1 Generative modelling

Learn $p_{\text{model}} \approx p_{\text{data}}$, sample from p_{model} .

- Explicit density:
- Approximate:
- * Variational: VAE, Diffusion
- Markov Chain: Boltzmann machine
- Tractable:
- FVSBN/NADE/MADE * Autoregressive: Pixel(c/R)NN, WaveNet/TCN, Autor. Transf.
- Normalizing Flows
- Implicit density:
- Direct: Generative Adversarial Networks
- MC: Generative Stochastic Networks

Autoencoder: $X \rightarrow Z \rightarrow X$, $q \circ f \approx id$, f and q | **forcing**: feed GT as previous output. are NNs. Optimal linear autoencoder is PCA. Overcomp. is for denoising, inpainting. Latent space should be continuious and inter- Masked Autoencoder Distribution Estima-

polable. Autoencoder spaces are neither, so they are only good for reconstruction.

2 Variational AutoEncoder (VAE)

Sample z from prior $p_{\theta}(z)$, to decode use conditional $p_{\theta}(x \mid z)$ defined by a NN.

gence, measure similarity of prob. distr. $D_{KL}(P||Q) \neq D_{KL}(Q||P), D_{KL}(P||Q) \geq 0$

Likelihood $p_{\theta}(x) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$ is hard to max., let enc. NN be $q_{\theta}(z \mid x)$, $\log p_{\theta}(x^i)$ =

 $\mathbb{E}_{z} \left[\log p_{\theta}(x^{i} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{i}) || p_{\theta}(z)) + |$ Use conv. stacks to mask correctly.

 $D_{\text{KL}}(q_{\phi}(z \mid x^{i}) || p_{\theta}(z \mid x^{i}))$. Red is intractable, NLL is a natural metric for autoreg. models, use ≥ 0 to ignore it; Orange is reconstruction hard to evaluate others. loss, clusters similar samples; Purple makes | WaveNet: audio is high-dimensional. Use di-| • Squeeze: reshape, increase chan. Orange – Purple is **ELBO**, maximize it.

 $x \xrightarrow{\mathrm{enc}} \mu_{z|x}, \Sigma_{z|x} \xrightarrow{\mathrm{sample}} z \xrightarrow{\mathrm{dec}} \mu_{x|z}, \Sigma_{x|z} \xrightarrow{\mathrm{sample}} \hat{x}$ Backprop through sample by reparametr.: z =

to distinct factors of variation. Can be done with semi-supervised learning by making z

disentangle s.t. $D_{KL}(q_{\phi}(z \mid x) || p_{\theta}(z)) < \delta$ with KKT: max Orange – β Purple.

3 Autoregressive generative models

Autoregression: use data from the same input variable at previous time steps Discriminative: $P(Y \mid X)$, generative: P(X, Y), maybe with *Y* missing. Sequence models are

generative: from $x_i \dots x_{i+k}$ predict x_{i+k+1} .

tion is too strong. Let $p_{\theta_i}(x_i \mid \mathbf{x}_{< i})$ Bern $(f_i(\mathbf{x}_{< i}))$, where f_i is a NN. Fully Visi- 4 Normalizing Flows

ble Sigmoid Belief Networks: $f_i = \sigma(\alpha_0^{(i)} + | \text{VAs}| \text{ dont}| \text{ have a tractable likelihood}, |\mathbf{z}_B^1 = f_\phi^{-1}(\mathbf{x}_B^1 | \mathbf{x}_A^1); \text{ encode extra info (image, } \mathbf{x}_A^1)$ $\alpha^{(i)} \mathbf{x}_{< i}^{\mathsf{T}}$, complexity n^2 , but model is linear.

Neural Autoregressive Density Estimator: add hidden layer. $\mathbf{h}_i = \sigma(\mathbf{b} + \mathbf{W}_{\cdot, < i} \mathbf{x}_{< i}), \hat{x}_i = |f(z)| p_x(x) = p_z(f^{-1}(x)) |\det \frac{\partial f^{-1}(x)}{\partial x}|$ $\sigma(c_i + \mathbf{V}_{i,i}\mathbf{h}_i)$. Order of **x** can be arbitrary but fixed. Train by max log-likelihood in O(TD), $p_z(f^{-1}(x)) \left| \det \frac{\partial f(z)}{\partial z} \right|^{-1}$. Map $Z \to X$ with a can use 2nd order optimizers, can use **teacher**

Extensions: Convolutional; Real-valued: con-Undercomplete: |Z| < |X|, else overcomplete. ditionals by mixture of gaussians; Order-less and deep: one DNN predicts $p(x_k \mid x_{i_1} \dots x_{i_i})$

tor: mask out weights s.t. no information flows from x_d ... to \hat{x}_d . Large hidden layers needed. Trains as fast as autoencoders, but sampling needs D forward passes.

PixelRNN: generate pixels from corner, dependency on previous pixels is by RNN (LSTM). $D_{\text{KL}}(P||Q) := \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$: KL diver- PixelCNN: also from corner, but condition by CNN over context region (perceptive field) \Rightarrow parallelize. For conditionals use masked convolutions. Channels: model R from context, $G | p_x(x) = p_z(f^{-1}(x)) \prod_k \left| \det \frac{\partial f_k^{-1}(x)}{\partial x} \right|$. from R + cont., B from G + R + cont. Training Sample $z \sim p_z$ and get x = f(z). is parallel, but inference is sequential \Rightarrow slow.

posterior close to prior, adds cont. and interp. lated convolutions to increase perceptive field | • ActNorm: batchnorm with init. s.t. with multiple layers.

AR does not work for high res images/video, $y_{i,j} = s \odot x_{i,j} + b$, $x_{i,j} = (y_{i,j} - b)/s$, convert the images into a series of tokens with $\log \det = H \cdot W \cdot \sum_i \log |\mathbf{s}_i|$: linear. an AE: Vector-quantized VAE. The codebook • 1 × 1 conv: permutation along

Disentanglement: features should correspond is a set of vectors. $x \xrightarrow{\text{enc}} z \xrightarrow{\text{codebook}} z_q \xrightarrow{\text{dec}} \hat{x}$. We can run an AR model in the latent space.

3.1 Attention \mathbf{x}_t is a convex combination of conditionally independent of given features y. the past steps, with access to all past steps. For 2.1 β -VAE $\max_{\theta,\phi} \mathbb{E}_x \left[\mathbb{E}_{z \sim q_\phi} \log p_\theta(x \mid z) \right] \text{ to } \left| X \in \mathbb{R}^{T \times D} : K = XW_K, V = XW_V, Q = XW_Q. \right|$

mask *M* to avoid looking into the future:

$$X = \operatorname{Softmax} \left(\frac{(XW_Q)(XW_K)^{\mathsf{T}}}{\sqrt{D}} + M \right) (XW_V)$$

Multi-head attn. splits W into h heads, then StyleFlow: Take StyleGAN and replace the Tabular approach: $p(\mathbf{x}) = \prod_i p(x_i \mid \mathbf{x}_{\leq i})$, concatenates them. Positional encoding injects network $\mathbf{z} \to \mathbf{w}$ (aux. latent space) with a needs 2^{i-1} params. Independence assump-information about the position of the token. normalizing flow conditioned on attributes. = Attn. is $O(T^2D)$.

AR models have no latent space. Change of variable for x deterministic invertible f_{θ} . This can be a NN but computing the determinant is $O(n^3)$. If the Jacobian is triangular, the determinant is O(n). To do this, add a coupling layer:

$$\begin{pmatrix} y^A \\ y^B \end{pmatrix} = \begin{pmatrix} h(x^A, \beta(x^B)) \\ x^B \end{pmatrix} \quad \mbox{where } \beta \ \mbox{is any} \\ \mbox{model, and } h \ \mbox{is elementwise.}$$

$$\begin{pmatrix} x^A \\ x^B \end{pmatrix} = \begin{pmatrix} h^{-1}(y^A, \beta(y^B)) \\ y^B \end{pmatrix}, J = \begin{pmatrix} h' & h'\beta' \\ 0 & 1 \end{pmatrix}$$

Stack these for expressivity, $f = f_k \circ \dots f_1$

$$\times (L-1)$$
 (z_i) \times $(L-1)$ \times (z_i) \times $(L-1)$ \times $(L-1)$

ActNorm

output $\sim \mathcal{N}(0, \mathbf{I})$ for first minibatch.

channel dim. Init W as rand. ortogonal $\in \mathbb{R}^{C \times C}$ with det **W** = 1. log det = $H \cdot W \cdot \log |\det \mathbf{W}| : O(C^3)$. Faster: $\mathbf{W} :=$

PL(U + diag(s)), where P is a random fixed permut. matrix, L is lower triang. with 1s on diag., U is upper triang. with 0s on diag., s Check pairwise similarity between query and is a vector. Then $\log \det = \sum_i \log |\mathbf{s}_i|$: O(C)keys via dot product: let attention weights be | Conditional coupling: add parameter \mathbf{w} to β . $\alpha = \text{Softmax}(QK^T/\sqrt{D}), \ \alpha \in \mathbb{R}^{1 \times T}$. Adding **SRFlow**: use flows to generate many high-res

images from a low-res one. Adds affine injector between conv. and coupling layers. \mathbf{h}^{n+1} $\exp(\beta_{\theta,s}^n(\mathbf{u})) \cdot \mathbf{h}^n + \beta_{\theta,b}(\mathbf{u}), \mathbf{h}^n = \exp(-\beta_{\theta,s}^n(\mathbf{u}))$ $(\mathbf{h}^{n+1} - \beta_{\theta,h}^n(\mathbf{u}))$, $\log \det = \sum_{i,j,k} \beta_{\theta,s}^n(\mathbf{u}_{i,j,k})$.

C-Flow: condition on other normalizing flows: multimodal flows. Encode original image \mathbf{x}_{p}^{1} : $\begin{vmatrix} \mathbf{a} \\ \mathbf{z} \end{vmatrix}$ segm. map, etc.) \mathbf{x}_A^2 : $\mathbf{z}_A^2 = g_\theta^{-1}(\mathbf{x}_A^2)$; generate new image \mathbf{x}_{B}^{2} : $\mathbf{x}_{B}^{2} = f_{\phi}(\mathbf{z}_{B}^{1} \mid \mathbf{z}_{\Delta}^{2})$.

Flows are expensive for training and low res. The latent distr. of a flow needn't be \mathcal{N} .

Generative Adversarial Networks (GANs)

Log-likelihood is not a good metric. We can have high likelihood with poor quality by mixing in noise and not losing much likelihood; or low likelihood with good quality by remembering input data and having sharp peaks there. **Generator** $G: \mathbb{R}^Q \to \mathbb{R}^D$ maps noise z to

data, **discriminator** $D: \mathbb{R}^D \to [0,1]$ tries to decide if data is real or fake, receiving both gen. outputs and training data. Train *D* for *k* steps for each step of *G*. Training GANs is a min-max process,

which are hard to optimize. V(G, D) = $\mathbb{E}_{\mathbf{x} \sim p_{d}} \log(D(\mathbf{x})) + \mathbb{E}_{\hat{\mathbf{x}} \sim p_{m}} \log(1 - D(\hat{\mathbf{x}}))$ For *G* the opt. $D^* = p_d(\mathbf{x})/(p_d(\mathbf{x}) + p_m(\mathbf{x}))$. Jensen-Shannon divergence (symmetric): $D_{\rm IS}(p||q) = \frac{1}{2}D_{\rm KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{\rm KL}(p||\frac{p+q}{2})$ Global minimum of $D_{IS}(p_d||p_m)$ is the glob.

min. of V(G, D) and $V(G, D^*) = -\log(4)$.

If G and D have enough capacity, at each update step D reaches D^* and $p_{\rm m}$ improves $V(p_{\rm m}, D^*) \propto \sup_{D} \int_{\mathbf{x}} p_{\rm m}(\mathbf{x}) \log(-D(\mathbf{x})) d\mathbf{x},$ then $p_{\rm m} \to p_{\rm d}$ by convexity of $V(p_{\rm m}, D^*)$ wrt. $p_{\rm m}$. These assumptions are too strong.

If D is too strong, G has near zero gradients and doesn't learn $(\log'(1-D(G(z))) \approx 0)$. Use gradient ascent on $\log(D(G(z)))$ instead.

Model collapse: G only produces one sample or one class of samples. Solution: unrolling use k previous D for each G update. DCGAN: pool \rightarrow strided convolution, batch-

norm, no FC, ReLU for G, LeakyReLU for D. Wasserstein GAN: different loss, gradients don't vanish. Adding gradient penalty for D stabilizes training. Hierarchical GAN: generate low-res image, then high-res during training. StyleGAN: learn intermediate latent space W with FCs, batchnorm with scale and mean from *W*, add noise at each layer.

ulate images in latent space, inpainting. If G predicts image and segmentation mask, we can use inversion to predict mask for any image, even outside the training distribution.

5.1 3D GANs 3D GAN: voxels instead of pix-| Sampling: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$, for t = T downto 1: els. PlatonicGAN: 2D input, 3D output differ- $|\mathbf{z} \sim \mathcal{N}(0, I)$ if t > 1 else $\mathbf{z} = 0$;

GRAF: radiance fields more effic. than voxels $|\sigma_t^2| = \beta_t$ in practice. t can be continuous.

GIRAFFE: GRAF + 2D conv. upscale EG3D: use 3 2D images from StyleGAN for model.

features, project each 3D point to tri-planes. 5.2 Image Translation E.g. sketch $X \rightarrow \text{image} \mid \text{that add something to block outputs.}$

Needs pairs for training.

id; $G \circ F \approx$ id plus GAN losses for F and G. BicycleGAN: add noise input.

Vid2vid: video translation.

6 Diffusion models

more stable/scalable.

moves noise from \mathbf{x}_t (learned).

$$q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1-\beta}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_{t}, t), \sigma_{t}^{2}\mathbf{I})$$

$$\beta_{t} \text{ is the variance schedule (monotone }\uparrow). \text{ Let }$$

$$\alpha_{t} \coloneqq 1 - \beta_{t}, \overline{\alpha}_{t} \coloneqq \prod \alpha_{i}, \text{ then } q(\mathbf{x}_{t} \mid \mathbf{x}_{0}) =$$

$$\mathcal{N}(\sqrt{\overline{\alpha}_{t}}\mathbf{x}_{0}, (1-\overline{\alpha}_{t})\mathbf{I}) \Rightarrow \mathbf{x}_{t} = \sqrt{\overline{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1-\overline{\alpha}_{t}}\epsilon.$$
Denoising is not tractable naively: $q(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) = q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1})q(\mathbf{x}_{t-1})/q(\mathbf{x}_{t}), \ q(\mathbf{x}_{t}) =$

$$\int q(\mathbf{x}_{t} \mid \mathbf{x}_{0})q(\mathbf{x}_{0})d\mathbf{x}_{0}.$$

$$\mathbb{E}_{\pi}[G_{t} \mid S_{t} = \mathbf{s}] = \mathbb{E}_{\pi}[R_{t+1} + \gamma_{t}]$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a)$$

$$S_{t+1} = s']$$

$$S_{t+1} = s']$$

$$S_{t+1} = s'$$

$$S_{t+1}$$

model $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \approx q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$ by pre- $|\pi'(s)| = \arg\max_{a \in A} (r(s, a) + \gamma V_{\gamma}(p(s, a)))$. dicting the mean.

$$\log p(\mathbf{x}_0) \geq \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log \left(\frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right) = \mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)} \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) - D_{\mathrm{KL}}(q(\mathbf{x}_T|\mathbf{x}_0)||p(\mathbf{x}_T)) - \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$$
 where orange and purple are the same as in

where orange and purple are the same as in VAEs, and blue are the extra loss functions. In a sense VAEs are 1-step diffusion models.

so we want $\mu_{\theta}(\mathbf{x}_t, t) \approx \mu_q(\mathbf{x}_t, \mathbf{x}_0)$. $\mu_q(\mathbf{x}_t, \mathbf{x}_0)$ can be written as $\frac{1}{\sqrt{\alpha_t}}\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha_t}}\sqrt{\alpha_t}}\epsilon_0$, and term. state.

GAN inversion: find z s.t. $G(z) \approx x \Rightarrow \text{manip-} \mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\alpha_{t}}} \sqrt{\alpha_{t}} \hat{\epsilon}_{\theta}(\mathbf{x}_{t}, t)$, so the 7.3 Temporal Difference learning For each $s \to \infty$ 8.1 Learning 3D Implicit Shapes Inference: to NN learns to predict the added noise.

Training: img \mathbf{x}_0 , $t \sim \text{Unif}(1...T)$, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$

GD on $\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t) \|^2$.

entiably rendered back to 2D for *D*.
HoloGAN: 3D GAN + 2D superresolution GAN
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha_t}}} \epsilon_{\theta}(\mathbf{x}_t, t)) + \sigma_t \mathbf{z}.$$

6.1 Conditional generation Add input *y* to the

ControlNet: don't retrain model, add layers ues of states that have not been visited.

Y. Pix2Pix: $G: X \to Y$, $D: X, Y \to [0,1]$. Guidance: mix predictions of a conditional values. Loss is $(R + \gamma \max_{a'} Q_{\theta}(S', a'))$ GAN loss $+L_1$ loss between sketch and image. and unconditional model, because conditional $Q_{\theta}(S,A)$, backprop only through $Q_{\theta}(S,A)$. color to $c(\hat{p})$. Backward: see proofs. models are not diverse.

CycleGAN: unpaired. Two GANs $F: X \to [6.2]$ Latent diffusion models High-res images for training \Rightarrow no correlation in samples. $Y,G:Y\to X$, cycle-consistency loss $F\circ G\approx$ are expensive to model. Predict in latent space, 7.6 Deep Q-networks Encode state to low didecode with a decoder.

7 Reinforcement learning

(not learned). Denoising (reverse) step p_{θ} : re-|Value $V_{\pi}: S \to \mathbb{R}$, the reward from s under π . Bellman eq.: $G_t := \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}, v_{\pi}(s) :=$ $[S_{t+1} = s']] = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)[r+1]$ $yv_{\pi}(s')$]]. Can be solved via dynamic programming (needs knowledge of p), Monte-Carlo or

7.1 Dynamic programming Value iteration: compute optimal v_* , then π_* .

Policy iteration: compute v_{π} and π together. Conditioning on \mathbf{x}_0 we get a Gaussian. Learn For any V_{π} the greedy policy (optimal) is

> **Bellman optimality**: $v_*(s) = \max_a q_*(s, a) =$ $= |\max_a \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')] \Rightarrow \text{update}$ step: $V_{\text{new}}^*(s) = \max_{a \in A} (r(s, a) + \gamma V_{\text{old}}^*(s'))$ when $V_{\text{old}}^* = V_{\text{new}}^*$, we have optimal policy.

Converges in finite steps, more efficient than iterates over all states and O(|S|) memory.

s' by action a update: $\Delta V(s) = r(s, a) + |\text{get a mesh, sample points, predict occupan-}$ $|\gamma V(s') - V(s)|$. ε -greedy policy: with prob. cy/SDF, use marching cubes. ε choose random action, else greedy.

 $S_t = s, A_t = a$ **SARSA** (on-policy): For each $S \to S'$ by action on the surface. Weak supervision: loss = A update: $\Delta Q(S,A) = r(S,A) + \gamma Q(S',A')$ - $Q(S,A), Q(S,A) += \alpha \Delta Q(S,A), \alpha$ is LR.

Q-learning (off-policy/offline): $\Delta Q(S, A) =$ $R_{t+1} + \gamma \max_a Q(S', a) - Q(S, A)$

All these approaches do not approximate val-Rendering: for a point conditioned on en-

Store history in replay buffer, sample from it 8.2 Neural Radiance Fields (NeRF)

mensionality with NN.

7.7 Policy gradients Q-learning does not han-Environment is a Markov Decision Process: dle continuous action spaces. Learn a policy distates S, actions A, reward $r: S \times A \to \mathbb{R}$, rectly instead, $\pi(a_t \mid s_t) = \mathcal{N}(\mu_t, \sigma_t^2 \mid s_t)$. Sam-High quality generations, better diversity, transition $p: S \times A \rightarrow S$, initial $s_0 \in S$, dis-ple trajectories: $p(\tau) = p(s_1, a_1, \dots, s_T, a_T) = S$ count factor γ . r and p are deterministic, can $|\hat{p}(s_1) \prod \pi(a_t|s_t)\hat{p}(s_{t+1}|a_t,s_t)$. This is on-policy. views of the scene. Can handle transparen-Diffusion (forward) step q: adds noise to \mathbf{x}_t be a distribution. Learn policy $\pi: S \to A$. Eval: $J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\sum_t \gamma^t r(s_t, a_t)]$. To optimize, need to compute \mathbb{E} (see proofs).

REINFORCE: MC sampling of τ . To reduce $\mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s] = |\text{variance, subtract baseline } b(s_t) \text{ from reward.}$ $\sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid]$ Actor-Critic $\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i} \sum_{t} \nabla \log \pi_{\theta}(a_{t}^{i} \text{Fourier feats. Adds high frequency feats.}$ $(s_t^i)(r(s_t^i, a_t^i) + \gamma V(s_{t+1}^i) - V(s_t^i))$. $\pi = \text{actor}, V(s_t^i)$

> out of distribution, needs expensive mocap. **DeepMimic:** RL to imitate reference motions | MLP. For x interp. features between corners.

while satisfying task objectives.

8 Neural Implicit Representations

compl.). Meshes have limited granularity and have self-intersections. **Implicit representation**: $S = \{x \mid f(x) = 0\}$. Can be invertibly represented as signed distance function values render them. Adaptive density control moves/policy iteration. But needs knowledge of p, on a grid, but this is again n^3 . By UAT, ap-clones/merges points. prox. f with NN. Occupancy networks: pre-7.2 Monte Carlo sampling Sample trajectories, dict probability that point is inside the shape. t-th denoising is just arg min $_{\theta} \frac{1}{2\sigma_{a}^{2}(t)} \|\mu_{\theta} - \mu_{q}\|_{2}^{2}$, estimate v_{π} by averaging returns. Doesn't need DeepSDF: predict SDF. Both conditioned on μ') $\Sigma'^{-1}(x - \mu')$, rest same as NeRF. full p, is unbiased, but high variance, explo-linput (2D image, class, etc.). Continuious, any ration/exploitation dilemma, may not reach topology/resolution, memory-efficient. NFs 9.1 Pictorial structure Unary terms and paircan model other properties (color, force, etc.). wise terms between them with springs.

8.1.1 From watertight meshes Sample points 7.4 Q-learning Q-value f.: $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid]$ in space, compute GT occupancy/SDF, CE loss. 8.1.2 From point clouds Only have samples $|f_{\theta}(x_i)|^2 + \lambda \mathbb{E}_x(||\nabla_x f_{\theta}(x)|| - 1)^2$, edge points

should have $\|\nabla f\| \approx 1$ by def. of SDF, $f \approx 0$. 8.1.3 From images Need differentiable rendering 3D \rightarrow 2D. **Differentiable Volumetric**

coded image, predict occupancy f(x) and RGB 7.5 Deep Q-learning Use NN to predict Q- $|\operatorname{color} c(x)|$. Forward: for a pixel, raymarch and root find $\hat{p}: f(\hat{p}) = 0$ with secant. Set pixel

 $(x, y, z, \theta, \phi) \xrightarrow{\text{NN}} (r, g, b, \sigma)$. Density is predicted before adding view direction θ , ϕ , then one layer for color. **Forward**: shoot ray, sample points along it and blend: $\alpha = 1 \left| \exp(-\sigma_i \delta_i), \delta_i \right| = t_{i+1} - t_i, T_i = \prod_{i=1}^{i-1} (1 - \alpha_i),$ color is $c = \sum_{i} T_{i} \alpha_{i} c_{i}$. Optimized on many cy/thin structure, but worse geometry. Needs many (50+) views for training, slow rendering for high res, only models static scenes.

8.2.1 Positional Encoding for High Frequency Details Replace x, y, z with pos. enc. or rand.

8.2.2 NeRF from sparse views Regularize ge-= critic. Est. value with NN, not traj. rollouts. ometry and color.

7.9 Motion synthesis Data-driven: bad perf. 8.2.3 Fast NeRF render, and train. Replace deep MLPs with learn. feature hash table + small

8.3 3D Gaussian Splatting Alternative **SFV**: use pose estimation: videos \rightarrow train data. **parametr.**: Find a cover of object with primitives, predict inside. Or sphere clouds. Both Voxels/volum. primitives are inefficient (n^3 | ineff. for thin structures. Ellipsoids are better. Initialize point cloud randomly or with an approx. reconstruction. Each point has a 3D Gaussian. Use camera params. to project transformed without accuracy loss. Usually ("splat") Gaussians to 2D and differentiably

> Rasterization: for each pixel sort Gaussians by depth, opacity $\alpha = o \cdot \exp(-0.5(x - 1))$

9 Parametric body models

9.2 Deep features Direct regression: predict $\frac{\partial L}{\partial \mathbf{b}_{i}^{(l)}}$ = same, but no z. joint coordinates with refinement.

Heatmaps: predict probability for each pixel, 10.1 Activation functions maybe Gaussian. Can do stages sequentially. 9.3 3D Naive 2D \rightarrow 3D lift works. But can't define constraints \Rightarrow 2m arms sometimes.

Skinned Multi-Person Linear model (SMPL) is the standard non-commerical model. 3D mesh, base mesh is \sim 7k vertices, designed by an artist. To produce the model, point clouds (scans) need to be aligned with the mesh. **Shape deformation subspace**: for a set of human meshes T-posing, vectorize their vertices T and subtract the mean mesh. With PCA represent any person as weighted sum of 10-300 basis people, $T = S\beta + \mu$.

For pose, use **Linear Blend Skinning**. $\mathbf{t}'_i =$ $\sum_k w_{ki} G_k(\theta, \mathbf{J}) \mathbf{t}_i$, where **t** is the T-pose positions of vertices, t' is transformed, w are weights, G_k is rigid bone transf., θ is pose, J are artifacts. SMPL: $\mathbf{t}'_i = \sum_k w_{ki} G_k(\boldsymbol{\theta}, \mathbf{J}(\boldsymbol{\beta})) (\mathbf{t}_i + \mathbf{J}(\boldsymbol{\beta})) (\mathbf{t$ $\mathbf{s}_i(\boldsymbol{\beta}) + \mathbf{p}_i(\boldsymbol{\theta})$). Adds shape correctives $\mathbf{s}(\boldsymbol{\beta}) =$ $S\beta$, pose cor. $p(\theta) = P\theta$, J dep. on shape β . and camera parameters.

9.3.1 Optimization-based fitting Predict 2D joint locations, fit SMPL to them by argmin $|\hat{l}_y/fast$. **RMSProp**: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho)\nabla \odot \nabla$ self-occlusion, no depth info, non-rigid deformation (clothes).

frame, then track with SMPL.

9.3.3 Animatable Neural Implicit Surfaces Model base shape and w with 2 NISs.

10 ML

linearly separable. MAP $\theta^* \in \arg\max p(\theta)$ (X, y). MLE $\theta \in \arg\max p(y \mid X, \theta)$ consistent, efficient. Binary cross-entropy $L(\theta) =$

backward weights: $\left[\frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{w}_{ij}^{(l)}}\right]_{k} = f'(\mathbf{a})_{k} \cdot z_{j}^{(l)} \cdot \text{backward kernel: } \frac{\partial z_{i,j}^{(l)}}{\partial \mathbf{w}_{m,n}^{(l)}} = \delta^{(l)} * ROT_{180}(z^{(l-1)}).$ $[k=i], \frac{\partial^2 L}{\partial \mathbf{z}^{(l)} \partial \mathbf{z}^{(l)}} = \delta^{(l)} \frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{w}_{i,j}^{(l)}}, \text{ backward bias:}$ Size after conv or pool: (in+2·pad-dil·(kern-1)/stride + 1, rounded down.

	name	f(x)	f'(x)	f(X)
	sigmoid	$\frac{1}{1+e^{-x}}$	$\sigma(x)(1-\sigma(x))$	(0, 1)
	tanh	$\frac{1+e^{-x}}{e^x-e^{-x}}$	$1 - \tanh(x)^2$	(-1,1)
	ReLU 1	$\max(0, x)$	$[x \ge 0]$	$[0,\infty)$
Finite range: stable training, mapp prob. space. Sigmoid, tanh saturate with large mod have small gradient).				
				ate (value
				ent), Tanh
	is linear around 0 (easy learn), ReLU of			
	blow up activation; piecewise linear \Rightarrow fas			
convergence.				

10.2 GD algos SGD: use 1 sample. For sum structured loss is unbiased. High variance, efficient, jumps a lot \Rightarrow may get out of local min., may overshoot. **Mini-batch**: use m < nsamples. More stable, parallelized. **Polyak's momentum**: velocity $\mathbf{v} = \alpha \mathbf{v} - \epsilon \nabla_{\theta} L(\theta), \theta =$ joint positions. Linear assumption produces $|\theta + v|$. Move faster when high curv., consistent or noisy grad. Nesterov's momen**tum**: $\mathbf{v} := \alpha \mathbf{v} - \epsilon \nabla_{\theta} L(\theta + \alpha \mathbf{v})$. Gets grad. at future point. AdaGrad: $r = r + \nabla \odot \nabla$, Predicting human pose is just predicting β , $\theta \mid_{\Delta \theta} = -\epsilon/(\delta + \sqrt{r}) \odot \nabla$. Grads decrease fast for variables with high historical gradients, slow for low. But can decrease LR too earwith prior regularization. Argmin is hard to use weighted moving average \Rightarrow drop history $\arg\max_{i} z_{i}^{(l-1)}$, $\frac{\partial z^{(l)}}{\partial z^{(l-1)}} = [i = i^*]$, $\delta^{(l-1)} = \delta_{i^*}^{(l)}$ find, learn $F: \Delta \theta = F(\frac{\partial L_{reproj}}{\partial \theta}, \theta^t, x)$. Issues: from distant past, works better for nonconvex. Adam: collect 1st and 2nd moments: $\mathbf{m} \coloneqq \beta_1 \mathbf{m} + (1 - \beta_1) \nabla, \mathbf{v} \coloneqq \beta_2 \mathbf{v} + (1 - \beta_2) \nabla \odot \nabla,$ 9.3.2 Template-based capture Scan for first unbias: $\hat{\mathbf{m}} = \mathbf{m}/(1-\beta_1^t), \hat{\mathbf{v}} = \mathbf{v}/(1-\beta_2^t)$ $\Delta\theta = -\frac{\eta}{\sqrt{\hat{\mathbf{v}}} + \epsilon} \hat{\mathbf{m}}.$

11 CNN

T is linear if $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v})$ Perceptron converges in finite time iff data is invariant to f if $T(f(\mathbf{u})) = T(\mathbf{u})$, equivariant to f if $T(f(\mathbf{u})) = f(T(\mathbf{u}))$. Any |, usually $\mathbf{h}_t = \tanh(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_t)$. linear shift-equivariant T can be written $|\mathbf{BPTT}: \frac{\partial L}{\partial \mathbf{W}}| = \sum_t \frac{\partial L_t}{\partial \mathbf{W}}$, treat unrolled model tent, efficient. Binary cross-entropy $L(\theta) = -y_i \log(\hat{y}_i) - (1-y_i) \log(1-\hat{y}_i)$. Cross-entropy $H(p_d, p_m) = H(p_d) + D_{\text{KL}}(p_d \| p_m)$. For any continuous $f \exists \text{NN } g(x), |g(x) - f(x)| < \varepsilon$. 1 hidden layer is enough, activation function needs to be nonlinear.

MLP backward inputs: $\delta^{(l)} = \delta^{(l+1)} \cdot \frac{\partial z^{(l+1)}}{\partial z^{(l)}}$, $\delta^{(l)} = \delta^{(l+1)} \cdot \frac{\partial z^{(l+1)}}{\partial z^{(l)}}$, inputs: $\delta^{(l-1)} = \frac{\partial C}{\partial z_{i,j}^{(l-1)}} = \delta^{(l)} * \text{ROT}_{180}(w^{(l)})$, as infinitely an input in the production of the produc

1D conv as matmul:
$$\begin{bmatrix} k_1 & 0 & \dots & 0 \\ k_2 & k_1 & & \vdots \\ k_3 & k_2 & k_1 & 0 \\ 0 & k_3 & k_2 & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Backprop example (rotate **K**):

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 4 & 2 & 3 \\ 2 & 3 & 3 \end{bmatrix}$$

$$X \longrightarrow K \longrightarrow Y = X * K \longrightarrow$$

$$\begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow Y' = Pool(Y) & \partial E/\partial Y' \rightarrow \partial E/\partial Y \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \partial E/\partial K \rightarrow \partial E/\partial V$$

Max-pooling:
$$z^{(l)} = \max_{i} z_{i}^{(l-1)}$$
. $i^* := \arg\max_{i} z_{i}^{(l-1)}$, $\frac{\partial z^{(l)}}{\partial z_{i}^{(l-1)}} = [i = i^*]$, $\delta^{(l-1)} = \delta_{i^*}^{(l)}$.

Unpooling: nearest-neighbor (duplicate), bed of nails (only top left, rest 0), max-unpooling (remember where max came from when pooling). Learnable upsampling: transposed conv, output is copies of filter weighted by input, summed on overlaps.

Vanilla RNN: $\hat{y}_t = \mathbf{W}_{hy}\mathbf{h}_t$, $\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t, \mathbf{W})$

as a convolution. Convolution: I'(i, j) = |as multi-layer. Exploding/vanishing gra-

13 Proofs

TODO: MLP backprop

BPTT ρ is the identity function, ∂^+ is the immediate derivative, ignoring the effect from recurrence.

$$\begin{array}{lll} \frac{\partial \mathbf{h}_{t}}{\partial W} & = & \frac{\partial}{\partial W} \mathbf{h}_{t}(\rho(W), \mathbf{h}_{t-1}(W)) & = & \frac{\partial \mathbf{h}_{t}}{\partial \rho} \frac{\partial \rho}{\partial W} + \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial W} & = \\ \frac{\partial^{+} \mathbf{h}_{t}}{\partial W} + \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial W} & = & \frac{\partial^{+} \mathbf{h}_{t}}{\partial W} + \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \left[\frac{\partial^{+} \mathbf{h}_{t-1}}{\partial W} + \frac{\partial \mathbf{h}_{t-1}}{\partial \mathbf{h}_{t-2}} \frac{\partial^{+} \mathbf{h}_{t-2}}{\partial W} + \dots \right] & = \\ \sum_{k=1}^{t} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} \frac{\partial^{+} \mathbf{h}_{k}}{\partial W} \mid \frac{\partial L_{t}}{\partial W} & = & \frac{\partial L_{t}}{\partial W} \frac{\partial \hat{y}_{t}}{\partial \mathbf{h}_{t}} \sum_{k=1}^{t} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} \frac{\partial^{+} \mathbf{h}_{k}}{\partial W} \end{array}$$

KL for ELBO Let $p(z) = \mathcal{N}(0, \mathbf{I}), q(z \mid x) = \mathcal{N}(\mu, \sigma^2 \mathbf{I}),$ $J := \dim z. \text{ By } \int p(z) \log q(z) dz = -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j=1}^{J} \log \sigma_{q,j}^2 - \frac{1}{2} \sum_{j=1}^{J} \frac{\sigma_{p,j}^2 + (\mu_{p,j} - \mu_{q,j})^2}{\sigma_{q,j}^2} \text{ we have } \int q(z \mid x) \log p(z) dz = -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j=1}^{J} (\sigma_j^2 + \mu_j^2) \text{ and } \int q(z \mid x) \log q(z \mid x) dz = \frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j=1}^{J} (\log \sigma_j^2 + 1), \text{ so } -D_{\text{KL}}(q(z \mid x) \| p(z)) = \frac{1}{2} \sum_{j=1}^{J} (1 + \log \sigma_j^2 - \mu_j^2 - \sigma_j^2)$

Optimal discriminator D^* maximizes $V(G, D) = \int_X p_d \log D(x) dx + \int_Z p(z) \log (1 - D(G(Z))) dz = \int_X p_d \log D(x) dx + p_m(x) \log (1 - D(x)) dz$, and for $f(y) = a \log(y) + b \log(1 - y) : f'(y) = \frac{a}{y} - \frac{b}{1-y} \Rightarrow f'(y) = 0 \Leftrightarrow y = \frac{a}{a+b}, f''(\frac{a}{a+b}) = -\frac{a}{\left(\frac{a}{a+b}\right)^2} - \frac{b}{\left(1-\frac{a}{a+b}\right)^2} < 0$ for $a, b > 0 \Rightarrow$ max. at $\frac{a}{a+b} \Rightarrow D^* = \frac{p_d(x)}{p_d(x) + p_m(x)}$

Expectation of reparam. $\nabla_{\varphi}\mathbb{E}_{p_{\varphi}(z)}(f(z)) = \nabla_{\varphi}\int p_{\varphi}(z)f(z)\mathrm{d}z = \nabla_{\varphi}\int p_{\varphi}(z)f(z)\mathrm{d}z = \nabla_{\varphi}\int p_{\varphi}(z)f(g(\epsilon,\varphi))\mathrm{d}\epsilon = \mathbb{E}_{p(\epsilon)}\nabla_{\varphi}f(g(\epsilon,\varphi))$ Bellman operator converges Want to prove that value iteration converges to the optimal policy: $\lim_{k\to\infty}(T^*)^k(V) = V_*$, where $T^*(V) = \max_{a\in A}\sum_{s',r}p(s',r\mid s,a)(r(s,a)+\gamma V(s'))$. T^* is a contraction mapping, i.e. $\max_{s\in S}|T^*(V_1(s))-T^*(V_2(s))|\leq \gamma\max_{s\in S}|V_1(s)-V_2(s)|$: LHS $\leq \max_{s,a}|\sum_{s',r}p(s',r\mid s,a)(r(s,a)+\gamma V_2(s'))|=\gamma\max_{s,a}|\sum_{s',r}p(s',r\mid s,a)(V_1(s')-V_2(s'))|=RHS$. By the contraction th., T^* has a unique fixed point, and we know V^* is a FP of T^* . As $\gamma<1$, LHS $(V,V^*)\to0$ and $T^*(V)\to V_*$.

Policy gradients $J(\theta) = \mathbb{E}_{\tau \sim p(\tau)}[r(\tau)] = \int p(\tau)r(\tau)d\tau.$ $\nabla_{\theta}J(\theta) = \int \nabla_{\theta}p(\tau)r(\tau)d\tau = \int p(\tau)\nabla_{\theta}\log p(\tau)r(\tau)d\tau = \mathbb{E}_{\tau \sim p(\tau)}[\nabla_{\theta}\log p(\tau)r(\tau)] = \mathbb{E}_{\tau \sim p(\tau)}[\nabla_{\theta}\log p(\tau)r(\tau)].$ $\log p(\tau) = \log[p(s_1)\prod \pi_{\theta}(a_t \mid s_t)p(s_{t+1} \mid a_t, s_t)] = 0 + \sum_t \log \pi_{\theta}(a_t \mid s_t) + 0$ $\nabla_{\theta}J(\theta) = \mathbb{E}_{\tau \sim p(\tau)}[(\sum_t \nabla \log p_{\theta}(a_t^i \mid s_t^i))(\sum_t \gamma^t r(s_t^i, a_t^i))]: \max$

likelihood, trajectory reward scales the gradient. Implicit differentiation $\frac{dy}{dx}$ of $x^2 + y^2 = 1$:

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(1) \Rightarrow \frac{d}{dx}x^2 + \frac{d}{dx}y^2 = 0 \Rightarrow 2x + (\frac{d}{dy}y^2)\frac{dy}{dx} = 0$$

$$\Rightarrow 2x + 2y\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

DVR Backward pass $\frac{\partial L}{\partial \theta} = \sum_{u} \frac{\partial L}{\partial \hat{\mathbf{l}}} \cdot \frac{\partial \hat{\mathbf{l}}_{u}}{\partial \theta} \mid \frac{\partial \hat{\mathbf{l}}_{u}}{\partial \theta} = \frac{\partial c_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial t_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta}.$

Ray $\hat{\mathbf{p}} = r_0 + \hat{d}\mathbf{w}$, r_0 is camera pos., \mathbf{w} is ray dir., \hat{d} is ray dist Implicit def.: $f_{\theta}(\hat{\mathbf{p}}) = \tau$. Diff.: $\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} = 0 \Rightarrow \frac{\partial \hat{\mathbf{p}}}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \frac{\partial \hat{d}}{\partial \theta} = 0 \Rightarrow \frac{\partial \hat{\mathbf{p}}}{\partial \theta} = \mathbf{w} \frac{\partial \hat{d}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w}\right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} = 14$ Appendix

Secant Method Line $(x_0, f(x_0)) \to (x_1, f(x_1))$, approx.: $y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1) + f(x_1)$, y = 0 at $x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$. Approximates Newton's method without derivatives.

Implicit plane from 3 points $(x_1, 0, 0), (0, y_1, 0), (0, 0, z_1) \Rightarrow x/x_1 + y/y_1 + z/z_1 - 1 = 0$. More generally: let a, b any vectors on plane, $n := a \times b = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \Rightarrow n_1x + n_2y + n_3z + k = 0$, subst. any point to find k.

Torus equation $(\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2$, cent. 0, around z axis.

Derivatives $(f \cdot g)' = f'g + fg'$, $(f/g)' = (f'g - fg')/g^2$, $(f \circ g)' = f'(g)g'$, $(f^{-1})' = 1/f'(f^{-1})$, $(\log x)' = 1/x$.

Linear algebra $\det(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}}) = (1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}) \det \mathbf{A}$ Jensen's inequality $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ and $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$ if f is convex, i.e. $\forall t \in [0, 1], x_1, x_2 \in X : f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$.

Misc A translation vector is added. Bayes rule: $P(A \mid B) = P(B \mid A)P(A)/P(B)$.