Homework 10

Due: Friday Nov. 19, by 11:59pm, via Gradescope

- Failure to submit homework correctly will result in a zero on the homework.
- Homework must be in LaTeX. Submit the pdf file to Gradescope.
- Problems assigned from the textbook come from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
 - 1. (27 points) Section 6.1 # 6, 15(b)(c), 18.

Solution:

```
\# 6 (a). This is False. 2 \in A (just set a = 0). On the other hand, if 2 = 10b - 3 then 10b = 6 and no such integer b exists. Therefore 2 \notin B.
```

6(b). This is true. Let's prove it.

Proof: Let $x \in B$. Then x = 10b - 3 for some integer b. Now 10b - 3 = 10b - 5 + 2 = 5(2b - 1) + 2. Therefore x = 5a + 2 where a = 2b - 1, i.e. $x \in A$.

6(c). This is true. Let's prove it. Note that we NTS that $B \subseteq C$ and $C \subseteq B$.

Proof: Let $x \in B$. Then x = 10b - 3 for some integer b. Now 10b - 3 = 10b - 10 + 7 = 10(b - 1) + 7. Therefore x = 10c + 7 where c = b - 1, i.e. $x \in C$.

Let $x \in C$. Then x = 10c + 7 for some integer c. Now 10c + 7 = 10c + 10 - 3 = 10(c+1) - 3. Therefore x = 10b - 3 where b = c + 1, i.e. $x \in B \square$

#15. Come to office hours if you need help with the sketch of the Venn diagrams.

18 (a). No. Nothing belongs to the empty set.

18 (b). No. The right hand side is non-empty.

18 (c). Yes. The \emptyset is an object in $\{\emptyset\}$.

18 (d). No. No object belongs to the empty set.

2. (36 points) Section 6.1 # 25, 27.

Solution:

25(a). There is a typo in the textbook. The sets R_i are defined for $i \geq 1$. Notice that $R_{i+1} \subseteq R_i$. Therefore the answer here is [1, 2].

25(b). [1, 5/4].

25(c). No. $R_1 \cap R_2 = R_2$.

25(d). Because of the nesting, the answer is [1,2].

25(e). [1, 1/n].

$$\# 25(f)$$
. [1, 2].

$$\# 25(g). \{1\}.$$

27(a). No. This is because the sets a, d, e and d, f are not disjoint.

27(c). No. The sets $\{5,4\}$ and $\{1,3,4\}$ are not disjoint.

27(d). No. 6 does not belong to any of the given sets in the proposed partition.

27(e). Yes.

3. (15 points) Section 6.1 # 32, 33

Solution:

32(a) Note that
$$A \times B = \{(1, u), (1, v)\}$$
. Therefore

$$\mathcal{P}(A \times B) = \{\emptyset, \{(1, u)\}, \{(1, v)\}, A \times B\}$$

32(b). Here
$$X \times Y = \{(1, x), (1, y), (2, x), (2, y)\}$$
. The power set has 16 elements.

$$\begin{split} \mathcal{P}(X\times Y) &= \{\emptyset, \{(1,x)\},\ \{(1,y)\},\ \{(2,x)\},\ \{(2,y)\},\ \{(1,x),(1,y)\},\\ &\quad \{(1,x),(2,y)\},\ \{(2,x),(1,y)\},\ \{(2,x),(2,y)\},\\ &\quad \{(1,x),(2,x)\},\ \{(1,y),(2,y)\},\{(1,x),(1,y),(2,x)\},\\ &\quad \{(1,x),(2,x),(2,y)\},\ \{(1,y),(2,y),(1,x)\},\\ &\quad \{(1,y),(2,y),(2,x)\},\ X\times Y\} \end{split}$$

33(a)
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

33(b)
$$\mathcal{P}^2(\emptyset) = \{\emptyset, \{\emptyset\}\}.$$

33(c)
$$\mathcal{P}^3(\emptyset) = \{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\} \} \}$$

4. (9 points) Section 6.2 # 6, 11, 15.

Solution:

$$\# 6(a) (A \cap B) \cup (A \cap C)$$

$$\# 6(b) A$$

$$\# 6(d) x \in (A \cap B) \cup (A \cap C)$$

$$\# 6(a) \text{ and }$$

$$\# 6(b)$$
 and

$$\# 6(c) x \in A \cap (B \cup C)$$

$$\#$$
 6(d) subset

11.

Proof: Let $x \in A \cap (B - C)$. Therefore $x \in A$ and $x \in B - C$, i.e. $x \in A$ and $x \in B$ and $x \notin C$. Since $x \in A$ and $x \in B$ it follows that $x \in A \cap B$. Since $x \notin C$, it follows that $x \notin A \cap C$. Therefore $x \in (A \cap B) - (A \cap C)$

Remark. This proof is more in the spirit of Epp. You can however approach it using a Theorem 2.1.1. approach.

15.

Proof: Let $x \in A \cup \emptyset$. Then

$$(x \in A) \lor (x \in \emptyset)$$

 $x \in A \lor \mathbf{c}$
 $x \in A \text{ (Identity Law)}$

Let $x \in A$. Then

$$x \in A$$

 $x \in A \lor \mathbf{c} \ (Identity \ Law)$
 $(x \in A) \lor (x \in \emptyset)$

Remark. Regarding the second half of the proof. Note that we can substitute the contradiction \mathbf{c} with any false statement. I substituted with $x \in \emptyset$

5. (6 points) Section 6.2 # 22, 35

22.

Proof: Let $(a,b) \in A \times (B \cup C)$. Then

$$a \in A \land (b \in B \lor b \in C)$$

 $(a \in A \land b \in B) \lor (a \in A \land b \in C) \ (Distribution)$

Therefore
$$(a, b) \in (A \times B) \cup (A \times C) \square$$

35. Let's do a contradiction proof. **Proof:** Suppose that $A \cap C$ is non-empty. Then there is an element $x \in A \land x \in C$. Since $A \subset B$ it follows that $x \in B \land x \in C$. Therefore $B \cap C \neq \emptyset$ and this is a contradiction \square

Remark. If you approached # 35 with a direct proof, note that the empty set is a subset of all sets, so all that we would need to show is $A \cap C \subseteq \emptyset$. However, what we see in the contradiction proof is that $x \in A \cap C$ is a false statement, therefore $A \cap C \subseteq \emptyset$ is vacuously true.

Remark. Let A and B be sets. The set $A \times B$ is called the Cartersian product of A and B. It is defined as

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Note that the elements of $A \times B$ are ordered pairs. That means that (a,b) = (c,d) if and only if $(a = c) \wedge (b = d)$. See page 12 in the textbook for additional info.