

Discussing

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

By Müller et.al, 2022

Oct 2022 Moritz Hambach and Rishabh Raj

Outline

- 1) understand idea
- 2) understand details and implementation

WHAT'S A NEURAL GRAPHICS PRIMITIVE?

An object represented by queries to a neural network!

EXAMPLE: IMAGE

"What's the pixel color at X?"

EXAMPLE: IMAGE

"What's the pixel color at X?"

EXAMPLE: SIGNED DISTANCE FUNCTION

"How far away from surface is X?"

EXAMPLE: SIGNED DISTANCE FUNCTION

"How far away from surface is X?"

EXAMPLE: RADIANCE & DENSITY FIELD (NERF)

"How much stuff is at X and what color does it have when viewed from d?"

NERF: Mildenhall et.al., 2020

https://tom94.net/data/publications/mueller22instant/mueller22instant-gtc.mp4

WHY NEURAL NETWORKS?

- Trades memory for compute
 - Mutable; n-dim. inputs
- Reputation for being slow
- Competitively fast!

- Impractical memory usage
- Rigid; limited to 3D
- But really fast

3 PILLARS OF INSTANT NEURAL GRAPHICS

Multiplicative speed-ups >1000x!

Rendering/training algorithm

- Task-specific
 GPU implementation
- 10-100x fewer steps than naïve tensor-based approach

Small neural network

- Fully fused implementation
- 5-10x faster than TensorFlow

"Good" input encoding

- Multiresolution hash encoding
- Better speed-vs-quality tradeoff than prior work
- Task agnostic

- Depends on task
- NeRF:
 - query rays mostly near surfaces
 - step size grows linear with distance
 - stop marching once almost all light is absorbed
 - keep coarse occupancy grid to allow skipping empty space

Small + fully fused Neural Networks

- MLP with only M=64 Neurons, L=2..4 hidden layers, no biases, ReLU activation
- Run on a single CUDA kernel (avoid memory traffic)
- compute is O(M2), traffic is O(M), but can dominate for small M

- Multi-resolution
 - Automatic level of detail

- Multi-resolution
 - Automatic level of detail
- Hashing
 - Task agnostic
 - Table size T controls quality vs memory

- Multi-resolution
 - Automatic level of detail
- Hashing
 - Task agnostic
 - Table size T controls quality vs memory
- Linear interpolation to enable continuity and differentiability

Demo!

Questions?