Tema 1.- Introducción

Tecnologías de los Sistemas de Información en la Red

Índice

- Definición de Sistema Distribuido
 - Formado por distintos nodos interconectados en red
 - Ofrece imagen de máquina única
- Relevancia y áreas de aplicación
- Evolución histórica
 - etapa actual = computación en la nube
- Implementación servidores

Concepto de Sistema Distribuido

- Conjunto de agentes autónomos. Cada agente;
 - o es un proceso secuencial con su propio ritmo
 - o tiene su propio estado independiente
- Los agentes interactúan (cooperan). Opciones:
 - intercambio de mensajes
 - memoria compartida
- En la práctica, un sist. distribuido es un sistema en red

Relevancia de los Sist. Distribuidos

- Área en evolución continua
 - Entorno de computación actual distribuido e interconectado (web)
 - Infinidad de nodos conectados
 - Infinidad de servicios remotos
- Rama de los sistemas concurrentes
 - Asumimos la base proporcionada por CSD

Relevancia ...

- le Mejora el rendimiento
 - Divide un tarea compleja en subtareas, y asigna cada una a un nodo diferente
- le Mayor disponibilidad
 - Si falla un nodo, otros completan su tarea
- le Compartición de recursos
 - Cada nodo tiene recursos asociados (ej.impresoras, discos)
 - Otros nodos del sistema pueden acceder a ellos

Relevancia ...

- Reto
 - conseguir que los ordenadores cooperen entre sí y colectivamente desarrollen trabajo útil
 - Crear subsistemas capaces de proporcionar servicios robustos
- Ejemplos a gran escala (millones de usuarios)
 - Servicio de búsqueda de Google
 - Compartición de ficheros en DropBox
 - Simulación de fármacos contra el cáncer

Principales áreas de aplicación

- 1. World Wide Web
- 2. redes de sensores
- 3. Internet of things
- 4. Computación cooperativa
- 5. Clustes altamente disponibles
- 6. Cloud Computing

Aplicación: WWW

- Basada en el modelo Cliente/Servidor
 - cliente = navegador web (solicita/recibe documento)
 - servidor.- responde a peticiones de docs
- Inicialmente diseñado para compartir documentos
 - los documentos pueden formarse a partir de las respuestas de varios servidores
 - Posteriormente extendido para soportar peticiones sobre servicios

Aplicación: Redes de Sensores

- Aparecen equipos de muy bajo coste
 - Mini-ordenadores de propósito específico
 - Empotrados en disp. de uso cotidiano
 - ej.- en algunos electrodomésticos
 - Contienen sensores (humedad, temperatura, ..)
- Muchas aplicaciones potenciales
 - Vigilancia, detección de desastres, monitorización consumo, ...

Aplicación: Internet of Things

- Generalización de las redes de sensores
- Facilita la interoperabilidad de los dispositivos
 - Los dispositivos pueden interactuar entre sí
 - Los dispositivos pueden alterar su entorno
- Nuevos escenarios
 - Ciudades inteligentes
 - Automatización (construcción, fabricación, ...)
 - Cuidado médico informatizado

Aplicación: Internet of Things

imag internet of things

Aplicación: Comp. Cooperativa

- Recursos en internet infrautilizados
 - Muchos PCs pasan horas inactivos
 - Pueden suscribirse para recibir tareas
 - instala soft. cliente, se registra en un servidor
- El servidor
 - Divide tarea grande en subtareas
 - Distribuye subtareas entre los clientes
 - Recopila los resultados

Aplicación: Clusters Disponibles

- Ciertas entornos necesitan ↑ disponibilidad
 - o Bancario, Empresarial, Asistencia médica, ...
 - Deben garantizar integridad información
 - Deben mantener disponibilidad servidores
- Hechos:
 - Todo dispositivo falla en algún momento
 - Pero fallo simultáneo es muy improbable
- Solución.- replicación (y reconfiguración tras fallo)

Aplicación: Cloud Computing (CC)

- Queremos construir y facilitar servicios de forma sencilla, eficiente, y económica
- Implantados mediante clusters
 † disponibles
 - Un centro de cómputo dedicado es caro
 - adquisición, administración, mantenimiento
 - Para

 costes compartimos centros de cómputo externos (pago por uso)
 - Acceso al centro externo a través de internet
 - Posible por mejoras en redes y navegadores

Aplic.: CC modelos de servicio

- SaaS (software como servicio)
 - Aplicaciones escalables como servicio
- PaaS (plataforma como servicio)
 - Automatiza la gestión de servicios elásticos (ciclo de vida, escalabilidad)
- laaS (infraestructura como servicio)
 - Automatiza gestión de recursos
 - Usa virtualización

Implementación servidor

- Un servidor recibe peticiones, las procesa, y retorna respuestas
- Para completar una petición puede necesitar pedir a su vez servicios a otros
- Por escalabilidad, un servidor debería aceptar varias peticiones simultáneas
 - Mientras gestiona una petición, debe ser capaz de aceptar otras
- Alternativas para implantar un servidor: servidor concurrente, y servidor asincrónico

Servidor concurrente (multi-hilo)

- Cada petición servida por un hilo distinto
 - Todos los hilos comparten un estado global
 - Hay que evitar interferencias e interbloqueos
- cada hilo se planifica por separado (si se suspende no afecta al resto del servidor)
- ♣ control concurrencia → suspensión.
 Sobrecarga
- F programación y depuración complejas
- Usado en Java y .NET

Servidor Asincrónico

- programación asincrónica = dirigida por eventos
 - corresponde al modelo guarda/acción
 - guarda = evento
 - acción = callback del evento
- múltiples actividades, pero no acceden de forma concurrente al estado compartido
 - Las acciones preparadas para ejecución (cumplen la guarda) se encolan en orden FIFO

Servidor Asincrónico ...

- le No soporta threads: ↓ sobrecarga ↑ escalable
- El funcionamiento real de un S.D. es dirigido por eventos: facilita razonar sobre el sistema
- 👎 Toda acción debe cuidar la gestión el estado
- Po No es fácil controlar el orden de encolado
- Fodo el entorno debe ser asincrónico (ej. servicios del S.O. no bloqueantes)
- Usado en NodeJS y Async .NET