

Properties of Real Numbers

Jeng Inger, Hun Sivmeng

14 March 2022

MAC 1/14

- 1 Introduction
- 2 Algebraic Properties
- **3** Ordering Properties
- **4** Completeness Property
- **6** Why do Analysis on \mathbb{R}
- 6 Some important results

MAC 2/14

Discussion

Suppose we want to solve $x^2-2=0$ in the field $\mathbb Q$. It turns out that this equation has no roots in $\mathbb Q$. So we need to extend this field to a new one — a *better* one, called the set of real numbers and is denoted by $\mathbb R$.

What are the properties of this new set \mathbb{R} , and how do we extend this exactly?

But before we proceed, we ask the audience to forget all the properties of $\mathbb R$ we learned in highschool because we're going to start from the bottom up.

First, because $\mathbb R$ is an extension of $\mathbb Q$, thus $\mathbb R$ must inherit all the properties of $\mathbb Q.$

The set \mathbb{R} has the following algebraic properties:

Algebraic Properties (Addition)

- **1** (closed): $a + b \in \mathbb{R}$
- 2 (commutative): a + b = b + a
- **3** (associative): a + (b + c) = (a + b) + c
- **4** (additive identity): $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} : 0 + a = a$
- **6** (additive inverse): $\forall a \in \mathbb{R}, \ \exists a' \in \mathbb{R}: \ a + a' = 0.$

Algebraic Properties (Multiplication)

- **1** (closed): $ab \in \mathbb{R}$
- 2 (commutative): ab = ba
- 3 (associative): a(bc) = (ab)c
- **4** (multiplicative identity): $\exists 1 \in \mathbb{R}, \forall a \in \mathbb{R} : a \cdot 1 = a$
- **6** (multiplicative inverse): $\forall a \in \mathbb{R}, a \neq 0, \exists a^* \in \mathbb{R} : aa^* = 1$
- **6** (distributive law): a(b+c) = ab + bc.

Thus, \mathbb{R} is a field with two operations, namely addition and multiplication.

Algebraic Properties MAC 5/14

From this algebraic properties, we can prove the basic arithmetic we learned in highschool with ease.

Lemma

- additive identity/inverse is unique
- multiplicative identity/inverse is unique

•
$$x + a = y + a \iff x = y$$

- $a \cdot 0 = 0$
- $-a = (-1) \cdot a$
- $ab = 0 \iff a = 0 \text{ or } b = 0$

Algebraic Properties MAC 6/14

Ordering Properties

There is a non-empty subset of \mathbb{R} , called the set of positive real numbers which is denoted by \mathbb{R}^+ . This set has the properties:

Ordering Properties

- if $a \in \mathbb{R}$, then $a \in \mathbb{R}^+$ or a = 0 or $-a \in \mathbb{R}^+$;
- if $a, b \in \mathbb{R}^+$ then $a + b \in \mathbb{R}^+$;
- if $a, b \in \mathbb{R}^+$ then $ab \in \mathbb{R}^+$.

We then define relations $<, \le, >$ and \ge as follows:

- a > b whenever $a b \in \mathbb{R}^+$;
- $a \ge b$ whenever a > b or a = b;
- *b* < *a* whenever *a* > *b*;
- $b \le a$ whenever $a \ge b$;

From this ordering properties, we can prove the following:

Lemma

Let $a, b, c \in \mathbb{R}$.

- then a > b or a = b or a < b.
- if a > b, then a + c > b + c.
- if a > b and b > c, then a > c.
- if a > b and c > 0, then ac > bc.
- if a > b and c < 0, then ac < bc.

Completeness

Up until this point, the set $\mathbb R$ still behaves like $\mathbb Q$, namely $\mathbb R$ is an odered field just like $\mathbb Q$. How do we make $\mathbb R$ better than $\mathbb Q$?

Definition

Let $A \subset \mathbb{R}$. We call

- A is bounded above if $\exists M \in \mathbb{R}$ st $a \leq M$ for all $a \in A$.
- A is bounded below if $\exists m \in \mathbb{R}$ st $m \leq a$ for all $a \in A$.
- A is bounded if A is both bounded above and below, i.e. $\exists M > 0 \text{ st } |a| \leq M \text{ for all } a \in A.$

We call M, m the upper bound and lower bound of A, respectively. The *Completeness* property of $\mathbb R$ states that

Axiom of Completeness – (AoC)

Let $A \subset \mathbb{R}$. If A is bounded above, then A has *least upper bound*.

This axiom is a mathematical way to say that \mathbb{R} has no gaps. It also applies to sets that are bouned below.

Corollary

Let $B \subset \mathbb{R}$. If B is bouned below, then B has greatest lower bound.

We denote the

- least upper bound of A by sup A
- greatest lower bound of A by inf A

Lemma

There is $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof.

Consider the set $S = \{x \in \mathbb{R} : x^2 \le 2\}$. This set is clearly bouned above. Hence by AoC, S has supremum. Let $s = \sup S \in \mathbb{R}$. We claim that $s^2 = 2$. From ordering property of \mathbb{R} , one of the following must true

$$s^2 < 2$$
, or $s^2 > 2$, or $s^2 = 2$.

Case if $s^2 < 2$:

Why study on \mathbb{R}

As we mentioned above, we can't do analysis on $\mathbb Q$ because some numbers simply don't exist in $\mathbb Q$.

- 1 allow us to do analysis
- ${f 2}$ concept of limit is well behaved in ${\Bbb R}$
- (need more ...)

Theorem

For any real number x, there is a sequence (x_n) of rationals such that $x_n \neq x$ for all $n \in \mathbb{N}$ and

$$\lim x_n = x$$
.

To prove this theorem, we use the fact that $\mathbb Q$ is dense in $\mathbb R$. That is, for any two real numbers $x,y\in\mathbb R$ where x< y, there exists a rational $r\in\mathbb Q$ such that x< r< y.

Proof.

Let $x \in \mathbb{R}$. We wish to construct $(x_n) \subset \mathbb{Q}$ such that $x_n \to x$. Because \mathbb{Q} is dense in \mathbb{R} , then for each $n \in \mathbb{N}$ we can find $x_n \in \mathbb{Q}$ such that $x < x_n < x + \frac{1}{n}$.

We claim that (x_n) does converge to x, and hence proved the theorem.

Let $\epsilon>0$. Using Archimedean property, we can find $N\in\mathbb{N}$ for which $N>\frac{1}{\epsilon}$. Now for any $n\geq N$, and because $x_n\in(x,x+\frac{1}{n})$ we then obtain that

$$|x_n - x| < \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

Thus $x_n \to x$ as required.