Step-1

Suppose that S and T are subspaces of R^{13} .

Consider the dimensions of subspaces:

 $\dim S = 7$ and $\dim T = 8$.

Hence, S is subset of T.

 $S \subset T$.

Step-2

(a)

Objective is to find the largest possible dimension of $S \cap T$.

 $\dim S = 7$

< 8

 $= \dim T$

Hence, $\dim S < \dim T$.

The largest possible dimension of $S \cap T$ is shown below:

 $\dim(S \cap T) = \dim S$ Since $S \subset T$.

= 7.

Step-3

(b)

Objective is to find the smallest possible dimension of $S \cap T$.

Here S and T are subspaces of R^{13} .

Hence, $\dim(S+T)=13$

To find the $\dim(S \cap T)$, use the dimension formula:

 $\dim(S+T)+\dim(S\cap T)=\dim(S)+\dim(T)$

Substitute the values of $\dim(S+T)=13$, $\dim(S)=7$ and $\dim(T)=8$ in the above formula.

 $13 + \dim(S \cap T) = 7 + 8$

 $13 + \dim(S \cap T) = 15$

 $\dim(S \cap T) = 2$

Hence, the smallest dimension of $S \cap T$ is $\dim(S \cap T) = \boxed{2}$.

Step-4

(c)

Objective is to find the smallest possible dimension of (S+T).

The smallest possible dimension of (S+T) is shown below:

 $\dim(\mathbf{S} + \mathbf{T}) = \text{Maximum of } \{\dim \mathbf{S}, \dim \mathbf{T}\}$ = $\boxed{8}$. Since $S \subset T$.

Hence, the smallest dimension of (S+T) is $\boxed{8}$.

Step-5

(d)

Objective is to find the largest possible dimension of (S+T).

The largest possible dimension of (S+T) is shown below:

 $\dim(\mathbf{S} + \mathbf{T}) = \dim \mathbf{R}$ $= \boxed{13}.$

Hence, the largest possible dimension of (S+T) is $\boxed{13}$.

•