WHAT IS CLAIMED IS:

1	1. A method of selecting decoupling capacitors for a packaged semiconductor chip,
2	comprising:
3	grouping at least some chip leads on the packaged semiconductor chip into at least two
4	regions;
5	for each of the regions, determining a first lead count for the chip leads in a first lead
6	category in that region;
7	for each of the regions, determining a second lead count for the chip leads in a second
8	lead category, if any, in that region;
9	for each of the regions, determining a third lead count for the chip leads in a third lead
10	category, if any, in that region;
11	for each lead category in each of the regions, determining a total switching current for
12	that lead category in that region based on the lead count for that lead category in that region;
13	for each lead category in each of the regions, determining a total decoupling capacitance
14	value for that lead category in that region based on the total switching current for that lead
15	category in that region, a maximum allowable voltage ripple selected for that lead category, and
16	a voltage rise time selected for that lead category;
17	determining how many decoupling capacitors may be allocated to each of the regions;
18	for each of the regions, allocating a number of the decoupling capacitors for that region to
19	each lead category;
20	for each lead category in each of the regions, dividing the total decoupling capacitance
21	value for that lead category in that region by the number of the decoupling capacitors allocated
22	for that lead category in that region to obtain a desired individual capacitance value for each of

TI-36252 -22-

- the decoupling capacitors allocated for that lead category in that region; and
- for each lead category in each of the regions, selecting an actual decoupling capacitor for
- each of the decoupling capacitors allocated for that lead category in that region, wherein each of
- the actual decoupling capacitors has an actual individual capacitance corresponding to the
- 27 desired individual capacitance value for that allocated decoupling capacitor of that lead category
- in that region, and wherein each of the actual decoupling capacitors of that lead category has a
- self-resonance frequency selected based on an operating frequency of the chip leads in that lead
- 30 category.

23

- 1 2. The method of claim 1, further comprising:
- 2 selecting at least one bulk capacitor for at least one of the regions.
- 1 3. The method of claim 1, further comprising:
- 2 for at least one of the regions, selecting a bulk capacitor having a bulk capacitance of
- 3 about or greater than ten times the total decoupling capacitance value for that region.
- 1 4. The method of claim 1, wherein the first lead category comprises core supply voltage
- 2 leads.
- 1 5. The method of claim 4, wherein the second lead category comprises a first group of
- 2 input/output supply voltage leads.
- 1 6. The method of claim 5, wherein the third lead category comprises a second group of
- 2 input/output supply voltage leads, and wherein the third lead category has a different operating
- 3 frequency than the second lead category.

TI-36252 -23-

- 1 7. The method of claim 1, wherein each of the lead categories has a different operating
- 2 frequency.
- 1 8. The method of claim 1, wherein at least some of the lead categories have different supply
- 2 voltage levels.
- 1 9. The method of claim 1, wherein at least some of the lead categories have different
- 2 switching current levels.
- 1 10. The method of claim 1, wherein the total switching current is a total peak switching
- 2 current.
- 1 11. The method of claim 1, wherein the selected voltage rise time for each lead category is an
- 2 estimated voltage rise time based on specifications for the packaged semiconductor chip.
- 1 12. The method of claim 1, wherein the selected maximum allowable voltage ripple for each
- 2 lead category is an estimated maximum allowable voltage ripple based on specifications for the
- 3 packaged semiconductor chip.
- 1 13. The method of claim 1, wherein the selected self-resonance frequency for the actual
- 2 decoupling capacitors is about the same as the operating frequency of the chip leads in that lead
- 3 category.
- 1 14. The method of claim 1, wherein the grouping of chip leads yields a number of regions
- 2 selected from a group consisting of two, three, four, five, six, seven, eight, nine, and ten.

TI-36252 -24-

- 1 15. The method of claim 1, wherein the actual individual capacitance is about equal to or
- 2 greater than the desired individual capacitance value for that allocated decoupling capacitor of
- 3 that lead category in that region.
- 1 16. The method of claim 1, wherein the grouping of chip leads into regions is based upon
- 2 considering switching frequencies of the leads.
- 1 17. A method of manufacturing an electronic device comprising the method of claim 1.
- 1 18. A method of assembling a computer system comprising the method of claim 1.

TI-36252 -25-

1	19. A method of selecting decoupling capacitors for a packaged semiconductor chip,	
2	comprising:	
3	grouping at least some chip leads on the packaged semiconductor chip into at least tw	/O
4	regions;	
5	determining a first lead count for the chip leads in a first lead category in a selected	
6	region;	
7	determining a second lead count for the chip leads in a second lead category, if any,	n
8	the selected region;	
9	for each lead category in the selected region, determining a total switching current for	r
10	that lead category in the selected region based on the lead count for that lead category in the	
11	selected region;	
12	for each lead category in the selected region, determining a total decoupling capacita	nce
13	value for that lead category in the selected region based on the total switching current for that	ıt
14	lead category in the selected region;	
15	allocating a number of decoupling capacitors to each lead category of the selected re	gion;
16	for each lead category in the selected region, dividing the total decoupling capacitant	ce
17	value for that lead category by the number of the decoupling capacitors allocated for that lead	ıd
18	category in the selected region to obtain a desired individual capacitance value for each of the	ne
19	decoupling capacitors allocated for that lead category in the selected region; and	
20	for each lead category in the selected region, selecting an actual decoupling capacito	r for
21	each of the decoupling capacitors allocated for that lead category, wherein each of the actua	i
22	decoupling capacitors has an actual individual capacitance corresponding to the desired	

- 23 individual capacitance value for that allocated decoupling capacitor of that lead category in the
- 24 selected region.
 - 1 20. A method of manufacturing an electronic device comprising the method of claim 19.
 - 1 21. A method of assembling a computer system comprising the method of claim 19.

TI-36252 -27-

22. An electronic device comprising:

1

3

4

5

6

7

8

9

10

11

12

13

14

1

5

6

7

9

2 a packaged semiconductor chip having a plurality of chip leads extending therefrom,

a first group of the decoupling capacitors electrically connected to a first select group of

the chip leads in a first select region of the chip leads, the first group of decoupling capacitors

each having a first decoupling capacitance and each having a first self-resonance frequency;

a second group of the decoupling capacitors electrically connected to a second select

group of the chip leads in the first select region of the chip leads, the second group of decoupling

capacitors each having a second decoupling capacitance and each having a second self-resonance

frequency, wherein the second decoupling capacitance differs from the first decoupling

capacitance, and wherein the second self-resonance frequency differs from the first self-

resonance frequency; and

a first bulk capacitor electrically connected to at least one of the first select group of the chip leads in the first select region, the first bulk capacitor having a first bulk capacitance. wherein the first bulk capacitance differs from the first and second decoupling capacitances.

23. The electronic device of claim 22, further comprising:

2 a third group of the decoupling capacitors electrically connected to a third select group of 3 the chip leads in a second select region of the chip leads, the third group of decoupling capacitors 4

each having a third decoupling capacitance and each having a third self-resonance frequency;

a fourth group of the decoupling capacitors electrically connected to a fourth select group of the chip leads in the second select region of the chip leads, the fourth group of decoupling

capacitors each having a fourth decoupling capacitance and each having a fourth self-resonance

8 frequency, wherein the fourth decoupling capacitance differs from the third decoupling

capacitance, and wherein the fourth self-resonance frequency differs from the third self-

TI-36252 -28-

- 10 resonance frequency; and
- a second bulk capacitor electrically connected to at least one of the third select group of
- the chip leads in the second select region, the second bulk capacitor having a second bulk
- 13 capacitance, wherein the second bulk capacitance differs from the third and fourth decoupling
- 14 capacitances.
- 1 24. The electronic device of claim 23, wherein the third decoupling capacitance is about the
- 2 same as the first decoupling capacitance, and wherein the second bulk capacitance is about the
- 3 same as the first bulk capacitance.
- 1 25. The electronic device of claim 22, wherein the first and second groups of the decoupling
- 2 capacitors are located within the packaged semiconductor chip.
- 1 26. The electronic device of claim 22, further comprising:
- 2 a circuit board electrically connected to the packaged semiconductor chip, wherein the
- 3 first and second groups of the decoupling capacitors are located on the circuit board.
- 1 27. The electronic device of claim 22, further comprising:
- 2 a circuit board electrically connected to the packaged semiconductor chip, wherein the
- 3 first and second groups of the decoupling capacitors are located at least partially within the
- 4 circuit board.