离散数学复习大纲

- □₩命题逻辑
 - Ѿ 命题
 - ₩ 符号化
 - Ѿ 合式公式的形式文法
 - ₩ 合式公式的形式语义
- □ □ 公式之间的关系
 - ₩ 公式的语义性质
 - ₩ 逻辑等价
 - ₩ 永真蕴涵关系
 - ☑ 恒等变换与不等变换
 - ₩ 対偶性
- - ₩ 极大项
 - ₩ 主合取范式
 - ₩ 主析取范式
 - ☑ 联结词的扩充与规约
- □ 推理和证明方法
 - Ѿ 有效结论
 - ₩ 自然推理的形式证明
 - ₩ 证明方法

- 知识
 - 合法的合式公式
 - 常用的基本逻辑恒等式与永真蕴 含式
- 能力
 - 能求主合取范式与主析取范式
 - 能进行公式证明,并给出理由

• 常用的恒等式

$\neg \neg P \Leftrightarrow P$	双重否定律
$P \wedge P \Leftrightarrow P$	宣生体
$P \lor P \Leftrightarrow P$	幂等律
$P \wedge Q \Leftrightarrow Q \wedge P$	六払体
$P \lor Q \Leftrightarrow Q \lor P$	交換律
$(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$	从人体
$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$	结合律
$(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$	八石谷
$(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$	分配律
$(P \land Q) \lor P \Leftrightarrow P$	机体体
$(P \lor Q) \land P \Leftrightarrow P$	吸收律
$(P \to Q) \Leftrightarrow \neg P \lor Q$	蕴涵表达式
$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	Do Margan H
$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	De Morgan律
$(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$	归缪律
$(P \lor \neg P) \Leftrightarrow \mathbb{T}$	排中律
	$P \land P \Leftrightarrow P$ $P \lor P \Leftrightarrow P$ $P \land Q \Leftrightarrow Q \land P$ $P \lor Q \Leftrightarrow Q \lor P$ $(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$ $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$ $(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$ $(P \land Q) \lor R \Leftrightarrow (P \land R) \lor (Q \land R)$ $(P \land Q) \lor P \Leftrightarrow P$ $(P \lor Q) \land P \Leftrightarrow P$ $(P \lor Q) \land P \Leftrightarrow P$ $(P \to Q) \Leftrightarrow \neg P \lor Q$ $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$ $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$ $(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$

• 常用的永真蕴含关系

1	$P \Rightarrow P \lor Q$	加法式
2	$P \wedge Q \Rightarrow P$	简化式
3	$P \wedge (P \rightarrow Q) \Rightarrow Q$	假言推理
4	$\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$	拒取式
5	$\neg P \land (P \lor Q) \Rightarrow Q$	析取三段论
6	$(P \to Q) \land (Q \to R) \Rightarrow P \to R$	前提三段论
7	$(P \to Q) \Rightarrow (Q \to R) \to (P \to R)$	
8	$(P \rightarrow Q) \land (R \rightarrow S) \Rightarrow (P \land R) \rightarrow$	$(Q \land S)$

• 恒等式与不等式证明方法

方法

- 真值表法: 判断 $A \leftrightarrow B$ 或 $A \rightarrow B$ 的真值表是否恒为1;
- 对不等式 $A \Rightarrow B$,只需要判断在A为真时,B亦真;或者,B为假时,A亦假;
- 恒等、不等变换.

Theorem (代入规则)

设公式 $G(P_1, P_2, ..., P_n)$ 是重言式,则其任意的一个代入实例 $G(P_1, ..., P_{i-1}, F/P_i, P_{i+1}, ..., P_n)$ 也是重言式.

Theorem (替换规则)

设,GI是公式G中的某个子公式A用B替换后得到的公式,如果 $A \Leftrightarrow B$, 则 $G \Leftrightarrow GI$.

替换规则只能对恒等式成立,对不等式不成立! 即: if $A \Rightarrow B$,则 $G \Rightarrow GI$.

• 恒等式与不等式证明方法

```
Example
                    (P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R
Proof.
             (\underline{P 	o Q}) 	o (Q \lor R)
 1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)
                                                           (替换+蕴涵表达式)
 2 \Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)
                                                           (代入+蕴涵表达式)
 3 \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R) (代入+替换+De Morgan)
 4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)
                                                              (替换+双重否定)
 5 \Leftrightarrow ((P \land \neg Q) \lor Q) \lor R
                                                                 (代入+结合律)
    \Leftrightarrow ((P \lor Q) \land (\neg Q \lor Q)) \lor R
                                                        (代入+替换+分配律)
 7 \Leftrightarrow ((P \lor Q) \land \mathbb{T}) \lor R
                                                                 (替换+排中律)
 8 \Leftrightarrow (P \lor Q) \lor R
                                                                (替换+简化式)
      = RHS
```

对偶

Definition

设G是一个仅含有 \neg , \land 和 \lor 运算符号的公式; G的对偶公式 G^* 是将G中的 \land , \lor , \mathbb{T} 和 \mathbb{F} 分别替换为 \lor , \land 和 \mathbb{F} , \mathbb{T} , 并且保持原有的运算关系所得到的公式.

Example

$$(P \land Q \lor \neg R)^*$$

$$= (P \lor Q) \land \neg R$$

$$\neq P \lor Q \land \neg R$$

$$= P \lor (Q \land \neg R)$$

Property

$$A^{**} = A$$

对偶

Definition

设G是一个仅含有 \neg , \land 和 \lor 运算符号的公式; G的对偶公式 G^* 是将G中的 \land , \lor , \mathbb{T} 和 \mathbb{F} 分别替换为 \lor , \land 和 \mathbb{F} , \mathbb{T} , 并且保持原有的运算关系所得到的公式.

Theorem

设F和G是仅含有¬, ∧和\运算符号的公式; 则:

$$F \Leftrightarrow G$$
 iff $F^* \Leftrightarrow G^*$

Theorem

设F和G是仅含有¬, ∧和\运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

• 极大项与极小项

• 极大项与极小项

原概念	对偶概念
极大项	极小项
$P_1^{x_1} \vee P_2^{x_2} \vee \cdots \vee P_n^{x_n}$	$P_1^{x_1} \wedge P_2^{x_2} \wedge \cdots \wedge P_n^{x_n}$
在指派 $\overline{x}_1\overline{x}_2\cdots\overline{x}_n$ 下取值为假	在指派X1X2···Xn下取值为真
在其他指派下取真值	在其他指派下取假值
合取范式	析取范式(Disjunctive Normal Form)
主合取范式	主析取范式(Canonical DNF)
成假指派对应于极大项	成真指派对应于极小项
成假X1X2···Xn对应的极大项	成真×1×2···×n对应的极小项
$M_{\times} = P_1^{\overline{x_1}} \vee P_2^{\overline{x_2}} \vee \cdots \vee P_n^{\overline{x_n}}$	$m_{x} = P_1^{x_1} \wedge P_2^{x_2} \wedge \cdots \wedge P_n^{x_n}$
$\Pi(i_1,i_2,\ldots,i_k)$	$\Sigma(i_1,i_2,\ldots,i_k)$
k个极大项	2 ⁿ - k 个极小项

• 极大项与极小项

Example (续前例)

真值表

	Р	Q	R	Result	(max/min)term
0	0	0	0	0	$P \lor Q \lor R$
1	0	0	1	1	$\neg P \land \neg Q \land R$
2	0	1	0	1	$\neg P \land \neg Q \land R$
3	0	1	1	0	$P \vee \neg Q \vee \neg R$
4	1	0	0	1	$P \wedge \neg Q \wedge \neg R$
5	1	0	1	0	$\neg P \lor Q \lor \neg R$
6	1	1	0	0	$\neg P \lor \neg Q \lor R$
7	1	1	1	1	$P \wedge Q \wedge R$

... 对应的主合取范式:

$$(P \lor Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$= M_0 \land M_3 \land M_5 \land M_6 = \Pi(0, 3, 5, 6)$$

.. 对应的主析取范式:

$$(\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R)$$

= $M_0 \land M_3 \land M_5 \land M_6 = \Sigma(1, 2, 4, 7)$

• 极大项与极小项

Remark

- n个原子共有2ⁿ个不同的极大项(极小项);
- ② 在逻辑恒等意义下n个原子的公式共有22n个;
- ③ 如果 $G(P_1, P_2, ..., P_n)$ 是矛盾,则其对应的主合取范式的极大项的个数为 2^n ;
- ④ 如果 $G(P_1, P_2, ..., P_n)$ 是重言式,则其对应的主析取范式的极小项的个数为 2^n .

• 证明有效结论的方法

- ❶ 恒等和不等变换;
- ② 真值表;
- 3 设结论为假,证明条件亦假;
- 设条件为真,证明结论亦真;
- ⊙ 证明序列.

• 推理和证明方法

```
Example

A, B, C和D参加球赛:条件如下:
A参m, 则B或C也参m H_1 = A \rightarrow B \lor C
B参m, 则A不参m H_2 = B \rightarrow \neg A
D参m, 则C不参m H_3 = D \rightarrow \neg C
```

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

```
Equivalent to:  (A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)   (A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C)   1 \Leftrightarrow (A \to B \lor C) \land (A \to \neg B) \land (D \to \neg C)   2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)   3 \Leftrightarrow (A \to (C \land \neg B)) \land (D \to \neg C)   4 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (D \to \neg C)   5 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (C \to \neg D)   6 \Rightarrow (A \to C) \land (C \to \neg D)   7 \Rightarrow A \to \neg D  (注意: 不等变换不能用替换规则)
```

- □ 谓词与量词
 - Ѿ 谓词
 - ₩️ 符号化
- □ 公式间的关系式
 - → 逻辑等价和永真蕴涵关系
 - Ѿ 量词的逻辑关系
 - → 前東范式
- - ₽ 相关概念的复习
 - ₩ 量词的推理规则
 - ₩ 形式证明的例子
 - Mechanized Reasoning

• 知识

- 合法的一阶逻辑公式
- 常用的基本逻辑恒等式与永真蕴 含式
- -量词辖域的扩展与收缩
- 能力
 - 能求前束范式
 - 能进行公式证明,并给出理由

Remark

- 所有的命题公式有关恒等式和不等式的结论均在谓词公式中 成立;
- 谓词公式特有的性质是有关量词的逻辑规律.

Example

- $\bullet \ \forall x P(x) \to \exists x Q(x,y) \Leftrightarrow \neg(\forall x P(x)) \lor \exists x Q(x,y)$
- 代入规则和替换规则
- 恒等式的自反性, 对称性和传递性, 不等式的传递性等.

• 更名规则

Theorem (更名规则)

设F(x)表示含自由变量x的公式,设变量y不出现在公式F(x)中,则:

$$\forall x F(x) \Leftrightarrow \forall y F(y)$$
$$\exists x F(x) \Leftrightarrow \exists y F(y)$$

Remark

- 因为上述更名使约束与非约束的关系发生了变化.

• 量词的消解

Theorem (量词的解消)

设F是不含自由变量x的公式,则:

$$\forall x F \Leftrightarrow F$$
$$\exists x F \Leftrightarrow F$$

Theorem (特例与量词的关系)

$$\forall x F(x) \Rightarrow F(x)$$
$$F(a) \Rightarrow \exists x F(x)$$

Remark

注意特例化没有恒等关系: 当 $D = \{1, 2\}$, a = 1, F(1) = 0, F(2) = 1 时, F(a) 为假, 但是, $\exists x F(x)$ 为真.

• 量词的否定

Theorem (量词的否定) $\neg(\forall x F(x)) \Leftrightarrow \exists x \neg F(x)$ $\neg(\exists x F(x)) \Leftrightarrow \forall x \neg F(x)$

• 量词辖域的扩张与收缩

Example $\forall x \forall y (P(x) \lor P(y)) \Leftrightarrow \forall x P(x) \lor \forall y P(y)$

$$\forall x \forall y (P(x) \vee P(y))$$

$$\Leftrightarrow \forall x (P(x) \vee \forall y P(y)) \quad (代入+替换)$$

$$\Leftrightarrow \forall x P(x) \vee \forall y P(y) \quad (代入)$$

• 量词的分配

Remark

- 3和 4没有恒等式;
- 如, F(x): x是偶数,G(x): x是奇数,则在自然数集合的解释下: $\forall x(F(x) \lor G(x))$ 为真,但是, $\forall xF(x) \lor \forall xG(x)$ 为假;
- 同样,∃xF(x) ^∃xG(x) 为真,但是,∃x(F(x) ∧G(x)) 为假.

• 多个量词的处理

Theorem (多个量词的处理)				
•	$\forall x \forall y F(x,y) \Leftrightarrow \forall y \forall x F(x,y)$			
2	$\exists x \exists y F(x, y) \Leftrightarrow \exists y \exists x F(x, y)$			
3	$\forall x \forall y F(x,y) \Longrightarrow \exists y \forall x F(x,y)$			
4	$\exists y \forall x F(x,y) \Longrightarrow \forall x \exists y F(x,y)$			
•	$\forall x \exists y F(x,y) \Longrightarrow \exists y \exists x F(x,y)$			

Example (④不是逻辑恒等关系的反例)

- $\forall x \exists y \ LOVE(x, y) \Rightarrow \exists y \forall x LOVE(x, y)$;

• 对偶原理

Definition

设G是一个仅含有 \forall , \exists , \neg , \wedge 和 \vee 运算符号的公式; G的对偶公式 G^* 是将G中的 \forall , \exists , \wedge , \vee , \mathbb{T} 和 \mathbb{F} 等符号分别替换为 \exists , \forall , \vee , \wedge , \mathbb{F} 和 \mathbb{T} , 并且保持原有的运算关系所得到的公式.

Theorem

设F和G是仅含有∀, ∃, ¬, ∧ π∨ 运算符号的公式; 𝔻: F ⇔ G iff $F^* ⇔ G^*$

Theorem

设F和G是仅含有 \forall , \exists , \neg , \land 和 \lor 运算符号的公式; 则: $F \Rightarrow G$ iff $G^* \Rightarrow F^*$

• 形式证明的主要步骤

主要步骤.

- 证明方法的选择: 直接证明; 间接证明(CP规则, 反证法等);
- ES+ US 去掉量词(注意:引入的变量和常量的限定条件);
- 处理好特殊和一般的关系;
- 等同写命题公式的证明序列;
- UG和EG加量词(if 结论中有量词), 注意: 避免US+ES后 再UG.

• 形式证明的主要步骤

```
Example
   条件: 纪检人员审查了该
                 E(x): x是该部门的人员;
      部门的每一个
      非VIP人员、该部门
                 V(x): x是VIP;
      有腐败分子存在并
                S(x,y): x被y审查;
      且仅被同类审查过,
     VIP不是腐败分子;
                 C(x): x 是纪检人员;
                 P(x): x是腐败分子.
   结论: 一定有纪检人员是
      腐败分子.
```

• 形式证明的主要步骤

```
\bullet E(a) \land \neg V(a) - > 0
 P(y))))
                    \exists y (S(a,y) \land C(y)) (9+US)
  P(a) \wedge E(a) \wedge (\forall y (S(a,y) \rightarrow
                  (1)+ES
 P(y)))
                  \bigcirc \exists y (S(a,y) \land C(y)) (\bigcirc \bigcirc \bigcirc +MP)
3 P(a) (②+简化式)
                  (S(a,b) \land C(b)) (12+ES)
④ E(a) (②+简化式)
                  ⑤ \forall y (S(a,y) \rightarrow P(y)) (②+...)
                       (13+简化式)
                  \mathbf{G} C(b)
(P)
                  ⑤ S(a, b) (⑤→简化式)
\exists y (S(x,y) \land C(y))) (P)
                  \oplus \exists x (P(x) \land C(x))
                               (178 + EG)
```

☑ 精确的集合语言 ₩ 什么是集合 ₩ 集合的包含关系 Ѿ 运算的定义 ☑ 集合运算的恒等式和不等式 ₩ 补运算 ₹ 文氏图和范式的关系 ₩ 集合运算的扩充 ₩ 无限交和无限并 Ѿ 集合的程序实现 □ 및 集合的构造 ₩ 幂集合 Ѿ 自然数 --- 集合的递归构造 ₩ 乘积集合 ☑ 字符串集合 ₽ 容斥原理

- 集合运算
 - 交并差补
 - 环和、环积
 - 恒等式和不 等式
 - 幂集
- 容斥原理

• 集合运算

- $\bullet \ A \cup B \triangleq \{x \mid x \in A \lor x \in B\};$
- $A \cap B \triangleq \{x \mid x \in A \land x \in B\};$
- $\bullet \ A B \triangleq \{ x \mid x \in A \land x \notin B \}.$

	A A A	
1	$A \cup A = A$ $A \cap A = A$	幂等律
2	$A \cup B = B \cup A$ $A \cap B = B \cap A$	交换律
3	$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	结合律
4	$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$	分配律
5	$(A \cap B) \cup A = A$ $(A \cup B) \cap A = A$	吸收律
6	$A \cup \emptyset = A, A \cap \emptyset = \emptyset$ $A \cup \mathcal{U} = \mathcal{U}, A \cap \mathcal{U} = A$	简化式
7	$A \subseteq A \cup B, \ A \cap B \subseteq A$	
8	$A - B \subseteq A$	
9	if $A \subseteq B \land C \subseteq D$, then $A \cup C \subseteq B \cup D$ $A \cap C \subseteq B \cap D$	

注意:集合上的运算没有定义优先级别,所以 $A \cup B \cap C$,但是因为有结合律,所以: $A \cup B \cup C \vee$.

• 集合运算

$$\overline{A} \triangleq \mathcal{U} - A$$

$$= \{ x \mid x \in \mathcal{U} \land x \notin A \}$$

1	$\overline{\varnothing}=\mathcal{U},\overline{\mathcal{U}}=arnothing$	幂等律
2	$\overline{\overline{A}} = A$	排中律
3	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan律
4	$A\subseteq B\Longleftrightarrow \overline{B}\subseteq \overline{A}$	
5	$A - B = A \cap \overline{B}$	
6	$A\subseteq B\Longleftrightarrow A-B=\emptyset$	

• 集合运算

$$A \oplus B \triangleq (A \cap \overline{B}) \cup (\overline{A} \cap B)$$
$$= (A \cup B) \cap (\overline{A} \cup \overline{B})$$
$$= (A \cup B) - (A \cap B)$$

$$A \otimes B \triangleq \overline{A \oplus B}$$

$$= (\overline{A} \cap \overline{B}) \cup (A \cap B)$$

$$= (\overline{A} \cup B) \cap (A \cup \overline{B})$$

$$\bullet \overline{A} \oplus \overline{B} = A \oplus B;$$

$$A \oplus A = \emptyset;$$

• 集合运算

$$\mathscr{P}(S) = \{ T | T \subseteq S \}.$$

Theorem

if S finite set, |S| = n, then $|\mathscr{P}(S)| = 2^n$.

Example

- $|\mathscr{P}(\emptyset)| = |\{\emptyset\}| = 2^0 = 1;$
- $|\mathscr{P}(\{\emptyset\})| = |\{\emptyset, \{\emptyset\}\}| = 2^1 = 2;$
- $|\mathscr{P}(\{\emptyset, \{\emptyset\}\})| = 2^2 = 4;$
- 设 \mathcal{M}_n 是关于n个原子 P_1, P_2, \ldots, P_n 的极小项的集合,则 $\mathcal{P}(\mathcal{M}_n)$ 对应与所有的成真指派,而 $|\mathcal{M}_n| = 2^n$, $\therefore |\mathcal{P}(\mathcal{M}_n)| = 2^{2^n}$.

• 集合运算

$$A \times B \triangleq \{\langle a, b \rangle \mid a \in A \land b \in B \}$$

$$A_1 \times A_2 \times \cdots \times A_n \triangleq (A_1 \times A_2 \times \cdots \times A_{n-1}) \times A_n$$

$$= \{\langle a_1, a_2, \dots, a_n \rangle \mid a_i \in A_i, i = 1, 2, \dots, n \}$$

$$\bullet \varnothing \times A = \varnothing;$$

$$\bullet A \times (B \cup C) = (A \times B) \cup (A \times C);$$

$$\bullet A \times (B \cap C) = (A \times B) \cap (A \times C);$$

$$\bullet (A \cup B) \times C = (A \times C) \cup (B \times C);$$

$$\bullet (A \cap B) \times C = (A \times C) \cap (B \times C);$$

$$\bullet \text{ if } A_i(i = 1, 2, \dots, n) \text{ 是有限集合,则:}$$

$$\begin{vmatrix} n \\ A_i \end{vmatrix} = \prod_{i=1}^{n} |A_i|$$

• 证明

Remark (证明方法)

- 利用定义证明;
- 利用代入和替换规则+恒等和不等变换;
- 证明的表述方式: 纯一阶逻辑语言, 或者自然语言.

Example

$A \subseteq B \land C \subseteq D \Longrightarrow A \cap C \subseteq B \cap D$

Proof.(自然语言)

- ② 则 $x \in A$, 并且 $x \in C$;
- ③ 因为 $A \subseteq B \land C \subseteq D$;
- ④ 所以x ∈ B, 并且x ∈ D;
- **⑤** Px ∈ B ∩ D;
- **6** $\&A \cap C \subseteq B \cap D$.

Proof.(逻辑语言)

- $3 \iff \forall x(x \in A) \land \forall x(x \in C)$ (by 量词分配)

- $O : A \cap C \subseteq B \cap D$

• 容斥原理

Description (容斥原理, inclusion-exclusion Principle)

设下述讨论的集合均为有限集合.

- $|A \cap B| \leq \min(|A|, |B|)$;
- $|A \cup B| = |A| + |B| |A \cap B|$;
- $|A \cup B \cup C| =$ $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$;
-

• 容斥原理

Problem

某教研组有教师30人(|T|=30), 其中会英语的15人(|E|=15), 其中会法语的8人(|F|=8), 其中会德语的6人(|G|=6), 三门均会的有3人($|E\cap F\cap G|=3$), 问最少有多少人三门外语均不会(N)?

Solution

- ① $N = T (E \cup F \cup G)$, 求|N|的最小值等价于求 $|E \cup F \cup G|$ 的最大值;
- $|E \cup F \cup G|$ $= |E| + |F| + |G| |E \cap F| |F \cap G| |E \cap G| + |E \cap F \cap G|$ $= 32 (|E \cap F| + |F \cap G| + |E \cap G|)$
- **③** π , $E \cap F \supseteq E \cap F \cap G$, ∴ $|E \cap F| \ge |E \cap F \cap G| = 3$
- **4** ∴ $|E \cup F \cup G| \leq 32 3 \times 3 = 23$
- $|N| = |T| |E \cup F \cup G| \ge 30 23 = 7$

关系

₩ 引言 ₩ 等价关系 √ 常用的等价关系 ₩ 关系的定义 ₩ 二元关系 ₩ 等价类 □ **□** 关系的表示方法 ₩ 等价关系与划分 Ѿ 商集合 ₩ 集合表示法 ₽ 矩阵表示法 □□□偏序关系 ₩ 关系图 ☑ 偏序关系的定义 ₩ 拟序 □□□ 关系的一般属性 ₽ 自反关系 ☑ 字典序关系 Ѿ 反自反关系 帰席关系的Hass图 ₩ 对称关系 ☑ 偏序关系的特殊元素 ₩ 良序关系 ☑ 反对称关系 ₩ 传递关系

- 关系的属性
- 等价关系
- 偏序关系

- 自反关系
 ∀x ∈ A, ⟨x,x⟩ ∈ R;
- 反自反关系 ∀x ∈ A, ⟨x,x⟩ ∉ R;
- 对称关系 $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R}$, then $\langle y, x \rangle \in \mathcal{R}$;
- 反对称关系 $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, x \rangle \in \mathcal{R}$, then x = y;
- 传弟关系 $\forall x, y, z \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, z \rangle \in \mathcal{R}$, then $\langle x, z \rangle \in \mathcal{R}$;
- 等价关系: 自反、对称、传递
- 偏序关系: 自反、反对称、传递
- 拟序关系: 反自反、反对称、传递

• 偏序关系(自反、反对称、传递)的Hass图

- 偏序关系(自反、反对称、传递)
 - 最大元、最小元
 - 极大元、极小元

 $\mathcal{C}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ◎ 极大(小)元素不一定唯一;
- ☑ if B是有限集合,则B一定存在极大(小)元素.

b是最大元素,a是最小元素 b也是极大元素,a也是极小元素

没有最大元素,a是最小元素 c和d是极大元素,a也是极小元素

- 偏序关系(自反、反对称、传递)
 - 上界、下届
 - -最小上界
 - -最大下界

Definition (线序关系, 全序关系, Linear order, Total order)

设 $\langle A, \leq \rangle$ 是一偏序集合, 称该偏序为全序, iff, $\forall x, y \in A$, x和y是可比较的.

 线序的Hass图是一条垂直 的直线;

Definition (拓扑排序, Topological Sorting)

 $\langle A, \leqslant \rangle$ a poset, 设 \leqslant 是A上的线序关系,称 \leqslant 和 \leqslant 是相容的(compatible), iff,

≤称为≤的拓扑排序.

- **1** k := 1; S := A;
- ② $m_k := S$ 中的极小元素; $S := S \{ m_k \}; k := k + 1;$ if $(S == \emptyset)$ Stop; else goto (2);

Definition (良序关系, Well order)

〈A, ≼〉a poset, 称关系≤为良序关系, iff,

≪是线序,并且,A的每个非空子集合都存在最小元素 $\langle A, ≪ \rangle$ 也称为良序集(Well-ordered set)

• 偏序关系(自反、反对称、传递)

设 $\langle A, \leqslant \rangle$ 为 $Poset$, $B \subseteq A$,					
		是否存在	是否唯一	是否在B中	与其他特殊元素的关系
	最大元素	NO	YES	YES	
	极大元素	NO	NO	YES	最大元素是极大元素
	上界	NO	NO	NO	最大元素是上界
	最小上界	NO	YES	NO	最大元素是lub
	最小元素	NO	YES	YES	
	极小元素	NO	NO	YES	最小元素是极小元素
	下界	NO	NO	NO	最小元素是下界
	最大上界	NO	YES	NO	最小元素是glb

集合与关系

等价关系与集合的划分等价关系。常用的等价关系。常用的等价关系,等价类。等价分类。与划分。有一个。有序关系的定义。是一个。有序关系的是义。是一个。有序关系的中央。

Definition (划分, Partition)

A是一集合, A的一个划分是一集簇:

 $\Pi = \{ A_i \mid i \in I($ 指标集 $), A_i \subseteq A \land A_i \neq \emptyset \}$ 该集簇满足下述两条件:

$$\bullet \bigcup_{i\in I}A_i=A;$$

• $\forall i, j \in I$, if $i \neq j$, then $A_i \cap A_j = \emptyset \vee A_i = A_j$.

Theorem

设R是集合A上的等价关系,则R的等价类集簇:

$$\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}} \mid a \in A \}$$

is a partition of A, 称之为由等价关系尺诱导的划分(induced).

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关系R的商集合,记为:

$$A/\mathcal{R} \triangleq \{ [a]_{\mathcal{R}} \mid a \in A \}$$

if A/R is finite set, |A/R| 称为关系R的秩(rank).

关系与函数

- - ₩ 关系的合成
 - ₩ 关系的幂
 - ₩ 关系的闭包
 - Ѿ 传递闭包的求解算法
- 🕕 函数的基本概念
 - 函数的定义
 - 函数的象和逆象
 - 函数的合成
 - 单射,满射和双射

- 知识
 - 关系的合成与函数的合成
 - 关系的闭包
- 能力
 - 求函数的象和逆象
 - 求函数的合成
 - 求单射、满射和双射
 - 求逆函数、左逆函数、右 逆函数

关系的合成

Definition (合成关系, Composite Relation)

设 $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2 \subseteq B \times C$, \mathcal{R}_1 和 \mathcal{R}_2 的合成记为 $\mathcal{R}_1 \circ \mathcal{R}_2$ ($\mathcal{R}_1 \mathcal{R}_2$)定义为:

 $\mathcal{R}_1 \mathcal{R}_2 \triangleq \{\langle a, c \rangle \mid a \in A, c \in C \land \exists b \in B \land a \mathcal{R}_1 b \land b \mathcal{R}_2 c \}$ 是A到C上的关系.

Remark

合成的条件:第一个关系的陪域(codomain)和第二个关系的前域(domain)是相同的集合.

设 $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2, \mathcal{R}_3 \subseteq B \times C$, $\mathcal{R}_4 \subseteq C \times D$:

- ① $\mathcal{R}_1(\mathcal{R}_2 \cup \mathcal{R}_3) = \mathcal{R}_1 \mathcal{R}_2 \cup \mathcal{R}_1 \mathcal{R}_3$ (\circ 对 \cup 的分配律);
- ③ $(\mathcal{R}_2 \cup \mathcal{R}_3) \mathcal{R}_4 = \mathcal{R}_2 \mathcal{R}_4 \cup \mathcal{R}_3 \mathcal{R}_4$ (\circ 对 \cup 的分配律);

关系的幂

Definition (关系的幂, Power of relation)

设 \mathcal{R} 是A上的关系, $n \in \mathbb{N}$, \mathcal{R} 的乘幂递归定义如下:

- **1** $\mathcal{R}^0 = \mathbb{1}_A$;

Theorem

- $(\mathcal{R}^m)^n = \mathcal{R}^{mn};$

Definition (关系的逆)

设 $\mathcal{R} \subseteq A \times B$, 关系 \mathcal{R} 的逆关系, 记为 $\widetilde{\mathcal{R}}$ (读作tilde), 定义如下: $\widetilde{\mathcal{R}} = \{\langle y, x \rangle \mid \langle x, y \rangle \in \mathcal{R}\} \subseteq B \times A$

Theorem

 \mathcal{R} 是对称关系, iff, $\mathcal{R} = \tilde{\mathcal{R}}$.

关系的幂

 \mathcal{R} 的自反、对称和传递闭包为: $r(\mathcal{R})$, $s(\mathcal{R})$ 和 $t(\mathcal{R})$

①
$$r(\mathcal{R}) = \mathcal{R} \cup \mathbb{1}_{A}$$
; ② $s(\mathcal{R}) = \mathcal{R} \cup \widetilde{\mathcal{R}}$; ③ $t(\mathcal{R}) = \bigcup_{i=1}^{\infty} \mathcal{R}^{i}$.

设
$$|A|=n, \mathcal{R}\subseteq A^2$$
,则: $t(\mathcal{R})=\bigcup_{i=1}^n\mathcal{R}^i$;

Propostion

R是自反的(对称的、传递的), iff, R = r(R) (s(R), t(R)).

Propostion

设R是自反关系,则,t(R)和s(R)也是自反关系;

Definition (函数, function(map, mapping))

设f是集合X到Y上的关系($f \subseteq X \times Y$), f是函数, iff, f满足下述两条件:

- ① 完全性: $\forall x \in X \exists y \in Y$, such that, $\langle x, y \rangle \in f$;
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数f的定义域(domain)和陪域(codomain),与 $x \in X$ 有关系f的 $y \in Y$ 记为: f(x).

Definition (函数集合)

- 记 $Y^X \triangleq \{f: X \longrightarrow Y\}$ 为所有的从X到Y的函数集合;
- if X和Y为有限集合,则|Y^X| = |Y||X|;
- $|Y|^{|X|} < 2^{|x| \times |y|}, :: Y^X \subsetneq \mathscr{P}(X \times Y).$

关系与函数

- - ₩ 关系的合成
 - √ 关系的幂
 - ₩ 关系的闭包
 - Ѿ 传递闭包的求解算法
- 🕕 函数的基本概念
 - 函数的定义
 - 函数的象和逆象
 - 函数的合成
 - 单射,满射和双射

- 知识
 - 关系的合成与函数的合成
 - 关系的闭包
- 能力
 - 求函数的象和逆象
 - 求函数的合成
 - 求单射、满射和双射
 - 求逆函数、左逆函数、右 逆函数

Definition (函数, function(map, mapping))

设f是集合X到Y上的关系($f \subseteq X \times Y$), f是函数, iff, f满足下述两条件:

- ① 完全性: $\forall x \in X \exists y \in Y$, such that, $\langle x, y \rangle \in f$;
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数f的定义域(domain)和陪域(codomain),与 $x \in X$ 有关系f的 $y \in Y$ 记为:f(x).

关系

Definition $(\mathcal{R} \subseteq A \times B)$

- 定义域(Domain):
 - $Dom(\mathcal{R}) \triangleq \{ x \mid \exists y (y \in B \land \langle x, y \rangle \in \mathcal{R}) \} \subseteq A;$
- 值域(Range)
 - $-Ran(\mathcal{R}) \triangleq \{y \mid \exists x(x \in A \land \langle x, y \rangle \in \mathcal{R}) \} \subseteq B.$

Definition (函数集合)

- 记 $Y^X \triangleq \{f: X \longrightarrow Y\}$ 为所有的从X到Y的函数集合;
- if X和Y为有限集合,则|Y^X| = |Y||X|;
- $\bullet |Y|^{|X|} < 2^{|x| \times |y|}, :: Y^X \subsetneq \mathscr{P}(X \times Y).$

关系

设|A| = n,则A上的不同的一元、二元关系分别又多少个A上的不同的m元关系有多少个?

- (1) 一元关系: 2^n ;
- (2) 二元关系: 2ⁿ²;
- (3) m元关系: 2^{n^m} .

Definition (象, image; 逆象, inverse image)

设 $f: X \longrightarrow Y \in X$ 到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

· A在f下的象:

$$f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$$

· B在f下的逆象:

$$f^{-1}(B) \triangleq \{x \mid \exists y \in B \land y = f(x)\} = \{x \mid f(x) \in B\};$$

f(X)称为函数f的值域(range).

Propostion

设 $f: X \longrightarrow Y \not\in X$ 到Y上的函数, $A \subseteq X$, $B \subseteq Y$, 则:

- $\bullet \qquad A \subseteq f^{-1}(f(A));$

Remark

直观上, 求象: 对集合缩小; 求逆象: 对集合放大.

•
$$f(\{a,d\}) = \{3\};$$

•
$$f(\{d\}) = \{3\};$$

•
$$f^{-1}(\{3\}) = \{a, d\};$$

•
$$f^{-1}(\{2\}) = \emptyset;$$

函数的合成

Definition (合成函数(复合), Composite function)

设 $f: X \longrightarrow Y \not\in X$ 到Y上的函数, $g: Y \longrightarrow Z \not\in Y$ 到Z上的函数, f和g的合成 $g \circ f: X \longrightarrow Z$, $x \longmapsto g(f(x))$ 也是函数, 称为合成函数 (注意: 在写法上与关系的合成相反).

关系的合成

Definition (合成关系, Composite Relation)

设 $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2 \subseteq B \times C$, \mathcal{R}_1 和 \mathcal{R}_2 的合成记为 $\mathcal{R}_1 \circ \mathcal{R}_2$ ($\mathcal{R}_1 \mathcal{R}_2$)定义为:

 $\mathcal{R}_1 \mathcal{R}_2 \triangleq \{\langle a, c \rangle \mid a \in A, c \in C \land \exists b \in B \land a \mathcal{R}_1 b \land b \mathcal{R}_2 c \}$ 是A到C上的关系.

Definition

设 $f: X \longrightarrow Y$:

- if f(X) = Y, 称 f 为满射(onto)
- if $\forall x, x' \in X$ $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$ $x \neq x' \rightarrow f(x) \neq f(x')$, 称f为单射(one to one);
- if f 既是单射也是满射,则称f 为双射(bijection).

Propostion

 $沒f: X \longrightarrow Y:$

- ① f 是单射, iff, $\exists g: Y \longrightarrow X \land g \circ f = \mathbb{1}_X$, 称 $g \not \to f$ 的左逆元;
- ② f 是满射, iff, $\exists g: Y \longrightarrow X \land f \circ g = \mathbb{1}_Y$, 称g 为f 的右逆元.

Propostion

设 $f: X \longrightarrow Y$, f 是双射, iff, $\exists !g: Y \longrightarrow X \land g \circ f = 1 X \land f \circ g = 1 Y$, $\Re \beta f$ 的逆元, 并记该逆元为 f^{-1} .

§5.1.3 下列函数中, 哪些是单射、满射或双射? 并证明你的判断:

- (1) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^3 + 1$: 双射;
- (2) $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(x) = x + 1: 单射;
- (3) $f: \mathbb{N} \longrightarrow \mathbb{N}$, $f(x) = x \mod 3$: 非单, 亦非满;
- (4) $f: \mathbb{N} \longrightarrow \{0,1\}, f(x) =$ $\begin{cases} 0, & \text{if } x$ 是奇数; $\\ 1, & \text{if not.} \end{cases}$: 满射,非单射:
- (5) $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}, f(m,n) = m^n$: 满射, 非单射.

§5.1.6 设 $f:X\longrightarrow Y,\ A\subseteq Y,\ B\subseteq Y$,证明: $f^{-1}(A\cap B)=f^{-1}(A)\cap f^{-1}(B)$:

证明:

$$\begin{array}{ll} x \in f^{-1}(A \cap B) \\ \iff f(x) \in A \cap B & \text{by 遊象的定义} \\ \iff f(x) \in A \wedge f(x) \in B & \text{by 交集的定义} \\ \iff x \in f^{-1}(A) \wedge x \in f^{-1}(B) & \text{by 逆象的定义} \\ \iff x \in f^{-1}(A) \cap f^{-1}(B) & \text{by 交集的定义} \end{array}$$

冬

- 知识
 - 节点的度与边的关系
 - 平面图的性质
- 能力
 - 能找出欧拉路径与回路
 - 能判断是否为欧拉图
 - 汉密尔顿图的充分条件、必要条件的应用
 - 平面图性质的运用
 - 构造生成树

冬

- 定义与定理
 - 有向图、无向图、简单图、多重图、零图、赋权图、 完全图、补图、自补图、底图
 - 结点、边、孤立点
 - 度、入度、出度
 - 路径、简单路径、基本路径
 - 回路、简单回路、基本回路
 - 无向图: 连通图
 - 有向图: 强连通、弱连通、单向连通
 - 最短路径: Dijkstra, Floyd-Warshall
 - 欧拉路径、欧拉回路
 - Hamilton路径、Hamilton回路
 - 平面图

图

Definition

设 $G = \langle V, E \rangle$ 和 $G' = \langle V', E' \rangle$ 是两图,称G'是G的子

图(Subgraph),记为 $G' \subseteq G$,iff:

$$V' \subseteq V \wedge E' \subseteq E \wedge \varphi|_{E'} = \varphi'$$

更进一步:

- ① if $V' \subseteq V \vee E' \subseteq E$, 称G'是G的真子图;
- ② if V' = V, G' 称为生成子图(支撑子图);
- ③ if $V' \subseteq V$, 并且E'是由E中边的端点落在V'的边组成,称为由V'导出的子图;
- ④ if $E' \subseteq E$, 并且V'是由E'中边的端点组成的集合,称为由E'导出的子图。

冬

• 图的运算

```
设 G_1 = \langle V_1, E_1 \rangle和 G_2 = \langle V_2, E_2 \rangle是两图:

• G_1 \cup G_2 \triangleq \langle V_1 \cup V_2, E_1 \cup E_2 \rangle;

• G_1 \cap G_2 \triangleq \langle V_1 \cap V_2, E_1 \cap E_2 \rangle;

• G_1 - G_2 \triangleq \text{由} E_1 - E_2导出的子图;

• G_1 + G_2 \triangleq \text{h} E_1 - E_2导出的子图;

• G_1 + G_2 \triangleq \text{h} E_1 + E_2 = \text{h} E_1 + E_2
```

树

- 无向树
 - 生成树
 - 最小生成树
 - Prim算法
 - Krustal算法
- 有向树
 - 树的遍历
- 由定义和性质而衍生出的证明