ANALYTIC APPROXIMATIONS IN BAYESIAN INFERENCE

Daniel García (dg416@ic.ac.uk) Supervisor: Alastair Young

Imperial College London

Problem Overview

• Bayesian inference on a scalar parameter of interest is based on its posterior distribution

$$\pi(\psi|y) \propto \int \pi(\psi,\chi) \exp\{l(\psi,\chi)\}d\chi.$$

- This distribution is often intractable and non-trivial to approximate (curse of dimensionality).
- MCMC methods are often used to bypass this problem, but don't solve it completely.
- Accurate analytic approximations of $\pi(\psi|y)$ derived from Laplace's method provide an alternative route to posterior inference that has certain advantages over the former.

Objectives

- Detailed examination of analytic approaches to Bayesian inference about a scalar parameter of interest.
- Analysis of their accuracy in high-dimensional settings and, if appropriate, provide refinements for these situations.

Main Results

• The posterior distribution function can be approximated with *relative* error of order $O(n^{-3/2})$ by

$$\mathbb{P}(\Psi \le \psi | y) \doteq \begin{cases} \Phi(r(\psi)) + \phi(r(\psi)) \left(r(\psi)^{-1} - q(\psi)^{-1} \right) & (1) \\ \Phi(r^*(\psi)) & (2) \end{cases}$$

- The quantities $r(\psi)$, $r^*(\psi)$ and $q(\psi)$ involve only derivatives of the log-likelihood up to order 2, which may need to be computed numerically.
- They have been shown to be remarkably accurate if the parameter dimension is small, but their performance in high-dimensional contexts is unknown.

Applications

Why are analytic approximations desirable? Two possible applications:

- **Simulation**. Approximation (2) provides the following simple simulation scheme:
 - 1. Generate $z \sim N(0,1)$;
 - 2. Solve $r^*(\psi) = z$ (often numerically).
- → It gives independent samples of the posterior and does not require tuning of parameters.
- \rightarrow It does not provide perfect sampling asymptotically, as all samples are taken from the same approximated distribution.
- Sensitivity analysis on the prior. Approximations (1) and (2) depend on the prior only through $\pi(\hat{\psi}, \hat{\chi})/\pi(\psi, \hat{\chi}_{\psi})$, so they can be used to assess the dependence of the posterior distribution on π .

An Example

- We have 3 observations from *p* normal populations with common variance and different means.
- The common variance σ^2 is of interest and the p means $\mu = (\mu_1, \dots, \mu_p)$ are nuisance parameters.
- The prior is $\pi(\sigma^2, \mu) \propto \sigma^{-2}$.
- The error of approximation (2) increases considerably with *p*:

p	0.01	0.05	0.1
5	0.012	0.059	0.116
50	0.017	0.075	0.141
500	0.046	0.159	0.264
1000	0.079	0.234	0.359

