

AD A 055154

2 JRTHER TRAN #5:10 (12)

# CENTER FOR CYBERNETIC STUDIES

The University of Texas Austin Texas 78712



This document has been approved for public release and sale; its distribution is unlimited.



78 06 06 052

Research Report CCS 296

A NONLINEAR GOAL-ARC NETWORK EXTENSION OF THE MULTI-LEVEL COHERENCE MODEL FOR EEO

by

A. Charnes\*
W. W. Cooper\*\*
K. A. Lewis\*\*\*
A. Nelson\*
R. J. Niehaus\*\*\*\*



November 1977

\*The University of Texas, Austin, Texas.

\*\*Harvard University, Boston, Massachusetts.

\*\*\*Columbia University, New York, N. Y.

\*\*\*\*Office of Civilian Personnel, U.S. Navy, Washington, D.C.

This research is part of the program of the Navy Personnel Research and Development Center. This research was partly supported by Project NR047-021, CNR Contracts N00014-75-C-0569 and N00014-75-C-0616 with the Center for Cybernetic Studies, The University of Texas, by CNR Contract N00014-76-C-0932 with Carnegie-Mellon University and by Navy Personnel Research and Development Center Work Request N68221 77WR70108 with the U.S. Navy Office of Civilian Personnel. Reproduction in whole or in part is permitted for any purpose of the United States Government.

#### CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 203E
The University of Texas
Austin, Texas 78712
(512) 471-1821

This document has been approx for public release and sale; its distribution is unlimited.

#### ABSTRACT

The model developed in this report is an extension and reformulation of a model called the Coherence model for guiding EEO (Equal Employment Opportunity) planning at the micro-level in the U.S. Navy's civilian workforce developed by Charnes, Cooper, Lewis and Niehaus. This model is called the Goal-Arc model.

Like its predecessors, the Goal-Arc model utilizes a goal programming approach with embedded Markoff processes. As in the Coherence model, piecewise linear goal functionals with "artifact goals" are used to approximate the transition relations of the Markoff process. The Goal-Arc model, however, carries this to another stage of development. Analytical as well as network formations and interpretations are provided in the following article. A numerical example with related interpretations for EEO planning is also provided.

#### Introduction

The Multi-Level Coherence Model for Equal Employment
Opportunities (EEO) planning of Charnes, Cooper, Lewis and Niehaus
(see [5]) was developed in a dyadic format. It was less general in its
development, however, than might be required for some cases. For many
applications, recourse is needed to large scale highly efficient
network codes such as PNET (which the U.S. Navy Office of Civilian
Personnel (OCP) has) which can readily handle multiple arcs between
nodes as well as lower and upper bounds on arc flows. The new, more
general, nonlinear goal-arc network model discussed in this paper was
therefore developed to exploit these and other possibilities.

 $<sup>\</sup>frac{1}{5}$ See [7] and [8]. Other codes, such as GNET, are discussed in [1] and [2]. See also [9].

In past research papers (Cass, Charnes, Cooper, Niehaus [3]) goal programming models of distribution (or assignment) type have been reformed into equivalent models of distribution type. The "MEEO" -- Multi-Level EEO -- model was the first to approximate Markoff transition constraints by "goal artifacts" which replaced the constraints by goals with convex goal functionals on certain dyadic cell elements. Here we use the analogous device for networks: the cells with nonlinear goal functions are replaced by arcs with goal functionals which we shall now call "goal-arcs." The network format with "transhipment" nodes which we shall now introduce allows us to simplify by dispensing with the transshipment elaboration and the extra rows and columns this required in the dyadic format. Finally, to fit the data format of the PNET code a "supersource" and "supersink" is introduced which connect to arcs whose bounds replace the influxes and effuxes in other model elaborations.

In summary, this is part of a continuing evolution involving an interplay between practically oriented implementations and research which started at the U.S. Navy, as in [6], with a combined goal-programming Markoff process model for joining EEO with civilian manpower planning in terms of targeted goal for each of them. This was followed by the Coherence (= MEEO) model which, as already noted, was the first to approximate Markoff transition constraints with "goal artifacts" in a suitable dyadic formulation. See [5]. Now we replace the latter with a network model with

transshipment nodes that make it possible to obtain access to currently available ultra high speed computer codes. This, in turn, should make it possible to provide interactive computer capabilities, if desired, by means of which manpower-EEO planning can be directly integrated into management decision making instead of being confined for separate processing by customary personnel department specializations.

The way in which this network formulation is achieved and some of the uses to which it can (and will) be put are described in the sections that follow. First we shall describe some of the node-arc conventions we employ. Then we shall provide an analytic characterization. The network representation developed from this analytic model will then be depicted and the goal arc decompositions described to show how the convex functional elements are accommodated.

This will be followed by a numerical example which will be similarly developed and interpreted. The resulting solutions will be portrayed in the form of reports for possible managerial use that will help to point up some of these possibilities via the prototype (toy) example we shall be employing. This will be followed by a Summary and Conclusion section that will also suggest some possibilities for further research.

#### The Goal-Arc Model

We shall describe our transfers in terms of flows on several types of arcs between several types of nodes:

- "antecedent" and a "consequent." We also designate as "job" nodes those corresponding to outside sources for recruitment (antecedents) and outside involuntary retirements (consequents). We also designate "job nodes" for normal organizational attrition (consequents). We designate the class of antecedent "job" nodes for period t as J (t); the class of consequent "job" nodes by J (t). J (t) is the ith job antecedent node; J (t) is the jth job consequent node.
- (2) For each proper (real) job between two periods we designate a "valve" node to receive the goal arc flow from the consequent node of the immediate past period and to transmit an upper and lower bounded flow to the next period antecedent node. We let V<sub>4</sub>(t) denote the valve node for job i between periods t-1 and t.
- (3) A supersource node, S<sub>0</sub>, and a supersink node, S<sub>n+1</sub>, are added for PNET code purposes. The supersink node is connected back to the supersource node. Thereby every node becomes a transhipment node.

The flow on every arc is unidirectional. The arcs may be "goal" arcs (with a nonlinear goal functional) involving multiple arcs between the same two nodes, or they may be simple arcs. Every simple arc (or individual arc of multiple arcs) may have an upper and a lower bound on its flow.

Let  $x_{ij}^k(t)$  denote the flow from node  $J_i^-(t)$  to node  $J_j^+(t)$  on the  $k^{th}$  individual arc of a multiple "goal arc." The corresponding lower and upper bounds are  $L_{ij}^k(t)$  and  $U_{ij}^k(t)$ .

Let  $x_{0i}$  denote the flow from the supersource to  $J_{i}^{-}(1)$ . Let  $x_{i}^{-}(n)$  denote the flow from  $J_{i}^{+}(n)$  to the supersink. Let  $x_{n+1}^{-}(n)$  denote the flow from the supersink to the supersource.

Let  $y_i^k(t)$  denote the flow on arc k of the goal-arc between  $J_i^+(t-1)$  and  $V_i^-(t)$ . The corresponding upper and lower bounds are  $L_i^k(t)$  and  $U_i^k(t)$ . Let  $y_i^-(t)$  denote the flow on the "valve" arc between  $V_i^-(t)$  and  $J_i^-(t)$ .

The network node conditions may now be written explicitly:

(1) for supersource

$$x_{n+1} \circ - \sum_{i \in J^{-}(1)} = 0$$

(2) for J (1)

$$x_{0i} - \sum_{j \in J} + (1) \quad \sum_{k} \quad x_{ij}^{k}(1) = 0$$

(3) for J<sup>+</sup>(1)

Where jo is the "outside" node,

$$x_{oj_o} + \sum_{k i \in J^-(1)} x_{ij_o}^k(1) - \sum_{r} y_{j_o}^r(1) = 0.$$

Note that there is never flow from the "outside" node  $J_0^-$  (1) to the natural attrition node  $J_0^+$ (t). We also have

(4) for V<sub>1</sub>(t)

$$\sum_{k} y_{i}^{k}(t) - \overline{y}_{i}(t)$$

(5) for J<sub>1</sub> (t) , t>1

$$\overline{y}_{i}(t) - \sum_{k=1}^{K} x_{ij}^{k}(t) = 0$$

(6) for  $J_j^+(t)$ , t>1

$$\begin{array}{cccc} \Sigma & \Sigma & \mathbf{x_{ij}} - \Sigma & \mathbf{y_{j}^{r}(t)} & = & 0 \\ \mathbf{k} & \mathbf{i} \varepsilon \mathbf{J^{-}(t)} & & \mathbf{r} & \mathbf{y_{j}^{r}(t)} & = & 0 \end{array}$$

(7) for supersink Sn+1

$$\sum_{t} y_{i_0}(t) + \sum_{i \in J^+(n)} x_{i_{n+1}} - x_{n+1_0} = 0.$$

We will now completely describe the Goal-Arc Model.

Min 
$$\begin{bmatrix} \Sigma & c_{ij}^{k} x_{ij}^{k}(t) + \sum & d_{i}^{k} y_{i}^{k}(t) \end{bmatrix}$$
  
 $i,j,k,t$   
 $i \neq i_{0}$   
 $i \neq i_{0}$ ,  $i \neq i_{0}$ ,  $i_{0}$ 

Subject to (1) - (7) above, and

$$L_{ij}^{k}(t) \leq x_{ij}^{k} \leq U_{ij}^{k}(t),$$

$$L_{\mathbf{i}}^{\mathbf{k}}(t) \leq y_{\mathbf{i}}^{\mathbf{k}}(t) \leq U_{\mathbf{i}}^{\mathbf{k}}(t),$$

where the  $L_{ij}^{k}(t)$ ,  $U_{ij}^{k}(t)$  and the  $L_{i}^{k}(t)$ ,  $U_{i}^{k}(t)$  are such that the

 $x_{ij}^{k}(t)$ ,  $y_{i}^{k}(t)$ ,  $\overline{y}_{i}(t)$  are non-negative for all i, j, k and t.

An illustration of the Goal-Arc Model is given in Figure 1 for n time periods and m+2 job categories.  $S_0$  is the supersource node introduced on the left and  $S_{n+1}$  is the supersink node introduced on the right. In the diagram the antecedents and the consequents of the outside node are represented by  $J_{m+1}^-(t) = J_{j_0}^-(t)$ ,  $J_{m+1}^+(t) = J_{j_0}^+(t)$ , and  $J_{m+2}^+(t) = J_{j_0}^+(t)$ .



FIGURE 1: GOAL ARC NETWORK MODEL

Some of the arcs represent natural flows and some may be goal arcs. Recall that the purpose of each of the goal arcs is to represent a nonlinear goal functional element. To represent these piecewise linear (nonlinear) goal elements we can replace each goal arc by multiple capacitated arcs between the same two nodes. 1/

An illustration is supplied in Figure 2. The arc G between nodes  $N_1$  and  $N_2$  is a goal arc. This is indicated by the symbol  $\curvearrowleft$  which we have omitted from these links in Figure 1 to avoid further cluttering of the diagram.

The lower portion of Figure 2 shows the decomposition. The flow z on G is broken up into flows  $z^k$  on  $G^k$  where  $\sum z^k = z$ . Each  $z^k$  is a bounded variable. Further we let  $c^k$  be the slope assigned for the flow  $z^k$ . Thus, the decomposition of the piecewise linear representation of the nonlinear functional on the goal arc is accomplished. The single arc with nonlinear functional between  $N_1$  and  $N_2$  is replaced by a finite number of arcs with linear functionals on each.

For further detailed development of the underlying theory see Charnes and Cooper [4] Chapter XVII.



FIGURE 2

GOAL-ARC

AS

MULTIPLE ARCS

#### Numerical Illustration

In order to make the preceding development more concrete, we will now consider a numerical example. The problem that we will consider is the problem considered by Charnes, Cooper, Lewis and Niehaus. 1/

Let there be two categories of personnel  $\alpha = 1$ , 2 (e.g., female and male) and three time periods, t = 0, 1, 2. For job categories we shall use the following:

| 1.1 | Description       | Abbreviation |
|-----|-------------------|--------------|
| 0   | Outside Source    | 0            |
| 1   | Clerica1          | С            |
| 2   | Technical         | T            |
| 3   | Administrative    | A            |
| 4   | Natural Attrition | N            |

Figure 3 provides targeted workforce goals a<sub>1</sub>(t) where i = 1, 2, 3 for the associated job category in each of the periods t = 0, 1, 2. Figure 4 provides a matrix of transition probabilities which is assumed to be applicable over these periods. Recall that N refers to natural attrition so that, e.g., there is 0.26 probability that clerical personnel will leave the organization in going from one period to another.

<sup>1/</sup>See [5].

| 1 | 0   | 1   | 2   |
|---|-----|-----|-----|
| С | 675 | 700 | 650 |
| T | 875 | 450 | 400 |
| A | 225 | 200 | 200 |

FIGURE 3 TARGETED WORKFORCE GOALS,  $a_i(t)$ .

| TO FROM | N   | С  | T   | A   |
|---------|-----|----|-----|-----|
| C       | .26 | .7 | .03 | .01 |
| T       | .15 | 0  | .8  | .05 |
| A       | .13 | 0  | .02 | .85 |

FIGURE 4
EXAMPLE MARKOFF MATRIX

In Figure 5 the actual  $p_1^{\alpha}$  proportions of personnel in each job category for the initial time period and the desired  $p_1^{\alpha}$  proportion of personnel in each job category for future time periods are given. The actual proportions are obtained from the "on board" starting population. The desired proportions represent policy statements concerning the desired mix of personnel for the future.

Figure 6 provides the desired number of personnel of type  $\alpha=1$  (female) for each job category in each period. These values are obtained from Figure 3 in the following manner. Let  $b_1(t) = \left\langle p_1^1 a_1(t) \right\rangle$  where  $\langle u \rangle$  is the smallest integer not less than u. Thus, e.g., in Figure 6 525 = .75 x 700 in the row for C where it intersects the column captioned "1" is obtained from the data of Figures 3 and 5.

|                    | d got odd se | С   | T   | A   |
|--------------------|--------------|-----|-----|-----|
| Actual<br>Propor-  | Female       | .89 | .20 | .40 |
| tions              | Male "       | .11 | .80 | .60 |
| Desired<br>Propor- | Female       | .75 | .35 | .45 |
| tions              | Male         | .25 | .65 | .55 |

FIGURE 5 EXAMPLE OF PERSONNEL - JOB PROPORTIONS,  $\mathbf{p_i^{\alpha}}$ 

| t | 0   | 1   | 2   |
|---|-----|-----|-----|
| С | 600 | 525 | 488 |
| T | 175 | 158 | 140 |
| A | 90  | 90  | 90  |
| N |     | 193 | 173 |

FIGURE 6

TARGETED FEMALE WORKFORCE GOALS, b1(t)

Similarly let  $x_{ij}(t)$  equal the number of females ( $\alpha$ =1) transferred from job category i to job category j in period t and let  $y_j(t)$  represent the total number of females in job category j in period t. In this model the  $y_j(t)$  and the  $x_{ij}(t)$  are to conform "as close as possible" to the targeted workforce goals and the "artifact goals" respectively.

| TO<br>FROM | N   | C       | T   | A  |
|------------|-----|---------|-----|----|
| С          | 156 | 420     | 18  | 6  |
| 11 7 4 1   | 25  | -68- hm | 140 | 9  |
| A          | 12  |         | 2   | 76 |

FIGURE 7

### ARTIFACT GOALS FOR THE FIRST PERIOD

| TO FROM | N   | С   | T   | A   |
|---------|-----|-----|-----|-----|
| С       | 135 | 368 | 15  | 5   |
| Т       | 24  |     | 126 | . 8 |
| A       | 12  |     | 2   | 76  |

FIGURE 8

ARTIFACT GOALS FOR THE SECOND PERIOD

#### Reduction to Network Format

We now formulate this as a network problem. This is shown graphically in Figure 9. In this example  $J_1^+$ ,  $J_1^-(t) = K_1^-$  and  $V_1(t) = K_{(t-1)}$  where K is an abbreviation for "job category." Here, of course, K takes on the values A, C, T, N, O. As already noted, the symbol  $\triangle$  on an arc indicates that it is a "goal arc." Upper and lower bounds for the flow on the "valve" arcs are set, respectively, at the projected manpower requirements plus ten per cent of the requirements and minus ten per cent of the requirements.



FIGURE 9: GOAL-ARC NETWORK FORMULATION

In this example we will employ only two pieces in our piecewise linear goal functional, i.e., k = 2. Hence the decomposition on a "goal arc" is performed as described earlier with k = 2. We will now examine the decomposition of "goal arcs" in this example.

Consider any goal arc in Figure 9 between a  $K_t$  and a  $K_t^+$ . We replace this arc in Figure 10 with two arcs, say,  $G_{ij}^{\ k}(t)$ , where k=1 or 2. Let  $x_{ij}^{\ k}(t)$  denote the corresponding flows. These flows are bounded as follows:  $0 \le x_{ij}^{\ l}(t) \le g_{ij}(t)$  and  $0 \le x_{ij}^{\ l}(t) < \infty$ . Let  $c^k$  denote the functional coefficient on  $G_{ij}^{\ k}(t)$ . We assume that  $c^1 < c^2$ . In an optimal solution there will be no flow on  $G_{ij}^{\ l}(t)$  until the flow on  $G_{ij}^{\ l}(t)$  has reached  $g_{ij}^{\ l}(t)$ .

Now consider a goal arc between nodes  $K_t^+$  and  $K_{t+1}^-$ . As above, we replace this arc with two arcs,  $G_1^1(t)$  and  $G_1^2(t)$ . Let  $y_1^k(t)$  denote the flow on  $G_1^k(t)$ . The flows on the two arcs are bounded as follows:  $0 \le y_1^1(t) \le b_1(t)$  and  $0 \le y_1^2(t) < \infty$ . Let  $d^k$  denote the functional coefficient for the flow on  $G_1^k(t)$ . We assume that  $d^1 < d^2$ .

Proceeding in this manner the problem is represented as a network with the "goal arcs" decomposed as in Figure 10.



NETWORK WITH GOAL-ARCS DECOMPOSED

value for the functional coefficient on an arc tends to make the resistance to flow on that arc high. In our penalty system the following priorities are established: Meeting the goal of a certain number of female personnel for each job category in each time period is given the higest priority. Firing is highly discouraged. Flexible movement has the second highest priority. The penalty on exceeding manpower requirements is greater than any other penalty except the penalty on firing. The penalty for hiring in the first period is greater than the penalty for hiring in the second period. The penalty on hiring is less than the penalty on exceeding manpower but greater than the penalty on flexible movement. The penalty on firing is set at an order of magnitude larger than the sum of all other weights.

The values for the functional coefficients on the arcs (with relevant interpretations) are given as follows:

H = hiring penalty = 5;

P = penalty on flexible movement = 2;

R = firing penalty = 1,000;

G = penalty on expected movement = -1;

Q = penalty on meeting manpower requirements = -6;

F = penalty on exceeding manpower requirements = 10.

The solution is summarized in four tables as follows: The projected personnel transfers for periods 1 and 2 are given in Tables 1 and 2, respectively. The 424 under "Normal ± Flexible" in row 1 of

Table 1 represents the planned retention of females in the clerical job category in the first time period. It is composed of 420 females via normal retention plus 4 more as a part of an optimum managerial plan to alter the present composition of the organization. The total of 525 females at the bottom of this column is to be obtained by recruiting an additional 101 females from outside the organization.

Table 2 is similarly interpreted for the second time period.

PROJECTED PERSONNEL TRANSPERS FEMALE

| S25   158   90   90   90   90   90   90   90   9                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| 370     15     13     5     5       126     126     8     8       2     1     76     77       118     7     77       488     140     90 |
| 140                                                                                                                                     |
|                                                                                                                                         |

Table 3 compares workforce requirements and the optimal distribution from the model -- e.g., targeted workforce goals and optimal "aboards." The discrepancies between the two are given in the last column of Table 3. All discrepancies are at zero value which means that the optimum program achieves all of the indicated targets.

|   | • |
|---|---|
|   |   |
|   |   |
| 4 | • |
|   |   |
| 2 |   |
|   |   |
|   | v |
| г |   |
| р |   |
| • | - |
|   |   |
|   |   |
|   |   |

Account to have a control of

| PERIOD 0:               | Clerical<br>Technical<br>Administrative | PERIOD 1: | Clerical<br>Technical<br>Administrative | PERIOD 2: | Clerical<br>Technical<br>Administrative |
|-------------------------|-----------------------------------------|-----------|-----------------------------------------|-----------|-----------------------------------------|
| On-Board<br>Actual      | 600                                     | Projected | 525<br>158<br>90                        |           | 488<br>140<br>90                        |
| Hires                   |                                         |           | 101                                     |           | 118                                     |
| Pires                   | pallons<br>valbon<br>tavels             |           |                                         |           |                                         |
| Workload<br>Requirement |                                         |           | 525<br>158<br>90                        |           | 488<br>140                              |
| Discrepancy *           |                                         |           |                                         |           | ann sol<br>Linn v<br>Chan L             |
|                         |                                         |           |                                         |           |                                         |

\*None: All goals attained.

WORKPORCE REQUIREMENTS AND DISTRIBUTIONS

Bings bay transport

rable 3

Table 4 is a summary of the personnel actions projected by the optimum plan. For example, 420 normal transfers plus 4 additional (flexible) transfers and 101 hires are projected for the clerical category in Period 1 and 368 normal transfers, 2 additional (flexible) transfers and 118 hires in period 2.

### Summary and Conclusion

This concludes the present paper, but the above developments are a continuation of research in a series dealing with modeling for EEO planning. The first in this series of models was the FEEO model which provides for EEO planning at the macro-level. See [6]. The next in the series was the MEEO model. Also called the "Coherence Model," the MEEO model was developed to provide for EEO planning at the micro-level, e.g., at the activity level, which would be "coherent with" the FEEO model. For further discussion see [5].

The model developed above is an extension and reformulation of the MEEO model. As such we have a continuing evolution in a modeling strategy. The problem which was originally formulated as a capacitated distribution problem with "artifact goals" is now reformulated as a network problem with goal arcs. Thus we have alternate models for this same class of problems. The development portrayed in this paper was undertaken to take advantage of large capacity, fast and highly efficient network

|           |                                         | PERIOD 1 | )D 1                             |       |             |                             | eal la<br>ada |                                  | PERIOD 2 | 2     |                    |
|-----------|-----------------------------------------|----------|----------------------------------|-------|-------------|-----------------------------|---------------|----------------------------------|----------|-------|--------------------|
| CATECORY  | . Number<br>• Aboard at<br>· Period (0) |          | Normal Flexible<br>Trans. Trans. | Hires | Hires Fires | Aboard<br>End<br>Period (1) |               | Normal Flexible<br>Trans. Trans. | Hires    | Pires | Aboard End End (2) |
|           |                                         |          |                                  |       |             |                             | erro<br>Cas   |                                  | 236      |       |                    |
| Clerical  | 009                                     | 420      | 4                                | 101   |             | 525                         | 368           | +5                               | 118      | nia.  | 887                |
| Technical | 571 ;                                   | 160      | -2                               |       |             | 158                         | 143           | ۳                                | ektra:   | V.    | 140                |
| Admin.    | 06                                      | 91       | 7                                |       |             | 06                          | 88            | 7                                | 16050    | (al.) | 8                  |

SUMMARY OF PROJECTED PERSONNEL ACTIONS

TABLE 4

codes such as PNET. See [7] and [8]. Also in the model developed above the transhipment characteristics provide much greater convenience, simplicity and flexibility in representing desired personnel flows. In the MEEO model the dyadic character required special devices and redundant representation.

The Goal-Arc model of this paper currently handles the ethnosexual categories one at a time. This is done via the proportionate reduction devices described in the above paper. The next step in this ongoing research should develop a method for handling all of the ethnosexual categories simultaneously. This and other parts of this work in EEO modeling will be reported in subsequent papers of this series.

<sup>1/</sup>See also [1] and [2] and [9].

- [1] Bradley, G.H. "Survey of Deterministic Networks," <u>Proceedings of an International Symposium on Extremal Methods and Systems Analysis</u>, on the Occasion of Prof. A. Charnes' 60th Birthday (forthcoming).
- [2] \_\_\_\_\_\_, G.G. Brown and G.W. Graves "Design and Implementation of Large Scale Primal Transshipment Algorithms," Management Science 24, No. 1, Sept. 1977, pp. 1-34.
- [3] Cass, D., A. Charnes, W.W. Cooper and R.J. Niehaus, "A Program for Navy Officer Distribution Models," Research Report CS 145 (Austin, Texas: Center for Cybernetic Studies, University of Texas, 1973).
- [4] Charnes, A. and W.W. Cooper, Management Models and Industrial Applications of Linear Programming, (New York: John Wiley & Sons, Inc., 1961).
- Coherence Model for Equal Employment Opportunities," Research Report CS 275 (Austin, Texas: Center for Cybernetic Studies, University of Texas, October 1976), TIMS Studies in Management Sciences 8, 1978 (forthcoming).
- [6] \_\_\_\_\_\_\_, \_\_\_\_\_ and \_\_\_\_\_\_\_, "A Multi-Objective Model for Planning Equal Employment Opportunities" in M. Zeleny, ed.;

  Multiple Criteria Decision Making: Kyoto 1975 (New York: Springer Verlag 1970).
- [7] Glover, F., D. Karney and K. Klingman, "Implementation and Computational Comparisons of Primal, Dual and Primal-Dual Computer Codes for Minimum Cost Network Flow Problems," Research Report CS 136 (Austin, Texas: Center for Cybernetic Studies, University of Texas, July 1973).
- [8] \_\_\_\_\_, and J. Stutz, "Augmented Threaded Index Method for Network Optimization," Research Report CS 144 (Austin, Texas: Center for Cybernetic Studies, University of Texas, September 1973).
- [9] Srinivasan, V. and G.L. Thompson, "An Operator Theory of Parametric Programming for the Transportation Problem," Naval Research Logistics Quarterly, I, II, Vol. 19, 1972, pp. 205-225.

DD . FORM .. 1473

S/N 0101-807-6811

(PAGE 1)

446197

Unclassified

Security Classification

A-31408

## Unclassified Security Classification

|                 | KEY WORDS        | LIN               | KA         | LIN            | K B       | LIN        | K C  |
|-----------------|------------------|-------------------|------------|----------------|-----------|------------|------|
| produced to     |                  | ROLE              | wT         | ROLE           | wr        | ROLE       | w    |
| Wall And Spirit |                  |                   |            |                |           |            |      |
| Fauel Empley    | ment Opportunity | 89                | David I    | Lichte         | 510 1     | Ki troda   | 83   |
| Manpower Pl     | anning           |                   | 8,63       | T bo           | ythers    | Olympia.   | ATT. |
| Flexible Tran   | nsfers           |                   |            |                |           |            |      |
| Cutside Recr    |                  | anix i dece       |            |                |           |            |      |
|                 | Programming      |                   |            | 145 145        | distant   | Tuno?      |      |
| Goal Program    | nming            |                   |            |                |           |            |      |
| Markoff Proc    | esses            |                   | 10.1       |                | de estado |            |      |
|                 |                  |                   |            |                |           |            |      |
| Networks        |                  |                   |            | A CASH HILL IS |           |            |      |
| Network Code    | es               | n Asi             |            |                | 0.00      | DE LO      |      |
| Artifact Goal   |                  |                   |            |                | 1810      |            |      |
| Goal-Arcs       |                  |                   |            |                |           |            | 1    |
|                 |                  |                   |            |                | 1.000     |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  | 188               |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                | P. 2 17 - |            |      |
|                 |                  | ar and Acute      | i nee      | a na a         | (ASSE     | 100 25     |      |
|                 |                  |                   | DEM SE     | U HI H         | o Physica | of an inch |      |
|                 |                  |                   |            |                | 10 m      |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  | 2 (34 (41)        |            |                |           |            |      |
|                 |                  | CATE AND A        |            |                |           |            |      |
|                 |                  | -01               |            |                |           |            |      |
|                 |                  | 1000              |            |                |           |            |      |
|                 |                  |                   |            |                | Value 1   |            |      |
|                 |                  |                   |            |                |           | 1813       |      |
|                 |                  | ena               | la de cale | 937            |           |            |      |
|                 |                  |                   | bank       | idms :         |           | 280300     |      |
|                 |                  |                   |            | 037. 128       |           | 0.000      |      |
|                 |                  |                   | 0.510      | dal ex         | milia     |            |      |
|                 |                  | trans to the same | 1000       | one o          |           |            |      |
|                 |                  | a enolder         | 59101      | ti bise        | andid     |            |      |
|                 |                  | day yetstel       | 11117      | elyeca         |           |            |      |
|                 |                  |                   |            |                |           | bivo       |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |
|                 |                  |                   |            |                |           |            |      |

DD FORM 1473 (BACK)