```
In [1]:
         import os
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         import plotly.express as px
In [2]:
         country_df = pd.read_csv('covid_19_india.csv')
In [3]:
         vaccine df = pd.read csv('covid vaccine statewise.csv')
In [4]:
         country_df.shape
         (18110, 9)
Out[4]:
```

Data information

```
In [5]:
         country_df.columns
        Index(['Sno', 'Date', 'Time', 'State/UnionTerritory',
Out[5]:
                'ConfirmedIndianNational', 'ConfirmedForeignNational', 'Cured',
               'Deaths', 'Confirmed'],
              dtype='object')
In [6]:
         country_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 18110 entries, 0 to 18109
        Data columns (total 9 columns):
             Column
                                        Non-Null Count Dtype
         0
             Sno
                                        18110 non-null int64
         1
             Date
                                        18110 non-null object
             Time
         2
                                        18110 non-null object
         3
             State/UnionTerritory
                                        18110 non-null object
         4
             ConfirmedIndianNational
                                        18110 non-null object
         5
             ConfirmedForeignNational 18110 non-null object
         6
             Cured
                                        18110 non-null int64
         7
             Deaths
                                        18110 non-null int64
             Confirmed
                                        18110 non-null int64
        dtypes: int64(4), object(5)
        memory usage: 1.2+ MB
```

Data cleaning

```
In [7]: country_df.describe()
```

```
Out[7]:
                        Sno
                                    Cured
                                                  Deaths
                                                            Confirmed
         count 18110.000000 1.811000e+04
                                             18110.000000
                                                          1.811000e+04
                 9055.500000 2.786375e+05
                                                          3.010314e+05
                                             4052.402264
         mean
                 5228.051023 6.148909e+05
                                             10919.076411
                                                          6.561489e+05
            std
           min
                    1.000000 0.000000e+00
                                                0.000000
                                                          0.000000e+00
           25%
                 4528.250000 3.360250e+03
                                                32.000000
                                                         4.376750e+03
           50%
                 9055.500000 3.336400e+04
                                               588.000000
                                                         3.977350e+04
           75%
                13582.750000 2.788698e+05
                                              3643.750000
                                                         3.001498e+05
                18110.000000 6.159676e+06 134201.000000
                                                          6.363442e+06
In [8]:
          country_df[((country_df['Date']=='2020-03-30')&(country_df['State/UnionTerritory']=='Ta
Out[8]:
              Sno
                    Date Time State/UnionTerritory ConfirmedIndianNational ConfirmedForeignNational Cure
                    2020-
                           9:30
              496
                                          Tamil Nadu
                    03-30
                            PM
In [9]:
          df=country df.copy()
```

Data cleaning

```
In [10]:
          def drop star(df):
              for i in df['State/UnionTerritory'].iteritems():
                  if i[1][-3:] == "***":
                      df.drop(i[0],inplace=True)
          drop star(df)
          df['State/UnionTerritory'].unique()
         array(['Kerala', 'Telengana', 'Delhi', 'Rajasthan', 'Uttar Pradesh',
Out[10]:
                 'Haryana', 'Ladakh', 'Tamil Nadu', 'Karnataka', 'Maharashtra',
                 'Punjab', 'Jammu and Kashmir', 'Andhra Pradesh', 'Uttarakhand',
                 'Odisha', 'Puducherry', 'West Bengal', 'Chhattisgarh',
                 'Chandigarh', 'Gujarat', 'Himachal Pradesh', 'Madhya Pradesh',
                 'Bihar', 'Manipur', 'Mizoram', 'Andaman and Nicobar Islands',
                'Goa', 'Unassigned', 'Assam', 'Jharkhand', 'Arunachal Pradesh',
                 'Tripura', 'Nagaland', 'Meghalaya',
                 'Dadra and Nagar Haveli and Daman and Diu',
                 'Cases being reassigned to states', 'Sikkim', 'Daman & Diu',
                 'Lakshadweep', 'Telangana', 'Dadra and Nagar Haveli',
                 'Himanchal Pradesh', 'Karanataka'], dtype=object)
In [11]:
          df['Date']=pd.to datetime(df['Date'],format='%Y-%m-%d')
          df.drop(['Time'],axis=1, inplace=True)
```

```
df.rename(columns={'State/UnionTerritory':'States'}, inplace=True)
In [12]:
           df['Active_cases']=df['Confirmed']-(df['Cured']+df['Deaths'])
           df['Discharge Rate'] = np.round((df['Cured']/df['Confirmed'])*100, decimals = 4)
           df['Death Rate'] = np.round((df['Deaths']/df['Confirmed'])*100, decimals = 4)
           df.head()
                   Date States ConfirmedIndianNational ConfirmedForeignNational Cured Deaths Confirmed
Out[12]:
             Sno
                  2020-
          0
                                                                            0
                                                                                   0
                                                                                           0
                         Kerala
                                                    1
                                                                                                      1
                  01-30
                  2020-
          1
                         Kerala
                                                    1
                                                                                           0
                                                                                                      1
                  01-31
                  2020-
          2
                                                                            0
                                                                                   0
                         Kerala
                                                    2
                                                                                           0
                                                                                                      2
                  02-01
                  2020-
          3
                         Kerala
                                                    3
                                                                                   0
                                                                                           0
                                                                                                      3
                  02-02
                  2020-
                                                                            0
                                                                                   0
                                                                                                      3
                                                    3
                                                                                           0
                         Kerala
                  02-03
In [13]:
           import matplotlib.pyplot as plt
           import matplotlib.dates as mtd
           import seaborn as sns
           from matplotlib.ticker import ScalarFormatter
           colors=['#0C68C7','#3A6794','#00FAF3','#FA643C','#C71D12']
           sns.set(palette=colors, style='white')
           sns.palplot(colors)
```

state wise list on cured deaths and active cases on a particular day

```
Sno
                         Date
                                    States ConfirmedIndianNational ConfirmedForeignNational
                                                                                              Cured Deaths
                        2021-
          17982 17983
                                    Kerala
                                                                                            3337579
                                                                                                      17654
                        80-80
                        2021-
          17981 17982
                                 Karnataka
                                                                                            2855862
                                                                                                      36773
                        80-80
                        2021-
          17996 17997
                                Tamil Nadu
                                                                                            2518777
                                                                                                      34289
                        80-80
                                   Andhra
                        2021-
          17967 17968
                                                                                            1946370
                                                                                                      13513
                        08-08
                                   Pradesh
                                                                                                        •
In [16]:
           top_cases = max_confirmed_cases[:20]
           top cases.head()
Out[16]:
                   Sno
                         Date
                                    States ConfirmedIndianNational ConfirmedForeignNational
                                                                                              Cured
                                                                                                     Deaths
                        2021-
          17986 17987
                               Maharashtra
                                                                                            6139493 133845
                        80-80
                        2021-
          17982 17983
                                    Kerala
                                                                                            3337579
                                                                                                      17654
                        80-80
                        2021-
          17981 17982
                                 Karnataka
                                                                                            2855862
                                                                                                      36773
                        08-08
                        2021-
          17996
                 17997
                                Tamil Nadu
                                                                                            2518777
                                                                                                      34289
                        08-08
                        2021-
                                   Andhra
          17967 17968
                                                                                            1946370
                                                                                                      13513
                        80-80
                                   Pradesh
In [17]:
           for feature in top_cases[['Confirmed','Cured','Deaths','Active_cases']]:
               fig=plt.figure(figsize=(30,10))
               plt.title("Top 10 highly impacted sates as on 7th June", size=10)
               ax=sns.barplot(data=top cases,y=top cases[feature],x='States', linewidth=0, edgecol
               plt.xlabel('States', size = 15)
               plt.ylabel(feature, size = 15)
               for i in ax.patches:
                    ax.text(x=i.get_x(),y=i.get_height(),s=i.get_height())
           plt.show()
```


comparsion Cured, deaths, active cases

between top states

```
In [18]:
          states=['Kerala', 'Tamil Nadu', 'Maharashtra', 'Tamil Nadu', 'Andhra Pradesh', 'Uttar P
          mh=df[df['States']=='Maharashtra']
          kl=df[df['States']=='Kerala']
          ka=df[df['States']=='Karnataka']
          tn=df[df['States']=='Tamil Nadu']
          ap=df[df['States']=='Andhra Pradesh']
          up=df[df['States']=='Uttar Pradesh']
In [19]:
          fig, ax=plt.subplots(nrows=3, ncols=3, figsize=(23,10), squeeze=False, sharex=True, sha
          plt.suptitle("Comparison of Active, Cured & Deaths for top States", size = 25)
          sns.lineplot(data=tn, x='Date',y='Active_cases', ax=ax[0,0], color=colors[1])
          ax[0,0].set_title("Maharashtra", size=20)
          sns.lineplot(data=tn, x='Date',y='Cured', ax=ax[1,0], color=colors[1])
          sns.lineplot(data=tn, x='Date',y='Deaths', ax=ax[2,0], color=colors[1])
          sns.lineplot(data=kl, x='Date',y='Active_cases', ax=ax[0,1], color=colors[2])
          ax[0,1].set_title("Kerala", size=20)
          sns.lineplot(data=k1, x='Date',y='Cured', ax=ax[1,1], color=colors[2])
          sns.lineplot(data=kl, x='Date',y='Deaths', ax=ax[2,1], color=colors[2])
          sns.lineplot(data=mh, x='Date',y='Active_cases', ax=ax[0,2], color=colors[3])
          ax[0,2].set_title("Karnataka", size=20)
          sns.lineplot(data=mh, x='Date',y='Cured', ax=ax[1,2], color=colors[3])
          sns.lineplot(data=mh, x='Date',y='Deaths', ax=ax[2,2], color=colors[3])
          plt.show()
```



```
fig, ax=plt.subplots(nrows=3, ncols=3, figsize=(23,10), squeeze=False, sharex=True, sha
sns.lineplot(data=tn, x='Date',y='Active_cases', ax=ax[0,0], color=colors[1])
ax[0,0].set_title("Tamil Nadu", size=20)
sns.lineplot(data=tn, x='Date',y='Cured', ax=ax[1,0], color=colors[1])
sns.lineplot(data=tn, x='Date',y='Date', ax=ax[2,0], color=colors[1])
sns.lineplot(data=kl, x='Date',y='Active_cases', ax=ax[0,1], color=colors[2])
ax[0,1].set_title("Andhra Pradesh", size=20)
sns.lineplot(data=kl, x='Date',y='Cured', ax=ax[1,1], color=colors[2])
sns.lineplot(data=kl, x='Date',y='Date', ax=ax[2,1], color=colors[2])
```

```
sns.lineplot(data=mh, x='Date',y='Active_cases', ax=ax[0,2], color=colors[3])
ax[0,2].set_title("Uttar Pradesh", size=20)
sns.lineplot(data=mh, x='Date',y='Cured', ax=ax[1,2], color=colors[3])
sns.lineplot(data=mh, x='Date',y='Deaths', ax=ax[2,2], color=colors[3])
plt.show()
```


what is the Discharge rate per month in 2020 and 2021?

```
In [21]:
          df['Date']= pd.to datetime(df['Date'])
          data_20 = df[df['Date'].dt.year==2020]
          data_21 = df[df['Date'].dt.year==2021]
          data_20['Month']=data_20['Date'].dt.month
          data 21['Month']=data 21['Date'].dt.month
          #Year 2020
          data confirm 20= data 20['Confirmed'].groupby(data 20['Month']).sum()
          data_dis_20= data_20['Cured'].groupby(data_20['Month']).sum()
                                                                              # creating instances
          data_death_20= data_20['Deaths'].groupby(data_20['Month']).sum()
          #Year 2021
          data confirm 21= data 21['Confirmed'].groupby(data 21['Month']).sum()
          data_dis_21= data_21['Cured'].groupby(data_21['Month']).sum()
                                                                              # creating instances
          data_death_21= data_21['Deaths'].groupby(data_21['Month']).sum()
          cols_20=[data_confirm_20,data_dis_20,data_death_20]
          data 20=pd.concat(cols 20,axis=1)
          cols_21=[data_confirm_21,data_dis_21,data_death_21]
          data 21=pd.concat(cols 21,axis=1)
          data_20['discharge_rate_20'] = np.round((data_20['Cured']/data_20['Confirmed'])*100, de
          data_20['death_rate_20'] = np.round((data_20['Deaths']/data_20['Confirmed'])*100, decim
          #Year 2020
```

data_21['discharge_rate_21'] = np.round((data_21['Cured']/data_21['Confirmed'])*100, de
data_21['death_rate_21'] = np.round((data_21['Deaths']/data_21['Confirmed'])*100, decim

C:\Users\SOWNDAR\AppData\Local\Temp/ipykernel_10960/2646291606.py:5: SettingWithCopyWarn
ing:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data 20['Month']=data 20['Date'].dt.month

C:\Users\SOWNDAR\AppData\Local\Temp/ipykernel_10960/2646291606.py:6: SettingWithCopyWarn

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy data 21['Month']=data 21['Date'].dt.month

In [22]:

data_20.reset_index(inplace=True)
data_20.head()

Out[22]:		Month	Confirmed	Cured	Deaths	discharge_rate_20	death_rate_20
	0	1	2	0	0	0.0000	0.0000
	1	2	86	0	0	0.0000	0.0000
	2	3	9687	808	202	8.3411	2.0853
	3	4	422442	75443	13270	17.8588	3.1413
	4	5	2938234	1133341	89834	38.5722	3.0574

In [23]:

data_21.reset_index(inplace=True)
data_21.head()

Out[23]:		Month	Confirmed	Cured	Deaths	discharge_rate_21	death_rate_21
	0	1	326469747	315332019	4709167	96.5884	1.4425
	1	2	305631803	297133802	4359434	97.2195	1.4264
	2	3	356305616	342610397	4935253	96.1563	1.3851
	3	4	440660671	384990190	5340298	87.3666	1.2119
	4	5	751927486	645106765	8390917	85.7937	1.1159

```
In [24]:
```

plt.figure(figsize=(10,5))
sns.lineplot(x="Month",y="discharge_rate_20",data=data_20,color="g",lw=3,marker='o',mar
plt.title('DISCHARGE RATE PER MONTH IN 2020')
plt.show()

DISCHARGE RATE PER MONTH IN 2020

plt.figure(figsize=(10,5))
sns.lineplot(x="Month",y="discharge_rate_21",data=data_21,color="g",lw=3,marker='o',mar
plt.title('DISCHARGE RATE PER MONTH IN 2021')
plt.show()

what is Death Rate in 2020 and 2021?

```
plt.figure(figsize=(10,5))
    sns.lineplot(x="Month",y="death_rate_20",data=data_20,color="r",lw=3,marker='o',markers
    plt.title('DEATH RATE PER MONTH IN 2020')
    plt.show()
```



```
In [27]:
    plt.figure(figsize=(10,5))
    sns.lineplot(x="Month",y="death_rate_21",data=data_21,color="r",lw=3,marker='o',markers
    plt.title('DEATH RATE PER MONTH IN 2021')
    plt.show()
```


what is death rate per month in 2020 and 2021?

```
data_20['Active_cases']=data_20['Confirmed']-(data_20['Cured']+data_20['Deaths'])
plt.figure(figsize=(10,5))
sns.lineplot(x="Month",y="Active_cases",data=data_20,color="b",lw=3,marker='o',markersi
plt.title('DEATH RATE PER MONTH IN 2020')
plt.show()
```



```
In [29]:
    data_21['Active_cases']=data_21['Confirmed']-(data_21['Cured']+data_21['Deaths'])
    plt.figure(figsize=(10,5))
    sns.lineplot(x="Month",y="Active_cases",data=data_21,color="b",lw=3,marker='o',markersi
    plt.title('DEATH RATE PER MONTH IN 2021')
    plt.show()
```


What Male, Female and Transgender Vaccinated ratio for Covid19

```
'18-44 Years (Doses Administered)','45-60 Years (Doses Adminis
'18-44 Years(Individuals Vaccinated)','45-60 Years(Individuals
'Male(Individuals Vaccinated)','Female(Individuals Vaccinated)
'Total Individuals Vaccinated']]

vaccine_df.columns = ['Date','States','Total Doses Administered','First Dose Administer
'Male (Doses Administered)','Female (Doses Administered)','Transg
'18-44 Years (Doses Administered)','45-60 Years (Doses Administer
'18-44 Years(Individuals Vaccinated)','45-60 Years(Individuals Va
'Male Vaccinated','Female Vaccinated','Transgender Vaccinated','T
```

-		F 7	
()	11	1.30	
\cup	ич	1 20 1	

•		Date	States	Total Doses Administered	First Dose Administered	Second Dose Administered	Male (Doses Administered)	Female (Doses Administered)	Trans Admini
(0	16/01/2021	India	48276.0	48276.0	0.0	NaN	NaN	
	1	17/01/2021	India	58604.0	58604.0	0.0	NaN	NaN	
2	2	18/01/2021	India	99449.0	99449.0	0.0	NaN	NaN	
3	3	19/01/2021	India	195525.0	195525.0	0.0	NaN	NaN	
4	4	20/01/2021	India	251280.0	251280.0	0.0	NaN	NaN	

```
In [31]:
```

```
vaccine_df['Date'] = pd.to_datetime(vaccine_df['Date'], format = '%d/%m/%Y')
latest_date = max(vaccine_df['Date'])
print("Current Date : ", latest_date)
```

Current Date : 2021-08-16 00:00:00

```
In [32]:
```

```
male = vaccine_df["Male Vaccinated"].max()
female = vaccine_df["Female Vaccinated"].max()
trans = vaccine_df["Transgender Vaccinated"].max()
px.pie(names=["Male Vaccinated","Female Vaccinated","Trans Gender"],values=[male,female title="Male, Female and Transgender Vaccinated ratio for Covid19",width=550,heig
```

Male, Female and Transgender Vaccinated ratio for Covid19

0.0185%

Age wise vaccinated list

```
In [33]:
          vaccine_18_44 = vaccine_df['18-44 Years(Individuals Vaccinated)'].max()
          vaccine 44 60 = vaccine df['45-60 Years(Individuals Vaccinated)'].max()
          vaccine_60_plus = vaccine_df['60+ Years(Individuals Vaccinated)'].max()
          px.pie(names=["vaccine_18_44","vaccine_44_60","vaccine_60_plus"],values=[vaccine_18_44,
```

covid

Age-wise vaccinated

Total state wise cure deaths and active cases list.

```
In [34]:
          df_by_State = df.groupby('States')[['Cured', 'Deaths' , 'Confirmed']].sum().reset_index()
          df by State
```

Out[34]:		States	Cured	Deaths	Confirmed
	0	Andaman and Nicobar Islands	1848286	27136	1938498
	1	Andhra Pradesh	370426530	2939367	392432753
	2	Arunachal Pradesh	6588149	26799	7176907
	3	Assam	92678680	638323	99837011

	States	Cured	Deaths	Confirmed
4	Bihar	125122902	1093466	132231166
5	Cases being reassigned to states	0	0	345565
6	Chandigarh	10117035	147694	10858627
7	Chhattisgarh	151609364	2063920	163776262
8	Dadra and Nagar Haveli	20352	8	20722
9	Dadra and Nagar Haveli and Daman and Diu	1841750	1014	1938632
10	Daman & Diu	0	0	2
11	Delhi	273419887	4943294	287227765
12	Goa	26027201	447801	28240159
13	Gujarat	132487127	2219448	143420082
14	Haryana	126585342	1502799	134347285
15	Himachal Pradesh	27501110	491348	30033289
16	Himanchal Pradesh	200040	3507	204516
17	Jammu and Kashmir	53297341	839694	58117726
18	Jharkhand	58034506	748641	62111994
19	Karanataka	2821491	36197	2885238
20	Karnataka	441844360	6053762	485970693
21	Kerala	420174235	1888177	458906023
22	Ladakh	3758960	45804	4054293
23	Lakshadweep	820925	3908	915784
24	Madhya Pradesh	126724997	1777752	135625265
25	Maharashtra	1018765039	23737432	1121491467
26	Manipur	11230568	173056	12617943
27	Meghalaya	6537909	101950	7355969
28	Mizoram	2384602	9791	2984732
29	Nagaland	4519526	58460	5041742
30	Odisha	150923455	790814	160130533
31	Puducherry	18483117	312155	20065891
32	Punjab	91458159	2785594	99949702
33	Rajasthan	150356820	1473089	162369656
34	Sikkim	2747214	53150	3186799
35	Tamil Nadu	404095807	5916658	431928644
36	Telangana	57488245	349648	60571979

	States	Cured	Deaths	Confirmed
37	Telengana	64666267	400427	69990668
38	Tripura	12976846	150342	14050250
39	Unassigned	0	0	161
40	Uttar Pradesh	291479351	4143450	312625843
41	Uttarakhand	48362741	986001	53140414
42	West Bengal	247515102	3846989	263107876

```
In [35]: plt.figure(figsize=(10,6))
    plt.title("Cured")
    sns.barplot(x=df_by_State.index, y=df_by_State['Cured']);
    plt.ylabel("Cured");
```



```
In [36]: plt.figure(figsize=(10,6))
    plt.title("Confirmed")
    sns.barplot(x=df_by_State.index, y=df_by_State['Confirmed']);
    plt.ylabel("Confirmed");
```



```
In [37]: plt.figure(figsize=(10,6))
    plt.title("Deaths")
    sns.barplot(x=df_by_State.index, y=df_by_State['Deaths']);
    plt.ylabel("Deaths");
```

