

Challenges

- How do we program big data?
- What are the tools?
- What are the abstractions?
- How do we debug, visualize, tune big data?

Some big data infrastructures

Hadoop

MapReduce

XI0

RHIPE

Pig

Hive

Flume/Java

4 Myths

- Big data is big.
- Big data is speed.
- Big data is storage.
- Big data is hard.

Requirements

- Scale up vs. Scale down
- Rapid feedback, interaction with data, partial results
- Familiarity, ease of development
- Ease of deployment
- Portability and heterogeneity
- Robustness
- Efficiency

A tale of two communities

- **Computer Scientists**: Fixed programs, transient data. i.e. there will always be another input
- **Data Scientists**: Fixed data, transient programs. i.e. there will always be another query.

This dichotomy leads to a different world view in terms of design.
 In CS, languages/tools are built around static code abstractions. In DS, everything is dynamic and lightweight.

High-level dynamic languages

- Programming is simplified by the language virtual machine
 - memory management
 - threading
 - platform heterogeneity
- At a cost
 - Performance
 - Footprint

ReactoR...

- ... create an open source platform for data analytics at scale
- ... built in collaboration by Purdue, INRIA, Stanford & Oracle

ReactoR Overview

Mhy R?

- ... language for data analysis and graphics
- ... open source
- ... books, conferences, user groups
- 4K+ packages
- ... 3mio users

Scripting data

read data into variables make plots compute summaries more intricate modeling develop simple functions to automate analysis

Why Java?

- ... portable
- ... supports heterogenous platforms
- ... concurrent
- ... robust and stable
- ... fast enough
- ... books, conferences, user groups
- ... thousands of packages
- ... millions of developers

Scaling up...

Current limitations of R on a single node:

- Speed
- Memory footprint
- Limited support for concurrency

FastR status

FastR is a new R virtual machine written in Java

- Aims for compatibility & completeness
- Abstract syntax tree interpreter (80% complete for core language)
- LLVM JIT compiler (30% complete)
- Substrate VM (10% complete)

02

O2 is self-organizing computational cloud for analytics.

- Written in Java for portability and ease of deployment
- Provides BigVectors as arraylets that can be distributed, moved, and swapped to disk
- Provides a Distributed Fork/Join framework for both local and remote concurrent computation

Distributed F/J

```
for (int i : ntrees)
  trees[i] = new Tree(_data,maxDepth,...);

DRemoteTask.invokeAll(trees);

print("Trees done in "+ timer);
```

Single node Random Forest (O2 v Fortran/R)

Tree build time

data	rows	size	avg tree sz	F	J
iris	.15K	8KB	8	2ms	8ms
chess	196K	3.7MB	8	140ms	200ms
stego	7.5K	11MB	557	440ms	2.4s
kaggle/cs	100K	4.3MB	5321	420ms	1s
kaggle/as	580K	1.7GB	45894		25s
covtype	8.7M	72MB	95393		3s

Distributed random forest in 3K lines of Java on O2

Conclusions

- Scaling data analytics is about making it easier to turn idea into software
- It requires an integrated infrastructure that leverage advances in programming languages and compilers technology with a deep understanding of the domain.
- Interactive exploration and time to solution are the most important factors