MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

2. oktober 2024

Jan Kastelic (GAA) MATEMATIKA 2. oktober 2024 1 / 22

Vsebina

Naravna in cela števila

2/22

Section 1

Naravna in cela števila

3/22

- 🚺 Naravna in cela števila
 - Naravna števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - Razstavljanje izrazov v množici Z
 - ullet Reševanje linearnih in razcepnih enačb v množici ${\mathbb Z}$
 - Reševanje linearnih neenačb v množici Z

4 / 22

Naravna števila

Množica naravnih števil

Naravna števila so števila s katerimi štejemo.

$$\mathbb{N} = \{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \ldots\}$$

Množico naravnih števil definirajo **Peanovi aksiomi**:

- Vsako naravno število n ima svojega **naslednika** n + 1.
- Število 1 je naravno število, ki ni naslednik nobenega naravnega števila.
- **3** Različni naravni števili imata različna naslednika: $n+1 \neq m+1$; $n \neq m$.
- ① Če neka trditev velja z vsakim naravnim številom tudi za njegovega naslednika, velja za vsa naravna števila. (aksiom/princip popolne indukcije)

Jan Kastelic (GAA) MATEMATIKA 2. oktober 2024 5 / 22

Naravna števila uredimo po velikosti in predstavimo s točko na številski premici.

Vsako število zapišemo s **številko**. Za zapis številke uporabljamo **števke**. Te so 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Posamezne števke večmestnega števila od desne proti levi predstavljajo: **enice**, **desetice**, **stotice**, **tisočice**, ...

Število, ki je zapisano s črkovnimi oznakami števk označimo s črto nad zapsiom črkovne oznake.

$$\overline{xy} = 10x + y$$
 $\overline{xyz} = 100x + 10y + z$

Operacije v množici ℕ

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** $\mathbf{a} + \mathbf{b}$.

Število a oziroma b imenujemo **seštevanec**/**sumand**.

Število a + b pa imenujemo **vsota/summa**.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

7 / 22

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Seštevanje in množenje sta dvočleni notranji operaciji.

8/22

Osnovni računski zakoni

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

9/22

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- *distributivnost*/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

10 / 22

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0;
- množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (GAA) MATEMATIKA 2. oktober 2024 11 / 22

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo **razliko** a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

12 / 22

Računski zakoni

• Komutativnostni zakon:

$$a+b=b+a$$
 in $a\cdot b=b\cdot a$

Asociativnostni zakon:

$$a+(b+c)=(a+b)+c$$
 in $a\cdot(b\cdot c)=(a\cdot b)\cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

13 / 22

Jan Kastelic (GAA) MATEMATIKA

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $\mathbf{o} \cdot 0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $\bullet (-a) \cdot (-b) = a \cdot b$

14 / 22

Računanje z naravnimi in celimi števili

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

16 / 22

Izraz, enačba, neenačba

17 / 22

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m=a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

Jan Kastelic (GAA) MATEMATIKA 2. oktober 2024 18 / 22

Razčlenjevanje izrazov

19 / 22

Razstavljanje izrazov v množici $\mathbb Z$

20 / 22

Reševanje linearnih in razcepnih enačb v množici Z

21 / 22

Reševanje linearnih neenačb v množici $\mathbb Z$

22 / 22