This week

- Person Re-identification using ViT
 - Relation between position encoding & person re-identification

CLS Patch

This week

[4]P. Shaw, J. Uszkoreit, and A. Vaswani, "Self-attention with relative position representations," *arXiv preprint arXiv:1803.02155, 2018.*

- Positional encoding(PE)
 - APE : Patch가 encoder에 들어가기 직전

• RPE[4] : Self-attention mechanism 내부

- Relative position triplet loss
 - Idea : "같은ID의image끼리는 주요 patch들간relative position bias가 비슷할 것이다."

A 0,0 0,1 B
C 1,0 1,1 D

Ü	<u>l</u>	2	3	4	5	6		8
0.1	0.03	0.8	0.5	0.07	0.2	0.4	0.01	0.06

Relative position bias table

Absolute position

	A	Ъ	C	
A	4	3	1	0
В	5	4	2	1
C	7	6	4	3
D	8	7	5	4

Relative position index

<	M
2	

	A	В	C	D	
A	0.07	0.5	0.03	0.1	
В	0.2	0.07	0.8	0.03	
C	0.01	0.4	0.07	0.5	
D	0.06	0.01	0.2	0.07	

Relative position bias

- Relative position triplet loss
 - ▶ Idea : "같은ID의image끼리는 주요 patch들간relative position bias가 비슷할것이다."

- Relative position triplet loss
 - 같은 relative position을 갖는 patch 들이 영향을 최소화 하도록 absolute position 을 함께 사용

- Relative position triplet loss
 - 같은 relative position 을 갖는 patch 들이 영향을 최소화 하도록 absolute position 을 함께 사용

- Algorithm
- 1. Anchor, Positive, Negative sample 각각에 대해 CLS token과 similarity가 높은 N개의 patch 선별(sorted)
- 2. N개의 patch 에 대해 가능한 combination ${}_{N}C_{2}$ 개의 쌍 (a,b) 에 대해 positional relation: $P_{abs_a} \cdot P_{abs_b}^{T} + P_{rel_ab}$ 를 계산하여 원소의 개수가 ${}_{N}C_{2}$ 개인 patch distance vector (ex: [relation(1,2), relation(1,3), relation(2,3)]) 생성
- 3. Anchor, Positive, Negative의 positional relation vector에 대해 triplet loss를 적용

- Relative position triplet loss
 - Algorithm
 - 1. Anchor, Positive, Negative sample 각각에 대해 CLS token과 similarity가 높은 N개의 patch 선별(sorted)
 - 2. N개의 patch 에 대해 가능한 combination ${}_{N}C_{2}$ 개의 쌍 (a,b) 에 대해 positional relation: $P_{abs_a} \cdot P_{abs_b}^{T} + P_{rel_ab}$ 를 계산하여 원소의 개수가 ${}_{N}C_{2}$ 개인 patch distance vector (ex: [relation(1,2), relation(1,3), relation(2,3)]) 생성
 - 3. Anchor, Positive, Negative의 positional relation vector에 대해 triplet loss를 적용
- Experimental result
 - 초반 학습이 기존 방식보다 꽤 앞서지만, 후반부 학습에서 loss 가 수렴하지 못하는 현상이 매번 발생 (Learning rate 문제 X)
 - Negative 와 Anchor의 positional relation vector간 거리를 크게 만드는 것에서 loss가 발산

- > Triplet loss: Sample의 feature 간 Euclidean distance를 통한 학습방식
- Positional relation between patch a and b: $R_{a,b} = P_{abs_a} \cdot P_{abs_b}^T + P_{rel_ab}$

Ex)

N

Combination : (4,10) , (4,23) , (10,4) , (10,23) , (23,4) , (23,10) Similarity : $R_{4,10}$, $R_{4,23}$, $R_{10,4}$, $R_{10,23}$, $R_{23,4}$, $R_{23,10}$ A

P

Triplet loss

적용한 목적 →샘플들의 주요 patch 간 position관계의 유사성

- > Triplet loss: Sample의 feature 간 Euclidean distance를 통한 학습방식
- Positional relation between patch a and b: $R_{a,b} = P_{abs_a} \cdot P_{abs_b}^T + P_{rel_ab}$

Combination: (4,10), (4,23), (10,4), (10,23), (23,4), (23,10)Similarity: $R_{4,10}$, $R_{4,23}$, $R_{10,4}$, $R_{10,23}$, $R_{23,4}$, $R_{23,10}$ A $R_{4,10}$ $R_{4,23}$ $R_{10,4}$ $R_{10,23}$ $R_{23,4}$ $R_{23,10}$ list

- \triangleright Feature vector \neq list of similarity
 - Ex) 사과 0.02 0.04 0.01 0.02 0.4 -0.7-0.05 0.3 0.2 0.7 배 0.3 -0.5 맛 색깔 크기 노란색과 유사도 초록색과 유사도 파란색과 유사도 List of similarity Feature vector

Embedding space ≠ Probability

- Embedding space ≠ Probability
 - Ex) $R_{a,b} = P_{abs_a} \cdot P_{abs_b}^T + P_{rel_ab}$

Combination: (4,10), (4,23), (10,4), (10,23), (23,4), (23,10)

Similarity : $R_{4,10}$, $R_{4,23}$, $R_{10,4}$, $R_{10,23}$, $R_{23,4}$, $R_{23,10}$

P

 ⇒ Softmax

샘플들의 주요 patch 간position관계를 probability distribution으로 modeling

N

Kullback – Leibler divergence (KL divergence)

$$-\sum_{i=1}^{N} p_i \log q_i - \left(-\sum_{i=1}^{N} p_i \log p_i\right) = -\sum_{i=1}^{N} p_i \log \left(\frac{q_i}{p_i}\right)$$
Cross Entropy
Entropy

- Entropy : 어떤 확률 분포가 가지는 평균 정보량
- Cross Entropy: 실제 확률 분포 P, 모델이 예측한 분포를 Q라고 할때 평균 정보량
- Ex)
 - A,B,C,D 를 전송하는데 필요한 최소 비트수? 00,01,10,11(log₂4 = 2)
 - A~Z를 전송하는데 필요한 최소 비트수? 5bit (log₂26)
 - A,B 가 90% 확률로 발생하고, 나머지가 10%의 확률로 발생한다면?
 - ▶ 첫번째 bit : A,B인지 아닌지 판단하는 bit
 - A,B라면 추가로 1bit만 전송
 - 아니라면 추가로 5bit(log₂24) 전송
 - 0.9*(1+1) + 0.1*(1+5) = 2.4 (本 3bit)

- Kullback Leibler divergence (KL divergence)
 - Anchor와 Positive 의 position distribution list 간 KL divergence를 loss로 사용 (Negative 고려 X)

$$-\sum_{i=1}^{N} p_i \log q_i - \left(-\sum_{i=1}^{N} p_i \log p_i\right) = -\sum_{i=1}^{N} p_i \log \left(\frac{q_i}{p_i}\right)$$
 Cross Entropy Entropy

- Nonsymmetric : $D_{KL}(P||Q) \neq D_{KL}(Q||P)$
- Idea: "같은ID의image끼리는 주요 patch들간relative position bias가 비슷할 것이다."
 - → D_{KL} (Anchor, Positive) = D_{KL} (Positive, Anchor)
- Jensen Shannon divergence
 - KL divergence 가 symmetric한 성질을 가지고 있지 않기 때문에 거리 척도로 사용할 수 없어 symmetric한 성질을 가지도 록 바꾸어준 식

$$JSD(P,Q) = \frac{1}{2}D(P||M) + \frac{1}{2}D(Q||M)$$

$$where M = \frac{1}{2}(P+Q)$$

$$JSD(P,Q) = JSD(Q,P)$$