

#### **SKILL 2022**

# Bisecting K-Prototypes: Effizientes hierarchisches Clustering gemischter Datensets

Hannes Dröse

Fachhochschule Erfurt adesso SE, Jena

#### **Motivation**



 Masterarbeit in Kooperation mit adesso SE Standort Jena: E-Commerce



- Anwendungen von Clusteranalyse auf Produktdaten
  - bessere Empfehlungsalgorithmen ([Cui21], [KRRT01], [OhKi19])
  - bessere Klick-Raten in Suchmaschinen ([KoLo12])
  - Anomalie- und Duplikaterkennung etc.
- Problem: Produktdaten in PIM-Systemen sehr komplex



## Produktdaten in PIM-Systemen



| id | Title                             | Color | Height | 5G    | os         | Material              |  |
|----|-----------------------------------|-------|--------|-------|------------|-----------------------|--|
| 1  | Samsung Galaxy S20<br>128GB red   | red   | 152 mm | null  | Android 10 | null                  |  |
| 2  | Samsung Galaxy S20<br>128GB black | black | 152 mm | null  | null       | plastic,<br>silicone  |  |
| 3  | Samsung Galaxy S21                | grey  | 151 mm | false | Android 11 | null                  |  |
| 4  | Samsung Galaxy S21 5G             | grey  | 151 mm | true  | Android 11 | null                  |  |
| 5  | Samsung Galaxy S22                | black | 164 mm | true  | Android 12 | plastic,<br>aluminium |  |

- durchzogen von fehlenden Werten
- vielfältige Datentypen: numerisch, kategorial, multi-kategorial, Strings, Dateien etc.

## Clusteranalyse



Die Einteilung von Datenpunkten in Gruppen, "[. . . ] sodass sich die Individuen innerhalb einer Gruppe auf eine Art und Weise ähnlich sind und unähnlich denen in anderen Gruppen" [King15]



- Cluster entstehen aus "sich naheliegenden Punkten"
- Berechnung mittels Distanzfunktion  $d(x_1, x_2)$

## Clustering-Verfahren



partitionierend



## Einteilung in k eindeutige Cluster

- Minimierungsverfahren
- z.B.: K-Means
- $\mathcal{O}(n)$

#### hierarchisch



- verschachtelte Cluster für alle möglichen k
- Top-down oder Bottom-up
- keine späteren Korrekturen
- $\mathcal{O}(n^2)$  bis  $\mathcal{O}(n^3)$

## Clustering-Verfahren 2



#### **Bisecting K-Means [StKaKu00]**

- Top-down-Clustering-Verfahren
- nutzt K-Means für die Zweier-Splits
- Laufzeit:  $\mathcal{O}(n)$  evtl.  $\mathcal{O}(n \log n)$

#### K-Prototypes [Huan98]

- K-Means-Variante für gemischte Datensets (numerisch und kategorial)
- Mittelpunkte aus Durchschnitt (numerisch) bzw. Modus (kategorial)
- kombinierte Distanzfunktion:

$$d(x_1, x_2) = d_{num}(x_1^{num}, x_2^{num}) + w \cdot d_{cat}(x_1^{cat}, x_2^{cat})$$

Idee: Kombination beider Verfahren => Bisecting K-Prototypes

## Konzeption der Distanzfunktion



• offen: Umgang mit fehlenden Werten

$$\frac{|x_1 \cap x_2|}{|x_1 \cup x_2|}$$

• **Ansatz**: Inspiration durch Jaccard-Koeffizienten  $|x_1 \cup x_2|$ 

$$d(x_1, x_2) = \frac{\sum d'(x_1^i, x_2^i)}{|x_1^{non-null} \cup x_2^{non-null}|}$$

$$d'(x_1^i, x_2^i) = \begin{cases} 0 & ,x_1^i \text{ is } null \land x_2^i \text{ is } null \\ 1 & ,x_1^i \text{ is } null \lor x_2^i \text{ is } null \\ |x_1^i - x_2^i|, i \text{ is } numerical \\ 0 & ,i \text{ is } categorical \land x_1^i = x_2^i \\ 1 & ,i \text{ is } categorical \land x_1^i \neq x_2^i \end{cases}$$

wichtig: numerische Attribute vorher auf Intervall [0;1] normalisieren

## Konzeption der Distanzfunktion 2 FI



• offen: Umgang mit *multi-kategorialen* Werten

| id | Title                             | Color | Height | 5G    | os         | Material              |  |
|----|-----------------------------------|-------|--------|-------|------------|-----------------------|--|
| 1  | Samsung Galaxy S20<br>128GB red   | red   | 152 mm | null  | Android 10 | null                  |  |
| 2  | Samsung Galaxy S20<br>128GB black | black | 152 mm | null  | null       | plastic,<br>silicone  |  |
| 3  | Samsung Galaxy S21                | grey  | 151 mm | false | Android 11 | null                  |  |
| 4  | Samsung Galaxy S21 5G             | grey  | 151 mm | true  | Android 11 | null                  |  |
| 5  | Samsung Galaxy S22                | black | 164 mm | true  | Android 12 | plastic,<br>aluminium |  |

• Ansatz: Jaccard-Koeffizient auf Attribut-Ebene

$$d'(x_1^i, x_2^i) = \begin{cases} \cdots \\ 1 - \frac{|x_1^i \cap x_2^i|}{|x_1^i \cup x_2^i|} \end{cases}, i \text{ is } multi-categorical}$$

## Konzeption der Distanzfunktion 3



- offen: Umgang mit String-Werten
- Ansatz: Umwandlung multi-kategoriale Attribute durch Tokenization, Stemming, Stop-Word-Removal

"Samsung Galaxy S20 128GB" => {samsung, galaxi, s20, 128gb}

### Praktische Evaluation: Überblick

FACHHOCHSCHULE
ERFURT UNIVERSITY
OF APPLIED SCIENCES
Appenyand to

 Import von Produkten in ein PIM-System

 Implementierung des Clustering-Verfahrens

 Clustering des Datensets

 Evaluation mit Metriken für Stabilität, Qualität (Silhouetten-Koeffizient) etc.



Github: https://github.com/hd-code/ma-product-clustering

#### **Praktische Evaluation: Datenset**



- 42 Samsung Galaxy Smartphones
- S20: 17 Stück, S21: 21 Stück, S22: 4 Stück
- jeweils mit den Varianten: Standard, Plus, Ultra und FE (Fan Edition)

Übersicht zu den Attributen der 42 Smartphones

| Тур        | Anzahl | gefüllt | Ø unique | Beispiele                    |
|------------|--------|---------|----------|------------------------------|
| numerisch  | 56     | 51,9 %  | 3,7      | Weight, Width, Depth, Height |
| kategorial | 106    | 67,1 %  | 1,3      | OS installed, SIM Card Type  |
| multi-kat. | 22     | 60,0 %  | 3,5      | Product Color, 3G standards  |
| string     | 11     | 67,6 %  | 13,5     | Title, Description           |
| alle:      | 195    | 61,7 %  | 2,9      |                              |

Hannes Dröse – SoSe 22

## Praktische Evaluation: Ergebnisse FII



Angewandte Informatik





#### **Fazit und Ausblick**



- Bisecting K-Prototypes funktioniert grundsätzlich
- weitere Evaluation an anderen/größeren Datensets nötig
- nur numerische und kategoriale Attribute erzeugten beste Cluster
- nur String-Attribute erzeugten ebenfalls adäquate Cluster (Alternative für Clustering von semi-/unstrukturierten Datensets)

· Vergleich mit klassischen Verfahren wäre sinnvoll, aber aufwendig

Hannes Dröse – SoSe 22



Informatik

## Vielen Dank für die Aufmerksamkeit

Hannes Dröse – SoSe 22

## **Quellen (Ausschnitt)**



- [Cui21] Cui, Yimin: Intelligent recommendation system based on mathematical modeling in personalized data mining. In: Mathematical Problems in Engineering Bd. 2021, Hindawi (2021)
- [Huan98] Huang, Zhexue: Extensions to the k-means algorithm for clustering large data sets with categorical values. In: Data mining and knowledge discovery Bd. 2, Springer (1998), Nr. 3, S. 283–304
- [King15] King, Ronald S: Cluster analysis and data mining: An introduction: Stylus Publishing, LLC, 2015
- [KoLo12] Kou, Gang; Lou, Chunwei: Multiple factor hierarchical clustering algorithm for large scale web page and search engine clickstream data. In: Annals of Operations Research Bd. 197, Springer (2012), Nr. 1, S. 123–134
- [KRRT01] Kumar, Ravi; Raghavan, Prabhakar; Rajagopalan, Sridhar; Tomkins, Andrew: Recommendation systems: A probabilistic analysis. In: Journal of Computer and System Sciences Bd. 63, Elsevier (2001), Nr. 1, S. 42–61
- [OhKi19] Oh, Yoori; Kim, Yoonhee: A resource recommendation method based on dynamic cluster analysis of application characteristics. In: Cluster Computing Bd. 22, Springer (2019), Nr. 1, S. 175–184
- [StKaKu00] Steinbach, Michael; Karypis, George; Kumar, Vipin: A comparison of document clustering techniques (2000)