The task is to analyse a specific nucelotide sequence using blast. phylogenetic tree analysis using MEGA, multiple sequence alignment, swiss model repository and open reading frame, and also homologs. we will need to explain and explain the results obtained from the tests above, especially the phylogenetic tree relationships.

BLAST Analysis

BLAST url: https://blast.ncbi.nlm.nih.gov/Blast.cgi

As the sequence is DNA, we will use Nucleotide BLAST (blastn).

Figure 1: NCBI Nucleotide Blast Search Page

Figure 2: NCBI Nucleotide Blast Result Page

Here we get sequence_3 has 100% identity with AP008231.1 (Synechococcus elongatus PCC 6301). Sequence_3 matches position 293963-295693 in AP008231.1 sequence which is a coding sequence having protein_id BAD78445.1. We can download that protein sequence as fasta file to use in SWISS-MODEL Repository.

```
complement (293963..295693)
CDS
                /locus_tag="syc0255_c"
                /codon_start=1
                /transl_table=11
                /product="hypothetical protein"
                /protein_id="BAD78445.1
                translation="MQNAFSTADSSDQSLLDEIEVGLPNPKPRLKVKGWRSWVYGGAG/
                LLLGVFGIAGSLGLFAIQEARRQVDRSLEAIEVAQIIDYYQIRLLFRFNSYLESRQET
                DNKLYQLGQEQLLDSIDKLKSFYVQPPNPEQLKEIAALSALIQSKLEEQQNLMNAKQE
                ATPSLDASYYNVHSQINQIVQNERRILDRRVINVDSYRLLTNVLLILGSLLGLTLAIA
                LYQEQRREQREMSVIDHDYQEKEDTLNHKLKVLQLEQKLSSLLLTCRSTEEIKKILED
                FFORWFPOAOGAVLEISASRDTLVEIARFGELELPSLAMPSDCWAMRRGECYHSSOAE
                FTYPCGLCHHLHGEIIPDNIICIPLOAHEOLIGILHLTNVDPKSOKIVESFGOOLALP
                LAVMHLQEQLKQLSYRDSNTALYNRRFLDEILERTLLTAIRRNESRSLGDAPYSVGLI
                FLDVDKFKDFNTRFGHAVGDQVLQTLGQTMLESCRRGEDLACRYGGEEFVLILPGMDE
                DMTYQRAEQIRLAVSQKAVSNCRITISLGVAAFPSAGQTPSELLKAANMAMLKAKLNG
                RNOTVRISQL"
```

Figure 3: Position of Sequence 3 in AP008231.1

Homolog sequences are:

- 1. AP008231.1
- 2. CP130602.1
- 3. CP006471.1
- 4. CP085785.1
- 5. CP088958.1
- 6. CP088961.1
- 7. CP000100.1
- 8. CP033061.1

Multiple Sequence Alignment (MEGA)

Open MEGA and load fasta file having homolog sequences: ALIGN \rightarrow Edit/Build Alignment \rightarrow Retrieve a sequence from a file \rightarrow Open (homolog sequences.fasta)

Figure 4: Loaded Homolog Fasta File in MEGA

Option		Setting
GAP PENALTIES		
Gap Open	V	-400.00
Gap Extend	V	0.00
MEMORY/ITERATIONS		
Max Memory in MB	V	2048
Max Iterations	V	16
ADVANCED OPTIONS		
Cluster Method (Iterations 1,2)	V	Neighbor Joining
Cluster Method (Other Iterations)	V	Neighbor Joining
Min Diag Length (Lambda)	V	24

Figure 5: Parameters of Muscle Alignment for MSA

Figure 6: First Few Bases of Aligned sequences using MUSCLE

Phylogenetic Tree Analysis (MEGA)

Figure 7: Parameters for Phylogenetic Analysis in MEGA

Figure 8: Drawn Phylogenetic Tree with Bootstrap Confidence

SWISS-MODEL Repository

SWISS-MODEL url: https://swissmodel.expasy.org/interactive

Figure 9: Building New Model Page in SWISS-MODEL

Figure 10: 3D Structure for Hypothetical Protein

Figure 11: Ramachandran Plots for Assessment of Protein Structure

MolProbity Results	
MolProbity Score	1.08
Clash Score	0.76
Ramachandran Favoured	96.52%
Ramachandran Outliers A10 SER, A7 THR, A3 ASN	0.52%
Rotamer Outliers A389 LEU, A267 THR, A295 SER, A9	1.39% ASP, A336 THR, A30 LEU, A7 THR
C-Beta Deviations	0
Bad Bonds A329 HIS	1 / 4668
☐ Bad Angles	28 / 6307
(A31 LYS-A32 VAL), A246 HIS, (A23 L	0 HIS, A235 HIS, A343 HIS, A346 HIS,
Cis Prolines	2/19
(A127 GLN-A128 PRO), (A541 PHE-A	542 PRO)
Results	obtained using MolProbity version 4.4 @

Figure 12: MolProbity Results as Assessment of Protein Structure

Ramachandran Favoured score is 96.52%.

6 Domains and 1 Alpha Fold.

Domains are:

- ✓ GGDEF_dom IPR000160
- ✓ GGDEF TIGR00254
- ✔ GGDEF SM00267
- ✓ GGDEF PS50887
- ✓ GGDEF PF00990
- ✓ GGDEF cd01949

Additional Info:

- ✓ https://www.uniprot.org/uniprotkb/A0A0H3JZF6/entry#subcellular location
- https://www.ebi.ac.uk/interpro/protein/UniProt/A0A0H3JZF6/

Open Reading Frame Analysis:

NCBI orffinder url: https://www.ncbi.nlm.nih.gov/orffinder/

Start Codon: ATG

Stop Codons: TAA, TAG, TGA

Figure 13: NCBI OrfFinder Search Page

Figure 14: NCBI OrfFinder Result Page