

MCKV Institute of Engineering

Paper Code: ES-IT401

Discrete Mathematics

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any five of the following:
- (i) The smallest set A such that $A \cup \{4,5\} = \{1,2,3,4,5\}$ is
 - (a) $\{1,2\}$
 - (b) {1,3}
 - (c) $\{1,2,3\}$
 - (d) $\{2,3\}$
- (ii) A B contains elements in
 - (a) A but not in B
 - (b) B but not in A
 - (c) both A and B
 - (d) neither A nor B
- (iii) If A' is the complement of the set A then $A \cup A'$ is
 - (a) the empty set \emptyset
 - (b) A'
 - (c) A
 - (d) the universal set U
- (iv) If A' is the complement of the set A then $A \cup A'$ is

5×1

- (a) the empty set Ø
- (b) A'
- (c) A
- (d) the universal set U
- (v) If A and B are sets then $A \cap (A \cup B) =$
 - (a) A
 - (b) *B*
 - (c) Ø
 - (d) None of these
- (vi) The relation "≤" on the set of Natural numbers is
 - (a) symmetric
 - (b) transitive
 - (c) not transitive
 - (d) None of these

Group - B

(Short Answer Type Questions)

Answer any two of the following

2×5

- (2) A relation \mathcal{R} : $\mathbb{R} \to \mathbb{R}$ is defined as $a\mathcal{R}b$ if b-a is divisible by 5. Show that \mathcal{R} is an equivalence relation
- (3) If $f: \mathbb{R}^+ \to \mathbb{R}^+$ and $g: \mathbb{R}^+ \to \mathbb{R}^+$ defined by $f(x) = \sqrt{x}$ and $g(x) = 3x + 1, \forall x \in \mathbb{R}^+$, find $f \circ g$ and $g \circ f$. Is $f \circ g = g \circ f$?
- (4) Show that the function f(x) = x + 5 from the set of real numbers \mathbb{R} to \mathbb{R} is injective.

Group - C

(Long Answer Type Questions)

Answer any one of the following

1×15

(5)

- (a) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and $g(x) = \sin x$, $\forall x \in \mathbb{R}$, show that $f \circ g \neq g \circ f$
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = 3x 4. Find f^{-1} .
- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = px + q, for all x also $f \circ f = I_R$, find the value of p & q.

(6)

- (a) Show that the functions $f(x) = x^3$ and $g(x) = x^{1/3} \ \forall x \in \mathbb{R}$ are inverses of one another.
- (b) If $A = \{1, 2, 4\}$, $B = \{2, 4, 5\}$ and $C = \{2, 5\}$ then find $(A B) \times (B C)$
- (c) State and prove De'Morgan's law.

MCKV Institute of Engineering

Paper Code: ES-IT401

Paper Name: Discrete Mathematics

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

5×1=5

- (i) The chromatic number of a bipartite graph is
 - (a) 3
 - (b) 2
 - (c) 4.
 - (d) 1
- (ii) The Boolean expression (A + B + C)(D + E)' + (A + B + C)(D + E) =
 - (a) A + B + C
 - (b) D + E
 - (c) A'B'C'
 - (d) D'E'
- (iii) The chromatic number of an even cycle (circuit) with n number of vertices is
 - (a) 1
 - (b) 2
 - (c) 3
- (iv) In a planar graph with n no of vertices, r no of regions, and e no of edges n-e+r equals
 - (a) 0
 - (b) 1
 - (Q) 2
 - (d)3
- (v) In a ring, a zero divisor is always

(vi) How many unique colours will be required for proper vertex colouring of a line graph having vertices?

- (a) 1
- (b) 2
- (c) n-1
- (d) n

<u>Group - B</u>

(Short Answer Type Questions)

Answer any *two* of the following

 2×5

Find the Hasse diagram of the positive divisor of 42 and also find the maximal & minimal elemof the Set. (CO-3/APPLY/IOCQ/5)

(3) Find the chromatic number of the following graph

(CO-5/APPLY/10CQ/5)

(4) Obtain the truth table for the following Boolean function:

$$f(x,y,z) = (x'+y')(x+z)(y+z')$$
 (CO-4/APPLY/IOCQ/5)

Group - C

(Long Answer Type Questions)

Answer any one of the following

(5)

(a) Show that a complete bipartite graph has perfect matching. (CO-5/APPLY/IOCQ/5)

(b) Let D be the set of all diagonal matrices of order 2. Then show that D is a subring of the ring $M_2(R)$ where $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in R$. **(CO-3/APPLY/IOCQ/5)**

(c) Show that the modulo 5 system is a field. (CO-3/APPLY/IOCQ/5)

having n

01

(6)

(a) In an examination seven subjects are to be scheduled $S_{1,}S_{2}$, S_{3} , S_{4} , $S_{5,}S_{6}$, S_{7} . Following pairs of subjects have common students:

$$(S_1, S_2), (S_1, S_3), (S_1, S_4), (S_1, S_7), (S_2, S_3), (S_2, S_4), (S_2, S_5), (S_2, S_7), (S_3, S_4), (S_3, S_6), (S_3, S_7), (S_4, S_5), (S_4, S_6), (S_5, S_6), (S_5, S_7), (S_6, S_7).$$

How can the examination be scheduled so that no student has two examination at the same day?

(CO-5/APPLY/HOCQ/5)

- (b) Find the disjunctive normal form of the Boolean function f(x, y, z) such that (x, y, z) = 1 if and only if two or more variables are 1(CO-4/APPLY/HOCQ/5)
- (c) Show that the set $\{S, +, .\}$ is a non-commutative ring with no unity element where the matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, a, b, c are the even integers. (CO-3/APPLY/HOCQ/5)

MCKV Institute of Engineering

Paper Code: ES-IT401

Paper Name: Discrete Mathematics

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

 $5 \times 1 = 5$

- (i) The chromatic number of a bipartite graph is
 - (a) 3
 - (b) 2
 - (c) 4
 - (d) 1
- (ii) The Boolean expression (A + B + C)(D + E)' + (A + B + C)(D + E) =
 - (a) A + B + C
 - (b) D + E
 - (c) A'B'C'
 - (d) D'E'
- (iii) The chromatic number of an even cycle (circuit) with n number of vertices is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) n
- (iv) In a planar graph with n no of vertices, r no of regions, and e no of edges n-e+r equals
 - (a) 0
 - (b) 1
 - (c) 2
 - (d)3
- (v) In a ring, a zero divisor is always

1 M. S

- (a) zero
- (b) non-zero
- (c) may be anything
- (d) None of these

(vi) How many unique colours will be required for proper vertex colouring of a line graph have vertices?

- (a) 1
- (b) 2
- (c) n-1
- (d) n

<u> Group – B</u>

(Short Answer Type Questions)

Answer any *two* of the following

2×5=10

(2.) Find the Hasse diagram of the positive divisor of 42 and also find the maximal & minimal elements of the Set. (CO-3/APPLY/IOCQ/5)

(3) Find the chromatic number of the following graph

(CO-5/APPLY/IOCQ/5)

(4) Obtain the truth table for the following Boolean function:

$$f(x,y,z) = (x'+y')(x+z)(y+z')$$
 (CO-4/APPLY/IOCQ/5)

<u>Group - C</u>

(Long Answer Type Questions)

Answer any **one** of the following

1×15=15

(5)

(a) Show that a complete bipartite graph has perfect matching. (CO-5/APPLY/IOCQ/5)

(b) Let D be the set of all diagonal matrices of order 2. Then show that D is a subring of the ring $M_2(R)$ where $D = \begin{pmatrix} a & 0 \\ 0 & h \end{pmatrix}$, $a, b \in R$. **(CO-3/APPLY/IOCQ/5)**

(c) Show that the modulo 5 system is a field. (CO-3/APPLY/IOCQ/5)

Possible to hand two surches a we make strict

(6)

(a) In an examination seven subjects are to be scheduled $S_{1,S_{2},S_{3},S_{4},S_{5,S_{6}},S_{7}$. Following pairs of subjects have common students:

$$(S_1, S_2), (S_1, S_3), (S_1, S_4), (S_1, S_7), (S_2, S_3), (S_2, S_4), (S_2, S_5), (S_2, S_7), (S_3, S_4), (S_3, S_6), (S_3, S_7), (S_4, S_5), (S_4, S_6), (S_5, S_6), (S_5, S_7), (S_6, S_7).$$

How can the examination be scheduled so that no student has two examination at the same day?

(CO-5/APPLY/HOCQ/5)

- (b) Find the disjunctive normal form of the Boolean function f(x,y,z) such that (x,y,z)=1 if and only if two or more variables are 1(CO-4/APPLY/HOCQ/5)
- (c) Show that the set $\{S, +, .\}$ is a non-commutative ring with no unity element where the matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, a, b, c are the even integers. (CO-3/APPLY/HOCQ/5)

```
Table albae
8(90, 9.20) ((90,000)
 8(90,6,0) = (90,60)
à(90, a.b) ~(90,ab)
8(90,0,0) . (9,1).
$ (91,6,6) = (91,8)
6(9,0,0): (9,0)
 8(91, 2, 291 = (97 M)
                     empty state
 6/112/2010(92/2)
 (90 maba, aba)20)
Tige, badaba, asc)
T(90,9060, Abio)
T/ 90, aba, aba?
T(n,, ba, 6970)
 +/9,10,000
 T/91, A, 420)
```