Software Engineering

Qualitätssicherung

Prof. Dr. Bodo Kraft

Agenda

- Motivation Qualitätssicherung
- Allgemeine Prinzipien
- Verfahren der QS im Detail

Lernziele

- Wir kennen und verstehen den Zweck von Qualitätssicherung (QS)
- Wir kennen Qualitätsmerkmale und -kriterien
- Wir können Teststrategien anwenden
- Wir können Qualität messen und beurteilen

Selbstverständnis SW-QualitätMotivation

Was verstehen Sie unter (Software-)Qualität?

Wozu braucht man Qualität?

Qualitätsnormen

Motivation

Verschiedene Normen definieren Qualität wie folgt:

a) DIN ISO 9000:2000

Vermögen einer Gesamtheit inhärenter Merkmale eines Produktes, Systems oder Prozesses, zur Erfüllung von Forderungen von Kunden und anderen interessierten Parteien.

b) DIN ISO 9000:2005
Grad, in dem ein Satz
inhärenter Merkmale
Anforderungen erfüllt

Qualitätsmerkmale nach ISO 25010

Motivation

Leistungsfähigkeit

- Vertraulichkeit
- Zurechenbarkeit
- Authentizität

Funktionalität

- Angemessenheit
- Richtigkeit
- Vollständigkeit

Zuverlässigkeit

- Reife
- Verfügbarkeit
- Wiederherstellbarkeit
- **Fehlertoleranz**

Benutzbarkeit

- Erlernbarkeit
- Verständlichkeit
- **Bedienbarkeit**
- Schutz vor Benutzerfehlern
- Ästhetik des UserInterface
- Barrierefreiheit

(IT-)Sicherheit

Integrität

ISO 25010

- Nichtabstreitbarkeit

Qualitätssicherung und -Management

Allgemeines zur QS

Unter Qualitätsmanagement (QM) versteht man:

"alle Tätigkeiten der Gesamtführungsaufgabe, welche die Qualitätspolitik, Ziele und Verantwortungen festlegen, sowie diese durch Mittel wie Qualitätsplanung, Qualitätslenkung, Qualitätssicherung und Qualitätsverbesserung im Rahmen des Qualitätsmanagementsystems verwirklichen"

(DIN EN ISO 8402, zitiert nach [Bal98])

Unter Qualitätssicherung (QS) versteht man:

"alle geplanten und systematischen Tätigkeiten, die innerhalb des Qualitätsmanagementsystems verwirklicht sind, und die wie erforderlich dargelegt werden, um angemessenes Vertrauen zu schaffen, dass eine Einheit die Qualitätsanforderung erfüllen wird."

(DIN EN ISO 8402, zitiert nach [Bal98])

Motivation

Definition Qualitätsmanagement

Wichtig:

- jedes Dokument, das im Verlaufe der Softwareerstellung / Softwarewartung erzeugt bzw. verändert wird, sollte einer Qualitätssicherung unterliegen.
- Dazu zählen als Produkte und Zwischenergebnisse der jeweiligen Phase (Anforderungsdefinition, Entwurfsspezifikation, Programmcode, Dokumentation, ...)

Prinzipien der Qualitätssicherung

Allgemeines

Prinzip	Erläuterung		
Zielgerichtet	 muss durch projektspezifische Ziele getrieben werden Festlegung von Anforderungen für Q-Merkmale 		
Quantitativ	 erfordert die Anwendung quantitativer Methoden zur Bewertung der Qualität von Produkten und Prozessen Festlegung und Messung von Kennzahlen für objektive Beurteilung 		
Maximal konstruktiv	 so viele Fehler wie möglich durch geeignete Sprachen, Methoden, Werkzeuge im Vorfeld verhindern Statt mangelhafte Qualität durch analytische Qualitätssicherung a posteriori aufzudecken, werden konstruktive Maßnahmen ergriffen, um die Entwicklung hochqualitativer Software a priori sicherzustellen 		
Frühzeitig	QS muss in den frühen Phasen (so früh wie möglich) eingesetzt werden, um Fehler so früh wie möglich zu erkennen und zu beheben		

Prinzipien der Qualitätssicherung

Allgemeines

Prinzip	Erläuterung	
Integriert	 QS nahtlos in den Softwareprozess integrieren und in allen Phasen einsetzen Nicht erst fertige Dokumente prüfen 	
Unabhängig / Extern	 Analytische QS <u>nicht nur</u> unter Kontrolle der Entwickler durchführen QS muss (auch) von einer unabhängigen Organisationseinheit durchgeführt werden 	
Werkzeugunterstützt	Prüfung soweit möglich automatisieren	
Skaliert	Kosten/Nutzen von QS-Maßnahmen beobachten	

Klassifizierung von QS-Verfahren

Allgemeines

QS Maßnahmen in der SW Entwicklung beziehen sich auf:

a) Das Produkt "Software" (produktorientiert)

b) Den Prozess der SW-Entwicklung (prozessorientiert)

Man teilt Qualitätssicherungsmaßnahmen(QSM) auf in

a) Konstruktive Ansätze

- Aktivitäten mit positiver Auswirkung auf Qualität
- Während der Erstellung von SW-Produkten
- Fehlervermeidungsstrategie
- "Vorbeugen besser als Heilen"

Prinzip der "maximal konstruktiven Qualitätssicherung"

b) Analytische Ansätze

- Testen, Verifikation, Messen (über Q-Merkmale)
- <u>Nach</u> Erstellung von SW-Produkten
- Fehlerfindungsstrategie

Konstruktive QS-Verfahren

Allgemeines

Richtlinien

- Prozessrichtlinien
- Standards f
 ür Dokumente, Coding-Guidelines, ...
- Gliederungsschema für Lasten/Pflichtenheft

Methoden

- Vorgehensmodelle der SWT (SCRUM o.ä.)
- Abarbeitung von Checklisten
- Schulungen

Werkzeuge

- Für Projektmanagement
- Case-Tools

Sprachen

- UML
- Entwurfsmuster für Software Architektur ...

Konstruktive QS behandelt organisatorische, aber auch technisch/fachliche Aspekte

Übersicht der Prüftechniken

Verfahren der QS im Detail

Übersicht der Prüftechniken

Verfahren der QS im Detail

Definition Review

statische Prüftechniken – manuelle Analyse

Definition Review:

 Unter einem Review versteht man einen manuell durchgeführten Prüfprozess (in unserem Fall von Software)

Ein Review wird häufig gleichgesetzt mit dem "Gegenlesen des

eigenen Codes von Kollegen"

Man unterscheidet allgemein zwischen

Code-Reviews
 (Fokus: Quelltext)

Architektur-Reviews
 (Fokus: Design- und technische
 Dokumente)

"Reviews are a way of testing software products, which are performed well before dynamic test execution. Reviews reduce bug-fixing-costs and improve code quality at early stages of development"

Quelle: [software-review]

Ziele von Software-Reviews

statische Prüftechniken – manuelle Analyse

Hauptziel:

Erkennung von Problemen in einem Arbeitsergebnis/Dokument, die nicht werkzeuggestützt erkannt werden können:

- Semantische/Logische Fehler
- Fehlende Einhaltung von Standards
- Abweichung zu Referenzdokumenten

Nebenziele:

- Verbreiterung der Wissensbasis im Team
- Lernen der Arbeitsmethoden der Kollegen
- Konsenzbildung (Team-Verantwortung)

Kooperatives Review

statische Prüftechniken – manuelle Analyse

Prüfverfahren	Anwendung auf	Beschreibung
Koop. Review	Alle Dokumente	 Beurteilung eines Dokumentes durch eine (andere) Person, auch als Teil von Inspektion oder Walkthrough

- schnell und flexibel
- wenig gründlich (i.d.R. nicht systematisch)
- erfolgen asynchron (Kommunikation per Email, GitLab o.ä.)
- Typisch für Open-Source-Projekte oder stark verteilte Teams
- oft existiert gute Werkzeugunterstützung (bspw. gitlab/github)

Prinzip der unabhängigen Qualitätssicherung

Kooperatives Review

statische Prüftechniken – manuelle Analyse

Peer Rating

Gutachten, das von gleichgestellten Programmierern anonym über ein Programm erstellt wird.

Stellungnahmeverfahren

Autor verteilt Arbeitsergebnis an ausgewählte Gutachter zur Beurteilung

Pairprogramming (als Spezialfall)

Übersicht der Prüftechniken

Verfahren der QS im Detail

