9.99 019<br>9.99 016              | 52<br>51        |     |
|              | 10              | 9.32 378             | 9.33 365                     | 0.66 635             | 9.99 013                          | 50              |     |
|              | 11<br>12        | 9.32 437<br>9.32 495 | 9.33 426<br>9.33 487         | 0.66 574<br>0.66 513 | 9.99 011<br>9.99 008              | 49<br>48        | 1   |
|              | 13              | 9.32 553             | 9.33 548                     | 0.66 452             | 9.99 005                          | 47              | j   |
|              | 14              | 9.32 612             | 9.33 609                     | 0.66 391             | 9.99 002                          | 46              |     |
|              | 15<br>16        | 9.32 670<br>9.32 728 | 9.33 670<br>9.33 731         | 0.66 330<br>0.66 269 | 9.99 000<br>9.98 997              | 45<br>44        | 1   |
|              | 17              | 9.32 786             | 9.33 792                     | 0.66 208             | 9.98 994                          | 43              | 1   |
|              | 18<br>19        | 9.32 844<br>9.32 902 | 9.33 853<br>9.33 913         | 0.66 147<br>0.66 087 | 9.98 991<br>9.98 989              | 42<br>41        | ĺ   |
|              | 20              | 9.32 960             | 9.33 974                     | 0.66 026             | 9.98 986                          | 40              | 1   |
|              | 21              | 9.33 018             | 9.34 034                     | 0.65 966             | 9.98 983                          | 39              |     |
|              | 22<br>23        | 9.33 075<br>9.33 133 | 9.34 095<br>9.34 155         | 0.65 905<br>0.65 845 | 9.98 980<br>9.98 978              | 38<br>37        | 1   |
|              | 24              | 9.33 190             | 9.34 215                     | 0.65 785             | 9.98 975                          | 36              | f   |
| 1            | 25<br>26        | 9.33 248<br>9.33 305 | 9.34 276<br>9.34 336         | 0.65 724<br>0.65 664 | 9.98 972<br>9.98 969              | 35              | İ   |
|              | 27              | 9.33 362             | 9.34 396                     | 0.65 604             | 9.98 967                          | 34<br>33        |     |
|              | 28              | 9.33 420             | 9.34 456                     | 0.65 544             | 9.98 964                          | 32              |     |
| $12^{\circ}$ | 29<br><b>30</b> | 9.33 477             | 9.34 516                     | 0.65 484<br>0.65 424 | 9.98 961                          | 31<br><b>30</b> | 77° |
|              | 31              | 9.33 591             | 9.34 635                     | 0.65 36 <del>5</del> | 9.98 955                          | 29              |     |
|              | 32<br>33        | 9.33 647<br>9.33 704 | 9.34 695<br>9.34 755         | 0.65 305<br>0.65 245 | 9.98 953<br>9.98 9 <del>5</del> 0 | 28<br>27        | 1   |
|              | 34              | 9.33 761             | 9.34 814                     | 0.65 186             | 9.98 947                          | 26              | 1   |
|              | 35              | 9.33 818             | 9.34 874                     | 0.65 126             | 9.98 944                          | 25              | 1   |
|              | 36<br>37        | 9.33 874<br>9.33 931 | 9.34 933<br>9.34 992         | 0.65 067<br>0.65 008 | 9.98 941<br>9.98 938              | 24<br>23        | l   |
|              | 38              | 9.33 987             | 9.35 051                     | 0.64 949             | 9.98 936                          | 22              |     |
|              | 39<br><b>40</b> | 9.34 043             | 9.35 111                     | 0.64 889             | 9.98 933                          | 21<br><b>20</b> |     |
|              | 41              | 9.34 156             | 9.35 229                     | 0.64 771             | 9.98 927                          | 19              | ł   |
|              | 42<br>43        | 9.34 212<br>9.34 268 | 9.35 288<br>9.35 347         | 0.64 712<br>0.64 653 | 9.98 924<br>9.98 921              | 18<br>17        | ł   |
|              | 44              | 9.34 324             | 9.35 405                     | 0.64 595             | 9.98 919                          | 16              | 1   |
|              | 45              | 9.34 380             | 9.35 464                     | 0.64 536             | 9.98 916                          | 15              | l   |
|              | 46<br>47        | 9.34 436<br>9.34 491 | 9.35 523<br>9.35 58 <b>1</b> | 0.64 477<br>0.64 419 | 9.98 913<br>9.98 910              | 14<br>13        | l   |
|              | 48              | 9.34 547             | 9.35 640                     | 0.64 360             | 9.98 907                          | 12              | 1   |
|              | 49<br><b>50</b> | 9.34 602             | 9.35 698                     | 0.64 302             | 9.98 904                          | 11<br>10        | l   |
|              | 51              | 9.34 658<br>9.34 713 | 9.35 757                     | 0.64 243<br>0.64 185 | 9.98 898                          | 9               |     |
|              | 52              | 9.34 769             | 9.35 873                     | 0.64 127             | 9.98 896                          | 8               |     |
|              | 53 ·<br>54      | 9.34 824<br>9.34 879 | 9.35 931<br>9.35 989         | 0.64 069<br>0.64 011 | 9.98 893<br>9.98 890              | 7               |     |
|              | 55              | 9.34 934             | 9.36 047                     | 0.63 953             | 9.98 887                          | 5               | l   |
|              | 56<br>57        | 9.34 989<br>9.35 044 | 9.36 105<br>9.36 163         | 0.63 895<br>0.63 837 | 9.98 884<br>9.98 881              | 4<br>3          |     |
|              | 58              | 9.35 099             | 9.36 221                     | 0.63 779             | 9.98 878                          | 2               | İ   |
|              | 59<br><b>60</b> | 9.35 154             | 9.36 279                     | 0.63 721             | 9.98 875                          | 0               | •   |
|              | - 00            | 9.35 209             | 9.36 336                     | 0.63 664             | 9.98 872                          |                 | 1   |
|              |                 | L. Cos.              | L. Cotg.                     | L. Tang.             | L. Sin.                           | ′               |     |
|              |                 | *                    | Γ.5                          | 47                   |                                   |                 |     |

| 0 9.35 209 9.36 336 0.63 664 9.98 872 60 1 9.35 263 9.36 394 0.63 606 9.98 869 59 2 2.83 318 9.36 452 0.63 548 9.98 869 569 6.83 434 9.35 427 9.36 566 0.63 434 9.98 864 57 66 6 9.35 536 9.36 661 0.63 434 9.98 861 56 6 6 9.35 536 9.36 681 0.63 319 9.98 865 56 6 9.36 536 9.36 681 0.63 319 9.98 865 56 6 9.36 536 9.36 681 0.63 319 9.98 865 56 4 9.36 536 9.36 681 0.63 319 9.98 865 56 4 9.36 536 9.36 681 0.63 319 9.98 865 56 1 9.36 536 9.36 681 0.63 319 9.98 865 56 1 9.36 536 9.36 681 0.63 319 9.98 865 56 1 9.36 590 9.36 795 0.63 205 9.98 849 52 1 9.35 698 9.36 852 0.63 148 9.98 846 51 1 0.9 35 752 9.36 909 0.63 091 9.98 845 50 1 1 1 9.35 806 9.37 023 0.62 977 9.98 847 49 12 9.35 806 9.37 023 0.62 977 9.98 837 48 13 9.35 968 9.37 137 0.62 863 9.98 844 47 14 9.35 968 9.37 137 0.62 863 9.98 831 46 1 1 9.37 080 0.62 807 9.98 834 47 14 9.35 968 9.37 137 0.62 863 9.98 831 46 1 9.36 0.62 9.37 193 0.62 807 9.98 835 45 1 1 9.37 036 0.62 807 9.98 835 44 1 1 9.37 036 0.62 807 9.98 835 44 1 1 9.36 129 9.37 306 0.62 807 9.98 835 44 1 1 9.36 129 9.37 306 0.62 807 9.98 835 44 1 1 9.36 132 9.37 363 0.62 837 9.98 819 42 1 9.36 326 9.37 419 0.62 861 9.98 819 42 1 9.36 342 9.37 562 0.62 544 9.98 819 42 1 9.36 342 9.37 562 0.62 544 9.98 813 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | ,                    | L. Sin.                                      | L. Tang.                                     | L. Cotg.                                     | L. Cos.                                                  |                             |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------|--------------|
| 6 9.35 481 9.36 624 0.63 376 9.98 888 55 64 6 9.35 536 9.36 681 0.63 319 9.98 855 54 9.36 599 9.36 738 0.63 205 9.98 852 53 8 9.36 699 9.36 698 9.36 682 0.63 148 9.98 865 51 10 9.36 752 9.36 99 9.36 698 9.36 682 0.63 148 9.98 849 52 11 9.36 806 9.36 966 0.63 034 9.98 840 49 12 9.35 806 9.36 966 0.63 034 9.98 840 49 12 9.35 860 9.37 023 0.62 977 9.98 837 48 13 9.35 914 9.37 080 0.62 977 9.98 837 48 14 9.35 968 9.37 137 0.62 863 9.98 831 46 15 15 9.36 022 9.37 139 0.62 807 9.98 831 46 15 9.36 075 9.37 250 0.62 260 9.98 834 47 17 9.36 129 9.37 306 0.62 697 9.98 828 45 18 9.36 182 9.37 363 0.62 697 9.98 828 45 18 9.36 182 9.37 363 0.62 697 9.98 822 43 18 9.36 182 9.37 363 0.62 697 9.98 816 41 17 9.36 129 9.37 363 0.62 697 9.98 816 41 19 9.36 239 9.37 449 0.62 561 9.98 816 41 20 9.36 289 9.37 476 0.62 564 9.98 816 41 22 9.36 389 9.37 476 0.62 564 9.98 816 41 22 9.36 362 9.37 758 0.62 462 412 9.98 817 38 22 9.36 502 9.37 786 0.62 412 9.98 817 38 22 9.36 502 9.37 786 0.62 412 9.98 817 38 22 9.36 502 9.37 786 0.62 244 9.98 813 39 22 9.36 502 9.37 786 0.62 244 9.98 795 34 24 9.36 502 9.37 786 0.62 132 9.98 795 34 22 9.36 608 9.37 812 0.62 188 9.98 795 34 22 9.36 608 9.37 812 0.62 188 9.98 795 34 28 9.36 713 9.37 924 0.62 076 9.98 789 32 27 9.36 660 9.37 868 0.62 132 9.98 795 34 28 9.36 713 9.38 817 9.38 817 9.38 817 9.38 817 9.38 817 9.38 819 9.38 827 0.61 615 9.98 789 32 9.38 766 9.37 980 0.62 132 9.98 774 27 33 9.38 676 9.37 980 0.62 132 9.98 774 27 34 9.38 679 9.38 820 0.61 677 9.98 789 32 9.38 789 9.38 827 0.61 601 9.98 774 27 33 9.38 676 9.38 827 0.61 615 9.98 783 32 9.38 774 9.38 827 0.61 615 9.98 774 27 33 9.38 699 9.38 820 0.61 616 9.98 774 27 33 9.38 699 9.38 820 0.61 616 9.98 774 27 33 9.38 699 0.61 301 9.98 774 27 33 9.38 644 0.61 356 9.98 774 27 33 9.38 644 0.61 356 9.98 774 27 33 9.38 644 0.61 356 9.98 774 27 44 9.37 793 9.38 829 9.38 534 0.61 666 9.98 765 21 44 9.37 797 9.38 838 9.39 836 44 0.61 822 9.98 774 27 44 9.37 793 9.38 829 9.38 534 0.61 666 9.98 786 25 11 9.37 999 9.38 190 0.60 610 9.98 774 12 6 |     | 1<br>2<br>3          | 9.35 263<br>9.35 318<br>9.35 373             | 9.36 394<br>9.36 452<br>9.36 509             | 0.63 606<br>0.63 548<br>0.63 491             | 9.98 869<br>9.98 867<br>9.98 864                         | 59<br>58<br>57              |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 5<br>6<br>7<br>8     | 9.35 481<br>9.35 536<br>9.35 590<br>9.35 644 | 9.36 624<br>9.36 681<br>9.36 738<br>9.36 795 | 0.63 376<br>0.63 319<br>0.63 262<br>0.63 205 | 9.98 858<br>9.98 85 <del>5</del><br>9.98 852<br>9.98 849 | 55<br>54<br>53<br>52        |              |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 10<br>11<br>12<br>13 | 9.35 752<br>9.35 806<br>9.35 860<br>9.35 914 | 9.36 909<br>9.36 966<br>9.37 023<br>9.37 080 | 0.63 091<br>0.63 034<br>0.62 977<br>0.62 920 | 9.98 843<br>9.98 840<br>9.98 837<br>9.98 834             | <b>50</b><br>49<br>48<br>47 |              |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 15<br>16<br>17<br>18 | 9.36 022<br>9.36 075<br>9.36 129<br>9.36 182 | 9.37 193<br>9.37 250<br>9.37 306<br>9.37 363 | 0.62 807<br>0.62 750<br>0.62 694<br>0.62 637 | 9.98 828<br>9.98 825<br>9.98 822<br>9.98 819             | 45<br>44<br>43<br>42        |              |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·   | 20<br>21<br>22<br>23 | 9.36 289<br>9.36 342<br>9.36 395<br>9.36 449 | 9.37 476<br>9.37 532<br>9.37 588<br>9.37 644 | 0.62 524<br>0.62 468<br>0.62 412<br>0.62 356 | 9.98 813<br>9.98 810<br>9.98 807<br>9.98 804             | <b>40</b><br>39<br>38<br>37 |              |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 25<br>26<br>27<br>28 | 9.36 555<br>9.36 608<br>9.36 660<br>9.36 713 | 9.37 756<br>9.37 812<br>9.37 868<br>9.37 924 | 0.62 244<br>0.62 188<br>0.62 132<br>0.62 076 | 9.98 798<br>9.98 795<br>9.98 792<br>9.98 789             | 35<br>34<br>33<br>32        | <b>P.C</b> 0 |
| 35         9.37 081         9.38 313         0.61 687         9.98 768         25           36         9.37 133         9.38 368         0.61 632         9.98 765         24           37         9.37 185         9.38 423         0.61 577         9.98 762         23           38         9.37 237         9.38 479         0.61 521         9.98 759         22           39         9.37 289         9.38 534         0.61 466         9.98 756         21           40         9.37 341         9.38 589         0.61 411         9.98 750         19           41         9.37 393         9.38 644         0.61 356         9.98 750         19           42         9.37 445         9.38 699         0.61 301         9.98 746         18           43         9.37 497         9.38 754         0.61 246         9.98 743         17           44         9.37 549         9.38 808         0.61 192         9.98 737         15           46         9.37 652         9.38 918         0.61 082         9.98 731         13           47         9.37 703         9.38 972         0.61 028         9.98 725         11           50         9.37 806         9.39 027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10  | 31<br>32<br>33       | 9.36 819<br>9.36 871<br>9.36 924<br>9.36 976 | 9.38 035<br>9.38 091<br>9.38 147<br>9.38 202 | 0.61 965<br>0.61 909<br>0.61 853<br>0.61 798 | 9.98 783<br>9.98 780<br>9.98 777<br>9.98 774             | 30<br>29<br>28<br>27        | 10           |
| 40         9.37 341         9.38 589         0.61 411         9.98 753         20           41         9.37 393         9.38 644         0.61 356         9.98 750         19           42         9.37 445         9.38 699         0.61 301         9.98 746         18           43         9.37 497         9.38 754         0.61 246         9.98 743         17           44         9.37 649         9.38 808         0.61 192         9.98 740         16           45         9.37 600         9.38 863         0.61 192         9.98 737         15           46         9.37 652         9.38 918         0.61 082         9.98 734         14           47         9.37 703         9.38 972         0.61 023         9.98 731         13           48         9.37 755         9.39 027         0.60 973         9.98 728         12           49         9.37 806         9.39 082         0.60 918         9.98 722         10           51         9.37 909         9.39 190         0.60 864         9.98 719         9           52         9.37 960         9.39 245         0.60 755         9.98 715         8           53         9.38 101         9.39 299         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 35<br>36<br>37<br>38 | 9.37 081<br>9.37 133<br>9.37 185<br>9.37 237 | 9.38 313<br>9.38 368<br>9.38 423<br>9.38 479 | 0.61 687<br>0.61 632<br>0.61 577<br>0.61 521 | 9.98 768<br>9.98 765<br>9.98 762<br>9.98 759             | 25<br>24<br>23<br>22        |              |
| 46       9.37 652       9.38 918       0.61 082       9.98 734       14         47       9.37 703       9.38 972       0.61 023       9.98 731       13         48       9.37 755       9.39 027       0.60 973       9.98 728       12         49       9.37 806       9.39 082       0.60 918       9.98 725       11         50       9.37 858       9.39 136       0.60 864       9.98 722       10         51       9.37 909       9.39 190       0.60 810       9.98 719       9         52       9.37 960       9.39 245       0.60 755       9.98 715       8         53       9.38 011       9.39 299       0.60 701       9.98 702       7         54       9.38 062       9.39 353       0.60 647       9.98 709       6         55       9.38 113       9.39 407       0.60 593       9.98 706       5         56       9.38 164       9.39 401       0.60 539       9.98 703       4         57       9.38 215       9.39 515       0.60 485       9.98 700       3         58       9.38 266       9.39 569       0.60 431       9.98 697       2         59       9.38 317       9.39 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 41<br>42<br>43       | 9.37 341<br>9.37 393<br>9.37 445<br>9.37 497 | 9.38 589<br>9.38 644<br>9.38 699<br>9.38 754 | 0.61 411<br>0.61 356<br>0.61 301<br>0.61 246 | 9.98 753<br>9.98 750<br>9.98 746<br>9.98 743             | 19<br>18<br>17              |              |
| 51     9.37 909     9.39 190     0.60 810     9.98 719     9       52     9.37 960     9.39 245     0.60 755     9.98 715     8       53     9.38 011     9.39 299     0.60 701     9.98 712     7       54     9.38 062     9.39 353     0.60 647     9.98 709     6       55     9.38 113     9.39 407     0.60 593     9.98 706     5       56     9.38 164     9.39 461     0.60 539     9.98 703     4       57     9.38 215     9.39 515     0.60 485     9.98 700     3       58     9.38 266     9.39 569     0.60 431     9.98 697     2       59     9.38 317     9.39 623     0.60 377     9.98 694     1       60     9.38 368     9.39 677     0.60 323     9.98 690     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 46<br>47<br>48       | 9.37 652<br>9.37 703<br>9.37 755             | 9.38 918<br>9.38 972<br>9.39 027             | 0.61 082<br>0.61 028<br>0.60 973             | 9.98 734<br>9.98 731<br>9.98 728                         | 14<br>13<br>12              |              |
| 56       9.38 164       9.39 461       0.60 539       9.98 703       4         57       9.38 215       9.39 515       0.60 485       9.98 700       3         58       9.38 266       9.39 569       0.60 431       9.98 697       2         59       9.38 317       9.39 623       0.60 377       9.98 694       1         60       9.38 368       9.39 677       0.60 323       9.98 690       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 51<br>52<br>53       | 9.37 909<br>9.37 960<br>9.38 011             | 9.39 190<br>9.39 24 <del>5</del><br>9.39 299 | 0.60 810<br>0.60 755<br>0.60 701             | 9.98 719<br>9.98 715<br>9.98 712                         | 9<br>8<br>. 7               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 56<br>57<br>58<br>59 | 9.38 164<br>9.38 215<br>9.38 266<br>9.38 317 | 9.39 461<br>9.39 515<br>9.39 569<br>9.39 623 | 0.60 539<br>0.60 485<br>0.60 431<br>0.60 377 | 9.98 703<br>9.98 700<br>9.98 697<br>9.98 694             | 4<br>3<br>2<br>1            |              |
| L. Cos. L. Cotg. L. Tang. L. Sin. '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 60_                  | 9.38 368<br><b>L. Cos.</b>                   | 9.39 677<br><b>L. Cotg.</b>                  | 0.60 323<br><b>L. Tang.</b>                  | 9.98 690<br><b>L. Sin.</b>                               | ,                           |              |

| П   | ,                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                             | L. Cos.                                                                          |                                   |       |
|-----|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|-------|
|     | 0<br>1<br>2<br>3<br>4      | 9.38 368<br>9.38 418<br>9.38 469<br>9.38 519<br>9.38 570 | 9.39 677<br>9.39 731<br>9.39 785<br>9.39 838<br>9.39 892 | 0.60 323<br>0.60 269<br>0.60 215<br>0.60 162<br>0.60 108             | 9.98 690<br>9.98 687<br>9.98 684<br>9.98 681<br>9.98 678                         | <b>60</b><br>59<br>58<br>57<br>56 |       |
|     | 5<br>6<br>7<br>8           | 9.38 620<br>9.38 670<br>9.38 721<br>9.38 771<br>9.38 821 | 9.39 945<br>9.39 999<br>9.40 052<br>9.40 106<br>9.40 159 | 0.60 055<br>0.60 001<br>0.59 948<br>0.59 894<br>0.59 841             | 9.98 675<br>9.98 671<br>9.98 668<br>9.98 665<br>9.98 662                         | 55<br>54<br>53<br>52<br>51        |       |
|     | 10<br>11<br>12<br>13<br>14 | 9.38 871<br>9.38 921<br>9.38 971<br>9.39 021<br>9.39 071 | 9.40 212<br>9.40 266<br>9.40 319<br>9.40 372<br>9.40 425 | 0.59 788<br>0.59 734<br>0.59 681<br>0.59 628<br>0.59 575             | 9.98 659<br>9.98 656<br>9.98 652<br>9.98 649<br>9.98 646                         | 50<br>49<br>48<br>47<br>46        |       |
|     | 15<br>16<br>17<br>18<br>19 | 9.39 121<br>9.39 170<br>9.39 220<br>9.39 270<br>9.39 319 | 9.40 478<br>9.40 531<br>9.40 584<br>9.40 636<br>9.40 689 | 0.59 522<br>0.59 469<br>0.59 416<br>0.59 364<br>0.59 311             | 9.98 643<br>9.98 640<br>9.98 636<br>9.98 633<br>9.98 630                         | 45<br>44<br>43<br>42<br>41        |       |
|     | 20<br>21<br>22<br>23<br>24 | 9.39 369<br>9.39 418<br>9.39 467<br>9.39 517<br>9.39 566 | 9.40 742<br>9.40 795<br>9.40 847<br>9.40 900<br>9.40 952 | 0.59 258<br>0.59 205<br>0.59 153<br>0.59 100<br>0.59 048             | 9.98 627<br>9.98 623<br>9.98 620<br>9.98 617<br>9.98 614                         | 40<br>39<br>38<br>37<br>36        |       |
|     | 25<br>26<br>27<br>28       | 9.39 615<br>9.39 664<br>9.39 713<br>9.39 762<br>9.39 811 | 9.41 005<br>9.41 057<br>9.41 109<br>9.41 161<br>9.41 214 | 0.58 995<br>0.58 943<br>0.58 891<br>0.58 839<br>0.58 786             | 9.98 610<br>9.98 607<br>9.98 604<br>9.98 601<br>9.98 597                         | 35<br>34<br>33<br>32<br>31        | P P C |
| 14° | 30<br>31<br>32<br>33<br>34 | 9.39 860<br>9.39 909<br>9.39 958<br>9.40 006<br>9.40 055 | 9.41 266<br>9.41 318<br>9.41 370<br>9.41 422<br>9.41 474 | 0.58 734<br>0.58 682<br>0.58 630<br>0.58 578<br>0.58 526             | 9.98 594<br>9.98 591<br>9.98 588<br>9.98 584<br>9.98 581                         | 30<br>29<br>28<br>27<br>26        | 75°   |
|     | 35<br>36<br>37<br>38<br>39 | 9.40 103<br>9.40 152<br>9.40 200<br>9.40 249<br>9.40 297 | 9.41 526<br>9.41 578<br>9.41 629<br>9.41 681<br>9.41 733 | 0.58 474<br>0.58 422<br>0.58 371<br>0.58 319<br>0.58 267             | 9.98 578<br>9.98 574<br>9.98 571<br>9.98 568<br>9.98 565                         | 25<br>24<br>23<br>22<br>21        |       |
|     | 40<br>41<br>42<br>43<br>44 | 9.40 346<br>9.40 394<br>9.40 442<br>9.40 490<br>9.40 538 | 9.41 784<br>9.41 836<br>9.41 887<br>9.41 939<br>9.41 990 | 0.58 216<br>0.58 164<br>0.58 113<br>0.58 061<br>0.58 010             | 9.98 561<br>9.98 558<br>9.98 555<br>9.98 551<br>9.98 548                         | 20<br>19<br>18<br>17<br>16        |       |
|     | 45<br>46<br>47<br>48<br>49 | 9.40 586<br>9.40 634<br>9.40 682<br>9.40 730<br>9.40 778 | 9.42 041<br>9.42 093<br>9.42 144<br>9.42 195<br>9.42 246 | 0.57 959<br>0.57 907<br>0.57 856<br>0.57 80 <del>5</del><br>0.57 754 | 9.98 545<br>9.98 541<br>9.98 538<br>9.98 535<br>9.98 531                         | 15<br>14<br>13<br>12<br>11        |       |
|     | 50<br>51<br>52<br>53<br>54 | 9.40 825<br>9.40 873<br>9.40 921<br>9.40 968<br>9.41 016 | 9.42 297<br>9.42 348<br>9.42 399<br>9.42 450<br>9.42 501 | 0.57 703<br>0.57 652<br>0.57 601<br>0.57 550<br>0.57 499             | 9.98 528<br>9.98 52 <del>5</del><br>9.98 521<br>9.98 518<br>9.98 51 <del>5</del> | 10 · 9 · 8 · 7 · 6                |       |
|     | 55<br>56<br>57<br>58<br>59 | 9.41 063<br>9.41 111<br>9.41 158<br>9.41 205<br>9.41 252 | 9.42 552<br>9.42 603<br>9.42 653<br>9.42 704<br>9.42 755 | 0.57 448<br>0.57 397<br>0.57 347<br>0.57 296<br>0.57 245             | 9.98 511<br>9.98 508<br>9.98 505<br>9.98 501<br>9.98 498                         | 5<br>4<br>3<br>2<br>1             |       |
|     | 60                         | 9.41 300                                                 | 9.42 805                                                 | 0.57 195                                                             | 9.98 494                                                                         | 0                                 | 1     |
|     | 58<br>59                   | 9.41 205<br>9.41 252                                     | 9.42 704<br>9.42 755<br>9.42 805<br><b>L. Cotg.</b>      | 0.57 296<br>0.57 245                                                 | 9.98 501<br>9.98 498                                                             | 2<br>1                            |       |

|     | 1                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                             |          |
|-----|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|----------|
|     | 0<br>1<br>2<br>3<br>4            | 9.41 300<br>9.41 347<br>9.41 394<br>9.41 441<br>9.41 488             | 9.42 805<br>9.42 856<br>9.42 906<br>9.42 957<br>9.43 007             | 0.57 195<br>0.57 144<br>0.57 094<br>0.57 043<br>0.56 993             | 9.98 494<br>9.98 491<br>9.98 488<br>9.98 484<br>9.98 481             | <b>60</b><br>59<br>58<br>57 |          |
|     | 5<br>6<br>7<br>8                 | 9.41 535<br>9.41 582<br>9.41 628<br>9.41 675                         | 9.43 057<br>9.43 108<br>9.43 158<br>9.43 208                         | 0.56 943<br>0.56 892<br>0.56 842<br>0.56 792                         | 9.98 477<br>9.98 474<br>9.98 471<br>9.98 467                         | 56<br>55<br>54<br>53<br>52  |          |
|     | 9<br>10<br>11<br>12<br>13        | 9.41 722<br>9.41 768<br>9.41 815<br>9.41 861<br>9.41 908             | 9.43 258<br>9.43 308<br>9.43 358<br>9.43 408<br>9.43 458             | 0.56 742<br>0.56 692<br>0.56 642<br>0.56 592<br>0.56 542             | 9.98 464<br>9.98 460<br>9.98 457<br>9.98 453<br>9.98 450             | 51<br>50<br>49<br>48<br>47  |          |
|     | 14<br>15<br>16<br>17<br>18       | 9.41 954<br>9.42 001<br>9.42 047<br>9.42 093<br>9.42 140             | 9.43 508<br>9.43 558<br>9.43 607<br>9.43 657<br>9.43 707             | 0.56 492<br>0.56 442<br>0.56 393<br>0.56 343<br>0.56 293             | 9.98 447<br>9.98 443<br>9.98 440<br>9.98 436<br>9.98 433             | 46<br>45<br>44<br>43<br>42  |          |
|     | 19<br>20<br>21<br>22<br>23       | 9.42 186<br>9.42 232<br>9.42 278<br>9.42 324<br>9.42 370             | 9.43 756<br>9.43 806<br>9.43 855<br>9.43 905<br>9.43 954             | 0.56 244<br>0.56 194<br>0.56 145<br>0.56 095<br>0.56 046             | 9.98 429<br>9.98 426<br>9.98 422<br>9.98 419<br>9.98 415             | 41<br>40<br>39<br>38<br>37  |          |
|     | 24<br>25<br>26<br>27<br>28       | 9.42 416<br>9.42 461<br>9.42 507<br>9.42 553<br>9.42 599             | 9.44 004<br>9.44 053<br>9.44 102<br>9.44 151<br>9.44 201             | 0.55 996<br>0.55 947<br>0.55 898<br>0.55 849<br>0.55 799             | 9.98 412<br>9.98 409<br>9.98 405<br>9.98 402<br>9.98 398             | 36<br>35<br>34<br>33<br>32  |          |
| 15° | 29<br>30<br>31<br>32<br>33<br>34 | 9.42 644<br>9.42 690<br>9.42 735<br>9.42 781<br>9.42 826<br>9.42 872 | 9.44 250<br>9.44 299<br>9.44 348<br>9.44 397<br>9.44 446<br>9.44 495 | 0.55 750<br>0.55 701<br>0.55 652<br>0.55 603<br>0.55 554<br>0.55 505 | 9.98 395<br>9.98 391<br>9.98 388<br>9.98 384<br>9.98 381<br>9.98 377 | 31<br>29<br>28<br>27<br>26  | 74°      |
|     | 35<br>36<br>37<br>38<br>39       | 9.42 917<br>9.42 962<br>9.43 008<br>9.43 053<br>9.43 098             | 9.44 544<br>9.44 592<br>9.44 641<br>9.44 690<br>9.44 738             | 0.55 456<br>0.55 408<br>0.55 359<br>0.55 310<br>0.55 262             | 9.98 373<br>9.98 370<br>9.98 366<br>9.98 363<br>9.98 359             | 25<br>24<br>23<br>22<br>21  |          |
|     | 40<br>41<br>42<br>43<br>44       | 9.43 143<br>9.43 188<br>9.43 233<br>9.43 278<br>9.43 323             | 9.44 787<br>9.44 836<br>9.44 884<br>9.44 933<br>9.44 981             | 0.55 213<br>0.55 164<br>0.55 116<br>0.55 067<br>0.55 019             | 9.98 356<br>9.98 352<br>9.98 349<br>9.98 345<br>9.98 342             | 20<br>19<br>18<br>17<br>16  |          |
|     | 45<br>46<br>47<br>48<br>49       | 9.43 367<br>9.43 412<br>9.43 457<br>9.43 502<br>9.43 546             | 9.45 029<br>9.45 078<br>9.45 126<br>9.45 174<br>9.45 222             | 0.54 971<br>0.54 922<br>0.54 874<br>0.54 826<br>0.54 778             | 9.98 338<br>9.98 334<br>9.98 331<br>9.98 327<br>9.98 324             | 15<br>14<br>13<br>12<br>11  |          |
|     | <b>50</b> 51 52 53 54            | 9.43 591<br>9.43 635<br>9.43 680<br>9.43 724<br>9.43 769             | 9.45 271<br>9 45 319<br>9.45 367<br>9.45 414<br>9.45 463             | 0.54 729<br>0.54 681<br>0.54 633<br>0.54 585<br>0.54 537             | 9.98 320<br>9.98 317<br>9.98 313<br>9.98 309<br>9.98 306             | 10<br>9<br>8<br>7<br>6      |          |
|     | 55<br>56<br>57<br>58<br>59       | 9.43 813<br>9.43 857<br>9.43 901<br>9.43 946<br>9.43 990             | 9.45 511<br>9.45 559<br>9.45 606<br>9.45 654<br>9.45 702             | 0.54 489<br>0.54 441<br>0.54 394<br>0.54 346<br>0.54 298             | 9.98 302<br>9.98 299<br>9.98 295<br>9.98 291<br>9.98 288             | 5<br>4<br>3<br>2<br>1       |          |
|     | 60                               | 9.44 034<br><b>L. Cos.</b>                                           | 9.45 750<br><b>L. Cotg.</b>                                          | 0.54 250                                                             | 9.98 284<br><b>L. Sin.</b>                                           | 0                           |          |
|     |                                  | II. CUS.                                                             |                                                                      | L. Tang.                                                             | 11. 2111.                                                            |                             | <u> </u> |

|              | 1                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                   | L. Cos.                                                  |                                   | $\neg$ |
|--------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------|
|              | 0<br>1<br>2<br>3<br>4      | 9.44 034<br>9.44 078<br>9.44 122<br>9.44 166<br>9.44 210 | 9.45 750<br>9.45 797<br>9.45 845<br>9.45 892<br>9.45 940 | 0.54 250<br>0.54 203<br>0.54 155<br>0.54 108<br>0.54 060   | 9.98 284<br>9.98 281<br>9.98 277<br>9.98 273<br>9.98 270 | <b>60</b><br>59<br>58<br>57<br>56 |        |
|              | 5<br>6<br>7<br>8<br>9      | 9.44 253<br>9.44 297<br>9.44 341<br>9.44 385<br>9.44 428 | 9.45 987<br>9.46 035<br>9.46 082<br>9.46 130<br>9.46 177 | 0.54 013<br>0.53 965<br>0.53 918<br>0.53 870<br>0.53 823   | 9.98 266<br>9.98 262<br>9.98 259<br>9.98 255<br>9.98 251 | 55<br>54<br>53<br>52<br>51        |        |
|              | 10<br>11<br>12<br>13<br>14 | 9.44 472<br>9.44 516<br>9.44 559<br>9.44 602<br>9.44 646 | 9.46 224<br>9.46 271<br>9.46 319<br>9.46 366<br>9.46 413 | 0.53 776<br>0.53 729<br>0.53 681<br>0.53 634<br>0.53 587   | 9.98 248<br>9.98 244<br>9.98 240<br>9.98 237<br>9.98 233 | 50<br>49<br>48<br>47<br>46        |        |
|              | 15<br>16<br>17<br>18<br>19 | 9.44 689<br>9.44 733<br>9.44 776<br>9.44 819<br>9.44 862 | 9.46 460<br>9.46 507<br>9.46 554<br>9.46 601<br>9.46 648 | 0.53 540<br>0.53 493<br>0.53 446<br>0.53 399<br>0.53 352   | 9.98 229<br>9.98 226<br>9.98 222<br>9.98 218<br>9.98 215 | 45<br>44<br>43<br>42<br>41        |        |
|              | 20<br>21<br>22<br>23<br>24 | 9.44 905<br>9.44 948<br>9.44 992<br>9.45 035<br>9.45 077 | 9.46 694<br>9.46 741<br>9.46 788<br>9.46 835<br>9.46 881 | 0.53 306<br>0.53 259<br>0.53 212<br>0.53 165<br>0.53 119   | 9.98 211<br>9.98 207<br>9.98 204<br>9.98 200<br>9.98 196 | <b>40</b><br>39<br>38<br>37<br>36 |        |
| $16^{\circ}$ | 25<br>26<br>27<br>28<br>29 | 9.45 120<br>9.45 163<br>9.45 206<br>9.45 249<br>9.45 292 | 9.46 928<br>9.46 975<br>9.47 021<br>9.47 068<br>9.47 114 | 0.53 072<br>0.53 025<br>0.52 979<br>0.52 932<br>0.52 886   | 9.98 192<br>9.98 189<br>9.98 185<br>9.98 181<br>9.98 177 | 35<br>34<br>33<br>32<br>31        | 73°    |
| 10           | 30<br>31<br>32<br>33<br>34 | 9.45 334<br>9.45 377<br>9.45 419<br>9.45 462<br>9.45 504 | 9.47 160<br>9.47 207<br>9.47 253<br>9.47 299<br>9.47 346 | 0.52 840<br>0.52 793<br>0.52 747<br>0.52 701<br>0.52 654   | 9.98 174<br>9.98 170<br>9.98 166<br>9.98 162<br>9.98 159 | 30<br>29<br>28<br>27<br>26        | . 0    |
|              | 35<br>36<br>37<br>38<br>39 | 9.45 547<br>9.45 589<br>9.45 632<br>9.45 674<br>9.45 716 | 9.47 392<br>9.47 438<br>9.47 484<br>9.47 530<br>9.47 576 | 0.52 608<br>0.52 562<br>0.52 516<br>0.52 470<br>0.52 424   | 9.98 155<br>9.98 151<br>9.98 147<br>9.98 144<br>9.98 140 | 25<br>24<br>23<br>22<br>21        |        |
|              | 40<br>41<br>42<br>43<br>44 | 9.45 758<br>9.45 801<br>9.45 843<br>9.45 885<br>9.45 927 | 9.47 622<br>9.47 668<br>9.47 714<br>9.47 760<br>9.47 806 | 0.52 378 ·<br>0.52 332<br>0.52 286<br>0.52 240<br>0.52 194 | 9.98 136<br>9.98 132<br>9.98 129<br>9.98 125<br>9.98 121 | 20<br>19<br>18<br>17<br>16        |        |
|              | 45<br>46<br>47<br>48<br>49 | 9.45 969<br>9.46 011<br>9.46 053<br>9.46 095<br>9.46 136 | 9.47 852<br>9.47 897<br>9.47 943<br>9.47 989<br>9.48 035 | 0.52 148<br>0.52 103<br>0.52 057<br>0.52 011<br>0.51 965   | 9.98 117<br>9.98 113<br>9.98 110<br>9.98 106<br>9.98 102 | 15<br>14<br>13<br>12<br>11        |        |
|              | 50<br>51<br>52<br>53<br>54 | 9.46 178<br>9.46 220<br>9.46 262<br>9.46 303<br>9.46 345 | 9.48 080<br>9.48 126<br>9.48 171<br>9.48 217<br>9.48 262 | 0.51 920<br>0.51 874<br>0.51 829<br>0.51 783<br>0.51 738   | 9.98 098<br>9.98 094<br>9.98 090<br>9.98 087<br>9.98 083 | 10<br>9<br>8<br>7<br>6            |        |
|              | 55<br>56<br>57<br>58<br>59 | 9.46 386<br>9.46 428<br>9.46 469<br>9.46 511<br>9.46 552 | 9.48 307<br>9.48 353<br>9.48 398<br>9.48 443<br>9.48 489 | 0.51 693<br>0.51 647<br>0.51 602<br>0.51 557<br>0.51 511   | 9.98 079<br>9.98 075<br>9.98 071<br>9.98 067<br>9.98 063 | 5<br>4<br>3<br>2<br>1             |        |
|              | 60                         | 9.46 594<br><b>L. Cos.</b>                               | 9.48 534  ' L. Cotg.                                     | 0.51 466<br><b>L. Tang.</b>                                | 9.98 060<br><b>L. Sin.</b>                               | ,<br>,                            |        |
|              |                            | 11. 003.                                                 | Ŭ.                                                       | 21. Tang.                                                  | 11. Dill.                                                |                                   |        |

|     | '                                 | L. Sin.                                                                                          | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |     |
|-----|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----|
| 17° | 0<br>1<br>2<br>3                  | 9.46 594<br>9.46 63 <del>5</del><br>9.46 676<br>9.46 717                                         | 9.48 534<br>9.48 579<br>9.48 624<br>9.48 669             | 0.51 466<br>0.51 421<br>0.51 376<br>0.51 331             | 9.98 060<br>9.98 056<br>9.98 052<br>9.98 048             | <b>60</b><br>59<br>58<br>57       |     |
|     | 5<br>6<br>7                       | 9.46 758<br>9.46 800<br>9.46 841<br>9.46 882                                                     | 9.48 714<br>9.48 759<br>9.48 804<br>9.48 849             | 0.51 286<br>0.51 241<br>0.51 196<br>0.51 151             | 9.98 044<br>9.98 040<br>9.98 036<br>9.98 032             | 56<br>55<br>54<br>53              |     |
|     | 8<br>9<br><b>10</b><br>11<br>12   | $ \begin{array}{r} 9.46 923 \\ 9.46 964 \\ \hline 9.47 005 \\ 9.47 045 \\ 9.47 086 \end{array} $ | 9.48 894<br>9.48 939<br>9.48 984<br>9.49 029<br>9.49 073 | 0.51 106<br>0.51 061<br>0.51 016<br>0.50 971<br>0.50 927 | 9.98 029<br>9.98 025<br>9.98 021<br>9.98 017<br>9.98 013 | 52<br>51<br><b>50</b><br>49<br>48 | ·   |
|     | 13<br>14<br>15<br>16              | 9.47 127<br>9.47 168<br>9.47 209<br>9.47 249                                                     | 9.49 118<br>9.49 163<br>9.49 207<br>9.49 252             | 0.50 882<br>0.50 837<br>0.50 793<br>0.50 748             | 9.98 009<br>9.98 005<br>9.98 001<br>9.97 997             | 47<br>46<br>45<br>44              |     |
|     | 17<br>18<br>19<br>20              | 9.47 290<br>9.47 330<br>9.47 371<br>9.47 411                                                     | 9.49 296<br>9.49 341<br>9.49 385<br>9.49 430             | 0.50 774<br>0.50 704<br>0.50 659<br>0.50 615<br>0.50 570 | 9.97 993<br>9.97 989<br>9.97 986<br>9.97 982             | 43<br>42<br>41<br>40              |     |
|     | 21<br>22<br>23<br>24              | 9.47 452<br>9.47 492<br>9.47 533<br>9.47 573                                                     | 9.49 474<br>9.49 519<br>9.49 563<br>9.49 607             | 0.50 526<br>0.50 481<br>0.50 437<br>0.50 393             | 9.97 978<br>9.97 974<br>9.97 970<br>9.97 966             | 39<br>38<br>37<br>36              |     |
|     | 25<br>26<br>27<br>28<br>29        | 9.47 613<br>9.47 654<br>9.47 694<br>9.47 734<br>9.47 774                                         | 9.49 652<br>9.49 696<br>9.49 740<br>9.49 784<br>9.49 828 | 0.50 348<br>0.50 304<br>0.50 260<br>0.50 216<br>0.50 172 | 9.97 962<br>9.97 958<br>9.97 954<br>9.97 950<br>9.97 946 | 35<br>34<br>33<br>32<br>31        | 72° |
|     | 30<br>31<br>32<br>33<br>34        | 9.47 814<br>9.47 854<br>9.47 894<br>9.47 934<br>9.47 974                                         | 9.49 872<br>9.49 916<br>9.49 960<br>9.50 004<br>9.50 048 | 0.50 128<br>0.50 084<br>0.50 040<br>0.49 996<br>0.49 952 | 9.97 942<br>9.97 938<br>9.97 934<br>9.97 930<br>9.97 926 | 30<br>29<br>28<br>27<br>26        |     |
|     | 35<br>36<br>37<br>38<br>39        | 9.48 014<br>9.48 054<br>9.48 094<br>9.48 133<br>9.48 173                                         | 9.50 092<br>9.50 136<br>9.50 180<br>9.50 223<br>9.50 267 | 0.49 908<br>0.49 864<br>0.49 820<br>0.49 777<br>0.49 733 | 9.97 922<br>9.97 918<br>9.97 914<br>9.97 910<br>9.97 906 | 25<br>24<br>23<br>22<br>21        |     |
|     | <b>40</b><br>41<br>42<br>43<br>44 | 9.48 213<br>9.48 252<br>9.48 292<br>9.48 332<br>9.48 371                                         | 9.50 311<br>9.50 355<br>9.50 398<br>9.50 442<br>9.50 485 | 0.49 689<br>0.49 645<br>0.49 602<br>0.49 558<br>0.49 515 | 9.97 902<br>9.97 898<br>9.97 894<br>9.97 890<br>9.97 886 | 20<br>19<br>18<br>17<br>16        |     |
|     | 45<br>46<br>47<br>48<br>49        | 9.48 411<br>9.48 450<br>9.48 490<br>9.48 529<br>9.48 568                                         | 9.50 529<br>9.50 572<br>9.50 616<br>9.50 659<br>9.50 703 | 0.49 471<br>0.49 428<br>0.49 384<br>0.49 341<br>0.49 297 | 9.97 882<br>9.97 878<br>9.97 874<br>9.97 870<br>9.97 866 | 15<br>14<br>13<br>12<br>11        |     |
|     | 50<br>51<br>52<br>53<br>54        | 9.48 607<br>9.48 647<br>9.48 686<br>9.48 725<br>9.48 764                                         | 9.50 746<br>9.50 789<br>9.50 833<br>9.50 876<br>9.50 919 | 0.49 254<br>0.49 211<br>0.49 167<br>0.49 124<br>0.49 081 | 9.97 861<br>9.97 857<br>9.97 853<br>9.97 849<br>9.97 845 | 10<br>9<br>8<br>7<br>6            | •   |
|     | 55<br>56<br>57<br>58<br>59        | 9.48 803<br>9.48 842<br>9.48 881<br>9.48 920<br>9.48 959                                         | 9.50 962<br>9.51 005<br>9.51 048<br>9.51 092<br>9.51 135 | 0.49 038<br>0.48 995<br>0.48 952<br>0.48 908<br>0.48 865 | 9.97 841<br>9.97 837<br>9.97 833<br>9.97 829<br>9.97 825 | 5<br>4<br>3<br>2<br>1             |     |
|     | 60                                | 9.48 998                                                                                         | 9.51 178                                                 | 0.48 822                                                 | 9.97 821                                                 | 0                                 |     |
|     |                                   | L. Cos.                                                                                          | L. Cotg.                                                 | L. Tang.                                                 | L.Sin.                                                   | ′                                 |     |

|     | 1                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |     |
|-----|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----|
|     | 0<br>1<br>2<br>3<br>4      | 9.48 998<br>9.49 037<br>9.49 076<br>9.49 115<br>9.49 153 | 9.51 178<br>9.51 221<br>9.51 264<br>9.51 306<br>9.51 349 | 0.48 822<br>0.48 779<br>0.48 736<br>0.48 694<br>0.48 651 | 9.97 821<br>9.97 817<br>9.97 812<br>9.97 808<br>9.97 804 | <b>60</b><br>59<br>58<br>57<br>56 |     |
|     | 5<br>6<br>7<br>8<br>9      | 9.49 192<br>9.49 231<br>9.49 269<br>9.49 308<br>9.49 347 | 9.51 392<br>9.51 435<br>9.51 478<br>9.51 520<br>9.51 563 | 0.48 608<br>0.48 565<br>0.48 522<br>0.48 480<br>0.48 437 | 9.97 800<br>9.97 796<br>9.97 792<br>9.97 788<br>9.97 784 | 55<br>54<br>53<br>52<br>51        |     |
|     | 10<br>11<br>12<br>13<br>14 | 9.49 385<br>9.49 424<br>9.49 462<br>9.49 500<br>9.49 539 | 9.51 606<br>9.51 648<br>9.51 691<br>9.51 734<br>9.51 776 | 0.48 394<br>0.48 352<br>0.48 309<br>0.48 266<br>0.48 224 | 9.97 779<br>9.97 775<br>9.97 771<br>9.97 767<br>9.97 763 | <b>50</b><br>49<br>48<br>47<br>46 |     |
|     | 15<br>16<br>17<br>18<br>19 | 9.49 577<br>9.49 615<br>9.49 654<br>9.49 692<br>9.49 730 | 9.51 819<br>9.51 861<br>9.51 903<br>9.51 946<br>9.51 988 | 0.48 181<br>0.48 139<br>0.48 097<br>0.48 054<br>0.48 012 | 9.97 759<br>9.97 754<br>9.97 750<br>9.97 746<br>9.97 742 | 45<br>44<br>43<br>42<br>41        |     |
|     | 20<br>21<br>22<br>23<br>24 | 9.49 768<br>9.49 806<br>9.49 844<br>9.49 882<br>9.49 920 | 9.52 031<br>9.52 073<br>9.52 115<br>9.52 157<br>9.52 200 | 0.47 969<br>0.47 927<br>0.47 885<br>0.47 843<br>0.47 800 | 9.97 738<br>9.97 734<br>9.97 729<br>9.97 725<br>9.97 721 | 40<br>39<br>38<br>37<br>36        |     |
| 18° | 25<br>26<br>27<br>28<br>29 | 9.49 958<br>9.49 996<br>9.50 034<br>9.50 072<br>9.50 110 | 9.52 242<br>9.52 284<br>9.52 326<br>9.52 368<br>9.52 410 | 0.47 758<br>0.47 716<br>0.47 674<br>0.47 632<br>0.47 590 | 9.97 717<br>9.97 713<br>9.97 708<br>9.97 704<br>9.97 700 | 35<br>34<br>33<br>32<br>31        | 71° |
| 10  | 30<br>31<br>32<br>33<br>34 | 9.50 148<br>9.50 185<br>9.50 223<br>9.50 261<br>9.50 298 | 9.52 452<br>9.52 494<br>9.52 536<br>9.52 578<br>9.52 620 | 0.47 548<br>0.47 506<br>0.47 464<br>0.47 422<br>0.47 380 | 9.97 696<br>9.97 691<br>9.97 687<br>9.97 683<br>9.97 679 | 30<br>29<br>28<br>27<br>26        | 11  |
|     | 35<br>36<br>37<br>38<br>39 | 9.50 336<br>9.50 374<br>9.50 411<br>9.50 449<br>9.50 486 | 9.52 661<br>9.52 703<br>9.52 745<br>9.52 787<br>9.52 829 | 0.47 339<br>0.47 297<br>0.47 255<br>0.47 213<br>0.47 171 | 9.97 674<br>9.97 670<br>9.97 666<br>9.97 662<br>9.97 657 | 25<br>24<br>23<br>22<br>21        |     |
|     | 40<br>41<br>42<br>43<br>44 | 9.50 523<br>9.50 561<br>9.50 598<br>9.50 635<br>9.50 673 | 9.52 870<br>9.52 912<br>9.52 953<br>9.52 995<br>9.53 037 | 0.47 130<br>0.47 088<br>0.47 047<br>0.47 005<br>0.46 963 | 9.97 653<br>9.97 649<br>9.97 645<br>9.97 640<br>9.97 636 | 20<br>19<br>18<br>17<br>16        |     |
|     | 45<br>46<br>47<br>48<br>49 | 9.50 710<br>9.50 747<br>9.50 784<br>9.50 821<br>9.50 858 | 9.53 078<br>9.53 120<br>9.53 161<br>9.53 202<br>9.53 244 | 0.46 922<br>0.46 880<br>0.46 839<br>0.46 798<br>0.46 756 | 9.97 632<br>9.97 628<br>9.97 623<br>9.97 619<br>9.97 615 | 15<br>14<br>13<br>12<br>11        |     |
|     | 50<br>51<br>52<br>53<br>54 | 9.50 896<br>9.50 933<br>9.50 970<br>9.51 007<br>9.51 043 | 9.53 285<br>9.53 327<br>9.53 368<br>9.53 409<br>9.53 450 | 0.46 715<br>0.46 673<br>0.46 632<br>0.46 591<br>0.46 550 | 9.97 610<br>9.97 606<br>9.97 602<br>9.97 597<br>9.97 593 | 10<br>9<br>8<br>7<br>6            |     |
|     | 55<br>56<br>57<br>58<br>59 | 9.51 080<br>9.51 117<br>9.51 154<br>9.51 191<br>9.51 227 | 9.53 492<br>9.53 533<br>9.53 574<br>9.53 615<br>9.53 656 | 0.46 508<br>0.46 467<br>0.46 426<br>0.46 385<br>0.46 344 | 9.97 589<br>9.97 584<br>9.97 580<br>9.97 576<br>9.97 571 | 5<br>4<br>3<br>2<br>1             |     |
|     | 60                         | 9.51 264<br><b>L. Cos.</b>                               | 9.53 697<br><b>L. Cotg.</b>                              | 0.46 303<br><b>L. Tang.</b>                              | 9.97 567<br><b>L. Sin.</b>                               | <u> </u>                          |     |
|     |                            |                                                          |                                                          | 30.7                                                     |                                                          |                                   |     |

|     | ,                                 | L. Sin.                                                  | L. Tang.                                                             | L. Cotg.                                                                                                 | L. Cos.                                                  |                                   |             |
|-----|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------------|
|     | 0<br>1<br>2<br>3<br>4             | 9.51 264<br>9.51 301<br>9.51 338<br>9.51 374<br>9.51 411 | 9.53 697<br>9.53 738<br>9.53 779<br>9.53 820<br>9.53 861             | 0.46 303<br>0.46 262<br>0.46 221<br>0.46 180<br>0.46 139                                                 | 9.97 567<br>9.97 563<br>9.97 558<br>9.97 554<br>9.97 550 | <b>60</b><br>59<br>58<br>57<br>56 |             |
|     | 5<br>6<br>7<br>8<br>9             | 9.51 447<br>9.51 484<br>9.51 520<br>9·51 557<br>9.51 593 | 9.53 902<br>9.53 943<br>9.53 984<br>9.54 025<br>9.54 065             | 0.46 098<br>0.46 057<br>0.46 016<br>0.45 975<br>0.45 935                                                 | 9.97 545<br>9.97 541<br>9.97 536<br>9.97 532<br>9.97 528 | 55<br>54<br>53<br>52<br>51        |             |
|     | 10<br>11<br>12<br>13<br>14        | 9.51 629<br>9.51 666<br>9.51 702<br>9.51 738<br>9.51 774 | 9.54 106<br>9.54 147<br>9.54 187<br>9.54 228<br>9.54 269             | 0.45 894<br>0.45 853<br>0.45 813<br>0.45 772<br>0.45 731                                                 | 9.97 523<br>9.97 519<br>9.97 515<br>9.97 510<br>9.97 506 | <b>50</b><br>49<br>48<br>47<br>46 |             |
|     | 15<br>16<br>17<br>18<br>19        | 9.51 811<br>9.51 847<br>9.51 883<br>9.51 919<br>9.51 955 | 9.54 309<br>9.54 350<br>9.54 390<br>9.54 431<br>9.54 471             | 0.45 691<br>0.45 650<br>0.45 610<br>0.45 569<br>0.45 529                                                 | 9.97 501<br>9.97 497<br>9.97 492<br>9.97 488<br>9.97 484 | 45<br>44<br>43<br>42<br>41        |             |
|     | 20<br>21<br>22<br>23<br>24        | 9.51 991<br>9.52 027<br>9.52 063<br>9.52 099<br>9.52 135 | 9.54 512<br>9.54 552<br>9.54 593<br>9.54 633<br>9.54 673             | 0.45 488<br>0.45 448<br>0.45 407<br>0.45 367<br>0.45 327                                                 | 9.97 479<br>9.97 475<br>9.97 470<br>9.97 466<br>9.97 461 | <b>40</b><br>39<br>38<br>37<br>36 |             |
| 19° | 25<br>26<br>27<br>28<br>29        | 9.52 171<br>9.52 207<br>9.52 242<br>9.52 278<br>9.52 314 | 9.54 714<br>9.54 754<br>9.54 794<br>9.54 835<br>9.54 875             | 0.45 286<br>0.45 246<br>0.45 206<br>0.45 165<br>0.45 125                                                 | 9.97 457<br>9.97 453<br>9.97 448<br>9.97 444<br>9.97 439 | 35<br>34<br>33<br>32<br>31        | <b>70</b> ° |
|     | 30<br>31<br>32<br>33<br>34        | 9.52 350<br>9.52 385<br>9.52 421<br>9.52 456<br>9.52 492 | 9.54 91 <del>5</del><br>9.54 955<br>9.54 995<br>9.55 035<br>9.55 075 | 0.45 085<br>0.45 04 <del>5</del><br>0.45 00 <del>5</del><br>0.44 96 <del>5</del><br>0.44 92 <del>5</del> | 9.97 435<br>9.97 430<br>9.97 426<br>9.97 421<br>9.97 417 | 30<br>29<br>28<br>27<br>26        |             |
|     | 35<br>36<br>37<br>38<br>39        | 9.52 527<br>9.52 563<br>9.52 598<br>9.52 634<br>9.52 669 | 9.55 115<br>9.55 155<br>9.55 195<br>9.55 235<br>9.55 275             | 0.44 885<br>0.44 845<br>0.44 805<br>0.44 765<br>0.44 725                                                 | 9.97 412<br>9.97 408<br>9.97 403<br>9.97 399<br>9.97 394 | 25<br>24<br>23<br>22<br>21        |             |
|     | <b>40</b><br>41<br>42<br>43<br>44 | 9.52 705<br>9.52 740<br>9.52 775<br>9.52 811<br>9.52 846 | 9.55 315<br>9.55 355<br>9.55 395<br>9.55 434<br>9.55 474             | 0.44 685<br>0.44 645<br>0.44 605<br>0.44 566<br>0.44 526                                                 | 9.97 390<br>9.97 385<br>9.97 381<br>9.97 376<br>9.97 372 | 20<br>19<br>18<br>17<br>16        |             |
|     | 45<br>46<br>47<br>48<br>49        | 9.52 881<br>9.52 916<br>9.52 951<br>9.52 986<br>9.53 021 | 9.55 514<br>9.55 554<br>9.55 593<br>9.55 633<br>9.55 673             | 0.44 486<br>0.44 446<br>0.44 407<br>0.44 367<br>0.44 327                                                 | 9.97 367<br>9.97 363<br>9.97 358<br>9.97 353<br>9.97 349 | 15<br>14<br>13<br>12<br>11        |             |
|     | 50<br>51<br>52<br>53<br>54        | 9.53 056<br>9.53 092<br>9.53 126<br>9.53 161<br>9.53 196 | 9.55 712<br>9.55 752<br>9.55 791<br>9.55 831<br>9.55 870             | 0.44 288<br>0.44 248<br>0.44 209<br>0.44 169<br>0.44 130                                                 | 9.97 344<br>9.97 340<br>9.97 335<br>9.97 331<br>9.97 326 | 10<br>9<br>8<br>7<br>6            |             |
|     | 55<br>56<br>57<br>58<br>59        | 9.53 231<br>9.53 266<br>9.53 301<br>9.53 336<br>9.53 370 | 9.55 910<br>9.55 949<br>9.55 989<br>9.56 028<br>9.56 067             | 0.44 090<br>0.44 051<br>0.44 011<br>0.43 972<br>0.43 933                                                 | 9.97 322<br>9.97 317<br>9.97 312<br>9.97 308<br>9.97 303 | 5<br>4<br>3<br>2<br>1             |             |
|     | 60                                | 9.53 405<br><b>L. Cos.</b>                               | 9.56 107<br><b>L. Cotg.</b>                                          | 0.43 893<br><b>L. Tang.</b>                                                                              | 9.97 299<br><b>L. Sin.</b>                               | ,                                 |             |

| <del></del>  |            |                                          |                                     |                      |                                  |                 |              |
|--------------|------------|------------------------------------------|-------------------------------------|----------------------|----------------------------------|-----------------|--------------|
|              | 1          | L. Sin.                                  | L. Tang.                            | L. Cotg.             | L. Cos.                          |                 |              |
|              | 0<br>1     | 9.53 405<br>9.53 440                     | 9.56 107<br>9.56 146                | 0.43 893<br>0.43 854 | 9.97 299<br>9.97 294             | <b>6</b> 0      |              |
|              | 2          | 9.53 475                                 | 9.56 185                            | 0.43 815             | 9.97 289                         | 59<br>58        |              |
|              | 3<br>4     | 9.53 509<br>9.53 544                     | 9.56 224<br>9.56 264                | 0.43 776             | 9.97 285                         | 57              |              |
|              | 5          | 9.53 578                                 | 9.56 303                            | 0.43 736             | 9.97 280<br>9.97 276             | 56<br>55        |              |
|              | 6          | 9.53 613                                 | 9.56 342                            | 0.43 658             | 9.97 271                         | 54              |              |
|              | 7<br>8     | 9.53 647<br>9.53 682                     | 9.56 38 <b>1</b><br>9.56 420        | 0.43 619<br>0.43 580 | 9.97 266<br>9.97 262             | 53<br>52        |              |
|              | 9          | 9.53 716                                 | 9.56 459                            | 0.43 541             | 9.97 257                         | 51              |              |
|              | 10         | 9.53 751                                 | 9.56 498                            | 0.43 502             | 9.97 252                         | 50              |              |
|              | 11<br>12   | 9.53 785<br>9.53 819                     | 9.56 537<br>9.56 576                | 0.43 463<br>0.43 424 | 9.97 248<br>9.97 243             | 49<br>48        |              |
|              | 13         | 9.53 854                                 | 9.56 615                            | 0.43 385             | 9.97 238                         | 47              |              |
|              | 14<br>15   | 9.53 888<br>9.53 922                     | 9.56 654                            | 0.43 346             | 9.97 234                         | 46<br>45        |              |
|              | 16         | 9.53 957                                 | 9.56 732                            | 0.43 268             | 9.97 224                         | 44              |              |
|              | 17         | 9.53 991<br>9.54 02 <b>5</b>             | 9.56 771                            | 0.43 229             | 9.97 220                         | 43<br>42        |              |
|              | 18<br>19   | 9.54 025                                 | 9.56 810<br>9.56 849                | 0.43 190<br>0.43 151 | 9.97 215<br>9.97 210             | 41              |              |
|              | 20         | 9.54 093                                 | 9.56 887                            | 0.43 113             | 9.97 206                         | 40              |              |
|              | 21<br>22   | 9.54 127<br>9.54 16 <b>1</b>             | 9.56 926<br>9.56 96 <b>5</b>        | 0.43 074<br>0.43 035 | 9.97 201<br>9.97 196             | 39<br>38        |              |
|              | 23         | 9.54 195                                 | 9.57 004                            | 0.42 996             | 9.97 192                         | 37              |              |
|              | 24         | 9.54 229                                 | 9.57 042                            | 0.42 958             | 9.97 187                         | 36              |              |
|              | 25<br>26   | 9.54 263<br>9.54 <b>29</b> 7             | 9.57 081<br>9.57 120                | 0.42 919<br>0.42 880 | 9.97 182<br>9.97 178             | 35<br>34        |              |
|              | 27         | 9.54 331                                 | 9.57 158                            | 0.42 842             | 9.97 173                         | 33              |              |
| on°          | 28<br>29   | 9.54 36 <del>5</del><br>9.54 399         | 9.57 197<br>9.57 235                | 0.42 803<br>0.42 765 | 9.97 168<br>9.97 163             | 32<br>31        | ഹം           |
| $20^{\circ}$ | <b>3</b> 0 | 9.54 433                                 | 9.57 274                            | 0.42 726             | 9.97 159                         | 30              | $69^{\circ}$ |
|              | 31<br>32   | 9.54 466<br>9.54 500                     | 9.57 312<br>9.57 351                | 0.42 688<br>0.42 649 | 9.97 154<br>9.97 149             | 29<br>28        |              |
|              | 33         | 9.54 534                                 | 9.57 389                            | 0.42 611             | 9.97 145                         | 27              |              |
|              | 34         | 9.54 567                                 | 9.57 428                            | 0.42 572             | 9.97 140                         | 26              |              |
|              | 35<br>36   | 9.54 60 <u>1</u><br>9.54 63 <del>5</del> | 9.57 466<br>9.57 504                | 0.42 534<br>0.42 496 | 9.97 135<br>9.97 130             | 25<br>24        |              |
|              | 37         | 9.54 668                                 | 9.57 543                            | 0.42 457             | 9.97 126                         | 23              |              |
|              | 38<br>39   | 9.54 702<br>9.54 735                     | 9.57 581<br>9.57 619                | 0.42 419<br>0.42 381 | 9.97 121<br>9.97 116             | 22<br>21        |              |
|              | 40         | 9.54 769                                 | 9.57 658                            | 0.42 342             | 9.97 111                         | 20              |              |
|              | 41<br>42   | 9.54 802<br>9.54 836                     | 9.57 696<br>9.57 734                | 0.42 304<br>0.42 266 | 9.97 107<br>9.97 102             | 19<br>18        |              |
|              | 43         | 9.54 869                                 | 9.57 772                            | 0.42 228             | 9.97 097                         | 17              |              |
|              | 44         | 9.54 903                                 | 9.57 810                            | 0.42 190             | 9.97 092                         | 16              |              |
|              | 45<br>46   | 9.54 936<br>9.54 969                     | 9.57 849<br>9.57 88 <b>7</b>        | 0.42 151<br>0.42 113 | 9.97 087<br>9.97 083             | 15<br><b>14</b> | 1            |
|              | 47         | 9.55 003                                 | 9.57 92 <b>5</b>                    | 0.42 075             | 9.97 078                         | 13              | l            |
|              | 48<br>49   | 9.55 036<br>9.55 069                     | 9.57 963<br>9.58 001                | 0.42 037<br>0.41 999 | 9.97 073<br>9.97 068             | 12<br>11        | 1            |
|              | 50         | 9.55 102                                 | 9.58 039                            | 0.41 961             | 9.97 063                         | 10              | ł            |
|              | 51<br>52   | 9.55 136                                 | 9.58 077                            | 0.41 923<br>0.41 885 | 9.97 059                         | 9<br>8          |              |
|              | 52<br>53   | 9.55 169<br>9.55 202                     | 9.58 <b>115</b><br>9.58 <b>1</b> 53 | 0.41 847             | 9.97 054<br>9.97 049             | 7               | ł            |
|              | 54         | 9.55 235                                 | 9.58 191                            | 0.41 809             | 9.97 044                         | 6               |              |
|              | 55<br>56   | 9.55 268<br>9.55 301                     | 9.58 229<br>9.58 267                | 0.41 771<br>0.41 733 | 9.97 039<br>9.97 03 <del>5</del> | 5<br>4          |              |
|              | 57         | 9.55 334                                 | 9.58 304                            | 0.41 696             | 9.97 030                         | - 3             |              |
|              | 58<br>59   | 9.55 367<br>9.55 400                     | 9.58 342<br>9.58 380                | 0.41 658<br>0.41 620 | 9.97 025<br>9.97 020             | 2<br>1          |              |
|              | 60         | 9.55 433                                 | 9.58 418                            | 0.41 582             | 9.97 015                         | 0               |              |
|              |            | L. Cos.                                  | L. Cotg.                            | L. Tang.             | L. Sin.                          | ,               |              |
|              |            |                                          |                                     | ดา                   | <u> </u>                         | L               |              |

|     | ′                          | L. Sin.                                                    | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                              |                                   |              |
|-----|----------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|--------------|
|     | 0<br>1<br>2<br>3<br>4      | 9.55 433<br>9.55 466<br>9.55 499<br>9.55 532<br>9.55 564   | 9.58 418<br>9.58 455<br>9.58 493<br>9.58 531<br>9.58 569 | 0.41 582<br>0.41 545<br>0.41 507<br>0.41 469<br>0.41 431 | 9.97 015<br>9.97 010<br>9.97 005<br>9.97 001<br>9.96 996             | <b>60</b><br>59<br>58<br>57<br>56 |              |
|     | 5<br>6<br>7<br>8<br>9      | 9.55 597<br>9.55 630<br>9.55 663<br>9.55 695<br>9.55 728   | 9.58 606<br>9.58 644<br>9.58 681<br>9.58 719<br>9.58 757 | 0.41 394<br>0.41 356<br>0.41 319<br>0.41 281<br>0.41 243 | 9.96 991<br>9.96 986<br>9.96 981<br>9.96 976                         | 55<br>54<br>53<br>52<br>51        |              |
|     | 10<br>11<br>12<br>13<br>14 | 9.55 761<br>9.55 793<br>9.55 826<br>9.55 858<br>9.55 891   | 9.58 794<br>9.58 832<br>9.58 869<br>9.58 907<br>9.58 944 | 0.41 206<br>0.41 168<br>0.41 131<br>0.41 093<br>0.41 056 | 9.96 971<br>9.96 966<br>9.96 962<br>9.96 957<br>9.96 952<br>9.96 947 | <b>50</b><br>49<br>48<br>47       |              |
|     | 15<br>16<br>17<br>18<br>19 | 9.55 923<br>9.55 956<br>9.55 988<br>9.56 021<br>9.56 053   | 9.58 981<br>9.59 019<br>9.59 056<br>9.59 094<br>9.59 131 | 0.41 019<br>0.40 981<br>0.40 944<br>0.40 906<br>0.40 869 | 9.96 942<br>9.96 937<br>9.96 932<br>9.96 927<br>9.96 922             | 46<br>45<br>44<br>43<br>42<br>41  |              |
|     | 20<br>21<br>22<br>23<br>24 | 9.56 085<br>9.56 118<br>9.56 150<br>9.56 182<br>9.56 215   | 9.59 168<br>9.59 205<br>9.59 243<br>9.59 280<br>9.59 317 | 0.40 832<br>0.40 795<br>0.40 757<br>0.40 720<br>0.40 683 | 9.96 917<br>9.96 912<br>9.96 907<br>9.96 903<br>9.96 898             | 40<br>39<br>38<br>37<br>36        |              |
| 010 | 25<br>26<br>27<br>28       | 9.56 247<br>* 9.56 279<br>9.56 311<br>9.56 343<br>9.56 375 | 9.59 354<br>9.59 391<br>9.59 429<br>9.59 466<br>9.59 503 | 0.40 646<br>0.40 609<br>0.40 571<br>0.40 534<br>0.40 497 | 9.96 893<br>9.96 888<br>9.96 883<br>9.96 878<br>9.96 873             | 35<br>34<br>33<br>32<br>31        | 600          |
| 21° | 30<br>31<br>32<br>33<br>34 | 9.56 408<br>9.56 440<br>9.56 472<br>9.56 504<br>9.56 536   | 9.59 540<br>9.59 577<br>9.59 614<br>9.59 651<br>9.59 688 | 0.40 460<br>0.40 423<br>0.40 386<br>0.40 349<br>0.40 312 | 9.96 868<br>9.96 863<br>9.96 858<br>9.96 853<br>9.96 848             | 30<br>29<br>28<br>27<br>26        | $68^{\circ}$ |
|     | 35<br>36<br>37<br>38<br>39 | 9.56 568<br>9.56 599<br>9.56 631<br>9.56 663<br>9.56 695   | 9.59 725<br>9.59 762<br>9.59 799<br>9.59 835<br>9.59 872 | 0.40 275<br>0.40 238<br>0.40 201<br>0.40 165<br>0.40 128 | 9.96 843<br>9.96 838<br>9.96 833<br>9.96 828<br>9.96 823             | 25<br>24<br>23<br>22<br>21        |              |
|     | 40<br>41<br>42<br>43<br>44 | 9.56 727<br>9.56 759<br>9.56 790<br>9.56 822<br>9.56 854   | 9.59 909<br>9.59 946<br>9.59 983<br>9.60 019<br>9.60 056 | 0.40 091<br>0.40 054<br>0.40 017<br>0.39 981<br>0.39 944 | 9.96 818<br>9.96 813<br>9.96 808<br>9.96 803<br>9.96 798             | 20<br>19<br>18<br>17<br>16        |              |
|     | 45<br>46<br>47<br>48<br>49 | 9.56 886<br>9.56 917<br>9.56 949<br>9.56 980<br>9.57 012   | 9.60 093<br>9.60 130<br>9.60 166<br>9.60 203<br>9.60 240 | 0.39 907<br>0.39 870<br>0.39 834<br>0.39 797<br>0.39 760 | 9.96 793<br>9.96 788<br>9.96 783<br>9.96 778<br>9.96 772             | 15<br>14<br>13<br>12<br>11        |              |
|     | 50<br>51<br>52<br>53<br>54 | 9.57 044<br>9.57 075<br>9.57 107<br>9.57 138<br>9.57 169   | 9.60 276<br>9·60 313<br>9.60 349<br>9.60 386<br>9.60 422 | 0.39 724<br>0.39 687<br>0.39 651<br>0.39 614<br>0.39 578 | 9.96 767<br>9.96 762<br>9.96 757<br>9.96 752<br>9.96 747             | 10<br>9<br>8<br>7<br>6            |              |
|     | 55<br>56<br>57<br>58<br>59 | 9.57 201<br>9.57 232<br>9.57 264<br>9.57 295<br>9.57 326   | 9.60 459<br>9.60 495<br>9.60 532<br>9.60 568<br>9.60 605 | 0.39 541<br>0.39 505<br>0.39 468<br>0.39 432<br>0.39 395 | 9.96 742<br>9.96 737<br>9.96 732<br>9.96 727<br>9.96 722             | 5<br>4<br>3<br>2<br>1             |              |
|     | 60                         | 9.57 358<br><b>L. Cos.</b>                                 | 9.60 641<br><b>L. Cotg.</b>                              | 0.39 359<br><b>L. Tang.</b>                              | 9.96 717<br><b>L. Sin.</b>                                           | 0                                 |              |

|       | 1                          | L. Sin.                                                              | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |     |
|-------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----|
|       | 0<br>1<br>2<br>3<br>4      | 9.57 358<br>9.57 389<br>9.57 420<br>9.57 451<br>9.57 482             | 9.60 641<br>9.60 677<br>9.60 714<br>9.60 750<br>9.60 786 | 0.39 359<br>0.39 323<br>0.39 286<br>0.39 250<br>0.39 214 | 9.96 717<br>9.96 711<br>9.96 706<br>9.96 701<br>9.96 696 | <b>60</b><br>59<br>58<br>57<br>56 |     |
|       | 5<br>6<br>7<br>8<br>9      | 9.57 514<br>9.57 545<br>9.57 576<br>9.57 607<br>9.57 638             | 9.60 823<br>9.60 859<br>9.60 895<br>9.60 931<br>9.60 967 | 0.39 177<br>0.39 141<br>0.39 105<br>0.39 069<br>0.39 033 | 9.96 691<br>9.96 686<br>9.96 681<br>9.96 676<br>9.96 670 | 55<br>54<br>53<br>52<br>51        |     |
|       | 10<br>11<br>12<br>13<br>14 | 9.57 669<br>9.57 700<br>9.57 731<br>9.57 762<br>9.57 793             | 9.61 004<br>9.61 040<br>9.61 076<br>9.61 112<br>9.61 148 | 0.38 996<br>0.38 960<br>0.38 924<br>0.38 888<br>0.38 852 | 9.96 665<br>9.96 660<br>9.96 655<br>9.96 650<br>9.96 645 | 50<br>49<br>48<br>47<br>46        |     |
|       | 15<br>16<br>17<br>18<br>19 | 9.57 824<br>9.57 85 <del>5</del><br>9.57 885<br>9.57 916<br>9.57 947 | 9.61 184<br>9.61 220<br>9.61 256<br>9.61 292<br>9.61 328 | 0.38 816<br>0.38 780<br>0.38 744<br>0.38 708<br>0.38 672 | 9.96 640<br>9.96 634<br>9.96 629<br>9.96 624<br>9.96 619 | 45<br>44<br>43<br>42<br>41        |     |
|       | 20<br>21<br>22<br>23<br>24 | 9.57 978<br>9.58 008<br>9.58 039<br>9.58 070<br>9.58 101             | 9.61 364<br>9.61 400<br>9.61 436<br>9.61 472<br>9.61 508 | 0.38 636<br>0.38 600<br>0.38 564<br>0.38 528<br>0.38 492 | 9.96 614<br>9.96 608<br>9.96 603<br>9.96 598<br>9.96 593 | 40<br>39<br>38<br>37<br>36        |     |
| 000   | 25<br>26<br>27<br>28<br>29 | 9.58 131<br>9.58 162<br>9.58 192<br>9.58 223<br>9.58 253             | 9.61 544<br>9.61 579<br>9.61 615<br>9.61 651<br>9.61 687 | 0.38 456<br>0.38 421<br>0.38 385<br>0.38 349<br>0.38 313 | 9.96 588<br>9.96 582<br>9.96 577<br>9.96 572<br>9.96 567 | 35<br>34<br>33<br>32<br>31        | 67° |
| 22°   | 30<br>31<br>32<br>33<br>34 | 9.58 284<br>9.58 314<br>9.58 345<br>9.58 375<br>9.58 406             | 9.61 722<br>9.61 758<br>9.61 794<br>9.61 830<br>9.61 865 | 0.38 278<br>0.38 242<br>0.38 206<br>0.38 170<br>0.38 135 | 9.96 562<br>9.96 556<br>9.96 551<br>9.96 546<br>9.96 541 | 30<br>29<br>28<br>27<br>26        | 07  |
|       | 35<br>36<br>37<br>38<br>39 | 9.58 436<br>9.58 467<br>9.58 497<br>9.58 527<br>9.58 557             | 9.61 901<br>9.61 936<br>9.61 972<br>9.62 008<br>9.62 043 | 0.38 099<br>0.38 064<br>0.38 028<br>0.37 992<br>0.37 957 | 9.96 535<br>9.96 730<br>9.96 525<br>9.96 520<br>9.96 514 | 25<br>24<br>23<br>22<br>21        |     |
|       | 40<br>41<br>42<br>43<br>44 | 9.58 588<br>9.58 618<br>9.58 648<br>9.58 678<br>9.58 709             | 9.62 079<br>9.62 114<br>9.62 150<br>9.62 185<br>9.62 221 | 0.37 921<br>0.37 886<br>0.37 850<br>0.37 815<br>0.37 779 | 9.96 509<br>9.96 504<br>9.96 498<br>9.96 493<br>9.96 488 | 20<br>19<br>18<br>17<br>16        |     |
|       | 45<br>46<br>47<br>48<br>49 | 9.58 739<br>9.58 769<br>9.58 799<br>9.58 829<br>9.58 859             | 9.62 256<br>9.62 292<br>9.62 327<br>9.62 362<br>9.62 398 | 0.37 744<br>0.37 708<br>0.37 673<br>0.37 638<br>0.37 602 | 9.96 483<br>9.96 477<br>9.96 472<br>9.96 467<br>9.96 461 | 15<br>14<br>13-<br>12<br>11       |     |
|       | 50<br>51<br>52<br>53<br>54 | 9.58 889<br>9.58 919<br>9.58 949<br>9.58 979<br>9.59 009             | 9.62 433<br>9.62 468<br>9.62 504<br>9.62 539<br>9.62 574 | 0.37 567<br>0.37 532<br>0.37 496<br>0.37 461<br>0.37 426 | 9.96 456<br>9.96 451<br>9.96 445<br>9.96 440<br>9.96 435 | 10<br>9<br>8<br>7<br>6            |     |
|       | 55<br>56<br>57<br>58<br>59 | 9.59 039<br>9.59 069<br>9.59 098<br>9.59 128<br>9.59 158             | 9.62 609<br>9.62 645<br>9.62 680<br>9.62 715<br>9.62 750 | 0.37 391<br>0.37 355<br>0.37 320<br>0.37 285<br>0.37 250 | 9.96 429<br>9.96 424<br>9.96 419<br>9.96 413<br>9.96 408 | 5<br>4<br>3<br>2<br>1             |     |
|       | 60                         | 9.59 188<br><b>L. Cos.</b>                                           | 9.62 785<br><b>L. Cotg.</b>                              | 0.37 215<br><b>L. Tang.</b>                              | 9.96 403<br><b>L. Sin.</b>                               | 0                                 |     |
| لـــا |                            | 11. 005.                                                             |                                                          | 4.7                                                      | AT NIII                                                  | <u> </u>                          |     |

|              | ′                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                                  |     |
|--------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|-----|
|              | 0<br>1<br>2<br>3                 | 9.59 188<br>9.59 218<br>9.59 247<br>9.59 277                         | 9.62 785<br>9.62 820<br>9.62 855<br>9.62 890                         | 0.37 215<br>0.37 180<br>0.37 145<br>0.37 110                         | 9.96 403<br>9.96 397<br>9.96 392<br>9.96 387                         | <b>60</b><br>59<br>58<br>57      |     |
|              | 5<br>6<br>7<br>8                 | 9.59 307<br>9.59 336<br>9.59 366<br>9.59 396<br>9.59 425             | 9.62 926<br>9.62 961<br>9.62 996<br>9.63 031<br>9.63 066             | 0.37 074<br>0.37 039<br>0.37 004<br>0.36 969<br>0.36 934             | 9.96 381<br>9.96 376<br>9.96 370<br>9.96 365<br>9.96 360             | 56<br>55<br>54<br>53<br>52       | -   |
|              | 9<br>10<br>11<br>12<br>13        | 9.59 455<br>9.59 484<br>9.59 514<br>9.59 543<br>9.59 573             | 9.63 101<br>9.63 135<br>9.63 170<br>9.63 205<br>9.63 240             | 0.36 899<br>0.36 865<br>0.36 830<br>0.36 795<br>0.36 760             | 9.96 354<br>9.96 349<br>9.96 343<br>9.96 338<br>9.96 333             | 51<br>50<br>49<br>48<br>47       |     |
|              | 14<br>15<br>16<br>17<br>18       | 9.59 602<br>9.59 632<br>9.59 661<br>9.59 690<br>9.59 720             | 9.63 275<br>9.63 310<br>9.63 345<br>9.63 379<br>9.63 414             | 0.36 725<br>0.36 690<br>0.36 655<br>0.36 621<br>0.36 586             | 9.96 327<br>9.96 322<br>9.96 316<br>9.96 311<br>9.96 305             | 46<br>45<br>44<br>43<br>42       |     |
|              | 19<br>20<br>21<br>22<br>23       | 9.59 749<br>9.59 778<br>9.59 808<br>9.59 837<br>9.59 866<br>9.59 895 | 9.63 449<br>9.63 484<br>9.63 519<br>9.63 553<br>9.63 588<br>9.63 623 | 0.36 551<br>0.36 516<br>0.36 481<br>0.36 447<br>0.36 412<br>0.36 377 | 9.96 300<br>9.96 294<br>9.96 289<br>9.96 284<br>9.96 278<br>9.96 273 | 41<br>40<br>39<br>38<br>37<br>36 |     |
| $23^{\circ}$ | 24<br>25<br>26<br>27<br>28<br>29 | 9.59 833<br>9.59 954<br>9.59 983<br>9.60 012<br>9.60 041             | 9.63 657<br>9.63 692<br>9.63 726<br>9.63 761<br>9.63 796             | 0.36 343<br>0.36 308<br>0.36 274<br>0.36 239<br>0.36 204             | 9.96 267<br>9.96 262<br>9.96 256<br>9.96 251<br>9.96 245             | 35<br>34<br>33<br>32             | 66° |
| 20           | 30<br>31<br>32<br>33<br>34       | 9.60 070<br>9.60 099<br>9.60 128<br>9.60 157<br>9.60 186             | 9.63 830<br>9.63 865<br>9.63 899<br>9.63 934<br>9.63 968             | 0.36 170<br>0.36 135<br>0.36 101<br>0.36 066<br>0.36 032             | 9.96 240<br>9.96 234<br>9.96 229<br>9.96 223<br>9.96 218             | 30<br>29<br>28<br>27<br>26       | UU  |
|              | 35<br>36<br>37<br>38<br>39       | 9.60 215<br>9.60 244<br>9.60 273<br>9.60 302<br>9.60 331             | 9.64 003<br>9.64 037<br>9.64 072<br>9.64 106<br>9.64 140             | 0.35 997<br>0.35 963<br>0.35 928<br>0.35 894<br>0.35 860             | 9.96 212<br>9.96 207<br>9.96 201<br>9.96 196<br>9.96 190             | 25<br>24<br>23<br>22<br>21       |     |
|              | 40<br>41<br>42<br>43<br>44       | 9.60 359<br>9.60 388<br>9.60 417<br>9.60 446<br>9.60 474             | 9.64 175<br>9.64 209<br>9.64 243<br>9.64 278<br>9.64 312             | 0.35 825<br>0.35 791<br>0.35 757<br>0.35 722<br>0.35 688             | 9.96 185<br>9.96 179<br>9.96 174<br>9.96 168<br>9.96 162             | 20<br>19<br>18<br>17<br>16       |     |
|              | 45<br>46<br>47<br>48<br>49       | 9.60 503<br>9.60 532<br>9.60 561<br>9.60 589<br>9.60 618             | 9.64 346<br>9.64 381<br>9.64 415<br>9.64 449<br>9.64 483             | 0.35 654<br>0.35 619<br>0.35 585<br>0.35 551<br>0.35 517             | 9.96 157<br>9.96 151<br>9.96 146<br>9.96 140<br>9.96 135             | 15<br>14<br>13<br>12<br>11       |     |
|              | 50<br>51<br>52<br>53<br>54       | 9.60 646<br>9.60 675<br>9.60 704<br>9.60 732<br>9.60 761             | 9.64 517<br>9.64 552<br>9.64 586<br>9.64 620<br>9.64 654             | 0.35 483<br>0.35 448<br>0.35 414<br>0.35 380<br>0.35 346             | 9.96 129<br>9.96 123<br>9.96 118<br>9.96 112<br>9.96 107             | 10<br>9<br>8<br>7<br>6           |     |
|              | 55<br>56<br>57<br>58<br>59       | 9.60 789<br>9.60 818<br>9.60 846<br>9.60 875<br>9.60 903             | 9.64 688<br>9.64 722<br>9.64 756<br>9.64 790<br>9.64 824             | 0.35 312<br>0.35 278<br>0.35 244<br>0.35 210<br>0.35 176             | 9.96 101<br>9.96 095<br>9.96 090<br>9.96 084<br>9.96 079             | 5<br>4<br>3<br>2<br>1            |     |
|              | 60                               | 9.60 931<br><b>L. Cos.</b>                                           | 9.64 858<br><b>L. Cotg.</b>                                          | 0.35 142<br><b>L. Tang.</b>                                          | 9.96 073<br><b>L. Sin.</b>                                           | ,                                |     |

[65]

|     | ′                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                            |     |
|-----|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------|-----|
|     | 0<br>1<br>2                | 9.60 931<br>9.60 960<br>9.60 988                         | 9.64 858<br>9.64 892<br>9.64 926                         | 0.35 142<br>0.35 108<br>0.35 074                         | 9.96 073<br>9.96 067<br>9.96 062                         | <b>60</b><br>59<br>58      |     |
|     | 3<br>4<br>5                | 9.61 016<br>9.61 045<br>9.61 073                         | 9.64 960<br>9.64 994<br>9.65 028                         | 0.35 040<br>0.35 006<br>0.34 972                         | 9.96 056<br>9.96 050<br>9.96 045                         | 57<br>56<br>55             |     |
|     | 6<br>7<br>8                | 9.61 101<br>9.61 129<br>9.61 158                         | 9.65 062<br>9.65 096<br>9.65 130                         | 0.34 938<br>0.34 904<br>0.34 870                         | 9.96 039<br>9.96 034<br>9.96 028                         | 54<br>53<br>52             |     |
|     | 9<br><b>10</b>             | 9.61 186<br>9.61 214                                     | 9.65 164<br>9.65 197                                     | 0.34 836<br>0.34 803                                     | 9.96 022<br>9.96 017                                     | 51<br><b>50</b>            |     |
|     | 11<br>12<br>13<br>14       | 9.61 242<br>9.61 270<br>9.61 298<br>9.61 326             | 9.65 231<br>9.65 265<br>9.65 299<br>9.65 333             | 0.34 769<br>0.34 735<br>0.34 701<br>0.34 667             | 9.96 011<br>9.96 005<br>9.96 000<br>9.95 994             | 49<br>48<br>47<br>46       |     |
|     | 15<br>16<br>17<br>18       | 9.61 354<br>9.61 382<br>9.61 411<br>9.61 438             | 9.65 366<br>9.65 400<br>9.65 434<br>9.65 467             | 0.34 634<br>0.34 600<br>0.34 566<br>0.34 533             | 9.95 988<br>9.95 982<br>9.95 977<br>9.95 971             | 45<br>44<br>43<br>42       |     |
|     | 19<br><b>20</b><br>21      | 9.61 466<br>9.61 494<br>9.61 522                         | 9.65 501<br>9.65 53 <b>5</b><br>9.65 568                 | 0.34 499<br>0.34 465<br>0.34 432                         | 9.95 965<br>9.95 960<br>9.95 954                         | 41<br>40<br>39             |     |
|     | 22<br>23<br>24             | 9.61 550<br>9.61 578<br>9.61 606                         | 9.65 602<br>9.65 636<br>9.65 669                         | 0.34 398<br>0.34 364<br>0.34 331                         | 9.95 948<br>9.95 942<br>9.95 937                         | 38<br>37<br>36             |     |
|     | 25<br>26<br>27<br>28       | 9.61 634<br>9.61 662<br>9.61 689<br>9.61 717             | 9.65 703<br>9.65 736<br>9.65 770<br>9.65 803             | 0.34 297<br>0.34 264<br>0.34 230<br>0.34 197             | 9.95 931<br>9.95 925<br>9.95 920<br>9.95 914             | 35<br>34<br>33<br>32       |     |
| 24° | 30<br>31<br>32             | 9.61 745<br>9.61 773<br>9.61 800<br>9.61 828             | 9.65 837<br>9.65 870<br>9.65 904<br>9.65 937             | 0.34 163<br>0.34 130<br>0.34 096<br>0.34 063             | 9.95 908<br>9.95 902<br>9.95 897<br>9.95 891             | 31<br>30<br>29<br>28       | 65° |
|     | 33<br>34                   | 9.61 856<br>9.61 883                                     | 9.65 971<br>9.66 004                                     | 0.34 029<br>0.33 996                                     | 9.95 88 <del>5</del><br>9.95 879                         | 27°<br>26                  |     |
|     | 35<br>36<br>37<br>38<br>39 | 9.61 911<br>9.61 939<br>9.61 966<br>9.61 994<br>9.62 021 | 9.66 038<br>9.66 071<br>9.66 104<br>9.66 138<br>9.66 171 | 0.33 962<br>0.33 929<br>0.33 896<br>0.33 862<br>0.33 829 | 9.95 873<br>9.95 868<br>9.95 862<br>9.95 856<br>9.95 850 | 25<br>24<br>23<br>22<br>21 |     |
|     | 40<br>41<br>42<br>43<br>44 | 9.62 049<br>9.62 076<br>9.62 104<br>9.62 131<br>9.62 159 | 9.66 204<br>9.66 238<br>9.66 271<br>9.66 304<br>9.66 337 | 0.33 796<br>0.33 762<br>0.33 729<br>0.33 696<br>0.33 663 | 9.95 844<br>9.95 839<br>9.95 833<br>9.95 827<br>9.95 821 | 20<br>19<br>18<br>17<br>16 |     |
|     | 45<br>46<br>47<br>48<br>49 | 9.62 186<br>9.62 214<br>9.62 241<br>9.62 268<br>9.62 296 | 9.66 371<br>9.66 404<br>9.66 437<br>9.66 470<br>9.66 503 | 0.33 629<br>0.33 596<br>0.33 563<br>0.33 530<br>0.33 497 | 9.95 815<br>9.95 810<br>9.95 804<br>9.95 798<br>9.95 792 | 15<br>14<br>13<br>12<br>11 |     |
|     | 50<br>51<br>52<br>53<br>54 | 9.62 323<br>9.62 350<br>9.62 377<br>9.62 405<br>9.62 432 | 9.66 537<br>9.66 570<br>9.66 603<br>9.66 636<br>9.66 669 | 0.33 463<br>0.33 430<br>0.33 397<br>0.33 364<br>0.33 331 | 9.95 786<br>9.95 780<br>9.95 775<br>9.95 769<br>9.95 763 | 10<br>9<br>8<br>7<br>6     |     |
| `   | 55<br>56<br>57<br>58       | 9.62 459<br>9.62 486<br>9.62 513<br>9.62 541             | 9.66 702<br>9.66 735<br>9.66 768<br>9.66 801             | 0.33 298<br>0.33 265<br>0.33 232<br>0.33 199             | 9.95 757<br>9.95 751<br>9.95 745<br>9.95 739             | 5<br>4<br>3<br>2           |     |
|     | 59<br><b>60</b>            | 9.62 568<br>9.62 59 <del>5</del>                         | 9.66 834<br>9.66 867                                     | 0.33 166<br>0.33 133                                     | 9.95 733<br>9.95 728                                     | 0                          |     |
|     |                            | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                  | 1                          | 1   |
|     |                            |                                                          |                                                          | 36]                                                      | <u> </u>                                                 | <u> </u>                   |     |

|             | ,                          | L. Sin.                                                              | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |              |
|-------------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------|
|             | 0<br>1<br>2<br>3<br>4      | 9.62 595<br>9.62 622<br>9.62 649<br>9.62 676<br>9.62 703             | 9.66 867<br>9.66 900<br>9.66 933<br>9.66 966<br>9.66 999 | 0.33 133<br>0.33 100<br>0.33 067<br>0.33 034<br>0.33 001 | 9.95 728<br>9.95 722<br>9.95 716<br>9.95 710<br>9.95 704 | 60<br>59<br>53<br>57<br>56        |              |
|             | 5<br>6<br>7<br>8<br>9      | 9.62 730<br>9.62 757<br>9.62 784<br>9.62 811<br>9.62 838             | 9.67 032<br>9.67 065<br>9.67 098<br>9.67 131<br>9.67 163 | 0.32 968<br>0.32 935<br>0.32 902<br>0.32 869<br>0.32 837 | 9.95 698<br>9.95 692<br>9.95 686<br>9.95 680<br>9.95 674 | 55<br>54<br>53<br>52<br>51        |              |
|             | 10<br>11<br>12<br>13<br>14 | 9.62 865<br>9.62 892<br>9.62 918<br>9.62 945<br>9.62 972             | 9.67 196<br>9.67 229<br>9.67 262<br>9.67 295<br>9.67 327 | 0.32 804<br>0.32 771<br>0.32 738<br>0.32 705<br>0.32 673 | 9.95 668<br>9.95 663<br>9.95 657<br>9.95 651<br>9 95 645 | <b>50</b><br>49<br>48<br>47<br>46 |              |
|             | 15<br>16<br>17<br>18<br>19 | 9.62 999<br>9.63 026<br>9.63 052<br>9.63 079<br>9.63 106             | 9.67 360<br>9.67 393<br>9.67 426<br>9.67 458<br>9.67 491 | 0.32 640<br>0.32 607<br>0.32 574<br>0.32 542<br>0.32 509 | 9.95 639<br>9.95 633<br>9.95 627<br>9.95 621<br>9.95 615 | 45<br>44<br>43<br>42<br>41        |              |
|             | 20<br>21<br>22<br>23<br>24 | 9.63 133<br>9.63 159<br>9.63 186<br>9.63 213<br>9.63 239             | 9.67 524<br>9.67 556<br>9.67 589<br>9.67 622<br>9.67 654 | 0.32 476<br>0.32 444<br>0.32 411<br>0.32 378<br>0.32 346 | 9.95 609<br>9.95 603<br>9.95 597<br>9.95 591<br>9.95 585 | 40<br>39<br>38<br>37<br>36        |              |
| <b>25</b> ° | 25<br>26<br>27<br>28<br>29 | 9.63 266<br>9.63 292<br>9.63 319<br>9.63 345<br>9.63 372             | 9.67 687<br>9.67 719<br>9.67 752<br>9.67 785<br>9.67 817 | 0.32 313<br>0.32 281<br>0.32 248<br>0.32 215<br>0.32 183 | 9.95 579<br>9.95 573<br>9.95 567<br>9.95 561<br>9.95 555 | 35<br>34<br>33<br>32<br>31        | 6 <b>4</b> ° |
| 20          | 30<br>31<br>32<br>33<br>34 | 9.63 398<br>9.63 42 <del>5</del><br>9.63 451<br>9.63 478<br>9.63 504 | 9.67 850<br>9.67 882<br>9.67 915<br>9.67 947<br>9.67 980 | 0.32 150<br>0.32 118<br>0.32 085<br>0.32 053<br>0.32 020 | 9.95 549<br>9.95 543<br>9.95 537<br>9.95 531<br>9.95 525 | 30<br>29<br>28<br>27<br>26        | U.L          |
|             | 35<br>36<br>37<br>38<br>39 | 9.63 531<br>9.63 557<br>9.63 583<br>9.63 610<br>9.63 636             | 9.68 012<br>9.68 044<br>9.68 077<br>9.68 109<br>9.68 142 | 0.31 988<br>0.31 956<br>0.31 923<br>0.31 891<br>0.31 858 | 9.95 519<br>9.95 513<br>9.95 507<br>9.95 500<br>9.95 494 | 25<br>24<br>23<br>22<br>21        |              |
|             | 40<br>41<br>42<br>43<br>44 | 9.63 662<br>9.63 689<br>9.63 715<br>9.63 741<br>9.63 767             | 9.68 174<br>9.68 206<br>9.68 239<br>9.68 271<br>9.68 303 | 0.31 826<br>0.31 794<br>0.31 761<br>0.31 729<br>0.31 697 | 9.95 488<br>9.95 482<br>9.95 476<br>9.95 470<br>9.95 464 | 20<br>19<br>18<br>17<br>16        |              |
|             | 45<br>46<br>47<br>48<br>49 | 9.63 794<br>9.63 820<br>9.63 846<br>9.63 872<br>9.63 898             | 9.68 336<br>9.68 368<br>9.68 400<br>9.68 432<br>9.68 465 | 0.31 664<br>0.31 632<br>0.31 600<br>0.31 568<br>0.31 535 | 9.95 458<br>9.95 452<br>9.95 446<br>9.95 440<br>9.95 434 | 15<br>14<br>13<br>12<br>11        |              |
|             | 50<br>51<br>52<br>53<br>54 | 9.63 924<br>9.63 950<br>9.63 976<br>9.64 002<br>9.64 028             | 9.68 497<br>9.68 529<br>9.68 561<br>9.68 593<br>9.68 626 | 0.31 503<br>0.31 471<br>0.31 439<br>0.31 407<br>0.31 374 | 9.95 427<br>9.95 421<br>9.95 415<br>9.95 409<br>9.95 403 | 10<br>9<br>8<br>7<br>6            |              |
|             | 55<br>56<br>57<br>58<br>59 | 9.64 054<br>9.64 080<br>9.64 106<br>9.64 132<br>9.64 158             | 9.68 658<br>9.68 690<br>9.68 722<br>9.68 754<br>9.68 786 | 0.31 342<br>0.31 310<br>0.31 278<br>0.31 246<br>0.31 214 | 9.95 397<br>9.95 391<br>9.95 384<br>9.95 378<br>9.95 372 | 5<br>4<br>3<br>2<br>1             |              |
|             | 60                         | 9.64 184<br><b>L.</b> Cos.                                           | 9.68 818<br><b>L. Cotg.</b>                              | 0.31 182<br><b>L. Tang.</b>                              | 9.95 366<br><b>L. Sin.</b>                               | ,                                 |              |

|              | ′               | L. Sin.                      | L. Tang.                         | L. Cotg.                          | L. Cos.                          |                 |              |
|--------------|-----------------|------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------|--------------|
|              | 0               | 9.64 184<br>9.64 210         | 9.68 818<br>9.68 850             | 0.31 182<br>0.31 1 <del>5</del> 0 | 9.95 366<br>9.95 360             | <b>60</b><br>59 |              |
|              | 2               | 9.64 236                     | 9.68 882                         | 0.31 118                          | 9.95 354                         | 58              |              |
|              | 3<br>4          | 9.64 262<br>9.64 288         | 9.68 914<br>9.68 946             | 0.31 086<br>0.31 054              | 9.95 348<br>9.95 341             | 57<br>56        |              |
|              | 5               | 9.64 313                     | 9.68 978                         | 0.31 022                          | 9.95 335                         | 55              |              |
|              | 6<br>7          | 9.64 339<br>9.64 365         | 9.69 010<br>9.69 042             | 0.30 990<br>0.30 958              | 9.95 329<br>9.95 323             | 54<br>53        |              |
|              | 8               | 9.64 391                     | 9.69 074                         | 0.30 926                          | 9.95 317                         | 52              |              |
|              | 9<br><b>10</b>  | 9.64 417                     | 9.69 106<br>9.69 138             | 0.30 894<br>0.30 862              | 9.95 310<br>9.95 304             | 51<br><b>50</b> |              |
|              | 11              | 9.64 468                     | 9.69 170                         | 0.30 830                          | 9.95 298                         | 49              | i            |
|              | 12<br>13        | 9.64 494<br>9.64 519         | 9.69 202<br>9.69 234             | 0.30 798<br>0.30 766              | 9.95 292<br>9.95 286             | 48<br>47        |              |
|              | 14              | 9.64 545                     | 9.69 266                         | 0.30 734                          | 9.95 279                         | 46              |              |
|              | 15<br>16        | 9.64 571<br>9.64 596         | 9.69 298<br>9.69 329             | 0.30 702<br>0.30 671              | 9.95 273<br>9.95 267             | 45<br>44        |              |
| 1 1          | 17              | 9.64 622                     | 9.69 361                         | 0.30 639                          | 9.95 261                         | 43              |              |
| 1 1          | 18<br>19        | 9.64 647<br>9.64 673         | 9.69 393<br>9.69 42 <del>5</del> | 0.30 607<br>0.30 575              | 9.95 254<br>9.95 248             | 42<br>41        |              |
|              | 20              | 9.64 698                     | 9.69 457                         | 0.30 543                          | 9.95 242                         | 40              |              |
| 1 1          | 21<br>22        | 9.64 724<br>9.64 749         | 9.69 488<br>9.69 520             | 0.30 512<br>0.30 480              | 9.95 236<br>9.95 229             | 39<br>38        |              |
|              | 23              | 9.64 775                     | 9.69 552                         | 0.30 448                          | 9.95 223                         | 37              |              |
|              | 24              | 9.64 800                     | 9.69 584<br>9.69 615             | 0.30 416                          | 9.95 217<br>9.95 211             | 36<br>35        |              |
| 1 1          | 25<br>26        | 9.64 826<br>9.64 851         | 9.69 647                         | 0.30 353                          | 9.95 204                         | 34              |              |
|              | 27<br>28        | 9.64 877<br>9.64 902         | 9.69 679<br>9.69 710             | 0.30 321<br>0.30 290              | 9.95 198<br>9.95 192             | 33<br>32        |              |
| $26^{\circ}$ | 29              | 9.64 927                     | 9.69 742                         | 0.30 258                          | 9.95 185                         | 31              | $63^{\circ}$ |
| 20           | <b>30</b><br>31 | 9.64 953<br>9.64 978         | 9.69 774<br>9.69 805             | 0.30 226<br>0.30 195              | 9.95 179<br>9.95 173             | <b>30</b><br>29 | UU           |
|              | 32              | 9.65 003                     | 9.69 837                         | 0.30 163                          | 9.95 167                         | 28              |              |
|              | 33<br>34        | 9.65 029<br>9.65 054         | 9.69 868<br>9.69 900             | 0.30 132<br>0.30 100              | 9.95 160<br>9.95 154             | 27<br>26        |              |
|              | 35              | 9.65 079                     | 9.69 932                         | 0.30 068                          | 9.95 148                         | 25              |              |
|              | 36<br>37        | 9.65 104<br>9.65 130         | 9.69 963<br>9.69 99 <del>5</del> | 0.30 037<br>0.30 005              | 9.95 141<br>9.95 13 <del>5</del> | 24<br>23        |              |
|              | 38              | 9.65 <b>1</b> 5 <del>5</del> | 9.70 026                         | 0.29 974                          | 9.95 129                         | 22              |              |
|              | 39<br><b>40</b> | 9.65 180                     | 9.70 058<br>9.70 089             | 0.29 942                          | 9.95 122                         | 21<br><b>20</b> |              |
|              | 41              | 9.65 230                     | 9.70 121                         | 0.29 879                          | 9.95 110                         | 19              |              |
|              | 42<br>43        | 9.65 255<br>9.65 28 <b>1</b> | 9.70 152<br>9.70 184             | 0.29 848<br>0.29 816              | 9.95 103<br>9.95 097             | 18<br>17        |              |
|              | 44              | 9.65 306                     | 9.70 215                         | 0.29 785                          | 9.95 090                         | 16              |              |
|              | 45<br>46        | 9.65 331<br>9.65 356         | 9.70 247<br>9.70 278             | 0.29 753<br>0.29 722              | 9.95 084<br>9.95 078             | 15<br>14        | •            |
|              | 47              | 9.65 381                     | 9.70 309                         | 0.29 691                          | 9.95 071                         | 13              |              |
|              | 48<br>49        | 9.65 406<br>9.65 431         | 9.70 341<br>9.70 372             | 0.29 659<br>0.29 628              | 9.95 06 <del>5</del><br>9.95 059 | 12<br>11        |              |
|              | 50              | 9.65 456                     | 9.70 404                         | 0.29 596                          | 9.95 052                         | 10              |              |
| ,            | 51<br>52        | 9.65 481<br>9.65 506         | 9.70 435<br>9.70 466             | 0.29 565<br>0.29 534              | 9.95 046<br>9.95 039             | 9               |              |
|              | 53              | 9.65 531                     | 9.70 498                         | 0.29 502                          | 9.95 033                         | 7               |              |
|              | 54<br>55        | 9.65 556<br>9.65 580         | 9.70 529<br>9.70 560             | 0.29 471                          | 9.95 027                         | 6<br>5          |              |
|              | 56              | 9.65 605                     | 9.70 592                         | 0.29 408                          | 9.95 014                         | 4               |              |
|              | 57<br>58        | 9.65 630<br>9.65 655         | 9.70 623<br>9.70 654             | 0.29 377<br>0.29 346              | 9.95 007<br>9.95 001             | 3<br>2          |              |
|              | 59              | 9.65 680                     | 9.70 685                         | 0.29 315                          | 9.94.995                         | 1               |              |
|              | 60              | 9.65 705                     | 9.70 717                         | 0.29 283                          | 9.94 988                         | 0               |              |
| Ŀ            |                 | L. Cos.                      | L. Cotg.                         | L. Tang.                          | L. Sin.                          |                 |              |

|       | ,                          | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                 | L. Cos.                                                  |                                   |      |
|-------|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|------|
|       | 0<br>1<br>2<br>3<br>4      | 9.65 705<br>9.65 729<br>9.65 754<br>9.65 779<br>9.65 804             | 9.70 717<br>9.70 748<br>9.70 779<br>9.70 810<br>9.70 841             | 0.29 283<br>0.29 252<br>0.29 221<br>0.29 190<br>0.29 159 | 9.94 988<br>9.94 982<br>9.94 975<br>9.94 969<br>9.94 962 | <b>60</b><br>59<br>58<br>57<br>56 |      |
| · .   | 5<br>6<br>7<br>8           | 9.65 828<br>9.65 853<br>9.65 878<br>9.65 902                         | 9.70 873<br>9.70 904<br>9.70 935<br>9.70 966<br>9.70 997             | 0.29 127<br>0.29 096<br>0.29 065<br>0.29 034<br>0.29 003 | 9.94 956<br>9.94 949<br>9.94 943<br>9.94 936<br>9.94 930 | 55<br>54<br>53<br>52<br>51        |      |
|       | 10<br>11<br>12<br>13<br>14 | 9.65 927<br>9.65 952<br>9.65 976<br>9.66 001<br>9.66 025             | 9.71 028<br>9.71 059<br>9.71 090<br>9.71 121                         | 0.28 972<br>0.28 941<br>0.28 910<br>0.28 879<br>0.28 847 | 9.94 923<br>9.94 917<br>9.94 911<br>9.94 904<br>9.94 898 | 50<br>49<br>48<br>47<br>46        |      |
|       | 15<br>16<br>17<br>18<br>19 | 9.66 050<br>9.66 075<br>9.66 099<br>9.66 124<br>9.66 148<br>9.66 173 | 9.71 153<br>9.71 184<br>9.71 215<br>9.71 246<br>9.71 277<br>9.71 308 | 0.28 816<br>0.28 785<br>0.28 754<br>0.28 723<br>0.28 692 | 9.94 891<br>9.94 885<br>9.94 878<br>9.94 871<br>9.94 865 | 45<br>44<br>43<br>42<br>41        |      |
|       | 20<br>21<br>22<br>23<br>24 | 9.66 197<br>9.66 221<br>9.66 246<br>9.66 270<br>9.66 295             | 9.71 339<br>9.71 370<br>9.71 401<br>9.71 431<br>9.71 462             | 0.28 661<br>0.28 630<br>0.28 599<br>0.28 569<br>0.28 538 | 9.94 858<br>9.94 852<br>9.94 845<br>9.94 839<br>9.94 832 | 40<br>39<br>38<br>37<br>36        |      |
| O.P.o | 25<br>26<br>27<br>28<br>29 | 9.66 319<br>9.66 343<br>9.66 368<br>9.66 392<br>9.66 416             | 9.71 493<br>9.71 524<br>9.71 555<br>9.71 586<br>9.71 617             | 0.28 507<br>0.28 476<br>0.28 445<br>0.28 414<br>0.28 383 | 9.94 826<br>9.94 819<br>9.94 813<br>9.94 806<br>9.94 799 | 35<br>34<br>33<br>32<br>31        | c o° |
| 27°   | 30<br>31<br>32<br>33<br>34 | 9.66 441<br>9.66 465<br>9.66 489<br>9.66 513<br>9.66 537             | 9.71 648<br>9.71 679<br>9.71 709<br>9.71 740<br>9.71 771             | 0.28 352<br>0.28 321<br>0.28 291<br>0.28 260<br>0.28 229 | 9.94 793<br>9.94 786<br>9.94 780<br>9.94 773<br>9.94 767 | 30<br>29<br>28<br>27<br>26        | 62°  |
|       | 35<br>36<br>37<br>38<br>39 | 9.66 562<br>9.66 586<br>9.66 610<br>9.66 634<br>9.66 658             | 9.71 802<br>9.71 833<br>9.71 863<br>9.71 894<br>9.71 925             | 0.28 198<br>0.28 167<br>0.28 137<br>0.28 106<br>0.28 075 | 9.94 760<br>9.94 753<br>9.94 747<br>9.94 740<br>9.94 734 | 25<br>24<br>23<br>22<br>21        |      |
|       | 40<br>41<br>42<br>43<br>44 | 9.66 682<br>9.66 706<br>9.66 731<br>9.66 755<br>9.66 779             | 9.71 955<br>9.71 986<br>9.72 017<br>9.72 048<br>9.72 078             | 0.28 045<br>0.28 014<br>0.27 983<br>0.27 952<br>0.27 922 | 9.94 727<br>9.94 720<br>9.94 714<br>9.94 707<br>9.94 700 | 20<br>19<br>18<br>17<br>16        |      |
|       | 45<br>46<br>47<br>48<br>49 | 9.66 803<br>9.66 827<br>9.66 851<br>9.66 875<br>9.66 899             | 9.72 109<br>9.72 140<br>9.72 170<br>9.72 201<br>9.72 231             | 0.27 891<br>0.27 860<br>0.27 830<br>0.27 799<br>0.27 769 | 9.94 694<br>9.94 687<br>9.94 680<br>9.94 674<br>9.94 667 | 15<br>14<br>13<br>12<br>11        |      |
|       | 50<br>51<br>52<br>53<br>54 | 9.66 922<br>9.66 946<br>9.66 970<br>9.66 994<br>9.67 018             | 9.72 262<br>9.72 293<br>9.72 323<br>9.72 354<br>9.72 384             | 0.27 738<br>0.27 707<br>0.27 677<br>0.27 646<br>0.27 616 | 9.94 660<br>9.94 654<br>9.94 647<br>9.94 640<br>9.94 634 | 10<br>9<br>8<br>7<br>6            |      |
|       | 55<br>56<br>57<br>58<br>59 | 9.67 042<br>9.67 066<br>9.67 090<br>9.67 113<br>9.67 137             | 9.72 415<br>9.72 445<br>9.72 476<br>9.72 506<br>9.72 537             | 0.27 585<br>0.27 555<br>0.27 524<br>0.27 494<br>0.27 463 | 9.94 627<br>9.94 620<br>9.94 614<br>9.94 607<br>9.94 600 | 5<br>4<br>3<br>2<br>1             |      |
|       | 60                         | 9.67 161<br><b>L. Cos.</b>                                           | 9.72 567<br><b>L. Cotg.</b>                                          | 0.27 433<br><b>L. Tang.</b>                              | 9.94 593<br><b>L. Sin.</b>                               | ,                                 |      |

| '                          | L. Sin.                                                                                                                                                                                                                                                                                                                                              | L. Tang.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L. Cotg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L. Cos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.67 161<br>9.67 185<br>9.67 208<br>9.67 232<br>9.67 256                                                                                                                                                                                                                                                                                             | 9.72 567<br>9.72 598<br>9.72 628<br>9.72 659<br>9.72 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 433<br>0.27 402<br>0.27 372<br>0.27 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.94 593<br>9.94 587<br>9.94 580<br>9.94 573<br>9.94 567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>60</b><br>59<br>58<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                          | 9.67 280                                                                                                                                                                                                                                                                                                                                             | 9.72 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6                          | 9.67 303                                                                                                                                                                                                                                                                                                                                             | 9.72 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                          | 9.67 327                                                                                                                                                                                                                                                                                                                                             | 9.72 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                          | 9.67 350                                                                                                                                                                                                                                                                                                                                             | 9.72 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9                          | 9.67 374                                                                                                                                                                                                                                                                                                                                             | 9.72 841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10                         | 9.67 398                                                                                                                                                                                                                                                                                                                                             | 9.72 872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11                         | 9.67 421                                                                                                                                                                                                                                                                                                                                             | 9.72 902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12                         | 9.67 445                                                                                                                                                                                                                                                                                                                                             | 9.72 932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13                         | 9.67 468                                                                                                                                                                                                                                                                                                                                             | 9.72 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                         | 9.67 492                                                                                                                                                                                                                                                                                                                                             | 9 72 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15<br>16<br>17<br>18<br>19 | 9.67 515<br>9.67 539<br>9.67 562<br>9.67 586<br>9.67 609                                                                                                                                                                                                                                                                                             | 9.73 023<br>9.73 054<br>9.73 084<br>9.73 114<br>9.73 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 946<br>0.26 916<br>0.26 886<br>0.26 856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.94 492<br>9.94 485<br>9.94 479<br>9.94 472<br>9.94 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45<br>44<br>43<br>42<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20<br>21<br>22<br>23<br>24 | 9.67 633<br>9.67 656<br>9.67 680<br>9.67 703<br>9.67 726                                                                                                                                                                                                                                                                                             | 9.73 20 <del>5</del><br>9.73 235<br>9.73 265<br>9.73 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 825<br>0.26 795<br>0.26 765<br>0.26 735<br>0.26 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 451<br>9.94 44 <del>5</del><br>9.94 438<br>9.94 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40<br>39<br>38<br>37<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26                         | 9.67 773                                                                                                                                                                                                                                                                                                                                             | 9.73 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 27                         | 9.67 796                                                                                                                                                                                                                                                                                                                                             | 9.73 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28                         | 9.67 820                                                                                                                                                                                                                                                                                                                                             | 9.73 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29                         | 9.67 843                                                                                                                                                                                                                                                                                                                                             | 9.73 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 31                         | 9.67 890                                                                                                                                                                                                                                                                                                                                             | 9.73 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32                         | 9.67 913                                                                                                                                                                                                                                                                                                                                             | 9.73 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33                         | 9.67 936                                                                                                                                                                                                                                                                                                                                             | 9.73 567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34                         | 9.67 959                                                                                                                                                                                                                                                                                                                                             | 9.73 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36                         | 9.68 006                                                                                                                                                                                                                                                                                                                                             | 9.73 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37                         | 9.68 029                                                                                                                                                                                                                                                                                                                                             | 9.73 687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38                         | 9.68 052                                                                                                                                                                                                                                                                                                                                             | 9.73 717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39                         | 9.68 075                                                                                                                                                                                                                                                                                                                                             | 9.73 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41                         | 9.68 121                                                                                                                                                                                                                                                                                                                                             | 9.73 807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 42                         | 9.68 144                                                                                                                                                                                                                                                                                                                                             | 9.73 837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 43                         | 9.68 167                                                                                                                                                                                                                                                                                                                                             | 9.73 867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 44                         | 9.68 190                                                                                                                                                                                                                                                                                                                                             | 9.73 897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46                         | 9.68 237                                                                                                                                                                                                                                                                                                                                             | 9.73 957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47                         | 9.68 260                                                                                                                                                                                                                                                                                                                                             | 9.73 987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 48                         | 9.68 283                                                                                                                                                                                                                                                                                                                                             | 9.74 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 49                         | 9.68 305                                                                                                                                                                                                                                                                                                                                             | 9.74 047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 51                         | 9.68 351                                                                                                                                                                                                                                                                                                                                             | 9.74 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 52                         | 9.68 374                                                                                                                                                                                                                                                                                                                                             | 9.74 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 53                         | 9.68 397                                                                                                                                                                                                                                                                                                                                             | 9.74 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54                         | 9.68 420                                                                                                                                                                                                                                                                                                                                             | 9.74 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.94 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 55<br>56<br>57<br>58<br>59 | 9.68 466<br>9.68 489<br>9.68 512<br>9.68 534                                                                                                                                                                                                                                                                                                         | 9.74 256<br>9.74 286<br>9.74 316<br>9.74 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25 744<br>0.25 714<br>0.25 684<br>0.25 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.94 210<br>9.94 203<br>9.94 196<br>9.94 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 60                         | 9.68 557<br><b>L. Cos.</b>                                                                                                                                                                                                                                                                                                                           | 9.74 375<br><b>L. Cotg.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25 625<br><b>L. Tang.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.94 182<br><b>L. Sin.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>48<br>49<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 0         9.67 161           1         9.67 185           2         9.67 208           3         9.67 256           5         9.67 280           6         9.67 303           7         9.67 327           8         9.67 350           9         9.67 374           10         9.67 398           11         9.67 421           12         9.67 468           14         9.67 492           15         9.67 515           16         9.67 539           17         9.67 586           19         9.67 609           20         9.67 680           23         9.67 680           24         9.67 680           23         9.67 680           24         9.67 750           26         9.67 773           27         9.67 750           28         9.67 820           29         9.67 820           29         9.67 820           29         9.67 866           31         9.67 959           35         9.67 959           35         9.67 959           35         < | 0         9.67 161         9.72 567           1         9.67 185         9.72 567           1         9.67 185         9.72 628           2         9.67 208         9.72 659           4         9.67 256         9.72 689           5         9.67 280         9.72 750           6         9.67 327         9.72 750           7         9.67 327         9.72 750           8         9.67 350         9.72 841           9         9.67 374         9.72 841           10         9.67 388         9.72 872           11         9.67 421         9.72 902           12         9.67 445         9.72 932           13         9.67 421         9.72 902           14         9.67 421         9.72 932           15         9.67 445         9.72 932           15         9.67 515         9.73 023           16         9.67 539         9.73 054           17         9.67 562         9.73 084           18         9.67 562         9.73 084           19         9.67 669         9.73 174           20         9.67 656         9.73 205           21         9.67 656 <td>O         9.67 161         9.72 567         0.27 402           1         9.67 185         9.72 598         0.27 402           2         9.67 208         9.72 659         0.27 371           3         9.67 232         9.72 659         0.27 341           4         9.67 280         9.72 659         0.27 280           6         9.67 303         9.72 750         0.27 250           7         9.67 307         9.72 801         0.27 120           8         9.67 350         9.72 811         0.27 120           9         9.67 350         9.72 811         0.27 189           9         9.67 374         9.72 841         0.27 189           9         9.67 374         9.72 872         0.27 128           11         9.67 445         9.72 932         0.27 088           12         9.67 445         9.72 932         0.27 081           12         9.67 468         9.73 023         0.26 977           14         9.67 468         9.73 023         0.26 977           15         9.67 515         9.73 023         0.26 977           16         9.67 539         9.73 054         0.26 946           17         9.67 562         <th< td=""><td>0         9.67 161         9.72 567         0.27 433         9.94 593           1         9.67 185         9.72 598         0.27 402         9.94 587           2         9.67 185         9.72 688         0.27 372         9.94 583           3         9.67 286         9.72 689         0.27 311         9.94 563           4         9.67 280         9.72 689         0.27 311         9.94 566           5         9.67 303         9.72 720         0.27 220         9.94 563           6         9.67 303         9.72 770         0.27 220         9.94 563           7         9.67 327         9.72 811         0.27 128         9.94 563           8         9.67 350         9.72 811         0.27 128         9.94 553           10         9.67 374         9.72 872         0.27 128         9.94 553           10         9.67 398         9.73 922         0.27 098         9.94 513           12         9.67 421         9.72 932         0.27 098         9.94 513           13         9.67 468         9.72 932         0.27 007         9.94 492           12         9.67 469         9.73 023         0.27 007         9.94 492           15         9.67 515<!--</td--><td>0         9,67 161         9,72 567         0,27 433         9,94 583         60           1         9,67 185         9,72 598         0,27 402         9,94 587         59           2         9,67 280         9,72 628         0,27 371         9,94 580         58           3         9,67 280         9,72 689         0,27 341         9,94 560         56           6         9,67 280         9,72 720         0,27 250         0,27 250         9,94 560         56           6         9,67 303         9,72 750         0,27 220         9,94 560         56           7         9,67 350         9,72 811         0,27 120         9,94 560         54           8         9,67 350         9,72 811         0,27 128         9,94 546         53           8         9,67 350         9,72 811         0,27 128         9,94 546         52           9         9,67 345         9,72 872         0,27 128         9,94 533         51           10         9,67 398         9,72 872         0,27 128         9,94 526         50           11         9,67 445         9,72 902         0,27 088         9,94 513         48           12         9,67 455         9,72</td></td></th<></td> | O         9.67 161         9.72 567         0.27 402           1         9.67 185         9.72 598         0.27 402           2         9.67 208         9.72 659         0.27 371           3         9.67 232         9.72 659         0.27 341           4         9.67 280         9.72 659         0.27 280           6         9.67 303         9.72 750         0.27 250           7         9.67 307         9.72 801         0.27 120           8         9.67 350         9.72 811         0.27 120           9         9.67 350         9.72 811         0.27 189           9         9.67 374         9.72 841         0.27 189           9         9.67 374         9.72 872         0.27 128           11         9.67 445         9.72 932         0.27 088           12         9.67 445         9.72 932         0.27 081           12         9.67 468         9.73 023         0.26 977           14         9.67 468         9.73 023         0.26 977           15         9.67 515         9.73 023         0.26 977           16         9.67 539         9.73 054         0.26 946           17         9.67 562 <th< td=""><td>0         9.67 161         9.72 567         0.27 433         9.94 593           1         9.67 185         9.72 598         0.27 402         9.94 587           2         9.67 185         9.72 688         0.27 372         9.94 583           3         9.67 286         9.72 689         0.27 311         9.94 563           4         9.67 280         9.72 689         0.27 311         9.94 566           5         9.67 303         9.72 720         0.27 220         9.94 563           6         9.67 303         9.72 770         0.27 220         9.94 563           7         9.67 327         9.72 811         0.27 128         9.94 563           8         9.67 350         9.72 811         0.27 128         9.94 553           10         9.67 374         9.72 872         0.27 128         9.94 553           10         9.67 398         9.73 922         0.27 098         9.94 513           12         9.67 421         9.72 932         0.27 098         9.94 513           13         9.67 468         9.72 932         0.27 007         9.94 492           12         9.67 469         9.73 023         0.27 007         9.94 492           15         9.67 515<!--</td--><td>0         9,67 161         9,72 567         0,27 433         9,94 583         60           1         9,67 185         9,72 598         0,27 402         9,94 587         59           2         9,67 280         9,72 628         0,27 371         9,94 580         58           3         9,67 280         9,72 689         0,27 341         9,94 560         56           6         9,67 280         9,72 720         0,27 250         0,27 250         9,94 560         56           6         9,67 303         9,72 750         0,27 220         9,94 560         56           7         9,67 350         9,72 811         0,27 120         9,94 560         54           8         9,67 350         9,72 811         0,27 128         9,94 546         53           8         9,67 350         9,72 811         0,27 128         9,94 546         52           9         9,67 345         9,72 872         0,27 128         9,94 533         51           10         9,67 398         9,72 872         0,27 128         9,94 526         50           11         9,67 445         9,72 902         0,27 088         9,94 513         48           12         9,67 455         9,72</td></td></th<> | 0         9.67 161         9.72 567         0.27 433         9.94 593           1         9.67 185         9.72 598         0.27 402         9.94 587           2         9.67 185         9.72 688         0.27 372         9.94 583           3         9.67 286         9.72 689         0.27 311         9.94 563           4         9.67 280         9.72 689         0.27 311         9.94 566           5         9.67 303         9.72 720         0.27 220         9.94 563           6         9.67 303         9.72 770         0.27 220         9.94 563           7         9.67 327         9.72 811         0.27 128         9.94 563           8         9.67 350         9.72 811         0.27 128         9.94 553           10         9.67 374         9.72 872         0.27 128         9.94 553           10         9.67 398         9.73 922         0.27 098         9.94 513           12         9.67 421         9.72 932         0.27 098         9.94 513           13         9.67 468         9.72 932         0.27 007         9.94 492           12         9.67 469         9.73 023         0.27 007         9.94 492           15         9.67 515 </td <td>0         9,67 161         9,72 567         0,27 433         9,94 583         60           1         9,67 185         9,72 598         0,27 402         9,94 587         59           2         9,67 280         9,72 628         0,27 371         9,94 580         58           3         9,67 280         9,72 689         0,27 341         9,94 560         56           6         9,67 280         9,72 720         0,27 250         0,27 250         9,94 560         56           6         9,67 303         9,72 750         0,27 220         9,94 560         56           7         9,67 350         9,72 811         0,27 120         9,94 560         54           8         9,67 350         9,72 811         0,27 128         9,94 546         53           8         9,67 350         9,72 811         0,27 128         9,94 546         52           9         9,67 345         9,72 872         0,27 128         9,94 533         51           10         9,67 398         9,72 872         0,27 128         9,94 526         50           11         9,67 445         9,72 902         0,27 088         9,94 513         48           12         9,67 455         9,72</td> | 0         9,67 161         9,72 567         0,27 433         9,94 583         60           1         9,67 185         9,72 598         0,27 402         9,94 587         59           2         9,67 280         9,72 628         0,27 371         9,94 580         58           3         9,67 280         9,72 689         0,27 341         9,94 560         56           6         9,67 280         9,72 720         0,27 250         0,27 250         9,94 560         56           6         9,67 303         9,72 750         0,27 220         9,94 560         56           7         9,67 350         9,72 811         0,27 120         9,94 560         54           8         9,67 350         9,72 811         0,27 128         9,94 546         53           8         9,67 350         9,72 811         0,27 128         9,94 546         52           9         9,67 345         9,72 872         0,27 128         9,94 533         51           10         9,67 398         9,72 872         0,27 128         9,94 526         50           11         9,67 445         9,72 902         0,27 088         9,94 513         48           12         9,67 455         9,72 |

| П   |                            | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |     |
|-----|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----|
|     | 0<br>1<br>2<br>3<br>4      | 9.68 557<br>9.68 580<br>9.68 603<br>9.68 625<br>9.68 648 | 9.74 375<br>9.74 405<br>9.74 435<br>9.74 465<br>9.74 494 | 0.25 625<br>0.25 595<br>0.25 565<br>0.25 535<br>0.25 506 | 9.94 182<br>9.94 175<br>9.94 168<br>9.94 161<br>9.94 154 | <b>60</b> 59 58 57 56             |     |
|     | 5<br>6<br>7<br>8<br>9      | 9.68 671<br>9.68 694<br>9.68 716<br>9.68 739<br>9.68 762 | 9.74 524<br>9.74 554<br>9.74 583<br>9.74 613<br>9.74 643 | 0.25 476<br>0.25 446<br>0.25 417<br>0.25 387<br>0.25 357 | 9.94 147<br>9.94 140<br>9.94 133<br>9.94 126<br>9.94 119 | 55<br>54<br>53<br>52<br>51        |     |
|     | 10<br>11<br>12<br>13<br>14 | 9.68 784<br>9.68 807<br>9.68 829<br>9.68 852<br>9.68 875 | 9.74 673<br>9.74 702<br>9.74 732<br>9.74 762<br>9.74 791 | 0.25 327<br>0.25 298<br>0.25 268<br>0.25 238<br>0.25 209 | 9.94 112<br>9.94 105<br>9.94 098<br>9.94 090<br>9.94 083 | <b>50</b> 49 48 47 46             |     |
|     | 15<br>16<br>17<br>18<br>19 | 9.68 897<br>9.68 920<br>9.68 942<br>9.68 965<br>9.68 987 | 9.74 821<br>9.74 851<br>9.74 880<br>9.74 910<br>9.74 939 | 0.25 179<br>0.25 149<br>0.25 120<br>0.25 090<br>0.25 061 | 9.94 076<br>9.94 069<br>9.94 062<br>9.94 055<br>9.94 048 | 45<br>44<br>43<br>42<br>41        |     |
|     | 20<br>21<br>22<br>23<br>24 | 9.69 010<br>9.69 032<br>9.69 055<br>9.69 077<br>9.69 100 | 9.74 969<br>9.74 998<br>9.75 028<br>9.75 058<br>9.75 087 | 0.25 031<br>0.25 002<br>0.24 972<br>0.24 942<br>0.24 913 | 9.94 041<br>9.94 034<br>9.94 027<br>9.94 020<br>9.94 012 | <b>40</b><br>39<br>38<br>37<br>36 |     |
| 29° | 25<br>26<br>27<br>28<br>29 | 9.69 122<br>9.69 144<br>9.69 167<br>9.69 189<br>9.69 212 | 9.75 117<br>9.75 146<br>9.75 176<br>9.75 205<br>9 75 235 | 0.24 883<br>0.24 854<br>0.24 824<br>0.24 795<br>0.24 765 | 9.94 005<br>9.93 998<br>9.93 991<br>9.93 984<br>9.93 977 | 35<br>34<br>33<br>32<br>31        | 60° |
| 29  | 30<br>31<br>32<br>33<br>34 | 9.69 234<br>9.69 256<br>9.69 279<br>9.69 301<br>9.69 323 | 9.75 264<br>9.75 294<br>9.75 323<br>9.75 353<br>9.75 382 | 0.24 736<br>0.24 706<br>0.24 677<br>0.24 647<br>0.24 618 | 9.93 970<br>9.93 963<br>9.93 955<br>9.93 948<br>9.93 941 | 30<br>29<br>28<br>27<br>26        | UU  |
|     | 35<br>36<br>37<br>38<br>39 | 9.69 345<br>9.69 368<br>9.69 390<br>9.69 412<br>9.69 434 | 9.75 411<br>9.75 441<br>9.75 470<br>9.75 500<br>9.75 529 | 0.24 589<br>0.24 559<br>0.24 530<br>0.24 500<br>0.24 471 | 9.93 934<br>9.93 927<br>9.93 920<br>9.93 912<br>9.93 905 | 25<br>24<br>23<br>22<br>21        |     |
|     | 40<br>41<br>42<br>43<br>44 | 9.69 356<br>9.69 479<br>9.69 501<br>9.69 523<br>9.69 545 | 9.75 558<br>9.75 588<br>9.75 617<br>9.75 647<br>9.75 676 | 0.24 442<br>0.24 412<br>0.24 383<br>0.24 353<br>0.24 324 | 9.93 898<br>9.93 891<br>9.93 884<br>9.93 876<br>9.93 869 | 20<br>19<br>18<br>17<br>16        |     |
|     | 45<br>46<br>47<br>48<br>49 | 9.69 567<br>9.69 589<br>9.69 611<br>9.69 633<br>9.69 655 | 9.75 705<br>9.75 735<br>9.75 764<br>9.75 793<br>9.75 822 | 0.24 295<br>0.24 265<br>0.24 236<br>0.24 207<br>0.24 178 | 9.93 862<br>9.93 855<br>9.93 847<br>9.93 840<br>9.93 833 | 15<br>14<br>13<br>12<br>11        |     |
|     | 50<br>51<br>52<br>53<br>54 | 9.69 677<br>9.69 699<br>9.69 721<br>9.69 743<br>9.69 765 | 9.75 852<br>9.75 881<br>9.75 910<br>9.75 939<br>9.75 969 | 0.24 148<br>0.24 119<br>0.24 090<br>0.24 061<br>0.24 031 | 9.93 826<br>9.93 819<br>9.93 811<br>9.93 804<br>9.93 797 | 10<br>9<br>8<br>7<br>6            |     |
|     | 55<br>56<br>57<br>58<br>59 | 9.69 787<br>9.69 809<br>9.69 831<br>9.69 853<br>9.69 875 | 9.75 998<br>9.76 027<br>9.76 056<br>9.76 086<br>9.76 115 | 0.24 002<br>0.23 973<br>0.23 944<br>0.23 914<br>0.23 885 | 9.93 789<br>9.93 782<br>9.93 775<br>9.93 768<br>9.93 760 | 5<br>4<br>3<br>2<br>1             |     |
|     | 60                         | 9.69 897<br><b>L. Cos.</b>                               | 9.76 144<br><b>L. Cotg.</b>                              | 0.23 856<br><b>L. Tang.</b>                              | 9.93 753<br><b>L. Sin.</b>                               | 0<br>/                            |     |

|     | 1                           | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |     |
|-----|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----|
|     | 0<br>1<br>2<br>3<br>4       | 9.69 897<br>9.69 919<br>9.69 941<br>9.69 963<br>9.69 984 | 9.76 144<br>9.76 173<br>9.76 202<br>9.76 231<br>9.76 261 | 0.23 856<br>0.23 827<br>0.23 798<br>0.23 769<br>0.23 739 | 9.93 753<br>9.93 746<br>9.93 738<br>9.93 731<br>9.93 724 | <b>60</b><br>59<br>58<br>57<br>56 |     |
|     | 5<br>6<br>7<br>8            | 9.70 006<br>9.70 028<br>9.70 050<br>9.70 072<br>9.70 093 | 9.76 290<br>9.76 319<br>9.76 348<br>9.76 377<br>9.76 406 | 0.23 710<br>0.23 681<br>0.23 652<br>0.23 623<br>0.23 594 | 9.93 717<br>9.93 709<br>9.93 702<br>9.93 695<br>9.93 687 | 55<br>54<br>53<br>52<br>51        |     |
|     | 10<br>11<br>12<br>13<br>14  | 9.70 115<br>9.70 137<br>9.70 159<br>9.70 180<br>9.70 202 | 9.76 435<br>9.76 464<br>9.76 493<br>9.76 522<br>9.76 551 | 0.23 565<br>0.23 536<br>0.23 507<br>0.23 478<br>0.23 449 | 9.93 680<br>9.93 673<br>9.93 665<br>9.93 658<br>9.93 650 | <b>50</b><br>49<br>48<br>47<br>46 |     |
|     | ·15<br>16<br>17<br>18<br>19 | 9.70 224<br>9.70 245<br>9.70 267<br>9.70 288<br>9.70 310 | 9.76 580<br>9.76 609<br>9.76 639<br>9.76 668<br>9.76 697 | 0.23 420<br>0.23 391<br>0.23 361<br>0.23 332<br>0.23 303 | 9.93 643<br>9.93 636<br>9.93 628<br>9.93 621<br>9.93 614 | 45<br>44<br>43<br>42<br>41        |     |
|     | 20<br>21<br>22<br>23<br>24  | 9.70 332<br>9.70 353<br>9.70 375<br>9.70 396<br>9.70 418 | 9.76 725<br>9.76 754<br>9.76 783<br>9.76 812<br>9.76 841 | 0.23 275<br>0.23 246<br>0.23 217<br>0.23 188<br>0.23 159 | 9.93 606<br>9.93 599<br>9.93 591<br>9.93 584<br>9.93 577 | <b>40</b><br>39<br>38<br>37<br>36 |     |
| 30° | 25<br>26<br>27<br>28<br>29  | 9.70 439<br>9.70 461<br>9.70 482<br>9.70 504<br>9.70 525 | 9.76 870<br>9.76 899<br>9.76 928<br>9.76 957<br>9.76 986 | 0.23 130<br>0.23 101<br>0.23 072<br>0.23 043<br>0.23 014 | 9.93 569<br>9.93 562<br>9.93 554<br>9.93 547<br>9:93 539 | 35<br>34<br>33<br>32<br>31        | 59° |
| 90  | 30<br>31<br>32<br>33<br>34  | 9.70 547<br>9.70 568<br>9.70 590<br>9.70 611<br>9.70 633 | 9.77 015<br>9.77 044<br>9.77 073<br>9.77 101<br>9.77 130 | 0.22 985<br>0 22 956<br>0.22 927<br>0.22 899<br>0.22 870 | 9.93 532<br>9.93 525<br>9.93 517<br>9.93 510<br>9.93 502 | 30<br>29<br>28<br>27<br>26        |     |
|     | 35<br>36<br>37<br>38<br>39  | 9.70 654<br>9.70 675<br>9.70 697<br>9.70 718<br>9.70 739 | 9.77 159<br>9.77 188<br>9.77 217<br>9.77 246<br>9.77 274 | 0.22 841<br>0.22 812<br>0.22 783<br>0.22 754<br>0.22 726 | 9.93 495<br>9.93 487<br>9.93 480<br>9.93 472<br>9.93 465 | 25<br>24<br>23<br>22<br>21        |     |
|     | 40<br>41<br>42<br>43<br>44  | 9.70 761<br>9.70 782<br>9.70 803<br>9.70 824<br>9.70 846 | 9.77 303<br>9.77 332<br>9.77 361<br>9.77 390<br>9.77 418 | 0.22 697<br>0.22 668<br>0.22 639<br>0.22 610<br>0.22 582 | 9.93 457<br>9.93 450<br>9.93 442<br>9.93 435<br>9.93 427 | 20<br>19<br>18<br>17<br>16        |     |
|     | 45<br>46<br>47<br>48<br>49  | 9.70 867<br>9.70 888<br>9.70 909<br>9.70 931<br>9.70 952 | 9.77 447<br>9.77 476<br>9.77 505<br>9.77 533<br>9.77 562 | 0.22 553<br>0.22 524<br>0.22 495<br>0.22 467<br>0.22 438 | 9.93*420<br>9.93 412<br>9.93 405<br>9.93 397<br>9.93 390 | 15<br>14<br>13<br>12<br>11        |     |
|     | 50<br>51<br>52<br>53<br>54  | 9.70 973<br>9.70 994<br>9.71 015<br>9.71 036<br>9.71 058 | 9.77 591<br>9.77 619<br>9.77 648<br>9.77 677<br>9.77 706 | 0.22 409<br>0.22 381<br>0.22 352<br>0.22 323<br>0.22 294 | 9.93 382<br>9.93 375<br>9.93 367<br>9.93 360<br>9.93 352 | 10<br>9<br>8<br>7<br>6            |     |
|     | 55<br>56<br>57<br>58<br>59  | 9.71 079<br>9.71 100<br>9.71 121<br>9.71 142<br>9.71 163 | 9.77 734<br>9.77 763<br>9.77 791<br>9.77 820<br>9.77 849 | 0.22 266<br>0.22 237<br>0.22 209<br>0.22 180<br>0.22 151 | 9.93 344<br>9.93 337<br>9.93 329<br>9.93 322<br>9.93 314 | 5<br>4<br>3<br>2<br>1             |     |
|     | 60                          | 9.71 184<br><b>L. Cos.</b>                               | 9.77 877<br><b>L. Cotg.</b>                              | 0.22 123<br><b>L. Tang.</b>                              | 9.93 307<br><b>L. Sin.</b>                               | ,                                 |     |

|              | ,                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                                   |     |
|--------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|-----|
|              | 0<br>1<br>2<br>3<br>4            | 9.71 184<br>9.71 205<br>9.71 226<br>9.71 247<br>9.71 268             | 9.77 877<br>9.77 906<br>9.77 935<br>9.77 963<br>9.77 992             | 0.22 123<br>0.22 094<br>0.22 065<br>0.22 037<br>0.22 008             | 9.93 307<br>9.93 299<br>9.93 291<br>9.93 284<br>9.93 276             | <b>60</b><br>59<br>58<br>57<br>56 |     |
|              | 5<br>6<br>7<br>8                 | 9.71 289<br>9.71 310<br>9.71 331<br>9.71 352                         | 9.78 020<br>9.78 049<br>9.78 077<br>9.78 106                         | 0.21 980<br>0.21 951<br>0.21 923<br>0.21 894                         | 9.93 269<br>9.93 261<br>9.93 253<br>9.93 246                         | 55<br>54<br>53<br>52              |     |
|              | 9<br>10<br>11<br>12<br>13        | 9.71 373<br>9.71 393<br>9.71 414<br>9.71 435<br>9.71 456             | 9.78 135<br>9.78 163<br>9.78 192<br>9.78 220<br>9.78 249             | 0.21 865<br>0.21 837<br>0.21 808<br>0.21 780<br>0.21 751             | 9.93 238<br>9.93 230<br>9.93 223<br>9.93 215<br>9.93 207             | 51<br>50<br>49<br>48<br>47        |     |
|              | 14<br>15<br>16<br>17<br>18       | 9.71 477<br>9.71 498<br>9.71 519<br>9.71 539<br>9.71 560             | 9.78 277<br>9.78 306<br>9.78 334<br>9.78 363<br>9.78 391             | 0.21 723<br>0.21 694<br>0.21 666<br>0.21 637<br>0.21 609             | 9.93 200<br>9.93 192<br>9.93 184<br>9.93 177<br>9.93 169             | 46<br>45<br>44<br>43<br>42<br>41  |     |
|              | 19<br>20<br>21<br>22<br>23<br>24 | 9.71 581<br>9.71 602<br>9.71 622<br>9.71 643<br>9.71 664<br>9.71 685 | 9.78 419<br>9.78 448<br>9.78 476<br>9.78 505<br>9.78 533<br>9.78 562 | 0.21 581<br>0.21 552<br>0.21 524<br>0.21 495<br>0.21 467<br>0.21 438 | 9.93 161<br>9.93 154<br>9.93 146<br>9.93 138<br>9.93 131<br>9.93 123 | 40<br>39<br>38<br>37<br>36        |     |
| 0.10         | 25<br>26<br>27<br>28<br>29       | 9.71 705<br>9.71 726<br>9.71 747<br>9.71 767<br>9.71 788             | 9.78 562<br>9.78 590<br>9.78 618<br>9.78 647<br>9.78 675<br>9.78 704 | 0.21 410<br>0.21 382<br>0.21 353<br>0.21 325<br>0.21 296             | 9.93 115<br>9.93 108<br>9.93 100<br>9.93 092<br>9.93 084             | 35<br>34<br>33<br>32<br>31        |     |
| $31^{\circ}$ | 30<br>31<br>32<br>33<br>34       | 9.71 809<br>9.71 829<br>9.71 850<br>9.71 870<br>9.71 891             | 9.78 732<br>9.78 760<br>9.78 789<br>9.78 817<br>9.78 845             | 0.21 268<br>0.21 240<br>0.21 211<br>0.21 183<br>0.21 155             | 9.93 077<br>9.93 069<br>9.93 061<br>9.93 053<br>9.93 046             | 30<br>29<br>28<br>27<br>26        | 58° |
|              | 35<br>36<br>37<br>38<br>39       | 9.71 911<br>9.71 932<br>9.71 952<br>9.71 973<br>9.71 994             | 9.78 874<br>9.78 902<br>9.78 930<br>9.78 959<br>9.78 987             | 0.21 126<br>0.21 098<br>0.21 070<br>0.21 041<br>0.21 013             | 9.93 038<br>9.93 030<br>9.93 022<br>9.93 014<br>9.93 007             | 25<br>24<br>23<br>22<br>21        |     |
|              | 40<br>41<br>42<br>43<br>44       | 9.72 014<br>9.72 034<br>9.72 055<br>9.72 075<br>9.72 096             | 9.79 015<br>9.79 043<br>9.79 072<br>9.79 100<br>9.79 128             | 0.20 985<br>0.20 957<br>0.20 928<br>0.20 900<br>0.20 872             | 9.92 999<br>9.92 991<br>9.92 983<br>9.92 976<br>9.92 968             | 20<br>19<br>18<br>17<br>16        |     |
|              | 45<br>46<br>47<br>48<br>49       | 9.72 116<br>9.72 137<br>9.72 157<br>9.72 177<br>9.72 198             | 9.79 156<br>9.79 185<br>9.79 213<br>9.79 241<br>9.79 269             | 0.20 844<br>0.20 815<br>0.20 787<br>0.20 759<br>0.20 731             | 9.92 960<br>9.92 952<br>9.92 944<br>9.92 936<br>9.92 929             | 15<br>14<br>13<br>12<br>11        |     |
|              | 50<br>51<br>52<br>53<br>54       | 9.72 218<br>9.72 238<br>9.72 259<br>9.72 279<br>9.72 299             | 9.79 297<br>9.79 326<br>9.79 354<br>9.79 382<br>9.79 410             | 0.20 703<br>0.20 674<br>0.20 646<br>0.20 618<br>0.20 590             | 9.92 921<br>9.92 913<br>9.92 905<br>9.92 897<br>9.92 889             | 10<br>9<br>8<br>7<br>6            |     |
|              | 55<br>56<br>57<br>58<br>59       | 9.72 320<br>9.72 340<br>9.72 360<br>9.72 381<br>9.72 401             | 9.79 438<br>9.79 466<br>9.79 495<br>9.79 523<br>9.79 551             | 0.20 562<br>0.20 534<br>0.20 505<br>0.20 477<br>0.20 449             | 9.92 881<br>9.92 874<br>9.92 866<br>9.92 858<br>9.92 850             | 5<br>4<br>3<br>2<br>1             |     |
|              | 60                               | 9.72 421                                                             | 9.79 579                                                             | 0.20 421                                                             | 9.92 842                                                             | 0                                 | -   |
| •            |                                  | L. Cos.                                                              | L. Cotg.                                                             | L. Tang.                                                             | L. Sin.                                                              | ′                                 |     |

|              | ,               | L. Sin.                              | T. Tong              | I. Cota                        | L. Cos.                                  |                 |              |
|--------------|-----------------|--------------------------------------|----------------------|--------------------------------|------------------------------------------|-----------------|--------------|
|              |                 |                                      | L. Tang.             | L. Cotg.                       |                                          |                 |              |
| 1            | 0               | 9.72 42 <b>1</b><br>9.72 44 <b>1</b> | 9.79 579<br>9.79 607 | 0.20 421<br>0.20 393           | 9.92 842<br>9.92 834                     | <b>60</b><br>59 |              |
|              | 2               | 9.72 461                             | 9.79 635             | 0.20 365                       | 9.92 826                                 | 58              |              |
|              | 3<br>4          | 9.72 482<br>9.72 502                 | 9.79 663<br>9.79 691 | 0.20 337<br>0.20 309           | 9.92 818<br>9.92 810                     | 57<br>56        |              |
|              | 5               | 9.72 522                             | 9.79 719             | 0.20 281                       | 9.92 803                                 | 55              |              |
|              | 6<br>7          | 9.72 542<br>9.72 562                 | 9.79 747<br>9.79 776 | 0.20 253<br>0.20 224           | 9.92 79 <del>5</del><br>9.92 787         | 54<br>53        |              |
|              | 8               | 9.72 582                             | 9.79 804             | 0.20 196<br>0.20 168           | 9.92 779                                 | 52              |              |
|              | 9<br><b>10</b>  | 9.72·602<br>9.72 622                 | 9.79 832             | 0.20 168                       | 9.92 771                                 | 51<br><b>50</b> | l            |
|              | 11              | 9.72 643                             | 9.79 888             | 0.20 112                       | 9.92 755                                 | 49              |              |
|              | 12<br>13        | 9.72 663<br>9.72 683                 | 9.79 916<br>9.79 944 | 0.20 084<br>0.20 056           | 9.92 747<br>9.92 739                     | 48<br>47        |              |
| 1            | 14              | 9.72 703                             | 9.79 972             | 0.20 028                       | 9.92 731                                 | 46              |              |
|              | 15<br>16        | 9.72 723<br>9.72 743                 | 9.80 000<br>9.80 028 | 0.20 000<br>0.19 972           | 9.92 723<br>9.92 715                     | 45<br>44        |              |
|              | 17              | 9.72 763                             | 9.80 056             | 0.19 944                       | 9.92 707                                 | 43              |              |
|              | 18<br>19        | 9.72 783<br>9.72 803                 | 9.80 084<br>9.80 112 | 0.19 916<br>0.19 888           | 9.92 699<br>9.92 691                     | 42<br>41        |              |
|              | 20              | 9.72 823                             | 9.80 140             | 0.19 860                       | 9.92 683                                 | 40              | Í            |
|              | 21<br>22        | 9.72 843<br>9.72 863                 | 9.80 168<br>9.80 195 | $0.19832$ $0.1980\overline{5}$ | 9.92 675<br>9.92 667                     | 39<br>38        |              |
|              | 23              | 9.72 883                             | 9.80 223             | 0.19 777                       | 9.92 659                                 | 37              |              |
| 1            | $\frac{24}{25}$ | 9.72 902                             | 9.80 251<br>9.80 279 | 0.19 749<br>0.19 721           | 9.92 651<br>9.92 643                     | 36<br>35        |              |
|              | 26              | 9.72 942                             | 9.80 307             | 0.19 693                       | 9.92 635                                 | 34              |              |
|              | 27<br>28        | 9.72 962<br>9.72 982                 | 9.80 335<br>9.80 363 | 0.19 665<br>0.19 637           | 9.92 627<br>9.92 619                     | 33<br>32        |              |
| $32^{\circ}$ | 29              | 9.73 002                             | 9.80 391             | 0.19 609                       | 9.92 611                                 | 31              | $57^{\circ}$ |
|              | <b>30</b><br>31 | 9.73 022<br>9.73 041                 | 9.80 419<br>9.80 447 | 0.19 581<br>0.19 553           | 9.92 60 <u>3</u><br>9.92 59 <del>5</del> | <b>30</b><br>29 |              |
|              | 32              | 9.73 061                             | 9.80 474             | 0.19 526                       | 9.92 587                                 | 28              |              |
|              | 33<br>34        | 9.73 081<br>9.73 101                 | 9.80 502<br>9.80 530 | 0.19 498<br>0.19 470           | 9.92 579<br>9.92 571                     | 27<br>26        |              |
|              | 35              | 9.73 121                             | 9.80 558             | 0.19 442                       | 9.92 563                                 | 25              |              |
|              | 36<br>37        | 9.73 140<br>9.73 160                 | 9.80 586<br>9.80 614 | 0.19 414<br>0.19 386           | 9.92 55 <del>5</del><br>9.92 546         | 24<br>23        |              |
| li           | 38              | 9.73 180                             | 9.80 642             | 0.19 358                       | 9.92 538                                 | 22              |              |
|              | 39<br><b>40</b> | 9.73 200                             | 9.80 669             | 0.19 331                       | 9.92 530<br>9.92 522                     | 21<br>20        |              |
|              | 41              | 9.73 239                             | $9.8072\overline{5}$ | 0.19 275                       | 9.92 514                                 | 19              |              |
|              | 42<br>43        | 9.73 259<br>9.73 278                 | 9.80 753<br>9.80 781 | 0.19 247<br>0.19 219           | 9.92 506<br>9.92 498                     | 18<br>17        |              |
|              | 44              | 9.73 298                             | 9.80 808             | 0.19 192                       | 9.92 490                                 | 16              |              |
| 1 1          | 45<br>46        | 9.73 318<br>9.73 337                 | 9.80 836<br>9.80 864 | 0.19 164<br>0.19 136           | 9.92 482<br>9.92 473                     | 15<br>14        | 1            |
|              | 47              | 9.73 357                             | 9.80 892             | 0.19 108                       | 9.92 465                                 | 13              |              |
|              | 48<br>49        | 9.73 377<br>9.73 396                 | 9.80 919<br>9.80 947 | 0.19 081<br>0.19 053           | 9.92 457<br>9.92 449                     | 12<br>11        |              |
|              | 50              | 9.73 416                             | 9.80 975             | 0.19 025                       | 9.92 441                                 | 10              |              |
|              | 51<br>52        | 9.73 435<br>9.73 45 <del>5</del>     | 9.81 003<br>9.81 030 | 0.18 997<br>0.18 970           | 9.92 43 <u>3</u><br>9.92 42 <del>5</del> | 9<br>8          |              |
|              | 53<br>54        | 9.73 474                             | 9.81 058             | 0.18 942                       | 9.92 416                                 | 7               |              |
|              | 55              | 9.73 494                             | 9.81 086<br>9.81 113 | 0.18 914<br>0.18 887           | 9.92 408                                 | 6<br>5          |              |
|              | 56              | 9.73 533                             | 9.81 141             | 0.18 859                       | 9.92 392                                 | 4               |              |
|              | 57<br>58        | 9.73 552<br>9.73 572                 | 9.81 169<br>9.81 196 | 0.18 831<br>0.18 804           | 9.92 384<br>9.92 376                     | 3<br><b>2</b>   |              |
|              | 59              | 9.73 591                             | 9.81 224             | 0.18 776                       | 9.92 367                                 | 1               |              |
|              | 60              | 9.73 611                             | 9.81 252             | 0.18 748                       | 9.92 359                                 | 0               |              |
|              |                 | L. Cos.                              | L. Cotg.             | L. Tang.                       | L. Sin.                                  |                 |              |

|              | '                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |            |
|--------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|------------|
|              | 0<br>1<br>2<br>3<br>4      | 9.73 611<br>9.73 630<br>9.73 650<br>9.73 669<br>9.73 689 | 9.81 252<br>9.81 279<br>9.81 307<br>9.81 335<br>9.81 362 | 0.18 748<br>0.18 721<br>0.18 693<br>0.18 665<br>0.18 638 | 9.92 359<br>9.92 351<br>9.92 343<br>9.92 335<br>9.92 326 | <b>60</b><br>59<br>58<br>57<br>56 |            |
|              | 5<br>6<br>7<br>8<br>9      | 9.73 708<br>9.73 727<br>9.73 747<br>9.73 766<br>9.73 785 | 9.81 390<br>9.81 418<br>9.81 445<br>9.81 473<br>9.81 500 | 0.18 610<br>0.18 582<br>0.18 555<br>0.18 527<br>0.18 500 | 9.92 318<br>9.92 310<br>9.92 302<br>9.92 293<br>9.92 285 | 55<br>54<br>53<br>52<br>51        |            |
|              | 10<br>11<br>12<br>13<br>14 | 9.73 805<br>9.73 824<br>9.73 843<br>9.73 863<br>9.73 882 | 9.81 528<br>9.81 556<br>9.81 583<br>9.81 611<br>9.81 638 | 0.18 472<br>0.18 444<br>0.18 417<br>0.18 389<br>0.18 362 | 9.92 277<br>9.92 269<br>9.92 260<br>9.92 252<br>9.92 244 | 50<br>49<br>48<br>47<br>46        |            |
|              | 15<br>16<br>17<br>18<br>19 | 9.73 901<br>9.73 921<br>9.73 940<br>9.73 959<br>9.73 978 | 9.81 666<br>9.81 693<br>9.81 721<br>9.81 748<br>9.81 776 | 0.18 334<br>0.18 307<br>0.18 279<br>0.18 252<br>0.18 224 | 9.92 235<br>9.92 227<br>9.92 219<br>9.92 211<br>9.92 202 | 45<br>44<br>43<br>42<br>41        |            |
|              | 20<br>21<br>22<br>23<br>24 | 9.73 997<br>9.74 017<br>9.74 036<br>9.74 055<br>9.74 074 | 9.81 803<br>9.81 831<br>9.81 858<br>9.81 886<br>9.81 913 | 0.18 197<br>0.18 169<br>0.18 142<br>0.18 114<br>0.18 087 | 9.92 194<br>9.92 186<br>9.92 177<br>9.92 169<br>9.92 161 | <b>40</b> 39 38 37 36             |            |
| 000          | 25<br>26<br>27<br>28<br>29 | 9.74 093<br>9.74 113<br>9.74 132<br>9.74 151<br>9.74 170 | 9.81 941<br>9.81 968<br>9.81 996<br>9.82 023<br>9.82 051 | 0.18 059<br>0.18 032<br>0.18 004<br>0.17 977<br>0.17 949 | 9.92 152<br>9.92 144<br>9.92 136<br>9.92 127<br>9.92 119 | 35<br>34<br>33<br>32<br>31        | r 00       |
| $33^{\circ}$ | 30<br>31<br>32<br>33<br>34 | 9.74 189<br>9.74 208<br>9.74 227<br>9.74 246<br>9.74 265 | 9.82 078<br>9.82 106<br>9.82 133<br>9.82 161<br>9.82 188 | 0.17 922<br>0.17 894<br>0.17 867<br>0.17 839<br>0.17 812 | 9.92 111<br>9.92 102<br>9.92 094<br>9.92 086<br>9.92 077 | 30<br>29<br>28<br>27<br>26        | $56^\circ$ |
|              | 35<br>36<br>37<br>38<br>39 | 9.74 284<br>9.74 303<br>9.74 322<br>9.74 341<br>9.74 360 | 9.82 215<br>9.82 243<br>9.82 270<br>9.82 298<br>9.82 325 | 0.17 785<br>0.17 757<br>0.17 730<br>0.17 702<br>0.17 675 | 9.92 069<br>9.92 060<br>9.92 052<br>9.92 044<br>9.92 035 | 25<br>24<br>23<br>22<br>21        |            |
|              | 40<br>41<br>42<br>43<br>44 | 9.74 379<br>9.74 398<br>9.74 417<br>9.74 436<br>9.74 455 | 9.82 352<br>9.82 380<br>9.82 407<br>9.82 435<br>9.82 462 | 0.17 648<br>0.17 620<br>0.17 593<br>0.17 565<br>0.17 538 | 9.92 027<br>9.92 018<br>9.92 010<br>9.92 002<br>9.91 993 | 20<br>19<br>18<br>17<br>16        |            |
|              | 45<br>46<br>47<br>48<br>49 | 9.74 474<br>9.74 493<br>9.74 512<br>9.74 531<br>9.74 549 | 9.82 489<br>9.82 517<br>9.82 544<br>9.82 571<br>9.82 599 | 0.17 511<br>0.17 483<br>0.17 456<br>0.17 429<br>0.17 401 | 9.91 985<br>9.91 976<br>9.91 968<br>9.91 959<br>9.91 951 | 15<br>14<br>13<br>12<br>11        |            |
| ,            | 50<br>51<br>52<br>53<br>54 | 9.74 568<br>9.74 587<br>9.74 606<br>9.74 625<br>9.74 644 | 9.82 626<br>9.82 653<br>9.82 681<br>9.82 708<br>9.82 735 | 0.17 374<br>0.17 347<br>0.17 319<br>0.17 292<br>0.17 265 | 9.91 942<br>9.91 934<br>9.91 925<br>9.91 917<br>9.91 908 | 10<br>9<br>8<br>7<br>6            |            |
|              | 55<br>56<br>57<br>58<br>59 | 9.74 662<br>9.74 681<br>9.74 700<br>9.74 719<br>9.74 737 | 9.82 762<br>9.82 790<br>9.82 817<br>9.82 844<br>9.82 871 | 0.17 238<br>0.17 210<br>0.17 183<br>0.17 156<br>0.17 129 | 9.91 900<br>9.91 891<br>9.91 883<br>9.91 874<br>9.91 866 | 5<br>4<br>3<br>2                  |            |
|              | 60                         | 9.74 756<br><b>L. Cos.</b>                               | 9.82 899<br><b>L. Cotg.</b>                              | 0.17 101<br><b>L. Tang.</b>                              | 9.91 857<br><b>L. Sin.</b>                               | 0                                 |            |
|              |                            | 2. 003.                                                  |                                                          | n. rang.                                                 | JAV NIII4                                                |                                   | L          |

|              | ′                                 | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                            |             |
|--------------|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------|-------------|
|              | 0<br>1<br>2<br>3<br>4             | 9.74 756<br>9.74 775<br>9.74 794<br>9.74 812<br>9.74 831 | 9.82 899<br>9.82 926<br>9.82 953<br>9.82 980<br>9.83 008 | 0.17 101<br>0.17 074<br>0.17 047<br>0.17 020<br>0.16 992 | 9.91 857<br>9.91 849<br>9.91 840<br>9.91 832<br>9.91 823 | <b>60</b> 59 58 57         |             |
|              | 5<br>6<br>7<br>8                  | 9.74 850<br>9.74 868<br>9.74 887<br>9.74 906             | 9.83 035<br>9.83 062<br>9.83 089<br>9.83 117             | 0.16 965<br>0.16 938<br>0.16 911<br>0.16 883             | 9.91 815<br>9.91 806<br>9.91 798<br>9.91 789             | 56<br>55<br>54<br>53<br>52 |             |
|              | 9<br>10<br>11<br>12<br>13         | 9.74 924<br>9.74 943<br>9.74 961<br>9.74 980<br>9.74 999 | 9.83 144<br>9.83 171<br>9.83 198<br>9.83 225<br>9.83 252 | 0.16 856<br>0.16 829<br>0.16 802<br>0.16 775<br>0.16 748 | 9.91 781<br>9.91 772<br>9.91 763<br>9.91 755<br>9.91 746 | 51<br>50<br>49<br>48<br>47 |             |
|              | 14<br>15<br>16<br>17<br>18        | 9.75 017<br>9.75 036<br>9.75 054<br>9.75 073<br>9.75 091 | 9.83 280<br>9.83 307<br>9.83 334<br>9.83 361<br>9.83 388 | 0.16 720<br>0.16 693<br>0.16 666<br>0.16 639<br>0.16 612 | 9.91 738<br>9.91 729<br>9.91 720<br>9.91 712<br>9.91 703 | 46<br>45<br>44<br>43<br>42 |             |
|              | 19<br>20<br>21<br>22<br>23        | 9.75 110<br>9.75 128<br>9.75 147<br>9.75 165<br>9.75 184 | 9.83 415<br>9.83 442<br>9.83 470<br>9.83 497<br>9.83 524 | 0.16 585<br>0.16 558<br>0.16 530<br>0.16 503<br>0.16 476 | 9.91 695<br>9.91 686<br>9.91 677<br>9.91 669<br>9.91 660 | 41<br>40<br>39<br>38<br>37 |             |
|              | 24<br>25<br>26<br>27<br>28        | 9.75 202<br>9.75 221<br>9.75 239<br>9.75 258<br>9.75 276 | 9.83 551<br>9.83 578<br>9.83 605<br>9.83 632<br>9.83 659 | 0.16 449<br>0.16 422<br>0.16 395<br>0.16 368<br>0.16 341 | 9.91 651<br>9.91 643<br>9.91 634<br>9.91 625<br>9.91 617 | 36<br>35<br>34<br>33<br>32 |             |
| $34^{\circ}$ | 29<br>30<br>31<br>32<br>33        | 9.75 294<br>9.75 313<br>9.75 331<br>9.75 350<br>9.75 368 | 9.83 686<br>9.83 713<br>9.83 740<br>9.83 768<br>9.83 795 | 0.16 314<br>0.16 287<br>0.16 260<br>0.16 232<br>0.16 205 | 9.91 608<br>9.91 599<br>9.91 591<br>9.91 582<br>9.91 573 | 31<br>30<br>29<br>28<br>27 | <b>55</b> ° |
|              | 34<br>35<br>36<br>37<br>38        | 9.75 386<br>9.75 405<br>9.75 423<br>9.75 441<br>9.75 459 | 9.83 822<br>9.83 849<br>9.83 876<br>9.83 903<br>9.83 930 | 0.16 178<br>0.16 151<br>0.16 124<br>0.16 097<br>0.16 070 | 9.91 565<br>9.91 556<br>9.91 547<br>9.91 538<br>9.91 530 | 26<br>25<br>24<br>23<br>22 |             |
|              | 39<br>40<br>41<br>42              | 9.75 478<br>9.75 496<br>9.75 514<br>9.75 533             | 9.83 957<br>9.83 984<br>9.84 011<br>9.84 038<br>9.84 065 | 0.16 043<br>0.16 016<br>0.15 989<br>0.15 962             | 9.91 521<br>9.91 512<br>9.91 504<br>9.91 495<br>9.91 486 | 21<br>20<br>19<br>18<br>17 |             |
|              | 43<br>44<br>45<br>46<br>47        | 9.75 551<br>9.75 569<br>9.75 587<br>9.75 605<br>9.75 624 | 9.84 092<br>9.84 119<br>9.84 146<br>9.84 173             | 0.15 935<br>0.15 908<br>0.15 881<br>0.15 854<br>0.15 827 | 9.91 477<br>9.91 469<br>9.91 460<br>9.91 451             | 16<br>15<br>14<br>13       |             |
|              | 48<br>49<br><b>50</b><br>51<br>52 | 9.75 642<br>9.75 660<br>9.75 678<br>9.75 696<br>9.75 714 | 9.84 200<br>9.84 227<br>9.84 254<br>9.84 280<br>9.84 307 | 0.15 800<br>0.15 773<br>0.15 746<br>0.15 720<br>0.15 693 | 9.91 442<br>9.91 433<br>9.91 425<br>9.91 416<br>9.91 407 | 12<br>11<br>10<br>9<br>8   | ·           |
|              | 53<br>54<br>55<br>56<br>57        | 9.75 733<br>9.75 751<br>9.75 769<br>9.75 787<br>9.75 805 | 9.84 334<br>9.84 361<br>9.84 388<br>9.84 415<br>9.84 442 | 0.15 666 . 0.15 639 0.15 612 0.15 585 0.15 558           | 9.91 398<br>9.91 389<br>9.91 381<br>9.91 372<br>9.91 363 | 7<br>6<br>5<br>4<br>3      |             |
|              | 58<br>59<br><b>60</b>             | 9.75 823<br>9.75 841<br>9.75 859                         | 9.84 469<br>9.84 496<br>9.84 523                         | 0.15 531<br>0.15 504<br>0.15 477                         | 9.91 354<br>9.91 345<br>9.91 336                         | 2<br>1<br>0                |             |
|              |                                   | L. Cos.                                                  | L. Cotg.                                                 | L. Tang.                                                 | L. Sin.                                                  | '                          |             |

|     | ,                          | L. Sin.                                                              | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                              |                                   |             |
|-----|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|-------------|
|     | 0<br>1<br>2<br>3<br>4      | 9.75 859<br>9.75 877<br>9.75 895<br>9.75 913<br>9.75 931             | 9.84 523<br>9.84 550<br>9.84 576<br>9.84 603<br>9.84 630 | 0.15 477<br>0.15 450<br>0.15 424<br>0.15 397<br>0.15 370 | 9.91 336<br>9.91 328<br>9.91 319<br>9.91 310<br>9.91 301             | <b>60</b><br>59<br>58<br>57<br>56 |             |
|     | 5<br>6<br>7<br>8<br>9      | 9.75 949<br>9.75 967<br>9.75 985<br>9.76 003<br>9.76 021             | 9.84 657<br>9.84 684<br>9.84 711<br>9.84 738<br>9.84 764 | 0.15 343<br>0.15 316<br>0.15 289<br>0.15 262<br>0.15 236 | 9.91 292<br>9.91 283<br>9.91 274<br>9.91 266<br>9.91 257             | 55<br>54<br>53<br>52<br>51        |             |
|     | 10<br>11<br>12<br>13<br>14 | 9.76 039<br>9.76 057<br>9.76 07 <del>5</del><br>9.76 093<br>9.76 111 | 9.84 791<br>9.84 818<br>9.84 845<br>9.84 872<br>9.84 899 | 0.15 209<br>0.15 182<br>0.15 155<br>0.15 128<br>0.15 101 | 9.91 248<br>9.91 239<br>9.91 230<br>9.91 221<br>9.91 212             | <b>50</b><br>49<br>48<br>47<br>46 |             |
|     | 15<br>16<br>17<br>18<br>19 | 9.76 129<br>9.76 146<br>9.76 164<br>9.76 182<br>9.76 200             | 9.84 925<br>9.84 952<br>9.84 979<br>9.85 006<br>9.85 033 | 0.15 075<br>0.15 048<br>0.15 021<br>0.14 994<br>0.14 967 | 9.91 203<br>9.91 194<br>9.91 185<br>9.91 176<br>9.91 167             | 45<br>44<br>43<br>42<br>41        |             |
|     | 20<br>21<br>22<br>23<br>24 | 9.76 218<br>9.76 236<br>9.76 253<br>9.76 271<br>9.76 289             | 9.85 059<br>9.85 086<br>9.85 113<br>9.85 140<br>9.85 166 | 0.14 941<br>0.14 914<br>0.14 887<br>0.14 860<br>0.14 834 | 9.91 158<br>9.91 149<br>9.91 141<br>9.91 132<br>9.91 123             | 40<br>39<br>38<br>37<br>36        |             |
| 35° | 25<br>26<br>27<br>28<br>29 | 9.76 307<br>9.76 324<br>9.76 342<br>9.76 360<br>9.76 378             | 9.85 193<br>9.85 220<br>9.85 247<br>9.85 273<br>9.85 300 | 0.14 807<br>0.14 780<br>0.14 753<br>0.14 727<br>0.14 700 | 9.91 114<br>9.91 10 <del>5</del><br>9.91 096<br>9.91 087<br>9.91 078 | 35<br>34<br>33<br>32<br>31        | ~ 40        |
| 99  | 30<br>31<br>32<br>33<br>34 | 9.76 395<br>9.76 413<br>9.76 431<br>9.76 448<br>9.76 466             | 9.85 327<br>9.85 354<br>9.85 380<br>9.85 407<br>9.85 434 | 0.14 673<br>0.14 646<br>0.14 620<br>0.14 593<br>0.14 566 | 9.91 069<br>9.91 060<br>9.91 051<br>9.91 042<br>9.91 033             | 30<br>29<br>28<br>27<br>26        | <b>54</b> ° |
|     | 35<br>36<br>37<br>38<br>39 | 9.76 484<br>9.76 501<br>9.76 519<br>9.76 537<br>9.76 554             | 9.85 460<br>9.85 487<br>9.85 514<br>9.85 540<br>9.85 567 | 0.14 540<br>0.14 513<br>0.14 486<br>0.14 460<br>0.14 433 | 9.91 023<br>9.91 014<br>9.91 005<br>9.90 996<br>9.90 987             | 25<br>24<br>23<br>22<br>21        |             |
|     | 40<br>41<br>42<br>43<br>44 | 9.76 572<br>9.76 590<br>9.76 607<br>9.76 625<br>9.76 642             | 9.85 594<br>9.85 620<br>9.85 647<br>9.85 674<br>9.85 700 | 0.14 406<br>0.14 380<br>0.14 353<br>0.14 326<br>0.14 300 | 9.90 978<br>9.90 969<br>9.90 960<br>9.90 951<br>9.90 942             | 20<br>19<br>18<br>17<br>16        |             |
|     | 45<br>46<br>47<br>48<br>49 | 9.76 660<br>9.76 677<br>9.76 69 <del>5</del><br>9.76 712<br>9.76 730 | 9.85 727<br>9.85 754<br>9.85 780<br>9.85 807<br>9.85 834 | 0.14 273<br>0.14 246<br>0.14 220<br>0.14 193<br>0.14 166 | 9.90 933<br>9.90 924<br>9.90 915<br>9.90 906<br>9.90 896             | 15<br>14<br>13<br>12<br>11        |             |
|     | 50<br>51<br>52<br>53<br>54 | 9.76 747<br>9.76 76 <del>5</del><br>9.76 782<br>9.76 800<br>9.76 817 | 9.85 860<br>9.85 887<br>9.85 913<br>9.85 940<br>9.85 967 | 0.14 140<br>0.14 113<br>0.14 087<br>0.14 060<br>0.14 033 | 9.90 887<br>9.90 878<br>9.90 869<br>9.90 860<br>9.90 851             | 10<br>9<br>8<br>7<br>6            |             |
|     | 55<br>56<br>57<br>58<br>59 | 9.76 83 <b>5</b><br>9.76 852<br>9.76 870<br>9.76 887<br>9.76 904     | 9.85 993<br>9.86 020<br>9.86 046<br>9.86 073<br>9.86 100 | 0.14 007<br>0.13 980<br>0.13 954<br>0.13 927<br>0.13 900 | 9.90 842<br>9.90 832<br>9.90 823<br>9.90 814<br>9.90 805             | 5<br>4<br>3<br>2<br>1             |             |
|     | 60                         | 9.76 922<br><b>L. Cos.</b>                                           | 9.86 126<br><b>L. Cotg.</b>                              | 0.13 874<br><b>L. Tang.</b>                              | 9.90 796<br><b>L. Sin.</b>                                           | ,                                 |             |
|     | <u> </u>                   | · · · · · ·                                                          | Γ7                                                       |                                                          |                                                                      |                                   | <u> </u>    |

|     | 1                                 | L. Sin.                                                  | L. Tang.                                                         | L. Cotg.                                                 | L. Cos.                                                              |                                   |              |
|-----|-----------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|--------------|
|     | 0<br>1<br>2<br>3<br>4             | 9.76 922<br>9.76 939<br>9.76 957<br>9.76 974<br>9.76 991 | 9.86 126<br>9.86 153<br>9.86 179<br>9.86 206<br>9.86 232         | 0.13 874<br>0.13 847<br>0.13 821<br>0.13 794<br>0.13 768 | 9.90 796<br>9.90 787<br>9.90 777<br>9.90 768<br>9.90 759             | <b>60</b><br>59<br>58<br>57<br>56 |              |
|     | 5<br>6<br>7<br>8<br>9             | 9.77 009<br>9.77 026<br>9.77 043<br>9.77 061<br>9.77 078 | 9.86 259<br>9.86 285<br>9.86 312<br>9.86 338<br>9.86 365         | 0.13 741<br>0.13 715<br>0.13 688<br>0.13 662<br>0.13 635 | 9.90 750<br>9.90 741<br>9.90 731<br>9.90 722<br>9.90 713             | 55<br>54<br>53<br>52<br>51        |              |
| ٠   | 10<br>11<br>12<br>13<br>14        | 9.77 095<br>9.77 112<br>9.77 130<br>9.77 147<br>9.77 164 | 9.86 392<br>9.86 418<br>9.86 445<br>9.86 471<br>9.86 498         | 0.13 608<br>0.13 582<br>0.13 555<br>0.13 529<br>0.13 502 | 9.90 704<br>9.90 694<br>9.90 685<br>9.90 676<br>9.90 667             | <b>50</b><br>49<br>48<br>47<br>46 |              |
|     | 15<br>16<br>17<br>18<br>19        | 9.77 181<br>9.77 199<br>9.77 216<br>9.77 233<br>9.77 250 | 9.86 524<br>9.86 55 <b>1</b><br>9.86 577<br>9.86 603<br>9.86 630 | 0.13 476<br>0.13 449<br>0.13 423<br>0.13 397<br>0.13 370 | 9.90 657<br>9.90 648<br>9.90 639<br>9.90 630<br>9.90 620             | 45<br>44<br>43<br>42<br>41        |              |
|     | 20<br>21<br>22<br>23<br>24        | 9.77 268<br>9.77 285<br>9.77 302<br>9.77 319<br>9.77 336 | 9.86 656<br>9.86 683<br>9.86 709<br>9.86 736<br>9.86 762         | 0.13 344<br>0.13 317<br>0.13 291<br>0.13 264<br>0.13 238 | 9.90 611<br>9.90 602<br>9.90 592<br>9.90 583<br>9.90 574             | <b>40</b><br>39<br>38<br>37<br>36 |              |
| 36° | 25<br>26<br>27<br>28<br>29        | 9.77 353<br>9.77 370<br>9.77 387<br>9.77 405<br>9.77 422 | 9.86 789<br>9.86 815<br>9.86 842<br>9.86 868<br>9.86 894         | 0.13 211<br>0.13 185<br>0.13 158<br>0.13 132<br>0.13 106 | 9.90 565<br>9.90 555<br>9.90 546<br>9.90 537<br>9.90 527             | 35<br>34<br>33<br>32<br>31        | $53^{\circ}$ |
| 90  | 30<br>31<br>32<br>33<br>34        | 9.77 439<br>9.77 456<br>9.77 473<br>9.77 490<br>9.77 507 | 9.86 921<br>9.86 947<br>9.86 974<br>9.87 000<br>9.87 027         | 0.13 079<br>0.13 053<br>0.13 026<br>0.13 000<br>0.12 973 | 9.90 518<br>9.90 509<br>9.90 499<br>9.90 490<br>9.90 480             | 30<br>29<br>28<br>27<br>26        | 99           |
|     | 35<br>36<br>37<br>38<br>39        | 9.77 524<br>9.77 541<br>9.77 558<br>9.77 575<br>9.77 592 | 9.87 053<br>9.87 079<br>9.87 106<br>9.87 132<br>9.87 158         | 0.12 947<br>0.12 921<br>0.12 894<br>0.12 868<br>0.12 842 | 9.90 471<br>9.90 462<br>9.90 452<br>9.90 443<br>9.90 434             | 25<br>24<br>23<br>22<br>21        |              |
|     | <b>40</b><br>41<br>42<br>43<br>44 | 9.77 609<br>9.77 626<br>9.77 643<br>9.77 660<br>9.77 677 | 9.87 185<br>9.87 211<br>9.87 238<br>9.87 264<br>9.87 290         | 0.12 815<br>0.12 789<br>0.12 762<br>0.12 736<br>0.12 710 | 9.90 424<br>9.90 41 <del>5</del><br>9.90 405<br>9.90 396<br>9.90 386 | 20<br>19<br>18<br>17<br>16        |              |
|     | 45<br>46<br>47<br>48<br>49        | 9.77 694<br>9.77 711<br>9.77 728<br>9.77 744<br>9.77 761 | 9.87 317<br>9.87 343<br>9.87 369<br>9.87 396<br>9.87 422         | 0.12 683<br>0.12 657<br>0.12 631<br>0.12 604<br>0.12 578 | 9.90 377<br>9.90 368<br>9.90 358<br>9.90 349<br>9.90 339             | 15<br>14<br>13<br>12<br>11        |              |
|     | 50<br>51<br>52<br>53<br>54        | 9.77 778<br>9.77 795<br>9.77 812<br>9.77 829<br>9.77 846 | 9.87 448<br>9.87 475<br>9.87 501<br>9.87 527<br>9.87 554         | 0.12 552<br>0.12 525<br>0.12 499<br>0.12 473<br>0.12 446 | 9.90 330<br>9.90 320<br>9.90 311<br>9.90 301<br>9.90 292             | 10<br>9<br>8<br>7<br>6            |              |
|     | 55<br>56<br>57<br>58<br>59        | 9.77 862<br>9.77 879<br>9.77 896<br>9.77 913<br>9.77 930 | 9.87 580<br>9.87 606<br>9.87 633<br>9.87 659<br>9.87 685         | 0.12 420<br>0.12 394<br>0.12 367<br>0.12 341<br>0.12 315 | 9.90 282<br>9.90 273<br>9.90 263<br>9.90 254<br>9.90 244             | 5<br>4<br>3<br>2<br>1             |              |
|     | 60                                | 977 946<br><b>L. Cos.</b>                                | 9.87 711<br><b>L. Cotg.</b>                                      | 0.12 289<br><b>L. Tang.</b>                              | 9.90 235<br><b>L. Sin.</b>                                           | ,                                 |              |

|              | ′                     | L. Sin.                                          | L. Tang.                             | L. Cotg.                                     | L. Cos.                          |                       |              |
|--------------|-----------------------|--------------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------|-----------------------|--------------|
|              | 0                     | 9.77 946<br>9.77 963                             | 9.87 711<br>9.87 738                 | 0.12 289<br>0.12 262                         | 9.90 23 <del>5</del><br>9.90 225 | <b>60</b> 59          |              |
|              | 2<br>3<br>4           | 9.77 980<br>9.77 997<br>9.78 013                 | 9.87 764<br>9.87 790<br>9.87 817     | 0.12 236<br>0.12 210<br>0.12 183             | 9.90 216<br>9.90 206<br>9.90 197 | 58<br>57<br>56        |              |
|              | 5 6                   | 9.78 030<br>9.78 047                             | 9.87 843<br>9.87 869                 | 0.12 157<br>0.12 131<br>0.12 105             | 9.90 187<br>9.90 178             | 55<br>54<br>53        |              |
|              | 7<br>8<br>9           | 9.78 063<br>9.78 080<br>9.78 097                 | 9.87 895<br>9.87 922<br>9.87 948     | 0.12 103<br>0.12 078<br>0.12 052             | 9.90 168<br>9.90 159<br>9.90 149 | 52<br>51              |              |
|              | 10<br>11<br>12        | 9.78 113<br>9.78 130<br>9.78 147                 | 9.87 974<br>9.88 000<br>9.88 027     | 0.12 026<br>0.12 000<br>0.11 973             | 9.90 139<br>9.90 130<br>9.90 120 | <b>50</b><br>49<br>48 |              |
|              | 13<br>14              | 9.78 163<br>9.78 180                             | 9.88 053<br>9.88 079                 | 0.11 947<br>0.11 921                         | 9.90 111<br>9.90 101             | 47<br>46              |              |
|              | 15<br>16<br>17        | 9.78 197<br>9.78 213<br>9.78 230                 | 9.88 105<br>9.88 131<br>9.88 158     | 0.11 895<br>0.11 869<br>0.11 842             | 9.90 091<br>9.90 082<br>9.90 072 | 45<br>44<br>43        |              |
|              | 18<br>19              | 9.78 246<br>9.78 263                             | 9.88 184<br>9.88 210                 | 0.11 816<br>0.11 790                         | 9.90 063<br>9.90 053             | 42<br>41              |              |
|              | 20<br>21<br>22        | 9.78 280<br>9.78 296<br>9.78 313                 | 9.88 236<br>9.88 262<br>9.88 289     | 0.11 764<br>0.11 738<br>0.11 711             | 9.90 043<br>9.90 034<br>9.90 024 | <b>40</b><br>39<br>38 |              |
|              | 23<br>24              | 9.78 329<br>9.78 346                             | 9.88 31 <del>5</del><br>9.88 341     | 0.11 685<br>0.11 659                         | 9.90 014<br>9.90 005             | 37<br>36              |              |
|              | 25<br>26<br>27        | 9.78 362<br>9.78 379<br>9.78 395                 | 9.88 367<br>9.88 393<br>9.88 420     | 0.11 633<br>0.11 607<br>0.11 580             | 9.89 995<br>9.89 985<br>9.89 976 | 35<br>34<br>33        |              |
| $37^{\circ}$ | 28<br>29<br><b>30</b> | 9.78 412<br>9.78 428<br>9.78 445                 | 9.88 446<br>9.88 472<br>9.88 498     | 0.11 554<br>0.11 528<br>0.11 502             | 9.89 966<br>9.89 956<br>9.89 947 | 32<br>31<br><b>30</b> | $52^{\circ}$ |
|              | 31<br>32              | 9.78 461<br>9.78 478                             | 9.88 524<br>9.88 550                 | 0.11 476<br>0.11 4 <del>5</del> 0            | 9.89 937<br>9.89 927             | 29<br>28              |              |
|              | 33<br>34<br>35        | 9.78 494<br>9.78 510<br>9.78 527                 | 9.88 577<br>9.88 603<br>9.88 629     | 0.11 423<br>0.11 397<br>0.11 371             | 9.89 918<br>9.89 908<br>9.89 898 | 27<br>26<br>25        |              |
|              | 36<br>37              | 9.78 543<br>9.78 560                             | 9.88 65 <b>5</b><br>9.88 68 <b>1</b> | 0.11 345<br>0.11 319                         | 9.89 888<br>9.89 879             | 24<br>23              |              |
|              | 38<br>39<br><b>40</b> | 9.78 576<br>9.78 592<br>9.78 609                 | 9.88 707<br>9.88 733<br>9.88 759     | $0.11\ 293 \\ 0.11\ 267 \\ \hline 0.11\ 241$ | 9.89 869<br>9.89 859<br>9.89 849 | 22<br>21<br><b>20</b> |              |
|              | 41<br>42              | 9.78 625<br>9.78 642                             | 9.88 786<br>9.88 812                 | 0.11 214<br>0.11 188<br>0.11 162             | 9.89 840<br>9.89 830             | 19<br>18              |              |
|              | 43<br>44<br>45        | 9.78 658<br>9.78 674<br>9.78 691                 | 9.88 838<br>9.88 864<br>9.88 890     | 0.11 162<br>0.11 136<br>0.11 110             | 9.89 820<br>9.89 810<br>9.89 801 | 17<br>16<br>15        |              |
|              | 46<br>47<br>48        | 9.78 707<br>9.78 723<br>9.78 739                 | 9.88 916<br>9.88 942                 | 0.11 084<br>0.11 058<br>0.11 032             | 9.89 791<br>9.89 781<br>9.89 771 | 14<br>13<br>12        |              |
|              | 49<br><b>50</b>       | 9.78 756<br>9.78 772                             | 9.88 968<br>9.88 994<br>9.89 020     | 0.11 032<br>0.11 006<br>0.10 980             | 9.89 761<br>9.89 752             | 11 10                 |              |
|              | 51<br>52<br>53        | 9.78 788<br>9.78 80 <b>5</b><br>9.78 82 <b>1</b> | 9.89 046<br>9.89 073<br>9.89 099     | 0.10 954<br>0.10 927<br>0.10 901             | 9.89 742<br>9.89 732<br>9.89 722 | 9<br>8<br>7           |              |
|              | 54<br>55              | 9.78 837<br>9.78 853                             | 9.89 125<br>9.89 151                 | 0.10 801<br>0.10 875<br>0.10 849             | 9.89 712<br>9.89 702             | 6<br>5                |              |
|              | 56<br>57<br>58        | 9.78 869<br>9.78 886<br>9.78 902                 | 9.89 177<br>9.89 203<br>9.89 229     | 0.10 823<br>0.10 797<br>0.10 771             | 9.89 693<br>9.89 683<br>9.89 673 | 4<br>3<br>2           |              |
|              | 59<br><b>60</b>       | 9.78 918<br>9.78 934                             | 9.89 25 <del>5</del><br>9.89 281     | 0.10 745                                     | 9.89 663<br>9.89 653             | 1 0                   |              |
|              |                       | L. Cos.                                          | L. Cotg.                             | L. Tang.                                     | L. Sin.                          |                       |              |

|              | ,                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                                                                  |                                     |              |
|--------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|
|              | 0<br>1<br>2<br>3<br>4      | 9.78 934<br>9.78 950<br>9.78 967<br>9.78 983<br>9.78 999 | 9.89 281<br>9.89 307<br>9.89 333<br>9.89 359<br>9.89 385 | 0.10 719<br>0.10 693<br>0.10 667<br>0.10 641<br>0.10 615 | 9.89 653<br>9.89 643<br>9.89 633<br>9.89 624<br>9.89 614                                                 | <b>60</b><br>59<br>58<br>57<br>56   |              |
|              | 5<br>6<br>7<br>8<br>9      | 9.79 015<br>9.79 031<br>9.79 047<br>9.79 063<br>9.79 079 | 9.89 411<br>9.89 437<br>9.89 463<br>9.89 489<br>9.89 515 | 0.10 589<br>0.10 563<br>0.10 537<br>0.10 511<br>0.10 485 | 9.89 604<br>9.89 594<br>9.89 584<br>9.89 574<br>9.89 564                                                 | 55<br>54<br>53<br>52<br>51          |              |
|              | 10<br>11<br>12<br>13<br>14 | 9.79 095<br>9.79 111<br>9.79 128<br>9.79 144<br>9.79 160 | 9.89 541<br>9.89 567<br>9.89 593<br>9.89 619<br>9.89 645 | 0.10 459<br>0.10 433<br>0.10 407<br>0.10 381<br>0.10 355 | 9.89 554<br>9.89 544<br>9.89 534<br>9.89 524<br>9.89 514                                                 | <b>50</b><br>49<br>48<br>47<br>46   |              |
|              | 15<br>16<br>17<br>18<br>19 | 9.79 176<br>9.79 192<br>9.79 208<br>9.79 224<br>9.79 240 | 9.89 671<br>9.89 697<br>9.89 723<br>9.89 749<br>9.89 775 | 0.10 329<br>0.10 303<br>0.10 277<br>0.10 251<br>0.10 225 | 9.89 504<br>9.89 49 <del>5</del><br>9.89 48 <del>5</del><br>9.89 47 <del>5</del><br>9.89 46 <del>5</del> | 45<br>44<br>43<br>42<br>41          |              |
|              | 20<br>21<br>22<br>23<br>24 | 9.79 256<br>9.79 272<br>9.79 288<br>9.79 304<br>9.79 319 | 9.89 801<br>9.89 827<br>9.89 853<br>9.89 879<br>9.89 905 | 0.10 199<br>0.10 173<br>0.10 147<br>0.10 121<br>0.10 095 | 9.89 455<br>9.89 445<br>9.89 435<br>9.89 425<br>9.89 415                                                 | <b>40</b><br>39<br>38<br>37<br>36   |              |
| $38^{\circ}$ | 25<br>26<br>27<br>28<br>29 | 9.79 335<br>9.79 351<br>9.79 367<br>9.79 383<br>9.79 399 | 9.89 931<br>9.89 957<br>9.89 983<br>9.90 009<br>9.90 035 | 0.10 069<br>0.10 043<br>0.10 017<br>0.09 991<br>0.09 965 | 9.89 405<br>9.89 395<br>9.89 385<br>9.89 375<br>9.89 364                                                 | 35<br>34<br>33<br>32<br>31          | $51^{\circ}$ |
|              | 30<br>31<br>32<br>33<br>34 | 9.79 415<br>9.79 431<br>9.79 447<br>9.79 463<br>9.79 478 | 9.90 061<br>9.90 086<br>9.90 112<br>9.90 138<br>9.90 164 | 0.09 939<br>0.09 914<br>0.09 888<br>0.09 862<br>0.09 836 | 9.89 354<br>9.89 344<br>9.89 334<br>9.89 324<br>9.89 314                                                 | 29<br>28<br>27<br>26                | 91           |
|              | 35<br>36<br>37<br>38<br>39 | 9.79 494<br>9.79 510<br>9.79 526<br>9.79 542<br>9.79 558 | 9.90 190<br>9.90 216<br>9.90 242<br>9.90 268<br>9.90 294 | 0.09 810<br>0.09 784<br>0.09 758<br>0.09 732<br>0.09 706 | 9.89 304<br>9.89 294<br>9.89 284<br>9.89 274<br>9.89 264                                                 | 25<br>24<br>23<br>22<br>21          |              |
|              | 40<br>41<br>42<br>43<br>44 | 9.79 573<br>9.79 589<br>9.79 605<br>9.79 621<br>9.79 636 | 9.90 320<br>9.90 346<br>9.90 371<br>9.90 397<br>9.90 423 | 0.09 680<br>0.09 654<br>0.09 629<br>0.09 603<br>0.09 577 | 9.89 254<br>9.89 244<br>9.89 233<br>9.89 223<br>9.89 213                                                 | . <b>20</b><br>19<br>18<br>17<br>16 |              |
|              | 45<br>46<br>47<br>48<br>49 | 9.79 652<br>9.79 668<br>9.79 684<br>9.79 699<br>9.79 715 | 9.90 449<br>9.90 475<br>9.90 501<br>9.90 527<br>9.90 553 | 0.09 551<br>0.09 525<br>0.09 499<br>0.09 473<br>0.09 447 | 9.89 203<br>9.89 193<br>9.89 183<br>9.89 173<br>9.89 162                                                 | 15<br>14<br>13<br>12<br>11          |              |
|              | 50<br>51<br>52<br>53<br>54 | 9.79 731<br>9.79 746<br>9.79 762<br>9.79 778<br>9.79 793 | 9.90 578<br>9.90 604<br>9.90 630<br>9.90 656<br>9.90 682 | 0.09 422<br>0.09 396<br>0.09 370<br>0.09 344<br>0.09 318 | 9.89 152<br>9.89 142<br>9.89 132<br>9.89 122<br>9.89 112                                                 | 10<br>9<br>8<br>7<br>6              |              |
|              | 55<br>56<br>57<br>58<br>59 | 9.79 809<br>9.79 825<br>9.79 840<br>9.79 856<br>9.79 872 | 9.90 708<br>9.90 734<br>9.90 759<br>9.90 785<br>9.90 811 | 0.09 292<br>0.09 266<br>0.09 241<br>0.09 215<br>0.09 189 | 9.89 101<br>9.89 091<br>9.89 081<br>9.89 071<br>9.89 060                                                 | 5<br>4<br>3<br>2<br>1               |              |
|              | 60                         | 9.79 887<br><b>L. Cos.</b>                               | 9.90 837<br><b>L. Cotg.</b>                              | 0.09 163<br><b>L. Tang.</b>                              | 9.89 050<br><b>L. Sin.</b>                                                                               | ,                                   |              |
| L            |                            |                                                          |                                                          | 30 7                                                     |                                                                                                          | L                                   |              |

|     | ,                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                                   |     |
|-----|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|-----|
| ,   | 0<br>1<br>2<br>3<br>4            | 9.79 887<br>9.79 903<br>9.79 918<br>9.79 934<br>9.70 950             | 9.90 837<br>9.90 863<br>9.90 889<br>9.90 914<br>9.90 940             | 0.09 163<br>0.09 137<br>0.09 111<br>0.09 086<br>0.09 060             | 9.89 050<br>9.89 040<br>9.89 030<br>9.89 020<br>9.89 009             | <b>60</b><br>59<br>58<br>57<br>56 |     |
|     | 5<br>6<br>7<br>8                 | 9.79 965<br>9.79 981<br>9.79 996<br>9.80 012                         | 9.90 966<br>9.90 992<br>9.91 018<br>9.91 043<br>9.91 069             | 0.09 034<br>0.09 008<br>0.08 982<br>0.08 957<br>0.08 931             | 9.88 999<br>9.88 989<br>9.88 978<br>9.88 968<br>9.88 958             | 55<br>54<br>53<br>52<br>51        |     |
|     | 9<br>10<br>11<br>12<br>13        | 9.80 027<br>9.80 043<br>9.80 058<br>9.80 074<br>9.80 089             | 9.91 095<br>9.91 121<br>9.91 147<br>9.91 172                         | 0.08 905<br>0.08 879<br>0.08 853<br>0.08 828                         | 9.88 948<br>9.88 937<br>9.88 927<br>9.88 917                         | <b>50</b><br>49<br>48<br>47       |     |
|     | 14<br>15<br>16<br>17<br>18<br>19 | 9.80 105<br>9.80 120<br>9.80 136<br>9.80 151<br>9.80 166<br>9.80 182 | 9.91 198<br>9.91 224<br>9.91 250<br>9.91 276<br>9.91 301<br>9.91 327 | 0.08 802<br>0.08 776<br>0.08 750<br>0.08 724<br>0.08 699<br>0.08 673 | 9.88 906<br>9.88 896<br>9.88 886<br>9.88 875<br>9.88 865<br>9.88 855 | 46<br>45<br>44<br>43<br>42<br>41  |     |
|     | 20<br>21<br>22<br>23<br>24       | 9.80 197<br>9.80 213<br>9.80 228<br>9.80 244<br>9.80 259             | 9.91 353<br>9.91 379<br>9.91 404<br>9.91 430<br>9.91 456             | 0.08 647<br>0.08 621<br>0.08 596<br>0.08 570<br>0.08 544             | 9.88 844<br>9.88 834<br>9.88 824<br>9.88 813<br>9.88 803             | 40<br>39<br>38<br>37<br>36        |     |
| 200 | 25<br>26<br>27<br>28<br>29       | 9.80 274<br>9.80 290<br>9.80 305<br>9.80 320<br>9.80 336             | 9.91 482<br>9.91 507<br>9.91 533<br>9.91 559<br>9.91 585             | 0.08 518<br>0.08 493<br>0.08 467<br>0.08 441<br>0.08 415             | 9.88 793<br>9.88 782<br>9.88 772<br>9.88 761<br>9.88 751             | 35<br>34<br>33<br>32<br>31        | 50° |
| 39° | 30<br>31<br>32<br>33<br>34       | 9.80 351<br>9.80 366<br>9.80 382<br>9.80 397<br>9.80 412             | 9.91 610<br>9.91 636<br>9.91 662<br>9.91 688<br>9.91 713             | 0.08 390<br>0.08 364<br>0.08 338<br>0.08 312<br>0.08 287             | 9.88 741<br>9.88 730<br>9.88 720<br>9.88 709<br>9.88 699             | 30<br>29<br>28<br>27<br>26        | ου  |
|     | 35<br>36<br>37<br>38<br>39       | 9.80 428<br>9.80 443<br>9.80 458<br>9.80 473<br>9.80 489             | 9.91 739<br>9.91 765<br>9.91 791<br>9.91 816<br>9.91 842             | 0.08 261<br>0.08 235<br>0.08 209<br>0.08 184<br>0.08 158             | 9.88 688<br>9.88 678<br>9.88 668<br>9.88 657<br>9.88 647             | 25<br>24<br>23<br>22<br>21        |     |
|     | 40<br>41<br>42<br>43<br>44       | 9.80 504<br>9.80 519<br>9.80 534<br>9.80 550<br>9.80 565             | 9.91 868<br>9.91 893<br>9.91 919<br>9.91 945<br>9.91 971             | 0.08 132<br>0.08 107<br>0.08 081<br>0.08 055<br>0.08 029             | 9.88 636<br>9.88 626<br>9.88 615<br>9.88 605<br>9.88 594             | 20<br>19<br>18<br>17<br>16        |     |
|     | 45<br>46<br>47<br>48<br>49       | 9.80 580<br>9.80 595<br>9.80 610<br>9.80 625<br>9.80 641             | 9.91 996<br>9.92 022<br>9.92 048<br>9.92 073<br>9.92 099             | 0.08 004<br>0.07 978<br>0.07 952<br>0.07 927<br>0.07 901             | 9.88 584<br>9.88 573<br>9.88 563<br>9.88 552<br>9.88 542             | 15<br>14<br>13<br>12<br>11        |     |
|     | <b>50</b> 51 52 53 54            | 9.80 656<br>9.80 671<br>9.80 686<br>9.80 701<br>9.80 716             | 9.92 125<br>9.92 150<br>9.92 176<br>9.92 202<br>9.92 227             | 0.07 875<br>0.07 850<br>0.07 824<br>0.07 798<br>0.07 773             | 9.88 531<br>9.88 521<br>9.88 510<br>9.88 499<br>9.88 489             | 10<br>9<br>8<br>7<br>6            |     |
|     | 55<br>56<br>57<br>58<br>59       | 9.80 731<br>9.80 746<br>9.80 762<br>9.80 777<br>9.80 792             | 9.92 253<br>9.92 279<br>9.92 304<br>9.92 330<br>9.92 356             | 0.07 747<br>0.07 721<br>0.07 696<br>0.07 670<br>0.07 644             | 9.88 478<br>9.88 468<br>9.88 457<br>9.88 447<br>9.88 436             | 5<br>4<br>3<br>2<br>1             |     |
|     | 60                               | 9.80 807<br><b>L. Cos.</b>                                           | 9.92 381<br><b>L. Cotg.</b>                                          | 0.07 619<br><b>L. Tang.</b>                                          | 9.88 425<br><b>L. Sin.</b>                                           | ,                                 |     |

|              | ,               | T. Qin               | Т Тапа                            | L. Cotg.                         | L. Cos.                          |                 |              |
|--------------|-----------------|----------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------|--------------|
|              |                 | L. Sin.              | L. Tang.                          |                                  |                                  |                 |              |
|              | 0<br>1          | 9.80 807<br>9.80 822 | 9.92 381<br>9.92 407              | 0.07 619<br>0.07 593             | 9.88 425<br>9.88 415             | <b>60</b><br>59 |              |
|              | 2               | 9.80 837             | 9.92 433                          | 0.07 567                         | 9.88 404                         | 58              |              |
|              | 3<br>4          | 9.80 852<br>9.80 867 | 9.92 458<br>9.92 484              | 0.07 542<br>0.07 516             | 9.88 394<br>9.88 383             | 57<br>56        |              |
|              | 5               | 9.80 882             | 9.92 510                          | 0.07 490                         | 9.88 372                         | 55              |              |
|              | 6               | 9.80 897             | 9.92 535                          | 0.07 465                         | 9.88 362                         | 54              |              |
|              | 7<br>8          | 9.80 912<br>9.80 927 | 9.92 561<br>9.92 587              | 0.07 439<br>0.07 413             | 9.88 351<br>9.88 340             | 53<br>52        |              |
|              | 9               | 9.80 942             | 9.92 612                          | 0.07 388                         | 9.88 330                         | 51              |              |
|              | 10<br>11        | 9.80 957<br>9.80 972 | 9.92 638<br>9.92 663              | 0.07 362<br>0.07 337             | 9.88 319<br>9.88 308             | <b>50</b><br>49 |              |
|              | 12              | 9.80 987             | 9.92 689                          | 0.07 311                         | 9.88 298                         | 48              |              |
|              | 13<br>14        | 9.81 002<br>9.81 017 | 9.92 71 <del>5</del><br>9.92 740  | 0.07 285<br>0.07 260             | 9.88 287<br>9.88 276             | 47<br>46        |              |
|              | 15              | 9.81 032             | 9.92 766                          | 0.07 234                         | 9.88 266                         | 45              |              |
|              | 16              | 9.81 047             | 9.92 792                          | 0.07 208                         | 9.88 255                         | 44              |              |
|              | 17<br>18        | 9.81 061<br>9.81 076 | 9.92 817<br>9.92 843              | 0.07 183<br>0.07 157             | 9.88 244<br>9.88 234             | 43<br>42        |              |
|              | 19              | 9.81 091             | 9.92 868                          | 0.07 132                         | 9.88 223                         | 41              |              |
|              | 20<br>21        | 9.81 106<br>9.81 121 | 9.92 894<br>9.92 920              | 0.07 106<br>0.07 080             | 9.88 212<br>9.88 201             | <b>40</b><br>39 |              |
|              | 22              | 9.81 136             | 9.92 945                          | 0.07 055                         | 9.88 191                         | 38              |              |
|              | 23<br>24        | 9.81 151<br>9.81 166 | 9.92 971<br>9.92 996              | 0.07 029<br>0.07 004             | 9.88 180<br>9.88 169             | 37<br>36        |              |
|              | 25              | 9.81 180             | 9.93 022                          | 0.06 978                         | 9.88 158                         | 35              |              |
|              | 26<br>27        | 9.81 195<br>9.81 210 | 9.93 048<br>9.93 073              | 0.06 952<br>0.06 927             | 9.88 148<br>9.88 137             | 34<br>33        |              |
|              | 28              | 9.81 225             | 9.93 073                          | 0.06 927                         | 9.88 126                         | 32              |              |
| $40^{\circ}$ | 29              | 9.81 240             | 9.93 124                          | 0.06 876                         | 9.88 115                         | 31              | $49^{\circ}$ |
|              | <b>30</b><br>31 | 9.81 254<br>9.81 269 | 9.93 1 <del>5</del> 0<br>9.93 175 | 0.06 850<br>0.06 82 <del>5</del> | 9.88 10 <del>5</del><br>9.88 094 | <b>30</b><br>29 |              |
|              | 32              | 9.81 284             | 9.93 201                          | 0.06 799                         | 9.88 083                         | 28              |              |
|              | 33<br>34        | 9.81 299<br>9.81 314 | 9.93 227<br>9.93 252              | 0.06 773<br>0.06 748             | 9.88 072<br>9.88 061             | 27<br>26        |              |
|              | 35              | 9.81 328             | 9.93 278                          | 0.06 722                         | 9.88 051                         | 25              |              |
|              | 36<br>37        | 9.81 343<br>9.81 358 | 9.93 303<br>9.93 329              | 0.06 697<br>0.06 671             | 9.88 040<br>9.88 029             | 24<br>23        |              |
|              | 38              | 9.81 372             | 9.93 354                          | 0.06 646                         | 9.88 018                         | 22              |              |
|              | 39<br><b>40</b> | 9.81 387             | 9.93 380                          | 0.06 620<br>0.06 594             | 9.88 007                         | $\frac{21}{20}$ |              |
|              | 41              | 9.81 417             | 9.93 431                          | 0.06 569                         | 9.87 985                         | 19              |              |
|              | 42<br>43        | 9.81 431<br>9.81 446 | 9.93 457<br>9.93 482              | 0.06 543<br>0.06 518             | 9.87 97 <b>5</b><br>9.87 964     | 18<br>17        |              |
| l i          | 44              | 9.81 461             | 9.93 508                          | 0.06 492                         | 9.87 953                         | 16              |              |
|              | 45<br>46        | 9.81 475             | 9.93 533                          | 0.06 467                         | 9.87 942                         | 15              |              |
|              | 46<br>47        | 9.81 490<br>9.81 505 | 9.93 559<br>9.93 584              | 0.06 441<br>0 06 416             | 9.87 931<br>9.87 920             | 14<br>13        |              |
|              | 48<br>49        | 9.81 519<br>9.81 534 | 9.93 610<br>9.93 636              | 0.06 390<br>0.06 364             | 9.87 909<br>9.87 898             | 12<br>11        |              |
|              | <b>50</b>       | 9.81 549             | 9.93 661                          | 0.06 364                         | 9.87 887                         | 10              |              |
|              | 51              | 9.81 563             | 9.93 687                          | 0.06 313                         | 9.87 877                         | 9               |              |
|              | 52<br>53        | 9.81 578<br>9.81 592 | 9.93 712<br>9.93 738              | 0.06 288<br>0.06 262             | 9.87 866<br>9.87 85 <b>5</b>     | 8<br>7          |              |
|              | 54              | 9.81 607             | 9.93 763                          | 0.06 237                         | 9.87 844                         | 6               |              |
|              | 55<br>56        | 9.81 622<br>9.81 636 | 9.93 789<br>9.93 814              | 0.06 211<br>0.06 186             | 9.87 833<br>9.87 822             | 5<br><b>4</b>   |              |
|              | 57              | 9.81 651             | 9.93 840                          | 0.06 160                         | 9.87 811                         | 3               |              |
|              | 58<br>59        | 9.81 665<br>9.81 680 | 9.93 865<br>9.93 891              | 0.06 135<br>0.06 109             | 9.87 800<br>9.87 789             | 2               |              |
|              | 60              | 9.81 694             | 9.93 916                          | 0.06 084                         | 9 87 778                         | 0               |              |
|              |                 | L. Cos.              | L. Cotg.                          | L. Tang.                         | L. Sin.                          | - 1             |              |
|              | L               |                      |                                   | 21                               |                                  |                 |              |

|      | ′                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |              |
|------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------|
|      | 0<br>1<br>2<br>3<br>4      | 9.81 694<br>9.81 709<br>9.81 723<br>9.81 738<br>9.81 752 | 9.93 916<br>9.93 942<br>9.93 967<br>9.93 993<br>9.94 018 | 0.06 084<br>0.06 058<br>0.06 033<br>0.06 007<br>0.05 982 | 9.87 778<br>9.87 767<br>9.87 756<br>9.87 745<br>9.87 734 | <b>60</b><br>59<br>58<br>57<br>56 |              |
|      | 5<br>6<br>7<br>8<br>9      | 9.81 767<br>9.81 781<br>9.81 796<br>9.81 810<br>9.81 825 | 9.94 044<br>9.94 069<br>9.94 095<br>9.94 120<br>9.94 146 | 0.05 956<br>0.05 931<br>0.05 905<br>0.05 880<br>0.05 854 | 9.87 723<br>9.87 712<br>9.87 701<br>9.87 690<br>9.87 679 | 55<br>54<br>53<br>52<br>51        |              |
|      | 10<br>11<br>12<br>13<br>14 | 9.81 839<br>9.81 854<br>9.81 868<br>9.81 882<br>9.81 897 | 9.94 171<br>9.94 197<br>9.94 222<br>9.94 248<br>9.94 273 | 0.05 829<br>0.05 803<br>0.05 778<br>0.05 752<br>0.05 727 | 9.87 668<br>9.87 657<br>9.87 646<br>9.87 635<br>9.87 624 | <b>50</b><br>49<br>48<br>47<br>46 |              |
|      | 15<br>16<br>17<br>18<br>19 | 9.81 911<br>9.81 926<br>9.81 940<br>9.81 955<br>9.81 969 | 9.94 299<br>9.94 324<br>9.94 350<br>9.94 375<br>9.94 401 | 0.05 701<br>0.05 676<br>0.05 650<br>0.05 625<br>0.05 599 | 9.87 613<br>9.87 601<br>9.87 590<br>9.87 579<br>9.87 568 | 45<br>44<br>43<br>42<br>41        |              |
|      | 20<br>21<br>22<br>23<br>24 | 9.81 983<br>9.81 998<br>9.82 012<br>9.82 026<br>9.82 041 | 9.94 426<br>9.94 452<br>9.94 477<br>9.94 503<br>9.94 528 | 0.05 574<br>0.05 548<br>0.05 523<br>0.05 497<br>0.05 472 | 9.87 557<br>9.87 546<br>9.87 535<br>9.87 524<br>9.87 513 | <b>40</b><br>39<br>38<br>37<br>36 |              |
| 4 40 | 25<br>26<br>27<br>28<br>29 | 9.82 055<br>9.82 069<br>9.82 084<br>9.82 098<br>9.82 112 | 9.94 554<br>9.94 579<br>9.94 604<br>9.94 630<br>9.94 655 | 0.05 446<br>0.05 421<br>0.05 396<br>0.05 370<br>0.05 345 | 9.87 501<br>9.87 490<br>9.87 479<br>9.87 468<br>9.87 457 | 35<br>34<br>33<br>32<br>31        | $48^{\circ}$ |
| 41°  | 30<br>31<br>32<br>33<br>34 | 9.82 126<br>9.82 141<br>9.82 155<br>9.82 169<br>9.82 184 | 9.94 681<br>9.94 706<br>9.94 732<br>9.94 757<br>9.94 783 | 0.05 319<br>0.05 294<br>0.05 268<br>0.05 243<br>0.05 217 | 9.87 446<br>9.87 434<br>9.87 423<br>9.87 412<br>9.87 401 | 30<br>29<br>28<br>27<br>26        | 40           |
|      | 35<br>36<br>37<br>38<br>39 | 9.82 198<br>9.82 212<br>9.82 226<br>9.82 240<br>9.82 255 | 9.94 808<br>9.94 834<br>9.94 859<br>9.94 884<br>9.94 910 | 0.05 192<br>0.05 166<br>0.05 141<br>0.05 116<br>0.05 090 | 9.87 390<br>9.87 378<br>9.87 367<br>9.87 356<br>9.87 345 | 25<br>24<br>23<br>22<br>21        |              |
|      | 40<br>41<br>42<br>43<br>44 | 9.82 269<br>9.82 283<br>9.82 297<br>9.82 311<br>9.82 326 | 9.94 935<br>9.94 961<br>9.94 986<br>9.95 012<br>9.95 037 | 0.05 065<br>0.05 039<br>0.05 014<br>0.04 988<br>0.04 963 | 9.87 334<br>9.87 322<br>9.87 311<br>9.87 300<br>9.87 288 | 20<br>19<br>18<br>17<br>16        |              |
|      | 45<br>46<br>47<br>48<br>49 | 9.82 340<br>9.82 354<br>9.82 368<br>9.82 382<br>9.82 396 | 9.95,062<br>9.95 088<br>9.95 113<br>9.95 139<br>9.95 164 | 0.04 938<br>0.04 912<br>0.04 887<br>0.04 861<br>0.04 836 | 9.87 277<br>9.87 266<br>9.87 255<br>9.87 243<br>9.87 232 | 15<br>14<br>13<br>12<br>11        |              |
|      | 50<br>51<br>52<br>53<br>54 | 9.82 410<br>9.82 424<br>9.82 439<br>9.82 453<br>9.82 467 | 9.95 190<br>9.95 215<br>9.95 240<br>9.95 266<br>9.95 291 | 0.04 810<br>0.04 785<br>0.04 760<br>0.04 734<br>0.04 709 | 9.87 221<br>9.87 209<br>9.87 198<br>9.87 187<br>9.87 175 | 10<br>9<br>8<br>7<br>6            |              |
|      | 55<br>56<br>57<br>58<br>59 | 9.82 481<br>9.82 495<br>9.82 509<br>9.82 523<br>9.82 537 | 9.95 317<br>9.95 342<br>9.95 368<br>9.95 393<br>9.95 418 | 0.04 683<br>0.04 658<br>0.04 632<br>0.04 607<br>0.04 582 | 9.87 164<br>9.87 153<br>9.87 141<br>9.87 130<br>9.87 119 | 5<br>4<br>3<br>2<br>1             |              |
|      | 60                         | 9.82 551<br><b>L. Cos.</b>                               | 9.95 444 <b>L. Cotg.</b>                                 | 0.04 556<br><b>L. Tang.</b>                              | 9.87 107<br><b>L. Sin.</b>                               | 0                                 |              |
|      | <u></u>                    | 11. 008.                                                 |                                                          | 29 7                                                     | п. рш.                                                   |                                   |              |

[88]

|               | ,               | L. Sin.                        | L. Tang.                         | L. Cotg.                          | L. Cos.                          |                  |              |
|---------------|-----------------|--------------------------------|----------------------------------|-----------------------------------|----------------------------------|------------------|--------------|
|               | 0               | 9.82 551                       | 9.95 444                         | 0.04 556                          | 9.87 107                         | 60               |              |
|               | 1               | 9.82 565                       | 9.95 469                         | 0.04 531                          | 9.87 096                         | 59               |              |
|               | 2 3             | 9.82 579<br>9.82 593           | 9.95 49 <b>5</b><br>9.95 520     | 0.04 505<br>0.04 480              | 9.87 08 <b>5</b><br>9.87 073     | 58<br>57         |              |
|               | 4               | 9.82 607                       | 9.95 545                         | 0.04 455                          | 9.87 062                         | 56               |              |
| 1             | 5<br>6          | 9.82 621<br>9.82 635           | 9.95 571<br>9.95 596             | 0.04 429<br>0.04 404              | 9.87 050<br>9.87 039             | 55<br>5 <b>4</b> |              |
|               | 7               | 9.82 649                       | 9.95 622                         | 0.04 378                          | 9.87 028                         | 5 <b>3</b> ,     |              |
|               | 8<br>9          | 9.82 663<br>9.82 677           | 9.95 647<br>9.95 672             | 0.04 353<br>0.04 328              | 9.87 016<br>9.87 00 <del>5</del> | 52<br>51         |              |
|               | 10              | 9.82 691                       | 9.95 698                         | 0.04 302                          | 9.86 993                         | 50               |              |
|               | 11<br>12        | $9.8270\overline{5}$ $9.82719$ | 9.95 723<br>9.95 748             | 0.04 277<br>0.04 252              | 9.86 982<br>9.86 970             | 49<br>48         |              |
|               | 13              | 9.82 733                       | 9.95 774                         | 0.04 226                          | 9.86 959                         | 47               |              |
|               | 14<br>15        | 9.82 747<br>9.82 761           | 9.95 799<br>9.95 82 <b>5</b>     | 0.04 201<br>0.04 175              | 9.86 947<br>9.86 936             | 46<br>45         |              |
|               | 16              | $9.8277\overline{5}$           | 9.95 850                         | 0.04 150                          | 9.86 924                         | 44               |              |
|               | 17<br>18        | 9.82 788<br>9.82 802           | 9.95 875<br>9.95 901             | 0.04 125<br>0.04 099              | 9.86 913<br>9.86 902             | 43<br>42         | l            |
|               | 19              | 9.82 816                       | 9.95 926                         | 0.04 074                          | 9.86 890                         | 41               | 1            |
|               | 20<br>21        | 9.82 830<br>9.82 844           | 9.95 952<br>9.95 977             | 0.04 048<br>0.04 023              | 9.86 879<br>9.86 867             | <b>40</b><br>39  |              |
| i             | 22<br>23        | 9.82 858<br>9.82 872           | 9.96 002<br>9.96 028             | 0.03 998<br>0.03 972              | 9.86 855<br>9.86 844             | 38<br>37         |              |
|               | 24              | 9.82 885                       | 9.96 053                         | 0.03 947                          | 9.86 832                         | 36               |              |
|               | 25              | 9.82 899<br>9.82 913           | 9.96 078<br>9.96 104             | 0.03 922<br>0.03 896              | 9.86 821<br>9.86 809             | 35<br>34         |              |
| ,             | 26<br>27        | 9.82 927                       | 9.96 129                         | 0.03 871                          | 9.86 798                         | 33               |              |
|               | 28<br>29        | 9.82 941<br>9.82 955           | 9.96 15 <del>5</del><br>9.96 180 | 0.03 845<br>0.03 820              | 9.86 786<br>9.86 77 <b>5</b>     | 32<br>31         | 4 100 0      |
| $42^{\circ}$  | 30              | 9.82 968                       | 9.96 205                         | 0.03 795                          | 9.86 763                         | 30               | $47^{\circ}$ |
|               | 31<br>32        | 9.82 982<br>9.82 996           | 9.96 231<br>9.96 256             | 0.03 769<br>0.03 744              | 9.86 752<br>9.86 740             | 29<br>28         |              |
|               | 33              | 9.83 010                       | 9.96 281                         | 0.03 719                          | 9.86 728                         | 27               |              |
|               | 34<br>35        | 9.83 023<br>9.83 037           | 9.96 307<br>9.96 332             | 0.03 693<br>0.03 668              | 9.86 717<br>9.86 705             | 26<br>25         |              |
|               | 36              | 9.83 051                       | 9.96 357                         | 0.03 643                          | 9.86 694                         | 24               |              |
|               | 37<br>38        | 9.83 065<br>9.83 078           | 9.96 383<br>9.96 408             | 0.03 617<br>0.03 592              | 9.86 682<br>9.86 670             | 23<br>22         | l            |
|               | 39              | 9.83 092                       | 9.96 433                         | 0.03 567                          | 9.86 659                         | 21               |              |
|               | <b>40</b><br>41 | 9.83 106<br>9.83 120           | 9.96 459<br>9.96 484             | 0.03 541<br>0.03 516              | 9.86 647<br>9.86 635             | <b>20</b><br>19  |              |
|               | 42              | 9.83 133                       | 9.96 510                         | 0.03 490                          | 9.86 624                         | 18               |              |
|               | 43<br>44        | 9.83 147<br>9.83 161           | 9.96 53 <b>5</b><br>9.96 560     | 0.03 465<br>0. <del>0</del> 3 440 | 9.86 612<br>9.86 600             | 17<br>16         |              |
|               | 45              | 9.83 174                       | 9.96 586                         | 0.03 414                          | 9.86 589                         | 15               | 1            |
|               | 46<br>47        | 9.83 188<br>9.83 202           | 9.96 611<br>9.96 636             | 0.03 389<br>0.03 364              | 9.86 577<br>9.86 565             | 14<br>13         | ĺ            |
|               | 48<br>49        | 9.83 215<br>9.83 229           | 9.96 662<br>9.96 687             | 0.03 338<br>0.03 313              | 9.86 554<br>9.86 542             | 12<br>11         | 1            |
|               | 50              | 9.83 242                       | 9.96 712                         | 0.03 288                          | 9.86 530                         | 10               | 1            |
|               | 51<br>52        | 9.83 256<br>9.83 270           | 9.96 738<br>9.96 763             | 0.03 262<br>0.03 237              | 9.86 518<br>9.86 507             | 9<br>8           | 1            |
|               | 53              | 9.83 283                       | 9.96 788                         | 0.03 212                          | 9.86 495                         | 7                |              |
|               | 54<br>55        | 9.83 297                       | 9.96 814<br>9.96 839             | 0.03 186                          | 9.86 483                         | 5                |              |
|               | 56              | 9.83 324                       | 9.96 864                         | 0.03 136                          | 9.86 460                         | 4                | •            |
|               | 57<br>58        | 9.83 338<br>9.83 351           | 9.96 890<br>9.96 91 <del>5</del> | 0.03 110<br>0.03 085              | 9.86 448<br>9.86 436             | 3<br>2           |              |
|               | 59              | 9.83 365                       | 9.96 940                         | 0.03 060                          | 9.86 425                         | 1                |              |
|               | 60              | 9.83 378                       | 9.96 966                         | 0.03 034                          | 9.86 413                         | 0                |              |
|               |                 | L. Cos.                        | L. Cotg.                         | L. Tang.                          | L. Sin.                          | ′                |              |
| ļ.,,,,,,,,,,, |                 | <u></u>                        | F 0                              | 4.7                               | l                                |                  |              |

|              | '                          | L. Sin.                                                  | L. Tang.                                                 | L. Cotg.                                                 | L. Cos.                                                  |                                   |              |
|--------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--------------|
|              | 0<br>1<br>2<br>3<br>4      | 9.83 378<br>9.83 392<br>9.83 405<br>9.83 419<br>9.83 432 | 9.96 966<br>9.96 991<br>9.97 016<br>9.97 042<br>9.97 067 | 0.03 034<br>0.03 009<br>0.02 984<br>0.02 958<br>0.02 933 | 9.86 413<br>9.86 401<br>9.86 389<br>9.86 377<br>9.86 366 | <b>60</b><br>59<br>58<br>57<br>56 |              |
|              | 5<br>6<br>7<br>8<br>9      | 9.83 446<br>9.83 459<br>9.83 473<br>9.83 486<br>9.83 500 | 9.97 092<br>9.97 118<br>9.97 143<br>9.97 168<br>9.97 193 | 0.02 908<br>0.02 882<br>0.02 857<br>0.02 832<br>0.02 807 | 9.86 354<br>9.86 342<br>9.86 330<br>9.86 318<br>9.86 306 | 55<br>54<br>53<br>52<br>51        |              |
|              | 10<br>11<br>12<br>13<br>14 | 9.83 513<br>9.83 527<br>9.83 540<br>9.83 554<br>9.83 567 | 9.97 219<br>9.97 244<br>9.97 269<br>9.97 295<br>9.97 320 | 0.02 781<br>0.02 756<br>0.02 731<br>0.02 705<br>0.02 680 | 9.86 295<br>9.86 283<br>9.86 271<br>9.86 259<br>9.86 247 | <b>50</b><br>49<br>48<br>47<br>46 |              |
|              | 15<br>16<br>17<br>18<br>19 | 9.83 581<br>9.83 594<br>9.83 608<br>9.83 621<br>9.83 634 | 9.97 345<br>9.97 371<br>9.97 396<br>9.97 421<br>9.97 447 | 0.02 655<br>0.02 629<br>0.02 604<br>0.02 579<br>0.02 553 | 9.86 235<br>9.86 223<br>9.86 211<br>9.86 200<br>9.86 188 | 45<br>44<br>43<br>42<br>41        |              |
|              | 20<br>21<br>22<br>23<br>24 | 9.83 648<br>9.83 661<br>9.83 674<br>9.83 688<br>9.83 701 | 9.97 472<br>9.97 497<br>9.97 523<br>9.97 548<br>9.97 573 | 0.02 528<br>0.02 503<br>0.02 477<br>0.02 452<br>0.02 427 | 9.86 176<br>9.86 164<br>9.86 152<br>9.86 140<br>9.86 128 | <b>40</b><br>39<br>38<br>37<br>36 |              |
| $43^{\circ}$ | 25<br>26<br>27<br>28<br>29 | 9.83 715<br>9.83 728<br>9.83 741<br>9.83 755<br>9.83 768 | 9.97 598<br>9.97 624<br>9.97 649<br>9.97 674<br>9.97 700 | 0.02 402<br>0.02 376<br>0.02 351<br>0.02 326<br>0.02 300 | 9.86 116<br>9.86 104<br>9.86 092<br>9.86 080<br>9.86 068 | 35<br>34<br>33<br>32<br>31        | $46^{\circ}$ |
|              | 30<br>31<br>32<br>33<br>34 | 9.83 781<br>9.83 595<br>9.83 808<br>9.83 821<br>9.83 834 | 9.97 725<br>9.97 750<br>9.97 776<br>9.97 801<br>9.97 826 | 0.02 275<br>0.02 250<br>0.02 224<br>0.02 199<br>0.02 174 | 9.86 056<br>9.86 044<br>9.86 032<br>9.86 020<br>9.86 008 | 30<br>29<br>28<br>27<br>26        | 10           |
|              | 35<br>36<br>37<br>38<br>39 | 9.83 848<br>9.83 861<br>9.83 874<br>9.83 887<br>9.83 901 | 9.97 851<br>9.97 877<br>9.97 902<br>9.97 927<br>9.97 953 | 0.02 149<br>0.02 123<br>0.02 098<br>0.02 073<br>0.02 047 | 9.85 996<br>9.85 984<br>9.85 972<br>9.85 960<br>9.85 948 | 25<br>24<br>23<br>22<br>21        |              |
|              | 40<br>41<br>42<br>43<br>44 | 9.83 914<br>9.83 927<br>9.83 940<br>9.83 954<br>9.83 967 | 9.97 978<br>9.98 003<br>9.98 029<br>9.98 054<br>9.98 079 | 0.02 022<br>0.01 997<br>0.01 971<br>0.01 946<br>0.01 921 | 9.85 936<br>9.85 924<br>9.85 912<br>9.85 900<br>9.85 888 | 20<br>19<br>18<br>17<br>16        |              |
|              | 45<br>46<br>47<br>48<br>49 | 9.83 980<br>9.83 993<br>9.84 006<br>9.84 020<br>9.84 033 | 9.98 104<br>9.98 130<br>9.98 155<br>9.98 180<br>9.98 206 | 0.01 896<br>0.01 870<br>0.01 845<br>0.01 820<br>0.01 794 | 9.85 876<br>9.85 864<br>9.85 851<br>9.85 839<br>9.85 827 | 15<br>14<br>13<br>12<br>11        |              |
|              | 50<br>51<br>52<br>53<br>54 | 9.84 046<br>9.84 059<br>9.84 072<br>9.84 085<br>9.84 098 | 9.98 231<br>9.98 256<br>9.98 281<br>9.98 307<br>9.98 332 | 0.01 769<br>0.01 744<br>0.01 719<br>0.01 693<br>0.01 668 | 9.85 815<br>9.85 803<br>9.85 791<br>9.85 779<br>9.85 766 | 10<br>9<br>8<br>7<br>6            |              |
|              | 55<br>56<br>57<br>58<br>59 | 9.84 112<br>9.84 125<br>9.84 138<br>9.84 151<br>9.84 164 | 9.98 357<br>9.98 383<br>9.98 408<br>9.98 433<br>9.98 458 | 0.01 643<br>0.00 617<br>0.01 592<br>0.01 567<br>0.01 542 | 9.85 754<br>9.85 742<br>9.85 730<br>9.85 718<br>9.85 706 | 5<br>4<br>3<br>2<br>1             |              |
|              | 60                         | 9.84 177<br><b>L. Cos.</b>                               | 9.98 484<br><b>L. Cotg.</b>                              | 0.01 516 <b>L. Tang.</b>                                 | 9.85 693<br><b>L. Sin.</b>                               | ,                                 |              |
|              | <u></u>                    |                                                          |                                                          | 27                                                       |                                                          | L                                 |              |

|     | ,                                | L. Sin.                                                              | L. Tang.                                                             | L. Cotg.                                                             | L. Cos.                                                              |                                   |              |
|-----|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|--------------|
|     | 0<br>1<br>2<br>3<br>4            | 9.84 177<br>9.84 190<br>9.84 203<br>9.84 216<br>9.84 229             | 9.98 484<br>9.98 509<br>9.98 534<br>9.98 560<br>9.98 585             | 0.01 516<br>0.01 491<br>0.01 466<br>0.01 440<br>0.01 415             | 9.85 693<br>9.85 681<br>9.85 669<br>9.85 657<br>9.85 645             | <b>60</b><br>59<br>58<br>57<br>56 |              |
|     | 5<br>6<br>7<br>8                 | 9.84 242<br>9.84 255<br>9.84 269<br>9.84 282                         | 9.98 610<br>9.98 635<br>9.98 661<br>9.98 686                         | 0.01 390<br>0.01 365<br>0.01 339<br>0.01 314                         | 9.85 632<br>9.85 620<br>9.85 608<br>9.85 596                         | 55<br>54<br>53<br>52              |              |
|     | 9<br>10<br>11<br>12<br>13        | 9.84 295<br>9.84 308<br>9.84 321<br>9.84 334<br>9.84 347             | 9.98 711<br>9.98 737<br>9.98 762<br>9.98 787<br>9.98 812             | 0.01 289<br>0.01 263<br>0.01 238<br>0.01 213<br>0.01 188             | 9.85 583<br>9.85 571<br>9.85 559<br>9.85 547<br>9.85 534             | 51<br>50<br>49<br>48<br>47        |              |
|     | 14<br>15<br>16<br>17<br>18       | 9.84 360<br>9.84 373<br>9.84 385<br>9.84 398<br>9.84 411             | 9.98 838<br>9.98 863<br>9.98 888<br>9.98 913<br>9.98 939             | 0.01 162<br>0.01 137<br>0.01 112<br>0.01 087<br>0.01 061             | 9.85 522<br>9.85 510<br>9.85 497<br>9.85 485<br>9.85 473             | 46<br>45<br>44<br>43<br>42        |              |
|     | 19<br>20<br>21<br>22<br>23       | 9.84 424<br>9.84 437<br>9.84 450<br>9.84 463<br>9.84 476             | 9.98 964<br>9.98 989<br>9.99 015<br>9.99 040<br>9.99 065             | 0.01 036<br>0.01 011<br>0.00 985<br>0.00 960<br>0.00 935             | 9.85 460<br>9.85 448<br>9.85 436<br>9.85 423<br>9.85 411             | 41<br>40<br>39<br>38<br>37        |              |
|     | 24<br>25<br>26<br>27<br>28       | 9.84 489<br>9.84 502<br>9.84 515<br>9.84 528<br>9.84 540             | 9.99 090<br>9.99 116<br>9.99 141<br>9.99 166<br>9.99 191             | 0.00 910<br>0.00 884<br>0.00 859<br>0.00 834<br>0.00 809             | 9.85 399<br>9.85 386<br>9.85 374<br>9.85 361<br>9.85 349             | 36<br>35<br>34<br>33<br>32        |              |
| 44° | 29<br>30<br>31<br>32<br>33<br>34 | 9.84 553<br>9.84 566<br>9.84 579<br>9.84 592<br>9.84 605<br>9.84 618 | 9.99 217<br>9.99 242<br>9.99 267<br>9.99 293<br>9.99 318<br>9.99 343 | 0.00 783<br>0.00 758<br>0.00 733<br>0.00 707<br>0.00 682<br>0.00 657 | 9.85 337<br>9.85 324<br>9.85 312<br>9.85 299<br>9.85 287<br>9.85 274 | 31<br>30<br>29<br>28<br>27<br>26  | $45^{\circ}$ |
|     | 35<br>36<br>37<br>38<br>39       | 9.84 630<br>9.84 643<br>9.84 656<br>9.84 669<br>9.84 682             | 9.99 368<br>9.99 394<br>9.99 419<br>9.99 444<br>9.99 469             | 0.00 632<br>0.00 606<br>0.00 581<br>0.00 556<br>0.00 531             | 9.85 262<br>9.85 250<br>9.85 237<br>9.85 225<br>9.85 212             | 25<br>24<br>23<br>22<br>21        |              |
|     | 40<br>41<br>42<br>43<br>44       | 9.84 694<br>9.84 707<br>9.84 720<br>9.84 733<br>9.84 745             | 9.99 49 <del>5</del><br>9.99 520<br>9.99 545<br>9.99 570<br>9.99 596 | 0.00 505<br>0.00 480<br>0.00 455<br>0.00 430<br>0.00 404             | 9.85 200<br>9.85 187<br>9.85 175<br>9.85 162<br>9.85 150             | 20<br>19<br>18<br>17<br>16        |              |
|     | 45<br>46<br>47<br>48<br>49       | 9.84 758<br>9.84 771<br>9.84 784<br>9.84 796<br>9.84 809             | 9.99 621<br>9.99 646<br>9.99 672<br>9.99 697<br>9.99 722             | 0.00 379<br>0.00 354<br>0.00 328<br>0.00 303<br>0.00 278             | 9.85 137<br>9.85 125<br>9.85 112<br>9.85 100<br>9.85 087             | 15<br>14<br>13<br>12<br>11        |              |
|     | 50<br>51<br>52<br>53<br>54       | 9.84 822<br>9.84 835<br>9.84 847<br>9.84 860<br>9.84 873             | 9.99 747<br>9.99 773<br>9.99 798<br>9.99 823<br>9.99 848             | 0.00 253<br>0.00 227<br>0.00 202<br>0.00 177<br>0.00 152             | 9.85 074<br>9.85 062<br>9.85 049<br>9.85 037<br>9.85 024             | 10<br>9<br>8<br>7<br>6            |              |
|     | 55<br>56<br>57<br>58<br>59       | 9.84 885<br>9.84 898<br>9.84 911<br>9.84 923<br>9.84 936             | 9.99 874<br>9.99 899<br>9.99 924<br>9.99 949<br>9.99 975             | 0.00 126<br>0.00 101<br>0.00 076<br>0.00 051<br>0.00 025             | 9.85 012<br>9.84 999<br>9.84 986<br>9.84 974<br>9.84 961             | 5<br>4<br>3<br>2                  |              |
|     | 60                               | 9.84 949                                                             | 0.00 000                                                             | 0.00 000                                                             | 9.84 949                                                             | 0                                 |              |
|     |                                  | L. Cos.                                                              | L. Cotg.                                                             | L. Tang.                                                             | L. Sin.                                                              | <u> </u>                          |              |



| П  | 11                                   | ,                          | S                                               | T                                               | S'                                              | T'                                              | L. Sin.                                         |
|----|--------------------------------------|----------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|    | 0<br>60<br>120<br>180<br>240         | 0<br>1<br>2<br>3<br>4      | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68558 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31442 | 6.46373<br>.76476<br>.94085<br>7.06579          |
|    | 300<br>360<br>420<br>480<br>540      | 5<br>6.<br>7<br>8          | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68558<br>.68558<br>.68558<br>.68558<br>.68558 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31442<br>.31442<br>.31442<br>.31442<br>.31442 | 7.16270<br>.24188<br>.30882<br>.36682<br>.41797 |
|    | 600<br>660<br>720<br>780<br>840      | 10<br>11<br>12<br>13<br>14 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68558<br>.68558<br>.68558<br>.68558<br>.68558 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31442<br>.31442<br>.31442<br>.31442<br>.31442 | 7.46373<br>.50512<br>.54291<br>.57767<br>.60985 |
|    | 900<br>960<br>1020<br>1080<br>1140   | 15<br>16<br>17<br>18<br>19 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68558<br>.68558<br>.68558<br>.68558<br>.68558 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31442<br>.31442<br>.31442<br>.31442<br>.31442 | 7.63982<br>.66784<br>.69417<br>.71900<br>.74248 |
|    | 1200<br>1260<br>1320<br>1380<br>1440 | 20<br>21<br>22<br>23<br>24 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68558<br>.68558<br>.68558<br>.68558<br>.68558 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31442<br>.31442<br>.31442<br>.31442<br>.31442 | 7.76475<br>.78594<br>.80615<br>.82545<br>.84393 |
| 0° | 1500<br>1560<br>1620<br>1680<br>1740 | 25<br>26<br>27<br>28<br>29 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68558<br>.68558<br>.68558<br>.68558<br>.68559 | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31442<br>.31442<br>.31442<br>.31442<br>.31441 | 7.86166<br>.87870<br>.89509<br>.91088<br>.92612 |
|    | 1800<br>1860<br>1920<br>1980<br>2040 | 30<br>31<br>32<br>33<br>34 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68559<br>.68559<br>.68559<br>.68559           | 5.31443<br>.31443<br>.31443<br>.31443<br>.31443 | 5.31441<br>.31441<br>.31441<br>.31441<br>.31441 | 7.94084<br>.95508<br>.96887<br>.98223<br>.99520 |
| Š  | 2100<br>2160<br>2220<br>2280<br>2340 | 35<br>36<br>37<br>38<br>39 | 4.68557<br>.68557<br>.68557<br>.68557<br>.68557 | 4.68559<br>.68559<br>.68559<br>.68559<br>.68559 | 5.31443<br>.31443<br>.31443<br>.31443           | 5.31441<br>.31441<br>.31441<br>.31441<br>.31441 | 8.00779<br>.02002<br>.03192<br>.04350<br>.05478 |
|    | 2400<br>2460<br>2520<br>2580<br>2640 | 40<br>41<br>42<br>43<br>44 | 4.68557<br>.68556<br>.68556<br>.68556           | 4.68559<br>.68560<br>.68560<br>.68560           | 5.31443<br>.31444<br>.31444<br>.31444           | 5.31441<br>.31440<br>.31440<br>.31440<br>.31440 | 8.06578<br>.07650<br>.08696<br>.09718<br>.10717 |
|    | 2700<br>2760<br>2820<br>2880<br>2940 | 45<br>46<br>47<br>48<br>49 | 4.68556<br>.68556<br>.68556<br>.68556<br>.68556 | 4.68560<br>.68560<br>.68560<br>.68560           | 5.31444<br>.31444<br>.31444<br>.31444           | 5.31440<br>.31440<br>.31440<br>.31440<br>.31440 | 8.11693<br>.12647<br>.13581<br>.14495<br>.15391 |
|    | 3000<br>3060<br>3120<br>3180<br>3240 | 50<br>51<br>52<br>53<br>54 | 4.68556<br>.68556<br>.68556<br>.68556<br>.68556 | 4.68561<br>.68561<br>.68561<br>.68561           | 5.31444<br>.31444<br>.31444<br>.31444           | 5.31439<br>.31439<br>.31439<br>.31439<br>.31439 | 8.16268<br>.17128<br>.17971<br>.18798<br>.19610 |
|    | 3300<br>3360<br>3420<br>3480<br>3540 | 55<br>56<br>57<br>58<br>59 | 4.68556<br>.68556<br>.68555<br>.68555<br>.68555 | 4.68561<br>.68561<br>.68561<br>.68562<br>.68562 | 5.31444<br>.31444<br>.31445<br>.31445<br>.31445 | 5.31439<br>.31439<br>.31439<br>.31438<br>.31438 | 8.20407<br>.21189<br>.21958<br>.22713<br>.23456 |
| Ш  | 3600                                 | 60                         | 4.68555                                         | 4.68562<br>[ 88 ]                               | 5.31445                                         | 5.31438                                         | 8.24186                                         |

| П  | "                                    | ,                          | S                                               | T                                               | S'                                              | $\mathbf{T}'$                                   | L. Sin.                                         |
|----|--------------------------------------|----------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|    | 3600<br>3660<br>3720<br>3780<br>3840 | 0<br>1<br>2<br>3<br>4      | 4.68555<br>.68555<br>.68555<br>.68555           | 4.68562<br>.68562<br>.68562<br>.68562<br>.68563 | 5.31445<br>.31445<br>.31445<br>.31445<br>.31445 | 5.31438<br>.31438<br>.31438<br>.31438<br>.31437 | 8.24186<br>.24903<br>.25609<br>.26304<br>.26988 |
|    | 3900<br>3960<br>4020<br>4080<br>4140 | 5<br>6<br>7<br>8<br>9      | 4.68555<br>.68555<br>.68555<br>.68555<br>.68555 | 4.68563<br>.68563<br>.68563<br>.68563           | 5.31445<br>.31445<br>.31445<br>.31445<br>.31445 | 5.31437<br>.31437<br>.31437<br>.31437<br>.31437 | 8.27661<br>.28324<br>.28977<br>.29621<br>.30255 |
|    | 4200<br>4260<br>4320<br>4380<br>4440 | 10<br>11<br>12<br>13<br>14 | 4.68554<br>.68554<br>.68554<br>.68554<br>.68554 | 4.68563<br>.68564<br>.68564<br>.68564<br>.68564 | 5.31446<br>.31446<br>.31446<br>.31446           | 5.31437<br>.31436<br>.31436<br>.31436<br>.31436 | 8.30879<br>.31495<br>.32103<br>.32702<br>.33292 |
|    | 4500                                 | 15                         | 4.68554                                         | 4.68564                                         | 5.31446                                         | 5.31436                                         | 8.33875                                         |
|    | 4560                                 | 16                         | .68554                                          | .68565                                          | .31446                                          | .31435                                          | .34450                                          |
|    | 4620                                 | 17                         | .68554                                          | .68565                                          | .31446                                          | .31435                                          | .35018                                          |
|    | 4680                                 | 18                         | .68554                                          | .68565                                          | .31446                                          | .31435                                          | .35578                                          |
|    | 4740                                 | 19                         | .68554                                          | .68565                                          | .31446                                          | .31435                                          | .36131                                          |
|    | 4800<br>4860<br>4920<br>4980<br>5040 | 20<br>21<br>22<br>23<br>24 | 4.68554<br>.68553<br>.68553<br>.68553<br>.68553 | 4.68565<br>.68566<br>.68566<br>.68566           | 5.31446<br>.31447<br>.31447<br>.31447<br>.31447 | 5.31435<br>.31434<br>.31434<br>.31434<br>.31434 | 8.36678<br>.37217<br>.37750<br>.38276<br>.38796 |
| 1° | 5100                                 | 25                         | 4.68553                                         | 4.68566                                         | 5.31447                                         | 5.31434                                         | 8.39310                                         |
|    | 5160                                 | 26                         | .68553                                          | .68567                                          | .31447                                          | .31433                                          | .39818                                          |
|    | 5220                                 | 27                         | .68553                                          | .68567                                          | .31447                                          | .31433                                          | .40320                                          |
|    | 5280                                 | 28                         | .68553                                          | .68567                                          | .31447                                          | .31433                                          | .40816                                          |
|    | 5340                                 | 29                         | .68553                                          | .68567                                          | .31447                                          | .31433                                          | .41307                                          |
| 2  | 5400                                 | 30                         | 4.68553                                         | 4.68567                                         | 5.31447                                         | 5.31433                                         | 8.41792                                         |
|    | 5460                                 | 31                         | .68552                                          | .68568                                          | .31448                                          | .31432                                          | .42272                                          |
|    | 5520                                 | 32                         | .68552                                          | .68568                                          | .31448                                          | .31432                                          | .42746                                          |
|    | 5580                                 | 33                         | .68552                                          | .68568                                          | .31448                                          | .31432                                          | .43216                                          |
|    | 5640                                 | 34                         | .68552                                          | .68568                                          | .31448                                          | .31432                                          | .43680                                          |
|    | 5700                                 | 35                         | 4.68552                                         | 4.68569                                         | 5.31448                                         | 5.31431                                         | 8.44139                                         |
|    | 5760                                 | 36                         | .68552                                          | .68569                                          | .31448                                          | .31431                                          | .44594                                          |
|    | 5820                                 | 37                         | .68552                                          | .68569                                          | .31448                                          | .31431                                          | .45044                                          |
|    | 5880                                 | 38                         | .68552                                          | .68569                                          | .31448                                          | .31431                                          | .45489                                          |
|    | 5940                                 | 39                         | .68551                                          | .68569                                          | .31449                                          | .31431                                          | .45930                                          |
|    | 6000                                 | 40                         | 4.68551                                         | 4.68570                                         | 5.31449                                         | 5.31430                                         | 8.46366                                         |
|    | 6060                                 | 41                         | .68551                                          | .68570                                          | .31449                                          | .31430                                          | .46799                                          |
|    | 6120                                 | 42                         | .68551                                          | .68570                                          | .31449                                          | .31430                                          | .47226                                          |
|    | 6180                                 | 43                         | .68551                                          | .68570                                          | .31449                                          | .31430                                          | .47650                                          |
|    | 6240                                 | 44                         | .68551                                          | .68571                                          | .31449                                          | .31429                                          | .48069                                          |
|    | 6300                                 | 45                         | 4.68551                                         | 4.68571                                         | 5.31449                                         | 5.31429                                         | 8.48485                                         |
|    | 6360                                 | 46                         | .68551                                          | .68571                                          | .31449                                          | .31429                                          | .48896                                          |
|    | 6420                                 | 47                         | .68550                                          | .68572                                          | .31450                                          | .31428                                          | .49304                                          |
|    | 6480                                 | 48                         | .68550                                          | .68572                                          | .31450                                          | .31428                                          | .49708                                          |
|    | 6540                                 | 49                         | .68550                                          | .68572                                          | .31450                                          | .31428                                          | .50108                                          |
|    | 6600                                 | 50                         | 4.68550                                         | 4.68572                                         | 5.31450                                         | 5.31428                                         | 8.50504                                         |
|    | 6660                                 | 51                         | .68550                                          | .68573                                          | .31450                                          | .31427                                          | .50897                                          |
|    | 6720                                 | 52                         | .68550                                          | .68573                                          | .31450                                          | .31427                                          | .51287                                          |
|    | 6780                                 | 53                         | .68550                                          | .68573                                          | .31450                                          | .31427                                          | .51673                                          |
|    | 6840                                 | 54                         | .68550                                          | .68573                                          | .31450                                          | .31427                                          | .52055                                          |
|    | 6900                                 | 55                         | 4.68549                                         | 4.68574                                         | 5.31451                                         | 5.31426                                         | 8.52434                                         |
|    | 6960                                 | 56                         | .68549                                          | .68574                                          | .31451                                          | .31426                                          | .52810                                          |
|    | 7020                                 | 57                         | .68549                                          | .68574                                          | .31451                                          | .31426                                          | .53183                                          |
|    | 7080                                 | 58                         | .68549                                          | .68575                                          | .31451                                          | .31425                                          | .53552                                          |
|    | 7140                                 | 59                         | .68549                                          | .68575                                          | .31451                                          | .31425                                          | .53919                                          |
|    | 7200                                 | 60                         | 4.68549                                         | 4.68575                                         | 5.31451                                         | 5.31425                                         | 8.54282                                         |
|    |                                      |                            |                                                 | [89]                                            |                                                 |                                                 |                                                 |

## TABLE V

## FOUR-PLACE TABLE

OF THE

NATURAL SINE, COSINE, TANGENT, AND COTANGENT

FOR

EVERY 10' OF THE QUADRANT

| ° '                                | N. Sin.                                              | N. Tan.                                            | N. Cot.                                                  | N. Cos.                                                |                                              |
|------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|
| 0 00<br>10<br>20<br>30<br>40<br>50 | .0000<br>.0029<br>.0058<br>.0087<br>.0116<br>.0145   | .0000<br>.0029<br>.0058<br>.0087<br>.0116<br>.0145 | \$\infty\$ 343.77 171.89 114.59 85.940 68.750            | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>.9999<br>.9999 | 00 <b>90</b> 50 40 30 20                     |
| 1 00<br>10<br>20<br>30<br>40<br>50 | .0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320   | .0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | 57.290<br>49.104<br>42.964<br>38.188<br>34.368<br>31,242 | .9998<br>.9998<br>.9997<br>.9997<br>.9996              | 00 <b>89</b> -<br>50<br>40<br>30<br>20<br>10 |
| 2 00<br>10<br>20<br>30<br>40<br>50 | .0349 /<br>.0378<br>.0407<br>.0436<br>.0465<br>.0494 | .0349<br>.0378<br>.0407<br>.0437<br>.0466<br>.0495 | 28.636<br>26.432<br>24.542<br>22.904<br>21.470<br>20.206 | .9994<br>.9993<br>.9992<br>.9990<br>.9989              | 00 <b>88</b> 50 40 30 20                     |
| 3 00<br>10<br>20<br>30<br>40<br>50 | .0523<br>.0552<br>.0581<br>.0610<br>.0640<br>.0669   | .0524<br>.0553<br>.0582<br>.0612<br>.0641<br>.0670 | 19.081<br>18.075<br>17.169<br>16.350<br>15.605<br>14.924 | .9986<br>.9985<br>.9983<br>.9981<br>.9980<br>.9978     | 00 <b>87</b> 50 40 30 20                     |
| 4 00<br>10<br>20<br>30<br>40<br>50 | .0698<br>.0727<br>.0756<br>.0785<br>.0814<br>.0843   | .0699<br>.0729<br>.0758<br>.0787<br>.0816<br>0846  | 14.301<br>13.727<br>13.197<br>12.706<br>12.251<br>11.826 | .9976<br>.9974<br>.9971<br>.9969<br>.9967<br>.9964     | 00 <b>86</b> 50 40 30 20                     |
| 5 00<br>10<br>20<br>30<br>40<br>50 | ,0872<br>.0901<br>.0929<br>.0958<br>.0987<br>.1016   | .0875<br>.0904<br>.0934<br>.0963<br>.0992<br>.1022 | 11.430<br>11.059<br>10.712<br>10.385<br>10.078<br>9.7882 | .9962<br>.9959<br>.9957<br>.9954<br>.9951<br>.9948     | 00 <b>85</b> 50 40 30 20 10                  |
| 6 00<br>10<br>20<br>30<br>40<br>50 | .1045<br>.1074<br>.1103<br>.1132<br>.1161<br>.1190   | .1051<br>.1080<br>.1110<br>.1139<br>.1169<br>.1198 | 9.5144<br>9.2553<br>9.0098<br>8.7769<br>8.5555<br>8.3450 | .9945<br>.9942<br>.9939<br>.9936<br>.9932<br>.9929     | 00 <b>84</b> 50 40 30 20 10                  |
| 7 00<br>10<br>20<br>30<br>40<br>50 | .1219<br>.1248<br>.1276<br>.1305<br>.1334<br>.1363   | .1228<br>.1257<br>.1287<br>.1317<br>.1346<br>.1376 | 8.1443<br>7.9530<br>7.7704<br>7.5958<br>7.4287<br>7.2687 | .9925<br>.9922<br>.9918<br>.9914<br>.9911<br>.9907     | 00 <b>83</b> 50 40 30 20                     |
| 8 00<br>10<br>20<br>30<br>40<br>50 | .1392<br>.1421<br>.1449<br>.1478<br>.1507<br>.1536   | .1405<br>.1435<br>.1465<br>.1495<br>.1524<br>.1554 | 7.1154<br>6.9682<br>6.8269<br>6.6912<br>6.5606<br>6.4348 | .9903<br>.9899<br>.9894<br>.9890<br>.9886              | 00 <b>82</b> 50 40 30 20 10                  |
| 9 00                               | .1564                                                | .1584                                              | 6.3138                                                   | .9877                                                  | 00 81                                        |
|                                    | N. Cos.                                              | N. Cot.                                            | N. Tan.                                                  | N. Sin.                                                | , 0                                          |

| 0 1                                 | N. Sin.                                            | N. Tan.                                            | N. Cot.                                                  | N. Cos.                                            |                             |
|-------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------|
| 9 00<br>10<br>20<br>30<br>40<br>50  | .1564<br>.1593<br>.1622<br>.1650<br>.1679<br>.1708 | .1584<br>.1614<br>.1644<br>.1673<br>.1703<br>.1733 | 6.3138<br>6.1970<br>6.0844<br>5.9758<br>5.8708<br>5.7694 | .9877<br>.9872<br>.9868<br>.9863<br>.9858          | 00 <b>81</b> 50 40 30 20 10 |
| 10 00<br>10<br>20<br>30<br>40<br>50 | .1736<br>.1765<br>.1794<br>.1822<br>.1851<br>.1880 | .1763<br>.1793<br>.1823<br>.1853<br>.1883<br>.1914 | 5.6713<br>5.5764<br>5.4845<br>5.3955<br>5.3093<br>5.2257 | .9848<br>.9843<br>.9838<br>.9833<br>.9827<br>.9822 | 00 <b>80</b> 50 40 30 20    |
| 11 00<br>10<br>20<br>30<br>40<br>50 | .1908<br>.1937<br>.1965<br>.1994<br>.2022<br>.2051 | .1944<br>.1974<br>.2004<br>.2035<br>.2065          | 5.1446<br>5.0658<br>4.9894<br>4.9152<br>4.8430<br>4.7729 | .9816<br>.9811<br>.9805<br>.9799<br>.9793<br>.9787 | 00 <b>79</b> 50 40 30 20    |
| 12 00<br>10<br>20<br>30<br>40<br>50 | .2079<br>.2108<br>.2136<br>.2164<br>.2193<br>.2221 | .2126<br>.2156<br>.2186<br>.2217<br>.2247<br>.2278 | 4.7046<br>4.6382<br>4.5736<br>4.5107<br>4.4494<br>4.3897 | .9781<br>.9775<br>.9769<br>.9763<br>.9757          | 00 <b>78</b> 50 40 30 20 10 |
| 13 00<br>10<br>20<br>30<br>40<br>50 | .2250<br>.2278<br>.2306<br>.2334<br>.2363<br>.2391 | .2309<br>.2339<br>.2370<br>.2401<br>.2432<br>.2462 | 4.3315<br>4.2747<br>4.2193<br>4.1653<br>4.1126<br>4.0611 | .9744<br>.9737<br>.9730<br>.9724<br>.9717<br>.9710 | 00 <b>77</b> 50 40 30 20 10 |
| 14 00<br>10<br>20<br>30<br>40<br>50 | .2419<br>.2447<br>.2476<br>.2504<br>.2532<br>.2560 | .2493<br>.2524<br>.2555<br>.2586<br>.2617<br>.2048 | 4.0108<br>3.9617<br>3.9136<br>3.8667<br>3.8208<br>3.7760 | .9703<br>.9696<br>.9689<br>.9681<br>.9674          | 00 <b>76</b> 50 40 30 20 10 |
| 15 00<br>10<br>20<br>30<br>40<br>50 | .2588<br>.2616<br>.2644<br>.2672<br>.2700<br>.2728 | .2679<br>.2711<br>.2742<br>.2773<br>.2805<br>.2836 | 3.7321<br>3.6891<br>3.6470<br>3.6059<br>3.5656<br>3.5261 | .9659<br>.9052<br>.9644<br>.9636<br>.9628          | 00 <b>75</b> 50 40 30 20 10 |
| 16 00<br>10<br>20<br>30<br>40<br>50 | .2756<br>.2784<br>.2812<br>.2840<br>.2868<br>.2896 | .2867<br>.2899<br>.2931<br>.2962<br>.2994<br>.3026 | 3.4874<br>3.4495<br>3.4124<br>3.3759<br>3 3402<br>3.3052 | .9613<br>.9605<br>.9596<br>.9588<br>.9580<br>.9572 | 00 <b>74</b> 50 40 30 20 10 |
| 17 00<br>10<br>20<br>30<br>40<br>50 | .2924<br>.2952<br>.2979<br>.3007<br>.3035<br>.3062 | .3057<br>.3089<br>.3121<br>.3153<br>.3185<br>.3217 | 3.2709<br>3.2371<br>3.2041<br>3.1716<br>3.1397<br>3.1084 | .9563<br>.9555<br>.9546<br>.9537<br>.9528<br>.9520 | 00 <b>73</b> 50 40 30 20 10 |
| <b>18</b> 00                        | .3090                                              | .3249                                              | 3.0777                                                   | .9511                                              | 00 72                       |
|                                     | N. Cos.                                            | N. Cot.                                            | N. Tan.                                                  | N. Sin.                                            | , 0                         |

| 0 1                                 | N. Sin.                                            | N. Tan.                                           | N. Cot.                                                  | N. Cos.                                   |                               |
|-------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-------------------------------|
| 18 00                               | .3090                                              | .3249                                             | 3.0777                                                   | .9511                                     | 00 <b>72</b> 50 40 30 20 10   |
| 10                                  | .3118                                              | .3281                                             | 3.0475                                                   | .9502                                     |                               |
| 20                                  | .3145                                              | .3314                                             | 3.0178                                                   | .9492                                     |                               |
| 30                                  | .3173                                              | .3346                                             | 2.9887                                                   | .9483                                     |                               |
| 40                                  | .3201                                              | .3378                                             | 2.9600                                                   | .9474                                     |                               |
| 50                                  | .3228                                              | .3411                                             | 2.9319                                                   | .9465                                     |                               |
| 19 00                               | .3256                                              | .3443                                             | 2.9042                                                   | .9455                                     | 00 <b>71</b> 50 40 30 20      |
| 10                                  | .3283                                              | .3476                                             | 2.8770                                                   | .9446                                     |                               |
| 20 -                                | .3311                                              | .3508                                             | 2.8502                                                   | .9436                                     |                               |
| 30                                  | .3338                                              | .3541                                             | 2.8239                                                   | .9426                                     |                               |
| 40                                  | .3365                                              | .3574                                             | 2.7980                                                   | .9417                                     |                               |
| 50                                  | .3393                                              | .3607                                             | 2.7725                                                   | .9407                                     |                               |
| 20 00                               | .3420                                              | .3640                                             | 2.7475                                                   | .9397                                     | 00 <b>70</b> 50 40 30 20      |
| 10                                  | .3448                                              | .3673                                             | 2.7228                                                   | .9387                                     |                               |
| 20                                  | .3475                                              | .3706                                             | 2.6985                                                   | .9377                                     |                               |
| 30                                  | .3502                                              | .3739                                             | 2.6746                                                   | .9367                                     |                               |
| 40                                  | .3529                                              | .3772                                             | 2.6511                                                   | .9356                                     |                               |
| 50                                  | .3557                                              | .3805                                             | 2.6279                                                   | .9346                                     |                               |
| 21 00                               | .3584                                              | .3839                                             | 2.6051                                                   | .9336                                     | 00 <b>69</b> 50 40 30 20      |
| 10                                  | .3611                                              | .3872                                             | 2.5826                                                   | .9325                                     |                               |
| 20                                  | .3638                                              | .3906                                             | 2.5605                                                   | .9315                                     |                               |
| 30                                  | .3665                                              | .3939                                             | 2.5386                                                   | .9304                                     |                               |
| 40                                  | .3692                                              | .3973                                             | 2.5172                                                   | .9293                                     |                               |
| 50                                  | .3719                                              | .4006                                             | 2.4960                                                   | .9283                                     |                               |
| 22 00                               | .3746                                              | .4040                                             | 2.4751                                                   | .9272                                     | 00 <b>68</b> 50 40 30 20      |
| 10                                  | .3773                                              | .4074                                             | 2.4545                                                   | .9261                                     |                               |
| 20                                  | .3800                                              | .4108                                             | 2.4342                                                   | .9250                                     |                               |
| 30                                  | .3827                                              | .4142                                             | 2.4142                                                   | .9239                                     |                               |
| 40                                  | .3854                                              | .4176                                             | 2.3945                                                   | .9228                                     |                               |
| 50                                  | .3881                                              | .4210                                             | 2.3750                                                   | .9216                                     |                               |
| 23 00                               | .3907                                              | .4245                                             | 2.3559                                                   | .9205                                     | 00 <b>67</b> 50 40 30 20 10   |
| 10                                  | .3934                                              | .4279                                             | 2.3369                                                   | .9194                                     |                               |
| 20                                  | .3961                                              | .4314                                             | 2.3183                                                   | .9182                                     |                               |
| 30                                  | .3987                                              | .4348                                             | 2.2998                                                   | .9171                                     |                               |
| 40                                  | .4014                                              | .4383                                             | 2.2817                                                   | .9159                                     |                               |
| 50                                  | .4041                                              | .4417                                             | 2.2637                                                   | .9147                                     |                               |
| 24 00                               | .4067                                              | .4452                                             | 2.2460                                                   | .9135                                     | 00 <b>66</b> 50 40 30 20 10   |
| 10                                  | .4094                                              | .4487                                             | 2.2286                                                   | .9124                                     |                               |
| 20                                  | .4120                                              | .4522                                             | 2.2113                                                   | .9112                                     |                               |
| 30                                  | .4147                                              | .4557                                             | 2.1943                                                   | .9100                                     |                               |
| 40                                  | .4173                                              | .4592                                             | 2.1775                                                   | .9088                                     |                               |
| 50                                  | .4200                                              | .4628                                             | 2.1609                                                   | .9075                                     |                               |
| 25 00<br>10<br>20<br>30<br>40<br>50 | .4226<br>.4253<br>.4279<br>.4305<br>.4331<br>.4358 | .4663<br>.4699<br>.4734<br>4770<br>.4806<br>.4841 | 2.1445<br>2.1283<br>2.1123<br>2.0965<br>2.0809<br>2.0655 | .9063<br>.9051<br>.9038<br>.9026<br>.9013 | 00 <b>65</b> - 50 40 30 20 10 |
| 26 00                               | .4384                                              | .4877                                             | 2.0503                                                   | .8988                                     | 00 <b>64</b> 50 40 30 20 10   |
| 10                                  | .4410                                              | .4913                                             | 2.0353                                                   | .8975                                     |                               |
| 20                                  | .4436                                              | .4950                                             | 2.0204                                                   | .8962                                     |                               |
| 30                                  | .4462                                              | .4986                                             | 2.0057                                                   | .8949                                     |                               |
| 40                                  | .4488                                              | .5022                                             | 1.9912                                                   | .8936                                     |                               |
| 50                                  | .4514                                              | .5059                                             | 1.9768                                                   | .8923                                     |                               |
| <b>27</b> 00                        | .4540                                              | .5095                                             | 1.9626                                                   | .8910                                     | 00 <b>63</b>                  |
|                                     | N. Cos.                                            | N. Cot.                                           | N. Tan.                                                  | N. Sin.                                   | , 0                           |

| 。,                                  | N. Sin.                                            | N. Tan.                                            | N. Cot.                                                  | N. Cos.                                            |                             |
|-------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------|
| 27 00<br>10<br>20<br>30<br>40<br>50 | .4540<br>.4566<br>.4592<br>.4617<br>.4643<br>.4669 | .5095<br>.5132<br>.5169<br>.5206<br>.5243<br>.5280 | 1.9626<br>1.9486<br>1.9347<br>1.9210<br>1.9074<br>1.8940 | .8910<br>.8897<br>.8884<br>.8870<br>.8857<br>.8843 | 00 <b>63</b> 50 40 30 20 10 |
| 28 00<br>10<br>20<br>30<br>40<br>50 | .4695<br>.4720<br>.4746<br>.4772<br>.4797<br>.4823 | .5317<br>.5354<br>.5392<br>.5430<br>.5467<br>.5505 | 1.8807<br>1.8676<br>1.8546<br>1.8418<br>1.8291<br>1.8165 | .8829<br>.8816<br>.8802<br>.8788<br>.8774          | 00 <b>62</b> 50 40 30 20 10 |
| 29 00<br>10<br>20<br>30<br>40<br>50 | .4848<br>.4874<br>.4899<br>.4924<br>.4950<br>.4975 | .5543<br>.5581<br>.5619<br>.5658<br>.5696<br>.5735 | 1.8040<br>1.7917<br>1.7796<br>1.7675<br>1.7556<br>1.7437 | .8746<br>.8732<br>.8718<br>.8704<br>.8689<br>.8675 | 00 <b>61</b> 50 40 30 20 10 |
| 30 00<br>10<br>20<br>30<br>40<br>50 | .5000<br>.5025<br>.5050<br>.5075<br>.5100          | .5774<br>.5812<br>.5851<br>.5890<br>.5930<br>.5969 | 1.7321<br>1.7205<br>1.7090<br>1.6977<br>1.6864<br>1.6753 | .8660<br>.8646<br>.8631<br>.8616<br>.8601          | 00 <b>60</b> 50 40 30 20 10 |
| 31 00<br>10<br>20<br>30<br>40<br>50 | .5150<br>.5175<br>.5200<br>.5225<br>.5250<br>.5275 | .6009<br>.6048<br>.6088<br>.6128<br>.6168<br>.6208 | 1.6643<br>1.6534<br>1.6426<br>1.6319<br>1.6212<br>1.6107 | .8572<br>.8557<br>.8542<br>.8526<br>.8511<br>.8496 | 00 <b>59</b> 50 40 30 20    |
| 32 00<br>10<br>20<br>30<br>40<br>50 | .5299<br>.5324<br>.5348<br>.5373<br>.5398<br>.5422 | .6249<br>.6289<br>.6330<br>.6371<br>.6412          | 1.6003<br>1.5900<br>1.5798<br>1.5697<br>1.5597<br>1.5497 | .8480<br>.8465<br>.8450<br>.8434<br>.8418          | 00 <b>58</b> 50 40 30 20 10 |
| 33 00<br>10<br>20<br>30<br>40<br>50 | .5446<br>.5471<br>.5495<br>.5519<br>.5544<br>.5568 | .6494<br>.6536<br>.6577<br>.6619<br>.6661          | 1.5399<br>1.5301<br>1.5204<br>1.5108<br>1.5013<br>1.4919 | .8387<br>.8371<br>.8355<br>.8339<br>.8323<br>.8307 | 00 <b>57</b> 50 40 30 20 10 |
| 34 00<br>10<br>20<br>30<br>40<br>50 | .5592<br>.5616<br>.5640<br>.5664<br>.5688<br>.5712 | .6745<br>.6787<br>.6830<br>.6873<br>.6916          | 1.4826<br>1.4733<br>1.4641<br>1.4550<br>1.4460<br>1.4370 | .8290<br>.8274<br>.8258<br>.8241<br>.8225<br>.8208 | 00 <b>56</b> 50 40 30 20    |
| 35 00<br>10<br>20<br>30<br>40<br>50 | .5736<br>.5760<br>.5783<br>.5807<br>.5831<br>.5854 | .7002<br>.7046<br>.7089<br>.7133<br>.7177<br>.7221 | 1.4281<br>1.4193<br>1.4106<br>1.4019<br>1.3934<br>1.3848 | .8192<br>.8175<br>.8158<br>.8141<br>.8124<br>.8107 | 00 <b>55</b> 50 40 30 20    |
| <b>36</b> 00                        | .5878                                              | .7265                                              | 1.3764                                                   | .8090                                              | 00 <b>54</b>                |
|                                     | N. Cos.                                            | N. Cot.                                            | N. Tan.                                                  | N. Sin.                                            | 1 0                         |

| o 1                                 | N. Sin.                                            | N. Tan.                                            | N. Cot.                                                  | N. Cots                                            |                                      |
|-------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------|
| 36 00<br>10<br>20<br>30<br>40<br>50 | .5878<br>.5901<br>.5925<br>.5948<br>.5972<br>.5995 | .7265<br>.7310<br>.7355<br>.7400<br>.7445<br>.7490 | 1.3764<br>1.3680<br>1.3597<br>1.3514<br>1.3432<br>1.3351 | .8090<br>.8073<br>.8056<br>.8039<br>.8021<br>.8004 | 00 <b>54</b> 50 40 30 20 10          |
| 37 00<br>10<br>20<br>30<br>40<br>50 | .6018<br>.6041<br>.6065<br>.6088<br>.6111          | .7536<br>.7581<br>.7627<br>.7673<br>.7720          | 1.3270<br>1.3190<br>1.3111<br>1.3032<br>1.2954<br>1.2876 | .7986<br>.7969<br>.7951<br>.7934<br>.7916<br>.7898 | 00 <b>53</b> 50 40 30 20             |
| 38 00<br>10<br>20<br>30<br>40<br>50 | .6157<br>.6180<br>.6202<br>.6225<br>.6248<br>.6271 | .7813<br>.7860<br>.7907<br>.7954<br>.8002<br>.8050 | 1.2799<br>1.2723<br>1.2647<br>1.2572<br>1.2497<br>1.2423 | .7880<br>.7862<br>.7844<br>.7826<br>.7808<br>.7790 | 00 <b>52</b> 50 40 30 20             |
| 39 00<br>10<br>20<br>30<br>40<br>50 | .6293<br>.6316<br>.6338<br>.6361<br>.6383<br>.6406 | .8098<br>.8146<br>.8195<br>.8243<br>.8292<br>.8342 | 1.2349<br>1.2276<br>1.2203<br>1.2131<br>1.2059<br>1.1988 | .7771<br>.7753<br>.7735<br>.7716<br>.7698<br>.7679 | 00 <b>51</b> 50 40 30 20             |
| 40 00<br>10<br>20<br>30<br>40<br>50 | .6428<br>.6450<br>.6472<br>.6494<br>.6517<br>.6539 | .8391<br>.8441<br>.8491<br>.8541<br>.8591<br>.8642 | 1.1918<br>1.1847<br>1.1778<br>1.1708<br>1.1640<br>1.1571 | .7660<br>.7642<br>.7623<br>.7604<br>.7585          | 00 <b>50</b> 50 40 30 20             |
| 41 00<br>10<br>20<br>30<br>40<br>50 | .6561<br>.6583<br>.6604<br>.6626<br>.6648          | .8693<br>.8744<br>.8796<br>.8847<br>.8899<br>.8952 | 1.1504<br>1.1436<br>1.1369<br>1.1303<br>1.1237<br>1.1171 | .7547<br>.7528<br>.7509<br>.7490<br>.7470<br>.7451 | 00 <b>49</b> 50 40 30 20 10          |
| 42 00<br>10<br>20<br>30<br>40<br>50 | .6691<br>.6713<br>.6734<br>.6756<br>.6777<br>.6799 | .9004<br>.9057<br>.9110<br>.9163<br>.9217<br>.9271 | 1.1106<br>1.1041<br>1.0977<br>1.0913<br>1.0850<br>1.0786 | .7431<br>.7412<br>.7392<br>.7373<br>.7353<br>.7333 | 00 <b>48</b> 50 40 30 20 10          |
| 43 00<br>10<br>20<br>30<br>40<br>50 | .6820<br>.6841<br>.6862<br>.6884<br>.6905<br>.6926 | .9325<br>.9380<br>.9435<br>.9490<br>.9545<br>.9601 | 1.0724<br>1.0661<br>1.0599<br>1.0538<br>1.0477<br>1.0416 | .7314<br>.7294<br>.7274<br>.7254<br>.7234<br>.7214 | 00 <b>47</b><br>50<br>40<br>30<br>20 |
| 44 00<br>10<br>20<br>30<br>40<br>50 | .6947<br>.6967<br>.6988<br>.7009<br>.7030          | .9657<br>.9713<br>.9770<br>.9827<br>.9884<br>.9942 | 1.0355<br>1.0295<br>1.0235<br>1.0176<br>1.0117<br>1.0058 | .7193<br>.7173<br>.7153<br>.7133<br>.7112<br>.7092 | 00 46<br>50<br>40<br>30<br>20<br>10  |
| <b>45</b> 00                        | .7071                                              | 1.0000                                             | 1.0000                                                   | .7071                                              | 00 45                                |
|                                     | N. Cos.                                            | N. Cot.                                            | N. Tan.                                                  | N. Sin.                                            | 1 °                                  |

# TABLE VI

# FOUR-PLACE LOGARITHMS

OF

NUMBERS 1-2000

| N.              | 0                    | 1            | 2            | 3                    | 4            | 5            | 6            | 7            | 8                    | 9            |
|-----------------|----------------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------|----------------------|--------------|
| 0               | 0000                 | 0000         | 3010         | 4771                 | 6021         | 6990         | 7782         | 8451         | 9031                 | 9542         |
| 1               | 0000                 | 0414         | 0792         | 1139                 | 1461         | 1761         | 2041         | 2304         | 2553                 | 2788         |
| 2               | 3010<br>477 <b>1</b> | 3222         | 3424         | 3617                 | 3802         | 3979         | 4150         | 4314         | 4472                 | 4624         |
| 3               | 4//1                 | 4914         | <b>5051</b>  | 5185                 | 5315         | 544 <b>1</b> | 5563         | 5682         | 5798                 | 5911         |
| 4               | 6021                 | 6128         | 623 <b>2</b> | 6335                 | 6435         | 6532         | 6628         | 6721         | 6812                 | 6902         |
| 5               | 6990                 | 7076         | 7160         | 7243                 | 7324         | 7404         | 7482         | 7559         | 7634                 | 7709         |
| 6               | 7782                 | 7853         | 7924         | 7993                 | 8062         | 8129         | 8195         | 8261         | 8325                 | 8388         |
| 7               | 845 <b>1</b>         | 8513         | 8573         | 8633                 | 8692         | 875 <b>1</b> | 8808         | 8865         | 8921                 | 8976         |
| 8               | 9031                 | 9085         | 9138         | 9191                 | 9243         | 9294         | 9345         | 9395         | 9445                 | 9494         |
| 9<br><b>10</b>  | 9542                 | 9590         | 9638         | 9685                 | 9731         | 9777         | 9823         | 9868         | 9912                 | 9956         |
| 11              | 0000                 | 0043<br>0453 | 0086<br>0492 | 0128<br>0531         | 0170<br>0569 | 0212         | 0253         | 0294         | 0334                 | 0374<br>0755 |
| 12              | 0792                 | 0453         | 0864         | 0899                 | 0934         | 0969         | 1004         | 1038         | 1072                 | 1106         |
| 13              | 1139                 | 1173         | 1206         | 1239                 | 1271         | 1303         | 1335         | 1367         | 1399                 | <b>1</b> 430 |
| 14              | 1461                 | 1492         | 1523         | 1553                 | 1584         | 1614         | <b>1</b> 644 | 1673         | 1703                 | 1732         |
| 15              | 1761                 | 1790         | 1818         | 1847                 | 1875         | 1903         | 1931         | 1959         | 1987                 | 2014         |
| 16              | 2041                 | 2068         | 2095         | 2122                 | 2148         | 2175         | 2201         | 2227         | 2253                 | 2279         |
| 17              | 2304                 | 2330         | 0055         | 2380                 | 2405         | 2430         | <b>24</b> 55 | 2480         | <b>2</b> 504         | <b>2</b> 529 |
| 18              | 2553                 | 2577         | 2355<br>2601 | 2625                 | 2648         | 2672         | 2695         | 2718         | 2742                 | 2765         |
| 19              | 2788                 | 2810         | 2833         | 2856                 | 2878         | 2900         | 2923         | 2945         | 2967                 | 2989         |
| 20              | 3010                 | 3032         | 3054         | 3075                 | 3096         | 3118         | 3139         | 3160         | 3181                 | 3201         |
| 21              | 3222                 | 3243         | 3263         | 3284                 | 3304         | 3324         | 3345         | 3365         | 3385                 | 3404         |
| 22<br>23        | 3424<br>3617         | 3444<br>3636 | 3464<br>3655 | 3483<br>367 <b>4</b> | 3502<br>3692 | 3522<br>3711 | 3541<br>3729 | 3560<br>3747 | 3579<br>3766         | 3598<br>3784 |
| 20              | 0011                 | 0000         | 0000         |                      | 0002         | 0711         |              | 0,           | 0700                 | 0701         |
| 24              | 3802                 | 3820         | 3838         | 3856                 | 3874         | 3892         | 3909         | 3927         | 3945                 | 3962         |
| 25<br>26        | 3979<br>415 <b>0</b> | 3997<br>4166 | 4014<br>4183 | 403 <b>1</b><br>4200 | 4048<br>4216 | 4065<br>4232 | 4082<br>4249 | 4099<br>4265 | 4116<br>428 <b>1</b> | 4133<br>4298 |
|                 |                      |              |              |                      |              |              |              |              | 1                    |              |
| 27              | 4314                 | 4330         | 4346         | 4362                 | 4378         | 4393         | 4409         | 4425         | 4440                 | 4456         |
| 28<br>29        | 4472<br>4624         | 4487<br>4639 | 4502<br>4654 | 4518<br>4669         | 4533<br>4683 | 4548<br>4698 | 4564<br>4713 | 4579<br>4728 | 4594<br>4742         | 4609<br>4757 |
| 30              | 4771                 | 4786         | 4800         | 4814                 | 4829         | 4843         | 4857         | 4871         | 4886                 | 4900         |
| 31              | 4914                 | 4928         | 4942         | 4955                 | 4969         | 4983         | 4997         | 5011         | 5024                 | 5038         |
| 32              | 5051                 | 5065         | 5079         | 5092                 | 5105         | 5119         | 5132         | 5145         | 5159                 | 5172         |
| 33              | 5185                 | 5198         | 5211         | 5224                 | 5237         | 5250         | 5263         | 5276         | 5289                 | 5302         |
| 34              | 5315                 | 5328         | 5340         | 5353                 | 5366         | 5378         | 5391         | 5403         | 5416                 | 5428         |
| 35              | 5441                 | 5453         | 5465         | 5478                 | 5490         | 5502         | 5514         | 5527         | 5539                 | 5551         |
| 36              | 5563                 | 5575         | 5587         | 5599                 | 5611         | 5623         | 5635         | 5647         | 5658                 | 5670         |
| 37              | 5682                 | 5694         | 5705         | 5717                 | 5729         | 5740         | 5752         | 5763         | 5775                 | 5786         |
| 38              | 5798                 | 5809         | 5821         | 5832                 | 5843         | 5855         | 5866         | 5877         | 5888                 | 5900         |
| 39<br><b>40</b> | 5911<br>6021         | 5922<br>6031 | 5933<br>6042 | 5944<br>6053         | 5955<br>6064 | 5966<br>6075 | 5977<br>6085 | 5988<br>6096 | 5999<br>6107         | 6010         |
| 41              | 6128                 | 6138         | 6149         | 6160                 | 6170         | 6180         | 6191         | 6201         | 6212                 | 6222         |
| 42              | 6232                 | 6243         | 6253         | 6263                 | 6274         | 6284         | 6294         | 6304         | 6314                 | 6325         |
| 43              | 6335                 | 6345         | 6355         | 6365                 | 6375         | 6385         | 6395         | 6405         | 6415                 | 6425         |
| 44              | 6435                 | 6444         | 6454         | 6464                 | 6474         | 6484         | 6493         | 6503         | 6513                 | 6522         |
| 45              | 6532                 | 6542         | 6551         | 6561                 | 6571         | 6580         | 6590         | 6599         | 6609                 | 6618         |
| 46              | 6628                 | 6637         | 6646         | 6656                 | 6665         | 6675         | 6684         | 6693         | 6702                 | 6712         |
| 47              | 6721                 | 6730         | 6739         | 6749                 | 6758         | 676 <b>7</b> | 6776         | 6785         | 6794                 | 6803         |
| 48              | 6812                 | 6821         | 6830         | 6839                 | 6848         | 6857         | 6866         | 6875         | 6884                 | 6893         |
| 49<br>50        | 6902                 | 6911         | 6920         | 6928                 | 6937         | 6946         | 6955         | 6964         | 6972                 | 6981         |
| 50              | 6990                 | 6998         | 7007         | 7016                 | 7024         | 7033         | 7042         | 7050         | 7059                 | 7067         |
| N.              | 0                    | 1            | 2            | 3                    | 4            | 5            | 6            | 7            | 8                    | 9            |

[98]

| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62 | 6990<br>7076<br>7160<br>7243<br>7324<br>7404<br>7482<br>7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993 | 7084<br>7168<br>7251<br>7332<br>7412<br>7490<br>7566<br>7642<br>7716<br>7789<br>7860<br>7931<br>8000 | 7007<br>7093<br>7177<br>7259<br>7340<br>7419<br>7497<br>7574<br>7649<br>7723<br>7796<br>7868 | 7016<br>7101<br>7185<br>7267<br>7348<br>7427<br>7505<br>7582<br>7657<br>7731 | 7024<br>7110<br>7193<br>7275<br>7356<br>7435<br>7513<br>7589<br>7664 | 7033<br>7118<br>7202<br>7284<br>7364<br>7443<br>7520 | 7042<br>7126<br>7210<br>7292<br>7372<br>7451<br>7528 | 7050<br>7135<br>7218<br>7300<br>7380<br>7459<br>7536 | 7059<br>7143<br>7226<br>7308<br>7388<br>7466<br>7543 | 7067<br>7152<br>7235<br>7316<br>7396<br>7474<br>7551 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br><b>60</b><br>61<br>62      | 7160<br>7243<br>7324<br>7404<br>7482<br>7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993                 | 7168<br>7251<br>7332<br>7412<br>7490<br>7566<br>7642<br>7716<br>7789<br>7860<br>7931                 | 7177<br>7259<br>7340<br>7419<br>7497<br>7574<br>7649<br>7723<br>7796                         | 7185<br>7267<br>7348<br>7427<br>7505<br>7582<br>7657                         | 7193<br>7275<br>7356<br>7435<br>7513<br>7589                         | 7202<br>7284<br>7364<br>7443<br>7520                 | 7210<br>7292<br>7372<br>7451                         | 7218<br>7300<br>7380<br>7459                         | 7226<br>7308<br>7388<br>7466                         | 7235<br>7316<br>7396<br>7474                         |
| 53<br>54<br>55<br>56<br>57<br>58<br>59<br><b>60</b><br>61<br>62            | 7243<br>7324<br>7404<br>7482<br>7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993                         | 7251<br>7332<br>7412<br>7490<br>7566<br>7642<br>7716<br>7789<br>7860<br>7931                         | 7259<br>7340<br>7419<br>7497<br>7574<br>7649<br>7723<br>7796                                 | 7267<br>7348<br>7427<br>7505<br>7582<br>7657                                 | 7275<br>7356<br>7435<br>7513<br>7589                                 | 7284<br>7364<br>7443<br>7520                         | 7292<br>7372<br>745 <b>1</b>                         | 7300<br>7380<br>7459                                 | 7308<br>7388<br>7466                                 | 7316<br>7396<br>7474                                 |
| 55<br>56<br>57<br>58<br>59<br><b>60</b><br>61<br>62                        | 7404<br>7482<br>7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993                                         | 7412<br>7490<br>7566<br>7642<br>7716<br>7789<br>7860<br>7931                                         | 7419<br>7497<br>7574<br>7649<br>7723<br>7796                                                 | 7427<br>7505<br>7582<br>7657                                                 | 7435<br>7513<br>7589                                                 | 7443<br>7520                                         | 745 <b>1</b>                                         | 7459                                                 | 7466                                                 | 7474                                                 |
| 55<br>56<br>57<br>58<br>59<br><b>60</b><br>61<br>62                        | 7404<br>7482<br>7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993                                         | 7412<br>7490<br>7566<br>7642<br>7716<br>7789<br>7860<br>7931                                         | 7419<br>7497<br>7574<br>7649<br>7723<br>7796                                                 | 7427<br>7505<br>7582<br>7657                                                 | 7435<br>7513<br>7589                                                 | 7443<br>7520                                         | 745 <b>1</b>                                         | 7459                                                 | 7466                                                 | 7474                                                 |
| 57<br>58<br>59<br><b>60</b><br>61<br>62                                    | 7559<br>7634<br>7709<br>7782<br>7853<br>7924<br>7993                                                         | 7566<br>7642<br>7716<br>7789<br>7860<br>7931                                                         | 7574<br>7649<br>7723<br>7796                                                                 | 7582<br>7657                                                                 | 7589                                                                 |                                                      | 7528                                                 | 7536                                                 | 7543                                                 | 7551                                                 |
| 58<br>59<br><b>60</b><br>61<br>62                                          | 7634<br>7709<br>7782<br>7853<br>7924<br>7993                                                                 | 7642<br>7716<br>7789<br>7860<br>7931                                                                 | 7649<br>7723<br>7796                                                                         | 7657                                                                         |                                                                      | mean !                                               |                                                      |                                                      | 1 1                                                  |                                                      |
| 59<br><b>60</b><br>61<br>62                                                | 7709<br>7782<br>7853<br>7924<br>7993                                                                         | 7716<br>7789<br>7860<br>7931                                                                         | 7723<br>7796                                                                                 |                                                                              |                                                                      | 7597                                                 | 7604                                                 | 7612                                                 | 7619                                                 | 7627                                                 |
| 60<br>61<br>62                                                             | 7782<br>7853<br>7924<br>7993                                                                                 | 7789<br>7860<br>7931                                                                                 | 7796                                                                                         | 7.01                                                                         | 7738                                                                 | 7672<br>7745                                         | 7679<br>7752                                         | 7686<br>7760                                         | 7694<br>7767                                         | 7701<br>7774                                         |
| 62                                                                         | 7924<br>7993                                                                                                 | 7931                                                                                                 | 7868                                                                                         | 7803                                                                         | 7810                                                                 | 7818                                                 | 7825                                                 | 7832                                                 | 7839                                                 | 7846                                                 |
|                                                                            | 7993                                                                                                         |                                                                                                      |                                                                                              | 7875                                                                         | 7882                                                                 | 7889                                                 | 7896                                                 | 7903                                                 | 7910                                                 | 7917                                                 |
| 63                                                                         |                                                                                                              | 0000                                                                                                 | 7938<br>8007                                                                                 | 7945<br>8014                                                                 | 7952<br>8021                                                         | 7959<br>8028                                         | 7966<br>8035                                         | 7973<br>804 <b>1</b>                                 | 7980<br>8048                                         | 7987<br>8055                                         |
| i i                                                                        | 8062 1                                                                                                       |                                                                                                      |                                                                                              |                                                                              |                                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 64<br>65                                                                   | 8129                                                                                                         | 8069<br>8136                                                                                         | 8075<br>8142                                                                                 | 8082<br>8149                                                                 | 8089<br>8156                                                         | 8096<br>8162                                         | 8102<br>8169                                         | 8109<br>8176                                         | 8116<br>8182                                         | 8122<br>8189                                         |
| 66                                                                         | 8195                                                                                                         | 8202                                                                                                 | 8209                                                                                         | 8215                                                                         | 8222                                                                 | 8228                                                 | 8235                                                 | 8241                                                 | 8248                                                 | 8254                                                 |
| 67                                                                         | 8261                                                                                                         | 826 <b>7</b>                                                                                         | 8274                                                                                         | 8280                                                                         | 8287                                                                 | 8293                                                 | 8299                                                 | 8306                                                 | 8312                                                 | 8319                                                 |
| 68                                                                         | 8325                                                                                                         | 8331                                                                                                 | 8338                                                                                         | 8344                                                                         | 8351                                                                 | 8357                                                 | 8363                                                 | 8370                                                 | 8376                                                 | 8382                                                 |
| 69<br><b>70</b>                                                            | 8388<br>8451                                                                                                 | 8395<br>8457                                                                                         | 8401                                                                                         | 8407<br>8470                                                                 | 8414<br>8476                                                         | 8420<br>8482                                         | 8426<br>8488                                         | 8432<br>8494                                         | 8439<br>8500                                         | 8445<br>8506                                         |
| 71                                                                         | 8513                                                                                                         | 8519                                                                                                 | 8525                                                                                         | 8531                                                                         | 8537                                                                 | 8543                                                 | 8549                                                 | 8555                                                 | 8561                                                 | 8567                                                 |
| 72                                                                         | 8573                                                                                                         | 8579                                                                                                 | 8585                                                                                         | 8591                                                                         | 8597                                                                 | 8603                                                 | 8609                                                 | 8615                                                 | 8621                                                 | 8627                                                 |
| 73                                                                         | 8633                                                                                                         | 8639                                                                                                 | 8645                                                                                         | 8651                                                                         | 8657                                                                 | 8663                                                 | 8669                                                 | 8675                                                 | 8681                                                 | 8686                                                 |
| 74                                                                         | 8692                                                                                                         | 8698                                                                                                 | 8704                                                                                         | 8710                                                                         | 8716                                                                 | 8722                                                 | 8727                                                 | 8733<br>8791                                         | 8739                                                 | 8745                                                 |
| 75<br>76                                                                   | 8751<br>8808                                                                                                 | 875 <b>6</b><br>8814                                                                                 | 8762<br>8820                                                                                 | 8768<br>8825                                                                 | 8774<br>883 <b>1</b>                                                 | 8779<br>8837                                         | 8785<br>8842                                         | 8848                                                 | 8797<br>8854                                         | 8802<br>8859                                         |
| 77                                                                         | 8865                                                                                                         | 887 <b>1</b>                                                                                         | 8876                                                                                         | 8882                                                                         | <b>8</b> 887                                                         | 8893                                                 | 8899                                                 | 8904                                                 | 8910                                                 | 8915                                                 |
| 78                                                                         | 8921                                                                                                         | 8927                                                                                                 | 8932                                                                                         | 8938                                                                         | 8943                                                                 | 8949                                                 | 8954                                                 | 8960                                                 | 8965                                                 | 8971                                                 |
| 79                                                                         | 8976                                                                                                         | 8982                                                                                                 | 8987                                                                                         | 8993                                                                         | 8998                                                                 | 9004                                                 | 9009                                                 | 9015                                                 | 9020                                                 | 9025                                                 |
| <b>80</b><br>81                                                            | 9031                                                                                                         | 9036                                                                                                 | 9042                                                                                         | 9047<br>9101                                                                 | 9053<br>9106                                                         | 9058                                                 | 9063                                                 | 9069                                                 | 9074                                                 | 9079                                                 |
| 82                                                                         | 9138                                                                                                         | 9143                                                                                                 | 9149                                                                                         | 9154                                                                         | 9159                                                                 | 9165                                                 | 9170                                                 | 9175                                                 | 9180                                                 | 9186                                                 |
| 83                                                                         | 9191                                                                                                         | 9196                                                                                                 | 9201                                                                                         | 9206                                                                         | 9212                                                                 | 9217                                                 | 9222                                                 | 9227                                                 | 9232                                                 | 9238                                                 |
| 84                                                                         | 9243                                                                                                         | 9248                                                                                                 | 9253                                                                                         | 9258                                                                         | 9263                                                                 | 9269                                                 | 9274                                                 | 9279                                                 | 9284                                                 | 9289                                                 |
| 85<br>86                                                                   | 9294<br>9345                                                                                                 | 9299<br><b>9</b> 350                                                                                 | 9304<br>9355                                                                                 | 9309<br>9360                                                                 | 9315<br>9365                                                         | 9320<br>9370                                         | 9325<br>9375                                         | 9330<br>9380                                         | 9335<br>9385                                         | 9340<br>9390                                         |
| <b>!</b> !                                                                 |                                                                                                              |                                                                                                      |                                                                                              |                                                                              |                                                                      | ·                                                    |                                                      |                                                      |                                                      |                                                      |
| 87<br>88                                                                   | 9395<br>9445                                                                                                 | 9400<br>9450                                                                                         | 9405<br>9455                                                                                 | 9410<br>9460                                                                 | 9415<br>9465                                                         | 9420<br>9469                                         | 9425<br>9474                                         | 9430<br>9479                                         | 9435<br>9484                                         | 9440<br>9489                                         |
| 89                                                                         | 9494                                                                                                         | 9499                                                                                                 | 9504                                                                                         | 9509                                                                         | 9513                                                                 | 9518                                                 | 9523                                                 | 9528                                                 | 9533                                                 | 9538                                                 |
| 90                                                                         | 9542                                                                                                         | 9547                                                                                                 | 9552                                                                                         | 9557                                                                         | 9562                                                                 | 9566                                                 | 9571                                                 | 9576                                                 | 9581                                                 | 9586                                                 |
| 91<br>92                                                                   | 9590<br>9638                                                                                                 | 9595<br>9643                                                                                         | 9600<br>9647                                                                                 | 9605<br>9652                                                                 | 9609<br>9657                                                         | 9614<br>966 <b>1</b>                                 | 9619<br>9666                                         | 9624<br>967 <b>1</b>                                 | 9628<br>9675                                         | 9633<br>9680                                         |
| 93                                                                         | 9685                                                                                                         | 9689                                                                                                 | 9694                                                                                         | 9699                                                                         | 9703                                                                 | 9708                                                 | 9713                                                 | 9717                                                 | 9722                                                 | 9727                                                 |
| 94                                                                         | 9731                                                                                                         | 9736                                                                                                 | 9741                                                                                         | 9745                                                                         | 9750                                                                 | 9754                                                 | 9759                                                 | 976 <b>3</b>                                         | 9768                                                 | 9773                                                 |
| 95                                                                         | 9777                                                                                                         | 9782                                                                                                 | 9786                                                                                         | 9791                                                                         | 9795                                                                 | 9800                                                 | 9805                                                 | 9809                                                 | 9814                                                 | 9818                                                 |
| 96                                                                         | 9823                                                                                                         | 9827                                                                                                 | 9832                                                                                         | 9836                                                                         | 9841                                                                 | 9845                                                 | 9850                                                 | 9854                                                 | 9859                                                 | 9863                                                 |
| 97                                                                         | 9868                                                                                                         | 9872                                                                                                 | 9877                                                                                         | 9881                                                                         | 9886                                                                 | 9890                                                 | 9894                                                 | 9899                                                 | 9903                                                 | 9908                                                 |
| 98<br>99                                                                   | 9912<br>9956                                                                                                 | 991 <b>7</b><br>996 <b>1</b>                                                                         | 9921<br>9965                                                                                 | 9926<br>9969                                                                 | 9930<br>9974                                                         | 9934<br>9978                                         | 9939<br>9983                                         | 994 <b>3</b><br>9987                                 | 994 <b>8</b><br>999 <b>1</b>                         | 9952<br>9996                                         |
| 100                                                                        | 0000                                                                                                         | 0004                                                                                                 | 0009                                                                                         | 0013                                                                         | 0017                                                                 | 0022                                                 | 0026                                                 | 0030                                                 | 0035                                                 | 0039                                                 |
| N.                                                                         | 0                                                                                                            | 1                                                                                                    | 2.                                                                                           | 3                                                                            | 4                                                                    | 5                                                    | 6                                                    | 7                                                    | 8                                                    | 9                                                    |

| N.                 | 0            | 1                    | 2            | 3                    | 4                   | 5                    | 6                            | 7            | 8            | 9            |
|--------------------|--------------|----------------------|--------------|----------------------|---------------------|----------------------|------------------------------|--------------|--------------|--------------|
| 100                | 0000         | 0004                 | 0009         | 0013                 | 0017                | 0022                 | 0026                         | 0030         | 0035         | 0039         |
| 101                | 0043         | 0048                 | 0052         | 0056                 | 0060                | 0065                 | 0069                         | 0073         | 0077         | 0082         |
| 102<br>103         | 0086<br>0128 | 0090<br>0133         | 0095<br>0137 | 0099<br>0141         | 0103<br>0145        | 0107<br>0149         | 0111<br>0154                 | 0116<br>0158 | 0120<br>0162 | 0124<br>0166 |
|                    | 0120         |                      |              |                      |                     | 0140                 | 0101                         | 0100         | 0102         | 0100         |
| 104                | 0170         | 0175                 | 0179         | 0183                 | 0187                | 0191                 | 0195                         | 0199         | 0204         | 0208         |
| 105<br>106         | 0212<br>0253 | 0216<br>0257         | 0220<br>0261 | 0224<br>0265         | 0228<br>0269        | 0233<br>0273         | 0237<br>0278                 | 0241<br>0282 | 0245<br>0286 | 0249<br>0290 |
|                    |              |                      |              |                      |                     |                      |                              |              |              |              |
| 107<br>108         | 0294<br>0334 | 0298<br>0338         | 0302<br>0342 | 0306<br>0346         | 0310<br>0350        | 0314<br>0354         | 0318<br>0358                 | 0322<br>0362 | 0326<br>0366 | 0330<br>0370 |
| 109                | 0374         | 0378                 | 0382         | 0386                 | 0390                | 0394                 | 0398                         | 0402         | 0406         | 0410         |
| 110                | 0414         | 0418                 | 0422         | 0426                 | 0430                | 0434                 | 0438                         | 0441         | 0445         | 0449         |
| 111                | 0453         | 0457                 | 0461         | 0465                 | 0469                | 0473                 | 0477                         | 0481         | 0484         | 0488         |
| 112<br>113         | 0492<br>0531 | 0496<br>0535         | 0500<br>0538 | 0504.<br>0542        | 0508<br>0546        | 0512<br>0550         | 0515<br>0554                 | 0519<br>0558 | 0523<br>0561 | 0527<br>0565 |
| 110                | 0001         | 0000                 | 0000         | 0012                 | 0010                | 0000                 | •                            | 0000         | 0001         | 0000         |
| 114<br>115         | 0569         | 0573                 | 0577         | 0580                 | 0584<br>0622        | 0588                 | 0592                         | 0596         | 0599         | 0603         |
| 115<br>116         | 0607<br>0645 | 0611<br>0648         | 0615<br>0652 | 0618<br>0656         | 0660                | 0626<br>0663         | 0630<br>0667                 | 0633<br>0671 | 0637<br>0674 | 0641<br>0678 |
|                    |              |                      |              |                      |                     |                      |                              |              |              |              |
| 117<br>118         | 0682<br>0719 | 0686<br>0722         | 0689<br>0726 | 0693<br>0730         | 0697<br>0734        | 0700<br>0737         | 0704<br>0741                 | 0708<br>0745 | 0711<br>0748 | 0715<br>0752 |
| 119                | 0755         | 0759                 | 0763         | 0766                 | 0770                | 0774                 | 0777                         | 0781         | 0745         | 0788         |
| 120                | 0792         | 0795                 | 0799         | 0803                 | 0806                | 0810                 | 0813                         | 0817         | 0821         | 0824         |
| 121                | 0828         | 0831                 | 0835         | 0839                 | 0842                | 0846                 | 0849                         | 0853         | 0856         | 0860         |
| 122<br>123         | 0864<br>0899 | 0867<br>0903         | 0871<br>0906 | 0874<br>0910         | 0878<br><b>0913</b> | 0881<br><b>0</b> 917 | 0885<br>0920                 | 0888<br>0924 | 0892<br>0927 | 0896<br>0931 |
|                    |              |                      |              |                      |                     |                      |                              |              |              |              |
| 124<br>125         | 0934<br>0969 | 0938<br>0973         | 0941<br>0976 | 0945<br>0980         | 0948<br>0983        | 0952<br>0986         | <b>0</b> 955<br><b>0</b> 990 | 0959<br>0993 | 0962<br>0997 | 0966<br>1000 |
| 126                | 1004         | 1007                 | 1011         | 1014                 | 1017                | 1021                 | 1024                         | 1028         | 1031         | 1035         |
| 107                | 1000         | 1041                 | 1045         | 1040                 | 1050                | 1055                 | 1050                         | 1000         | 1005         | 1000         |
| 127<br>128         | 1038<br>1072 | 104 <b>1</b><br>1075 | 1045<br>1079 | 1048<br>1082         | 1052<br>1086        | 1055<br>1089         | 1059<br>1092                 | 1062<br>1096 | 1065<br>1099 | 1069<br>1103 |
| 129                | 1106         | 1109                 | 1113         | 1116                 | 1119                | 1123                 | 1126                         | 1129         | 1133         | 1136         |
| 130                | 1139         | 1143                 | 1146         | 1149                 | 1153                | 1156                 | 1159                         | 1163         | 1166         | 1169         |
| 131<br>132         | 1173<br>1206 | 1176<br>1209         | 1179<br>1212 | 1183<br>1216         | 1186<br>1219        | 1189<br>1222         | 1193<br>1225                 | 1196<br>1229 | 1199<br>1232 | 1202<br>1235 |
| 133                | 1239         | 1242                 | 1245         | 1248                 | 1252                | 1255                 | 1258                         | 1261         | 1265         | 1268         |
| 134                | 1071         | 1274                 | 1278         | 1001                 | <b>1</b> 284        | 1287                 | 1290                         | 1294         | 1297         | 1300         |
| 135                | 1271<br>1303 | 1307                 | 1310         | 1281<br>1313         | 1316                | 1319                 | 1323                         | 1326         | 1329         | 1332         |
| 136                | 1335         | 1339                 | 1342         | 1345                 | 1348                | 1351                 | 1355                         | 1358         | 1361         | 1364         |
| 137                | 1367         | 1370                 | 1374         | 1377                 | 1380                | 1383                 | 1386                         | 1389         | 1392         | 1396         |
| 138                | 1399         | 1402                 | 1405         | 1408                 | 1411                | 1414                 | 1418                         | 1421         | 1424         | 1427         |
| 139                | 1430         | 1433                 | 1436         | 1440                 | 1443                | 1446                 | 1449                         | 1452         | 1455         | 1458         |
| 140                | 1461         | 1464                 | 1467<br>1498 | 1471                 | 1474<br>1504        | 1477                 | 1480                         | 1483         | 1486         | 1489         |
| 141<br>142         | 1492<br>1523 | 1495<br>1526         | 1498<br>1529 | 150 <b>1</b><br>1532 | 1504<br>1535        | 1508<br>1538         | 1511<br>1541                 | 1514<br>1544 | 1517<br>1547 | 1520<br>1550 |
| 143                | 1553         | <b>1</b> 55 <b>6</b> | 1559         | 1562                 | 1565                | 1569                 | 1572                         | <b>1</b> 575 | 1578         | 1581         |
| 144                | 1584         | <b>1</b> 587         | <b>1</b> 590 | 1593                 | <b>1</b> 596        | 1599                 | 1602                         | 1605         | 1608         | 1611         |
| <b>1</b> 45        | 1614         | 1617                 | 1620         | 1623                 | <b>1</b> 626        | 1629                 | 1632                         | 1635         | 1638         | 1641         |
| 146                | 1644         | 1647                 | 1649         | 1652                 | 1655                | 1658                 | 1661                         | 1664         | 1667         | 1670         |
| 147                | 1673         | 1676                 | 1679         | 1682                 | 1685                | 1688                 | 1691                         | 1694         | 1697         | <b>1</b> 700 |
| 148<br>149         | 1703<br>1732 | 1706<br>1735         | 1708<br>1738 | 1711<br>1741         | 1714<br>1744        | 1717                 | 1720<br>1749                 | 1723<br>1752 | 1726<br>1755 | 1729         |
| 149<br>1 <b>50</b> | 1761         | 1764                 | 1767         | 1770                 | 1772                | 1746<br>1775         | 1778                         | 1781         | 1784         | 1758<br>1787 |
|                    |              |                      |              |                      |                     |                      |                              |              |              |              |
| . N.               | 0            | 1                    | 2            | 3                    | 4                   | 5                    | 6                            | 7            | 8            | 9            |

[100]

| N.          | 0            | 1                    | 2            | 3                    | 4            | 5            | 6            | 7              | 8            | 9            |
|-------------|--------------|----------------------|--------------|----------------------|--------------|--------------|--------------|----------------|--------------|--------------|
| 150         | 1761         | 1764                 | 1767         | 1770                 | 1772         | 1775         | 1778         | 1781           | 1784         | 1787         |
| 151         | 1790         | 1793                 | 1796         | 1798                 | 1801         | 1804         | 1807         | 1810           | 1813         | 1816         |
| 152<br>153  | 1818<br>1847 | 1821<br>1850         | 1824<br>1853 | 1827<br>1855         | 1830<br>1858 | 1833<br>1861 | 1836<br>1864 | 1838<br>1867   | 1841<br>1870 | 1844<br>1872 |
|             |              | '                    |              |                      |              |              |              |                |              |              |
| 154<br>155  | 1875<br>1903 | 1878<br>1906         | 1881<br>1909 | 1884<br>1912         | 1886<br>1915 | 1889<br>1917 | 1892<br>1920 | .1895<br>.1923 | 1898<br>1926 | 1901<br>1928 |
| 156         | 1931         | 1934                 | 1937         | 1940                 | 1942         | 1945         | 1948         | 1951           | 1953         | 1956         |
| 157         | 1050         | 1000                 | 1005         | 1007                 | 1070         | 1070         | 1070         | 1070           | 1001         | 1004         |
| 157<br>158  | 1959<br>1987 | 1962<br>1989         | 1965<br>1992 | 1967<br>1995         | 1970<br>1998 | 1973<br>2000 | 1976<br>2003 | 1978<br>2006   | 1981<br>2009 | 1984<br>2011 |
| <b>1</b> 59 | 2014         | 2017                 | 2019         | 2022                 | 2025         | 2028         | 2030         | 2033           | 2036         | 2038         |
| 160         | 2041         | 2044                 | 2047         | 2049                 | 2052         | 2055         | 2057         | 2060           | 2063         | 2066         |
| 161<br>162  | 2068<br>2095 | 2071<br>2098         | 2074<br>2101 | 2076<br>2103         | 2079<br>2106 | 2082<br>2109 | 2084<br>2111 | 2087<br>2114   | 2090<br>2117 | 2092<br>2119 |
| 163         | 2122         | 2125                 | 2127         | 2130                 | 2133         | 2135         | 2138         | 2140           | 2143         | 2146         |
| 104         | 0140         | 0151                 | 0154         | 0150                 | 0150         | 0100         | 0104         | 0107           | 0170         | 0170         |
| 164<br>165  | 2148<br>2175 | 2151<br>2177         | 2154<br>2180 | 2156<br>2183         | 2159<br>2185 | 2162<br>2188 | 2164<br>2191 | 2167<br>2193   | 2170<br>2196 | 2172<br>2198 |
| 166         | 2201         | 2204                 | 2206         | 2209                 | 2212         | 2214         | 2217         | 2219           | 2222         | 2225         |
| 167         | 2227         | 2230                 | 2232         | 2235                 | 2238         | 2240         | 2243         | 2245           | 2248         | 2251         |
| 168         | 2253         | 2256                 | 2258         | 2261                 | 2263         | 2266         | 2269         | 2271           | 2274         | 2276         |
| 169         | 2279         | 2281                 | 2284         | 2287                 | 2289         | 2292         | 2294         | 2297           | 2299         | 2302         |
| 170         | 2304         | 2307                 | 2310         | 2312                 | 2315         | 2317         | 2320         | 2322           | 2325         | 2327         |
| 171<br>172  | 2330<br>2355 | 2333<br>2358         | 2335<br>2360 | 2338<br>2363         | 2340<br>2365 | 2343<br>2368 | 2345<br>2370 | 2348<br>2373   | 2350<br>2375 | 2353<br>2378 |
| 173         | 2380         | 2383                 | 2385         | 2388                 | 2390         | <b>2</b> 393 | 2395         | 2398           | 2400         | 2403         |
| 174         | 2405         | 2408                 | 2410         | 2413                 | 2415         | 2418         | 2420         | 2423           | 2425         | 2428         |
| 175         | 2430         | 2433                 | 2435         | 2438                 | 2440         | 2443         | 2445         | 2448           | 2450         | 2453         |
| 176         | 2455         | 2458                 | 2460         | 2463                 | 2465         | 2467         | 2470         | 2472           | 2475         | 2477         |
| 177         | 2480         | 2482                 | 2485         | 2487                 | 2490         | 2492         | 2494         | 2497           | 2499         | 2502         |
| 178<br>179  | 2504<br>2529 | 2507<br>253 <b>1</b> | 2509<br>2533 | 2512                 | 2514<br>2538 | 2516<br>2541 | 2519<br>2543 | 2521<br>2545   | 2524<br>2548 | 2526<br>2550 |
| 180         | 2553         | 2555                 | 2558         | 2536<br>2560         | 2562         | 2565         | 2567         | 2570           | 2572         | 2574         |
| 181         | 2577         | 2579                 | 2582         | 2584                 | 2586         | 2589         | 2591         | 2594           | 2596         | 2598         |
| 182         | 2601         | 2603                 | 2605         | 2608                 | 2610         | 2613         | 2615         | 2617           | 2620         | 2622         |
| 183         | 2625         | 2627                 | <b>2</b> 629 | 2632                 | 2634         | 2636         | 2639         | 2641           | 2643         | 2646         |
| 184         | 2648         | 2651                 | 2653         | 2655                 | 2658         | 2660         | 2662         | 2665           | 2667         | 2669         |
| 185<br>186  | 2672<br>2695 | 2674<br>2697         | 2676<br>2700 | 2679<br>2702         | 2681<br>2704 | 2683<br>2707 | 2686<br>2709 | 2688<br>2711   | 2690<br>2714 | 2693<br>2716 |
| 100         |              | 2007                 | 2700         | 2102                 | 2704         | 2707         | 2703         |                |              |              |
| 187<br>188  | 2718<br>2742 | 2721<br>2744         | 2723<br>2746 | 2725<br>2749         | 2728<br>2751 | 2730<br>2753 | 2732<br>2755 | 2735<br>2758   | 2737<br>2760 | 2739<br>2762 |
| 189         | 2765         | 2767                 | 2769         | 2772                 | 2774         | 2776         | 2778         | 2781           | 2783         | 2785         |
| 190         | 2788         | 2790                 | 2792         | 2794                 | 2797         | 2799         | 2801         | 2804           | 2806         | 2808         |
| 191         | 2810         | 2813                 | 2815         | 2817                 | 2819         | 2822         | 2824         | 2826           | 2828         | 2831         |
| 192<br>193  | 2833<br>2856 | 2835<br>2858         | 2838<br>2860 | 2840<br>2862         | 2842<br>2865 | 2844<br>2867 | 2847<br>2869 | 2849<br>2871   | 2851<br>2874 | 2853<br>2876 |
|             |              |                      |              |                      |              |              |              | 1              |              |              |
| 194<br>195  | 2878<br>2900 | 2880<br>2903         | 2883<br>2905 | 2885<br>2907         | 2887<br>2909 | 2889<br>2911 | 2891<br>2914 | 2894<br>2916   | 2896<br>2918 | 2898<br>2920 |
| 196         | 2923         | 2925                 | 2927         | 2929                 | 2931         | 2934         | 2936         | 2938           | 2940         | 2942         |
| 197         | 2945         | 2947                 | 2949         | <b>2</b> 95 <b>1</b> | 2953         | 2956         | 2958         | 2960           | 2962         | 2964         |
| 197<br>198  | 2945         | 2947<br>2969         | 2949<br>2971 | 2973                 | 2975         | 2978         | 2980         | 2982           | 2984         | 2986         |
| 199         | 2989         | 2991                 | 2993         | 2995                 | 2997         | 2999         | 3002         | 3004           | 3006         | 3008         |
| 200         | 3010         | 3012                 | 3015         | 3017                 | 3019         | 3021         | 3023         | 3025           | 3028         | 3030         |
| N.          | 0            | 1                    | 2            | 3                    | 4            | 5            | 6            | 7              | 8            | 9            |

# TABLE VII FOUR-PLACE LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS FOR THE DECIMALLY DIVIDED DEGREE [103]

| L. Sin.                          | Ó                                              | 1                                    | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    |                      |                                       |
|----------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|---------------------------------------|
| 0°.0                             | ∞                                              | 6.2419                               | 5429                                 | 7190                                 | 8439                                 | 9408                                 | *0200                                | *0870                                | *1450                                | *1961                                | *2419                | 89.9                                  |
| 0.1                              | 7.2419                                         | 2833                                 | 3211                                 | 3558                                 | 3880                                 | 4180                                 | 4460                                 | 4723                                 | 4971                                 | 5206                                 | 5429                 | 89.8                                  |
| 0.2                              | 7.5429                                         | 5641                                 | 5843                                 | 6036                                 | 6221                                 | 6398                                 | 6568                                 | 6732                                 | 6890                                 | 7043                                 | 7190                 | 89.7                                  |
| 0.3                              | 7.7190                                         | 7332                                 | 7470                                 | 7604                                 | 7734                                 | 7859                                 | 7982                                 | 8101                                 | 8217                                 | 8329                                 | 8439                 | 89.6                                  |
| 0.4                              | 7.8439                                         | 8547                                 | 8651                                 | 8753                                 | 8853                                 | 8951                                 | 9046                                 | 9140                                 | 9231                                 | 9321                                 | 9408                 | 89.5                                  |
| 0.5                              | 7.9408                                         | 9494                                 | 9579                                 | 9661                                 | 9743                                 | 9822                                 | 9901                                 | 9977                                 | *0053                                | *0127                                | *0200                | 89.4                                  |
| 0.6                              | 8.0200                                         | 0272                                 | 0343                                 | 0412                                 | 0480                                 | 0548                                 | 0614                                 | 0679                                 | 0744                                 | 0807                                 | 0870                 | 89.3                                  |
| 0.7                              | 8.0870                                         | 0931                                 | 0992                                 | 1052                                 | 1111                                 | 1169                                 | 1227                                 | 1284                                 | 1340                                 | 1395                                 | 1450                 | 89.2                                  |
| 0.8                              | 8.1450                                         | 1503                                 | 1557                                 | 1609                                 | 1661                                 | 1713                                 | 1764                                 | 1814                                 | 1863                                 | 1912                                 | 1961                 | 89.1                                  |
| 0.9                              | 8.1961                                         | 2009                                 | 2056                                 | 2103                                 | 2150                                 | 2196                                 | 2241                                 | 2286                                 | 2331                                 | 2375                                 | 2419                 | 89°.0                                 |
| 1°.0                             | 8.2419                                         | 2462                                 | 2505                                 | 2547                                 | 2589                                 | 2630                                 | 2672                                 | 2712                                 | 2753                                 | 2793                                 | 2832                 | 88.9                                  |
| 1.1                              | 8.2832                                         | 2872                                 | 2911                                 | 2949                                 | 2988                                 | 3025                                 | 3063                                 | 3100                                 | 3137                                 | 3174                                 | 3210                 | 88.8                                  |
| 1.2                              | 8.3210                                         | 3246                                 | 3282                                 | 3317                                 | 3353                                 | 3388                                 | 3422                                 | 3456                                 | 3491                                 | 3524                                 | 3558                 | 88.7                                  |
| 1.3                              | 8.3558                                         | 3591                                 | 3624                                 | 3657                                 | 3689                                 | 3722                                 | 3754                                 | 3786                                 | 3817                                 | 3848                                 | 3880                 | 88.6                                  |
| 1.4                              | 8.3880                                         | 3911                                 | 3941                                 | 3972                                 | 4002                                 | 4032                                 | 4062                                 | 4091                                 | 4121                                 | 4150                                 | 4179                 | 88.5                                  |
| 1.5                              | 8.4179                                         | 4208                                 | 4237                                 | 4265                                 | 4293                                 | 4322                                 | 4349                                 | 4377                                 | 4405                                 | 4432                                 | 4459                 | 88.4                                  |
| 1.6                              | 8.4459                                         | 4486                                 | 4513                                 | 4540                                 | 4567                                 | 4593                                 | 4619                                 | 4645                                 | 4671                                 | 4697                                 | 4723                 | 88.3                                  |
| 1.7                              | 8.4723                                         | 4748                                 | 4773                                 | 4799                                 | 4824                                 | 4848                                 | 4873                                 | 4898                                 | 4922                                 | 4947                                 | 4971                 | 88.2                                  |
| 1.8                              | 8.4971                                         | 4995                                 | 5019                                 | 5043                                 | 5066                                 | 5090                                 | 5113                                 | 5136                                 | 5160                                 | 5183                                 | 5206                 | 88.1                                  |
| 1.9                              | 8.5206                                         | 5228                                 | 5251                                 | 5274                                 | 5296                                 | 5318                                 | 5340                                 | 5363                                 | 5385                                 | 5406                                 | 5428                 | 88°.0                                 |
| 2°.0                             | 8.5428                                         | 5450                                 | 5471                                 | 5493                                 | 5514                                 | 5535                                 | 5557                                 | 5578                                 | 5598                                 | 5619                                 | 5640                 | 87.9                                  |
| 2.1                              | 8.5640                                         | 5661                                 | 5681                                 | 5702                                 | 5722                                 | 5742                                 | 5762                                 | 5782                                 | 5802                                 | 5822                                 | 5842                 | 87.8                                  |
| 2.2                              | 8.5842                                         | 5862                                 | 5881                                 | 5901                                 | 5920                                 | 5939                                 | 5959                                 | 5978                                 | 5997                                 | 6016                                 | 6035                 | 87.7                                  |
| 2.3                              | 8.6035                                         | 6054                                 | 6072                                 | 6091                                 | 6110                                 | 6128                                 | 6147                                 | 6165                                 | 6183                                 | 6201                                 | 6220                 | 87.6                                  |
| 2.4                              | 8.6220                                         | 6238                                 | 6256                                 | 6274                                 | 6291                                 | 6309                                 | 6327                                 | 6344                                 | 6362                                 | 6379                                 | 6397                 | 87.5                                  |
| 2.5                              | 8.6397                                         | 6414                                 | 6431                                 | 6449                                 | 6466                                 | 6483                                 | 6500                                 | 6517                                 | 6534                                 | 6550                                 | 6567                 | 87.4                                  |
| 2.6                              | 8.6567                                         | 6584                                 | 6600                                 | 6617                                 | 6633                                 | 6650                                 | 6666                                 | 6682                                 | 6699                                 | 6715                                 | 6731                 | 87.3                                  |
| 2.7                              | 8.6731                                         | 6747                                 | 6763                                 | 6779                                 | 6795                                 | 6810                                 | 6826                                 | 6842                                 | 6858                                 | 6873                                 | 6889                 | 87.2                                  |
| 2.8                              | 8.6889                                         | 6904                                 | 6920                                 | 6935                                 | 6950                                 | 6965                                 | 6981                                 | 6996                                 | 7011                                 | 7026                                 | 7041                 | 87.1                                  |
| 2.9                              | 8.7041                                         | 7056                                 | 7071                                 | 7086                                 | 7100                                 | 7115                                 | 7130                                 | 7144                                 | 7159                                 | 7174                                 | 7188                 | 87°.0                                 |
| 3°.0<br>3.1<br>3.2<br>3.3<br>3.4 | 8.7188<br>8.7330<br>8.7468<br>8.7602<br>8.7731 | 7202<br>7344<br>7482<br>7615<br>7744 | 7217<br>7358<br>7495<br>7628<br>7756 | 7231<br>7372<br>7508<br>7641<br>7769 | 7245<br>7386<br>7522<br>7654<br>7782 | 7260<br>7400<br>7535<br>7667<br>7794 | 7274<br>7413<br>7549<br>7680<br>7807 | 7288<br>7427<br>7562<br>7693<br>7819 | 7302<br>7441<br>7575<br>7705<br>7832 | 7316<br>7454<br>7588<br>7718<br>7844 | 7468<br>7602<br>7731 | 86.9<br>86.8<br>86.7<br>86.6<br>86.5  |
| 3.5<br>3.6<br>3.7<br>3.8<br>3.9  | 8.7857<br>8.7979<br>8.8098<br>8.8213<br>8.8326 | 7869<br>7991<br>8109<br>8225<br>8337 | 7881<br>8003<br>8121<br>8236<br>8348 | 7894<br>8015<br>8133<br>8248<br>8359 | 7906<br>8027<br>8144<br>8259<br>8370 | 7918<br>8039<br>8156<br>8270<br>8381 | 7930<br>8051<br>8168<br>8281<br>8392 | 7943<br>8062<br>8179<br>8293<br>8403 | 7955<br>8074<br>8191<br>8304<br>8414 | 8086<br>8202                         | 8098<br>8213<br>8326 | 86.4<br>86.3<br>86.2<br>86.1<br>86°.0 |
| 4°.0<br>4.1<br>4.2<br>4.3<br>4.4 | 8.8436<br>8.8543<br>8.8647<br>8.8749<br>8.8849 | 8447<br>8553<br>8658<br>8759<br>8859 | 8457<br>8564<br>8668<br>8769<br>8869 | 8468<br>8575<br>8678<br>8780<br>8878 | 8479<br>8585<br>8688<br>8790<br>8888 | 8490<br>8595<br>8699<br>8799<br>8898 | 8500<br>8606<br>8709<br>8809<br>8908 | 8511<br>8616<br>8719<br>8819<br>8917 | 8627<br>8729                         | 8637<br>8739                         | 8647<br>8749<br>8849 | 85.9<br>85.8<br>85.7<br>85.6<br>85.5  |
| 4.5<br>4.6<br>4.7<br>4.8<br>4.9  | 8.8946<br>8.9042<br>8.9135<br>8.9226<br>8.9315 | 8956<br>9051<br>9144<br>9235<br>9324 | 8966<br>9060<br>9153<br>9244<br>9333 | 8975<br>9070<br>9162<br>9253<br>9342 | 8985<br>9079<br>9172<br>9262<br>9351 | 8994<br>9089<br>9181<br>9271<br>9359 | 9004<br>9098<br>9190<br>9280<br>9368 | 9013<br>9107<br>9199<br>9289<br>9377 | 9208                                 | 9126<br>9217<br>9307                 | 9135<br>9226<br>9315 | 85.4<br>85.3<br>85.2<br>85.1<br>85°.0 |
|                                  |                                                | 9                                    | 8                                    | 7                                    | 6                                    | 5                                    | 4                                    | 3                                    | 2                                    | 1                                    | 0                    | L. Cos.                               |

| L. Sin.                          | 0                                              | 1                                    | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7            | 8                                    | 9            |                                      |                                       |
|----------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------|--------------------------------------|--------------|--------------------------------------|---------------------------------------|
| <b>5°.0</b> 5.1 5.2 5.3 5.4      | 8.9403                                         | 9412                                 | 9420                                 | 9429                                 | 9437                                 | 9446                                 | 9455                                 | 9463         | 9472                                 | 9480         | 9489                                 | 84.9                                  |
|                                  | 8.9489                                         | 9497                                 | 9506                                 | 9514                                 | 9523                                 | 9531                                 | 9539                                 | 9548         | 9556                                 | 9565         | 9573                                 | 84.8                                  |
|                                  | 8.9573                                         | 9581                                 | 9589                                 | 9598                                 | 9606                                 | 9614                                 | 9623                                 | 9631         | 9639                                 | 9647         | 9655                                 | 84.7                                  |
|                                  | 8.9655                                         | 9664                                 | 9672                                 | 9680                                 | 9688                                 | 9696                                 | 9704                                 | 9712         | 9720                                 | 9728         | 9736                                 | 84.6                                  |
|                                  | 8.9736                                         | 9744                                 | 9752                                 | 9760                                 | 9768                                 | 9776                                 | 9784                                 | 9792         | 9800                                 | 9808         | 9816                                 | 84.5                                  |
| 5.5                              | 8.9816                                         | 9824                                 | 9831                                 | 9839                                 | 9847                                 | 9855                                 | 9863                                 | 9870         | 9878                                 | 9886         | 9894                                 | 84.4                                  |
| 5.6                              | 8.9894                                         | 9901                                 | 9909                                 | 9917                                 | 9925                                 | 9932                                 | 9940                                 | 9948         | 9955                                 | 9963         | 9970                                 | 84.3                                  |
| 5.7                              | 8.9970                                         | 9978                                 | 9986                                 | 9993                                 | *0001                                | *0008                                | *0016                                | *0023        | *0031                                | *0038        | *0046                                | 84.2                                  |
| 5.8                              | 9.0046                                         | 0053                                 | 0061                                 | 0068                                 | 0075                                 | 0083                                 | 0090                                 | 0098         | 0105                                 | 0112         | 0120                                 | 84.1                                  |
| 5.9                              | 9.0120                                         | 0127                                 | 0134                                 | 0142                                 | 0149                                 | <b>01</b> 56                         | 0163                                 | 0171         | 0178                                 | <b>01</b> 85 | 0192                                 | 84°.0                                 |
| 6°.0                             | 9.0192                                         | 0200                                 | 0207                                 | 0214                                 | 0221                                 | 0228                                 | 0235                                 | 0243         | 0250                                 | 0257         | 0264                                 | 83.9                                  |
| 6.1                              | 9.0264                                         | 0271                                 | 0278                                 | 0285                                 | 0292                                 | 0299                                 | 0306                                 | 0313         | 0320                                 | 0327         | 0334                                 | 83.8                                  |
| 6.2                              | 9.0334                                         | 0341                                 | 0348                                 | 0355                                 | 0362                                 | 0369                                 | 0376                                 | 0383         | 0390                                 | 0397         | 0403                                 | 83.7                                  |
| 6.3                              | 9.0403                                         | 0410                                 | 0417                                 | 0424                                 | 0431                                 | 0438                                 | 0444                                 | 0451         | 0458                                 | 0465         | 0472                                 | 83.6                                  |
| 6.4                              | 9.0472                                         | 0478                                 | <b>0</b> 485                         | 0492                                 | 0498                                 | 0505                                 | 0512                                 | 0519         | 0525                                 | 0532         | 0539                                 | 83.5                                  |
| 6.5                              | 9.0539                                         | 0545                                 | 0552                                 | 0558                                 | 0565                                 | 0572                                 | 0578                                 | 0585         | 0591                                 | 0598         | 0605                                 | 83.4                                  |
| 6.6                              | 9.0605                                         | 0611                                 | 0618                                 | 0624                                 | 0631                                 | 0637                                 | 0644                                 | 0650         | 0657                                 | 0663         | 0670                                 | 83.3                                  |
| 6.7                              | 9.0670                                         | 0676                                 | 0683                                 | 0689                                 | 0695                                 | 0702                                 | 0708                                 | 0715         | 0721                                 | 0727         | 0734                                 | 83.2                                  |
| 6.8                              | 9.0734                                         | 0740                                 | 0746                                 | 0753                                 | 0759                                 | 0765                                 | 0772                                 | 0778         | 0784                                 | 0790         | 0797                                 | 83.1                                  |
| 6.9                              | 9.0797                                         | 0803                                 | 0809                                 | 0816                                 | 0822                                 | 0828                                 | 0834                                 | 0840         | 0847                                 | <b>08</b> 53 | 0859                                 | 83°.0                                 |
| <b>7°.0</b>                      | 9.0859                                         | 0865                                 | 0871                                 | 0877                                 | 0884                                 | 0890                                 | 0896                                 | 0902         | 0908                                 | 0914         | 0920                                 | 82.9                                  |
| 7.1                              | 9.0920                                         | 0926                                 | 0932                                 | 0938                                 | 0945                                 | 0951                                 | 0957                                 | 0963         | 0969                                 | 0975         | 0981                                 | 82.8                                  |
| 7.2                              | 9.0981                                         | 0987                                 | 0993                                 | 0999                                 | 1005                                 | 1011                                 | 1017                                 | 1022         | 1028                                 | 1034         | 1040                                 | 82.7                                  |
| 7.3                              | 9.1040                                         | 1046                                 | 1052                                 | 1058                                 | 1064                                 | 1070                                 | 1076                                 | 1081         | 1087                                 | 1093         | 1099                                 | 82.6                                  |
| 7.4                              | 9.1099                                         | 1105                                 | 1111                                 | 1116                                 | 1122                                 | <b>11</b> 28                         | 1134                                 | 1140         | 1145                                 | 1151         | 1157                                 | 82.5                                  |
| 7.5                              | 9.1157                                         | 1163                                 | 1168                                 | 1174                                 | 1180                                 | 1186                                 | 1191                                 | 1197         | 1203                                 | 1208         | 1214                                 | 82.4                                  |
| 7.6                              | 9.1214                                         | 1220                                 | 1226                                 | 1231                                 | 1237                                 | 1242                                 | 1248                                 | 1254         | 1259                                 | 1265         | 1271                                 | 82.3                                  |
| 7.7                              | 9.1271                                         | 1276                                 | 1282                                 | 1287                                 | 1293                                 | 1299                                 | 1304                                 | 1310         | 1315                                 | 1321         | 1326                                 | 82.2                                  |
| 7.8                              | 9.1326                                         | 1332                                 | 1337                                 | 1343                                 | 1348                                 | 1354                                 | 1359                                 | 1365         | 1370                                 | 1376         | 1381                                 | 82.1                                  |
| 7.9                              | 9.1381                                         | 1387                                 | 1392                                 | 1398                                 | 1403                                 | 1409                                 | 1414                                 | 1419         | 1425                                 | 1430         | 1436                                 | 82°.0                                 |
| 8°.0                             | 9.1436                                         | 1441                                 | 1446                                 | 1452                                 | 1457                                 | 1462                                 | 1468                                 | 1473         | 1478                                 | 1484         | 1489                                 | 81.9                                  |
| 8.1                              | 9.1489                                         | 1494                                 | 1500                                 | 1505                                 | 1510                                 | 1516                                 | 1521                                 | 1526         | 1532                                 | 1537         | 1542                                 | 81.8                                  |
| 8.2                              | 9.1542                                         | 1547                                 | 1553                                 | 1558                                 | 1563                                 | 1568                                 | 1574                                 | 1579         | 1584                                 | 1589         | 1594                                 | 81.7                                  |
| 8.3                              | 9.1594                                         | 1600                                 | 1605                                 | 1610                                 | 1615                                 | 1620                                 | 1625                                 | 1631         | 1636                                 | 1641         | 1646                                 | 81.6                                  |
| 8.4                              | 9.1646                                         | 1651                                 | 1656                                 | 1661                                 | 1666                                 | 1672                                 | 1677                                 | 1682         | 1687                                 | 1692         | 1697                                 | 81.5                                  |
| 8.5                              | 9.1697                                         | 1702                                 | 1707                                 | 1712                                 | 1717                                 | 1722                                 | 1727                                 | 1732         | 1737                                 | 1742         | 1747                                 | 81.4                                  |
| 8.6                              | 9.1747                                         | 1752                                 | 1757                                 | 1762                                 | 1767                                 | 1772                                 | 1777                                 | 1782         | 1787                                 | 1792         | 1797                                 | 81.3                                  |
| 8.7                              | 9.1797                                         | 1802                                 | 1807                                 | 1812                                 | 1817                                 | 1822                                 | 1827                                 | 1832         | 1837                                 | 1842         | 1847                                 | 81.2                                  |
| 8.8                              | 9.1847                                         | 1851                                 | 1856                                 | 1861                                 | 1866                                 | 1871                                 | 1876                                 | 1881         | 1886                                 | 1890         | 1895                                 | 81.1                                  |
| 8.9                              | 9.1895                                         | 1900                                 | 1905                                 | 1910                                 | 1915                                 | 1919                                 | 1924                                 | 1929         | 1934                                 | 1939         | 1943                                 | 81°.0                                 |
| 9°.0<br>9.1<br>9.2<br>9.3<br>9.4 | 9.1943<br>9.1991<br>9.2038<br>9.2085<br>9.2131 | 1948<br>1996<br>2043<br>2089<br>2135 | 1953<br>2000<br>2047<br>2094<br>2140 | 1958<br>2005<br>2052<br>2098<br>2144 | 1962<br>2010<br>2057<br>2103<br>2149 | 1967<br>2015<br>2061<br>2108<br>2153 |                                      | 2024<br>2071 | 1981<br>2029<br>2075<br>2121<br>2167 | 2033         | 2038                                 | 80.9<br>80.8<br>80.7<br>80.6<br>80.5  |
| 9.5<br>9.6<br>9.7<br>9.8<br>9.9  | 9.2176<br>9.2221<br>9.2266<br>9.2310<br>9.2353 | 2181<br>2226<br>2270<br>2314<br>2358 | 2185<br>2230<br>2275<br>2319<br>2362 | 2190<br>2235<br>2279<br>2323<br>2367 | 2194<br>2239<br>2283<br>2327<br>2371 | 2199<br>2243<br>2288<br>2332<br>2375 | 2203<br>2248<br>2292<br>2336<br>2379 | 2297         | 2212<br>2257<br>2301<br>2345<br>2388 |              | 2221<br>2266<br>2310<br>2353<br>2397 | 80.4<br>80.3<br>80.2<br>80.1<br>80°.0 |
|                                  |                                                | 9                                    | 8                                    | 7                                    | 6                                    | 5                                    | 4                                    | 3            | 2                                    | 1            | 0                                    | L. Cos.                               |

| L. Sin.                            | 0                                                        | 1                                                                            | 2                                    | 3                                    | 4                                    | 5                                    | 6                                     | 7                                     | 8                                     | 9                                     |                                             |                                   |
|------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------|
| 0°<br>1<br>2<br>3<br>4             | -∞<br>8.2419<br>8.5428<br>8.7188<br>8.8436               | 7.2419<br>2832<br>5640<br>7330<br>8543                                       | 5429<br>3210<br>5842<br>7468<br>8647 | 7190<br>3558<br>6035<br>7602<br>8749 | 8439<br>3880<br>6220<br>7731<br>8849 | 9408<br>4179<br>6397<br>7857<br>8946 | *0200<br>4459<br>6567<br>7979<br>9042 | *0870<br>4723<br>6731<br>8098<br>9135 | *1450<br>4971<br>6889<br>8213<br>9226 | *1961<br>5206<br>7041<br>8326<br>9315 | -∞<br>*2419<br>5428<br>7188<br>8436<br>9403 | 90°<br>89<br>88<br>87<br>86<br>85 |
| 5                                  | 8.9403                                                   | 9489                                                                         | 9573                                 | 9655                                 | 9736                                 | 9816                                 | 9894                                  | 9970                                  | *0046                                 | *0120                                 | *0192                                       | 84                                |
| 6                                  | 9.0192                                                   | 0264                                                                         | 0334                                 | 0403                                 | 0472                                 | 0539                                 | 0605                                  | 0670                                  | 0734                                  | 0797                                  | 0859                                        | 83                                |
| 7                                  | 9.0859                                                   | 0920                                                                         | 0981                                 | 1040                                 | 1099                                 | 1157                                 | 1214                                  | 1271                                  | 1326                                  | 1381                                  | 1436                                        | 82                                |
| 8                                  | 9.1436                                                   | 1489                                                                         | 1542                                 | 1594                                 | 1646                                 | 1697                                 | 1747                                  | 1797                                  | 1847                                  | 1895                                  | 1943                                        | 81                                |
| 9                                  | 9.1943                                                   | 1991                                                                         | 2038                                 | 2085                                 | 2131                                 | 2176                                 | 2221                                  | 2266                                  | 2310                                  | 2353                                  | 2397                                        | 80°                               |
| 10°                                | 9.2397                                                   | 2439                                                                         | 2482                                 | 2524                                 | 2565                                 | 2606                                 | 2647                                  | 2687                                  | 2727                                  | 2767                                  | 2806                                        | . 79                              |
| 11                                 | 9.2806                                                   | 2845                                                                         | 2883                                 | 2921                                 | 2959                                 | 2997                                 | 3034                                  | 3070                                  | 3107                                  | 3143                                  | 3179                                        | 78                                |
| 12                                 | 9.3179                                                   | 3214                                                                         | 3250                                 | 3284                                 | 3319                                 | 3353                                 | 3387                                  | 3421                                  | 3455                                  | 3488                                  | 3521                                        | 77                                |
| 13                                 | 9.3521                                                   | 3554                                                                         | 3586                                 | 3618                                 | 3650                                 | 3682                                 | 3713                                  | 3745                                  | 3775                                  | 3806                                  | 3837                                        | 76                                |
| 14                                 | 9.3837                                                   | 3867                                                                         | 3897                                 | 3927                                 | 3957                                 | 3986                                 | 4015                                  | 4044                                  | 4073                                  | 4102                                  | 4130                                        | 75                                |
| 15                                 | 9.4130                                                   | 4158                                                                         | 4186                                 | 4214                                 | 4242                                 | 4269                                 | 4296                                  | 4323                                  | 4350                                  | 4377                                  | 4403                                        | 74                                |
| 16                                 | 9.4403                                                   | 4430                                                                         | 4456                                 | 4482                                 | 4508                                 | 4533                                 | 4559                                  | 4584                                  | 4609                                  | 4634                                  | 4659                                        | 73                                |
| 17                                 | 9.4659                                                   | 4684                                                                         | 4709                                 | 4733                                 | 4757                                 | 4781                                 | 4805                                  | 4829                                  | 4853                                  | 4876                                  | 4900                                        | 72                                |
| 18                                 | 9.4900                                                   | 4923                                                                         | 4946                                 | 4969                                 | 4992                                 | 5015                                 | 5037                                  | 5060                                  | 5082                                  | 5104                                  | 5126                                        | 71                                |
| 19                                 | 9.5126                                                   | 5148                                                                         | 5170                                 | 5192                                 | 5213                                 | 5235                                 | 5256                                  | 5278                                  | 5299                                  | 5320                                  | 5341                                        | 70°                               |
| 20°                                | 9.5341                                                   | 5361                                                                         | 5382                                 | 5402                                 | 5423                                 | 5443                                 | 5463                                  | 5484                                  | 5504                                  | 5523                                  | 5543                                        | 69                                |
| 21                                 | 9.5543                                                   | 5563                                                                         | 5583                                 | 5602                                 | 5621                                 | 5641                                 | 5660                                  | 5679                                  | 5698                                  | 5717                                  | 5736                                        | 68                                |
| 22                                 | 9.5736                                                   | 5754                                                                         | 5773                                 | 5792                                 | 5810                                 | 5828                                 | 5847                                  | 5865                                  | 5883                                  | 5901                                  | 5919                                        | 67                                |
| 23                                 | 9.5919                                                   | 5937                                                                         | 5954                                 | 5972                                 | 5990                                 | 6007                                 | 6024                                  | 6042                                  | 6059                                  | 6076                                  | 6093                                        | 66                                |
| 24                                 | 9.6093                                                   | 6110                                                                         | 6127                                 | 6144                                 | 6161                                 | 6177                                 | 6194                                  | 6210                                  | 6227                                  | 6243                                  | 6259                                        | 65                                |
| 25                                 | 9.6259                                                   | 6276                                                                         | 6292                                 | 6308                                 | 6324                                 | 6340                                 | 6356                                  | 6371                                  | 6387                                  | 6403                                  | 6418                                        | 64                                |
| 26                                 | 9.6418                                                   | 6434                                                                         | 6449                                 | 6465                                 | 6480                                 | 6495                                 | 6510                                  | 6526                                  | 6541                                  | 6556                                  | 6570                                        | 63                                |
| 27                                 | 9.6570                                                   | 6585                                                                         | 6600                                 | 6615                                 | 6629                                 | 6644                                 | 6659                                  | 6673                                  | 6687                                  | 6702                                  | 6716                                        | 62                                |
| 28                                 | 9.6716                                                   | 6730                                                                         | 6744                                 | 6759                                 | 6773                                 | 6787                                 | 6801                                  | 6814                                  | 6828                                  | 6842                                  | 6856                                        | 61                                |
| 29                                 | 9.6856                                                   | 6869                                                                         | 6883                                 | 6896                                 | 6910                                 | 6923                                 | 6937                                  | 6950                                  | 6963                                  | 6977                                  | 6990                                        | 60°                               |
| <b>30°</b> 31 32 33 34             | 9.6990                                                   | 7003                                                                         | 7016                                 | 7029                                 | 7042                                 | 7055                                 | 7068                                  | 7080                                  | 7093                                  | 7106                                  | 7118                                        | 59                                |
|                                    | 9.7118                                                   | 7131                                                                         | 7144                                 | 7156                                 | 7168                                 | 7181                                 | 7193                                  | 7205                                  | 7218                                  | 7230                                  | 7242                                        | 58                                |
|                                    | 9.7242                                                   | 7254                                                                         | 7266                                 | 7278                                 | 7290                                 | 7302                                 | 7314                                  | 7326                                  | 7338                                  | 7349                                  | 7361                                        | 57                                |
|                                    | 9.7361                                                   | 7373                                                                         | 7384                                 | 7396                                 | 7407                                 | 7419                                 | 7430                                  | 7442                                  | 7453                                  | 7464                                  | 7476                                        | 56                                |
|                                    | 9.7476                                                   | 7487                                                                         | 7498                                 | 7509                                 | 7520                                 | 7531                                 | 7542                                  | 7553                                  | 7564                                  | 7575                                  | 7586                                        | 55                                |
| 35<br>36<br>37<br>38<br>39         | 9.7586<br>9.7692<br>9.7795<br>9.7893<br>9.7989           | <b>7</b> 597<br><b>7</b> 703<br><b>7</b> 805<br><b>7</b> 903<br><b>7</b> 998 | 7607<br>7713<br>7815<br>7913<br>8007 | 7618<br>7723<br>7825<br>7922<br>8017 | 7629<br>7734<br>7835<br>7932<br>8026 | 7640<br>7744<br>7844<br>7941<br>8035 | 7650<br>7754<br>7854<br>7951<br>8044  | 7960                                  | 7874<br>7970                          | 7979                                  | 7893<br>7989                                | 54<br>53<br>52<br>51<br>50°       |
| 40°<br>41<br>42<br>43<br>44<br>45° | 9.8081<br>9.8169<br>9.8255<br>9.8338<br>9.8418<br>9.8495 | 8090<br>8178<br>8264<br>8346<br>8426                                         | 8099<br>8187<br>8272<br>8354<br>8433 | 8108<br>8195<br>8280<br>8362<br>8441 | 8117<br>8204<br>8289<br>8370<br>8449 | 8125<br>8213<br>8297<br>8378<br>8457 | 8134<br>8221<br>8305<br>8386<br>8464  | 8394                                  | 8238<br>8322<br>8402                  | 8247<br>8330<br>8410                  | 8255<br>8338<br>8418                        | 46                                |
|                                    |                                                          | 9                                                                            | 8                                    | 7                                    | 6                                    | 5                                    | 4                                     | 3                                     | 2                                     | 1                                     | 0                                           | L. Cos.                           |

| L. Sin.                                  | 0                                                        | 1                                     | 2                                     | 3                                             | 4                                     | 5                                     | 6                                    | 7                                    | 8                                    | 9                                    |                                                |                                    |
|------------------------------------------|----------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------|
| <b>45°</b><br>46<br>47<br>48<br>49       | 9.8495<br>9.8569<br>9.8641<br>9.8711<br>9.8778           | 8502<br>8577<br>8648<br>8718<br>8784  | 8510<br>8584<br>8655<br>8724<br>8791  | 8517<br>8591<br>8662<br>8731<br>8797          | 8525<br>8598<br>8669<br>8738<br>8804  | 8532<br>8606<br>8676<br>8745<br>8810  | 8540<br>8613<br>8683<br>8751<br>8817 | 8547<br>8620<br>8690<br>8758<br>8823 | 8555<br>8627<br>8697<br>8765<br>8830 | 8562<br>8634<br>8704<br>8771<br>8836 | 9.8495<br>8569<br>8641<br>8711<br>8778<br>8843 | 45°<br>44<br>43<br>42<br>41<br>40° |
| <b>50°</b> 51 52 53 54                   | 9.8843<br>9.8905<br>9.8965<br>9.9023<br>9.9080           | 8849<br>8911<br>8971<br>9029<br>9085  | 8855<br>8917<br>8977<br>9035<br>9091  | 8862<br>8923<br>8983<br>9041<br>9096          | 8868<br>8929<br>8989<br>9046<br>9101  | 8874<br>8935<br>8995<br>9052<br>9107  | 8880<br>8941<br>9000<br>9057<br>9112 | 8887<br>8947<br>9006<br>9063<br>9118 | 8893<br>8953<br>9012<br>9069<br>9123 | 8899<br>8959<br>9018<br>9074<br>9128 | 8905<br>8965<br>9023<br>9080<br>9134           | 39<br>38<br>37<br>36<br>35         |
| 55<br>56<br>57<br>58<br>59               | 9.9134<br>9.9186<br>9.9236<br>9.9284<br>9.9331           | 9139<br>9191<br>9241<br>9289<br>9335  | 9144<br>9196<br>9246<br>9294<br>9340  | 9149<br>9201<br>9251<br>9298<br>9344          | 9155<br>9206<br>9255<br>9303<br>9349  | 9160<br>9211<br>9260<br>9308<br>9353  | 9165<br>9216<br>9265<br>9312<br>9358 | 9170<br>9221<br>9270<br>9317<br>9362 | 9175<br>9226<br>9275<br>9322<br>9367 | 9181<br>9231<br>9279<br>9326<br>9371 | 9186<br>9236<br>9284<br>9331<br>9375           | 34<br>33<br>32<br>31<br>30°        |
| 60°<br>61<br>62<br>63                    | 9.9375<br>9.9418<br>9.9459<br>9.9499<br>9.9537           | 9380<br>9422<br>9463.<br>9503<br>9540 | 9384<br>9427<br>9467<br>9506<br>9544  | 9388<br>9431<br>9471<br>9510<br>9548          | 9393<br>9435<br>9475<br>9514<br>9551  | 9397<br>9439<br>9479<br>9518<br>9555  | 9401<br>9443<br>9483<br>9522<br>9558 | 9406<br>9447<br>9487<br>9525<br>9562 | 9410<br>9451<br>9491<br>9529<br>9566 | 9414<br>9455<br>9495<br>9533<br>9569 | 9418<br>9459<br>9499<br>9537<br>9573           | 29<br>28<br>27<br>26<br>25         |
| 65<br>66<br>67<br>68<br>69               | 9.9573<br>9.9607<br>9.9640<br>9.9672<br>9.9702           | 9576<br>9611<br>9643<br>9675<br>9704  | 9580<br>9614<br>9647<br>9678<br>9707  | 9583<br>9617<br>9650<br>9681<br>9710          | 9587<br>9621<br>9653<br>9684<br>9713  | 9590<br>9624<br>9656<br>9687<br>9716  | 9594<br>9627<br>9659<br>9690<br>9719 | 9597<br>9631<br>9662<br>9693<br>9722 | 9601<br>9634<br>9666<br>9696<br>9724 | 9604<br>9637<br>9669<br>9699<br>9727 | 9607<br>9640<br>9672<br>9702<br>9730           | 24<br>23<br>22<br>21<br>20°        |
| 70°<br>71<br>72<br>73<br>74              | 9.9730<br>9.9757<br>9.9782<br>9.9806<br>9.9828           | 9733<br>9759<br>9785<br>9808<br>9831  | 9735<br>9762<br>9787<br>9811<br>9833  | 9738<br>9764<br>9789<br>9813<br>9835          | 9741<br>9767<br>9792<br>9815<br>9837  | 9743<br>9770<br>9794<br>9817<br>9839  | 9746<br>9772<br>9797<br>9820<br>9841 | 9749<br>9775<br>9799<br>9822<br>9843 | 9751<br>9777<br>9801<br>9824<br>9845 | 9754<br>9780<br>9804<br>9826<br>9847 | 9757<br>9782<br>9806<br>9828<br>9849           | 19<br>18<br>17<br>16<br>15         |
| 75<br>76<br>77<br>78<br>79               | 9.9849<br>9.9869<br>9.9887<br>9.9904<br>9.9919           | 9851<br>9871<br>9889<br>9906<br>9921  | 9853<br>9873<br>9891<br>9907<br>9922  | 9855<br>9875<br>9892<br>9909<br>9924          | 9857<br>9876<br>9894<br>9910<br>9925  | 9859<br>9878<br>9896<br>9912<br>9927  | 9861<br>9880<br>9897<br>9913<br>9928 | 9863<br>9882<br>9899<br>9915<br>9929 | 9865<br>9884<br>9901<br>9916<br>9931 | 9867<br>9885<br>9902<br>9918<br>9932 | 9904                                           | 14<br>13<br>12<br>11<br>10°        |
| 80°<br>81<br>82<br>83<br>84              | 9.9934<br>9.9946<br>9.9958<br>9.9968<br>9.9976           | 9935<br>9947<br>9959<br>9968<br>9977  | 9936<br>9949<br>9960<br>9969<br>9978  | 9937<br>9950<br>9961<br>9970<br>99 <b>7</b> 8 | 9939<br>9951<br>9962<br>9971<br>9979  | 9972                                  |                                      | 9974                                 | 9944<br>9955<br>9966<br>9975<br>9982 | 9945<br>9956<br>9967<br>9975<br>9983 | 9958<br>9968<br>9976                           | 9<br>8<br>7<br>6<br>5              |
| 85<br>86<br>87<br>88<br>89<br><b>90°</b> | 9.9983<br>9.9989<br>9.9994<br>9.9997<br>9.9999<br>0.0000 | 9984<br>9990<br>9994<br>9998<br>9999  | 9985<br>9990<br>9995<br>9998<br>*0000 | 9985<br>9991<br>9995<br>9998<br>*0000         | 9986<br>9991<br>9996<br>9998<br>*0000 | 9987<br>9992<br>9996<br>9999<br>*0000 |                                      | 9999                                 | 9999                                 | 9989<br>9994<br>9997<br>9999<br>0000 | 9994<br>9997<br>9999                           | 4<br>3<br>2<br>1<br>0°             |
|                                          |                                                          | 9                                     | 8                                     | 7                                             | 6                                     | 5                                     | 4                                    | 3                                    | 2                                    | 1                                    | 0                                              | L. Cos.                            |

| L. Tang.                         | 0                                              | 1                                    | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9            |                                      |                                       |
|----------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------|--------------------------------------|---------------------------------------|
| 0°.0                             | ∞                                              | 6.2419                               | 5429                                 | 7190                                 | 8439                                 | 9408                                 | *0200                                | *0870                                | *1450                                | *1961        | *2419                                | 89.9                                  |
| 0.1                              | 7.2419                                         | 2833                                 | 3211                                 | 3558                                 | 3880                                 | 4180                                 | 4460                                 | 4 <b>72</b> 3                        | 4972                                 | 5206         | 5429                                 | 89.8                                  |
| 0.2                              | 7.5429                                         | 5641                                 | 5843                                 | 6036                                 | 6221                                 | 6398                                 | 6569                                 | 6732                                 | 6890                                 | 7043         | 7190                                 | 89.7                                  |
| 0.3                              | 7.7190                                         | 7332                                 | 7470                                 | 7604                                 | 7734                                 | 7860                                 | 7982                                 | 8101                                 | 8217                                 | 8329         | 8439                                 | 89.6                                  |
| 0.4                              | 7.8439                                         | 8547                                 | 8651                                 | 8754                                 | 8853                                 | 8951                                 | 9046                                 | 9140                                 | 9231                                 | 9321         | 9409                                 | 89.5                                  |
| 0.5                              | 7.9409                                         | 9495                                 | 9579                                 | 9662                                 | 9743                                 | 9823                                 | 9901                                 | 9978                                 | *0053                                | *0127        | *0200                                | 89.4                                  |
| 0.6                              | 8.0200                                         | 0272                                 | 0343                                 | 0412                                 | 0481                                 | 0548                                 | 0614                                 | 0680                                 | 0744                                 | 0807         | 0870                                 | 89.3                                  |
| 0.7                              | 8.0870                                         | 0932                                 | 0992                                 | 1052                                 | 1111                                 | 1170                                 | 1227                                 | 1284                                 | 1340                                 | 1395         | 1450                                 | 89.2                                  |
| 0.8                              | 8.1450                                         | 1504                                 | 1557                                 | 1610                                 | 1662                                 | 1713                                 | 1764                                 | 1814                                 | 1864                                 | 1913         | 1962                                 | 89.1                                  |
| 0.9                              | 8.1962                                         | 2010                                 | 2057                                 | 2104                                 | 2150                                 | 2196                                 | 2242                                 | 2287                                 | 2331                                 | 2376         | 2419                                 | 89°.0                                 |
| 1°.0                             | 8.2419                                         | 2462                                 | 2505                                 | 2548                                 | 2590                                 | 2631                                 | 2672                                 | 2713                                 | 2754                                 | 2794         | 2833                                 | 88.9                                  |
| 1.1                              | 8.2833                                         | 2873                                 | 2912                                 | 2950                                 | 2988                                 | 3026                                 | 3064                                 | 3101                                 | 3138                                 | 3175         | 3211                                 | 88.8                                  |
| 1.2                              | 8.3211                                         | 3247                                 | 3283                                 | 3318                                 | 3354                                 | 3389                                 | 3423                                 | 3458                                 | 3492                                 | 3525         | 3559                                 | 88.7                                  |
| 1.3                              | 8.3559                                         | 3592                                 | 3625                                 | 3658                                 | 3691                                 | 3723                                 | 3755                                 | 3787                                 | 3818                                 | 3850         | 3881                                 | 88.6                                  |
| 1.4                              | 8.3881                                         | 3912                                 | 3943                                 | 3973                                 | 4003                                 | 4033                                 | 4063                                 | 4093                                 | 4122                                 | 4152         | 4181                                 | 88.5                                  |
| 1.5                              | 8.4181                                         | 4210                                 | 4238                                 | 4267                                 | 4295                                 | 4323                                 | 4351                                 | 4379                                 | 4406                                 | 4434         | 4461                                 | 88.4                                  |
| 1.6                              | 8.4461                                         | 4488                                 | 4515                                 | 4542                                 | 4568                                 | 4595                                 | 4621                                 | 4647                                 | 4673                                 | 4699         | 4725                                 | 88.3                                  |
| 1.7                              | 8.4725                                         | 4750                                 | 4775                                 | 4801                                 | 4826                                 | 4851                                 | 4875                                 | 4900                                 | 4924                                 | 4949         | 4973                                 | 88.2                                  |
| 1.8                              | 8.4973                                         | 4997                                 | 5021                                 | 5045                                 | 5068                                 | 5092                                 | 5115                                 | 5139                                 | 5162                                 | 5185         | 5208                                 | 88.1                                  |
| 1.9                              | 8.5208                                         | 5231                                 | 5253                                 | 5276                                 | 5298                                 | 5321                                 | 5343                                 | 5365                                 | 5387                                 | 5409         | 5431                                 | 88°.0                                 |
| 2°.0                             | 8.5431                                         | 5453                                 | 5474                                 | 5496                                 | 5517                                 | 5538                                 | 5559                                 | 5580                                 | 5601                                 | 5622         | 5643                                 | 87.9                                  |
| 2.1                              | 8.5643                                         | 5664                                 | 5684                                 | 5705                                 | 5725                                 | 5745                                 | 5765                                 | 5785                                 | 5805                                 | 5825         | 5845                                 | 87.8                                  |
| 2.2                              | 8.5845                                         | 5865                                 | 5884                                 | 5904                                 | 5923                                 | 5943                                 | 5962                                 | 5981                                 | 6000                                 | 6019         | 6038                                 | 87.7                                  |
| 2.3                              | 8.6038                                         | 6057                                 | 6076                                 | 6095                                 | 6113                                 | 6132                                 | 6150                                 | 6169                                 | 6187                                 | 6205         | 6223                                 | 87.6                                  |
| 2.4                              | 8.6223                                         | 6242                                 | 6260                                 | 6277                                 | 6295                                 | 6313                                 | 6331                                 | 6348                                 | 6366                                 | 6384         | 6401                                 | 87.5                                  |
| 2.5                              | 8.6401                                         | 6418                                 | 6436                                 | 6453                                 | 6470                                 | 6487                                 | 6504                                 | 6521                                 | 6538                                 | 6555         | 6571                                 | 87.4                                  |
| 2.6                              | 8.6571                                         | 6588                                 | 6605                                 | 6621                                 | 6638                                 | 6654                                 | 6671                                 | 6687                                 | 6703                                 | 6719         | 6736                                 | 87.3                                  |
| 2.7                              | 8.6736                                         | 6752                                 | 6768                                 | 6784                                 | 6800                                 | 6815                                 | 6831                                 | 6847                                 | 6863                                 | 6878         | 6894                                 | 87.2                                  |
| 2.8                              | 8.6894                                         | 6909                                 | 6925                                 | 6940                                 | 6956                                 | 6971                                 | 6986                                 | 7001                                 | 7016                                 | 7031         | 7046                                 | 87.1                                  |
| 2.9                              | 8.7046                                         | 7061                                 | 7076                                 | 7091                                 | 7106                                 | 7121                                 | 7136                                 | 7150                                 | 7165                                 | 7179         | 7194                                 | 87°.0                                 |
| <b>3°.0</b>                      | 8.7194                                         | 7208                                 | 7223                                 | 7237                                 | 7252                                 | 7266                                 | 7280                                 | 7294                                 | 7308                                 | 7323         | 7337                                 | 86.9                                  |
| 3.1                              | 8.7337                                         | 7351                                 | 7365                                 | 7379                                 | 7392                                 | 7406                                 | 7420                                 | 7434                                 | 7448                                 | 7461         | 7475                                 | 86.8                                  |
| 3.2                              | 8.7475                                         | 7488                                 | 7502                                 | 7515                                 | 7529                                 | 7542                                 | 7556                                 | 7569                                 | 7582                                 | 7596         | 7609                                 | 86.7                                  |
| 3.3                              | 8.7609                                         | 7622                                 | 7635                                 | 7648                                 | 7661                                 | 7674                                 | 7687                                 | 7700                                 | 7713                                 | 7726         | 7739                                 | 86.6                                  |
| 3.4                              | 8.7739                                         | 7751                                 | 7764                                 | 7777                                 | 7790                                 | 7802                                 | 7815                                 | 7827                                 | 7840                                 | 7852         | 7865                                 | 86.5                                  |
| 3.5<br>3.6<br>3.7<br>3.8<br>3.9  | 8.7865<br>8.7988<br>8.8107<br>8.8223<br>8.8336 | 7877<br>8000<br>8119<br>8234<br>8347 | 7890<br>8012<br>8130<br>8246<br>8358 | 7902<br>8024<br>8142<br>8257<br>8370 | 7914<br>8036<br>8154<br>8269<br>8381 | 7927<br>8048<br>8165<br>8280<br>8392 | 7939<br>8059<br>8177<br>8291<br>8403 | 7951<br>8071<br>8188<br>8302<br>8414 | 7963<br>8083<br>8200<br>8314<br>8425 | 8212<br>8325 | 7988<br>8107<br>8223<br>8336<br>8446 | 86.4<br>86.3<br>86.2<br>86.1<br>86°.0 |
| 4°.0<br>4.1<br>4.2<br>4.3<br>4.4 | 8.8446<br>8.8554<br>8.8659<br>8.8762<br>8.8862 | 8457<br>8565<br>8669<br>8772<br>8872 | 8468<br>8575<br>8680<br>8782<br>8882 | 8479<br>8586<br>8690<br>8792<br>8891 | 8490<br>8596<br>8700<br>8802<br>8901 | 8501<br>8607<br>8711<br>8812<br>8911 | 8511<br>8617<br>8721<br>8822<br>8921 | 8522<br>8628<br>8731<br>8832<br>8931 | 8533<br>8638<br>8741<br>8842<br>8940 |              | 8659                                 | 85.9<br>85.8<br>85.7<br>85.6<br>85.5  |
| 4.5                              | 8.8960                                         | 8970                                 | 8979                                 | 8989                                 | 8998                                 | 9008                                 | 9018                                 | 9027                                 | 9037                                 | 9046         | 9150                                 | 85.4                                  |
| 4.6                              | 8.9056                                         | 9065                                 | 9075                                 | 9084                                 | 9093                                 | 9103                                 | 9112                                 | 9122                                 | 9131                                 | 9140         |                                      | 85.3                                  |
| 4.7                              | 8.9150                                         | 9159                                 | 9168                                 | 9177                                 | 9186                                 | 9196                                 | 9205                                 | 9214                                 | 9223                                 | 9232         |                                      | 85.2                                  |
| 4.8                              | 8.9241                                         | 9250                                 | 9260                                 | 9269                                 | 9278                                 | 9287                                 | 9296                                 | 9305                                 | 9313                                 | 9322         |                                      | 85.1                                  |
| 4.9                              | 8.9331                                         | 9340                                 | 9349                                 | 9358                                 | 9367                                 | 9376                                 | 9384                                 | 9393                                 | 9402                                 | 9411         |                                      | 85°.0                                 |
|                                  |                                                | 9                                    | 8                                    | 7                                    | 6                                    | 5                                    | 4                                    | 3                                    | 2                                    | 1            | 0                                    | L. Cot.                               |

[108]

| L. Tang.                                | 0                                              | 1                                     | 2                                     | 3                                     | 4                                     | 5                                     | 6                                     | 7                                     | 8                                     | 9                                     |                                       |                                                |
|-----------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------------|
| <b>5°.0</b><br>5.1<br>5.2<br>5.3<br>5.4 | 8.9420<br>8.9506<br>8.9591<br>8.9674<br>8.9756 | 9428<br>9515<br>9599<br>9682<br>9764  | 9437<br>9523<br>9608<br>9690<br>9772  | 9446<br>9532<br>9616<br>9699<br>9780  | 9454<br>9540<br>9624<br>9707<br>9788  | 9463<br>9549<br>9633<br>9715<br>9796  | 9472<br>9557<br>9641<br>9723<br>9804  | 9480<br>9565<br>9649<br>9731<br>9812  | 9489<br>9574<br>9657<br>9739<br>9820  | 9497<br>9582<br>9666<br>9747<br>9828  | 9506<br>9591<br>9674<br>9756<br>9836  | 84.9<br>84.8<br>84.7<br>84.6<br>84.5           |
| 5.5<br>5.6<br>5.7<br>5.8<br>5.9         | 8.9836<br>8.9915<br>8.9992<br>9.0068<br>9.0143 | 9844<br>9922<br>*0000<br>0075<br>0150 | 9852<br>9930<br>*0007<br>0083<br>0157 | 9860<br>9938<br>*0015<br>0090<br>0165 | 9867<br>9946<br>*0022<br>0098<br>0172 | 9875<br>9953<br>*0030<br>0105<br>0180 | 9883<br>9961<br>*0038<br>0113<br>0187 | 9891<br>9969<br>*0045<br>0120<br>0194 | 9899<br>9977<br>*0053<br>0128<br>0202 | 9907<br>9984<br>*0060<br>0135<br>0209 | 9915<br>9992<br>*0068<br>0143<br>0216 | 84.4<br>84.3<br>84.2<br>84.1<br>8 <b>4°</b> .0 |
| 6°.0<br>6.1<br>6.2<br>6.3<br>6.4        | 9.0216<br>9.0289<br>9.0360<br>9.0430<br>9.0499 | 0223<br>0296<br>0367<br>0437<br>0506  | 0231<br>0303<br>0374<br>0444<br>0512  | 0238<br>0310<br>0381<br>0451<br>0519  | 0245<br>0317<br>0388<br>0457<br>0526  | 0253<br>0324<br>0395<br>0464<br>0533  | 0260<br>0331<br>0402<br>0471<br>0540  | 0267<br>0338<br>0409<br>0478<br>0546  | 0274<br>0346<br>0416<br>0485<br>0553  | 0281<br>0353<br>0423<br>0492<br>0560  | 0289<br>0360<br>0430<br>0499<br>0567  | 83.9<br>83.8<br>83.7<br>83.6<br>83.5           |
| 6.5<br>6.6<br>6.7<br>6.8<br>6.9         | 9.0567<br>9.0633<br>9.0699<br>9.0764<br>9 0828 | 0573<br>0640<br>0706<br>0771<br>0835  | 0580<br>0647<br>0712<br>0777<br>0841  | 0587<br>0653<br>0719<br>0784<br>0847  | 0593<br>0660<br>0725<br>0790<br>0854  | 0600<br>0667<br>0732<br>0796<br>0860  | 0607<br>0673<br>0738<br>0803<br>0866  | 0614<br>0680<br>0745<br>0809<br>0873  | 0620<br>0686<br>0751<br>0816<br>0879  | 0627<br>0693<br>0758<br>0822<br>0885  | 0633<br>0699<br>0764<br>0828<br>0891  | 83.4<br>83.3<br>83.2<br>83.1<br>83°.0          |
| 7°.0<br>7.1<br>7.2<br>7.3<br>7.4        | 9.0891<br>9.0954<br>9.1015<br>9.1076<br>9.1135 | 0898<br>0960<br>1021<br>1082<br>1141  | 0904<br>0966<br>1027<br>1088<br>1147  | 0910<br>0972<br>1033<br>1094<br>1153  | 0916<br>0978<br>1039<br>1100<br>1159  | 0923<br>0984<br>1045<br>1106<br>1165  | 0929<br>0991<br>1051<br>1112<br>1171  | 0935<br>0997<br>1058<br>1117<br>1177  | 0941<br>1003<br>1064<br>1123<br>1183  | 0947<br>1009<br>1070<br>1129<br>1188  | 0954<br>1015<br>1076<br>1135<br>1194  | 82.9<br>82.8<br>82.7<br>82.6<br>82.5           |
| 7.5<br>7.6<br>7.7<br>7.8<br>7.9         | 9.1194<br>9.1252<br>9.1310<br>9.1367<br>9.1423 | 1200<br>1258<br>1316<br>1372<br>1428  | 1206<br>1264<br>1321<br>1378<br>1434  | 1212<br>1270<br>1327<br>1384<br>1439  | 1218<br>1276<br>1333<br>1389<br>1445  | 1223<br>1281<br>1338<br>1395<br>1450  | 1229<br>1287<br>1344<br>1400<br>1456  | 1406                                  |                                       | 1247<br>1304<br>1361<br>1417<br>1473  | 1252<br>1310<br>1367<br>1423<br>1478  | 82.4<br>82.3<br>82.2<br>82.1<br>82°.0          |
| 8°.0<br>8.1<br>8.2<br>8.3<br>8.4        | 9.1478<br>9.1533<br>9.1587<br>9.1640<br>9.1693 | 1484<br>1538<br>1592<br>1645<br>1698  | 1489<br>1544<br>1597<br>1651<br>1703  | 1494<br>1549<br>1603<br>1656<br>1709  | 1500<br>1554<br>1608<br>1661<br>1714  | 1505<br>1560<br>1613<br>1667<br>1719  | 1511<br>1565<br>1619<br>1672<br>1724  | 1571<br>1624<br>1677                  | 1576<br>1629<br>1682                  |                                       | 1640<br>1693                          | 81.9<br>81.8<br>81.7<br>81.6<br>81.5           |
| 8.5<br>8.6<br>8.7<br>8.8<br>8.9         | 9.1745<br>9.1797<br>9.1848<br>9.1898<br>9.1948 | 1750<br>1802<br>1853<br>1903<br>1953  | 1755<br>1807<br>1858<br>1908<br>1958  | 1761<br>1812<br>1863<br>1913<br>1963  | 1766<br>1817<br>1868<br>1918<br>1968  | 1822<br>1873<br>1923                  | 1928                                  | 1832<br>1883<br>1933                  | 1837<br>1888<br>1938                  | 1842<br>1893<br>1943                  | 1848<br>1898<br>1948                  | 81.4<br>81.3<br>81.2<br>81.1<br>81°.0          |
| 9°.0<br>9.1<br>9.2<br>9.3<br>9.4        | 9.1997<br>9.2046<br>9.2094<br>9.2142<br>9.2189 | 2002<br>2051<br>2099<br>2147<br>2194  | 2056<br>2104<br>2151                  | 2060<br>2109<br>2156                  | 2065<br>2113<br>2161                  | 2070<br>2118<br>2166                  | 2075<br>2123<br>2170                  | 2080<br>2128<br>2175                  | 2085<br>2132<br>2180                  | 2089<br>2137<br>2185                  | 2094<br>2142<br>2189                  | 80.8<br>80.7<br>80.6                           |
| 9.5<br>9.6<br>9.7<br>9.8<br>9.9         | 9.2236<br>9.2282<br>9.2328<br>9.2374<br>9.2419 | 2241<br>2287<br>2333<br>2378<br>2423  | 2292<br>2337<br>2383                  | 2296<br>2342<br>2387                  | 2301<br>2346<br>2392                  | 2305<br>2351<br>2396                  | 2310<br>2356<br>2401                  | 2315<br>2360<br>1 2405                | 2319<br>2365<br>2410                  | 2324<br>2369<br>2414                  | 2328<br>2374<br>2419                  | 80.3<br>80.2<br>80.1                           |
|                                         |                                                | 9                                     | 8                                     | 7                                     | 6                                     | 5                                     | 4                                     | 3                                     | 2                                     | 1                                     | 0                                     | L. Cot.                                        |

| L. Tang.               | 0                                                        | 1                                      | 2                                    | 3                                    | 4                                    | 5                                    | 6                                     | 7                                     | 8                                     | 9                                     |                                             |                                     |
|------------------------|----------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|-------------------------------------|
| 0°<br>1<br>2<br>3<br>4 | -∞<br>8.2419<br>8.5431<br>8.7194<br>8.8446               | 7.2419<br>2833<br>5643<br>7337<br>8554 | 5429<br>3211<br>5845<br>7475<br>8659 | 7190<br>3559<br>6038<br>7609<br>8762 | 8439<br>3881<br>6223<br>7739<br>8862 | 9409<br>4181<br>6401<br>7865<br>8960 | *0200<br>4461<br>6571<br>7988<br>9056 | *0870<br>4725<br>6736<br>8107<br>9150 | *1450<br>4973<br>6894<br>8223<br>9241 | *1962<br>5208<br>7046<br>8336<br>9331 | -∞<br>*2419<br>5431<br>7194<br>8446<br>9420 | 90°<br>89<br>88<br>87<br>86<br>85   |
| 5                      | 8.9420                                                   | 9506                                   | 9591                                 | 9674                                 | 9756                                 | 9836                                 | 9915                                  | 9992                                  | *0068                                 | *0143                                 | *0216                                       | 84                                  |
| 6                      | 9.0216                                                   | 0289                                   | 0360                                 | 0430                                 | 0499                                 | 0567                                 | 0633                                  | 0699                                  | 0764                                  | 0828                                  | 0891                                        | 83                                  |
| 7                      | 9.0891                                                   | 0954                                   | 1015                                 | 1076                                 | 1135                                 | 1194                                 | 1252                                  | 1310                                  | 1367                                  | 1423                                  | 1478                                        | 82                                  |
| 8                      | 9.1478                                                   | 1533                                   | 1587                                 | 1640                                 | 1693                                 | 1745                                 | 1797                                  | 1848                                  | 1898                                  | 1948                                  | 1997                                        | 81                                  |
| 9                      | 9.1997                                                   | 2046                                   | 2094                                 | 2142                                 | 2189                                 | 2236                                 | 2282                                  | 2328                                  | 2374                                  | 2419                                  | 2463                                        | 80°                                 |
| 10°                    | 9.2463                                                   | 2507                                   | 2551                                 | 2594                                 | 2637                                 | 2680                                 | 2722                                  | 2764                                  | 2805                                  | 2846                                  | 2887                                        | 79                                  |
| 11                     | 9.2887                                                   | 2927                                   | 2967                                 | 3006                                 | 3046                                 | 3085                                 | 3123                                  | 3162                                  | 3200                                  | 3237                                  | 3275                                        | 78                                  |
| 12                     | 9.3275                                                   | 3312                                   | 3349                                 | 3385                                 | 3422                                 | 3458                                 | 3493                                  | 3529                                  | 3564                                  | 3599                                  | 3634                                        | 77                                  |
| 13                     | 9.3634                                                   | 3668                                   | 3702                                 | 3736                                 | 3770                                 | 3804                                 | 3837                                  | 3870                                  | 3903                                  | 3935                                  | 3968                                        | 76                                  |
| 14                     | 9.3968                                                   | 4000                                   | 4032                                 | 4064                                 | 4095                                 | 4127                                 | 4158                                  | 4189                                  | 4220                                  | 4250                                  | 4281                                        | 75                                  |
| 15                     | 9.4281                                                   | 4311                                   | 4341                                 | 4371                                 | 4400                                 | 4430                                 | 4459                                  | 4488                                  | 4517                                  | 4546                                  | 4575                                        | 74                                  |
| 16                     | 9.4575                                                   | 4603                                   | 4632                                 | 4660                                 | 4688                                 | 4716                                 | 4744                                  | 4771                                  | 4799                                  | 4826                                  | 4853                                        | 73                                  |
| 17                     | 9.4853                                                   | 4880                                   | 4907                                 | 4934                                 | 4961                                 | 4987                                 | 5014                                  | 5040                                  | 5066                                  | 5092                                  | 5118                                        | 72                                  |
| 18                     | 9.5118                                                   | 5143                                   | 5169                                 | 5195                                 | 5220                                 | 5245                                 | 5270                                  | 5295                                  | 5320                                  | 5345                                  | 5370                                        | 71                                  |
| 19                     | 9.5370                                                   | 5394                                   | 5419                                 | 5443                                 | 5467                                 | 5491                                 | 5516                                  | 5539                                  | 5563                                  | 5587                                  | 5611                                        | 70°                                 |
| <b>20°</b> 21 22 23 24 | 9.5611                                                   | 5634                                   | 5658                                 | 5681                                 | 5704                                 | 5727                                 | 5750                                  | 5773                                  | 5796                                  | 5819                                  | 5842                                        | 69                                  |
|                        | 9.5842                                                   | 5864                                   | 5887                                 | 5909                                 | 5932                                 | 5954                                 | 5976                                  | 5998                                  | 6020                                  | 6042                                  | 6064                                        | 68                                  |
|                        | 9.6064                                                   | 6086                                   | 6108                                 | 6129                                 | 6151                                 | 6172                                 | 6194                                  | 6215                                  | 6236                                  | 6257                                  | 6279                                        | 67                                  |
|                        | 9.6279                                                   | 6300                                   | 6321                                 | 6341                                 | 6362                                 | 6383                                 | 6404                                  | 6424                                  | 6445                                  | 6465                                  | 6486                                        | 66                                  |
|                        | 9.6486                                                   | 6506                                   | 6527                                 | 6547                                 | 6567                                 | 6587                                 | 6607                                  | 6627                                  | 6647                                  | 6667                                  | 6687                                        | 65                                  |
| 25                     | 9.6687                                                   | 6706                                   | 6726                                 | 6746                                 | 6765                                 | 6785                                 | 6804                                  | 6824                                  | 6843                                  | 6863                                  | 6882                                        | 64                                  |
| 26                     | 9.6882                                                   | 6901                                   | 6920                                 | 6939                                 | 6958                                 | 6977                                 | 6996                                  | 7015                                  | 7034                                  | 7053                                  | 7072                                        | 63                                  |
| 27                     | 9.7072                                                   | 7090                                   | 7109                                 | 7128                                 | 7146                                 | 7165                                 | 7183                                  | 7202                                  | 7220                                  | 7238                                  | 7257                                        | 62                                  |
| 28                     | 9.7257                                                   | 7275                                   | 7293                                 | 7311                                 | 7330                                 | 7348                                 | 7366                                  | 7384                                  | 7402                                  | 7420                                  | 7438                                        | 61                                  |
| 29                     | 9.7438                                                   | 7455                                   | 7473                                 | 7491                                 | 7509                                 | 7526                                 | 7544                                  | 7562                                  | 7579                                  | 7597                                  | 7614                                        | 60°                                 |
| <b>30°</b> 31 32 33 34 | 9.7614                                                   | 7632                                   | 7649                                 | 7667                                 | 7684                                 | 7701                                 | 7719                                  | 7736                                  | 7753                                  | 7771                                  | 7788                                        | 59                                  |
|                        | 9.7788                                                   | 7805                                   | 7822                                 | 7839                                 | 7856                                 | 7873                                 | 7890                                  | 7907                                  | 7924                                  | 7941                                  | 7958                                        | 58                                  |
|                        | 9.7958                                                   | 7975                                   | 7992                                 | 8008                                 | 8025                                 | 8042                                 | 8059                                  | 8075                                  | 8092                                  | 8109                                  | 8125                                        | 57                                  |
|                        | 9.8125                                                   | 8142                                   | 8158                                 | 8175                                 | 8191                                 | 8208                                 | 8224                                  | 8241                                  | 8257                                  | 8274                                  | 8290                                        | 56                                  |
|                        | 9.8290                                                   | 8306                                   | 8323                                 | 8339                                 | 8355                                 | 8371                                 | 8388                                  | 8404                                  | 8420                                  | 8436                                  | 8452                                        | 55                                  |
| 35                     | 9.8452                                                   | 8468                                   | 8484                                 | 8501                                 | 8517                                 | 8533                                 | 8549                                  | 8565                                  | 8581                                  | 8597                                  | 8613                                        | 54                                  |
| 36                     | 9.8613                                                   | 8629                                   | 8644                                 | 8660                                 | 8676                                 | 8692                                 | 8708                                  | 8724                                  | 8740                                  | 8755                                  | 8771                                        | 53                                  |
| 37                     | 9.8771                                                   | 8787                                   | 8803                                 | 8818                                 | 8834                                 | 8850                                 | 8865                                  | 8881                                  | 8897                                  | 8912                                  | 8928                                        | 52                                  |
| 38                     | 9.8928                                                   | 8944                                   | 8959                                 | 8975                                 | 8990                                 | 9006                                 | 9022                                  | 9037                                  | 9053                                  | 9068                                  | 9084                                        | 51                                  |
| 39                     | 9.9084                                                   | 9099                                   | 9115                                 | 9130                                 | 9146                                 | 9161                                 | 9176                                  | 9192                                  | 9207                                  | 9223                                  | 9238                                        | 50°                                 |
| 40° 41 42 43 44 45°    | 9.9238<br>9.9392<br>9.9544<br>9.9697<br>9.9848<br>0.0000 | 9254<br>•9407<br>9560<br>9712<br>9864  | 9269<br>9422<br>9575<br>9727<br>9879 | 9284<br>9438<br>9590<br>9742<br>9894 | 9300<br>9453<br>9605<br>9757<br>9909 | 9315<br>9468<br>9621<br>9772<br>9924 | 9330<br>9483<br>9636<br>9788<br>9939  | 9346<br>9499<br>9651<br>9803<br>9955  | 9361<br>9514<br>9666<br>9818<br>9970  | 9376<br>9529<br>9681<br>9833<br>9985  | 9392<br>9544<br>9697<br>9848<br>*0000       | 49<br>48<br>47<br>46<br><b>4</b> 5° |
|                        |                                                          | 9                                      | 8                                    | 7                                    | 6                                    | 5                                    | 4                                     | 3                                     | 2                                     | 1                                     | 0                                           | L. Cot.                             |

| L. Tang.                                 | 0                                        | 1                                    | 2                                    | 3                                     | 4                                     | 5                                     | 6                                     | 7                                     | 8                                     | 9                                     | -                                              |                                    |
|------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------|
| <b>45°</b><br>46<br>47<br>48<br>49       | 0.0000<br>0152<br>0303<br>0456<br>0608   | 0015<br>0167<br>0319<br>0471<br>0624 | 0030<br>0182<br>0334<br>0486<br>0639 | 0045<br>0197<br>0349<br>0501<br>0654  | 0061<br>0212<br>0364<br>0517<br>0670  | 0076<br>0228<br>0379<br>0532<br>0685  | 0091<br>0243<br>0395<br>0547<br>0700  | 0106<br>0258<br>0410<br>0562<br>0716  | 0121<br>0273<br>0425<br>0578<br>0731  | 0136<br>0288<br>0440<br>0593<br>0746  | 0.0000<br>0152<br>0303<br>0456<br>0608<br>0762 | 45°<br>44<br>43<br>42<br>41<br>40° |
| <b>50°</b> 51 52 53 54                   | 0.0762<br>0916<br>1072<br>1229<br>1387   | 0777<br>0932<br>1088<br>1245<br>1403 | 0793<br>0947<br>1103<br>1260<br>1419 | 0808<br>0963<br>1119<br>1276<br>1435  | 0824<br>0978<br>1135<br>1292<br>1451  | 0839<br>0994<br>1150<br>1308<br>1467  | 0854<br>1010<br>1166<br>1324<br>1483  | 1182<br>1340                          | 1197<br>1356                          |                                       | 0916<br>1072<br>1229<br><b>1</b> 387<br>1548   | 39<br>38<br>37<br>36<br>35         |
| 55<br>56<br>57<br>58<br>59               | 1548<br>1710<br>1875<br>2042<br>2212     | 1564<br>1726<br>1891<br>2059<br>2229 | 1580<br>1743<br>1908<br>2076<br>2247 | 1596<br>1759<br>1925<br>2093<br>2264  | 1612<br>1776<br>1941<br>2110<br>2281  | 1629<br>1792<br>1958<br>2127<br>2299  | 1645<br>1809<br>1975<br>2144<br>2316  | 1825<br>1992<br>2161                  | 2008<br>2178                          | 2025                                  | 1710<br>1875<br>2042<br>2212<br>2386           | 34<br>33<br>32<br>31<br>30°        |
| 60°<br>61<br>62<br>63<br>64              | 0.2386<br>2562<br>2743<br>2928<br>3118   | 2403<br>2580<br>2762<br>2947<br>3137 | 2421<br>2598<br>2780<br>2966<br>3157 | 2438<br>2616<br>2798<br>2985<br>3176  | 2456<br>2634<br>2817<br>3004<br>3196  | 2474<br>2652<br>2835<br>3023<br>3215  | 2491<br>2670<br>2854<br>3042<br>3235  | 2509<br>2689<br>2872<br>3061<br>3254  | 2527<br>2707<br>2891<br>3080<br>3274  | 2545<br>2725<br>2910<br>3099<br>3294  | 2562<br>2743<br>2928<br>3118<br>3313           | 29<br>28<br>27<br>26<br>25         |
| 65<br>66<br>67<br>68<br>69               | 3313<br>3514<br>3721<br>3936<br>4158     | 3333<br>3535<br>3743<br>3958<br>4181 | 3353<br>3555<br>3764<br>3980<br>4204 | 3373<br>3576<br>3785<br>4002<br>4227  | 3393<br>3596<br>3806<br>4024<br>4250  | 3413<br>3617<br>3828<br>4046<br>4273  | 3433<br>3638<br>3849<br>4068<br>4296  | 3453<br>3659<br>3871<br>4091<br>4319  | 3473<br>3679<br>3892<br>4113<br>4342  | 3494<br>3700<br>3914<br>4136<br>4366  | 3514<br>3721<br>3936<br>4158<br>4389           | 24<br>23<br>22<br>21<br>20°        |
| 70°<br>71<br>72<br>73<br>74              | 0.4389<br>4630<br>4882<br>5147<br>5425   | 4413<br>4655<br>4908<br>5174<br>5454 | 4437<br>4680<br>4934<br>5201<br>5483 | 4461<br>4705<br>4960<br>5229<br>5512  | 4484<br>4730<br>4986<br>5256<br>5541  | 4509<br>4755<br>5013<br>5284<br>5570  | 4533<br>4780<br>5039<br>5312<br>5600  | 4557<br>4805<br>5066<br>5340<br>5629  |                                       | 4606<br>4857<br>5120<br>5397<br>5689  | 4630<br>4882<br>5147<br>5425<br>5719           | 19<br>18<br>17<br>16<br>15         |
| 75<br>76<br>77<br>78<br>79               | 5719<br>6032<br>6366<br>6725<br>7113     | 5750<br>6065<br>6401<br>6763<br>7154 | 5780<br>6097<br>6436<br>6800<br>7195 | 5811<br>6130<br>6471<br>6838<br>7236  | 5842<br>6163<br>6507<br>6877<br>7278  | 5873<br>6196<br>6542<br>6915<br>7320  | 5905<br>6230<br>6578<br>6954<br>7363  | 5936<br>6264<br>6615<br>6994<br>7406  | 5968<br>6298<br>6651<br>7033<br>7449  | 6000<br>6332<br>6688<br>7073<br>7493  | 6032<br>6366<br>6725<br>7113<br>7537           | 14<br>13<br>12<br>11<br>10°        |
| 80°<br>81<br>82<br>83<br>84              | 0.7537<br>8003<br>8522<br>9109<br>0.9784 | 7581<br>8052<br>8577<br>9172<br>9857 | 7626<br>8102<br>8633<br>9236<br>9932 | 7672<br>8152<br>8690<br>9301<br>*0008 | 7718<br>8203<br>8748<br>9367<br>*0085 |                                       | 7811<br>8307<br>8865<br>9501<br>*0244 | 7858<br>8360<br>8924<br>9570<br>*0326 |                                       |                                       | 8003<br>8522<br>9109<br>9784<br>*0580          | 9<br>8<br>7<br>6<br>5              |
| 85<br>86<br>87<br>88<br>89<br><b>90°</b> | 1.0580<br>1554<br>2806<br>4569<br>1.7581 | 0669<br>1664<br>2954<br>4792<br>8038 | 0759<br>1777<br>3106<br>5027<br>8550 | 0850<br>1893<br>3264<br>5275<br>9130  | 0944<br>2012<br>3429<br>5539<br>9800  | 1040<br>2135<br>3599<br>5819<br>*0591 | 1138<br>2261<br>3777<br>6119<br>*1561 | 1238<br>2391<br>3962<br>6441<br>*2810 | 1341<br>2525<br>4155<br>6789<br>*4571 | 1446<br>2663<br>4357<br>7167<br>*7581 | 1554<br>2806<br>4569<br>7581<br>∞              | 4<br>3<br>2<br>1<br>0°             |
|                                          |                                          | 9                                    | 8                                    | 7                                     | 6                                     | 5                                     | 4                                     | 3                                     | 2                                     | 1                                     | 0                                              | L. Cot.                            |

| L. Tang. | 0      | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9     |       |         |
|----------|--------|------|------|------|------|------|------|------|------|-------|-------|---------|
| 80°.0    | 0.7537 | 7541 | 7546 | 7550 | 7555 | 7559 | 7563 | 7568 | 7572 | 7577  | 7581  | 9.9     |
| 80.1     | 7581   | 7586 | 7590 | 7595 | 7599 | 7604 | 7608 | 7613 | 7617 | 7622  | 7626  | 9.8     |
| 80.2     | 7626   | 7631 | 7635 | 7640 | 7644 | 7649 | 7654 | 7658 | 7663 | 7667  | 7672  | 9.7     |
| 80.3     | 7672   | 7676 | 7681 | 7685 | 7690 | 7695 | 7699 | 7704 | 7708 | 7713  | 7718  | 9.6     |
| 80.4     | 7718   | 7722 | 7727 | 7731 | 7736 | 7741 | 7745 | 7750 | 7755 | 7759  | 7764  | 9.5     |
| 80.5     | 7764   | 7769 | 7773 | 7778 | 7783 | 7787 | 7792 | 7797 | 7801 | 7806  | 7811  | 9.4     |
| 80.6     | 7811   | 7815 | 7820 | 7825 | 7830 | 7834 | 7839 | 7844 | 7849 | 7853  | 7858  | 9.3     |
| 80.7     | 7858   | 7863 | 7868 | 7872 | 7877 | 7882 | 7887 | 7891 | 7896 | 7901  | 7906  | 9.2     |
| 80.8     | 7906   | 7911 | 7915 | 7920 | 7925 | 7930 | 7935 | 7940 | 7944 | 7949  | 7954  | 9.1     |
| 80.9     | 7954   | 7959 | 7964 | 7969 | 7974 | 7978 | 7983 | 7988 | 7993 | 7998  | 8003  | 9°.0    |
| 81°.0    | 0.8003 | 8008 | 8013 | 8018 | 8023 | 8027 | 8032 | 8037 | 8042 | 8047  | 8052  | 8.9     |
| 81.1     | 8052   | 8057 | 8062 | 8067 | 8072 | 8077 | 8082 | 8087 | 8092 | 8097  | 8102  | 8.8     |
| 81.2     | 8102   | 8107 | 8112 | 8117 | 8122 | 8127 | 8132 | 8137 | 8142 | 8147  | 8152  | 8.7     |
| 81.3     | 8152   | 8158 | 8163 | 8168 | 8173 | 8178 | 8183 | 8188 | 8193 | 8198  | 8203  | 8.6     |
| 81.4     | 8203   | 8209 | 8214 | 8219 | 8224 | 8229 | 8234 | 8239 | 8245 | 8250  | 8255  | 8.5     |
| 81.5     | 8255   | 8260 | 8265 | 8271 | 8276 | 8281 | 8286 | 8291 | 8297 | 8302  | 8307  | 8.4     |
| 81.6     | 8307   | 8312 | 8318 | 8323 | 8328 | 8333 | 8339 | 8344 | 8349 | 8355  | 8360  | 8.3     |
| 81.7     | 8360   | 8365 | 8371 | 8376 | 8381 | 8387 | 8392 | 8397 | 8403 | 8408  | 8413  | 8.2     |
| 81.8     | 8413   | 8419 | 8424 | 8429 | 8435 | 8440 | 8446 | 8451 | 8456 | 8462  | 8467  | 8.1     |
| 81.9     | 8467   | 8473 | 8478 | 8484 | 8489 | 8495 | 8500 | 8506 | 8511 | 8516  | 8522  | 8°.0    |
| 82°.0    | 0.8522 | 8527 | 8533 | 8539 | 8544 | 8550 | 8555 | 8561 | 8566 | 8572  | 8577  | 7.9     |
| 82.1     | 8577   | 8583 | 8588 | 8594 | 8600 | 8605 | 8611 | 8616 | 8622 | 8628  | 8633  | 7.8     |
| 82.2     | 8633   | 8639 | 8645 | 8650 | 6856 | 8662 | 8667 | 8673 | 8679 | 8684  | 8690  | 7.7     |
| 82.3     | 8690   | 8696 | 8701 | 8707 | 8713 | 8719 | 8724 | 8730 | 8736 | 8742  | 8748  | 7.6     |
| 82.4     | 8748   | 8753 | 8759 | 8765 | 8771 | 8777 | 8782 | 8788 | 8794 | 8800  | 8806  | 7.5     |
| 82.5     | 8806   | 8812 | 8817 | 8823 | 8829 | 8835 | 8841 | 8847 | 8853 | 8859  | 8865  | 7.4     |
| 82.6     | 8865   | 8871 | 8877 | 8883 | 8888 | 8894 | 8900 | 8906 | 8912 | 8918  | 8924  | 7.3     |
| 82.7     | 8924   | 8930 | 8936 | 8942 | 8949 | 8955 | 8961 | 8967 | 8973 | 8979  | 8985  | 7.2     |
| 82.8     | 8985   | 8991 | 8997 | 9003 | 9009 | 9016 | 9022 | 9028 | 9034 | 9040  | 9046  | 7.1     |
| 82.9     | 9046   | 9053 | 9059 | 9065 | 9071 | 9077 | 9084 | 9090 | 9096 | 9102  | 9109  | 7°.0    |
| 83°.0    | 0.9109 | 9115 | 9121 | 9127 | 9134 | 9140 | 9146 | 9153 | 9159 | 9165  | 9172  | 6.9     |
| · 83.1   | 9172   | 9178 | 9184 | 9191 | 9197 | 9204 | 9210 | 9216 | 9223 | 9229  | 9236  | 6.8     |
| 83.2     | 9236   | 9242 | 9249 | 9255 | 9262 | 9268 | 9275 | 9281 | 9288 | 9294  | 9301  | 6.7     |
| 83.3     | 9301   | 9307 | 9314 | 9320 | 9327 | 9333 | 9340 | 9347 | 9353 | 9360  | 9367  | 6.6     |
| 83.4     | 9367   | 9373 | 9380 | 9386 | 9393 | 9400 | 9407 | 9413 | 9420 | 9427  | 9433  | 6.5     |
| 83.5     | 9433   | 9440 | 9447 | 9454 | 9460 | 9467 | 9474 | 9481 | 9488 | 9494  | 9501  | 6.4     |
| 83.6     | 9501   | 9508 | 9515 | 9522 | 9529 | 9536 | 9543 | 9549 | 9556 | 9563  | 9570  | 6.3     |
| 83.7     | 9570   | 9577 | 9584 | 9591 | 9598 | 9605 | 9612 | 9619 | 9626 | 9633  | 9640  | 6.2     |
| 83.8     | 9640   | 9647 | 9654 | 9662 | 9669 | 9676 | 9683 | 9690 | 9697 | 9704  | 9711  | 6.1     |
| 83.9     | 9711   | 9719 | 9726 | 9733 | 9740 | 9747 | 9755 | 9762 | 9769 | 9777  | 9784  | 6°.0    |
| 84°.0    | 0.9784 | 9791 | 9798 | 9806 | 9813 | 9820 | 9828 | 9835 | 9843 | 9850  | 9857  | 5.9     |
| 84.1     | 9857   | 9865 | 9872 | 9880 | 9887 | 9895 | 9902 | 9910 | 9917 | 9925  | 9932  | 5.8     |
| 84.2     | 0.9932 | 9940 | 9947 | 9955 | 9962 | 9970 | 9978 | 9985 | 9993 | *0000 | *0008 | 5.7     |
| 84.3     | 1.0008 | 0016 | 0023 | 0031 | 0039 | 0047 | 0054 | 0062 | 0070 | 0078  | 0085  | 5.6     |
| 84.4     | 0085   | 0093 | 0101 | 0109 | 0117 | 0125 | 0133 | 0140 | 0148 | 0156  | 0164  | 5.5     |
| 84.5     | 0164   | 0172 | 0180 | 0188 | 0196 | 0204 | 0212 | 0220 | 0228 | 0236  | 0244  | 5.4     |
| 84.6     | 0244   | 0253 | 0261 | 0269 | 0277 | 0285 | 0293 | 0301 | 0310 | 0318  | 0326  | 5.3     |
| 84.7     | 0326   | 0334 | 0343 | 0351 | 0359 | 0367 | 0376 | 0384 | 0392 | 0401  | 0409  | 5.2     |
| 84.8     | 0409   | 0418 | 0426 | 0435 | 0443 | 0451 | 0460 | 0468 | 0477 | 0485  | 0494  | 5.1     |
| 84.9     | 1.0494 | 0503 | 0511 | 0520 | 0528 | 0537 | 0546 | 0554 | 0563 | 0572  | 0580  | 5°.0    |
|          |        | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1     | 0     | L. Cot. |

| L. Tang.                              | 0                                        | 1                                    | 2                                    | 3                                     | 4                                    | 5                                     | 6                                     | 7                                     | 8                    | 9                                     |                                    |                                  |
|---------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------|---------------------------------------|------------------------------------|----------------------------------|
| <b>85°.0</b>                          | 1.0580                                   | 0589                                 | 0598                                 | 0607                                  | 0616                                 | 0624                                  | 0633                                  | 0642                                  | 0651                 | 0660                                  | 0669                               | 4.9                              |
| 85.1                                  | 0669                                     | 0678                                 | 0687                                 | 0695                                  | 0704                                 | 0713                                  | 0722                                  | 0731                                  | 0740                 | 0750                                  | 0759                               | 4.8                              |
| 85.2                                  | 0759                                     | 0768                                 | 0777                                 | 0786                                  | 0795                                 | 0804                                  | 0814                                  | 0823                                  | 0832                 | 0841                                  | 0850                               | 4.7                              |
| 85.3                                  | 0850                                     | 0860                                 | 0869                                 | 0878                                  | 0888                                 | 0897                                  | 0907                                  | 0916                                  | 0925                 | 0935                                  | 0944                               | 4.6                              |
| 85.4                                  | 0944                                     | 0954                                 | 0963                                 | 0973                                  | 0982                                 | 0992                                  | 1002                                  | 1011                                  | 1021                 | 1030                                  | 1040                               | 4.5                              |
| 85.5                                  | 1040                                     | 1050                                 | 1060                                 | 1069                                  | 1079                                 | 1089                                  | 1099                                  | 1109                                  | 1118                 | 1128                                  | 1138                               | 4.4                              |
| 85.6                                  | 1138                                     | 1148                                 | 1158                                 | 1168                                  | 1178                                 | 1188                                  | 1198                                  | 1208                                  | 121 <b>8</b>         | 1228                                  | 1238                               | 4.3                              |
| 85.7                                  | 1238                                     | 1249                                 | 1259                                 | 1269                                  | 1279                                 | 1289                                  | 1300                                  | 1310                                  | 1320                 | 1331                                  | 1341                               | 4.2                              |
| 85.8                                  | 1341                                     | 1351                                 | 1362                                 | 1372                                  | 1383                                 | 1393                                  | 1404                                  | 1414                                  | 1425                 | 1435                                  | 1446                               | 4.1                              |
| 85.9                                  | 1446                                     | 1457                                 | 1467                                 | 1478                                  | 1489                                 | 1499                                  | 1510                                  | 1521                                  | 1532                 | 1543                                  | 1554                               | <b>4°</b> .0                     |
| 86°.0                                 | 1.1554                                   | 1564                                 | 1575                                 | 1586                                  | 1597                                 | 1608                                  | 1619                                  | 1630                                  | 1642                 | 1653                                  | 1664                               | 3.9                              |
| 86.1                                  | 1664                                     | 1675                                 | 1686                                 | 1698                                  | 1709                                 | 1720                                  | 1731                                  | 1743                                  | 1754                 | 1766                                  | 1777                               | 3.8                              |
| 86.2                                  | 1777                                     | 1788                                 | 1800                                 | 1812                                  | 1823                                 | 1835                                  | 1846                                  | 1858                                  | 1870                 | 1881                                  | 1893                               | 3.7                              |
| 86.3                                  | 1893                                     | 1905                                 | 1917                                 | 1929                                  | 1941                                 | 1952                                  | 1964                                  | 1976                                  | 1988                 | 2000                                  | 2012                               | 3.6                              |
| 86.4                                  | 2012                                     | 2025                                 | 2037                                 | 2049                                  | 2061                                 | 2073                                  | 2086                                  | 2098                                  | 2110                 | 2123                                  | 2135                               | 3.5                              |
| 86.5                                  | 2135                                     | 2148                                 | 2160                                 | 2173                                  | 2185                                 | 2198                                  | 2210                                  | 2223                                  | 2236                 | 2249                                  | 2261                               | 3.4                              |
| 86.6                                  | 2261                                     | 2274                                 | 2280                                 | 2300                                  | 2313                                 | 2326                                  | 2339                                  | 2352                                  | 2365                 | 2378                                  | 2391                               | 3.3                              |
| 86.7                                  | 2391                                     | 2404                                 | 2418                                 | 2431                                  | 2444                                 | 2458                                  | 2471                                  | 2485                                  | 2498                 | 2512                                  | 2525                               | 3.2                              |
| 86.8                                  | 2525                                     | 2539                                 | 2552                                 | 2566                                  | 2580                                 | 2594                                  | 2608                                  | 2621                                  | 2635                 | 2649                                  | 2663                               | 3.1                              |
| 86.9                                  | 2663                                     | 2677                                 | 2692                                 | 2706                                  | 2720                                 | 2734                                  | 2748                                  | 2763                                  | 2777                 | 2792                                  | 2806                               | 3°.0                             |
| 87°.0                                 | 1.2806                                   | 2821                                 | 2835                                 | 2850                                  | 2864                                 | 2879                                  | 2894                                  | 2909                                  | 2924                 | 2939                                  | 2954                               | 2.9                              |
| 87.1                                  | 2954                                     | 2969                                 | 2984                                 | 2999                                  | 3014                                 | 3029                                  | 3044                                  | 3060                                  | 3075                 | 3091                                  | 3106                               | 2.8                              |
| 87.2                                  | 3106                                     | 3122                                 | 3137                                 | 3153                                  | 3169                                 | 3185                                  | 3200                                  | 3216                                  | 3232                 | 3248                                  | 3264                               | 2.7                              |
| 87.3                                  | 3264                                     | 3281                                 | 3297                                 | 3313                                  | 3329                                 | 3346                                  | 3362                                  | 3379                                  | 3395                 | 3412                                  | 3429                               | 2.6                              |
| 87.4                                  | 3429                                     | 3445                                 | 3462                                 | 3479                                  | 3496                                 | 3513                                  | 3530                                  | 3547                                  | 3564                 | 3582                                  | 3599                               | 2.5                              |
| 87.5                                  | 3599                                     | 3616                                 | 3634                                 | 3652                                  | 3669                                 | 3687                                  | 3705                                  | 3723                                  | 3740                 | 3758                                  | 3777                               | 2.4                              |
| 87.6                                  | 3777                                     | 3795                                 | 3813                                 | 3831                                  | 3850                                 | 3868                                  | 3887                                  | 3905                                  | 3924                 | 3943                                  | 3962                               | 2.3                              |
| 87.7                                  | 3962                                     | 3981                                 | 4000                                 | 4019                                  | 4038                                 | 4057                                  | 4077                                  | 4096                                  | 4116                 | 4135                                  | 4155                               | 2.2                              |
| 87.8                                  | 4155                                     | 4175                                 | 4195                                 | 4215                                  | 4235                                 | 4255                                  | 4275                                  | 4295                                  | 4316                 | 4336                                  | 4357                               | 2.1                              |
| 87.9                                  | 4357                                     | 4378                                 | 4399                                 | 4420                                  | 4441                                 | 4462                                  | 4483                                  | 4504                                  | 4526                 | 4547                                  | 4569                               | 2°.0                             |
| 88°.0                                 | 1.4569                                   | 4591                                 | 4613                                 | 4635                                  | 4657                                 | 4679                                  | 4702                                  | 4724                                  | 4747                 | 4769                                  | 4792                               | 1.9                              |
| 88.1                                  | 4792                                     | 4815                                 | 4838                                 | 4861                                  | 4885                                 | 4908                                  | 4932                                  | 4955                                  | 4979                 | 5003                                  | 5027                               | 1.8                              |
| 88.2                                  | 5027                                     | 5051                                 | 5076                                 | 5100                                  | 5125                                 | 5149                                  | 5174                                  | 5199                                  | 5225                 | 5250                                  | 5275                               | 1.7                              |
| 88.3                                  | 5275                                     | 5301                                 | 5327                                 | 5353                                  | 5379                                 | 5405                                  | 5432                                  | 5458                                  | 5485                 | 5512                                  | 5539                               | 1.6                              |
| 88.4                                  | 5539                                     | 5566                                 | 5594                                 | 5621                                  | 5649                                 | 5677                                  | 5705                                  | 5733                                  | 5762                 | 5790                                  | 5819                               | 1.5                              |
| 88.5                                  | 5819                                     | 5848                                 | 5878                                 | 5907                                  | 5937                                 | 5967                                  | 5997                                  | 6027                                  | 6057                 | 6088                                  |                                    | 1.4                              |
| 88.6                                  | 6119                                     | 6150                                 | 6182                                 | 6213                                  | 6245                                 | 6277                                  | 6309                                  | 6342                                  | 6375                 | 6408                                  |                                    | 1.3                              |
| 88.7                                  | 6441                                     | 6475                                 | 6508                                 | 6542                                  | 6577                                 | 6611                                  | 6646                                  | 6682                                  | 6717                 | 6753                                  |                                    | 1.2                              |
| 88.8                                  | 6789                                     | 6825                                 | 6862                                 | 6899                                  | 6936                                 | 6974                                  | 7012                                  | 7050                                  | 7088                 | 7127                                  |                                    | 1.1                              |
| 88.9                                  | 7167                                     | 7206                                 | 7246                                 | 7287                                  | 7328                                 | 7369                                  | 7410                                  | 7452                                  | 7495                 | 7538                                  |                                    | <b>1°</b> .0                     |
| 89°.0<br>89.1<br>89.2<br>89.3<br>89.4 | 1.7581<br>8038<br>8550<br>9130<br>1.9800 | 7624<br>8087<br>8605<br>9193<br>9873 | 7669<br>8136<br>8660<br>9256<br>9947 | 7713<br>8186<br>8716<br>9320<br>*0022 | 8236                                 | 7804<br>8287<br>8830<br>9452<br>*0177 | 7850<br>8338<br>8889<br>9519<br>*0257 | 7896<br>8390<br>8948<br>9588<br>*0338 | 8443<br>9008<br>9657 | 8496<br>9068<br>9728                  | 8550<br>9130<br>9800               | 0.9<br>0.8<br>0.7<br>0.6<br>0.5  |
| 89.5<br>89.6<br>89.7<br>89.8<br>89.9  | 2.0591<br>1561<br>2810<br>4571<br>2.7581 | 0679<br>1671<br>2957<br>4794<br>8039 | 0769<br>1783<br>3110<br>5028<br>8550 | 0860<br>1899<br>3268<br>5277<br>9130  | 0954<br>2018<br>3431<br>5540<br>9800 | 1049<br>2140<br>3602<br>5820<br>*0592 | 1147<br>2266<br>3779<br>6120<br>*1561 |                                       | 4157<br>6789         | 1453<br>2668<br>4359<br>7167<br>*7581 | 1561<br>2810<br>4571<br>7581<br>-∞ | 0.4<br>0.3<br>0.2<br>0.1<br>0°.0 |
|                                       |                                          | 9                                    | 8                                    | 7                                     | 6                                    | 5                                     | 4                                     | 3                                     | 2                    | 1                                     | 0                                  | L. Cot.                          |

TABLE VIII

# Conversion of '" into Decimal Parts of a Degree

| 1'<br>2'<br>3'<br>4'<br>5'<br>6'<br>7'<br>8' | 0.016°<br>.033<br>.050<br>.066<br>.083<br>.100<br>.116 | 11'<br>12'<br>13'<br>14'<br>15'<br>16'<br>17'<br>18' | 0.183°<br>.200<br>.216<br>.233<br>.250<br>.266<br>.283<br>.300 | 21'<br>22'<br>23'<br>24'<br>25'<br>26'<br>27'<br>28' | 0.350°<br>.366<br>.383<br>.400<br>.416<br>.433<br>.450 | 31'<br>32'<br>33'<br>34'<br>35'<br>36'<br>37'<br>38' | 0.516°<br>.533<br>.550<br>.566<br>.583<br>.600<br>.616 | 41'<br>42'<br>43'<br>44'<br>45'<br>46'<br>47'<br>48' | 0.683°<br>.700<br>.716<br>.733<br>.750<br>.766<br>.783 | 51'<br>52'<br>53'<br>54'<br>55'<br>56'<br>57'<br>58' | 0.850°<br>.866<br>.883<br>.900<br>.916<br>.933<br>.950 |
|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| 8'<br>9'                                     | .133<br>.150                                           | 18'<br>19'                                           | .300<br>.316                                                   | 28'<br>29'                                           | .466<br>.483                                           | 38′<br>39′                                           | .633<br>.650                                           | 48′<br>49′                                           | .800<br>.816                                           | 58′<br>59′                                           | .966<br>.983                                           |
| 10'                                          | .166                                                   | 20'                                                  | .333                                                           | 30'                                                  | .500                                                   | 40′                                                  | .666                                                   | 50′                                                  | .833                                                   | 60′                                                  | 1.000                                                  |

| 2" .<br>3" .<br>4" . | .00028° 6″<br>.00056 7″<br>.00083 8″<br>.00111 9″ | 0.00166°<br>.00194<br>.00222<br>.00250 | 10"<br>20"<br>30"<br>40"<br>50" | 0.00277°<br>.00555<br>.00833<br>.01111<br>.01388 |
|----------------------|---------------------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------|
|----------------------|---------------------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------|

TABLE IX

# Conversion of Decimal Parts of a Degree into ' "

| 7 36" 0.51°<br>7 12" .52<br>7 48" .53<br>7 24" .54<br>7 36" .56<br>7 12" .57<br>7 48" .58<br>7 24" .59<br>.60<br>7 36" .92<br>7 36" .92<br>7 36" .92<br>7 36" .93 | 30' 36"<br>31' 12"<br>31' 48"<br>32' 24"<br>33' 36"<br>34' 12"<br>34' 48"<br>36' 24"<br>36' 55' 12"<br>55' 48"<br>56' 24" | .30 0.61° .62 .63 .64 .65 .66 .67 .68 .69 .70 0.001° .002 .003 .004 .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18' 36' 36" 37' 12" 37' 48" 38' 24" 39' 36" 40' 12" 40' 48" 41' 24" 42' 10.8" 14.4" 18 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .40<br>0.71°<br>.72<br>.73<br>.74<br>.75<br>.76<br>.77<br>.78<br>.79<br>.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24'<br>42' 36"<br>43' 12"<br>43' 48"<br>44' 24"<br>45' 36"<br>46' 12"<br>46' 48"<br>47' 24"<br>48'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , 12" .97<br>, 48" .98                                                                                                                                            | 58' 12"<br>58' 48"                                                                                                        | .007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.2"<br>28.8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | 7 36"                                                                                                                     | 36"         0.51°         30' 36"           ' 12"         .52         31' 12"           ' 48"         .53         31' 48"           ' 24"         .54         32' 24"           ' 36"         .56         33' 36"           ' 12"         .57         34' 12"           ' 48"         .58         34' 48"           ' 24"         .59         35' 24"           ' 36"         .91°         54' 36"           ' 12"         .92         55' 12"           ' 48"         .93         55' 48"           ' 24"         .95         57'           ' 36"         .96         57' 36"           ' 12"         .97         58' 12"           ' 48"         .98         58' 48"           ' 24"         .99         59' 24" | 7 36"         0.51°         30' 36"         0.61°           12"         .52         31' 12"         .62           48"         .53         31' 48"         .63           '24"         .54         32' 24"         .64           '36"         .56         33' 36"         .66           '12"         .57         34' 12"         .67           '48"         .58         34' 48"         .68           '24"         .59         35' 24"         .69           '60         36'         .70           '36"         .91°         55' 12"         .002           '48"         .93         55' 48"         .003           '24"         .94         56' 24"         .004           '36"         .96         57' 36"         .006           '12"         .97         58' 12"         .007           '48"         .98         58' 48"         .008           '12"         .99         59' 24"         .009           '48"         .98         58' 48"         .009           '10"         .90         59' 24"         .009 | 7 36"         0.51°         30' 36"         0.61°         36' 36"           1 12"         .52         31' 12"         .62         37' 12"           1 48"         .53         31' 48"         .63         37' 48"           1 2"         .54         32' 24"         .64         38' 24"           2 36"         .55         33'         .65         39'           3 6"         .56         33' 36"         .66         33' 36"           4 8"         .58         34' 12"         .67         40' 12"           4 8"         .58         34' 48"         .68         40' 48"           2 4"         .59         35' 24"         .69         41' 24"           3 6"         .00         36'         .70         42'           4 8"         .92         .55' 12"         .002         7.2"           4 8"         .93         .55' 48"         .003         10.8"           2 44"         .94         .56' 24"         .004         14.4"           4 94         .56' 24"         .005         18"           4 36"         .96         .57' 36"         .006         21.6"           4 2"         .97         .58' 12" | 7 36"         0.51°         30' 36"         0.61°         36' 36"         0.71°           7 12"         .52         31' 12"         .62         37' 12"         .72           7 48"         .53         31' 48"         .63         37' 48"         .73           7 24"         .54         32' 24"         .64         38' 24"         .74           .55         33' 36"         .66         39' 36"         .75           .7 36"         .56         33' 36"         .66         39' 36"         .76           .7 12"         .57         34' 12"         .67         40' 12"         .77           .7 48"         .58         34' 48"         .68         40' 48"         .78           .2 4"         .59         35' 24"         .69         41' 24"         .79           .60         36'         .70         42'         .80           .7 36"         .92         55' 12"         .002         7.2"           .4 8"         .93         55' 48"         .003         10.8"           .7 24"         .94         .56' 24"         .004         14.4"           .95         .57'         .005         18"           .7 36" |

[ 114 ]

# ANSWERS

#### Exercise 1

- 1.  $\log_3 9 = 2$ .  $\log_3 27 = 3$ .  $\log_4 64 = 4$ .  $\log_4 \frac{1}{16} = -2$ .  $\log_3 \frac{1}{9} = -2$ .  $\log_3 \frac{1}{81} = -4$ .  $\log_{10} \frac{1}{10} = -1$ .  $\log_{10} .01 = -2$ .  $\log_{10} .001 = -3$ .
  - **2.**  $\log_2 32 = 5$ .  $\log_2 \frac{1}{32} = -5$ .  $\log_4 8 = \frac{3}{2}$ .  $\log_2 \frac{1}{128} = -7$ .  $\log_8 16 = \frac{4}{3}$ .
  - 3. 1. 9.  $\sqrt[3]{64} = 4$ .  $\sqrt[5]{1024} = 4$ .  $\sqrt[4]{4096} = 8$ .

#### Exercise 2

- 1. 2. 3. 2. 5. 0. 7. 0. 9. -3. 11. 0. 13. -4. 15. 1
- **2.** 4. **4.** 1. **6.** -2. **8.** 0. **10.** -5. **12.** 3. **14.** 2. **16.** 3 = 4. 2 = 3. 5 = 6. 1 = 2. 0 = 1. 4 = 5. 8 10 = 1. 7 10 = 2. 9 10 = 0.

#### Exercise 3

- **1.** 3.88235. **8.** 1.82751. **15.** 1.93952. **22.** 8.27135 10.
- 3. 82737.
   0. 52410.
   9. 88081 10.
   14. 9.88081 10.
   15. 6.09691 10.
   16. 9.88081 10.
   17. 6.09691 10.
   18. 3.51427.
- **4.** 3.89553. **11.** 4.84510 10. **18.** 2.00109. **25.** 2.51427.
- **5.** 1.87506. **12.** 5.60206. **19.** 1.24622. **26.** 1.51427.
- **6.** 2.19590. **13.** 1.16505 10. **20.** 1.62325. **27.** 0.51427.
- 7. 4.55965. 14. 7.35550. 21. 4.0000 10. 28.  $\log 200 = 2.30103$ .  $\log 3000 = 3.47712$ .  $\log 50 = 1.69897$ .  $\log 100 \pi =$

100

- $\log .2 = 9.30103 10.$   $\log 10 \pi = 1.49715.$   $\log 20000 = 4.30103.$ **29.** 1.1028. **35.** .0011. **40.** 2.9847. **45.** 4.4619.
  - **30**. 2.8824. **36**. 1.3923. **41**. 0.1666. **46**. 1.2916.
  - **31.** 1.6302. **37.** 9.0459 10. **42.** 0.2462. **47.** 9.9358 10.
  - **32**. .0887. **38**. 1.0676. **43**. 5.5655 10. **48**. 8.0012 10.
  - **33**. 8.4200 10. **39**. 7.1030 10. **44**. 7.4213 10. **49**. 0.3474.
  - **34.** 7.1030 10.

- 1. 26.22. 11. 221.705. 20. 25.6. **29**. 454.44. **2**. 157.6. **12**. .01569. **21.** 541. 30. .0000022337. **22.** 1712. **31**. 657.166. **3**. 9.627. **13**. 10.88375. 4. 48323333.3. 14. .50742. 23. .14277. **32.** 201.409. **5**. .16719. **15.** 1647.3. **24.** 107.8. **33**. .3625. **6**. .00026827. **16.** 1008581.4. **25**. 10.315. **34.** 9.6968 — 10. **17**. .78488. **26**. .0106725. **35**. 3.1443. **7**. 3896545.45.
- 7. 3896545,45.
   17. .78488.
   26. .0106725.
   35. 3.1443

   8. .000055855.
   18. 96988.
   27. .001309.
   36. 49.25.

   9. 100925581,4.
   19. .69781.
   28. .000010044.
   37. .2285.
- **10.** .37029.

# ANSWERS

# Exercise 5

4. 8.3552. 1. 53295. **7**. 1.492. 10. .96518. **13**. - .34526. **2.** 1383.62. **5**. 514.055. 8. .01141. **11.** - 1.8583. **14.** \$ 33945. **3**. 211820. **6.** 19.033913. **9**. 5.3921. **12**. - .059439. **15.** \$491.04.  $\frac{300 \times 500}{2} = 47746.67.$  $\frac{100 \ \pi}{} = 5.4165.$  $\frac{200}{376} = .53191.$ 3.4435 A., 18. 1.3774 A., 45.9134 A. **21**. .4171. **23**. 3261. **25**. 3.908. **19**. 33.38. **27**. .0939. **31**. \$ 325.60. **20**. 6.727. **22**. 2034.3. **24**. 1.16467. **26**. 3.413. **30**. \$213.47. **32**. \$5874.75.

# Exercise 6

| 1. | .972.                                             | 9.  | 2.34667.  | 19.         | .11069.         | 29. | 6080000. |
|----|---------------------------------------------------|-----|-----------|-------------|-----------------|-----|----------|
| 2. | 99.266.                                           | 10. | 0447.     | 20.         | 2519.6.         | 30. | 4.245.   |
| 3. | 8.9254.                                           | 11. | -1.5793.  | 21.         | 7061.67.        | 31. | 17.49.   |
| 4. | .182916.                                          | 12. | 24.1394.  | 22.         | 65.97 = 66  yr. | 32. | 1.272.   |
| 5. | 1602.4                                            | 13. | 19.85.    | 23.         | .5342.          | 33. | .4163.   |
| 6. | 2.37242.                                          | 14. | 24.035    | 24.         | 1.6167.         | 34. | 12.07.   |
| 7. | 218.51.                                           | 15. | 189.66.   | <b>2</b> 5. | 1.1377.         | 35. | 5.77.    |
|    | 6.6943.                                           | 16. | .12246.   | <b>26</b> . | 22.33.          | 36. | 2316.8.  |
| ,  | 7.1845.                                           | 17. | 13306.06. | 27.         | 10695.          |     |          |
|    | 500  m. = 1640.5  ft.<br>7294  m. = 23931.11  ft. | 18. | 1029.4.   | 28.         | .1705.          |     |          |

#### Exercise 7

300 m. = 984.26 ft.

| <b>1</b> . 2.544.         | 6.  | .65959. | 11. | <b>—</b> .4167. | 16. | $-\frac{3}{4}$ . | 21.         | 25.      |
|---------------------------|-----|---------|-----|-----------------|-----|------------------|-------------|----------|
| <b>2</b> . 1.2445.        | 7.  | -29.78. | 12. | .29414.         | 17. | -3.              | 22.         | 8<br>27. |
| <b>3.</b> 2. <b>4</b> 95. | 8.  | 5.9837. | 13. | 3.              | 18. | <b>- 4.</b>      | 23.         | 32.      |
| <b>4</b> 053474.          | 9.  | 46187.  | 14. | 5.              | 19. | 2.               | <b>24</b> . | 17.677.  |
| <b>5</b> . 1.465.         | 10. | .64509. | 15. | -2.             | 20. | 81.              |             | 11.894.  |
|                           |     |         |     |                 |     |                  | <b>2</b> 5. | 5% .     |

1. 
$$\sin B = \frac{b}{c}, \quad \tan B = \frac{b}{a}, \quad \sec B = \frac{c}{a}, \quad \cos B = \frac{a}{c}, \quad \cot B = \frac{a}{b}, \quad \csc B = \frac{c}{b}.$$
2. 
$$\sin A = \frac{4}{5}, \quad \tan A = \frac{4}{3}, \quad \sec A = \frac{5}{5}, \quad \cos A = \frac{3}{5}, \quad \cot A = \frac{3}{4}, \quad \csc A = \frac{5}{4}.$$
3. 
$$\sin A = \frac{3}{5}, \quad \tan A = \frac{3}{4}, \quad \sec A = \frac{5}{4}, \quad \cos A = \frac{4}{5}, \quad \cot A = \frac{4}{4}, \quad \csc A = \frac{5}{3}.$$
4. 
$$\sin A = \frac{8}{17}, \quad \tan A = \frac{8}{15}, \quad \sec A = \frac{17}{15}, \quad \cot A = \frac{15}{15}, \quad \cot A = \frac{18}{5}, \quad \csc A = \frac{17}{8}.$$
5. 
$$\sin A = \frac{12}{13}, \quad \tan A = \frac{15}{5}, \quad \sec A = \frac{13}{5}, \quad \cos A = \frac{5}{13}, \quad \cot A = \frac{5}{12}, \quad \csc A = \frac{13}{12}.$$
6. 
$$\sin A = \frac{3}{8}9, \quad \tan A = \frac{3}{8}9, \quad \sec A = \frac{8}{8}9, \quad \cos A = \frac{8}{8}9, \quad \cot A = \frac{5}{8}9, \quad \csc A = \frac{8}{3}9.$$
7. 
$$\sin A = \frac{9}{41}, \quad \tan A = \frac{9}{40}, \quad \sec A = \frac{4}{40}, \quad \cos A = \frac{40}{41}, \quad \cot A = \frac{40}{9}, \quad \csc A = \frac{49}{19}.$$
8. 
$$\sin A = \frac{11}{10}9, \quad \tan A = \frac{11}{12}9, \quad \sec A = \frac{16}{12}9, \quad \cos A = \frac{16}{12}9, \quad \cot A = \frac{40}{11}9, \quad \csc A = \frac{16}{11}9.$$
9. 
$$III. \quad \sin B = \frac{4}{5}, \quad \tan B = \frac{4}{3}, \quad \sec B = \frac{5}{5}, \quad \cos B = \frac{3}{5}, \quad \cot B = \frac{3}{4}, \quad \csc B = \frac{5}{4}.$$

$$IV. \quad \sin B = \frac{15}{15}, \quad \tan B = \frac{15}{15}, \quad \sec B = \frac{17}{13}, \quad \cot B = \frac{15}{15}, \quad \csc B = \frac{17}{15}.$$

$$V. \quad \sin B = \frac{5}{13}, \quad \tan B = \frac{5}{12}, \quad \sec B = \frac{13}{2}, \quad \cot B = \frac{3}{12}, \quad \csc B = \frac{8}{15}, \quad \csc B = \frac{8}{15}.$$

$$VI. \quad \sin B = \frac{8}{10}, \quad \tan B = \frac{8}{10}, \quad \sec B = \frac{41}{19}, \quad \cos B = \frac{3}{11}, \quad \cot B = \frac{3}{10}, \quad \csc B = \frac{8}{10}.$$

$$VII. \quad \sin B = \frac{4}{40}, \quad \tan B = \frac{40}{9}, \quad \sec B = \frac{41}{19}, \quad \cos B = \frac{11}{19}, \quad \cot B = \frac{11}{19}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11}{120}, \quad \csc B = \frac{11$$

**22.** 
$$AD = 218.4.$$

$$CD = 358.7.$$

$$DB = 181.3.$$

$$AB = 283.86.$$

**27.** 
$$\sin A = \frac{\sqrt{p^2 + q^2}}{p + q}$$

$$\cos A = \frac{1}{p+q}.$$

$$\tan A = \frac{2 mn}{m^2 - n^2}.$$

**29.** 
$$\sin A = \frac{p^2 - q^2}{1}$$

$$\tan A = \frac{p^2 - q^2}{2}$$

$$\csc A = \frac{p^2 + q^2}{3}$$
.

27. 
$$\sin A = \frac{\sqrt{p^2 + q^2}}{p + q}$$
,  $\cos A = \frac{\sqrt{2 pq}}{p + q}$ .  
28.  $\sin A = \frac{2 mn}{m^2 + n^2}$ ,  $\sec A = \frac{m^2 + n^2}{m^2 - n^2}$ ,  
29.  $\sin A = \frac{p^2 - q^2}{p^2 + q^2}$ ,  $\tan A = \frac{p^2 - q^2}{2 pq}$ ,  
30.  $\sin B = \frac{\sqrt{mn + n^2}}{m + n}$ ,  $\tan B = \sqrt{\frac{mn + n^2}{mn + m^2}}$ ,

$$\tan B = \sqrt{\frac{mn + n^2}{mn + m^2}},$$

$$\sec B = \frac{m+n}{\sqrt{m^2 + mn}}.$$

$$\cos B = rac{\sqrt{m^2 + mn}}{m + n}, \quad \cot B = rac{\sqrt{mn + m^2}}{\sqrt{mn + n^2}},$$

$$\cot B = \frac{\sqrt{mn + m^2}}{\sqrt{mn + n^2}}$$

$$csc A = \frac{p^2 + q^2}{p^2 - q^2}.$$

$$sec B = \frac{m+n}{\sqrt{m^2 + mn}}$$

$$csc B = \frac{m+n}{\sqrt{mn+n^2}}.$$

$$31. \sin B = \frac{m-n}{m+n},$$

**31.** 
$$\sin B = \frac{m-n}{m+n}$$
,  $\tan B = \frac{(m-n)\sqrt{mn}}{2mn}$ ,  $\sec B = \frac{(m+n)\sqrt{mn}}{2mn}$ 

$$2 n$$
 $m + n$ 

$$\cos B = \frac{2\sqrt{mn}}{m+n}, \qquad \cot B = \frac{2\sqrt{mn}}{m-n},$$

$$\cot B = \frac{2\sqrt{mn}}{m-n}$$

$$\csc B = \frac{m+n}{m-n}.$$

**32.** 
$$\sec A = \frac{61}{11}$$
,  $\tan B = \frac{11}{60}$ ,  $\cot B = \frac{60}{11}$ ,  $\sin A = \frac{60}{61}$ .

**33.** 
$$\sin B = \frac{2.64}{2.65}$$
,  $\tan B = \frac{2.64}{2.3}$ ,  $\sec B = \frac{2.65}{2.3}$ ,  $\cos B = \frac{2.3}{2.65}$ ,  $\cot B = \frac{2.3}{2.64}$ ,  $\csc B = \frac{2.65}{2.64}$ .

**34.** 
$$\sin A = \frac{2}{5}\sqrt{5}$$
,  $\tan A = 2$ ,

**34.** 
$$\sin A = \frac{2}{5}\sqrt{5}$$
,  $\tan A = 2$ ,  $\sec A = \sqrt{5}$ ,  $\cos A = \frac{1}{5}\sqrt{5}$ ,  $\cot A = \frac{1}{2}$ ,  $\csc A = \frac{\sqrt{5}}{2}$ .

**35.** 
$$\sin A = \frac{\sqrt{5}}{3}$$
,  $\tan A = \frac{\sqrt{5}}{2}$ ,  $\sec A = \frac{3}{2}$ ,  $\cos A = \frac{2}{3}$ ,  $\cot A = \frac{2\sqrt{5}}{5}$ ,  $\csc A = \frac{3}{5}\sqrt{5}$ .

**36.** 
$$\sin B = \frac{4 - \sqrt{2}}{6}$$
,  $\tan B = \frac{9 - 4\sqrt{2}}{7}$ ,  $\sec B = \frac{3(4 - \sqrt{2})}{7}$ .

$$\sec B = \frac{3(4-\sqrt{3})}{\pi}$$

$$\mathbf{SII} B = \frac{1}{6},$$

$$\cot B = \frac{9 + 4\sqrt{2}}{2}$$

$$\cos B = \frac{4 + \sqrt{2}}{2}, \qquad \cot B = \frac{9 + 4\sqrt{2}}{7}, \qquad \csc B = \frac{3(4 + \sqrt{2})}{7}.$$

37. 
$$\sin A = \frac{12}{13}$$
,  $\tan A = \frac{12}{5}$ ,  $\sec A = \frac{13}{5}$ ,  $\cos A = \frac{5}{13}$ ,  $\cot A = \frac{5}{12}$ ,  $\csc A = \frac{13}{12}$ .

**38.** 
$$\sin B = \frac{3}{5}$$
,  $\tan B = \frac{3}{4}$ ,  $\sec B = \frac{5}{4}$ ,  $\cos B = \frac{4}{5}$ ,  $\cot B = \frac{4}{3}$ ,  $\csc B = \frac{5}{3}$ .

$$=\frac{4}{3}$$
, csc  $B=\frac{3}{3}$ .

**41.** 1.62. **42.** 
$$\frac{3}{5}$$
,  $\frac{3}{5}$ .

11. 
$$\frac{x}{x}$$

5. 
$$\sec 68^{\circ} 35' 30''$$
. 8.  $\sin 88^{\circ} 42'$ . 11.  $\frac{x}{y}$ .
6.  $\csc 5^{\circ} 44'$ . 9.  $\sqrt{3}$ . 12.  $n$ 

**9**. 
$$\sqrt{3}$$
.

1. 
$$\tan A = \frac{1.5}{8}$$
,  $\sec A =$ 

$$A = \frac{17}{8}$$
,  $\cos A = \frac{7}{1}$ 

$$\begin{array}{lll} \cos A = \frac{8}{17}, & \cot A = \frac{8}{15}, & \csc A = \frac{17}{15}, \\ \cos A = \frac{5}{13}, & \cot A = \frac{5}{12}, & \csc A = \frac{13}{2}, \\ \cos A = \frac{9}{11}, & \cot A = \frac{9}{40}, & \csc A = \frac{4}{40}, \end{array}$$

$$\csc A = \frac{17}{15}$$
.

2. 
$$\sin A = \frac{12}{13}$$
,  
3.  $\sin A = \frac{40}{41}$ ,

$$\sec A = \frac{17}{8},$$
  
 $\sec A = \frac{13}{5},$   
 $\tan A = \frac{40}{9},$ 

$$\cos A = \frac{5}{13}$$
,

$$=\frac{5}{12},$$

$$csc A = \frac{1}{12}$$

3. 
$$\sin A = \frac{40}{41}$$

$$\tan A = \frac{40}{9}$$
,

$$\cos A = \frac{9}{4 \, \text{T}},$$

$$\csc A = \frac{41}{40}$$

**6.** 
$$\sin 2t = \frac{1}{41}$$
,

$$\tan A = \frac{40}{9},$$

$$\cos A = \frac{9}{41}$$

$$\cot A = \frac{9}{40},$$

$$\csc A = \frac{41}{40}$$

4. 
$$\sin A = -\frac{1}{2}$$

**4.** 
$$\sin A = \frac{\sqrt{5}}{3}$$
,  $\tan A = \frac{\sqrt{5}}{2}$ ,  $\sec A = \frac{3}{2}$ ,  $\cot A = \frac{2}{5}\sqrt{5}$ ,  $\csc A = \frac{3}{5}\sqrt{5}$ .

$$\csc A = \sqrt{m^2 + 1},$$

$$\csc A = \sqrt{m^2 + 1}.$$

6. 
$$\sin A = \frac{\sqrt{5}}{5}$$
,  $\tan A = \frac{1}{2}$ ,  $\sec A = \frac{\sqrt{5}}{2}$ ,  $\cos A = \frac{2\sqrt{5}}{5}$ ,  $\cot A = 2$ .

7. 
$$\tan A = 0$$
,  $\sec A = 1$ ,  $\cos A = 1$ ,  $\cot A = \infty$ ,  $\csc A = \infty$ .

8. 
$$\sin A = 1$$
,  $\tan A = \infty$ ,  $\sec A = \infty$ ,  $\cot A = 0$ ,  $\csc A = 1$ .

7. 
$$\tan A = 0$$
,  $\sec A = 1$ ,  $\cos A = 1$ ,  $\cot A = \infty$ ,  $\csc A = \infty$ .  
8.  $\sin A = 1$ ,  $\tan A = \infty$ ,  $\sec A = \infty$ ,  $\cot A = 0$ ,  $\csc A = 1$ .  
9.  $\sin A = 0$ ,  $\sec A = 1$ ,  $\cos A = 1$ ,  $\cot A = \infty$ ,  $\csc A = \infty$ .  
10.  $\tan A = \infty$ ,  $\sec A = \infty$ ,  $\cos A = 0$ ,  $\cot A = 0$ ,  $\csc A = 1$ .  
11.  $\sin A = 1$ ,  $\tan A = \infty$ ,  $\cos A = 0$ ,  $\cot A = 0$ ,  $\cot A = 0$ ,  $\cot A = 0$ .

11. 
$$\sin A = 1$$
,  $\tan A = \infty$ ,  $\cos A = 0$ ,  $\cot A = 0$ ,  $\csc A = 1$ .

12. 
$$\tan x = \frac{5 p}{\sqrt{1 - 25 p^2}},$$
  $\sec x = \frac{1}{\sqrt{1 - 25 p^2}},$   $\cos x = \sqrt{1 - 25 p^2},$   $\cot x = \frac{\sqrt{1 - 25 p^2}}{5 p},$   $\csc x = \frac{1}{5 p}.$ 

13. 
$$\sin A = \frac{3}{5}$$
,  $\sec A = \frac{5}{4}$ ,  $\cos A = \frac{4}{5}$ ,  $\cot A = \frac{4}{5}$ ,  $\csc A = \frac{5}{5}$ 

**14.** 
$$\sin A = \frac{12}{13}$$
,  $\tan A = \frac{12}{5}$ ,  $\sec A = \frac{13}{5}$ ,  $\cot A = \frac{5}{12}$ ,  $\csc A = \frac{13}{12}$ 

15. 
$$\sin A = \frac{15}{8}$$
,  $\tan A = \frac{15}{8}$ ,  $\sec A = \frac{17}{8}$ ,  $\cos A = \frac{8}{17}$ ,  $\cot A = \frac{8}{15}$ .

13. 
$$\sin A = \frac{3}{5}$$
,  $\sec A = \frac{5}{4}$ ,  $\cos A = \frac{4}{5}$ ,  $\cot A = \frac{4}{3}$ ,  $\csc A = \frac{5}{3}$ , 14.  $\sin A = \frac{12}{13}$ ,  $\tan A = \frac{12}{5}$ ,  $\sec A = \frac{13}{5}$ ,  $\cot A = \frac{5}{12}$ ,  $\csc A = \frac{13}{2}$ . 15.  $\sin A = \frac{15}{17}$ ,  $\tan A = \frac{15}{8}$ ,  $\sec A = \frac{17}{8}$ ,  $\cos A = \frac{8}{17}$ ,  $\cot A = \frac{8}{15}$ . 16.  $\sin A = \frac{2\sqrt{13}}{13}$ ,  $\tan A = \frac{2}{3}$ ,  $\sec A = \frac{\sqrt{13}}{3}$ ,  $\cos A = \frac{3\sqrt{13}}{13}$ ,  $\csc A = \frac{\sqrt{13}}{2}$ .

17. 
$$\tan A = \frac{1}{3}\sqrt{3}$$
,  $\sec A = \frac{2}{3}\sqrt{3}$ ,  $\cos A = \frac{\sqrt{3}}{2}$ ,  $\cot A = \sqrt{3}$ ,  $\csc A = 2$ .

**18.** 
$$\sin A = \frac{\sqrt{15}}{4}$$
,  $\tan A = \sqrt{15}$ ,  $\cos A = \frac{1}{4}$ ,  $\cot A = \frac{1}{15}\sqrt{15}$ ,  $\csc A = \frac{4}{15}\sqrt{15}$ .

**19.** 
$$\sin A = \frac{m\sqrt{m^2 + 1}}{m^2 + 1}$$
,  $\cos A = \frac{\sqrt{m^2 + 1}}{m^2 + 1}$ ,  $\cot A = \frac{1}{m}$ ,  $\sec A = \sqrt{m^2 + 1}$ ,  $\csc A = \frac{\sqrt{m^2 + 1}}{m}$ .

**20.** 
$$\sin A = \frac{\sqrt{2}}{2}$$
,  $\tan A = 1$ ,  $\sec A = \sqrt{2}$ ,  $\cos A = \frac{\sqrt{2}}{2}$ ,  $\cot A = 1$ ,  $\csc A = \sqrt{2}$ .

**21.** 
$$\sin x = 0$$
,  $\tan x = 0$ ,  $\sec x = 1$ ,  $\cot x = \infty$ ,  $\csc x = \infty$ .

**22.** 
$$\sin A = \frac{40}{41}$$
,  $\tan A = \frac{40}{9}$ ,  $\sec A = \frac{41}{9}$ ,  $\cos A = \frac{9}{41}$ ,  $\cot A = \frac{9}{40}$ 

22. 
$$\sin A = \frac{40}{41}$$
,  $\tan A = \frac{40}{9}$ ,  $\sec A = \frac{41}{9}$ ,  $\cos A = \frac{9}{41}$ ,  $\cot A = \frac{9}{40}$ ,  
23.  $\sin A = \frac{2mn}{m^2 + n^2}$ ,  $\cos A = \frac{m^2 - n^2}{m^2 + n^2}$ ,  $\cot A = \frac{m^2 - n^2}{2mn}$ ,  $\sec A = \frac{m^2 + n^2}{m^2 - n^2}$ ,  $\csc A = \frac{m^2 + n^2}{2mn}$ .

**24.** 
$$\sin A = \frac{1}{2}\sqrt{2-\sqrt{2}},$$
  $\tan A = \sqrt{2}-1,$   $\cos A = \frac{1}{2}\sqrt{2+\sqrt{2}},$   $\sec A = \sqrt{4-2\sqrt{2}},$   $\csc A = \sqrt{4+2\sqrt{2}}.$ 

**25.** 
$$\tan A = \infty$$
,  $\sec A = \infty$ ,  $\cos A = 0$ ,  $\cot A = 0$ ,  $\csc A = 1$ .

**26.** 
$$\sin 22\frac{1}{2}^{\circ} = \frac{1}{2}\sqrt{2-\sqrt{2}},$$
  $\cos 22\frac{1}{2}^{\circ} = \frac{\sqrt{2+\sqrt{2}}}{2},$   $\cot 22\frac{1}{2}^{\circ} = \sqrt{2}+1,$   $\sec 22\frac{1}{2}^{\circ} = \sqrt{4-2\sqrt{2}},$   $\csc 22\frac{1}{2}^{\circ} = \sqrt{4+2\sqrt{2}}.$ 

**27.** 
$$\sin A = \frac{\sqrt{39}}{8}$$
,  $\tan A = \frac{\sqrt{39}}{5}$ ,  $\sec A = \frac{8}{5}$ ,  $\cot A = \frac{5}{39}\sqrt{39}$ ,  $\csc A = \frac{8}{39}\sqrt{39}$ .

**28.** 
$$\sin A = \frac{\sqrt{2 + \sqrt{3}}}{2}$$
,  $\tan A = 2 + \sqrt{3}$ ,  $\cos A = \frac{\sqrt{6} - \sqrt{2}}{4}$ ,  $\cot A = 2 - \sqrt{3}$ ,  $\csc A = 2\sqrt{2 - \sqrt{3}}$ .

29. 
$$\sin A = \sqrt{1 - K^2}$$
,  $\tan A = \frac{\sqrt{1 - K^2}}{K}$ ,  $\cot A = \frac{K\sqrt{(1 - K^2)}}{1 - K^2}$ ,  $\sec A = \frac{1}{K}$ ,  $\csc A = \frac{\sqrt{1 - K^2}}{1 - K^2}$ .

30. 
$$\sin 15^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{2}$$
,  $\tan 15^{\circ} = 2 - \sqrt{3}$ ,  $\cos 15^{\circ} = \frac{\sqrt{2 + \sqrt{3}}}{2}$ ,  $\sec 15^{\circ} = 2\sqrt{2 - \sqrt{3}}$ ,  $\csc 15^{\circ} = 2\sqrt{2 + \sqrt{3}}$ .

31. 
$$\cos A = \sqrt{1 - \sin^2 A}$$
,  $\tan A = \frac{\sin A}{\sqrt{1 - \sin^2 A}}$ ,  $\csc A = \frac{1}{\sin A}$ ,  $\cot A = \frac{\sqrt{1 - \sin^2 A}}{\sin A}$ ,  $\sec A = \frac{1}{\sqrt{1 - \sin^2 A}}$ .

32. 
$$\sin A = \sqrt{1 - \cos^2 A}$$
,  $\tan A = \frac{\sqrt{1 - \cos^2 A}}{\cos A}$ ,  $\cot A = \frac{\cos A}{\sqrt{1 - \cos^2 A}}$ ,  $\sec A = \frac{1}{\cos A}$ ,  $\csc A = \frac{1}{\sqrt{1 - \cos^2 A}}$ .

33. 
$$\sin A = \frac{\tan A}{\sqrt{1 + \tan^2 A}}$$
,  $\cos A = \frac{1}{\sqrt{1 + \tan^2 A}}$ ,  $\cot A = \frac{1}{\tan A}$ ,  $\sec A = \sqrt{1 + \tan^2 A}$ ,  $\csc A = \frac{\sqrt{1 + \tan^2 A}}{\tan A}$ .

**34.** 
$$\tan A = \frac{1}{\cot A}$$
,  $\csc A = \sqrt{1 + \cot^2 A}$ ,  $\sin A = \frac{1}{\sqrt{1 + \cot^2 A}}$ ,  $\cos A = \frac{\cot A}{\sqrt{1 + \cot^2 A}}$ ,  $\sec A = \frac{\sqrt{1 + \cot^2 A}}{\cot A}$ .

**35.** 
$$\cos A = \frac{1}{\sec A}$$
,  $\tan A = \sqrt{\sec^2 A - 1}$ ,  $\cot A = \frac{1}{\sqrt{\sec^2 A - 1}}$ ,  $\csc A = \frac{\sec A}{\sqrt{\sec^2 A - 1}}$ ,  $\sin A = \frac{\sqrt{\sec^2 A - 1}}{\sec A}$ .

36. 
$$\sin A = \frac{1}{\csc A}$$
,  $\cos A = \frac{\sqrt{\csc^2 A - 1}}{\csc A}$ ,  $\tan A = \frac{1}{\sqrt{\csc^2 A - 1}}$ ,  $\sec A = \frac{\csc A}{\sqrt{\csc^2 A - 1}}$ ,  $\cot A = \sqrt{\csc^2 A - 1}$ .

37. 
$$\cos A = 1 - \operatorname{vers} A$$
,  $\sec A = \frac{1}{1 - \operatorname{vers} A}$ ,  $\tan A = \frac{\sqrt{2} \operatorname{vers} A - 2 \operatorname{vers}^2 A}{1 - \operatorname{vers} A}$ ,  $\cot A = \frac{1 - \operatorname{vers} A}{\sqrt{2} \operatorname{vers} A - \operatorname{vers}^2 A}$ ,  $\sin A = \sqrt{2} \operatorname{vers} A - \operatorname{vers}^2 A$ ,  $\csc A = \frac{1}{\sqrt{2} \operatorname{vers} A - \operatorname{vers}^2 A}$ .

**38.** 
$$\frac{\sqrt{7}}{3}$$

**42**. 
$$\frac{7}{24}$$
.

$$46. \ \frac{1}{\cos^3 A}.$$

**39**. 
$$\frac{80}{4879}\sqrt{4879}$$
.

**43**. 
$$\frac{1}{2}\sqrt{2-\sqrt{2}}$$
.

7. 
$$\frac{1}{\sin A \cos A}$$

**40.** 
$$\frac{1}{2}\sqrt{3}$$
.

**44.** 
$$\frac{1}{6}\sqrt{42}$$
.

**48.** 
$$2 \sin^2 x + \sin x = 1$$
.

**41**. 
$$\frac{8}{39}\sqrt{39}$$
.

**45.** 
$$1 - \cos^2 A + \cos A$$
.

**49.** 
$$\tan^2 x - 2 \tan x = 1$$
.

| 13. $2\frac{1}{2}$ .             | 17. $-1-\sqrt{2}$ .                    | 22. $\frac{1}{2}\sqrt{6}$ . | <b>36</b> . <b>1</b> 50; 259.8. |
|----------------------------------|----------------------------------------|-----------------------------|---------------------------------|
| 14. $\frac{1}{3}\sqrt{3}(b+c)$ . | 18. $-6\frac{1}{3}$ .                  | <b>23.</b> 5.               | <b>38.</b> 961.3+.              |
| 15. $2+\sqrt{2}$ .               | <b>20.</b> $\frac{1}{2}(\sqrt{2}-1)$ . | <b>35.</b> 86.6.            | <b>39.</b> 165.                 |
| 16. $1-2\sqrt{3}$ .              | 21. $\frac{4}{3}$ .                    |                             |                                 |
|                                  | -                                      |                             |                                 |

# Exercise 13:

| 1.          | 60°.    | 4.   | 60°.           | 7.  | 45°.             | 10. | 60°.           | 13.          | 60°.           | 16. | 30°.           | 19.            | 60°           |
|-------------|---------|------|----------------|-----|------------------|-----|----------------|--------------|----------------|-----|----------------|----------------|---------------|
| 2.          | 60°.    | 5.   | $0^{\circ}$ .  | 8.  | $45^{\circ}$ .   | 11. | $45^{\circ}$ . | 14.          | 30°.           | 17. | $45^{\circ}$ . | 20.            | 90°           |
| 3.          | 30°.    | 6.   | $45^{\circ}$ . | 9.  | 30°.             | 12. | 30°, 90°.      | 15.          | $45^{\circ}$ . | 18. | $45^{\circ}$ . | 21.            | $0^{\circ}$ . |
| 22.         | 27° 13′ | 12'' |                |     |                  |     | 28.            | $18^{\circ}$ | •              |     | 33.            | $30^{\circ}$ . |               |
| 23.         | 15°.    |      |                | O۳  | 90°              |     | 29.            | $45^{\circ}$ |                |     | 34.            | $60^{\circ}$ . |               |
| 24.         | 10°.    |      |                | ۵۱. | $\overline{n+1}$ |     | 29.<br>30.     | $38^{\circ}$ | 50'.           |     | 35.            | $30^{\circ}$ . |               |
| <b>2</b> 5. | 60°.    |      |                |     |                  |     |                |              |                |     |                |                |               |

# Exercise 14

| 1. | 9.64647 - 10. | 9.  | 8.95017 - 10. | 19. | 6.1493.      | 26. | 9.9523 - 10. |
|----|---------------|-----|---------------|-----|--------------|-----|--------------|
| 2. | 9.98997 - 10. | 10. | 9.97991 - 10. | 20. | 14.991.      | 27. | 0.3076.      |
| 3. | 9.86603 - 10. | 11. | 0.11532.      | 21. | 9.4214 - 10. | 28. | 0.6489.      |
| 4. | 9.38699 — 10. | 12. | 9.99194 - 10. | 22. | 9.8297 - 10. | 29. | 9.8832 — 10. |
| 5. | 0.15908.      | 13. | 1.24820.      | 23. | 0.1759.      | 30. | 0.2522.      |
| 6. | 9.43707 - 10. | 14. | 8.91931 - 10. | 24. | 0.7033.      | 31. | 0.6413.      |
| 7. | 8.73767 - 10. | 15. | 9.84324 - 10. | 25. | 9.6622 - 10. | 32. | 15.24.       |
| 8. | 9.86126 - 10. | 16. | 9.74610 - 10. |     |              |     |              |

# Exercise 15

| 1. | $23^{\circ}\ 15'$ . | 8.  | 85° 5′ 15′′.     | 15. | 28.7°.  | 21. | 61.07°.           |
|----|---------------------|-----|------------------|-----|---------|-----|-------------------|
| 2. | 28° 40′.            | 9.  | 65° 10′ 20″.     | 16. | 18.5°.  | 22. | $0.541^{\circ}$ . |
| 3. | 35° 43′.            | 10. | 5° 20′ 29′′.     | 17. | 56.26°. | 23. | 88.465°.          |
| 4. | 40° 23′.            | 11. | 4° 0′ 47″.       | 18. | 70.14°. | 24. | $65.67^{\circ}$ . |
| 5. | 66° 15′ 24″.        | 12. | 85° 59′ 13″.     | 19. | 64.43°. | 25. | 78.14°.           |
| 6. | 70° 16′ 21″.        | 13. | $26.5^{\circ}$ . | 20. | 46.11°. | 26. | 14.47°.           |
| 7. | 70° 0′ 26″.         | 14. | 50.2°.           |     |         |     |                   |
|    |                     |     |                  |     |         |     |                   |

| 1.  | 8.21421 - 10. | 14.         | 0° 4′ 31″.   | 27.         | 8.1238 - 10. | 40.         | 4.662°.      |
|-----|---------------|-------------|--------------|-------------|--------------|-------------|--------------|
| 2.  | 8.34812 - 10. | 15.         | 0° 2′ 39″.   | 28,         | 8.1070 - 10. | 41.         | 84.35°.      |
| 3.  | 8.49128 - 10. | 16.         | 89° 45′ 6′′. | 29.         | 8.2701 - 10. | 42.         | 8.3638 — 10. |
| 4.  | 1.72220.      | 17.         | 42° 5′ 26″.  | 30.         | 1.6657.      | 43.         | 1.6362.      |
| 5.  | 1.64078.      | 18.         | 82° 52′ 1″.  | 31.         | 1.8744.      | 44.         | 89.266°.     |
| 6.  | 8.18538 - 10. | 19.         | 83° 24′ 25″. | 32.         | 8.3446 - 10. | <b>4</b> 5. | .613°.       |
| 7.  | 8.28456 - 10. | 20.         | 0° 17′ 7.3″. | 33.         | 7.9686 - 10. | <b>46</b> . | 89.285°.     |
| 8.  | 8.47866 - 10. | 21.         | 0° 17′ 7.1″. | 34.         | 89.266°.     | 47.         | .624°.       |
| 9.  | 0° 26′ 10″.   | 22.         | 89° 54′ 15″. | <b>3</b> 5. | 1.036°.      | 48.         | 1.6375.      |
| 10. | 88° 53′ 6″.   | 23.         | 8.245.       | 36.         | 89.216°.     | <b>49</b> . | 2.792.       |
| 11. | 0° 42′ 53″.   | 24.         | .1504.       | 37.         | .634°.       | 50.         | 112.82.      |
| 12. | 89° 32′ 27″.  | 25.         | 1.6687.      | 38.         | 89.553°.     | <b>51</b> . | .7348.       |
| 13. | 89° 57′.      | <b>26</b> . | 8.3353 - 10. | 39.         | .507°.       | <b>52.</b>  | .026694.     |

- Cosine  $A = \frac{15}{17}$ . Cotangent  $A = \frac{15}{8}$ . Secant  $A = \frac{17}{15}$ . 1. Sine  $A = \frac{8}{17}$ . b = 30.c = 34. Cosecant  $A = \frac{1.7}{8}$ .
  - 2.  $-\frac{5625}{128}$ .
- 8.  $\cot 37^{\circ} > \tan 37^{\circ}$ .
- 22. 1.

- 5.  $\sin 49^{\circ} > \cos 49^{\circ}$ .
- 19.  $x = 45^{\circ}$ .
- 23.  $\sqrt[4]{3} \sqrt[3]{2} \sqrt[3]{2}$

- 6.  $A < 45^{\circ}$ . 7.  $A > 60^{\circ}$ .
- **20.**  $x = 60^{\circ}$ . 21.  $x = 45^{\circ}$ .

- **25.**  $\cot A = \frac{2}{7}$ ,  $\csc A = \frac{2}{7}$ .
- 26.  $\frac{p}{x}$ **27**. .3056.
- 28. 300. 29. 270.12

# Exercise 18

- 4.  $B = 62^{\circ}$ . a = 6.3804. c = 13.591.
- 7.  $B = 61^{\circ} 43'$ . a = 11.448. b = 21.276.
- 10.  $B = 51^{\circ} 43' 36''$ . a = 2.2478.b = 2.849.

- 5.  $B = 12^{\circ}$ . a = 26.15. b = 5.5585.
- 8.  $A = 35^{\circ} 17'$ . a = 648.67. b = 916.7.
- 11.  $A = 17^{\circ} 43' 18''$ . b = 70.985. c = 74.5217.

- 6.  $B = 43^{\circ} 42'$ a = 50.78. c = 70.24.
- 9.  $A = 52^{\circ} 41'$ . a = 385.436. c = 484.644.
- **12**. .23661. **13**. .282726.

- 14.  $B = 26^{\circ} 31' 20''$ . b = 127.976.c = 286.5875.
- 15.  $A = 2^{\circ} 43' 30''$ . a = 13.85129. b = .674616. 18. .96565.
- **16.**  $B = 38^{\circ} 50' 54''$ . a = .153254. b = .12343.

17.  $B = 63^{\circ} 41' 24''$ b = 256.406. c = 286.033.

- 19. 164.93. 20. 1416.13.
- 21. 1614.26 yd. = depth of cañon. 5521.125 yd. = distance of river.
- **24**.  $B = 57.4^{\circ}$ . a = 11.5125. c = 21.37.
- 30.  $B = 68.68^{\circ}$ . b = 41.65. c = 44.71.
  - **41**.  $B = 60^{\circ}$ .

- **25.**  $B = 34^{\circ}$ . a = 2.22. b = 1.4976.
- 31.  $A = 23.73^{\circ}$ . a = .003824. c = .009504.
- $a = \frac{7}{3}\sqrt{3} = 4.0425.$  $c = \frac{14}{3}\sqrt{3} = 8.083.$

**39**. 352.1.

- **26.**  $A = 51.8^{\circ}$ . a = .604.
- **32**. .3907.
- **42.**  $a = b = 6\sqrt{2} = 8.484$ . **43.**  $a = \frac{2.5}{5}\sqrt{3} = 14.43$ .  $c = \frac{50}{3}\sqrt{3} = 28.86$ .

- b = .4753. **27.**  $A = 7.5^{\circ}$ .
- **33**. .11388. **34**. 50.933.
- **44.**  $b = \frac{1000}{3} \sqrt{3} = 577.4$ .  $c = \frac{2.0 \cdot 0.0}{5} \sqrt{3} = 1154.7.$

- b = 95.42. c = 96.225.
- **35**.  $B = 1.83^{\circ}$ . a = 13.125. b = .4194.
- **45**.  $b = \frac{2.000}{9} \sqrt{3} = 1154.8$ .  $c = \frac{4.0.00}{3} \sqrt{3} = 2309.5.$

- **28**.  $B = 62.33^{\circ}$ . a = 77.43. b = 52.33.
- 36.  $A = 47.84^{\circ}$ b = .4757.c = .7086.
- **46.**  $a = 600\sqrt{3} = 1039.25$ . b = 600.

- **29**  $A = 13.75^{\circ}$ . b = 3.7845. c = 3.89583.
- 37. 129.15.
- $c = 200\sqrt{2} = 282.8.$ **48.** a = 10 d.

47. a = 200.

- 38. 1.081.
- $b = 10 d\sqrt{3} = 17.32 d.$

10 ANSWERS

**13.** 25° 48′ 40″.

**14**.  $B = 16^{\circ} 11' 7''$ .

b = 32.702.

15.  $A = 8^{\circ} 31' 31''$ .

a = 53.666.

49. Same as the respective answers for numbers 6 and 7 in this exercise.

**51.** 
$$DB = 50$$
.  $BC = 25$ .  $DC = \frac{2.5}{2} \sqrt{3} = 21.65 x$ .

# Exercise 19

| 1.          | $A = 35^{\circ} 33' 27''$ .     | 16.         | $B = 17^{\circ} 56' 5''$ .         | 31.         | 50.43.                      |
|-------------|---------------------------------|-------------|------------------------------------|-------------|-----------------------------|
|             | b = 14.969.                     |             | b = 8.6188.                        | <b>32</b> . | $A = 18.96^{\circ}$ .       |
| 2.          | $A = 33^{\circ} \ 18' \ 3''$ .  | 17.         | 13° 7′ 18″.                        |             | a = 50.91.                  |
|             | b = 31.147.                     | 18.         | $\angle = 67^{\circ} \ 22' \ 48''$ | <b>33</b> . | $B = 7.812^{\circ}$ .       |
| 3.          | $A = 42^{\circ} \ 24' \ 43''$ . |             | $\therefore$ 7' 12" too small.     |             | b = 117.166.                |
|             | b = 29.2557.                    | 21.         | $A = 41.49^{\circ}$ .              | 34.         | 57.26°.                     |
| 4.          | $A = 39^{\circ} 48' 20''$ .     |             | b = 17.755.                        | <b>35</b> . | 26.77°.                     |
|             | c = 7.81016.                    | 22.         | $A = 45.17^{\circ}$ .              | 37.         | $A = B = 45^{\circ}$ .      |
| 5.          | $A = 49^{\circ} \ 44' \ 5''$ .  |             | a = .39855.                        |             | $c = 13\sqrt{2} = 18.384$ . |
|             | b = .579587.                    | 23.         | $A = 50.66^{\circ}$ .              | 38.         | $A = 30^{\circ}$ .          |
| 6.          | $A = 49^{\circ}$ .              |             | c = 43.04.                         |             | $b = 9\sqrt{3} = 15.888.$   |
|             | a = 16.3608.                    | <b>24</b> . | $A = 32.02^{\circ}$ .              | 39.         | $B = 30^{\circ}$ .          |
| 7.          | $A = 52^{\circ} 12' 25''$ .     |             | c = 9.432.                         |             | $a = 100\sqrt{3} = 173.2$   |
|             | c = .079471.                    | <b>2</b> 5. | $A = 46.31^{\circ}$ .              | <b>40</b> . | $B = 30^{\circ}$ .          |
| 8.          | $A = 43^{\circ} 52'$ .          |             | a = 7.015.                         |             | c=2.                        |
|             | b = .184875.                    | <b>26</b> . | $A = 48.43^{\circ}$ .              | 41.         | $A = 60^{\circ}$ .          |
| 9.          | 53° 7′ 48″.                     |             | c = .19107.                        |             | b = 3.                      |
| 10.         | 21° 53′ 58″.                    | 27.         | $A = 40.67^{\circ}$ .              | <b>42</b> . | $A=45^{\circ}$ .            |
| 11.         | 42° 24′ 39″.                    |             | a = 86.64.                         |             | b = 1.                      |
| <b>12</b> . | c = 8.48.                       | 28.         | $A = 40.95^{\circ}$ .              | <b>43</b> . | $A=60^{\circ}$ .            |

# Exercise 20

b = .0839.

c = 2987.33.

**29**.  $A = 52.33^{\circ}$ .

**30**.  $A = 43.44^{\circ}$ .

| 1. | Leg = 120.                                  | 8.   | Base $\angle = 46^{\circ} \ 16' \ 41''$ . |
|----|---------------------------------------------|------|-------------------------------------------|
|    | Vertex $\angle = 60^{\circ}$ .              | Ve   | rtex $\angle = 87^{\circ} \ 26' \ 38''$ . |
| 2. | Base = $353.87$ .                           |      | Leg = 6690.16.                            |
| 3. | Base = $9.6837$ .                           | 9.   | r = 8.2583.                               |
|    | Vertex $\angle = 67^{\circ} 24'$ .          |      | R = 10.208.                               |
| 4. | Leg = 50.699.                               | Peri | meter = 60.                               |
|    | Base = $79.578$ .                           |      | Area = 247.75.                            |
|    | Vertex $\angle = 103^{\circ} 24' 20''$ .    | 10.  | r = 1.5388.                               |
| 5. | Vertex $\angle = 69^{\circ} \ 23' \ 12''$ . |      | R = 1.618.                                |
|    | Leg = 927.84.                               | Peri | meter = 10.                               |
|    | Base = $1056.225$ .                         |      | Area = $7.694$ .                          |
| 6. | Leg = 8.8204.                               | 11.  | Side = $8.282$ .                          |
|    | Base $\angle = 62^{\circ} 10'$ .            |      | r = 15.455.                               |
|    | Vertex $\angle = 55^{\circ} 40''$ .         |      | Area = 768.                               |
| 7. | Base $\angle = 33^{\circ} \ 21' \ 30''$ .   | 12.  | Side = $9.112$ .                          |
|    | Leg = .075978.                              |      | r = 17.                                   |

Area = 929.24.

b = 50.

a=6.

c = 12.

**44.**  $A = 30^{\circ}$ .

13. Side = 8.6524, 
$$r = 5.9546$$
. Perimeter = 43.262, Area = 128.8.

14. Perimeter = 4.70498. Area = 1.6417.

15.  $h = l \sin D$ .  $m = 2 l \cos D$ .  $C = 180^{\circ} - 2 D$ .

16.  $\tan D = \frac{2h}{m}$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ .  $l = \frac{m}{2} \cos D$ 

 $A = 58^{\circ} \, 45' \, 17''$ 

18. l = 1.5086.

c = 2.6811.

h = .69175.

**23**. .8874.

**24.** R = 3.22046.

c = 2.2029.

r = 3.0263.

11. a = 13.1945.

12. 42.847.

b = 8.4405.

 $A = 57^{\circ} 23' 36''$ .

| <ol> <li>Perimeter = 21,265.</li> <li>p = 23.187.</li> <li>R = 3.9448.</li> <li>938.</li> <li>47577.</li> <li>882.</li> <li>.01618.</li> </ol> | 42. 151.4.<br>43. 80.8.<br>442084.<br>45. h = 8.828.<br>A = 22.03°.<br>l = 23.54.<br>46. l = 1.2351.                                                                                                                          | 54. $R = 18.34$ .<br>c = 10.3332.<br>r = 17.6.<br>55. $R = 4.031$ .<br>c = 2.7575.<br>r = 3.788.<br>56. $101.36$ .                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>34. 6000000.</li> <li>3500003529.</li> <li>36. a = 8.283.</li></ul>                                                                   | 47. $l = 54.51$ .<br>c = 91.06.<br>h = 30.04.<br>48. $c = .8598$ .<br>h = .2384.<br>$A = 29^{\circ}$ .<br>49. $58.75$ .<br>50. $.8308$ .<br>51. $36950$ .<br>52. $15.172$ .<br>53. $R = 2.262$ .<br>c = 1.9624.<br>r = 2.038. | <b>59.</b> $298.78$ .<br><b>60.</b> $4050\sqrt{3} = 7014.6$ .<br><b>61.</b> $3200\sqrt{3} = 5542.4$ .<br><b>62.</b> $800$ .<br><b>63.</b> $2000000\sqrt{3} = 3464000$ .<br><b>64.</b> $7200$ .<br><b>65.</b> $2500\sqrt{3} = 4330$ .<br><b>66.</b> $\frac{10800}{3}\sqrt{3} = 5773.3$ .<br><b>67.</b> $400\sqrt{3} = 692.8$ .<br><b>68.</b> $80,000$ . |

In this exercise, where two answers are given to an example, the first is the result obtained by use of five-place log tables, and the second answer is the result obtained by use of four-place tables.

| 1. | 389.7 = Ht.                  | 9.  | 695.414.                     | 19. | 23.013.                     |
|----|------------------------------|-----|------------------------------|-----|-----------------------------|
| 2. | 474.788.                     |     | 695.35.                      |     | 23,012.                     |
|    | 474.8.                       | 10. | 17° 31′ 7″.                  | 20. | 5246.25.                    |
| 3. | 114.1.                       |     | 17.52°.                      |     | 5246.6.                     |
| 4. | 10° 33′ 25″.                 | 11. | 82.056.                      | 21. | 43.3 = ht. of tree.         |
|    | 10.56°.                      |     | 82.06.                       |     | 25 = width of river.        |
| 5. | 491.511.                     | 12. | 287.25.                      | 22. | KR = 12.                    |
|    | 491.44.                      |     | 287.47.                      |     | $RP = 6\sqrt{3} = 10.392$ . |
| 6. | Base = $76.79$ .             | 13. | 231.7.                       |     | $RS = 6\sqrt{6} = 14.694.$  |
|    | Base = $76.8$ .              |     | 231.68.                      |     | $ST = 12\sqrt{3} = 20.784.$ |
|    | Alt. $= 49.6955$ .           | 14. | 1534.96.                     |     | SF=24.                      |
|    | Alt. = $49.7$ .              |     | 1535.                        |     | TF = 12.                    |
|    | Area = 1908.5.               | 16. | Ht. of hill 1673.038.        | 23. | 13.071.                     |
|    | Area = 1908.08.              |     | Ht. of hill 1673.67.         |     | 13.053.                     |
| 7. | 37° 58′ 46″.                 |     | Dis. of ship 6215.143.       | 24. | 71.264.                     |
|    | 37.975°.                     |     | Dis. of ship 6215.7.         |     | 71.28.                      |
| 8. | Distance of ladder           | 17. | $KR = 12\sqrt{3} = 20.784$ . | 25. | 616.771.                    |
| fı | com house = $12.588$ .       |     | KA = 24.                     |     | 616.5.                      |
|    | 12.58.                       |     | $KT = 6\sqrt{3} = 10.392.$   | 26. | 45° 0′ 37″.                 |
| 4  |                              |     | RT = 18.                     |     | 45°.                        |
|    | house = $30^{\circ} 14' 8''$ |     | $FT = 18\sqrt{3} = 31.176$ . |     | 50.6375.                    |
|    | $=30.22^{\circ}$ .           |     | RF = 36.                     |     | 50.62.                      |

**27.** 
$$AB = \sin y$$
.  $OB = \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .  $AB = \sin x \cos y$ .

| 1. 9 | 2.             | 3.            | 3.  | 5.       | 4.              | <b>7</b> . 4. | <b>9</b> . 3.     | <b>11</b> . 1. | <b>13</b> . <b>4</b> . | <b>15.</b> 4.    |
|------|----------------|---------------|-----|----------|-----------------|---------------|-------------------|----------------|------------------------|------------------|
| 2.   | 2.             | 4.            | 4.  | 6.       | 1.              | <b>8.</b> 3.  | <b>10</b> . 3.    | <b>12</b> . 2. | <b>14</b> . 2.         |                  |
| 16.  | (1)            | Same          | as  | the sign | s of the        | e function    | is in the sec     | ond quadra     | ant.                   |                  |
|      | (3)            | Same          | as  | the sign | ns of th        | e function    | ns in the thi     | rd quadrai     | nt.                    |                  |
|      | (5)            | Same          | as  | the sign | ns of the       | e function    | ns in the for     | ırth quadra    | int.                   |                  |
| 17.  | 385°           | •             |     | 18.      | $330^{\circ}$ . |               | <b>19</b> . 460°. |                | 20. 260°.              |                  |
|      | $745^{\circ}$  |               |     |          | 690°.           |               | 820°.             |                | 620°.                  |                  |
|      | - 38           | 35°.          |     |          | - 390°          | •             | $-260^{\circ}$    | ·.             | - 46                   | 0°.              |
|      | - 69           | 95°.          |     |          | <b>−</b> 750°   |               | $-620^{\circ}$    | •              | 82                     | 0°.              |
| 21.  | $65^{\circ}$ . |               | 22. | 60°.     | 23.             | 60°.          | <b>24</b> . 155°  | . 25.          | 40°.                   | <b>26</b> . 53°. |
| 27.  | Seco           | ond.          |     |          | <b>2</b> 9.     | Second.       |                   | <b>31.</b> Fo  | ourth.                 |                  |
| 28.  | Thir           | $^{\rm rd}$ . |     |          | <b>30</b> .     | Third.        |                   | <b>32.</b> Se  | cond.                  |                  |
| 00   | 0.05           | 0 (1, -       |     | of five  | nlaga d         | a la la a N   | 0 00 (br ma       | o of four n    | laga tabla             | ~1               |

33. 8.052 (by use of five-place tables). 8.06 (by use of four-place tables).

**3.** 0.

**34.** 55.73.

1. 2.

**2**. ∞.

# Exercise 24

3. 0. 5. 4. 7. 0. 4.  $c^2 - a^2 + 4ac$ . 6. -2a. 8. 3m.

|    |                                            |     | Exercise 25                    |     |                                    |
|----|--------------------------------------------|-----|--------------------------------|-----|------------------------------------|
| 1. | $\sin 390^{\circ} = \frac{1}{2}$ .         | 7.  | $\sin = \frac{1}{2}$ .         |     | $\sec x = \mp \frac{1.7}{8}$ .     |
|    | $\cos 390^{\circ} = \frac{1}{2}\sqrt{3}$ . |     | $\cos = \frac{1}{2}\sqrt{3}$ . |     | $\csc x = \pm \frac{17}{15}$ .     |
|    | $\tan 390^{\circ} = \frac{1}{3}\sqrt{3}$ . |     | $\tan = \frac{1}{3}\sqrt{3}$ . | 12. | $\cos x = \mp \frac{12}{13}$ .     |
|    | $\sec 390^{\circ} = \frac{2}{3}\sqrt{3}$ . |     | $\cot = \sqrt{3}$ .            |     | $\tan x = \pm \frac{5}{12}$ .      |
| 2. | $\cos 780^{\circ} = \frac{1}{2}$ .         | 8.  | $\sin = \frac{1}{2}\sqrt{3}$ . |     | $\sec x = \mp \frac{13}{12}$ .     |
|    | $\tan 780^\circ = \sqrt{3}.$               |     | $\cos = \frac{1}{2}$ .         |     | $\cot x = \pm \frac{1}{5}^2$ .     |
|    | $\sin 780^{\circ} = \frac{1}{2}\sqrt{3}$ . |     | $\tan = \sqrt{3}$ .            |     | $\csc x = -\frac{1}{5}^3$ .        |
|    | $\cot 780^{\circ} = \frac{1}{3}\sqrt{3}$ . |     | $\cot = \frac{1}{3}\sqrt{3}$ . | 13. | $\sin x = -\frac{\sqrt{5}}{5}.$    |
| 4. | $\sin = \frac{1}{2}\sqrt{3}.$              | 9.  | $\sin = \frac{1}{2}\sqrt{2}.$  | 10. | Ð                                  |
|    | $\cos = \frac{1}{2}$ .                     |     | $\cos = \frac{1}{2}\sqrt{2}$ . |     | $\cos x = -\frac{2\sqrt{5}}{5}$ .  |
|    | $\tan = \sqrt{3}$ .                        |     | tan = 1.                       |     | э                                  |
| _  | $\cot = \frac{1}{3}\sqrt{3}.$              |     | $\cot = 1$ .                   |     | $\tan x = \frac{1}{2}.$            |
| 5. | $\sin = \frac{1}{2}$ .                     | 10. | $\sin x = \pm \frac{4}{5}.$    |     | $\cot x = 2$ .                     |
|    | $\cos = \frac{1}{2}\sqrt{3}$               |     | $\tan x = \mp \frac{4}{3}.$    |     | $\sec x = -\frac{\sqrt{5}}{2}$ .   |
|    | $\tan = \frac{1}{3}\sqrt{3}.$              |     | $\cot x = \mp \frac{3}{4}.$    |     | $\csc x = -\sqrt{5}$ .             |
|    | $\cot = \sqrt{3}$ .                        |     | $\sec x = -\frac{5}{3}$ .      |     |                                    |
| 6. | $\sin = \frac{1}{2} \sqrt{2}$ .            |     | $\csc x = \pm \frac{5}{4}.$    | 14. | $\sin x = \frac{\sqrt{m^2 - 1}}{}$ |
|    | $\cos = \frac{1}{2}\sqrt{2}.$              | 11. | $\sin x = \pm \frac{15}{17}.$  |     | m                                  |
|    | tan = 1.                                   |     | $\cos x = \mp \frac{8}{17}.$   |     | $\cos x = -\frac{1}{m}$ .          |
|    | $\cot = 1$ .                               |     | $\cot x = -\frac{8}{15}$ .     |     | m                                  |

**1**5.

# ANSWERS

$$\tan x = -\sqrt{m^2 - 1}.$$

$$\cot x = -\frac{\sqrt{m^2 - 1}}{m^2 - 1}.$$

$$\sec x = -\frac{\sqrt{10}}{3}.$$

$$18. \quad \sin y = -\frac{1}{3}\sqrt{5}.$$

$$\csc y = -\frac{3}{5}\sqrt{5}.$$

$$19. \quad \sin x = -\frac{1}{2}.$$

$$\cos x = \frac{\sqrt{3}}{2}.$$

$$\cos x = -\frac{1}{6}.$$

$$\cos x = -\frac{1}{6}.$$

$$\cos x = -\frac{\sqrt{3}}{2}.$$

$$\cot x = -\sqrt{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\tan x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

$$\cot x = -\frac{\sqrt{3}}{3}.$$

1. 
$$-\frac{1}{2}$$
, 2.  $\frac{1}{2}$ , 3.  $-\sqrt{3}$ , 4.  $-\sqrt{3}$ , 5.  $-\sqrt{2}$ , 6. -1. 7.  $\frac{1}{3}\sqrt{3}$ , 8.  $-\frac{1}{2}$ , 9.  $-\frac{1}{2}$ .

10.  $-\frac{\sqrt{2}+5}{2}$ .

18.  $-\sin 20^\circ$ .

26.  $-\sec 25^\circ$ .

11.  $-\frac{1}{3}\sqrt{3}-4$ .

19.  $-\sin 27^\circ$ .

27.  $\sin 8^\circ$ .

28.  $-\tan 20^\circ$ .

29.  $-\cot 30^\circ$ .

21.  $\sec 30^\circ$ .

22.  $-\sin 27^\circ$ .

23.  $\cot 22^\circ$ .

24.  $-\cos 10^\circ 16^\circ$ .

25.  $-\cot 30^\circ 17^\prime$ .

26.  $-\sec 25^\circ$ .

27.  $\sin 8^\circ$ .

28.  $-\tan 20^\circ$ .

29.  $-\cot 30^\circ$ .

29.  $-\cot 30^\circ$ .

21.  $-\cot 30^\circ$ .

22.  $-\sin 27^\circ$ .

23.  $-\cot 30^\circ$ .

24.  $-\cos 10^\circ 16^\prime$ .

25.  $-\cot 30^\circ 16^\prime$ .

26.  $-\sec 25^\circ$ .

27.  $-\cot 30^\circ$ .

28.  $-\cot 30^\circ$ .

29.  $-\cot 30^\circ$ .

21.  $-\cot 30^\circ$ .

29.  $-\cot 30^\circ$ .

29.  $-\cot 30^\circ$ .

20.  $-\cot 30^\circ$ .

21.  $-\cot 30^\circ$ .

22.  $-\sin 27^\circ$ .

23.  $-\cot 30^\circ$ .

24.  $-\cos 10^\circ 16^\prime$ .

| 14<br>18<br>16 | 1. $\sin 40^{\circ}$ .<br>5. $-\sec 5^{\circ}$ .<br>3. $\tan 5^{\circ}$ .<br>4. $a \cos x + b \sin x - c$                                                                                                                                         | 23. $a$ 24. $a$ $a$ $a$ $a$ $a$ $a$ $a$ $a$ $a$ $a$ | - $\sin 27^{\circ}$ . $\cot 22^{\circ}$ $\cos 10^{\circ} 16^{\circ}$ . b) $\cos x - (a - b)$                                                                                                                      | <b>35</b> . <i>p</i> si | $9\frac{1}{2}$ .  11 $\cos x$ . $n \propto \cos x$ .                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.            | $\frac{1}{2}\sqrt{2}$ . <b>2</b> . $\sqrt{3}$ . <b>3</b> . $-\frac{1}{2}$ . $\sin = -\cos 29^{\circ}$ . $\cos = -\sin 29^{\circ}$ . $\tan = \cot 29^{\circ}$ . $\cot = \tan 29^{\circ}$ . $\sec = -\csc 29^{\circ}$ . $\csc = -\sec 29^{\circ}$ . | 4. $-\sqrt{\hat{\xi}}$ 13. s  t  s                  | 3. 5. $-\sqrt{3}$ . 6. 0.<br>$\sin = -\sin 15^{\circ}$ .<br>$\cos = \cos 15^{\circ}$ .<br>$\tan = -\tan 15^{\circ}$ .<br>$\cot = -\cot 15^{\circ}$ .<br>$\sec = \sec 15^{\circ}$ .<br>$\csc = -\csc 15^{\circ}$ . | 16.                     | $\sin = \sin 0^{\circ}$ .<br>$\cos = -\cos 0^{\circ}$ .<br>$\tan = \tan 0^{\circ}$ ,<br>$\cot = \cot 0^{\circ}$ .<br>$\sec = -\sec 0^{\circ}$ .<br>$\csc = \csc 0^{\circ}$ .                       |
| 11.            | $\sin = -\cos 9^{\circ}$ .<br>$\cos = \sin 9^{\circ}$ .<br>$\tan = -\cot 9^{\circ}$ .<br>$\cot = -\tan 9^{\circ}$ .<br>$\csc = -\sec 9^{\circ}$ .<br>$\sec = \csc 9^{\circ}$ .                                                                    | t<br>t                                              | $\sin = \cos 17^{\circ}$ .<br>$\cos = -\sin 17^{\circ}$ .<br>$\tan = -\cot 17^{\circ}$ .<br>$\cot = -\tan 17^{\circ}$ .<br>$\sec = -\csc 17^{\circ}$ .<br>$\csc = \sec 17^{\circ}$ .                              | 17.                     | $\sin = \sin 36^{\circ} 43'.$ $\cos = -\cos 36^{\circ} 43'.$ $\tan = -\tan 36^{\circ} 43'.$ $\cot = -\cot 36^{\circ} 43'.$ $\sec = -\sec 36^{\circ} 43'.$ $\csc = \csc 36^{\circ} 43'.$            |
| 12.            | $\sin = \sin 15^{\circ}$ .<br>$\cos = -\cos 15^{\circ}$ .<br>$\tan = -\tan 15^{\circ}$ .<br>$\cot = -\cot 15^{\circ}$ .<br>$\sec = -\sec 15^{\circ}$ .<br>$\csc = \csc 15^{\circ}$ .                                                              | t<br>G                                              | $\sin = \cos 10^{\circ}$ .<br>$\cos = \sin 10^{\circ}$ .<br>$\tan = \cot 10^{\circ}$ .<br>$\cot = \tan 10^{\circ}$ .<br>$\sec = \csc 10^{\circ}$ .<br>$\csc = \sec 10^{\circ}$ .                                  | 18.                     | $\sin = \cos 37.24^{\circ}$ .<br>$\cos = \sin 37.24^{\circ}$ .<br>$\tan = \cot 37.24^{\circ}$ .<br>$\cot = \tan 37.24^{\circ}$ .<br>$\sec = \csc 37.24^{\circ}$ .<br>$\csc = \sec 37.24^{\circ}$ . |

21. 
$$-\cos x$$
.
 23.  $-\sin x$ .
 25.  $-\sec x$ .
 27.  $-3\cos x$ .

 22.  $-\cos x$ .
 24.  $\tan x$ .
 26.  $-\sec x$ .

 28.  $-a\cos x + b\sin x - c\tan x$ .
 30.  $\sin^2 x\cos x$ .

 29.  $-m\cos A - p\cot A - q\cot A$ .
 31.  $-\cos x$ .

Where two answers are given, the first answer is found by the five-place tables, the second answer is found by the four-place tables.

22. Distance of the spring from the house = 217.39. 217.4. Distance of the spring from the barn = 229.12. 229.16.

#### Exercise 29

1. 
$$\sin(x+y) = \frac{6.8}{6.5}$$
.  
2.  $\sin(x-y) = \frac{3.8}{6.5}$ .  
 $\cos(x+y) = \frac{1.6}{6.5}$ .  
 $\cos(x-y) = \frac{5.6}{6.5}$   
3.  $\sin(x+45^\circ) = \frac{\sqrt{2}}{2}(\sin x + \cos x)$ .  
 $\cos(30^\circ - x) = \frac{\sqrt{3}\cos x + \sin x}{2}$ .  
 $\sin(x-60^\circ) = \frac{\sin x - \cos x\sqrt{3}}{2}$ .

**8.** 
$$\frac{\sqrt{6}+\sqrt{2}}{4}$$
. **9.**  $\sqrt{3}-2$ . **10.**  $\frac{\sqrt{6}-\sqrt{2}}{4}$ . **11.**  $\frac{\sqrt{2}-\sqrt{6}}{4}$ . **12.**  $\sin 90^\circ = 1$ .  $\cos 90^\circ = 0$ .

**14.** 
$$\tan (45^{\circ} + y) = \frac{1 + \tan y}{1 - \tan y}$$
.  
 $\tan (45^{\circ} - y) = \frac{1 - \tan y}{1 + \tan y}$ .  
 $\tan (45^{\circ} - y) = \frac{1 - \tan y}{1 + \tan y}$ .  
 $\cot (30^{\circ} + y) = \frac{\sqrt{3} \cot^2 y - 4 \cot y + \sqrt{3}}{3 \cot^2 y - 1}$ .

1. 
$$\sin 60^{\circ} = \frac{1}{2}\sqrt{3}$$
.  $\cos 60^{\circ} = \frac{1}{2}$ . 10.  $4\cos^{3}x - 3\cos x$ . 2.  $\tan 60^{\circ} = \sqrt{3}$ . 11.  $\frac{3\tan x - \tan^{3}x}{1 - 3\tan^{2}x}$ . 13.  $-\frac{1}{5}$ .

3. 
$$\sin 120^{\circ} = \frac{1}{2}\sqrt{3}$$
.  $\tan 120^{\circ} = -\sqrt{3}$ . 14.  $-\frac{7}{24}$ .

9. 
$$3\sin x - 4\sin^3 x$$
. 21.  $\frac{1}{8}\cos 4x + \frac{1}{2}\cos 2x + \frac{3}{8}$ .

2. 
$$\sin 15^\circ = \frac{1}{2}\sqrt{2 - \sqrt{3}} = .2588.$$
  
 $\tan 15^\circ = 2 - \sqrt{3} = .2679.$   
 $\cos 15^\circ = \frac{1}{2}\sqrt{2 + \sqrt{3}} = .9659.$ 

3. 
$$\cot 22\frac{1}{2}^{\circ} = \sqrt{2} + 1 = 2.4142.$$
  
 $\cos 22\frac{1}{2} = \frac{1}{2}\sqrt{2 + \sqrt{2}} = .9239.$   
 $\sin 22\frac{1}{2} = \frac{1}{2}\sqrt{2 - \sqrt{2}} = .3827.$ 

4. 
$$\sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{2}\sqrt{2} = .7071$$
.  
 $\tan 45^{\circ} = \cot 45^{\circ} = 1$ .  
 $\sec 45^{\circ} = \csc 45^{\circ} = \sqrt{2} = 1.4142$ .

5. 
$$\cos \frac{1}{2}A = \frac{1}{6}\sqrt{18 + 6\sqrt{5}}$$
.  
 $\cot \frac{1}{2}A = \frac{3 + \sqrt{5}}{2}$ .  
 $\tan \frac{1}{2}A = \frac{3 - \sqrt{5}}{2}$ .

16. 
$$A = 79^{\circ} 36' 40''$$
.  $A = 79.726^{\circ}$ .  $b = 22$ .

6. 
$$\cos \frac{\theta}{2} = \frac{1}{2} \sqrt{2 + 2 a}.$$
$$\cot \frac{\theta}{2} = \frac{1}{1 - a} \sqrt{1 - a^2}.$$
$$\tan \frac{\theta}{2} = \frac{1}{1 + a} \sqrt{1 - a^2}.$$

12. 
$$\cos A = \sqrt{\frac{1 + \cos 2 A}{2}}$$
$$\sin A = \sqrt{\frac{1 - \cos 2 A}{2}}$$
$$\cot A = \sqrt{\frac{1 + \cos 2 A}{1 - \cos 2 A}}$$

13. 
$$\frac{-15}{4}$$
.
14.  $-\frac{3\sqrt{5}+25}{21}$ .

#### Exercise 32

13. 
$$\sin (A + B) = \frac{\sqrt{15} + \sqrt{3}}{8}$$
.  
 $\sin (A - B) = \frac{\sqrt{15} - \sqrt{3}}{8}$ .  
 $\cos (A + B) = \frac{3\sqrt{5} - 1}{8}$ .  
 $\cos (A - B) = \frac{3\sqrt{5} + 1}{8}$ .  
 $\sin 2 A = \frac{1}{2}\sqrt{3}$ .  
 $\sin 2 B = \frac{1}{8}\sqrt{15}$ .  
 $\cos 2 A = \frac{1}{2}$ .

14. 
$$\sin (60^{\circ} + 30^{\circ}) = 1.$$
  
 $\sin 60^{\circ} + \sin 30^{\circ} = \frac{\sqrt{3} + 1}{2}$ .  
15.  $-\sin 29.5^{\circ} \cos 7.5^{\circ}$ 

15. 
$$-\frac{\sin 29.5^{\circ} \cos 7.5^{\circ}}{\sin 27^{\circ} \sin 11^{\circ}}$$

$$\frac{2\cos 6 A}{\cos 6 A}.$$

17. 
$$\sin{(A+B)}\sin{(A-B)}$$
.

# Exercise 34

1. 
$$\csc \theta = -\frac{5}{4}$$
.  $\cot \theta = \frac{3}{4}$ .  $\sin \frac{1}{2} \theta = \frac{2}{5} \sqrt{5}$ .  $\tan (180^{\circ} - \theta) = -\frac{4}{3}$ .  $\sin (-\theta) = \frac{4}{5}$ .

 $\cos 2 B = 7$ .

5. 
$$\cos 15^{\circ} = \frac{1}{2}\sqrt{2+\sqrt{3}}.$$
 
$$\csc 15^{\circ} = 2\sqrt{2+\sqrt{3}}.$$
 
$$\tan 15^{\circ} = 2-\sqrt{3}.$$

$$\sin (-\theta) = \frac{4}{5}.$$
**2.**  $\frac{4}{5}.$ 
**3.**  $2 + \sqrt{3}.$ 

**6.** (a) 
$$= \frac{3 - 4\sqrt{3}}{10}.$$

**4.**  $\sin 2x = \pm \frac{3}{2} \sqrt{7}$ , the sign depending on whether  $\frac{1}{2}x$  is taken in the first or fourth quadrants.

$$(b) \qquad \qquad = \frac{4 - 3\sqrt{3}}{10}.$$

In like manner:  $\tan 2 x = \mp \frac{3}{23} \sqrt{7}.$ 

$$=\frac{4+3\sqrt{3}}{10}.$$

$$(d) = \frac{1}{2}\sqrt{3}.$$

$$(e) = -\frac{1}{2}.$$

$$(f) = -\sqrt{3}.$$

$$(g) = \frac{7}{24}.$$

$$(h) = -\frac{25\sqrt{3}-48}{39}.$$

$$(i) = \frac{1}{2}\sqrt{3}.$$

$$(j) = \frac{1}{2}\sqrt{3}.$$

$$(j) = \frac{1}{2}\sqrt{3}.$$

$$(j) = \frac{1}{2}\sqrt{3}.$$

$$(j) = \frac{1}{2}\sqrt{3}.$$

$$(j) = -\frac{\sqrt{5}}{2}.$$

$$(b) = \frac{1}{2}.$$

$$(c) = -2.$$

$$(d) = -\frac{2}{5}\sqrt{5}.$$

$$(d) = \frac{\sin(x-\frac{3\pi}{2})=\cos x}{\cos(x-\frac{3\pi}{2})=-\cot x}.$$

$$\cot(x-\frac{3\pi}{2})=-\cot x.$$

$$\cot(x+x)=-\sin x.$$

$$\cot(x+x)=-\cos x.$$

$$\tan(x+x)=-\cos x.$$

$$\tan(x+x)=-\cos x.$$

$$\tan(x+x)=-\cos x.$$

$$\tan(x+x)=-\cos x.$$

$$\cot(x+x)=\cot x.$$

$$\cot(x-\frac{\pi}{2})=-\cot x.$$

$$\cot(x-\frac{\pi}{2}$$

34.  $-\frac{1}{2}$ . 35.  $-\frac{4}{5}$ . 36.  $\frac{3}{2}$ . 37.  $-\frac{2}{3}\sqrt{3}$ . 38.  $-\frac{3}{2}$ . 37.  $-\frac{2}{3}\sqrt{3}$ . 38.  $-\frac{3}{2}$ . 39.  $\tan \theta = \frac{3}{4}$ . 31.  $-\frac{1}{2}\frac{7}{5}$ . 33.  $-\frac{3}{2}\cos 4x + \cos 8x$ . 33.  $-\frac{3}{2}\cos 4x + \cos 8x$ .

**54.**  $\frac{1}{128}(35-64\cos 2x+32\sin^2 2x\cos 2x+28\cos 4x+\cos 8x)$ .

# Exercise 35

- 3.  $a = c \cos B$ .
- 7. (I)  $\frac{a-b}{a+b} = \tan (A-45^\circ)$  and a right triangle.
- (II)  $a+b=(a-b)(2+\sqrt{3})$  an isosceles triangle with the angles 30°, 30°, 120°.

9. 
$$\sin B = \frac{b}{a}$$
$$\sin A = \frac{a}{b}$$

1. 
$$c = 9.1226$$
.
 4.  $A = 109^{\circ}$  19'.
 7.  $A = 99^{\circ}$  29' 12.

  $C = 41^{\circ}$  7'.
  $a = 4899.56$ .
  $b = 1.0943$ .

  $b = 13.288$ .
  $b = 4106$ .
  $c = .488667$ .

 2.  $A = 134^{\circ}$  20'.
 5.  $C = 69^{\circ}$  57' 36".
 8.  $B = 43^{\circ}$  18' 36".

  $b = 74.9916$ 
 $a = .85442$ .
  $b = 1.3487$ .

  $c = 242.755$ 
 $b = .81196$ .
  $c = 1.8286$ .

 3.  $A = 57^{\circ}$  52'.
 6.  $A = 29^{\circ}$  1' 2'.
 9.  $C = 68^{\circ}$  15' 30'.

  $a = 1116.98$ .
  $a = 56.541$ .
  $a = .182095$ .

  $c = 1260.26$ .
  $b = 90.164$ .
  $b = .188745$ .

18 ANSWERS

```
10.
        b = 5.267\sqrt{2}.
                                  16.
                                          c = 38.52.
                                                                     23. a = 20.343
          = 7.4486.
                                          b = 57.412.
                                                                          c = 28.66.
        c = 2.6335(\sqrt{6} + \sqrt{2}).
                                                                          B = 27.77^{\circ}.
                                         A = 79.9^{\circ}.
                                  17.
                                                                     24. a = 838.83.
          = 11.175.
                                          a = 13283.34.
       C = 105^{\circ}.
                                          c = 13346.67.
                                                                           b = 595.1.
       C = 75^{\circ}.
                                         A = 80^{\circ} 46'.
                                                                          C = 56.6^{\circ}.
11.
        a = 500(3\sqrt{2} - \sqrt{6}). 18.
                                          a = 600.4.
                                                                     25. b = c = a = 100.
                                          b = 602.
                                                                          B = C = A = 60^{\circ}.
          = 896.55.
                                          C = .75^{\circ}.
                                                                     26. C = 30^{\circ}.
        b = 500(2\sqrt{3} - 2).
          =732.1.
                                  19.
                                          c = 7.295.
                                                                           a = 200\sqrt{3} = 346.42.
12. 4.0954. 11.697.
                                          b = 14.83.
                                                                           b = c = 200.
        b = 17.08.
                                         A = 117.67^{\circ}.
                                                                     27. C = 45^{\circ}.
13.
        c = 15.097.
                                  20.
                                          b = .2592.
                                                                     b = 250(3\sqrt{2} - \sqrt{6}) = 448.3
                                                                     c = 250(2\sqrt{3} - 2) = 365.7.
       C = 56.73^{\circ}.
                                          a = .2181.
        a = 634.3.
                                          C = 55.87^{\circ}.
                                                                     28. B = 30^{\circ}.
14.
                                          a = 186.25.
        b = 632.89.
                                  21.
                                                                     c = 200\sqrt{2} = 282.8.
       A = 81.32^{\circ}.
                                          c = 32.5.
                                                                     a = 100(\sqrt{6} + \sqrt{2}) = 386.4.
        c = 1.022.
                                         A = 101.96^{\circ}.
                                                                     29. 925.8.
15.
        a = 1.4815.
                                  22.
                                          c = 4377.
       B = 25.57^{\circ}.
                                          b = 5641.43.
                                         A = 55.69^{\circ}.
  30. Distance of balloon from first point
                                                        = 2033 \text{ yd.}
```

#### Exercise 37

= 1739 yd.

Distance of balloon from second point = 2363 yd.

Height of balloon

| 1. $c = 26.8675$ .                     | 7. $8.185 = c$ .                | 13. $B = 141.99^{\circ}$ .        |
|----------------------------------------|---------------------------------|-----------------------------------|
| $B = 39^{\circ} \ 45' \ 17''$ .        | 8. $C = 109^{\circ} \ 36' \ 5'$ | $A = 25.89^{\circ}$ .             |
| $A = 72^{\circ} \ 14' \ 43''$ .        | $B = 38^{\circ} 5' 25''$ .      | c = 3.972.                        |
| <b>2.</b> $a = 385.43$ .               | a = 14.962.                     | <b>14</b> . $A = 79.82^{\circ}$ . |
| $B = 74^{\circ} 38' 19''$ .            | 9. $C = 6^{\circ} 49' 41''$ .   | $C = 21.56^{\circ}$ .             |
| $C = 37^{\circ} 3' 41''$ .             | b = 317.8.                      | b = 1712.3.                       |
| 3. $C = 110^{\circ} 22' 10''$ .        | $A = 4^{\circ} 51' 41''$ .      | <b>15.</b> $a = 7.93$ .           |
| $B = 39^{\circ} \ 25' \ 30''$ .        | 10. $A = 49.06^{\circ}$ .       | <b>16.</b> $B = 6.23^{\circ}$ .   |
| a = .1912.                             | c = 208.1.                      | $C = 4.97^{\circ}$ .              |
| <b>4</b> . $A = 48^{\circ} 42' 12''$ . | $B = 79.117^{\circ}$ .          | a = 5.906.                        |
| $C = 67^{\circ} \ 42' \ 18''$ .        | 11. $a = .9418$ .               | 17. $c = 102.425$ .               |
| b = .0748566.                          | $B = 117.99^{\circ}$ .          | $A = 65.83^{\circ}$ .             |
| 5. $C = 34^{\circ} 6' 36''$ .          | $C = 33.85^{\circ}$ .           | $B = 45.93^{\circ}$ .             |
| $B = 22^{\circ} \ 36' \ 54''$ .        | 12. $A = 32.24^{\circ}$ .       | <b>18.</b> $A = 33.84^{\circ}$ .  |
| a = 4.70177.                           | $C=35.58^{\circ}$ .             | $B = 102.98^{\circ}$ .            |
| 6. $a = 336.446$ .                     | b = .6566.                      | c = 1474.67.                      |
| $B = 99^{\circ} 55' 36''$ .            |                                 | 19. $b = 10.7$ .                  |
| $C = 27^{\circ} 58' 24''$ .            |                                 |                                   |

Where two answers are given, the first answer is obtained by using the fiveplace tables, and the second answer is obtained by the use of the four-place tables.

#### ANSWERS

20. Distance = 234.34 ft. Distance = 234.32 ft.

21. 4.36 mi.

Resultant = 14.989.
Resultant = 15.08.
∠ with OA = 77° 11′ 20″.
∠ with OA = 77.23°.

∠ with  $OB = 43^{\circ} 31' 40''$ . ∠ with  $OB = 43.49^{\circ}$ . **23**. 3.59.

24. 152.268. 152.22. 238.31. 238.22.

#### Exercise 38

1.  $A = 78^{\circ} 5' 36''$ .  $78.1^{\circ}$ .  $B = 58^{\circ} 23' 28''$ .  $58.38^{\circ}$ .  $C = 43^{\circ} 30' 58''$ .  $43.52^{\circ}$ .

2.  $A = 44^{\circ} 32' 4''$ .  $44.53^{\circ}$ .  $B = 86^{\circ} 25'$ .  $86.41^{\circ}$ .  $C = 49^{\circ} 2' 58''$ .  $49.05^{\circ}$ .

3.  $A = 26^{\circ} 19' 54''$ .  $26.33^{\circ}$ .  $B = 98^{\circ} 18' 54''$ .  $98.32^{\circ}$ .  $C = 55^{\circ} 21' 14''$ .  $55.36^{\circ}$ .

**4.**  $A = 45^{\circ} 11' 50''$ .  $45.19^{\circ}$ .  $B = 101^{\circ} 22' 18''$ .  $101.38^{\circ}$ .  $C = 33^{\circ} 25' 58''$ .  $33.43^{\circ}$ .

**5.**  $A = 43^{\circ} 53' 14''$ .  $43.88^{\circ}$ .  $B = 60^{\circ} 3' 36''$ .  $60.06^{\circ}$ .  $C = 76^{\circ} 3' 18''$ .  $76.06^{\circ}$ .

**6.**  $A = 61^{\circ} 53' 38''$ .  $61.88^{\circ}$ .  $B = 72^{\circ} 46' 4''$ .  $72.78^{\circ}$ .  $C = 45^{\circ} 20' 20''$ .  $45.34^{\circ}$ .

7.  $A = 91^{\circ} 48'$ .  $91.80^{\circ}$ .  $B = 47^{\circ} 36' 56''$ .  $47.61^{\circ}$ .  $C = 40^{\circ} 35' 10''$ .  $40.59^{\circ}$ .

8.  $A = 37^{\circ} 50' 40''$ .  $37.84^{\circ}$ .  $B = 127^{\circ} 3'$ .  $127.05^{\circ}$ .  $C = 15^{\circ} 6' 22''$ .  $15.11^{\circ}$ .

9.  $A = 40^{\circ} 38' 22''$ .  $40.64^{\circ}$ .  $B = 49^{\circ} 21' 56''$ .  $49.36^{\circ}$ .  $C = 89^{\circ} 59' 46''$ .  $90^{\circ}$ .

10.  $A = 52^{\circ} \ 20' \ 30''$ .  $52.34^{\circ}$ .  $B = 107^{\circ} \ 19' \ 12''$ .  $107.32^{\circ}$ .  $C = 20^{\circ} \ 20' \ 26''$ .  $20.34^{\circ}$ .

11.  $A = 13^{\circ} \ 12' \ 8''$ .  $13.2^{\circ}$ .  $B = 30^{\circ} \ 2' \ 46''$ .  $30.04^{\circ}$ .  $C = 136^{\circ} \ 45' \ 6''$ .  $136.76^{\circ}$ .

12.  $A = 46^{\circ} \ 19' \ 52''$ .  $46.33^{\circ}$ .  $B = 31^{\circ} \ 17' \ 50''$ .  $31.3^{\circ}$ .  $C = 102^{\circ} \ 22' \ 18''$ .  $102.37^{\circ}$ .

13.  $A = 107^{\circ} 55' 12$ .  $107.92^{\circ}$ .  $B = 35^{\circ} 15' 34''$ .  $35.26^{\circ}$ .  $C = 36^{\circ} 49' 18''$ .  $36.82^{\circ}$ .

14. 104° 28′ 42″. 104.48°.

**15**. 16° 44′ 6″. 16.736°.

**16.** .53224. .5323.

17. .1188.

**18**. 14.8586. 14.86.

20. Q is 53° 7′ 48″ (53.14°) north of west from P. Q is 38° 52′ 48″ (38.88°) north of west from R.

P is due west of R.

P is  $36^{\circ} 52' 12'' (36.86^{\circ})$  east of south from Q.

R is due east of P.

R is 38° 52′ 48″ (38.88°) south of east from Q.

When R is northeast from P:

Q is  $8^{\circ}$  7' 48" (8.14°) north of west from P.

Q is  $6^{\circ} 7' 12'' (6.12^{\circ})$  south of west from R.

R is  $6^{\circ} 7' 12'' (6.12^{\circ})$  north of east from Q.

P is southwest from R. P is 8° 7' 48" (8.14°) south of east from Q.

21. 28° 57′ 17″. 28.96°.

- 1. One solution.
- 2. Two solutions.
- 3. One solution.
- 4. No solution.
- 5. No solution.
- 6. One solution.
- 7. One solution, a right  $\triangle$ .
- 8. No solution.
- 9. Two solutions.
- 10.  $B = 32^{\circ} 36' 33''$ .  $C = 109^{\circ} 5' 27''$ . c = 211.48.
- 11.  $B = 40^{\circ} 40'$ .  $B' = 16^{\circ} 44'$ .  $C = 78^{\circ} 2'$ .  $C' = 101^{\circ} 58'$ . b = 15.787. b' = 6.9753
- 12.  $B = 42^{\circ} 44' 23''$ .  $A = 33^{\circ} 1' 49''$ . a = 92.942.
- 13.  $A = 18^{\circ} 19' 43''$ .  $C = 139^{\circ} 17' 59''$ . c = 1.3952.
- 14.  $B = 70^{\circ} 47'$ .  $B' = 14^{\circ} 35'$ .  $C = 61^{\circ} 54'$ .  $C' = 118^{\circ} 6'$ . b = 128.455. b' = 34.2515.
  - **28.** Other side =  $\begin{cases} 129.1. \\ 129.125. \end{cases}$

Other diagonal =  $\begin{cases} 41.66. \\ 41.62. \end{cases}$ 

Larger angle of parallelogram =  $\begin{cases} 173^{\circ} 15' \, 8'' \\ 173.26^{\circ} \end{cases}$ 

Smaller angle of parallelogram =  $\begin{cases} 6^{\circ} 44' 52'' \\ 6.74^{\circ}. \end{cases}$ 

- **15.**  $A = 32^{\circ} 55' 57''$ . **22.** 
  - $A' = 147^{\circ} 4' 3''$ .  $C = 131^{\circ} 33' 51''$ .
  - $C' = 17^{\circ} 25' 45''$ .
  - c = 1643.96.c' = 661.15.
- **16.**  $A = 43^{\circ} 38'$ .
  - $B = 58^{\circ} 3' 42''$ . b = .32868.
- 17.  $A = 90^{\circ}$ . c = 25.64.
- 18.  $B = 28^{\circ} 16' 25''$ .  $C = 20^{\circ} 25' 11''$ . b = .56045.
- 19.  $A = 103^{\circ} 50' 22''$ .  $A' = 13^{\circ} 7' 8'' = A$ . a = 15.354. a' = 3.589.  $B = 44^{\circ} 38' 23''$ .

 $B' = 135^{\circ} \, 21' \, 37''$ .

20.  $A = 35.91^{\circ}$ .  $A' = 144.09^{\circ}$ .  $C = 111.72^{\circ}$ .  $C' = 3.54^{\circ}$ . c = 219.7.

c' = 14.6.

21.  $B = 55^{\circ}$ .  $B' = 10.26^{\circ}$ .  $C = 67.63^{\circ}$ .  $C' = 112.37^{\circ}$ . b = 20.118.

 $b' = 4.372^{\circ}$ .

- **22.**  $A = 25.22^{\circ}$ .  $C = 49.51^{\circ}$ . a = 135.46.
- **23.**  $A = 20.79^{\circ}$ .  $B = 132.99^{\circ}$ . b = 136.733.
- **24.**  $A = 16.25^{\circ}$ .  $A' = 163.75^{\circ}$ .  $C = 149.45^{\circ}$ .  $C' = 1.95^{\circ}$ . C' = 2.4518.
- **25.**  $B = 122.81^{\circ}$ .  $B' = 12.45^{\circ}$ .  $C = 34.81^{\circ}$ .  $C' = 145.19^{\circ}$ . b = 441.7. b' = 113.2.
- **26.**  $A = 70.78^{\circ}$ .  $C = 45.91^{\circ}$ . a = 10.08.
- 27.  $A = 72.16^{\circ}$ .  $A' = 9.22^{\circ}$ .  $B = 58.53^{\circ}$ .  $B' = 121.47^{\circ}$ . a = .19685. a' = .03313.

**29.** 1010.58. 1010.2.

| 1. | 106.79.                 | 4.                | 14290.6.     |                      | 8.  | 1056.66.  |
|----|-------------------------|-------------------|--------------|----------------------|-----|-----------|
|    | 106.8.                  |                   | 14290.       |                      |     | 1056.25.  |
| 2. | .30733.                 | 5.                | 38983.64.    |                      | 9.  | 1283.5.   |
|    | .30726.                 |                   | 38983.33.    |                      | 10. | 42150.    |
| 3. | 125.229.                | 6.                | 113.55.      |                      |     | 42130.77. |
|    | 125.225.                | 7.                | .054776.     |                      |     |           |
|    |                         |                   | .0547875.    |                      |     |           |
| 11 | . Area of parallelogram | $\mathbf{a} = cc$ | $d \sin A$ . | <b>14</b> . 106,798. |     |           |

# Exercise 41

13.  $600\sqrt{3} = 1039.2$ .

In this exercise when two answers are given to an example, the first answer is found by the use of five-place tables, and the second answer is found by four-place tables.

106.8.

| ound<br>ables |                                                             | of fi       | ve-1       | place tables, and                                      | the se   | cond answer                                          | is four             | nd by fou             | ır-place |
|---------------|-------------------------------------------------------------|-------------|------------|--------------------------------------------------------|----------|------------------------------------------------------|---------------------|-----------------------|----------|
|               |                                                             | ove         | the        | 72.268.<br>72.27.<br>Colorado plain.<br>olorado plain. | 15.      | Height = 49 $Height = 49$ $Distance = $ $Distance =$ | 2,92 ft.<br>104.63. |                       |          |
|               | 14144.5 ft. a<br>14134 ft. ab                               |             |            |                                                        | 16.      | 11.36.<br>5.573.                                     | 18.                 | 4.2818.<br>4.283.     |          |
|               | 373.3.<br>69.98.                                            | 11.         |            | ght = 97.083. $ght = 97.08.$                           | 17.      | .1189.                                               | 19.                 | 1496.517.<br>1496.66. | •        |
|               | 136.9.<br>1016.6.                                           |             |            | tance = 71.787. $tance = 71.78.$                       | 20.      | First answe<br>Second ans                            |                     | •                     | .488 mi. |
| 10.           | 1016.8.                                                     | 12.         | 10.<br>6.6 | 274.<br>1.                                             | 21.      | 996.94.<br>997.6.                                    | 25.                 | 220.7.                |          |
|               | 16.83. Other side                                           |             | = 4        | 3.43.                                                  | 22.      | 401.52.<br>401.54.                                   | 26.                 | 16.58.                |          |
|               | Other diago                                                 | onal        | = {        | 58.342.<br>58.346.                                     | 23.      | 443.54.<br>443.5.                                    | 27.                 | 6739 m.<br>6740 m.    |          |
|               | [ 146° 52′ 47′<br>[ 146.88°.<br>[ 33° 7′ 13″.<br>[ 33. 12°. |             |            |                                                        | 24.      | 974.145 <b>.</b><br>973.9.                           | 28.                 | 9° 6′.                |          |
| 29.           | Difference<br>New latitud<br>New longit                     | le =        | : 34°      |                                                        | of depa  | rture = 247.                                         | 5 mi.               |                       |          |
| <b>30</b> .   | 152.69 ft.<br>152.7 ft.                                     | uue         | 4          | O Ø W.                                                 | 31.      | 114.5 ft.                                            |                     |                       |          |
| 32.           | 85.854 ft. }                                                | $= \dot{c}$ | lista      | nce between ob                                         | servers. | i                                                    |                     |                       |          |

85.89 ft. \$\int \text{ ansatz source}\$
38.566 ft. = distance of first observer from the rock.
33. 2008 = resultant.
72° 16' \text{ 72.27° } = angle the resultant makes with \$OX\$.

40. 48 ft. and 108 ft. respectively.

41. 
$$40^{\circ} 0' 16''$$
  $\left. \begin{array}{c} 40^{\circ} 0' 16'' \\ 40^{\circ} \end{array} \right\}$  = angle the slope makes with the embankment.

44. 85.27 mi.

**39.**  $\begin{cases} 367.89 \text{ ft.} \\ 367.9 \text{ ft.} \end{cases} = \text{side opposite tower.}$ 

90.032 ft.

 $\left.\begin{array}{l} 90.04 \text{ ft. and} \\ 379.125 \text{ ft.} \\ 379.1 \text{ ft.} \end{array}\right\} = \frac{\text{the other two sides}}{\text{respectively.}}$ 

# Exercise 42

1. 
$$30^{\circ} = \frac{\pi}{6}$$
. 2.  $\frac{\pi}{6} = 30^{\circ}$ .

$$\frac{\pi}{6} = 30^{\circ}$$

$$135^{\circ} = \frac{3 \pi}{4} \cdot \frac{\pi}{4} = 45^{\circ}.$$

$$60^{\circ} = \frac{\pi}{3} \cdot \qquad \qquad \frac{\pi}{3} = 60^{\circ}.$$

$$90^{\circ} = \frac{\pi}{2}$$
.  $\frac{2\pi}{3} = 120^{\circ}$ .

$$210^{\circ} = \frac{7\pi}{6}$$
.  $\frac{4\pi}{5} = 144^{\circ}$ .  
 $270^{\circ} = \frac{3\pi}{2}$ .  $\frac{3\pi}{5} = 108^{\circ}$ .

$$225^{\circ} = \frac{5 \pi}{4}$$
.  $\frac{7 \pi}{5} = 252^{\circ}$ .

$$72^{\circ} = \frac{2 \pi}{5}$$
  $\frac{\pi}{15} = 96^{\circ}$ .

$$315^{\circ} = \frac{7 \pi}{4}.$$

3. 
$$1^{\circ} = .01745$$
 radian.  $16'' = .00007757$  radian.  $2' \cdot 15'' = .0006545$  radian.  $5^{\circ} \cdot 14' = .0913374$  radian.

4. 2 radians = 
$$114^{\circ} 35' 30''$$
.  
3.2 radians =  $183^{\circ} 20' 48''$ .  
.003 radian =  $0^{\circ} 10' 18.8''$ .

5. Are 21 in. 
$$\log = \frac{3}{2}$$
 radian.  
Are 7 in.  $\log = \frac{1}{2}$  radian.

6. 
$$R = 28$$
.

7. Radians = 1.118. Angle = 
$$64^{\circ} 3' 22.5''$$
.

8. Angles = 
$$85^{\circ}$$
; 25°.  
= 1,47325 radians; .43625 radian.

9. Complement of  $\frac{\pi}{6} = \frac{\pi}{3}$ , 60°; supplement =  $\frac{5\pi}{6}$ , 150°.

Complement of 
$$\frac{\pi}{3} = \frac{\pi}{6}$$
, 30°; supplement =  $\frac{2\pi}{3}$ , 120°.

Complement of 
$$\frac{\pi}{4}$$
,  $45^{\circ} = \frac{\pi}{4}$ ,  $45^{\circ}$ ; supplement  $= \frac{3\pi}{4}$ ,  $135^{\circ}$ .

Complement of 
$$\frac{\pi}{9} = \frac{7\pi}{18}$$
, 70°; supplement  $= \frac{8\pi}{9}$ , 160°.

Complement of 
$$\frac{5\pi}{18} = \frac{2\pi}{9}$$
, 40°; supplement =  $\frac{13\pi}{18}$ , 130°.

10. 
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
.  $\cos = \frac{1}{2}\sqrt{3}$ .  
 $\tan = \frac{1}{3}\sqrt{3}$ .  $\cot = \sqrt{3}$ .  
 $\sec = \frac{2}{3}\sqrt{3}$ .  $\csc = 2$ .

$$\sin \frac{\pi}{2} = \frac{1}{2}\sqrt{3}$$
.  $\cos = \frac{1}{2}$ .

$$\sin \frac{1}{3} = \frac{1}{2} \sqrt{3}. \qquad \cos \frac{1}{2} \sqrt{3}$$
$$\tan = \sqrt{3}. \qquad \cot \frac{1}{2} \sqrt{3}$$

$$\begin{array}{ll}
\tan = \sqrt{3}, & \cot = \frac{2}{3}\sqrt{3}, \\
\sec = 2, & \csc = \frac{2}{3}\sqrt{3}.
\end{array}$$

$$\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{2}\sqrt{2}.$$

$$\tan\frac{\pi}{4} = \cot\frac{\pi}{4} = 1.$$

$$\sec\frac{\pi}{4} = \csc\frac{\pi}{4} = \sqrt{2}.$$

$$\sin\frac{\pi}{2} = 1. \quad \cot\frac{\pi}{2} = 0.$$

$$\cos\frac{\pi}{2} = 0$$
.  $\sec\frac{\pi}{2} = \infty$ .

$$\tan\frac{\pi}{2} = \infty. \ \csc\frac{\pi}{2} = 1.$$

**16.** 
$$\rho = .26175$$
. **17.**

16. 
$$\rho = .26175$$
. 17.  $\rho = .64565$ .  $a = 10.9935$ .  $R = 154.89$ .

$$\sin \frac{3\pi}{4} = \frac{1}{2}\sqrt{2}$$
,  $\cos = -\frac{1}{2}\sqrt{2}$ .

$$\tan = \cot = -1.$$

$$\sec = -\sqrt{2}. \quad \csc = \sqrt{2}.$$

$$\sin \frac{7 \pi}{6} = -\frac{1}{2}$$
.  $\cos = -\frac{1}{2}\sqrt{3}$ .

$$\tan = \frac{1}{3}\sqrt{3}$$
,  $\cot = \sqrt{3}$ .  
 $\sec = -\frac{2}{3}\sqrt{3}$ .  $\csc = -2$ .

$$\sin\frac{7\pi}{4} = -\frac{1}{2}\sqrt{2}$$
.  $\cos = \frac{1}{2}\sqrt{2}$ .

$$\tan = \cot = -1.$$

$$\sec = \sqrt{2}. \qquad \csc = -\sqrt{2}.$$

11. 
$$1\frac{1}{5}$$
 radians =  $68^{\circ}$  45' 18".

13. 
$$R = 4$$
.  $A = 143^{\circ} 14' 22.5''$ .

14. 
$$a = 12.5$$
.  
 $A = 14^{\circ} 19' \ 26\frac{1}{4}''$ .

5. 
$$\rho = 8$$
.  $A = 458^{\circ} 22'$ .

20. 4' 20".

**24**. 
$$\frac{3}{2}\sqrt{2}-6$$
.

2. 
$$\frac{\pi}{3}$$
,  $\frac{2\pi}{2}$   $\frac{4\pi}{3}$ ,  $\frac{5\pi}{3}$ .

3. 
$$\frac{\pi}{4}$$
,  $\frac{3\pi}{4}$ ,  $\frac{5\pi}{4}$ ,  $\frac{7\pi}{4}$ .

4. 
$$\frac{\pi}{3}$$
,  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$ ,  $\frac{5\pi}{3}$ 

5. 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ .

**6.** 
$$\frac{\pi}{3}$$
,  $\frac{5\pi}{3}$ .

7. 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ ,  $\frac{7\pi}{6}$ ,  $\frac{11\pi}{6}$ 

8. 
$$\frac{\pi}{4}$$
,  $\frac{3\pi}{4}$ ,  $\frac{5\pi}{4}$ ,  $\frac{7\pi}{4}$ ,  $\frac{\pi}{3}$ ,  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$ ,  $\frac{5\pi}{3}$ 

9. 
$$\frac{\pi}{2}$$
,  $\frac{3\pi}{2}$ ,  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ .

10. 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ 

12. 
$$\frac{3\pi}{4}$$
,  $\frac{7\pi}{4}$ ,  $\frac{\pi}{2}$ ,  $\frac{3\pi}{2}$ .

13. 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ ,  $\frac{\pi}{4}$ ,  $\frac{3\pi}{4}$ ,  $\frac{5\pi}{4}$ ,  $\frac{7\pi}{4}$ .

14. 
$$\frac{\pi}{3}$$
,  $\frac{2\pi}{3}$ ,  $\pi$ .

15. 
$$\frac{\pi}{2}$$
,  $\frac{2\pi}{2}$ ,  $\frac{4\pi}{2}$ ,  $\frac{5\pi}{2}$ .

16. 
$$\frac{\pi}{6}$$
,  $\frac{7\pi}{6}$ .

17. 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ ,  $\frac{7\pi}{6}$ ,  $\frac{11\pi}{6}$ , 0,  $\frac{\pi}{3}$ 

**18.** 
$$\frac{\pi}{4}$$
,  $\frac{3\pi}{4}$ ,  $\frac{\pi}{3}$ ,  $\frac{5\pi}{3}$ .

19. 
$$0, \frac{\pi}{3}, \frac{\pi}{6}, \frac{5\pi}{6}$$

**20.** 0, 
$$\frac{\pi}{2}$$
,  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ ,  $\pi$ ,  $\frac{3\pi}{2}$ .

**21.** 0, 
$$\pi$$
,  $\frac{\pi}{3}$ ,  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$ ,  $\frac{5\pi}{3}$ 

**22.** 
$$\frac{\pi}{6}$$
,  $\frac{\pi}{2}$ ,  $\frac{\pi}{3}$ ,  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$ ,  $\frac{5\pi}{3}$ .

1. 
$$\theta = 30^{\circ}, 210^{\circ}.$$
  
 $x = 100, -100.$ 

2. 
$$\theta = 36.5^{\circ}, 216.5^{\circ}.$$
  
 $x = 200, -200.$ 

3. 
$$\theta = 58.51^{\circ}$$
, 301.49°.  $x = 500$ ,  $-500$ .

4. 
$$x = 50^{\circ}$$
.  $y = 40^{\circ}$ .

5. 
$$x = 1000$$
.  $y = 2000$ .

6. 
$$x = 60^{\circ}$$
.  $y = 45^{\circ}$ .

7. 
$$x = 36.87^{\circ}$$
.  $y = 22.62^{\circ}$ .

8. 
$$x = 1000$$
.  $\theta = 72.5^{\circ}$ .

9. 
$$x = a \cos A + b \sin A$$
.  
 $y = b \cos A - a \sin A$ .

# Exercise 46

1. 
$$\cos^{-1}\frac{1}{2}\sqrt{2} = 45^{\circ}, \frac{\pi}{4}$$

$$\tan^{-1}\sqrt{3} = 60^{\circ}, \ \frac{\pi}{3}$$

$$\sin^{-1}\frac{1}{2} = 30^{\circ}, \frac{\pi}{6}$$

$$\sec^{-1}\sqrt{2}=45^{\circ},\ \frac{\pi}{4}\cdot$$

$$\csc^{-1}\frac{2}{3}\sqrt{3} = 60^{\circ}, \ \frac{\pi}{3}$$

$$\cot^{-1}\sqrt{3} = 30^{\circ}, \frac{\pi}{6}$$

$$\cos^{-1}\frac{1}{2} = 60^{\circ}, \frac{\pi}{3}$$
.

$$\sec^{-1} 2 = 60^{\circ}, \ \frac{\pi}{3}$$

$$\sin^{-1}\frac{1}{2}\sqrt{3} = 60^{\circ}, \ \frac{\pi}{3}$$

$$\cot^{-1}\frac{1}{3}\sqrt{3} = 60^{\circ}, \ \frac{\pi}{3}.$$

$$\tan^{-1}\frac{1}{3}\sqrt{3} = 30^{\circ}, \ \frac{\pi}{6}$$

2. 
$$\cos(\cot^{-1}\frac{3}{4}) = \frac{3}{5}$$
.

3. 
$$\tan \left(\sin^{-1}\frac{5}{13}\right) = \frac{5}{12}$$
.

4. 
$$\sec(\tan^{-1}\frac{8}{15}) = \frac{17}{15}$$
.

5. 
$$\sin(\cot^{-1}a) = \frac{\sqrt{1+a^2}}{1+a^2}.$$

6. 
$$\cot\left(\cos^{-1}\frac{a}{b}\right) = \frac{a\sqrt{b^2 - a^2}}{b^2 - a^2}.$$

7. 
$$\tan (2 \sin^{-1} \frac{1}{2}) = \sqrt{3}$$
.

8. 
$$\sin(2\tan^{-1}\frac{5}{12}) = \frac{120}{169}$$

9. 
$$\cos(2\sec^{-1}\frac{17}{8}) = -\frac{161}{289}$$

10. 
$$\sin(\frac{1}{2}\cos^{-1}\frac{1}{3}) = \frac{1}{3}\sqrt{3}$$
.

11. 
$$\cot\left(\frac{1}{2}\tan^{-1}\frac{1}{8}\right) = \pm\frac{5}{8}$$
.

$$\sin(3\sin^{-1}\frac{1}{2}) = 1.$$

13. 
$$\sin \left(\sin^{-1}\frac{1}{2} - \cos^{-1}\frac{2}{3}\right) = \frac{2 - \sqrt{15}}{6}$$

14. 
$$\tan(\tan^{-1} 2 + \cot^{-1} 3) = 7$$
.

30. 
$$\frac{\pi}{6} \pm 2 n\pi$$
, 31.  $\frac{\pi}{6} \pm 2 n\pi$ ,  $\frac{5\pi}{6} \pm 2 n\pi$ .  $\frac{7\pi}{6} \pm 2 n\pi$ .

$$32. \quad \frac{\pi}{4} \pm 2 \ n\pi,$$

$$\frac{7\pi}{4} \pm 2 n\pi$$
.

33. 
$$\frac{\pi}{2} \pm 2 n\pi$$
,

$$\frac{4\pi}{3}\pm 2\ n\pi$$
.

34. 
$$\frac{\pi}{3} \pm 2 \ n\pi$$
,

$$\frac{2\pi}{2}\pm 2n\pi$$
.

$$35. \quad \frac{\pi}{6} \pm 2 \ n\pi,$$

$$\frac{11 \pi}{6} \pm 2 n\pi.$$

12.

$$36. \qquad \frac{\pi}{2} \pm 2 \ n\pi,$$

$$\frac{3\pi}{2}\pm 2\ n\pi$$
.

**37.** 
$$\frac{\pi}{6} \pm 2 \ n\pi$$
,

$$\frac{7\pi}{6}\pm 2n\pi$$
.

$$38. \quad \frac{\pi}{4} \pm 2 \ n\pi,$$

$$\frac{7 \pi}{4} \pm 2 n\pi.$$

**39**. 
$$\frac{7\pi}{6} \pm 2 n\pi$$
,

$$\frac{11 \pi}{6} \pm 2 n\pi.$$

**42.** 
$$x = \frac{4 \pi}{3}$$

43. 
$$30^{\circ} = \sin^{-1}\frac{1}{2} = \cos^{-1}\frac{1}{2}\sqrt{3} = \tan^{-1}\frac{1}{3}\sqrt{3} = \cot^{-1}\sqrt{3}.$$

$$60^{\circ} = \sin^{-1}\frac{1}{2}\sqrt{3} = \cos^{-1}\frac{1}{2} = \tan^{-1}\sqrt{3} = \cot^{-1}\frac{1}{3}\sqrt{3}.$$

$$90^{\circ} = \sin^{-1}1 = \cos^{-1}0 = \tan^{-1}\infty = \cot^{-1}0.$$

$$45^{\circ} = \sin^{-1}\frac{1}{2}\sqrt{2} = \cos^{-1}\frac{1}{2}\sqrt{2} = \tan^{-1}1 = \cot^{-1}1.$$

$$0^{\circ} = \sin^{-1}0 = \cos^{-1}1 = \tan^{-1}0 = \cot^{-1}\infty.$$

$$n \ 180^{\circ} = \sin^{-1}0 = \tan^{-1}0.$$

$$n \ 90^{\circ} = \cos^{-1}0 = \cot^{-1}0.$$