北京邮电大学 20-20 学年第 学期

《 数据结构与算法 》 期末考试试题 (A 卷)

考	→ 、:	学生参	多加考	试须带	#学生	证或学	卢院证	明,未	卡带者	不准法	性入考场。学生必须按
试	照监考教师指定座位就坐。										
注	二、书本、参考资料、书包等物品一律放到考场指定位置。										
意	三、	学生ス	下得另	行携节	节、使	用稿组	氏,要	遵守	《北京	(邮电)	大学考场规则》,有考
事						应规類					
项	四、学生必须将答题内容做在试题答卷上,做在试题及草稿纸上一律无效										
考试	数据	结构与	5算法		考试时间			年 月 日			
课程		1	1	1	与 风时间			十 万 口			
题号			三	四	五.	六	七	八	九	十	总分
满分	23	20	12	30	15						
得分											
阅卷											
教师											
一填	一 填空题(每空1分,共23分)										
1 粉rt	数据的逻辑结构由 话令事示一对一的关系										

班内序号:

华忠:

Ι.	数据的逻辑结构中,
	适合表示一对多的层次关系,适合对标多对多的关系。
2.	代码 for (int i=0;i <n;i*=3); th="" 的时间复杂度为:。<=""></n;i*=3);>
3.	设 n 阶对称矩阵按行优先方式存储下三角元素,元素 a_{00} 存储在 sa[0]
	元素中,元素 a_{ij} 存储在 sa[100]元素中,则下标 i 的值为,j 的
	值为。
4.	设一棵完全二叉树的顺序存储结构中存储数据元素为 abcdefg,则该
Ε	二叉树的前序遍历序列为,中序遍历序列为
	,后序遍历序列为。
5.	含有100个结点的完全二叉树,度为0,1,2的结点数量分别为、
	、。树的高度为。
6.	含有 100 个结点的二叉树,若采 <mark>用二叉链表存</mark> 储,则各个结点中所

	有的空指针域共有个。采用三叉链表存储,则各个结点中所
	有的空指针域共有个。
7.	由权值分别为 1,26,5,9,12,1 的叶子结点生成一棵哈夫曼树,它的带权
	路径长度为:。
8.	关键字序列为: {30, 25, 80, 63, 52, 48}, 哈希函数为 H(k)=k%7,
	哈希表的长度为7,若用线性探测处理冲突,等概率情况下查找成功
	的平均查找长度为(保留两位小数),若用链地址
	法处理冲突, 等概率情况下查找成功的平均查找长度为
9.	设有 5 个元素的进栈序列是 a, b, c, d, e, 其输出序列是 c, e, d,
	b, a,则该栈的容量至少是。
10.	若一个栈用数组 int data[n]存储,若初始栈顶指针 top 为 n,则经过
	若干次出入栈操作后,元素 x 进入栈的操作使用一条 $C/C++$ 语句是
11.	循环队列使用数组 int data[n]存储,设 front 队首指针指向队首元素
	的前一位置, rear 队尾指针指向队尾元素, 则队满条件是
	(不允许负数求余),队空的条件是。
12.	若待排序序列为 r[1n],采用堆排序,则根结点编号为 1,最后一个
	结点编号为 n;请问建堆过程中应该从第个结点开始筛选。
单	·选题(每空1分,共20分)
•	

题号	1	2	3	4	5	6	7		8	9
答案										
题号	10	11	12	13	14	15	16	17	18	19
答案										

1.算法分析的两个主要方面是[]。

A. 空间复杂度和时间复杂度 B. 正确性和简单性

- C. 可读性和文档性
- D. 数据复杂性和程序复杂性
- 2. 已知带头节点的单链表, p 节点既不是首节点 (第一个节点), 也不是 尾节点, P 节点直接后继节点从链表中去掉的语句序列是[]

 $A \cdot P = P \rightarrow next;$

D、P=P	-> next -> next;			
<mark>个</mark> 指针?[]	比较高效的算法 B 2 C 3	光判断单链表有没 D4	有环的算法中,	至少需要几
针[]。		将 p 所指的结点/		需要修改指
		or; p->prior->next=		
•	•	;; p->next->prior=p		
• •	• • • •	rior=p->prior->prio t; p->next=p->prio		
2 p > p(1	or-p streat strea	ι, ρ / πελί-ρ / ρπο	7 7 7 1101	
5. 不属于链 A 适用。 C 存取i	频繁插入] B 适用于频 D 方便扩充		
插入和删除运算 A 顺序	,则利用[表	作是存取任一指定]存储方式最节省 B 双链表 表 D 单循环链	省时间。	在最后进行
遍历结果相同的 A.一般二 B. 只有 C. 根结 D. 根结 E. 所有	二叉树为[二叉树 二叉树 的二叉树]; 前序	遍历和后序

 $B \cdot P \rightarrow next = P;$

C、 P - > next = P -> next -> next;

8. 分别用以下序列构造二叉排序树,与其他三个序列构造结果不同的
是[]
A 100 80 90 60 120 110 130
B 100 120 110 130 80 60 90
C 100 60 80 90 120 110 130
D 100 80 60 90 120 130 110
9. 对于关键字序列(14,26,38,54,91),按序列次序创建一颗平衡二叉排序
树,在等概率情况下查找成功时,其平均查找长度是[]。
A. 7/5 B. 9/5 C. 11/5 D. 13/5
10. 设无向图 G=(V,E)和 G'=(V',E'), 如果 G'是 G 的生成树,则下列说法中
错误的是[]。
A. G'是 G 的连通分量
B. G'是 G 的一个无环子图
C. G'是 G 的子图
D. G'是 G 的极小连通子图且 V=V'
11 . 设有 5 个结点的无向图,该图至少应有[
个连通图。
A. 5 B. 6 C. 7 D. 8
12. <u>折半查</u> 找有序表(3,4,5,13,16,32,81,727,2021),为了找到数字 727,被比较的数字顺序为()。
X に X 可 数 子
C. 16,32,81,727 D. 16,2021,727
=: ==,==,:=:
13 对于关键字序列(49,38,65,97,76,13,27,49),完成创建的大根堆是
[]。
A.(97,76,65,49,49,13,27,38)
B.(97,76,65,49,49,38,27,13)
C.(97,65,76,49,49,13,27,38)
D.(13,27,38,49,49,65,76,97)
14 对 关键字序列(30、26、18、16、5、66)。进行 2 遍[]排序后得

第4页,共10页

	A.插入	B.归并	C.冒泡	D.选择
趟扫	15 在下列排序。 排序之前,所有方			现如下情况:在最后一
	A.快速	B.插入	C.堆	D.冒泡
			序方法的平均时 C.快速	·间复杂度不是 O(n²). D.直接选择
序,	则该二叉树是[]		告点序列都按关键字有 D 完全二叉切
	A 义排庁例	B. 哈大叟例	C. 堆	D.完全二叉树
存中	18、将递归算法 中间结果。	、转换成对应的 非	 上递归算法时,追	通常需要使用[]来保
	A. 队列	B. 栈	C. 链表	D. 树
MO	19、 <mark>一个待散列</mark> D 9,与 18 发生			2,9},散列函数为 H(k)=k
	A. 1	B. 2 C. 3	D. 4	1
三	简答题(12 タ	})		

到序列(5, 16, 18, 26, 30, 66)。

1. (4分)<mark>设先序遍历某</mark>棵树的结点序列为 SACEFBDGHI JK, <mark>后序遍历该</mark>树 的结点序列为 CFEABHGIK JDS, 要求画出这棵树。

2、(4分)现有一个稀疏矩阵,按行优先存储,起始行列号均为0,请给出它的三元组表。

$$\begin{bmatrix} 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$

3. $(4 \, \beta)$ 已知一棵度为 m 的树中有 N_1 个度为 1 的结点, N_2 个度为 2 的结点,…, N_m 个度为 m 的结点。试问该树中有多少个叶子结点?

四. 综合题(30分)

1、(8分)设哈希表表长 m为 13,哈希函数为 H(k)=k MOD m,给定的关键值序列为 $\{19,14,23,10,68,20,84,27,55,11\}$ 。试写出用线性探测法解决冲突时所构造出的哈希表,并求出在等概率的情况下查找成功的平均查找长度 ASL。

(1) Hash 表 (5分)

0	1	2	3	4	5	6	7	8	9	10	11	12	

(2) 查找成功的平均查找长度 ASL (3分)

2. $(10 \, f)$ 已知某电文中共出现了 $(10 \, f)$ 10 种不同的字母,每个字母出现的频率分别为 $(10 \, f)$ 11 $(10 \, f)$ 12 $(10 \, f)$ 12 $(10 \, f)$ 13 $(10 \, f)$ 14 $(10 \, f)$ 15 $(10 \, f)$ 16 $(10 \, f)$ 16 $(10 \, f)$ 17 $(10 \, f)$ 17 $(10 \, f)$ 18 $(10 \, f)$ 19 $(10 \, f)$ 10 $(10 \, f)$ 11 $(10 \, f)$ 10 $(10 \, f)$ 10 $(10 \, f)$ 10 $(10 \, f)$ 11 $(10 \, f)$ 11 $(10 \, f)$ 12 $(10 \, f)$ 12 $(10 \, f)$ 12 $(10 \, f)$ 12 $(10 \, f)$ 13 $(10 \, f)$ 13 $(10 \, f)$ 13 $(10 \, f)$ 13 $(10 \, f)$ 14 $(10 \, f)$ 15 $(10 \, f)$ 16 $(10 \, f)$ 16 $(10 \, f)$ 17 $(10 \, f)$ 17 $(10 \, f)$ 18 $(10 \, f)$ 19 $(10 \, f)$

- 3、(12分)已知图 G 的邻接矩阵如下所示:
- (1) 求从顶点 1 (顶点序号从 1 开始) 出发的深度优先遍历和广度优先遍历序列: (4 分)
- (2) 根据 prim 算法,求图 G 从顶点 1 出发的最小生成树,要求表示出其每一步生成过程。(用图或者表的方式均可)。(4分)
- (3) 根据 Di jkstra 算法,按顺序写出图 G 从顶点 1 出发的所有最短路径 顶点序列和长度。(4分)

0	8	1	6	∞	∞
8	0	1 6	∞	3	
1	6	0	7	6	4
6	∞	7 6	0	∞	2
∞	3	6	∞	0	6
∞	∞	4		6	0

五. 编程题(15分)

1. 具有 n 个结点的完全二叉树,已经顺序存储在一维数组 a[1···n]中,算法 create 将 a 中顺序存储变为以二叉链表存储的完全二叉树。请在下面的空格内填入适当语句,完成算法。(5分)

```
struct Node
{ char data;
  Node *lch, *rch;
void create(Node *&r, int i, char a[], int n)
   if (i>n)
   else
     r=new Node:
      r->data = a[i];
      Create(______, a, n);
       Create(
   }
}
2.大根堆筛选算法用 C++语言描述如下, 建堆元素存储在数组 r[s···m]内,
请在下面的空格内填入适当语句,完成算法。(5分)
void Sift ( int r[], int s, int m )
{
   r[0] = r[s]; //暂存 r[s]
   for (int j=2*s; ___; j*=2)
     if (j \le m \&\& r[j] \le r[j+1])
         _____; //令 j 指示关键字较大元素的位置
      if (r[0] < r[i])
         s=j; //元素上移,继续向下调整
      else _____; //找到 r[0]的插入位置 s , 停止向下调整
   }
         ; //将调整前的堆顶元素插入到 s 位置
}
```

3. 线性表 $L=(a_1, a_2, ..., a_n)$,以单链表存储,头指针 first,指针 p 指向链表第 i 个结点,i=1,2,...,n-1;函数 delete 实现以 O(1) 时间复杂度删除元素 a_i ,并将 a_i 返回调用函数;请在下面的空格内填入适当语句,完成算法。 (5分)