Recommender Systems

Data Science Dojo

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

Recommender Systems

What are Recommender Systems?

 Automated systems to filter and recommend products based on users' interest and taste.

Designed to solve the information overload problem

Why recommendation systems?

For customer

- Narrow down the set of choices
- Discover new, interesting things
- Save time

Why recommendation systems?

For businesses

- Increase the number of items sold
- Sell more diverse items
- Better understand what the user wants
- Increase user satisfaction

Recommender Systems

User profile & Contextual parameters

Personalized recommendations

Recommender systems reduce information overload by estimating relevance

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

Example: Netflix

Example: Retail & Social Media

- Most popular recommendation algorithm
 - Used by large, commercial e-commerce sites
 - Well-understood, variety of algorithms
 - Applicable to many domains (books, movies, songs,...)

 Approach: borrow the "wisdom of the crowd" to recommend items

- Assumption:
 - Users give ratings to items
 - Users who have similar tastes in the past will have similar tastes in the future.
- User-based collaborative

Item-based collaborative

- Assumption:
 - Users give ratings to items
 - Users who have similar tastes in the past will have similar tastes in the future.
- User-based collaborative

Item-based collaborative

Movie Rating Example

Alice	5	3	4	4	(?)
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

User-Based Collaborative Filtering

Goal: Given Alice is an "active" user, we want to predict the rating of movie *p* Alice hasn't seen.

- Find a set of users who liked the same items as Alice in the past and also had rated movie p
- Predict Alice's rating on movie p
- Repeat for all movies Alice has not seen and recommend the best rated.

User-Based Collaborative Filtering

- How many neighbors should we include?
 - Choose a number depends on size of data
- How do we define similarity?

• How to do we generate predictions from the neighbors' ratings?

Similarity Measurement

Pearson correlation

j,k : users

 $r_{i,p}$: rating of user j for item p

 \bar{r}_i and \bar{r}_k are the average ratings of user j and user k over all items

i : Alice

P: set of items, rated both by j and k

Possible similarity values between -1 and 1

$$sim(j, k) = \frac{\sum_{p \in P} (r_{j,p} - \bar{r}_j) (r_{k,p} - \bar{r}_k)}{\sqrt{\sum_{p \in P} (r_{j,p} - \bar{r}_j)^2} \sqrt{\sum_{p \in P} (r_{k,p} - \bar{r}_k)^2}}$$

P: set of items, rated by Alice and Bob

Pearson Correlation

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	•
Chris	4	3	4	3	5	4
Donna	3	3	1	5	4	4
Evi	1	5	5	2	1	4

Pearson Correlation

Pearson Correlation

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	-
Chris	4	3	4	3	5	-
Donna	3	3	1	5	4	4
Evi	1	5	5	2	1	4

Making Predictions

- Use "Aggregation Function"
 - Choose N neighbors
 - Simple

$$r_{j,p} = \frac{1}{N} \sum_{k \in U} r_{k,p}$$

- Weighted & Centered
 - $r_{j,p} = \overline{r_j} + \alpha \sum_{k \in U} simil(j,k) (r_{k,p} \overline{r_k})$

Making recommendations

- Prediction is typically not the ultimate goal
 - Rank items based on their predicted ratings
 - This might lead to the inclusion of (only) niche items
 - Optimize according to a given rank evaluation metric

- Assumption:
 - Users give ratings to items
 - Users who has similar tastes in the past, have similar tastes in the future.
- User-based collaborative

Item-based collaborative

Item-based collaborative filtering

- Alternate idea:
 - Use the similarity between items (and not users) to make predictions
 - Look for movies that are similar to movie p
 - Take Alice's ratings for these items to predict the rating for movie p

Similarity Measurement

Cosine similarity

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|} = \frac{\sum_{u \in U} r_{u,a} * r_{u,b}}{\sqrt{\sum_{u \in U} r_{u,a}^2} \sqrt{\sum_{u \in U} r_{u,b}^2}}$$

Adjusted cosine similarity

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Movie Rating Example

Making Predictions

- Sum over items rather than users
 - Simple

$$r_{j,p} = \frac{1}{N} \sum_{q \in P} r_{j,q}$$

- Weighted & Centered
 - $r_{j,p} = \overline{r_p} + \alpha \sum_{q \in P} simil(p,q)(r_{j,q} \overline{r_q})$

Wide applicability

• Usable in wildly different domains

Well-understood

Most well studied type of recommender

Simple

• No knowledge engineering required

Serendipity

Odd recommendations that are very good

Data sparsity & Cold Start

- New users need to indicate preferences for sufficient number of items before recommendations are good
- Need initial customer/rating database

Scalability

Millions of customers (M) and millions of items (N)

Grey Sheep and Black Sheep

- Grey sheep are users with inconsistent recommendations.
- Black sheep are the users with idiosyncratic preferences.

Shilling

 Intentional manipulation of ratings of your own products and competitors products

Diversity and Long Tail

Rich tend to get richer

Back to Netflix

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

Content-based recommendation

Examples

Examples

Related to Items You've Viewed See more

About 288,000,000 results (0.42 seconds)

Data science - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Data_science ▼ Wikipedia ▼ Data Science is an interdisciplinary field about processes and systems to extract knowledge or insights from large volumes of data in various forms, either ... Overview - History - Domain specific interests - Criticism

Data Science | Coursera

https://www.coursera.org/specializations/jhudatascience v Coursera v Become an expert with Data Science Specialization offered by Johns Hopkins University. Take free online classes from 120+ top universities and educational

Certificate in Data Science - UW Professional & Continuing ...

www.pce.uw.edu/certificates/data-science.html • University of Washington offers a certificate program in data science, with flexible evening and online classes to fit your schedule.

Jan 14, 2016 Online Mar 28, 2016 Bellevue

Content-based recommendation

Recommend items that are "similar" to the user preferences

What do we need?

- Item Profiles: list of content-based keywords
- User profiles: preferences of the user.
 - User specified or based on past behavior

Item Profile Strategies

Expert Labeling

- Assign keywords based on content
- Good for songs, movies, etc
- May be provided by creators/distributors
- Crowd sourcing?

Item Profile Strategies

Automated Indexing

- Used for text documents (web pages, books, tweets)
- Based on word content of document set
- No expert knowledge involved
- Can be keyword or full dictionary based

Content-based recommendation

Prediction: Simple approach

 Compute the similarity of an item and user profile based on keyword overlap

•
$$sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$$

Simple approach: drawbacks

- Not every word has similar importance
- Longer documents have a higher chance to have an overlap with the user profile
- Automated extraction particularly problematic
- Solution: TF-IDF

Recommending items

- Simple method: nearest neighbors
 - Given a set of documents D already rated by the user (like/dislike, ratings)
 - Find the n nearest neighbors of a not-yet-seen item i in D
 - Take these ratings to predict a rating/vote for i
 - Same principle as collaborative ranking

Recommending items

- Advanced Methods
 - Classification algorithms
 - Predict either ratings or like/dislike
 - Information retrieval techniques
 - Well studied field, wide diversity of models

Content-based recommenders

Advantages

No community required

• Only need the items and a single user profile for recommendation.

Transparency

• CB models can tell you why they recommend an item, not subject to vagaries of human taste

Good cold start

• New items can be suggested before being rated by a substantial number of users.

Content-based recommenders

Disadvantages

Limited content analysis

Requires well annotated content for good recommendations.

Over-specialization

- Users will tend to be recommended items very similar to what they have enjoyed in the past
- Very limited discoverability

New users

Limited user information results in bad recommendations.

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

Evaluating Recommendation

- Error Rate Metrics
 - Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings $MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$
 - Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i r_i)^2}$

Metrics

- Order matters, not exact ranking value
- Graded Relevance
 - Have humans assign scores to possible results
 - Ideal results will be ordered by relevance, high to low
- Discounted cumulative gain (DCG)
 - Logarithmic reduction factor

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$

Where:

- pos is the length of the recommendation list
- rel_i returns the relevance of recommendation at position i

Metrics

- Ideal discounted cumulative gain (IDCG)
 - DCG value when items are ordered perfectly

$$IDCG_{pos} = rel_1 + \sum_{i=2}^{|h|-1} \frac{rel_i}{\log_2 i}$$

Normalized discounted cumulative gain (nDCG)

$$nDCG_{pos} = \frac{DCG_{pos}}{IDCG_{pos}}$$

Normalized to the interval [0..1]

QUESTIONS

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- How do we evaluate them?
- Example using Azure ML

