

Review of MHD Basics

Senbei Du, Boston University SHIELD Summer School June 2, 2025

Content

- Ideal MHD equations and assumptions
- Magnetic pressure and tension
- Conservation laws and discontinuities

Hierarchy of plasma modeling

N-body interaction

Averaging

Kinetic description

Moments

Fluid description.

- Describe the motion of all charged particles under the effect of external and internal fields.
- Newtonian or Hamiltonian mechanics.

- Describe the velocity distribution function based on statistical mechanics.
- Boltzmann or Vlasov equation.

- Describe the macroscopic quantities (density, velocity, temperature, etc.).
- Hydrodynamic or MHD equations.

Debye scale ~ km

Kinetic scale $\sim 10 - 10^4$ km

Global scale $\gtrsim 10^8$ km

Opher et al. (2015)

Large scale, macroscopic physics.

Ideal Magnetohydrodynamic (MHD) equations

• Adiabatic equation of state:
$$\frac{d}{dt} \left(\frac{p}{\rho^{\gamma}} \right) = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

$$\rho \frac{\partial u}{\partial t} + \rho u \cdot \nabla u = -\nabla p + \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

$$\frac{\partial B}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B})$$

Notes: Mass density ρ , bulk velocity \boldsymbol{u} , thermal pressure p, magnetic field \boldsymbol{B} , current density $\boldsymbol{j} = \frac{c}{4\pi} (\nabla \times \boldsymbol{B})$, electric field $\boldsymbol{E} = -\frac{1}{c} \boldsymbol{u} \times \boldsymbol{B}$, convective derivative $\frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla$, adiabatic index γ .

Assumptions and approximations

- Hydrodynamic assumptions: ignoring moments higher than second order, isotropic pressure, ideal gas, zero viscosity.
- MHD assumptions: single fluid, charge neutrality, high electric conductivity, convective electric field only, no ionization sources.
- Extensions to ideal MHD: viscous-resistive (useful for magnetic reconnection & turbulence), Hall (reconnection), multi-fluid (pickup ions), etc.

Magnetic pressure and magnetic tension

$$\frac{1}{4\pi}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B} = \frac{B^2}{4\pi} \boldsymbol{b} \cdot \nabla \boldsymbol{b} - \nabla_{\perp} \left(\frac{B^2}{8\pi}\right)$$

Notes: magnetic unit vector $\mathbf{b} = \mathbf{B}/B$, curvature of magnetic field $\mathbf{\kappa} = \mathbf{b} \cdot \nabla \mathbf{b}$, perpendicular gradient $\nabla_{\perp} = \nabla - \mathbf{b}(\mathbf{b} \cdot \nabla)$

- Magnetic pressure: $p_B=rac{B^2}{8\pi}$, plasma beta: $eta=rac{p}{p_B}$
- Magnetic tension: $\frac{B^2}{4\pi} \kappa$
- Important for confining plasmas (including the solar wind

MHD Conservation Laws

• Mass:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

• Momentum:
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot \left(\rho u u + \left(p + \frac{B^2}{8\pi} \right) I - \frac{BB}{4\pi} \right) = 0$$

• Magnetic field:
$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{B} - \mathbf{B}\mathbf{u}) = 0$$

• Total energy:
$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho u^2 + \frac{p}{\gamma - 1} + \frac{B^2}{8\pi} \right) + \nabla \cdot \left[\left(\frac{1}{2} \rho u^2 + \frac{\gamma p}{\gamma - 1} \right) \boldsymbol{u} - \frac{(\boldsymbol{u} \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} \right] = 0$$

(Kinetic energy flux $\frac{1}{2}\rho u^2 u$; enthalpy flux $\frac{\gamma p}{\gamma - 1} u$; Poynting flux $\frac{c E \times B}{4\pi}$)

MHD jump conditions

$$[\rho u_n] = 0$$

$$\left[\rho u_n^2 + \left(p + \frac{B^2}{8\pi}\right) - \frac{B_n^2}{4\pi}\right] = 0$$

$$\left[\rho u_n u_{\perp} - \frac{B_n B_{\perp}}{4\pi}\right] = 0$$

$$\left[B_n\right] = 0$$

$$\left[B_n u_{\perp} - u_n B_{\perp}\right] = 0$$

$$\left[\left(\frac{1}{2}\rho u^2 + \frac{\gamma p}{\gamma - 1} + \frac{B_{\perp}^2}{4\pi}\right) u_n - \frac{\left(B_{\perp} \cdot u_{\perp}\right)}{4\pi} B_n\right] = 0$$

MHD Shock

Shock

- Co-planarity of magnetic field.
- Parallel shock: reduced to hydro or "switch on."
- Perpendicular shock: B_{\perp} compressed like the fluid, i.e., compression ratio $\frac{B_2}{B_1} = \frac{\rho_2}{\rho_1} = \frac{u_{n1}}{u_{n2}} = \delta$.

Perpendicular shock adiabatic: $u_{n1}^2 = \frac{2\delta \left[C_{s1}^2 + V_{A1}^2 \left(\delta - \frac{1}{2} \gamma (\delta - 1) \right) \right]}{\gamma + 1 - (\gamma - 1)\delta}$. Upstream sound speed & Alfvén speed $C_{s1}^2 = \frac{\gamma p_1}{\rho_1}$, $V_{A1}^2 = \frac{B_1^2}{4\pi \rho_1}$.