

Lending Club

CASE STUDY

Worked on by-

Rashmeen Malhotra & Sheikh Moin

PATA SOURCING/READING

First step is to load the dataset and understand all columns using data dictionary

DATA CLEANING

02

Next we need to clean our data by removing all irrelevant rows an columns and finding missing values

DATA ANALYSIS

03

Then we perform our analysis by understanding the relation between columns and also how it can be used to get closer to solution

CONCLUSION

Finally we provide a conclusion on the driving factors (or driver variables) behind loan default

LOAN DATASET

Problem Statement

You work for a consumer finance company which specializes in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile.

(Not considered in dataset)

Data Sourcing and Reading

ନ୍ମ

• We start by importing the dataset file to our Jupyter notebook.

Given below are samples form data dictionary to understand what type of data is stored in dataset

- 1. id A unique LC assigned ID for the loan listing.
- 2. installment The monthly payment owed by the borrower if the loan originates.
- 3. url URL for the LC page with listing data.
- 4. funded_amnt The total amount committed to that loan at that point in time.
- 5. loan_status Current status of the loan

Data Cleaning

- We have 39717 Rows and 111 Columns in the initial Data Set.
- After cleaning unnecessary columns such as 'na', duplicate, irrelevant etc., we are left with 39717 Rows and 22 Columns
- As you can see, we have not dropped any rows

Understanding Data

2

Before we come to any conclusions, let us understand the Data and some patterns using EDA and pictorial presentation

Understanding Data with Univariate

EMP_LENGTH

- As the employment length increases, the number of loan applications decreases
- A reason for this could be, financial stability

NOTE:

- Here 0 means, less than an year
- 10 means, ten or more years. (hence this is an exception in the trend seen)

LOAN_STATUS

• We see that the count of people who is even though is very high in itself, it is less than the count of people who have fully repaid the amount

TERM

- Maximum percentage of customers choose 36 month tenure over 60 months
- In the next section, let us understand why

Understanding Data with Bivariate

TERM AND INT_RATE

- On an average the interest rate for 36 months is less than that for 60 months tenure
- This seems to be the driving factor for people going towards 36months

17.481450670657114

FUNDED_AMNT_INV AND ANNUAL_INC

• On an average the loan amount approved and sanctioned is around 17.48% of the annual salary

Bivariate Analysis to find driving factors behind loan default

Loan status vs Housing

RENT

LOAN STATUS VS HOUSING

- People with own house tend to apply less for loan and also do not default very often
- Whereas, people with rented or house under mortgage usually take more loan and the default rate is very high as well

OWN

OTHER

NONE

loan_status	Charged Off	Current	Fully Paid
grade			
Α	602	40	9443
В	1425	345	10250
С	1347	264	6487
D	1118	222	3967
E	715	179	1948
F	319	73	657
G	101	17	198

GRADE VS LOAN_STATUS

- Here we can see as the Grade moves from A to G, the chances of a person defaulting a loan will increase
- We see that people with G, almost 1 of 2 people have defaulted

LOAN STATUS VS VERIFICATION

- Here we can see that verification has almost no effect on, if a person is going to default
- Almost same number of verified as well as unverified people have defaulted loan

Conclusion

- People with own house are more likely to pay back the loan
- People with good grade are more likely to pay back loan, whereas the ones with bad grade are likely to default loan (Where 'A' being best grade and 'G' being bad)
- We also see in the last representation that the 'Verification' has no effect on, if a person is going to default the loan

Find this Project on Github site

https://github.com/sheikhmoin1/Lending-Club

OR

https://github.com/rashmeenmalhotra/Lending Club

RASHMEEN MALHOTRA

