## Modelos de Soporte No Supervisado SOM/Kohonen Clustering

#### SOM/Kohonen



- Introducido por el Prof. Teuvo Kohonen en 1982
- También conocido como mapa de características Kohonen
- Red neuronal no supervisada
- Herramienta de agrupamiento de alta dimensió y datos complejos
- El mapa de auto-organización (SOM) es un algoritmo de red neuronal artificial no supervisado
- Cada peso es representativo de una determinada entrada
- Los patrones de entrada se muestran a todas las neuronas simultáneamente
- Aprendizaje competitivo: se elige la neurona con la respuesta más grande.

### SOM/Kohonen



- Mantiene la topología del conjunto de datos
- El entrenamiento se produce a través de la competencia entre las neuronas
- Imposible asignar nodos de red a clases de entrada específicas por adelantado
- Se puede usar para detectar similitudes y grados de similitud
- Se supone que el patrón de entrada cae en agrupaciones distintas suficientemente grandes
- Inicialización de vector de peso aleatorio

## SOM/Kohonen

• Datos de muestra

Pesos

• Nodos de salida



### SOM/Kohonen: Estructura del mapa

- Rejilla bidimensional o unidimensional
- Cada punto de la rejilla representa un nodo de salida
- La regilla se inicializa con vectores aleatorios



#### Illustration of Topological Maps

 Illustration of the SOM model with one or twodimensional map.





 Example of the SOM model with the rectangular or hexagonal map.



Rectangular:



#### SOM/Kohonen: Algoritmo de entrenamiento

· Inicializar mapa

#### Para t de 0 a 1

- Seleccione una muestra
- Obtener la mejor unidad de coincidencia
- Escalar vecinos
- Aumentar t una pequeña cantidad

End for

$$m_{i}(t+1) = m_{i}(t) + \alpha(t)[x(t) - m_{i}(t)]$$

$$\forall i \in N_{c}(t)$$



#### SOM/Kohonen: Inicializar los pesos

- Los SOM son computacionalmente muy costosos
- Buena inicialización
- Menos iteraciones
- Calidad del mapa







# SOM/Kohonen: Obtenga la mejor unidad de emparejamiento

- Cualquier método para la distancia vectorial i. mi.
- Vecino más cercano
- El vecino más lejano
- Distancia entre los medios
- Distancia entre medianas
- El método más común es la distancia euclidiana.

$$\sqrt{\sum_{i=0}^{n} x_{i}^{2}}$$

#### Algorithm for Kohonen's SOM

- Let the map of size M by M, and the weight vector of neuron i is  $m_i$
- Step 1: Initialize all weight vectors  $\mathbf{m}_i(0)$  randomly or systematically.
- Step 2: A vector x is randomly chosen from the training data. Then, compute the Euclidean distance  $d_i$  between x and neuron i.

$$d_i = \| \mathbf{x} - \mathbf{m}_i(t) \|, 1 \le i \le M^2$$

• Step 3: Find the best matching neuron (winning node) c.

$$d_c = \| \mathbf{x} - \mathbf{m}_c(t) \| = \min\{ \| \mathbf{x} - \mathbf{m}_i(t) \| \}, \forall i$$

Step 4: Update the weight vectors of the winning node c and its neighborhood as follows.

$$\boldsymbol{m}_i(t+1) = \boldsymbol{m}_i(t) + \alpha(t) h_{c,i}(t) [\boldsymbol{x} - \boldsymbol{m}_i(t)]$$

where  $0 \le \alpha(t) \le 1$  is an adaptive function which decreases with time.

• Step 5: Iterate the Step 2-4 until the sufficiently accurate map is acquired.

#### SOM/Kohonen: Vecinos de escala

- La determinación de los vecinos
- Tamaño del vecindario
- Disminuye con el tiempo
- Efecto en los vecinos
- Aprendizaje

```
\begin{aligned} &\forall i \in N_c(t), \\ &m_i(t+1) = m_i(t) + \alpha(t)[x(t) - m_i(t)] \\ &\text{otherwise} \ , \\ &m_i(t+1) = m_i(t) \end{aligned}
```



#### Neighborhood Kernel

• The  $h_{c,i}(t)$  is a neighborhood kernel centered at the winning node c, which decreases with time and the distance between neurons c and i in the topology map.

$$h_{c,i}(t) = \exp\left(-\frac{\|r_c - r_i\|^2}{\sigma^2(t)}\right)$$

where  $r_c$  and  $r_i$  are the coordinates of neurons c and i.

The  $\sigma(t)$  is a suitable decreasing function of time,

e.g. 
$$\sigma(t) = \sigma_0 \left( 1 - \frac{t}{\text{maxstep}} \right)$$

#### SOM/Kohonen: Ventajas y desventajas

- Muy fácil de entender
- Funciona bien
- Costoso computacionalmente
- Cada SOM es diferente





#### SOM/Kohonen: Prueba de convergencia

- Prueba completa solo para una dimensión
- Muy trivial
- Casi todas las pruebas parciales se basan en Cadenas de Markov

#### Dificultades:

- No hay definición para "Una configuración ordenada correctamente"
- Resultado comprobado: no es posible asociar una "función potencial de disminución global" con este algoritmo.