GENERATIVE ADVERSARIAL NETWORK

-- SX

CLASSIFICATIONS & USAGE

- Vanllia GAN
 - Black-white pictures
- Deep Convolutional GAN
 - Colored Pictures (three channals)
- Semi-supervisored Learning
 - Technique in which both labeled and unlabeled data are used to train a classifier

- GANs are composed of two components, a generator and a discriminator.
- The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created.
- The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

ALGORITHMS

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- · Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- · Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Reference paper:

- https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
- https://github.com/uclaacmai/Generative-Adversarial-Network-Tutorial