Physics 509 Theory of Measurements Course Notes

Tobias Faehndrich

This document was last typeset on October 29, 2025

Introduction:

Notes written at UBC 2025W1 with Dr. Colin Gay.

Contents

1	Tue	sday, September 9th 2025	4						
	1.1	Motivation: Stochastic Nature of Experimental Data	4						
	1.2	Probabilistic Interpretation of Experimental Results	4						
	1.3	Sample Spaces and Stochastic Variables	4						
	1.4	Events and Set Operations	5						
	1.5	Kolmogorov's Axioms of Probability	5						
	1.6	Consequences of the Probability Axioms	6						
	1.7	Uniform Probability on Finite Sample Spaces	6						
	1.8	Example: Probability of a Straight in Poker	7						
	1.9	Conditional Probability	7						
2	Thu	ursday, September 11th 2025	8						
	2.1	Bayes' Formula	8						
	2.2	Law of Total Probability	8						
	2.3	Independent Events	8						
		2.3.1 Example: Rolling Two Dice	9						
	2.4	Random Variables and Probability Distributions	9						
	2.5	Describing a Distribution	10						
	2.6	Cumulative Distribution Function (CDF)	10						
	2.7	Expectation Values	10						
	2.8	Characteristic Function	10						
	2.9	Central Moments	11						
3	Tue	Tuesday, September 16th 2025							
	3.1	Bayes Theorem and Its Applications	12						
	3.2	The Monty Hall Problem: A Bayesian Analysis	12						
	3.3	Alternate Monty Hall Formulations	13						
	3.4	Monty Hall Generalized to n Doors	13						
	3.5	Continuous Probability Distributions and Moments	14						
	3.6	Discrete Probability Distributions	14						
	3.7	Cumulative Distribution Functions	15						
	3.8	Multivariate Distributions and Covariance	15						
4	Thu	Thursday, September 18th 2025							
	4.1	Conditional Probability: A Simple Example	16						
	4.2	Distributions of Multiple Random Variables	16						
	4.3	Covariance Matrix and Correlation Coefficient	16						
	4.4	Independence and Uncorrelated Variables	17						
	45	Examples of Correlated and Uncorrelated Variables	17						

		tributions	.7				
	4.7 Change of V	riables in Probability Densities	8				
	4.8 Change of V	riables: Non One-to-One Case	8				
	4.9 Multivariate	Transformations and the Jacobian	9				
	4.10 Example: Ca	rtesian to Polar Transformation	9				
5	Tuesday, Septeml	er 20th 2025	20				
J		of Errors for a Single Variable					
		pagation for a Single Variable					
		of Errors for Multiple Variables					
		ropagation for Functions of Multiple Variables					
		Error Propagation in Measurements					
		1 0					
	5.6 Example: Me	asuring the Period of a Sine Wave	ن.				
6	Tuesday, Septemb		24				
		ransformation Under Linear Transformations					
	6.2 The Binomia	Distribution	25				
7	Thursday, Octobe	Thursday, October 2nd 2025					
•		Binomial Distribution and Its Properties					
		tribution as a Special Case of the Binomial					
			9				
			9				
		ibution as a Limit of the Binomial					
		ess and Radioactive Decay					
		Variance of the Poisson Distribution					
8	Tuesday, October						
		(Normal) Distribution					
		Normal Distribution					
		cular Symmetry (Darts on a Board)					
		Value of a Gaussian					
		he Gaussian					
		ne Gaussian					
		ne Gaussian					
		ibution and Gaussian Limit					
		Theorem (CLT)					
		Distribution Function of a Gaussian					
		nfidence Intervals					
	8.12 Estimators		34				
9	Thursday, October 9th 2025						
	9.1 Properties of	Estimators	35				
	9.2 Example: Me	asurements and Models					
	9.3 Least Square	s Estimation					
			35				
		Least Squares with Covariance Matrix					
		f the Estimated Parameters					
	9.7 Goodness of						

10	Tuesday, October 14th 2025	37
	10.1 Chi-Squared for Uncorrelated and Correlated Measurements	37
	10.2 Covariance Matrix and Linear Transformations	37
	10.3 Modeling Data with Parameters	37
	10.4 Least Squares Estimation	37
	10.5 Distribution of Parameter Estimates	38
	10.6 Quadratic Expansion of chi-squared and Error Estimates	38
	10.7 Covariance of Parameter Estimates	38
	10.7 Covariance of Farameter Estimates	36
11	Thursday, October 16th 2025	39
	11.1 Chi-Squared Minimization and Degrees of Freedom	39
	11.2 Two-Measurement Example and Correlated Variables	39
	11.3 Residuals and Goodness of Fit	40
		40
	11.4 Distribution of Estimators	
	11.5 Toy Monte Carlo Simulations for Estimator Distributions	40
	11.6 Typical Applications of Least Squares Fitting	41
10	Tree der Oatober 21st 2025	43
12	Tuesday, October 21st 2025	
	12.1 Least-Squares Fits	43
	12.2 Unbinned Data and Likelihood Functions	43
	12.3 Example: Exponential Distribution	44
	12.4 Example: Lifetime with Cutoff <i>T</i>	44
	12.5 Example: Multiple Gaussian Measurements	45
	12.6 Properties of the Maximum-Likelihood Estimator	45
10	TI 1 0 1 1 00 1000F	4.0
13	Thursday, October 23rd 2025	46
	13.1 Definition of the Likelihood Function	46
	13.2 Maximum Likelihood Estimation (MLE)	46
	13.3 Quadratic Approximation of the Log-Likelihood	46
	13.4 Asymptotic Limit and Expectation Relation	46
	13.5 Normalization of the Likelihood Function	47
	13.6 Gaussian Approximation via the Central Limit Theorem	47
	13.7 Variance of the Estimator and the Fisher Information	47
	13.8 Taylor Expansion Near the Maximum Likelihood Estimate	48
	13.9 Goodness of Fit and the Kolmogorov–Smirnov Test	49
14	Tuesday, October 28th 2025	50
	14.1 Taylor Expansion of the Log-Likelihood Around the Maximum	50
	14.2 Parameter of Interest and Nuisance Parameters	50
	14.3 Likelihood versus Chi-Squared Interpretation	50
	14.4 Normalization and Extended Likelihood	50
	14.5 Nuisance Parameters and Systematic Effects	51
	14.6 Gaussian Data Likelihood and Chi-Squared Minimization	51
	14.7 Introduction to Hypothesis Testing	52
	14.8 Rejection Regions and Type I Error	52
	14.9 Neyman–Pearson Lemma and Type II Error	52
	14.10Likelihood Ratio Test and Interpretation	53
	14.TOLIKENDOOG KADO TESLANG INTERDIPLANON .	(1.7

1 Tuesday, September 9th 2025

This lecture covered the course structure and grading.

1.1 Motivation: Stochastic Nature of Experimental Data

- Stochastic processes:
 - muon decay
 - inherent stochasticity
 - quantum mechanics
- Mostly concerned with measurement devices how do we measure?
- Example: a muon lifetime experiment
 - Take a cosmic muon, detect light, and discriminate.
 - Muon decays into an electron and neutrinos, and the electron produces light.
 - Measure the time between light pulses.
 - Many factors cause noise in the data results change even if the same mechanism occurs twice.

1.2 Probabilistic Interpretation of Experimental Results

- Experiments are repeated trials.
- Probability (probabilistic interpretation):
 - Results are interpreted as the long-term average of repeating an experiment many times.
 - Example: coin flip

$$P(H) = \lim_{N \to \infty} \frac{n_H}{N}$$

n(H) = number of heads in N trials

1.3 Sample Spaces and Stochastic Variables

- In modern probability theory:
 - 3 axioms (Kolmogorov)
 - Let X be a stochastic variable.
 - Define sample space $S(\Omega)$:

$$S = \{x_1, x_2, ...\}$$

- Examples:
 - 1. Coin flip:

$$S = \{H, T\}$$

2. Roll a die:

$$S = \{1, 2, 3, 4, 5, 6\}$$

3. Grade in this class:

$$S = \{0, 1, 2, ..., 100\}$$

4. Decay time of a radioactive atom:

$$S = [0, \infty)$$

- *S* can be finite (Binomial), countable (Poisson), or infinite (Gaussian, Uniform).

1.4 Events and Set Operations

- Definition: An event *E* is a subset of *S*.
- Example: one die roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E = \text{rolling an even number} = \{2, 4, 6\}$

• Example: E = atom decayed by time t_0

$$S = [0, t_0]$$

- Operations on events:
 - Union (OR) and Intersection (AND)
 - Let *A*, *B* be events in *S*:

$$E = A \cup B = \{e : e \in A \text{ or } e \in B \text{ (or both)}\}\$$

- Example: flip a coin twice

$$S = \{HH, HT, TH, TT\}$$

$$A = 1\text{st flip is } H = \{HH, HT\}$$

$$B = 2\text{nd flip is } H = \{HH, TH\}$$

$$A \cup B = \{HH, HT, TH\}$$

$$A \cap B = \{e \mid e \in A \text{ and } e \in B\} = \{HH\}$$

$$AB = A \cap B$$

$$A^c = \{e \mid e \in S \text{ and } e \notin A\} = \{TH, TT\}$$

- Properties:
 - Commutative:

$$A \cup B = B \cup A$$
, $AB = BA$

- Associative:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
, $(AB)C = A(BC)$

- Distributive:

$$(A \cup B)C = AC \cup BC$$
, $A(B \cup C) = AB \cup AC$

- De Morgan's Laws:

$$(A \cup B)^c = A^c B^c$$
, $(AB)^c = A^c \cup B^c$

1.5 Kolmogorov's Axioms of Probability

- A function *P* on *S* is a probability measure if it satisfies:
 - 1. P(S) = 1
 - 2. $P(\emptyset) = 0$
 - 3. For any countable sequence of disjoint events $E_1, E_2, ...$ in S:

$$E_i E_i = \emptyset$$
 for $i \neq j$

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

1.6 Consequences of the Probability Axioms

Let

$$E_1 = S$$
, $E_2 = \emptyset$
 $E_1 E_2 = \emptyset$
 $P(S \cup \emptyset) = P(S) + P(\emptyset) = 1 + P(\emptyset)$
 $P(S) = 1$, $P(\emptyset) = 0$

 $P(\emptyset) = 0$

•

$$P(E^c) = 1 - P(E)$$

 $1 = P(S) = P(E \cup E^c) = P(E) + P(E^c)$

• If $B \subset A$, then:

$$P(B) \le P(A)$$

$$A = B \cup (B^c A)$$

$$P(A) = P(B \cup (B^c A))$$

$$P(B) = P(A) - P(B^c A) \le P(A)$$

•

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

If we let the areas of the Venn diagram be 1 (A), 2 (A+B), 3 (B), then:

$$A \cup B = 1 \cup 2 \cup 3$$

$$P(A \cup B) = P(1 \cup 2 \cup 3) = P(1) + P(2) + P(3)$$

$$P(A) = P(1) + P(2), \quad P(B) = P(2) + P(3)$$

$$P(A) + P(B) - P(2) = P(1) + P(2) + P(3) = P(A \cup B)$$
 equivalently
$$P(A) + P(B) - P(AB) = P(A) + P(B) - P(AB)$$

1.7 Uniform Probability on Finite Sample Spaces

•

$$E_{i} = S_{i} \text{ for } i = 1, 2, ...n$$

$$E_{i}E_{j} = \emptyset \text{ for } i \neq j$$

$$S = \bigcup_{i=1}^{n} E_{i}$$

$$P(S) = 1 = P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i})$$

$$P(E_{i}) = P(E_{j}) \text{ all equally likely}$$

$$1 = \sum_{i=1}^{N} P(E_{i}) = NP(E_{i})$$

$$P(E_{i}) = \frac{1}{N} = P(E_{j})$$

N = |S| = number of elements in (cardinality of) S F be any event (set) in S with k elements |F| = k

$$P(F) = P(\bigcup_{S_i \in F} \{E_i\}) = \sum_{i=1}^k P(E_i) = \sum_{i=1}^k \frac{1}{N} = \frac{k}{N} = \frac{|F|}{|S|}$$

1.8 Example: Probability of a Straight in Poker

• Example: 5-card poker hand forming a straight

$$S = \{(AC, 2C, 3C, 4C, 5C), (2C, 3C, 4C, 5C, 6C), ...\}$$

$$S = {52 \choose 5} = \frac{52!}{5!47!} = 2,598,960$$

• Event = straight = 5 consecutive cards, not of the same suit, any starting card.

$$10(4^5 - 4) = 10200$$

- Starting cards: Ace (A,2,3,4,5), 2 (2,3,4,5,6), ..., 10 (10,J,Q,K,A)
- Not all the same suit: $4^5 4$ (exclude all same suit)

$$P(\text{straight}) = \frac{10(4^5 - 4)}{\binom{52}{5}} = 0.00392465$$

1.9 Conditional Probability

• Given 2 events *E*, *F*, sample space *S*:

$$P(E)$$
 = probability of a trial from S in E

$$P(F)$$
 = probability of a trial from S in F

• Conditional probability of *E* given *F* has occurred:

P(E|F) = probability of a trial from S in E, given the trial is in F

- Note: *P*(*EF*) is the probability of a trial from *S* in both *E* and *F*.
- Need to normalize by P(F), so we define:

$$P(E|F) = \frac{P(EF)}{P(F)} \quad \text{if } P(F) > 0$$

$$P(EF) = P(E|F)P(F)$$

• Example: flip a coin 2 times

$$S = \{HH, HT, TH, TT\}$$

Conditional probability of $HH \equiv A$ given:

- First flip = $H \equiv B = \{HH, HT\}$
- Either flip is $H \equiv C = \{HH, HT, TH\}$

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(\{HH\})}{P(\{HH, HT\})} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

$$P(A|C) = \frac{P(AC)}{P(C)} = \frac{P(\{HH\})}{P(\{HH, HT, TH\})} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

2 Thursday, September 11th 2025

2.1 Bayes' Formula

• Let *E*, *F* be events:

$$E = EF \cup EF^{c}$$

$$P(E) = P(EF) + P(EF^{c})$$

$$P(E) = P(E|F)P(F) + P(E|F^{c})P(F^{c})$$

$$P(E) = P(E|F)P(F) + P(E|F^{c})(1 - P(F))$$

• **Example:** Suppose a blood test is 95% effective in detecting a disease if the person has it. It also has a 1% false positive rate. Suppose 0.5% of the population has the disease.

$$D =$$
person has disease $E =$ test is positive

• We want:

$$P(D|E) = \frac{P(ED)}{P(E)}$$

$$P(D|E) = \frac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)(1 - P(D))}$$

$$= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995} = 0.32$$

• So even with a positive test, there is only a 32% chance of having the disease.

2.2 Law of Total Probability

• Let $\{F_i\}$ be mutually exclusive events such that:

$$\cup_{i=1}^n F_i = S$$

Then for any event *E*:

$$E = E \cap \left(\bigcup_{i=1}^{n} F_i\right) = \bigcup_{i=1}^{n} (EF_i)$$
$$P(E) = P\left(\bigcup EF_i\right) = \sum_{i=1}^{n} P(EF_i) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

2.3 Independent Events

- Generally, $P(E|F) \neq P(E)$.
- If knowing *F* does not change the probability of *E*:

$$P(E|F) = \frac{P(EF)}{P(F)} = P(E)$$

$$P(EF) = P(E)P(F)$$

2.3.1 Example: Rolling Two Dice

• Let:

$$E_1 \equiv \text{sum} = 6$$

$$F \equiv \text{first die} = 4$$

$$E_1 : \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

$$F : \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

$$E_1F = \{(4,2)\}$$

$$P(E_1F) = \frac{1}{36}$$

$$P(E_1) = \frac{5}{36}$$

$$P(F) = \frac{6}{36} = \frac{1}{6}$$

$$P(E_1)P(F) = \frac{5}{36} \times \frac{1}{6} = \frac{5}{216} \neq P(E_1F)$$

• Let:

$$E_{2} \equiv \text{sum} = 7$$

$$E_{2} : \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$E_{2}F = \{(4,3)\}$$

$$P(E_{2}) = \frac{6}{36} = \frac{1}{6}$$

$$P(F) = \frac{1}{6}$$

$$P(E_{2}F) = \frac{1}{36}$$

2.4 Random Variables and Probability Distributions

• $S = \{\text{all possible outcomes of stochastic process } X\}$

x = random variable

S = finite or countable infinite: discrete random variable S = uncountable infinite: continuous random variable

• Continuous case:

$$P(x_0, x_0 + dx) = p(x)dx$$

where p(x) is the probability density function (pdf).

• Discrete case:

$$S = S_i$$

 p_i = probability of S_i (probability mass function, pmf)

$$0 \le P(S_i) \le 1$$

$$1 = P(S)$$

$$0 \le p(x)$$

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

2.5 Describing a Distribution

- To describe p(x) in general we specify:
 - **Mode** peak value of p(x)
 - Median 50% cumulative value
 - **Mean** average value of x weighted by p(x)

2.6 Cumulative Distribution Function (CDF)

•

$$F(x) = \int_{-\infty}^{x} p(x')dx' = P(X \le x)$$
$$F(-\infty) = 0, \quad F(\infty) = 1$$

2.7 Expectation Values

• Expectation of any function f(x) over p(x):

$$E(f) = \int_{\Omega} f(x)p(x)dx$$

E is a linear operator: E(af + bg) = aE(f) + bE(g)

• Expectation of powers of *x*:

$$E(x^{0}) = E(1) = \int 1 \cdot p(x) dx = 1$$

$$E(x^{1}) = \int x p(x) dx \equiv \mu = \text{mean value of } x$$

$$E(x^{2}) = \int x^{2} p(x) dx \equiv \sigma^{2} = \text{variance of } x$$

2.8 Characteristic Function

• The characteristic function of p(x):

$$\varphi(t) = \int_{-\infty}^{\infty} e^{itx} p(x) dx = E(e^{itx})$$

$$\varphi(t) = E\left(1 + itx + \frac{(itx)^2}{2!} + \dots\right)$$

$$= 1 + itE(x) + \frac{(it)^2}{2!} E(x^2) + \dots$$

$$= \sum_{k=0}^{\infty} \frac{(it)^k}{k!} \mu_{k'}$$

• Moments from $\varphi(t)$:

$$\left. \frac{d^n \varphi(t)}{dt^n} \right|_{t=0} = i^n \mu_{n'}$$

2.9 Central Moments

•

$$E((x - \mu)^n) = \int (x - \mu)^n p(x) dx \equiv \mu_n$$
$$\mu = E(x)$$

• 1st central moment:

$$E((x - \mu)^{1}) = E(x) - E(\mu) = \mu - \mu = 0$$

• 2nd central moment (variance):

$$E((x-\mu)^2) \equiv V(x) = \sigma^2$$

• 3rd central moment (skewness):

skewness =
$$\frac{E((x-\mu)^3)}{\sigma^3}$$

• 4th central moment (kurtosis):

kurtosis =
$$\frac{E((x-\mu)^4)}{\sigma^4} - 3$$

(The -3 ensures that the kurtosis of a normal distribution is 0.)

3 Tuesday, September 16th 2025

3.1 Bayes Theorem and Its Applications

• Bayes Theorem: for events *A* and *B*, we have

$$P(AB) = P(A|B)P(B) = P(B|A)P(A) = P(BA)$$

• Usually it is given in this form:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• People argued about when you are allowed to use this theorem.

3.2 The Monty Hall Problem: A Bayesian Analysis

- Example: Monty Hall Problem (Game show with host named Monty Hall)
 - There are 3 doors; behind one is a car, behind the other two are goats.
 - You select a door; if the car is behind it, you win.
 - Twist: after you select a door, Monty opens one of the other 2 doors to reveal a goat.
 - Question: stay or switch?
 - Solution: use Bayes theorem.
 - Sample space: $S = \{C_1 = \text{cgg}, C_2 = \text{gcg}, C_3 = \text{ggc}\}$
 - Event 2 = MH opens door 2.
 - Event 3 = MH opens door 3.
 - Number such that your choice is door 1.
 - Take case E_2 , then we want to know $P(C_1|E_2)$.

$$P(C_1|E_2) = \frac{P(E_2|C_1)P(C_1)}{P(E_2)}$$

- $-P(C_1)=\frac{1}{3}$
- $P(E_2|C_1) = \frac{1}{2}$ because if the car is behind door 1, Monty can open either door 2 or 3.
- $-P(E_2)=\frac{1}{2}$
- Law of total probability:

$$P(E_2) = P(E_2|C_1)P(C_1) + P(E_2|C_2)P(C_2) + P(E_2|C_3)P(C_3) = \frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{1}{2}$$

-
$$P(C_1|E_2) = \frac{P(E_2|C_1)P(C_1)}{P(E_2)} = \frac{\frac{1}{2}\frac{1}{3}}{\frac{1}{2}} = \frac{1}{3}$$

- $-P(C_1|E_2)=\frac{1}{3}$
- $P(C_2|E_2) = 0$

$$- P(C_3|E_2) = \frac{P(E_2|C_3)P(C_3)}{P(E_2)} = \frac{1 \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

3.3 Alternate Monty Hall Formulations

- Alternate version: E = MH shows you a goat from $\{2,3\}$.
 - We want to find $P(C_1|E)$.
 - $P(C_1|E) = \frac{P(E|C_1)P(C_1)}{P(E)}$
 - $-P(C_1)=\frac{1}{3}$
 - $P(E|C_1) = 1$ because if the car is behind door 1, Monty can open either door 2 or 3.
 - P(E) = 1 by law of total probability:

$$P(E) = P(E|C_1)P(C_1) + P(E|C_2)P(C_2) + P(E|C_3)P(C_3) = 1 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 1$$

$$- P(C_1|E) = \frac{1 \cdot \frac{1}{3}}{1} = \frac{1}{3}$$

- Another version: What if MH does not know where the car is?
 - E = MH opens $\{2,3\}$ and reveals a goat.
 - We want to find $P(C_1|E)$.
 - $P(C_1|E) = \frac{P(E|C_1)P(C_1)}{P(E)}$
 - $P(C_1) = \frac{1}{3}$ because we picked door 1.
 - $P(E|C_1) = \frac{1}{2}$ because if the car is behind door 1, Monty can open either door 2 or 3 since he does not know where the car is.
 - By law of total probability:

$$P(E) = P(E|C_1)P(C_1) + P(E|C_2)P(C_2) + P(E|C_3)P(C_3) = 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{2}{3}$$

-
$$P(C_1|E) = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$$

3.4 Monty Hall Generalized to n Doors

- Now back to the standard version of the problem but with *n* doors.
 - You pick door 1, MH opens any door with a goat behind it from 2 to n (n-1 options).
 - $P(C_1|E) = \frac{P(E|C_1)P(C_1)}{P(E)}$
 - P(E) = 1 because he can always choose a door with a goat behind it (many options and he knows the answers).
 - $P(C_1) = \frac{1}{n}$
 - $P(E|C_1) = 1$ because if the car is behind door 1, Monty can open any of the other doors.

Continuous Probability Distributions and Moments

- Continuous probability distribution p(x):
- Moments:

$$E(x^n) = \int_{-\infty}^{\infty} x^n p(x) \, dx$$

mean: $\mu = E(x)$ variance: $V(x) = \sigma^2 = E((x - \mu)^2) = E(x^2) - \mu^2$

std dev:

• Central moments:

$$E(x - \mu) = E(x) - \mu = 0$$
$$E((x - \mu)^{2}) = \sigma^{2}$$
$$E((x - \mu)^{3}) = \text{skewness}$$

 $E((x - \mu)^4) = \text{kurtosis}$

• Characteristic function:

$$\Phi(t) = E(e^{itx}) = \int_{-\infty}^{\infty} e^{itx} p(x) dx$$
(3.1)

$$=\sum_{k=0}^{\infty} \frac{(it)^k}{k!} \mu_k \tag{3.2}$$

$$\Phi_{\mu}(t) = E(e^{it(x-\mu)}) = E(e^{itx})e^{-it\mu} = \Phi(t)e^{-it\mu}$$

$$V(x) = E((x - \mu)^2)$$
(3.3)

$$=E(x^2 - 2\mu x + \mu^2) \tag{3.4}$$

$$= E(x^2) - 2\mu E(x) + \mu^2 E(1)$$
(3.5)

$$= E(x^2) - 2\mu^2 + \mu^2 \tag{3.6}$$

$$= E(x^2) - \mu^2 = E(x^2) - (E(x))^2$$
(3.7)

Discrete Probability Distributions

- The discrete case (e.g., rolling a die, picking a card) uses a probability mass function.
- Usually denote outcomes as *r*:
- p_r = probability of outcome r.
- $\sum_r p_r = 1$
- $E(r) = \sum_{r} p_r r = \text{mean } \mu$
- Variance: $V(r) = \sum_{r} (r \mu)^2 p_r = E(r^2) \mu^2$
- Coin flip example: $S = \{H, T\}$.
- Often map to 0 or 1: H = 0, T = 1.
- But in theory you can pick any two numbers a and b to map outcomes, just so you can calculate mean and variance.

$$E(r) = ap_H + bp_T$$

3.7 Cumulative Distribution Functions

• For continuous case:

$$F(x) = \int_{-\infty}^{x} f(x') \, dx'$$

• For discrete case:

$$F(r) = \sum_{r' < r} p_{r'}$$

- F(x) is the cumulative distribution function (CDF).
- F(x) is non-decreasing, $F(-\infty) = 0$, $F(\infty) = 1$.

3.8 Multivariate Distributions and Covariance

- Distribution of multiple variables:
- Elements belong to real vector space \mathbb{R}^n .
- $P(AB) \dots P(A,B)$
- $p(x_1, x_2, ..., x_n) \ge 0$ is the joint probability distribution function (PDF).
- $\int_{\Omega} p(\vec{x}) d^n x = 1$
- $E(f(\vec{x})) = \int_{\Omega} f(\vec{x}) p(\vec{x}) d^n x$
- $\mu_i = \int x_i p(\vec{x}) d^n x$
- $V(x_i) = \sigma_i^2 = \int (x_i \mu_i)^2 p(\vec{x}) d^n x$
- Covariance:
- $V_{i,j} = E((x_i \mu_i)(x_j \mu_j))$
- $V_{i,i} = \sigma_i^2 = E((x_i \mu_i)^2)$ (variance)
- $V_{i,j} = V_{j,i}$ (symmetry)

4 Thursday, September 18th 2025

4.1 Conditional Probability: A Simple Example

- For fun, example that depends on cultural assumptions: A king comes from a family with two kids. What is the probability that the king's sibling is a sister?
- $S = \{(m, m), (m, f), (f, m), (f, f)\}$
- $P(S|K) = \frac{P(SK)}{P(K)} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}$

4.2 Distributions of Multiple Random Variables

- $p(x_1, x_2, \ldots, x_n)$
- $S = \mathbb{R}^n$
- $\bullet \int p(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n = 1$
- For any function $f(\vec{x})$:

$$E(f) = \int f(\vec{x})p(\vec{x})d\vec{x}$$

- $E(x_1) = \int x_1 p(\vec{x}) d\vec{x} = \mu_1$
- $E(x_i) = \mu_i$
- $V(x_i) \equiv \sigma_i^2 = \int (x_i \mu_i)^2 p(\vec{x}) d\vec{x}$

4.3 Covariance Matrix and Correlation Coefficient

• Define covariance:

$$V_{ij} = E((x_i - \mu_i)(x_j - \mu_j))$$

- $V_{ii} = \sigma_i^2$ (variance)
- $V_{ij} = V_{ji}$ (symmetry)
- $V_{ij} = 0$ for independent variables
- Expanding the covariance matrix:

$$V_{ij}(\vec{x}) = E((x_i - \mu_i)(x_j - \mu_j))$$

$$= E(x_i x_j - \mu_i x_j - \mu_j x_i + \mu_i \mu_j)$$

$$= E(x_i x_j) - \mu_i E(x_j) - \mu_j E(x_i) + \mu_i \mu_j$$

$$= E(x_i x_j) - \mu_i \mu_j - \mu_j \mu_i + \mu_i \mu_j$$

$$= E(x_i x_j) - \mu_i \mu_j$$

- So we can say that $V_{ij} \ge 0$
- V_{ij} can be negative, zero, or positive
- Define the correlation coefficient:

$$\rho(x_i, x_j) = \rho_{ij} = \frac{V_{ij}}{\sqrt{V_{ii}}\sqrt{V_{jj}}} = \frac{V_{ij}}{\sigma_i \sigma_j}$$

• We find that $-1 \le \rho_{ij} \le 1$

4.4 Independence and Uncorrelated Variables

• Random variables x_i, \ldots, x_n are independent if the joint pdf factorizes:

$$p(x_1,...,x_n) = p_1(x_1)p_2(x_2)...p_n(x_n)$$

• Independent variables are uncorrelated:

$$E(x_i x_j) = \int x_i x_j p(\vec{x}) d\vec{x}$$

$$= \int x_i x_j p_1(x_1) \dots p_n(x_n) dx_1 \dots dx_n$$

$$= \int x_i p_i(x_i) dx_i \int x_j p_j(x_j) dx_j \int p_2(x_2) dx_2 \dots \int p_n(x_n) dx_n = \mu_i \mu_j$$

$$V_{ij} = E(x_i x_j) - \mu_i \mu_j$$

In the case of independent variables:

$$V_{ij} = \mu_i \mu_j - \mu_i \mu_j = 0$$

• Independent variables are uncorrelated, but uncorrelated variables are not necessarily independent.

4.5 Examples of Correlated and Uncorrelated Variables

- 100% correlation example:
- x = Uniform[-1, 1], plot distribution from -1 to 1.
- y = x:
- $V_{ij} = E(xy) E(x)E(y) = E(x^2) = \int_{-1}^{1} x^2 \frac{1}{2} dx = \frac{1}{3} \neq 0$
- y = |x|:
- $E(xy) = \int_{-1}^{0} x(-x)p(x)dx + \int_{0}^{1} xxp(x)dx$
- $E(xy) = \int_0^1 x^2 \frac{1}{2} dx \int_{-1}^0 x^2 \frac{1}{2} dx = \frac{1}{6} \frac{1}{6} = 0$

4.6 Marginal Distributions

• For a joint pdf $p(x_1, x_2, ..., x_n)$, the marginal probability density functions are:

$$f_1(x_1) = \int p(x_1, x_2, \dots, x_n) dx_2 dx_3 \dots dx_n$$

• If variables are independent:

$$f_1(x_1) = \int p(x_1, x_2, \dots, x_n) dx_2 \dots dx_n$$

= $p_1(x_1) \int p_2(x_2) dx_2 \int p_3(x_3) dx_3 \dots \int p_n(x_n) dx_n$
= $p_1(x_1) \cdot 1 \cdot 1 \cdot \dots \cdot 1 = p_1(x_1)$

4.7 Change of Variables in Probability Densities

- Something we need to know, because we do it all the time:
 - Change of variables of P
 - Calculate new V_{ij} under new variables
- Let x be a random variable with pdf f(x) and let y be some function.
- First: *y* is one-to-one with *f*

Figure 4.1: 1-to-1 function

- What is the probability density of y, denoted g(y)?
- Conservation of probability:
- f(x)dx = g(y)dy
- $g(y) = f(x) \left| \frac{dx}{dy} \right|$

$$\left| f(x) \left| \frac{dx}{dy} \right| = g(y) \right|$$

4.8 Change of Variables: Non One-to-One Case

- If *y* is not one-to-one: sum over all segments that map to the same *y*.
- Example: f(x) uniform on [0,1], f(x) = 1
- Let $y(x) = \frac{-1}{\lambda} \ln(x)$
- $\frac{dy}{dx} = \frac{-1}{\lambda x}$
- $\frac{dx}{dy} = -\lambda x$
- $-\lambda x = \ln x$
- $e^{-\lambda y} = x$
- $\lambda > 0 \Rightarrow \frac{dx}{dy} = -\lambda x = -\lambda e^{-\lambda y}$
- $g(y) = f(x) \left| \frac{dx}{dy} \right| = 1 \cdot \lambda e^{-\lambda y} = \lambda e^{-\lambda y}$

4.9 Multivariate Transformations and the Jacobian

- If we have variables $\{x_i\}$ and transform to new variables $\{y_i\}$:
- Region \mathbb{R} in *x*-space maps to region \mathbb{R}' in *y*-space.

$$\int_{\mathbb{R}} f(\vec{x}) d\vec{x} = \int_{\mathbb{R}'} f(\vec{x}(\vec{y})) (\vec{y}) \left| \frac{\partial \vec{x}}{\partial \vec{y}} \right| d\vec{y}$$
$$g(\vec{y}) = f(\vec{x}(\vec{y})) |J|$$

- Where $\left|\frac{\partial \vec{x}}{\partial \vec{y}}\right|$ is the Jacobian determinant of the transformation.
- Jacobian matrix *J*:

$$J = \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \cdots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{bmatrix}$$

4.10 Example: Cartesian to Polar Transformation

- Change to polar coordinates:
- $x = r \cos \theta$
- $y = r \sin \theta$
- $P'(r,\theta) = ? = p(x,y) \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right|$
- $\frac{\partial x}{\partial r} = \cos \theta$
- $\frac{\partial y}{\partial r} = \sin \theta$
- $\frac{\partial x}{\partial \theta} = -r \sin \theta$
- $\frac{\partial y}{\partial \theta} = r \cos \theta$
- $J = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$
- $J = r\cos^2\theta + r\sin^2\theta = r$
- $p'(r,\theta) = \frac{r}{\pi} dr d\theta$

5 Tuesday, September 20th 2025

5.1 Propagation of Errors for a Single Variable

- Given f(x) pdf, $\mu \equiv E(x)$, $\sigma^2 \equiv V(x) = E(x^2) \mu^2$
- Know $f(x) \rightarrow g(y)$, given y(x).
- Taylor expand y(x) about mean μ :

$$y(x) = y(\mu) + y'(\mu)(x - \mu) + \frac{1}{2!}y''(\mu)(x - \mu)^2 + \dots$$

$$E(y(x))? \equiv \mu_y$$

$$E(y(x)) = E(y(\mu)) + y'(\mu)E(x - \mu) + \frac{1}{2!}y''(\mu)E((x - \mu)^2) + \dots$$

$$= y(\mu) + y'(\mu) \cdot 0 + \frac{1}{2!}y''(\mu)V(x) + \dots$$

• To the 1st order:

$$\mu_y = E(y(x)) = y(\mu) = y(E(x))$$

5.2 Variance Propagation for a Single Variable

• Variance of *y*:

$$V(y) = E((y(x) - E(y(x)))^{2})$$
(5.1)

$$= E((y(x) - \mu_y)^2) \tag{5.2}$$

$$= E((y'(\mu)(x-\mu) + \frac{1}{2!}y''(\mu)(x-\mu)^2 + \ldots)^2)$$
 (5.3)

$$= E(y'(\mu)^{2}(x-\mu)^{2} + y'(\mu)y''(\mu)(x-\mu)^{3} + O((x-\mu)^{4}))$$
(5.4)

$$= y'(\mu)^2 V(x) + \dots {(5.5)}$$

• Some relations:

$$E(x) \equiv \mu_x$$

$$V(x) \equiv \sigma_x^2$$

$$y = y(x)$$

$$E(y) \equiv \mu_y = y(\mu_x)$$

$$V(y) \equiv \sigma_y^2 = (y'(\mu_x))^2 \sigma_x^2$$

$$\sigma_y = |y'(\mu_x)|\sigma_x$$

• Example: $y = \frac{1}{x}$, $\frac{dy}{dx} = -\frac{1}{x^2}$

$$\sigma_y^2 = \frac{1}{\mu_x^4} \sigma_x^2$$

5.3 Propagation of Errors for Multiple Variables

- Let us suppose we have *n* variables $\{x_i\}$, with pdf $f(\vec{x})$.
- Let $y_i = 1, 2, ..., m$ be m functions of x_i .
- $\bullet \ y_j = y_j(x_1, x_2, \dots, x_n)$
- $V_{ij}(x)_{n \times n}(\vec{x}) = \text{covariance matrix of } \{x_i\}$
- $V_{ij}(\vec{x}) = E((x_i \mu_i)(x_j \mu_j))$
- Taylor expand each y_i : $\vec{\mu} = (\mu_1, \mu_2, \dots, \mu_n)$

•
$$y_j(\vec{x}) = y_j(\vec{\mu}) + \sum_i \frac{\partial y_j}{\partial x_i} \Big|_{\vec{\mu}} (x_i - \mu_i) + \frac{1}{2!} \sum_{i,k} \frac{\partial^2 y_j}{\partial x_i \partial x_k} \Big|_{\vec{\mu}} (x_i - \mu_i) (x_k - \mu_k) + \dots$$

•
$$E(y_j(\vec{x})) = E(y_j(\vec{\mu})) + \sum_{i} \frac{\partial y_j}{\partial x_i} E(x_i - \mu_i) + \dots = y_j(\vec{\mu})$$

5.4 Covariance Propagation for Functions of Multiple Variables

• Covariance between y_k and y_l :

$$E((y_k - \mu_{y_k})(y_l - \mu_{y_l}))$$

$$= E((y_k - y_k(\mu))(y_l - y_l(\mu)))$$

$$= E\left(\sum_i \frac{\partial y_k}{\partial x_i}\Big|_{\mu} (x_i - \mu_i) \sum_j \frac{\partial y_l}{\partial x_j}\Big|_{\mu} (x_j - \mu_j)\right)$$

$$= \sum_{i,j} \frac{\partial y_k}{\partial x_i}\Big|_{\mu} \frac{\partial y_l}{\partial x_j}\Big|_{\mu} E((x_i - \mu_i)(x_j - \mu_j))$$

$$V_{kl}(\vec{y})_{m \times m} = \sum_{i,j} \frac{\partial y_k}{\partial x_i} \Big|_{\vec{\mu}} \frac{\partial y_l}{\partial x_j} \Big|_{\vec{\mu}} V_{ij}(\vec{x})_{n \times n}$$

• Example: *x*, *y* random variables,

$$V(x,y) = \begin{bmatrix} V_{xx} & V_{xy} \\ V_{yx} & V_{yy} \end{bmatrix} = \begin{bmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$

- z = x + y
- $V(z) = \sigma_z^2 = \left(\frac{\partial z}{\partial x}\right)^2 V_{xx} + 2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}V_{xy} + \left(\frac{\partial z}{\partial y}\right)^2 V_{yy}$
- $\bullet = \sigma_x^2 + 2\rho_{xy}\sigma_x\sigma_y + \sigma_y^2$
- If x_i are uncorrelated,

$$V_{ij} = \sigma_{i,j}\sigma_i^2 = \begin{bmatrix} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{bmatrix}$$

$$V_{kl}(\vec{y}) = \sum_i \frac{\partial y_k}{\partial x_i} \Big|_{\mu} \frac{\partial y_l}{\partial x_i} \Big|_{\mu} V_{ii}(\vec{x})$$
variance $V_{kk} = \sum_i \left(\frac{\partial y_k}{\partial x_i} \right)^2 \sigma_i^2$

5.5 Examples of Error Propagation in Measurements

- Example: Measuring resistances. x_i independent, z = x + y, $x = R_1$ resistor value, $y = R_2$ resistor value, $z = R_{\text{tot}}$ total resistance.
- $R_1 \pm \sigma_{R_1}$
- Convention is to use $\sqrt{V(R)}$ as uncertainty.
- For a good measuring device, $E(R) = R_{\text{true}} \leftarrow \text{unbiased}$.
- V(R) = small
- $R_1 \pm \sigma_{R_1}$, $R_2 \pm \sigma_{R_2}$, then $\sigma_{R_{ ext{tot}}} = \sqrt{\sigma_{R_1}^2 + \sigma_{R_2}^2}$
- $R = R_{\text{tot}} = R_1 + R_2$
- z = xy, like I, R
- $\sigma_z^2 = \left(\frac{\partial z}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial z}{\partial y}\right)^2 \sigma_y^2 = y^2 \sigma_x^2 + x^2 \sigma_y^2$

$$\left(\frac{\sigma_z}{z}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2$$

5.6 Matrix Formulation of Linear Error Propagation

- Formula is exact if transformation of variables is linear.
- $\vec{y} = A\vec{x}$, A is $m \times n$ matrix, \vec{x} is $n \times 1$, \vec{y} is $m \times 1$.
- $\frac{\partial y_k}{\partial x_i}$ = constant \Rightarrow higher order terms in Taylor expansion are 0
- $V_{kl}(\vec{y}) = \sum_{i,j} \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j} V_{ij}(\vec{x})$
- Matrix notation:
- $V_{kl}(\vec{y}) = \sum_{i,j} A_{ki} A_{lj} V_{ij}(\vec{x})$
- = $\sum_{i,j} A_{ki} V_{ij}(\vec{x}) A_{lj}$
- = $\sum_{i,j} A_{ki} V_{ij} (A^T)_{jl}$
- $\bullet = (AV(\vec{x})A^T)_{kl}$

$$V(\vec{y})_{m \times m} = A_{m \times n} V(\vec{x})_{n \times n} A_{n \times m}^{T}$$

5.7 Variance of the Arithmetic Mean

- Example: Arithmetic mean. Let $x_i = n$ identical independent variables with $V(x_i) = \sigma_x^2$
- Set $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Recall that $V(ax) = a^2V(x)$
- $V(\bar{x}) = V\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n^2}V\left(\sum_{i=1}^{n}x_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}V(x_i) = \frac{1}{n^2}n\sigma_x^2 = \frac{\sigma_x^2}{n^2}$

• If variables are different σ_i^2 : n measurements

•
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

•
$$V(\bar{x}) = \frac{1}{n^2} \sum_{i=1}^n V(x_i) = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2$$

•
$$\sigma_{\bar{x}} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_i^2}$$

5.8 Example: Measuring the Period of a Sine Wave

• Example: Measure period of sine wave on scope.

$$\bullet \ \ T = \Delta t = t_2 - t_1$$

•
$$\sigma_T^2 = \left(\frac{\partial \Delta t}{\partial t_1}\right)^2 \sigma_t^2 + \left(\frac{\partial \Delta t}{\partial t_2}\right)^2 \sigma_t^2 = \sigma_t^2 + \sigma_t^2 = 2\sigma_t^2$$

• Measure *N* cycles,
$$T = \frac{1}{N} \Delta t$$

•
$$\sigma_{T^2} = \frac{1}{N^2} \sigma_{\Delta t}^2 = \frac{2}{N^2} \sigma_t^2$$

6 Tuesday, September 25th 2025

6.1 Covariance Transformation Under Linear Transformations

• Linear transformation:

$$\vec{y} = A\vec{x}$$

$$V_{kl}(\vec{y}) = \sum_{i,j} \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j} V_{ij}(\vec{x})$$

- Linear $y_k = \sum A_{kj} x_j$
- then

$$V_{kl}(\vec{y}) = \sum_{i,j} A_{ki} A_{lj} V_{ij}(\vec{x})$$

• or in matrix form

$$V(\vec{y}) = \left(AV(\vec{x})A^T\right)_{kl}$$

Diagonalization via Eigenvectors

• If \hat{e}_i are the eigenvectors of V, then

$$V(\vec{x})\hat{e}_i = \lambda_i\hat{e}_i$$

• Form:

$$A = \begin{pmatrix} \hat{e}_1 \\ \dots \\ \hat{e}_n \end{pmatrix} = \begin{pmatrix} \hat{e}_{11} & \hat{e}_{12} & \dots & \hat{e}_{1n} \\ \dots & \dots & \dots \\ \hat{e}_{n1} & \hat{e}_{n2} & \dots & \hat{e}_{nn} \end{pmatrix}$$

• then

$$A^T A = I$$

• then:

$$VA^{T} = V \begin{pmatrix} \hat{e}_{1} & \dots \\ \dots & \dots \\ \hat{e}_{n} & \dots \end{pmatrix} = \begin{pmatrix} \lambda_{1} \hat{e}_{11} & \dots & \lambda_{n} \hat{e}_{n1} \\ \dots & \dots & \dots \\ \lambda_{1} \hat{e}_{1n} & \dots & \lambda_{n} \hat{e}_{nn} \end{pmatrix}$$

• Then:

$$AVA^{T} = \begin{pmatrix} \hat{e}_{11} & \dots & \hat{e}_{1n} \\ \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} \lambda_{1}\hat{e}_{11} & \dots \\ \dots & \dots & \dots \\ \lambda_{1}\hat{e}_{1n} & \dots \end{pmatrix} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

• Then:

$$AVA^{T} = V(\vec{y}) = \begin{pmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_{n}^{2} \end{pmatrix}$$

6.2 The Binomial Distribution

- Consider an experiment with two outcomes.
- E.g. coin flips, selecting a ball with 2 possible colours, etc.
- One trial is called a Bernoulli trial.

Bernoulli Trials and Sampling Methods

- Example Method 1: You have an urn filled with N balls. Some are red (R), some are blue (B).
- (0) What is your estimate of n_R , n_B , or $f = n_R/N$ or p of drawing R?
- (1) You pick a ball: R. Q: estimate of $p = n_R/N$?
- (2) You pick another without replacing 1st ball: get R.
- (3) R
- (4) Get B
- This is a question about this ONE urn.
- Now Method 2: you draw red, and you PUT IT BACK. You repeat this several times.
- Now Method 3: We have an infinite source of balls with fraction p red and (1-p) blue.

$$P(R) = p$$
$$P(B) = 1 - p$$

Derivation of the Binomial Probability

- Make infinite number of urns all with N balls, with fraction p red and (1-p) blue.
- Open all, count n_R red balls, n_B blue balls.
- In our case we have *N* balls, prob p = R and 1 p = q = B.
- Prob of getting sequence RRB is:

$$P(RRB) = p \cdot p \cdot (1 - p) = p^2(1 - p)$$

• If we don't care about order, then:

$$P(RRB) = P(RBR) = P(BRR) = p^{2}(1-p)$$

• There are 3 ways of ordering RRB, so total probability is:

$$P(2R, 1B) = 3p^2(1-p) = 3p^2q$$

• Number of ways to choose *r* items from *N* is:

$$\binom{N}{r} = \frac{N!}{r!(N-r)!}$$

• Probability of getting exactly *r* R out of *N*:

$$P_r = \binom{N}{r} p^r (1-p)^{N-r} = B(r; N, p)$$

• This is called the Binomial distribution and applies to anything where there are 2 outcomes (A, \bar{A}) .

Mean and Variance of the Binomial Distribution

• Want mean, σ

$$E(r) = \sum_{r=0}^{n} r P_r = \sum_{r=0}^{n} r \binom{n}{r} p^r (1-p)^{n-r}$$

$$= \sum_{r=0}^{n} r \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

$$= \sum_{r=1}^{n} \frac{n!}{(r-1)!(n-r)!} p^r (1-p)^{n-r}$$

$$= np \sum_{r=1}^{n} \frac{(n-1)!}{(r-1)!(n-r)!} p^{r-1} (1-p)^{n-r}$$

• Change sum $r' = r - 1 \rightarrow n' = n - 1$

$$E(r) = np \sum_{r'=0}^{n-1} \frac{(n-1)!}{r'!(n-1-r')!} p^{r'} (1-p)^{(n-1)-r'}$$

$$= np \sum_{r'=0}^{n-1} {n-1 \choose r'} p^{r'} (1-p)^{n'-r'}$$

$$= np \cdot 1 = np$$

• from:

$$(p+q)^n = \sum_{r=0}^n \binom{n}{r} p^r q^{n-r}$$
$$(p+1-q)^n = 1^n = 1$$
$$E(r) = np$$

- This is what we want!
- Now:

$$V(r) = \sum r^2 p_r - E(r)^2 = \sum r^2 p_r - n^2 p^2$$

• Slightly easier to calculate:

$$\sum_{r=0}^{n} r(r-1)p_r = \sum_{r=0}^{n} r(r-1) \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r} = \sum_{r=2}^{n} \frac{n!}{(r-2)!(n-r)!} p^r q^{n-r}$$
$$= n(n-1)p^2 \sum_{r=2}^{n} \frac{(n-2)!}{(r-2)!(n-r)!} p^{r-2} q^{n-r}$$

• Sub r' = r - 2

$$= n(n-1)p^{2} \sum_{r'=0}^{n-2} \binom{n-2}{r'} p^{r'} q^{(n-2)-r'}$$

$$= n(n-1)p^{2} \cdot 1 = n(n-1)p^{2}$$

$$= n^{2}p^{2} - np^{2}$$

• Such that:

$$V(r) = \sum_{r} r^2 p_r - n^2 p^2 = np(1-p) = npq$$

Applications to Histograms and Counting Statistics

- Why is this important? Histograms are often Binomially distributed.
- Data either falls A: falls in bin, or \bar{A} : does not fall in bin.
- p = probability of falling in ith bin.
- +n entries, e.g. students in class, histogram = grades.
- Expected number of entries is *np*.
- Plot of taking distribution several times and checking how many fall in bin *i* and then plotting that distribution is Binomial.
- Usually you have 1 histogram.
- Look at entries in bin $i n_i/n =$ fraction of entries in bin i.
- Estimator $p = n_i/n$.
- Expect if you repeated $\Rightarrow n_i$ would follow Binomial distribution with mean $\sigma_i = \sqrt{npq}$ and $V_i = \sigma_i^2 = np(1-p)$.

$$p = \frac{n_i}{n}$$

•

$$\boxed{\sigma_i = \sqrt{n_i \left(1 - \frac{n_i}{n}\right)}} \approx \sqrt{n_i} \text{ if } n \gg n_i$$

- Notes: we do know the total number n, how often is it in bin i.
- HW: given the distribution, how many times *n* do I need to do it to get that.
- r fixed n, vs. n fixed r.

7 Thursday, October 2nd 2025

7.1 Review of the Binomial Distribution and Its Properties

• Recall last time:

$$B(r,n,p) = \binom{n}{r} p^r (1-p)^{n-r}$$

$$E(r) = np = \mu$$

$$V(r) = np(1-p) = \sigma^2$$

$$r = \sqrt{np(1-p)}$$

$$p = \frac{\mu}{n}$$

- $\epsilon = \frac{r}{n}$
- Number of detections (people often forget the (1 p) term):

$$n\epsilon \pm \sqrt{n\epsilon(1-\epsilon)}$$

•
$$\sigma_{\epsilon} = \frac{1}{n}\sigma_{r} = \frac{1}{n}\sqrt{r\left(1 - \frac{r}{n}\right)} = \frac{1}{\sqrt{n}}\sqrt{\epsilon(1 - \epsilon)}$$

• Standardized skewness:

$$E\left[\left(\frac{x-\mu}{\sigma}\right)^3\right] = \frac{1-2p}{\sqrt{np(1-p)}}$$

• Excess kurtosis:

$$\frac{1-6p(1-p)}{np(1-p)}$$

7.2 Bernoulli Distribution as a Special Case of the Binomial

• Bernoulli Distribution: Binomial with n = 1.

$$B(r, n = 1, p) = P_r = {1 \choose r} p^r (1 - p)^{1 - r} = p^r (1 - p)^{1 - r}$$

$$P_0 = 1 - p$$

$$P_1 = p$$

$$\mu = E(r) = np = p$$

$$V = \sigma^2 = np(1 - p) = p(1 - p)$$

$$E(r^k) = \sum_{r=0}^{1} r^k P_r = 0^k (1 - p) + 1^k p = p$$

• Central moments: $E[(r-p)^k]$

7.3 Negative Binomial and Geometric Distributions

- Negative Binomial: How many *n* to get *r* successes.
- Geometric distribution: negative binomial with r = 1 (number of trials to get first success).

$$G(n,p) = p(1-p)^{n-1}$$

• Example: Roll a die with p(i) = 1/6 (success = get 4)

$$E(n) = \frac{1}{p} = 6$$

- $P(n \le 5) = 0.598$
- P(n > 7) = 0.335

7.4 Samples and the Concept of an Ensemble

- Samples: A set of N draws/trials from a pdf p(x), $\{P_r\}$, is called a **sample** of size N: $\{x_i\}_{i=1}^N$.
- Orthodox statistics: your sample is one of many possible, and we can answer questions about the **ensemble** of samples.
- Samples:
 - 1: $\{x_{1i}\}_{i=1}^{N}$ from pdf p(x)
 - 2: $\{x_{2i}\}_{i=1}^{N}$ from pdf p(x)
 - ...
 - M
- $p(x|\mu,\sigma)$
- p = probability of H (heads), q = 1 p = probability of T (tails)
- These are limits: $p = \lim_{n \to \infty} \frac{n_H}{n}$
- Flip 10 times: exactly $2^{10} = 1024$ possible outcomes

$$S_1 = \{HHHHHHHHHHH\}$$

$$S_2 = \{HTHHHHHHHHH\}$$

. . .

• Given true p, calculate probability of any S_i :

$$P_i = \lim_{N \to \infty} \frac{n_i}{N}$$

- From the pdf probability, select *k* samples from a sample space of size *F*.
- Science/statistics infers from sample space \mathcal{R} to get p(x).
- Not purely deductive: ∞ number of pdfs map to one sample.
- Inductive: If sample pdf is more likely.
- Sample HHTHT ... known, from it we try to infer $p = p_H$.

7.5 Poisson Distribution as a Limit of the Binomial

• Poisson Distribution: limit of binomial for large *n*, small *p*.

•

$$B(r,n,p) = \binom{n}{r} p^r (1-p)^{n-r}$$

- Let $n \to \infty$, $p \to 0$ such that $np = \mu$ is constant.
- Stirling approximation:

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$

• Then:

$$B(r, n, p) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

• *r* is finite, $n \to \infty$, $n - r \to \infty$

$$\begin{split} B(r,n,p) &= \frac{1}{r!} \frac{\sqrt{2\pi n}}{\sqrt{2\pi (n-r)}} \frac{n^n e^{-n}}{(n-r)^{n-r} e^{-(n-r)}} \left(\frac{\mu}{n}\right)^r \left(1 - \frac{\mu}{n}\right)^{n-r} \\ &= \frac{1}{r!} \sqrt{\frac{n}{n-r}} \left(\frac{n}{n-r}\right)^{n-r} \frac{\mu^r}{e^r} \frac{\left(1 - \frac{\mu}{n}\right)^n}{\left(1 - \frac{\mu}{n}\right)^r} \\ &= \frac{1}{r!} \sqrt{\frac{n}{n-r}} \frac{(1 - \frac{r}{n})^r}{(1 - \frac{r}{n})^n} \frac{\mu^r}{e^r} \frac{\left(1 - \frac{\mu}{n}\right)^n}{\left(1 - \frac{\mu}{n}\right)^r} \end{split}$$

•
$$n \to \infty$$
, $\sqrt{\frac{n}{n-r}} \to 1$

•
$$\left(1 - \frac{\mu}{n}\right)^n \to e^{-\mu}$$

•
$$\left(1-\frac{\mu}{n}\right)^r \to 1$$

• Then:

$$\lim_{n\to\infty, np=\mu} B(r, n, p) = \frac{1}{r!} \mu^r e^{-\mu} = P(r|\mu) = \text{Poisson}$$

7.6 Poisson Process and Radioactive Decay

- Consider radioactive decay of some atoms:
 - 1. Any time interval [t, t + dt] contains at most one decay.
 - 2. Probability of a decay occurring in this interval is proportional to dt.
 - 3. Whether or not an atom decays in the interval is independent of any other non-overlapping interval.
- From (1) and (2):

$$P_d(dt) = \lambda dt$$

• Probability of no decay in interval:

$$P_0(dt) = 1 - \lambda dt$$

• Probability of no decay by time t + dt:

$$P_{0}(t + dt) = P_{0}(t)P_{0}(dt)$$

$$= P_{0}(t)(1 - \lambda dt)$$

$$P_{0}(t + dt) - P_{0}(t) = -\lambda P_{0}(t)dt$$

$$\frac{dP_{0}(t)}{dt} = -\lambda P_{0}(t)$$

$$P_{0}(t) = P_{0}(0)e^{-\lambda t} = e^{-\lambda t}$$

• Probability of getting r decays in time t + dt:

$$P_r(t+dt) = P_r(t)P_0(dt) + P_{r-1}(t)P_d(dt)$$

$$= P_r(t)(1 - \lambda dt) + P_{r-1}(t)\lambda dt$$

$$\frac{dP_r(t)}{dt} = -\lambda P_r(t) + \lambda P_{r-1}(t)$$

• Solution to PDE:

$$P_r(t) = \frac{1}{r!} (\lambda t)^r e^{-\lambda t}$$

• Poisson distribution with $\mu = \lambda t$

7.7 Moments and Variance of the Poisson Distribution

• Properties:

$$E(r) = \sum_{r=0}^{\infty} rP(r, \mu)$$

$$= \sum_{r=0}^{\infty} r \frac{\mu^r}{r!} e^{-\mu}$$

$$= \mu e^{-\mu} \sum_{r=1}^{\infty} \frac{\mu^{r-1}}{(r-1)!}$$

$$= \mu e^{-\mu} e^{\mu}$$

$$= \mu$$

• $V(r) = E(r^2) - \mu^2$

$$\begin{split} E[r(r-1)] &= E(r^2) - \mu \\ &= \sum_{r=2}^{\infty} r(r-1) \frac{\mu^r}{r!} e^{-\mu} \\ &= \mu^2 e^{-\mu} \sum_{r=2}^{\infty} \frac{\mu^{r-2}}{(r-2)!} \\ &= \mu^2 e^{-\mu} e^{\mu} = \mu^2 \end{split}$$

•
$$E(r^2) - \mu = \mu^2$$

•
$$V(r) = E(r^2) - \mu^2 = \mu$$

• Binomial:
$$\mu = np$$
, $V(r) = np(1-p) = \mu$ for $p \to 0$ and $n \to \infty$.

8 Tuesday, October 7th, 2025

8.1 The Gaussian (Normal) Distribution

$$G(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

8.2 The Standard Normal Distribution

$$N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

8.3 Example: Circular Symmetry (Darts on a Board)

Distribution of darts:

$$f(x,y) = h(x)k(y)$$

Transform to polar coordinates:

$$g(r,\theta) \approx f(x,y) = h(x)k(y),$$
 $g(r,\theta) = g(r)$
$$\frac{\partial g}{\partial \theta} = 0 = \frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta}$$

Coordinates:

$$x = r \cos \theta,$$
 $y = r \sin \theta$
$$\frac{\partial x}{\partial \theta} = -r \sin \theta = -y,$$

$$\frac{\partial y}{\partial \theta} = r \cos \theta = x$$

Condition:

$$0 = h'(x)k(y)(-y) + h(x)k'(y)x$$
$$\frac{h'(x)}{xh(x)} = \frac{k'(y)}{yk(y)} = a \quad \text{(constant)}$$

Solutions:

$$h(x) = ce^{ax^2}, \qquad k(y) = de^{ay^2}$$

 $f(x,y) = Ae^{a(x^2+y^2)} = Ae^{ar^2} \approx Ae^{-r^2}$

8.4 Expectation Value of a Gaussian

$$E(x) = \mu = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} xe^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mu$$

Useful identity:

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$

8.5 Moments of the Gaussian

The *n*th central moment:

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^n e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

- All odd moments vanish (symmetry about μ).

Define

$$I_0(a) = \int_{-\infty}^{\infty} e^{-ay^2} dy = \sqrt{\frac{\pi}{a}}$$

Differentiation rule:

$$\frac{d^n I_0(a)}{da^n} = (-1)^n \frac{(2n)!}{n!} \frac{I_0(a)}{(2a)^n}$$

8.6 Variance of the Gaussian

Let $y = x - \mu$. Then

$$V(y) = V(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} y^2 e^{-\frac{y^2}{2\sigma^2}} dy$$
$$= -\frac{\mathrm{d}I_0(a)}{\mathrm{d}a} \bigg|_{a = \frac{1}{2\sigma^2}} = \sigma^2$$

8.7 Kurtosis of the Gaussian

Fourth central moment:

$$\int y^4 e^{-ay^2} dy = \frac{d^2 I_0(a)}{da^2} \frac{1}{4a^2}$$

Evaluates to:

$$E\left[\left(\frac{x-\mu}{\sigma}\right)^4\right] = 3$$

Thus the Gaussian kurtosis = 3. - Excess kurtosis = 0. - Distributions with > 3 have "fat tails."

8.8 Poisson Distribution and Gaussian Limit

$$P(r|\lambda) = \frac{1}{r!} \lambda^r e^{-\lambda}$$

For large *r*, Stirling approximation:

$$r! \approx \sqrt{2\pi r} \left(\frac{r}{e}\right)^r$$

$$\log P(r|\lambda) = -\log(r!) + r\log\lambda - \lambda$$

Expanding around $r \approx \lambda$ leads to Gaussian limit with variance λ :

$$P(r|\lambda) pprox rac{1}{\sqrt{2\pi\lambda}} e^{-rac{(r-\lambda)^2}{2\lambda}}$$

8.9 Central Limit Theorem (CLT)

Let x_1, \ldots, x_n be independent random variables with mean μ , variance σ^2 . Define sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Then as $n \to \infty$:

$$ar{x} \sim \mathcal{N}\left(\mu, \ rac{\sigma^2}{n}
ight)$$

8.10 Cumulative Distribution Function of a Gaussian

$$F(x) = \int_{-\infty}^{x} G(y|\mu,\sigma)dy$$

Define error function:

$$\operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-y^2} dy, \qquad \operatorname{erfc}(t) = 1 - \operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \int_t^\infty e^{-y^2} dy$$

8.11 Gaussian Confidence Intervals

• 1*σ*: 68.27%

• 2*σ*: 95.45%

• 3*σ*: 99.73%

• 5*σ*: 99.99994%

8.12 Estimators

Given a sample of size *n*, an *estimator* is any function designed to estimate a property of the true pdf from which the samples were drawn.

9 Thursday, October 9th 2025

9.1 Properties of Estimators

• Consistent: $\lim_{n\to\infty} \hat{a} = a$

• Unbiased: $\mathbb{E}[a(x)] = a$

• Efficient: smallest variance of all unbiased estimators

9.2 Example: Measurements and Models

• Let $x_1, x_2, ..., x_n$ be n measurement points.

• Example applications: number of elements in a histogram bin, position of hits in a detector.

• y_i are the measured values at each x_i , with variances $V(y_i) = \sigma_i^2$.

• Suppose we suspect a model for the histogram shape (e.g. linear background + Gaussian signal):

Number of entries =
$$mx_i + b + Ae^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

• More generally, assume a function $f(x, \vec{\theta})$ with parameters $\vec{\theta}$.

9.3 Least Squares Estimation

• The best estimate for $\vec{\theta}$ is the value that minimizes the chi-squared:

$$\chi^2 = \sum_{i=1}^n \frac{(y_i - f(x_i, \vec{\theta}))^2}{\sigma_i^2}.$$

• Condition for minimization:

$$\frac{\partial \chi^2}{\partial \theta_i} = 0.$$

• Equivalent system of equations:

$$\sum_{i=1}^{n} \frac{(y_i - f(x_i, \vec{\theta}))}{\sigma_i^2} \frac{\partial f(x_i, \vec{\theta})}{\partial \theta_j} = 0.$$

9.4 Straight Line Fit

• For $f(x_i, \vec{\theta}) = mx_i + b$, with $\vec{\theta} = (m, b)$:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - (mx_{i} + b))^{2}}{\sigma_{i}^{2}}.$$

• Normal equations from minimization:

$$\frac{\partial \chi^2}{\partial m} = -2\sum_{i=1}^n \frac{(y_i - (mx_i + b))}{\sigma_i^2} x_i = 0,$$

$$\frac{\partial \chi^2}{\partial b} = -2\sum_{i=1}^n \frac{(y_i - (mx_i + b))}{\sigma_i^2} = 0.$$

• Two equations, two unknowns. Can be written in matrix form:

$$\begin{bmatrix} S_{xx} & S_x \\ S_x & S_1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} S_{xy} \\ S_y \end{bmatrix},$$

where

$$S_{xx} = \sum_{i} \frac{x_i^2}{\sigma_i^2}, \quad S_x = \sum_{i} \frac{x_i}{\sigma_i^2}, \quad S_1 = \sum_{i} \frac{1}{\sigma_i^2},$$
$$S_{xy} = \sum_{i} \frac{x_i y_i}{\sigma_i^2}, \quad S_y = \sum_{i} \frac{y_i}{\sigma_i^2}.$$

9.5 Generalized Least Squares with Covariance Matrix

• In general, for non-diagonal covariance matrix V of y_i :

$$\chi^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_{i} - f(x_{i}, \vec{\theta})) E_{ij} (y_{j} - f(x_{j}, \vec{\theta})),$$

where $E = V^{-1}$ is the inverse covariance matrix.

• Linear case: if $f(x_i, \vec{\theta})$ is linear in θ :

$$\vec{f} = A\vec{\theta}$$
.

• Then

$$\chi^2 = (\vec{y} - A\vec{\theta})^T V^{-1} (\vec{y} - A\vec{\theta}).$$

• Minimization gives:

$$(A^T V^{-1} A) \vec{\theta} = A^T V^{-1} \vec{y},$$

$$\Rightarrow \vec{\theta} = (A^T V^{-1} A)^{-1} A^T V^{-1} \vec{y}.$$

9.6 Covariance of the Estimated Parameters

• Propagation of covariance:

$$V(\vec{y}) = BV(\vec{x})B^T.$$

• For parameter estimates:

$$V(\vec{\theta}) = (A^T V^{-1} A)^{-1}.$$

9.7 Goodness of Fit

• The chi-squared statistic

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, \vec{\theta}))^{2}}{\sigma_{i}^{2}}$$

is distributed as χ^2 with n degrees of freedom if the y_i are Gaussian.

• If the model is good, $\chi^2/\text{dof} \sim 1$; if the model is bad, $\chi^2/\text{dof} \gg 1$.

10 Tuesday, October 14th 2025

In this lecture, I start to not take all notes, instead I write down only the key points.

10.1 Chi-Squared for Uncorrelated and Correlated Measurements

- Recall difference in chi-squared formula for uncorrelated and correlated measurements.
- Uncorrelated:

$$\chi^2 = \sum_{i=1}^n \frac{(y_i - \mu_i)^2}{\sigma_i^2}$$

• Correlated (general case):

$$\chi^2 = \sum_{i,j}^{n} (y_i - \mu_i) V_{ij}^{-1} (y_j - \mu_j)$$

where V^{-1} is the inverse of the covariance matrix V.

10.2 Covariance Matrix and Linear Transformations

• The covariance matrix is defined as

$$V_{ij} = \text{Cov}(y_i, y_j) = \langle (y_i - \mu_i)(y_j - \mu_j) \rangle.$$

- Suppose we apply a linear transformation B to \vec{y} , where B is an $n \times n$ matrix of eigenvectors that diagonalizes V.
- Define transformed variables:

$$\vec{z} = B\vec{y}, \quad V_z = BVB^T, \quad \mu_z = B\mu_y.$$

• Then:

$$\chi^{2}(z) = (\vec{z} - \vec{\mu_z})^{T} V_z^{-1} (\vec{z} - \vec{\mu_z})$$

10.3 Modeling Data with Parameters

• Suppose we have a model

$$y_i = f(x_i, \vec{\theta}),$$

where x_i are independent variables and $\vec{\theta}$ are model parameters.

- Example: $y_i = mx_i + b$, with $\sigma_i \neq \sigma_i$ (heteroscedastic errors).
- We want to find the best estimate of $\vec{\theta}$.

10.4 Least Squares Estimation

• Define:

$$\chi^{2}(\vec{\theta}) = \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, \vec{\theta}))^{2}}{\sigma_{i}^{2}}.$$

• The best estimators for μ_i are $f(x_i|\vec{\theta})$ and

$$\chi^2(\hat{\theta}) = \chi^2_{\min} = \sum_i \left(\frac{y_i - f(x_i | \hat{\theta})}{\sigma_i} \right)^2.$$

• Principle of least squares:

$$\hat{\theta} = \arg\min \chi^2(\vec{\theta})$$

i.e. the value of $\vec{\theta}$ that minimizes $\chi^2(\vec{\theta}).$

• Solution satisfies:

$$\frac{\partial \chi^2}{\partial \theta_i} = 0.$$

10.5 Distribution of Parameter Estimates

- Note: $\hat{\theta}$ is itself a random variable, with its own probability distribution.
- A different sample $\{x_i, y_i\}$ will lead to a different $\hat{\theta}$.

10.6 Quadratic Expansion of chi-squared and Error Estimates

• For polynomial (linear in parameters) fits:

$$f(x_i|\vec{\theta}) = (A\vec{\theta})_i.$$

• Then:

$$\chi^{2} = (\vec{y} - A\vec{\theta})^{T} V^{-1} (\vec{y} - A\vec{\theta})$$
$$\chi^{2} = (y_{i} - A_{im}\theta_{m}) V_{ij}^{-1} (y_{j} - A_{jn}\theta_{n}).$$

• First derivative:

$$\frac{\partial \chi^2}{\partial \theta_k} = -2(y_i - A_{im}\theta_m)V_{ij}^{-1}A_{jk}.$$

• Second derivative:

$$\frac{\partial^2 \chi^2}{\partial \theta_k \partial \theta_l} = 2A_{il}V_{ij}^{-1}A_{jk} = 2(A^TV^{-1}A)_{kl}.$$

10.7 Covariance of Parameter Estimates

• For linear fits:

$$V(\hat{\theta}) = (A^T V^{-1} A)^{-1}.$$

• For non-linear fits:

$$V^{-1}(\hat{\theta}) = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \theta_i \partial \theta_k} \bigg|_{\theta = \hat{\theta}}.$$

11 Thursday, October 16th 2025

I was gone this day, so I copied notes from J. Liang.

11.1 Chi-Squared Minimization and Degrees of Freedom

• Degrees of Freedom (dof):

$$\chi^2(\theta) = (y - A\vec{\theta})^T V^{-1} (y - A\vec{\theta})$$

• At $\hat{\theta}$, χ^2 is minimized:

$$\left. \frac{\partial \chi^2}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0 = F(\vec{y}|\vec{\theta}, \vec{x}) = \begin{cases} F(\vec{y}|\theta_1, \vec{x}) \\ F(\vec{y}|\theta_2, \vec{x}) \\ \vdots \\ F(\vec{y}|\theta_k, \vec{x}) \end{cases}$$

• i.e. for a linear fit $\vec{y} = A\vec{\theta}$ with k equations:

$$\hat{\theta} = (A^T V^{-1} A)^{-1} (A^T V^{-1}) \vec{y}$$

• Think about it like this: If I know n - k of the y_i 's, the remaining k y_i 's are fixed. Their relations might be complex but they are fixed since we have k equations.

 y_i 's have some N_y and σ_y^2 .

11.2 Two-Measurement Example and Correlated Variables

• Best estimator of the true *N* is $\hat{y} = \frac{y_1 + y_2}{2}$.

$$\chi^2 = \left(\frac{y_1 - \hat{N}}{\sigma_y}\right)^2 + \left(\frac{y_2 - \hat{N}}{\sigma_y}\right)^2$$

• Note:

$$y_1 - \hat{N} = \frac{1}{2}(y_1 - y_2)$$
$$y_2 - \hat{N} = \frac{1}{2}(y_2 - y_1)$$

• Where $z_1 = y_1 - y_2$, and $z_2 = y_2 - y_1$ such that $z_2 = -z_1$.

$$V(z_1, z_2) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

- Determinant of *V* is 0, so it is not invertible.
- Thus we effectively have only one independent variable.

11.3 Residuals and Goodness of Fit

- Residual: $r_i = y_i f_i(\vec{\theta})$.
- When talking about goodness of fit, people usually divide χ^2 by the number of degrees of freedom (dof). If $\chi^2/\text{dof}\approx 1$, it is a good fit.
- What about residuals?

Sometimes one weird data point can throw off the whole χ^2 in unexpected ways, so it is important to check the residuals as well.

• If residuals are randomly scattered around 0, it indicates a good fit.

11.4 Distribution of Estimators

- We have been talking about estimators, but we want values of the parameters.
- Suppose we perform a fit on a parameter with true value *a*.
- From fitting, we get different estimator values from different data sets.

• These estimates can be scattered over a range of values.

11.5 Toy Monte Carlo Simulations for Estimator Distributions

• Toy Monte Carlo:

• Often, the model is too complicated to get an analytic form of the estimator distribution.

- 1. Pick a parameter a.
- 2. Generate many data sets according to the model with parameter a.
- 3. For each data set, compute the estimator \hat{a} .
- 4. Plot a histogram of \hat{a} .
- 5. Repeat steps 2–4 *n* times.
- 6. Repeat step 1 *m* times.
- For each *a* value, we can determine e.g. 5%, 90%, and 5% quantiles.

• We then connect these points.

- $P(a_- \le a \le a_+) = 0.90$. Coverage = fraction of time your prescription for the estimator interval contains the true value a.
- In other words, we find or choose \hat{a}_{-} and \hat{a}_{+} such that 90% of the time, the true a lies in our interval (corresponding to a_{-} and a_{+}).
- The bias in all this is that we can really pick intervals however we want.

11.6 Typical Applications of Least Squares Fitting

- Typical usage of Least Squares (LS):
 - 1. x_i , y_i , with known σ_x , and known σ_y for y_i .

王派	<u>T</u>]6,	Ţ
۲,	×2	7 /3

If y_i 's are measured by a detector, we can determine σ_i by analyzing the detector.

2. Histograms: i.e., measure x on a coordinate, which can have resolution effects, etc., where y = statistics of the number of events at the same x.

Say the resolution has:

so what you see is actually a convolution of the true distribution with the resolution function.

So the fit should actually be an exponential * Gaussian in this case.

$$\chi^2 = \sum_{i} \frac{(n_i - f_i(\theta))^2}{\sigma_i^2}$$

Suppose we expect Poisson statistics:

$$\sigma_i^2 = n_i$$

Then the data are weighted by n_i :

Neyman
$$\chi^2 \equiv \sum_i \frac{(n_i - f_i(\theta))^2}{n_i}$$

which is a modified least squares form.

Alternatively, it is sensible to say that the expected entries are given by our model:

$$\Rightarrow$$
 use $f_i(\vec{\theta})$ as the mean.

Therefore:

Pearson
$$\chi^2 \equiv \sum_i \frac{(n_i - f_i(\theta))^2}{f_i(\theta)}$$

For Neyman χ^2 , if a bin is empty ($n_i = 0$) then it diverges. Both Neyman and Pearson forms are biased in opposite ways. One could use Neyman and Pearson together, but is it worth the effort?

42

12 Tuesday, October 21st 2025

12.1 Least-Squares Fits

• Usually we have data $(x_i, y_i \pm \sigma_i)$. We want to fit a model $y = f(x; \theta)$ to the data.

$$\chi^2 = \sum_i \frac{(y_i - f(x_i; \theta))^2}{\sigma_i^2}$$

• Sometimes we are given y = f(x) and sometimes we are given x = g(y).

$$\chi^{2} = \sum_{i} \frac{(x_{i} - g(y_{i}; \theta))^{2}}{\sigma_{x,i}^{2}}$$

$$\sigma_x = \left| \frac{dg}{dy} \right| \sigma_y$$

• Now that is the end of least-squared fits for a while.

12.2 Unbinned Data and Likelihood Functions

- Now we move on to unbinned data.
- Idea is that you have some data drawn from some probability distribution P(x;a)

$$P(t) \sim \frac{1}{\tau} e^{-t/\tau}$$

- Data sample of size n: $\{x_1, x_2, ..., x_n\}$
- Form likelihood function:

$$\mathcal{L}(x_1, x_2, ..., x_n; a) = \prod_{i=1}^n P(x_i; a)$$

- This is equivalent to the probability of getting the data given the parameter $a: P(\vec{x}|a)$.
- Not a probability distribution in a! It is a function of a.
- Suppose we have an estimator \hat{a} for a. Then the expectation value of the estimator is:

$$E[\hat{a}] = \int \hat{a}(\vec{x}) P(\vec{x}; a) d\vec{x}$$

• The maximum likelihood principle states that the best estimate for a is the value \hat{a} that maximizes $\mathcal{L}(\vec{x}; a)$:

$$\left. \frac{\partial \mathcal{L}(\vec{x}; a)}{\partial a} \right|_{a=\hat{a}} = 0$$

• Often easier to maximize $\ln \mathcal{L}$ since \ln is monotonic:

$$\ln \mathcal{L}(\vec{x}; a) = \ln \prod_{i=1}^{n} P(x_i; a) = \sum_{i=1}^{n} \ln P(x_i; a)$$

• Then we will find:

- 1. max for $\ln \mathcal{L}(\vec{x}; a)$
- 2. min for $-\ln \mathcal{L}(\vec{x}; a)$
- ML estimators tend to be not unbiased, but consistent, often efficient.

$$\left. \frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a} \right|_{a = \hat{a}} = 0$$

12.3 Example: Exponential Distribution

• Example: Exponential distribution

$$P(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$$

$$\mathcal{L}(t_1, t_2, \dots, t_n; \tau) = \prod_{i=1}^n \frac{1}{\tau}e^{-t_i/\tau} = \sum_{i=1}^n \ln\left(\frac{1}{\tau}e^{-t_i/\tau}\right) = -n\ln\tau - \frac{1}{\tau}\sum_{i=1}^n t_i$$

$$\frac{\partial \ln \mathcal{L}}{\partial \tau} = 0 = -\frac{n}{\tau} + \frac{1}{\tau^2}\sum_{i=1}^n t_i$$

$$\hat{\tau} = \frac{1}{n}\sum_{i=1}^n t_i = \bar{t}$$

This is unbiased.

 $E(\hat{\tau}) = \frac{1}{n}E(\sum_{i=1}^{n} t_i) = \frac{1}{n}\sum_{i=1}^{n} E(t_i) = \frac{1}{n}n\tau = \tau$

12.4 Example: Lifetime with Cutoff *T*

• (Not normalized *P*:)

$$P(t|\tau) = \begin{cases} \frac{1}{\tau}e^{-t/\tau}/e^{-T/\tau} & 0 \ge t \ge T\\ 0 & \text{otherwise} \end{cases}$$

• Now must normalize! $\sum_{t=T}^{\infty} P(t|\tau) = 1$

$$P(t|\tau) = \frac{1}{(1 - e^{-T/\tau})\tau}e^{-t/\tau}$$

• Log-likelihood:

$$\ln \mathcal{L} = \sum_{i=1}^{n} \left[\ln \left((1 - e^{-T/\tau}) \tau \right) \right] - \frac{1}{\tau} \sum_{i=1}^{n} t_i$$
$$= -n \ln \left(1 - e^{-T/\tau} \right) - n \ln \tau - \frac{1}{\tau} \sum_{i=1}^{n} t_i$$

• Set derivative to zero:

$$\begin{split} \frac{\partial \ln \mathcal{L}}{\partial \tau} &= 0\\ \frac{\partial \ln \mathcal{L}}{\partial \tau} &= \frac{-n(-e^{-T/\tau})(\frac{T}{\tau^2})}{(1 - e^{-T/\tau})} - \frac{n}{\tau} + \frac{1}{\tau^2} \sum_{i=1}^n t_i = 0 \end{split}$$

12.5 Example: Multiple Gaussian Measurements

• Multiple measurements of some quantity:

$$P(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$\ln \mathcal{L} = -\sum_{i} \ln\left(\sqrt{2\pi}\right) - \sum_{i} \ln \sigma - \frac{1}{2} \sum_{i} \frac{(x_i - \mu)^2}{\sigma^2}$$

$$\frac{\partial \ln \mathcal{L}}{\partial \mu} = 0 = \frac{-1}{2} (-2) \sum_{i} \frac{(x_i - \mu)}{\sigma^2}$$

$$= \frac{1}{\sigma^2} \sum_{i} (x_i - \hat{\mu}) = 0$$

$$\sum_{i} x_i = n\hat{\mu} \Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i} x_i = \bar{x}$$

• Now for σ :

$$\begin{split} \frac{\partial \ln \mathcal{L}}{\partial \sigma} \bigg|_{\hat{\sigma}, \hat{\mu}} &= 0 = -\frac{n}{\sigma} - \frac{1}{2} \left(\frac{-2}{\sigma^3} \right) \sum_i (x_i - \mu)^2 \\ &- n\hat{\sigma}^2 + \sum_i (x_i - \hat{\mu})^2 = 0 \\ \hat{\sigma}^2 &= \frac{1}{n} \sum_i (x_i - \hat{\mu})^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2 \end{split}$$

• This is a biased estimator for σ^2 . Unbiased is with 1/(n-1).

12.6 Properties of the Maximum-Likelihood Estimator

- This next stuff is not really testable but can be interesting to see where it comes from.
- To avoid confusion call a_0 the true value of a.
- We have $\mathcal{L}(\vec{x}; a)$ and we want to know how well \hat{a} estimates a_0 .

$$\left. \frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a} \right|_{a=\hat{a}} = 0$$

• Taylor expand around *a*₀:

$$f(\hat{a}) = f(a_0) + f'(a_0)(\hat{a} - a_0) + \frac{1}{2}f''(a_0)(\hat{a} - a_0)^2 + \dots$$

• So we have:

$$\frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a}\bigg|_{a=\hat{a}} = \frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a}\bigg|_{a=a_0} + (\hat{a} - a_0) \frac{\partial^2 \ln \mathcal{L}(\vec{x}; a)}{\partial a^2}\bigg|_{a=a_0} + \ldots = 0$$

• For $n \to \infty$, $\hat{a} \to a_0$ (consistent estimator), so we can neglect higher order terms.

$$\left. \frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a} \right|_{a=a_0} \to \left. \frac{\partial \ln \mathcal{L}(\vec{x}; a)}{\partial a} \right|_{a=\hat{a}} = 0$$

13 Thursday, October 23rd 2025

13.1 Definition of the Likelihood Function

• Likelihood

 $\mathcal{L}(\vec{x}|\theta)$ = probability of x and not theta

• Model $\vec{\theta}$ with $p(\vec{x}|\vec{\theta})$

$$\mathcal{L} = \prod_{i=1}^{N} p(x_i | \vec{\theta})$$

$$\ln \mathcal{L} = \sum_{i=1}^{N} \ln p(x_i | \vec{\theta})$$

13.2 Maximum Likelihood Estimation (MLE)

• Maximize likelihood to get best estimate of $\vec{\theta}$. Choose $\hat{\theta}$ such that:

$$\hat{\theta} = \operatorname{argmax}_{\vec{\theta}} \mathcal{L}(\vec{x}|\vec{\theta})$$

$$\left. \frac{\partial \ln \mathcal{L}(\vec{\subseteq})}{\partial \theta} \right|_{\hat{\theta}} = 0$$

13.3 Quadratic Approximation of the Log-Likelihood

- Shape of \vec{a} distribution: $\ln \mathcal{L}(a)$ around \hat{a} is approximately quadratic.
- True $a = \hat{a}$; expand about a_0 :
- Taylor expansion:

$$f(a) = f(a_0) + (\hat{a} - a_0)f'(a_{\star})$$
 where a_{\star} is between \hat{a} and a_0

• So, for $f = \frac{\partial \ln \mathcal{L}(a)}{\partial a}$:

$$0 = \frac{\partial \ln \mathcal{L}(a)}{\partial a} \bigg|_{a_0} + (\hat{a} - a_0) \frac{\partial^2 \ln \mathcal{L}(a)}{\partial a^2} \bigg|_{a_*}$$

13.4 Asymptotic Limit and Expectation Relation

• Large *n* for consistent $\hat{a} \rightarrow a_0$:

$$\lim_{n\to\infty} \frac{\partial^2 \ln \mathcal{L}(a)}{\partial a^2} \bigg|_{a_+} = \lim_{n\to\infty} \sum_i \frac{\partial^2 \ln p(x_i|a)}{\partial a^2} \bigg|_{a_+} \approx \lim_n n \int p(x|a) \frac{\partial^2 \ln p(x|a)}{\partial a^2} \bigg|_{a_+} dx$$

• Sum over samples x_i drawn from p(x|a):

$$= \lim_{n \to \infty} nE \left(\frac{\partial^2 \ln p(x|a)}{\partial a^2} \Big|_{a_{\star}} \right)$$
$$= E \left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2} \Big|_{a_{\star}} \right)$$

$$\hat{a} - a_0 = -\frac{\frac{\partial \ln \mathcal{L}(a)}{\partial a} \Big|_{a_0}}{E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2} \Big|_{a_{\star}}\right)}$$

$$0 = \frac{\partial \ln \mathcal{L}(a)}{\partial a} \Big|_{a_0} + (\hat{a} - a_0) \frac{\partial^2 \ln \mathcal{L}(a)}{\partial a^2} \Big|_{a_{\star}}$$

13.5 Normalization of the Likelihood Function

• The likelihood is normalized:

$$\int \mathcal{L}(\vec{x}|a)d\vec{x} = 1$$

$$\Rightarrow \int \frac{\partial \mathcal{L}(\vec{x}|a)}{\partial a}d\vec{x} = 0$$

• Relation between \mathcal{L} and $\ln \mathcal{L}$:

$$\frac{\partial \mathcal{L}}{\partial a} = \frac{\partial \ln \mathcal{L}}{\partial a} \mathcal{L}$$
$$\frac{\partial \ln \mathcal{L}}{\partial a} = \sum_{i=1}^{n} \frac{\partial \ln p(x|a)}{\partial a}$$

13.6 Gaussian Approximation via the Central Limit Theorem

- The sum of *n* variables with zero mean:
- By the Central Limit Theorem, for large n, $\frac{\partial \ln \mathcal{L}}{\partial a}$ is Gaussian with mean 0.

$$E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\right) = -E\left(\left(\frac{\partial \ln \mathcal{L}}{\partial a}\right)^2\right)$$

13.7 Variance of the Estimator and the Fisher Information

• Variance of $\hat{a} - a_0$:

$$\operatorname{Var}(\hat{a} - a_0) = \frac{\operatorname{Var}\left(\frac{\partial \ln \mathcal{L}(a)}{\partial a}\Big|_{a_0}\right)}{\left(E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\Big|_{a_{\star}}\right)\right)^2}$$
$$= \frac{E\left(\left(\frac{\partial \ln \mathcal{L}(a)}{\partial a}\Big|_{a_0}\right)^2\right)}{\left(E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\Big|_{a_{\star}}\right)\right)^2}$$

$$= -\frac{E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\Big|_{a_0}\right)}{\left(E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\Big|_{a_{\star}}\right)\right)^2}$$

• When $n \to \infty$, $a_{\star} \to a_0$ and $\hat{a} \to a_0$:

$$Var(\hat{a}) = -\frac{1}{E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\Big|_{a_0}\right)}$$

• Fisher Information matrix:

$$E\left(\frac{\partial^2 \ln \mathcal{L}}{\partial a^2}\right)$$

• For large n, $\hat{a} \rightarrow a_0$. Estimate $E(\cdot)$ by the observed value:

$$\frac{\partial^2 \ln \mathcal{L}}{\partial a^2} \bigg|_{\hat{a}}$$

• So the estimate of variance of $\hat{a} - a_0$ is:

$$\operatorname{Var}(\hat{a} - a_0) = -\frac{1}{\frac{\partial^2 \ln \mathcal{L}}{\partial a^2} \Big|_{\hat{a}}}$$

13.8 Taylor Expansion Near the Maximum Likelihood Estimate

• Taylor expansion again:

$$\frac{\partial \ln \mathcal{L}(a)}{\partial a} = \frac{\partial \ln \mathcal{L}(a)}{\partial a} \Big|_{\hat{a}}^{1} + (a - \hat{a}) \frac{\partial^{2} \ln \mathcal{L}(a)}{\partial a^{2}} \Big|_{\hat{a}}^{2} + \dots$$

where $\frac{\partial^2 \ln \mathcal{L}(a)}{\partial a^2}\Big|_{\hat{a}} = -\frac{1}{V(\hat{a})}$

$$\frac{-(a-\hat{a})}{V(\hat{a})}+\ldots$$

• Note that $V(\hat{a} - a_0) = V(\hat{a})$ because a_0 is constant and does not change the variance (it just shifts the distribution).

• So,

$$\ln \mathcal{L}(a) = \ln \mathcal{L}(\hat{a}) - \frac{1}{2V(\hat{a})} (a - \hat{a})^2$$

$$\mathcal{L} = \mathcal{L}(\hat{a}) \exp\left(-\frac{1}{2} (\frac{a - \hat{a}}{\sigma_{\hat{a}}})^2\right)$$

13.9 Goodness of Fit and the Kolmogorov-Smirnov Test

- Note that the value you get from the maximum likelihood does not give information on how good the fit is—it is just relative to other values of the parameters.
- Kolmogorov–Smirnov test for goodness of fit (KS):
 - 1. Order data points $\{t_i\}$ such that $t_0 \le t_1 \le t_2 \le \ldots \le t_N$
 - 2. Form an accumulator *F* (same model CDF *C*).
- Metric:

$$\max |F(t_i) - C(t_i)|$$

14 Tuesday, October 28th 2025

14.1 Taylor Expansion of the Log-Likelihood Around the Maximum

• Continuing from last time:

$$\ln \mathcal{L}(\vec{\theta}) = \ln \mathcal{L}(\hat{\theta}) + \sum_{i} (\theta_{i} - \hat{\theta}_{i}) \frac{\partial \ln \mathcal{L}}{\partial \theta_{i}} \Big|_{\hat{\theta}} + \frac{1}{2} \sum_{i,j} (\theta_{i} - \hat{\theta}_{i}) (\theta_{j} - \hat{\theta}_{j}) \frac{\partial^{2} \ln \mathcal{L}}{\partial \theta_{i} \partial \theta_{j}} \Big|_{\hat{\theta}} + \dots$$

$$= \ln \mathcal{L}(\hat{\theta}) + (\vec{\theta} - \hat{\theta})^{T} \nabla \ln \mathcal{L} \Big|_{\hat{\theta}} + \frac{1}{2} (\vec{\theta} - \hat{\theta})^{T} H(\vec{\theta} - \hat{\theta}) + \dots$$

• This is the Hessian matrix *H*:

$$V^{-1} = -H$$

14.2 Parameter of Interest and Nuisance Parameters

- Often interested in only one parameter τ . Pick τ : what is max $\mathcal L$ if that were true.
- τ is what we want. σ is a nuisance parameter.

14.3 Likelihood versus Chi-Squared Interpretation

- Maximum Likelihood is only a function of the shape of your data and whether it matches your model.
- χ^2 is a function of both the height and the shape of your data.

14.4 Normalization and Extended Likelihood

• We can incorporate the number of data events:

$$\int P(x|a)dx = 1 \,\forall a$$

• Define *Q* such that:

$$\int Q(x|a)dx = L(a)$$

- Example: number of muons from cosmic rays passing through counters.
- Extend likelihood:

$$\mathcal{L} = \frac{e^{-\nu} \nu^n}{n!}$$

• This is called the extended likelihood and contains the Poisson term.

$$\ln \mathcal{L} = \sum_{i} \ln(p(x_i|a)) - \nu - n \ln \nu + \ln n!^{\bullet}$$

14.5 Nuisance Parameters and Systematic Effects

• Nuisance parameters often represent systematic effects or resolution uncertainties:

$$\mathcal{L}(\theta) = \mathcal{L}_0 \frac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp\left(-\frac{(\theta - \mu)^2}{2\sigma_{\theta}^2}\right)$$

• $\theta \sim \mathcal{N}(\mu, \sigma_{\theta}^2)$ is a nuisance parameter.

14.6 Gaussian Data Likelihood and Chi-Squared Minimization

- Suppose we have data points of the form $\{x_i, y_i \pm \sigma_i\}$ and y_i are Gaussian.
- We think we know y(x) = f(x|a).

$$p(y_i|a) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\frac{(y_i - f(x_i|a))^2}{2\sigma_i^2}\right)$$
$$\mathcal{L} = \prod_i p(y_i|a)$$

$$\ln \mathcal{L} = -\frac{1}{2} \sum_{i} \left(\frac{y_i - f(x_i|a)}{\sigma_i} \right)^2 + \text{const}$$

- Maximizing $\ln \mathcal{L}$:
- Minimizing χ^2 :

$$\chi^2 = \sum_{i} \left(\frac{y_i - f(x_i|a)}{\sigma_i} \right)^2$$

- i.e. Maximizing likelihood is equivalent to minimizing χ^2 for Gaussian data.

14.7 Introduction to Hypothesis Testing

- Next: Hypothesis Testing.
- A simple hypothesis is one for which the test statistic has a completely specified pdf.
- Example: data come from Poisson process with mean $\nu = 5$ –6.
- A composite hypothesis is one for which the test statistic has a pdf that depends on unknown parameters.
- Here is a similar example diagram from the internet:

14.8 Rejection Regions and Type I Error

• Decide in advance a σ_i^2 region of x. Reject H_0 if x is in this region.

$$\int_{\text{region}} p(x|H_0)dx = \alpha = \text{significance of test}$$

- For $x \ge x_0$: "Reject" H_0 when true occurs α fraction of the time.
- Type I error: Reject H_0 when true (probability α).
- Fisher.
- $H_0 = \text{Data is } \sim \mathcal{N}(\mu_0, \sigma_0^2).$
- Get pairs x_1 , x_2 .
- Your choice of possible regions is huge and can lead to very weird tests.

14.9 Neyman-Pearson Lemma and Type II Error

• Neyman–Pearson: fixed by adding second hypothesis H_A .

• β = power of test.

• Only two choices: H_0 or H_A .

• Type II error: Accept H_0 when false (probability β).

14.10 Likelihood Ratio Test and Interpretation

ullet Law: Null hypothesis H_0 is rejected in favor of alternative hypothesis H_A if

$$\Lambda(x) = \frac{\mathcal{L}(x|H_A)}{\mathcal{L}(x|H_0)} \ge k_{\alpha}$$

• In legal terms: $H_0 =$ innocent until proven guilty, $H_A =$ guilty.

• In science: H_0 = no new physics, H_A = new physics.