JAN 1 1375

DEVELOPMENT OF AN "OPERATIONS" MODEL FOR MONTANA'S WATER RESOURCES

MIDDLE CREEK RESERVOIR OPERATION

Parties of Control Brang 930 East Louisto Avenue Relena, Mourona 59601

Montana University Joint

Montana State Library
3 0864 1004 6974 4

DEVELOPMENT OF AN "OPERATIONS" HODEL FOR MONTANA'S WATER RESOURCES

MIDDLE CREEK RESERVOIR OPERATION

bу

Theodore T. Williams and G. V. V. Rao

"This publication constitutes the Completion Report for Office of Water Resources Research Project A-056-MONT. The work reported herein is being continued as Office of Water Resources Research Project B-038-MONT."

"The work upon which this publication is based was supported by funds provided by the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379."

HONTANA STATE UNIVERSITY
Bozeman, Montana

September, 1973

DEVELOPMENT OF AN "OPERATIONS" MODEL FOR MONTANA'S WATER RESOURCES MIDDLE CREEK RESERVOIR OPERATION

bу

Theodore T. Williams, Professor

Department of Civil Engineering and Engineering Mechanics

Montana State University

and

G. V. V. Rao

Graduate Research Assistant

Department of Civil Engineering and Engineering Mechanics

Montana State University

INTRODUCTION

Throughout Montana and across the nation the insatiable demands for water become greater and greater each year. Even in a water-rich state like Montana, there are many areas where water shortages have become more and more frequent and prolonged in recent years. The needs of an expanding population, coupled with ever-increasing per capita use of water make it imperative that those agencies responsible for managing this vital resource have at their disposal every tool that will help them do the most efficient and effective job possible.

. • .

The Water Resources Division of the Montana Department of Natural Resources and Conservation (successor to the State Water Conservation Board and more recently the Montana Water Resources Board) has been a major factor in the development of water resources in Montana. A total of 181 projects (45 of them major) including storage dams, diversion works, canals and structures, located in 50 of the state's 56 counties, have been constructed in whole or in part by this Agency. At one time or another the Department has been directly or indirectly associated with 773 separate projects, and at present has direct interest in about 100 projects. Each project is a separate enterprise, paid for by local users, and ultimately (after construction costs are repaid) each will revert to local ownership. Most Department projects were constructed as single-purpose irrigation units.

Until the present time, the Department projects have enjoyed a high degree of autonomy, with the Department providing mainly advisory and engineering services. Day-to-day operations have been controlled by local boards of directors. The various projects are regulated according to their water rights through the District Courts of the State, but such regulation does not constitute management to achieve optimal or multiple-purpose benefits. With the present impetus toward water conservation, and with the mandate given the Department by the State Legislature (in 1967) to develop and administer a State Water Plan, it is evident that the Department is going to have to play a more active role in the day-to-day operation of its own projects, and must prepare for the day when it will have to supervise the operation of non-Department projects as well.

In 1970 a proposal was submitted, asking for matching funds (Section 101) to conduct research aimed at the development of a "reservoir operations model." The model would be a series of mathematical relationships programmed for solution on a digital computer. It would incorporate operating rules and guidelines for each of the reservoirs in a given drainage basin, together with

. • •

*

. . .

: .

· •

current and historic hydrologic information, and would provide instructions for regulating the major components of the Water Resources Division projects.

The original proposal was not funded; but in 1971 the Montana University Joint Water Resources Research Center made funds available under the Center's allotment program for a one-year first-phase or "pilot" study. After discussions with engineers of the Water Resources Division and the U.S. Soil Conservation Service, and because of the limited time and funding available, it was decided to limit the study to preliminary analyses of one single-purpose reservoir. Hyalite Reservoir on Hyalite Creek (or Middle Creek) in Gallatin County, Montana, was selected for study.

HYALITE RESERVOIR

Hyalite Reservoir was constructed by the State Water Conservation Board (predecessor of the Water Resources Division of the Department of Natural Resources and Conservation) as a U.S. Public Works Administration project. It was completed in 1951. Individual users and groups of users (all farmers except for the City of Bozeman) in the Gallatin Valley entered into contracts with the Board whereby the users reimburse the State for the State's share of the construction costs, and pay the operation and maintenance costs for the project. Each contract specifies a volume of water (in acre feet) to which the user is entitled each year. This water is available to him from the reservoir on call.

Appendix A shows a list of users, and the volumes of water for which they have contracted. A total of 7,795 acre feet per year has been contracted. The reservoir has a useful storage capacity of 8,030 acre feet (U.S. Geological Survey figure).

The users are organized into the Middle Creek Water Users Association,

governed by a Board of Directors elected annually. The present secretary of the Board, Mr. A. C. Manry, directs the operation and maintenance of the project.

GENERAL STRATEGY FOR STUDY

Generally, developing optimum operation rules for a reservoir consists of the following phases:

- (1) Collection and compilation of inflow data. If sufficient data are not available, devise a method to generate synthetic data.
- (2) Identify the various purposes for which the reservoir releases are being used and develop a common measure of effectiveness.
- (3) Devise optimization methods, which will optimize any given objective using the above inflows and subject to any restrictions imposed by the physical conditions of the reservoir like the size, discharge capacity, etc. and policy of the management like fixing priorities between the various users, etc.

STUDIES MADE IN CONVECTION WITH HYALITE RESERVOIR

Reservoir Inflows

In connection with specific studies for Hyalite reservoir, the first phase itself created some problems. There is a U.S.G.S. gaging station about 7 miles downstream from the reservoir on Hyalite Creek (USCS Station 06050000-MSU Data Bank Number 41H03291-Hyalite Creek at Hyalite Ranger Station near Bozeman). Records of flow at this station are available from 1935 to the present. However, the natural flows have been affected by the operation of the reservoir since 1951. The only data available with regard to the operation of the reservoir were the monthly contents of the reservoir as recorded by

the U.S.G.S. (USGS Station 06049500-MSU Data Bank Number 41H93290-Middle Creek Reservoir). With the help of this data, it was possible to reconstruct the natural flows at the gage site on a monthly basis since the construction of the reservoir by adding changes in reservoir contents to the flow volume recorded for that month at the gage. This reconstructed data was tested by a double mass analysis. The natural flows recorded at the Hyalite gage before construction of the reservoir (1935-1951) and the reconstructed natural flows (1951-1967) were compared with flows recorded during the same period in the West Gallatin River at Gallatin Gateway. The correlation between the flows was striking (see Figure 1 and Appendix B).

Another effort made was to synthesize data from the natural flows available from 1935-50. Using the statistics of the flows for these 16 years, the following model from the Harvard Water Program as published in "Design of Water Resources Systems," was adopted for generation of flows.

$$Q_{i+1,j+1} = \overline{Q}_{j+1} + b_i(Q_{i,j} - \overline{Q}_{j}) + t_i \sigma_{j+1} (1 - \gamma_j^2)^{1/2}$$

 γ_j = correlation between natural flows for month j and month j+1 σ_j = standard deviation of natural flows for month j

 $b_{j} = \gamma_{j} (\sigma_{j+1} / \sigma_{j})$

As a trial 16 more years of flow were generated. Hydrographs of natural flow and synthesized flow are shown in Figure 2, for comparison. The line labelled "natural flows" was obtained from the average monthly flows which occurred for the 16 years 1935-1950 inclusive. The line labelled "synthesized flows" was obtained from the average monthly flows which were generated for 16 years by the synthesis technique. There seems to be striking agreement between the

FIGURE 2
Hydrographs of Natural and "Synthesized"

-7-

two hydrographs, though the "generated" flows seem to indicate slightly higher peaks.

In further analyses reported herein, the flows as reconstructed from the double mass analysis with the Gallatin River are used. If future detailed analyses requiring several sequences of flows should be attempted, the procedure for synthesis of flows described above could be used.

While the double mass analysis described earlier established a reasonably good method for computing the natural flows at the gage site in spite of the reservoir, estimation of the amount of inflow into the reservoir presented more difficulties. Two branches of Hyalite Creek, viz, the West Fork and the East Fork, feed into the reservoir. While limited observations of flows (in the summer months of 1966-69) are available on West Fork, the flows in East Fork were measured in a Parshall flume only during the summer of 1969. The flows in the West Fork were subjected to double mass analysis with flows at the downstream gage and with flows in the West Gallatin River at Gallatin Gateway (Figure 3). From this analysis it appears that a fair estimate of the flows in the West Fork can be taken as 45% of the adjusted flow at the downstream gage.

Studies made by Phil Farnes (U.S. Soil Conservation Service) and by Michael Watson (MSU) indicate that the total inflow into the reservoir is about 64% of the adjusted flow at the downstream gage. Farnes used snow survey data in working out a water budget for the basin; Watson compared Hyalite flows with flows from Sourdough water shed (a similar basin adjacent to Hyalite on the east).

Using this proportion the inflows into the reservoir were estimated on a monthly basis.

A computer program was written for this phase of the work.

Appendix B shows the monthly inflows. Appendix C shows Snow Survey measurements.

Reservoir Uses

The reservoir is used by members of the Middle Creek Water Users Association. The primary use is irrigation, but the City of Bozeman has contracts for 2510 acre feet (nearly 1/3 of the reservoir capacity) for municipal water supply. There is some recreation use of the reservoir itself, particularly from residents of the City of Bozeman. Late summer flows in Hyalite Creek downstream from the reservoir are augmented by reservoir releases thereby enhancing fishing and other recreation use along the stream.

With proper reservoir regulation a limited amount of flood control may be possible downstream from the reservoir. The maximum discharge observed at Hyalite Creek at the Hyalite Ranger Station was 956 cfs (in 1898). Since construction of the reservoir in 1951 the discharge has reached 866 cfs once (in 1970) and 600 cfs twice (in 1959 and 1968). (Reference - USGS records.) The 1959, 1968 and 1970 flows apparently caused no flooding problems. Bozeman newspapers published during the high flow periods for each of the three years were searched for reference to flooding. The May 19, 1970 Bozeman Chronicle reported flooding elsewhere in the Gallatin Valley, and alluded to flood potential in the Hyalite dainage, but subsequent issues did not report any Hyalite flooding. The Gallatin County Tribune for December 26, 1968 reported flooding in Hyalite Canyon, but this was a result of ice jams and occurred at a time when flow at the Hyalite Ranger Station was only 20 cfs. (See newspaper accounts, Appendix D).

Reservoir Filling Operations

The objective of an irrigation reservoir operator with respect to reservoir filling is to achieve a full reservoir by the end of the snowmelt runoff period. The most common operations practice is to fill the reservoir with the first water melted in the spring. Any snowmelt in excess of that required for filling is then passed over the spillway. This practice has a two-fold disadvantage. First, the reservoir is often full before the peak snowmelt discharge occurs, and the peak must be passed undiminished over the spillway, perhaps to cause flooding downstream. (Presence of the reservoir can, under some circumstances, produce even higher peak flows downstream than would have occurred without the reservoir). Second, the peak flow may be great enough to endanger the spillway itself.

Snow survey measurements have been made in Montana since 1922. The snow course network has been greatly expanded and procedures have been improved and standardized by the U.S. Soil Conservation Service. Streamflow forecasts (based on multiple regression techniques) are made available by the SCS as of the 1st of March, 1st of April, and 1st of May each year. Using the streamflow forecasts, it should be possible to effect considerable flood mitigation in high runoff years. If it is evident on the 1st of March that the snowpack is well above normal, then the early snowmelt could be released, and high flows during the peak of the melt period could be stored.

Two snow course stations in the Hyalite drainage above Hyalite Reservoir have been operated since before construction of the reservoir. These are Hood Meadow and Devils Slide. Figure 4 shows the average water content in the snow at these two sites on the 1st of April and 1st of May each year, plotted against April-July and May-July adjusted streamflow volume measured at the Hyalite Ranger Station. Figure 4 shows fair agreement for most years between snow pack water content and streamflow volume. Figure 5 shows a plot

of April 1st forecasts of April-July streamflow volume vs. April-July actual flows, and May 1st forecasts of May-July streamflow volume vs. May-July actual flows. (All flows have been adjusted to reflect changes in Hyalite Reservoir storage). Figure 5 shows rather good agreement between predicted and actual flows.

Montana Snow Survey Supervisor Phil Farnes reports that other factors besides snow pack information may be used in the streamflow prediction formula; he also indicates that the formula used is revised frequently. The snow course network in the Hyalite drainage has been expanded considerably since 1951 and now includes 5 stations. Farnes declined to release the prediction formula currently in use for Hyalite.

Flood Mitigation by Reservoir Filling Management

The preceding information suggests a method whereby filling of Middle Creek Reservoir could be delayed until late spring, thereby reducing the snowmelt flood peak. The method proposed is based on the following assumptions:

- 1. Unless the April 1st streamflow forecast is exceedingly low, no reservoir filling is necessary before May 1. (April-July streamflow predictions 1955-1971 were never less than 25,000 acre feet and April-July adjusted streamflows for the same years were never less than 20,000 acre feet -- 2.5 times the capacity of the reservoir).
 - 2. The reservoir is to be full by July 1 each year.
- 3. May-June predicted inflow to the reservoir is obtained from the May 1 streamflow forecasts by the following:

0.78[0.64 (May-July Streamflow Forecast)]

(See earlier discussion indicating reservoir inflow is about 64% of adjusted Hyalite Ranger Station flow; July inflow for years 1951-1971, expressed as a percentage of May-July inflow ranged from 12.4% to 30.4% with the average being 22.0%.)

4. Cumulative reservoir inflow after May 1 can be obtained from:

Σ[0.64 (Hyalite Ranger Station Flow + Reservoir Gain - Reservoir Loss)]

Reservoir inflow yet to come (prior to July 1) is obtained by subtracting the cumulative reservoir inflow (assumption 4) from May-June predicted inflow (assumption 3). It should not be necessary to store any water in the reservoir until the "inflow yet to come" calculation drops to 8000 acre feet. At that point all inflow should be stored. The 36% of "Hyalite Ranger Station" flows originating below the reservoir should be adequate in most cases to meet downstream user demands during the storage period. In actuality of course, some reservoir release will be necessary to meet minimum flow requirements for fish, so the storage period will need to begin somewhat earlier (when the "inflow yet to come" drops to say 10,000 acre feet).

A further safety factor could be attained by allowing for possible inaccuracies in the streamflow forecasts. (See Figure 5).

OPTIMIZATION STUDIES

Actual optimization studies could not be conducted for Hyalite reservoir due to non-availability of actual data at that time. However, operation of a single reservoir like this should not present any real difficulties. Just to demonstrate the possible approaches to solving this problem two pilot studies

one using linear programming techniques and the other using dynamic programming, were made with hypothetical data. Following are brief descriptions of the two studies.

Linear Programming

Let us consider the operation of a single reservoir over a period of 4 seasons. This problem is solved using a canned package called MFORLP, available on Xerox Data Systems - Sigma 7 computer.

1. Mathematical Formulation

a. During Season 1

Let S_1 be the storage available at the beginning of season 1.

Let I_1 be the inflow during season 1.

Let R_1 be the release during season 1.

Let \mathbf{S}_2 be the storage at the end of season 1 (and hence at the beginning of season 2).

Then continuity demands that

$$S_1 + I_1 = R_1 + S_2$$

b. Similarly for Season 2

$$S_2 + I_2 = R_2 + S_3$$
 etc.

In the problem considered here, S₁ is assumed to be 20 units (say thousands of acre feet). The inflow pattern during a four season cycle is assumed as follows:

Season	1	2	3	4
Inflow (1000 AF)	40	20	10	20

The objective of the operation policy is to maximize profits. The worth of water in various seasons is as given below:

Season	1	2	3	4
Value/Unit	2	10	9	3

The reservoir is assumed to have a maximum capacity of 100,000 AF. It is desired to have a storage of 20,000 AF at the end of season four.

2. Formulation in L.P.

From the above data, the L.P. problem can be formulated as follows:

a. Objective function

Max.
$$Z = 2R_1 + 10R_2 + 9R_3 + 3R_4$$

Subject to the constraints:

1.
$$R_1 + S_2$$
 = $I_1 + S_1 = 20 + 40 = 60$
2. $-S_2 + R_2 + S_3$ = 20
3. $-S_3 + R_3 + S_4$ = 10
4. $-S_4 + R_4 + 20$ = 20
5. S_2 = $\frac{1}{1} + S_1 = 20 + 40 = 60$
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 20
= 2

Computer coding and results may be seen in Appendix E. Discussion of the results of the computer program follow.

b. Interpretation of the Result

The primal solution is

$$Z_1^*$$
 (optimum) = Maximum Revenue = 890 units

 $R_1^* = 0$
 $R_2^* = 80$
 $R_3^* = 10$
 $R_4^* = 0$
 $S_2^* = 60$
 $S_3^* = 0$
 $S_4^* = 0$

(Slacks are not included)

It may be noted that maximum possible discharge is recommended in the second and third seasons when the revenue is maximum. The recommended discharge in figures season (\mathbb{R}_1) is zero, thus conserving water for discharge during the second season, when it brings more revenue.

The Dual

The Dual solution is

$$Z_2^*$$
 (optimum) = minimum cost = 890 units $Y_1^* = 10$ $Y_2^* = 10$

$$Y_3^* = 9$$

$$Y_{4}^{*} = 3$$

$$Y_4^* = 3$$

$$Y_5^* = 0$$

$$Y_6^* = 0$$

$$Y_7^* = 0$$

(slacks are not included)

The inflows during first, second, third and fourth seasons, have imputed values of 10, 10, 9 and 3 units, respectively. This is obvious as increase of inflows during these seasons will help greater releases R_2 , R_3 and R_4 , bringing revenue of respectively 10, 9 and 3 units respectively. However in real life situations, increasing the inflows is not possible, as they are a result of natural phenomena. Even the assumption of prior knowledge of these inflows is not realistic, as it is usually not possible to know definitely, future inflow pattern.

Dynamic Programming

Let us assume that we have a reservoir which is being used for (1) recreation and (2) flood control. Let us further assume that we can establish the loss in either use associated with any policy, as shown in Figures 6(b) and 6(c). Also, let us assume that we know the inflow for five consecutive seasons: x(1) = 4, x(2) = 1, x(3) = 3, x(4) = 0, x(5) = 4. Let us consider three states of storage: full (2); half-full (1); and empty (0).

Solution:

Stages = seasons (I) $1 \rightarrow 5$

States = Storage (S) $0 \rightarrow 2$

Decision Variables = Discharge (D) $0 \rightarrow 2$

Procedure:

- 1) At any stage the starting storage can be $0 \rightarrow 2$, and by any policy we can reach any of the states $0 \rightarrow 2$. (Of course, the limitations are: (i) the beginning storage (K) cannot be more than ending storage (J) inflow in the season (X(I)), and (ii) the ending storage (J) cannot be more than beginning storage (K) + inflow in the season (X(I)) and both cannot be more than the full storage (2) or less than no storage (0)).
 - 2) The loss (L) associated with our policy in any season (I)
 L = (Loss due to Recreation LR(J) + Loss due to flood (LF(K + x(I) J))
 in the season + minimum loss due to our policy up to reaching the
 stage (LMEM(I 1, K)).
- 3) As we can start at any state (K) to reach the present state (J), we would like to choose only that state (K*) which minimizes the overall loss, and store this value of K* for later reference.
- 4) Proceed to calculate the minimum Loss (LMFM) and trace back state (SMEM) associated with each state (J) at each stage (I), until the last stage (Season 5 in this case), is reached.
 - 5) Then select the state which has the overall minimum loss (MINL).
- 6) Starting from this point trace back to determine the policy. Please see detailed working in Figure 6.

Computer coding and output may be seen in Appendix F.

		2	
		. 16 . g	

Other Studies

In connection with another study, an approach to solve reservoir operation problem via simulation in GASP language was attempted. Of course, this simulation approach does not necessarily lead to an optimal solution, but its potentiality for use in reservoir operation situations was demonstrated. This is particularly worth considering in case it is intended to use stochatic inflows.

Several useful references using these techniques have been mentioned in the bibliography of reference 2.

CONCLUSIONS

The study began as a pilot project for a larger investigation involving integrated operation of systems of reservoirs in Montana. The Mussellshell Basin has been chosen for such a study and at present a much more extensive study is underway. The studies described herein formed the groundwork for this larger study, (B-038 MONT).

LITERATURE CITED

- 1. Maass, Arthur et al, <u>Design of Water Resource Systems</u>, Harvard University Press, Cambridge, Hassachusetts, 1966.
- 2. Rao, G.V.V., Modern Methods of Reservoir Operation, report prepared for CE 570, Individual Problems, Montana State University, 1971. Unpublished.
- 3. United States Department of the Interior, Geological Survey, <u>Water</u>

 <u>Resources Data for Montana</u>, <u>Part 1</u>, <u>Surface Water Records</u>, U.S. Geological Survey, <u>Washington</u>, D.C. <u>Published annually</u>, 1961 to date.
- 4. United States Department of the Interior, Geological Survey, Water Supply Paper #1729, Summary of the Surface Water Records, Part 6A, Missouri River Drainage above Sioux City 1951-1960, U.S. Geological Survey, Washington, D.C., 1964.

APPENDIX A

Members of Middle Creek Water Users Association with Volumes of Hyalite Reservoir Water Contracted

			~
			,
	Ú.		

Term = 30 years

First	Contract	Purchaser		Feet
Payment	No.	(as of 1-25-72)	Contract	Yearly Total
1951	1	Aakjer, Ralph & Nick	25	
	2-A-1	Miller, John L.	50	
	3	City of Bozeman	500	
	4	City of Bozeman	550	
	5	Benepe, Frank L., Jr.	25	
	6	Benepe, Lucien L.	50	
	7-A	Boylan, Richard J.	50	
	8	Boylan, Boyd W.	25	
	9-A	Bos, John	50	
	10	Doney, Frank R.	125	
	11-A	Dusenberry, George D.	100	
	12	Dusenberry, Bert L., Jr.	75	
	13-A-1	Lichtenberg, Delbrook &		
		Landoe, H. B.	50	
	14-A	Montana State University	100	
	15-A	Parker, Ora S.	75	
	16	Hansen, Peter M.	50	
	17	Heiskell, Hugh	75	
	18	Johnson, Carl G.	25	
	19-A-2	Schmittroth, Louis	100	
	19-B	Kirk, Marguerite	50	
	21	Kessler, E. E.	100	
	22	Kurk, Lester J.	25	
	23	Kurk, A. J.	20	
	24-A	Bradley, Clyde J.	50	
	25-A	Kraft, Meretta	50	
	25-B	Kraft, Glen	50	
	26	Kraft, Earl	100	
	27-A-1-A	American Fork Ranch	50	
	27-A-2-A	American Fork Ranch,		
	_, _, _,	Robert T. Stevens, Pres.	50	
	27-A-3	Lindvig, Einar, Regina & Harold	50	
	28-A	Caprio, Joseph M. & Harilyn	100	
	29	Nash, Jack	50	
	30	Pasha, John R.	50	
	31	Pasha, C. L.	50	
	32	Pasha, C. L.	50	
	33	Pasha, W. D.	50	
	34	Pasha, W. D.	50	

(Page 2)

First	Contract	Furchaser	Ac	re Feet
Payment	No.	(as of 1-25-72)	Contract	Yearly Total
	35-A	Michel, Albert J. & Ramona M.	25	
	36-A	Kraft, Merretta	100	
	37	Smith, Stanley K.	50	
	38-A-1	Bradley, Elizabeth O.	25	
	39-A-1	Derby, James E. & Emma	20	
	40-A	Miller, Harold E.	150	
	41-A	Montana State University	50	
	42-A-1-B	Westlake, George	50	
	43-A-1-A-1	Lichtenberg, Delbert &		
		Landoe, H. E.	25	
	43-A-1-B-2	Cawlfield, Dave R.	12.5	
	43-A-2	Kraft, Earl C.	50	
	44	Ward, Tom	100	3,752.5
1952	46	Montana State University	300	
	47-A-1	Jordan, Robert & Mardella	25	
	47-B	Wend, David A. A. and/or		
		Alice B.	25	
	48	Clark, E. L.	50	
	49-A	Miller, Harold	35	435
1953	50-A	Miller, Harold	40	
	51-A	Gallatin County	25	
	52-A-1	S.A.C., Inc., Roger L. Craft,		
		President	25	
	52-B	Kraft, Herretta	25	
	53-A	Lichtenberg, Delbert &		
		Landoe, H. B.	25	
	54-A	Jordan, Robert & Mardella	50	
	55	Bradley, Clyde J.	50	
	56-A	Raffety, Lloyd & Mildred	15	
	57-A-1	Fellerhoff, John A. & Ella H.	25	
	57-A-2	Stenger, Edward & Helen	25	
	58-A	White, Edna Tracy	50	
	59-A	Manry, Albert & Lillian	15	
	60-A	Parker, Ora S.	50	
	61-A-1	Lichtenberg, Delbert &		
		Landoe, H. B.	50	

(Fage 3)

First	Contract	Purchaser	Acr	e Feet
Payment	No.	(as of 1-25-72)	Contract	Yearly Total
	62-A	Miller, Mae E.	50	
	63-A	Boylan, Paul F.	50	
	66-A-1	Boyd, J. C.	75	645
1954	67-A-1	Benepe, Lucien L.	50	
	68	Johnson, Carl G.	25	
	69-A	Wolney, David A.	50	
	70-A-1	Shelton, Robert R. & Deborah D. &		
		Shelton Interests, Inc.	50	
	72	Westlake, Myron M.	50	
	73	Bradley, James C.	50	
	74-A	City of Bozeman	10	
	75-A-1	Westland, George F. & Nancy J.	50	
	76-A	Dusenberry, George E.	50	385
1955	77	Dyk, Peter S.	200	
	78	Cawlfield, Dave R.	40	
	79-A	Sabo, Dr. F. I. & Dorothy F.	100	
	81-A	Cline, C. E. & Louise C.	50	
	82-A	Raffety, Lloyd & Mildred	50	
	84	Lang, Vernon J.	100	
	85-A	Walker, Edwin & Hilda H.	30	
	86	Hoppel, Fred G.	20	590
1956	20-A-1	Miller, E. Mae	25	
	20-B-1	Dogterom, C. A. and/or		
		McChesney, A. L.	50	
	20-C	Wolney, David A.	50	
	38	City of Bozeman	1450	
	89-A1	Shelton, Robert R. & Deborah D.	50	1625
1958	45-A-1	Lane, Thomas E. & Robert D.	100	
1,00	64-A	Wheeler, James E. & Ethel C.	15	
	71-A	Ward, Tom	50	
	83-A-1	Vincent, Tom E. & Marjorie S.	50	
	90-A	McCrosson, John W., Jr.	12.5	
	91-A	Walker, Edwin & Hilda H.	20	2.47.5
1959	92A-2	Lce, Clara B.	40	

(Page 4)

First	Contract	Purchaser	Acre Feet			
Payment	No.	(as of 1-25-72)	Contract	Yearly Total		
	92-B	Amunrud, Leroy & Dorris	20	60		
1960	93	Miller, Robert W. & Elizabeth P.	20			
	95	Clark, Clifford A. & Nildred	20	40		
1961	94	Raffety, Lloyd & Mildred	10	10		
1966	96-A	Bennett, Marshall B. and/or Ciluzann	20	20		
		Total Contracts		7,810		

APPENDIX B

Streamflows at Hyalite Creek with Reservoir Releases

* 2		
		**

		Discharge at Hyalite Ranger Station	Hiddle Creek Leservoir, month- end contents	Net change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr-July Adjusted Flows	May-July Adjusted Plows	July Adj. Flow as % of Hay-July Flow
1950	0ct	2060	0	0	2060					
	Nov Dec	1310 1740			1810 1740					
1951	Jan	1500			1500					
	Feb	992			992					
	Mar	653			653					
	Apr	1360	1790	+1790	3150	2015	225	25710		
	May	6880	5360	+3570	10450	6690	3120		22560	
	Jun Jul	7330 6120	4880 4020	- 480 - 869	6850 5260	4390 3360	4870 4220			23.4 %
	Aug	4070	2560	-1460	2610	2200	4220			23.4 /2
	Sep	1980	2660	+ 100	2080					
	0ct	2190	2520	- 140	2050					
	Nov	1610	2270	- 250	1360					
1050	Dec	1370	2120	- 150	1220					
1952	Jan	1090	2600	+ 480	1570					
	Feb Mar	1060 1150	2600 2570	0 - 30	1060 1120					
	Apr	3240	3290	÷ 720	3960	2535	1815	36410		
	May	11280	4470	+1130	12460	7960	6780	30410	32450	
	Jun	13340	5270	+ 800	14140	9050	8250			
	Ju1	6360	4760	- 510	5850	3740	4250			18.0 %
	Aug	4000	3730	-1030	2970					
	Sep	2770	2940	790	1980					
	Oct	1750	2820	- 120	1630					
	Nov	881	3190	+ 370	1251					
1050	Dec	700	3750	+ 560	1260					
1953	Jan Feb	815 845	4100 4710	÷ 350 ⊹ 610	1165 1455					
Ma		829	4980	+ 270	1099					
na	Apr	1480	5480	+ 500	1980	1270	77C	28700		
	liay	5450	5680	+ 200	5650	3620	3420		26720	
	Jun	13740	5440	- 240	13500	8650	8890			
	Ju1	8540	4450	~ 970	7570	4850	5320			28.3 %
	Aug	5360	1480	-2990	2370					
	Sep	2330	1150	- 330	2000					
	Oct	1760	1240	+ 90	1850					

		. 6		
		£	44.	

		Discharge at Hyalite Ranger Station	Middle Creek Reservoir, month- end contents	Met change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr-July Adjusted Flows	May-July Adjusted Flows	July Adj. Flow as % of May-July Flow
1953	Nov	1030	1640	+ 400	1480					
	Dec	863	2320	+ 680	1543					
1954	Jan	579	2640	+ 320	399					
	Feb	635	3300	+ 660	1295 1575					
	Mar	625 1550	4250 4760	+ 950 + 510	2060	1320	810	27480		
	Apr Hay	6200	6440	+1680	7880	5040	3360	27400	25420	
	Jun	10540	6520	+ 80	10620	6800	6720		23420	
	Jul	8240	5200	-1320	6920	4430	5750			27.2 %
	Aug	5670	2470	-2830	2840					
	Sep	1680	2420	- 50	1630					
	Oct	1350	2410	- 10	1340					
	Nov	959	2600	+ 190	1149					
	Dec	801	3430	+ 830	1631					
1955	Jan	498	4230	+ 300	1298					
	Feb	541	4710	+ 480	1021					
	llar	5 59	5190	+ 480	1039					
	Apr	781	5640	+ 450	1231	788	338	28991	07760	
	May	7890	5940	+ 300	8190	5240	4940		27760	
	Jun	12820	6540	+ 600	13420	8600	8000			22.2 %
	Jul	7160 6060	5530 2100	1010 3430	6150 2630	3940	4950			22.2 %
	Aug Sep	1810	1730	- 370 - 370	1440					
	P									
	0ct	1760	1690	- 40	1720					
	Nov	998	1820	+ 130	1128					
1056	Dec	633	2560	+ 740	1373					
1956	Jan	680 553	3030 3350	+ 470 + 320	1150 8 7 3					
	Feb Mar	839	36 7 0	+ 320	1159					
	Apr	1920	4510	+ 830	2760	1770	930	25040		
	May	5820	5760	+1250	7070	4520	3270	250.0	22280	
	Jun	11500	6180	+ 420	11920	7640	7220			
	Jul	6050	3420	-2760	3290	2110	4870			14.75%
	Aug	4050	1320	-2100	1950					
	Sep	2030	1150	- 170	1860					
	0ct	1710	1170	+ 20	1730					
	Nov	692	1870	+ 700	1392					

		Discharge at Eyalite Ranger Station	Middle Creek Reservoir, month- end contents	Met change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr-July Adjusted Flows	May-July Adjusted Flows	July Adj. Flow as % of May-July Flow
1956 1957	Dec Jan Feb Mar Apr May Jun Jun Jul Aug Sep	750 589 640 835 1130 5180 13850 6620 5270 2090	2450 2840 3110 3430 3700 5840 7660 6700 3620 3480	+ 580 + 390 + 270 ÷ 320 + 270 +2140 +1820 - 960 -3080 - 140	1330 979 910 1155 1400 7320 15670 5660 2190 1950	895 4690 10000 3620	625 2550 8180 4580	30050	28650	19.8 %
1958	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1770 1330 1290 1270 893 831 1450 8760 9040 5450 4850 2470	3420 3440 3470 3490 3680 3960 4520 7660 7660 6700 4470 3790	- 60 ÷ 20 + 30 + 20 + 190 + 230 + 560 +3140 - 960 -2230 - 680	1710 1350 1320 1290 1083 1121 2010 11900 9040 4490 2620 1790	1285 7620 5790 2870	725 4480 5790 3830	27440	25430	17.65%
1959	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1970 1170 1060 1040 895 1040 1780 7300 19050 9770 6220 2740	3370 3670 3930 4160 4200 4310 4890 6880 7660 6380 3600 3420	- 420 + 300 + 260 + 230 + 40 + 110 + 580 +1990 + 780 - 780 - 3280 - 180 + 120	1550 1470 1320 1270 935 1150 2360 9290 19830 8990 2940 2560	1510 5940 12700 5750	930 3950 11920 6530	40470	38110	23.6 %
	Nov Dec	2110 1340	3540 3770	9 + 230	2110 1570					

		Discharge at Eyalite Ranger Station	Middle Creek Reservoir, month-end contents	Net change in storage	Adjusted Dis- charge at Ranger Station	REs. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr-July Adjusted Flows	May-July Adjusted Flows	July Adj. Flow as % of May-July Flow
1960	Jan Feb Mar Apr May Jun Jul Aug Sep	1140 1050 1270 2560 5940 12840 8800 5510 2240	3960 4220 4430 5350 6880 7860 5000 2400 1920	+ 190 + 260 + 210 + 920 +1530 + 980 -2860 -2600 - 480	1330 1310 1480 3490 7470 13820 5940 2910 1760	2234 4781 8845 8302	1314 3251 7865 6662	30720	27230	21.8 %
1961	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1480 1020 473 387 714 815 1120 4010 9720 6040 3600 2150	1970 2350 2370 3190 3490 3830 4520 7470 7200 3490 1640 1370	+ 50 + 380 + 520 + 320 + 300 + 340 + 690 +2950 - 270 -3710 -1850 - 270	1530 1400 993 707 1014 1155 1810 6960 9450 2330 1750 1880	1158 4454 6048 1491	468 1504 6318 5201	20550	13740	12.4 %
1962	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct	262 1430 1030 803 889 1060 3160 6520 11510 7210 6310 3250 2630 983	1530 1730 1980 2300 2510 2720 4400 7270 7920 7920 5300 4540 4060 4130	+ 160 + 200 + 250 + 320 + 210 + 210 + 1680 + 2870 + 650 0 - 2620 - 760 - 480 + 70	2780 1630 1280 1123 1099 1270 4840 9390 12160 7210 3690 2490	3093 6010 7782 4614	1418 3140 7132 4614	33600	28760	25.1 %
1963	Dec Jan	1850 1000	4140 4320	+ 10 + 180	1860 1180					

					i.
				,	
			: U #		
			2*		
	14				3
			11		

		Discharge at Hyalite Ranger Station	Middle Creek REservoir, monthend contents	Met change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	AprJuly Adjusted Flows	isay-July Adjusted Flows	July Adj. Flow as % of May-July Flow
1963	Feb Mar Apr May Jun Jul Aug Sep	897 1080 2600 9010 13980 7950 5870 2770	4730 5140 5280 8030 7970 5910 3000 2360	+ 410 + 410 + 140 +2750 - 60 -2060 -2910 - 640	1307 1490 2740 11760 13920 5890 2960 2130	1754 7526 8909 3770	1613 4776 8969 5830	34310	31570	18.6 %
1964	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1690 1200 885 590 668 649 1010 9470 14920 11130 7290 2300	2470 2670 2770 2890 3010 3290 5050 7170 7970 6890 3360 2890	+ 110 + 200 + 100 + 120 + 120 + 280 +1760 +2120 + 800 -1080 -3530 - 470	1800 1400 985 710 788 929 2770 11590 15720 10050 3760 1830	1773 7418 10061 6432	13 5298 9261 7512	40130	37360	26.95%
1965	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	2170 1400 1790 1290 1140 1520 2240 9780 16770 13470 7100 6940	3000 3110 3460 3760 3930 3990 4130 5130 7790 7470 4610 1160	+ 110 + 110 + 350 + 300 + 170 + 60 + 140 +1000 +2660 - 320 -2860 3450	2280 1510 2140 1590 1310 1580 2380 10780 19430 13150 4240 3490	1523 6399 12435 8416	1383 5899 9775 8736	45740	43360	30.4 %
1966	Oct Nov Dec Jan Feb	3470 1680 1320 1240 873	391 319 1170 1360 1780	- 769 + 428 + 351 + 190 + 420	2701 2108 1671 1430 1293					

		Discharge at Hyalite Ranger Station	Middle Creek Reservoir, monthend contents	Met change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr-July Adjusted Flows	May-July Adjusted Flows	July Adj. Flow as % of Way-July Flow
1966	Mar Apr May Jun Jul Aug Sep	809 1500 6430 10870 8520 5810 2530	2350 3290 8240 7970 4840 2150 1560	+ 570 + 940 +4950 - 270 -3130 -2690 - 590	1379 2440 11430 10600 5390 3120 1940	1562 7315 6784 3450	622 2365 7054 6580	29860	27420	19.65%
1967	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	2460 1160 863 686 641 795 1070 7750 16730 10460 6950 3090	1150 1360 2060 2600 3000 3480 3920 6620 7990 7580 3670 2740	- 410 + 210 + 700 + 540 + 400 + 480 + 2700 +1370 - 410 -3910 - 930	2050 1370 1563 1226 1041 1275 1510 10450 18100 10050 3040 2160	966 6688 11584 6432	526 3988 10214 6842	40110	38600	26.0 %
1968	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	2220 2090 1820 1430 1370 1580 1820 7980 17590 13380 7850 5150	3060 3100 3120 3340 3330 3360 3470 6880 7970 7620 6000 5400	+ 320 + 40 + 20 + 220 - 10 + 30 + 110 +3410 +1090 - 350 -1620 - 600	2540 2130 1840 1650 1360 1610 1930 11390 18680 13030 6230 4550	1235 7290 11955 3339	1125 3380 10365 8689	45030	43100	30.2 %
1969	Oct Nov Dec Jan Feb Mar	4930 3690 1530 1260 901 1360	4450 2900 2970 3480 3800 4030	- 950 -1550 + 70 + 510 + 320 + 230	3980 2140 1600 1770 1221 1590					

		Discharge at Hyalite Ranger Station	Middle Creek Reservoir, monthend contents	Net change in storage	Adjusted Dis- charge at Ranger Station	Res. Inflow (Adj. Flow x 64%)	Reservoir Releases	Apr.July Adjusted Flows	May-July Adjusted Flows	July Adj. Flow as % of May-July flow
	Apr May Jun Jul Aug Sep	3560 15270 14500 11090 6480 3460	5180 7820 8080 7330 4250 3470	+1150 +2640 + 260 - 750 -3080 - 780	4710 17910 14760 10340 3400 2680	3014 11462 9446 6618	1864 8822 9186 7368	47720	43010	24.0 %
1970	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct	2750 1650 1460 1010 1150 1190 1350 16760 22780 12260 6850 4810	3150 3140 3370 3770 4100 4490 4430 5400 7350 4950 3700 3150 2970	- 320 - 10 + 230 + 400 ÷ 330 + 300 + 30 + 970 +2460 - 510 -2400 -1250 - 550 - 180	2430 1640 1690 1410 1480 1490 1380 17730 25240 11750 4450 3560	883 11347 16154 7520	853 10377 13694 8030	56100	54720	21.45%
1971	Dec	1120 825 1060 1250 3110 11810 15880 12720 8190 4140	3410 3990 4510 4820 3840 5010 7720 6940 3370 2570	+ 440 + 530 + 520 + 310 - 980 +1170 +2710 - 780 -3570 - 800	1560 1405 1580 1560 2130 12980 18590 11940 4620 3340	1363 3307 11898 7642	2343 7137 9188 8422	45640	43510	27.4 %

				•		
				O†		
				17		
					•	
	2					
	\$ 200		77			
				1		
			*			
· · · · · · · · · · · · · · · · · · ·				· ·		
		1.4		1.1		

APPENDIX C

Snow Survey Records

		1.2

	Snow Survey	Date	Arch Falls (7350 ft)	Devils Slide (8100 ft)	Hood lieadow (6600 ft)	Hood Meadow (new) (6600 ft)	Lick Creek (6860 ft)	Shover Falls (8100 ft)	Hay-June Streamflow Forecast (1000 AF)	April-July Streamflow Forecast	<pre>!lay-July Streamflow Forecast</pre>
1945	Har Apr	1		10.9 15.1	4.2 6.2						
1946	Mar Apr May	1 1 1		18.7 24.2 22.3	7.7 8.4 1.3						
1947	Mar Apr May	1 1 1		16.0 22.6 28.2	6.2 10.8 7.3				10.4 12.2		
1948	Mar Apr May	1 1 1		23.2 27.4 30.5	11.3 13.3 9.9				13.7 13.0		
1949	Mar Apr May	1 1 1		18.1 20.8 20.3	8.7 10.9 1.7				19.0 18.0		
1950	Mar Apr May	1 1 1		12.9 20.2 24.5	4.3 7.3 8.5				19.0 19.8		
1951	Mar Apr May	1 1 1		14.8 19.9 18.7	6.6 9.4 5.5				20.4		
1952	Har Apr May	1 1 1		20.5 27.5 25.6	10.3 13.7 2.5						
1953	Mar Apr May	1 1 1		15.6 18.8 23.3	6.4 7.6 5.2						
1954	Feb Mar Apr May	1 1 1		12.3 13.7 20.0 20.1	4.8 5.6 8.8 2.8						
1955	Feb Mar Apr	1 1 1		8.9 12.5 18.6	2.6 6.3 8.8					30.3	

	Snow Survey	Date	Arch Falls (7350 ft)	Devils Slide (8100 ft)	Food Headow (6600 ft)	Hood Headow (new) (6600 ft)	Lick Creek (6860 ft)	Shower Falls (3100 ft)	liay-June Streamflow Forecast (1000 AF)	April-July Streamflow Forecast	itay-July Streamflow Forecast
	May	1		22.8	10.4					26.0	
1956	Feb Mar Apr May	1 1 1		16.2 18.5 23.3 26.2	6.2 7.3 9.0 4.8					32.0 32.0	
1957	Mar Apr May	1 1 1		14.2 19.1 24.6	6.2 7.8 6.9					27.0 27.0	
1958	Feb Mar Apr May	1 1 1		12.6 17.2 21.4 26.6	7.3 8.6 9.6 10.4					31.0 31.3	
1959	Feb Mar Apr May	1 1 1		14.6 19.9 28.0 30.6	6.6 8.2 11.4 7.9					34.1 34.0	
1960	Feb Mar Apr Hay	1 1 1		13.4 19.0 23.0 27.2	4.4 7.1 7.9 6.4	4.8 7.9 8.7 7.1				29.2	27.5
1961	Feb Mar Apr May			9.2 14.4 17.1 23.6	4.3 6.2 7.6 7.6	4.8 6.9 8.4 8.4				25.1	23.1
1962	Feb Mar Apr May Jun	1 1 1 1		18.8 21.8 25.4 25.0 21.4	7.9 9.4 11.4 4.8	8.7 10.4 12.5 7.2				35.3	30.4
. 1963	Feb Mar Apr May Jun	1 1 1 1	12.7 14.1 2.7	14.6 19.8 22.4 25.2 19.5	8.7 9.7 9.2 9.3	9.6 10.5 10.4 10.7				31.8	30.2

profes		
		*
		3.
93		31.3 31.3

	Snow Survey Date	Arch Falls (7350 ft)	Devils Slide (8100 ft)	Hood Headow (6600 ft)	Hood Meadow (new) (6600 ft)	Lick Creek (6860 ft)	Shover Ealls (Si00 ft) Hay-June Streamflow Forecast (1000 AF)	April-July Streamflow Forecast	May-July Streamflow Forecast
1964	Jan 1 Feb 1 Mar 1 Apr 1 May 1 Hay 15 Jun 1 Jun 15	6.7 10.8 14.8 16.1 10.8	11.9 20.2 25.6 27.0 25.9 20.4	4.6 8.9 12.6 12.1	5.2 9.3 13.3 12.7	1.9 5.2 10.5 12.9 14.4	13.6	36.1	34.0
1965	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1 Jun 15 Jul 1	11.0 14.3 16.0 16.3 19.0 17.0 6.4	21.8 26.3 29.8 32.0 35.0 35.2 25.6 14.4	8.4 11.6 13.5 10.0 10.0 4.4	9.6 12.7 14.9 12.3 13.0 7.0	4.9 9.5 12.5 15.1 10.4 9.8 0.0	38.2 38.3 28.2 16.5	40.0	37.0
1966	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1 Jun 15	4.2 6.4 9.3 11.6 7.2 1.4 0.0	4.0 7.2 12.2 16.4 22.2 19.5 14.5 4.0	3.0 4.6 6.2 5.2 0.0 0.0	3.4 5.1 7.0 7.0 0.0 0.0	1.3 3.3 5.6 6.8 7.0 0.0	5.3 10.5 15.5 20.7 25.3 21.5 16.3 2.8	25.6	25.6
1967	Jan 1 Feb 1 Mar 1 May 1 May 15 Jun 1 Jun 15 Jul 1	8.8 12.2 16.8 18.7 19.0 9.0	6.6 15.2 21.4 26.8 30.2 32.4 24.0 17.7 8.6	7.4 9.8 13.4 13.4 10.5	8.2 11.0 15.0 14.6 1.26 0.0	3.9 8.1 11.5 13.6 13.5 10.9	8.3 18.3 24.3 31.3 33.2 35.5 27.0 19.5 7.7	44.0	42.2
1968	Jan 1 Feb 1 Mar 1 Apr 1	13.6 15.0 16.5	17.7 22.7 26.4 28.2	3.9 10.6 11.3 11.8	9.5 11.6 12.4 13.8	7.4 11.0 11.4 11.6	20.8 25.3 30.7 32.3	43.2	

	Snow Survey Date	árch Falls (7350 ft)	Devils Slide (3100 ft)	Hood Headow	Hood Meadow (new) (5500 ft)	Lich Groeb (6360 ft)	Shower Falls (3100 ft)	liay-June Streamflow Forecast (1000 AF)	April-July Streamflow Forecast	May-July Streamflow Forecast
1968	May 1 May 15 Jun 1 Jun 15 Jul 1	20.3 17.9 14.4 7.1	35.2 33.7 33.2 30.2 14.6	12.3 8.5 0.5	15.2 11.6 0.3	14.2 3.0 0.0	38.5 36.3 37.5 32.3 18.0			42.2
1969	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1	10.0 11.4 11.6 11.9 8.6 0.3	10.0 15.8 19.3 20.2 22.0 20.4 11.6	4.0 7.8 8.4 7.1 5.4 0.5 0.0	4.6 8.5 9.2 8.2 8.5 0.6 0.0	3.7 6.9 8.1 6.0 3.4 0.0	12.0 19.5 23.8 25.8 26.8 21.3 11.5		34.6	28.5
1970	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1	7.6 11.6 13.4 19.2 23.3 22.2 16.8	13.0 19.6 24.3 32.6 40.5 39.0 34.4		8.2 11.9 10.0 16.2 19.6 15.2 5.8	6.2 9.6 10.2 15.5 19.7 17.2 4.9	14.7 23.2 28.3 36.7 44.9 45.2 39.3		50.0	51.6
1971	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1	7.0 10.2 12.8 17.1 19.5 15.4 14.4	13.2 18.2 23.0 29.8 35.8 32.6 31.6		6.4 9.1 11.2 14.7 15.5 7.4 0.7	5.7 7.4 9.3 13.2 13.7 1.9 0.0	14.8 21.5 27.8 35.3 41.4 35.8 37.5		49.5	48.0
1972	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1	5.8 9.0 10.4 12.9 14.2 11.8 3.4	9.8 14.7 18.4 23.6 26.1 25.8 20.0		4.6 7.9 9.2 11.0 10.7 3.8 0.0	3.9 6.8 8.6 8.0 5.6 0.0	12.2 18.0 22.5 28.0 30.7 29.8 22.7		37.0	34.0
1973	Jan 1 Feb 1 Mar 1 Apr 1 May 1 May 15 Jun 1	4.8 6.0 11.2 16.8 11.0	7.8 10.7 17.5 26.6 20.7		4.4 6.4 11.3 13.6 0.0	3.6 5.7 10.7 13.2 0.0	9.3 13.0 21.3 28.5 23.7		29.5	36.0

, . .

APPENDIX D

Newspaper Accounts of Hyalite Flooding

		7
	121	
		,

GALLATIN COUNTY And Belgrade Journal

Vol. No. XIX

Bozeman, Montana, Thursday, December 26, 1968

Outdoor Enthusiasts Stopped by Flood

Hyalite Canyon Road presents a formidable picture as Montie Stanhope and David Thomas. of the Gallatin County Tribune, work their way out of the canyon Sunday

Anyone touring the Hyalite Canyon Sunday was in for a surprise when they returned home that afternoon.

The canyon road had become, of all things, flooded by Middle Creek.

Ice dams had been formed in the Creek by

afternoon.

lt took them a little three hours of over shoveling ice, removing tree stumps and debris to get their vehicles down the road.

blocks of ice catching on logs and forming dams.

This caused the water to wash over the road, thereby picking up more ice and debris and causing flooding further down the creek.

After the water pushed

They were assisted by other persons (see photo) who wielded their axes in an effort to remove the trees.

Middle Creek can be seen to the right of the

the ice and debris ahead of it the road remained relatively clear.

Sheriff L.D.W. Anderson, who was called to the scene, called Forest Service personnel to the

"We wanted to make certain no one wastrapTribune Photo By Montie Stanhope

The ice and picture. water on the road was pushed by such pressure that it extended great distances at a number of points down the canyon on the road.

ped in the canyon," said MacPherson. Ross Bozeman district ranger, "There were 20 to 30 cars above the debris.

In one area of the Hyalite road water was backed up about

(Continued on back Page)

GaMc Sh

Cati Gallat ceived higher beef t to loc ers.

Not prices instead Septen ing months have enced

Catt reache heavy usually Novem part of

This Yea Loca a 450 has be 32 ce: fall wir ing 26 pound.

ln co 1967 n steer (26 to and the 25 cent:

Buver credit market mand f cattle. ment also be also re ports fr New Ze

Officials Plan Schools

Chamina Brogger

Chammina

		r

W scene Re-Crea

e Security Bank and Company of Boze-

depicted an ial nativity scene ozeman spectators. theme has

it unusual is that the bank unique, what does make has used three live sheep Christmas scene is not and a burro. It is this kind

mas that brings smiles

contribution to Christ-

Tribune Photo by Donna Brown

to the faces of passersby

rymen:

lp accumulate data esent to Washingntimued from front Page)

that they were forced to the following: loss due count; losses on cattle have been listed as occuring from to selling hay at a dis-Losses

extra cost of bringing red because they had to and highlights their day. expenses or out-of-state cattle to re-plenish their herds; this item; losses incurorrow money and pay trucking

Officials Unge Public To Use Pare

During the holiday season, Christmas thru W. Anderson, Sgt. of the New Years, Sheriff L.D.

Highway Pátról, Buck Baldry and Chief of all the public to drive Police Ron Cutting, urge in a safe and prudent Above all, they urge, be careful of excessive intoxicating throughout the holiday season, beverages ō

incurred by boarding interest on it while under restraint; losses unproductive cows for a long period of time; naving to pay for incurred testing of their hay osses

Indemnities Paid

At the present time, destroyed can be paid. indemnities produced

The ASCS office has received applications ducers in three other cade and Lake, asking from three milk procounties, Fergus, for indemnities.

were selling milk but their buy their milk because processors refused to of pesticide content. These dairies not restrained

Indemnities totaling \$43,716 were paid out to dairymen earlier.

All law enforcement in force to apprehend those who fail to obey the law. The cooperation of the public will be agencies plan to be out appreciated.

to discharge firearms As a reminder to those sheriff's office said it is unlawful who may receive fire

To Lodge No. 18 Officers Elected

ing of Bozeman Lodge cers for the year 1969 At the regular meet-No. 18, on Thursday December 5, 1968, offi were elected. Elected were: Robert M. Holter, Worshipful Master; Raymond K. Senior Shackleford, Senior Warden; James L. Simp-Junior Warden Kenneth E. Monroe, Secretary; William Holmes, freasurer; Leslie House, Trustee.

p.m., Andr. Gallatin Lodge #6 was held at 7:30 p.m. Thursday Installation in con-Lodge unction with December 3ozeman

lation, a free pancake Preceeding the instalsupper was served at 6:30 p.m. for all Masons.

within three miles of the city limits.

The Sheriff's office also asks that those who solicomwons public streets, county should remember they are not to travel any roads or highways.

obey the law. We wish a happy new year to every-one," says the Sheriff's courteous and merry Christmas and a "Be

Flood:

(continued from front page) quarter of a mile,

This happened when a large tree fell into the a bridge causing the ice and water to back up creek and wedgedbehi

"This is the first time Middle Creek has done Pherson. "The last time it happened we had to use dynamite to break said this in four years,"

The road was closed week to vehicles other the early part of the than pickups or fourwheel drives. up a jam.

ing the roads clear while The Three D Lumber company worked plowcleared logs from under the bridges sothis backwouldn't happen Forest

	å.		1
	2.0		
			# 1

iness through Wednesday with showers and thundershowers mostly during afternoons and evenings Shower activity de-

BOZEMAN, MONTANA, TUESDAY EVENING, MAY 19, 1970

(reasing on Wednesda) Low to-night 39, high Wednesda; 58,

isht temperatures resulted in the flood ig over the road and into the low-lying to the west, receding about 3 - 4 inches.

Gallatin Valley Flooding Potential 'Critical' Now

By ANNABELLE PHILLIPS

Chronicie Staff Writer

The flooding potential in the the key to the future.

Currently, low elevation inch of snow on May 15. streams are raging out of their banks. And, at the present snowmelt rate, they will not reach their peak flow for about another two weeks.

The major streams - West Gallatin, Madison, Jefferson and Missouri - are high but, as yet, are causing no troubte. Peaking point for the waters of these rivers should be around mid - June.

The weather, however, can bring about a dramatic change.

A few days of high temperatures or rain, or a combination of the two, will bring about a rapid increase in all streamflows. Should this happen, most the streams and rivers will be out of their banks.

The mountain snow pack this year is abnormally large, particularly at lower elevations. At many of the high elevation sites there was more than 100 inches of snow on May 15, Phil Farnes, snow survey supervisor for the Soil Conservation Service, said today,

Take the Hyalite Drainage, for there was 105 inches of snow and the water content was 45,2 inches. Snow depth at this point last year was 43 inches and water content 21,3 inches, The average water content for the period of 1953 to 1967 was 28.5

At Devils Slide, which also has an elevation if 8,100, the snow depth was 92 inches on May 15 and the water content 39 inches compared to a 21 inch snow depth and 8,6 inch water content a year ago.

At Lick Creek, 6,860 elevation, there was 50 inches of snow with a 17.2 water content, Last

year on the same date there was no snow in this area.

Gallatin Valley is already criti- at Hood Meadow, 6,600 eleva- goes. cal and the weatherman holds tion, and the water content was 17.2 Last year there was an vation of 7,250, had 103 inches

The Bridger Creek snow was 43.4 inches. course paints about the same there was 33 inches of snow There was 43 inches of snow picture as far as the snow

> Bridger Bowl, with an eleof snow and the water content

with an 18.1 water content. The 1953 - 67 average water content was 27.6,

(See Flooding, Page 3)

Regents Stay Mum On MSU President

three men has been chosen as May 1. president of Montana State Unipresident's name secret.

not be released until laier this week after such details as when the new president can take over have been determined.

The board reached its decision during a meeting in Helena Monday. The Associated Press learned the new president of the 7,700-student school will be one of three men interviewed by the board this month.

They are:

- Carl W. Molntosh, president instance. At Shower Falls, of California's Long Beach State where the elevation is 8,100, College, which has more than 24,000 students and about 1,300

- Roy E. Huffman, Bozeman, A source said the name would tion. He was interviewed Sun. Johnstone.

> nological University, Houghton, former position as administrawho was interviewed Monday.

> Another candidate, who had president takes over been recommended by a special screening committee of the within a day or two from the Board of Regents, withdrew his office of the system's executive name from further consider- secretary, Edward W. Netson He was Duane Ackre, dean of agriculture at South the delay in announcing the Dakota State University.

Since the death of MSU President Leon H. Johnson last June 18, Regents of the Montana Uni-

HELENA (AP) - One of teachers, He was interviewed on versity System have been looking for top candidates.

The school, second largest of versity but the State Board of MSU's vice president for re. the system's six units, has been Regents is keeping the new search and director of its En. operating under the direction of downent and Research Founda. Acting President William \

Johnstone, however, withdrew - Dean Stebbins, academic his name from consideration vice president of Michigan Tech. and is expected to return to his tive vice president when the new

The announcement is expected

One source sald the reason for name of the new president is to provide time to determine a number of details, such as the starting date.

Reds Step Up Attacks in South Vietnam

SAIGON (AP) - North Vietnamese and Viet Cong troops stepped up their attacks across South Vietnam sharply today in a new "highpoint" of activity apparently marking the 80th anniversary of the birth of Ho Chi Minh.

The Communist command's troops also threatened another Cambodian provincial capital in their efforts to keep open their supply lines through northern nine Negro members of the Cambridia and southern Laos.

"mericat and

By THE ASSOCIATED PRESS Nixon sent American combat and prices into line, ridicual troops into Cambodia, student and discredited by the Nixos adprotest strikes were under way ministration, seems to be more at a reported 265 colleges. How- ing a comeback. ever, the disorders and scattered violence which characterized the first two weeks of protest have subsided

WASHINGTON APY -A 11 House, charging the White House with a list or them isa-

World News Briefs

WACHINGTON (AP) Eighteen days after President old tactic of "jawtoning" wares

> Carefully choosing their words, Federal Peserve Chairman Arthur F. Burns and Homing ferretary George forms.

> both todicated Monda, the civi-

ed at MSU Poll

The spoke mail did not sahow many of the 20% Minuteman trai Montana will be replaced a week, by the advanced model or when the obversions would take was well known in the north-

He said minor changes in the stlos will be needed for the con-

BUTTE (AP) - Members of the Butte police force voted 28-0 Monda, to a rept a national union as its largaliting agent. making Butte the first major city in Montana to embrace the idea of a unionized police department.

HELENA (AP - Gov. Forrest H. Anderson Monday appointed Vince Caciari, Whitefish, to the Veterans Welfare Commission. Caciari replaces kenneth Leslle, Great Falls, for a term ending May 18, 1975.

GREAT FALLS (AP) - Clyde Jarvis, president of the Montana Farmers Union, has been named by the Census Bureau to serve on the Census Advisory Committee on Agricultural Statistics.

HELENA AP) - Daniel L. Herbert, Billings native, has been nämed Agricultural Statistictan-in-Charge for the Montana Crop and Livestock Reporting Service in Helena

Chicago Livestock

CHICAGO (AP) - (USDA) -Cattle 800, slaughter steers weak to 25 lower; few loads high choice and prime 1,225-1,-275 lb slaughter steers 30 50-31.50; choice 1,000-1,250 lbs 29 75-30 50; good 27,75-29 00; CARL E. VOGEL choice 850-1,050 lb slaughter helfers 29,50-30,00; part load and commercial cows 22.25- Nelson Sunset Chapet, 24.50, utility and commercial hulls 26 00-29,50

hoice 95 lb shorn slaughter ist. tambs with No 1 to 3 pelts with

Dahl & Vial

Funeral Directors

En. H. Dight since 1970 titon H Dight since 11039

Dokken-Nelson

Funeral Service

Howard Ne son Melvin Admire Fee Froth

Anithy of trest in time of

Mighta fille to craffle stration Club attended in groups, a traffer weekly at tam, burnal was in Subset Hills and the second of the second o

Friz , Monday,

Mrs. Daems had been un nissites in situs throughout cen- Phoenix with her brother for

Buckley, a native of Butte, west and southwest for his position as district representative for Knights of Columbus. He had made his home in Phoenix for a number of years.

Survivors, in addition to his sister, include his widow, three daughters and numerous grand-

Funeral Rites

WALTER OSWALD WEHRMAN Funeral services for Walter Oswald Wehrman, of Belgrade, who died May 12, were con-ducted Monday afternoon at the Dahl and Viai Chapel.

The Rev. Robert Duryee of Belgrade officiated. Mrs. Al Potts was organist and Charles Rice, soluist.

Pallbearers were Lloyd H. Miller, Charles R. Wheeler, James Lee, Jess T. Erickson, Don Randell and Frank Reller.

Burlal was in Sunset Hills Cemetery,

ALBERT SCHNEITER

Funeral services for Albert Schneiter of Belgrade, who dled May 16, were held Monday afternoon at the Dahl and Vial Chapet.

The Rev. Lyle Onstad officiated, Mrs. R. D. Smilley was organist and Mrs. Fred Wehren was soloist.

Pall bearers were Clifford Barnes, Lane Barnes, Waitace Curtis, Ernest Wehren, Lloyd Hungate and Fred Wehren.

Buriai was in Meadowview cemetery at Manhattan.

Funeral services for Carl F (Charlie) Vogel of Route 1, who high choice and prime 1,075 lbs died May 14, were conducted Sa .-30 50, good 27 00-28,50; utility urday afternoon at the Dokken-

The Rev. Lyle Onstad offictated. Mrs. Willard Harper was Sheep 100; part deck good and organist and Charles Rice, solo-

Pallbearers were Charles buck lambs included steady at Williams, James D Williams, 20 50. Frank bellaan Rudy Vogel, Jim Brender and David Vogel, Jr.

Burial was in Sunset Hills Cemetery.

EVELYN L. NELSON

Funeral services for Mrs. P. K. (Evelyn Lucia) Neison were conducted Saturday morning at the Dokken - Nelson but was repaired by county Sunset Chapel,

The Rev. Marcus Wist officiated. Mrs. Nita Botchek was organist.

Pallbearers were Aivin Goldenstein, Gerald troub-tames Storey, Jim Breeden, William Roife and G. S. Burkhart.

Members of -the Hereford THE MES No. Suppose May for Auxiliary and Home Demonferrial was in Sunset Hills tremely high: emeters.

SA BACKER

services for Mrs. parker of 531 North ser died May 12, et Eintdas afferminn

on what is known as "the pro-tissis for the first off from an

tiall, a system of planning and to the testislature. budgeting by programs which. Anderson said the improved are oriented toward long-range program type of but, et request-

cies and institutions which are ment in state bidgetin. required to submit budgets to structions has been prepared.

☆ Flooding

At Maynard Creek on Bridger, where the elevation is 6,-210, there was 62 inches of snow and a 25% water content. Last year the snowdepth was 8 inches.

Sacajawea, with an elevation of 6,550, had a snow depth of 56 inches and water content measured 23,3 inches on May 15, Last year these measurements were nil.

The Upper Gallatin has its share of snow, too,

At Bear Basin, elevation 8,150, the snow depth on May 15 was 76 inches and the water content, 31.2.

There was 54 inches of snow at Little Park, elevation 7,400. The water content was 21 inches.

At Twenty - One Male snow course in the Upper Gallatin the elevation is 7150 and the snow depth measured 42 inches. The water content measured 15.8.

The critical flood situation will continue to exist until the snow, particularly at the lower elevations, is gone.

The biggest problem right now is in the East Gallatin drainage area.

Bridger Creek is running rampant from the Story Mill Road westward.

Water is running around the doorsteps of homes in the area of the Story Mill Bridge, It's over the top of the Story Mill Road and Manley Lane and lying in pools in the low pasture spots in the area,

The dyke at the Riverside Country Club is holding back the high waters of the East Gallatin this year but to the west, this river is running out of its banks and causing headaches for people whose homes are in the lowlying areas, particularly in the vicinity of the Joe Nelson road.

An approach to the bridge on the Joe Nelson road washed out crews Monday.

The waters are also reported high on Sixteen Mile Creek, which is running out of its banks on the middle fork.

Rocky Creek to the east of Boxeman is also high and out of its banks in the low spots.

Sourdough (Boseman Creek) flowing through the eastern part of the city is posing no problems at present, although it's ex-

gram concept of budgeting "known as the Challing Education Program budgeting is essent which the governor reconnicinds

ed to the legislature in 19 -To guide the 110 state agen- marks a small and it prove-

The manual now being sent to the Department of Administra- state agencies explains that one tion, a 60-page manual of the reason for the emphasis on program budgeting stems from "concern that in the pursuit of short-run objectives wo may be lusting sight of larger roals."

Stock Market

NEW YORK AP) T stock market experienced starp, broad slump warts this afternoon as the Dow Tolles industrial average went below the 700 level

30 blue chips was oit by 5.38 requests. points at 697.43. Trading was

Today's downtorn ended a rally that started late. Thursday and sent the average ahead more than 17 points Friday,

Declining issues on the New York Stock Exchange held an almost 2-to-1 advantage over gainers. Winners and losers had been about even at the session's

The Associated Press 60-stock average was off 1 0 at 245,3, industrials were off 2.6, rails off .5 and utilities, up .5.

Motors, rubber issues, aircrafts and electronics, were generally lower. Tobaccos and drugs were generally higher.

Analysis had expected the volnme to increase today with the expiration Monday of the massive American Telephone & Telephone rights offering. The offering was believed to have drained off large quantities of funds from the stock market.

Prices on the Bir Board's most-active list included Phelps Dodge, off 2 1/2 at 44, Memorex, off 3/8 at 775/8; Hewlett-Packard, off 1, at 30°, Penn Central, off 11, at 14°, and Air Products, off 11, at 37°, Prices on the American Stock

Exchange's most-active list included Research Fottrell, off 5 at 26 . Saxon Industries, off 31 at 46, Argus, up I at 415, and Deltona, off 4 at 2714

Portland grain

POTTION GRUIN
PORTLAND AP May 18 close
Portland Grain Eschange
Wheat hid to arrive messes his 1
built, 20dey abigment on vered coest
While Sto.
Hard Red Winter Ordinary 186
Daris hightens Soring export 14 per
cent 283
Daris Hard estimate Ordinary 181. 17
per cent 175 12 per cent 181
8 array hid to arrive market 20-88
temper 2410
Castroy hid to arrive market 20-88
temper 2410
Castroy for windowski primpt delire
arry, built not fish their himitals delire
for, built not fish their himitals derive
fish 2 to the weeken at 85-40 M Seriey
fish 2 dd in weeken at 85-40 M Seriey
fish 2 dd in weeken at 85-40 M Seriey
fish 2 dd in weeken at 85-40 M Seriey
fish 2 dd in weeken at 85-40 M Seriey
fish 2 der spragers wheel 5 herrey 1, fisher
3a, cam 2 page 3 Milliness 14

rest of that he can on ented with developing cover most including the said different distribution of the He will break to a Salstration 4, 21, 1. to take a relation of nental relations.

Major procián lareacte exatton agen as could be a mars and se undars can all Mither education special extion and administrate s

Forage insideatte with nomi delejopment and retion, the major program atma, to livestork and a c thre, commercial and industrior upatronal and administrati

Within such major proci areas, the agencies will list i grams and subprograms The budget director so

agency has been asmirible of the instruction manual caret-At moon, the bow average of before working on 1371-73 bud

Frank Dunkle Hospitalized

HELENA (AP) - Mont. Fish and Game Department rector Frank Dunkle has is hospitalized in ilelena follow a mild heart attack.

Keith A. Freseman, deg Fish and Game director the 45-year-old Dunkle was ! en to St. Peters Hospital at he became ill at home.

A spokesman for the hospsaid Dunkle was in "good dition and resting comfortab

Dunkle has directed the partment, one of the star largest agencies, since his pointment in September of 13

Field Work About 3 Weeks Behind

HILL 'A (AP) er and moddy fields have to pered spring seedug. The M tana Weather, Crop and Listock Bulletin said, with the work about three weeks betnorma)

The Bulletin said in sevareas of the state last were rain brought seeding to a se standstill

As of hert Freder, see his spring wheat was 20 percomplete, compared with a centual to earlor. the same di

Barbs drilling was be cent outpute, the Bulletin rospanes with 30 per cest sear as operated to a wis listed as forest test plated, a per contract test then year a tis sate

The Folletin world be condof water after their

CORREC

U.S. No. 1 Su

Mar Crop

ODANOR

× TOM OLSON

APPENDIX E

		- }
i,	<u> </u>	,

m v A Z	VALJE	3 0 0	SHe	PRICE V	ALVE	83	
Z (Kevene)	0000000	O	0000	00000	1885)	0000	
2 S	00000-0	ب	00000.0	00000 0		0000	
35	0000	ΛI	0000	0000		0000	
m m	00000.0	m	0.0000.0	.00000		0000	
44	• 30000	t	0000	000000		0000	
	0.0000.0	വ	0000000	0000		0000	
رب رب	100.000000	9	100.00000	000000•		1.000000	
ო	00000.00	7	00000-0	0000		0000	1
-E.	SOLUTION BY Cou						
12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	VALJE	100 F	/C0S1/	REDUCED	₹ Ø		
	0000	00	00	0000	•		
	0000000	Ö	00	0000	N		
	0000	9.00	00	0000	m	1	
	0000	.00	00	0000	#		
	0000	Ö	00	0000			
	0000	0	0	000000			
	0000	Ö	0	0000			
	00000-0	Õ	00	0000	വ		
(∪ ₹	100.200000	000	0000	000000-	9		
	00000 • 00	O	00	0000	7		
	Secution by Col.	0828	ETIVE.				

FOR DISCUSSION OF RESULTS PLEASE SEE THE TEXT.

		ŷ.
		7

```
TIME .0000 TYPE 0 8 ENTRIES, TIME
                                                                                                                                                                                                     • 4 TRANSFORMATIONS WITH 8 ENTRIES O POOR COLS, 4 TRANSFORMATIONS WITH
                                                                                                                                                 20 MATRIX ENTRIES.
LINEAR
                                                                                                                                                10 CBLUMNS, AND
                                                                                                                                                                           4 VOV-SLACKS
                                                                                                                                                                                                     OTH ITERATIONS

SLACKS
                         * RESERVBIR BRERATION PROBLEM
                                                                                                                                                 S ROWS,
                                                                                                                                                                           3 SLACKS,
                                                                                                                                                                                                    REIVVERTING AFTER FINVERSIBL COMPLETED
                                                                                                                                                 SAN MEJBASS
                                                                   0
                                                                                                                                                              SOLVE
                                                                                                                        1ATRIX
                                                    3C BARS
                                       NISE8
```

C) T.

STEPS C ô FEASIBLE ON ITERATION

00000

			h
	nen		
			,

APPENDIX F

7.1
-3

DYNAMIC PROGRAMMING.

	. 7.	

```
DP380
                                                                          0P400
                                                                                                      DP440
DP450
                                                                                                                          DP452
                                                                                                                                                                                    DP530
                                                                                                                                                                                                                                    DP580
                                                                                                                                                                                                                                             0P590
0P600
                                                                                                                                                                                                                                                               DP610
                                                                                                                                                                                                                                                                                    DP630
                                                                                                                                                                                                                                                                                             DP632
                                                                                                                                                                                                                                                                                                       DP634
                                                                                                                                                                                                                                                                                                                 DP640
0P320
0P330
                                             DP370
                                                                                                                                                                 DP510
                                                                                                                                                                                                                          DP570
                                                                                                                                                                                                                                                                                                                          DP650
                                                                                                                                                                                                                                                                                                                                                                DP690
                                                                                                                                                                                                                                                                                                                                                                          DP700
                                                                                                                                                                                                                                                                                                                                                                                    DP710
                                                                                                                                              DP456
                                                                                                                                                                           DP520
                                                                                                                                                                                                       DP550
                                                                                                                                                                                                                 DP560
                                                                                                                                                                                                                                                                          DP620
                  DP340
                           DP350
                                     DP360
                                                                  DP390
                                                                                              0F#30
                                                                                                                                                       DPSCO
                                                                                                                                                                                                                                                                                                                                    DP660
                                                                                                                                                                                                                                                                                                                                              DP670
                                                                                                                                                                                                                                                                                                                                                        DP680
                                                                                                                                                                                                                                                                                                                           CUMULATIVE LBSS')
                                                                                                                                                                 F9R~AT(10x, STBRAGE LEVEL', 10x, PECREATION LOSS'/)
ARITE(10g,20), (J,LR(J), J+0,2)
F9RWAT(15x,11,22x,11)
                                                                                                                                                                                                                                                                                                                            AND
N
                                                                                                                                                                                                                                                                                                                                                                 WRITE(108,520), U. (SMEM(I, U), LMEM(I, U), I=1,5)
                                                                                                                                                                                                                                                                                                                           STORAGE
                                                                                                                                                                                                       FBRMAT(///10x, 'DRAFT', 10x, 'FL980 L8SS'/)
                                               T8300
                                                                                                                                                                                                                                              FORMAT(///10X, 'SEASON', 10X, 'INFLOW'/)
                                                                                                                                                                                                                                                                                     FARMAT (140, 10X, 'STARTING STATER', 11)
                                                                                                                                                                                                                                                                                                        FORMAT(141,31X, * RESULTS BUTPUT *')
                                                                                                                                                                                                                                                                                                                           BPTIMAL
                                     IF(J.LE.0),69 T8250
IF(LMEM(5,J).GT.LMEM(5,J-1)),68
                                                                                                                                                                                                                                                                                                                                                                          FBRMAT(1HO,8X,11,5(5X,11,2X,12))
                                                                                                                                                                                                                 WRITE(108,40),(I.LF(I),I.0,6)
FORMAT(12%,II,15%,I1)
ARITE(108,50)
                                                                                                                                                                                                                                                        MRITE(108,60), (I,X(I), I=1,5)
FORMAT(13X, I1,14X, I1)
                                                                                                                                    DATA INPUT *!)
                                                                                                       (I-9)x+(I-2)S-(I-9)S=(I-9)O
                                                                                                                                                                                                                                                                                                                           FBRMAT(140,10X, MATPIX 9F
                                                                                                                                                                                                                                                                                                                                              FBRMAT(//10X,5(7X,11,2X))
                                                                                                                                                                                                                                                                                                                                    ~RITE(178,510),(I,1=1,5)
                                                                                               S(6-I)=SMEH(6-I,S(7-I))
                                                                                                                                                                                                                                                                            ARITE(108,70),S(1)
                                                                                                                                                                                                                                                                                                                 RRITE(103,500)
                                                                                                                                                                                                                                                                                              ARITE(108,490)
                                                        MINLELMEW(5,J)
                                                                                                                                    FORMAT (33X, 1 *
                                                                                                                                                                                              WRITE(108,30)
                                                                                                                                                        λŘΙΤΕ(138,10)
                                                                                                                                                                                                                                                                                                                                                         9 521 J±0,2
                                                                                     C9 400 I=1,5
                           Se 300 Ja0, 2
                                                                                                                            *RITE(108,5)
                  TRACING BACK
                                                                                                                 PONITINGS
         CONTINUE
                                                                            CONTINUE
近つれ 1 トスのひ
                                                                  C= (9)S
                                                                                                                                                                                                                                                                                                                                                                                              PUTPUT
                                                                                                                                              BUTPUT
                                                                                                                                                                   0
                                                                                                                                                                                     90
                                                                                                                                                                                                         9
                                                                                                                                                                                                                                               20
                                                                                                                                                                                                                                                                                                          490
                                                                                                                                                                                                                                                                                                                            500
                                                                                                                                                                                                                                                                  9
                                                                                                                                                                                                                                                                                                                                               510
                                                                                                                                      വ
                                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                     7<sub>C</sub>
         200
S
22
24
                                                         250
                                                                             300
         450
                                                                                                                                              56.
                                                                                                                                                                           600
000
                                                                                                                                                                                                       62.
                                                                                                                                                                                                                  53.
                                                                                                                                                                                                                                                                                                                 73.
                           • 7 7
                                                46.47.
                                                                  4
8
•
                                                                           • 64
                                                                                    ស ស
ស ម
ស
                                                                                                                                                                  ಸು
ಹ
                                                                                                                                                                                              61.
                                                                                                                                                                                                                            64.
                                                                                                                                                                                                                                   it:
                                                                                                                                                                                                                                             .99
                                                                                                                                                                                                                                                       67.
                                                                                                                                                                                                                                                                 58
                                                                                                                                                                                                                                                                            69
70.
71.
                                                                                                                                                                                                                                                                                                                                    75.
                                                                                                                                                                                                                                                                                                                                              76.
                                                                                                                                                                                                                                                                                                                                                                 78.
                                                                                                                                                                                                                                                                                                                                                                           79.
                                                                                                                                                                                                                                                                                                                                                                                    0
```

		7
		1
	(3)	
		7
		\
*		

	+0	
		ŕ
		\

* DATA INPUT *

RECREATION LESS	m ↔ O	SS61 C681£	O O D M & W C C O	INFLOW	寸⊣勿寸	- n
STBRAGE LEVEL	O +1 NI	DRAFT	O W M + W V0	SEASON	→ (C (C) ≥ (C)	STARTI 4G STATE

-F.4-

	>
	4
	5.
	6
	4
	5 T

MATRIX OF APTIMAL STORAGE AND CUMULATIVE LOSS

		ļ	
707	12	6	9
2	ď	N	<i>F</i> .
3	v	<i>→</i> /	m
14 1	2	J	2
7	10	\$	6
() Walth	2	-	<i>F.</i>
	7	m/	Ci
7	a	Co	יח
3	α α	ហ	fr.
7.07.0	1	₩.	F
No.	С	, [,	n

OPTIMAL PATH.

STORAGE 1 2 BPTIMAL POLICY N → N M → N O

6 H w w w w w ф

BPTIMAL LBSS=6

*STBP# 0

-F.5-

	٠,
	×.
19	
	r.

