Unit 3 Capstone – Predicting movie IMDb score success

A little bit about me. . .

- Live in Dripping Springs, TX
 - Outside Austin, "just west of 'Weird' "
- 30+ years in high-tech
 - Primarily business development/strategic alliances
- Decided I needed a career switch
- Have been intrigued with data science for several years
- Joined Thinkful in February

Why

The movies? question

Data Fun!

Model Selection/ **Tuning**

Challenges

- Everybody loves the movies!
- Popularity (and business use) of sites like IMDb, Rotten Tomatoes, and boxofficemojo make it difficult to escape movie stats and ratings
- IMDb is a very influential site for people to determine what movies they might want to watch
 - A good score is essential to garner more viewers

What movies will garner a good IMDb score?

Generally defined as >= 7.0 (on a scale of 10)

The question

Found on Kaggle

https://bit.ly/2J9XjLt

Over 5,000 movies from across the globe

65 countries/47 languages

US represents ~75% of all movies

100 years of data

1916 – 2016

Basic info

movie_titlecountrydurationaspect_ratiotitle_yearlanguagecolorplot-keywordsgenrescontent_ratingimdb_link

Financials

budget gross

People

director actor_2_name facenumber_in_poster actor_1_name actor_3_name

Facebook likes

actor_1 cast actor_2 movie actor_3 director

Ratings info

num_critics num_users_for_review num_voted_users

Data set snapshot

	color	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres	actor_1_name	movie_title	num_voted_users
0	Color	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure Fantasy Sci-Fi	CCH Pounder	Avatar	886204
1	Color	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure Fantasy	Johnny Depp	Pirates of the Caribbean: At World's End	471220
2	Color	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure Thriller	Christoph Waltz	Spectre	275868
3	Color	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller	Tom Hardy	The Dark Knight Rises	1144337
4	NaN	Doug Walker	NaN	NaN	131.0	NaN	Rob Walker	131.0	NaN	Documentary	Doug Walker	Star Wars: Episode VII - The Force Awakens	8
5	Color	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure Sci-Fi	Daryl Sabara	John Carter	212204
6	Color	Sam Raimi	392.0	156.0	0.0	4000.0	James Franco	24000.0	336530303.0	Action Adventure Romance	J.K. Simmons	Spider-Man 3	383056

Data "quirks and peccadilloes"

- Lots of NaN's in important variables
- Financial numbers are inconsistent
 - Gross numbers appear to be in \$US, but budget is in local currency for many countries
- Facebook data is crucial but skewed toward later movies
- Movies are listed under multiple genres

- Clear the NAN's
 - Nearly 25% lost due to lack of key variables such as gross & budget
- Remove text variables
 - Actor/director/movie names, etc.
- Split genres and create new genre categorical variables
- Create other categorical variables
 - Content, USA, decade
- Rectify inconsistent financials
- Scale variables using logs to more normalize them

Sample variable distributions – Content rating

 Made 3 new categorical variables for 'R', 'PG-13' and 'PG' and dropped the content_rating variable

Sample variable distributions – Movie year

 Since most movies in dataset were 1980 and later, created categorical "post-1980" and dropped the year column

Sample variable distributions -- Countries

In [110]:	df.country.value_counts()										
Out[110]:	USA UK France Germany Canada Australia Spain Hong Kong China Italy New Zealand Denmark Ireland Mexico Brazíl India Iran Norway	2961 313 101 79 59 39 21 13 12 11 11 8 7 6 5 5 4 4	Norway Netherlands Czech Republic South Africa Argentina Russia Romania Hungary Taiwan Chile Official site Georgia Afghanistan West Germany Indonesia Israel Finland Iceland	4 3 3 3 3 2 2 2 1 1 1 1 1 1 1	 Created 'USA' categorical variable (as vast majority are US movies) and dropped 'country' variable 						

Variable correlation

- Applied multiple models to the question
 - KNN
 - Decision Tree
 - Random Forest

- Ridge Logistic Regression
- Lasso Logistic Regression
- Gradient Boosting

 Gives me an idea of how each performs and then I can choose & tweak

Initial results

KNN: score = 0.784

Random Forest: score = 0.814

Decision Tree: score = 0.784

Ridge: score = 0.830

Initial results (cont'd)

Lasso: score = 0.827

Gradient Boosting: score = 0.843

Gradient Boosting

• Score: .843

• AUC: .92

Tune hyperparameters using random parameter selection

Model tuning

```
{'bootstrap': [True, False],
    'max_depth': [5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
    'max_features': ['auto', 'sqrt'],
    'min_samples_leaf': [1, 2, 4],
    'min_samples_split': [2, 5, 10],
    'n_estimators': [50, 100, 200, 300, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]}

rf_random = RandomizedSearchCV(estimator = rf, param_distributions = rf_random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs = -1)
```


Re-run with best_params_

```
score = 0.854, auc = 0.922
```

Important Features

Challenges/ Lessons Learned

- Not a tremendous amount of movies
 - But still got decent results
- Had to drop a lot of rows due to missing info
 - Lost about 23% of the data set
- There is definite bias in the dataset due to "Facebook likes"
 - Facebook has only been around 10 years and so will be heavily weighted to later movies
- You must familiarize yourself with every aspect of the data!
 - It's very tempting to get the data set and jump into the analysis, but this can take you on a misleading path(s)
 - Understand "Quirks and peccadilloes", as suggested in the curriculum
 - Took me awhile before I noticed the budget discrepancy

