# SCM 651: Business Analytics

WEEK 2

## Agenda

**Record Meeting** 

Review of concepts

Group discussion of articles

- Sustaining an Analytics Advantage
- Creating Business Values with Analytics
- Raising the Bar with Analytics

Teams

Homework #1

### **NPV**

- Calculates today's value of a cash flow stream
- Investments are entered as negative numbers

### **IRR**

- IRR > interest rate → positive NPV
- IRR < interest rate → negative NPV</li>

The rate of return of the outstanding investment for each period it remains invested.









### Regression Example

- Fixed Costs
  - Measured by intercept
- Variable costs
  - Measured by coefficient of variable

### **Exponential regression**

Compounded growth



#### Power regression

Learning curve or volume efficiencies



### Correlation

- Strongest (highest positive or negative correlation): INTC
  & MSFT = 0.39
- Weakest (closest to zero): CAT & MSFT = 0.08

## Correlation versus regression

- If one variable changes, does the other variable go up or down? (correlation)
- If one variable changes, how much does the other change? (regression)







Promotional Cost

| SUMMARY OUTPUT                      |              |                |             |             |                |             |              |             |
|-------------------------------------|--------------|----------------|-------------|-------------|----------------|-------------|--------------|-------------|
| Dannasian Statistica                |              |                |             |             |                |             |              |             |
| Regression Statistics               |              |                |             |             |                |             |              |             |
| Multiple R                          | 0.983254182  |                |             |             |                |             |              |             |
| R Square                            | 0.966788786  |                |             |             |                |             |              |             |
| Adjusted R Square                   | 0.950183179  |                |             |             |                |             |              |             |
| Standard Error                      | 7.541008534  |                |             |             |                |             |              |             |
| Observations                        | 10           |                |             |             |                |             |              |             |
|                                     |              |                |             |             |                |             |              |             |
| ANOVA                               |              |                |             |             |                |             |              |             |
|                                     | df           | SS             | MS          | F           | Significance F |             |              |             |
| Regression                          | 3            | 9932.463298    | 3310.821099 | 58.22062318 | 7.91266E-05    |             |              |             |
| Residual                            | 6            | 341.2008582    | 56.86680971 |             |                |             |              |             |
| Total                               | 9            | 10273.66416    |             |             |                |             |              |             |
|                                     |              |                |             |             |                |             |              |             |
|                                     | Coefficients | Standard Error | t Stat      | P-value     | Lower 95%      | Upper 95%   | Lower 95.0%  | Upper 95.0% |
| Intercept                           | 7.676028542  | 6.760227552    | 1.135468959 | 0.299491477 | -8.865652371   | 24.21770946 | -8.865652371 | 24.21770946 |
| X2total production costs/millions   | 3.661604009  | 1.117751448    | 3.275866041 | 0.016909724 | 0.926564745    | 6.396643273 | 0.926564745  | 6.396643273 |
| X3 total promotional costs/millions | 7.621051257  | 1.657317235    | 4.598426358 | 0.003698129 | 3.565742073    | 11.67636044 | 3.565742073  | 11.67636044 |
| X4total book sales/millions         | 0.828468066  | 0.539359059    | 1.536023271 | 0.175439839 | -0.491296007   | 2.14823214  | -0.491296007 | 2.14823214  |

### Multivariate regression (multiple X variables)

- T-statistics measures the significance of one coefficient
- F-statistic measures the significance of the entire equation
- R<sup>2</sup> measures the goodness of fit of the equation, i.e., how much of the change in Y is explained by changes in X

### Seasonality

- Periodicity of 4 quarterly
- Periodicity of 12 monthly
- Periodicity of 52 weekly

# Article #1: Sustaining an Analytics Advantage

- Sustaining an Analytics Advantage
  - What are some examples of creating competitive advantage with analytics (companies and their techniques)?
    - Wal-Mart: keep analytics techniques secret (consumer choice and human resources)
    - ABB: implement analytics fast (customer choice)
    - Procter & Gamble: apply to the right problem (reengineer the supply chain)
    - American Airlines (Sabre): data is more important (schedules)
    - Amazon: become data driven (algorithms)

# Article #1: Sustaining an Analytics Advantage

- Sustaining an Analytics Advantage
  - Analytics does not provide a sustainable competitive advantage
  - Analytics capability to change and innovate does provide a sustainable competitive advantage
  - Analytics is becoming a competitive necessity; ATM machines were initially a competitive advantage, now are a competitive necessity
    - ATM: Barclays Bank, London, 1967
    - ATM: Chemical Bank, Rockville Centre, New York, 1969

# Article #2: Creating Business Value with Analytics

#### Creating Business Value with Analytics

- What are the differences between competencies in information management and analytics expertise?
  - Information management: develop enterprise wide data systems
  - Analytics: developing functional expertise
- What are the advantages of starting with each?
  - Information management: break down cultural barriers, leverage customer focused data (expand sales)
  - Analytics: leverage algorithms to optimize activities (order placement, fulfillment, shipping, delivery)

# Article #3: Raising the Bar with Analytics

### Raising the Bar with Analytics

- What new opportunities did StyleSeek and Entravision encounter when they used analytics?
  - StyleSeek: sold their technology to partners
  - Entravision: expanded beyond media spots to information services for the Latino market
- What opportunity allowed MillerCoors to create efficiencies with analytics?
  - MillerCoors: applied analytics to identify efficiencies with the joint venture

## Teams

## Homework

Homework #1 – Regression

due before class in Week 4 live session