

Supplement Sales Prediction

By

Prasad Vasant Verulkar

Problem Statement

To predict the store sales for each store in the test set for the next two months.

Dataset Description

Train Data

Rows: 188340, Columns: 10 Y Variable: Sales

#	Column	Non-Null Count	Dtype
0	ID	188340 non-null	object
1	Store_id	188340 non-null	int64
2	Store_Type	188340 non-null	object
3	Location_Type	188340 non-null	object
4	Region_Code	188340 non-null	object
5	Date	188340 non-null	datetime64[ns]
6	Holiday	188340 non-null	int64
7	Discount	188340 non-null	object
8	#Order	188340 non-null	int64
9	Sales	188340 non-null	float64

Test Data

Rows: 22265, Columns: 8

#	Column	Non-Null Count	Dtype
0	ID	22265 non-null	object
1	Store_id	22265 non-null	int64
2	Store_Type	22265 non-null	object
3	Location_Type	22265 non-null	object
4	Region_Code	22265 non-null	object
5	Date	22265 non-null	datetime64[ns]
6	Holiday	22265 non-null	int64
7	Discount	22265 non-null	object

Steps in Building ML Model

1 Reading Data

Setting up Validation Strategy

Feature Scaling

MinMax Scaler

• Splitting train and validation set based on date.

9

Cross Validation

• To make model robust and reduce over fitting

Data Preprocessing

- Handling Missing values
- Handling Outliers
- Check for Duplicates

Exploratory Data

Apalysis at to reveal hidden insights.

Feature Engineering

- Generating New Features
- Categorical Encodings

8

6

Feature

Selectiones in dataset were already less, hence feature selection is not performed.

Model Building

Check for Missing Values

No missing Values in Dataset

Train

1 # 0 missing Values
2 train.isnull().sum()

E CI GENTESING	().5
ID	0
Store_id	0
Store_Type	0
Location_Type	0
Region_Code	0
Date	0
Holiday	0
Discount	0
#Order	0
Sales	0
dtype: int64	

Test

1 # 0 missin 2 test.isnul	_
ID	0
Store_id	0
Store_Type	0
Location_Type	0
Region_Code	0
Date	0
Holiday	0
Discount	0
dtype: int64	

Handling Outliers

- •Sales and Orders column contain outliers.
- 3.1% of Sales values are greater than upper whisker.
- 3.76% of Orders values are greater than upper whisker.
- Can't remove them since these data points reveal important information.
- Therefore, Trees and Ensemble techniques can be used for model building.

Check for Duplicated Rows

- # 0 duplicates in train data.
- train[train.duplicated()].shape[0]
- 1 # 0 duplicates in test data.
- test[test.duplicated()].shape[0]

Median Daily Sales

Median Weekly Sales

New Features

- Total Weekly Orders based on Store_type.
- Total weekends orders in every week of a month based on store_type.
- Total Weekly Orders based on Store_type & Location_Type.
- Total Weekend Orders based on Store_type & Location_Type.
- Total Weekly Orders by Store id
- Total weekends orders in every week of a month based on Store_id.
- Avg Weekly Orders by Store_id
- Avg weekends orders in every week of a month based on Store_id. store.

Feature Encoding

•One Hot Encoding for nominal categorical variables

```
# One Hot Encoding
1 = ['Store_Type','Location_Type','Region_Code']
3 tr_x = pd.get_dummies(tr_x, columns = 1,drop_first=True)
4 val_x = pd.get_dummies(val_x, columns = 1,drop_first=True)
5 test = pd.get_dummies(test, columns = 1,drop_first=True)
```

Total Features after Feature Encoding & One Hot Encoding: 45

- •Minimum Weekly Orders by Store_id
- Minimum weekends orders in every week of a month based on Store id.
- Maximum Weekly Orders by Store_id
- Maximum weekends orders in every week of a month based on Store_id.
- Count of discounts offered by each store in every month
- Count of discounts on weekends of every week in a month for every store.

Min-Max Scaler for Numeric Columns

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(tr_x[numcols])

tr_x[numcols] = scaler.transform(tr_x[numcols])

val_x[numcols] = scaler.transform(val_x[numcols])

test[numcols] = scaler.transform(test[numcols])
```


- Data Before 1st April 2019: Train Set
 - Data from 1st April 2019: Validation Set
- Building models and tuning hyper parameters on train set and evaluating on validation set.
- KFold cross validation on train set for final model evaluation.

Random Forest

AdaBoost

Linear

Decision Tree

Total Models

- -Being the lowest MSLE of 0.97, LightGBM Regressor model is selected among all other models.
- These scores are for the validation set and thus final scores are evaluated using Cross Validation.

Best Performing model is LightGBM

XgBoost

LightGBM

	Models	MSLE
0	LinearRegression	104.159669
1	DecisionTree	107.875498
2	RandomForest	105.445846
3	AdaBoost	148.251692
4	XGBoost	102.185981
5	LightGBM	97.974466