Filtrage numérique : Wattmètre

Xavier Bourlot

INSA Toulouse

30 mai 2020

Table des matières

- Le projet
 - Motivation
 - Architecture
 - Réalisation
- Piltre IIR Passe-haut
 - Design
 - Implémentation
 - Réponses

Table des matières

- Le projet
 - Motivation
 - Architecture
 - Réalisation
- 2 Filtre IIR Passe-haut
 - Design
 - Implémentation
 - Réponses

Motivation

But:

- Mesurer la consommation d'appareils secteur
- Automatiser l'acquisition/traitement des données
- Enregistrer sur de longues périodes (stream PC)

Motivation

But:

- Mesurer la consommation d'appareils secteur
- Automatiser l'acquisition/traitement des données
- Enregistrer sur de longues périodes (stream PC)

Plage de mesure	Résolution	Tension de charge	Consommation
0 - 550W 550 - 1100W	16mW 128mW	0.14V max	0.4W

Table – Caractéristiques techniques

Motivation

But:

- Mesurer la consommation d'appareils secteur
- Automatiser l'acquisition/traitement des données
- Enregistrer sur de longues périodes (stream PC)

Plage de mesure	Résolution	Tension de charge	Consommation
0 - 550W 550 - 1100W	16mW 128mW	0.14V max	0.4W

Table – Caractéristiques techniques

Exemple d'application : Mesure automatique du rendement d'alimentations à découpage $AC \to DC$ en fonction de la charge

Mesures de puissance

Mesures de puissance

$$P = U * I$$

Oui mais ...

Mesures de puissance

P = U * I

Oui mais ...

Puissance instantanée ? RMS ? Apparente ? PF ? Quid de l'énergie ?

Figure – Le triangle des puissances Source : commons.wikimedia.org

Architecture

Architecture

Schéma

Figure – Schéma électrique

Circuit imprimé

Figure - PCB

Table des matières

- Le projet
 - Motivation
 - Architecture
 - Réalisation
- Piltre IIR Passe-haut
 - Design
 - Implémentation
 - Réponses

Critères de design :

• Passe Haut : Éliminer la composante continue de la mesure de tension

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth
- Faible complexité : calculs en temps réel!

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth
- Faible complexité : calculs en temps réel!

Filtre IIR (Infinite Impulse Response) de 2nd ordre :

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth
- Faible complexité : calculs en temps réel!

Filtre IIR (Infinite Impulse Response) de 2nd ordre :

Filtre récursif

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth
- Faible complexité : calculs en temps réel!

Filtre IIR (Infinite Impulse Response) de 2nd ordre :

- Filtre récursif
- Comportement similaire aux filtres analogiques "classiques"(RLC)

Critères de design :

- Passe Haut : Éliminer la composante continue de la mesure de tension
- Gain et phase constants pour $f \ge 50Hz =>$ Type Butterworth
- Faible complexité : calculs en temps réel!

Filtre IIR (Infinite Impulse Response) de 2nd ordre :

- Filtre récursif
- Comportement similaire aux filtres analogiques "classiques"(RLC)
- Bon rapport Ordre du filtre / Performance, i.e. économies de temps de calcul
- Mais attention à la stabilité! (non abordée ici)

$$y[n] = 0.996 * x[n] - 0.996 * x[n-1] + 0.996 * y[n-1]$$

$$y[n] = 0.996 * x[n] - 0.996 * x[n-1] + 0.996 * y[n-1]$$

Figure – Schéma bloc du filtre

$$y[n] = 0.996 * x[n] - 0.996 * x[n-1] + 0.996 * y[n-1]$$

D'accord mais pourquoi 0.996 précisément?

$$y[n] = 0.996 * x[n] - 0.996 * x[n-1] + 0.996 * y[n-1]$$

D'accord mais pourquoi 0.996 précisément?

Parce que
$$0.996 = \frac{255}{256} = 255 >> 8$$

Réponse fréquentielle

Figure – Réponse fréquentielle (0 à 55Hz)

Réponse fréquentielle

Figure - Réponse fréquentielle (0 à 2Hz)

Réponse temporelle

Figure – Réponse à un échelon

Réponse temporelle, bis

Testons en situation réelle!

Réponse temporelle, bis

Testons en situation réelle!

Figure – Réponse à une sinusoïde 50Hz

Références

Glen Nilsen (2013)

Single–Phase Power/Energy Meter with Tamper Detection Atmel AVR465 2566B AVR-08/2013

Dan Ellis (2007)

Digital Signal Processing, Filter Design: IIR

ELEN E4810 Columbia University

Steven W. Smith, Ph.D. (1997)

The Scientist and Engineer's Guide to Digital Signal Processing

ISBN 0-9660176-3-3 Chapter 19 : Recursive Filters

Questions?