Формальные языки

домашнее задание до 23:59 05.03

1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).

Решение:

Утверждение неверно во всех случаях. Более того, неверно даже то, что автомат будет минимальным с точностью до удаления недостижимых вершин. (в примере недостижимых вершин в произведении нет).

Рассмотрим два языка над алфавитом $\{0,1\}$. Пусть L_1 — слова с нечетным количеством единиц, L_2 — слова, заканчивающиеся на 1.

Соответствующие минимальные автоматы:

Для L_1 :

Для L_2 :

Автоматы для $L_1 \cap L_2$: автомат-произведение и минимальный соответственно:

Автоматы для $L_1 \cup L_2$: автомат-произведение и минимальный соответственно:

Автоматы для $L_1 \setminus L_2$: автомат-произведение и минимальный соответственно:

2. Для регулярного выражения:

$$(a \mid b)^{+}(aa \mid bb \mid abab \mid baba)^{*}(a \mid b)^{+}$$

Построить эквивалентные:

- (а) Недетерминированный конечный автомат
- (b) Недетерминированный конечный автомат без ε -переходов
- (с) Минимальный полный детерминированный конечный автомат

Решение:

Заметим, что это регулярное выражение принимает ровно те слова, в которых хотя бы 2 символа (а или b).

Доказательство.

Пусть слово принимается выражением. Тогда хотя бы один символ соответствует первой скобке, и еще хотя бы один — последней.

Пусть слово длины хотя бы 2. Тогда сопоставим первый символ первой скобке, второй скобке — ε , третьей — все остальные символы.

Тогда можем построить очевидный автомат, который подходит под все три пункта (да, мне лень набирать три разных):

Про минимальность тоже понятно: q_2 принимает все слова, q_1 — все непустые, q_0 — все длины хотя бы 2.

3. Построить регулярное выражение, распознающее тот же язык, что и автомат:

Решение:

Кажется, что необязательно применять пошаговый алгоритм и рисовать миллион промежуточных автоматов... Методом внимательного взгляда можем получить выражение:

$$(a | b | c)^*(a(b | c)^*a | b(a | c)^*b | c(a | b)^*c)$$

Если посмотреть еще внимательнее, становится ясно, что этот автомат (и выражение) принимают ровно те непустые слова, в которых последний символ не является единственным таким символом в слове.

4. Определить, является ли автоматным язык $\{\omega\omega^r\mid \omega\in\{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

Решение:

Вспомним, что автоматные языки — это то же, что регулярные.

Пусть наш язык регулярный, тогда зафиксируем n из леммы о накачке. Рассмотрим слово $w=\omega\omega^r$, где $\omega=0^{n-1}1$. Это слово длины 2n, лежащее в языке. Возьмем разбиение из леммы $w=xyz, |xy|\leq n, |y|\geq 1$.

Если y содержит единицу, то в слове xyyz 3 единицы, и оно не может быть четным палиндромом.

Иначе, y состоит из одних нулей. Но тогда, если бы было верно $xyyz = \omega_0\omega_0^r$, ω_0 должно было бы содержать ровно одну единицу (т. к. в xyyz их две), но тогда (поскольку единицы все еще стоят рядом) ω_0^r было бы короче, чем ω_0 .

В обоих случаях получили противоречие, а значит, язык не регулярный.

5. Определить, является ли автоматным язык $\{uaav \mid u,v \in \{a,b\}^*, |u|_b \geq |v|_a\}$. Если является — построить автомат, иначе — доказать.

Решение:

Пусть язык регулярный, снова зафиксируем n из леммы о накачке. Рассмотрим слово $w=b^naa(ba)^n$. Это слово длины 2n+2, лежащее в языке. Возьмем разбиение из леммы $w=xyz, |xy|\leq n, |y|\geq 1$. Заметим, что $y=b^p, p\geq 1$. Но тогда слово $xz=b^{n-p}aa(ba)^n$ также должно лежать в языке. Поскольку aa входит в слово лишь один раз, возможен только случай $u=b^{n-p}, v=(ba)^n$, но тогда $n-p=|u|_b<|v|_a=n$.

Получили противоречие, а значит, язык не регулярный.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A	_	В
В	—	A
\mathbf{C}	ΑВ	_
D	\mathbf{C}	С
\mathbf{E}	D	_
F	E F	DFG
G	G	E

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	\mathbf{E}	F	G
Α							
В							
С	√	√					
D	\checkmark	\checkmark	\checkmark				
E	√	√	√	√			
F	\checkmark	\checkmark	\checkmark	\checkmark	✓		
G	√	√	√	\checkmark	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

