Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий

Кафедра вычислительной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Знакомство с MATLAB»

Преподаватель

подпись, дата

Пушкарёв К.В. инициалы, фамилия

Студент КИ15-08Б

подпись, дата

Войченко В.В. инициалы, фамилия

Цели работы

Знакомство с языком программирования и средой МАТLAВ

Порядок выполнения работы

- 1. Выполнить все задания.
- 2. Продемонстрировать выполнение заданий преподавателю.
- 3. Подготовить отчёт.
- 4. Защитить лабораторную работу перед преподавателем.

Задания

- 1. Создать вектор целых чисел 1, 2, ..., 100. Обнулить нечётные элементы вектора, не используя цикл.
- 2. Создать вектор г случайных чисел, равномерно распределённых на отрезке [0; 1]. Создать анонимную функцию f(t) -- количество элементов г меньше t. Построить график f(t) на отрезке [0; 1].
 - 3. Построить на плоскости 5 случайных ломаных линий из 10 точек.
 - 4. Построить в пространстве 5 случайных ломаных линий из 10 точек.
 - 5. Построить на плоскости спираль из 10 витков.
- 6. Построить в пространстве эллиптический параболоид в виде сетки и в виде поверхности.
- 7. Написать функцию, моделирующую подбрасывание монетки: $r = coin_flip(N)$,
- где N -- количество подбрасываний, r -- логический вектор, r(i) = true, если при i-м подбрасывании выпал орёл.
- 8. Написать функцию, подсчитывающую количество выпавших орлов: $h = sum_heads(r)$,
 - где r -- вектор результатов функции coin_flip(), h -- количество орлов.
- 9. Написать функцию, моделирующую M экспериментов по N подбрасываний монетки: $s = flip_stats(N, M)$,
- где s -- вектор из N+1 целых чисел, s(i) -- количество экспериментов, в которых выпало ровно i-1 орлов.
- 10. Построить столбчатую диаграмму для вектора s / M при N = 1000, M = 1000. Вектор s получается с помощью функции flip stats() из п. 9.

Необходимые функции:

```
1. coin_flip (N)
function r= coin_flip(N)
r = rand(N,1) >= 0.5;
end
2. flip_stats (N, M)
function s = flip_stats(N, M)
s = zeros(N + 1, 1);
for i = 1:M
matrix = coin_flip(N);
buff = sum_heads(matrix);
s(buff + 1) = s(buff + 1) + 1;
end
end
3. sum_heads (r)
function h= sum_heads(r)
h = sum(r(r == true));
end
```

Код, необходимый для выполнения заданий лабораторной работы и его краткое описание

№	Код	Функция кода
1	vec = 1:100;	Создание вектора чисел от
	vec(rem(vec, 2) == 1) = 0;	0 до 1 и оннулирование
		нечетных элементов
2	r = rand(1, 1000);	Создание вектора г
	t = (0:0.1:1);	случайных чисел,
	f = @(t)(sum(r <t)); plot(t, arrayfun(f,t))</t)); 	равномерно
		распределённых на отрезке
		[0; 1] и построение
		графика
3	x = rand(10, 5);	Построение на плоскости 5
	y = rand(10, 5); plot(x, y)	случайных ломаных линий
	plot(x, y)	из 10 точек при
		использовании функции
		plot, матрицы х и у
4	x = rand(10, 5);	Построение в пространстве
	y = rand(10, 5); z = rand(10, 5);	5 случайных ломаных
	plot3(x, y, z)	линий из 10 точек, при
		испољзования функции
		plot и векторов x, y и z
5	t = 0:0.1:20*pi; x = t.*cos(t);	Построение на плоскости
	y = t.*sin(t);	спирали из 10 витков, при
	plot(x, y)	использовании формулы
		спирали Архимеда в
		декартовых координатах:
		$x = t * \cos(t) \ u \ y = t *$
-	x = -3:0.1:3;	Sin(t)
6	y = -3.0.1.3, $y = -3.0.1:3$;	Строиим в пространстве
	[x, y] = meshgrid(x, y);	эллиптический параболоид
	$z = x.^2 + y.^2;$	в виде сетки и в виде поверхности, при $a = b = 1$.
	mesh(x, y, z); surf(x, y, z);	Каноническое уравнение
		эллиптического
		параболоида
7	r = coin_flip(3);	Вызов функции
	, , ,	подбрасывания монетки
8	h = sum_heads(r);	Вызов функции выпавших
		орлов
		1

9	s = flip_stats(1000, 1000);	Вызов Функции,
		моделирующей М
		экспериментов по N
		подбрасываний монетки:
10	s = flip_stats(N, M);	Построение столбчатой
	S = S / M;	диаграммы для вектора s /
	bar(s);	М при N = 1000, M = 1000

Графики, полученные в ходе выполнения работы:

№2 в "Код, необходимый для выполнения..."

№3 в "Код, необходимый для выполнения..."

№5 в "Код, необходимый для выполнения..."

№6 в "Код, необходимый для выполнения..." (функция MATLAB surf))

Значения и векторы, полученные в ходе выполнения работы:

№1 в "Код, необходимый для выполнения..." Фрагмент

Nº	Число
элемента	
1	0
2	2
3	0
4	4
5	0
6	6
7	0
8	8
9	0
10	10

№7 в "Код, необходимый для выполнения..."

Логический вектор r, при N=3:

1
1
0

№8 в "Код, необходимый для выполнения..."

Целочисленная переменная h, которая имеет значение 2

№9 в "Код, необходимый для выполнения..."

При N = M = 1000 получаем вектор s длиной 1000

С 1 индекса вектора

 до 452 идут нули, далее значения, а с 545 индекса - нули.

Фрагмент

	1
453	1
454	0
455	0
456	2
457	1
458	0
459	1
460	0
461	2
462	0
463	1
464	C
465	1
466	1
467	5
468	3
469	3
470	6
471	4
472	1
473	5
474	6
475	8
476	4
477	4
478	3
479	12
480	15
481	8
482	11
483	12
484	15