

- Kako utiče početno rešenje?
- Kako odabrati α?
- Da li je algoritam konvergirao?

Značaj skaliranja obeležja

 $\theta_t = \theta_{t-1} - \alpha d$

Odabir početnog rešenja $\theta^{(0)}$

Gradient descent pronalazi lokalni optimum

Da li je ovo problem?

Da li *Gradient Descent* u slučaju linearne regresije sa RSS merom greške može da zaglavi u lokalnom minimumu?

Odabir početnog rešenja 0 u linearnoj regresiji

Za RSS grešku u linearnoj regresiji $J(\theta)$ je konveksno

Odabir α

LMS (Least Mean Squares) update rule

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_d^{(i)}$$

Promena θ je proporcionalna grešci

Mala greška \rightarrow nećemo mnogo menjati θ

Velika greška \rightarrow mnogo ćemo promeniti θ

Što smo bliže minimumu, pravimo manje korake

Gradient descent može da konvergira u minimum za fiksirno α

Kako se približavamo minimumu koraci su sve manji jer je gradijent (nagib) sve manji

GD_visualization_slow_convergence.m $\alpha = 0.1$

• Za male vrednosti α *gradient descent* je spor

Levo od minimuma vrednost gradijenta je negativna: θ raste

Desno od minimuma vrednost gradijenta je pozitivna: θ se smanjuje

GD_visualization_left_right.m
$$\alpha = 1.7$$

Za preveliko α gradient descent može da divergira

GD_visualization_diverges.m

Odabir α

• Pored fiksnog α , čest izbor je i *stepsize schedule*

Smanjivanje koraka α sa brojem iteracija:

$$\eta_t = lpha/t$$
 ; $\eta_t = lpha/\sqrt{t}$

Odabir α : zaključak

Da bismo odredili α , posmatramo grafik:

• Y-osa: *J*(θ)

• X-osa: broj iteracija

• Probati $\alpha = 0.001$, $\alpha = 0.01$, $\alpha = 0.1$, $\alpha = 1$,...

Došlo je do divergencije. Smanjiti α

Algoritam je spor. Nije konvergirao u zadatom broju iteracija. Povećati α

Dobra vrednost α. Algoritam je brzo konvergirao.

Odabir α : zaključak

Alternativa: automatska detekcija konvergencije

• Možemo reći da je algoritam konvergirao kada važi

$$\left\| \frac{\partial}{\partial \theta} J(\theta) \right\| < \varepsilon$$

- ε predstavlja prag (malu vrednost, tipa 10⁻⁵)
- U praksi, šta znači "mala" vrednost dosta zavisi od podataka

Skaliranje (normalizacija) obeležja

- Vrednosti obeležja treba da budu istog opsega kako bi gradient descent brže konvergirao
 - x_1 = SanitationFacilities [0-100 %], x_2 = GDP [597.4 143,788.2]

Sa normalizacijom

Bez normalizacije

2 Gradient descent no normalization/start.m

Skaliranje (normalizacija) obeležja

• Mean normalization: skalirati vrednosti obeležja x_d tako da njegova srednja vrednost bude bliska nuli

$$x_d = \frac{x_d - \min(x_d)}{\max(x_d) - \min(x_d)}$$

$$x_d = \frac{x_d - \mu}{\sigma}$$

- μ srednja vrednost obeležja x_d
- σ standardna devijacija obeležja x_d

Rezime

- Gradientni spust u praksi
 - početno rešenje
 - α
 - konvergencija
 - značaj skaliranja obeležja

 Sledeće: alternativa gradijentnom spustu za treniranje modela