

Convergence

Plane Wave Basis

Plane-Wave Basis Functions

Core Concept:

Fill space with solutions for free electron All basis functions are orthogonal: S = E

Important Features:

Trivally only for periodic systems

Number of basis functions **independent** of

- Number of atoms
- Number of electrons

No BSSE!

Basis Set

Large number of plane-waves required to describe varying electron density (>10.000)

Even then, plane-waves cannot capture cusp of core-

electrons

> Pseudopotentials

- > Plane-augmented waves
- Muffin-tin

Describing the core

... is an art!

- Describes correctly the potential/ wave function outside the core
- Depends on the method/functional used
- Gives rise to "Ghost states"
- > "Freezes" the core electrons
- Implicitly accounts for relativistic effects

Particularly challenging for correlated methods

Plane Wave Basis set

Plane wave can be described by its energy: $E = \frac{1}{2}k^2$ Quasi-systematic basis set, determined by:

- cutoff E_{cut}
- Size and shape of the unit cell

Distance [a.u.]

The first three plane waves in a cell with various lengths

Describing molecules

Aliasing Error: H atom in a unit cell

Aliasing error can yield spurious energies / gradients depending on position within the unit cell

Plane Waves vs. LCAO

Both LCAO (all electron) and Plane Wave can be accurate

Earlier calculations less reliable, mostly due to bad pseudopotentials (pre-2010)

	Year	$\langle \Delta \rangle_{\!\! ext{versus AE}}$
JTH01/ABINIT	2013	1.1
JTH02/ABINIT	2014	0.6
Vdb/CASTEP OTFG7/CASTEP OTFG9/CASTEP	1998 2013 2015	6.5 2.6 0.7
GPAW06/GPAW	2010	3.6
GPAW09/GPAW	2012	1.6
PSlib031/QE	2013	1.7
PSlib100/QE	2013	1.0
VASP2007/VASP	2007	2.0
VASP2012/VASP	2012	0.8
VASPGW2015/VASP	2015	0.6

Lejaeghere et al., Science 25 Mar 2016:

		average <	
AE	Elk	0.6	
	exciting	0.5	
	FHI-aims/tier2	0.5	
	FLEUR	0.6	
	FPLO/T+F+s	0.9	
	RSPt	0.8	
	WIEN2k/acc	0.5	
PAW	GBRV12/ABINIT	0.9	
	GPAW09/ABINIT	1.4	
	GPAW09/GPAW	1.6	İ
	JTH02/ABINIT	0.6	
	PSlib100/QE	0.9	
	VASPGW2015/VASP	0.6	
USPP	GBRV14/CASTEP	1.1	
	GBRV14/QE	1.1	
	OTFG9/CASTEP	0.7	
	SSSP/QE	0.5	
	Vdb2/DACAPO	6.3	
	FHI98pp/ABINIT	13.3	
ď	HGH/ABINIT	2.2	
	HGH-NLCC/BigDFT	1.1	
CPP	MBK2013/OpenMX	2.0	İ
Z	ONCVPSP (PD0.1) /ABINIT		
	ONCVPSP (SG15) 1/QE		
	ONCVPSP (SG15) 2/CASTEP	1.4	

Allelectron

Planeaugmented waves

Ultra-soft Pseudo-potential

Normconserving pseudopotentials

Plane Waves vs. LCAO

Plane Wave	LCAO	
Slowly varying electron density	Strongly varying electron density	
Highly Systematic	Limited systematic	
Densely packed systems	Loosly packed systems	
Periodic	Non-periodic and periodic	
Limited chemical insight	Insight through projection schemes	
	Extrapolation schemes exist	

"best" choice of basis set depends on system in question quality of the implementations (code) Scientific quesion