Econometria e Séries Temporais - Aula 5 -

Prof. Mestre. Omar Barroso Instituto Brasileiro de Educação, Pesquisa e Desenvolvimento

Interpretando: Output do modelo ARIMA em R

- Na aula anterior vimos como os coeficientes AR(1), AR(2), Ma(1), Ma(2) e o intercepto explicam a série temporal.
- Em muitos casos, os coeficientes podem explicar a variável dependente de forma positiva ou negativa.
- Ou seja, existe uma relação de elasticidade, no qual, a variação do coeficiente afeta uma unidade da variável dependente.

Recapitulando USD/GBP

Interpretando: Output do modelo ARIMA em R

• Relembrando o resultado do modelo ARIMA (2,0,2) da aula anterior (taxa de câmbio USD/GBP).

```
Call:
```

```
arima(x = usd_ukp_diff_clean, order = c(2, 0, 2))
```

Coefficients:

```
ar1 ar2 ma1 ma2 intercept
-0.2680 -0.7241 0.3009 0.7407 -1e-04
s.e. 0.0826 0.1905 0.0771 0.1865 1e-04
```

sigma² estimated as 9.147e-05: log likelihood = 41774.44, aic = -83536.87

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 1.605535e-05 0.009563956 0.00671401 NaN Inf 0.7012484 0.007905228

Interpretando: Output do modelo ARIMA em R

- Hoje veremos...
- Sigma^2
- Log likelihood (verossimilhança em log)
- ME: Mean Error (Erro Médio)
- AIC: Akaike Information Criterion (Críterio de Informação Akaike)
- RMSE: Root Mean Squarred Error (Raíz da Média do Erro ao Quadrado)
- MAE: Mean Absolute Error (Erro da Média Absoluta)
- MPE: Mean Percentage Error (Média Percentual do Erro)
- MAPE: Mean Absolute Percentage Error (Média Absoluta Percentual do Erro)
- MASE: Mean Absolute Scaled Error (Média Absoluta sobre o Erro Escalar)
- ACF1: Autocorrelation Function 1 (Função de Autocorrelação 1)

Sigma^2 (σ^2)

- Esta é a variância estimada dos resíduos (erros) do modelo.
- Representando a variabilidade dos dados no qual o modelo não explica. Valores mais baixos sugerem um melhor ajuste do modelo.
- No caso do modelo USD/GBP: sigma^2 estimated as 9.147e-05
- Desta forma, a variância estimada sugere que a variabilidade do modelo é relativamente alta.
- Todavia, costumamos sugerir que a variância estimada dos resíduos do modelo não deve ser analisada solitariamente (e.g., comparar com modelos distintos ou diferentes janelas de tempo).

Log likelihood (verossimilhança em log)

- A verossimilhança logarítmica é derivada da teoria de estimativa de **máxima verossimilhança**, que ajusta o modelo aos dados, maximizando a probabilidade de observação dos dados fornecidos.
- Esta é uma medida da qualidade do ajuste do modelo. Ele avalia a probabilidade de o modelo ter gerado os dados observados. Valores de log de probabilidade mais altos indicam um melhor ajuste.
- ARIMA (1,0,1): 41768.58 .V.s. ARIMA (2,0,2): 41774.44
- Qual apresenta um melhor ajuste do modelo?

ME: Mean Error

• Esta é a diferença média entre os valores reais e os valores previstos. ME pode indicar viés no modelo – se ele superestima ou subestima consistentemente os valores.

•
$$(\varepsilon - \hat{\varepsilon})$$

Root Mean Square Error (RMSE)

• Esta é a raiz quadrada da média das diferenças quadradas entre os valores reais e previstos (erros).

•
$$\sqrt{\left(\left(\frac{\sum_{i=1}^{n}(\varepsilon-\hat{\varepsilon})}{n}\right)^{2}\right)}$$

- O RMSE penaliza mais erros maiores do que erros menores. Um RMSE mais baixo indica melhor precisão preditiva.
- ARIMA (1,0,1): -6.660123e-09 .V.S. ARIMA (2,0,2): 1.605535e-05

Mean Absolute Error (MAE)

- Mede a magnitude média dos erros sem considerar sua direção (ou seja, positiva ou negativa). Ele fornece uma medida direta do tamanho do erro. Valores mais baixos indicam melhor desempenho do modelo.
- ARIMA (1,0,1): 0.006716458 .V.S. ARIMA (2,0,2): 0.00671401
- Ambos os modelos apresentam padrões similares...
- Qual modelo é melhor?

Mean Percentage Error (MPE)

- Este é o erro percentual médio entre os valores reais e previstos. Ajuda a compreender o tamanho relativo ao erro, mas pode ser enganoso se os valores ultrapassarem zero.
- ARIMA (1,0,1):NaN .V.S. ARIMA (2,0,2):NaN
- O "NaN" ocorre quando há uma divisão por zero ou quando um ou mais valores reais no conjunto de dados são zero.
- Isso sugere que o modelo não é adequado para avaliar o desempenho por meio de medidas de erro baseadas em porcentagem nos casos em que os valores reais são zero. Outras medidas de erro como MAE ou RMSE devem ser utilizadas.

Mean Absolute Percentage Error (MAPE)

- Este é o erro médio absoluto expresso como uma percentagem dos valores reais, fornecendo uma medida normalizada da precisão da previsão. **Menor MAPE** indica melhor desempenho.
- ARIMA (1,0,1): Inf .V.S. ARIMA (2,0,2):Inf
- Um MAPE infinito sugere que o desempenho do modelo não pode ser avaliado adequadamente usando MAPE quando o conjunto de dados contém valores zero.
- Nesses casos, outras métricas de erro como MAE ou RMSE, que não envolvem cálculos percentuais, devem ser utilizadas para avaliar a precisão do modelo.

Erro Médio Absoluto em Escala (MASE)

- Esta é uma medida de erro normalizada que compara o MAE do modelo com o MAE de um **modelo ingênuo** (por exemplo, um modelo de passeio aleatório simples). **Valores menores que 1** indicam que o modelo tem desempenho melhor que o benchmark ingênuo.
- ARIMA (1,0,1): 0.7015041 .V.S. ARIMA (2,0,2): 0.7012484
- Ambos apresentam um valor menor do que 1.
- Desta maneira, ambos modelos tem um desempenho melhor do que o benchmark ingênuo.

Autocorrelation Function 1 (ACF1)

- Mede a correlação entre os resíduos (erros) na defasagem 1 (ou seja, o período anterior). Se ACF1 estiver próximo de 0, sugere que o modelo capturou a maior parte da autocorrelação nos dados.
 Valores diferentes de zero sugerem autocorrelação remanescente, indicando que pode ser necessária melhoria do modelo.
- ACF1 refere-se às propriedades de autocorrelação de séries temporais, verificando se o modelo deixa alguma autocorrelação não contabilizada, que idealmente deveria ser próxima de zero em um modelo bem especificado.

Autocorrelation Function 1 (ACF1)

- ARIMA (1,0,1): -8.067696e-05 .V.S. ARIMA (2,0,2): 0.007905228.
- Lembrando: Se ACF1 estiver próximo de 0, sugere que o modelo capturou a maior parte da autocorrelação nos dados.
- Valores diferentes de zero sugerem autocorrelação remanescente, indicando que pode ser necessária melhoria do modelo.
- Qual modelo teve uma performance melhor?

- É uma medida usada para avaliar a qualidade do ajuste do modelo enquanto penaliza pela complexidade.
- Ajuda a selecionar o melhor modelo de um conjunto de modelos, equilibrando ajuste e complexidade. Um valor AIC mais baixo indica um modelo melhor.
- $AIC = 2k 2\ln(L)$
- K = O número de parâmetros no modelo (incluindo AR, MA e termos constantes).
- L = O valor maximizado da função de verossimilhança para o modelo.

- A AIC está enraizada na teoria da informação, especificamente no conceito de entropia (aleatoriedade em um sistema). O objetivo é estimar a qualidade relativa dos modelos estatísticos para um determinado conjunto de dados, considerando tanto o ajuste (por meio da função log-verossimilhança) quanto a simplicidade do modelo (penalizando por mais parâmetros).
- Trade-off: A AIC equilibra dois objetivos concorrentes minimizar o erro (ajuste) e evitar o ajuste excessivo (penalidade pela complexidade).

- Seleção de modelos: Entre um conjunto de modelos, aquele com o AIC mais baixo é considerado o melhor, embora não forneça uma medida absoluta da qualidade do modelo.
- Em resumo, o AIC é um critério amplamente utilizado em análise de séries temporais e econometria para comparar modelos ARIMA e selecionar o mais apropriado.

- ARIMA (1,0,1):-83529.15 .V.S. ARIMA (2,0,2):-83536.87
- Qual apresenta um AIC mais adequado?

Afinal Qual Modelo Foi Melhor?

• Sigma: O modelo (1,0,1) apresenta uma variância um pouco mais alta.

• Log likelihood: A probabilidade do modelo (2,0,2) é melhor ajustada.

ME: Aparentemente o modelo (1,0,1) apresenta mais vieses.

• RMSE: O ARIMA(1,0,1) indica uma precisão preditiva melhor.

Afinal Qual Modelo Foi Melhor?

- MAE: O modelo (2,0,2) é relativamente menor. Ou seja a magnitude dos erros aparenta ser [relativamente] menos influenciada.
- MPE: Não adequado para ambos modelos.
- MAPE: Não adequado para ambos modelos.
- ACF1: O modelo (2,0,2) capturou melhor a autocorrelação nos dados.
- AIC: A qualidade do modelo (2,0,2) é mais adequado equilibrando melhor pela entropia e complexidade.

Conclusão

- Podemos dizer, que o modelo (2,0,2) teve uma performance relativamente melhor.
- Nesse contexto, o modelo (2,0,2) apresenta uma variância menor, um melhor ajuste probabilístico, menores vieses, uma menor influencia dos erros, uma captura melhor de autocorrelação e um melhor equilíbrio sobre complexidades.

Ideias para contemplar

- Como a análise dos coeficientes difere das medidas de ajuste do modelo (MAE, RSME, etc...)?
- Quais tipos diferentes de séries temporais poderíamos aplicar esse tipo de análise?
- Processos AR 1 e 2 são o suficiente para realmente capturar os impactos em uma série temporal?

Referências

- Box, G.E.P. and Jenkins, G.M., 1970. *Time Series Analysis: Forecasting and Control*. San Francisco: Holden-Day.
- Box, G.E.P. and Jenkins, G.M., 1970. *Time Series Analysis: Forecasting and Control*.
 San Francisco: Holden-Day.
- - Box, G.E.P. and Pierce, D.A., 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *Journal of the American Statistical Association*, 65(332), pp.1509-1526.
- - Box, G.E.P. and Pierce, D.A., 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *Journal of the American Statistical Association*, 65(332), pp.1509-1526.
- Kennedy, P., 1986. A Guide to Econometrics, Second Edition. MIT Press.