Review of classical circuits

Computes a Boolean function:

$$F: \{0,1\}^n \to \{0,1\}^m$$

- Complexity / efficiency = number of gates and how it scales with n
- EG:

Various computational models

- Turing machine
- Programming language of your choice
- Complexity: time / steps
- Fact: Given C++ code computing $F \colon \{0,1\}^n \to \{0,1\}^m$ in T(n) steps, can produce circuit computing F with $O(T(n)\log T(n)) = \tilde{O}(T(n))$ gates

Probabilistic circuits

- Adds a [COIN FLIP] gate, which has no input, and outputs 0 or 1 equally likely
- Probabilistic circuit C "computes" $F \colon \{0,1\}^n \to \{0,1\}^m$ if for all $x \in \{0,1\}^n$, the probability that $C(x) \neq F(x)$ is small (say at most 1%).

Quantum circuits

- Input $x \in (x_1, ..., x_n) \in \{0, 1\}^n$ (for now)
- Remark: There seems to exist a Boolean function which quantum circuits compute more efficiently than probabilistic circuits (Shor's factorization algorithm)

- Question: Is there a Boolean function which quantum circuits can compute much more efficiently than quantum ones?
- Simpler question: Can a quantum circuit even compute the AND gate?
- Recall: quantum gates are unitary: $U^{-1}=U^{\dagger}$, hence invertible / reversible
- AND gate is not reversible: 00, 01, 10 all get mapped to 0
- NOT gate is reversible though
- The controlled swap gate
 - Use CSWAP to simulate AND, OR, NOT
 - Also FANOUT gate

Conclusion

- Theorem: Any classical circuit C computing $F: \{0,1\}^n \to \{0,1\}^m$ can be efficiently converted to a reversible quantum circuit $QC: \{0,1\}^{n+a} \to \{0,1\}^{m+g}$, where a is the number of ancillas, and g is the number of garbage qubits.
- What about [COIN FLIP] gate?
- Remark: "Principle of deferred measurement" can move measurements to the end of the quantum circuits
- Conclusion: Quantum computation ≥ classical / probabilistic computing

Paradox

- There exists an efficient classical multiplication circuits $(a,b)\mapsto ab$
- ullet Build the reversible version C
- Then reverse it to get an efficient classical circuit for factoring!

Un-computing garbage

[Bennett 80s]

• If the answer qubits are initialized to $|b\rangle$, where $b\in\{0,1\}^m$, then CNOT converts it to $|b\oplus F(x)\rangle$, where \oplus is the bitwise XOR.

- Overall transformation $|x\rangle|b\rangle|0\rangle^a\mapsto |x\rangle|b\oplus F(x)\rangle|0\rangle^a$
 - Often ⊗ is omitted
 - $x \in \{0,1\}^n$ (inputs)
 - $b \in \{0,1\}^m$ (for outputs)
 - $|0\rangle^a$ ancillas
- Definition: A quantum circuit implements $F: \{0,1\}^n \to \{0,1\}^m$ if it computes it in the above garbage-free manner.

Special case m = 1

Boolean function $F: \{0,1\}^n \rightarrow \{0,1\}$

• What happens when $|b\rangle = |-\rangle$

Definition: Q_F^{\pm} sign-implements $F\colon\{0,1\}^n \to \{0,1\}$ if $|x\rangle|0\rangle^a \mapsto (-1)^{F(x)}|x\rangle|0\rangle^a$

Example NEQ

 ${0,1}^2 -> {0,1}$

- Classical circuit C: (x1 AND ¬x2) OR (¬x1 OR x2)
- Sign implementation

$$|x_1\rangle$$
 $|x_1\rangle$
 $|x_1\rangle$
 $|x_1\rangle$
 $|x_1\rangle$

How does it transform the standard basis?

Let's plug in superpositions!

What happens if we plug in ...

$$\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$
?

- . How do we prepare $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$?
- Hadamard transform or Boolean Fourier transform.
- Measure now?

Rotate, compute, rotate

- Final state?
- Reason: Hidden "XOR-pattern" in truth table of NEQ.
- Remark: What really happened is

- Suppose Q_{NEQ}^{\pm} produces garbage

- Final state is ...?
- Conclusion: un-computing garbage is important.