Contrôle de physique N°4

Durée : 1 heure 45 minutes. Barème sur 20 points.

NOM:	
	Groupe
PRENOM:	

1. Deux condensateurs de capacité $C_1=C$ et $C_2=2C$ sont branchés sur une tension U_{AB} , fournie par une pile, selon le schéma ci-dessous.

(a) Déterminer la charge portée par chacun des condensateurs.

$$\frac{2}{3}CU_{AB}$$

Après avoir déconnecté la pile, on sépare les deux condensateurs chargés et les rebranche comme ci-dessous.

(b) Déterminer la nouvelle tension entre A et B . $\frac{4}{5}U_{AB}$

3 pts

2. Un moteur est alimenté par deux générateurs, selon le schéma ci-dessous. Les générateurs fournissent une tension idéale (électromotrice) $U_0=12\,\mathrm{V}$ et ont une résistance interne $r=1\,\Omega$. La résistance R est de $3\,\Omega$. En régime normal, le moteur, de résistance interne $r_M=0.4\,\Omega$, est traversé par un courant $I_M=5\,\mathrm{A}$.

(a) Déterminer entièrement (intensité et sens) les courants dans chaque branche.

4 A et 1 A

(b) Calculer la puissance électrique reçue par le moteur.

 $40\,\mathrm{W}$

(c) Déterminer le rendement du moteur. 75%

3.

Un petit disque de masse m et portant une charge Q < 0 peut glisser sans frottement sur une table horizontale. Il est attaché à l'une des extrémités d'un ressort non conducteur de longueur au repos ℓ_0 et de constante k . L'autre extrémité du ressort est fixée en un point C de la table. Le tout est plongé dans un champ magnétique homogène Bnormal à la table et dirigé vers le bas.

Le disque tourne autour de C avec une vitesse angulaire $\vec{\omega}_C$ constante, comme indiqué sur le dessin.

(a) Déterminer la longueur du ressort.

$$\frac{k\ell_0}{k - |Q|\omega_C B - m\omega_C^2}$$

(b) A un instant donné, le ressort libère le disque : la norme de la vitesse du disque est alors notée v_0 . Caractériser entièrement la trajectoire du disque pour des temps ultérieurs.

5.5 pts

4. On cherche à maintenir horizontalement au-dessus du sol une tige conductrice de masse m et de longueur L. Pour ce faire, on fait circuler un courant I dans la tige et on place cette dernière dans une région où règne un champ magnétique uniforme B_0 vertical dirigé vers le bas. De plus, on place, parallèlement à la tige, un fil rectiligne très long parcouru par un courant I_0 circulant dans le sens opposé à celui de I.

Déterminer précisément la position que doit avoir le fil par rapport à la tige (angle α par rapport à l'horizontale et distance a à la tige) pour que cette dernière soit en équilibre.

$$\operatorname{tg} \varphi = \frac{mg}{ILB_0} \text{ et } a^2 = \frac{\mu_0^2 I_0^2}{(2\pi)^2 \left(\left(\frac{mg}{IL} \right)^2 + B_0^2 \right)}$$