### Determinant

The determinant of  $\mathbf{A} \in \mathbb{R}^{m \times m}$ , denoted by  $det(\mathbf{A})$ , is defined by induction

- For m = 1:  $\det(\mathbf{A}) = a_{11}$   $A = A_{11}$
- For  $m \ge 2$ :
  - Let  $\mathbf{A}_{ij} \in \mathbb{R}^{(m-1)\times (m-1)}$  be a submatrix of  $\mathbf{A}$  obtained by deleting the ith row and jth column of  $\mathbf{A}$
  - Let  $c_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$
  - Cofactor expansion:

$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij} c_{ij}, \text{ for any } i = 1, ..., m$$

$$\det(\mathbf{A}) = \sum_{i=1}^{m} a_{ij} c_{ij}, \text{ for any } j = 1, ..., m$$

where  $c_{ij}$ 's are the cofactors and  $det(\mathbf{A}_{ij})$ 's are the minors



# Determinant (Cont'd)

A singular

- Fact: Ax = 0 for some  $x \neq 0$  if and only if det(A) = 0
- Interpretation:  $|\det(\mathbf{A})|$  is the volume of the parallelepiped  $\mathcal{P} = \{\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i \mid \alpha_i \in [0,1] \ \forall i=1,\ldots,m\}$

A=[a1 ··· am]



# Determinant (Cont'd)

#### Let **A**. **B** $\in \mathbb{R}^{m \times m}$

• 
$$det(\mathbf{A}) = det(\mathbf{A}^T)$$

• 
$$\det(\alpha \mathbf{A}) = \alpha^m \det(\mathbf{A})$$
 for any  $\alpha \in \mathbb{R}$   $\det(A)$ .  $\det(A^{-1})$   
•  $\det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A})$  for any nonsingular  $\mathbf{A} = \det(AA^{-1}) = \det(A^{-1})$ 

• 
$$det(\mathbf{A}^{-1}) = 1/det(\mathbf{A})$$
 for any nonsingular  $\mathbf{A} = det(\mathbf{A}\mathbf{A}^{-1}) = det(\mathbf{A}\mathbf{A}^{-1})$ 

• 
$$det(B^{-1}AB) = det(A)$$
 for any nonsingular B

• 
$$\det(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = \det(\mathbf{A})$$
 for any nonsingular  $\mathbf{B} = \mathbf{A}$   
•  $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\tilde{\mathbf{A}}$ , where  $\tilde{a}_{ij} = c_{ji}$  (the cofactor) for all  $i, j$  ( $\mathbf{A}$  is nonsingular)

A is the adjoint or adjugate matrix of A

# Determinant (Cont'd)

• If  $\mathbf{A} \in \mathbb{R}^{m \times m}$  is triangular, either upper or lower,

$$\det(\mathbf{A}) = \prod_{i=1}^{m} a_{ii}$$

- Proof: Apply cofactor expansion inductively
- If  $\mathbf{A} \in \mathbb{R}^{m \times m}$  is *block* upper or lower triangular

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

where **B** and **D** are square (and can be of different sizes), then

$$det(\mathbf{A}) = det(\mathbf{B}) det(\mathbf{D})$$

### **Vector Norms**

A function  $f: \mathbb{R}^n \to \mathbb{R}$  is a vector norm if all of the following hold:

- 1.  $f(\mathbf{x}) \ge 0$  for any  $\mathbf{x} \in \mathbb{R}^n$
- 2.  $f(\mathbf{x}) = 0$  if and only if  $\mathbf{x} = \mathbf{0}$
- 3.  $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$  for any  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- 4.  $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$  for any  $\alpha \in \mathbb{R}$ ,  $\mathbf{x} \in \mathbb{R}^n$

- Usually || · || denotes a norm
- $\|\mathbf{x}\|$  represents the "length" of vector  $\mathbf{x}$
- $\|\mathbf{x} \mathbf{y}\|$  represents the "distance" of vectors  $\mathbf{x}$ ,  $\mathbf{y}$

# Vector Norms (Cont'd)

### Examples:

- 2-norm or Euclidean norm:  $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = (\mathbf{x}^T \mathbf{x})^{1/2}$
- 1-norm or Manhattan norm:  $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- $\infty$ -norm:  $\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$
- *p*-norm,  $p \ge 1$ :  $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

# $\ell_p$ Function

$$f_p(\mathbf{x}) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \qquad p > 0$$





- (a) Region of  $f_p(\mathbf{x})=1,\ p\geq 1.$  (b) Region of  $f_p(\mathbf{x})=1,\ p\leq 1.$ 
  - Note that  $f_p$  is *not* a norm for 0
  - when  $p \to 0$ ,  $f_p$  is like the cardinality function  $\operatorname{card}(\mathbf{x}) = \sum_{i=1}^{n} \mathbb{1}\{x_i \neq 0\}$ , where  $\mathbb{1}\{x \neq 0\} = 1$  if  $x \neq 0$  and  $\mathbb{1}\{x \neq 0\} = 0$  if x = 0



### Inner Product

The inner product of two vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} y_i x_i = \mathbf{y}^T \mathbf{x} = \chi^T \psi = \langle y, \chi \rangle$$

- $\mathbf{x}$ ,  $\mathbf{y}$  are said to be orthogonal to each other if  $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
- $\mathbf{x}$ ,  $\mathbf{y}$  are said to be parallel if  $\mathbf{x} = \alpha \mathbf{y}$  for some  $\alpha$ 
  - $\langle \mathbf{x}, \mathbf{y} \rangle = \pm ||\mathbf{x}||_2 ||\mathbf{y}||_2$  for parallel  $\mathbf{x}, \mathbf{y}$

The angle between two vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  is defined as

$$\theta = \cos^{-1}\left(\frac{\mathbf{y}'\mathbf{x}}{\|\mathbf{x}\|_2\|\mathbf{y}\|_2}\right)$$

- $\mathbf{x}, \mathbf{y}$  are orthogonal if  $\theta = \pm \pi/2$
- $\mathbf{x}$ ,  $\mathbf{y}$  are parallel if  $\theta = 0$  or  $\theta = \pm \pi$

## Hölder Inequality

Hölder Inequality: For any p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Proof. **Young's Inequality**: For any  $a, b \ge 0$  and p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ ,

# Hölder Inequality (Cont'd)

Hölder Inequality: For any p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Cauchy-Schwartz Inequality: Let 
$$p = q = 2$$
 in Hölder Inequality  $\chi^T y = ||\chi||_2 ||y||_2 ||x||_2 ||x$ 

where the equality holds if and only if  $\mathbf{x} = \alpha \mathbf{y}$  for some  $\alpha \in \mathbb{R}$ 

• Hölder Inequality holds for p = 1 and  $q = \infty$ 

$$|\mathbf{x}^T \mathbf{y}| \le \sum_{i=1}^n |x_i y_i| \le \max_j |y_j| (\sum_{i=1}^n |x_i|) = ||\mathbf{x}||_1 ||\mathbf{y}||_{\infty}.$$

## Equivalence of Norms

All norms on  $\mathbb{R}^n$  are equivalent in the sense that if  $\|\cdot\|_{\alpha}$  and  $\|\cdot\|_{\beta}$  are norms on  $\mathbb{R}^n$ , then there exist  $c1, c_2 > 0$  such that

$$c_1 \|\mathbf{x}\|_{\alpha} \le \|\mathbf{x}\|_{\beta} \le c_2 \|\mathbf{x}\|_{\alpha}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$
- $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$

### Projections on Subspaces

Let  $S \subseteq \mathbb{R}^m$  be a nonempty closed set (not necessarily a subspace) Given  $\mathbf{y} \in \mathbb{R}^m$ , a projection of  $\mathbf{y}$  onto S is any solution to

$$\min_{\boldsymbol{z} \in \mathcal{S}} \ \|\boldsymbol{z} - \boldsymbol{y}\|_2^2$$

- a point in S that is closest to y
  - Projection of  $\mathbf{y} \in \mathcal{S}$  onto  $\mathcal{S}$  is  $\mathbf{y}$  itself
- If for any  $\mathbf{y} \in \mathbb{R}^m$ , there always exists a unique projection of  $\mathbf{y}$  onto S, then we denote

$$\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_{2}^{2}$$

and  $\Pi_{\mathcal{S}}$  is called the projection (or projection operator) of **y** onto  $\mathcal{S}$ 

### Projection Theorem

### Theorem (Projection Theorem)

Let S be a subspace of  $\mathbb{R}^m$ .

- 1. For any  $\mathbf{y} \in \mathbb{R}^m$ , there exists a unique vector  $\mathbf{y}_s \in \mathcal{S}$  that minimizes  $\|\mathbf{z} \mathbf{y}\|_2^2$  over  $\mathbf{z} \in \mathcal{S}$  (so that we can use the notation  $\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} \mathbf{y}\|_2^2$ ).
- 2. Given  $\mathbf{y} \in \mathbb{R}^m$ ,

$$\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}) \iff \mathbf{y}_s \in \mathcal{S}, \quad \mathbf{z}^T(\mathbf{y}_s - \mathbf{y}) = 0 \text{ for all } \mathbf{z} \in \mathcal{S}.$$

- Statement 1 of Projection Theorem also holds for closed convex set (more general)
  - Very important to convex optimization

# Projection Theorem (Cont'd)



## Orthogonal Complement

Let  $S \subseteq \mathbb{R}^m$  be a nonempty closed set The orthogonal complement of S is defined as

$$S^{\perp} = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{z}^T \mathbf{y} = 0 \text{ for all } \mathbf{z} \in S \}$$

- · S¹ is a subspace (Why?) IN nother & i's subspace or not
- Any  $\mathbf{z} \in \mathcal{S}$  and any  $\mathbf{y} \in \mathcal{S}^{\perp}$  are orthogonal
- Either  $S \cap S^{\perp} = \{0\}$  or  $S \cap S^{\perp} = \emptyset$  Eacts:
- Facts:
  - $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{T})$
  - $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}^T)^{\perp}$
  - Recall that range and nullspace of a matrix are subspaces

For any 
$$x \in \mathcal{N}(A^T)$$
 and  $y \in \mathcal{R}(A)$ ,  
 $A^T x = D$   $\exists z s.t. y = Az$ .  
 $\langle y, x \rangle = y^T x = (Az)^T x = z^T A^T x = 0$ 

### Orthogonal Complement of Subspace

#### **Theorem**

Let  $S \subseteq \mathbb{R}^m$  be a subspace. For any  $\mathbf{y} \in \mathbb{R}^m$ , there uniquely exists  $(\mathbf{y}_s, \mathbf{y}_c) \in S \times S^{\perp}$  such that

$$\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c$$
.

In particular,  $\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}), \mathbf{y}_c = \mathbf{y} - \Pi_{\mathcal{S}}(\mathbf{y}) = \Pi_{\mathcal{S}^{\perp}}(\mathbf{y}).$ 

• Proof sketch: From Statement 2 of the Projection Theorem,

$$\mathbf{y}_s \in \mathcal{S}, \ \mathbf{y} - \mathbf{y}_s \in \mathcal{S}^{\perp} \iff \mathbf{y}_s \in \Pi_{\mathcal{S}}(\mathbf{y})$$



# Orthogonal Complement of Subspace (Cont'd)

Let  $\mathcal{S} \subseteq \mathbb{R}^m$  be a subspace. It follows from the above theorem that

- $S + S^{\perp} = \mathbb{R}^m$
- $\dim S + \dim S^{\perp} = m$ 
  - Proof:  $\dim S + \dim S^{\perp} = \dim(S + S^{\perp}) + \dim(S \cap S^{\perp}) = \dim(S + S^{\perp}) + 0 = \dim\mathbb{R}^m$
- $(S^{\perp})^{\perp} = S$

**Example**: Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$ 

$$\dim \mathcal{Z}(A^T) + \dim \mathcal{N}(A) = \mathcal{N}$$

- $\dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{R}(\mathbf{A})^{\perp} = \dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}^{T}) = m$
- Rank-Nullity Theorem:  $\dim \mathcal{N}(\mathbf{A}) = n \dim \mathcal{R}(\mathbf{A}^T) = n \operatorname{rank}(\mathbf{A})$

## Orthogonal and Orthonormal Vectors

A collection of *nonzero* vectors  $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$  are said to be

- orthogonal if  $\mathbf{a}_i^T \mathbf{a}_j = 0$  for all i, j with  $i \neq j$
- orthonormal if they are orthogonal and  $\|\mathbf{a}_i\|_2 = 1$  for all i

Same definition applies to complex  $\mathbf{a}_i$ 's by replacing transpose (T) with Hermitian transpose (H)

**Example**: Any vectors from  $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$  are orthonormal and  $\{\mathbf{e}_1, \dots, \mathbf{e}_m\} \subset \mathbb{R}^m$  is an orthonormal basis for  $\mathbb{R}^m$ 

Orthonormal vectors are linearly independent or house for all

# Orthogonal and Orthonormal Vectors (Cont'd)

**Fact**: Let  $\{a_1, \ldots, a_n\} \subset \mathbb{R}^m$  be an orthonormal set of vectors and  $\mathbf{y} \in \operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ . Then, the coefficient  $\alpha$  for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is uniquely given by 
$$\alpha_i = \mathbf{a}_i^T \mathbf{y}$$
,  $i = 1, ..., n$ 

$$\mathbf{y}$$

$$\mathbf{a}_i^T \mathbf{y} = \|\mathbf{a}_i\|_2 \cdot \|\mathbf{y}\|_2 \cdot \cos\theta_1$$



**Fact**: Every subspace S with  $S \neq \{0\}$  has an orthonormal basis

It can be shown using Gram-Schmidt



## Orthogonal Matrix

#### A real matrix Q is said to be

- orthogonal if it is square and its columns are orthonormal
- semi-orthogonal if its columns are orthonormal



a semi-orthogonal Q must be tall or square

A complex matrix  $\mathbf{Q}$  is said to be unitary if it is square and its columns are orthonormal, and semi-unitary if its columns are orthonormal

**Example**: Consider the transformation y = Qx with

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad \text{rotation counterclock-wise by } \theta \in [0, 2\pi)$$

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$$
 reflection about the  $\theta/2$  line,  $\theta \in [0, 2\pi)$ 

The rotation and reflection matrices are orthogonal



# Orthogonal Matrix (Cont'd)

#### Facts:

•  $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$  and  $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$  for orthogonal  $\mathbf{Q}$ 

$$Q^T = Q^{-1}$$

- $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$  (but *not* necessarily  $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$ ) for semi-orthogonal  $\mathbf{Q}$
- $\|\mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$  for orthogonal  $\mathbf{Q}$ 
  - For example, rotation and reflection do not change the vector length
- For any tall and semi-orthogonal matrix  $\mathbf{Q}_1 \in \mathbb{R}^{n \times k}$ , there exists a matrix  $\mathbf{Q}_2 \in \mathbb{R}^{n \times (n-k)}$  such that  $[\mathbf{Q}_1 \mathbf{Q}_2]$  is orthogonal

### Matrix Product Representations

Let  $\mathbf{A} \in \mathbb{R}^{m \times k}$  and  $\mathbf{B} \in \mathbb{R}^{k \times n}$ . Consider

$$C = AB$$

where  $c_i$  and  $b_i$  are the *i*th columns of C and B

• Inner-product representation: Let  $\tilde{\mathbf{a}}_i^T \in \mathbb{R}^{1 \times k}$  be the *i*th row of **A** 

$$\mathbf{AB} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \\ \vdots \\ \tilde{\mathbf{a}}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \mathbf{b}_1 & \cdots & \tilde{\mathbf{a}}_1^T \mathbf{b}_n \\ \vdots & & \vdots \\ \tilde{\mathbf{a}}_m^T \mathbf{b}_1 & \cdots & \tilde{\mathbf{a}}_m^T \mathbf{b}_n \end{bmatrix}$$

Thus,

$$c_{ij} = \tilde{\mathbf{a}}_i^T \mathbf{b}_i$$
, for all  $i, j$