Zadání a řešení písemné práce

Téma: exponenciální funkce

Čas: 20 minut Cíle testu:

• Úloha č. 1

Dimenze kognitivních procesů Kategorie: Zapamatovat si (1) Dovednost: Vybavovat si (1.b)

• Úloha č. 2

Dimenze kognitivních procesů

Kategorie: Rozumět (2) Dovednost: Vysvětlovat (2.g)

• Úloha č. 3

Dimenze kognitivních procesů

Kategorie: Analyzovat (4) Dovednost: Rozlišovat (4.a)

• Úloha č. 4

Dimenze kognitivních procesů

Kategorie: Aplikovat (3) Dovednost: Provádět (3.a)

• Úloha č. 5 (bonus)

Dimenze kognitivních procesů

Kategorie: Aplikovat (3)

Dovednost: Implementovat (3.b)

Písemná práce: exponenciální funkce (varianta A)

JMÉNO:	Třída:	Datum:
J.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		

 _ ~	- •	1,001	,	 	 	1	 	 	 -	 	 •													
	-																							

.....

.....

 $2.\ [1\ b.]$ Stručně vysvětlete, proč klademe na hodnotu základu exponenciální funkce omezení.

.....

3. [2 b.] Vyberte funkční předpis odpovídající grafu funkce f níže.

1 [1 b] Napište definici exponenciální funkce

$$\Box \ f: y = \left(\frac{1}{2}\right)^{x-1} + 1$$

$$\Box f: y = \left(\frac{1}{2}\right)^{x+1} - 1$$

$$\Box \ f: y = 2^{x-1} + 1$$

$$\Box \ f: y = 2^{x+1} - 1$$

$$\Box$$
Žádný z uvedených.

- 4. [6 b.] Mějme reálnou funkci $g: y = -2^{x-2} + \frac{1}{2}$, kde $D_g = (-4, 3)$.
 - (A) [4 b.] Nakreslete graf funkce g.
 - (B) [1 b.] Určete obor hodnot H_g .
 - (C) [1 b.] Určete průsečík grafu g s osou x a y.

5. [4 b. – **bonusová úloha**] Mějme reálnou funkci $h: y = \left(\frac{a+1}{a^2-1}\right)^x$. Určete, pro jaké hodnoty parametru $a \in \mathbb{R}$ je funkce h klesající. Uveď te celý postup řešení.

Vzorové řešení

- 1. Nechť $a \in \mathbb{R}^+ \setminus \{1\}$. Exponenciální funkcí i základu a se nazývá funkce f daná rovnicí $y = a^x$, jejím definičním oborem je $D(f) = \mathbb{R}$.
- 2. Pro a=1 je $y=1^x=1$ pro každé $x\in\mathbb{R}$, tj. funkce je konstantní, proto tento případ u exponenciální funkce vylučujeme. Pokud by základ byl záporný, např. mějme funkci $f(x)=(-2)^x$. Když za x dosadíme $\frac{1}{2}$, dostaneme $y=(-2)^{\frac{1}{2}}=\sqrt{-2}$. My ale víme, že odmocnina ze záporného čísla v \mathbb{R} neexistuje. Funkce by tak nebyla definovaná na celém \mathbb{R} .
- 3. $f: y = \left(\frac{1}{2}\right)^{x+1} 1$
- 4. Graf:

$$H_g = \left(-\frac{31}{64}, \frac{-3}{2}\right)$$
$$P_x = \begin{bmatrix}1, 0\end{bmatrix}$$
$$P_y = \begin{bmatrix}0, \frac{1}{4}\end{bmatrix}$$

5. Funkce h má být klesající, tj. $0 < \frac{a+1}{a^2-1} < 1$. Každou z nerovností vyšetříme zvlášť:

$$0 < \frac{a+1}{a^2 - 1}$$
$$0 < \frac{1}{a-1} ; a \neq -1$$
$$a \in (1, \infty).$$

Druhá nerovnost:

$$\begin{aligned} \frac{a+1}{a^2-1} &< 1 \\ 0 &< 1 - \frac{a+1}{a^2-1} \\ 0 &< \frac{a^2-a-2}{a^2-1} \\ 0 &< \frac{(a-2)(a+1)}{(a-1)(a+1)} \end{aligned}$$

	$(-\infty,1)$	(1,2)	$(2,\infty)$
a-1	-	+	+
a-2	-	_	+
	+	-	+

Tj. $a\in\mathbb{R}\setminus \left((1,2)\cup\{-1\}\right)$. Parametr a tedy náleží průniku $\left(\mathbb{R}\setminus \left((1,2)\cup\{-1\}\right)\right)\cap (1,\infty)=(2,\infty)$.

Písemná práce: exponenciální funkce (varianta B)

Iméno:	Třída:	Datum:
,		

1.	$\lfloor 1 \rfloor$	b.J	Napište o	definici	exponenciál	ní i	funk	ce.

.....

.....

 $2.\ [1\ \mathrm{b.}]$ Stručně vysvětlete, co rozumíme po pojmem přirozená exponenciální funkce.

.....

.....

3. [2 b.] Vyberte funkční předpis odpovídající grafu funkce f níže.

$$\Box f: y = \left(\frac{1}{2}\right)^{x-1} + 1$$

$$\Box f: y = \left(\frac{1}{2}\right)^{x+1} - 1$$

$$\Box \ f: y = 2^{x-1} + 1$$

$$\Box \ f: y = 2^{x+1} - 1$$

 \Box Žádný z uvedených.

4. [6 b.] Mějme reálnou funkci $g: y = -\left(\frac{1}{4}\right)^{x+1} + 1$, kde $D_g = \left\langle -\frac{5}{2}, 3 \right\rangle$.

(A) [4 b.] Nakreslete graf funkce g.

(B) [1 b.] Určete obor hodnot H_g .

(C) [1 b.] Určete průsečík grafu g s osou x a y.

5. [4 b. – **bonusová úloha**] Mějme reálnou funkci $h: y = \left(\frac{a+1}{a^2-1}\right)^x$. Určete, pro jaké hodnoty parametru $a \in \mathbb{R}$ je funkce h klesající. Uveď te celý postup řešení.

Vzorové řešení

- 1. Nechť $a \in \mathbb{R}^+ \setminus \{1\}$. Exponenciální funkcí i základu a se nazývá funkce f daná rovnicí $y = a^x$, jejím definičním oborem je $D(f) = \mathbb{R}$.
- 2. Exponenciální funkce, jejímž základem je číslo e, se nazývá přirozená exponenciální funkce
- 3. $f: y = 2^{x-1} + 1$
- 4. Graf:

$$H_g = \left\langle -3, \frac{255}{256} \right\rangle$$
$$P_x = \begin{bmatrix} -1, 0 \end{bmatrix}$$
$$P_y = \begin{bmatrix} 0, \frac{3}{4} \end{bmatrix}$$

5. Funkce hmá být klesající, tj. 0
 $<\frac{a+1}{a^2-1}<1.$ Každou z nerovností vyšetříme zvlášť:

$$0 < \frac{a+1}{a^2 - 1}$$
$$0 < \frac{1}{a-1} ; a \neq -1$$
$$a \in (1, \infty).$$

Druhá nerovnost:

$$\begin{aligned} \frac{a+1}{a^2-1} &< 1 \\ 0 &< 1 - \frac{a+1}{a^2-1} \\ 0 &< \frac{a^2-a-2}{a^2-1} \\ 0 &< \frac{(a-2)(a+1)}{(a-1)(a+1)} \end{aligned}$$

	$(-\infty,1)$	(1,2)	$(2,\infty)$
a-1	-	+	+
a-2	-	_	+
	+	-	+

Tj. $a\in\mathbb{R}\setminus \left((1,2)\cup\{-1\}\right)$. Parametr a tedy náleží průniku $\left(\mathbb{R}\setminus \left((1,2)\cup\{-1\}\right)\right)\cap (1,\infty)=(2,\infty)$.