

# Introduction to Statistics Tests of Hypotheses

LV Nr. 105.692 Summer Semester 2021

# Theory of Hypothesis Testing

$$H_0: \theta \in \Theta_0$$
 vs.  $H_1: \theta \in \Theta_1$ 

- The parameter spaces  $\Theta_0$  and  $\Theta_1$  are any two disjoint subsets of the parameter space.
- **②** When  $\Theta_0$  is a singleton set (contains exactly one point), the null hypothesis is said to be *simple*.
  - For example,  $\mu = 0$
- The alternative hypothesis only motivates the choice of test statistic: e.g.,

$$Z = \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}}$$

## Decision theory and $\alpha$ levels

- The theory of statistical decisions is a large subject. When applied to hypothesis tests, it gives a different view.
- The point of a hypothesis test is to decide in favor of  $H_0$  or  $H_1$ . The result is one of two decisions:
  - accept  $H_0$  or reject  $H_1$  (both mean the same)
  - ② reject  $H_0$  or accept  $H_1$  (both mean the same)
- In the decision-theoretic mode, the result of a test is just reported in these terms. No *p*-value is reported, hence no indication of the strength of evidence.

## Type I and II errors

In a test of hypotheses, the sample space is partitioned into two disjoint regions: the rejection and the acceptance region

- $\Omega_1$ : the rejection region are the values of the test statistic T for which we reject the null at level  $\alpha$
- $\Omega_0$ : the acceptance region are the values of the test statistic for which we *cannot reject* the null at level  $\alpha$
- Suppose  $\mathbf{X} = (X_1, \dots, X_n)$  is a vector of n iid random variables and  $T(\mathbf{X})$  is a test statistic. The decision rule is

if 
$$\mathbf{X} \in \Omega_1$$
 then reject  $H_0$ 

## Type I and II errors

We define two types of error with associated probabilities:

$$\begin{split} &\alpha = \mathbb{P}_{\theta \in \Theta_0} \left( \mathbf{X} \in \text{rejection region} \right) \\ &= \mathbb{P} \left( \mathbf{X} \in \Omega_1 \mid H_0 \text{ is true} \right) \\ &= \mathbb{P} (\text{Type I error}) \\ &\beta = \mathbb{P}_{\theta \in \Theta_1} \left( \mathbf{X} \in \text{acceptance region} \right) \\ &= \mathbb{P} \left( \mathbf{X} \in \Omega_0 \mid H_0 \text{ is false} \right) \\ &= \mathbb{P} (\text{Type II error}) \end{split}$$

• The power is now:

$$\begin{aligned} 1 - \beta &= \mathbb{P}_{\theta \in \Theta_1} \left( \mathbf{X} \in \Omega_1 \right) \\ &= \mathbb{P} \left( \mathbf{X} \in \Omega_1 \mid H_0 \text{ is false} \right) \\ &= \textit{power} \end{aligned}$$

|              | Truth            |                  |
|--------------|------------------|------------------|
| Decision     | $H_0$            | $H_1$            |
| Accept $H_0$ | correct decision | Type II error    |
|              | $1-\alpha$       | β                |
| Reject $H_0$ | Type I error     | correct decision |
|              | α                | $1-\beta$        |

## Decision theory and $\alpha$ levels

If no *p*-value is reported, how is the test done?

A level of significance  $\alpha$  is chosen

- If *p*-value  $< \alpha$ , then the test decides reject  $H_0$ .
- If *p*-value  $\geqslant \alpha$ , then the test decides accept  $H_0$ .

The decision theoretic view provides *less information*. Instead of giving the actual p-value, it is only reported whether the p-value is above or below  $\alpha$ .

- In the decision theoretic approach,  $\alpha$  is the **smallest** *p*-value at which we can reject the null:
  - select an  $\alpha$  (small) and **reject**  $H_0$  if p-value  $\leq \alpha$
- One can either calculate a *critical value* with respect to a chosen  $\alpha$  and compare it with the observed test statistic, or calculate the *p*-value and compare it with  $\alpha$ : the decision rule is exactly the same

E.g. for testing  $H_0$ :  $\mu = \mu_0$  vs  $H_1$ :  $\mu > \mu_0$ , when n is large,

• Fix  $\alpha$  and reject the null if

$$T(\mathbf{X}) = \frac{\bar{x}_n - \mu_0}{s_n / \sqrt{n}} > z_{\alpha} \iff \bar{x}_n > \mu_0 + z_{\alpha} \frac{z_n}{\sqrt{n}}$$

or, equivalently, compute

$$p-value = \mathbb{P}\left(Z > \frac{\bar{x}_n - \mu_0}{s_n/\sqrt{n}}\right)$$

and reject if *p*-value  $\leq \alpha$ .

We toss a coin 10 times to test the null hypothesis that the coin is fair against the alternative that  $\mathbb{P}(tails) > 0.5$ . That is,

$$H_0: p = 0.5$$
 vs  $H_1: p > 0.5$ 

Fix  $\alpha = 0.1$ . We need to find the corresponding critical value *C* for the number of tails *S* so that

$$0.1 = \mathbb{P}_{p=0.5} (S \ge C) = 0.5^{10} \sum_{i=C}^{10} {10 \choose i}$$

This has no exact integer solution (for any  $\alpha$ ). So, we find the minimal *C* such that the RHS does not exceed 0.1.

$$0.1 = \mathbb{P}_{p=0.5} (S \geqslant C) = 0.5^{10} \sum_{j=C}^{10} {10 \choose j}$$

- No closed form solution: we start from the maximal C = 10 and reduce it until the probability exceeds 0.1. The previous value of C is the critical value.
  - For C = 8, the probability is 0.0547 and for C = 7, 0.1719.
  - Thus, the null is rejected if the number of tails is at least 8 and the actual level of this test is 0.0547.

- Now, suppose we observed 6 tails in 10 tosses.
- ② The corresponding *p*-value is

$$p - value = \mathbb{P}_{p=0.5} (S \ge 6) = 0.5^{10} \sum_{j=6}^{10} {10 \choose j} = 0.172$$

which is large enough to indicate that such a result is not so extreme under the null hypothesis and we will not reject it even for a "liberal"  $\alpha=0.1$ .

## Decision theory and $\alpha$ levels

- Ideally, the significance level  $\alpha$  should be chosen carefully and reflect the costs and probabilities of false positive and false negative decisions.
- Since the decision-theoretic mode provides less information and isn't usually done properly
  - In practice,  $\alpha = 0.05$  is usually thoughtlessly chosen

many recent textbooks say it should not be used: always report the *p*-value, never report only a decision.

# Combining Decision Theory and evidence based tests of hypotheses

$$H_0: \theta \in \Theta_0$$
 vs.  $H_1: \theta \in \Theta_1$   $\Theta_0 \cap \Theta_1 = \emptyset, \Theta_0 \cup \Theta_1 = \Theta$ 

• We have defined the power of a test as

power of a test = 
$$\mathbb{P}(\text{it will accept } H_1 \mid H_1 \text{ is true})$$

• We generalize it to a function of the parameter as follows:

# Combining Decision Theory and evidence based tests of hypotheses

$$H_0: \theta \in \Theta_0$$
 vs.  $H_1: \theta \in \Theta_1$   $\Theta_0 \cap \Theta_1 = \emptyset, \Theta_0 \cup \Theta_1 = \Theta$ 

- Suppose  $\mathbf{X} = (X_1, \dots, X_n)$  is a vector of n iid random variables and  $T(\mathbf{X})$  is a test statistic.
- **②** Let  $\Omega_0$  denote the acceptance and  $\Omega_1$  the rejection region of  $H_0$ . That is,

if 
$$\mathbf{X} \in \Omega_1$$
 reject  $H_0$ 

**1** The power of this test is the probability of rejecting  $H_0$  as a function of  $\theta$ :

$$\pi(\theta) = \mathbb{P}_{\theta}(\text{reject } H_0) = \mathbb{P}_{\theta}(\mathbf{X} \in \Omega_1)$$
 (1)

## Power

If  $\alpha$  denotes the significance level, i.e., the probability value such that

$$p-value < \alpha \iff \text{reject } H_0$$

then

$$\alpha = \mathbb{P}_{\theta \in \Theta_0}(\mathbf{X} \in \Omega_1) = \pi(\theta), \ \theta \in \Theta_0$$

and

$$1-\beta = \mathbb{P}_{\theta \in \Theta_1}(\textbf{X} \in \Omega_1) = \pi(\theta), \; \theta \in \Theta_1$$

### **Maximal Power Tests**

- So far, a test statistic  $T(\mathbf{X})$  had to be given in advance.
- The core question in hypothesis testing is: what is the optimal test for a hypothesis?
- Ideally one would like to take the decision that has minimum Type I and II errors. But,

$$\alpha + \beta \neq 1$$

so we cannot minimize them at the same time.

• Convention: Control the probability of Type I Error at a certain fixed level ( $\alpha$ , significance) and find a test with minimal Type II error or maximal power.

## Likelihood Ratio Test and Neyman-Pearson

- Do such tests exist?
- The answer comes from the Neyman-Pearson Lemma:
  - Assume  $\mathbf{X} \sim f_{\theta}(\mathbf{x})$  and consider two simple hypotheses:

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta = \theta_1$$

Denote the likelihood ratio as

$$\lambda(\mathbf{x}) = \frac{L(\theta_1; \mathbf{x})}{L(\theta_0; \mathbf{x})} = \frac{f_{\theta_1}(\mathbf{x})}{f_{\theta_0}(\mathbf{x})}$$

Then, the likelihood ration test with rejection region

$$\Omega_1 = \left\{ \mathbf{x} : \lambda(\mathbf{x}) = \frac{f_{\theta_1}(\mathbf{x})}{f_{\theta_0}(\mathbf{x})} \geqslant C \right\}$$
 (2)

is the most powerful (MP) test among all tests at significance levels not larger than  $\alpha$ , where

$$\alpha = \mathbb{P}_{\theta_0}(\lambda(\mathbf{X}) \geqslant C).$$

- The Neyman-Pearson Lemma was formulated for a fixed *critical value* C rather than  $\alpha$ .
- For a continuous distribution  $f_{\theta}(\mathbf{x})$ , this is the same since  $\alpha$  is a one-to-one function of C.
- We should be careful for discrete distributions, where  $\lambda(\mathbf{x})$  can only take discrete values so that a critical value is the minimal possible C such that

$$\mathbb{P}_{\theta_0}(\lambda(\mathbf{X}) \geqslant C) \leqslant \alpha$$

• In this case, the resulting test will be over-conservative with true significance level  $\alpha' < \alpha$ .

# Proof of Neyman-Pearson Lemma

We consider the case of continuous  $f_{\theta}(\mathbf{x})$ . For discrete, we replace integrals with sums.

Let  $\pi$  be the power of the LRT (2), that is,

$$\pi = \mathbb{P}_{\theta_1}(\lambda(\mathbf{X}) \geqslant C) = \mathbb{P}_{\theta_1}(\mathbf{X} \in \Omega_1) = \int_{\Omega_1} f_{\theta_1}(\mathbf{x}) d\mathbf{x}$$

Consider any other test at level  $\alpha' \leq \alpha$  and let  $\Omega'_1$  and  $\pi'$  be its rejection region and power, resp.

$$\alpha' = \mathbb{P}_{\theta_0}(\mathbf{X} \in \Omega_1') = \int_{\Omega_1'} f_{\theta_0}(\mathbf{x}) d\mathbf{x}, \quad \pi' = \mathbb{P}_{\theta_1}(\mathbf{X} \in \Omega_1') = \int_{\Omega_1'} f_{\theta_1}(\mathbf{x}) d\mathbf{x}$$

# Proof of Neyman-Pearson Lemma (ctd)

We want to show  $\pi \geqslant \pi'$ :

$$\begin{split} \pi - \pi' &= \int_{\Omega_1} f_{\theta_1}(\mathbf{x}) d\mathbf{x} - \int_{\Omega_1'} f_{\theta_1}(\mathbf{x}) d\mathbf{x} \\ &= \int_{\Omega_1 \cap \Omega_0'} f_{\theta_1}(\mathbf{x}) d\mathbf{x} + \int_{\Omega_1 \cap \Omega_1'} f_{\theta_1}(\mathbf{x}) d\mathbf{x} \\ &- \int_{\Omega_1' \cap \Omega_1} f_{\theta_1}(\mathbf{x}) d\mathbf{x} - \int_{\Omega_1' \cap \Omega_0} f_{\theta_1}(\mathbf{x}) d\mathbf{x} \\ &= \int_{\Omega_1 \cap \Omega_0'} f_{\theta_1}(\mathbf{x}) d\mathbf{x} - \int_{\Omega_1' \cap \Omega_0} f_{\theta_1}(\mathbf{x}) d\mathbf{x} \\ &= \int_{\theta_1} f_{\theta_1}(\mathbf{x}) d\mathbf{x} - \int_{\theta_1' \cap \Omega_0} f_{\theta_1}(\mathbf{x}) d\mathbf{x} \end{split}$$

(2) yields

$$f_{\theta_1}(\mathbf{x}) \geqslant Cf_{\theta_0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega_1$$

and

$$f_{\theta_1}(\mathbf{x}) < Cf_{\theta_0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega_0$$

# Proof of Neyman-Pearson Lemma (ctd)

Therefore,

$$\pi - \pi' \geqslant C \left( \int_{\Omega_1 \cap \Omega'_0} f_{\theta_0}(\mathbf{x}) d\mathbf{x} - \int_{\Omega'_1 \cap \Omega_0} f_{\theta_0}(\mathbf{x}) d\mathbf{x} \right)$$

$$= C \left( \int_{\Omega_1 \cap \Omega'_0} f_{\theta_0}(\mathbf{x}) d\mathbf{x} + \int_{\Omega_1 \cap \Omega'_1} f_{\theta_0}(\mathbf{x}) d\mathbf{x} \right)$$

$$- \int_{\Omega'_1 \cap \Omega_1} f_{\theta_0}(\mathbf{x}) d\mathbf{x} - \int_{\Omega'_1 \cap \Omega_0} f_{\theta_0}(\mathbf{x}) d\mathbf{x} \right)$$

$$= C \left( \int_{\Omega_1} f_{\theta_0}(\mathbf{x}) d\mathbf{x} - \int_{\Omega'_1} f_{\theta_0}(\mathbf{x}) d\mathbf{x} \right)$$

$$= \alpha - \alpha' \geqslant 0 \quad \square$$

## MP test for the normal mean

- 1.  $X_1, \ldots, X_n$  iid  $\mathcal{N}(\mu, \sigma^2)$ ,  $\sigma$  is known.
- 2. We want to test  $H_0$ :  $\mu = \mu_0 \text{ vs } H_1$ :  $\mu = \mu_1, \mu_1 > \mu_0$ .
- 3. The LR is

$$\begin{split} \lambda(\mathbf{x}) &= \frac{L(\mu_1; \mathbf{x})}{L(\mu_0; \mathbf{x})} \\ &= \exp\left(-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (x_i - \mu_1)^2 - \sum_{i=1}^n (x_i - \mu_0)^2\right)\right) \\ &= \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (\mu_0 - \mu_1)(2x_i - \mu_0 - \mu_1)\right) \\ &= \exp\left(\frac{1}{\sigma^2} (\mu_1 - \mu_0) n \left(\bar{x}_n - \frac{\mu_1 + \mu_0}{2}\right)\right) \end{split}$$

## MP test for the normal mean

4. By NP Lemma, the MP test at level  $\alpha$  rejects  $H_0$  if

$$\lambda(\mathbf{X}) \geqslant C$$

with C satisfying

$$\mathbb{P}_{\mu_0}(\lambda(\mathbf{X}) \geqslant C) = \alpha$$

5. To solve this and find *C* we have to find the distribution of the LR under the null: typically difficult (or at least tedious).

## MP test for the normal mean

6. Alternatively, we observe  $\lambda(\mathbf{x})$  is an increasing function of  $\bar{x}_n$  for  $\mu_1 > \mu_0$  and that

$$\lambda(\mathbf{x}) \geqslant C \iff \bar{x}_n \geqslant C^*$$

where

$$C = \exp\left(-\frac{1}{\sigma^2}(\mu_1 - \mu_0)n\left(C^{\star} - \frac{\mu_1 + \mu_0}{2}\right)\right)$$

7. The MP test at level  $\alpha$  can then be re-written in terms of  $\bar{X}_n$ : reject  $H_0$  if

$$\bar{X}_n \geqslant C^*$$

with C satisfying

$$\mathbb{P}_{\mu_0}(\bar{X}_n \geqslant C^*) = \mathbb{P}_{\mu_0}(\lambda(\mathbf{X}) \geqslant C) = \alpha$$

## MP test for the proportion

Let  $X_1, ..., X_n$  be iid Bernoulli(p) and suppose we want to test

$$H_0: p = p_0$$
 vs  $H_1: p = p_1 > p_0$ 

The likelihood ratio is

$$\lambda(\mathbf{x}) = \frac{L(p_1; \mathbf{x})}{L(p_0; \mathbf{x})} = \left(\frac{p_1}{p_0}\right)^{\sum_{i=1}^{n} x_i} \left(\frac{1 - p_1}{1 - p_0}\right)^{n - \sum_{i=1}^{n} x_i}$$

which is an increasing function of  $\sum_{i} x_{i}$ .

Therefore the LRT statistic is  $\sum_{i=1}^{n} X_i$  and the corresponding MP test is

reject 
$$H_0$$
 if  $\sum_{i=1}^n X_i \geqslant C$ 

# MP test for the proportion

The LRT is the same as the one we have already used.

Under the null,

$$\sum_{i=1}^{n} X_i \sim_{H_0} Bin(n, p_0)$$

so to find the critical value we have to proceed as for discrete distributions.

For large sample size n, we can use the normal approximation, in which case the LRT rejects  $H_0$  if

$$\sum_{i=1}^{n} X_{i} \geqslant C = np_{0} + z_{\alpha} \sqrt{np_{0}(1-p_{0})}$$

Suppose we consider the composite hypotheses:

$$H_0: \theta \in \Theta_0 \quad vs \quad H_1: \theta \in \Theta_1$$

#### Definition

A test is called a *uniformly most powerful* (UMP) among all tests at level  $\alpha$  if its power satisfies

- ②  $\pi(\theta) \geqslant \pi_1(\theta)$  for all  $\theta \in \Theta_1$ , where  $\pi_1(\theta)$  is a power function of any other test at a level not larger than  $\alpha$ .

Do UMP tests exist?

**Example:** Suppose  $X_1, ..., X_n$  are iide  $\mathcal{N}(\mu, \sigma^2)$  with known  $\sigma$  and we want to test

$$H_0: \mu = \mu_0 \quad vs \quad H_1: \mu > \mu_0$$

• Fix an arbitrary  $\mu_1 > \mu_0$  and test the hypotheses

$$H_0: \mu = \mu_0 \quad vs \quad H_1: \mu = \mu_1$$

at level  $\alpha$ .

• We already know the MP (LRT) test at level  $\alpha$  rejects  $H_0$  if

$$\bar{X}_n \geqslant \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

• This test does not depend on the *specific*  $\mu_1$  so that it is the MP for any  $\mu_1 > \mu_0$ . Hence, it is the UMP test.

- UMP tests most often do not exist.
- For example, for multivariate parameters, UMP tests do not exist except in singular cases
- Example: Consider again a normal sample but this time the variance is unknown and we want to test

$$H_0: \mu = \mu_0 \quad vs \quad H_1: \mu = \mu_1$$

at level  $\alpha$ , for  $\mu_1 > \mu_0$ 

• In this case, the hypotheses are no longer simple:

$$\Theta_0 = \{(\mu_0, \sigma^2) : \sigma \geqslant 0\}, \quad \Theta_1 = \{(\mu_0, \sigma^2) : \sigma \geqslant 0\}$$

- The UMP test, if it exists, should be the most powerful test uniformly for all  $\sigma \ge 0$ . most often do not exist.
- However, for any given  $\sigma$ , the corresponding MP test rejects  $H_0$  if

$$\bar{X}_n \geqslant \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

and depends on  $\sigma$ .

• Thus, even though we are only interested in  $\mu$  and  $\sigma$  is a nuisance parameter, it is accounted for in the MP test, which cannot be uniformly MP across all  $\sigma$  values.

## Monotone Likelihood Ratio and UMPs

- There is a class of hypothesis testing problems for a one parameter  $\theta$  where a UMP test exists.
- A family of distributions  $\{f_{\theta}, \theta \in \Theta\}$  with a one-dimensional parameter  $\theta$  has a monotone likelihood ratio in a statistic  $T(\mathbf{X})$  if for any  $\theta_1 < \theta_2$ , the likelihood ratio  $f_{\theta_2}(\mathbf{x})/f_{\theta_1}(\mathbf{x})$  is a non-decreasing function of  $T(\mathbf{x})$ .
- (**HW**) Show that the one-parameter exponential family has a monotone likelihood ratio in a sufficient statistic  $T(\mathbf{X})$  if the natural parameter  $w(\theta)$  is a non-decreasing function in  $\theta$ .

## Monotone Likelihood Ratio and UMPs

#### Theorem

Let  $\mathbf{X} \sim f_{\theta}(\mathbf{x})$ , where  $f_{\theta}$  belongs to a family of distributions with monotone likelihood ratio in a statistic  $T(\mathbf{X})$ . Then, there exists a UMP test at level  $\alpha$  for testing the one-sided hypothesis  $H_0: \theta \leqslant \theta_0$  vs. the one-sided hypothesis  $H_1: \theta > \theta_0$ , where  $H_0$  is rejected if

$$T(\mathbf{X}) \geqslant C$$
 and  $\mathbb{P}_{\theta_0}(T(\mathbf{X}) \geqslant C) = \alpha$ 

(with the obvious modifications for discrete distributions).

This can be easily modified for testing  $H_0: \theta \geqslant \theta_0 \text{ vs } H_1: \theta < \theta_0$ , in which case the UMP test rejects  $H_0$  if

$$T(\mathbf{X}) \leqslant C$$
, where  $\alpha = \mathbb{P}_{\theta_0}(T(\mathbf{X}) \leqslant C)$ 

### Monotone Likelihood Ratio and UMPs

This theorem says that if the family  $\{f_{\theta}, \theta \in \Theta\}$  has a monotone likelihood ratio in a statistic  $T(\mathbf{X})$  and the tested hypotheses are one-sided, then

- a UMP test exists
- $T(\mathbf{X})$  can be used as a test statistic
- To calculate the corresponding critical value one should use the distribution of  $T(\mathbf{X})$  fro  $\theta = \theta_0$ .

# Example: normal data with known variance

- A normal random sample from  $\mathcal{N}(\mu,\sigma^2)$  with known  $\sigma^2$  has a monotone ratio in  $\bar{X}$
- Hence, the UMP test at level  $\alpha$  for testing  $H_0: \mu \geqslant \mu_0 \text{ vs } H_1: \mu < \mu_0 \text{ is to}$  reject the null if

$$\bar{X}\leqslant \mu_0-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

• Same result as before via a different route.

## Example: exponential data

- Suppose  $X_1, \ldots, X_n$  iid  $\exp(\theta), f_{\theta}(x) = \theta e^{-\theta x}$ .
- It has monotone likelihood ratio in  $-\sum_{i=1}^{n} X_i$
- Hence, the UMP test at level  $\alpha$  for testing  $H_0: \theta \leqslant \theta_0$  vs  $H_1: \theta > \theta_0$  is to reject the null if

$$-\sum_{i=1}^{n} X_{i} \geqslant -C \iff \sum_{i=1}^{n} X_{i} < C$$

where

$$\alpha = \mathbb{P}_{\theta_0}(T(\mathbf{X}) \leqslant C)$$

•  $\theta X_i \sim \exp(1) = \chi^2(2)/2$ , therefore

$$2\theta_0 \sum_{i=1}^n X_i \sim_{H_0} \chi^2(2n)$$

with critical value

$$C = \frac{1}{2\theta_0} \chi_{1-\alpha}^2(2n)$$

## Generalized Likelihood Ratio Tests

• Let  $\mathbf{X} = (X_1, \dots, X_n) \sim f_{\theta}(\mathbf{x}), \theta \in \Theta$  and test

$$H_0: \theta \in \Theta_0 \quad \textit{vs} \quad H_1: \theta \in \Theta_1$$

with  $\Theta_0 \cap \Theta_1 = \emptyset$ ,  $\Theta_0 \cup \Theta_1 = \Theta$ .

 A generalization of the likelihood ratio for composite hypotheses would be

$$\lambda^{\star}(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_1} L(\theta, \mathbf{x})}{\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x})}$$

• The larger the value of  $\lambda^*(\mathbf{x})$  is the stronger the evidence against  $H_0$ , so it is a reasonable test statistic

### Generalized Likelihood Ratio Tests

It is more convenient to use the equivalent statistic

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta} L(\theta, \mathbf{x})}{\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x})} = \frac{\sup_{\theta \in \Theta} f_{\theta}(\mathbf{x})}{\sup_{\theta \in \Theta_0} f_{\theta}(\mathbf{x})}$$

where

$$\lambda(\mathbf{x}) = \max(\lambda^{\star}(\mathbf{x}), 1)$$

is a nondecreasing function of  $\lambda^*(\mathbf{x})$ .

- $\lambda(\mathbf{x})$  is called a generalized likelihood ratio (GLR).
- ullet The corresponding generalized likelihood ratio test (GLRT) at level lpha rejects the null if

$$\lambda(\mathbf{x}) \geqslant C$$

where C satisfies

$$\sup_{\theta \in \Theta_0} \mathbb{P}(\lambda(\mathbf{x}) \geqslant C) = \alpha$$

## Calculating the GLRT

To calculate  $\lambda(\mathbf{x})$  and the GLRT:

- Find the MLE  $\hat{\theta}$  of  $\theta$  to calculate the numerator  $\sup_{\theta \in \Theta} L(\theta, \mathbf{x}) = L(\hat{\theta}, \mathbf{x})$
- **②** Find the MLE  $\hat{\theta}_0$  of  $\theta_0$  under the restriction  $\theta \in \Theta_0$  to calculate the denominator  $\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x}) = L(\hat{\theta}_0, \mathbf{x})$
- Form the generalized likelihood ratio

$$\lambda(\mathbf{x}) = \frac{L(\hat{\boldsymbol{\theta}}, \mathbf{x})}{L(\hat{\boldsymbol{\theta}}_0, \mathbf{x})}$$

and find an equivalent simpler test statistic  $T(\mathbf{x})$  if possible such that  $\lambda(\mathbf{x})$  is its increasing function

• Find the corresponding critical value for  $T(\mathbf{x})$  solving

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}(T(\mathbf{X}) \geqslant C)$$

## Well known GLRTs

- one and two-sample *t*-tests for normal means
- F-test for normal variances
- F-test for comparing nested models in regression
- **9** Pearson's  $\chi^2$ -test for goodness of fit

- 1.  $X_1, \ldots, X_n$  iid  $\mathcal{N}(\mu, \sigma^2)$ ,  $\sigma$  unknown.
- 2. We want to test

$$H_0: \mu = \mu_0 \quad \textit{vs} \quad H_1: \mu \neq \mu_0$$

3. Normal likelihood:

$$L(\mu, \sigma; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}}$$
(3)

4. The MLEs are

$$\hat{\mu} = \bar{x}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i} (x_i - \bar{x})^2$$

5. Plug them in (3) to get

$$L(\hat{\mu}, \hat{\sigma}; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\hat{\sigma}^2}} = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n e^{-\frac{n}{2}}$$

6. Under the null hypothesis,  $\hat{\mu} = \mu_0$ , so  $\hat{\sigma}^2 = \sum_{i=1}^2 (x_i - \mu_0)^2 / n$  and,

$$L(\hat{\mu}_0, \hat{\sigma}_0; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}_0^2}}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\hat{\sigma}_0^2}} = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}_0^2}}\right)^n e^{-\frac{\pi}{2}}$$

#### 7. The GLR is

$$\lambda(\mathbf{x}) = \frac{L(\hat{\mu}, \hat{\sigma}; \mathbf{x})}{L(\hat{\mu}_0, \hat{\sigma}_0; \mathbf{x})}$$

$$= \left(\frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right)^{n/2}$$

$$= \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right)^{n/2}$$

$$= \left(1 + \frac{n(\bar{x} - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right)^{n/2}$$

$$= \left(1 + \frac{1}{n-1} \left(\frac{\bar{x} - \mu_0}{s_0 / \sqrt{n}}\right)^2\right)^{n/2}$$

where  $s_0^2 = \sum_{i=1}^n (x_i - \mu_0)^2 / (n-1)$ .

8. The GLR is an increasing function of  $|T(\mathbf{x})|$ , where

$$T(\mathbf{x}) = \frac{\bar{x} - \mu_0}{s_0 / \sqrt{n}}$$

9. We reject  $H_0: \mu = \mu_0$  if

$$|T(\mathbf{x})| \geqslant C$$
, where  $\alpha = \mathbb{P}_{\mu_0}(|T(\mathbf{X})| \geqslant C)$ 

10. For  $\mu = \mu_0$ ,  $T(\mathbf{Y}) \sim t(n-1)$ . Therefore, the GLRT rejects  $H_0$  if

$$|T(\mathbf{x})| = \frac{\bar{x} - \mu_0}{s_0 / \sqrt{n}} \geqslant t_{\alpha/2}(n-1)$$

which is the well-known one-sample *t*-test.

## HW

**①** Derive the GLRT for the normal variance: Assume  $X_1, ..., X_n$  are iid  $\mathcal{N}(\mu, \sigma^2)$ , where both  $\mu$  and  $\sigma$  are unknown. We want to test

$$H_0: \sigma^2 = \sigma_0^2 \quad vs \quad H_1: \sigma^2 \neq \sigma_0^2$$

- $\bigcirc$  Let  $X_1, \ldots, X_n$  be iid Uniform $(0, \theta)$ 
  - **1** Derive the MP test at level  $\alpha$  for testing

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta = \theta_1, \theta_1 > \theta_0$$

Calculate the power of the MP test.

## HW

• Let  $X_1, ..., X_n$  be iid from a distribution with density

$$f_{\theta}(x) = \frac{x}{\theta}e^{-\frac{x^2}{2\theta}}, \ y \geqslant 0, \theta > 0$$

**1** Derive the MP test at level  $\alpha$  for testing two simple hypoheses

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta = \theta_1, \theta_1 > \theta_0$$

**2** Is there a UMP test at level  $\alpha$  for testing the one-sided composite hypothesis

$$H_0: \theta \leqslant \theta_0 \quad vs \quad H_1: \theta > \theta_0$$

What is its power function? (Hint: Show  $X_i^2 \sim \exp(1/2\theta)$ , so that  $\sum_i X_i^2 \sim \theta \chi^2(2n)$ ).

## HW

Let  $X_1, \ldots, X_n$  be iid  $\mathcal{N}(\mu, \sigma^2)$ .

- **1** Assume first that  $\mu$  is known.
  - Find an MP test at level  $\alpha$  for testing two simple hypoheses

$$H_0: \sigma^2 = \sigma_0^2 \quad vs \quad H_1: \sigma^2 = \sigma_1^2, \ \sigma_1 > \sigma_0$$

Show that the MP test is a UMP test for testing

$$H_0: \sigma^2 \leqslant \sigma_0^2 \quad vs \quad H_1: \sigma^2 > \sigma_0^2$$

(Hint: 
$$\sum_i (X_i - \mu)^2 \sim \sigma^2 \chi^2(n)$$
)

- 2 Now assume μ is unknown.
  - **1** Is there an MP test at level  $\alpha$  for testing?

$$H_0: \sigma^2 = \sigma_0^2 \quad vs \quad H_1: \sigma^2 = \sigma_1^2, \ \sigma_1 > \sigma_0$$

If not, find the corresponding GLRT.

② Is the above GLR test also a GLRT for testing the one-sided hypothesis?

$$H_0: \sigma^2 \leqslant \sigma_0^2 \quad vs \quad H_1: \sigma^2 > \sigma_0^2$$

**3** Find the GLRT at level  $\alpha$  for testing

$$H_0: \sigma^2 \geqslant \sigma_0^2 \quad vs \quad H_1: \sigma^2 < \sigma_0^2$$