Homework 4

- 1. Prove that a barrel in a Banach space is the closure of its interior.
- **2.** Let X be a normed vector space, and M a vector subspace of X considered as a normed vector space itself. Let $M^{\perp} \subset X^*$ be the set of all $f \in X^*$ such that $M \subset \ker(f)$; that is, $f \in M^{\perp}$ iff $f|_M = 0$. It is easy to see that M^{\perp} is closed in X^* .
 - (a.) If M is closed, show that $x \in M$ iff f(x) = 0 for all $f \in M^{\perp}$.
 - (b.) Show that there is a natural equivalence $M^* \equiv X^*/M^{\perp}$ which agrees in the norm.
- **3.** Show that if X is a reflexive Banach space, and M is a closed subspace of X, then M is reflexive.
- **4.** Assume that E, F are closed subspaces of a Banach space X such that $E \cap F = \{0\}$, and $X = \operatorname{span}(E \cup F)$. (Such spaces are called closed complements of each other.) Show that the map $(v, w) \to v + w$ is a homeomorphism of $E \times F$ onto X. Conclude that for a closed subspace E of a Banach space there is a continuous projection map $X \to E$ iff E has a closed complement.
- **5.** (a.) Let X be a normed vector space over \mathbb{C} , and let $f \in X^*$ with $||f||_{X^*} = 1$. Show that the map $f: X \to \mathbb{C}$ induces a norm preserving map of the quotient space $X/\ker(f)$ onto \mathbb{C} .
 - (b.) If X is reflexive, show that there is $x \in X$ with ||x|| = 1 such that $\inf_{v \in \ker(f)} ||x v|| = 1$.