Machine Learning

10-701/15-781, Spring 2010

Hidden Markov Model (II)

Eric Xing
Lecture 11, February 24, 2010

Reading: Chap. 13 CB

© Eric Xing @ CMU, 2006-2010

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x, FIND Prob $(x \mid M)$

ALGO. Forward

2. Decoding

GIVEN an HMM M, and a sequence x,

FIND the sequence y of states that maximizes, e.g., P(y | x, M),

or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

3. Learning

GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ij}, \eta_{ik})$ that maximize $P(x | \theta)$

ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2010

Example:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

© Eric Xing @ CMU, 2006-2010

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Alpha (a	ctual)	Beta (actual)			
0.0833	0.0500	0.0000 0.0000			
0.0136	0.0052	0.0000 0.0000			
0.0022	0.0006	0.0000 0.0000			
0.0004	0.0001	0.0000 0.0000			
0.0001	0.0000	0.0001 0.0001			
0.0000	0.0000	0.0007 0.0006			
0.0000	0.0000	0.0045 0.0055			
0.0000	0.0000	0.0264 0.0112			
0.0000	0.0000	0.1633 0.1033			
0.0000	0.0000	1.0000 1.0000			

0.05 0.95 0.95

0.05 P(1|L) = 1/10 P(2|L) = 1/10 P(3|L) = 1/10 P(4|L) = 1/10 P(1|F) = 1/6 P(2|F) = 1/6 P(3|F) = 1/6 P(4|F) = 1/6 P(5|F) = 1/6 P(6|F) = 1/6 P(5|L) = 1/10 P(6|L) = 1/2

 $\alpha_t^k = P(x_t \mid y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$ $\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$

 $P(y_t^k = 1 \mid x) = \frac{P(y_t^k = 1, x)}{P(x)} = \frac{\alpha_t^k \beta_t^k}{P(x)}$

© Eric Xing @ CMU, 2006-2010

What is the probability of a hidden state prediction?

• A single state:

$$P(y_t|\mathbf{X})$$

What about a hidden state sequence?

$$P(y_1,\ldots,y_T|\mathbf{X})$$

© Eric Xing @ CMU, 2006-2010

Posterior decoding

• We can now calculate

$$P(y_t^k = 1 \mid \mathbf{x}) = \frac{P(y_t^k = 1, \mathbf{x})}{P(\mathbf{x})} = \frac{\alpha_t^k \beta_t^k}{P(\mathbf{x})}$$

- Then, we can ask
 - What is the most likely state at position *t* of sequence **x**:

$$\mathbf{k}_{t}^{*} = \operatorname{arg\,max}_{k} P(\mathbf{y}_{t}^{k} = 1 \mid \mathbf{x})$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding: $\left\{ y_{t}^{k_{r}^{*}} = 1 : t = 1 \cdots T \right\}$
- This is different from MPA of a whole sequence states
- This can be understood as bit error rate vs. word error rate

of hidden

X	y	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

© Eric Xing @ CMU, 2006-2010

Example: MPA of X? MPA of (X, Y)?

Viterbi decoding

GIVEN x = x₁, ..., x₇, we want to find y = y₁, ..., y_T, such that P(y|x) is maximized:

$$y^* = \operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{\pi} P(y,x)$$

Let

$$V_t^k = \max_{\{y_1, \dots, y_{t-1}\}} P(x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1}, x_t, y_t^k = 1)$$

= Probability of most likely <u>sequence of states</u> ending at state $y_t = k$

• The recursion:

Underflows are a significant problem

$$p(x_1,...,x_t,y_1,...,y_t) = \pi_{y_1} a_{y_1,y_2} \cdots a_{y_{t-1},y_t} b_{y_1,x_1} \cdots b_{y_t,x_t}$$

- These numbers become extremely small underflow
- Solution: Take the logs of all values: $V_t^k = \log p(x_t | y_t^k = 1) + \max_i (\log(a_{i,k}) + V_{t-1}^i)$

© Eric Xing @ CMU, 2006-2010

The Viterbi Algorithm - derivation

• Define the viterbi probability:

$$\begin{split} V_{t+1}^k &= \max_{\{y_1,\dots,y_t\}} P(X_1,\dots,X_t,y_1,\dots,y_t,X_{t+1},y_{t+1}^k = 1) \\ &= \max_{\{y_1,\dots,y_t\}} P(X_{t+1},y_{t+1}^k = 1 \mid X_1,\dots,X_t,y_1,\dots,y_t) P(X_1,\dots,X_t,y_1,\dots,y_t) \\ &= \max_{\{y_1,\dots,y_t\}} P(X_{t+1},y_{t+1}^k = 1 \mid y_t) P(X_1,\dots,X_{t-1},y_1,\dots,y_{t-1},X_t,y_t) \\ &= \max_i P(X_{t+1},y_{t+1}^k = 1 \mid y_t^i = 1) \max_{\{y_1,\dots,y_{t-1}\}} P(X_1,\dots,X_{t-1},y_1,\dots,y_{t-1},X_t,y_t^i = 1) \\ &= \max_i P(X_{t+1},y_{t+1}^k = 1) a_{i,k} V_t^i \\ &= P(X_{t+1},y_{t+1}^k = 1) \max_i a_{i,k} V_t^i \end{split}$$

© Eric Xing @ CMU, 2006-2010

0

The Viterbi Algorithm

• Input: $x = x_1, ..., x_T$

Initialization:

$$V_1^k = P(x_1 | y_1^k = 1)\pi_k$$

Iteration:

$$V_{t}^{k} = P(X_{t, i} | Y_{t}^{k} = 1) \max_{i} a_{i, k} V_{t-1}^{i}$$

Ptr(k, t) = arg max_i a_{i, k} V_{t-1}ⁱ

Termination:

$$P(\mathbf{x}, \mathbf{y}^*) = \max_{k} V_T^k$$

TraceBack:

$$\mathbf{y}_{T}^{*} = \operatorname{arg\,max}_{k} \mathbf{V}_{T}^{k}$$

 $\mathbf{y}_{t-1}^{*} = \operatorname{Ptr}(\mathbf{y}_{t}^{*}, t)$

© Eric Xing @ CMU, 2006-2010

$V_t^k (\log)$	ptr(k,t)	Seq	Veterbi	MPA	$p(y_t^k = 1 \mid x)$
-2.4849 -2.9957	N/A	1	1	1	0.8128 0.1872
4.3280 -5.3496	1 2	2	1	1	0.8238 0.1762
6.1710 -7.7035	1 2	1	1	1	0.8176 0.1824
8.0141 -10.0574	1 2	5	1	1	0.7925 0.2075
9.8571 -10.8018	1 2	6	1	1	0.7415 0.2585
11.7002 -13.1557	1 2	2	1	1	0.7505 0.2495
13.5432 -15.5096	1 2	1	1	1	0.7386 0.2614
15.3863 -16.2540	1 2	6	1	1	0.7027 0.2973
17.2293 -18.6079	1 2	2	1	1	0.7251 0.2749
19.0724 -20.9618	1 2	4	1	1	0.7251 0.2749
		_	-	_	****

Computational Complexity and implementation details

 What is the running time, and space required, for Forward, and Backward?

$$\alpha_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

$$V_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \max_{i} a_{i,k} V_{t-1}^{i}$$

Time: $O(K^2N)$; Space: O(KN).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant

© Eric Xing @ CMU, 2006-2010

13

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x, FIND Prob $(x \mid M)$ ALGO. Forward

2. Decoding

GIVEN an HMM M, and a sequence x,

FIND the sequence y of states that maximizes, e.g., P(y | x, M),

or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

3. Learning

GIVEN an HMM **M**, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ii}, \eta_{ik})$ that maximize $P(x | \theta)$

ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2010

Learning HMM: two scenarios

- <u>Supervised learning</u>: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- <u>Unsupervised learning</u>: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2006-2010

15

MLE

© Eric Xing @ CMU, 2006-2010

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known.
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{j}}$$

$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} Y_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} Y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}}$$

• What if y is continuous? We can treat $\{(x_{n,t},y_{n,t}): t=1:T, n=1:N\}$ as $N \in T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

© Eric Xing @ CMU, 2006-2010

17

Supervised ML estimation, ctd.

- Intuition:
 - When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data
- Drawback:
 - Given little data, there may be overfitting:
 - $P(x|\theta)$ is maximized, but θ is unreasonable

0 probabilities - VERY BAD

- Example:
 - Given 10 casino rolls, we observe

$$x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3$$

 $y = F, F, F, F, F, F, F, F, F, F$

• Then: $a_{FF} = 1$; $a_{FL} = 0$

 $b_{F1} = b_{F3} = .2;$ $b_{F2} = .3; b_{F4} = 0; b_{F5} = b_{F6} = .1$

© Eric Xing @ CMU, 2006-2010

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in \mathbf{y} + R_{ij}
= # times state i in \mathbf{y} emits k in \mathbf{x} + S_{ik}
```

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \sum_j R_{ij}$, $S_i = \sum_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

© Eric Xing @ CMU, 2006-2010

19

Unsupervised ML estimation

© Eric Xing @ CMU, 2006-2010

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is
 - **EXPECTATION MAXIMIZATION**
 - o. Starting with our best guess of a model M, parameters θ .

 - 1. Estimate A_{ij} , B_{ik} in the training data

 How? $A_{ij} = \sum_{n,r} \langle Y_{n,r-1}^i Y_{n,r}^j \rangle$ $B_{ik} = \sum_{n,r} \langle Y_{n,r}^i \rangle X_{n,r}^k$,
 - Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 2. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

© Eric Xing @ CMU, 2006-2010

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{T} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{T} p(x_{n,t} \mid x_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i} \right\rangle_{p(\boldsymbol{y}_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle_{p(\boldsymbol{y}_{n,t-1},\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log a_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i} \right\rangle_{p(\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log b_{i,k} \right)$$

- EM
 - The E step

$$\begin{split} & \gamma_{n,t}^i = \left< y_{n,t}^i \right> = p(y_{n,t}^i = 1 \,|\, \mathbf{x}_n) \\ & \qquad \qquad \boldsymbol{\xi}_{n,t}^{i,j} = \left< y_{n,t-1}^i y_{n,t}^j \right> = p(y_{n,t-1}^i = 1, y_{n,t}^j = 1 \,|\, \mathbf{x}_n) \end{split}$$

$$\bullet \quad \text{The M step ("symbolically" identical to MLE)}$$

$$\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N}$$

$$a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} \chi_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

The Baum-Welch algorithm -- comments

Time Complexity:

iterations \times O(K²N)

- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting

© Eric Xing @ CMU, 2006-2010

23

Summary: the HMM algorithms

Questions:

- Evaluation: What is the probability of the observed sequence? Forward
- Decoding: What is the probability that the state of the 3rd roll is loaded, given the observed sequence? Forward-Backward
- Decoding: What is the most likely die sequence? Viterbi
- Learning: Under what parameterization are the observed sequences most probable? Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2010

Applications of HMMs

- Some early applications of HMMs
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence

© Eric Xing @ CMU, 2006-2010

25

Typical structure of a gene Start codon codons Donor site GCCATCCCGTTCTCCAACACGTGAGTGAG Transcription start Promoter 5' UTR CCTCCCAGCCCTGCCCAG Acceptor site Intron Poly-A site Stop codon GATCCCCATCCCTGAGGGCCCCTC 3' UTR © Eric Xing @ CMU, 2006-2010

Shortcomings of Hidden Markov Model

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just
 on a single word (and the adjacent segmental stages), but also on the (non-local) features of
 the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2006-2010

Recall Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!

- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X= x)

Directly assume some functional form for P(Y|X)
 This is a 'discriminative' model of the data!

• Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2010

29

Structured Conditional Models

- Conditional probability P(label sequence y | observation sequence x)
 rather than joint probability P(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

© Eric Xing @ CMU, 2006-2010

Conditional Distribution

 If the graph G = (V, E) of Y is a tree, the conditional distribution over the label sequence Y = y, given X = x, by the Hammersley Clifford theorem of random fields is:

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_{k} f_{k}(e, \mathbf{y} \mid_{e}, \mathbf{x}) + \sum_{v \in V, k} \mu_{k} g_{k}(v, \mathbf{y} \mid_{v}, \mathbf{x}) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set V = set of label random variables
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $-\theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k$ and μ_k are parameters to be estimated
- y_e is the set of components of y defined by edge e
- $-y|_{v}$ is the set of components of y defined by vertex v

© Eric Xing @ CMU, 2006-2010

31

Conditional Random Fields

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model
 - Usage of global normalizer Z(x)
 - Models the dependence between each state and the entire observation sequence

© Eric Xing @ CMU, 2006-2010

Conditional Random Fields

· General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

© Eric Xing @ CMU, 2006-2010

33

Conditional Random Fields

- $p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$
 - Allow arbitrary dependencies on input
 - Clique dependencies on labels
 - Use approximate inference for general graphs

© Eric Xing @ CMU, 2006-2010

CRFs: Inference

• Given CRF parameters λ and μ , find the \textbf{y}^* that maximizes P(y|x)

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

© Eric Xing @ CMU, 2006-2010

35

CRF learning

• Given $\{(\boldsymbol{x}_d,\,\boldsymbol{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\begin{split} \lambda*, \mu* &= \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^N P(\mathbf{y}_d|\mathbf{x}_d,\lambda,\mu) \\ &= \arg\max_{\lambda,\mu} \prod_{d=1}^N \frac{1}{Z(\mathbf{x}_d,\lambda,\mu)} \exp(\sum_{i=1}^n (\mathbf{x}_d) \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) + \mathbf{\mu}^T \mathbf{g}(y_{d,i},\mathbf{x}_d))) \\ &= \arg\max_{\lambda,\mu} \sum_{d=1}^N (\sum_{i=1}^n (\lambda^T \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) + \boldsymbol{\mu}^T \mathbf{g}(y_{d,i},\mathbf{x}_d)) - \log Z(\mathbf{x}_d,\lambda,\mu)) \end{split}$$

• Computing the gradient w.r.t λ :

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

© Eric Xing @ CMU, 2006-2010

CRFs: some empirical results

· Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF⁺ > MEMM⁺ >> HMM

© Eric Xing @ CMU, 2006-2010

Conditional Random Fields is a discriminative Structured Input Output model! HMM is a generative structured I/O model Complementary strength and weakness: 1. 2. 3. ...