Lecture 10 Boosting

Adaboost

- Given training data $(x_i,y_i), i=1,...,n$, where $y_i \in Y=\{+1,-1\}$.
- Initialize weights $w_i=1/n$
- For t = 1, ..., T
 - 1. Fit a weak classifier $\hat{f}_t(x)$ to the training sets with weigts $w_1,...,w_n$.
 - 2. Compute the weighted misclassification error

$$\epsilon_t = rac{\sum_{i=1}^n -w_i y_i \hat{f}_t(x_i)}{\sum_{i=1}^n w_i}$$

- 3. Let $lpha_t = \ln(rac{1-\epsilon_t}{\epsilon_t})$. The intuition is that
 - ullet $\epsilon_t=0$ if \hat{f}_t perfectly classifies all weighted data pts, $lpha_t=\infty$
 - ullet $\epsilon_t=1$ if \hat{f}_t perfectly wrongly classifies all weighted data pts, $lpha_t=-\infty$
 - ullet $\epsilon_t=0.5$ if ... perform as random guess, $lpha_t=0$
- 4. Update weights as

$$w_i \leftarrow w_i imes \exp[-lpha_t y_i \hat{f}_t(x_i)]$$

The rational is that wee increase the weight if wrong on pt i, i.e.,

$$y_i \hat{f}_t(x_i) = -1 < 0$$

Note that the normalization of ϵ_t in step 2) can also be performed in the weights update step 4).