SECI 1013 : DISCRETE STRUCTURE

SEM 1 ASSIGNENT 1 (PART 1) - (HAPTHER)

AHLI KUMPULAN

- 1. TAN XIN TIAN (AZ4 (50198)
- 2. ANGELA NOU XIN YI (A14156116)
- 3. CHEONG YI SHIEN (ALUCSOOSS)
- 4 . TECH XIN YEE (A24 (50307)

(10 1/2)

- 1. $A = \{1,3,5,7,11,13,17,19\}$ $B = \{10,12,14,16,18,20\}$ $C = \{1,3,5,7,9\}$
 - (a) Ancub An ((")). = {3,3,7,10,12,14,16,18,20}

- (b) P(ANBU() \frac{2}{1,3,5,4,9}
- (c) A C = { 2, 11, 12, 17, 19}
- (d) IAI = 8 IBI = 6
- (e) $|P(A \cap C)|$ $\frac{P(A \cap C) : \{3, 5, 7\}}{|P(A \cap C)| = 2^3}$

- (f) B C L' : True
- (g) (AUBUC) & U
 : True//
- (16) P(ANBUC)

 \$\forall \begin{align*} \{\phi, \{\pi\}, \{\phi\}, \{\phi\},

1aw?

2/2

: equal

Set difference Laws

law?

Complement Laws

1/

$$S \times (T \cap E) = \{(A, p), (b, p), ((, p), (d, p), (e, p), (f, p), (g, p), (A, q), (b, q), (c, q), (d, q), (e, q), (e, q), (f, q), (g, q)\}$$

No.: Date: (a) TRUE 4 (D) TRUE 5- α. Q = (pΛΓ) ν (q ν¬Γ), R=(pνq)ν¬Γ p q Γ ¬r qν¬Γ pΛΓ (pΛΓ)ν(qν¬Γ) τ T T F F T F 7 F T T T T F T F F F T ٦ F T T F F T F T F F F F F F PVQ (pva) V7-71 T T F T T 1-T 7 F T 1 F F F 7 F T Τ T F F F T F F T QER F F F

No.:

Date:

(b) Q = (p∧r) V ¬ (p∧¬q), R= (p∧r) → (qvr)							
P	9	_	79	p174	7(279)	par	(par) v 7(pa74)
7	7	T	F	F	7, 7	7	7
τ	Т	F	F	F	T	F	7
T	F	T	T	7	E	T	Т
T	F	F	T	7	F	F	F /
F	T	T	F	1	7	F	Т
F	τ	1-	F	F	Т	F	7
F	F	7	7	F	7	F	T
F	F	F	F	F	Ť	F	Т
	1		1				~
							,

Р	9.	7	PVL	411	par -> (q,v+)	J
7	T	T		T	T	
	T	1-	F	T	T	
T	F	Т	7	7	7	
T	F	F	F-	F	7	
F	τ	7	F	7	7	Not Q=R
F	τ	F	F	٦	7 /	
F	F	7	F	Τ	7 /	
F	F	F	F	F	T	
	-	And the same			,	

Question b

a) Domain of discourse is set D= {1,3,5,7,8,9} When x=1, x=3, x=5, x=7 and x=9, the statement produce a false value. Thus, the above statement is false and the counterexample is 1, 2, 5, 7 and 9.

b) Domain of discourse is set D = {1,3,5,7,8,93 YnD(x) When x=1, x=3, x=5, x=7, x=8 and x=9, the statement produce a false value. Thus, the above statement is false and the counterexample is 1,3,5,7,8 and 9.

Question 7.

Let a = all student of faculty Let P(x) = "x can speak Arabic" Let Q(x) = " x knows computer language C++" Quantifier = Existential quantifier Logic connective = 1 Existentially quantified statement: Some student at faculty can speak Arabic and knows computer language C+t, 'Ix (P(x) AQ(x)).

	No.: Date:
8.	a = 2n + 1
	$a^2 - 3a = (2n+1)^2 - 3(2n+1)$
	= 4n'+4n+1-6n-3
	$=4n^2-2n-2$
	$= 2(2n^2 - n - 1) \qquad m = ?$ $= 2m \qquad \Rightarrow \text{ an integer}$
	# 2 times an integer, so for all integers, if a is odd then a2-3a is even
	7 2
9.	Suppose no is an odd integer and n is not odd. (p.~a)
	Suppose n' is an odd integer and n is not odd. (p.~q) Then n' is an odd integer and n'is even.
<u> </u>	n = 2a
	$n^2 = (2a)^2$
	= 4a ²
	$n = 2(2a^2)$ (even) $m = 2a^2$
	= 2M tan integer
	If Thus. the statement is true.
ester de	
1.172.00	