Algebra II (Doble grado Informática-Matemáticas)

Relación 2

Curso 2021/22

Subgrupos. Generadores. Retículos. Grupos cíclicos

Ejercicio 1. Demostrar que para cualquier permutación $\alpha \in S_n$ se verifica que $s(\alpha) = s(\alpha^{-1})$, donde s denota la **signatura**, o paridad, de una permutación.

Ejercicio 2. Demostrar que si $(x_1x_2\cdots x_r)\in S_n$ es un ciclo de longitud r, entonces

$$s(x_1x_2\cdots x_r) = (-1)^{r-1}.$$

Ejercicio 3. Describir todos los elementos de los grupos alternados A_n , consistentes en las permutaciones pares del S_n correspondiente, para n=2, n=3 y n=4.

Ejercicio 4. Demostrar que el grupo de unidades \mathbb{Z}_7^{\times} es un grupo cíclico.

Ejercicio 5. Demostrar que el conjunto de transposiciones

$$\{(1,2),(2,3),\ldots,(n-1,n)\}$$

genera al grupo simétrico S_n .

Ejercicio 6. Demostrar que el conjunto $\{(1, 2, ..., n), (1, 2)\}$ general al grupo simétrico S_n .

Ejercicio 7. Sea $D_n = \langle r, s | s^2 = r^n = 1, sr = r^{n-1}s \rangle$ el *n*-ésimo grupo diédrico. Demostrar que el subgrupo de D_n generado por los elementos $\{r^j s, r^k s\}$ es todo el grupo D_n siempre que $0 \le j < k < n \ y \ m.c.d.(k-j,n) = 1.$

Ejercicio 8. Demostrar que el subgrupo Q de $GS_2(\mathbb{Z}_3)$ generado por los elementos

$$i := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad j := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

es isomorfo al grupo cuaternio Q_2 .

Ejercicio 9. Sea G un grupo y sean $a, b \in G$ tales que $ba = ab^k$, $a^n = 1 = b^m$ con n, m > 0.

- 1. Demostrar que para todo $i = 0, \dots, m-1$ se verifica $b^i a = ab^{ik}$.
- 2. Demostrar que para todo $j=0,\cdots,n-1$ se verifica $ba^j=a^jb^{k^j}$.
- 3. Demostrar que para todo $i=0,\cdots,m-1$ y todo $j=0,\cdots,n-1$ se verifica $b^ia^j=a^jb^{ik^j}$.
- 4. Demostrar que todo elemento de $\langle a,b \rangle$ puede escribirse como a^rb^s con $0 \le r < n, \ 0 \le s < m$.

Ejercicio 10. Razonar que un subconjunto no vacío $X \subseteq G$ de un grupo G es un subgrupo de G si, y sólo si, $X = \langle X \rangle$.

Ejercicio 11. Sea G un grupo y $a, b \in G$ dos elementos de orden finito. ¿Es ab necesariamente de orden finito? (**Pista:** Considerar el grupo $GL_2(\mathbb{Q})$ y los elementos

$$a=\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix},\ b=\begin{pmatrix}0 & 1\\-1 & 1\end{pmatrix}.)$$

Ejercicio 12. En el grupo S_3 se considera el conjunto

$$H := \{Id, (1, 2, 3), (1, 3, 2)\}.$$

- 1. Demostrar que H es un subgrupo de S_3 .
- 2. Describir las diferentes clases de S_3 módulo H.

Ejercicio 13.

- 1. Demostrar que si $H \leq G$ es un subgrupo, entonces [G:H] = |G| si, y $s_4^3 lo$ si, $H = \{1\}$, mientras que [G:H] = 1 si, y $s_4^3 lo$ si, H = G.
- 2. Demostrar que si se tienen subgrupos $G_2 \leq G_1 \leq G$, entonces

$$[G:G_2] = [G:G_1][G_1:G_2],$$

 Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 \ge G_1 \ge \cdots \ge G_{r-1} \ge G_r$$

entonces

$$[G:G_r] = \prod_{i=0}^{r-1} [G_i:G_{i+1}].$$

4. Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 > G_1 > \cdots > G_{r-1} > G_r = 1$$
,

entonces

$$|G| = \prod_{i=0}^{r-1} [G_i : G_{i+1}].$$

Ejercicio 14. Encontrar el orden de cada elemento del grupo \mathbb{Z}_{11}^{\times} .

Ejercicio 15. Probar que si $f:G\cong G'$ es un isomorfismo de grupos, entonces or(a)=or(f(a)), para todo elemento $a\in G$.

Ejercicio 16. 1. Listar los órdenes de los diferentes elementos del grupo Q_2 .

- 2. Listar los órdenes de los elementos del grupo D_4 .
- 3. Concluir que D_4 y Q_2 no son isomorfos.

Ejercicio 17. Sean $a, b \in G$ dos elementos de un grupo que conmutan entre sí, esto es, para los que ab = ba, y de manera que sus órdenes son primos relativos, esto es, mcd(o(a), o(b)) = 1.

- 1. Razonar que $\langle a \rangle \cap \langle b \rangle = 1$.
- 2. Demostrar que o(ab) = o(a)o(b).

Ejercicio 18. Calcular el orden de la permutación

$$\sigma = (1 \ 8 \ 10 \ 4)(2 \ 8)(5 \ 1 \ 4 \ 8) \in S_{15}$$

Ejercicio 19. Encontrar un grupo G y elementos $a, b \in G$ tales que sus órdenes sean primos relativos, pero para los que **no** se verifique la igualdad o(ab) = o(a)o(b) del ejercicio anterior.

Ejercicio 20. Demostrar que un grupo generado por dos elementos distintos de orden dos, que conmutan entre sí, consiste del 1, de esos elementos y de su producto y es isomorfo al grupo de Klein.

Ejercicio 21. Sea G un grupo, $a, b \in G$.

- 1. Demostrar que el elemento b y su conjugado aba^{-1} tienen el mismo orden.
- 2. Demostrar que o(ba) = o(ab)

Ejercicio 22. Sea G un grupo y sean $a, b \in G$, $a \neq 1 \neq b$, tales que $a^2 = 1$ y $ab^2 = b^3a$. Demostrar que or(a) = 2 y que or(b) = 5.

Ejercicio 23. 1. Demostrar que si si G es un grupo de orden 4, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo de Klein.

2. Demostrar que si G es un grupo de orden 6, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo diédrico D_3 .

Ejercicio 24. Deducir el *Teorema de Fermat*: Para todo primo p y todo entero m primo relativo con p se verifica $m^{p-1} \equiv 1 \, (mod p)$.

Ejercicio 25. Deducir el *Teorema de Euler*: Para todo entero positivo n y todo entero m primo relativo con n se verifica $m^{\varphi(n)} \equiv 1 \, (mod n)$.

Ejercicio 26. Si G es un grupo cíclico demostrar que cualquier homomorfismo de grupos $f: G \to H$ está determinado por la imagen del generador.

Ejercicio 27. Describir los retículos de subgrupos de los siguientes grupos: i) el grupo V de Klein; ii) el grupo simétrico S_3 ; iii) el grupo diédrico D_4 ; iv) el grupo cuaternio Q_2 .

Ejercicio 28. Describe el retículo de subgrupos del grupo cíclico

$$C_{p^n} = \langle x | \ x^{p^n} = 1 \rangle,$$

siendo p un número primo. En particular, describe el retículo de subgrupos del grupo cíclico

$$C_8 = \langle x | x^8 = 1 \rangle.$$

Ejercicio 29. Demostrar que un grupo finito $G \neq \{1\}$ carece de subgrupos propios, esto es, que su retículo de subgrupos es

si, y sólo si, $G = C_p$ es un grupo cíclico de orden primo.

Ejercicio 30. Describir los retículos de subgrupos de los grupos cíclicos $C_6 = \langle x | x^6 = 1 \rangle$ y $C_{12} = \langle x | x^{12} = 1 \rangle$.

Ejercicio 31. Se considera el grupo cíclico C_{136} de orden 136, con generador t. ¿Qué relación hay entre los subgrupos $H_1 = \langle t^{48}, t^{72} \rangle$ y $H_2 = \langle t^{46} \rangle$?