Obiekty danych

- Zbiory danych składają się z obiektów.
 - Obiekt danych reprezentuje pojęcie.
 - przykłady:
 - baza sprzedażowa: klienci, sprzedaż, szczegóły sprzedaży
 - medyczna baza: pacjenci, terapie
 - baza uniwersytecka: studenci, wykładowcy, kursy
 - Zwane również próbkami, przykładami, instancjami, punktami danych, krotkami.
- Obiekty danych są opisane atrybutami.
- Rekordy bazy-> obiekty danych; kolumny ->atrybuty.

Atrybuty

- Atrybuty (lub wymiary: DW, cechy: ML, zmienne: ST): pola danych, reprezentujące charakterystykę lub cechę obiektu danych.
 - np. klient _ID, nazwa, adres
- Zbiór atrybutów używany do opisania danego obiektu wektor atrybutów (lub wektor cech)
- Typy atrybutu określane przez zbiór możliwych wartości:
 - Nominalne
 - Binarne
 - Porządkowe
 - Numeryczne
 - przedziałowe (interval scaled)
 - ilorazowe (ratio-scaled)

Typy atrybutów

- Nominalne (kategoryczne,wyliczeniowe): kategorie, stany, "nazwy rzeczy"
 - Kolor_włosów = {czarny, brązowy, blond, kasztanowy, siwy}
 - stan cywilny, zawód, ale również np. identyfikatory, kody pocztowe
 - jakościowa klasyfikacja, brak porządku, można reprezentować numerycznie

Binarne

- Nominalne z 2 stanami (0 lub 1)
 - np. palacz
- Symetryczne: obydwa stany jednakowo ważne
 - np. płeć (?)
- Asymetryczne: wyniki nie są tak samo ważne
 - np. testy medyczne (pozytywne negatywne)
 - konwencja: przypisz 1 do najważniejszych wyników (np. HIV pozytywny)

Porządkowe (jakościowe)

- Wartości mają znaczący porządek (ranking) ale odległości m. kolejnymi wartościami nieznane.
 - można je uzyskać również poprzez dyskretyzację
- np. wielkość = {mały, średni, duży}

Numeryczne typy atrybutów

- są ilościowe, mierzalne (wartości całkowite lub rzeczywiste)
- Przedziałowe (interval-scaled)
 - pozwalają rangować mierzone obiekty i mierzyć różnice m. nimi
 - brak punktu absolutnego zera
 - np. $temperatura w C^{\circ}lub F^{\circ}$, daty kalendarzowe
- Ilorazowe (ratio-scaled)
 - istnieje punkt absolutny zera skali
 - stosunki między wartościami mogą być zdefiniowane w sposób znaczący (10 K° jest dwa razy większa niż 5 K°).
 - np. temperatura w Kelvinach, przestrzeń, czas

Dyskretne a ciągłe atrybuty

Inny podział (ML)

Atrybut dyskretny

- Ma skończony lub policzalny zbiór wartości
 - np. kody pocztowe, zawody, zbiór słów w kolekcji dokumentów
- Można reprezentować jako wartości całkowite
- Atrybuty binarne: szczególny przypadek dyskretnych

Atrybut ciągły

- Liczy rzeczywiste wartości atrybutu
 - np. temperatura, wysokość, waga
- W praktyce, rzeczywiste wartości mogą być mierzone i reprezentowane przy użyciu skończonego zbioru liczb

SPSS Modeler

Węzeł TYPY

Węzeł TYPY

- Odpowiada za zarządzanie opisem danych w strumieniu analitycznym – jeden z najważniejszych węzłów
 - dodatkowo spełnia wiele innych funkcji:
 - etykietowanie
 - możliwość definiowania braków danych użytkownika
- Przycisk "Odczytaj wartości"
 - zaprezentowane zostają zmienne obecne w zbiorze wejściowym oraz ich typ
 - kolumna "Wartości" można obserwować jakie wartości przyjmują poszczególne zmienne

POZIOM POMIARU

- Domyślny program sam rozpoznaje z jakiego typu danymi ma do czynienia ustawienie zostanie zmienione po pierwszym odczytaniu wartości zmiennej w węźle
- Ilościowa zmienna przybiera wartości będące liczbami całkowitymi, rzeczywistymi lub zmiennymi typami data lub czas
- Jakościowa pojawia się dla zmiennych tekstowych, dla których liczba unikalnych wartości (kategorii) nie jest znana (nie zostały zeskanowane wartości zmiennej)
- Flaga zmienna przyjmuje 2 wykluczające się wartości: prawda/fałsz, 0/1, tak/nie
- Nominalna przyjmuje wiele wartości, które mogą być wyrażone tekstowo lub liczbowo choć zapisane w postaci symboli liczbowych, nie podlegają regułom operacji matematycznych (np. wartości zmiennej "region": 1, 2, 3 itd. nie dają się sumować)
- Porządkowa zmienna przyjmuje kilka wartości zwanych kategoriami, które posiadają określony porządek, mogą to być zarówno wartości liczbowe jak i tekstowe (np. rozmiar "mały, "średni", "duży" lub ocena szkolna można powiedzieć, że 5 to ocena wyższa niż 4, a "mały" to mniej niż "średni")
- Nieokreślony zmienna, której wartości nie powinny być skanowane (np. dla identyfikatora klienta, czy nr rachunku, które nie będą wykorzystywane w analizie

BRAKI

- Możliwość zdefiniowania braków danych dla poszczególnych zmiennych
 - obok systemowych braków danych można zdefiniować braki danych użytkownika, np. 9 może być traktowana jako "nie dotyczy"

SPRAWDŹ

- Decydujemy jak program ma się zachować w sytuacji gdy natrafi na braki danych lub gdy wystąpi wartość spoza zakresu lub zdefiniowanej listy
- Brak sprawdzanie jest wyłączone dla danej zmiennej
- Wyzeruj zastąpienie systemowym brakiem danych (\$null\$)
- Wymuś dla zmiennych typu:
 - flaga niepoprawny wpis jest zastępowany wartością fałsz
 - jakościowa (nominalna lub porządkowa) nieznana wartość jest zmieniona na pierwszą wartość ze zbioru wartości
 - ilościowa wartość która jest ponad górną granicą jest sprowadzana do postaci najwyższej dopuszczalnej wartości; wartość poniżej najniższej analogicznie do najniższej; w sytuacji gdy wystąpi brak danych przypisywana jest wartość środkowa
- Odrzuć gdy niewłaściwy wpis zostanie wykryty rekord jest automatycznie usuwany
- Ostrzeż w komunikatach wyświetlany jest raport o wystąpieniu rekordów nieprawidłowych
- Przerwij gdy program napotka na wartość spoza zakresu automatycznie przerywa dalsze przetwarzanie danych

ROLA

- Ustalenie która zmienna ma być zmienną zależną ("Przewidywana") a która niezależną/predyktorem ("Wejściowa")
- Gdy zmienne może być zarówno przewidywaną lub predyktorem (np. w regułach asocjacyjnych) wtedy zaznacza się Opcję "Obydwie"
- Podział wskazanie zmiennej dzielącej zbiór danych na podzbiory: testowy i uczący (częściej węzeł "Podział")
- Separacja (dla zmiennych nominalnych, porządkowych, flag) na etapie modelowania modele mają być budowane oddzielnie dla każdej wartości przyjmowanych przez tę zmienną
- Ważenie rekordów (dla C&RT, CHAID, QUEST) użycie wartości tej zmiennej jako czynnika ważenia liczebności rekordów
- ID rekordów używana tylko przez modele liniowe
- Brak zmienna w modelu nie będzie wykorzystywana
- Dwa widoki: "widok aktualnych zmiennych", "widok ustawień niewykorzystanych zmiennych"

Zakładka FORMAT

- Zmienna lista zmiennych znajdujących się w zbiorze danych
- Format można dokonać zmiany ustawień dotyczących formatu daty, czasu, liczb, separatorów dziesiętnych, szerokości kolumn, wyrównania, etc.
- Wyrównanie określa sposób prezentacji danch np. w tabelach
- Szerokość kolumn określa domyślną szerokość prezentowanej kolumny

Ćwiczenie 1 – przewidywanie efektywności leczenia - dane

Age Wiek (ilościowa)
Sex Płeć (M lub F)

BP Ciśnienie krwi: HIGH, NORMAL lub LOW
Cholesterol Poziom cholesterolu: NORMAL lub HIGH

Na Poziom sodu (ilościowa) K Poziom potasu (ilościowa)

Drug Lek, który podziałał na pacjenta (zm. doc.)

Ćwiczenie 1 – przewidywanie efektywności leczenia

- Jaki czynnik ma największy wpływ na wybór terapii?
 - jaka część pacjentów odpowiedziała pozytywnie na terapię danym lekiem?
 - węzeł "Rozkładu" dostajemy informację, że pacjenci odpowiadali pozytywnie najczęściej na lek Y a najrzadziej na B i C
 - jakie czynnik wpływają na zmienną docelową "Drug"
 - wiedza dziedzinowa: koncentracja sodu i potasy we krwi są istotnymi czynnikami
 - wykres "Rozrzutu" pokazuje progi powyżej których poprawnym lekiem jest Y, a poniżej nigdy (próg ten to stosunek sodu i potasu)
 - wizualizacja zależności między różnymi kategoriami
 - wykres "Sieciowy" można zaobserwować tylko "drugY" jest związany ze wszystkimi trzema poziomami ciśnienia we krwi
 - ponieważ stosunek sodu do potasu wydaje się być czynnikiem wpływającym na zastosowanie leku Y – tworzymy nowe pole – węzeł "Wyliczanie"

Ćwiczenie 1 – przewidywanie efektywności leczenia – c.d.

- Analizując dane można stawiać różne hipotezy nie można jednak w pełni określić wszystkich zależności
- Budujemy model klasyfikacyjny C5.0
 - usuwamy pola Na i K (bo mamy nowe) węzeł "Filtrowanie"
 - ustawiamy zmienną "Drug" jako "Przewidywana" węzeł "Typy"
 - węzeł "C5.0" z zakładki "Modelowanie"
 - wygenerowany model pojawi się w prawym górnym rogu
- Szacowanie dokładności
 - węzeł "Analiza" z zakładki "Wyniki"

Ćwiczenie 2 – badanie predyktorów - dane

Ćwiczenie 2 – badanie predyktorów

- Cel: identyfikacja atrybutów, które mają największy wpływ na predykcję atrybutów wyjściowych
- 3 zmienne docelowe czy klient odpowiedział na dane zapytanie ofertowe (3)
- Wspomaganie predykcji którzy klienci odpowiedzą w przyszłości na podobne oferty
 - za każdym razem jedna oferta wybierana jest jako cel
 - model drzewa CHAID bez wyboru cech i z wyborem cech

Ćwiczenie 2 – budowanie strumienia

- węzeł "Typy" ustalenie roli zmiennych
 - "response_01" = "Przewidywana"
 - "custid", "response_02", "response_03" = "Brak"
- węzeł "Wybór predyktorów" z zakładki "Modelowanie" do ustalenia ważności predyktorów
- wstawienie modelu do strumienia (o ile nie jest wstawiony) za węzłem "Typy"
 - wybór 10 pierwszych predyktorów
- porównanie z wyborem predyktorów i bez:
 - jeden węzeł "CHAID" połączyć z "Typy" (bez)
 - drugi węzeł "CHAID" połączyć z wygenerowanym modelem
- porównać czas budowy modelu i wielkość drzewa
- zrobić dla pozostałych ofert

Wynikowy strumień

Ćwiczenie 3 – tworzenie profili klientów - dane

cardid – nr karty lojalnościowej value – wartość koszyka pmethod – sposób płatności Charakterystyka klienta:

- sex płeć
- homeown czy klient posiada dom
- income dochód
- age wiek

Zawartość koszyka

flaga określająca czy produkt z danej kategorii znalazł się w koszyku fruitveg, freshmeat, dairy, cannedveg, cannedmeat, frozenmeal, beer, wine, softdrink, fish, confectionery

Ćwiczenie 3 – tworzenie profili klientów

- Cel: znalezienie zależności w rodzaju: jeżeli dużo zarabia i jest w średnim wieku to kupuje zdrową żywność
- Dwa kroki:
 - 1. analiza koszyka zakupowego
 - dołączenie danych o kliencie i uzyskanie informacji jacy klienci kupują dane grupy produktów
- Ad1.
 - wybór tylko produktów ("Obydwie"), pozostałe na "Brak"
 - węzeł "Apriori"
 - podłączyć węzeł "Sieciowy" do oznaczenia grup

3 grupy klientów

Ćwiczenie 3 – tworzenie profili klientów

Ad2

- ustawmy flagę dla każdej znalezionej grupy
- oznaczmy każdego klienta flagą przynależności do każdej grupy
- węzeł C5.0 do indukcji reguł dla każdej z flag

