Package 'NonCompart'

May 11, 2018

Version	0.4.2
Date 2	018-05-17 KST
Title N	oncompartmental Analysis for Pharmacokinetic Data
m li S 1 2 3 4	otion Conduct a noncompartmental analysis as closely as possible to the most widely used comparting and software for pharmacokinetic analysis, i.e. 'Phoenix(R) WinNonn(R)' https://www.certara.com/software/pkpd-modeling-and-simulation/phoenix-winnonlin/ ome features are Ouse of CDISC SDTM terms Automatic slope selection with the same criterion of WinNonlin(R) Supporting both 'linear-up linear-down' and 'linear-up log-down' method Interval(partial) AUCs with 'linear' or 'log' interpolation method Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Depend	ls R (>= 2.0.0)
Author	Kyun-Seop Bae [aut]
Mainta	iner Kyun-Seop Bae <k@acr.kr></k@acr.kr>
Copyri	ght 2016-2018, Kyun-Seop Bae
License	e GPL-3
NeedsC	Compilation no
LazyLo	pad yes
Reposit	tory CRAN
TIDI 6	ttps://cran.r-project.org/package=NonCompart
UKL II	ttps://craii.r-project.org/package=Noncompart
R top	oics documented:
	NonCompart-package
	AUC
	BestSlope
	DetSlope
	IntAUC
	Interpol
	LinAUC
	LogAUC
	Slope

	tblNCA .																	
	Unit	 								 								15
	UnitUrine	 								 								16
Index																		17

NonCompart-package

Noncompartmental Analysis for Pharmacokinetic Data

Description

It conducts a noncompartmental analysis(NCA) as closely as possible to the most widely used commercial pharmacokinetic analysis software.

Details

The main functions are

```
tblNCA to perform NCA for many subjects.

sNCA to perform NCA for one subject.
```

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

AUC 3

AUC

Calculate Area Under the Curve (AUC) and Area Under the first Moment Curve (AUMC) in a table format

Description

Calculate Area Under the Curve(AUC) and the first Moment Curve(AUMC) in two ways; 'linear trapezoidal method' or 'linear-up and log-down' method. Return a table of cumulative values.

Usage

```
AUC(x, y, down = "Linear")
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

down either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC

Details

down="Linear" means linear trapezoidal rule with linear interpolation. down="Log" means linear-up and log-down method.

Value

Table with two columns, AUC and AUMC; the first column values are cumulative AUCs and the second column values cumulative AUMCs.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics - Concepts and Applications. 4th ed. pp687-689. 2011.

See Also

```
LinAUC, LogAUC
```

```
 AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) \\ AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

4 BestSlope

BestSlope Choose the best-fit slope for the $log(y)$ and x regression by the of adjusted R -square.	criteria
---	----------

Description

It sequentially fits $(\log(y) \sim x)$ from the last point of x to the previous points with at least 3 points. It chooses a slope the highest adjusted R-square. If the difference is less then 1e-4, it pickes longer slope.

Usage

```
BestSlope(x, y, adm = "Extravascular", TOL=1e-4)
```

Arguments

Х	vector values of x-axis, usually time
у	vector values of y-axis, usually concentration
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode
TOL	tolerance. See Phoneix WinNonlin 6.4 User's Guide p33 for the detail.

Details

Choosing the best terminal slope (y in log scale) in pharmacokinetic analysis is somewhat challenging, and it could vary by analysis performer. Pheonix WinNonlin chooses a slope with highest adjusted R-squared and the longest one. The difference of adjusted R-Squared less than TOL considered to be 0. This function uses ordinary least square method (OLS).

Value

R2	R-squared
R2ADJ	adjusted R-squared
LAMZNPT	number of points used for slope
LAMZ	negative of the slope, lambda_z
b0	intercept of the regression line
CORRXY	correlation of log(y) and x
LAMZLL	earliest x for lambda_z
LAMZUL	last x for lambda_z
CLSTP	predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

DetSlope 5

Examples

DetSlope

Determine slope for the log(y) and x regression manually

Description

You choose a slope for terminal half-life.

Usage

```
DetSlope(x, y, sel.1=0, sel.2=0)
```

Arguments

x	vector values of x-axis, usually time
у	vector values of y-axis, usually concentration
sel.1	default index of the first element to use
sel.2	default index of the last element to use

Details

Sometimes BestSlope cannot find terminal slope satisfactorily. Then you can use this function to choose manually. It returns the same format result with BestSlope with an attribute indicating used points.

Value

R2	R-squared
R2ADJ	adjusted R-squared
LAMZNPT	number of points used for the slope
LAMZ	negative of the slope, lambda_z
b0	intercept of the regression line
CORRXY	correlation of log(y) and x
LAMZLL	earliest x for lambda_z
LAMZUL	last x for lambda_z
CLSTP	predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

6 IntAUC

Examples

```
DetSlope(Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
DetSlope(Indometh[Indometh$Subject==2, "time"], Indometh[Indometh$Subject==2, "conc"])
```

IntAUC

Calculate interval AUC

Description

It calculates interval AUC

Usage

```
IntAUC(x, y, t1, t2, Res, down = "Linear")
```

Arguments

Χ	vector values of independent variable, usually time
У	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC
Res	result from IndiNCA function
down	either of "Linear" or "Log" to indicate the way to calculate AUC

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates according to the down option.

Value

return interval AUC value (scalar)

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

AUC, Interpol

Interpol 7

Examples

Interpol

Interpolate y value

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
Interpol(x, y, xnew, Slope, b0, down = "Linear")
```

Arguments

Х	vector values of x-axis, usually time
У	vector values of y-axis, usually concentration
xnew	new x point to be interpolated, usually new time point
Slope	slope of regression $log(y) \sim x$
b0	y value of just left point of xnew
down	either of "Linear" or "Log" to indicate the way to interpolate

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in x vector, it just returns the given x and y vector. This function usually is called by IntAUC function Returned vector is sorted in the order of increasing x values.

Value

new x and y vector containing xnew and ynew point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

IntAUC

```
x = 10:1 + 0.1
y = -2*x + 40.2
Interpol(x, y, 1.5)
Interpol(x, y, 1.5, down="Log")
```

8 LinAUC

LinAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear trapezoidal method

Description

It calculates AUC and AUMC using the linear trapezoidal method

Usage

```
LinAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear trapezoidal method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LogAUC, AUC
```

```
LinAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) # compare the last line
```

LogAUC 9

LogAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear-up log-down method

Description

It calculates AUC and AUMC using the linear-up log-down method

Usage

```
LogAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear-up log-down method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LinAUC,AUC
```

```
LogAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
# Compare the last line with the above
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

Slope

Slo	ppe

Get the Slope of regression $log(y) \sim x$

Description

It calculates the slope with linear regression of $log(y) \sim x$

Usage

```
Slope(x, y)
```

Arguments

vector values of the independent variable, usually time
 vector values of the dependent variable, usually concentration

Details

With time-concentration curve, you frequently need to estimate slope in $log(concentration) \sim time$. This function is usually called by BestSlope function, and you seldom need to call this function directly.

Value

	_
R2	R-squared
ΠZ	IX-SUUAI CU

R2ADJ adjusted R-squared

LAMZNPT number of points used for slope
LAMZ negative of the slope, lambda_z
b0 intercept of the regression line
CORRXY correlation of log(y) and x
LAMZLL earliest x for lambda_z
LAMZUL last x for lambda_z

CLSTP predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

BestSlope

```
Slope(Indometh[Indometh$Subject==1, "time"], Indometh[Indometh$Subject==1, "conc"])
```

sNCA 11

sNCA Simplest NCA

Description

This is the work-horse function for NCA.

Usage

```
sNCA(x, y, dose = 0, adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", iAUC = "", down = "Linear", R2ADJ = 0.9, MW = 0, returnNA = FALSE)
```

Arguments

9	
X	usually time
у	usually concentration
dose	given amount
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration
iAUC	interval AUCs to calculate
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC
R2ADJ	Minimum adjusted R-square value to determine terminal slope automatically
MW	molecular weight of the drug
returnNA	deprecated, just for backward compatibility

Details

This will replace IndiNCA.

Value

CMAX	maximum concentration, Cmax
CMAXD	dose normalized Cmax, CMAX / Dose, Cmax / Dose
TMAX	time of maximum concentration, Tmax
TLAG	time to observe the first non-zero concentration, for extravascular administration only
CLST	last positive concentration observed, Clast
CLSTP	last positive concentration predicted, Clast_pred
TLST	time of last positive concentration, Tlast
LAMZHL	half-life by lambda z, ln(2)/LAMZ
LAMZ	lambda_z negative of the best-fit terminal slope

12 sNCA

 $\begin{array}{ll} \mbox{LAMZLL} & \mbox{earliest time for LAMZ} \\ \mbox{LAMZUL} & \mbox{last time for LAMZ} \end{array}$

LAMZNPT number of points for LAMZ

CORRXY correlation of log(concentration) and time

R2 R-squared

R2ADJ R-squared adjusted

C0 back extrapolated concentration at time 0, for intravascular bolus administration

only

AUCLST AUC from 0 to TLST

AUC using all the given points, including trailing zero concentrations

AUCIFO AUC infinity observed

AUCIFOD AUCIFO / Dose

AUCIFP AUC infinity predicted using CLSTP instead of CLST

AUCIFPD AUCIFP / Dose

AUCPEO AUC % extrapolation observed
AUCPEP AUC % extrapolated for AUCIFP

AUC % back extrapolation observed, for bolus IV administration only

AUCPBEP AUC % back extrapolation predicted with AUCIFP, for bolus IV administration

only

AUMCLST AUMC to the TLST

AUMCPEP

AUMCIFO AUMC infinity observed using CLST

AUMCIFP AUMC infinity determined by CLSTP

AUMCPEO AUMC % extrapolated observed

AUMC % extrapolated predicted

MRTIVLST mean residence time (MRT) to TLST, for intravascular administration

MRTIVIFO mean residence time (MRT) infinity using CLST, for intravascular administra-

tion

MRTIVIFP mean residence time (MRT) infinity using CLSTP, for intravascular administra-

tion

MRTEVLST mean residence time (MRT) to TLST, for extravascular administration

MRTEVIFO mean residence time (MRT) infinity using CLST, for extravascular administra-

tion

MRTEVIFP mean residence time (MRT) infinity using CLSTP, for extravascular administra-

tion

VZO volume of distribution determined by LAMZ and AUCIFO, for intravascular

administration

VZP volume of distribution determined by LAMZ and AUCIFP, for intravascular ad-

ministration

VZFO VZO for extravascular administration, VZO/F, F is bioavailability
VZFP VZP for extravascular administration, VZP/F, F is bioavailability

CLO clearance using AUCIFO, for intravascular administration
CLP clearance using AUCIFP, for intravascular administration

sNCA 13

CLF0	CLO for extravascular administration, CLO/F, F is bioavailability
CLFP	CLP for extravascular administration, CLP/F, F is bioavailability
VSS0	volume of distribution at steady state using CLST, for intravascular administration only
VSSP	volume of distribution at steady state using CLSTP, for intravascular administration only

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

See Also

help, tblNCA

```
# For one subject
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h")
sNCA(x, y, dose=320, concUnit="mg/L")
iAUC = data.frame(Name=c("AUC[0-12h]", "AUC[0-24h]"), Start=c(0,0), End=c(12,24))
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
MW = 180.164 # Molecular weight of theophylline
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h")
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h", MW=MW)\\ sNCA(x, y, dose=320/MW, doseUnit="mmol", concUnit="mg/L", timeUnit="h", MW=MW)\\
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=as.numeric(NA), doseUnit="mmol", concUnit="mmol/L", timeUnit="h",
     MW=MW)
sNCA(x, y, dose=320, concUnit="mg/L", timeUnit="hr")
sNCA(x*60, y, dose=320, concUnit="mg/L", timeUnit="min")
```

tblNCA

tblNCA

Table output NCA

Description

Do multiple NCA and returns a result table.

Usage

Arguments

concData concentration data table

key column names of concData to be shown in the output table

colTime column name for time

colConc column name for concentration

dose administered dose

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

dur duration of infusion

doseUnit unit of dose timeUnit unit of time

concUnit unit of concentration

down method to calculate AUC, "Linear" or "Log"

R2ADJ Lowest threshold of adjusted R-square value to do manual slope determination

MW molecular weight of drug

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

help, sNCA

Unit 15

Unit

Display CDISC standard units and multiplied factor of NCA results

Description

It displays CDISC PP output units and multiplication factor for them.

Usage

```
Unit(code = "", timeUnit = "h", concUnit = "ng/mL", doseUnit = "mg", MW = 0)
```

Arguments

code vector of PPTESTCD

timeUnit unit of time

concUnit unit of concentration

doseUnit unit of dose

MW molecular weight of drug

Value

row names PPTESTCD

Unit unit

Factor internal mulitplication factor

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
Unit(concUnit="ug/L", doseUnit="mg")
Unit(concUnit="ng/L", doseUnit="mg")
Unit(concUnit="umol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="mmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/mL", doseUnit="mg", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
```

UnitUrine UnitUrine

centration and volume	UnitUrine	Retuns a conversion factor for the amount calculation from urine concentration and volume
-----------------------	-----------	---

Description

You can get a conversion factor for the multiplication: conc * vol * factor = amount in the given unit.

Usage

```
UnitUrine(conU = "ng/mL", volU = "mL", amtU = "mg", MW = 0)
```

Arguments

conU	concentration unit
volU	volume unit
amtU	amount unit
MW	molecular weight

Value

Factor conversion factor for multiplication with the unit in name

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
UnitUrine()
UnitUrine("ng/mL", "mL", "mg")
UnitUrine("ug/L", "mL", "mg")
UnitUrine("ug/L", "L", "mg")

UnitUrine("ng/mL", "mL", "g")

UnitUrine("ng/mL", "mL", "mol", MW=500)
UnitUrine("ng/mL", "mL", "mmol", MW=500)
UnitUrine("ng/mL", "mL", "umol", MW=500)
```

Index

```
*Topic AUC
    AUC, 3
    IntAUC, 6
    LinAUC, 8
    LogAUC, 9
*Topic Output Form
    sNCA, 11
    tblNCA, 14
* \\ \textbf{Topic interpolation}
    Interpol, 7
*Topic interval AUC
    IntAUC, 6
    Interpol, 7
*Topic partial AUC
    IntAUC, 6
    Interpol, 7
*Topic slope
    BestSlope, 4
    DetSlope, 5
    Slope, 10
AUC, 3, 6, 8, 9
BestSlope, 4, 10
DetSlope, 5
help, 13, 14
IntAUC, 6, 7
Interpol, 6, 7
LinAUC, 3, 8, 9
LogAUC, 3, 8, 9
NonCompart (NonCompart-package), 2
NonCompart-package, 2
Slope, 4, 5, 10
sNCA, 11, 14
tblNCA, 13, 14
Unit, 15
UnitUrine, 16
```