BS6207 Homework 3

Isaac Lin

1. Result for each function

No.	Function	Formula
1	MaxPool2d	$h_{xy}^l = \max_{i=0,\dots,s,j=0,\dots,s} \mathbf{h}_{(x+i)(y+j)}^{l-1}$
2	AvgPool2d	$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j)$
3	Conv2d	$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$
4	ConvTrans- pose2d	Gradient of Conv2d with respect to its input, also known as a deconvolution
5	Flatten	Flattening a zero-dimensional tensor will return a one-dimensional view
6	Sigmoid	$S(x)=rac{1}{1+e^{-x}}$
7	Roi Pooling	Single feature mapping for all the proposals generated by RPN in a single pass
8	Batch Normalization	$\hat{x}^{(k)} = rac{x^{(k)} - \mathrm{E}[x^{(k)}]_{\mathcal{B}}}{\sqrt{\mathrm{Var}[x^{(k)}]_{\mathcal{B}}}}$
9	Cross Entropy	$\log(x, class) = -\log\left(rac{\exp(x[class])}{\sum_{j} \exp(x[j])} ight) = -x[class] + \log\left(\sum_{j} \exp(x[j]) ight)$
10	MSE Loss	$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Using all the functions as listed, my torch_out and my_out for every function gives the same values of precision of up to 4 decimal places.