STA 221: LECTURE 1

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

COURSE DETAILS

▷ Instructor: Krishna Balasubramanian

▷ Office: Zoom

▷ Office Hours: Monday 4:30-5:30PM

▷ Email: kbala@ucdavis.edu

COURSE DETAILS

- ▶ Learning Objectives:
 - ▶ Learning to use Python for big-data analytics
 - ▶ Learning popular Machine Learning Techniques

PREREQUISITES

- ▶ Basics of python ?
- ▷ Basic statistics and machine learning ?
- ▷ Basics of Linear Algebra ?

Rate yourself out of 10 (10 being expert) in each of the above.

EVALUATION

- - Each homework is worth 20%.

INSTRUCTIONS

- ▶ Follow instructions for each homework and project carefully!
- ▶ Late submission WILL NOT be accepted.
- ▶ Follow UC Davis Code of Academic Conduct carefully!
- ▶ Violations WILL NOT be tolerated!

COURSE CONTENT

- - ▶ Power method for computing eigenvectors
 - ▶ Gradient descent for optimization
 - ▶ Note: Both methods are kind of related.
- ▷ Bonus algorithm:
 - ▶ Randomized matrix multiplication for learning/testing basics of Python

COURSE CONTENT

- Computing eigenvectors: Unsupervised learning. We will use scikit learn python package.
- ▶ Gradient descent: Supervised learning. We will use scikit learn and Pytorch.

UNSUPERVISED LEARNING

- ▷ Given large amounts of unlabelled data:

 - ▶ How to visualize them for exploratory data analysis ?
- ▷ Some techniques (all based on eigenvalue computation):
 - ▷ k-means, mixture models, spectral clustering, page rank.
 - ▶ PCA, Kernel PCA, Manifold Learning

SUPERVISED LEARNING

- ▶ Predict/Classify new data based on learning from labelled training data:
 - ▶ How to efficiently learn from labeled data ?
- ▶ Techniques (all based on gradient descent (or variations)):
 - Discriminant analysis, Logistic Regression
 - ▷ Support vector machine, Deep neural networks

MAIN THEOREM

NO FREE LUNCH!

Lecture 1: Python Basics

WHY PYTHON

Traffic by industry to Python

WHY PYTHON

IEEE spectrum

Language Rank	Types	Spectrum Ranking
1. Python	⊕ 🖵	100.0
2. C	□ 🖵 🛊	99.7
3. Java	\oplus \Box $=$	99.5
4. C++	□ 🖵 🛊	97.1
5. C#	\oplus \Box $=$	87.7
6. R	-	87.7
7. JavaScript		85.6
8. PHP	(81.2
9. Go	⊕ 🖵	75.1
10. Swift	□무	73.7

WHY PYTHON

