Andrew Gard - equitable.equations@gmail.com

Tidy Data

There are many possible ways to record data in a spreadsheet.

1. One observation per row

- 1. One observation per row
- 2. One variable per column

- 1. One observation per row
- 2. One variable per column
- 3. One type of observation per data set

- 1. One observation per row
- 2. One variable per column
- 3. One type of observation per data set

In this context, a *variable* is something that is measured across all experimental units and an *observation* is the collection of all variable measurements for a single unit.

- 1. One observation per row
- 2. One variable per column
- 3. One type of observation per data set

In this context, a *variable* is something that is measured across all experimental units and an *observation* is the collection of all variable measurements for a single unit.

An immediate advantage to tidy data is that new observations (for instance, subjects in a medical trial) can easily be added as rows at the bottom of an existing data set, and new variables (like subject ID numbers) can easily be added as columns at the right.

The mtcars data set, which comes pre-loaded with R, is tidy.

🗦 🖒 🔊 🖓 Fil	ter								Q		
*	mpg [‡]	cyl ‡	disp ‡	hp ‡	drat ‡	wt ‡	qsec ‡	vs ‡	am ‡	gear ‡	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	

Each row represents a single car. Each column represents a single characteristic of those cars.

Ideally, every tidy data set should be accompanied by a data dictionary that explains the meaning of each variable (column) in the data set, including the units of measure.

Ideally, every tidy data set should be accompanied by a **data dictionary** that explains the meaning of each variable (column) in the data set, including the units of measure. A good data dictionary should also include information about the set itself: when, how, and by whom the data was recorded.

Motor Trend Car Road Tests

Description

The data was extracted from the 1974 *Motor Trend* US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 (numeric) variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] gsec 1/4 mile time
- [, 8] vs Engine (0 = V-shaped, 1 = straight)
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors

The diamonds data set in R's ggplot2 package is also tidy.

⟨□⇔⟩ ø□ ¬¬ Filter										
٠	carat ‡	cut [‡]	color ‡	clarity [‡]	depth ‡	table ‡	price ‡	x \$	y ‡	z
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.4
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.3
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.3
4	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.6
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.7
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.4
7	0.24	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.4
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.5
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.4
0	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.3

Each row represents a single round-cut diamond. Each column represents a single characteristic of those diamonds.

On the other hand, the construction data set in Rś tidyr package is not tidy.

	2 7	ilter						Q	
•	‡ Year	\$ Month	1 unit	2 to 4 units	5 units or more	Northeast	\$ Midwest	South	West
1	2018	January	859	NA	348	114	169	596	33
2	2018	February	882	NA	400	138	160	655	33
3	2018	March	862	NA	356	150	154	595	33
4	2018	April	797	NA	447	144	196	613	30
5	2018	May	875	NA	364	90	169	673	31
6	2018	June	867	NA	342	76	170	610	36
7	2018	July	829	NA	360	108	183	594	31
8	2018	August	939	NA	286	90	205	649	28
9	2018	September	835	NA	304	117	175	560	29

On the other hand, the construction data set in Rs tidyr package is not tidy.

In this data set, two variables, Number of units and Region have been recorded across multiple columns.

Untidy data isn't necessarily bad. Real-world spreadsheets often use field-specific conventions to aid with data entry, readability, or both. These conventions might include annotations, special formatting, or multiple types of observations in a single set, to name just a few.

Untidy data isn't necessarily bad. Real-world spreadsheets often use field-specific conventions to aid with data entry, readability, or both. These conventions might include annotations, special formatting, or multiple types of observations in a single set, to name just a few.

However, the tidy format is perfectly suited to data science, which seeks to explore relationships between variables across large collections of observations. Whether you're creating data visualization or building sophisticated predictive models, having variables in individual columns and observations in individual rows will make your life just a little bit easier.

A particularly common form of untidy data is the **contingency table**, which shows counts for various combinations of categorical variables.

		ho			
		rent	mortgage	own	Total
onn +	individual	3496	3839	1170	8505
$\mathtt{app}_{\mathtt{-}}\mathtt{type}$	$_{ m joint}$	362	950	183	1495
	Total	3858	4789	1353	10000

(table taken from *OpenIntro Statistics* by Diez, Çetinkaya-Rundel, and Barr)

A particularly common form of untidy data is the **contingency table**, which shows counts for various combinations of categorical variables.

		nomeownersnip			
		rent	mortgage	own	Total
ann +	individual	3496	3839	1170	8505
$\mathtt{app}_{-}\mathtt{type}$	$_{ m joint}$	362	950	183	1495
	Total	3858	4789	1353	10000

(table taken from OpenIntro Statistics by Diez, Çetinkaya-Rundel, and Barr)

This table includes variables in both its rows and columns. Moreover, its cells refer to a third piece of information entirely, the number of loan applicants with each combination of variable values.

				-r	
		rent	mortgage	own	Total
onn +::no	individual	3496	3839	1170	8505
$\mathtt{app}_{\mathtt{-}}\mathtt{type}$	$_{ m joint}$	362	950	183	1495
	Total	3858	4789	1353	10000

homeownership

A more tidy version of this table would have three columns: homeownership app_type, and count.

 app_-type

rent	mortgage	own	Total
3496	3839	1170	8505
362	950	183	1495
3858	4789	1353	10000
	3496 362	3496 3839 362 950	3496 3839 1170 362 950 183

homeownership

A more tidy version of this table would have three columns: homeownership app_type, and count.

app_type	homeownership	count
individual	rent	3496
individual	mortgage	3839
individual	own	1170
joint	rent	362
joint	mortgage	950
joint	own	183

 app_-type

	rent	mortgage	own	Total
individual	3496	3839	1170	8505
$_{ m joint}$	362	950	183	1495
Total	3858	4789	1353	10000

homeownership

A more tidy version of this table would have three columns: homeownership app_type, and count.

app_type	homeownership	count
individual	rent	3496
individual	mortgage	3839
individual	own	1170
joint	rent	362
joint	mortgage	950
joint	own	183

A fully tidy version of this would include 10,000 rows, one for each loan application in the data set, and two columns, homeownership and app_type.

