Лабораторная работа № 3

Описание модели.

Двухсервисная модель с эластичным трафиком

Проаназируем соту сети емкостью C . Пусть пользователи генерируют запросы на передачу данных двух типов. Запросы на передачу данных представляют собой ПП с интенсивностью λ_i , i=1,2. Средняя длина передаваемого файла θ_i , i=1,2. Минимальная емкость, необходимая для передачи данных равна b_i , i=1,2.

Таблица 11.1. Основные обозначения.

C		
	_	пиковая пропускная способность соты;
λ_i , $i=1,2$	_	интенсивность поступления запросов на передачу данных
•		первого/второго типа [запросов/ед.вр];
θ_i , $i=1,2$	_	длина передаваемого файла первого/второго типа [бит];
θ_i , $i=1,2$	_	длина передаваемого фанла первого/второго типа [онт],
$\rho_{i}^{1}, i=1,2$	_	интенсивность предложенной нагрузки, создаваемой
		запросами на передачу данных первого/второго типа;
i-1 2		доля нагрузки, создаваемой запросами на передачу данных
$a_i, i=1,2$	_	
		первого/второго типа, которая приходится на единицу
		пропускной способности (безразмерная величина);
$b_i, i=1,2$	_	минимальное требование к ресурсам сети, необходимое для
		передачи данных первого/второго типа;
$X_{i}(t), i=1,2$	_	число обслуживаемых в системе запросов на передачу
		данных первого/второго типа в момент времени $t, t \ge 0$;
$X(t) = (X_1(t), X_2(t))$	_	СП, описывающий функционирование системы в момент
$n(t) (n_1(t), n_2(t))$		времени $t, t \ge 0$;
T 7		•
\boldsymbol{X}	_	пространство состояний системы;
$n_i, i=1,2$	_	число передаваемых в системе блоков данных
•		первого/второго типа;
$B_{i}, i=1, 2$	_	множество блокировок запросов на передачу данных
\boldsymbol{B}_i, i 1, 2		первого/второго типа;
$S_i, i=1, 2$	_	множество приема запросов на передачу данных
•		первого/второго типа.

Схема модели (рис. 11.1):

Рис. 11.1. Схема двухсервисной модели с эластичным трафиком

Пространство состояний системы (рис. 11.2):

$$\mathbf{X} = \left\{ (n_1, n_2) : n_1 \ge 0, n_2 \ge 0 \right\}. \tag{11.1}$$

Рассмотрим некоторое центральное состояние (n_1, n_2) , $(n_1, n_2) \in \mathbf{X}$. Построим диаграмму интенсивностей переходов для центрального состояния (рис. 11.3):

Рис. 11.3. Диаграмма интенсивностей переходов для центрального состояния двухсервисной модели с эластичным трафиком

Пояснения:

$$\frac{C}{n_1 + n_2} \\ \frac{\theta_1}{C} = \frac{\theta_1}{C} (n_1 + n_2) \\ \frac{\theta_2}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{\theta_2}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{C}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{C}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{C}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{C}{n_1 + n_2} = \frac{\theta_2}{C} (n_1 + n_2) \\ \frac{C}{\theta_1 (n_1 + n_2)} = \frac{C}{n_1 + n_2} \\ \frac{C}{\theta_2 (n_1 + n_2)} = \frac{C}{n_1 + n_2} \\ \frac{C}{\theta_2 (n_1 + n_2)} = \frac{C}{n_1 + n_2} \\ \frac{C}{n_1 + n_2} = \frac{C}$$

Множество блокировок запросов на передачу данных:

$$\mathbf{B}_{i} = \{\emptyset\}, \ i = 1, 2. \tag{11.2}$$

Множество приема запросов на передачу данных:

$$S_i = \overline{B}_i = X \setminus B_i = \{0, 1, 2, ...\}, i = 1, 2.$$
 (11.3)

Система уравнений глобального баланса (СУГБ):

$$\left(\lambda_{1} + \lambda_{2} + \frac{C}{(n_{1} + n_{2})\theta_{1}} n_{1} + \frac{C}{(n_{1} + n_{2})\theta_{2}} n_{2}\right) \cdot p(n_{1}, n_{2}) =
= \lambda_{1} p(n_{1} - 1, n_{2}) \cdot U(n_{1}) + \lambda_{2} p(n_{1}, n_{2} - 1) \cdot U(n_{2}) +
+ \frac{C}{(n_{1} + 1 + n_{2})\theta_{1}} (n_{1} + 1) p(n_{1} + 1, n_{2}) +
+ \frac{C}{(n_{1} + n_{2} + 1)\theta_{2}} (n_{2} + 1) p(n_{1}, n_{2} + 1), (n_{1}, n_{2}) \in X.$$
(11.4)

Чтобы выписать систему уравнений частичного баланса (СУЧБ), проверим критерий Колмогорова. Рассмотрим произвольный замкнутый контур (рис. 11.4):

Рис. 11.4. Произвольный замкнутый контур для двухсервисной модели с эластичным трафиком

Рассмотрим произведение интенсивностей переходов

- по часовой стрелке: $\frac{n_2}{n_1 + n_2} \frac{C}{\theta_2} \frac{n_1}{n_1 + n_2 1} \frac{C}{\theta_1} \lambda_1 \lambda_2$;
- против часовой стрелки: $\frac{n_1}{n_1 + n_2} \frac{C}{\theta_1} \frac{n_2}{n_1 + n_2 1} \frac{C}{\theta_2} \lambda_1 \lambda_2$.

Произведения равны. Критерий выполнен, следовательно, СП $(X_1(t), X_2(t))$, описывающий поведение системы является обратимым марковским процессом, СУЧБ существует.

СУЧБ:

$$\begin{cases}
p(n_1, n_2) \frac{C}{(n_1 + n_2)\theta_1} n_1 = \lambda_1 p(n_1 - 1, n_2), n_1 > 0, \\
p(n_1, n_2) \frac{C}{(n_1 + n_2)\theta_2} n_2 = \lambda_2 p(n_1, n_2 - 1), n_2 > 0,
\end{cases} (n_1, n_2) \in X. \quad (11.5)$$

Обозначим $\rho_i = \lambda_i \theta_i$, $a_i = \frac{\rho_i}{C}$, $\rho_i < C$, i = 1, 2.

Стационарное распределение вероятностей состояний системы:

$$p(n_1, n_2) = \frac{a_1^{n_1}}{n_1!} \frac{a_2^{n_2}}{n_2!} (n_1 + n_2)! p(0, 0), \qquad (11.6)$$

где
$$p(0,0) = \left(\sum_{(n_1,n_2)\in X} (n_1 + n_2)! \frac{a_1^{n_1}}{n_1!} \frac{a_2^{n_2}}{n_2!}\right)^{-1}$$
. (11.7)

Основные вероятностные характеристики модели:

• Вероятность блокировки по времени E_i , i = 1, 2 запроса на передачу данных первого/второго типа

$$E_1 = E_2 = 0 ; (11.8)$$

• Среднее число \overline{N}_i , i = 1,2 обслуживаемых в системе запросов на передачу данных первого/второго типа:

$$\overline{N}_{i} = \lambda_{i} \frac{\theta_{i}}{\left(\theta_{1} \lambda_{1} + \theta_{2} \lambda_{2}\right)}, \quad i = 1, 2.$$
(11.9)

• Среднее время T_i , i = 1,2 обслуживания запроса на передачу данных первого/второго типа:

$$T_i = \frac{\overline{N}_i}{\lambda_i} \,. \tag{11.10}$$

Задание.

- 1. Описать пошагово алгоритм расчета распределения вероятностей состояний модели (вероятности блокировки запроса каждого типа, среднего числа запросов в системе).
- 2. Составить программу, реализующую расчет распределения вероятностей, среднего числа обслуживаемых запросов для любых значений исходных данных, среднего времени обслуживания запроса. Программа должна выводить на экран:
 - значение распределения вероятностей,
 - значение среднего числа запросов,
 - значение среднего времени обслуживания запроса.
- 3. Построить график зависимости среднего времени обслуживания запроса от интенсивности поступления запросов на обслуживание.
- 4. Построить график зависимости среднего числа обслуживаемых запросов от интенсивности поступления запросов на предоставление услуги.