### CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Lecture 14:

https://eduassistpro.github.io/ ndependence Add WeChat edu\_assist\_pro

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

#### Announcement

- Homework 4: Bayes Nets and HMMs
  - Will be posted today (Nov 12, 2020)
  - Deadline: Nov 24, A20120 ment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Thanh H. Nguyen 11/11/20

## Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

Assignment Project PExtenn High

• Chain rule

https://eduassistpro.github.io/

- •X, Y independent if and only if:  $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
  $X \perp \!\!\!\perp Y|Z$ 

## Bayes' Nets

• A Bayes' net is an efficient encoding of a probabilistic model of a domain

Assignment Project Exam Help

https://eduassistpro.github.io/

• Questions we can ask:

- Inference: given a fixed BN, what is  $P(X \mid e)$ ?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?

## Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node and Help
  - A collection of distributions o parents' values
     https://eduassistpro.github.io/

- Bayes' nets implicitly encode joint distri
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$





## Example: Alarm Network

| В  | P(B)  |
|----|-------|
| +b | 0.001 |
| -b | 0.999 |

| _  | _  | -      |
|----|----|--------|
| A  | J  | P(J A) |
| +a | +j | 0.9    |
| +a | -j | 0.1    |
| -a | +j | 0.05   |





| https | ://eduas | ssist | pro. | github        | .io/ |
|-------|----------|-------|------|---------------|------|
| Add   | WeCha    | ed    | u_as | .7<br>ssist_p | ro   |
|       | (M)      | -a    | +m   | 0.01          |      |
|       |          | -a    | -m   | 0.99          |      |



| -a -J 0.95        |                |
|-------------------|----------------|
|                   |                |
| P(+b, -e, +a, -b) | -i, +m) = 1    |
|                   | $J$ , $\cdots$ |
|                   |                |

| В  | Е  | Α  | P(A   B,E) |
|----|----|----|------------|
| +b | +e | +a | 0.95       |
| +b | +e | -a | 0.05       |
| +b | ę  | +a | 0.94       |
| +b | -e | -a | 0.06       |
| -b | +e | +a | 0.29       |
| -b | +e | -a | 0.71       |
| -b | ę  | +a | 0.001      |
| -b | -e | -a | 0.999      |



## Example: Alarm Network

| В  | P(B)  |
|----|-------|
| +b | 0.001 |
| -b | 0.999 |

| P(B) |   |
|------|---|
| 001  |   |
| 999  |   |
|      | • |





| Е   | P(E)  |  |
|-----|-------|--|
| +e  | 0.002 |  |
| , 🔻 |       |  |





|      |      | .7      |   |
|------|------|---------|---|
| t ea | u_as | ssist_p | r |
| -a   | +m   | 0.01    |   |
| -a   | -m   | 0.99    |   |

|           | -a  | -j         | 0.95     |                               | -a         | -m | 0.99  | Ì |
|-----------|-----|------------|----------|-------------------------------|------------|----|-------|---|
| I         | P(+ | -b, -      | -e,+e    | (a, -j, +m) =                 |            |    |       |   |
| $P(\cdot$ | +b) | P(-        | -e)P(-e) | +a +b,-e)P(-j +a              | $)P(\cdot$ | +m | +a) = | = |
| 0.0       | 001 | $\times 0$ | ).998 ×  | $<0.94 \times 0.1 \times 0.7$ |            |    |       |   |



| <i>'</i> | В  | Е  | A  | P(A B,E) |
|----------|----|----|----|----------|
|          | +b | +e | +a | 0.95     |
|          | +b | +e | -a | 0.05     |
|          | +b | ę  | +a | 0.94     |
|          | +b | ę  | -a | 0.06     |
|          | -b | +e | +a | 0.29     |
|          | -b | +e | -a | 0.71     |
|          | -b | ę  | +a | 0.001    |
|          | -b | -e | -a | 0.999    |



# Size of a Bayes' Net

 How big is a joint distribution over N Boolean variables?
 2<sup>N</sup> ■ Both give you the power to calculate  $P(X_1, X_2, ..., X_n)$ 

Assignment Projects Exage Heape savings!

How big is an N-node net if https://eduassistpro.githutlivit local CPTs have up to k parents?
 O(N \* 2<sup>k+1</sup>)
 Add WeChatledu\_assist\_approver queries (coming)

## Bayes' Nets

- Representation
  - Conditional Project Exam Helps
     https://eduassistpro.github.io/
  - Prob Add WeChat edu\_assist\_pro
  - Learning Bayes' Nets from Data

## Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x,y) = P(x)P(y) - - - \rightarrow X \parallel Y$$
Assignment Project Exam Help

■X and Y are conditio https://eduassistpro.gentuenoZ

Add WeChat edu\_assist $prx \perp Y \mid Z$ 

(Conditional) independence is a property of a distribution

• Example:  $Alarm \perp Fire | Smoke$ 

## Bayes Nets: Assumptions

• Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$
  
Assignment Project Exam Help

- Beyond above "chain rule → independence assumptions" https://eduassistpro.github.io/
  - Often additional conditional independences hat edu\_assist\_pro
  - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph



Conditional independence assumptions directly from simplifications in chain rule:
 https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

• Additional implied conditional independence assumptions?

### Independence in a BN

- Important question about a BN:
  - Are two nodes independent given certain evidence?
  - If yes, can proye using palgebra (tedious in general)
  - If no, can pro
  - Example: https://eduassistpro.github.io/



- Question: are X and Z necessarily independent?
  - Answer: no. Example: low pressure causes rain, which causes traffic.
  - X can influence Z, Z can influence X (via Y)
  - Addendum: they *could* be independent: how?

## D-separation: Outline

Assignment Project Exam Help

https://eduassistpro.github.io/

## D-separation: Outline

Study independence properties for triples

Assignment Project Exam Help

•Analyze comple f member triples https://eduassistpro.github.io/

D-separation: a condition / m for answering such queries

### Causal Chains

- This configuration is a "causal chain"
- Guaranteed X independent of Z? No!
- Assignment Project Example set of CPTs for which X is Examinated Example and Example Set of CPTs for which X is this independence is not guaranteed.

https://eduassistpro.github.io/

Add WeChat edu\_assistppesoure causes rain causes fic,

high pressure causes no rain causes no traffic

X: Low pressure

Y: Rain

Z: Traffic

In numbers:

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

$$P(+y \mid +x) = 1, P(-y \mid -x) = 1, P(+z \mid +y) = 1, P(-z \mid -y) = 1$$

#### Causal Chains

- This configuration is a "causal chain"
- Guaranteed X independent of Z given Y?

Assignment Project Example = 
$$\frac{P(x,y,z)}{P(x,y)}$$
  
https://eduassistpro.github.io/  
Add WeChat edu\_assist\_pro =  $\frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$ 

$$=P(z|y)$$

X: Low pressure

Y: Rain

Z: Traffic

Yes!

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

 Evidence along the chain "blocks" the influence

#### Common Cause

■ This configuration is a "common cause" ■ Guaranteed X independent of Z? No!

Y: Project due • One example set of CPTs for which X is

Assignment Project Example Project Example Pendence is not guaranteed.

https://eduassistpro.github.io/

Add WeChat edu\_assistectore causes both forums busy and lab full

In numbers:

Z: Lab full

$$P(+x | +y) = 1, P(-x | -y) = 1,$$
  
 $P(+z | +y) = 1, P(-z | -y) = 1$ 





#### Common Cause

■ This configuration is a "common cause" ■ Guaranteed X and Z independent given Y?

Y: Project due

Assignment Project Example 
$$= \frac{P(x, y, z)}{P(x, y)}$$

https://eduassistpro.github.io/ 
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
 Add WeChat edu\_assist\_pro

$$=P(z|y)$$

X: Forums busy

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Z: Lab full

Yes!

 Observing the cause blocks influence between effects.

### Common Effect

 Last configuration: two causes of one effect (v-structures)

• Are X and Y independent?

• *Yes*: the ballgame and the rain cause traffic,

Y: Ballganssignment Project Exam Trenet correlated

to prove they must be (try it!) https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

• *No*: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
  - Observing an effect activates influence between possible causes.



#### The General Case

Assignment Project Exam Help

https://eduassistpro.github.io/

#### The General Case

• General question: in a given BN, are two variables independent (given evidence)?

Assignment Project Exam Help

Solution: analyze thttps://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

 Any complex example can be broken into repetitions of the three canonical cases



#### Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
  - Yes, if X and Y "d-separated" by Z
  - Consider all (undirected) parsignment Project Exam Help
  - No active paths = independence

https://eduassistpro.github.io/

**Active Triples** 

- A path is active if each triple is Addve Chat edu\_assist\_pro
  - Causal chain  $A \rightarrow B \rightarrow C$  where B is unobserved (either direction)
  - Common cause  $A \leftarrow B \rightarrow C$  where B is unobserved
  - Common effect (aka v-structure)  $A \rightarrow B \leftarrow C$  where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment











## **D-Separation**

- Query:  $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$ ?
- Check all (undirected) graths brojecter  $X_j$ 
  - If one or more active, that the condition of the condi
  - Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$





```
•Variables:
 R: Raining
 T: Traffignment Project Exam Helb
T \perp \!\!\! \perp D
    T \perp \!\!\! \perp D | R
                 Yes
```

 $T \perp \!\!\! \perp D | R, S$ 

## Structure Implications

• Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

https://eduassistpro.github.io/

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..$$
Ad $X_{W_r}$ e Chat edu\_assist\_pro

• This list determines the set of probability distributions that can be represented

## Computing All Independences



## Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



#### Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- GuaranteedissippendeRciescofExistribations can be deduced from

https://eduassistpro.github.io/

- D-separation gixedpwecisteat edu\_assistipdependence guarantees from graph alon
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

## Bayes' Nets

- Representation
- Conditional Independences
  Assignment Project Exam Help
  - - Variable Aith MaChat edu\_assistmenocase exponential complexity, often better)
    - Probabilistic inference is NP-complete
    - Sampling (approximate)
  - Learning Bayes' Nets from Data