4. Convolutional neural networks

4.1. Elements of the convolutional neural network

Manel Martínez-Ramón Meenu Ajith Aswathy Rajendra Kurup

Introduction

- The basic NN in Module 1 extracts features of a pattern through a nonlinear representation in a higher dimensional space.
- Next layers represent features with a higher level of abstraction.
- In the last layer, the features produce representations of the input pattern that can be linearly classified.
- The core of the NN is the affine transformation $\mathbf{W}^{\top}\mathbf{x} + \mathbf{b}$ plus a nonlinear activation.
- This is a global transformation that does not have local properties.
- Local feature representation capabilities are needed in, for example, images.

Overall structure

- Several convolutional blocks, including convolutions, pooling and activation layers.
- A fully connected block, consisting of a standard MLP.

• The output can contain a softmax (multiclass classification) or linear activation.

Review of the convolution concept

• In one dimension, the discrete convolution is defined as

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$
 (1)

• At point n, the convolution is the sum of products of one signal times the other one shifted n positions and reversed.

Convolutions in 2 dimensions

• The extension to 2 dimensions is immediate.

$$(\mathbf{I} * \mathbf{W})[m, n] = \sum_{p=0}^{M_W - 1} \sum_{q=0}^{N_W - 1} \mathbf{W}[p, q] \mathbf{I}[m + p, n + q]$$
 (2)

- Image **I** of dimension $M_I \times N_I$.
- Convolution kernel **W**: array of dimensions $M_W \times N_W$.
- Dimensions of the resulting array:

$$M_I - M_W + 1 \times N_I - N_W + 1.$$

Image convolved with kernels W_1 and W_2 .

What is a convolutional layer for?

- Problem: detect an object or shape in an image regardless of its position.
- Its exact rotation, and scale will also be issues, but let's not mind this for now.
- The position of the object must not be relevant, so each extracted feature must receive information from all pixels.

Example of a convolution

Example of the convolution of an image with a convolution kernel designed to enhance the edges of the image.

• The image has been convolved with the kernel

$$\mathbf{W} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix} \tag{3}$$

Padding

• The convolution crops the image. The convolution dimensions are

$$M_I - M_W + 1 \times N_I - N_W + 1$$

- The pixels at the edge of the image are seen only when the convolution kernel touches the edge of the image.
- \bullet If we add p rows/columns of zeros, the output dimensions are

$$(M_I - M_W + p + 1) \times (N_I - N_W + p + 1)$$
 (4)

• If p/2 rows are added to each side of the input image so the number of rows of the convolved image does not change:

$$M_I + p - M_W + 1 = M_I$$

$$\frac{p}{2} = \frac{M_W - 1}{2}$$

hence M_W must be odd.

Padding

I								
0	0	0	0	0	0	0		
0	1	2	1	3	1	0		
0	2	1	2	1	3	0		
0	1	2	1	3	1	0		
0	2	1	2	1	3	0		
0	0	0	0	0	0	0		

	${f W}$			$\mathbf{W}*\mathbf{I}$						
*	0	1	_	0	1	2	1	3	1	
*	1	0	=	1	4	2	5	2	3	
			'	2	2	4	2	6	1	
				1	4	2	5	2	3	
					-1	0	-1	0	0	

Example of zero padding . The input, with dimensions 5×4 , is padded with 2 zeros in each dimension. The output has dimensions 6×5 . For a convolution kernel of dimensions 3×3 , the output will have dimensions 5×4 .

Stride

- Defines the amount of overlap between areas covered by the convolution kernel.
- A stride s = 1 means that two adjacent values of the convolution have been obtained by shifting one position (in either direction) the convolution kernel (no stride).
- ullet A stride of s means that between two steps of the convolution in either direction, the kernel is shifted s positions.
- As a consequence, the output has lower dimensions. For a convolution with padding p and stride s, the output dimensions will be

$$\left\lfloor \frac{M_I + p - M_w + s}{s} \right\rfloor \times \left\lfloor \frac{N_I + p - N_w + s}{s} \right\rfloor \tag{5}$$

Stride

I								
0	0	0	0	0	0	0		
0	1	2	1	3	1	0		
0	2	1	2	1	3	0		
0	1	2	1	3	1	0		
0	2	1	2	1	3	0		
0	0	0	0	0	0	0		

${f W}$				$\mathbf{W}*\mathbf{I}$			
*	0	1	_	0	2	3	
*	1	0	_	2	4	6	
				2	2	3	

Example of padding and stride, where p=2 and s=2. The resulting dimensions are 3×3 .

Pooling

- Pooling is applied to the output to reduce the size of the convolution in a controlled way.
- This reduces the complexity of the structure.
- This is desired to limit the computational cost and the overfitting.
- The operation selects a square window with q pixels and maps them into a scalar.
- Next, the window is shifted to one or more positions and the operation is repeated.
- The most usual ones are *max pooling*, which selects the maximum value of the window, and *average pooling*.

Channels

- The paths from the original image to the convolution outputs are calles *channels*.
- We can apply the convolution again to all the channel outputs.
- An image with L channels can be mapped to an image with M channels.
- Each channel is a linear combination of convolutions.

Formulation of the CNN convolution

- Assume an RGB image I with dimensions $[C_I, M_I, N_I]$, $C_I = 3$ corresponding to the three color channels.
- Every color of the image is convolved with several convolution kernels.
- Define $\mathbf{W}_{j,k}$, $0 \le j \le C_I 1$ as the collection of convolution kernels that convolve input channel \mathbf{I}_j and transform it into channel \mathbf{Z}_k . Then

$$\mathbf{Z}_k = \sum_{j=0}^{C_I - 1} \mathbf{W}_{j,k} * \mathbf{I}_j + \mathbf{B}_k$$
 (6)

where a bias array \mathbf{B}_k is added after the convolution.

Formulation of the CNN convolution

Convolution layer with 3 input channels and 4 output channels.

• Each output channel is expressed as

$$\mathbf{Z}_k = \sum_{j=0}^{C_I - 1} \mathbf{W}_{j,k} * \mathbf{I}_j + \mathbf{B}_k$$

- where convolution kernel $\mathbf{W}_{j,k}$ connects input channel j with output channel k.
- Bias matrices not represented.
- Outputs \mathbf{Z}_k are applied an activation and a pooling.

Formulation of the CNN convolution

• In a convolutional neural network, one convolutional layer computes the above operation with all the output channels of the previous layer as follows

$$\mathbf{Z}_{k}^{(l)}[n] = \sum_{j=0}^{C^{(l-1)}-1} \mathbf{W}_{j,k}^{(l)} * \mathbf{H}_{j}^{(l-1)}[n] + \mathbf{B}_{k}^{(l)}$$

$$\mathbf{H}_{k}^{(l)}[n] = \varphi \left(\mathbf{Z}_{k}^{(l)}[n]\right)$$

$$0 \le k \le C^{(l)} - 1$$
(7)

• Here $\varphi(\cdot)$ represents a pooling and a nonlinear activation, while padding and stride are assumed to be applied to the image and to the convolution kernels.

Interpretation as neural connectivity

Convolution in 1 dimension as sparse connectivity.

- Input $\mathbf{h}^{(l-1)}$ of dimension 8.
- Kernel $\mathbf{w}^{(l)} = \{w_0, w_1\}.$
- Stride s = 2, pooling q = 2.

- We need a backpropagation formulation.
- A connectivity representation is convenient to make it easy.
- Equivalent connection matrix:

$$\mathcal{W}^{(l)} = \begin{pmatrix} w_0 & 0 & 0 & 0 \\ w_1 & 0 & 0 & 0 \\ 0 & w_0 & 0 & 0 \\ 0 & w_1 & 0 & 0 \\ 0 & 0 & w_0 & 0 \\ 0 & 0 & w_1 & 0 \\ 0 & 0 & 0 & w_0 \\ 0 & 0 & 0 & w_1 \end{pmatrix}$$

Interpretation as neural connectivity

- The first layer is the input
- The connections represent the convolution.

- The connection between layers 2 and 3 is the pooling.
- The convolution can be computed as

$$\mathcal{W}^{(l)}^{\mathsf{T}}\mathbf{h}^{(l-1)}$$

Convolution in 1 dimension as sparse connectivity.

Now, this new sparse connectivity notation can be used to *interpret* the backpropagation.

Backpropagation in CNN

- Assume a CNN structure that gives an output **o**.
- Compute the gradient of the cost function wrt last kernel $\mathbf{W}_{i,k}^{(l)}$.
- We can represent the output as:

$$\mathbf{o} = \mathbf{o} \left(\mathbf{W}^{(L)^{\top}} \boldsymbol{\phi} \left(\cdots \mathbf{W}^{(l+1)^{\top}} \boldsymbol{\varphi} \left(\sum_{j=0}^{C^{(l-1)}-1} \mathbf{W}_{j,k}^{(l)} * \mathbf{H}_{j}^{(l-1)}[n] \right) \right) \right)$$
(9)

- All channels other than k and the biases have been ignored since they do not appear in the gradient wrt $\mathbf{W}_{i,k}^{(l)}$.
- Activation φ flattens the convolution to input dense layer l+1.

Backpropagation in CNN

 Now, we assume that the convolution can be changed by some sparse connectivity matrix

$$\mathbf{o} = \mathbf{o} \left(\mathbf{W}^{(L)^{\top}} \boldsymbol{\phi} \left(\cdots \mathbf{W}^{(l+1)^{\top}} \boldsymbol{\varphi} \left(\sum_{j=0}^{C^{(l-1)}-1} \mathcal{W}_{j,k}^{(l)} \mathbf{H}_{j}^{(l-1)}[n] \right) \right) \right)$$
(10)

- And now the formulation is formally identical to the one of a dense neural network.
- Two differences
 - Some matrices (the convolutions) are sparse.
 - ② The outputs of the layers are matrices rather than vectors. Therefore, the backpropagated error is a matrix. Instead of δ , we will call it Δ .

Backpropagation in a CNN

• The backpropagation can the be derived in the same way as in Module 1 for a multilayer perceptron:

$$\mathcal{W}_{j,k}^{(l-1)} \leftarrow \mathcal{W}_{j,k}^{(l-1)} - \mu \mathbf{H}^{(l-2)} \mathbf{\Delta}^{(l-1)^{\top}} - \mu \lambda \mathcal{W}_{j,k}^{(l-1)}$$
(11)

with the definition

$$\mathbf{\Delta}^{(l-1)} = \mathcal{W}_{j,k}^{(l)} \mathbf{\Delta}^{(l)} \odot \varphi' \left(\mathbf{Z}^{(l-1)} \right)$$
 (12)

• But sparse matrix $\mathcal{W}_{i,k}^{(l)}$ represents a convolution.

Backpropagation in a CNN

• Therefore we can write

$$\mathbf{W}_{j,k}^{(l-1)} \leftarrow \mathbf{W}_{j,k}^{(l-1)} - \mu \mathbf{H}^{(l-2)} \mathbf{\Delta}^{(l-1)^{\top}} - \mu \lambda \mathbf{W}_{j,k}^{(l-1)}$$
(13)

with the definition

$$\mathbf{\Delta}^{(l-1)} = \mathbf{W}_{j,k}^{(l)} * \mathbf{\Delta}^{(l)} \odot \varphi' \left(\mathbf{Z}^{(l-1)} \right)$$
 (14)