MT251P - Lecture 21

Fiacre Ó Cairbre

Definition 8.

- (i) The row space of a $k \times n$ matrix A is the subspace R(A) of \mathbb{R}^n that is spanned by the k row vectors of A. The row rank of A is defined to be dim R(A).
- (ii) The column space of a $k \times n$ matrix A is the subspace C(A) of \mathbb{R}^k that is spanned by the n column vectors of A. The column rank of A is defined to be dim C(A).

Remark 5.

A $k \times n$ matrix A can be considered as a function from \mathbb{R}^n to \mathbb{R}^k as follows:

Suppose

$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

is a column vector in \mathbb{R}^n . Then,

$$y = A\underline{x} \tag{*}$$

will give a column vector in \mathbb{R}^k .

In (*) above Ax means the product of the $k \times n$ matrix A by the $n \times 1$ matrix x.

Example 12.

Consider the 2×3 matrix

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 1 & 2 \end{pmatrix}$$

and suppose

$$\underline{x} = \begin{pmatrix} 2 \\ -2 \\ 5 \end{pmatrix} \in \mathbb{R}^3$$

Then,

$$A\underline{x} = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 21 \\ 16 \end{pmatrix} \in \mathbb{R}^2$$

Definition 9.

Suppose A is a $k \times n$ matrix. Then, the image space of A is denoted by Im(A) and is defined as:

$$Im(A) = \{Ax : x \in \mathbb{R}^n\}$$

Remark 6.

In definition 9, suppose G_i is the i^{th} column of A considered as a column vector in \mathbb{R}^k for $1 \leq i \leq n$ and suppose

$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Then, $A\underline{x} = x_1G_1 + x_2G_2 + \cdots + x_nG_n$ and so Im(A) is the set of all linear combinations of the n column vectors of A. Hence, Im(A) = C(A).

Definition 10.

Suppose A is $k \times n$ matrix. Then, the rank of A is denoted by rank (A) and is defined to be $\dim Im(A)$ which is also $\dim C(A)$.

Definition 11.

Suppose A is $k \times n$ matrix. Then, the kernel of A is denoted by $\ker(A)$ and is defined as:

$$\ker(A) = \{ \underline{x} \in \mathbb{R}^n : A\underline{x} = 0 \}$$

Definition 12.

One can show that $\ker(A)$ is a subspace of \mathbb{R}^n . The nullity of A is then defined to be $\dim \ker(A)$.

Theorem 4 – Rank–Nullity Theorem.

Suppose A is $k \times n$ matrix. Then

$$\dim \ker A + \dim ImA = n$$

i.e. rank A+ nullity of A=n.

Theorem 5.

Suppose A is a $k \times n$ matrix. Then, the row rank of A is equal to the column rank of A. Also, the row rank of A is equal to the rank of A

Remark 7 – How do we find the rank of a matrix?

Suppose A is a $k \times n$ matrix. Here is the strategy for finding rank A: You first perform elementary row operations on A and stop when you have an REF matrix C. Then, rank A is the number of non–zero rows in C.

Example 13.

Find the rank of the matrix

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & -3 \\ 5 & -4 & 3 \end{pmatrix}$$

Solution.

Interchange R_1 with R_2 to get

$$\begin{pmatrix} 1 & -2 & -3 \\ 2 & -1 & 3 \\ 5 & -4 & 3 \end{pmatrix}$$

Replace R_2 with R_2-2R_1 and replace R_3 with R_3-5R_1 to get

$$\begin{pmatrix}
1 & -2 & -3 \\
0 & 3 & 9 \\
0 & 6 & 18
\end{pmatrix}$$

Replace R_3 with $R_3 - 2R_2$ to get

$$\begin{pmatrix}
1 & -2 & -3 \\
0 & 3 & 9 \\
0 & 0 & 0
\end{pmatrix}$$

Replace R_2 with $\frac{1}{3}R_2$ to get

$$C = \begin{pmatrix} 1 & -2 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

C is in REF and so the rank of A is the number of non-zero rows in C. Hence, rank A=2.

Theorem 6.

Suppose A is an $n \times n$ matrix. Then, A is invertible \iff rank A = n.