

User Interface Design & Implementation The User in UI Design

Week 2 – Lecture 2

Let's look at some gulfs in the world

The two most famous gulfs in this course

Famous Person #1

REVISED & EXPANDED EDITION The DESIGN of EVERYDAY THINGS DON NORMAN

Highly recommended reading

Don Norman is widely regarded for his expertise in the fields of design, usability engineering and cognitive science.

This is a classic

Fun book to read!

Available in SUTD Ebook Library

Forming the goal

Stages of execution

Stages of evaluation

Don Norman's seven stages of action

User Mental Model

What users believe they know about a UI **strongly impacts how they use it.**

User Mental Model

What users believe they know about a UI *strongly impacts how they use it.*

- What users know (or think they know) about a system
- Base their **predictions** about the system on their mental models
- Plan their future actions based on how their mental model predicts the appropriate course of action

User Mental Model

What users believe they know about a UI **strongly impacts how they use it.**

Users form and build their mental models from

- Previous experience with the system
 - "You reap what you sow."
- Previous experience from other systems
 - Pro: transfer of learning
 - Con: design inertia
- Metaphors: mapping or analogy to the real world
 - Desktop metaphor: folders, files and recycle bin
- Other users of the system

Model Human Processor

The Psychology **Human-Computer** Interaction STUART K. CARD THOMAS P. MORAN ALLEN NEWELL EA

Famous Persons #2 #3 #4

Stuart Card

Senior Research Fellow at Xerox PARC

Pioneer in many areas of Human-Computer Interaction

CHI Academy Member

Thomas Moran

Engineer at IBM Almaden Research Center Manager at Xerox PARC

Founding Editor of Human-Computer Interaction journal

CHI Academy Member

Allen Newell

Researcher at RAND Professor at Carnegie Mellon

Pioneer in Computer Science, Cognitive Psychology and Artificial Intelligence

Recipient of Turing Award

Famous Person #5

Bonnie John

Professor at Carnegie Mellon Researcher at IBM T. J. Watson Research Center UX designer at Bloomberg

Pioneer in HCI, Usability Methods and GOMS

CHI Academy Member

Subsequent slides on Model Human Processor were by Bonnie

Thanks Bonnie!

Interacting subsystems

Different values for different subsystems

LONG-TERM MEMORY

$$S_{LTM} = \infty$$

 $M_{LTM} = \infty$
 $K_{LTM} = \text{semantic}$

Parameters for memories and processors

- Memory parameters
 - ∂ = Decay time of an item
 - μ = Storage capacity in items
 - κ = Code type (physical, acoustic, visual, semantic)

- Processor parameter
 - τ = Cycle time

Assumptions in a Model

Fastman Middleman Slowman

Quantitative values are shown as:

Middleman [Fastman ~ Slowman]

Parameters based on empirical research

LONG-TERM MEMORY

$$\mathcal{S}_{\text{LTM}} = \infty$$

 $\mathcal{P}_{\text{LTM}} = \infty$
 $\mathcal{K}_{\text{LTM}} = \text{semantic}$

WORKING MEMORY

- When does a sequence of still pictures look like movement?
- When will the dot appear to smoothly grow & when does it appear jittery?

Which parameter is relevant in this example?

LONG-TERM MEMORY

$$S_{LTM} = \infty$$
 $M_{LTM} = \infty$
 $K_{LTM} = \text{semantic}$

WORKING MEMORY

- Stills are being presented every 300 milliseconds (msec)
- Animation or sequence of stills?

- Stills are being presented every 200 milliseconds (msec)
- Animation or sequence of stills?

- Stills are being presented every 100 milliseconds (msec)
- Animation or sequence of stills?

- Stills are being presented every 50 milliseconds (msec)
- Animation or sequence of stills?

Which parameter is relevant in this example?

LONG-TERM MEMORY

$$S_{LTM} = \infty$$
 $M_{LTM} = \infty$
 $K_{LTM} = \text{semantic}$

WORKING MEMORY

Animation Explanation

Perceptual processor speed:

 $Tp = 100[50 \sim 200]$

Assume middleman

Frame speed > 1 frame / 100 msec

= 10 frames/ sec should maintain the illusion of animation

To ensure animation for more people, assume Fastman

Frame speed > 1 frame / 50 msec

= 20 frames/ sec

Example: Moving to a target

For each pair of squares, tap back and forth with a pen.

Fitts's law

The time Tpos to move the hand to a target size S which lies a distance D away is given by:

Tpos =
$$I_M \log 2$$
 (D/S + 0.5),
where $I_M = 100[70\sim 120]$ msec/bit.

Fitts's law

S and D are measured along the line of motion

Example: Practice

What happens when you play a video game over and over?

Users get faster with practice

The Power Law of Practice

The time T_n to perform a task on the n^{th} trial follows a power law:

$$T_n = T_1 n^{-\alpha}$$
,
where $\alpha = 0.4 [0.2 \sim 0.6]$

$T_n = T_1 n^{-.4}$, where $T_1 = 1$

Example: Making Decisions

User takes more time to answer the phone as number of buttons increase.

Uncertainty Principle

Decision time T increases with uncertainty about the judgment or decision to be made:

$$T = I_C H$$

where H is the information- theoretic entropy of the decision and $I_C = 150 [0 \sim 157]$ msec/ bit.

For n equally probable alternatives (called Hick's Law) $H = \log_2 (n + 1)$

For n alternatives with different probabilities, p_i , of occurrence $H = \sum_i p_i \log_2 (1/p_i + 1)$

$T=I_CH$, where $I_c=150$ msec/bit and $H=log_2$ (n+1)

The User in UI Design

Mental Model

Come prepared for next class

- Read assigned articles and watch videos on Jakob Nielsen's 10 Usability Heuristics
- Find examples of user-interface that abided or failed to abide with a heuristic
- Come prepared to share with your fellow students
 - We will go from heuristic #1, #2, #3 and so on
 - First student to volunteer gets 3 mins to share an example and discuss
 - 10 students will get credit for class participation!
 - Come prepared with examples for a few heuristics, because you might not get to share your preferred one!