DISC Course on Linear Matrix Inequalities in Control

Siep Weiland Department of Electrical Engineering Eindhoven University of Technology

Course 2004 - Class 4

Robustness: an example

1: leaf-spring

2: shock absorber

3: stabilizer bar

4: rear axle

Aim:

- isolate oscillations and vibrations
- balance comfort vs. road grip
- passive suspension: spring-damper specs defined by manufacturer
- *active suspension*: controlled reduction of undesirable deflections

Mass-spring-damper system

Control configuration

Mass-spring-damper system

Control configuration

Inputs:

$$(q_0, F)$$

Mass-spring-damper system

Control configuration

Inputs:

$$(q_0, F)$$

$$\mapsto$$

Outputs:

$$(\ddot{q}_2, q_2 - q_1, q_1 - q_0, \ddot{q}_2, q_2 - q_1)$$

Mass-spring-damper system

Control configuration

Inputs:

Outputs:

$$(q_0, F)$$

$$(\ddot{q}_2, q_2 - q_1, q_1 - q_0, \ddot{q}_2, q_2 - q_1)$$

Uncertainty: in load m_2 :

$$v = \delta h$$

 $v = \delta h$ with δ in some uncertainty set Δ .

The model

$$\begin{pmatrix} q_0 \\ F \end{pmatrix} \longrightarrow \begin{array}{c} \text{Plant} \\ q_2 - q_1 \\ q_1 - q_0 \end{pmatrix}$$

Described by differential equations

$$0 = m_2 \ddot{q}_2 + b_2 (\dot{q}_2 - \dot{q}_1) + k_2 (q_2 - q_1) - F$$

$$0 = m_1 \ddot{q}_1 + b_2 (\dot{q}_1 - \dot{q}_2) + k_2 (q_1 - q_2) + k_1 (q_1 - q_0) + b_1 (\dot{q}_1 - \dot{q}_0) + F.$$

Described by **state space equations**

$$\dot{x} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -(k_1+k_2)/m_1 & k_2/m_1 & -(b_1+b_2)/m_1 & b_2/m_1 \\ k_2/m_2 & -k_2/m_2 & b_2/m_2 & -b_2/m_2 \end{pmatrix} x + \begin{pmatrix} b_1/m_1 & 0 \\ 0 & 0 & 0 \\ (-b_1^2 - b_1b_2)/m_1^2 + k_1/m_1 & -1/m_1 \\ b_1b_2/m_1m_2 & 1/m_2 \end{pmatrix} w$$

$$z = \begin{pmatrix} k_2/m_2 - k_2/m_2 & b_2/m_2 - b_2/m_2 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} b_1b_2/m_1m_2 & 1/m_2 \\ 0 & 0 \\ -1 & 0 \end{pmatrix} w$$

Physical specifications

	m_1	m_2	k_1	k_2	b_1	b_2
unloaded	1.5×10^{3}	1.5×10^{3}	5.0×10^{6}	5.0×10^{5}	1.5×10^{-3}	50×10^{3}
loaded	1.5×10^3	1.0×10^4	5.0×10^{6}	5.0×10^{5}	1.5×10^{-3}	50×10^{3}

Variations in mass m_2

Can this be written in the form:

Uncertainty:
$$\operatorname{col}(v_1, v_2) = \delta \operatorname{col}(x, u)$$
 with $\delta = \frac{1}{m_2} \in [\frac{1}{m_2^{\max}}, \frac{1}{m_2^{\min}}]$.

See simulation

Time-invariant parametric uncertainty

Consider linear time-invariant system

$$\dot{x}(t) = A(\delta)x(t)$$

where $A(\cdot)$ is a **continuous** function of the parameter vector

$$\delta = \operatorname{col}(\delta_1, \cdots, \delta_p)$$

which is known to be contained in the uncertainty set

$$\Delta \subset \mathbb{R}^p$$

Robust stability analysis

Is system asymptotically stable for all possible $\delta \in \Delta$?

Example

Consider system with rational parameter dependence

$$\dot{x}(t) = \begin{pmatrix} -1 & 2\delta_1 & 2\\ \delta_2 & -2 & 1\\ 3 & -1 & \frac{\delta_3 - 10}{\delta_1 + 1} \end{pmatrix} x(t)$$

where parameters δ_1 , δ_2 , δ_3 are bounded as

$$\delta_1 \in [-0.5, 1], \qquad \delta_2 \in [-2, 1], \qquad \delta_3 \in [-0.5, 2].$$

Hence δ belongs to a **polytopic** uncertainty set

$$\Delta = [-0.5, 1] \times [-2, 1] \times [-0.5, 2] =$$

$$= \operatorname{co} \left\{ \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{pmatrix} : \delta_1 \in \{-0.5, 1\}, \quad \delta_2 \in \{-2, 1\}, \quad \delta_3 \in \{-0.5, 2\} \right\}$$

Relation to optimization

The spectral abscissa of square matrix A is $\rho_a(A) = \max_{\lambda \in \lambda(A)} \frac{1}{2}(\lambda + \bar{\lambda})$.

 $A(\delta)$ is Hurwitz for all $\delta \in \Delta$ if and only if $\rho_a(A(\delta)) < 0$ for all $\delta \in \Delta$

Two main sources for trouble:

- spectral abscissa $\rho_a(A(\delta))$ is not convex/concave in δ .
- inequality has to hold at infinitely many points.

Consequences:

Computational approaches therefore fail.

- \rightarrow Cannot find global maximum of $\rho_a(A(\delta))$ over Δ .
- \rightarrow Even if δ is a polytope, not sufficient to check its generators.
- \rightarrow Even more trouble if Δ is not a polytope.

Quadratic stability

The uncertain system $\dot{x} = A(\delta)x$ with $\delta \in \Delta$ is defined to be **quadratically** stable if there exists $X \succ 0$ with

$$A(\delta)^{\top} X + X A(\delta) \prec 0$$
 for all $\delta \in \Delta$

Why is this relevant?

Function $V(x) := x^{\top} X x$ serves as quadratic Lyapunov function.

Worthwhile to understand details:

With above X there exists $\varepsilon > 0$ such that

$$A(\delta)^{\top} X + X A(\delta) + \varepsilon X \leq 0.$$

Then, abbreviating V(x(t)) as V(t) we get for all $t \in \mathbb{R}$ and all $\delta \in \Delta$

$$\dot{V}(t) + \varepsilon V(t) = x(t)^{\top} \left[A(\boldsymbol{\delta})^{\top} \boldsymbol{X} + \boldsymbol{X} A(\boldsymbol{\delta}) \right] x(t) + \varepsilon x^{\top}(t) \boldsymbol{X} x(t)$$

$$\leq 0$$

Integrating over $[t_0, t_1]$, this yields that V has exponential decay

$$V(t_1) \leq V(t_0)e^{-\varepsilon(t_1-t_0)}$$
 for all $\delta \in \Delta$

Now use that

$$|\lambda_{\min}(\boldsymbol{X})||x||^2 \le x^{\top}\boldsymbol{X}x \le \lambda_{\max}(\boldsymbol{X})||x||^2$$

and infer that ||x(t)|| has exponential decay

$$||x(t)||^2 \leq ||x_0||^2 \frac{\lambda_{\max}(X)}{\lambda_{\min}(X)} e^{-\varepsilon t} \text{ for all } \delta \in \Delta$$

Conclude that $\lim_{t\to\infty} x(t) = 0$

- with exponential decay rate ε .
- irrespective of initial condition x_0 .
- for all $\delta \in \Delta$

How to verify quadratic stability?

Theorem: If $A(\delta)$ is affine in δ and the uncertainty set $\Delta = \operatorname{co}(\delta^1, \dots, \delta^N)$ is a polytope then $\dot{x} = A(\delta)x$ is quadratically stable **if and only if** there exists $X \succ 0$ such that

$$A(\delta^k)^{\top} \mathbf{X} + \mathbf{X} A(\delta^k) \prec 0 \quad \text{ for } k = 1, \dots, N$$

Comments:

- Converts verification of quadratic stability to feasibility problem in **finite** set of LMI's
- Routine quadstab in LMI toolbox
- implies that $A(\delta)$ is Hurwitz for all $\delta \in \Delta$.

Proof:

Nice application of convexity of the function $f_x(\delta) := x^{\top} [A(\delta)^{\top} X + X A(\delta)] x$.

Proof

Let $x \in \mathbb{R}^n$ be arbitrary and define $f_x : \Delta \to \mathbb{R}$ by

$$f_x(\boldsymbol{\delta}) := x^{\top} [A(\boldsymbol{\delta})^{\top} X + X A(\boldsymbol{\delta})] x$$

Observation: A affine implies f_x convex.

But then

$$A(\delta)^{\top} X + X A(\delta) \prec 0$$
 for all $\delta \in \Delta$

if and only if (by definition) for all $x \in \mathbb{R}^n$

$$f_x(\delta) < 0$$
 for all $\delta \in \Delta$

if and only if (by slide 24 class 1) for all $x \in \mathbb{R}^n$

$$f_x(\delta) < 0$$
 for all $\delta \in \Delta_0$

if and only if

$$A(\delta)^{\top} X + X A(\delta) \prec 0$$
 for all $\delta \in \Delta$

Example

If $A(\delta)$ is not affine in δ , a parameter transformation often helps!

In example, let $\delta_4 = \frac{\delta_3 - 10}{\delta_1 + 1} + 12$. Then

$$A(\delta) = \begin{pmatrix} -1 & 2\delta_1 & 2 \\ \delta_2 & -2 & 1 \\ 3 & -1 & \delta_4 - 12 \end{pmatrix}, \quad \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_4 \end{pmatrix} \in \Delta = [-0.5, 1] \times [-2, 1] \times [-9, 8]$$

LMI toolbox quadstab yields system quadratically stable for

$$(\delta_1, \delta_2, \delta_4) \in r\Delta$$
 with largest possible scaling factor $r \approx 0.45$

Call number r^* the **quadratic stability margin** if system is quadratically stable for uncertainty set $r\Delta$ with $r < r^*$, and not quadratically stable for $r\Delta$ with $r > r^*$.

Consider uncertain control system

$$\dot{x} = A(\delta)x + B(\delta)u, \qquad \delta \in \Delta$$

Problem: Find state feedback $u = \mathbf{F}x$ such that the controlled system

$$\dot{x}(t) = (A(\delta) + B(\delta)\mathbf{F})x(t)$$

is quadratically stable for all $\delta \in \Delta$.

Consider uncertain control system

$$\dot{x} = A(\delta)x + B(\delta)u, \qquad \delta \in \Delta$$

Problem: Find state feedback $u = \mathbf{F}x$ such that the controlled system

$$\dot{x}(t) = (A(\delta) + B(\delta)\mathbf{F})x(t)$$

is quadratically stable for all $\delta \in \Delta$.

Equivalently: find F and $X \succ 0$ such that

$$(A(\delta) + B(\delta)F)^{\top}X + X(A(\delta) + B(\delta)F) \prec 0$$
 for all $\delta \in \Delta$

Consider uncertain control system

$$\dot{x} = A(\delta)x + B(\delta)u, \qquad \delta \in \Delta$$

Problem: Find state feedback $u = \mathbf{F}x$ such that the controlled system

$$\dot{x}(t) = (A(\delta) + B(\delta)\mathbf{F})x(t)$$

is quadratically stable for all $\delta \in \Delta$.

Equivalently: find K and $Y \succ 0$ such that

$$A(\delta)Y + YA(\delta)^{\top} + B(\delta)K + (B(\delta)K)^{\top} \prec 0$$
 for all $\delta \in \Delta$.

Transformation: $Y = X^{-1}$ and $K = FX^{-1}$.

Consider uncertain control system

$$\dot{x} = A(\delta)x + B(\delta)u, \qquad \delta \in \Delta$$

Problem: Find state feedback $u = \mathbf{F}x$ such that the controlled system $\dot{x}(t) = (A(\delta) + B(\delta)\mathbf{F})x(t)$

is quadratically stable for all $\delta \in \Delta$.

Equivalently: find K and $Y \succ 0$ such that

$$A(\delta)Y + YA(\delta)^{\top} + B(\delta)K + (B(\delta)K)^{\top} \prec 0$$
 for all $\delta \in \Delta$.

Then set $F = KY^{-1}$.

- $A(\delta)$ and $B(\delta)$ affine, Δ finitely generated: LMI feasibility problem!
- Won't work for output feedback!!

14/38

Time-varying parametric uncertainties

Now assume that the parameters $\delta(t)$ vary in time, and that they are known to satisfy $\delta(t) \in \Delta$ for all t. Check stability of the system

$$\dot{x}(t) = A(\delta(t))x(t), \qquad \delta(t) \in \Delta$$

The uncertain system with time-varying parametric uncertainties is quadratically stable if there exists $X \succ 0$ with

$$A(\delta)^{\top} X + X A(\delta) \prec 0$$
 for all $\delta \in \Delta$.

Proof will be given for more general result in full detail.

Quadratic stability therefore implies roust stability for **arbitrary fast** timevarying parametric uncertainties in Δ . If bounds on velocities $\dot{\delta}$ are known, this test is **conservative**.

Rate-bounded parametric uncertainties

Let us assume that the parameter curves $\delta(\cdot)$ are continuously differentiable and are only known to satisfy

$$\delta(t) \in \Delta$$
 and $\delta(t) \in \Lambda$ for all time.

Here, $\Delta \in \mathbb{R}^p$ and $\Lambda \in \mathbb{R}^p$ are given compact sets (e.g., polytopes).

Problem: robust stability analysis

Verify whether the linear time-varying system

$$\dot{x}(t) = A(\delta(t))x(t)$$

is exponentially stable for all parameter curves $\delta(\cdot)$ that satisfy the above bounds on value and velocity.

Amounts searching for Lyapunov function.

Main stability result

Theorem: Suppose $X(\delta)$ is continuously differentiable on Δ and satisfies

$$X(\delta) \succ 0, \qquad \sum_{k=1}^{p} \frac{\partial_k X(\delta) v_k + A(\delta)^{\top} X(\delta) + X(\delta) A(\delta) \prec 0$$

for all $\delta \in \Delta$ and $v \in \Lambda$.

Then there exist constants M>0, a>0 such that all trajectories of the uncertain time-varying system satisfy

$$||x(t)|| \le Me^{-a(t-t_0)}||x(t_0)||$$
 for all $t \ge t_0$.

- Covers many tests in the literature.
- Condition for robust stability is **sufficient only!**
- Is also necessary in case $\Lambda = \{0\}$: time-invariant uncertainty.

17/38

Proof

Same idea as before!! Exists $\alpha, \beta, \gamma > 0$ such that for all $\delta \in \Delta$, $v \in \Lambda$:

$$\alpha I \leq X(\delta) \leq \beta I, \quad \sum_{k=1}^{p} \frac{\partial_k X(\delta) v_k + A(\delta)^{\top} X(\delta) + X(\delta) A(\delta) \prec -\gamma I$$

Suppose that $\delta(t)$ is admissible parameter curve and let x(t) be corresponding state trajectory. Here's the crux:

$$\begin{split} \frac{d}{dt}x(t)^{\top} & \boldsymbol{X}(\delta(t)) = x(t)^{\top} \left[\sum_{k=1}^{p} \partial_{k} \boldsymbol{X}(\delta(t)) \dot{\delta}_{k}(t) \right] x(t) + \\ & + x(t)^{\top} \left[A(\delta(t)^{\top} \boldsymbol{X}(\delta(t)) + \boldsymbol{X}(\delta(t)) A(\delta(t)) \right] x(t) \end{split}$$

Since $\delta(t) \in \Delta$ and $\dot{\delta}(t) \in \Lambda$ we conclude that

$$\alpha \|x(t)\|^2 \le x(t)^\top X(\boldsymbol{\delta}(t)) x(t) \le \beta \|x(t)\|^2, \ \frac{d}{dt} x(t)^\top X(\boldsymbol{\delta}(t)) x(t) \le -\gamma \|x(t)\|^2$$

Proof (ctd.)

This is similar to what we have seen before.

Define $V(t) := x(t)^{\top} X(\boldsymbol{\delta}(t)) x(t)$ to infer that

$$||x(t)||^2 \le \frac{1}{\alpha} V(t), \quad V(t) \le \beta ||x(t)||^2, \quad \dot{V}(t) \le -\frac{\gamma}{\beta} V(t)$$

So that V(t) has exponential decay

$$V(t) \le V(t_0)e^{-\frac{\gamma}{\beta}(t-t_0)}$$
 for all $t \ge t_0$.

This yields that ||x(t)|| has exponential decay

$$||x(t)||^2 \le \frac{\beta}{\alpha} e^{-\frac{\gamma}{\beta}(t-t_0)} ||x(t_0)||^2$$
 for all $t \ge t_0$.

so that we can choose $M = \sqrt{\frac{\beta}{\alpha}}$ and $a = \frac{\gamma}{2\beta}$.

Extreme cases

• Parameters are time-invariant: $\Lambda = \{0\}$.

Have to find $X(\delta)$ satisfying

$$X(\delta) \succ 0, \quad A(\delta)^{\top} X(\delta) + X(\delta) A(\delta) \prec 0$$

• Parameters vary arbitrary fast:

Have to find parameter-independent X satisfying

$$X \succ 0, \quad A(\delta)^{\top}X + XA(\delta) \prec 0 \quad \text{ for all } \delta \in \Delta$$

is identical to quadratic stability test!

Idea of proof: If inequality holds for $\Lambda = [-r, r]^p$ and all r > 0 then $\partial_k X(\delta)$ must vanish for all $k = 1, \ldots, p$ and all $\delta \in \Delta$

Remarks

- We have derived general results based on Lyapunov functions which still depend **quadratically** on the state (restrictive!) but which allow for non-linear (smooth) dependence on the uncertain parameters.
- Tests are purely algebraic and do not involve system- or parameter trajectories
- Not easy to apply:
 - ♦ Have to find **function** satisfying partial differential LMI
 - \diamond Have to make sure that inequality holds for all $\delta \in \Delta$, $\delta \in \Lambda$.
- Allows to easily derive specialization which are or can be implemented with LMI solvers.

Suppose $A(\delta)$ depend affinely on parameters:

$$A(\delta) = A_0 + \delta_1 A_1 + \dots + \delta_p A_p$$

Parameter and rate constraints are boxes:

$$\Delta = \{ \delta \in \mathbb{R}^p \mid \delta_k \in [\underline{\delta}_k, \overline{\delta}_k] \}, \quad \Lambda = \{ v \in \mathbb{R}^p \mid v_k \in [\underline{v}_k, \overline{v}_k] \},$$

These are the convex hulls of

$$\Delta_0 = \{ \delta \in \mathbb{R}^p \mid \delta_k \in \{ \underline{\delta}_k, \overline{\delta}_k \} \}, \quad \Lambda_0 = \{ v \in \mathbb{R}^p \mid v_k \in \{ \underline{v}_k, \overline{v}_k \} \},$$

Search for affine parameter dependent $X(\delta)$:

$$X(\delta) = X_0 + \delta_1 X_1 + \dots + \delta_p X_p$$

Hence,

$$\partial_k X(\boldsymbol{\delta}) = X_k$$
.

With $\delta_0 = 1$ we find

$$\sum_{k=1}^{p} \frac{\partial_k X(\delta) v_k + A(\delta)^{\top} X(\delta) + X(\delta) A(\delta) =$$

$$= \sum_{k=1}^{p} \frac{X_k v_k}{v_k} + \sum_{\nu=0}^{p} \sum_{\mu=0}^{p} \frac{\delta_{\nu} \delta_{\mu} (A_{\nu} X_{\mu} + X_{\mu} A_{\nu}).$$

- affine in X_1, \ldots, X_p
- affine in v_1, \ldots, v_p
- quadratic in $\delta_1, \ldots, \delta_p$ (mixture of constant, linear and quadratic terms).

Consequently: The function

$$f_x(\delta, v) := x^\top \left[\sum_{k=1}^p \boldsymbol{X_k} v_k + \sum_{\nu=0}^p \sum_{\mu=0}^p \delta_\nu \delta_\mu (A_\nu \boldsymbol{X_\mu} + \boldsymbol{X_\mu} A_\nu) \right] x$$

may not be convex in $\delta \in \Delta$, $v \in \Lambda$.

Main issue: Can we provide conditions such that

$$f_x(\boldsymbol{\delta}, \boldsymbol{v}) < 0$$
 on $\Delta \times \Lambda$

is implied by

$$f_x(\boldsymbol{\delta}, \boldsymbol{v}) < 0$$
 on $\Delta_0 \times \Lambda_0$

That is, can we cook up a generator test?

• Implies that it suffices to guarantee required inequality at generators.

Relaxation: Include additional constraint $A_{\nu}^{\top} X_{\nu} + X_{\nu} A_{\nu} \succeq 0$.

Why? Sufficient condition for generator test is that

$$f_x(\delta, v) = f_x(\delta_1, \dots, \delta_j, \dots, \delta_p, v_1, \dots, v_j, \dots, v_p)$$

is partially convex, i.e., convex in each individual argument δ_j and v_j . That is if $\frac{\partial^2 f}{\partial \delta_i^2} \geq 0$ and $\frac{\partial^2 f}{\partial v_i^2} \geq 0$.

Robust exponential stability is therefore guaranteed if

There exist X_0, \ldots, X_p with $A_{\nu}^{\top} X_{\nu} + X_{\nu} A_{\nu} \succeq 0$, $nu = 1, \ldots, p$, and

$$\sum_{k=0}^{p} X_{k} \delta_{k} \succ 0, \quad \sum_{k=1}^{p} X_{k} v_{k} + \sum_{\nu=0}^{p} \sum_{\mu=0}^{p} \delta_{\nu} \delta_{\mu} (A_{\nu} X_{\mu} + X_{\mu} A_{\nu}) \prec 0$$

for all $\delta \in \Delta_0$ and $v \in \Lambda_0$ and with $\delta_0 = 1$.

- A finite test!!
- This test is implemented in the LMI toolbox in pdstab.

For rate-bounded uncertainties often much less conservative than quadratic stability test.

• Need to understand the arguments in the proof to derive your own variants.

General recipe to reduce to finite dimensions

Restrict the search to a chosen finite dimensional subspace.

For example choose scalar continuously differentiable basis functions $b_1(\delta), \ldots, b_N(\delta)$ and search for the coefficient matrices X_1, \ldots, X_N in the expansion

$$X(\delta) = \sum_{\nu=1}^{N} \frac{\mathbf{X}_{\nu}}{\mathbf{b}_{\nu}}(\delta) \quad \text{with} \quad \partial_{k} X(\delta) = \sum_{\nu=1}^{N} \frac{\mathbf{X}_{\nu}}{\mathbf{b}_{\nu}}(\delta)$$

Have to guarantee that for all $\delta \in \Delta$ and $v \in \Lambda$:

$$\sum_{\nu=1}^{N} \frac{\mathbf{X}_{\nu} b_{\nu}(\delta)}{\mathbf{X}_{\nu} b_{\nu}(\delta)} \succ 0, \sum_{\nu=1}^{N} \left(\sum_{k=1}^{p} \frac{\mathbf{X}_{\nu} \partial_{k} b_{\nu}(\delta) v_{k} + [A(\delta)^{\top} \mathbf{X}_{\nu} + \mathbf{X}_{\nu} A(\delta)] b_{\nu}(\delta) \right) \prec 0$$

Is finite dimensional but still semi-infinite LMI problem

Remarks

• If systematically extending the set of basis functions one can improve the sufficient stability conditions. Example: Polynomial basis

$$b_{k_1,\dots,k_p}(\delta) = \delta_1^{k_1} \cdots \delta_p^{k_p}, \quad k_{\nu} = 0, 1, 2, \dots, v = 1, \dots, p.$$

If δ is star-shaped one can prove:

if partial diff. LMI has a continuously differentiable solution, then it also has a polynomial solution (of possibly higher degree).

Polynomial basis is a generic choice with guaranteed success.

• One can also grid Δ and Λ to arrive at **finite** system of LMI's.

Trouble: Huge LMI system, no guarantees at points outside grid.

Generalized stability regions

So far, quadratic stability meant **exponential decay** of the state trajectory in the sense that

$$||x(t)|| \le M||x(t_0)||e^{\alpha(t-t_0)}$$

for suitable gain M>0 and decay rate $\alpha<0$.

Can we influence the exponential decay rate?

Alternative stability regions:

$$\begin{array}{lll} \text{Damping:} & \operatorname{Re}(s) < \alpha & s + \bar{s} - 2\alpha < 0 \\ \text{Circle:} & |s| < r & \begin{pmatrix} -r & -s \\ -\bar{s} & -r \end{pmatrix} \prec 0 \\ \text{Strip:} & \alpha_1 < \operatorname{Re}(s) < \alpha_2 & s + \bar{s} - 2\alpha_2 < 0 \\ & 0 < s + \operatorname{Re}(s) - 2\alpha_1 \\ \text{Conic:} & \tan(\theta) \operatorname{Re}(s) < -|\operatorname{Im}(s)| & \begin{pmatrix} (s + \bar{s}) \sin \theta & (s - \bar{s}) \cos \theta \\ (\bar{s} - s) \cos \theta & (s + \bar{s}) \sin \theta \end{pmatrix} \prec 0 \end{array}$$

Alle these are examples of LMI regions

For a real symmetric $2m \times 2m$ matrix P the set of complex numbers

$$L_P := \left\{ s \in \mathbb{C} \mid \begin{pmatrix} I \\ sI \end{pmatrix}^* P \begin{pmatrix} I \\ sI \end{pmatrix} \prec 0 \right\}$$

is called an LMI region.

Notation

Define the **Kronecker product**

$$A \otimes B = \begin{pmatrix} A_{11}B & \dots & A_{1n}B \\ \vdots & & \vdots \\ A_{m1}B & \dots & A_{mn}B \end{pmatrix}$$

- $1 \otimes A = A = A \otimes 1$
- $\bullet (A+B) \otimes C = (A \otimes C) + (B \otimes C)$

Generalization standard stability criterion

Theorem: All eigenvalues of $A \in \mathbb{R}^{n \times n}$ are contained in the LMI region

$$\left\{ s \in \mathbb{C} \mid \begin{pmatrix} I \\ sI \end{pmatrix}^* \begin{pmatrix} Q & S \\ S^\top & R \end{pmatrix} \begin{pmatrix} I \\ sI \end{pmatrix} \prec 0 \right\}$$

if and only if

there exists $K \succ 0$ such that

$$\begin{pmatrix} I \\ A \otimes I \end{pmatrix}^* \begin{pmatrix} \mathbf{K} \otimes Q & \mathbf{K} \otimes S \\ \mathbf{K} \otimes S^\top & \mathbf{K} \otimes R \end{pmatrix} \begin{pmatrix} I \\ A \otimes I \end{pmatrix} \prec 0$$

- An LMI characterization!
- Very nice generalization of usual stability test.
- Also applicable as test for intersections of various stability domains.

Duality in convex programming

Let S be a subset of a linear vector space X and let mappings $f: S \to \mathbb{R}, g_i: S \to \mathbb{R}, h_i X \to \mathbb{R}$ be given.

Many optimization problems involve equality and inequality constraints.

$$g_i(x) \le 0,$$
 $i = 1, ..., k$
 $h_i(x) = 0,$ $i = 1, ..., \ell.$

Let $g = \operatorname{col}(g_1, \dots, g_k)$ and $h = \operatorname{col}(h_1, \dots, h_\ell)$.

Problem: Consider primal optimization problem with optimal value P_{opt} :

minimize
$$f(x)$$

subject to $x \in \mathcal{S}$, $g(x) \le 0$, $h(x) = 0$

Is **convex** if S, f, g_i are convex and h_i affine.

Convex programs

- Examples: saturation constraints, safety margins, physically meaningful variables, constitutive and balance equations assume the form S.
- linear program:

$$f(x) = c^{\mathsf{T}}x, \quad g(x) = g_0 + Gx, \quad h(x) = h_0 + Hx$$

• quadratic program:

$$f(x) = x^{\top}Qx, \quad g(x) = g_0 + Gx, \quad h(x) = h_0 + Hx$$

• quadratically constraint quadratic program:

$$f(x) = x^{\mathsf{T}} Q x + 2s^{\mathsf{T}} x + r, \quad g_j(x) = x^{\mathsf{T}} Q_j x + 2s_j^{\mathsf{T}} x + r_j, \quad h(x) = h_0$$

Upper bound on optimal value

If $x_0 \in \mathcal{S}$ satisfies $g(x_0) \leq 0$ and $h(x_0) = 0$ then $P_{\text{opt}} \leq f(x_0)$ defines an **upper bound** on P_{opt} .

Lower bound on optimal value

Let $x \in \mathcal{S}$ satisfy $g(x) \leq 0$ and h(x) = 0.

Then for arbitrary $y \ge 0$ and z we have

$$\langle y, g(x) \rangle \le 0, \qquad \langle z, h(x) \rangle = 0$$

and, in particular,

$$\inf_{x \in \mathcal{S}} f(x) + \langle y, g(x) \rangle + \langle z, h(x) \rangle \leq \inf_{x \in \mathcal{S}, g(x) \le 0, h(x) = 0} f(x) + \langle y, g(x) \rangle + \langle z, h(x) \rangle \leq \inf_{x \in \mathcal{S}, g(x) \le 0, h(x) = 0} f(x).$$

The best **lower bound** is obtained by maximization over $y \ge 0$ and z:

$$\inf_{x \in \mathcal{S}, g(x) \le 0, h(x) = 0} f(x) \ge \sup_{y \ge 0, z} \left[\inf_{x \in \mathcal{S}} f(x) + \langle y, g(x) \rangle + \langle z, h(x) \rangle \right].$$

Terminology:

- Lagrange function: $L(x, y, z) = f(x) + \langle y, g(x) \rangle + \langle z, h(x) \rangle$.
- Lagrange dual cost: $\ell(y,z) = \inf_{x \in \mathcal{S}} L(x,y,z) \in [-\infty,\infty]$.
- Lagrange dual optimization problem:

$$D_{\mathrm{opt}} := \sup_{y \ge 0, z} \ell(y, z)$$

Remarks:

- $\ell(y,z)$ computed by solving an **unconstrained** optimization problem.
- $\ell(y,z)$ is a concave function.
- Dual problem is concave maximization problem.
 Constraints are usual simpler than in primal problem
- Weak duality: $D_{\text{opt}} \leq P_{\text{opt}}$. Main question:

when is $D_{\text{opt}} = P_{\text{opt}}$?

Lagrange duality theorem

Theorem: Weak duality always true: $P_{\text{opt}} \ge \ell(y, z)$ for all $y \ge 0$, z.

If primal optimization problem is convex and satisfies the **constraint qualification**,

i.e. there exist x_0 in the interior of S with $g(x_0) \leq 0$, $h(x_0) = 0$ such that $g_j(x_0) < 0$ for all component functions g_j that are not affine.

Then strong duality holds: exists $y_{\text{opt}} \ge 0$, z_{opt} such that

$$P_{\rm opt} = \ell(y_{\rm opt}, z_{\rm opt}) = D_{\rm opt}$$

In other words, strong duality means

$$\inf_{x \in \mathcal{S}, g(x) \le 0, h(x) = 0} f(x) = \max_{y \ge 0, z} \left[\inf_{x \in \mathcal{S}} f(x) + \langle y, g(x) \rangle + \langle z, h(x) \rangle \right].$$

For example, constraint qualification holds if g is affine.

Karush-Kuhn-Tucker

Sufficiency: Suppose there exists $y_{\text{opt}} \geq 0$, z_{opt} such that $x_0 \in \mathcal{S}$ satisfies $g(x_0) \leq 0$ and $h(x_0) = 0$ and is an optimal solution to the unconstrained problem:

$$\inf_{x \in \mathcal{S}} f(x) + \langle y_{\text{opt}}, g(x) \rangle + \langle z_{\text{opt}}, h(x) \rangle$$

with **complementary slackness** condition

$$\langle y_{\text{opt}}, g(x_0) \rangle = 0 \tag{3}$$

Then x_0 is an optimal solution of the primal problem.

Neccessity: Suppose x_0 is an optimal solution of the primal problem.

If the primal is convex and satisfies the constraint qualification, then there exist $y_{\text{opt}} \ge 0$ z_{opt} such that x_0 is a solution of the **unconstrained problem** and satisfies (3)

Karush-Kuhn-Tucker and duality

Main result in convex optimization

Theorem: (Karush-Kuhn-Tucker) If $P_{\rm opt} > -\infty$ and the primal problem satisfies the constraint qualification, then

$$D_{
m opt} = P_{
m opt}$$

and there exist $y_{\text{opt}} \geq 0$ and z_{opt} , such that

$$D_{\mathrm{opt}} = \ell(y_{\mathrm{opt}}, z_{\mathrm{opt}}).$$

Moreover, $x_{\rm opt}$ is an optimal solution of the primal optimization problem and $(y_{\rm opt}, z_{\rm opt})$ is an optimal solution of the dual optimization problem, if and only if

- i. $g(x_{\text{opt}}) \le 0$, $h(x_{\text{opt}}) = 0$,
- 2. $y_{\text{opt}} \geq 0$ and x_{opt} minimizes $L(x, y_{\text{opt}}, z_{\text{opt}})$ over all $x \in \mathcal{X}$ and
- 3. $\langle y_{\text{opt}}, g(x_{\text{opt}}) \rangle = 0$.

Some comments on KKT theorem

- Very general result, strong tool in convex optimization
- Dual problem simpler to solve, (y_{opt}, z_{opt}) called Kuhn Tucker point.
- The triple $(x_{\text{opt}}, y_{\text{opt}}, z_{\text{opt}})$ exists if and only if it defines a **saddle point** of the LAgrangian L in the sense that

$$L(x_{\text{opt}}, y, z) \leq \underbrace{L(x_{\text{opt}}, y_{\text{opt}}, z_{\text{opt}})}_{=D_{\text{opt}} = P_{\text{opt}}} \leq L(x, y_{\text{opt}}, z_{\text{opt}})$$

for all x, $y \ge 0$ and z.

Next class