

$$K = \frac{|I_{\rm c}^{\rm c} x_{\rm c}|^3}{|I_{\rm c}^{\rm c} x_{\rm c}|^3}$$

(both are parameter invariant)

Tangent line: contains rital, rital)

Oscillating plane: contains 19th, 19th), 19th

$$\frac{ds}{dt}$$
 = (rite) \longrightarrow s(t)= $\int |rite)| dt$, s(rittol)=0.

$$||Y_5|| = ||Y_6 \cdot t_5|| = ||\frac{ds}{dt} \cdot \frac{dt}{ds}||=|$$

$$N(S) = \frac{\vec{k}(S)}{\|\vec{k}(S)\|}$$

$$\frac{d}{dt} \|\vec{R}(t)\| = \frac{\vec{R}(t) \cdot \vec{R}(t)}{\|\vec{R}(t)\|} \quad (\|\vec{R}\| \neq 0)$$

$$V = \frac{dr}{dt} = \frac{ds}{dt} \cdot \hat{T} , \quad \frac{d\hat{T}}{ds} = k\hat{N} , \quad \frac{d\hat{T}}{dt} = k \cdot \frac{ds}{dt} \cdot \hat{N} , \quad A = \frac{dr}{dt} = \frac{ds}{dt} \cdot \hat{T} + k \cdot \left(\frac{ds}{dt}\right) \cdot \hat{N} , \quad \forall x \alpha = k \cdot \left(\frac{ds}{dt}\right)^3 \cdot \left(\hat{T}^x \hat{N}\right)$$

scalar: [fd=] forth inthillet , vector Field: [F.dn =] Forth ret de

if
$$\nabla x F = \vec{0} \xrightarrow{N_0}$$
 not conservative

domain simply connected? $\xrightarrow{N_0}$ conservative

Tranclusive

For $\nabla \phi = F$, $\int_{C} F \cdot dr = \phi \cdot (\text{end}) - \phi \cdot (\text{start})$

$$\nabla x F = 0 \iff f$$
 . For path idp \iff F conservative on U (ϕ defined on U) simple connected path connected

$$\int_{C} (F+G_1) dr = \int_{C} Fdr + \int_{C} Gdr \int_{C} \frac{F}{C} dr = \int_{C} F \cdot dr + \int_{C} F \cdot dr \int_{C} F \cdot dr = -\int_{C} F \cdot dr$$

$$y(x), k = \frac{|x|^2}{[1+(x)^2]^{\frac{1}{2}}}$$

$$ma=F$$
, $m \cdot V = F$
 $m \cdot V \cdot V = V \cdot \nabla \phi$
 $\frac{d}{dt} \left(\frac{m \cdot V \cdot V}{2} \right) = V \cdot \nabla \phi$
 $\frac{d}{dt} \left(\frac{m \cdot V \cdot V}{2} \right) = \frac{d}{dt} (\phi)$
 $\frac{1}{2} m |V|^2 - \phi = constant$

$$\phi = \frac{1}{2} \text{mivi}^2 - E_0$$

$$\geq -E_0$$