

Principles of Communication Systems

Elements of a Communication System and Data Fundamentals

Professor Mark Beach

Communication Systems & Message types

Elements of a Communication System

Characteristics of Message Type

- Analogue: Electrical analogue of physical signal (e.g. light intensity, sound level). $\leq N \subset$
 - Characterised by: Distortion, Signal to noise ratio, fidelity, Mean Opinion Score. Signal to noise ratio, fidelity,
- Digital: Discrete symbols selected from a finite set (e.g. letters of the Alphabet, binary numbers).
 - Characterised by: Bit Error Rate (BER) and Symbol Error Rate (SER).

Elements of the Communication Link: The Transmitter

- Processes the message signal to produce a signal suited to the characteristics of the channel.
 - The process will involve modulation and may involve coding and interleaving.

1 to 2 GHz -> best programating Antenna characteristic

Transmitter, Channel & Receiver

Elements of the Communication Link: The Transmitter

- Processes the message signal to produce a signal suited to the characteristics of the channel.
 - The process will involve modulation and may involve coding and interleaving.

channel error -> burstervors (mobile deep fading)
impact on adacent data bit
inter leave to avoid bursterror

Elements of the Communication System: The Transmission Channel

- The Electrical media between the source and the destination of the message.
 - Examples: Fibre Optic cable, Terrestrial microwave links, Satellite links, Coaxial cable, Mobile radio.
 - Media characterised by: Loss/Attenuation,
 Bandwidth, Noise/Interference, Distortion.

Bandwidth, Moise/Interiore, Distortion

Wiveless — channel attenuation of Gregueny?

56 New Radio (NR) — Sub 66Hz (FRI)

— millimetrechannel 26GHz (286Hz

EENGM0033 - Principles of Communication Systems

28d B move attenuation at number of than sub-66Hz 9

Elements of the Communication Link: The Receiver

- The receiver extracts the message.
 - The processes that occur within a receiver are thus essentially the reverse of what happens in the transmitter.

The following processes are usually involved:
 Amplification, Filtering, Demodulation,
 Synchronisation, Decoding.

lower

the wanted

The wanted

The wanted

The wanted

EENGM0033 – Principles of Communication Systems

Sources of Link Degradation

Distortion

- Gain variations with frequency and with time.
- Frequency dependant phase shift which gives differential group delay.
- Frequency offsets due to Doppler shift or local oscillator errors.
- Distortion generated within the communications hardware (Tx and Rx)

Sources of Link Degradation

Distortion

- Gain variations with frequency and with time.
- Frequency dependant phase shift which gives differential group delay.
- Frequency offsets due to Doppler shift or local oscillator errors.
- Distortion generated within the communications hardware (Tx and Rx)

Imperfections, Distortion & Duplexing

Sources of Link Degradation

Distortion

- Gain variations with frequency and with time.
- Frequency dependant phase shift which gives differential group delay.
- Frequency offsets due to Doppler shift or local oscillator errors. Crystal Oscillator errors. Crystal Oscillator errors. Hyperrore IMH2 > 1843 IRH3

 - Distortion generated within the communications
- Harmonic hardware (Tx and Rx)
 Harmonic distortion & harmonics & 1, 45,

Intermodulation Distortion (IMD) Fif2 1 3rdorder Strorder

Sources of Link Degradation

Noise

- Characterised as random signals from natural sources.
 - Thermal noise: Due to the thermal agitation of electrons in the signal processing circuits.
 - Atmospheric noise: Caused by random electrical processes in the atmosphere at which an antenna is pointing.
- Modelled as 'Additive White Gaussian Noise (AWGN)

Transmission Protocols or Duplexing

- Simplex
 - Communication Flow in ONE direction
- Half Duplex
 - Two way communications, but NOT at the same time
- Full Duplex

Simultaneous two-way communications

Duplex

Basestation > Frey per active user userend Time RX IX RXTX

Data Fundamentals (bits and Symbols)

Factors Affecting System Design: Bandwidth

- Bandwidth dictates how quickly a signal can vary with time.
- All signals must ultimately have some bandwidth limitation as it is not possible for signals to vary instantaneously in nature (requires an instantaneous change of energy level).

Data Transmission Fundamentals

Methods of Data Transmission

- Binary signalling
- Binary signalling over parallel channels
- Multi-level signalling
- Multi-level signalling over parallel channels

Information transfer rate

- Information transfer rate is defined as the speed at which binary information can be transferred from the source to the destination over a particular channel.
 - The units are bits per second.
 - Eg: 6 bits of information sent every 6ms then the channel capacity
 is:

C = 6 bits/6 ms = 1000 bits/second

Symbol rate (Baud rate)

- The information rate (channel capacity) must not be confused with the rate at which symbols are varied. We can encode many bits onto a single symbol.
- The symbol rate (often called Baud rate) is the rate of change of signal states on a channel.
 - The unit for symbol rate is symbols /second or Baud.
 - Eg: If we use 4 frequencies to convey 2 bits of information through a channel, and the frequency (symbol) is changed every 0.5ms then:

Symbol rate =1/0.5ms = 2000 symbols/second = 2000 baud f_3

Channel capacity is however 4000 bits/sec.

Bandwidth Efficiency

- The bandwidth efficiency of a communications link is a measure of how well a particular modulation format (and coding scheme) is making use of the available bandwidth
 - Units are bits/second/Hz
 - Eg: 4kHz of bandwidth is used to transfer 8000 bits/second,

bandwidth efficiency = 2bits/second/Hz

M-ARY Signalling - Example

Advantages of M-ary Signalling

• Higher information transfer rates for a given symbol rate and corresponding channel bandwidth.

OR

- Lower symbol rate leading to a reduced bandwidth requirement for a given information transfer rate
- Both lead to an increase in bandwidth efficiency (bits/sec/Hz.).

M-ary Signalling: Bandwidth Efficiency

- The number of bits per symbol, n, which can be conveyed by M-ary signalling is given by: $M=2^n$ $M=2^n$
- The data rates of an M-ary signalling scheme is given by:

$$3 \text{ kH}_3 \rightarrow f_d = (\log_2 M) \text{ fs}$$
 1 kH_3

• The bandwidth efficiency of an M-ary signalling scheme is given by:

$$\eta_{B} = f_{d}/B = (\log_{2}M) \text{ fs/B} = 4 \text{ br/s/Hz}$$
Bundwidth

Disadvantages of M-ary signalling

- Reduced noise immunity when compared with binary signalling as it is more difficult to distinguish between the states.
- More complex symbol recovery processing at the receiver.
- Greater requirements for linearity in the communications link

Channel Capacity

Relationship: Bandwidth to Symbol Rate 'Channel Capacity'

• A fundamental relationship exists between the channel bandwidth and the rate at which symbols can be sent.

Calculation of channel capacity

• Minimum Transmission Bandwidth for error free transmission in a noise free environment.

$$B_{\min} = 0.5*1/T_{S} \text{ (Hertz)}$$

 T_S is the symbol period = 1/symbol rate.

- Maximum symbol rate = $1/T_S = 2.B_{min}$ (bits/sec)
- If each symbol has M levels, then each symbol will transmit log₂M (bits).

Therefore Channel capacity (C) is given by:

$$C = 2.B.log_2M$$
 (bits/second)

Shannon Hartley Capacity Theorem

The Shannon Hartley equation indicates the highest possible channel capacity (C) for error free communications in AWGN, for a channel bandwidth (B) and signal to noise ratio (S/N):

$$C = Blog_2(1 + S/N)$$
 bits/s

Trading off Signal Power for Bandwidth Efficiency

• For a system transmitting at maximum capacity C, then the average signal power can be written as:

$$S = E_b \cdot C$$
 Linergy par bit

Where E_b = the average received energy per bit.

The average noise power can be defined as:

$$N = N_0 \cdot B$$

Where N_0 = the noise power density (Watts/ Hertz).

Trading off Signal Power for Bandwidth Efficiency

The Shannon Hartley equation can thus be written as:

$$C/B = log_2(1 + E_b.C/N_0.B)$$

 E_b . N_0 . Is a measure of the power efficiency of the system.

- Smaller the ratio, less energy per bit is used power efficient

C/B represents the bandwidth efficiency of the system

- Larger the ratio, the more bandwidth efficient

Trade-off, both can't apply

Trading off Signal Power for Bandwidth Efficiency

this curve represents solutions to the equation:

$$C/B = \log_2 \left(1 + \frac{E_b C}{N_0 B} \right)$$

Observe: unlimited bandwidth implies minimal E_b . $/N_0 = -1.6$ dB

power region

Nol

EENGM0033 – Principles of Communication Systems

39

Elements of a Communication System and Data Fundamentals

Professor Mark Beach

