

TABLE OF CONTENTS.

| 01Dataset

| 02regression

03classification

| 04pipeline

O5models comparison

OUR Dataset

our dataset contains a list of video games with sales greater than 100,000 copies.

In this Presentation, we will be analyzing, processing, and exploring a large amount of data on video game sales. The dataset contains information regarding the sales of video games across various regions like North America, Europe, Japan, and also globally, while also giving information regarding the Names, Publishers, and Platforms.

What genre games have been made the most?

The top 4 genre games that have been made are:

- 1. Action
- 2. Sports
- 3. Misc
- 4. Role-Playing

what year were the most games released?

The years were the most games were released are:

- 2009
- 2008
- 2010

what are total sales by region?

the total sales by region (descending)

- 1. NA_Sales(49.3%)
- 2. EU Sales(27.3%)
- 3. JP_Sales(14.5%)
- 4. Other_Sales(8.9%)

Data processing

Null Values

Data processing

• Convert Float to int

#	Column	Non-Null Count	Dtype
0	Rank	16598 non-null	int64
1	Name	16598 non-null	object
2	Platform	16598 non-null	object
3	Year	16327 non-null	float64
4	Genre	16598 non-null	object
5	Publisher	16540 non-null	object
6	NA_Sales	16598 non-null	float64
7	EU Sales	16598 non-null	float64
8	JP_Sales	16598 non-null	float64
9	Other_Sales	16598 non-null	float64
10	Global_Sales	16598 non-null	float64
	63	1 / - > 1 1	

#	Column	Non-Null Count	Dtype	
0	Name	16291 non-null	object	
1	Platform	16291 non-null	object	
2	Year	16291 non-null	int64	
3	Genre	16291 non-null	object	
4	Publisher	16291 non-null	object	
5	NA_Sales	16291 non-null	int64	
6	EU_Sales	16291 non-null	int64	
7	JP_Sales	16291 non-null	int64	
8	Other_Sales	16291 non-null	int64	
9	Global_Sales	16291 non-null	int64	
dtypes: int64(6), object(4)				
memory usage: 1.4+ MB				

Data processing

Encoding object to int

0	Name	16291	non-null	object
1	Platform	16291	non-null	object
2	Year	16291	non-null	int64
3	Genre	16291	non-null	object
4	Publisher	16291	non-null	object

10	cat-Platform	16291	non-null	int8
11	cat-Genre	16291	non-null	int8
12	cat-Publisher	16291	non-null	int16

Data processing

OutlierGlobal sales >80

- Outlier
 - o Global sales > 80
 - o Year < 1990</pre>

- Outlier
 - Global Sales > 80
 - Year < 1990</p>
 - NA Sales > 20

- Outlier
 - Global Sales > 80
 - o Year < 1990</pre>
 - NA Sales > 20
 - o EU Sales > 25

- Outlier
 - o Global Sales > 80
 - Year < 1990</p>
 - NA Sales > 20
 - EU Sales > 25
 - o JP Sales > 8

- Outlier
 - Global Sales > 80
 - Year < 1990</p>
 - NA Sales > 20
 - EU Sales > 25
 - JP Sales > 8
 - Other Sales > 6

Regression

models

simple linear regression

```
[ ] # Split the data
    train, test = train_test_split(
         test size=0.2,
         train size = 0.8,
         random_state = 42
   # Create my X, y data
    target = "Global_Sales"
     features = "NA_Sales"
    X train = train[[features]]
    y train = train[[target]]
    X_test = test[[features]]
    y_test = test[[target]]
     # Create a model object
     gm = LinearRegression()
    # Train the model
    gm.fit(X_train, y_train)
```

```
r2_score(y_true=y_test, y_pred=predictions)

0.8513438991913049

[ ] mean_absolute_error(y_true=y_test, y_pred=predictions)

0.2125363539133119
```


Multiple linear regression

```
target = "Global_Sales"
     features = ['Year', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'cat-Platform', 'cat-Genre', 'cat-Publisher']
     X train = train[features]
    y_train = train[[target]]
    X_test = test[features]
     y_test = test[[target]]
     multi gm= LinearRegression()
     # Train the model
     multi_gm.fit(X_train, y_train)
    LinearRegression()
[ ] multi_gm.intercept
     array([2.58568975])
[ ] multi_gm.coef_
     array([[-1.25921832e-03, 1.18262168e+00, 1.19350189e+00,
             1.02981862e+00, 5.76697402e-01, 1.02161469e-03,
            -1.10817281e-03, 3.42727448e-05]])
[ ] multi predictions = multi gm.predict(X test)
| r2 score(v true=v test, v pred=multi predictions)
     0.9519540857305402
     mean absolute error(v true=v test, v pred=multi predictions)
    0.1591725296429255
```


Regression using XGBoost model


```
[183] # Computing RMSE
    print("RMSE: %f" % (np.sqrt(mean_squared_error(y_test, predictions))))

RMSE: 0.302012

[184] # Computing MAE
    print("MAE: %f" % (mean_absolute_error(y_test, predictions)))

MAE: 0.143691
```


classification models

Create Sales Column

```
df['Sales'] = True
for i in df.index:
   if df['Global_Sales'][i] == 0:
        df['Sales'][i] = False
```


Actual_Purchased		Predict_Purchased	
0	False	False	
1	False	False	
2	True	True	
3	False	False	
4	False	False	

	precision	recall	f1-score
True False	0.95 1.00	1.00 0.58	0.97 0.74
accuracy macro avg weighted avg	0.97 0.95	0.79 0.95	0.95 0.85 0.95

Decision Tree Classification Model Using Gini Index

```
X[0] \le 0.717
                                                             gini = 0.215
                                                           samples = 12865
                                                        value = [11293, 1572]
                                              X[1] \le 1.136
                                                                             gini = 0.0
                                               qini = 0.135
                                                                          samples = 687
                                            samples = 12178
                                                                          value = [0, 687]
                                          value = [11293, 885]
                               X[2] \le 2.215
                                                              gini = 0.0
                                qini = 0.122
                                                            samples = 94
                              samples = 12084
                                                            value = [0, 94]
                            value = [11293, 791]
                 X[3] <= 4.958
                                                qini = 0.0
                  gini = 0.112
                                              samples = 76
               samples = 12008
                                              value = [0, 76]
              value = [11293, 715]
    gini = 0.111
                                 gini = 0.0
 samples = 11998
                                samples = 10
value = [11293, 705]
                               value = [0, 10]
```

```
print(f'Training Accuracy: {val_train}%')
print(f'Test Set Accuracy: {val_test}%')
```

Training Accuracy: 95.0% Test Set Accuracy: 95.0%

K-Nearest Neighbor(KNN)

4444 000

PipeLine

```
clf = Pipeline(
    steps=[
        ('preprocessor', preprocessor),
        ('classifier', DecisionTreeClassifier())
    ]
)
clf.fit(X_train, y_train)
print(f"model score: {clf.score(X_test, y_test)}")

F model score: 1.0
```


Result

THANK YOU!

Do you have any questions?

Hayam Alrashed Shouq Alharbi Sarah Alrashidi Razan Alajlan Nada Oteif

