CS 224S / LINGUIST 281 Speech Recognition, Synthesis, and Dialogue

Dan Jurafsky

Lecture 2: TTS: Brief History, Text Normalization and Partof-Speech Tagging

IP Notice: lots of info, text, and diagrams on these slides comes (thanks!) from Alan Black's excellent lecture notes and from Richard Sproat's slides.

Outline

- I. History of Speech Synthesis
- II. State of the Art Demos
- III. Brief Architectural Overview
- IV. Text Processing
 - 1) Text Normalization
 - Tokenization
 - End of sentence detection
 - Methodology: decision trees
 - 2) Homograph disambiguation
 - 3) Part-of-speech tagging
 - Methodology: Hidden Markov Models

Dave Barry on TTS

"And computers are getting smarter all the time; scientists tell us that soon they will be able to talk with us.

(By "they", I mean computers; I doubt scientists will ever be able to talk to us.)

History of TTS

- Pictures and some text from Hartmut Traunmüller's web site:
 - http://www.ling.su.se/staff/hartmut/kemplne.htm
- Von Kempeln 1780 b. Bratislava 1734 d. Vienna 1804
- Leather resonator manipulated by the operator to try and copy vocal tract configuration during sonorants (vowels, glides, nasals)
- Bellows provided air stream, counterweight provided inhalation
- Vibrating reed produced periodic pressure wave

Von Kempe

- Small whistles controlled consonants
- Rubber mouth and nose; nose had to be covered with two fingers for non-nasals
- Unvoiced sounds: mouth covered, auxiliary bellows driven by string provides puff of air

From Traunmüller's web site

Closer to a natural vocal tract: Riesz 1937

Homer Dudley 1939 VODER

- Synthesizing speech by electrical means
- 1939 World's Fair

Homer Dudley's VODER

- Manually controlled through complex keyboard
- Operator training was a problem

An aside on demos

- That last slide
- Exhibited Rule 1 of playing a speech synthesis demo:
- Always have a human say what the words are right before you have the system say them

The 1936 UK Speaking Clock

From http://web.ukonline.co.uk/freshwater/clocks/spkgclock.htm

The UK Speaking Clock

- July 24, 1936
- Photographic storage on 4 glass disks
- 2 disks for minutes, 1 for hour, one for seconds.
- Other words in sentence distributed across 4 disks, so all 4 used at once.
- Voice of "Miss J. Cain"

A technician adjusts the amplifiers of the first speaking clock

Gunnar Fant's OVE synthesizer

- Of the Royal Institute of Technology, Stockholm
- Formant
 Synthesizer for vowels
- F1 and F2 could be controlled

Cooper's Pattern Playback

- Haskins Labs for investigating speech perception
- Works like an inverse of a spectrograph
- Light from a lamp goes through a rotating disk then through spectrogram into photovoltaic cells
- Thus amount of light that gets transmitted at each frequency band corresponds to amount of acoustic energy at that band

Cooper's Pattern Playback

Modern TTS systems

• 1960's first full TTS: Umeda et al (1968)

- 1970's
 - Joe Olive 1977 concatenation of linear-prediction diphones

- Texas Instruments Speak and Spell,
 - June 1978
 - Paul Breedlove

- 1980's
 - 1979 MIT MITalk (Allen, Hunnicut, Klatt)
- 1990's-present
 - Diphone synthesis
 - Unit selection synthesis
 - HMM synthesis

TTS Demos (Unit-Selection)

- ATT:
 - http://www.naturalvoices.att.com/demos/
- Festival
 - http://www-2.cs.cmu.edu/~awb/festival_demos/index.html
- Cepstral
 - http://www.cepstral.com/cgi-bin/demos/general
- IBM
 - http://www-306.ibm.com/software/pervasive/tech/demos/tts.shtml

Two steps

- PG&E will file schedules on April 20.
- TEXT ANALYSIS: Text into intermediate representation:

						*				·	* L-L%		
P	G AND E WILL FILE		SCHEDULES			ON	APRIL	TWENTIETH					
p iy	jh iy	ae n d	iy	w ih 1	f ay 1	s k e	eh jh ax	1 z	aa n	ey prih	t w e	h n t iy	ax th

WAVEFORM SYNTHESIS: From the intermediate representation into waveform

Architecture

Types of Waveform Synthesis

- Articulatory Synthesis:
 - Model movements of articulators and acoustics of vocal tract
- Formant Synthesis:
 - Start with acoustics, create rules/filters to create each formant
- Concatenative Synthesis:
 - Use databases of stored speech to assemble new utterances.
 - Diphone
 - Unit Selection
- Statistical (HMM) Synthesis
 - Trains parameters on databases of speech

Formant Synthesis

- Were the most common commercial systems when computers were slow and had little memory.
- 1979 MIT MITalk (Allen, Hunnicut, Klatt)

- 1983 DECtalk system
 - "Perfect Paul" (The voice of Stephen Hawking)

"Beautiful Betty"

2nd Generation Synthesis

- Diphone Synthesis
 - Units are diphones; middle of one phone to middle of next.
 - Why? Middle of phone is steady state.
 - Record 1 speaker saying each diphone
 - ~1400 recordings
 - Paste them together and modify prosody.

3rd GenerationSynthesis

- All current commercial systems.
- Unit Selection Synthesis
 - Larger units of variable length
 - Record one speaker speaking 10 hours or more,
 - Have multiple copies of each unit
 - Use search to find best sequence of units
- Hidden Markov Model Synthesis
 - Train a statistical model on large amounts of data.

1. Text Normalization

Analysis of raw text into pronounceable words:

He said the increase in credit limits helped B.C. Hydro achieve record net income of about \$1 billion during the year ending March 31. This figure does not include any write-downs that may occur if Powerex determines that any of its customer accounts are not collectible. Cousins, however, was insistent that all debts will be collected: "We continue to pursue monies owing and we expect to be paid for electricity we have sold."

- Sentence Tokenization
- Text Normalization
 - Identify tokens in text
 - Chunk tokens into reasonably sized sections
 - Map tokens to words
 - Identify types for words

I. Text Processing

- He stole \$100 million from the bank
- It's 13 St. Andrews St.
- The home page is http://www.stanford.edu
- Yes, see you the following tues, that's 11/12/01
- IV: four, fourth, I.V.
- IRA: I.R.A. or Ira
- 1750: seventeen fifty (date, address) or one thousand seven... (dollars)

I.1 Text Normalization Steps

- Identify tokens in text
- Chunk tokens
- Identify types of tokens
- Convert tokens to words

Step 1: identify tokens and chunk

- Whitespace can be viewed as separators
- Punctuation can be separated from the raw tokens
- Festival converts text into
 - ordered list of tokens
 - each with features:
 - its own preceding whitespace
 - its own succeeding punctuation

Important issue in tokenization: end-of-utterance detection

- Relatively simple if utterance ends in ?!
- But what about ambiguity of "."
- Ambiguous between end-of-utterance and end-of-abbreviation
 - My place on Winfield St. is around the corner.
 - I live at 151 Winfield St.
 - (Not "I live at 151 Winfield St..")
- How to solve this period-disambiguation task?

How about rules for end-ofutterance detection?

- A dot with one or two letters is an abbrev
- A dot with 3 cap letters is an abbrev.
- An abbrev followed by 2 spaces and a capital letter is an end-of-utterance
- Non-abbrevs followed by capitalized word are breaks

Determining if a word is endof-utterance: a Decision Tree

CART

- Breiman, Friedman, Olshen, Stone. 1984.
 Classification and Regression Trees.
 Chapman & Hall, New York.
- Description/Use:
 - Binary tree of decisions, terminal nodes determine prediction ("20 questions")
 - If dependent variable is categorial, "classification tree",
 - If continuous, "regression tree"

Determining end-of-utteranceThe Festival hand-built decision tree

```
((n.whitespace matches ".*\n.*\n[ \n]*") ;; A significant break in text
 ((1))
 ((punc in ("?" ":" "!"))
  ((1))
  ((punc is ".")
   ;; This is to distinguish abbreviations vs periods
   ;; These are heuristics
   ((name matches "\\(.*\\..*\\|[A-Z][A-Za-z]?[A-Za-z]?\\|etc\\)")
    ((n.whitespace is " ")
                           ;; if abbrev, single space enough for break
     ((0))
     ((n.name matches "[A-Z].*")
      ((1))
      ((0))))
    ((n.whitespace is " ") ;; if it doesn't look like an abbreviation
     ((n.name matches "[A-Z].*") ;; single sp. + non-cap is no break
      ((1))
      ((0))
     ((1)))
   ((0))))
```

The previous decision tree

- Fails for
 - Cog. Sci. Newsletter
 - Lots of cases at end of line.
 - Badly spaced/capitalized sentences

More sophisticated decision tree features

- Prob(word with "." occurs at end-of-s)
- Prob(word after "." occurs at begin-of-s)
- Length of word with "."
- Length of word after "."
- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Punctuation after "." (if any)
- Abbreviation class of word with "." (month name, unit-of-measure, title, address name, etc)

Learning DTs

- DTs are rarely built by hand
- Hand-building only possible for very simple features, domains
- Lots of algorithms for DT induction
- Covered in detail in Machine Learning or AI classes
 - Russell and Norvig AI text.
- I'll give quick intuition here

CART Estimation

- Creating a binary decision tree for classification or regression involves 3 steps:
 - Splitting Rules: Which split to take at a node?
 - Stopping Rules: When to declare a node terminal?
 - Node Assignment: Which class/value to assign to a terminal node?

Splitting Rules

- Which split to take a node?
- Candidate splits considered:
 - Binary cuts: for continuous (-inf < x < inf) consider splits of form:
 - X <= k vs. x > k ∀K
 - Binary partitions: For categorical x ∈ {1,2,...}
 = X consider splits of form:
 - $x \in A$ vs. $x \in X-A$, $\forall A \in X$

Splitting Rules

- Choosing best candidate split.
 - Method 1: Choose k (continuous) or A (categorical) that minimizes estimated classification (regression) error after split
 - Method 2 (for classification): Choose k or A that minimizes estimated entropy after that split.

Decision Tree Stopping

- When to declare a node terminal?
- Strategy (Cost-Complexity pruning):
 - 1. Grow over-large tree
 - 2. Form sequence of subtrees, T0...Tn ranging from full tree to just the root node.
 - 3. Estimate "honest" error rate for each subtree.
 - 4. Choose tree size with minimum "honest" error rate.
- To estimate "honest" error rate, test on data different from training data (i.e. grow tree on 9/10 of data, test on 1/10, repeating 10 times and averaging (cross-validation).

Sproat EOS tree

Summary on end-of-sentence detection

- Best references:
 - David Palmer and Marti Hearst. 1997.
 Adaptive Multilingual Sentence Boundary
 Disambiguation. Computational Linguistics 23,
 2. 241-267.
 - David Palmer. 2000. Tokenisation and Sentence Segmentation. In "Handbook of Natural Language Processing", edited by Dale, Moisl, Somers.

Steps 3+4: Identify Types of Tokens, and Convert Tokens to Words

- Pronunciation of numbers often depends on type. 3 ways to pronounce 1776:
 - 1776 date: seventeen seventy six.
 - 1776 phone number: one seven seven six
 - 1776 quantifier: one thousand seven hundred (and) seventy six
 - Also:
 - 25 day: twenty-fifth

Festival rule for dealing with "\$1.2 million"

Rule-based versus machine learning

- As always, we can do things either way, or more often by a combination
- Rule-based:
 - Simple
 - Quick
 - Can be more robust
- Machine Learning
 - Works for complex problems where rules hard to write
 - Higher accuracy in general
 - But worse generalization to very different test sets
- Real TTS and NLP systems
 - Often use aspects of both.

Machine learning method for Text Normalization

- From 1999 Hopkins summer workshop "Normalization of Non-Standard Words"
 - Sproat, R., Black, A., Chen, S., Kumar, S., Ostendorf, M., and Richards, C. 2001. Normalization of Non-standard Words, Computer Speech and Language, 15(3):287-333
- NSW examples:
 - Numbers:
 - 123, 12 March 1994
 - Abrreviations, contractions, acronyms:
 - approx., mph. ctrl-C, US, pp, lb
 - Punctuation conventions:
 - 3-4, +/-, and/or
 - Dates, times, urls, etc

How common are NSWs?

- Varies over text type
- Word not in lexicon, or with non-alphabetic characters:

Text Type	% NSW
novels	1.5%
press wire	4.9%
e-mail	10.7%
recipes	13.7%
classified	17.9%

How hard are NSWs?

- Identification:
 - Some homographs "Wed", "PA"
 - False positives: OOV
- Realization:
 - Simple rule: money, \$2.34
 - Type identification+rules: numbers
 - Text type specific knowledge (in classified ads, BR for bedroom)
- Ambiguity (acceptable multiple answers)
 - "D.C." as letters or full words
 - "MB" as "meg" or "megabyte"
 - **•** 250

Step 1: Splitter

- Letter/number conjunctions (WinNT, SunOS, PC110)
- Hand-written rules in two parts:
 - Part I: group things not to be split (numbers, etc; including commas in numbers, slashes in dates)
 - Part II: apply rules:
 - At transitions from lower to upper case
 - After penultimate upper-case char in transitions from upper to lower
 - At transitions from digits to alpha
 - At punctuation

Step 2: Classify token into 1 of 20 types

- EXPN: abbrev, contractions (adv, N.Y., mph, gov't)
- LSEQ: letter sequence (CIA, D.C., CDs)
- ASWD: read as word, e.g. CAT, proper names
- MSPL: misspelling
- NUM: number (cardinal) (12,45,1/2, 0.6)
- NORD: number (ordinal) e.g. May 7, 3rd, Bill Gates II
- NTEL: telephone (or part) e.g. 212-555-4523
- NDIG: number as digits e.g. Room 101
- NIDE: identifier, e.g. 747, 386, I5, PC110
- NADDR: number as stresst address, e.g. 5000 Pennsylvania
- NZIP, NTIME, NDATE, NYER, MONEY, BMONY, PRCT, URL, etc.
- SLNT: not spoken (KENT*REALTY)

More about the types

- 4 categories for alphabetic sequences:
 - EXPN: expand to full word or word seq (fplc for fireplace, NY for New York)
 - LSEQ: say as letter sequence (IBM)
 - ASWD: say as standard word (either OOV or acronyms)
- 5 main ways to read numbers:
 - Cardinal (quantities)
 - Ordinal (dates)
 - String of digits (phone numbers)
 - Pair of digits (years)
 - Trailing unit: serial until last non-zero digit: 8765000 is "eight seven six five thousand" (some phone numbers, long addresses)
 - But still exceptions: (947-3030, 830-7056)

Type identification algorithm

- Create large hand-labeled training set and build a DT to predict type
- Example of features in tree for subclassifier for alphabetic tokens:
 - P(t|o) = p(o|t)p(t)/p(o)
 - P(o|t), for t in ASWD, LSWQ, EXPN (from trigram letter model)

$$p(o \mid t) = \sum_{i=1}^{n} p(l_{i1} \mid l_{i-1}, l_{i-2})$$

- P(t) from counts of each tag in text
- P(o) normalization factor

Type identification algorithm

- Hand-written context-dependent rules:
 - List of lexical items (Act, Advantage, amendment) after which Roman numbers read as cardinals not ordinals
- Classifier accuracy:
 - 98.1% in news data,
 - 91.8% in email

Step 3: expanding NSW Tokens

- Type-specific heuristics
 - ASWD expands to itself
 - LSEQ expands to list of words, one for each letter
 - NUM expands to string of words representing cardinal
 - NYER expand to 2 pairs of NUM digits...
 - NTEL: string of digits with silence for puncutation
 - Abbreviation:
 - use abbrev lexicon if it's one we've seen
 - Else use training set to know how to expand
 - Cute idea: if "eat in kit" occurs in text, "eat-in kitchen" will also occur somewhere.

What about unseen abbreviations?

- Problem: given a previously unseen abbreviation, how do you use corpusinternal evidence to find the expansion into a standard word?
- Example:
 - Cus wnt info on services and chrgs
- Elsewhere in corpus:
 - ...customer wants...
 - ...wants info on vmail...

4 steps to Sproat et al. algorithm

- Splitter (on whitespace or also within word ("AltaVista")
- 2) Type identifier: for each split token identify type
- 3) Token expander: for each typed token, expand to words
 - Deterministic for number, date, money, letter sequence
 - Only hard (nondeterministic) for abbreviations
- 4) Language Model: to select between alternative pronunciations

I.2 Homograph disambiguation

It's no use (/y uw s/) to ask to use (/y uw z/) the telephone.

Do you live (/l ih v/) near a zoo with live (/l ay v/) animals?

I prefer bass (/b ae s/) fishing to playing the bass (/b ey s/) guitar.

Final voicing			Stress shi	ft	-ate final vowel			
	N (/s/)	\mathbf{V} (/z/)		N (init. stress)	V (fin. stress)		N/A (final /ax/)	V (final /ey/)
use	y uw s	y uw z	record	r eh1 k axr0 d	r ix0 k ao1 r d	estimate	eh s t ih m ax t	eh s t ih m ey t
close	klows	k l ow z	insult	ih1 n s ax0 l t	ix0 n s ah1 l t	separate	s eh p ax r ax t	s eh p ax r ey t
house	h aw s	h aw z	object	aa1 b j eh0 k t	ax0 b j eh1 k t	moderate	m aa d ax r ax t	m aa d ax r ey t

I.2 Homograph disambiguation

19 most frequent homographs, from Liberman and Church

319		0.1
230	•	91
	project	90
		87
195	-	80
150	-	
143		72
	subject	68
	rebel	48
		46
105		46
94	esumate	40
	230 215 195 150 143 131 130 105	230 215 195 150 143 131 130 105 survey project separate present read subject rebel finance estimate

Not a huge problem, but still important

POS Tagging for homograph disambiguation

Many homographs can be distinguished by POS

```
use y uw s y uw z
close k l ow s k l ow z
house h aw s h aw z
live l ay v l ih v
REcord reCORD
INsult inSULT
OBject obJECT
OVERflow overFLOW
DIScount disCOUNT
CONtent conTENT
```

 POS tagging also useful for CONTENT/FUNCTION distinction, which is useful for phrasing

Part of speech tagging

- 8 (ish) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - This idea has been around for over 2000 years (Dionysius Thrax of Alexandria, c. 100 B.C.)
 - Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS
 - We'll use POS most frequently
 - I'll assume that you all know what these are

POS examples

```
    N noun chair, bandwidth, pacing
```

- V verb study, debate, munch
- ADJ adj purple, tall, ridiculous
- ADV adverb unfortunately, slowly,
- P preposition of, by, to
- PRO pronoun *I, me, mine*
- DET determiner the, a, that, those

POS Tagging: Definition

 The process of assigning a part-of-speech or lexical class marker to each word in a corpus:

POS Tagging example

WORD tag

the DET

koala N

put V

the DET

keys N

on P

the DET

table N

POS tagging: Choosing a tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, need to choose a standard set of tags to work with
- Could pick very coarse tagets
 - N, V, Adj, Adv.
- More commonly used set is finer grained, the "UPenn TreeBank tagset", 45 tags
 - PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist

Penn TreeBank POS Tag set

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	66	left quote	' or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Using the UPenn tagset

- The/DT grand/JJ jury/NN commmented/ VBD on/IN a/DT number/NN of/IN other/ JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/ PRP..")
- Except the preposition/complementizer
 "to" is just marked "to".

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How hard is POS tagging? Measuring ambiguity

		Original			Treebank		
		87-tag corpus		45-tag corpus			
Unambigue	Unambiguous (1 tag)			38,857			
Ambiguous	(2–7 tags)	5,490		8844			
Details:	2 tags	4,967		6,731			
	3 tags	411		1621			
	4 tags	91		357			
	5 tags	17		90			
	6 tags	2	(well, beat)	32			
	7 tags	2	(still, down)	6	(well, set, round, open,		
					fit, down)		
	8 tags			4	('s, half, back, a)		
	9 tags			3	(that, more, in)		

3 methods for POS tagging

- 1. Rule-based tagging
 - (ENGTWOL)
- 2. Stochastic (=Probabilistic) tagging
 - HMM (Hidden Markov Model) tagging
- 3. Transformation-based tagging
 - Brill tagger

Hidden Markov Model Tagging

- Using an HMM to do POS tagging
- Is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that we'll do when we do ASR (speech recognition)

POS tagging as a sequence classification task

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

Getting to HMM

• We want, out of all sequences of n tags $t_1...t_n$ the single tag sequence such that $P(t_1...t_n|w_1...w_n)$ is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Getting to HMM

 This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and prior

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{P(w_{1}^{n}|t_{1}^{n})} \underbrace{P(t_{1}^{n})}_{P(t_{1}^{n})}$$

$$P(w_{1}^{n}|t_{1}^{n}) \approx \prod_{i=1}^{n} P(w_{i}|t_{i})$$

$$P(t_{1}^{n}) \approx \prod_{i=1}^{n} P(t_{i}|t_{i-1})$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n}|w_{1}^{n}) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i}|t_{i}) P(t_{i}|t_{i-1})$$

Two kinds of probabilities (1)

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be:
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two kinds of probabilities (2)

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/ VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race|NN) = .00057
- P(race|VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb reading

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model
- A Hidden Markov Model is a particular probabilistic kind of automaton
- Let's just spend a bit of time tying this into the model
- We'll return to this in much more detail in 3 weeks when we do ASR

Hidden Markov Model

$$Q = q_1 q_2 \dots q_N$$

$$A = a_{11}a_{12} \dots a_{n1} \dots a_{nn}$$

$$O = o_1 o_2 \dots o_T$$

$$B = b_i(o_t)$$

$$q_0, q_F$$

a set of N states.

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$.

a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$.

A sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state i.

a special **start state** and **end** (**final**) **state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state.

Transitions between the hidden states of HMM, showing A probs

B observation likelihoods for POS HMM

The A matrix for the POS HMM

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

The B matrix for the POS HMM

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Viterbi intuition: we are looking for the best 'path'

Slide from Dekang Lin

The Viterbi Algorithm

```
function VITERBI(observations of len T, state-graph of len N) returns best-path
  create a path probability matrix viterbi[N+2,T]
  for each state s from 1 to N do
                                                             ; initialization step
        viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
        backpointer[s,1] \leftarrow 0
  for each time step t from 2 to T do
                                                             ; recursion step
      for each state s from 1 to N do
        viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
        backpointer[s,t] \leftarrow \underset{s'.s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s'.s}
  viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F} ; termination step
  backpointer[q_F,T] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}; termination step
  return the backtrace path by following backpointers to states back in time from
backpointer[q_F, T]
```

Intuition

 The value in each cell is computed by taking the MAX over all paths that lead to this cell.

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

 An extension of a path from state i at time t-1 is computed by multiplying:

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

Viterbi example

Error Analysis: ESSENTIAL!!!

Look at a confusion matrix

ž	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1		.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NN) vs Adj (JJ)
 - Adverb (RB) vs Particle (RP) vs Prep (IN)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Summary

- Part of speech tagging plays important role in TTS
- Most algorithms get 96-97% tag accuracy
- Not a lot of studies on whether remaining error tends to cause problems in TTS
 - For example POS taggers don't do well in reading headlines

Summary

- I. Text Processing
 - 1) Text Normalization
 - Tokenization
 - End of sentence detection
 - Methodology: decision trees
 - Homograph disambiguation
 - 3) Part-of-speech tagging
 - Methodology: Hidden Markov Models