

Perancangan Kendali Optimal LQT untuk Pengendalian dan Pemanduan pada Rudal

Dosen Pembimbing:

Muhamad Rafif Prasetyo 07 11 13 40000 129

Ir. Rusdhianto Effendie AK, M.T.

Departemen Teknik Elektro Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya, 2018

Agenda

- Pendahuluan
- Perancangan Sistem
- Hasil dan Analisa
- Kesimpulan

Peluru Kendali (Rudal) (1)

Peluru Kendali (Rudal) (2)

Dilihat dari jarak jelajahnya,

- Rudal Taktis (*Tactical Missiles*)
- Rudal Balistik (Ballisctic Missiles)

Dilihat dari tempat diluncurkan dan posisi sasarannya,

- Surface-to-Surface Missiles (SSM)
- Surface-to-Air Missiles (SAM)
- Air-to-Air Missiles (AAM)
- Air-to-Surface Missiles (ASM)

Dari cara rudal melakukan maneuver,

- Skid-to-Turn
- Bank-to-Turn.

Peluru Kendali (Rudal) (3)

Dalam perancangan simulasi rudal, terdapat 4 tahap dasar yang perlu diperhatikan.

- Model Matematis Dinamika Rudal
- Pemandu Rudal
- Autopilot Rudal
- Prediksi trayektori ataupun posisi sasaran

Permasalahan

- 1. Persamaan dinamika rudal memiliki karakteristik yang *non-linear*, sehingga diperlukan proses linearisasi agar rudal dapat dikendalikan.
- 2. Rudal memerlukan pengendali agar dapat dikendalikan, lalu disimulasikan untuk melihat keluarannya.

Tujuan

- Mendapatkan persamaan gerak rotasi rudal yang linier melalui non-linear state feedback.
- Merancang pengendali LQT sebagai pengendali 2. sudut orientasi rudal serta membuat simulasi pergerakan rudal menuju sasaran dengan pengendali LQT yang telah dirancang.

Asumsi

- Rudal merupakan benda tegar.
- Efek aerodinamika pada sumbu roll dianggap simetri.
- Massa dari rudal tidak berubah terhadap waktu.
- Percepatan gravitasi dianggap konstan.
- Permukaan bumi diasumsikan datar.
- Rudal memiliki 6 derajat kebebasan.
- Semua informasi yang ada adalah deterministik.

Sistem Koordinat (1)

Sistem Koordinat (2)

- Sudut Euler.
- Gerakan roll dinotasikan ϕ , gerakan pitch dinotasikan θ , gerakan yaw dinotasikan ψ .

Sistem Koordinat
Bumi (fixed) $X_e \longrightarrow O$ $Y_e \longrightarrow Z_e$

Kinematika Rudal (1)

Terdapat 2 kinematika pada rudal, yaitu kinematika translasi rudal dan kinematika rotasi rudal.

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} c\theta \ c\psi & s\phi \ s\theta \ c\psi - c\phi \ s\psi & c\phi \ s\theta \ c\psi + s\phi \ s\psi \\ c\theta \ s\psi & s\phi \ s\theta \ s\psi + c\phi \ c\psi & c\phi \ s\theta \ s\psi - s\phi \ c\psi \\ -s\theta & s\phi \ c\theta & c\phi \ c\theta \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

u, v, w = Kecepatan translasi rudal pada sumbu X_b, Y_b, Z_b $\dot{x}, \dot{y}, \dot{z} =$ Kecepatan translasi rudal pada sumbu X_e, Y_e, Z_e

Kinematika Rudal (2)

Kecepatan pada rudal terbagi menjadi 2, yaitu kecepatan translasi dan kecepatan rotasi.

$$V_b = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$$
$$\boldsymbol{\omega}_b = p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$$

 $p = \text{Kecepatan sudut } roll \text{ rudal, berotasi pada sumbu } X_b$

q = Kecepatan sudut pitch rudal, berotasi pada sumbu Y_b

r= Kecepatan sudut yaw rudal, berotasi pada sumbu Z_b

Dinamika Rudal: Translasi

Persamaan percepatan translasi rudal dalam sistem koordinat rudal dapat ditulis sebagai berikut.

$$\frac{du}{dt} = \frac{Thrust - mg\sin\theta + C_xQS}{m} + rv - qw$$
Keterangan
$$\frac{dv}{dt} = \frac{mg\sin\phi\cos\theta + C_yQS}{m} + pw - ru$$
Gaya Pendorong
Gaya Gravitasi
Gaya Aerodinamika
$$\frac{dw}{dt} = \frac{mg\cos\phi\cos\theta + C_zQS}{m} + qu - pv$$
Hubungan non-linear

Dengan:

$$C_{x} = C_{x1}\alpha + C_{x2}M$$

$$C_{y} = C_{y1}\beta + C_{y2}M + C_{y3}\delta_{r}$$

$$C_{z} = C_{z1}\alpha + C_{z2}M + C_{z3}\delta_{e}$$

Dinamika Rudal: Rotasi

Persamaan percepatan sudut rudal dinyatakan dalam persamaan berikut.

$$\frac{dp}{dt} = \frac{QSdC_l + (I_y - I_z)qr}{I_x}$$

$$\frac{dq}{dt} = \frac{QSdC_m + (I_z - I_x)pr}{I_y}$$

$$\frac{dr}{dt} = \frac{QSdC_n + (I_x - I_y)pq}{I_z}$$

Dengan

$$C_{l} = C_{l1}\alpha + C_{l2}\beta + C_{l3}p + C_{l4}\delta_{a}$$

$$C_{m} = C_{m1}\alpha + C_{m2}q + C_{m3}\delta_{e}$$

$$C_{n} = C_{n1}\beta + C_{n2}r + C_{n3}\delta_{r}$$

Keterangan

Momen Aerodinamika

Hubungan non-linear

Model Rudal

Non-linear State Feedback Decoupler (1)

Decoupling: menghilangkan hubungan yang saling berinteraksi antar persamaan pada rudal,

Linearisasi persamaan dinamika rotasi rudal.

$$\frac{dp}{dt} = \frac{QSd(C_{l1}\alpha + C_{l2}\beta + C_{l3}p + C_{l4}\delta_{a}) + (I_{y} - I_{z})qr}{I_{x}}$$

$$\frac{dq}{dt} = \frac{QSd(C_{m1}\alpha + C_{m2}q + C_{m3}\delta_{e}) + (I_{z} - I_{x})pr}{I_{y}}$$

$$\frac{dr}{dt} = \frac{QSd(C_{n1}\beta + C_{n2}r + C_{n3}\delta_{r}) + (I_{x} - I_{y})pq}{I_{z}}$$

Model Rudal Autopilot Rudal Pemandu Rudal

Prediksi Posisi Sasaran

Non-linear State Feedback Decoupler (2)

$$\begin{split} \delta_{a} &= \frac{1}{C_{l4}} \left(-C_{l1}\alpha - C_{l2}\beta - C_{l3}p - \frac{(I_{y} - I_{z})qr}{QSd} - \frac{\lambda_{p}I_{x}p}{QSd} + \frac{\lambda_{p}I_{x}U_{p}}{QSd} \right) \\ \delta_{e} &= \frac{1}{C_{m3}} \left(-C_{m1}\alpha - C_{m2}q - \frac{(I_{z} - I_{x})pr}{QSd} - \frac{\lambda_{q}I_{y}q}{QSd} + \frac{\lambda_{q}I_{y}U_{q}}{QSd} \right) \\ \delta_{r} &= \frac{1}{C_{n3}} \left(-C_{n1}\beta - C_{n2}r - \frac{(I_{x} - I_{y})pq}{QSd} - \frac{\lambda_{r}I_{z}r}{QSd} + \frac{\lambda_{r}I_{z}U_{r}}{QSd} \right) \end{split}$$

Dengan:

$$\lambda_p = \frac{1}{\tau_p} = 10$$

$$\lambda_q = \frac{1}{\tau_q} = 10$$

$$\lambda_r = \frac{1}{\tau_r} = 10$$

Linear Quadratic Tracking (1)

Tujuan yang ingin dicapai adalah mengendalikan sistem sedemikian rupa sehingga keluaran dari sistem mengikuti keluaran yang diinginkan sedekat mungkin dengan memperhatikan indeks performansi yang diinginkan.

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

Indeks performansi untuk kasus waktu akhir tidak terbatas adalah:

$$\lim_{t_f \to \infty} J = \lim_{t_f \to \infty} \frac{1}{2} \int_0^\infty [\boldsymbol{e}'(t) \boldsymbol{Q} \boldsymbol{e}(t) + \boldsymbol{u}'(t) \boldsymbol{R} \boldsymbol{u}(t)] dt$$

Linear Quadratic Tracking (2)

Dengan menggunakan *non-linear state feedback decoupler*, maka model sistem rudal menjadi:

$$\frac{dp}{dt} = -\lambda_p p + \lambda_p U_p$$

$$\frac{dq}{dt} = -\lambda_q q + \lambda_q U_q$$

$$\frac{dr}{dt} = -\lambda_r r + \lambda_r U_r$$

Linear Quadratic Tracking (3)

Langkah 1: Matriks A, B, dan C

Linear Quadratic Tracking (4)

Langkah 2: Matriks Q dan R

$$\mathbf{Q} = \begin{bmatrix} 10000 & 0 & 0 \\ 0 & 10000 & 0 \\ 0 & 0 & 10000 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Langkah 3: Gain Kalman K

$$\mathbf{K} = \begin{bmatrix} 100 & 4.4949 & 0 & 0 & 0 & 0 \\ 0 & 0 & 100 & 4.4949 & 0 & 0 \\ 0 & 0 & 0 & 0 & 100 & 4.4949 \end{bmatrix}$$

Autopilot Rudal

Pemandu Pengejar

$$\psi_r = \tan^{-1} \left(\frac{y_r}{x_r} \right)$$

Prediksi Posisi Sasaran (1)

3 informasi sasaran terakhir.

Model Rudal *Autopilot* Rudal Pemandu Rudal Prediksi Posisi Sasaran

Prediksi Posisi Sasaran (2)

Prediksi Posisi Sasaran (3)

Gambaran Pengujian Sistem

- 1. Pengujian model dinamika rudal
- 2. Pengujian non-linear state feedback decoupler
- 3. Pengujian pengendali LQT
- 4. Pengujian pemandu rudal
- 5. Pengujian pergerakan sasaran dan prediksi posisi sasaran

Pengujian Model Dinamika Rudal

Tanpa Thrust

Dengan Thrust

Pengujian non-linear state feedback decoupler (1)

Kecepatan sudut roll

Pengujian non-linear state feedback decoupler (2)

Kecepatan sudut pitch

Pengujian non-linear state feedback decoupler (3)

Kecepatan sudut yaw

Pengujian Pengendali LQT

Pengujian Pemandu Rudal (1)

Posisi sasaran 1 [1000 0 0]

Posisi sasaran 2 [1000 0 1000]

Posisi sasaran 3 [1000 1000 1000]

Pengujian Pemandu Rudal (2)

Posisi Sasaran	Durasi Perjalanan	Jarak Terdekat
$[X_e Y_e Z_e]$	(detik)	(meter)
[1000 0 0]	6.28	0.0506
[1000 0 1000]	8.23	0.0440
[1000 1000 1000]	9.42	0.3770
Rata-rata	8.93	0.1971

Pengujian Prediksi Posisi Sasaran

Sasaran statis

Sasaran dinamis

Simulasi Sistem

- Sasaran statis
 - Kasus 1 : Posisi sasaran pada sumbu X_e berbeda
 - Kasus 2 : Posisi sasaran pada sumbu Y_e berbeda
 - Kasus 3 : Posisi sasaran pada sumbu Z_e berbeda
- Sasaran dinamis
 - Kasus 1 : Sasaran dengan kecepatan
 - Kasus 2 : Sasaran dengan percepatan
 - Kasus 3: Sasaran berputar

Sasaran Statis (4)

Skenario	Durasi Perjalanan (detik)	Jarak Terdekat (meter)
1	7.32	0.3718
2	10.35	0.6101
3	13.40	0.2594
4	7.33	0.6593
5	10.37	1.1940
6	13.41	0.0440
7	7.60	0.4383
8	11.50	0.0863
9	14.70	0.3627
Rata-rata	10.66	0.4473

Sasaran Dinamis (1)

Skenario	Posisi Awal (m)	Kecepatan Awal (m/s)	Percepatan Awal (m/s²)
1	[1000 1000 1000]	[0 -50 0]	[0 0 0]
2	[1000 1000 1000]	[0 -100 0]	[0 0 0]

•

Sasaran Dinamis (2)

Skenario	Posisi Awal (m)	Kecepatan Awal (m/s)	Percepatan Awal (m/s²)
3	[1500 0000 1000]	[-50 0 40]	[0 0 0]
4	[1500 0000 1000]	[-50 0 40]	[-5 0 0]

Sasaran Dinamis (3)

Skenario	Posisi Awal (m)	Kecepatan Awal (m/s)	Percepatan Awal (m/s²)
5	[1000 1000 1000]	[-50 -50 30]	[0 0 0]
6	[1000 1000 1000]	[-50 -50 30]	[8 8 0]

Sasaran Dinamis (4)

Skenario	Durasi (detik)	Jarak Terdekat (meter)
1	8.81	1.4060
2	8.85	0.6871
3	9.46	2.1270
4	8.89	4.3470
5	8.81	2.7220
6	13.47	4.0820
Rata-rata	9.715	2.5619

Kesimpulan

- 1. Persamaan dinamika rotasi rudal yang *non-linear* dapat dilinearisasi dan *decoupled* dengan menggunakan *Nonlinear State Feedback decoupler*. Hal ini dapat dilihat dari pengujian decoupler sebelumnya.
- 2. Pengendali LQT yang telah dirancang bekerja dengan baik. Hal ini dapat dilihat pada pengujian LQT sebelumnya.
- 3. Pada sasaran statis, simulasi rudal bekerja dengan baik. Hal ini dapat dilihat pada rata-rata jarak terdekat antara rudal sasaran sebesar 0.45 meter.
- 4. Pada sasaran dinamis, simulasi rudal bekerja dengan baik. Hal ini dapat dilihat pada rata-rata jarak terdekat antara rudal sasaran sebesar 2.56 meter.

Terima Kasih