+ · * < 2021 SMARCLE 겨울방학 인공지능 스터디 (• *

넷째마당 - 10장~11장-3

3주차 1팀 2021.1.19.

김건우 박지하 송혜원

목차

1. 딥러닝 활용하기

(1) 폐암 수술 환자의 생존율 예측

(2) 교차 엔트로피

2. 딥러닝과 데이터

- (1) 피마 인디언 데이터 분석하기
- (2) Pandas를 활용한 데이터 조사

폐암 수술 환자의 생존율 예측하기

표 2-1 폐암 수술 환자의 의료 기록 데이터 속성 											클래스 							
줄 항목	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	293	1	3.8	2,8	0	0	0	0	0	0	12	0	0	0	1	0	62	0
2	1	2	2,88	2,16	1	0	0	0	1	1	14	0	0	0	1	0	60	0
3	8	2	3.19	2,5	1	0	0	0	1	0	11	0	0	1	1	0	66	1
•••																		
470	447	8	5.2	4.1	0	0	0	0	0	0	12	0	0	0	0	0	49	0

~실습 타임~

* Google colab을 실행해주세요.

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])

교차 엔트로피

* 실제 값을 yt, 예측 값을 yo라고 가정할 때

	mean_squared_error	평균 제곱 오차					
		계산: mean(square(yt - yo))					
	mean_absolute_error	평균 절대 오차(실제 값과 예측 값 차이의 절댓값 평균)					
때그 리고 레여		계산: mean(abs(yt - yo))					
평균 제곱 계열	mean_absolute_percentage_error	평균 절대 백분율 오차(절댓값 오차를 절댓값으로 나눈 후 평균)					
		계산: mean(abs(yt - yo)/abs(yt) (단. 분모 ≠ 0)					
	mean_squared_logarithmic_error	평균 제곱 로그 오차(실제 값과 예측 값에 로그를 적용한 값의 차이를					
		제곱한 값의 평균)					
		계산: mean(square((log(yo) + 1) - (log(yt) + 1)))					
교차 엔트로피	categorical_crossentropy	범주형 교차 엔트로피(일반적인 분류)					
계열	binary_crossentropy	이항 교차 엔트로피(두 개의 클래스 중에서 예측할 때)					

교차 엔트로피

model.fit(X, Y, epochs=100, batch_size=10)

	속성						
	정보 1	정보 2	정보 3		정보 17	생존 여부	
1번째 환자	293	1	3,8		62	0	
2번째 환자	1	2	2,88		60	0	
3번째 환자	8	3	3.19		66	1	
470번째 환자	447	8	5.2		49	0	

데이터 나누기 - 좋은데이터와 나쁜데이터?

〈나쁜데이터〉

- 1. 충분하지 않은 양의 데이터
- 2. 대표성 없는 훈련 데이터
- 3. 낮은 품질의 데이터
- 4. 관련 없는 특성

〈좋은데이터〉

- 1. 충분한 양의 데이터
- 2. 대표성 있는 훈련 데이터
- 3. 좋은 품질의 데이터
- 4. 관련 있는 특성

Pandas를 활용한 피마 인디언 데이터 분석하기

import pandas as pd

6,148,72,35,0,33,6,0,627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23,3,0,672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 5,116,74,0,0,25.6,0.201,30,0 3,78,50,32,88,31.0,0.248,26,1 10,115,0,0,0,35.3,0.134,29,0 2,197,70,45,543,30.5,0.158,53,1 8,125,96,0,0,0.0,0.232,54,1 4,110,92,0,0,37.6,0.191,30,0 10, 168, 74, 0, 0, 38, 0, 0, 537, 34, 1 10,139,80,0,0,27.1,1.441,57,0 1,189,60,23,846,30.1,0.398,59,1 5,166,72,19,175,25.8,0.587,51,1 7,100,0,0,0,30.0,0.484,32,1 0,118,84,47,230,45.8,0.551,31,1 7,107,74,0,0,29.6,0.254,31,1 1,103,30,38,83,43.3,0.183,33,0 1,115,70,30,96,34.6,0.529,32,1 3,126,88,41,235,39.3,0.704,27,0 8,99,84,0,0,35.4,0.388,50,0 7,196,90,0,0,39.8,0.451,41,1

~실습 타임~

* Google colab을 실행해주세요.

~질문 타임~ *^{질문 환영}

1팀이었습니다.

잘 들어주셔서 감사합니당!!

