Rutgers University: Algebra Written Qualifying Exam January 2011: Day 1 Problem 6 Solution

Exercise. Prove there are no simple groups of order 80.

Solution.

Let G be a group of order 80. We want to show that there is a normal subgroup of G that is **not** $\{e\}$ or G. So first find the prime factors of |G| = 80.

$$80 = 2^4 \cdot 5$$
.

By the third Sylow theorem,

$$n_2 \equiv 1 \mod 2$$
 and $n_2 \mid 5$ \Longrightarrow $n_2 = 1 \text{ or } 5$
 $n_5 \equiv 1 \mod 5$ and $n_5 \mid 16$ \Longrightarrow $n_5 = 1 \text{ or } 16$

If the number of 5-Sylow subgroups is $n_5 = 1$, then the 5-Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem.

Thus, G is not simple.

If $n_5 \neq 1$ then there are $n_5 = 16$ 5-Sylow subgroups.

 \implies G has 16(5-1)=64 elements of order 5.

Therefore, G has 80 - 64 = 16 other elements.

These must be the elements of the 2-Sylow subgroup, which has order $2^4 = 16$.

Thus, the number of 2-Sylow subgroup must be $n_2 = 1$.

 \implies the 2-Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem.

Thus, G is not simple.