

Evaluación Tarea 2

- **■** Fase 1: Pre-Tuning (40%)
 - □ SAEs: mini-Batch SGD + P-inversa.
 - □ Clasificador Softmax : GD.
- **■** Fase 2: Fine-Tuning (60%)
 - □ Training: Back-Propagation.

Pre-Proceso: pre_proc.py

- Crear Nuevos Datos desde data.csv:
 - □1.- data_input
 - Tamaño: N-filas por (D-1)-columnas.
 - □ Contiene las primeras (D-1)-columnas desde archivo original **data.csv**.
 - □2.- data_label
 - Tamaño: N-filas por 1-coumna.
 - □ Contiene la última columna, la cual denota la etiqueta numérica de la clase.

Pre-Proceso: pre_proc.py

- Transformar las etiquetas numérica a etiqueta Binaria.
- Actualizar data_label con Etiquetas Binarias.

Crea archivo: param_sae.csv Porcentaje de training ■ Penalidad Pseudo-inversa ■ Número Máximo de Épocas : ■ Tamaño mini-Batch Tasa Aprendizaje ■ Nodos Ocultos AE1 ■ Nodos Ocultos AE2 ■ Nodos Ocultos AE3

Parámetros Softmax

- Crear archivo: param_softmax.csv
- Máximo Número Iteraciones :
- Tasa Aprendizaje :
- Penalidad de Pesos (lambda) :

Pre-Tuning: train_main.py

- Crear Data train y Data Test:
 - Número de muestras de training:
 - $L=round(p \times N)$,
 - □ p: porcentaje de training dado en el archivo param_sae

- Número de muestras de testing
 - M= L+1 hasta N.

Pre-Tuning: train_main.py

- Re-ordenar aleatoriamente la data_input y data_label.
- Crear data training con L-muestras.
- Crear data Testing con M-muestras.
- Generar archivos de Resultados:
 - pre_costos.csv (Clasificador Softmax)

Pre-Tuning: test_main.py

- Generar Archivo Resultado:
 - pre_fscore.csv

FINE TUNING: Back-Propagation

M

Fine Tuning: Pesos de Salida con BP

Capa de Salida del Deep Learning:

$$z_{k}^{(L)} = w_{k,j}^{(L)} a_{j}^{(L-1)}$$

$$a_{k}^{(L)} = \frac{\exp(z_{k}^{(L)})}{\sum_{i=1}^{nC} \exp(z_{i})}$$

• **N**: número de muestras, **nC**: numero de clases, **T**: valor deseado.

Función de Costo:

$$E = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{nC} T_{n,i} \log \left(a_{n,i}^{(L)} \right)$$

Update Pesos de Salida:

$$w^{(L)}(m) = w^{(L)}(m-1) - \mu \frac{\partial E}{\partial w^{(L)}}, \quad m = 1, \dots, MaxIter$$

$$\delta_k^{(L)} = \left(a_k^{(L)} - T_k\right) = \delta^{(L)}$$

$$\frac{\partial E}{\partial w^{(L)}} = \frac{1}{N} \left\{ \delta^{(L)} \times \left(a^{(L-1)}\right)^T \right\}$$

Fine Tuning: Pesos Ocultos con BP

Para Cada Capa Oculta: desde (L-1) hasta 1

Update Pesos
Ocultos:

$$w^{(l)}(m) = w^{(l)}(m-1) - \mu \frac{\partial E}{\partial w^{(l)}}, \quad m = 1, \dots, MaxIter$$

$$\delta^{(l)} = \left\{ \left(w^{(l+1)} \right)^T \times \delta^{(l+1)} \right\} \otimes f'\left(z^{(l)} \right)$$

$$\frac{\partial E}{\partial w^{(l)}} = \delta^{(l)} \times \left(a^{(l-1)} \right)^T$$

Parámetros Back-Propagation

- Crear archivo: fine_bp.csv
- Máximo Número Iteraciones :
- Tasa Aprendizaje :

Fine-Tuning: train_fine.py

- Leer Data de Training
- Leer pesos pre-training
- Training: Back-propagation
- Generar Resultados:
 - fine_costo.csv (Clasificador Softmax)

Fine-Tuning: test_fine.py

- Leer Data de Testing
- Leer pesos obtenidos con Back-propagation
- Generar Resultados:
 - fine_fscore.csv

ENTREGA

- Miércoles 17/Junio/2020, Hora: 10:30 am
- Lugar: Aula Virtual del curso
- **Programas fuentes:**
 - pre_proc.py, train_main.py, test_main.py
 - □ train_fine.py, test_fine.py
- Archivos Resultados:
 - □ Pre-Tuning: Costos y F-scores
 - ☐ Fine-tining: Costos y F-scores
- Manual de Usuario:

Lenguaje Implementación: PYTHON v. 3.6.7 window