Problem 1

Problem 2

1. For key generation in RSA, you start by picking two large prime numbers p and q (these should be large enough that the product of $p \cdot q$ is on the magnitude of 2^1024 , this makes it infeasible to factor $p \cdot q$). The product of p and q is one part of the public key, which we will call n. You then calculate $\phi(n) = (p-1)(q-1)$. You then pick an e which is relatively prime to $\phi(n)$ ($\phi(n)$ and e do not share any common factors besides 1). This e is also a public key. You then find a e such that e = e (mod e (e). This e can be found using the extended Euclidean algorithm. e and e are both public keys, while e is a private key kept only by the person who created the system.

Encryption is done by raising the message to the power of e modulo n: $C = m^e \pmod{n}$.

Decryption is done by raising the encrypted message to the power of d modulo n: $m^{ed}=m^{t\cdot\phi(n)+1}=m\ (\text{mod }n)$

2. Yes RSA encryption is secure against a known plaintext attack, as long as n is sufficiently large. To discover the key d, the attacker would have to compute $\phi(n)$ which is as difficult as factoring n. Factoring n is infeasible for an n on the order of 2^{1024} .

Problem 3

Problem 4

Problem 5

Problem 6