

Do End-to-end Stereo Algorithms Under-utilize Information?

Changjiang Cai, Philippos Mordohai Stevens Institute of Technology

Code: https://github.com/ccj5351/DAFStereoNets

1. Motivation

- Cost aggregation mechanisms under-utilize image information
 - Content-insensitive convolutions
 - Down- and up-sampling operations in the encoderdecoder architectures
 - Cost aggregation is not sensitive to pixel similarity, image edges or semantics
 - Over-smoothing near occlusion boundaries, erroneous predictions in thin structures and textureless regions
- E.g., GCNet on Virtual KITTI 2 validation set

Left Image

Disparity Map by GCNet

2. Proposal

- Our proposal leverages image context as a signal to dynamically guide the matching process
- Integrating four deep adaptive or guided filters into four existing 2D or 3D convolutional stereo networks

3. Deep Adaptive Filtering

- SABF
- Embedding learning
- > SABF filter weights K

DFN

$$G(u, v) = \mathcal{F}_{\theta}^{(u,v)}(\mathbf{x}_B(u, v))$$

- \triangleright Filters F_{θ} are dynamically generated on input x_A
- $\succ F_{\theta}$ are applied to another input x_{B}

 $\mathbf{y}_i = \sum_{i} K^{pac}(\mathbf{f}_i, \mathbf{f}_j) \mathbf{W}[\mathbf{p}_i - \mathbf{p}_j] \mathbf{x}_i + \mathbf{b}$ • PAC

> PAC modifies convolution filter W by multiplying it with a position-specific filter *K*

SGA

> SGA aggregates the cost volume over the entire image pixels and each manner from pixel **p** - **r** to **p** in the direction **r**

SGA Module

 $C'_{d-1}(\mathbf{p}-r)$ $C'_{d}(\mathbf{p}-r)$ $C'_{d+1}(\mathbf{p}-r)$

$C'(\mathbf{p}, d) = \max_{\mathbf{r}} C'_{\mathbf{r}}(\mathbf{p}, d)$

4. Experimental Results

Network Inference Runtime (ms) Comparison

Filters	DispNetC	PSMNet	GANet	GCNet
W/O	18.35	315.57	1894.70	146.83
SABF	24.32	563.42	2488.72	379.37
DFN	28.33	432.32	2041.53	255.20
PAC	25.34	514.91	2383.44	334.73
SGA	489.60	823.00	-	655.18

Evaluation on Virtual KITTI 2 Validation Set Val-S6

	Filtore	DispNetC		PSMNet		GANet		GCNet	
	Filters	EPE(px)	≥3 px	EPE(px)	≥3 px	EPE(px)	≥3 px	EPE(px)	≥3 px
	W/O	0.70	3.12	0.48	1.96	0.30	1.0563	0.59	2.25
	SABF	0.69	3.00	0.44	1.73	0.28	0.97	0.56	2.23
	DFN	0.599	2.791	0.39	1.69	0.29	1.0561	0.55	2.14
	PAC	0.603	2.96	0.52	1.98	0.35	1.47	0.73	2.99
	SGA	0.607	2.794	0.42	1.71	-	-	0.53	2.29

Evaluation on KITTI 2015 Validation Set

Filtore	DispNetC		PSMNet		GANet		GCNet	
Filters	noc	all	noc	all	noc	all	noc	all
W/O	2.59	3.02	1.46	1.60	0.97	1.10	2.06	2.64
SABF	2.26	2.63	1.28	1.40	1.07	1.17	1.76	2.10
DFN	2.37	2.78	1.23	1.34	0.99	1.11	1.70	2.08
PAC	2.38	2.72	1.29	1.48	1.13	1.23	1.71	2.03
SGA	1.90	2.18	1.17	1.32	-	-	1.69	1.91

Qualitative Results: Input/Baselines/Ours

PSMNet VS PSMNet+DFN on VKT2 validation set

GCNet VS GCNet+SGA on VKT2 validation set

DispNetC VS DispNetC+SABF on KT15 validation set

GANet VS GANet+PAC on KT15 validation set

