				5% CS				
	PCCC	PCCC-R	COPKM	CSC	DILS	LCC	KMEANS	GT
Dataset								
Appendicitis	491.8	491.8	538.0	738.5	736.0	491.8	451.8	612.9
Breast Can-	12,084.2	12,084.2	_	16,966.6	13,697.8	13,015.9	$11,\!595.7$	$12,\!214.6$
cer								
Bupa	$1,\!850.0$	$1,\!850.0$	_	2,067.2	2,028.3	1,927.1	1,496.1	2,047.3
Circles	473.8	473.8	_	593.5	594.4	472.3	410.4	600.0
Ecoli	795.3	$\boldsymbol{795.3}$	841.6	2,316.7	1,979.2	1,066.6	703.6	$1,\!335.3$
Glass	814.1	814.1	849.0	1,817.6	1,803.4	835.4	811.2	$1,\!429.3$
Haberman	799.6	799.6	_	916.3	855.0	812.6	701.4	891.4
Hayesroth	$\boldsymbol{446.7}$	$\boldsymbol{446.7}$	473.4	629.3	594.8	457.4	425.9	553.5
Heart	3,045.0	3,045.0	_	3,463.0	$3,\!155.3$	$3,\!050.1$	2,941.9	$3,\!120.5$
Ionosphere	$10,\!259.7$	$10,\!259.7$	_	11,449.8	$11,\!191.3$	$10,\!567.4$	9,086.0	10,971.5
Iris	146.4	146.3	149.0	582.4	149.8	146.3	141.2	167.9
Led7Digit	$1,\!211.7$	$1,\!168.0$	$1,\!286.6$	3,373.4	$2,\!532.6$	_	$1,\!103.6$	$1,\!511.4$
Monk2	$2,\!358.9$	$2,\!358.9$	_	$2,\!584.7$	$2,\!491.2$	2,440.3	$2,\!306.5$	$2,\!384.3$
Moons	283.7	283.7	322.8	595.9	364.8	304.1	249.7	322.9
Movement	10,774.7	10,774.7	$11,\!223.0$	$30,\!508.3$	$22,\!379.1$	10,931.0	10,433.8	19,779.5
Libras								
Newthyroid	506.1	$\boldsymbol{506.1}$	506.1	1,064.3	1,062.2	506.1	462.3	550.9
Saheart	$3,\!756.5$	$3,\!756.5$	_	4,127.2	$3,\!899.3$	3,920.6	$3,\!235.8$	3,927.7
Sonar	$11,\!294.6$	$11,\!294.6$	_	$12,\!285.8$	11,999.1	$11,\!412.8$	10,649.6	11,962.9
Soybean	367.1	367.1	367.1	920.6	628.9	367.1	367.1	367.1
Spectfheart	$10,\!468.0$	$10,\!468.0$	_	11,704.3	$11,\!286.5$	$10,\!463.7$	8,983.9	$11,\!268.3$
Spiral	$\boldsymbol{461.5}$	$\boldsymbol{461.5}$	_	596.3	487.1	470.7	379.7	564.5
Tae	487.0	487.0	504.6	740.6	628.5	507.4	480.1	713.8
Vehicle	$9,\!858.0$	$9,\!838.0$	_	$14,\!804.5$	$12,\!096.3$	9,934.9	5,980.7	$13,\!334.2$
Wine	$1,\!284.7$	$1,\!284.7$	$1,\!284.7$	2,262.6	1,812.4	$1,\!284.7$	$1,\!279.7$	$1,\!300.0$
Zoo	566.3	545.3	565.0	1,425.6	1,259.0	566.7	527.2	579.6
Mean	3,395.4	$3,\!392.0$	_	5,141.4	$4,\!388.5$	_	3,008.2	4,100.5

Table W9: Minimum Inertia values of the PCCC and the PCCC-R algorithms and the four state-of-the-art algorithms (COPKM, CSC, DILS, LCC) for the constraint sets of size 5% CS. Lower values indicate more coherent clusters. The lowest values are stated in bold. The column KMEANS reports the minimum inertia value obtained with the k-means algorithm. The hyphen indicates that the respective algorithm returned no solution within the time limit of 1,800 seconds.