Commudation

Distributive

$$A * (B + C) = AB + AC$$

$$\begin{matrix}
oR & AND \\
\uparrow & \uparrow \\
p & (q & \uparrow \gamma)
\end{matrix} = (p \cdot q) \cdot (p \cdot \gamma)$$

$$p \cdot (q \vee \gamma) = (p \cdot q) \vee (p \cdot \gamma)$$

Asso clative

$$A + (B+C) = (A+B)+C$$

$$P \vee (Q, V \wedge Y) = (P \vee Q) \vee Y$$

$$P \wedge (Q, N \wedge Y) = (P \wedge Q) \wedge Y$$

<u>De Morganis</u>

$$\neg (p \lor q) \equiv \neg p \lor \neg q$$

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$p \rightarrow q$$
 \neq $p \land q$

Predicate
$$P(x) : x \rightarrow \text{variable}$$

$$P(x) : x - 5 = 40$$

$$P \Rightarrow \text{predicate}$$

$$P(35) \rightarrow \text{false}$$

$$P(45) \rightarrow \text{true}$$

$$P(x) : 5x = 15$$

$$P(x,y,z): x+y>z$$

$$P(1,1,1) \Rightarrow true \qquad P(1,2,10) \Rightarrow false$$

Consider p(x): x+3=6if x is an element from the set of real numbers then p(x) is a proposition?

 $p \rightarrow q$

tre

Given Predicates:

•
$$r(x): x > 0$$

3.
$$p(-1) \land q(1) \rightarrow faller$$

3.
$$p(-1) \land q(1) \rightarrow \text{falle}$$
4. $p(0) \rightarrow q(0) \rightarrow \text{the}$

$$p(4) \rightarrow 4 < = 3 \rightarrow \text{folie}$$
 $q(1) \rightarrow 1+1 \text{ is odd} \rightarrow \text{folie}$
 $\sigma(2) \rightarrow 2 > 0 \rightarrow \text{true}$

folie \vee (folie \wedge true)

 \Rightarrow folie

 \Rightarrow folie

 \Rightarrow folie

 \Rightarrow folie

Quantifiers

1. All squeres are rectangle. True

2. Each prime number is odd. False

3. There exists attent one integer whose square is egnal to itself. True $1^2 = 1$

Universal (\forall)

AU, each, for every, for each

for all natural numbers x>0

There exists attent one

Domain

 $\forall x P(x) > 0$

x ∈ N (natural number)

Negation of Quantified expression.

Find the negation of the following statements:

- 1. All citizens vote during election.
- 2. Someone in the class has a height greater than 5ft.
- 1. Attent one citizen does not vote during elections.
- 2. Everyone in the class has a height less than or equal to 5ft.

$$\neg \quad \left(\forall x P(x) \right) \equiv \exists x \neg P(x)$$

Negation of Existential

$$\neg \left(\exists x P(x) \right) \equiv \forall x \neg P(x)$$

Rules of Inference using proposotion >

Modus Ponens → method of affirming

If p is true and p → g, is true then q must be touch

p→q: If it is sunny, then I will wear a hat.

p: It is sunny

i. q → I will wear a hat

Modus Tellens > method of denying

$$\begin{array}{ccc}
 & \neg & q \\
 & p \rightarrow & q \\
 & \ddots & \neg & p
\end{array}$$

7 q → toue

¬p → true

Hypothetical Syllogism

$$\begin{array}{cccc}
\rho & q & \Rightarrow & \text{Towe} \\
q & & & \Rightarrow & \text{Towe} \\
\hline
\vdots & & & & \Rightarrow & \Rightarrow & \text{Towe}
\end{array}$$

 $p \rightarrow q \rightarrow$ If John goes to school, then Harry goes to school $q \rightarrow r \rightarrow$ If Harry goes to school, then Seema goes to school $p \rightarrow r \rightarrow$ If John goes to school, then Seema goes to school

Disjunctive Syllogism

Addition

Conjunction

Revolution

Rules of inference using predicate and Quantifies.

Universal Instantiation

$\forall x P(x)$ $\therefore P(c)$ where c is a member of the domain

Examples P(x): All squares are reclargle

n: any square

RE set of squares

 $\forall x P(x)$

P(x): x is studying discrete mathe

x ∈ Group1 c: Smidhi

P(c) => true

Universal Generalisation

P(c) for an arbitrary c in domain $\therefore \forall x P(x)$

Existential Instantiation

$$\exists x P(x)$$

 $\therefore P(c)$ for some element c in the domain

$$P(x): x + 10 > 50$$
 $x \in N$

Existential Generalisation

P(c) for some element c in the domain $\therefore \exists x P(x)$

Problems

<u>g</u>ı.

If it mows, the school will be closed

If the school is closed, the classes will be cancelled.

Therefore, if it snows, then the classes will be cancelled.

thypothetical Syllogism

Given the hypotheses "I play outside or I study well," "I don't study well or I pass the exam," and "I don't play outside or I pass the exam," is the conclusion, "Therefore, I passed the exam" valid?

p: I play outside
q: I study well
r: I pan the exam

Premise 1: pvq

Premise d: 79, vr

Premise 3: 7pvr

.. r

If p = True

J q = True
PVr

P V V P V V P V V P V V V P V V V P V V V P V V V P V V P V V V P V V P V V P V V P V V P V V P V V P V V P V V P V V P V V P V V P V

9 Vr P Vr Remise 1: pvq

Premise d: 7qvr

Premise 3: 7pvr

toul

q => false

pvq ⇒ true Not possible