Série télescopique :

Une série télescopique est une série numérique dont le terme général est $u_{n+1}-u_n$ où $(u_n)_{n\in\mathbb{N}}$

On a alors $\sum (u_{n+1} - u_n)$ converge \iff (u_n) converge

Et en cas de convergence,

$$\sum_{n=0}^{+\infty} (u_{n+1} - u_n) = \lim_{n \to +\infty} u_n - u_0$$

Démonstration:

Posons $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n (u_{k+1} - u_k).$

Alors
$$S_n = \sum_{k=0}^n u_{k+1} - \sum_{k=0}^n u_k$$

= $\sum_{l=1}^{n+1} u_l - \sum_{k=0}^n u_k$
= $u_{n+1} - u_0$

Ainsi $\sum (u_{n+1} - u_n)$ converge $\Leftrightarrow (S_n)_n$ converge $\Leftrightarrow (u_{n+1} - u_0)_n$ converge $\Leftrightarrow (u_{n+1})_n$ converge $\Leftrightarrow (u_n)_n$ converge

De plus, si $\sum_{k=0}^n (u_{n+1}-u_n)$ converge, en passant à la limite on obtient :

$$\sum_{k=0}^{\infty} (u_{k+1} + u_k) = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} (u_{n+1} - u_0) = \lim_{n \to +\infty} u_n - u_0$$

Théorème: (Règle d'Alembert)

Soit $\sum u_n$ une suite réelle, en supposant que $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n > 0$

Si
$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} l \in \mathbb{R}_+ \cup \{+\infty\}$$
, alors

- Si l > 1, alors $\sum u_n$ diverge grossièrement.
- Si l < 1, alors $\sum u_n$ converge.
- Si l=1, on ne peut conclure.

<u>Démonstration</u>:

(i) Supposons que
$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} l > 1$$

- Si
$$l \in \mathbb{R}_+$$
, $\forall \varepsilon > 0$, $\exists n_1 \in \mathbb{N}$, $n_1 \ge n_0$ tq

$$\begin{array}{l} \underline{\text{ion:}} \\ \text{Supposons que} \, \frac{u_{n+1}}{u_n} \underset{n \to \infty}{\longrightarrow} l > 1 \\ - \quad \text{Si } l \in \mathbb{R}_+, \forall \varepsilon > 0, \exists n_1 \in \mathbb{N}, n_1 \geq n_0 \text{ tq} \\ \left| \frac{u_{n+1}}{u_n} - l \right| \leq \varepsilon \\ \Leftrightarrow l - \varepsilon \leq \frac{u_{n+1}}{u_n} \leq l + \varepsilon \end{array}$$

Pour
$$\varepsilon = \frac{l-1}{2} > 0$$
,

$$\exists n_1 \in \mathbb{N}, n_1 \geq n_0 \text{, tel que } \forall n \geq n_1, \frac{u_{n+1}}{u_n} \geq l - \frac{l-1}{2} = \frac{l+1}{2} > 1$$

Alors
$$\frac{u_{n+1}}{u_n} > 1 \ \forall n \geq n_1$$
, donc $u_{n+1} \geq u_n$, $\forall n > n_1$

Ainsi
$$(u_n)_{n\geq n_1}$$
 est croissante et $u_{n_1}>0$, donc $u_n\underset{n\to+\infty}{\nrightarrow}0$

Donc $\sum u_n$ diverge grossièrement.

$$- \quad \text{Si } l = +\infty, \forall A \in \mathbb{R}, \exists n_A \geq n_0, \forall n \geq n_A, \frac{u_{n+1}}{u_n} \underset{n \rightarrow +\infty}{\longrightarrow} l$$

Donc pour A=1, $\forall n\geq n_A$, $u_{n+1}\geq u_n$.

Et on conclut de même.

(ii) Supposons que
$$l < 1$$
, alors $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} l$,

Donc par définition de la limite, avec $\varepsilon = \frac{1-l}{2} > 0$

$$\exists n_1 \geq n_0, \forall n \geq n_1, \frac{u_{n+1}}{u_n} \leq \frac{l+1}{2} \coloneqq q$$

Or l < 1 donc 0 < q < 1

Alors $\forall n \geq n_1, u_{n+1} \leq q u_n$

 $\operatorname{Donc} \forall n \geq n_1, \, u_n \leq q^{n-n_1} \, u_{n_1}$

Ainsi $\forall n \geq n_1$, $u_n \leq \frac{1}{q^{n_1}} u_{n_1} \times q^n$

Or |q| < 1 donc la série géométrique $\sum q^n$ converge.

Ainsi par comparaison de SATP,
$$\sum u_n$$
 converge.
(iii) Posons $\forall n \geq 1, u_n = \frac{1}{n} > 0$ et $\frac{u_{n+1}}{u_n} = \frac{n}{n+1} \underset{n \to +\infty}{\longrightarrow} 1$ et u_n converge.
Posons $\forall n \geq 1, v_n = \frac{1}{n^2} > 0$ et $\frac{v_{n+1}}{v_n} \underset{n \to +\infty}{\longrightarrow} 1$ et v_n converge.

Théorème de comparaison série-intégrale :

Soit $p \in \mathbb{N}$ et $f : [p; +\infty[\to \mathbb{R}_+ \text{ une fonction } \underline{\text{continue}}, \underline{\text{décroissante}} \text{ et à } \underline{\text{valeurs >0}}.$

Alors la série numérique $\sum_{n\geq p} f(n)$ et l'intégrale généralisée $\int_p^{+\infty} f(t)dt$ on même nature.

<u>Démonstration</u>:

Soit $n \ge p+1$. En sommant l'inégalité de gauche dans (*) pour k allant de p à n, on trouve :

$$\int_{p}^{n+1} f(t)dt \le S_n := \sum_{k=n}^{n} f(k)$$

En sommant l'inégalité de droite dans (*) pour k allant de p+1 à n

$$\sum_{k=p+1}^{n} f(k) \le \int_{n}^{p} f(t)dt$$

$$\Leftrightarrow \sum_{k=p}^{n} f(k) \le \int_{n}^{p} f(t)dt + f(p)$$

D'où:

$$\int_{p}^{n+1} f(t)dt \le S_n \le \int_{p}^{n} f(t)dt + f(p)$$

Théorème: (Séries de Riemann)

Soit $\alpha \in \mathbb{R}$. La série numérique $\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

<u>Démonstration</u>:

$$\mathrm{Si}\;\alpha<0, n^{\alpha} \xrightarrow[n \to +\infty]{} 0^{+}\; \mathrm{donc}\, \frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} +\infty \neq 0.$$

De même, si $\alpha=0,\frac{1}{n^0}\underset{n\to+\infty}{\longrightarrow}1\neq0.$

Donc $\sum \frac{1}{n^{\alpha}}$ diverge grossièrement si $\alpha \leq 0$.

 \rightarrow Supposons que $\alpha > 0$.

Posons $f:[1;+\infty[\to\mathbb{R}_+,t\mapsto \frac{1}{t^\alpha}=t^{-\alpha}]$ f est continue, à valeurs >0

f est dérivable sur $[1; +\infty[$ avec $f'(t) = -\alpha t^{-\alpha-1}$

Donc f est décroissante.

Par le théorème de comparaison série/intégrale :

$$\sum_{n\geq 1} \frac{1}{n^{\alpha}} = \sum_{n\geq 1} f(n) \text{ CV } \iff \int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \text{ CV}$$

$$\Leftrightarrow \alpha > 1$$

<u>Théorème</u>: Série définissant l'exponentielle Soit $a \in \mathbb{C}$. La série suivante converge :

$$\sum_{n\in\mathbb{N}}\frac{a^n}{n!}$$

<u>Démonstration</u>:

Soit $a \in \mathbb{C}$.

Posons $\forall n \in \mathbb{N}, u_n = \frac{a^n}{n!}$

Alors $|u_n| = \frac{|a|^n}{n!}$

$$\begin{array}{ll} \text{-} & \text{Si } a=0, \forall n \in \mathbb{N}, u_n = \frac{a^n}{n!} = \frac{0^n}{n!} = \left\{ \begin{matrix} 1 \text{ si } n=0 \\ 0 \text{ si } n \geq 1 \end{matrix} \right. \\ \text{Donc } \forall n \geq 1, s_n = \sum_{k=0}^n u_k = 1 + 0 = 1 \underset{n \rightarrow +\infty}{\longrightarrow} 1 \end{array}$$

Ainsi $\sum \left(\frac{0^n}{n!}\right)$ converge et sa somme vaut $\sum_{k=0}^{+\infty} \frac{0^n}{n!} = 1 = e^0$

- Si
$$a \neq 0$$
, $\forall n \in \mathbb{N}$, $|u_n| > 0$

$$\operatorname{Et} \frac{|u_{n+1}|}{|u_n|} = \frac{|a|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0 < 1$$

Donc d'après la règle de d'Alembert, $\sum |u_n|$ converge.