Lang Chapter 3 (Modules)

Problem 14

Consider the following commutative diagram:

$$M' \xrightarrow{\phi_1} M \xrightarrow{\phi_2} M'' \longrightarrow 0$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$0 \longrightarrow N' \xrightarrow{\psi_1} N \xrightarrow{\psi_2} N''$$

- 1. Let us prove that if f, h are monomorphisms, then g is also a monomorphism. It suffices to show that if $g(x) = 0_N$, then $x = 0_M$. Since h is a monomorphism, $\ker h = \{0_{M''}\}$. Thus, by the exactness of the top row and commutativity of the rightmost square, $x \in \operatorname{img} \phi_1 \cap \ker g$. Since $x \in \operatorname{img} \phi_1$, there exists $a \in M'$ such that $\phi(a) = x$. By commutativity of the leftmost square, $\psi_2(f(a)) = g(\phi_1(a)) = 0_N$. However, f is a monomorphism and so is ψ_1 by the exactness of the bottom row. Hence, $a = 0_{M'}$ and $x = \phi_1(a) = 0_M$.
- 2. Now suppose that f, h are surjective. Let us show that g is also surjective. Given $c \in N$, let us consider the case where $\psi_2(c) = 0$. By the exactness of the bottom row, there exists $b \in N'$ such that $\psi_1(b) = c$. By our assumption of the surjectivity of f, there must exist $a \in M'$ such that f(a) = b. By commutativity of the leftmost square, $g(\phi_1(a)) = \psi_1(f(a)) = c$. Thus, $\phi_1(a)$ is the element in M we desire, making g surjective. Now we turn to the case where $\psi_2(x) \neq 0$. By surjectivity of h, there exists $f \in M'$ such that $f(a) = \psi_2(a)$. By the exactness of the top row, there must exist $f \in M'$ such that f(a) = f(a) such that f(a)

$$g(\phi_1(z)) - f = g(\phi_1(z) - q) = c$$

. Taking our desired element to be $\phi_1(z) - q$ shows that q is surjective.

Problem 18

Consider an aversely directed system of commutative rings $\{A_i\}$ and an inveresly directed system of A-modules $\{M_i\}$ such that the following diagram commutes: