Solutions to David A.Cox "Galois Theory"

Richard Ganaye

August 23, 2022

7 Chapter 7: THE GALOIS CORRESPONDENCE

7.1 GALOIS EXTENSIONS

Ex. 7.1.1 Given a finite extension $F \subset L$, and a subgroup $H \subset Gal(L/F)$, prove that $L_H = \{\alpha \in L \mid \forall \sigma \in H, \sigma(\alpha) = \alpha\}$ is a subfield of L containing F.

Proof. Let $H \subset Gal(L/F)$, and $L_H = \{\alpha \in L \mid \forall \sigma \in H, \ \sigma(\alpha) = \alpha\}$.

We show that L_H is a subfield of L containing F.

- By definition of $\operatorname{Gal}(L/F)$, every element σ of $H \subset \operatorname{Gal}(L/F)$ satisfies $\sigma(\alpha) = \alpha$ for all $\alpha \in F$, therefore $F \subset L_H$. In particular $1 \in F \subset L_H$, so $L_H \neq \emptyset$.
 - If $\alpha, \beta \in L_H$, then

$$\sigma(\alpha - \beta) = \sigma(\alpha) - \sigma(\beta) = \alpha - \beta,$$

$$\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta) = \alpha\beta,$$

thus $\alpha - \beta, \alpha\beta \in L_H$.

• If $\alpha \in L_H \setminus \{0\}$, $\sigma(\alpha) = \alpha$, thus $\sigma(\alpha^{-1}) = \sigma(\alpha)^{-1} = \alpha^{-1} : \alpha^{-1} \in L_H$. Conclusion: L_H is a subfield of L containing F.

Ex. 7.1.2 In the proof of $(c) \Rightarrow (a)$ in Theorem 7.1.1, give the details of how the proof of Theorem 5.2.4 shows that L is the splitting field of f over F.

Proof. By hypothesis, the extension $F \subset L$ is finite, normal and separable. As $F \subset L$ is finite, $L = F(\alpha_1, \dots, \alpha_n)$, where $\alpha_i \in L$ has p_i as minimal polynomial over F. If q_1, \dots, q_r are the distinct elements in the set $\{p_1, \dots, p_n\}$, then $f = q_1 \cdots q_r$ is a product of monic irreducible distinct polynomials (thus q_i is not associate to q_j if $i \neq j$). As in the text, we know by Lemma 5.3.4 that f is separable.

We show that L is the splitting field of f over F.

As $q_j = p_i$ for some $i, 1 \le i \le n$ is the minimal polynomial of $\alpha_i \in L$ over F, and as $F \subset L$ is normal, then all the roots of p_i are in L, so q_j splits completely over L, thus $f = \prod_{j=1}^r q_j$ splits completely over L. Write $\beta_1, \ldots, \beta_m \in L$ the roots of f, and $L' = F(\beta_1, \ldots, \beta_m) \subset L$ the splitting field of f over F. As $F \subset L$, and $\beta_1, \ldots, \beta_m \in L$, we know that $L' \subset L$.

As every $\alpha_i, 1 \leq i \leq n$ is a root of a polynomial $p_i = q_j$, then α_i is a root of f, so $\alpha_i = \beta_k$ for some $k, 1 \leq k \leq m$, thus $\alpha_i \in L'$. Consequently $\{\alpha_1, \ldots, \alpha_n\} \subset \{\beta_1, \ldots, \beta_m\}$ and

$$L = F(\alpha_1, \dots, \alpha_n) \subset F(\beta_1, \dots, \beta_m) = L' \subset L$$
:

L = L' is the splitting field of f over F.

Conclusion: if $F \subset L$ is a finite normal separable extension, L is the splitting field of a separable polynomial in F[x].

Ex. 7.1.3 Suppose that $F \subset L$ and that $\alpha, \beta \in L$ are separable over F. Prove that $\alpha + \beta, \alpha\beta$, and α/β (assuming $\beta \neq 0$) are also separable over F.

Proof. Let $\alpha, \beta \in L$ separable over F. By Proposition 7.1.6, $F \subset F(\alpha, \beta)$ is a separable extension.

 $F(\alpha, \beta)$ being a field, $\alpha + \beta, \alpha\beta \in F(\alpha, \beta)$, and if $\beta \neq 0$, $\alpha/\beta \in F(\alpha, \beta)$, therefore $\alpha + \beta, \alpha\beta, \alpha/\beta$ are separable.

Ex. 7.1.4 Let $F \subset L$ be a finite extension, and assume F has characteristic p. Then consider the set $K = \{\alpha \in L \mid \alpha \text{ is separable over } F\}$.

- (a) Use Proposition 7.1.6 to show that K is a subfield of L containing F. Thus $F \subset K$ is a separable extension.
- (b) Use part (c) of theorem 5.3.15 to show that $K \subset L$ is purely inseparable.

Proof. (a) Let $F \subset L$ a finite extension, where F has characteristic p, and let

$$K = \{ \alpha \in L \mid \alpha \text{ is separable over } F \}.$$

By Theorem 7.1.6 and Exercise 3 (and 1, root of x-1 is in K), K is a subfield of L. Moreover, every $\alpha \in F$ is root of the irreducible separable polynomial $x-\alpha \in F[x]$, so α is separable , thus $F \subset K$, and $F \subset K$ is a separable extension.

(b) We show that the extension $K \subset L$ is purely inseparable.

Let $\beta \in L \setminus K$.

If β was separable over K, then by Theorem 7.1.6, $K \subset K(\beta)$ would be a separable extension. But $F \subset K$ is also separable, thus by Theorem 5.3.15(c), $F \subset K(\beta)$ would be separable, and then β would be separable over F, that is $\beta \in K$: this is a contradiction. Every $\beta \in L \setminus K$ is inseparable, so the extension $K \subset L$ is purely inseparable.

Ex. 7.1.5 Prove that the Galois closure of a finite separable extension $F \subset L$ is unique up to an isomorphism that is the identity on L.

Proof. Let M, M' two Galois closures of the separable extension $F \subset L$. By Proposition 7.1.7, there exists a field homomorphism $\varphi : M \to M'$ that is identity on L.

As every field homomorphism, φ is injective, this is an embedding of M in M'. Moreover φ is the identity on L, so φ is a L-linear injective application between M and M' as L-vector spaces, thus $[M:L] \leq [M':L]$. Exchanging M and M', we prove similarly that $[M':L] \leq [M:L]$, thus [M':L] = [M:L]. An injective linear application between two same dimensional vector spaces is bijective, thus φ is bijective. Therefore φ is a field isomorphism that is identity on L.

The Galois closure of a finite separable extension $F \subset L$ is unique up to an isomorphism that is the identity on L.

Ex. 7.1.6 In analogy with the Galois closure of a finite separable extension, every finite extension $F \subset L$ has a normal closure, which is essentially the smallest extension of L that is normal over F. State and prove the analog of Proposition 7.1.7 for normal closures.

Proposition: Let $F \subset L$ a finite extension. Then there is an extension $L \subset M$ such that:

- (a) $F \subset M$ is a finite normal extension.
- (b) Given any other extension $L \subset M'$ such that M' is normal over F, there is a field homomorphism $\varphi: M \to M'$ that is identity on L.

Proof. $F \subset L$ is a finite extension, so $L = F(\alpha_1, \ldots, \alpha_n)$, where $\alpha_i \in L$ is algebraic over F, with minimal polynomial $p_i \in F[x]$.

Let $f = p_1 \cdots p_n$, and $M = L(\beta_1, \dots, \beta_m)$ the splitting field of f over L, where β_1, \dots, β_m are the roots of f in M. As the α_i are roots of p_i , they are roots of f, so $\{\alpha_1, \dots, \alpha_n\} \subset \{\beta_1, \dots, \beta_m\}$. Therefore

$$L = F(\alpha_1, \dots, \alpha_n) \subset F(\beta_1, \dots, \beta_m) \subset L(\beta_1, \dots, \beta_m) = M,$$

Thus $F(\beta_1, \ldots, \beta_m)$ contains L and β_1, \ldots, β_m , therefore $M = L(\beta_1, \ldots, \beta_m) \subset F(\beta_1, \ldots, \beta_m)$.

Therefore $M = F(\beta_1, ..., \beta_m)$ is the splitting field of f over F. Then , by Theorem 5.2.4, the extension $F \subset M$ is normal (and finite), so M satisfies (a).

Let $M'\supset L$ any normal extension of F. As $F\subset M'$ is normal, the p_i splits completely over M', thus also f. Let $\gamma_1,\ldots,\gamma_m\in M'$ the roots of f in M', and $M''=F(\gamma_1,\ldots,\gamma_m)\subset M'$. As $\alpha_i\in L\subset M'$, the α_i are roots of f in $M':\{\alpha_1,\ldots,\alpha_n\}\subset \{\gamma_1,\ldots,\gamma_m\}$, thus $L=F(\alpha_1,\ldots,\alpha_n)\subset F(\gamma_1,\ldots,\gamma_m)=M''$.

M'' and M are so two splitting fields of f over L. By the unicity of the splitting field (Corollary 5.1.7), there exist a field isomorphism of M in M'' that is identity on L. Since $M'' \subset M'$, we can regard this isomorphism as an injective field homomorphism $\varphi: M \to M'$.

Ex. 7.1.7 Prove that the normal closure of a finite extension $F \subset L$ is unique up to an isomorphism that is the identity on L.

Proof. Same proof as in Exercise 5.

Let M, M' two normal closures of the extension $F \subset L$. By Exercise 6, there exists a field homomorphism $\varphi: M \to M'$ that is identity on L.

As every field homomorphism, φ is injective, this is an embedding of M in M'. Moreover φ is the identity on L, so φ is a L-linear injective application between M and M' as L-vector spaces, thus $[M:L] \leq [M':L]$. Exchanging M and M', we prove similarly that $[M':L] \leq [M:L]$, thus [M':L] = [M:L]. An injective linear application between two same dimensional vector spaces is bijective, thus φ is bijective. Therefore φ is a field isomorphism that is identity on L.

The normal closure of a finite extension $F \subset L$ is unique up to an isomorphism that is the identity on L.

Ex. 7.1.8 Let h be the polynomial (7.1) used in the proof of $(b) \Rightarrow (c)$ from Theorem 7.1.1. Show that there is an integer m such that

$$\prod_{\sigma \in \operatorname{Gal}(L/F)} (x - \sigma(\alpha)) = h^m.$$

Proof. Here, as in theorem 7.1.1, $F \subset L$ is a normal separable extension.

Let $\alpha \in L$, and h the minimal polynomial of α over F. As L is a normal extension of F, h splits completely over L, so $h = \prod_{i=1}^{r} (x - \alpha_i)$, where $\alpha_1, \ldots, \alpha_r \in L$, and the $\alpha_i, 1 \leq i \leq r$ are distinct since h is a separable polynomial.

The Galois group $G = \operatorname{Gal}(L/F)$ acts on the set $S = \{\alpha_1, \dots, \alpha_r\}$, with the action defined by $\sigma \cdot \gamma = \sigma(\gamma), \sigma \in G, \gamma \in S$.

As h is irreducible over F, G acts transitively on S, so the orbit \mathcal{O}_{α} of α is S of cardinality r, and G_{α} , the stabilizer of α in G satisfies

$$r = |\mathcal{O}_{\alpha}| = (G : G_{\alpha}).$$

As $F \subset L$ is a Galois extension, the Galois group G has order n = |G| = [L : F]. Consequently $|G_{\alpha}| = n/r$, so G_{α} is a subgroup of G with index r and cardinality m := n/r.

(Note: For all $\sigma \in G$,

$$\sigma \in G_{\alpha} \iff \sigma(\alpha) = \alpha \iff \forall \gamma \in F(\alpha), \sigma(\gamma) = \gamma \iff \sigma \in \operatorname{Gal}(L/F(\alpha)).$$

Therefore

$$G_{\alpha} = \operatorname{Gal}(L/F(\alpha)).$$

As h is the minimal polynomial of α over F, $[F(\alpha):F] = \deg(h) = r$.

As $F \subset L$ is a Galois extension, $F(\alpha) \subset L$ also, so we find again by the Tower Theorem:

$$|G_{\alpha}| = |\text{Gal}(L/F(\alpha))| = [L:F(\alpha)] = [L:F]/[F(\alpha):F] = n/r.$$

Let $\sigma_1, \ldots, \sigma_r$ a complete system of representants of the left cosets $\sigma G_{\alpha}, \sigma \in G$. Then the $\sigma_i G_{\alpha}$ form a partition of G:

$$G = \bigcup_{i=1}^{r} \sigma_i G_{\alpha},$$

$$i \neq j \Rightarrow \sigma_i G_\alpha \cap \sigma_j G_\alpha = \emptyset \ (1 \leq i, j \leq r).$$

If $\sigma \in \sigma_i G_\alpha$, then $\sigma = \sigma_i \tau$, $\tau \in G_\alpha$, thus $\sigma(\alpha) = \sigma_i(\tau(\alpha)) = \sigma_i(\alpha)$. Let $\gamma_i = \sigma_i(\alpha) \in S$. The image of α by all the elements of the left coset $\sigma_i G_\alpha$ is a constant equal to $\gamma_i = \sigma_i(\alpha)$. As $|\sigma_i G_\alpha| = |G_\alpha| = m$,

$$g = \prod_{\sigma \in G} (x - \sigma.\alpha) = \prod_{i=1}^r \prod_{\sigma \in \sigma_i G_\alpha} (x - \sigma.\alpha) = \prod_{i=1}^r (x - \gamma_i)^m.$$

Moreover $T := \{\gamma_1, \dots, \gamma_r\} \subset \{\alpha_1, \dots, \alpha_r\}$, and the $\gamma_i, 1 \le i \le r$, are distinct since

$$\sigma_i(\alpha) = \sigma_j(\alpha) \Rightarrow (\sigma_i^{-1}\sigma_i)(\alpha) = \alpha \Rightarrow \sigma_i^{-1}\sigma_i \in G_\alpha \Rightarrow \sigma_i G_\alpha = \sigma_j G_\alpha \Rightarrow i = j.$$

Moreover $T \subset S$, |T| = |S| = r, thus T = S.

Consequently
$$g = \prod_{i=1}^{r} (x - \gamma_i)^m = \prod_{i=1}^{r} (x - \alpha_i)^m = h^m$$
.

Conclusion: if $F \subset L$ is a Galois extension, h the minimal polynomial of $\alpha \in L$ over F, and $g = \prod_{\sigma \in G} (x - \sigma.\alpha)$, then $g = h^m, m \in \mathbb{N}^*$ (where $m = [L : F(\alpha)]$).

- **Ex. 7.1.9** For each of the following extensions, say whether it is a Galois extension. Be sure to say which of our four criteria (the three parts of Theorem 7.1.1 and part (c) of theorem 7.1.5) you are using.
 - (a) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
 - (b) $\mathbb{Q} \subset \mathbb{Q}(\alpha, \beta)$, α, β distinct roots of $x^3 + x^2 + 2x + 1$.
 - (c) $\mathbb{F}_p(t^p) \subset \mathbb{F}_p(t)$, t a variable.
 - (d) $\mathbb{C}(t+t^{-1}) \subset \mathbb{C}(t)$, t a variable.
 - (e) $\mathbb{C}(t^n) \subset \mathbb{C}(t)$, t a variable, n a positive integer.
- Proof. (a) $f = x^3 2$ is irreducible over \mathbb{Q} , and has a root $\sqrt[3]{2}$ in $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$, but $\omega \sqrt[3]{2}$ is a non real root of f, so is not in $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) \subset \mathbb{R}$. Consequently, $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ is not a normal extension, so is not a Galois extension (Th. 7.1.1(c)).
 - (b) Let α, β, γ the roots of f, where we suppose $\alpha \neq \beta$ (in fact the discriminant of f is -23: the three roots of f are distinct). As $\alpha+\beta+\gamma=-1, \gamma=-1-\alpha-\beta\in\mathbb{Q}(\alpha,\beta)$, thus $\mathbb{Q}(\alpha,\beta)=\mathbb{Q}(\alpha,\beta,\gamma)$ is the splitting field of f, therefore $\mathbb{Q}\subset\mathbb{Q}(\alpha,\beta)$ is a normal extension. Moreover the characteristic of \mathbb{Q} is 0, thus this extension is separable (Prop. 5.3.7).
 - $\mathbb{Q} \subset \mathbb{Q}(\alpha, \beta)$ is a normal and separable extension, so is a Galois extension (Th. 7.1.1(c)).
 - (c) t is a root of $f = x^p t^p = (x t)^p \in \mathbb{F}_p(t^p)$. The only root of f is t, and $t \notin \mathbb{F}_p(t^p)$, otherwise $t = u(t^p)/v(t^p)$, where $u, v \in \mathbb{F}_p[t], u \wedge v = 1$. Moreover $u(t)^p = (\sum_{i=0}^d a_i t^i)^p = \sum_{i=0}^d a_i^p t^{ip} = \sum_{i=0}^d a_i t^{ip} = u(t^p)$, and similarly for v.

Consequently, we would have $t = u(t)^p/v(t)^p, u \wedge v = 1$, which is impossible by Exercise 4.2.9.

The equation $f = x^p - t^p$ has so no root in $\mathbb{F}(t^p)$, where $p = \deg(f)$ is prime. By Proposition 4.2.6, f is irreducible over $\mathbb{F}(t^p)$: $f = (x - t)^p$ is so the minimal polynomial of t over $\mathbb{F}(t^p)$.

The minimal polynomial of $t \in \mathbb{F}(t)$ is not separable, so $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ is not a Galois extension.

- (d) Let $f = x^2 (t + \frac{1}{t})x + 1 \in \mathbb{C}(t + t^{-1})[x]$. Then t and t^{-1} are roots of f in $\mathbb{C}(t)$. Moreover $t^{-1} \in \mathbb{C}(t)$, therefore $\mathbb{C}(t) = \mathbb{C}(t, t^{-1})$ is the splitting field of f over $C(t + t^{-1})$. $\mathbb{C}(t + t^{-1}) \subset \mathbb{C}(t)$ is so a normal extension, and is separable since the characteristic of \mathbb{C} , and of $\mathbb{C}(t + t^{-1})$ is zero.
 - $\mathbb{C}(t+t^{-1})\subset\mathbb{C}(t)$ is a Galois extension.

(e) t is a root of $x^n - t^n = (x - t)(x - \zeta t) \cdots (x - \zeta^{n-1}t) \in \mathbb{C}(t^n)[x]$, where $\zeta = e^{2i\pi}/n$. As $\zeta^k t \in \mathbb{C}(t), 0 \le k \le n-1$, $\mathbb{C}(t) = \mathbb{C}(t, \zeta t, \dots, \zeta^{m-1}t)$ is the splitting field of the polynomial $x^n - t^n \in \mathbb{C}(t^n)[x]$, so $\mathbb{C}(t^n) \subset \mathbb{C}(t)$ is a normal extension. As the characteristic of $\mathbb{C}(t^n)$ is zero, this extension is also separable.

 $\mathbb{C}(t^n) \subset \mathbb{C}(t)$ is a Galois extension.

Ex. 7.1.10 Prove that $\mathbb{Q}(\omega, \sqrt[3]{2})$ is the Galois closure of $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$.

Proof. The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $f = x^3 - 2$. By sections 7.1.B, 7.1.C, the Galois closure of the extension $\mathbb{Q} \subset \mathbb{Q}(\omega, \sqrt[3]{2})$ is the splitting field of $f = x^3 - 2$ over \mathbb{Q} (in \mathbb{C}), that is $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}) = \mathbb{Q}(\omega, \sqrt[3]{2})$.

Note: as a verification, note that the two parts of the definition of the Galois closure are satisfied.

- The extension $\mathbb{Q} \subset \mathbb{Q}(\omega, \sqrt[3]{2})$ is a Galois extension, since $\mathbb{Q}(\omega, \sqrt[3]{2})$ is the splitting field of the separable polynomial $x^3 2$.
- Let $M \supset \mathbb{Q}(\sqrt[3]{2})$ an extension such that M is a Galois extension of \mathbb{Q} . As $\sqrt[3]{2} \in M$ and as $\mathbb{Q} \subset M$ is normal, $x^3 2$ splits completely over M:

$$x^3 - 2 = (x - \alpha)(x - \beta)(x - \gamma), \qquad \alpha, \beta, \gamma \in M,$$

where $\alpha = \sqrt[3]{2} \in M$.

 $(\beta/\alpha)^3 = 1$, thus $\omega' = \beta/\alpha$ is a cube root of unity in M, with $\omega' \neq 1$ since $x^3 - 2$ is separable. So ω' is a root in M of $(x^3 - 1)/(x - 1) = x^2 + x + 1$.

 x^2+x+1 has degree 2 and has no real root, so has no root in $\mathbb{Q}(\sqrt[3]{2})$, thus x^2+x+1 is irreducible over $\mathbb{Q}(\sqrt[3]{2})$. Therefore $\mathbb{Q}(\omega, \sqrt[3]{2}) \subset \mathbb{C}$ and $\mathbb{Q}(\omega', \sqrt[3]{2}) \subset M$ are two splitting fields of x^2+x+1 over $\mathbb{Q}(\sqrt[3]{2})$. Therefore there exists an isomorphism $\mathbb{Q}(\omega, \sqrt[3]{2}) \simeq \mathbb{Q}(\omega', \sqrt[3]{2})$ which is the identity on $\mathbb{Q}(\sqrt[3]{2})$, and which sends ω on ω' , so there exists an embedding of $\mathbb{Q}(\omega, \sqrt[3]{2})$ in M which is the identity on $\mathbb{Q}(\sqrt[3]{2})$.

Ex. 7.1.11 Construct the Galois closure of $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{2})$.

Proof. By sections 7.1.B,7.1.C, as the minimal polynomial of $\sqrt[4]{2}$ is $x^4 - 2$, a Galois closure of $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{2})$ is the splitting field of $x^4 - 2$ over \mathbb{Q} , that is

$$\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2}, i^2\sqrt[4]{2}, i^3\sqrt[4]{2}) = \mathbb{Q}(i, \sqrt[4]{2}).$$

Ex. 7.1.12 Let $F \subset L$ be an extension of degree 2, where F has characteristic $\neq 2$.

- (a) Show that $L = F(\alpha)$, where α is a root of an irreducible polynomial of degree 2.
- (b) Show that the minimal polynomial of α over F is separable.
- (c) Conclude that $F \subset L$ is a Galois extension with $Gal(L/F) \simeq \mathbb{Z}/2\mathbb{Z}$.
- (d) By completing the square, show that there is $\beta \in L$ such that $L = F(\beta)$ and $\beta^2 \in F$.

For β as in part (d), let $a = \beta^2 \in F$. Then we can write $\beta = \sqrt{a}$. This shows that if F has characteristic $\neq 2$, then every degree 2 extension of F is obtained by taking a square root.

Proof. Let $F \subset L$ be an extension of degree 2, where F has characteristic $\neq 2$. Then $[L:F]=2, F\subset L, F\neq L$.

(a) Let $\alpha \in L \setminus F$. Then $(1, \alpha)$ is a linearly independent list, otherwise $\alpha \in F$. As $\dim_F(L) = 2$, $(1, \alpha)$ is a basis of the F-vector space L.

Therefore there exists a pair $(a,b) \in F^2$ such that $\alpha^2 = a\alpha + b$, so α is a root of the polynomial $f = x^2 - ax - b \in F[x]$.

$$(x - \alpha)(x - (a - \alpha)) = x^2 - ax + \alpha(a - \alpha) = x^2 - ax - b = f.$$

The roots of f are so α and $\beta = a - \alpha$, both in L.

As $\alpha \notin F$, $1 < [F(\alpha) : F] \le 2$, thus $[F(\alpha) : F] = 2 = [L : F]$ with $F[\alpha] \subset L$, therefore $L = F(\alpha)$.

The polynomial $f \in F[x]$ is irreducible over F since $\deg(f) = 2$ and the roots of f are $\alpha \notin F$, $a - \alpha \notin F$. So f is the minimal polynomial of α over F.

- (b) The roots of f, minimal polynomial of α over F, are α, β , which are distinct, otherwise $\alpha = a \alpha$, and then $\alpha = a/2 \in F$ (the characteristic is not equal to 2), which is false. The minimal polynomial of α over F is so separable.
- (c) As $\beta = a \alpha, a \in F$, $\beta \in F(\alpha)$, thus $L = F(\alpha) = F(\alpha, \beta)$ is the splitting field of the separable polynomial $f \in F[x]$. Therefore, by Theorem 7.1.1, $F \subset L$ is a Galois extension.

f being irreducible, there exists (Prop. 5.1.8) an isomorphism $\sigma: L \to L$ such that $\sigma(\alpha) = \beta$ and σ is the identity on F, so $\sigma \in \operatorname{Gal}(L/F)$.

(Explicitly, $\sigma: u+v\alpha \mapsto u+v\beta$, $u,v \in F$: we can verify directly that it is an isomorphism.)

Every $\tau \in \operatorname{Gal}(L/F)$ sends the root α of $f \in F[x]$ on a root of f, so $\tau(\alpha) = \alpha = 1_K(\alpha)$ or $\tau(\alpha) = \beta = \sigma(\alpha)$. As $L = F(\alpha)$, this F-automorphisme is uniquely determined by the image of α . Thus $\tau = \sigma$ or $\tau = 1_K = e$. Moreover $\sigma \neq e$, otherwise $\sigma(\alpha) = \alpha$, so $\beta = \alpha$, which is false by part (b). Consequently $G = \{e, \sigma\}$.

Every group of order 2 is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, thus

$$G = \{e, \sigma\} \simeq \mathbb{Z}/2\mathbb{Z}.$$

(d) As the characteristic is not 2,

$$0 = \alpha^2 - a\alpha - b = \left(\alpha - \frac{a}{2}\right)^2 - \frac{a^2}{4} - b.$$

Therefore $\gamma = \alpha - \frac{a}{2}$ satisfies $\gamma^2 = \frac{a^2 + 4b^2}{4} \in F$.

As $\gamma = \alpha - \frac{a}{2}$ with $a \in F$, $F(\gamma) = F(\alpha) = L$. Write $c = \gamma^2 \in F$, and $\sqrt{c} = \gamma$, then

$$L = F(\gamma), \gamma^2 \in F, \qquad L = F(\sqrt{c}), c \in F$$

7.2 NORMAL SUBGROUPS AND NORMAL EXTENSIONS

Ex. 7.2.1 In the diagram (7.3), verify the following.

- (a) $\mathbb{Q}(\sqrt[3]{2})$ has conjugate fields $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\omega\sqrt[3]{2})$, and $\mathbb{Q}(\omega^2\sqrt[3]{2})$.
- (b) $\mathbb{Q}(\omega)$ equals all of its conjugates.

Proof. (a) By Section 6.4.A (or Exercises 6.2.2 and 6.3.1), there exists $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ uniquely determined by

$$\sigma(\omega) = \omega, \ \sigma(\sqrt[3]{2}) = \omega\sqrt[3]{2},$$

$$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2},$$

and $G = \operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle$.

Let $K = \mathbb{Q}(\sqrt[3]{2})$. We show that $\sigma K = \mathbb{Q}(\omega \sqrt[3]{2})$.

If $\beta \in \sigma K$, $\beta = \sigma(\alpha)$, $\alpha \in K = \mathbb{Q}[\sqrt[3]{2}]$, thus $\alpha = p(\sqrt[3]{2})$, $p \in \mathbb{Q}[x]$, $\beta = \sigma(p(\sqrt[3]{2})) = p(\sigma(\sqrt[3]{2})) = p(\omega(\sqrt[3]{2})) \in \mathbb{Q}(\omega(\sqrt[3]{2}))$, consequently $\sigma K \subset \mathbb{Q}(\omega(\sqrt[3]{2}))$.

Conversely, if $\beta \in \mathbb{Q}(\omega\sqrt[3]{2}) = \mathbb{Q}[\omega\sqrt[3]{2}]$, $\beta = p(\omega\sqrt[3]{2})$, $p \in \mathbb{Q}[x]$, then $\beta = \sigma(p(\sqrt[3]{2})) = \sigma(\alpha)$, where $\alpha = p(\sqrt[3]{2}) \in \mathbb{Q}(\sqrt[3]{2})$, consequently $\mathbb{Q}(\omega\sqrt[3]{2}) \subset \sigma K$.

$$\sigma K = \mathbb{Q}(\omega\sqrt[3]{2}).$$

As $\sigma^2(\sqrt[3]{2}) = \omega^2 \sqrt[3]{2}$, we obtain similarly

$$\sigma^2 K = \mathbb{Q}(\omega^2 \sqrt[3]{2}),$$

and of course, eK = K. So $\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\omega\sqrt[3]{2}), \mathbb{Q}(\omega^2\sqrt[3]{2})$ are conjugates fields of K over \mathbb{Q} .

As $\tau K = K$, and $G = \langle \sigma, \tau \rangle$, they are the only ones.

Conclusion:

the conjugate fields of $\mathbb{Q}(\sqrt[3]{2})$ in the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$ are $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\omega\sqrt[3]{2})$, $\mathbb{Q}(\omega\sqrt[3]{2})$.

(b) As $\sigma(\omega) = \omega$ and as σ is the identity on \mathbb{Q} , $\sigma\mathbb{Q}(\omega) = \mathbb{Q}(\omega)$. Moreover $\tau\mathbb{Q}(\omega) = \mathbb{Q}(\omega)$. Since $\omega^2 = -1 - \omega$, $\mathbb{Q}(\omega^2) = \mathbb{Q}(\omega)$. As $\sigma\mathbb{Q}(\omega) = \mathbb{Q}(\omega)$, $\tau\mathbb{Q}(\omega) = \mathbb{Q}(\omega)$, and as $G = \langle \sigma, \tau \rangle$, $\lambda\mathbb{Q}(\omega) = \mathbb{Q}(\omega)$ for all $\lambda \in \operatorname{Gal}(L/F)$.

The only conjugate field of $\mathbb{Q}(\omega)$ is so $\mathbb{Q}(\omega)$.

Note: As $\mathbb{Q} \subset \mathbb{Q}(\omega)$ is a quadratic extension, thus a normal extension (Ex. 7.1.12), by Theorem 7.2.5, $K = \sigma K$ for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\omega, \sqrt[3]{2})/\mathbb{Q})$. We find again that the only conjugate field of $\mathbb{Q}(\omega)$ is $\mathbb{Q}(\omega)$.

Ex. 7.2.2 Complete the proof of Lemma 7.2.4 by showing that

$$\operatorname{Gal}(L/\sigma K) \subset \sigma \operatorname{Gal}(L/K)\sigma^{-1}$$
.

Proof. $F \subset K \subset L$.

Let $\tau \in \operatorname{Gal}(L/\sigma K)$. Then $\tau : L \to L$ is an automorphism of L, and $\tau(\gamma) = \gamma$ for all $\gamma \in \sigma K$, thus $\tau(\sigma(\alpha)) = \sigma(\alpha)$ for all $\alpha \in K$.

Let $\lambda = \sigma^{-1}\tau\sigma \in \operatorname{Gal}(L/F)$. For all $\alpha \in K$,

$$\lambda(\alpha) = \sigma^{-1}(\tau(\sigma(\alpha)))$$
$$= \sigma^{-1}(\sigma(\alpha))$$
$$= \alpha.$$

Thus $\lambda = \sigma^{-1}\tau\sigma \in \operatorname{Gal}(L/K)$, so $\tau = \sigma\lambda\sigma^{-1} \in \sigma\operatorname{Gal}(L/K)\sigma^{-1}$:

$$\operatorname{Gal}(L/\sigma K) \subset \sigma \operatorname{Gal}(L/K)\sigma^{-1}$$
.

As the converse inclusion is proved in section 7.2.A,

$$Gal(L/\sigma K) = \sigma Gal(L/K)\sigma^{-1}.$$

Ex. 7.2.3 Prove (7.6).

Proof. We prove that $K_1 \subset K_2 \subset L \Rightarrow \operatorname{Gal}(L/K_1) \supset \operatorname{Gal}(L/K_2)$.

Suppose that $K_1 \subset K_2 \subset L$. Let $\sigma \in \operatorname{Gal}(L/K_2)$. Then $\sigma : L \to L$ is an automorphism of L and for all $\alpha \in K_2$, $\sigma(\alpha) = \alpha$. As $K_1 \subset K_2$, a fortiori $\sigma(\alpha) = \alpha$ for all $\alpha \in K_1$. Consequently, $\sigma \in \operatorname{Gal}(L/K_1)$.

Ex. 7.2.4 Verify that applying $K \mapsto \operatorname{Gal}(L/K)$ to (7.3) gives (7.7). Don't forget to include the extreme cases $K = \mathbb{Q}$ and K = L.

Proof.

Here σ, τ are the elements of $G = \operatorname{Gal}(L/\mathbb{Q})$, where $L = \mathbb{Q}(\omega, \sqrt[3]{2})$, determined by

$$\sigma(\omega) = \omega, \ \sigma(\sqrt[3]{2}) = \omega\sqrt[3]{2},$$

$$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2}.$$

We show that the map $K \mapsto \operatorname{Gal}(L/\mathbb{Q})$ applies the left diagram on the right diagram, the inclusion arrows are opposite by Exercise 3.

- If K = L, $Gal(L/L) = \{e\}$, and if $K = \mathbb{Q}$, $Gal(L/K) = Gal(L/\mathbb{Q}) = G$.
- If $K = \mathbb{Q}(\omega)$, note that $\sigma(\omega) = \omega$, thus $\sigma(\alpha) = \alpha$ for all $\alpha \in \mathbb{Q}(\omega)$, so $\sigma \in \operatorname{Gal}(L/\mathbb{Q}(\omega))$. Therefore

$$\langle \sigma \rangle = \{e, \sigma, \sigma^2\} \subset \operatorname{Gal}(L/\mathbb{Q}(\omega)).$$

Moreover, as $\mathbb{Q} \subset L$ is a Galois extension, then $K \subset L$ is also Galois for all intermediate fields K, therefore $|\operatorname{Gal}(L/\mathbb{Q}(\omega))| = [L : \mathbb{Q}(\omega)] = 3$. Consequently

$$\langle \sigma \rangle = \{e, \sigma, \sigma^2\} = \operatorname{Gal}(L/\mathbb{Q}(\omega)).$$

• If $K = \mathbb{Q}(\sqrt[3]{2})$, then $[L:K] = 2 = |\mathrm{Gal}(L/K)|$, and $\tau \in \mathrm{Gal}(L/K)$, thus

$$\langle \tau \rangle = \{e, \tau\} = \operatorname{Gal}(L/\mathbb{Q}(\sqrt[3]{2})).$$

• If $K = \mathbb{Q}(\omega\sqrt[3]{2})$, with the same reasoning, as $\sigma^2 \tau$ has order 2 and $(\sigma^2 \tau)(\omega\sqrt[3]{2}) = \sigma^2(\omega^2\sqrt[3]{2}) = \omega^4\sqrt[3]{2} = \omega\sqrt[3]{2}$,

$$\langle \sigma^2 \tau \rangle = \{e, \sigma^2 \tau\} = \operatorname{Gal}(L/\mathbb{Q}(\omega \sqrt[3]{2})).$$

• If $K = \mathbb{Q}(\omega\sqrt[3]{2})$, we have a similar result, by exchanging ω with $\overline{\omega} = \omega^2$:

$$\langle \sigma \tau \rangle = \{e, \sigma \tau\} = \operatorname{Gal}(L/\mathbb{Q}(\omega^2 \sqrt[3]{2})).$$

Ex. 7.2.5 Prove (7.9) in the proof of Theorem 7.2.7.

Proof. In the context of the proof of Theorem 7.2.7, $F \subset K \subset L$, L/F and K/F are Galois extensions, and $\sigma, \tau \in \operatorname{Gal}(L/F)$.

 $\sigma K = K$ by Theorem 7.2.5, thus for all $\alpha \in K$, $\sigma(\alpha) \in K$.

We write here $\sigma|_K: K \to K$ the restriction (and corestriction) of σ to K, defined by $\sigma|_K(\alpha) = \sigma(\alpha)$.

For all $\alpha \in K$,

$$(\sigma|_K \circ \tau|_K)(\alpha) = \sigma|_K(\tau|_K(\alpha)) = \sigma(\tau(\alpha)) = (\sigma \circ \tau)(\alpha) = (\sigma \circ \tau)|_K(\alpha).$$

Therefore $\sigma \tau|_K = (\sigma \circ \tau)|_K = \sigma|_K \circ \tau|_K = \sigma|_K \tau|_K$: the map

$$\Psi: \left\{ \begin{array}{ccc} \operatorname{Gal}(L/F) & \to & \operatorname{Gal}(L/K) \\ \sigma & \mapsto & \sigma|_{K} \end{array} \right.$$

is a group homomorphism.

Ex. 7.2.6 For the extension $\mathbb{Q} \subset L = \mathbb{Q}(\omega, \sqrt[3]{2})$, we listed some subgroups of $\operatorname{Gal}(L/\mathbb{Q})$ in diagram (7.7). Prove that this gives all subgroups of $\operatorname{Gal}(L/\mathbb{Q})$.

Proof. $\langle \sigma \rangle, \langle \tau \rangle, \langle \sigma \tau \rangle, \langle \sigma^2 \tau \rangle, \{e\}, G$ are subgroups of $G = \text{Gal}(\mathbb{Q}(\omega, \sqrt[3]{2})/\mathbb{Q}) \simeq S_3$, corresponding to the subgroups of S_3 given by $\langle (1,2,3)\rangle, \langle (1,2)\rangle, \langle (2,3)\rangle, \langle (1,3)\rangle, \{(1)\}, S_3$. We show that S_3 has no other subgroup.

The order of a subgroup H of S_3 divides 6. If $|H| = 1, H = \{()\}$, if $|H| = 6, H = S_3$. If |H| = 3, H is cyclic of order 3. As the only elements of order 3 of S_3 are $\tilde{\sigma} = (1, 2, 3)$ and $(1, 3, 2) = \tilde{\sigma}^{-1}, H = \langle \tilde{\sigma} \rangle$.

If |H|=2, is cyclic of order 2. The only elements of S_3 of order 2 are the three transpositions (1,2),(2,3),(1,3). S_3 , so $H \in \{\langle (1,2)\rangle,\langle (2,3)\rangle,\langle (1,3)\rangle\}$. S_3 has exactly 6 subgroups, therefore $\operatorname{Gal}(\mathbb{Q}(\omega,\sqrt[3]{2})/\mathbb{Q}) \simeq S_3$ has exactly six subgroups given in diagram (7.7).

Ex. 7.2.7 Suppose that $F \subset K \subset L$, where L is Galois over F, and let $\sigma \in \operatorname{Gal}(L/F)$. Show that

$$K = \sigma K \iff \operatorname{Gal}(L/K) = \sigma \operatorname{Gal}(L/K)\sigma^{-1}, \ \sigma \text{ in } \operatorname{Gal}(L/F).$$

Proof. If $\sigma \in Gal(L/F)$ satisfies $K = \sigma K$, then by Lemma 7.2.4,

$$\sigma \operatorname{Gal}(L/K)\sigma^{-1} = \operatorname{Gal}(L/\sigma K) = \operatorname{Gal}(L/K).$$

Conversely, if $\sigma \in \operatorname{Gal}(L/F)$ satisfies $\sigma \operatorname{Gal}(L/K)\sigma^{-1} = \operatorname{Gal}(L/K)$, then by the same Lemma, $\operatorname{Gal}(L/K) = \operatorname{Gal}(L/\sigma K)$. As $F \subset L$ is a Galois extension, so are $K \subset L$ and $\sigma K \subset L$, the fixed field of $\operatorname{Gal}(L/K)$ is K, and the fixed field of $\operatorname{Gal}(L/\sigma K)$ is σK . As these two groups are identical, $K = \sigma K$.

$$\forall \sigma \in \operatorname{Gal}(L/F), \ (K = \sigma K \iff \operatorname{Gal}(L/K) = \sigma \operatorname{Gal}(L/K)\sigma^{-1}).$$

(Consequently

$$(\forall \sigma \in \operatorname{Gal}(L/F), \sigma K = K) \iff \operatorname{Gal}(L/K) \lhd \operatorname{Gal}(L/F)).$$

Ex. 7.2.8 Let H be a subgroup of a group G, and let $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ be the normalizer of H in G, as defined in the Mathematical Notes.

- (a) Prove that $N_G(H)$ is a subgroup of G containing H.
- (b) Prove that H is normal in $N_G(H)$.
- (c) Let N be a subgroup of G containing H. Prove that H is normal in N if and only if $N \subset N_G(H)$. Do you see why this shows that $N_G(H)$ is the largest subgroup of G in which H is normal?
- (d) Prove that H is normal in G if and only if $N_G(H) = G$.

Proof. (a) If $x \in H, xHx^{-1} = H$, so $H \subset N_G(H)$.

- $eHe^{-1} = H$, thus $e \in N_G(H) \neq \emptyset$.
- If $x, y \in N_G(H)$, then $(xy)H(xy)^{-1} = x(yHy^{-1})x^{-1} = xHx^{-1} = H$, thus $xy \in N_G(H)$.
- If $x \in N_G(H)$, then $xHx^{-1} = H$, thus xH = Hx, and $H = x^{-1}Hx$: $x^{-1} \in N_G(H)$.

 $N_G(H)$ is a subgroup of G.

- (b) For all $g \in N_G(H)$, $gHg^{-1} = H$, so $H \triangleleft N_G(H)$.
- (c) Let N be a subgroup of G, $H \subset N \subset G$. $H \lhd N \iff \forall g \in N, \ gHg^{-1} = H \iff \forall g \in N, g \in N_G(H) \iff N \subset N_G(H)$. H is normal in $N_G(H)$, and every subgroup G in which H is normal is contained in $N_G(H)$, so $N_G(H)$ is the largest subgroup of G in which H is normal.
- (d):

- If H is normal in G, then every element of G is in the normalizer of H in G, therefore $G \subset N_G(H)$. As $N_G(H) \subset G$, $N_G(H) = G$.
- If $G = N_G(H)$, then every element $g \in G$ is in $N_G(H)$, and so satisfies $gHg^{-1} = H$, so H is a normal subgroup of G.

$$G = N_G(H) \iff H \triangleleft G.$$

Ex. 7.2.9 Let $F \subset L$ be Galois, and suppose that $F \subset K \subset L$ is an intermediate field. The goal of this exercise is to show that the number of conjugates of K in L is

$$[\operatorname{Gal}(L/F):N] = \frac{|\operatorname{Gal}(L/F)|}{|N|},$$

where N is the normalizer of Gal(L/K) in Gal(L/F). More precisely, suppose that the distinct conjugates of K are

$$K = \sigma_1 K, \sigma_2 K, \dots, \sigma_r K,$$

where $\sigma_1 = e$. Then we need to show that r = [Gal(L/F) : N].

- (a) Show that Gal(L/F) acts on the set of conjugates $\{\sigma_1K, \sigma_2K, \ldots, \sigma_rK\}$.
- (b) Show that the isotropy subgroup of K is the normalizer subgroup N.
- (c) Explain how r = [Gal(L/F) : N] follows from the Fundamental Theorem of Group Actions (Theorem A.4.9 from Appendix A).

Proof. (a) Write $O = \{\sigma_1 K, \sigma_2 K, \dots, \sigma_r K\}$ the set of conjugate fields of K and r = |O|.

If $\sigma \in \operatorname{Gal}(L/F)$, and $M = K_j = \sigma_j K \in O, 1 \le j \le r$, write $\sigma \cdot M = \sigma M = \sigma K_j$: $\sigma \cdot K_j = \sigma \cdot (\sigma_j K) = (\sigma \circ \sigma_j) K.$

Therefore $\sigma \cdot M = \sigma \cdot K_i$ is a conjugate field of K, so

$$M \in O \Rightarrow \sigma \cdot M \in O$$
.

Moreover, for all $M \in O$, $e \cdot M = eM = M$, and if $\sigma, \tau \in Gal(L/F), \sigma \cdot (\tau \cdot M) = \sigma(\tau M) = (\sigma \circ \tau)M = (\sigma \circ \tau) \cdot M$.

So $G = \operatorname{Gal}(L/F)$ acts on the set $O = \{\sigma_1 K, \sigma_2 K, \dots, \sigma_r K\}$ of the conjugate fields of K, the action being defined by $\sigma \cdot M = \sigma M$ ($\sigma \in \operatorname{Gal}(L/F), M \in O$).

(b) Let G_K the stabilizer of K for this action : $G_K = \{ \sigma \in G \mid \sigma K = K \}$.

By Exercise 7, for all $\sigma \in G = \operatorname{Gal}(L/F)$,

$$\sigma K = K \iff \operatorname{Gal}(L/K) = \sigma \operatorname{Gal}(L/K)\sigma^{-1} \iff \sigma \in N.$$

Thus $G_K = N$.

(c) The orbit \mathcal{O}_K of K for the action of $G = \operatorname{Gal}(L/F)$ on O is the whole O, since O is by definition the set of conjugate fields of K: $\mathcal{O}_K = O$. the Fundamental Theorem of Group Actions gives then the equality

$$r = |\mathcal{O}_K| = [G : G_K] = [Gal(L/F) : N].$$

The number of distinct conjugate fields of K is so the index $[G:N_G(H)]$ of the normalizer of $H = \operatorname{Gal}(L/K)$ in $G = \operatorname{Gal}(L/F)$.

Ex. 7.2.10 In (7.5), explain why τ is complex conjugation restricted to $\mathbb{Q}(\omega, \sqrt[3]{2})$.

Proof. Let $L = \mathbb{Q}(\omega, \sqrt[3]{2})$.

 τ is the unique \mathbb{Q} -automorphism of $G = \operatorname{Gal}(L/\mathbb{Q})$ such as

$$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2}.$$

If $z \in \mathbb{C}$ is element of L, then $z = p(\omega, \sqrt[3]{2})$, where $p(x, y) \in \mathbb{Q}[x, y]$, thus $\overline{z} = p(\overline{\omega}, \sqrt[3]{2}) = p(-1 - \omega, \sqrt[3]{2}) \in L$. Let $\lambda : L \to L, z \mapsto \overline{z}$ the restriction (and corestriction) of the conjugation in \mathbb{C} . Then λ is an involutive ring homomorphism, thus an automorphism of the field L, which is the identity on \mathbb{Q} : $\lambda \in \operatorname{Gal}(L/\mathbb{Q})$. As

$$\lambda(\omega) = \omega^2, \lambda(\sqrt[3]{2}) = \sqrt[3]{2},$$

and as a \mathbb{Q} -automorphism of $L = \mathbb{Q}(\omega, \sqrt[3]{2})$ is uniquely determined by the images of $\omega, \sqrt[3]{2}, \tau = \lambda$, so τ is the complex conjugation restricted to $\mathbb{Q}(\omega, \sqrt[3]{2})$.

Ex. 7.2.11 Consider the extension $\mathbb{Q} \subset L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

(a) Show that $Gal(L/\mathbb{Q}) = \{e, \sigma, \tau, \sigma\tau\}$, where

$$\sigma(\sqrt{2}) = \sqrt{2}, \quad \sigma(\sqrt{3}) = -\sqrt{3},$$

$$\tau(\sqrt{2}) = -\sqrt{2}, \quad \tau(\sqrt{3}) = \sqrt{3}.$$

- (b) Find all subgroups of $Gal(L/\mathbb{Q})$, and use this to draw a picture similar to (7.7).
- (c) For each subgroup of part (b), determine the corresponding subfield of L and use this to draw a picture similar to (7.3).
- (d) Explain why all of the subgroups in part (b) are normal. What does this imply about the subfields in part (c)?

Proof. (a) We have proved in Exercise 6.1.2 that $|Gal(L/\mathbb{Q})| = 4$, and

$$\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}) = \{1_L, \sigma, \tau, \sigma\tau\}.$$

where

$$\sigma(\sqrt{2}) = \sqrt{2}, \quad \sigma(\sqrt{3}) = -\sqrt{3},$$

$$\tau(\sqrt{2}) = -\sqrt{2}, \quad \tau(\sqrt{3}) = \sqrt{3}.$$

and (Ex. 6.2.1) that $G = \operatorname{Gal}(L/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2/Z$.

(b) The subgroups of $G = \operatorname{Gal}(L/\mathbb{Q})$ are $\{e\}, G, \langle \sigma \rangle = \{e, \sigma\}, \langle \tau \rangle = \{e, \tau\}, \langle \sigma \tau \rangle = \{e, \sigma\tau\}.$

(c) We obtain the right diagram from the left diagram by the map $H \mapsto L_H$. Explicitely:

$$L_{\{e\}} = L$$
, and as $\mathbb{Q} \subset L$ is Galois, $L_G = \mathbb{Q}$.

As $(1, \sqrt{3})$ is a basis of L over $\mathbb{Q}(\sqrt{2})$, a basis of the \mathbb{Q} -vector space L is $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$. Let $\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ $(a, b, c, d \in \mathbb{Q})$ any element of L. Then

$$\sigma(\alpha) = \alpha \iff a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6} = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$$
$$\iff c = d = 0$$
$$\iff \alpha \in \mathbb{Q}(\sqrt{2})$$

thus $L_{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{2})$. We verify similarly $L_{\langle \tau \rangle} = \mathbb{Q}(\sqrt{3})$.

We compute $L_{\langle \sigma \tau \rangle}$:

$$(\sigma\tau)(\alpha) = \alpha \iff a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6} = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$$
$$\iff b = c = 0$$
$$\iff \alpha \in \mathbb{Q}(\sqrt{6})$$

We obtain the left diagram from the right diagram by the map $K \mapsto \operatorname{Gal}(L/K)$. By example, the only elements of G who fix $\mathbb{Q}(\sqrt{2})$ are e and σ .

(d) G is Abelian, so all its subgroups are normal.

This implies (Theorem 7.2.5) that $\mathbb{Q}(\sqrt{2})$ equals all of its conjugates and so is a normal extension of \mathbb{Q} . Same conclusion for $\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6})$.

7.3 THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Ex. 7.3.1 Complete the proof of Theorem 7.3.1 by showing that $[Gal(L/F) : H] = [L_H : F]$ for all subgroups $H \subset Gal(L/F)$.

Proof. By hypothesis, $F \subset L$ is a Galois extension, and H is a subgroup of $\operatorname{Gal}(L/F)$. The proof of Theorem 7.3.1 shows that $L_H \subset L$ is Galois and $H = \operatorname{Gal}(L/L_H)$, thus $|H| = |\operatorname{Gal}(L/L_H)| = [L:L_H]$.

Since $F \subset L$ is a Galois extension,

$$|Gal(L/F)| = [L:F] = [L:L_H][L_H:F] = |H|[L_H:F],$$

therefore

$$[Gal(L/F): H] = |Gal(L/F)|/|H| = [L_H: F].$$

Ex. 7.3.2 Same as Ex. 6.3.2(b).

Proof. The Exercise 6.3.2(b) proves in details that $Gal(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q}) = \langle \sigma, \tau \rangle \simeq D_8$, where $\sigma(i) = i, \sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau(i) = -i, \tau(\sqrt[4]{2}) = \sqrt[4]{2}$ (τ is the complex conjugation restricted to $\mathbb{Q}(i, \sqrt[4]{2})$).

Ex. 7.3.3 Let $L = \mathbb{Q}(i\sqrt[4]{2})$ and $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ be as in Exercise 2 and Example 7.3.4.

- (a) Show that all subgroups of $Gal(L/\mathbb{Q})$ are given by (7.13).
- (b) Show that the corresponding fixed fiels are given by (7.14).
- (c) Determine which subgroups in part (a) are normal in $Gal(L/\mathbb{Q})$, and for those that are normal, construct a polynomial whose splitting field is the corresponding fixed field.
- (d) For the subfields in part (b) that are not Galois over \mathbb{Q} , find all of their conjugates fields. Also describe the conjugates of their corresponding groups.

Proof. (a) We obtain the subgroups of D_8 and their inclusions with the following GAP instructions:

```
S:=Group((1,2,3,4),(1,3));
T:=Group(());
L:=IntermediateSubgroups(S,T).subgroups;
i:=1;
```

```
for H in L do
    Print(i, " : \t",StructureDescription(H),"\t",Order(H),"\t", H,"\t","\n");
    i:=i+1;
od;
Print("inclusions : \n",IntermediateSubgroups(S,T).inclusions);
```

On obtient:

```
1 : C2 2 Group( [ (1,3)(2,4) ] )
2 : C2 2 Group( [ (2,4) ] )
3 : C2 2 Group( [ (1,3) ] )
4 : C2 2 Group( [ (1,2)(3,4) ] )
5 : C2 2 Group( [ (1,4)(2,3) ] )
6 : C2 x C2 4 Group( [ (1,3)(2,4), (2,4) ] )
7 : C4 4 Group( [ (1,3)(2,4), (1,2,3,4) ] )
8 : C2 x C2 4 Group( [ (1,3)(2,4), (1,2)(3,4) ] )
inclusions :
[ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 0, 4 ], [ 0, 5 ], [ 1, 6 ], [ 2, 6 ], [ 3, 6 ], [ 1, 7 ], [ 1, 8 ], [ 4, 8 ], [ 5, 8 ], [ 6, 9 ], [ 7, 9 ], [ 8, 9 ] ]
```

This corresponds to the lattice of subgroups of G written in the first diagram (the node (1) corresponding to the subgroup generated by $\sigma^2 = (1,3)(2,4)$).

We find again these results directly without computer in

$$D_8 = \langle \sigma, \tau \rangle = \{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\} \simeq G,$$

where $\sigma = (1, 2, 3, 4), \tau = (1, 3)$ (cf Ex. 6.3.2(b)). Here the numbering of the roots is

$$z_1 = i\sqrt[4]{2}, z_2 = -\sqrt[4]{2}, z_3 = -i\sqrt[4]{2}, z_4 = \sqrt[4]{2},$$

so τ , which exchanges z_1, z_3 corresponds to the transposition (1,3), and σ to the 4-cycle (1,2,3,4).

 σ is of order 4 and generates $H = \langle \sigma \rangle = \{e, \sigma, \sigma^2, \sigma^3\}$, τ is of order 2, and $\sigma \tau = \tau \sigma^{-1} = (1, 4)(2, 3)$:

$$\sigma^4 = \tau^2 = e, \qquad \sigma\tau = \tau\sigma^{-1}.$$

Note that $\tau \sigma = \sigma^{-1} \tau$ and $\tau \sigma^k = \sigma^{-k} \tau \Rightarrow \tau \sigma^{k+1} = \sigma^{-k} \tau \sigma = \sigma^{-k-1} \tau$. This induction proves that $\tau \sigma^k = \sigma^{-k} \tau$ for all $k \in \mathbb{N}$. Moreover $(\sigma^k \tau)^2 = \sigma^k \tau \sigma^k \tau = \sigma^k \sigma^{-k} \tau \tau = e$, so all the elements of the right coset $H\tau$ are of order 2.

We find all the subgroups of order 2 by checking the elements of order 2 in D_8 . They are the elements of $H.\tau = \{\tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$, and also $\sigma^2 \in H$: this gives all the subgroups of level 2 in the first diagram.

We know a subgroup of G of order 4, the subgroup $H = \langle \sigma \rangle$.

Let M any subgroup of G of order 4. If M is cyclic, it is generated by an element of order 4, so $M = H = \langle \sigma \rangle = \langle \sigma^3 \rangle$.

Otherwise M is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, generated by to distinct elements of order 2 in $D_8 \simeq G$. If one of these elements is σ^2 , we obtain the two subgroups

$$H_1 = \langle \sigma^2, \tau \rangle = \{e, \sigma^2, \tau, \sigma^2 \tau\} = \langle \sigma^2, \sigma^2 \tau \rangle$$

$$H_2 = \langle \sigma^2, \sigma \tau \rangle = \{e, \sigma^2, \sigma \tau, \sigma^3 \tau\} = \langle \sigma^2, \sigma^3 \tau \rangle.$$

Otherwise $M=\langle \sigma^k \tau, \sigma^l \tau \rangle$, $1 \leq k, l \leq 3, k \neq l$. As $\sigma^k \tau \sigma^l \tau = \sigma^{k-l} \in H$ is of order 2, $\sigma^{k-l}=\sigma^2$ and so

$$M = \{e, \sigma^k \tau, \sigma^l \tau, \sigma^2\}.$$

Since $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is generated by any pair of elements not equal to e, $M = \langle \sigma^2, \sigma^k \tau \rangle$, and so $M = H_1$ where $M = H_2$. We find again the subgroups of diagram 1.

(b) With find the fixed fields L_M corresponding with the subgroups M of G. Consider the chain of fields going from \mathbb{Q} to L:

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(i\sqrt[4]{2}) \subset \mathbb{Q}(i\sqrt[4]{2},\sqrt[4]{2}) = \mathbb{Q}(i,\sqrt[4]{2}) = L,$$

where each field is a quadratic extension of the preceding field. Write

$$\alpha = \sqrt{2}, \beta = -i\sqrt[4]{2}, \gamma = \sqrt[4]{2}$$

(the symbol – for β is intended for obtaining $\sigma(\beta) = \gamma$. If we number the roots of $x^4 - 2$ by $x_1 = \beta, x_2 = \gamma, x_3 = -\beta, x_4 = -\gamma$, the permutations corresponding to σ, τ are $\tilde{\sigma} = (1, 2, 3, 4), \tilde{\tau} = (2, 4)$, with $D_8 = \langle (1, 2, 3, 4), (2, 4) \rangle$.

Then $(1,\alpha)$ is a basis $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} , $(1,\beta)$ a basis of $\mathbb{Q}(i\sqrt[4]{2})$ over $\mathbb{Q}(\sqrt{2})$, and $(1,\gamma)$ a basis of $\mathbb{Q}(i\sqrt[4]{2},\sqrt[4]{2})$ over $\mathbb{Q}(i\sqrt[4]{2})$, thus

$$\mathcal{B} = (1, \alpha, \beta, \gamma, \alpha\beta, \alpha\gamma, \beta\gamma, \alpha\beta\gamma)$$

is a basis of L over \mathbb{Q} .

Recall that (see Ex. 6.3.2(b))

$$\sigma(i) = i, \sigma(\sqrt[4]{2}) = i\sqrt[4]{2},$$

$$\tau(i) = -i, \tau(\sqrt[4]{2}) = \sqrt[4]{2}.$$

Consequently, $\sigma(\sqrt{2}) = (\sigma(\sqrt[4]{2}))^2 = -\sqrt{2}$,

$$\sigma(\alpha) = -\alpha, \sigma(\beta) = \gamma, \sigma(\gamma) = -\beta,$$

$$\tau(\alpha) = \alpha, \tau(\beta) = -\beta, \tau(\gamma) = \gamma.$$

Every element $z \in L$ spans on the basis \mathcal{B} under the form

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma$$

(where $a_i \in \mathbb{Q}$)

• Computation of $L_{\langle \sigma \rangle}$

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma$$
$$\sigma(z) = a_1 - a_2\alpha + a_3\gamma - a_4\beta - a_5\alpha\gamma - a_6\beta\gamma + a_7\alpha\beta + a_8\alpha\beta\gamma$$

$$z \in L_{\langle \sigma \rangle} \iff 0 = z - \sigma(z)$$

$$\iff 0 = 2a_2\alpha + (a_3 + a_4)\beta + (-a_3 + a_4)\gamma + (a_5 - a_7)\alpha\beta + (a_7 + a_5)\alpha\gamma + 2a_6\beta\gamma$$

$$\iff a_2 = a_3 = a_4 = a_5 = a_6 = a_7 = 0$$

$$\iff z = a_1 + a_8\alpha\beta\gamma, \quad a_1, a_8 \in \mathbb{Q}$$

$$\iff z \in \mathbb{Q}[\alpha\beta\gamma]$$

$$L_{\langle \sigma \rangle} = \mathbb{Q}(\alpha\beta\gamma) = \mathbb{Q}(i)$$

As expected, this is a quadratic extension of \mathbb{Q} , corresponding with a subgroup of index 2 in G.

• Computation of $L_{\langle \tau \rangle}$

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma$$
$$\tau(z) = a_1 + a_2\alpha - a_3\beta + a_4\gamma - a_5\alpha\beta - a_6\beta\gamma + a_7\alpha\gamma - a_8\alpha\beta\gamma$$

$$z \in L_{\langle \tau \rangle} \iff 0 = z - \tau(z)$$

$$\iff 0 = a_3 = a_5 = a_6 = a_8 = 0$$

$$\iff z = a_1 + a_2\alpha + a_4\gamma + a_7\alpha\gamma \ (a_i \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\alpha, \gamma)$$

$$\iff z \in \mathbb{Q}(\gamma)$$

(indeed $\alpha \in \mathbb{Q}(\gamma)$).

$$L_{\langle \tau \rangle} = \mathbb{Q}(\gamma) = \mathbb{Q}(\sqrt[4]{2}).$$

• Computation of $L_{\langle \sigma^2 \rangle}$

$$\sigma^2(\alpha) = \alpha, \sigma^2(\beta) = -\beta, \sigma^2(\gamma) = -\gamma.$$

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma$$
$$\sigma^2(z) = a_1 + a_2\alpha - a_3\beta - a_4\gamma - a_5\alpha\beta + a_6\beta\gamma - a_7\alpha\gamma + a_8\alpha\beta\gamma$$

$$z \in L_{\langle \sigma^2 \rangle} \iff 0 = z - \sigma^2(z)$$

$$\iff 0 = a_3 = a_4 = a_5 = a_7$$

$$\iff z = a_1 + a_2\alpha + a_6\beta\gamma + a_8\alpha\beta\gamma \ (a_i \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\alpha, \beta\gamma)$$

$$L_{\langle \sigma^2 \rangle} = \mathbb{Q}(\alpha,\beta\gamma) = \mathbb{Q}(\sqrt{2},i\sqrt{2}) = \mathbb{Q}(i,\sqrt{2})$$

• Computation of $L_{\langle \sigma^2 \tau \rangle}$

$$(\sigma^2 \tau)(\alpha) = \alpha, (\sigma^2 \tau)(\beta) = \beta, (\sigma^2 \tau)(\gamma) = -\gamma$$

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma (\sigma^2\tau)(z) = a_1 + a_2\alpha + a_3\beta - a_4\gamma + a_5\alpha\beta - a_6\beta\gamma - a_7\alpha\gamma - a_8\alpha\beta\gamma$$

$$z \in L_{\langle \sigma^2 \tau \rangle} \iff 0 = z - (\sigma^2 \tau)(z)$$

$$\iff a_4 = a_6 = a_7 = a_8 = 0$$

$$\iff z = a_1 + a_2 \alpha + a_3 \beta + a_5 \alpha \beta \ (a_i \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\alpha, \beta)$$

$$\iff z \in \mathbb{Q}(\beta)$$

$$L_{\langle \sigma^2 \tau \rangle} = \mathbb{Q}(\beta) = \mathbb{Q}(i\sqrt[4]{2}).$$

• Computation of $L_{\langle \sigma^2, \tau \rangle}$

$$z \in L_{\langle \sigma^2, \tau \rangle} \iff z = \sigma^2(z) \text{ et } z = \tau(z)$$

$$\iff a_3 = a_4 = a_5 = a_7 = 0 \text{ et } a_3 = a_5 = a_6 = a_8 = 0$$

$$\iff a_3 = a_4 = a_5 = a_6 = a_7 = a_8 = 0$$

$$\iff z = a_1 + a_2\alpha, \ (a_1, a_2 \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\alpha)$$

$$L_{\langle \sigma^2, \tau \rangle} = \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}).$$

• Computation of $L_{\langle \sigma^3 \tau \rangle}$

$$(\sigma^{3}\tau)(\alpha) = -\alpha, (\sigma^{3}\tau)(\beta) = \gamma, (\sigma^{3}\tau)(\gamma) = \beta$$

$$z = a_{1} + a_{2}\alpha + a_{3}\beta + a_{4}\gamma + a_{5}\alpha\beta + a_{6}\beta\gamma + a_{7}\alpha\gamma + a_{8}\alpha\beta\gamma$$

$$(\sigma^{3}\tau)(z) = a_{1} - a_{2}\alpha + a_{3}\gamma + a_{4}\beta - a_{5}\alpha\gamma + a_{6}\beta\gamma - a_{7}\alpha\beta - a_{8}\alpha\beta\gamma$$

$$z \in L_{\langle \sigma^3 \tau \rangle} \iff 0 = z - (\sigma^3 \tau)(z)$$

$$\iff 2a_2 \alpha + (a_3 - a_4)\beta + (a_4 - a_3)\gamma + (a_5 + a_7)\alpha\beta + (a_7 + a_5)\alpha\gamma + 2a_8 \alpha\beta\gamma$$

$$\iff a_2 = a_8 = 0 \text{ et } a_3 = a_4 \text{ et } a_7 = -a_5$$

$$\iff z = a_1 + a_3(\beta + \gamma) + a_5 \alpha(\beta - \gamma) + a_6 \beta\gamma \ (a_i \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\beta + \gamma)$$

We justify this last equivalence:

$$(\beta + \gamma)[\alpha(\beta - \gamma)] = -4 \in \mathbb{Q}^*$$
, thus $\alpha(\beta - \gamma) \in \mathbb{Q}(\beta + \gamma)$, and $(\beta + \gamma)^2 = \beta^2 + \gamma^2 + 2\beta\gamma = 2\beta\gamma$, so $\beta\gamma \in \mathbb{Q}(\beta + \gamma)$.

$$L_{\langle \sigma^3 \tau \rangle} \subset \mathbb{Q}(\beta + \gamma).$$

Conversely $L_{\langle \sigma^3 \tau \rangle}$ is a field (fixed field of $\langle \sigma^3 \tau \rangle$), extension of \mathbb{Q} containing $\beta + \gamma$. So it contains also $\mathbb{Q}(\beta + \gamma)$.

$$L_{\langle \sigma^3 \tau \rangle} \supset \mathbb{Q}(\beta + \gamma).$$

Conclusion:

$$L_{\langle \sigma^3 \tau \rangle} = \mathbb{Q}(\beta + \gamma) = \mathbb{Q}((1 - i)\sqrt[4]{2}).$$

• Computation of $L_{\langle \sigma \tau \rangle}$

$$(\sigma\tau)(\alpha) = -\alpha, (\sigma\tau)(\beta) = -\gamma, (\sigma\tau)(\gamma) = -\beta$$

$$z = a_1 + a_2\alpha + a_3\beta + a_4\gamma + a_5\alpha\beta + a_6\beta\gamma + a_7\alpha\gamma + a_8\alpha\beta\gamma$$
$$(\tau \circ \sigma^3)(z) = a_1 - a_2\alpha - a_3\gamma - a_4\beta + a_5\alpha\gamma + a_6\beta\gamma + a_7\alpha\beta - a_8\alpha\beta\gamma$$

$$z \in L_{\langle \sigma \tau \rangle} \iff 0 = z - (\sigma \tau)(z)$$

$$\iff 2a_2 \alpha + (a_3 + a_4)\beta + (a_4 + a_3)\gamma + (a_5 - a_7)\alpha\beta + (a_7 - a_5)\alpha\gamma + 2a_8\alpha\beta\gamma$$

$$\iff a_2 = a_8 = 0 \text{ et } a_3 = -a_4 \text{ et } a_7 = a_5$$

$$\iff z = a_1 + a_3(\beta - \gamma) + a_5\alpha(\beta + \gamma) + a_6\beta\gamma \ (a_i \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\beta - \gamma)$$

(with a similar justification, by exchanging γ and $-\gamma$) Conclusion:

$$L_{\langle \sigma \tau \rangle} = \mathbb{Q}(\beta - \gamma) = \mathbb{Q}((1 - i)\sqrt[4]{2})$$

• Computation of $L_{\langle \sigma^2, \sigma\tau \rangle}$

$$z \in L_{\langle \sigma^2, \sigma\tau \rangle} \iff z = \sigma^2(z) \text{ et } z = (\sigma\tau)(z)$$

$$\iff a_3 = a_4 = a_5 = a_7 = 0 \text{ et } a_2 = a_8 = 0$$

$$\iff z = a_1 + a_6\beta\gamma, \ (a_1, a_6 \in \mathbb{Q})$$

$$\iff z \in \mathbb{Q}(\beta\gamma)$$

$$L_{\langle \sigma^2, \sigma\tau \rangle} = \mathbb{Q}(\beta\gamma) = \mathbb{Q}(i\sqrt{2}).$$

We obtain so all the fields of the second diagram.

(c) The three subgroups of order 4 have the index 2 in G, therefore are normal subgroups of G. They correspond with three quadratic extensions of \mathbb{Q} , which are Galois extensions as every quadratic extension of \mathbb{Q} .

 $\mathbb{Q}(\sqrt{2})$ is the splitting field of $x^2 - 2$ over \mathbb{Q} , $\mathbb{Q}(i)$ the splitting field of $x^2 + 1$, and $\mathbb{Q}(i\sqrt{2})$ the splitting field of $x^2 + 2$.

The subgroup $H = \langle \sigma^2 \rangle$ is normal in $G = \langle \sigma, \tau \rangle$, since

$$\tilde{\tau}\tilde{\sigma}^2\tilde{\tau}^{-1} = (2,4)(1,3)(2,4)(2,4) = (2,4)(1,3) = (1,3)(2,4) = \tilde{\sigma}^2,$$

thus $\tau \sigma^2 \tau^{-1} = \sigma^2 \in H$ (and of course $\sigma \sigma^2 \sigma^{-1} = \sigma^2 \in H$). H corresponds with $\mathbb{Q}(i,\sqrt{2})$, which is so a Galois extension of \mathbb{Q} . $\mathbb{Q}(i,\sqrt{2})$ is the splitting field of the irreducible polynomial

$$x^4 - 2x^2 + 9 = (x - i - \sqrt{2})(x - i + \sqrt{2})(x + i - \sqrt{2})(x + i + \sqrt{2})$$

(or of the reducible polynomial $(x^2 - 2)(x^2 + 1)$).

These are the only normal subgroups of G, as we will see in part (d).

(d) As $\tau \sigma^{-1} = \sigma \tau$, then $\sigma \tau \sigma^{-1} = \sigma^2 \tau$, so the subgroups $\langle \tau \rangle$ and $\langle \sigma^2 \tau \rangle$ are conjugate, thus are not normal subgroups of G.

Similarly $\sigma^3 \tau = \sigma^{-1} \tau = \tau \sigma = \sigma^{-1}(\sigma)\tau \sigma$, so the subgroups $\langle \sigma^3 \tau \rangle$ and $\langle \sigma \tau \rangle$ are conjugate, and are not normal subgroups.

The subgroups $\langle \tau \rangle$ and $\langle \sigma \tau \rangle$ are not conjugate, since τ corresponds to (2,4), and $\sigma \tau$ to the permutation (1,2)(3,4) which are not conjugate, since the conjugate of a transposition is a transposition.

So the corresponding extensions $\mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(i\sqrt[4]{2}), \mathbb{Q}((1+i)\sqrt[4]{2}), \mathbb{Q}((1-i)\sqrt[4]{2})$ are not Galois extensions of \mathbb{Q} .

Ex. 7.3.4 Prove that the extension $F \subset L$ of Example 7.3.6 has $Gal(L/F) = \{1_L\}$.

Proof. In Example 7.3.6, k has characteristic p, and the extension L of F = k(t, u) is the splitting field of $f = (x^p - t)(x^p - u) \in F[x]$.

We showed in Exercise 5.4.4 that $F \subset L$ is purely inseparable, and $L = F(\alpha, \beta)$, where $\alpha^p = t, \beta^p = u$. Moreover the intermediate fields $F \subset F(\alpha + \lambda \beta) \subset L$ are distinct.

Now we show that $Gal(L/F) = \{1_L\}.$

 α is a root $x^p - t \in F[x]$, thus $\sigma(\alpha)$ is also a root. Since $x^p - t = (x - \alpha)^p$ has the only root α , $\sigma(\alpha) = \alpha$.

Similarly β is the only root of $x^p - u = (x - \beta)^p$, thus $\sigma(\beta) = \beta$.

Moreover $L = F(\alpha, \beta)$, so an element $\sigma \in \operatorname{Gal}(L/F)$ is uniquely determined by the images of α, β , therefore $\sigma = 1_L$.

$$\operatorname{Gal}(L/F) = \{1_L\}.$$

Ex. 7.3.5 Consider the extension $F = \mathbb{C}(t^4) \subset L = \mathbb{C}(t)$, where t is a variable.

- (a) Show that L is the splitting field of $x^4 t^4 \in F[x]$ over F.
- (b) Show that $x^4 t^4$ is irreducible over F.
- (c) Show that $Gal(L/F) \simeq \mathbb{Z}/4\mathbb{Z}$.
- (d) Similar to what you did in Exercise 3, determine all subgroups of Gal(L/F) and the corresponding intermediate fields between F and L.

Proof. Consider the extension $F \subset \mathbb{C}(t^4) \subset L = \mathbb{C}(t)$, where t is a variable.

- (a) $t^4 \in F$, thus $f = x^4 t^4 \in F[x]$, and f = (x t)(x + t)(x it)(x + it). f splits completely on L, and the roots of f in L are t, it, -t, -it. The splitting field of f over $\mathbb{C}(t^4)$ is so $\mathbb{C}(t^4)(t, it, -t, -it) = \mathbb{C}(t^4, t) = \mathbb{C}(t)$, since $t^4 \in \mathbb{C}(t)$. $\mathbb{C}(t)$ being the splitting field of the separable polynomial f over $\mathbb{C}(t^4)$, $\mathbb{C}(t^4) \subset \mathbb{C}(t)$ is a Galois extension.
- (b) $t \notin \mathbb{C}(t^4)$, otherwise $t = u(t^4)/v(t^4)$, $u, v \in F[x], v \neq 0$, where t is transcendental over \mathbb{C} , and the identity $u(t^4) tv(t^4) = 0$ is impossible, since all the monomials in $u(t^4)$ have even degree, and all the monomial in $tv(t^4) \neq 0$ have odd degree. Consequently the other roots of f in L, which are -t, it, -it, are not in $\mathbb{C}(t^4)$.

If f was reducible over F, f would be the product of two polynomials $p, q \in F[x]$ of degree 2, each gathering two factors of the form $x - i^k t$:

$$p = (x - i^k t)(x - i^l t) \in F[x], \ 0 \le k, l \le 3.$$

But then the coefficient of degree 0 in x, which is $i^{k+l}t^2$ is in F, therefore $t^2 \in F$:

$$t^2 = \frac{u(t^4)}{v(t^4)}, \ u, v \in F[x], v \neq 0, u \land v = 1.$$

Then $s=t^2$ is transcendental over $\mathbb C$ (otherwise t would be algebraic over $\mathbb C$) and satisfies

$$s = \frac{u(s^2)}{v(s^2)}.$$

The identity $u(s^2) - sv(s^2) = 0$, with s transcendental, implies $u(x^2) - xv(x^2)$ where x is a variable, so is impossible, since all the monomials in $u(x^2)$ have even degree, and all the monomial in $xv(x^2) \neq 0$ have odd degree.

 $f = x^4 - t^4$ is so irreducible over $\mathbb{C}(t^4)$.

(c) deg(f) = 4, and f is monic irreducible, so is the minimal polynomial of t over F. Therefore

$$|Gal(L/F)| = [L:F] = [\mathbb{C}(t^4, t): \mathbb{C}(t^4)] = \deg(f) = 4.$$

Let $\sigma \in G = \operatorname{Gal}(L/F)$. As t is a root of $f \in F[x]$, $\sigma(t)$ is a root of f, thus $\sigma(t) \in \{t, it, i^2t, i^3t\}$. Moreover $L = \mathbb{C}(t) = \mathbb{C}(t^4)(t)$, so σ is uniquely determined by the image of t. As |G| = 4, these four possibilities occur and correspond to an element of G: if $0 \le k \le 3$, there exists one and only one $\sigma_k \in G$ such that

$$\sigma_k(t) = i^k t.$$

Let $\sigma = \sigma_1 : t \mapsto it$. Then $\sigma^k(t) = i^k t = \sigma_k(t)$, so $\sigma^k = \sigma_k$, and $G = \langle \sigma \rangle$ is cyclic.

$$G = \{e, \sigma, \sigma^2, \sigma^3\} \simeq \mathbb{Z}/4\mathbb{Z}.$$

(d) The only non trivial subgroup of G is $H = \langle \sigma^2 \rangle = \{e, \sigma^2\}$, where G is an Abelian group, so H is normal in G. Let L_H its fixed field. By the Fundamental Theorem

of Galois Theory, there exists so a unique intermediate field distinct of $\mathbb{C}(t^4)$ and $\mathbb{C}(t)$, which is so $\mathbb{C}(t^2)$:

$$L_H = \mathbb{C}(t^2).$$

The Galois correspondence is between the two chains:

$$\mathbb{C}(t^4) \subset \mathbb{C}(t^2) \subset \mathbb{C}(t)$$

$$G = \langle \sigma \rangle \supset \langle \sigma^2 \rangle \supset \{e\}.$$

Ex. 7.3.7 Let $\zeta_7 = e^{2\pi i/7}$, and consider the extension $\mathbb{Q} \subset L = \mathbb{Q}(\zeta_7)$.

- (a) Show that L is the splitting field of $f = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ over \mathbb{Q} and that f is the minimal polynomial of ζ_7 .
- (b) Let $(\mathbb{Z}/7\mathbb{Z})^*$ be the group of non zero congruence classes modulo 7 under multiplication. By Exercise 4 of section 6.2 there is a group isomorphism $Gal(L/Q) \simeq (\mathbb{Z}/7\mathbb{Z})^*$. Let $H \subset (\mathbb{Z}/7\mathbb{Z})^*$ be the subgroup generated by the congruence class of -1. Prove that $\mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ is the fixed field of the subgroup of $Gal(L/\mathbb{Q})$ corresponding to H.

Proof. (a) Proposition 4.2.5, with p = 7 prime, shows that

$$f = \Phi_7 = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

is irreducible over \mathbb{Q} . $\zeta = \zeta_7 = e^{2i\pi/7}$ being a root of $\Phi_7 = (x^7 - 1)/(x - 1)$, $f = \Phi_7$ is the minimal polynomial of ζ over \mathbb{Q} .

The roots of f are the roots of $x^7 - 1$ distinct of 1, they are $\zeta, \zeta^2, \dots, \zeta^6$. The splitting field of f is so $\mathbb{Q}(\zeta, \zeta^2, \dots, \zeta^6) = \mathbb{Q}(\zeta)$, since $\zeta^k \in \mathbb{Q}(\zeta)$ for all integers k.

Conclusion: $L = \mathbb{Q}(\zeta)$, where $\zeta = e^{2i\pi/7}$, is the splitting field of $f = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, and f is the minimal polynomial of ζ .

Therefore $\mathbb{Q} \subset \mathbb{Q}(\zeta)$ is a Galois extension, and

$$|\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \deg(f) = 6.$$

(b) The Exercise 6.2.4(f) shows that $G = \operatorname{Gal}(L/\mathbb{Q}) \simeq (\mathbb{Z}/7\mathbb{Z})^*$, the isomorphism φ being defined by

$$\varphi: \left\{ \begin{array}{ccc} \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) & \to & (\mathbb{Z}/7\mathbb{Z})^* \\ \sigma & \mapsto & [k]: \ \sigma(\zeta) = \zeta_n^k \end{array} \right.$$

Let $\tilde{H} = \{-\overline{1}, +\overline{1}\} \subset (\mathbb{Z}/7\mathbb{Z})^*$, and $H \subset G$ the corresponding subgroup. We compute its fixed field L_H .

Write τ the unique element of G such that $\tau(\zeta) = \zeta^{-1}$. We prove that $H = \{e, \tau\}$. As $\overline{\zeta} = \zeta^6 = \zeta^{-1} \in \mathbb{Q}(\zeta)$, then $\chi : L \to L, z \mapsto \overline{z}$ is an automorphism of L which is the identity on \mathbb{Q} , consequently $\chi \in \operatorname{Gal}(L/\mathbb{Q})$. Since $\chi(\zeta) = \overline{\zeta} = \zeta^{-1} = \tau(\zeta)$, $\tau = \chi$ is the complex conjugation restricted to L, $\varphi(\tau) = [-1]$, and $H = \{e, \tau\}$.

For all $z \in L$,

$$z \in L_H \iff \overline{z} = z \iff z \in L \cap \mathbb{R}$$

$$L_H = \mathbb{Q}(\zeta) \cap \mathbb{R}$$
.

 $\zeta + \zeta^{-1} = 2\cos(2\pi/7) \in \mathbb{Q}(\zeta) \cap \mathbb{R}$, thus

$$\mathbb{Q}(\zeta + \zeta^{-1}) \subset \mathbb{Q}(\zeta) \cap \mathbb{R} = L_H \tag{1}$$

Write $\alpha = \zeta + \zeta^{-1}$. Then

$$\zeta^{2} + \zeta^{-2} = (\zeta + \zeta^{-1})^{2} - 2 = \alpha^{2} - 2 \in \mathbb{Q}(\alpha).$$

$$\zeta^{3} + \zeta^{-3} = (\zeta^{2} + \zeta^{-2})(\zeta + \zeta^{-1}) - (\zeta + \zeta^{-1}) = (\alpha^{2} - 2)\alpha - \alpha = \alpha^{3} - 3\alpha \in \mathbb{Q}(\alpha).$$

As f is irreducible over \mathbb{Q} , a basis of L over \mathbb{Q} is $(1, \zeta, \dots, \zeta^6)$.

Let $z = a_0 + a_1 \zeta + a_2 \zeta^2 + a_3 \zeta^3 + a_4 \zeta^4 + a_5 \zeta^5 + a_6 \zeta^6$, $a_i \in \mathbb{Q}$, $0 \le i \le 6$, any element of L.

If $z \in L_H$, then $z = \tau(z)$, so

$$a_0 + a_1 \zeta + a_2 \zeta^2 + a_3 \zeta^3 + a_4 \zeta^4 + a_5 \zeta^5 + a_6 \zeta^6 = a_0 + a_1 \zeta^6 + a_2 \zeta^5 + a_3 \zeta^4 + a_4 \zeta^3 + a_5 \zeta^2 + a_6 \zeta,$$

therefore $a_1 = a_6, a_2 = a_5, a_3 = a_4$, so

$$z = a_0 + a_1(\zeta + \zeta^{-1}) + a_2(\zeta^2 + \zeta^{-2}) + a_3(\zeta^3 + \zeta^{-3}) \in \mathbb{Q}(\zeta + \zeta^{-1}),$$

thus $L_H \subset \mathbb{Q}(\zeta + \zeta^{-1})$, which gives, with the inclusion (1),

$$L_H = \mathbb{Q}(\zeta + \zeta^{-1}) = \mathbb{Q}(\zeta) \cap \mathbb{R}.$$

Ex. 7.3.8 Let $\alpha = \zeta_7 + \zeta_7^{-1}$, where $\zeta_7 = e^{2\pi i/7}$.

- (a) Show that the minimal polynomial of α over \mathbb{Q} is $x^3 + x^2 2x 1$.
- (b) Use Exercise 7 to show that the splitting field of $x^3 + x^2 2x 1$ over \mathbb{Q} is a Galois extension of degree 3 with Galois group isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

Proof. (a) Let $\zeta = \zeta_7$ and $\alpha = \zeta + \zeta^{-1}$. We compute the minimal polynomial of α .

We have shown in Exercice 7 that

$$\zeta + \zeta^{-1} = \alpha$$
$$\zeta^2 + \zeta^{-2} = \alpha^2 - 2$$
$$\zeta^3 + \zeta^{-3} = \alpha^3 - 3\alpha.$$

Thus

$$0 = 1 + \zeta + \zeta^{2} + \zeta^{3} + \zeta^{4} + \zeta^{5} + \zeta^{6}$$

$$= 1 + (\zeta + \zeta^{-1}) + (\zeta^{2} + \zeta^{-2}) + (\zeta^{3} + \zeta^{-3})$$

$$= 1 + \alpha + (\alpha^{2} - 2) + (\alpha^{3} - 3\alpha)$$

$$= \alpha^{3} + \alpha^{2} - 2\alpha - 1$$

 α is so a root of $p = x^3 + x^2 - 2x - 1$.

We could verify directly the irreducibility of p, but it is more simple to proceed so:

- As $p(\alpha) = 0$, the minimal polynomial of q of α over \mathbb{Q} divides $p: q \mid p$,
- $\mathbb{Q}(\alpha) = L_H$ is the fixed field of $H = \{e, \sigma\}$ (Exercise 6). Then $\mathrm{Gal}(L/L_H) = H$, and $[L:L_H] = |H| = 2$, so

$$[\mathbb{Q}(\alpha) : \mathbb{Q}] = [L_H : \mathbb{Q}] = [L : \mathbb{Q}]/[L : L_H] = [L : \mathbb{Q}]/|H| = 6/2 = 3,$$

thus $deg(q) = [\mathbb{Q}(\alpha) : \mathbb{Q}] = 3 = deg(p),$

• Moreover p, q are monic. Consequently p = q, and so p is irreducible over \mathbb{Q} , and α is a root of p.

Conclusion: $p = x^3 + x^2 - 2x - 1$ is the minimal polynomial of $\alpha = \zeta + \zeta^{-1}$ over \mathbb{Q} .

Note: as an alternative method, to find the minimal polynomial of α , we can use the Lagrange's construction described in the proof of Theorem 7.1.1:

3 is a generator of the cyclic group $(\mathbb{Z}/7\mathbb{Z})^*$ $(3^2=2,3^3=-1)$, so $\operatorname{Gal}(L/\mathbb{Q})=\{e,\sigma,\sigma^2,\sigma^3,\sigma^4,\sigma^5\}$, where σ is characterized by $\sigma(\zeta)=\zeta^3$ (then $\sigma^k(\zeta)=\zeta^{3^k}=\zeta,\zeta^3,\zeta^2,\zeta^{-1},\zeta^{-3},\zeta^{-2}$ for k=0,1,2,3,4,5). The distinct images of α by the automorphisms of G are so $\zeta+\zeta^{-1},\zeta^2+\zeta^{-2},\zeta^3+\zeta^{-3}$, so the minimal polynomial of α over \mathbb{Q} is (see the proof of Th. 7.1.1)

$$(x-\zeta-\zeta^{-1})(x-\zeta^2-\zeta^{-2})(x-\zeta^3-\zeta^{-3}).$$

To expand this polynomial, we use the following Sage instructions:

 $K.\langle zeta \rangle = NumberField(1+x+x^2+x^3+x^4+x^5+x^6)$

R.<t> = PolynomialRing(QQ)

 $f = (t-zeta - zeta^{(-1)})*(t-zeta^2-zeta^{(-2)})*(t-zeta^3-zeta^{(-3)});f$

$$t^3 + t^2 - 2t - 1$$

which gives the minimal polynomial

$$p = x^{3} + x^{2} - 2x - 1$$

$$= (x - \zeta - \zeta^{-1})(x - \zeta^{2} - \zeta^{-2})(x - \zeta^{3} - \zeta^{-3})$$

$$= (x - 2\cos(2\pi/7))(x - 2\cos(4\pi/7))(x - 2\cos(6\pi/7))$$

(b) By Exercise 6, $\mathbb{Q}(\alpha) = L_H$ is associate to H of order 2 in the Galois correspondence.

As $G = \operatorname{Gal}(L/F) \simeq (\mathbb{Z}/7\mathbb{Z})^*$ is Abelian, H is normal in G, so $\mathbb{Q} \subset L_H$ is a Galois extension.

Consequently all the roots α, β, γ of p are in $\mathbb{Q}(\alpha)$, thus $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha, \beta, \gamma)$ is the splitting field of p over \mathbb{Q} .

(In fact, the other roots of p are $\sigma(\zeta + \zeta^{-1}) = \zeta^3 + \zeta^{-3} = \alpha^3 - 3\alpha$, and $\sigma^2(\zeta + \zeta^{-1}) = \zeta^2 + \zeta^{-2} = \alpha^2 - 2$, and are all in $\mathbb{Q}(\zeta + \zeta^{-1})$.)

Conclusion: the splitting field of $p = x^3 + x^2 - 2x - 1$ over \mathbb{Q} is $E = \mathbb{Q}(\zeta_7) \cap \mathbb{R} = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$, and $\mathbb{Q} \subset E$ is a Galois extension of degree 3.

Moreover (Theorem 7.2.7), $\operatorname{Gal}(E/\mathbb{Q}) \simeq \operatorname{Gal}(L/\mathbb{Q})/\operatorname{Gal}(L/E) = G/H$.

As G is cyclic and |H| = 2, G/H is the quotient group of a cyclic group, so is cyclic, of order 3, isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

$$\operatorname{Gal}(\mathbb{Q}(\zeta_7 + \zeta_7^{-1})/\mathbb{Q}) \simeq \mathbb{Z}/3\mathbb{Z}.$$

Ex. 7.3.9 Let F be a field of characteristic different from 2, and let $F \subset L$ be a finite extension. Prove that the following are equivalent:

- (a) L is a Galois extension of F with $Gal(L/F) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- (b) L is the splitting field of a polynomial of the form $(x^2 a)(x^2 b)$, where $a, b \in F$ but \sqrt{a} , \sqrt{b} , \sqrt{ab} do not lie in F.

Proof. • Suppose (b): L is the splitting field of $f = (x^2 - a)(x^2 - b)$, where $a, b \in F$, but $\sqrt{a}, \sqrt{b}, \sqrt{ab}$ do not lie in F.

The splitting field of f is $F(\sqrt{a}, -\sqrt{a}, \sqrt{b}, -\sqrt{b}) = F(\sqrt{a}, \sqrt{b})$:

$$L = F(\sqrt{a}, \sqrt{b}).$$

Consider the ascending chain of fields:

$$F \subset F(\sqrt{a}) \subset F(\sqrt{a}, \sqrt{b}).$$

As $\sqrt{a} \notin F$, $[F(\sqrt{a}):F] \neq 1$, and $[F(\sqrt{a}):F] \leq 2$ since \sqrt{a} is a root of $x^2 - a \in F[x]$, thus $[F(\sqrt{a}):F]=2$.

With a reduction ad absurdum, suppose that $\sqrt{b} \in F(\sqrt{a})$, then

$$\sqrt{b} = u + v\sqrt{a}, \ u, v \in F.$$

By squaring this equality, $b=u^2+av^2+2uv\sqrt{a}$. If $uv\neq 0$, then $\sqrt{b}=\frac{b-u^2-av^2}{2uv}\in F$, in contradiction with the hypothesis, so uv=0.

If v = 0, $\sqrt{b} = u \in F$: this is excluded.

If u = 0, $\sqrt{b} = v\sqrt{a}$, so $\sqrt{ab} = va \in F$: this is also excluded.

This proves that $\sqrt{b} \notin F(\sqrt{a})$, and \sqrt{b} is a root of $x^2 - b \in F(\sqrt{a})[x]$, thus

$$[F(\sqrt{a}, \sqrt{b}) : F(\sqrt{a})] = 2.$$

Finally

$$[L:F] = [F(\sqrt{a}, \sqrt{b}):F] = [F(\sqrt{a}, \sqrt{b}):F(\sqrt{a})] [F(\sqrt{a}):F] = 4.$$

As the characteristic of F is different from 2, $\sqrt{a} \neq -\sqrt{a}$, otherwise $\sqrt{a} = 0 \in F$, and the same is true for b. Moreover $\sqrt{a} \neq \pm \sqrt{b}$, otherwise $\sqrt{ab} = \pm a \in F$, so

$$f = (x - \sqrt{a})(x + \sqrt{a})(x - \sqrt{b})(x + \sqrt{b})$$

is a separable polynomial, and the splitting field L of the separable polynomial $f \in F[x]$ is a Galois extension of F. Therefore,

$$|Gal(L/F) = [L:F] = 4.$$

If $\sigma \in G = \operatorname{Gal}(L/F)$, as a is a root of $x^2 - a \in F[x]$, $\sigma(a)$ also, thus $\sigma(\sqrt{a}) =$ $(-1)^k \sqrt{a}$, $0 \le k \le 1$. Similarly $\sigma(\sqrt{b}) = (-1)^l \sqrt{b}$, $0 \le l \le 1$. As σ is uniquely determined by the images of \sqrt{a} , \sqrt{b} , there are at most 4 F-automorphisms of L.

As |Gal(L/F)| = 4, these 4 possibilities occur, and give an element of the Galois group Gal(L/F), otherwise this group would have less than 4 elements.

Then $G = \{e, \sigma, \tau, \zeta\}$, where

$$\sigma(\sqrt{a}) = -\sqrt{a}, \qquad \sigma(\sqrt{b}) = \sqrt{b},$$

$$\tau(\sqrt{a}) = \sqrt{a}, \qquad \tau(\sqrt{b}) = -\sqrt{b},$$

$$\zeta(\sqrt{a}) = -\sqrt{a}, \qquad \zeta(\sqrt{b}) = -\sqrt{b}.$$

As σ, τ, ζ are of order 2,

 $\{e, \tau\}, \langle \zeta \rangle = \{e, \zeta\}.$

$$Gal(L/F) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
.

• Conversely, suppose (a):

L/F is a Galois extension of F, and $Gal(L/F) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Then

$$[L:F] = \operatorname{Gal}(L/F) = 4.$$

Write e, σ, τ, ζ the elements of $G = \operatorname{Gal}(L/F)$, where e the identity of G. As $G = \{e, \sigma, \tau, \zeta\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\zeta = \sigma \circ \tau$ and all the elements different from e are of order 2. The only non trivial subgroups have cardinality 2: they are $\langle \sigma \rangle = \{e, \sigma\}, \langle \tau \rangle = \{e, \sigma\}, \langle \tau \rangle = \{e, \sigma\}, \langle \tau \rangle$

The intermediate field corresponding with these subgroups are the fixed fields

$$K_{\sigma} = L_{\langle \sigma \rangle}, K_{\tau} = L_{\langle \tau \rangle}, K_{\zeta} = L_{\langle \sigma \circ \tau \rangle}.$$

As the index in G of these three subgroups is 2, K_{σ} , K_{τ} , K_{ζ} are quadratic extensions of F (by Theorem 7.3.1[$L_H: F$] = [Gal(L/F): H]). Since [L: F] = Gal(L/F) = 4, L is a quadratic extension of each of them.

As the characteristic of F is different from 2, the Exercise 7.1.12 shows that $K_{\sigma} = F(\alpha)$, where $a = \alpha^2 \in F$, $\alpha \notin F$. Write $\alpha = \sqrt{a}$, then $K_{\sigma} = F(\sqrt{a})$, $a \in F$, $\sqrt{a} \notin F$. Similarly $K_{\tau} = F(\sqrt{b})$, $b \in F$, $\beta = \sqrt{b} \notin F$.

$$\alpha = \sqrt{a} \in L_{\langle \sigma \rangle}$$
, so $\sigma(\sqrt{a}) = \sqrt{a}$.
 $K_{\sigma} \cap K_{\tau} = L_{\langle \sigma \rangle} \cap L_{\langle \tau \rangle} = L_{\langle \sigma, \tau \rangle} = L_{G} = F$ by Theorem 7.1.1(b), so

$$K_{\sigma} \cap K_{\tau} = F$$
.

Since $\sqrt{a} \in K_{\sigma} \setminus F$, $\sqrt{a} \notin K_{\tau}$, thus $\tau(\sqrt{a}) \neq \sqrt{a}$.

Moreover \sqrt{a} is a root of $x^2 - a \in F[x]$, thus $\tau(\sqrt{a}) \in {\sqrt{a}, -\sqrt{a}}$. Consequently $\tau(\sqrt{a}) = -\sqrt{a}$.

$$\sigma(\sqrt{a}) = \sqrt{a}, \qquad \tau(\sqrt{a}) = -\sqrt{a},$$

and similarly

$$\sigma(\sqrt{b}) = -\sqrt{b}, \qquad \tau(\sqrt{b}) = \sqrt{b}.$$

As $(\alpha\beta)^2 = ab$, write $\alpha\beta = \sqrt{ab} = \sqrt{a}\sqrt{b}$. Then

$$\sigma(\sqrt{ab}) = -\sqrt{ab}, \qquad \tau(\sqrt{ab}) = -\sqrt{ab}.$$

Thus \sqrt{ab} lies not in the fixed field of G, so $\sqrt{ab} \notin F$.

The intermediate extension $E = F(\sqrt{a}, \sqrt{b})$ contains $K_{\sigma} = F(\sqrt{a})$ and $K_{\tau} = F(\sqrt{b})$, so $E \supset L_{\langle \sigma \rangle}, E \supset L_{\langle \tau \rangle}$. Therefore, by the Galois correspondence, $\operatorname{Gal}(L/E) \subset \operatorname{Gal}(L/L_{\langle \sigma \rangle}) = \langle \sigma \rangle$ and $\operatorname{Gal}(L/E) \subset \langle \tau \rangle$, thus $\operatorname{Gal}(L/E) \subset \langle \sigma \rangle \cap \langle \tau \rangle = \{e\}$. Thus $\operatorname{Gal}(L/E) = \{e\}$, and so E = L.

$$L = F(\sqrt{a}, \sqrt{b}).$$

As $f = (x^2 - a)(x^2 - b) = (x - \sqrt{a})(x + \sqrt{a})(x - \sqrt{b})(x + \sqrt{b}) \in F[x]$ splits completely in L, the splitting field of f is $F(\sqrt{a}, \sqrt{b}) = L$.

The equivalence (a) \iff (b) is proved.

Ex. 7.3.10 Suppose that $\alpha, \beta \in \mathbb{C}$ are algebraic of degree 2 over \mathbb{Q} (i.e., they are both roots of irreducible quadratic polynomials in $\mathbb{Q}[x]$). Prove that the following are equivalent:

- (a) $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$.
- (b) $\alpha = a + b\beta$ for some $a, b \in \mathbb{Q}, b \neq 0$.
- (c) $\alpha + \beta$ is the root of a quadratic polynomial in $\mathbb{Q}[x]$.

Proof. (a) \Rightarrow (b):

If $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$, then $\alpha \in \mathbb{Q}(\beta)$. Since $[\mathbb{Q}(\beta) : \mathbb{Q}] = 2$, $\beta \notin \mathbb{Q} = \mathrm{Vect}_{\mathbb{Q}}(1)$, then $(1, \beta)$ is a linearly independent list with 2 elements in a 2-dimensional vector space, so is a basis of $\mathbb{Q}(\beta)$ over \mathbb{Q} . Then α spans on this basis under the form

$$\alpha = a + b\beta, \ a, b \in \mathbb{Q}.$$

Moreover, $b \neq 0$, otherwise $\alpha \in \mathbb{Q}$, and α would not be of degree 2 over \mathbb{Q} .

 $(b) \Rightarrow (a)$:

If $\alpha = a + b\beta$, $a, b \in \mathbb{Q}$, $b \neq 0$, then $\alpha \in \mathbb{Q}(\beta)$, thus $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\beta)$. Moreover $\beta = b^{-1}(\alpha - a) \in \mathbb{Q}(\alpha)$, so $\mathbb{Q}(\beta) \subset \mathbb{Q}(\alpha)$.

$$\mathbb{Q}(\alpha) = \mathbb{Q}(\beta).$$

 $(b)\Rightarrow(c)$:

 $\delta = \alpha + \beta = a + (b+1)\beta \in \mathbb{Q}(\beta)$. Therefore the list $(1, \delta, \delta^2)$ of 3 vectors in a 2-dimensional vector space is linearly dependent over \mathbb{Q} , so there exist $(u, v, w) \in \mathbb{Q}^3 \setminus \{(0, 0, 0)\}$ such that $u\delta^2 + v\delta + w = 0$.

Let $f(x) = ux^2 + vx + w \in \mathbb{Q}[x]$. Then $f(\alpha + \beta) = 0$, with $f \neq 0$, $\deg(f) \leq 2$. If $\deg(f) = 2$, (c) is proved.

But $\deg(f) < 2$ is a possibility, for instance if $\beta = -\alpha$. As $f \neq 0$, then $\deg(p) = 0$ is in contradiction with $f(\delta) = 0$, so in this case $\deg(f) = 1$: f(x) = vx + w, $v \neq 0$. Then $\delta = \alpha + \beta$ is a root of the polynomial of degree 2 x(vx + w). In both cases,

 $\alpha + \beta$ is the root of a quadratic polynomial in $\mathbb{Q}[x]$.

 $(c)\Rightarrow(a)$: Suppose that $\alpha+\beta$ is a root of a quadratic polynomial, and suppose on the contrary that $\mathbb{Q}(\alpha)\neq\mathbb{Q}(\beta)$. By assumption, $[\mathbb{Q}(\alpha):\mathbb{Q}]=[\mathbb{Q}(\beta):\mathbb{Q}]=2$. Therefore $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)]\leq 2$. If $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)]=1$, then $\alpha\in\mathbb{Q}(\beta)$, so $\alpha=a+b\beta$ for some $a,b\in\mathbb{Q}$, and $b\neq 0$ otherwise $\alpha\in\mathbb{Q}$.

The implication (b) \Rightarrow (a) shows that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$, and this is a contradiction. Therefore $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)]=2$, and

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)][\mathbb{Q}(\beta):\mathbb{Q}] = 4.$$

Write $L = \mathbb{Q}(\alpha, \beta)$. Then $[L : \mathbb{Q}] = 4$.

Let $f = x^2 + rx + s$, $g = x^2 + r'x + s' \in \mathbb{Q}[x]$ be the minimal polynomials of α, β over \mathbb{Q} , and write α, α' the roots of f, β, β' the root of g.

As $\alpha + \alpha' = -r \in \mathbb{Q}$, $\alpha' \in \mathbb{Q}(\alpha)$, and similarly $\beta' \in \mathbb{Q}(\beta)$. Therefore the splitting field of fg is $\mathbb{Q}(\alpha, \alpha', \beta, \beta') = \mathbb{Q}(\alpha, \beta)$. This shows that $\mathbb{Q} \subset \mathbb{Q}(\alpha, \beta)$ is a normal extension, and also separable since the characteristic of \mathbb{Q} is 0. So $\mathbb{Q} \subset L$ is a Galois extension, therefore

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 4.$$

Consequently, if we write $G = \operatorname{Gal}(L/\mathbb{Q})$.

$$G \simeq \mathbb{Z}/4\mathbb{Z}$$
 or $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- If $G \simeq \mathbb{Z}/4\mathbb{Z}$, as $\mathbb{Z}/4\mathbb{Z}$ has a unique subgroup H of index 2 in G, there exists a unique quadratic extension of \mathbb{Q} included in L, and so $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta) = L_H$, in contradiction with the hypothesis.
- We suppose now that $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then by the Galois correspondence, the extension $\mathbb{Q}(\alpha)$ corresponds to a subgroup H of index 2 in G, thus of order 4/2 = 2. So $H = \{e, \sigma\}$, and $\mathbb{Q}(\alpha) = L_H$ is the fixed field of σ . Similarly there exists $\tau \in G, \tau \neq \sigma$, such that $\mathbb{Q}(\beta)$ is the fixed field of $K = \{e, \tau\}$. There exist exactly 3 subgroups of G of index $2 : \langle \sigma \rangle, \langle \tau \rangle, \langle \zeta \rangle$, where $\zeta = \sigma \tau = \tau \sigma$, in correspondence with 3 quadratic subextensions of $\mathbb{Q} \subset L$, two of them being $\mathbb{Q}(\alpha), \mathbb{Q}(\beta)$. As every quadratic extension of \mathbb{Q} , the third is of the form $\mathbb{Q}(\gamma), \gamma \in L$, fixed field of $\{e, \zeta\}$.

We show that $\mathbb{Q}(\alpha + \beta) = \mathbb{Q}(\gamma)$. $\alpha + \beta \notin \mathbb{Q}$, otherwise $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$, so $\mathbb{Q}(\alpha + \beta)$ is a quadratic extension of \mathbb{Q} , therefore is equal to $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ or $\mathbb{Q}(\gamma)$.

 $\mathbb{Q}(\alpha + \beta) \neq \mathbb{Q}(\beta)$, otherwise $\beta \in \mathbb{Q}(\beta)$, and so $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$. Similarly $\mathbb{Q}(\alpha + \beta) \neq \mathbb{Q}(\alpha)$. It remains only the possibility $\mathbb{Q}(\alpha + \beta) = \mathbb{Q}(\gamma)$, fixed field of $\zeta = \sigma \circ \tau$.

Note that $\tau(\alpha) \neq \alpha$, otherwise $\alpha \in L_{\langle \tau \rangle} = \mathbb{Q}(\beta)$, which is excluded.

As
$$\alpha + \beta \in \mathbb{Q}(\gamma) = L_{\langle \sigma \tau \rangle}$$
,

$$(\sigma\tau)(\alpha+\beta) = \alpha+\beta.$$

But, since G is commutative, we have also

$$(\sigma\tau)(\alpha+\beta) = (\sigma\tau)(\alpha) + (\sigma\tau)(\beta) = (\tau\sigma)(\alpha) + (\sigma\tau)(\beta) = \tau(\alpha) + \sigma(\beta).$$

Therefore $\alpha + \beta = \tau(\alpha) + \sigma(\beta)$, thus $\alpha - \tau(\alpha) = \sigma(\beta) - \beta$.

As $\mathbb{Q}(\alpha)$ is a normal extension, $\tau(\alpha) \in \mathbb{Q}(\alpha)$, and similarly $\sigma(\beta) \in \mathbb{Q}(\beta)$. Therefore

$$\alpha - \tau(\alpha) = \sigma(\beta) - \beta \in \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q},$$

Thus $\sigma(\beta) = \beta + c, \tau(\alpha) = \alpha - c, c \in \mathbb{Q}^*$.

Then $(\sigma\tau)(\alpha+\beta)=\alpha+\beta$, so the orbit of $\alpha+\beta$ under the action of $G=\{e,\sigma,\tau,\sigma\tau\}$ is $\mathcal{O}_{\alpha+\beta}=\{\alpha+\beta,\alpha+\beta+c,\alpha+\beta-c\}$ has exactly 3 elements. As the cardinality of the orbit is the index of the stabilizer of $\alpha+\beta$ in G, so divides the order of G, we would have $3 \mid 4=|G|$: this is a contradiction, obtained under the hypothesis $\mathbb{Q}(\alpha)\neq\mathbb{Q}(\beta)$, so

$$\mathbb{Q}(\alpha) = \mathbb{Q}(\beta).$$

 $(c)\Rightarrow(a)$ is proved.

Ex. 7.3.11 Let $F \subset L$ be a Galois extension, and let $F \subset K \subset L$ be an intermediate field. Then let N be the normalizer of $Gal(L/K) \subset Gal(L/F)$. Prove that the fixed field L_N is the smallest subfield of K such that K is Galois over the subfield.

Proof. As $N=N_G(H)$ is the largest subgroup of $G=\operatorname{Gal}(L/F)$ such that $H=\operatorname{Gal}(L/K)$ is normal in N, since the Galois correspondance reverse inclusions, L_N is the smallest subfield of $K=L_H$ such that the extension $L_N\subset K$ is normal. We give the details.

• Write $H = \operatorname{Gal}(L/K)$. Then $L_H = K$. Since $H \subset N$, then $L_H \supset L_N$, so L_N is a subfield of K.

$$L_N \subset K$$
,

• H is a normal subgroup of $N = N_G(H)$. Therefore the extension $L_N \subset L_H = K$ is normal (Theorem 7.3.2).

$L_N \subset K$ is a Galois extension.

• Let $F \subset M \subset K$ an intermediate field, such that $M \subset K$ is a Galois extension. Let $S = \operatorname{Gal}(L/M)$. S is a subgroup of $G = \operatorname{Gal}(L/F)$ since $F \subset M \subset K$.

The extension $M \subset K$ is normal. Therefore the subgroup $H = \operatorname{Gal}(L/K)$ is normal in $S = \operatorname{Gal}(L/M)$ (Theorem 7.3.2). Since the normalizer $N = N_G(H)$ is the largest subgroup of G with this property, we conclude $S = \operatorname{Gal}(L/M) \subset N$, therefore $M = L_S \supset L_N$.

Conclusion: L_N is the smallest subfield of K such that K is Galois over the subfield.

Ex. 7.3.12 Let H be a subgroup of a group G, and let $N = \bigcap_{g \in G} gHg^{-1}$.

- (a) Show that N is a normal subgroup of G.
- (b) Show that N is the largest normal subgroup of G contained in H.

Proof. (a) Let $k \in G$. Then

$$kNk^{-1} = k\left(\bigcap_{g \in G} gHg^{-1}\right)k^{-1} = \bigcap_{g \in G} (kg)H(kg)^{-1} = \bigcap_{u \in G} uHu^{-1} = N,$$

thus $N \triangleleft G$.

(b) $H = eHe^{-1} \supset \bigcap_{g \in G} gHg^{-1} = N$, so $N \subset H \subset G$.

If any subgroup M of H is normal in G, then for all $g \in G$, $gMg^{-1} = M$, therefore $M = \bigcap_{g \in G} gMg^{-1} \subset \bigcap_{g \in G} gHg^{-1} = N$.

Conclusion: $\operatorname{Core}_G(H) = \bigcap_{g \in G} gHg^{-1}$ is the largest subgroup of H normal in G.

Ex. 7.3.13 Let $F \subset L$ be a Galois extension, and let $F \subset K \subset L$ be an intermediate field. If we apply the construction of Exercise 12 to $Gal(L/K) \subset Gal(L/F)$, then we obtain a normal subgroup $N \subset Gal(L/F)$. Prove that the fixed field L_N is the Galois closure of K.

Proof. Let $F \subset L$ a Galois extension, $F \subset K \subset L$ an intermediate field, $G = \operatorname{Gal}(L/F)$, $H = \operatorname{Gal}(L/K)$, $N = \operatorname{Core}_G(H)$, and $M = L_N$ the fixed field of N. We show that $M = L_N$ is the Galois closure of K over F.

Since $N \subset H, L_N \supset L_H = K$, so K is a subfield of L_N .

- As N is normal in G, $M = L_N$ is a Galois extension of F.
- Let M' an extension of K such that M' is Galois over F, and suppose first that $M' \subset L$. We call $S = \operatorname{Gal}(L/M')$.

As $F \subset M'$ is a Galois extension, $S = \operatorname{Gal}(L/M')$ is normal in G, and since $K \subset M'$, $H = \operatorname{Gal}(L/K) \supset \operatorname{Gal}(L/M') = S$. So S is a subgroup of H, and S is normal in G. By exercise 12, $S \subset N = \operatorname{Core}_G(H)$, thus $M = L_N \subset L_S = M'$.

 $M = L_N$ is so the smallest intermediate field of the extension $F \subset L$ which contains K and is a Galois extension of F.

Let M_0 be any Galois closure of K over F. As $F \subset M$ is a Galois extension, there exists by proposition 7.1.7 an embedding ψ of M_0 in M that is the identity on K. Then $K \subset \psi(M_0) \subset M \subset L$, and since $M_0 \simeq \psi(M_0)$, $\psi(M_0)$ is a Galois extension of F. But M is the smallest intermediate field of the extension $F \subset L$ which contains K and is a Galois extension of F, therefore $\psi(M_0) = M$, so $\psi: M_0 \to M$ is an isomorphism.

If M'' is any extension of K which is Galois over F, by the definition of a Galois closure, there exists an field homomorphism $\varphi: M_0 \to M''$ that is the identity on K, so $\varphi \circ \psi^{-1}$ is an embedding from M to M'' that is the identity on L, so $M = L_N$ is a Galois closure of K.

Note: this exercise shows that there exists always a Galois closure of an intermediate field K of a Galois extension $F \subset L$ that is included in L. Moreover it is characterized by the fact that it is the smallest intermediate field of $F \subset L$ containing K that is a Galois extension of F. Such a subfield of L is unique (not only up to an isomorphism).

Ex. 7.3.14 Prove the implication $(b) \Rightarrow (a)$ of Theorem 6.5.5.

- (a) $\mathbb{Q} \subset L$ is normal and Gal(L/Q) is Abelian.
- (b) There is a root of unity $\zeta_n = e^{2i\pi/n}$ such that $L \subset \mathbb{Q}(\zeta_n)$.

Proof. Suppose that $L \subset \mathbb{Q}(\zeta_n)$, where $\zeta_n = e^{2\pi i/n}$. The Exercise 6.2.4 prove the existence of an injective group homomorphism, given by

$$\varphi: \left\{ \begin{array}{ccc} \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) & \to & (\mathbb{Z}/n\mathbb{Z})^* \\ \sigma & \mapsto & [k] : \sigma(\zeta_n) = \zeta_n^k. \end{array} \right.$$

Consequently $G = \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$, so G is Abelian. As all subgroups of an Abelian group are normal, $H = \operatorname{Gal}(\mathbb{Q}(\zeta_n)/L)$ is a normal subgroup of G, therefore (Theorem 7.2.5) $\mathbb{Q} \subset L$ is a Galois extension, a fortiori a normal extension, and $\operatorname{Gal}(L/\mathbb{Q}) \simeq \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})/\operatorname{Gal}(\mathbb{Q}(\zeta_n)/L)$ is isomorphic to a quotient group of an Abelian group, so is Abelian: the implication (b) \Rightarrow (a) of Theorem 6.5.5 is proved.

Ex. 7.3.15 Let p be prime. Consider the extension $\mathbb{Q} \subset L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$ discussed in section 6.4. There, we showed that $\operatorname{Gal}(L/Q) \simeq \operatorname{AGL}(1, \mathbb{F}_p)$. The group $\operatorname{AGL}(1, \mathbb{F}_p)$ has two subgroups defined as follows:

$$T = \{\gamma_{1,b} \mid b \in \mathbb{F}_p\} \quad \text{and} \quad D = \{\gamma_{a,0} \mid a \in \mathbb{F}_p^*\},$$

where $\gamma_{a,b}(u) = au + b, u \in \mathbb{F}_p$. Let T' and D' be the corresponding subgroups of $\operatorname{Gal}(L/\mathbb{Q})$.

- (a) Show that the fixed field of T' is $\mathbb{Q}(\zeta_n)$.
- (b) What is the fixed field of D'? What are the conjugates of this fixed field?

Proof. let $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$.

By the isomorphism $\psi : \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{AGL}(1,\mathbb{F}_p), \ \gamma_{a,b} = \psi(\sigma_{a,b})$ corresponds to $\sigma_{a,b}$ uniquely determined by (see section 6.4)

$$\sigma_{a,b}(\zeta_p) = \zeta_p^a, \sigma_{a,b}(\sqrt[p]{2}) = \zeta_p^b \sqrt[p]{2}.$$

(a) T' is so the set of the $\sigma_{1,b}$, $b \in \mathbb{F}_p$, where $\sigma_{1,b}(\zeta_p) = \zeta_p$. Therefore

$$\mathbb{Q}(\zeta_p) \subset L_{T'}$$
.

 $T' = \text{Gal}(L/L_{T'})$, thus $p = |T'| = [L : L_{T'}]$.

Moreover, $[\mathbb{Q}(\zeta_p, \sqrt[p]{2}) : \mathbb{Q}(\zeta_p)] = p$, since $p - 1 = [\mathbb{Q}(\zeta_p) : \mathbb{Q}]$ and $[\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}] = p$ are relatively prime.

Thus $[L:L_{T'}]=[L:\mathbb{Q}(\zeta_p)]$, so $[L_{T'}:\mathbb{Q}]=[\mathbb{Q}(\zeta_p):\mathbb{Q}]$, with $\mathbb{Q}(\zeta_p)\subset L_{T'}$, therefore

$$\mathbb{Q}(\zeta_p) = L_{T'}.$$

(b) D' is the set of $\sigma_{a,0}$, where $\sigma_{a,0}(\sqrt[p]{2}) = \sqrt[p]{2}$. Therefore

$$\mathbb{Q}(\sqrt[p]{2}) \subset L_{D'}$$
.

By Theorem 7.3.1(b), $[L:L_{D'}] = |D'| = p - 1 = [L:\mathbb{Q}(\sqrt[p]{2})]$, so we can conclude $\mathbb{Q}(\sqrt[p]{2}) = L_{D'}$.

As $\sigma_{a,b}(\sqrt[p]{2}) = \zeta_p^b \sqrt[p]{2}$, the conjugate fields of $L_{D'}$ are the fields

$$\mathbb{Q}(\zeta_p^b \sqrt[p]{2}), \qquad b = 0, \cdots, p - 1.$$

7.4 FIRST APPLICATIONS

Ex. 7.4.1 Give a detailed proof of Proposition 7.4.2:

Let $f \in F[x]$ be a monic irreducible separable cubic, where F has characteristic $\neq 2$. If L is the splitting field of f over F, then

$$\operatorname{Gal}(L/F) \simeq \left\{ \begin{array}{ll} \mathbb{Z}/3\mathbb{Z}, & \text{if } \Delta(f) \text{ is a square in } F, \\ S_3, & \text{otherwise.} \end{array} \right.$$

Proof. Since L is the splitting field of the separable polynomial $f, F \subset L$ is a Galois extension

By Exercise 6.2.6, f being irreducible and separable, $n = |\operatorname{Gal}(L/F)|$ is a multiple of $3 = \deg(f)$. Moreover $\operatorname{Gal}(L/F)$ is isomorphic to a subgroup H of S_3 , so $n \mid 6$: n = 3 or n = 6. Since S_3 has a unique subgroup of cardinality 3, namely $A_3 \simeq \mathbb{Z}/3\mathbb{Z}$,

$$\operatorname{Gal}(L/F) \simeq A_3 \text{ or } \operatorname{Gal}(L/F) \simeq S_3.$$

By Theorem 7.4.1, since the characteristic of F is different from 2, $Gal(L/F) \simeq H \subset A_3$ if and only if $\sqrt{\Delta} \in F$, therefore

$$\operatorname{Gal}(L/F) \simeq \left\{ \begin{array}{ll} \mathbb{Z}/3\mathbb{Z}, & \text{if } \Delta(f) \text{ is a square in } F, \\ S_3, & \text{otherwise.} \end{array} \right.$$

Ex. 7.4.2 Compute the Galois groups of the following cubic polynomials:

- (a) $x^3 4x + 2$ over \mathbb{Q} .
- (b) $x^3 4x + 2 \ over \mathbb{Q}(\sqrt{37})$.
- (c) $x^3 3x + 1$ over \mathbb{Q} .
- (d) $x^3 t$ over $\mathbb{C}(t)$, t a variable.
- (e) $x^3 t$ over $\mathbb{Q}(t)$, t a variable.

Proof. (a) $f = x^3 - 4x + 2$.

f is irreducible by the Sch-önemann – Eisenstein Criterion with $p=2.\Delta(f)=-4p^3-27q^2=-4(-4)^3-27(2)^2=256-108=148=2^2\times37.$ As $\Delta(f)\neq0$, f is separable, so Proposition 7.4.2 applies to f.

Recall that an integer $k \in \mathbb{Z}$ is a square in \mathbb{Q} if and only if it is a square in \mathbb{Z} . As 37 is not a square, $\Delta(f)$ is not a square in \mathbb{Q} , so

$$Gal_{\mathbb{O}}(x^3 - 4x + 2) = S_3.$$

(b) $f = x^3 - 4x + 2$ has discriminant $\Delta(f) = 148 = (2\sqrt{37})^2$, which is a square in $\mathbb{Q}(\sqrt{37})$, thus

$$Gal_{\mathbb{Q}(\sqrt{37})}(x^3 - 4x + 2) = A_3.$$

(c) $f = x^3 - 3x + 1$.

If $\alpha = p/q$, $p \wedge q = 1$ is a root of f in \mathbb{Q} , then $p^3 - 3pq^2 + q^3 = 0$, thus $p \mid q, q \mid p$ with $p \wedge q = 1$, therefore $\alpha = \pm 1$, but nor 1 neither -1 is a root of f, thus f has no rational root. As $\deg(f) = 3$, f is irreducible over \mathbb{Q} . $\Delta(f) = -4(-3)^3 - 27 = 81 = 9^2$, thus $\Delta(f) \neq 0$ and so f is separable. Moreover $\Delta(f) = 9^2$ is a square in \mathbb{Q} . By Proposition 7.4.2,

$$\operatorname{Gal}_{\mathbb{Q}}(x^3 - 3x + 1) = A_3.$$

(d) Let u a root of $f = x^3 - t \in \mathbb{C}(t)$ in a splitting field of f over $\mathbb{C}(t)$. Then

$$f = (x - u)(x - \omega u)(x - \omega^2 u).$$

We have proved in Exercise 4.2.9 that f has no root in $\mathbb{C}(t)$, and that f is irreducible over $\mathbb{C}(t)$ (Proposition 4.2.6). Moreover f is separable.

$$\Delta(f) = -27t^2 = (i\sqrt{27}\,t)^2$$
 is a square in $\mathbb{C}(t)$, thus

$$\operatorname{Gal}_{\mathbb{C}(t)}(x^3 - t) = A_3.$$

(e) If $\Delta(f) = -27t^2$ was the square of an element $\alpha = p(t)/q(t)$ in $\mathbb{Q}(t)$, then

$$-27 = \left(\frac{p(t)}{tq(t)}\right)^2, \qquad p, q \in \mathbb{Q}[t].$$

Applying the evaluation homomorphism defined by $t \mapsto t_0$, were $t_0 \in \mathbb{Q}$, $t_0 \neq 0$ and t_0 is not a root of q(t), we obtain that -27 is a square in \mathbb{Q} : this is false, thus $\Delta(f)$ is not the square of an element in $\mathbb{Q}(t)$. Therefore

$$Gal_{\mathbb{Q}(t)}(x^3 - t) = S_3.$$

Ex. 7.4.3 This exercise will study part (b) of Theorem 7.4.4 when f is a polynomial in x_1, \ldots, x_n that is invariant under A_n . The theorem implies that $f = A + B\sqrt{\Delta}$ for some $A, B \in F(\sigma_1, \ldots, \sigma_n)$. You will prove that A and B are polynomials in the σ_i . Recall that F is a field of characteristic $\neq 2$.

- (a) Show that $f + (12) \cdot f = 2A$.
- (b) In part (a), the left-hand side is a polynomial while the right-hand side is a symmetric rational function. Use theorem 2.2.2 to conclude that A is a polynomial in the σ_i .
- (c) Let P denote the product of f A and $(12) \cdot (f A)$. Show that $P = -B^2 \Delta$.
- (d) Let B = u/v, where $u, v \in F[\sigma_1, \ldots, \sigma_n]$ are relatively prime (recall that $F[\sigma_1, \ldots, \sigma_n]$ is a UFD). In Exercise 8 of section 2.4 you showed that Δ is irreducible in $F[\sigma_1, \ldots, \sigma_n]$. Use this and the equation $v^2P = -u^2\Delta$ to show that v must be constant. This will prove that $B \in F[\sigma_1, \ldots, \sigma_n]$.

Proof. Let $f = f(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$ that is invariant under A_n . By Theorem 7.4.4, $f = A + B\sqrt{\Delta}$, $A, B \in F(\sigma_1, \dots, \sigma_n)$.

(a) Let $\tau=(12)$. By (7.16), $\tau\cdot\sqrt{\Delta}=\mathrm{sgn}(\tau)\sqrt{\Delta}=-\sqrt{\Delta}$. As τ fixes $A,B\in F(\sigma_1,\cdots,\sigma_n),\, \tau\cdot f=A-B\sqrt{\Delta}$, thus

$$f + \tau \cdot f = 2A.$$

- (b) The polynomial $A = \frac{1}{2}(f + \tau \cdot f) \in F[x_1, \dots, x_n]$ satisfies $\sigma \cdot A = A$. By Theorem 2.2.2, $A = h(\sigma_1, \dots, \sigma_n)$, where h is a polynomial.
- (c) Let $P = (f A)(\tau \cdot (f A))$. Then $P = (B\sqrt{\Delta})(-B\sqrt{\Delta}) = -B^2\Delta$.
- (d) Let B = u/v, $u, v \in F[\sigma_1, \dots, \sigma_n]$, where u, v are relatively prime. Then $v^2P = -u^2\Delta$.

As $\tau \cdot P = (\tau \cdot (f - A))(\tau \cdot (\tau \cdot (f - A))) = (\tau \cdot (f - A))(f - A) = P$, P is invariant under A_n and also invariant under τ , thus is invariant under S_n , and P is a polynomial in x_1, \dots, x_n , since $f, A \in F[x_1, \dots, x_n]$. Therefore there exists a polynomial g such that $P = g(\sigma_1, \dots, \sigma_n)$, and $v^2g = -u^2\Delta$ is an equality in $F[\sigma_1, \dots, \sigma_n]$: $u, v, g, \Delta \in F[\sigma_1, \dots, \sigma_n]$.

By Exercise 2.4.8, Δ is irreducible in $F[\sigma_1, \dots, \sigma_n]$. Moreover v^2 divides $u^2\Delta$ and is relatively prime with u^2 , thus v^2 divides Δ , where Δ is irreducible. This is impossible, unless v is a constant $\lambda \in F^*$. Therefore $B = \lambda^{-1}u$ is a polynomial in $\sigma_1, \dots, \sigma_n$.

Conclusion: if $f = f(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$ is invariant under A_n , where the characteristic of F is not 2, then

$$f = A + B\sqrt{\Delta}, \ A, B \in F[\sigma_1, \cdots, \sigma_n].$$

Ex. 7.4.4 Let G be a group of order n, and fix $g \in G$.

- (a) Show that the map $G \to G$ defined by $h \mapsto gh$ is one-to-one and onto.
- (b) Explain why part (a) implies that each row of the Cayley table of G is a permutation of the elements of G.
- (c) Write $G = \{g_1, \ldots, g_n\}$, and fix $g_i \in G$. Use part (a) to show the existence of $\sigma_i \in S_n$ satisfying $g_i g_j = g_{\sigma_i(j)}$ as in (7.19).

Proof. (a) Let

$$\varphi_g: \left\{ \begin{array}{ccc} G & \to & G \\ h & \mapsto & gh \end{array} \right.$$

• φ_q is injective: let $h, k \in G$.

If $\varphi_g(h) = \varphi_g(k)$, then gh = gk, therefore $g^{-1}gh = g^{-1}gk$, h = k.

$$\forall h \in G, \ \forall k \in G, \ \varphi_g(h) = \varphi_g(k) \Rightarrow h = k.$$

• φ_g is surjective: let k be any element in G.

Put $h = g^{-1}k$. Then $\varphi_g(h) = g(g^{-1}k) = (gg^{-1})k = ek = k$.

$$\forall k \in G, \ \exists h \in G, \varphi_q(h) = k.$$

- (b) A row of the Cayley table of G corresponding to the element $g \in G$ is the list of the $\varphi_g(g_i) = gg_i$, where g_i traces the list of the elements of G in an arbitrary fixed order. Since φ_g is bijective, we find all the elements of G once and only once. This defines a permutation of G.
- (c) Write S(G) the group of bijections of G in G, and S_n the group of bijections of $[\![1,n]\!]$ in $[\![1,n]\!]$ (where $[\![1,n]\!]$ = $\{1,2,\cdots,n\}$).

The map $\varphi:G\to S(G),\ g\mapsto \varphi_g=\varphi(g)$ is an injective group homomorphism.

Indeed, for all $g, h, k \in G$,

$$(\varphi(g) \circ \varphi(h))(k) = \varphi_g(\varphi_h(k)) = g(hk) = (gh)k = \varphi(gh)(k), \text{ thus}$$

$$\varphi(q) \circ \varphi(h) = \varphi(qh).$$

If $\varphi(g) = 1_G$, $\varphi(g)(e) = ge = g$, therefore g = e: $\ker(\varphi) = \{e\}$.

Moreover, if $f: [1, n] \to G, i \mapsto g_i$ is the bijection representing the chosen numbering of G, we can associate to it the isomorphism

$$\psi: \left\{ \begin{array}{ccc} S(G) & \to & S_n \\ u & \mapsto & f^{-1} \circ u \circ f \end{array} \right.$$

where $\psi(u) = f^{-1} \circ u \circ f$ is indeed a permutation of [1, n].

If $u, v \in S(G)$, $\psi(u) \circ \psi(v) = f^{-1} \circ u \circ f \circ f^{-1} \circ v \circ f = f^{-1} \circ (u \circ v) \circ f = \psi(u \circ v)$, so ψ is a group homomorphism.

If $\psi(u) = e$, then $f^{-1} \circ u \circ f = e$, thus $u = f \circ f^{-1} = e$. Therefore $\ker(\psi) = \{e\}$.

Let σ any permutation in S_n . Put $u = f \circ \sigma \circ f^{-1}$.

Then $\psi(u) = f^{-1} \circ f \circ \sigma \circ f^{-1} \circ f = \sigma$, thus ψ is surjective. ψ is a group isomorphism (depending of the chosen numbering).

Thus $\chi = \psi \circ \varphi : G \to S_n$ is an injective group homomorphism.

For each $g_i \in G$, we associate to it $\sigma_i = \chi(g_i)$.

Let $k \in [1, n]$ defined by $g_i g_j = g_k$, which is equivalent to $k = f^{-1}(g_i g_j)$.

$$g_i g_j = \varphi_{g_i}(g_j)$$

= $(\varphi_{g_i} \circ f)(j),$

therefore

$$k = f^{-1}(g_i g_j)$$

$$= (f^{-1} \circ \varphi_{g_i} \circ f)(j)$$

$$= [\psi(\varphi_{g_i})](j)$$

$$= [(\psi \circ \varphi)(g_i)](j)$$

$$= \sigma_i(j).$$

IIf $\sigma_I = \chi(g_i)$, we have so proved that for all $i, j \in [1, n]$,

$$g_ig_j=g_{\sigma_i(j)}.$$

Ex. 7.4.5 Label the elements of S_3 as $g_1 = e, g_2 = (1\,2\,3), g_3 = (1\,3\,2), g_4 = (1\,2), g_5 = (1\,3),$ and $g_6 = (2\,3)$. Write down the six permutations $\sigma_i \in S_6$ defined by the rows of the Cayley table (7.18).

Proof. The numbering of S_3 is given by

$$q_1 = e, q_2 = (123), q_3 = (132), q_4 = (12), q_5 = (13), q_6 = (23).$$

Write σ_i the permutation defined by $g_ig_j = g_{\sigma_i(j)}, \ 1 \leq i, j \leq n$. The Cayley table of the group gives

$$\begin{bmatrix} g_1 & g_2 & g_3 & g_4 & g_5 & g_6 \\ g_2 & g_3 & g_1 & g_5 & g_6 & g_4 \\ g_3 & g_1 & g_2 & g_6 & g_4 & g_5 \\ g_4 & g_6 & g_5 & g_1 & g_3 & g_2 \\ g_5 & g_4 & g_6 & g_2 & g_1 & g_3 \\ g_6 & g_5 & g_4 & g_3 & g_2 & g_1 \end{bmatrix}$$

where the element of the *i*th row, *j*th column is $g_i \circ g_j = g_i g_j = g_{\sigma_i(j)}$.

Thus

$$\sigma_1 = (),
\sigma_2 = (123)(456),
\sigma_3 = (132)(465) = \sigma_2^2,
\sigma_4 = (14)(26)(35),
\sigma_5 = (15)(24)(36),
\sigma_6 = (16)(25)(34).$$

Ex. 7.4.6 In the situation of Exercise 4, let $G = \{g_1, \ldots, g_n\}$, and assume that $g_i g_j = g_k$. Let $\sigma_i, \sigma_j, \sigma_k \in S_n$ be the corresponding permutations determined by (7.19).

- (a) Prove that $\sigma_i \sigma_j = \sigma_k$.
- (b) Prove that the map $G \to S_n$ defined by $g_i \mapsto \sigma_i$ is a one-to-one group homomorphism.

Proof. We have carefully proved in Exercise 4 that $\chi = \psi \circ \phi : G \to S_n, g_i \mapsto \sigma_i$ is an injective group homomorphism (so if $g_k = g_i g_j, \ \sigma_k = \sigma_i \circ \sigma_j$).

Ex. 7.4.7 Let f and $F \subset L$ satisfy the hypothesis of Proposition 7.4.2, and assume that $\sqrt{\Delta(f)} \notin F$. Prove that $\operatorname{Gal}\left(L/F\left(\sqrt{\Delta(f)}\right)\right) = \mathbb{Z}/3\mathbb{Z}$ and that f is irreducible over $F\left(\sqrt{\Delta(f)}\right)$.

Proof. By hypothesis, $f \in F[x]$ is a monic irreducible separable polynomial of degree 3, the characteristic of F is not 2, and L is the splitting field of f over F.

We suppose here that $\Delta = \Delta(f)$ is not a square in F. Theorem 7.4.2 give then the result

$$Gal(L/F) \simeq S_3$$
.

Therefore $[L:F]=|\mathrm{Gal}(L/F)|=6$. Since $\sqrt{\Delta}\not\in F,\ [F(\sqrt{\Delta}):F]=2$, and so $[L:F(\sqrt{\Delta})]=3$.

By the Galois correspondence, the extension $F(\sqrt{\Delta})$ of degree 2 over F corresponds to the subgroup $H = \operatorname{Gal}(L/F(\sqrt{\Delta}))$ of $G = \operatorname{Gal}(L/F)$, of index 2 in $G \simeq S_3$. As S_3 has a unique subgroup of index 2, which is $A_3 \simeq \mathbb{Z}/3\mathbb{Z}$, we can conclude

$$\operatorname{Gal}(L/F(\sqrt{\Delta})) \simeq \mathbb{Z}/3\mathbb{Z}.$$

Let $\alpha \in L$ a root of f. Since f is irreducible over F, f is the minimal polynomial of α over F. Let $p \in F(\sqrt{\Delta})[x]$ the minimal polynomial of α over $F(\sqrt{\Delta})$. As α is a root of $f \in F[x] \subset F(\sqrt{\Delta})[x]$, p divides f in $F(\sqrt{\Delta})[x]$. Moreover $\deg(p) = [L: F(\sqrt{\Delta})] = 3 = \deg(f)$.

 $p \mid f, \deg(p) = \deg(f)$, and f, p are monic, thus f = p. Therefore f is irreducible over $F(\sqrt{\Delta})$.

7.5 AUTOMORPHISMS AND GEOMETRY (OPTIONAL)

Ex. 7.5.1 Let $P, Q \in F[x, y]$ be polynomials such that $P \mid Q$ and $P \in F[x]$, and write $Q = a_0(x) + a_1(x)y + a_0(x)y^2 + \cdots + a_m(x)y^m$. Prove that $P \mid a_i$ for $i = 0, \ldots, m$.

Proof. By hypothesis, $P \in F[x]$ divides in F[x,y] the polynomial

$$Q = Q(x, y) = a_0(x) + a_1(x)y + \dots + a_m(x)y^m$$

so $Q(x,y) = P(x)S(x,y), S \in F[x,y]$. The evaluation $y \mapsto 0$ gives

$$a_0(x) = Q(x,0) = P(x)S(x,0),$$

thus $P \mid a_0$.

By induction, we suppose that $P \mid a_i, 0 \le i < k$, where $k \le m$.

Then P divides $a_k(x)y^k + \cdots + a_m(x)y^m = y^k(a_k(x) + \cdots + a_m(x)y^{m-k}).$

In the UFD F[x, y], every irreducible factor of y^k is associate to y, and y doesn't divide P(x). Therefore P(x) and y^k are relatively prime, so P divides $a_k(x) + \cdots + a_m(x)y^{m-k}$. The same evaluation $y \mapsto 0$ gives then $p \mid a_k$, so the induction is done. Consequently

$$P \mid a_i, \ 0 \le i \le m.$$

Ex. 7.5.2 In the prof of Proposition 7.5.5, we showed that a(x) - yb(x) is irreducible in F[x, y] and we want to conclude that it is also irreducible in F(y)[x]. Prove this using the version of Gauss's Lemma stated in Theorem A.5.8.

Proof. Suppose that f(x,y) is irreducible F[x,y]. We prove that it is irreducible in F(y)[x], using Gauss's Lemma:

Theorem A.5.8: Let R be an UFD with field of fractions K. Suppose that $f \in R[x]$ is non constant and that f = gh, where $g, h \in K[x]$. There is a nonzero $\delta \in K$ such that $\tilde{g} = \delta g$ and $\tilde{h} = \delta^{-1}h$ have coefficients in R. Thus $f = \tilde{g}\tilde{h} \in R[x]$.

In the context of the Exercise 7.5.2, take R = F[y], whose field of fractions is F(y). Suppose that f = gh, where $g, h \in F(y)[x]$. By Theorem A.5.8, there exists $\delta \in F(y), \delta \neq 0$, such that $\tilde{g} = \delta g \in F[y][x] = F[x, y]$ and $\tilde{h} = \delta^{-1}h \in F[x, y]$. Then $f = \tilde{g}\tilde{h}$, where $f, \tilde{g}, \tilde{h} \in F[x, y]$. As f is irreducible in $F[x, y], \tilde{g} \in F^*$ or $\tilde{f} \in F^*$. Then $g \in F(y)$ or $h \in F(y)$, which proves the irreducibility of f in F(y)[x].

In particular, p(x) - yq(x), irreducible in F[x, y], is so irreducible in F(y)[x].

Ex. 7.5.3 The proof of Proposition 7.5.5 shows that a(x) - yb(x) is irreducible in F[x, y]. In this exercise, you will give an elementary proof that a(x) - yb(x) is irreducible over F(y)[x]. Suppose that

$$a(x) - yb(x) = AB,$$
 $A, B \in F(y)[x].$

You need to prove that A or B is constant, which in this case means that A or B lies in F(y).

- (a) Show that there are nonzero polynomials $g(y), h(y) \in F[y]$ that clear the denominators of A and B, i.e, $g(y)A = A_1$ and $h(y)B = B_1$ for some $A_1, B_1 \in F[x, y]$.
- (b) Show that $g(y)h(y)(a(x) yb(x)) = A_1B_1$ in F[x, y] and explain why a(x) yb(x) must divide either A_1 or B_1 in F[x, y].
- (c) Assume that $A_1 = (a(x) yb(x))A_2$, where $A_2 \in F[x,y]$. Show that this implies that $g(y)h(y) = A_2B_1$, and then conclude that $B_1 \in F[y]$.
- (d) Show that $B \in F(y)$.

Proof. We give another proof of Exercise 2, knowing that f(x,y) = a(x) - yb(x) is irreducible in F[x,y]. We must prove that a factorization

$$a(x) - yb(x) = AB, A, B \in F(y)[x],$$

implies $A \in F(y)$ or $B \in F(y)$.

(a) A is expressed by

$$A(x,y) = \frac{a_0(y)}{b_0(y)} + \frac{a_1(y)}{b_1(y)}x + \dots + \frac{a_m(y)}{b_m(y)}x^m.$$

If we take $g(y) = b_0(y) \cdots b_m(y) \in F[y]$ the product of the b_i (or the lcm of the b_i), then $g(y) \frac{a_i(y)}{b_i(y)} \in F[y]$, thus $A_1 = g(y)A \in F[x,y]$. Similarly, there is $h \in F[y]$ such that $B_1 = h(y)B \in F[x,y]$.

- (b) Therefore, $g(y)h(y)(a(x) yb(x)) = A_1B_1 \in F[x, y]$, where g, h, f, A_1, B_1 are in F[x, y]. As f is irreducible and divides A_1, B_1 in the UFD F[x, y], f divides A_1 or f divides B_1 .
- (c) Suppose by example that f divides A_1 (the other case is similar):

$$A_1 = (a(x) - yb(x))A_2, A_2 \in F[x, y].$$

Then, dividing the equality in (b) by $a(x) - yb(x) \neq 0$, we obtain

$$g(y)h(y) = A_2B_1.$$

The degree of x in A_2B_1 is zero, thus the degree of x in B_1 is also 0, so $B_1 \in F[y]$.

(d) Consequently $B = B_1(y)/h(y) \in F(y)$. In the other case, we obtain $A \in F(y)$. So a(x) - yb(x) is irreducible in F(y)[x].

Ex. 7.5.4 Prove that the map $\Phi : GL(2,F) \to Gal(F(t)/F)$ defined in the proof of Theorem 7.5.7 is a group homomorphism.

Proof. Let
$$\Phi: \left\{ \begin{array}{ccc} \operatorname{GL}(2,F) & \to & \operatorname{Gal}(F(t)/F) \\ \gamma & \mapsto & \sigma_{\gamma^{-1}}. \end{array} \right.$$
 Let $\delta = \left(\begin{array}{ccc} e & f \\ g & h \end{array} \right), \gamma = \left(\begin{array}{ccc} a & b \\ c & d \end{array} \right)$ in $\operatorname{GL}(2,F)$. Then $\delta \gamma = \left(\begin{array}{ccc} ea + fc & eb + fd \\ ga + hc & gb + hd \end{array} \right)$. For all $\alpha \in F(t)$, define $\beta = \sigma_{\delta}(\alpha) = \alpha \left(\begin{array}{ccc} et + f \\ gt + h \end{array} \right)$.

$$(\sigma_{\gamma} \circ \sigma_{\delta})(\alpha) = \sigma_{\gamma}[\sigma_{\delta}(\alpha)]$$

$$= \sigma_{\gamma}(\beta)$$

$$= \beta \left(\frac{at+b}{ct+d}\right)$$

$$= \alpha \left(\frac{e\left(\frac{at+b}{ct+d}\right) + f}{g\left(\frac{at+b}{ct+d}\right) + h}\right)$$

$$= \alpha \left(\frac{(ea+fc)t + (eb+fd)}{(ga+hc)t + (gb+hd)}\right)$$

$$= \sigma_{\delta\gamma}(\alpha)$$

Therefore

$$\sigma_{\gamma} \circ \sigma_{\delta} = \sigma_{\delta\gamma}.$$

Applying this equality to δ^{-1} , γ^{-1} , we obtain

$$\Phi(\delta)\circ\Phi(\gamma)=\sigma_{\delta^{-1}}\circ\sigma_{\gamma^{-1}}=\sigma_{\gamma^{-1}\delta^{-1}}=\sigma_{(\delta\gamma)^{-1}}=\Phi(\delta\gamma).$$

For all $\delta, \gamma \in GL(2, F)$,

$$\Phi(\delta) \circ \Phi(\gamma) = \Phi(\delta\gamma).$$

 Φ is so a group homomorphism.

Note: in terms of group actions, if we write $\alpha^{\gamma} = \alpha(\frac{at+b}{ct+d})$, the preceding calculation proves that $(\alpha^{\delta})^{\gamma} = \alpha^{\delta\gamma}$, so $\gamma \mapsto \alpha^{\gamma} = \alpha \cdot \gamma$ defines a right action, and this is equivalent to the fact that $\Phi: GL(2,F) \to F(t)$ defined by $\gamma \mapsto \alpha^{\gamma^{-1}}$ is a group homomorphism:

$$[\Phi(\delta) \circ \Phi(\gamma)](\alpha) = (\alpha^{\gamma^{-1}})^{\delta^{-1}} = \alpha^{\gamma^{-1}\delta^{-1}} = \alpha^{(\delta\gamma)^{-1}} = \Phi(\delta\gamma)(\alpha).$$

Ex. 7.5.5 Prove (7.26): $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, F)$

Proof. If $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \notin GL(2, F)$, then the two rows (a, b), (c, d) are linearly dependent. Moreover $(c, d) \neq 0$, otherwise B(t) = at + b is zero, in contradiction with $\sigma(t) = at + b$

 $A(t)/B(t) \in F(t)$.

So there exists $\lambda \in F$ such that $(a,b) = \lambda(c,d)$, and then $\sigma(t) = A(t)/B(t) = \lambda \in F$. As $\sigma^{-1} \in \operatorname{Gal}(F(t)/F)$, $t = \sigma^{-1}(\lambda) = \lambda \in F$, which is impossible since t is transcendental over F.

Conclusion:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, F)$$

Ex. 7.5.6 In this exercise, you will prove that PGL(2, F) acts on $\hat{F} = F \cup \{\infty\}$.

(a) First show that

$$\gamma \cdot \alpha = \frac{a\alpha + b}{c\alpha + d}, \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

defines an action of GL(2,F) on \hat{F} . Explain carefully what happens when $\alpha=\infty$.

(b) Show that nonzero multiples of the identity matrix act trivially on \hat{F} , and use this to give a carefull proof that (7.27) gives a well-defined action of PGL(2,F) on \hat{F} .

(a) The group GL(2,F) of the matrix $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $ad-bc\neq 0$ acts on F^2 , identified to the matrix columns of order 2, by the action defined by

$$(x',y') = M \cdot (x,y) \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Indeed, if we write $X = \begin{pmatrix} x \\ y \end{pmatrix}$, then $I \cdot X = X$, $M \cdot (N \cdot X) = (MN) \cdot X$.

The relation \mathcal{R} defined on $F^2 \setminus \{(0,0)\}$ by

$$(x,y)\mathcal{R}(x',y') \iff \exists \lambda \in F^*, x' = \lambda x, y' = \lambda y$$

is an equivalence relation. The quotient set is the projective line $\mathbb{P}_1(F)$. Write [x,y] the class of (x,y) for the relation \mathcal{R} , in other words the projective point with homogen coordinates (x,y).

If $(x,y) \mathcal{R}(x',y')$, then $M \cdot (x,y) \mathcal{R} M \cdot (x',y')$. Moreover $M \cdot (x,y) \neq (0,0)$ if $(x,y) \neq (0,0)$, so we can define the action on a projective point P = [x,y] by $M \cdot [x,y] = M \cdot (x,y)$, where (x,y) is any representative of the class P. This is again an action of the group GL(2,F) on the set $\mathbb{P}_1(F)$.

The map $f: \mathbb{P}_1(F) \to \hat{F} = F \cup \{\infty\}$, defined for X = [x, y] by f([x, y]) = x/y if $y \neq 0$, $f([x, 0]) = \infty$ otherwise, is well defined, and this is a bijection, whose inverse $f^{-1} = g$ is defined by $g(x) = [x, 1], g(\infty) = [1, 0]$.

By representing the projective point by its coordinate $z \in F \cup \{\infty\}$, we define for $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $M \cdot z = f(M \cdot f^{-1}(z))$. Explicitly, for $z \in F \setminus \{-d/c\}$

$$M \cdot z = f(M \cdot [z, 1]) = f([az + b, cz + d]) = \frac{az + b}{cz + d}$$

and also

$$M \cdot (-d/c) = \infty, M \cdot \infty = a/c$$

The group GL(2,F) acts on \hat{F} : for all $z \in \hat{F}$, and all $M,N \in GL(2,F),\ I.z=z$ and

$$\begin{split} M\cdot(N\cdot z) &= f(M\cdot f^{-1}(f(N\cdot f^{-1}(z)))\\ &= f(M\cdot (N\cdot f^{-1}(z))) = f(MN\cdot f^{-1}(z))\\ &= (MN)\cdot z \end{split}$$

We resume this in the following proposition:

Proposition. The action defined for every $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,F)$ and for every $z \in \hat{F} = F \cup \{\infty\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d} \qquad (z \in F \setminus \{-d/c\})$$
$$M \cdot (-d/c) = \infty, \quad M \cdot \infty = a/c \qquad (\text{if } c \neq 0),$$

$$M \cdot \infty = \infty$$
 (if $c = 0$),

is a (left) action of the group GL(2,F) on $F \cup \{\infty\}$: for all $z \in \hat{F}$, and for all $M, N \in GL(2,F)$,

(i)
$$I \cdot z = z$$

(ii) $M \cdot (N \cdot z) = (MN) \cdot z$

(b) If $\lambda \in F^*$, and $z \in F$, $(\lambda I) \cdot z = \frac{\lambda z + 0}{0.z + \lambda} = z$, so $(\lambda I) \cdot \infty = \infty$. The elements of $C = F^*I_2$ act trivially on \hat{F} . The quotient group PGL(2, F) = GL(2, F)/C, where $C = F^*I_2 = \{\lambda I, \lambda \in F^*\}$, acts on \hat{F} .

Indeed the action is well defined: two elements M, N of a same class modulo C satisfy $M = \lambda N, \lambda \in F^*$, thus $M \cdot z = (\lambda N) \cdot z = N \cdot ((\lambda I_2) \cdot z) = N \cdot z$. We can so define the action by $[M] \cdot z = M \cdot z$, where [M] is the class of M in PGL(2, F). Then the relations (i)(ii) are always true

- (i) $[I] \cdot z = z$
- (ii) $[M] \cdot ([N] \cdot z) = ([M][N]) \cdot z$

Ex. 7.5.7 Proposition 7.5.8 asserts that we can map any triple of distinct points of \hat{F} to any other such triple via a unique element $[\gamma] \in \operatorname{PGL}(2,F)$. We will defer the proof of existence of $[\gamma]$ until Exercise 24 in Section 14.3. In this exercise, we will prove the uniqueness part of the proposition, since this is what is used in Example 7.5.10.

- (a) First suppose that $[\gamma] \in PGL(2, F)$ fixes ∞ and also fixes two points $\alpha \neq \beta$ of F. Prove that γ is a nonzero multiple of the identity matrix.
- (b) Now suppose that $[\gamma] \in PGL(2, F)$ fixes three distinct points of F, and let α be one of these points. Show that there is $[\delta] \in PGL(2, F)$ such that $[\delta] \cdot \alpha = \infty$. Then prove that γ is a nonzero multiple of the identity matrix by applying part (a) to $[\delta \gamma \delta^{-1}]$.
- (c) Show that the desired uniqueness follows from parts (a) and (b).

Proof. (a) Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,F)$, and suppose that $[\gamma] \in \mathrm{PGL}(2,F)$ fixes ∞ , and also two distinct points α,β of F.

If $c \neq 0$, then $[\gamma] \cdot \infty = a/c \neq \infty$, which is in contradiction with the fact that $[\gamma]$ fixes ∞ . Therefore c = 0.

If $z \in F$, using c = 0.

$$\gamma \cdot z = z \iff \frac{az+b}{cz+d} = z \iff cz^2 + (d-a)z - b = 0 \iff (d-a)z - b = 0.$$

This equation is satisfied by α and β . The polynomial (d-a)x-b has degree at most 1 and has two distinct roots $\alpha \neq \beta$, thus is the null polynomial. This implies c=b=0, a=d, so $\gamma \in F^*I_2$, and $[\gamma]=e$ is the identity of the group PGL(2,F).

(b) Suppose now that $[\gamma]$ fixes three distinct points α, β, ξ de F.

Let
$$\delta = \begin{pmatrix} 0 & 1 \\ -1 & \alpha \end{pmatrix}$$
. Then $\det(\delta) = 1 : [\delta] \in PGL(2, F)$, and

$$[\delta] \cdot \alpha = \infty, \quad \forall z \neq \alpha, \ [\delta] \cdot z = \frac{1}{\alpha - z}.$$

As β, ξ are two distinct elements of F, then $\delta(\beta), \delta(\xi)$ are two distinct points of F since δ is a bijection of \hat{F} .

Moreover $\eta = \delta \gamma \delta^{-1}$ satisfies

$$[\eta] \cdot \infty = [\delta \gamma \delta^{-1}] \cdot \infty = [\delta \gamma] \cdot \alpha = [\delta] \cdot \alpha = \infty$$
$$[\eta] \cdot ([\delta] \cdot \beta) = [\delta \gamma \delta^{-1}] \cdot ([\delta] \cdot \beta) = [\delta \gamma] \cdot \beta = [\delta] \cdot \beta$$
$$[\eta] \cdot ([\delta] \cdot \xi) = [\delta \gamma \delta^{-1}] \cdot ([\delta] \cdot \xi) = [\delta \gamma] \cdot \xi = [\delta] \cdot \xi$$

So η fixes the three points ∞ , $[\delta] \cdot \beta$, $[\delta] \cdot \xi$, where $[\delta] \cdot \beta$, $[\delta] \cdot \xi$ are two distinct points of F. By part (a), $\eta = \lambda I_2$, $\lambda \in F^*$. Therefore $\gamma = \delta^{-1} \eta \delta = \lambda \delta^{-1} \delta = \lambda I_2$, so $[\gamma] = e$ is the identity of PGL(2, F).

(c) By parts (a) and (b), if $[\gamma]$ fixes three points of \hat{F} , then $[\gamma] = e$. If γ, γ' satisfy $[\gamma] \cdot \alpha_i = [\gamma'] \cdot \alpha_i$, i = 1, 2, 3, then $[\gamma'\gamma^{-1}]$ fixes three points of \hat{F} . Therefore $[\gamma'\gamma^{-1}] = [\gamma'][\gamma]^{-1} = e$, so $[\gamma'] = [\gamma]$: the uniqueness is proved.

Ex. 7.5.8 Prove the formula (7.28) for stereographic projection.

Proof. Let $P = (a, b, c) \neq (0, 0, 1)$ be a point of S_2 , so $a^2 + b^2 + c^2 = 1$. Then $c \neq 1$. Write N = (0, 0, 1) the north pole. Any point M = (x, y, z) lies on the line (NP), if and only if $\overrightarrow{NM} = \lambda \overrightarrow{NP}$, $\lambda \in \mathbb{R}^*$, which gives the parametric system of equations

$$x = \lambda a$$

$$y = \lambda b$$

$$z = \lambda(c - 1) + 1$$

The intersection with the equatorial plane is given by z=0, so $\lambda=1/(1-c)$, which gives x=a/(1-c),y=b/(1-c):

$$\pi(a,b,c) = \left(\frac{a}{1-c}, \frac{b}{1-c}, 0\right) = \frac{a}{1-c} + i\frac{b}{1-c},$$

(where the points (x, y, 0) are identified with the complex numbers x + iy.)

Ex. 7.5.9 In Example 7.5.10, we consider rotations r_1, r_2, r_3 of the octahedron and defined matrices $\gamma_1, \gamma_2, \gamma_3 \in GL(2, \mathbb{C})$. We also proved carefully that r_1 corresponds to $[\gamma_1]$ under the homomorphism of Theorem 7.5.9. In a similar way, prove that r_2 corresponds to $[\gamma_2]$ and r_3 corresponds to $[\gamma_3]$.

Proof. • The text proves that the isomorphism $r \mapsto [\gamma]$ sends $r_1 = \text{Rot}(\pi, \overrightarrow{e_1})$ on γ_1 , where

$$[\gamma_1] \cdot z = \frac{1}{z}.$$

• Let $\gamma_2 = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, F)$. The homography $[\gamma_2]$ satisfies $[\gamma_2] \cdot z = iz$ for all $z \in \mathbb{C}$, and $[\gamma_2] \cdot \infty = \infty$. So

$$[\gamma_2]\cdot \infty = \infty, \quad [\gamma_2]\cdot i = -1, \quad [\gamma_2]\cdot 1 = i.$$

The rotation $r_2 = \text{Rot}(\pi/2, \overrightarrow{e_3})$ satisfies

$$r_2(\hat{\pi}^{-1}(\infty)) = r_2(N) = N = \hat{\pi}^{-1}(\infty),$$

$$r_2(\hat{\pi}^{-1}(i)) = r_2(0, 1, 0) = (-1, 0, 0) = \hat{\pi}^{-1}(-1),$$

$$r_2(\pi^{-1}(1)) = r_2(1, 0, 0) = (0, 1, 0) = \hat{\pi}^{-1}(i).$$

Thus

$$[\hat{\pi} \circ r_2 \circ \hat{\pi}^{-1}] \cdot \infty = \infty, \ [\hat{\pi} \circ r_2 \circ \hat{\pi}^{-1}] \cdot i = -1, \ [\hat{\pi} \circ r_2 \circ \hat{\pi}^{-1}] \cdot 1 = i.$$

By the uniqueness proved in Exercise 8, $[\hat{\pi} \circ r_2 \circ \hat{\pi}^{-1}] = [\gamma_2]$.

In other words, the isomorphism $r \mapsto [\gamma]$ sends $r_2 = \text{Rot}(\pi/2, \overline{e_3})$ on γ_2 , where $[\gamma_2] \cdot z = iz$.

• Let $\gamma_3 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in GL(2, F)$.

The homography $[\gamma_3]$ satisfies $[\gamma_3] \cdot z = \frac{z-1}{z+1}$ for all $z \in \mathbb{C}$, and $[\gamma_3] \cdot \infty = 1$. So

$$[\gamma_3] \cdot i = i, \quad [\gamma_3] \cdot (-i) = -i, \quad [\gamma_3] \cdot \infty = 1.$$

The rotation $r_3 = \text{Rot}(\pi/2, \overrightarrow{e_2})$ satisfies

$$r_3(\hat{\pi}^{-1}(i)) = r_3(0, 1, 0) = (0, 1, 0) = \hat{\pi}^{-1}(i),$$

$$r_3(\pi^{-1}(-i)) = r_3(0, -1, 0) = (0, -1, 0) = \hat{\pi}^{-1}(-i),$$

$$r_3(\hat{\pi}^{-1}(\infty)) = r_3(0, 0, 1) = (1, 0, 0) = \hat{\pi}^{-1}(1),$$

thus

$$[\hat{\pi} \circ r_3 \circ \hat{\pi}^{-1}] \cdot i = i, \ [\hat{\pi} \circ r_2 3 \circ \hat{\pi}^{-1}] \cdot (-i) = -i, \ [\hat{\pi} \circ r_3 \circ \hat{\pi}^{-1}] \cdot \infty = 1$$

By the same uniqueness property, $[\hat{\pi} \circ r_3 \circ \hat{\pi}^{-1}] = [\gamma_3].$

In other words, the isomorphism $r \mapsto [\gamma]$ sends $r_3 = \text{Rot}(\pi/2, \overrightarrow{e_3})$ on γ_3 , where

$$[\gamma_3] \cdot z = \frac{z-1}{z+1}.$$

Ex. 7.5.10 The goal of this exercise is to prove that the symmetry group G of the octahedron is isomorphic to S_4 . By symmetry group, we mean the group of rotations that carry the octahedron to itself. We think of G as acting on the octahedron.

- (a) Let ν be a vertex of the octahedron. Use the action of G on ν and the Fundamental Theorem of Group Actions to prove that |G| = 24.
- (b) The eight face centers of the octahedron form the vertices of an inscribed cube. Explain why the octahedron and its inscribed cube have the same symmetry group.
- (c) The cube has four long diagonals that connect a vertex to an opposite vertex. Explain why the action of G on these diagonals gives a group homomorphism $G \to S_4$.
- (d) Let $r_1, r_2, r_3 \in G$ be the rotations described in Example 7.5.1. Explain how each rotation acts on the inscribed cube and describe its corresponding permutation in S_4 .
- (e) Prove that the three permutations constructed in part (d) generates S_4 .
- (f) Use part (a) and (c) to show that $G \simeq S_4$. Also prove that G is generated by r_1, r_2, r_3 .

See Section 14.4 for a different approach to proving that a group is isomorphic to S₄.

Proof. (a) Write S the set of the 6 vertices of the octahedron, with coordinates

$$(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1),$$

and G the group of rotations that carry S to itself. G acts transitively on S, we can go from a vertex to a near vertex by a rotation of angle $\pm \pi/2$, the axe being orthogonal to the plane containing these two summits and O. The orbit \mathcal{O}_{ν} of a fixed vertex ν is so the whole octahedron S:

$$|\mathcal{O}_{\nu}| = 6.$$

Write G_{ν} the stabilizer in G of the vertex ν .

Every rotation $r \in G$ gives a permutation of the 6 vertices of the octahedron, thus fixes their gravity center O = (0,0,0). If $r \in G_{\nu} \setminus \{e\}$, r fixes O and ν , so is a rotation of axis 0ν . Thus, if P is the orthogonal plane of the axe 0ν , r sends P on itself. The restriction of r to this plane is so a rotation that carry the square of vertices of S which lie in this plane to itself. So it is a rotation of angle $k\pi/2$, k = 0, 1, 2, 3. As the rotation r of axis $O\nu$ is uniquely determined by this restriction, G_{ν} is so the set of 4 rotations of axis $O\nu$, and of angle $k\pi/2$, k = 0, 1, 2, 3.

$$|G_{\nu}| = 4.$$

The Fundamental Theorem of Group Actions gives then $|O_{\nu}| = [G:G_{\nu}]$, thus

$$|G| = |O_{\nu}| \times |G_{\nu}| = 6 \times 4 = 24.$$

- (b) As a rotation $r \in G$ is an isometry, r sends the 3 points of a face of the octahedron on the three points of a face of the same octahedron, so sends the gravity center of a face on the gravity center of the image. The cube C whose vertices are the center of the faces of the octahedron is so invariant by G. Conversely if a rotation r let invariant the cube C, it let invariant the octahedron whose vertices are the centers of the 6 faces of the cube de S, this octahedron is a dilatation of S, thus $r \in G$. So G is the symmetry group of C.
- (c) As $r \in G$ is an isometry, r sends a long diagonal on a long diagonal, and two distinct long diagonal have not the same image. r gives then a permutation of the 4 diagonals, numbered 1,2,3,4, and so induces a permutation of S_4 . The composition of two rotations corresponds to the composition of two permutations. So we obtain a group homomorphism

$$\varphi:G\to S_4$$
.

The cube of the centers of the faces of S is a dilatation of a cube whose vertices are the points $(\pm 1, \pm 1, \pm 1)$,

$$A_1 = (1, 1, 1), A_2 = (-1, 1, 1), A_3 = (-1, -1, 1), A_4 = (1, -1, 1),$$

 $A_5 = (-1, 1, -1), A_6 = (-1, -1, -1), A_7 = (1, -1, -1), A_8 = (1, 1, -1).$

We give an arbitrary numbering of the four long diagonals:

$$D_1 = A_2 A_7, D_2 = A_3 A_8, D_3 = A_4 A_5, D_4 = A_1 A_6.$$

The rotation $r_1 = \text{Rot}(\pi, \overrightarrow{e_1})$ exchanges A_4 and A_8 , and also A_2 and A_6 , thus exchanges D_3 with D_2 , D_1 with D_4 :

$$\varphi(r_1) = (14)(23).$$

 $r_2 = \operatorname{Rot}(\pi/2, \overrightarrow{e_3})$ gives the cycle $A_1 \mapsto A_2 \mapsto A_3 \mapsto A_4 \mapsto A_1$, thus $D_1 \mapsto D_2 \mapsto D_3 \mapsto D_4 \mapsto D_1$:

$$\varphi(r_2) = (1234).$$

 $r_3 = \operatorname{Rot}(\pi/2, \overrightarrow{e_2})$ gives $A_1 \mapsto A_8 \mapsto A_5 \mapsto A_2 \mapsto A_1$, thus $D_1 \mapsto D_4 \mapsto D_2 \mapsto D_3 \mapsto D_1$:

$$\varphi(r_3) = (1423).$$

(e) Let $H = \langle (14)(23), (1234), (1423) \rangle \subset S_4$.

H contains $[(14)(23)] \circ (1234) = (13)$. Moreover the two permutations (13) = (31), (1423) = (3142) generate S_4 , since $(a_1a_2), (a_1a_2 \cdots a_n)$ generate S_n generally. Thus H = G:

$$S_4 = \langle \varphi(r_1), \varphi(r_2), \varphi(r_3) \rangle.$$

(f) As the subgroup $\varphi(G)$ contains $\varphi(r_1), \varphi(r_2), \varphi(r_3)$, it contains $S_4 = \langle \varphi(r_1), \varphi(r_2), \varphi(r_3) \rangle$. Therefore

$$\varphi(G) = S_4$$
.

So $\varphi: G \to S_4$ is surjective. Moreover $|G| = |S_4| = 24$, so φ is bijective, $\varphi: G \to S_4$ is so an isomorphism.

$$G \simeq S_A$$
.

As $\varphi(G) = \langle \varphi(r_1), \varphi(r_2), \varphi(r_3) \rangle$, where φ is an isomorphism,

$$G = \langle r_1, r_2, r_3 \rangle$$
.

Ex. 7.5.11 In this exercise, you will represent AGL(1, F) as a subgroup of PGL(2, F).

(a) Show that the map $\gamma_{a,b} \mapsto \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$

defines a one-to-one group homomorphism

$$AGL(1, F) \rightarrow PGL(2, F)$$
.

(b) Consider the action of PGL(2, F) on \hat{F} . Show that the isotropy subgroup of PGL(2, F) acting on ∞ is the image of the homomorphism of part (a).

Proof. (a) Write $\gamma_{a,b}: F \to F$, $\alpha \mapsto \gamma_{a,b}(\alpha) = a\alpha + b$. For all $\alpha \in F$, $(\gamma_{a,b} \circ \gamma_{c,d})(\alpha) = a(c\alpha + d) + b = ac\alpha + ad + b = \gamma_{ac,ad+b}(\alpha)$, thus

$$\gamma_{a,b} \circ \gamma_{c,d} = \gamma_{ac,ad+b}.$$

Let

$$\varphi: \left\{ \begin{array}{ccc} \operatorname{AGL}(1,F) & \to & \operatorname{PGL}(2,F) \\ \gamma_{a,b} & \mapsto & \left[\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right] \right. .$$

$$\varphi(\gamma_{a,b})\varphi(\gamma_{c,d}) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} ac & ad + b \\ 0 & 1 \end{bmatrix}$$
$$= \varphi(\gamma_{ac,ad+b})$$
$$= \varphi(\gamma_{a,b} \circ \gamma_{c,d}).$$

 $\varphi: \mathrm{AGL}(1,F) \to \mathrm{PGL}(2,F)$ is so a group homomorphism.

$$\gamma_{a,b} \in \ker(\varphi) \iff \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} = [I_2]$$

$$\iff \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \ \lambda \in F^*$$

$$\iff a = 1, b = 0$$

$$\iff \gamma_{a,b} = 1_F$$

 $\ker(\varphi) = \{1_F\}$, thus φ is an injective group homomorphism, which embeds $\operatorname{AGL}(1, F)$ in $\operatorname{PGL}(2, F)$.

(b) Write G_{∞} the stabilizer of ∞ in PGL(2, F).

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G_{\infty} \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \lambda \in F^*$$
$$\iff c = 0$$

Let
$$\gamma = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \mathrm{GL}(2,F)$$
. If $[\gamma] \in \varphi(\mathrm{AGL}(1,F))$, then $[\gamma] = \varphi(\gamma_{a,b}) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, thus $[\gamma] \in G_{\infty}$ by the preceding equivalence.

Conversely, if $[\gamma] \in G_{\infty}$, then t = 0, therefore $\det(\gamma) = ru \neq 0$, so $u \neq 0$.

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = u \begin{pmatrix} r/u & s/u \\ 0 & 1 \end{pmatrix}, \ u \in F^*, \text{ thus } [\gamma] = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}, \text{ where } a = r/u, b = s/u : [\gamma] = \varphi(\gamma_{a,b}) \in \varphi(\text{AGL}(1,F)).$$

$$G_{\infty} = \varphi(\mathrm{AGL}(1, F)).$$

So AGL(1, F) is identified with the stabilizer of ∞ in PGL(2, F) and is isomorphic to a subgroup of PGL(2, F).

Ex. 7.5.12 In this exercise, you will construct polyhedra whose symmetry groups are isomorphic to C_n and D_{2n} . For D_{2n} , consider the polyhedron whose vertices are the north and south poles of S^2 together with the nth roots of unity along the equator (see picture in [D.Cox]). Note that to obtain a three dimensional object, we must assume $n \geq 3$.

- (a) Show that the symmetry group of this polyhedron is isomorphic to D_{2n} when $n \neq 4$, and S_4 when n = 4.
- (b) Now take the vertices on the equator and move them up in S_2 so that they become the vertices of a regular n-gone lying in the plane z = c, where c > 0 is small. Prove that the symmetry group of this polyhedron is isomorphic to C_n .
- (c) Find polyhedra inscribed in S^2 whose symmetry groups are C_1 (the trivial group), C_2, D_4 (the Klein four-group), and D_8 respectively.

Proof. (a) Write N, S the north and south poles, and A_k the point of complex coordinate ζ_n^k in the equatorial plane. The polyhedron P is the set of vertices

$$P = \{N, S, A_0, A_1, \cdots, A_{n-1}\}.$$

The group of symmetry of this polyhedron is

$$G = G_P = \{ r \in SO(3) \mid r(P) = P \}.$$

G contains the rotation $r = \text{Rot}(\vec{e}_3, 2\pi/n)$ of axis (O, \vec{e}_3) and angle $2\pi/n$, and also the rotation $s = \text{Rot}(\vec{e}_1, \pi)$. So it contains the set $H = \{e, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$.

$$G\supset H=\{e,r,\cdots,r^{n-1},s,rs,\cdots,r^{n-1}s\}.$$

The rotations $r^k = \text{Rot}(\vec{e}_3, 2k\pi/n)$, $k = 0, \dots, n-1$ send A_0 on A_k . So they are distinct and they fix the poles, and the rotations $r^{n-1} \circ s$ are distinct and exchange the two poles, so are distinct of the r^k . Consequently |H| = 2n.

$$(r \circ s)(O) = O = (s \circ r^{-1})(O),$$

$$(r \circ s)(P) = S = (s \circ r^{-1})(P),$$

$$(r \circ s)(A_0) = A_1 = (s \circ r^{-1})(A_0),$$

$$(r \circ s)(A_1) = A_0 = (s \circ r^{-1})(A_1).$$

The 4 points O, P, A_0, A_1 are not coplanar, so form an affine frame, so the two rotations $r \circ s, s \circ r^{-1}$ gives the same image to the points of this frame are identical.

As r is of order n, as s is of order 2, and as $r \circ s = s \circ r^{-1}$, H is a subgroup of G isomorphic to the diedral group D_{2n} .

We show that if $n \neq 4, n \geq 3$, this inclusion is an equality.

Let $\rho \in G$, $\rho \neq e$, a rotation in G. ρ fixes the gravity center O of P, thus $\rho(O) = O$.

Write $A'_k = \rho(A_k)$. As ρ is an isometry, $A'_0 A'_1 = A_0 A_1 = |\zeta_n - 1|$.

Moreover

$$A_0'A_1' = A_0A_1 = |\zeta_n - 1| = |e^{2i\pi/n} - 1|$$

$$= \sqrt{\left(\cos\frac{2\pi}{n} - 1\right)^2 + \sin^2\frac{2\pi}{n}}$$

$$= \sqrt{2\left(1 - \cos\frac{2\pi}{n}\right)}$$

$$= 2\sin\frac{\pi}{n}$$

Note that $PA_k = SA_k = \sqrt{2}$.

As $n \geq 3$,

 $2\sin\frac{\pi}{n} = 2$ is impossible since $\sin\frac{\pi}{n} \le \sin\frac{\pi}{3} < 1$.

$$2\sin\frac{\pi}{n} = \sqrt{2} \iff \sin\frac{\pi}{n} = \sin\frac{\pi}{4} \iff n = 4$$

Suppose that $n \neq 4$. With a reductio ad absurdum, if A'_0 was a pole, then $A'_0A'_1 = \sqrt{2}$ (if $A'_1 = A_k$) or $A'_0A'_1 = 2$ (if A'_1 is the opposite pole). In both cases, this is impossible, as previously proved.

Consequently $\rho(A_0) = A_k$, $k = 0, 1, \dots, n-1$. The same argument proves that the image of A_i is in the polygon $\{A_0, \dots, A_{n-1}\}$, so ρ is a permutation of the vertices of this polygon, thus sends $\{P, S\}$ over $\{P, S\}$. Therefore ρ fixes these two poles, or exchanges them.

- case 1: if $\rho(P) = P$, then since $\rho(O) = O, \rho(A_0) = A_k, \rho$ is the rotation $r^k = \text{Rot}(\vec{e_3}, 2k\pi/n)$ of axis OP $(1 \le k \le n 1)$, or the identity (k = 0).
- case 2: if $\rho(P) = S$, then $(\rho \circ s)(P) = P$, and by case 1, $\rho \circ s = r^j, j = 0, \dots, n-1$, that is $\rho = r^j \circ s$.

In both cases, $\rho \in H$, therefore

$$G = H = \{e, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\} \simeq D_{2n}.$$

In the case n=4, we have proved in Exercise 10 that $G \simeq S_4$.

(b) The modification of the polyhedron given in the text (or more simply the suppression of the south pole S) implies then $\rho(N) = N$, so it remains only the case 1 in the preceding discussion, so $G = \langle r \rangle \simeq C_n$.

- (c) The irregular tetrahedron $T = \{(1,0,0), (0,1,0), (0,0,1), (\frac{1}{9}, \frac{4}{9}, \frac{8}{9})\}$, set of four non coplanar points 4, inscribed in S_2 (since $(\frac{1}{9})^2 + (\frac{4}{9})^2 + (\frac{8}{9})^2 = 1$) and its symmetry group ist $G_T = \{e\} \simeq C_1$.
 - Complete an isosceles non equilateral triangle in the equatorial plane by the two poles:

 $P = \{(1,0,0), (\frac{4}{5}, \frac{3}{5}, 0), (\frac{4}{5}, -\frac{3}{5}, 0), (0,0,1), (0,0,-1)\}$ has the symmetry group $G_P = \langle s \rangle \simeq C_2$, where $s = \text{Rot}(\vec{e_1}, \pi)$.

• The rectangle in the equatorial plane is completed by the two poles:

 $R = \{(\frac{4}{5}, \frac{3}{5}, 0), (\frac{4}{5}, -\frac{3}{5}, 0), (-\frac{4}{5}, -\frac{3}{5}, 0), (-\frac{4}{5}, \frac{3}{5}, 0), (0, 0, 1), (0, 0, -1)\}$ has the symmetry group $G_R = \langle \sigma, \tau, \xi \rangle$, where σ, τ, ξ are the rotations of angles π and axes $\vec{e}_1, \vec{e}_2, \vec{e}_3$. $G_R \simeq D_4$ is the Klein four-group.

ullet Let C be a rectangular parallelepiped with square basis inscribed in the sphere S_2 :

$$C = \{(\frac{\sqrt{40}}{9}, \frac{\sqrt{40}}{9}, \frac{1}{9}), (-\frac{\sqrt{40}}{9}, \frac{\sqrt{40}}{9}, \frac{1}{9}), (-\frac{\sqrt{40}}{9}, -\frac{\sqrt{40}}{9}, \frac{1}{9}), (\frac{\sqrt{40}}{9}, -\frac{\sqrt{40}}{9}, \frac{1}{9}), (\frac{\sqrt{40}}{9}, -\frac{\sqrt{40}}{9}, \frac{1}{9}), (\frac{\sqrt{40}}{9}, -\frac{\sqrt{40}}{9}, -\frac{1}{9}), (-\frac{\sqrt{40}}{9}, -\frac{1}{9}), (-\frac{\sqrt{40}}{9}, -\frac{1}{9}), (\frac{\sqrt{40}}{9}, -\frac{\sqrt{40}}{9}, -\frac{1}{9})\}.$$

The symmetry group of C is $G_C = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$, where $r = \text{Rot}(\vec{e}_3, \pi/2), s = \text{Rot}(\vec{e}_1, \pi)$, so $G_C \simeq D_8$.

Ex. 7.5.13 Consider the automorphism of $L = \mathbb{C}(t)$ defined by $\alpha(t) \mapsto \alpha(\zeta_n t)$. This generates a cyclic group G of automorphisms such that |G| = n. Adapt the methods of example 7.5.6 to show that $L_G = \mathbb{C}(t^n)$ and conclude that $\mathbb{C}(t^n) \subset \mathbb{C}(t)$ is a Galois extension whose Galois group is cyclic of order n.

Proof. Let σ the automorphism of $L = \mathbb{C}(t)$ defined by $\alpha(t) \mapsto \alpha(\zeta_n t)$.

For all $\alpha \in \mathbb{C}(t)$, for all $k \in \mathbb{N}$, $\sigma^k(\alpha(t)) = \alpha(\zeta_n^k t)$. Then $\sigma^n = e$, and for $\alpha(t) = t, 1 \le k \le n-1$, $\sigma^k(t) = \zeta_n^k t \ne t$, so $\sigma^k \ne e$. Therefore the order of σ is n, and $G = \langle \sigma \rangle$ is a cyclic group of order n.

By Theorem 7.5.3, the extension $L_G \subset \mathbb{C}(t)$ is a Galois extension of degree n, with Galois group $G = \langle \sigma \rangle$.

We like to specify the field L_G .

$$\sigma(t^n) = (\zeta_n t)^n = t^n$$
, thus $t^n \in L_G$ and so $\mathbb{C}(t^n) \subset L_G \subset \mathbb{C}(t)$.

By Theorem 7.5.5(c), the extension $\mathbb{C}(t^n) \subset \mathbb{C}(t)$ has degree n, so

$$n = [\mathbb{C}(t) : \mathbb{C}(t^n)] = [\mathbb{C}(t) : L_G] [L_G : \mathbb{C}(t^n)] = n [L_G : \mathbb{C}(t^n)],$$

therefore $[L_G:\mathbb{C}(t^n)]=1:$

$$L_G = \mathbb{C}(t^n).$$

Conclusion:

 $\mathbb{C}(t^n) \subset \mathbb{C}(t)$ is a Galois extension whose Galois group G is cyclic of order n.

Ex. 7.5.14 Consider the automorphisms of L = F(t) defined by

$$\sigma\left(\alpha(t)\right) = \alpha(t^{-1})$$
 and $\tau\left(\alpha(t)\right) = \alpha(1-t)$.

(a) Prove that σ and τ generate a group G of automorphisms of F(t) isomorphic to S_3 .

- (b) Show that G corresponds to the subgroup of PGL(2, F) consisting of all elements that map the subset $\{0, 1, \infty\} \subset \hat{F}$ to itself.
- (c) Prove that

$$L_G = F\left(\frac{(t^2 - t + 1)^3}{t^2(t - 1)^2}\right),$$

and conclude that

$$F\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right) \subset F(t)$$

is a Galois extension with Galois group $G \simeq S_3$.

Proof. Consider the automorphisms of L = F(t) defined by

$$\sigma(\alpha(t)) = \alpha(t^{-1}),$$

$$\tau(\alpha(t)) = \alpha(1 - t),$$

and $G = \langle \sigma, \tau \rangle$.

(a) Note that $\sigma^2 = \tau^2 = e$, σ and τ have order 2. Let $\rho = \sigma \circ \tau = \sigma \tau$. For all $\alpha(t) \in F(t)$,

$$\rho(\alpha(t)) = \sigma(\alpha(1-t))$$

$$= \alpha \left(1 - \frac{1}{t}\right),$$

$$\rho^{2}(\alpha(t)) = \alpha \left(1 - \frac{1}{1 - \frac{1}{t}}\right)$$

$$= \alpha \left(\frac{1}{1 - t}\right),$$

$$\rho^{3}(\alpha(t)) = \alpha \left(\frac{1}{1 - \left(1 - \frac{1}{t}\right)}\right)$$

$$= \alpha(t).$$

Thus ρ is of order 3, and as $\tau = \sigma \rho$, $G = \langle \sigma, \rho \rangle$.

Moreover, for all $\alpha(t) \in F(t)$,

$$(\rho\sigma)(\alpha(t)) = \rho\left(\alpha\left(\frac{1}{t}\right)\right)$$

$$= \alpha\left(\frac{t}{t-1}\right),$$

$$(\sigma\rho^{-1})(\alpha(t)) = (\sigma\rho^{2})(\alpha(t))$$

$$= \sigma\left(\alpha\left(\frac{1}{1-t}\right)\right)$$

$$= \alpha\left(\frac{1}{1-\frac{1}{t}}\right)$$

$$= \alpha\left(\frac{t}{t-1}\right).$$

Thus $\rho \sigma = \sigma \rho^{-1}$.

To summarise, $G = \langle \sigma, \rho \rangle$, with $\sigma^2 = \rho^3 = e \ (\sigma \neq e, \rho \neq e), \rho \sigma = \sigma \rho^{-1}$, therefore $G \simeq D_6 \simeq S_3$.

(b) By the isomorphism $\operatorname{PGL}(2,F) \simeq \operatorname{Gal}(F(t)/F)$ described in Section 7.5.C, σ corresponds to $[\gamma] \in \operatorname{PGL}(2,F)$, where $\gamma^{-1} = \gamma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and τ corresponds to $[\delta]$, where $\delta^{-1} = \delta = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$, and $\rho = \sigma \tau$ to $[\varepsilon]$, $\varepsilon = (\gamma \delta)^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, so $[\varepsilon] \in \operatorname{PGL}(2,F)$ is of order 3 (but not $\varepsilon \in \operatorname{GL}(2,F) : \varepsilon^3 = -I_2$). By $[\gamma]$, $[\delta]$ acting on \hat{F} ,

$$[\gamma] \cdot 0 = \infty, [\gamma] \cdot 1 = 1, [\gamma] \cdot \infty = 0.$$

$$[\delta] \cdot 0 = 1, [\delta] \cdot 1 = 0, [\delta] \cdot \infty = \infty.$$

Thus $\hat{G} = \langle [\gamma], [\delta] \rangle \simeq G$ maps $\{0, 1, \infty\}$ on itself.

Conversely, let $[\xi] = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{PGL}(2,F)$ mapping $A = \{0,1,\infty\}$ on itself. We show that $[\xi]$ lies in \hat{G} .

We know by Exercise 7, which proves uniqueness in Theorem 7.5.8, that there exists at most an element in $\operatorname{PGL}(2,F)$ sending $0,1,\infty$ on three fixed points in \hat{F} . As the elements of \hat{G} map $\{0,1,\infty\}$ on itself, the group homomorphism sending G on the group S_A of permutions of A is injective by this uniqueness. Moreover $|\hat{G}| = 6 = |S_A|$, so this is a group isomorphism, so the elements of \hat{G} give the 6 possible permutations of $\{0,1,\infty\}$. As $[\xi]$ has the same images for the elements of A that an element $[\zeta]$ of \hat{G} and as $[\xi]$ is uniquely determined by these images, $[\xi] = [\zeta]$, so $[\xi] \in \hat{G}$.

Conclusion: G corresponds to the subgroup of $\operatorname{PGL}(2,F)$ consisting of all elements that map the subset $\{0,1,\infty\}\subset \hat{F}$ to itself.

(c) We verify that $\alpha(t) = \frac{(t^2 - t + 1)^3}{t^2(t - 1)^2} \in L_G$:

$$\begin{split} \sigma(\alpha(t)) &= \frac{((\frac{1}{t})^2 - (\frac{1}{t}) + 1)^3}{(\frac{1}{t})^2 ((\frac{1}{t}) - 1)^2} \\ &= \frac{(1 - t + t^2)^3}{t^2 (1 - t)^2} \\ &= \alpha(t), \\ \tau(\alpha(t) &= \frac{((1 - t)^2 - (1 - t) + 1)^3}{(1 - t)^2 ((1 - t) - 1)^2} \\ &= \frac{(t^2 - t + 1)^3}{(t - 1)^2 t^2} \\ &= \alpha(t). \end{split}$$

As $G = \langle \sigma, \tau \rangle, \alpha(t) \in L_G$, thus

$$F\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right) \subset L_G \subset F(t).$$

By Theorem 7.5.3, $L_G \subset F(t)$ is a Galois extension and $[F(t):L_G]=|G|=6$, and by Theorem 7.5.5,

$$\left[F(t) : F\left(\frac{(t^2 - t + 1)^3}{t^2(t - 1)^2}\right) \right] = \max(\deg(t^2 - t + 1)^3), \deg(t^2(t - 1)^2)) = 6,$$

$$\operatorname{so}\left[L_G: F\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right)\right] = 1$$
 , therefore

$$L_G = F\left(\frac{(t^2 - t + 1)^3}{t^2(t - 1)^2}\right).$$

Conclusion: $F\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right)\subset F(t)$ is a Galois extension of Galois group $G\simeq S_3$.