Topological Sort

Shusen Wang

Directed Acyclic Graph (DAG)

Definition of DAG

- DAG is a directed graph with no directed cycles.
- There is no way to start at any vertex \boldsymbol{v} and follow a path that eventually loops back to \boldsymbol{v} again.

Directed Acyclic Graph (DAG)

This is not a DAG

Topological Sort

- The graph must be a DAG.
- A **topological sort** is an ordering of vertices such that if there is a path from u to v, then u appears before v.

CS101 CS115 CS201 CS220 CS284 CS385 CS600

CS101 CS115 CS201 CS220 CS284 CS385 CS600

Basic Idea

Basic Idea

Repeat until the graph is empty:

- 1. Identify a vertex with no incoming edges.
- 2. Add the vertex to the ordering.
- 3. Remove the vertex from the graph.

Initial State

Ordering:

Ordering:

Ordering:

 v_1

Ordering:

Ordering:

Ordering:

 v_1 v_2 v_4 v_3

End of Procedure

Ordering:

Algorithm

Indegree: number of incoming edges

Indegree: number of incoming edges

Indegree: number of incoming edges

- *m*: number of edges.
- Time complexity of counting all the indegrees is O(m).

Initial State

Enqueue the vertices with zero indegree

Queue:

Ordering:

 v_1

 v_2

Queue:

Ordering:

 v_2

Queue:

 v_2

Ordering:

Queue:

 v_2

Ordering:

 v_1

Queue:

 v_2

Ordering:

 v_1

Queue:

Queue:

Ordering:

 $egin{array}{c} v_1 \ v_2 \end{array}$

 v_4

Queue:

Queue:

Queue:

Ordering:

 v_1

 v_2

 v_4

 v_3

Queue:

 v_5

Ordering:

 v_1

 v_2

 v_4

 v_3

Queue:

 v_5

Ordering:

 v_1

 v_2

 v_4

 v_3

Queue:

End of Procedure

Dealing with Cyclic Graphs

What if the graph has cycles?

After emptying the queue, we check if

#Iterations = #Vertices.

- Equal → No cycle.
- Unequal → Cycle.

Example

Initialization

Queue:

 v_4

Ordering:

 v_2

Queue:

End of Procedure

End of Procedure

- #Iterations is 2.
- #Vertices is 5.
- #Iterations ≠ #Vertices.
- There is at least one cycle.
- The vertices cannot be sorted.

• *m*: number of edges.

• *n*: number of vertices.

• *m*: number of edges.

• *n*: number of vertices.

• Calculating all the indegrees. $\rightarrow O(m)$ time.

- *m*: number of edges.
- n: number of vertices.
- Calculating all the indegrees. $\rightarrow O(m)$ time.
- Every vertex is enqueued and dequeue once. $\rightarrow O(n)$ time.
- Every edge is touched only once (decrease it neighbors' indegrees.) $\rightarrow O(m)$ time.

Overall time complexity: O(m+n).

- *m*: number of edges.
- n: number of vertices.
- Calculating all the indegrees. $\rightarrow O(m)$ time.
- Every vertex is enqueued and dequeue once. $\rightarrow O(n)$ time.
- Every edge is touched only once (decrease it neighbors' indegrees.) $\rightarrow O(m)$ time.

Overall time complexity: O(m+n).

Question

Question 1

Which can the results of topological sort? (There may be multiple correct orderings.)

$$A. v_1, v_2, v_3, v_4, v_5, v_6.$$

$$B. v_1, v_2, v_4, v_3, v_5, v_6.$$

$$C. v_1, v_3, v_2, v_4, v_5, v_6.$$

$$D. v_2, v_1, v_4, v_3, v_5, v_6.$$

$$E. v_2, v_4, v_1, v_3, v_5, v_6.$$

Question 2

Which can the results of topological sort? (There may be multiple correct orderings.)

- $A. v_1, v_2, v_3, v_4, v_5, v_6.$
- $B. v_1, v_2, v_4, v_3, v_5, v_6.$
- $C. v_1, v_3, v_2, v_4, v_5, v_6.$
- $D. v_2, v_1, v_4, v_3, v_5, v_6.$
- $E. v_3, v_1, v_2, v_4, v_5, v_6.$

Thank You!