ECE 5960-023/6960-025 - Advanced Programming for Computer Design Problems

In-class Practice 6 (due 2020/02/20 in class)

1. Fin	ish cor	nnectivity	cpp/.cpp	and impler	nen	t the pa	ath	compressio	on tech	nique we	taught in 1	the
class in the function findset. Now, rewrite the path compression iteratively using only												
while	loop.	Report	the	difference	in	terms	of	assembly	from	compiler	explorer	at
www	<u>.godbo</u>	<u>lt.org</u> .										

2. Finish the binary-search.cpp and think about the following: How to write a binary search function to find an element that meets a given criteria in a *floating* range? Paste your code below that implements a function that, for example, finds the minimum value greater than 5678.9912 in the range [10.0, 1000000.0]. Write down the value you see in the output. You probably knew Newton's method for finding the root of a polynomial. The algorithm leverages binary search techniques on floating numbers.

Keep in mind, in programming, there is no real "floating" number. Each floating number is represented in a discrete 32-bit space.

Name: uid: