**26** Integration

Integration 2/2



# Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

# Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26 Integration Friday 15 March 2019

#### Announcements

- Part of Assignment 5 is posted on the course web site (more to come). It is due on
   Monday 25 March 2019 @ 11:30am via crowdmark.
- Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.
- Assignment 6 will be due on Monday 8 April 2019 @ 11:30am via crowdmark.
- Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.
- NY Times article by Steven Stogatz in honour of Pi Day.
  - Great example of mathematical science writing for the general public.

#### Last time...

- Proved Mean Value Theorem.
- Proved Darboux's Theorem.
- Sketched proof of Inverse Function Theorem.

Integration 5/26

# Integration

#### Integration



- "Area of region R(f, a, b)" is actually a very subtle concept.
- We will only scratch the surface of it.
- Textbook presentation of integral is different (but equivalent).

Our treatment is closer to that in M. Spivak "Calculus" (2008).

#### Integration



Contribution to "area of R(f, a, b)" is positive or negative depending on whether f is positive or negative.

#### Lower sum



# Upper sum















Integration 16/26

# Rigorous development of the integral

#### Definition (Partition)

Let a < b. A **partition** of the interval [a, b] is a finite collection of points in [a, b], one of which is a, and one of which is b.

We normally label the points in a partition

$$a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b$$

so the ith subinterval in the partition is

$$[t_{i-1},t_i]$$
.

Integration 17/26

# Rigorous development of the integral

#### Definition (Lower and upper sums)

Suppose f is bounded on [a,b] and  $P = \{t_0, \ldots, t_n\}$  is a partition of [a,b]. Let

$$m_i = \inf \{ f(x) : x \in [t_{i-1}, t_i] \},$$
  
 $M_i = \sup \{ f(x) : x \in [t_{i-1}, t_i] \}.$ 

The lower sum of f for P, denoted by L(f, P), is defined as

$$L(f,P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

The upper sum of f for P, denoted by U(f, P), is defined as

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Integration 18/26

# Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of *f* in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on [a, b] is <u>essential</u> in order that all the  $m_i$  and  $M_i$  be well-defined.
- It is also <u>essential</u> that the  $m_i$  and  $M_i$  be defined as inf's and sup's (rather than maxima and minima) because f was <u>not</u> assumed continuous.

Integration 19/26

# Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

■ Since  $m_i \leq M_i$  for each i, we have

$$m_i(t_i - t_{i-1}) \leq M_i(t_i - t_{i-1}).$$
  $i = 1, ..., n.$ 

 $\therefore$  For <u>any</u> partition P of [a, b] we have

$$L(f,P) \leq U(f,P),$$

because

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}),$$

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

### Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

• More generally, if  $P_1$  and  $P_2$  are any two partitions of [a, b], it ought to be true that

$$L(f, P_1) \leq U(f, P_2),$$

because  $L(f, P_1)$  should be  $\leq$  area of R(f, a, b), and  $U(f, P_2)$ should be > area of R(f, a, b).

- But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of R(f, a, b)".
- Before we can define "area of R(f, a, b)", we need to prove that  $L(f, P_1) \leq U(f, P_2)$  for any partitions  $P_1, P_2 \dots$

# Rigorous development of the integral

#### Lemma

If partition  $P \subseteq \text{partition } Q$  (i.e., if every point of P is also in Q), then  $L(f,P) \leq L(f,Q)$  and  $U(f,P) \geq U(f,Q)$ .



### Rigorous development of the integral

#### Proof of Lemma

As a first step, consider the special case in which the finer partition Q contains only one more point than P:

$$P = \{t_0, ..., t_n\},\$$

$$Q = \{t_0, ..., t_{k-1}, u, t_k, ..., t_n\},\$$

where

$$a = t_0 < t_1 < \cdots < t_{k-1} < u < t_k < \cdots < t_n = b$$
.

Let

$$m' = \inf \{ f(x) : x \in [t_{k-1}, u] \},$$
  
 $m'' = \inf \{ f(x) : x \in [u, t_k] \}.$ 

... continued...

Integration 23/26

# Rigorous development of the integral

#### Proof of Lemma (cont.)

Then 
$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}),$$

and 
$$L(f,Q) = \sum_{i=1}^{k-1} m_i(t_i - t_{i-1}) + m'(u - t_{k-1}) + m''(t_k - u) + \sum_{i=k+1}^{n} m_i(t_i - t_{i-1}).$$

 $\therefore$  To prove  $L(f, P) \leq L(f, Q)$ , it is enough to show

$$m_k(t_k-t_{k-1}) \leq m'(u-t_{k-1}) + m''(t_k-u)$$
.

...continued...

Integration 24/26

# Rigorous development of the integral

#### Proof of Lemma (cont.)

Now note that since

$$\{f(x): x \in [t_{k-1}, u]\} \subseteq \{f(x): x \in [t_{k-1}, t_k]\},$$

the RHS might contain some additional *smaller* numbers, so we must have

$$m_k = \inf \{ f(x) : x \in [t_{k-1}, t_k] \}$$
  
 $\leq \inf \{ f(x) : x \in [t_{k-1}, u] \} = m'.$ 

Thus,  $m_k \leq m'$ , and, similarly,  $m_k \leq m''$ .

$$\begin{array}{rcl} \therefore & m_k(t_k - t_{k-1}) & = & m_k(t_k - u + u - t_{k-1}) \\ & = & m_k(u - t_{k-1}) + m_k(t_k - u) \\ & \leq & m'(u - t_{k-1}) + m''(t_k - u) \,, \end{array}$$

. . . continued. . .

Integration 25/26

# Rigorous development of the integral

#### Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more point than P) that  $L(f,P) \leq L(f,Q)$ .

We can now prove the general case by adding one point at a time.

If Q contains  $\ell$  more points than P, define a sequence of partitions

$$P = P_0 \subset P_1 \subset \cdots \subset P_\ell = Q$$

such that  $P_{j+1}$  contains exactly one more point that  $P_j$ . Then

$$L(f, P) = L(f, P_0) \le L(f, P_1) \le \cdots \le L(f, P_\ell) = L(f, Q),$$

so 
$$L(f, P) \leq L(f, Q)$$
.

(Proving 
$$U(f, P) \ge U(f, Q)$$
 is similar: check!)

Integration 26/26

# Rigorous development of the integral

#### Theorem (Partition Theorem)

Let  $P_1$  and  $P_2$  be any two partitions of [a, b]. If f is bounded on [a, b] then

$$L(f,P_1) \leq U(f,P_2).$$

#### Proof.

This is a straightforward consequence of the partition lemma.

Let  $P = P_1 \cup P_2$ , *i.e.*, the partition obtained by combining all the points of  $P_1$  and  $P_2$ .

Then

$$L(f, P_1) \leq L(f, P) \leq U(f, P) \leq U(f, P_2)$$
.

