Class 17: Downstream analysis

Dylan Mullaney(A16869792)

Import the files that we created using the remote computer. Create a folder and name files to read them into the folder.

```
library(tximport)

folders <- dir(pattern="SRR21568*")
samples <- sub("_quant", "", folders)
files <- file.path( folders, "abundance.h5" )
names(files) <- samples

txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
```

1 2 3 4

```
head(txi.kallisto$counts)
```

	SRR2156848	SRR2156849	SRR2156850	SRR2156851
ENST00000539570	0	0	0.00000	0
ENST00000576455	0	0	2.62037	0
ENST00000510508	0	0	0.00000	0
ENST00000474471	0	1	1.00000	0
ENST00000381700	0	0	0.00000	0
ENST00000445946	0	0	0.00000	0

How many transcripts do we have for each sample?

```
colSums(txi.kallisto$counts)

SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

How many transcripts are in at least one sample?

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

Filter out annotated transcripts with no reads and ones with no change over the sample

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]

keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

Principal Component Analysis (PCA)

```
pca <- prcomp(t(x), scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 183.6379 177.3605 171.3020 1e+00
Proportion of Variance 0.3568 0.3328 0.3104 1e-05
Cumulative Proportion 0.3568 0.6895 1.0000 1e+00
```

Let's graph the first two PCs

Q. Use ggplot to make a similar figure of PC1 vs PC2 and a separate figure PC1 vs PC3 and PC2 vs PC3. Note, ggplot needs a data frame to access data

```
library(ggplot2)
library(ggrepel)
#metadata to create labels on points
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

#data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC2, col=Condition)+
   geom_point () +
   geom_text_repel(label=rownames(y)) +
   ggtitle("PC1 v PC2")</pre>
```

PC1 v PC2


```
ggplot(y) +
  aes(PC1, PC3, col=Condition)+
  geom_point () +
  geom_text_repel(label=rownames(y)) +
  ggtitle("PC1 v PC3")
```



```
ggplot(y) +
  aes(PC2, PC3, col=Condition)+
  geom_point () +
  geom_text_repel(label=rownames(y)) +
  ggtitle("PC2 v PC3")
```


Differential-expression analysis

Creating a DESeq dataset to use with DESeq2

library(DESeq2, quietly=TRUE)

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

```
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Create sample table of data in data frame format
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre>
rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                 sampleTable,
                                 ~condition)
using counts and average transcript lengths from tximport
dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
```

res <- results(dds) head(res)</pre>

log2 fold change (MLE): condition treatment vs control

Wald test p-value: condition treatment vs control

DataFrame with 6 rows and 6 columns

Datariame with 0 10%5 and		O COLUMNS					
		baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue	
		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
	ENST00000539570	0.000000	NA	NA	NA	NA	
	ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261	
	ENST00000510508	0.000000	NA	NA	NA	NA	
	ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846	
	ENST00000381700	0.000000	NA	NA	NA	NA	
	ENST00000445946	0.000000	NA	NA	NA	NA	
padj							
<numeric></numeric>							
	ENST00000539570	NA					
	ENST00000576455	NA					
	ENST00000510508	NA					
	ENST00000474471	NA					
	ENST00000381700	NA					
	ENST00000445946	NA					