# Supplementary material of "A biogeography-based dual-strategy particle swarm algorithm for numerical and engineering design optimization"

Xia Wang, Hongwei Ge\*, Yaqing Hou, Mengyue Wang School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China E-mail: wangxia@mail.dlut.edu.cn, hwge@dlut.edu.cn

## A. Complexity analysis of DBPSO

The computational complexity of an NMA primarily comprises two components: the computational cost associated with evaluating the fitness function and the computational complexity inherent in the algorithm. To ensure a fair comparison, all compared algorithms share the same maximum number of fitness function evaluations, and the associated cost is uniform. Consequently, we focus solely on discussing the computational complexity intrinsic to each algorithm. Let N, D, and T represent the population size, the number of dimensions, and the total iteration number, respectively. Therefore, the computational complexity of DBPSO encompasses two aspects: (1) population initialization; (2) updating the positions of each agent, including the updating methods in both the IBBO and DSS phases. According to Algorithm 3, particles in the first phase undergo updates using the IBBO method, while particles in the second phase undergo updates using the DSS strategy. Assuming that the time units for population initialization, velocity updates with IBBO, and velocity updates with DSS are denoted as  $t_0$ ,  $t_1$ , and  $t_2$ , respectively. The computational complexity of DBPSO is expressed as  $O_{DBPSO} = O(N \times D \times t_0) + O((N \times T \times D + N \times T \times D) \times t_1) + O((N \times T \times D + N \times \log N \times T \times D) \times t_2)$ . If  $t_0$ ,  $t_1$ , and  $t_2$  are all approximately equal to 1 time unit, then the overall computational complexity of DBPSO is  $O_{DBPSO} = O(N \times D) + O(N \times T \times D + N \times T \times D) + O(N \times T \times D + N \times \log N \times T \times D)$ . Therefore, the overall computational complexity order of DBPSO is approximately  $O(N \times \log N \times T \times D)$ .

A comparison of the computational complexity of DBPSO with PSO and other MAs variants is also given in Table S.1.

TABLE S.1
COMPLEXITY ANALYSIS OF SOME ALGORITHMS

| Algorithms | Computational complexity |
|------------|--------------------------|
| ACLPSO     | O(N*D)                   |
| TLS-PSO    | O(N * T * D)             |
| GL-PSO     | O((D+N)T)                |
| HCLPSO     | O(ND)                    |
| MSSCS      | O(TN(D+f(D)))            |
| TUS-HBO    | O(N*T*D)                 |
| MPA        | O(T(N*D + MaxFEs*N))     |
| DBPSO      | O(N*logN*T*D)            |

## B. Time complexity analysis of DBPSO

Following IEEE CEC2013 guidelines [1], this subsection analyzes the time complexity of PSO and DBPSO, defining the parameters T0, T1, and T2 as in IEEE CEC2013. T0 represents the execution time of a specific test program from CEC2013. T1 represents the time for  $2 \times 10^5$  evaluations of Function 14 at a certain dimension D. T2 is the total computation time for one algorithm to perform  $2 \times 10^5$  evaluations of Function 14 in a D-dimensional space. The average of five T2 values is denoted as  $\hat{T}2$ . Table S.2 displays the time complexities of PSO and DBPSO for 30- and 50-dimensional functions. For the 30-dimensional case, the computing time  $\hat{T}2$  of PSO is about 2.0943 times that of DBPSO. Additionally,  $\hat{T}2$  of PSO is roughly 67.07% higher than that of DBPSO for the 50-dimensional case. This difference can be attributed to the effective combination of the dual search strategy and the improved migration operator IBBO employed in DBPSO. These enhancements improve the optimization performance of the algorithm and result in a better balance between exploration and exploitation. As a result, DBPSO outperforms PSO in terms of time complexity.

 $\begin{array}{c} \text{TABLE S.2} \\ \text{Time complexity for PSO and DBPSO} \end{array}$ 

|           |      |      | $\hat{T}2$ | $(\hat{T}2 - T1)/T0$ |       |       |
|-----------|------|------|------------|----------------------|-------|-------|
| Dimension | T0   | T1   | PSO        | DBPSO                | PSO   | DBPSO |
| D = 30    | 0.08 | 0.78 | 2.22       | 1.06                 | 17.37 | 3.42  |
| D = 50    | 0.08 | 1.33 | 2.79       | 1.67                 | 17.50 | 4.04  |

# C. Parameter settings

 $\begin{tabular}{ll} TABLE~S.3\\ Specific parameter settings of the comparison algorithms\\ \end{tabular}$ 

| No. | Algorithm  | Year | Parameter settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RQ-PSO     | 2022 | $N = 100, \omega = 0 \sim 1, q = 0.955$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2   | HCLPSO     | 2015 | $N = 40, \omega = 0.99 \sim 0.2, c_1 = 2.5 \sim 0.5, c_2 = 0.5 \sim 2.5, c = 3 \sim 1.5, g_1 = 15, g_2 = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | DSPSO      | 2019 | $N = 40, c_1 = 2, F_{min} = 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4   | BLPSO      | 2017 | $N = 40, \omega = 0.9 \sim 0.2, c_1 = 1.496, I = 1, E = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5   | TLS-PSO    | 2022 | $N = 100, c_2 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6   | GLPSO      | 2016 | $N = 50, \omega = 0.7298, c_1 = 1.49618, pm = 0.01, sg = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | ACLPSO     | 2019 | $N = 40, \omega = 0.99 \sim 0.2, c_1 = 2.5 \sim 0.5, c_2 = 0.5 \sim 2.5, m = 5, \mu = 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8   | DMSDL-PSO  | 2018 | $N = 40, \omega = 0.7298, c = 1.49618, CR = 0.025, R = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9   | HGWOP      | 2021 | $N = 100, a_{max} = 2, a_{min} = 0, Cr_{max} = 1, Cr_{min} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10  | HCLDMS-PSO | 2020 | $N = 40, \omega = [0.29, 0.99], c_1 = [0.5, 2.5], c_2 = [0.5, 2.5], P_m = 0.1, V_{max} = 0.5 Range$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11  | MPSO       | 2020 | $N=50, \omega=1, arphi_1=arphi_2=2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12  | MPA        | 2020 | N = 50, FADs = 0.2, P = 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13  | IS-EO      | 2022 | $N = 40, V = 1, a_1 = 2, a_2 = 1, G_P = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | PaDE       | 2019 | $N = 25 \log(D) \sqrt{D} \sim 4, \mu_F = 0.5, F \sim C(\mu_F, 0.1), \mu_{Cr} = 0.5, Cr \sim N(\mu_{Cr}, 0.1), k = 4, p = 0.5, Cr \sim N(\mu_{Cr}, 0.1), k $ |
|     |            |      | $0.11, r^{arc} = 1.6, T_0 = 70, r^d = 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15  | TUS-HBO    | 2022 | N=40, degree=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16  | MSSCS      | 2021 | $N = 50, \alpha = 0.01, \beta = 1.5, P_a = 0.25, c = 0.2, PA_{max} = 0.35, PA_{min} = 0.25, L = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17  | TDBBO      | 2019 | $N = 50, c = 0.3, m_{max} = 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18  | CMM-DE/BBO | 2016 | $N = 100, P_e = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19  | HBBOS      | 2019 | $N = 40, p_{cmin} = 0.97, m = 5, I = 1, n = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20  | CGO        | 2021 | $N=100, eta=[0,1], \gamma=[0,1], \delta=[0,1], \epsilon=[0,1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21  | JS         | 2021 | $N=100, eta=3, \gamma=0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22  | HBO        | 2020 | $N = 40, C = \lfloor T/25 \rfloor, p_1 = 1 - t/T, p_2 = p_1 + (1 - p_1)/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23  | EO         | 2020 | $N = 100, V = 1, a_1 = 2, a_2 = 1, G_P = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _   | DBPSO      | -    | $N = 100, pm = 0.935, c_1 = c_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 ${\it TABLE~S.4} \\ {\it Comparison~results~of~DBPSO~and~the~incomplete~algorithms~on~the~30-dimensional~CEC2013~test~set} \\$ 

|            | PS         | SO         | DBPSO      | (w/o B)    | DBPSO      | (w/o R)    | DBPSO      | (w/o Q)    | DBI        | PSO        |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
|            | Mean       | Std        |  |
| F1         | 4.1908E-13 | 1.3922E-13 | 0.0000E+00 | 0.0000E+00 | 2.7196E-13 | 9.1172E-14 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |  |
| F2         | 1.2414E+07 | 6.0793E+06 | 1.6126E+01 | 3.0849E+01 | 1.1978E+01 | 1.8854E+01 | 3.2014E+06 | 8.6997E+05 | 2.2499E+01 | 6.2954E+01 |  |
| F3         | 1.6660E+08 | 2.7005E+08 | 6.1871E+03 | 2.2211E+04 | 2.8231E+08 | 5.1691E+08 | 3.3332E+03 | 8.4073E+03 | 1.3263E+03 | 4.0024E+03 |  |
| F4         | 5.7296E+03 | 1.4348E+03 | 6.8023E+00 | 8.7901E+00 | 7.9918E+00 | 1.1843E+01 | 1.6408E+04 | 2.6359E+03 | 2.3409E+00 | 4.2568E+00 |  |
| F5         | 4.3914E-13 | 1.3262E-13 | 3.3437E-14 | 5.2316E-14 | 1.9527E-12 | 8.8213E-12 | 1.3375E-14 | 3.6993E-14 | 4.4583E-15 | 2.2287E-14 |  |
| F6         | 8.0745E+01 | 2.8908E+01 | 3.6137E-11 | 2.4998E-11 | 7.0352E-01 | 1.5349E+00 | 2.5886E+01 | 9.7445E+00 | 2.0265E-11 | 1.8126E-11 |  |
| F7         | 3.2940E+01 | 1.0393E+01 | 3.7511E-02 | 5.1134E-02 | 9.1930E+01 | 2.4686E+01 | 3.5724E-02 | 5.0119E-02 | 3.2740E-02 | 1.0591E-01 |  |
| F8         | 2.0942E+01 | 5.1409E-02 | 2.0927E+01 | 5.4928E-02 | 2.0926E+01 | 5.0272E-02 | 2.0943E+01 | 5.1345E-02 | 2.0913E+01 | 5.4244E-02 |  |
| F9         | 2.1960E+01 | 3.8274E+00 | 6.1260E+00 | 1.9076E+00 | 2.8847E+01 | 3.2776E+00 | 6.4522E+00 | 1.9455E+00 | 6.4976E+00 | 1.8845E+00 |  |
| F10        | 3.1946E-01 | 3.2094E-01 | 1.4834E-02 | 1.3097E-02 | 1.1625E-01 | 8.6914E-02 | 1.1646E-02 | 9.9427E-03 | 1.0436E-02 | 1.0210E-02 |  |
| F11        | 1.9612E+01 | 5.7079E+00 | 6.0868E+00 | 2.0646E+00 | 7.4677E-14 | 2.8963E-14 | 1.4604E-05 | 5.8313E-05 | 3.7407E-10 | 6.3686E-10 |  |
| F12        | 7.5430E+01 | 3.3527E+01 | 7.8231E+00 | 1.9801E+00 | 2.1128E+02 | 5.7823E+01 | 1.5148E+02 | 1.0555E+01 | 1.0125E+01 | 1.8742E+00 |  |
| F13        | 1.4821E+02 | 3.6338E+01 | 1.9164E+01 | 8.2030E+00 | 2.3573E+02 | 6.1336E+01 | 1.4965E+02 | 8.1497E+00 | 2.5330E+01 | 8.7939E+00 |  |
| F14        | 8.1641E+02 | 2.5821E+02 | 1.4282E+03 | 2.7067E+02 | 3.5235E+00 | 2.4654E+00 | 5.6406E+00 | 2.9482E+00 | 3.6702E+00 | 2.4636E+00 |  |
| F15        | 6.6444E+03 | 6.9454E+02 | 1.5248E+03 | 3.6132E+02 | 3.7718E+03 | 5.0404E+02 | 2.3482E+03 | 1.3821E+03 | 1.5303E+03 | 4.1394E+02 |  |
| F16        | 2.2718E+00 | 2.9664E-01 | 1.2067E+00 | 3.6105E-01 | 9.8288E-01 | 3.0378E-01 | 1.9125E+00 | 3.1792E-01 | 1.0538E+00 | 3.0826E-01 |  |
| F17        | 5.7387E+01 | 1.9410E+01 | 3.8344E+01 | 1.8030E+00 | 3.0924E+01 | 2.1265E-01 | 3.1300E+01 | 2.8389E-01 | 3.1066E+01 | 2.2570E-01 |  |
| F18        | 2.2360E+02 | 4.1843E+01 | 3.9530E+01 | 2.2368E+00 | 1.8041E+02 | 6.9081E+01 | 1.8564E+02 | 1.0656E+01 | 4.0752E+01 | 2.1798E+00 |  |
| F19        | 3.2289E+00 | 8.5344E-01 | 1.9072E+00 | 3.7742E-01 | 1.0740E+00 | 3.7794E-01 | 2.3410E+00 | 4.5088E-01 | 1.1726E+00 | 3.8229E-01 |  |
| F20        | 1.4164E+01 | 1.3205E+00 | 8.7776E+00 | 1.0862E+00 | 1.3249E+01 | 1.6534E+00 | 1.1095E+01 | 8.4318E-01 | 9.2179E+00 | 1.3351E+00 |  |
| F21        | 2.9873E+02 | 8.4376E+01 | 3.1689E+02 | 4.6709E+01 | 2.3811E+02 | 5.9203E+01 | 2.6165E+02 | 3.6842E+01 | 2.3726E+02 | 4.8827E+01 |  |
| F22        | 8.9535E+02 | 2.7309E+02 | 1.1152E+03 | 2.6496E+02 | 1.2228E+02 | 3.3135E+01 | 1.6593E+02 | 3.4029E+01 | 1.2637E+02 | 3.0373E+01 |  |
| F23        | 6.3989E+03 | 1.0590E+03 | 1.6569E+03 | 3.4285E+02 | 4.6832E+03 | 6.3842E+02 | 2.0720E+03 | 1.0733E+03 | 1.8105E+03 | 3.4274E+02 |  |
| F24        | 2.6449E+02 | 9.1713E+00 | 2.0005E+02 | 3.3148E-02 | 2.8515E+02 | 1.2846E+01 | 2.0005E+02 | 3.7881E-02 | 2.0003E+02 | 2.5169E-02 |  |
| F25        | 2.7972E+02 | 1.0372E+01 | 2.0001E+02 | 7.9369E-03 | 3.1090E+02 | 6.9970E+00 | 2.0001E+02 | 6.7669E-03 | 2.0119E+02 | 8.4572E+00 |  |
| F26        | 3.0689E+02 | 7.2927E+01 | 2.8467E+02 | 3.7595E+01 | 2.0343E+02 | 2.4249E+01 | 2.0273E+02 | 1.0486E+00 | 2.0027E+02 | 6.7456E-01 |  |
| F27        | 8.7513E+02 | 7.9304E+01 | 3.0101E+02 | 8.2584E-01 | 1.1036E+03 | 7.7546E+01 | 3.0111E+02 | 8.5342E-01 | 3.0060E+02 | 4.8386E-01 |  |
| F28        | 3.9625E+02 | 3.3399E+02 | 2.6471E+02 | 7.7003E+01 | 2.6863E+02 | 7.3458E+01 | 2.4045E+02 | 9.1616E+01 | 2.5686E+02 | 8.3078E+01 |  |
| Count      |            | )          |            | 3          |            | 7          |            | 3          |            | 12         |  |
| Ave. Rank  | 4.4        |            |            | 57         |            | 29         |            | 93         | 1.         | 68         |  |
| Total Rank |            | 5          |            | 2          | 4          | 4          |            | 3          |            | [          |  |

TABLE S.5 Experimental results of DBPSO and the PSO variants on CEC 2013 test suite with 30-dimensional

| Function | Value | RQ-PSO     | HCLPSO     | DSPSO      | BLPSO      | TLS-PSO    | GLPSO      | ACLPSO     | DMSDL-PSO  | HGWOP      | DBPSO      |
|----------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| E.       | Mean  | 0.0000E+00 | 3.2100E-13 | 1.3821E-13 | 0.0000E+00 | 0.0000E+00 | 1.3375E-13 | 2.2292E-13 | 8.9166E-15 | 0.0000E+00 | 0.0000E+00 |
| F1       | Std   | 0.0000E+00 | 1.1302E-13 | 1.1212E-13 | 0.0000E+00 | 0.0000E+00 | 1.1302E-13 | 3.1839E-14 | 4.4574E-14 | 0.0000E+00 | 0.0000E+00 |
| F2       | Mean  | 2.3907E+01 | 2.7877E+06 | 7.7717E+05 | 6.3069E+06 | 5.2724E+05 | 3.7722E+05 | 3.8057E+05 | 7.8480E+01 | 5.4624E+05 | 2.2499E+01 |
| 1.7      | Std   | 4.3249E+01 | 3.0112E+06 | 9.1771E+05 | 1.5689E+06 | 1.6145E+05 | 1.5066E+05 | 1.7445E+05 | 9.5146E+01 | 2.5214E+05 | 6.2954E+01 |
| F3       | Mean  | 6.5910E+03 | 2.8240E+07 | 1.2156E+06 | 1.2865E+06 | 6.3585E+03 | 3.8823E+06 | 4.2188E+06 | 1.5461E+07 | 5.9223E+05 | 1.3263E+03 |
| 13       | Std   | 1.3708E+04 | 7.4404E+07 | 2.1989E+06 | 1.2720E+06 | 2.4801E+04 | 6.5429E+06 | 8.1332E+06 | 1.7833E+07 | 1.2312E+06 | 4.0024E+03 |
| F4       | Mean  | 7.7721E+00 | 1.8539E+03 | 1.5002E+01 | 1.2147E+03 | 1.7989E+03 | 7.6666E+02 | 2.5722E+02 | 2.7850E+01 | 1.1995E+03 | 2.3409E+00 |
| 17       | Std   | 1.0801E+01 | 9.3602E+02 | 1.8456E+01 | 3.6696E+02 | 5.9359E+02 | 6.2524E+02 | 1.5366E+02 | 4.6731E+01 | 5.5954E+02 | 4.2568E+00 |
| F5       | Mean  | 6.4645E-14 | 3.9233E-13 | 1.6719E-13 | 1.0254E-13 | 1.0031E-13 | 1.2483E-13 | 1.8502E-13 | 1.1146E-13 | 1.1592E-13 | 4.4583E-15 |
|          | Std   | 6.9171E-14 | 1.0979E-13 | 7.3160E-14 | 3.4143E-14 | 3.6993E-14 | 3.4143E-14 | 5.5513E-14 | 1.5919E-14 | 2.7756E-14 | 2.2287E-14 |
| F6       | Mean  | 3.9804E-11 | 4.2529E+01 | 6.5861E+01 | 1.4709E+01 | 1.6080E+01 | 1.4170E+01 | 1.6899E+01 | 7.8169E-02 | 1.7963E+01 | 2.0265E-11 |
|          | Std   | 3.6572E-11 | 2.3725E+01 | 2.8140E+01 | 5.4940E+00 | 2.8195E-01 | 2.5022E+00 | 1.4065E+01 | 5.5824E-01 | 8.3588E+00 | 1.8126E-11 |
| F7       | Mean  | 4.2304E-02 | 2.1310E+01 | 2.3161E+00 | 9.6286E-01 | 5.6208E-02 | 4.7027E+00 | 4.9196E+00 | 6.1045E+01 | 1.6186E+00 | 3.2740E-02 |
|          | Std   | 4.4422E-02 | 9.1386E+00 | 1.7084E+00 | 7.2968E-01 | 1.0365E-01 | 3.2901E+00 | 2.5564E+00 | 1.2773E+01 | 1.5593E+00 | 1.0591E-01 |
| F8       | Mean  | 2.0915E+01 | 2.0950E+01 | 2.0945E+01 | 2.0942E+01 | 2.0913E+01 | 2.0938E+01 | 2.0946E+01 | 2.0930E+01 | 2.0896E+01 | 2.0913E+01 |
|          | Std   | 5.0679E-02 | 5.2805E-02 | 5.0626E-02 | 5.6721E-02 | 5.7819E-02 | 5.7904E-02 | 5.0573E-02 | 6.4354E-02 | 6.6425E-02 | 5.4244E-02 |
| F9       | Mean  | 6.0334E+00 | 2.0861E+01 | 9.7796E+00 | 1.7297E+01 | 4.8636E+00 | 1.1217E+01 | 8.6899E+00 | 2.7327E+01 | 9.2560E+00 | 6.4976E+00 |
|          | Std   | 1.6616E+00 | 3.6098E+00 | 2.2110E+00 | 5.2354E+00 | 1.5545E+00 | 2.5897E+00 | 2.3753E+00 | 1.8690E+00 | 2.1958E+00 | 1.8845E+00 |
| F10      | Mean  | 1.5897E-02 | 2.1713E-01 | 6.1507E-02 | 8.7545E-02 | 1.7007E-02 | 8.2828E-02 | 1.0281E-01 | 1.1127E-01 | 7.6542E-02 | 1.0436E-02 |
|          | Std   | 1.3606E-02 | 1.2852E-01 | 3.0524E-02 | 3.8635E-02 | 1.7573E-02 | 4.0273E-02 | 4.2624E-02 | 4.6893E-02 | 3.9869E-02 | 1.0210E-02 |
| F11      | Mean  | 5.2284E+00 | 1.9509E-02 | 1.6544E+01 | 1.3656E-01 | 8.7010E+00 | 3.1214E-01 | 2.3372E+01 | 1.1146E-15 | 1.4768E+01 | 3.7407E-10 |
|          | Std   | 1.6749E+00 | 1.3932E-01 | 4.4716E+00 | 3.9896E-01 | 3.1137E+00 | 4.6626E-01 | 5.7342E+00 | 7.9597E-15 | 5.3631E+00 | 6.3686E-10 |
| F12      | Mean  | 6.9842E+00 | 5.8640E+01 | 1.7812E+01 | 4.7246E+01 | 1.4866E+01 | 3.7351E+01 | 4.0481E+01 | 6.6838E+01 | 2.2045E+01 | 1.0125E+01 |
|          | Std   | 2.4248E+00 | 1.7098E+01 | 4.3014E+00 | 8.0865E+00 | 5.1523E+00 | 1.2319E+01 | 1.2165E+01 | 1.2096E+01 | 9.6204E+00 | 1.8742E+00 |
| F13      | Mean  | 1.4725E+01 | 1.1537E+02 | 4.3918E+01 | 6.6813E+01 | 3.2082E+01 | 7.9523E+01 | 1.0341E+02 | 1.2504E+02 | 5.5793E+01 | 2.5330E+01 |
|          | Std   | 8.7783E+00 | 2.5423E+01 | 1.5265E+01 | 1.2260E+01 | 1.6795E+01 | 2.3468E+01 | 3.7683E+01 | 1.6989E+01 | 2.2352E+01 | 8.7939E+00 |
| F14      | Mean  | 1.4379E+03 | 3.5324E+01 | 1.4698E+03 | 6.9768E+02 | 1.3890E+03 | 3.5402E+00 | 9.5771E+02 | 1.0576E+00 | 1.5264E+03 | 3.6702E+00 |
|          | Std   | 2.6058E+02 | 6.0944E+01 | 3.9684E+02 | 2.1812E+02 | 2.2628E+02 | 3.3859E+00 | 3.5413E+02 | 2.1617E+00 | 3.6865E+02 | 2.4636E+00 |
| F15      | Mean  | 1.5002E+03 | 3.4143E+03 | 2.2352E+03 | 3.8795E+03 | 1.4005E+03 | 3.0847E+03 | 3.4753E+03 | 3.3104E+03 | 2.4047E+03 | 1.5303E+03 |
|          | Std   | 4.6740E+02 | 4.9377E+02 | 6.2543E+02 | 4.9256E+02 | 4.3124E+02 | 7.2220E+02 | 7.7547E+02 | 4.0533E+02 | 6.6458E+02 | 4.1394E+02 |
| F16      | Mean  | 1.2199E+00 | 1.6469E+00 | 2.3152E+00 | 2.4808E+00 | 8.1078E-01 | 1.3732E+00 | 2.4826E+00 | 1.2353E+00 | 9.7916E-01 | 1.0538E+00 |
|          | Std   | 4.5298E-01 | 2.2332E-01 | 3.3988E-01 | 2.8597E-01 | 4.8585E-01 | 9.8584E-01 | 2.7564E-01 | 3.5738E-01 | 4.5420E-01 | 3.0826E-01 |
| F17      | Mean  | 3.7534E+01 | 3.1123E+01 | 4.4313E+01 | 7.0979E+01 | 4.8580E+01 | 3.3533E+01 | 6.1800E+01 | 3.0434E+01 | 4.1503E+01 | 3.1066E+01 |
|          | Std   | 1.7563E+00 | 2.3423E-01 | 4.5003E+00 | 4.9054E+00 | 6.6158E+00 | 1.1533E+00 | 8.5555E+00 | 4.7642E-04 | 5.7160E+00 | 2.2570E-01 |
| F18      | Mean  | 3.9016E+01 | 8.5728E+01 | 6.8770E+01 | 1.8169E+02 | 5.5998E+01 | 6.6800E+01 | 9.6461E+01 | 7.9899E+01 | 4.6295E+01 | 4.0752E+01 |
|          | Std   | 2.8562E+00 | 2.2319E+01 | 3.2766E+01 | 1.5268E+01 | 8.2701E+00 | 1.6993E+01 | 4.0926E+01 | 1.1569E+01 | 7.2970E+00 | 2.1798E+00 |
| F19      | Mean  | 1.8962E+00 | 1.5168E+00 | 3.0843E+00 | 3.8153E+00 | 2.8070E+00 | 1.4981E+00 | 2.6667E+00 | 8.5016E-01 | 3.3720E+00 | 1.1726E+00 |
| ,        | Std   | 3.5225E-01 | 2.6002E-01 | 7.1275E-01 | 4.7234E-01 | 7.3816E-01 | 2.7458E-01 | 5.8405E-01 | 2.1690E-01 | 6.7114E-01 | 3.8229E-01 |
| F20      | Mean  | 8.7442E+00 | 1.0708E+01 | 9.5607E+00 | 1.0548E+01 | 8.7750E+00 | 9.9337E+00 | 9.8293E+00 | 1.1024E+01 | 1.0045E+01 | 9.2179E+00 |
| 120      | Std   | 9.2421E-01 | 7.8924E-01 | 9.3345E-01 | 3.8968E-01 | 4.7015E-01 | 9.1242E-01 | 8.2833E-01 | 8.3771E-01 | 1.0138E+00 | 1.3351E+00 |
| F21      | Mean  | 3.3659E+02 | 2.6867E+02 | 3.3352E+02 | 2.9864E+02 | 3.2619E+02 | 3.2875E+02 | 3.2312E+02 | 2.8884E+02 | 3.3096E+02 | 2.3726E+02 |
| 1.771    | Std   | 6.3180E+01 | 4.2841E+01 | 7.2272E+01 | 4.7270E+01 | 6.0180E+01 | 7.2900E+01 | 6.9195E+01 | 5.5760E+01 | 5.9627E+01 | 4.8827E+01 |
| F22      | Mean  | 1.0181E+03 | 1.1874E+02 | 1.0574E+03 | 2.8815E+02 | 6.5350E+02 | 1.1222E+02 | 7.7038E+02 | 1.1003E+02 | 1.0693E+03 | 1.2637E+02 |
| 1.777    | Std   | 2.8582E+02 | 2.3873E+01 | 3.2941E+02 | 7.9594E+01 | 1.9910E+02 | 1.9837E+01 | 2.5406E+02 | 1.5539E+01 | 3.3529E+02 | 3.0373E+01 |
| F23      | Mean  | 1.6325E+03 | 3.8036E+03 | 2.2911E+03 | 3.4108E+03 | 1.3396E+03 | 3.2333E+03 | 3.2990E+03 | 4.2421E+03 | 2.5688E+03 | 1.8105E+03 |
| 1.23     | Std   | 4.0718E+02 | 5.9050E+02 | 4.7358E+02 | 4.4766E+02 | 4.0195E+02 | 5.8954E+02 | 7.1027E+02 | 4.4384E+02 | 6.5479E+02 | 3.4274E+02 |
| F24      | Mean  | 2.0006E+02 | 2.2826E+02 | 2.0914E+02 | 2.0026E+02 | 2.0005E+02 | 2.0926E+02 | 2.0569E+02 | 2.6271E+02 | 2.0466E+02 | 2.0003E+02 |
| 1.774    | Std   | 4.8845E-02 | 8.5696E+00 | 1.0664E+01 | 2.8111E-01 | 5.5636E-02 | 5.1627E+00 | 5.8188E+00 | 8.3222E+00 | 8.6737E+00 | 2.5169E-02 |
| F25      | Mean  | 2.0002E+02 | 2.6346E+02 | 2.4693E+02 | 2.5088E+02 | 2.0107E+02 | 2.4464E+02 | 2.4844E+02 | 2.9131E+02 | 2.4813E+02 | 2.0119E+02 |
| 1.77     | Std   | 1.0706E-02 | 2.9800E+01 | 3.5507E+01 | 2.4817E+01 | 7.5578E+00 | 1.9296E+01 | 6.1671E+00 | 5.0216E+00 | 2.4597E+01 | 8.4572E+00 |
| F26      | Mean  | 2.9391E+02 | 2.0005E+02 | 2.7086E+02 | 2.3221E+02 | 2.6910E+02 | 2.2892E+02 | 2.5415E+02 | 2.0009E+02 | 2.8350E+02 | 2.0027E+02 |
| F20      | Std   | 2.4719E+01 | 2.5306E-02 | 5.5428E+01 | 4.7278E+01 | 4.7200E+01 | 5.0002E+01 | 5.3701E+01 | 1.3639E-01 | 4.7294E+01 | 6.7456E-01 |
| F27      | Mean  | 3.0108E+02 | 5.7442E+02 | 3.9904E+02 | 3.0451E+02 | 3.0087E+02 | 4.1868E+02 | 3.6297E+02 | 9.9342E+02 | 3.7878E+02 | 3.0060E+02 |
| Γ2/      | Std   | 7.8856E-01 | 9.5420E+01 | 9.5229E+01 | 4.6986E+00 | 8.2840E-01 | 7.6097E+01 | 6.9835E+01 | 7.2944E+01 | 8.1674E+01 | 4.8386E-01 |
| THE C    | Mean  | 2.6078E+02 | 2.9710E+02 | 3.0442E+02 | 3.0000E+02 | 2.8039E+02 | 3.0000E+02 | 3.2197E+02 | 3.0000E+02 | 2.7255E+02 | 2.5686E+02 |
| F28      | Std   | 8.0196E+01 | 2.0738E+01 | 2.1960E+02 | 0.0000E+00 | 6.0065E+01 | 2.7427E-13 | 1.5691E+02 | 2.6271E-13 | 6.9508E+01 | 8.3078E+01 |
| Cour     | nt    | 6          | 1          | 0          | 1          | 5          | 0          | 0          | 5          | 2          | 12         |
| Ave. R   | lank  | 3.48       | 7.39       | 6.68       | 6.57       | 3.93       | 5.57       | 7.29       | 6.04       | 5.75       | 1.93       |
|          | Rank  | 2          | 10         | 8          | 7          | 3          | 4          | 9          | 6          | 5          | 1          |

# E. Tension/compression spring design problem

The first engineering problem is the Tension/compression spring design problem, which is shown in Fig. S.1. The main objective of this problem is to optimize the weight of a tension or compression spring. This problem contains four constraints and three variables are utilized to calculate the weight: the diameter of the wire  $d(x_1)$ , the mean of the diameter of coil  $D(x_2)$ , and the number of active coils  $P(x_3)$ . The mathematical model of this problem can be defined as Eq. (S.1). Fig. S.2(a) gives the convergence curves of the DBPSO, HGWOP, and DSPSO on the tension/compression spring design problem.

TABLE S.6
EXPERIMENTAL RESULTS OF DBPSO AND THE PSO VARIANTS ON CEC 2013 TEST SUITE WITH 50-DIMENSIONAL

| Function           | Value       | RQ-PSO                   | HCLPSO                   | DSPSO                    | BLPSO                   | TLS-PSO                  | GLPSO                    | ACLPSO                   | DMSDL-PSO                | HGWOP                    | DBPSO                    |
|--------------------|-------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| F1                 | Mean        | 4.4583E-15               | 5.8850E-13               | 3.2546E-13               | 2.0954E-13              | 1.6050E-13               | 2.3629E-13               | 3.7450E-13               | 2.1846E-13               | 9.3624E-14               | 0.0000E+00               |
| 1.1                | Std         | 3.1839E-14               | 1.2182E-13               | 1.3066E-13               | 6.1737E-14              | 1.0463E-13               | 4.4574E-14               | 1.2720E-13               | 4.4574E-14               | 1.1302E-13               | 0.0000E+00               |
| F2                 | Mean        | 5.5838E+01               | 1.1395E+07               | 7.6035E+05               | 1.3833E+07              | 8.1521E+05               | 1.1208E+06               | 9.1678E+05               | 5.2152E+01               | 9.1369E+05               | 2.5922E+01               |
|                    | Std         | 1.0616E+02               | 1.0173E+07               | 3.1195E+05               | 3.7790E+06              | 1.9023E+05               | 3.6709E+05               | 3.6006E+05               | 4.6093E+01               | 1.8998E+05               | 5.1733E+01               |
| F3                 | Mean        | 2.7122E+05               | 2.0752E+08               | 1.2127E+07               | 1.0523E+06              | 3.3393E+04               | 9.5476E+06               | 2.5250E+07               | 1.9961E+08               | 6.9620E+06               | 3.8944E+04               |
|                    | Std         | 8.3094E+05               | 1.7151E+08               | 2.4328E+07               | 1.6287E+06              | 9.7790E+04               | 9.5362E+06               | 3.1605E+07               | 1.6078E+08               | 2.0160E+07               | 1.3368E+05               |
| F4                 | Mean        | 3.1827E+01               | 1.9357E+03               | 6.7816E+01               | 7.6424E+02              | 7.5229E+02               | 1.0851E+03               | 3.6452E+02               | 2.3742E+01               | 9.1418E+02               | 6.4866E-01               |
|                    | Std         | 2.1632E+02               | 6.3848E+02               | 6.5420E+01               | 1.7832E+02              | 2.8038E+02               | 5.8915E+02               | 1.5726E+02               | 4.3467E+01               | 4.0349E+02               | 2.5768E+00               |
| F5                 | Mean<br>Std | 2.3183E-13<br>1.2446E-13 | 8.1141E-13<br>1.2664E-13 | 3.7896E-13<br>1.0083E-13 | 1.1369E-13<br>0.0000+00 | 1.7164E-13<br>6.5791E-14 | 3.2991E-13<br>6.9171E-14 | 5.0602E-13<br>1.0248E-13 | 1.1369E-13<br>0.0000E+00 | 1.9839E-13<br>5.4962E-14 | 1.1369E-13<br>0.0000E+00 |
| F6                 | Mean        | 3.0294E-11               | 4.5323E+01               | 4.3586E+01               | 4.3447E+01              | 4.3590E+01               | 4.3647E+01               | 4.3450E+01               | 6.5506E-11               | 4.5187E+01               | 1.9719E-11               |
| 1.0                | Std         | 2.8969E-11               | 8.2767E-01               | 5.9635E-01               | 1.6510E-10              | 1.6493E-01               | 7.4160E-01               | 8.0591E-03               | 8.2977E-11               | 5.9924E-01               | 1.3861E-11               |
| F7                 | Mean        | 3.4919E-01               | 3.8223E+01               | 9.1784E+00               | 4.6430E+00              | 1.6095E-01               | 1.1045E+01               | 1.3750E+01               | 7.2225E+01               | 4.6733E+00               | 2.5917E-01               |
| 1.7                | Std         | 3.7801E-01               | 1.0102E+01               | 3.6357E+00               | 3.2962E+00              | 1.5987E-01               | 4.9479E+00               | 5.6694E+00               | 9.9040E+00               | 2.3658E+00               | 3.2474E-01               |
| F8                 | Mean        | 2.1125E+01               | 2.1126E+01               | 2.1137E+01               | 2.1130E+01              | 2.1119E+01               | 2.1132E+01               | 2.1136E+01               | 2.1122E+01               | 2.1109E+01               | 2.1124E+01               |
| 1.0                | Std         | 3.3804E-02               | 4.5239E-02               | 3.3040E-02               | 3.8992E-02              | 4.2881E-02               | 3.9772E-02               | 3.2794E-02               | 3.6819E-02               | 3.9706E-02               | 3.8650E-02               |
| F9                 | Mean        | 1.2320E+01               | 4.1692E+01               | 1.8520E+01               | 4.0637E+01              | 1.1149E+01               | 1.7224E+01               | 2.1716E+01               | 5.4488E+01               | 1.6776E+01               | 1.2388E+01               |
| 1.9                | Std         | 2.6993E+00               | 5.2985E+00               | 2.6716E+00               | 4.7986E+00              | 2.5129E+00               | 3.0446E+00               | 3.7571E+00               | 2.1891E+00               | 3.5416E+00               | 2.1447E+00               |
| F10                | Mean        | 9.7330E-02               | 2.2727E-01               | 1.2830E-01               | 1.6878E-01              | 5.9756E-02               | 1.3194E-01               | 1.7200E-01               | 2.1311E-01               | 1.1806E-01               | 6.9221E-02               |
| 1.10               | Std         | 4.3163E-02               | 1.2342E-01               | 6.9555E-02               | 9.2006E-02              | 3.9950E-02               | 6.6956E-02               | 8.9223E-02               | 9.9109E-02               | 5.8973E-02               | 3.9003E-02               |
| F11                | Mean        | 1.8085E+01               | 3.9018E-02               | 3.8238E+01               | 6.8118E-01              | 1.6251E+01               | 9.7545E-02               | 4.9963E+01               | 3.9018E-02               | 2.7625E+01               | 2.6066E-10               |
| 111                | Std         | 4.1727E+00               | 1.9505E-01               | 9.4584E+00               | 1.1367E+00              | 4.2009E+00               | 2.9881E-01               | 9.5439E+00               | 1.9505E-01               | 9.6886E+00               | 5.5532E-10               |
| F12                | Mean        | 1.9353E+01               | 1.3062E+02               | 3.7087E+01               | 1.0613E+02              | 2.7547E+01               | 6.8195E+01               | 8.5313E+01               | 1.5650E+02               | 4.6529E+01               | 2.1733E+01               |
| 1 12               | Std         | 3.4997E+00               | 3.1956E+01               | 7.8219E+00               | 1.6512E+01              | 6.5983E+00               | 1.4889E+01               | 2.2521E+01               | 2.3258E+01               | 1.3365E+01               | 3.1986E+00               |
| F13                | Mean        | 5.1332E+01               | 2.6214E+02               | 1.0316E+02               | 1.5589E+02              | 6.4077E+01               | 1.7067E+02               | 1.9794E+02               | 2.8131E+02               | 1.2171E+02               | 6.9981E+01               |
| 113                | Std         | 1.7290E+01               | 5.7142E+01               | 2.5709E+01               | 2.3842E+01              | 2.4441E+01               | 3.5848E+01               | 3.9204E+01               | 3.1818E+01               | 3.2211E+01               | 1.6021E+01               |
| F14                | Mean        | 2.2418E+03               | 4.6508E+01               | 2.6973E+03               | 1.1708E+03              | 2.1342E+03               | 4.1948E+00               | 2.2095E+03               | 5.8940E+00               | 2.6150E+03               | 9.2474E+00               |
| 1 17               | Std         | 5.9922E+02               | 5.9582E+01               | 8.0278E+02               | 2.6264E+02              | 4.3813E+02               | 2.1746E+00               | 6.1187E+02               | 7.0354E+00               | 6.1321E+02               | 3.8064E+00               |
| F15                | Mean        | 4.1085E+03               | 7.4096E+03               | 5.3371E+03               | 7.9186E+03              | 3.9101E+03               | 6.2467E+03               | 7.1275E+03               | 6.8980E+03               | 5.8599E+03               | 4.1807E+03               |
| 1 13               | Std         | 7.4923E+02               | 8.6419E+02               | 9.2270E+02               | 5.8557E+02              | 8.6362E+02               | 9.6979E+02               | 1.2102E+03               | 7.7205E+02               | 1.0972E+03               | 6.3311E+02               |
| F16                | Mean        | 1.7937E+00               | 1.9999E+00               | 3.3388E+00               | 3.3326E+00              | 9.2664E-01               | 1.9217E+00               | 3.2228E+00               | 1.6128E+00               | 1.3672E+00               | 1.5441E+00               |
| 110                | Std         | 4.8414E-01               | 2.7583E-01               | 2.8268E-01               | 2.8719E-01              | 4.7574E-01               | 1.2069E+00               | 3.9652E-01               | 4.9571E-01               | 5.8721E-01               | 4.8465E-01               |
| F17                | Mean        | 6.5216E+01               | 5.2276E+01               | 8.0263E+01               | 1.2860E+02              | 8.3593E+01               | 5.4466E+01               | 1.2028E+02               | 5.0786E+01               | 7.7407E+01               | 5.2084E+01               |
| 11/                | Std         | 2.8397E+00               | 4.2443E-01               | 5.1206E+00               | 8.2674E+00              | 1.1866E+01               | 1.3855E+00               | 1.3253E+01               | 1.9686E-03               | 1.3814E+01               | 3.7228E-01               |
| F18                | Mean        | 6.7333E+01               | 1.7601E+02               | 1.1329E+02               | 3.3607E+02              | 9.0630E+01               | 1.1888E+02               | 1.5282E+02               | 1.3800E+02               | 8.0117E+01               | 6.9621E+01               |
| 1 10               | Std         | 3.1543E+00               | 3.8968E+01               | 4.5735E+01               | 1.9910E+01              | 1.1106E+01               | 1.4629E+01               | 6.0853E+01               | 1.6653E+01               | 1.6881E+01               | 3.7247E+00               |
| F19                | Mean        | 4.5813E+00               | 2.9660E+00               | 5.7516E+00               | 7.3768E+00              | 5.0952E+00               | 2.4649E+00               | 5.2683E+00               | 1.8490E+00               | 6.5615E+00               | 2.6239E+00               |
| 11)                | Std         | 7.2137E-01               | 4.2764E-01               | 9.7114E-01               | 6.3576E-01              | 8.8273E-01               | 3.3702E-01               | 1.0149E+00               | 3.2153E-01               | 1.0284E+00               | 4.7052E-01               |
| F20                | Mean        | 1.6190E+01               | 1.9203E+01               | 1.8192E+01               | 1.9706E+01              | 1.6277E+01               | 1.8582E+01               | 1.8720E+01               | 2.0418E+01               | 1.8006E+01               | 1.6222E+01               |
| 1 20               | Std         | 9.6730E-01               | 8.3631E-01               | 1.3298E+00               | 5.3109E-01              | 1.1420E+00               | 8.6937E-01               | 1.0926E+00               | 8.9996E-01               | 1.0149E+00               | 7.7155E-01               |
| F21                | Mean        | 9.0801E+02               | 2.9389E+02               | 9.0546E+02               | 8.5042E+02              | 8.7999E+02               | 8.9553E+02               | 8.8228E+02               | 7.8372E+02               | 9.3730E+02               | 2.6240E+02               |
| 1.71               | Std         | 1.6545E+02               | 1.9190E+02               | 2.2467E+02               | 3.5925E+02              | 1.4999E+02               | 1.9271E+02               | 3.2423E+02               | 3.9733E+02               | 1.3792E+02               | 1.9114E+02               |
| F22                | Mean        | 2.1541E+03               | 3.3240E+01               | 2.6600E+03               | 5.8059E+02              | 1.5285E+03               | 3.1686E+01               | 1.9460E+03               | 2.4784E+01               | 3.0521E+03               | 8.6253E+01               |
| 1.77               | Std         | 4.6090E+02               | 2.6960E+01               | 6.5084E+02               | 2.1850E+02              | 3.7670E+02               | 3.8130E+01               | 5.2737E+02               | 2.4048E+01               | 9.3757E+02               | 5.1966E+01               |
| F23                | Mean        | 3.9161E+03               | 8.1926E+03               | 5.6657E+03               | 7.5104E+03              | 3.3445E+03               | 6.5148E+03               | 6.8414E+03               | 8.5669E+03               | 6.6893E+03               | 4.8859E+03               |
| 1.43               | Std         | 8.9280E+02               | 9.5399E+02               | 1.0449E+03               | 8.0351E+02              | 8.2919E+02               | 1.0215E+03               | 1.1652E+03               | 8.3338E+02               | 1.5041E+03               | 1.3630E+03               |
| F24                | Mean        | 2.0041E+02               | 2.6880E+02               | 2.5529E+02               | 2.0292E+02              | 2.0039E+02               | 2.3210E+02               | 2.2733E+02               | 3.4192E+02               | 2.2184E+02               | 2.0026E+02               |
| 1.24               | Std         | 2.1788E-01               | 1.2321E+01               | 2.2500E+01               | 2.7905E+00              | 2.3209E-01               | 1.5596E+01               | 8.6389E+00               | 9.6833E+00               | 1.9178E+01               | 1.5714E-01               |
| F25                | Mean        | 3.0161E+02               | 3.8795E+02               | 3.2223E+02               | 3.2117E+02              | 2.8840E+02               | 2.8815E+02               | 2.9986E+02               | 3.7909E+02               | 3.1367E+02               | 2.7827E+02               |
| 1.43               | Std         | 4.2313E+01               | 1.2860E+01               | 1.4165E+01               | 2.4861E+01              | 7.3635E+00               | 8.6369E+00               | 9.5327E+00               | 6.4444E+00               | 1.1132E+01               | 5.8944E+01               |
| F26                | Mean        | 3.0246E+02               | 2.0033E+02               | 3.2105E+02               | 2.9511E+02              | 2.7808E+02               | 3.1452E+02               | 3.0231E+02               | 2.0006E+02               | 3.3774E+02               | 2.0205E+02               |
| 1.70               | Std         | 3.6781E+01               | 4.3501E-01               | 6.1126E+01               | 4.2218E+01              | 4.6680E+01               | 5.1111E+01               | 6.7520E+01               | 2.7210E-01               | 2.3078E+01               | 1.4095E+01               |
| F27                | Mean        | 4.1190E+02               | 1.2072E+03               | 8.5206E+02               | 6.0387E+02              | 3.3786E+02               | 7.4861E+02               | 7.7251E+02               | 1.7099E+03               | 7.7974E+02               | 3.3700E+02               |
| F21                | Std         | 1.8380E+02               | 1.6182E+02               | 1.5124E+02               | 2.9590E+02              | 8.9372E+01               | 1.3230E+02               | 1.7125E+02               | 8.4598E+01               | 1.7760E+02               | 8.7597E+01               |
| F20                | Mean        | 5.1447E+02               | 4.0000E+02               | 6.9228E+02               | 4.0000E+02              | 4.0000E+02               | 4.5913E+02               | 4.5909E+02               | 4.0000E+02               | 6.3302E+02               | 4.0000E+02               |
| F28                | Std         | 5.7224E+02               | 6.8515E-13               | 8.9536E+02               | 2.8705E-13              | 3.1782E-13               | 4.2225E+02               | 4.2200E+02               | 2.6123E-13               | 8.0671E+02               | 2.7320E-13               |
| Cou                |             | 4                        | 0                        | 0                        | 1                       | 7                        | 1                        | 0                        | 6                        | 1                        | 10                       |
| Ave. R<br>Total. F |             | 4.04<br>3                | 7.36<br>10               | 6.93<br>8                | 6.39<br>7               | 3.54<br>2                | 5.79<br>5                | 7.21<br>9                | 5.50<br>4                | 6.04<br>6                | 2.07<br>1                |
|                    | Nauk        | 3                        | 10                       | ٥                        | /                       | 2                        | J                        | 9                        | 4                        | O                        | 1                        |

minimize:

$$f(\mathbf{x}) = f(x_1, x_2, x_3) = (x_3 + 2) x_2 x_1^2$$

subject to:

$$g_{1}(\mathbf{x}) = 1 - \frac{x_{2}^{3}x_{3}}{71785x_{1}^{4}} \le 0$$

$$g_{2}(\mathbf{x}) = \frac{4x_{2}^{2} - x_{1}x_{2}}{12566(x_{2}x_{1}^{3} - x_{1}^{4})} + \frac{1}{5108x_{1}^{2}} - 1 \le 0$$

$$g_{3}(\mathbf{x}) = 1 - \frac{140.45x_{1}}{x_{2}^{2}x_{3}} \le 0$$

$$g_{4}(\mathbf{x}) = x_{2} + \frac{x_{1}}{1.5} - 1 \le 0$$
(S.1)

variable range:

$$0.05 \le x_1 \le 2, \ 0.25 \le x_2 \le 1.3, \ 2 \le x_3 \le 15$$

 ${\it TABLE~S.7} \\ {\it Experimental~results~of~DBPSO~and~the~other~NMAs~on~CEC~2013~test~suite~with~50-dimensional}$ 

| Function | Value       | MPA                      | ISEO                     | PaDE                     | TUSHBO                   | MSSCS                    | TDBBO                    | CMMDEBBO                 | HBBOS                    | DBPSO                    |
|----------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|          | Mean        | 4.4681E-04               | 2.2737E-13               | 4.0125E-14               | 2.1846E-13               | 0.0000E+00               | 3.5221E-13               | 4.0125E-14               | 1.7387E-13               | 0.0000E+00               |
| F1       | Std         | 4.5871E-04               | 0.0000E+00               | 8.7542E-14               | 4.4574E-14               | 0.0000E+00               | 1.9461E-13               | 8.7542E-14               | 9.7408E-14               | 0.0000E+00               |
| F2       | Mean        | 1.2955E+06               | 3.9144E+06               | 1.7648E+03               | 3.2722E+05               | 2.8511E+06               | 5.8308E+05               | 1.1500E+06               | 5.1532E+05               | 2.5922E+01               |
| 1.2      | Std         | 6.4186E+05               | 1.5496E+06               | 2.2100E+03               | 1.1642E+05               | 1.1985E+06               | 2.1890E+05               | 3.9248E+05               | 2.1913E+05               | 5.1733E+01               |
| F3       | Mean        | 3.5540E+08               | 1.0886E+08               | 3.3930E+03               | 9.0914E+06               | 8.7818E+06               | 1.7667E+07               | 1.0606E+05               | 2.1059E+07               | 3.8944E+04               |
|          | Std         | 2.5559E+08               | 9.7457E+07               | 1.0943E+04               | 1.7910E+07               | 1.0188E+07               | 1.3259E+07               | 3.3947E+05               | 2.2359E+07               | 1.3368E+05               |
| F4       | Mean        | 9.7696E+01               | 3.7000E+01               | 3.8863E-11               | 1.6041E-01               | 9.2050E+03               | 1.3065E+02               | 1.3576E+00               | 2.7367E+00               | 6.4866E-01               |
|          | Std         | 8.5491E+01               | 1.5355E+01               | 8.2639E-11               | 2.0461E-01               | 3.4265E+03               | 6.4122E+01               | 2.5516E+00               | 7.1697E+00               | 2.5768E+00               |
| F5       | Mean<br>Std | 1.0049E-02<br>3.6172E-03 | 1.3375E-13<br>4.3771E-14 | 1.8056E-13<br>5.6508E-14 | 1.9394E-13<br>5.7044E-14 | 1.1369E-13<br>0.0000E+00 | 5.2960E-04<br>3.1065E-03 | 1.1592E-13<br>1.5919E-14 | 1.1369E-13<br>0.0000E+00 | 1.1369E-13<br>0.0000E+00 |
|          | Siu         | 3.0172E-03               | 4.37/1L-14               | 3.0306E-14               | 3.7044E-14               | 0.0000ET00               | 3.1003E-03               | 1.3919L-14               | 0.0000ET00               | 0.0000E+00               |
| F6       | Mean        | 7.1804E+01               | 4.6599E+01               | 4.3447E+01               | 4.3976E+01               | 4.4123E+01               | 6.5421E+01               | 4.3447E+01               | 4.4552E+01               | 1.9719E-11               |
| • •      | Std         | 2.9337E+01               | 9.9428E+00               | 1.6078E-14               | 8.0923E+00               | 1.6067E+00               | 2.4683E+01               | 1.7681E-11               | 7.1035E+00               | 1.3861E-11               |
| F7       | Mean        | 5.5734E+01               | 2.9605E+01               | 7.3659E-01               | 2.5424E+01               | 7.5800E+01               | 2.3192E+01               | 5.3488E-01               | 1.8471E+01               | 2.5917E-01               |
|          | Std         | 9.1703E+00               | 8.8895E+00               | 6.2929E-01               | 1.0386E+01               | 1.4765E+01               | 7.9407E+00               | 5.4811E-01               | 7.3225E+00               | 3.2474E-01               |
| F8       | Mean        | 2.1124E+01               | 2.1135E+01               | 2.1072E+01               | 2.1128E+01               | 2.1124E+01               | 2.1130E+01               | 2.1120E+01               | 2.1136E+01               | 2.1124E+01               |
|          | Std         | 4.1315E-02               | 3.4509E-02               | 9.5595E-02               | 4.8656E-02               | 3.6768E-02               | 3.2811E-02               | 3.3490E-02               | 3.7502E-02               | 3.8650E-02               |
| F9       | Mean        | 3.7861E+01               | 5.7050E+01               | 5.0370E+01               | 3.5511E+01               | 4.4151E+01               | 5.3669E+01               | 5.5775E+01               | 4.9827E+01               | 1.2388E+01<br>2.1447E+00 |
|          | Std         | 4.4844E+00               | 3.4591E+00               | 3.8302E+00               | 6.9896E+00               | 6.3830E+00               | 6.3054E+00               | 2.3505E+00               | 4.0189E+00               |                          |
| F10      | Mean<br>Std | 1.1589E+00<br>3.9181E-01 | 1.4537E-01<br>8.7936E-02 | 1.2463E-02<br>1.1448E-02 | 1.4206E-01<br>1.0410E-01 | 5.9438E-02<br>3.9427E-02 | 2.1756E-01<br>1.1586E-01 | 6.0744E-02<br>3.4392E-02 | 1.6510E-01<br>9.5030E-02 | 6.9221E-02<br>3.9003E-02 |
|          | Mean        | 4.0279E+01               | 3.4221E+01               | 1.7387E-13               | 1.5822E+01               | 2.0094E+00               | 6.6046E+01               | 1.0021E+01               | 3.5116E-01               | 2.6066E-10               |
| F11      | Std         | 1.3192E+01               | 1.5423E+01               | 7.7451E-14               | 4.6805E+00               | 2.0094E+00<br>2.0047E+00 | 1.5139E+01               | 2.0804E+00               | 7.3985E-01               | 5.5532E-10               |
|          | Mean        | 1.6065E+02               | 9.6970E+01               | 1.8369E+01               | 9.3038E+01               | 2.2945E+02               | 1.0443E+02               | 1.3131E+02               | 9.5496E+01               | 2.1733E+01               |
| F12      | Std         | 2.9596E+01               | 1.9491E+01               | 2.6643E+00               | 2.1752E+01               | 4.5106E+01               | 2.3160E+01               | 1.4151E+01               | 2.2029E+01               | 3.1986E+00               |
|          | Mean        | 2.9092E+02               | 2.2775E+02               | 3.3484E+01               | 2.0499E+02               | 3.3224E+02               | 2.1070E+02               | 2.0058E+02               | 1.8175E+02               | 6.9981E+01               |
| F13      | Std         | 5.2703E+01               | 4.2006E+01               | 9.1013E+00               | 4.7928E+01               | 4.3256E+01               | 2.9393E+01               | 1.7901E+01               | 3.6414E+01               | 1.6021E+0                |
|          | Mean        | 2.3506E+03               | 9.3824E+02               | 5.7285E-02               | 7.3883E+01               | 2.3695E+00               | 1.4151E+03               | 4.9462E+02               | 2.8947E+01               | 9.2474E+0                |
| F14      | Std         | 4.7153E+02               | 3.6686E+02               | 2.4083E-02               | 7.4951E+01               | 1.6079E+00               | 4.8963E+02               | 9.8784E+01               | 3.2372E+01               | 3.8064E+00               |
|          | Mean        | 6.7073E+03               | 7.9659E+03               | 6.4379E+03               | 9.4909E+03               | 8.2007E+03               | 7.2418E+03               | 1.0171E+04               | 7.1701E+03               | 4.1807E+03               |
| F15      | Std         | 6.2941E+02               | 7.6239E+02               | 3.8493E+02               | 2.0064E+03               | 7.9179E+02               | 5.0477E+02               | 6.1257E+02               | 8.4406E+02               | 6.3311E+02               |
| E16      | Mean        | 1.5560E-01               | 1.8352E+00               | 1.0755E+00               | 2.4719E+00               | 2.0105E+00               | 1.5102E+00               | 2.7779E+00               | 1.4572E+00               | 1.5441E+00               |
| F16      | Std         | 5.1875E-02               | 4.2003E-01               | 5.2145E-01               | 7.6760E-01               | 2.9499E-01               | 2.7077E-01               | 3.5012E-01               | 9.3156E-01               | 4.8465E-01               |
| F17      | Mean        | 1.3917E+02               | 8.1888E+01               | 5.0786E+01               | 5.5501E+01               | 5.1191E+01               | 1.3460E+02               | 7.3947E+01               | 5.2941E+01               | 5.2084E+01               |
| F17      | Std         | 1.9211E+01               | 2.2622E+01               | 1.4453E-09               | 2.5860E+00               | 6.1552E-01               | 1.6435E+01               | 1.9517E+00               | 1.3591E+00               | 3.7228E-01               |
| F18      | Mean        | 2.2444E+02               | 1.6224E+02               | 1.0782E+02               | 2.4408E+02               | 2.8765E+02               | 1.7997E+02               | 2.9743E+02               | 1.1273E+02               | 6.9621E+0                |
| 1.10     | Std         | 3.4585E+01               | 2.4284E+01               | 6.3508E+00               | 8.1412E+01               | 4.0541E+01               | 1.8354E+01               | 1.9181E+01               | 1.8028E+01               | 3.7247E+00               |
| F19      | Mean        | 9.5837E+00               | 4.7829E+00               | 2.3474E+00               | 3.7282E+00               | 3.2391E+00               | 1.3362E+01               | 6.0471E+00               | 1.9755E+00               | 2.6239E+00               |
| 1.19     | Std         | 2.1451E+00               | 9.5955E-01               | 1.3134E-01               | 8.8765E-01               | 3.2932E-01               | 3.5581E+00               | 3.8870E-01               | 3.2853E-01               | 4.7052E-01               |
| F20      | Mean        | 1.9417E+01               | 1.9555E+01               | 1.7733E+01               | 2.0764E+01               | 2.0882E+01               | 1.8893E+01               | 2.0914E+01               | 1.9325E+01               | 1.6222E+01               |
| 120      | Std         | 8.3224E-01               | 8.0838E-01               | 5.1861E-01               | 7.6067E-01               | 8.9230E-01               | 7.1906E-01               | 3.6914E-01               | 8.0452E-01               | 7.7155E-01               |
| F2.1     | Mean        | 9.0802E+02               | 9.1106E+02               | 9.3016E+02               | 8.5605E+02               | 3.1792E+02               | 9.4345E+02               | 3.7089E+02               | 7.6437E+02               | 2.6240E+02               |
| F21      | Std         | 1.6542E+02               | 2.2646E+02               | 3.6843E+02               | 3.6667E+02               | 2.6007E+02               | 2.5783E+02               | 3.3581E+02               | 4.1623E+02               | 1.9114E+02               |
| F22      | Mean        | 2.9160E+03               | 1.1323E+03               | 1.1694E+01               | 1.7520E+02               | 5.0288E+01               | 2.2581E+03               | 5.1492E+02               | 4.2714E+01               | 8.6253E+01               |
| ΓZZ      | Std         | 6.4576E+02               | 3.9313E+02               | 5.8364E-01               | 1.4658E+02               | 3.6567E+01               | 4.3835E+02               | 8.3599E+01               | 5.7879E+01               | 5.1966E+01               |
| F23      | Mean        | 6.9813E+03               | 7.7247E+03               | 5.8957E+03               | 1.0346E+04               | 9.3854E+03               | 7.9231E+03               | 9.9210E+03               | 7.2057E+03               | 4.8859E+03               |
| F23      | Std         | 5.7081E+02               | 8.5325E+02               | 4.1928E+02               | 1.9267E+03               | 1.0416E+03               | 5.5429E+02               | 6.2775E+02               | 9.4809E+02               | 1.3630E+03               |
| F24      | Mean        | 2.8855E+02               | 3.1421E+02               | 2.0210E+02               | 2.3879E+02               | 3.2495E+02               | 2.4712E+02               | 2.0111E+02               | 2.3511E+02               | 2.0026E+02               |
| 1.74     | Std         | 1.1492E+01               | 1.6375E+01               | 1.7131E+00               | 1.1308E+01               | 1.7751E+01               | 8.7820E+00               | 4.9617E+00               | 1.1137E+01               | 1.5714E-01               |
| F25      | Mean        | 3.3917E+02               | 3.4987E+02               | 2.8512E+02               | 3.2516E+02               | 3.6124E+02               | 3.4190E+02               | 2.7293E+02               | 3.4790E+02               | 2.7827E+02               |
| 1 43     | Std         | 1.1886E+01               | 1.4267E+01               | 7.6779E+00               | 1.3896E+01               | 1.4762E+01               | 3.1981E+01               | 5.9802E+00               | 1.7951E+01               | 5.8944E+0                |
| F26      | Mean        | 2.0013E+02               | 3.3839E+02               | 2.5741E+02               | 2.3598E+02               | 2.0023E+02               | 2.6070E+02               | 2.7164E+02               | 3.0792E+02               | 2.0205E+02               |
| 120      | Std         | 5.1098E-02               | 1.1697E+02               | 5.2590E+01               | 6.5925E+01               | 8.5444E-02               | 7.3483E+01               | 8.4091E+01               | 5.5886E+01               | 1.4095E+01               |
| F27      | Mean        | 1.2349E+03               | 1.6288E+03               | 3.4147E+02               | 9.7152E+02               | 1.4884E+03               | 8.5398E+02               | 4.1564E+02               | 8.8365E+02               | 3.3700E+02               |
| 121      | Std         | 1.1407E+02               | 1.2634E+02               | 2.7684E+01               | 1.5961E+02               | 1.7265E+02               | 8.8938E+01               | 1.5239E+02               | 2.4494E+02               | 8.7597E+0                |
| F28      | Mean        | 4.0015E+02               | 7.0045E+02               | 4.0000E+02               | 4.5949E+02               | 4.6155E+02               | 4.0000E+02               | 4.0000E+02               | 4.5689E+02               | 4.0000E+0                |
| 1.70     | Std         | 4.8618E-02               | 9.2041E+02               | 2.7882E-13               | 4.2482E+02               | 4.3954E+02               | 3.9742E-13               | 3.6769E-13               | 4.0627E+02               | 2.7320E-13               |
| Cou      | nt          | 2                        | 0                        | 10                       | 0                        | 2                        | 0                        | 1                        | 2                        | 14                       |
| Ave. R   |             | 6.46                     | 6.96                     | 2.39                     | 5.36                     | 5.57                     | 6.50                     | 5.04                     | 4.50                     | 2.00                     |
| Total. I |             | 7                        | 9                        | 2                        | 5                        | 6                        | 8                        | 4                        | 3                        | 1                        |

 $\begin{tabular}{l} TABLE~S.8\\ Experimental~results~of~DBPSO~and~seven~algorithms~on~CEC 2017~test~suite\\ \end{tabular}$ 

| Function | HCLDMS-PSO | MPSO     | CGO      | JS       | ЕО       | НВО      | TLS-PSO  | DBPSO    |
|----------|------------|----------|----------|----------|----------|----------|----------|----------|
| $f_1$    | 1.61E+03   | 4.75E+07 | 2.08E+03 | 2.19E+03 | 3.32E+03 | 2.92E+02 | 2.24E+03 | 7.60E+01 |
| $f_3$    | 2.72E+01   | 1.68E-01 | 1.26E-09 | 3.89E+03 | 2.35E+01 | 2.82E+03 | 9.20E+00 | 6.78E-06 |
| $f_4$    | 7.81E+01   | 6.63E+01 | 4.54E+01 | 8.79E+01 | 6.96E+01 | 9.08E+01 | 1.13E+02 | 1.25E+00 |
| $f_5$    | 2.94E+01   | 6.92E+01 | 1.02E+02 | 1.09E+02 | 5.77E+01 | 1.22E+02 | 1.13E+02 | 1.79E+01 |
| $f_6$    | 1.45E-03   | 7.28E-02 | 2.48E+01 | 2.97E+00 | 5.66E-02 | 1.14E-13 | 1.51E-07 | 8.05E-09 |
| $f_7$    | 5.60E+01   | 9.92E+01 | 2.09E+02 | 1.43E+02 | 8.83E+01 | 1.59E+02 | 4.69E+01 | 3.99E+01 |
| $f_8$    | 2.75E+01   | 6.35E+01 | 9.05E+01 | 9.59E+01 | 5.71E+01 | 1.28E+02 | 1.03E+01 | 1.79E+01 |
| $f_9$    | 1.07E-02   | 1.13E+02 | 1.16E+03 | 1.26E+02 | 3.21E+01 | 9.49E-01 | 0.00E+00 | 0.00E+00 |
| $f_{10}$ | 2.30E+03   | 3.28E+03 | 4.21E+03 | 4.46E+03 | 3.16E+03 | 4.44E+03 | 1.39E+03 | 1.65E+03 |
| $f_{11}$ | 3.27E+01   | 1.08E+02 | 1.53E+02 | 6.73E+01 | 5.95E+01 | 5.33E+01 | 5.93E+01 | 3.17E+01 |
| $f_{12}$ | 7.37E+04   | 5.16E+05 | 1.81E+04 | 3.81E+04 | 6.64E+04 | 2.10E+06 | 1.60E+04 | 1.38E+03 |
| $f_{13}$ | 4.83E+03   | 1.29E+04 | 1.63E+04 | 3.02E+03 | 2.17E+04 | 1.03E+04 | 7.83E+03 | 4.29E+02 |
| $f_{14}$ | 3.39E+03   | 5.32E+02 | 2.46E+02 | 2.25E+03 | 5.68E+03 | 4.08E+04 | 1.14E+03 | 1.29E+02 |
| $f_{15}$ | 2.84E+03   | 1.34E+03 | 1.08E+04 | 1.71E+03 | 5.52E+03 | 1.52E+03 | 2.05E+03 | 6.20E+02 |
| $f_{16}$ | 3.13E+02   | 8.79E+02 | 8.83E+02 | 6.77E+02 | 6.84E+02 | 7.47E+02 | 3.01E+02 | 4.81E+02 |
| $f_{17}$ | 7.61E+01   | 3.79E+02 | 4.89E+02 | 1.57E+02 | 2.22E+02 | 1.73E+02 | 8.30E+01 | 1.43E+02 |
| $f_{18}$ | 1.05E+05   | 2.72E+04 | 1.70E+04 | 1.23E+05 | 1.24E+05 | 5.06E+05 | 6.15E+04 | 2.13E+03 |
| $f_{19}$ | 3.22E+03   | 5.15E+03 | 2.00E+03 | 3.53E+03 | 7.55E+03 | 1.20E+03 | 3.57E+03 | 1.38E+02 |
| $f_{20}$ | 1.40E+02   | 3.03E+02 | 4.16E+02 | 2.74E+02 | 2.10E+02 | 2.05E+02 | 1.95E+02 | 2.00E+02 |
| $f_{21}$ | 2.27E+02   | 2.58E+02 | 2.93E+02 | 2.78E+02 | 2.49E+02 | 3.31E+02 | 2.15E+02 | 2.23E+02 |
| $f_{22}$ | 1.00E+02   | 1.91E+02 | 3.63E+02 | 1.01E+02 | 1.12E+03 | 2.01E+03 | 1.00E+02 | 1.00E+02 |
| $f_{23}$ | 3.77E+02   | 4.34E+02 | 4.93E+02 | 4.28E+02 | 4.07E+02 | 4.72E+02 | 3.58E+02 | 3.67E+02 |
| $f_{24}$ | 4.45E+02   | 4.93E+02 | 5.47E+02 | 4.95E+02 | 4.70E+02 | 6.03E+02 | 4.23E+02 | 4.20E+02 |
| $f_{25}$ | 3.86E+02   | 4.30E+02 | 4.00E+02 | 3.91E+02 | 3.88E+02 | 3.87E+02 | 3.88E+02 | 3.79E+02 |
| $f_{26}$ | 1.15E+03   | 1.40E+03 | 2.83E+03 | 1.47E+03 | 1.55E+03 | 2.19E+03 | 4.12E+02 | 2.51E+02 |
| $f_{27}$ | 5.14E+02   | 5.37E+02 | 5.80E+02 | 5.24E+02 | 5.17E+02 | 5.09E+02 | 5.26E+02 | 4.88E+02 |
| $f_{28}$ | 3.62E+02   | 5.21E+02 | 3.46E+02 | 4.09E+02 | 3.57E+02 | 3.73E+02 | 3.69E+02 | 3.04E+02 |
| $f_{29}$ | 4.88E+02   | 6.83E+02 | 1.17E+03 | 6.60E+02 | 6.36E+02 | 7.73E+02 | 4.65E+02 | 5.01E+02 |
| $f_{30}$ | 3.98E+03   | 5.78E+03 | 3.89E+03 | 3.92E+03 | 1.19E+04 | 1.83E+04 | 5.73E+03 | 5.44E+03 |
| w/t/l    | 23/1/5     | 29/0/0   | 27/0/2   | 28/0/1   | 29/0/0   | 28/0/1   | 19/2/8   | -        |



Fig. S.1. Structure of the tension/compression spring design problem

# F. Cantilever beam design problem

The second engineering problem is the Cantilever beam design problem, which is shown in Fig. S.3. This is a case of a structural engineering design problem that aims to optimize the weight of a cantilever beam with a square cross-section. The beam is firmly secured at one end and is subject to a vertical force at the other end, as depicted in Fig. S.3. The beam is composed of five square blocks that have a uniform thickness, and their heights (or widths) are the critical parameters to be optimized. Notably, the thickness of each block is consistently fixed at 2/3. The problem can be represented mathematically as Eq. (S.2):



Fig. S.2. Convergence curves on the four engineering design problem



Fig. S.3. Structure of the cantilever beam design problem

minimize: 
$$f(\mathbf{x}) = 0.0624 (x_1 + x_2 + x_3 + x_4 + x_5)$$
 subject to: 
$$g(\mathbf{x}) = \frac{61}{x_1^3} + \frac{37}{x_2^3} + \frac{19}{x_3^3} + \frac{7}{x_4^3} + \frac{1}{x_5^3} - 1 \le 0$$
 variable range: 
$$0.01 \le x_i \le 100, \quad i = 1, \dots, 5$$
 (S.2)

TABLE S.9

COMPARISON RESULTS OF DBPSO WITH OTHER ALGORITHMS ON THE CBD PROBLEM

| Variable     | CSO       | DSPSO     | HGWOP     | DBPSO     |
|--------------|-----------|-----------|-----------|-----------|
| $x_1$        | 6.762800  | 6.013784  | 6.042949  | 6.016981  |
| $x_2$        | 5.158300  | 5.307666  | 5.143976  | 5.307830  |
| $x_3$        | 5.653700  | 4.499189  | 4.596050  | 4.493848  |
| $x_4$        | 2.927900  | 3.501157  | 3.537155  | 3.503550  |
| $x_5$        | 1.885400  | 2.151879  | 2.170036  | 2.151456  |
| Optimal Cost | 1.3970239 | 1.3399574 | 1.3399845 | 1.3399567 |

<sup>\*</sup> Bold represents the optimal value.

Table S.9 presents the optimal solutions of DBPSO and three compared meta-heuristic algorithms including CSO, DSPSO, and HGWOP in solving the Cantilever beam design problem. From Table S.9, DBPSO obtains the optimal value, and its optimal cost is better than the results of other compared algorithms. Fig. S.2(b) gives the convergence curves of the DBPSO, HGWOP, and DSPSO on the Cantilever beam design problem. Therefore, it is not difficult to draw the conclusion that DBPSO can better solve the Cantilever beam design problem.

# G. Three-bar truss design problem

The third practical engineering design problem is the three-bar truss design problem [2], which is shown in Fig. S.4. The main objective of this problem is to minimize the relevant weight. This case includes two optimization variables  $(A_1(=x_1), A_2(=x_1), A_3(=x_1), A_3($ 

 $(x_2)$ ) with three optimization constraints: stress constraint, deflection constraint, and buckling constraint. The mathematical model of this problem can be defined as Eq. (S.3).



Fig. S.4. Structure of the three-bar truss design problem

minimize:

minimize: 
$$f(\vec{x}) = \left(2\sqrt{2}x_1 + x_2\right) * l$$
 subject to: 
$$g_1(\vec{x}) = \frac{\sqrt{2}x_1 + x_2}{\sqrt{2}x_1^2 + 2x_1x_2} P - \sigma \le 0$$
 
$$g_2(\vec{x}) = \frac{x_2}{\sqrt{2}x_1^2 + 2x_1x_2} P - \sigma \le 0$$
 (S.3) 
$$g_3(\vec{x}) = \frac{1}{\sqrt{2}x_2 + x_1} P - \sigma \le 0$$
 variable range: 
$$0 \le x_1, x_2 \le 1.$$

where  $l = 100cm, P = 2KN/cm^2, \sigma = 2KN/cm^2$ . Table S.10 presents the optimal solutions of DBPSO and three compared meta-heuristic algorithms including ICHIMP-SHO [2], Hybrid GWO-Simulated Annealing (hGWO-SA) [3], Hybrid Harris Hawks-Sine Cosine Algorithm (hHHO-SCA) [4] and

Cooperation Search Algorithm (CSA) [5] in solving the three-bar truss design problem. From Table S.10, DBPSO obtains the optimal value, and its optimal weight is better than the results of other compared algorithms. Fig. S.2(c) shows the convergence curves of DBPSO for the three-bar truss design problem. Therefore, it is not difficult to draw the conclusion that DBPSO can better solve the three-bar truss design problem.

TABLE S.10 COMPARISON RESULTS OF DBPSO WITH OTHER ALGORITHMS ON THE TBTD PROBLEM

|                            | ICHIMP-SHO | hGWO-SA | hHHO-SCA    | CSA         | DBPSO              |
|----------------------------|------------|---------|-------------|-------------|--------------------|
| $x_1$ $x_2$ Optimal Weight | 0.788595   | 0.789   | 0.788498    | 0.788638976 | 0.7886767          |
|                            | 0.408486   | 0.408   | 0.40875     | 0.408350573 | 0.4082440          |
|                            | 263.89701  | 263.896 | 263.8958665 | 263.8958443 | <b>263.8958434</b> |

Bold represents the optimal value.

#### H. Car side impact design problem

The fourth practical engineering design problem is the car side impact design problem [6], which is shown in Fig. S.5. The main objective of this problem is to minimize the total weight. This problem contains ten constraints and eleven design variables are utilized to calculate the weight. The design variables consist of the thicknesses of the B-Pillar inner  $(x_1)$ , B-Pillar reinforcement  $(x_2)$ , floor side inner  $(x_3)$ , cross members  $(x_4)$ , door beam  $(x_5)$ , door beltline reinforcement  $(x_6)$ , and roof rail  $(x_7)$ . Additionally, the materials of the B-Pillar inner  $(x_8)$  and floor side inner  $(x_9)$ , as well as the barrier height  $(x_{10})$  and hitting position  $(x_{11})$ , are also considered as design variables. The mathematical model of this problem can be defined as Eq. (S.4). Fig. S.2(d) gives the convergence curves of the DBPSO, HGWOP, and DSPSO on the Car side impact design problem.



Fig. S.5. Structure of the car side impact design problem

minimize:

$$\begin{split} f(\mathbf{x}) &= 1.98 + 4.90x_1 + 6.67x_2 + 6.98x_3 + 4.01x_4 + 1.78x_5 + 2.73x_7 \\ \text{subject to:} \\ g_1(\mathbf{x}) &= 1.16 - 0.3717x_2x_4 - 0.00931x_2x_{10} - 0.484x_3x_9 + 0.01343x_6x_{10} - 1 \leq 0 \\ g_2(\mathbf{x}) &= 46.36 - 9.9x_2 - 12.9x_1x_2 + 0.1107x_3x_{10} - 32 \leq 0, \\ g_3(\mathbf{x}) &= 33.86 + 2.95x_3 + 0.1792x_3 - 5.057x_1x_2 - 11.0x_2x_8 - 0.0215x_5x_{10} - 9.98x_7x_8 \\ &\quad + 22.0x_8x_9 - 32 \leq 0 \\ g_4(\mathbf{x}) &= 28.98 + 3.818x_3 - 4.2x_1x_2 + 0.0207x_5x_{10} + 6.63x_6x_9 - 7.7x_7x_8 + 0.32x_9x_{10} - 32 \leq 0 \\ g_5(\mathbf{x}) &= 0.261 - 0.0159x_1x_2 - 0.188x_1x_8 - 0.019x_2x_7 + 0.0144x_3x_5 + 0.0008757x_5x_{10} \\ &\quad + 0.08045x_6x_9 + 0.00139x_8x_{11} + 0.00001575x_{10}x_{11} - 0.32 \leq 0 \\ g_6(\mathbf{x}) &= 0.214 + 0.00817x_5 - 0.131x_1x_8 - 0.0704x_1x_9 + 0.03099x_2x_6 - 0.018x_2x_7 \\ &\quad + 0.0208x_3x_8 + 0.121x_3x_9 - 0.00364x_5x_6 + 0.0007715x_5x_{10} - 0.0005354x_6x_{10} \\ &\quad + 0.00121x_8x_{11} + 0.00184x_9x_{10} - 0.02x_2^2 - 0.32 \leq 0 \\ g_7(\mathbf{x}) &= 0.74 - 0.61x_2 - 0.163x_3x_8 + 0.001232x_3x_{10} - 0.166x_7x_9 + 0.227x_2^2 - 0.32 \leq 0 \\ g_8(\mathbf{x}) &= 4.72 - 0.5x_4 - 0.19x_2x_3 - 0.0122x_4x_{10} + 0.009325x_6x_{10} + 0.000191x_{11}^2 - 4 \leq 0 \\ g_9(\mathbf{x}) &= 10.58 - 0.674x_1x_2 - 1.95x_2x_8 + 0.02054x_3x_{10} - 0.0198x_4x_{10} + 0.028x_6x_{10} - 9.9 \leq 0 \\ g_{10}(\mathbf{x}) &= 16.45 - 0.489x_3x_7 - 0.843x_5x_6 + 0.0432x_9x_{10} - 0.0556x_9x_{11} - 0.000786x_{11}^2 - 15.7 \leq 0, \\ \text{variable range:} \\ 0.5 \leq x_1, x_2, x_3, x_4, x_5, x_6, x_7 \leq 1.5, x_8, x_9 \in \{0.192, 0.345\}, -30 \leq x_{10}, x_{11} \leq 30 \\ \end{cases}$$

# REFERENCES

- [1] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernandez-Diaz, "Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization," Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China And Nanyang Technological University, Singapore, Technical Report, 2013.
- [2] C. L. Kumari, V. K. Kamboj, S. K. Bath, S. L. Tripathi, M. Khatri, and S. Sehgal, "A boosted chimp optimizer for numerical and engineering design optimization challenges," *Engineering with Computers*, vol. 39, p. 2463–2514, 2023.
- [3] A. Bhadoria, S. Marwaha, and V. K. Kamboj, "A solution to statistical and multidisciplinary design optimization problems using hGWO-SA algorithm," Neural Computing and Applications, vol. 33, p. 3799–3824, 2021.
- [4] V. K. Kamboj, A. Nandi, A. Bhadoria, and S. Sehgal, "An intensify harris hawks optimizer for numerical and engineering optimization problems," *Applied Soft Computing*, vol. 89, p. 106018, 2020.
- [5] Z. Feng, W. Niu, and S. Liu, "Cooperation search algorithm: A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems," *Applied Soft Computing*, vol. 98, p. 106734, 2021.
- [6] C. Zhang, Q. Lin, L. Gao, and X. Li, "Backtracking search algorithm with three constraint handling methods for constrained optimization problems," Expert Systems with Applications, vol. 42, no. 21, pp. 7831–7845, 2015.