STOR 767 Spring 2019 Hw1: Computational Part

Due on 01/23/2019 in Class

Zhenghan Fang

Instruction.

- Homework 1 includes **Theoretical Part** (50%) and **Computational Part** (50%).
- For homework submission and grading, edit this document and create a PDF file to print and submit in class. Codes and key results should be displayed.

Exercise 1. (5 pt) **Hadamard matrix** is a useful construction for two-level orthogonal design. It's defined recursively by

$$\mathbf{H}_{1} = (1) \in \mathbb{R}^{1 \times 1}, \quad \mathbf{H}_{2^{k}} = \begin{pmatrix} \mathbf{H}_{2^{k-1}} & \mathbf{H}_{2^{k-1}} \\ \mathbf{H}_{2^{k-1}} & -\mathbf{H}_{2^{k-1}} \end{pmatrix} \in \mathbb{R}^{2^{k} \times 2^{k}}. \quad (k \in \mathbb{N})$$

Create \mathbf{H}_{2^4} in \mathbf{R} .

H

-1

1

```
H <- c(1)
for (i in 1:4){
    H <- cbind(rbind(H, H), rbind(H, -H))
}
# print result
H</pre>
```

```
##
      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
                                                [,8] [,9] [,10] [,11] [,12] [,13]
## H
         1
               1
                     1
                           1
                                 1
                                       1
                                             1
                                                   1
                                                         1
                                                                1
                                                                       1
                                                                              1
                                                                                      1
## H
         1
              -1
                     1
                          -1
                                 1
                                                         1
                                                               -1
                                                                       1
                                                                             -1
                                                                                      1
                                      -1
                                             1
                                                  -1
                                                                      -1
## H
               1
                          -1
                                 1
                                            -1
                                                  -1
                                                         1
                                                                             -1
                                                                                      1
         1
                    -1
                                       1
                                                                1
## H
         1
              -1
                    -1
                           1
                                 1
                                      -1
                                            -1
                                                   1
                                                         1
                                                               -1
                                                                      -1
                                                                                      1
## H
         1
               1
                     1
                           1
                                -1
                                      -1
                                            -1
                                                  -1
                                                         1
                                                                1
                                                                       1
                                                                              1
                                                                                    -1
              -1
                                -1
                                            -1
                                                   1
                                                         1
## H
         1
                     1
                          -1
                                       1
                                                               -1
                                                                             -1
                                                                                    -1
                                                                             -1
## H
         1
               1
                          -1
                                -1
                                      -1
                                                   1
                                                         1
                                                                1
                                                                      -1
                                                                                    -1
                    -1
                                             1
                                                         1
## H
         1
              -1
                    -1
                           1
                                -1
                                       1
                                             1
                                                  -1
                                                               -1
                                                                      -1
                                                                                     -1
## H
               1
                     1
                           1
                                 1
                                                   1
                                                        -1
                                                               -1
                                                                      -1
                                                                                    -1
         1
                                       1
                                             1
                                                                             -1
## H
              -1
                     1
                          -1
                                                  -1
                                                                                    -1
               1
                          -1
                                            -1
                                                  -1
                                                        -1
                                                               -1
                                                                                    -1
## H
         1
                    -1
                                 1
                                       1
                                                                       1
## H
         1
              -1
                    -1
                           1
                                 1
                                      -1
                                            -1
                                                   1
                                                        -1
                                                                1
                                                                             -1
                                                                                    -1
                                                                       1
                                            -1
               1
                     1
                                -1
                                      -1
                                                        -1
                                                                             -1
## H
         1
                           1
                                                  -1
                                                               -1
                                                                      -1
                                                                                     1
## H
         1
              -1
                     1
                                -1
                                      1
                                                   1
                                                        -1
                                                                1
                                                                      -1
                                                                              1
                                                                                      1
                          -1
## H
         1
               1
                    -1
                                -1
                                      -1
                                             1
                                                   1
                                                        -1
                                                               -1
                                                                       1
                                                                              1
                                                                                      1
## H
         1
              -1
                    -1
                                                  -1
      [,14]
             [,15] [,16]
##
## H
          1
                  1
## H
         -1
                 1
                       -1
## H
          1
                -1
                       -1
## H
         -1
                -1
                         1
## H
                       -1
         -1
                -1
                -1
## H
          1
                         1
## H
         -1
                 1
                        1
## H
          1
                 1
                       -1
## H
         -1
                       -1
                -1
```

```
## H
          -1
                   1
                           1
## H
           1
                   1
                          -1
## H
          -1
                   1
                          -1
## H
           1
                  -1
                          -1
## H
          -1
                  -1
                           1
```

Exercise 2. (5 pt) It has been shown that a LASSO estimate for the location of X is of the following thresholding form

$$\hat{\mu}_{\text{LASSO}} = \underset{\mu \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} (X - \mu)^2 + \lambda |\mu| = \begin{cases} X + \lambda, & X \leq -\lambda \\ 0, & -\lambda < X \leq \lambda \\ X - \lambda, & X > \lambda \end{cases}$$

Now let $\lambda = 1$ and consider 100 *i.i.d.* sample $\{X_i\}_{i=1}^n$ drawn from $\mathcal{N}(0,1)$. Return the vector of the LASSO estimates for their individual locations in \mathbf{R} .

```
x \leftarrow rnorm(100)
u <- x
u[x \leftarrow -1] \leftarrow x[x \leftarrow -1] + 1
u[x > -1 & x <= 1] <- 0
u[x >= 1] <- x[x >= 1] - 1
# print result
##
     [1] 0.441400238 -0.184538295 -0.037266032 -1.383307339 -1.861093572
                                                 0.946675101 -0.126140588
##
         1.526559337 -0.445335803 -0.234773339
    ##
         0.120191344 -1.620262672
                                    0.239276266
##
    [16]
                                                 0.019175204 -0.604487623
##
    [21]
         0.864372526 -0.046468560
                                   0.588840478
                                                 0.226616826 -0.129507071
##
    [26] -0.473702802 -0.214635913 -0.505718655
                                                 2.304043962 -1.908568728
                       1.537363353 -0.162516611
                                                 1.561470683 -3.329285763
##
    [31] -0.876030318
##
    [36]
        0.466605490
                      0.806530832 -1.530731839
                                                 0.955304207 -0.741279119
    [41] -0.850751477
                      0.619856989
                                   1.204274545
                                                 1.268101412 -0.251528186
##
##
    [46] -0.333201383 -0.652248189
                                    0.300352032
                                                 0.285240686
                                                              0.567770574
##
    [51] -1.410930080 -0.775213358
                                    0.010945414 -0.112570597
                                                              0.359746014
##
    [56] -0.033974323 2.392085462 -0.002870496 0.274765141 -0.063982512
##
         0.249130485 -0.932648649
                                    1.559610305 -1.952601692
                                    0.170029842 -0.731188775 -0.347991248
##
    [66]
         0.708462485
                      1.176134105
##
    [71]
         0.278587309
                      0.077522585 -0.667247924 -0.202822288
                                                              1.755376397
##
    [76]
         1.509240362 -1.587806013 0.512617835 -1.434953478 -0.114557179
##
         1.167232925 -0.110646458
                                   1.741546764 -1.319812237
##
    [86]
         0.422669245
                      1.560582611 1.638082158
                                                 0.240715166 -0.001126631
                                                              0.117519892
##
    [91]
          0.953739763 -0.741429791 -0.837334032
                                                 0.984139452
         0.747412915 1.349424028 -0.047335381 -0.451122209
##
    [96]
                                                              0.076730888
u
                     0.0000000
##
     [1]
         0.000000
                                0.0000000 -0.3833073 -0.8610936
                                                                 0.5265593
         0.000000
                     0.000000
                                0.000000
                                           0.0000000
                                                      0.0000000
                                                                 0.000000
##
     [7]
                     0.000000
                                0.0000000
                                           0.0000000 -0.6202627
                                                                 0.000000
##
    [13] -0.3480715
         0.0000000
                     0.000000
                                0.000000
                                           0.0000000
                                                      0.0000000
##
    [19]
                                                                 0.000000
                                           0.000000
##
    [25]
         0.0000000
                     0.0000000
                                0.000000
                                                      1.3040440
                                                                -0.9085687
    [31]
                     0.5373634
                                           0.5614707 -2.3292858
##
          0.000000
                                0.0000000
                                                                 0.000000
##
    [37]
          0.0000000 -0.5307318
                                0.000000
                                           0.0000000
                                                      0.0000000
                                                                 0.000000
                                           0.0000000
##
    [43]
         0.2042745
                     0.2681014
                                0.0000000
                                                      0.0000000
                                                                 0.000000
                                           0.0000000 0.0000000
    [49]
         0.0000000
                     0.0000000 -0.4109301
##
                                                                 0.0000000
```

```
##
    [55]
         0.0000000
                     0.0000000 1.3920855
                                            0.0000000
                                                       0.0000000
                                                                  0.0000000
##
    [61]
         0.0000000
                     0.0000000
                                0.5596103 -0.9526017
                                                       0.0000000
                                                                  0.0000000
##
    [67]
          0.1761341
                     0.0000000
                                0.0000000
                                            0.0000000
                                                       0.0000000
                                                                  0.0000000
    [73]
          0.0000000
                     0.0000000
                                0.7553764
                                            0.5092404 -0.5878060
                                                                  0.0000000
##
##
    [79] -0.4349535
                     0.0000000
                                0.1672329
                                            0.0000000
                                                       0.7415468 -0.3198122
          0.0000000
                     0.0000000
                                0.5605826
                                            0.6380822
                                                       0.0000000
##
    [85]
                                                                  0.0000000
          0.0000000
                     0.0000000
                                0.0000000
                                            0.0000000
                                                       0.0000000
                                                                  0.0000000
##
    Г917
   [97]
          0.3494240
                     0.0000000
                                0.0000000
                                            0.0000000
##
```

Exercise 3. (5 pt) Table 1 presents a mixed 2-level and 3-level orthogonal design from (Wu and Hamada 2011). The first four rows in 2-level factors A, B and C, as a 2^{3-1} design, have been repeated for the next eight 4-row groups. Groups are embedded into a 3^{3-1} design in 3-level factors D, E and F. In particular, column C = column A × column B, column F = column D + column E (mod 3) by encoding (-1,0,1) in (1,2,0). Create such design matrix in **R** without reading from Table 1 directly.

```
A \leftarrow rep(c(-1,1), 18)
B \leftarrow rep(c(-1,1), each = 2)
B \leftarrow rep(B, 9)
C <- A * B
D \leftarrow rep(c(-1, 0, 1), each = 4)
D \leftarrow rep(D, 3)
E \leftarrow rep(c(-1, 0, 1), each = 12)
F \leftarrow ((D + 2) \% 3 + (E + 2) \% 3) \% 3
F \leftarrow ((F + 1) \% 3) - 1
A <- factor(A)
B <- factor(B)
C <- factor(C)</pre>
D <- factor(D)</pre>
E <- factor(E)
F <- factor(F)
orth arr <- data.frame(A, B, C, D, E, F)
# print result
orth_arr
```

```
ABCDEF
## 1
      -1 -1 1 -1 -1 -1
##
       1 -1 -1
               -1
                  -1 -1
## 3
      -1
          1 -1 -1 -1 -1
## 4
       1
          1
              1
                -1 -1 -1
## 5
      -1 -1
              1
                 0
                  -1
## 6
       1
         -1 -1
                 0
                   -1
                       0
## 7
      -1
            -1
                       0
## 8
                       0
       1
          1
              1
                 0
                   -1
## 9
      -1 -1
## 10
       1 -1 -1
                   -1
                       1
## 11 -1
          1 -1
## 12
                   -1
       1
          1
              1
                       1
                 1
## 13 -1 -1
                    0
                       0
              1
                -1
## 14
       1 -1 -1
                -1
## 15 -1
          1 -1 -1
  16
       1
          1
              1
                -1
                    0
                       0
   17 -1 -1
              1
                 0
                    0
                       1
## 18
      1 -1 -1
```

Table 1 $2^{3-1} \times 3^{3-1}$ Orthogonal Array

	2-Level Factors			3-Level Factors		
	A	В		D	E	\mathbf{F}
1	-1	-1	1	-1	-1	-1
2	1	-1	-1	-1	-1	-1
3	-1	1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1
5	-1	-1	1	0	-1	0
6	1	-1	-1	0	-1	0
7	-1	1	-1	0	-1	0
8	1	1	1	0	-1	0
9	-1	-1	1	1	-1	1
10	1	-1	-1	1	-1	1
11	-1	1	-1	1	-1	1
12	1	1	1	1	-1	1
13	-1	-1	1	-1	0	0
14	1	-1	-1	-1	0	0
15	-1	1	-1	-1	0	0
16	1	1 -1	1	-1	0	0
17	-1		1	0	0	1
18	1	-1	-1	0	0	1
19	-1	1	-1	0	0	1
20	1	1	1	0	0	1
21	-1	-1	1	1	0	-1
22	1	-1	-1	1	0	-1
23	-1	1	-1	1	0	-1
24	1	1	1	1	0	-1
25	-1	-1	1	-1	1	1
26	1	-1	-1	-1	1	1
27	-1	1	-1	-1	1	1
28	1	1	1	-1	1	1
29	-1	-1	1	0	1	-1
30	1	-1	-1	0	1	-1
31	-1	1	-1	0	1	-1
32	1	1	1	0	1	-1
33	-1	-1	1	1	1	0
34	1	-1	-1	1	1	0
35	-1	1	-1	1	1	0
36	1	1	1	1	1	0

^{## 19 -1 1 -1 0 0 1} ## 20 1 1 1 0 0 1

^{## 21 -1 -1 1 1 0 -1}

^{## 22 1 -1 -1 1 0 -1}

^{## 23 -1 1 -1 1 0 -1} ## 23 -1 1 -1 1 0 -1

^{## 24 1 1 1 1 0 -1}

^{## 25 -1 -1 1 -1 1}

^{## 26 1 -1 -1 -1 1}

^{## 27 -1 1 -1 -1 1 1}

^{## 28 1 1 1 -1 1 1} ## 29 -1 -1 1 0 1 -1

```
## 30 1 -1 -1 0 1 -1

## 31 -1 1 -1 0 1 -1

## 32 1 1 1 0 1 -1

## 33 -1 -1 1 1 1 0

## 34 1 -1 -1 1 1 0

## 35 -1 1 -1 1 1 0

## 36 1 1 1 1 0
```

Exercise 4. (5 pt) Thickness data from a paint experiment based on Table 1 design in (Wu and Hamada 2011) are collected as below. Compute the sum of squares for all factors (main effects) from scratch, *i.e.* without resorting to any ANOVA-type **R** functions. Compare them with outputs produced by aov.

```
y <- scan(text = "0.755 0.550 0.550 0.600 0.900 0.875 1.000 1.000 1.400 1.225 1.225 1.475
0.600\ 0.600\ 0.625\ 0.500\ 0.925\ 1.025\ 0.875\ 0.850\ 1.200\ 1.250\ 1.150\ 1.150\ 0.500\ 0.550\ 0.575
0.600 0.900 1.025 0.850 0.975 1.100 1.200 1.150 1.300")
data.t = cbind(orth_arr, y)
mean.all <- mean(data.t$y)</pre>
n.all <- length(data.t$y)
Sum.Sq <- c()
for(i in c("A", "B", "C", "D", "E", "F")){
  mean.group <- tapply(data.t$y, data.t[[i]], mean)</pre>
 n.group <- tapply(rep(1, n.all), data.t[[i]], sum)</pre>
  Sum.Sq[i] <- sum(n.group * (mean.group - mean.all) ^ 2)</pre>
data.t.aov.A <- aov(y ~ A, data.t)</pre>
data.t.aov.B <- aov(y ~ B, data.t)
data.t.aov.C <- aov(y ~ C, data.t)</pre>
data.t.aov.D <- aov(y ~ D, data.t)</pre>
data.t.aov.E <- aov(y ~ E, data.t)</pre>
data.t.aov.F <- aov(y ~ F, data.t)
# print results
Sum.Sq
##
## 0.0061361111 0.0004694444 0.0051361111 2.5525291667 0.0371541667
## 0.0062375000
summary(data.t.aov.A)
##
                Df Sum Sq Mean Sq F value Pr(>F)
                 1 0.0061 0.00614 0.075 0.786
## Residuals
               34 2.7782 0.08171
summary(data.t.aov.B)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## B
                 1 0.0005 0.00047
                                     0.006
## Residuals
                34 2.7839 0.08188
summary(data.t.aov.C)
##
               Df Sum Sq Mean Sq F value Pr(>F)
                 1 0.0051 0.00514 0.063 0.804
## C
```

```
## Residuals
              34 2.7792 0.08174
summary(data.t.aov.D)
              Df Sum Sq Mean Sq F value Pr(>F)
##
                2 2.5525
                           1.276
                                   181.7 <2e-16 ***
## D
## Residuals
               33 0.2318
                           0.007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(data.t.aov.E)
              Df Sum Sq Mean Sq F value Pr(>F)
##
## E
                2 0.0372 0.01858
                                  0.223 0.801
               33 2.7472 0.08325
## Residuals
summary(data.t.aov.F)
```

Pr Sum Sq Mean Sq F value Pr(>F)
F 2 0.0062 0.00312 0.037 0.964
Residuals 33 2.7781 0.08419

Exercise 5. (10 pt) Write a function optim_gd(par, fn, gr, gr_lips, maxit = 10000, tol = 1e-5) to find the minimizer of a smooth convex function using gradient descent.

- par: initial values for the parameters to be optimized over.
- fn: objective function to be minimized f on domain \mathcal{X} .
- gr: gradient of objective function ∇f .
- gr_lips: Lipschitz gradient constant L_f , i.e.

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2 \leqslant L_f \|\boldsymbol{x} - \boldsymbol{y}\|_2. \quad (\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X})$$

- maxit: maximal number of iterations.
- tol: convergence tolerance parameter $\epsilon > 0$.

Iterations are performed by

$$\boldsymbol{x}^{k+1} := \boldsymbol{x}^k - \frac{1}{L_f} \nabla f(\boldsymbol{x}^k)$$

with stopping criterion

$$\frac{\|\nabla f(\boldsymbol{x}^k)\|_2}{\max\{1, \|\nabla f(\boldsymbol{x}^0)\|_2\}} \leqslant \epsilon.$$

Return a list with par = minimizer, value = optimal objective value, and counts = number of iterations performed. Apply it to the bivariate function²

$$f(x_1, x_2) = \log(1 + e^{-x_1 + x_2}) + \log(1 + e^{x_1}) + \log(1 + e^{-x_1 - x_2})$$

with $L_f = \frac{5}{4}$ and initial value (0,0). Compare it with the built-in optimization function optim with method = "BFGS".

```
fn.biv <- function(x){
   x1 <- x[1]
   x2 <- x[2]
   log(1 + exp(- x1 + x2)) + log(1 + exp(x1)) + log(1 + exp(- x1 - x2))
}</pre>
```

¹STOR 893 Fall 2018 lecture note http://quoctd.web.unc.edu/files/2018/10/lecture4-selected-cvx-methods.pdf.

²Negative log-likelihood of Logistic regression of the data $\{(-1,1),(0,0),(1,1)\}$. Try performing glm to see whether the outputs coincide.

```
gr.biv <- function(x){</pre>
      x1 <- x[1]
      x2 < -x[2]
      gr.x1 \leftarrow -exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(x1) / (1 + exp(x1)) - exp(-x1 - x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2)) + exp(-x1 + x2) / (1 + exp(-x1 + x2
      gr.x2 \leftarrow exp(-x1 + x2) / (1 + exp(-x1 + x2)) - exp(-x1 - x2) / (1 + exp(-x1 - x2))
      return(c(gr.x1, gr.x2))
}
optim_gd <- function(par, fn, gr, gr_lips, maxit = 10000, tol = 1e-5){
      gr_0 <- gr(par)
      for(i in 1:maxit){
             gr_i <- gr(par)</pre>
             if(sum(gr_i^2) / max(1, sum(gr_0^2)) \le tol) break
             par <- par - gr_i / gr_lips
      list( par = par,
                          value = fn(par),
                          counts = i - 1)
}
\operatorname{optim\_gd}(c(0, 0), \operatorname{fn.biv}, \operatorname{gr.biv}, 5/4)
## $par
## [1] 0.6903931 0.0000000
##
## $value
## [1] 1.909545
## $counts
## [1] 7
optim(c(0, 0), fn.biv, method = "BFGS")
## $par
## [1] 6.931472e-01 -5.514553e-14
## $value
## [1] 1.909543
##
## $counts
## function gradient
##
                            18
##
## $convergence
## [1] 0
##
## $message
## NULL
Exercise 6. (10 pt) Create the ANOVA table based on Exercise 4 from scratch. Sum of squares, degrees
```

Exercise 6. (10 pt) Create the ANOVA table based on Exercise 4 from scratch. Sum of squares, degrees of freedom, F-values, p-values and indicators of significance are to be reported. Comment on the relationship of all sum of squares and explain why.

```
data.t = cbind(orth_arr, y = y)
mean.all <- mean(data.t$y)</pre>
```

```
n.all <- length(data.t$y)</pre>
SSb <- c()
dfb <- c()
MSb <- c()
SSw <- c()
dfw \leftarrow c()
MSw \leftarrow c()
F.aov <- c()
Pr <- c()
signif.indicator <- c()</pre>
for(i in c("A", "B", "C", "D", "E", "F")){
  mean.group <- tapply(data.t$y, data.t[[i]], mean)</pre>
  n.group <- tapply(rep(1, n.all), data.t[[i]], sum)</pre>
  SSb[i] <- sum(n.group * (mean.group - mean.all) ^ 2)
  dfb[i] <- length(levels(data.t[[i]])) - 1</pre>
  MSb[i] <- SSb[i] / dfb[i]</pre>
  mean.group.long <- data.t$y</pre>
  for(j in levels(data.t[[i]])){
    mean.group.long[data.t[[i]] == j] <- mean.group[j]</pre>
  }
  SSw[i] <- sum( (data.t$y - mean.group.long) ^ 2 )
  dfw[i] <- n.all - length(levels(data.t[[i]]))</pre>
  MSw[i] <- SSw[i] / dfw[i]</pre>
  F.aov[i] <- MSb[i] / MSw[i]</pre>
  Pr[i] <- 1 - pf( F.aov[i], dfb[i], dfw[i] )</pre>
  if(Pr[i] \le 0.001)
    sig <- "***"
  else if(Pr[i] <= 0.01)
    sig <- "**"
  else if(Pr[i] \le 0.05)
    sig <- "*"
  else if(Pr[i] <= 0.1)
    sig <- "."
  else
    sig <- " "
  signif.indicator[i] <- sig</pre>
}
my.aov.table <- data.frame(Sum_Sq = SSb,
                              Df = dfb,
                              F_value = F.aov,
                              p_value = Pr,
                              Signif = signif.indicator)
```

```
# print results
my.aov.table
##
          Sum_Sq Df
                         F_value
                                   p_value Signif
## A 0.0061361111 1 7.509353e-02 0.7857181
## B 0.0004694444 1 5.733352e-03 0.9400865
## C 0.0051361111 1 6.283295e-02 0.8035817
## D 2.5525291667 2 1.816583e+02 0.0000000
## E 0.0371541667 2 2.231505e-01 0.8011917
## F 0.0062375000 2 3.704595e-02 0.9636719
summary(data.t.aov.A)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## A
               1 0.0061 0.00614
                                0.075 0.786
## Residuals
              34 2.7782 0.08171
summary(data.t.aov.B)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## B
               1 0.0005 0.00047
                                0.006 0.94
## Residuals
              34 2.7839 0.08188
summary(data.t.aov.C)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## C
               1 0.0051 0.00514 0.063 0.804
## Residuals
              34 2.7792 0.08174
summary(data.t.aov.D)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## D
               2 2.5525
                          1.276
                                 181.7 <2e-16 ***
## Residuals
              33 0.2318
                          0.007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(data.t.aov.E)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## E
               2 0.0372 0.01858
                                  0.223 0.801
## Residuals
              33 2.7472 0.08325
summary(data.t.aov.F)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## F
               2 0.0062 0.00312
                                 0.037 0.964
              33 2.7781 0.08419
## Residuals
```

Exercise 7. (10 pt) Reproduce the code that generates the following plot based on Exercise 4.

Biblography

Wu, C.F. Jeff, and Michael S. Hamada. 2011. Experiments: Planning, Analysis, and Optimization. Vol. 552. John Wiley & Sons.