Rocket Nozzle Equations

Ben Calow

September 14, 2025.

Contents

1	Thermodynamic Relations				[1]											3
	1.1	Isentropic	Flow Re	elati	on											3
		Isentropic														
	1.3	Isentropic	Total 7	Γο St	atic	Pres	sure	Re:	lati	lon						3
	1.4	Isentropic 1	Mach Nu	ımber												3

A C_f Vacuum thrust coefficient Speed of sound c_s Mass flow rate \dot{m} MMolar mass MaMach number mol%Mole percentage PPressure RGas constant R_s Specific gas constant TTemperature

vVelocity

Nozzle area ratio ϵ

Ratio of specific heats

Density ρ

Subscripts

Nomenclature

Ambient aChamber Exit Throat

Given Position x,yStagnation 0

1 Thermodynamic Relations [1]

1.1 Isentropic Flow Relation

$$\frac{T_x}{T_y} = \left(\frac{P_x}{P_y}\right)^{\frac{\gamma}{\gamma - 1}} \tag{1.1}$$

1.2 Isentropic Total To Static Temperature Relation

$$0 = \frac{T}{T_0} \left[1 + \frac{1}{2} (\gamma - 1) Ma^2 \right]$$
 (1.2)

1.3 Isentropic Total To Static Pressure Relation

$$0 = \frac{P}{P_0} \left[1 + \frac{1}{2} (\gamma - 1) Ma^2 \right]^{\frac{\gamma}{\gamma - 1}}$$
 (1.3)

1.4 Isentropic Mach Number

Equations (1.2) and (1.3) can be rearranged to solve for the Mach Number $\underline{\hspace{1cm}}$

$$Ma = \sqrt{\frac{2}{\gamma - 1} \left(\frac{T_0}{T} - 1\right)} \tag{1.4a}$$

$$Ma = \sqrt{\frac{2}{\gamma - 1} \left(\frac{P_0}{P}^{\frac{\gamma - 1}{\gamma}} - 1\right)} \tag{1.4b}$$

References

[1] O. B. George P. Sutton, Rocket Propulsion Elements, 9th ed. Wiley, 2017.