Dehn Surgery

In its original form, the Poincaré conjecture was the following:

Conjecture (False): A closed, connected, compact 3-manifold with $H_1(M)=0$ is homeomorphic to the 3-dimensional ophere (Here, just think of $H_1(M)$ as $\pi_1(M)$ is you have not seen $\left[\pi_1(M), \pi_1(M)\right]$

hornology).

However Poincaré published a courterexample to this conjecture in 1904, and Max Dehn published infinitely many in 1910. Here is Dehn's construction:

Example: Take a tubular nobhd N of the trefoil in S3, choose J = DN to be the curve protured here:

Now take any homeomorphism $h: \partial(S' \times D^2) \longrightarrow \partial N$

with $h(\{pt\} \times \partial D^2) = J$, and form the space $M = (S^3 \setminus int(N)) \cup_h (S^1 \times D^2)$.

Then M is connected, compact and closed, and you can compute H, (M; Z) using Mayer-Vietoris, or directly using fundamental groups:

Starting with S^3 \int(N), we first glue on $\{pt\} \times D^2$, sending its boundary to the curve J. What remains of $S^1 \times D^2$ is $(S^1 \times D^2) \setminus \{pt\} \times D^2 = (S^1 \times D^2) \setminus \{pt\} \times D^2$

So next we glue in that portion. Only the first step changes $\pi_1(S^3|\operatorname{int}(N))$, and that step adds the relation [J] = 1.

So we calculate:

 $\tau_{Y}(S^{3} | int(N)) = \langle x, y | xyx = yxy \rangle$ and read off

 $[J] = yx(xyx')x^{-2} = yx^2yx^{-3}$

So
$$\pi_1(M) = \langle x, y \mid xyx = yxy, yx^2y = x^3 \rangle$$

Then set $Z = xy$, some algebra gives $\pi_1(M) = \langle x, z \mid (zx)^2 = Z^3 = x^5 \rangle$
Now letting all variables commute gives $H_1(M) = \langle x, z \mid Z^2x^2 = Z^3 = x^5 \rangle$
So $Z^2x^2 = Z^3 \Rightarrow x^2 = Z$
and $Z^3 = x^5 \Rightarrow x^6 = x^5 \Rightarrow x = 1$
So $Z = 1$, too.

Thus $H_1(M) = 0$ and we've a counterexample to the (original) Poincaré conjecture.

So then it became:

(Poincaré, 1904).

Conjecture: A closed, connected, compact 3-mfld with $\pi_1(M) = \{1\}$ is homeomorphic to the 3-sphere.

At the time this conjecture was made, there were already examples of manifolds M, M' with $\pi_{i}(M) \simeq \pi_{i}(M')$ but $M \not\simeq M'$. Using Dehn's construction, they are:

Example: Let p, q be relatively prime. Consider the manifold S3\int(T2), with a curve I on its torus boundary:

wrapping p times in one direction, q in the other. Then glue using h: $S' \times D^2 \longrightarrow \partial T$ with $h(\{pt\} \times \partial D^2) = J$, the resulting space is $L(p,q) = (S^3 | int(T)) U_h S' \times D^2$ and $\pi_1(L(p_{1q})) = \mathbb{Z}/p\mathbb{Z}$.

So different q-values give the same group, despite. Thm: (Reidemeister)

L(p,q) and L(p',q') are homeomorphic if and only if = q' = q = mod p.

So Poincarés conjecture may have seemed optimistic, but it turns out to be true. In fact, as a consequence of Thurston's Geometrization (proved by Perelman)

These are the only examples of 3-manifolds M, M' with $\pi_1(M) = \pi_1(M')$ but $M \not\simeq M'$.

Dehn's construction is now known as Dehn surgery.

Take a knot $K\subset S^3$ and remove a tubular nbhd of it; choose a basis $\{\mu, \lambda\}$ of the fundamental group of the resulting torus boundary:

and for every $J \subset \partial N$, write: $J = \mu^{p} \lambda^{q}$. Gluing $S' \times D^{2}$ to $\partial (S^{3} \mid int(N))$, sending $\{pt\} \times \partial D^{2}$ to $\mu^{p} \lambda^{q} = J$ gives a manifold: $S^{3}(K; \frac{p}{q}) = (S^{3} \mid int(N)) \cup (S' \times D^{2})$ $J = \mu^{p} \lambda^{q}$

"Surgery" because we're thinking of "cutting out" and "stitching together" pieces.

We can also generalize by using multiple knots at once, is a link Lilet $V_1, ..., V_r \subseteq S^3$ be solid tori, $\partial(S^3 \setminus \{V_1, ..., V_r\}) = T_1 \cup T_2 \cup ... \cup T_r$

Then choose a basis $\{\mu_i, \lambda_i\}$ of $\pi_1(T_i)$, we the basis to describe homotopy classes of curves $J_i \subseteq \partial V_i$. For each $J_i = \mu_i \lambda_i^{p_i}$, glue a solid torus and form

This construction is a fundamental tool in studying 3-manifolds, because
1962 1960
Theorem: (Lickorish, Wallace)

Every closed, connected, compact, orientable 3-manifold can be constructed as

$$S^{3}(L; \pm 1, \pm 1, \pm 1, ..., \pm 1)$$

for some choice of LCS3 and signs =.