Statistica per la ricerca sperimentale e tecnologica

Corso di Laurea in Informatica, Università di Roma "Tor Vergata"

Anno accademico: 2007-2008 Titolare del corso: Claudio Macci Preappello del 21 Dicembre 2007

Esercizio 1. Un'urna ha 3 palline numerate da 1 a 3. Si estraggono a caso palline dall'urna, una alla volta con reinserimento. Sia X la variabile aleatoria che conta il numero di volte che si estrae un numero dispari su 4 estrazioni.

D1) Trovare la densità discreta di X.

Sia Y la variabile aleatoria che indica a quale estrazione esce per la prima volta il numero 1, e sia E l'evento "esce la sequenza (3,2,1)".

D2) Calcolare P(E|Y=3).

Esercizio 2. Abbiamo due urne: la prima ha 3 palline numerate da 1 a 3, la seconda ha una pallina nera. Si estrae una pallina a caso dalla prima urna e sia X la variabile aleatoria che indica il numero estratto. Poi si mettono X palline bianche nella seconda urna. Infine si estrae una pallina a caso dalla seconda urna, e indichiamo con B l'evento "la pallina estratta è bianca".

D3) Calcolare P(B).

D4) Calcolare P(X = k|B) per $k \in \{1, 2, 3\}$.

Esercizio 3. La variabile aleatoria (X_1, X_2) ha la seguente densità congiunta: $p_{(X_1, X_2)}(2, 0) =$ $p_{(X_1,X_2)}(1,0) = p_{(X_1,X_2)}(1,1) = p_{(X_1,X_2)}(0,1) = p_{(X_1,X_2)}(0,2) = \frac{1}{5}.$

D5) Calcolare $Cov(X_1, X_2)$.

D6) Trovare la densità discreta di $Z = X_1 + X_2$.

Esercizio 4. Sia X una variabile aleatoria con densità $f_X(t) = \frac{2}{81}t$ per 0 < t < 9 e $f_X(t) = 0$ altrimenti.

D7) Calcolare la funzione di distribuzione di X.

D8) Calcolare P([X] = 2), dove $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$ è la parte intera di x.

Inoltre sia (X_n) una successione di variabili aleatorie indipendenti e tutte con la stessa distribuzione di X. Infine poniamo $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$. D9) Trovare il valore di m per cui si ha $\lim_{n \to \infty} P(|\overline{X}_n - m| \ge \varepsilon) = 0$ per ogni $\varepsilon > 0$.

Esercizio 5. Sia X una variabile aleatoria esponenziale di parametro $\lambda = 10$.

D10) Calcolare $P(\{X < 1\} \cup \{2 < X < 3\})$.

Sia Y un'altra variabile aleatoria esponenziale di parametro $\lambda = 10$, e supponiamo che X e Y siano indipendenti.

D11) Calcolare Var[X + Y].

Esercizio 6. Sia X una variabile aleatoria normale con media $\mu=1$ e varianza $\sigma^2=225$. D12) Calcolare P(X > 21).

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

- D1) La variabile aleatoria X ha distribuzione binomiale con parametri n=4 (numero delle estrazioni) e $p=\frac{2}{3}$ (probabilità di estrarre un numero dispari in ogni estrazione). Quindi $p_X(k)=(\frac{4}{k})(\frac{2}{3})^k(1-\frac{2}{3})^{4-k}$ per $k\in\{0,1,2,3,4\}$, da cui $p_X(0)=\frac{1}{81},\ p_X(1)=\frac{8}{81},\ p_X(2)=\frac{24}{81},\ p_X(3)=\frac{32}{81}$ e $p_X(4)=\frac{16}{81}$.
- D2) Si ha $P(E|Y=3) = \frac{P(E \cap \{Y=3\})}{P(Y=3)} = \frac{P(E)}{P(Y=3)} = \frac{\frac{1}{3}\frac{1}{3}\frac{1}{3}}{(1-\frac{1}{2})^{3-1}\frac{1}{3}} = \frac{1}{4}$, tenendo conto che $E \subset \{Y=3\}$ per la seconda uguaglianza.

Esercizio 2.

- D3) Per la formula delle probabilità totali si ha $P(B) = \sum_{k=1}^{3} P(B|X=k)P(X=k) = \frac{1}{2}\frac{1}{3} + \frac{2}{3}\frac{1}{3} + \frac{3}{4}\frac{1}{3} = (\frac{1}{2} + \frac{2}{3} + \frac{3}{4})\frac{1}{3} = \frac{6+8+9}{12}\frac{1}{3} = \frac{23}{36}$. D4) Per la formula di Bayes, e sfruttando il valore di P(B) calcolato prima, si ha $P(X=k|B) = \frac{1}{2}\frac{1}{3} + \frac{2}{3}\frac{1}{3} + \frac{2$
- $\frac{P(B|X=k)P(X=k)}{P(B)} = \frac{P(B|X=k)\frac{1}{3}}{\frac{23}{36}} = P(B|X=k)\frac{12}{23}, \text{ da cui } P(X=1|B) = \frac{6}{23}, P(X=2|B) = \frac{8}{23},$ $P(X = 3|B) = \frac{9}{22}$.

Esercizio 3.

D5) Si ha: $p_{X_1}(0) = p_{(X_1,X_2)}(0,1) + p_{(X_1,X_2)}(0,2) = \frac{2}{5}, p_{X_1}(1) = p_{(X_1,X_2)}(1,0) + p_{(X_1,X_2)}(1,1) = \frac{2}{5}, p_{X_1}(2) = p_{(X_1,X_2)}(2,0) = \frac{1}{5}, \text{ da cui } \mathbb{E}[X_1] = 0\frac{2}{5} + 1\frac{2}{5} + 2\frac{1}{5} = \frac{4}{5}; p_{X_2}(0) = p_{(X_1,X_2)}(1,0) + p_{X_1}(1,0) = \frac{1}{5}$ $\begin{aligned} p_{(X_1,X_2)}(2,0) &= \frac{2}{5}, \ p_{X_2}(1) = p_{(X_1,X_2)}(0,1) + p_{(X_1,X_2)}(1,1) = \frac{2}{5}, \ p_{X_2}(2) = p_{(X_1,X_2)}(0,2) = \frac{1}{5}, \ \text{da} \\ \text{cui} \ \mathbb{E}[X_2] &= 0\frac{2}{5} + 1\frac{2}{5} + 2\frac{1}{5} = \frac{4}{5}; \ \mathbb{E}[X_1X_2] = (0 \cdot 2)\frac{1}{5} + (0 \cdot 1)\frac{1}{5} + (1 \cdot 1)\frac{1}{5} + (2 \cdot 0)\frac{1}{5} + (1 \cdot 0)\frac{1}{5} = \frac{1}{5}. \\ \text{Quindi} \ \text{Cov}(X_1,X_2) &= \mathbb{E}[X_1X_2] - \mathbb{E}[X_1]\mathbb{E}[X_2] = \frac{1}{5} - \frac{4}{5} \cdot \frac{4}{5} = \frac{1}{5} - \frac{16}{25} = \frac{5-16}{25} = -\frac{11}{25}. \\ \text{D6) \ Si \ ha} \ p_Z(1) &= p_{(X_1,X_2)}(0,1) + p_{(X_1,X_2)}(1,0) = \frac{2}{5} \ \text{e} \ p_Z(2) = p_{(X_1,X_2)}(0,2) + p_{(X_1,X_2)}(1,1) + \frac{1}{5} + \frac{1}{5}$ $p_{(X_1,X_2)}(2,0) = \frac{3}{5}$.

Esercizio 4.

- D7) Si ha $F_X(t) = \int_{-\infty}^t f_X(x) dx$, e quindi: $F_X(t) = 0$ per t < 0; $F_X(t) = \int_0^t \frac{2}{81} x dx = \left[\frac{2}{81} \frac{x^2}{2}\right]_{x=0}^{x=t} = \frac{t^2}{81}$ per $0 \le t < 9$; $F_X(t) = 1$ per $t \ge 9$.
- D8) Si ha $P([X] = 2) = P(2 \le X < 3) = \int_2^3 \frac{2}{81} t dt = \left[\frac{2}{81} \frac{t^2}{2}\right]_{t=2}^{t=3} = \frac{2}{81} \frac{3^2 2^2}{2} = \frac{5}{81}.$ D9) Si ha $m = \mathbb{E}[X] = \int_0^9 t \frac{2}{81} t dt = \frac{2}{81} \int_0^9 t^2 dt = \frac{2}{81} \left[\frac{t^3}{3}\right]_{t=0}^{t=9} = \frac{2}{81} \frac{9^3 0^3}{3} = 2\frac{9}{3} = 6.$

Esercizio 5.

- D10) Si ha $P(\{X < 1\} \cup \{2 < X < 3\}) = P(X < 1) + P(2 < X < 3) = 1 e^{-10 \cdot 1} + \{1 e^{-10 \cdot 3} (1 e^{-10 \cdot 2})\} = 1 e^{-10} + e^{-20} e^{-30}$.
- D11) Si ha Var[X + Y] = Var[X] + Var[Y] per l'ipotesi di indipendenza (basterebbe la non correlazione); inoltre $Var[X] = Var[Y] = \frac{1}{10^2} = \frac{1}{100}$. Quindi $Var[X + Y] = \frac{1}{100} + \frac{1}{100} = \frac{2}{100}$.

Esercizio 6.

D12) La v.a. $Z_X = \frac{X-1}{\sqrt{225}}$ è la standardizzata di X e si ha $P(X>21) = P(\frac{X-1}{\sqrt{225}} > \frac{21-1}{\sqrt{225}}) = P(Z_X>21)$ $\frac{20}{15}$) = 1 - $\Phi(\frac{20}{15})$ = 1 - $\Phi(1.33)$ = 1 - 0.90824 = 0.09176.

Commenti.

- D1) Si ha $p_X(0) + p_X(1) + p_X(2) + p_X(3) + p_X(4) = \frac{1+8+24+32+16}{81} = 1$ in accordo con la teoria.

- D4) Si ha $\sum_{k=1}^3 P(X=k|B) = \frac{6+8+9}{23} = 1$ in accordo con la teoria.
 D6) Si ha $p_Z(1) + p_Z(2) = \frac{2+3}{5} = 1$ in accordo con la teoria.
 D10) In altro modo $\text{Var}[X+Y] = \frac{\alpha}{\lambda^2} = \frac{2}{100} = \frac{2}{100}$ perché X+Y ha distribuzione Gamma con parametri $\alpha = 2$ e $\lambda = 10$ essendo somma di 2 esponenziali indipendenti di parametro $\lambda = 10$.