Лабораторная работа № 5.

Текст программы (задание 17):

```
1.
     #include <iostream>
2.
     #include <cmath>
3.
4.
     struct Point {
5.
       double x;
       double y;
6.
7.
       Point() {
8.
         x = 0.0;
9.
         y = 0.0;
11.
12.
       Point(double newX, double newY) {
13.
         x = newX;
14.
         y = newY;
       }
15.
16. \ \ \};
17.
     double module(const Point &first, const Point &second) {
18.
       return sqrt(std::pow(first.x - second.x, 2) + std::pow(first.y - second.y,
19.
     2));
20.
21. | }
22.
23.
     void input(Point &first, Point &second, Point &third) {
       std::cout << "Input first point in format: x y\n";
24.
       std::cin >> first.x >> first.y;
25.
       std::cout << "Input second point in format: x y\n";
26.
27.
       std::cin >> second.x >> second.y;
       std::cout << "Input third point in format: x y\n";
28.
       std::cin >> third.x >> third.y;
29.
30. | }
31.
32.
     double calculate(const Point &first, const Point &second, const Point
     &third) {
33.
```

```
double a = module(first, second);
34.
35.
       double b = module(third, second);
36.
       double c = module(first, third);
       double halfPerimeter = (a + b + c) / 2;
37.
       return sqrt(halfPerimeter * (halfPerimeter - a) * (halfPerimeter - b) *
38.
     (halfPerimeter - c));
39.
40. }
41.
42. int main() {
43.
       Point a, b, c;
       input(a, b, c);
44.
45.
       std::cout << calculate(a, b, c);</pre>
46.
       return 0;
47. | }
```

Оценка характеристик программы

Характеристика	Количество с учётом сложности			Итого
	Низкая	Средняя	Высокая	VIIOIO
Внешние вводы	$3 \cdot 3 = 9$	$0 \cdot 4 = 0$	$0 \cdot 5 = 0$	9
Внешние выводы	$5 \cdot 4 = 20$	$0 \cdot 5 = 0$	$0 \cdot 7 = 0$	20
Внешние запросы	$0 \cdot 3 = 0$	$0 \cdot 4 = 0$	$0 \cdot 6 = 0$	0
Внутренние	$0 \cdot 7 = 0$	$0 \cdot 10 = 0$	$0 \cdot 15 = 0$	0
логические файлы				
Внешние				
интерфейсные	$0 \cdot 5 = 0$	$0 \cdot 7 = 0$	$0 \cdot 10 = 0$	0
файлы				
Общее количество: 29				

Теперь определим значения коэффициентов k_i :

- 1. Какое влияние имеет наличие средств передачи данных? Случайное $k_1=1$;
- 2. Какое влияние имеет распределённая обработка данных? Случайное $k_2=1$;
- 3. Какое влияние имеет распространённость используемой аппаратной платформы?

Случайное $k_3 = 1$;

- 4. Какое влияние имеет критичность к требованиям произовдительности и ограничению времени ответа? Случайное $k_4=1$;
- 5. Какое влияние имеет частота транзакций? Случайное $k_5=1$;
- 6. Какое влияние имеет ввод данных в режиме реального времени?

Основное $k_6 = 5$;

7. Какое влияние имеет эффективность работы конечного пользователя?

Случайное $k_7 = 1$;

8. Какое влияние имеет оперативное обновление локальных файлов в режиме реального времени?

Случайное $k_8 = 1$;

9. Какое влияние имеет скорость обработки данных(вычислений)?

Случайное $k_9 = 1$;

10. Какое влияние имеют количество и категория пользователей?

Случайное $k_{10} = 1$;

- 11. Какое влияние имеет лёгкость инсталляции? Случайное $k_{11}=1$;
- 12. Какое влияние имеет лёгкость эксплуотации? Случайное $k_{12}=1$;
- 13. Какое влияние имеет разнообразие условий примменения?

Случайное $k_{13} = 1$;

14. Какое влияние имеет простота внесения изменений? Случайное $k_{14}=1$;

Тогда сумма будет равна:

Теперь рассчитаем величина функциональных указателей:

$$FP = F \cdot (0.65 + 0.01 \cdot \sum_{i} k_i) = 29 \cdot (0.65 + 0.01 \cdot 18)$$

= 24.07

Теперь выполним расчёты для модулей:

Вот только модуль-то один, и он реализует подсчёт площади треугольника, значит сила его связанности 10

Вывод: сила сцепления 10, походу программа хорошая, а FP довольно низок, что так же говорит о том какой я молодец