Hint Paper: 3

veridie Dr. D. Manik andan

T. Mani sai Lokesh 192224105 Artifical Intelligence & Poto science Guide! R. Manikandan

Title: Enhancing social media influence Prediction accuracy for Marketing strategy Through comparitive Analysis of Random Forest and Artifical Neural Network

Paragraph 1:

Defination:

- * The machine learning techniques to forecast Potential. impact or user content may have social media Plotform.
- * Analysis of Engagement, interactions Predictive models.
- * To Provide insights a user content audience, decision Making for Marketing Purpose.
- * The Goal Provide Marketers insights, tailor Marketing strategies for oftimal reach impact dynamic landscape of social media.

Im Portance!

- i) Business and Morketing: It servers a Powerful Platforms for business to reach and target audience. It's cost effective way to bornate Product & services.
- 2) Awarness and Activism: Plays a coucial vole vaising awarness about issues, Promoting activism.
- 3) Global connectivity: Breakdown barries connectivity Reoffe diverse backgrounds clusters globalized digital community

Applications:

- * The network connected with family, friends & collegues
- * To share information content, videos, Pictures and creative expression for brand awarness.
- * In Real time news of information dissemination global events and trends.
- * customer support through social media channels feedback

Paragraph 2!-

Number of Aritcles!

- * sciente direct 501
- * Google scholar 1355

most cited Articals:

- [1] Li, sing x van, et al. "social network uses influence sense making and agramic Prediction." Expert system with applications 41.11 (2014):5115-5124.
- Predict social Media influence of estations." science advances 6.30 (2020): eabb 5824.
- [3] Al Marouf, Hasan (2020)! comparitive Analysis feature selection algorithium for computional Personality Prediction for social media. IEEE Transctions on computional social systems, 7(3) 587-599,

[4] Yv, sheng and subhash kak." A survey of Prediction using social Media" asxiv Preprint orxiv:
1203. 1647 (2012)

Best study:

- * Illustrating the latent colocity of Machine learning techies in anticipation of social media in similar setting.
- * Business Promotion Powerful for marketing strategy and advertising ore high income.
- * They increased demand & supply occurences infuture.

Paragraph 3:

Existing Algorithium:

- * Enisting Algorithium, the occuracy is less because of the comparision of short Period of data.
- * The machine trained used existing can Predict the social media influence in marketing strategy.

Aim of the Algorithium:

- * utilizing the machine learning Algorithium and social media influence analysis to develop robust models and Predict influence of users on social media content.
- * En hancing market strategies Provide insights, ultimately decision marketing Purpose Process for business and organisations.

Materials And methods!

Poragraph 1:

study setting: sIMATS school of Engineering.

No of Groups: 2

Group 1: Random Forest

Group 2: Artifical Newral Network.

Sample size: 5

Pataset: social media influence

6 Power: 80.1.

Poragraph 2:

Pata sample PreParation

* Group 1! Random Forest

* Information: Puta set

* APPly Random Forest Algorithium.

* calculate total no of users see in Post

* colculate occuracy of social media influence Prediction.

Paragraph 3!-

* Pata sample Preparation

Group 2: Artifical Neural Network.

* Information: Pataset

* APPly Artifical Newsal Network. Algorithium.

- * calculate total no of People see in Post
- * calculate accuracy of social media influence Prediction.

Paragraph 4!

- Testing setup *
 - * Google colab
 - * in Intel 8th Gen
 - * 8GB RAM
 - * windows 10 os

Paragraph 3:

satistical Analysis:

- * Utilizing verision 26.0 of IBM spss software, computation were Performed
- * Provided values are -> Mean
 - -7 standard deviation
 - -> standard Froor Mean.
- * IndePendent Variable: index, Age, Education, Field, settlement, New vs old user, QOL, IAT.
- * Defendent variable: social media time in hours
- * Analysis Pone: Yes
- * Result! Random Forest has better Prediction than Artifical Neural Network.

- * Notably independent variable of interest is rough score.
- * perendent variable of Research size and recorded data utilized of T Test outcomes.

Limitations:

- * In order to maximize the fetch time and increase the accuracy.
- * Bulk Pata Analysis is complicated

Future scope:

* Accuracy increased using Random Forest Algorithum

Testing Procedure:

- * Preparing the Pataset
- Train 70-1. of Pataset
- Test 30% of Pataset
- * create Embedded model using uskandom Forest Algorithium and Artifical Neural Network.

Results And Discussions:

- * Improving Accuracy in Prediction of social media influence analysis in marketing strategles by minimizing false datasets.
- * using Rondom Porest Algorithium & Artifical Neural Network Algorithium

Porograph 1!

In this study we defined that Random Forest Algorithium has better Prediction than Aritifical Neural Network Algorithium.

Paragraph 2:

Pata collection:

* Pata is trained

* saved Embedded Model

* Input sample pataset.

Age: Above 28

Education: Bachelos's Degree

Field: Engineering

settlement: urban

New_Vs-Old_user: 4 years ago or higher.

conclusion!

* The analysis of Random forest and Artifical Neural Network forecosting social medias influence on marketing strategy, both techniques accuracy

* model enhances Predictive capabilities, empowering marketers with more Precesse insights

Group Statistics

	ALGORITHM	N	Mean	Std. Deviation	Std. Error Mean	
ACCURACY	RF	20	93.90	1.744		
	ANN	20	64.75	4.822	1.078	

Independent Samples Test

		Levene's Test	for Equality							
		of Varia			t-	y of Means	95% Confidence Interval			
						Sig. (2-	Mean	Std. Error	of the Difference	
	the same of the sa	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
ACCURA CY	Equal variances assumed	11,405	.002	25.424	38	.036	29.150	1.147	26.829	31.471
	Equal variances not assumed			25,424	23.888	.036	29,150	1.147	26.783	31.517

