PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G06F 15/80

A1

(11) International Publication Number: WO 97/38372

(43) International Publication Date: 16 October 1997 (16.10.97)

(21) International Application Number:

PCT/GB97/00972

(22) International Filing Date:

4 April 1997 (04.04.97)

(30) Priority Data:

9607153.5

4 April 1996 (04.04.96)

GB

(71) Applicant: VIDEOLOGIC LIMITED [GB/GB]; Home Park Estate, Kings Langley, Hertfordshire WD4 8LX (GB).

(72) Inventors: WHITTAKER, James, Robert; 9B Kings Road, Berkhamsted, Hertfordshire HP4 3BD (GB). ROWLAND, Paul; 158B London Road, St. Albans, Hertfordshire AL1 1PQ (GB).

(74) Agent: ROBSON, Aidan, John; Reddie & Grose, 16 Theobalds Road, London WC1X 8PL (GB). (81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: A DATA PROCESSING MANAGEMENT SYSTEM

(57) Abstract

A data processing management system comprises one or more data inputs (34) and one or more data outputs (42). It also includes one or more data processing units (50), a data storage means (12) and a control core (2). The control means includes means for routing data between the data input, the data output, the data processing means and the data storage means in one or more programmable routing operations. It is able to cause the data processing means to commence a predetermined data processing operation. It is also able to repeatedly determine which routing operations and which data processing operations are capable of being performed and is then able to commence execution of at least one of the thus determined operations capable of being performed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•						
AL AM AT AUZ BA BB BB BB BB BC CF CC CC CC DE CC	Albania Amenia Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Dennark Estonia	ES FI FR GA GB GE GH GR HU IB IL IS FI JP KE KG KP KR LL	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Israel I	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO SD SE SG	Lesotho Lithnania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmeniatan Turkmy Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimpabwe

- 1 -

A DATA PROCESSING MANAGEMENT SYSTEM

This invention relates to a data processing management system of the type which can be used with real time multimedia inputs and processing.

BACKGROUND TO THE INVENTION

The user interface to computers has continually evolved from teletypes to keyboard and character terminals to the (graphical user interface) GUI which is currently the standard interface for the majority of computer users. This evolution is continuing with sound and 3D graphics increasingly common and 3D sound and virtual reality emerging. It's common thread is an increase in the complexity of the human computer interface achieved by an accompanying increase in the types of data presented to the user. (personal computer) PC applications are taking advantage of this shift and are increasingly relying on the availability of sound and 3D graphics in order to achieve their full potential.

This has resulted in chip and board suppliers offering products with combined functionality designed to handle more than one data type e.g. 2D graphics and sound or 2D and (motion picture experts group) MPEG playback. It is important to note that these products to date use separate functional units for each data type.

More recently, programmable SIMD (Single Instruction Multiple Data) architectures (e.g. Chromatics MPACT) have emerged. These architectures SUBSTITUTE SHEET (RULE 26)

25

5

10

15

20

Emilyabard [3]

use identical processing elements executing the same instruction to perform the same processing on a number of blocks of data in parallel. This approach works well for data which can be easily partitioned to allow a common function to be performed e.g. block processing in data compression such as MPEG, but are not flexible enough to execute a complete general algorithm which often requires conditional flow control within the data processing.

5

10

15

20

25

DSP (digital signal processor) vendors have also sought to address this market with MIMD (Multiple Instruction Multiple Data) devices (e.g. Texas Instruments' TI320C80) which offer the required flexibility to process the varied data types. However since the architecture replicates general purpose DSP cores which retain a far greater degree of flexibility than required for the application, the resulting chip is a high cost device, too high for general PC and consumer use.

CPU (central processing unit) vendors promoting fast RISC CPUs for both general purpose programs and multimedia processing are unable (and do not wish) to compromise their architecture in order to support more than a few multimedia specific instructions and therefore do not achieve the required performance levels at a reasonable cost. As the CPU is also typically being used to run a non-real-time operating system, it is also unable to provide low latency processing.

- 3 -

Dedicated multimedia CPUs (e.g. Philips'
Trimedia) using VLIW (very long instruction words)
instructions controlling multiple processing units
are unable to make efficient use of their processing
power because each instruction is dedicated to a
single task (and data type) and therefore unable to
make optimal use of all the processing units
available. For example a VLIW instruction dedicated
to a 3D graphics operation is unable to take
advantage of hardware designed for MPEG motion
estimation. The number of processing units, and
therefore scale-ability, is also limited by the VLIW
word length.

5

10

15

20

SUMMARY OF THE INVENTION

Preferred embodiments of the present invention address the requirement for a device which processes all multimedia data types in a manner that minimises system costs and provides for future developments in multimedia and the related industry standards. They provide an architecture which is scalable in processing power, real-time I/O support and in the number of concurrent activities which can be undertaken.

All multimedia data types may be viewed as streams of data which lend themselves to a vector processing approach. Some of these streams will be real time (e.g. from an audio or video input) and as such either require dedicated buffering or low latency processing to avoid data loss. Each data

- 4 -

stream also requires some hardware resource so that it may be processed.

A preferred embodiment of the invention includes a low latency real-time processing core responsible for data IO and task scheduling only. This avoids the need for unnecessary and costly buffering. It also includes a method of dynamic resource checking to ensure that only tasks with the required resources available are run.

The balance between host processing power, memory costs and silicon costs is also continually changing. This means that the optimal division of work between a host processor and multimedia coprocessor also changes over time. This device is programmable to allow the division of work to be altered as required.

10

15

20

25

30

Scale-ability of parallel processing devices is a problem for both hardware design and supporting software. As more processing units are added to a device the distribution of tasks between the processing units becomes more difficult resulting in either a diminishing return or an exponential growth in the number of inter-connects between functional units. Such changes also typically result in alterations to the programming model for the device requiring wholesale changes to the supporting software. Preferred embodiments of the invention address these issues by a consistent scalable architecture, where all the elements may be scaled without creating an explosion of inter-connects

- 5 -

between functional units and without changing the programming model presented to software interfacing to the device.

Figure 1 shows the base architecture of the device.

The device has been conceived as a re-configurable engine able to match all the current and future algorithms required to process multimedia data. The work done by it is split into two categories. Both real time scheduling and IO processing are performed by a Media Control Core whilst computationally intensive data processing is performed by one or more additional data processing units.

This division of work is one of the architecture's fundamental characteristics.

10

15

. 20

25

30

Data processing consists of a number of steps:

Parameter fetching and setup

Data fetching and processing

Data storage

In order to efficiently achieve high data processing throughput a processor needs to perform the above operations on a reasonably large set of data. If the data set is too small the processor spends too high a proportion of it's power on context switching between tasks and the resulting need to save and restore a thread's state.

Because the Media Control Core is required only to service requests to move data between IO ports and memory (to allow data processing to be performed) it

- 6 -

can context switch every clock cycle, this then removes the need for large data buffers to support real time IO. Data processing units are able to process data efficiently by performing a key part of an algorithm on data without interruption.

5

10

15

20

25

These processing elements are supported by a scalable multibank cache which supports efficient data movement and processing by caching sets of data required for the active algorithms being run.

The invention is defined in its various aspects with more precision in the appended claims to which reference should now be made.

A preferred embodiment of the invention will now be described in detail, by way of example, with reference to the figures in which:

Figure 1 shows a block diagram of an embodiment of the invention;

Figure 2 shows a block diagram of the Media Control Core of Figure 1;

Figure 3 is a block diagram of a second embodiment of the invention;

Figure 4 is a block diagram of the control unit instruction pipeline the Media Control Core;

Figure 5 is a block diagram of the internal architecture of one of the data banks of Figure 4;

Figure 6 shows in block form how resource checking and thus process selection is performed by the Media Control Core; and

Figure 7 is a block diagram showing how access is made to the banked cache memory of Figure 1.

- 7 -

The base architecture of the embodiment of the invention is shown in Figure 1. The centre of the system is a media control core (MCC) 2. This is a fine grained multithreading processor. This has a plurality of inputs and outputs which can be coupled to real time data input and output devices 4. These can be, for example, video sources, audio sources, video outputs, audio outputs, data sources, storage devices etc. In a simple example only one input and one output would be provided.

Also coupled to the media control core 2 are a plurality of data processing units 6. Each of these comprises a data processing core 8 which controls the processing of data via data pipeline 10. The core 8 decodes and sequences microinstructions for the pipeline 10.

10

15

20

25

30

Also coupled to the media control core 2 is a multibanked cache memory 12 from which data may be retrieved by the media control core 2 and data processing units 6 and into which data may be written by the media control core, the data processing units 6.

The media control core is a fine grained multithreading processing unit which directs data from inputs to data processing cores or to storage and provides data to outputs. It is arranged so that it can switch tasks on every clock cycle. This is achieved by, on every clock cycle checking which of the possible operations it could perform have all the resources available for those tasks to be executed

- 8 -

and, of those, which has the highest priority. It could be arranged to commence operation of more than one operation on each clock cycle if sufficient processing power were provided.

5

10

15

20

25

30

This resource checking ensures that everything required to perform a particular task is in place. This includes external resources such as whether or not data is available at an input port (EG video data) or whether a data storage device or output is available. It also includes internal resources such as data banks for temporary storage, available processing cores which are not currently working on other data or previously processed data required for a particular new processing operation. The media control core operates to direct data from an input to an appropriate data processing unit 6 for processing to take place and routes data to an output when required making use of the cache as necessary. Once execution of a set of instructions has commenced on a processing unit the MCC can look again at the various threads it can run and the resources available for these whilst the program continues to run on the data processing unit.

The resource and priority checking of the media control core means that tasks which serve as real time data such as video input are able to be performed without the large memory buffers which are usually required in current real time inputs. In operation such as video input the media control core will look to see whether data is available at the IO

- 9 -

port and, if it is, will receive that data and send it either to a portion of the multibanked cache or to data storage registers in preparation for processing by the one of the data processing unit 6.

The data processing units 6 are all under the control and scheduling of the media control core 2. In the example shown in Figure 1 the units consist of a processing pipeline (data pipeline 10) which will be made up of a number of processing elements such as multipliers, adders, shifters etc under the control of an associated data processing core 8 which runs a sequence of instructions to perform a data processing algorithm. Each of these data processing cores will have its own microinstruction ROM and/or RAM storing sequences of instructions to perform a particular data processes. The media control core invokes the data processing unit 6 to perform its particular operation sequence by, for example, passing an address offset into its microinstruction ROM and instructing it to commence execution. It will then perform a particular process on either data from the multibanked cache or data passed to it from one of the inputs to the media control core until completed when it will signal to the media control core that its processing is complete.

10

15

20

25

30

The multibanked cache 12 of Figure 1 is used for memory accesses and these are all cached chrough this bank. The cache is divided into a plurality of banks 14 each of which can be programmed to match the requirements of one of the data processing tasks

- 10 -

being undertaken. For example, a cache bank might be dedicated to caching texture maps from main memory for use in 3D graphics rendering. Using this programmability of the cache banks allows the best possible use of on chip memory to be made and allows dynamic cache allocation to be performed thereby achieving the best performance under any particular conditions.

Furthermore, the use of multiple cache banks allows the cache to be non-blocking. That is to say, if one of the cache banks is dealing with a request which it is currently unable to satisfy, such as a read instruction where that data is not currently available, then another processing thread which uses a separate cache bank may be run.

The entire device as shown in Figure 1 is scalable and may be constructed on a single piece of silicon as an integrated chip. The media control core 2 is scalable in a manner which will be described below with reference to Figure 2. As the size of the media control core is increased it is able to support further data processing units 6 whilst using the same programming model for the media control. More cache banks may also be added to support the further data processing units thereby increasing the effectiveness of the data throughput to the media control core and the data processing units. Because the programming model of the device is not changed this enables a high degree of backwards compatibility to be attained.

Locached town

5

10

15

20

25

30

- 11 -

The media control core is shown in more detail with reference to Figure 2. It is composed of a control unit 16, a set of read/write units 18, a set of program counter banks 20, a set of address banks 22, a set of data banks 24, and a set of input/output banks 26. These banks are all coupled together by a media control core status bus 28 a media control core control bus 29 and a media control core data interconnect 30. The media control core data interconnect is used for sending data between the various different banks and the status bus provides data such as the input/output port status and the status of data processing units to which the media control core can send instructions and data.

In addition, a memory block 32 storing microcode instructions in ROM and RAM is coupled to the control unit 16 the units 18 to 26 listed above.

All the core components, 18 to 26, with the exception of the control unit have the same basic interface model which allows data to be read from them, written to them and operations performed between data stored in them. Each bank consists of a closely coupled local storage register file with a processing unit or arithmetic logic (ALU).

The control unit 16 is used to control the execution of the media control core. On each clock cycle it checks the availability of all resources (e.g. input/output port status, data processing units status, etc) using status information provided by the media control status bus 28 against the resources

PM-184 UTGIRSSING

10

15

20

25

30

- 12 -

required to run each program under its control. It then starts execution of the instruction for the highest priority program thread which has all its resources available.

The program counter bank is used to store program counters for each processing thread which is supported by the media control core. It consists of a register for each of the processing threads which the media control core is capable of supporting and an ALU which performs all operations upon the program counters for program progression, looping, branching, etc. The data banks 24 are used for general purpose operations on data to control program flow within the media control core. They are a general resource which can be used as required by any processing thread which is running on the MCC.

The address banks 22 are used to store and manipulate addresses for both instructions and data and are also a general MCC resource in a similar manner to the data banks 24.

The input/output banks 26 provide an interface between the media control core and real time data streams for input/output which are supported by the MCC. Their status indicates the availability of data at a port, eg. video input, or the ability of a port to take the data for output. They can, as an option, include the ability to transform data as it is transferred in or out, for example bit stuffing of a data stream.

'i rescursem o

S

10

15

20

25

and output to them.

In the figure is shown a video input 34 and

audio input 36 coupled to the media control core via associated preprocessors 38 and 40. A corresponding

30.

Fig. 2B


```
<?xml version="1.0" encoding="UTF-8" ?>
xmlns="http://www.pervasivesec.com/rules/PSS-xacml-01.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
  xmlns:ss="http://www.pervasivesec.com/rules/PSS-rules-language-01.xsd"
  xsi:schemaLocation="http://www.pervasivesec.com/rules/PSS-xacml-01.xsd
          /xacml/PSS-xacml-01.xsd
    urn:oasis:names:tc:SAML:1.0:assertion
          ./xacml/PSS-saml-01.xsd
    http://www.pervasivesec.com/rules/PSS-rules-language-01.xsd
          ./xacmi/PSS-rules-language-01.xsd">
<target>
  <subjects>
    <saml:Attribute AttributeName="Group"</p>
     AttributeNamespace="http://www.pervasivesec.com/rules/PSS-rules-language-01.xsd">
      <saml:AttributeValue><ss:Group>MKTG</ss:Group></saml:AttributeValue></saml:Attribute>
  </subjects>
  <resources>
    <saml:Attribute AttributeName="DocumentName"</p>
      AttributeNamespace="http://www.pervasivesec.com/rules/PSS-rules-language-01.xsd">
<saml:AttributeValue><ss:DocumentName>customerlist.doc</ss:DocumentName></saml:AttributeVa
      lue></saml:Attribute>
  </resources>
  <actions>
      <saml:Action>view</saml:Action>
      <saml:Action>print/saml:Action>
    </actions>
 </target>
 <effect>permit</effect>
  <condition>
       <and>
         <ss:TimeOfDayInRange><ss:TimeOfDayRange lo="08:00:00" hi="17:00:00"
      /></ss:TimeOfDayInRange>
         <ss:URLMatch><ss:URLPrefix> https://*</ss:URLPrefix></ss:URLMatch>
         <ss:DateInRange><ss:DateRange lo="1000-01-01" hi="2002-08-03" /></ss:DateInRange>
       </and>
   </condition>
 </ruleStatement>
```

FIG. 2C

Fig. 3A

Fig. 3C

350

Header (Version 1)

```
<encryption_algorithm name=..." key_size="..." block_size="..." />
                                                                                                                                                                                                                                                                                                                                                                                                                                                                <enc_doc_level> ... (String like "Secret" or "Top Secret" or "None")
</enc_doc_level>
                                                                                                                                                                                                                                                                                                                                                                                                       <enc_doc_key>... (Encrypted document-encryption-key)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   <header_MAC version="..."> ... (See Header MAC Information)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    <last_modification modifier_uuid="..." date="..." />
                                                                                                                                         <document_encryption_key_key key_pair_uuid="...">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        <ses_block_size>... (size of encryption size)
                                                                 356
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            <creation creator uuid="..." date="..." / >
                                                                                                           <key_block version="1.0" group_uuid="..">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <document_information version="1.0">
                                                        <key_block version="1.0" group_uuid="...">
<header version="1.0" document_uuid="...">
                                                                                                                                                                                                                                                                                                                                                                           <document_crypto version="1.0">
                                                                                                                                                                                                                                                                                                                                             <document_crypto_info version="...">
                                                                                                                                                                                                </document_encryption_key_key>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      <rul>rufe_set>... (details omitted)
                                                                                                                                                                       🚞 (Encrypted protection key) –
                                                                                                                                                                                                                                                          ... (more blocks if necessary)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             <document_information>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             </enc_document_information>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     <enc_document_information>
                          <key_block_list version="1.0">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               </document_crypto>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  </ses_block_size>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             </document_crypto_info>
                                                                                                                                                                                                                                                                                                                                                                                                                                         </enc_doc_key>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  </rule_set>
                                                                                                                                                                                                                                                                                      </key_block_list>
                                                                                    </key_block>
                                                                                                                                                                                                                      </key_block>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                </header_MAC>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           </header>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  346 ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           348
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        342
```


Fig. 4A

FIG. 6C

Fig. 6E

FIG. 7A

