Theory of Automata and Formal Language Lecture-10

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Non-deterministic Finite Automata (NFA)

A non-deterministic finite automata M is a 5-tuple, $M = (Q, \Sigma, \delta, \delta)$

 $Q \rightarrow Finite set of states$

 $\Sigma \rightarrow$ Finite set of input symbols

 $q_0 \in Q \rightarrow \text{Initial state}$

 q_0 , F), where

 $F \subset Q \to \mathsf{Set}$ of final states

and $\delta \rightarrow$ Transition function

It is defined as following:-

$$\delta: \mathsf{Qx}\mathsf{\Sigma} \to \mathsf{P}(\mathsf{Q})$$

Where P(Q) is the power set of Q. That is,

$$\delta(q, a) \subseteq Q$$
, $\forall q \in Q \text{ and } a \in \Sigma$

$$Q$$
 and $a \in \Sigma$

Extended Transition Function

It is denoted by $\hat{\delta}$. It is defined as following:- $\hat{\delta}: \mathsf{Qx}\mathsf{\Sigma}^* \to \mathsf{P}(\mathsf{Q})$

Properties of $\hat{\delta}$

- 1. $\hat{\delta}(q, \epsilon) = \{q\}$
- 2. $\hat{\delta}(q, a) = \delta(q, a), \quad \forall a \in \Sigma$
- 3. $\hat{\delta}(q, wa) = \bigcup_{p \in \hat{\delta}(q, w)} \delta(p, a)$, where $q, p \in Q$, $a \in \Sigma$ and $w \in \Sigma^*$

Another Extended Transition Function

It is denoted by $\hat{\hat{\delta}}.$ It is defined as following:- $\hat{\hat{\delta}}: \ \mathsf{P}(\mathsf{Q})\mathsf{x}\Sigma^* \to \mathsf{P}(\mathsf{Q})$

Properties of $\hat{\hat{\delta}}$

- 1. $\hat{\delta}(P,a) = \bigcup_{p \in P} \hat{\delta}(p,a)$
- 2. $\hat{\delta}(P, w) = \bigcup_{p \in P} \hat{\delta}(p, w)$, where $P \subseteq Q$, $a \in \Sigma$ and $w \in \Sigma^*$

Language Accepted by NFA

Language accepted by NFA M is denoted by L(M). It is defined as following:-

$$\mathsf{L}(\mathsf{M}) = \{ \mathsf{x} \in \mathsf{\Sigma}^* \; ! \; \hat{\delta}(q_0, \mathsf{x}) \cap \mathsf{F} \neq \phi \}$$

Some Examples

Examples: Find the language accepted by following NFA:-

Examples: Find the language accepted by following NFA:-

Examples: Find the language accepted by following NFA:-

Exercise

- 1. Design an NFA with no more than five states for the set $\{abab^n \mid n\geq 0\} \cup \{aba^n \mid n\geq 0\}$.
- 2. Construct an NFA with three states that accepts the language $\{ab, abc\}^*$.
- 3. Find an NFA with three states that accepts the language $L=\{a^n\ !\ n\geq 1\}\cup \{b^ma^k\ !\ m.k\geq 0\}$