

Trabajo Fin de Máster 2018 – 2019

Simulación numérica del daño producido sobre el canal principal de un horno alto

Iván Martínez Suárez

Índice

- Problema físico
- 2 Modelización matemática del daño en el hormigón
 - Modelización matemática del daño
 - Modelo de daño de Mazars para el hormigón
- Simulación numérica
 - Test numérico
 - Problema del canal principal

Horno alto

Figura: Esquema del horno alto (*Presentación de ArcelorMittal en el Taller de Problemas Industriales.* 2018).

Canal principal (I)

Figura: Vista longitudinal del canal principal del horno alto (Seoane Chouciño, 2016).

Canal principal (II)

Figura: Vista transversal del canal principal del horno alto (Barral, Nicolás, Pérez-Pérez y Quintela, 2019).

Fenómenos causantes de daño (I)

Ataque químico y erosivo de la escoria

- Reacción química de los componentes del hormigón con los de la escoria
- Erosión debida al rozamiento del flujo de escoria con las paredes

Impacto del chorro de colada

- Chorro líquido saliente del alto horno impacta contra el refractario (Nicolás Ávila, 2017)
- Desprendimiento del revestimiento del hormigón y aumento de tensiones internas

Fenómenos causantes de daño (II)

Impacto termomecánico de la colada

- Impacto térmico inicial
- Reducción del salto térmico: precalentamiento con mecheros
- La temperatura en los componentes sólidos alcanza el estado estacionario (Vázquez Fernández, 2015; Seoane Chouciño, 2016)
- Estudio del daño termomecánico con las temperaturas obtenidas en estado estacionario (Barral, Nicolás, Pérez-Pérez y Quintela, 2019)

Modelización matemática del daño

Introducción

Consideraciones generales

- Hormigón más resistente a esfuerzos de compresión que de tracción (10 veces)
- Deformaciones plásticas no medibles antes de la fractura (Lemaitre y Chaboche, 1990; Lippmann y Lemaitre, 1996)
- Hormigón refractario: baja porosidad y proceso especial de secado
- Consideraremos deformaciones elásticas y térmicas

Daño isótropo unidimensional (I)

Figura: Elemento dañado (Maßmann, 2009).

Variable interna de daño

$$D = \frac{S_D}{S}$$

- Densidad superficial efectiva de microdefectos
- 0 ≤ D ≤ 1
- D = 0, material sin daño
- D=1, ruptura del material

Daño isótropo unidimensional (II)

Figura: Elemento dañado (Maßmann, 2009).

Tensión uniaxial σ

$$\sigma = \frac{F}{S}$$

Tensión efectiva $\tilde{\sigma}$

$$\tilde{\sigma} = \frac{F}{S - S_D} = \frac{F/S}{1 - S_D/S} = \frac{\sigma}{1 - D}$$

- $\tilde{\sigma} \geq \sigma$
- $D = 0 \Rightarrow \tilde{\sigma} = \sigma$
- $D \to 1 \Rightarrow \tilde{\sigma} \to \infty$

Daño isótropo unidimensional (III)

Principio de equivalencia de las deformaciones

Figura: Principio de equivalencia (Lemaitre y Chaboche, 1990).

Elástico sin daño: ley de Hooke

$$\sigma = \mathbf{E}\varepsilon^{\mathbf{e}}$$

Elástico dañado

$$\sigma = (1 - D)E\varepsilon^{e}$$

Daño isótropo tridimensional

Generalización de conceptos unidimensionales

Variable de daño

$$D = \frac{S_D}{S}$$

Tensión efectiva

$$\tilde{\boldsymbol{\sigma}} = \frac{\boldsymbol{\sigma}}{1-D}$$

 Principio de equivalencia de las deformaciones. Tensor de elasticidad con daño

$$\Lambda_D = (1 - D)\Lambda$$

Modelización matemática del daño

Termoelasticidad lineal con daño

Ley de comportamiento termoelástica lineal isótropa con daño

$$\boldsymbol{\sigma} = \frac{(1-D)\,\mathsf{E}}{(1+\nu)(1-2\nu)} \left[\nu\,\mathrm{tr}(\boldsymbol{\varepsilon})\boldsymbol{\mathit{I}} + (1-2\nu)\boldsymbol{\varepsilon} - \alpha(\theta-\theta_0)(1+\nu)\boldsymbol{\mathit{I}}\right]$$

Entropía para termoelasticidad lineal isótropa con daño

$$s = \frac{E\alpha (1 - D)}{\rho (1 - 2\nu)} \operatorname{tr}(\varepsilon) + \left[\frac{3\alpha^2 ED}{\rho (1 - 2\nu)} + \frac{C_E}{\theta_0} \right] (\theta - \theta_0)$$

Tasa de liberación de energía de deformación debida al daño

$$Y = \frac{1}{2} \mathbf{\Lambda} : \left[\mathbf{\varepsilon} - \alpha \left(\mathbf{\theta} - \mathbf{\theta}_0
ight) \right] : \left[\mathbf{\varepsilon} - \alpha \left(\mathbf{\theta} - \mathbf{\theta}_0
ight) \right]$$

Leyes de conservación

Ley de conservación de la energía

• Ecuación completa:

$$-\mathrm{Div}\;(\vec{q}) = \rho C_{E}\dot{\theta} - Y\dot{D} - \theta \frac{\partial \sigma}{\partial \theta} : \dot{\varepsilon} + \frac{\partial Y}{\partial \theta}\dot{D}$$

Ley de Fourier:

$$\vec{\mathbf{q}} = -\kappa \nabla \theta$$

 Régimen cuasiestático y disipación debida al daño despreciable:

Div
$$(\kappa \nabla \theta) = \rho C_E \dot{\theta}$$

Ley de conservación de momentos

$$-\mathrm{Div}\left(\boldsymbol{\sigma}\right)=\vec{f}$$

Sistema de ecuaciones

Caso cuasiestático

Div
$$(\kappa \nabla \theta) = \rho C_E \dot{\theta}$$
,
-Div $(\sigma) = \vec{f}$,
 $\sigma = \frac{(1-D)E}{(1+\nu)(1-2\nu)} \left[\nu \operatorname{tr} (\varepsilon(\vec{u})) \mathbf{I} + (1-2\nu)\varepsilon(\vec{u}) - \alpha(\theta-\theta_0)(1+\nu) \mathbf{I} \right]$.

- La ecuación térmica se resuelve de forma independiente
- Tenemos 10 ecuaciones y 11 incógnitas (\vec{u} , σ , θ y D)
- Modelización de la variable de daño

Características del modelo de Mazars

Modelo original

- Daño isótropo (Mazars, 1984)
- Solo las deformaciones elásticas intervienen en el daño
- Comportamiento diferente a tensión y a compresión
- Mucho mayor peso de los esfuerzos a tensión en el daño

Modelo implementado en Code Aster

- Mayor importancia de los esfuerzos a compresión en el daño
- Mejor descripción de esfuerzos cortantes puros y bicompresión

Modelo de Mazars (I)

Deformación equivalente

- ullet El factor γ confiere mayor peso a los esfuerzos compresivos
- Deformación equivalente:

$$\overline{arepsilon}_{corr} = \gamma \sqrt{\sum_{i=1}^{3} \langle arepsilon_i
angle_+^2}$$

Máxima deformación equivalente alcanzada en la historia de carga

$$K(t) = \max \left\{ \varepsilon_{D_0}, \max_{0 \le s \le t} \left[\overline{\varepsilon}_{corr}(s) \right] \right\}$$

Función de fluencia (criterio de daño)

$$f(\overline{\varepsilon}_{corr}, K) = \overline{\varepsilon}_{corr} - K,$$

Modelo de Mazars (II)

Condiciones de complementariedad (Kuhn–Tucker)

$$\dot{K}(t) \geq 0$$
, $f(t) \leq 0$, $\dot{K}(t)f(t) = 0$, c.p.d. en $(0,t)$

Evolución de la variable de daño

$$D(K) = 1 - \frac{\varepsilon_{D_0}}{K} (1 - A) - A \exp \left[-B \left(K - \varepsilon_{D_0} \right) \right]$$

$$A = A(r; A_c, A_t, k)$$

$$B = B(r; B_c, B_t)$$

Parámetros del modelo de Mazars

• A_c , A_t , B_c , B_t , k y ε_{D_0}

Introducción de la deformación térmica en el modelo (I)

Consideraciones

- Deformaciones térmicas relevantes en el canal principal
- Code Aster no incluye modelos de daño térmico
- Disponemos del campo de temperaturas estacionario
- Seguimos la propuesta de Gawin (Gawin, Pesavento y Schrefler, 2002): el daño crece con la deformación total (elástica más térmica) de acuerdo con el modelo de Mazars

Introducción de la deformación térmica en el modelo (II)

Inclusión de la deformación térmica

• Deformación equivalente:

$$\overline{\varepsilon}_{\mathit{corr}} = \gamma \sqrt{\sum_{i=1}^{3} \langle \varepsilon_i \rangle_+^2} = \gamma \sqrt{\sum_{i=1}^{3} \langle \varepsilon_i^{\mathit{e}} + \varepsilon_i^{\mathit{th}} \rangle_+^2}$$

Máxima deformación alcanzada:

$$K(t) = \max \left\{ \varepsilon_{D_0}, \max_{0 \le s \le t} \left[\overline{\varepsilon}_{corr}(s) \right] \right\}$$

• Evolución de la variable de daño:

$$D(K) = 1 - \frac{\varepsilon_{D_0}}{\kappa} (1 - A) - A \exp\left[-B(K - \varepsilon_{D_0})\right]$$

• Los parámetros del modelo son función de la temperatura

Problema a resolver

Dado el campo de temperaturas θ en Ω_s , resolver:

$$\begin{cases} -\mathrm{Div}\left(\boldsymbol{\sigma}\right) = \vec{f}\,\boldsymbol{\tau} & \text{en } \Omega_{s}\times(0,1], \\ \boldsymbol{\sigma} = \frac{(1-D)\mathcal{E}}{(1+\nu)(1-2\nu)}\left[\nu\,\mathrm{tr}\left(\boldsymbol{\varepsilon}(\vec{u}\,)\right)\boldsymbol{I} + (1-2\nu)\boldsymbol{\varepsilon}(\vec{u}\,) - \alpha(\theta-\theta_{0})(1+\nu)\boldsymbol{I}\right] & \text{en } \Omega_{s}\times(0,1], \\ \boldsymbol{D} = 1 - \frac{\varepsilon_{D_{0}}}{K}(1-A) - A\exp\left[-B\left(K-\varepsilon_{D_{0}}\right)\right] & \text{en } \Omega_{s}\times(0,1], \\ \dot{K} \geq 0, \quad \overline{\varepsilon}_{corr} - K \leq 0, \quad \dot{K}\left(\overline{\varepsilon}_{corr} - K\right) = 0 & \text{en } \Omega_{s}\times(0,1], \end{cases}$$

con las condiciones iniciales y de contorno adecuadas.

- Para calcular el daño es necesaria la historia de carga
- El problema mecánico se resuelve de forma incremental
- Las cargas y las condiciones de contorno se aplican gradualmente con un parámetro $au \in (0,1]$
- au=0 corresponde al estado inicial descargado y au=1 es el problema termoelástico que queremos resolver

Test numérico

Test numérico. Modelo térmico

Solución para la temperatura:

$$\theta(x, y, z) = \theta(x) = 600 + 5x$$

Modelo termomecánico con daño (I)

$$\begin{cases} -\mathrm{Div}\left(\sigma\right) = \vec{f}\,\tau & \text{en }\Omega_{s}\times(0,1], \\ \sigma = \frac{(1-D)\mathcal{E}}{(1+\nu)(1-2\nu)}\left[\nu\,\mathrm{tr}\left(\varepsilon(\vec{u}\,)\right)\boldsymbol{I} + (1-2\nu)\varepsilon(\vec{u}\,) - \alpha\left(\theta-\theta_{0}\right)(1+\nu)\boldsymbol{I}\right] & \text{en }\Omega_{s}\times(0,1], \\ D = 1 - \frac{\varepsilon_{D_{0}}}{K}(1-A) - A\exp\left[-B\left(K-\varepsilon_{D_{0}}\right)\right] & \text{en }\Omega_{s}\times(0,1], \\ \dot{K} \geq 0, \quad \overline{\varepsilon}_{corr} - K \leq 0, \quad \dot{K}\left(\overline{\varepsilon}_{corr} - K\right) = 0 & \text{en }\Omega_{s}\times(0,1], \\ u_{x} = -\frac{5}{2}\alpha\left(y^{2} + z^{2}\right)\tau & \text{sobre }\Gamma_{1}\times(0,1], \\ u_{y} = 0 & \text{sobre }\Gamma_{3}\times(0,1], \\ u_{z} = 0 & \text{sobre }\Gamma_{3}\times(0,1], \\ \sigma\vec{n} = C\left(1-\nu\right)\left(580 + 5\times200\right)h(200)\tau\vec{e_{1}} & \text{sobre }\Gamma_{2}\times(0,1], \\ \sigma\vec{n} = C\nu\left(580 + 5x\right)h(x)\tau\vec{e_{2}} & \text{sobre }\Gamma_{4}\times(0,1], \\ \sigma\vec{n} = C\nu\left(580 + 5x\right)h(x)\tau\vec{e_{3}} & \text{sobre }\Gamma_{6}\times(0,1], \\ \vec{u}(0) = \vec{0}, \quad \sigma(0) = \mathbf{0} & \text{en }\Omega_{s}, \\ K(0) = \varepsilon_{D_{0}} & \text{en }\Omega_{s}. \end{cases}$$

Modelo termomecánico con daño (II)

Densidad de fuerzas de volumen

$$\vec{f} = \begin{cases} -5C(1-\nu)\vec{e_1} & \text{si } x \leq x_D, \\ -5C(1-\nu)\left[1-g(x)\right] \exp\left[-g(x)+1.8\right] \vec{e_1} & \text{si } x > x_D, \end{cases}$$

donde

$$C = \frac{E\alpha}{10(1+\nu)(1-2\nu)},$$
$$g(x) = 900\sqrt{321}\alpha(580+5x),$$

У

$$x_D = \frac{1}{5} \left(\frac{2 \times 10^4}{\sqrt{321}} - 580 \right) \approx 107,26 \text{ m}.$$

$$h(x) = \begin{cases} 1 & \text{si } x \leq x_D, \\ \exp[-g(x) + 1.8] & \text{si } x > x_D. \end{cases}$$

Parámetros

Parámetro	Valor	Parámetro	Valor
Ε	$20 \times 10^9 \mathrm{\ Pa}$	A_t	1
$\overline{\nu}$	0,2	B_c	10 ³
A_c	1,4	B_t	9×10^3
k	0,7	$arepsilon_{D_0}$	2×10^{-4}
α	$10^{-7} {}^{\circ}\mathrm{C}^{-1}$	κ	$1 \; \mathrm{W} \mathrm{m}^{-1} {}^{\circ} \mathrm{C}^{-1}$

Solución analítica

Campo de desplazamientos ($\tau = 1$)

$$\begin{cases} u_x(x, y, z) = \frac{11}{10}\alpha \left(580x + \frac{5}{2}x^2\right) - \frac{5}{2}\alpha \left(y^2 + z^2\right) \\ u_y(x, y) = \alpha \left(580y + 5xy\right) \\ u_z(x, z) = \alpha \left(580z + 5xz\right) \end{cases}$$

Variable de daño ($\tau = 1$)

$$D(x) = \left\{ \begin{array}{ll} 0 & \text{si } x \leq x_D, \\ 1 - \exp\left[-9000 \left(\frac{\sqrt{321}}{10} \alpha \left(580 + 5x \right) - 2 \times 10^{-4} \right) \right] & \text{si } x > x_D. \end{array} \right.$$

Tensor de tensiones ($\tau = 1$)

$$\sigma(x) = C (580 + 5x) h(x) \begin{pmatrix} 1 - \nu & 0 & 0 \\ 0 & \nu & 0 \\ 0 & 0 & \nu \end{pmatrix}.$$

Resultados (I)

Figura: Distribución analítica de daño (izquierda) y distribución numérica de daño (derecha) en el plano $z=10~\mathrm{m}$.

Test numérico

Resultados (II)

Figura: Variable de daño a lo largo de la línea con $y=100~\mathrm{m}$ y $z=5~\mathrm{m}$.

Test numérico

Resultados (III)

Variable	Error	
θ	7.8×10^{-17}	
\vec{u}	$9.8 imes 10^{-5}$	
arepsilon	$7,0 imes 10^{-5}$	
σ	$1{,}3\times10^{-3}$	
D	4.8×10^{-4}	

Tabla: Errores relativos en norma 2 ($\tau = 1$).

Problema del canal principal. Fronteras

- Γ₁ (marrón): la base del canal principal,
- Γ_2 (rosa): la parte donde se apoya la cubierta,
- Γ₃ (azul): la zona por donde discurren el arrabio y la escoria,
- Γ₄ (verde): la zona de salida de la ruta de la escoria,
- Γ₅ (rojo): la mitad del canal principal,
- Γ₆ (amarillo): la parte final del canal, detrás del *skimmer*,
- Γ_R (gris): las demás fronteras.

Problema mecánico

$$\begin{cases} -\mathrm{Div}\left(\boldsymbol{\sigma}\right) = \vec{f}\,\boldsymbol{\tau} & \text{en } \Omega_s \times (0,1], \\ \boldsymbol{\sigma} = \frac{(1-D)\mathcal{E}}{(1+\nu)(1-2\nu)} \left[\nu \operatorname{tr}\left(\boldsymbol{\varepsilon}(\vec{u}\,)\right) \boldsymbol{I} + (1-2\nu)\boldsymbol{\varepsilon}(\vec{u}\,)\right] & \text{en } \Omega_s \times (0,1], \\ D = 1 - \frac{\varepsilon_{D_0}}{K}(1-A) - A \exp\left[-B\left(K-\varepsilon_{D_0}\right)\right] & \text{en } \Omega_s \times (0,1], \\ \dot{K} \geq 0, \quad \overline{\varepsilon}_{corr} - K \leq 0, \quad \dot{K}\left(\overline{\varepsilon}_{corr} - K\right) = 0 & \text{en } \Omega_s \times (0,1], \\ \vec{u} = \vec{0} & \text{sobre } \Gamma_1 \times (0,1], \\ u_x = 0, \quad \vec{\sigma}_t = \vec{0} & \text{sobre } \Gamma_4 \times (0,1], \\ u_z = 0, \quad \vec{\sigma}_t = \vec{0} & \text{sobre } \Gamma_5 \times (0,1], \\ \sigma \vec{n} = -P\tau \vec{e}_2 & \text{sobre } \Gamma_2 \times (0,1], \\ \sigma \vec{n} = \vec{0} & \text{sobre } \Gamma_3 \times (0,1], \\ \vec{\sigma} \vec{n} = \vec{0} & \text{sobre } \Gamma_3 \times (0,1], \\ \vec{u}(0) = \vec{0} & \text{sobre } (\Gamma_6 \cup \Gamma_R) \times (0,1], \\ \vec{u}(0) = \vec{0} & \text{en } \Omega_s, \\ K(0) = \varepsilon_{D_0} & \text{en } \Omega_s. \end{cases}$$

Cargas aplicadas

Fuerza de la gravedad

$$\vec{f} = -\rho g \vec{e_2} \ (g = 9.8 \text{ m s}^{-2}).$$

Presión ejercida por la cubierta

$$P = rac{g}{A_2} \left(
ho_A V_A +
ho_H V_H
ight) pprox 6,40587 imes 10^4 \ {
m N \, m}^{-2} \ {
m (dirección} - ec{e_2}).$$

Presión ejercida por los fluidos

$$h(y) = \begin{cases} 20619.7 - 68747y & \text{si } y < 0.1565 \text{ m}, \\ 13848.4 - 25480y & \text{si } 0.1565 \text{ m} \le y \le 0.5435 \text{ m}, \\ 0 & \text{si } y > 0.5435 \text{ m}, \end{cases}$$

que se aplica en la dirección normal interior a Γ_3 .

Parámetros

- Problema: la empresa está realizando una campaña de medidas pero todavía no disponemos de parámetros mecánicos
- Material único para todo el canal

Parámetro	Valor	Parámetro	Valor
Ε	10 ⁹ Pa	A_t	1
$\overline{\nu}$	0,2	B_c	10 ³
A_c	1,4	B_t	9×10^3
k	0,7	$arepsilon_{D_0}$	$9 imes 10^{-5}~(heta$ ambiente) $9 imes 10^{-3}~(heta$ elevada)
α	$5.3 \times 10^{-6} {}^{\circ}\mathrm{C}^{-1}$	ρ	$3210 \mathrm{kg m^{-3}}$

Resultados

Figura: Deformación equivalente corregida (izquierda) y variable de daño (derecha) a lo largo del canal.

Problema termomecánico (I)

Campo de temperaturas

Distribución estacionaria de temperaturas conocida (Barral, Nicolás, Pérez-Pérez y Quintela, 2019)

Problema termomecánico (II)

$$\begin{cases} -\operatorname{Div}\left(\boldsymbol{\sigma}\right) = \vec{f}\tau & \text{en } \Omega_s \times (0,1], \\ \boldsymbol{\sigma} = \frac{(1-D)\mathcal{E}}{(1+\nu)(1-2\nu)} \left[\nu \operatorname{tr}\left(\boldsymbol{\varepsilon}(\vec{u})\right) \boldsymbol{I} + (1-2\nu)\boldsymbol{\varepsilon}(\vec{u}) - \alpha(\theta-\theta_0)(1+\nu)\boldsymbol{I} \right] & \text{en } \Omega_s \times (0,1], \\ D = 1 - \frac{\varepsilon_{D_0}}{K}(1-A) - A \exp\left[-B\left(K-\varepsilon_{D_0}\right)\right] & \text{en } \Omega_s \times (0,1], \\ \dot{K} \geq 0, \quad \bar{\varepsilon}_{corr} - K \leq 0, \quad \dot{K}\left(\bar{\varepsilon}_{corr} - K\right) = 0 & \text{en } \Omega_s \times (0,1], \\ \vec{u} = \vec{0} & \text{sobre } \Gamma_1 \times (0,1], \\ u_x = 0, \quad \vec{\sigma}_t = \vec{0} & \text{sobre } \Gamma_4 \times (0,1], \\ u_z = 0, \quad \vec{\sigma}_t = \vec{0} & \text{sobre } \Gamma_5 \times (0,1], \\ \boldsymbol{\sigma}\vec{n} = -P\tau\vec{e_2} & \text{sobre } \Gamma_2 \times (0,1], \\ \boldsymbol{\sigma}\vec{n} = -h(y)\tau\vec{n} & \text{sobre } \Gamma_3 \times (0,1], \\ \boldsymbol{\sigma}\vec{n} = \vec{0} & \text{sobre } \Gamma_3 \times (0,1], \\ \vec{u}(0) = \vec{0}, \quad \boldsymbol{\sigma}(0) = \mathbf{0} & \text{sobre } (\Gamma_6 \cup \Gamma_R) \times (0,1], \\ \vec{u}(0) = \varepsilon_{D_0} & \text{en } \Omega_s, \end{cases}$$

Figura: Deformación equivalente corregida (izquierda) y variable de daño (derecha) a lo largo del canal.

Conclusiones y futuras líneas de investigación

Conclusiones

- Modelización y simulación numérica de un problema de termoelasticidad con daño en el canal de un horno alto
- Es necesario disponer de parámetros mecánicos para los distintos materiales del canal para validar los resultados

Futuras líneas de investigación

- Análisis del daño térmico considerado de forma independiente al mecánico (Damhof, W.A.M. Brekelmans y Geers, 2008).
 Resolución del problema térmico evolutivo
- Análisis de modelos de daño no local (Peerlings, Borst y W. Brekelmans, 1995)