ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa C

a) 8/2/1

b) 4/5/3

c) 4/4/1

	Grupa C									
1	Razmotrite sklop koji na ulaz dobiva 4-bitni podatak (a,b,c,d) a na izlazu generira zaštitne bitove tog podatka uporabom Hammingovog koda uz neparni paritet. Neka su zaštitni bitovi (c_1,c_2,c_4) . Želimo li jednim binarnim dekoderom (i sklopom ILI) realizirati generiranje zaštitnog bita c_2 , koji je minimalni dekoder s kojim to možemo ostvariti?									
	a) 1/2 b) 3/8 c) 2/4 d) 4/16 e) 5/32 f) ništa od navedenoga									
2	Sklop za oduzimanje dvaju 4-bitnih binarnih brojeva izgrađen je pomoću 4 potpuna zbrajala i 4 invertora. Kašnjenje invertora iznosi 10 ns, a kašnjenje svakog od izlaza potpunog zbrajala (S _i i C _i) iznosi 30 ns. Koliko (u nanosekundama) iznosi ukupno kašnjenje cijeloga sklopa?									
	a) 40 b) 70 c) 280 d) 160 e) 130 f) ništa od navedenoga									
3	Pomoću 4 multipleksora 4/1 izgrađen je sklop za posmak koji, ovisno o upravljačkim signalima A ₁ i A ₀ podržava sljedeće operacije: za A ₁ A ₀ =00 nema posmaka, za A ₁ A ₀ =01 obavlja kružni posmak u desno za 1 mjesto, za A ₁ A ₀ =10 obavlja kružni posmak u lijevo za 1 mjesto te za A ₁ A ₀ =11 obavlja aritmetički posmak u desno za 1 mjesto. Signal A ₁ spojen je na adresne ulaze više težine svih multipleksora, a A ₀ na adresne ulaze niže težine. Ulazi u sklop za posmak označeni su s DI ₃ do DI ₀ , a izlazi s DO ₃ do DO ₀ . Što je potrebno spojiti na podatkovne ulaze d ₃ d ₂ d ₁ d ₀ multipleksora koji generira izlaz DO ₃ ?									
	a) DI ₃ DI ₂ DI ₀ DI ₃ c) DI ₂ DI ₁ DI ₀ DI ₃ e) 0 DI ₃ DI ₂ DI ₁ DI ₀ b) DI ₃ DI ₂ DI ₁ DI ₀ d) DI ₃ DI ₂ DI ₁ 0 f) ništa od navedenoga									
4	Zadana je Booleova funkcija $f(A,B,C,D) = \sum m(5,6,7,8,9,10,11,15)$ koju realiziramo u obliku sume									
	produkata. Broj primarnih implikanata / broj minimalnih oblika te funkcije je:									
	a) 4/3 e) 5/2									
	b) 8/2 d) 5/1 f) ništa od navedenoga									
5	Sklop za izdvojeno generiranje bita prijenosa:									
	a) u kombinaciji s potpunim zbrajalom omogućuje zbrajanje i oduzimanje binarnih brojeva b) ubrzava rad jednobitnog potpunog zbrajala c) može samostalno zbrojiti dva broja brže od paralelnog zbrajala d) ubrzava rad paralelnog zbrajala e) omogućuje zbrajanje u BCD kodu f) ništa od navedenoga									
6	Funkcije $f(A,B,C,D) = AB + AD + BCD + \overline{A}\overline{B}C\overline{D}$ i									
	$g(A,B,C,D) = \sum m(0,1,4,6,8,12,14,15)$ potrebno je realizirati sklopom na C — A1									
	slici. Što je potrebno upisati u memorijske lokacije počevši od nulte? Rezultati su dani u heksadekadskom sustavu. A0 d3 d2 d1 d0 A A A A A A A A A A A A A									
	a) 372768EF b) A3778110 c) 3684747D d) 013ABC01 e) 37877ABC f) ništa od navedenoga									
7	Funkcije $f(A,B,C,D)=\sum m(0,1,4,5,14,15)$, $g(A,B,C,D)=\sum m(2,3,4,5,14,15)$ i $h(A,B,C,D)=\sum m(0,1,2,3,14,15)$ potrebno je realizirati sklopom PLA minimalnih dimenzija (provjerite koliko je <i>doista</i> ulaza potrebno). <i>Broj ulaza/broj izlaza polja I/broj izlaza</i> je:									

d) 3/4/3

e) 3/5/1

f) ništa od navedenoga

14	Memorijski modul ima kapacitet 1024 riječi × 8 bita. Ako memorijsko polje tog modula ima 3D										
	organizaciju, koliko će ukupno ulaza imati korišteni adresni dekoderi?										
	a) 8	b) 1024	c) 13	d) 512	e) 10	f) ništa od navedenoga					

15	Statičku memoriju kapaciteta 512 riječi × 32 bita potrebno je ostvariti uporabom memorijskih modula kapaciteta 32 riječi × 4 bita. Koliko je ukupno potrebno takvih memorijskih modula?									
	a) 8	a) 8 b) 16 c) 128 d) 64			e) 32	f) ništa od	d navedenoga			
16	Huffman-Mealyjeva metoda koristi se za: a) pretvorbu koda b) minimiziranje broja stanja/memorije c) izračun vremena raskoraka d) pretvorbu Mooreovog automata u Mealyjev e) minimizaciju višeizlaznih funkcija f) ništa od navedenoga									
17	Sinkroni sekvencijski sklop se sastoji od tri T bistabila i ROM-a									
	8×3 gdje se na bistabila dovo	dovode izlazi b a (kao na slici)	e Q2 —	a2	d2 — T2					
		ogramirati KOIV sklop prolazi kr		ajniže memorijsk a 0 7 5 3 2 4 1?	e Q1 —	a1 ROM 8x3	d1 - T1			
				u stanje 0. Bista	bil Q0 —	a0	d0 T0			
	T ₂ pamti bit na	ajveće težine.								
		a) 7,1,6,1,5,6,6,2 b) 7,0,4,2,1,3,0,5 c) 5,0,3,1,2,4,0,7 d) 7,2,6,1,6,5,4,5			,	e) 7,5,3,2,4,1,0,6 f) ništa od navedenoga				
1.0	b) 7,0,4,2,1,3				,					
18	Asinkrono dekadsko brojilo ostvareno je uporabom bistabila T s asinkronim ulazom za brisanje (ovi ulazi spojeni su zajedno i služe za prekid ciklusa; prekid se aktivira jednim sklopom I). Koliko iznosi period signala takta za maksimalnu frekvenciju na kojoj će sklop i dalje raditi ispravno ako je poznato t _{db} =20 ns, t _{hold} =10 ns, t _{setup} =20 ns, t _{dls} =10 ns, t _{očitanja} =15 ns?									
	a) 65 ns	b) 95 ns	c) 85 ns	d) 75 ns	e) 105 ns	f) ništa od	d navedenoga			
19	Paralelni AD pretvornik izgrađen je od sedam naponskih komparatora, isto toliko D-bistabila te jednog pretvornika kôda koji termometarsku skalu s izlaza bistabila pretvara u binarno kodiranu vrijednost. Napon napajanja U_{REF} iznosi 7V. Otpornici u otpornom djelitelju na ulazu pretvornika na zaključenjima prema napajanju i masi iznose 1 k Ω , a u ostatku otporne mreže 2 k Ω . Koju vrijednost će na izlazu pokazati pretvornik koda za ulazni napon U_a =0,9 V?									
	a) 0	b) 7	c) 2	d) 4	e) 1	f) ništa od	d navedenoga			
20	U izvedbi <i>n</i> -bitnog digitalno-analognog pretvornika (za prirodni binarni kod) s otpornom mrežom s težinski raspoređenim otporima, broj <i>različitih</i> vrijednosti otpornika upotrijebljenih u otpornoj mreži je:									
	a) jedan	b) dva	c) <i>n</i>	d) $\log_2(n)$	e) 2 <i>n</i>	f) ništa od	d navedenoga			

Ako se rješavaju, sljedeća dva zadatka moraju biti riješena u unutrašnjosti košuljice, kako je napisano uz svaki od zadataka; u suprotnom, rješenje se neće priznati. Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

Zadatak 21. Riješiti na unutrašnjosti košuljice, s lijeve strane.

4-bitno brojilo s ukrštenim prstenom (Johnsonnovo brojilo) ima izlaze Q₀Q₁Q₂Q₃. U registru se podatak posmiče od Q₀ prema Q₃. Bistabili reagiraju na padajući brid signala takta, a vrijeme kašnjenja možete zanemariti. Na izlaze tog brojila spojen je digitalno-analogni težinski pretvornik (težine 8421) i to tako da je Q₃ doveden kao podatak najveće težine. Pretvornik je izveden tako da mu je napon kvanta jednak -0,25V. Na brojilo se dovodi simetrični takt periode 1μs, i u t=0 nastupa njegov rastući brid. Po uključenju, stanje brojila je 0. Nacrtajte vremenski dijagram koji prikazuje kretanje izlaznog napona pretvornika od t=0 do t=10 μs.

Zadatak 22. Riješiti na unutrašnjosti košuljice, s desne strane.

Na raspolaganju je model sinkronog bistabila T, okidanog padajućim bridom signala takta:

```
ENTITY sintff IS PORT(
   t, cp: IN std_logic;
   q: OUT std_logic);
END sintff;
```

Koristeći tu komponentu, napišite strukturni VHDL model 4-bitnog asinkronog binarnog brojila. Bit izlaza s većim indeksom mora predstavljati bit izlaza veće težine.