

### Genetically Determined Susceptibility to Malaria

Valérian Rey, Rayane Laraki, Maxence Jouve, Artur Szałata

École Polytechnique Fédérale de Lausanne (EPFL)

EE-558 Network Tour of Data Science

January 2020

#### **Outlines**

- Introduction
  - Problem
  - Dataset
  - Approach
- Our approach

- Baseline
- Graph construction
- Graph analysis
- Imputation
- 3 Future work
- 4 Conclusion

## Introduction

#### **Problem**

- Predict immune response given only genetic information
- Determine most relevant causes of susceptibility or immunity

#### Mosquitoes kill more people in one day than sharks killed over the last 100 years.







#### genes' expressions in tissues and phenotype of BXD strains. A subset of the open dataset available at the genenetwork website<sup>1</sup>.

- 57 strains with given malaria susceptibility score
- 1.2M genes' expressions per mouse with roughly 50% missing



Figure: Gene expression<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>http://www.genenetwork.org

<sup>&</sup>lt;sup>2</sup>image from www.researchgate.net

## **Approach**

- Use only genes' expressions as features
- Establish a baseline using ridge regression with cross validation
- Pick relevant subset of genes' expressions data
- Build a coexpression graph with genes' expressions as nodes and apply Tikhonov regularization to infer the missing data
- Apply ridge regression on data with inferred expressions

# Our approach

#### **Baseline**

- Select features: gene-tissue expression
- Explore the data, standardize and fill missing values
- Evaluate ridge regression using cross validation. MSE 0.114 (33%).

Select a subset of features using ridge regression weights and spearman correlation with malaria susceptibility



Figure: Baseline model using 1.2M features



Figure: Baseline model using 800 features

## Most relevant genes

| 10 most relevant genes                        |  |
|-----------------------------------------------|--|
| Serpina1-rat_ILM106590035_Bone_Femur          |  |
| Cntnap2_ILM100380601_ <b>Bone_Femur</b>       |  |
| 1700072I22Rik_ILM100380731_ <b>Bone_Femur</b> |  |
| D19Ertd678e_1441578_at_B_ <b>Brain_INIA</b>   |  |
| 2900041M22Rik_1444801_at_B_ <b>Brain_INIA</b> |  |
| Cdc40_1445348_at_B_ <b>Brain_INIA</b>         |  |
| Gm16000_TC0300002214.mm.1_ScWAT_HFD           |  |
| 2510015N06Rik_1441597_at_Kidney_Male          |  |
| _TC1700002137.mm.1_ScWAT_CD                   |  |
| Rtl1_10398346_Adrenal_Female                  |  |

| # Features used | MSE         |
|-----------------|-------------|
| 1.2M (all)      | 0.114 (33%) |
| 56k             | 0.012 (11%) |
| 800             | 0.024 (15%) |
| 10              | 0.068 (26%) |

### **Graph construction**

Goal: Build a co-expression graph between genes' expression. Each node corresponds to a gene in a given tissue.

■ Example: Tpp2\_ILM3850093 in Femur

### **Computing the distance matrix**

Here is how we computed the distance between two genes (nodes) X and Y in the graph:

- Obtain the vectors (u and v) corresponding to the expression value of all strains for nodes X and Y.
- 2 we then compute the number of common strains for these two vectors u and v, call it n.
- Sompute the Euclidean distance e between the non-NaN values of u and v.
- 4 Obtain the distance d between nodes X and Y by computing  $d = \frac{e}{n}$  if  $n \ge 10$  otherwise we have d = n.

- **II** Apply a RBF (Radial Basis Function) kernel with parameters  $\sigma$  (width of the kernel) and  $\epsilon$  (threshold value) on the distance matrix.
- 2 Initialize  $\sigma$  as the median  $L_2$  distance between data points and then tuned both  $\sigma$  and  $\epsilon$  to obtain a sparse matrix with dominating connected components.
- **13** Keep the biggest connected component as the the other ones were containing very few nodes each.

We obtained a co-expression graph containing 696 nodes and 15254 edges.

### **Graph analysis**

- Some properties of the graph
- Some properties of the nodes
- A visualization of the network

### Properties of the graph



- The graph has 1 connected component
- The diameter is 16
- The average clustering coefficient is 0.5832621152157119

### **Degree distribution**



Figure: Degree distribution

■ The distribution is a bit heavy-tailed. That means that our graph does have some hubs, but not very big (Average degree is 43.8; Maximum degree is 141).

#### **Graph visualization**



Figure: Fruchterman-Reingold visualization

- Fruchterman-Reingold visualization of the graph.
- Edges with heavier weights are brighter.
- Some clusters seem to appear.
- Interactive visualization

### **Imputation**

- Signal is the genes' expression for each mouse in turn
- Smoothness assumption on the coexpression the graph
- Tikhonov regularization to infer missing values

$$\tilde{x} = \operatorname{argmin}_{x \in R^N} ||Ax - y||_2^2 + R_{tk}(x; G)$$

$$R_{tk}(x; G) = \alpha ||Sx||_2^2$$

where A is the adjacency matrix and S is the incidence matrix.



Figure: Expression with missing values set to 0 Figure: Expression after Tikhonov regularization

### **Results**

| Missing value policy    | MSE              |
|-------------------------|------------------|
| Fill with mean          | 0.02445 (15.64%) |
| Tikhonov regularization | 0.02269 (15.06%) |

## **Future work**

#### What next?

- Use more genes' expressions
- Inhibition graph
- Predict other phenotypes
- Hyperparameter tuning
- Regularization on mice strains graph for phenotype prediction

## **Conclusion**

#### **Conclusion**

- Pros
  - Effective inference of missing data
  - Very high accuracy in phenotype prediction
  - Can identify most significant genes (even 10 say much!)
- Cons
  - Missing fields in the dataset
  - Only 57 strains with given phenotype

## Thank you for your attention