

Machine Learning for AdTech in Action

Cyrille Dubarry Han Ju

#SAISML11

AdTech introduction

Search and Performance

#SAISML11

Video/Display and Branding

Cette première phase des négociations fait l'objet d'un = rapport conjoint = de quinze pages qui revient sur les éléments concernant les trois dossiers jugés prioritaires par Bruxelles et Londres : le règlement financier de la séparation, les droits des citoyens expatriés et la gestion de la frontière entre la république d'Irlande et la province britannique d'Irlande du Nord.

Le dossier est désormais entre les mains du Conseil européen, l'instance qui regroupe les dirigeants des Etats membres : ces derniers devront valider l'accord lors d'un sommet à Bruxelles, les 14 et 15 décembre.

4

Workflow of a user browsing

Real Time Bidding

RTB workflow

What does the winner pay?

2nd price auction

True Value for Video Branding

Assumption: the bidder is paid a fixed amount CPV if and only if the video ad is watched entirely.

True Value?

$$\mathbb{E}[Revenue] = \mathbb{E}[CPV \times 1_{watched}] = CPV \times \mathbb{P}\{Watched\}$$

Estimating the True Value

Which constraints?

Features: several hundred thousands modalities

Training frequency: several times a day

Number of predictions: a million per second

Logistic regression VS DNN

Validation metric:
$$-LLH = -\sum_{i=1}^{N} O_i ln(p_i) + (1-O_i) ln(1-p_i)$$

Prediction model	Score = -LLH	Training time	Prediction complexity
Logistic regression	0.1293	70 min	40
Logistic regression with crosses	0.1272	142 min	86
Deep learning (11 layers x 1062 neurons) 1 epoch	0.1257	26h	40x1062+10x1062^2+1062 = 11 321 982
Deep learning (11 layers x 1062 neurons) 3 epochs	0.1250	78h	11 321 982

https://cloud.google.com/blog/big-data/2017/02/using-google-cloud-machine-learning-to-predict-clicks-at-scale

Reminder: Logistic Regression

$$\mathbb{P}\{Watched | x\} = \sigma(\langle w. x \rangle) = \frac{1}{1 + e^{-\langle w. x \rangle}}$$

x: features including historical and contextual information

w: model parameters

Machine Learning Stack at Teads

ML stack at Teads

- Motivation
- Model training
- Model serving
- Offline experiments

Classic setup

Challenges

Real-time prediction

150 ms response time in RTB business

40,000 requests / second **1,000,000** model predictions / second

Model serving outside of Spark

Challenges

Flexible and reliable model improvement cycle

Why build our own stack?

No available framework/library back in 2015 that satisfied all our needs

MLlib limitations

- GLM vector size limitations
- Model serving with spark dependency

Decided to do it ourselves

- Scala and Spark

Different use cases in different teams

- Not the same features
- Not the same model settings

Model training steps should be configurable by using a configuration object

Feature transformation

```
"transform" : [
     "type" : "Bucketize",
    "input" : "ad_duration",
    "output" : "ad_duration_bucket",
"thresholds" : [
      10.0,
      15.0,
      20.0,
      25.0,
      30.0,
      45.0,
      75.0,
       120.0
```


Feature vectorization

```
"vectorize" : [
    "type" : "ConstantVectorize",
    "value" : 1.0
    "type" : "HashVectorize",
    "inputs" : [
      "ad_duration_bucket",
    "inputTypes" : ...,
    "size": 2145483000
"label" : {
  "input" : "event_billable_dbl"
. . .
```


- Initial model
- Model seeding

```
"initialModel" : {
   "type" : "Logistic",
   "intercept" : 0.0,
   "slopes" : {
      "type" : "Sparse",
      "indices" : [
      ],
      "values" : [
      ],
      "length" : 2145483000
   }
},
```


Other settings

```
"loss" : {
 "type" : "LogisticLoss"
"regularization" : {
  "type" : "L2",
  "alpha" : 29.0,
"optimization" : {
  "type" : "LBFGS",
  "maxIterations" : 150,
  "tolerance" : 1.0E-4
. . .
```


(DataFrame, TrainingConfig) => Predictor

Model training deployment

Model name tag

Unique identifier of a production model

Example:

prod-team1-vtr-prediction-2018-07-15

def getTrainingConfig(tag: String): TrainingConfig

def getLatest(tag: String): Predictor

27

Model training deployment

```
TrainingJob(
   modelTag = "prod-be-vtr-prediction-2018-07-15",
   jobLevel = Level.Day,
   defaultClusterOptions = EmrOptions(coreInstanceCount
= 200),
   timeout = Some(24.hours),
   group = Group.beProd,
   module = Module.libPrediction("clustering"),
   logPath = "s3a://...",
   logSize = 1,
   defaultConf = Seq(
    "spark.sql.shuffle.partitions" -> "20000"
   mainClass = Some("...")
```


Model training deployment

#SAISML11

30

Model Serving

Model serving

Impl as a scala library

 Dependency of online system codebase

Fast and lightweight

- Prefer native code than a prediction service
- Avoid http calls
- No Spark dependency

Predictor

Configuration of model scoring Components

- Feature transform
- Feature vectorization
- Trained model

Same feature generation as in training

 Vectors are the same online and offline

```
"transform" : [...],
"vectorize" : [...],
"model" : {
  "type" : "Logistic",
  "intercept" : -0.59580942,
  "slopes" : {
    "type" : "Sparse",
    "indices" : [
      5385, 6271, ...
    "values" : [
      -0.002536684,
      0.026973965,
    "length" : 2145483000
```

Online feature transform

```
case class PredictionKey private (values: Vector[Any], schema: Type) {
  def add[T: Convert](name: String, t: T): PredictionKey = {...}

  def value(idx: Int): Any = {...}

  def get[T: Convert](name: String): T = {...}

  def get[T: Convert](idx: Int): T = {...}
}
```


Average model prediction scoring takes **55 microseconds** in our production system (prediction function application time)

Offline Experiments

Offline experiment

Internal tool to evaluate ML models on historical data

Simplify experiment process

Formalize the testing protocol

Keep track of the experiment results

Wide range of metrics with confidence interval

Offline experiment

Experiment creation

```
In [8]:
    datak.experiments.create(
        estimatorId = Id("b9clcdbdb5fa2a680ba3e85aa8359a12c236689a"),
        name = "offline experiment test example",
        owner = "datakinator-team",
        trainingDuration = 4,
        trainingLogId = 43,
        validationDuration = 4,
        validationLogId = 43,
        nbIter = 1,
        validationStart = "2018-05-01 00:00:00",
        offset= 0,
        validationOnlyFeatures = "constantOne",
        metric_weights = "constantOne",
        projections = "constantOne, business_model"
)
Out[8]: res7: Long = 3316L
```

Notebook as main interface of experiments

- jupyter notebook
- jupyter-scala kernel

Weighted metrics computation

Result projections

 Aggregate the result metrics by categories (day, business model, country, etc.)

Jupyter-scala kernel: https://github.com/jupyter-scala/jupyter-scala/

Result visualization

```
viz.plot(
  subSetIds = allIds,
  metrics = Seq(RegressionMetric.R2),
  weights = Seq('constantOne),
  projection = 'business_model')
```

R2 (weighted by constantOne)

Offline experiment

3000

480000

experiments launched by different teams during last 18 months hours of logs analysed, all experiments combined

Thanks!

Follow us!

Our engineering blog on medium:

https://medium.com/teads-engineering

