Automation

CHALLENGE 3: WE SHOULD'VE HIRED BETTER PEOPLE!

Katarina Wagnerova katkaaw@gmail.com @_KatkaW_ 13.07.2016

Table of Contents

Tal	ole of C	Contents	2
1	Miss	ion objectives	3
:	1.1	Requirements	3
	1.2	Constrains	3
:	1.3	Assumptions	3
	1.4	Risks	3
2	Logic	cal design decisions	4
:	2.1	Infrastructure	4
:	2.2	Provisioning	4
3	Phys	ical design decisions	4
3	3.1	Infrastructure	4
3	3.2	Provisioning	5
3	3.3	Orchestration	5
3	3.4	Operating Systems	6
4	Setu	p Guide	6
4	4.1	Provisioning Infrastructure	6
4	4.2	Templates	7
	4.2.1	CentOS template	7
	4.2.2	2 Ubuntu template	7
4	4.3	HelloWorld	8
4	1.4	Ansible	9
	4.4.1	Ansible Master	9
	4.4.2	2 Execution	11
4	4.5	Salt	12
	4.5.1	Salt Master	12
	4.5.2	2 Salt Minions	13
	4.5.3	Setting up communication	13
	4.5.4	1 Execution	14
4	4.6	Patching Process	16
4	4.7	Provisioning Process	16
5	Refe	rences	18
6	Арре	endix A – vRA configuration	19

1 Mission objectives

It seems that somebody wants Zombies to survive and they do everything they can to stop us from recolonizing the Earth.

Our billionaire has stopped the funding so we can't get any more people to help us with our efforts, therefore we need to put some automation in place.

Somebody has decided that we have to implement two different orchestration tools (not us) that need to be able to manage CentOS and Ubuntu distributions (definitely not us).

We also need to deploy NGINX web servers onto them as well as Hello World application which is hosted on GitHub.

Keeping security in mind, we also need to patch our servers daily.

1.1 Requirements

Following requirements have been derived from the mission objective:

#	Description	
R01	Build host platform	
R02	Deploy two orchestration tools	
R03	Implement provisioning service	
R04	Deploy two CentOS servers	
R05	Deploy two Ubuntu servers	
R06	Create processes for daily patching	
R07	Deploy NGINX web server	
R08	Create "Hello World" source on GitHub	
R09	Deploy "Hello World" onto each server	

1.2 Constrains

#	Description	
C01	OS types defined as CentOS and Ubuntu	
C02	Web server type selected	
C04	"Hello World" has to be stored on GitHub	

1.3 Assumptions

#	Description	
A01	Existing infrastructure will be used	
A02	Admins will be able to trigger tasks as needed	
A03	Patches are released daily	
A04	Servers can be rebooted after patching if required	

1.4 Risks

#	Description	Risk mitigation
RI01	Lack of Linux and Automation skills	Train people or give them enough time to learn it ☺
RI02	Buggy patches can be released	Deploy patches in batches
RI03	Orchestration platform can fail	Deploy two independent platforms

2 Logical design decisions

2.1 Infrastructure

Logical Design	LDD 1. Infrastructure planning
Decision	
Decision options	1. Use existing infrastructure
	2. Build new infrastructure
Option selected	1.
Justification	We will utilize existing infrastructure for the resource cluster and deploy a new
	management cluster.
Associated risks	Earth datacenter is not fully in our hands yet and there might be configuration
	changes needed.
Implications	Additional components will need to be deployed to support new functions.
Requirement met	R01

2.2 Provisioning

Logical Design Decision	LDD 2. Provisioning Service
Decision options	1. Deploy VM from templates
	2. Use orchestration tools for deployment
	3. Use cloud management tools
Option selected	3.
Justification	Provides simple deployment portal and multiple configuration options
Associated risks	Added complexity of the solution
Implications	Additional tools need to be installed
Requirement met	R03

3 Physical design decisions

3.1 Infrastructure

Physical Design Decision	PDD 1. Infrastructure
Decision options	1. Existing VMware environment
	2. New deployment
Option selected	1.
Justification	Existing stretched cluster will be used for resource environment. Additional
	management cluster will be deployed to support vRA management tools.
Associated risks	Increased complexity and risk of failure
Implications	Increased cost and need to purchase new hardware
Requirement met	R01
Logical Design	LDD 1.
Decision Referenced	

3.2 Provisioning

Physical Design Decision	PDD 2. Provisioning Service	
Decision options	1. vRealize Automation 7	
	2. OpenStack	
Option selected	1.	
Justification	Some existing knowledge about the solution and the possibility to test it.	
Associated risks	Budgetary risks: Increased costs	
Implications	Additional tools need to be deployed:	
	o vRA appliance	
	o laaS server	
	o vRO	
Requirement met	R03	
Logical Design	LDD 2.	
Decision Referenced		

3.3 Orchestration

Physical Design	PDD 3. Orchestration tools
Decision	
Decision options	1. Chef
	2. Puppet
	3. Ansible
	4. Salt
Option selected	3. & 4.
Justification	We were looking for push solutions with immediate remote execution. Both
	Ansible and Salt use Python packages and use similar syntax which eases
	management.
	Ansible will be running on a CentOS 7 VM.
	Salt will be running on Ubuntu 14.04 VM
	Sait will be fullling on obuiltu 14.04 vivi
	Both tools are able to execute patching remotely.
	Tools will be also used to deploy application.
Associated risks	Decreased scalability
Implications	Additional CentOS and Ubuntu servers need to be deployed, configured and
	managed.
Requirement met	R02, R06, R07, R08, R09

CentOS minion

Ubuntu minion

Github

3.4 Operating Systems

Salt Master

Physical Design	PDD 3. Operating Systems
Decision	
Decision options	1. CentOS 6
	2. CentOS 7
	3. Ubuntu 16.04
	4. Ubuntu 14.04
Option selected	2. & 4.
Justification	Versions have been selected based on industry recognized standards.
Associated risks	CentOS 7 : newest version, possible bugs waiting to be found
	Ubuntu 14.04: older version, might require upgrade to support future features
Implications	Additional CentOS and Ubuntu servers need to be deployed, configured and
	managed.
Requirement met	R04, R05

4 Setup Guide

4.1 Provisioning Infrastructure

Following tools need to be deployed and configured on top of the existing infrastructure:

- Deploy vRealize Automation 7 appliance
- Deploy vRealize Orchestrator (internal)
- Deploy laaS Server
- Create blueprint for VM creations
- Publish blueprint
- Create Service
- Add blueprint to Service
- Assign Entitled groups to the service

Please refer to Appendix A for details.

4.2 Templates

We have to create two VM templates, one will be used for CentOS and the other one for Ubuntu.

VM configuration will be the same on both:

- 1 vCPU
- 1 GB RAM
- 1 20GB disk
- 1 VXNET3 network adapter

Note: Configuration above has been used in testing environment. We would base resource assignment in real environment on application requirements.

4.2.1 CentOS template

Perform following steps to install and configure CentOS template:

- Create Virtual Machine
- Download CentOS installation iso from https://www.centos.org/download/
- Attach iso file to VM
- Turn on VM
- Install OS by following on-screen instructions
- Login as root
 - o Sudo su -
- Configure IPs:
 - vi /etc/sysconfig/network-scripts/ifcfg-eno16777984
- Update system
 - o yum update
- Install EPEL repositories
 - o yum install epel-release
- Install Python packages
 - o yum -y install python-pip
- Install git
 - o yum install git
- Install VM Tools
 - o yum install open-vm-tools
- Create users
 - Personal (kwagnerova)
 - o Ansible
 - Salt
- Turn off VM
- Convert to Template

4.2.2 Ubuntu template

Perform following steps to install and configure Ubuntu template:

- Create Virtual Machine
- Download CentOS installation iso from http://www.ubuntu.com/download
- Attach iso file to VM
- Turn on VM
- Install OS by following on-screen instructions
- Login as root
 - o Sudo su -

- Configure IPs:
 - vi /etc/network/interfaces
- Update system
 - o apt-get update
 - o apt-get dist-upgrade
- Install Python packages
 - o apt-get install python-pip
- Install git
 - o apt-get install git
- Install VM Tools
 - mount VMTools
 - mkdir/mnt/cdrom
 - mount /dev/cdrom /mnt/cdrom or sudo mount /dev/sr0 /mnt/cdrom
 - Is /mnt/cdrom
 - tar xzvf /mnt/cdrom/VMwareTools-x.x.x-xxxx.tar.gz -C /tmp/
 - cd /tmp/vmware-tools-distrib/
 - ./vmware-install.pl –d
- Create users
 - o Personal (kwagnerova)
 - Ansible
 - o Salt
- Allow root login
 - vi /etc/ssh/sshd_config

```
# Authentication:
LoginGraceTime 120
#PermitRootLogin without-password
PermitRootLogin yes
StrictModes yes
```

- Turn off VM
- Convert to Template

4.3 HelloWorld

HelloWorld will be a HTML page stored on GitHub, execute following steps to create it:

- Create GitHub.com account and login
- Create a repository
 - Click on the + icon
 - o Name repository 'hello-world'
 - o Public
 - o Initialize with README
 - Create Repository
- Create HelloWorld
 - o Create new file called index.html
 - Add following lines:

```
<HTML>
  <HEAD>
  <TITLE>
    Hello World!
  </TITLE>
  </HEAD>
  <BODY>
  <H1>Hey Zombies!</H1>
```

```
<P>If you keep eating people you're gonna have a bad time</P>
                          </BODY>
                         </HTML>
        Add your public SSH key

    Click on account settings

               SSH and GPG keys
                New SSH key
4.4 Ansible
4.4.1 Ansible Master
        Deploy CentOS VM
        Login as root
            Sudo su -
        Configure IPs:
            o vi/etc/sysconfig/network-scripts/ifcfg-eno16777984
        Change hostname
            o vi /etc/hostname
            o vi /etc/hosts
        Install Ansible
            o yum install Ansible
        Generate RSA keys
            o ssh-keygen -t root
        Copy public keys to templates
            o cat ~/.ssh/id rsa.pub | ssh root@10.5.1.200 "mkdir ~/.ssh; cat >> ~/.ssh/authorized keys"
            o cat ~/.ssh/id rsa.pub | ssh root@10.5.1.201 "mkdir ~/.ssh; cat >> ~/.ssh/authorized keys"
        Add clients to host list
            vi /etc/ansible/hosts
                [testcentos]
                10.5.1.203
                [testubuntu]
                10.5.1.204
        Create folder structure

    mkdir /etc/Ansible/playbooks

    mkdir /etc/Ansible/tasks

        Create tasks for nginx installation
            vi /etc/ansible/tasks/install_nginx_centos.yml
                         # File name ./install_nginx_centos.yml
                         - name: NGINX | Installing NGINX repo rpm
                          name: http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-
                         0.el7.ngx.noarch.rpm
                         - name: NGINX | Installing NGINX
                          yum:
                          name: nginx
                          state: latest
```

- name: NGINX | Starting NGINX

service:

name: nginx state: started

vi /etc/ansible/tasks/install nginx ubuntu.yml

file name = ./deploy-nginx-ubuntu.yml

- name: NGINX | Adding NGINX signing key apt_key: url=http://nginx.org/keys/nginx_signing.key state=present
- name: NGINX | Adding sources.list deb url for NGINX lineinfile: dest=/etc/apt/sources.list line="deb http://nginx.org/packages/mainline/ubuntu/ trusty nginx"
- name: NGINX Plus | Adding sources.list deb-src url for NGINX lineinfile: dest=/etc/apt/sources.list line="deb-src http://nginx.org/packages/mainline/ubuntu/ trusty nginx"
- name: NGINX | Updating apt cache update_cache: yes
- name: NGINX | Installing NGINX apt: pkq: nqinx

state: latest

- Create task for HelloWorld deployment
 - vi /etc/ansible/tasks/helloworld_centos.yml

File name ./helloworldcentos.yml

- name: HelloWorld | Getting HelloWorld from GitHub repo=https://github.com/katkaaw/hello-world dest=/data/www/
- vi /etc/ansible/tasks/helloworld ubuntu.yml

File name ./helloworldcentos.yml

- name: HelloWorld | Getting HelloWorld from GitHub repo=https://github.com/katkaaw/hello-world dest=/data/www/
- Create playbook for CentOS
 - vi /etc/ansible/playbooks/deploy-nginx-centos.ym

file name = ./deploy-nginx-centos.yml

- hosts: testcentos
 - include: '/etc/ansible/tasks/install_nginx_centos.yml'
- include: '/etc/ansible/tasks/helloworld_centos.yml'
- Create playbook for Ubuntu
 - vi /etc/ansible/playbooks/deploy-nginx-ubuntu.ym

file name = ./deploy-nginx-ubuntu.yml

```
hosts: testubuntu
tasks:
```

- include: '/etc/ansible/tasks/install_nginx_ubuntu.yml'
- include: '/etc/ansible/tasks/helloworld_ubuntu.yml'

4.4.2 Execution

For Centos, run 'ansible-playbook deploy-nginx-centos.yml'

You can also verify the result on the client side:

```
[root@ansiblecentos ~]# service nginx status
Redirecting to /bin/systemctl status nginx.service
 nginx.service - nginx - high performance web server
  Loaded: loaded (/usr/lib/systemd/system/nginx.service; disabled; vendor preset: disabled)
  Active: active (running) since Mon 2016-07-11 19:29:50 EDT; 1 day 5h ago
    Docs: http://nginx.org/en/docs/
 Process: 3074 ExecStart=/usr/sbin/nginx -c /etc/nginx/nginx.conf (code=exited, status=0/SUCCESS)
 Process: 3072 ExecStartPre=/usr/sbin/nginx -t -c /etc/nginx/nginx.conf (code=exited, status=0/SUCCESS)
Main PID: 3076 (nginx)
  CGroup: /system.slice/nginx.service
           -3076 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf
           3077 nginx: worker process
Jul 11 19:29:50 ansiblecentos.vdm.com systemd[1]: Starting nginx - high performance web server...
Jul 11 19:29:50 ansiblecentos.vdm.com nginx[3072]: nginx: the configuration file /etc/nginx/nginx.conf sy... ok
Jul 11 19:29:50 ansiblecentos.vdm.com nginx[3072]: nginx: configuration file /etc/nginx/nginx.conf test i...ful
Jul 11 19:29:50 ansiblecentos.vdm.com systemd[1]: Failed to read PID from file /run/nginx.pid: Invalid argument
Jul 11 19:29:50 ansiblecentos.vdm.com systemd[1]: Started nginx - high performance web server.
Hint: Some lines were ellipsized, use -1 to show in full.
[root@ansiblecentos ~] # cat /data/www/index.html
<HTML>
  <HEAD>
       Hello World!
     </TITLE>
  </HEAD>
  <BODY>
       <H1>Hey Zombies!</H1>
       <P>If you keep eating people you're gonna have a bad time</P>
  </BODY>
/HTML>
```

For Ubuntu, run 'ansible-playbook deploy-nginx-ubuntu.yml'

You can also verify the result on the client side:

```
root@ansibleubuntu:~# service nginx status
* nginx is running
root@ansibleubuntu:~# cat /data/www/index.html
<HTML>

<HEAD>

<TITLE>

Hello World!

</TITLE>

</HEAD>

<BODY>

<H1>Hey Zombies!</H1>

<P>If you keep eating people you're gonna have a bad time</P>
</BODY>

</HTML>
```

Note: In real life we would like to have this running under dedicated user. I have created Ansible user, generated RSA keys and distributed them to the systems and changed configuration on Ansible master. Unfortunately, I was not able to get it running in time.

4.5 Salt

4.5.1 Salt Master

- Deploy Ubuntu VM
- Login as root
 - o Sudo su -
- Configure IPs:
 - vi /etc/network/interfaces
- Change hostname
 - o vi /etc/hostname
 - vi /etc/hosts
- Install python package
 - o apt-get install python-software-properties

- Add Salt repository
 - o add-apt-repository ppa:saltstack/salt
- Update packages
 - o apt-get update
- Install salt-master
 - o apt-get install salt-master
- Configure salt-master
 - vi /etc/salt/master

The address of the interface to bind to: interface: 10.5.1.220

- Generate RSA keys
 - o ssh-keygen -t root
- Copy public keys to minions
 - o cat ~/.ssh/id_rsa.pub | ssh root@10.5.1.221 "mkdir ~/.ssh; cat >> ~/.ssh/authorized_keys"
 - o cat ~/.ssh/id rsa.pub | ssh root@10.5.1.222 "mkdir ~/.ssh; cat >> ~/.ssh/authorized keys"

4.5.2 Salt Minions

- Deploy Ubuntu VM
- Login as root
 - o Sudo su -
- Configure IPs:
 - vi /etc/network/interfaces
- Change hostname
 - o vi /etc/hostname
 - o vi /etc/hosts
- Install python package
 - o apt-get install python-software-properties
- Add Salt repository
 - o add-apt-repository ppa:saltstack/salt
- Update packages
 - o apt-get update
- Install salt-minion
 - o apt-get install salt-minion
- Configure salt-minion
 - vi /etc/salt/minion

The address of the interface to bind to: interface: 10.5.1.210

- Restart salt-minion process
 - o service salt-minion restart
- Follow the same process for CentOS machine (installation commands may vary, please refer to <u>CentOS</u> template)

4.5.3 Setting up communication

- List available minion keys on salt master
 - o Salt-kev-L

root@saltubuntu:~# salt-key -L Accepted Keys: Denied Keys: Unaccepted Keys: salttestu Rejected Keys: • Add available minion keys to salt master

○ Salt-key –A

```
root@saltubuntu:~# salt-key -A
The following keys are going to be accepted:
Unaccepted Keys:
salttestu
Proceed? [n/Y] y
Key for minion salttestu accepted.
```

• Verify connection

```
root@saltubuntu:~# salt "*" test.ping
salttestu:
    True
saltcentos.vdm.com:
    True
_
```

4.5.4 Execution

- Install nginx
 - o salt '*' state.highstate

```
oot@saltubuntu:/srv/salt# salt '*' state.highstate
   Comment: Package nginx is already installed.
  Duration: 24.616 ms
```

Note: nginx service failed to start on centos machine, I have verified the configuration files but was not able to find the reason why.

- Get HelloWorld
 - o salt '*' cmd.run 'git clone https://github.com/katkaaw/hello-world/data/www/

```
root@saltubuntu:/srv/salt# salt '*' cmd.run 'git clone https://github.com/katkaaw/hello-world /data/www/'
saltcentos.vdm.com:
    Cloning into '/data/www'...
salttestu:
    Cloning into '/data/www'...
```

Note: Again, ideally this would be running under salt account instead of root. But. Time.

4.6 Patching Process

All servers have to be patched daily. In order to verify and test released patches, they will be installed on test servers first. Production systems will be scheduled to run several hours later. This will allow the admins to react in case of a faulty patch distribution.

Patching can be automated using Ansible by performing the following:

- Create update playbooks
 - vi /etc/ansible/playbooks/update_test.yml

---# file name = ./update_test.yml

- hosts: testservers
 - name: update and upgrade using apt apt: upgrade=safe update_cache=yes
- vi /etc/ansible/playbooks/update_prod.yml

file name = ./update_prod.yml

- hosts: prodservers tasks:
 - name: update and upgrade using apt apt: upgrade=safe update_cache=yes
- Updates will be scheduled using cron

Salt can be used as well, either by creating a grain or scheduling the following:

- salt 'test' cmd.run "apt-get -y update"
- salt 'prod' cmd.run "apt-get -y update"

4.7 Provisioning Process

In order to deploy a new VM perform following steps:

- Login to the Provisioning portal
- Go to Catalog
- Request deployment of your desired Operating System

VM will be deployed

• Go to Requests to confirm successful deployment

5 References

Every single page on the internet about CentOS, Ubuntu, Ansible, Salt,... EVERY page.

6 Appendix A – vRA configuration

• Create Fabric Group:

Create Business group

• Create Network Profile

Create blueprints

