Feuille 2 Espaces vectoriels

Exercice 1.

Etudier la dépendance linéaire des vecteurs de \mathbb{R}^2 suivants :

- 1. u = (2, -3), v = (-1, 1).
- 2. u = (-6,2), v = (9,-3).
- 3. u = (m+1, -1), v = (-3, m-1) où $m \in \mathbb{R}$.

Exercice 2.

Les familles de \mathbb{R}^3 suivantes sont-elles libres ou liées ?

- 1. u = (1,1,1), v = (1,1,-1).
- 2. u = (1,0,-1), v = (-1,1,0), w = (0,-1,1).
- 3. u = (1,1,0), v = (0,1,1), w = (1,0,1), z = (-1,1,1).
- 4. u = (1,1,1), v = (2,-1,2), w = (1,-2,-1).
- 5. u = (10, -5, 15), v = (-4, 2, -6).

Les familles données ci-dessus sont-elles génératrices de \mathbb{R}^3 ? Lorsque que la réponse est négative on déterminera le sous-espace engendré et sa nature géométrique.

Exercice 3.

On considère les sous-ensembles de \mathbb{R}^3 suivants :

$$F_1 = \{(x, y, z) \in \mathbb{R}^3, y = z = 0\}$$

$$F_2 = \{(x, y, z) \in \mathbb{R}^3, x + y = 0\}$$

$$F_3 = \{(x, y, z) \in \mathbb{R}^3, x + z = y\}$$

$$F_4 = \{(x, y, z) \in \mathbb{R}^3, x = y\}$$

- 1. Vérifier que ce sont des sous-espaces vectoriels de \mathbb{R}^3 ; donner une base et la dimension de chacun d'eux.
- 2. Déterminer $F_2 + F_3$
- 3. Déterminer $F_2 \cap F_3$ et sa dimension. Que peut-on en déduire pour F_2 et F_3 ?
- 4. Montrer que F_1 et F_2 sont suppémentaires.
- 5. Montrer que F_1 et F_4 sont supplémentaires.
- 6. Quelle remarque peut-on faire en considérant les questions 4. et 5. ?
- 7. Indiquer la nature géométrique de chaque F_i .

Exercice 4.

On considère les sous-ensembles de \mathbb{R}^4 suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0\}$$

$$G = \{(x, y, z, t) \in \mathbb{R}^4, x + y = z + t\}$$

$$H = \{(a, b, c, d) \in \mathbb{R}^4, a = b = c = d\}$$

- 1. Vérifier que ce sont des sous-espaces vectoriels de \mathbb{R}^4 , donner une base et la dimension de chacun d'eux.
- 2. Quelle est la dimension de F + G?
- 3. Montrer que $\mathbb{R}^4 = F \oplus H$.

Exercice 5.

Soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par $u_1=(2,-3,1)$ et $u_2=(2,-2,1)$.

- 1. Quelle est la dimension de F?
- 2. Démontrer que le vecteurs u = (0,1,0) est élément de F, mais que v = (0,0,1) ne l'est pas.
- 3. Calculer les composantes du vecteurs $w = (0,4,0) \in F$ dans la base (u_1, u_2) .
- 4. Exprimer qu'un vecteur v = (x, y, z) appartient à F par une équation en x, y, z.
- 5. Indiquer la nature géométrique de F.

Exercice 6.

Soit
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x + y = 0 \text{ et } z = 2t\}$$

Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 et déterminer une base de E. Compléter cette base en une base de \mathbb{R}^4 .

Exercice 7.

Soit $a \in \mathbb{R}$ et E_a le sous-espace vectoriel de \mathbb{R}^3 engendré par trois vecteurs (1,1,a), (1,a,1) et (a,1,1). Suivant la valeur de a, déterminer la dimension de E_a .

Exercice 8.

Soit
$$E = \{ P \in \mathbb{R}_2[X], P(1) = 0 \}$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_2[X]$.
- 2. Donner une base de *E* et en déduire sa dimension.

Exercice 9.

Soit $(P_0, P_1, ..., P_n)$ une famille de polynômes tels que pour tout $k \in \{0, 1, ..., n\}$, $d^{\circ}P_k = k$ Montrer que cette famille est libre.

Exercice 10.

Soient
$$f(x) = \cos(x)$$
, $g(x) = \cos(x)\cos(2x)$ et $h(x) = \sin(x)\sin(2x)$. Déterminer $Vect(f, g, h)$.

Exercice 11.

Pourquoi les polynômes 1, X, X(X-1), X(X-1)(X-2) forment-ils une base de l'espace vectoriel $\mathbb{R}_3[X]$ des polynômes à coefficients réels de degré au plus 3?

Exprimer X^2 et X^3 dans cette base.

Exercice 12.

Soit
$$E = \{ P \in \mathbb{R}_2[X] | P = \lambda + (2\lambda - 3\mu)X + \mu X^2, \lambda \in \mathbb{R}, \mu \in \mathbb{R} \}.$$

Montrer que E est un sous-espace vectoriel de $\mathbb{R}_2[X]$ (espace vectoriel des polynômes à coefficients réels de degré ≤ 2) et en donner une base.

Exercice 13.

Dans le \mathbb{R} -espace vectoriel $\mathcal{C}^{\infty}([a,b],\mathbb{R})$ des applications de classe \mathcal{C}^{∞} de [a,b] dans \mathbb{R} , montrer que les familles suivantes sont libres :

a)
$$\{x, e^x\}$$

b)
$$\{e^x, e^{2x}\}$$

c)
$$\{x, \sin(x)\}$$

d)
$$\{\cos(x), \sin(x)\}$$

Exercice 14.

Soit E l'espace vectoriel des suites de nombres réels et $\mathcal{E} \subset E$ l'ensemble des suites $(u_n)_{n \geq 0}$ vérifiant la relation de récurrence :

$$u_{n+2} = u_{n+1} + 2u_n \qquad (n \ge 0)$$

- 1. Montrer que \mathcal{E} est un sous-espace vectoriel de E.
- 2. Montrer que les suites de terme général $a_n = (-1)^n$ et $b_n = 2^n$ forment une famille libre de \mathcal{E} .
- 3. Tenant compte du fait qu'une suite (u_n) est entièrement déterminée par la donnée de u_0 et u_1 , montrer que (a_n) et (b_n) forment une base de \mathcal{E} .
- 4. Déterminer les suites (u_n) de \mathcal{E} telles que $u_0 = 1$ et $u_1 = -2$.

Exercice 15.

Résoudre dans R les systèmes suivants, en utilisant la méthode du pivot de Gauss :

a)
$$\begin{cases} x - y + z = 0 \\ 5x + 2y - z = 0 \\ -3x - 4y + 3z = 0 \end{cases}$$
 b)
$$\begin{cases} x - y + z = 3 \\ 5x + 2y - z = 5 \\ -3x - 4y + 3z = 1 \end{cases}$$

b)
$$\begin{cases} x - y + z = 3 \\ 5x + 2y - z = 5 \\ -3x - 4y + 3z = 1 \end{cases}$$

Exercice 16.

Résoudre, suivant les valeurs de $\lambda \in \mathbb{R}$, le système :

$$\begin{cases} (2 - \lambda)x + 2y = 0\\ x + (2 - \lambda)y + z = 0\\ 2y + (2 - \lambda)z = 0 \end{cases}$$

Exercice 17.

Soient a, b et c trois fonctions continues sur un intervalle I, avec $\forall x \in I$, $a(x) \neq 0$. On appelle E l'ensemble des solutions de l'équation différentielle

$$a(x)y'' + b(x)y' + c(x)y = 0$$

Montrer que *E* est un espace vectoriel.

Exercice 18.

Dans l'espace \mathbb{R}^4 , on se donne cinq vecteurs : $v_1 = (1,1,1,1)$, $v_2 = (1,2,3,4)$, $v_3 = (3,1,4,2)$, $v_4 = (10,4,13,7)$ et $v_5 = (1,7,8,14)$

Chercher les relations de dépendance linéaires entre ces vecteurs. Si ces vecteurs sont dépendants, en extraire au moins une famille libre engendrant le même sous-espace.

Exercice 19.

Dans \mathbb{R}^4 , comparer les sous-espaces F et G suivants :

$$F = Vect((1,0,1,1), (-1,-2,3,-1), (-5,-3,1,-5))$$
$$G = Vect((-1,-1,1,-1), (4,1,2,4))$$

Exercice 20.

Soient
$$a = (2,3,-1)$$
, $b = (1,-1,-2)$, $c = (3,7,0)$ et $d = (5,0,-7)$.

Soient E = Vect(a, b) et F = Vect(c, d) les sous-espaces vectoriels de \mathbb{R}^3 . Montrer que E = F

Exercice 21.

Soient
$$u_1 = (1,1,1)$$
, $u_2 = (2,-2,-1)$ et $u_3 = (1,1,-1)$
Soient $E = \{(x,y,z) \in \mathbb{R}^3, y+z=0\}$ et $F = Vect(u_1,u_2)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 . Déterminer une base de E.
- 2. La famille (u_1, u_2, u_3) est-elle libre? Est-ce que $u_3 \in F$?
- 3. Est-ce que $u_3 \in E$?
- 4. Donner une base de $E \cap F$.
- 5. Soit $u_4 = (-1,7,5)$, est-ce que $u_4 \in E$? est-ce que $u_4 \in F$?

Exercice 22.

Soit
$$E = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$$

Soient a = (1, -2, 3) et b = (2, 1, -1) deux vecteurs. On pose F = Vect(a, b)

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer $E \cap F$.
- 3. A-t-on $E \oplus F$?

Exercice 23.

Soient E = Vect(a, b, c, d) un sous-espace vectoriel de \mathbb{R}^3

$$a = (2, -1, -1);$$
 $b = (-1, 2, 3);$ $c = (1, 4, 7);$ $d = (1, 1, 2)$

- 1. Est-ce que (a, b, c, d) est une base de \mathbb{R}^3 ?
- 2. Montrer que (a, b) est une base de E.
- 3. Déterminer une ou plusieurs équations caractérisant E.
- 4. Compléter une base de E en une base de \mathbb{R}^3 .

Exercice 24.

Soient
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z - t = 0 \text{ et } x - 2y + 2z + t = 0 \text{ et } x - y + z = 0\}$$

On admettra que *E* est un espace vectoriel.

Et
$$F = \{(x, y, z, t) \in \mathbb{R}^4, 2x + 6y + 7z - t = 0\}$$

Soient
$$a = (2,1,-1,2), b = (1,1,-1,1), c = (-1,-2,3,7)$$
 et $d = (4,4,-5,-3)$ quatre vecteurs de \mathbb{R}^4 .

Première partie

- 1. Déterminer une base de *E* et en déduire la dimension de *E*.
- 2. Compléter cette base en une base de \mathbb{R}^4 .

Deuxième partie

- 3. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- 4. Déterminer une base de *F*.
- 5. A-t-on $E \oplus F = \mathbb{R}^4$?

Troisième partie

- 6. Montrer que F = Vect(b, c, d).
- 7. Soit $u = (x, y, z, t) \in F$, exprimer u comme une combinaison linéaire de b, c et d.

Exercice 25.

Soient
$$P_0 = \frac{1}{2}(X-1)(X-2)$$
, $P_1 = -X(X-2)$ et $P_2 = \frac{1}{2}X(X-1)$ trois polynômes de $\mathbb{R}_2[X]$.

- 1. Montrer que (P_0, P_1, P_2) est une base de $\mathbb{R}_2[X]$.
- 2. Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$, exprimer P dans la base (P_0, P_1, P_2) .
- 3. Soit $Q = \alpha P_0 + \beta P_1 + \gamma P_2 \in \mathbb{R}_2[X]$, exprimer Q dans la base $(1, X, X^2)$.
- 4. Pour tout A, B et C réels montrer qu'il existe un unique polynôme de $R \in \mathbb{R}_2[X]$, tel que :

$$R(0) = A, R(1) = B \text{ et } R(2) = C.$$

Exercice 26.

Soit
$$E = \{P \in \mathbb{R}_3[X], P(-1) = 0 \text{ et } P(1) = 0\}$$

- 1. Montrer que *E* est un sous-espace vectoriel de $\mathbb{R}_3[X]$.
- 2. Déterminer une base et la dimension de *E*.

Exercice 27.

Soit
$$E = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0, x + 2y - z + t = 0, -x - y + 2z + 2t = 0\}$$
 et $F = \{(x, y, z, t) \in \mathbb{R}^4, x + 3y + 4t = 0\}$

1. Donner une base de ces deux sous-espaces vectoriels de \mathbb{R}^4 .

- 2. A-t-on $E \oplus F = \mathbb{R}^4$?
- 3. Soit $a = (1,3,0,4) \in \mathbb{R}^4$ et on pose G = Vect(a), a-t-on $G \oplus F = \mathbb{R}^4$?

Exercice 28.

Soit
$$E = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + 2x_2 - 3x_3 = 0\}$$

Soit a = (1,2,-3), et F = Vect(a)

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 , et déterminer une base de cet espace-vectoriel.
- 2. A-t-on $E \oplus F = \mathbb{R}^3$?

On justifiera la réponse.

Exercice 29.

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_3 = 0 \text{ et } x_2 + x_4 = 0\}$$

Soient $u_1 = (1,1,1,1), u_2 = (1,-1,1,-1) \text{ et } u_3 = (1,0,1,0)$
Soit $F = Vect(u_1, u_2, u_3)$

On admettra que *E* est un espace vectoriel.

- 1. Donner une base de *E* et en déduire sa dimension.
- 2. Déterminer une base de F.
- 3. Donner une (ou plusieurs) équation(s) qui caractérise(nt) F.
- 4. Donner une famille génératrice de E + F.
- 5. Montrer que : $E \oplus F = \mathbb{R}^4$.

Exercice 30.

Soit $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices à coefficient dans \mathbb{R} à n lignes et n colonnes.

Soit $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$. C'est-à-dire les matrices qui vérifient ${}^tA = -A$.

Soit $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$. C'est-à-dire les matrices qui vérifient ${}^tA=A$.

- 1. Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.
- 2. Pour toutes matrices $A \in \mathcal{M}_n(\mathbb{R})$, montrer que $\frac{A+^tA}{2} \in \mathcal{S}_n(\mathbb{R})$ et que $\frac{A-^tA}{2} \in \mathcal{A}_n(\mathbb{R})$.
- 3. En déduire que $\mathcal{A}_n(\mathbb{R}) + \mathcal{S}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$.
- 4. A-t-on $\mathcal{A}_n(\mathbb{R}) \oplus \mathcal{S}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$?
- 5. Soit $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, décomposer A en une somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 31.

On notera E l'ensemble des matrices réelles dans $\mathcal{M}_3(\mathbb{K})$ qui ont la propriété suivante : les trois sommes de ses trois lignes de A, les trois sommes des trois colonnes de A et les deux sommes des deux diagonales de A sont toutes les huit égales.

- 1. Montrer que E est un sous-espaces vectoriel de $\mathcal{M}_3(\mathbb{K})$.
- 2. Constater que si $A \in E$ alors ${}^tA \in E$.
- 3. Déterminer les matrices symétriques qui sont aussi dans E.
- 4. Déterminer les matrices antisymétriques qui sont aussi dans *E*.
- 5. En utilisant les questions précédentes et la formule $A = \frac{1}{2}(A + {}^tA) + \frac{1}{2}(A {}^tA)$, déterminer la dimension de E.