

Classification

Olatz Arbelaitz: olatz.arbelaitz@ehu.eus www.aldapa.eus

- 1.- Introduction. Machine Learning for LNP
- 2.- Learning with WEKA software:
 - 2.1.-Introduction
 - 2.2.-Preprocessing Attribute (feature) selection
 - 2.3.-Evaluation
 - 2.4.- Basic ML algorithms: Naive Bayes, K-NN, Decision Trees, Rules, ...

Classification

Classification

Classification process

- Division of the corpora (*Test options*)
 - train / test
 - Cross-validation
- Classifier (Classify)
 - Set parameters
- Evaluation (*Classifier Output*)
 - Confusion matrix
 - Precision/recall
 - Microaveraging/macroaveraging

Classifiers

	Lazy: based on instances (knn) Similarity function IB1, IBk
	Bayes: based on Bayes theorem NaiveBayes NaiveBayes NaiveBayes
	Trees: based on trees
	J48, RandomForest
	Rules: Typical methods of Artificial Intelligence PART, OneR
	Functions: based on linear functions MultilayerPerceptron, Calculating functions
	SMO, Winnow
J	Meta: classifier combination AdaBoostM1, vote, stacking ← Combination of simple classifiers

5

Based on instances: K-NN classifier

HAP/LAP

k Nearest Neigbour (k-NN)

k-NN is a **lazy** classifier. The classifier is based on the learning instances stored in memory, there is not model of the categories built

1-NN The class of the new instance to be classified will be the class of its nearest neighbour in the reference pattern set (RPS)

Instances of the RPS
Class 1
Class 2

Class 3

6

Based on instances: K-NN classifier

k Nearest Neighbour (k-NN): the majority class within the K nearest instances in the RPS is chosen

Procedure to classify new instances

- Calculate the distance between the instance to classify and all the instances in the RPS
 - For example Euclidean distance (n dimensions)
- 2.- Select the k nearest instances (smallest distance)
- 3.- Assign as class the majority class within the k instances

Main parameters

Value of k, number of examples used to classify

Distance or similarity measure used to compare instances

Criteria to select the k nearest instances

Criteria to decide the class of the new instances

kNN versus 1NN

Weka: by default distance: Euclidean

measures how far/near the elements are in a vector space

In Lazy classifiers:

- IBk: the k most similar. Normalizes numeric attributes (between 0-1) to apply distances. If K>1 we can weight distances.
 - · Many distance options
- windowSize: can be used to limit the number of instances to be kept

9

Classifier

Classifier

k-NN. Example

example (text classification)

d₁: ill(3), player, doctor(5), health(2) **health**

d₂: nurse, play(3), doctor(4), health(2) **health**

d₃: player(4), play(2), doctor(2), ball(3) sport
d₄: ill(3), play(4), doctor(2), health ????

$$|d_{j},d_{z}| = \sqrt{\sum_{i=1}^{n} (w_{ji} - w_{zi})^{2}}$$

$$d_1$$
: 0 3 1 0 5 2 0 $|d_1-d_t| =$

d₂: 1003420 $|d_2-d_t| =$ **d₃:** 0042203 $|d_3-d_t| =$

d,: 0304210

dictionary

Nurse

category

Player

Play Doctor

Health Ball

Knn. Assignment

Open ReutersGrainTrain After a feature selection process, for the best set try k-NN algorithm and adjust K parameter

	k = 1	k = 3	k = 5	K =
RGT_(percentage_split)				
RGT_(CV-10 fold)				

Types of classifiers

Lazy: based on instances (knn)

IB1, IBk

Bayes: based on Bayes theorem

NaiveBayes

Trees: based on trees

J48, NBTree, RandomForest

Rules:

PART, OneR

Functions: based on linear functions

MultilayerPerceptron, SMO, Winnow

Meta: classifier combination

AdaBoostM1, vote, stacking

Naive Bayes

To see the concrete Parameters of a classifier and a short description about them click in the name of the classifier in bold and then click the "More" button

Example: document classification(spam)

http://en.wikipedia.org/wiki/Naive Bayes classifier#Docu ment Classification

Naive Bayes

Classifier based on Bayes Theorem making calculations simpler when:

The database has many features

There are not enough examples to calculate probabilities of all feature combinations.

Revision:

P(wi): prior probability of class wi

(quantifies the probability of a class without any extra information)

P(x|wi): density function probability conditioned to the class (quantifies the probability of x having a concrete value knowing the class it belongs to)

P(wi|x): posterior probability

(quantifies the probability of an instance to belong to a class)

probability of instance x (unconditional)

(distribution of the instances)

Naive Bayes

20

Bayes theorem

where

$$0 \le P(w_i) \le 1$$
 $\sum P(w_i) = 1$ $\sum P(x | w_i) = 1$ $(i=1,...,c)$ $(i=1,...,c)$

Given the prior probabilities and the density functions the **posterior probability** can be calculated (**≈classification**):

$$P(\omega_i|x) = \frac{P(x|\omega_i) * P(\omega_i)}{P(x)}$$

$$P(x) = \sum_{i=1}^{c} P(x|\omega_i) * P(\omega_i)$$

Classification with Naive Bayes

$$w_{NB} = \underset{w_i \in C}{\operatorname{arg \, max}} P(w_i) \prod_{k=\frac{1}{3}...F} P(x_f \mid w_i)$$
$$\hat{y} = \underset{k \in \{1,...,k\}}{\operatorname{arg \, max}} p(class_k) \prod_{i=1}^{k} p(x_i \mid class_k)$$

NaiveBayes

 $P(A|B) = P(A) \times P(B|A) / P(B)$

P(A): Prob. of A, P(A|B): Prob. of A given B is true and P(B|A): Prob. of B given A is true.

Example: is the web page containing word *mode* in French or in English? And the one containing *maison*?

 $P(French|mode) = P(French) \times P(mode|French) / P(mode).$

Given a word (*mode*), the probability of the document being in *French* P(French|mode) is the following: probability of the document to be in *French* P(French) and the probability of having word *mode* if the document is in *French* P(mode/French) divided by the proportion of documents containing word *mode* P(mode).

P(French) = 0.08 P(mode|French) = 0.62 P(mode) = 0.15 | P(maison|French) = 0.92 P(maison) = 0.08

 $P(French|mode) = 0.08 \times 0.62 / 0.15 = 0.33$

 $P(French|maison) = 0.08 \times 0.92 / 0.08 = 0.92$

Naive Bayes

· Features are supposed to be independent

As a consequence the probability for many features can be calculated as follows

$$P(x1,...,xF|wi) = P(x1|wi)\cdot...\cdot P(xf|wi)$$

· If xf is discrete P(xf|wi) is estimated based on the relative instance frequency of class wi taking value xf (mass function, histograms)

- · If xf is continuous
 - 1. Discretize and treat it as discrete
 - estimate P(xf|wi) assuming a gaussian (normal) distribution- (only mean and variance required)

NaiveBayes

- Bag of Words assumption => assume the position of the words in the document doesn't matter.
- Conditional Independence => Assume the feature probabilities P(xi | cj) are independent given the class c.
- To calculate P(d|c) x P(c), we calculate P(xi|c) for each xi in d, and multiply them together.
- Then we multiply the result by P(c) for the current class. We
 do this for each of our classes, and choose the class that has
 the maximum overall value.

P(ci) = [N documents that have been classified as ci]/[N documents]

P (wi | cj) = [count(wi, cj)] / [Σ w \in V count(w, cj)]

Laplace Smoothing

adding 1 to the numerator and modifying the denominator as such: $P_{ij}(x_i, y_j) = P_{ij}(x_i, y_j) + \frac{1}{2} \frac{1}{$

P (wi | cj) = [count(wi, cj) + 1] / [Σ w \in V(count (w, cj) + 1)]

P (wi | cj) = [count(wi, cj) + 1] / [Σ W \in V(count (w, cj)) + |V|] where |V| is our vocabulary size (

NaiveBayes

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:P(c)= P(i)=

Conditional Probabilities:

P(Chinese c) =	(5+1) / (8+6) = 6/14 = 3/3
P(Tokyo c) =	(0+1) / (8+6) = 1/14
P(Japan c) =	(0+1) / (8+6) = 1/14
P(Chinese j) =	(1+1) / (3+6) = 2/9
P(Tokyo j) =	(1+1) / (3+6) = 2/9

P(Japan | j) = (1+1) / (3+6) = 2/9

Choosing a class:

$$P(c \mid d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14 \approx 0.0003$$

$$P(j \mid d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

2

Types of classifiers

RandomForest

RandomTree

23

Decision trees

- Decision node: specifies a test on a single attribute
- Leaf node: indicates the value of the target attribute
- Arc/edge: split of one attribute
- Path: a disjunction of test to make the final decision

Decision trees

• Decision trees classify instances or examples by starting at the root of the tree and moving through it until a leaf node.

Meta: classifier combination

AdaBoostM1, vote, stacking

• Problem: Overfitting (good in learning, worse in generalization)

Decision trees


```
Input: Training set E (labelled instances)

Output: Decision tree (T)

Algorithm

begin

If all the examples in E are of the same category Cj

then Result simple node labelled as Cj

else

begin

Select a feature Xi with values xi1,...,xil

Partition E in E1,...,El according to the values of Xi

Build subtrees T1,...,Tl forE1,...,El

The result is a tree with root Xi and subtrees T1,...,Tl

The branches between Xi and the subtrees are labelled with xi1,...,xill
end
end
```

Decision trees

- At each node: selection of an attribute to split- choosing the most "useful" attribute for classifying examples.
 - Nominal features: as many branches as values
 - Numeric features: ≤, > // >, = , < // <, segment, >
- How to decide what is "useful"? Example: information gain
 - measures how well a given attribute separates the training examples according to their target classification
 - At each node, choose to divide the attribute with the largest information gain
- Stopping rule
 - Every attribute has already been included along this path through the tree, or
 - The training examples associated with this leaf node all have the same target attribute value (i.e., their entropy is zero).

Classifier

-

Implementation of C4.5 (Quilan): J48

Two branches in numeric attributes (\leq , >) see *iris.arff* With nominal attributes: every value see *soybean.arff*

Visualize tree

30

J48 soybean.arff

leafspot-size = lt-1/8 canker-lesion = dna

leafspots-marg = w-s-marg

seed-size = norm: bacterial-blight (21.0/1.0)

seed-size = It-norm: bacterial-pustule (3.23/1.23)

leafspots-marg = no-w-s-marg: bacterial-pustule (17.91/0.91)

leafspots-marg = dna: bacterial-blight (0.0)

canker-lesion = brown: bacterial-blight

canker-lesion = dk-brown-blk: phytophthora-rot (4.78/0.1

canker-lesion = tan: purple-seed-stain (11.23/0.23)

31

J48. Options

J48. Options

Pruning

Prepruning (forward pruning) decide where to cut when building the tree

Postpruning (backward pruning)

- generate the tree and then analyze to decide where to cut
- · most used option
- Two options in each node

subtree replacement → replace with leaves subtree raising → remove subtrees and replace with the lower part → reclassify → time

J48. Options. *labor.arff*

Subtree replacement 5 leaves bad ___ bad 2 leaves good

F-measure = 0.89

unpruned

F-measure = 0.89

34

Other tree options

- Random Tree:
 - K features are selected randomly in each node (try soybean.arff)
- ADTree: Freund, Y., Mason, L (1999)
 - Two category branches
 - Boosting iterations: adds 3 nodes in each iteration
- NBTrees: Ron Kohavi (1996)
 - NB classiefiers in leaf nodes
- DecisionStump:
 - Generates binary trees of a single level.
 - To use in Boosting methods
- Id3: R. Quinlan (1986)
 - Only nominal attributes
 - Information gain → Gain Ratio
- Random Forest:
 - forest of random trees
 - Bagging (multiple classifier system)

Types of classifiers

MultilayerPerceptron,

SMO, Winnow

Meta: classifier combination AdaBoostM1, vote, stacking

Decision rules

- Divide-and-conquer technique
- Find rules that group instances of a class and discard those that are not of the class
- Overfitting (good in learning but not generalization capacity)
- Maximize the ratio: p/t
 t: number of examples covered by the rule and p those that are positive among them
- Information gain: p[log p/t log P/T]
 gain with the new rule
 t and p the same, and P and T same value after introducing the new rule
- To introduce new rules:
 - as many positive examples as possible
 - as few negative as possible

Decision rules

Rule induction

Example iris: 3 rules

if petalwidth <= 0.6 then Iris-setosa
else if petalwidth <= 1.7 AND petallength <= 4.9
then Iris-versicolor
else Iris-virginica</pre>

Example TC

```
cyclist & Sky & ... then sport
else   if crisis & euro & ... then economy
    else ...
```

39

Decision rules: PART

38

Decision rules: PART

PART decision list------ 3 rules petalwidth <= 0.6: Iris-setosa (50.0) petalwidth <= 1.7 AND petallength <= 4.9: Iris-versicolor (48.0/1.0) : Iris-virginica (52.0/3.0)

Decision rules: PART

petalwidth <= 0.6: Iris-setosa (50.0)

petalwidth > 1.7 AND petallength > 4.8: Iris-virginica (43.0)

petallength <= 4.7 AND petalwidth <= 1.5: Iris-versicolor (42.0)

: Iris-versicolor (4.0)

Number of Rules: 5

Decision rules: other options

JRIP: similar to RIPPER (Repeated Incremental Pruning to Produce Error Reduction), in accuracy, number of rules and time. Not in memory

OneR: R.C. Holte (1993)

Generates a single rule

Prediction based on the feature with minimum error

Discretizes numeric attributes

Simple rules obtain often better results

DecisionTable: Ron Kohavi (1995)

Uses Best-first search to explore feature set

Cross-validation for evaluation

1-nn can be used when instances can not be classified with the information in

the table

Rules: petalwidth class =========== '(1.75-inf)' Iris-virginica '(0.8-1.75]' Iris-versicolor '(-inf-0.8]' Iris-setosa

43

Types of classifiers

HAP/LAP

Lazy: based on instances (knn)

IB1, IBk

Bayes: based on Bayes theorem

NaiveBayes

Trees: based on trees

J48, NBTree, RandomForest...

Rules:

PART, OneR....

Functions: based on linear functions

MultilayerPerceptron,

SMO, Logistic

Meta: classifier combination AdaBoostM1, vote, stacking **Functions**

Classifiers that can be represented with mathematical equations:

Regression

To predict based on numeric classes and attributes Ex.: cost of a flat based on size, number of bedrooms, ...

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Classification

The values of the class are discrete

Functions

Example: cost of the flat according to size A single attribute: size(x)

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Linear function (hypothesis) $h_w(x) = w_0 + w_1x$ ($w_i = weights$)

46

Functions

Example: $h_w(x) = w_0 + w_1 x$

 $w_0 = 1$ $w_1 = 0.5$ X $v_1 = 0.5$ $v_2 = 0.5$ $v_3 = 0.5$ $v_4 = 0.5$ $v_5 = 0.5$ $v_7 = 0.5$ v_7

47

Functions

How to calculate the cost of the prediction?

Linear function

$$h_w(x) = w_0 + w_1 x_1$$

 $w_i = weights$

Cost function:

$$J(w_0, w_1) = \frac{1}{2} m \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

m: number of instances

Functions

Linear regression

To predict with numeric classes and attributes.

- **The class** is represented as a linear combination of the features with predicted weights

$$C = W_0 + W_1 X_1 + W_2 X_2 + ... + W_n X_n$$
 weights are calculated from the training set

class weights features

- The predicted class for each example is calculated in the following way: $(x_0 = 1)$ $w_0x_0^{(1)} + w_1x_1^{(1)} + w_2x_2^{(1)} + ... + w_nx_n^{(1)} = \sum w_ix_i^{(1)}$

find w_j coefficients that minimize the squared difference between the predicted value and the real value

Predicted value

$$\sum_{i=1}^{m} (k^{(i)} - \sum_{j=0}^{n} w_j a_j^{(i)})^2$$
 m: instances n: number of features

Real value

Example: CPU.arff

Data

MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	class
125,	256,	6000,	256,	16,	128,	198
29,	8000,	32000,	32,	8,	32,	269
29,	8000,	32000,	32,	8,	32,	220
29,	8000,	32000,	32,	8,	32,	172

To calculate w coefficients, the following values need to be minimized:

$$(198 - \sum w_i x_i)^2 + (269 - \sum w_i x_i)^2 + (220 - \sum w_i x_i)^2 + (172 - \sum w_i x_i)^2 + ...$$

50

Functions: Artificial Neural Networks

Idea:

- model mathematically the human intellectual capacities.
- massively parallel computation schemas
- Unstable classifiers appropriate for multiple classifier systems

Universal approach property:

Some of the models, (Multilayer Perceptron (MLP), Radial Basis Function (RBF)), if an infinite number of patterns can be used, have the capacity to approach any discriminate function with a certain precision.

51

Functions: Artificial Neural Networks

Multilayer Perceptron (MLP)

Is a feedforward network where every neuron in a layer is connected to every neuron in next layer. The structure would be the following:

Functions: Artificial Neural Networks

The basic structure of an ANN is a single neuron

When the ANN has a single neuron it is called simple linear perceptron.

$$o = f\left(\sum_{j=1}^{N} w_j * x_j + w_0\right)$$

f is an identity type function, sign, sigmoid, etc.

Functions

Perceptron

At the beginning, all the weights of the features of category c_i are identical: w_{ki}

For new examples to learn (d_j) the classifier classifies with the weights the classifier has and:

If the classification is correct: no action If the classification is not correct:

If
$$d_j \in c_i$$
 then $w_{ki} := w_{ki} + \alpha \quad (\alpha > 0)$
If $d_j \notin c_i$ then $w_{ki} := w_{ki} - \alpha \quad (\alpha > 0)$
 $(w_{ki} \rightarrow all t_k \text{ where } w_{ki} = 1)$

If the weight of the feature (w_{ki}) diminishes in the learning process, feature (t_k) is not useful for classification and it can be removed (on-the-fly term space reduction)

54

Perceptron. Example

- · Document classification
 - d_i = ... book presentation in Koldo Mitxelenan ...
 - d_i = ... Europes' economy... the euro has risen
 - d_i = ... the writer will talk about the book in Koldo Mitxelena
- Representation (lemmas)
 - d_i = ... book present Koldo Mitxelena ...
 - d_i = ... Europe economy euro have rise...
 - d_i = ... writer talk about book Koldo Mitxelena ...
- Features:
 - {writer, book, present, novel, ..., read, Koldo, Mitxelena, have, Europe, economy, euro, rise, ...}
- Category:
 - Culture

55

Perceptron. Example

{x₁=writer, x₂=book, x₃=present, x₄=novel, x₅=read, x₆=Koldo, x₇=Mitxelena, x₈=have, x₉=Europe, x₁₀=economy, x₁₁=euro, x₁₂=rise, ...}

 $d_i = (x_1, x_2, ..., x_{12}) = \{0,1,1,0,0,1,1,0,0,0,0,0\}$ Culture

 $d_1 = \{0,0,0,0,0,0,0,1,1,1,1,1,1\}$ **Economy**

 $d_i = \{1,1,0,0,0,1,1,1,0,0,0,0,0\}$ Culture

Algorithm

Beginning $w_k = 0.1$; $x_0 = 1$; $\alpha = 0.8$ $d_i \rightarrow f(x) = x_0 w_0 + x_1 w_1 + x_2 w_2 + ... + x_{12} w_{12} = 0.5$ $f(x) > 0 \rightarrow \text{culture YES}$ $d_1 \rightarrow f(x) = x_0 w_0 + x_1 w_1 + x_2 w_2 + ... + x_{12} w_{12} = 0.6$ $f(x) > 0 \rightarrow \text{culture YES}$ Error \rightarrow recalculating weights $(-\alpha) w_0 - w_7 = 0.1$; $w_8 - w_{12} = -0.7$ $d_j \rightarrow f(x) = x_0 w_0 + x_1 w_1 + x_2 w_2 + ... + x_{12} w_{12} = -0.2$ $f(x) < 0 \rightarrow \text{culture NO}$ Error \rightarrow recalculating weights $(+\alpha) w_0 - w_2 = 0.9$; $w_3 - w_5 = 0.1$; $w_6 - w_7 = 0.9$; $w_8 = 0.1$; $w_9 - w_{12} = -0.7$

Classifier

hyperplane → weight vector

Functions

Winnow

To recalculate weights (α > 1, 0 < β < 1)

Multiplication instead of addition subtraction

Positive winnow

If the classification is correct: no action If the classification is not correct

If $d_j \in c_i$ then $w_{ki} := w_{ki} \times \alpha \quad (\alpha > 1)$ If $d_i \notin c_i$ then $w_{ki} := w_{ki} \times \beta \quad (0 < \beta < 1)$

Balanced winnow

Two weights for each term (+ and -)

If the classification is not correct:

 $\begin{array}{ll} \text{if dj} \in \text{ci then} & \quad w_{ki} \coloneqq w_{ki}^{\ +} \times \alpha \quad (\alpha > 1) \\ & \quad w_{ki} \coloneqq w_{ki}^{\ -} \times \beta \quad (0 < \beta < 1) \\ \text{if dj} \not \in \text{ci then} & \quad w_{ki} \coloneqq w_{ki}^{\ -} \times \alpha \\ & \quad w_{ki} \coloneqq w_{ki}^{\ +} \times \beta \end{array}$

Functions

SVM (Support Vector Machine)

Problems of linear classifiers:

- · The boundaries between two classes are linear
- Too simple for many practical applications

SVM- uses linear models to define non linear boundaries between classes

- · Projects the input data using non linear mapping
- · Converts the instance space to another space
- In the new space, the classes are linearly separable but in the original they are not.

Linear model: maximun margin hyperplane

Weka: functions/SMO classifier it is slow, CacheSize = 0

Call weka with: java -Xms512M -jar weka.jar

Functions

 Hyperplane discriminators: separate positive and negative examples by an hyperplane

58

Kernels

• Kernel Function defined in the new space

any x,
$$z \in X$$

$$K = \langle \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) \rangle$$

- The Kernel represents the similarity between two objects
- Depending on function f different kernels can be generated different learning algorithms can be used
- Advantages:
 - Not necessary to maintain the feature vectors of the data
 - Adequate to work with complex spaces
 - Good result with high dimensional problems(TC)
 - Efficient ways of calculating internal product exist

Kernels

- Document classification
 - d_i = ... book presentation in Koldo Mitxelenan ...
 - d₁ = ... Europes' economy... the euro has risen
 - $-d_i = ...$ the writer will talk about the book in Koldo Mitxelenan
- Representation (lemas)
 - d_i = ... book present Koldo Mitxelena ...
 - d_i = ... Europe economy euro have rise...
 - d_i = ... writer talk about book Koldo Mitxelena ...
- · Features:
 - {writer, book, present, nobel, ..., read, Koldo, Mitxelena, have, Europe, economy, euro, rise, ...}

Kernels

$$d_1 = x \rightarrow \phi(x) = \{0,1,1,0,0,...,0,1,1,0,0,0,0,0\}$$

$$d_2 = z \rightarrow \phi(z) = \{1,1,0,0,0,...,0,1,1,1,0,0,0,0\}$$

$$d_3 = v \rightarrow \phi(x) = \{0,0,0,0,...,0,0,0,1,1,1,1,1,1\}$$

Kernel function to measure similarity between d₁ and d₂

$$d_1 = x \Rightarrow \phi(x) = \{0, 1, 1, 0, 0, \dots, 0, 1, 1, 0, 0, 0, 0, 0\}$$

$$d_2 = z \Rightarrow \phi(z) = \{1, 1, 0, 0, 0, \dots, 0, 1, 1, 1, 0, 0, 0, 0\}$$

$$k(x, z) = \langle \phi(x) \cdot \phi(z) \rangle = 3 \text{ identical words}$$

Kernel function to measure similarity between d2 and d2

Kernels

• Three documents (d1, d2, and d3) and 13 words in the dictionary (t1, t2, ... t12,t13)

250.000 elements in matrix G

• Size: 500 doc x 10.000 word → 5.000.000 elements in matrix D

Kernels

• In the new space of the learning set, the **similarity** of each document with the rest of documents is represented.

Kernel Gram Matrix

• It is not necessary to maintain all the original information

Kernels

• The inner product does not take into account the semantic relationship between terms:

d1 = health, hospital, doctor... d2 = nurse, pills, ...

$$k(d1,d2) = \langle \phi(d1) \bullet \phi(d2) \rangle = 0$$
 identical words

• It is possible to measure similarity between words instead of document similarity $d1 = x \rightarrow \phi(x) = \{0,1,1,0,0,....,0,1,1,0,0,0,0,0,0\}$

• $d2 = z \rightarrow \phi(z) = \{1,1,0,0,0,...,0,1,1,1,0,0,0,0\}$ 0 docs with words t1 and t13 • d3 = v $\Rightarrow \phi(x) = \{0,0,0,0,0,...,0,0,0,1,1,1,1,1\}$

term by term

2 docs with words t2 and t7

Similarity between words. Different words but they appear together

Kernels

- Identity (linear kernel) $K(\mathbf{x},\mathbf{z}) = \langle \mathbf{x} \cdot \mathbf{z}
 angle$
- Polynomial (polinomy of degree d) $K(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x} \cdot \mathbf{z} \rangle + c)^d$

$$\langle \mathbf{x} \cdot \mathbf{z} \rangle^2 = \left(\sum_{i=1}^N x_i z_i \right)^2 = \left(\sum_{i=1}^N x_i z_i \right) \cdot \left(\sum_{j=1}^N x_j z_j \right) = \sum_{i=1}^N \sum_{j=1}^N x_i x_j z_i z_j = \sum_{i,j=1}^N (x_i x_j) (z_i z_j)$$

· Gaussian kernel (Radial Basis Function, RBF)

$$K(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} - \mathbf{z}\|^2 / 2\sigma^2)$$

• Sigmoid $K(\mathbf{x}, \mathbf{z}) = \tanh(\kappa \langle \mathbf{x} \cdot \mathbf{z} \rangle + \mathcal{G})$

66

SMO (sequential minimal optimization)

Weka

- Normalizes attributes
- Converts nominal attributes to binary

Select C

- small C : great error tolerance → many training examples missclassified
- bigger C: results will improve
- very big C : great importance to the training data → overfitting

Select Kernel

- Polinomial (PolyKernel): exponent
- Gaussian kernel (RBF)

67

Multiple classifier systems

Motivation:

- Statistical: For small training samples the algorithm might find different hypothesis with the same performance. Taking into account several classifiers reduces the risk of selecting the wrong classifier.
- **Representational**: In many learning problems the objective function can not be represented for none of the classifiers.
- DT example:

Decision Boundary (DB) of 3 individual DTs

Corresponding DB of the voting classifier

Multiple classifier systems

T classifiers $\Phi_1, \Phi_2, ..., \Phi_T$, to solve the same task Classification based on different learning methods

result: combination of the result of k classifiers

- Voting in classification tasks
- Average result if it is numeric

T classifiers of the same type

Bagging: same classifier different subsamples. All classifiers same weight

Boosting: complementary classifiers. (sequential learning)

Random subespace methods: classifiers built with different sets of features

Weka: Vote (select T different classifiers)

AdaBoost, Bagging, Random subespace (select a classifier)

Multiple classifier systems: bagging

Bagging: Bootstrap aggregating, (Breiman en 1996)

Classifiers built using bootstrap samples (with replacement) Generates T subsamples of size n' (n' \leq n) from S (learning sample of size n) Builds T classifiers and combines the outputs

Final decision: voting of all individual classifiers for classification Average for regression

Multiple classifier systems: RSM

Random subespace method (RSM) (Ho 1995: Random Decision Forests)

To build individual classifiers based on different subespaces

Subespace: classification space based on a subset of the original set of features

The methodology is applicable to any type of classifier

Final decision: average of class membership probabilities produced

by each individual classifier.

Multiple classifier systems: boosting

Boosting: proposed with the aim of stregthening of weak classifiers (Schapire 1990) AdaBoost (Adaptive Boosting) introduced in by 1996 Freund&Schapire.

T classifiers are built sequentially. Each of the instances in the sample has a weight which changes depending on whether its classification is correct or incorrect. resampling vs reweighting

- Weight increments for incorrectly classified examples
- Weight decrements for correctly classified examples

Final decision: weighted voting

Example

71

- soybean.arff (%66)
 - J48; RandomTree; IB1
 - AdaBoost: J48, IB1, RTree;
 - Bagging: J48, IB1, RTree;
 - Vote (J48+RandomTree); (IB1+J48+RandomTree)

	Basic	AdaBoost	Bagging	Vote
IB1				
48				
RandomTree				
348+RTree				
B1+J48+RTree				

Example

- ReutersTrainGrain_WV.arff, soybean.arff, spam.arff (%66)
 - IBK, Naive Bayes, J48, PART
 - F-measure/accuracy

