

Problem F

Parity

Time limit: 1 second Memory limit: 1024 megabytes

Problem Description

We define the parity of an integer n as the sum of the bits in binary representation computed modulo two. As an example, the number $21 = 10101_2$ has three 1s in its binary representation so it has parity $3 \pmod{2}$, or 1.

In this problem you have to calculate the parity of an integer $1 \le I \le 2147483647$.

Input Format

Each line of the input has an integer I and the end of the input is indicated by a line where I=0 that should not be processed.

Output Format

For each integer I in the input you should print a line 'The parity of B is $P \pmod{2}$,' where B is the binary representation of I.

Sample Input 1

Sample Output 1

The parity of 1 is 1 (mod 2).
The parity of 10 is 1 (mod 2).
The parity of 1010 is 2 (mod 2).
The parity of 10101 is 3 (mod 2).