Strato di rete (parte 2)

Autoconfigurazione Protocollo DHCP

Configurazione degli Host

- Un host deve essere configurato
 - IP address
 - Subnet mask
 - Default router
 - Server DNS
- Procedura manuale
- Necessità di procedure di autoconfigurazione
 - DHCP (Dynamic Host Configuration Protocol)
 - Plug and play
 - Uso efficiente degli indirizzi

Scenario client-server DHCP

DHCP: Dynamic Host Configuration Protocol

- Consente ad un host di ottenere dinamicamente il suo indirizzo IP dal server di rete
 - · È possibile rinnovare la proprietà dell'indirizzo in uso
 - · È possibile il riuso degli indirizzi
 - Supporta anche gli utenti mobili che si vogliono unire alla rete
- Panoramica di DHCP
 - L'host invia un messaggio broadcasts "DHCP discover"
 - Il server DHCP invia l'indirizzo con il messaggio "DHCP offer"
 - L'host richiede la configurazione con il messaggio "DHCP request"
 - Il server DHCP invia la configurazione con il messaggio "DHCP ack"

- Supporta tre meccanismi per a gestione degli indirizzi IP
 - Allocazione automatica
 - DHCP assegna permanentemente un indirizzo IP
 - Allocazione dinamica
 - DHCP assegna un indirizzo IP per un intervallo limitato di tempo (lease)
 - Allocazione manuale
 - · L'indirizzo IP è assegnato dall'amministratore di rete

- Code
 - Indica una richiesta o una risposta
- HW type
 - Tipo di hardware (es. ethernet, IEEE 802)
- Length
 - Lunghezza del campo client HW address
- Transaction ID
 - Pacchetti di richiesta e di risposta hanno lo stesso numero
- Seconds
 - Indica il tempo trascorso dall'avvio della procedura di boot
- Flag
 - Indica se il pacchetto è unicast o broadcast

code	HW type	length	hops	
Transaction ID				
Seconds		Flags field		
Client IP address				
Your IP address				
Server IP address				
Router IP address				
Client HW address (16 bytes)				
Server host name (64 bytes)				
Boot file name (128 bytes)				
Options 312 bytes)				

Client IP address

 È settato dal client, se il client non conosce il proprio indirizzo il suo valore è 0.0.0.0

Your IP address

Indirizzo IP del client assegnato dal server

Server IP address

Indirizzo IP del server

Client HW address

Indirizzo MAC del client

Options

 parametri di configurazione addizionali: router di default, subnet mask, domain name server, ecc.

code	HW type	length	hops	
Transaction ID				
Seconds		Flags field		
Client IP address				
Your IP address				
Server IP address				
Router IP address				
Client HW address (16 bytes)				
Server host name (64 bytes)				
Boot file name (128 bytes)				
Options (3124 bytes)				

Messaggi DHCP

DHCP_Discover

• È emesso in modo broadcast da un client per trovare un DHCP server

DHCP_Offer

 È la risposta di un DHCP server ad un messaggio DHCP_Discover e assegna l'indirizzo IP richiesto

DHCP_Request

- È emesso da un DHCP client verso un server
- Richiede i parametri di configurazione ad un server e rifiuta le offerte degli altri in caso di ricezione multipla di messaggi DHCP-Offer
- Verifica la consistenza della propria configurazione in caso di cambio di rete o di sistema (es. reboot)
- Richiede l'estensione temporale dell'uso di un indirizzo (lease extension)

DHCP_Ack

- Riscontro inviato dal DHCP Server al client ad un DHCP_request
- Contiene la configurazione richiesta dal client

Procedura DHCP

Pro

- Semplifica la gestione amministrativa degli indirizzi in rete
- Semplifica l'accesso in rete di utenti in mobilità (Nomadic Computing)
- Rende possibile l'uso efficiente di un insieme di indirizzi IP dimensionando opportunamente il tempo di lease

Contro

- Non garantisce un vero e proprio "plug and play"
 - Deve essere previsto un server DHCP in rete
 - Gli host devono essere configurati per usare DHCP
- DHCP non è sicuro, un utente non autorizzato può accedere alla rete
- Problemi di interoperabilità con DNS in caso di riallocazione dinamica degli indirizzi

Network Address Translator NAT

Network Address Translator (NAT)

- Riduce l'utilizzazione dello spazio di indirizzi IP
- E' utilizzato in una Intranet
 - ad una Intranet è assegnato un insieme di indirizzi IP pubblici che sono visibili dalle reti esterne
 - all'interno della Intranet possono essere utilizzati liberamente indirizzi IP privati, anche non unici in rete, appartenenti alla seguenti classi
 - Indirizzi di classe A: 10.0.0.0
 - Indirizzi di classe B: da 172.16.0.0 a 172.31.0.0
 - Indirizzi di classe C: da 192.68.0.0 a 192.168.255.0

Il dispositivo NAT

- assegna un indirizzo pubblico ad un host solo nel momento che questi deve comunicare con l'esterno
- esegue la traslazione dell'indirizzo privato con un indirizzo pubblico

NAT

I router abilitati alla funzione NAT appaiono
come un unico dispositivo con
un unico indirizzo IP.
Indirizzo IP origine: 138.76.29.7,
e tutto il traffico verso Internet deve riportare
lo stesso indirizzo

Spazio di indirizzi riservato alle reti private, molte delle quali usano un identico spazio, 10.0.0/24 per scambiare pacchetti tra i loro dispositivi

NAT

- Un NAT nasconde i dettagli di una Intranet al mondo esterno
 - Non è necessario allocare un intervallo di indirizzi
 - Un unico indirizzo IP è sufficiente per tutti gli host di una rete locale
 - È possibile cambiare gli indirizzi delle macchine di una rete privata senza doverlo comunicare all'Internet globale
 - È possibile cambiare ISP senza modificare gli indirizzi delle macchine della rete privata
 - Dispositivi interni alla rete non esplicitamente indirizzabili e visibili dal mondo esterno (un plus per la sicurezza)

NAT

- Quando un router NAT riceve il pacchetto dalla rete locale
 - genera un nuovo numero di porta d'origine (es. 5001)
 - sostituisce l'indirizzo IP di sorgente (privato) con il proprio indirizzo IP (pubblico) sul lato WAN (es. 138.76.29.7)
 - sostituisce il numero di porta origine iniziale (es. 3348) con il nuovo numero (5001)
- Quando un router NAT riceve il pacchetto da Internet
 - legge il numero di porta (es. 5001) ed individua il mapping con l'indirizzo interno
 - sostituisce l'indirizzo IP di destinazione con l'indirizzo IP privato dell'host di destinazione
 - sostituisce il numero di porta di destinazione (5001) con il numero di porta iniziale (3348)

Traduzione degli indirizzi di rete

Traduzione degli indirizzi di rete

- Il campo numero di porta è lungo 16 bit
 - Il protocollo NAT può supportare più di 60.000 connessioni simultanee con un solo indirizzo IP sul lato WAN
- NAT è contestato perché
 - E' contrario ai principi dell'architettura a strati TCP/IP
 - I dispositivi di rete dovrebbero elaborare i pacchetti fino al livello 3
 - Un host non è visibile dall'esterno della rete a cui appartiene
 - Interferisce con le applicazioni P2P
 - Al momento di un cambio di indirizzo IP deve essere ricalcolato il checksum dei pacchetti UDP e TCP
 - Incompatibilità con il protocollo ICMP

- Un client vuole collegarsi al server con indirizzo 10.0.0.1
 - L'indirizzo del server
 10.0.0.1 è locale per quella
 LAN
 - Non può essere utilizzato come indirizzo destinazione
 - Vi è un solo indirizzo NAT esternamente visibile (138.76.29.7)

Soluzione 1

- configurare
 staticamente NAT per inoltrare le richieste di collegamento entranti a una data porta del server
- (138.76.29.7, porta 2500) sempre inoltrato a 10.0.0.1 porta 2500

Soluzione 2

- Universal Plug and Play (UPnP)
- Internet Gateway
 Device Protocol (IGD)
- Consente agli host coperti da NAT di
 - Conoscere gli indirizzi IP pubblici (138.76.29.7)
 - Richiedere una corrispondenza NAT per un qualsiasi numero di porta

- Soluzione 3: relay (usato in Skype)
 - Il client NAT stabilisce una connessione con relay
 - Il client esterno si collega al relay
 - Il relay fa da ponte tra le due connessioni

