Werkcollege Datastructuren, Februari 7, 2007 (Uitwerkingen van niet behandelde opgaven)

Clemens Grabmayer (mailto:clemens@phil.uu.nl), 14 februari 2007.

R-4.24. Als $d(n) \in O(f(n))$ en $f(n) \in O(g(n))$, dan geldt ook $d(n) \in O(g(n))$.

Om dat te bewijzen, laten we $d, f, g : \mathbb{N} \to \mathbb{R}_0^+$ willekeurige functies zo dat

$$d(n) \in O(f(n))$$
 en $f(n) \in O(g(n))$. (1)

We zullen $d(n) \in O(g(n))$ laten zien.

Wegens (1) bestaan er $c_1, c_2 \in \mathbb{R}^+$ en $n_0^{(1)}, n_0^{(2)}$ zo dat

voor alle
$$n \in \mathbb{N}$$
, $n \ge n_0^{(1)}$: $d(n) \le c_1 \cdot f(n)$.
voor alle $n \in \mathbb{N}$, $n > n_0^{(2)}$: $f(n) < c_2 \cdot q(n)$.

Hieruit volgt dat voor $n_0 := \max\{n_0^{(1)}, n_0^{(2)}\}$ en $c := c_1 \cdot c_2 \in \mathbb{R}^+$ geldt:

voor alle
$$n \in \mathbb{N}$$
, $n > n_0$: $d(n) < c_1 \cdot f(n) < c_1 \cdot c_2 \cdot g(n) = c \cdot g(n)$.

Dit toont nu aan: $d(n) \in O(g(n))$.

R-4.26. Bewijs dat $f(n) \in O(g(n))$ dan en slechts dan als $g(n) \in \Omega(f(n))$.

We herinneren ons aan de definitie van de groiesnelheidsklassen $O(\tilde{f}(n))$ en $\Omega(\tilde{f}(n))$ voor een functie $\tilde{f}: \mathbb{N} \to \mathbb{R}_0^+$:

$$O(\tilde{f}(n)) := \left\{ \tilde{g} : \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+) \left(\exists n_0 \in \mathbb{N} \right) \left(\forall n \in \mathbb{N}, n \ge n_0 \right) \left[\tilde{g}(n) \le c \cdot \tilde{f}(n) \right] \right\},$$

$$\Omega(\tilde{f}(n)) := \left\{ \tilde{g} : \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+) \left(\exists n_0 \in \mathbb{N} \right) \left(\forall n \in \mathbb{N}, n \ge n_0 \right) \left[\tilde{g}(n) \ge c \cdot \tilde{f}(n) \right] \right\},$$

Om de bewering in de opgave te bewijzen, laten we $f,g\in\mathbb{N}\to\mathbb{R}_0^+$ willekeurige functies. En we redeneren als volgt:

$$f(n) \in O(g(n))$$

$$\iff (\exists c_1 \in \mathbb{R}^+) (\exists n_0^{(1)} \in \mathbb{N}) (\forall n \in \mathbb{N}, n \ge n_0^{(1)}) [f(n) \le c_1 \cdot g(n)]$$

$$\iff (\exists c_2 \in \mathbb{R}^+) (\exists n_0^{(2)} \in \mathbb{N}) (\forall n \in \mathbb{N}, n \ge n_0^{(2)}) [g(n) \ge c_2 \cdot f(n)]$$

$$\iff g(n) \in \Omega(f(n)).$$

Hierbij hoeft alleen nog maar de door een ster gekenmerkte bi-implicatie te worden beredeneerd: de implicatie " \Leftarrow " volgt onmiddellijk als we $c_1 := \frac{1}{c_2} \in \mathbb{R}^+$ en $n_0^{(1)} := n_0^{(2)} \in \mathbb{N}$ laten; en de andere implicatie, " \Rightarrow " volgt als we $c_2 := \frac{1}{c_1} \in \mathbb{R}^+$ en $n_0^{(2)} := n_0^{(1)} \in \mathbb{N}$ laten.

Het volgt dat $f(n) \in O(g(n))$ dan en slechts dan het geval is als $g(n) \in \Omega(f(n))$.