STA 250/MTH 342 – Intro to Mathematical Statistics

Lecture 8

Summary of what we have learned so far

- ▶ The general inference procedure based on Bayes Theorem.
- ► How to construct point estimates/estimators based on the posterior distribution. (The Bayes estimate/estimator).
- ► The sampling view of inference—parameters are fixed unknown quantities.
- Measures of good estimators under the sampling view (the "before-the-experiment" view).
 - ► Risk functions: e.g. mean error risk, mean square error risk, etc.
 - They represent the average distance between the estimate and the true θ under repeated experiments.

The natural question is: How do we construct good point estimators that tend to have good risk measures?

- ▶ In principle, any statistic can be used as an estimator.
- ► Of course such arbitrary estimators are unlikely to be "good", that is close to the true parameter.

The principle of maximum likelihood

Recall Bayes' theorem

$$\xi(\theta|x) \propto \xi(\theta) f(x|\theta)$$

- One good candidate for an estimator based on the posterior distribution is the posterior mode. That is the value of θ that maximizes $\xi(\theta)f(x|\theta)$.
- Now let us take a skeptics' view and drop the prior $\xi(\theta)$ from the right hand side. How about we find the value of θ that maximizes $f(x|\theta)$?
- ▶ In doing this, we are viewing $f(x|\theta)$ as a function of θ , not of x!
- ▶ If $\xi(\theta)$ is relatively constant for θ values near the value that maximizes $\xi(\theta)f(x|\theta)$, then the maximizer of $f(x|\theta)$ should be very close to the maximizer of the posterior pdf.

The maximizer of $f(x|\theta)$ and the posterior mode.

Note that the horizontal axes are all θ , not x!

The maximizer of $f(x|\theta)$ and the posterior mode.

Note the closeness between the maximizer of $L(\theta) = f(x|\theta)$ and that of $\xi(\theta|x)$. This holds for many different choices of $\xi(\theta)$.

The likelihood function

Let us define

$$L(\theta) = f(x|\theta)$$

as the *likelihood function*. The notation suggests that it is viewed as *a function in* θ .

- ▶ It is the "probability" for the data to arise under θ . So we use it as the *empirical evidence* to support the value θ .
 - Note that as we repeat the experiment, with different observed data values, L(θ) changes.
 - $L(\theta)$ represents the empirical evidence for different θ values corresponding to the observed data.
- For example, if $L(0.8) \gg L(0.2)$, then the data seems to support $\theta = 0.8$ much more than $\theta = 0.2$.

In the case of multiple observations X_1, X_2, \dots, X_n ,

$$L(\boldsymbol{\theta}) = f_n(\mathbf{x}|\boldsymbol{\theta}) = f(x_1, x_2, \dots, x_n|\boldsymbol{\theta}).$$

Likelihood function for the political poll example

For X = x, the likelihood function is

$$L(\theta) = p(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$
 for $0 \le \theta \le 1$.

Now let us look at it as a function of θ .

Example: X = 40, n = 100.

$$L(\theta) = {100 \choose 40} \theta^{40} (1 - \theta)^{60}$$
 for $0 < \theta < 1$.

Example: X = 40, n = 100.

$$L(\theta) = {100 \choose 40} \theta^{40} (1 - \theta)^{60}$$
 for $0 < \theta < 1$.

The maximum likelihood estimator

- ▶ Given data $\mathbf{X} = \mathbf{x}$, the value of θ that maximizes the likelihood function $L(\theta)$ is said to be the *maximum likelihood estimate*.
- ▶ It is often denoted by $\hat{\theta}(\mathbf{x})$.
- ► The corresponding estimator constructed this way is denoted by $\hat{\theta}(\mathbf{X})$, and is called the *maximum likelihood estimator* or *MLE*.
- $\hat{\theta}$ is often used as a short notation for either the estimator $\hat{\theta}(\mathbf{X})$, or the estimate $\hat{\theta}(\mathbf{x})$, depending on the context.

How to find the MLE?

The usual way to find the maximizer of a function $L(\theta)$ is the following two steps:

1. We find a value θ such that

$$\frac{d}{d\theta}L(\theta) = 0.$$

2. Then we verify that this value of θ indeed is a maximizer by checking that for this value of θ

$$\frac{d^2}{d\theta^2}L(\theta) < 0.$$

Note that

- 1. The solution to the first equation may not be unique.
- 2. Strictly speaking these two steps will only find *local* maxima, while the MLE is the *global* maximum.

Political poll

$$\frac{d}{d\theta}L(\theta) = \frac{d}{d\theta} \binom{n}{x} \theta^{x} (1-\theta)^{n-x}$$

$$= \binom{n}{x} \theta^{x-1} (1-\theta)^{n-x-1} (x(1-\theta) - (n-x)\theta)$$

$$= 0$$

This equation has three roots 0, 1, or x/n. Generally x/n is the maximizer while the other two are minimizers.

- So the maximum likelihood estimate of θ is $\hat{\theta} = x/n$.
- ► The maximum likelihood estimator (MLE) is $\hat{\theta} = X/n$.

- ► Strictly speaking one should check $\frac{d^2}{d\theta^2}L(\theta)$ to make sure that our claim above is correct.
- ▶ But the computation seems to get very tedious.
- ▶ Is there an easier way?
- Yes! It's often much easier to maximize $\log L(\theta)$ then directly maximizing $L(\theta)$ itself.
- Since log is a monotone function the θ that maximizes $L(\theta)$ also maximizes $\log L(\theta)$ and vice versa.

Back to the political poll example

We have

$$\log L(\theta) = \log \binom{n}{x} + x \log \theta + (n - x) \log(1 - \theta).$$

Let's take a derivative and set it to zero

$$\frac{d}{d\theta}\log L(\theta) = 0 + \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0.$$

The solution to this equation is

$$\hat{\theta} = \frac{x}{n}$$
.

It is also easier to check the second-order derivative

$$\frac{d^2}{d\theta^2}\log L(\theta) = -\frac{x}{\theta^2} - \frac{n-x}{(1-\theta)^2} < 0$$

for all $\theta \in (0,1)$. Therefore we know $L(\hat{\theta})$ is a global maximum.

Another way to see that $\hat{\theta}$ is the *global* maximum

$$\frac{d}{d\theta}\log L(\theta) = \frac{(1-\theta)x - \theta(n-x)}{\theta(1-\theta)} = \frac{n}{\theta(1-\theta)}(\frac{x}{n} - \theta) = \frac{n}{\theta(1-\theta)}(\hat{\theta} - \theta).$$

So

- $\frac{d}{d\theta} \log L(\theta) > 0$ for $0 < \theta < \hat{\theta}$
- $\frac{d}{d\theta} \log L(\theta) < 0$ for $\hat{\theta} < \theta < 1$.

Therefore $\hat{\theta}$ must be the *global* maximum of $\log L(\theta)$ and hence of $L(\theta)$.

- ▶ So $\hat{\theta} = X/n$ is indeed the MLE.
- ▶ What is its MSE?

Example: Estimating average failure time of light bulbs

A particular type of light bulb will last time X, which can be modeled as an Exponential $(1/\theta)$ random variable

$$f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}$$
 for $x > 0$.

Under this distribution $E(X) = \theta$ and $Var(X) = \theta^2$.

- **Suppose** θ is unknown, and we want to estimate it.
- ▶ We observe the life time of *n* such light bulbs $X_1, X_2, ..., X_n$.
- ▶ What is the MLE of the expected life time θ ?

The likelihood function is

$$L(\theta) = f(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta) = \frac{1}{\theta^n} e^{-\frac{\sum_{i=1}^n x_i}{\theta}} \quad \text{for } \theta > 0.$$

Again before finding the maximizer, let us take the log

$$\log L(\theta) = -n\log\theta - \frac{\sum_{i=1}^{n} x_i}{\theta}.$$

Now let us find the maximizer of $\log L(\theta)$. The derivative is

$$\frac{d}{d\theta}\log L(\theta) = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2}.$$

Setting this to zero and solve for θ , we get

$$\hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}.$$

Again, we can verify that this is indeed a maximum by checking the second-order derivative

$$\frac{d^2}{d\theta^2}\log L(\theta) = \frac{n}{\theta^2} - 2\frac{\sum_{i=1}^n x_i}{\theta^3} = \frac{n}{\theta^2}(1 - 2\frac{\hat{\theta}}{\theta}).$$

At $\theta = \hat{\theta}$, this is equal to $-n/\hat{\theta}^2 < 0$. So this is indeed a maximum.

Strictly speaking, up to this point we only know this is a *local* maximum. We don't know whether this is a global maximum.

$$\frac{d}{d\theta}\log L(\theta) = \frac{n}{\theta^2}(\bar{x} - \theta) = \frac{n}{\theta^2}(\hat{\theta} - \theta).$$

So

- $\frac{d}{d\theta} \log L(\theta) > 0$ for $0 < \theta < \hat{\theta}$, and

Thus $\hat{\theta}$ is a *global* maximum of $\log L(\theta)$ and hence of $L(\theta)$.

- ▶ The MLE of θ is $\hat{\theta} = \bar{X}$.
- ▶ What is the MSE of $\hat{\theta} = \bar{X}$?

Another example

Let X_1, X_2, \dots, X_n be i.i.d. observations from the following distribution

$$f(x|\theta) = \frac{1}{\theta}$$
 for $0 < x < \theta$
= 0 otherwise.

What is the MLE for θ ?

$$L(\theta) = \frac{1}{\theta^n}$$
 for $\theta > x_1, x_2, \dots, x_n$
= 0 otherwise.

What is the global maximizer for $L(\theta)$?

- ▶ The closer θ is to max $\{x_1, x_2, ..., x_n\}$, the larger the likelihood is.
- ▶ *MLE for* θ *doesn't even exist!*
- ▶ Question: What is the MLE if the data are uniform on $[0, \theta]$ rather than on $(0, \theta)$?
 - ▶ Is it unbiased? What is its MSE?