T _T 기능 모듈 명칭	⊙ 유형	개발 상황	Tr 세부정보	⊙ 중요도 상태	🗋 파일	Tr 메모,세부설정(예)
PWM DC 릴레이 출력	Ouput 출력 모듈	기본 릴레이 제어만 가 능 PWM 미작동	DC 릴레이를 통해 전자벨브를 제어하는 것을 주 목적으로 한다. 보드에서 PWM (Pulse Width Modulation)을 통해 벨브의 열림과 단칭을 제어하며, 필스 폭을 조 절하여 Duty 값으로 전압을 제어하는 방식입니다. 이를 통해 벨브의 열림 정도 를 정밀하게 조절할 수 있다. 기본 명령은 0 과 100%로 제어 된다.	필수 10 프로그램	파일	PWM_Frequency (float): PWM 신호의 주파수, 빨브의 반응 속도 결정 (예: PWM_Frequency = 1000;) PWM_DutyCycle (float): PWM 신호의 두티 사이클, ON/OFF 비율로 빨브 개도 조절 (예: PWM_DutyCycle = 50;) Relay_DutyPMF (inft): C은 텔레이 출락이 인절된 만 반호 (예: Relay_DutypuTh) = 5; Valve_State (bool): 빨브의 현재 상태, 임림(ON) 또는 달침(OFF) 기독 (예: Valve_State = true;) Valve_TargetPosition (float): 빨브 목표 위치, 설정된 개도 조상(3) (예: Valve_TargetPosition = 75 0;) Relay_CurrentStatus (bool): 릴레이의 현재 상태, 활성화 여부(ON/OFF) 추적 (예: Relay_CurrentStatus = false;)
알람 버즈 출력	Ouput 출력 모듈	작동	기본 알림 버져 프로그램은 시스템 오류, 경고, 프로세스 완료 등의 이벤트 시 청 각적 피드백을 제공하는 기능이다. 디지털 판을 통해 소리의 같이와 주파수를 제어하여 다양한 알림을 설정할 수 있다. 콘트를 보드 부팅시 1음 1회 버즈 발 생, 오류 발생시 3음 회 반복 발생 기타 상황에 따라 설정 예정	필수 10 프로그램	파일	Buzzer_Pin (int): 버저가 연결된 디지털 핀 번호 (예: Buzzer_Pin = 9) Buzzer_Frequency (int): 버저 주파수 (Hz 단위) (예: Buzzer_Frequency = 1000;) Buzzer_Duration (int): 버저 골림 시간 (ms 단위) (예: Buzzer_Duration = 500;) Buzzer_Volume (int): 버저 살태 (ON/OFF) (예: Buzzer_State = true;) Buzzer_Volume (int): PWM를 중한 버저 음량 조절 (0-255) (예: Buzzer_Volume = 128;) Alert_Type (int): 경고 유청에 따른 알림 설정 (예: Alert_Type = 1;)
AC SSR 제어 출력	Ouput 출력 모듈	작동	AC 히터 제어를 위한 SSR(솔리드 스테이트 릴레이) 출력 제어 프로그램은 AC 히터의 전력을 제어하는 프로그램입니다. PWM 최대 뉴터 Duty 를 설정하고 PID 분석을 통해 작동한다. PID와 연동하지만 별도로 Duty를 설정하여 히터의 전력을 줄일 수 있다.	필수 IO 프로그램	파일	SSR.Pin (int): SSR이 언결된 디지털 출력 핀 (예: SSR_Pin = 10;) PMM_Frequency (float): SSR 제어를 위한 PMM 신호 주파수 (예: PWM_Frequency = 1000;) PWM_DutyCycle (float): SSR 제어를 위한 PMM 투터 사이클, 전력 공급량 결정 (예: PWM_DutyCycle = 50;) Control_LoopTime (int): 제어 루프 주기 (예: Control_LoopTime = 1000;)
K-Type 센서 일찍	Input 입력 모듈	작동	K타입 온도 센서는 열전대(thermocouple) 방식으로, 두 금속의 접합부에서 발 생하는 열기전력을 통해 온도를 촉정합니다. 이 센서의 경우 보정값과 온도 변 환 공식이 필요하며, 이들 저리하기 위한 몇 가지 변수가 필요합니다.	필수 IO 프로그램	파일	Thermocouple_Voltage (float): KEI일 현시에서 발생한 혈진대 전일 (mV) (iii: Thermocouple_Voltage = (ADC_Value / 1023.0) * V_Ref;) Cold_Junction_Temp (float): 병접한 보신 로드 (iii: Cold_Junction_Temp = 25.0;) Temperature (float): 변환된 온도 값 (iii: Temperature = Thermocouple_Voltage / K_Factor;) K_Factor (float): KEI일 열진대 변환 계수 (iii: K_Factor = 0.041276) ADC_Value (int): ADC을 받던 양의 대한 기계 (iii: ADC_Value = analogRead(ADC_Pin);) V_Ref (float): ADC을 작전 앱 (iii: V_Ref = 5.0;) Calibrated_Temperature (float): 보존된 교육 온도 값 (iii: Calibrated_Temperature = (Temperature * Gain_Correction) + Offset_Correction; Offset_Correction (float): 온도 오프 및 보장 값 (iii: Offset_Correction = 2.0;)
PT100 센서 일력	Input 입력 모듈	작동	Pt100 온도 센서를 사용해 온도 값을 읽어오는 프로그램은 저항 온도 감지기 (RTD)의 Pt100 센서로부터 저항 값을 읽고 이를 온도로 변환하는 과정을 포함 합니다. Pt00은 저항이 온도에 비례해 변하며, 이를 기반으로 정확한 온도 축 정이 가능합니다	필수 IO 프로그램	파일	ADC_Pin (int): P1100 센서가 연결된 아날로그 일력 핀 (예: ADC_Pin = AQ;) Reference_Resistance (float): 기준 저용 값, 보통 1000 (예: Reference_Resistance = 100.0;) ADC_Value (int): ADC도부터 및 어득을 인지 되고 (예: ADC_Value = analogRead(ADC_Pin).) Temperature (float): 벤션된 온도 값 (예: Temperature = (Resistance = Reference_Resistance) / 0.00385;) Resistance (float): 센션된 전투 값 (예: Temperature = (Resistance = Reference_Resistance) / 0.00385;) Offset_Correction (float): 센션된 온도 값 (예: Coffset_Correction = 1.5;) Gain_Correction (float): 센션된 인동 보정 값 (예: Offset_Correction = 1.5;) Gain_Correction (float): 센션된 인동 보정 값 (예: Gain_Correction = 1.02;) Calibrated_Temperature (float): 보정 론 회료 온도 값 (예: Calibrated_Temperature = (Temperature float): 보정 론 회료 온도 값 (예: Calibrated_Temperature = (Temperature float): 보정 론 회료 온도 값 (예: Calibrated_Temperature = (Temperature float):
ToF 거리 감지 센서 I2C	Input 입력 모듈	작동하지만 로직 미흡	ToF(Time of Flight) 가리 센서를 이용해 포타필터를 감지합니다. ToF 센서는 및이 물체에 반사되어 돌아오는 시간을 측정해 거리를 계산하는 방식으로, 매우 정밀한 거리 측정이 가능한다니. 포타필터와 같은 물체를 감지하기 위해서는 최대 감지 거리와 민감도를 조정해야 합니다.	필수 IO 프로그램	파일	Detection, MinRange (float): 포타필터 감지를 위한 최소 가진 (예: Detection, MinRange = 5.0;) Detection, MaxRange (float): 포타필터 감지를 위한 최대 가리 (예: Detection, MaxRange = 15.0;) Sensitivity (mt): Tof 센서의 감도 설정 (0 ~ 100) (예: Sensitivity = 80.) Threshold_Distance (float): 포타필터 감지 함께 가진 (예: Threshold_Distance = 10.0;) Ambient_Light_Compensation (bool): 주변을 보접 활성화 (여부 (예: Ambient_Light_Compensation = true;) Integration_Time (int): 거리 측정 종업 시간 (ms) (예: Integration_Time = 100;) Measured_Distance (float): Tof 센서로 측정된 거진 (cm) (예: Measured_Distance = sensor.getDistance();) Object_Detected (bool): 포타필터 감지 여부 (True/False) ((int. Object_Detected = (Measured_Distance - Threshold_Distance);)
4~20mA 압력 센서 입력	Input 입력 모듈	작동하지만 설정 환경 미흡	4~20mA 출력을 지원하는 압력 센서를 사용해 보일러 압력을 측정하는 모듈 프로그램은 센서로부터 전류 신호를 읽어 이를 압력 값으로 변환하고, 보일러의 실시간 압력 상태를 모니터랑하는 기능을 제공합니다. 0~16Bar를 기준으로 하고 있습니다.	필수 10 프로그램	파일	ADC. Pin (fint): 4~20mA 신호가 연결된 아남로그 핀 (dir. ADC. Pin = AD). ADC. Value (fint): 아남로그 교에서 용어들면 ADC 값 (dir. ADC. Value = analogRead(ADC. Pin);) V.Ref (float): 참조 전압 값 (dir. V.Ref = 5.0;) Shunt, Resistor (float): 4~20mA 신호를 전압으로 변환하기 위한 분도 저장 값 (dir. Shunt, Resistor = 250.0;) Current_mA (float): 센서도부터 읽은 전류 값(mA) (dir. Current_mA = Voltage / Shunt, Resistor * 1000;) Pressure, Min (float): 센서도부터 읽은 전류 값(mA) (dir. Current_mA = Voltage / Shunt, Resistor * 1000;) Pressure, Min (float): 센서의 최도 압력 값 (dir. Pressure_Max = 150.0;) Pressure (float): 센서에서 계산된 실제 압력 값 (dir. Pressure_Max = 150.0;) Calibration_Offset (float): 압력 값 대 대한 모드 및 보호 (dir. Calibration_Offset = 0.0;) Calibration_Scale (float): 이득 보장 값 (dir. Calibration_Offset = 0.0;)
근접 센서 NPN 입력 (금속 감지)	Input 입력 모듈	미작동	NPN 방식의 근접 센서는 센서가 물채를 공개할 때 NPN 트런지스터를 사용하여 신호가 LOW(0V)로 떨어지는 방식입니다. 즉, 근접 센서가 활성화되면 센서 홀릭이 GND로 전골되며, 이를 통해 디지털 입력 판에서 LOW 신호를 읽어 센서 가 물채를 감치됐음을 알 수 있습니다. 이 기능을 통해 패들의 위를 판단하며 엔 고더 모터 작동의 시작 지점을 판단한다.	필수 IO 프로그램	파일	Sensor_Pin (int): NPN 근접 센서가 연결된 디지털 판 번호 (예: Sensor_Pin = 2;) Sensor_State (booi): 센서의 현재 상태를 저장하는 변수 (예: Sensor_State = digitalRead(Sensor_Pin);) Object_Detected (booi): జ쾌가 강되지었는지 어떻는 나타내는 변수 (예: Object_Detected = (Sensor_State == LOW);) Last_State (booi): 이전 상태를 저장하여 센서 상태 변화를 기록하는 변수 (예: Last_State = HiGH;)
플로우메타 카운터 입력 OC	Input 입력 모듈	작동하지만 로직 미흡	Open Collector 방식의 플로우메타는 회전 속도에 따라 평소를 발생시키며, 이 를 통해 유량을 촉정하는 센서입니다. Open Collector 방식은 센서가 될스 선호 를 디지털 판으로 보내 유량을 촉정할 수 있도록 하며, 저장을 통해 외부 전원을 연결해 신호를 수집합니다.	필수 IO 프로그램	파일	Flow, Pin (int): 플로우메타에서 필스를 읽어를 디지털 반 (dli: Flow, Pin = 2) Pulses, Count (volatile int): 발생한 필스 수를 저공하는 번수 (ml: Pulses, Count = 0,) Pulses, Per_Liter (float): 건터당 발생하는 필스 수 (ml: Pulses, Per_Liter = 450.0.) Flow, Rate (float): 전체 측정된 유명 (L/min) (fli: Flow, Rate = Pulse, Count / Pulses, Per_Liter,) Flow, Volume (float): 녹격 유명 (건타) (fli: Flow, Volume + Flow, Rate * Time, Interval.) Calibration, Factor (float): 플로우메타 보정 계수 (incalibration, Factor = 1.0.) Last, Time (unsigned long): IN지막 유명 추정 시간이 자정되는 번수 (fli: Last, Time = millis(f);
OC 수위, 누수 감지 센서	Input 입력 모듈	작동 설정 값 미흡	Open Collector 방식으로 수위를 감지하는 센서는 디지털 신호를 통해 수위가 특정 수준에 도달했는지 감지한다. 수위는 Low 낮은 수위, High 높은 수위로 구 분하고 급수와 히팅제어와 함께 사용된다.	필수 10 프로그램	파일	강도 설정
버튼 입력, 버튼 LED 출력 CAN	I/O 통합 모듈	LED 작동 미흡	CAN 통신을 통해 연결된 5 버튼에 추가로 1 버튼 모듈을 연결 할 수 있다. 연결 개수와 목통 목적이 정의되어야 한다. 각 버튼은 상광, 더봉, 통 푸쉬를 구분하고 동시 입력을 지원한다. 상태에 따라 버튼에 연결된 LED의 색상 및 밝기 조정이 가능하다.	필수 IO 프로그램	파일	메모, 세부 설정 (데)
째들 제어 엔코더 모터 입출력 CAN	I/0 통합 모듈	미층	엔코더가 내장된 BLDC 모터를 이용하여 패들(Paddle)의 위치에 따라 모터와 벨브를 제어하는 시스템을 설계한다. 엔코더를 이용해 패들의 위치를 정확하게 측정하고 그 위치에 따라 모터와 벨브를 제어하는 알고리즘을 구현해야 합니 다. 이를 위해 BLDC 모터 제어, 엔코더 값 읽기, 그라고 밸브 제어가 핵심 기능이 립니다.	필수 10 프로그램	파일	매모, 세부 설정 (예)
BLDC 모터 펌프 드라이버 구동 ModBus	I/O 통합 모듈	초기화, 애러 관리 안됨	추출 압력을 만들기 위한 BLDC 펌프 모터 구동으로 모드버스를 통해 제어한다. 별도의 드라이버 모듈이 있어 모듈 초기화 애러 감지, 가감속 설정을 지원해야 한다.	필수 10 프로그램	파일	매모, 세부 설정 (에)

T+ 기능 모듈 명칭	⊙ 유형	개발 상황	Tr 세부정보	⊙ 중요도 상태	🗋 파일	T+ 메모, 세부 설정 (예)
라즈베리파이 LCD 구동 CAN	I/O 통합 모듈	기본만 구동	콘트를 보드가 CAN 중신을 통해 라즈베리파이에 연결된 LCD 디스플레이로 경 보를 전달하고, 이를 통해 추출 시간, 추출 온도, 추출 함락, 유혹, 유속 등의 정보 를 표시합니다. 콘트를 보드의 작동 상황에 따라 LCD 밝기 조절 및 자용 깨점 기능을 수행 할 수 있다. 10분 동안 사용하지 않는 경우 깨짐, 5분 동안 사용하지 않는 경우 어두워짐.	필수 10 프로그램	파일	추출 시간: Time: XX.XX s 추출 은도: Temp: XX.XX C 추출 일력: Pressure: XX.XX Lar 유량: Flow: XX.XX L/min 유학: Speed: XX.XX L/min
LED 조명 출력 제어	Ouput 출력 모듈	작동	LED 제어 시스템을 통해 추출 조명, 대기 조명을 위한 LED 종류, LED 수, 밝기, 작동 방식을 설명하고 제어하려면, PWM 제어들 통해 LED 맑기를 조절하고, 여 러 작동 모드를 설정하는 프로그램 모듈을 작성할 수 있습니다.	필수 10 프로그램	파일	LED 중류와 캐수를 사용자가 설정할 수 있으며, 해당 정보를 기반으로 LED를 제어. LED 밝기는 PWM 핀을 통해 조절되며, 0에서 255까지 설정할 수 있음. LED 모드에 따라 LED를 커기나, 고거나, 밝기를 변화시키는 방식으로 제어. 페이드(fade) 모드는 LED 밝기가 점점 가졌다가 줄어드는 효과를 제공. 필스(pulse) 모드는 일정한 주기로 LED를 깔딱임.
RS485, 모드 버스 모듈	통신 모듈	작동	RS485 통신, 모드버스 통신을 통해 외부 제어 보드와 통신을 진행한다. 추가 옵션 모듈로는 수질 측정기, 전력 측정기 등이 있다.	필수 통신 프로그램	파일	메모, 세부 설정 (예)
I2C 모듈	통신 모듈	작동	I2C 통신을 통해 외부 보드와 입출력 통신을 한다.	필수 통신 프로그램	파일	메모, 세부 설정 (예)
CAN 동신 모듈 (디스플레이)	통신 모듈	작동	CAN 통신을 통해 센서, 제어 보드, 디스플레이 보드간 통신을 지원한다.	필수 통신 프로그램	파일	메모, 세부 설정 (예)
PID 온도 제어	제어 모듈	설정값 미흡	PID (Proportional-Integral-Derivative), 제어는 온도 제어에 자주 사용되는 자동 제어 시스템으로, 목표 온도에 도달하고 오차를 최소화하는 데 효교적입니다. PID 제어는 세 가지 제어 매개번수(비례, 적분, 미분)를 사용하여 온도를 안경적으로 제어합니다. 온도 센서(예: PTTO), KH업 일전대 등)로부터 축정된 온도와 목표 온도 간의 오차를 기반으로 허터를 제어하는 병식입니다. 전략 관리 프로그램과 함께 언동하여 에너지 절약 및 온도 안정화를 위한 어려개의 최작화 PID 값을 활용해 안된다.	필수 제어 프로그램	파일	Setpoint (float): 목표 모도 값 (예: Setpoint = 100.0;) Input (float): 현재 측정된 모도 값 (예: Input = readTemperature();) Output (float): 면지 계산 결과 출력 값 (예: Output = 0.0;) k(float): 라데 제 어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 0.5;) k(float): 리턴 제어 개인 (예: k) = 1.0;) location (float): 고치인 변화를 (예: Derivative (float): 고치인 변화를 (예: derivatime) d(float): 고신 변화를 (예: derivatime)
콘트롤 보드간 동기화 CAN	제어 모듈	미적용	콘트를 보드간 제어값 동기화, 포시 값 동기화, 제어 상태 공유를 지원한다. 2~3개 모듈이 한 기기에 설치되어 서로 로그 값을 주고 받아 라즈베리파이로 전송한다.	필수 제어 프로그램	파일	메모, 세부 설정 (예)
스팀 보일러 수위 관리 제어	제어 모듈	미흡	수위 센서에서 수집한 정보를 바탕으로 급수 시간, 급수 인터법을 설정한다. Low 낮은 수위의 접촉이 없는 경우 하터를 말추거나 경고를 발생시킨다. 급수 하여도 수위가 감지가 안되는경우 경고 알람과 하터 차단등의 안전 기능을 수 병한다.	필수 제어 프로그램	파일	Low_Level_Sensor_Pin (int): Low 수위 감지 센서 판 번호 (예: Low_Level_Sensor_Pin = 2;) High_Level_Sensor_Pin (int): High 수위 감지 센서 판 번호 (예: High_Level_Sensor_Pin = 3;) Solenoid, Valve, Pin (int): 출체으니는 별보고 만변호 (예: Solenoid, Valve, Pin = 4;) Low_Level_State (bool): Low 수위 감지 센서 상태 (LOW일 때 물 부족, 예: Low_Level_State = digitalRead(Low_Level_Sensor_Pin);) High_Level_State (bool): High 수의 감지 센서 상태 (LOW일 때 물 기두, 예: High_Level_State = digitalRead(High_Level_Sensor_Pin);) Valve_State (bool): 출레노이드 빨보 상태 (NOVFF, 예: Valve_State = falses)
근접센서 / 엔코더 / 모터 패돌 제어	제어 모듈	미흡	패들(밴들) 제어를 통해 추출 명령을 구동하는 방식으로 근접센서를 통해 패들 의 원정을 찾고 핸들의 움직임을 엔코더로 받아 들여 모터를 통해 장력과 원정 이동을 제어한다. 기본 동작은 2단 말로그 스위치로 1단 밸브 열기 2단 모터 기동 으로 작동한다.	필수 제어 프로그램	파일	메모, 세부 설정 (예)
AC 모터 제어 SSR 제어 (AC SSR 사용)	Ouput 출력 모듈	작동	BLDC 모터 펌프와 AC 모터 펌프의 선택에 따라 AC 모터 제어가 작동한다.	필수 제어 프로그램	파일	메모, 세부 설정 (예)
추출 프로파일 관리 제어 (버튼 프로그램)) 제어 모듈	기본 작동	이 프로그램은 3개의 버튼을 통해 유량에 따라 커피 추출을 제어합니다. 각 버 튼은 원클릭과 더블클릭을 강지하여 다양한 유량 값을 미리 설정하고, 추출 과 정에서 이를 기준으로 자용으로 제어됩니다. 버튼을 눌러 유량들 선택하고, 그 에 따라 슬레노이드 벨보나 펌프 등의 장치를 제어하여 원하는 유량에 도덜하 면 추출을 멈춥니다.	필수 제어 프로그램	파일	Button_Pins[] (im); 3개의 버트이 연결된 편 반호. (iii: Button_Pins[]의 < (2, 3, 4); Single_Click_Flow[] (float); 박 배트의 연결락으로 설정된 유항 값 (mL) (iii: Single_Click_Flow[3] = (50.0, 100.0, 150.0); Double_Click_Flow[] (float); 각 배트의 연결락으로 설정된 유항 값 (mL) (iii: Double_Click_Flow[3] = (75.0, 125.0, 200.0);) Flow, Rate (float); 살시간 유항 값 (L/min 단위) (iii: Flow, Rate = 2.0) Total_Flow (float): 현재 수출된 중 유항 (mL) (iii: Total_Flow = 0.0) Solenoid_Valve_Pin (int): 출레노이드 앨브를 제어할 출락 핀 번호 (iii: Solenoid_Valve_Pin = 5) Debounce_Time (unsigned long): 버튼 입목물 이탈 보다운스하는 L7 (ms) (iii: Debounce_Time = 50)
BME680 환경 정보 센서 입력	Input 입력 모듈	미적용	BME680은 온도, 습도, 기압, 공기 품질(가스 저항) 등의 환경 정보를 수집할 수 있는 환경 센서입니다. 이 센서는 실내 공기 질 분석 및 환경 모니터링에 주로 사용됩니다. BME680을 통해 온도, 습도, 기압, VDC(취발성 유기 화합물) 데이 터를 측정할 수 있으며, 이들 기반으로 실내 공기질을 평가하는 데 사용할 수 있 습니다. 옵션으로 I2C 를 통해 사용이 가능하다.	옵션 프로그램	파일	Temperature (float): 센서로부터 측정된 온도 (*C) (왜: Temperature = bme.readTemperature();) Humidity (float): 센서로부터 측정된 슬도 (%) (예: Humidity = bme.readHumidity();) Pressure (float): 센서로부터 측정된 기업 (https://distribute/index.ups: all all all all all all all all all al
BH1750FVI 조도 센서 입력	Input 일력 모듈	미적용	BH1750FVI 조도 센서는 옵션으로 조명 밝기(조도)를 측정할 수 있는 디지털 광 센서입니다. 이 센서는 I2C 만터페이스를 통해 연결되며, 실시간 조도 값을 간편 하게 읽을 수 있습니다. BH1750FVI는 IX(IWX) 단위로 밝기를 측정하며, 조도 자 동 조정 시스템이나 조명 제어 시스템에 사용됩니다.	옵션 프로그램	파일	BH1750 측정 모든: CONTINUOUS.HIGH.RES.MODE: 연속 측정, 고해상도 모든 (1 k 분해능). CONTINUOUS.HIGH.RES.MODE: 연속 측정, 고해상도 모든 (0.5 k 분해능). CONTINUOUS.LOW.RES.MODE: 연속 측정, 고해상도 모든 (4 k 분해능). ONE.TIME_HIGH.RES.MODE: 연역 측정, 고해상도 모든. ONE.TIME_LOW.RES.MODE: 단열 측정, 지해상도 모든. 변수 설명: lux (float): 센서로 측정한 조도 값 (lux 만위) (예: lux = lightMeter.readLightLevel()) IZC.Address (int): BH1750의 IZC 주소 (예: IZC.Address = 0x23) Measurement.Mode (int): 조도 센서의 측정 모든 교육 (이: Measurement.Mode = BH1750::CONTINUOUS_HIGH_RES_MODE;) Sensor.Status (bod): 센서가 검상적으로 작품 중인지 나타내는 상태 (예: Sensor_Status = lightMeter.begin();)
리셋 부팅, 초기화 버튼 제어	제어 모듈	미적용	콘트롤 보드를 CAN 버튼을 통해 리부팅, 팩토리 초기화 할 수 있는 제어 프로그램으로 3개의 번튼을 통시에 5초 이상 누르고 있으면 리부팅 된다. 10초 이상 누르고 있으면 초기화 된다.	보조 프로그램	파일	메모, 세부 설정(예)
4~20mA 제어 신호 출력	Ouput 출력 모듈	이흡	위부 밸브 제어 보드를 구동하기위해 4~20mA 제어 신호를 추력한다	2순위 프로그램	파일	메모, 세부 설정(예)
로그 관리 모듈	제어 모듈	미적용	사용자의 작동 로그를 기록하고 관리하는 것으로 추출량, 추출시간, 총 횟수, 설 정 값등의 로그를 관리하여 분석할 수 있게 IoT에 연동되어야 한다.	필수 제어 프로그램	파일	메모, 세부 설정 (예)
절전 및 PID 관리 모듈	제어 모듈	미적용	로그를 분석하여 절전 및 슬립 모드를 자동으로 제어하고 PID 값을 적용하는 제 어 모듈	보조 프로그램	파일	메모, 세부 설정 (예)
OTA 펌웨어 업데이트	제어 모듈	미적용	라즈베리파이를 통해서 원격으로 펌웨어를 업데이트 하는 기능으로 CAN을 통해 업데이트가 진행된다.	보조 프로그램	파일	메모, 세부 설정 (예)
스마트 플로우 메타 ModBus	I/O 통합 모듈	미적용	ModBus 통신을 통해 수질, 유량, 유속을 판단하는 플로우메타와 연결한다.	2순위 프로그램	파일	메모, 세부 설정 (예)