15 Simplicité de \mathfrak{A}_n

Leçons 101, 103, 104, 105, 108

<u>Ref:</u> [Perrin] Prop I.4.10, Th I.8.1

Théorème 1 Le groupe alterné \mathfrak{A}_n est simple pour $n \geq 5$

Démonstration. Étape 1. Conjugaison des 3-cycles dans \mathfrak{A}_n .

La première étape de cette démonstration repose sur le lemme suivant, qui décrit l'action de \mathfrak{A}_n sur $[\![1,n]\!]$.

Lemme 2 Pour $n \geq 3$, l'action de \mathfrak{A}_n sur [1, n] est n-2-transitive.

Démonstration. On se donne deux familles d'éléments deux à deux distincts de $[\![1,n]\!]$, notées $(a_1,..,a_{n-2})$ et $(b_1,..,b_{n-2})$. On doit montrer qu'il existe un élément σ de \mathfrak{A}_n tel que $\sigma(a_i)=b_i$ pour tout $1\leq i\leq n-2$. On commence par noter a_{n-1} et a_n (resp. b_{n-1} et b_n) les deux éléments de $[\![1,n]\!]$ qui ne sont pas dans la famille $(a_i)_{1\leq i\leq n-2}$ (resp. $(b_i)_{1\leq i\leq n-2}$), puis on se donne une permutation $\sigma\in\mathfrak{S}_n$ telle que $\sigma(a_i)=b_i$ pour tout $1\leq i\leq n$ (σ existe car l'action de \mathfrak{S}_n sur $[\![1,n]\!]$ est n-transitive). Si σ est paire, alors $\sigma\in\mathfrak{A}_n$ convient. \square

On déduit de ce lemme que pour $n \geq 5$, les 3-cycles sont conjugués dans \mathfrak{A}_n : en effet, si l'on se donne deux cycles $(a_1 \ a_2 \ a_3)$ et $(b_1 \ b_2 \ b_3)$, puisque $n-2 \geq 3$, l'action de \mathfrak{A}_n sur $[\![1,n]\!]$ est 3-transitive, et donc il existe $\sigma \in \mathfrak{A}_n$ tel que $\sigma(a_i) = b_i$ pour tout $1 \leq i \leq 3$. Ainsi, on a

$$(b_1 \ b_2 \ b_3) = \sigma(a_1 \ a_2 \ a_3)\sigma^{-1}.$$

Étape 2. Simplicité de \mathfrak{A}_5 .

Le même raisonnement permet de montrer que les bitranspositions $(a_1 \ a_4)(a_2 \ a_5)(a_3)$ et $(b_1 \ b_4)(b_2 \ b_5)(b_3)$ sont conjuguées dans \mathfrak{A}_5 .

On se donne maintenant un sous-groupe distingué $H \triangleleft \mathfrak{A}_5$ différent de {id}. Commençons par lister les 60 éléments de \mathfrak{A}_5 :

- l'identité
- les éléments d'ordre 2 sont les bitranspositions, il y en a 15
- les éléments d'ordre 3 sont les 3-cycles, il y en a 20
- les éléments d'ordre 5 sont les 5-cycles, il y en a 24

Si H contient les éléments d'ordre 2 (resp. 3), il les contient tous d'après ce qui précède (resp. d'après l'étape 1). De plus, si H contient un 5-cycle, il contient le sous-groupe qu'il engendre, qui est un 5-Sylow de \mathfrak{A}_5 . Comme les 5-Sylows sont conjugués, il les contient tous, et donc il contient tous les 5-cycles. Comme H n'est pas réduit au neutre, il contient au moins un de ces trois types d'éléments. Comme 1+15,1+20 et 1+24 ne divisent pas 60,H ne peut pas contenir un seul de ces trois types d'éléments. Ainsi, son cardinal est au moins 1+15+20=36, mais comme il divise 60, il est égal à 60. Donc $H=\mathfrak{A}_5$. On en déduit bien que \mathfrak{A}_5 est simple.

Étape 3. Simplicité de \mathfrak{A}_n .

On se donne cette fois un sous-groupe distingué $H \triangleleft \mathfrak{A}_n$ différent de {id}, et on prend $\sigma \in H$ non trivial. On va se ramener au cas de l'étape 2 en fabriquant à partir de σ un élément de H agissant sur [1,5] (i.e. ayant n-5 points fixes).

Comme σ n'est pas l'identité, il existe un élément $a \in [\![1,n]\!]$ tel que $\sigma(a) = b \neq a$. On se donne $c \in [\![1,n]\!] \setminus \{a,b,\sigma(b)\}$ (possible car n>3). On note alors τ le 3-cycle $(a\ c\ b)$ (c'en est un puisque a,b et c sont distincts), et $\rho = [\tau,\sigma] = \tau\sigma\tau^{-1}\sigma^{-1} = (a\ c\ b)(\sigma(a)\ \sigma(b)\ \sigma(c))$. Comme $b=\sigma(a)$, l'ensemble $F=\{a,b,c,\sigma(a),\sigma(b),\sigma(c)\}$ possède au plus 5 éléments, et on suppose quitte à en rajouter qu'il y en a exactement 5. Alors les n-5 éléments qui ne sont pas dans F sont des points fixes de ρ . De plus,

$$\rho(b) = \tau \sigma \tau^{-1}(a) = \tau \sigma(b) \neq b$$

car $\tau^{-1}(b) = c \neq \sigma(b)$. Donc ρ n'est pas l'identité. Comme F possède 5 éléments, l'ensemble $\mathfrak{A}(F)$ de ses permutations paires est isomorphe à \mathfrak{A}_5 , et il s'injecte bien sûr dans \mathfrak{A}_n par extension en l'identité

sur $[\![1,n]\!]\setminus F$ d'un élément de $\mathfrak{A}(F)$ (l'identité est de signature 1). On pose alors $H_F = H \cap \mathfrak{A}(F)^{-1}$. Bien sûr, H_F est distingué dans $\mathfrak{A}(F)$, et ρ est un élément non trivial de H_F . On en déduit, comme $\mathfrak{A}(F)$ est simple (car isomorphe à \mathfrak{A}_5), que $H_F = \mathfrak{A}_F$. Ainsi, H_F contient les 3-cycles de $\mathfrak{A}(F)$, et donc H contient leur prolongements, qui sont des 3-cycles de \mathfrak{A}_n . Mais comme les 3-cycles sont conjugués, H les contient tous. Or les 3-cycles engendrent \mathfrak{A}_n , donc $H = \mathfrak{A}_n$.

Remarque. Le cas des groupes alternés pour $n \leq 4$ est simple à résoudre :

- \mathfrak{A}_2 est le groupe trivial
- $\mathfrak{A}_3 \simeq \mathbb{Z}/3\mathbb{Z}$ est cyclique d'ordre premier, donc simple
- Le groupe dérivé de \mathfrak{A}_4 est le groupe de Klein V_4 , qui est non trivial, donc \mathfrak{A}_4 n'est pas simple

^{1.} Ici, on identifie les éléments de $\mathfrak{A}(F)$ avec leur prolongement comme éléments de \mathfrak{A}_n .