§ 4.2.3算符优先分析法

1、算符优先文法

1) 算符文法(OG文法) (Operator Grammar) 设一文法G,若G中不含U→...VW...规则 V, W∈V_n

- 原因(1)两个运算符之间操作数个数不定
 - (2)每个运算符的操作数不定

06文法:不会含有两个非终结符号相邻的包型

优先关系: 两个终结符号间

2) 算符优先文法(OPG) 对象: 终结符 Operator Precedence Grammar

```
设G是一OG文法,a,b∈V<sub>t</sub>, U,V,W∈Vn
(1)a=b 当且仅当OG有

形如U→...ab...或U→...aVb....的规则
(2)a < b 当且仅当OG有(终结符, 先前后后, 后大)

形如U→....aW....的规则

而且W=¬b....或W=¬Vb....。
(3)a > b 当且仅当OG有(终结符, 先后后前, 前大)

形如U→....Wb....的规则

而且W=¬ ....av

若a,b之间至多存在上述三种优先关系之一,OG为OPG文法.
```

以此类推,可得教材134页算符优先关系矩阵

2、 算符优先分析算法设计

---自底向上语法分析,"最左归约"

---"句柄": 最左素短语

(1)素短语

是这样一个短语,它至少包含有一个终结符号,并且除它自身之外,不再包含其它任何更小的素短语.

(2) 最左素短语:句型最左边的那个素短语.

最左素短语:T*F

旬柄: T

(3) 算符优先文法包型的一般形式

$$\|N_1a_1N_2a_2$$
 $N_na_nN_{n+1}$ $\|a_i\|_{V_t}$ N $_i$ \in V $_n$ 可有可无

(4)最左素短语的确定

定理:

一个OPG句型的最左素短语是满足以下条件的最左子串:

$$N_j a_j \dots N_i a_i \, N_{i+1}$$
 其中: $a_{j-1} < a_j$
$$a_j = a_{j+1} = \dots = a_{i-1} = a_i$$

$$a_i > a_{i+1}$$

$$a_{j-1} < a_j = a_{j+1} = \dots = a_{i-1} = a_i > a_{i+1}$$

3、OPG文法的分析算法

-----每次归约均是归约当前句型的最左素短语

■ 数据结构:

■ 分析算法:先找最左素短语的尾部(>) 再找最左素短语的头部(<)

■ 算符优先关系矩阵

	(i	*	+)	#
(S	&	(S		
i			>	9	9	9
*	\triangleleft	\triangleleft	>	>	>	>
+	<	>	S	9	>	>
(>	9	>	>
#	\triangleleft	\triangleleft	\triangleleft	<		

例:输入串 i+i*i 的算符优先分析过程 (查算符优先关系矩阵)

分析栈

优先关系

输入 R

+<i

| N | + | N

优先关系 分析栈 N + N* # *<i N + N * *<i># +<*># N + N * # N # N #<+># # N

输入 R
i

接受

结论: i+i*i是文法的合法句子

4、算符优先关系矩阵构造

1)算法分析

- (1)a **⑤ 查**规则
- (2)a S b或a S b 构造两个集合

$$U \in V_n$$

①FIRSTVT(U)=

 $\{b \mid U \stackrel{+}{=} > b..., \not \equiv U \stackrel{+}{=} > Vb..., b \in V_t, V \in V_n \}$

则形如 $W \rightarrow ...aU...$ 的规则 a < b

 $b \in FIRSTVT(U)$

$$U \in V_n$$
 $2LASTVT(U)=$

$$\{a \mid U \stackrel{+}{=} > \dots a, \not u \stackrel{+}{=} \dots aV, a \in V_t, V \in V_n \}$$

2)构造FIRSTVT(U)和LASTVT(U)的算法

- 两条原则
- ①若有规则U→b...,或U→Vb..., 则b ∈ FIRSTVT(U)
- ②若有规则U→V…,且b ∈ FIRSTVT(V)

见b ∈ FIRSTVT(U)

 $U \stackrel{+}{=} > b \dots$ 域 $U \stackrel{+}{=} > Wb \dots$ W $\in V_n$

■过程描述

数据结构:

STACK栈

٥٥	a	b
Ε	T	
Т		

■ 算法分析

初始:F(U,b)初值(根据原则①)

F(U,b)为真的(U,b)对进STACK栈

循环:直至STACK空(根据原则②)

弹出栈顶元素,记(V,b)

对每一个形如 $U \rightarrow V$...的规则

若F(U,b) 为假,变为真, 进STACK栈

若F(U,b)为真,再循环

结果:FIRSTVT(U)={b | F(U,b)=TRUE}

同理可得求LASTVT(U)的算法

3)构造OPG优先矩阵的算法

```
FOR 每一条规则U\rightarrowX<sub>1</sub>X<sub>2</sub>....X<sub>n</sub> Do FOR i:=1 To n-1 Do ...ab... BEGIN IF X<sub>i</sub>和X _{i+1}均\inV<sub>t</sub> THEN 量X<sub>i</sub> = X _{i+1} ...aVb... IF i<=n-2 且X<sub>i</sub>和X _{i+2}均\inV<sub>t</sub> 但 X _{i+1}\inV<sub>n</sub> THEN 量X<sub>i</sub> = X _{i+1} ...aU... IF X<sub>i</sub>\inV<sub>t</sub> 但 X _{i+1}\inV<sub>n</sub> THEN FOR b \inFIRSTVT(X _{i+1}) Do 量X<sub>i</sub> < b ...Ub... IF X<sub>i</sub>\inV<sub>n</sub> 但 X _{i+1}\inV<sub>t</sub> THEN FOR a \inLASTVT(X _{i}) Do 量 a > X _{i+1}
```

4、优先函数

-----用优先函数代替优先关系矩阵

-----节省内存、便于执行比较运算

$$1$$
) 优先函数 $\theta \in V_t$

 $f(\theta)$:栈内(入栈)优先函数

 $g(\theta)$:栈外 (比较) 优先函数

$$(\theta_1, \theta_2)$$

若
$$\theta_1 \leq \theta_2$$
 见 $f(\theta_1) < g(\theta_2)$

若
$$\theta_1 \equiv \theta_2$$
 则 $f(\theta_1)=g(\theta_2)$ 建立数字

者
$$\theta_1 \geq \theta_2$$
 则 $f(\theta_1)>g(\theta_2)$ 」

优先函数的特点:

1. 非全面性 2. 非唯一性 3. 每一对符号都有于对优先数9

- 2)优先函数的构造
- (1)有向图法 (Bell方法)
- ①对每 $a \in V_t$ (包括#),使之对应两个结点 f_a , g_a
- ②对于优先关系矩阵的关系
 - a > b 画一条从 f_a 到 g_b 的有向弧
 - $a \leq b$ 画一条从 g_b 到 f_a 的有向弧
- ③对每一结点赋一个数,其值为从该结点出发,所能 到达的结点个数(包含自身),

赋给 f_a 的数为f(a),赋给 g_b 的数为g(b)

4检查优先函数有无矛盾,如有,则优先函数不存在.

优先函数

	а	b
f	2	3
g	3	2

缺点:

- ① 原来天优先关系现 也存在优先关系 如b= a
- ②不是所有的优先矩阵都有优先函数

例:以下优先关系矩阵

fg	а	b	С
a	\wedge	\forall	
b		1-1	٧
С	14		И

优先函数

	а	b	С
f	6	6	6
g	6	6	6

2)Floyd方法 P143

- ①对每一个f和g赋初值,置 $f(\theta)=g(\theta)=1$
- ②迭代,即每一 (θ_1, θ_2)

若
$$\theta_1 \geq \theta_2$$
 但 $f(\theta_1) <= g(\theta_2)$,

则执行
$$f(\theta_1)=g(\theta_2)+1$$

若
$$\theta_1$$
 < θ_2 但 $f(\theta_1)>=g(\theta_2)$,

则执行
$$g(\theta_1) = f(\theta_1) + 1$$

若
$$\theta_1 = \theta_2$$
 但 $f(\theta_1) \neq g(\theta_2)$,

则令 $f(\theta_1)$ 和 $g(\theta_2)$ 中的最小者等于最大者

③重复,直至过程收敛为止.

f g a b a c 一

优先函数 BELL方法

	а	b
f	2	3
g	3	2

优先函数 floyd方法

$$f(a)=f(b)=g(a)=g(b)=1$$

a\exists f\(a\)=g\(a\)
\$\$g\(a\)=f\(a\)+1=2\$\$

a=b
$$\coprod f(a)=g(b)$$
 $f(a)=g(b)$

	а	b
f	1	2
g	2	1

收敛

b

(F, i) (T,i) (E,i) (F,()					(T,()	(E,()	(T,*)	(E,*) ↑	(E,+)
	T→F	E→T		T→F	E→T		E→T		
(F, i)	(T, i)	(E, i)							
(F,()	(F,()	(F,()	(F,()	(T,()	(E,()				
(T,*)	(T,*)	(T,*)	(T,*)	(T,*)	(T,*)	(T,*)	(E,*)		
(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	

FIRSTVT(U)

D p	+	*	()	i
Е	Т	Т	Т		Т
Т		Т	Т		Т
F			Т		Т

```
炒G[E]:E→E+T | T
       T \rightarrow T*F \mid F
       \mathbf{F} \rightarrow (\mathbf{E}) \mid \mathbf{i}
构造LASTVT(U)
由原则①初始 LASTVT(E)={+,
                  LASTVT(T)=\{*,
                  LASTVT(T)={}
由原则(2)循环U \rightarrow \dots V
```

[∓] , i) (T	-,i) (I	E,i) ↑	(F,))	(T,))	(E,))	(T,*)	(E,*)	(E,+)
T→F	E→T		T→F	E→T		E→T		
(T, i)	(E, i)							
(F,))	(F,))	(F,))	(T,))	(E,))				
(T,*)	(T,*)	(T,*)	(T,*)	(T,*)	(T,*)	(E,*)		
(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	(E,+)	
	T→F (T, i) (F,))	T→F E →T (T, i) (E, i) (F,)) (F,)) (T,*)	T→F E →T (T, i) (E, i) (F,)) (F,)) (T,*)	$T \rightarrow F$ $E \rightarrow T$ $T \rightarrow F$ (T, i) (E, i) (F,)) (T,) (T,*) (T,*) (T,*) (T,*)	$T \rightarrow F$ $E \rightarrow T$ $T \rightarrow F$ $E \rightarrow T$ (T, i) (E, i) $(F,)$ $(T,)$ $(E,)$ $(F,)$ $(F,)$ $(F,)$ $(T,)$ $(E,)$ $(T,*)$ $(T,*)$ $(T,*)$ $(T,*)$	$T \rightarrow F$ $E \rightarrow T$ $T \rightarrow F$ $E \rightarrow T$ $E \rightarrow T$ (T, i) (E, i) $(F,)$	$T \rightarrow F$ $E \rightarrow T$ $E \rightarrow T$ $E \rightarrow T$ (T, i) (E, i) (E, i) $(F,)$ $(F,)$ $(F,)$ $(F,)$ $(T,*)$ $(T,*)$ $(T,*)$ $(T,*)$ $(T,*)$ $(T,*)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

LASTVT(U)

n p	+	*	()	i
Е	Т	Т		Т	Т
Т		Т		Т	Т
F				Т	Т

FIRSTVT(U)

U b	+	*	()	i
Е	Т	Т	Η		Τ
Т		Т	Т		Т
F			Т		Т

LASTVT(U)

D p	+	*	()	i
Е	Т	Т		Т	Т
Т		Т		Т	Т
F				Т	Т

■ 算符优先关系矩阵 及优先函数

	(i	*	+)	#
(∢	\vee	\langle	⋖	三	
i			→	→	→	\rightarrow
*	\prec	\vee	→	→	→	\rightarrow
+	\vee	⊳	\langle	→	→	\rightarrow
(→	\rightarrow	→	→
#	<	∢	⋖	\leq		

	+	*	()	i	#
f	3	5	1	5	5	1
g	2	4	6	1	6	1

讨论:

- (1) 简单优先分析所确定的可归约串是当前包型的包柄。
- (2) 算符优先分析属于自底向上的语法分析, 但不是严格的最左归约。
- (3) 算符优先分析所确定的可归约串是当前句型的最左素短语。
- (4) 算符优先分析只考虑终结符号之间的优先关系。
- (5) 算符优先分析算法很容易程序实现。
- (6) 算符优先分析是比简单优先分析更有效的分析法。