Quiz Questions: Relations, Sequences, Summations

1)	Which of these are posets? a) (R,=) b) (R, <) c) (R,≠) d) (R,∤)
2)	Let a set $S = \{2, 4, 8, 16, 32\}$ and \leq be the partial order defined by $S \leq$ R if a divides b. Number of edges in the Hasse diagram of is: a) 6 b) 5 c) 9 d) 4
3)	Determine the number of different equivalence relations for the set {2, 4, 5}. a) 5 b) 7 c) 8 d) 125
4)	How many elements are there in the smallest equivalence relation on a set with 8 elements? a) 64 b) 8 c) 48 d) 32
5)	The value of $\sum_{i=1}^{3} \sum_{h=0}^{2} i$ is: a) 10 b) 17 c) 15 d) 18
6)	Which of the following sequences will have a difference 3 among subsequent elements, where n is an Integer? a) $a_n = 2n^2 + 3n$ b) $a_n = 2n^2 + 3$ c) $a_n = 3n^2 + 3n$ d) $a_n = 5 + 3n$

7) For the given geometric progression find the first fractional term: 2^{50} , 2^{47} , 2^{44} ,

- a) 2⁻¹ b) 2⁻² c) 2⁻³
- d) None of the mentioned
- 8) For the sequence 1, 7, 25, 79, 241, 727 ... a function $f: \mathbb{Z}^+ \to S$ for defining a_n is: a) $3^{n+1}-2$ b) 3^n-2 c) -3^n+4 d) $(n+1)^2-3$