sine basis 03

Design matrix n-values adjusted for search volume

•			Design matrix									
Sta	tistic	S:	p-values adjusted for search volume									
set-level (cluster-level			peak-level					mm mm mm	
р	С	$p_{\text{FWE-corrFDR-corr}} k_{\text{E}} p_{\text{unc}}$		p _{uncorr}	$p_{\text{FWE-corr}} q T (Z_{\parallel}) p_{\text{uncorr}}$							
		1.000	0.807	3	0.640	1.000	0.991	2.62	2.61	0.005	44	22 8
		1.000	0.807	2	0.711	1.000	0.991	2.61	2.60	0.005	30	-86 -26
		1.000	0.807	3	0.640	1.000	0.991	2.61	2.60	0.005	52	-44 18
		1.000	0.807	2	0.711	1.000	0.991	2.61	2.60	0.005	-18	-32 -14
		1.000	0.807	6	0.492	1.000	0.991	2.60	2.59	0.005	-60	4 24
		1.000	0.807	2	0.711	1.000	0.991	2.59	2.58	0.005	-36	-80 -10
		1.000	0.807	6	0.492	1.000	0.991	2.58	2.57	0.005	-34	38 40
		1.000	0.807	5	0.534	1.000	0.991	2.57	2.57	0.005	-6	16 30
		1.000	0.807	4	0.582	1.000	0.991	2.57	2.56	0.005	-8	6 40
		1.000	0.807	3	0.640	1.000	0.991	2.57	2.56	0.005	-6	30 64
		1.000	0.807	2	0.711	1.000	0.991	2.56	2.56	0.005	-38	-52 -30
		1.000	0.807	7	0.456	1.000	0.991	2.56	2.55	0.005	2	24 34
		1.000	0.807	3	0.640	1.000	0.991	2.55	2.54	0.006	12	16 -10
		1.000	0.807	3	0.640	1.000	0.991	2.53	2.53	0.006	14	54 -16
		1.000	0.807	3	0.640	1.000	0.991	2.52	2.51	0.006	22	-24 68
		1.000	0.807	1	0.807	1.000	0.991	2.50	2.50	0.006	-26	-58 -50
		1.000	0.807	1	0.807	1.000	0.991	2.50	2.50	0.006	-30	-96 -4
		1.000	0.807	7	0.456	1.000	0.991	2.50	2.49	0.006	26	-42 12
		1.000	0.807	2	0.711	1.000	0.991	2.50	2.49	0.006	-2	18 10
		1.000	0.807	2	0.711	1.000	0.991	2.50	2.49	0.006	36	18 4
		1.000	0.807	1	0.807	1.000	0.991	2.49	2.48	0.006	-32	-94 -6
		1.000	0.807	2	0.711	1.000	0.991	2.48	2.47	0.007	-68	-36 -12

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.4 7.2 7.0 mm mm mm; 3.7 3.6 3.5 {voxels}

Expected voxels per cluster, $\langle k \rangle = 13.375$ Volume: 1709712 = 213714 voxels = 4266.5 resels

Expected number of clusters, $\langle c \rangle = 181.88$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 46.48 voxels)

FWEp: 5.062, FDRp: Inf, FWEc: 297, FDRo? 297 5