Sean C. Lewis

January 3, 2023





Disruption of gas collapse, star formation, and cluster assembly

■ The feedback from massive stars likely dominates the self-regulation of star formation.

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Bressert et al. 2010; Longmore et al. 2014; Grudić et al. 2018; Dobbs et al. 2022

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.<sup>1</sup>
- How gas is removed (rapidly, or slowly) may affect cluster structure.<sup>2</sup>



<sup>&</sup>lt;sup>1</sup>Bressert et al. 2010; Longmore et al. 2014; Grudić et al. 2018; Dobbs et al. 2022

<sup>&</sup>lt;sup>2</sup>Portegies Zwart et al. 2010; Smith et al. 2013; Banjeree & Kroupa 2017

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.<sup>1</sup>
- How gas is removed (rapidly, or slowly) may affect cluster structure.<sup>2</sup>
- What about *when* massive stars form? Using our computational model we test the effects of early forming massive stars.



<sup>&</sup>lt;sup>1</sup>Bressert et al. 2010; Longmore et al. 2014; Grudić et al. 2018; Dobbs et al. 2022

<sup>&</sup>lt;sup>2</sup>Portegies Zwart et al. 2010; Smith et al. 2013; Banjeree & Kroupa 2017

### Torch

#### Stars from gas

Torch<sup>3</sup> couples N-body, stellar evolution, and feedback in AMUSE<sup>4</sup> with self-gravitating magnetized gas in MHD code FLASH.<sup>5</sup>

<sup>&</sup>lt;sup>3</sup>Wall et al. 2019, 2020

<sup>&</sup>lt;sup>4</sup>Portegies Zwart et al. 2009, 2013; Pelupessy et al. 2013; Portegies Zwart & McMillan 2019

<sup>&</sup>lt;sup>5</sup>Fryxell et al. 2000

## **Torch**

#### Stars from gas

- Torch<sup>3</sup> couples N-body, stellar evolution, and feedback in AMUSE<sup>4</sup> with self-gravitating magnetized gas in MHD code FLASH.<sup>5</sup>
- Resolved dynamics of stars and gas; study star cluster formation within collapsing GMCs.

<sup>&</sup>lt;sup>3</sup>Wall et al. 2019, 2020

<sup>&</sup>lt;sup>4</sup>Portegies Zwart et al. 2009, 2013; Pelupessy et al. 2013; Portegies Zwart & McMillan 2019

<sup>&</sup>lt;sup>5</sup>Fryxell et al. 2000

## **Torch**

#### Stars from gas

- Torch<sup>3</sup> couples N-body, stellar evolution, and feedback in AMUSE<sup>4</sup> with self-gravitating magnetized gas in MHD code FLASH.<sup>5</sup>
- Resolved dynamics of stars and gas; study star cluster formation within collapsing GMCs.
- Form stars from sink particles which each have a randomized star mass list sampled from the Kroupa IMF.<sup>6</sup>

<sup>&</sup>lt;sup>3</sup>Wall et al. 2019, 2020

<sup>&</sup>lt;sup>4</sup>Portegies Zwart et al. 2009, 2013; Pelupessy et al. 2013; Portegies Zwart & McMillan 2019

<sup>&</sup>lt;sup>5</sup>Fryxell et al. 2000

<sup>&</sup>lt;sup>6</sup>Kroupa 2001

# A Controlled Experiment



Lewis et al. 2023



# Effects on Gas Energy







### Effects on Gas Accretion and Star Formation



### Effects on Gas Accretion and Star Formation



Early forming massive stars reduces sink accretion and star formation rates.

### Effects on Gas Accretion and Star Formation



Early forming massive stars reduces sink accretion and star formation rates.

| Run  | $\langle \epsilon_{\it ff}  angle$ |
|------|------------------------------------|
| Fid  | 0.23                               |
| 50M  | 0.08                               |
| 70M  | 0.03                               |
| 100M | 0.04                               |

# Effects on Star Clustering, Cluster Assembly



| Run  | Mass in Clusters | Frac Mass     | r <sub>h</sub> MMC | E <sub>bind</sub> MMC |
|------|------------------|---------------|--------------------|-----------------------|
|      | $10^3~M_{\odot}$ | $M_c/M_{tot}$ | pc                 | 10 <sup>46</sup> erg  |
| Fid  | 3.6              | 0.99          | 0.25               | -140                  |
| 50M  | 1.4              | 0.97          | 0.17               | -12                   |
| 70M  | 0.86             | 0.85          | 0.21               | -4.2                  |
| 100M | 0.62             | 0.46          | 0.18               | -3.8                  |

# Effects on Star Clustering, Cluster Assembly



■ DBSCAN to identify cluster with at least 50% bound members and  $100~{\rm M}_{\odot}$  at  $2\tau_{\rm ff}$ .

| Run  | Mass in Clusters | Frac Mass     | r <sub>b</sub> MMC | E <sub>bind</sub> MMC |
|------|------------------|---------------|--------------------|-----------------------|
|      | $10^3~M_{\odot}$ | $M_c/M_{tot}$ | рс                 | 10 <sup>46</sup> erg  |
| Fid  | 3.6              | 0.99          | 0.25               | -140                  |
| 50M  | 1.4              | 0.97          | 0.17               | -12                   |
| 70M  | 0.86             | 0.85          | 0.21               | -4.2                  |
| 100M | 0.62             | 0.46          | 0.18               | -3.8                  |

# Effects on Star Clustering, Cluster Assembly



- DBSCAN to identify cluster with at least 50% bound members and  $100~{\rm M}_{\odot}$  at  $2\tau_{\rm ff}$ .
- Clusters in runs with early massive stars are less massive and more fragmented compared to the fiducial run.

| Run  | Mass in Clusters | Frac Mass     | r <sub>h</sub> MMC | E <sub>bind</sub> MMC |
|------|------------------|---------------|--------------------|-----------------------|
|      | $10^3~M_{\odot}$ | $M_c/M_{tot}$ | pc                 | $10^{46}$ erg         |
| Fid  | 3.6              | 0.99          | 0.25               | -140                  |
| 50M  | 1.4              | 0.97          | 0.17               | -12                   |
| 70M  | 0.86             | 0.85          | 0.21               | -4.2                  |
| 100M | 0.62             | 0.46          | 0.18               | -3.8                  |

Significantly disrupt the natal gas structure, resulting in premature unbinding of GMC.



- Significantly disrupt the natal gas structure, resulting in premature unbinding of GMC.
- The star formation rate per free-fall time is suppressed by up to a factor of seven, reducing the total mass of stars formed.



- Significantly disrupt the natal gas structure, resulting in premature unbinding of GMC.
- The star formation rate per free-fall time is suppressed by up to a factor of seven, reducing the total mass of stars formed.
- Stifle the hierarchical assembly process of massive star clusters, instead promoting the formation of spatially separate and more loosely bound subclusters.

## The Problem with Initial Conditions





### The Problem with Initial Conditions

 Self consistent galactic scale simulations with resolution down to sub-tenth parsec scales and include Nbody individual stellar dynamics and individual stellar feedback all at once?
 A little tough.

### The Problem with Initial Conditions

- Self consistent galactic scale simulations with resolution down to sub-tenth parsec scales and include Nbody individual stellar dynamics and individual stellar feedback all at once? A little tough.
- Creating our own isolated clouds from scratch? "Creative liberties..."

### Clouds from Galactic Simulations



GMC identification<sup>7</sup>



### Voronoi Mesh to AMR Grid







## Voronoi Mesh to AMR Grid







## VorAMR: Logic path

2a. Convert mesh to particles and construct refined AMR grid



2h Construct KDtree with field values assigned to leaf nodes

# VorAMR: The Big Wins

Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.



## VorAMR: The Big Wins

- Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.
- Represents a critical linkage in the star cluster simulation pipeline which will allow Torch to use realistic GMC initial conditions.



## VorAMR: The Big Wins

- Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.
- Represents a critical linkage in the star cluster simulation pipeline which will allow Torch to use realistic GMC initial conditions.
- Provides an avenue for increased collaboration between entrenched research groups.



Thank You!

Questions?

@sean\_physsean.phys@gmail.com



# **Appendix**

$$\epsilon_{\mathsf{ff}} = \dot{M}_* rac{t_{\mathsf{ff}}}{M_{\mathsf{g}}}$$
 (1)

