Electrical Engineering Technology

Series Configuration and Voltage Divider
Spring 2019 (2185)

Series Configuration and Voltage Divider

- Series Configuration
 - Introduction to AC Series Circuits
 - □ Comparison to DC Series Circuits
 - □ RL Circuit Example
 - □ ICP 1 Series RC Circuit
- Voltage Divider Rule
 - Introduction
 - Example
 - □ ICP 2 Use voltage divider to find unknown voltages

Series Circuit Configuration

- Overall properties of AC series circuits are the same as those of DC series circuits if
 - □ The source is converted to phasor form

$$V_{m} \angle \theta^{\circ} \text{ or } V_{pk} \angle \theta^{\circ}$$

$$V_{m} \sin(\omega t + \theta^{\circ}) \rightarrow \frac{V_{m}}{\sqrt{2}} \angle \theta^{\circ} \rightarrow V_{rms} \angle \theta^{\circ}$$

□ The circuit loads (R, L or C) are converted to their respective impedances $(Z_R, Z_L \text{ or } Z_C)$

$$\mathbf{Z}_{R} = R \angle 0^{\circ}$$
 $\mathbf{Z}_{L} = X_{L} \angle 90^{\circ}$ $\mathbf{Z}_{C} = X_{C} \angle - 90^{\circ}$

Series DC Circuit

Series AC Circuit

The applied voltage of a series dc circuit will equal the algebraic sum of the voltage drops of the circuit (aka KVL)

$$E = V_1 + V_2$$

$$E = V_1 + V_2$$

The current is the same at every point in a series circuit

$$I = \frac{E}{R_T}$$

$$I=\frac{E}{Z_T}$$

The voltage across each element can be found by Ohm's law

$$V_1 = IR_1$$

$$V_1 = IR_1 \qquad V_2 = IR_2$$

$$V_1 = IZ_1 \qquad V_2 = IZ_2$$

$$V_2 = IZ_2$$

Electrical Engineering Technology

Series DC Circuit

Series AC Circuit

 The total resistance (impedance for AC) of a series configuration is the sum of the resistors (impedances for AC)

$$R_T = R_1 + R_2$$

$$Z_T = Z_1 + Z_2$$

The total power delivered to the load is

$$P = EI$$

$$P = EI \cos(\theta_T)$$

E and I are the effective (RMS) values

Where θ_T is the phase angle between voltage and current

$$\theta_T = \theta_E - \theta_I$$

Series RL Circuit Example

- Consider the series RL circuit below
 - 1. Write the voltage *E* in phasor form.
 - 2. Calculate the total impedance Z_T of the circuit
 - 3. Find the current I and the voltages V_R and V_L
 - 4. Find the power delivered to the loads and the total power

Electrical Engineering Technology

Series RL Circuit Example

■ Source voltage $e = 141.4_{pk} \sin(\omega t)$

$$e = 141.4_{pk}\sin(\omega t)$$

□ Sinusoidal

$$\mathbf{E} = \frac{141.4}{\sqrt{2}} co^{\circ} \longrightarrow \mathbf{E} = 100 V_{rms} \angle 0^{\circ}$$

□ Polar & Rectangular

E = (100 + j0)Vrms

Impedance

 \square Total impedance $Z_T = Z_R + Z_L$

$$Z_T = Z_R + Z_L$$

$$\mathbf{Z}_{R} = R \angle 0^{\circ}$$
 $\mathbf{Z}_{R} = 3\Omega \angle 0^{\circ} = (3 + i0)\Omega$

$$\mathbf{Z}_L = X_L \angle 90^\circ \quad \mathbf{Z}_L = 4\Omega \angle 90^\circ = (0 + j4) \Omega$$

$$Z_T = Z_R + Z_L = (3+j0) + (0+j4) = (3+j4)\Omega$$

$$Z_T = \sqrt{(3^2 + 4^2)} \angle \tan^{-1}(\frac{4}{3}) = (5\Omega \angle 53.13^\circ)$$

Current

$$I = I_R = I_L = \frac{E}{Z_T} = \frac{100V_{rms} \angle 0^{\circ}}{5\Omega \angle 53.13^{\circ}} = (20A_{rms} \angle - 53.13^{\circ})$$

$$I = 20\cos(-53.13^{\circ}) + j20\sin(-53.13^{\circ}) = (12 - j16)A_{rms}$$

Series RL Circuit Example

Total Power Delivered

Where
$$\theta_T$$
 is the phase $P_T = EI \cos \theta_T$ $P_T = (E)(I) \cos(\theta_E - \theta_I)$ angle between E and I $P_T = (100V_{rms})(20A_{rms})\cos(0 - (-53.13^\circ))$ $P_T = (100V_{rms})(20A_{rms})\cos(53.13^\circ) = (2000 W)(0.6) = 1200 W$

Power Factor

$$\begin{split} F_P &= \cos\theta_T = \frac{R}{Z_T} \\ F_P &= \cos(\theta_E - \theta_I) = \frac{R}{Z_T} \\ F_P &= \cos\left(0 - (-53.13^\circ)\right) = \frac{3}{5} = 0.6 \text{ lagging (current lags voltage)} \end{split}$$

☐ Find VR, VL and sum to check the input voltage

Electrical Engineering Technology

The results are summarized in the table below.

		R	L	Total
E	Polar	$60 V_{rms} \angle - 53.13^{\circ}$	80V _{rms} ∠36.87°	100 <i>V_{rms}</i> ∠0°
	Rectangular	$(36 - j48)V_{rms}$	$(64+j48)V_{rms}$	$(100+j0)V_{rms}$
I	Polar	$20A_{rms} \angle - 53.13^{\circ}$	$20A_{rms} \angle - 53.13^{\circ}$	$20A_{rms} \angle - 53.13^{\circ}$
	Rectangular	$(12 - j16)A_{rms}$	$(12 - j16)A_{rms}$	$(12 - j16)A_{rms}$
Z	Polar	3Ω∠0°	4Ω∠90°	5Ω∠53.13°
	Rectangular	$(3+j0) \Omega$	$(0+j4) \Omega$	$(3+j4)\Omega$
Р		1200 W	0	1200 W

М

ICP 1 - Series RC Circuit

- Consider the series RC circuit in Fig. 15.33, analyze the circuit similar to the RL circuit.
 - 1. Write the current I in phasor form.
 - 2. Calculate the total impedance Z_T of the circuit
 - 3. Find the voltage across the current source, Vin and the voltages V_R and V_C
 - 4. Find the power delivered to the loads and the total power delivered

FIG. 15.33
Series R-C ac circuit.

Ŋ

Voltage Divider Rule (VDR)

- The basic format for the voltage divider rule in AC circuits is exactly the same for DC circuits (covered in Chap. 5.7)
 - □ VDR is used to determine the voltage across a series load without first having to determine the current through the circuit.

$$V_x = \frac{Z_x E}{Z_T}$$

where

 V_x is the voltage across one or more elements E is the source voltage

 Z_x is the impedance with unknown voltage

 Z_T is the total impedance of the series circuit

Voltage Divider Rule (VDR): Example

- Using the voltage divider rule, find the voltage across each element of the circuit shown below
 - \square Voltage across the capacitor V_C ?
 - \square Voltage across the resistor V_R ?

FIG. 15.43 Example 15.11.

Voltage Divider Rule (VDR): Example

- Using the voltage diver rule, find the voltage across each element of the circuit shown below
 - \square Voltage across the capacitor V_C ?
 - \square Voltage across the resistor V_R ?

$$V_c = \frac{Z_C E}{Z_T} = \frac{Z_C E}{Z_R + Z_C}$$

FIG. 15.43 Example 15.11.

٠,

Voltage Divider Rule (VDR): Example

- Using the voltage diver rule, find the voltage across each element of the circuit shown below
 - \square Voltage across the capacitor V_C ?

$$V_c = \frac{Z_C E}{Z_T} = \frac{Z_C E}{Z_R + Z_C}$$

$$V_c = \frac{400 \angle - 90^{\circ}}{5 \angle - 53.13^{\circ}} = 80 V \angle - 36.87^{\circ}$$

FIG. 15.43 Example 15.11.

Ŋ

Voltage Divider Rule (VDR): Example

- Using the voltage diver rule, find the voltage across each element of the circuit shown below
 - \square Voltage across the resistor V_R ?

$$V_R = \frac{Z_R E}{Z_T} = \frac{Z_R E}{Z_R + Z_C}$$

$$V_R = rac{300 \angle 0^{\circ}}{5 \angle -53.13^{\circ}} = 60 V \angle 53.13^{\circ}$$

☐ Check: Use VR and Vc to find E

FIG. 15.43 Example 15.11.

Ŋ

ICP 2 – Voltage Divider Rule

■ Using the voltage divider rule, find the unknown voltages V_R , V_L , V_C , and V_1 for the circuit shown below.

FIG. 15.44 Example 15.12.