A simple simulation of the ghost imaging process can be done as follows:

1. Create a 2D matrix representing the object.

For example, let the object have dimensions of 100×200 pixels. We'll refer to this matrix as obj.

2. Create a 3D matrix representing the different light patterns.

For instance, use a set of 2D random matrices. The dimensions should be $100\times200\times N$, where **N** is the number of realizations (i.e., the number of light patterns). We'll refer to this as ref.

3. Create the test measurements.

Multiply each 2D light pattern by the obj matrix and sum the result to obtain the total transmitted intensity. This should produce a vector of length **N**.

4. Reconstruct the object using covariance.

A simple reconstruction can be achieved by computing the covariance:

```
rec = cov(ref, test) = (ref * test) - (ref) * (test)^1
```

where $\langle X \rangle$ denotes the mean value of X (taken across the realizations).

Suggestions for further exploration:

To begin, write a basic simulation and explore how the following parameters affect the reconstruction quality. You may consider plotting the Signal-to-Noise Ratio (SNR) as a function of:

- The number of realizations (**N**)
- The object's dimensions
- The size/scale of the noise features in ref (this one is slightly trickier)

Later, you can introduce noise into the simulation and observe its effect on the reconstruction.

Good luck!

¹ See here: https://doi.org/10.1364/OE.20.016892