Арифметична ієрархія. Алгоритм Тарського-Куратовського

Теорема. Функція $f = \mathbf{R}(g, h)$ може бути отримана із функцій g, h, базових функцій і функцій $+, \times$ та $\dot{-}$ за допомогою скінченної кількості застосувань операцій \mathbf{S}^{n+1} та \mathbf{M} .

Таким чином, клас ЧРФ збігається з класом функцій, отриманих із функцій o, s, I_m^n , +, \times , \div за допомогою операцій S^{n+1} та M.

n-арну ЧРФ з номером m позначаємо φ_m^n , а її область визначення та область значень — відповідно D_m^n та E_m^n . У випадку n=1 спрощені позначення: φ_m , D_m та E_m .

Функції o, s, I_m^n , +, \times , $\dot{}$ арифметичні, операції \mathbf{S}^{n+1} та \mathbf{M} зберігають арифметичність функцій. Тому *кожна ЧРФ арифметична*.

Класи арифметичних множин і предикатів позначаємо AM і $A\Pi$.

Кожна РПМ арифметична. Клас арифметичних множин замкнений відносно операцій \cup , \cap та доповнення: якщо множини A та B виражаються арифметичними формулами Φ та Ψ , то $A \cup B$, $A \cap B$ та \overline{A} виражаються відповідно арифметичними формулами $\Phi \vee \Psi$, $\Phi \& \Psi$ та $\neg \Phi$.

Таким чином, для класів РПМ і АМ маємо строге включення РПМ ⊂ АМ.

Діагональна множина $D = \{x | \phi_x(x) \downarrow \}$ є РПМ, тому D арифметична, звідки \bar{D} арифметична, при цьому \bar{D} не є РПМ. Отже, множина \bar{D} – арифметична, але не РПМ.

Нехай задана деяка ефективна нумерація арифметичних формул. Нехай \mathbf{T} — множина номерів всіх істинних арифметичних формул (ІА Φ).

Теорема (Тарський). Множина Т неарифметична.

Теорема Тарського засвідчує, що не існує "універсальної" ІА Φ , яка дозволяла б отримувати довільну ІА Φ за її номером. Теорема Тарського доводить неможливість повної формалізації поняття істини в достатньо багатих мовах, які включають або можуть моделювати мову арифметики.

Розглянемо арифметичну ієрархію – класифікацію арифметичних множин і предикатів. Вона пов'язує теорію рекурсивних функцій з математичною логікою

 Σ_n -префіксом назвемо послідовність кванторних префіксів із n-1 зміною однотипних кванторів, який починається квантором \exists .

 Π_n -префіксом назвемо послідовність кванторних префіксів із n–1 зміною однотипних кванторів, який починається квантором \forall .

Наприклад, $\exists x \exists y \forall u \forall v \forall w \exists t \exists z - \Sigma_3$ -префікс; $\forall x \exists y \exists z - \Pi_2$ -префікс; $\exists x \exists y \forall u \forall v - \Sigma_2$ -префікс; $\exists x \exists y \exists u - \Sigma_1$ -префікс; $\forall u \forall z - \Pi_1$ -префікс.

Нехай \Re – множина арифметичних формул, значеннями яких ϵ рекурсивні предикати.

Для всіх $n \ge 0$ введемо класи предикатів Σ_n , Π_n та Δ_n .

Покладемо $\Sigma_0 = \Pi_0 = \Delta_0 =$ множина всіх РП.

Для $n \ge 1$ маємо:

- $-\Sigma_n$ складається з усіх предикатів, виразимих формулами вигляду $\sigma\Phi$, де $\sigma\in\Sigma_n$ та $\Phi\in\Re$;
- $-\Pi_n$ складається з усіх предикатів, виразимих формулами вигляду $\sigma\Phi$, де $\sigma\in\Pi_n$ та $\Phi\in\Re$;
- $-\Delta_n = \Sigma_n \cap \Pi_n$.

Введені класи предикатів Σ_n , Π_n та Δ_n індукують відповідні класи множин

$$\Sigma_n = \{I_P \mid P \in \Sigma_n\}, \ \Pi_n = \{I_P \mid P \in \Pi_n\}, \ \Delta_n = \Sigma_n \cap \Pi_n.$$

Маємо: $\Sigma_0 = \Pi_0 = \Delta_0 =$ множина всіх РМ, Σ_1 це множина всіх РПМ, Π_1 – це множина всіх доповнень до РПМ. В силу теореми Поста $\Delta_1 = \Sigma_1 \cap \Pi_1$ – це множина всіх РМ. Отже, $\Delta_1 = \Delta_0$.

Наведемо елементарні властивості введених класів предикатів.

- 1. $P \in \Sigma_n \Leftrightarrow \neg P \in \Pi_n$ та $P \in \Pi_n \Leftrightarrow \neg P \in \Sigma_n$.
- 2. $\Sigma_n \cup \Pi_n \subset \Delta_{n+1}$.

3.
$$\bigcup_{n\geq 0} \Sigma_n = \bigcup_{n\geq 0} \Pi_n = A\Pi$$
.

Теорема (теорема Кліні про ієрархію). Для кожного n > 0 існує арифметичний предикат ϑ такий, що $\vartheta \in \Sigma_n \setminus \Pi_n$ та $\neg \vartheta \in \Pi \setminus \Sigma_n$.

Аналогічні твердження справджуються для відповідних класів арифметичних множин.

Ієрархія арифметичних предикатів/множин

Встановлення належності множини до класів Σ_n чи Π_n , тобто визначення її місця в арифметичній ієрархії, можна здійснити *алгоритмом Тарського-Куратовського*.

Суть алгоритму: використовуючи пренексні операції, подаємо предикат " $x \in M$ " у вигляді $(\sigma \Phi)_N$, після чого встановлюємо $\sigma \in \Sigma_n$ чи $\sigma \in \Pi_n$ для деякого n > 0. Найточнішою вважається класифікація при найменшому можливому n, всі інші класи будуть його містити.

Приклад 1. $M = \{x \mid D_x = \emptyset\} \in \Pi_1$.

Маємо $D_x = \emptyset \Leftrightarrow \forall y (\phi_x(y) \uparrow) \Leftrightarrow \forall y \neg \exists k (P_x(y) \downarrow \text{ за } k \text{ кроків}) \Leftrightarrow \forall y \forall k \neg (P_x(y) \downarrow \text{ за } k \text{ кроків}).$ Предикат $\neg (P_x(y) \downarrow \text{ за } k \text{ кроків}) \in \text{Р}\Pi.$

Приклад 2. $M = \{x \mid E_x \text{ нескінченна}\} \in \Pi_2$.

 E_x нескінченна $\Leftrightarrow \forall z \exists v (v > z \& v \in E_x) \Leftrightarrow \forall z \exists v (v > z \& \exists v \exists k (P_x(v) \downarrow v)$ за k кроків) \Leftrightarrow

 $\Leftrightarrow \forall z \exists v \exists k (v > z \& P_x(v) \downarrow v \text{ sa } k \text{ кроків}).$

Предикати y > z та $(P_x(y) \downarrow y$ за k кроків) є РП.

Приклад 3. $M = \{x \mid \varphi_x \text{ не } \in P\Phi\} \in \Sigma_2$.

 $x \in M \Leftrightarrow \varphi_x$ не ϵ РФ $\Leftrightarrow \exists y (\varphi_x(y) \uparrow) \Leftrightarrow \exists y \neg \exists k (P_x(y) \downarrow \text{ за } k \text{ кроків}) \Leftrightarrow \exists y \forall k \neg (P_x(y) \downarrow \text{ за } k \text{ кроків}).$

Предикат $\neg (P_x(y) \downarrow \text{ за } k \text{ кроків}) \in \text{РП}.$

Приклад 4. $M = \{x \mid D_x \in PM\} \in \Sigma_3$.

Предикат ($P_u(v) \downarrow$ за w кроків) позначимо P(u, v, w).

Використаємо співвідношення $A \leftrightarrow \neg B \sim (\neg A \lor \neg B) \& (A \lor B)$ та теорему Поста.

Тепер маємо $D_x \in PM \Leftrightarrow \exists z (D_x = \overline{D_z}) \Leftrightarrow$

 $\exists z \forall y (y \in D_x \leftrightarrow \neg (y \in D_z)) \Leftrightarrow \exists z \forall y (\exists k P(x, y, k) \leftrightarrow \neg \exists n P(z, y, n)) \Leftrightarrow$

- $\Leftrightarrow \exists z \forall y ((\neg \exists k P(x, y, k) \lor \neg \exists n P(z, y, n)) \& (\exists k P(x, y, k) \lor \exists n P(z, y, n)) \Leftrightarrow$
- $\Leftrightarrow \exists z \forall y (\forall k \forall n (\neg P(x, y, k) \lor \neg P(z, y, n)) \& \exists k \exists n (P(x, y, k) \lor P(z, y, n))) \Leftrightarrow$
- $\Leftrightarrow \exists z \forall y \forall k \forall n \exists l \exists m ((\neg P(x, y, k) \lor \neg P(z, y, n)) \& (P(x, y, l) \lor P(z, y, m))).$

Предикат в дужках після кванторних префіксів ϵ РП.

Приклад 5. Предикат " $D_x = D_y$ " $\in \Pi_2$.

Предикат ($P_u(v) \downarrow$ за w кроків) позначимо P(u, v, w).

 $D_x = D_y \Leftrightarrow \forall z (z \in D_x \leftrightarrow z \in D_y) \Leftrightarrow \forall z ((z \in D_x \lor \neg (z \in D_y)) \& (\neg (z \in D_y) \lor z \in D_y)) \Leftrightarrow$

- $\Leftrightarrow \forall z ((\exists a P(x, z, a) \vee \neg \exists b P(y, z, b)) \& (\neg \exists c P(x, z, c) \vee \exists d P(y, z, d))) \Leftrightarrow$
- $\Leftrightarrow \forall z ((\exists a P(x, z, a) \lor \forall b \neg P(y, z, b)) \& (\forall c \neg P(x, z, c) \lor \exists d P(y, z, d))) \Leftrightarrow$
- $\Leftrightarrow \forall z \forall b \forall c \exists a \exists d ((P(x, z, a) \lor \neg P(y, z, b)) \& (\neg P(x, z, c) \lor P(y, z, d))).$

Квантори одного рівня можна перегрупувати.

Предикат в дужках після кванторних префіксів ϵ РП.

Вправи

Визначте місце в арифметичній ієрархії наступних множин та предикатів:

- 1) $\{x \mid \varphi_x \text{ сюр'єктивна}\},$ 2) $\{x \mid E_x \text{ скінченна}\}.$ 3) " $E_x = E_y$ "; 4) " E_x не є РМ".