

A meta regression analysis

Chaochen Wang 王超辰

2017/7/14 in NCC

# **METHODS**

#### Data sources and extraction

- **PubMed** and **Embase** were searched for studies reported prevalence of *H. pylori* infection among Japanese population (until 30 June, 2016).
- 43 papers

   JPHC Cohort II
   JPHC-NEXT Cohort Study
   included for meta-regression analysis
   (Table 1).
- Prevalence of H. pylori infection reported by birth year group of participants<sup>[1~7]</sup>.

- 38 studies reported prevalence with age groups.
  - 34 studies reported data collection period:
  - Example:
    60-70 years old group;
    data collection done in 1990;
    birth year should be 1920~1930.
  - 4 studies reported age groups with data collection year unavailable, year of publication was used instead of data collection period.
- [1] Ueda J. Helicobacter. 2014; [2] Watanabe M. Cancer Sci. 2015;
- [3] Reploge M.L. Int J Epidemiol. 1996; [4] Shimoyama T. Gastric Cancer. 2012;
- [5] Shimatani T. *J Gastroenterol Hepatol.* 2005; [6] JPHC Cohort II; [7] JPHC-NEXT

## STATISTICAL ANALYSIS

# 273 Data Points from 45 Studies were available for meta-regression

| Show 100 - entries |                   |                              | Search:             |                 |        |
|--------------------|-------------------|------------------------------|---------------------|-----------------|--------|
| No                 | <b>Author</b>     | adultdults.or.childhildren 🖣 | Source.population * | Specimen.type 🖣 | kit.   |
| 1                  | Kikuchi,<br>1998  | adult                        | General             | serum           | fc     |
| 1                  | Kikuchi,<br>1998  | adult                        | General             | serum           | fc     |
| 1                  | Kikuchi,<br>1998  | adult                        | General             | serum           | fc     |
| 1                  | Kikuchi,<br>1998  | adult                        | General             | serum           | fc     |
| 2                  | Fujisawa,<br>1999 | adult                        | General             | serum           | fc     |
|                    | Fiiicara          |                              |                     |                 | 5 / 15 |

### Step 1: Weight Calculation

```
library(meta)
library(metafor)
library(mgcv)
meta <- metaprop( event = Number_of_Positive,</pre>
                        = Number_of_Subjects_in_the_corresponding_group,
                  byvar = Birth_Year,
                  sm = "PLOGIT", # Logit transformation
             method.tau = "REML") # Restricted Maximum-likelihood
                                       # estimator to estimate the
                                       # between-study variance
weight<-meta$w.random # Weight of each data point extracted</pre>
```

# Step 2: Meta-regression (Generalized Additive Mixed Model, GAMM)

```
res1 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
                                  # Cubic Spline Regression 三次スプライン曲級
            s(Study_ID, bs="re") + # Study ID as random effect
            Source_of_population + # Community OR Clinical based
            Specimen_type + # Serum OR Others (urinary, salivary, st
            Kit.from + # Antigen derived from demostic or forei
                                  # Data collection period, cutoff = 2000
            early,
            data = data, weights=weight,
            family="binomial"(link=logit), method="REML")
#########################
res2 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
            s(Study_ID, bs="re") +
            Specimen_type,
            data = data, weights=weight,
            family="binomial"(link=logit), method="REML")
########################
res3 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
            s(Study_ID, bs="re"),
            data = data, weights=weight,
            family="binomial"(link=logit), method="REML")
                                                                   7 / 15
```

**TABLE 2. Informations for tested models.** 

|                                                                                                                                                                                                                                      | AIC      | BIC      | LogLik               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------------------|
| Model 1:<br>Logit(P) = s(birth year) + r(study ID) +<br>f(source of population) + f(diagnostic test) +<br>f(ELIZA kits) + f(research year)                                                                                           | 1716.444 | 1895.216 | -808.6935 (df=49.53) |
| Model 2:<br>Logit(P) = s(birth year) + r(study ID) +<br>f(diagnostic test)                                                                                                                                                           | 1730.349 | 1904.178 | -817.0157 (df=48.16) |
| Model 3:<br>Logit(P) = s(birth year) + r(study ID)                                                                                                                                                                                   | 1731.451 | 1906.366 | -817.2658 (df=48.46) |
| Abbreviations and definitions: AIC: Akaike's information criterion; BIC: Bayesian information criterion; LogLik: Log-likelihood; P: prevalence; s: penalized cubic spline; r: random effect; f: fixed effect; df: degree of freedom. |          |          |                      |

#### Summary from Model 1 comparable to Table 3

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## cbind(mp, n_total - mp) ~ s(birth.year_high, bs = "cr") + s(No,
      bs = "re") + Source.population + Specimen.type + kit.from +
##
##
      early
##
## Parametric coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                     0.14022 - 1.217
                          -0.17064
                                                      0.2236
## Source.populationPatient 0.28630 0.20234 1.415
                                                      0.1571
## Specimen.typeother -0.41271 0.19256 -2.143
                                                      0.0321 *
## kit.fromforeign 0.01836 0.16847 0.109
                                                      0.9132
## kit.fromunknown -0.11517 0.25923 -0.444
                                                      0.6569
## earlylate
                                     0.15813 - 1.611
                        -0.25471
                                                      0.1072
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                       edf Ref.df Chi.sq p-value
##
## s(birth.year_high) 7.372 8.158 4255 <2e-16 ***
## s(No)
                                  1910 <2e-16 ***
                    34.754 38.000
```

9 / 15

# Table 4 Predicted Prevalence of *H. pylori* infection from 1908 to 2003

| Show 100 → entries |       | Search              | Search:      |  |  |
|--------------------|-------|---------------------|--------------|--|--|
| Birthyear          | Pres  | valence • 95%CI_low | 95%CI_high • |  |  |
| 1908               | 0.574 | 0.520               | 0.626        |  |  |
| 1909               | 0.580 | 0.530               | 0.628        |  |  |
| 1910               | 0.586 | 0.540               | 0.631        |  |  |
| 1911               | 0.592 | 0.549               | 0.633        |  |  |
| 1912               | 0.597 | 0.559               | 0.635        |  |  |
| 1913               | 0.603 | 0.567               | 0.638        |  |  |
| 1914               | 0.609 | 0.576               | 0.640        |  |  |
| 1915               | 0.614 | 0.584               | 0.643        |  |  |
| 1916               | 0.619 | 0.591               | 0.645        |  |  |

# **PLOT**

Figure 2. Multivariable adjusted prevalence of *H. pylori* infection in Japanese by birth year from year of 1908 to 2003



# **Interactive PLOT**



### Thanks!

Slides made by using xaringan package

Slides address:

https://winterwang.github.io/For\_Inoue\_pylori/#1