Common Fiber Technologies

Types of Cables:

1. Fiber Optic Cable :-

A **fiber optic cable** is a special type of network cable that uses **light** to send data **very fast** over **long distances**.

Instead of using **electricity** like copper cables (such as Ethernet), fiber optic cables use **tiny strands of glass or plastic** to carry **light signals**.

How It Works (Simple Version)

- * Inside the cable are **very thin glass fibers** (thinner than a human hair).
- * A laser or LED light sends **flashes of light** through the fiber.
- * Each flash of light = a piece of data (like part of a video or message).
- * The light bounces inside the fiber until it reaches the other end.
- t's like sending a message with **Morse code**, but using **light instead of sound**.

5 **Why Is Fiber So Fast?**

- * **Light travels faster than electricity**.
- * No interference from other devices (unlike copper).
- * Can carry **a lot of data at once**, even over **very long distances** (many kilometers).

Advantage	What it means		
🔗 **Super fast speeds**	Great for streaming, gaming, large download	ls	
No interference	Won't slow down near other electronics		1
Long-distance suppo	ort Sends data miles away without losing speed	1	
 	Harder to tap into than copper cables		1
### 🗙 **Disadvantages**			
I Bird arter	Lands to control		
Disadvantage	Why it matters		ı
5 **More expensive**	Costs more than regular cables	I	
🎤 **Harder to install**	Glass fibers are delicate and require care		
### 🛍 **Real-Life Example	S**		
* **Cibor intornat** in bon	nes: Fast internet up to 1 Gbps or more		
* **Telecom companies**:	Connecting cities and countries		
* **Hospitals**: Sending la	rge medical images quickly		
* **Data centers**: Fast ar	nd stable connection between servers		

Simple Comparison: Fiber vs Copper (Ethernet)

2. Coaxial Cable :-

What is a Coaxial Cable?

A **coaxial cable** (or **coax cable**) is a type of wire used to send **TV signals**, **internet**, and **data**.

It has a special design that helps protect the signal from interference (noise).

Structure - What's Inside a Coaxial Cable?

Think of it like a **layered pipe**:

	→ Carries the signal (TV, internet, etc.)
2. *	*Insulating Layer**
	→ Keeps the signal from touching the next layer
3. *	*Metal Shield (Braided Wire or Foil)**
	→ Blocks outside interference (like from other electronics)
4. *	*Outer Plastic Jacket**
	→ Protects the whole cable
* Ce	enter = signal
* W	rapper = protection
	What Is It Used For?
###	what is it used roll:
* 💻	**Cable TV**
* #	**Internet (via cable modem)**
* 😬	**CCTV/security cameras**
* 헙	Connecting antennas or satellite dishes to TVs

- * You plug one end of a coaxial cable into the **wall** and the other into your **TV or modem**.
- * It carries the **TV channels** or **internet signal** into your device.

3. CAT 3

Cat 3 cable (short for Category 3 cable) is a type of twisted pair cable used primarily in telephone wiring and some older networking installations. Here's a quick overview:

>> Basic Facts about Cat 3 Cable:

- 1. Max Speed: Up to 10 Mbps
- 2. Max Bandwidth: 16 MHz
- **3.** Wiring: Typically 4 twisted pairs (8 wires)
- 4. Connector: Usually RJ-45 or RJ-11

Use Case:

- 1. Traditional telephone systems
- 2. 10BASE-T Ethernet (older standard)
- 3. Some early Token Ring networks

K Common Applications (Now Mostly Obsolete):

- 1. Early Ethernet networks (10 Mbps Ethernet)
- 2. Voice (POTS—Plain Old Telephone Service)

• 3. Alarm systems, intercoms, and legacy PBX systems

• _____

4. CAT 4

- Cat 4 cable (Category 4) is another older standard of twisted pair cable used for networking, though it's now obsolete. Here's a breakdown:

•

- Feature | Details
- Speed | Up to 16 Mbps
- Bandwidth | 20 MHz
- Wiring | Typically 4 twisted pairs

CommonUses | Early networking (e.g., Token Ring, 10BASE-T, some 100BASE-T4

networks)

Connector | RJ-45

5. **CAT 5**

🗗 **Category 5 (Cat 5) Cable Overview**

Cat 5 is a type of **twisted pair cable** used widely in the **1990s and early 2000s** for Ethernet and telephone wiring. While largely replaced by **Cat 5e**, it's still important to understand its capabilities.

```
### **Cat 5 Specifications**
```

| **Connector** | **RJ-45** | **Common Uses** | 10BASE-T, 100BASE-TX (Fast Ethernet), telephone, ISDN |

% **Use Cases**

- * Small office/home networks (historically)
- * Voice systems
- * Legacy infrastructure

6. CAT 5e

Cat 5e (short for **Category 5 Enhanced**) is an **improved version of Cat 5**, and it remains one of the most commonly used Ethernet cables in homes and small businesses today.

📊 **Cat 5e Specifications**

```
| Feature
                                | Details
| **Max Speed** | Up to **1 Gbps (1000 Mbps)**
| **Max Distance** | **100 meters (328 feet)**
                                        | **4 twisted pairs** (8 wires)
 **Wiring**
**Connector** | **RJ-45**
**Use Cases** | Gigabit Ethernet, voice, video, home networking |
### 

**Key Improvements Over Cat 5**
* **Tighter cable specs**: Less crosstalk and interference
* Supports **Gigabit Ethernet (1000BASE-T)**
* Fully backward-compatible with Cat 5 and Cat 3
### </r>
**Why Use Cat 5e Today?**
* **Reliable for 1 Gbps Ethernet**
* **Cost-effective**
* Widely available
* Easy to terminate and install
```

Limitations

- * Not rated for **10 Gbps** (though may work for short runs)
- * **No shielding**, which can lead to interference in electrically noisy environments
- * **Being phased out** in favor of **Cat 6 and Cat 6a** for higher speeds and future-proofing

7. CAT 6

🗗 **Category 6 (Cat 6) Cable Overview**

Cat 6 is a modern standard for Ethernet cables, designed to support **high-speed data transfer** and reduce interference. It's widely used in both residential and commercial networks.

Cat 6 Specifications

| Feature | Details

```
| **10 Gbps** (up to 55 meters)
 **Max Speed**
**Bandwidth**
                | **250 MHz**
| **Max Distance** | **100 meters (328 feet)** total (10 Gbps up to 55m)
                                              | **4 twisted pairs**, 23 AWG wires
 **Wiring**
**Connector**
                                | **RJ-45**
**Use Cases**
                                   | Gigabit and 10-Gigabit Ethernet, streaming, gaming, PoE,
VoIP |
### 

**Advantages Over Cat 5e**
* **Less crosstalk and interference** thanks to tighter specs and internal spline separator (in
many versions)
* Supports **10 Gbps Ethernet** over short distances
* **Improved shielding** (sometimes, depending on cable type: UTP, STP, or FTP)
### **Limitations**
* **10 Gbps performance limited to \~55 meters** (for longer 10G runs, use **Cat 6a**)
* Slightly **thicker and less flexible** than Cat 5e
* **More expensive** than Cat 5e (but typically worth it for speed and future-proofing)
```

Types of Cables: 10/100/1000BaseT

(UTP Ethernet)

- . An ethernet connection method uses twisted pair cables and operates at 10, 100 or 1000 Mbps
- · BASE denotes the baseband transmission and T stands for twisted pair cabling

10 Base-T

- Has a transmission speed of 10 Mbps and a maximum cable length of 100 m
- Uses 802.3i IEEE standard
- · Cat 3 and Cat 5 are suitable
- Uses 4 wires (pins 1,2,3,6)

100 Base-T

- Has a transmission speed of 100 Mbps
- Uses 802.3u IEEE standard
- · Cat 5 is suitable
- Uses 4 wires (pins 1,2,3,6)

1000 Base-T

- Has a transmission speed of 1000 Mbps
- · Uses 802.3ab IEEE standard
- Cat 5e is suitable cable
- Uses 8 wires (pins 1, 2, 3, 4, 5, 6, 7, 8)

Types of Ethernet Cables (10/100/1000 Base-T)

These cables are used to connect computers and devices to a network (like the internet). They use **UTP (Unshielded Twisted Pair)** cables.

10 **10 Base-T**

- * **Speed**: 10 Mbps (Megabits per second)
- * **Max Cable Length**: 100 meters
- * **Standard**: Follows **802.3i** rules
- * **Cables**: You can use **Cat 3** or **Cat 5**
- * **Wires Used**: 4 wires (pins **1, 2, 3, 6**)

```
### 2 **100 Base-T**
* **Speed**: 100 Mbps
* **Max Cable Length**: 100 meters
* **Standard**: Follows **802.3u** rules
* **Cables**: Use **Cat 5**
* **Wires Used**: 4 wires (same pins **1, 2, 3, 6**)
### S **1000 Base-T (Gigabit Ethernet)**
* **Speed**: 1000 Mbps (1 Gbps)
* **Max Cable Length**: 100 meters
* **Standard**: Follows **802.3ab** rules
* **Cables**: Use **Cat 5e**
* **Wires Used**: All 8 wires (pins **1 to 8**)
### Summary:
* As **speed increases**, better quality cables are needed.
* **Cat 3 \rightarrow Cat 5 \rightarrow Cat 5e** as you go from 10 Mbps to 1000 Mbps.
* **Gigabit Ethernet (1000 Mbps)** uses **all 8 wires**, while the slower types use only **4
wires**.
```