AT) - JUNE/JULY 2023

	That Assessment Test	(FA1)-30	Winter Semester 2022-23
Programme	B.Tech.	Semester	Winter Selle
	DIFFERENTIAL EQUATIONS AND TRANSFORMS	Course Code	BMAT102L
	n_r Ankit Kuman	Clat	C2+TC2+TCC2
Faculty Name		Slot Class Nbr	CH2022232300621
Time		Max. Marks	100

Section A (10 X 10 Marks) Answer any 10 questions

- [10] 3 01. Solve by using the method of variation of parameter $4\frac{d^3y}{dx^2} + y = \frac{1}{4}xe^{(\frac{x}{2})}$; y(0) = 1, y'(0) = 0.
- 02. A) Solve the differential equation $\frac{d^2y}{dx^2} + y = 12e^{2x}$ by using the method of undetermined [10] coefficients.
 - B) Form a partial differential equation by eliminating f and g from the following equation $z = f(x^2 - y) + g(x^2 + y)$
 - (5-5 Marks)
- [10] 03. A. Solve $z^2(p^2z^2+q^2)=1$. Does singular solution exist? B. Obtain the general solution of the following partial differential equation $\frac{y-z}{yz}p+\frac{z-x}{zx}q=\frac{x-y}{xy}$
- [10] 04. Find $L^{-1} \left[\frac{(s+1)e^{-\pi s}}{s^2+s+1} \right]$.
- 05. A. Find the Laplace transform of $f(t) = \begin{cases} t & \text{if } t < 6 \\ -8 + (t 6)^2 & \text{if } t \ge 6 \end{cases}$ [10]
 - B. Using the Fourier series of f(x) = x in the interval $(0, 2\pi)$, show $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ (5 +5 Marks)
- 06. Solve the following differential equation using Laplace transform $y'' + 3y' + 2y = \delta(t-1)$ [10] with the initial condition y(0)=y'(0)=0, where $\delta(t-1)$ is the unit impulse at time t=1.
- 07. Find the bounded solution y(x,t), x,t>0 of following partial differential equation by the [10] method of Laplace transform $\frac{\partial y}{\partial x} - \frac{\partial y}{\partial t} = 1 - e^{-t}; x, t > 0$ with y(x, 0) = 0.
- Find the half range sine series for $f(x) = \begin{cases} x & 0 \le x < \pi/2 \\ \pi x & \pi/2 \le x \le \pi \end{cases}$ [10]
- Deduce (i) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
 - (ii) $\frac{1}{1^1} + \frac{1}{3^1} + \frac{1}{5^1} + \dots = \frac{\pi^4}{95}$ [10]
- 09. Find f(x), if its Fourier sine transform is $\frac{e^{-\alpha}}{\omega}$. Hence, deduce $F_s^{-1}(\frac{1}{\omega})$. Find the Fourier transform of $f(x) = \begin{cases} 4 - |x|, & \text{if } |x| < 4 \\ 0, & \text{if } |x| > 4 \end{cases}$. Hence show that $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}$. [10]
- [10] 11. A. Find the Z- transform and the radius of convergence of $f(n)=2^n, n<0$ B. If $U(z) = \frac{2z^2 + 5z + 14}{(z - 1)^4}$, then evaluate u_2 and u_3

12. Solve the difference equation $u_{n+2}-2u_{n+1}+u_n=3n+5$ using Z- transform.