

Classification and Regression Trees (CART – III)

Dr A. RAMESH

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

Python demo for CART model -

- Visualizing Decision Tree
- Interpretation of CART model

Example

Problem Description-

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Han, J., Pei, J. and Kamber, M., 2011. Data mining: concepts and techniques. Elsevier.

Import Relevant Libraries and Loading Data File

Out[3]:

	RID	age	income	student	credit_rating	buys_computer
0	1	youth	high	no	fair	no
1	2	youth	high	no	excellent	no
2	3	middle_aged	high	no	fair	yes
3	4	senior	medium	no	fair	yes
4	5	senior	low	yes	fair	yes
5	6	senior	low	yes	excellent	no
6	7	middle_aged	low	yes	excellent	yes
7	8	youth	medium	no	fair	no
8	9	youth	low	yes	fair	yes
9	10	senior	medium	yes	fair	yes
10	11	youth	medium	yes	excellent	yes
11	12	middle_aged	medium	no	excellent	yes
12	13	middle_aged	high	yes	fair	yes
13	14	senior	medium	no	excellent	no

Methods used in Data Encoding

• LabelEncoder (): This method is used to normalize labels. It can also be used to transform non-numerical labels to numerical labels.

 Fit_transform (): This method is used for Fitting label encoder and return encoded labels.

Data Encoding Procedure

```
In [4]:
         1 import sklearn
         2 from sklearn.preprocessing import LabelEncoder
In [5]:
         1 le age = LabelEncoder()
         2 le income = LabelEncoder()
         3 le student = LabelEncoder()
         4 le credit rating = LabelEncoder()
          5 le buys computer = LabelEncoder()
In [6]:
         1 | data['age n'] = le age.fit transform(data['age'])
         2 data['income n'] = le income.fit transform(data['income'])
         3 | data['student n'] = le student.fit transform(data['student'])
         4 | data['credit rating n'] = le credit rating.fit transform(data['credit rating'])
           data['buys_computer_n'] = le_credit rating.fit transform(data['buys computer'])
```


Data Encoding

[7]: data.head() In Out[7]: RID income student credit_rating buys_computer age_n income_n student_n credit_rating_n buys_computer_n youth high fair 2 0 0 0 no no youth high excellent 2 0 0 0 0 no no 3 middle_aged high fair 0 0 0 no yes fair 0 3 4 senior medium no yes 2 1 fair 1 senior low yes yes

Structuring Dataframe

drop(): This is used to Remove rows or columns by specifying label names and corresponding axis or by specifying directly index or column names.

Out[8]:

	RID	age_n	income_n	student_n	credit_rating_n	buys_computer_n
0	1	2	0	0	1	0
1	2	2	0	0	0	0
2	3	0	0	0	1	1
3	4	1	2	0	1	1
4	5	1	1	1	1	1

Independent and Dependent Variables Selection

```
In [9]:
         1 feature cols = ['age n', 'income n', 'student n', 'credit rating n']
          2 | x = data new.drop(['buys computer n', 'RID'], axis='columns') #input
             y = data new['buys computer n'] #target
In [10]:
              x.head()
                                                               y.head()
                                                   In [11]:
Out[10]:
                                                   Out[11]: 0
             age_n income_n student_n credit_rating_n
                                                            Name: buys computer n, dtype: int32
```


Build the Decision Tree Model without Splitting

Visualizing Decision Tree

```
In [13]:
             from sklearn.tree import export graphviz
           2 from sklearn.externals.six import StringIO
            from IPython.display import Image
             import pydotplus
In [14]:
             dot data = StringIO()
             export graphviz(dt, out file=dot data,
                             filled=True, rounded=True,
                              special characters=True, feature_names = feature_cols, class_names=['0','1'])
             graph = pydotplus.graph from dot data(dot data.getvalue())
             graph.write png('buys computer.png')
Out[14]: True
In [15]:
             Image(graph.create png())
```


Decision Tree Visualization

Interpretation of the CART Output

Calculation of Gini(D)

We first use the following Equation for Gini index to compute the impurity

of D:

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

$$Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$$

	RID	age	income	student	credit_rating	Class: buys_computer
	1	youth	high	no	fair	no
	2	youth	high	no	excellent	no
	3	middle_aged	high	no	fair	yes
	4	senior	medium	no	fair	yes
	5	senior	low	yes	fair	yes
	6	senior	low	yes	excellent	no
	7	middle_aged	low	yes	excellent	yes
١	8	youth	medium	no	fair	no
٠.	9	youth	low	yes	fair	yes
	10	senior	medium	yes	fair	yes
	11	youth	medium	yes	excellent	yes
	12	middle_aged	medium	no	excellent	yes
	13	middle_aged	high	yes	fair	yes
	14	senior	medium	no	excellent	no

Income Attribute

- Low, Medium, High
- Option 1: {Low, Medium}, {High}
- Option 2 : {High, Medium}, {low}
- Option 3 : {High, Low}, {Medium}

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D1

Low + Medium:

Low + Medium	Class: buys computer
Yes	3 +4 =7
No	1+ 2 = 3

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	<u>medi</u> um	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D2

• High:

High	Class: buys computer
Yes	2
No	2

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	<u>hig</u> h	yes	fair	yes
14	senior	medium	no	excellent	no

The Gini index value computed based on this partitioning is

$$Gini_{income} \in \{low, medium\} (D)$$

$$= \frac{10}{14}Gini(D_1) + \frac{4}{14}Gini(D_2)$$

$$= (10/14) (1 - (7/10)^2 - (3/10)^2) + (4/14) (1 - (2/4)^2 - (2/4)^2)$$

$$= 0.443 = Gini_{income} \in \{high\}$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	<u>hig</u> h	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

The Gini index value computed based on this partitioning is

L

 $Gini_{income \in \{high, \, medium\}}$

 \mathcal{D}_{i}

$=\frac{10}{14}Gini(D_1)+\frac{4}{14}Gini(D_2)$
$=\frac{14}{14}Gm(D_1)+\frac{14}{14}Gm(D_2)$
$= (10/14) (1-(6/10)^2 - (4/10)^2) +$
$(4/14) (1-(3/4)^2-(1/4)^2)$
$=0.45$ = Gini income $\in \{low\}$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

The Gini index value computed based on this partitioning is

Gini
$$_{income \in \{high, low\}}$$

= (8/14) (1- (5/8)² - (3/8)²) +
(6/14) (1- (2/6)² - (4/6)²)
=0.458 = Gini $_{income \in \{medium\}}$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- Gini income ∈{low, medium}
 = 0.443 = Gini income ∈{high}
- Gini $_{income \in \{high, medium\}}$ = 0.45 = Gini $_{income \in \{low\}}$
- Gini $_{income \in \{high, low\}}$ = 0.458 = Gini $_{income \in \{medium\}}$

Gini index for Age attribute

The Gini index value computed based on this partitioning is

$$Gini_{Age \in \{Youth, middle_aged\}} \\ = 0.457 = Gini_{Age \in \{senior\}}$$

$$Gini_{Age \in \{Youth, Senior\}} \\ = 0.357 = Gini_{Age \in \{middle_aged\}}$$

$$Gini_{Age \in \{senior, middle_aged\}}$$

= 0.393 = Gini _{Age ∈{Youth}}

RID	age	income	student	credit_rating	Class: buys_compute
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini index for student attribute

The Gini index value computed based on this partitioning is

Gini student
$$\in \{Yes, No\}$$

= 7/14 (1- (6/7)² - (1/7)²) +
7/14 (1- (3/7)² - (4/7)²)

= 0.367

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini index for credit_rating attribute

The Gini index value computed based on this partitioning is

Gini credit rating ∈{fair, Excellent}

=
$$8/14 (1-(6/8)^2 - (2/8)^2) +$$

6/14 (1-(3/6)^2 - (3/6)^2)
= 0.428

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Choosing the root node

The attribute with minimum Gini score will be taken, i.e. Age (Gini $_{Age \in \{Youth, Senior\}} = 0.357 = Gini _{Age \in \{middle_aged\}}$)

Attribute	Gini score
Age	0.357
Income	0.443
Student	0.367
Credit_rating	0.428

Gini index for different attributes for sample of 10

After separating 4 samples belonging middle age, total 10 are remaining:

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini index for different attributes for sample of 10

- Gini (D) = $(1-(5/10)^2-(5/10)^2)$) = 0.5
- $Gini_{Age} = 0.48$
- Gini_{Credit Rating}= 0.41
- Gini _{Student} = 0.32
- Gini _{income} = 0.375
- Take student as node as it have mini. Gini Score

Drawing cart

For branch Student = No

- Omit the marked rows
 (Data entry), either
 belonging Age =
 middle_aged or student =
 Yes
- Total 5 rows are remaining

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	ves	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	ves	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini index for different attributes For branch Student = No

- Gini (D) = $(1-(4/5)^2-(1/5)^2)$) = 0.32
- Gini_{Age} = 0.2
- Gini_{Credit Rating} = 0.267
- Gini _{Student} = 0.32
- Gini _{income} = 0.267
- Take age as node as it have mini. Gini Score

Drawing cart

For branch Student = Yes

- Omit the marked rows (Data entry), either belonging Age = middle_aged or student = No
- Total 5 rows are remaining

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini index for different attributes For branch Student = No

- Gini (D) = $(1-(4/5)^2-(1/5)^2)$) = 0.32
- $Gini_{Age} = 0.267$
- Gini_{Credit Rating}= 0.2
- Gini _{Student} = 0.32
- Gini _{income} = 0.267
- Take credit rating as node as it have mini. Gini Score

Drawing cart

Coding scheme

Age	Code
Youth	2
Middle Age	0)
senior	1

Credit rating	Code
Fair	1
Excellent	0

Student	Code
Yes	1 2 2 2 2
No	0 n <u> </u>

Income	Code	
High	0	
Low	1	
Medium	2	

Buys computer	Class
Yes	1
No	0

Decision tree

 Repeat the splitting process until we obtain all the leaf nodes, the final out put:

Splitting Dataset

 Train_test_split(): This method is used for splitting dataset into training and testing data subsets.

```
In [12]: 1 from sklearn.model_selection import train_test_split
In [13]: 1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) random_state=42)
```


Build the Decision Tree Model

Evaluating the Model

Visualizing Decision Tree

```
In [19]:
             from sklearn.tree import export graphviz
             from sklearn.externals.six import StringIO
             from IPython.display import Image
              import pydotplus
In [20]:
             dot data = StringIO()
             export graphviz(dt, out file=dot_data,
                              filled=True, rounded=True,
                              special characters=True, feature names = feature cols, class names=['0','1'])
             graph = pydotplus.graph from dot data(dot data.getvalue())
             graph.write png('buys computer.png')
Out[20]: True
             Image(graph.create png())
In [21]:
```


Decision Tree Visualization

Thank You

