SEQUENTIAL SPECTRA TALK OUTLINE

Read [Mal23, Sections 2.1, 2.2, 2.4], but skip Section 2.1.4 on Thom spectra and skip [Mal23, Section 2.3]. We will talk about that next week.

(1) Motivations

- (a) Remind us about two big theorems that we have seen so far: the Brown representability theorem and the Freudenthal Suspension Theorem.
- (b) The Freudenthal suspension theorem suggests that it is interesting and fruitful to study the sequence of spaces $X, \Sigma X, \Sigma^2 X, \dots$ We can use these to talk about stable homotopy groups, which can be easier to study than (unstable) homotopy groups.
- (c) The Brown representability theorem suggests that it's interesting to study infinite loopspaces: these are spaces X with infinitely many deloopings $X \simeq \Omega X_1 \simeq \Omega^2 X_2 \simeq \ldots$ These spaces define generalized cohomology theories, which are very useful tools in algebraic topology.
- (d) There is an adjunction between the two functors Σ and Ω here so these concepts should be related. This motivates the definition of spectra.

(2) Definitions

- (a) Define spectra and maps of spectra [Mal23, Definition 2.1.1]. The category of spectra and the maps described above is denoted Sp.
- (b) Note that the bonding maps $\sigma_i \colon \Sigma X_i \to X_{i+1}$ have adjoints $\widetilde{\sigma_i} \colon X_i \to \Omega X_{i+1}$, and we could equivalently define a spectrum using the adjoint bonding maps.
- (c) Define the homotopy groups of a spectrum [Mal23, Definition 2.1.2]. Make sure to note that we have negative homotopy groups now: a spectrum X has negative homotopy groups $\pi_{-1}X$, $\pi_{-2}X$, ...
- (d) Define a stable equivalences [Mal23, Definition 2.1.10] of spectra. Stable equivalences satisfy the 2-out-of-6 property, (cf. [Rie14, Digression 2.1.5]), so we can invert them. The category ho(\$p) that we get by inverting the stable equivalences is called the *stable homotopy category*.
- (e) Give a couple examples of spectra:
 - [Mal23, Example 2.1.7] The suspension spectrum of a pointed space X is the sequence of spaces $X, \Sigma X, \Sigma^2 X, \ldots$ The bonding maps are identities id: $\Sigma(\Sigma^i X) \to \Sigma^{i+1} X$. The suspension spectrum of a space is denoted $\Sigma^\infty X$, or $\Sigma^\infty_+ Y := \Sigma^\infty(Y_+)$ for an unpointed space Y (first add a disjoint basepoint).
 - The homotopy groups of a suspension spectrum $\Sigma^{\infty}X$ are the stable homotopy groups of the space X.
 - [Mal23, Example 2.1.6] A particularly important example of a suspension spectrum is the *sphere spectrum* $S := \Sigma^{\infty}S^{0}$. This is the sequence of spheres $S^{0}, S^{1}, S^{2}, \ldots$ The homotopy groups of the sphere spectrum are called the *stable stems*. They are the stable homotopy groups of S^{0} , often written $\pi_{i}^{s} := \pi_{i}S$.
 - [Mal23, Example 2.1.12] The *zero spectrum* $\Sigma^{\infty}(*)$ is the suspension spectrum of a point. All of its homotopy groups are zero. Depending on the author, this is alternatively denoted as * or 0. Explain the existence zero maps between spectra.
 - [Mal23, Example 2.2.2] We have already seen the example of Eilenberg–MacLane spaces as infinite loopspaces. We can use the maps adjoint to the equivalences $K(A,n) \simeq \Omega K(A,n+1)$ to define an *Eilenberg–MacLane spectra* HA, which are given by the sequence of spaces

K(A,0), K(A,1), K(A,2), ... The functor $H\colon \mathcal{A}b\to \mathcal{S}p$ takes an abelian group to the Eilenberg–MacLane spectrum HA. We use the letter H because the infinite loopspace represents cohomology with coefficients in A.

The homotopy groups of HA are given by

$$\pi_{i}HA = \begin{cases} A & (i = 0) \\ 0 & (i \neq 0) \end{cases}$$

• [Mal23, Example 2.2.3] Another example is the complex K-theory spectrum, usually written KU¹. This is given by the sequence of spaces $\mathbb{Z} \times BU$, U, $\mathbb{Z} \times BU$, U, ... and the structure maps adjoint to the equivalences $\Omega U \simeq \mathbb{Z} \times BU$ and $\Omega(\mathbb{Z} \times BU) \simeq U$. The homotopy groups of KU are given by

$$\pi_{i}KU = \begin{cases} \mathbb{Z} & (i \text{ is even}) \\ 0 & (i \text{ is odd}) \end{cases}$$

(3) Ω-spectra

- (a) Define Ω -spectra [Mal23, Definition 2.2.1].
- (b) Explain which of the examples above are Ω -spectra.
- (c) State the proposition that every spectrum is stably equivalent to an Ω -spectrum [Mal23, Proposition 2.2.9]. In our language, the functor R that takes a spectrum X and replaces it by a stably equivalent Ω -spectrum RX is a right deformation of the category Sp (dual to [Rie14, Definition 2.2.1]).
- (d) Give an indication of how to prove this proposition. You don't need to go into all of the gory details, but you should construct the spectrum RX.
- (e) Define the functor Ω^{∞} : $Sp \to Top_*$ [Mal23, Definition 2.2.11].
- (f) State the proposition that Ω^{∞} is right adjoint to Σ^{∞} . You should not prove this proposition; we will do so on the homework. Explain that $\Omega^{\infty}\Sigma^{\infty}X = QX$.

(4) Stability

- (a) Define the functors $\Sigma: \text{Sp} \to \text{Sp}$ and $\Omega: \text{Sp} \to \text{Sp}$ [Mal23, Definitions 2.3.6 and 2.3.8].
- (b) State [Mal23, Proposition 2.1] and prove it.
- (c) State [Mal23, Corollary 2.4.5] and prove it. The consequence is that Σ and Ω are inverse functors up to stable equivalence.
- (d) Define fiber and cofiber sequences of spectra following [Mal23, Definition 2.4.6]. The homotopy fiber and cofiber of a map of spectra can be taken levelwise.
- (e) Prove that a sequence is a fiber sequence of spectra if and only if it is a cofiber sequence of spectra [Mal23, Proposition 2.4.12]. This is the big theorem here!
- (f) Explain that both fiber and cofiber sequences yield the long exact sequence in homotopy. You may need to prove these statements to prove that cofiber and fiber sequences agree.
- (g) As a corollary, show that a square is a homotopy pullback of spectra if and only if it is a homotopy pushout [Mal23, Corollary 2.4.15]. You don't need to prove the lemma, you can just state it. Point out that this is like Blakers–Massey, but without any assumptions!
- (h) State other corollaries as you have time or interest in doing.

¹The U is for "unitary," to distinguish this from KO, where O is for "orthogonal". KO is like KU, but for real vector bundles instead of complex vector bundles.

REFERENCES

- [Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.
- [Rie14] Emily Riehl. *Categorical homotopy theory*, volume 24 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2014.