CSCI S-89C Deep Reinforcement Learning

Harvard Summer School

Dmitry Kurochkin

Summer 2020 Lecture 9

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- 3 Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- 4 Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

	Question 1	4	/ 4 pts
	$TD(\pmb{\lambda})$ with $\pmb{\lambda}=\pmb{0}$ is equivalent to		
	(A) 1-step TD		
	(B) Monte Carlo Control		
	(C) Monte Carlo Prediction		
	(D) None of (A), (B), (C)		
	Please select:		
	○ B		
	© C		
Correct!	® A		
	◎ D		

	Question 2 4 /4 pts
	SARSA(λ) with $\lambda=0$ is equivalent to (A) SARSA (B) Monte Carlo Control (C) Monte Carlo Prediction
	(C) None of (A), (B), (C) Please select:
Correct!	● A
	□ B□ B

Question 4

/ 4 pts

4

The environment has three states: s_A , s_B , and s_C . In each state there are two actions, a_1 and a_2 , available.

Suppose we want to obtain optimal policy using Q-learning; and the initial values of the action-value function are

$$Q\left(s_{A},a_{1}\right)=6,Q\left(s_{A},a_{2}\right)=5,$$

$$Q\left(s_{B},a_{1}\right) =4,Q\left(s_{B},a_{2}\right) =3,$$

$$Q\left(s_{C},a_{1}\right)=2,Q\left(s_{C},a_{2}\right)=1.$$

We generate the sequence using arepsilon-greedy (arepsilon=0.05) policy with respect to current Q(s,a) values and observe:

$$s_A,a_1,R_1=5,s_B,a_2,\dots$$

If $lpha=0.1, \gamma=0.9$, what is $Q\left(s_A,a_1
ight)$ after its first update according to the Q-learning algorithm?

Hint: use the following off-policy Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\frac{R_{t+1}}{N} + \gamma \max_{a} \frac{Q(S_{t+1}, a)}{N} - Q(S_t, A_t) \right].$$

Correct!

6.26

Correct Answers

6.26 (with margin: 0.01)

4 D > 4 A > 4 B > 4 B > B = 900

- Quiz Review
 - Quiz 8
- 2 Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- 4 Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |\mathcal{S}|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |S|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

The Mini-batch gradient descent (SGD) method that minimizes the mean-squared error

$$J(\mathbf{w}) \doteq E_{\pi} \left[\left(v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}) \right)^2 \right]$$

is then

$$\mathbf{w}_{k+1} \doteq \mathbf{w}_k - \frac{1}{2} \alpha \nabla \sum_{t=m_k}^{m(k+1)-1} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_k) \right]^2$$
$$= \mathbf{w}_k + \alpha \sum_{t=m_k}^{m(k+1)-1} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_k) \right] \nabla \hat{v}(S_t, \mathbf{w}_k),$$

where m is the size of *mini-batches*.

4 D > 4 B > 4 E > 4 E > 9 Q P

Since we do not know $v_{\pi}(S_t)$, we use an approximation U_t of the state value function (for example G_t in case of MC). The weights then can be obtained as follows:

$$\mathbf{w}_{k+1} \doteq \mathbf{w}_k + \alpha \sum_{t=mk}^{m(k+1)-1} \left[\underbrace{U_t}_{\approx v_{\pi}(S_t)} - \hat{v}(S_t, \mathbf{w}_k) \right] \nabla \hat{v}(S_t, \mathbf{w}_k)$$

Example: Path in (w_1, w_2) plane:

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- 3 Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- 4 Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Supervised Learning for Estimating $v_{\pi}(s)$

"training data":

$$\langle S_0, v_{\pi}(S_0) \rangle, \langle S_1, v_{\pi}(S_1) \rangle, \langle S_2, v_{\pi}(S_2) \rangle \dots$$

We can approximate $v_{\pi}(s)$ with

- \bullet G_t (MC)
- $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$ (1-step TD)
- $G_{t:(t+n)}$ (n-step TD)
- etc.

-think of these as noisy "measurements" of $v_{\pi}(s)$.

Supervised Learning for Estimating $q_{\pi}(s)$

"training data":

$$\langle (S_0, A_0), q_{\pi}(S_0, A_0) \rangle, \langle (S_1, A_1), q_{\pi}(S_1, A_1) \rangle, \langle (S_2, A_2), q_{\pi}(S_2, A_2) \rangle, \dots$$

We can approximate $q_{\pi}(s, a)$ with

- \bullet G_t (MC)
- $R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t)$ (1-step SARSA)
- $G_{t:(t+n)}$ (n-step SARSA)
- etc.

-think of these as noisy "measurements" of $q_{\pi}(s, a)$.

- 🕕 Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- 3 Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- 4 Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Supervised Learning for Estimating $q_*(s)$ and $\pi_*(a|s)$

"training data":

$$\langle (S_0, A_0), q_*(S_0, A_0) \rangle, \langle (S_1, A_1), q_*(S_1, A_1) \rangle, \langle (S_2, A_2), q_*(S_2, A_2) \rangle, \dots$$

We can approximate $q_*(s, a)$ with

- G_t (MC) and continuously adjust policy
- $R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t)$ (1-step SARSA) and adjust policy
- $G_{t:(t+n)}$ (n-step SARSA) and adjust policy
- $R_{t+1} + \max_{a} \hat{q}(S_{t+1}, a, \mathbf{w}_t)$ (Q-learning) no need to adjust policy!
- etc.

-think of these as noisy (and likely very biased in the beginning of the training!) "measurements" of $q_*(s)$.

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- 3 Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- 4 Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Experience Replay

While updating weights w using "training data"

$$\langle S_0, v_{\pi}(S_0) \rangle, \langle S_1, v_{\pi}(S_1) \rangle, \langle S_2, v_{\pi}(S_2) \rangle \dots$$

or

$$\langle (S_0, A_0), q_{\pi}(S_0, A_0) \rangle, \langle (S_1, A_1), q_{\pi}(S_1, A_1) \rangle, \langle (S_2, A_2), q_{\pi}(S_2, A_2) \rangle, \ldots,$$

the "samples" do not need to be used in the order of time flow. Moreover, one can re-use the "samples"

- this is called experience replay.

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Linear Regression

- - Quiz 8
- - Mini-batch Gradient Descent
- - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

K Nearest Neighbors (KNN)

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Random Tree / Forest

2 iteration

Random Tree / Forest

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Logistic Regression

logistic function

$$\sigma(t) = rac{e^t}{e^t+1}$$

Decision rule:

if $x \le c$ then y = 0 and 1 otherwise

(c is called "decision boundary")

What if we have 2 inputs: x_1 and x_2 ?

Decision rule: if point (x_1, x_2) is "below" the decision

if point $(x_1,\,x_2)$ is "below" the decision boundary then y = 0 and 1 otherwise

- Quiz Review
 - Quiz 8
- Approximate Solution Methods (Continued)
 - Mini-batch Gradient Descent
- Reinforcement Learning as Supervised Learning Algorithms
 - Prediction Problem via Supervised Learning
 - Control Problem via Supervised Learning
 - Experience Replay
- Supervised Machine Learning Algorithms: Prediction
 - Linear Regression
 - K Nearest Neighbors (KNN)
 - Random Tree / Forest
 - Logistic Regression
 - Artificial Neural Networks (NN)

Artificial Neural Networks (NN)

Artificial Neural Networks (NN)

