Kaggle

최필주

- 2010년 설립된 머신러닝 경진대회 플랫폼
 - 기업 연계 주최 경진대회를 통해 문제와 데이터 제공
 - 개인/팀이 모여 높은 점수를 내기 위해 경쟁하는 구조
 - 기업: 우승자의 코드와 분석 기법 활용
 - 개인: 데이터 다룰 기회와 입상 시 상금 획득

- 유명했던 대회들
 - Netflix Prize
 - 문제: 사용자의 과거 영화 평점 데이터 → 새 영화 평점 예측
 - 상금 \$1 M
 - 페이스북 V 체크인 예측 경진대회
 - 문제: 페이스북 사용자가 체크인하는 장소 예측
 - 입상 시 페이스북 채용 기회 제공

- 5가지 경진대회 유형
 - Featured: 일반적인 경진대회, 상금와 캐글 포인트 부여
 - Getting started: 머신러닝 입문자를 위한 예제 기반 학습용 경 진대회, 상금 X
 - Research: 연구 목적, 적은 상금
 - Playground: 캐글 주최 경진대회
 - Recruitment: 채용 목적, 상금 대신 채용 면접권 부여

- 2019년 초 Titanic competition 수행
 - https://www.kaggle.com/c/2019-1st-ml-month-with-kakr/overview

- 데이터 이해
 - 데이터에 대한 기초적인 통계와 시각화, 변수간 관계 확인
- 평가 척도 이해
 - 대회의 문제 의도 파악, 패널티 확인
- 교차 검증 기법 선정
 - 일정 비율로 훈련/검증 데이터로 분리
 - 훈련 데이터로 모델 학습하고 검증 데이터로 평가 → 다수 반복

- 피처 엔지니어링(*)
 - 학습에 사용할 데이터 준비: 스케일링, 이상값 제거, 결측값 대체, 범주형 데이터 변환, 변수 선정, 파생 변수 생성 등
- 모델 튜닝
 - 교차 검증 점수를 기반으로 모델의 최적 파라미터 파악
- 앙상블
 - 다수의 모델을 조합하여 사용

- Baseline 모델
 - 최소한의 선능을 보이는 기본 머신러닝 파이프라인
 - Baseline 모델을 구축해야 되는 이유
 - 올바르게 동작하는 기본 초석
 - 선능 비교의 기준점
- ◉ 재현성
 - 랜덤값을 사용하는 경우 seed 값을 고정하여 재현 가능하도록 설정

실습1. Titanic 생존자 맞추기

- 문제 정의
 - Titanic 호 탑승객의 특징(동승자, 성별, 티켓 클래스 등)에 따른 생존 결과 예측하기
 - 범주형 회귀 분석에 해당

- 데이터 읽어오기
 - rain.csv 예측 모델을 만들기 위해 사용하는 학습셋
 - test.csv 예측 모델을 이용하여 예측할 탑승객 정보가 담긴 테 스트셋
 - sampleSubmission.csv 제출시 사용할 수 있는 csv 파일

- ◉ 데이터 설명
 - 종속변수 (train 데이터 셋에만 포함되어 있음)
 - Survival: 생존유무, target 값. (0 = 사망, 1 = 생존)
 - 독립변수
 - Pclass: 티켓 클래스. (1 = 1st, 2 = 2nd, 3 = 3rd)
 - Sex: 성별
 - Age: 나이(세)
 - Sibsp (Siblings and spouse): 함께 탑승한 형제자매, 배우자 수 총합
 - Parch (Parents and children): 함께 탑승한 부모, 자녀 수 총합
 - Ticket: 티켓 넘버
 - Fare: 탑승 요금
 - Cabin: 객실 넘버
 - Embarked: 탑승 항구
 - 주의점: 결측값(NaN) 존재

- 데이터 정보 확인
 - 데이터의 양 활용: shape
 - 각 열별 데이터 정보 확인: info()
 - 각 열별 데이터의 개수가 동일하지 않음: 결측값 존재
 - 결측값 확인: isnull().sum() 활용
 - Train의 결측값이 있는 열: Age, Cabin, Embarked
 - Test의 결측값이 있는 열: Age, Fare, Cabin

- 데이터 정보 확인
 - Bar chart 활용
 - Survived와 dead 각각의 feature별 수 확인
 - 각 feature별 생존자 수와 비율 확인
 - 열 간 correlation 확인
 - df.corr() 사용

- Feature engineering
 - 숫자가 아닌 데이터 → 숫자로 맵핑
 - df[col] = df[col].map(mapping)
 - 숫자 → 범주형으로 변환하기
 - 예: 나이 → 나이 대(10대, 20대 또는 아동, 청년, 노년 등)를 구분

- Feature engineering
 - 결측값 채우기
 - fillna 함수 사용
 - 일괄 값으로 채우기: min, mean, max, median 등 사용
 - 연관되어 있는 열 정보를 기준으로 값 채우기
 - df[열1].fillna(df.groupby(열2)[열1].transform('median'), inplace = True)
 - 열1: 결측값을 채울 열
 - 열2: 관련이 있는 열
 - df.groupby(열2): 열2를 기준으로 그룹을 나누기
 - df.groupby(열2)[열1].transform('median'): 열2를 기준으로 그룹을 나눈 후 열1 선택하여 중앙값으로 채우기

- ◉ 모델링
 - 사용하는 모델
 - KNeighborsClassifier(n_neighbors = k)
 - 가까운 k명의 이웃들의 생존 결과의 다수결 결과 사용
 - DecisionTreeClassifier()
 - Decision tree 사용
 - RandomForestClassifier(n_estimators=k)
 - k 개의 작은 decision tree 사용
 - GaussianNB()
 - Naïve Bayes 활용
 - SVC(gamma = 'auto')
 - Support vector를 기준으로 생존 결과 결정

- 모델링
 - 모델 적용 및 예측
 - train용 데이터(train_data)와 target 선택
 - 모델 선택: clf = 모델_함수(파라미터)
 - 데이터 적용: clf.fit(train_data, target)
 - 예측: clf.predict(test_data)
 - 모델의 평가: train용 데이터를 일부 나눠 학습과 검증용으로 활용

- ⊙ 제출용 파일 생성
 - 하나 이상의 모델의 예측값 활용하여 제출용 파일 만들기
 - PassengerId와 Survived(예측값)만 담아 파일 제출
 - 파일의 제출: Submit Predictions 버튼을 눌러 제출

- Feature engineering Name
 - Title 정보로 부터 성별, 결혼 여부 확인 가능
 - Mr, Miss, Mrs 추출(그 외는 others로)
 - str.extract('RE', expand = False) 사용
 - '([A-Za-z]+)₩.'의 의미: 알파벳으로 시작해서 .으로 끝나는 단어
 - [A-Za-z]: 모든 알파벳
 - +: 1 or more
 - .: any character
 - ₩.: comma(.)

- 교차 검증 (Cross validation)
 - kFold 함수 사용
 - 설정
 - k_fold = KFold(n_splits=10, shuffle=True, random_state=0)
 - shuffle: 쪼개기 전에 랜덤하게 섞기
 - random_state: random 수 생성 시 seed 값
 - 교차검증
 - cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring='accuracy')
 - scoring: 반환할 값의 종류
 - 분류일 경우 accuracy
 - 회귀일 경우 RMSE(Root mean square error = RSS/root(#))
- 앙상블
 - 5가지 모델의 예측 결과를 모두 활용