BDPP reading notes

Spring 2025

Lecture Supplement 3 — 17, 02, 2025 (version 0.0)

Yi Li

1 Overview

This aim of this note is to introduce the BDPP theorem for projective [BDPP13] and Kahler manifold [Ou25]. Varies applications of the BDPP theorem are shown.

2 Transcendentla cone

On a compact Kähler manifold, there may not have plently of divisors. To make sense varies positivities, it is necessary to introduce the transcendentla cones.

3 Duality between varies cones

The following theorem shows the duality between pseudo-effective cone and movable cone on the projective manifold.

Lemma 1. Let X be a projective manifold. Let $\gamma \in N_1(X)$ be a movable class. Then given any prime divisor E, there exist a representative γ_E such that γ_E intersect E properly and $\gamma \equiv \gamma_E$.

Remark 2. I am not pretty sure, if the result is also true for Kähler manifold?

Theorem 3. Let X be a projective manifold, then the pseudo-effective cone is dual to the cone of movable curves

$$\mathcal{E} = \overline{\mathrm{Mov}(X)}^{\vee}.$$

In other words, a divisor is pseudo-effective iff it has non-negative intersection with any movable curves.

Remark 4. David [WN19] proved ...

Remark 5. Let us briefly sketch the idea of the proof.

Proof. Let C be a movable curve, By Lemma 1, we can choose some C' such that $C \equiv C'$ and C' meets the given pseudo-effective divisor properly. Hence

$$\mathcal{E} \subset \overline{\mathrm{Mov}(X)}^{\vee}$$
.

Conversely, if the inclusion is strict then there exist some

$$\xi \in \partial(\mathcal{E}(X)), \quad \xi \in \operatorname{int}\left(\overline{\operatorname{Mov}}(X)^*\right).$$

We want to deduce contradition. Since X is projective, we can find some ample divisor H such that $\xi - \epsilon H$ still in the movable cone. So that

$$\frac{(\xi \cdot C)}{(H \cdot C)} \ge \varepsilon, \quad \forall \ C \in \overline{\text{Mov}(X)}.$$

On the other hand we can apply Fujita approximation to the class $\xi + tH$ for the ample H. And gets

$$\mu_t: X_t \to X$$

such that

$$\mu_t^*(\xi + tH) = A_t + E_t$$

choose $C = \mu_* A_t^{n-1}$, then apply the Asymptotic orthogonality of Fujita approximation to $\xi \cdot C$ and Teissier-Hovanskii inequality to deduce an upper bound

$$\delta_t \ge \frac{\xi \cdot C}{H \cdot C} \ge \epsilon$$

with $\delta_t \to 0$ when $t \to 0$ (here δ_t is a constant depend on the volume of A_t , since $vol(\xi) = 0$ by Fujita approximation $vol(A_t) \to 0$ when $t \to 0$).

One can generalize the duality theorem to the normal Moishezon space using standard blow up arguement.

Theorem 6. Let X be a normal Moishezon space, then the pseudo-effective cone is dual to the movable cone of curves.

Using the duality theorem, we can show that cone of nef curves coinside with the movable cone of curves.

Theorem 7. Let X be a normal Moishezon space, then the Batyrev nef cone coinside with the movable cone of curves.

4 Characterization of the projective uniruled manifold

The projective uniruled manifold is characterized by the pseudo-effectiveness of the canonical bundle

Lemma 8. Given a movable curve C, there exist a covering family $\bigcup_{t \in S} C_t$ contains C, which covers a dense open subset of X. To be more precise, we can find a diagram

$$\begin{array}{c} \mathcal{C} \stackrel{\phi}{\longrightarrow} X \\ f \downarrow \\ S \end{array}$$

with f a fibration, with fibers C_t and ϕ is dominant generic finite morphism, with $\{C_t\}_{t\in S}$ lies the same numerical class.

Proof.

Theorem 9 ([BDPP13, Corollary 0.3]). Let X be a projective manifold. Then X is uniruled iff K_X is not pseudo-effectiveness.

Remark 10. One direction of the proof is easy, and can be adopted to the Kähler manifold. The converse direction (say K_X is not pseudo-effective) implies uniruled of X is non-trivial, which requires the Mori bend and break technique and the duality between pseudo-effective cone and movable cone.

Remark 11. Miyaoka and Mori [MM86] proved that a projective manifold is uniruled iff there exist an open subset over which there exist a K_X -negative curve passing through it. For more discussion about Miyaokao-Mori theorem (and varies properties of uniruled manifold) see my Note 15.

Proof. It's sufficient to prove that if K_X is not pseudo-effective, then X is uniruled. By duality of pseudo-effective cone and movable cone, we know that there exists a movable curve such that

$$K_X \cdot C < 0$$
.

By Lemma 8, we can produce a covering family of K_X -negative irreducible curves using the movable curve C.

We can generalize the BDPP theorem to the singular case.

Theorem 12. Let (X, B) be a \mathbb{Q} -factorial log pair. If $K_X + B$ is not pseudo-effective, then X is uniruled.

Remark 13. Rational curves on singular space is tricky. See more discussion on my notes note-9 Rational curves on Moishezon space, Kaehler varieties.

Proof. Taking the log resolution

$$f: X' \to X$$

such that $f^*(K_X + B) = K_{X'} + B'$. Since being uniruled is birational invariant, if X is not uniruled, then so it is X'. Then by the BDPP theorem we just proved, $K_{X'}$ is pseudo-effective, thus K_X is pseudo-effective. Since B is effective, $K_X + B$ is pseudo-effective.

We can characterize the uniruled variety using subsheaf of tangent sheaf

Theorem 14. Let X be a projective manifold, $\mathscr{F} \subset T_X$ be a coherent subsheaf such that det $\mathscr{F}^* \subset T_X$ is not pseudo-effective, then X is uniruled.

Proof.

5 Proof of BDPP conjecture for Kähler manifold

Recently, [Ou25] proved the BDPP conjecture for the compact Kähler manifold. In this section, we will briefly introduce the result that he proved.

- 5.1 Algebraic integrability criteria under Kähler setting
- 5.2 Pseudo-effectiveness of the adjoint class
- 5.3 Relative Albanese reduction
- 5.4 Proof of BDPP conjecture for compact Kähler manifold
- 6 Varies applications
- 6.1 Applications of duality of pseudo-effective cone and cone of movable curves
- 6.2 Producing rational curves using BDPP conjecture
- 6.3 Cone theorem using BDPP conjecture

References

- [BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, *The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*, J. Algebraic Geom. **22** (2013), no. 2, 201–248.
- [MM86] Yoichi Miyaoka and Shigefumi Mori, A numerical criterion for uniruledness, Ann. of Math. (2) **124** (1986), no. 1, 65–69.
- [Ou25] Wenhao Ou, A characterization of uniruled compact kähler manifolds, 2025.
- [WN19] David Witt Nyström, Duality between the pseudoeffective and the movable cone on a projective manifold, J. Amer. Math. Soc. **32** (2019), no. 3, 675–689, With an appendix by Sébastien Boucksom.