What is claimed is:

1. A compound of the Formula I:

5

10

15

20

wherein

n is 1 or 2;

A is a divalent -CH=CH-, -(C_1 - C_7 -alkyl)-Y-, -NR^d(CH₂)_t -Y-, -Y-(C_1 - C_7 -alkyl)-, -Y-NH-, -Y-NR^d(C_1 - C_6 -alkyl)-, -S-, -S(O)₂-, -O-Y-, -Y-O-, -Y-S-, or -S-Y-, wherein R^d is H or C₁-C₆ alkyl, t is an integer from 0 to 5, Y is C(O), C(S), S(O)₂, or a bond;

X is a direct bond, CH₂, CF₂, O, S, NH, C(O), or C(S);

 R^1 is a C_3 - C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, or 4-10 membered heteroaryl group, wherein R^1 is unsubstituted or substituted with 1 to 4 R^{10} groups;

 R^2 is $-S(O)_2OH$, $-S(O)_2NR^dR^e$, or $-P(O)(OR^4)_2$, wherein R^4 is an H, C_1-C_{10} -alkyl, C_6-C_{10} aryl, or $-CH_2-O-C(O)R^eCH_3$ group, R^d and R^e are each independently an H or C_1-C_6 alkyl group, and R^4 is unsubstituted or substituted with 1 to 4 R^{10} groups; and

 R^3 is OH, C_1 - C_7 -alkyl, C_1 - C_7 -alkoxyl, C_6 - C_{10} aryl, 4-10 membered heteroaryl, C_3 - C_{10} cycloalkyl, 3-10 membered heterocycloalkyl, -NH(R^5), or -N(R^5)₂ group, wherein R^5 is independently selected from H, C_1 - C_7 alkyl, C_6 - C_{10} aryl, or

25

30

wherein ring B is a 5- or 6-membered heterocycloalkyl group, Z is a divalent C(O)Z', heteroaryl or heterocycloalkyl group wherein Z' is a divalent O, S, NH, N(CH₃), CO₂, or CH₂, and R⁶ is H, C₁-C₁₀ alkyl, aryl, C₁-C₆ alkyl-aryl, or arylalkyl group, wherein R³, R⁵, B and R⁶ are unsubstituted or substituted with 1 to 4 R¹⁰ groups;

wherein each R^{10} is independently selected from halo, amino, =O, =S, =NH, cyano, nitro, hydroxyl, -SH, haloalkyl, 2-10 membered heteroalkyl, C_1 - C_6 alkoxy, C_1 - C_1 0 alkyl, C_2 - C_6 alkonyl, C_2 - C_6 alkynyl, -C(O)_i R^a , -OC(O)_i R^d , -OC(O)OC(O) R^d , -OOH, -C(N R^d)N R^bR^c , -N R^d C(N R^e)N R^bR^c ,

15

20

25

30

35

40

-NR^dC(O)_iR^b, -C(O)NR^bR^c, -C(O)NR^dCOR^b, -OC(O)NR^bR^c, -NR^bR^c, -NR^dOR^c, -C(S)NR^bR^c, $-NR^{d}C(S)NR^{b}R^{c}$, $-NR^{d}C(O)NR^{b}R^{c}$, -OSH, $-S(O)_{i}R^{b}$, $-OS(O)_{i}R^{b}$, $-SC(O)R^{b}$, $-S(O)_{i}C(O)OR^{b}$, $-\mathsf{SCOR}^\mathsf{d}, \ -\mathsf{NR}^\mathsf{d}\mathsf{SR}^\mathsf{c}, \ -\mathsf{SR}^\mathsf{b}, \ -\mathsf{NHS}(\mathsf{O})_j\mathsf{R}^\mathsf{b}, \ -\mathsf{COSR}^\mathsf{b}, \ -\mathsf{C}(\mathsf{O})\mathsf{S}(\mathsf{O})_j\mathsf{R}^\mathsf{b}, \ -\mathsf{CS}(\mathsf{O})_j\mathsf{R}^\mathsf{b}, \ -\mathsf{CS}(\mathsf{O})_j\mathsf{R}^\mathsf{b}, \ -\mathsf{C}(\mathsf{SO})\mathsf{OH},$ $-C(SO)_2OH, \quad -NR^dC(S)R^c, \quad -OC(S)R^b, \quad -OC(S)OH, \quad -OC(SO)_2R^b, \quad -S(O)_jNR^bR^c, \quad -SNR^bR^c,$ -S(O)NR^bR^c, -NR^dCS(O)_iR^c, -C(O)_i(CH₂)_iNR^d-(4-10 membered heteroaryl), -C(O)_i(CH₂)_iNR^d(4-10 membered heterocycloalkyl), -(CR^dR^e)_tCN, -(CR^d R^e)_t(C₃-C₁₀ cycloalkyl), -(CR^dR^e)_t(C₆-C₁₀ aryl), -(CR^dR^e)_t(4-10 membered heteroaryl), -(CR^dR^e),(4-10 membered heterocycloalkyl), $-(CR^dR^e)_qC(O)(CR^dR^e)_t(C_3-C_{10})$ $-(CR^dR^e)_qC(O)(CR^dR^e)_t(C_6-C_{10})$ cycloalkyl), aryl), -(CR^dR^e)_dC(O)(CR^dR^e)_t(4-10 heterocycloalkyl), -(CR^dR^e)₀C(O)(CR^dR^e)_t(4-10 membered membered heteroaryl), $-(CR^dR^e)_tO(CR^dR^e)_q(C_3-C_{10} \text{ cycloalkyl})$, $-(CR^dR^e)_tO(CR^dR^e)_q(C_6-C_{10} \text{ aryl})$, $-(CR^dR^e)_tO(CR^dR^e)_q(4-10 \text{ membered heterocycloalkyl}), -(CR^dR^e)_tO(CR^dR^e)_q(4-10 \text{ membered heterocycloalkyl})$ $-(CR^dR^e)_qSO_2(CR^dR^e)_t(C_3-C_{10} \quad cycloalkyl), \quad -(CR^dR^e)_qSO_2(CR^dR^e)_t(C_6-C_{10} \quad aryl),$ heteroaryl), -(CRdRe)_qSO₂(CRdRe)_t(4-10 membered heterocycloalkyl), and -(CRdRe)_qSO₂(CRdRe)_t(4-10 membered heteroaryl), wherein Ra is selected from the group consisting of halo, hydroxyl, -NR^dR^e, C₁-C₁₀ alkyl, haloalkyl, C₁-C₆ alkoxyl, R^b and R^c are independently selected from H, C₁- C_{10} alkyl, $-(CR^dR^e)_t(C_3-C_{10}$ cycloalkyl), $-(CR^dR^e)_t(C_6-C_{10}$ aryl), $-(CR^dR^e)_t(4-10$ membered heterocycloalkyl), and -(CR^dR^e)_t(4-10 membered heteroaryl), R^d and R^e are independently H or C₁-C₆ alkyl, j is an integer from 0 to 2, q and t are each independently an integer from 0 to 5, and 1 or 2 ring carbon atoms of the cyclic moieties of the foregoing R¹⁰ groups are unsubstituted or substituted with =O, and the alkyl, alkenyl, alkynyl, aryl and cyclic moieties of the foregoing R¹⁰ groups are unsubstituted or substituted with 1 to 3 substituents independently selected from halo, =O, cyano, nitro, - $(CR^dR^e)_tCN$, haloalkyl, 2-10 membered heteroalkyl, - OR^b , - $C(O)_iR^b$, $-NR^{d}C(O)R^{b}, \quad -C(O)NR^{b}R^{c}, \quad -NR^{b}R^{c}, \quad -NR^{b}OR^{c}, \quad -NR^{d}C(O)_{i}NR^{b}R^{c}, \quad -NR^{d}C(O)_{i}R^{b}R^{c}, \quad -OC(O)_{i}R^{b}, \quad -OC(O)_{i}R^{b}R^{c}, \quad -OC(O)_{i}R^{b}R^{c},$ -OC(O)NRbRc, -SRd, C1-C10 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, -(CRdRe)t(C3-C10 cycloalkyl), -(CR^dR^e)_t(C₆-C₁₀ aryl), -(CR^dR^e)_t(4-10 membered heterocycloalkyl), -(CR^dR^e)_t(4-10 membered heteroaryl), $-(CR^dR^e)_t(C_6-C_{10} \text{ aryl})-(C_1-C_6 \text{ alkyl})$; wherein t, R^b , R^c , R^d , R^e are as defined above;

or a pharmaceutically acceptable prodrug of said compound, pharmaceutically active metabolite of said compound, or pharmaceutically acceptable salt of said compound or metabolite.

2. A pharmaceutically acceptable salt according to claim 1.

3. A compound or pharmaceutically acceptable salt according to claim 1, wherein: n is 1 or 2;

A is a divalent –NH-Y-, -NR^d(CH₂)_t-Y-, or -O-Y-, and Y is C(O) or S(O)₂;

X is a direct bond, CH₂, O, or S;

 R^{1} is a C_{6} - C_{10} aryl or 4-10 membered heteroaryl group unsubstituted or substituted with 1 to 4 R^{10} groups;

 R^2 is -S(O)₂OH, or -P(O)(OR⁴)₂, wherein R⁴ is an H, C₁-C₁₀ alkyl, or C₆-C₁₀ aryl group, and is unsubstituted or substituted with 1 to 4 R¹⁰ groups; and

 R^3 is a C_6 - C_{10} aryl, 4-10 membered heteroaryl, -NH(C_6 H₅), or

5

10

15

20

25

30

35

wherein ring B is a 5- or 6-membered heterocycloalkyl group, Z is a divalent C(O)Z', heteroaryl or heterocycloalkyl group wherein Z' is a divalent O, S, NH, N(CH₃), CO₂, or CH₂, and R⁶ is H or a C₁-C₁₀ alkyl group, wherein R³, B, and R⁶ is unsubstituted or substituted with 1 to 4 R¹⁰ groups;

wherein each R¹⁰ is independently selected from halo, amino, =O, =S, =NH, cyano, nitro, hydroxyl, -SH, haloalkyl, 2-10 membered heteroalkyl, C1-C6 alkoxy, C1.C10 alkyl, C2-C6 alkenyl, C_2 - C_6 alkynyl, $-C(O)_iR^a$, $-OC(O)_iR^d$, $-OC(O)OC(O)R^d$, -OOH, $-C(NR^d)NR^bR^c$, $-NR^dC(NR^e)NR^bR^c$, $-NR^dC(O)_iR^b$, $-C(O)NR^bR^c$, $-C(O)NR^dCOR^b$, $-OC(O)NR^bR^c$, $-NR^bR^c$, $-NR^dOR^c$, $-C(S)NR^bR^c$, $-NR^dC(S)NR^bR^c$, $-NR^dC(O)NR^bR^c$, -OSH, $-S(O)_iR^b$, $-OS(O)_iR^b$, $-SC(O)R^b$, $-S(O)_iC(O)OR^b$, $-S(O)_iR^b$, -S($\mathsf{SCOR}^\mathsf{d},\ -\mathsf{NR}^\mathsf{d}\mathsf{SR}^\mathsf{c},\ -\mathsf{SR}^\flat,\ -\mathsf{NHS}(\mathsf{O})_i\mathsf{R}^\flat,\ -\mathsf{COSR}^\flat,\ -\mathsf{C}(\mathsf{O})\mathsf{S}(\mathsf{O})_i\mathsf{R}^\flat,\ -\mathsf{CSR}^\flat,\ -\mathsf{CS}(\mathsf{O})_i\mathsf{R}^\flat,\ -\mathsf{C}(\mathsf{SO})\mathsf{OH},$ $-C(SO)_2OH$, $-NR^dC(S)R^c$, $-OC(S)R^b$, -OC(S)OH, $-OC(SO)_2R^b$, $-S(O)_iNR^bR^c$, $-SNR^bR^c$, -S(O)NR^bR^c, -NR^dCS(O)_iR^c, -C(O)_i(CH₂)_iNR^d-(4-10 membered heteroaryl), -C(O)_i(CH₂)_iNR^d(4-10 membered heterocycloalkyl), -(CRdRe)tCN, -(CRdRe)tCN, -(CRdRe)t(C3-C10 cycloalkyl), -(CRdRe)t(C6-C10 aryl), -(CR^dR^e)_t(4-10 -(CR^dR^e)_t(4-10 membered heterocycloalkyl), membered $-(CR^dR^e)_qC(O)(CR^dR^e)_t(C_6-C_{10})$ $-(CR^dR^e)_qC(O)(CR^dR^e)_t(C_3-C_{10})$ cycloalkyl), -(CR^dR^e)₀C(O)(CR^dR^e)_t(4-10 $-(CR^{d}R^{e})_{q}C(O)(CR^{d}R^{e})_{t}(4-10)$ membered heterocycloalkyl), membered heteroaryl), $-(CR^dR^e)_iO(CR^dR^e)_o(C_3-C_{10} \text{ cycloalkyl})$, $-(CR^dR^e)_iO(CR^dR^e)_o(C_6-C_{10} \text{ aryl})$, -(CR^dR^e)_tO(CR^dR^e)_q(4-10 membered heterocycloalkyl), -(CR^dR^e)_tO(CR^dR^e)_q(4-10 membered $-(CR^dR^e)_qSO_2(CR^dR^e)_t(C_3-C_{10} \quad cycloalkyl), \quad -(CR^dR^e)_qSO_2(CR^dR^e)_t(C_6-C_{10} \quad aryl),$ -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heterocycloalkyl), and -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heteroaryl), wherein Ra is selected from the group consisting of halo, hydroxyl, -NR^dR^e, C₁-C₁₀ alkyl, haloalkyl, C₁-C₆ alkoxyl, R^b and R^c are independently selected from H, C₁- C_{10} alkyl, $-(CR^dR^e)_t(C_3-C_{10}$ cycloalkyl), $-(CR^dR^e)_t(C_6-C_{10}$ aryl), $-(CR^dR^e)_t(4-10$ membered heterocycloalkyl), and -(CRdRe)t(4-10 membered heteroaryl), Rd and Re are independently H or C1-C6 alkyl, i is an integer from 0 to 2, q and t are each independently an integer from 0 to 5, and 1 or 2 ring carbon atoms of the cyclic moieties of the foregoing R¹⁰ groups are unsubstituted or substituted with =O, and the alkyl, alkenyl, alkynyl, aryl and cyclic moieties of the foregoing R¹⁰ groups are unsubstituted or substituted with 1 to 3 substituents independently selected from halo, =O, cyano, nitro, -(CR^dR^e)_iCN, haloalkyl, 2-10 membered heteroalkyl, -OR^b, -C(O)_iR^b, $-NR^{d}C(O)R^{b}$, $-C(O)NR^{b}R^{c}$, $-NR^{b}R^{c}$, $-NR^{b}OR^{c}$ $-NR^{d}C(O)_{i}NR^{b}R^{c}$, $-NR^{d}C(O)_{i}R^{b}R^{c}$, $-OC(O)_{i}R^{b}$, $-OC(O)NR^bR^c, -SR^d, C_1-C_{10} \text{ alkyl}, C_2-C_6 \text{ alkenyl}, C_2-C_6 \text{ alkynyl}, -(CR^dR^e)_t(C_3-C_{10} \text{ cycloalkyl}), -(CR^dR^e)_t(C_3-C_{10} \text{ cycl$ -(CR^dR^e)_t(C₆-C₁₀ aryl), -(CR^dR^e)_t(4-10 membered heterocycloalkyl), -(CR^dR^e)_t(4-10 membered

heteroaryl), -(CR^dR^e)_t(C_6 - C_{10} aryl)-(C_1 - C_6 alkyl); and wherein t, R^b , R^c , R^d , R^e are as defined above.

4. A compound or pharmaceutically acceptable salt according to claim 3, wherein:

n is 1;

5

10

15

20

25

30

35

A is a divalent -NH-Y- or -O-Y-, wherein Y is C(O);

X is a direct bond, CH₂, or O;

R¹ is a C₆-C₁₀ aryl group unsubstituted or substituted with 1 to 4 R¹⁰ groups;

 R^2 is -P(O)(OR⁴)₂, wherein R⁴ is an H, C₁-C₁₀ alkyl, or C₆-C₁₀ aryl group, and is unsubstituted or substituted with 1 to 4 R¹⁰ groups; and

R³ is a C₆-C₁₀ aryl, 4-10 membered heteroaryl, or

wherein ring B is an unsubstituted 6-membered heterocycloalkyl, Z a divalent C(O)Z', Z' is a divalent O, S, or CH₂, and R⁶ is a C₁-C₁₀ alkyl group, wherein R³, B and R⁶ are unsubstituted or substituted with 1 to 4 R¹⁰ groups;

wherein each R¹⁰ is independently selected from halo, amino, =O, =S, =NH, cyano, nitro, hydroxyl, -SH, haloalkyl, 2-10 membered heteroalkyl, C₁-C₆ alkoxy, C₁₋C₁₀ alkyl, C₂₋C₆ alkenyl, C_2 - C_6 alkynyl, $-C(O)_iR^a$, $-OC(O)_iR^d$, $-OC(O)OC(O)R^d$, -OOH, $-C(NR^d)NR^bR^c$, $-NR^dC(NR^e)NR^bR^c$, $-NR^dC(O)_iR^b$, $-C(O)NR^bR^c$, $-C(O)NR^dCOR^b$, $-OC(O)NR^bR^c$, $-NR^bR^c$, $-NR^dOR^c$, $-C(S)NR^bR^c$, $-NR^{d}C(S)NR^{b}R^{c}$, $-NR^{d}C(O)NR^{b}R^{c}$, -OSH, $-S(O)_{i}R^{b}$, $-OS(O)_{i}R^{b}$, $-SC(O)R^{b}$, $-S(O)_{i}C(O)OR^{b}$ $SCOR^d$, $-NR^dSR^c$, $-SR^b$, $-NHS(O)_iR^b$, $-COSR^b$, $-C(O)S(O)_iR^b$, $-CSR^b$, $-CS(O)_iR^b$, -C(SO)OH, $-C(SO)_2OH$, $-NR^dC(S)R^c$, $-OC(S)R^b$, -OC(S)OH, $-OC(SO)_2R^b$, $-S(O)_1NR^bR^c$, $-SNR^bR^c$, -S(O)NR^bR^c, -NR^dCS(O)_iR^c, -C(O)_i(CH₂)_iNR^d-(4-10 membered heteroaryl), -C(O)_i(CH₂)_iNR^d(4-10 membered heterocycloalkyl), -(CRdRe)tCN, -(C -(CR^dR^e)_t(4-10 membered heterocycloalkyl), -(CR^dR^e)_t(4-10 membered heteroaryl), $-(CR^dR^e)_qC(O)(CR^dR^e)_t(C_3-C_{10})$ -(CR^dR^e)_dC(O)(CR^dR^e)_t(C₆-C₁₀ aryl), cycloalkyl), -(CR^dR^e)_qC(O)(CR^dR^e)_t(4-10 membered heterocycloalkyl), -(CR^dR^e)_qC(O)(CR^dR^e)_t(4-10 membered heteroaryl), -(CR^dR^e)_tO(CR^dR^e)_q(C_3 - C_{10} cycloalkyl), -(CR^dR^e)_tO(CR^dR^e)_q(C_6 - C_{10} aryl), -(CRdRe),O(CRdRe),(4-10 membered heterocycloalkyl), -(CRdRe),O(CRdRe),(4-10 membered $-(CR^dR^e)_qSO_2(CR^dR^e)_t(C_3-C_{10}\quad cycloalkyl),\quad -(CR^dR^e)_qSO_2(CR^dR^e)_t(C_6-C_{10}\quad aryl),$ -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heterocycloalkyl), and -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heteroaryl), wherein Ra is selected from the group consisting of halo, hydroxyl, -NR^dR^e, C₁-C₁₀ alkyl, haloalkyl, C₁-C₆ alkoxyl, R^b and R^c are independently selected from H, C₁- C_{10} alkyl, $-(CR^dR^e)_t(C_3-C_{10}$ cycloalkyl), $-(CR^dR^e)_t(C_6-C_{10}$ aryl), $-(CR^dR^e)_t(4-10$ membered heterocycloalkyl), and -(CRdRe),(4-10 membered heteroaryl), Rd and Re are independently H or

20

25

30

35

40

 C_1 - C_6 alkyl, j is an integer from 0 to 2, q and t are each independently an integer from 0 to 5, and 1 or 2 ring carbon atoms of the cyclic moieties of the foregoing R^{10} groups are unsubstituted or substituted with =O, and the alkyl, alkenyl, alkynyl, aryl and cyclic moieties of the foregoing R^{10} groups are unsubstituted or substituted with 1 to 3 substituents independently selected from halo, =O, cyano, nitro, - $(CR^dR^e)_tCN$, haloalkyl, 2-10 membered heteroalkyl, - OR^b , - $C(O)_iR^b$, - $NR^dC(O)_iR^b$, - $C(O)_iR^b$,

5. A compound or pharmaceutically acceptable salt according to claim 4, wherein: n is 1;

A is -NH-Y- or -O-Y-, wherein Y is C(O);

15 X is a direct bond, CH₂, or O;

 R^{1} is a C_{6} - C_{10} aryl group unsubstituted or substituted with 1 to 4 R^{10} groups;

 R^2 is -P(O)(OR⁴)₂, wherein R⁴ is an H or a C₁-C₁₀ alkyl group that is unsubstituted or substituted with 1 to 4 R¹⁰ groups; and

 R^3 is a C_6 - C_{10} aryl or 4-10 membered heteroaryl group unsubstituted or substituted with 1 to 4 R^{10} groups;

wherein each R¹⁰ is independently selected from halo, amino, =O, =S, =NH, cyano, nitro, hydroxyl, -SH, haloalkyl, 2-10 membered heteroalkyl, C₁-C₆ alkoxy, C₁₋C₁₀ alkyl, C₂₋C₆ alkenyl, C_2 - C_6 alkynyl, -C(O)_iR^a, -OC(O)_iR^d, -OC(O)OC(O)R^d, -OOH, -C(NR^d)NR^bR^c, -NR^dC(NR^e)NR^bR^c, $-NR^{d}C(O)_{i}R^{b}$, $-C(O)NR^{b}R^{c}$, $-C(O)NR^{d}COR^{b}$, $-OC(O)NR^{b}R^{c}$, $-NR^{b}R^{c}$, $-NR^{d}OR^{c}$, $-C(S)NR^{b}R^{c}$, $-NR^{d}C(S)NR^{b}R^{c}$, $-NR^{d}C(O)NR^{b}R^{c}$, -OSH, $-S(O)_{i}R^{b}$, $-OS(O)_{i}R^{b}$, $-SC(O)R^{b}$, $-S(O)_{i}C(O)OR^{b}$ $SCOR^d$, $-NR^dSR^c$, $-SR^b$, $-NHS(O)_iR^b$, $-COSR^b$, $-C(O)S(O)_iR^b$, $-CSR^b$, $-CS(O)_iR^b$, -C(SO)OH, $-C(SO)_2OH$, $-NR^dC(S)R^c$, $-OC(S)R^b$, -OC(S)OH, $-OC(SO)_2R^b$, $-S(O)_1NR^bR^c$, $-SNR^bR^c$, -S(O)NR^bR^c, -NR^dCS(O)_iR^c, -C(O)_i(CH₂)_tNR^d-(4-10 membered heteroaryl), -C(O)_i(CH₂)_tNR^d(4-10 membered heterocycloalkyl), -(CRdRe)tCN, -(C heterocycloalkyl), -(CR^dR^e)_t(4-10 membered heteroaryl), -(CR^dR^e)_t(4-10 membered $-(CR^{d}R^{e})_{a}C(O)(CR^{d}R^{e})_{t}(C_{3}-C_{10})$ cycloalkyl), $-(CR^dR^e)_0C(O)(CR^dR^e)_1(C_{6}-C_{10})$ aryl), heterocycloalkyl), -(CR^dR^e)_qC(O)(CR^dR^e)_t(4-10 -(CR^dR^e)_dC(O)(CR^dR^e)_t(4-10 membered membered heteroaryl), -(CR^dR^e), $O(CR^dR^e)$, $O(CR^dR$ $-(CR^dR^e)_tO(CR^dR^e)_q(4-10 \text{ membered heterocycloalkyl}), -(CR^dR^e)_tO(CR^dR^e)_q(4-10 \text{ membered heterocycloalkyl})$ $-(CR^dR^e)_qSO_2(CR^dR^e)_t(C_3-C_{10} \quad cycloalkyl), \quad -(CR^dR^e)_qSO_2(CR^dR^e)_t(C_6-C_{10} \quad aryl),$ heteroaryl), -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heterocycloalkyl), and -(CR^dR^e)_qSO₂(CR^dR^e)_t(4-10 membered heteroaryl), wherein Ra is selected from the group consisting of halo, hydroxyl, -NR^dR^e, C₁-C₁₀ alkyl, haloalkyl, C₁-C₆ alkoxyl, R^b and R^c are independently selected from H, C₁- C_{10} alkyl, $-(CR^dR^e)_t(C_3-C_{10}$ cycloalkyl), $-(CR^dR^e)_t(C_6-C_{10}$ aryl), $-(CR^dR^e)_t(4-10$ membered heterocycloalkyl), and -(CR^dR^e)_t(4-10 membered heteroaryl), R^d and R^e are independently H or

 C_1 - C_6 alkyl, j is an integer from 0 to 2, q and t are each independently an integer from 0 to 5, and 1 or 2 ring carbon atoms of the cyclic moieties of the foregoing R^{10} groups are unsubstituted or substituted with =O, and the alkyl, alkenyl, alkynyl, aryl and cyclic moieties of the foregoing R^{10} groups are unsubstituted or substituted with 1 to 3 substituents independently selected from halo, =O, cyano, nitro, - $(CR^dR^e)_i(CN)$, haloalkyl, 2-10 membered heteroalkyl, - $(CR^b)_i(CN)$, -(

6. A compound selected from the group consisting of:

10

15

or a pharmaceutically acceptable salt thereof.

7. A pharmaceutical composition comprising: a therapeutically effective amount of an agent selected from the group consisting of compounds, prodrugs, metabolites, and salts as defined in claim 1; and a pharmaceutically acceptable carrier.

8. A method of treating a mammalian disease condition mediated by PIN1 activity, comprising administering to a mammal in need thereof a therapeutically effective amount of a compound, pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt as defined in claim 1.

9. A method according to claim 8, wherein the mammalian disease condition is associated with hypertension, inappropriate cell proliferation, infectious diseases, or neurodegenerative brain disorders.