WHAT IS CLAIMED IS:

to 44.0 wt% of Ni.

1	1. A field emission display, comprising:
2	a first substrate;
3	an electron emission assembly arranged on said first substrate;
4	a second substrate arranged a predetermined distance from said first substrate, said first and
5	second substrates forming a vacuum space;
6	an illumination assembly arranged on said second substrate, said illumination assembly
7	being illuminated by electrons emitted from said electron emission assembly; and
8	a mesh grid arranged above said electron emission assembly.
1	2. The field emission display of claim 1, wherein said mesh grid comprises a metal.
1	3. The field emission display of claim 1, wherein said mesh grid comprises one of
2	stainless steel, invar, and an iron-nickel alloy.
1	4. The field emission display of claim 3, wherein the iron-nickel alloy comprises 2.0 to 10.0 wt% of Cr.
1	5. The field emission display of claim 3, wherein the iron-nickel alloy comprises 40.0

- 1 6. The field emission display of claim 3, wherein the iron-nickel alloy comprises 0.2 to 0.4 wt% of Mn, 0.7 wt% or less of C, and 0.3 wt% or less of Si.
- 7. The field emission display device of claim 1, wherein the thermal expansion coefficient of said mesh grid is in the range of 9.0 x 10⁻⁶/°C to 10.0 x 10⁻⁶/°C.
- 1 8. The field emission display device of claim 1, wherein electron emission assembly comprises a cathode and a gate and an electron emission source.
- 1 9. The field emission display device of claim 9, wherein said gate is arranged on an upper side of said cathode.
 - 10. The field emission display device of claim 9, wherein the gate is arranged on a lower side of said cathode.

1

2

1

2

1

2

- 11. The field emission display device of claim 1, wherein an intermediate material is arranged between said electron emission assembly and said mesh grid.
- 12. The field emission display device of claim 1, wherein said intermediate material comprises an insulating material.

1 13. The field emission display device of claim 12, wherein said intermediate material 2 comprises a resistive material. 1 14. The field emission display device of claim 1, further comprising a focusing electrode arranged on said mesh grid. 2 15. 1 A field emission display device, comprising: 2 a first substrate; 3 an electron emission assembly arranged on said first substrate; a second substrate arranged a predetermined distance from said first substrate, said first and second substrates forming a vaccum assembly; 5 an illumination assembly arranged on said second substrate, said illumination assembly 6 being illuminated by electrons emitted from said electron emission assembly; and 7 a mesh grid arranged above said electron emission assembly; 8 9 wherein said mesh grid is bonded to said electron emission assembly by a frit. 16. A method of manufacturing a field emission display, the method comprising: 1 providing a first substrate; 2 arranging an electron emission assembly on said first substrate; 3 arranging a second substrate a predetermined distance from said first substrate to form a vacuum space with said first and second substrates; 5

6 arranging an illumination assembly on said second substrate, and illuminating said 7 illumination assembly with electrons emitted from said electron emission assembly; and arranging a mesh grid above said electron emission assembly. 8 17. The method of claim 16, further comprising forming said mesh grid of a metal. 1 18. 1 The method of claim 16, further comprising forming said mesh grid of one of 2 stainless steel, invar, and an iron-nickel alloy. 19. The method of claim 16, further comprising forming a cathode and a gate and an 1 2 electron emission source in said electron emission assembly. 20. The method of claim 19, further comprising forming said gate on one of an upper 1 an lower side of said cathode. 2 21. The method of claim 16, further comprising forming an intermediate material 1 2 between said electron emission assembly and said mesh grid.

The method of claim 21, further comprising forming said intermediate material of

22.

an insulating material.

1

2

1	23. The method of claim 21, further comprising forming said intermediate material of
2	a resistive material.
1	24. The method of claim 16, further comprising forming a focusing electrode on said
2	mesh grid.
1	25. A method of manufacturing a field emission display device, the method
2	comprising:
3	providing a first substrate;
4	arranging an electron emission assembly on said first substrate;
5	arranging a second substrate a predetermined distance from said first substrate to form a
6	vaccum assembly with said first and second substrates;
7	arranging an illumination assembly on said second substrate and illuminating said
8	illumination assembly with electrons emitted from said electron emission assembly;
9	arranging a mesh grid above said electron emission assembly; and
10	bonding said mesh grid to said electron emission assembly with a frit.