Homework 2

Problem 2.1

Solution:

- (a) $777_8 + 1_8 = 1000_8$
- (b) $888_{16} + 1_{16} = 889_{16}$
- (c) $32007_8 + 1_8 = 32010_8$

- (d) $32108_{16} + 1_{16} = 32109_{16}$
- (e) $8BFF_{16} + 1_{16} = 8C00_{16}$
- (f) $1219_{16} + 1_{16} = 121A_{16}$

Problem 2.2

Solution:

(a) For
$$x = \overline{A \cdot B \cdot (C + D)}$$

(b) For
$$x = \overline{A + B + \overline{C} \cdot D \cdot \overline{E}} + \overline{B} \cdot C \cdot \overline{D}$$

(c) For $x = \overline{W + P \cdot \overline{Q}}$

(d) For $x = (A + B) \cdot (\overline{A} + \overline{B})$

Problem 2.3

Solution:

(a) After performing calculations, the truth table of the given logic circuit is as follows:

M	N	Q	x
0	0	0	0
0	0	1	0
0	1	0	0
1	0	0	0
1	1	0	0
1	0	1	1
0	1	1	1
1	1	1	1

Now from the truth table we easily derive the DNF (disjunctive normal form), which is: $x=\overline{M}NQ+M\overline{N}Q+MNQ$

Before simplifying, I'll first write down the rules that I will be using (a small mapping)

$$R1 \longrightarrow Commutativity$$

$$R2 \longrightarrow x + \overline{x} = 1$$

$$R3 \longrightarrow x \cdot y + x \cdot z = x \cdot (y+z)$$

$$R4 \longrightarrow x = x + x$$

Now lets simplify the expression:

$$x = \overline{M}NQ + M\overline{N}Q + MNQ = \overline{M}NQ + M\overline{N}Q + MNQ + MNQ$$

$$= \overline{M}NQ + MNQ + M\overline{N}Q + MNQ \qquad (R1)$$

$$= NQ(\overline{M} + M) + MQ(\overline{N} + N) \qquad (R3)$$

$$= NQ + MQ \qquad (R2)$$

So after simplifying our circuit becomes:

Problem 2.4

Solution:

(a) $X + \overline{X} \cdot Y = X + Y$ We calculate the Truth table below:

	X	Y	\overline{X}	$\overline{X} \cdot Y$	$X + \overline{X} \cdot Y$	X + Y
ĺ	0	0	1	0	0	0
ĺ	0	1	1	1	1	1
ĺ	1	0	0	0	1	1
ĺ	1	1	0	0	1	1

As we clearly see from the table, the last two columns are equal, which proves the statement.

(b) $\overline{X} + X \cdot Y = \overline{X} + Y$ We calculate the Truth table below:

	X	Y	\overline{X}	$X \cdot Y$	$\overline{X} + X \cdot Y$	$\overline{X} + Y$
	0	0	1	0	1	1
	0	1	1	0	1	1
ĺ	1	0	0	0	0	0
	1	1	0	1	1	1

As we clearly see from the table, the last two columns are equal, which proves the statement.

Problem 2.5

Solution:

$$\begin{array}{ll} \text{a) } A+1=1 & \text{b) } A\cdot A=A & \text{c) } B\cdot \overline{B}=0 & \text{d) } C+C=C \\ \text{e) } x\cdot 0=0 & \text{f) } D\cdot 1=D & \text{g) } D+0=D & \text{h) } C+\overline{C}=1 \\ \text{i) } G+G\cdot F=G(1+F)=G & \text{j) } y+\overline{w}\cdot y=y(1+\overline{w})=y \end{array}$$

Problem 2.6

Solution:

The following 2 Truth tables prove De Morgan's first and second theorem respectively. De Morgan's first theorem states that . The following truth table shows the results:

	1) $\overline{X+Y} = \overline{X} \cdot \overline{Y}$							
	X	Y	\overline{X}	\overline{Y}	X + Y	$\overline{X+Y}$	$\overline{X} \cdot \overline{Y}$	
ĺ	0	0	1	1	0	1	1	
ĺ	0	1	1	0	1	0	0	
ĺ	1	0	0	1	1	0	0	
I	1	1	0	0	1	0	0	

From the last 2 columns we see the theorem is true.

	$2) \overline{X \cdot Y} = \overline{X} + \overline{Y}$							
	X	Y	\overline{X}	\overline{Y}	$X \cdot Y$	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$	
ſ	0	0	1	1	0	1	1	
ſ	0	1	1	0	0	1	1	
ſ	1	0	0	1	0	1	1	
	1	1	0	0	1	0	0	

From the last 2 columns we see the theorem is true.

Problem 2.7

Solution:

I will use the exact same rules used in problem 2.3 (from R1 to R4)

Constructing the DNF through the truth table and using our 4 rules we get:

$$x = \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}CD + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}D(\bar{C}+C) + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}D + \bar{A}\bar{B}\bar{C}\bar{D}$$
 (R4)

$$= \bar{A}D(\bar{B}+B) + \bar{B}D(\bar{A}+A) + \bar{A}\bar{B}\bar{C}\bar{D}$$
 (R3)

$$= \bar{A}D + \bar{B}D + \bar{A}\bar{B}\bar{C}\bar{D}$$
 (R2)

Problem 2.8

Solution:

First we construct the K map (for sake of simplicity as the negation lines overlap with the table horizontal lines, I use AB(01) instead of $\bar{A}B$):

	$\bar{C}\bar{D}(00)$	$\bar{C}D(01)$	CD(11)	CD(10)
AB(00)	0	1	1	0
AB(01)	0	1	1	0
AB(11)	0	1	1	0
AB(10)	1	0	0	0

Counting the cells of the table from 1 to 16 (counting horizontally), we can see that there is one quad of 1s which consists of cells 2,3,6,7 (resulting in $\bar{A}D$), another quad on cells 6, 7, 10,11 (resulting in BD) and also the lonely 1 on cell 13 which results in $A\bar{B}\bar{C}\bar{D}$. Therefore we reach the same result from above:

$$x = \bar{A}D + BD + A\bar{B}\bar{C}\bar{D}$$