

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Сети и телекоммуникации»

Отчет по домашнему заданию №1 и 2

«Разработка алгоритмов кодирования, декодирования и определения обнаруживающей и корректирующей способности кода в линейных протоколах»

Вариант №20

Выполнил: студент группы ИУ5-53Б Швецов Даниил Проверил: Галкин В. А.

Постановка и метод решения задачи для варианта задания

Имеется дискретный канал связи, на вход которого подается закодированная соответствии c вариантом В задания кодовая последовательность. В канале возможны ошибки любой кратности. Вектор ошибки может принимать значения от единицы в младшем разряде до единицы во всех разрядах кодового вектора. Для каждого значения вектора ошибки на выходе канала после декодирования определяется факт наличия ошибки и предпринимается попытка ее исправления.

Таблица 1 – Вариант исполняемой работы

№ варианта	Информационный	Код	Способность
	вектор		кода
20	11111010001	Ц [15,11]	C _o

Требуется, используя кодирование циклическим кодом Ц [15,11], определить обнаруживающую способность этого кода C_o :

Обозначения:

- Ц [n, k] Циклический код с образующим полиномом.
- n число разрядов в закодированной записи. n = 15
- k число разрядов в информационной части. k = 11
- \bullet z число дополнительных битов для обнаружения ошибки. z=n-k=4.
 - r число разрядов в образующем векторе. r=z+1=5.
 - С_о обнаруживающая способность кода.
- g(x) образующий полином степени z=4. Для n=15 он ищется среди простых делителей полинома $x^{15}+1$. Таких есть три полинома:

$$x^4 + x^3 + x^2 + x + 1 => 111111$$

 $x^4 + x^3 + 1 => 11001$
 $x^4 + x + 1 => 10011$

Выберем полином $x^4 + x + 1$.

ullet V $_{i}$ - информационный вектор. По заданию 11111010001

- V_c циклический вектор результат кодирования V_i .
- I входящий вектор. Циклический вектор, возможно содержащий ошибки

Алгоритмы кодирования, декодирования, вычисления обнаруживающей или корректирующей способности кода для ошибок всех возможных кратностей.

1. Алгоритм кодирования циклическим кодом

- 1.1. Умножить информационный полином $V_i(x)$ на x^z , то есть сдвинуть информационный вектор на z разрядов в сторону старших, заполнив освободившиеся нулями
- 1.2. Разделить полученный полином на порождающий полином g(x), после получить остаток p(x).
- 1.3. Сложить p(x) с $V_i(x)$, чтобы получить $V_c(x)$, то есть объединить остаток p(x) в векторной форме и исходный полином $x^z \times V_i(x)$ для получения кодового слова

2. Алгоритм декодирования циклическим кодом.

- 2.1. Разделить принятый полином I(x) на порождающий полином g(x) и проверить остаток от деления S(x) он является синдромом ошибки.
 - 2.2. Если S(x) = 0, то ошибки нет или она не была обнаружена.
- 2.3. Если $S(x) \neq 0$, то ошибка есть. По виду вектора синдрома определить место ошибки и исправить ее.
- 2.4. Поделить информационный полином $V_i(x)$ на x^z для получения исходного полинома, то есть сдвинуть информационный вектор на z разрядов в сторону младших, чтобы получить первоначальный вектор.
- 3. Алгоритм вычисления обнаруживающей способности кода C_0 для ошибок всех возможных кратностей.

Обнаруживающая способность кода C_o определяется как отношение числа обнаруженных ошибок N_o к общему числу ошибок данной кратности, которое

определяется как число сочетаний из n (длина кодовой комбинации) по i (кратность ошибки — число единиц в векторе ошибок) - C_n^i .

Обнаруживающая способность вычисляется как:

$$C_0 = N_0 / C_n^i$$

Для подсчета обнаруживающей способности нужно перебрать все возможные вектора ошибок. Их число равно $2^n - 1$. Причем для каждой кратности нужно рассчитать отдельную обнаруживающую способность.

Порядок действий для расчета обнаруживающей способности:

- 3.1. Закодировать данный информационный вектор
- 3.2. Для каждой группы ошибок по кратности:
- 3.2.1. ввести счетчик N_{Oi} , который по умолчанию будет равен 0.
 - 3.2.2. Для каждой ошибки в группе:
 - 3.2.2.1. Наложить на исходный закодированный вектор ошибку
 - 3.2.2.2. Разделить полученный вектор на порождающий вектор
 - 3.2.2.3. Если вектор равен нулю, ничего не делать
 - 3.2.2.4. Если вектор не равен нулю, увеличить счетчик группы на единицу
- 3.3. В конце алгоритма получим п значений N_{Oi} для каждой группы. Составить результирующую таблицу обнаруживающей способности, где номеру группы і будет соответствовать кратность ошибки і и значение C_i , выраженное в процентах
- 4. Получение циклического кода по варианту задания
 - 4.1. vi = 111111010001. g(x) = 10011.
 - 4.2. Сдвиг на 4 бита влево: 111.1101.0001.0000

4.3. Деление на образующий полином (см. рисунок 1)

```
111110100010000 | 10011
10011
                   11101001100
 11000
 10011
  10111
  10011
    10000
    10011
       11010
       10011
         10010
        10011
           00100
           00000
            0100
```

Рисунок 1 — деление на образующий полином

Остаток: 0100

4.4. Конкатенация информационного вектора с остатком: 111.1101.0001.0100

5. Программная реализация алгоритмов

Для программной реализации модели канала связи, алгоритмов кодирования, декодирования и вычисления корректирующей способности кода для ошибок всех возможных кратностей выберем язык Python. В нём реализованы удобные библиотека для итерирования itertools, которая использовалась для создания векторов ошибки, а так же библиотека для визуализации данных Pandas.

Исходный код разработанного решения можно скачать по ссылке: https://github.com/DeOwl/DZ_seti/tree/master

6. Результирующая таблица

Построим результирующую таблицу. Она приведена на рисунке 6.

Кратность	Количество общее	Обнаружено	обнаруживающая способность, %
1	15	15	100
2	105	105	100
3	455	420	92.3077
4	1365	1260	92.3077
5	3003	2835	94.4056
6	5005	4725	94.4056
7	6435	6000	93.2401
8	6435	6000	93.2401
9	5005	4725	94.4056
10	3003	2835	94.4056
11	1365	1260	92.3077
12	455	420	92.3077
13	105	105	100
14	15	15	100
15	1	0	0

Рисунок 2 — результирующая таблица

7. Выволы

По полученной результирующей таблице (рисунок 2) видно, что для ошибок кратности 1, 2 были обнаружены все ошибки, а для остальных кратностей было обнаружено большинство ошибок, что означает о том, что данный код Ц[15:11] отлично подходит для передачи сообщений длиной 11 бит и может быть использован для обнаружения ошибок 1 и 2 кратности.

Список используемой литературы

- 1. Галкин В.А. Методическое пособие по выполнению домашнего задания по дисциплине «Сети и телекоммуникации», 2018
- 2. Галкин В.А., Григорьев Ю.А. Телекоммуникации и сети: Учеб. Пособие для вузов.-М.: Изд-во МГТУ им.Н.Э.Баумана, 2003
- 3. С. М. Рацеев, А. М. Иванцов, П. А. Булдаковский. Об алгоритмах

декодирования циклических кодов, 2021, с.87-94