

Intel[®] Iris[®] X^e MAX Graphics Open Source

Programmer's Reference Manual

For the 2020 Discrete GPU formerly named "DG1"

Volume 2b: Command Reference: Enumerations

February 2021, Revision 1.0

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Table of Contents

3D_Color_Buffer_Blend_Factor	1
3D_Color_Buffer_Blend_Function	2
3D_Compare_Function	3
3D_Logic_Op_Function	4
3D_Prim_Topo_Type	5
3D_Stencil_Operation	7
3D_Vertex_Component_Control	8
AccWrCtrl	9
AddrMode	10
AtomicCtrl	11
Attribute_Component_Format	12
ChanOff	13
COMPONENT_ENABLES	14
DPASOperandPrecision	15
EU_OPCODE	16
ExecSize	18
Fixed Function ID	19
FlagModifier	20
GW_FENCE_PORTS	21
HorzStride	22
ImmDataType	23
MathFC	24
Performance Counter Report Formats	27
PredCtrl	28
Preferred Shared Local Memory Size	29
RegDataType	30
RENDER_BARRIER_STAGE	31
RENDER_BARRIER_TYPE	32
Render Compression Format	33
Saturate	36
SFID	37
Shader Channel Select	38

intel

SIMD Mode	39
Slice Hash Control	40
SrcMod	41
SURFACE_FORMAT	42
SyncFC	49
TernaryDataType	50
TernaryVertStride	51
Texture Coordinate Mode	52
VertStride	53
Width	54
WRAP_SHORTEST_ENABLE	55

3D_Color_Buffer_Blend_Factor

3D_Color_Buffer_Blend_Factor

Size (in bits):	5
Value	Name
00h	Reserved
01h	BLENDFACTOR_ONE
02h	BLENDFACTOR_SRC_COLOR
03h	BLENDFACTOR_SRC_ALPHA
04h	BLENDFACTOR_DST_ALPHA
05h	BLENDFACTOR_DST_COLOR
06h	BLENDFACTOR_SRC_ALPHA_SATURATE
07h	BLENDFACTOR_CONST_COLOR
08h	BLENDFACTOR_CONST_ALPHA
09h	BLENDFACTOR_SRC1_COLOR
0Ah	BLENDFACTOR_SRC1_ALPHA
0Bh-10h	Reserved
11h	BLENDFACTOR_ZERO
12h	BLENDFACTOR_INV_SRC_COLOR
13h	BLENDFACTOR_INV_SRC_ALPHA
14h	BLENDFACTOR_INV_DST_ALPHA
15h	BLENDFACTOR_INV_DST_COLOR
16h	Reserved
17h	BLENDFACTOR_INV_CONST_COLOR
18h	BLENDFACTOR_INV_CONST_ALPHA
19h	BLENDFACTOR_INV_SRC1_COLOR
1Ah	BLENDFACTOR_INV_SRC1_ALPHA

3D_Color_Buffer_Blend_Function

3D_Color_Buffer_Blend_Function

Value	Name	Description
0	BLENDFUNCTION_ADD	BLENDFUNCTION_ADD
1	BLENDFUNCTION_SUBTRACT	BLENDFUNCTION_SUBTRACT
2	BLENDFUNCTION_REVERSE_SUBTRACT	BLENDFUNCTION_REVERSE_SUBTRACT
3	BLENDFUNCTION_MIN	BLENDFUNCTION_MIN
4	BLENDFUNCTION_MAX	BLENDFUNCTION_MAX
5 - 7	Reserved	

3D_Compare_Function

3D_Compare_Function

Value	Name	Description
0h	COMPAREFUNCTION_ALWAYS	Always pass
1h	COMPAREFUNCTION_NEVER	Never pass
2h	COMPAREFUNCTION_LESS	Pass if the value is less than the reference
3h	COMPAREFUNCTION_EQUAL	Pass if the value is equal to the reference
4h	COMPAREFUNCTION_LEQUAL	Pass if the value is less than or equal to the reference
5h	COMPAREFUNCTION_GREATER	Pass if the value is greater than the reference
6h	COMPAREFUNCTION_NOTEQUAL	Pass if the value is not equal to the reference
7h	COMPAREFUNCTION_GEQUAL	Pass if the value is greater than or equal to the reference

3D_Logic_Op_Function

3D_Logic_Op_Function

Value	Name	Description
0h	LOGICOP_CLEAR	BLACK; all 0's
1h	LOGICOP_NOR	NOTMERGEPEN; NOT (S OR D)
2h	LOGICOP_AND_INVERTED	MASKNOTPEN; (NOT S) AND D
3h	LOGICOP_COPY_INVERTED	NOTCOPYPEN; NOT S
4h	LOGICOP_AND_REVERSE	MASKPENNOT; S AND NOT D
5h	LOGICOP_INVERT	NOT; NOT D
6h	LOGICOP_XOR	XORPEN; S XOR D
7h	LOGICOP_NAND	NOTMASKPEN; NOT (S AND D)
8h	LOGICOP_AND	MASKPEN; S AND D
9h	LOGICOP_EQUIV	NOTXORPEN; NOT (S XOR D)
Ah	LOGICOP_NOOP	NOP; D
Bh	LOGICOP_OR_INVERTED	MERGENOTPEN; (NOT S) OR D
Ch	LOGICOP_COPY	COPYPEN; S
Dh	LOGICOP_OR_REVERSE	MERGEPENNOT; S OR NOT D
Eh	LOGICOP_OR	MERGEPEN; S OR D
Fh	LOGICOP_SET	WHITE; all 1's

3D_Prim_Topo_Type

3D_Prim_Topo_Type

Source: RenderCS

Size (in bits): 6

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details, programming restrictions, diagrams and a discussion of the basic primitive types.

Value	Name	Description
00h	Reserved	
01h	3DPRIM_POINTLIST	
02h	3DPRIM_LINELIST	
03h	3DPRIM_LINESTRIP	
04h	3DPRIM_TRILIST	
05h	3DPRIM_TRISTRIP	
06h	3DPRIM_TRIFAN	
07h	3DPRIM_QUADLIST	
08h	3DPRIM_QUADSTRIP	
09h	3DPRIM_LINELIST_ADJ	
0Ah	3DPRIM_LINESTRIP_ADJ	
0Bh	3DPRIM_TRILIST_ADJ	
0Ch	3DPRIM_TRISTRIP_ADJ	
0Dh	3DPRIM_TRISTRIP_REVERSE	
0Eh	3DPRIM_POLYGON	
0Fh	3DPRIM_RECTLIST	
10h	3DPRIM_LINELOOP	
11h	3DPRIM_POINTLIST _BF	
12h	3DPRIM_LINESTRIP_CONT	
13h	3DPRIM_LINESTRIP_BF	
14h	3DPRIM_LINESTRIP_CONT_BF	
15h	Reserved	
16h	3DPRIM_TRIFAN_NOSTIPPLE	
17h	Reserved	
18h	Reserved	
19h	Reserved	
1Ah	Reserved	
[1Bh-1Fh]	Reserved	
20h	3DPRIM_PATCHLIST_1	List of 1-vertex patches

intel

3D_Prim_Topo_Type		
21h	3DPRIM_PATCHLIST_2	
22h	3DPRIM_PATCHLIST_3	
23h	3DPRIM_PATCHLIST_4	
24h	3DPRIM_PATCHLIST_5	
25h	3DPRIM_PATCHLIST_6	
26h	3DPRIM_PATCHLIST_7	
27h	3DPRIM_PATCHLIST_8	
28h	3DPRIM_PATCHLIST_9	
29h	3DPRIM_PATCHLIST_10	
2ah	3DPRIM_PATCHLIST_11	
2bh	3DPRIM_PATCHLIST_12	
2ch	3DPRIM_PATCHLIST_13	
2dh	3DPRIM_PATCHLIST_14	
2eh	3DPRIM_PATCHLIST_15	
2fh	3DPRIM_PATCHLIST_16	
30h	3DPRIM_PATCHLIST_17	
31h	3DPRIM_PATCHLIST_18	
32h	3DPRIM_PATCHLIST_19	
33h	3DPRIM_PATCHLIST_20	
34h	3DPRIM_PATCHLIST_21	
35h	3DPRIM_PATCHLIST_22	
36h	3DPRIM_PATCHLIST_23	
37h	3DPRIM_PATCHLIST_24	
38h	3DPRIM_PATCHLIST_25	
39h	3DPRIM_PATCHLIST_26	
3ah	3DPRIM_PATCHLIST_27	
3bh	3DPRIM_PATCHLIST_28	
3ch	3DPRIM_PATCHLIST_29	
3dh	3DPRIM_PATCHLIST_30	
3eh	3DPRIM_PATCHLIST_31	
3Fh	3DPRIM_PATCHLIST_32	List of 32-vertex patches

${\bf 3D_Stencil_Operation}$

3D	_Stencil	0	perat	ion

Source: RenderCS

Value	Name
0	STENCILOP_KEEP
1	STENCILOP_ZERO
2	STENCILOP_REPLACE
3	STENCILOP_INCRSAT
4	STENCILOP_DECRSAT
5	STENCILOP_INCR
6	STENCILOP_DECR
7	STENCILOP_INVERT

$3D_Vertex_Component_Control$

3D_Vertex_Component_Control

Source: RenderCS

Value	Name	Description
0	VFCOMP_NOSTORE	Don't store this component. (Not valid for Component 0, but can be used for Component 1-3). Once this setting is used for a component, all higher-numbered components (if any) MUST also use this setting. (I.e., no holes within any particular vertex element). VFCOMP_NOSTORE will not store a component if the SourceElementFormat is R64_PASSTHRU or R64G64_PASSTHRU and it is used on component 2 and 3 else 0 will be stored.
1	VFCOMP_STORE_SRC	Store corresponding component from format-converted source element. Storing a component that is not included in the Source Element Format results in an UNPREDICTABLE value being stored. VF will process Component Control fields within a VERTEX_ELEMENT_STATE structure sequentially, starting with Component 0 Control. For each Component Control field in this sequence, when VF detects (a) the Component Control field is set to STORE_SRC and (b) the component is not overwritten by an SGV, VF will store a component of the source vertex data into the destination component. The first such Component Control field satisfying this criteria will use Component 0 of the source vertex data, the second such Component Control field will use Component 1 of the source vertex data, and so on. Therefore, when a lower-numbered Component Control field (a) is set to something other than STORE_SRC (e.g., STORE_0) or (b) the component is overwritten with an SGV, the source vertex component used when a higher-numbered Component Control fields is set to STORE_SRC will be impacted.
2	VFCOMP_STORE_0	Store 0 (interpreted as 0.0f if accessed as a float value)
3	VFCOMP_STORE_1_FP	Store 1.0f
4	VFCOMP_STORE_1_INT	Store 0x1
5-6	-	Reserved
7	VFCOMP_STORE_PID	Store Primitive ID (as U32) Software can no longer use this encoding as PrimitiveID is passed down the FF pipeline - see explanation above.

AccWrCtrl

AccWrCtrl

Size (in bits):

This field allows per instruction accumulator write control. When set, the result is written to both destination and accumulator.

Value	Name
0	Don't write to ACC [Default]
1	Update ACC

AddrMode

AddrMode

Source: Eulsa Size (in bits): 1

Addressing Mode This field determines the addressing method of the operand. Normally the destination operand and each source operand each have a distinct addressing mode field. When it is cleared, the register address of the operand is directly provided by bits in the instruction word. It is called a direct register addressing mode. When it is set, the register address of the operand is computed based on the address register value and an address immediate field in the instruction word. This is referred to as a register-indirect register addressing mode. This field applies to the destination operand and the first source operand, src0. Support for src1 is device dependent. See Table XX (Indirect source addressing support available in device hardware) in ISA Execution Environment for details.

Programming Notes	
Instructions with 3 source operands use Direct Addressing.	

Value	Name	Description	
0	Direct	'Direct' register addressing	
1	Indirect	'Register-Indirect' (or in short 'Indirect'). Register-indirect register addressing	

AtomicCtrl

AtomicCtrl

Source: Eulsa Size (in bits): 1

Enables the atomic instruction control option

Value	Name	Description
0b	No Operation	This value leaves thread switching up to the EU's scheduler.
	[Default]	
1b	Atomic	Prevent any thread switch immediately following this instruction. Always execute the next instruction (which may not be next sequentially if the current instruction branches). The next instruction gets highest priority in the thread arbitration for the execution pipelines.

Attribute_Component_Format

Attribute	Com	ponent	Format

Source: RenderCS

Value	Name	Description
00b	disabled [Default]	All components disabled
01b	.xy	2D attribute, z and w components disabled
10b	.xyz	3D attribute, w components disabled
11b	.xyzw	4D attribute, no disabled components

ChanOff

ChanOff

Source: Eulsa Size (in bits): 3

Channel Offset

This enumeration (instruction field) provides offset information for ARF selection. The can be thought of as a starting channel offset for the execution mask and other ARF registers implicitly accessed. Some of the ARFs affected by this offset are:

- ce access (channel enable / the execution mask): bitwise offset
- f# access: bitwise offset (e.g. in predication or conditional modifier access)
- acc# access via AccWrEn (implicit only): in subregister units of the data type

Note: ChanOff is functionally the same as a concatenation of the previous QtrCtrl and NibCtrl and supersedes these fields.

Restriction

The execution size (ExecSize) must be a factor of the chosen offset. For instance, M28 (offset 28) can only be used with SIMD1, SIMD2, and SIMD4.

Value	Name	Description
000b	M0 [Default]	ARF access begins at channel 0
001b	M4	ARF access begins at channel 4 (e.g. 4 bits in on ce and f#
010b	M8	
011b	M12	
100b	M16	
101b	M20	
110b	M24	
111b	M28	

COMPONENT_ENABLES

COMPONENT_ENABLES

Source: RenderCS

Size (in bits): 4

If enabled, the component will be stored in the URB.

Value	Name
0000b	NONE
0001b	X
0010b	Υ
0011b	XY
0100b	Z
0101b	XZ
0110b	YZ
0111b	XYZ
1000b	W
1001b	XW
1010b	YW
1011b	XYW
1100b	ZW
1101b	XZW
1110b	YZW
1111b	XYZW

DPASOperandPrecision

DPASOperandPrecision

Source: Eulsa Size (in bits): 3

This operand defines the number of bits per element in the dpas instruction. E.g. s8 would indicate that a dword is chunked into $4 \times 8b$ signed values; u2 would indicate that the operand a DWORD is broken into $16 \times 2b$ unsigned values.

Value	Name
000b	u1
001b	u2
010b	u4
011b	u8
100b	s1
101b	s2
110b	s4
111b	s8

intel

EU_OPCODE

EU_OPCODE

Source: Eulsa Size (in bits): 7

Value	Name
40h	add
4Eh	addc
65h	and
6Ch	asr
42h	avg
78h	bfe
79h	bfi1
7Ah	bfi2
77h	bfrev
23h	brc
21h	brd
28h	break
2Ch	call
2Bh	calla
4Dh	cbit
70h	cmp
71h	cmpn
29h	cont
72h	csel
24h	else
25h	endif
4Bh	fbh
4Ch	fbl
43h	frc
2Eh	goto
2Ah	halt
22h	if
0h	illegal
20h	jmpi
2Fh	join
4Ah	Izd

EU_OPCODE		
48h	mac	
49h	mach	
5Bh	mad	
38h	math	
61h	mov	
63h	movi	
41h	mul	
60h	nop	
64h	not	
66h	or	
2Dh	ret	
45h	rndd	
46h	rnde	
44h	rndu	
47h	rndz	
6Fh	rol	
6Eh	ror	
62h	sel	
31h	send	
32h	sendc	
69h	shl	_
68h	shr	
4Fh	subb	
1h	sync	
27h	while	
67h	xor	

ExecSize

ExecSize

Source: Eulsa Size (in bits): 3

Execution Size This field determines the number of channels operating in parallel for this instruction. The size cannot exceed the maximum number of channels allowed for the given data type.

Restriction

An operand's Width must be less-than-or-equal to ExecSize

Value	Name	Programming Notes
000b	1 Channel (Scalar operation) [Default]	
001b	2 Channels	
010b	4 Channels	
011b	8 Channels	
100b	16 Channels	[] 4-byte or smaller data types. Excludes DF, Q, and UQ types.
101b	32 Channels	[] 2-byte or 1-byte data types. Excludes D, DF, F, Q, UD, and UQ types.
110b- 111b	Reserved	

Fixed Function ID

FFID - Fixed Function ID

Size (in bits): 4

Fixed functions are hardware units that execute complex graphics or media command on behalf of application software. Some fixed functions send work down a pipeline through a series of fixed functions. Multiple fixed functions can be running at the same time. The GPU tracks activity from the fixed function with its FFID.

Programming Notes

Software does not specify the FFID, and does not normally use the FFID value. The FFID value is available to a EU thread in an ARF.

Value	Name	Description
00h	Null	
03h	POSH Vertex Shader	
04h	Hull Shader	
05h	Domain Shader	
06h	Texel Shader	Adaptive Multi-Frequency Shader
07h	General Purpose Thread Spawner	GPGPU command queue thread dispatcher
08h	General Purpose Asynchronous Thread Spawner	GPGPU command queue's thread dispatcher for secondary queue
09h	Vertex Shader	
0Ch	Geometry Shader	

FlagModifier

FlagModifier

Source: Eulsa Size (in bits): 4

Flag (Conditional) Modifier - This field sets the flag register based on the internal conditional signals output from the execution pipe such as sign, zero, overflow and NaNs, etc. If this field is set to 0000, no flag registers are updated. Flag registers are not updated for instructions with embedded compares. This field may also be referred to as the flag destination control field.

Value	Name	Description
0000b	None [Default]	None
0001b	(ze)	Zero
0010b	(nz)	NotZero
0011b	(gt)	Greater-than
0100b	(ge)	Greater-than-or-equal
0101b	(lt)	Less-than
0110b	(le)	Less-than-or-equal
0111b	Reserved	
1000b	(ov)	Overflow
1001b	(un)	Unordered (NaN)
1110b-1111b	Reserved	

GW_FENCE_PORTS

GW_FENCE_PORTS

Source: BSpec Size (in bits): 0

Bit mask specifies the list of data ports to be fenced.

Value	Name	Description
0	None [Default]	No fence is performed when no bits are set.

HorzStride

HorzStride

Source: Eulsa Size (in bits): 2

Horizontal Stride This field provides the distance in unit of data elements between two adjacent data elements within a row (horizontal) in the register region for the operand. This field applies to both destination and source operands. This field is not present for an immediate source operand.

A horizontal stride of 0 is used for a row that is one-element wide, useful when an instruction repeats a column value or repeats a scalar value. For example, adding a single column to every column in a 2D array or adding a scalar to every element in a 2D array uses HorzStride of 0. A horizontal stride of 1 indicates that elements are adjacent within a row. References to HorzStride in this volume normally reference the value not the encoding, so there are references to HorzStride of 4, which is encoded as 11b.

Value	Name
00b	0 elements
01b	1 elements
10b	2 elements
11b	4 elements

ImmDataType

ImmDataType

Source: Eulsa Size (in bits): 4

Numeric data type of source and destination operand. Three source instructions use a 3-bit encoding that allows fewer data types.

Value	Name	Description
0000b	:uv	Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer
0001b	:uw	Unsigned Word (16-bit) Integer
0010b	:ud	Unsigned DoubleWord (32-bit) Integer
0011b	:uq	Unsigned Quadword (64-bit) Integer
0100b	:v	Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer
0101b	:w	Signed Word (16-bit) Integer
0110b	:d	Signed DoubleWord (32-bit) Integer
0111b	:q	Signed QuadWord (64-bit) Integer
1000b	:vf	Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number.
1001b	:hf	Half (16-bit) Float
1010b	:f	Single-Precision (32-bit) Float
1011b	:df	Double-Precision (64-bit) Float
1100b	Reserved	
1101b	Reserved	
[1110b-1111b]	Reserved	

MathFC

MathFC

Source: Eulsa Size (in bits): 4

Math Function Control

Value	Name	Description	Programming Notes
0001b	INV	Reciprocal (Multiplicative Inverse): 1/src0	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf NaN Dest - IEEE mode +0 +inf -inf -0 NaN Dest - ALT mode +fmax -fmax NaN Src +inf +0 -0 -inf NaN Dest - IEEE mode +0 +inf -inf -0 NaN
0010b	LOG	Natural log: ln(src0)	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf -F NaN Dest - IEEE mode +inf -inf -inf NaN NaN NaN Dest - ALT mode -fmax -fmax +F NaN Src +inf +0 -0 -inf -F NaN Dest - IEEE mode +inf -inf -inf NaN NaN
0011b	EXP	Exponential (E^src0)	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf - F NaN Dest - IEEE mode +inf 1 1

MathFC			
			I
0100b	SQT	Square Root	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf - F NaN Dest - IEEE mode +inf 0 -0 NaN NaN NaN Dest - ALT mode 0 0 +F NaN Src +inf +0 -0 -inf -F NaN Dest - IEEE mode +inf 0 NaN NaN
0101b	RSQT	Reciprocal Square Root: 1/sqt(src)	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf - F NaN Dest - IEEE mode +0 +inf -inf NaN NaN NaN Dest - ALT mode +fmax +fmax +F NaN Src +inf +0 -0 -inf -F NaN Dest - IEEE mode +0 +inf -inf NaN NaN NaN
0110b	SIN	Sine function. sin(src0)	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf - F
0111b	COS	Cosine function. cos(src0)	Table:special value processing Src +inf +0 / +Denorm -0 / -Denorm -inf - F NaN Dest - IEEE mode NaN +0 -0 NaN -1 to 1

intel

	MathFC				
			NaN Dest - ALT mode +1 +1		
1001b- 1010b	Reserved	Previously fdiv and pow. Fdiv x/y may be emulated via mul and inv: x*inv(y). Pow can be replaced via exp and log: X^Y = E^(Y*LOG(X))			
1011b	IDIV	Integer Divide with Quotient and Remainder. The quotient goes in the destination register; the remainder goes in the following register.			
1100b	IQOT	Integer Quotient only			
1101b	IREM	Integer Remainder only			
1110b	INVM	Reciprocal Macro for IEEE754-compliant fdiv			
1111b	RSQTM	Reciprocal Square Root Macro for IEEE754- compliant rsqt			

Performance Counter Report Formats

Performance Counter Report Formats			
Size (in bits):	3		
	Value	Name	
001b			
010b			
011b			
100b			
110b			
111b			

intel

PredCtrl

PredCtrl

Source: Eulsa Size (in bits): 4

Value	Name	Exists If
0000b	No Predication (normal) [Default]	
0001b	Sequential Flag Channel Mapping	
0010b	Replication swizzle .x	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16')
0010b	.anyv (any from f0.0-f1.0 on the same channel)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
0011b	Replication swizzle .y	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16')
0011b	.allv (all of f0.0-f1.0 on the same channel)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
0100b	Replication swizzle .z	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16')
0100b	.any2h (any in group of 2 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
0101b	Replication swizzle .w	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')
0101b	.all2h (all in group of 2 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
0110b	.any4h	
0111b	.all4h	
1000b- 1111b	Reserved	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16')
1000b	.any8h (any in group of 8 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
1001b	.all8h (all in group of 8 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
1010b	.any16h (any in group of 16 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
1011b	.all16h (all in group of 16 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')
1100b	.any32h (any in group of 32 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')
1101b	.all32h (all in group of 32 channels)	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')
1110b- 1111b	Reserved	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1')

Preferred Shared Local Memory Size

PR	PREFERRED_SLM_SIZE - Preferred Shared Local Memory Size		
Size (in b	Size (in bits): 0		
Specifies	Specifies the preferred SLM size per subslice for this kernel.		
Restriction			
Selected	Selected PREFERRED_SLM_SIZE must specify a size >= the selected SLM_SIZE		
Value	Value Name Description		
0x0	Max [Default]	Preferred SLM size is the largest SLM size supported in the subslice.	

RegDataType

RegDataType

Source: Eulsa Size (in bits): 4

Destination Type Numeric data type of the destination operand dst. The bits of the destination operand are interpreted as the identified numeric data type, rather than coerced into a type implied by the operator. For a send or sendc instruction, this field applies to CurrDst, the current destination operand. Three source instructions use a 3-bit encoding that allows fewer data types.

Value	Name	Description
0000b	:ub	Unsigned Byte (8-bit) Integer
0001b	:uw	Unsigned Word (16-bit) Integer
0010b	:ud	Unsigned DoubleWord (32-bit) Integer
0011b	:uq	Unsigned Quadword (64-bit) Integer
0100b	:b	Signed Byte (8-bit) Integer
0101b	:w	Signed Word (16-bit) Integer
0110b	:d	Signed DoubleWord (32-bit) Integer
0111b	:q	Signed QuadWord (64-bit) Integer
1000b	Reserved	
1001b	:hf	Half (16-bit) Float
1010b	:f	Single-Precision (32-bit) Float
1011b	:df	Double-Precision (64-bit) Float
1100b	Reserved	
1101b	Reserved	
1110b	Reserved	
1111b	Reserved	

RENDER_BARRIER_STAGE

RENDER_BARRIER_STAGE

Size (in bits): 7

Stages a render barrier can either signal or wait.

Value	Name
0x1	TOP
0x2	Color
0x4 0x8	Gpgpu
0x8	Сору
0x10	Geom
0x10 0x20	Z
0x40	PS

RENDER_BARRIER_TYPE

RENDER_BARRIER_TYPE			
Size (in bits):	2		
	Value		Name
0x1			Signal
0x2			Wait
0x3			Immediate

${\bf Render Compression Format}$

RenderCompressionFormat

Source: BSpec Size (in bits): 5

Compression	n Format											
Value	Name					Descri	ptio	n				
00001b		Format	Casting	Encod	ing II)						
		Reserved	N/A	0x1	١	I/A						
00010b		Format	Casting	Encod	ing II	>						
		Reserved	N/A	0x2	N	I/A						
01010b		Format			Cas	ting	Encodi	ng	IP			
		B8G8R8A	B_UNORN	Л	8b		0xA		3D			
		B8G8R8A	8_UNORI	√_SRGI	B 8b		0xA		3D			
		R8G8B8A	8_UNORN	Л	8b		0xA		3D			
		R8G8B8A	8_UNORI	√_SRG	B 8b		0xA		3D			
		B5G6R5_U	JNORM		8b		0xA		3D			
		B5G6R5_L	JNORM_S	SRGB	8b		0xA		3D			
		B5G5R5A			8b		0xA		3D			
		B5G5R5A				0xA			3D			
		B4G4R4A			8b		0xA		3D			
		B4G4R4A		√I_SRGI					3D			
		R8G8_UN B5G5R5X		1	8b 8b		0xA		3D 3D			
		B5G5R5X					0xA		3D			
		A1B5G5R			8b		0xA		3D			
		A4B4G4R			8b		0xA		3D			
		R8_UNOR			8b		0xA		3D			
		A8_UNOR	M		8b		0xA		3D			
10000b		Format			Casting	g En	coding	IP				
		R16G16B1	16A16_FL	OAT 1	6b	0x	10	3D				
		R16G16B1	16X16_FL	OAT 1	6b	0x	10	3D				
		R16G16_FLOAT		1	6b	0x	10	3D				
		R16_FLOA	OAT 16		6b	0x	10	3D				
10001b		Format Cas		Casting	g En	coding	IP					
		R32G32B3	32A32_FL	OAT 8	b	0x	11	3D				

			Pit	essio	n	10	rm	at				
	R32G32B32X32_FLOAT			0x11		3	D					
	R32G32_FLOAT R32_FLOAT		8b		0x11		D					
				0x11	0x11		D					
10010b	Format	Casti	ng	Encodi	ng	ΙP						
	R32G32B32A32_SINT	8b	(0x12		3D						
	R32G32_SINT	8b	(0x12		3D						
	R32_SINT	8b		0x12		3D						
10011b	Format	Casti	ing	Encod	ing	IP						
	R32G32B32A32_UINT	8b		0x13		3D						
	R32G32_UINT	8b		0x13		3D						
	R32_UINT	8b		0x13		3D						
10100b	Format	С	astir	ng End	odi	ing	IP					
	R16G16B16A16_UNO	RM 1	6b	0x1	4		3D					
	R16G16_UNORM	10	6b	0x1	4		3D					
	R16_UNORM	16b		0x14			3D					
10101b	Format	Ca	astir	ng Enc	odi	ng	IP					
	R16G16B16A16_SNOF	RM 16	6b	0x1	5		3D					
	R16G16_SNORM	16	6b	0x1	5		3D					
	R16_SNORM	16	6b	0x1	5		3D					
10110b	Format	Casti	ng	Encodi	ng	IP						
	R16G16B16A16_SINT	16b	(0x16		3D						
	R16G16_SINT	16b	(0x16		3D						
	R16_SINT	16b	(0x16		3D						
10111b	Format	Casti	ing	Encod	ing	ΙP						
	R16G16B16A16_UINT	16b		0x17		3D						
	R16G16_UINT	16b		0x17		3D						
	R16_UINT	16b		0x17		3D						
11000b Format			Castin	g E	nco	ding	IP					
	R10G10B10A2_UNORM			8b*	0	x18		3D				
	R10G10B10A2_UNORM		M_SRGB 8		8b* 0x			3D				
	B10G10R10A2_UNORM			8b* C		x18		3D				
	B10G10R10A2_UNOR	B10G10R10A2_UNORM_SRGB			0	x18		3D				
11001b	Format			Cast	ng	Enc	odi	ng IP				
	R10G10B10_FLOAT_A2_UNORM			1 8b*		0x1	19	30)			

	Rende	erC	on	ıp	ressi	on	ıFo
11010b	Format		Casting		Encod	ing	ΙP
	R10G10B10A2_U	INT	8b*	•	0x1A	•	3D
11011b	Format		Casti	ng	Encodi	ng	ΙP
	R8G8B8A8_SNOF	RM	8b		0x1B		3D
	R8G8_SNORM		8b		0x1B		3D
	R8_SNORM		8b		0x1B		3D
11100b	Format	Cas	sting	End	coding	ΙP	
	R8G8B8A8_SINT	8b		0x1	1C	3D	
	R8G8_SINT 8b		8b (0x1C	3D	
	R8_SINT	8b		0x1	IC	3D	
11101b	Format	Cas	sting	En	coding	ΙP	
	R8G8B8A8_UINT	8b		0x	1D	3D	
	R8G8_UINT	8b		0x ⁻	1D	3D	
	R8_UINT 8b			0x	1D	3D	
11110b Format		Castir	ng	Encodir	ng I	Р	
	R11G11B10_FLO	AT 8	8b*		0x1E	3	3D

Saturate

	Saturate
Size (in bits):	1

This field controls the destination saturation. When it is set, output data to the destination register are saturated. The saturation operation depends on the destination data type. Saturation is the operation that converts any data that is outside the saturation target range for the data type to the closest representable value with the target range. If destination type is float, saturation target range is [0, 1]. For example, any positive number greater than 1 (including +INF) is saturated to 1 and any negative number (including -INF) is saturated to 0. A NaN is saturated to 0, For integer data types, the maximum range for the given numerical data type is the saturation target range. When it is not set, output data to the destination register are not saturated. For example, a wrapped result (modular) is output to the destination for an overflowed integer data. More details can be found in the Data Types chapter.

Value Name			
	0	No Destination modification [Default]	
	1	Saturate Destination	

SFID

SFID

Source: Eulsa Size (in bits): 4

The following table lists the assignments (encodings) of the Shared Function and Fixed Function IDs used within the GPE. A Shared Function is a valid target of a message initiated via a 'send' instruction. A Fixed Function is an identifiable unit of the 3D or Media pipeline. Note that the Thread Spawner is both a Shared Function and Fixed Function. Note: The initial intention was to combine these two ID namespaces, so that (theoretically) an agent (such as the Thread Spawner) that served both as a Shared Function and Fixed Function would have a single, unique 4-bit ID encoding. However, this combination is not a requirement of the architecture.

Programming Notes

SFID_DP_DC1 is an extension of SFID_DP_DC0 to allow for more message types. They act as a single logical entity.

SFID_DP_DC1 and SFID_DP_DC2 are extensions of SFID_DP_DC0 to allow for more message types. They act as a single logical entity.

Value	Name	Description
0000b	SFID_NULL	Null
0001b	Reserved	Reserved
0010b	SFID_SAMPLER	Sampler
0011b	SFID_GATEWAY	Message Gateway
0100b	SFID_DP_DC2	Data Cache Data Port 2
0101b	SFID_DP_RC	Render Cache Data Port
0110b	SFID_URB	URB
0111b	SFID_SPAWNER	Thread Spawner
1000b	SFID_VME	Video Motion Estimation
1001b	SFID_DP_DCRO	Data Cache Read Only Data Port
1010b	SFID_DP_DC0	Data Cache Data Port
1011b	SFID_PI	Pixel Interpolator
1100b	SFID_DP_DC1	Data Cache Data Port 1
1101b	SFID_CRE	Check and Refinement Engine
1110b-1111b	Reserved	

Shader Channel Select

		Shader Channel Select
Size (in bits):	3	

Value	Name	Description
0	ZERO	
1	ONE	
2	Reserved	
3	Reserved	
4	RED	Shader channel is set to surface red channel
5	GREEN	Shader channel is set to surface green channel
6	BLUE	Shader channel is set to surface blue channel
7	ALPHA	Shader channel is set to surface alpha channel

SIMD Mode

SIMD Mode							
Size (in bits): 3							
Value	Name						
0	SIMD8 + Integer Return						
1	SIMD8						
2	SIMD16						
3	Reserved2						
4	SIMD16 + Integer Return						
5	SIMD8H						
6	SIMD16H						
7	Reserved7						

Slice Hash Control

	•			-	۰
		Hac	h	ontro	ı
J	IICC	ıası		ontro	ı

Source: RenderCS

Size (in bits): 2

Value	Name	Description
00b	Computed [Default]	Use Computed pixelhash_id
01b	Unbalanced table[0]	Use Computed pixelhash_id when balanced, Table[0] when unbalanced
10b	Table[0]	Use Table[0]
11b	Table[1]	Use Table[1]

SrcMod

SrcMod

Source: Eulsa Size (in bits): 2

Source Modifier This field specifies the numeric modification of a source operand. The value of each data element of a source operand can optionally have its absolute value taken and/or its sign inverted prior to delivery to the execution pipe. The absolute value is prior to negate such that a guaranteed negative value can be produced. This field only applies to source operand. It does not apply to destination. This field is not present for an immediate source operand.

When used with logic instructions (and, not, or, xor), this field indicates whether the source bits are inverted (bitwise NOT) before delivery to the execution pipe, regardless of the source type.

Value	Name	Description
00b	No modification	
01b	abs	Absolute value Logic instructions: No modification (This encoding cannot be selected in the assembler syntax)
10b	negate	Negate Logic instructions: Bitwise NOT, inverting the source bits
11b	negate of abs	Negate of the absolute (forced negative value) Logic instructions: No modification (This encoding cannot be selected in the assembler syntax)

SURFACE_FORMAT

SURFACE_FORMAT

Size (in bits): 9

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that some of these formats are used not only by the Sampling Engine, but also by the Data Port and the Vertex Fetch unit.

Value	Name	Description
000h	R32G32B32A32_FLOAT	
001h	R32G32B32A32_SINT	
002h	R32G32B32A32_UINT	
003h	R32G32B32A32_UNORM	
004h	R32G32B32A32_SNORM	
005h	R64G64_FLOAT	
006h	R32G32B32X32_FLOAT	
007h	R32G32B32A32_SSCALED	
008h	R32G32B32A32_USCALED	
020h	R32G32B32A32_SFIXED	
021h	R64G64_PASSTHRU	
040h	R32G32B32_FLOAT	
041h	R32G32B32_SINT	
042h	R32G32B32_UINT	
043h	R32G32B32_UNORM	
044h	R32G32B32_SNORM	
045h	R32G32B32_SSCALED	
046h	R32G32B32_USCALED	
050h	R32G32B32_SFIXED	
080h	R16G16B16A16_UNORM	
081h	R16G16B16A16_SNORM	
082h	R16G16B16A16_SINT	
083h	R16G16B16A16_UINT	
084h	R16G16B16A16_FLOAT	
085h	R32G32_FLOAT	
086h	R32G32_SINT	
087h	R32G32_UINT	
088h	R32_FLOAT_X8X24_TYPELESS	
089h	X32_TYPELESS_G8X24_UINT	
08Ah	L32A32_FLOAT	

	SURFACE_FORMAT			
08Bh	R32G32_UNORM			
08Ch	R32G32_SNORM			
08Dh	R64_FLOAT			
08Eh	R16G16B16X16_UNORM			
08Fh	R16G16B16X16_FLOAT			
090h	A32X32_FLOAT			
091h	L32X32_FLOAT			
092h	I32X32_FLOAT			
093h	R16G16B16A16_SSCALED			
094h	R16G16B16A16_USCALED			
095h	R32G32_SSCALED			
096h	R32G32_USCALED			
0A0h	R32G32_SFIXED			
0A1h	R64_PASSTHRU			
0C0h	B8G8R8A8_UNORM			
0C1h	B8G8R8A8_UNORM_SRGB			
0C2h	R10G10B10A2_UNORM			
0C3h	R10G10B10A2_UNORM_SRGB			
0C4h	R10G10B10A2_UINT			
0C5h	R10G10B10_SNORM_A2_UNORM			
0C7h	R8G8B8A8_UNORM			
0C8h	R8G8B8A8_UNORM_SRGB			
0C9h	R8G8B8A8_SNORM			
0CAh	R8G8B8A8_SINT			
0CBh	R8G8B8A8_UINT			
0CCh	R16G16_UNORM			
0CDh	R16G16_SNORM			
0CEh	R16G16_SINT			
0CFh	R16G16_UINT			
0D0h	R16G16_FLOAT			
0D1h	B10G10R10A2_UNORM			
0D2h	B10G10R10A2_UNORM_SRGB			
0D3h	R11G11B10_FLOAT			
0D5h	R10G10B10_FLOAT_A2_UNORM			
0D6h	R32_SINT			
0D7h	R32_UINT			

SURFACE_FORMAT				
0D8h	R32_FLOAT			
0D9h	R24_UNORM_X8_TYPELESS			
0DAh	X24_TYPELESS_G8_UINT			
0DDh	L32_UNORM			
0DEh	A32_UNORM			
0DFh	L16A16_UNORM			
0E0h	I24X8_UNORM			
0E1h	L24X8_UNORM			
0E2h	A24X8_UNORM			
0E3h	I32_FLOAT			
0E4h	L32_FLOAT			
0E5h	A32_FLOAT			
0E6h	X8B8_UNORM_G8R8_SNORM			
0E7h	A8X8_UNORM_G8R8_SNORM			
0E8h	B8X8_UNORM_G8R8_SNORM			
0E9h	B8G8R8X8_UNORM			
0EAh	B8G8R8X8_UNORM_SRGB			
0EBh	R8G8B8X8_UNORM			
0ECh	R8G8B8X8_UNORM_SRGB			
0EDh	R9G9B9E5_SHAREDEXP			
0EEh	B10G10R10X2_UNORM			
0F0h	L16A16_FLOAT			
0F1h	R32_UNORM			
0F2h	R32_SNORM			
0F3h	R10G10B10X2_USCALED			
0F4h	R8G8B8A8_SSCALED			
0F5h	R8G8B8A8_USCALED			
0F6h	R16G16_SSCALED			
0F7h	R16G16_USCALED			
0F8h	R32_SSCALED			
0F9h	R32_USCALED			
100h	B5G6R5_UNORM			
101h	B5G6R5_UNORM_SRGB			
102h	B5G5R5A1_UNORM			
103h	B5G5R5A1_UNORM_SRGB			
104h	B4G4R4A4_UNORM			

	SURFACE_FORMAT			
105h	B4G4R4A4_UNORM_SRGB			
106h	R8G8_UNORM			
107h	R8G8_SNORM			
108h	R8G8_SINT			
109h	R8G8_UINT			
10Ah	R16_UNORM			
10Bh	R16_SNORM			
10Ch	R16_SINT			
10Dh	R16_UINT			
10Eh	R16_FLOAT			
10Fh	A8P8_UNORM_PALETTE0			
110h	A8P8_UNORM_PALETTE1			
111h	I16_UNORM			
112h	L16_UNORM			
113h	A16_UNORM			
114h	L8A8_UNORM			
115h	I16_FLOAT			
116h	L16_FLOAT			
117h	A16_FLOAT			
118h	L8A8_UNORM_SRGB			
119h	R5G5_SNORM_B6_UNORM			
11Ah	B5G5R5X1_UNORM			
11Bh	B5G5R5X1_UNORM_SRGB			
11Ch	R8G8_SSCALED			
11Dh	R8G8_USCALED			
11Eh	R16_SSCALED			
11Fh	R16_USCALED			
122h	P8A8_UNORM_PALETTE0			
123h	P8A8_UNORM_PALETTE1			
124h	A1B5G5R5_UNORM			
125h	A4B4G4R4_UNORM			
126h	L8A8_UINT			
127h	L8A8_SINT			
140h	R8_UNORM			
141h	R8_SNORM			
142h	R8_SINT			

	SURFACE_FORMAT			
143h	R8_UINT			
144h	A8_UNORM			
145h	I8_UNORM			
146h	L8_UNORM			
147h	P4A4_UNORM_PALETTE0			
148h	A4P4_UNORM_PALETTE0			
149h	R8_SSCALED			
14Ah	R8_USCALED			
14Bh	P8_UNORM_PALETTE0			
14Ch	L8_UNORM_SRGB			
14Dh	P8_UNORM_PALETTE1			
14Eh	P4A4_UNORM_PALETTE1			
14Fh	A4P4_UNORM_PALETTE1			
150h	Y8_UNORM			
152h	L8_UINT			
153h	L8_SINT			
154h	I8_UINT			
155h	I8_SINT			
180h	DXT1_RGB_SRGB			
181h	R1_UNORM	SETO_LEGACY: Undefined behavior if used in any feature added. See Legacy sampler feature page for details		
182h	YCRCB_NORMAL			
183h	YCRCB_SWAPUVY			
184h	P2_UNORM_PALETTE0			
185h	P2_UNORM_PALETTE1			
186h	BC1_UNORM	(DXT1)		
187h	BC2_UNORM	(DXT2/3)		
188h	BC3_UNORM	(DXT4/5)		
189h	BC4_UNORM			
18Ah	BC5_UNORM			
18Bh	BC1_UNORM_SRGB	(DXT1_SRGB)		
18Ch	BC2_UNORM_SRGB	(DXT2/3_SRGB)		
18Dh	BC3_UNORM_SRGB	(DXT4/5_SRGB)		
18Eh	MONO8	SETO_LEGACY: Undefined behavior if used in any feature. See Legacy sampler feature page for details		
18Fh	YCRCB_SWAPUV			
190h	YCRCB_SWAPY			

	SURFACE_FORMAT				
191h	DXT1_RGB	_			
192h	RESERVED_192	This value is reserved for internal use.			
193h	R8G8B8_UNORM				
194h	R8G8B8_SNORM				
195h	R8G8B8_SSCALED				
196h	R8G8B8_USCALED				
197h	R64G64B64A64_FLOAT				
198h	R64G64B64_FLOAT				
199h	BC4_SNORM				
19Ah	BC5_SNORM				
19Bh	R16G16B16_FLOAT				
19Ch	R16G16B16_UNORM				
19Dh	R16G16B16_SNORM				
19Eh	R16G16B16_SSCALED				
19Fh	R16G16B16_USCALED				
1A1h	BC6H_SF16				
1A2h	BC7_UNORM				
1A3h	BC7_UNORM_SRGB				
1A4h	BC6H_UF16				
1A5h	PLANAR_420_8				
1A6h	PLANAR_420_16				
1A8h	R8G8B8_UNORM_SRGB				
1A9h	ETC1_RGB8				
1AAh	ETC2_RGB8				
1ABh	EAC_R11				
1ACh	EAC_RG11				
1ADh	EAC_SIGNED_R11				
1AEh	EAC_SIGNED_RG11				
1AFh	ETC2_SRGB8				
1B0h	R16G16B16_UINT				
1B1h	R16G16B16_SINT				
1B2h	R32_SFIXED				
1B3h	R10G10B10A2_SNORM				
1B4h	R10G10B10A2_USCALED				
1B5h	R10G10B10A2_SSCALED				
1B6h	R10G10B10A2_SINT				

	SURFACE_FORMAT			
1B7h	B10G10R10A2_SNORM			
1B8h	B10G10R10A2_USCALED			
1B9h	B10G10R10A2_SSCALED			
1BAh	B10G10R10A2_UINT			
1BBh	B10G10R10A2_SINT			
1BCh	R64G64B64A64_PASSTHRU			
1BDh	R64G64B64_PASSTHRU			
1C0h	ETC2_RGB8_PTA			
1C1h	ETC2_SRGB8_PTA			
1C2h	ETC2_EAC_RGBA8			
1C3h	ETC2_EAC_SRGB8_A8			
1C8h	R8G8B8_UINT			
1C9h	R8G8B8_SINT			
1FFh	RAW			

SyncFC

SyncFC

Source: Eulsa Size (in bits): 4

Subfunctions that the sync instruction supports.

Value	Name	Description
0000b	No Operation	Performs no operation. Regular SWSB constraints are checked.
0010b	SBID Read Wait	Blocks until pending out-of-order source accesses are complete. If a mask is provided as immediate value in src0 then specific SBID resources can be checked, else all SBID resources are checked for source access complete status.
0011b	SBID Write Wait	Blocks until pending out-of-order writebacks are complete. If a mask is provided as immediate value in src0 then specific SBID resources can be checked, else all SBID resources are checked for writeback complete status.
1110b	Wait on Barrier	[] Blocks until the notification count reaches 0. The wait instruction evaluates the value of the notification count register nreg. If nreg is zero, thread execution is suspended and the thread is put in 'wait_for_notification' state. If nreg is not zero (i.e., one or more notifications have been received), nreg is decremented by one and the thread continues executing on the next instruction. If a thread is in the 'wait_for_notification' state, when a notification arrives, the notification count register is incremented by one. As the notification count register becomes nonzero, the thread wakes up to continue execution and at the same time the notification register is decremented by one. If only one notification arrived, the notification register value becomes zero. However, during the above mentioned time period, it is possible that more notifications may arrive, making the notification register nonzero again. This operation implicitly accesses no (typically no.0 for barriers).
1111b	Wait on Host Notification	Similar to .bar, but waits the host's notification register (typically n0.1). See that element for more information.

TernaryDataType

TernaryDataType

Source: Eulsa Size (in bits): 3

This field provide the datatype of the source and destination operands for ternary instruction.

Value	Name	Description	Exists If
000b	:ub	Unsigned Byte (8-bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Integer)
001b	:uw	Unsigned Word (16-bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Integer)
010b	:ud	Unsigned DoubleWord (32- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType] = = Integer)
011b	:uq	Unsigned Quadword (64- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType] = = Integer)
100b	:b	Signed Byte (8- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType] = = Integer)
101b	:w	Signed Word (16- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType] = = Integer)
110b	:d	Signed DoubleWord (32- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Integer)
111b	:q	Signed QuadWord (64- bit) Integer	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Integer)
000b	Reserved		(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
001b	:hf	Half (16-bit) Float	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
010b	:f	Single-Precision (32-bit) Float	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
011b	:df	Double-Precision (64-bit) Float	(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType] = = Float)
100b	Reserved		(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
101b	Reserved		(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
110b	Reserved		(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)
111b	Reserved		(Structure[EU_INSTRUCTION_BASIC_THREE_SRC][ExecDataType]==Float)

TernaryVertStride

TernaryVertStride

Source: Eulsa Size (in bits): 2

Source Vertical Stride is required for regioning/accessing datatypes of varied size. It is one way to obtain a vector of scalars.

Value	Name
00b	0 - elements
01b	1 - elements
10b	4 - elements
11b	8 - elements

Texture Coordinate Mode

Texture Coordinate Mode

Size (in bits): 3

Value	Name	Description	
0h	WRAP	Map is repeated in the U direction	
1h	MIRROR	Map is mirrored in the U direction	
2h	CLAMP	Map is clamped to the edges of the accessed map	
3h	CUBE	For cube-mapping, filtering in edges access adjacent map faces	
4h	CLAMP_BORDER	Map is infinitely extended with the border color	
5h	MIRROR_ONCE	Map is mirrored once about origin, then clamped	
6h	HALF_BORDER	Map is infinitely extended with the average of the nearest edge texel and the border color	
7h	MIRROR_101	Map is mirrored one time in each direction, but the first pixel of the reflected image is skipped, and the reflected image is effectively 1 pixel less in that direction. May only be used on 2D surfaces.	

VertStride

VertStride

Source: Eulsa Size (in bits): 4

Description

Vertical Stride. The field provides the vertical stride of the register region in unit of data elements for an operand. Encoding of this field provides values of 0 or powers of 2, ranging from 1 to 32 elements. Larger values are not supported due to the restriction that a source operand must reside within two adjacent 256-bit registers (64 bytes total). Special encoding 1111b (0xF) is only valid when the operand is in register-indirect addressing mode (AddrMode = 1). If this field is set to 0xF, one or more sub-registers of the address registers may be used to compute the addresses. Each address sub-register provides the origin for a row of data element. The number of address sub-registers used is determined by the division of ExecSize of the instruction by the Width fields of the operand. This field only applies to source operand. It does not apply to destination. This field is not present for an immediate source operand.

Programming Notes

Note 1: If indirect address is supported for src1, encoding 0xF is reserved for src1 - only single-index indirect addressing is supported.

Note 2: Encoding 0010 applies for QWord-size operands.

Value	Name	Programming Notes
0000b	0 elements	
0001b	1 element	Align1 mode only.
0010b	2 elements	
0011b	4 elements	
0100b	8 elements	Align1 mode only.
0101b	16 elements	Applies to byte or word operand only. Align1 mode only.
0110b	32 elements	Applies to byte operand only. Align1 mode only.
0111b-1110b	Reserved	
1111b	VxH or Vx1 mode	Only valid for register-indirect addressing in Align1 mode.

Width

Width

Source: Eulsa Size (in bits): 3

This field specifies the number of elements in the horizontal dimension of the region for a source operand. This field cannot exceed the ExecSize field of the instruction. This field only applies to source operand. It does not apply to destination. This field is not present for an immediate source operand.

Programming Notes

Note that with ExecSize of 32, because the maximum Width is 16, there are at least two rows in a source region.

Value	Name
000b	1 elements
001b	2 elements
010b	4 elements
011b	8 elements
100b	16 elements
101b-111b	Reserved

WRAP_SHORTEST_ENABLE

WRAP_SHORTEST_ENABLE

Source: RenderCS

Size (in bits): 4

This state selects which components (if any) of Attribute [n] are to be interpolated in a "wrap shortest" fashion. Operation is UNDEFINED if any of these bits are set and the Constant Interpolation Enable bit associated with this attribute is set. Note that wrap-shortest interpolation is only supported for Attributes 0-15.

Value	Name	Description
0001b	X	Wrap Shortest X Component
0010b	Υ	Wrap Shortest Y Component
0011b	XY	Wrap Shortest XY Components
0100b	Z	Wrap Shortest Z Component
0101b	XZ	Wrap Shortest XZ Components
0110b	YZ	Wrap Shortest YZ Components
0111b	XYZ	Wrap Shortest XYZ Components
1000b	W	Wrap Shortest W Component
1001b	XW	Wrap Shortest XW Components
1010b	YW	Wrap Shortest YW Components
1011b	XYW	Wrap Shortest XYW Components
1100b	ZW	Wrap Shortest ZW Components
1101b	XZW	Wrap Shortest XZW Components
1110b	YZW	Wrap Shortest YZW Components
1111b	XYZW	Wrap Shortest XYZW Components