LAMPIRAN A. SPESIFIKASI *DRONE* PARRROT ARDRONE 2.0

No.	Kategori	Spesifikasi
1.	Kamera	Hoizontal: HD 720p 30 fps (sensor CMOS
		dengan lensa lebar 90 Derajat)
		Vertikal: QVGA 360p 30fps
2.	Tipe Perangkat Input	USB 2.0 high speed for extensions
3.	Penyimpanan	1 Gbit DDR2 RAM 200MHz
4.	Tipe Baterai	Lithium Polymer Battery
5.	Kapasitas Baterai	(3 sel, 11,1 V, 1000 mAh)
		4 motor brushless, (35000 rpm, power: 15W)
		Discharging capacity: 10 C
		Battery charging time: 90 minutes
		Flying time: about 12 minutes
6.	Dimensi	517 mm x 451 mm
7.	Massa	Total massa 380 gram dengan outdoor hull dan
		420 gram dengan indoor hull
8.	Lainnya	1 GHz 32 bit ARM Cortex A8 processor dengan
		800MHz video DSP
		Linux 2.6.32
		3 axis gyroscope 2000°/second precision
		3 axis accelerometer \pm 50 mg precision
		3 axis magnetometer 6° precision
		Kecepatan: 5 m/s

LAMPIRAN B. SPESIFIKASI ROUTER WI-FI

No.	Kategori	Spesifikasi
1.	Standards	Wi-Fi 4
		IEEE 802.11n/b/g 2,4 GHz
2.	Kecepatan Wi-Fi	N300
		2,4 GHz: 300 Mbps
3.	Processor	Single-Core CPU
4.	Daya	5 V dan 0,6 A
5.	Protokol	IPv4
		IPv6
6.	Dimensi	115 mm x 106,7 mm x 24,3 mm
7.	Data Transmisi	CE:
		< 20 dBm (2,4GHz)
		FCC:
		< 30 dBm
8.	Mode Kerja	Router Mode
		Access Point Mode
		Range Extender Mode
		WISP Mode
9.	Lainnya	Keamanan Jaringan: SPI Firewall, Access
		Control, IP & MAC Binding, Application Layer
		Gateway
		Quality of Service: QoS by Device

LAMPIRAN C. HASIL IDENTIFIKASI KARAKTERISTIK Drone

Identifikasi karakteristik dilakukan pada *drone* A dan *drone* B dengan kondisi ruangan dan arah pergerakan yang sama. Proses identifikasi dilakukan untuk merancang pengontrol yang akan digunakan pada *drone*. Berikut merupakan hasil identifikasi karakteristik *drone* A dan *drone* B. Data keseluruhan dapat diakes melalui bit.ly/DataKarakteristikQuadrotor.

C.1 Grafik Karakteristik Kecepatan Drone A

Berdasarkan data yang diperoleh dari identifikasi kecepatan *drone* akan didapatkan parameter fungsi transfer orde satu atau FOPTD. Dengan menggunakan fungsi transfer tersebut, dapat ditentukan karakteristik dan pengontrol yang dapat digunakan pada penelitian ini. Berikut grafik karakteristik untuk *drone* A.

C.2 Grafik Karakteristik Kecepatan Drone B

Berdasarkan data yang diperoleh dari identifikasi kecepatan *drone* akan didapatkan parameter fungsi transfer orde satu atau FOPTD. Dengan menggunakan fungsi transfer tersebut, dapat ditentukan karakteristik dan pengontrol yang dapat digunakan pada penelitian ini. Berikut grafik karakteristik untuk *drone* B.

C.3 Grafik Pengontrol PD untuk Drone A

Berdasarkan data yang diperoleh dari identifikasi kecepatan *drone* akan dan parameter fungsi transfer, akan dilakukan perancangan pengontrol PD untuk masing-masing *drone*. Berikut merupakan diagram sistem setelah menggunakan pengontrol PD pada *drone* A.

C.4 Grafik Pengontrol PD untuk Drone B

Berdasarkan data yang diperoleh dari identifikasi kecepatan *drone* akan dan parameter fungsi transfer, akan dilakukan perancangan pengontrol PD untuk masing-masing *drone*. Berikut merupakan diagram sistem setelah menggunakan pengontrol PD pada *drone* B.

LAMPIRAN D. PENELUSURAN POSISI DRONE

Penelusuran posisi *drone* dilakukan dengan memberikan titik referensi dengan pergerakan ke arah maju, kanan, dan kiri. Penelusuran posisi dilakukan untuk mengetahui pergerakan *drone* sesuai jalur yang diberikan. Pengujian ini dilakukan pada tiap *drone* dan dilihat dari respons pergerakan *drone*. Di bawah ini merupakan hasil penelusuran posisi untuk *drone* A dan *drone* B. Data keseluruhan dapat diakes melalui bit.ly/PenelusuranPosisiQuadrotor.

D.1 Penelusuran Posisi Drone A

Penelusuran posisi pada *drone* A dilakukan pada koordinat *cartesius* dengan menempatkan *drone* sejajar dengan sumbu x. Selain itu, *drone* akan bergerak maju ke arah sumbu x positif, sehingga ketika *drone* maju, maka nilai koordinat x akan bertambah. Pergerakan kanan dan kiri akan dilakukan ke arah sumbu y. Berikut merupakan penelusuran posisi untuk *drone* A.

1. Pergerakan Arah Maju

2. Pergerakan Arah Mundur

3. Pergerakan Arah Kanan

4. Pergerakan Arah Kiri

D.2 Penelusuran Posisi *Drone* B

Penelusuran posisi pada *drone* B dilakukan pada koordinat *cartesius* dengan menempatkan *drone* sejajar dengan sumbu x. Selain itu, *drone* akan bergerak maju ke arah sumbu x positif, sehingga ketika *drone* maju, maka nilai koordinat x akan

bertambah. Pergerakan kanan dan kiri akan dilakukan ke arah sumbu y. Berikut merupakan penelusuran posisi untuk *drone* B.

1. Pergerakan Arah Maju

2. Pergerakan Arah Mundur

3. Pergerakan Arah Kanan

4. Pergerakan Arah Kiri

