Image Metadata Extraction -- Drain the Data Swamp

Chaofeng Wu

Advisor: Kyle Chard, Tyler J. Skluzacek, Ian Foster

Computational Institute

The University of Chicago

Motivation

How to deal with all the mess? - Skluma!

Text-based files

File metadata

Contextual relationship

Indexed searchable collection

SUMMARY11.MONTHLY.ISOMASS.DAT

DOI: 10.3334/CDIAC/ffe.MonthlyIsomass.2009

All values, except year, should be zero or negative.

Units of minigrid and maxigrid are mass*del.

Units of del 13 C are per mil.

year	minigrid	maxigrid	del13C
1950	-69.75	0.00	-26.16
1951	-72.36	0.00	-26.15
1952	-71.14	0.00	-26.27
1953	-72.29	0.00	-26.33
1954	-72.61	0.00	-26.46
1955	-79.85	0.00	-26.48
1956	-81.25	0.00	-26.36
1957	-80.49	0.00	-26.51
1958	-79.62	0.00	-26.55

CDIAC 2009 Year range Minigrid Maxigrid

•••

Goal: extract metadata from images

Designed Solution

Calculated Total CO₂ for April 2005

Metadata

System metadata

- Image name
- Image path
- Image extension (jpg, png...)
- ► Image file size (KB, MB...)
- Image size (1024*768...)
- Image color mode (RGB...)

Image metadata

- A map?
- A plot?
- A figure?
- A photo?
- ► How to classify the image?

Process

Features

Mean square

- The average of small blocks in different part of original images
- Hope this can show some local features of image

Color histogram

- The color frequency in the images
- Hope this can show color features of image

11

Reducing dimension of features

Naïve way

- Grouping color histogram in to small partitions
- Repeat the mean square for small square

200000 -175000 -125000 -100000 -75000 -50000 -25000 -0 50 100 150 200 250

Principal Component Analysis (PCA)

- Statistical procedure to reduce dimension of variables
- Keep the variable whose variance is large in result

New feature by PCA

- Resized image
- Using PCA to form a basic set of images
- Using basic set to represent new images

Models

support vector machine(SVM)

- Supervised learning model used for classification and regression analysis
- SVM is applied to text categorization, image classification, and image segmentation

Ø

Logistic regression

- A classification method that generalizes logistic regression to multiclass problems
 - Logistic regression models the probability of classes

Evaluation

Dataset

- Using part of data from Carbon Dioxide Information Analysis Center (CDIAC)
- ▶ Labeling 532 images, half for training and half for testing

	Gif	Png	Jpg	Bmp	Total
Number	18	64	449	1	532

	Line plot	Мар	Map&chart	Map&colorplot	Map&histogram	figure
Number	51	236	105	87	49	4

Comparison of reduction methods

Comparison of models and features with PCA

Time analysis across models and features

Detailed result analysis

-- logistic regression with image and PCA

	precision	recall	F-score	support
line plots	0.8947	1	0.9444	34
maps	0.9652	0.9823	0.9737	113
map&depth chart	1	1	1	44
map&colorplot	1	0.9565	0.9778	46
map&histogra m	1	1	1	25
figures	0	0	0	4

Detailed prediction time analysis -- logistic regression with image and PCA

time to number of prediction

conclusion

- Applying PCA to get the feature can get better accuracy in image classification
- SVM and logistic regression model work well in image classification
- ► Future work
 - ► Test current model on larger dataset
 - ► Try convolutional layer with PCA
 - ► Try convolutional neural network and see performance
 - Extract more info from image

Citation

- ► Chapelle, O., et al. "Support vector machines for histogram-Based image classification." *IEEE Transactions on Neural Networks*, vol. 10, no. 5, 1999, pp. 1055-1064., doi:10.1109/72.788646.
- P. Beckman, T. J. Skluzacek, K. Chard, and I. Foster, "Skluma: A statistical learning pipeline for taming unkempt data repositories," in Proceedings of the 29th International Conference on Scientific and Statistical Database Management, SSDBM '17, (New York, NY, USA), pp. 41:1-41:4, ACM, 2017.
- ▶ U.S. Department of Energy, "Carbon dioxide information and analysis center," 2018.
- Matthew A. Turk, Alex P.Pentland, "Face Recognition Using Eigenfaces." MIT, IEEE 1991 https://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

Thanks! Questions?

Eigenfaces

- Eigenfaces is the name given to a set of eigenvectors when they are used in the computer vision problem of human face recognition
- The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images
- The eigenfaces themselves form a basis set of all images used to construct the covariance matrix
- This produces dimension reduction by allowing the smaller set of basis images to represent the original training images
- Classification can be achieved by comparing how faces are represented by the basis set

Curse of dimensionality

- The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience
- In machine learning problems that involve learning a "state-of-nature" from a finite number of data samples in a high-dimensional feature space with each feature having a range of possible values, typically an enormous amount of training data is required to ensure that there are several samples with each combination of values
- A typical rule of thumb is that there should be at least 5 training examples for each dimension in the representation. With a fixed number of training samples, the predictive power of a classifier or regressor first increases as number of dimensions/features used is increased but then decreases, which is known as Hughes phenomenon` or peaking phenomena