我们先引入关于子群的共轭子群的概念。

定义 0.1. 设 G 是一个群,对任意 $a,b \in G$,记其群操作为 $a \circ b$,单位元为 e,a 的逆元为 a^{-1} 。若 G 中存在一个 $i \in G$ 使 G 中的两个元素 $a,b \in G$ 满足 $b = i \circ a \circ i^{-1}$,则称 b 为 a 的一个 共轭(conjugate)。

其实,对于 $a \in G$,选不同的元素 $i \in G$ 都可以为 a 找到一个共轭元素。我们可以更仔细 地称 $b = i \circ a \circ i^{-1}$ 为元素 a 通过元素 i 获得的共轭。但是,任意给定 G 的两个元素 a,b,并不一定总能找到一个 $i \in G$ 使 $b = i \circ a \circ i^{-1}$ 。事实上,两个群元素的共轭作为一个关系,是一个等价关系。与给定元素共轭的所有元素将构成一个等价类。不同元素的共轭等价类分割了整个群 G。

我们简短地证明为什么共轭是一个等价类,就不单独列为引理了。设关系 $\sim \in G \times G$ 满足: $a \sim b \Leftrightarrow \exists i \in G, b = i \circ a \circ i^{-1}$ 。我们需要证明 \sim 满足等价关系的三个性质:自反性、对称性和传递性。首先,自反性要求 $a \sim a$,即存在 $i \in G$ 使 $a = i \circ a \circ i^{-1}$ 。取 i = e 即可。其次,对称性要求 $a \sim b \Rightarrow b \sim a$ 。若存在 $i \in G$ 使 $b = i \circ a \circ i^{-1}$,则取 i^{-1} 即可。最后,传递性要求 $a \sim b, b \sim c \Rightarrow a \sim c$ 。若存在 $i, j \in G$ 使 $b = i \circ a \circ i^{-1}, c = j \circ b \circ j^{-1}$,则有 $c = j \circ i \circ a \circ i^{-1} \circ j^{-1}$,取 $i' = j \circ i$ 即可。故共轭是一个等价关系。给定任一 G 的元素 a,由共轭关系 \sim 可形成一个等价类 $[a]_{a}$,称 a 的共轭类 (conjugacy class)。

另一个更加平凡的事实是,对每一 G 的元素 a,通过给定元素 $i \in G$,有且只有一个共轭 $b = i \circ a \circ i^{-1}$ 。这是因为,给定的 $a, i \in G$ 是确定的,而且对每一 $i \in G$ 有且只有一个 $i^{-1} \in G$,故整个表达式 $b = i \circ a \circ i^{-1}$ 是唯一的。这是下面的引理0.1中我们之所以能够定义里面的映射 Q 的基础。

引理 0.1. 设 G 是一个群,对任意 $a,b \in G$,记其群操作为 $a \circ b$,单位元为 e,a 的逆元为 a^{-1} 。 若 V 是 G 的一个子群。给定 $i \in G$,定义映射 $Q: V \to G$.

$$Q(v) = i \circ v \circ i^{-1}, \quad \forall v \in V$$

则集合 $V^* \equiv \text{ran}Q$ 是 G 的一个子群,且映射 Q 是由 V 到 V^* 的同构映射。

证明. 首先, V^* 是 G 的子集。对任意 $v_1, v_2 \in V$,有 $Q(v_1) = i \circ v_1 \circ i^{-1}, Q(v_2) = i \circ v_2 \circ i^{-1}$,则有

$$Q(v_1) \circ Q(v_2) = i \circ v_1 \circ i^{-1} \circ i \circ v_2 \circ i^{-1} = i \circ v_1 \circ v_2 \circ i^{-1} = Q(v_1 \circ v_2) \in V^*$$

其中由V的封闭性, $v_1 \circ v_2$ 也是V的元素,故也能被Q映射到 V^* 。这证明了,任意两个 V^* 中的元素的群运算结果也在 V^* 中,即 V^* 满足封闭性。

更新至 2024-11-08

其次,我们将看到, $e \in V^*$ 。由 V 是 G 的子群,故 $e \in V$ 。由 Q 的定义,有 $Q(e) = i \circ e \circ i^{-1} = e \in V^*$ 。故 V^* 包含单位元。

再次,我们将看到, V^* 包含逆元。对任意 $v \in V$,有 $Q(v) = i \circ v \circ i^{-1}$,同时也有

$$Q(v)^{-1} = i \circ v^{-1} \circ i^{-1} = Q(v^{-1}) \in V^*$$

其中由 V 的封闭性, v^{-1} 也是 V 的元素, 故也能被 Q 映射到 V^* 。故 V^* 包含逆元。

综上, V^* 是一个群。结合 V^* 是 G 的子集的事实, 就有 V^* 是 G 的子群。

以下证明 Q 是由 V 到 V^* 的同构映射。之前已经证明了 $Q(v_1) \circ Q(v_1) = Q(v_1 \circ v_2)$ 即 Q 是 V 上的同态映射,只需证明 Q 是由 V 到 V^* 的双射。首先,由于 $V^* = \operatorname{ran} Q$,故 Q 是由 V 到 V^* 的满射。其次,Q 是单射: $\forall v_1, v_2 \in V$,若 $Q(v_1) = Q(v_2)$,则有

$$i \circ v_1 \circ i^{-1} = i \circ v_2 \circ i^{-1}$$

$$\Leftrightarrow i^{-1} \circ i \circ v_1 \circ i^{-1} = i^{-1} \circ i \circ v_2 \circ i^{-1}$$

$$\Leftrightarrow i^{-1} \circ i \circ v_1 \circ i^{-1} \circ i = i^{-1} \circ i \circ v_2 \circ i^{-1} \circ i$$

$$\Leftrightarrow v_1 = v_2$$

因此 Q 是由 V 到 V^* 的双射,即是同构映射。

该引理的证明是直接的, 留作练习。

定义 0.2 (共轭子群). 设 G 是一个群,对任意 $a,b \in G$,记其群操作记为 $a \circ b$,单位元为 e,a 的逆元为 a^{-1} 。若 V 是 G 的一个子群。给定 $i \in G$,定义映射 $Q: \mathscr{V} \to G$.

$$Q\left(v\right) = i \circ v \circ i^{-1}$$

则称 ∜* 是 ∜ 的一个共轭子群。

引理 0.2. 设 (\mathcal{E} , d) 是一个度量空间,若其上的等距群存在一个满足条件 G1 至 G6、S1 至 S4 和 N1 的子群 \mathcal{V} ,则这样的子群只有一个。

证明. 设 ψ' 也是满足上述条件的子群,则给定任意两点 $X,Y \in \mathcal{E}$, ψ 中必存在唯一一个等距变换 \mathbf{u} 、 ψ' 中必存在唯一一个等距变换 \mathbf{u}' ,分别满足 $\mathbf{u} = Y - X, \mathbf{u}' = Y - X$,其中 - 和 -' 分别是由 ψ 和 ψ' 的传递性所定义的记号。相应地有 $Y = X + \mathbf{u} = X + '\mathbf{u}'$ 。

定义由 \mathscr{V} 到 \mathscr{V}' 的映射 $f:\mathscr{V}\to\mathscr{V}'$,

$$X + \mathbf{u} = X + 'f(\mathbf{u}), \quad \forall X \in \mathcal{E}, \forall \mathbf{u} \in \mathcal{V}$$

易证 f 是双射且 $f(\mathbf{0}) = \mathbf{0}$,其中 $\mathbf{0}$ 是 \mathcal{E} 上的恒等变换,故它同时是 \mathcal{V} 和 \mathcal{V}' 的单位元。 f 是由 \mathcal{V} 到 \mathcal{V}' 的同构映射:对任意 $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ 和 $X_0 \in \mathcal{V}$ 必存在 $X, Y \in \mathcal{V}$ 满足

$$X = X_0 + \mathbf{u}, Y = X_0 + \mathbf{v} = X + \mathbf{v} - \mathbf{u}$$

若记 $\mathbf{u}' = f(\mathbf{u}), \mathbf{v}' = f(\mathbf{v}), 则亦有$

$$X = X_0 +' \mathbf{u}', Y = X +' \mathbf{u}' - \mathbf{v}'$$

由 ψ 和 ψ' 上的范的定义方式都来自同一度量 d, 故有

$$\|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v}' - \mathbf{u}'\|$$

特别地, 当 $\mathbf{u} = \mathbf{0}$ 时, $\mathbf{u}' = \mathbf{0}$, 上式说明 $\|\mathbf{v}\| = \|\mathbf{v}'\|$ 对任意 $\mathbf{v} \in \mathcal{V}$ 成立。故

$$\|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v}' - \mathbf{u}'\|$$

$$\Rightarrow \|\mathbf{v} - \mathbf{u}\|^2 = \|\mathbf{v}' - \mathbf{u}'\|^2$$

$$\Leftrightarrow \|\mathbf{u}\|^2 - 2(\mathbf{u}|\mathbf{v}) + \|\mathbf{v}\|^2 = \|\mathbf{u}'\|^2 - 2(\mathbf{u}'|\mathbf{v}') + \|\mathbf{v}'\|^2$$

$$\Leftrightarrow (\mathbf{u}|\mathbf{v}) = (\mathbf{u}'|\mathbf{v}')$$

即 f 保持内积。由类似引理??的证明过程可知 f 是由 \mathscr{V} 到 \mathscr{V}' 的同构线性变换。

由外延公理,如果两个集合 A 和 B 之间存在一个双映射 f 满足 $f(x) = x, \forall x \in A$ 则 A = B。对任意 $X \in \mathscr{E}$ 和 $\mathbf{v} \in \mathscr{V}$,设 $\mathbf{u} = X - X_0, X_0 \in \mathscr{E}$,则

$$X + \mathbf{v} = X_0 + \mathbf{u} + \mathbf{v}$$

$$= X_0 +' f(\mathbf{u} + \mathbf{v})$$

$$= X_0 +' f(\mathbf{u}) + f(\mathbf{v})$$

$$= X_0 + \mathbf{u} +' f(\mathbf{v})$$

$$= X + f(\mathbf{v})$$

均成立,故 $f(\mathbf{v}) = \mathbf{v}, \forall \mathbf{v} \in \mathcal{V}$,即 \mathcal{V}' 与 \mathcal{V} 作为内积空间是同一的。

定理 (等距变换的表示定理??). 设 $\mathscr E$ 是一个欧几里得空间, $\mathscr V$ 是其平移空间,选定任一点 $X_0 \in \mathscr E$,则 $\mathscr E$ 上的任一等距变换 $i: \mathscr E \to \mathscr E, i \in \mathscr V$ 都可表示为

$$i(X) = i(X_0) + \mathbf{Q}_i(X - X_0)$$

其中 \mathbf{Q}_i 是一个正交算符,由 i 唯一确定。

更新至 2024-11-08

证明. 由引理0.1、0.2和??,给定任一 \mathcal{E} 上的等距变换 i, \mathcal{V} 的共轭子群都是它自己,且每个 i 引出的共轭映射 $\mathbf{Q}_i \mathbf{v} = i \circ \mathbf{v} \circ i^{-1}$ 就是 \mathcal{V} 上的自同构映射,故 \mathbf{Q} 是 \mathcal{V} 上的正交算符。

注意到 $i \circ \mathbf{v} = \mathbf{Q}_i \mathbf{v} \circ i$, 则对任一 $X_0 \in \mathcal{E}$, 有

$$i \circ \mathbf{v}(X_0) = i(X + 0 + \mathbf{v}), \quad \mathbf{Q}_i \mathbf{v} \circ i(X_0) = i(X_0) + \mathbf{Q}_i \mathbf{v}$$

令 $X = X_0 + \mathbf{v}$,则有

$$i(X) = i(X_0) + \mathbf{Q}_i(X - X_0)$$

 \mathbf{Q}_i 由 i 唯一确定: 设另有一正交算符 $\mathbf{P}: \mathcal{V} \to \mathcal{V}$ 满足 $\mathbf{P}\mathbf{u} = i(X + \mathbf{u}) - i(X), \forall \mathbf{u} \in \mathcal{V}, \forall X \in \mathcal{E}$,则 $(\mathbf{P} - \mathbf{Q}_i)\mathbf{u} = \mathbf{P}\mathbf{u} - \mathbf{Q}_i\mathbf{u} = \mathbf{0}, \forall \mathbf{u} \in \mathcal{V}$ 。

更新至 2024-11-08