

Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

18. (Currently amended) A method of determining hysteresis of a process device in a process, the method comprising

measuring a control input to the process device during normal operation of the process device in an industrial process,

measuring a process output of the process device during normal operation of the process device in the industrial process,

collecting sample pairs of signals representing ~~a-said~~ control input and ~~a-said~~ measured process output of ~~a-the~~ process device during normal operation of the process device in the industrial process,

storing the collected sample pairs in a database,

calculating the hysteresis of the process device on the basis of the collected sample pairs,

each collected sample pair including an average control input and an average output for a predetermined collection period,

screening the sample pairs suitable for further processing at least according to the magnitude and direction of the relative change of the average control input of each sample pair,

grouping the sample pairs into a first and a second group at least according to the direction of the relative change of the average control input of each sample pair,

calculating a first and a second control/output characteristic curve by means of the screened sample pairs of the first and the second group, respectively,

determining the hysteresis of the process device as a distance between the first and the second characteristic curve at least at one point.

19. (Previously presented) A method according to claim 18, wherein the signal representing the process output comprises one of the following: a measured process variable, or a set point of a process variable in process control.

20. (Currently amended) A method according to claim 18, wherein the screening comprises

calculating the change of average control input for each sample pair in relation to the average control input of the previous sample pair and the direction of the change, if the calculated change is smaller than the change calculated for the control input of the previous sample pair and has occurred in the same direction as the change calculated for the control input of the previous sample pair, the sample pair is selected for further processing; otherwise the sample pair is rejected.

21. (Previously presented) A method according to claim 18, wherein the direction of the change is determined by calculating the sign of the change, in which case the sign is positive if the control input is increasing, and negative if the control input is decreasing.

22. (Previously presented) A method according to claim 18, wherein the screening comprises

selecting a sample pair $u_m(j)$, $y_m(j)$ for the calculation of the characteristic curve if the following two conditions are fulfilled:

$$\begin{aligned} |\Delta u_m(j)| &< |\Delta u_m(j-1)| \\ \text{sign}(\Delta u_m(j)) &= \text{sign}(\Delta u_m(j-1)) \end{aligned}$$

where

$u_m(j)$ is the average control input of sample pair j,

$y_m(j)$ is the average measured output of sample pair j,

j is an integer index,

$$\Delta u_m(j) = u_m(j) - u_m(j-1)$$

sign(Δu_m) calculates the sign of Δu_m .

23. (Previously presented) A method according to claim 22, wherein the sample pairs are grouped into a first and a second group on the basis of the following rule:

if the sign of Δu_m is positive, the sample pair belongs to the first group,

if the sign of Δu_m is negative, the sample pair belongs to the second group.

24. (Currently amended) A method according to claim 18, wherein the collecting comprises

taking a momentary sample pair from the control input and measured output at certain intervals, the interval being preferably at least one second or longer in the order of one or more seconds,

calculating the average sample pair from the momentary sample pairs taken during the collection period, which is preferably at least one minute or longer in the order of one or more minutes.

25. (Previously presented) A method according to claim 18, comprising calculating a reliability value for hysteresis by a function, which includes the following information as parameters

the number $Ny1$ of average sample pairs belonging to the first, ascending characteristic curve,

the number $Ny2$ of average sample pairs belonging to the second, descending characteristic curve,

the number Noy1 of sample pairs which belong to the first characteristic curve but are below the second characteristic curve, and

the number Noy2 of sample pairs which belong to the second characteristic curve but are above the first control curve.

26. (Previously presented) A method according to claim 25, wherein

the reliability value L is calculated by function $L=\max(0.1-Noy1/Ny1-Noy2/Ny2)$, in which case L may obtain values from 0 to 1, where L=1 is completely reliable and L=0 is completely unreliable.

27. (Previously presented) A method according to claim 18, wherein the calculation of each characteristic curve comprises

dividing the control area of the control input into bins $u_0(1)\dots u_0(n_{bin})$, where $u_0(1)\dots u_0(n_{bin})$ is the location of the bins on the u-axis representing the control input and bin is the number of bins, in which case the values $y_0(1)\dots y_0(n_{bin})$ included in the bins represent output values on the y-axis describing the output, and value pairs

$u_0(1)/y_0(1),\dots,u_0(n_{bin})/y_0(n_{bin})$ define a characteristic curve,

updating the values $y_0(1)\dots y_0(n_{bin})$ of the bins $u_0(1)\dots u_0(n_{bin})$ by means of the average sample pairs using a predetermined weighting function.

28. (Currently Amended) A method according to claim 27, comprising

updating two bins b_n, b_{n-1} according to each sample pair, the bins being selected so that the following condition is fulfilled

$$b_n < \frac{u_m - u_{\min}}{u_{\max} - u_{\min}} (n_{bin} - 1) + 1 < b_{n+1}$$

where

u_m is the minute mean value of the control of sample pair j,

y_m is the minute mean value of the measurement of sample pair j,

$n = 1 \dots n_{bin}$,

u_{min} and u_{max} are the minimum and the maximum of the control area, respectively,

updating the values $y_0(b_n)$ and $y_0(b_{n+1})$ of the selected bins b_n , and b_{n+1} as follows

$$y_0(b_n) = \frac{nct(b_n)y_0(b_n) + w_1y_m}{nct(b_n) + w_1}$$

$$y_0(b_{n+1}) = \frac{nct(b_{n+1})y_0(b_{n+1}) + w_2y_m}{nct(b_{n+1}) + w_2}$$

where

$nct(1) \dots nct(n_{bin})$ each represents the number of updates (control/measurement pairs used) of each bin,

w_n and w_{n+1} are weighting coefficients

$$w_n = 1 - \frac{|u_m - u_{min} - (b_n - 1)u_{st}|}{u_{st}}$$

$$w_{n+1} = 1 - \frac{|u_m - u_{min} - (b_{n+1} - 1)u_{st}|}{u_{st}}$$

u_{st} is the distance between the bins

$$u_{st} = \frac{u_{max} - u_{min}}{n_{bin} - 1}$$

updating the numbers $nct(b_n)$ and $nct(b_{n-1})$ of updates of the selected bins b_n and b_{n-1} as follows

$$nct(b_n) = a * nct(b_n) + w_1$$

$$nct(b_{n+1}) = a * nct(b_{n+1}) + w_2$$

where a is constant.

29. (Currently amended) A system for determining hysteresis of a process device in a process environment, the system comprising

means for measuring a control input to the process device during normal operation of the process device in an industrial process,

means for measuring a process output of the process device during normal operation of the process device in the industrial process,

means for collecting sample pairs of signals representing a-said control input and a-said measured process output of the process device during normal operation of the process device in the industrial process,

a database storing the collected sample pairs,

each collected sample pair including an average control input and an average control output for a predetermined collection period, and the system comprises

means for screening sample pairs that are suitable for further processing at least according to the magnitude and direction of the relative change of the average control input of each sample pair,

means for grouping the sample pairs into a first and a second group at least according to the direction of the relative change of the average control input of each sample pair,

means for calculating a first and a second control/output characteristic curve by means of the first and the second screened sample pair, respectively,

means for determining the hysteresis of the process device as a distance between the first and the second characteristic curve at least at one point.

30. (Previously presented) A system according to claim 29, wherein the signal representing the process output comprises at least one of the following: a measured process variable, or a set point of a process variable in process control.

31. (Previously presented) A system according to claim 29, wherein the screening means comprise

means for calculating the change of the average control input for each sample pair in relation to the average control input of the previous sample pair and the direction of the change, and for selecting a sample pair for further processing if the calculated change is smaller than the change calculated for the control input of the previous sample pair and has occurred in the same direction; otherwise the sample pair is rejected.

32. (Previously presented) A system according to claim 29, comprises means for calculating a reliability value for hysteresis by a function which includes the following information as parameters

the number Ny1 of average sample pairs belonging to the first, ascending characteristic curve,

the number Ny2 of average sample pairs belonging to the second, descending characteristic curve,

the number Noy1 of sample pairs which belong to the first characteristic curve but are below the second characteristic curve, and

the number Noy2 of sample pairs which belong to the second characteristic curve but are above the first control curve.

33. (Previously presented) A system according to claim 31, wherein

the reliability value L is calculated by function $L = \max(0.1 - Noy_1/Ny_1 - Noy_2/Ny_2)$, in which case L may obtain values from 0 to 1, where L=1 is completely reliable and L=0 completely unreliable.

34. (Currently amended) A computer-readable storage medium comprising executable code presenting a computer program that cause a computer to implement at least the following steps determining hysteresis of a process device in a process:

measuring a control input to the process device during normal operation of the process device in an industrial process,

measuring a process output of the process device during normal operation of the process device in the industrial process,

collecting sample pairs of signals representing a said control input and a said measured process output of a the process device during normal operation of the process device in the industrial process, each collected sample pair including an average control input and an average output for a predetermined collection period,

storing the collected sample pairs in a database,

calculating the hysteresis of the process device on the basis of the collected sample pairs,

screening the sample pairs suitable for further processing at least according to the magnitude and direction of the relative change of the average control input of each sample pair,

grouping the sample pairs into a first and a second group at least according to the direction of the relative change of the average control input of each sample pair,

calculating a first and a second control/output characteristic curve by means of the screened sample pairs of the first and the second group, respectively, and

determining the hysteresis of the process device as a distance between the first and the second characteristic curve at least at one point.