

Mathématiques et Calcul 1

Contrôle continu n°1 — 22 octobre 2018 durée: 1h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Tous les exercices sont indépendants.

Exercice 1.

- (1) On considère les deux nombres complexes $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 + i$. Calculer, sous forme algébrique, le nombre complexe $z = \frac{z_1}{z_2}$.
- (2) Calculer le module et un argument de z_1 , puis le module et un argument de z_2 .
- (3) En déduire l'écriture de z sous forme exponentielle.
- (4) En déduire les valeurs exactes de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 2.

- (1) Déterminer les racines carrées de 8 6i.
- (2) Résoudre dans \mathbb{C} l'équation $z^2 + (1+i)z 2 + 2i = 0$. On donnera les solutions sous forme algébrique.

Exercice 3. On considère le polynôme $P = X^3 - X^2 + 4X + 6$.

- (1) Trouver une racine évidente de P, et expliciter la factorisation de P qui en résulte.
- (2) En déduire l'ensemble des racines (réelles et complexes) de P.

Exercice 4.

- (1) Soit θ un réel qui n'est pas multiple de 2π . Calculer $S(\theta) = \sum_{k=0}^{2019} \cos(k\theta)$.
- (2) Que vaut $S(\frac{\pi}{4})$?

Exercice 5. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=1$ et la récurrence

$$\forall n \in \mathbb{N}^*, \quad u_{n+1} = u_n \left(1 - \frac{1}{4n^2} \right).$$

- (1) Montrer par récurrence que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
- (2) Montrer que (u_n) est décroissante.
- (3) En déduire que (u_n) converge vers une limite L. Quelle inégalité vérifie L?

Exercice 6. Donner un équivalent (le plus simple possible) de chacune des suites définies ci-dessous, en justifiant votre réponse :

(1)
$$u_n = \frac{n^7 + n^3 e^{2n} + n^2 \sin(n^4)}{n^6 + 2n^3 + 1}$$

(2)
$$v_n = \frac{2(n!) + n^n}{n + \log(n^3)}$$

(3)
$$w_n = \sqrt{n^3 + n\sqrt{n}\log(n)} - \sqrt{n^3}$$

Exercice 7. On considère la suite $(u_n)_{n\geqslant 1}$ définie par

$$\forall n \geqslant 1, \quad u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

- (1) Montrer que $\forall n \geqslant 1, \ u_n \geqslant \sqrt{n}$.
- (2) En déduire que $u_n \to +\infty$.
- (3) On définit deux suites $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ par

$$b_n = u_n - 2\sqrt{n}$$
 et $a_n = b_n - \frac{1}{\sqrt{n}}$.

Montrer que (b_n) est décroissante, puis que (a_n) est croissante.

(4) Montrer que les suites (a_n) et (b_n) sont adjacentes, et en déduire qu'il existe un réel L tel que

$$u_n = 2\sqrt{n} + L + \underset{n \to +\infty}{o}(1).$$

(5) Donner un équivalent (le plus simple possible) de u_n .