Crowdedness Prediction Model

•••

Don de Lange Msc Data Science

Introduction

- Amsterdam is crowded
 - High pressure public transport
 - More pedestrians
 - More guests public events
- Municipality of Amsterdam → Predict future trends

How can a prediction of crowdedness within the city of Amsterdam be given, based on input from city-wide available data sources?

Data

- Start Date: 11 March 2018
- End Date: 24 March 2019
- Measurements made per day, per hour

Event Dates

• Categorize dates with events as outliers

Public Transport

- GVB
- Per Station
 - Number of Passengers
 - Co-ordinates

Crowdedness Sensors

- CMSA
- Sensor
 - Street Zone
 - Sum counts made with Count Cameras and Wi-Fi sensors
 - Co-ordinates
- Missing values

Prediction → **Sensor Counts**

Data Transformations

All given datasets combined into one

Time

- Problem \rightarrow Distance between given days and hours unclear
- Solution \rightarrow Make time circular
 - Separate each month, day, and hour in cos and sin
 - Improved performance significantly

Co-ordinates

- Problem → Placement locations unclear
- Solution \rightarrow Encode co-ordinates
 - Scale the longitude of all locations
 - Scale the latitude of all locations
- Scaler → Standard Scalar
 - Assumes normal distribution
 - Small performance improvement
 - Adapt at handeling outliers

Distance Stations to Sensor

- Problem $\rightarrow \overline{\text{Distance from each sensor to all stations unclear}}$
- Solution \rightarrow RBF Kernel
 - Euclidean distance longitude & latitude sensor & station
 - \circ Station lowest distance \rightarrow Highest influence
 - Small performance improvement

Prediction Models

Random Forest

What¹

- Builds group of weak learners to form strong learner
- Each learner works with subset features → Reduces model complexity
- Prediction → Average prediction all forests

Advantage

- Good performance
- Simplicity in hyperparameter Tuning

XGBoost

What²

- Gradient Boosting
- Scalability

Advantage

- High Performance
- Missing Values

Outcome Forms Prediction

Regression

Prediction

Sensor Crowdedness Counts

_				4.0	
	20	eit	ica	ti/	n
O I	เฉจ	ЭH	160		<i>7</i> 11

Prediction	Quartile	
Level 1	0% - 25%	
Level 2	25% - 50%	
Level 3	50% - 75%	
Level 4	75% - 100%	

Evaluation Metrics

Regression

- R2 \rightarrow Proportion variance predictable from input variables
- RMSE \rightarrow Error predicted and true values

Evaluation Metrics

Classification

- Accuracy → Proportion correctly labelled
- Precision → Per class, proportion correctly classified in class
- Recall → Per class, proportion correctly classified as class
- $F1 \rightarrow Balance Precision & Recall$

Prediction Method

Model Construction

Split Dataset

80% - Train

20% - Evaluation

Hyperparameter Tuning → Random Search

100% - Train

Train models → Cross-Validation

90% - Train

10% - Test

Generate Predictions

Evaluation

Results

Regression			
Model	R2	RMSE	
Baseline	57.7%	654.1	
Random Forest	83.3%	411.27	
XGBoost	85.2%	387.28	

Classification			
Model	Accuracy	Precision	Recall
Baseline	24.1%	24.1%	25%
Random Forest	84.4%	84.4%	84.4%
XGBoost	85.8%	85.8%	85.8%

Generalization Method

Model Construction

Split Dataset

Train \rightarrow 6 sensors

Evaluation → 1 sensors

Hyperparameter Tuning → Random Search

100% - Train

Train models → Cross-Validation

90% - Train

10% - Test

Generate Predictions

Evaluation

Results

Regression			
Model	R2	RMSE	
Baseline	58.3%	656	
Random Forest	84.4%	401	
XGBoost	85.5%	386.1	

	Classification			
Model	Accuracy	Precision	Recall	
Baseline	24.1%	24.1%	25%	
Random Forest	84.2%	84.2%	84.2%	
XGBoost	84.2%	84.2%	84.2%	

Wrap up

Discussion

Limitations

- Spatial Dimension not used
- Sensor data affected performance

Recommendations

- Sensor data
- Real-time predictions

Conclusion

- Public Transport data used to predict crowdedness
- Prediction & Generalization returned effective results
- Overall \rightarrow XGBoost superior

Thank you for your attention

Don de Lange

Msc Data Science