The Move package

an R package for animal movement data

currently developed by Bart Kranstauber, Kamran Safi, and Marco Smolla

open source R package developed for Movebank database and Movebank data

available on **r-forge** (r-forge.r-project.org) will be available on **CRAN** when finishing beta phase

How to use the Men package?

import movement data

(e.g. from GPS, ARGOS, etc. logger)

analyze individual or a group of animals (e.g. travel distance, average speed, individual differences,

visualize movement data

utilization distribution, etc.)

(plot the utilization distribution, and/or add the track/s and contour lines)

everyone, it's open source

especially interesting for

-(computational) ecology

-conservation

What is the structure of the Merice package?

main files

store and process study information, location, timestamps, etc.

raster calculation and dynamic Brownian

Bridge

access Movebank database from within R

earth movers distance

WebImport.R

emd.R

Max Planck Institute for Ornithology

Vogelwarte Radolfzell

What is the structure of the Me package?

object classes

Move classes DBBMM classes

What is the structure of the Me package?

object classes

Move classes

DBBMM classes

What is the structure of the Merice package?

object classes

Move classes

DBBMM classes

What is the structure of the Me package?

object classes

Move classes DBBMM classes

stores
the raster
brownian bridge variance

functions

Move class related

import

```
r e
```

move(x, tz, proj)

```
data <- move(x="leroy_fisher_LaPoint.csv", proj=CRS("+proj=longlat"), tz="GMT")</pre>
```


move(x, y, time, data, tz, proj)

movestack(x, tz, proj)

moveStack(x="~/BCI Ocelot.csv")

functions

Move class related

analyse

n.locs(x)

[1] 89 ##number of locations

time.lag(x)

[1] 3004 6751 33321 56306 16 3929 847 21144 28891 9885 4543 6810 150 [13]17106 277 91 973 ##time differences between fixes

summary(x)

functions

Move class related

visualize

```
spTransform(x, CRSobject)

data_ad <- spTransform(data_ll, center=TRUE,CRSobj="+proj=aeqd") ##change projection</pre>
```

lines(x, add, ...)
lines(data, add=T, col="black") ##plot track as lines

```
plot(x, add, google, maptype, ...)

plot(test, google=T, maptype="satellite", col="white") ##plot track, e.g. on a map
```


functions

DBBMM class related

create

brownian.bridge.dyn(object,raster=1,dimSize=10, location.error=23, margin=11,
time.step=NULL, window.size=31, ext=0.25, ...)

Move	missing	missing	use default values
Move	numeric	missing	set cell size
Move	missing	numeric	cell size largest dimension
Move	RasterLayer	missing	use a raster

for MoveStacks a RasterLayer is calculated, that includes all tracks

functions

groups (stack)

DBBMM class related

visualize

plot(x, y, google)

plot(x=dbbmm, y=data, google=TRUE)
lines(testtest,add=T,col="black") ##plot the raster values an add a track

contour(x, add, ...)

contour(p, levels=c(.4,.9), plot=TRUE) ##plot contour lines at vertain levels
cnt <- contour(p, levels=c(.2,.75), plot=FALSE) ##store contour as variable</pre>

functions

individuals

groups (stack)

DBBMM class related

analyze

outerProbability(x, border)

##calculates the probabilities at the border of the raster

summary(x)

functions

browse Movebank

movebankLogin (username, password)
getMovebankStudies (...,login)
searchMovebankStudies (x, login)
getMovebankStudy (study, login)
getMovebankID (study, login)
getMovebankSensors (study, login)
getMovebankSensorAttributes (study, login)
getMovebankAnimals (study, login)
getMovebankData (study, login, moveObject)

Bart Kranstauber, Kamran Safi, and Marco Smolla

