

gForce 嵌入式套件用户手册

Version 1.2

2017/04/01

Copyright 上海傲意信息科技有限公司

修订历史 (Revision History)

 日期	版本		 作者
2017/04/01	V1.2	Update suite name and appearance	Kai Zhou
2017/02/15	V1.1	Updated communication protocol	Zhou Yu
2017/01/04	V1.0	First release version	Kai Zhou

目 录

修订历史 (Revision History)	2
1. 简要介绍	5
2. gForce 嵌入式套件介绍	6
2.1 主要配件	6
2.1.1 gForce 介绍	6
2.1.2 gForceJoint 介绍	8
2.2 使用方法	10
2. 2. 1 gForce 与 gForceJoint 连接	
2. 2. 2 gForceJoint 与被控制设备连接	
3. gForceJoint 串口数据协议	11
3.1 数据格式	
3.2 Event Data	12
3.2.1 四元数	
3.2.2 手势	
3.2.3 设备状态	12
3.2.4 设备连接成功	
3.3 实例	
4. 参考资料	14

表格目录

表格	3-1 Event 格式	.1
表格	3-2 Event Type	.1
	3-3 Event Type = 四元数 (浮点数)	
	3-4 Event Type = 手势	
	3-5 Event Type = 设备状态	
	3-6 Event Type = 设备连接	
	3-7 实例 1	

1. 简要介绍

本文档主要介绍如何使用上海傲意信息科技有限公司的 gForce 嵌入式套件进行外围设备的手势控制部分的开发。

本文档后续包含三个章节,第二章节主要介绍 gForce 嵌入式套件的构成以及使用步骤,帮助用户建立 对该套件的宏观了解。第三章主要介绍该套件的通讯协议,该协议将 gForce 接入到各种被控制设备当中, 并使用手势控制该设备。第四章节包含了手势动作参考视频及其他一些开发视频链接,帮助用户快速熟悉 各种支持的手势动作及其他已完成的一些外部设备控制开发。

2. gForce 嵌入式套件介绍

该章节用于介绍 gForce 嵌入式套件的主要配件以及如何使用该套件。

2.1 主要配件

gForce 嵌入式套件主要由 gForce 及 gForceJoint 组成。其中 gForce 设备主要用于手势识别并将手势数据通过 BLE 发送到 gForceJoint。gForceJoint 设备主要用于接收 gForce 发送过来的手势数据,并将该数据通过串口或者 GPIO 发送到外部待控制的设备。通过该套件只需要用串口便可以将手势控制加入到外部系统中,极大的简化了开发者的工作强度。

图表 1 控制模型图

2.1.1 gForce 介绍

gForce 主要通过肌电信号进行手势识别,目前内嵌手势为六个,分别为握拳、伸掌、伸腕、屈腕、打枪、空捏,具体手势动作请参考第四章节的动作指导视频,gForce 的详细使用方法请参考 gForce 使用手册。gForce 外观如图表 1 所示。

图表 2gForce 外观

> gForce 的开启与关闭

- 开启设备:在 gForce 关机状态下,通过单击 gForce 上的电源按钮便可以打开设备。单击电源按钮后,如果出现 500ms 马达震动且电源按钮上绿灯以 2s 频率进行闪烁,则代表设备打开成功。若单击电源按钮后无反应,则可能是设备电量不足,应及时充电。
- 关闭设备: 在gForce 开机状态下,常按电源键 5 秒后,松开电源键便可以关闭设备。

> gForce 的充电

● 该设备通过 USB 端口进行充电,通过 USB 线连接后,设备电源按钮上的红灯亮起,代表目前处于充电状态,当红灯熄灭后,设备电量充满。

> gForce 的状态

以下关于设备状态的介绍以设备正常开启为前提。

- 设备绿灯以 2S 间隔进行闪烁代表设备未与任何主机连接。
- 与主机连接后,设备绿灯闪烁速度与传输数据的频率有关。
- 设备内马达震动代表识别出一个正确手势。

2.1.2 gForceJoint 介绍

gForceJoint 作为蓝牙系统中的 central,用于接收 gForce 发送的各种数据,并将数据通过串口或者 GPIO 发送给被控制设备。开发者可以简单的通过串口或者 GPIO 获取数据便可以将手势控制加入到所开发的系统中。gForceJoint 外观如图表 2 所示。

图表 3gForceJoint 外观

▶ gForceJoint 模块图

图表 4gForceJoint 模块图

如图表 4 所示,VCC 为 gForceJoint 的电源输入。目前 gForceJoint 支持 3.3V 及 5V 两种电源的输入方式。当输入电源为 5V 的时候,通过跳线帽将 **A2** 与 **O1** 进行连接。当输入电源为 3.3V 时,将 **A1** 与 **O1** 进行连接。其他所有接口的用法请参考具体 gForceJoint 上的标识符。

2.2 使用方法

该小节主要用于介绍 gForce 与 gForceJoint 如何进行连接及连接后相应的状态。

2. 2. 1 gForce 与 gForceJoint 连接

> 连接

为简便连接,目前 gForceJoint 选择蓝牙信号最强(即 RSSI 值最大)的 gForce 设备连接。一般来说,设备距离越近,蓝牙信号强。

在 gForce 与 gForceJoint 断开的状态下,将 gForce 靠近 gForceJoint,当 gForce 上的绿色 LED 闪烁频率 明显改变的时候,gForce 与 gForceJoint 便连接成功。

当在使用 gForce 嵌入式套件开发过程中遇到问题时,可以将 gForceJoint 通过串口转接板连接到电脑上,通过串口调试助手查看 gForce 与 gForceJoint 在连接状态下,gForceJoint 是否可以打印出各种数据。该方法可以帮助您快速定位是 gForce 套件还是待开发设备的问题,避免您浪费宝贵的时间。

2. 2. 2 gForceJoint 与被控制设备连接

目前,gForceJoint 与被控制设备之间可以通过串口和 GPIO 两种灵活的方式连接。具体连接方式请参考 gForceJoint 引脚模块图。由于 GPIO 配置的多样化,本文档不做赘述,具体使用请联系 OYmotion 相关技术服务人员进行咨询。本文重点介绍串口连接的使用方法。

3. gForceJoint 串口数据协议

gForceJoint 串口数据协议使用类似 TLV(类型-长度-值)格式进行通信。

3.1 数据格式

gForceJoint 串口数据包含两个部分,从外部设备发送到 gForceJoint 的 Command 和从 gForceJoint 发送到外部设备的 Event,目前只支持 Event,如表格 3-1 所示。

表格 3-1 Event 格式

Byte[0:1]	Byte[2]		Byte[3]	Byte[4:]
Magic	Bit[0:6]	Bit[7]		当 PackageID Flag=1 时,Byte[4]=Package ID, Byte[5:]= Event Data
Number	Event type	PackageID Flag	Length	当 PackageID Flag=0 时,Byte[4:]= Event Data

Event type: 用来区分 Event, 具体定义如表格 3-2:

表格 3-2 Event Type

Event type	说明
0x02	四元数(浮点数)
0x0F	手势
0x14	状态通知
0x70	设备连接成功
0x71	设备断开

Magic Number: 0xAAFF

PackageID Flag: 表示目前所发送的数据包中是否包含 Package ID。当此标志为 1 时,Byte[4]为

Package ID, Byte[5:]为 Event Data; 否则 Byte[4:]为 Event Data。

Length: 表示 Byte[4:]总共包含的字节数。

Package ID: 对 Event 按照时序编码,范围为 0x00~0xFF。可用作校验传输过程中是否有丢包。

Event Data: 表示各传感器数据,如四元数、手势数据、状态通知等。

3.2 Event Data

3.2.1 四元数

表格 3-3 Event Type = 四元数 (浮点数)

Byte[0-3]	Byte[4-7]	Byte[8-11]	Byte[12-15]
W	X	Y	Z

3.2.2 手势

表格 3-4 Event Type = 手势

Byte[0]	说明
0x00	放松
0x01	握拳
0x02	伸掌
0x03	屈腕
0x04	伸腕
0x05	空捏
0x06	开枪
0xFF	未知手势

3.2.3 设备状态

设备状态是为了将 gForce 设备的一些状态变化通知主机应用程序,数据大小为一个 byte。

表格 3-5 Event Type = 设备状态

	Value	lue 说明	
Bit0	1	Re-center。设备重置基准坐标系为当前朝向(四元数为 [w=1, x=0, y=0, z=0	
		用户可通过按一次设备 power 键来 re-center。	

3.2.4 设备连接成功

表格 3-6 Event Type = 设备连接

Byte[0:5]	说明
~	设备蓝牙 MAC 地址

3.3 实例

以下实例用于帮助用户深刻理解该数据格式。

▶ 当 PackageID Flag 分别为 0 或 1 时, 待发送的数据为手势数据 0x01(握拳)时, 所发送的数据如表格 3-7 所示。

表格 3-7 实例 1

	Magic Number	Event	Length	Data
	Byte[0:1]	Byte[2]	Byte[3]	Byte[4:]
PackageFlag Id = 1	0xFF 0xAA	0x8F	0x02	Byte[4]=Package ID(0x00~0xFF),
				Byte[5]=gForce Data = 0x01
PackageFlag Id = 0	0xFF 0xAA	0x0F	0x01	Byte[4]=gForce Data=0x01

4. 参考资料

标准手势动作指导视频: http://www.tudou.com/programs/view/7ETsgGTRw2k/

