This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出顯公開番号

特關平7-115770

(43)公開日 平成7年(1995)5月2日

(51) Int.Cl.8

鏈別記号

庁内整理番号

FΙ

技術表示箇所

H02M

7/155 7/219 C 9180-5H

9180-5H

審査耐求 未簡求 請求項の数3 OL (全 7 頁)

(21)出顯器号

特頤平5-259574

(71) 出願人 000003078

株式会社東芝

神奈川県川岡市幸区堀川町72番地

平成5年(1993)10月18日 (22) 出願日

(72)発明者 芝田 光博

北海道札幌市中央区北三条西1 株式会社

東芝北海道支社内

(72) 発明者 細田 博美

東京都府中市東芝町1番地 株式会社東芝

府中工場内

(74)代理人 弁理士 則近 窟佑

(54) 【発明の名称】 電力変換装置の制御方式

(57) 【要約】

【目的】本発明は、負荷電力の急変時にもコンバータの 直流出力電圧の変動を最小限に抑制する簡単で安価な電 力変換装置の制御方式を提供することにある。

【構成】本発明は、交流電源を第1の電力変換装置によ り直流電源に変換し、この直流電源を第2の電力変換装 置により可変電源に再変換して負荷に供給する電力変換 装置の制御方式において、前記第1の電力変換装置は、 前記直流電源の電圧制御手段と、前記第1の電力変換装 置が出力する電流相当値に対する電流制御手段を備え、 前記電圧制御手段の出力に、前記直流電源の出力電圧の 時間変化率信号と前記第1の電力変換装置の出力電流相 当値と直流母線に接続されるコンデンサの静電容量相当 値から演算した補償信号を加算して前記電流制御手段の 電流基準信号とすることにより、前記直流電源電圧の過 渡変動を低減することができるので、インバータの制御 への外乱を低減でき、直流リンクを持つコンバータ,イ ンバータシステムを安定かつ高速に制御することができ る。

【特許請求の範囲】

01-10-11;16:38

【請求項1】 交流電源を、スイッチング素子により構 成された第1の電力変換装置により直流電源に変換し、 この直流電源をスイッチング素子により構成された第2 の電力変換装置により可変電源に再変換して負荷に供給 する電力変換装置の制御方式において、前記第1の電力 変換装置は、前記直流電源の電圧制御手段と、前記第1 の電力変換装置が出力する電流相当値に対する電流制御 手段を備え、前記電圧制御手段の出力に、前記直流電源 の出力電圧の時間変化率信号と前記第1の電力変換装置 の出力電流相当値と直流母線に接続されるコンデンサの 静電容量相当値から演算した補償信号を加算して前記電 流制御手段の電流基準信号とすることにより、前記直流 電源電圧の過渡変動を低減することを特徴とする電力変 換装置の制御方式。

; 栗原聖国**際特許事**務所

1

【請求項2】 第1の電力変換装置の出力電流相当値か ら、直流電源出力電圧の時間変化率とコンデンサの静電 容量相当値との乗算結果を減算して、前記第1の電力変 換装置の電流制御指令信号に対する補償信号とすること を特徴とする請求項1記載の電力変換装置の制御方式。 【請求項3】 第1の電力変換装置の直流出力を共通と して、コンデンサおよび第2の電力変換装置の少なくと も一方以上が複数個並列接続されていることを特徴とす る請求項1または請求項2記載の電力変換装置の制御方

【発明の詳細な説明】

[0001]

式。

【産業上の利用分野】本発明は、交流/直流、さらに直 流/可変電源と変換・制御を行う電力変換装置の制御方 式に関する。

[0002]

【従来の技術】交流/直流電力変換装置(以下、コンバ ータと呼ぶ)と直流/可変交流電力変換装置(以下、イ ンパータと呼ぶ) を用いて負荷装置を制御する電力変換 装置の制御装置としては、例えば交流電動機の可変速装 置や無停電電源装置をはじめとして多くの応用例があ り、既に広く実用化されている。また、一旦中間リンク 部で直流電圧源に変換する方式は、中間リンク部のコン デンサで負荷の無効電力を処理可能なことや、直流電源 部を共通母線として複数台のインバータを接続できる等 40 があった。 の利点があり、有効な電力変換装置の制御方式の一つで ある。

【0003】一般的には、上記の如き制御方式では、コ ンパータ、インバータは独立して制御されている場合が 多かったが、インバータの負荷急変に対してコンバータ の直流電圧応答が追従できず直流電圧が過渡的に変動 し、インバータの制御の外乱になったり、極端な場合に は回路部品の劣化を招くという問題があった。

【0004】このような問題を解決する最近の技術例と して、例えば特開平3-245793号公報に開示され 50 子により構成された第1の電力変換装置により直流電源

ている。この技術は図6に示すような回路構成をなして いる。同図において、1は交流電源、5は負荷装置、1 1はコンバータ、13はリアクトル、14は電流検出 器、16は増幅器、41はインパータ、50はリミッ 夕、51は電源位相検出器、52は電流指令発生回路、 53は除算器、54は乗算器4、55はインパータ制御 器、56はインバータ入力平均電流計算演算部、57は 電流検出器である。

2

【0005】上記の如き構成の従来の制御方式は、次の 如く行われる。すなわち、コンバータ11の直流出力電 圧V_D の制御をするにあたり次の二つの検出制御信号を 用いてコンバータ11の入力電流を制御している。一つ は直流出力電圧指令値VD *と直流出力電圧検出値VD とを比較し、その偏差を増幅器16で増幅してコンバー タ11の第1の入力電流指令値 Δ I p *とし、もう一つ はインバータ出力電流検出値 i u , i v に P W M 変調信 号に基づくリップル除去処理をして得られた瞬時インパ ータ入力電流信号 I DCとインバータ入力直流電圧検出値 ${f V}_{f D}$ を乗算して瞬時インバータ入力電力 ${f P}_{f L}$ を得、さら に、コンバータ入力電圧で除算してコンバータの第2の 20 入力電流指令値 I PL*とし、コンバータの第1の入力電 流指令値ΔIP *とコンバータの第2の入力電流指令値 IPL*を加算してコンバータ入力電流指令値 I*として コンバータの入力電流を制御する方式が採用されてい

【0006】この制御方式によれば、定常時には前記第 1の制御ループでのフィードバック制御により精度良 く、また過渡時には第2の制御ループでのフィードフォ ワード制御により高速に制御され、コンバータ直流出力 30 電圧の変動を低減することができる。

[0007]

【発明が解決しようとする課題】しかし、上述の従来の 制御方式においては、インバータの入力電流相当の信号 をインバータの出力電流とインバータのPWMパターン 信号とから高速で複雑な演算により求めているので、高 速な演算部が必要なこと、およびインバータが複数の場 合には各インバータからインバータ入力電流相当の信号 をコンパータへ渡し、さらに各インバータの容量に見合 った重み付け処理をしなければ実現できないという欠点

【0008】本発明は上記事情に鑑みてなされたもの で、その目的は、負荷装置、特に複数台の負荷装置へ複 数台のインバータで電力を供給する際の、負荷電力の急 変時にもコンパータの直流出力電圧の変動を最小限に抑 制する簡単でかつ安価な電力変換装置の制御方式を提供 することにある。

[0009]

【課題を解決するための手段】上記の目的を達成するた めに、本発明の請求項1は交流電源を、スイッチング素

特開平7-115770

(3)

に変換し、この直流電源をスイッチング素子により構成 された第2の電力変換装置により可変電源に再変換して 負荷に供給する電力変換装置の制御方式において、前記 第1の電力変換装置は、前記直流電源の電圧制御手段 と、前記第1の電力変換装置が出力する電流相当に対す る電流制御手段を備え、前記電圧制御手段の出力に、前 記直流電源の出力電圧の時間変化率信号と前記第1の電 力変換装置の出力電流相当値と直流母線に接続されるコ ンデンサの静電容量相当値から演算した補償信号を加算 して前記電流制御手段の電流基準信号とすることによ り、前記直流電源電圧の過渡変動を低減することを特徴 とする。また請求項2は第1の電力変換装置の出力電流 相当値から、直流電源出力電圧の時間変化率とコンデン サの静電容量相当値との乗算結果を減算して、前記第1 の電力変換装置の電流制御指令信号に対する補償信号と することを特徴とする。さらに請求項3は第1の電力変 換装置の直流出力を共通として、コンデンサおよび第2 の電力変換装置の少なくとも一方以上が複数個並列接続 されていることを特徴とする。

[0010]

【作用】本発明によると、交流/直流電力変換器に対 し、直流フィルタコンデンサを有する直流/可変電源変 換器が複数台分散接続されたシステムにおいても、特別 な付加装置を必要としないで負荷の瞬時電流相当値を演 算にて検出することができる。さらに直流電圧制御回路 の出力と加算した信号をコンバータの電流指令信号とし て、この電流指令信号に一致するようにコンバータ電流 を制御することによって、特別な付加装置を必要とせず に直流電圧の過渡変動を低減することができる。これに より、インパータの制御への外乱を低減でき、直流リン クを持つコンパータ,インバータシステムを安定かつ高 速に制御することができる。

[0011]

【実施例】以下、本発明の実施例を図について説明す る。図1は本発明の一実施例の構成図である。同図にお いて、交流電源1は第1の電力変換装置(以下コンバー タ) 2により一旦直流電源に変換され、さらに、第2の 電力変換装置 (以下インパータ) 3にて可変電圧・可変 周波数の交流電源に変換され負荷装置5に可変電力を供 給する。コンバータ2の内部構成は、第1の電力変換器 11、交流リアクトル13、交流入力の電流検出器1 4、出力直流電圧を制御する直流電圧制御回路16およ び第1の電力変換器11の制御回路15から成る。また インバータ3の内部構成は、第2の電力変換器41、直 流コンデンサ42および第2の電力変換器41の制御回 路43から成っている。インバータ3と同様のn台目の インバータ装置4が並列に接続され、それぞれのインバ ータ装置3,4に対してそれぞれ負荷装置5,6が接続 されている。なお、インパータ装置4の内部構成は第n

力変換器47の制御回路49とから成っている。

【0012】コンバータ装置2は、図4に示すように、 直流電圧の定常値を制御する直流電圧制御回路16と、 負荷に流すべき有効分電流を演算する直流負荷電流演算 回路 2 4 と、直流電圧制御回路 1 6 の出力信号 Δ I p * と直流負荷電流演算回路24の出力信号Ip *との和I sp*をコンバータの電流指令信号として電流制御を行う 電流制御回路26とから構成されている。

【0013】図2は図1の第1の電力変換装置(コンバ 10 一夕) 2の詳細な構成図である。同図において、制御回 路15の内部構成は、3相交流電源の相電圧を検出し3 相/2相変換器21にて2相電圧信号eg に変換し、ま た交流電源電流を検出して3相/2相変換器22にて2 相電流信号 is に変換して座標変換器 2 3 に入力し、 2 相電流信号 i_s からコンバータの入力電流信号 I_P を得 る。この入力電流信号 IP はコンバータ出力電流に対応 する信号であるので、コンバータ出力電流相当の信号と みなしてよい。

【0014】一方、直流母線の電圧は、電圧検出器12 により直流電圧信号VD として検出され、一つは直流電 圧制御回路16へのフィードバック信号として、もう一 つは直流負荷電流演算回路24へ入力される。

【0015】直流電圧制御回路16では、直流電圧指令 信号VD *に直流電圧定常値が一致するように積分系増 幅器による制御を行い、制御出力としてΔIp *を出力 する。また、直流負荷電流演算回路24は、図3に示す ような機能ブロックで構成されているので、直流電圧指 令信号VD *を微分したものを入力電流 Ip より減算 し、直流母線に接続される総静電容量∑Cを積算して、 後記 (1) 式に基づき直流負荷電流瞬時値を演算する。 この出力を瞬時電流指令値 Ip *とし、前記直流電圧制 御出力ΔIp *と加算し、リミッタ25を介してコンバ ータの電流指令値 I sp*とする。この電流指令値 I sp* に一致するよう電流制御回路26によってコンバータの 入力電流 $\mathbf{I}_{\mathbf{P}}$ をフィードバック制御するために、この出 力である電圧指令信号VS *を座標変換器27により交 流電源電圧に同期した交流電圧指令V_{SO}*とし、さらに PWM制御回路28を介して第1の電力変換器11を駆

【0016】ところで、コンバータ装置2は、図4に示 すように、直流電圧の定常値を制御する直流電圧制御回 路16と、負荷に流すべき有効分電流を演算する直流負 荷電流演算回路24と、直流電圧制御回路16の出力信 号Δ I p *と前記直流負荷電流演算回路24の出力信号 I_p *との和 I_{sp} *をコンバータの電流指令信号として 電流制御を行う電流制御回路26とから構成されてい る。また、直流負荷電流演算回路24は直流母線での負 荷電流の瞬時値IPLと直流母線でのコンバータ出力電流 瞬時値 lp と直流母線に接続される総静電容量の充電電 の電力変換器 4.7、直流コンデンサ 4.8 および第 n の電 50 流瞬時値 1_C は図 5 に示すような等価回路で表現でき

特開平7-115770

5

る。したがって、直流負荷電流演算回路24では次式に よりІргを演算できる。

 $[0017]I_{PL} = I_{P} - I_{C}$ $= I_P - \Sigma C \times (dV_D / dt)$... (1) ここで、ΣC:直流母線に接続される総静電容量

Vn:直流電圧瞬時値

上記 (1) 式により、総負荷電流の瞬時値 I PLが求めら れ、これをコンバータの瞬時値電流指令値 Ip *とし、 この指令値に一致するようにコンバータの出力電流IP 的にはゼロとなり、直流母線電圧は変動しない。実際に は、検出誤差や演算誤差、およびコンバータの電流制御 回路の応答遅れにより完全に負荷電流を相殺することは できないが、これは積分系の増幅器で構成した直流電圧 制御回路16の出力信号AIP *を瞬時電流指令値IP *に加算してコンバータの電流指令値 I SP*とすること

によって定常値を偏差なく制御することができる。 【0018】上述したように、本実施例によると負荷の 瞬時電流を、直流電圧の時間変化率とコンバータの出力 電流相当信号と負荷の総静電容量とから演算して求め、 さらに直流電圧制御回路の出力と加算した信号をコンバ 一夕の電流指令信号とする。この電流指令信号に一致す るようにコンバータ電流を制御することによって、イン バータとのインターフェイスや特別な付加装置を必要と せず、直流電圧の過渡変動を低減することができる。こ れにより、インバータの制御への外乱を低減でき、直流 リンクを持つコンバータ、インバータシステムを安定か つ高速に制御することが可能となる。

【0019】さらに、本発明は、交流/直流電力変換す るコンバータの出力を共通母線として、直流フィルタコ 30 24…直流負荷電流演算回路、25…リミッタ、26… ンデンサを有する複数台のインバータ群,負荷群を駆動 するシステムにおいて、特に大きな利点を得ることがで きる。すなわち、各インバータ群からの負荷電流相当の

信号をインターフェイスすることなく、総負荷の瞬時電 流を簡単な演算回路だけで求めることができ、この負荷 電流信号に基づき共通のコンバータが流すべき電流指令 を高速に補償制御できる。

[0020]

(4)

【発明の効果】以上説明したように、本発明によれば、 交流/直流電力変換器に対し、直流フィルタコンデンサ を有する直流/可変電源変換器が複数台分散接続された システムにおいても、特別な付加装置を必要としないで を流せば、直流母線のコンデンサへの充放電電流は原理 10 負荷の瞬時電流相当値を演算にて検出することができ る。これにより、直流電圧の過渡変動を低減することが でき、さらにインバータの制御への外乱を低減でき、直 流リンクを持つコンバータ、インバータシステムを安定 かつ高速に制御することが可能となる。

【図面の簡単な説明】

【図1】本発明の一実施例の構成図。

【図2】図1のコンパータの構成図。

【図3】図2の直流負荷電流演算回路の機能ブロック 図.

【図4】図1の制御部分の機能ブロック図。 20

【図5】本発明の原理を説明するための図。

【図6】従来の電力変換装置の構成図。

【符号の説明】

1…交流電源、2…第1の電力変換装置、3…第2の電 力変換装置、4…第nの電力変換装置、5…負荷装置、 6…負荷装置、11…第1の電力変換器、13…交流リ アクトル、14…電流検出器、15…コンバータ制御回 路、16…直流電圧制御回路、21…3相/2相変換回 路、22…3相/2相変換回路、23…座標変換回路、 電流制御回路、27…座標変換回路、28…PWM制御 回路。

[図3]

【図5】

01-10-11;16:38 ;栗原盟国際特許事務所

【図2】

(6)

特開平7-115770

【図4】

01-10-11:16:38 ;栗原聖国際特許事務所

