Notes: Optimization Methods | Week1&2

Runze Tian

September 16, 2025

1 Introduction to Optimization

1.1 Basic Concepts and Problem Formulation

Definition 1.1: Optimization

Optimization is the process of selecting a best element from a set of available alternatives, with regard to some criterion. The goal is to find a set of parameters or a model that minimizes or maximizes a certain objective function.

Optimization problems are central to fields like machine learning, operations research, and economics. We can formalize these problems into two primary categories.

Definition 1.2: Unconstrained Optimization

An unconstrained optimization problem is formulated as:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Here, $\boldsymbol{x} \in \mathbb{R}^n$ is the **decision variable**, and $f : \mathbb{R}^n \to \mathbb{R}$ is the **objective function**. A solution \boldsymbol{x}^* such that $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^n$ is called a global minimizer. The value $f(\boldsymbol{x}^*)$ is the optimal value.

Definition 1.3: Constrained Optimization

A constrained optimization problem is formulated as:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x})$$
subject to $c_i(\boldsymbol{x}) = 0, \quad i \in \mathcal{E}$

$$c_i(\boldsymbol{x}) \ge 0, \quad i \in \mathcal{I}$$

where \mathcal{E} and \mathcal{I} are index sets for the **equality constraints** and **inequality constraints**, respectively. The functions $c_i(\boldsymbol{x})$ are known as the constraint functions. Any maximization problem $\max f(\boldsymbol{x})$ can be converted to a minimization problem by considering $\min -f(\boldsymbol{x})$.

1.2 Classification of Optimization Problems

Optimization problems can be classified based on the nature of their variables and functions.

- Continuous vs. Discrete Optimization: If the decision variable x can take any real value (i.e., $x \in \mathbb{R}^n$), the problem is continuous. If x is restricted to be an integer (i.e., $x \in \mathbb{Z}^n$), the problem is discrete, often called combinatorial optimization, which is generally harder to solve.
- Smooth vs. Non-smooth Optimization: If the objective and constraint functions are continuously differentiable, the problem is smooth. Otherwise, it is a non-smooth problem.

• Linear vs. Non-linear Programming: If the objective function f and all constraint functions c_i are linear, the problem is a Linear Program (LP). If the objective is quadratic and constraints are linear, it is a Quadratic Program (QP). If any function is non-linear, it is a Non-linear Program (NLP).

1.3 Convex Sets

The concept of convexity is fundamental to optimization theory because it allows us to make strong claims about the nature of optimal solutions.

Definition 1.4: Convex Set

A set $C \subseteq \mathbb{R}^n$ is said to be **convex** if for any two points $x, y \in C$ and any scalar $\theta \in [0, 1]$, the line segment connecting them is also in C. That is,

$$\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} \in C, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in C, \theta \in [0, 1]$$

Geometrically, a set is convex if the line segment between any two of its points lies entirely within the set.

Proposition 1.1 (Properties of Convex Sets). Let C_1 and C_2 be convex sets in \mathbb{R}^n .

- 1. The intersection $C_1 \cap C_2$ is a convex set.
- 2. The Minkowski sum $C_1 + C_2 = \{x_1 + x_2 \mid x_1 \in C_1, x_2 \in C_2\}$ is a convex set.

Proof. 1. Proof of Intersection: Let $x, y \in C_1 \cap C_2$. This implies $x, y \in C_1$ and $x, y \in C_2$. Since C_1 is convex, for any $\theta \in [0, 1]$, $\theta x + (1 - \theta)y \in C_1$. Similarly, since C_2 is convex, $\theta x + (1 - \theta)y \in C_2$. Therefore, $\theta x + (1 - \theta)y \in C_1 \cap C_2$, proving the intersection is convex.

2. **Proof of Minkowski Sum**: Let $a, b \in C_1 + C_2$. Then by definition, $a = x_1 + x_2$ and $b = y_1 + y_2$ for some $x_1, y_1 \in C_1$ and $x_2, y_2 \in C_2$. For any $\theta \in [0, 1]$, consider the point $z = \theta a + (1 - \theta)b$.

$$\boldsymbol{z} = \theta(\boldsymbol{x}_1 + \boldsymbol{x}_2) + (1 - \theta)(\boldsymbol{y}_1 + \boldsymbol{y}_2) = \underbrace{(\theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{y}_1)}_{\in C_1} + \underbrace{(\theta \boldsymbol{x}_2 + (1 - \theta) \boldsymbol{y}_2)}_{\in C_2}$$

Since C_1 and C_2 are convex, the two terms are in C_1 and C_2 respectively. Thus, $z \in C_1 + C_2$, proving the sum is convex.

1.4 Convex Functions

Definition 1.5: Convex Function

Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f: C \to \mathbb{R}$ is **convex** if for any $x, y \in C$ and any $\theta \in [0, 1]$, the following inequality holds:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

If the inequality is strict (<) for $x \neq y$ and $\theta \in (0,1)$, then f is **strictly convex**. Geometrically, the chord connecting any two points on the function's graph lies on or above the graph itself.

Theorem 1.1: First-Order Condition for Convexity

Let $f: C \to \mathbb{R}$ be a continuously differentiable function on an open convex set $C \subseteq \mathbb{R}^n$. Then f is convex if and only if for all $x, y \in C$:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

This means the first-order Taylor approximation of a convex function at any point provides a global underestimator of the function.

Proof. (\Rightarrow) Assume f is convex. By definition, for $\theta \in (0,1]$ and $x, y \in C$:

$$f(\theta y + (1 - \theta)x) \le \theta f(y) + (1 - \theta)f(x)$$

Rearranging gives:

apply the inequality twice:

$$f(\boldsymbol{x} + \theta(\boldsymbol{y} - \boldsymbol{x})) - f(\boldsymbol{x}) \le \theta(f(\boldsymbol{y}) - f(\boldsymbol{x}))$$
$$\frac{f(\boldsymbol{x} + \theta(\boldsymbol{y} - \boldsymbol{x})) - f(\boldsymbol{x})}{\theta} \le f(\boldsymbol{y}) - f(\boldsymbol{x})$$

Taking the limit as $\theta \to 0^+$, the left side becomes the definition of the directional derivative of f at \boldsymbol{x} in the direction $\boldsymbol{y} - \boldsymbol{x}$, which is $\nabla f(\boldsymbol{x})^T(\boldsymbol{y} - \boldsymbol{x})$. Thus, $\nabla f(\boldsymbol{x})^T(\boldsymbol{y} - \boldsymbol{x}) \le f(\boldsymbol{y}) - f(\boldsymbol{x})$. (\Leftarrow) Assume $f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T(\boldsymbol{y} - \boldsymbol{x})$ for all $\boldsymbol{x}, \boldsymbol{y} \in C$. Let $\boldsymbol{z} = \theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}$ for $\theta \in [0, 1]$. We

$$f(x) \ge f(z) + \nabla f(z)^T (x - z)$$

 $f(y) \ge f(z) + \nabla f(z)^T (y - z)$

Multiply the first inequality by θ and the second by $(1-\theta)$ and add them:

$$\theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}) \ge \theta f(\boldsymbol{z}) + (1 - \theta)f(\boldsymbol{z}) + \nabla f(\boldsymbol{z})^T (\theta(\boldsymbol{x} - \boldsymbol{z}) + (1 - \theta)(\boldsymbol{y} - \boldsymbol{z}))$$

$$\ge f(\boldsymbol{z}) + \nabla f(\boldsymbol{z})^T (\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y} - \boldsymbol{z})$$

$$\ge f(\boldsymbol{z}) + \nabla f(\boldsymbol{z})^T (\boldsymbol{z} - \boldsymbol{z}) = f(\boldsymbol{z})$$

This shows $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$, so f is convex.

Theorem 1.2: Second-Order Condition for Convexity

Let $f: C \to \mathbb{R}$ be a twice continuously differentiable function on an open convex set $C \subseteq \mathbb{R}^n$.

- 1. f is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$.
- 2. If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex.

Note: The converse of the second statement is not true. For example, $f(x) = x^4$ is strictly convex, but its second derivative at x = 0 is f''(0) = 0, which is not positive definite.

Proof. (Sketch of Part 1) (\Rightarrow) Assume f is convex. For any $x \in C$ and direction d, Taylor's theorem gives for small t > 0:

$$f(\boldsymbol{x} + t\boldsymbol{d}) = f(\boldsymbol{x}) + t\nabla f(\boldsymbol{x})^T\boldsymbol{d} + \frac{1}{2}t^2\boldsymbol{d}^T\nabla^2 f(\boldsymbol{x})\boldsymbol{d} + o(t^2\|\boldsymbol{d}\|^2)$$

From the first-order condition, $f(\boldsymbol{x} + t\boldsymbol{d}) \geq f(\boldsymbol{x}) + t\nabla f(\boldsymbol{x})^T \boldsymbol{d}$. Combining these gives:

$$\frac{1}{2}t^2\boldsymbol{d}^T\nabla^2 f(\boldsymbol{x})\boldsymbol{d} + o(t^2\|\boldsymbol{d}\|^2) \ge 0$$

Dividing by t^2 and letting $t \to 0$ yields $\mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d} \ge 0$, which is the definition of positive semidefiniteness.

 (\Leftarrow) Assume $\nabla^2 f(\boldsymbol{x})$ is positive semidefinite. By Taylor's theorem with remainder:

$$f(oldsymbol{y}) = f(oldsymbol{x}) +
abla f(oldsymbol{x})^T (oldsymbol{y} - oldsymbol{x}) + rac{1}{2} (oldsymbol{y} - oldsymbol{x})^T
abla^2 f(oldsymbol{z}) (oldsymbol{y} - oldsymbol{x})$$

for some z on the line segment between x and y. Since $\nabla^2 f(z)$ is positive semidefinite, the last term is non-negative. Therefore, $f(y) \geq f(x) + \nabla f(x)^T (y-x)$, which implies f is convex by Theorem ??.

2 Fundamentals of Unconstrained Optimization

2.1 Optimality Conditions

Optimality conditions are mathematical statements that characterize solutions. They are essential for verifying if a point is a solution and for designing algorithms.

Definition 2.1: Local and Global Minima

Let $f: \mathbb{R}^n \to \mathbb{R}$.

- A point x^* is a **local minimizer** if there exists an $\epsilon > 0$ such that $f(x^*) \le f(x)$ for all x with $||x x^*|| < \epsilon$.
- A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$.
- If the inequalities are strict (<) for $x \neq x^*$, the minimizer is called **strict**.

For convex functions, any local minimizer is also a global minimizer.

Theorem 2.1: First-Order Necessary Condition (FONC)

If x^* is a local minimizer of f and f is continuously differentiable in an open neighborhood of x^* , then the gradient at that point must be zero:

$$\nabla f(\boldsymbol{x}^*) = \mathbf{0}$$

Proof. Proof by contradiction. Assume $\nabla f(\boldsymbol{x}^*) \neq \mathbf{0}$. Let $\boldsymbol{d} = -\nabla f(\boldsymbol{x}^*)$. Since f is differentiable, the directional derivative in direction \boldsymbol{d} is $\nabla f(\boldsymbol{x}^*)^T \boldsymbol{d} = -\|\nabla f(\boldsymbol{x}^*)\|^2 < 0$. This means that for a small step $\alpha > 0$ in the direction \boldsymbol{d} , the function value will decrease. By Taylor's theorem:

$$f(\boldsymbol{x}^* + \alpha \boldsymbol{d}) = f(\boldsymbol{x}^*) + \alpha \nabla f(\boldsymbol{x}^*)^T \boldsymbol{d} + o(\alpha) = f(\boldsymbol{x}^*) - \alpha \|\nabla f(\boldsymbol{x}^*)\|^2 + o(\alpha)$$

For a sufficiently small $\alpha > 0$, the negative linear term dominates the higher-order term, so $f(\boldsymbol{x}^* + \alpha \boldsymbol{d}) < f(\boldsymbol{x}^*)$. This contradicts the assumption that \boldsymbol{x}^* is a local minimizer. Thus, we must have $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$.

Theorem 2.2: Second-Order Necessary Condition (SONC)

If \mathbf{x}^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in an open neighborhood of \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and the Hessian matrix $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite.

Theorem 2.3: Second-Order Sufficient Condition (SOSC)

Suppose that $\nabla^2 f$ is continuous in an open neighborhood of \mathbf{x}^* . If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and the Hessian matrix $\nabla^2 f(\mathbf{x}^*)$ is positive definite, then \mathbf{x}^* is a strict local minimizer of f.

Proof. Since $\nabla^2 f$ is continuous and $\nabla^2 f(\boldsymbol{x}^*)$ is positive definite, there exists a radius r > 0 such that for any \boldsymbol{x} with $\|\boldsymbol{x} - \boldsymbol{x}^*\| < r$, $\nabla^2 f(\boldsymbol{x})$ is also positive definite. For any such $\boldsymbol{x} \neq \boldsymbol{x}^*$, let $\boldsymbol{d} = \boldsymbol{x} - \boldsymbol{x}^*$. By Taylor's theorem, there is a \boldsymbol{z} on the line segment between \boldsymbol{x}^* and \boldsymbol{x} such that:

$$f(\boldsymbol{x}) = f(\boldsymbol{x}^*) + \nabla f(\boldsymbol{x}^*)^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{z}) \boldsymbol{d}$$

Since $\nabla f(x^*) = \mathbf{0}$ and $\nabla^2 f(z)$ is positive definite (as z is within the radius r), we have:

$$f(\boldsymbol{x}) = f(\boldsymbol{x}^*) + \frac{1}{2}\boldsymbol{d}^T\nabla^2 f(\boldsymbol{z})\boldsymbol{d} > f(\boldsymbol{x}^*)$$

The inequality is strict because $d \neq 0$. Thus, x^* is a strict local minimizer.

2.2 Structure of Iterative Methods

Most optimization algorithms are iterative. They generate a sequence of points $\{x_k\}$ that ideally converge to a minimizer x^* . The core idea is to move from the current point x_k to a new, better point x_{k+1} .

The general structure of such a method is: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$, where:

- d_k is the search direction. It must be a descent direction.
- $\alpha_k > 0$ is the **step length** (or learning rate).

Definition 2.2: Descent Direction

A direction d_k is a **descent direction** from a point x_k if for a small step, the function value decreases. For a differentiable function, this is equivalent to the condition:

$$\nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k < 0$$

Geometrically, the descent direction must form an obtuse angle with the gradient vector.

There are two main strategies for choosing d_k and α_k :

- Line Search Methods: First, a descent direction d_k is chosen. Second, a step length α_k is found that minimizes f along that direction, i.e., solving $\min_{\alpha>0} f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$.
- Trust Region Methods: A model function (usually quadratic) is built to approximate f around x_k within a "trust region" of radius Δ_k . The direction and step length are determined simultaneously by minimizing the model within this region.

2.3 Convergence of Algorithms

Definition 2.3: Rate of Convergence

Let $\{x_k\}$ be a sequence that converges to x^* . The convergence is said to be:

- Linear if there is a constant $a \in (0,1)$ such that $\lim_{k\to\infty} \frac{\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^*\|}{\|\boldsymbol{x}_k-\boldsymbol{x}^*\|} = a$.
- Superlinear if the limit is a = 0.
- Quadratic (or of order 2) if there is a constant a such that $\lim_{k\to\infty} \frac{\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^*\|}{\|\boldsymbol{x}_k-\boldsymbol{x}^*\|^2} = a$.

Quadratic and superlinear rates are much faster than linear convergence.

3 Line Search Methods

3.1 Step Length and Search Criteria

Given a descent direction d_k , the one-dimensional subproblem is to find a step length $\alpha_k > 0$.

Definition 3.1: Exact Line Search

An **exact line search** finds the step length α_k that globally minimizes the one-dimensional function $\phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$ for $\alpha > 0$. This is equivalent to finding α_k such that $\phi'(\alpha_k) = 0$, which implies:

$$\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k)^T \boldsymbol{d}_k = 0$$

This means the gradient at the new point is orthogonal to the search direction. However, finding this exact minimum is often computationally expensive.

In practice, an **inexact line search** is used, which finds a step length that provides a sufficient decrease in the objective function without excessive computation. Simply requiring $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ is not enough to guarantee convergence to a minimizer, as the decrease might be negligible.

3.2 The Wolfe Conditions

The Wolfe conditions are a pair of inequalities that ensure both a sufficient decrease in the function value and that the step is not excessively short.

Definition 3.2: The Wolfe Conditions

For constants $0 < \rho < \sigma < 1$, a step length α_k satisfies the **Wolfe conditions** if the following two inequalities hold:

1. Armijo Condition (Sufficient Decrease):

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k) \le f(\boldsymbol{x}_k) + \rho \alpha_k \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k$$

This ensures the reduction in f is proportional to both the step length and the directional derivative.

2. Curvature Condition:

$$\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k)^T \boldsymbol{d}_k \ge \sigma \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k$$

This ensures the slope at the new point is less negative than the initial slope, preventing steps that are too short.

The Strong Wolfe Conditions replace the curvature condition with a stricter requirement:

$$|\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k)^T \boldsymbol{d}_k| \le \sigma |\nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k|$$

This forces the step length to be closer to a stationary point of $\phi(\alpha)$

Lemma 3.1 (Existence of Step Length for Wolfe Conditions). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. If \mathbf{d}_k is a descent direction at \mathbf{x}_k and f is bounded below along the ray $\{\mathbf{x}_k + \alpha \mathbf{d}_k \mid \alpha > 0\}$, then there exist step lengths $\alpha > 0$ that satisfy the Wolfe conditions (for any $0 < \rho < \sigma < 1$).

Proof. Let $\phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$. Since \boldsymbol{d}_k is a descent direction, $\phi'(0) = \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k < 0$. The Armijo condition is $\phi(\alpha) \leq \phi(0) + \rho \alpha \phi'(0)$. The line $l(\alpha) = \phi(0) + \rho \alpha \phi'(0)$ has a negative slope. Since f is bounded below, $\phi(\alpha)$ is also bounded below. Thus, the line $l(\alpha)$ must eventually cross the graph of $\phi(\alpha)$, meaning there is a set of acceptable α values for the Armijo condition. Let $\alpha_{\max} = \sup\{\alpha \mid \phi(\alpha) \leq \phi(0) + \rho \alpha \phi'(0)\}$. Since ϕ is continuous, α_{\max} is well-defined and positive. Now consider the curvature condition. By the Mean Value Theorem, for any $\alpha > 0$, there exists some $\xi \in (0, \alpha)$ such that

$$\phi'(\xi) = \frac{\phi(\alpha) - \phi(0)}{\alpha}$$

At α_{max} , we must have $\phi(\alpha_{\text{max}}) = l(\alpha_{\text{max}}) = \phi(0) + \rho \alpha_{\text{max}} \phi'(0)$. Substituting this into the MVT expression (with $\alpha = \alpha_{\text{max}}$), we get $\phi'(\xi) = \rho \phi'(0)$. Since $\rho < \sigma$ and $\phi'(0) < 0$, we have $\rho \phi'(0) > \sigma \phi'(0)$. Therefore,

$$\phi'(\xi) = \nabla f(\boldsymbol{x}_k + \xi \boldsymbol{d}_k)^T \boldsymbol{d}_k = \rho \phi'(0) > \sigma \phi'(0)$$

This shows that the step length $\xi \in (0, \alpha_{\text{max}})$ satisfies the curvature condition. It also satisfies the Armijo condition since $\xi < \alpha_{\text{max}}$ and $\phi'(\xi) < 0$, implying ϕ is still decreasing. Thus, a valid step length exists.

3.3 Convergence of Line Search Methods

The Wolfe conditions are crucial for proving global convergence of line search methods. The following theorem, often attributed to Zoutendijk, is a cornerstone result.

Theorem 3.1: Zoutendijk's Theorem

Consider an iterative algorithm $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$, where \boldsymbol{d}_k is a descent direction and α_k satisfies the Wolfe conditions. Suppose f is bounded below in \mathbb{R}^n and is continuously differentiable in an open set containing the level set $\{\boldsymbol{x} \mid f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0)\}$, and that the gradient ∇f is Lipschitz continuous on this set. Then

$$\sum_{k>0} \cos^2 \theta_k \|\nabla f(\boldsymbol{x}_k)\|^2 < \infty$$

where θ_k is the angle between the search direction d_k and the negative gradient $-\nabla f(x_k)$.

Proof. From the second Wolfe condition:

$$(\nabla f_{k+1} - \nabla f_k)^T \boldsymbol{d}_k \ge (\sigma - 1) \nabla f_k^T \boldsymbol{d}_k$$

By the Mean Value Theorem, $(\nabla f_{k+1} - \nabla f_k) = \int_0^1 \nabla^2 f(\boldsymbol{x}_k + t\alpha_k \boldsymbol{d}_k) \alpha_k \boldsymbol{d}_k dt$. Using Lipschitz continuity of the gradient, $\|\nabla f_{k+1} - \nabla f_k\| \le L \|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\| = L\alpha_k \|\boldsymbol{d}_k\|$. So, $L\alpha_k \|\boldsymbol{d}_k\|^2 \ge (\nabla f_{k+1} - \nabla f_k)^T \boldsymbol{d}_k \ge (\sigma - 1)\nabla f_k^T \boldsymbol{d}_k$. This gives a lower bound on the step size: $\alpha_k \ge \frac{\sigma - 1}{L} \frac{\nabla f_k^T \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|^2}$. Now, sum the first Wolfe (Armijo) condition over all iterations:

$$f_{k+1} \le f_k + \rho \alpha_k \nabla f_k^T \boldsymbol{d}_k$$

$$f_{N+1} - f_0 = \sum_{k=0}^{N} (f_{k+1} - f_k) \le \rho \sum_{k=0}^{N} \alpha_k \nabla f_k^T d_k$$

Since f is bounded below, as $N \to \infty$, the sum on the right must converge. Since $\rho > 0$ and $\nabla f_k^T \mathbf{d}_k < 0$, the series $\sum_{k=0}^{\infty} -\alpha_k \nabla f_k^T \mathbf{d}_k$ must converge. Substituting the lower bound for α_k :

$$\sum_{k=0}^{\infty} -\alpha_k \nabla f_k^T \boldsymbol{d}_k \geq \sum_{k=0}^{\infty} -\frac{1-\sigma}{L} \frac{(\nabla f_k^T \boldsymbol{d}_k)^2}{\|\boldsymbol{d}_k\|^2}$$

By definition, $\cos \theta_k = \frac{-\nabla f_k^T \boldsymbol{d}_k}{\|\nabla f_k\| \|\boldsymbol{d}_k\|}$. So $(\nabla f_k^T \boldsymbol{d}_k)^2 = \cos^2 \theta_k \|\nabla f_k\|^2 \|\boldsymbol{d}_k\|^2$.

$$\sum_{k=0}^{\infty} \frac{1-\sigma}{L} \cos^2 \theta_k \|\nabla f_k\|^2 < \infty$$

Since $(1 - \sigma)/L$ is a positive constant, the result follows.

Corollary 3.1 (Convergence Corollary). If an algorithm produces search directions such that the angle θ_k is bounded away from 90° (i.e., $\cos \theta_k \geq \delta > 0$ for all k), then Zoutendijk's theorem implies that $\lim_{k\to\infty} \|\nabla f(\boldsymbol{x}_k)\| = 0$. This guarantees convergence to a stationary point. This condition on $\cos \theta_k$ is crucial and is satisfied by many algorithms, including the steepest descent and quasi-Newton methods.

4 Trust Region Methods

Trust region methods are a powerful class of algorithms for unconstrained optimization. Unlike line search methods, which select a direction and then a step length, trust region methods build a local model of the objective function and restrict the search for the next iterate to a region around the current point where the model is considered reliable.

4.1 Basic Idea and Motivation

The core idea is: at each iteration, construct a (usually quadratic) model $q_k(\mathbf{d})$ of f near the current point \mathbf{x}_k , and only trust this model within a ball of radius Δ_k (the trust region). The next step \mathbf{d}_k is chosen by (approximately) minimizing $q_k(\mathbf{d})$ subject to $\|\mathbf{d}\| \leq \Delta_k$.

Definition 4.1: Trust Region Subproblem

At iteration k, the trust region subproblem is:

$$\min_{\boldsymbol{d} \in \mathbb{R}^n} \quad q_k(\boldsymbol{d}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T B_k \boldsymbol{d}$$

subject to $\|d\| \leq \Delta_k$, where B_k is the Hessian $\nabla^2 f(x_k)$ or its approximation.

4.2 Trust Region Models

The model $q_k(\mathbf{d})$ is typically quadratic, capturing local curvature information. The choice of B_k affects the algorithm's behavior:

- If $B_k = \nabla^2 f(\boldsymbol{x}_k)$, the model is locally accurate (Newton-type).
- If B_k is positive definite, the subproblem is easier to solve and ensures descent.
- If B_k is an approximation (e.g., quasi-Newton), the method is more robust for large-scale problems.

4.3 Solving the Trust Region Subproblem

The trust region subproblem is a constrained quadratic minimization. There are several solution strategies:

- Cauchy Point: Minimizes $q_k(\mathbf{d})$ along the steepest descent direction $-\nabla f(\mathbf{x}_k)$, clipped to the boundary of the trust region. Fast to compute, guarantees sufficient decrease.
- **Dogleg Method**: For positive definite B_k , combines the steepest descent direction and the Newton direction, choosing a step along a piecewise linear path (the "dogleg") within the trust region.
- Exact Solution: For small n, the subproblem can be solved exactly using eigenvalue decomposition or the Moré-Sorensen algorithm.
- Truncated Conjugate Gradient: For large-scale problems, an iterative method is used to approximately solve the subproblem.

Definition 4.2: Cauchy Point

The Cauchy point d_C is the minimizer of $q_k(d)$ along $-\nabla f(x_k)$ within the trust region:

$$\mathbf{d}_C = -\tau_k \nabla f(\mathbf{x}_k)$$

where τ_k is chosen so that $\|\boldsymbol{d}_C\| = \min\left\{\frac{\|\nabla f(\boldsymbol{x}_k)\|^2}{\nabla f(\boldsymbol{x}_k)^T B_k \nabla f(\boldsymbol{x}_k)}, \Delta_k\right\}$.

Definition 4.3: Dogleg Method

The dogleg method constructs a path from the origin to the Cauchy point, then to the full Newton step. The step d_{DL} is chosen along this path such that $||d_{DL}|| \leq \Delta_k$.

4.4 Trust Region Radius Update

After computing d_k , we evaluate how well the model predicted the actual reduction in f:

Definition 4.4: Trust Region Ratio

The ratio ρ_k is defined as

$$\rho_k = \frac{f(\boldsymbol{x}_k) - f(\boldsymbol{x}_k + \boldsymbol{d}_k)}{q_k(\boldsymbol{0}) - q_k(\boldsymbol{d}_k)}$$

It measures the agreement between the model and the true function.

The update strategy is:

- If $\rho_k \geq \eta_1$ (e.g., $\eta_1 = 0.75$), the model is good: accept the step and increase Δ_{k+1} .
- If $\eta_2 \leq \rho_k < \eta_1$ (e.g., $\eta_2 = 0.1$), accept the step, keep Δ_{k+1} unchanged.
- If $\rho_k < \eta_2$, reject the step, decrease Δ_{k+1} .

4.5 Global Convergence

Trust region methods can guarantee global convergence under mild assumptions:

Theorem 4.1: Global Convergence of Trust Region Methods

If f is bounded below and continuously differentiable, and the model q_k satisfies regularity conditions, then any limit point of the sequence $\{x_k\}$ generated by the trust region method is a stationary point of f.

