Linear spaces

Lecture 5

Mathematics - 1st year, English

Faculty of Computer Science Alexandru Ioan Cuza University of Iasi

e-mail: corina.forascu@gmail.com

facebook: Corina Forăscu

October 30, 2018

Outline of the lecture

- Definition. Properties
- Linear combinations
 - Linear dependence
 - Algebraic bases
 - Dimension of linear spaces
- Change of coordinates
- Scalar products. Norms

Linear spaces

A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Euclidian spaces: the real line, the real plane, the real space and the real hyperspace (a n-dimensional space with $n \ge 4$).

Definition

Let $V \neq \emptyset$, $+: V \times V \to V$ (operation) and $\cdot: \mathbb{R} \times V \to V$ (external operation). We say that $(V, +, \cdot)$ is a *linear space* or a *vectorial space* if:

- $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}, \ \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V;$
- $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}, \ \forall \mathbf{x}, \mathbf{y} \in V;$
- $\exists 0 \in V$, $\forall x \in V : x + 0 = 0 + x = x$;
- $\forall x \in V$, $\exists (-x) \in V : x + (-x) = (-x) + x = 0$;
- $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{x}, \mathbf{y} \in V;$
- $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \ \forall \alpha, \beta \in \mathbb{R}, \ \forall \mathbf{x} \in V;$
- $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \beta) \cdot \mathbf{x}, \ \forall \alpha, \beta \in \mathbb{R}, \ \forall \mathbf{x} \in V;$
- $1 \cdot \mathbf{x} = \mathbf{x}, \ \forall \mathbf{x} \in V$.
- The elements of V are usually called *vectors*;
- the elements of \mathbb{R} are called *scalars*;
- the operation + is called the addition of vectors;
- the external operation · is called the *multiplication with scalars*;
- the element **0** is called the *null-vector*;
- ullet the vector $-\mathbf{x}$ is called the *opposite* of the vector $\mathbf{x} \in V$.

The Euclidean space

Theorem

Let $n \in \mathbb{N}^*$ and $\mathbb{R}^n := \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}}$. We define the operations $+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ by: $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$ $\alpha \cdot (x_1, x_2, \dots, x_n) := (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$ Then $(\mathbb{R}^n, +, \cdot)$ is a linear space, with $\mathbf{0} = (0, \dots, 0).$

- ullet The above two operations are named the *canonical operations* on \mathbb{R}^n .
- If $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we will call the numbers x_1, x_2, \dots, x_n the coordinates of \mathbf{x} .

Examples

- **1.** Let, for $m, n \in \mathbb{N}^*$, $\mathcal{M}_{m,n}$ be the set of all real $m \times n$ -matrices.
 - + is the usual addition between matrices;
 - · is the multiplication of matrices with reals.

Then $(\mathcal{M}_{m,n},+,\cdot)$ is a linear space.

- **2.** Let $\mathbb{R}[X]$ be the set of all *polynomials* with real coefficients.
 - + is the usual addition between polynomials;
 - · is the multiplication of polynomials with reals.
- Then $(\mathbb{R}[X], +, \cdot)$ is a linear space.
- **3.** Let E be a set, $(V, +, \cdot)$ a linear space and $\mathscr{F}(E; V)$ the collection of all functions $f: E \to V$. The operations

$$+$$
 : $\mathscr{F}(E;V)\times\mathscr{F}(E;V)\to\mathscr{F}(E;V);$

$$\cdot$$
 : $\mathbb{R} \times \mathscr{F}(E; V) \to \mathscr{F}(E; V)$

are defined by

- $(f+g)(x) := f(x) + g(x), f, g \in \mathcal{F}(E; V), x \in E;$
- $(\alpha \cdot f)(x) := \alpha \cdot f(x), \ \alpha \in \mathbb{R}, \ f \in \mathcal{F}(E; V), \ x \in E.$

Then $(\mathscr{F}(E;V),+,\cdot)$ is a linear space.

Particularizing E and $(V, +, \cdot)$ we get other or already known examples.

- For instance, if we take $E := \{1, \ldots, m\} \times \{1, \ldots, n\}$ and $V := \mathbb{R}$, we obtain once again the linear space $(\mathcal{M}_{m,n}, +, \cdot)$, since $\mathcal{M}_{m,n}$ is precisely $\mathscr{F}(\{1, \ldots, m\} \times \{1, \ldots, n\}; \mathbb{R})$.
- If $m, n \in \mathbb{N}^*$, $E \subseteq \mathbb{R}^n$ and $V := \mathbb{R}^m$, then $(\mathscr{F}(E; \mathbb{R}^m), +, \cdot)$ is a vectorial space of functions of n variables with values in \mathbb{R}^m .
- If $E := \mathbb{N}$ and $V := \mathbb{R}$, then $\mathscr{F}(E; V)$ is the space of real sequences $(x_n)_{n \in \mathbb{N}}$.

Properties

Theorem

Let $(V, +, \cdot)$ be a linear space. Then, for any $\alpha \in \mathbb{R}$ and $\mathbf{x} \in V$ we have:

i)
$$\alpha \cdot \mathbf{0} = 0 \cdot \mathbf{x} = \mathbf{0}$$
;

ii)
$$(-\alpha) \cdot \mathbf{x} = \alpha \cdot (-\mathbf{x}) = -(\alpha \cdot \mathbf{x});$$

iii)
$$(-\alpha) \cdot (-\mathbf{x}) = \alpha \cdot \mathbf{x}$$
;

iv)
$$\alpha \cdot \mathbf{x} = \mathbf{0} \Rightarrow \alpha = 0$$
 or $\mathbf{x} = \mathbf{0}$.

Linear subspaces

Definition

Let $(V, +, \cdot)$ be a linear space and $\emptyset \neq W \subseteq V$. We say that W is a *linear subspace* of V if for any $\alpha \in \mathbb{R}$, $\mathbf{x}, \mathbf{y} \in W$ we have that $\mathbf{x} + \mathbf{y} \in W$ and $\alpha \cdot \mathbf{x} \in W$.

Examples.

1. If $m, n \in \mathbb{N}^*$ and $m \le n$, the set

$$W_m := \{(x_1, \ldots, x_m, 0, \ldots, 0) \in \mathbb{R}^n \mid (x_1, \ldots, x_m) \in \mathbb{R}^m\}$$

is a linear subspace of \mathbb{R}^n . Since we can identify W_m with \mathbb{R}^m , we often consider \mathbb{R}^m as a subset of \mathbb{R}^n (as we consider \mathbb{R} a subset of \mathbb{C}).

2. Let $n \in \mathbb{N}^*$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that not all $\alpha_1, \ldots, \alpha_n$ are 0 (*i.e.*, $(\alpha_1, \ldots, \alpha_n) \neq \mathbf{0}$). The set

$$H := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \alpha_1 x_1 + \cdots + \alpha_n x_n = 0\}$$

is a linear subspace of \mathbb{R}^n , called a *hyperplane*.

3. The set of *even* real functions,

$$\{f \in \mathscr{F}(\mathbb{R}; \mathbb{R}) \mid f(-x) = f(x), \ \forall x \in \mathbb{R}\}$$

is a linear subspace of $\mathscr{F}(\mathbb{R};\mathbb{R})$.

Proposition

Let W_1 and W_2 be two linear subspaces of a linear space $(V,+,\cdot)$. Then $W_1\cap W_2$ is again a linear subspace of V.

Proof.

Let
$$\alpha \in \mathbb{R}$$
 and $\mathbf{x}, \mathbf{y} \in W_1 \cap W_2$. Then

$$\mathbf{x}, \mathbf{y} \in W_1 \Rightarrow \mathbf{x} + \mathbf{y} \in W_1$$
 and $\mathbf{x}, \mathbf{y} \in W_2 \Rightarrow \mathbf{x} + \mathbf{y} \in W_2$

so
$$\mathbf{x} + \mathbf{y} \in W_1 \cap W_2$$
.

Also,

$$\alpha \in \mathbb{R}$$
, $\mathbf{x} \in W_1 \Rightarrow \alpha \cdot \mathbf{x} \in W_1$ and $\alpha \in \mathbb{R}$, $\mathbf{x} \in W_2 \Rightarrow \alpha \cdot \mathbf{x} \in W_2$,

hence $\alpha \cdot \mathbf{x} \in W_1 \cap W_2$.

- In contrast to the intersection, the union of two linear subspaces of V is *not* a linear subspace of V, in general.
- The above result can be extended to an arbitrary number of intersections.

Linear combinations

Definition

Let $(V, +, \cdot)$ be a linear space. A *linear combination* of the vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ is a vector $\mathbf{y} \in V$ which can be written as

$$\mathbf{y} = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n,$$

where $n \in \mathbb{N}^*$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Remark. If W is a linear subspace of V, any linear combination of the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in W$ is again an element of W.

Definition

Let $(V, +, \cdot)$ be a linear space and U be a non-empty subset of V. The set of all linear combinations of elements of U,

$$\{\alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \mid n \in \mathbb{N}^*, \ \alpha_1, \dots, \alpha_n \in \mathbb{R}, \ \mathbf{x}_1, \dots, \mathbf{x}_n \in V\}$$

is called the *linear subspace generated* by U, denoted Lin(U).

- It is easy to prove that $U \subseteq \text{Lin}(U)$ and Lin(U) is a linear subspace of V (hence the name).
- Moreover, it can be shown that Lin(U) is the smallest linear subspace of V which contains U.

Example. If $V := \mathbb{R}^3$, the linear subspace generated by $U := \{(1,3,2)\}$ is the line $\{(\alpha,3\alpha,2\alpha) \mid \alpha \in \mathbb{R}\}$.

Linear dependence

Definition

Let $(V, +, \cdot)$ be a linear space.

• For $n \in \mathbb{N}^*$, the vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ are called *linearly dependent* if there exist $\alpha_1, \dots, \alpha_n \in \mathbb{R}$, not all 0, such that

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n = 0.$$

Otherwise, x_1, \ldots, x_n are called *linearly independent*.

• A subset U of V is called *linearly independent* if for any *distinct* vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in U, \mathbf{x}_1, \dots, \mathbf{x}_n$ are *linearly independent*.

Remarks.

• By the above definition, $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ are linearly independent if and only if the equation

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n = \mathbf{0}$$

has as unique solution $\alpha_1 = \cdots = \alpha_n = 0$.

- If $\mathbf{0} \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, then clearly $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly dependent (we take all α_k , $1 \le k \le n$, to be 0, except the α_k corresponding to the \mathbf{x}_k which is $\mathbf{0}$). Hence, if $U \subseteq V$ is linearly independent, $0 \notin U$.
- The necessary and sufficient condition for the vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ to be linearly dependent is that we can write a vector among $\mathbf{x}_1, \dots, \mathbf{x}_n$ as a linear combination of the others. Indeed, if

$$\mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_{k-1} \mathbf{x}_{k-1} + \alpha_{k+1} \mathbf{x}_{k+1} + \cdots + \alpha_n \mathbf{x}_n$$

then

$$\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1} + \alpha_k \mathbf{x}_k + \alpha_{k+1} \mathbf{x}_{k+1} + \dots + \alpha_n \mathbf{x}_n = \mathbf{0},$$

where $\alpha_k = -1 \neq 0$. Conversely, if

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n = \mathbf{0}$$

for some $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$, not all 0, let $k\in\{1,\ldots,n\}$ such that $\alpha_k\neq 0$. Then

$$\mathbf{x}_{k} = \left(-\frac{\alpha_{1}}{\alpha_{k}}\right)\mathbf{x}_{1} + \cdots + \left(-\frac{\alpha_{k-1}}{\alpha_{k}}\right)\mathbf{x}_{k-1} + \left(-\frac{\alpha_{k+1}}{\alpha_{k}}\right)\mathbf{x}_{k+1} + \cdots + \left(-\frac{\alpha_{n}}{\alpha_{k}}\right)\mathbf{x}_{n}.$$

Algebraic bases

Definition

Let $(V, +, \cdot)$ be a linear space. A subset $B \subseteq V$ is called an *algebraic basis* or *Hamel basis* (or simply, a *basis*) of V if B is linearly independent and Lin(B) = V.

Theorem

Let $n \in \mathbb{N}^*$. Then the set $\{\mathbf{e}_1, \dots, \mathbf{e}_n\} \subseteq \mathbb{R}^n$, where

$$\mathbf{e}_k := (\underbrace{0, \dots, 0}_{k-1 \text{ times}}, 1, 0, \dots, 0), \ 1 \le k \le n,$$

is a basis of \mathbb{R}^n , called the canonical basis of \mathbb{R}^n .

Dimension

Definition

Let $(V, +, \cdot)$ be a linear space. We say that V is *finite-dimensional* if there exists a finite basis of V. Otherwise, V is called *infinite-dimensional*.

Theorem

Let $(V,+,\cdot)$ be a finite-dimensional linear space, $n\in\mathbb{N}^*$ and $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ a basis of V. Let $X=(\alpha_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$ be a matrix in $\mathscr{M}_{n,m}$. Then the m vectors

$$\mathbf{x}_k := \alpha_{1,k} \mathbf{b}_1 + \cdots + \alpha_{n,k} \mathbf{b}_n, \ 1 \le k \le m$$

are linearly independent if and only if the rank of the matrix X is m.

Proof.

The vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent if and only if the equation

$$\xi_1 \mathbf{x}_1 + \cdots + \xi_m \mathbf{x}_m = \mathbf{0}$$

has only the trivial solution $\xi_1 = \cdots = \xi_m = 0$. Writting down the expression for each \mathbf{x}_k , $1 \le k \le m$, we get that (*) is equivalent to

$$\xi_1(\alpha_{1,1}\mathbf{b}_1+\cdots+\alpha_{n,1}\mathbf{b}_n)+\cdots+\xi_m(\alpha_{1,m}\mathbf{b}_1+\cdots+\alpha_{n,m}\mathbf{b}_n)=\mathbf{0}, \text{ i.e. }$$

$$(\alpha_{1,1}\xi_1+\cdots+\alpha_{1,m}\xi_m)\mathbf{b}_1+\cdots+(\alpha_{n,1}\xi_1+\cdots+\alpha_{n,m}\xi_m)\mathbf{b}_n=\mathbf{0}.$$

Therefore, $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent if and only if the homogeneous system with n equations and m unknowns

$$\begin{cases} \alpha_{1,1}\xi_1 + \dots + \alpha_{1,m}\xi_m &= 0 \\ \dots &\vdots \\ \alpha_{n,1}\xi_1 + \dots + \alpha_{n,m}\xi_m &= 0 \end{cases}$$

has only the trivial solution. By the theory of linear systems in \mathbb{R} , this is equivalent to the fact that the matrix X has the rank m.

Corollary

Let $(V, +, \cdot)$ be a finite-dimensional linear space. If B is a basis of V with n elements and $x_1, \ldots, x_m \in V$ are linearly independent vectors, then $m \leq n$.

Theorem

Let $(V, +, \cdot)$ be a finite-dimensional linear space. Then there exists a unique $n \in \mathbb{N}$, called the dimension of V and denoted dim V, such that every basis of V has precisely n elements.

Remark. The linear space \mathbb{R}^n is finite dimensional and has dimension n.

Theorem

Let W be a linear subspace of a finite-dimensional linear space $(V, +, \cdot)$. Then W is finite-dimensional and dim $W \le \dim V$.

Proposition

Let $(V, +, \cdot)$ be a finite-dimensional linear space and $n := \dim V$. If $m \le n$ and $\mathbf{x}_1, \dots, \mathbf{x}_m \in V$ are linearly independent vectors, then there exist vectors $\mathbf{y}_{m+1}, \dots, \mathbf{y}_n \in V$ such that $\{\mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{y}_{m+1}, \dots, \mathbf{y}_n\}$ forms a basis of V.

Coordinates

Proposition

Let $(V, +, \cdot)$ be a finite-dimensional linear space with dimension $n \in \mathbb{N}^*$. If $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ is a basis of V, then for every $\mathbf{x} \in V$ there exist and are unique $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_n \mathbf{b}_n.$$

The scalars $\alpha_1, \ldots, \alpha_n$ are called the coordinates of \mathbf{x} with respect to $\mathbf{b}_1, \ldots, \mathbf{b}_n$.

Remarks.

1. In \mathbb{R}^n , the coordinates of a vector $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ with respect to the elements of the canonical basis $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ are precisely x_1,\ldots,x_n (*i.e.*, the coordinates of \mathbf{x}).

2. Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of \mathbb{R}^n (not necessarily the canonical one), $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\alpha_1, \dots, \alpha_n$ the coordinates of \mathbf{x} with respect to $\mathbf{b}_1, \dots, \mathbf{b}_n$. Then the relation

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_n \mathbf{b}_n$$

can be written in a matrix-way as

$$\mathbf{x}^T = \mathbf{B} \cdot X_B$$
,

where

$$\mathbf{B} = [\mathbf{b}_1^T \dots \mathbf{b}_n^T] \in \mathscr{M}_n$$

is the matrix having on the k-th column the coordinates of \mathbf{b}_k , while

$$\mathbf{X}_{\mathbf{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{M}_{n,1}$$

is the column-matrix of the coordinates of of \mathbf{x} with respect to $\mathbf{b}_1, \dots, \mathbf{b}_n$.

Definition

Let $(V, +, \cdot)$ be a finite-dimensional linear space with dimension $n \in \mathbb{N}^*$, $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of V and $B' = \{\mathbf{b}_1', \dots, \mathbf{b}_n'\}$ a set of m vectors in V. We call the *transition matrix* from B to B' the matrix

$$S = \begin{bmatrix} s_{1,1} & \dots & s_{1,m} \\ \vdots & & \vdots \\ s_{n,1} & \dots & s_{n,m} \end{bmatrix} \in \mathcal{M}_{n,m},$$

where, for $1 \le k \le m$, $s_{1,k}, \ldots, s_{n,k}$ are the coordinates of the vector \mathbf{b}'_k with respect to $\mathbf{b}_1, \ldots, \mathbf{b}_n$.

Formally, we can write

$$\mathbf{B}' = \mathbf{B} \cdot \mathcal{S}$$

where B and B' are the row-matrix formed with the elements of B and respectively B':

$$\mathbf{B} = [\mathbf{b}_1 \dots \mathbf{b}_n], \mathbf{B} = [\mathbf{b}_1' \dots \mathbf{b}_m']$$

Theorem

Let $(V, +, \cdot)$ be a finite-dimensional linear space with dimension $n \in \mathbb{N}^*$. If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ are two bases of V and S is the transition matrix from B to B', then the matrix S is non-singular and S^{-1} is the transition matrix from B' to B.

Moreover, if $\mathbf{x} \in V$ and $\alpha_1, \ldots, \alpha_n, \alpha'_1, \ldots, \alpha'_n$ are the coordinates of \mathbf{x} with respect to $\mathbf{b}_1, \ldots, \mathbf{b}_n$, respectively $\mathbf{b}'_1, \ldots, \mathbf{b}'_n$, then

$$X_{B'} = S^{-1} \cdot X_B,$$

where

$$\mathbf{X}_{\mathbf{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{M}_{n,1}, \mathbf{X}_{\mathbf{B}}' = \begin{bmatrix} \alpha_1' \\ \vdots \\ \alpha_n' \end{bmatrix} \in \mathcal{M}_{n,1}$$

Definition

Let $(V, +, \cdot)$ be a finite-dimensional linear space with dimension $n \in \mathbb{N}^*$. Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, $B' = \{\mathbf{b}_1', \dots, \mathbf{b}_n'\}$ be two bases of V and S the transition matrix from B to B'. We say that B and B' have the same orientation if $\det S > 0$.

Scalar products

Definition

Let $(V, +, \cdot)$ be a linear space. We say that an application $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is a *scalar product* on V if:

- $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\forall \mathbf{x} \in V$ (positive definitness);
- $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Rightarrow \mathbf{x} = 0, \ \forall \mathbf{x} \in V$;
- $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$, $\forall \mathbf{x}, \mathbf{y} \in V$ (symmetry);
- $\langle \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$, $\langle \mathbf{x}, \alpha \cdot \mathbf{y} + \beta \cdot \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ (bilinearity).

In this case, the quadruple $(V, +, \cdot, \langle \cdot, \cdot \rangle)$ is called a *prehilbertian space*.

Proposition

Let $n \in \mathbb{N}^*$ and $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be defined as

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle := x_1y_1+\cdots+x_ny_n.$$

Then $\langle \cdot, \cdot \rangle$ is a scalar product on \mathbb{R}^n , called the Euclidian scalar product.

Orthogonality

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a prehilbertian space.

- We say that two vectors $\mathbf{x} \in V$ and $\mathbf{y} \in V$ are *orthogonal* and we denote $\mathbf{x} \perp \mathbf{y}$ if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- Let $\mathbf{x} \in V$ and U a non-empty subset of V. We say that x is orthogonal on U and we denote $\mathbf{x} \perp U$ if $\mathbf{x} \perp \mathbf{y}$ for every $\mathbf{y} \in U$.
- If U is non-empty subset of V, we call U an *orthogonal system* if $\mathbf{x} \perp \mathbf{y}$ for any distinct $\mathbf{x}, \mathbf{y} \in U$.
- Let $U \subseteq V$. The *orthogonal complement* of U is the set

$$U^{\perp} := \{ \mathbf{x} \in V \mid \mathbf{x} \perp U \} .$$

Remark. Let $\emptyset \neq U \subseteq V$.

- One can show that if $\mathbf{x} \in V$, then $\mathbf{x} \perp U$ if and only if $\mathbf{x} \perp \operatorname{Lin}(U)$.
- Therefore, $U^{\perp} = \operatorname{Lin}(U)^{\perp}$.
- It is also easy to prove that $U \cap U^{\perp} = \{\mathbf{0}\}.$

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Angle between vectors

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a prehilbertian space. For $\mathbf{x}, \mathbf{y} \in V \setminus \{\mathbf{0}\}$, we call the *angle* between \mathbf{x} and \mathbf{y} the number

$$\widehat{(\textbf{x},\textbf{y})} = \sphericalangle(\textbf{x},\textbf{y}) := \arccos \frac{\langle \textbf{x},\textbf{y} \rangle}{\sqrt{\langle \textbf{x},\textbf{x} \rangle} \sqrt{\langle \textbf{y},\textbf{y} \rangle}}.$$

It is clear that $\widehat{(\mathbf{x},\mathbf{y})} = \widehat{(\mathbf{y},\mathbf{x})} \in [0,\pi]$, $\forall \mathbf{x},\mathbf{y} \in V \setminus \{\mathbf{0}\}$. Moreover, if $\mathbf{x},\mathbf{y} \in V \setminus \{\mathbf{0}\}$, $\widehat{(\mathbf{x},\mathbf{y})} = \pi/2$ if and only if $\mathbf{x} \perp \mathbf{y}$.

Norms

Definition

Let $(V,+,\cdot)$ be a linear space. We say that an application $\|\cdot\|:V\to\mathbb{R}$ is a *norm* on V if:

- $\|\mathbf{x}\| \geq 0$, $\forall \mathbf{x} \in V$;
- $\|\mathbf{x}\| = 0 \Rightarrow \mathbf{x} = 0, \ \forall \mathbf{x} \in V$;
- $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$, $\forall \lambda \in \mathbb{R}$, $\forall \mathbf{x} \in V$ (homogeneity);
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$, $\forall \mathbf{x}, \mathbf{y} \in V$ (triangle property).

In this case, the quadruple $(V, +, \cdot, ||\cdot||)$ is called a *normed space*.

Proposition

Let $(V,\langle\cdot,\cdot\rangle)$ be a prehilbertian space. Then the mapping $\|\cdot\|:V\to\mathbb{R}$ defined by

$$\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \ \mathbf{x} \in V$$

is a norm on V, called the norm induced by the scalar product $\langle \cdot, \cdot \rangle$.

Definition

Let $n \in \mathbb{N}^*$. The norm induced by the Euclidean scalar product on \mathbb{R}^n is called the *Euclidean norm* and is denoted $\|\cdot\|_2$.

If
$$(x_1,\ldots,x_n)\in\mathbb{R}^n$$
, then $\|(x_1,\ldots,x_n)\|_2=\sqrt{x_1^2+\cdots+x_n^2}$.

Definition

Let $(V, \|\cdot\|)$ be a normed space. A vector $\mathbf{x} \in V$ such that $\|\mathbf{x}\| = 1$ is called a *versor*.

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a prehilbertian space.

- A non-empty subset $U \subseteq V$ is called an *orthonormal system* if U is an orthogonal system and every element of U is a versor.
- If B is a basis of V and B is an orthogonal system, then B is called an orthogonal basis.
- If B is a basis of V and B is an orthonormal system, then B is called an orthonormal basis.

In other words, U is an orthonormal system if and only if for any $\mathbf{x},\mathbf{y}\in U$ we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\{ egin{array}{ll} 0, & \mathbf{x}
eq \mathbf{y}; \\ 1, & \mathbf{x} = \mathbf{y}. \end{array} \right.$$

Of course, the canonical basis $\{e_1, \dots, e_n\}$ in \mathbb{R}^n is an orthonormal basis.

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional prehilbertian space with dimension $n \in \mathbb{N}^*$ and $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of V. We call the *Gram determinant* associated with the basis B the number $\det G \in \mathbb{R}$, where

$$G := \begin{bmatrix} \langle \mathbf{b}_1, \mathbf{b}_1 \rangle & \langle \mathbf{b}_1, \mathbf{b}_2 \rangle & \dots & \langle \mathbf{b}_1, \mathbf{b}_n \rangle \\ \langle \mathbf{b}_2, \mathbf{b}_1 \rangle & \langle \mathbf{b}_2, \mathbf{b}_2 \rangle & \dots & \langle \mathbf{b}_2, \mathbf{b}_n \rangle \\ \vdots & \vdots & & \vdots \\ \langle \mathbf{b}_n, \mathbf{b}_1 \rangle & \langle \mathbf{b}_n, \mathbf{b}_2 \rangle & \dots & \langle \mathbf{b}_n, \mathbf{b}_n \rangle \end{bmatrix} \in \mathscr{M}_n$$

- G is a symmetric and non-singular matrix.
- The basis B is orthogonal or orthonormal if and only if G is a diagonal matrix, respectively $G = I_n$.
- If $\mathbf{x}, \mathbf{y} \in V$ and $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ are the coordinates of \mathbf{x} , respectively \mathbf{y} , with respect to $\mathbf{b}_1, \dots, \mathbf{b}_n$, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \beta_{j} \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle = X_{B}^{T} \cdot G \cdot Y_{B},$$

where $X_B = [\alpha_1, \dots, \alpha_n]^T \in \mathcal{M}_{n,1}$ and $Y_B = [\beta_1, \dots, \beta_n]^T \in \mathcal{M}_{n,1}$.

Theorem (Gram-Schmidt orthonormalization procedure)

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional prehilbertian space with dimension $n \in \mathbb{N}^*$. If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of V, there exists an orthonormal basis $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ such that

$$\operatorname{Lin}(\{\mathbf{b}'_1,\ldots,\mathbf{b}'_k\}) = \operatorname{Lin}(\{\mathbf{b}_1,\ldots,\mathbf{b}_k\})$$

for every $k \in \{1, \ldots, n\}$.

- One important aspect of this result is that every finite-dimensional prehilbertian space has an orthonormal basis.
- It is enough to prove that the basis B' should be only orthogonal (if $\{\mathbf{b}'_1,\ldots,\mathbf{b}'_n\}$ is an orthogonal basis, then $\left\{\frac{\mathbf{b}'_1}{\|\mathbf{b}'_1\|},\ldots,\frac{\mathbf{b}'_n}{\|\mathbf{b}'_n\|}\right\}$ is an orthonormal basis).

Proof.

Step 1. We take $\mathbf{b}_1' = \mathbf{b}_1$.

Step 2. Suppose that, for k < n, we have already found $\mathbf{b}'_1, \ldots, \mathbf{b}'_k$ with $\{\mathbf{b}'_1, \ldots, \mathbf{b}'_k\}$ an orthogonal system such that

$$\operatorname{Lin}(\{\mathbf{b}'_1,\ldots,\mathbf{b}'_k\}) = \operatorname{Lin}(\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}).$$

We determine $\mathbf{b}'_{k+1} = \lambda_1 \mathbf{b}'_1 + \dots + \lambda_k \mathbf{b}'_k + \mathbf{b}_{k+1}$ such that $\mathbf{b}'_{k+1} \perp \mathbf{b}'_j$, $\forall j \in \{1, \dots, k\}$. This means that

$$\lambda_j \|\mathbf{b}_j'\|^2 + \langle \mathbf{b}_{k+1}, \mathbf{b}_j' \rangle = 0, \ \forall j \in \{1, \dots, k\},$$

i.e. $\lambda_j = -\frac{\langle \mathbf{b}_{k+1}, \mathbf{b}_j' \rangle}{\left\| \mathbf{b}_j' \right\|^2}$ for $j \in \{1, \dots, k\}$. In conclusion, we have found

$$\mathbf{b}_{k+1}' = \mathbf{b}_{k+1} - \frac{\langle \mathbf{b}_{k+1}, \mathbf{b}_1' \rangle}{\left\| \mathbf{b}_1' \right\|^2} \mathbf{b}_1' - \dots - \frac{\left\langle \mathbf{b}_{k+1}, \mathbf{b}_k' \right\rangle}{\left\| \mathbf{b}_k' \right\|^2} \mathbf{b}_k'.$$

Step 3. We repeat **Step 2** until we arrive to k + 1 = n.

The above algorithm is called the Gram-Schmidt orthonormalization procedure.

- V. Borcea, C. Davideanu, Corina Forăscu, *Probleme de Algebră Liniară*, Gh. Asachi Publishing House, Iasi, 2000.
- S. Corbu, Algebră liniară. Geometrie analitică (elemente de teorie și aplicații), Editura "Fair Partners", București, 2011.
- N. Cotfas, *Elemente de algebră liniară*, Editura Univ. București, 2009.
- M. Gorunescu, F. Gorunescu, A. Prodan, *Matematici superioare*, Biostatistică și Informatică, Editura Albastră, Cluj-Napoca, 2002.
- J. Hefferon, Linear Algebra, Saint Michael's College, 2014.
- lon D. Ion, R. Nicolae, *Algebră*, Editura Didactică și Pedagogică, București, 1981.
- V. Postolică, *Eficiență prin matematica aplicată*, Editura Matrix Rom, București, 2006.
- 🔋 A. Precupanu, *Bazele analizei matematice*, Editura Polirom, Iași, 1998.
- R. Singh, M. Bhatt, *Linear Algebra and Vector Calculus*, Mc Graw Hill Ed., 2016.
- S. Treil, Linear Algebra Done Wrong, Brown University, 2013