Inhaltsverzeichnis

ele Zahlen	1
Zahlenmengen	1
Eigenschaften der reellen Zahlen	1
Wichtige Ungleichungen	
gen	3
Konvergenz	3
Monotone Folgen	4
hen	5
Definition	5
Konvergenzkriterien	5
Rechenregeln	6
Exponentialfunktion	

1. Reele Zahlen

1.1 Zahlenmengen

- 1. Definition Abzählbarkeit
 - A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$
 - \iff A kann durchnummeriert werden
 - Beispiele:
 - $\mathbb Q$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - ℝ ist nicht abzählbar (Widerspruchsbeweis)
- 2. Anordnung von Körpern
 - Der Körper $\mathbb R$ ist angeordnet da:
 - 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - -a=0 oder
 - -a > 0 oder
 - -a < 0
 - 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - -a+b>0 und
 - $-a \cdot b > 0$
 - Der Körper C kann nicht angeordnet werden da:
 - Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - * a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - * -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
 - Somit gilt in jedem Fall $a^2 > 0$
 - * Sei a = i dann gilt $a^2 = -1$
 - * Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

- 1. Beschränktheit
 - Eine Menge $M \subseteq \mathbb{R}$ ist nach oben beschränkt, falls sein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$ gilt: $s \leq s_0$
 - Die Zahl s_0 heißt obere Schranke von ${\cal M}$
- 2. Supremumsaktiome von \mathbb{R}
 - Jede nichtleere, nach oben beschränkte Menge von $\mathbb R$ hat eine kleinste obere Schranke, diese heißt sup $M\in\mathbb R$
 - Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M\in\mathbb R$
 - Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet

1. REELE ZAHLEN 2

- Konventionen:
 - $-\sup M=\infty$ falls Mnicht nach oben beschränkt ist $-\inf M=-\infty$ falls Mnicht nach unten beschränkt ist $-\sup\emptyset=-\infty$
- 3. R ist archimedisch
 - $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n
- 4. Die rationalen Zahlen liegen dicht in $\mathbb R$
 - $\forall a, b \in \mathbb{R}$ mit a < b existiert $r \in \mathbb{N}$ mit a < r < b

1.3 Wichtige Ungleichungen

- 1. Dreiecksungleichung
 - $\begin{array}{ll} \bullet & \forall x,y \in \mathbb{R} \text{ gilt:} \\ & |x+y| \leq |x| + |y| \\ & |x+y| \geq ||x| |y|| \end{array}$
- 2. Cauchy-Schwarz ungleichung
 - $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

- 1. Definition
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung $\mathbb{N}\to\mathbb{R}$ mit $n\mapsto a_n$
- 2. Rechenregeln Grenzwerte:
 - Falls $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ dann gilt:
 - $-\lim_{n\to\infty} (a_n + b_n) = a + b$
 - $-\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
 - $-\lim_{n\to\infty}(c\cdot a_n)=c\cdot a$
 - $-\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$ falls $b\neq 0$

2.1 Konvergenz

- 1. Definition Konvergenz
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert zu $a\in\mathbb{C}$ falls:
 - $-\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 |a_n a| < \varepsilon$
 - * Kurzschreibweise:
 - $\begin{array}{ccc}
 \cdot & \lim_{n \to \infty} a_n = a \\
 \cdot & a_n \stackrel{n \to \infty}{\longrightarrow} a
 \end{array}$
- 2. Definition Divergenz
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert falls:
 - $\forall a \in \mathbb{R} \exists \varepsilon > 0 \forall n_0 \in \mathbb{N} \exists n > n_0 |a_n a| \ge \varepsilon$
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen ∞ falls (konvergiert uneigentlich):
 - $\forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 a_n \geq K$
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen $-\infty$ falls (konvergiert uneigentlich):
 - $\ \forall K > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 a_n \le -K$
- 3. Asymptotische Equivalenz
 - Falls $a_n \stackrel{n \to \infty}{\longrightarrow} a$ und $b_n \stackrel{n \to \infty}{\longrightarrow} b$ mit $a, b \neq 0$ dann gilt:
 - $-a_n \simeq b_n$ falls $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ bzw. $\lim_{n\to\infty} \frac{b_n}{a_n} = 1$
 - * Außerdem: Falls $a_n \simeq b_n$ dann gilt:
 - sind entweder beide Folgen konvergent oder beide divergent
- 4. Beschränktheit
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist beschränkt falls $\exists K\in\mathbb{R} \forall n\in\mathbb{N} |a_n|\leq K$
 - Insbesondere ist eine Folge beschränkt falls sie konvergiert
- 5. Einschließungsregel
 - Falls $a_n \leq b_n \leq c_n$ für alle bis auf endlich viele n dann gilt:
 - Falls $a \in \mathbb{R}$ mit $\lim_{n \to \infty} a_n = a = \lim_{n \to \infty} c_n$ dann gilt $\lim_{n \to \infty} b_n = a$

2. FOLGEN 4

2.2 Monotone Folgen

- 1. Definition
 - Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend falls $a_n\leq a_{n+1}$ für alle $n\in\mathbb{N}$
 - Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton fallend falls $a_n\geq a_{n+1}$ für alle $n\in\mathbb{N}$
- 2. Zusammenhang mit Supremum und Infimum
 - Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge ist dann gilt:

$$-\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n$$

• Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge ist dann gilt:

$$-\lim_{n\to\infty}a_n=\inf_{n\in\mathbb{N}}a_n$$

- 3. Hilfreiche Formeln
 - Bernoulli'sche Ungleichung

$$-(1+x)^n \ge 1 + nx$$
 für $x > -1$ und $n \in \mathbb{N}$

• Binomialkoeffizienten

$$-(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

• Endliche Geometrische Summe

$$-\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

3. Reihen

3.1 Definition

- 1. Definition
 - Eine Reihe $(s_n)_{n\in\mathbb{N}}$ ist eine Reihe für die Folge $(a_n)_{n\in\mathbb{N}}$ mit

 - $-\ s_n = \sum_{k=0}^n a_k$ Hierbei ist s_n die n-te Partialsumme der Reihe.
 - Falls s_n konvergiert, dann heißt die Reihe konvergent. Der Grenzwert heißt dann der Wert der Reihe.
 - Falls die Reihe der Absolutbeträge einer Folge konvergiert, dann heißt die ursprüngliche Reihe absolut konvergent
- 2. Hilfreiche Reihen
 - Harmonische Reihe

 - $\begin{array}{l} -s_n = \sum_{k=1}^n \frac{1}{k} \\ -s_n \text{ divergiert nach } \infty \end{array}$
 - Geometrische Reihe

 - $-s_n = \sum_{k=0}^n q^k$ $-s_n \text{ divergiert nach } \infty \text{ falls } |q| \ge 1 \text{ und konvergiert nach } \frac{1}{1-q} \text{ falls } |q| < 1$

 - Teleskopreihe $s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} \frac{1}{k+1})$ $s_n \text{ konvergiert gegen } 1$

3.2 Konvergenzkriterien

- 1. Notwendige Bedingung
 - s_n konvergiert $\implies \lim_{n\to\infty} a_n = 0$
- 2. Zusammenhang mit Beschränktheit
 - s_n konvergiert $\iff a_n$ beschränkt falls $a_n \ge 0 \forall n \in \mathbb{N}$
- 3. Majorantenkriterium
 - Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und $\lim_{n \to \infty} b_n = b$, dann ist a_n konvergent.
- 4. Minorantenkriterium
 - Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und a_n divergiert, dann ist aucg b_n divergent.
- 5. Quotientenkriterium

 - Sei $q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

 Falls q < 1, dann ist konvergiert die Summe $\sum_{n=1}^{\infty} a_n$.
 - Für q > 1 divergiert diese.
 - Ansonsten ist keine Aussage möglich.
- 6. Alternierende Reihen

3. REIHEN 6

- Sei $(a_n)_{n\in\mathbb{N}_{\vdash}}$ monoton fallend mit $\lim_{n\to\infty}a_n=0$ dann konvergiert die alternierende Reihe $s=\sum_{k=0}^{\infty}(-1)^ka_k$ Hergeleitet durch Einschließungsregel mit den Folgen der geraden und ungeraden Indizes

3.3 Rechenregeln

3.4 Exponential funktion