Idea intuitiva de límite

$$f(x) = \frac{x^{2}-1}{x^{-1}} \times \frac{1}{x^{-1}}$$

$$\frac{x}{x^{-1}} \times \frac{x}{x^{-1}} \times \frac{x}{x^{-1}}$$

$$\frac{x}{x^{-1}} \times \frac{x}{x^{-1}} \times \frac{x}{x^{-1}} \times \frac{x}{x^{-1}}$$

$$\frac{x}{x^{-1}} \times \frac{x}{x^{-1}} \times \frac{x}{x$$

$$f(x)$$
 en $x=1$ no está definida

lim $f(x) = 2$

El límite cuando
los valores se

aproximana 1

Ejeracios

•
$$j(x) = \frac{1}{X+3}$$
 para $x = -3$

,	X-1	m 3	jcx.) = ?			-	+		·Lado a	berecho
	X	-4	-3.5	-3.1	-3.01	-3	-2,99	-2.9	-2.5	-2	
	*(x)	-1	- Z	-10	- 100	2	100	10	2	1	

6 Lado izquierdo

•	3(x)=	$X^{3}-1$	para X=
	Jen	X-1	to the same of

lim g(x)=?

	lo	0.5	0.9	0. 99	l	1.01	1.1	1.5	2	93
3(x)	1	1.75	2.71	2.97	?	3.03	3.31	4.75	7	

$$\lim_{x\to 1} \mathfrak{H}(x) = 3$$

lim i(x) no exist	existe
X-→-3	e Caando no existe
lim X→-3+ j(x) = +∞	10 May 2) 13 My
$\lim_{X\to -3^-} j(x) = -\infty$	es que hayantical asintota vertical

•
$$h(x) = x^2 para X = -1$$

 $\lim_{X \to -1} h(x) = ?$

						A STATE OF			
X	- 2	-1.5	-1.1	-1.01	-1	-0.99	-0.9	-0.5	0
h(x)	4	2.25	1.21	1.02	1	0.98	0.81	0.25	6

$$\lim_{X\to -1} h(x) = 1$$

•
$$i(x) = \frac{sen X}{X} para X = 0$$

1	X	-1	-0.5	-0.1	-0.01	O	0.01	0.1	0.5	315	
	((x)	0.84	0.96	0.99	1	?	1	p. 9 98	0.96	0,84	-

$$\lim_{X\to 0} i(x) = 1$$

Existencia de limite

El limite existe Presentación

Para calcular \longrightarrow Forma indeterminada Produce $\frac{c}{0}$, $\frac{c}{\infty}$

Propiedades de los limites (Hay que memorizarlos)

Presentación

Ejercicios (Forma Definida) Aplicando propiolades

$$\begin{array}{ccc}
 & \lim & -3 & = -3 \\
 & \times \rightarrow 2
\end{array}$$

•
$$\lim_{x \to -1} 2x^3 - 5^x = 2(-1)^3 - 5^{-1} = -2 - \frac{1}{5} = -\frac{11}{5}$$

$$\frac{1}{1} \lim_{x \to 1} \sqrt{\frac{3}{2}} y + \frac{1}{2} = \sqrt{\frac{3}{2} \cdot 1 + \frac{1}{2}} = \sqrt{\frac{4}{2}} = \sqrt{2}$$

• lim
$$3x^3 + 2x^2 = 3 \cdot (-1)^3 + 2 \cdot (-1)^2 = -3 + 2 = \frac{1}{2}$$

 $x \to -1^+ - x^2 - 1 = -(-1)^2 - 1 = -1 - 1 = 2$

$$(-1)^{2} - (-1)^{2}$$

a)
$$\lim_{x\to -3} f(x) = \frac{11}{1}$$
 How knowner and how known the formules $\lim_{x\to -3} f(x) = \frac{1}{1}$ How knowner and how known the formules $\lim_{x\to -3} f(x) = \frac{1}{1}$ How knowner and $\lim_{x\to -3} f(x) =$

$$\begin{cases} x + 3 \\ \frac{1000}{200} & \text{evido} \\ \lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{-}} x + 5 = -3 + 5 = 2 \end{cases}$$

$$x \rightarrow -3$$
 $f(x)$ no existe

b)
$$\lim_{X \to 3} f(x)$$

$$\begin{cases} \lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2 \\ \lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2
\end{cases}$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X \to 3^{+}} 5 - X = 5 - 3 = 2$$

$$\lim_{X$$

$$\lim_{x\to 3} f(x)$$
 no existe

d) lim
$$f(x) = \lim_{X \to -4} x + 5 = -4 + 5 = 1$$

• Sabjendo
$$\lim_{x\to 4} \frac{f(x)-5}{x-2} = 1$$
, halle $\lim_{x\to 4} f(x)$

$$R/\lim_{X\to 4} \frac{f(x)-5^{\frac{3}{2}}}{x-z} = 1$$

$$\frac{\lim_{X \to 4} f(x) - 5}{\lim_{X \to 4} x - 2} = 1$$

$$\lim_{X \to 4} f(x) - \lim_{X \to 4} 5 = 1$$

$$2$$

• Considere la función

$$h(X) = \begin{cases} X^2 + X & \text{si } X \leq 2 \\ K + X & \text{si } X > 2 \end{cases}$$

Determine el valor de K para que el lim h(x) exista

$$X^2+X$$
 $K+X$
 Z

$$\begin{cases} \lim_{X \to z^{+}} h(x) = \lim_{X \to z^{+}} k + x = k + z \\ \lim_{X \to z^{-}} h(x) = \lim_{X \to z^{-}} x^{2} + x = 4 + z = 6 \end{cases}$$

$$\lim_{X \to Z^{-}} h(x) = \lim_{X \to Z^{-}} X + \chi = 4 + 2 = 6$$

$$\lim_{X \to Z^{-}} h(x) = \lim_{X \to Z^{-}} h(x) = \lim_{X \to Z^{+}} h(x)$$

$$\lim_{X \to Z^{-}} \lim_{X \to Z^{+}} h(x) = \lim_{X \to Z^{+}} h(x)$$

a)
$$\lim_{x \to 1} f(x) = 1$$

b)
$$\lim_{X\to 0} f(x) = 0$$