ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1

LISTA 5. Nakrycia, podniesienia i podgrupy odpowiadające nakryciom

- 1. Dla nakrycia $p:Y\to X$ oraz dla podprzestrzeni $A\subset X$, niech $B=p^{-1}(A)$. Pokaż, że obcięcie $p:B\to A$ jest nakryciem.
- 2. Niech $p_1:Y_1\to X_1$ i $p_2:Y_2\to X_2$ będą nakryciami. Uzasadnij, że odwzorowanie produktowe $p_1\times p_2:Y_1\times Y_2\to X_1\times X_2$ jest też nakryciem. Jaka jest krotność tego nakrycia (gdy X_1 i X_2 są spójne)?
- 3. Niech X będzie przestrzenią lokalnie spójną (tzn. w każdym otwartym otoczeniu dowolnego punktu z X zawiera się spójne otwarte otoczenie tego punktu). Niech $p:Y\to X$ będzie nakryciem. Uzasadnij, że obcięcie p do dowolnej komponenty spójności w Y jest też nakryciem X.
- 4. Niech $p: Y \to X$ będzie nakryciem, którego wszystkie włókna $p^{-1}(x)$, $x \in X$, są skończone. Uzasadnij, że jeśli X jest zwarta, to Y też jest zwarta.
- 5. Rozważmy podprzestrzeń $\Sigma\subset R^2$ (z topologią indukowaną), zwaną warszawskim okręgiem, określoną we współrzędnych biegunowych (r,θ) jako

$$\Sigma := \{ (1 + \frac{1}{2}\sin\frac{4\pi^2}{\theta}, \theta) : \theta \in (0, 2\pi] \} \cup \{ (r, 0) : r \in [\frac{1}{2}, \frac{3}{2}] \}.$$

Odwzorowanie $(r,\theta) \to e^{i\theta}$ obcięte do Σ daje ciągłe odwzorowanie $f: \Sigma \to S^1$. Uzasadnij, że

- (a) Σ nie jest lokalnie drogowo spójna;
- (b) f nie podnosi się do nakrycia $R \to S^1$.

Korzystając z tego przykładu uzasadnij, że założenie lokalnej drogowej spójności jest istotne w kryterium istnienia podniesienia.

- 6. Na przykładzie warszawskiego okręgu pokaż, że spójne nakrycie drogowo spójnej przestrzeni nie musi być drogowo spójne.
- 7. Uzasadnij, że spójna i lokalnie drogowo spójna przestrzeń jest drogowo spójna. Wywnioskuj, że każde spójne nakrycie przestrzeni lokalnie drogowo spójnej jest drogowo spójne.
- 8. Rozważmy odw
zorowanie $p: C \setminus \{0\} \to C \setminus \{0\}$ (gdzie C to zbiór liczb zespolonych) zadane prze
z $p(z) = z^2.$
 - (1) Uzasadnij, że p jest nakryciem.
 - (2) Wybór podniesienia $x \in p^{-1}(u)$ liczby u względem nakrycia p to wybór jednego z jej pierwiastków kwadratowych (czyli spierwiastkowanie tej liczby). Niech X będzie spójną i lokalnie drogowo spójną przestrzenią, i niech $f: X \to C \setminus \{0\}$ będzie ciągłą funkcją zespoloną. Podaj warunek (w terminach topologioalgebraicznych) na to, by funkcja f dała się w sposób ciągły spierwiastkować.
- 9. Niech G będzie spójną i lokalnie drogowo spójną grupą topologiczną. Niech $p: \widetilde{G} \to G$ będzie dowolnym spójnym nakryciem G, i niech $\widetilde{e} \in p^{-1}(e)$.
 - (1) Niech $m: \widetilde{G} \times \widetilde{G} \to G$ będzie zadane przez $m(x,y) = p(x) \cdot p(y)$. Uzasadnij, że $m_*[\pi_1(\widetilde{G} \times \widetilde{G}, (\tilde{e}, \tilde{e}))]$ zawiera się w $p_*[\pi_1(\widetilde{G}, \tilde{e})]$.
 - (2) Wywnioskuj, że na nakryciu \widetilde{G} istnieje (jednoznaczna) struktura grupy topologicznej, dla której \widetilde{e} jest jednościa, i dla której p jest grupowym homomorfizmem.

- 10. Niech X będzie przestrzenią spójną i lokalnie drogowo spójną, i niech \widetilde{X} będzie jednospójnym nakryciem X.
 - (1) Uzasadnij, że \widetilde{X} jest jednoznaczna z dokładnością do izomorfizmu zbazowanych nakryć.
 - (2) Uzasadnij, że każde spójne nakrycie X jest nakrywane przez \widetilde{X} (stąd nazwa $nakrycie\ uniwersalne$).
- 11. Opisz spójne i jednospójne nakrycia nastepujących przestrzeni (wraz z odwzorowaniami nakrywającymi):
 - (a) suma sfery S^2 oraz jednej z jej średnic;
 - (b) torus $S^1 \times S^1$ z wklejonym dyskiem $D^2 \times \{s_0\}$;
 - (c) suma sfery i przecinającego ją w dwóch punktach okręgu;
 - (d) iloraz sfery S^2 powstay poprzez sklejenie bieguna północnego z południowym.
- 12. Niech $p: Y \to X$ będzie drogowo spójnym nakryciem, i niech $y_0, y_1 \in p^{-1}(x_0)$. Uzasadnij, że podgrupy $p_*(\pi_1(Y, y_0))$ i $p_*(\pi_1(Y, y_1))$ są sprzężone w grupie $\pi_1(X, x_0)$.
- 13. Niech $p: Y \to X$ będzie jednospójnym nakryciem, niech $A \subset X$ będzie spójną i lokalnie drogowo spójną podprzestrzenią, i niech B będzie komponentą drogowej spójności w $p^{-1}(A)$. Wykaż, że obcięcie $p: B \to A$ jest nakryciem, i że związana z nim podgrupa $p_*(\pi_1 B) < \pi_1 A$ pokrywa się z jądrem homomorfizmu $\pi_1 A \to \pi_1 X$ indukowanego przez włożenie.
- 14. Niech S_n będzie okręgiem o środku $(0, \frac{1}{n})$ i promieniu $\frac{1}{n}$, i niech $X = \bigcup_{n=1}^{\infty} S_n$, z topologią indukowaną z topologii płaszczyzny (jest to tzw. hawajski kolczyk). Uzasadnij, że X nie posiada spójnego i jednospójnego nakrycia.
- 15. Rozważmy nakrycie $p: Y \to X \times [0,1]$ przestrzeni produktowej $X \times [0,1]$. Uzasadnij, że dla i=0,1 obcięte nakrycia $p_i: p^{-1}(X \times \{i\}) \to X \times \{i\}$ są izomorficzne jako nakrycia X (względem naturalnych utożsamień przestrzeni $X \times \{i\}$ z przestrzenią X).
- 16. Niech $p: X \to X$ będzie nakryciem, i niech $f: Y \to X$ będzie ciągłym odwzorowaniem. Zdefiniujmy przestrzeń

$$f^*(\widetilde{X}) = \{(y, z) \in Y \times \widetilde{X} \mid f(y) = p(z)\},\$$

z indukowaną z produktu topologią. Określmy też odw
zorowanie $f^*(p):f^*(\widetilde{X})\to Y,$ jako obcięcie rzutowania
 $Y\times\widetilde{X}\to Y.$

- (1) Uzasadnij, że $f^*(p): f^*(\widetilde{X}) \to Y$ jest nakryciem. Nakrycie to nazywa się cofnieciem (pullback) nakrycia $p: \widetilde{X} \to X$ względem f.
- (2) Pokaż, że jeśli $f, f': Y \to X$ są odwzorowaniami homotopijnymi, to cofnięcia nakrycia $p: \widetilde{X} \to X$ względem f oraz f' są nakryciami izomorficznymi.
- (3) Uzasadnij, że jeśli odwzorowanie $f:Y\to X$ jest homotopijne z odwzorowaniem stałym to cofnięcie nakrycia $p:\widetilde{X}\to X$ względem f jest nakryciem trywialnym.
- (4) Niech $y_0 \in Y$, $x_0 = f(y_0)$, oraz niech $\tilde{x}_0 \in p^{-1}(x_0)$. Uzasadnij, że podgrupa w $\pi_1(Y, y_0)$ odpowiadająca cofniętemu nakryciu $f^*(p) : (f^*(\widetilde{X}), (y_0, \tilde{x}_0)) \to (Y, y_0)$ ma postać

$$[f^*(p)]_*[\pi_1(f^*(\widetilde{X}),(y_0,\widetilde{x}_0))] = f_*^{-1}[p_*(\pi_1(\widetilde{X},\widetilde{x}_0))],$$

gdzie $f_*: \pi_1(Y, y_0) \to \pi_1(X, x_0)$ jest homomorfizmem indukowanym przez odwzorowanie f.