Roadmap

- Operations on integers
 - Addition and subtraction
 - Multiplication
 - Division
- Floating-point numbers
 - Representation (check the review material)
 - Addition and multiplication

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point I bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "I." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is non-negative
 - Bias = $2^{(|exp|-1)-1}$
 - Single: Bias = 127; Double: Bias = 1023

Denormalized Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{1-bias}$$

- Smaller than normalized numbers
 - Allow for gradual underflow, with diminishing precision
- Denormalized with fraction = 000...0

$$x = (-1)^{S} \times (0 + 0) \times 2^{1-bias} = \pm 0.0$$

Two representations of 0.0!

Other Special Patterns

- Exponent = 1...1
 - Fraction = all zero \Rightarrow Infinities
 - Result of computations like X/0
 - Allows operations to continue past overflow situations
 - E.g. X/0 > 10
- Exponent = | ... |
 - Fraction = not all zero ⇒ Not a number
 - Result of computations like sqrt(-4) or 0/0
 - Support mixing numerical and symbolic computation or other extensions

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = |
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

Floating-Point Example

• Order the following floating-point numbers from highest to lowest:

01000000101000...00

01000000101111...00

01000011101000...00

Floating-Point Example

- Represent –0.75 as single/double precision encoding
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$

Roadmap

- Operations on integers
 - Addition and subtraction
 - Multiplication
 - Division
- Floating-point real numbers
 - Representation
 - Addition and multiplication

Floating-Point Addition

- Consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- I.Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2.Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

Rounding Modes

 Assume that we can only keep two digits to the right of binary point

Value	1.0101	1.0111	-1 . 0110	1.1010
Round up	1.10	1.10	-1.01	1.11
Round down	1.01	1.01	-1.10	1.10
Truncate (round to zero)	1.01	1.01	-1.01	1.10
Round to nearest even	1.01	1.10	-1.1 <u>0</u>	1.1 <u>0</u>

- Round to even
 - If <half, round down; if >half, round up
 - If ==half, use evenness to break the tie

Accurate Arithmetic

- Round accurately requires HW to include extra bits in the calculation
- Extra bits on the right during intermediate calculations – Guard, Round and Sticky bits
- Example:
 - $2.56 \cdot 10^{0} + 2.34 \cdot 10^{2}$
 - $5.03 \cdot 10^{-1} + 2.34 \cdot 10^{2}$
 - assuming 3 significant digits (2 significant digits after decimal point)

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- I.Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 adjusting by -127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × -ve ⇒ -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Otherwise needs a long clock cycle time
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor (usually coprocessor 1)
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPS ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - Eight condition code (cc) flags
 - c. xx.s, c. xx.d (xx is eq, 1t, 1e)
 - Sets or clears FP condition-code bit
 - e.g. c. lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1    $f16, const5($gp)
    lwc1    $f18, const9($gp)
    div.s    $f16, $f16, $f18
    lwc1    $f18, const32($gp)
    sub.s    $f18, $f12, $f18
    mul.s    $f0, $f16, $f18
    jr    $ra
```

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
Х	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Extra: Booth's Algorithm

- [CS367 exercise] Rewrite the multiplication below using shiftings, additions, and subtractions
 - X * 7
 - X * 15
- Observation: we have a quick way to calculate X *Y if Y is a sequence of contiguous one bits

Extra: Booth's Algorithm

```
End of run (current bit = 0, bit to right = 1)

Middle of run

Beginning of run

(current bit = 1, bit to right = 0)
```

Booth's Algorithm:

- 00: Middle of string of 0s → no operation
- OI: End of string of Is → add (shifted) multiplicand to the left half of the partial product
- 10: Beginning of the 1s run → subtract (shifted) multiplicand from the left half of the partial product
- II: Middle of the Is run, → no operation

Extra: Booth Example

Multiplcand(m) Step 0. init 0010

$$I.P = P-m$$

- 2.

$$P = P + m$$

$$2x7 = 0010 \times 0111$$

Product(P)

0000 0111 0

+1110

1110 0111 0

+0010

0001 1100 1

0000 1110 0

Operation

I0→sub

shift P right

 $II \rightarrow no op, shift$

II → no op, shift

shift

done

Extra: Booth Example

Step Multiplcand(m)

0. init 0010

I.P = P-m

P = P + m

3.

P = P - m

4.

 $2x(-3) = 0010 \times 1101$

Product(P)

0000 1101 0

+1110

+0010

0001 0110 1

0000 1011 0

+1110

1110 1011 0

1111 010<u>1 1</u>

1111 1010 1

Operation

I0→sub

shift P right

shift P right

I0→sub

shift P right

II→no op, shift

done

Extra: Booth's Algorithm

- Efficient: fewer number of addition / subtraction operations
- Deal with both signed and unsigned multiplications