MAX X. LIN

xmaxlin@gmail.com || 510-935-4906

EDUCATION

UC BERKELEY

B.A. Computer Science Expected May 2021 GPA: 3.662 / 4.0

Hercules High

Graduated June 2017

GPA: 3.9/4.0

SKILLS

PROGRAMMING

Java • Python • C • C ++ • PostgreSQL • HTML • CSS

COURSEWORK

CURRENT

CS161: Computer Security

CS186: Databases

CS188: Artificial Intelligence

COMPLETED

CS170: Efficient Algorithms

CS70: Discrete Math & Probability

CS61C: Machine Structures **CS61B:** Data Structures

CS61A: Structure & Interpretation of

Computer Programming

Data100: Principles and Techniques

of Data Science

Data8: Foundations of Data Science

EE16A/B: Designing Information Devices and Systems I/II

Math54: Linear Algebra

Math53: Multivariable Calculus

LINKS

GitHub: github.com/xmaxlin LinkedIn: /in/maxxianglin Website: xmaxlin.github.io

EXPERIENCE

UC BERKELEY EECS | TUTOR

June 2019 - August 2019 | Berkeley, CA

- Worked as a member of course staff for CS61C (Machine Structures)
- Gave mini-lectures in discussions and created content review worksheets
- Taught C, RISC-V, CPU Datapath Design & Pipelining to groups of 5 & 10 students
- Created tutoring videos going over Caches, Data-Level Parallelism, and VM

Computer Science Mentors | JUNIOR MENTOR

February 2019 - May 2019 | Berkeley, CA

- Served as a junior mentor for CS61C (Machine Structures)
- Provided one-on-one tutoring services to struggling students
- Gave weekly mini-lectures and went over worksheets with a section of 6 students

UC BERKELEY EECS | ACADEMIC INTERN

June 2018 - August 2018 | Berkeley, CA

- Volunteered as a lab assistant for CS61B (Data Structures & Algorithms)
- Managed and graded guizzes at the start of every lab session
- Explained concept behind several HashMaps, Heaps, R-B trees, WeightedQU
- Held reviews going over Dijkstra, A*, BFS, DFS search algorithms

PROJECTS

Guava Bots | CS170 PROJECT

- Created a Python routing algorithm that finds lost objects with an adversary
- Used NetworkX's Steiner Trees and a multiplicative weight framework (based on adversary) to find lost objects and route to a home node efficiently

Bear Maps | CS61B PROJECT

- Implemented a Java mapping application of Berkeley inspired by Google Maps
- Designed using A* algorithm in Java using the great-circle distance as a heuristic
- Supported map rasterization and zoom using quadtrees
- Implemented name-search autocompletion capabilities with Trie trees

World Gen | Soda Hack Project

- Built an interactive 2D game in Java where user actions affect environment
- Used StdDraw from the Princeton Standard Library to create GUI
- Attempted to integrate Oculus VR support using Unity3D

AWARDS AND HONORS

May 2019 1st Place CS170 GuavaBot Algorithms Competition April 2017 1st Place PiE High School Robotics Competition