Teorija mere Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Teorija mere v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Uvodna motivacija	4
2	Kolobar množic	5
3	Mera	ç

1 Uvodna motivacija

Za motivacijo bomo obravnavali en primer, pred tem pa bomo na hitro povzeli definicijo Riemannovega integrala. Naj bo $f:[a,b]\to\mathbb{R}$ realna, zvezna in omejena funkcija ter naj bo $D=\{x_0,x_1,\ldots,x_n\}$ delitev intervala [a,b]. Označimo $\Delta x_i=x_i-x_{i-1}$ ter z vsakega intervala $[x_{i-1},x_i]$ izberemo neko poljubno točko \acute{x}_i . Vsoto $\sigma_n=\sum_{i=1}^n f(\acute{x}_i)\Delta x_i$ imenujemo Riemannova vsota. Če obstaja limita $\lim_{|\Delta x_i|\to 0}\sigma_n$ in je neodvisna od izbire delitve D in testnih točk na podintervalih, ki jih določa D, ji pravimo Riemannov integral funkcije f na [a,b]. Riemannov integral lahko posplošimo za računanje integralov funkcij večih spremenljivk, pri tem pa uporabljamo t. i. Jordanovo mero. Motivacijski primer bo pokazal, da ima konstrukcija s to mero nekatere pomanjkljivosti.

Zgled 1: Naj bo $R = \mathbb{Q} \cap \mathbb{R} = \{r_1, r_2, \ldots\}$ in definiramo funkcije $f_k : [0, 1] \to [0, 1]$ s predpisi

$$f_1(x) = \begin{cases} 1; & x = r_1 \\ 0; & x \neq r_1 \end{cases}, \ f_2(x) = \begin{cases} 1; & x = r_1 \lor x = r_2 \\ 0; & x \in R \setminus \{r_1, r_2\} \end{cases}$$

itd. Vidimo, da zaporedje $\{f_k\}$ konvergira k Dirichletovi funkciji

$$f_D(x) = \begin{cases} 1; & x \in \mathbb{Q} \\ 0; & x \notin \mathbb{Q} \end{cases}$$
 in dodatno opazimo, da je $\int_0^1 f_k(x) dx = 0 \forall k$, daj gre

limita Riemannovih vrst za vsako funkcijo zaporedja proti 0. To pa ne drži za Dirichletovo funkcijo. Če vse \acute{x}_i pripadajo \mathbb{Q} , bo $\sigma_n=1$, če so izbrane točke \acute{x}_i iracionalne, pa je $\sigma_n=0$. Limita Riemannovih vsot torej ni neodvisna od izbire delitve in testnih točk, torej integral f_D ne obstaja.

Francoski matematik Lebesgue se je pa problema lotil drugače: Najprej razdelimo zalogo vrednosti omejene zvezne funkcije f z delitvijo $\{y_0,y_1,\ldots,y_n\}$ in sestavimo množice $E_k=\{x\in[a,b];f(x)y_k\}$. Prepoznamo, da so $E_k\times\{y_k\}$ vodoravne daljice od $(f^{-1}(y_k),y_k)$ do (b,y_k) . Posledično z $|E_k|$ označimo dolžino daljice E_k . Potem je ploščina pod grafom funkcije f približno enaka vsoti $\sum_{k=1}^n (y_k-y_{k-1})|E_k|$. Izkaže pa se, da so lahko v splošnem množice E_k takšne, da koncept dolžine in prostornine za obravnavo več ne zadošča. Zato uvedemo koncept mere.

2 Kolobar množic

Začnimo ta odsek z definicijo.

Definicija 1: Naj bo X poljubna neprazna množica. Množica K podmnožic množice X je kolobar, če:

- $\forall A, B \in K : A \cup B \in K$
- $\forall A, B \in K : A \setminus B \in K$

Trditev 1. Če je K kolobar množic na X velja:

- 1. $\forall A, B \in K : A \triangle B \in K$
- $2. \ \forall A, B \in K : A \cap B \in K$
- $3. \emptyset \in K$

Dokaz. 1. Ta trditev sledi neposredno iz definicije kolobarja množice

2. Upoštevamo, da lahko zapišemo $A \cap B = (A \cup B) \setminus (A \triangle B)$ in potem ta trditev sledi po prejšnji.

3. Upoštevamo, da je $\emptyset = a \setminus A$.

Definicija 2:

- 1. Pravimo, da je množica E
 enota kolobarja K,če za $\forall A \in K$ velj
a $A \cap E = A.$
- 2. Kolobarju z enoto pravimo algebra.

Zgled 2:

- 1. Če je K kolobar nad X in je $X \in K$, potem je X enota kolobarja K.
- 2. Naj bo K kolobar vseh končnih podmnožic iz \mathbb{R} . Kolobar K nima enote. To lahko vidimo tako, da predpostavimo, da obstaja enota $E \in K$. Po definiciji K obstaja neko število $n_0 \in \mathbb{N}$, da je $|E| = n_0$. Sedaj vzamemo množico, $A \in K$ z močjo $n > n_0$. Ker je, po definiciji enote, $A \cap E = A$, sledi, da je $A \subseteq E$, torej je $|E| \ge n$. Sledi, da je $|E| > n_0$, kar nas pa privede v protislovje.

Definicija 3: Naj bo $\{A_k\}_{k=1}^{\infty}$ poljubno zaporedje množic.

- Pravimo, da je množica \overline{A} zgornja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \overline{A} \exists \{k_i\}_{i=1}^{\infty} : x \in A_{k_i} \forall i \in \mathbb{N}.$
- Pravimo, da je \underline{A} spodnja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \underline{A} \ \exists k_0 \in \mathbb{N} : x \in A_k \forall k \geq k_0$

Pišemo: $\overline{A} = \overline{\lim_{n \to \infty}} A_n$ in $\underline{A} = \lim_{n \to \infty} A_n$

Zgled 3: Poglejmo si zaporedje množic $a_n = \begin{cases} [0, 1 + \frac{1}{n}]; & n \text{ je sodo} \\ [1 - \frac{1}{n}, 2]; & n \text{ je liho} \end{cases}$. Vidimo, da je $\overline{A} = [0, 2]$ in $A = \{1\}$.

Opomba 1: Opazimo, da velja tudi $\underline{A} \subseteq \overline{A}$. Da se prepričamo, da je to res, vzamemo poljubno zaporedje množic $\{A_n\}_{n=1}^{\infty}$ in nek poljuben $x \in \underline{A}$. Po definiciji te množice potem $\exists n_0 \in \mathbb{N}$, da je $x \in A_n$ za vse $n \geq n_0$. Izmed teh $n \geq n_0$ izberemo poljubno neskončno podzaporedje $\{l_k\}_{k=1}^{\infty}$ in potem velja $x \in A_{l_k} \forall k \in \mathbb{N}$. Potem je pa $x \in \overline{A}$.

Trditev 2. Za vsako zaporedje množic $\{A_n\}_{n=1}^{\infty}$ velja:

a)
$$\overline{A} = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$$

b)
$$\underline{A} = \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$$

Dokaz. a) Najprej bomo pokazali inkluzijo v desno, nato pa še v levo:

- \subseteq): Naj bo $x \in \overline{A}$. Potem obstaja neko zaporedje indeksov $\{k_i\}_{i=1}^{\infty}$, da je $x \in A_{k_i} \forall i \in \mathbb{N}$. Potem bo pa $x \in \bigcup_{m=k}^{\infty} A_m$ za vsak $k \in \mathbb{N}$. Posledično, je $x \in \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$.
- ⊇): Denimo, da je $x \in \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$ in izberimo poljuben indeks k_1 . Potem je $x \in \bigcup_{m=k_1}^{\infty} A_m$, kar pa pomeni, da obstaja nek $l_1 \geq k_1$, da je $x \in A_{l_1}$. Sedaj izberemo nov indeks $k_2 \geq l_1$ in ponovimo prejšnji postopek ter tako pridobimo l_2 . Postopek nadaljujemo in tako tvorimo zaporedje indeksov $\{l_i\}_{i=1}^{\infty}$, za katerega velja $x \in A_{l_i} \forall i \in \mathbb{N}$, torej je $x \in \overline{A}$.
- b) Podobno kot pri prejšnji točki, bomo najprej bomo pokazali inkluzijo v desno, nato pa še v levo:
 - \subseteq): Naj bo $x \in \underline{A}$. Potem obstaja nek indeks k_0 , da je $x \in A_k \forall k \geq k_0$. Potem je pa $x \in \bigcap_{m=k_0}^{\infty} A_m$, torej je tudi $x \in \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$.
 - ⊇) : Denimo, da je $x \in \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$. Potem obstaja indeks k_0 , da je $x \in \bigcap_{m=k_0}^{\infty} A_m$, kar pa pomeni, da je $x \in A_k \forall k \geq k_0$, torej je $x \in \underline{A}$.

Definicija 4: Pravimo, da je zaporedje množic $\{A_k\}_{k=1}^{\infty}$ monotono, če velja:

- $A_1 \subseteq A_2 \subseteq \dots$ (naraščajoče)
- $A_1 \supseteq A_2 \supseteq \dots$ (padajoče)

Definicija 5: Pravimo, da zaporedje množic $\{A_k\}_{k=1}^{\infty}$ <u>konvergira</u> proti množici A, če je $\underline{A} = A = \overline{A}$.

Trditev 3. Vsako monotono zaporedje $\{A_k\}_{k=1}^{\infty}$ konvergira, pri čemer velja:

- a) Če je $\{A_k\}_{k=1}^{\infty}$ naraščajoče, je $\lim_{k\to\infty} A_k = A = \bigcup_{k=1}^{\infty} A_k$
- b) Če je $\{A_k\}_{k=1}^{\infty}$ padajoče, je $\lim_{k\to\infty} A_k = A = \bigcap_{k=1}^{\infty} A_k$

Dokaz. a) Naj bo $\{A_k\}_{k=1}^{\infty}$ naraščajoče zaporedje množic in preverimo, da je $\underline{A} = \overline{A}$. Pri tem bomo uporabili trditev 2. Po eni strani vemo, da je $\overline{A} = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$. Ko upoštevamo, da je $\{A_k\}_{k=1}^{\infty}$ naraščajoče, vidimo, da je $A = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} A_m = \bigcup_{m=1}^{\infty} A_m$. Zadnja enakost sledi iz tega, da so množice v preseku neodvisne od indeksov, po katerih delamo presek (v A_m ne nastopa indeks A_m). Ker A_m in narašča, velja tudi A_m in A_m

b) Pokažemo na podoben način.

Definicija 6: Naj bo X poljubna množica. Množica $\mathcal M$ podmnožic X je σ -algebra na X, če velja:

- 1. $\emptyset, X \in \mathcal{M}$
- 2. $\forall A \in \mathcal{M} : A^c \in \mathcal{M}$
- 3. $\forall \{A_k\}_{k=1}^{\infty}; A_k \in \mathcal{M} \ \forall i \in \mathbb{N} : \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$

Zgled 4:

- 1. Naj bo X neka množica in $\mathcal{M} = \{\emptyset, X\}$. Vidimo, da je \mathcal{M} σ -algebra .
- 2. Naj bo $X = \{a, b, c\}$. Ali je $\mathcal{P}(X)$ σ -algebra ? Da. V resnici je $\mathcal{P}(X)$ σ -algebra za poljubno množico X.
- 3. Naj bo X poljubna množica in $\mathcal{M} = \{A \subseteq X; A \text{ je kvečjemu števna ali pa je } A^c \text{ kvečjemu števna} \}$. Tudi ta \mathcal{M} je σ -algebra . To bomo tudi na hitro premislili.
 - Očitno \mathcal{M} vsebuje \emptyset in X.
 - Denimo sedaj, da je $A \in \mathcal{M}$. Če je A kvečjemu števna, potem je $A^c \in \mathcal{M}$, saj je $A = (A^c)^c$ kvečjemu števna. Če pa A ni kvečjemu števna avtomatsko sledi, da je A^c kvečjemu števna, torej je $A^c \in \mathcal{M}$.
 - Naj bo $\{A_k\}_{k=1}^{\infty}$ nek nabor množic, pri čemer je $A_k \in \mathcal{M} \ \forall k \in \mathbb{N}$. Če so vse množice A_k kvečjemu števne, je tudi $\bigcup_{k=1}^{\infty} A_k$ kvečjemu števna in torej pripada \mathcal{M} . Denimo torej, da $\exists k_0 \in \mathbb{N}$, da A_{k_0} ni kvečjemu števna, je pa $A_{k_0}^c$. V tem primeru pogledamo $(\bigcup_{k=1}^{\infty} A_k)^c = \bigcap_{k=1}^{\infty} A_k^c$. Ker vemo, da je A_{k_0} kvečjemu števna, je potem tudi presek $\bigcap_{k=1}^{\infty} A_k^c$ kvečjemu števna množica, torej je $\bigcap_{k=1}^{\infty} A_k^c \in \mathcal{M}$ in posledično je $\bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$.

Trditev 4. Naj bo \mathcal{M} σ -algebra na X. Potem velja:

- $a) \ \forall A, B \in \mathcal{M} : A \cup B \in \mathcal{M}$
- b) $\forall \{A_k\}_{k=1}^{\infty}; A_K \in \mathcal{M} \ \forall i \in \mathbb{N} : \bigcap_{k=1}^{\infty} A_k \in \mathcal{M}$
- c) $\forall A, B \in \mathcal{M} : A \cap B \in \mathcal{M}$
- $d) \ \forall A, B \in \mathcal{M} : A \setminus B \in \mathcal{M}$

Dokaz.a) Naj bodo $A_1=A,A_2=B$ in $A_k=\emptyset \ \forall k\geq 3.$ Potem je $A\cup B=\bigcup_{k=1}^\infty A_k\in \mathcal{M}$ po definiciji $\sigma-$ algeber.

- b) Uporabimo, da je σ -algebra po definiciji zaprta za komplimente. Torej, za vsak $A_k \in \mathcal{M}$ je tudi $A_k^c \in \mathcal{M}$. Potem pa sestavimo zaporedje $\{A_k^c\}_{k=1}^\infty$ in po definiciji σ -algebre je potem $\bigcup_{k=1}^\infty A_k^c \in \mathcal{M}$ ter posledično še $(\bigcup_{k=1}^\infty A_k^c)^c = \bigcap_{k=1}^\infty (A_k^c)^c = \bigcap_{k=1}^\infty A_k^c \in \mathcal{M}$.
- c) Vzamemo $A_1=A, A_2=B$ in $A_k=X \ \forall k\geq 3$. Potem je $A\cap B=\bigcap_{k=1}^\infty A_k\in\mathcal{M},$ po prejšnji točki.

d) $A \setminus B = A \cap B^c \in \mathcal{M}$ po prejšnji trditvi, ker sta $A, B^c \in \mathcal{M}$.

Posledica 1. σ -algebra je kolobar množic.

Posledica 2. σ -algebra je algebra množic.

3 Mera

Definicija 7: Naj bo K kolobar množic na X. Funkcija $m:K\to [0,+\infty)$ je mera na X, če za njo velja:

$$\forall A, B \in K; A \cap B = \emptyset : m(A \cup B) = m(A) + m(B)$$

Trditev 5. Za poljubno mero m na kolobarju K podmnožic množice X velja:

- 1. $m(\emptyset) = 0$
- 2. $A \subseteq B \Rightarrow m(B) = m(A) + m(B \setminus A)$
- 3. $A \subseteq B \Rightarrow m(A) \le m(B)$
- 4. $m(A \cup B) = m(A) + m(B) m(A \cap B)$
- 5. Naj bodo $A_1, A_2, \ldots A_n \in K$ in $A_i \cap A_j = \emptyset$ za $i \neq j$. Potem je $m(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n m(A_k)$.
- 6. Naj bodo $A_1, A_2, ... A_n \in K$. Potem je $m(\bigcup_{k=1}^n A_k) \le \sum_{k=1}^n m(A_k)$.
- 7. Naj bodo $A, A_k \in K \ \forall k \in \mathbb{N} \ in \ A_i \cap A_j = \emptyset \ za \ i \neq j$. Dodatno, naj velja $\bigcup_{k=1}^n A_k \subseteq A$. Potem $je \sum_{k=1}^\infty m(A_k) \leq m(A)$.
- Dokaz. 1. $m(\emptyset) = m(\emptyset \cup \emptyset) = m(\emptyset) + m(\emptyset)$, torej je $2m(\emptyset) = m(\emptyset)$. To je možno le, ko je $m(\emptyset) = 0$.
 - 2. Denimo, da je $A \subseteq B$. Potem je $B = A \cup (B \setminus A)$ in $A \cap (B \setminus A) = \emptyset$. Po definiciji mere je potem $m(B) = m(A \cup (B \setminus A)) = m(A) + m(B \setminus A)$.
 - 3. Sledi po prejšnji točki.
 - 4. Pišemo: $A \cup B = A \cup (B \setminus (A \cap B))$. Ker je $A \cap (B \setminus (A \cap B)) = \emptyset$ je $m(A \cup B) = m(A) + m(B \setminus (A \cap B))$. Ker je $A \cap B \subseteq B$ lahko uporabimo formulo iz druge točke: $m(B) = m(A \cap B) + m(B \setminus (A \cap B))$ oz. $m(B \setminus (A \cap B)) = m(B) m(A \cap B)$. Sledi, da je $m(A \cup B) = m(A) + m(B) m(A \cap B)$.
 - 5. Točko bomo dokazali z indukcijo po številu množic. Za = 2 že vemo, saj to velja po definiciji mere. Denimo torej, da velja trditev za nek $k \in \mathbb{N}$ in dokažimo za n = k+1. Denimo, da imamo paroma disjunktne množice $A_1, A_2, \ldots, A_k, A_{k+1}$. Označimo $B = \bigcup_{i=1}^k A_i$. Potem je $\bigcup_{i=1}^{k+1} A_i = B \cup A_{k+1}$ in $B \cap A_{k+1} = \emptyset$. Sledi, da je $m(B \cup A_{k+1}) = m(B) + m(A_{k+1}) = \sum_{i=1}^k m(A_i) + m(A_{k+1}) = \sum_{i=1}^{k+1} m(A_i)$.
 - 6. Za primer n=2 že vemo, saj je to direktna posledica četrte trditve. Denimo torej, da trditev velja za nek $k \in \mathbb{N}$ in dokažimo, da potem velja tudi za k+1: Ponovno označimo $B=\bigcup_{i=1}^k A_i$ in potem je $\bigcup_{i=1}^{k+1} A_i=B\cup A_{k+1}$. Po četrti točki sklepamo, da je $m(B\cup A_{k+1})\leq m(B)+m(A_{k+1})$. Dodatno, upoštevamo indukcijsko predpostavko, da je $m(B)=m(\bigcup_{i=1}^k A_i)\leq \sum_{i=1}^k m(A_i)$. Potem je pa $m(\bigcup_{i=1}^{k+1} A_i)\leq \sum_{i=1}^{k+1} m(A_i)$

7. Naj bodo $A, A_k \in K \ \forall k \in \mathbb{N} \ \text{in} \ A_i \cap A_j = \emptyset \ \text{za} \ i \neq j$. Naj bo $\bigcup_{k=1}^n A_k \subseteq A_k \subseteq A_k$ A. Potem bo za $\forall l \in \mathbb{N}$ tudi $\bigcap_{k=1}^{l} A_k \subseteq A$ in po tretji točki potem velja $m(\bigcup_{k=1}^l A_k) \leq m(A)$. Ker so množice A_k paroma disjunktne, po peti točki sledi $m(\bigcup_{k=1}^{l} A_k) = \sum_{k=1}^{l} m(A_k)$. Ker to velja za $\forall l \in \mathbb{N}$, je $\sum_{k=1}^{\infty} m(A_k) = \lim_{l \to \infty} \sum_{k=1}^{l} m(A_k) \leq m(A)$.

Definicija 8: Naj bo m mera na kolobarju množic K. Pravimo, da je mera m:

- $\underline{\sigma}$ -aditivna na K, če velja sklep: $A = \bigcup_{i=1}^{\infty} A_i; A, A_i \in K \ \forall i \in \mathbb{N} \land A_i \cap A_j = \emptyset$, če je $i \neq j \Rightarrow m(A) = \sum_{i=1}^{\infty} m(A_i)$
- $\underline{\sigma\text{-poladitivna}}$ na K, če velja sklep: $A \subseteq \bigcup_{i=1}^{\infty} A_i; A, A_i \in K \ \forall i \in \mathbb{N} \Rightarrow m(A) \leq \sum_{i=1}^{\infty} m(A_i)$
- zvezna na K, če za vsako monotono zaporedje množic $\{A_i\}_{i=1}^{\infty}; A_i \in K$ z limito $\lim_{i\to\infty} A_i = A \in K$ velja: $\lim_{i\to\infty} m(A_i) = m(A)$

Izrek 1. Naj bo K kolobar množic (na neki množici X) in m poljubna mera na njem. Lastnost σ -aditivnosti, σ -poladitivnosti in zveznosti so ekvivalentne.

Dokaz. Najprej bomo dokazali ekvivalenco σ -aditivnosti in σ -poladitivnosti, nato pa bomo dokazali ekvivalenco σ -aditivnosti in zveznosti.

- 1. Dokazujemo, da je mera m je σ -aditivna \iff mera m je σ -poladitivna:
 - $\Rightarrow)$: Naj bodo $A,A_i\in K\ \forall i\in\mathbb{N}$ in naj bo $A\subseteq\bigcup_{i=1}^\infty A_i.$ Označimo $B_1 = A \cap A_1, B_2 = (A \cap A_2) \setminus B_1, \dots, B_k = (A \cap A_k) \setminus (\bigcup_{i=1}^{k-1} B_i)$ in pokažimo, da velja $B_i \cap B_j = \emptyset$ za $i \neq j$. Brez škode za splošnost predpostavimo, da je i < j in denimo, da imamo nek $x \in B_i \cap B_j$. Po definiciji preseka sledi $x \in B_i$ & $x \in B_j$. Po drugi strani, pa je $B_j = (A \cap A_j) \setminus (\bigcup_{k=1}^{j-1} B_k)$. Ker je i < j je $B_i \subseteq \bigcup_{k=1}^{j-1} B_k$. Ker je $x \in B_i$ potem sledi, da $x \notin B_j$. Prišli smo v protislovje, torej je res $B_i \cap B_j = \emptyset$ za $i \neq j$. Sedaj bomo pokazali, da je $A = \bigcup_{k=1}^{\infty} B_k$.
 - \subseteq): Naj bo $x \in A$. Ker je $A \subseteq \bigcup_{i=1}^{\infty} A_i$ obstaja neko število $k_0 \in$ \mathbb{N} in neko zaporedje indeksov $\{k_i\}_{i=1}^{\infty}; k_i > k_0 \ \forall i \in \mathbb{N}, \ da je <math>x \in A_{k_1}, x \in A_{k_2}, \ldots$ Potem posledično velja $x \notin B_k$ za $k < k_0$, od tod pa sledi, da je $x \in B_{k_0} = (A \cap A_{k_0}) \setminus (\bigcup_{k=1}^{k_0-1} B_k)$. Ker smo za poljubni $x \in A$ našli neko množico B_k , da je $x \in B_k$, potem očitno velja $A \subseteq \bigcup_{k=1}^{\infty} B_k$.
 - ⊇) : Naj bo sedaj $x \in \bigcup_{k=1}^{\infty} B_k$ in naj bo k_0 najmanjši indeks, taki, da je $x \in B_{k_0} = (A \cap A_{k_0}) \setminus (\bigcup_{k=1}^{k_0-1} B_k)$. Iz tega, da je izbrani k_0 najmanjši izmed vseh, ki zadoščajo prejšnjemu pogoju, sledi $x \notin \bigcup_{k=1}^{k_0-1} B_k$, torej je $x \in A \cap A_{k_0}$. Sledi, da je $x \in A$ Ker to velja za vsak $x \in \bigcup_{k=1}^{\infty} B_k$ sledi $\bigcup_{k=1}^{\infty} B_k \subseteq A$

Pokazali smo torej, da je $A = \bigcup_{k=1}^{\infty} B_k$. Sedaj lahko uporabimo σ -aditivnost:

$$m(A = m(A = \bigcup_{k=1}^{\infty} B_k)) = \sum_{k=1}^{\infty} m(B_k)$$

- Ker je $m(B_k) \leq m(A_k) \ \forall k \in \mathbb{N}$ je potem $m(A) \leq \sum_{k=1}^{\infty} m(A_k)$ in s tem je pokazana σ -poladitivnost.
- \Leftarrow :) Naj bo sedaj $A = \bigcup_{k=1}^{\infty} A_k$; $A, A_k \in K \ \forall k \in \mathbb{N}$, in $A_i \cap A_j = \emptyset$ za $i \neq j$. Ker je $A \subseteq \bigcup_{k=1}^{\infty} A_k$, je po σ-poladitivnosti $m(A) \leq \sum_{k=1}^{\infty} m(A_k)$. Po drugi strani je pa $A \supseteq \bigcup_{k=1}^{\infty} A_k$ in posledično je $m(A) \geq \sum_{k=1}^{\infty} m(A_k)$. Sledi, da je $m(A) = \sum_{k=1}^{\infty} m(A_k)$, torej je m σ-aditivna.
- 2. Dokazujemo, da je mera m σ -aditivna \iff mera m je zvezna:
 - \Rightarrow) : Denimo, da imamo monotono zaporedje množic $\{A_k\}_{k=1}^\infty$ z limito $A=\lim_{k\to\infty}A_k.$
 - Če $\{A_k\}_{k=1}^{\infty}$ narašča je $A = \bigcup_{k=1}^{\infty} A_k$. Določimo $A_0 = \emptyset$ in opazimo, da je, za $i \leq j$, $m(A_i) \leq m(A_j)$, ker je $A_i \subseteq A_j$. Označimo $B_1 = A_1 \setminus A_0, B_2 = A_2 \setminus A_1, \dots B_k = A_k \setminus A_{k-1}$ in vidimo, da je $B_i \cap B_j = \emptyset$ za $i \neq j$, ter da je $A = \bigcup_{k=1}^{\infty} B_k$. Potem je

$$m(A) = m(\bigcup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} m(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} m(B_k)$$

$$= \lim_{n \to \infty} (m(B_1) + m(B_2) + \dots + m(B_n))$$

$$= \lim_{n \to \infty} (m(A_1 \setminus A_0) + m(A_2 \setminus A_1) + \dots + m(A_n \setminus A_{n-1}))$$

$$= \lim_{n \to \infty} (m(A_1) - m(A_0) + m(A_2) - m(A_1) + \dots + m(A_n) - m(A_{n-1}))$$

$$= \lim_{n \to \infty} (m(\emptyset) + m(A_n)) = \lim_{n \to \infty} m(A_n)$$

– Če $\{A_k\}_{k=1}^{\infty}$ pada je $A = \bigcap_{k=1}^{\infty} A_k$. Označimo $B_1 = A_1 \setminus A_2, B_2 = A_1 \setminus A_3, \dots, B_k = A_1 \setminus A_{k+1}$. Opazimo, da je zaporedje $\{B_k\}_{k=1}^{\infty}$ naraščajoče, torej je $\lim_{k \to \infty} B_k = \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} (A_1 \setminus A_{k+1}) = A_1 \setminus \bigcap_{k=2}^{\infty} A_k$. Ko upoštevamo, da $\{A_k\}_{k=1}^{\infty}$ pada, vidimo, da je $\bigcap_{k=2}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k = A$, torej je $\lim_{k \to \infty} B_k = A_1 \setminus A$. Sledi, da je $m(\lim_{k \to \infty} B_k) = m(A_1 \setminus A) = m(A_1) - m(A)$. Ker zaporedje $\{B_k\}_{k=1}^{\infty}$ narašča, se pa lahko skličemo na prejšnjo točko in vidimo, da je

$$m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k) = \lim_{k \to \infty} m(A_1 \setminus A_{k+1})$$
$$= \lim_{k \to \infty} (m(A_1) - m(A_{k+1}))$$
$$= m(A_1) - \lim_{k \to \infty} m(A_{k+1})$$

Posledično je $m(A) = \lim_{k \to \infty} m(A_k)$, torej je m zvezna.

⇐): Denimo, da je m zvezna mera in naj bo $A = \bigcup_{k=1}^{\infty} A_k$, kjer so $A, A_k \in K \ \forall k \in \mathbb{N} \ \text{in} \ A_i \cap A_j = \emptyset \ \text{za} \ i \neq j$. Naj bo $B_k = \bigcup_{i=1}^k A_i$. Vidimo, da je zaporedje $\{B_k\}_{k=1}^{\infty}$ naraščajoče in potem je $\lim_{k \to \infty} B_k = \bigcup_{i=1}^k A_i$.

 $\bigcup_{i=1}^{\infty} A_i = A$ in posledično sklepamo, da je

$$m(A) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k) = \lim_{k \to \infty} m(\bigcup_{i=1}^k A_i)$$
$$= \lim_{k \to \infty} \sum_{i=1}^k m(A_i) = \sum_{i=1}^\infty m(A_i)$$

Torej je m σ -aditivna.

Trditev 6. Naj bo $\{\mathcal{M}_{\alpha}\}_{{\alpha}\in I}$ družina σ -algeber na poljubno množico X. Tedaj je $\mathcal{M} = \bigcap_{{\alpha}\in I} \mathcal{M}_{\alpha}$ tudi σ -algebra na X.

Dokaz. Preverimo, da \mathcal{M} ustreza vsem aksiomom σ -algebre.

- Ker sta $\emptyset, X \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, očitno velja $\emptyset, X \in \mathcal{M} = \bigcap_{\alpha \in I} \mathcal{M}_{\alpha}$.
- Naj bo $A \in \mathcal{M}$. Potem je $A \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $A^c \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $A^c \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$,
- Naj bo $\{A_i\}_{i=1}^{\infty}$ zaporedje množic vsebovano v \mathcal{M} . Potem je to zaporedje vsebovano udiv v $\mathcal{M}_{\alpha} \ \forall \alpha \in I$. Od tod sledi, da je $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$.

Definicija 9: Naj bo \mathbb{A} družina podmnožic X. Najmanjšo σ -algebro, ki vsebuje \mathbb{A} , označimo z $\mathcal{M}_{\mathbb{A}}$ in jo imenujemo σ -algebra generirana z \mathbb{A} .

Trditev 7. Za \mathcal{A} obstaja najmanjša σ -algebra, ki vsebuje \mathcal{A} .

Dokaz. Vemo, da obstaja vsaj ena σ-algebra, ki vsebuje \mathcal{A} . Naj bo $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$ družina vseh σ-algeber, ki vsebujejo \mathcal{A} . Tedaj je $\mathcal{M}_{\mathcal{A}} = \bigcap_{\alpha\in I} \mathcal{M}_{\alpha}$ najmanjša taka σ-algebra, ki vsebuje \mathcal{A} .

Zgled 5: Vzemimo
$$X = \mathbb{R}$$
 in $A = \{\{1\}, \{2\}\}$. Potem je $\mathcal{M}_{A} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \mathbb{R} \setminus \{1\}, \mathbb{R} \setminus \{2\}, \mathbb{R} \setminus \{1, 2\}, \mathbb{R}\}$

Definicija 10: Naj bo (X,d) metrični prostor. Najmanjšo σ -algebro, ki vsebuje vse odprte množice (X,d) imenujemo Borelova σ -algebra in jo označimo z \mathcal{B}_X . Elemente Borelove σ -algebre imenujemo Borelove množice.

Zgled 6:

- Odprte, zaprte množice
- Končne množice
- polzaprti intervali $[a,b) = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, b)$