Solución Práctico 10 - Integrales iteradas, integrales multiples

Proposiciones:

Sean $D \subseteq \mathbb{R}^n$ medible Jordan (podemos pensar en un compacto) y $f: D \to \mathbb{R}$ continua.

- Si $g: D \to \mathbb{R}$ otra función continua y α, β reales: $\int_{D} (\alpha f + \beta g) = \alpha \int_{D} f + \beta \int_{D} g$
- Sean $D_1, D_2 \subseteq \mathbb{R}^n$ medibles Jordan con $D_1 \cap D_2 = \emptyset$ y $D = D_1 \cup D_2$. Entonces $\int_D f = \int_{D_1} f + \int_{D_2} f$
- $Si \ f \geq 0 \ entonces \int_D f \geq 0$
- $Si \ g: D \to \mathbb{R}$ otra función continua y $f \geq g$, entonces $\int_D f \geq \int_D g$
- Fubini en \mathbb{R}^2 :

Si escribimos a D de la siguiente forma:

$$D = \{(x, y) : x \in [a, b], y \in [c(x), d(x)]\} = \{(x, y) : y \in [c, d], x \in [a(y), b(y)]\}$$

Entonces

$$\int_{D} f = \int_{c}^{d} \int_{a(x)}^{b(x)} f(x, y) \ dxdy = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \ dydx$$

• Fubini en \mathbb{R}^3 :

 $Si\ escribimos\ a\ D\ de\ la\ siguiente\ forma:$

$$D = \{(x, y, z) : x \in [a, b], y \in [c(x), d(x)], z \in [s(x, y), t(x, y)]\}$$
$$= \{(x, y, z) : z \in [s, t], x \in [a(z), b(z)], y \in [c(x, z), d(x, z)]\}$$

Entonces

$$\int_{D} f = \int_{a}^{b} \int_{c(x)}^{d(x)} \int_{s(x,y)}^{t(x,y)} f(x,y,z) \ dz dy dx = \int_{s}^{t} \int_{a(z)}^{b(z)} \int_{c(x,z)}^{d(x,z)} f(x,y,z) \ dy dx dz$$

Y lo mismo vale si escribo a D con el mismo formato pero en otro "orden"

■ Cambio de variable:

Sea $g: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^n$ difeomorfismo tal que U, V son abiertos y $D \subseteq U$. Entonces

$$\int_{D} f = \int_{g^{-1}(D)} |\det J_g| \ f \circ g$$

Observaciones:

• Cuando escribimos a un conjunto de $D \subseteq \mathbb{R}^2$ como

$$D = \{(x, y) : x \in [a, b], y \in [c(x), d(x)]\}$$

Estamos dando una descripción del conjunto D como unión de lineas verticales:

Fijado $\tilde{x} \in [a,b]$, consideramos el segmento de recta vertical dando por los puntos de la forma (\tilde{x},y) con y variando entre los valores $c(\tilde{x})$ y $d(\tilde{x})$. Por cada $\tilde{x} \in [a,b]$ tenemos un segmento distinto de este tipo. Lo que estamos haciendo entonces es, a medida que movemos \tilde{x} , ir "pintando" al conujunto D con segmentos de recta verticales.

Al escribir al conjunto D con el orden alternativo, lo que estamos haciendo es "pintarlo" con líneas horizontales. Es decir, fijado \tilde{y} , mover la x entre dos valores que dependen de \tilde{y} .

- Hay ciertos cambios de variable canónicos que nos van a resultar útiles:
 - Coordenadas polares en \mathbb{R}^2 : $g:[0,+\infty)\times[0,2\pi]\to\mathbb{R}^2$ definida por

$$g(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta))$$

En este caso $|\det J_q| = \rho$

• Coordenadas esféricas en \mathbb{R}^3 : $g:[0,+\infty)\times[0,2\pi]\times[0,\pi]\to\mathbb{R}^3$ definida por

$$g(\rho, \theta, \varphi) = (\rho \cos(\theta) \sin(\varphi), \rho \sin(\theta) \sin(\varphi), \rho \cos(\varphi))$$

En este caso $|\det J_g| = \rho^2 \operatorname{sen}(\varphi)$

• Coordenadas cilíndricas en \mathbb{R}^3 : $g:[0,+\infty)\times[0,2\pi]\times\mathbb{R}\to\mathbb{R}^3$ definida por

$$g(\rho, \theta, z) = (\rho \cos(\theta), \rho \sin(\theta), z)$$

En este caso $|\det J_q| = \rho$

■ Sea $D \subseteq \mathbb{R}^2$ medible Jordan y g un difeomorfismo tal que $(u, v) \stackrel{g}{\mapsto} (x, y)$ como en el teorema de cambio de variable. Observar que este teorema nos permite, en lugar de integrar f(x, y) en D, integrar f(g(u, v)) en $g^{-1}(D)$. A la hora de integrar esto último, tenemos que expresar a la función f y al dominio D en las nuevas coordenadas que viven en el espacio de salida de g: (u, v).

Por ejemplo, si g es el difeomorfismo que llamamos coordenadas polares, $f \circ g$ es la expresión de la función f en términos de radios g ángulos. Lo mismo ocurre con $g^{-1}(D)$. Para calcular esta integral debemos expresar al conjunto g en el mismo formato que Fubini:

$$g^{-1}(D) = \{(\rho, \theta) : \rho \in [a, b], \theta \in [c(\rho), d(\rho)]\}$$

O en el orden inverso. Como bien dijimos, esto es pintar al conjunto con líneas verticales en las coordenadas (ρ, θ) (u horizontales si lo escribimos con el orden inverso). Sin embargo, si vemos este proceso no en el espacio (ρ, θ) , sino en el codominio de g formado por los puntos (x,y), las líneas verticales en el espacio (ρ, θ) son circunferencias (vía g) en el espacio (x,y). Por otro lado, las línas horizontales en el espacio (ρ, θ) serán radios (semirrectas con origen en (0,0)) en el espacio (x,y). Algunos conjuntos D con cierta simetría, son más sencillos de "pintar" con circunferencias o radios que con líneas verticales y horizontales. Es por esto que en ocasiones el cambio a coordenadas polares nos permite escribir al dominio de integración de una forma más sencilla a la hora de integrar.

Por supuesto que estos razonamientos inducen otros análogos para coordenadas en el espacio.

Ejercicio 1

Recordar que si $D = \{(x, y) : x \in [a, b], y \in [c(x), d(x)]\} = \{(x, y) : y \in [c, d], x \in [a(y), b(y)]\}$, la integral de f sobre D se puede expresar de dos formas distintas pero equivalentes:

$$\int_{D} f = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \ dy dx = \int_{c}^{d} \int_{a(x)}^{b(x)} f(x, y) \ dx dy$$

En este ejercicio se plantea una escritura del dominio D y se pide expresar la forma alternativa, es decir, invirtiendo el orden de integración.

- a) $D = \{(x,y) : y \in [x,1], x \in [0,1]\}$
- b) $D = \{(x, y) : x \in [1, y^2], y \in [1, 2]\}$
- c) $D = \{(x, y) : y \in [\frac{x}{2}, \sqrt{x}], x \in [0, 4]\}$
- d) $D = \{(x, y) : x \in [2 y, 1 + \sqrt{1 y^2}], y \in [0, 1]\}$
- e) $D = \{(x, y) : x \in [e^y, e], y \in [0, 1]\}$

Ejercicio 2

a) La integral vale $I = \frac{1}{15}$, donde

$$I = \int_0^1 \int_0^{\sqrt{1-y^2}} yx^2 \ dxdy = \int_0^1 \int_0^{\sqrt{1-x^2}} yx^2 \ dydx$$

b) La integral vale $I = \frac{1}{2} (log(2) + 1/8 - 1/2)$, donde

$$I = \int_{1}^{2} \int_{1/2}^{1/y} xy \ dxdy = \int_{1/2}^{1} \int_{1}^{1/x} xy \ dydx$$

Ejercicio 3

Para cada uno de los casos escribimos $I=\int_D f$

- a) $I = \frac{63}{2}$
- b) $I = \frac{11}{12}$
- c) $I = \frac{5}{12}$
- d) $I = \pi^2 \frac{2}{9}$
- e) $I_1 = I_2 = 0$
- f) $I = \frac{7}{3}log(2)$
- g) I = 4
- h) $I = \frac{1}{t^2} (e^{t^2} e^t + t t^2)$

Veamos en detalle el ejercicio 3f:

La función a integrar es $f(x,y) = x^2y^2$ y el dominio de integracion es la región comprendida entre las hipérbolas xy = 1, xy = 2, y las rectas y = x, y = 4x. Es decir, es una región del plano

cuyos límites (borde) está dado por las funciones $y = \frac{1}{x}$, $y = \frac{2}{x}$, y = x, y = 4x. Explícitamente luego de identificar esta región tenemos que

$$x \le y \le 4x, \ \frac{1}{x} \le y \le \frac{2}{x}$$
 o equivalentemente $\frac{y}{4} \le x \le y, \ \frac{1}{y} \le x \le \frac{2}{y}$

Para integrar queremos escribir al dominio en un formato similar al siguiente:

$$D = \{(x, y) : y \in [c, d], x \in [a(y), b(y)]\}$$

Se verifica (cuentas) que la variación total de la coordenada y es entre 1 y $\frac{4}{\sqrt{2}}$. Las funciones a(y), b(y) deben indicar el recorrido de la coordenada x fijada la coordenada y. Ya sabemos como son las ecuaciones de los límites de este dominio, por lo tanto podemos afirmar lo siguiente:

- Si $y \in [1, \sqrt{2}]$, entonces $x \in [\frac{1}{y}, y]$
- Si $y \in [\sqrt{2}, 2]$, entonces $x \in [\frac{1}{y}, \frac{2}{y}]$
- Si $y \in [2, \frac{4}{\sqrt{2}}]$, entonces $x \in [\frac{y}{4}, \frac{2}{y}]$.

Oservar que las funciones a(y), b(y) deberían ser definidas por partes dependiendo del intervalo en el que se encuentre y. Para evitar eso, partimos el dominio D en tres subregiones D_1, D_2, D_3 :

$$D_{1} = \{(x, y) : y \in [1, \sqrt{2}], x \in [\frac{1}{y}, y]\}$$

$$D_{2} = \{(x, y) : y \in [\sqrt{2}, 2], x \in [\frac{1}{y}, \frac{2}{y}]\}$$

$$D_{3} = \{(x, y) : y \in [2, \frac{4}{\sqrt{2}}], x \in [\frac{y}{4}, \frac{2}{y}]\}$$

De esta forma $D = D_1 \cup D_2 \cup D_3$ y $\int_D f = \int_{D_1} f + \int_{D_2} f + \int_{D_2} f$. Luego:

$$I_{1} = \int_{D_{1}} f = \int_{1}^{\sqrt{2}} \int_{\frac{1}{y}}^{y} x^{2}y^{2} dx dy = \frac{1}{3} \left(\frac{2^{3}}{6} - \frac{1}{6} - \log(\sqrt{2}) \right)$$

$$I_{2} = \int_{D_{2}} f = \int_{\sqrt{2}}^{2} \int_{\frac{1}{y}}^{\frac{2}{y}} x^{2}y^{2} dx dy = \frac{1}{3} \left(2^{3} \log(2) - \log(2) - 2^{3} \log(\sqrt{2}) + \log(\sqrt{2}) \right)$$

$$I_{3} = \int_{D_{3}} f = \int_{2}^{\frac{4}{\sqrt{2}}} \int_{\frac{y}{y}}^{\frac{2}{y}} x^{2}y^{2} dx dy = \frac{1}{3} \left(2^{3} \log(4/\sqrt{2}) - \frac{2^{3}}{6} + \frac{1}{6} - 2^{3} \log(2) \right)$$

Por último

$$\int_{D} f = I_{1} + I_{2} + I_{3}$$

$$= \frac{1}{3} \left(2^{3} \log(4/\sqrt{2}) - \log(2) - 2^{3} \log(\sqrt{2}) \right)$$

$$= \frac{1}{3} \left(2^{3} \log(2^{\frac{3}{2}}) - \log(2) - 2^{3} \log(2^{\frac{1}{2}}) \right)$$

$$= \frac{1}{3} \log(2) \left(2^{3} \frac{3}{2} - 2^{3} \frac{1}{2} - 1 \right)$$

$$= \frac{7}{3} \log(2)$$

Ejercicio 4

Por teorema de cambio de variable se tiene que si T lineal,

$$A(T(D)) = \int_{T(D)} 1 \ dudv = \int_{D} 1 \ |\det J_{T}(x,y)| dxdy = \int_{D} 1 |\det_{\mathcal{C}}[T]_{\mathcal{C}}| dxdy = |\det_{\mathcal{C}}[T]_{\mathcal{C}}| \int_{D} 1 dxdy$$
$$= |\det_{\mathcal{C}}[T]_{\mathcal{C}}|A(D)$$

Pues $D_pT=T$ y la matriz Jacobiana es la matriz asociada al diferencial en la base canónica \mathcal{C} . Entonces:

- a) A(D) = 1 y $A(T(D)) = |\det[T]|$
- b) $A(D) = \pi \ y \ A(T(D)) = \pi |\det[T]|$

Ejercicio 5

- a) $I = \pi (1 e^{-r^2})$. Cambio de variable recomendado: polares.
- b) $I = \frac{1}{3}$. Cambio de variable recomendado: polares.
- c) $I = \frac{1}{3} \left(2^3 \left(\sin(\pi/3) \frac{1}{3} \sin(\pi/3)^3 \right) \frac{\pi}{3} \right) = \sqrt{3} \frac{\pi}{9}$. Cambio de variable recomendado: polares.
- d) $I = \frac{\pi}{4}$. Cambio de variable recomendado: polares.
- e) $I = \frac{\pi^4}{3}$. Cambio de variable recomendado: lineal. En particular, considerar la transformación lineal inversa de T(x,y) = (x-y,x+y).

Ejercicio 6

- a) $A(D) = \frac{2}{3}a$
- b) A(D) = 1
- c) $A(D) = 2r^2 \left(\alpha \frac{\sqrt{r-1}}{r}\right)$ donde $\alpha \in [0, \frac{\pi}{2}]$ es tal que $\sin(\alpha) = \sqrt{\frac{r-1}{r}}$ y $\cos(\alpha) = \frac{1}{\sqrt{r}}$. Se recomienda considerar coordenadas polares.
- d) $A(D) = \frac{16\sqrt{2}}{3}$

Veamos en detalle el ejercicio 6c:

Tenemos que calcular el área de $D = \{(x,y): x^2 + y^2 \le r^2, x^2 \ge r\}$ donde r > 1. Por simetría, observamos que podemos dividir a este dominio en cuatro subregiones de igual área (una correspondiente a cada cuadrante). Por lo tanto alcanza con calcular el área de una de estas regiones, por ejemplo la correspondiente al primer cuadrante:

$$D_1 = D \cap \{(x,y): x \ge 0, y \ge 0\} = \{(x,y): x^2 + y^2 \le r^2, x \ge \sqrt{r}, y \ge 0\}$$

Consideramos $g:[0,+\infty)\times[0,2\pi]\to\mathbb{R}^2$ con $g(\rho,\theta)=(\rho\cos(\theta),\rho\sin(\theta))$ (coordenadas polares). Recordar que $|det J_g(\rho,\theta)|=\rho$. Entonces, D_1 en en términos de ρ,θ es

$$g^{-1}(D_1) = \{(\rho, \theta) : \rho \le r, \rho \cos(\theta) \ge \sqrt{r}, \rho \sin(\theta) \ge 0\}$$
$$= \{(\rho, \theta) : \rho \le r, \rho \cos(\theta) \ge \sqrt{r}, 0 \le \theta \le \pi\}$$

La condición $\rho \cos(\theta) \geq \sqrt{r}$ implica que necesariamente $\cos(\theta) \geq 0$. Por otro lado tenemos que $\frac{\sqrt{r}}{\cos(\theta)} \leq \rho \leq r$. Por lo que θ no puede ser cualquier ángulo entre 0 y $\pi/2$: necesariamente $\cos(\theta) \geq \frac{\sqrt{r}}{r} = \frac{1}{\sqrt{r}}$. Llamemos $\alpha = \cos^{-1}(1/\sqrt{r}) \in [0, \pi/2]$. Como la función $\cos(\theta)$ es monótona decreciente en $[0, \pi/2]$, $\cos(\theta) \geq \frac{1}{\sqrt{r}} = \cos(\alpha)$ implica que $\theta \leq \alpha$. Ya estamos en condiciones de escribir $g^{-1}(D_1)$:

$$g^{-1}(D_1) = \left\{ (\rho, \theta) : \theta \in [0, \alpha], \rho \in \left[\frac{\sqrt{r}}{\cos(\theta)}, r \right] \right\}$$

Entonces:

$$A(D_1) = \int_{D_1} 1 \, dx dy = \int_{g^{-1}(D)} 1 |det J_g(\rho, \theta)| \, d\rho d\theta = \int_0^{\alpha} \int_{\frac{\sqrt{r}}{\cos(\theta)}}^{r} \rho \, d\rho d\theta$$
$$= \frac{1}{2} \int_0^{\alpha} r^2 - \frac{r}{\cos^2(\theta)} \, d\theta = \frac{1}{2} \left(r^2 \theta - \frac{r \sin(\theta)}{\cos(\theta)} \right) \Big|_{\theta=0}^{\theta=\alpha}$$
$$= \frac{r^2}{2} \left(\alpha - \frac{1}{r} \frac{\sin(\alpha)}{\cos(\alpha)} \right)$$

Recordamos que $\cos(\alpha) = \frac{1}{\sqrt{r}}$. Por otro lado $\sin(\alpha) = \frac{\sqrt{r-1}}{\sqrt{r}}$. Esto último se deduce de la ecuación $\sin^2(\alpha) + \cos^2(\alpha) = 1$. Por lo tanto:

$$A(D_1) = \frac{r^2}{2} \left(\alpha - \frac{\sqrt{r-1}}{r} \right)$$

Por último, como $A(D) = 4A(D_1)$ se tiene que

$$A(D) = 2r^2 \left(\alpha - \frac{\sqrt{r-1}}{r}\right)$$

Ejercicio 7

- a) $V(D) = \frac{ab\pi}{2}$. Se recomienda considerar coordenadas cilíndricas adaptadas a la elipse, es decir, la función $g(\rho, \theta, z) = (a\rho\cos(\theta), b\rho\sin(\theta), z)$.
- b) $V(D) = \frac{\pi}{3}$
- c) $V(D) = \left(\frac{4}{3}\right)^2 r^3$. Se recomienda considerar coordenadas esféricas y calcular el volumen de dicho conjunto cortado con la región $x \ge 0$, $y \ge 0$, $z \le 0$.
- d) $V(D) = \frac{8\pi}{\sqrt{2}}$. Se recomienda considerar coordenadas cilíndricas.

Veamos en detalle el ejercicio 7c:

Queremos calcular el volumen de $D=\{(x,y,z): x^2+y^2+z^2\leq r^2,\ x^2+y^2\geq r|x|\}$ Observar que la ecuación $x^2+y^2=r|x|$ representa dos cilindros simétricos:

Si
$$x \ge 0$$
, tenemos $x^2 + y^2 - rx = 0 \Leftrightarrow (x - \frac{r}{2})^2 + y^2 = (\frac{r}{2})^2$

Si
$$x \le 0$$
, tenemos $x^2 + y^2 + rx = 0 \Leftrightarrow (x + \frac{r}{2})^2 + y^2 = \left(\frac{r}{2}\right)^2$

El volumen a calcular es el de una esfera a la que se "le sacaron" estos cilindros. Justamente este conjunto es simétrico respecto a los planos x=0, y=0, z=0. Esto nos permite dividir el conjunto D en 8 regiones distintas de igual volumen. Por lo que alcanza con calcular una de ellas.

Sea $C=\{(x,y,z): x^2+y^2+z^2\leq r^2,\ x^2+y^2\geq r|x|,\ x\geq 0, y\geq 0, z\leq 0\}$ una de estas regiones. O de forma más compacta:

$$C = \{(x, y, z) : x^2 + y^2 + z^2 \le r^2, \ x^2 + y^2 - rx \le 0, \ y \ge 0, \ z \le 0\}$$

Consideramos coordenadas polares, definidas por $g:[0,+\infty)\times[0,2\pi]\times[0,\pi]$ donde $g(\rho,\theta,\varphi)=(\rho\cos(\theta)\sin(\varphi),\rho\sin(\theta)\sin(\varphi),\rho\cos(\varphi))$ y $|\det J_g(\rho,\theta,\varphi)|=\rho^2\sin(\varphi)$

Traduciendo nuestro conjunto ${\cal C}$ a coordenadas polares obtenemos que

$$g^{-1}(C) = \{ (\rho, \theta, \varphi) : \rho \le r, \rho^2 \operatorname{sen}^2(\varphi) - r\rho \cos(\theta) \operatorname{sen}(\varphi) \le 0, \theta \in [0, \pi/2], \varphi \in [\pi/2, \pi] \}$$

De la segunda condición se obtiene $\rho \geq r \frac{\cos(\theta)}{\sin(\varphi)}$. Es decir, $r \frac{\cos(\theta)}{\sin(\varphi)} \leq \rho \leq r$. Esta desigualdad no puede ser posible para todos los ángulos: necesitamos que el par de ángulos θ, φ cumplan que $\cos(\theta) \leq \sin(\varphi)$.

Tenemos que $\cos(\theta) = \sin(\theta + \pi/2)$. Como $\theta \in [0, \pi/2]$ entonces $\theta + \pi/2 \in [\pi/2, \pi]$. Es decir :

$$\operatorname{sen}(\theta + \pi/2) \le \operatorname{sen}(\varphi) \quad \operatorname{con} \varphi \in [\pi/2, \pi], \ (\theta + \pi/2) \in [\pi/2, \pi]$$

Como sen(x) es decreciente en $[\pi/2, \pi]$ se tiene que dicha desigualdad es cierta si y solo si $\theta + \pi/2 \ge \varphi$. En otras palabras, fijado $\theta \in [0, \pi]$, se tiene $\varphi \in [\pi/2, \theta + \pi/2]$. Por lo tanto:

$$g^{-1}(C) = \left\{ (\rho, \theta, \varphi) : \ \theta \in [0, \pi], \ \varphi \in [\pi/2, \theta + \pi/2], \ \rho \in \left[r \frac{\cos(\theta)}{\sin(\varphi)}, r \right] \right\}$$

Luego:

$$\int_{C} 1 \, dx dy dz = \int_{g^{-1}(C)} 1 |det J_{g}(\rho, \theta, \varphi)| \, d\rho d\varphi d\theta = \int_{0}^{\pi} \int_{\pi/2}^{\theta + \pi/2} \int_{\frac{r \cos(\theta)}{\sin(\varphi)}}^{r} \rho^{2} \sin(\varphi) \, d\rho d\varphi d\theta$$

$$= \frac{1}{3} \int_{0}^{\pi} \int_{\pi/2}^{\theta + \pi/2} \sin(\varphi) \left(r^{3} - r^{3} \frac{\cos^{3}(\theta)}{\sin^{3}(\varphi)} \right) \, d\varphi d\theta = \frac{r^{3}}{3} \int_{0}^{\pi} \int_{\pi/2}^{\theta + \pi/2} \left(\sin(\varphi) - \frac{\cos^{3}(\theta)}{\sin^{2}(\varphi)} \right) \, d\varphi d\theta$$

$$= \frac{r^{3}}{3} \int_{0}^{\pi} \left(-\cos(\varphi) + \cos^{3}(\theta) \frac{\cos(\varphi)}{\sin(\varphi)} \right) \Big|_{\varphi = \pi/2}^{\varphi = \theta + \pi/2} d\theta$$

$$= \frac{r^{3}}{3} \int_{0}^{\pi} \left(-\cos(\theta + \pi/2) + \cos^{3}(\theta) \frac{\cos(\theta + \pi/2)}{\sin(\theta + \pi/2)} \right) d\theta$$

Recordar que $sen(\theta + \pi/2) = cos(\theta)$ y $cos(\theta + \pi/2) = -sen(\theta)$. Entonces:

$$V(C) = \frac{r^3}{3} \int_0^{\pi} \left(\operatorname{sen}(\theta) - \cos^3(\theta) \frac{\operatorname{sen}(\theta)}{\cos(\theta)} \right) d\theta = \frac{r^3}{3} \int_0^{\pi} \operatorname{sen}(\theta) - \operatorname{sen}(\theta) \cos^2(\theta) d\theta$$
$$= \frac{r^3}{3} \left(-\cos(\theta) + \frac{\cos^3(\theta)}{3} \right) \Big|_{\theta=0}^{\theta=\pi/2}$$
$$= \frac{r^3}{3} \left(-\frac{1}{3} + 1 \right) = \frac{2r^3}{9}$$

Como V(D) = 8V(C) tenemos que $V(D) = \frac{16}{9}r^3 = \left(\frac{4}{3}\right)^2 r^3$

Ejercicio 8

- a) $I = \frac{3}{4} \log(2)$
- b) $I = 2 + \frac{1}{6}$
- c) $I = \frac{1}{48}$. Se recomienda considerar coordenadas esféricas.
- d) $I = \frac{\pi}{6}$. Se recomienda considerar coordenadas cilíndricas.
- e) I = 0 por simetría.
- f) $I = 3\pi$. Se recomienda considerar coordenadas cilíndricas trasladadas. Es decir, si $g(\rho, \theta, z)$ son las coordenadas cilíndricas, consideramos $g(\rho, \theta, z) + (1, 0, 0)$

Ejercicio 9

Si $D=\{(x,y,z):\ z\le 0,\ x^2+y^2\le 4,\ x^2+y^2\ge z^2\}$ entonces $\int_D z dx dy dz=-4\pi.$ A continuación los cálculos:

 Observar primero que en el enunciado del ejercicio también se considera la siguiente condición en el dominio D:

$$x^2 + y^2 + z^2 \le 16$$

Sin embargo, la condición $z^2 \le x^2 + y^2 \le 4$ implica $x^2 + y^2 + z^2 \le 8 < 16$. Es decir, se puede omitir dicha condición

• Considerando coordenadas cilíndricas $g(\rho, \theta, z) = (\rho \cos(\theta), \rho \sin(\theta), z)$ obtenemos que

$$g^{-1}(D) = \{ (\rho, \theta, z) : z \le 0, z^2 \le \rho^2 \le 4 \}$$
$$= \{ (\rho, \theta, z) : \theta \in [0, 2\pi], z \in [-2, 0], \rho \in [-z, 2] \}$$

■ Integrando f(x, y, z) = z y recordando que $|det J_g(\rho, \theta, z)| = \rho$ obtenemos:

$$\begin{split} \int_D f &= \int_0^{2\pi} \int_{-2}^0 \int_{-z}^2 z \rho \ d\rho dz d\theta = \int_0^{2\pi} \int_{-2}^0 \left(\frac{1}{2} z \rho^2 \Big|_{\rho = -z}^{\rho = 2} \right) dz d\theta \\ &= \int_0^{2\pi} \int_{-2}^0 2z - \frac{z^3}{2} \ dz d\theta = \int_0^{2\pi} \left(z^2 - \frac{z^4}{8} \Big|_{z = -2}^{z = 0} \right) d\theta \\ &= 2\pi \left(\frac{16}{8} - 4 \right) = -4\pi \end{split}$$

Ejercicio 10

Para r>0 definimos $I(r)=\int_{-r}^{r}e^{-u^{2}}du$ y $R=[-r,r]^{2}$

a) $I(r)^2 = \int_R e^{-x^2 + y^2} dx dy$. Basta hacer la cuenta:

$$\int_{R} e^{-x^{2}+y^{2}} dx dy = \int_{-r}^{r} \int_{-r}^{r} e^{-x^{2}} e^{-y^{2}} dx dy = \int_{-r}^{r} e^{-y^{2}} \left(\int_{-r}^{r} e^{-x^{2}} dx \right) dy$$
$$= \int_{-r}^{r} e^{-x^{2}} dx \int_{-r}^{r} e^{-y^{2}} dy = I(r)I(r)$$

b) Sean C_1 y C_2 círculos inscripto y circunscripto en R respectivamente. Es decir, $C_1 \subseteq R \subseteq C_2$. Observando que $f(x,y) = e^{-x^2+y^2}$ es una función positiva, se tiene que necesariamente

$$\int_{C_1} f \le \int_R f \le \int_{C_2} f$$

Basta con considerar las siguientes escrituras de los dominios como uniones disjuntas y luego usar aditividad respecto al dominio: $R = C_1 \cup (R \setminus C_1)$ y $C_2 = R \cup (C_2 \setminus R)$

- c) Si $C_i = \overline{B(0,r_i)}$ ya calculamos en el ejercicio 5a) que $\int_{C_i} f = \pi (1-e^{-r_i^2})$
- d) Observando que $r_1=r,\,r_2=\sqrt{2}r,$ sustituyendo en desigualdad de b), y recordando que por el inciso a) $\int_R f=I(r)^2$ obtenemos

$$\pi(1 - e^{-r^2}) \le I(r)^2 \le \pi(1 - e^{-2r^2})$$

Tomando límite con $r \to +\infty$ obtenemos $I(r)^2 \to \pi$ y por lo tanto $I(r) \to \sqrt{\pi}$. Es decir, $\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{\pi}$

8

Ejercicios Opcionales

Ejercico 11

- a) Sea A un conjunto medible Jordan con interior no vació, entonces existe un $a \in A$ tal que p es interior. Por lo tanto existe un $\varepsilon > 0$ tal que $B_{\varepsilon}(p) \subset A$. Ya sabemos que una bola de radio positivo tiene medida de Jordan positiva, se sigue entonces que $0 < \mu(B_{\varepsilon}(p)) < \mu(A)$, es decir $\mu(A) > 0$.
- b) Si $\mu(A)$ fuera no nula, entonces existiría un $\varepsilon > 0$ tal que el cuadrado de arista ε esté totalmente contenido en A. Por lo que todos los puntos que están dentro del cuadrado serían interiores a A y se tendría que $Int(A) \neq \emptyset$.

Ejercicio 12

a) Recordar que tenemos la siguiente desigualdad

$$0 \le \mu^-(A) \le \mu^+(A),$$

de donde si el termino de la derecha es igual a 0, la desigualdad es una igualdad y obtenemos que A es medible Jordan y su medida es 0.

b Al ser f continua en el compacto [a,b] tenemos que es uniformemente continua, por lo que dado $\varepsilon > 0$ existe $\delta > 0$ tal que si $|x-y| < \delta$ entonces $|f(x-f(y))| < \varepsilon$. Por lo tanto dado $\varepsilon > 0$ sea $n \in \mathbb{N}$ tal que $displaystyle\frac{b-a}{n} < delta$ siendo δ el que tenemos de la definición de uniformemente continua. Entonces podemos cubrir el gráfico de f con n rectángulos de base (b-a)/n y altura 2ε , o sea tienen área $2\varepsilon(a-b)/n$. Por lo que tendiendo ε a 0 obtenemos que $\mu^+(A)=0$ y obtenemos lo que queremos por la parte a).

Ejercicio 14

Observar que el conjunto $Delta_n$ lo podemos ver de la siguiente manera $x_1 \in [0,1], x_2 \in [0,1-x_1], x_3 \in [0,1-x_1-x_2], \dots, x_n \in [0,1-x_1-x_1].$

Por lo tanto si integramos iteradamente, obtenemos que el volumen de Δ_n es frac1n!. Veamos el caso n=4 para ver como son las cuentas.

$$\iiint_{\Delta} dx dy dz dt = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \int_{0}^{1-x-y-z} dt dz dy dx = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 1 - x - y - z dz dy dx
= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{(1-x-y)^{2}}{2} dy dx = \int_{0}^{1} \frac{(1-x)^{3}}{6} dx
= \frac{1}{4!}$$

haciendo el cambio de variable u = 1 - x - y al integrar contra dy y luego el cambio de variable u = 1 - x al hacerlo contra dx.

En general, en cada paso realizo el cambio $u = 1 - \sum_{i=1}^{i} x_i$ para integrar contra dx_i .

Ejercicio 15

a) Observar que para ver que h es biyectiva solo hay que ver que es inyectiva, ya que el codominio es la imagen de h. Observar que si hubiera dos puntos (u,v) y (u',v') tales que h(u,v) = h(u',v') entonces (restando las dos ecuaciones coordenadas) tenemos que $u+u^2=u'+(u')^2$, lo cual solo sucede si u=u' ya que estamos en la región del plano donde u>0 y el polinomio $x+x^2$ es monótono creciente si x>0. Por lo tanto tenemos que h es biyectiva y es claramente diferenciable. Si despejamos hallamos explicitamente h^{-1} y vemos que es diferenciable, tenemos probado que h es un cambio de variable.

Pongamos coordenadas (x, y) en la imagen. Haciendo el mismo truco de antes, tenemos que $\sqrt{x-y}=u$ y por lo tanto $x-\sqrt{x-y}=v$, es decir

$$h^{-1}(x,y) = (\sqrt{x-y}, x - \sqrt{x-y})$$

que es diferenciable en la región donde estamos trabajando.

- b) Derivando obtenemos que $Jh(u,v)=\begin{pmatrix}1&1\\-2u&1\end{pmatrix}$ y por lo tanto $\det(Jh(u,v))=2u+1$. Además $\det(J(h^{-1})(2,0))=\frac{1}{\det(Jh(1,1))}=\frac{1}{3}$.
- c) El área de S es integrar la función 1 en S, aplicando el teorema de cambio de variable tenemos

$$\iint_{S} dx dy = \iint_{T} |\det(Jh(u, v))| dv du = \int_{0}^{2} \int_{0}^{2-u} 2u + 1 dv du = \frac{14}{3}$$

Ejercicio 18

A menos de una rotación podemos suponer que la base del cilindro está contenida en el plano z=0 y tiene ecuación $x^2+y^2\leq r^2/4$.

Hagamos primero la región comprendida dentro de ambas superficies.

En este caso podemos observar que el volumen comprendido lo podemos descomponer en el volumen de un cilindro de altura $\sqrt{3}r$ y dos trozos esféricos cuyo borde tiene ángulo desde el eje z (pensandolo en esféricas) $\pi/6$. Por lo tanto cada trozo esférico tiene volumen

$$\int_0^{2\pi} \int_0^{\pi/6} \int_{r\sqrt{3/4 + \sec^2(\varphi)}}^r \rho^2 \sec(\varphi) d\rho d\varphi d\theta = \int_0^{2\pi} \int_0^{\pi/6} \frac{r^3 (1 - \sqrt{3/4 + \sec^2(\varphi)}^3)}{3} \sec(\varphi) d\varphi d\theta$$

$$= \frac{2\pi r^3}{3} \int_0^{\pi/6} \sec(\varphi) - (3/4 + \sec^2(\varphi))^{3/2} \sec(\varphi) d\varphi$$

$$= \frac{2\pi r^3}{3} \left[-\cos(\varphi) \Big|_0^{\pi/6} + \frac{1}{2} \int_{3/4}^1 u^{3/2} du \right]$$

$$= \frac{2\pi r^3}{3} \left[1 - \frac{\sqrt{3}}{2} + \frac{1}{5} (1 - (3/4)^{5/2}) \right]$$

$$= \frac{\pi r^3 [192 - 89\sqrt{3}]}{240}$$

En conclusión el volumen comprendido es

$$\frac{\pi r^3 \sqrt{3}}{4} + \frac{\pi r^3 [192 - 89\sqrt{3}]}{120} = \frac{\pi r^3 [192 - 59\sqrt{3}]}{120}$$

Además el otro volumen comprendido entre ambas superficies (por fuera del cilindro pero dentro de la esfera) es

$$\frac{4\pi r^3}{3} - \frac{\pi r^3 [192 - 59\sqrt{3}]}{120} = \frac{\pi r^3 [59\sqrt{3} - 32]}{120}$$