Esperimento di Equilibrio di un corpo appeso

Lorenzo Mauro Sabatino

Sommario

Verificare la somma vettoriale: un sistema di tre masse rimane in equilibrio se la somma vettoriale delle forze \vec{F}_1 e \vec{F}_2 esercitate delle masse laterali è equivalente alla forza \vec{P} della massa centrale. Insomma, si ha un modo per misurare il peso di un oggetto.

1 Introduzione

Quando un sistema è in equilibrio la somma delle forze che agiscono sul sistema è pari a zero.

Figura 1: Schema delle forze

Figura 2: Setup esperimento

La massa centrale è appesa tra le due carrucole e chiamiamo θ_1 e θ_2 gli angoli formati rispettivamente tra le congiungenti OC1 e OC2 e la verticale . Sapendo che un corpo appeso ad un angolo ha la tensione distribuita in due direzioni possiamo dire, imponendo l'equilibrio in due dimensioni, che:

$$\begin{cases}
P = F_1 \cos \theta_1 + F_2 \cos \theta_2 \\
F_1 \sin \theta_1 = F_2 \sin \theta_2
\end{cases}$$
(1)

Sappiamo inoltre che le due tensioni sono derivanti dalla forza peso delle due masse laterali e che perciò: $P_1 = F_1$ e $P_2 = F_2$ dalla quale segue che:

$$P = P_1 \cos \theta_1 + P_2 \cos \theta_2 \tag{2}$$

Nel caso in cui i due pesi siano uguali $(P_1 = P_2 = P')$ si ha $\theta_1 = \theta_2$ per cui:

$$P = (P_1 + P_2)\cos\theta = 2P'\cos\theta \tag{3}$$

2 Procedimento

- □ Tagliare un cordoncino e con le estremità formare due nodi per legare pesetti.
- ☐ Far passare il filo attorno alle due carrucole stando attenti ad evitare che il filo fuoriesca dalla guida; in caso, procedere al riallineamento.
- □ Posizionare i pesetti in modo che il sistema risulti in equilibrio. I due pesi laterali devono essere scelti uguali per facilitare i calcoli: vedi formula (3).
- □ Partire da una massa incognita da appendere all'apparato (vedi figura 1). Prima la si pesa, poi la si appende.
- ☐ Misurare con il goniometro l'angolo formato tra i fili e la verticale.
- ☐ Procedere aggiungendo altre masse incognite (pesandole man mano).

	Pesare	con	una	bilancia	anche	i pesetti	laterali.
П	Inserire	e tut	ti i d	dati in ta	bella.		

3 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

		$M_1[g]$	e_{M_1}	$M_2[g]$	e_{M_2}	θ [°]	Р	e_P
	Mis. 1	土		土			土	
I set di dati	Mis. 2	±		土			土	
	Mis. 3	土		土			土	
	Mis. 1	土		土			土	
II set di dati	Mis. 2	土		土			土	
	Mis. 3	±		土			土	
		土		土			±	

3.1 Commenti sull'analisi dati

Ш	Potete creare le tabelle nella maniera che preferite
	Confrontare il valore di P (peso centrale) ottenuto dalla formula 3 e quello ottenuto pesando la massa centrale alla bilancia. Calcolarne anche l'errore (propagare sulla somma di P_1 e P_2 . Ignorare l'errore sull'angolo).
	Realizzare un grafico che metta in relazione l'angolo θ e la massa incognita
	Importante: segnate sempre gli errori degli strumenti di misura (sensibilità). Ripetete le misure e calcolate media ed errore. Per propagare l'errore usate le formule viste a lezione.

4 Conclusioni e domande

- Per diversi valori della massa centrale, la legge è verificata?
- I valori di forza peso misurata e ottenuta dall'esperimento sono compatibili?
- Come puoi verificare che l'ipotesi di trascurare l'attrito delle carrucole sia buona?