IMO 1967

Cetinje, Yugoslavia

Day 1

The parallelogram ABCD has AB = a, AD = 1, $\angle BAD = A$, and the triangle ABD has all angles acute. Prove that circles radius 1 and center A, B, C, D cover the parallelogram if and only

 $a \le \cos A + \sqrt{3}\sin A$.

- 2 Prove that a tetrahedron with just one edge length greater than 1 has volume at most $\frac{1}{8}$.
- 3 Let k, m, n be natural numbers such that m + k + 1 is a prime greater than n + 1. Let $c_s = s(s+1)$. Prove that

$$(c_{m+1}-c_k)(c_{m+2}-c_k)\dots(c_{m+n}-c_k)$$

is divisible by the product $c_1c_2 \dots c_n$.

Cetinje, Yugoslavia

Day 2

- 4 $A_0B_0C_0$ and $A_1B_1C_1$ are acute-angled triangles. Describe, and prove, how to construct the triangle ABC with the largest possible area which is circumscribed about $A_0B_0C_0$ (so BC contains B_0 , CA contains B_0 , and AB contains C_0) and similar to $A_1B_1C_1$.
- 5 Let a_1, \ldots, a_8 be reals, not all equal to zero. Let

$$c_n = \sum_{k=1}^8 a_k^n$$

for $n = 1, 2, 3, \ldots$ Given that among the numbers of the sequence (c_n) , there are infinitely many equal to zero, determine all the values of n for which $c_n = 0$.

In a sports meeting a total of m medals were awarded over n days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining n medals were awarded. How many medals did the meeting last, and what was the total number of medals?