# Cognitive Modeling Part I

Bayesian Modeling in brms

Julia Haaf September, 2022

# A brief introduction to cognitive modeling

 $\boldsymbol{1.} \ \ What \ kind \ of \ models \ are \ we \ talking \ about?$ 

## A brief introduction to cognitive modeling

- 1. What kind of models are we talking about?
- 2. Signal detection

#### A brief introduction to cognitive modeling

- 1. What kind of models are we talking about?
- 2. Signal detection
- 3. Application to perceptual decision making experiment

## Theory, models, and data



There are many things that people call models.

E.g. Prayoga, T., & Abraham, J. (2017). A psychological model explaining why we love or hate statistics.



"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

 Behavioral variables are related to components of psychological processes using equations.

"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

- Behavioral variables are related to components of psychological processes using equations.
- Psychological processes are expressed as parameters and functions.

"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

- Behavioral variables are related to components of psychological processes using equations.
- Psychological processes are expressed as parameters and functions.
- Behavior needs to be quantifiable (e.g. accuracy, response time).

# Signal detection experiment



| Stimulus | Present response | Absent Response | Total |
|----------|------------------|-----------------|-------|
| Signal   | 75               | 25              | 100   |
| Noise    | 30               | 20              | 50    |
| Total    | 105              | 45              |       |

# Signal detection experiment



| Stimulus | Present response  | Absent Response         | Total |
|----------|-------------------|-------------------------|-------|
| Signal   | 75 (Hits)         | 25 (Misses)             | 100   |
| Noise    | 30 (False Alarms) | 20 (Correct Rejections) | 50    |
| Total    | 105               | 45                      |       |

 $\, \bullet \,$  General idea: Perception strength S varies gradually.

- General idea: Perception strength *S* varies gradually.
- On average, perceptual strength is higher when the stimulus is present/matches/old, etc.

- General idea: Perception strength S varies gradually.
- On average, perceptual strength is higher when the stimulus is present/matches/old, etc.

$$S \sim egin{cases} {\sf Normal}(\mu=d',\sigma^2=1), & {\sf for signal-present trials,} \ {\sf Normal}(\mu=0,\sigma^2=1), & {\sf for signal-absent trials.} \end{cases}$$



#### **SDT** model



d' = Sensitivity.

#### **SDT** model



 $c = \mathsf{Criterion}, \ \mathsf{determines} \ \mathsf{the} \ \mathsf{response} \ \mathsf{made}.$ 





What corresponds to the probability of hit?



Area under the curve!





What corresponds to the probability of false alarm?



What corresponds to the probability of correct rejection?



# Application to perceptual decision making experiment

| Collapsing across participants |            |              |  |
|--------------------------------|------------|--------------|--|
| <u>The Confusion Matrix</u>    | Chose Blue | Chose Yellow |  |
| Blue (2.35 cpd) was correct    | 81.9%      | 18.1%        |  |
| Yellow (2.65 cpd) was correct  | 11.5%      | 88.5%        |  |

## Application to perceptual decision making experiment



#### Application to perceptual decision making experiment



■ Data are a coin flip and we model the probability:  $Y_i \sim \text{Bernoulli}(p_i)$ .



- Data are a coin flip and we model the probability:  $Y_i \sim \text{Bernoulli}(p_i)$ .
- Probabilities are transformed to the continuous latent space:  $p_i = \Phi(\mu_i)$ .



- Data are a coin flip and we model the probability:  $Y_i \sim \text{Bernoulli}(p_i)$ .
- Probabilities are transformed to the continuous latent space:  $p_i = \Phi(\mu_i)$ .
- In that space, we can use a linear model just as before:  $\mu_i = \beta_0 + \beta_1 \operatorname{spf}_i$ ,



- Data are a coin flip and we model the probability:  $Y_i \sim \text{Bernoulli}(p_i)$ .
- Probabilities are transformed to the continuous latent space:  $p_i = \Phi(\mu_i)$ .
- In that space, we can use a linear model just as before:  $\mu_i = \beta_0 + \beta_1 \operatorname{spf}_i$ ,
- where  $\beta_0$ , the intercept, translates to the criterion,



- Data are a coin flip and we model the probability: Y<sub>i</sub> ~ Bernoulli(p<sub>i</sub>).
- Probabilities are transformed to the continuous latent space:  $p_i = \Phi(\mu_i)$ .
- In that space, we can use a linear model just as before:  $\mu_i = \beta_0 + \beta_1 \mathrm{spf}_i$ ,
- where  $\beta_0$ , the intercept, translates to the criterion,
- and  $\beta_1$ , the slope, translates to d'.



$$Y_i \sim \mathsf{Bernoulli}(p_i),$$
  $p_i = \Phi(\mu_i),$   $\mu_i = \beta_0 + \beta_1 \mathsf{spf}_i.$ 

Computing *responses* using accuracy and presented spacial frequency:

```
summary(fit1)
## Family: bernoulli
##
    Links: mu = probit
## Formula: response ~ 1 + factor(spf)
##
     Data: pdm[pdm$subject == 1, ] (Number of observations: 562)
    Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
##
           total post-warmup draws = 4000
##
## Population-Level Effects:
               Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## Intercept -0.11 0.08 -0.27 0.05 1.00
                                                           3757
                                                                   2501
## factorspflow -1.14 0.13 -1.37 -0.89 1.00
                                                           2495
                                                                   2218
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

# **Questions?**

