Due: 2013/10/18

Homework 3

Problem 1. Pick two numbers a and b from [100] uniform randomly and independently, what is the probability that $\mu(a,b) = -1$?

Problem 2. Prove that the Stirling number of the 1st kind s(n, k) is an even number whenever 2k < n and n > 0.

Problem 3. Let T be the Stirling number of the 1st kind T = s(100, 50). Compute $T \mod 3$. Justify your answer.

Problem 4. Count the number of permutations x_1, x_2, \dots, x_{2n} of [2n] such that $x_i + x_{i+1} \neq 2n + 1$ for all $1 \leq i \leq 2n - 1$.

Problem 5. Give a combinatorial proof that the Stirling number of the 2nd kind S(n,k) equals the coefficient of x^{n-k} in

$$\prod_{t=0}^{k} (1 + tx + t^2x^2 + t^3x^3 + \dots + t^nx^n).$$