SQL ASSIGNMENT-1

SUBMITED BY KALAIYARASAN DASS

Task 1: Understanding the data in hand

1. Describe the data in hand in your own words.

→ The dataset was provided in "csv" format thus it's cleaned before importing into SQL workbench.

→In the given Database of Superstore, in all there are 5 tables.

Cust_dimen, market_fact, orders_dimen, prod_dimen and shipping_dimen.

Cust_dimen: table provides the overall information about the customers.

Prod_dimen: table provides the information about the categories and subcategories of products.

Shipping_dimen: table provides the shipping information about the orders.

Orders_dimen: table provides the dates of orders received with their priorities.

Market_fact: shows the detail of sales along with profit, shipping cost, discount and product base margin.

2. Identify and list the Primary Keys and Foreign Keys for this dataset provided to you.

Table Name	Primary Key	Foreign Key
Cust_dimen	Cust_id	NA
Market_fact	NA	Cust_id, Ord_id, Prod_id, Ship_id
Orders_dimen	Ord_id	NA
Prod_dimen	Prod_id	NA
Shipping_dimen	Ship_id	Order_id

Task 2: Basic and advance analysis

- 1. Write a query to display the Customer_Name and Customer Segment using alias name "Customer Name", "Customer Segment" from table Cust dimen.
- → SELECT customer_name as 'Customer Name', customer_segment as 'Customer Segment' from cust_dimen;
- 2. Write a query to find all the details of the customer from the table cust dimen order by desc.
- →SELECT * FROM cust_dimen ORDER BY cust_id DESC;
- 3. Write a query to get the Order ID, Order date from table orders dimen where 'Order Priority' is high.
- →SELECT order_id, order_date from orders_dimen where order_priority='high';
- 4. Find the total and the average sales (display total_sales and avg_sales)
- →SELECT sum(sales) as total_sales, avg(sales) as avg_sales from market_fact;
- 5. Write a query to get the maximum and minimum sales from market_fact table.
- →SELECT max(sales) as 'maximum sales', min(sales) as 'minimum sales' from market_fact;
- 6. Display the number of customers in each region in decreasing order of no_of_customers. The result should contain columns Region, no_of_customers.
- →SELECT region, COUNT(*) AS no_of_customers FROM cust_dimen GROUP BY region ORDER BY no_of_customers DESC;
- 7. Find the region having maximum customers (display the region name and max(no_of_customers).

- → SELECT region, COUNT(*) AS no_of_customers FROM cust_dimen GROUP BY region HAVING no_of_customers >= ALL (SELECT COUNT(*) AS no_of_customers FROM cust_dimen GROUP BY region);
- 8. Find all the customers from Atlantic region who have ever purchased 'TABLES' and the number of tables purchased (display the customer name, no_of_tables purchased).

- 9. Find all the customers from Ontario province who own Small Business. (display the customer name, no of small business owners). → select customer_name, COUNT(*) as no_of_small_business_owner from cust_dimen where province='ontario' and customer_segment='small business';
- 10. Find the number and id of products sold in decreasing order of products sold (display product id, no_of_products sold)

 → SELECT

```
prod_id AS product_id, COUNT(*) AS no_of_products_sold
FROM
market_fact
GROUP BY prod_id
ORDER BY no_of_products_sold DESC;
```

- 11. Display product Id and product sub category whose product category belongs to Furniture and Technology. The result should contain columns product id, product sub category.
- →SELECT prod_id, product_sub_category from prod_dimen where product_category='furniture' OR product_category='technology';
- 12. Display the product categories in descending order of profits (display the product category wise profits i.e. product_category, profits)?

```
→SELECT

p.product_category, SUM(m.profit) AS profits

FROM

market_fact m

INNER JOIN

prod_dimen p ON m.prod_id = p.prod_id

GROUP BY p.product_category

ORDER BY profits DESC;
```

13. Display the product category, product sub-category and the profit within each subcategory in three columns.

```
→SELECT

p.product_category, p.product_sub_category, SUM(m.profit) AS profits

FROM

market_fact m

INNER JOIN

prod_dimen p ON m.prod_id = p.prod_id

GROUP BY p.product_category, p.product_sub_category;
```

- 14. Display the order date, order quantity and the sales for the order. → select a.order_date, b.order_quantity ,b.sales from orders_dimen a INNER JOIN market_fact b ON a.ord_id=b.ord_id;
- 15. Display the names of the customers whose name contains the i) Second letter as 'R' ii) Fourth letter as 'D'

 →SELECT customer_name FROM cust_dimen WHERE customer_name LIKE '_r_d%';
- 16. Write a SQL query to make a list with Cust_Id, Sales, Customer Name and their region where sales are between 1000 and 5000.

```
→SELECT b.cust_id, b.customer_name, b.region, a.sales FROM cust_dimen b INNER JOIN market_fact a WHERE b.cust_id=a.cust_id AND a.sales BETWEEN 1000 AND 5000;
```

- 17. Write a SQL query to find the 3rd highest sales. → SELECT sales FROM market_fact ORDER BY sales DESC LIMIT 2, 1;
- 18. Where is the least profitable product subcategory shipped the most? For the least profitable product sub-category, display the region-wise no_of_shipments and the profit made in each region in decreasing order of profits (i.e. region, no_of_shipments, profit_in_each_region)

Note: You can hardcode the name of the least profitable product subcategory.

```
→ SELECT
```

```
c.region, COUNT(distinct s.ship_id) AS no_of_shipments, SUM(m.profit) AS profit_in_each_region
```

FROM

market fact m

INNER JOIN

cust_dimen c ON m.cust_id = c.cust_id

INNER JOIN

shipping_dimen s ON m.ship_id = s.ship_id

INNER JOIN

prod_dimen p ON m.prod_id = p.prod_id

WHERE

(

p.product_sub_category IN (SELECT p.product_sub_category FROM market_fact m INNER JOIN prod_dimen p ON m.prod_id = p.prod_id GROUP BY p.product_sub_category HAVING SUM(m.profit) <= ALL

SELECT

SUM(m.profit) AS profits

FROM

market fact m

INNER JOIN

```
prod_dimen p ON m.prod_id = p.prod_id
    GROUP BY p.product_sub_category
)
GROUP BY c.region
ORDER BY profit_in_each_region DESC;
```