Tema 6: Boosting y Adaboost

Temas 6: Boosting y Adaboost

Temas 6: Boosting y Adaboost

1

Sistemas Inteligentes Dpnt. de Ciència de la Computació i Intel·ligència α rtificial Dpto. de Ciencia de la Computación e Inteligencia $\dot{\alpha}$ rtificial Combinar clasificadores "débiles" Clasificadores débiles: Moderadamente precisos (simples y que funcionen al menos mejor que una clasificación aleatoria). El ٥ resultado es una hipótesis conjunta (ensemble hypothesis) -A—SVM -B—AdaBoostSVM Combinación: Se puede probar que es posible encontrar un clasificador más preciso combinando muchos clasificadores "débiles". ¿Cómo combinarlos? - Bagging Boosting 5:500 100:500 80:500 60:500 30:500 Number of postive samples : Number of negtive samples Boosting y AdaBoost

3

Sistemas Inteligentes

Bagging. Bootstrap aggregating

Bagging.[Breiman,94] Repeat for t = 1, ..., T:

- Select, at random with replacement, N training examples.
- lacktriangleright Train learner on selected samples to generate h_t

Final hypothesis is simple vote:

$$H(x) = MAJ(h_1(\mathbf{x}), \dots, h_T(\mathbf{x}))$$

Características:

Universitat d'Alaca Universidad de Alic

Ayuda a mejorar clasificadores inestables, como redes neuronales o árboles de decisión (pequeños cambios en el conjunto de entrenamiento llevan a diferentes clasificadores y grandes cambios en el porcentaje de aciertos).

Boosting y AdaBoost

2

Dpnt. de Ciència de la Computació i Intel·ligència artificial Dpto. de Ciencia de la Computación e Inteligencia artificial

٥

Sistemas Inteligentes

Boosting vs Bagging

Muestreo ponderado (ejemplos):

- En lugar de hacer un muestreo aleatorio de los datos de entrenamiento, se ponderan las muestras para concentrar el aprendizaje en los ejemplos más difíciles.
- Intuitivamente, los ejemplos más cercanos a la frontera de decisión son más difíciles de clasificar, y recibirán pesos más altos.

Votos ponderados (clasificadores):

- En lugar de combinar los clasificadores con el mismo peso en el voto, se usa un **voto ponderado**.
- Esta es la regla de combinación para el conjunto de clasificadores débiles.
- En conjunción con la estrategia de muestreo anterior, esto produce un clasificador más fuerte.

Boosting y AdaBoost

5

5

4

Dpnt. de Ciència de la Computació i Intel·ligència Artificial Dpto. de Ciencia de la Computación e Inteligencia Artificia

Sistemas Inteligentes

Adaboost

AdaBoost. Adaptive Boosting [Freund, Schapire, 96]

- Initialize distribution over training set $D_1(i) = 1/N$.
- \blacksquare For $t=1,\ldots,T$
- 1. Train weak learner using distribution D_t and obtain h_t .
- 2. Choose a weight (confidence value) $\alpha_t \in R$.
- 3. Update distribution over training set:

$$D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}$$

• Set $H(x) = sign(f(x)) = sign\left(\sum_{i=1}^{T} \alpha_t h_t(x)\right)$

≝Notación:

- 1. i indexa ejemplos, mientras que t indexa clasificadores (débiles)
- 2. Dt depende de la complejidad de los ejemplos. ¿Cómo usarla?
- 3. α_t depende del error ϵ_t asociado a la h_t
- **4. Z**_t es una constante de normalización.

Boosting y AdaBoost

/

Sistemas Inteligentes

7

4

Adaboost Algorithm 1 Adaboost 1: **procedure** Adaboost(X, Y) 2: $D_1(i) = 1/N$ \triangleright Indica como de difeil es de clasificar cada punto i▷ T es el nmero de clasificadores dbiles a usar 3: for $t = 1 \rightarrow T$ do 4: Entrenar h_t teniendo en cuenta D_t 5: Start for $k = 1 \rightarrow A$ do \triangleright A = num. de pruebas aleatorias 6: $F_p = \text{generaPlanoAlAzar}()$ 7: $\epsilon_t = P_{D_t}(h_t(x_i) \neq y_i) \rightarrow \overset{\smile}{\epsilon_{t,k}} = \sum_{i=1}^N D_t(i) \cdot (F_k(x) \neq y(x))$ return < $F_p | \min(\epsilon_{t,k}) >$ 9: Del h_t anterior obtener su valor de confianza $\alpha_t \in \mathbb{R}$ 10: 11: Start $\alpha_t = 1/2\log_2\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ 12: \mathbf{End} 13: Actualizar D_{t+1} 14: 15: Start $D_{t+1} = \frac{D_t(i) \cdot e^{-\alpha_t \cdot y_i h_t(x_i)}}{Z_t}$ $Z_t = \sum_i D_t(i)$ 16: 17: $\mathbf{End}^{\mathbf{End}}_{\mathbf{return}} H(x) = sign(\sum_{t} \alpha_{t} \cdot h_{t}(x))$ 18: 4

8

Boosting y AdaBoost

Dpnt. de Ciència de la Computació i Intel·ligència drtificial Dpto. de Ciencia de la Computación e Inteligencia drtificial

٥

Sistemas Inteligentes

Construyendo y usando Dt

- 1. Entrenar un clasificador débil usando D_t y obtener h_t
- Normalmente se muestrean los ejemplos de entrenamiento usando
 D_t (muestreo por importancia)
 - Inicialmente, cuando **T**=1 todos los ejemplos son igualmente probables.
 - En las siguientes iteraciones, es más probable seleccionar los ejemplos más difíciles (los que hacen fallar al clasificador).
- 2. Escoger un valor de confianza a_t
- . Sea ε_{t} el error asociado a h_{t}

 $\epsilon_t = Pr_{D_t}[h_t(\mathbf{x}_i) \neq y_i]$

• El valor de α_{ϵ} surge de intentar optimizar dicho error y es:

Boosting y AdaBoost

9

Dpnt. de Ciència de la Computació i Intel·ligència **d**rtificial Dpto. de Ciencia de la Computación e Inteligencia **d**rtificial Sistemas Inteligentes

Construyendo y usando Dt

- 3. Actualizar la distribución D:
 - Inicialmente, cuando T=1 todos los ejemplos son igualmente probables.
 - En las siguientes iteraciones, es más probable seleccionar los ejemplos más difíciles (los que hacen fallar al clasificador).

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot A$$

 $if \quad h_t(\mathbf{x}_i) = y_i \Longrightarrow A = e^{-\alpha_t}$

$$if h_t(\mathbf{x}_i) \neq y_i \Longrightarrow A = e^{\alpha_t}$$

Boosting y AdaBoost

10

Universita Universida

Ciència de la Computació i Intel·ligència **d**rtificial Ciencia de la Computación e Inteligencia **d**rtificial Sistemas Inteligentes

Bibliografía

- Duda, Hart & Stork. Pattern Classification. Wiley 2001.Chapter 9.
- Hastie, Tibshirani, Friedman, The Elements of Machine Learning. Springer Series in Statistics. 2001. Chapter 10.
- www.boosting.org

Universitat d'Alacani Universidad de Alica

Boosting y AdaBoost

15