

离散数学 第二次助教课

蔡子诺

2022年11月22日

饮水思源•爱国荣校

SE CONTROL CON

第一章 命题逻辑的基本概念

◉考点一: 命题的判断

□非真即假的陈述句

◎考点二: 命题联结词及真值表

●考点三: 重言式、可满足式、矛盾式

●考点四:代入规则

□原子命题、全部代换

◉考点五: 命题形式化

□易错点:异或的形式化

◉ 考点六: (逆)波兰表达式

5

第一章

C, 真值表法

- () 2. 命题公式¬(P∧Q)→R 具有______个使其为真的指派。
 - A 2
 - B 4
 - C 5
 - D 3

方法1: 为假的指派->R为F, (P and Q)为F

方法2: 真值表法

第一章

⑥ 1.3 命题公式;p∨((0∨R) ∧S) 的波兰表达式为

⑥ 1.8 (p/q) V (¬p) 的波兰表达式是: _____ √^pq¬p

● 1.10 设P:"你陪伴我",Q:"你代我叫车子",R:"我将出去"。则命题:"除非你陪伴我或

代我叫车子, 否则我将不出去"的形式化为: ¬(pva) ¬ ¬(

⑥ 1.6 命题公式 (P∧ (P→Q)) →Q 是 重言式

第二章 命题逻辑的等值和推理演算

◉考点一: 等值公式 (18条)

●考点二: 联结词的完备集

⊛考点三: 对偶式

⊚考点四: 范式、主范式

◉考点五: 推理公式

優考点六: 推理演算

□ 条件证明规则

□归结法

SALVA TONG UNITED STATE OF THE PARTY OF THE

第二章 联结词的完备集

 $\{\neg,\,\wedge\},\,\{\neg,\,\vee\},\,\{\neg,\,\rightarrow\},\,\{\neg,\,\leftrightarrow\},\,\{\vee,\,\rightarrow\},\,\{\wedge,\,\leftrightarrow\},\,\{\vee,\,\uparrow\},\,\{\downarrow\}$

- A. 4
- B. 5
- C. 6
- D. 7

最小完备集的个数为4个

不完备集

- □ { ∨, ^, →, ↔}不是完备的 因为¬不能仅由该集合的联结词表达出
- □ {¬, ↔}不是完备的
- □ { ∨, ∧, →, ↔}的任何子集都是不完备的 {¬, ↔}的任何子集也是不完备的 (如果一个联结词的集合是不完备的,那 么它的任何子集都是不完备的)
- □ { ∨ , ∧ } 不是完备的

第二章 联结词的完备集

2.8

2.12

$$P \downarrow Q = \neg (P \lor Q)$$
,用或非联结词表示出 $P \to Q$ 为______。
$$\frac{((P \downarrow P) \downarrow Q) \downarrow (P \downarrow P) \downarrow Q}{((P \downarrow P) \downarrow Q)}$$

第二章 对偶式

注意运算顺序和括号的添加

第二章 主范式 (填空题)

 $^{\textcircled{6}}$ 2.7 C () 13. 命题公式 $\neg (P \land Q) \rightarrow R$ 的主析取范式中含极小项的个数为___

A. 8 B. 3 C. 5 D. 0

2.13

 M_1 7. 已知公式 $P \leftrightarrow (Q \leftrightarrow (Q \rightarrow P))$, 其主合取范式为_

P	Q	结果
T	T	T
Т	F	F
F	T	T
F	F	Т

第二章: 主范式

② 2.17 设命题公式 $G = \neg (P \rightarrow Q) \lor (Q \land (\neg P \rightarrow R))$, 求 G 的主析取范式。

- 1. 消去联结词
- 2. 否定词内移
- 3. 使用分配律
- 4. 添加缺失项

主合取范式: A7;6;5

第二章 推理公式

2.14

- 2. 设命题公式 $G = \neg(P \to Q)$, $H = P \to (Q \to \neg P)$, 则G = H的关系是(A)
- (A) $G \Rightarrow H$

(B) $H \Rightarrow G$

(C) G = H

(D) 以上都不是

2.15

- 3. 下面 4 个推理定律中, 不正确的是(D)。
- (A) $A \Rightarrow (A \lor B)$

(B) $(A \lor B) \land \neg A \Rightarrow B$

(C) $(A \rightarrow B) \land A \Rightarrow B$

(D) $(A \rightarrow B) \land \neg B \Rightarrow A$

G= P110. H= アV(70VアP) = アVマQ. G ⇒ H 成元. H ⇒ G 不成之.

第二章:自然语句形式化+推理演算

七、(8') 证明下列推理关系:如果李华在光明中学上学 那么他不是初中生,就是高中生。如果李华是初中生,那么他需要参加中考。如果李华是高中生,那么他经常给外国的友人写信。如果李华经常给外国的友人写信,那么他的英文写作能力很强。李华的英文写作能力不强。从而知:如果李华在光明中学上学,那么他需要参加中考。

自然语句形式化

P: 李华在代明节上学

Q: 禁河里

R 李琦性

S: 李爷的·韩寿

T 辞价图以图信W 辞获的联络

	" P - QVR	318	
в) Q VR	(1)(五)省南	(11) Q (3)(10)
(1)	T→W	前提引入.	(四) 见) 5 前提认
(5)	Tr - Mr	(4) 對於	(ப்) த (ம்)(ம்) இ
(6)	7 W	前提10.	(14) P > 3 条件证明规则
(7)	77	(5)(6)分离	(1) (7) 市外区的大学
(8)	R→T	前提引入	
19)	7T -> 7R	(8) 置社	
(10)	78	和本 (7)(1)庭	

第二章 推理演算

六. (8') 任用一种推理方法证明: $(\alpha \rightarrow \beta) \land (\beta \rightarrow \gamma) \land (\delta \rightarrow \neg \gamma) \Rightarrow \neg (\alpha \land \delta)$

证明:

- (1) メート 前提込

 - (3) (3)(2)分离
 - (4) 个一个 前提孙
- (5) Y (3)(4)分高.
- いり る→フト 前提引入
 - (7) アウマる 的野兵

- 的可多的功論
- 19) みつつる条件证明规则.

W TO TONG THE PARTY OF THE PART

第四章 谓词逻辑的基本概念

◎考点一:基本概念(谓词、个体词、函数、量词、自由变元与约束变元、辖域)

◎考点二: 合式公式的判断

◎ 考点三: 自然语句形式化

□所有的有理数都是实数;

□有的实数是有理数;

□没有有理数是无理数;

□有的实数不是有理数

◉考点四:有限域下的表示

◉考点五: 普遍有效性的判定

第四章 基本概念

6. 公式($\forall x$) $\left(\left(P(x) \to Q(x)\right) \land (\exists y)R(y)\right) \land S(z)$ 的自由变元是______,全称量词的辖域为______ $\left(\left(P(x) \to Q(x)\right) \land (\exists y)R(y)\right)$ _____。

4.1

- () 5. 若个体域为整数集合,下列公式中___C__不是命题。
 - A. $(\forall x) (\forall y) (x \cdot y = x)$
 - B. $(\forall x) (\exists y) (x \cdot y=1)$
 - C. $(\forall x) (x \cdot y = x)$
 - D. $(\exists x) (\exists y) (x \cdot y=2)$

第四章 有限域下的表示

4.2

```
    (C) 6. 设个体域 D={a, b},则公式(∃x)(F(x)∧G(x))消去量词后可表示为____。
    A. (F(a) ∧F(b)) ∨ (G(a) ∧G(b));
    B. (F(a) ∨F(b)) ∧ (G(a) ∨G(b));
    C. (F(a) ∧G(a)) ∨ (F(b) ∧G(b));
    D. (F(a) ∨G(a)) ∧ (F(b) ∨G(b))
```


第四章 自然语句形式化

4.6

() 14. 设 A(x): x 是人, B(x): x 犯错误, 命题 "没有人不犯错误"符号化为_____

A. $(\forall x)(A(x) \land B(x))$

B. $\neg (\exists x)(A(x) \rightarrow \neg B(x))$

D

c. $\neg(\exists x)(A(x) \land B(x))$

 $\mathbf{D}. \quad \neg (\exists x) (A(x) \land \neg B(x))$

4.7

8. 设 R(x) 表示 x 是实数,E(x, y) 表示 x=y,则语句"对所有的实数 x,都存在实数 y,使得 x=y"的符号化为

第四章 普遍有效性的判定

4.8

9. 公式
$$(\exists x)(P(x) \leftrightarrow Q(x)) \to ((\exists x)P(x) \to (\exists x)Q(x))$$
 不是 (是/不是)普遍有效的; Q(0)=Q(1)=P(0)=F, P(1)=F

4.9

第五章 谓词逻辑的等值和推理演算

●考点一: 等值式

●考点二: 范式

□前束范式: 去联结词 -> 否定词内移 -> 量词左移 -> 变元异名

□Skolem 标准型

◉考点三: 推理演算

□全称/存在量词的引入与消去

□归结推理

第五章 推理公式

5.6

(A) 15. 下列各式哪个不正确?

$$(\forall x)(P(x) \lor Q(x)) \Leftrightarrow (\forall x)P(x) \lor (\forall x)Q(x)$$

B.
$$(\forall x)(P(x) \land Q(x)) \Leftrightarrow (\forall x)P(x) \land (\forall x)Q(x)$$

$$C$$
. $(\exists x)(P(x) \lor Q(x)) \Leftrightarrow (\exists x)P(x) \lor (\exists x)Q(x)$

$$\mathsf{D}. \quad (\forall x)(P(x) \vee q) \Leftrightarrow (\forall x)P(x) \vee q$$

第五章 范式

六(8') 求公式((∀x)(∃y)(P(x,y) → Q(y))) → (∀x)(R(x) → (∃u)(∀v)L(x,u,v))
的前束范式和 Skolem 标准形。

$$((\forall x)(\exists y)(P(x,y) \rightarrow Q(y))) \rightarrow \forall x(R(x) \rightarrow (\exists w)(\forall v)L(x,y,v))$$

$$= (\exists x)(AA)(b(xA) \vee (Ax)(\neg k(x) \wedge (\exists n)(An)(An))$$

skolem标准型

第五章 推理演算

5.8

八. (10') 任用一种推理方法证明: $(\exists x)(R(x) \land W(x)), (\forall x)(P(x) \to Q(x)), (\forall x)(R(x) \to \neg Q(x)) \Rightarrow (\exists x)(W(x) \land \neg P(x))$

(1)	(3x) Rix) NWIX)	前提引入
(2)	Ray / Wa)	存在量司游
(3)	Riaj	(2)
(4)	$(\forall x)(R(x) \rightarrow \neg Q(x))$	前提引入
(5)	R(a) → 7 Q(a)	全称是词游
(6)	70(0)	(2)(5)分离
ר)	(AX)(b(x) -> o(x))	前提引入
(8)	P(a) -> Q(a)	全称是词游
(9)	7Q(a) -> 7P(a)	(8) 置接
c(w)	7P(a)	いり分萬
(11)	W(a)	(2)
(L)	7 Play NW (a)	C(b) (II)
(8)	(RYNV(X) (XE)	存在量问到入

谢谢!

饮水思源 爱国荣校