Динамические кратчайшие пути

Иванов Кирилл 371 группа

Вам дан ориентированный взвешенный граф G с положительными весами. Обновление — увеличение веса ребра (уменьшения запрещены). Предполагается, что кратчайшие пути уникальны (между парой вершин x и y есть только один кратчайший путь). Из этого следует, что если между вершинами x и y есть несколько однородных путей, то вершины в этих путях попарно различны (кроме самих конечных вершин x и y).

Задача 1 (а). Доказать: не более, чем n^3 путей в графе после увеличения веса ребра *становятся* однородными. В качестве доказательства придумайте такой худший случай.

Докажем сперва следующее вспомогательное утверждение.

Утверждение 1. Если в ориентированном взвешенном графе G с положительными весами, обновление которого – увеличение веса ребра, кратчайшие пути уникальны, то между любыми вершинами u и v существует не более n-1 однородного пути.

Доказательство. Заметим, что путь, соединяющий u и v и не являющийся ребром (u,v), содержит минимум одну вершину, отличную от u и v. Пусть между вершинами u и v существует n-1 или более однородных путей, ни один из которых не является ребром (u,v). Всего в графе n-2 вершины, отличные от u и v, тогда по принципу Дирихле есть хотя бы два пути, которые содержат одну и ту же вершину. Пришли к противоречию.

Таким образом, между вершинами u и v существует не более n-2 однородных путей, ни один из которых не является ребром (u,v), а учитывая возможное наличие ребра (u,v), приходим к выводу, что между вершинами u и v существует не более n-1 однородных путей.

Теперь докажем утверждение задачи 1 (а).

Доказательство. Всего в графе можно выделить $A_n^2 = \frac{n!}{(n-2)!} = n(n-1)$ пар вершин (u,v). Между вершинами u и v из каждой пары существует не более n-1 однородных путей. Тогда в графе может быть не более $n(n-1)^2$ однородных путей в каждый момент времени, а значит и при изменении веса ребра может появиться не более $n(n-1)^2 < n^3$ однородных путей.

Теперь рассмотрим пример графа, в котором после увеличения веса ребра полявляется $O(n^3)$ однородных путей. На рисунке 1 представлен такой граф до увеличения веса ребра (u_0,v_0) , а на рисунке 2 — после. Красным цветом обозначены однородные пути соединяющие вершины из набора $\{\alpha_i\}$ с вершинами из набора $\{\beta_j\}$. Изначально ребра $(u_i,v_i), i\in 1:k$ не входили ни в один вышеупомянутый однородный путь, поскольку существовал более короткий путь, проходящий через (u_0,v_0) . После увеличения веса (u_0,v_0) рёбра $(\omega_1,u_j), j\in 1:k$ были включены в однородные пути, соединяющие $\{\alpha_i\}$ с $\{\beta_j\}, |\{\alpha_i\}| = O(n), |\{\beta_j\}| = O(n)$ и $|\{u_p\}_{p=1}^k| = O(n)$. То есть появилось $|\{\alpha_i\}| \cdot |\{\beta_j\}| \cdot |\{u_p\}_{p=1}^k| = O(n^3)$ однородных путей.

Рис. 1: Граф до изменения ребра (u_0, v_0)

Рис. 2: Граф после изменения ребра (u_0, v_0)

Задача 1 (b). Доказать: не более, чем n^2 путей в графе после увеличения веса ребра перестают быть однородными.

Доказательство. Допустим, мы увеличили вес ребра (i,j). Заметим, что между любыми двумя вершинами u и v ($u \neq i, v \neq j$) может существовать максимум 1 однородный путь, содержащий ребро (i,j), иначе бы нарушилось предположение о попарной различности вершин на однородных путях. Также между вершинами i и j может существовать только 1 однородный путь, содержащий (i,j), — само это ребро. То есть между любыми вершинами u и v может существовать максимум 1 однородный путь, содержащий ребро (i,j). Всего в графе можно выделить $A_n^2 = \frac{n!}{(n-2)!} = n(n-1)$ пар вершин (u,v). Значит, в графе может быть не более $1 \cdot n(n-1)$ однородных путей, содержащих ребро (i,j). Следовательно, при увеличении веса (i,j) только $n(n-1) < n^2$ однородных путей может исчезнуть. \square