Губайдуллин Роман V3116

Сортировка выбором

Для массива A[N] инвариант сортировки выбором такой:

 $A[0] \le A[1] \&\&$

 $A[1] \le A[2] \&\&$

 $A[i-1] \le A[i],$

где і — итератор.

Доказательство:

- До входа во внешний цикл сортировки i=0, следовательно инвариант: A[0] <= A[0] истинен.
- После первого прохода по телу цикла на 0 место встает наименьший элемент масива, а i=1. Инвариант: A[0] <= A[1], так как A[0] минимальный элемент из всех.
- Так как после каждого прохода тела цикла на текущее место ставится минимальный элемент из оставшихся(по методу мат. Индукции с базой i=1 и шагом 1), то для каждой итерации инвариант будет истинным.
- Когда i = N, массив будет полностью отсортирован, значит, что после цикла инвариант так же будет истинным.

Доказано.

Анализ сложности:

for(size_t i = 0; i < arrSize - 1; i++)	C_1	N
size_t iMin = i;	C_2	N-1
for(size_t j = i + 1; j < arrSize; j++)	C ₃	$\sum_{l=0}^{N-1} Ti$
if(array[j] < array[iMin])	C ₄	$\sum_{l=0}^{N-1} (Tl-1)$
iMin = j;	C ₅	$\sum_{l=0}^{N-1} (Tl-1)$
if(iMin != i)	C_6	N-1
swap(array[iMin], array[i]);	C ₇	N-1

$$T_n = C_1 N + (C_2 + C_6 + C_7)(N-1) + C_3 * \sum_{l=0}^{N-1} Tl + (C_4 + C_5) * \sum_{l=0}^{N-1} (Tl - 1)$$

- Best case(C_5 = 0, C_7 =0): T_n = C_1N +(C_2 + C_6)(N-1)+ $C_3N(N$ -1)/2+ C_4 (N(N-1)/2 N) Сложность: $O(N^2)$
- Worst case:

 $T_n=C_1N+(C_2+C_6+C_7)(N-1)+C_3N(N-1)/2+(C_4+C_5)(N(N-1)/2-N)$ Сложность: $O(N^2)$