- 1. (000048) 填空题:

 - (2) 将 $\sqrt[4]{a\sqrt[3]{a}}$ (a > 0) 化成有理数指数幂的形式为______.
 - (3) 若 $\log_8 x = -\frac{2}{3}$, 则 x =_____.
 - (4) 若 $\log_a b \cdot \log_5 a = 3(a > 0$ 且 $a \neq 1$), 则 b =_____
- 2. (000049) 选择题:
 - (1) 若 lg a 与 lg b 互为相反数,则有(

A. a + b = 0

B. ab = 1

C. $\frac{a}{h} = 1$

D. 以上答案均不对

(2) 设 a > 0, 下列计算中正确的是 (

A. $a^{\frac{2}{3}} \cdot a^{\frac{3}{2}} = a$

B. $a^{\frac{2}{3}} \div a^{\frac{3}{2}} = a$

C. $a^{-4} \cdot a^4 = 0$

D. $(a^{\frac{2}{3}})^{\frac{3}{2}} = a$

3. (000051) 求下列各式的值:

(1) $\frac{1}{4^x + 1} + \frac{1}{4^{-x} + 1}$; (2) $4^{\sqrt{2}+1} \times 2^{3-2\sqrt{2}} \times 8^{-\frac{2}{3}}$.

- 4. (000052) 已知 $\lg a < 1$,化简 $\sqrt{\lg^2 a \lg \frac{a^2}{10}}$
- 5. (000053) 已知 $m = \log_2 10$, 求 $2^m m \lg 2 4$ 的值.
- 6. (000054) 填空题:
 - (1) $4^x = 2^{-\frac{1}{2}}, 4^y = \sqrt[3]{32},$ **M**<math> 2x 3y =
 - (2) 若 $\log_3(\log_4 x) = 1$, 则 x =_____.
 - (3) 若 $3^a = 7^b = 63$, 则 $\frac{2}{a} + \frac{1}{b}$ 的值为_____.
- 7. (000055) 已知 $\log_{18} 9 = a$, $18^b = 5$, 则 $\log_{36} 45$ 等于 (

A. $\frac{a+b}{2+a}$

B. $\frac{a+b}{2-a}$ C. $\frac{a+b}{2a}$

D. $\frac{a+b}{a^2}$

8. (000056) 没 $\log_{0.2} a > 0$, $\log_{0.2} b > 0$, 且 $\log_{0.2} a \cdot \log_{0.2} b = 1$, 求 $\log_{0.2}(ab)$ 的最小值.

9. (000057) 化简 $\frac{(1+2^x)(1+2^{2x})(1+2^{4x})(1+2^{8x})(1+2^{16x})}{1-2^{32x}}$ (其中 $x \neq 0$).

- 10. (000058) 已知 $a>1,\,b>0$. 求证: 对任意给定的实数 $k,\,a^{2b+k}-a^{b+k}>a^{b+k}-a^k$.
- 11. (000059) 甲、乙两人同时解关于 x 的方程: $\log_2 x + b + c \log_x 2 = 0$. 甲写错了常数 b, 得两根 $\frac{1}{4}$ 及 $\frac{1}{8}$; 乙写错了 常数 c, 得两根 $\frac{1}{2}$ 及 64. 求这个方程的真正根.
- 12. (000060) 已知 a、b 及 c 是不为 1 的正数,且 $\lg a + \lg b + \lg c = 0$. 求证: $a^{\frac{1}{\lg b} + \frac{1}{\lg c}} \cdot b^{\frac{1}{\lg c} + \frac{1}{\lg a}} \cdot c^{\frac{1}{\lg a} + \frac{1}{\lg b}} = \frac{1}{1000}$.

13. (000061) 填空题:

- (2) 若幂函数 $y = x^k$ 在区间 $(0, +\infty)$ 上是严格减函数, 则实数 k 的取值范围为_____.
- (3) 已知常数 a > 0 且 $a \ne 1$,假设无论 a 为何值,函数 $y = a^{x-2} + 1$ 的图像恒经过一个定点.则这个点的坐标为______.

14. (000062) 选择题:

(1) 若指数函数 $y=a^x(a>0$ 且 $a\neq 1)$ 在 R 上是严格减函数,则下列不等式中,一定能成立的是 ().

A. a > 1

B. a < 0

C. a(a-1) < 0

D. a(a-1) > 0

(2) 在同一平面直角坐标系中,一次函数 y=x+a 与对数函数 $y=\log_a x (a>0$ 且 $a\neq 1)$ 的图像关系可能是 ().

15. (000063) 求下列函数的的定义域:

- (1) $y = (x-1)^{\frac{5}{2}}$;
- (2) $y = 3^{\sqrt{x-1}}$;
- (3) $y = \lg \frac{1+x}{1-x}$.

16. (000064) 比较下列各题中两个数的大小:

- (1) $0.1^{0.7} = 0.2^{0.7}$;
- (2) $0.7^{0.1} = 0.7^{0.2}$;
- (3) $\log_{0.7} 0.1 = \log_{0.7} 0.2$.
- 17. (000065) 设点 $(\sqrt{2},2)$ 在幂函数 $y_1=x^a$ 的图像上,点 $(-2,\frac{1}{4})$ 在幂函数 $y_2=x^b$ 的图像上.当 x 取何值时, $y_1=y_2$?
- 18. (000066) 设 $a=(\frac{2}{3})^x,\,b=x^{\frac{3}{2}}$ 及 $c=\log_{\frac{2}{3}}x,\,$ 当 x>1 时, 试比较 a、b 及 c 之间的大小关系.
- 19. (000067) 设常数 a>0 且 $a\neq 1$, 若函数 $y=\log_a(x+1)$ 在区间 [0,1] 上的最大值为 1, 最小值为 0, 求实数 a 的值.

20. (000069) 填空题:

- (1) 已知 $m \in \mathbf{Z}$, 设幂函数 $y = x^{m^2 4m}$ 的图像关于原点成中心对称, 且与 x 轴及 y 轴均无交点, 则 m 的值为

21. (000070) 选择题:

- (1) 若 m > n > 1, 而 0 < x < 1, 则下列不等式正确的是 ().
- A. $m^x < n^x$
- B. $x^m < x^n$
- C. $\log_x m > \log_x n$
- D. $\log_m x < \log_n x$
- (2) 在同一平面直角坐标系中, 二次函数 $y = ax^2 + bx$ 与指数函数 $y = (\frac{b}{a})^x$ 的图像关系可能为 ().

- 22. (000071) 设 a 为常数且 0 < a < 1, 若 $y = (\log_a \frac{3}{5})^x$ 在 R 上是严格增函数, 求实数 a 的取值范围.
- 23. (000072) 在同一平面直角坐标系中,作出函数 $y=(\frac{1}{2})^x$ 及 $y=x^{\frac{1}{2}}$ 的大致图像,并求方程 $(\frac{1}{2})^x=x^{\frac{1}{2}}$ 的解的个数.
- 24. (000073) 已知集合 $A = \{y|y = (\frac{1}{2})^x, \ x \in [-2,0)\},$ 用列举法表示集合 $B = \{y|y = \log_3 x, \ x \in A$ 且 $y \in \mathbf{Z}\}.$
- 25. (000074)log₂ 3 是有理数吗?请证明你的结论.
- 26. (000075) 仅利用对数函数的单调性和计算器上的乘方功能来确定对数 $\log_2 3$ 第二位小数的值.
- 27. (000330) 若函数 $f(x) = \log_2 \frac{x-a}{x+1}$ 的反函数的图像过点 (-2,3), 则 a =______.
- $28. \ _{(000342)}$ 若函数 $f(x) = egin{cases} 2^x, & x \leq 0, \\ & &$ 的值域为 $(-\infty,1],$ 则实数 m 的取值范围是______.
- 30. (000349) 若函数 $f(x) = \log_2(x+1) + a$ 的反函数的图像经过点 (4,1), 则实数 a =_____.
- 31. (000358) 函数 $f(x) = 1 + \log_2 x (x \ge 1)$ 的反函数 $f^{-1}(x) =$ _____.
- 32. (000362) 方程 $\log_2(9^x 5) = 2 + \log_2(3^x 2)$ 的解 x =_____.
- 33. (000367) 设函数 $f(x) = \begin{cases} \log_2 x, & x > 0, \\ & & \text{则 } f(f(-1)) = \underline{\hspace{1cm}}. \end{cases}$
- 34. (000381) 若点 (8,4) 在函数 $f(x) = 1 + \log_a x$ 图像上, 则 f(x) 的反函数为______
- 35. (000388) 已知函数 $f(x) = a^x 1$ 的图像经过 (1,1) 点,则 $f^{-1}(3) =$ _____.
- 36. (000406) 方程 $\lg(3x+4)=1$ 的解 x=____.
- 37. (000425) 若关于 x 的不等式 $|2^x m| \frac{1}{2^x} < 0$ 在区间 [0,1] 内恒成立,则实数 m 的范围______.

- 39. (000472) 若函数 $f(x)=x^a$ 的反函数的图像经过点 $(\frac{1}{2},\frac{1}{4}),$ 则 a=______.
- 40. (000474) 已知函数 y = f(x) 是奇函数, 当 x < 0 时, $f(x) = 2^x ax$, 且 f(2) = 2, 则 a =______.
- 41. (000486) 函数 $f(x) = \lg(2-x)$ 的定义域是
- $42. \ \ _{(000495)}$ 已知函数 $f(x) = \begin{cases} 2^x, & x \leq 0, \\ f(x-2), & x > 0, \end{cases}$ 则 $f(1) + f(2) + f(3) + \cdots + f(2017) = \underline{\hspace{1cm}}$. $43. \ \ _{(000498)}$ 已知幂函数的图像过点 $(2,\frac{1}{4}),$ 则该幂函数的单调递增区间是_____.
- 44. (000520) 已知函数 $f(x) = a \cdot 2^x + 3 a$ $(a \in \mathbf{R})$ 的反函数为 $y = f^{-1}(x)$, 则函数 $y = f^{-1}(x)$ 的图像经过的定
- 45. $_{(000525)}$ 已知函数 $f(x) = egin{cases} (5-a)x+1, & x<1, \\ & & (a>0, a
 eq 1)$ 是实数集 R 上的增函数, 则实数 a 的取值范 $a^x, & x \ge 1$
- 46. (000538) 方程 $\log_2(2-x) + \log_2(3-x) = \log_2 12$ 的解 x =_____.
- 47. (000549) 已知函数 $f(x) = \log_2(x+a)$ 的反函数为 $y = f^{-1}(x)$, 且 $f^{-1}(2) = 1$, 则实数 a =_____.
- 48. (000565) 已知函数 $f(x) = \begin{cases} \log_2(x+a), & x \leq 0, \\ x \leq 0, & \text{有三个不同的零点, 则实数 a 的取值范围是} \end{cases}$
- 49. (000567) 函数 $f(x) = \sqrt{1 \lg x}$ 的定义域为_____
- 50. (000582) 数列 $\{a_n\}$ 的前 n 项和为 S_n , 若点 (n,S_n) $(n \in \mathbf{N}^*)$ 在函数 $y = \log_2(x+1)$ 的反函数的图像上, 则
- 51. (000590) 已知函数 $f(x) = 1 + \log_a x, \ y = f^{-1}(x)$ 是函数 y = f(x) 的反函数, 若 $y = f^{-1}(x)$ 的图像过点 (2,4), 则 a 的值为_____.
- 52. (000594) 已知函数 f(x) 是定义在 R 上且周期为 4 的偶函数. 当 $x \in [2,4]$ 时, $f(x) = \left|\log_4(x \frac{3}{2})\right|$, 则 $f(\frac{1}{2})$ 的值为_
- $53. \ \ _{(000604)}$ 已知函数 $f(x) = \begin{cases} \log_2 x, & 0 < x < 2, \\ \frac{2}{3}x + \frac{5}{9}, & x \geq 2. \end{cases}$ 若函数 g(x) = f(x) k 有两个不同的零点, 则实数 k 的取 值范围是
- 54. (000607) 函数 $y = \log_2(1 \frac{1}{x})$ 的定义域为_____.
- 55. (0000614) 若函数 $f(x) = \log_2^2 x \log_2 x + 1 \ (x \ge 2)$ 的反函数为 $f^{-1}(x)$,则 $f^{-1}(3) =$ ______

- 56. (000616) 方程 $\log_3(2x+1) = 2$ 的解是_____.
- 57. (000622) 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______.
- 58. (000634) 若函数 $f(x) = 4^x + 2^{x+1}$ 的图像与函数 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =______
- $59. \pmod{f(x)}$ 若函数 $f(x) = \begin{cases} -x + 3a, & x < 0, \\ & (a > 0, \textbf{且} \ a \neq 1) \textbf{ 是 R 上的减函数, 则 } a \ \textbf{ 的取值范围是} \\ a^x + 1, & x \geq 0 \end{cases}$
- 60. (000656) 已知集合 $A = \{x | \ln x > 0\}, B = \{x | 2^x < 3\}, 则______$
- 61. (000660) 设 f(x) 为 R 上的奇函数. 当 $x \ge 0$ 时, $f(x) = 2^x + 2x + b(b)$ 为常数), 则 f(-1) 的值为______.
- 63. (000693) 已知函数 $f(x) = \begin{cases} 2^x, & x \leq 0, \\ \log_2 x, & 0 < x \leq 1 \end{cases}$ 的反函数是 $f^{-1}(x)$,则 $f^{-1}(\frac{1}{2}) =$ ______.
- 64. (000702) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = 2^x 3$. 则不等式 f(x) < -5 的解为_____
- 65. (0000724) 设 f(x) 是定义在 R 上以 2 为周期的偶函数,当 $x \in [0,1]$ 时, $f(x) = \log_2(x+1)$,则函数 f(x) 在 [1,2] 上的解析式是______.
- 66. (0000734) 给出下列函数: ① $y = x + \frac{1}{x}$; ② $y = x^2 + x$; ③ $y = 2^{|x|}$; ④ $y = x^{\frac{2}{3}}$; ⑤ $y = \tan x$; ⑥ $y = \sin(\arccos x)$; ① $y = \lg(x + \sqrt{x^2 + 4}) \lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是_______.
- 67. (000738) 函数 $f(x) = \lg(3^x 2^x)$ 的定义域为_____
- 68. (000761) 方程 $\log_3(3 \cdot 2^x + 5) \log_3(4^x + 1) = 0$ 的解 x =_____.
- 69. (000767) 函数 $y = \lg x$ 的反函数是_____.
- 70. (000778) 函数 $y = \sqrt{\lg(x+2)}$ 的定义域为_____.
- 71. (000789) 定义在 R 上的函数 $f(x) = 2^x 1$ 的反函数为 $y = f^{-1}(x)$, 则 $f^{-1}(3) =$ ______
- 72. (000795) 若函数 $f(x) = \log_a(x^2 ax + 1)$ (a > 0, $a \neq 1$) 没有最小值, 则 a 的取值范围是______.
- 73. (000799) 已知 $f^{-1}(x)$ 是函数 $f(x) = \log_2(x+1)$ 的反函数, 则 $f^{-1}(2) =$ _____.
- 74. (000824) 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x 1$, 函数 $g(x) = x^2 2x + m$. 如果对于任意的 $x_1 \in [-2,2]$, 总存在 $x_2 \in [-2,2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是______.

- 75. (000826) 函数 $y = \lg x 1$ 的零点是_____.
- 76. (000845) 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是
- 77. (000850) 方程 $\log_2(9^x + 7) = 2 + \log_2(3^x + 1)$ 的解为_____.
- 78. (000863) 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x 4$, 则不等式 $f(x) \le 0$ 的解集是
- 79. (000890) 设函数 $f(x) = a^x + a^{-x}$ (a > 0, $a \ne 1$), 且 f(1) = 3, 则 f(0) + f(1) + f(2) 的值是
- 80. (1000918) 若函数 $f(x) = \log_5 x(x > 0)$, 则方程 f(x+1) + f(x-3) = 1 的解 x = 1.
- 81. (000926) 已知函数 $f(x) = \begin{cases} 2^x + a, & x \ge 0, \\ x^2 ax, & x < 0. \end{cases}$ 若 f(x) 的最小值是 a, 则 a =______.
- 82. (000931) 函数 $y = \log_3(x-1)$ 的定义域是_
- 83. (000949) 已知函数 $f(x) = x^3 + \lg(\sqrt{x^2 + 1} + x)$, 若 f(x) 的定义域中的 a、b 满足 f(-a) + f(-b) 3 =f(a) + f(b) + 3, M $f(a) + f(b) = _____.$
- 84. (000954) 函数 $y = \sqrt{2^x 1}$ 的定义域是 (用区间表示).
- 85. (1000961) 已知函数 $f(x) = 2^x a \cdot 2^{-x}$ 的反函数是 $f^{-1}(x)$, $f^{-1}(x)$ 在定义域上是奇函数, 则正实数 a = x
- 86. (000965) 指数方程 $4^x 6 \times 2^x 16 = 0$ 的解是
- 87. (001161) 下列两个函数是同一个函数的有_____.

(2)
$$y = \frac{x^3}{x} + y = x^2$$

(3)
$$y = \sqrt{x^2 - 1} + y = \sqrt[3]{x^3 - 1}$$
;

(4)
$$f(x) = x^2 - 2x - 1 = g(t) = t^2 - 2t - 1;$$

(5)
$$f(x) = 2^x$$
, $x \in \{0, 1, 2, 3\} = g(x) = \frac{1}{6}x^3 + \frac{5}{6}x + 1$, $x \in \{0, 1, 2, 3\}$.

88. (001192) 写出下列函数的反函数 (注意定义域).

(1)
$$y = -\frac{1}{x} + 3;$$

(2)
$$y = \sqrt{2x - 1}$$
:

(2)
$$y = \sqrt{2x - 1}$$
;
(3) $y = \frac{2x + 1}{x + 2}$;

(4)
$$y = x^2 + 2, x \in [2, +\infty);$$

- (5) $y = 2^x$, $x \in \{1, 2, 3, 4\}$ (本小题不能使用对数);
- (6) $y = \sqrt{9 x^2}, x \in [-3, 0];$
- (7) $y = x^2 4x, x \in [3, 7].$
- 89. (001209) 已知 a>0 且 $a\neq 1$, $f_a(x)=\frac{1}{2}+\frac{1}{a^x-1},\ x\in {\bf Z}^+\cup {\bf Z}^-.$ 对于每一个 a 分析 $f_a(x)$ 的奇偶性.

	$3\sqrt{3\sqrt{3\sqrt{\frac{1}{3\sqrt{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
90.	$\frac{\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}{\sqrt{27\sqrt{\frac{1}{3}}}}$ 用 3 的有理数指数幂表示为
91.	(001287) 已知 m, n 是有理数,则以下各说法中,正确的有
	(1) 对一切 m, n 均成立 $2^m 2^n = 2^{m+n}$ (2) 存在 m, n 使得 $2^m 2^n = 2^{mn}$
	(3) 存在 m,n 使得 $2^m + 2^n = 2^{m+n}$ (4) 存在 m,n 使得 $(2^m)^n = 2^{m^n}$
92.	(001292) 已知 a,b 是实数, 函数 $f(x) = a \cdot b^x$, 且 $f(4) = 648$, $f(5) = 1944$, 求 $f(9/2)$.
93.	$(001293)(1)$ 求证: 当 $a>0$ 时, $f(x)=\frac{a^x-a^{-x}}{2}$ 是奇函数;
94.	(001294) 设 $a^{2x}=2,$ 且 $a>0,$ $a\neq 1,$ 求 $\frac{a^{3x}+a^{-3x}}{a^x+a^{-x}}$ 的值.
95.	(001295) 在课堂上我们介绍了等式 $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=2$,它的特点是左边是一些无理数指数幂,而且左边只出现了一个实数,而且这个实数是无理数;右边是一个正整数. 你能再写出一个有这样特点的等式吗?
96.	(001296) 求値: $\log_2 0.5 =$, $\log_9 27 =$, $3^{1+\log_3 5} =$
97.	(001297) 如果 $\log_x \sqrt{5} = -1$, 那么 $x =$
98.	(001298) 如果 $\log_2 y = 6$, $\log_x 3 = \frac{1}{2}$, 那么 $x = $
99.	(001299) 如果 $\log_2(\log_3(\log_4 x)) = 0$, 那么 $x = $
100.	(001300) 用不含对数的式子表示:
	(1) 若 $\log_7 2 = a$, 则 $\log_7 14 =$
	(2) 若 $\log_3 2 = a$, 则 $\log_3 4 =$
	(3) 若 $\lg 2 = a$, 则 $\lg 25 =$
101.	$_{(001301)}$ 如果 $N=923,$ 那么 N 的常用对数的首数为
102.	$_{\scriptscriptstyle{(001302)}}$ 如果 N 的常用对数的首数为 $1,$ 那么 N 的取值范围为
103.	$_{(001303)}$ 如果 N 的常用对数的首数比 M 的常用对数的首数大 3 ,尾数相同,那么 $\dfrac{N}{M}=$
104.	$_{(001304)}2^{10000}$ 的常用对数的首数为
105.	(001305) 计算下列各式 (要有必要的过程):
	(1) $\frac{1}{2}\log_{20} 45 - \log_{20} 30$; (2) $\frac{\lg 3 + \frac{2}{5}\lg 9 + \frac{3}{5}\lg\sqrt{27} - \lg\sqrt{3}}{\lg 81 - \lg 27}$;

- (3) $\lg^2 2 + \lg^2 5 + 2 \lg 2 \lg 5$;
- (4) $\lg^3 2 + \lg^3 5 + 3 \lg 2 \lg 5$;
- (5) $\lg 4 + 2\sqrt{\lg^2 6 \lg 6^2 + 1} + \lg 9$.
- 106. (001306) 如果方程 $\lg^2 x + (\lg 2 + \lg 3) \lg x + \lg 2 \cdot \lg 3 = 0$ 的两个根是 $x_1, x_2,$ 求 x_1x_2 的值.
- 107. (001307) 已知 $a = \log_3 36$, $b = \log_4 36$. 求 $\frac{2}{a} + \frac{1}{b}$.(提示: 你学过实数指数幂的运算律的)
- 108. (001308)[证明对数的换底公式] 若 $a, b, N > 0, a \neq 1, b \neq 1, 则$

$$\log_a N = \frac{\log_b N}{\log_b a}.$$

- 109. (001309)(1) 若 $\lg 3 = a$, $\lg 2 = b$, 则 $\log_6 12 =$ ______.
 - (2) 若 $\log_{\sqrt{3}} 2 = a$, 则 $\log_{12} 3 =$ ______.
- 110. (001312) 计算下列各式 (要有必要的过程):
 - (1) $\log_3 5 \cdot \log_5 7 \cdot \log_7 9$;
 - $(2) (\log_4 3 + \log_8 3)(\log_3 2 + \log_9 2);$
 - (3) $2\log_{100} 5 \sqrt{1 2\lg 2 + \lg^2 2}$;

 $(4)\frac{\log_5\sqrt{2}\cdot\log_79}{\log_5\frac{1}{3}\cdot\log_7\sqrt[3]{4}}\;;$

 $(5)2^{\log_4(\sqrt{3}-2)^2} + 3^{\log_9(\sqrt{3}+2)^2};$

- $(6)\frac{\log_{36} 4}{\log_{18} 6} + \log_6^2 3.$
- 111. (001313) 已知关于 x 的方程 $x^2 (\log_2 a + \log_2 b)x + \log_a b = 0$ 的两根分别为 -1 和 2, 求 a, b.
- 112. (001314) 若 $2^a = 5^b = 100$, 求 $\frac{a+b}{ab}$ 的值.
- 113. (001316) 若 $\log_2 3 = a$, $\log_3 7 = b$, 试用 a, b 表示 $\log_{42} 56$.
- 114. (001317) 不相等的两个正数 a, b 与另一个正数 x 满足 $a^{\lg(ax)} = b^{\lg(bx)}$, 求 abx 的值.
- 115. (001319) 已知函数 $f(x) = (a^2 1)^x$ 在 R 上是减函数, 则实数 a 的取值范围为______.

117. (001321) 已知放射性物质的衰变满足以下规律,经过时间 t 后,残留的放射性物质的量与初始时刻含有放射性物质的量之比是一个关于 t 的指数函数.

假设某元素的半衰期为 T(即经过时间 T, 所残留的放射性物质的量刚好是初始时刻的一半). 则 1 克该物质 经 t 时间后, 求残留的放射性物质还有多少克.

118. (001322) 写出下列函数的单调区间和值域 (不用证明).

(1)
$$y = \left(\frac{1}{2}\right)^{x^2 + 2x + 3}$$
;

(2)
$$y = \frac{1}{3^x - 1}$$

(3)
$$y = 4^x - 2^{x+1}$$

- 119. (001323) 已知 $f(x) = -9^x 6a \cdot 3^x + (2a a^2)$ 在 [1,2] 上的最大值为 -3, 求实数 a.
- 120. (001324) 函数 $y = \log_{x^2+x-1} 2$ 的定义域是______.
- 121. (001325) 函数 $y = \log_2(x^2 + x 1)$ 的递增区间是______.
- 123. (001327) 函数 $y = \sqrt{\log_{\frac{1}{2}} \left(\left(\frac{1}{3} \right)^x 27 \right)}$ 的定义域为______.
- 124. (001328) 不等式 $\log_{\frac{1}{2}}(x^2+x+1) < \log_{\frac{1}{2}}(4x-1)$ 的解集为______
- 125. (001329) 已知函数 $f(x) = \lg(kx^2 6x + k + 3)$ 的定义域为 R, 则 k 的取值范围为______.
- 126. (001330) 已知函数 $f(x) = \lg(kx^2 6x + k + 3)$ 的值域为 R, 则 k 的取值范围为______.
- 127. (001331) 函数 $y = \log_{x^2+x-1} 2$ 的递增区间是______.
- 128. (001335) 已知幂函数的图像过点 $(9, \frac{\sqrt{3}}{3})$, 则该幂函数为 y =_____.
- 129. $_{(001340)}$ 在下列幂函数 $_{(1)}$ $_{y}=x^{-\frac{3}{2}},$ $_{(2)}$ $_{y}=x^{\frac{5}{4}},$ $_{(3)}$ $_{y}=x^{-\frac{4}{3}},$ $_{(4)}$ $_{y}=x^{4},$ $_{(5)}$ $_{y}=x^{\frac{3}{7}},$ $_{(6)}$ $_{y}=x^{-6}$ 中,定义域关于原点对称的有_______,值域为 R 的有______,奇函数有 ______,在定义域上单调递增的有_____,图像有一部分在第二象限的有______.
- 130. (001343) 方程 $9^x + 4^x = \frac{5}{2} \cdot 6^x$ 的解集为_____.
- 131. $_{(001344)}$ 方程 $4^x + 4^{-x} 6(2^x + 2^{-x}) + 10 = 0$ 的解集为_____.
- 132. (001345) **解方程**: $3^x + 4^x = 5^x$.
- 133. (001347) 已知实常数 a 使得关于 x 的方程 $3^x = a\left(x + \frac{1}{2}\right)$ 有且仅有一个实数解, 请你写出一个这样的 a, 解出你构造的方程, 并证明你的结论.
- 134. (001348) 方程 $\log_2(9-2^x)=3-x$ 的解集为______.
- 135. $\log_{0.5}(x^2 + x + 1) < \log_{0.5}(4x 1)$ 的解集为______.

- 136. (001350) 方程 $\log_5(x+1) \log_{\frac{1}{6}}(x-3) = 1$ 的解集为
- 137. (001351) 若函数 $f(x) = \log_a x$ 在区间 [a, 2a] 上的最大值与最小值之差为 $\frac{1}{2}$, 则 a =______
- 138. (001352) 解方程: $\log_x(x^2 x) \le \log_x 2$.
- 139. (001353) 解方程: $x^{\log_2 x} = 32x^4$.
- 140. (001354) 已知实数 a,b 满足:
 - (1) $a + 2^a = 3$, $b + \log_2 b = 3$;
 - (2) $a + 2^a = 4$, $b + \log_2 b = 4$,

分别猜测 a+b 的值, 并证明.

- 141. (002823) 下列各组中, 两个函数是同一个函数的组的序号是_
 - $(1) \ y = \lg x \ \ \sharp \ \ y = \frac{1}{2} \lg x^2; \ (2) \ f(x) = 2^x, \ D = \{0,1,2,3\} \ \ \sharp \ \ g(x) = \frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0,1,2,3\}; \ \ \sharp \ \ y = \frac{1}{2} \lg x^2 + \frac{1}{2} \lg x^2 +$
 - (3) $f(x) = x^2 2x 1$, $q(t) = t^2 2t 1$; (4) $y = \sqrt{x^2 1}$, $y = \sqrt[3]{x^3 1}$.
- 142. (002825) 函数 y = f(x) 满足对于任意 x > 0, 恒有 $f(x+1) = \lg x$, 则 y = f(x) 在 x > 1 时的解析式 为_____
- 143. (002829) 设常数 $a \cdot b$ 满足 1 < a < b, 函数 $f(x) = \lg(a^x b^x)$, 求函数 y = f(x) 的定义域.
- 144. (002839) 设常数 $p \in \mathbf{R}$, 设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2(x-1) + \log_2(p-x)$.
 - (1) 求 p 的取值范围以及函数 y = f(x) 的定义域;
 - (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.
- 145. (002842) 给定六个函数: ① $y = \frac{1}{x}$; ② $y = x^2 + 1$; ③ $y = x^{-\frac{1}{3}}$; ④ $y = 2^x$; ⑤ $y = \log_2 x$; ⑥ $y = \sqrt{x^2 1} + 2x^2 + 1$ $\sqrt{1-x^2}$

在这六个函数中,是奇函数但不是偶函数的是_______,是偶函数但不是奇函数的是______,既不是奇 函数也不是偶函数的是______,既是奇函数又是偶函数的是_

- 146. (002851) 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbb{R}$, 常数 $a \in \mathbb{R}$.
 - (1) 求证: 函数 y = f(x) 不是奇函数;
 - (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.
- 147. (002852) 判断下列函数 y = f(x) 的奇偶性:
 - $$\begin{split} &(1)\ f(x) = \frac{1}{a^x-1} + \frac{1}{2} (常数\ a > 0\ 且\ a \neq 1); \\ &(2)\ f(x) = \frac{ax}{x^2-a} (常数\ a \in \mathbf{R}). \end{split}$$
- 148. (002855) 设 y = f(x) 是定义在 R 上的奇函数, 当 x < 0 时, $f(x) = \lg(2 x)$, 则 $x \in \mathbb{R}$ 时, $f(x) = \underline{\hspace{1cm}}$
- 149. (002858) 设函数 y = f(x) 是定义在 R 上的奇函数. 若 x > 0 时, $f(x) = \lg x$.
 - (1) 求方程 f(x) = 0 的解集;
 - (2) 求不等式 f(x) > -1 的解集.

151. (002860) 常数 $a \in \mathbf{R}$. 若函数 $f(x) = \lg(10^x + 1) + ax$ 是偶函数, 则 $a = \underline{\hspace{1cm}}$. 152. (002862) 设常数 $a \neq 0$. 若函数 $f(x) = \lg \frac{x+1-2a}{x+1+3a}$. 是否存在实数 a, 使函数 y = f(x) 为奇函数或偶函数? 若存在, 求出 a 的值, 并判断相应的 y = f(x) 的奇偶性; 若不存在, 说明理由. 153. (002871) 设常数 $a \in \mathbb{R}$. 若直线 x = 2 是函数 $f(x) = \log_3 |2x + a|$ 的图像的一条对称轴, 则 a =_______ 154. (002874) 函数 $y = \log_2 \frac{2-x}{2+x}$ 的图像关于 (C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 B. y 轴对称 155. (002875) 函数 $y = \log_2(2 - 2^x)$ 的图像关于 (). C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 B. y 轴对称 156. (002878) 设函数 $y = \log_2(x+3)$ 的图像与函数 y = f(x) 的图像关于直线 x = 1 对称. ① f(1) =______; ② 若 f(a) 有意义,则 $f(a) = _____(结果用 a 的表达式表示).$ 157. (002884) 下列函数中, 在其定义域上是单调函数的序号为_ ① $y = \frac{2-x}{x}$; ② $y = x - \frac{1}{x}$; ③ $y = 3^{x-1}$; ④ $y = \ln \frac{1}{x}$; ⑤ $y = \tan x$. 158. (002894) 设函数 $f(x) = e^x + \frac{1}{e^x}$. (1) 求证: y = f(x) 在 R 上不是增函数; (2) 求证: y = f(x) 在 $[0, +\infty)$ 上是增函数. 159. (002895) 设常数 $a \in \mathbf{R}$. 若 $y = \log_{\frac{1}{8}}(x^2 - ax + 2)$ 在 $[-1, +\infty)$ 上是减函数, 求 a 的取值范围 160. (002897) 下列函数中, 在区间 $(0,+\infty)$ 上递增的函数的序号为______ ① y = |x+1|; ② $y = x - \frac{1}{x}$; ③ $y = x^{\frac{1}{2}}$; ④ $y = \sqrt{1 - \frac{1}{x}}$; ⑤ $y = \lg x$. 161. (002898) 函数 $y = \log_{0.7}(x^2 - 3x + 2)$ 的单调减区间为_____. 162. (002904) 求证: 函数 $f(x) = \frac{1}{x} - \lg \frac{1+x}{1-x}$ 是奇函数, 且在区间 (0,1) 上递减. 163. (002905) 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \log_a(2 - ax)$ 在 [0,1] 上是减函数, 求 a 的取值范围. 164. (002908) 下列命题中, 正确的命题的序号是_ ① 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条直线; ② 幂函数的图像都经过 (0,0) 和 (1,1) 点; ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它也是减函数; ④ 第四象限不可能有幂函数的图像. 165. (002909) 图中曲线是幂函数 $y=x^n$ 在第一象限的图像,已知 n 取 ± 2 , $\pm \frac{1}{2}$ 四个值,则相应于曲线 c_1,c_2,c_3,c_4 的 n 依次为(

 $150._{(002859)}$ 是否存在实数 b, 使得函数 $g(x) = \frac{2^x}{4^x - b}$ 是奇函数? 若存在, 求 b 的值; 若不存在, 说明理由.

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

B.
$$2, \frac{1}{2}, -\frac{1}{2}, -2$$

C.
$$-\frac{1}{2}$$
, -2 , 2 , $\frac{1}{2}$

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, 2$$
 B. $2, \frac{1}{2}, -\frac{1}{2}, -2$ C. $-\frac{1}{2}, -2, 2, \frac{1}{2}$ D. $2, \frac{1}{2}, -2, -\frac{1}{2}$

- $166._{(002911)}$ 已知 $\alpha \in \{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\}$,若幂函数 $f(x) = x^{\alpha}$ 为奇函数,且在 $(0, +\infty)$ 上递减,则 $\alpha = \underline{\hspace{1cm}}$
- 167. (002912) 函数 y=f(x) 满足两个条件: ① y=f(x) 是两个幂函数的和函数; ② y=f(x) 的最小值为 2, 则 y = f(x) 的解析式可以是
- 168. (002914) 设常数 $m \in \mathbf{R}$. 若幂函数 $y = (m^2 m 1)x^{m^2 2m 1}$ 在 $(0, +\infty)$ 上是增函数, 则 m 的值为______.
- $169._{(002916)}$ 函数 $y=1-(x+2)^{-2}$ 可以先将幂函数 $y=x^{-2}$ 的图像向______ 平移 2 个单位, 再以_____ 轴为对称轴作对称变换, 最后向 平移 1 个单位.
- 170. (002918) 设常数 $t\in \mathbf{Z}$. 已知幂函数 $y=(t^3-t+1)x^{\frac{1}{3}(1+2t-t^2)}$ 是偶函数, 且在区间 $(0,+\infty)$ 上是增函数, 求整 数 t 的值, 并作出相应的幂函数的大致图像.
- $171._{(002921)}$ 函数 $y = -(x+1)^{-3}$ 的图像可以先将幂函数 $y = x^{-3}$ 的图像向_____ 平移 1 个单位, 再 以______ 轴为对称轴作对称变换
- 172. (002922) 设 $\alpha \in \{-3, -\frac{2}{3}, -\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, 1, \frac{3}{2}, 2\}$. 已知幂函数 $y = x^{\alpha}$ 是奇函数, 且在区间 $(0, +\infty)$ 上是减函数, 则满足条件的 α 的值是_____
- 173. (002923) 下列关于幂函数图像及性质的叙述中, 正确的叙述的序号是______
 - ① 对于一个确定的幂函数, 第二、三象限不可能同时有该幂函数的图像上的点;
 - ② 若某个幂函数图像过 (-1,-1), 则该幂函数是奇函数;
 - ③ 若某个幂函数在定义域上递增,则该幂函数图像必经过原点;
 - ④ 幂函数图像不会经过点 $(-\frac{1}{2}, 8)$ 以及 (-8, -4).
- 174. (002924) 设 y = f(x) 与 y = g(x) 是两个不同的幂函数, 集合 $M = \{x | f(x) = g(x)\}$, 则集合 M 中的元素是 ().

A. 1 或 2

B. 1 或 3

C. 1 或 2 或 3 D. 1 或 2 或 3 或 4

175. (002925) 已知幂函数 $y = x^{\frac{q}{p}} (p \in \mathbf{N}^*, q \in \mathbf{N}^*, p, q 互质)$ 的图像如图所示,则 ().

A. p,q 均为奇数

C. p 是偶数, q 是奇数

B. p 是奇数, q 是偶数, 且 $0 < \frac{q}{p} < 1$ D. p 是奇数, q 是偶数, 且 $\frac{q}{p} > 1$

176. (002930) 函数
$$y = \log_2 \frac{1}{x-1}$$
 的反函数是_____.

177. (002932) 函数
$$y = \frac{2^x}{2^x - 1}(x > 0)$$
 的反函数是_____.

178. (002934) 记
$$y = f^{-1}(x)$$
 是 $y = f(x)$ 的反函数. 若函数 $f(x) = \log_3 x$, 则 $f^{-1}(-\log_9 2) =$ ______.

179.
$$(002941)(1)$$
 函数 $y = x^2 + 2x - 3$ $(x \ge 0)$ 的反函数为______;

(3) 函数
$$y = x|x|$$
 的反函数为_____.

180. (002942) 已知函数
$$y = f(x)$$
 是奇函数, 且 $y = g(x)$ 是 $y = f(x)$ 的反函数. 若 $x \ge 0$ 时, $f(x) = 3^x - 1$, 则 $g(-8) =$ ______.

181.
$$_{(002944)}$$
 求函数 $y= egin{cases} x^2-2x+2, & x\leq 1, \\ (\frac{1}{2})^x, & x>1 \end{cases}$ 的反函数.

182. (002945) 设常数
$$a>0$$
 且 $a\neq 1$. 求函数 $f(x)=\log_a(x+\sqrt{x^2-1})$ 的反函数.

183. (002948) 设
$$a > 0$$
, 函数 $f(x) = \frac{1}{1 + a \cdot 2^x}$

(1) 若
$$a = 1$$
, 求 $f(x)$ 的反函数 $f^{-1}(x)$;

$$(2)$$
 求函数 $y=f(x)\cdot f(-x)$ 的最大值 (用 a 表示);

$$(3)*$$
 设 $g(x) = f(x) - f(x-1)$. 若对任意 $x \in (-\infty, 0], g(x) \ge g(0)$ 恒成立, 求 a 的取值范围.

184. (002950) 若
$$\log_3 5 = a$$
, $\log_5 7 = b$, 用 a, b 表示 $\log_{75} 63 =$ ______

185. (002951) 若
$$3^a = 4^b = 6^c$$
, 且 a, b, c 都是正数, 则 $\frac{-2ab + 2bc + ac}{abc}$ 的值为______.

186. (002952) 若不等式
$$(a-1)^x < 1$$
 的解集为 $(-\infty,0)$, 则实数 a 的取值范围是______.

187. (002953) 函数
$$f(x) = \frac{\sqrt{4-x^2}}{\lg|x-1|}$$
 的定义域为______.

188. (002954) 为了得到函数
$$y = \lg \frac{x+3}{10}$$
 的图像, 只需把函数 $y = \lg x$ 的图像上所有的点 ().

- A. 向左平移 3 个单位长度, 再向上平移 1 个单位长度
- B. 向右平移 3 个单位长度, 再向上平移 1 个单位长度
- C. 向左平移 3 个单位长度, 再向下平移 1 个单位长度
- D. 向右平移 3 个单位长度, 再向下平移 1 个单位长度
- 189. (002955) 设常数 a > 0, $a \neq 1$. 函数 $f(x) = a^x$ 在 [0,1] 上的最大值和最小值之和为 a^2 , 则 a =______.
- 190. (002956) 若集合 $A = \{y|y = 2 \cdot (\frac{1}{3})^{|x|}\}, \ B = \{a|\log_a(3a-1) > 0\}, \ \c M\ A \cap B = _____.$
- 191. $(0002957)^*$ 已知函数 $f(x) = |3^x 1|, c < b < a,$ 且 f(b) < f(a) < f(c), 在下列关系式中,一定成立的关系式的 序号是______. ① $3^a + 3^b > 2$; ② $3^a + 3^b < 2$; ③ $3^c < 1$; ④ $3^a + 3^c < 2$.
- 192. (002958) 已知函数 $f(x) = \frac{3^x 3^{-x}}{3^x + 3^{-x}}$.
 - (1) 证明 f(x) 在 $(-\infty, +\infty)$ 上是增函数;
 - (2) 求 f(x) 的值域.
- 193. (002959) 已知函数 $y = (\log_2 \frac{x}{2^a})(\log_2 \frac{x}{4}), x \in [\sqrt{2}, 4],$ 试求该函数的最大值 g(a).
- 194. (002960) 已知函数 $f(x) = a \cdot 2^x + b \cdot 3^x$, 其中常数 a, b 满足 $ab \neq 0$.
 - (1) 若 ab > 0, 判断函数 y = f(x) 的单调性;
 - (2) 若 ab < 0, 求 f(x+1) > f(x) 时 x 的取值范围.
- 195. (002961) 不等式 $\log_{\frac{1}{2}}(x-1) \ge 1$ 的解集为_____.
- 196. (002962) 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \frac{1}{2^x 1} + a$ 为奇函数, 则 $a = \underline{\hspace{1cm}}$
- 197. (002963) 若 $\log_2 3 = a$, $3^b = 7$, 用 a, b 表示 $\log_{3\sqrt{7}} 2$, 则 $\log_{3\sqrt{7}} 2 =$ ______
- 198. (002964) 对于函数 y = f(x) 的定义域中的任意的 $x_1, x_2(x_1 \neq x_2)$, 有如下结论:
 - ① $f(x_1 + x_2) = f(x_1) \cdot f(x_2);$ ② $f(x_1 \cdot x_2) = f(x_1) + f(x_2);$

 - 当 $y = \ln x$ 时, 上述结论中, 正确结论的序号是______.
- 199. (0002965)(1) * 函数 $y = \log_a |x b|$ 在 $(0, +\infty)$ 上递增, 则 a、b 满足 ().
 - A. $a > 1 \perp b \ge 0$
- B. $a > 1 \perp b \leq 0$
- C. 0 < a < 1 <u>H</u> $b \ge 0$
- D. 0 < a < 1 <u>H</u>, $b \le 0$
- $f(x) = \log_a |ax^2 x| \ (a > 0, \ a \neq 1)$ 在区间 [3,4] 上是增函数, 则实数 a 的范围是_____.
- 200. $(002966)^*$ 已知常数 a>1,函数 $y=|\log_a x|$ 的定义域为区间 [m,n],值域为区间 [0,1].若 n-m 的最小值为 $\frac{5}{6}$,则 a=______.
- 201. $(002967)^*$ 设常数 a>0 $,a\neq 1$. 已知函数 $f(x)=\log_a x$. 若对于任意 $x\in [3,+\infty)$ 都有 $|f(x)|\geq 1$ 成立,则 a 的取值范围为______.

- 202. $(002968)^*$ 已知函数 $f(x) = 2 + \log_3 x$ $(3 \le x \le 27)$.
 - (1) 求函数 $y = f(x^2)$ 的定义域;
 - (2) 求函数 $g(x) = [f(x)]^2 + f(x^2)$ 的值域.
- 203. (002969) 已知定义域为 R 的函数 y = f(x) 为奇函数, 且满足 f(x+2) = -f(x). 当 $x \in [0,1]$ 时, $f(x) = 2^x 1$.
 - (1) $\vec{x} y = f(x)$ 在区间 [-1,0) 上的解析式;
 - (2) 求 $f(\log_{\frac{1}{2}} 24)$ 的值.
- 204. (002970)* 已知函数 $f(x) = 1 + a \cdot (\frac{1}{2})^x + (\frac{1}{4})^x$.
 - (1) 当 a=1 时, 求函数 y=f(x) 在 $(-\infty,0)$ 上的值域;
 - (2) 对于定义在集合 D 上的函数 y=f(x), 如果存在常数 M>0, 满足: 对任意 $x\in D$, 都有 $|f(x)|\leq M$ 成立, 则称 f(x) 是 D 上的有界函数, 其中 M 称为函数 f(x) 的一个上界. 若函数 y=f(x) 在 $[0,+\infty)$ 上是以 3 为一个上界的有界函数, 求实数 a 的取值范围.
- 205. (002980) 已知函数 $y = x + \frac{a}{x}$ 有如下性质: 如果常数 a > 0, 那么该函数在 $(0, \sqrt{a}]$ 上是减函数, 在 $[\sqrt{a}, +\infty)$ 上是增函数.
 - (1) 设常数 $c\in[1,+\infty)$, 求函数 $f(x)=x+\frac{c}{r}$ $(1\leq x\leq 2)$ 的最大值和最小值;
 - (2)* 设常数 c>0. 当 n 是正整数时, 研究函数 $g(x)=x^n+\frac{c}{x^n}$ 的单调性, 并说明理由.
- 206. (002993) 函数 $y = \frac{3^x 1}{3^x 2}$ 的值域是_____.
- 207. (002994) 函数 $y = \log_{\frac{1}{2}}(-x^2 + 2x + 3)$ 的值域是_____
- 208. (003000) 已知函数 $f(x) = \log_a(x + \sqrt{x^2 + 1}), \ a > 1.$
 - (1) 求 f(x) 的定义域和值域;
 - (2) 求 $f^{-1}(x)$;
 - (3) 判断 $f^{-1}(x)$ 的奇偶性、单调性;
 - (4) 若实数 m 满足 $f^{-1}(1-m) + f^{-1}(1-m^2) < 0$, 求 m 的范围.
- 209. (003014) 用二分法, 可以计算得方程 $6-x=\lg x$ 的解是_____(结果精确到 0.01).
- 210. (003015) 方程 $6 x = \log_2 x$ 的解集是_____.
- 211. (003017) 若方程 $2^x = (\frac{1}{2})^{-\frac{1}{x}+1}$ 的两个实数解为 $x_1, x_2, \, 则 \, x_1 + x_2 = \underline{\hspace{1cm}}$.
- 212. (003018) 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $\lg^2 x \lg x^2 + a 2 = 0$ 有两个不同的实数解 x_1, x_2, y_1
 - (1) $x_1 \cdot x_2 = \underline{\hspace{1cm}};$
 - (2) a 的取值范围是______
- 213. (003019)(1) 设常数 $a \in \mathbf{R}$. 若关于 x 的方程 $9^x (a+2) \cdot 3^x + 4 = 0$ 有实数解, 则 a 的取值范围是______
 - (2) 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $9^x 3^x + a = 0$ 有两个不同的实数解 x_1, x_2, y_1 a 的取值范围是_______
- 214. (003024) 方程 $4^{x+1} 13 \cdot 2^x + 3 = 0$ 的解集是______

- 215. (003025) 方程 $\log_2(x-1) = \log_4(2-x)$ 的解集是______.
- 216. (003026) 方程 $2\log_2(x-1) = 2 + \log_2 x$ 的解集是_____
- 217. (003027) 方程 $\log_3(3^{x-1}-3^{-1}) \cdot \log_3(3^{x-2}-3^{-2}) = 2$ 的解集是______
- 218. (003029) 方程 $2(4^x + 4^{-x}) 3(2^x 2^{-x}) 4 = 0$ 的解集是
- 219. (003032) 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = 4^x a \cdot 2^x + a + 3$.
 - (1) 若函数 y = f(x) 有且仅有一个零点, 求 a 的取值范围;
 - (2) 若函数 y = f(x) 有零点, 求 a 的取值范围.
- 220. (003041) 已知实数 ab 满足等式 $(\frac{1}{2})^a=(\frac{1}{3})^b,$ 下列五个关系式:
 - ① 0 < b < a; ② a < b < 0; ③ 0 < a < b; ④ b < a < 0; ⑤ a = b = 0. 其中不可能成立的关系式的序号为_______.
- 221. (003043) 设常数 $k \in \mathbf{R}$. 已知关于 x 的不等式 $k \cdot 4^x 2^{x+1} + 6k < 0$.
 - (1) 若不等式的解集为开区间 $(1, \log_2 3)$, 求 k 的取值范围;
 - (2) 若不等式对一切 $x \in (1, \log_2 3)$ 都成立, 求 k 的取值范围;
 - (3)* 若不等式的解集为开区间 $(1, \log_2 3)$ 的子集, 求 k 的取值范围;
 - (4) * 若不等式在开区间 (1, log₂ 3) 内存在解, 求 k 的取值范围.
- 222. (003052) 设常数 $a \in \mathbf{R}$. 若对于任意实数 $x \in (-\infty, -1]$, 不等式 $1 + 2^x + (a a^2) \cdot 4^x > 0$ 恒成立, 求 a 的取值范围.
- 223. (003601) 下列函数中, 既是奇函数又是减函数的是 ().

A.
$$y = -3x$$

B.
$$y = x^3$$

C.
$$y = \log_2^x$$

D.
$$y = 3^{x}$$

- 224. (003636) 已知函数 f(x) 的周期为 1, 当 $0 < x \le 1$ 时, $f(x) = \log_2 x$, 则 $f\left(\frac{3}{2}\right)$ 的值为______.
- 225. (003655) 设常数 $a \in \mathbb{R}$, 函数 $f(x) = \log_2(x+a)$. 若 f(x) 的反函数的图像经过点 (3,1), 则 a =______.
- 226. (003658) 已知 $\alpha \in \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\right\}$. 若幂函数 $f(x) = x^{\alpha}$ 为奇函数,且在 $(0, +\infty)$ 上递减,则 $\alpha =$ ______.
- 227. (003662) 已知常数 a>0,函数 $f(x)=\frac{2^x}{2^x+ax}$ 的图像经过点 $P\left(p,\frac{6}{5}\right),\ Q\left(q,-\frac{1}{5}\right)$. 若 $2^{p+q}=36pq$,则 $a=___$.
- 228. (003680) 定义在 $(0,+\infty)$ 上的函数 y=f(x) 的反函数为 $y=f^{-1}(x)$. 若 $g(x)=egin{cases} 3^x-1, & x\leq 0, \\ f(x), & x>0 \end{cases}$ 则 $f^{-1}(x)=2$ 的解为
- 229. (003694) 已知函数 $f(x) = \log_a x + x b(a > 0$ 且 $a \neq 1$). 当 2 < a < 3 < b < 4 时, 函数 f(x) 的零点 $x_0 \in (n, n+1), \ n \in \mathbf{N}^*, \ 则 \ n = _____.$

230.	(003709) 若函数 $y = a^x + 1$	$-b(a > 0 \perp a \neq 1)$	的图像经过点 (1,7), 其反函	数的图像经过点 $(4,0)$, 则 a —
	$b = \underline{\hspace{1cm}}.$			
231.	(003718) 已知函数 $f(x) =$	$\begin{cases} \log_2(x+4), \\ f(x+1) - f(x+2), \end{cases}$	$x \ge 0$, 则 $f(-3)$ 的值为 x < 0,	<u>_</u> .
	A. 1	В. 0	C. 2	D2
232.	(003726) 若函数 $f(x) = \frac{k}{1-1}$	$\frac{2-2^x}{+k\cdot 2^x}, \ (k\neq 1, \ k\in \mathbf{R})$) 在定义域内为奇函数 $,$ 则 k =	=,
233.	(003730) 下列函数中, 与函	数 $y = x^{2n+1} \ (n \in \mathbf{N}^*)$	的值域相同的函数为	
	A. $y = \left(\frac{1}{2}\right)^{x+1}$	B. $y = \ln(x+1)$	C. $y = \frac{x+1}{x}$	D. $y = x + \frac{1}{x}$
234.	$_{\scriptscriptstyle{(003746)}}$ 幂函数 $f(x)$ 的图	像经过点 $(2,\sqrt{2})$, 且 f^{-1}	$f^{-1}(x)$ 为 $f(x)$ 的反函数, 则 f	$^{-1}(4) = $
235.	$\log_a \frac{2}{3} < 1$ (a >	> $0, a \neq 1),$ 则实数 a 的	的取值范围为	
236.	(003757) 设函数 $f(x) = x^3$	$+\frac{2^x-1}{2^x+1}$,已知 $a\in(-1)$	$(1,1), b \in (-1,1).$ 则 $a+b \ge 0$	0 是 $f(a) + f(b) \ge 0$ 的
	A. 充分不必要条件		B. 必要不充分条件	
	C. 充分必要条件		D. 既不充分也不必要	条件
237.	(003770) 函数 $f(x) = 2^x +$	$x^3 - 2$ 在区间 $(0,1)$ 内	的零点的个数是	
	A. 0	В. 1	C. 2	D. 3
238.	(003772) 定义在 (-∞,0)∪($f(0,+\infty)$ 上的函数 $f(x)$,	如果对于任意给定的等比数多	刘 $\{a_n\}$, $\{f(a_n)\}$ 仍是等比数列,
	则称 $f(x)$ 为 "保等比数"	列函数". 现有定义在 (-	$+\infty,0)\cup(0,+\infty)$ 上的如下函数	b : ① $f(x) = x^2$; ② $f(x) = 2^x$;
	$\Im f(x) = \sqrt{ x }; \ \maltese f(x)$	$=\ln x $. 则其中是 "保	等比数列函数"的 $f(x)$ 的序号	号为 .
	A. ①②	В. ③④	С. ①③	D. 24
239.	(003775) 已知 $U = \left\{ y \middle y = \right\}$	$\log_{\frac{1}{2}} x, \ x \ge \frac{1}{8} \bigg\}, \ A =$	$\left\{x\left y=\frac{1}{\sqrt{2-x}}\right.\right\}$, ŅJ $\mathcal{C}_{U}A=$	·
240.	(003778) 已知函数 $f(x) = 4$	$4^x - k \cdot 2^{x+1} + 4$ 在 $[0, 1]$	$[2]$ 上存在零点, 则实数 $k \in _$	·
241.	(003789) 设函数 $f(x) = \log$	$g_{\frac{1}{2}}x, g(x) = f^{-1}(x).$		
	(1) 求函数 $g(x)$ 的解析式	弋, 并画出大致图像;		
	(2) 若不等式 $g(x) + g(2x)$	$(x) \le k$ 对任意 $x \in \mathbf{R}$ 恒	成立, 求实数 k 的取值范围.	
242.	(003801) 下列函数中, 既是	偶函数, 又是在区间 (0,	$+\infty)$ 上单调递减的函数为 $_{}$	·
	$A. y = \lg \frac{1}{ x }$	B. $y = x^3$	C. $y = 3^{ x }$	D. $y = x^2$
243.	(003815) 在同一坐标系中画	\mathbf{i} 出函数 $y = \log_a x, \ y = \log_a x$	$=a^x,y=x+a$ 的图像, 可能』	E确的是

值范围是

244. (003828) 已知正数 x, y 满足 $\ln x + \ln y = \ln(x + y)$, 则 2x + y 的最小值是______

 $245. \ {}_{(003838)}$ 已知函数 $f(x) = \begin{cases} \dfrac{3}{x}, & x \geq 3, \\ \log_3 x, & 0 < x < 3, \end{cases}$ 若关于 x 的方程 f(x) = k 有两个不同的实根, 则实数 k 的取

246. (003854) 不等式 $\lg(-x) < x+1$ 的解集为______

247. (003865) 集合 $\{y|y=2^{-x}\} \cap \{y|y=\lg x,\ 0 < x < 100\} =$ ______.

248. (003869) 函数 $f(x) = a^x + b$ (a > 1, b < -1), 则 $y = f^{-1}(x)$ 的图像一定不经过第______ 象限.

 $249. \ _{(003911)}$ 已知函数 $f(x) = \begin{cases} 2^x - 1, & x \ge 0, \\ -x^2 - 2x, & x < 0, \end{cases}$ 若 f(a) = 1, 则实数 a 的值是______.

250. (003936) 函数 $y = \ln(\cos x) \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$ 的大致图像是_____

251. (003953) 已知集合 M 是满足下列性质的函数 f(x) 的全体,存在非零常数 T,对任意 $x \in \mathbf{R}$,有 f(x+T) = Tf(x) 成立.

(1) 函数 f(x) = x 是否属于集合 M? 说明理由;

(2) 设 $f(x) \in M$, 且 T = 2, 已知当 1 < x < 2 时, $f(x) = x + \ln x$, 求当 -3 < x < -2 时, f(x) 的解析式.

252. (004001) 已知 $f(x) = \sqrt{x}, g(x) = kx^x.$

(1) 求曲线 y=f(x) 在点 (4,2) 处的切线方程;

(2) 若曲线 y=g(x) 经过点 (4,2), 求它与 (1) 中切线的另一个交点.

253. (004003) 已知 f(x) = lnx, $g(x) = e^x$, 计算下列函数 y = h(x) 在点 x = 1 处的导数值:

(1) h(x) = 3f(x) - 5g(x);

(2) h(x) = f(x)g(x);

(3) $h(x) = \frac{f(x)}{g(x)};$

(4) h(x) = f(2x+1) + g(3x-1).

254.
$$_{(004067)}$$
 已知定义在 R 上的函数 $f(x)$ 满足: ① $f(x)+f(2-x)=0$; ② $f(x)-f(-2-x)=0$; ③ 在 $[-1,1]$ 上表达式为 $f(x)=\begin{cases} \sqrt{1-x^2}, & x\in[-1,0],\\ 1-x, & x\in(0,1], \end{cases}$ 则函数 $f(x)$ 与 $g(x)=\begin{cases} 2^x, & x\leq0\\ \log_{\frac{1}{2}}x, & x>0 \end{cases}$ 的图像在区间 $[-3,3]$ 上的交点的个数为______.

- 255. (004079) 已知函数 $f(x) = \log_2 x$.
 - (1) 若 f(x) 的反函数是 $f^{-1}(x)$, 解方程: $f^{-1}(2x+1) = 3f^{-1}(x) 1$;
 - (2) 当 $x \in (3m, 3m+3] (m \in \mathbb{N})$ 时, 定义 g(x) = f(x-3m). 设 $a_n = n \cdot g(n)$, 数列 $\{a_n\}$ 的前 n 项和为 S_n , 求 a_1 、 a_2 、 a_3 、 a_4 和 S_{3n} ;
 - (3) 对于任意 a、b、 $c \in [M, +\infty)$, 且 $a \ge b \ge c$. 当 a、b、c 能作为一个三角形的三边长时, f(a)、f(b)、f(c)也总能作为某个三角形的三边长, 试探究 M 的最小值.
- $256. \ \ _{(004089)} \text{已知函数} \ f(x) = \begin{cases} 2^x, & x \leq 0 \\ \log_2 x, & 0 < x \leq 1 \end{cases} \text{ 的反函数是} \ f^{-1}(x), \ \text{则} \ f^{-1}(\frac{1}{2}) = \underline{\hspace{1cm}}.$ $257. \ \ _{(004089)}[x] \ \text{是不超过} \ x \ \text{的最大整数}, \ \text{则方程} \ (2^x)^2 \frac{7}{4} \cdot [2^x] \frac{1}{4} = 0 \ \text{满足} \ x < 1 \ \text{的所有实数解是} \underline{\hspace{1cm}}.$
- 258. $_{(004097)}$ 已知函数 $f(x)=1-rac{6}{a^{x+1}+a}(a>0,\,a
 eq1)$ 是定义在 R 上的奇函数.
 - (1) 求实数 a 的值及函数 f(x) 的值域;
 - (2) 若不等式 $t \cdot f(x) \ge 3^x 3$ 在 $x \in [1, 2]$ 上恒成立, 求实数 t 的取值范围.
- 259. (004106) 方程 $\log_5(4^x 11) 1 = \log_5(2^x 3)$ 的解为 x =_____.
- 260. (004116) 已知集合 $M = \{(x,y)|y=f(x)\}$,若对于任意 $(x_1,y_1) \in M$,存在 $(x_2,y_2) \in M$,使得 $x_1x_2 + y_1y_2 = 0$ 成立,则称集合 M 是 " Ω 集合". 给出下列 4 个集合: ① $M=\{(x,y)|y=\frac{1}{x}\};$ ② $M=\{(x,y)|y=\mathrm{e}^x-2\};$ ③ $M = \{(x,y)|y = \cos x\}; \ \textcircled{1} \ M = \{(x,y)|y = \ln x\}.$ 其中所有 " Ω 集合"的序号是 (

C.
$$(1)(2)(4)$$

- 261. (004139) 已知常数 $a \in \mathbb{R}^+$, 函数 $f(x) = 3^x + a^2 \cdot 3^{-x}$.
 - (1) 若 $a = \sqrt{3}$, 解关于 x 的不等式 f(x) < 4;
 - (2) 若 f(x) 在 $[3,+\infty)$ 上为增函数, 求 a 的取值范围
- 262. (004143) 方程 $\log_3(2x+1) = 2$ 的解是_____.
- 263. (004149) 若函数 $f(x)=2^x(x+a)-1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______.
- $264._{(004151)}$ 设不等式组 $\begin{cases} x+y-6\geq 0, \\ x-y+2\geq 0, \end{cases}$ 表示的可行域为 Ω , 若指数函数 $y=a^x$ 的图像与 Ω 有公共点, 则 a $x-3y+6\leq 0$ 的取值范围是

- 265. (004165) 已知函数 $f(x) = \log_3(\frac{4}{x+2})$, 则方程 $f^{-1}(x) = 4$ 的解 x =_____. 266. (004184) 设 m 为给定的实常数, 若函数 y=f(x) 在其定义域内存在实数 x_0 , 使得 $f(x_0+m)=f(x_0)+f(m)$ 成立, 则称函数 f(x) 为 "G(m) 函数". (1) 若函数 $f(x) = 2^x$ 为 "G(2) 函数", 求实数 x_0 的值; (2) 若函数 $f(x) = \lg \frac{a}{x^2 + 1}$ 为 "G(1) 函数", 求实数 a 的取值范围; $(3) 已知 \ f(x) = x + b(b \in \mathbf{R}) \ \textbf{为} \ "G(0) \ \mathbf{函数}", \ \mathbf{\mathcal{G}} \ g(x) = x|x-4|. \ \textbf{若对任意的} \ x_1, x_2 \in [0,t], \ \mathbf{\mathring{y}} \ x_1 \neq x_2 \ \mathbf{\mathcal{H}},$ 都有 $\frac{g(x_1) - g(x_2)}{f(x_1) - f(x_2)} > 2$ 成立, 求实数 t 的最大值. 267. (004203) 已知函数 $f(x) = ax + \log_2(2^x + 1)$, 其中 $a \in \mathbb{R}$. (1) 根据 a 的不同取值, 讨论 f(x) 的奇偶性, 并说明理由; (2) 已知 a > 0, 函数 f(x) 的反函数为 $f^{-1}(x)$, 若函数 $y = f(x) + f^{-1}(x)$ 在区间 [1, 2] 上的最小值为 $1 + \log_2 3$, 求函数 f(x) 在区间 [1,2] 上的最大值. 268. (004220) 已知函数① $f(x) = 3 \ln x$; ② $f(x) = 3 \mathrm{e}^{\cos x}$; ③ $f(x) = 3 \mathrm{e}^{x}$; ④ $f(x) = 3 \cos x$; 其中对于 f(x) 定义域 内的任意一个自变量 x_1 都存在唯一一个自变量 x_2 , 使 $\sqrt{f(x_1)f(x_2)}=3$ 成立的函数是 (). A. (3) B. (2)(3) C. (1)(2)(4) D. (4) 269. (004229) 函数 $y = 2^x (x \ge 2)$ 的反函数是_____ 270. (004238) 对实数 $x \in \mathbf{R}$, 函数 f(x) 满足: $f(x+1) = \sqrt{f(x) - f^2(x)} + \frac{1}{2}$, $a_n = f^2(n) - f(n)$, 数列 $\{a_n\}$ 的 前 15 项和为 $-\frac{31}{16}$, 数列 $\{c_n\}$ 满足 $c_n+c_{n+1}=[f(2019)]^n$, 若数列 $\{c_n\}$ 的前 n 项和 S_n 的极限存在, 则
- $c_1 =$ ______.

 271. (004256) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = a^x + b(0 < a < 1, b \in \mathbf{R})$, 若 f(x) 存在反函数,
- 272. (004272) 已知函数 g(x) 的图像与函数 $f(x) = \log_2(3^x 1)$ 的图像关于直线 y = x 对称,则 g(3) =_____.
- 273. (004276) 若函数 $f(x) = \log_2(2^x + 1) + kx$ 是偶函数, 则 k =_____.
- 274. (004284) 已知函数 $f(x) = m \cdot 2^x + x^2 + nx$, 记集合 $A = \{x | f(x) = 0, \ x \in \mathbf{R}\}$, 集合 $B = \{x | f(f(x)) = 0, \ x \in \mathbf{R}\}$. 若 A = B, 且 $A \cdot B$ 都不是空集, 则 m + n 的取值范围是 ().

A.
$$[0,4)$$
 B. $[-1,4)$ C. $[-3,5]$ D. $[0,7)$

275. (004286) 已知函数 $f(x) = a - \frac{4}{3^x + 1} (a$ 为实常数).

则 b 的取值范围是______

- (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
- (2) 当 f(x) 为奇函数时,对任意的 $x \in [1,5]$,不等式 $f(x) \geq \frac{u}{3^x}$ 恒成立,求实数 u 的最大值.
- 276. (004291) 函数 $y = \lg x$ 的反函数是_____.
- 277. (004316) 方程 $\log_3 \frac{1}{2^x + 4} + \log_3 (4^x 2) = 0$ 的解 x =_____.

- 278. (004332) 函数 $y = \log_2(x-2)$ 的定义域为_____.
- 279. (004335) 幂函数 $y=x^k$ 的图像经过点 $(4,\frac{1}{2})$, 则它的单调减区间为_____.
- 280. (004355) 若函数 $f(x) = 2^x 3$, 则 $f^{-1}(1) =$ ______.
- 281. (004370) 已知常数 $a \in \mathbb{R}^+$, 函数 $f(x) = 3^x + a^2 \cdot 3^{-x}$.
 - (1) 若 $a = \sqrt{3}$, 解关于 x 的不等式 f(x) < 4;
 - (2) 若 f(x) 在 $[3,+\infty)$ 上为增函数, 求 a 的取值范围.
- 282. (004376) 设函数 $f(x) = \lg(x+1)$ 的反函数为 $f^{-1}(x)$, 则 $f^{-1}(1) =$
- 283. (004379) 关于 x 的方程 $\log_2 x + \log_2 (x-3) = 2$ 的解为_____.
- 284. (004381) 已知常数 $a \in \mathbb{R}$, 函数 $f(x) = a \cdot 4^x + 2^x + 1$ 在 $[3, +\infty)$ 上单调递减, 则 a 的取值范围为______
- 285. (004386) 已知常数 $a \in \mathbf{R}$, 函数 $f(x) = ax^2 + \lg \frac{1+x}{1-x}$.
 - (1) 若 a = 0, 判断 f(x) 的单调性并证明;
 - (2) 问: 是否存在 a, 使得 f(x) 为奇函数? 若存在, 求出所有 a 的值; 若不存在, 说明理由.
- 286. (004387) 设函数 f(x) 的定义域为 $(0, +\infty)$, 若对任意 $x \in (0, +\infty)$, 恒有 f(2x) = 2f(x), 则称 f(x) 为 "2 阶缩放函数".
 - (1) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = 1 \log_2 x$, 求 $f(2\sqrt{2})$ 的值;
 - (2) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = \sqrt{2x x^2}$, 求证: 函数 y = f(x) x 在 $(1, +\infty)$ 上无零点.
- 287. (004390) 已知函数 f(x) 的反函数 $f^{-1}(x) = \log_2 x$, 则 f(-1) =_____.
- 288. (004395) f(x) 是偶函数, 当 $x \ge 0$ 时, $f(x) = 2^x 1$, 则不等式 f(x) > 1 的解集为______.
- 289. (004396) 方程 $1 + \log_2 x = \log_2(x^2 3)$ 的解为______
- 290. (004397) 已知函数 $f(x) = \begin{cases} x^2 + (4a 3)x + 3a, & x < 0, \\ (a > 0, a \neq 1)$ 在 R 上单调递减, 且关于 x 的方程 $\log_a(x+1) + 1, & x \geq 0, \end{cases}$

|f(x)| = 2 - x 恰好有两个不相等的实数解, 则 a 的取值范围是______.

291. (004401) 下列函数中, 值域为 $(0, +\infty)$ 的是 ().

A.
$$y = x^2$$
 B. $y = \frac{2}{x}$ C. $y = 2^x$ D. $y = |\log_2 x|$

- 292. (004403) 设集合 $A = \{y|y = a^x, \ x > 0\}$ (其中常数 $a > 0, \ a \neq 1$), $B = \{y|y = x^k, \ x \in A\}$ (其中常数 $k \in \mathbf{Q}$), 则 "k < 0" 是 " $A \cap B = \varnothing$ " 的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充分必要条件

D. 既非充分又非必要条件

- 293. (004408) 记函数 f(x) 的定义域为 D. 如果存在实数 a、b 使得 f(a-x)+f(a+x)=b 对任意满足 $a-x\in D$ 且 $a+x\in D$ 的 x 恒成立, 则称 f(x) 为 Ψ 函数.
 - (1) 设函数 $f(x)=\frac{1}{x}-1,$ 试判断 f(x) 是否为 Ψ 函数, 若是求出 a,b, 若不是请说明理由;
 - (2) 设函数 $g(x) = \frac{1}{2^x + t}$, 其中常数 $t \neq 0$, 证明: g(x) 是 Ψ 函数;
 - (3) 若 h(x) 是定义在 R 上的 Ψ 函数,且函数 h(x) 的图像关于直线 x=m(m 为常数) 对称,试判断 h(x) 是否为周期函数?并证明你的结论.
- 294. (004411) 若函数 $y = \log_2(x m) + 1$ 的反函数的图像经过点 (1,3), 则实数 m =_____.
- 295. (004413) 已知函数 f(x) 的周期为 2, 且当 $0 < x \le 1$ 时, $f(x) = \log_4 x$, 那么 $f(\frac{9}{2}) =$ ______
- 296. (004425) 函数 $y = \log_2(4 x^2)$ 的定义域是______
- 297. (004429) 已知函数 $f(x) = a \cdot 2^x + 3 a(a \in \mathbf{R} \ \underline{\mathbf{L}} \ a \neq 0)$ 的反函数为 $y = f^{-1}(x)$, 则函数 $y = f^{-1}(x)$ 的图像经过的定点的坐标为______.
- 298. (004435) 集合 $A = \{y|y = \log_{\frac{1}{2}} x x, 1 \le x \le 2\}, B = \{x|x^2 5tx + 1 \le 0\}, 若 A \cap B = A, 则实数 t 的取值范围是$
- $299. \ \ _{(004440)}$ 已知函数 $f(x) = \begin{cases} \log_{\frac{1}{2}}(1-x), & -1 \leq x \leq n, \\ (n < m) \text{ 的值域是 } [-1,1], \text{ 有下列结论: ① 当 } n = 0 \end{cases}$

时,m 的取值范围为 (0,2]; ② 当 $n=\frac{1}{2}$ 时,m 的取值范围为 $(\frac{1}{2},2]$; ③ 当 $n\in[0,\frac{1}{2})$ 时,m 的取值范围为 [1,2]; ④ 当 $n\in[0,\frac{1}{2})$ 时,m 的取值范围为 (n,2]; 其中结论正确的所有的序号是 (

A. (1)(2)

B. (3)(4)

C. (2)(3)

D. (2)(4)

- 300. (004444) 定义区间 (m,n)、[m,n]、(m,n]、[m,n) 的长度均为 n-m, 已知不等式 $\frac{7}{6-x} \geq 1$ 的解集为 A.
 - (1) 求 A 的长度;
 - (2) 函数 $f(x) = \frac{(a^2 + a)x 1}{a^2x} (a \in \mathbf{R}, \ a \neq 0)$ 的定义域与值域都是 [m, n](n > m),求区间 [m, n] 的最大长度;
 - (3) 关于 x 的不等式 $\log_2 x + \log_2 (tx + 3t) < 2$ 的解集为 B, 若 $A \cap B$ 的长度为 6, 求实数 t 的取值范围.
- 301. (004445) 对于函数 $y = f(x)(x \in D)$, 如果存在实数 a、 $b(a \neq 0)$, 且 a = 1, b = 0 不同时成立), 使得 f(x) = f(ax + b) 对 $x \in D$ 恒成立, 则称函数 f(x) 为 "(a,b) 映像函数".
 - (1) 判断函数 $f(x) = x^2 2$ 是否是 "(a,b) 映像函数", 如果是, 请求出相应的 a、b 的值, 若不是, 请说明理由;
 - (2) 已知函数 y = f(x) 是定义在 $[0, +\infty)$ 上的 "(2, 1) 映像函数", 且当 $x \in [0, 1)$ 时, $f(x) = 2^x$, 求函数 $y = f(x)(x \in [3, 7))$ 的反函数;
 - (3) 在 (2) 的条件下, 试构造一个数列 $\{a_n\}$, 使得当 $x \in [a_n, a_{n+1})(n \in \mathbb{N}^*)$ 时, 2x + 1 的取值范围为 $[a_{n+1}, a_{n+2})$, 并求 $x \in [a_n, a_{n+1})(n \in \mathbb{N}^*)$ 时, 函数 y = f(x) 的解析式, 及 $y = f(x)(x \in [0, +\infty))$ 的值域.
- $302.~_{(004447)}$ 方程 $\lg(2x+3)=2\lg x$ 的解为_____.

304.	(004464) 已知 a 是实常数, 函数 $f(x) = a \lg(1-x) - \lg(1+x)$.
	(1) 若 $a = 1$, 求证: 函数 $y = f(x)$ 是减函数;
	(2) 讨论函数 $f(x)$ 的奇偶性, 并说明理由.
305.	(004496) 已知函数 $y = f(x)$ 存在反函数 $y = f^{-1}(x)$,若函数 $y = f(x) + 2^x$ 的图像经过点 $(1,4)$,则函数
	$y = f^{-1}(x) + \log_2 x$ 的图像必过点
306.	(004500) 对于定义域为 D 的函数 $f(x)$,若存在 $x_1, x_2 \in D$ 且 $x_1 \neq x_2$,使得 $f(x_1^2) = f(x_2^2) = 2f(x_1 + x_2)$,则称
	函数 $f(x)$ 具有性质 M . 若函数 $g(x) = \log_2 x - 1 , x \in (0, a]$ 具有性质 M , 则实数 a 的最小值为
307.	(004509) 若存在常数 $k(k>0)$, 使得对定义域 D 内的任意 x_1 、 $x_2(x_1 \neq x_2)$, 都有 $ f(x_1) - f(x_2) \leq k x_1 - x_2 $
	成立, 则称函数 $f(x)$ 在其定义域 D 是 " k - 利普希兹条件函数".
	(1) 若函数 $f(x) = \sqrt{x}(1 \le x \le 4)$ 是 " k - 利普希兹条件函数", 求常数 k 的取值范围;
	(2) 判断函数 $f(x) = \log_2 x$ 是否是 "2— 利普希兹条件函数", 若是, 请证明, 若不是, 请说明理由;
	(3) 若 $y=f(x)(x\in\mathbf{R})$ 是周期为 2 的 " $1-$ 利普希兹条件函数", 证明: 对任意的实数 x_1 、 x_2 , 都有 $ f(x_1)-$
	$ f(x_2) \le 1.$
308.	(004516) 函数 $f(x) = 1 + \log_2 x (x \ge 4)$ 的反函数的定义域为
309.	(004530) 已知函数 $f(x)$ 的定义域是 D , 若对于任意的 $x_1, x_2 \in D$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$, 则称函
	数 $f(x)$ 在 D 上为 "非减函数".
	(1) 判断 $f_1(x) = x^2 - 4x$, $x \in [1, 4]$ 与 $f_2(x) = x - 1 + x - 2 $, $x \in [1, 4]$ 是否是"非减函数"?
	(2) 已知函数 $g(x) = 2^x + \frac{a}{2^{x-1}}$ 在 [2,4] 上为"非减函数", 求实数 a 的取值范围;
	(3) 已知函数 $h(x)$ 在 $[0,1]$ 上为"非减函数",且满足条件: ① $h(0)=0$; ② $h(\frac{x}{3})=\frac{1}{2}h(x)$; ③ $h(1-x)=0$
	$1 - h(x)$, 求 $h(\frac{1}{2020})$ 的值.
310.	(004540) 已知 $y=f(x)$ 是定义在 R 上的奇函数,且当 $x\geq 0$ 时, $f(x)=-rac{1}{4^x}+rac{1}{2^x}$,则此函数的值域
	为
311.	(004542) 已知 p 是实数, 函数 $f(x) = 10^x$. 若存在实数 m, n , 使得 $f(m+n) = f(m) + f(n)$ 与 $f(m+n+p) = f(m)$
	f(m) + f(p) 均成立, 则 p 的最大值等于
312.	(004563) 下列函数中, 值域为 $[0,+\infty)$ 的是 $($ $).$
	A. $y = 2^x$ B. $y = x^{\frac{1}{2}}$ C. $y = \tan x$ D. $y = \cos x$
313.	(004569) 改革开放 40 年, 我国卫生事业取得巨大成就, 卫生总费用增长了数十倍. 卫生总费用包括个人现在支
	出、社会支出、政府支出, 如表为 2012 年至 2015 年我国卫生费用中个人现金支出、社会支出和政府支出的
	费用 (单位: 亿元) 和在卫生总费用中的占比.

. (004452) 已知幂函数 y=f(x) 的图像经过点 P(4,2), 则它的反函数为 $f^{-1}(x)=$ _____.

		个人现金卫生支出		社会卫生支出		政府卫生支出	
年份	卫生总费	绝对数 (亿	占卫生总	绝对数 (亿	占卫生总	绝对数 (亿	占卫生总
	用 (亿元)	元)	费用比重	元)	费用比重	元)	费用比重
			(%)		(%)		(%)
2012	28119.00	9656.32	34.34	10030.70	35.67	8431.98	29.99
2013	31668.95	10729.34	33.88	11393.79	35.98	9545.81	30.14
2014	35312.40	11295.41	31.99	13437.75	38.05	10579.23	29.96
2015	40974.64	11992.65	29.27	16506.71	40.29	12475.28	30.45

(数据来源于国家统计年鉴)

- (1) 指出 2012 年到 2015 年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势;
- (2) 设 t=1 表示 1978 年,第 t 年卫生总费用与年份 t 之间拟合函数 $f(t)=\frac{357876.6053}{1+\mathrm{e}^{6.4420-0.1136t}}$,研究函数 f(t) 的单调性,并预测我国卫生总费用首次超过 12 万亿的年份.
- 314. (004620) 已知函数 $f(x) = \lg(x+1)$ 的反函数为 $y = f^{-1}(x)$, 则 $f^{-1}(2) = 1$
- 315. (004640) 方程 $2^x = 3$ 的解为 $x = ____.$
- 316. (004649) 已知 f(x) = m(x-2m)(x+m+3), $g(x) = 2^x 2$, 满足对于任意的 $x \in \mathbf{R}$, f(x) < 0 或 g(x) < 0, 则 m 的取值范围是
- 317. (004665) 方程 $\lg(x+2) = 2 \lg x$ 的解为_____
- 318. (004671) 设 f(x) 是定义在 R 上的函数,且满足 f(1) = 0. 若 $y = f(x) + a \cdot 2^x$ 是奇函数, $y = f(x) + 3^x$ 是偶函数,则 a 的值为______.
- 319. $_{(004680)}$ 已知函数 $f(x)=2^x+rac{a}{2^x},\,a$ 为实常数.
 - (1) 若函数 f(x) 为奇函数, 求 a 的值;
 - (2) 若 $x \in [0,1]$ 时 f(x) 的最小值为 2, 求 a 的值;
 - (3) 若方程 f(x) = 6 有两个不等的实根 x_1, x_2 , 且 $|x_1 x_2| \le 1$, 求 a 的取值范围.
- 320. (004689) 方程 $\log_3(x^2-1)=2+\log_3(x-1)$ 的解为 x=_____.
- 321. (004704) 函数 $y = \log_2(x+1)$ 的反函数为______.
- 322. (004729) 函数 $f(x) = 1 + \lg x$ 的反函数是 $f^{-1}(x) =$ _____.
- 323. $_{(004731)}$ 已知集合 $A=\{-2,-1,-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2,3\}$,从集合 A 中任取一个元素 a,使函数 $y=x^a$ 是奇函数且在 $(0,+\infty)$ 上递增的概率为______.
- 324. (004757) 下列函数中既是奇函数, 又在区间 $(0, +\infty)$ 上单调递减的函数为 ().

A.
$$y = \sqrt{x}$$
 B. $y = \log_{\frac{1}{2}} x$ C. $y = -x^3$ D. $y = x + \frac{1}{x}$

- 325. (004760) 已知以下三个陈述句:
 - p: 存在 $a \in \mathbb{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbb{R}$, 均有 $f(2^{x+a}) < f(2^x) + f(a)$ 恒成立;
 - q_1 : 函数 y = f(x) 是定义域为 R 的减函数, 且对任意的 $x \in \mathbf{R}$, 都有 f(x) > 0;
 - q_2 : 函数 y = f(x) 是定义域为 R 的增函数, 存在 $x_0 < 0$, 使得 $f(x_0) = 0$;

用这三个陈述句组成两个命题, 命题 S: "若 q_1 , 则 p"; 命题 T: "若 q_2 , 则 p". 关于 S, T 以下说法正确的是 ().

A. 只有命题 S 是真命题

B. 只有命题 T 是真命题

C. 两个命题 S,T 都是真命题

- D. 两个命题 S,T 都不是真命题
- 326. (004902) 若 $a = \log_{0.2} 0.3$, $b = \log_{0.3} 0.2$, c = 1, 则 a, b, c 的大小关系是 (
 - A. a > b > c
- B. b > a > c
- C. b > c > a
- D. c > b > a
- 327. (004907) 若 x > y > 1, 0 < a < 1, 则下列各式中正确的一个是 ().

- A. $x^{-a} > y^{-a}$ B. $(\sin a)^x > (\sin a)^y$ C. $\log_{\frac{1}{a}} x < \log_{\frac{1}{a}} y$ D. $1 + a^{x+y} > a^x + a^y$
- 328. (004909) 设 $a>0,\ a\neq 1,\ t>0,$ 比较 $\frac{1}{2}\log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小.
- 329. (004975) 设 $a, b \in \mathbb{R}^+$, 且 $a \neq b$, 求证: $a^a b^b > a^b b^a$.
- 330. (004981) 已知 $-1 \le x \le 1$, $n \ge 2$, $n \in \mathbb{N}$, 求证: $(1-x)^n + (1+x)^n \le 2^n$.
- 331. (005008) 下列各式中, 对任何实数 x 都成立的一个是 ().

- A. $\lg(x^2+1) \ge \lg 2x$ B. $x^2+1 > 2x$ C. $\frac{1}{x^2+1} \le 1$ D. $x+\frac{1}{x} \ge 2$
- 为_____
- 333. (005013) 若 $0 < a < 1, 0 < b < 1, 则 <math>\log_a b + \log_b a$ 的最小值为______.
- 334. (005014) 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最大值为_____.
- 335. (005016) 若 a, b, c 均大于 1, 且 $\log_a c \cdot \log_b c = 4$, 则下列各式中, 一定正确的是 ().
 - A. $ac \geq b$
- B. $ab \geq c$
- C. $bc \geq a$
- D. ab < c
- 336. (005023) 利用公式 $a^2+b^2 \geq 2ab$ 或 $a+b \geq 2\sqrt{ab}(a,b \geq 0)$, 求证: $\log_{0.5}(\frac{1}{4^a}+\frac{1}{4^b}) \leq a+b-1$.
- 337. (005036) 利用 $a^2+b^2+c^2 \geq ab+bc+ca(a,b,c \in \mathbf{R})$, 证明: 若 $a,b,c>0,\ n \in \mathbf{N},\ f(n)=\lg\frac{a^n+b^n+c^n}{3}$, 则 $2f(n) \le f(2n).$
- 338. (005038) 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: $\log_a(a-1) \cdot \log_a(a+1) < 1(a>1)$.
- 339. (005085) 已知 $f(x) = \lg \frac{1 + 2^x + a \cdot 4^x}{2} (a \in \mathbf{R}).$
 - (1) 如果 $x \le 1$ 时 f(x) 有意义, 求 a 的取值范围;
 - (2) 如果 $0 < a \le 1$, 求证: $x \ne 0$ 时, 2f(x) < f(2x).

340.	(005103)	下列函数中,	最小值为	2	的是().
------	----------	--------	------	---	-----	----

A.
$$x + \frac{1}{x}$$

B.
$$\frac{x^2+2}{\sqrt{x^2+1}}$$

C.
$$\log_a x + \log_x a (a > 0, x > 0, a \neq 1, x \neq 1)$$

D.
$$3^x + 3^{-x}(x > 0)$$

341. (005104) 若
$$\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$$
, 则 $x + y$ 的最小值是 ().

B.
$$4\sqrt{2}$$

$$342._{(005105)}$$
 若 a, b 均为大于 1 的正数, 且 $ab = 100$, 则 $\lg a \cdot \lg b$ 的最大值是 ().

D.
$$\frac{5}{2}$$

343. (005110) 若
$$x + 2y = 2\sqrt{2}a(x > 0, y > 0, a > 1)$$
, 则 $\log_a x + \log_a y$ 的最大值是______.

344. (005118) 若正数
$$x, y, z$$
 满足 $5x + 2y + z = 100$, 则 $\lg x + \lg y + \lg z$ 的最大值是_____

345. (005123) 已知
$$a>1$$
 且 $a^{\lg b}=\sqrt[4]{2},$ 求 $\log_2(ab)$ 的最小值.

346. (005132) 已知函数
$$f(x) = \frac{2^{x+3}}{4^x + 8}$$
.

- (1) 求 f(x) 的最大值;
- (2) 对于任意实数 a, b, 求证: $f(a) < b^2 4b + \frac{11}{2}$.

347. (005146) 解关于
$$x$$
 的不等式 $|\log_a x| < |\log_a (ax^2)| - 2(0 < a < 1)$.

$$348.~_{(005193)}$$
lg $x^2 < 2$ 的解集是 ().

A.
$$\{x | -10 < x < 0$$
或 $0 < x < 10\}$

B.
$$\{x | x < 10\}$$

C.
$$\{x | 0 < x < 10\}$$

D.
$$\{x | -10 < x < 10\}$$

349. (005194) 若
$$f(x) = \log_2 x$$
,则不等式 $[f(x)]^2 > f(x^2)$ 的解集是 ().

A.
$$\{x | 0 < x < \frac{1}{4}\}$$

B.
$$\{x | \frac{1}{4} < x < 1\}$$

A.
$$\{x|0 < x < \frac{1}{4}\}$$
 B. $\{x|\frac{1}{4} < x < 1\}$ C. $\{x|0 < x < 1$ \mathbf{g} $x > 4\}$ D. $\{x|\frac{1}{4} < x < 4\}$

D.
$$\{x | \frac{1}{4} < x < 4\}$$

350. (005195) 若
$$a, b$$
 都是小于 1 的正数, 且 $a^{\log_b(x-5)} < 1$, 则 x 的取值范围是 ().

A.
$$x > 5$$

B.
$$x < 6$$

C.
$$5 < x < 6$$

C.
$$5 < x < 6$$
 D. $x < 5$ **或** $x > 6$

351. (005196) 不等式
$$\log_x \frac{4}{5} < 1$$
 的解集是 ().

A.
$$\{x|0 < x < \frac{4}{5}\}$$

B.
$$\{x|x > \frac{4}{5}\}$$

C.
$$\{x | \frac{4}{5} < x < 1\}$$

D.
$$\{x|0 < x < \frac{4}{5}\} \cup \{x|x > 1\}$$

$$352.$$
 (005197) 若函数 $f(x) = \log_{a^2-1}(2x+1)$ 在区间 $(-\frac{1}{2},0)$ 内恒有 $f(x) > 0$,则实数 a 的取值范围是 $($ $)$.

A.
$$0 < a < 1$$

B.
$$a > 1$$

C.
$$-\sqrt{2} < a < -1$$
 或 $1 < a < \sqrt{2}$

D.
$$a < -\sqrt{2}$$
 或 $a > \sqrt{2}$

353. (005198) 若不等式
$$\log_a(x^2-2x+3) \le -1$$
 对一切实数都成立, 则 a 的取值范围是 ().

A.
$$a \geq 2$$

B.
$$1 < a \le 2$$

C.
$$\frac{1}{2} \le a < 1$$
 D. $0 < a \le \frac{1}{2}$

D.
$$0 < a \le \frac{1}{2}$$

- 354. (005199) 解关于 x 的不等式: $\log_{\frac{1}{2}}(3x-2) > \log_{\frac{1}{2}}(x+1)$.
- 355. (005200) 解关于 x 的不等式: $\log_{\frac{1}{3}}(x^2 x 2) > \log_{\frac{1}{3}}(2x^2 7x + 3)$.
- 356. (005201) 解关于 x 的不等式: $\log_x \frac{1}{2} < 1$.
- 357. (005202) 解关于 x 的不等式: $\lg(x \frac{1}{x}) < 0$.
- 358. (005203) 解关于 x 的不等式: $\log_2|x-\frac{1}{2}|<-1$.
- $359._{(005204)}$ 已知集合 $M=\{x|\log_3(x-m)>1\}$ 与 $P=\{x|3^{5-3x}\geq \frac{1}{3}\}$ 满足 $M\cap P\neq \varnothing,$ 求实数 m 的取值范围.
- 360. (005205) 解不等式: $\log_8(2-x) + \log_{64}(x+1) \ge \log_4 x$.
- 361. (005206) 解不等式: $\log_{0.5}(x+13) < \log_{0.5}(x^2-2x-15)$.
- 362. (005207) 解不等式: $\log_x(3\sqrt{x-1}-1) > 1$.
- 363. (005208) 解不等式: $\log_{x-1}(6-x-x^2) > 2$.
- 364. (005209) 解不等式: $\frac{1}{\log_2(x-1)} < \frac{1}{\log_2\sqrt{x+1}}$.
- 365. (005210) 解不等式: $\frac{\log_3(1-\frac{3x}{2})}{\log_9(2x)} \ge 1.$
- 366. (005211) 解不等式: $\log_{0.5}(2^x 1) \cdot \log_{0.5}(2^{x-1} \frac{1}{2}) \le 2$.
- 367. (005212) 解关于 x 的不等式, 其中 $a>0, a \neq 1$: $\log_a(x+1-a)>1$.
- 368. (005213) 解关于 x 的不等式, 其中 $a>0, \, a\neq 1$: $\log_a(1-\frac{1}{x})>1$.
- 369. (005214) 解关于 x 的不等式, 其中 $a>0, a\neq 1$: $\log_a(2x-1)>\log_a(x-1)$.
- 370. (005215) 解关于 x 的不等式, 其中 $a>0, \, a \neq 1$: $\log_a^2 x < \log_x^2 a$.
- 371. (005216) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $x^{\log_a x} > \frac{x^4 \cdot \sqrt{x}}{a^2}$.
- 372. (005217) 解关于 x 的不等式, 其中 $a>0, \, a\neq 1$: $\sqrt{\log_a x 1} > 3 \log_a x$.
- 373. (005218) 已知 x 满足不等式 $(\frac{1}{2})^{2x-4} (\frac{1}{2})^x (\frac{1}{2})^{x-2} + \frac{1}{4} \le 0$,且 $y = \log_{\frac{1}{a}}(a^2x) \cdot \log_{\frac{1}{a^2}}(ax)$ 的最大值是 0,最小值是 $-\frac{1}{8}$,求实数 a 的值.
- 374. (005219) 已知关于 x 的方程 $x^2-5x\log_a k+6\log_a^2 k=0$ 的两根中 (k>1), 仅较小的根在区间 (1,2) 内, 试用 a 表示 k 的取值范围 (a>0 且 $a\neq 1)$.
- 375. (005231) 解不等式: $\log_2|x-\frac{1}{2}|<-1$.
- 376. (005232) 若函数 $y = \log_a x$ 在 $x \in [2, +\infty)$ 上恒有 |y| > 1, 则实数 a 的取值范围是______

- 377. (005240) 解不等式: $\log_{\frac{1}{4}}|x| < \log_{\frac{1}{2}}|x+1|$.
- 378. (005241) 解不等式: $|\lg(1-x)| > |\lg(1+x)|$.
- 379. (005242) 解不等式: $|\log_{\frac{1}{3}} x| + |\log_{\frac{1}{3}} \frac{1}{3-x}| \ge 1$.
- 380. (005244) 已知 $|\lg x \lg y| \le 1$, 则 $\frac{x}{y} + \frac{y}{x}$ 的取值范围是______.
- 381. (005245) 解关于 x 的不等式: $|\log_{\sqrt{a}} x 2| |\log_a x 2| < 2$.
- 382. (005246) 解关于 x 的不等式: $|\log_a x| < |\log_a (ax^2)| 2$.
- 383. (005247) 解关于 x 的不等式: $|3^x 3| + 9^x 3 > 0$.
- 384. (005248) 解关于 x 的不等式: $|a^x 1| + |a^{2x} 3| > 2(a > 0)$.
- 385. (005253) 已知常数 $a \in (0,1)$, 对任意 x > 0, $f(\log_a x) = \frac{a(x^2 1)}{x(a^2 1)}$.
 - (1) 求 $f(x)(x \in \mathbf{R})$ 的表达式, 并判断它的单调性;
 - (2) 若 $n \ge 2$, $n \in \mathbb{N}$, 求证: f(n) > n.
- 386. (005302) 已知镭经过 100 年后剩下原来质量的 95.76%, 若质量为 l 克的镭经过 x 年后的剩余质量为 y 克, 则 y 与 x 之间的解析式是 ().

A.
$$y = (\frac{0.9576}{100})^x$$

B.
$$y = (0.9576)^{100x}$$

C.
$$y = (0.9576)^{\frac{x}{100}}$$

D.
$$y = 1 - (1 - 0.9576)^{\frac{x}{100}}$$

387. (005376) 若 $(\sqrt[n]{-3})^n$ 有意义, 则 n 一定是 ().

- B. 自然数
- C. 正奇数
- D. 整数
- 388. (005394) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $3x^{-\frac{3}{2}} =$ ______.
- 389. (005395) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $a^{rac{1}{2}} \cdot b^{-rac{1}{2}} =$ _______.
- 390. (005396) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $(a+b)^{\frac{1}{2}} \cdot (a-b)^{-\frac{4}{3}} =$ ______.
- 391. (005397) 将根式改写成分数指数幂的形式: $\sqrt[4]{a^3} =$ ______.
- 392. (005398) 将根式改写成分数指数幂的形式: $\sqrt[5]{b^8} =$ _____.
- 393. (005399) 将根式改写成分数指数幂的形式: $\sqrt[4]{x^2+y^2} =$ ______
- $394._{(005400)}$ 将根式改写成分数指数幂的形式: $\frac{\sqrt{x}}{\sqrt[3]{y^4}} =$ ______.
- 395. (005401) 将根式改写成分数指数幂的形式: $\sqrt{2\sqrt{2}} =$ _____.
- 396. (005402) 将根式改写成分数指数幂的形式: $-\frac{1}{\sqrt{27x}} =$ _____.
- $397.~_{\scriptscriptstyle{(005403)}}$ 将根式改写成分数指数幂的形式: $\sqrt{\frac{4}{3ab^3}}=$ ______.

398. (005404) 已知 m < n, 将根式改写成分数指数幂的形式: $2\sqrt[6]{(m-n)^{-2}} =$ _______

399. (005408) 判断命题: $a^x + a^y = a^{x+y}$ 是否正确, ______

 $400.~_{(005445)}$ 已知幂函数 f(x) 的图像经过点 $(2,\frac{\sqrt{2}}{2}),$ 则 f(4) 的值等于 ().

A. 16

- B. $\frac{1}{16}$

D. 2

 $401.~_{(005446)}$ 下列幂函数中, 定义域为 $\{x|x>0\}$ 的是 ().

- A. $y = x^{\frac{2}{3}}$
- B. $y = x^{\frac{3}{2}}$ C. $y = x^{-\frac{2}{3}}$

402. (005447) 幂函数 $y = x^n (n \in \mathbf{Z})$ 的图像一定不经过 ().

- A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

403. (005449) 幂函数 $y=x^m$ 和 $y=x^n$ 在第一象限内的图像 C_1 和 C_2 图像所示, 则 m,n 之间的关系是 (

- A. n < m < 0
- B. m < n < 0
- C. n > m > 0

 $404.~_{(005450)}$ 图中, C_1, C_2, C_3 为幂函数 $y = x^a$ 在第一象限的图像, 则解析式中的指数 α 依次可以取 ().

- A. $\frac{4}{3}$, -2, $\frac{3}{4}$
- B. $-2, \frac{3}{4}, \frac{4}{3}$
- C. $-2, \frac{4}{3}, \frac{3}{4}$
- D. $\frac{3}{4}, \frac{4}{3}, -2$

405. (005460) 若幂函数 $y = x^n$ 的图像在 0 < x < 1 时位于直线 y = x 的下方, 则 n 的取值范围是_

406. (005461) 若幂函数 $y=x^n$ 的图像在 0 < x < 1 时位于直线 y=x 的上方, 则 n 的取值范围是_

则 p,q 应满足的条件是____

- 408. (005464) 若实数 a 满足 $2.4^a > 2.5^a$, 求 a 的取值范围.
- 409. (005544) 若幂函数 f(x) 是奇函数,则 $f^{-1}(1) = _____, f^{-1}(-1) = ____.$
- 410. (005560) 求函数 $y = 9^x m \cdot 3^x + 1$ 的最小值.
- 411. (005561) 填写下表:

x	$f(x) = x^2$	f(x) - f(x-1)	$g(x) = 2^x$	g(x) - g(x-1)
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

- (1) 比较 $f(x) = x^2$ 与 $g(x) = 2^x$ 的函数值的大小;
- (2) 比较 $f(x) = x^2$ 与 $g(x) = 2^x$ 的函数值递增的快慢.
- 412. (005562) 已知函数 $f(x)=2x+1, g(x)=1.5^x, h(x)=x^{1.5},$ 试用数值计算比较三个函数在 $[0,+\infty)$ 上的函数值的大小、图像递增的快慢. 并说明在函数图像上的表现. 解列表并计算得:

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
0	1		1		0	
1	3	2	1.5	0.5	1	1
2	5	2	2.25	0.75	2.82842712	1.82842712
3	7	2	3.375	1.125	5.19615242	2.3677253
4	9	2	5.0625	1.6875	8	2.80384758
5	11	2	7.59375	2.53125	11.1803399	3.18033989
6	13	2	11.390625	3.796875	14.6969385	3.51659857
7	15	2	17.085938	5.6953125	18.5202592	3.82332072
8	17	2	25.628906	8.5429688	22.627417	4.10715782
9	19	2	38.443359	12.814453	27	4.372583
10	21	2	57.665039	19.22168	31.6227766	4.6227766

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
11	23	2	86.497559	28.83252	36.4828727	4.86009609
12	25	2	129.74634	43.248779	41.5692194	5.08634669
13	27	2	194.61951	64.873169	46.8721666	5.3029472
14	29	2	291.92926	97.309753	52.3832034	5.51103683
15	31	2	437.89389	145.96463	58.0947502	5.71154678
16	33	2	656.84084	218.94695	64	5.90524981
17	35	2	985.26125	328.42042	70.0927956	6.09279564
18	37	2	1477.8919	492.63063	76.3675324	6.27473673
19	39	2	2216.8378	738.94594	82.8190799	6.45154756
20	41	2	3325.2567	1108.4189	89.4427191	6.62363917
21	43	2	4987.8851	1662.6284	96.2340896	6.79137049
22	45	2	7481.8276	2493.9425	103.189147	6.95505712
23	47	2	11222.741	3740.9138	110.304125	7.11497832
24	49	2	16834.112	5611.3707	117.575508	7.27138262
25	51	2	25251.168	8417.0561	125	7.42449235
26	53	2	37876.752	12625.584	132.574507	7.57450735
27	55	2	56815.129	18938.376	140.296115	7.72160806
28	57	2	85222.693	28407.564	148.162073	7.86595801
29	59	2	127834.04	42611.346	156.169779	8.00770599
30	61	2	191751.06	63917.02	164.316767	8.14698784
			• • •			

得点 A, B, C, D 的横坐标分别约为 1.5, 4.8, 6.5, 7.4, 记作 x_A, x_B, x_C, x_D .

(1) 三个函数的函数值的大小情况如下:

① 当 $0 < x < x_A$ 时, f(x) > g(x) > h(x); ② 当 $x_A < x < x_B$ 时, f(x) > h(x) > g(x); ③ 由 $x_B < x < x_C$ 时, h(x) > f(x) > g(x); ④ 当 $x_C < x < x_D$ 时, h(x) > g(x) > f(x); ⑤ 当 $x_D < x$ 时, g(x) > h(x) > f(x); ⑥ 当 $x = x_A$ 时, f(x) > g(x) = h(x); ⑦ 当 $x = x_B$ 时, f(x) = g(x) 时, f(x) = g(x) < h(x); ⑨ 当 $x = x_D$ 时, f(x) < g(x) = g(x).

(2) 它们在同一个平面直角坐标系下的图像如图 14 所示.

由表格及图像可看出, 三个函数的函数值变化及相应增量规律为: 随着 x 的增大, 直线型均匀上升, 增量恒定; 指数型急剧上升, 在区间 $[0,+\infty)$ 上递增增量快速增大; 幂函数型虽上升较快, 但随着 x 的不断增大上升趋势 远不如指数型, 几乎微不足道, 其增量缓慢递增.

413. (005564) 下列函数中, 值域为 $(0,+\infty)$ 的函数是 (

A.
$$y = (\frac{1}{8})^{2-x}$$

B.
$$y = \sqrt{1 - 3^x}$$

A.
$$y = (\frac{1}{8})^{2-x}$$
 B. $y = \sqrt{1-3^x}$ C. $y = \sqrt{(\frac{1}{3})^x - 1}$ D. $y = 2^{\frac{1}{3-x}}$

D.
$$y = 2^{\frac{1}{3-x}}$$

414. (005566) 下列函数式中, 满足 f(x+1) = 2f(x) 的 f(x) 是 ().

A.
$$\frac{1}{2}(x+1)$$

B.
$$x + \frac{1}{4}$$

415. (005567) 若 $f(x) = \frac{e^x - e^{-x}}{2}$, $g(x) = \frac{e^x + e^{-x}}{2}$. 则下列关系式中不正确的是 ().

A.
$$[g(x)]^2 - [f(x)]^2 = 1$$

$$B. f(2x) = 2f(x) \cdot g(x)$$

C.
$$g(2x) = [f(x)]^2 + [g(x)]^2$$

D.
$$f(-x)g(x) = f(x)g(-x)$$

416. (005568) 若 a>b 且 $ab\neq 0$. 则在① $a^2>b^2$, ② $2^a>2^b$, ③ $\frac{1}{a}<\frac{1}{b}$, ④ $a^{\frac{1}{3}}>b^{\frac{1}{3}}$, ⑤ $(\frac{1}{3})^a<(\frac{1}{3})^b$ 这五个关系式 中, 恒成立的有(

417. (005569) 在同一平面直角坐标系中, 函数 f(x) = ax 与 $g(x) = a^x$ 的图像可能是 (

418. (005571) 若 f(x) 在 $(0,+\infty)$ 上是减函数, 而 $f(a^x)$ 在 $(-\infty,+\infty)$ 上是增函数, 则实数 a 的取值范围是 (

A.
$$(0, 1)$$

B.
$$(0,1) \cup (1,+\infty)$$
 C. $(0,+\infty)$

C.
$$(0,+\infty)$$

D.
$$(1, +\infty)$$

419.	(005573) 若函数 $f(x) = (a^2 - 1)$	$(1)^x$ 在 $(-\infty, +\infty)$ 上是减函	数,则 a 的取值范围是 ().
	A. $ a > 1$	B. $ a < \sqrt{2}$	C. $a > \sqrt{2}$	D. $1 < a < \sqrt{2}$
420.	(005574) 若函数 $f(x) = a^x - (a^x - a^x)$	$(b+1)(a>0$ 且 $a \neq 1)$ 的图1	象在第一、三、四象限, 则必	各有 ().
	А. $0 < a < 1$ <u>Н</u> $b > 0$	B. $0 < a < 1$ <u>H</u> , $b < 0$	C. $a > 1$ H. $b < 1$	D. $a > 1 \perp b > 0$
421.	(005577) 根据条件确定实数 x	的取值范围:		
	(1) $2^x > 0.5$:;			
	(2) $2^x < 1$:;			
	(3) $0.2^{2x-1} > \frac{1}{25}$:	_;		
	(4) $8 < (\frac{1}{2})^{2x+1}$:			
	(5) $(a^2 + a + 2)^x > (a^2 + a - a)^x$			
	(6) $\left(\frac{1}{2}\right)^{x^2+x-2} < 1$:			
	(0) (2)	·		
422.	(005579) 若函数 $f(x)$ 的定义场	成是 $(0,1)$, 则函数 $f(2^{-x})$ 的	定义域是	$(9^x + 2 \times 3^x)$ 的定义域
	是			
423.	(005586) 函数 $f(x) = a^{2x} - 3a^{2x}$	$x + 2(a > 0$ 且 $a \neq 1)$ 的最小	(值为	
424.	$_{\scriptscriptstyle{(005588)}}$ 函数 $f(x)=rac{1}{3^x-1}$ 拍	的值域是		
425.	$_{(005589)}$ 函数 $f(x)=rac{3^{x}}{3^{x}+1}$ 拍	的值域是		
426.	(005590) 若关于 x 的方程 5^x =	$=rac{a+3}{5-a}$ 有负根, 则实数 a 的	取值范围是	
427.	(005591) 若 $0 < a < 1, x > y >$	>1 , 则 a^x , x^a , a^y , y^a 从小到	大的排列顺序是	
428.	$_{(005592)}$ 若 $0.9 < a < 1$,则 a ,	a^a,a^{a^a} 从小到大的排列顺序	是	
429.	(005594) 若 $f(x) = a + \frac{1}{4^x + 1}$	是奇函数, 求常数 a 的值.		
430.	(005595) 若 $f(x) = x^2 (\frac{1}{a^x - 1})$	$+m)(a>0$ 且 $a\neq 1)$ 为奇图	函数, 求常数 m 的值.	
431.	(005596) 已知函数 $f(x) = (\frac{1}{2^x})^{-1}$	$\frac{1}{-1} + \frac{1}{2}x^3$.		
	(1) 求函数的定义域;			
	(2) 讨论 f(x) 的奇偶性;			

432. (005597) 已知
$$f(x) = \frac{a^x - 1}{a^x + 1}(a > 1)$$
.

- (1) 判断函数 f(x) 的奇偶性;
- (2) 求函数 f(x) 的值域;

(3) 求证: f(x) > 0.

(3) 求证: f(x) 在区间 $(-\infty, +\infty)$ 上是增函数.

- 433. (005598) 若 $0 \le x \le 2$, 求函数 $y = 4^{x-\frac{1}{2}} 3 \cdot 2^x + 5$ 的最大值和最小值.
- 434. (005599) 若函数 $f(x) = a^{2x} + 2a^x 1(a > 0$ 且 $a \neq 1$) 在 [-1,1] 上的最大值为 14, 求实数 a 的值.
- 435. (005600) 已知函数 $f(x) = \frac{a}{a^2-2}(a^x-a^{-x})(a>0$ 且 $a\neq 1$)在 $(-\infty,+\infty)$ 上是增函数, 求实数 a 的取值范围.
- 436. (005602) 已知集合 $M = \{x | (x+1)^2 \le 1\}, P = \{y | y = 4^x a \cdot 2^{x+1} + 1, x \in M, \frac{3}{4} < a \le 1\},$ 且全集 $U = \mathbf{R}$, 求 $\mathcal{C}_U(M \cup P)$.
- 437. (005603) 求方程 $x^{\frac{1}{3}} + 2^x = 0$ 的实根个数.
- 438. (005604) 求关于 x 的方程 $a^x + 1 = -x^2 + 2x + 2a(a > 0$ 且 $a \neq 1$) 的实数解的个数.
- 439. (005605) 在同一个平面直角坐标系中, 作出 t(x) = 0.5x 与 $g(x) = 0.2 \times 2^x$ 的图像, 并比较它们的增长情况.
- 440. (005606) 某地区不同身高的未成年男性的体重平均值如下表 (身高: cm; 体重: kg):

身高	60	70	80	90	100	110
体重	6.13	7.90	9.99	12.15	15.02	17.05
身高	120	130	140	150	160	170
体重	20.92	26.86	31.11	38.85	47.25	55.05

为了揭示未成年男性的身高与体重的规律, 甲选择了模型 $y = ax^2 + bx + c(a > 0)$, 乙选择了模型 $y = ba^x (a > 1)$, 其中 y 表示体重, x 表示身高. 你认为谁选择的模型较好?

441. (005607) 用计算器计算并填写下表:

x	$f(x) = x^{\frac{1}{2}}$	$g(x) = x^{0.6}$	$h(x) = 2.1^x$	$s(x) = 2.2^x$
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

从表中变化的现象可以归纳出哪些函数递增的规律?

(1) 幂函数 f(x) 与 g(x) 之间比较得出的规律; (2) 指数函数 h(x) 与 s(x) 之间比较得出的规律; (3) 幂函数 $f(x) = x^{\frac{1}{2}}$ 与指数函数 h(x) 之间比较得出的规律

- 442. (005608) 求 log₉ 27 的值.
- 443. (005609) 设 $3^a = 4^b = 36$, 求 $\frac{2}{a} + \frac{1}{b}$ 的值.
- 444. (005610) 已知 $x=a^{\frac{1}{1-\log_a y}},\,y=a^{\frac{1}{1-\log_a z}}$ 求证: $z=a^{\frac{1}{1-\log_a x}}.$
- 445. (005611) 已知 $\log_{12} 27 = a$, 求 $\log_6 16$.
- 446. (005612) 若 $a=b^2(b>0,\,b\neq 1)$, 则有 ().
 - A. $\log_2 a = b$
- B. $\log_2 b = a$
- C. $\log_a b = 2$
- D. $\log_b a = 2$

- 447. (005613) 若 $\log_x \sqrt[7]{y} = z$, 则 x, y, z 之间满足 ().
 - A. $y^7 = x^z$
- B. $y = x^{7z}$
- C. $y = 7x^z$
- D. $y = z^{7x}$

- 448. (005614)2log₄ ³ 的值等于 ().
 - A. 3

B. $\sqrt{3}$

C. $\frac{\sqrt{3}}{3}$

D. $\frac{1}{3}$

- 449. $(005615)\log_a b \cdot \log_3 a = 5$, M b = ().
 - A. a^3

B. a^{5}

C. 3^{5}

- D. 5^{3}
- 450. (005616) 若点 $P(\lg a, \lg b)$ 关于 x 轴的对称点的坐标是 (0, -1), 则 a 和 b 的值是 ().
 - A. a = 1, b = 10
- B. $a = 1, b = \frac{1}{10}$
- C. a = 10, b = 1
- D. $a = \frac{1}{10}, b = 1$
- 451. (005617) 给出下列四个式子 (已知 $a>0, a\neq 1, x>y>0$): ① $\log_a x \cdot \log_a y = \log_a (x+y)$; ② $\log_a x + \log_a y = \log_a (x+y)$; ③ $\log_a \frac{x}{y} = \log_a (x-y)$; ④ $\log_a (x-y) = \frac{\log_a x}{\log_a y}$. 其中正确的有 ().
 - A. 0 个

B. 1 个

C. 2 个

D. 3 个

- 452. (005618) 若 m > 0, 且 $10^x = \lg(10m) + \lg \frac{1}{m}$, 则 x 的值为 ().
 - A. 2

B. 1

C. 0

D. -1

- 453. (005619) 若 lg x = a, lg y = b, 则 lg $\sqrt{x} \lg(\frac{y}{10})^2$ 的值等于 ().
 - A. $\frac{1}{2}a 2b 2$
- B. $\frac{1}{2}a 2b + 2$
- C. $\frac{1}{2}a 2b 1$
- D. $\frac{1}{2}a 2b + 1$
- 454. (005620) 如果方程 $\lg^2 x + (\lg 2 + \lg 3) \lg x + \lg 2 \cdot \lg 3 = 0$ 的两个根为 x_1, x_2 , 那么 $x_1 \cdot x_2$ 的值为 ().
 - A. $\lg 2 \cdot \lg 3$
- $B. \lg 2 + \lg 3$
- C. $\frac{1}{6}$

- D. -6
- 455. (005621) 若 $x=t^{\frac{1}{t-1}},\,y=t^{\frac{t}{t-1}}(t>0,\,t\neq1),$ 则 x,y 之间的关系是 ().
 - A. $y^x = x^{\frac{1}{y}}$
- B. $y^{\frac{1}{x}} = x^y$
- C. $y^x = x^y$
- $D. x^x = y^y$

- 456. (005622) 若 $\log_8 x = -\frac{2}{3}$, 则 x =_____.
- 457. $_{(005623)}$ 若 $\log_x 27 = \frac{3}{4},$ 则 x =_____.

- 458. (005624) 若 $\log_2(\log_5 x) = 0$, 则 x =_____.
- 459. (005625) 若 $\log_2(\lg x) = 1$, 则 x =_____.
- 460. (005626) 若 $\log_2[\log_3(\log_5 x)] = 0$, 则 x =_____.
- 461. (005627) 若 $\log_2[\log_3(\log_4 x)] = \log_3[\log_4(\log_2 y)] = \log_4[\log_2(\log_3 z)] = 0$. 则 x + y + z =_____.
- 462. (005628) 计算: $2^{\log_4(2-\sqrt{3})^2} + 3^{\log_9(2+\sqrt{3})^2} =$ _____.
- 463. (005629) 计算: $2^{1+\frac{1}{2}\log_2 5} =$ _____.
- 464. (005630) 计算: 9^{log₃ 2} =_____.
- 465. (005631) 计算: $5^{3-2\log_{25}125} =$ _____.
- 466. (005632) 计算: $\log_{(2-\sqrt{3})}(7+4\sqrt{3}) =$ _____.
- 467. (005633) 计算: $\log_6(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})=$ _____.
- 468. (005634) 计算: $(2+\sqrt{3})^{-1} \log_{(2+\sqrt{3})}(7+4\sqrt{3}) =$ _____.
- 469. (005635) 计算: $-2^2 \div (-\frac{27}{8})^{-\frac{1}{3}} (0.7)^{\lg 1} + \log_3 \frac{1}{4} + \log_3 12 = \underline{\hspace{1cm}}$.
- 470. (005636) 若 $3^x = 12^y = 8$,则 $\frac{1}{x} \frac{1}{y} =$ _____.
- 471. (005637) 若 $2^x = 7^y = 196$, 则 $\frac{1}{x} + \frac{1}{y} =$ _____.
- 472. (005639) 已知正数 a,b 满足 $a^2+b^2=7ab$, 求证: $\log_m \frac{a+b}{3}=\frac{1}{2}(\log_m a+\log_m b)(m>0,\ m\neq 1)$.
- 473. (005640) 已知 $\log_a(x^2+1) + \log_a(y^2+4) = \log_a 8 + \log_a x + \log_a y (a>0,\ a\neq 1),$ 求 $\log_8(xy)$ 的值.
- 474. (005641) 已知只有一个 x 的值满足方程 $(1 \lg^2 a)x^2 + (1 \lg a)x + 2 = 0$, 求实数 a 的值.
- 475. (005642) 设方程 $x^2 \sqrt{10}x + 2 = 0$ 的两个根为 $\alpha, \beta,$ 求 $\log_4 \frac{\alpha^2 \alpha\beta + \beta^2}{(\alpha \beta)^2}$ 的值.
- 476. (005643) 已知 $\lg a$ 和 $\lg b$ 是关于 x 的方程 $x^2 x + m = 0$ 的两个根, 且关于 x 的方程 $x^2 (\lg a)x (1 + \lg a) = 0$ 有两个相等的实数根, 求实数 a, b 和 m 的值.
- 477. (005644) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值为 3, 求实数 a 的值.
- 478. (005645) 已知函数 $f(x) = x^2 + (\lg a + 2)x + \lg b$, 满足 f(-1) = -2, 且对一切实数 x 都有 $f(x) \ge 2x$, 求实数 a, b 的值.
- 479. (005646) 已知 $2 \lg \frac{x-y}{2} = \lg x + \lg y$, 求 $\frac{x}{y}$ 的值.
- 480. (005647) 设 A > B > 0, $A^2 + B^2 = 6AB$, 求证: $\log_a \frac{A B}{2} = \frac{1}{2} (\log_a A + \log_a B) (a > 0$ 且 $a \neq 1$).
- 481. (005648) 已知集合 $M = \{x, xy, \lg(xy)\}, P = \{0, |x|, y\},$ 且满足 M = P, 求实数 x, y 的值.

- 482. (005649) 已知 $12^x = 3$, $12^y = 2$, 求 $8^{\frac{1-2x}{1-x+y}}$ 的值.
- 483. (005650) 已知不相等的两个正数 a, b 满足 $a^{\lg ax} = b^{\lg bx}$, 求 $(ab)^{\lg abx}$ 的值.
- 484. (005651) 已知 x,y,z>0, 且 $\lg x + \lg y + \lg z = 0$, 求 $x^{\frac{1}{\lg y} + \frac{1}{\lg z}} \cdot y^{\frac{1}{\lg z} + \frac{1}{\lg x}} \cdot z^{\frac{1}{\lg x} + \frac{1}{\lg y}}$ 的信.
- 485. (005652) 求 $y^{\lg 20} \cdot (\frac{1}{2})^{\lg 0.7}$ 的值.
- 486. (005653) 化简 $\frac{\log_5 8}{\log_2 2}$ 可得 (
 - A. log₅ 4
- B. $3\log_5 2$
- C. $\log_3 6$
- D. 3

- 487. $(005654) \frac{\log_8 9}{\log_2 3}$ 的值是 ().

D. 2

- 488. (005655) 若 $\log_a b = \log_b a (a \neq b, \, a \neq 1, \, b \neq 1)$, 则 ab 等于 ().
 - A. 1

C. $\frac{1}{4}$

D. 4

- 489. $\frac{1}{\log_{\frac{1}{2}}\frac{1}{3}} + \frac{1}{\log_{\frac{1}{5}}\frac{1}{3}}$ 的值所属区间是 ().
 - A. (-2, -1)

- D. (2,3)

- 490. (005657) 若 $\log_3 7 \cdot \log_2 9 \cdot \log_{49} m = \log_4 \frac{1}{2}$,则 m 的值等于 ().

B. $\frac{\sqrt{2}}{2}$

- D. 4
- 491. (005658) 若 $x \neq 1$, 则与 $\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}$ 相等的式子是 ().
 - A. $\frac{1}{\log_{e_0} x}$
- B. $\frac{1}{\log_3 x \cdot \log_4 x \cdot \log_5 x}$ C. $\frac{1}{\log_x 60}$
- D. $\frac{12}{\log_3 x + \log_4 x + \log_5 x}$

- 492. (005659) 若 $\log_8 3 = p$, $\log_3 5 = q$, 则 $\lg 5$ (用 p,q 表示) 等于 (
 - A. $\frac{3p+q}{5}$
- B. $\frac{1+3pq}{p+q}$
- C. $\frac{3pq}{1+3pq}$
- D. $p^2 + q^2$
- 493. (005660) 已知 x,y,z 都是大于 1 的正数, m>0, 且 $\log_x m=24$, $\log_y m=40$, $\log_{xyz} m=12$, 则 $\log_z m$ 的值为
 - A. $\frac{1}{60}$

B. 60

C. $\frac{200}{3}$

D. $\frac{3}{20}$

- 494. (005661) 计算: log₆₄ 32 =_____.
- 495. (005662) 计算: $\log_{\frac{1}{a}}b + \log_a b =$ _____.
- 496. (005663) 计算: $\log_6 25 \cdot \log_5 3 \cdot \log_9 6 =$ _____.
- 497. (005664) 计算: $(\log_2 5 + \log_4 0.2)(\log_5 2 + \log_{25} 0.5) =$ ____

- 498. (005665) 计算: $\log_2 \frac{1}{25} \cdot \log_3 \frac{1}{8} \cdot \log_5 \frac{1}{9} =$ ______.
- 499. (005666) 计算: $a^{\frac{\log_b(\log_b a)}{\log_b a}} =$ _____.
- 500. (005667) 计算: $a^{\frac{\log_m a \log_m b}{\log_m a}} =$ ______.
- 501. (005668) 已知 $n \in \mathbb{N}^*$, 计算: $(\log_2 3 + \log_4 9 + \log_8 27 + \dots + \log_{2^n} 3^n) \cdot \log_9 \sqrt[n]{32} = \underline{\hspace{1cm}}$.
- 502. (005669) 已知 $\log_a x = 2$, $\log_b x = 1$, $\log_c x = 4$, 则 $\log_{abc} x =$ _____.
- 503. (005670) 已知 $m = \log_2 5$,则 $2^m m \lg 2 4 =$ _____.
- 504. (005671) 已知 $\lg(3x^3) \lg(3y^3) = 9$,则 $\frac{x}{y} =$ _____.
- 505. (005672) 记 $\log_8 27 = m$, 用 m 表示 $\log_6 16$.
- 506. (005673) 已知 $\log_3 7 = a$, $\log_3 4 = b$, 求 $\log_{12} 21$.
- 507. $\log_{15} 3 = a$, $\log_{3} 5 = b$, 求 $\log_{15} 20$.
- 508. (005675) 已知 a > b > 1, $\log_a b + \log_b a = \frac{10}{3}$, 求 $\log_a b \log_b a$ 的值.
- 509. (005676) 已知 $\log_{2a} a = m$, $\log_{3a} 2a = n$, 求证: $2^{1-mn} = 3^{n-mn}$.
- 510. (005677) 已知关于 x 的方程 $x^2 (\log_2 b + \log_a 2)x + \log_a b = 0$ 的两根为 -1 和 2, 求实数 a, b 的值.
- 511. (005678) 已知 $a^2+b^2=c^2$,求证 $\log_{(c+b)}a+\log_{(c-b)}a=2\log_{(c+b)}a\cdot\log_{(c-b)}a$.
- 512. (005679) 已知正实数 x, y, z 满足 $3^x = 4^y = 6^z$.
 - (1) $\# \text{iff } \frac{1}{z} \frac{1}{x} = \frac{1}{2y};$
 - (2) 比较 3x, 4y, 6z 的大小.
- 513. (005680) 求函数 $y = \frac{\sqrt{\log_{0.8} x 1}}{2x 1}$ 的定义域.
- 514. (005681) 解不等式 $\log_{0.2}(x^2 + 2x 3) > \log_{0.2}(3x + 1)$.
- 515. (005682) 将 $\log_{0.7} 0.8$, $\log_{1.1} 0.9$, $1.1^{0.9}$ 由小到大排列.
- 516. (005683) 若 0 < x < 1, a > 0, $a \ne 1$, 比较 $p = |\log_a(1-x)|$ 和 $q = |\log_a(1+x)|$ 的大小.
- 517. (005684) 求函数 $f(x) = \log_{0.2}(x-1)(x+2)$ 为增函数的区间.
- 518. (005685) 求函数 $f(x) = \log_{\frac{1}{2}}(x^2 6x + 17)$ 的值域.
- 519. (005686) 已知关于 x 的方程 $ax^2 4ax + 1 = 0$ 的两个实数根 α, β 满足不等式 $|\lg \alpha \lg \beta| \le 1$, 求实数 a 的取值范围.

- 520. (005687) 与函数 y = x 为同一个函数的是 ().
 - A. $y = \sqrt{x^2}$

B. $y = \frac{x^2}{x}$

С. $y = a^{\log_a x} (a > 0 \text{ Д. } a \neq 1)$

- D. $y = \log_a a^x (a > 0$ Д. $a \neq 1)$
- 521. (005688) 若函数 y = f(x) 的反函数是 $y = \lg(x-1) + 3(x > 1)$, 则 f(x) 等于 ().
 - A. $10^{x+3} + 1$
- B. $10^{x-3} 1$
- C. $10^{x+3} 1$
- D. $10^{x-3} + 1$
- 522. (005689) 若函数 $f(x) = \log_2 x + 3(x \ge 1)$, 则其反函数 $f^{-1}(x)$ 的定义域是 ().
 - A. **R**

- B. $\{x | x \ge 1\}$
- C. $\{x | 0 < x < 1\}$
- D. $\{x | x \ge 3\}$

523. (005690) 图中图像所对应的函数可能是 ().

- A. $y = 2^x$
- B. $y = 2^x$ 的反函数
- C. $y = 2^{-x}$
- D. $y = 2^{-x}$ 的反函数
- 524. (005691) 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的偶函数,且它在 $[0, +\infty)$ 上是增函数,记 $a = f(-\log_{\sqrt{2}}\sqrt{3}), b = f(-\log_{\sqrt{3}}\sqrt{2}), c = f(-2),$ 则 a, b, c 的大小关系是 ().
 - A. a > b > c
- B. b > c > a
- C. c > a > b
- D. c > b > a

525. (005692) 下列函数图像中, 不正确的是 ().

- A. $y = \log_{\frac{1}{2}} x^2$
- B. $y = \log_{\frac{1}{3}}(-x)$
- C. $y = |\log_3 x|$
- D. $y = |x^{-\frac{1}{3}}|$
- 526. (005693) 在同一平面直角坐标系中画出函数 y=x+a 与 $y=\log_a x$ 的图像, 可能是 ()

B. 1

y

527. (005694) 函数 y = f(x) 的图像如图所示, 则 $y = \log_{0.7} f(x)$ 的示意图是 ().

528. (005695) 由关系式 $\log_x y = 3$ 所确定的函数 y = f(x) 的图像是 ().

- 529. (005696) 若函数 $f(x) = \frac{1-2^x}{1+2^x}$, 则 $f^{-1}(\frac{3}{5})$ 等于 ().
 - A. 3

B. 2

C. 1

D. -2

- 530. (005697) 函数 $y = \log_{\frac{1}{3}}(x^2 3x + 4)$ 的定义域为_____.
- 531. (005698) 函数 $y = \frac{\sqrt{x^2 4}}{\lg(x^2 + 2x 3)}$ 的定义域为_____.
- 532. (005699) 函数 $y = \log_{(2x-1)}(32-4^x)$ 的定义域为_____.
- 533. (005700) 函数 $y = \log_{\frac{1}{3}}(x^2 4x + 7)$ 的值域为______.
- 534. (005701) 函数 $y = \log_{\frac{1}{2}} \frac{1}{x^2 2x + 5}$ 的值域为_____.
- 535. (005702) 函数 $y = \log_{\frac{1}{2}} \sqrt{3 2x x^2}$ 的值域为______.
- 536. (005703) 函数 $y = \log_{\frac{1}{3}}(x^2 5x + 6)$ 为减函数的区间是_____
- 537. (005704) 函数 $y = \lg(12 4x x^2)$ 为增函数的区间是_____.
- 538. (005705) 函数 $y = -\log_{\frac{1}{2}}(-x)$ 为减函数的区间是_____.

- 539. (005706) 若函数 $y = \log_a(1-x)$ 在 [0,1) 上是增函数, 则 a 的取值范围是______
- 540. (005707) 函数 $y = \log_{\frac{1}{2}}^2 x \log_{\frac{1}{2}} x + 1$ 为增函数的区间是______.
- 541. (005709) 函数 $y = 1 + \lg(x+2)(x \ge 8)$ 的反函数是_____.
- 542. (005710) 若 $f(x) = \frac{10^x + 1}{10^x 1}(x > 1)$, 则 $f^{-1}(\frac{101}{99}) = \underline{\hspace{1cm}}$
- 543. (005711) 若 $f(x) = \frac{\lg x 1}{\lg x + 1} (x > 1 且 x \neq \frac{1}{10}), 则 f^{-1}(\frac{1}{10}) = _____.$
- 544. (005712) 若函数 $f(x) = a^x k$ 的图像过点 (1,3), 其反函数 $f^{-1}(x)$ 的图像过点 (2,0), 则 f(x) 的表达式
- 545. (005713) 函数 $y = \lg \frac{1-x}{1+x}$ (
 - A. 是奇函数, 且在 (-1,1) 是增函数
- B. 是奇函数, 且在 (-1,1) 上是减函数
- C. 是偶函数, 且在 (-1,1) 是增函数
- D. 是偶函数, 且在 (-1,1) 上是减函数
- 546. (005714) 函数 $f(x) = \ln(e^x + 1) \frac{x}{2}$ ().
 - A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 又是偶函数

- D. 没有奇偶性
- 547. (005715) 求函数 $f(x) = \lg(1+x) + \lg(1-x) \left(-\frac{1}{2} < x < 0\right)$ 的反函数.
- 548. (005716) 已知 $f(x) = \frac{a^x 1}{a^x + 1} (a > 1)$.
 - (1) 求 f(x) 的值域;
 - (2) 求证: f(x) 在 R 上是增函数;
 - (3) 求 f(x) 的反函数.
- 549. (005717) 已知 $f(\log_a x) = \frac{a(x^2-1)}{x(a^2-1)}(x>0, 0< a<1)$, 求证: 函数 f(x) 在 $(-\infty, +\infty)$ 上是增函数.
- 550. (005718) 若函数 $f(x) = \log_a |x+1|$ 在 (-1,0) 上有 f(x) > 0, 则 f(x)(
 - A. 在 $(-\infty,0)$ 上是增函数

B. 在 $(-\infty,0)$ 是减函数

C. 在 $(-\infty, -1)$ 上是增函数

- D. 在 $(-\infty, -1)$ 是减函数
- 551. (005719) 若 0 < b < 1, $\log_a b < 1$ 则 ().
 - A. 0 < a < b
- B. 0 < b < a
- C. 0 < b < a < 1 D. 0 < a < b **ಪ** a > 1
- 552. (005720) 若函数 $f(x) = |\log_a x|$, 其中 0 < a < 1, 则下列各式中成立的是 ().

- A. $f(\frac{1}{3}) > f(2) > f(\frac{1}{4})$ B. $f(\frac{1}{4}) > f(\frac{1}{3}) > f(2)$ C. $f(2) > f(\frac{1}{3}) > f(\frac{1}{4})$ D. $f(\frac{1}{4}) > f(2) > f(\frac{1}{3})$
- 553. (005721) 若 1 < x < 2, 则下列各式正确的是 ().
 - A. $2^x > \log_{\frac{1}{2}} x > \sqrt[3]{x}$ B. $2^x > \sqrt[3]{x} > \log_{\frac{1}{2}} x$ C. $\sqrt[3]{x} > 2^x > \log_{\frac{1}{2}} x$ D. $\log_{\frac{1}{2}} > x\sqrt[3]{x} > 2^x$

- 554. (005722) 若函数 $f(x) = \log_a x$ 在 $x \in [3, +\infty)$ 上恒有 |f(x)| > 1, 则实数 a 的取值范围是 (
 - A. $0 < a < \frac{1}{3}$ 或 1 < a < 3

B. $0 < a < \frac{1}{3}$ 或 a > 3

C. $\frac{1}{3} < a < 3$ H. $a \neq 1$

- D. $\frac{1}{2} < a < 1$ 或 a > 3
- 555. (005723) 若 $a > a^2 > b > 0$,并记 $p = \log_a b$, $q = \log_b a$, $r = \log_a \frac{a}{b}$, $s = \log_b \frac{b}{a}$,则 p, q, r, s 的大小关系是
 - A. r < q < p < s
- B. r C. <math>r D. <math>r < q < s < p

- 556. (005724) 若 $\log_a \frac{1}{3} > \log_b \frac{1}{3} > 0$,则 a,b 的关系是 ().
 - A. 1 < b < a
- B. 1 < a < b
- C. 0 < a < b < 1 D. 0 < b < a < 1
- 557. (005725) 将下列各数按从小到大排列: $a = |\log_{\frac{1}{3}} \frac{1}{4}|, b = |\log_{\frac{1}{2}} \frac{3}{2}|, c = |\log_{2} 5|$:______.
- 558. (005726) 将下列各数按从小到大排列: $\log_{0.1} 0.4$, $\log_{\frac{1}{2}} 0.4$, $\log_{3} 0.4$, $\log 0.4$:_____.
- 559. (005727) 将下列各数按从小到大排列: $\frac{3}{2}$, $\log_2 3$:_____.
- 560. (005728) 将下列各数按从小到大排列: $\frac{2}{\lg 2}, \frac{3}{\lg 3}, \frac{5}{\lg 5}$:______.
- 561. (005729) 将下列各数按从小到大排列: $\lg^2 x$, $\lg x^2$, $\lg(\lg x)$, 其中 1 < x < 10:______.
- 562. (005730) 若 $\log_a \frac{4}{5} < 1(a > 0, a \neq 1)$, 则 a 的取值范围是______.
- 563. (005731) 若 $0 < a < 1, 0 < b < 1, 且 <math>a^{\log_b(x-3)} < 1, 则 x$ 的取值范围是
- 564. (005732) 求函数 $y = (\log_{\frac{1}{4}} x)^2 \log_{\frac{1}{4}} x^2 + 5(2 \le x \le 4)$ 的值域.
- 565. (005733) 若 $-3 \le \log_{\frac{1}{2}} x \le -\frac{1}{2}$, 求 $y = (\log_2 \frac{x}{2})(\log_2 \frac{x}{4})$ 的最大 (小) 值及其相应的 x 值,
- 566. (005734) 已知 a, b 是两个不相等的正数, 且 $\log_m \frac{x}{a} \cdot \log_m \frac{x}{b}$ 的最小值是 $-\frac{1}{4} (m > 0$ 且 $m \neq 1)$, 求 m 的值.
- 567. (005735) 已知实数 x, y 满足 $(\log_4 y)^2 = \log_{\frac{1}{2}} x$, 求 $u = \frac{x}{y}$ 的最大值及其相应的 x, y 的值.
- 568. (005736) 已知抛物线 $y = x^2 \log_2 a + 2x \log_a 2 + 8$ 位于 x 轴的上方, 求实数 a 的取值范围.
- 569. (005737) 已知函数 $f(x) = (\log_a b)x^2 + 2(\log_b a)x + 8$ 的图像在 x 轴的上方, 求 a, b 的取值范围.
- 570. (005738) 若只有一个 x 的值满足方程 $(1 \lg^2 a)x^2 + (1 \lg a)x + 2 = 0$, 求实数 a 的值.
- 571. (005739) 若关于 x 的方程 $x^2 + 2(\log_3 a + 1)x \log_9 a = 0$ 有两个相等实根, 求实数 a 的值.
- 572. (005740) 若二次函数 $f(x) = (\lg a)x^2 + 2x + 4\lg a$ 有最小值 -3, 求实数 a 的值.
- 573. (005741) 已知 $f(x) = \log_a |\log_a x| (0 < a < 1)$.
 - (1) 解不等式: f(x) > 0;
 - (2) 判断 f(x) 在 $(1,+\infty)$ 上的单调性, 并证明之.

- 574. (005742) 实数 a 为何值时, 函数 $f(x) = 2^x 2^{-x} \lg a$ 为奇函数?
- 575. (005743) 已知函数 $f(x) = \sqrt{\log_a x 1} (a > 0$ 且 $a \neq 1$).
 - (1) 求 f(x) 的定义域;
 - (2) 当 a > 1 时, 求证: f(x) 在 $[a, +\infty)$ 上是增函数.
- 576. (005744) 已知函数 $f(x) = 1 + \log_x 3$, $g(x) = 2\log_x 2(x > 0$, 且 $x \neq 1$), 比较 f(x) 与 g(x) 的大小.
- 577. (005745) 当 a > 1 时, 比较 $\log_b a$ 与 $\log_{2b} a$ 的大小.
- 578. (005746) 已知 $\log_m a > \log_n a(a > 1)$, 讨论 m = n 的大小关系.
- 579. (005747) 已知 $\log_{1+a}(1-a) < 1$, 求实数 a 的取值范围.
- 580. (005748) 已知 $|\lg(1-a)| > |\lg(1+a)|$, 求实数 a 的取值范围.
- 581. (005749) 已知函数 $f(x) = \log_{\frac{1}{2}}(x^2 2x)$.
 - (1) 求它的单调区间;
 - (2) 求 f(x) 为增函数时的反函数.
- 582. (005750) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a>0, b>0$ 且 $a\neq 1$).
 - (1) 求 f(x) 的定义域;
 - (2) 讨论 f(x) 的奇偶性;
 - (3) 讨论 f(x) 的单调性;
 - (4) 求 f(x) 的反函数 $f^{-1}(x)$.
- 583. (005751) 已知函数 $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a>1)$.
 - (1) 是否存在一个实数 a 使得函数 y=f(x) 的图像关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实数 a; 若不存在, 说明理由;
 - (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值.
- 584. (005752) 解方程 $9^{2x-1} = 4^x$.
- 585. (005753) 解方程 $(\frac{1}{27})^x = 9^{1-x}$.
- 586. (005754) 解方程 $9^x 2 \cdot 3^{x+1} 27 = 0$.
- 587. (005755) 解方程 $9^x + 4^x = \frac{5}{2} \times 6^x$.
- 588. (005756) 解方程 $\log_3(3^x-1) \cdot \log_3(3^{x-1}-\frac{1}{3}) = 2.$
- 589. (005757) 已知关于 x 的方程 $\lg(kx) = 2\lg(x+1)$ 有且只有一个实数解, 求实数 k 的取值范围.
- 590. (005758) 若 $2^{2x} + 4 = 5 \times 2^x$, 则 $x^2 + 1$ 等于 ().
 - A. 1 B. 5 C. 5 或 1 D. 3 或 2

- 591. (005759) 方程 $2^{|x+1|} = 3$ 的解集是 ().
 - A. $\{\log_{\frac{1}{2}}, \frac{2}{2}\}$
- B. $\{\log_2 \frac{2}{2}\}$
- C. $\{\log_2 \frac{3}{2}, \log_2 \frac{1}{6}\}$ D. $\{\log_2 \frac{1}{3}, -\log_{\frac{1}{2}} 6\}$
- 592. (005760) 方程 $2x^2 + 2^x 3 = 0$ 的实数根有 ().
 - A. 0 个
- B. 1 个

C. 2 个

D. 无数个

- 593. (005762) 方程 $6 \cdot 7^{|x|} 7^{-x} = 1$ 的解集是 ().
 - A. $\{\log_7 \frac{1}{2}\}$
- B. $\{\log_7 5\}$
- C. $\{\log_7 \frac{1}{2}, \log_7 5\}$
- D. \emptyset
- 594. (005763) 若对于任意实数 p, 函数 $y = (p-1)2^x \frac{p}{2}$ 的图像恒过一定点, 则这个点的坐标是 ().
 - A. $(1, -\frac{1}{2})$
- B. (0, -1)
- C. $\left(-1, -\frac{1}{2}\right)$
 - D. $(-2, -\frac{1}{4})$

- 595. (005765) 方程 $3^{x^2} = (3^x)^2$ 的解为_____.
- 596. (005766) 方程 $3^x = 2^x$ 的解为 .
- 597. (005768) 方程 $5^{x-1} \cdot 10^{3x} = 8^x$ 的解为_____.
- 598. (005770) 方程 $2 \cdot 4^x 7 \cdot 2^x + 3 = 0$ 的解为
- 599. (005771) 方程 $9^x 3^{x+2} 10 = 0$ 的解为
- 600. (005773) 已知 a > 0 且 $a \neq 1$, 则方程 $a(a^x + 1) = a^{-x} + 1$ 的解为_
- 601. (005774) 解方程: $3 \times 16^x + 36^x = 2 \times 81^x$.
- 602. (005775) 解方程: $(\sqrt{5+2\sqrt{6}})^x + (\sqrt{5-2\sqrt{6}})^x = 10.$
- 603. (005779) 解关于 x 的方程 $\frac{a^x-a^{-x}}{a^x+a^{-x}}=b$ (实数 $a>0,\,a\neq 1,\,b\in\mathbf{R}$).
- 604. (005780) 若关于 x 的指数方程 $9^x + (a+4)3^x + 4 = 0$ 有实数解, 试求实数 a 的取值范围.
- 605. (005782) 方程 $\lg(x-1)^2 = 2$ 的解集是 (
 - A. {11}

- B. {-9}
- C. $\{11, -9\}$
- D. $\{-11, 9\}$
- 606. (005783) 关于 x 的方程 $\log_a x^2 = \log_a (\sqrt{a+1} \sqrt{a}) \log_a (\sqrt{a+1} + \sqrt{a}) (a > 0$ 且 $a \neq 1$) 的解为 (
 - A. $\sqrt{a+1} + \sqrt{a}$

- B. $\sqrt{a+1} \sqrt{a}$ C. $\pm (\sqrt{a+1} + \sqrt{a})$ D. $\pm (\sqrt{a+1} \sqrt{a})$
- 607. (005784) 若 $f(x) = 1 + \lg x$, $g(x) = x^2$, 则使 2f[g(x)] = g[f(x)] 成立的 x 值等于 ().
 - A. $10^{1+\sqrt{2}}$ 或 $10^{1-\sqrt{2}}$ B. $1+\sqrt{2}$ 或 $1-\sqrt{2}$ C. $10^{1+\sqrt{3}}$ 或 $10^{1-\sqrt{3}}$ D. $1+\sqrt{3}$ 或 $1-\sqrt{3}$

- 608. (005785) 方程 $\log_5(x-8)^2 = 2 + \log_5(x-2)$ 的解是 ().
 - A. 3 或 $\frac{1}{2}$
- B. $\frac{1}{2}$

- C. 3 或 38
- D. 2

- 609. (005786) 方程 $\sqrt{\lg x 4} = 4 \lg x$ 的解集是 ().
 - A. {100}
- B. {1000}
- C. {10000}
- D. $\left\{ \frac{1}{10000} \right\}$

- 610. (005787) 方程 $\log_2(x-1) \log_4(x+5) = 0$ 的解为______
- 611. (005788) 方程 $\log_4(2-x) = \log_2(x-1) 1$ 的解为_____
- 612. (005789) 方程 $\log_x(x^2 x) = \log_x 2$ 的解为_____.
- 613. (005790) 方程 $\log_{(16-3x)}(x-2) = \log_8 2\sqrt{2}$ 的解为_____.
- 614. (005791) 方程 $\lg |2x-3| \lg |3x-2| = 0$ 的解为_____.
- 615. (005792) 方程 $\lg^2 x + \lg x^3 + 2 = 0$ 的解为_____.
- 616. (005793) 方程 $\lg^2 x + \lg x^2 3 = 0$ 的解为______.
- 617. (005794) 方程 $(\log_4 x)^2 \frac{1}{2} |\log_2 x| 2 = 0$ 的解为_____.
- 618. (005795) 已知方程 $\ln^2 x \ln x^2 2 = 0$ 的两个根为 $\alpha, \beta,$ 求 $\log_{\alpha} \beta + \log_{\beta} \alpha$ 的值.
- 619. (005796) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}$, $B = \{x|\log_2(x^2 5x + 8) = 1\}$, $C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, 求实数 a 的值.
- 620. (005797) 已知 $f(x) = \log_a(a^x 1)(a > 0, a \neq 1)$, 解方程 $f(2x) = f^{-1}(x)$.
- 621. (005798) 解方程 $\log_{\frac{1}{2}}(9^{x-1}-5) = \log_{\frac{1}{2}}(3^{x-1}-2) 2.$
- 622. (005799) 解方程 $\log_{0.5x} 2 \log_{0.5x^3} x^2 = \log_{0.5x^3} 4$.
- 623. (005800) 解方程 $(\sqrt{x})^{\log_5 x 1} = 5$.
- 624. (005801) 解方程 $10^{\lg^2 x} + x^{\lg x} = 20$.
- 625. (005802) 解方程 $|\log_2 x| = |\log_2(2x^2)| 2$.
- 626. (005803) 解方程组 $\begin{cases} \log_y x 3\log_x y = 2, \\ (2^x)^y = (\frac{1}{2})^{-16}. \end{cases}$
- 627. (005804) 解关于 x 的方程: $\lg(x+a) + 1 = \lg(ax-1)$.
- 628. (005805) 解关于 x 的方程: $\lg(ax-1) \lg(x-3) = 1$.
- 629. (005806) 解关于 x 的方程: $2 \lg x \lg(x-1) = \lg a$.
- 630. (005807) 已知函数 $f(x) = a^{x-\frac{1}{2}}$ 满足 $f(\lg a) = \sqrt{10}$, 求实数 a 的值.
- 631. (005808) 已知函数 $f(x) = x^2 x + k$ 满足 $\log_2 f(a) = 2$, $f(\log_2 a) = k(a > 0$ 且 $a \neq 1$), 求 $f(\log_2 x)$ 在什么区间上是减函数, 并求出 a 与 k 的值.

- 632. (005809) 若关于 x 的方程 $\lg 2x \cdot \lg 3x = -a^2$ 有两个相异实根, 求实数 a 的取值范围, 并求此方程两根之积.
- 633. (005810) 若关于 x 的方程 $(\lg ax)(\lg ax^2) = 4$ 所有的解都大于 1, 求实数 a 的取值范围.
- 634. (005811) 若关于 x 的方程 $\lg(ax) \cdot \lg(ax^2) = 4$ 有两个小于 1 的正根 $\alpha, \beta,$ 且满足 $|\lg \alpha \lg \beta| \le 2\sqrt{3}$, 求实数 a 的取值范围.
- 635. (005812) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值是 3, 求实数 a 的值.
- 636. (005813) 若关于 x 的方程 $\log_2 x + 1 = 2\log_2(x-a)$ 恰有一个实数解, 求实数 a 的取值范围.
- 637. (005814) 已知函数 $f(x) = \log_a(a ka^x)(a > 0, a \neq 1, k \in \mathbf{R})$. (1) 当 $0 < a < 1, 且 1 \le x$ 时, f(x) 都有意义,求实数 k 的取值范围;
 - (2) 当 a > 1 时, f(x) 的反函数就是它自身, 求 k 的值;
 - (3) \pm (2) 的条件下, $\pi f^{-1}(x^2 2) = f(x)$ 的解.
- 638. (005850) 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m>1, m \in \mathbf{R}\}$.
 - (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbb{R}$; 反之, 若 f(x) 对一切实数 x 都有意义, 则 $m \in M$;
 - (2) 当 $m \in M$ 时, 求 f(x) 的最小值;
 - (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.

639. (005851) 已知函数
$$f(x) = \frac{4^x}{4^x + 2}$$
,求 $f(\frac{1}{101}) + f(\frac{2}{101}) + \dots + f(\frac{100}{101})$ 的值.

- 640. (005852) 已知函数 $f(x) = 1 + \log_x 5$, $g(x) = \log_{x^2} 9 + \log_{x^2} 8$, 比较 f(x) 与 g(x) 的大小.
- 641. (005853) 求方程 $x^2 4|x| \log_2 x 5 = 0$ 的实数解的个数.
- 642. (005855) 已知 f(x) 在 $(-\infty, +\infty)$ 上有单调性, 且满足 f(1) = 2 和 f(x+y) = f(x) + f(y).
 - (1) 求证: f(x) 为奇函数;
 - (2) 若 f(x) 满足 $f(k \log_2 t) + f(\log_2 t \log_2^2 t 2) < 0$, 求实数 k 的取值范围.
- 643. (005858) 解方程 $|\log_2 x| = |\log_2 2x^2| 2$.
- 644. (005859) 分别求实数 a 的取值范围, 使关于 x 的方程 $\log_{(x+a)} 2x = 2$ 有唯一解、两解、无解.
- 645. (005860) 分别求实数 a 的范围, 使关于 x 的方程 $1 + \frac{\log_2(2\lg a x)}{\log_2 x} = 2\log_x 2$ 有两解、一解.
- 646. (007943) 已知幂函数 f(x) 的图像经过 $(2, \frac{\sqrt{2}}{2})$, 试求出这个函数的解析式.
- 647. (007944) 幂函数 $y=x^s$ 与 $y=x^t$ 的图像在第一象限都通过定点________,若它们在第一象限的部分关于直线 y=x 对称,则 s、t 应满足的条件是_______.
- 648. (007945) 研究幂函数 $f(x) = x^{\frac{2}{5}}$ 的定义域、奇偶性、单调性、值域。
- 649. (007949) 已知幂函数 f(x) 的定义域是 $(+\infty,0) \cup (0,+\infty)$, 且它的图像关于 y 轴对称, 写出一个满足要求的幂函数 f(x).

- 650. (007953) 没 $a^{2x}=2$, 且 a>0, $a\neq 1$, 求 $\frac{a^{3x}+a^{-3x}}{a^x+a^{-x}}$ 的值.
- 651. (007954) 已知 $f(x) = a \cdot b^x$, f(4) = 648, f(5) = 1944.
 - (1) 估算 f(4.5);
 - (2) 计算 f(4.5), 利用计算的结果评判你的估算.
- 652. (007955) 已知 $f(x) = 3^x, u, v \in \mathbf{R}$.
 - (1) 求证: 对任意的 u、v, 都有 $f(u) \cdot f(v) = f(u+v)$ 成立.
 - (2) 写出一个关于 $f(u) \div f(v)$ 类似上式的等式, 并证明你的结论.
- 653. (007956) 求证: $f(x) = \frac{a^x a^{-x}}{2} (a > 0, a \neq 1)$ 是奇函数.
- 654. (007957) 求证: $f(x) = \frac{(a^x 1) \cdot x}{a^x + 1} (a > 0, a \neq 1)$ 是偶函数.
- 655. (007958) 若指数函数 $y = a^x$ 是减函数, 则下列不等式中, 能够成立的是 ().

A. a > 1

B. a < 1

C. a(a-1) < 0

D. a(a-1) > 0

656. (007959) 若函数 $y = 2^x - m$ 的图像不经过第二象限, 则 m 的取值范围是 ().

A. m > 1

B. m < 1

C. m > -1

D. m < -1

- 657. (007961) 已知集合 $M = \{y|y=2^x, x \in \mathbf{R}\},$ 集合 $N = \{y|y=x^2, x \in \mathbf{R}\},$ 求 $M \cap N$.
- 658. (007964) 判断并证明函数 $y = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$ 的奇偶性.
- 659. (007965) 判断并证明函数 $y=x(rac{1}{2^x-1}+rac{1}{2})$ 的奇偶性.
- 660. (007966) 函数 $y = 4^x 2^{x+1} + 1(x < 0)$ 的值域是 ().

A. $[0, +\infty)$

B. $(1, +\infty)$

C.(0,1)

D. (0,1]

- 661. (007971) 幂函数 y = f(x), 当 x = 2 时, y = 16.
 - (1) 求函数 f(x) 的解析式;
 - (2) 比较 f(2) 和 f(-3) 的大小.
- $662._{(007972)}$ 若关于 x 的方程 $5^x = \frac{a+3}{5-a}$ 有负数根, 则 a 的取值范围是______.
- 663. (007973) 方程 $(\frac{1}{2})^x = x^{\frac{1}{2}}$ 的实数根个数为_____.
- 664. (007976) 当 x 充分大时, 试比较下列各函数: $y_1=10x, y_2=8x^2, y_3=4x^4, y_4=2\times 3^x, y_5=5^x$ 值的大小. 你能从中归纳出一些规律性的结论吗?
- 665. (007977) 比较 a^2 和 a^a 两个值的大小 (其中 a > 0, 且 $a \neq 1$).
- 666. (007978) 比较 2^a 和 a^a 两个值的大小 (其中 a > 0, 且 $a \neq 1$).

- 668. (007987) 点 $(\sqrt{2},2)$ 在幂函数 y=f(x) 的图像上,点 $(-2,\frac{1}{4})$ 在幂函数 y=g(x) 的图像上.当 x 为何值时, f(x)=g(x)?
- 669. (007989) 已知函数 $f(x) = a^x (a > 0, a \neq 1)$ 在区间 [1,2] 上的最大值比最小值大 $\frac{1}{4}$, 求实数 a 的值.
- 670. (007994) 若 2x + y = 1, 求 $4^x + 2^y$ 的最小值.
- 671. (008000) 把下列指数式写成对数式:
 - (1) $10^{-2} = 0.01$:_____;
 - $(2) (\frac{1}{2})^0 = 1:$ _____;
 - (3) $5^x = 6$:_____
- 672. (008001) 把下列对数式写成指数式:
 - (1) $x = \log_{16} 32$:_____;
 - (2) $\log_{\pi} x = 4$:_____;
 - (3) $\log_x 9 = 2$:_____.
- 673. (008002) 求下列各式中的 x:
 - (1) $\log_{\frac{1}{2}} x = 3, x = \underline{\hspace{1cm}};$
 - (2) $\log_3 \frac{1}{27} = x, x =$ _____;
 - (3) $\log_{100} 1000 = x, x =$ _____;
 - (4) $\log_x 16 = 4$, x =_____.
- 674. (008003) 计算: $\log_5 5\sqrt{5} + \ln e$.
- 675. (008004) 计算: $\lg \sqrt{10} \lg 0.01$.
- 676. (008005) 计算: $\log_{12} 6 + \log_{12} 2$.
- 677. (008006) 计算: $\log_3 48 4 \log_3 2$.
- 678. (008007) 用 $\log_a M$ 、 $\log_a N$ 表示 $\log_a M N^2$.
- 679. (008008) 用 $\log_a M$ 、 $\log_a N$ 表示 $\log_a \frac{\sqrt{M}}{N}$.
- 680. (008009) 计算: $3^{\log_3 1} + \log_2 48 \log_2 3$.
- 681. (008010) 计算: $2\log_7 \frac{35}{9} + 4\log_7 3 + 2\log_7 \frac{1}{10} + \log_7 4$.
- 682. (008011) 计算: $\log_3 2 \times \log_5 3 \times \log_8 5$.
- 683. (008012) 计算: $(\log_4 3 + \log_8 3) \times \log_3 2$.

- 684. (008013) 计算: $\log_2 \frac{1}{49} \times \log_3 \frac{1}{16} \times \log_7 \frac{1}{27}$.
- 685. (008014) 计算: $\log_a b \cdot \log_b c \cdot \log_c a$.
- 686. (008015) 计算: $(\log_4 3 + \log_8 3)(\log_3 2 + \log_9 4)$.
- 687. (008016) 已知 $\log_3 2 = m$, 试用 m 表示 $\log_{32} 18$.
- 688. (008017) 已知 $\lg 2 = a$, $\lg 3 = b$.
 - (1) 求 lg 5;
 - (2) $\Re \log_2 3$;
 - (3) 求 $\log_{12} 25$.
- 689. (008018) 求出下列各式中 x 的取值范围: (a > 0 且 $a \neq 1)$
 - (1) $\log_a(x^2+1)$;
 - (2) $\log_a(x-2)$;
 - $(3) \log_a \frac{1}{x+2}.$
- 690. (008019) 在下列各式中的横线上填入适当的值, 使等式成立:
 - (1) \log_5 ___= 1;
 - (2) $2^{\log_3 1} = ___;$
 - $(3) \left(\frac{1}{5}\right)^{\log_{0.2} 3} = \underline{\qquad};$
 - (4) $\sqrt{3}^{\log_{\sqrt{3}}} = 7$.
- 691. (008020) 用 $\log_a x$ 、 $\log_a y$ 、 $\log_a (x+y)$ 、 $\log_a (x-y)$ 表示下列各式:
 - (1) $\log_a(x^2 y^2);$
 - (2) $\log_4 \frac{x^3 y}{(x+y)^4}$;
 - (3) $\log_a(\frac{\sqrt{x}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{x}}).$
- 692. (008021) 计算: $\log_2(\log_2 16)$.
- 693. (008022) 计算: $2^{\log_6 5} \times 3^{\log_6 5}$.
- 694. (008023) 计算: $\sqrt{\lg^2 5 2\lg 5 + 1}$.
- 695. (008024) 计算: $\lg^2 5 + \lg^2 \times \lg 50$.
- 696. (008025) 设 $56^a = 14$, 试用 a 表示 $\log_7 56$.
- 697. (008026) 已知 $5.4^x = 3$, $0.6^y = 3$, 求 $\frac{1}{x} \frac{1}{y}$ 的值.
- 698. (008039) 求函数 $y = \lg(x^2 3x + 2)$ 的定义域.
- 699. (008040) 求函数 $y = \frac{\sqrt{2x-1}}{\lg x}$ 的定义域.

- 700. (008041) 求函数 $y = \sqrt{\lg x} + \lg(5 2x)$ 的定义域.
- 701. (008042) 求函数 $y = 10^x + 1$ 的反函数.
- 702. (008043) 求函数 $y = \log_2(x+1)$ 的反函数.
- 703. (008044) 求函数 $y = \log_2 2x$ 的反函数.
- 704. (008045) 已知函数 $f(x) = a^x + b$ 的图像经过点 (1,7), 反函数 $f^{-1}(x)$ 的图像经过点 (4,0), 求函数 f(x) 的表达式.
- 705. (008046) 若 $\log_a 0.2 < \log_a 0.1$ 成立, 求 a 的取值范围.
- 706. (008047) 若 $\log_a \pi > \log_a e$ 成立, 求 a 的取值范围.
- 707. (008048) 若 $\log_a 3 < 0$ 成立, 求 a 的取值范围.
- 708. (008049) 已知 1 < x < 2, $a = 2^x$, $b = \log_{0.5} x$, $c = \sqrt{x}$, 比较 a、b、c 的大小, 并说明理由.
- 709. (008050) 声音强度 D(分贝) 由公式 $D=10\lg(\frac{I}{10^{-16}})$ 给出, 其中 $I(W/cm^2)$ 为声音能量. 能量小于 $10^{-16}W/cm^2$ 时, 人听不见声音. 能量大于 60 分贝属于噪音, 其中 70 分贝开始损害听力神经, 90 分贝以上就会使听力受损, 而一般的人呆在 100 分贝 -120 分贝的空间内, 一分钟就会暂时性失聪.
 - (1) 求人低声说话 $I = 10^{-13} \text{W/cm}^2$ 的声音强度;
 - (2) 求噪音的能量范围;
 - (3) 当能量达到多少时, 人会暂时性失聪?
- 710. (008051) 判断函数 $y = \lg \frac{x+1}{x-1}$ 的奇偶性.
- 711. (008052) 设 a > 0 且 $a \neq 1$, 比较 $\log_a 2a$ 与 $\log_a 3a$ 的大小.
- 712. (008053) 求证: $y = \lg(1-x)$ 在定义域上单调递减.
- 713. (008054) 求函数 $y = \log_{\frac{1}{k}}(x^2 6x + 10)$ 在区间 [1,2] 上的最大值.
- 714. (008056) 解方程 $3^{-x+2} = 9^x$.
- 715. (008059) 解指数方程 $2^{x^2+3} = (\frac{1}{4})^{\frac{7}{2}}$.
- 716. (008060) 解指数方程 $9^x 8 \cdot 3^x 9 = 0$.
- 717. (008063) 解方程: $9^x + 4^x = \frac{5}{2} \cdot 6^x$.
- 718. (008064) 解方程: $4^x + 4^{-x} 6(2^x + 2^{-x}) + 10 = 0$.
- 719. (008066) 解方程 $\log_3(x-2) = 1$.
- 720. (008067) 解方程 $\log_2(x^2 3x) = 2$.

- 721. (008068) 解方程 $\log_2(\log_5 x) = 1$.
- 722. (008069) 解方程 $\log_5(x+1) \log_{\frac{1}{5}}(x-3) = 1$.
- 723. (008070) 解方程 $\log_2^2 x + 3\log_2 x + 2 = 0$.
- 724. (008071) 解方程 $\log_x(x^2 x) = \log_x 2$.
- 725. (008072) 解方程 $\log_{\frac{1}{2}}(9^{x-1}-5) = \log_{\frac{1}{2}}(3^{x-1}-2) 2.$
- 726. (008073) 解方程 $(\lg x)^2 \lg x^2 = 3$.
- 727. (008074) 解方程: $x^{\log_2 x} = 32x^4$.
- 728. (008075) 求方程 $\log_2(x+4) = (\frac{1}{3})^x$ 根的个数, 并说明理由.
- 729. (008076) 若 $x^5 = 3$, 则 $x = _____;$ 若 $5^x = 3$, 则 $x = _____$
- 730. (008077) 计算: $\log_2 36 2\log_2 3 =$ ______
- 731. (008078) 若 $\log_a b \cdot \log_5 a = 3$, 则 b =_____.
- 732. (008079) 函数 $y = \log_2 x (x \ge 1)$ 的反函数是______.
- 733. (008081) 若 $f(x) = 3^x + 5$, 则 $f^{-1}(x)$ 的定义域是 ().
 - A. $(0, +\infty)$
- B. $(5, +\infty)$
- C. $(8, +\infty)$
- D. $(-\infty, +\infty)$

- 734. (008082) 若 $\log_{18} 9 = a$, $18^b = 5$, 则 $\log_{36} 45$ 等于 ().
 - A. $\frac{a+b}{2+a}$
- B. $\frac{a+b}{2-a}$
- C. $\frac{a+b}{2a}$
- D. $\frac{a+b}{a^2}$

- 735. (008084) 作出函数 $y = \log_2(x-1)$ 的图像.
- 736. (008085) 作出函数 $y = |\log_2(x-1)|$ 的图像.
- 737. (008086) 已知 $\lg x + \lg y = 2$, 求 $\frac{1}{x} + \frac{1}{y}$ 的最小值.
- 738. (008087) **解方程**: $4^x + 2^{x+1} = 80$.
- 739. (008088) 解方程: $\lg(2x+2) + \lg(15-x) = 1 + \lg 3$.
- 740. (008089) 已知函数 $f(x) = \log_a \frac{1+x}{1-x} (a>0, \ a \neq 1)$. (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的奇偶性, 并加以证明;
 - (3) 当 a > 1 时, 求使 f(x) > 0 的 x 的取值范围.
- 741. (008091) 如果函数 $f(x) = \log_a(-x^2 + ax)$ 的定义域为 $(0, \frac{1}{2})$, 那么实数 $a = \underline{\hspace{1cm}}$.
- 742. (008092) 如果 $45^x = 3$, $45^y = 5$, 那么 2x + y =_____.

- 743. (008093) 若函数 y = f(x) 的图像与函数 $y = 2^x 1$ 的图像关于直线 y = x 成轴对称图形, 则函数 y = f(x) 的解析式为______.
- 744. (008094) 当 a>1 时, 在同一坐标系中, 函数 $y=a^{-x}$ 与 $y=\log_a x$ 的图像是 ().

- 745. (008095) 函数 $f(x) = 4 + \log_a(x-1)(a>0a \neq 1)$ 的图像恒经过定点 P, 则点 P 的坐标是 ().
 - A. (1,4)
- B. (4,1)
- C.(2,4)
- D. (4,2)

- 746. (008096) 已知 0 < a < 1,化简 $\sqrt{\lg^2 a \lg \frac{a^2}{10}}$.
- 747. (008097) 已知 α 、 β 是方程 $\lg^2 x \lg x 2 = 0$ 的两根, 求 $\log_{\alpha} \beta + \log_{\beta} \alpha$ 的值.
- 748. (008363) 如果已知 $f(x) = 2^{-x}$,则 $f(\log_2 3) =$ _____.
- 749. (008365) 若 $\log_x \frac{4}{5} < 1$, 则 x 的取值范围为______.
- 750. (008366) 函数 $y = \frac{1}{\sqrt{\log_{\frac{1}{2}}(2-x)}}$ 的定义域是_____.
- 751. (008371) 在同一坐标系内作出的两个函数图像如图所示, 这两个函数为 ().

A. $y = a^x \not\exists 1 \ y = \log_a(-x)$

B. $y = a^x \, \pi y = \log_a x^{-1}$

C. $y = a^{-x} \Re y = \log_a x^{-1}$

- D. $y = a^{-x}$ 和 $y = \log_a(-x)$
- 752. (008372) 若 $0 < x < \frac{\pi}{4}$,且 $\lg(\sin x + \cos x) = \frac{1}{2}(3\lg 2 \lg 5)$,则 $\cos x \sin x$ 的值为 ().
 - A. $\frac{\sqrt{6}}{3}$

- B. $\frac{\sqrt{3}}{2}$
- C. $\frac{\sqrt{10}}{5}$
- D. $\frac{\sqrt{5}}{4}$

- 753. (008375) 解方程: $\log_3(x-1) = \log_9(x+5)$.
- 754. (008376) **解方程**: $\log_2(9^x 5) = \log_2(3^x 2) + 2$.

755.	已 (008378) 已知函数 $f(x) = \log_2(2^x - 1)$. (1) 求 $f(x)$ 的定义域; (2) 判断 $f(x)$ 的增减性, 说明理由; (3) 求 $f^{-1}(x)$.			
756.	(008388) 若 $\log_m 3 < \log_n 3 < 0$,则 m,n 满足的条件是 ().			
	A. $m > n > 1$	B. $n > m > 1$	C. $0 < m < n < 1$	D. $0 < n < m < 1$
757.	. (008389) 若 $\log_3 x = \cos x$ 解的个数有 $($ $)$.			
	A. 0	B. 1	C. 2	D. 3
758.	(008391) 若 $\lg a \lg b$ 是方程 $2x^2 - 4x + 1 = 0$ 的两个根, 则 $(\lg \frac{a}{b})^2$ 的值等于			
759.	(008392) 定义在 R 上的偶函数 围是	f(x) 在 [0,+∞) 上是增函数	数, 且 $f(\frac{1}{2}) = 0$, 则满足 $f(\log x)$	$\log_{\frac{1}{4}}x)>0$ 的 x 的值范
760.	日 (008394) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a>0, b>0, a \neq 1).$ (1) 求 $f(x)$ 的定义域; (2) 判断 $f(x)$ 的奇偶性; (3) 求函数 $y = f^{-1}(x)$ 的解析式.			
761.	(009473) 用有理数指数幂的形式表示下列各式 (其中 $a>0$): $(1) \ a^{\frac{10}{3}} \cdot \sqrt[5]{a^3};$ $(2) \ \sqrt[3]{a\sqrt[3]{a}}.$			
762.	$2{(009476)}$ 以下对数式中, 与指数式 $5^x=6$ 等价的是 $($ $).$			
	A. $\log_5 6 = x$	B. $\log_5 x = 6$	C. $\log_6 x = 5$	$D. \log_x 6 = 5$
763.	(009477) 求下列各式的值: $(1) \log_5 25;$ $(2) \log_{\frac{1}{3}} 27;$ $(3) \log_4 \sqrt{2};$ $(4) 2^{\log_2 3}.$			
764.	(009478) 求下列各式中 x 的值: $(1) \log_4 x = 2;$ $(2) \log_x 4 = 2.$			
765.	(009479) 已知 $A = \log_{-} x$. $B =$	$\log_a u(a > 0) \parallel a \neq 1$). $\parallel a \neq 1$	4 及 B 表示下列各式:	

(1) $\log_a xy$;

(2) $\log_a x^2 \sqrt{y}$.

766. (009480) 求下列各式的值:

- (1) $\log_{15} 3 + \log_{15} 5$;
- (2) $\log_2 \sqrt[3]{4}$;

(3)
$$\log_5 \sqrt{10} - \frac{1}{2} \log_5 250$$
.

767. (009481) 已知 $\log_7 3 = a$, $7^b = 2$. 用 a 及 b 表示 $\log_7 72$.

768. (009482) 求下列各式的值:

- (1) $\log_8 \frac{1}{4}$;
- $(2) \log_a b \cdot \log_b c \cdot \log_c a(a, b, c$ 均为不等于 1 的正数);
- $(3) 3^{2+\log_9 4};$
- (4) $\frac{\log_5 2 \times \log_7 9}{\log_5 \frac{1}{3} \times \log_7 2}$.

769. (009483) 已知 $\log_3 2 = a$, 用 a 表示 $\log_2 96$.

770. (009484) 设 a、b 是两个不等于 1 的正数, 求证: $\log_b a = \frac{1}{\log_a b}$.

771. (009485) 若幂函数 $y=x^a$ 的图像经过点 $(3,\sqrt{3})$, 求此幂函数的表达式.

772. (009487) 若幂函数 $y = x^{-m^2 + 2m + 3} (m$ 为整数) 的定义域为 \mathbf{R} , 求 m 的值.

773. (009491) 判断下列函数哪些是指数函数, 哪些是幂函数:

- (1) y = x;
- (2) $y = x^3$;
- (3) $y = e^x$;
- (4) $y = \sqrt[3]{x}$;
- (5) $y = 2^{-x}$;
- (6) $y = 2^x$.

774. (009492) 求下列函数的定义域:

- (1) $y = 3^x$;
- (2) $y = 3^{\frac{1}{x-2}}$.

775. (009493) 在同一平面直角坐标系中分别作出下列函数的大致图像:

- (1) $y = 4^x$;
- (2) $y = (\frac{1}{4})^x$.

776. (009495) 已知 a > 0 且 $a \neq 1$. 若 m > n, 且 $a^m < a^n$, 求实数 a 的取值范围.

777. (009496) 求下列不等式的解集:

- (1) $3^x > 3^{0.5}$;
- $(2) \ 0.2^x < 25.$

- 778. (009497) 已知指数函数 $y = a^x (0 < a < 1)$ 在区间 [1,2] 上的最大值比最小值大 $\frac{a}{3}$, 求实数 a 的值.
- 779. (009499) 若对数函数 $y = \log a_x (a > 0$ 且 $a \neq 1$) 的图像经过点 (4,2), 求此对数函数的表达式.
- 780. (009500) 求下列函数的定义域:
 - (1) $y = \log_2 \frac{2+x}{1-x}$;
 - (2) $y = \log_a (4 x^2)$ (常数 a > 0 且 $a \neq 1$).
- 781. (009501) 在同一平面直角坐标系中作出 $y = \lg x$ 及 $y = \log_{0.1} x$ 的大致图像.
- 782. (009502) 已知常数 a>0 且 $a\neq 1$,假设无论 a 取何值,函数 $y=\log_a(x-1)$ 的图像恒经过一个定点,求此点的 坐标.
- 783. (009503) 利用对数函数的性质, 比较下列各题中两个对数的大小:
 - (1) $\log_{0.2} 3$ **7** $\log_{0.2} 6$;
 - $(2) \log_{0.2} 3 \, \pi \log_{0.3} 3.$
- 784. (009504) 设 0 < a < 1, 求证: 对数函数 $y = \log_a x$ 在区间 $(0, +\infty)$ 上是严格减函数.
- 785. (009506) 利用对数函数的单调性来估算对数 $\log_2 5$ 的第一位小数的值.
- 786. (009508) 下列四组函数中, 同组的两个函数是相同函数的是 ().

A.
$$y = |x| + y = (\sqrt{x})^2$$

B.
$$y = x + y = e^{\ln x}$$

C.
$$y = x - 5y = \sqrt[5]{x^5}$$

D.
$$y = x - y = (\frac{1}{x})^{-1}$$

787. (009509) 求下列函数的值域:

(1)
$$y = (\lg x)^2 + 1, x \in (0, +\infty);$$

(2)
$$y = 3x^2 - 4x + 1, x \in [0, 1].$$

788. (009514) 证明下列函数是奇函数:

(1)
$$y = 2^x - 2^{-x}$$
;

(2)
$$y = \log_2(1+x) - \log_2(1-x)$$
.

- 789. (009523) 求函数 $y = (\frac{1}{2})^x, x \in [1,3]$ 的最大值与最小值.
- 790. (009530) 用函数的观点解不等式: $2^x + \log_2 x > 2$.
- 791. (009908) 借助函数图像, 判断下列导数的正负 (可利用信息技术工具):

(1)
$$f'(\frac{\pi}{4})$$
, $\sharp + f(x) = \sin x$;

(2)
$$f'(0)$$
, 其中 $f(x) = (\frac{1}{2})^x$.

792. (009912) 证明函数 $y = \ln x$ 与 $y = e^x$ 没有驻点.

793. (009913) 求下列函数 y = f(x) 的导数, 其中:

(1)
$$f(x) = 3e^x - x^e + e$$
;

(2)
$$f(x) = \cos x - \frac{2}{x}$$
;

(3)
$$f(x) = (2x+1)^3$$
;

(4)
$$f(x) = \sqrt{x} \sin x$$
;

(5)
$$f(x) = x \ln x - \frac{1}{x^2}$$
;

(6)
$$f(x) = \frac{x^2 - 1}{x}$$

(6)
$$f(x) = \frac{x^2 - 1}{x}$$
;
(7) $f(x) = \frac{x^2 - 1}{x^2 + 1}$;

(8)
$$f(x) = \tan x$$
.

794. (009917) 求下列函数的导数:

$$(1) y = 3x\sqrt{2-x};$$

(2)
$$y = \frac{\ln(2x+1)}{x}$$
.

795. (009918) 利用导数研究下列函数的单调性, 并说明所得结果与你之前的认识是否一致:

(1)
$$y = e^x$$
;

(2)
$$y = \ln x$$
;

(3)
$$y = ax^2 + bx + c$$
, $\sharp \Phi \ a \neq 0$.

796. (009919) 确定下列函数的单调区间:

(1)
$$y = xe^x$$
;

(2)
$$y = 4x^3 - 9x^2 + 6x + 7$$
.

797. (010001) 已知 $f(x) = \log_3(x+a) + \log_3(6-x)$.

(1) 若将函数 y = f(x) 的图像向下平移 m(m > 0) 个单位后, 所得的图像经过点 (3,0) 与点 (5,0), 求 a 与 m的值;

(2) 若
$$a > -3$$
 且 $a \neq 0$, 解关于 x 的不等式 $f(x) \leq f(6-x)$.

798. (010107) 用有理数指数幂的形式表示下列各式 (其中 x > 0, y > 0):

$$(1) \sqrt[3]{5};$$

$$(2) (\sqrt[5]{x})^3;$$

(3)
$$\sqrt[7]{x^3y^4}$$
;

(4)
$$\sqrt[7]{\frac{x^3}{y^4}}$$
.

799. (010110) 用有理数指数幂的形式表示下列各式 (其中 a > 0, b > 0):

$$(1) a^{\frac{1}{3}} a^{\frac{1}{4}};$$

(2)
$$\sqrt[3]{a\sqrt{a}}$$
;

$$(3) (a^{\frac{1}{4}}b^{-\frac{3}{8}})^8;$$

$$(4) \left(\frac{a^{-3}b^4}{\sqrt{h}}\right)^{-\frac{1}{3}}$$
.

- 800. (010113) 没 $a^{2x}=2$, 且 a>0. 求 $\frac{a^{3x}+a^{-3x}}{a^x+a^{-x}}$ 的值.
- 801. (010114) 设 a > b > 0, 求证: $a^a b^b > (ab)^{\frac{a+b}{2}}$.
- 802. (010115) 把下列指数式写成对数式:
 - $(1) 3^4 = 81;$
 - (2) $5^{-\frac{1}{2}} = x$.
- 803. (010116) 将下列对数式写成指数式:
 - (1) $\log_{\frac{1}{3}} 27 = -3;$
 - (2) $\log_2 \frac{1}{8} = -3$.
- 804. (010117) 求下列各式的值:
 - $(1) \log_3 27;$
 - (2) $\log_{\frac{1}{2}} 8$;
 - (3) $\ln \frac{1}{2} + \lg \sqrt{10}$.
- 805. (010118) 求下列各式中 x 的值:
 - (1) $\log_2 x = 5$;
 - (2) $\log_{\sqrt{5}} \frac{1}{125} = x;$
 - (3) $\log_x 4 = \frac{1}{2}$.
- 806. (010119) 求下列各式的值:
 - (1) $\log_2(2 \times 3\sqrt{2});$
 - $(2)\,\log_{21}3 + \log_{21}7;$
 - (3) $\log_5 \sqrt{6} \frac{1}{2} \log_5 150$;
 - $(4) 3^{\log_3 1} + \log_2 48 \log_2 3;$
 - $(5) \ 3\log_3\frac{3}{2} \log_3\frac{7}{4} + \frac{1}{2}\log_34 + \log_37.$
- 807. (010120) 已知 $A = \log_a x$, $B = \log_a y$, $C = \log_a z (a > 0$ 且 $a \neq 1$). 用 A、B 及 C 表示下列各式:
 - $(1) \log_a(xy^2);$
 - (2) $\log_a \frac{xy}{\sqrt{z}}$;
 - (3) $\log_a(x^2y^2) + \log_a(y\sqrt{x})$.
- 808. (010121) 求下列各式的值:
 - (1) $\log_4 2\sqrt{2}$;
 - $(2)\,\log_2 3 \times \log_9 2;$
 - $(3) \ \frac{3}{\log_2 6} + \frac{3}{\log_3 6};$
 - $(4) (\log_4 3 + \log_8 3)(\log_3 2 + \log_9 2) + \log_{\frac{1}{2}} \sqrt[4]{32}.$
- 809. (010122) 已知 $a = \lg 5$, 用 a 表示 $\lg 2$ 和 $\lg 20$.

- 810. (010123) 求下列各式中 x 的取值范围:
 - $(1) \log_2(1-3x);$
 - (2) $\log_a(x^2 + x)(a > 0 \text{ H. } a \neq 1).$
- 811. (010124) 求下列各式的值:
 - (1) $\log_4 8 \log_{\frac{1}{6}} 3 \log_{\sqrt{2}} 4;$
 - $(2) \ 2^{\log_6 5} \times 3^{\log_6 5}$:
 - (3) $(\lg 50)^2 + \lg 2 \times \lg 50^2 + (\lg 2)^2$.
- 812. (010125) 科学家以里氏震级来度量地震的强度, 若设 I 为地震时所散发出来的相对能量程度, 则里氏震级度量 r 可定义为 $r = \frac{2}{3} \lg I + 2$. 求 7.8 级地震和 6.9 级地震的相对能量比值. (结果精确到个位)
- 813. (010126) 已知 $\lg 2 = a$, $\lg 3 = b$. 用 a 及 b 表示 $\log_2 3$ 及 $\log_{12} 25$.
- 814. (010127) 已知 $5.4^x = 3$, $0.6^y = 3$. 求 $\frac{1}{x} \frac{1}{y}$ 的值.
- 815. (010128) 设 a、b、c、d 均为正数, 且 a、c 均不为 1. 求证: $\log_a b \cdot \log_c d = \log_a d \cdot \log_c b$.
- 816. (010129) 若幂函数 $y = x^a$ 的图像经过点 ($\sqrt[4]{3}$, 3), 求此幂函数的表达式.
- 817. (010133) 下列幂函数在区间 $(0,+\infty)$ 上是严格增函数, 且图像关于原点成中心对称的是_____(请填入全部 正确的序号).
 - (1) $y = x^{\frac{1}{2}}$; (2) $y = x^{\frac{1}{3}}$; (3) $y = x^{\frac{2}{3}}$; (4) $y = x^{-\frac{1}{3}}$.
- 818. (010135) 幂函数 $y = x^{n(n+1)}(n)$ 为正整数) 的图像一定经过 象限.
- 819. (010136) 若幂函数 $y = x^s$ 在 0 < x < 1 时的图像位于直线 y = x 的上方, 则 s 的取值范围是
- 820. (010137) 下列命题中, 正确的是 ().
 - A. 当 n=0 时, 函数 $y=x^n$ 的图像是一条直线
 - B. 幂函数 $y = x^n$ 的图像都经过 (0,0) 和 (1,1) 两个点
 - C. 若幂函数 $y = x^n$ 的图像关于原点成中心对称, 则 $y = x^n$ 在区间 $(-\infty, 0)$ 上是严格增函数
 - D. 幂函数的图像不可能在第四象限
- 821. (010138) 写出一个图像经过第一、第二象限但不经过原点的幂函数的表达式.
- 822. (010140) 下列函数是指数函数的序号为_____(请填入全部正确的序号).

①
$$y = (-4)^x$$
; ② $y = (\frac{1}{4})^x$; ③ $y = 4^x$; ④ $y = x^{-4}$; ⑤ $y = (\sqrt{4})^x$.

- 823. (010142) 在同一直角坐标系中作出下列函数的大致图像, 并指出这些函数图像间的关系:

 - (1) $y = (\frac{3}{2})^x$; (2) $y = (\frac{2}{3})^x$; (3) $y = (\frac{2}{3})^x 1$.

- 824. (010143) 已知指数函数 $y = (m-2)^x$ 在 R 上是严格减函数, 求实数 m 的取值范围.
- 825. (010147) 已知指数函数 $y = a^x (a > 0$ 且 $a \neq 1$) 在区间 [1,2] 上的最大值与最小值之和等于 6, 求实数 a 的值.
- 826. (010149) 在同一平面直角坐标系中,指数函数 $y = a^x (a > 0$ 且 $a \neq 1$) 和一次函数 y = a(x+1) 的图像关系可能是 ().

827. (010150) 如图所示的是某池塘中的浮萍蔓延的面积 y(单位: m^2) 与时间 t(单位: 月) 的关系: $y=a^t(a>0$ 且 $a\neq 1$).

以下结论: ① 这个指数函数的底数是 2; ② 第 5 个月时, 浮萍的面积就会超过 30m²; ③ 浮萍面积从 4m² 到 $12m^2$ 需要经过 1.5 个月; ④ 浮萍每个月增加的面积都相等. 其中, 正确结论的序号是 ().

A. (1)(2)(3)

В. ①②③④

C. (2)(3)(4)

D. ①②

- 828. (010151) 若 x > 0 时, 指数函数 $y = (a^2 1)^x$ 的值总大于 1, 求实数 a 的取值范围.
- 829. (010152) 若 -1 < x < 0, 比较 $3^x, 3^{-x}$ 及 3^{2x} 的大小.
- 830. (010155) 求下列函数的定义域:
 - (1) $y = \log_a(x+12)$ (常数 a > 0 且 $a \neq 1$);
 - (2) $y = \log_2 \frac{1}{x^2 2x + 5}$.
- 831. (010156) 已知对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1$) 的图像经过点 (3,2). 若点 P(b,4) 为此函数图像上的点, 求实数 b 的值.
- 832. (010157) 在同一平面直角坐标系中画出下列函数的图像, 并指出这些函数图像之间的关系.
 - $(1) y = \log_3 x;$
 - (2) $y = \log_{\frac{1}{2}} x$;
 - (3) $y = (\frac{1}{3})^x$.

- 833. (010158) 已知常数 a>0 且 $a\neq 1$,假设无论 a 取何值,函数 $y=\log_a x-1$ 的图像恒经过一个定点. 求此点的 坐标.
- 834. (010159) 根据下列不等式, 确定底数 a 的取值范围:
 - (1) $\log_a 0.2 < \log_a 0.1$;
 - (2) $\log_a \pi > \log_a e$.
- 835. (010160) 已知 $y = \log_{a^2-1} x$ 在区间 $(0, +\infty)$ 上是严格减函数, 求实数 a 的取值范围.
- 836. (010161) 已知对数函数 $y = \log_a x(a > 1)$ 在区间 [1,2] 上的最大值比最小值大 1, 求 a 的值.
- 837. (010162) 若 a>b>c>1, 则下列不等式不成立的是_____. (填写所有不成立的不等式的序号)
 - ① $\log_a b > \log_a c$; ② $\log_a \frac{1}{b} > \log_a \frac{1}{c}$; ③ $\log_{\frac{1}{a}} b > \log_{\frac{1}{a}} c$; ④ $\log_{\frac{1}{a}} \frac{1}{b} > \log_{\frac{1}{a}} \frac{1}{c}$.
- 838. (010163) 设常数 a>0 且 $a\neq 1$, 求函数 $y=\log_a(a-a^x)$ 的定义域.
- 839. (010164) 根据下列不等式, 比较正数 m 及 n 的大小:
 - (1) $\log_3 m < \log_3 n$;
 - (2) $\log_a m < \log_a n (a > 0 \text{ L. } a \neq 1);$
 - (3) $\log_m N < \log_n N (0 < m < 1, 0 < n < 1, 0 < N < 1)$.
- 840. (010165) 设 0 < a < 1, 若 $\log_a(4x^2 1) < \log_a(-2x^2 + x + 1)$, 求实数 x 的取值范围.
- 841. (010168) 求下列函数的定义域:

$$(1) \ y = \frac{1}{x^2 + 2x - 3};$$

(2)
$$y = \sqrt{4 - 3x - x^2}$$
;

(3)
$$y = \sqrt{x-2} + \sqrt{x+3}$$
;

(4)
$$y = \frac{1}{\lg(x+2)} + \frac{1}{\sqrt{5-x}}$$
.

842. (010174) 证明下列函数 *y* = *f*(*x*) 为偶函数:

(1)
$$f(x) = x^2 + x^{-2}$$
;

(2)
$$f(x) = \frac{x(2^x - 1)}{2^x + 1}$$
.

843. (010175) 证明下列函数 y = f(x) 为奇函数:

(1)
$$f(x) = x^{-3}$$
;

(2)
$$f(x) = \frac{e^x - e^{-x}}{2}$$

844. (010176) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

(1)
$$f(x) = 2x + \sqrt[3]{x}$$
;

(2)
$$f(x) = 2x^4 - x^2$$
;

(3)
$$f(x) = x^2 - x$$
;

(4)
$$f(x) = \frac{1-x}{1+x}$$
;

(4)
$$f(x) = \frac{1-x}{1+x}$$
;
(5) $f(x) = \lg \frac{1-x}{1+x}$.

- 845. (010178) 证明: 函数 $y = \lg(1-x)$ 在其定义域上是严格减函数.
- 846. (010180) 求函数 $y = \log_{\frac{1}{2}}(x+2), x \in [2, 6]$ 的最大值与最小值.
- 847. (010183) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

 - (1) $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}};$ (2) $f(x) = x(\frac{1}{2^x 1} + \frac{1}{2}).$
- 848. (010196) 证明: 方程 $\lg x + 2x = 16$ 没有整数解.
- 849. (010200) 求下列函数的反函数:
 - (1) $y = 10^x + 1$;
 - (2) $y = \log_2(x+1)$;
 - (3) $y = \log_2(2x)$.
- 850. (010201) 已知 $f(x) = 1 \log_2 x$, 设 $y = f^{-1}(x)$ 是 y = f(x) 的反函数. 求 $f^{-1}(-3)$ 的值.
- 851. (010795) 借助函数图像, 判断下列导数的正负:
 - (1) $f'(-\frac{\pi}{4})$, $\sharp + f(x) = \cos x$;
 - (2) f'(3), 其中 $f(x) = \ln x$.
- 852. (010805) 求下列函数 y = f(x) 的导数:
 - (1) $f(x) = 2x^{e} e^{2}$;
 - (2) $f(x) = e^x \cos x$;
 - (3) $f(x) = \frac{x-1}{x-2}$; (4) $f(x) = \frac{\ln x}{\sin x}$.
- 853. (010813) 直线 y = -x + b 是下列函数的切线吗? 如果是, 请求出 b 的值; 如果不是, 请说明理由.
 - (1) $y = \ln x$;
 - (2) $y = \frac{1}{x}$.
- 854. (010815) 判断下列求导结果是否正确. 如果不正确, 请指出错在哪里, 并予以改正.
 - $(1) \left(\frac{\sin x}{x}\right)' = -\frac{1}{x^2} \sin x \frac{\cos x}{x};$
 - (2) $(\ln(2-x))' = \frac{1}{2-x}$.
- 855. (010818) 求下列函数 y = f(x) 的导数, 其中:
 - (1) $f(x) = x^2 \sin 3x \frac{2}{\sqrt{x}};$ (2) $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}.$
- 856. (010819) 利用导数研究下列函数的单调性, 并说明结果与你之前的认识是否一致:
 - (1) $y = (\frac{1}{e})^x$;
 - (2) $y = \log_{\frac{1}{2}} x$.

- 857. (010822) 求下列函数的单调区间、极值点和极值:
 - $(1) \ y = x^2 + 2x + 3;$
 - (2) $y = x + \frac{1}{x}$;
 - (3) $y = 3x x^3$;
 - $(4) y = x^2 e^x.$
- 858. $_{(010827)}$ 判断下列函数在 $(-\infty,+\infty)$ 上是否存在驻点,是否存在极值点,并说明理由:
 - (1) $y = x^n, n$ 为正奇数;
 - $(2) y = x^n, n$ 为正偶数.