# **IPSec**

### IPv6

#### To overcome limitation of IPv4

- Small space address (2\*\*32)
- No support for mobility
- No security
- Survivability thus best effort as philosophy

# IPv4 packet



### IPv6

#### IPv6

- Huge space address (2\*\*128)
- Support for mobility
- Security (IPsec)
- Quality of service
- Backward compatibility
- Efficiency

# IPv6 packet

| Version             | Priority | Flow Label  |                       |  |  |  |  |
|---------------------|----------|-------------|-----------------------|--|--|--|--|
|                     | Pay      | load Length | Next Header Hop Limit |  |  |  |  |
|                     |          | So          | ource Address         |  |  |  |  |
| Destination Address |          |             |                       |  |  |  |  |

12.

### IPv6

- Security in design phase and not retro fitted as in IPv4:
  - Authentication and connectionless integrity (AH)
  - Confidentiality + Traffic control + Autentication (ESP)
  - IKE key exchange
- Security mechanisms and cryptographic algorithms independency
- We are at network level so used for VPN

# IPSec security services

- Security services offered by IPv6:
- Data Origin Authentication verifies that each datagram was originated by the claimed sender
- Data integrity verifies that the contents of the datagram were not changed in transit, either deliberately or due to random errors
- Data confidentiality conceals the cleartext of a message, typically by using encryption

# IPSec security services (2)

 Replay protection assures that an attacker can not intercept a datagram and play it back at some later time

 Automated management of cryptographic keys and security associations assures he possibility of automatic configuration → Scalability

### **VPN: Virtual Private Network**

 A private (logical) network build on top of a public and shared physical network



### Virtual Private Networks

- Branch Office Interconnection: a VPN that enables communications between physically separated intranets that are members of a single corporate network
- Inter-company Connections: a VPN that enables secure communications between intranets of different companies, using the public Internet as a backbone
- Remote Access: a VPN that enables secure communications between a remote host and its home corporate network

# AH: Authentication Header

| Next Header                    | Payload Len           | Reserved |  |  |  |  |  |
|--------------------------------|-----------------------|----------|--|--|--|--|--|
| Security Parameter Index (SPI) |                       |          |  |  |  |  |  |
| Sec                            | Sequence Number Field |          |  |  |  |  |  |
| Authenticated Data (variable)  |                       |          |  |  |  |  |  |

# ESP: Encapsulation Security Payload



Authentication coverage Confidentiality coverage

# IKE: Internet Key Exchange

- ISAKMP provides a framework for authentication and key exchange but does not define them.
- Oakley describes a series of key exchanges-called "modes"-- and details the services provided
  by each (e.g. perfect forward secrecy for keys,
  identity protection, and authentication).
- IKE: Instantiation of ISAKMP/Oakley (promoted by Cisco)

### IKE

- Set parameters for Security Association (SA)
- Scalability
- Several security levels and modes
  - Shared key
  - Digital Certificates
  - Crypto algorithms independency
- Additional security features (i.e. PFS, anticlogging)

# Transport vs Tunnel mode

IPv6 specifies two modes:

Tunnel Mode for gw-to-gw and host-to-gw connections

Transfer mode for host-to-host connections

### AH

Original Datagram:

| IP Header | IP Payload |
|-----------|------------|
|           |            |

Original Datagram Protected by AH-Transport Mode:



Original Datagram Protected by AH-tunnel Mode:

| ħ | New IP Header | AH Heade | :Г  | IP Heade | <u>:</u> Γ |    | IP F | 'ayloa | d       |          |
|---|---------------|----------|-----|----------|------------|----|------|--------|---------|----------|
|   | Authenticated | except / | for | mutable  | fields     | in | "New | IP     | header" | <u>_</u> |

## **ESP**

#### Original Datagram:



Original Datagram Protected by ESP-Transport Mode:



Original Datagram Protected by ESP-tunnel:



# Example



Host A uses IP ESP BP BP ESP-Transport Header Header Payload Trailer Auth

Firewall 1 uses AH-tunnel, New IP AH IP ESP Payload ESP ESP adding a new IP Header Header Header Header Payload Trailer Auth

Firewall 2 receives the AH-tunneled datagram, authenticates it, strips off outer header and AH Header

| IP     | ESP    | Payload | ESP     | ESP  |
|--------|--------|---------|---------|------|
| Header | Header |         | Trailer | Auto |
|        |        |         |         |      |

## **IPSec limitations**

Problems with NAT

- Network security
- Replay attacks
- Legacy
- Slow deployment of IPv6

# Perfect Forward Secrecy

- PFS if the attacker record past ciphertext than get the long term-secret at time T<sub>1</sub> but he cannot decrypt ciphertext generated before time T<sub>1</sub>
- PFS secure the past against future attack

 Generation of temporary session key not derivable from long-term information

# PFS: example



# Secret key generation

- When two parties share secret key is good practice if both contribute to the generation
  - to prevent poorly chosen secret
  - to prevent possible impersonation consequent to break-ins

# Secret key generation

### Example



### Denial of Service

 DoS affects the availability property by maliciously denying access to resources/services

 DoS is one of the most common and effective attacks. It's difficult to prevent and even more difficult to solve

# DoS: Sync flood



3-way Handshake

### Distributed DoS

Situation is even worse with DDoS



# Denial of Service: prevention

- Reverse Path Filtering (deny invalid IPs)
- Allow only good traffic into your network (ingress filtering)
- Allow only good traffic out of your network (egress filtering)
- Stop directed broadcast traffic (to avoid being an amplifier)

....problem...all solutions limit functionalities

### Denial of Service: solutions



 $c=hash(IP addr, secret) \rightarrow stateless cookie$ 

### Denial of Service: solutions

- Puzzles: relies on the asymmetry of computation. Low for server high for client (initiator). This should discourage mounting DoS attacks.
- example

What is the hash of word x?

- Still powerful clients can mount DoS
- Not very effective with DDoS

### Denial of Service: solutions

So called Turing tests

#### **Existing Yahoo! users**

| ID<br>password     |        |  |
|--------------------|--------|--|
| Word you see below |        |  |
|                    | effort |  |

The answer cannot be processed automatically but human intervention is needed