Multi-Input ConvLSTM for Flood Extent Prediction

Leo Muckley & James Garforth

University of Edinburgh

January 10, 2021

Flood Forecasting vs Flood Extent Prediction

- Flood Forecasting is generally focused on predicting when a flood is going to happen
 - e.g. when will the Zambezi river overflow?

- Flood Extent Prediction determines where the flood is going to happen and to what extent
 - e.g. given that the Zambezi river has overflowed, where in the Zambezi river basin has flooded the most?

Source: NASA Earth Observatory

Flood Extent Prediction

Flood Conditioning Factors

Given $\mathcal{X} = \left\{\mathbf{x}_t^{(i)} : t \in K\right\}_{i=1}^N$, find $\mathcal{F} : \mathcal{X} \to y$ where $y^i \in [0, 1]$

Problem & Solution

Problem

- 1. How can we effectively exploit features that have varying frequencies of observation?
 - Example: Land Elevation vs. Soil Moisture
 - Proposal: Adopt Multi-Input Architecture

Problem & Solution

Problem

- 1. How can we effectively exploit features that have varying frequencies of observation?
 - Example: Land Elevation vs. Soil Moisture
 - Proposal: Adopt Multi-Input Architecture
- 2. How can we model spatial patterns that change with time?
 - Flood conditioning factors have inherent spatio-temporal patterns
 - Proposal: Use ConvLSTM layers

Problem & Solution

Problem

- 1. How can we effectively exploit features that have varying frequencies of observation?
 - Example: Land Elevation vs. Soil Moisture
 - Proposal: Adopt Multi-Input Architecture
- 2. How can we model spatial patterns that change with time?
 - Flood conditioning factors have inherent spatio-temporal patterns
 - Proposal: Use ConvLSTM layers

Solution

Combine to create novel Multi-Input ConvLSTM technique

Experiments

Datasets

- Choose a variety of historical flood events from East Africa
 - Homogeneous: training and test sets originate from nearby geo-locations
 - Heterogeneous: training and test sets originate from distant geo-locations

Benchmark

- Winning solution for the UNICEF Arm 2030 Vision Competition
 - Competition Goal: Determine flood extent in Malawi
 - Model: Light Gradient Boosting Machine (LGBM)

Results

- Homogeneous Data
 - 1. Malawi dataset used for training and testing

RMSE
0.0525 ± 0.0004
0.0542 ± 0.01
0.0532 ± 0.001
0.0519 ± 0.0002
0.0572 ± 0.001
0.1021 ± 0.0001

Results

- Heterogeneous
 - 1. Mozambique used for training and Malawi used for testing
 - 2. Mozambique used for training and Kenya used for testing

Model	Malawi	Kenya
LSTM	0.1471 ± 0.03	0.2270 ± 0.01
LSTM-Autoencoder	0.1117 ± 0.02	$\textbf{0.2333} \pm \textbf{0.01}$
Multi-Input LSTM	0.0803 ± 0.01	0.2120 ± 0.01
ConvLSTM	0.1350 ± 0.02	$\textbf{0.2180} \pm \textbf{0.01}$
Multi-Input ConvLSTM	0.0890 ± 0.01	0.2169 ± 0.02
LGBM	0.2815 ± 0.002	0.2554 ± 0.01

Summary

Main Steps

- Split input features based on the frequency of satellite observation of a given feature
- Add ConvLSTM layers to model the spatio-temporal patterns
- Combine layers subsequently

Main Results

- ConvLSTM architectures are effective when training and test sets are similar
- Multi-Input architectures are effective when training and test sets are dissimilar
- Multi-Input ConvLSTM are particularly effective at generalising to various flood events

Qgithub.com/leomuckley

Thank you!