Двопроменеві інтерферометри

Інтерферометр – це вимірювальний прилад, який заснований на інтерференції світла.

Положення інтерференційних смуг залежить від різниці оптичного шляху променів, які приймають участь в інтерференції, тобто

$$\Delta d = n_1 l_1 - n_2 l_2,$$

де n_i — показники заломлення середовищ, в яких розповсюджуються відповідні промені; l_i — геометрична довжина шляху цих променів.

Зміна одного із параметрів n_i або l_i призводить до зміни параметрів інтерференційної картини.

Наприклад, якщо зміна різниці ходу Δd становить λ , то інтерференційна картина зміщується на одну смугу.

Якщо в оптичних приладах при формуванні інтерференційної картини приймають участь два променя, то такі інтерферометри називають *двопроменевими*.

Інтерферометри застосовуються для вимірювання:

- абсолютних і відносних довжин;
- показників заломлення;
- стану оптичних поверхонь;
- в гіроскопах, лазерних далекомірах тощо.

Інтерферометр Жамена

Інтерферометр складається із двох товстих скляних пластинок, одна із поверхонь яких ϵ дзеркальною. Пластини встановлені паралельно одна одній (рис. 1).

Рисунок 1 – Схема інтерферометра Жамена

На поверхню першої пластини A_1B_1 під кутом 45° падає промінь, який після відбивання і заломлення утворює два паралельні промені 1 і 2. Після проходження другої пластини ці промені утворюють чотири променя 1, 2, 3, 4.

Промені 2 і 3 ϵ когерентними, співпадають між собою, розповсюджуються в одному напрямку і утворюють інтерференційну картину. Промені 1 і 4 екрануються.

Різниця ходу між променями 2 і 3 дорівнює:

$$\Delta d = 2hn(\cos\varepsilon_{21}' - \cos\varepsilon_{22}'),$$

де h і n — товщина і показник заломлення пластинок відповідно; ε '21 і ε '22 — кути заломлення на відповідних пластинах.

Світлі смуги спостерігаються при виконанні умови $\Delta d = m\lambda$.

Якщо поверхні пластин A_1B_1 і A_2B_2 утворюють малий кут φ , то інтерференційні смуги будуть паралельними ребру клина, утвореного цими поверхнями.

Із зменшенням кута φ відстань між смугами зменшується. Якщо $\varphi = 0$, то $\Delta d = 0$, інтерференційна картина являє собою рівномірний фон.

Інтерферометр Маха-Цендера

Інтерферометр Жамена має ряд недоліків:

- 1. Мала відстань між променями 1 і 2, що визиває певні труднощі при вимірюваннях.
- 2. Для збільшення цієї відстані необхідно збільшувати товщину пластин, що ускладнює прилад.
- 3. Неможливість використовувати ультрафіолетове випромінювання, яке поглинається склом пластин.

Ці недоліки відсутні в *інтерферометрі Маха-Цендера*, який іноді називають інтерферометром Рождественського.

Схема цього інтерферометра наведена на рис. 2.

Рисунок 2 – Схема інтерферометра Маха-Цендера

Вхідний промінь за допомогою напівпрозорої пластики HTP1 ділиться на два променя 1 і 2, які після відбивання від дзеркал M1, M2 і напівпрозорої пластинки HTP2 утворюють два когерентних променя 1' і 2', що інтерферують між собою. Переміщенням дзеркал і пластинок можна змінювати відстань між променями 1 і 2.

Інтерферометр Майкельсона

Схема цього інтерферометра наведена на рис. 3.

Рисунок 3 – Інтерферометр Майкельсона

Вхідний промінь за допомогою напівпрозорої пластики НТР ділиться на два променя 1 і 2, які після відбивання від дзеркал M1, M2 і напівпрозорої пластинки НТР утворюють два когерентних променя 1' і 2', що інтерферують між собою.

Якщо дзеркала М1, М2 перпендикулярні одне до одного, то інтерференційна картина являє собою смуги рівного нахилу у вигляді концентричних кілець, які утворюються в повітряному проміжку між дзеркалом М1 і зображенням дзеркала М2'. Різниця ходу між променями I' і 2' дорівнює

$$\Delta d = 2(l_1 - l_2),$$

де l_1 і l_2 — відстані між напівпрозорою пластинкою HTP і дзеркалами M1 і M2 відповідно.

Якщо дзеркала M1, M2 не перпендикулярні одне до одного, то інтерференційна картина являє собою смуги рівної товщини у вигляді смуг, що паралельні ребру клина, який утворюються в повітряному проміжку між дзеркалом M1 і зображенням дзеркала M2'.

Промінь 1 проходить через напівпрозору пластику HTP один раз, а промінь 2 три рази. Для компенсації цього на шляху променя 1 розташовують плоскопаралельну пластинку PP, яка має товщину пластинки HTP (рис. 3).

Якщо зміщувати одно із дзеркал інтерферометра на величину Δ , то інтерференційна картина зміститься на m_m смуг (число може бути не цілим).

При цьому виникає додаткова різниця ходу:

$$\Delta d = 2\Delta = mm\lambda$$
.

Звідки

$$\Delta = m_m \frac{\lambda}{2}$$
.

Вимірюючи число зміщених смуг, можна визначити величину зміщення дзеркала М2. Наприклад, якщо $\lambda=0.5$ мкм, а $m_m=0.01$, то $\Delta=2.5$ нм.

В інтерферометрі Майкельсона можна використовувати біле світло. В цьому випадку кожна монохроматична складова білого світла утворює свою кольорову інтерференційну картину, причому ці картини спостерігаються лише при невеликій різниці ходу в декілька довжин хвиль (мала довжина когерентності білого світла). При нульовій різниці ходу променів інтерференція для кожної довжини хвилі відбувається з однаковим підсиленням і тому в центрі картини спостерігається біла пляма.

При різниці ходу променів $\Delta d = \lambda/2$ хвилі в результаті інтерференції хвилі гасяться. Тому навколо білої плями утворюється темна кільцева область. За темною кільцевою областю інтерференційні кругові смуги різних довжин хвиль починають перекриватися. В результаті утворюються кольорові кільця. Далі максимуми і мінімуми інтенсивності кілець різних порядків перекриваються і інтерференційна картина зникає.

Інтерференція в білому світлі дозволяє з великою точністю визначити рівність оптичних довжин шляхів променів, які утворюють інтерференційну картину, що дає смогу виконувати високоточні вимірювання і юстування оптичних систем.

Зірковий інтерферометр Майкельсона

Зірковий інтерферометр Майкельсона призначений для вимірювання малих кутів між зірками, які неможливо спостерігати окремо за допомогою телескопа. Схема такого інтерферометрам на ведена на рис. 4.

Рисунок 4 – Схема зіркового інтерферометра Майкельсона

Промені I і 2 від зірки відбиваються від дзеркал і надходять до об'єктива, який формує інтерференційну картину в фокальній площині. Кутова відстань між сусідніми максимуми становить

$$\theta = \lambda/D$$
,

де D – відстань між дзеркалами M1 і M2.

Нехай на вхід інтерферометра надходять промені 1' і 2' від другої зірки, яка знаходиться на кутовій відстані φ від першої зірки. Промені 1' і 2' також формують в фокальній площині об'єктива свою інтерференційну картину, яка зміщена на кут φ .

Змінюючи відстань D між дзеркалами M1 і M2, добиваються найгіршого контрасту розподілу інтенсивності I_{Σ} в результуючій інтерференційній картині від двох зірок. Це відбудеться в тому випадку, коли максимум інтенсивності в дифракційній картині від однієї зірки співпаде з мінімумом інтенсивності від іншої зірки, тобто справедлива рівність $\varphi = 0.5\theta$.

Звідки

$$\varphi = \frac{\lambda}{2D}$$
.

Наприклад, якщо $\lambda = 0.5$ мкм, а D = 5 м, то $\varphi = 0.3$ кутових секунди.

Інтерферометр Тваймана – Грина

Такий інтерферометр використовується для контролю якості оптичних елементів. Схема інтерферометра для дослідження якості призми Р наведена на рис. 5.

Рисунок 5 — Схема інтерферометра Тваймана — Грина д ля перевірки якості призми Р

Паралельний пучок монохроматичного світла від джерела S ділиться напівпрозорою пластинкою HTP на два пучки. Після відбивання від дзеркал M1 і M2 ці пучки об'єднуються за допомогою пластинки HTP і утворюють когерентні промені 1' і 2', які в результаті інтерференції формують на вхідній апертурі лінзи L2 рівномірну освітленість. В цьому випадку в площині приймача випромінювання утворюється точкове зображення.

Якщо перед дзеркалом M2 встановлена призма P і різниця ходу між променями 1' і 2' зберігається по всьому перетину призми, то в площині приймача випромінювання також буде точкове зображення. Якщо призма має дефекти у вигляді нерівномірності граней призми або показника заломлення, то на приймачі буде спостерігатися інтерференційна картина, параметри якої відповідають дефектам призми.

Перевірку якості лінз можна також виконати за допомогою інтерферометра Тваймана – Грина, схема якого наведена на рис. 6.

Рисунок 6 – Схема інтерферометра Тваймана – Грина для перевірки якості лінзи L3

В цьому інтерферометрі дзеркало М2 має сферичну поверхню, центр якої співпадає фокусом F досліджуваної лінзи L3.

Інтерферометр Тваймана — Грина дозволяє контролювати дефекти оптичних елементів з надзвичайною точністю (до $0,01\lambda$).