Equivalent definitions for the non-degeneracy of a braided fusion category II

Jiaheng Zhao

May 23, 2022

Last time we gave a brief proof of the following theorem:

Theorem

Let C be a braided fusion category. TFAE:

- (1) C is non-degenerate;
- (2) C is factorisable;
- (3) The Müger center of C is trivial;
- (4) C is weakly-factorisable.

This time, we further show that any of the above conditions is verified if and only if \mathcal{C} is an invertible object in certain Morita category. The main reference is [Brochier-Jordan-Safronov-Snyder: Invertible braided tensor categories].

Conventions

- All categories we mention in this presentation are **k**-linear categories, where **k** is an algebraically closed field of characteristic 0. All functors we use are **k**-linear.
- We use (\mathcal{S}, \boxtimes) to denote a closed symmetric monoidal $(\infty, 2)$ -category which admits geometric realizations. An E_n -algebra in \mathcal{S} is a symmetric monoidal functor $\mathcal{A}:\operatorname{Disk}_n^{fr}\to\mathcal{S}$. The factorisation homology with coefficients in \mathcal{A} is the left Kan extension of \mathcal{A} along the embedding $\operatorname{Disk}_n^{fr} \hookrightarrow \operatorname{Mfld}_n^{fr}$, and is denoted by $\int_-\mathcal{A}$. We use $\operatorname{Alg}_n(\mathcal{S})$ to denote the collection E_n -algebras in \mathcal{S} .
- We use **Pr** to denote the symmetric monoidal 2-category of locally presentable categories¹, cocontinuous functors and natural transformations. The symmetric monoidal structure is given by the Deligne tensor product.

¹Finite categories are not locally presentable, but their ind-completions are. We can study finite categories thorough their ind-completions.

Conventions

• Let $\mathcal C$ be an E_1 -algebra. We use $\mathcal C^{\otimes \mathrm{op}}$ to denote the opposite E_1 -algebra whose multiplication direction is reverse to $\mathcal C$. Let $\mathcal A$ be an E_2 -algebra, we can either reverse the multiplication in the x-direction or in the y-direction. The two E_2 -algebras obtained in the two ways can be canonically identified and we denote it as $\mathcal A^{\sigma \mathrm{op}}$.

Enveloping algebra

Definition

Let $\mathcal A$ be an E_n -algebra. Its **enveloping algebra** is the E_1 -algebra

$$U_{\mathcal{A}}^n = \int_{S^{n-1} \times \mathbb{R}} \mathcal{A}.$$

The enveloping algebra has a natural left action on $\mathcal{A} = \int_{\mathbb{R}^n} \mathcal{A}$.

If we take $S = \mathbf{Pr}$, then:

- ullet n=1: $U^1_{\mathcal A}=\mathcal A\boxtimes\mathcal A^{\otimes \mathrm{op}}.$ We also denote this algebra by $\mathcal A^e;$
- n=2: $U_A^2=\mathcal{A}\boxtimes_{\mathcal{A}\boxtimes\mathcal{A}^{\text{oop}}}\mathcal{A}^{\otimes \text{op}}$. We also denote this algebra by $\mathrm{HC}(\mathcal{A})$.

E_n -center

Definition

Let A be an E_n -algebra. Its E_n -center is the object

$$\mathcal{Z}_n(\mathcal{A}) = \operatorname{End}_{U_{\mathcal{A}}^n}(\mathcal{A}).$$

If we take $S = \mathbf{Pr}$, then

- n = 1: $\mathcal{Z}_1(\mathcal{A}) = \operatorname{Fun}_{\mathcal{A}^e}(\mathcal{A}, \mathcal{A})$ and is canonically equivalent to the Drinfeld center of \mathcal{A} .
- n=2: $\mathcal{Z}_2(\mathcal{A})=\operatorname{Fun}_{\operatorname{HC}(\mathcal{A})}(\mathcal{A},\mathcal{A})$, which is canonically equivalent to the Müger center of \mathcal{A} .

Morita category

The collection of E_n -algebras in a fixed S, $\mathrm{Alg_n}(S)$, carries a structure of a symmetric monoidal $(\infty, n+2)$ category, called the Morita category of S.

Definition (Sketchy)

The $(\infty, n+2)$ -category $\mathrm{Alg}_n(\mathbb{S})$ consists of

- Objects are E_n algebras, which we denote by $\mathcal{A}, \mathcal{B}, \mathcal{C}...$
- 1-morphisms are E_{n-1} -algebra objects in $(\mathcal{A}, \mathcal{B})$ -bimodules ;
- ..
- n + 1-morphisms are bimodule 1-morphisms;
- n + 2-morphisms are bimodule 2-morphisms.

Review: Dualizability of bimodules

Let $\mathcal C$ and $\mathcal D$ be E_1 -algebras and $\mathcal M$ be a $\mathcal C$ - $\mathcal D$ -bimodule. We say that $\mathcal M$ is **right dualizable** if there is a $\mathcal D$ - $\mathcal C$ -bimodule $\mathcal N$ together with a evaluation bimodule map $v:\mathcal M\otimes_{\mathcal D}\mathcal N\to\mathcal C$ and a coevaluation bimodule map $u:\mathcal D\to\mathcal N\otimes_{\mathcal C}\mathcal M$ such that the compositions

$$\mathcal{M} \simeq \mathcal{M} \otimes_{\mathcal{D}} \mathcal{D} \xrightarrow{\mathrm{id}_{\mathcal{M}} \otimes_{\mathcal{D}} u} \mathcal{M} \otimes_{\mathcal{D}} \mathcal{N} \otimes_{\mathcal{C}} \mathcal{M} \xrightarrow{v \otimes_{\mathcal{C}} \mathrm{id}_{\mathcal{M}}} \mathcal{C} \otimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{M},$$

$$\mathcal{N} \simeq \mathcal{D} \otimes_{\mathcal{D}} \mathcal{N} \xrightarrow{u \otimes_{\mathcal{D}} \mathrm{id}_{\mathcal{N}}} \mathcal{N} \otimes_{\mathcal{C}} \mathcal{M} \otimes_{\mathcal{D}} \mathcal{N} \xrightarrow{\mathrm{id}_{\mathcal{N}} \otimes_{\mathcal{C}} v} \mathcal{N} \otimes_{\mathcal{C}} \mathcal{C} \simeq \mathcal{N}.$$

are isomorphic to the identity maps. In this case we say that \mathcal{N} is the **right dual** of \mathcal{M} , or equivalently, \mathcal{M} is the **left dual** of \mathcal{N} .

Duality theory of bimodules can be regarded as a generalization of the usual duality theory in a monoidal category. Recall that in a monoidal category ${\mathbb T}$, the tensor unit ${\mathbb T}$ is equipped with a canonical algebra structure, and the forgetful functor $U:{\mathrm{BMod}}_{{\mathbb T}|{\mathbb T}}({\mathbb T})\to{\mathbb T}$ is obviously a monoidal equivalence. We can see that an object T is left (resp. right) dualizable as a ${\mathbb T}$ -bimodule if and only if it is left (resp. right) dualizable as an object in ${\mathbb C}$.

Through the obvious equivalences $\mathrm{BMod}_{\mathbb{1}|\mathcal{A}}(\mathfrak{T})\simeq\mathrm{RMod}_{\mathcal{A}}(\mathfrak{T})$ and $\mathrm{BMod}_{\mathcal{A}|\mathbb{1}}(\mathfrak{T})\simeq\mathrm{LMod}_{\mathcal{A}}(\mathfrak{T})$ one can also talk about the dualizability of a left/right module over some algebra \mathcal{A} . For example, we say a left \mathcal{A} -module is dualizable if it is right dualizable as a \mathcal{A} -1-bimodule.

Remark

Our convention of left/right duality follows [Kong-Zheng: The center functor is fully faithful] and maybe different from the conventions used by other authors.

Restriction of scalars

Let \mathcal{B}, \mathcal{C} and \mathcal{D} be E_1 -algebras and \mathcal{M} a \mathcal{C} - \mathcal{D} -bimodule. A morphism of E_1 -algebras $f: \mathcal{B} \to \mathcal{D}$ gives rise to a pull-back functor $\mathrm{BMod}_{\mathcal{C}|\mathcal{D}} \to \mathrm{BMod}_{\mathcal{C}|\mathcal{B}}$. It turns out that dualizability of a bimodule is preserved by the pull-back functor:

Lemma

Let $\mathfrak{M} \in \mathrm{BMod}_{\mathfrak{C}|\mathfrak{D}}$ be right dualizable with right dual $\mathfrak{N} \in \mathrm{BMod}_{\mathfrak{D}|\mathfrak{C}}$. Then \mathfrak{M}' , the image of \mathfrak{M} in $\mathrm{BMod}_{\mathfrak{C}|\mathfrak{B}}$ is also right dualizable with right dual \mathfrak{N}' , the image of \mathfrak{N} in $\mathrm{BMod}_{\mathfrak{B}|\mathfrak{C}}$.

Remark

Note that $\mathcal{M}=\mathcal{M}'$, $\mathcal{N}=\mathcal{N}'$ as objects in $\mathcal{T}.$ Only the module structure changes when we change scalars.

In fact, the converse of the previous theorem is also true:

Theorem (J.Lurie)

Let \mathcal{C}, \mathcal{D} be E_1 -algebras in some suitable monoidal ∞ -category \mathcal{T} and \mathcal{M} be a \mathcal{C} - \mathcal{D} -bimodule. TFAE:

- (1) M is right dualizable as a C-D-bimodule;
- (2) For every algebra homomorphism $f: \mathbb{B} \to \mathbb{D}$, the image of \mathbb{M} in $\mathrm{BMod}_{\mathfrak{C}|\mathfrak{B}}(\mathfrak{T})$ is right dualizable;
- (3) There exists an algebra homomorphism $f: \mathcal{B} \to \mathcal{D}$ such that the image of \mathcal{M} in $\mathrm{BMod}_{\mathcal{C}|\mathcal{B}}$ is right dualizable.
- (4) Let $\mathbb 1$ be the tensor unit of $\mathbb T$, then the image of $\mathbb M$ in $\mathrm{LMod}_{\mathfrak C}(\mathbb T)\simeq\mathrm{BMod}_{\mathfrak C|\mathbb 1}(\mathbb T)$ is right dualizable.

For a complete proof we refer to [Lurie: Higher algebra, Theorem 4.6.2.13]

Remark

The preceding theorem says that left (right) dualizability of a bimodule $\mathcal{M} \in \mathrm{BMod}_{\mathcal{C}|\mathcal{D}}(\mathcal{T})$ depends only on the right (left) action. Now let \mathcal{M} be a $\mathcal{C}\text{-}\mathcal{D}\text{-bimodule}$. If \mathcal{M} is right dualizable, its right dual must have the form $\mathcal{M}^R = \hom_{\mathcal{C}}(\mathcal{M},\mathcal{C})$. As an object of \mathcal{T} , the dual \mathcal{M}^R does not depend on the action on the right side.

Theorem

Let M be a left C-module. Then M is right dualizable if and only if the canonical map

$$\operatorname{hom}_{\mathcal{C}}(\mathcal{M}, \mathcal{C}) \boxtimes_{\mathcal{C}} \mathcal{N} \to \operatorname{hom}_{\mathcal{C}}(\mathcal{M}, \mathcal{N}), \quad F \boxtimes_{\mathcal{C}} n \mapsto F(-) \odot n$$

is an equivalence for all left C-module N.

Proof.

Let us view \mathcal{C} as a \mathcal{C} -1-bimodule. Then $\hom_{\mathcal{C}}(\mathcal{M},\mathcal{C})$ is a right dual of \mathcal{C} if and only if $\hom_{\mathcal{C}}(\mathcal{M},\mathcal{C})\boxtimes_{\mathcal{C}}-$ is a right adjoint of $\mathcal{M}\boxtimes -$, i.e.

$$\hom_{\mathbb{C}}(\mathbb{M}\boxtimes\mathbb{1},\mathbb{N})\simeq \hom_{\mathbb{T}}(\mathbb{1},\hom_{\mathbb{C}}(\mathbb{M},\mathbb{C})\boxtimes_{\mathbb{C}}\mathbb{N})$$

Dualizability of E_n -algebra

It is a well-known fact that any E_n algebra is n-dualizable in the Morita category[Gwilliam-Scheibauer: Duals and adjoints in higher Morita categories].

Example

Any E_1 -algebra $\mathcal{C} \in \mathrm{Alg}_1(\mathcal{S})$ is 1-dualizable with dual $\mathcal{C}^{\vee} = \mathcal{C}^{\otimes \mathrm{op}}$, with evaluation and co-evaluation map given by:

- ev is \mathcal{C} as a $(\mathcal{C}^{\otimes \mathrm{op}} \boxtimes \mathcal{C}, \mathbf{1}_{\mathcal{S}})$ -bimodule.
- coev is \mathcal{C} as a $(\mathbf{1}_{\mathcal{S}}, \mathcal{C} \boxtimes \mathcal{C}^{\otimes \mathrm{op}})$ -bimodule.

Example

Every E_2 -algebra $\mathcal{A} \in \mathrm{Alg}_2(\mathbb{S})$ is 2-dualizable with dual $\mathcal{A}^{\vee} = \mathcal{A}^{\mathrm{oop}}$, and with evalution and coevaluation given by the regular central algebra:

- ev is \mathcal{A} as a $(\mathcal{A}^{\text{oop}} \boxtimes \mathcal{A}, \mathbf{1}_{\mathcal{S}})$;
- coev is \mathcal{A} as a $(\mathbf{1}_{\mathbb{S}}, \mathcal{A} \boxtimes \mathcal{A}^{\sigma op})$ -algebra.

The right adjoints to evaluation and coevaluation are given by

- ev^R is $\mathcal{A}^{\otimes \operatorname{op}}$ as a $(\mathbf{1}_{\mathbb{S}}, \mathcal{A}^{\sigma \operatorname{op}} \boxtimes \mathcal{A})$ -central algebra,
- $coev^R$ is $\mathcal{A}^{\otimes op}$ as a $(\mathcal{A}^{\sigma op} \boxtimes \mathcal{A}, \mathbf{1}_{\mathbb{S}})$ -central algebra.

Higher unit and counit morphisms are omitted here.

It is natural to ask for higher dualizability an E_n -algebra. When is an E_n -algebra (n+1)-dualizable? A conjecture is proposed in [Brochier-Jordan-Safronov-Snyder: Invertible braided tensor categories] to answer this question:

Conjecture

An E_n -algebra $\mathcal A$ is (n+1)-dualizable if and only if it is dualizable over the factorization homologies $\int_{S^{k-1}\times\mathbb R^{n-k+1}}\mathcal A$ for all k=0,...,n.

The case n=1 has been proved in [Lurie: On the classification of topological field theories] and the case n=2 has been proved in [Brochier-Jordan-Safronov-Snyder: Invertible braided tensor categories].

Question

How to view the action of $\int_{S^{k-1}\times\mathbb{R}^{n-k+1}}\mathcal{A}$ on $\mathcal{A}=\int_{\mathbb{R}^n}\mathcal{A}$ topologically?

Example

An E_1 -algebra \mathcal{C} is 2-dualizable if and only if it is dualizable as an object of \mathcal{S} , and as a left \mathcal{C}^e -module.

To see this recall that the evaluation and coevaluation maps witnessing the 1-dualizability of $\mathbb C$ are given by:

- ev is \mathcal{C} as a $(\mathcal{C}^{\otimes \mathrm{op}} \boxtimes \mathcal{C}, \mathbf{1}_{\mathcal{S}})$ -bimodule.
- coev is \mathcal{C} as a $(\mathbf{1}_{\mathbb{S}}, \mathcal{C} \boxtimes \mathcal{C}^{\otimes \mathrm{op}})$ -bimodule.

A theorem of Lurie [Lurie: On the classification of topological field theories, Proposition 4.2.3] says that, a 1-dualizable object $\mathcal C$ of a symmetric monoidal 2-category is 2-dualizable if and only if the evaluation and coevaluation maps each admit a right adjoint. By our previous discussions on base changes, it suffices to require that $\mathcal C$ is dualizable as an object of $\mathcal S$, and as a $\mathcal C^e$ -module

Invertibility of E_n -algebras

We know that, an equivalence between two categories can always be promoted to part of an adjoint equivalence. Conversely, a pair of adjunction $F\dashv G$ are mutually inverse to each other if and only if the evaluation and coevaluation maps are isomorphisms. These patterns still work for higher categories. We may conclude that

- Requiring a dualizable object to be invertible is equivalent to requiring the corresponding evaluation and coevaluation maps to be invertible;
- Requiring the evaluation and coevaluation maps to be invertible is equivalent to requiring these maps are dualizable and the corresponding higher (co)evaluations are isomorphisms;
- ...
- Invertibility is stronger than dualizability.

This implies us to study invertibility of E_n -algebras inductively.

Let's start from E_1 -algebras:

Theorem

Let $\mathcal{B} \in \mathrm{Alg}_2(\mathbb{S})$ be an E_2 -algebra and \mathfrak{C} an \mathfrak{B} -central algebra viewed as a 1-morphism $\mathfrak{B} \to \mathbf{1}_{\mathbb{S}}$. Then \mathfrak{C} is invertible if and only if \mathfrak{C} is 2-dualizable as an E_1 -algebra and the following maps are equivalences:

- 1. The evaluation map $\mathbb{C} \boxtimes_{\mathbb{B}} \hom_{\mathbb{C}^e}(\mathbb{C},\mathbb{C}^e) \to \mathbb{C}^e$.
- 2. The map $\mathbb{B} \to \mathfrak{Z}_1(\mathbb{C})$ given by the \mathbb{B} -central structure on \mathbb{C} .
- 3. The evaluation map $hom_{\mathbb{S}}(\mathbb{C}, \mathbf{1}_{\mathbb{S}}) \boxtimes_{\mathbb{C}\boxtimes_{\mathfrak{B}}\mathbb{C}^{\otimes op}} \mathbb{C} \to \mathbf{1}_{\mathbb{S}}$.
- 4. The map $\mathbb{C}^{\otimes \mathrm{op}} \boxtimes_{\mathbb{B}} \mathbb{C} \to \mathrm{hom}_{\mathbb{S}}(\mathbb{C},\mathbb{C})$ given by the left and right action of \mathbb{C} on itself.

As a matter of fact, the four maps are exactly the characteristic maps witnessing the 2-dualizability of \mathbb{C} .

We only look at the first two maps in detail. \mathcal{C} is 1-dualizable with right dual $\mathcal{C}^{\otimes \mathrm{op}}$, which should be viewed as $\mathbf{1}_{\mathcal{S}}$ - \mathcal{B} -bimodule. The counit is given by $\eta = \mathcal{C}$ viewed as a $\mathcal{C} \boxtimes \mathcal{C}^{\otimes \mathrm{op}}$ - \mathcal{B} -bimodule, the counit is given by $\epsilon = \mathcal{C}$ viewed as a $\mathbf{1}_{\mathcal{S}}$ - $\mathcal{C}^{\otimes \mathrm{op}} \boxtimes_{\mathcal{B}} \mathcal{C}$ -bimodule.

Since \mathcal{C} is 2-dualizable, η and ϵ are both right dualizable, with right duals given by $\hom_{\mathcal{C}^e}(\mathcal{C},\mathcal{C}^e)$ and $\hom(\mathcal{C},\mathbf{1}_{\mathbb{S}})$ respectively. The corresponding (co)evaluation maps are:

- 1. $\mathcal{C} \boxtimes_{\mathcal{B}} \operatorname{hom}_{\mathcal{C}^e}(\mathcal{C}, \mathcal{C}^e) \to \mathcal{C}^e$;
- 2. $\mathcal{B} \to \mathrm{hom}_{\mathcal{C}^e}(\mathcal{C}, \mathcal{C}^e) \boxtimes_{\mathcal{C}^e} \mathcal{C} \simeq \mathrm{hom}_{\mathcal{C}^e}(\mathcal{C}, \mathcal{C}) \simeq \mathfrak{Z}_1(\mathcal{C});$
- 3. $\mathbb{C} \boxtimes_{\mathbb{C} \boxtimes_{\mathfrak{B}} \mathbb{C}^{\otimes \mathrm{op}}} \mathrm{hom}_{\mathbb{S}}(\mathbb{C}, \mathbf{1}_{\mathbb{S}}) \to \mathbf{1}_{\mathbb{S}}$.
- 4. $\mathcal{C}^{\otimes \operatorname{op}} \boxtimes_{\mathcal{B}} \mathcal{C} \to \operatorname{hom}(\mathcal{C}, \mathbf{1}_{\mathcal{S}}) \boxtimes \mathcal{C} \simeq \operatorname{hom}(\mathcal{C}, \mathcal{C})$.

Theorem

An E_2 -algebra $A \in Alg_2(S)$ is invertible if, and only if, it is 3-dualizable and the following maps are isomorphisms:

- 1'. $HC(A) \to hom_S(A, A)$.
- 2'. $\mathcal{A} \boxtimes \mathcal{A}^{\text{oop}} \to \mathfrak{Z}_1(\mathcal{A})$.
- 3'. The inclusion of the unit $1_{\$} \to \mathfrak{Z}_2(\mathcal{A})$.

Fact

Taking S = Pr, the conditions 1', 2' and 3' are equivalent.

21 / 23

Proof.

If \mathcal{A} is invertible, then it is 3-dualizable. Moreover, the evaluation map $\mathcal{A}:\mathcal{A}\boxtimes\mathcal{A}^{\operatorname{oop}}\to\mathbf{1}_{\mathbb{S}}$ is an invertible 1-morphism. Then by the preceding theorem, the conditions 1,2,3,4 hold with $\mathcal{B}=\mathcal{A}^{\operatorname{oop}}\boxtimes\mathcal{A}$. The condition 2 is exactly condition 2', condition 4 is exactly condition 1' and condition 3 translates into condition 3' after applying the functor $\hom(-,\mathbf{1}_{\mathbb{S}})$.

Now assume that \mathcal{A} is 3-dualizable and conditions 1', 2' and 3' hold. Then conditions 2 and 4 trivially hold. Condition 3 holds because $hom(-,\mathbf{1}_{\mathcal{S}})$ is an equivalence due to the dualizability of \mathcal{A} . Finally, condition 1 is equivalent to condition 2 after applying the functor $hom_{\mathcal{A}^e}(-,\mathcal{A}^e)$, which is also an equivalence.

- 1. $\mathcal{A} \boxtimes_{\mathcal{A}^{\sigma \circ p} \boxtimes \mathcal{A}} \operatorname{hom}_{\mathcal{A}^e}(\mathcal{A}, \mathcal{A}^e) \to \mathcal{A}^e$;
- 2. $\mathcal{A}^{\text{rop}} \boxtimes \mathcal{A} \to \text{hom}_{\mathcal{A}^e}(\mathcal{A}, \mathcal{A}^e) \boxtimes_{\mathcal{A}^e} \mathcal{A} \simeq \text{hom}_{\mathcal{A}^e}(\mathcal{A}, \mathcal{A}) \simeq \mathfrak{Z}_1(\mathcal{A});$
- 3. $\mathcal{A} \boxtimes_{\mathcal{A} \boxtimes_{\mathcal{A}^{\text{opp}} \bowtie \mathcal{A}} \mathcal{A}^{\otimes \text{op}}} \text{hom}_{\mathcal{S}}(\mathcal{A}, \mathbf{1}_{\mathcal{S}}) \to \mathbf{1}_{\mathcal{S}}.$
- $4. \ \mathcal{A}^{\otimes \mathrm{op}} \boxtimes_{\mathcal{A}^{\sigma \mathrm{op}} \boxtimes \mathcal{A}} \mathcal{A} \to \mathrm{hom}(\mathcal{A}, \mathbf{1}_{\delta}) \boxtimes \mathcal{A} \simeq \mathrm{hom}(\mathcal{A}, \mathcal{A}).$
- 1'. $HC(A) \to hom_S(A, A)$.
- 2'. $\mathcal{A} \boxtimes \mathcal{A}^{\sigma op} \to \mathfrak{Z}_1(\mathcal{A})$.
- 3'. The inclusion of the unit $\mathbf{1}_{\mathbb{S}} \to \mathfrak{Z}_2(\mathcal{A})$.

Apply the functor $hom_S(-, \mathbf{1}_S)$ to condition 3 we get

$$\hom(\mathbf{1}_{\mathbb{S}},\mathbf{1}_{\mathbb{S}}) \simeq \mathbf{1}_{\mathbb{S}} \to \hom(\mathcal{A} \boxtimes_{\mathcal{A} \boxtimes_{\mathcal{A}^{\operatorname{OPD}} \otimes \mathcal{A}} \mathcal{A}^{\otimes \operatorname{OP}}} \hom_{\mathbb{S}}(\mathcal{A},\mathbf{1}_{\mathbb{S}}),\mathbf{1}_{\mathbb{S}}) \simeq \hom_{\mathrm{HC}(\mathcal{A})}(\mathcal{A},\mathcal{A}).$$

Apply the functor $hom_{A^e}(-, A^e)$ to condition 1 we get

$$\hom_{\mathcal{A}^e}(\mathcal{A}^e, \mathcal{A}^e) \simeq \mathcal{A}^e \to \hom_{\mathcal{A}^e}(\mathcal{A} \boxtimes_{\mathcal{A}^{\sigma \text{op}} \boxtimes \mathcal{A}} \hom_{\mathcal{A}^e}(\mathcal{A}, \mathcal{A}^e), \mathcal{A}^e) \simeq \mathfrak{Z}_1(\mathcal{A}).$$