Brushing the Hairs of Transcendental Functions

Willie Rush Lim

Graduate Student Seminar

9 October 2019

Escaping set of polynomials (in black)

what do we know about the topology of I(f)?

what do we know about the topology of I(f)?

• $I(f) \neq \emptyset$.

what do we know about the topology of I(f)?

- $I(f) \neq \emptyset$.
- If $f \in \mathcal{B}$, then I(f) is nowhere dense.

what do we know about the topology of I(f)?

- $I(f) \neq \emptyset$.
- If $f \in \mathcal{B}$, then I(f) is nowhere dense.
- If $f \in \mathcal{B}$, then $J(f) = \partial I(f) = \overline{I(f)}$.

Theorem (Rempe-Gillen, Schleicher, '11)

If $f \in \mathcal{B}$ has finite order, then

- any $z \in I(f)$ can be joined to ∞ by a path in I(f),
- each component of J(f) is homeomorphic to an infinite ray.

$$f^{-1}(\bar{W}) = \{ \operatorname{Re} z \ge 3 \}$$

$f(z)=z^2e^{-z^2}$

$f(z) = \frac{\sin z}{z}$

Theorem (Baranski, Jacque, Rempe-Gillen, '12)

If a disjoint type $f \in \mathcal{B}$ has finite order, then J(f) is ambiently homeomorphic to a straight brush.

Theorem (Baranski, Jacque, Rempe-Gillen, '12)

If a disjoint type $f \in \mathcal{B}$ has finite order, then J(f) is ambiently homeomorphic to a straight brush.

Corollary

The set of endpoints E of J(f) is totally separated, but $E \cup \{\infty\}$ is connected.

Thank you.