

Including factorisation and renormalisation scale -choice and -variation into FastNLO

The FastNLO idea

fastNLO

- FastNLO factorizes the cross section calculation for an aposteriori inclusion of pdf's and alpha_s for jet-production
- The basic cross section formula for pQCD (DIS)

$$\sigma = \sum_{a,n} \int_{0}^{1} dx \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{r}, \mu_{f}) \cdot f_{a}(x, \mu_{f})$$

- n: order alpha_s (perturbative order)
- a: number of flavors (internally it is Δ, g, Σ)
- c: perturbative coefficients from the matrix elements
- f: pdf

The FastNLO idea

fastNLO

- FastNLO factorizes the cross section calculation for an aposteriori inclusion of pdf's and alpha_s for jet-production
- The basic cross section formula for pQCD (DIS)

$$\sigma = \sum_{a,n} \int_{0}^{1} dx \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{r}, \mu_{f}) \cdot f_{a}(x, \mu_{f})$$

• the 'x'-integral is getting factorized

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

and calculated at some 'eigen'values

$$\sigma \cong \sum_{a,n,i} \alpha_s^n f_a(x_i) \underbrace{\int dx c_{a,n}(\frac{x_{Bj}}{x}) E^{(i)}(x)}_{\widetilde{\sigma}} = \sum_{a,n,i} \alpha_s^n f_a(x_i) \widetilde{\sigma}_{a,n}^{(i)}$$

BUT: what about the scales?

approximation of 'gluon' density

as example: approximation by triangular eigenfunctions

$$E^{(i)}(x) = \begin{cases} 1 & x = x_i \\ \log(x_{i-1}) = \log(x) & x_{i-1} < x < x_i \\ \log(x_{i-1}) = \log(x) & x_i < x < x_{i+1} \\ 0 & x < x_{i-1}, \text{ or } x > x_{i+1} \end{cases}$$

FastNLO uses more sophisticated cubic eigenfunctions

- Basically: Each 'weight' is distributed over 4 scale nodes
- Afterwards, we only have to sum up those nodes

The scale dependence

- α_s and pdf have to be evaluated at the correct µ value
- FastNLO takes μ_r= μ_f = μ
- FastNLO calculates cross section within 'sufficiently' small intervals of μ
 - those intervals are also interpolated using cubic eigenfunctions

$$\sigma = \sum_{a}^{flavors} \sum_{n}^{orders} \sum_{i}^{x-nodes} \sum_{j}^{\mu-nodes} \alpha_{s}^{n}(\mu(j)) \cdot \widetilde{\sigma}_{a,n,j}^{(i)}(\mu(j)) \cdot f_{a}(x_{i},\mu(j))$$

Save another 'table' of μ-nodes μ(j)

Those 'tables' are calculated for each bin of our measurement

Needs for improvements

- μ_r= μ_f might not be wanted (e.g. low Q² jets)
- Some studies for different scales might be done e.g.
 - Q²
 - P_⊤ jet in Breit frame
 - <pT>all jets
 - sqrt [(Q²+p_T2)/2] sqrt[(Q²+p_T2)/4]
 - $sqrt[(Q^2+p_T2)]$
- Scales should be cosistent for combined fits
 - Zeus, H1, should not choose different scales in pdf fits
- Estimation of theory error
 - scales are varied by factor 2 up and down
 - BUT: sigma-tilde is scale dependent
 - Scale variations are only approximations
- Solution:

We store scale independent weights, and do all the scale calculations when calculating the cross section

cross section in nlojet++

The cross section calculation in some detail

$$\sigma = \sigma^{born} + \sigma^{real} + \sigma^{virtual}(\mu_r, \mu_f)$$

$$\sigma^{virtual} = \sigma^{sub} + \sigma^{finix}(\mu_r, \mu_f) + \sigma^{fini} (\mu_r, \mu_f)$$

 while the cross section is only a sum of weights in the MC integration

$$w = W_{PS} \cdot pdf \cdot \alpha_s \cdot M(\mu_r, \mu_f) \cdot \alpha_{em}^2(Q^2) \cdot (\hbar c)^2$$

$$M^{finite} = M_0 + M_f \cdot \ln(\frac{\mu_f^2}{Q^2}) + M_r \cdot \ln(\frac{\mu_r^2}{Q^2})$$

which is adapted in fastNLO like

$$w = W_{PS} \cdot \frac{1}{x} \cdot 1 \cdot M(\mu_r, \mu_f) \cdot \alpha_{em}^2(Q^2) \cdot (\hbar c)^2 \equiv c \cdot M$$

improved FastNLO

- Access M₀, M_f, and M_r directly
 - slight hack of nlojet++
- Store THREE tables for
 - $M_0^*c -> \sigma()$
 - $-M_f$ *c-> $\sigma_f(\mu_f)$
 - M_r *c-> $\sigma_r(\mu_r)$
 - do the multiplication the same way as nlojet++ does it
- Calculating the cross section

$$\sigma = \sigma_0 + \sigma_f \cdot \ln(\frac{\mu_f^2}{Q^2}) + \sigma_r \cdot \ln(\frac{\mu_r^2}{Q^2})$$

- remember: σ_{xy} here is actually a sum over x, n, a, (i)
- Need for knowledge of Q², μ_r and μ_f
 - -> Additional "Scale" table for Q²
- Better
 - Additional "Scale" table for Q AND one table for p_T !!!

new final formula

 FastNLO formula with three scale independent tables σ₀, σ_f, σ_r and two 'scale' lookup tables (q,p)

$$\sigma_{Bin} = \sum_{a}^{flavors \ orders \ x-nodes} \sum_{i}^{Q-nodes \ p_{T}-nodes} \left(\alpha_{s}^{n}(\mu_{r}(q,p)) \cdot \sigma_{0a,n}^{(i)} \cdot f_{a}(x_{i},\mu_{f}(q,p)) + \alpha_{s}^{n}(\mu_{r}(q,p)) \cdot \sigma_{fa,n}^{(i)} \cdot \ln(\frac{\mu_{f}(q,p)^{2}}{Q(q)^{2}}) \cdot f_{a}(x_{i},\mu_{f}(q,p)) + \alpha_{s}^{n}(\mu_{r}(q,p)) \cdot \sigma_{fa,n}^{(i)} \cdot \ln(\frac{\mu_{r}(q,p)^{2}}{Q(q)^{2}}) \cdot f_{a}(x_{i},\mu_{f}(q,p)) + \alpha_{s}^{n}(\mu_{r}(q,p)) \cdot \sigma_{ra,n}^{(i)} \cdot \ln(\frac{\mu_{r}(q,p)^{2}}{Q(q)^{2}}) \cdot f_{a}(x_{i},\mu_{f}(q,p)) \right)$$

- while μ_r and μ_f are just some functions of the stored (in the 'scale table') Q and p_T values at p and q
 - e.g. μ_r (q,p) = sqrt((Q_q²+p_{T,p}²)/2)
- one could also store sth. different than p_T but one always needs
 Q²

pp and ppbar

- somehow simpler and more complicated
 - sum over x₁ and x₂ for both hadrons
 - 7(6) types of pdf linear combinations
 - 6 types of contributions to xs formula
 - born, real, sub, finix1, finix2, fini1
- μ_r and μ_f dependence is more trivial

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_f \cdot \log(\mu_f^2) + \boldsymbol{\sigma}_r \cdot \log(\mu_r^2)$$

final formula is rather simple then

Make a long story short

- Testing with inclusive jets at high Q²
- choosing
 - 70 x-nodes
 - 30 nodes for Q
 - 30 nodes for p_T
- Using always cubic interpolation
 - each weight is distrubuted over 4x4x4 nodes
- choosing (!!) $\mu_r = \mu_f = Q^2$
- Tablesize: 200 MB

better than: 0.0005%

Use less bins, and study scale choice

- choosing
 - 30 x-nodes
 - 20 nodes for Q
 - 15 nodes for pT
 - size: 30MB
- use the appropriate reference cross section
- Precision is mostly dependent on number of x-bins:
 - "High Q2, High pT" bins span over smaller xrange -> higher precision with fixed number of bins (Backup)
 - Different number of x-nodes per bin is already implemented!

Use less bins, and study scale choice

- choosing
 - 30 x-nodes
 - 20 nodes for Q
 - 15 nodes for pT
 - size: 30MB
- use the appropriate reference cross section
- Precision is mostly dependent on number of x-bins:
 - "High Q2, High pT" bins span over smaller xrange -> higher precision with fixed number of bins (Backup)
 - Different number of x-nodes per bin is already implemented!

Scale variation for 'theory error'

- functional form of scales is free to choose
 - also c_r*μ_r and c_f*μ_f is a valid choice
- studying scale variation with very high precision and very high statistics!
 - constrain: $0.5 < c_r^* c_f < 2.0$
- new and very precise determination of conventionally defined 'theory error'

Comparision

	FastNLO (to be v2.0)	This FastNLO mod
Size of table (speed)	$n_{Bins} \times n_{x} \times n_{mur} [\times n_{muf}] \times n_{scalevar} \times n_{proc} \times n_{ord}$	$n_{Bins} \times n_x \times n_{Pt} \times n_{Q2} \times n_{proc} \times n_{ord} \times 3$
choice of renormalization scale	Fixed when creating table e.g. $\mu_r^2 = (Q^2 + p_T^2)/2$	Any function using Q ² and Pt is possible (or any other variables used, when creating table)
choice of factorization scale	equals renormalization scale (v2.0) (I have a mod, where μ _r ≠μ _f)	Any function using Q ² and Pt is possible (or any other variables used, when creating table)
variation of μ_r (e.g. ×2, ×0.5)	fixed, when creating table	every factor is possible
variation of μ_f (e.g. ×2, ×0.5)	fixed and must be equal μ_r	every factor is possible (independent of μ_r)
free variation of scale factor	μ_r : only in an approximation μ_f : not supported	see above
How to determine theory uncertainty	vary μ _r and μ _f up and down simultaneously by ×2 and ×0.5	vary μ_r and μ_f independently with 0.5< $c_r^*c_f$ <2.0 and look for highest and lowest prediction (e.g. ATLAS jets: arXiv:1009.5908)

Daniel Britzger – FastNLO upgrade

Summary

- The FastNLO concept was improved
- Scale independent tables allow to choose renormalization and factorization scale afterwards almost arbitrary
 - a third variable (like Θ, pt-leading) could be implemented
- Scale variations for theory error determination can be performed much more sophisticated and without any approximation
- The precision of this FastNLO version can reach more than 0.0005%
- This method is implemented and well tested for DIS processes
- It is already implemented for pp and ppbar but testing is needed (reader is missing)
- Authors of FastNLO did not answer my last eMail about that
- I would propose to use this method for our upcoming alpha_s fits
- Method is also great for combined fits and cross checks with ZEUS, if they use different scales than we do

Backup

Daniel Britzger - FastNLO upgrade