אוניברסיטת ת"א סמסטר ב', תשפ"ה

21/04/2025 :תאריך הגשה

תרגיל בית 1 במבני נתונים

על כל התשובות להיות מנומקות. בכל שאלה יש לבחור במימוש היעיל ביותר האפשרי מבחינת סיבוכיות זמן. יש לענות על השאלות במקומות המוגדרים לכך. כל log הינו בבסיס 2.

שאלה 1

נתבונן בטיפוס רשימה, כפי שנלמד בשיעור. נגדיר פעולה חדשה על מבנה הרשימה, (Shift(L,i), מתבונן בטיפוס רשימה j ומשנה את הרשימה כך שהאיבר שהיה במקום הj ואינדקס j, ומשנה את הרשימה כך שהאיבר שהיה במקום הj + i (j +

לדוגמה, אם הרשימה L מכילה את האיברים 5,7,3,9,2, לאחר הרצת הפעולה (L,3) איברי L איברים 2,7,3,9,2 לאחר הרצת הפעולה (L,1) איברי L איברים 2,5,7,3,9,2 לאחר הרצת הפעולה (L,1) איברי 2,5,7,3,9. יהיו 2,5,7,3,9.

כתבו פסאודו-קוד עבור מימוש יעיל ככל האפשר של הפעולה עבור כל אחד מהמקרים הבאים. בסעיפים ב',ג' וד' נתחו את סיבוכיות זמן הריצה של הפעולה כפונקציה של אורך הרשימה n והאינדקס i . בסעיף א', הסבירו מדוע לא ניתן לנתח את סיבוכיות זמן הריצה של הפעולה.

- אד. כאלגוריתם שמשתמש ברשימה כללית (כלומר ב-List ADT כפי שהוגדר בכיתה).
 - ב. כפעולה חדשה על רשימה במימוש מערך מעגלי.
 - .ג. כפעולה חדשה על רשימה במימוש רשימה מקושרת (חד כיוונית).

שאלה 2

נגדיר "מחסנית מינימום" כ-ADT התומך בפעולות הבאות:

- אתחול מבנה הנתונים כאשר הוא ריק Init
 - הכנת המספר x למבנה. Insert(x)
- הוצאת האיבר שהוכנס אחרון והחזרתו כפלט RemoveLast
 - החזרת ערך המספר הקטן ביותר במבנה.◆

ניתן להניח כי בכל זמן כל המספרים במחסנית שונים זה מזה.

- 0.0(1) א. הציעו מימוש ל"מחסנית מינימום", כאשר סיבוכיות הזמן הנדרשת לכל הפעולות היא
 - :ב. הוסיפו את הפעולה הבאה
- שאר הפעולות אמן: O(1). סיבוכיות שאר הפעולות d לכל המספרים במבנה. סיבוכיות לל המספרים במבנה. לל המספרים במבנה. לא תיפגע.
 - $\frac{1}{2}$ הוסיפו את הפעולה הבאה:
- t כאשר O(t) מחיקת המספר הקטן ביותר מהמבנה. על הפעולה לרוץ בזמן DeleteMin הוא מספר האיברים במבנה שהוכנסו אחרי המינימום בעת ביצוע הפעולה.

<u>שאלה 3</u>

 $f(n)=\omega(g(n))$ או $f(n)=\Theta(g(n))$ או $f(n)=\Theta(g(n))$ עבור זוגות הפונקציות הבאים, קבעו האם ניתן להוכיח את התשובות על-פי ההגדרות שלמדנו, חישוב גבול המנה או כל דרך נכונה אחרת.

$$f(n) = n^{15} \log^{12} n; \ g(n) = \frac{n^{17}}{\log^{12} n}$$

$$f(n) = \sum_{i=1}^{n} \log i^3; g(n) = \sum_{i=1}^{n} \log i^2 \implies f(n) = (\log n)^n; g(n) = (\sqrt{n})^{\log n} \implies$$

$$f(n) = (\log n)^n$$
; $g(n) = (\sqrt{n})^{\log n}$

$$f(n) = n^n$$
; $g(n) = n!$ =

$$f(n) = 1.6^{\log \log \log n}$$
; $g(n) = \log \log n$.

שימו-לב: כל ה-log בשאלה בבסיס 2.

<u>שאלה 4</u>

יהיו פונקציות מהטבעיים לטבעיים. הוכיחו/הפריכו: f , g

$$f = o(g)$$
 אז $f \neq \Omega(g)$ א.

$$f=o(g)$$
 אז $f\neq 0$ אז $f=o(g)$ או $f=o(g)$ או $f=o(g)$ או $f=o(g)$ או $f=o(g)$

$$g = O(f)$$
 או $f = O(g)$

$$g = O(f)$$
 או $f = O(g)$ נניח כי f , מונוטוניות עולות. אז f

שאלה <u>5</u>

 $\alpha < 1$ עבור $T(n) = T(\lfloor \alpha n \rfloor) + T(\lfloor (1-\alpha)n \rfloor) + 1 = O(n)$ עבור $T(n) = T(\lfloor \alpha n \rfloor) + T(\lfloor (1-\alpha)n \rfloor) + 1 = O(n)$ ניתן להניח כי T(c) = 1 עבור ערכי T(c) = 1 עבור ערכי

בנוסחאות T(n) בנוסחאות אסימפטוטיים פשוטים הדוקים ככל האפשר עבור בנוסחאות הנסיגה הבאות והוכיחו תשובתכם. **אין להשתמש** במשפט המאסטר בשאלה זאת.

$$T(n) = 8T\left(\frac{n}{2}\right) + n^3 + n^2 \cdot \log^3 n \quad .a$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \sqrt{n}$$
 .b

$$(\sum_{i=1}^k \frac{1}{i} = \Theta(\log k) : T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n} : \mathbf{c}$$

שאלה 6

_____ פתרו את נוסחאות הנסיגה הבאות ע"פ שיטת המאסטר, אם אפשרי. אם לא אפשרי, ציינו זאת ונמקו.

$$T(n) = 3T\left(\frac{n}{3}\right) + n\log^3 n \quad \exists x$$

$$T(n) = T\left(\frac{4n}{5}\right) + 8 = \frac{1}{2}$$

$$T(n) = 4T\left(\frac{n}{2}\right) + 2n \quad \exists$$

$$T(n) = 3T\left(\frac{n}{4}\right) + n\log^3 n \quad \exists$$

