EXPERIMENT-10

DIMENSIONALITY REDUCTION USING PCA

Aim:

To implement Dimensionality Reduction using PCA in a python program.

Algorithm:

Step 1: Import Libraries
Import necessary libraries, including pandas, numpy,
matplotlib.pyplot, and
sklearn.decomposition.PCA.

Step 2: Load the Dataset (iris dataset) Load your dataset into a pandas DataFrame.

Step 3: Standardize the Data
Standardize the features of the dataset using StandardScaler from sklearn.preprocessing.

Step 4: Apply PCA

- Create an instance of PCA with the desired number of components.
- Fit PCA to the standardized data.

 Transform the data to its principal components using transform.

Step 5: Explained Variance Ratio

- Calculate the explained variance ratio for each principal component.
- Plot a scree plot to visualize the explained variance ratio.

Step 6: Choose the Number of Components
Based on the scree plot, choose the number of principal
components that explain a significant
amount of variance.

Step 7: Apply PCA with Chosen Components

Apply PCA again with the chosen number of components.

Step 8: Visualize the Reduced Data

- Transform the original data to the reduced dimension using the fitted PCA.
- Visualize the reduced data using a scatter plot.

Step 9: Interpretation
Interpret the results, considering the trade-offs between dimensionality reduction and information loss

CODE 1:

from sklearn import datasets import pandas as pd

from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

CODE 2:

iris = datasets.load_iris()

df = pd.DataFrame(iris['data'], columns = iris['feature_names'])

df.head()

OUTPUT 2:

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0 5.1	3.5	1.4	0.2
1 4.9	3.0	1.4	0.2

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
2 4.7	3.2	1.3	0.2
3 4.6	3.1	1.5	0.2
45.0	3.6	1.4	0.2

CODE 3:

scalar = StandardScaler()

scaled_data = pd.DataFrame(scalar.fit_transform(df),
columns=df.columns)

scaled_data.head()

OUTPUT 3:

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0 -0.900681	1.032057	-1.341272	-1.312977
1 -1.143017	-0.124958	-1.341272	-1.312977
2 -1.385353	0.337848	-1.398138	-1.312977
3 -1.506521	0.106445	-1.284406	-1.312977
4 -1.021849	1.263460	-1.341272	-1.312977

CODE 4:

plt.figure(figsize=(6,4))
sns.heatmap(scaled_data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap (Before PCA)')
plt.show()

OUTPUT 4:

CODE 5:

pca = PCA(n_components=3)
pca.fit(scaled_data)
data_pca = pca.transform(scaled_data)

data_pca = pd.DataFrame(data_pca, columns=['PC1','PC2','PC3'])
data_pca.head()

OUTPUT 5:

PC1	PC2	PC3
0 2.264542	0.505704	0.121964
1 2.080961	0.640044	0.141995
2 2.364229	0.341908	0.106205
3 2.299384	0.597395	0.233890
4 2.389842	-0.646835	0.049467

CODE 6:

```
explained_var = pca.explained_variance_ratio_
print("Explained Variance Ratio:", explained_var)
```

```
plt.figure(figsize=(5,3))

plt.plot(range(1, len(explained_var)+1), explained_var, marker='o', linestyle='--')

plt.title('Scree Plot')

plt.xlabel('Principal Component')

plt.ylabel('Explained Variance Ratio')
```

plt.show()

OUTPUT 6:

CODE 7:

plt.figure(figsize=(6,4))
sns.heatmap(data_pca.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap (After PCA)')
plt.show()

OUTPUT 7:

CODE 8:

```
plt.figure(figsize=(6,4))
plt.scatter(data_pca['PC1'], data_pca['PC2'], c=iris.target, cmap='rainbow', s=50)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA - Iris Dataset (2D Visualization)')
plt.show()
```

OUTPUT 8:

CODE 9:

print("""

Interpretation:

- PCA reduced 4D Iris data into 2 or 3 dimensions while retaining ~95% of variance.
- PC1 captures maximum variation (around 72%).
- PC2 adds another 23%, giving total ~95%.
- This demonstrates that the first two components are sufficient for visualization

and classification with minimal information loss.
""")

OUTPUT 9:

Interpretation:

- PCA reduced 4D Iris data into 2 or 3 dimensions while retaining ~95% of variance.
- PC1 captures maximum variation (around 72%).
- PC2 adds another 23%, giving total ~95%.
- This demonstrates that the first two components are sufficient for visualization

and classification with minimal information loss.

RESULT:

Thus a python program to implement Dimensionality Reduction using PCA is written and the output is verified.