Задание 8 (на 01.04).

CC 38. Рассмотрим задачу Мах-3-SAT, в которой ко формуле в 3-КНФ необходимо найти максимальное число клозов, которые можно одновременно удовлетворить. Придумайте полиномиальный вероятностный алгоритм, который по 3-КНФ формуле "в среднем" (мат. ожидание) выдает $\frac{7}{8}$ приближение задачи Мах-3-SAT.

СС 39. Придумайте "в среднем" (мат. ожидание) полиномиальный вероятностный алгоритм, который по 3-КНФ формуле выдает $\frac{7}{8}$ приближение задачи Max-3-SAT.

 $\overline{\mathbf{CC}}$ 40. Докажите, что если $\mathbf{NP} \subseteq \mathbf{BPP}$, то $\mathbf{NP} = \mathbf{RP}$.

СС 41. Пусть **ZPP** — это класс языков, которые принимаются вероятностной машиной Тьюринга без ошибки, математическое ожидание времени работы которых полиномиально. Докажите, что:

- (а) $L \in \mathbf{ZPP}$ тогда и только тогда, когда существует полиномиальная по времени вероятностная машина Тьюринга M, которая выдает $\{0,1,?\}$, что для всех $x \in \{0,1\}^*$ с вероятностью $1, M(x) \in \{L(x),?\}$ и $\Pr[M(x)=?] \leq \frac{1}{2}$;
- (6) $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{co} \cdot \mathbf{RP}$.

CC 42. BPL — это класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается при всех последовательностях случайных битов и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $\text{BPL} \subseteq \mathbf{P}$.

 $|\mathbf{CC}|$ 43. $|\mathbf{CC}|$ (подсказка: понизьте ошибку) Докажите, что $\mathbf{MA}\subseteq\mathbf{AM}$.

СС 10. Докажите, что:

(a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a\in 2,3,\ldots,n-1$ при котором $a^{n-1}\equiv 1\pmod n$, а $a^{\frac{n-1}{q}}\not\equiv 1\pmod n$;

СС 26. (подсказка: NEXP^{NP}vs.NEXP) Докажите, что если P = NP, то существует язык из EXP, схемная сложность которого не меньше $\frac{2^n}{10n}$.

СС 33. Докажите, что задача CircuitEval Р-полная.

[CC 37.] (подсказка: представьте формулу, как дерево и найдите "среднюю" вершину) Покажите, что язык можно разрешить булевой формулой размера s тогда и только тогда, когда этот язык можно разрешить булевой схемой глубина $O(\log(s))$.