

Multi-rate DAG Scheduling Considering Communication Contention for NoC-based Embedded Many-core Processor

BITS Pilani
Hyderabad Campus

SHRI LAKSHMI M.E EMBEDDED SYSTEMS

Problem statement

Problem definition:

To identify a specific multi-rate DAG scheduling algorithm and implement the same in Multi Processor environment for Autonomous Cars

Assumptions:

Task Sets

Tools used:

Cheddar Simulator

MCRTSim

RTSim

SimSo

lead

Directed Acyclic Graph for the tasks

3

Description

Algorithm proposed:

- Dependency Graph using DAG
- HEFT Scheduling for Multi Processor System
- DMA Scheduling for Independent Processors

Expected Outcome

- Makespan reduced without deadline missing
- Communication Contention free scheduling

Methodology

Methodology:

- Novelty
- HEFT algorithm has been used for task allocation
- Loading imbalance problem is met by incorporating utilisation balancing algorithm without violating the rules of heuristic HEFT.
- Three different architectures has been used to compare the results.

Implementation

- Three different pathways
 - ♦ 16x16 MPPA Implementation
 - 2x2 Implementation
 - 3x3 Implementation
 - 4x4 Implementation

Experimental Results

Processor	Tasks assigned		Utilisation factor	Deadline missed if	
	Tasks	Messages	(ei/di)	any	
P1	Acc/dcc data, IMU	Acc/dcc data	0.85	none	
P2	Lag compensation	Distance decode data	0.45	none	
P3	Lidar, Distance decode	-	0.3	none	
P4	Safe tailgating	Distance decode data	0.54	none	Makespan = 480ms
P5	Acc/dcc control	Safe tailgate data	0.678	none	
P6	Identify Obstacle	Distance decode data	0.52	none	
P7	Safe path estimation	Identify obstacle	0.24	none	
P8	GPS, GPS coordinates	-	0.21	none	
P9	Camera, Lane marking, Lane correction	-	0.775	none	

Experimental Results

Processor	Tasks assig	gned	Utilisation factor	Deadline missed	
	Tasks	Messages	(ei/di)	if any	
P1	Lidar, Lag compensation	Distance decode	0.55	none	
P2	Distance decode, safe path estimation	Identify obstacle	0.84	none	
P3	IMU, Lane correction	-	0.475	none	Makespan =
P4	-	Acc/dcc control, safe tailgating	1.25	none	720ms
P5	Acc/dcc data, GPS coordinates	GPS coordinates	1.5	none	
P6	Identify Obstacle	Distance decode data	0.52	none	
P7	Safe tailgating	Distance decode	0.54	none	
P8	Acc/dcc control, Camera, GPS	-	0.72	none	
P9	Identify Lane marking,	Camera, Lane marking data	0.65	none	

Experimental Results

Туре	2x2	3x3	3x3 Modified	4x4
Processor Utilization (Period)	0.69	0.3070	0.1940	0.17499
Processor Utilization (Deadline)	1.76	0.5070	0.7820	0.44318
Deadlines missed	12	0	0	0
Total Context Switches	-	1383	544	171
Total Pre-emptions	-	172	48	9
Makespan	116640	480	720	135

References

- 1. S. Bansal, P. Kumar, and K. Singh, "Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs," *J. Parallel Distrib. Comput.*, vol. 65, no. 4, pp. 479–491, 2005, doi: 10.1016/j.jpdc.2004.11.006.
- 2. S. Gill, A. Bharadwaj, N. Singh, H. Singh, and J. Singh, "Analysis of HLFET and MCP Task Scheduling Algorithms," vol. 2, no. 3, pp. 1176–1180, 2012.
- 3. S. Igarashi, Y. Kitagawa, T. Ishigooka, T. Horiguchi, and T. Azumi, "Multi-rate DAG Scheduling Considering Communication Contention for NoC-based Embedded Many-core Processor," *Proc. - 2019 IEEE/ACM 23rd Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2019*, 2019, doi: 10.1109/DS-RT47707.2019.8958696.
- 4. A. Khare, C. Patil, and S. Chattopadhyay, "Task mapping and flow priority assignment of real-time industrial applications for network-on-chip based design," *Microprocess. Microsyst.*, vol. 77, 2020, doi: 10.1016/j.micpro.2020.103175.
- 5. X. Yao, P. Geng, and X. Du, "A task scheduling algorithm for multi-core processors," *Parallel Distrib. Comput. Appl. Technol. PDCAT Proc.*, no. September, pp. 259–264, 2014, doi: 10.1109/PDCAT.2013.47.