Nombres complexes

I - Comment écrire un nombre complexe sous forme algébrique?

Méthode 1

Pour obtenir la forme algébrique d'un nombre complexe, on développe en utilisant les propriétés de l'addition et de la multiplication et en tenant compte de ce que $i^2 = -1$. Dans le cas d'un quotient, si le dénominateur est un nombre complexe, on multiplie numérateur et dénominateur par le conjugué du dénominateur pour rendre ce dernier réel.

Exemple 2

Soit f l'application définie dans \mathbb{C}^* par $f(z) = \frac{1}{z}$, donner la forme algébrique de f(2+3i).

Solution.
$$f(2+3i) = \frac{1}{2+3i} = \frac{1}{2+3i} \cdot \frac{2-3i}{2-3i} = \frac{2-3i}{4+9} = \frac{2-3i}{13} = \frac{2}{13} - \frac{3}{13}i$$

Remarque 3

Remarques utiles:

$$-\overline{z} = \overline{a + bi} = a - bi$$

$$\overline{z} = \overline{a + bi} = a - bi$$

$$\overline{z} = |z|^2 = a^2 + b^2$$

II - Comment résoudre une équation dans €?

Méthode 4 — Pour résoudre une équation du premier degré d'inconnue z, on isole z et on donne sa forme algébrique.

- Pour résoudre une équation du premier degré d'inconnue z dans laquelle figurent \overline{z} , on pose z = x + yi et on remplace dans l'équation donnée.
- Pour résoudre une équation du second degré d'inconnue z à coefficients réels, on calcule le discriminant Δ , suivant son signe on a alors des solutions réelles ou complexes conjuguées.

Exemple 5

Résoudre dans C chacune des équations suivantes :

1.
$$2z + 3i = 5 - z$$

2.
$$z + 2\overline{z} = 1 + 3i$$

3.
$$z^2 - 2z + 5 = 0$$

Solution. 1.
$$2z + 3i = 5 - z \Rightarrow 3z = 5 - 3i \Rightarrow z = \frac{5 - 3i}{3} = \frac{5}{3} - i$$

2. Posons z = x + yi, alors $\overline{z} = x - yi$. L'équation devient : (x + yi) + 2(x - yi) = 1 + 3i

$$\Rightarrow 3x-y$$
i = 1 + 3i Par identification : 3x = 1 et -y = 3, donc x = $\frac{1}{3}$ et y = -3. Ainsi z = $\frac{1}{3}$ - 3i

3.
$$\Delta = 4 - 20 = -16 < 0$$
 Les solutions sont : $z = \frac{2 \pm \sqrt{-16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$

III - Comment déterminer un ensemble de points à partir de la forme algébrique?

Méthode 6

Il faut savoir « traduire l'énoncé », les remarques suivantes sont souvent utiles pour le faire :

- z est un nombre réel signifie que Im(z) = 0 ou que $z = \overline{z}$ ou que l'image de z est un point de l'axe réel
- z est un nombre imaginaire pur signifie que Re(z) = 0 ou que $z = -\overline{z}$ ou que l'image de z appartient à l'axe imaginaire

Il faut aussi savoir reconnaître les ensembles de points à partir de leur équation :

- ax + by + c = 0 pour une droite
- $(x-a)^2 + (y-b)^2 = R^2$ pour le cercle de centre le point Ω d'affixe a+bi et de rayon R

Exemple 7

À tout nombre complexe z différent de i, on associe le nombre complexe $Z = \frac{z-1}{z+i}$. On pose z = x + yi où x et y sont deux réels.

- 1. Exprimer en fonction de x et y la partie réelle X et la partie imaginaire Y de Z.
- 2. En déduire l'ensemble \mathscr{E} des points M du plan complexe, d'affixe z tels que Z est réel.
- 3. En déduire l'ensemble \mathcal{F} des points M du plan complexe, d'affixe z tels que Z est imaginaire pur.

1.
$$Z = \frac{x + y\mathbf{i} - \mathbf{i}}{x + y\mathbf{i} + \mathbf{i}} = \frac{x + (y - 1)\mathbf{i}}{x + (y + 1)\mathbf{i}}$$

En multipliant par le conjugué : $Z = \frac{[x + (y-1)i][x - (y+1)i]}{x^2 + (y+1)^2} =$

$$\frac{x^2 + (y-1)(y+1) + i[x(y-1) - x(y+1)]}{x^2 + (y+1)^2}$$

$$Z = \frac{x^2 + y^2 - 1 - 2xi}{x^2 + (y+1)^2}$$

$$Z = \frac{x^2 + y^2 - 1 - 2xi}{x^2 + (y+1)^2}$$

Donc
$$X = \frac{x^2 + y^2 - 1}{x^2 + (y + 1)^2}$$
 et $Y = \frac{-2x}{x^2 + (y + 1)^2}$

- 2. Z est réel $\Leftrightarrow Y = 0 \Leftrightarrow x = 0$ Donc \mathscr{E} est l'axe imaginaire privé du point d'affixe i.
- 3. Z est imaginaire pur $\Leftrightarrow X = 0 \Leftrightarrow x^2 + y^2 1 = 0$ Donc \mathscr{F} est le cercle de centre O et de rayon 1 privé du point d'affixe i.

IV - Comment utiliser les différentes formes d'un nombre complexe?

Que faut-il faire?	Quelle forme faut-il choisir?	Utilité	
Vérifier que <i>a</i> et <i>b</i>	Forme algébrique $z = a + bi$	Cette forme facilite les calculs	
		de somme et de différence et	
sont réels		permet de faire le lien entre les	
sont reers		complexes et les coordonnées	
		cartésiennes des points images	
		Cette forme établit le lien	
Vérifier que <i>r</i> est	Forme trigonométrique	entre les complexes et la géométrie,	
un réel positif	$z = r(\cos\theta + i\sin\theta)$	elle permet le calcul des distances	
		et des angles	
	Forme exponentielle $z = re^{i\theta}$	Cette forme facilite les calculs	
Vérifier que <i>r</i> est positif		de produit, de quotient et de	
	2 – 1 e	puissance de nombres complexes	

Pour passer d'une forme à l'autre :

$$r = \sqrt{x^2 + y^2} \tag{2}$$

$$x = r\cos\theta$$
 et $y = r\sin\theta$ (3)

$$\begin{cases} \cos \theta = \frac{x}{r} \\ \sin \theta = \frac{y}{r} \end{cases}$$

Exemple 8

Relier les nombres complexes proposés à leurs différentes formes :

Complexes	Forme algébrique	Forme trigonométrique	Forme exponentielle
1 + i	1 + i	$\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$	$\sqrt{2}e^{\mathrm{i}\pi/4}$
-2 + 2i	-2 + 2i	$2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	$2\sqrt{2}e^{\mathrm{i}3\pi/4}$

Remarque 9

Cas particuliers à bien savoir :

- $i = e^{i\pi/2}$
- $\bullet \quad -1 = e^{\mathrm{i}\pi}$
- $\bullet \quad -i = e^{i3\pi/2}$

•
$$1 = e^{i0}$$

V - Comment utiliser la forme trigonométrique des nombres complexes en géométrie?

Méthode 10

Pour utiliser les nombres complexes en géométrie, il est utile de connaître leur forme trigonométrique, les règles de calcul sur celle-ci et l'interprétation géométrique des modules et arguments suivants :

-
$$|z_B - z_A| = AB$$
 (distance)
- $\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$ (angle orienté)
- $\left|\frac{z_C - z_A}{z_B - z_A}\right| = \frac{AC}{AB}$ (rapport de distances)
- $\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) \equiv 0 \pmod{2\pi}$ signifie que A, B et C sont alignés

Dans ce qui précède A, B et C sont trois points tels que $A \neq B$ et $A \neq C$.

Exemple 11 1. Soit $z_A = 1$, $z_B = 1 + i\sqrt{3}$, $z_C = -1 + i\sqrt{3}$ les affixes respectives de trois points A, B et C. Déterminer la forme exponentielle de $\frac{z_C - z_A}{z_B - z_A}$. En déduire la nature du triangle ABC.

- 2. Déterminer l'ensemble des points M d'affixe z tels que $|z-\mathrm{i}|=2$.
- 3. Déterminer l'ensemble des points M d'affixe z tels que $|z-1|=|z-\mathrm{i}|$.
- 4. Déterminer l'ensemble des points M d'affixe z tels que |z-1|=|z+1|.

Solution. 1.
$$\frac{z_C - z_A}{z_B - z_A} = \frac{-1 + i\sqrt{3} - 1}{i\sqrt{3}} = \frac{-2 + i\sqrt{3}}{i\sqrt{3}} = \frac{(-2 + i\sqrt{3})(-i\sqrt{3})}{3} = \frac{2i\sqrt{3} + 3}{3} = 1 + \frac{2i\sqrt{3}}{3}$$
Le module est $\sqrt{1 + \frac{4 \cdot 3}{9}} = \sqrt{\frac{13}{9}} = \frac{\sqrt{13}}{3}$ et l'argument est $\tan^{-1}\left(\frac{2\sqrt{3}}{3}\right)$.

- 2. L'ensemble est le cercle de centre le point d'affixe i et de rayon 2.
- 3. |z-1| = |z-i| signifie que M est équidistant des points d'affixes 1 et i. C'est la médiatrice du segment joignant ces deux points.
- 4. |z-1| = |z+1| signifie que M est équidistant des points d'affixes 1 et -1. C'est l'axe imaginaire.

VI - Comment préciser la position relative de trois points?

Méthode 12

Dans le plan complexe, z_A , z_B et z_C sont trois nombres complexes distincts, d'images respectives A, B et C. On considère le nombre complexe $\frac{z_C-z_A}{z_B-z_A}$. On a :

— Si
$$\frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$$
, alors A , B et C sont alignés

— Si
$$\left| \frac{z_C - z_A}{z_B - z_A} \right| = 1$$
, alors $AC = AB$

— Si
$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \pm \frac{\pi}{2}$$
, alors le triangle *ABC* est rectangle en *A*

— Si
$$\frac{z_C - z_A}{z_B - z_A} = \pm i$$
, alors le triangle ABC est rectangle et isocèle en A

Exemple 13

Dans chacun des cas que peut-on dire des points A, B et C?

1.
$$\frac{z_C - z_A}{z_B - z_A} = 2$$

$$2. \frac{z_C - z_A}{z_B - z_A} = i$$

3.
$$\frac{z_C - z_A}{z_B - z_A} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

4.
$$\frac{z_C - z_A}{z_B - z_A} = 1 + i\sqrt{3}$$

Solution. 1. Le rapport est réel positif, donc A, B et C sont alignés et AC = 2AB.

2. |i| = 1 et arg $(i) = \frac{\pi}{2}$, donc le triangle *ABC* est rectangle et isocèle en *A*.

3. Le module est 1 et l'argument est $\frac{3\pi}{4}$, donc AC = AB et $\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \frac{3\pi}{4}$.

4. Le module est 2 et l'argument est $\frac{\pi}{3}$, donc AC = 2AB et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3}$.