Trabalho de Cálculo Numérico: pode ser feito em duplas e deverá ser entregue até o dia 16/05/2025.

1. Os dados da população de Presidente Prudente estão descritos na tabela a seguir:

Ano	1940	1950	1960	1970	1980	1990	2000	2010	2022
População	12637	24515	54055	71188	129733	167966	182023	207610	225668

Table 1: População do município de Presidente Prudente ao longo das décadas.

- a) Com base nos dados da tabela acima, determine aproximações pelo método dos mínimos quadrados usando funções: polinomiais (grau 2 e 3), exponencial, hiperbólica e geométrica. Plote os gráficos.
- b) Determine qual das aproximações melhor se adequa aos dados. Para isso, utilize o teste de alinhamento das aproximações, usado para verificar a adequação da função escolhida na representação dos dados. O teste de alinhamento é feito a partir do coeficiente de determinação \mathbb{R}^2 , definido como

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$

onde n é a dimensão do vetor y, que representa os valores coletados, \bar{y} é a média aritmética dos valores de y e \hat{y} é o vetor aproximação, calculado pelo método dos mínimos quadrados. Assim, os dados são considerados ruins quando R^2 está próximo de 0, bons quando R^2 está próximo de 1 e péssimos quandos $R^2 < 0$. Neste último, a aproximação pela média \bar{y} é melhor do que a aproximação obtida pelo método dos mínimos quadrados.

c) Com a função que melhor se adequa aos dados, estime a população para o ano de 2030.