E-commerce SQL Analysis

Problem Statement

Analyzing the sales, product, and customer data for an e-commerce company. getting various insights and calculating various KPI and data with SQL in Big Query.

Question 1: Find the number of orders that have small, medium or large order value (small:0-10 dollars, medium:10-20 dollars, large:20+)

```
with category as (
select Total_Sales,
case when Total_Sales between 0 and 9 then 'Small $0-$9'
when Total_Sales between 10 and 19 then 'Medium $10-$19'
when Total_Sales > 19 then 'Large $20+'
end as Orders_Category
from `e_com.transactions`
)

select Orders_Category, count(Total_Sales) as total_order
from category
where Orders_Category is not null
group by Orders_Category;
```

JOB IN	IFORMATION	RESULTS	CHART	J
Row	Orders_Category	· /	total_order ▼	//
1	Small \$0-\$9		991736	
2	Medium \$10-\$19		29944	1
3	Large \$20+		15269	9

➤ <u>Insight: -</u> A large proportion of orders fall under the "medium" range (\$10-\$20), indicating that customers frequently purchase items within this price bracket. This could reflect a sweet spot in pricing for most products.

> Recommendation: -

- 1. Consider running promotions or discounts on high-value items to shift some of the medium-order customers into the large-order category.
- 2. Create bundling offers for small-order items to encourage customers to increase their spending.

Question 2: Find the number of orders that are small, medium or large order value (small:0-5 dollars, medium:5-10 dollars, large:10+)

```
with category as (
select Total_Sales,
case when Total_Sales between 0 and 4 then 'Small $0 - $4'
when Total_Sales between 5 and 9 then 'Medium $5 - $10'
when Total_Sales > 9 then 'Large $10+'
end as Orders_Category
from _'e_com.transactions'
)

select Orders_Category, count(Total_Sales) as total_order
from category
where Orders_Category is not null
group by Orders_Category;
```

JOB IN	FORMATION	RESULTS	CHART	JSON
Row	Orders_Category	· //	total_order ▼	//
1	Small \$0 - \$4		8033	360
2	Medium \$5 - \$10		1223	802
3	Large \$10+		568	332

- ➤ <u>Insight: -</u> The high volume of medium and large orders highlights that customers are willing to invest more in products over \$5, possibly indicating a preference for value-added or premium offerings.
- ➤ <u>Recommendation:</u> Medium and large orders dominate, so further optimize the product mix in these ranges by offering discounts, loyalty programs, or exclusive deals to retain and grow these customers.

Question 3: Find top 3 stores with highest foot traffic for each week (Foot traffic: number of customers transacting)

```
with foot_traffic as (
    select Store_ID, Week_No, count(*) as customer_transacting,
    dense_rank() over(partition by Week_No order by count(*) desc) as rn
    from _e_com.transactions`
    where Sales_Value is not null or Sales_Value = 0
    group by Store_ID, Week_No
)

select Week_No, Store_ID
from foot_traffic
where rn <= 3
order by Week_No asc;</pre>
```

JOB IN	IFORMATION		RESULTS	CHART
Row	Week_No ▼	//	Store_ID	· //
1		1		324
2		1		32004
3		1		296
4		2		315
5		2		375
6		2		403
7		3		375
8		3		367
9		3		408
10		4		367
11		4		32004

Insight: - The greatest number of transaction customer done is on the Store with ID 367 followed by Store ID 361 and 357

Question 4: Create a basic customer profiling with first, last visit, number of visits, average money spent per visit and total money spent order by highest avg money

```
select Household_Key, min(DAY) as customer_first_visit,
max(DAY) as customer_last_visit, count(distinct DAY) as customer_number_of_visit,
round(avg(Total_Sales),1) as customer_average_spent_per_visit,
round(sum(Total_Sales),1) as customer_total_spent
from _'e_com.transactions'
group by Household_Key
order by 1 asc;
```

JOB IN	IFORMATION		RESULTS CH	ART JSON	EXECUTION DETA	AILS EXECUTION	ON GRAPH
Row	Household_Key	•,	customer_first_visit	customer_last_visit	customer_number_o	customer_average_s	customer_total_spen
1		1	2000-02-20	2001-12-06	72	2.9	2473.2
2		2	2000-04-12	2001-10-29	44	3.5	1235.7
3		3	2000-04-22	2001-12-03	45	3.9	1789.0
4		4	2000-04-13	2001-09-18	29	4.6	693.5
5		5	2000-03-25	2001-12-03	29	4.3	477.3
6		6	2000-04-27	2001-12-07	201	3.7	3358.3
7		7	2000-01-23	2001-12-09	56	3.1	1996.3
8		8	2000-03-05	2001-12-06	102	3.4	3380.3
9		9	2000-04-13	2001-11-19	18	4.5	496.5
10		10	2000-04-23	2001-11-15	5	3.6	125.9

Insight: -

The query is extraction the customer ID which is Household Key and what was the first visit, last visit, how many times he/she visits, the average amount he/she spends whenever he/she visits the store and the total amount he/she spends

Question 5: Do a single customer analysis selecting most spending customer for whom we have demographic information (because not all customers in transaction data are present in demographic table) (show the demographic as well as total spent)

```
with most_spending_table as (
select dem.household_key, dem.age_bucket, dem.marital_status, dem.income_bucket, dem.homeowner,
dem.household_comp, dem.household_size, dem.kid_category,
sum(Total_Sales) as most_spend
from <u>`e_com.demographics`</u> dem
left-join-`e_com.transactions` tra-on-dem.household_key-=-tra.Household_Key-
group by dem.household_key, dem.age_bucket, dem.marital_status, dem.income_bucket, dem.homeowner,
-dem.household_comp, dem.household_size, dem.kid_category
select household_key, age_bucket, marital_status, income_bucket, homeowner, household_comp,
household_size, kid_category
from most_spending_table
where most_spend = (
select max(most_spend)
from most_spending_table
  query results
  JOB INFORMATION
             RESULTS CHART
                                  EXECUTION DETAILS
                                             EXECUTION GRAPH
 Row __ household_key ▼ __ age_bucket ▼
                      marital_status 🔻
                                        income_bucket ▼
                                                                                    household_size ▼
                                                                                                   kid_category *
                                                           homeowner *
                                                                          household_comp *
           1609 45-54
                                                                          2 Marrieddults Kids
```

Insight: -

- **1.** The customer who spent most amount is with the household key 1609 and we can see their demographics.
- **2.** They are in the age bucket of 45-54, married.
- 3. Their income is between \$125 \$149. They are a homeowner

Question 6:_Find products (product table: SUB_COMMODITY_DESC) which are most frequently bought together and the count of each combination bought together. do not print a combination twice (A-B / B-A)

```
SELECT p1.SUB_COMMODITY_DESC AS product_A,

p2.SUB_COMMODITY_DESC AS product_B,

COUNT(*) AS pair_count

FROM 'e_com.transactions' t1

JOIN 'e_com.products' p1 ON t1.product_id = p1.product_id

JOIN 'e_com.transactions' t2 ON t1.Basket_ID = t2.Basket_ID

AND t1.product_id < t2.product_id

JOIN 'e_com.products' p2 ON t2.product_id = p2.product_id

GROUP BY p1.SUB_COMMODITY_DESC, p2.SUB_COMMODITY_DESC

ORDER BY pair_count DESC;
```

4.00	,					
JOB IN	FORMATION	RESULTS	CHART JS	ON I	EXECUTION DETAILS	EXECUTION GRAPH
Row	product_A *	- /-	product_B ▼	/	pair_count *	
1	YOGURT NOT MU	ILTI-PACKS	YOGURT NOT MULTI-P	ACKS	12773	
2	BABY FOOD - BE	SINNER	BABY FOOD - BEGINNE	R	8171	
3	SS ECONOMY EN	TREES/DINN	SS ECONOMY ENTREE	S/DINN	5413	
4	SOFT DRINK POV	VDER POUCHES	SOFT DRINK POWDER	POUCHES	5192	
5	FRZN SS PREMIU	IM ENTREES/	FRZN SS PREMIUM EN	TREES/_	5139	
6	SFT DRNK 2 LITE	R BTL CARB I	SFT DRNK 2 LITER BTI	CARB I	4474	
7	SOFT DRINKS 12	/18&15PK CA	SOFT DRINKS 12/18&1	SPK CA	4391	
8	CANDY BARS (SI	NGLES)(INCL	CANDY BARS (SINGLE	S)(INCL	3442	
9	CANNED CAT FO	OD (9 LIVES/F_	CANNED CAT FOOD (9	LIVES/F_	3076	
10	FLUID MILK WHI	TE ONLY	SOFT DRINKS 12/18&1	SPK CA	2911	
11	FLUID MILK WHI	TE ONLY	YOGURT NOT MULTI-P	ACKS	2815	

> Insights:

Ouery results

- 1. The above query output shows which product is brought together frequently and how much time it was purchased by the customer.
- 2. These output we can use to increase the number of products in our inventory which is highest and medium selling

Question 7: Find the weekly change in Revenue Per Account (RPA) (difference in spending by each customer compared to last week) (use lag function)

```
1 WITH weekly_revenue AS (
     SELECT
     ---- Household_Key,
4 Week_No as week_start,
5 round(SUM(Total_Sales
6 FROM 'e_com.transactions
         --round(SUM(Total_Sales)) AS total_spending
 7 --- GROUP BY Household_Key, Week_No
 8)
10 SELECT
Household_Key, week_start,
13 total_spending,
14 ---round(LAG(total_spending) OVER (PARTITION BY Household_Key ORDER BY week_start)) AS-
previous_week_spending,
                         round(LAG(total_spending) OVER (PARTITION BY Household_Key ORDER BY week_start))) AS
   weekly_change_in_rpa
16 FROM weekly_revenue
17 ORDER BY Household_key, week_start;
```

JOB II	FORMATION	RESULTS	CH	ART JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row	Household_Key •	week_start	- ,	total_spending •	previous_week_spending •	weekly_change_in_rpa •
1	1		8	49.0	nuli	nuli
2	1		10	20.0	49.0	-29.0
3	1		13	15.0	20.0	-5.0
4	1		14	30.0	15.0	15.0
5	1		15	15.0	30.0	-15.0
6	1		16	15.0	15.0	0.0
7	1		17	16.0	15.0	1.0
8	1		19	50.0	16.0	34.0
9	1		20	40.0	50.0	-10.0
10	1		22	48.0	40.0	8.0
11	1		23	31.0	48.0	-17:0
12	1		24	36.0	31.0	5.0

> Insights:

- 1. The above query shows the weekly change in revenue per account. For every customer which is household key we can see the revenue changing weekly which we can use for the inventory stocks.
- 2. How much revenue is generated each week, what percentage of revenue we incline or decline every week

Recommendation:

- 1. Most of the products are sold within the category of small, so we need to focus of medium and large category of products as well.
- 2. We can combine the bundle of small with medium and small with large and then we can sell, so that the inventory will not have any expired products.
- 3. The top revenue we generate are from store Id 367, 361 and 357. we need to focus more on this store because they capture a large number of customers.
- 4. The average amount customer spent whenever they visit the store is between \$ 4 \$ 5 and customer visit the store frequently.
- 5. The total amount a customer spent on an average is between \$1500 to \$2000.