Vysoké učení technické v Brně Fakulta informačních technologií

ELEKTRONIKA PRO INFORMAČNÍ TECHNOLOGIE 2017/2018

SEMESTRÁLNÍ PROJEKT

Příklad 1:

Stanovte napětí U_{R1} a proud I_{R1}. Použijte metodu postupného zjednodušování obvodu.

S	šk.	$U_1[V]$	U ₂ [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	$R_4[\Omega]$	$R_5[\Omega]$	R ₆ [Ω]	$R_7[\Omega]$	R ₈ [Ω]
,	Α	80	120	350	650	410	130	360	750	310	190

1) Zjednodušíme zdroje napětí:

$$U_{12} = U_1 + U_2$$

$$U_{12} = 80 + 120$$

$$U_{12} = 200 \text{ V}$$

2) Zjednodušíme rezistory R1, R2 a R7, R8:

$$R_{12} = \frac{R1*R2}{R1+R2} = \frac{227500}{1000} = 227,5 \Omega$$

$$R_{78} = \frac{R7*R8}{R7+R8} = \frac{58900}{500} = 117.8 \Omega$$

3) Použijeme transfiguraci trojúhelník-hvězda: (pro přehlednost, si tyto rezistory označíme A, B, C)

$$R_A = \frac{R5*R6}{R4+R5+R6} = \frac{360*750}{130+360+750} = 217,7419 \Omega$$

$$R_{B} = \frac{R4*R5}{R4+R5+R6} = \frac{130*360}{130+360+750} = 37,7419 \Omega$$

$$R_C = \frac{R4*R6}{R4+R5+R6} = \frac{130*750}{130+360+750} = 78,6290 \Omega$$

4) Zjednodušíme sériově zapojené rezistory R₁₂, R_B a R₃, R_C:

$$R_{12B} = R_{12} + R_B = 227,5 + 37,7419 = 265,2419 \Omega$$

$$R_{3C} = R_3 + R_C = 410 + 78,6290 = 488,6290 \Omega$$

5) Zjednodušíme paralelně zapojené rezistory R_{12B} a R_{3C}:

$$R_{123BC} = \frac{R12B*R3C}{R12B+R3C} = \frac{265,2419*488,6290}{265,2419+488,6290} = 171,9192 \Omega$$

 $R_{12345678} = R_{123BC} + R_A + R_{78} = 171,9192 + 217,7419 + 117,8 = 507,4611 \Omega$

7) Vypočítáme podle Ohmova zákona proud procházející obvodem:

$$I = \frac{U12}{R12345678} = \frac{200}{507,4611} = 0,394119 A$$

Když známe proud procházející obvodem, můžeme spočítat napětí na R_{123BC} (sch. 1e):

Zpětným krokem si rozložíme rezistory (sch. 1d). Protože jsou zapojeny paralelně, tak napětí bude stejné, proud však nikoliv.

$$I_{R12B} = \frac{UR123BC}{R12B} = \frac{67,7566}{265,2419} = 0,255452 A$$

Zase se vrátíme o krok zpět (sch. 1c) a spočítáme napětí na rezistoru R_{12} . Protože rezistor R_1 a R_2 jsou zapojeny paralelně, tak napětí bude stejné jako na našem odporu R_1 .

$$U_{R12} = I_{R12B} * R_{12} = 0,255452 * 227,5 = 58,1153 V$$

Když známe napětí na R1 a jeho odpor, tak lehce dopočítáme proud.

$$IR1 = \frac{UR12}{R1} = \frac{58,1153}{350} = 0,166044 A = 166,044 mA$$

Výsledné hodnoty I_{R1} a U_{R1} jsou:

Příklad 2:

Stanovte napětí U_{R3} a proud I_{R3}. Použijte metodu Théveninovy věty.

Sk.	$U_1\left[V\right]$	U ₂ [V]	$R_1\left[\Omega\right]$	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]
В	100	50	310	610	220	570

Théveninova věta tvrdí, že lze libovolně složitý lineární obvod nahradit obvodem skutečného zdroje napětí a k němu připojenou zátěž (v našem případě R₃).

Při výpočtu podle Thévenina postupujeme následovně:

1) Odpojíme zátěž a vypočítáme proud ve smyčkách:

Vytvoříme dvě rovnice o dvou neznámých podle smyček a vypočítáme proudy:

A:
$$R_1*I_1 + R_2*I_2 - U_1 = 0$$

B:
$$R4*(I_1-I_2) + U_2 - R_2*I_2 = 0$$

A:
$$310I_1 + 610I_2 - 100 = 0$$

B:
$$570I_1 - 570I_2 + 50 - 610I_2 = 0$$

A (+):
$$310I_1 + 610I_2 = 100$$

B:
$$570I_1 = 1180I_2 - 50$$
 /:570

A:
$$310I_1 + 610I_2 = 100$$

B:
$$l_1 = 2,0702 l_2 - 0,0877$$
 Dosadíme do A (+).

A:
$$310*(2,0702 I_2 - 0,0877) + 610I_2 = 100$$

A:
$$641,762 I_2 + 610I_2 = 100 + 27,187$$

A:
$$1251,762 I_2 = 127,187$$
 /: $1251,762$

A:
$$I_2 = 0,101606$$
 A Dosadíme do A(+) a vypočítáme I_1 .

A:
$$310I_1 + 610*0,101606 = 100$$

A:
$$310I_1 = 100 - 61,9799$$
 /:310

A:
$$I_1 = 0,122645 A$$

2) Místo odpojené zátěže připojíme náhradní zdroj U_{th} a zvolíme libovolnou smyčku a vypočítáme napětí. Já si zvolil smyčku přes R₄ a U₂.

$$R_4*(I_1 - I_2) + U_2 - U_{th} = 0$$

 $570*(0,122645 - 0,101606) + 50 = U_{th}$
 $11,9922 + 50 = U_{th}$
 $Uth = 61,9922 V$

3) Vyzkratujeme zdroje a vypočítáme R_{th} zjednodušením všech rezistorů vůči svorkám odpojené zátěže:

$$R_{12} = \frac{R1*R2}{R1+R2} = \frac{189100}{920} = 205,5435 \Omega$$

$$R_{th} = \frac{R12*R4}{R12+R4} = \frac{117159,795}{775,5435} = 151,0680 \Omega$$

4) Dosadíme hodnoty do výsledného obvodu a spočítáme U_{R3} a I_{R3} :

$$I = \frac{Uth}{Rth + R3} = \frac{61,9922}{151,0680 + 220} = 0,167064 A = 167,064 \text{ mA}$$

Hledané hodnoty I_{R3} a U_{R3}:

I_{R3} = 167,064 mA U_{R3} = 36,7541 V

Příklad 3:

Stanovte napětí U_{R5} a proud I_{R5}. Použijte metodu uzlových napětí (U_A, U_B, U_C).

Sk.	U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]
Н	130	0,95	0,50	47	39	58	28	25

1) Podle Kirchhoffova zákona sestavíme rovnice pro uzly A, B a C:

A:
$$I_1 + I_{R2} - I_{R1} - I_{R3} = 0$$

B:
$$I_{R3} + I_{R5} - I_{R2} = 0$$

C:
$$I_2 - I_{R4} - I_{R5} = 0$$

2) Vyjádříme jednotlivé proudy a převedeme odpor na vodivost:

$$I_{R1} = \frac{UA}{R1} = G_1 U_A$$
 $I_{R2} = \frac{U + UA - UB}{R2} = G_2 (U + U_A - U_B)$ $I_{R3} = \frac{UB - UA}{R3} = G_3 (U_B - U_A)$

$$I_{R4} = \frac{UC}{R4} = G_4U_C$$
 $I_{R5} = \frac{UB - UC}{R4} = G_5(U_B - U_C)$

3) Dosadíme vyjádřené proudy do rovnic:

A:
$$I_1 + G_2(U+U_A-U_B) - G_1U_A - G_3(U_B-U_A) = 0$$

B:
$$G_3(U_B - U_A) + G_5(U_B - U_C) - G_2(U + U_A - U_B) = 0$$

C:
$$I_2 - G_4U_C - G_5(U_B - U_C) = 0$$

4) Upravíme rovnice:

A:
$$U_A(G_2 + G_1 + G_3) - U_B(G_2 + G_3) + 0U_C = -I_1 - UG_2$$

B:
$$-U_A(G_3 + G_2) + U_B(G_3 + G_5 + G_2) - U_CG_5 = UG_2$$

C:
$$0U_A - U_BG_5 + U_C(G_5 + G_4) = -I_2$$

5) Dosadíme číselné hodnoty:

A:
$$UA\left(\frac{1}{39} + \frac{1}{47} + \frac{1}{58}\right) - UB\left(\frac{1}{39} + \frac{1}{58}\right) - 0 = -0.95 - 130 * \left(\frac{1}{39}\right)$$

B: $UA\left(\frac{1}{58} + \frac{1}{39}\right) + UB\left(\frac{1}{58} + \frac{1}{25} + \frac{1}{39}\right) - UC\left(\frac{1}{25}\right) = 130 * \left(\frac{1}{39}\right)$
C: $0 - UB\left(\frac{1}{25}\right) + UC\left(\frac{1}{25} + \frac{1}{28}\right) = -0.50$

6) Zapíšeme do rozšířené matice a pomocí Cramerova pravidla vypočítáme U_B a U_C:

$$\begin{pmatrix} 0,0642 & -0,0429 & 0 \\ -0,0429 & 0,0829 & -0,04 \\ 0 & -0,04 & 0,0757 \end{pmatrix} = \begin{pmatrix} 4,2833 \\ -3,3333 \\ 0,5 \end{pmatrix}$$

Vypočítáme obecný determinant:

$$\det = \begin{vmatrix} 0.0642 & -0.0429 & 0 \\ -0.0429 & 0.0829 & -0.04 \\ 0 & -0.04 & 0.0757 \end{vmatrix} = 1,60849988 * 10^{-4}$$

Dosadíme pravou stranu místo prostředního sloupce (UB) a spočítáme determinant:

$$detB = \begin{vmatrix} 0.0642 & 4.2833 & 0 \\ -0.0429 & -3.3333 & -0.04 \\ 0 & 0.5 & 0.0757 \end{vmatrix} = 1.005492752999 * 10^{-3}$$

To samé ve třetím sloupci (U_C):

$$detC = \begin{vmatrix} 0.0642 & -0.0429 & 4.2833 \\ -0.0429 & 0.0829 & -3.3333 \\ 0 & -0.04 & 0.5 \end{vmatrix} = 5.311134 * 10^{-4}$$

$$U_{B} = \frac{detB}{det} = \frac{1,005492752999*10^{-3}}{1,60849988*10^{-4}} = -6,2511 V$$

$$U_{C} = \frac{detC}{det} = \frac{5,311134*10^{-4}}{1,60849988*10^{-4}} = 3,3019 V$$

7) Dosadíme do vzorce pro R₅:

$$U_{R5} = U_{C} - U_{B} = 3,3019 - (-6,2511) = 9,553 \text{ V}$$

$$I_{R5} = \frac{UR5}{R5} = \frac{9,553}{25} = 0,38212 A$$

Hledané hodnoty jsou:

$$U_{R5} = 9,553 \text{ V}$$

 $I_{R5} = 0,38212 \text{ A}$

Příklad 4:

Určete | U_{C1} | a φ_{C1}. Použijte metodu smyčkových proudů.

Sk.	U1 [V]	U2 [V]	R1 [Ω]	R2 [Ω]	R3 [Ω]	L1 [mH]	L2 [mH]	C1 [uF]	C2 [uF]	f [Hz]
Α	35	55	12	14	10	120	100	200	105	70

1) Vypočteme úhlovou frekvenci:

$$\omega = 2\pi f = 2 * \pi * 70 = 439,8230$$

2) Vypočteme impedanci cívek a kondenzátorů:

$$Z_{L1} = j\omega L_1 = 439,8230 * 120 * 10^{-3}j = 52,7788j Ω$$

$$Z_{L2} = j\omega L_2 = 439,8230 * 100 * 10^{-3}j = 43,9823j Ω$$

$$Z_{C1} = j\frac{1}{\omega C1} = j\frac{1}{439,8230*200*10^{-6}} = -11,3682j Ω$$

$$Z_{C2} = j\frac{1}{\omega C2} = j\frac{1}{439,8230*105*10^{-6}} = -21,6537j Ω$$

3) Sestavíme smyčky (podle sch. 4a):

A:
$$Z_{L1}I_A + R_1I_A + Z_{C1}(I_A + I_B) + R_2(I_A + I_C) - U_1 = 0$$

B:
$$Z_{C1}(I_B + I_A) + Z_{L2}(I_B - I_C) + R_3I_B - U_2 = 0$$

C:
$$Z_{C2}I_C + Z_{L2}(I_C - I_B) + R_2(I_C + I_A) - U_1 = 0$$

Upravíme:

A:
$$I_A(Z_{L1} + R_1 + Z_{C1} + R_2) + I_BZ_{C1} + I_CR_2 = U_1$$

B:
$$I_A Z_{C1} + I_B (Z_{C1} + Z_{L2} + R_3) - I_C Z_{L2} = U_2$$

C:
$$I_AR_2 - I_BZ_{L2} + I_C(Z_{C2} + Z_{L2} + R_2) = U_1$$

Dosadíme hodnoty:

A:
$$I_A(527788j + 12 - 11,3682j + 14) + I_B(-11,3682j) + I_C(14) = 35$$

B:
$$I_A(-11,3682j) + I_B(-11,3682j + 43,9823j + 10) - I_C(43,9823j) = 55$$

C:
$$I_A(14) - I_B(43,9823j) + I_C(-21,6537j + 43,9823j + 14) = 35$$

Sečteme a zapíšeme do rozšířené matice:

$$\begin{vmatrix} 26 + 41,4106j & -11,3682j & 14 \\ -11,3682j & 10 + 32,6141j & -43,9823j \\ 14 & -43,9823j & 14 + 22,3286j \end{vmatrix} = \begin{vmatrix} 35 \\ 55 \\ 35 \end{vmatrix}$$

Spočítáme obecný determinant podle Cramerova pravidla:

$$det = \begin{vmatrix} 26 + 41,4106j & -11,3682j & 14 \\ -11,3682j & 10 + 32,6141j & -43,9823j \\ 14 & -43,9823j & 14 + 22,3286j \end{vmatrix} = -7303,4607 + 69917,8555j$$

Dále vypočítáme determinant I_A a I_B dosazením pravé strany do příslušného sloupce:

$$detA = \begin{vmatrix} 35 & -11,3682j & 14 \\ 55 & 10 + 32,6141j & -43,9823j \\ 35 & -43,9823j & 14 + 22,3286j \end{vmatrix} = 10756,5783 - 17297,847j$$

$$detB = \begin{vmatrix} 26 + 41,4106j & 35 & 14 \\ -11,3682j & 55 & -43,9823j \\ 14 & 35 & 14 + 22,3286j \end{vmatrix} = -114246,1696 + 82288,6260j$$

$$detB = \begin{vmatrix} 26 + 41,4106j & 35 & 14 \\ -11,3682j & 55 & -43,9823j \\ 14 & 35 & 14 + 22,3286j \end{vmatrix} = -114246,1696 + 82288,6260j$$

Spočítáme hodnotu IA a IB ve tvaru komplexního čísla:

$$I_{A} = \frac{\det A}{\det} = \frac{10756,5783 - 17297,847j}{-7303,4607 + 69917,8555j} = -0,2606 - 0,1266j$$

$$I_B = \frac{detB}{det} = \frac{-114246,1696+82288,6260j}{-7303,4607+69917,8555j} = 1,3330 + 1,4948j$$

Podle Ohmova zákona spočítáme napětí na C₁ ve tvaru komplexního čísla a následně pomocí Pythagora $|U_{C1}|$:

$$U_{C1} = Z_{C1} * I_{C1} = Z_{C1} * (I_A + I_B) = -11,3682j * (1,0728 + 1,3682j) = 15,5540 - 12,1958j$$

$$|U_{c1}| = \sqrt{re^2 + img^2} = \sqrt{15,5540^2 + (-12,1958)^2} = \sqrt{390,6644} = 19,7652 V$$

Spočítáme úhel ϕ_{C1} pomocí goniometrické funkce:

$$\phi_{C1} = -arctg\left(\frac{imgUc1}{reUc1}\right) = -arctg\left(\frac{-12,1958}{15,5540}\right) = 38,0998^{\circ}$$

převedeme na radiány: $38,998 * \frac{\pi}{180} = 0,6650 \ rad$

Hledané hodnoty $|U_{C1}|$ a ϕ_{C1} isou:

$$|U_{c1}| = 19,7652 \text{ V}$$

 $\phi_{C1} = 0,6650 \text{ rad}$

Příklad 5:

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení u_C = f(t). Proveďte kontrolu dosazením do sestavené diferenciální rovnice.

Sk.	U [V]	C [F]	R [Ω]	u _c (0) [V]
В	40	10	20	8

1) Známe:

a. Podle Kirchhoffova zákona: $U_R = U - U_C$ b. Platí Ohmův zákon: $U_R = R * I = P$ pokud $U_C = 0$, tak $I = \frac{UR}{R}$

c. $U_{c}' = \frac{1}{C} * I$

2) Počáteční podmínka: $U_c(0) = U_{CP} = 0$

Upravujeme rovnice: $U_C' = \frac{1}{C} * I = \frac{1}{C} * \frac{UR}{R} = \frac{1}{C} * \frac{U-UC}{R} = \frac{U}{RC} - \frac{UC}{RC}$

Rovnici upravíme tak, že U_C převedeme nalevo a konstanty napravo: $U_C' + \frac{UC}{RC} = \frac{U}{RC}$

3) Homogenní řešení:

$$U_{C}' + \frac{UC}{RC} = 0$$

Předpokládané řešení podle stupně derivace: $U_C = \lambda^{0 \text{ nebo } 1}$

$$\lambda^1 + \frac{\lambda^0}{RC} = 0 \Rightarrow \lambda + \frac{1}{RC} = 0 \Rightarrow \lambda = -\frac{1}{RC}$$

Očekávané řešení: $U_c(t) = e^{\lambda t} * k_1 = e^{-\frac{1}{RC}t} * k_1$

Derivujeme: $U_{c}'(t) = -\frac{1}{RC} * e^{-\frac{t}{RC}} * k1 + e^{-\frac{t}{RC}} * k1'$

4) Nehomogenní řešení:

Dosadíme do původní rovnice: $U_{C}' + \frac{UC}{RC} = \frac{U}{RC}$

$$-\frac{1}{RC} * e^{-\frac{t}{RC}} * k1 + e^{-\frac{t}{RC}} * k1' + \frac{e^{-\frac{t}{RC}} * k1}{RC} = \frac{U}{RC}$$

Vykrátíme a vyjádříme si k₁':

$$k_{1}' * e^{-\frac{t}{RC}} = \frac{U}{RC} \Rightarrow k_{1}' = \frac{U}{RC} * e^{\frac{t}{RC}}$$

Integrujeme:

$$\int k1'dt = \int \frac{U}{RC} * e^{\frac{t}{RC}} dt$$

Vytkneme konstantu: $\int k1'dt = \frac{U}{RC} \int e^{\frac{t}{RC}} dt$

Zavedeme substituci: $\frac{t}{RC} = x$ $\frac{1}{RC}dt = dx$ dt = RCdx

$$k_1 = \frac{U}{RC} \int e^x RC dx$$

Vytkneme konstantu: $k_1 = \frac{U}{RC}RC \int e^x dx$

Vykrátíme, dosadíme substituci a konstantu: $k_1 = U * e^{\frac{t}{RC}} + k_2$

5) Dosadíme do očekávaného řešení: $u_c(t) = e^{-\frac{1}{RC}t} * k_1$

$$u_{C}(t) = e^{-\frac{t}{RC}} * (U * e^{\frac{t}{RC}} + k2)$$

$$u_{C}(t) = \frac{1}{e^{RC}} * (U * e^{\frac{t}{RC}} + k2)$$

$$u_{C}(t) = U + k_{2} * e^{-\frac{t}{RC}}$$

Vliv počáteční podmínky: $U_c(0) = U_{CP} = 0$

$$U_{CP} = U + k_2 * 1$$

 $k_2 = U_{CP} - U$

Dosadíme k₂:

$$u_{C}(t) = U + (U_{CP} - U) * e^{-\frac{t}{RC}}$$

6) Dosadíme hodnoty:

$$U_c(t) = 40 + (8 - 40) * e^{-\frac{t}{20*10}}$$

Hledaný výsledek:

$$U_{\rm C}(t) = 40 - 32e^{-\frac{t}{200}}$$

- 7) Pro ověření správnosti provedeme zkoušku:
 - a. Ze zadání očekáváme $u_c(0) = 8$
 - b. Dosadíme do naší rovnice hodnoty pro t = 0:

$$U_{\rm C}(0) = 40 - 32 * e^{-\frac{0}{200}}$$

$$U_c(0) = 40 - 32 * e^0$$

$$U_c(0) = 40 - 32 * 1$$

$$U_{c}(0) = 8$$

Výsledek odpovídá zadání, tudíž naše rovnice je správná.

Závěr

Výsledky řešení:

Příklad	Skupina	Výsledek
1	А	I _{R1} = 0,1660 A, U _{R1} = 58,1153 V
2	В	I _{R3} = 0,1671 A, U _{R3} = 36,7541 V
3	Н	I _{RS} = 0,3821 A, U _{RS} = 9,5530 V
4	А	$ U_{C1} = 19,7652 \text{ V}, \phi_{C1} = 0,6650 \text{ rad}$
5	В	$U_{c}(t) = 40 - 32e^{-\frac{t}{200}}$