

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 1 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование методов прямого поиска экстремума унимодальной функции одного переменного»

Вариант 3

Выполнила: Бакаев Ф.Б., студент группы ИУ8-31

Проверила: Коннова Н.С., доцент каф. ИУ8

Цель работы

Исследовать функционирование и провести сравнительный анализ различных алгоритмов прямого поиска экстремума (пассивный поиск, метод дихотомии, золотого сечения, Фибоначчи) на примере унимодальной функции одного переменного.

Условие задачи

На интервале [0,3] задана унимодальная функция одного переменного $f(x) = - \operatorname{sqrt}(x) * \sin(x)$. Используя метод Фибоначчи, найти интервал нахождения минимума f(x) при заданном числе точек (N = 29). Провести сравнение с методом оптимального пассивного поиска. Результат, в зависимости от числа точек разбиения N, представить в виде таблицы.

График заданной функции 1 0 1 2 3 4 5 6 (1.837, -1.308)

Рисунок 1 - График функции y = -sqrt(x) * sin(x) на [0;3]

	-			,
Part.	1.	Optimal	passive	search:

_								
I	Количество точек	(N)	Значение	х в	минимуме	I	Погрешность	I
-								
1	1	1			1.5	I	1.5	I
1	2				2		1	1
1	3				1.5		0.75	1
	4	I			1.8		0.6	1

1	5	1	2		0.5	
	6	1	1.7142857143		0.429	1
1	7	1	1.875		0.375	1
I	8	I	2		0.333	
1	9	1	1.8		0.3	1
1	10	1	1.9090909091		0.273	
I	11	I	1.75		0.25	
	12	I	1.8461538462		0.231	
I	13	I	1.9285714286		0.214	
	14	1	1.8		0.2	
	15	1	1.875		0.188	1
	16	1	1.7647058824		0.176	
	17	1	1.8333333333		0.167	
	18	1	1.8947368421		0.158	1
	19	1	1.8		0.15	
1	20	1	1.8571428571	- 1	0.143	1
	21	1	1.7727272727		0.136	
	22	1	1.8260869565		0.13	1
	23	1	1.875		0.125	1
	24	1	1.8		0.12	1
	25	1	1.8461538462		0.115	1
	26	1	1.888888889		0.111	1
I	27	1	1.8214285714		0.107	
I	28	1	1.8620689655		0.103	
	29	1	1.8		0.1	1

1.8 +- 0.1

Part 2. Fibonacci search :

-				-
I	Количество точек	(N)	Значение х в точке	
-				-
I	1	1	2.2917960675	
1	2	1	1.583592135	
1	3	1	2.0212862363	
I	4	1	1.750776405	
1	5	1	1.917960675	
	6	1	1.8146351138	

7		1.8784938226	1
8	1	1.8390269701	1
9	1	1.8297101099	1
10	1	1.8447851061	1
11		1.8354682459	1
12	1	1.8332688341	I
13	1	1.8368275582	1
14	1	1.8376676578	1
15	1	1.8363083455	1
16	1	1.8371484451	1
17	1	1.8366292323	1
18	1	1.8365066714	1
19	1	1.8367049973	1
20	1	1.8365824363	1
21		1.8365534674	I
22		1.8366002634	I
23		1.8366114053	I
24		1.8365935782	I
25		1.8366047201	I
26		1.836598035	I
27		1.8365958067	I
28	1	1.8365980351	I
29		1.8365958068	1

График зависимостей погрешности от числа точек N

Рисунок 2 - График зависимости погрешности от числа точек N для оптимального пассивного поиска

Выводы

Из полученных таблиц и графиков видно, что метод Фибоначчи значительно эффективнее метода пассивного поиска при отыскании экстремума унимодальной функции одного переменного.

Приложение. Исходный код программы

```
#include <iostream>
#include <cmath>
#include <iomanip>
#include <vector>
#include <algorithm>
using std::cout;
using std::endl;
#define pogr 0.1
double f(const double& x) {
    return (-sqrt(x) * sin(x));
std::vector<std::pair<double, double>> opt_passive(const double& a, const double& b) {
    std::vector<std::pair<double, double>> values;
    size t N = 1;
    double delta = (b - a) / (N + 1);
    double x min y;
    while (delta > pogr) {
        std::vector<double> vec y;
        delta = (b - a) / (N + 1);
        for (size t k = 1; k <= N; ++k) {
            vec_y.push_back(f((b - a) / (N + 1) * k + a));
        size_t y_min_k = std::min_element(vec_y.begin(), vec_y.end()) - vec_y.begin() +
1;
        x_{min_y} = (b - a) / (N + 1) * y_{min_k} + a;
        values.push_back({ x_min_y, delta });
        N++;
    return values;
}
unsigned int Fib(const size_t& n) {
    if (n < 1)
        return 0;
    unsigned int f1 = 0, f2 = 1, fn = 0;
    for (size_t i = 1; i < n; ++i) {</pre>
        fn = f1 + f2;
        f1 = f2;
        f2 = fn;
    return fn;
}
std::vector<double> fib(size t N, double& a, double& b) {
    std::vector<double> values;
    double x1 = a + (b - a) * Fib(N) / Fib(N + 2);
double x2 = a + b - x1;
    double y1 = f(x1);
double y2 = f(x2);
    while (N--) {
        if (y1 > y2) {
```

```
a = x1;
             x1 = x2;
             x2 = b - (x1 - a);
             y1 = y2;
             v2 = f(x2);
             values.push back(x2);
         else {
             b = x2;
             x2 = x1;
             x1 = a + (b - x2);
             y2 = y1;
             y1 = f(x1);
             values.push back(x1);
    return values;
}
void PrintValues(const std::vector<double>& values) {
    cout << std::string(45, '-') << endl;</pre>
    cout << std::setw(23) << std::left << "| Количество точек (N) " << "|"; cout << std::setw(24) << std::left << " Значение х в точке |" << endl;
    cout << std::string(45, '-') << endl;</pre>
    for (size_t i = 0; i < values.size(); i++) {</pre>
         cout << "|";
         cout << std::setw(12) << std::right << i + 1;</pre>
         cout << std::setw(11) << "|";</pre>
         cout << std::setw(17) << std::right << std::setprecision(11) << values[i];</pre>
         cout << std::setw(4) << "|" << endl;</pre>
    cout << std::string(45, '-') << endl;</pre>
    cout << values[7] << endl;</pre>
void PrintValues(const std::vector<std::pair<double, double>>& values) {
    cout << std::string(62, '-') << endl;</pre>
    cout << std::setw(23) << std::left << "| Количество точек (N) " << "|";
    cout << std::setw(23) << std::left << "Значение x в минимуме |";
    cout << std::setw(15) << std::left << "Погрешность |" << endl;
    cout << std::string(62, '-') << endl;</pre>
    int i = 0;
    double ans1, ans2;
    for (auto const& val : values)
         cout << "|";
         cout << std::setw(12) << std::right << i + 1;</pre>
         cout << std::setw(11) << "|";</pre>
         cout << std::setw(18) << std::setprecision(11) << val.first << std::setw(6) <</pre>
"|":
         cout << std::setw(9) << std::setprecision(3) << val.second;</pre>
         cout << std::setw(5) << " | " << endl;</pre>
         i++;
         ans1 = val.first;
         ans2 = val.second;
    cout << std::string(62, '-') << endl;</pre>
    cout << ans1 << " +- " << ans2 << endl;</pre>
int main() {
    setlocale(LC ALL, "Russian");
    size t N = 29;
```

```
double a = 0.0, b = 3.0;

cout << "Вариант №3:" << endl;
cout << "Функция -sqrt(x) * sin(x) для интервала [0, 3]" << endl << endl;
cout << "Первый метод: метод оптимального пассивного поиска" << endl;
cout << "Для погрешности 0,1" << endl;
PrintValues(opt_passive(a, b));
cout << endl;
cout << "Второй метод: метод Фибоначчи" << endl;
cout << "N задается заранее" << endl;
cout << "При N=29 для точности 0,1 достаточно 7 итераций" << endl;
PrintValues(fib(N, a, b));
return 0;
}
```

Ответ на контрольный вопрос

2. Поясните принцип разбиения интервала при последовательном поиске методами дихотомии, золотого сечения, Фибоначчи.

Метод дихотомии (метод деления отрезка пополам):

1) Пусть известно, что на k-м шаге последовательного поиска $x_0 \in [a_k, b_k]$, который входит в [0,1](на первом шаге при k=1 имеем $a_1=0$ и $b_1=1$). На отрезке $[a_k,b_k]$ длиной I_k выберем две точки $x_{k1}=(a_k+b_k)/2-d$ и $x_{k2}=(a_k+b_k)/2+d$, где d>0 некоторое достаточно малое число. Вычислим значения $f(x_{k1})$ и $f(x_{k2})$ функции f(x) в этих точках и выполним процедуру исключения отрезка. В результате получим новый отрезок $[a_{k+1},b_{k+1}]$, который входит в $[a_k,b_k]$.

Метод золотого сечения:

- 1) Деление на две неравные части, при котором отношение длины всего отрезка к длине его большей части равно отношению длины большей части к длине меньшей.
- 2) Рассмотрим k-й шаг последовательного поиска. Чтобы выполнить процедуру исключения отрезка на этом шаге, отрезок $[a_k,b_k]$ необходимо двумя внутренними точками x_{k1} , x_{k2} , $x_{k1} < x_{k2}$, разделить на три части. Эти точки выберем симметрично относительно середины отрезка $[a_k,b_k]$ и так, чтобы каждая из них производила золотое сечение отрезка $[a_k,b_k]$. В этом случае отрезок $[a_{k+1},b_{k+1}]$ внутри будет содержать одну из точек x_{k1} , x_{k2} (другая будет одним из концов отрезка), причем эта точка будет производить золотое сечение отрезка $[a_{k+1},b_{k+1}]$.

Метод Фибоначчи:

1) Метод Фибоначчи состоит из N — 1 шагов. Очередной (k + 1)-ый шаг выполняют здесь аналогично (k + 1)-й итерации метода деления отрезка пополам. В отличие от него точки $a^{(k)}$, $b^{(k)}$ здесь находим по формулам: $a^{(k)} = a^{(k)} + F_{N-k-1} / F_{N-k+1} \triangle^k$; $b^{(k)} = b^{(k)} + F_{N-k-1} / F_{N-k+1} \triangle^k$. Далее аналогично выполняем процедуру исключения отрезка. В первом случае за очередное приближение к точке минимума принимают $x^{(k+1)} = a^{(k)}$, а во втором случае $x^{(k+1)} = b^{(k)}$. Важно, что в любом случае точка $x^{(k+1)}$ совпадает с одной из точек: $a^{(k+1)}$, $b^{(k+1)}$. Поэтому на кочередном шаге достаточно вычислить значение функции лишь в одной недостающей точке.