Kryptographie

Jan Fässler

3. Semester (HS 2012)

Inhaltsverzeichnis

1	Kla	ssische Kryptologie	1
	1.1	Repetitionen	1
	1.2	Klassifizierungen	1
	1.3	Homophone Verschlüsselung	1
	1.4	Kaski - Text	1
	1.5	Polyfair-Cipher	2
	1.6	Koinzidenzindex	2
	1.7	Vigenères Chipres	2
			2
		1.7.2 Kryptoanalysis	3
	1.8	One-Time-Pad	4
	1.9	Kryptosysteme	4
	1.10		5
			5
		1.10.2 known-plaintext attack	5
		1.10.3 chosen-plaintext attack	5
			5
2	Blo	ck-Cipher	6
	2.1	Data Encription Standard (DES)	6
	2.2	Modi von Blocksipher	
		2.2.1 ECB-Modul (Electornic Code Block)	7
		2.2.2 CBC-Modi	7
		2.2.3 CFR-Modi (cipher feedback)	۶

1 Klassische Kryptologie

1.1 Repetitionen

Alphabet endliche Mengen von Zeichen

Beispiel

$$\begin{split} \Lambda &:= \{A, B, C, ..., Z\}, \ |\Lambda| = 26 \\ \Sigma &:= \{0, 1\}, \ |\Sigma| = 2 \end{split}$$

Sprache über $\Lambda:L\subset\Lambda^*$

1.2 Klassifizierungen

Substitution Cipher	Transposition Cipher					
Einheiten werden ersetzt .	Einh	Einheiten werden vertauscht.				
	3	1	5	6	2	4
	K	Ο	\mathbf{M}	M	\mathbf{E}	H
	E	U	${ m T}$	\mathbf{E}	A	В
	\mathbf{E}	N	D	\mathbf{Z}	U	${\rm M}$
	Z	Ο	Ο	A	В	\mathbf{C}
	$\begin{array}{l} \mathrm{ABC} = \mathrm{padding} \\ \rightarrow \mathrm{OUNOEAUBK} \end{array}$					

mono-alphabetische Cipher	poly-alphabetische Cipher
$E:A\to B$	$E:A\to P(B)$
$x \to E(x)$	$E: A \to P(B)$ $x \to E(x)$ Gruppen von Buchstaben
Buchstaben	Gruppen von Buchstaben

1.3 Homophone Verschlüsselung

Gegeben $\sum := \{0,1\}, B := \{a,b,c\}$

Informationen über die Sprache des Klartextes:

Häufigkeit von $0 = \frac{1}{3}$ Häufigkeit von $1 = \frac{2}{3}$

$$E: \sum \to P_{(B)} \tag{1}$$

$$0 \to \{b\} \tag{2}$$

$$1 \to \{a, c\} \tag{3}$$

Beispiel:

10110110011

abccbacbbaa

1.4 Kaski - Text

Klartext TO BE OR NOT TO BE

Schlüssel NOW

Polyfair-Cipher 1.5

tbd.

Koinzidenzindex 1.6

1) Gegeben

Alphabet $\Lambda := \{A, B, C, ..., Z\}$

Sprache: Englisch

IC: Grösse, die von der Sprache abhängt, aber invariant ist gegenüber Cäsar-Verschiebungen.

Frage: Was bedeutet: $IC_L := \sum_{i=1}^{26} p_i^2$?

Bemerkung:

Jede Sprache hat ihren eigenen Konzidenzindex

 $IC_{German} = 0.0766$

 $IC_{Arabic} = 0.0759$

 $IC_{flat} = 0.0385$ (Alle Buchstaben haben die gleiche häufigkeit: $p_1 = p_2 = \dots = p_{26} = \frac{1}{26}$)

Je unregelmässiger die buchstabenhäufigkeit, umso grösser der Index.

2) Gegegen:

Sei F eine buchstabenfolge der Länge n

Bsp: F= "AXCAABCXA"

Frage: Wie gross ist die Wahrscheinlichkeit zwei gleiche Buchstaben aus F herauszugreifen?

Definition
$$IC_F = \frac{\sum_{i=1}^{26} \binom{n_i}{2}}{\binom{n}{2}}$$

Bsp:

Alphabet $\Sigma := \{0, 1\}$

F = 00110111101

$$n_0 = 4$$

$$n_0 = 4$$
 $n_1 = 7$
 $n = 11$
} $IC_F = \frac{4*3+7*6}{11*10} = 0.49$

Annahme $IC_F \xrightarrow[F \to \infty]{} IC_L \ (i * A \text{ ist das falsch})$

Bemerkung

Permutation der buchstaben

 $F \to Perm(F)$

$$F = \text{"AXCA} \dots \text{"} \rightarrow Perm(F) = \text{"CBYC} \dots \text{"}$$

 $IC_F = IC_{Perm(F)}$

1.7 Vigenères Chipres

1.7.1Berechnung der Schlüssellänge

Gegeben

C Vigenère-Chiffrat der Länge n

Die Schlüssellänge sei p (unbekannt)

$$p = Spalten$$

$$\alpha:=$$
 Anzahl Buchstabenpaare aus gleicher Spalte
$$\alpha=\frac{n(\frac{n}{p}-1)}{2}=\frac{n(n-p)}{2p}$$

$$\beta:=$$
 Anzahl Buchstabenpaare aus verschiedenen Spalte
$$\beta=\frac{n(n-\frac{n}{p})}{2}=\frac{n^2(p-1)}{2p}$$

$$\gamma:=$$
 Anzahl gleicher Buchstabenpaare aus C
$$IC_c=\frac{\gamma}{\binom{n}{2}}$$

$$\gamma=\alpha*IC_L+\beta*IC_{flat}$$

Beispiel

$$p = \frac{n(IC_L - IC_{flat})}{IC_C(n-1) + IC_L - n * IC_{flat}}$$

1.7.2 Kryptoanalysis

1) Schlüssellänge p

$$p=1,2,3,...$$

• Wähle p mit
$$IC \sim IC_2$$
 (oder hoch)

2) Sei s,t zwei Strings über dem Alphabet A.

$$s = s_1, s_2, s_3, \dots s_k$$

$$t=t_1,t_2,t_3,...,t_l$$

Wieder zählen wir $n_1(s):=$ A in s, $n_3(t)=$ C in t

Def.
$$MIC(s,t) := \frac{\sum_{i=1}^{\infty} 26n_i(s) * n_i(t)}{k*l}$$

Bsp.

$$n_1(s) = 3, n_1(t) = 3$$

$$n_2(s) = 1, n_2(t) = 3$$

$$n_3(s) = 2, n_3(t) = 3$$

$$\to MIC(s,t) = \frac{1}{6*9}[3*3+1*3+2*3]$$

Idee: s,t zwei cipher-Text mit Cäsar Cerschlüsselung

Wenn beide mit dem gleichen Schlüssel verschlüsselt werden

$$\rightarrow MIC(s,t) \rightsquigarrow IC_L$$

Sonst:
$$MIC(s,t) \rightsquigarrow IC_{flat}$$

3.) Anwendung auf Cipher Text

Schlüssellänge p sei 5

$$c_1, c_2, ..., c_5$$
 Abschnitte des Cipher Text

$$MIC(c_i, c_j + k)$$

 \mathbf{Bsp}

$$c_1$$
: AXBM... c_3 : ABXHE... $c_3 + 2$: CDZJG

4.) Wir suchen Einträge in der Tabelle, die hoch sind (> 0.06) zb: $MIC(c_2, c_3+22 > 0.06 \iff c_2 \sim c_3 + 22 \Rightarrow \beta_2 - \beta_3 = k$

Notation $s \sim t \iff s$ und t sind mit dem gleichen Shift aus zwei Klartexten entstanden.

Bsp. $klar_1 \sim klar_2$

$$klar_1 \xrightarrow{\beta_1} c_1 \mid c_1 = klar_1 + \beta_1$$

$$klar_2 \xrightarrow{\beta_2} c_2 \mid c_2 = klar_2 + \beta_2$$

Wir suchen die grossen Werte von $MIC(c_i, c_j + k)$ $MIC(c_i, c_j + k)$ gross $\iff c_i \sim c_j + k$

$$c_i = klar_i + \beta_i \sim klar_i + \beta_j + k = \frac{k}{\beta_i} + \frac{\beta_j}{\beta_j}$$

$$k_{1,2} = \beta_2 - \beta_1 k_{1,3} = \beta_3 - \beta_1 k_{5,2} = \beta_2 - \beta_5$$

 \rightarrow Auflösen nach β_1 ($k_{x,y}$ sind bekannt \rightarrow Tabelle)

Schlüsselwort: $\beta_1, \beta_2, ..., \beta_p = \beta_1, \beta_1 + k_{1,2}, ...$

Ausprobieren: $\beta_1 = 0, 1, ..., 25$

1.8 One-Time-Pad

 $\textstyle\sum=\{0,1\}$

Klartext: $p_1 \ p_2 \ p_3 \ p_4 \ p_5 \dots = 00101 \dots$ Schlüssel: $k_1 \ k_2 \ k_3 \ k_4 \ k_5 \dots = 10110 \dots$ Cipher-T: $c_1 \ c_2 \ c_3 \ c_4 \ c_5 \dots = 10011 \dots$ $\rightarrow (p_1 \oplus k_1)$

1.9 Kryptosysteme

Kryptosystem: (P, C, K, e, d)

P Menge der Klartexte

C Menge der Geheimtexte

${f K}$ Menge der Schlüssel

$$\begin{array}{l} e:K\times P\to C\\ d:K\times C\to P \end{array}$$

$$\begin{aligned} \forall k \varepsilon K \ \forall p \varepsilon P : d(k, e(k, p)) &= p \\ \rightarrow \forall k \varepsilon K : e(k, -) \text{ ist injektiv} \\ \rightarrow \forall k \varepsilon K : d(k, -) \text{ ist } & \text{surjektiv} \end{aligned}$$

1.10 Kryptoanalysis

1.10.1 Ciphertext-only attack

Gegeben
$$c_i = e_k(p_i)$$
, i=1, ..., n

Gesucht p_i , i= 1, ...,n oder k

1.10.2 known-plaintext attack

Gegeben
$$(p_i, c_i = e_k(p_i)), i=1, ..., n$$

Gesucht k

1.10.3 chosen-plaintext attack

Gegeben
$$(p_i, c_i = e_k(p_i)), i=1, ..., n$$

 p_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \ \mathbf{k}$

Verwendung DIE Attacke gegen jedes Public-Key System

1.10.4 chosen-ciphertext attack

Gegeben
$$(p_i, p_i = d_k(c_i))$$
, i=1, ..., n
 c_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \ \mathbf{k}$

2 Block-Cipher

Alphabet

$$\begin{array}{l} \sum = \{0, 1\} \\ \sum^n := \sum \times \sum \times ... \times \sum \end{array}$$

Definition

Ein Block - Cipher ist eine **injektive** Abbildung $C:K\to Perm(\sum^n)$ wobei K der Schlüsselraum ist.

Bsp.

$$\begin{array}{l} n=3\\ \sum^3 = \sum \times \sum \times \sum \end{array}$$

Frage:

Wie gross ist der Schlüsselraum K maximal? $|K| \leq (2^n)!$

2.1 Data Encription Standard (DES)

Lucifer : Schlüssellänge 128

 \downarrow

DES : Schlüssellänge 56

Blocklänge $64\,$

$$L_1 := R_0 \tag{4}$$

$$R_1 := f(R_0, k_1) \oplus L_0 \tag{5}$$

$$L_0 := f(L_1, k_1) \oplus R_1 \tag{6}$$

$$R_0 := L_1 \tag{7}$$

Die f-Funktion:

2.2 Modi von Blocksipher

Sei
$$\sum := \{0, 1\}$$

 $P = C = \sum^4$
 $k = Permutationen von \sum^4
 $k = \pi = (\frac{1234}{2134})$$

Vor und Entschlüsselung

Sei m=01001
$$\in$$
 P (Klartext)
 $e_k(m) = e_k(10101) = 1010 = C$

2.2.1 ECB-Modul (Electornic Code Block)

$$m = \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2} |\underbrace{1100}_{m_3} |101*$$

Bem. 1) $m_1 = m_3 \Rightarrow c_1 = c_3$

Bem. 2) Vertauschen der Ciphertext-Blöcke wird nicht notwendigerweise erkannt.

2.2.2 CBC-Modi

$$m = m_1 | m_2 | \dots$$

$$m = \underbrace{1100}_{m_1} | \underbrace{0110}_{m_2} | \underbrace{1100}_{m_3} | 101$$

$$IV = \text{Initialvektor (i.a. bekannt)}$$

$$C_0 := IV$$

$$C_1 := e_k(C_0 \oplus m_1)$$

$$C_2 := e_k(C_1 \oplus m_2)$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

$$c_4 := e_k(C_2 \oplus m_3) = e_k(0111) = 1011$$

Entschlüsselung: $c_1 \oplus d_k(c_2) = c_1 \oplus d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2$

Bem 1) $m_1 = m_3 \not \triangleright c_1 = c3$

Bem 2) Vertauschen kann bemerkt werden

Bem 3) Übertragungsfehler machen sich bemerkbar.

2.2.3 CFB-Modi (cipher feedback)