ECONOMIA ED ORGANIZZAZIONE AZIENDALE

a.a. 2015/2016 **9/06/2016**

COGNOME E NOME	NUMERO DI MATRICOLA		

Esercizio 1

In un'azienda ci sono tre reparti produttivi – A, B e C – che sostengono costi indiretti rispettivamente per 200.000 €, 375.000 € e 250.000 €. I reparti A e B contribuiscono entrambi alla produzione sia del prodotto X che del prodotto Y, mentre il reparto C solo alla produzione di Y. All'interno di A si sostengono costi per manodopera diretta pari a 50.000€ (20.000€ per X e 30.000€ per Y) e costi per materie dirette pari a 50.000 € (40.000€ per X e 10.000 € per Y). All'interno di B si sostengono costi per manodopera diretta pari a 75.000 € (25.000 € per X e 50.000€ per Y) e costi per materie dirette pari a 30.000€ (20.000€ per X e 10.000€ per Y). All'interno di C si sostengono costi per manodopera diretta pari a 60.000€ e costi per materie dirette pari a 23.000.

- 1. Calcolare il costo unitario di X e di Y tramite l'uso di un sistema a centri di costo usando la manodopera diretta come base di allocazione (la produzione è di 1.000 unità di X e 2.000 unità di Y)
- 2. Posizionare ciascuno dei due valori appena trovati in corrispondenza dei due punti riportati nella figura qui sotto (da copiare sul foglio protocollo), mettendo quindi il valore minore in corrispondenza del cerchio bianco e quello maggiore in corrispondenza di quello nero:

Senza fare i calcoli, si dica dove si trovano, rispetto ai cerchi già disegnati in figura, i nuovi valori del costo di X (▲) e di Y (■) che si otterrebbero qualora si utilizzasse un sistema a basi aziendali, invece che un sistema a centri di costo (di cui al punto 1). Giustificare la risposta

Esercizio 2

L'azienda WebTry ha sviluppato l'anno scorso il software E-vendor per il commercio elettronico (lo sviluppo è costato 30.000 €). Attualmente l'azienda sta valutando la possibilità di utilizzare il proprio software per l'implementazione di un servizio di traduzioni on-line.

Per sviluppare il servizio è necessario l'acquisto:

- di una piattaforma web per 60.000 € (ammortamento lineare in 3 anni)
- di strumentazioni (computer ecc.) per 12.000 € (politica di ammortamento accelerata 50% il primo anno e 25% il secondo e il terzo)
- secondo lo studio di fattibilità, costato 10.000 €, l'investimento comporterebbe
 - costi per il personale pari a 30 € per pagina tradotta
 - costi generali pari a 5 € per pagina tradotta
 - costi di aggiornamento della piattaforma web pari a 5.000 € all'anno
 - ricavi pari a 60 € per pagina tradotta
 - una domanda dal mercato pari a 1200 pagine al primo anno e 1500 al secondo e al terzo.

Sapendo che:

- la piattaforma web avrà un valore di mercato al terzo anno pari a 10.000 €
- i clienti della WebTry pagano generalmente a un mese (la domanda mensile è pari ad ½ della domanda annua)
- il costo del capitale è pari al 15 % annuo
- l'aliquota fiscale è pari al 40 %

Valutare la convenienza dell'introduzione del nuovo servizio utilizzando il criterio dell'NPV.

Soluzione esercizio 1

I costi sono riportati nella tabella seguente:

	Reparto A (O	H = 200.000	Reparto B (O	H = 375.000	Reparto C (OH = 250.000)	
	X	Y	X	Y	Y	
MdO diretta	20.000	30.000	25.000	50.000	60.000	
Materie dirette	40.000	10.000	20.000	10.000	23.000	

i) Sistema a centri di costo

Centro di costo A

Coefficiente di allocazione_A =
$$\frac{200.000}{20.000 + 30.000} = 4$$

$$OH_{A\to X} = 4 \cdot 20.000 = 80.000$$

$$OH_{A \to Y} = 4 \cdot 30.000 = 120.000$$

Centro di costo B

Coefficien te di allocazione_B =
$$\frac{375.000}{25.000 + 50.000} = 5$$

$$OH_{B\to X} = 5 \cdot 25.000 = 125.000$$

$$OH_{B \to Y} = 5 \cdot 50.000 = 250.000$$

Centro di costo C

OH_{C→Y}: 250-000

Pertanto i costi di X e Y sono i seguenti:

	X	Y
Materie dirette	60.000	43.000
Manodopera diretta	45.000	140.000
OH_A	80.000	120.000
OH_B	125.000	250.000
OH_C		250.000
Costo totale	310.000	803.000

Quindi a livello unitario X costa 310 e Y costa 401,5.

Punto 2:

Sono possibili anche altre soluzioni purché però ▲ sia posizionato a destra di o, e ■ a sinistra di •

Soluzione esercizio 2

Sviluppo software: costo affondato Studio di fattibilità: costo affondato

NCF OPERATIVO

Ricavi

Anno 1: $1.200 \cdot 60 = 72.000$ Anno 2: $1.500 \cdot 60 = 90.000$ Anno 3: $1.500 \cdot 60 = 90.000$

Costi monetari

Anno 1: $1.200 \cdot 35 + 5.000 = 42.000 + 5.000 = 47.000$ Anno 2: $1.500 \cdot 35 + 5.000 = 52.500 + 5.000 = 57.500$ Anno 3: $1.500 \cdot 35 + 5.000 = 52.500 + 5.000 = 57.500$

<u>Ammortamenti</u>

Piattaforma Web:
$$\frac{60.000}{3}$$
 = 20.000 €/anno

Strumentazioni:

Anno 1
$$\frac{12.000}{2} = 6.000$$

Anni 2 e 3 $\frac{12.000}{4} = 3.000$

Ammortamenti totali annuali: Anno 1 20.000+6.000 = 26.000 Anni 2 e 3 20.000+3.000 = 23.000

CAPITALE FISSO:

$$\Delta CF_0 = 60.000 + 12.000 = 72.000$$

 $\Delta CF_3 = V_R - (V_R - V_L) \cdot \alpha = 10.000 - (10.000 - 0) \cdot 0,4 = 6.000$

CAPITALE CIRCOLANTE:

$$\Delta CC_1 = \frac{1}{12} \cdot 72.000 = 6.000$$

$$\Delta CC_2 = \frac{1}{12} \cdot 90.000 - \frac{1}{12} \cdot 72.000 = 7.500 - 6.000 = 1.500$$

$$\Delta CC_3 = \frac{1}{12} \cdot 90.000 - \frac{1}{12} \cdot 90.000 = 0$$

$$\Delta CC_4 = -\frac{1}{12} \cdot 90.000 = -7.500$$

	NCF _{on}						- (ΔCC)	ΔCF		
t	R_t	C_{t}	$(R_t-C_t)\cdot (1-\alpha)$	Amm	Amm· α	NCFon		I_{t}	NFC_t	$\mathrm{DCF}_{\mathrm{t}}$
0								- 72.000	-72.000	-72.000,00
1	72.000	47.000	15.000	26.000	10.400	25.400	- (6.000)		19.400	16.869,57
2	90.000	57.500	19.500	23.000	9.200	28.700	- (1.500)		27.200	20.567,11
3	90.000	57.500	19.500	23.000	9.200	28.700	0	6.000	34.700	22.815,81
4							-(-7.500)		7.500	4.288,149
•			_	•						
NPV										- 7.459,36