CS 435: Introduction to Cryptography

Fall 2016-17

Homework 2

Professor Somesh Jha **Due:** October 9

- 1. Consider an encryption scheme, where the plaintext and ciphertext are n-bit strings. The key generation algorithm works as follows: generate a $\frac{n}{2}$ -bit random string s (assume n is even) and the key is $k = s \| s$ (where $\|$ is concatenation). Encryption and decryption work exactly as one-time pad $c = m \oplus k$ and $m = c \oplus k$.
 - a) Can this scheme be perfectly secret?
 - b) What is the probability of an adversary winning the indistinguishability game?
- 2. Let f and g be negligible functions and p be any positive polynomial.
 - a) Prove that the function $p(n) \cdot f(n)$ is a negligible function.
 - b) Prove that $\frac{1}{\left(\frac{1}{f(n)} + \frac{1}{g(n)}\right)}$ is a negligible function.
- 3. Let G_0 , G_1 be two different pseudorandom generators where $|G_0(s)| = |G_1(s)|$.

Prove that no efficient distinguisher can detect wheter it is given a pseudorandom string output by G_0 or a pseudorandom string output by G_1 .

In other words, prove that, for any PPT algorithm D, there is a negligible function negl such that

$$\Big|\mathrm{Pr}[D(G_0(s))=1]-\mathrm{Pr}[D(G_1(s))=1]\Big| \leq \mathsf{negl}(n)$$

where both probabilities are taken over uniform choice of $s \in \{0,1\}^n$ and the randomness of D.

[**Hint**: Use triangle inequality " $|x+y| \le |x| + |y|$ for any real numbers $x, y \in \mathbb{R}$ ".]

4. (3.6) Let G be a pseudorandom generator where |G(s)| > 2|s|. If G' is defined as follows, State and Justify whether they are necessarily pseudorandom generator or not?

1

- a) Define $G'(s) = G(s_1 \cdots s_{n/2})$, where $s = s_1 \cdots s_n$.
- b) Define $G'(s) = G(s||1^{|s|}).$
- c) Define $G'(s) = G(\overline{s})$, where \overline{s} is the bitwise complement of s