EDA

```
In [403... terror.shape
Out[403... (181691, 21)
In [404... terror.columns
dtype='object')
In [405... terror.isna().sum()
Out[405... eventid
                             0
        ivear
        country_txt
                             0
        region_txt
                             0
        provstate
                           421
                           435
        citv
        latitude
                          4556
                          4557
        longitude
        success
                           0
        suicide
                             0
        attacktype1
                            0
        attacktype1_txt
        targtype1_txt
                            0
        targsubtype1_txt
                         10373
        gname
                            0
        nperps
                         71115
        nkill
                         10313
        nkillter
                         66958
        nwound
                         16311
        nwoundte
                         69143
        property
        dtype: int64
In [406... terror.attacktype1.unique()
Out[406... array([1, 6, 3, 7, 2, 4, 9, 8, 5], dtype=int64)
```

Regions With Most Terror Activities

```
In [407... terror_reg = terror.groupby('region_txt')['eventid'].count().sort_values(ascending =False).reset_index()
In [408... plt.figure(figsize =(10,5))
    sns.barplot(y = terror_reg['region_txt'].head(10), x = terror_reg['eventid'].head(10), palette = 'plasma', hue =
    plt.xticks(rotation =90)
    plt.ylabel('')
    plt.xlabel("Event Count")
Out[408... Text(0.5, 0, 'Event Count')
```


Countries With Most Terror Activities

```
in [409...
terror = terror.dropna(subset = 'country_txt', axis = 0)
terror_count = terror.groupby('country_txt')['eventid'].count().sort_values(ascending =False).reset_index()
terror_count=terror_count.rename(columns ={"eventid":"event_count"})
terror_count.head()
```

Out[409		country_txt	event_count
	0	Iraq	24636
	1	Pakistan	14368
	2	Afghanistan	12731
	3	India	11960

Colombia

```
plt.figure(figsize =(10,5))
sns.barplot(x = terror_count['country_txt'].head(10), y = terror_count['event_count'].head(10),palette = 'virid:
    plt.xticks(rotation = 45)
plt.xlabel("Country")
plt.ylabel("Event count")
plt.title("Top 10 Countries with terror events since 1970")
```

Out[410... Text(0.5, 1.0, 'Top 10 Countries with terror events since 1970')

8306

Iraq

```
In [411... terror_iraq = terror[terror['country_txt']=="Iraq"]
In [412... terror_iraq.head()
```

Hijack	0	1	43.143570	36.354145	Mosul	Nineveh	Middle East & North Africa	Iraq	1975	197503010002	2854
Bombing/Explos	0	1	44.371773	33.303566	Baghdad	Baghdad	Middle East & North Africa	Iraq	1976	197612150001	4385
Hostage Tak (Kidnappi	0	1	NaN	NaN	Penjwon	Unknown	Middle East & North Africa	Iraq	1976	197612180001	4393
Assassinat	0	1	44.371773	33.303566	Baghdad	Baghdad	Middle East & North Africa	Iraq	1976	197612240001	4402
Assassinat	0	1	47.778095	30.510054	Basra	Basra	Middle East & North Africa	Iraq	1979	197906150001	8688

5 rows × 21 columns

```
In [413... terror_iraq=terror_iraq.dropna(subset = ['latitude', 'longitude'], axis = 0)
In [414.. terror_iraq = terror_iraq.copy()
          terror_iraq['longitude'] = pd.to_numeric(terror_iraq['longitude'])
          terror_iraq['latitude'] = pd.to_numeric(terror_iraq['latitude'])
          data = terror_iraq
          successful_size = 10
          failure = 5
          terror iraq['bubble size'] = terror iraq['success'].apply(lambda x: failure if x == 0 else successful size)
          terror iraq['attacktype1'] = terror iraq['attacktype1 txt'].astype('category')
          custom_palette = {'Bombing/Explosion':'red', "Hijacking":'blue','Assassination':'green', 'Hostage Taking (Kidnaj
'Unknown':'cyan', 'Facility/Infrastructure Attack':'Orange', 'Unarmed Assault':'teal','Hostage
          plt.figure(figsize =(10,5))
          sns.scatterplot(y= 'longitude', x = 'latitude', palette = custom_palette, hue = 'attacktype1_txt', data = data
          plt.legend(
              title='Attack Type',
              title_fontsize='7',
              loc='upper left',
              fontsize='7',
              bbox_to_anchor=(1,1),
              frameon=True,
              shadow=True,
```

Out[414... <matplotlib.legend.Legend at 0x27a85747c50>

In [415... terror_iraq_year = terror_iraq.groupby('iyear')['eventid'].count().reset_index()
 terror_iraq_year.head()

```
        out [415...
        iyear
        evention

        0
        1975
        1

        1
        1976
        2

        2
        1979
        1

        3
        1980
        6

        4
        1981
        3
```

Year on Year Terror Activity Count

```
In [416...] plt.figure(figsize = (13,5))
         plt.bar(terror_iraq_year['iyear'], terror_iraq_year['eventid'], color = 'red', alpha = 0.6)
         plt.xticks(range(1970,2018, 1), rotation = 60);
        4000
        3500
        3000
        2500
        2000
        1500
        1000
        500
           In [417... # %of different type of attacks
         terror_iraq.attacktype1_txt.unique()
Out[417... array(['Hijacking', 'Bombing/Explosion', 'Assassination',
                'Hostage Taking (Kidnapping)', 'Armed Assault', 'Unknown',
                'Facility/Infrastructure Attack', 'Unarmed Assault',
                'Hostage Taking (Barricade Incident)'], dtype=object)
In [418... value counts = terror iraq['attacktype1 txt'].value counts().reset index()
         value_counts.columns = ['attacktype1_txt', 'count']
         plt.figure(figsize =(10,5))
         sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'yellow')
         #plt.xticks(rotation = 60 )
         plt.xlabel('')
         plt.ylabel('')
         plt.xticks(range(0,20000,1000), rotation = 60);
                    Bombing/Explosion
                       Armed Assault
                       Assassination
             Hostage Taking (Kidnapping)
                           Unknown
             Facility/Infrastructure Attack
        Hostage Taking (Barricade Incident)
                           Hijacking
                     Unarmed Assault
```

```
Hostage Taking (Kidnapping)
                                                   909
                                                   757
         Unknown
         Facility/Infrastructure Attack
                                                   153
         Hostage Taking (Barricade Incident)
                                                    24
         Hijacking
                                                    13
         Unarmed Assault
                                                     6
         Name: count, dtype: int64
In [420... count = terror_iraq['targtype1_txt'].value_counts().reset_index()
         count.columns = ['Target', 'Count']
         data = count
         sns.barplot(x='Count', y = 'Target', data = count, palette = 'Reds', hue = 'Target')
         plt.xlabel('')
         plt.ylabel('')
         plt.title("Most Targeted Sections");
```

18232

3121

1272


```
In [421... sizes = terror_iraq['suicide'].value_counts()
labels = ['Non Suicide', 'Suicide']
colors = ["Black", "Red"]
plt.pie(sizes, labels=labels, autopct = "%1.1f%", explode = (0.2,0), colors= colors);
plt.title("Suicide Attack Vs Non Suicide Attack");
```

Suicide Attack Vs Non Suicide Attack

Out[419... attacktype1_txt

Bombing/Explosion

Armed Assault

Assassination

Out[422... suicide 0 21893 1 2594 Name: count, dtype: int64

```
In [423...
terror_iraq['gname'].unique()
terror_iraq_gp = terror_iraq.groupby('gname')['eventid'].count().sort_values(ascending = False).reset_index()
terror_iraq_gp.head(20)
```

- 6	a. I	- 4	m,	o.	
-1.0	tί	-4	2	3.	

	gname	eventid
0	Unknown	18427
1	Islamic State of Iraq and the Levant (ISIL)	4781
2	Al-Qaida in Iraq	629
3	Islamic State of Iraq (ISI)	145
4	Asa'ib Ahl al-Haqq	67
5	Gunmen	57
6	Tawhid and Jihad	43
7	Al-Naqshabandiya Army	35
8	Muslim extremists	32
9	Ansar al-Islam	27
10	Military Council of the Tribal Revolutionaries	20
11	Kurdistan Workers' Party (PKK)	19
12	Mahdi Army	19
13	Ansar al-Sunna	13
14	Sunni Muslim extremists	12
15	Supreme Council for Islamic Revolution in Iraq	9
16	Mujahedeen Shura Council	7
17	Islamic Army in Iraq (al-Jaish al-Islami fi al	7
18	Kata'ib Hezbollah	7
19	Iraqi extremists	6

```
import numpy as np
data = terror_iraq_gp.head(20)
data['eventid'] = np.log(data['eventid'])
sns.barplot(x = 'eventid', y ='gname', palette = 'viridis', hue = 'gname', data = data)
plt.xlabel('log of event count')
plt.ylabel('')
plt.title('Attacks Conducted by different groups');
```



```
In [425... terror_iraq_group10 = terror_iraq[terror_iraq['gname'].isin(terror_iraq['gname'].value_counts()[1:11].index)]
    terror_activity = pd.crosstab(terror_iraq_group10.iyear, terror_iraq_group10.gname)
    plt.figure(figsize =(9,6))
```

```
for column in terror_activity.columns:
    plt.plot(terror_activity[column], label = column);
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.xticks(range(2000,2018,1),rotation = 60);

Al-Naqshabandiya Army
Al-Qaida in Iraq
```


Cities Terror Activity Analysis

```
In [426... terror_iraq_city = terror_iraq.groupby('city')['eventid'].count().reset_index().sort_values(by = "eventid",asc
In [427... terror_iraq_city.head(10)
Out[427...
                     city eventid
          0
                 Baghdad
                             7585
                    Mosul
                             2265
          2
                   Kirkuk
                              925
          3
                 Baqubah
                              745
                  Fallujah
          5
                  Ramadi
                              509
                 Unknown
          6
                              446
                     Tikrit
                              418
                Abu Ghraib
                              324
             Tuz Khormato
                              277
```

```
data = terror_iraq_city.head(20)
sns.barplot(y = 'city', x= 'eventid', data=data, palette = 'viridis', hue = terror_iraq_city['city'].head(20))
plt.title("Cities With The Most Terror Activities")
plt.xticks(range(0,8000,500), rotation = 60);
```


Baghdad

```
In [429... terror_baghdad = terror_iraq[terror_iraq['city']=='Baghdad']
          terror_baghdad.shape
Out[429... (7585, 22)
In [430... terror baghdad = terror baghdad.copy()
          terror_baghdad['longitude'] = pd.to_numeric(terror_iraq['longitude'])
          terror baghdad['latitude'] = pd.to numeric(terror iraq['latitude'])
          data = terror_baghdad
          successful_size = 10
          failure = 5
          terror_baghdad['bubble_size'] = terror_baghdad['success'].apply(lambda x: failure if x == 0 else successful_size
          terror_baghdad['attacktype1'] = terror_baghdad['attacktype1_txt'].astype('category')
custom_palette = {'Bombing/Explosion':'red', "Hijacking":'blue','Assassination':'green', 'Hostage Taking (Kidna)
                              'Unknown':'cyan', 'Facility/Infrastructure Attack':'Orange', 'Unarmed Assault':'teal','Hostage
          plt.figure(figsize =(8,5))
          sns.scatterplot(y= 'longitude', x = 'latitude', palette = custom_palette, hue = 'attacktype1_txt', data = data
          plt.legend(
              title='Attack Type',
              title_fontsize='7',
              loc='upper left',
               fontsize='7',
              bbox_to_anchor=(1,1),
              frameon=True,
              shadow=True,
          );
```



```
In [561_ value_counts = terror_baghdad['attacktype1_txt'].value_counts().reset_index()
    value_counts.columns = ['attacktype1_txt', 'count']
    plt.figure(figsize =(10,5))
    sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'purple')
    plt.xlabel('')
    plt.ylabel('')
    plt.xticks(range(0,8000,500), rotation = 60);
```



```
In [432... terror_baghdad['attacktype1_txt'].value_counts()
Out[432... attacktype1 txt
                                                  6313
          Bombing/Explosion
                                                   729
          Armed Assault
          Assassination
                                                   366
          Hostage Taking (Kidnapping)
                                                   133
          Unknown
                                                    23
          Facility/Infrastructure Attack
                                                    14
          Hostage Taking (Barricade Incident)
                                                     4
          Unarmed Assault
                                                     2
                                                     1
          Hijacking
          Name: count, dtype: int64
In [433...
         count = terror_baghdad['targtype1_txt'].value_counts().reset_index()
```

```
In [433... count = terror_baghdad['targtype1_txt'].value_counts().reset_index()
    count.columns = ['Target', 'Count']
    data = count
    sns.barplot(x='Count', y = 'Target', data = count, palette ='magma', hue = 'Target')
    plt.xlabel('')
    plt.ylabel('')
    plt.title("Most Targeted Sections");
```


Pakistan

3E +0.00			terror_pak = terror[terror['country_txt']=="Pakistan"]									
35 terr	terror_pak.head()											
5	eventid	iyear	country_txt	region_txt	provstate	city	latitude	longitude	success	suicide		attacktype
585	197011010001	1970	Pakistan	South Asia	Sindh	Karachi	24.891115	67.143311	1	0		Assassin
2217	197402020001	1974	Pakistan	South Asia	Sindh	Karachi	24.891115	67.143311	1	0		Bombing/Explo
2705	197412090001	1974	Pakistan	South Asia	North- West Frontier Province	Peshawar	34.006004	71.537430	1	0		Bombing/Expl
2744	197500000001	1975	Pakistan	South Asia	Punjab	Rawalpindi	33.594013	73.069077	1	0		Bombing/Explo
2795	197502080001	1975	Pakistan	South Asia	North- West Frontier Province	Peshawar	34.006004	71.537430	1	0		Assassin
5 rows	s × 21 columns											
4												
terr	or_pak = terr	or_pak	.dropna(sub	set = ['la	atitude',	'longitud	e'], axis	= 0)				
terredata succe faile	<pre>or_pak = terro or_pak['latito or_pak['latito</pre>	tude'] ude'] 10 e_size	= pd.to_num = pd.to_num	neric(terro	or_pak['la	atitude']) oly(lambda			0 else	successf	ul	size)

In [438... terror_pak_year = terror_iraq.groupby('iyear')['eventid'].count().reset_index()
terror_pak_year.head()

```
        out [438...
        iyear
        eventid

        0
        1975
        1

        1
        1976
        2

        2
        1979
        1

        3
        1980
        6

        4
        1981
        3
```

```
In [439...
plt.figure(figsize = (13,5))
plt.bar(terror_pak_year['iyear'], terror_pak_year['eventid'], color = 'maroon', alpha = 0.6)
plt.xticks(range(1970,2018, 1), rotation = 60);
```

```
4000 -

3500 -

2500 -

2000 -

1500 -

1000 -

500 -

500 -

$\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\in
```

```
In [559_ value_counts = terror_pak['attacktype1_txt'].value_counts().reset_index()
    value_counts.columns = ['attacktype1_txt', 'count']
    plt.figure(figsize =(10,5))
    sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'teal')
    #plt.xticks(rotation = 60 )
    plt.xlabel('')
    plt.ylabel('')
    plt.xticks(range(0,9000,1000), rotation = 60);
```



```
In [441... terror_pak['attacktype1_txt'].value_counts()
Out[441... attacktype1_txt
         Bombing/Explosion
                                                 7588
         Armed Assault
                                                 3845
          Assassination
                                                 1403
         Hostage Taking (Kidnapping)
                                                  819
          Facility/Infrastructure Attack
                                                  298
                                                  234
          Unknown
         Unarmed Assault
                                                   77
         Hostage Taking (Barricade Incident)
                                                   35
          Hijacking
                                                   19
         Name: count, dtype: int64
In [442_ sizes = terror pak['suicide'].value counts()
         labels = ['Non Suicide', 'Suicide']
         colors = ["purple", "orange"]
         plt.pie(sizes, labels=labels, autopct = "%1.1f%%", explode = (0.2,0), colors= colors);
         plt.title("Suicide Attack Vs Non Suicide Attack");
```

Suicide Attack Vs Non Suicide Attack

	gname	eventid
0	Unknown	10852
1	Tehrik-i-Taliban Pakistan (TTP)	1333
2	Baloch Republican Army (BRA)	312
3	Baloch Liberation Front (BLF)	185
4	Baloch Liberation Army (BLA)	181
5	Muttahida Qami Movement (MQM)	174
6	Lashkar-e-Jhangvi	135
7	Lashkar-e-Islam (Pakistan)	123
8	Khorasan Chapter of the Islamic State	96
9	United Baloch Army (UBA)	89
10	Sindhu Desh Liberation Army (SDLA)	57
11	Taliban	54
12	Gunmen	40
13	Taliban (Pakistan)	37
14	Militants	32
15	Baloch Nationalists	31
16	Lashkar-e-Balochistan	31
17	Balochistan Liberation United Front (BLUF)	28
18	Jaish-e-Islam	24
19	Halqa-e-Mehsud	23

```
import numpy as np
data = terror_pak_gp.head(20)
data['eventid'] = np.log(data['eventid'])
sns.barplot(x = 'eventid', y ='gname', palette = 'magma', hue = 'gname', data = data)
plt.xlabel('log of event count')
plt.ylabel('')
plt.title('Attacks Conducted by different groups');
```



```
terror_pak_group10 = terror_pak[terror_pak['gname'].isin(terror_pak['gname'].value_counts()[1:11].index)]
terror_activity = pd.crosstab(terror_pak_group10.iyear, terror_pak_group10.gname)
plt.figure(figsize =(9,6))
for column in terror_activity.columns:
    plt.plot(terror_activity[column], label = column);
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.xticks(range(1990,2018,1),rotation = 60);
```


Cities Terror Activity Analysis

Karachi

```
In [449_ terror_karachi = terror_pak[terror_pak['city']=='Karachi']
  terror_karachi.isna().sum()
```

```
Out[449... eventid
                                  0
          iyear
          country_txt
                                  0
          region txt
          provstate
                                  0
          city
                                  0
          latitude
                                  0
          longitude
                                  0
          success
          suicide
                                  0
          attacktype1
                                  0
          attacktype1_txt
                                  0
          targtype1_txt
          targsubtype1_txt
                                213
          gname
                                  0
          nperps
                               1104
                                 17
          nkill
          nkillter
                               1092
                                 74
          nwound
          nwoundte
                               1100
          property
                                  0
          {\tt bubble\_size}
                                  0
          dtype: int64
In [558... value_counts = terror_karachi['attacktype1_txt'].value_counts().reset_index()
          value_counts.columns = ['attacktype1_txt', 'count']
          plt.figure(figsize =(10,5))
          sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'grey')
          plt.xlabel('')
          plt.ylabel('')
          plt.xticks(range(0,1400,200), rotation = 60);
                         Armed Assault
                          Assassination
                      Bombing/Explosion
              Hostage Taking (Kidnapping)
                       Unarmed Assault
                             Unknown
              Facility/Infrastructure Attack
                             Hijacking
        Hostage Taking (Barricade Incident)
                                     0
                                                  00
                                                                200
In [452... terror karachi['attacktype1 txt'].value counts()
Out[452... attacktype1_txt
          Armed Assault
                                                   1241
          Assassination
                                                    597
                                                    590
          Bombing/Explosion
          Hostage Taking (Kidnapping)
                                                     72
          Unarmed Assault
                                                     54
          Unknown
                                                     52
          Facility/Infrastructure Attack
                                                     40
          Hijacking
                                                      3
          Hostage Taking (Barricade Incident)
                                                      1
          Name: count, dtype: int64
In [453... count = terror_karachi['targtype1_txt'].value_counts().reset_index()
          count.columns = ['Target', 'Count']
          data = count
          sns.barplot(x='Count', y = 'Target', data = count, palette ='Greens', hue = 'Target')
          plt.xlabel('')
          plt.ylabel('')
          plt.title("Most Targeted Sections");
```

Most Targeted Sections

Afghanistan

terror afg.head()

In [463...

terror afg = terror[terror['country txt']=="Afghanistan"]

```
Out[463...
                     eventid iyear country_txt region_txt provstate
                                                                     city
                                                                            latitude
                                                                                    longitude success suicide ...
                                                                                                                   attacktype<sup>2</sup>
          1863 197305010002 1973
                                   Afghanistan South Asia
                                                           Kabul
                                                                    Kabul 34.516895 69.147011
                                                                                                   0
                                                                                                           0 ...
                                                                                                                         Unkr
                                                                                                                    Hostage Ta
          7627 197902140010 1979
                                   Afghanistan South Asia
                                                           Kabul
                                                                    Kabul 34.516895 69.147011
                                                                                                           0 ...
                                                                                                                      (Kidnap)
          9156 197908270005 1979
                                   Afghanistan South Asia
                                                          Ghazni
                                                                   Ghazni 33.542622 68.415329
                                                                                                           0 ... Bombing/Explo
          9218 197909090001
                             1979
                                   Afghanistan South Asia
                                                           Herat
                                                                    Herat 34.346722 62.197315
                                                                                                                    Armed As
         31132 198705310003 1987 Afghanistan South Asia
                                                        Unknown Unknown
                                                                               NaN
                                                                                         NaN
                                                                                                                   Unarmed As
         5 rows × 21 columns
In [464...
         terror_afg = terror_afg.dropna(subset = ['latitude', 'longitude'], axis = 0)
In [465...
         terror_afg = terror_afg.copy()
         terror afg['longitude'] = pd.to numeric(terror afg['longitude'])
         terror_afg['latitude'] = pd.to_numeric(terror_afg['latitude'])
         data = terror_afg
         successful_size = 10
         failure = 5
         terror\_afg[\ 'bubble\_size'] = terror\_afg[\ 'success'].apply(\ lambda \ x: \ failure \ if \ x \ == \ 0 \ else \ successful\_size)
         terror afg['attacktype1'] = terror afg['attacktype1 txt'].astype('category')
         plt.figure(figsize =(10,5))
sns.scatterplot(y= 'longitude', x = 'latitude', palette = custom_palette, hue = 'attacktype1_txt', data = data
         plt.legend(
             title='Attack Type',
```

title_fontsize='7',
loc='upper left',
fontsize='7',

bbox_to_anchor=(1,1),
frameon=True,
shadow=True,

In [466... terror_afg_year = terror_afg.groupby('iyear')['eventid'].count().reset_index()
terror_afg_year.head()

out [466... iyear eventid 0 1973 1 1 1979 3 2 1988 11 3 1989 10 4 1990 2

```
In [467...
plt.figure(figsize = (13,5))
plt.bar(terror_afg_year['iyear'], terror_afg_year['eventid'], color = 'teal', alpha = 0.6)
plt.xticks(range(1970,2018, 1), rotation = 60);
```



```
In [556... value_counts = terror_afg['attacktype1_txt'].value_counts().reset_index()
    value_counts.columns = ['attacktype1_txt', 'count']
    plt.figure(figsize =(10,5))
    sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'black')
    #plt.xticks(rotation = 60 )
    plt.xlabel('')
    plt.ylabel('')
    plt.xticks(range(0,7000,500), rotation = 60);
```



```
In [470... terror_afg['attacktype1_txt'].value_counts()
Out[470... attacktype1_txt
         Bombing/Explosion
                                                 6190
         Armed Assault
                                                 2869
         Unknown
                                                 1161
         Hostage Taking (Kidnapping)
                                                 1000
         Assassination
                                                  951
                                                  353
         Facility/Infrastructure Attack
         Unarmed Assault
                                                   72
         Hostage Taking (Barricade Incident)
                                                   27
         Hijacking
                                                   16
         Name: count, dtype: int64
In [471 sizes = terror afg['suicide'].value counts()
         labels = ['Non Suicide', 'Suicide']
         colors = ["yellow", "red"]
         plt.pie(sizes, labels=labels, autopct = "%1.1f%%", explode = (0.2,0), colors= colors);
         plt.title("Suicide Attack Vs Non Suicide Attack");
```

Suicide Attack Vs Non Suicide Attack

	gname	eventid
0	Taliban	7402
1	Unknown	4744
2	Khorasan Chapter of the Islamic State	241
3	Haqqani Network	84
4	Hizb-I-Islami	42
5	Al-Qaida	19
6	Tehrik-i-Taliban Pakistan (TTP)	15
7	Gunmen	9
8	Afghan Mujahideen	6
9	Afghan Guerrillas	6
10	Guerrillas	6
11	Mahaz Fedai Tahrik Islami Afghanistan	5
12	Opposition Group	5
13	The Northern Alliance (or United Islamic Front	5
14	Hezb-e Wahdat-e Islami-yi Afghanistan	5
15	Militants	4
16	Jamiat-e Islami-yi Afghanistan	3
17	Muslim extremists	3
18	Muslim Militants	3
19	Islamic Movement of Uzbekistan (IMU)	2

```
import numpy as np
data = terror_afg_gp.head(20)
data['eventid'] = np.log(data['eventid'])
sns.barplot(x = 'eventid', y ='gname', palette = 'viridis', hue = 'gname', data = data)
plt.xlabel('log of event count')
plt.ylabel('')
plt.title('Attacks Conducted by different groups');
```



```
terror_afg_group10 = terror_afg[terror_afg['gname'].isin(terror_afg['gname'].value_counts()[0:10].index)]
terror_activity = pd.crosstab(terror_afg_group10.iyear, terror_afg_group10.gname)
plt.figure(figsize = (9,6))
for column in terror_activity.columns:
    plt.plot(terror_activity[column], label = column);
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.xticks(range(1988,2018,1),rotation = 60);
```


Cities Terror Activity Analysis

```
In [485...
terror_afg_city = terror_afg.groupby('city')['eventid'].count().reset_index().sort_values(by = "eventid",ascend
In [487...
data = terror_afg_city.head(20)
    data['eventid'] = np.log(data['eventid'])
    sns.barplot(y = 'city', x= 'eventid', data=data, palette = 'Oranges', hue = terror_afg_city['city'].head(20))
    plt.title("Cities With The Most Terror Activities");
    plt.xlabel('log of event counts')
    plt.ylabel('');
```


Kabul

```
In [492...
terror_kabul = terror['city']=='Karachi']
terror_kabul.isna().sum()
```

```
Out[492... eventid
                                   0
          iyear
          {\tt country\_txt}
                                  0
          region txt
                                  0
          provstate
          city
                                  0
          latitude
                                  1
          longitude
          success
                                  0
          suicide
                                  0
          attacktype1
                                  0
          attacktype1_txt
                                  0
          targtype1_txt
          targsubtype1_txt
                                213
          gname
                                  0
          nperps
                               1104
                                 17
          nkill
          nkillter
                               1092
          nwound
                                 75
          nwoundte
                               1100
          property
                                  0
          dtype: int64
In [509...
          value_counts = terror_kabul['attacktype1_txt'].value_counts().reset_index()
          value counts.columns = ['attacktype1_txt', 'count']
          plt.figure(figsize =(10,5))
          sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'maroon')
          plt.xlabel('')
          plt.ylabel('')
          plt.xticks(range(0,8000,500), rotation = 60);
                         Armed Assault
                          Assassination
                     Bombing/Explosion
              Hostage Taking (Kidnapping) -
                       Unarmed Assault
                             Unknown
              Facility/Infrastructure Attack
                             Hijacking
        Hostage Taking (Barricade Incident)
In [504... terror kabul['attacktype1 txt'].value counts()
Out[504... attacktype1 txt
                                                   1242
          Armed Assault
          Assassination
                                                    597
          Bombing/Explosion
                                                     590
          Hostage Taking (Kidnapping)
                                                     72
          Unarmed Assault
                                                      54
          Unknown
                                                      52
          Facility/Infrastructure Attack
                                                      41
                                                       3
          Hijacking
          Hostage Taking (Barricade Incident)
                                                       1
          Name: count, dtype: int64
In [506... count = terror kabul['targtype1 txt'].value counts().reset index()
          count.columns = ['Target', 'Count']
          data = count
          sns.barplot(x='Count', y = 'Target', data = count, palette ='plasma', hue = 'Target' )
          plt.xlabel('')
```

plt.ylabel('')

plt.title("Most Targeted Sections");

India

```
terror_ind = terror[terror['country txt']=="India"]
In [507...
          terror ind.head()
Out[507...
                      eventid iyear country_txt region_txt
                                                             provstate
                                                                              city
                                                                                     latitude longitude success suicide ...
                                                                                                                               attackty
          1186 197202220004 1972
                                           India South Asia
                                                                  Delhi
                                                                         New Delhi 28.585836 77.153336
                                                                                                                       0 ...
          2764 197501190004 1975
                                           India South Asia
                                                                  Bihar Samastipur 25.863042 85.781004
                                                                                                                       0 ... Bombing/Ex
          3857 197605260001 1976
                                                                  Delhi
                                           India South Asia
                                                                        New Delhi 28.585836 77.153336
                                                                                                               1
                                                                                                                       0 ... Bombing/Ex
          5327 197709280004 1977
                                           India South Asia Maharashtra
                                                                          Bombay 19.075984 72.877656
                                                                                                                       0 ...
                                                                                                                                     Н
                                           India South Asia
          7337 197901130004 1979
                                                                Assam
                                                                         Unknown 26.200605 92.937574
                                                                                                                                 Armed
          5 rows × 21 columns
In [510...
         terror_ind = terror_ind.dropna(subset = ['latitude', 'longitude'], axis = 0)
In [511...
         terror_ind = terror_ind.copy()
          terror ind['longitude'] = pd.to numeric(terror ind['longitude'])
          terror_ind['latitude'] = pd.to_numeric(terror_ind['latitude'])
          data = terror ind
          successful_size = 10
          failure = 5
          terror_ind['bubble_size'] = terror_ind['success'].apply(lambda x: failure if x == 0 else successful_size)
          terror_ind['attacktype1'] = terror_ind['attacktype1_txt'].astype('category')
custom_palette = {'Bombing/Explosion':'red', "Hijacking":'orange','Assassination':'yellow', 'Hostage Taking (Kiellow')
                               'Unknown':'cyan', 'Facility/Infrastructure Attack':'Orange', 'Unarmed Assault':'teal','Hostag
          plt.figure(figsize =(10,5))
          sns.scatterplot(y= 'longitude', x = 'latitude', palette = custom palette, hue = 'attacktype1 txt', data = data
          plt.legend(
               title='Attack Type',
               title_fontsize='7',
               loc='upper left',
               fontsize='7'
               bbox_to_anchor=(1,1),
               frameon=True,
               shadow=True,
```


In [512_ terror_ind_year = terror_ind.groupby('iyear')['eventid'].count().reset_index()
terror_ind_year.head()

out [512... iyear eventid 0 1972 1 1 1975 1 2 1976 1 3 1977 1

1979

19

```
In [513...
plt.figure(figsize = (13,5))
plt.bar(terror_ind_year['iyear'], terror_ind_year['eventid'], color = 'red', alpha = 0.6)
plt.xticks(range(1970,2018, 1), rotation = 60);
```



```
In [514_ value_counts = terror_ind['attacktype1_txt'].value_counts().reset_index()
    value_counts.columns = ['attacktype1_txt', 'count']
    plt.figure(figsize =(10,5))
    sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'maroon')
    #plt.xticks(rotation = 60 )
    plt.xlabel('')
    plt.ylabel('')
    plt.xticks(range(0,20000,1000), rotation = 60);
```



```
In [516... | terror_afg['attacktype1_txt'].value_counts()
Out[516... attacktype1_txt
          Bombing/Explosion
                                                     6190
          Armed Assault
                                                     2869
          Unknown
                                                     1161
                                                     1000
          Hostage Taking (Kidnapping)
          Assassination
                                                      951
          Facility/Infrastructure Attack
                                                      353
          Unarmed Assault
                                                       72
          Hostage Taking (Barricade Incident)
                                                       27
          Hijacking
                                                       16
          Name: count, dtype: int64
In [518. sizes = terror_ind['suicide'].value_counts()
labels = ['Non Suicide', 'Suicide']
          colors = ["teal", "orange"]
          plt.pie(sizes, labels=labels, autopct = "%1.1f%%", explode = (0.4,0), colors= colors);
          plt.title("Suicide Attack Vs Non Suicide Attack");
```

Suicide Attack Vs Non Suicide Attack

	gname	eventid
0	Unknown	4212
1	Communist Party of India - Maoist (CPI-Maoist)	1875
2	Maoists	1394
3	Sikh Extremists	668
4	United Liberation Front of Assam (ULFA)	357
5	Hizbul Mujahideen (HM)	198
6	Lashkar-e-Taiba (LeT)	187
7	National Democratic Front of Bodoland (NDFB)	174
8	Garo National Liberation Army	166
9	Muslim Separatists	117
10	People's War Group (PWG)	96
11	National Socialist Council of Nagaland-Isak-Mu	89
12	People's Liberation Army (India)	87
13	Muslim Militants	86
14	National Liberation Front of Tripura (NLFT)	78
15	Bodo Militants	78
16	Kashmiri extremists	77
17	Separatists	75
18	Gorkha Janmukti Morcha (GJM)	67
19	People's Liberation Front of India	67

```
import numpy as np
data = terror_ind_gp.head(20)
data['eventid'] = np.log(data['eventid'])
sns.barplot(x = 'eventid', y ='gname', palette = 'inferno', hue = 'gname', data = data)
plt.xlabel('log of event count')
plt.ylabel('')
plt.title('Attacks Conducted by different groups');
```



```
In [528...
terror_ind_gp10 = terror_ind[terror_ind['gname'].isin(terror_ind['gname'].value_counts()[1:11].index)]
terror_activity = pd.crosstab(terror_ind_gp10.iyear,terror_ind_gp10.gname)
plt.figure(figsize =(9,6))
for column in terror_activity.columns:
    plt.plot(terror_activity[column], label = column);
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.xticks(range(1978,2019,2),rotation = 60);
```


Cities Terror Activity Analysis

Srinagar

```
In [542... terror_srinagar = terror[terror['city']=='Srinagar']
terror_srinagar.isna().sum()
```

```
0
Out[542... eventid
                                 0
          iyear
          \verb"country_txt"
                                 0
          region txt
                                 0
                                 0
          provstate
          city
                                 0
                                 0
          latitude
          longitude
                                 0
          success
                                 0
          suicide
                                 0
                                 0
          attacktype1
          attacktype1_txt
                                 0
                                 0
          targtype1_txt
          targsubtype1_txt
                                46
                                 0
          gname
          nperps
                               491
                                14
          nkill
          nkillter
                               352
          nwound
                                20
          nwoundte
                               364
          property
                                 0
          dtype: int64
In [549... value_counts = terror_srinagar['attacktype1_txt'].value_counts().reset_index()
          value counts.columns = ['attacktype1_txt', 'count']
          plt.figure(figsize =(10,5))
          sns.barplot(y = 'attacktype1_txt', x = 'count', data = value_counts, color = 'yellow')
          plt.xlabel('')
          plt.ylabel('')
          plt.xticks(range(0,400,50), rotation = 60);
                Bombing/Explosion
                    Armed Assault
                     Assassination
        Hostage Taking (Kidnapping)
         Facility/Infrastructure Attack
                  Unarmed Assault
                        Unknown
                        Hijacking
                                                                                    00
                                0
                                             30
                                                          200
                                                                       150
                                                                                                 50
                                                                                                              000
In [550... terror srinagar['attacktype1 txt'].value counts()
Out[550... attacktype1_txt
          Bombing/Explosion
                                              334
          Armed Assault
                                              150
                                               91
          Assassination
          Hostage Taking (Kidnapping)
                                               35
          Facility/Infrastructure Attack
                                               23
          Unarmed Assault
                                               22
          Unknown
                                                2
          Hijacking
                                                1
          Name: count, dtype: int64
In [552... count = terror_ind['targtype1_txt'].value_counts().reset_index()
          count.columns = ['Target', 'Count']
          data = count
          sns.barplot(x='Count', y = 'Target', data = count, palette ='Spectral', hue = 'Target')
          plt.xlabel('')
          plt.ylabel('')
          plt.title("Most Targeted Sections");
```


Worldwide Analysis

```
terror_world_gp10 = terror['gname'].isin(terror['gname'].value_counts()[1:11].index)]
terror_activity = pd.crosstab(terror_world_gp10.iyear,terror_world_gp10.gname)
plt.figure(figsize = (9,6))
for column in terror_activity.columns:
    plt.plot(terror_activity[column], label = column);
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.xticks(range(1970,2019,2),rotation = 60);
```



```
In [588... world_attacks_kills = terror.groupby('country_txt')['nkill'].sum().reset_index()
    worldwide_attacks = terror.groupby('country_txt')['eventid'].count().reset_index()
    merged = pd.merge(world_attacks_kills, worldwide_attacks, on = 'country_txt')
    merged=merged.rename(columns = {'country_txt' :'Country', 'nkill' : 'killed_Count', 'eventid':'Terror_Activity_
    merged.head()
```

)ut[588		Country	killed_Count	Terror_Activity_Count
	0	Afghanistan	39384.0	12731
	1	Albania	42.0	80
	2	Algeria	11066.0	2743
	3	Andorra	0.0	1
	4	Angola	3043.0	499

```
In [600...
bar_width = 0.4
merged = merged.sort_values(by = 'Terror_Activity_Count', ascending = False).reset_index(drop=True).head(10)
r1=np.arange(len(merged['Country']))
```

```
r2=[x+bar_width for x in r1]
plt.bar(r1, merged['Terror_Activity_Count'], width = bar_width, color = 'cyan', label = "terror activity count")
plt.bar(r2, merged['killed_Count'], width = bar_width, color = 'teal', label = "killed count")
plt.xticks([r + bar_width/2 for r in r1], merged['Country'], rotation=60);
plt.xlabel('Country', fontweight='bold')
plt.ylabel('Count', fontweight='bold')
plt.title('Top 10 Countries by Terror Activity and Killed Count', fontweight='bold')
plt.legend()
```

Out[600... <matplotlib.legend.Legend at 0x27af173faa0>

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js