EOPSY

Lab 4: Memory Management

Julia Czmut 300168

Introduction

Memory management is the functionality of the operating system which handles the processes allocation in memory.

The processes are moved back and forth between the parts of the memory. When it happens, the free memory space is divided further and further into little pieces. At some point these free pieces can be too small and remain not used at all – this problem is called **fragmentation**.

A solution to fragmentation can be **paging**, in which process address space is divided into equally-sized blocks called pages. The pages which belong to a specific process are loaded into available memory frames. To reiterate, frames are used to divide the physical memory, and pages are used to divide the processes' virtual address space.

Paging mechanism is important in implementing virtual memory and it is responsible for:

- mapping virtual addresses onto physical addresses (locating the referenced page and frame used by that page),
- sending pages from external memory to operating memory and sending back pages which are not required anymore.

The goal of this task was to configure the Memory Management simulator to map any 8 pages of physical memory to the first 8 pages of virtual memory, and then read from one virtual memory address on each of the 64 virtual pages.

memory.conf

The rest was left unchanged.

```
// memset
                       physical page # R (read from) M (modified) inMemTime (ns) lastTouchTime (ns)
          virt page #
memset 0 0 0 0 0 0
memset 1 1 0 0 0 0
memset 2 2 0 0 0 0
memset 3 3 0 0 0 0
memset 4 4 0 0 0 0
memset 5 5 0 0 0 0
memset 6 6 0 0 0 0
memset 7 7 0 0 0 0
// enable logging 'true' or 'false'
// When true specify a log file or leave blank for stdout
enable logging true
// log file <FILENAME>
// Where <FILENAME> is the name of the file you want output
// to be print to.
log_file tracefile
// page size, defaults to 2^14 and cannot be greater than 2^26
// pagesize <single page size (base 10)> or <'power' num (base 2)>
pagesize 16384
// addressradix sets the radix in which numerical values are displayed
// 2 is the default value
// addressradix <radix>
addressradix 10
// numpages sets the number of pages (physical and virtual)
// 64 is the default value
// numpages must be at least 2 and no more than 64
// numpages <num>
numpages 64
```

I edited the memory.conf file so that only 8 pages are mapped accordingly to our task's specifications (memset commands at the top which map respective pages between physical and virtual memory).

I also changed the address radix to 10, so that the numerical values are displayed in decimal.

Then, in the commands file, I specified that the simulator should execute the READ command 64 times to addresses being the multiples of 16384, in order to read from one virtual memory address on each of the 64 virtual pages.

Part of the **commands** file:

Comments about the simulation results

After stepping through the simulator one operation at a time, it became clear that the first 8 pages were mapped correctly as was specified in the memory.conf file. Moreover, the pages 8-31 were also mapped correctly (probably by default by the simulator).

A **page fault** occurs when a virtual page which has not been mapped to a physical page yet is being referenced.

It turned out that the address 524288 caused the first page fault. It occurred at the 32nd virtual page and the simulator showed it was mapped to physical page -1 (so it was not mapped to any physical page). From that moment, each further address caused page faults up until 64th page, so the last one.

When a page fault happens, this page is being mapped to the first physical page in queue (depending on which page replacement algorithm is used).

Part of tracefile file:

```
READ 0 ... okay
READ 16384 ... okay
READ 32768 ... okay
READ 49152 ... okay
...
READ 507904 ... okay
READ 524288 ... page fault
READ 540672 ... page fault
...
READ 1032192 ... page fault
```

Information about the page replacement algorithm could be found in PageFault.java file (it's highlighted on the screenshot below).

```
/* It is in this file, specifically the replacePage function that will
  be called by MemoryManagement when there is a page fault. The
  users of this program should rewrite PageFault to implement the
  page replacement algorithm.
 // This PageFault file is an example of the FIFO Page Replacement
 // Algorithm as described in the Memory Management section.
import java.util.*;
public class PageFault {
   * The page replacement algorithm for the memory management sumulator.
  * This method gets called whenever a page needs to be replaced.
  * The page replacement algorithm included with the simulator is
  * FIFO (first-in first-out). A while or for loop should be used
   * to search through the current memory contents for a canidate
  * replacement page. In the case of FIFO the while loop is used
   * to find the proper page while making sure that virtPageNum is
   * not exceeded.
   * 
      Page page = ( Page ) mem.elementAt( oldestPage )
   *
```

The page replacement algorithm used here is **FIFO** (**First-In First-Out**). So, the first page mapped (first in) is used as replacement in the first place (first out).

run	step	reset	exit	status: STOP	1
virtual	physical	virtual	physical	time: 320 (nel
page 0		page 32	physical	CIMC. 320 (
page 1	page t	page 33		instruction:	READ
page 2	page 2	page 34		address:	507904
page 3	page 1	page 35		address:	20190
page 4	gage d	page 36		page fault:	NO
page 5	gage 5	page 37		page radic:	NO
page 6	gage 6	page 38		virtual page:	31
page 7	gage 7	page 30		physical page:	
page 8	page 8	page 40		R:	0
page 9	gage 9	page 41		M:	ő
page 10	page 10	page 42		inMemTime:	310
page 11	gage II	page 43		lastTouchTime:	
page 12	gage 12	page 44		low:	507904
page 13	page 13	page 45		high:	524287
page 14	page 14	page 46		9	522201
page 15	page 15	page 47			
page 16	page 16	page 48			
page 17	page 17	page 49			
page 18	page 18	page 50			
page 19	page 19	page 51			
page 20	page 20	page 52			
page 21	page 21	page 53			
page 22	page 22	page 54			
page 23	page 23	page 55			
page 24	page 2d	page 56			
page 25	page 25	page 57			
page 26	page 26	page 58			
page 27	page 27	page 59			
page 28	page 28	page 60			
page 29	page 29	page 61			
page 30	page 30	page 62			
page 31	page 31	page 63			

run	step	reset	exit	status: STOP	
virtual	physical	virtual	physical	time: 330 (ns)
page 0		page 32	page 0		
page 1	page l	page 33		instruction:	READ
page 2	page 2	page 34		address:	524288
page 3	page 3	page 35			
page 4	page d	page 36		page fault:	YES
page 5	page 5	page 37			
page 6	page 6	page 38		virtual page:	32
page 7	page 7	page 39		physical page:	-1
page 8	page 8	page 40		R:	0
page 9	page 9	page 41		М:	0
page 10	gage 10	page 42		inMemTime:	0
page 11		page 43		lastTouchTime:	
page 12		page 44		low:	524288
page 13		page 45		high:	540671
page 14	gage ld	page 46			
page 15	gage 15	page 47			
page 16	gage 16	page 48			
page 17		page 49			
page 18	gage 18	page 50			
page 19	gage 19	page 51			
page 20		page 52			
page 21		page 53			
page 22	page 22	page 54			
page 23	page 23	page 55			
page 24	page 2d	page 56			
page 25	page 25	page 57			
page 26	gage 26	page 58			
page 27	page 27	page 59			
page 28		page 60			
page 29	page 29	page 61			
page 30		page 62			
page 31	page 31	page 63			

Last mapped page (31st)

First page fault

The screenshots above show the simulator step by step around the important point of the first page fault. It is visible that when the first page fault occurs at the 32^{nd} page, page number 0 (which was first in) is first taken as replacement. After that, consecutive pages are taken by the replacement algorithm – at 33^{rd} page, page number 1 is taken (which is the next "first in" after page 0) and so on.