1

1

2

3

1

2

3

What is Claimed:

- 1 A device for monitoring wear of dicing saw blade, the device comprising:
- a light source to emit light onto an end surface of the saw blade;
- a sensor for receiving a reflection of a portion of the light from the end surface of the saw blade; and
- a processor coupled to the sensor for determining wear of the saw blade based on an output from the sensor.
- 1 2. The device according to claim 1, wherein the sensor 2 determines a distance to the edge of the saw blade based on triangulation.
- 1 3. The device according to claim 1, further comprising first focusing means for focusing the reflected light onto the plurality of sensors.
 - 4. The device according to claim 1, wherein the sensor is a plurality of sensors.
 - 5. The device according to claim 4, wherein each of the plurality of sensors determines a respective distance to the edge of the saw blade based on triangulation.
 - 6. The device according to claim 4, further comprising a respective plurality of first focusing means for focusing the reflected light onto the plurality of sensors.
- The device according to claim 1, wherein the monitoring device is mounted on a cooling block of the saw blade.
- 1 8. The device according to claim 1, wherein the light impacts 2 the end of the saw blade substantially orthogonal to an axis of the saw blade.
- 9. The device according to claim 1, wherein the light impacts the surface of the saw blade substantially normal to a cutting edge of the saw blade.

1

2

3

1

1

2

3

- 1 10. The device according to claim 1, wherein the sensor is a position sensitive detector.
- The device according to claim 1, wherein the sensor is a 4 CCD detector.
- 1 12. The device according to claim 1, wherein the sensor 2 produces an output based on a position of the reflected light on a surface of the 3 sensor.
- 1 13. The device according to claim 1, wherein the emitter is a 2 laser diode.
- 1 14. The device according to claim 1, wherein the emitter 2 provides a light output having a wavelength of between about 600 to 800 nm.
 - 15. The device according to claim 1, wherein the processor determines blade wear based on a measured distance between the light source and a cutting edge of the saw blade.
 - 16. The device according to claim 15, wherein the processor stores successive wear data from the saw blade in a database.
 - 17. The device according to claim 1, wherein the processor provides a warning output based on a predicted wear of the saw blade, the predicted wear determined from the successive wear data.
- 1 18. The device according to claim 1, wherein the predicted wear of the blade is based on a comparison of the successive wear information stored in the database.
- 1 19. The device according to claim 1, further comprising a monitor for displaying at least one of i) a wear rate of the saw blade, and ii) an estimated time for replacement of the saw blade.
- 1 20. The device according to claim 1, wherein saw blade wear is 2 determined in real time.

1 2	method comp	21. A method for monitoring wear of a dicing saw blade, the prising the steps of:
3		emitting light onto an cutting edge of the saw blade;
4 5	saw blade; a	receiving a reflection of a portion of the light from the edge of the nd
6		determining wear of the saw blade based on the reflected light.
1 2 3		22. The method according to claim 21, further comprising the step at least one of i) a wear rate of the saw blade, and ii) an estimated accement of the saw blade.
1 2	method com	23. A method for monitoring wear of a dicing saw blade, the prising the steps of:
3		emitting light onto a cutting edge of the saw blade;
4 5	saw blade;	receiving a reflection of a portion of the light from the edge of the
6 7	and	triangulating a distance to the saw blade base on the reflected light
8 9	distance.	determining wear of the saw blade based on the triangulated
1 2	comprising:	24. A device for monitoring wear of dicing saw blade, the device
3		means to emit light onto a surface of the saw blade;
4 5	from the sur	receiving means for receiving a reflection of a portion of the light face of the saw blade; and
6 7	wear of the	processing means coupled to the receiving means for determining saw blade based on an output from the receiving means.

1	25. The device according to claim 24, further comprising:		
2 3 4	display means for displaying at least one of at least one of i) a wear rate of the saw blade, ii) a diameter of the saw blade, and ii) an estimated time for replacement of the saw blade.		
1 2	26. The device according to claim 25, further comprising memory means for storing the information displayed by the display means.		
1 2	27. The device according to claim 25, further comprising means for predicting wear of the saw blade.		
1 2	28. A device for use with a dicing saw to monitor wear of a dicing saw blade, the device comprising:		
3	a light source to emit light onto the saw blade; and		
4 5 6	a sensor for receiving at least a portion of the light from the light source via the saw blade, the received portion of the light based on a wear of the saw blade,		
7	wherein the device is mounted on a cooling block of the dicing saw.		