Definitions and Theorems Connor Baker, March 2017

Definition 1 (Statement). Any sentence which can be evaluated as either true or false.

Definition 2 (Compound Statement). A statement made up of one or more component statements connected by logical connectors.

Definition 3 (Equivalence of Logical Operators). Two sets of logical operators are said to be equivalent if they produce the same output.

Definition 4 (Tautology). A statement that's always true.

Definition 5 (Contradiction). A statement that's always false.

Definition 6 (A Set). Any collection of objects.

Definition 7 (Set Builder Notation). {expression: rule}

Definition 8 (Universal Set). The given or implied set that contains all other sets in the problem. This set fixes Russel's Paradox.

Definition 9 (Tautology). A statement that's always true.

Definition 10 (Natural Numbers). The set $\mathbb{N}: \{1, 2, 3, \dots\}$.

Definition 11 (Integers). The set \mathbb{Z} : $\{\ldots, -1, 0, 2, \ldots\}$.

Definition 12 (Rational Numbers). The set $\mathbb{Q} : \{ \frac{a}{b} : a \in \mathbb{Z} \text{ and } b \in \mathbb{N} \}.$

Definition 13 (Real Numbers). The set \mathbb{R} : $\{a_n a_{n-1} \dots a_1 a_0 a_{-1} a_{-2} \dots : n \in \mathbb{N} \cup \{0\} \text{ and } a_i \in \{0, \dots, 9\}\}$.

Definition 14 (Complex Numbers). The set $\mathbb{C}: \{a+bi: i^2=-1 \text{ and } a,b \in \mathbb{R}\}.$

Definition 15 (Subset). Given two sets A and B, $A \subseteq B \iff \forall a \in A \implies a \in B$.

Definition 16 (Open Sentence (AKA Predicate)). A statement that contains a variable. The truth value depends on the variable.

Definition 17 (Truth Set). The set of values that make the statement true.

Definition 18 (Quantifiers and Negations). 1. Universal Quantifier: \forall – Must be true for all x in the universal set such that P(x) is true: $(\forall x)(P(x))$.

- 2. Existential Quantifier: \exists True if for at least one x in the universal set such that P(x) is true: $(\exists x)(P(x))$.
- 3. Unique Quantifier: $\exists !$ True if there exists only one x in the universal set such that P(x) is true: $(\exists !x)(P(x))$.
- 4. Negation of the Universal Quantifier: $\sim (\forall x)(P(x))$ is $(\exists x)(\sim P(x))$.
- 5. Negation of the Existential Quantifier: $\sim (\exists x)(P(x))$ is $(\forall x)(\sim P(x))$.

Definition 19 (Direct Proof). $P \implies Q$.

Definition 20 (Contrapositive Proof). $(\sim Q) \implies (\sim P)$.

Definition 21 (Proof by Contradiction). We start with $P \implies Q$. Assume that $\sim P \wedge Q$ is true. Then $\sim P \implies A_1 \implies A_2 \implies \cdots \implies R$. And, if $Q \implies B_1 \implies B_2 \implies \cdots \implies \sim R$. Then, $\sim R \wedge R$ must be true, which is a contradiction, so the original assumption is false, and $P \implies Q$.

Definition 22 (Axioms of the Natural Numbers). 1. Successor property

(a) One is a natural number

- (b) One is not the successor of any number
- (c) Every natural number has a unique successor
- 2. Closure under addition and multiplication
- 3. Associativity
- 4. Commutativity
- 5. Distribution of multiplication over addition
- 6. Cancellation
 - (a) Real numbers have this property unless the number being cancelled is a zero
 - (b) Matrix multiplication does not have this property

Definition 23 (Divisible). Let $a, b \in \mathbb{N}$. Then a|b if $\exists k \in \mathbb{N} : ak = b$.

Definition 24 (Prime). A number p, where $p \in \mathbb{N}$, is prime if p > 1 and its only divisors are one and itself.

Definition 25 (Factor). A number q, where $q \in \mathbb{N}$, is a factor of r if q|r.

Definition 26 (Prime Factor Decomposition). Let p_1, p_2, \ldots, p_k be all primes less than q. Then, the prime factor decomposition of q is $p_1^{n_1} p_2^{n_2}, \ldots, p_k^{n_k}$ where $n_i \in (\mathbb{N} \cup \{0\})$.

Theorem 27 (Fundamental Theorem of Arithmetic). All natural numbers have a unique prime factorization up to commutativity.

Definition 28 (Union over \mathcal{A}). Let \mathcal{A} be a family of sets. The union over \mathcal{A} is defined as:

$$\bigcup_{A \in \mathcal{A}} = \{x : (\exists A \in \mathcal{A})(x \in A)$$

which is equivalent to:

$$\bigcup_{A \in \mathcal{A}} = \{x : (\exists A)((A \in \mathcal{A}) \land (x \in A))\}$$

Definition 29 (Intersection over \mathcal{A}). Let \mathcal{A} be a family of sets. The intersection over \mathcal{A} is defined as:

$$\bigcap_{A \in \mathcal{A}} = \{x : (\forall A \in \mathcal{A})(x \in A)$$

which is equivalent to:

$$\bigcap_{A \in \mathcal{A}} = \{x : (\forall A)((A \in \mathcal{A}) \implies (x \in A))$$

Theorem 30 (Relative Cardinality of Intersection and Union). For every set $B \in \mathcal{A}$:

$$B\subseteq\bigcup_{A\in\mathcal{A}}A,$$

$$\bigcap_{A\in\mathcal{A}}A\subseteq B.$$

The intersection is no bigger than the smallest set, and the union is no smaller than the biggest set. Assume that $A \neq \emptyset$. Then:

$$\bigcap_{A\in\mathcal{A}}A\subseteq\bigcup_{A\in\mathcal{A}}A.$$

If $A \neq \emptyset$, the union isn't a problem but the intersection would be the set of all sets, and as such is undefined.

Definition 31 (Family of Sets). Let Δ be a nonempty set. Then, $\forall \alpha \in \Delta$, there is a corresponding set A_{α} . The family of sets $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$.