Nos problemas 14 a 21 são apresentadas transformações lineares. Para cada uma delas:

- a) Determinar o núcleo, uma base para esse subespaço e sua dimensão. T é injetora? Justificar.
- b) Determinar a imagem, uma base para esse subespaço e sua dimensão. T é sobrejetora? Justificar.

14) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (3x - y, -3x + y)$

15)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x, y) = (x + y, x, 2y)$

16)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x - 2y, x + y)$

17)
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $T(x, y, z) = (x + 2y - z, 2x - y + z)$

18)
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x - y - 2z, -x + 2y + z, x - 3z)$

19)
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $T(x, y, z) = (x - 3y, x - z, z - x)$

20) T:P₁
$$\longrightarrow$$
 \mathbb{R}^3 . T(at + b) = (a, 2a, a - b)

21)
$$T:M(2,2) \longrightarrow \mathbb{R}^2$$
, $T = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a-b, a+b)$

- 22) Seja a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que T(-2, 3) = (-1, 0, 1) e T(1, -2) = (0, -1, 0).
 - a) Determinar T(x, y).
 - b) Determinar N(T) e Im(T).
 - c) T é injetora? E sobrejetora?
- 23) Seja T: $\mathbb{R}^4 \longrightarrow \mathbb{R}^3$ a transformação linear tal que T (e₁) = (1, -2, 1), T (e₂) = (-1, 0, -1), T (e₃) = (0, -1, 2) e T (e₄) = (1, -3, 1), sendo {e₁, e₂, e₃, e₄} a base canônica do \mathbb{R}^4 .
 - a) Determinar o núcleo e a imagem de T.
 - b) Determinar bases para o núcleo e para a imagem.
 - c) Verificar o Teorema da Dimensão.

Respostas:

14) a)
$$N(T) = \{(x, 3x)/x \in \mathbb{R}\}$$
; dim $N(T) = 1$
T não é injetora, porque $N(T) \neq \{(0, 0)\}$.

b)
$$Im(T) = \{ (-y, y)/y \in \mathbb{R} \}$$
; $dim Im(T) = 1$
T não é sobrejetora, porque $Im(T) \neq \mathbb{R}^2$.

15) a)
$$N(T) = \{(0,0)\}$$
; dim $N(T) = 0$.

T é injetora, porque $N(T) = \{0\}$.

b)
$$Im(T) = \{(x, y, z) \in \mathbb{R}/2x - 2y - z = 0\}$$

dim Im(T) = 2. T não é sobrejetora, porque $Im(T) \neq \mathbb{R}^3$.

16) a)
$$N(T) = \{(0,0)\}$$
; dim $N(T) = 0$

17) a) N(T) = $\{(x, -3x, -5x)/x \in \mathbb{R}\}$

T é injetora.

b) $Im(T) = \mathbb{R}^2$

b)
$$Im(T) = IR^2$$
; dim $Im(T) = 2$; T é sobrejetora. 19) a) $N(T) = \{(3x, x, 3x)/x \in IR\}$

(9) a)
$$N(T) = \{(3x, x, 3x)/x \in \mathbb{R}\}$$

18) a) N(T) =
$$\{(3z, z, z)/z \in \mathbb{R}\}$$

b)
$$Im(T) = \{(x, y, z) \in \mathbb{R}^3 / y = -z\}$$

b)
$$Im(T) = \{(x, y, z) \in \mathbb{R}^3/2x + y - z = 0\}$$

21) a)
$$N(T) = \left\{ \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} / c, d \in \mathbb{R} \right\}$$

20) a)
$$N(T) = \{0\}$$

b)
$$Im(T) = IR^2$$

b)
$$Im(T) = \{ (a, 2a, c)/a, c \in IR \}$$

22) a)
$$T(x, y) = (2x + y, 3x + 2y, -2x - y)$$
 23) a) $N(T) = \{(3y, y, 0, -2y)/y \in \mathbb{R}\}$

a)
$$N(T) = \{(3y, y, 0, -2y)/y \in \mathbb{R}\}$$

b)
$$N(T) = \{(0,0)\}$$

$$Im(T) = IR^3$$

$$Im(T) = \{(x, y, -x)/x, y \in \mathbb{R}\}\$$

b) e c) a cargo do leitor.

c) T é injetora, mas não sobrejetora.