$D_k(c)=D\left(k,c
ight)$ אזי $c\in\mathcal{C}$ איזי אוני סימטרית יהי $k\in\mathcal{K}$ היהי סימטרית הצפנה סימטרית יהי

 $\mathbb{Z}_n^{\leq m} = igcup_{i=0}^m \mathbb{Z}_n^i$ נגדיר $n,m \in \mathbb{N}_+$ יהיו

ער כך $E,D:\mathbb{Z}_n imes\mathbb{Z}_n^{\leq m} o \mathbb{Z}_n^{\leq m}$ נגדיר $n,m\in\mathbb{N}_+$ יהיו יהיו צופן קיסר:

- $i \in [|x|]$ לכל $(E_k(x))_i = (x_i + k) \% n$
- $i \in [|c|]$ לכל $(D_k(c))_i = (c_i k) \% n$

. טענה: יהיו $n,m\in\mathbb{N}_+$ אזי צופן קיסר הינה הצפנה סימטרית טענה:

צופן הצבה: יהיו $m,m\in\mathbb{N}\setminus\{0,1\}$ ותהיינה [n] אותהיינה [n] הפיכות שונות נגדיר ותהיינה $n,m\in\mathbb{N}\setminus\{0,1\}$ בך

- $i \in [|m|]$ לכל $(E_k(x))_i = f_k(x_i)$
- $.i\in \left[\left| c\right|
 ight]$ לכל $\left(D_{k}\left(c
 ight)
 ight) _{i}=f_{k}^{-1}\left(c_{i}
 ight)$

טענה: יהיו צופן הצבה הינה הצפנה סימטרית. $f_1,\dots,f_{n!}:[n] o [n]$ ותהיינה $n,m\in\mathbb{N}\setminus\{0,1\}$ יהיו איי צופן ויז'נר: יהיו $n,m\in\mathbb{N}\setminus\{0,1\}$ נגדיר $m,m\in\mathbb{N}$ גגדיר $m,m\in\mathbb{N}$ כך דו יוז'נר: יהיו $m,m\in\mathbb{N}$

- $i \in [|x|]$ לכל $(E_k(x))_i = (x_i + k_i) \% n$
- $i \in [|c|]$ לכל $(D_k(c))_i = (c_i k_i) \% n$

נגדיר $m'\in\mathcal{M}$ ותהא $k'\in\mathcal{K}$ ותהא המילים שכיחויות המילים שכיחויות המילים ותהא ותהא $\mu:\mathcal{M}\to[0,1]$ הצפנה סימטרית הא $c=E_{k'}\left(m'\right)$

```
 \begin{array}{c|c} \text{function GenericAttack}(\left(E,D\right),\mu,c) \text{:} \\ & \ell \leftarrow \mathcal{M} \\ & p \leftarrow [0,1] \\ & \text{for } k \leftarrow \mathcal{K} \text{ do} \\ & & m \leftarrow D(k,c) \\ & & \text{if } \mu(m) > p \text{ then } (\ell,p) \leftarrow (m,\mu(m)) \\ & \text{end} \\ & \text{return } \ell \end{array}
```

 $\mathbb{P}_{a\leftarrow\mu}\left(a
ight)=\mu\left(a
ight)$ אזי התפלגות הא $\mu:\Omega
ightarrow\left[0,1
ight]$ סימון: תהא Ω קבוצה סופית תהא

 $\mathbb{P}_{a\leftarrow\Omega}\left(a
ight)=rac{1}{\left|\Omega
ight|}$ אזי קבוצה חופית Ω קבוצה סופית

 $c\in\mathcal{C}$ ולכל $\mu:\mathcal{M} o [0,1]$ אבורה לכל התפלגות עבורה פימטרית. הצפנה סימטרית בעלת מודיות מושלמת: הצפנה סימטרית עבורה לכל התפלגות $\mu:\mathcal{M} o [0,1]$ אבורה לכל התפלגות בעלת מושלמת: הצפנה סימטרית מושלמת: $\mathbb{P}_{m\leftarrow\mu}\left(m=a\right)=\mathbb{P}_{(m,k)\leftarrow(\mu,\mathcal{K})}\left(m=a\mid c=E_k\left(m\right)\right)$ מתקיים

מתקיים מושלם: הצפנה חוסר הבחנה לכל $a,b\in\mathcal{M}$ עבורה לכל שמטרית הצפנה מושלם: הצפנה מושלם: הצפנה חוסר הבחנה מושלם:

 $\mathbb{P}_{k \leftarrow \mathcal{K}} \left(E_k \left(a \right) = c \right) = \mathbb{P}_{k \leftarrow \mathcal{K}} \left(E_k \left(b \right) = c \right)$

.(בעלת חוסר הבחנה הבחנה מושלם). בעלת סודיות מושלמת) בעלת אזי הבחנה אזי ((E,D)) בעלת הבחנה משפט: תהא

בום פנקט חד־פעמי: יהי $E,D:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ נגדיר צופן פנקט חד־פעמי: יהי והי ת

- $E_k(m) = m \oplus k \bullet$
 - $.D_k(c) = c \oplus k \bullet$

. משפט: יהי $n\in\mathbb{N}$ אזי צופן פנקס חד־פעמי הינה הצפנה סימטרית בעלת סודיות מושלמת משפט

 $|\mathcal{M}| \leq |\mathcal{K}|$ משפט שאנון: תהא (E,D) הצפנה סימטרית בעלת סודיות מושלמת אזי

טענה: יהי בעלת סודיות מושלמת. הינה הצפנה סימטרית צופן אזי צופן אזי אי יהי $m\in\mathbb{N}_+$ יהי

```
\mathcal{W} samples key k \leftarrow \mathcal{K}
     \mathcal{W} samples bit b \leftarrow \{0,1\}
     \mathcal{W} sends E(k, m_b) to \mathcal{A}
      \mathcal{A} prints a bit b'
     if b' = b then
       \vdash return \mathcal{A} won
     return \mathcal{A} lost
  (E,D) משפט: תהא (E,D) הצפנה סימטרית אזי ו(E,D) בעלת חוסר הבחנה מושלם)\Longleftrightarrow (הא
                                                                                                                                        \mathcal{A} יריב: משפחת מעגלים בוליאניים
                                                                                                                                                          \hat{\mathbb{N}} = \mathbb{N} \cup \{\infty\} סימון:
                                                                         .Size (\mathcal{A})=\mathcal{O}\left(t\left(n
ight)
ight) עבורו \mathcal{A} אזי יריב בעל כוח חישוב: תהא \hat{\mathbb{N}}
             \Delta_{\mathcal{A}}\left(X,Y
ight)=\left|\mathbb{P}_{x\leftarrow X}\left(\mathcal{A}\left(x
ight)=1
ight)-\mathbb{P}_{y\leftarrow Y}\left(\mathcal{A}\left(y
ight)=1
ight)
ight| אזי \left\{0,1\right\}^{*} אזי \left\{0,1\right\}^{*} אזי היינה \left\{0,1\right\}^{*} התפלגויות על
התפלגויות בלתי ניתנות להבחנה (בנ"ל): יהי arepsilon \geq 0 ותהא t: \mathbb{N} 	o \hat{\mathbb{N}} אזי התפלגויות להבחנה (בנ"ל): יהי arepsilon \geq 0 ותהא arepsilon \geq 0 אזי התפלגויות בלתי ניתנות להבחנה (בנ"ל): יהי
                                                                                                                                         \Delta_A(X,Y) < \varepsilon חישוב מתקיים
                                                                      X pprox_{t,arepsilon} Y תהא בנ"ל אזי t: \mathbb{N} 	o \hat{\mathbb{N}} תהא arepsilon \geq 0 יהי יהי סימון: יהי
                          באשר f\left(X\right) אזי איזי f\left(X\right) אזי אזי f:\left\{0,1\right\}^{*} 	o \left\{0,1\right\}^{*} ותהא \left\{0,1\right\}^{*} ותהא איזי ותהא איזי לימון: תהא
                                                                                                                                           f(X)(c) = \mathbb{P}_{x \leftarrow X} (f(x) = c)
בעלי m,m'\in\mathcal{M} בעלת סודיות בעלת סימטרית בעלת t:\mathbb{N}\to\hat{\mathbb{N}} ותהא ותהא arepsilon\geq 0 אזי הצפנה הימטרית בעלת סודיות חישובית: יהי
                                                                                                                       .E\left(\mathcal{K},m
ight)pprox_{t,arepsilon}E\left(\mathcal{K},m'
ight) אורך שווה מתקיים
               (\infty,0) בעלת סודיות חישובית (E,D) בעלת סודיות מושלמת) בעלת סודיות חישובית סטענה: תהא
                                                                                                                              U_n = U\left(\left\{0,1\right\}^n\right) אזי n \in \mathbb{N} סימון: יהי
ניתנת לחישוב G:\{0,1\}^n	o\{0,1\}^\ell אזי \ell>n באשר בשר \ell,n\in\mathbb{N} ויהיו וויהי t:\mathbb{N}	o\hat{\mathbb{N}} תהא arepsilon\geq 0 ניתנת לחישוב (PRG) גנרטור פסודאו אקראי
                                                                                                                             G(\{0,1\}^n) \approx_{t,\varepsilon} U_\ell בזמן פולינומי עבורה
                                                               . טענה: אם גנרטור פסודאו אקראי. באשר \ell>n באשר לכל אזי לכל \mathcal{P}=\mathcal{NP} אזי אקראי.
                                 נגדיר (t,arepsilon) גנרטור פסודאו אקראי ויהי G:\{0,1\}^n	o\{0,1\}^\ell נגדיר ויהי ויהי n,\ell\in\mathbb{N} נגדיר
                                                                                                                                כך E, D: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell
                                                                                                                                                .E_k(m) = m \oplus G(k) \bullet
                                                                                                                                                   .D_{k}\left( c\right) =c\oplus G\left( k\right)  \bullet
m\in\{0,1\}^\ell טענה: יהיו צופן פנקס חד־פעמי חישובי ויהי G:\{0,1\}^n	o\{0,1\}^\ell גנרטור פסודאו אקראי G:\{0,1\}^n	o\{0,1\}^\ell יהי
                                                                                                                                                E\left(\left\{0,1\right\}^{n},m\right)\approx_{t,\varepsilon}U_{\ell} אזי
משפט: יהיו n,\ell\in\mathbb{N} ויהי G:\{0,1\}^n	o\{0,1\}^\ell גנרטור פסודאו אקראי איז צופן פנקס חד־פעמי חישובי הינה בעלת סודיות משפט: יהיו
                                                                                                                                                             (t-\ell,2\varepsilon) חישובית
                          טענה: יהי f:\{0,1\}^*	o \{0,1\}^* תהא Xpprox_{t,arepsilon}Y התפלגויות עבורן X:\mathbb{N}	o \hat{\mathbb{N}} תהא t:\mathbb{N}	o \hat{\mathbb{N}}
                                                                                                                                                     f(X) \approx_{t-\operatorname{Size}(f),\varepsilon} f(Y)
                X pprox_{t,arepsilon+\delta} Z אזי אזי Y pprox_{t,\delta} Z וכן וכן X pprox_{t,\varepsilon} Y התפלגויות עבורן X pprox_{t,\varepsilon+\delta} Z אזי ותהיינה t: \mathbb{N} \to \hat{\mathbb{N}} אזי arepsilon
          Xpprox_{\min(t,s),arepsilon+\delta}Z אזי Ypprox_{s,\delta}Z וכן Xpprox_{t,arepsilon}Y התפלגויות עבורן Xpprox_{t,\varepsilon}Y ותהיינה x,y,z ותהיינה x,y,z ותהיינה x,y,z ויהי x,z
```

(E,D) אזי הצפנה סימטרית בעלת סודיות חישובית למספר הודעות: יהי $n\in\mathbb{N}_+$ יהי $n\in\mathbb{N}_+$ אזי הצפנה סימטרית הצפנה סימטרית מספר הודעות:

טענה: יהי $\mathbb{N} = \mathbb{N} \setminus \{0,1\}$ יהי לא קיימת הצפנה אזי לא קיימת הצפנה חישובית למספר הודעות. $\epsilon > 0$ יהי ותהא $\epsilon > 0$ יהי

 $E\left(\mathcal{K},x
ight)pprox_{t,arepsilon}E\left(\mathcal{K},y
ight)$ מתקיים $i\in\left[n
ight]$ לכל $\left|x_{i}\right|=\left|y_{i}\right|$ באשר $x,y\in\mathcal{M}^{n}$

game IndistinguishabilityGame($(E, D), \mathcal{W}, \mathcal{A}$):

 \mathcal{A} chooses messages $m_0, m_1 \in \mathcal{M}$

 $D:\mathcal{L} imes\mathcal{C} o\mathcal{M}$ אחר האינה $E:\mathcal{L} imes\mathcal{M} o\mathcal{C}$ קבוצות סופיות תהא האי $G:\mathcal{L} o(\mathbb{N} o\mathcal{L})$ תהא $G:\mathcal{L} o(\mathbb{N} o\mathcal{L})$ תהא קבוצות סופיות אינה \mathcal{L} , \mathcal{L} , קבוצות סופיות תהא \mathcal{L} , \mathcal