Inverse Trig Functions

Chase Mathison¹

Shenandoah University

6 March 2024

Announcements

- Homework in MyOpenMath
- 2 Exam 2 Friday after Spring Break.

Inverse Trigonometric Functions

The main question we want to answer today is this: What is the angle θ in the following right triangle?

Certainly we can find $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$, but how can we say what θ is if we know those values?

Let's go to a graph!

Let's go look at a graph of $\sin(\theta)$ to see if we can answer the question on the previous slide.

Inverse Functions

Let's talk about general functions for a second:

The need for restrictions

So, in order for a function to have an investigation	erse, that function needs to be
one-to-one.	
Question: Are any of the trig functions o	ne-to-one?
So apparently we need to make a	on the domain of the
trig functions to turn them into one-to-or	ne functions. Let's look at how
that's typically done.	

Desmos!

Notation

The inverse function of the function $f(x) = \sin(x)$ that has domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is the function $f^{-1}(x) =$ ______. This function has a domain that is identical to the range of $\sin(x)$. Similarly, the range of $\arcsin(x)$ is the domain of our restricted sin function, so ______.

Let's take a second and think how we can restrict the domain of cos(x)to turn it into a one-to-one function. Then do the same with tan(x).

Find

- $arcsin \left(-\frac{\sqrt{2}}{2} \right)$
- \bullet arccos $(\frac{1}{2})$
- \bullet arctan (1).

Given that $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}$, write a relation involving inverse sine.

Now let's see how we can use a calculator to answer the question that we opened class with:

What is the angle θ in the following right triangle?

