Due Date: 2 April, 2018 Maximum Marks: 100

Instructions

- Submit the hard copy of the assignment at KD213 on 2 April 2018.
- Yours answers should be precise and clearly written in LATEX.
- Cheating/plagiarizing in any form will be heavily penalized.
- Late submissions will receive a mark of zero.
- Any doubts regarding the assignment can be raised in the discussion forum on moodle. PLEASE DO NOT COME TO LAB.

Consider a variant of KECCAK hash function which we will call WECCAK(WEAK-KECCAK). The following is the description of WECCAK.

- 1. Input to the hash function is a message M.
- 2. M is padded with minimum number of zero's such that bit-length of padded message is a multiple of 184.
- 3. The padded message is divided into block of 184 bits. Let's call them M_1, M_2, \ldots, M_r .
- 4. A state in WECCAK hash function is a $5 \times 5 \times 8$ 3-dimensional array.
- 5. Initial State S contains all zeros.
- 6. The first message block M_1 is appended with 16 zeroes to form M'_1 and is XORed with S.(This procedure is similar to KECCAK)
- 7. This state is given as input to a function F(which will be defined later) and let's call it output as O_1 . The output of F is also a $5 \times 5 \times 8$ 3 dimensional array.
- 8. The second message block M_2 is appended with 16 zeroes to form M'_2 and is XORed with O_1 and is given to F.
- 9. This is continued for r times.
- 10. The output of WECCAK is the initial 80 bits of O_r . (This procedure is similar to KECCAK).

Let $R = \chi \circ \rho \circ \pi \circ \theta$. $(\theta, \rho, \pi, \chi)$ is the same as defined in KECCAK). Please note that now in all the operations z indicies are modulo 8. Consider $H_1 = R \circ R$ and $H_2 = \underbrace{R \circ R \cdots \circ R}_{\text{otherwise}}$.

- 1. (40 points) Compute the inverse of χ and θ .
- 2. (30 points) Claim about the security of WECCAK with $F = H_1$.(Give a preimage, collision and second preimage attack)(Hint: Birthday paradox and meet in middle)
- 3. (30 points) Claim about the security of WECCAK with $F = H_2$. (Give a preimage, collision and second preimage attack) (Hint: Birthday paradox and meet in middle)