# Arrays 20

#### Today's Content

- · Introduction to submatrix
- · Submoteix sum queries
- · Sum of all submatrix sum
- · Mazimum rum rubmatrix 4 Hint 3 for rooted away

submatrix: Part of a matrix.

Any rectangle inside the matrix.



Note: A single element is also a submatrix

Entire matrix is also a submatrix



### perxerent a submatrix



Points to rep submatrix

- · TL (top left)
- · BR (bottom right)

$$TL = (2,1)$$
  
 $BR = (4,4)$ 

Q> Given a matrix of size R\*C and Q queries. For each query. Find sum of given submatrix Note: TL = top lebt & BR = bottom right.

|   | 0  | ţ   | 2 | 3 |
|---|----|-----|---|---|
| 0 | 2  | -1  | 3 | 2 |
| ı | 3  | , 2 | 6 | 2 |
| 2 | 10 | , 9 | 8 | 2 |
| 3 | ٦  | -1  | 2 | 3 |
| ų | 3  | 2   | 6 | 9 |

| Q     |       |               |    |
|-------|-------|---------------|----|
| TL    | BR    |               |    |
| (2,1) | (4,2) | $\rightarrow$ | 26 |
| (1,1) | (3,3) | $\rightarrow$ | 33 |
|       |       |               |    |

Bruteforce: TL VIC, BR V2C

TC: O(QRC)

```
for (q=0; q< Q; q++) {

TL \{r_1c_1\}

BR \{r_2c_2\}

total = 0

\{o_3(r=r_1; r<=r_2; r++)\}

\{o_3(c=c_1; c<=c_2; c++)\}

\{o_4(c) = o_4(c) = o_4(c) = o_4(c)

\{o_4(c) = o_4(c) = o_4(c) = o_4(c) = o_4(c)

\{o_4(c) = o_4(c) = o_4(c) = o_4(c) = o_4(c) = o_4(c)

\{o_4(c) = o_4(c) = o_4(
```

10 psum [i] = sum of all elements from 0-ith

20 psum [i][j] = sum of all elements from (0,0) to (i,j)







```
r_1
r_2
r_2
r_3
r_4
r_4
r_5
```

```
p sum [r2] [c2]

- prum [r1-1] [c2]

- prum [r2] [c1-1]

+ prum [r1-1] [c1-1]
```

```
total = psum[r_2][c_2]

if (r_1>0) {

| total -= psum[r_1-1][c_2]

}

if (c_1>0) {

| total -= psum[r_2][c_1-1]

}

if (r_1>0) && (r_1>0) {

| total += psum[r_1-1][c_1-1]

}
```

To build prum matrix

1 · prefix sum of each row

2 · prefix sum of each col

|   | 0              | 1              | 2     |
|---|----------------|----------------|-------|
| 0 | ao             | bo             | S     |
| 1 | aı             | bi             | C     |
| 2 | a <sub>2</sub> | b <sub>2</sub> | $C_2$ |

|   | O           | L           | 2                 |
|---|-------------|-------------|-------------------|
| 0 | ao          | aotbo       | aotbo+co          |
|   | T           | Α           | aotbot Co         |
| 1 | aı          | ai + bi     | 91+b1+C1          |
|   | a0+         | aut bo      | aotbotco          |
| 2 |             | <b>T</b>    | a1+b1+C1          |
|   | $\dot{q}_2$ | $a_1 + b_2$ | $a_1 + b_2 + c_2$ |



TC: O(RxC)

```
TC of optimized solution for submatrix sum queries
               O(Q+RC]
CC: O(LxC)
     MERTECT
     TLR [Q]
     TLC [Q]
     BRRTQJ
     BRC [Q]
      P = [][] // init
      // Build psum mat.
      for (r=0; r<R; r++) {
     for (c=0; c/c; c++) {
     for ( r = 1; r < R; r++) {
| P[r][c]+= P[r+][c]
| 3
      for (q=0; q<Q; q++) {
      \Upsilon_1 = TLR[q], \Upsilon_2 = BRR[q]
C_1 = TLC[q], C_2 = BRC[q]
// olug in the query formula.
```

total = 
$$P[r_2][c_2]$$
  
if  $(r_1>0)$  {  
| total -=  $P[r_1-1][c_2]$   
}  
if  $(c_1>0)$  {  
| total -=  $P[r_2][c_1-1]$   
}  
if  $(r_1>0)$  &  $c_1>0$  {  
| total +=  $P[r_1-1][c_1-1]$   
}

Q> Given a matrix of size l\*C. Calculate sum of all submatrix sums.





## Brutc force.

- · Fix a TL point and generate all BR points
- · Use sum formula to get sum b/w(TL, BR)



```
Preudo

total = 0

SC = RC

for (r_1 = 0; r_1 < R; r_1 + t) {

for(c_1 = 0; c_1 < C; c_1 + t) {

for(r_2 = r_1; r_2 < R; r_2 + t) {

for(c_1 = c_1; c_1 < C; c_1 + t) {

total + total +
```

#### Contribution

In How many matrices will an element appear



Total option = 
$$X \times Y$$
  
Contribution =  $X_{X} Y_{X} M[i][j]$ 

$$\gamma$$
,  $C$  (R, C)  
 $\chi$  POJ for  $TL = (\gamma + 1) \times (C + 1)$   
POJ for  $BR = R - \gamma \times C - C$ 

e,

Q> Given now wife and col wife sorted matrix.

Find max submatrix sum.



```
Doubt senion

L R

1 2 3

1 3 6

ML) - P[1-1]

get (P, idx) {

get (P, k) - get(P, L-1) | if (idx >= 0 88 idx < P. length)

keturn P[idx]

} keturn 0
```