

Análise da Captura do Tráfego de Redes via Wireshark e TCPDump: Um comparativo do consumo de dados na plataforma Discord

> Fernanda Maria de Souza Nikolas Jensen Matias Giuliano Gutierrez Benitez Vinicius Takeo Friedrich Kuwaki

Seções Introdução

Introdução

- Implicações do COVID-19;
- Mudança de hábitos;
- Comunicações humanas;
- Utilizacação de ferramentas:
 - Skype;
 - Discord;

Figura 1: Discord e Skype.

Introdução

- Objetivo do trabalho:
 - Comparativo;
 - Discord x Skype;
 - Com base em (KASSIM et al., 2017);
 - Ferramentas utilizadas:
 - Wireshark;
 - TCPDump;
 - Captura de pacotes;

Figura 2: Estrutura dos Sniffers de Rede.

Seções **Ferramentas** Discord Skype Wireshark **TCPDump**

Ferramentas

- Ferramentas de comunicação:
 - Discord;
 - Skype;
- Ferramentas de Sniffing:
 - Wireshark;
 - TCPDump;

Discord

- Criado por Jason Citron e Stan Vishnevskiy;
- Utilização em jogos online;
- Disponibilizada ao mundo em 2015;
- Atualmente:
 - 100 milhões de usuários ativos por mês;
 - + de 4 horas diárias;

Figura 3: Representação gráfica da interface do Discord.

Skype

- Lançado em 2003;
- Criado por Janus Friis e Niklas Zennstrom;
- Atualmente pertence a Microsoft;

Figura 4: Apresentação do Skype no site da Microsoft.

Wireshark

- Analisador de tráfego de rede;
- Multiplataforma;
- Código aberto;
- Apresenta os pacotes capturados;
- Organizando-os por protocolos;

Figura 5: Interface do Wireshark.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	192.168.0.13	224.0.0.251	MDNS	136 Standard query 0x0006 PTR _%9E5E7C8F47989526C9BCD95D24084F6F0
	2 2.561249744	192.168.0.17	34.73.232.153	TCP	66 47296 - 443 [ACK] Seq=1 Ack=1 Win=3967 Len=0 TSval=286791584
	3 2.696569680	34.73.232.153	192.168.9.17	TCP	66 [TCP ACKed unseen segment] 443 - 47296 [ACK] Seq=1 Ack=2 Win=
	4 4.525270467	192.168.0.17	107.167.110.216	TCP	66 58946 - 443 [ACK] Seq=1 Ack=1 Win=501 Len=0 TSval=2591488412
	5 5.762596399	192.168.0.17	205.185.194.197	TLSv1.2	
	6 5.830256725	205.185.194.197	192.168.0.17	TCP	66 443 → 46713 [ACK] Seq=1 Ack=64 Win=1025 Len=0 TSval=179170007
	7 5.889785220	34.73.232.153	192.168.0.17	TLSv1.2	
	8 5.890282459	192.168.0.17	34.73.232.153	TLSv1.2	
	9 6.026331014	34.73.232.153	192.168.9.17	TCP	66 443 - 47338 [ACK] Seq=35 Ack=39 Win=1331 Len=0 TSval=25444026
	10 6.577209927	192.168.0.17	34.107.195.226	TCP	66 40874 - 443 [ACK] Seq=1 Ack=1 Win=16844 Len=0 TSval=296615936
	11 6.593233008		2809:3f0:4003:c01::		86 52350 → 5228 [ACK] Seq=1 Ack=1 Win=501 Len=0 TSval=1646960558
	12 6.598216893	34.107.195.226	192.168.0.17	TCP	66 [TCP ACKed unseen segment] 443 → 40874 [ACK] Seq=1 Ack=2 Win=
	13 6.659011850	2800:3f0:4003:c01::			86 [TCP ACKed unseen segment] 5228 - 52350 [ACK] Seg=1 Ack=2 Win

Figura 6: Captura de pacotes no Wireshark.

TCPDump

- Desenvolvido pelo grupo Network Research Group;
- Baseado em linha de comando;
- Possui uma versão para Windows;

Figura 7: Uso do TCPDump.

Seções

Casos de Estudo

Trabalho Referenciado

Caso de estudo

Casos de Estudo

- Uso crescente da Internet: aprimoramento da capacidade de transmissão de dados.
- Ferramentas multimídia: Discord e Skype, respectivamente, 100 e 40 milhões de usuários ativos por mês.
- Pandemia COVID-19: mudanças na quantidade de acessos a diversas plataformas.

Figura 8: Mudanças no tráfego na Internet analisadas pela Cloudflare durante o período de pandemia. Fonte: (GRAHAM-CUMMING, 2020)

Casos de Estudo

- Aumento gradual do número de usuários nessas plataformas: necessidade de quantizar as informações sobre consumo de dados.
 - Determinar consequências do uso de determinados softwares da categoria VoIP para rede.
- Comparação entre Skype e Discord com relação ao consumo de dados.

Figura 9: Impactos na qualidade da internet no Brasil durante a pandemia de COVID-19, análise realizada entre 31/01/2020 e 19/07/2020. Fonte: (BR, 2020)

Trabalho Referenciado

• Análise do software multimídia Skype foi feita por (KASSIM et al., 2017).

Figura 10: Arquitetura do Experimento. Adaptado de: (KASSIM et al., 2017)

Objetivo

 Análise baseada em chamadas de vídeo e voz, do tráfego de rede da aplicação Skype em uma Rede UniFi doméstica.

Figura 11: Rede UniFi. Adaptado de: (KASSIM et al., 2017)

Figura 12: Exemplo Rede UniFi. Adaptado de: (KASSIM et al., 2017)

Objetivo

- Determinar a quantidade de uso da largura de banda oferecida por uma rede doméstica UniFi.
- Métricas utilizadas:
 - Cálculo do uso da largura de banda;
 - RTT (Round Trip Time) Latência;
 - Número de pacotes perdidos;
 - Análise do protocolo do Skype.
- Capturas feitas pelo Wireshark.
- Dados analisados usando o software MATLAB.

Coleta de Dados

Figura 13: Fluxograma do experimento. Adaptado de: (KASSIM et al. PIDESC

Figura 14: Gráfico I/O no Wireshark. Fonte: (KASSIM et al., 2017).

Minutos	Mesma	a Rede	Rede Diferente		
IVIIIIutos	Hora com Pico	Hora Sem-Pico	Hora com Pico	Hora Sem-Pico	
1 m Voz	965.963	768.204	955.091	3.651.753	
10 m Voz	5.152.728	8.345.655	9.619.294	11.486.743	
30 m Voz	6.554.357	54.309.322	26.333.824	13.547.012	
1 m Vídeo	8.725.198	4.208.836	8.313.583	653.401	
10 m Vídeo	91.323.711	29.867.780	66.189.705	58.269.214	
30 m Vídeo	199.000.000	863.000.000	181.000.000	201.000.000	

Tabela 1: Largura de Banda Total para chamadas de voz e vídeo no Skype. Fonte: Adaptado de: (KASSIM et al., 2017).

Tipo	Duração	Mesma	a Rede	Rede Diferente		
de	em	Hora com Pico Hora Sem-Pico I		Hora com Pico	Hora Sem-Pico	
Aplicação	Min1utos	0 0		3	0	
Vídeo	10	0 0		18	0	
	30	3	125	0	0	
	1	0	0	2	2	
Voz	10	0	0	28	1	
	30	16	743	75	0	

Tabela 2: Quantidade de pacotes perdidos durante chamadas de voz e vídeo no Skype. Fonte: Adaptado de: (KASSIM et al., 2017).

Tipo	Duração	Mesma	a Rede	Rede Diferente		
de	em	Hora com Pico Hora Sem-Pico		Hora com Pico	Hora Sem-Pico	
Aplicação	Min1utos	0,038 -		-	-	
Vídeo	10	0,264 0,011		0,216	0,395	
	30	0,199	0,003	0,098	0,007	
	1	0,038	-	-	0,231	
Voz	10	0,0436	0,018	0,204	0,913	
	30	0,005	0,003	0,041	0,045	

Tabela 3: Tráfego em RTT. Fonte: (KASSIM et al., 2017).

Conclusões

- Skype usa mais protocolos UDP do que TCP.
- Utiliza cerca de 10% da largura de banda oferecida (considerado pouco).

Figura 15: Duração do tráfego para chamadas de voz. Adaptado de: (KASSIM et al., 2017)

Figura 16: Duração do tráfego para chamadas de vídeo. Adaptado de: (KASSIM et al., 2017)

Caso de estudo

Figura 17: Impactos na qualidade da internet no Brasil durante a pandemia de COVID-19, análise realizada entre 31/01/2020 e 19/07/2020. Fonte: (BR, 2020).

Objetivo

- Captura de pacotes transmitidos durante uma sessão de vídeo chamada na plataforma Discord em diferentes dispositivos.
- Comparação dos resultados com o artigo do (KASSIM et al., 2017), levando em consideração:
 - Duração da vídeo chamada.
 - Banda-larga de cada usuário.
 - Resultados obtidos nas ferramentas Wireshark e TCPDump.

Coleta de dados

Figura 18: Fluxograma de uma captura do experimento. Próprios autores.

Configurações dos Dispositivos

		Sistema		Placa	Taxa	Taxa
	Localização		Processador	de	de	de
		Operacional		Rede	Download	Upload
Dispositivo 1	Joinville, SC - Brasil	Linux Mint 20	Intel i3 9100F 3.6 GHz	Realtek RTL8111/8168/8411	14 Mbps	1.3 Mbps
Dispositivo 2	Assunção, Paraguai	MacOS Catalina 10.15.5	Intel i7 7700HQ 2.8 GHz	AirPort Extreme (0×14E4, 0×173)	10 Mbps	34 Mbps
Dispositivo 3	Florianópolis, SC - Brasil	Windows 10 Home 1909	Intel i7 7700HQ 2.8 GHz	Intel(R) Dual Band Wireless-AC 8265.	135 Mbps	15.63 Mbps

Tabela 4: Tabela com as especificações dos dispositivos utilizados pelos autores. Fonte: Próprios Autores.

• Bytes in flight

		Bytes in Fligh	t ($\%$ do total da	a captura e número de pacotes)
Duração em minutos	Versão da Captura	Dispositivo 1	Dispositivo 2	Dispositivo 3
5	Captura 1	0.2 % - 257	0.7% -773	0.3 % - 486
	Captura 2	0.2% - 190	0.5% - 614	0.2 % - 306
30	Captura 1	0.3% - 1547	0.5% - 3300	0.4% - 3029

Tabela 5: Bytes in Flight. Fonte: Próprios Autores.

Retransmissão

		Retransmissão	(% do total da	captura e número de pacotes)
Duração em minutos	Versão da Captura	Dispositivo 1	Dispositivo 2	Dispositivo 3
	Captura 1	0 % - 9	0% -31	0% - 14
3	Captura 2	0% - 6	0% - 15	0% - 5
30	Captura 1	0% - 59	0% - 172	0% - 5

Tabela 6: Retransmissão. Fonte: Próprios Autores.

• Perda de pacotes

	Perda de paco	tes (% do total	da captura e número de pacotes)	
Duração em minutos	Versão da Captura	Dispositivo 1	Dispositivo 2	Dispositivo 3
5	Captura 1	0% - 12	0% - 14	0% - 0
	Captura 2	0% - 3	0% - 1	0% - 1
30	Captura 1	0% - 16	0% - 11	0% - 7

Tabela 7: Perda de Pacotes. Fonte: Próprios Autores.

Tamanho dos pacotes

Figura 19: Gráfico de Barras para o tamanho dos pacotes em 30 minutos.

Fonte: Próprios Autores

Figura 20: Gráfico de Barras para o tamanho dos pacotes em 5 minutos

Fonte: Próprios Autores.

• Latência Round-trip time

Figura 21: Gráficos RTT - Dispositivo 1. Fonte: Próprios autores

Pigura 22: Gráficos RTT - Dispositivo 2. Fonte: Próprios autores.

Figura 23: Gráficos RTT - Dispositivo 3. Fonte: Próprios autores.

Gráficos I/O

Figura 24: Gráfico I/O - Dispositivo 1 para capturas de 30 minutos. Fonte: Próprios Autores.

Figura 25: Gráfico I/O - Dispositivo 2 para capturas de 30 minutos. Fonte: Próprios Autores.

Figura 26: Gráfico I/O - Dispositivo 3 para capturas de 30 minutos. Fonte: Próprios Autores.

• Gráficos I/O

Figura 27: Gráfico I/O - Dispositivo 1 para capturas de 30 minutos. Fonte: Próprios Autores.

Figura 28: Gráfico I/O - Dispositivo 2 para capturas de 30 minutos. Fonte: Próprios Autores.

• Throughput

Figura 29: Gráficos Throughput - Dispositivo 1.

Figura 30: Gráficos Throughput - Dispositivo 2.

Figura 31: Gráficos Throughput - Dispositivo 3.

Largura de Banda

	Largura de Banda (% do total da captura e número de pacotes)					
Duração em minutos	Dispositivo 1 Dispositivo 2 Dispositivo 3					
30	268978981	343480813	350480017			

Tabela 8: Largura de Banda. Fonte: Próprios autores.

Conclusões

- Achamos uma diferença notável entre as capturas do Wireshark e TCPDump.
- A rede 4G teve mais dificuldade em relação à transmissão de pacotes.
- Diferença do dispositivo 1 ao resto em questão de Bytes in flight.
- Perda de pacotes do Discord \approx 0.

Figura 32: Comparação Wireshark vs TCPDump em 5 minutos. Próprios autores.

Seções

Objetivo Coleta de Dados Análise Conclusões

Considerações Finais

- Eficiência do Discord quando comparado ao Skype.
- Diferença entre as ferramentas de captura.
- Desempenho da aplicação.

Considerações Finais

	Comparação Skype x Discord								
Plataforma	Tabela Duração em minutos Dispositivo 1 Dispositivo 2 Dispositivo								
Discord	Largura de Banda (Bytes)	30	268978981	343480813	350480017				
Skype	Largura de Banda (Bytes)	30	201000000						
Discord	RTT(ms)	30	158	300	5				
Skype	KTT(MS)	30	7						
Discord	Perda de pacotes(Total)	30	16	11	7				
Skype	Terua de pacotes(Total)	30	0						

Tabela 9: Comparação Skype x Discord. Fonte: Próprios autores.

- In: . [S.I.]: Disponível em: https://www.deviantart.com/dykletiun/journal/Official-Chat-Servers-
- Discord-And-Skype-621842802>. Acesso em: 30 set. 2020.
- ln: . [S.I.]: Disponível em: https://discord.com. Acesso em: 30 set. 2020.
- In: [S.I.]: Disponível em: https://www.skype.com/pt-br/. Acesso em: 30 set. 2020.
- ASRODIA, P.; PATEL, H. Network Traffic Analysis Using Packet Sniffer.
- ASRODIA, P.; PATEL, H. Analysis of various packet sniffing tools for network monitoring and analysis. **International Journal of Electrical, Electronics and Computer Engineering**, Citeseer, v. 1, n. 1, p. 55–58, 2012.
- BEST 10 Packet Sniffer and Capture Tools in 2020. In: . [S.I.]: Disponível em: https://www.dnsstuff.com/packet-sniffers. Acesso em: 30 set. 2020.

BR, N. de Informação e Coordenação do P. COVID-19 IMPACTOS NA QUALIDADE DA INTERNET NO BRASIL. 2020. Disponível em: < https://dx. //www.ceptro.br/assets/publicacoes/pdf/2020.07.13-relatorio-semanal.pdf>. CALLSTATS. What is Round-trip Time and How Does it Relate to **Network Latency?** 2018. Disponível em: https://www.callstats.io/blog/ what-is-round-trip-time-and-how-does-it-relate-to-network-latency>. Chandran, P.; Lingam, C. Performance evaluation of voice transmission in wi-fi networks using r-factor. In: 2015 International Conference on Information **Processing (ICIP)**. [S.I.: s.n.], 2015. p. 481–484. CHAPPELL, L. Wireshark Network Analysis (Second Edition): The Official Wireshark Certified Network Analyst Study Guide. Chapell University, 2012. (Wireshark Solutions). ISBN 9781893939943. Disponível em: https://books.google.com.br/books/about/Wireshark Network Analysis.html? id=x4iaLgEACAAJ&redir esc=y>.

Network Analysis. Protocol Analysis Institute, Chapell University, 2013. (Wireshark Solutions). ISBN 9781893939721. Disponível em: . FAVALE, T. et al. Campus traffic and e-learning during covid-19 pandemic. Computer Networks, v. 176, p. 107290, 2020. ISSN 1389-1286. Disponível em: http://www.sciencedirect.com/science/article/pii/S1389128620306046. GITE, V. TCPDump: Capture and Record Specific Protocols / Port. 2008. Disponível em: https://www.cyberciti.biz/fag/ tcpdump-capture-record-protocols-port/>. GOMES. P. C. T. ENTENDA O QUE É O PROTOCOLO SNMP E SUA IMPORTÂNCIA NO MONITORAMENTO. 2017. Disponível em: https://www.opservices.com.br/snmp/>.

CHAPPELL, L.: COMBS, G. Wireshark 101: Essential Skills for

- GRAHAM-CUMMING, J. Internet performance during the COVID-
- **19 emergency**. 2020. Disponível em: https://blog.cloudflare.com/recent-trends-in-internet-traffic/>.
- KASSIM, M. et al. Skype multimedia application traffic analysis on home unifinetwork. In: [S.I.: s.n.], 2017. p. 184–189.
- Korhonen, J.; Wang, Y. Effect of packet size on loss rate and delay in wireless links. In: **IEEE Wireless Communications and Networking Conference, 2005**. [S.l.: s.n.], 2005. v. 3, p. 1608–1613 Vol. 3.
- LYON, G. **Top 125 Network Security Tools**. 2019. Disponível em: https://sectools.org/.
- MALLET, Q. What is the difference between Tcpdump and Wireshark? 2017. Disponível em: https://www.quora.com/ What-is-the-difference-between-Tcpdump-and-Wireshark>.

NELLY. **Discord Transparency Report: Jan — June 2020**. 2020. Disponível em: https://blog.discord.com/discord-transparency-report-jan-june-2020-2ef4a3ee346d/.

NICOLETTI, M.; BERNASCHI, M. Forensic analysis of microsoft skype for business. **Digital Investigation**, Elsevier, v. 29, p. 159–179, 2019.

OLUDELE, A. et al. Packet sniffer – a comparative characteristic evaluation study. In: [S.I.: s.n.], 2015. p. 091–100.

SANDERS, C. Analise de pacotes na prática: Usando Wireshark para solucionar problemas de rede do mundo real. Novatec Editora, 2017. ISBN 9788575225851. Disponível em: https://books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/boo

SHARPE, R.; WARNICKE, E.; LAMPING, U. Wireshark User's Guide: Version 3.3.0. [S.l.: s.n.], 2011.

- SURI, S.; BATRA, V. Comparative study of network monitoring tools. International Journal of Innovative Technology and Exploring Engineering (IJITEE), Citeseer, v. 1, n. 3, p. 63–65, 2010.
- TCPDUMP and Libpcap. 2020. Disponível em: https://www.tcpdump.org.
- WARRAG, T. Why is Wireshark useful? 2016. Disponível em:
- \blacksquare WIRESHARK. 2020. Disponível em: https://1.as.dl.wireshark.org/docs/user-guide.pdf.
- WIRESHARK. **Awards and Accolades**. 2020. Disponível em: https://www.wireshark.org/about.html#authors.
- WIRESHARK FAQ. Disponível em: https://ask.wireshark.org/questions/.

Attribution 4.0 International (CC BY 4.0)

Duvidas:
Fernanda Maria de Souza
Nikolas Jensen
Matias Giuliano Gutierrez Benitez
Vinicius Takeo Friedrich Kuwaki
vtkwki@gmail.com
github.com/takeofriedrich

