Predicting Building Permit Issue Times

A Data Science Project By Aparna Shastry

Content

- Business Problem
- Data / Data Wrangling
- Exploratory Data Analysis
- Predictive Modeling
- Conclusion / Future Work

The Business Problem

- Building Permit: A Document issued by city council to builders
- **Delays in issuance:** Major inconvenience and Revenue loss
 - Trulia Study
 - Vancouver City Problems
- Aim of this Project: To be able to predict delays
- **Stakeholders:** Builders / Contractors / Real Estate Agencies
- How this can help:
 - Uncertainty Reduction
 - Better planning
 - Proactive follow up by expecting delays

Data / Data Wrangling

- Any building permit application data.
- Took <u>San Francisco city open data</u>, for prototyping
- Raw data: 198900k records, 43 columns
 - Download Date Feb 25th, 2018
 - Most recent 5 years

Cleaning:

- Retain useful columns and rows
- Fill a few blank cells with "N"
- Leave a few blank cells as it is
- Convert object to dates/float when applicable
- Change invalid weekdays into valid entries
- After clean up, left with 180811 records, 16 useful features

Exploratory Data Analysis (EDA): Visualizations

EDA: Key Findings

- Monday, the least crowded day.
- 90% of permits are OTC alterations.
 - 60%+ issued the same day.
 - 75% of issued within 5 days.
- Median time for new construction type: about 1 year 3 months
- Median of time taken for alterations: close to 6 months
- Absence of cost entry: Major cause of delay
 - Fill the cost field.

EDA: Details wrt Permit Types

	count	mean	std	min	25%	50%	75%	max
perm_typ_def								
new construction	301.0	570.810631	344.639562	60.0	329.00	460.0	762.00	1745.0
new construction wood frame	873.0	507.321879	380.214589	2.0	221.00	409.0	63.00	1837.0
demolitions	516.0	463.164729	387.444375	0.0	159.00	368.0	06.50	1824.0
additions alterations or repairs	12597.0	345.122728	329.004391	0.0	135.00	240.0	436.00	1875.0
wall or painted sign	433.0	253.092379	439.792013	0.0	3.00	30.0	31.00	1859.0
grade or quarry or fill or excavate	88.0	203.784091	387.183833	0.0	44.75	81.0	56.25	1803.0
sign - erect	2587.0	153.627754	334.840111	0.0	2.00	15.0	126.00	1878.0
otc alterations permit	163416.0	38.200904	176.576709	0.0	0.00	0.0	5.00	1880.0

Table 3.4 Time Taken Statistics by Permit types

Predictive Modeling

Target variable Y:

- \circ Y = 0 if time < 8 days
- 1 elseif time < 92 days
- o 2 else
- Why not estimate in days (regression)?
 - Too many outliers
 - Records without issue dates
- Why not just have 2 classes?
 - o Too trivial, several permit types, not a true representative
- Metrics used: Accuracy, Recall and weighted F1 score

Training / Testing / Feature Engineering

- Data split: Train / Validation / Test in the ratio 60:20:20
- Hyperparameter tuned with 5-fold cross validation

Feature Engineering

- Log of revision cost from revised cost
- Square and cube of log of revised cost
- dff_use as existing_use != proposed_use,
- diff_story as existing_use != proposed_story
- Week day and month extracted from filing date
- Location opened up as latitude and longitude

Comparisons of Models Tried

Classifier Model	Hyperparameters	Sensitivity on labels 0,1,2	F1 score
Logistic Regression	C = 0.1, class_Weight = balanced	0.82,0.75,0.67 Overall 79%	0.81
Decision Tree	max_depth=12,min_samples_leaf =6,class_weight = None	0.94,0.41,0.67 Overall 83%	0.82
Bagging	n_estimators=50	0.94,0.51,0.73 Overall 84.6%	0.84
Random Forests	min_samples_leaf=2,class_weight = balanced,n_estimators=200	0.87,0.69,0.73 Overall 83%	0.84
Gradient Boosting	min_samples_leaf=2,n_estimator s=50	0.94,0.65,0.67 Overall 82%	0.83

Feature importance

Conclusions / Future work

Conclusions

- The Random Forest is the chosen model. Performance on test set was 83% accuracy, no surprises.
- 5 features are the key deterministic factors: Plansets, Permit type, log_rev_cost_2, longitude, latitude
- Rest of them together add around 2% accuracy

Future Work

- Collect housing/crime data to increase features
- Undersampling, oversampling techniques to handle class imbalance

Code [1][2][3] Ideas Proposal Detailed Report

github :aparnack, LinkedIn: aparnacshastry twitter: aparsha2303, medium: aparnack, kaggle: aparnashastry