Am25LS2516

Eight-Bit by Eight-Bit Serial/Parallel Multiplier with Accumulator

DISTINCTIVE CHARACTERISTICS

- Two's complement, two-bit lookahead carry-save arithmetic
- Microprogrammable four-bit instruction code for load, multiply, and read operations
- Cascadable, two devices perform full 16-bit multiplication without additional hardware
- Eight-bit byte parallel, bidirectional, bussed I/O
- On-chip registers and double length accumulator
- Overflow indicator
- Three-state shared bus input/output lines
- High-speed architecture provides clock rates of 20MHz (Typ)

FUNCTIONAL DESCRIPTION

The Am25LS2516 is an eight-bit by eight-bit multiplier and accumulator employing serial/parallel, two's complement, carry-save arithmetic to deliver a 16-bit product in eight clock cycles. The device is fully cascadable for use in high-speed, real-time, digital signal processing applications.

The device includes an eight-bit X Register prior to the X latch providing X hold for chain or overlapping calculations. The X and Y registers are loaded by clocking prior to the beginning of a multiply cycle, the data supplied by the bidirectional bus or the accumulator register. The double length, 16-bit output is multiplexed onto the eight-bit bus; either the upper or lower halves of the result can be read at any one time.

The accumulator and the Y register are both organized as dualrank shift registers, allowing them to shift two bits at a time. The serial inputs and outputs of the Y register, the low and high order halves of the accumulator and the two-bit serial accumulator adder output, both serially and in parallel, are all available at external pins to provide cascadability.

RELATED PRODUCTS Part No. Description Page Am25S05 Am25LS14A Am25SS557/8 Am29516/7 Am29516/7

9-86

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

DC CHARACTERISTICS OVER OPERATING RANGE

Bus Inputs	(Outputs) Description	Test Co	Min.	Typ. (Note 2)	Max.	Units		
V _{OH}	Output HIGH Voltage	V _{CC} = MIN. V _{IN} = V _{IH} or V _{IL}		l _{OH} = -1.0mA				Volts
V _{OL}	Output LOW Voltage	V _{CC} = MIN. V _{IN} = V _{IH} or V _{IL}	I _{OL} = 4.0mA				0.4	Volts
V _{1H}	Input HIGH Level	Guaranteed input k voltage for all input	uaranteed input logical HIGH Itage for all inputs		2.0			Volts
		Guaranteed input logical LOW		MIL			0.7	Volts
V _{IL} in	Input LOW Level	voltage for all input		COM'L			8.0	
V _I	Input Clamp Voltage	V _{CC} = MIN., I _{IN} =	V _{CC} = MIN., I _{IN} = -18mA				-1.5	Volts
l _l L	Input LOW Current	V _{CC} = MAX., V _{IN}	V _{CC} = MAX., V _{IN} = 0.4V				-0.8	mA
hH.	Input HIGH Current	V _{CC} = MAX., V _{IN}					60	μΑ
ин I _I	Input HIGH Current		V _{CC} = MAX., V _{IN} = 5.5V				0.2	mA
I _{sc}	Output Short Circuit Current (Note 3)	V _{CC} = MAX.			-30		-100	mA
	Off-State (HIGH Impedance)		V _O = 2.4	V _O = 2.4V		L	60	μА
loz	Output Current	V _{CC} = MAX.		$V_{O} = 0.4V$			-800	٠,٠٠

Non-Bus Inputs/Outputs

on-Bus	Inputs/Outputs					r	T			
	0 1110111/045	V _{CC} = MIN.	$I_{OH} = -440\mu A$		MIL	2.5			Volts	
V _{OH} Output	Output HIGH Voltage	VIN = VIH or VIL	OH -	440μ/1	COM'L	2.7				
		V _{CC} = MIN.	Y _R C	OUT, IOL	= 15mA			0.5	Volts	
VOL	Output LOW Voltage	VIN = VIH or VIL	Othe	rs l _{OL} =	4.0mA			0.4		
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts		
				Y ₀ , Y ₁				8.0		
VIL	/II Input LOW Level	Guaranteed input logical LOW voltage for all inputs		Others, MIL Others, COM'L				0.7	Volts	
110								0.8		
Vı	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA						-1.5	Volts	
l _{IL}	Input LOW Current	V _{CC} = MAX., V _{IN}	V _{CC} = MAX., V _{IN} = 0.4V				See Table 1			
I _{IH}	Input HIGH Current	V _{CC} = MAX., V _{IN}	V _{CC} = MAX., V _{IN} = 2.7V				See Table 1			
l _l	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V				See Table 1			mA	
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX.			- 15		-85	mA		
Icc	Power Supply Current (Note 4)	V _{CC} = MAX.				285	390	mA		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. Pins 28 and 31 HIGH, all other inputs at GND. Test after one full clock cycle of LOW-HIGH-LOW.

MAXIMUM RATINGS (Above which the useful life may be impaired)

MAXIMUM NATINGS (Above which the decid life that be impaired)				
Storage Temperature	-65°C to +150°C			
Temperature (Case) Under Bias	-55°C to +125°C			
Supply Voltage to Ground Potential Continuous	-0.5V to +6.3V			
DC Voltage Applied to Outputs for High Output State	-0.5V to + V _{CC} max			
DC Input Voltage (Pins 5, 6, 7, 8, 18, 19, 26)	-0.5V to +5.5V			
DC Input Voltage (Other pins)	-0.5V to +7.0V			
DC Output Current, Into Outputs	30mA			
DC Input Current	-30mA to +5.0mA			

TABLE I.

Terminals	IIL	ин	l _l
YIN	3mA	20μΑ	.1mA
I ₀ , I ₁ , I ₃ , OE	45mA	20μΑ	.1mA
Bus 0-7	−.6mA	90μΑ	.3mA
CP	8mA	80μΑ	.4mA
I ₂ , X ₋₁	9mA	40μΑ	.1mA
SUM IN	-1.4mA	80μΑ	.5mA
LSB	-1.6mA	80μΑ	.4mA
ACC IN all	-2mA	50μΑ	1mA
MSB	-3mA	150μΑ	1.5mA
Y ₀ , Y ₁	-7.5mA	200μΑ	2mA

ORDERING INFORMATION

Package Temperature Type Range		Order Number
Hermetic DIP	0°C to +70°C	AM25LS2516DC
nemetic DIP	-55°C to +125°C	AM25LS2516DM (Note 1)

Note 1. Military temperature range product in development.

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

Parameters	Description	Min.	Тур.	Max.	Units	Test Conditions		
t _{PLH}	Y _R Register OUT		12	18				
t _{PHL}	r A Hegister OO1		15	23	ns			
t _{PLH}	SUM OUT		13	20	ns			
t _{PHL}			15	23	lis			
t _{PLH}	ACC ADDER OUT		27	41	ns			
t _{PHL}			27	41	l ns			
t _{PLH}	ACC UH OUT		11	17	ns			
tPHL			13	20	115	$C_L = 15pF$		
t _{PLH}	ACC Bus		23	34	ns	$R_L = 2.0k\Omega$		
t _{PHL}	A00 Bus		17	26	115			
t _{PLH}	OVFL		12	18	ns			
t _{PHL}			15	23	l lis			
t _{PLH}	X ₇		13	20				
-t _{PHL}	^7		17	26	ns			
t _{ZH}			12	18				
t _{ZL}	OE to Bus		9	14	ns			
t _{HZ}	02 (0 000		24	36	ns	$C_L = 5.0pF$		
tLZ			12	18	1,0	R _L = 2.0kΩ		
t _s	X Register (Bus)	20			ns			
t _s	Y Register (Bus)	15			ns			
t _s	X_1	35			ns			
t _s	SUM IN	37			ns			
ts	Y Register (Serial)	20			ns			
t _s	ACC LH or UH IN	8			ns	$C_L = 15pF$ $R_1 = 2.0k\Omega$		
t _s	Multiplier Y ₀ and Y ₁	33			ns	⊓t = 2.0k1t		
t _s	Instruction	25			ns			
t _h	SUM IN, X ₋₁ , Multiplier Y ₀ and Y ₁	0			ns			
th	I ₀₋₃ Hold Time	10	 		ns			
th	Hold Time on All Other Inputs	5			ns	· · · · · · · · · · · · · · · · · · ·		
f _{max} (Note 1)	Maximum Clock Frequency	17			MHz			

Note 1. Per industry convention, f_{max} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

		Am25L	S COM'L	Am25	LS MIL	1			
		T _A = 0°C to +70°C V _{CC} = 5.0V ±5%			C to +125°C .0V ±10%				
Parameters	Description	Min.	Max.	Min.	Max.	Units	Test Conditions		
t _{PLH}	YR Register OUT		24		26				
t _{PHL}	TH Register COT		33		37	ns			
t _{PLH}	SUM OUT		27		27	ns			
tPHL			34		34	lis			
t _{PLH}	ACC ADDER OUT		50		52	ns			
t _{PHL}	NOO NOBEN OOT		57		60	115			
t _{PLH}	ACC UH OUT		23		23	ns	C _L = 50pF		
tpHL	A00 011 001		30		30	115	$R_L = 2.0k\Omega$		
t _{PLH}	- ACC Bus		42		45	ns			
t _{PHL}	7.00 545		38		39	115			
t _{PLH}	OVFL		26		26	ns			
t _{PHL}			33		33	115			
t _{PLH}	X ₇		30		33	ns			
tpHL	.,		39		42	113			
t _{ZH}]		30		33	ns	C _L = 50pF		
tzL	OE to Bus		21		23	ns	$R_L = 2.0k\Omega$		
tHZ			45		55	ns	C _L = 5.0pF		
tLZ			21		30	ns	$R_L = 2.0k\Omega$		
t _s	X Register (Bus)	20		22		ns			
t _s	Y Register (Bus)	15		17		ns			
ts	X_1	45		51		ns			
ts	SUMIN	52		62		ns			
t _s	Y Register (Serial)	20		20		ns			
t _s	ACC LH or UH IN	10		14		ns	$C_L = 50pF$ $R_t = 2.0k\Omega$		
t _s	Multiplier Y ₀ and Y ₁	44		51		ns	$n_L = 2.0kH$		
t _s	Instruction	27	-	30	-	ns			
tH	SUM IN, X_1, Multiplier and Y1	0		0	****	ns			
t _H	I ₀₋₃ Hold Time	10		10		ns			
t _H	All Other Inputs	5		5		ns			
f _{max} (Note 1)	Maximum Clock Frequency	15.5		10		MHz			

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

The following table provides a guide to the improvement in performance which may be obtained by control of the V_{CC} power supply.

	V _{CC} = 5.0V	$V_{CC} = 5.0V \pm 5\%$	$V_{CC} = 5.0V \pm 10\%$
T _A = 25°C	17MHz	16MHz	15MHz
$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	16MHz	15.5MHz	-
$T_C = -55^{\circ}C \text{ to } +125^{\circ}C$	12MHz	-	10MHz

Figure 5b. Two Devices Cascaded in 16-Bit by 16-Bit Multiplier Application with 32-Bit Accumulated Product.

Figure 6. 16 Bit Two's Complement Multiply without Accumulate Modified to 12 x 12 (Using Two Am25LS2516 Devices Interconnected).

Figure 4. 8-Bit Two's Complement Multiply with Accumulate, Intermediate Load and Chain Calculations.

Figure 5a. Interconnection of Two Am25LS2516 (8 x 8 Multiplier) Devices to Execute a 16 x 16 Multiply.

FUNCTION TABLE

Mnemonic	13 12 11 10	Function	CLR M	LOAD X	LOAD Y	XFER X	CLR A*	SHFT A	мих	OE	Remarks
YLHC	0000	LHA → Y, XFER X, CLR A CLR M, READ OVFL	1	0	1	1	0	0	0	1	
YUHC	0 0 0 1	UHA → Y, XFER X, CLR A CLR M, READ OVFL	1	0	1	1	0	0	1	1	
YLHA	0 0 1 0	LHA → Y, XFER X CLR M, READ OVFL	1	0	1	1	1	0	0	1	
YUHA	0 0 1 1	UHA → Y, XFER X CLR M, READ OVFL	1	0	1	1	1	0	1	1	
LYCA	0 1 0 0	LOAD Y, XFER X, CLR A, CLR M	1	0	1	1	0	0	0	0	Same Func. as 0101
LYCA	0 1 0 1	CLR A LOAD Y, XFER X, CLR M	1	0	1	1	0	1	1	0	Same Func. as 0100
LYHA	0 1 1 0	LOAD Y, XFER X, HOLD A, CLR M	1	0	1	1	1	0	0	0	
LYSA	0 1 1 1	LOADY, XFER X, SHIFT A	1	0	1	1	1	1	1	0	OVFLEN in Next State
RLHA	1 0 0 0	READ LHA READ OVFL	0	0	0	0	1	0	0	1	
RUHA	1 0 0 1	READ UHA READ OVFL	0	0	0	0	1	0	1	1	
XLHA	1010	LHA → X READ OVFL	0	1	0	0	1	0	0	1	
XUHA	1 0 1 1	UHA → X READ OVFL	0	1	0	0	1	0	1_	1	
HLDA	1 1 0 0	HOLD A OVFLEN AFTER MULT	0	0	0	0	1	0	0	0	Must Prc'd Any Output
MULT	1 1 0 1	MULTIPLY SHIFT A	0	0	0	0	1	1	1	0	
LXHA	1 1 1 0	LOAD X, HOLD A	0	1	0_	0	1	0	0	0	
LXSA	1 1 1 1	LOAD X, SHIFT A MULTIPLY	0	1	0	0	1	1	1	0	

^{*}Active LOW

Bus 0-Bus 7		UNCTIONAL TERMS	Sum in even	_	Multiplier input even for cascading link to
,		Bi-directional 8-bit data bus.			more significant byte, for standalone, ground.
	-	Interconnection link to more significant byte if cascading (output).	Sum in odd	-	Multiplier input odd for cascading link to more significant byte, for standalone,
X ₋₁ -	_	Interconnecting link between devices to least significant byte if cascading (input) link X7 to X1 to cascade — must be ground if not used.			ground. Multiplier output even (link to sum in even for cascading) can be used directly.
Accum Upper - Half out, even		Accumulator output upper byte, even bit.	Sum out odd	_	Multiplier output odd (link to sum output odd for cascading) can be used directly.
Accum Upper Half out, odd		Accumulator output upper byte, odd bit.	Acc Add out, even	-	Adder output even, for LSB (Hi) output equal sum of Accum and multiplier, for LSB (low) output equal sum of accumula-
Half input even		Accumulator input, upper byte, even bit.	Acc Add out,	-	tor and zero. Same as above except odd bit instead of even.
Half input odd		Accumulator input, upper byte, odd bit.	LSB	-	Control for summing adder — See Accumulator Add outputs for definition.
Half input even		Accumulator input, lower byte, even bit.	10-13	_	4-bit instruction field – provide cycle for cycle control of device function.
Half input odd		Accumulator input, lower byte, odd bit.	OVFL		Stored overflow indicator used only on
		"Y" register output, even (link to "Y0"). "Y" register output, odd (link to "Y1").			least significant byte. Requires proper execution of instruction to operate.
YR in even		"Y" register input, even (link for cascading) ground when not used.	MSB	_	Control for "Y" reg. and multiplier to indicate Most Significant Byte — Activates sign extension and negative waiting for 2's com-
YR in odd		"Y" register input, odd (link for cascading) ground when not used.			pliment – Low for lesser significant bytes and High for Most Significant Byte only.
Υ ₁ -	-	Multiplier odd input (link to Y register odd).	CP	_	Clock Pulse.
Y ₀ -	_	Multiplier even input (link to Y register even).	ŌĒ	-	3 state enable for Bus 0-Bus 7 outputs.