Note: cells with light green background have answers which match the text.

Clear["Global`*"]

1. Powers of *i*. Show that
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, ... and $\frac{1}{i} = -i$, $\frac{1}{i^2} = -1$, $\frac{1}{i^3} = i$...

$$\begin{split} & \text{tab} = \text{Table} \big[\dot{\textbf{i}}^{n}, \; \{ n, \; -3, \; 5 \} \big] \\ & \{ \dot{\textbf{i}}, \; -1, \; -\dot{\textbf{i}}, \; 1, \; \dot{\textbf{i}}, \; -1, \; -\dot{\textbf{i}}, \; 1, \; \dot{\textbf{i}} \} \\ & \text{tex} = \left\{ "\dot{\textbf{i}}^{-3}", \; "\dot{\textbf{i}}^{-2}", \; "\dot{\textbf{i}}^{-1}", \; "\dot{\textbf{i}}^{0}", \; "\dot{\textbf{i}}^{1}", \; "\dot{\textbf{i}}^{2}", \; "\dot{\textbf{i}}^{3}", \; "\dot{\textbf{i}}^{4}", \; "\dot{\textbf{i}}^{5}" \right\} \\ & \{ \dot{\textbf{i}}^{-3}, \; \dot{\textbf{i}}^{-2}, \; \dot{\textbf{i}}^{-1}, \; \dot{\textbf{i}}^{0}, \; \dot{\textbf{i}}^{1}, \; \dot{\textbf{i}}^{2}, \; \dot{\textbf{i}}^{3}, \; \dot{\textbf{i}}^{4}, \; \dot{\textbf{i}}^{5} \right\} \end{split}$$

i-3								
i	-1	-i	1	i	- 1	-i	1	i

3. Division. Verify the calculation in (7). Apply (7) to $\frac{(26-18 i)}{(6-2 i)}$

The problem refers to numbered line (7) on p. 610 of text.

$$z = \frac{x_1 + i y_1}{x_2 + i y_2};$$

z1 = ComplexExpand[z]

$$\frac{x_1 \ x_2}{x_2^2 \ + \ y_2^2} \ + \ \frac{y_1 \ y_2}{x_2^2 \ + \ y_2^2} \ + \ \dot{\mathbb{1}} \ \left(\frac{x_2 \ y_1}{x_2^2 \ + \ y_2^2} \ - \ \frac{x_1 \ y_2}{x_2^2 \ + \ y_2^2} \right)$$

lef = Together
$$\left[\frac{x_1 x_2}{x_2^2 + y_2^2} + \frac{y_1 y_2}{x_2^2 + y_2^2}\right]$$

$$\frac{x_1 \ x_2 + y_1 \ y_2}{x_2^2 + y_2^2}$$

rig = Together
$$\left[i \left(\frac{x_2 y_1}{x_2^2 + y_2^2} - \frac{x_1 y_2}{x_2^2 + y_2^2} \right) \right]$$

$$\frac{\dot{\mathbf{x}} \ (\mathbf{x}_2 \ \mathbf{y}_1 - \mathbf{x}_1 \ \mathbf{y}_2)}{\mathbf{x}_2^2 + \mathbf{y}_2^2}$$

$$z2 = lef + rig$$

$$\frac{\dot{\mathbf{x}} \ (\mathbf{x}_2 \ \mathbf{y}_1 - \mathbf{x}_1 \ \mathbf{y}_2)}{\mathbf{x}_2^2 + \mathbf{y}_2^2} + \frac{\mathbf{x}_1 \ \mathbf{x}_2 + \mathbf{y}_1 \ \mathbf{y}_2}{\mathbf{x}_2^2 + \mathbf{y}_2^2}$$

$$z6 = \frac{(26-18 i)}{(6-2 i)}$$

$$\frac{24}{5} - \frac{7 i}{5}$$

8 - 15 Complex Arithmetic

Let $z_1 = -2 + 11i$, $z_2 = 2 - i$. Find:

Clear["Global`*"]

$$z_1 = -2 + 11 i$$

-2 + 11 i

 $z_2 = 2 - i$

2 - i

9. $\operatorname{Re}\left[z_1^2\right]$, $\operatorname{Re}\left[z_1\right]^2$

 $zr1 = Re[z_1^2]$

-117

 $zr2 = Re[z_1]^2$

11.
$$\frac{(z_1-z_2)^2}{16}$$
, $\left(\frac{z_1}{4}-\frac{z_2}{4}\right)^2$

$$\frac{(z_1-z_2)^2}{16}$$

-8 - 6 i

$$\left(\frac{\mathbf{z_1}}{4}-\frac{\mathbf{z_2}}{4}\right)^2$$

-8 - 6 i

13.
$$\frac{(z_1 + z_2)}{(z_1 - z_2)}$$
, $z_1^2 - z_2^2$

$$\frac{(\mathbf{z}_1 + \mathbf{z}_2)}{(\mathbf{z}_1 - \mathbf{z}_2)}$$

$$\frac{3}{4} - \frac{1}{4}$$

$$z_1^2 - z_2^2$$

15.
$$4 \frac{(z_1 + z_2)}{(z_1 - z_2)}$$

$$4 \frac{(z_1 + z_2)}{(z_1 - z_2)}$$

16 - 20 Let z = x + I y. Find in terms of x and y:

Clear["Global`*"]

$$z = x + Iy$$

x + i y

17.
$$Re[z^4] - Re[z^2]^2$$

${\tt ComplexExpand} \left[{\tt Re} \left[\, z^4 \, \right] \, - \, {\tt Re} \left[\, z^2 \, \right]^2 \right]$

$$-4 x^2 y^2$$

19. Re
$$\left[\frac{z}{\overline{z}}\right]$$
, Im $\left[\frac{z}{\overline{z}}\right]$

Clear["Global`*"]

$$z = x + i y$$

$$x + iy$$

$$aa = Re\left[\frac{z}{z^*}\right]$$

$$ComplexExpand \left[Re \left[\frac{x + i y}{Conjugate[x] - i Conjugate[y]} \right] \right]$$

$$\frac{x^2}{x^2 + y^2} - \frac{y^2}{x^2 + y^2}$$

$$bb = ComplexExpand \left[Im \left[\frac{z}{z^*} \right] \right]$$

$$\frac{2 \times y}{x^2 + y^2}$$

A precaution about the symbol for complex conjugate. To make a typesettting compound like z^* using the exponent key '^', looks like a conjugate symbol but will not be treated as one. It seems necessary to do "zeconje", without the space of course, in order to get something that Mathematica recognizes.