Propositional Logic Part2

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Mathematical Logic for Computer Science", by Zhongwan, published by World Scientific]

Objectives

- Propositional Semantics
- Logical Implications
- Adequate Sets of Connectives

- Based on Lemma 1 and 2 from Lecture Notes #1:
 - Every formula in L^p has the same number of left and right parentheses (Lemma 2.3.1 from the textbook)
 - Any non-empty proper initial segment of a formula of L^p has more left than right parentheses, and
 - Any non-empty proper terminal segment of a formula of L^p has less left than right parentheses (Lemma 2.3.2)
 - Corollary 1: Any non-empty proper initial or terminal segment of a formula of L^p cannot be a formula itself (part of Lemma 2.3.2)

- Use the corollary to better understand the previously discussed proofs
- For Theorem 1 from Lecture Notes #1 (Theorem 2.3.3)
 - Consider $(A \land B) = (A1 \lor B1)$
 - Remove the brackets on both sides and consider A ∧ B = A1 ∨ B1
 - A and A1 have the same starting point (i.e., beginning of the expression for both left and right-hand sides)
 - If A ≠ A1 then A is a proper initial segment of A1 or A1 is a proper initial segment of A
 - However, both A and A1 are formulas, so according to Corollary 1, this is a contradiction; hence, A = A1
 - It then follows that symbols ∧ and ∨ are equal, which is impossible; ergo, (A ∧ B) cannot be interpreted as (A1 ∨ B1)

- For Theorem 2 from Lecture Notes #1 (Theorem 2.3.6)
 - Consider that any ¬ in any A has a unique scope
 - Based on the definition of formulas (Definition 2.2.2) (¬B) must be a segment of A where B is a formula
 - Let us assume that B and B1 are different scopes of ¬
 - Then, if we consider (¬B) and (¬B1), both have the same starting point (i.e., expressions "(¬") but not necessarily the same ending point
 - So, B is a proper initial segment of B1 or B1 is a proper initial segment of B
 - However, both B and B1 are formulas, so according to Corollary 1, this is a contradiction
 - Hence, B = B1 and the scope of \neg in any A is unique
 - Similar approach is applied to the premise that * in any A has unique left and right scopes; the starting point in that case is the middle of expressions (C1 * C2) and (C1' * C2')

- For Theorem 3 from Lecture Notes #1 (Theorem 2.3.7)
 - Consider that if a formula A is a segment of (¬B) then A is a segment of B or $A = (\neg B)$; that is, if A is a proper segment of $(\neg B)$ then A is a segment of B
 - Consider three cases where $A \neq (\neg B)$:
 - (1) A contains the first bracket of $(\neg B)$

 - (2) A contains the last bracket of (¬B) (3) A contains the first ¬ symbol of (¬B)
 - Case 1. A is a proper initial segment of (¬B) so A is not a formula based on Corollary 1
 - Case 2. A is a proper terminal segment of $(\neg B)$ so A is not a formula based on Corollary 1
 - Case 3. A must also contain the first bracket (otherwise not a formula), and then A is a proper initial segment of (¬B) so A is not a formula based on Corollary 1
 - Since A must be a formula, all three cases end in a contradiction; hence, A is a segment of B or A = $(\neg B)$

- For Exercise 2.3.2 (Section 2.3)
 - Show that at most one of UV and VW is a formula where U, V, and W are non-empty propositional expressions
 - Assume that both UV and VW are formulas
 - Use Lemma 2 to deduce that since V is a non-empty proper terminal segment of UV, V must have more right brackets than left brackets
 - Use Lemma 2 also to deduce that since V is a non-empty proper initial segment of VW, V must have more left brackets than right brackets
 - This is a contradiction since V cannot have both more or less left brackets than right brackets at one time
 - Hence, both UV and VW cannot be formulas

Introduction

Truth Tables:

 Valuations of compound propositions based on the truth values of the simple propositions

A	¬ A
0	1
1	0

Α	В	A ∧ B	$A \lor B$	$A\RightarrowB$	$A \Leftrightarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

- **Definition 2.1. Truth Valuation:** (Definition 2.4.1)
 - A function (mapping) with the set of all proposition symbols as its domain and the set {0,1} as its range
 - Also referred to as the Interpretation Function I
- Interpretation function assigns a value to every propositional symbol simultaneously
 - We use small letter t to denote truth valuations; the value that t assigns to any formula A is written as A^t
- Definition 2.2. Values of Formulas: (Definition 2.4.2)
 - $p^t \in \{1,0\}$
 - (\neg A)^t = {1 if A^t = 0; 0 otherwise}
 - (A \land B)^t = {1 if A^t = B^t = 1; 0 otherwise}
 - $(A \lor B)^t = \{1 \text{ if } A^t = 1 \text{ or } B^t = 1; 0 \text{ otherwise} \}$
 - (A \Rightarrow B)^t = {1 if A^t = 0 or B^t = 1; 0 otherwise}
 - $(A \Leftrightarrow B)^t = \{1 \text{ if } A^t = B^t; 0 \text{ otherwise}\}$

- **Theorem 2.1. Truth Valuation:** (Theorem 2.4.3)
 - For any A ∈ Form(L^p) and any truth valuation t, A^t ∈ {1,0}
- Example:
 - A = p \vee q \Rightarrow q \wedge r; and p^{t1} = q^{t1} = r^{t1} = 1
 - What is the value of A^{t1}?
 - What is the value of A^{t2} if $p^{t2} = q^{t2} = r^{t2} = 0$?
- Let Σ be a set of formulas; then Σ^t = {1 if for each A ∈ Σ, A^t = 1; 0 otherwise}
- Definition 2.3. Satisfiability: (Definition 2.4.4)
 - A set of formulas Σ is **satisfiable** iff there is some truth valuation t such that $\Sigma^{t} = 1$
 - When $\Sigma^t = 1$, t is said to satisfy Σ
 - Similarly for $A \in Form(L^p)$, if $A^t = 1$, t is said to satisfy A

Definition 2.4. The Satisfiability Relation:

- For every interpretation (i.e., truth valuation) I and wellformed formula A, either I satisfies A denoted as I ⊨ A, or I does not satisfy A denoted as I ⊭ A
- Other textbooks denote formulas with lower-case Greek symbols, such as φ (phi), ψ (psi), and ω (omega)

Definition 2.5. The Model of a Formula:

- An interpretation I such that I ⊨ A is called a model of A
- We define mod(A) to be the set of all models of A; that is, mod(A) = { all I | such that I ⊨ A}
- Framed differently, for a WFF A, t is a model of A iff A^t = 1, and mod(A) = { all t | such that A^t = 1}

- Definition 2.6. Tautology: (Definition 2.4.5)
 - A well-formed formula A is a tautology iff for any truth valuation t, A^t = 1
 - Framed differently, if I ⊨ A for all interpretations I then and only then A is a valid formula or tautology
- Definition 2.7. Contradiction: (Definition 2.4.5)
 - A well-formed formula A is a contradiction iff for any truth valuation t, A^t = 0
 - Framed differently, if I ⊭ A for all interpretations I then and only then A is a contradiction (i.e., unsatisfiable)

Simplifications:

- Replace formulas expressions with their simplified but correct equivalents
- For instance, replace A ∧ 1 or 1 ∧ A with A, and A ∧ 0 or 0 ∧ A with 0
- Start replacing symbols from one of the atoms by first setting that atom value to 1 then to 0, and then create a valuation tree based on the expression simplification
- Stop when there are 1s or 0s in every branch of the tree
- If all leaf nodes equal to 1 then A is a tautology

Example:

Simplify A = $(p \land q \Rightarrow r) \land (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ and determine if it is a tautology (i.e., a valid formula)

- Definition 2.8. Logical Implication: (Definition 2.5.1)
 - Let $\Sigma \subseteq \text{Form}(L^p)$ and $A \in \text{Form}(L^p)$
 - A is a logical implication of Σ iff for any truth valuation t, $\Sigma^t = 1$ implies $A^t = 1$
 - Σ logically implies A and is written as $\Sigma \models A$
 - Known as tautological consequence in the textbook
- Example: $A \Rightarrow B$, $B \Rightarrow C \models A \Rightarrow C$
 - Use Definition 2.2 specified earlier
- Definition 2.9. Logical Equivalence:
 - Two formulas A and B are logically equivalent iff A ⊨ B and B ⊨ A, and are denoted with A ≡ B
 - Framed differently, $A \equiv B$ iff mod(A) = mod(B)
- Informally, two formulas are logically equivalent iff they are identical in meaning
 - Prove their logical equivalence by showing that equivalence (A ⇔ B) of the two formulas is a tautology

Logical Equivalences:

- \blacksquare A \vee A \equiv A (idempotent)
- $A \wedge A \equiv A$
- \blacksquare A \vee B \equiv B \vee A (commutative)
- $A \wedge B \equiv B \wedge A$
- $A \lor (B \lor C) \equiv (A \lor B) \lor C$ (associative)
- $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
- $A \lor (B \land C) \equiv (distributive)$ $(A \lor B) \land (A \lor C)$
- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- $A \lor (A \land B) \equiv A$
- $A \wedge (A \vee B) \equiv A$

Continued...

- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $\neg (A \land B) \equiv \neg A \lor \neg B$ (De Morgan's Laws)
- \blacksquare A \Rightarrow B $\equiv \neg A \lor B$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$ (contra positive)
- $A \Rightarrow (B \Rightarrow C) \equiv$ $(A \Rightarrow B) \Rightarrow (A \Rightarrow C) \equiv$ $(A \Rightarrow B) \Rightarrow C$
- $A \Leftrightarrow B \equiv$ $(A \Rightarrow B) \land (B \Rightarrow A)$
- $A \Leftrightarrow B \equiv B \Leftrightarrow A$
- $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$

Theorem 2.2. Logical Implication and Satisfiability:

- Let $\Sigma \subseteq \text{Form}(L^p)$ and $A \in \text{Form}(L^p)$.
- Then $\Sigma \models A$ iff $\Sigma \cup \{(\neg A)\}$ is a contradiction (i.e., unsatisfiable)
- That is, there exists no truth valuation t that satisfies $\Sigma \cup \{(\neg A)\}$
- Example:

$$(A \Rightarrow \neg B) \lor C, B \land \neg C, A \Leftrightarrow C \not\models \neg A \land (B \Rightarrow C)$$

- Again use Definition 2.2 specified earlier
- Theorem 2.3. Replaceability: (Theorem 2.5.4)
 - If B ≡ C and A' results from A by replacing some occurrences of B by C in A then A ≡ A'

- Definition 2.10 Literals and Clauses: (Definition 2.7.1)
 - Atoms and their negations are called literals
 - Disjunctions (conjunctions) with literals as disjuncts (conjuncts) are called disjunctive (conjunctive) clauses
- **Definition 2.11 Normal Forms:** (Definition 2.7.2)
 - A disjunction with conjunctive clauses as its disjuncts is called is a disjunctive normal form
 - A conjunction with disjunctive clauses as its conjuncts is called is a conjunctive normal form
- **Theorem 2.4:** (Theorem 2.7.3)
 - Any $A \in Form(L^p)$ is logically equivalent to some disjunctive normal form
- **Theorem 2.5:** (Theorem 2.7.4)
 - Any $A \in Form(L^p)$ is logically equivalent to some conjunctive normal form

Adequate Sets of Connectives /1

- Note that A ⇒ B ≡ ¬A ∨ B so ⇒ can be defined in terms of ¬ and ∨
- Similarly A ∨ B ≡ ¬A ⇒ B so ∨ can be defined in terms of ¬ and ⇒
- Other than the standard five connectives introduced so far, there are more unary, binary, and n-ary connectives
 - For any $n \ge 1$ there are 2^{2^n} distinct n-ary connectives
 - We shall denote connectives with italic small Latin letters f and g; that is, denote them in application as fA1...An

Α	f ₁ A	f ₂ A	f ₃ A	f ₄ A
0	1	1	0	0
1	1	0	1	0

Adequate Sets of Connectives /2

Definition 2.12 Adequate Connectives:

- A set of connectives is said to be adequate iff any n-ary connective, where n ≥ 1, can be defined using the members of the set
- Emil Post [1921] proved that the standard set of connectives $(\neg, \land, \lor, \Rightarrow, \Leftrightarrow)$ is adequate
 - However, some of the subsets of the standard set are also adequate
- **Theorem 2.6 Adequate Connectives1: (Theorem 2.8.1)**
 - $= \{\neg, \land, \lor\}$ is an adequate set of connectives
 - Proof based on Theorem 2.4
- **Theorem 2.7 Adequate Connectives2: (Theorem 2.8.2)**

Food for Thought

Read:

- Chapter 2, Sections 2.4, 2.5, 2.7 and 2.8 from Zhongwan
 - Read proofs presented in class in more detail
 - Cursory reading of proofs omitted but mentioned in class
- Answer the following exercises:
 - Exercises 2.4.1 and 2.5.2
 - Exercises 2.7.2 and 2.8.1
- (Optional) Read:
 - Chapters 4, Sections 4.1 and 4.2 from Nissanke
 - Complete at least a few exercises from each section