AMATH 481/581 Fall 2021

Homework 2 - Quantum Harmonic Oscillator/Boundary Value Problems

Submission open until 11:59:59pm Thursday October 28, 2021

The probability density evolution in a one-dimensional harmonic trapping potential is governed by the partial differential equation:

$$i\hbar\psi_t + \frac{\hbar^2}{2m}\psi_{xx} - V(x)\psi = 0, \tag{1}$$

where ψ is the probability density and $V(x) = kx^2/2$ is the harmonic confining potential. A typical solution technique for this problem is to assume a solution of the form

$$\psi(x,t) = \sum_{n=1}^{N} a_n \phi_n(x) \exp\left(-i\frac{E_n}{2\hbar}t\right),\tag{2}$$

and is called an eigenfunction expansion solution (ϕ_n =eigenfunction, $E_n > 0$ =eigenvalue). Pluggingin this ansatz into Eq. (1) gives the boundary value problem

$$\frac{d^2\phi_n}{dx^2} - [Kx^2 - \varepsilon_n]\phi_n = 0 \tag{3}$$

where we expect the solution $\phi_n(x) \to 0$ as $x \to \pm \infty$ and $\varepsilon_n > 0$ is the quantum energy. Note that $K = km/\hbar^2$ and $\varepsilon_n = E_n m/\hbar^2$. In what follows, take K = 1 and always normalize so that $\int_{-\infty}^{\infty} |\phi_n|^2 dx = 1$.

Calculate the first **five normalized** eigenfunctions (ϕ_n) and eigenvalues (ε_n) (up to tolerance of 10^{-4}) in increasing order such that the **first eigenvalue is the lowest one** using a shooting scheme. For this calculation, use $x \in [-L, L]$ with L = 4 and choose xspan = -L : 0.1 : L. Save the **absolute value** of the eigenfunctions in column vectors (vector 1 is ϕ_1 , vector 2 is ϕ_2 and so on) and the eigenvalues in a separate **5x1 vector**.

<u>Hint:</u> Derive the boundary conditions at $\pm L$ as if these are the infinite boundaries, i.e. replacing $x = \pm \infty$ with $x = \pm L$ and performing the derivation that we did in class. Start with initial guess for the solution at x = -L as y(-L) = 1.

ANSWERS: Should be saved as A1–A5 for the eigenfunctions and A6 for the eigenvalues.

(2) Calculate the first five normalized eigenfunctions (ϕ_n) and eigenvalues (ε_n) in increasing order such that the first eigenvalue is the lowest one using the direct method. For this calculation, use $x \in [-L, L]$ with L = 4 and choose xspan = -L : 0.1 : L. Save the absolute value of the eigenfunctions in column vectors (vector 1 is ϕ_1 , vector 2 is ϕ_2 and so on) and the eigenvalues in a separate 5x1 vector.

Hint 1: Formulate the harmonic oscillator problem as a differential e. value problem, i.e.,

$$\left[-\frac{d^2}{dx^2} + Kx^2 \right] \phi_n = \varepsilon_n \phi_n \tag{4}$$

and discretize it using 2nd order central difference for interior points (without first and last points) to receive an e. value problem $A\vec{\phi_n} = \varepsilon_n\vec{\phi_n}$ where $\vec{\phi_n} = [\phi_n(x_2), ..., \phi(x_{N-1})]$. Such problems can be solved in MATLAB using the eig command.

<u>Hint 2:</u> Use a **bootstrap** approach to determine the boundary equations: To construct the matrix A use the derived boundary conditions (from question 1) and approximate the first and last points using 2nd order forward or backward difference and assume that Δx is small such that $\Delta x \sqrt{KL^2 - \varepsilon_n} \approx 0$. After you found the values of ϕ_n in the interior do not forget to compute the first and last points $(\phi_n(x_1)$ and $\phi_n(x_N))$ using full forward or backward-difference approximation (without assuming $\Delta x \sqrt{KL^2 - \varepsilon_n} \approx 0$). Be sure to save the eigenvectors including the first and last points, i.e., $\vec{\phi_n} = [\phi_n(x_1) \ \phi_n(x_2) \ ,..., \ \phi(x_{N-1}) \ \phi_n(x_N)]$.

ANSWERS: Should be saved as A7–A11 for the eigenfunctions and A12 for the eigenvalues.

(3) There has been suggestions that in some cases, nonlinearity plays a role such that

$$\frac{d^2\phi_n}{dx^2} - [\gamma|\phi_n|^2 + Kx^2 - \varepsilon_n]\phi_n = 0$$
(5)

Depending upon the sign of γ , the probability density is focused or defocused. Find the first two normalized modes for $\gamma = \pm 0.05$ using shooting. For this calculation, use $x \in [-L, L]$ with L = 2 and choose xspan = -L : 0.1 : L. Save the **absolute value** of the eigenfunctions in column vectors (vector 1 is ϕ_1 , vector 2 is ϕ_2) and the eigenvalues in a separate **2x1 vector**.

ANSWERS: For $\gamma = 0.05$, should be written out as A13-A14 (eigenfunctions) and A15 (eigenvalues). For $\gamma = -0.05$, should be written out as A16-A17 (eigenfunctions) and A18 (eigenvalues).

Notes: Use 10^{-4} for the tolerance in shooting methods.