Introduction to Information Retrieval

Evaluation

How do you tell if users are happy?

- Search returns products relevant to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading titles/summaries can cause users to click
- Users buy after using the search engine
 - Or, users spend a lot of \$ after using the search engine
- Repeat visitors/buyers
 - Do users leave soon after searching?
 - Do they come back within a week/month/...?

Measuring relevance

- Three elements:
 - 1. A benchmark document collection
 - 2. A benchmark suite of queries
 - 3. An assessment of either <u>Relevant</u> or <u>Nonrelevant</u> for each query and each document

So you want to measure the quality of a new search algorithm?

- Benchmark documents nozama's products
- Benchmark query suite more on this
- Judgments of document relevance for each query

Relevance judgments

- Binary (relevant vs. non-relevant) in the simplest case
 - More nuanced relevance levels also used(0, 1, 2, 3 ...)
- What are some issues already?
- 5 million times 50K takes us into the range of a quarter trillion judgments
 - If each judgment took a human 2.5 seconds, we'd still need 10¹¹ seconds, or nearly \$300 million if you pay people \$10 per hour to assess
 - 10K new products per day

Crowd source relevance judgments?

- Present query-document pairs to low-cost labor on online crowd-sourcing platforms
 - Hope that this is cheaper than hiring qualified assessors
- Lots of literature on using crowd-sourcing for such tasks
 - You get fairly good signal, but the variance in the resulting judgments is quite high

What else?

- Still need test queries
 - Must be germane to docs available
 - Must be representative of actual user needs
 - Random query terms from the documents are not a good idea
 - Sample from query logs if available
- Classically (non-Web)
 - Low query rates not enough query logs
 - Experts hand-craft "user needs"

Early public test Collections (20th C)

TABLE 4.3 Common Test Corpora

Collection	NDocs	NQrys	Size (MB)	Term/Doc	Q-D RelAss
ADI	82	35			
AIT	2109	14	2	400	>10,000
CACM	3204	64	2	24.5	
CISI	1460	112	2	46.5	
Cranfield	1400	225	2	53.1	
LISA	5872	35	3		
Medline	1033	30	1		
NPL	11,429	93	3		
OSHMED	34,8566	106	400	250	16,140
Reuters	21,578	672	28	131	
TREC	740,000	200	2000	89-3543	» 100,000

Recent datasets: 100s of million web pages (GOV, ClueWeb, ...)

Now we have the basics of a benchmark

- Let's review some evaluation measures
 - Precision
 - Recall
 - DCG
 - •

Evaluating an IR system

- Note: user need is translated into a query
- Relevance is assessed relative to the user need, not the query
- E.g., <u>Information need</u>: My swimming pool bottom is becoming black and needs to be cleaned.
- Query: pool cleaner
- Assess whether the doc addresses the underlying need, not whether it has these words

Unranked retrieval evaluation: Precision and Recall

Binary assessments

Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved)

Recall: fraction of relevant docs that are retrieved

= P(retrieved | relevant)

	Relevant	Nonrelevant	
Retrieved	tp	fp	
Not Retrieved	fn	tn	

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Rank-Based Measures

- Binary relevance
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K
- Ex:
 - Prec@3 of 2/3
 - Prec@4 of 2/4
 - Prec@5 of 3/5
- In similar fashion we have Recall@K

A precision-recall curve

Mean Average Precision

- Consider rank position of each relevant doc
 - K₁, K₂, ... K_R
- Compute Precision@K for each K₁, K₂, ... K_R
- Average <u>precision</u> = average of P@K

Ex:

has AvgPrec of
$$\frac{1}{3} \cdot \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5}\right) \approx 0.76$$

 MAP is Average Precision across multiple queries/rankings

Average Precision

Ranking #1:
$$(1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78$$

Ranking #2:
$$(0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52$$

MAP

Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

BEYOND BINARY RELEVANCE

Discounted Cumulative Gain

Popular measure for evaluating web search and related tasks

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant documents
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Summarize a Ranking: DCG

- What if relevance judgments are in a scale of [0,r]? r>2
- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be r₁, r₂, ...r_n (in ranked order)
 - $CG = r_1 + r_2 + ... r_n$
- Discounted Cumulative Gain (DCG) at rank n
 - DCG = $r_1 + r_2/\log_2 2 + r_3/\log_2 3 + \dots + r_n/\log_2 n$
 - We may use any base for the logarithm

Discounted Cumulative Gain

 DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

• Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

DCG Example

• 10 ranked documents judged on 0–3 relevance scale:

```
3, 2, 3, 0, 0, 1, 2, 2, 3, 0
```

discounted gain:

```
3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0
```

DCG:

```
3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
```

NDCG for summarizing rankings

- Normalized Discounted Cumulative Gain (NDCG) at rank n
 - Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
- Normalization useful for contrasting queries with varying numbers of relevant results
- NDCG is now quite popular in evaluating Web search

26

NDCG - Example

4 documents: d₁, d₂, d₃, d₄

i	Ground Truth		Ranking Function ₁		Ranking Function ₂	
	Document Order	r _i	Document Order	r _i	Document Order	r _i
1	d4	2	d3	2	d3	2
2	d3	2	d4	2	d2	1
3	d2	1	d2	1	d4	2
4	d1	0	d1	0	d1	0
	NDCG _{GT} =1.00		NDCG _{RF1} =1.00		NDCG _{RF2} =0.9203	

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$

$$MaxDCG = DCG_{GT} = 4.6309$$

What if the results are not in a list?

- Suppose there's only one Relevant Document
- Scenarios:
 - known-item search
 - navigational queries
 - looking for a fact
- Search duration ~ Rank of the answer
 - measures a user's effort

Mean Reciprocal Rank

- Consider rank position, K, of first relevant doc
 - Could be only clicked doc

• Reciprocal Rank score =
$$\frac{1}{K}$$

MRR is the mean RR across multiple queries

Human judgments are

- Expensive
- Inconsistent
 - Between raters
 - Over time
- Decay in value as documents/query mix evolves
- Not always representative of "real users"
 - Rating vis-à-vis query, don't know underlying need
 - May not understand meaning of terms, etc.
- So what alternatives do we have?

USING USER CLICKS

User Behavior

Taken with slight adaptation from Fan Guo and Chao Liu's 2009/2010 CIKM tutorial: Statistical Models for Web Search: Click Log Analysis

Search Results for "CIKM" (in 2009!)

User Behavior

Adapt ranking to user clicks?

What do clicks tell us?

Tools needed for non-trivial cases

Eye-tracking User Study

Click Position-bias

- Higher positions receive more user attention (eye fixation) and clicks than lower positions.
- This is true even in the extreme setting where the order of positions is reversed.
- "Clicks are informative but biased".

[Joachims+07]

Relative vs absolute ratings

User's click sequence

Hard to conclude <u>Result1 > Result3</u> Probably can conclude <u>Result3 > Result2</u>

Evaluating pairwise relative ratings

- Pairs of the form: DocA <u>better than</u> DocB for a query
 - Doesn't mean that DocA <u>relevant</u> to query
- Now, rather than assess a rank-ordering wrt per-doc relevance assessments ...
- Assess in terms of conformance with historical pairwise preferences recorded from user clicks
- BUT!
- Don't learn and test on the same ranking algorithm
 - I.e., if you learn historical clicks from nozama and compare
 Sergey vs nozama on this history ...

Comparing two rankings via clicks (Joachims 2002)

Query: [support vector machines]

Ranking A

Kernel machines

SVM-light

Lucent SVM demo

Royal Holl. SVM

SVM software

SVM tutorial

Ranking B

Kernel machines

SVMs

Intro to SVMs

Archives of SVM

SVM-light

SVM software

Interleave the two rankings

This interleaving starts with B

Kernel machines

Kernel machines

SVMs

SVM-light

Intro to SVMs

Lucent SVM demo

Archives of SVM

Royal Holl. SVM

SVM-light

40

Remove duplicate results

Kernel machines

Kernel machines

SVMs

SVM-light

Intro to SVMs

Lucent SVM demo

Archives of SVM

Royal Holl. SVM

SVM-light

41

Count user clicks

Ranking A: 3

Ranking B: 1

Kernel machines Kernel machines Clicks **SVMs SVM-light** Intro to SVMs Lucent SVM demo **Archives of SVM** Royal Holl. SVM **SVM-light**

. .

42

Interleaved ranking

- Present interleaved ranking to users
 - Start randomly with ranking A or ranking B to even out presentation bias
- Count clicks on results from A versus results from B
- Better ranking will (on average) get more clicks

A/B testing at web search engines

- Purpose: Test a single innovation
- Prerequisite: You have a large search engine up and running.
- Divert a small proportion of traffic (e.g., 0.1%) to an experiment to evaluate an innovation
 - Interleaved experiment
 - Full page experiment

Facts/entities (what happens to clicks?)

Recap

- Benchmarks consist of
 - Document collection
 - Query set
 - Assessment methodology
- Assessment methodology can use raters, user clicks, or a combination
 - These get quantized into a goodness measure Precision/NDCG etc.
 - Different engines/algorithms compared on a <u>benchmark</u> together with a <u>goodness measure</u>

User behavior

- User behavior is an intriguing source of relevance data
 - Users make (somewhat) informed choices when they interact with search engines
 - Potentially a lot of data available in search logs

- But there are significant caveats
 - User behavior data can be very noisy
 - Interpreting user behavior can be tricky
 - Spam can be a significant problem
 - Not all queries will have user behavior

Incorporating user behavior into ranking algorithm

Incorporate user behavior features into a ranking function like BM25F

Incorporate user behavior features into learned ranking function

 Either of these ways of incorporating user behavior signals improve ranking