

15. Mai 1975 Function generator PM 5127/01

PHILIPS

Instruction manual Anleitung Notice d'emploi et d'entretien

Function generator Funktiongenerator Générateur de fonctions

PM 5127/01

Contents

1	GENERAL INFORMATION		5
1.1	Introduction		5
1.2	Technical Data		5
1.3	Accessories		8
1.4	Description of the block diagram		8
2	DIRECTIONS FOR USE		9
2.1	Installation		9
2.1.1	Safety regulations		9
2.1.2	Position		9
2.1.3	Connection to the mains		9
2.1.4	Earthing		9
2.1.5	Controls and sockets		10
2.7.3	Operation		10
2.2.1	Switching on		10
2.2.2	Selecting the waveform and setting the duty cycle		10
2.2.3	Setting the frequency		11
2.2.4	Setting the inequality Setting the amplitude and DC offset		11
2.2.5	Frequency control		12
2.2.6	TTL impulse-signal output		12
2.2.0	The impulse signal output		
3	SERVICE DATA		29
3.1	Gaining access to the parts		29
3.2	Replacing a switch of the push-button unit		29
3.3	Checking and adjusting		30
3.4	Parts List		31
LIST	OF FIGURES		
	1. Blockdiagram PM 5127		8
	2. Connection diagram for the different mains voltages		9
	3. Front view, controls and connectors		10
	4. Duty cycle of the different signals		11
	5. Sweep range PM 5127		12
	6. Replacing a push-button switch		29
	7. Front view, mechanical components		31
	8. Rear view, mechanical components		32
	9. Bottom view, mechanical components		32
	10. Printed-wiring board U1		39
	11. Printed-wiring board U2		39
	12. Overall circuit diagram PM 5127		41

IMPORTANT

In correspondence concerning this instrument please quote the type number and the serial number as given on the type plate at the rear of the instrument.

Inhalt

1	ALLGEMEINER TEIL	13
1.1	Einleitung	13
1.2	Technische Daten	13
1.3	Zubehör	16
1.4	Blockschaltbild-Beschreibung	16
2 :	GEBRAUCHSANLEITUNG	17
2.1	Inbetriebnahme	17
2.1.1	Sicherheitshinweise	17
2.1.2	Aufstellen	17
2.1.3	Netzanschluss	17
2.1.4	Erden	17
2.1.5	Bedienungselemente und Anschlüsse	18
2.2	Bedienung	18
2.2.1	Einschalten	18
2.2.2	Wählen der Signalform und Einstellen des Tastgrades	18
2.2.3	Einstellen der Frequenz	19
2.2.4	Einstellen der Amplitude und des DC-Offset	19
2.2.5	Frequenzsteuerung	20
2.2.6	TTL Impulse-Signalausgang	20
DII DI	VEDZEIGUNUS	
BILDV	/ERZEICHNIS	
	1. Blockschaltbild PM 5127	16
	2. Anschlussschaltbild für die verschiedenen Netzspannungen	17
	3. Frontansicht, Bedienungselemente und Anschlüsse	18
	4. Tastgrad der verschiedenen Signalformen	19
	5. Sweepbereich PM 5127	20

WICHTIG

Es wird gebeten bei Schriftwechsel über dieses Gerät die Typen- und Seriennummer anzugeben. Diese sind an der Rückseite des Gerätes ersichtlich.

Table des matières

1.	GENERALITES			21
1.1	Introduction			21
1.2	Caractéristiques techniques			21
1.3	Accessoires			24
1.4	Description du schéma synoptique			24
2.	MODE D'EMPLOI	6 		25
2.1	Installation			25
2.1.1	Règles de sécurité			25
2.1.2	Position			25
2.1.3	Branchement au secteur			25
2.1.4	Mise à la terre			25
2.1.5	Bornes et réglages			26
2.2	Mode d'emploi			26
2.2.1	Mise en service			26
2.2.2	Sélection de la forme d'onde et du facteur de marche	:		26
2.2.3	Réglage de fréquence			27
2.2.4	Réglage d'amplitude et d'offset continu	!		27
2.2.5	Balayage en fréquence			28
2.2.6	Sortie TTL			28
		•		
FIGUR	ES			
	1. Schéma synoptique PM 5127			24
	2. Schéma de branchement pour différentes tension d'a	limentation		25
	3. Vue de face, bornes et réglages			26
	4. Rapport cyclique des différents signaux			27
	5. Gamme de halavage PM 5127			20

IMPORTANT

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez TOUJOURS indiquer le no. de type et le no. de série qui sont marqués sur la plaquette de caractéristiques fixée sur la paroi arrière de l'appareil.

Bedienungsanleitung

1. Allgemeiner Teil

1.1. EINLEITUNG

Der Funktionsgenerator PM 5127 erzeugt Signale im Frequenzbereich 0.01 Hz ... 1 MHz. Die Frequenz lässt sich manuell oder von einem externen Signal einstellen. Mit dem externen Steuersignal ist ein Nennfrequenzsweep über zwei Dekaden erreichbar.

Die Leerlauf-Ausgangsspannung ist bis auf 30 V_{SS} stetig einstellbar. Innerhalb dieses Bereiches kann eine von -10 bis +10 V einstellbare Gleichspannung dem Ausgangssignal hinzugefügt werden. Der Signalausgang hat einen Innenwiderstand von 50 Ω und ist dauerkurzschlussfest.

Einem zweiten Ausgang lässt sich ein Rechtecksignal mit fester TTL-Amplitude, einstellbarer Frequenz und Tastverhältnis entnehmen.

1.2. TECHNISCHE DATEN

Allgemeine Hinweise

Nur Werte mit Toleranzen oder Fehlergrenzen gelten als garantierte Daten.

Alle Spezifikationen gelten nach einer Einlaufzeit von 30 Minuten bei konstanter Gebrauchslage.

Falls nicht anders angegeben beziehen sich relative Toleranzen (in % oder ppm) auf den eingestellten Wert.

SPEZIFIKATIONEN

Frequer	١Z
---------	----

Nennbereich : 0.01 Hz ... 1 MHz

Messbereiche : 0.1 Hz ... 1 MHz, in 7 überlappenden Teilbereichen

Einstellmittel : — Kreisskala mit linearer Teilung, 0,1 ... 10,2

7 Bereichswahlschalter, x0.1 Hz, x1 Hz ... x100 kHz
 FREQ. OFFSET Einsteller mit Skala –5 % ... +5 %

Einstellfehlergrenzen : ± 5 % im Bereich x0.1 Hz

± 3 % im Bereich x1 Hz ... x10 kHz

±5% im Bereich x100 kHz

Zusätzlicher Einstellfehler mit

Drucktaste DUTY CYCLE gewählt : ± 10 % in allen Bereichen

Nennbereich des FREQ. OFFSET Einstellers : -5 % ... +5 %

- ----

Temperaturkoeffizient im Nenngebrauchs-

: < 0,24 %/ $^{\circ}$ C im Bereich x0,1 Hz

bereich der Umgebungstemperatur

< 0,08 %/ $^{\circ}$ C im Bereichen x1 Hz ... x10 kHz

<0,16 %/°C im Bereich x100 kHz

Langzeitdrift innerhalb von 7 Stunden

: < 0,2 %

Kurzzeitdrift innerhalb von 15 Minuten

: < 0,1 %

Frequenzvariation

: < 10 ppm bei Netz-Nennspannung \pm 15 %

Signalformen

: - Sinus

- Dreieck

Rechteck

Mit dem Einsteller ist, bei gedruckter Taste DUTY CYCLE, der Tastgrad der Rechteckschwingung bzw. das zeitliche Verhältnis der positiv gehenden Flanke zur Periode der Dreieck- oder Sinusschwingung, von etwa 10 % bis 90 %

stetig einstellbar (siehe Abschnitt 2.2.2.).

Klirrfaktor

: < 0,4 % bis 100 kHz

< 2,5 % von 100 kHz ... 1 MHz

Anstiegzeit des Rechtecksignals

: < 70 ns an Buchse OUTPUT < 25 ns an Buchse ☐ OUT

Überschwingungen und Welligkeit des

Rechtecksignals

: < 1 % an Buchse OUTPUT

Ausgang OUTPUT

Anschluss

: BNC-Buchse

Leerlauf-Ausgangsspannung

Nennwert

: 30 VSpitze-Spitze

Grenzwert

: ± 15 V für gleichzeitige Verwendung der Einsteller

AMPLITUDE und DC OFFSET, Abschwächer in Stellung

0 dB.

Innenwiderstand

Nennwert

: 50 Ω

Maximale Belastung

: dauerkurzschlussfest

Stufenabschwächer

: 0 dB; 20 dB; 40 dB; 60 dB

- Fehlergrenze

: < 0.2 dB je Stufe, bei 1 kHz : 23 dB

Bereich des Einstellers AMPLITUDE

Temperaturkoeffizient der

Signalamplitude

 $< 800 \text{ ppm/}^{\circ}\text{C}$

Amplitudengang

Schalter DUTY CYCLE nicht gedrückt

: ± 1 %, bis 100 kHz

 \pm 3 %, bis 1 MHz, Stufenabschwächer in Stellung 0 dB \pm 5 %, bis 1 MHz, Stufenabschwächer in Stellung -60~dB

- Schalter DUTY CYCLE gedrückt

: ± 2 % bis 100 kHz

± 20 % bis 1 MHz, Stufenabschwächer in Stellung 0 dB

Bereich des Einstellers DC OFFSET

(Leerlauf)

: -10 ... +10 V mit Schalter DC OFFSET gewählt

OUT Buchse

Anschluss

: BNC-Buchse

Leerlauf-Ausgangsspannung

: TTL-kompatibel

- Nennwert

 $: + (4.5 \pm 0.5) V \triangleq HIGH$

 $(0 \pm 0.2) V \triangleq LOW$

Amplitudengang

: < 3 %

Maximale Belastung

: dauerkurzschlussfest

Fan-out

: 20

SWEEP IN Eingang

Anschluss

: BNC Buchse

Eingangswiderstand

: 1 $k\Omega$

Sweepbereich

: ≥ 2 Frequenzdekaden

Sweep-Charakteristik

: linear

Steuerspannung

: 0.5 V pro Abstand der Frequency Skala z.B. von 3 nach 4 Mit positiv gehender Steuerspannung werden höhere Frequenzen ausgesteuert, mit negativ gehender Steuer-

spannung niedrige Frequenzen.

Maximale Sweepfrequenz

: > 500 Hz, bei Sweepbereich = 2 Dekaden und Dreieck-

Steuersignal

Maximale Modulationsfrequenz

(Phasenhub < 5 %)

: 50 Hz (3 dB Grenze für Frequenzsweep bei konstanter

Sinusformiger Steuerspannung)

Maximal zulässige Spannung

: ± 15 V

UMGEBUNGSBEDINGUNGEN

Umgebungstemperatur

Referenzwert

: +23 °C

- Nenngebrauchsbereich

: +5 ... 40 °C

- Temperaturbereich für Lagerung und

Transport

: -40 ... +70 °C

Betriebslage

: wahlweise

Speisespannung

: Wechselspannungsnetz

- Referenzwert

: 230 V

- Nennwerte

: 115 V, 230 V

Nennbetriebsbereich

: ± 15 % des gewählten Nennwertes

Frequenz

: 50 ... 100 Hz

- Toleranz

: ± 5 %

Leistungsaufnahme

: 30 W

GEHÄUSE

Schutzklasse (siehe VDE 0411)

: Klasse 1, Schutzleiter

Schutzart (siehe DIN 40050)

: IP 20

Abmessungen (gesamt)

- Höhe

: 145 mm

- Breite

: 240 mm

Tiefe

: 300 mm

Gewicht

: 3,6 kg

1.3. ZUBEHÖR

Normalzubehör

: Gerätehandbuch

Wahlzubehör

: PM 9581, Abschluss 50 Ω , 3 W PM 9075, BNC-BNC-Koaxialkabel PM 9074, BNC-BNC-Koaxialkabel

1.4. BLOCKSCHALTBILDBESCHREIBUNG (Fig. 1)

Der Oszillator wird von einer steuerbaren Stromquelle (CONTROLLED CURRENT SOURCE), einem INTEGRATOR und Zweipegelschalter (TWO-LEVEL DETECTOR) gebildet. Der Oszillator erzeugt und bestimmt die Frequenz des Ausgangssignals, in Abhängigkeit von den Einstellungen der Frequenzeinstellskala (FREQUENCY), des Frequenzbereichswählers (FREQUENCY Hz) sowie des Frequenz-Offset-Einstellers (FREQUENCY OFFSET).

Wahl der Drucktaste DUTY CYCLE ermöglicht Umschalten von zeitsymmetrischen (Tastgrad 0.5 ≜ 50 %) in zeitunsymmetrische Signale.

Das Tastverhältnis lässt sich in den Bereichen 0.1 ... 0.9

10 % ... 90 % mit Einsteller DUTY CYCLE steuern. Durch eine externe Spannung an Buchse SWEEP IN zu legen, kann die Frequenz des Oszillators gesteuert werden.

Der Oszillator liefert auch ein TTL-kompatibles Rechtecksignal, das über einen Verstärker an Buchse CUT gelangt und dessen Tastgrad der Einstellung (DUTY CYCLE) am Oszillator entspricht.

Der Oszillator gibt ein Dreieck- oder Rechtecksignal an Signalformwähler WAVEFORM ab.

Wird Drucktaste \sim betätigt, dann gelangt das Dreiecksignal an den Sinusformer (SINE SHAPER). Die so gewählte Signalform steht dann an Signalformwähler-Ausgang zur Verfügung.

Das Ausgangssignal ist mit Einsteller AMPLITUDE im Abschwächer (ATTENUATOR) stetig einstellbar.

Der Ausgangsverstärker (OUTPUT AMPLIFIER) verstärkt das Signal auf den erforderlichen Wert.

Im AUSGANGSVERSTÄRKER lässt sich das Signal mit Drucktaste DC-OFFSET eine Gleichspannung hinzufügen, die mit Einsteller DC-OFFSET stufenlos zwischen –10 V und +10 V einstellbar ist.

Der dem Ausgangsverstärker nachgeschaltete Stufenabschwächer (STEP ATTENUATOR) ermöglicht die Abschwächung des Ausgangssignals in Stufen von 20, 40 und 60 dB.

Das Signal steht dann an der Buchse OUTPUT des Generators zur Verfügung.

Das Netzteil (POWER SUPPLY) liefert eine stabilisierte Gleichspannung für die verschiedenen Schaltungen.

Fig. 1. Blockschaltbild des Generators

2. Gebrauchsanleitung

2.1. INBETRIEBNAHME

2.1.1. Sicherheitshinweise (entsprechend IEC 348 oder VDE 0411)

Vor Anschluss des Gerätes an das Netz, ist eine Sichtkontrolle auszuführen, um sich zu überzeugen dass es während des Transportes keine Schäden erlitten hat. Besteht der Verdacht, dass die Schutzmassnahmen nicht mehr ausreichend wirksam sind, ist deren Wirksamkeit zu prüfen.

Ist der Schutz nicht mehr sicher gestellt, so ist das Gerät ausser Betrieb zu nehmen und gegen Inbetriebnahme zu Sichern.

Vor dem Freilegen spannungsführender Teile ist das Gerät immer vom Netz zu trennen. Wartungs- und Überholungsarbeiten die an einem unter Spannung stehenden Gerät vorgenommen werden müssen, dürfen nur von eingearbeiteten Fachleuten ausgeführt werden.

Der Netzanschluss-Stecker darf nur in eine Schuko-Steckdose eingeführt werden.

Diese Schutzmassnahme darf nicht unwirksam gemacht werden, durch z.B. eine unvollkommene Verlängerungsleitung zu verwenden.

2.1.2. Aufstellen

Das Gerät darf in Beliebiger Lage oder mit Hilfe des herunter geklappten Tragbügels in gekippter Lage aufgestellt und betrieben werden.

Die Belüftungsöffnungen in Bodenplatte und Deckel dürfen nicht verdeckt werden.

Das Gerät niemals auf Gegenstände stellen die Wärme entwickeln oder ausstrahlen.

2.1.3. Netzanschluss

Das Gerät darf nur an Wechselspannung betrieben werden. Bei Auslieferung ist das Gerät auf eine Netzspannung von 230 V \pm 15 % eingestellt.

Soll das Gerät an einer Netzspannung von 115 \pm 15 % betrieben werden, dann ist wie folgt zu verfahren:

- Netzstecker ziehen.
- die zwei Schrauben an der Rückwand entfernen und Bodenplatte abnehmen.
- die Transformatoranschlüsse entsprechend dem Schema (Abb. 2) umlöten.
- Bodenplatte wieder schliessen und Deckel abnehmen.
- Netzspannungsschild an der Rückwand entsprechend der eingestellten Netzspannung auswechseln.
- Gerät schliessen.

Fig. 2. Anschlussschaltbild für die verschiedenen Netzspannungen

2.1.4. Erdung

Die Schutzerdung des Gerätes muss den örtlichen Vorschriften entsprechend vorgenommen werden. Die mit dem Gerät fest verbundene Netzzuleitung enthält einen Schutzleiter und ist mit einem Schutzkontakt-Stecker versehen. Dieser Stecker muss mit einer Schutzkontakt-Steckdose verbunden werden. Nur auf diese Weise ist eine wirksame Schutzerdung des Gerätes gewährleistet.

Das Schaltungsnullpunkt-Potential des Generators, auf dem die Aussenkontakte aller BNC-Buchsen liegen, ist mit dem Gehäuse über die Parallelschaltung eines Kondensators und eines Widerstandes verbunden. Damit wird eine eindeutige HF-Erdung der Schaltung bewirkt. Die Aussenkontakte der BNC-Buchsen dürfen nicht für Anschluss eines Schutzleiters verwendet werden.

2.1.5. Bedienungselemente und Anschlüsse (siehe Abb. 3)

Fig. 3. Frontansicht, Bedienungselemente und Anschlüsse

2.2. BEDIENUNG

2.2.1. Einschalten des Gerätes

Nachdem der Funktionsgenerator, entsprechend Abschnitt 2.1.3. und 2.1.4. mit dem Netz verbunden ist, kann er durch Eindrücken des Schalters POWER eingeschaltet werden.

Die Warnlampe leuchtet auf, zum Zeichen dass das Gerät betriebsbereit ist. Das weisse Feld im Schalter POWER gibt mechanisch an, dass das Gerät eingeschaltet ist.

Nach dem Einschalten ist das Gerät für sofortigen Gebrauch bereit. Es erfüllt die Spezifikationen nach einer Einlaufzeit von 30 Minuten bei unveränderter Lage.

2.2.2. Wählen der Signalform und Einstellen des Tastverhältnisses

Die Grundform des Ausgangssignals wird durch Betätigung der entsprechenden Drucktaste (, , , oder), eingestellt. Die zeitliche Ablauf der Signalform innerhalb einer Perioden lässt sich nach Betätigung der Drucktaste DUTY CYCLE, mit dem Einsteller DUTY CYCLE einstellen.

Abb. 4 zeigt die Wirkung der Tastgrad – Einstellung auf die Grundsignale.

Fig. 4. Tastgrad der verschiedenen Signalformen

2.2.3. Einstellen der Frequenz

Zur Einstellung der Frequenz stehen drei Einstellmittel zur Verfügung:

- 1. Frequenz-Einsteller mit linearer Kreisskala
- 2. Frequenz-Bereichsschalter FREQUENCY Hz
- 3. Frequenz-Offset-Einsteller FREQ.OFFSET

Mit Frequenz-Einsteller FREQUENCY und mit Frequenz-Bereichsschalter FREQUENCY Hz wird die gewünschte Sollfrequenz eingestellt, der Einsteller FREQ. OFFSET bleibt dabei in Mittelstellung. Die Ausgangsfrequenz ist gleich dem Produkt aus dem Zahlenwert auf der Linearskala FREQUENCY und dem Zahlenwert am Frequenzbereichsschalter (Beispiel FREQUENCY Einstellung 1.9 x Bereichsschalter 10 k = Ausgangsfrequenz 19 kHz).

Mit dem Einsteller FREQ. OFFSET kann eine Feineinstellung der Frequenz von $-5 \dots +5 \%$ vorgenommen werden.

2.2.4. Einstellen der Amplitude und des DC-Offset

Die Signalamplitude an der BNC-Buchse OUTPUT ist mit dem Einsteller AMPLITUDE auf eine Leerlauf-Ausgangsspannung von 2 V (Spitze-Spitze) bis 30 V (Spitze-Spitze) stetig einstellbar.

Durch Betätigung der Drucktaste DC OFFSET wird der Gleichspannungs-Offset Einsteller eingeschaltet.

Mit ihm kann dem Ausgangssignal eine Gleichspannung hinzugefügt werden. Die Offset-Gleichspannung ist mit dem Potentiometer DC OFFSET zwischen –10 V und +10 V (Leerlauf) stetig einstellbar.

Das Ausgangssignal und, falls gewählt, einschliesslich die Offset-Gleichspannung, kann mit der entsprechenden Drucktaste ATTENUATION um 20, 40 oder 60 dB abgeschwächt werden.

Warnung: Der Ausgangsverstärker kann bei gleichzeitiger Aussteuerung von AMPLITUDE und DC OFFSET übersteuert werden.

Um nun ein einwandfreies Ausgangssignal zu erhalten, darf die Leerlauf-Ausgangsspannung ± 15 V (Abschwächer auf 0 dB) nicht überschreiten. Der Grenzwert nimmt linear mit der gewählten Abschwächung ab.

2.2.5. Frequenzsteuerung

Durch Einspeisen eines Signals in den Eingang SWEEP IN kann die Frequenz des Generators gesteuert werden. (Fig. 5). Die Frequenz ändert sich dabei linear mit der Steuerspannung nach der Funktion:

$$f_0 = m \left(n_s + \frac{2Uc}{V}\right) Hz$$
, wenn $0 < \left(n_s + \frac{2Uc}{C}\right) < 10$

Darin ist f_0 = Signalfrequenz am Generatorausgang

m = eingestellter Frequenzbereich (x0.1, x1 ... x100 k)

n_s = an der Linearskala eingestellter Zahlenwert (0.1 ... 10)

U_C = Steuerspannung an Eingang SWEEP IN

Um bei den unteren Eckfrequenzen ein jitterfreies Signal zu erhalten (Frequenz- und Phasenjitter ist eine Folge von Störspannungen auf dem Steuersignal) empfiehlt es sich den Generator auf die jeweils gewünschte unterste Frequenz einzustellen und den gesamten Sweepbereich durch ein Steuersignal positiver Polarität zu bestreichen.

Fig. 5. Sweepbereich PM 5127

Beispiel:

Skala eingestellt auf 6 Spannung auf "sweep in" –2,5 V Entstehende Frequenz 1x Bereich

Beispiel:

Skala eingestellt auf 2 Spannung auf "sweep in" +5 V Entstehende Frequenz ...x Bereich

Beispiel:

Skala eingestellt auf 4 Spannung auf "sweep in" \sim 2 V_{SS} Entstehender Frequenz Sweep; stetig zwischen 2 und 6x Bereich

2.2.6. TTL Impuls-Signalausgang

Ein TTL-kompatibles Impulssignal steht an Buchse \int OUT zur Verfügung. Frequenz und Tastverhältnis dieses Signals lassen sich gemäss den Angaben in Abschnitt 2.2.2. und 2.2.3. einstellen. Dieses Signal wird von keinem der anderen Einstellorgane beeinflusst.

Operating manual

1. General information

1.1. INTRODUCTION

The Function Generator PM 5127 produces signals in the frequency range 0.01 Hz up to 1 MHz. The frequency can be set manually or controlled by an external signal. With the external control signal a nominal frequency sweep of two decades can be achieved.

Three forms of output signal are selectable, viz: sinewave, triangular and squarewave. These signals can be produced either with a fixed duty cycle of 0.5 or with an adjustable duty cycle of 0.1 up to 0.9 (\hfrac{1}{2} 10 up to 90 %).

The open-circuit output voltage is continuously variable up to 30 V_{p-p} . Within this range, a d.c. voltage, adjustable between -10 V and +10 V, can be added to the output signal. The signal output has an impedance of 50 Ω and is short-circuit proof.

A second output delivers a squarewave signal with fixed TTL-amplitude, adjustable frequency and duty cycle.

TECHNICAL DATA 1.2.

General Instructions

Only properties expressed in numerical values, with tolerances stated, are guaranteed by the factory. All specifications will be met after a warming-up period of 30 minutes, in a constant position. If not stated otherwise, relative tolerances (in % or ppm) relate to the adjusted value.

SPECIFICATIONS

Frequency	1
-----------	---

Nominal range

: 0.01 Hz to 1 MHz

Measuring range

: 0.1 Hz to 1 MHz, divided into 7 overlapping sub-ranges

Adjustment

Inaccuracy

: - dial with linear scale, 0.1 to 10.2

- 7 range-selector switches, x0.1 Hz, x1 Hz to x100 kHz

- FREQ OFFSET control with scale -5 % up to +5 % : ± 5 % in range x0.1 Hz

± 3 % in ranges x1 Hz to x10 kHz

± 5 % in range x100 kHz

Additional inaccuracy with DUTY CYCLE

pushbutton selected

: ± 10 % in all ranges

Nominal range of FREQ OFFSET control

: -5 % up to +5 %

Temperature coefficient (in nominal operating temperature range)

: < 0.24 %/deg C in range x0.1 Hz

< 0.08 %/deg C in ranges x1 Hz to x10 kHz

< 0.16 %/deg C in range x100 kHz

Long-term drift within 7 hours

: < 0.2 %

Short-term drift within 15 minutes

: < 0.1 %

Frequency variation

: < 10 ppm at nominal mains voltage ± 15 %

Waveforms

: - Sinewave

- Triangular wave

- Squarewave

By means of control DUTY CYCLE, and with pushbutton DUTY CYCLE selected, the duty-cycle of the squarewave, triangular wave or the sinewave, as selected, can be continuously varied from approximately 10 % up to 90 %

(see Section 2.2.2).

- distortion

: < 0.4 % up to 100 kHz

< 2.5 % from 100 kHz up to 1 MHz

- squarewave rise-time

: < 70 ns at OUTPUT socket < 25 ns at ☐ OUT socket</p>

\ 20 H3 dt 3

- squarewave overshoot and ripple

: < 1 % at OUTPUT socket

OUTPUT socket

Connector

: BNC socket

Open-circuit output voltage

- nominal value

: 30 V_{p-p}

- limiting value

: \pm 15 V for simultaneous use of the AMPLITUDE and

DC OFFSET controls, attenuator in 0 dB position.

Internal resistance

- nominal value

: 50 Ω

: 23 dB

Maximum load

: permanently short-circuit proof

Step-attenuator

: 0 dB; 20 dB; 40 dB; 60 dB

inaccuracy

: < 0.2 dB per step, at 1 kHz

AMPLITUDE control range

Temperature coefficient of the signal amplitude

: < 800 ppm/deg C

Amplitude response

DUTY CYCLE switch not selected

: ± 1 %, up to 100 kHz

 \pm 3 %, up to 1 MHz, step attenuator in 0 dB position \pm 5 %, up to 1 MHz, step attenuator in -60 dB position

- DUTY CYCLE switch selected

: ± 2 %, up to 100 kHz

± 20 %, up to 1 MHz, step attenuator in 0 dB position

DC-offset control range (open-circuit)

: $-10 \dots +10 \text{ V}$, with DC OFFSET switch selected

OUT socket

Connector

: BNC socket

Open-circuit output voltage

: TTL-compatible

- nominal value

: +(4.5 ± 0.5) V ≙ HIGH

(0 ± 0.2) V ≙ LOW

Amplitude response

: < 3 %

Maximum load

: permanently short-circuit proof

fan-out

: 20

SWEEP IN input

Connector

: BNC socket

Input resistance

: 1 k Ω

Sweep-range

: ≥ 2 frequency decades

Sweep characteristic

: linear

Control voltage

: 0.5 V per interval of the FREQUENCY dial, e.g. from 3 to 4. With a positive-going control voltage, a sweep to higher frequencies is obtained, and with a negative-going control voltage, a sweep to lower frequencies.

Maximum sweep-frequency

: > 500 Hz, at sweep-range = 2 decades and triangular

control-signal.

Maximum modulation frequency

(Phase-sweep < 5 %)

: 50 kHz (3 dB limit for frequency sweep at constant sinewave

control-voltage).

Maximum permissible voltage

: ± 15 V

ENVIRONMENTAL CONDITIONS

Ambient temperature

- reference value

: 23 deg C

- nominal operating temperature range

: +5 to +40 deg C

- temperature range for transport and

storage

: -40 to +70 deg C

Operating position

: optional

Supply voltage

: a.c. mains

reference value

: 230 V

nominal values

: 115 V, 230 V

- nominal operating range

: ± 15 % of the selected nominal value

Frequency

: 50 to 100 Hz

- tolerance

: ± 5 %

Consumption

: 30 W

CABINET

Protection class (see VDE 0411)

: Class 1, protective conductor

Protection type (see DIN 40 050)

: IP 20

Overall dimensions

- height

: 145 mm

– width

: 240 mm

depth

: 300 mm

Weight

: 3.6 kg

1.3. ACCESSORIES

Standard accessories

: operating manual

Optional accessories

: PM 9581: 50 Ω termination, 3 W

PM 9075: coaxial connection cable BNC-BNC PM 9074: coaxial connection cable BNC-BNC

1.4. DESCRIPTION OF THE BLOCK DIAGRAM (Fig. 1)

The oscillator is formed by a CONTROLLED CURRENT SOURCE, an INTEGRATOR and a TWO-LEVEL DETECTOR. This oscillator produces and determines the frequency of the output signal, dependent on the setting of the FREQUENCY dial, the frequency range selector (FREQUENCY Hz.), and the FREQ OFFSET control. Switch-over from time-symmetrical (duty cycle $0.5 \triangleq 50 \%$) to time-asymmetrical signals is achieved by selection of the DUTY CYCLE pushbutton.

The mark-to-space ratio can be adjusted, by means of the DUTY CYCLE control, in the range 0.1 up to $0.9 \triangleq 10$ % up to 90 %. The frequency of the oscillator can be controlled by applying an external voltage to BNC-socket SWEEP IN.

The oscillator also produces a TTL-compatible squarewave signal, which is fed to socket OUT via an amplifier. This signal has a duty cycle set by means of the DUTY CYCLE control.

The oscillator supplies a triangular or a squarewave signal to the WAVEFORM selector. When pushbutton \sim is selected, the triangular wave signal is applied to the SINE SHAPER. The selected waveform is then available at the waveform selector output.

By means of the AMPLITUDE control, in the ATTENUATOR, the output signal can be continuously varied. The output signal is amplified to the required level by the OUTPUT AMPLIFIER. In the OUT AMPLIFIER, the signal can be set to a selectable d.c. level between -10 V and +10 V with the DC OFFSET control. The amplified signal is applied to the STEP ATTENUATOR which has the possibility to attenuate the output signal in steps of 20, 40 and 60 dB. The signal is then available at the output socket of the generator. The POWER SUPPLY provides a stabilized d.c. voltage for the various circuits.

Fig. 1. Block diagram of the generator

2. Directions for use

2.1. INSTALLATION

2.1.1. Safety regulations (in accordance with IEC 348 or VDE 0411)

Before connecting the instrument to the mains, visually check the cabinet, controls and connectors etc., to ascertain whether any damage has occurred in transit. If there is a doubt about the efficiency of the protection, check this. If the protection is no longer guaranteed, disconnect the instrument from the mains and make it inoperative.

Always disconnect the instrument from the mains before removing any protective covers.

Any maintenance and service work necessary with the instrument switched on, should be performed by a qualified technician.

The mains connector must be plugged only into an earthed mains socket.

Do not make this safety protection ineffective, for example, by the use of an unearthed extension cable.

2.1.2. Position

The instrument may be used horizontally or in the sloping position by hinging out the tilting bracket. Ensure that the ventilation holes in top and bottom plates are free from obstructions. Do not position the instrument on any surface which produces or radiates heat.

2.1.3. Connection to the mains

The instrument must be connected only to an a.c. supply. On delivery the instrument is set to 230 V \pm 15 %. If the instrument is to be used with a 115 V \pm 15 % supply, proceed as follows:

- unplug the mains connector.
- loosen the two screws at the rear and remove the bottom plate.
- change the connections on the transformer in accordance with the diagram (see Fig. 2).
- replace the bottom plate and remove the top plate.
- change the mains-voltage plate on the rear in accordance with the mains voltage selected.
- replace the instrument top cover.

Fig. 2. Connection diagram for the different mains voltages

2.1.4. Earthing

The instrument must be earthed in conformity with the local safety regulations. The supplied mains cable contains a protective conductor which is connected to the earth contacts of the plug. The instrument must be connected to an earthed mains socket. The protective earthing of the instrument is only guaranteed when connected as described above.

The circuit earth potential of the generator (that of the external contacts of all BNC connectors) is connected to the cabinet by means of a parallel-connected capacitor and resistor. Correct HF-earthing of the circuit is then obtained.

The outer contacts of the BNC sockets may not be used to connect a protective conductor.

2.1.5. Controls and sockets (see Fig. 3)

Fig. 3. Front view, controls and connectors

2.2. OPERATION

2.2.1. Switching on the instrument

After the function generator or has been connected to the mains in accordance with section 2.1.3. and 2.1.4., it may be switched on by depressing mains switch POWER.

The pilot lamp will light, indicating that the instrument is ready for use.

The white spot inside the POWER switch indicates mechanically that the instrument is switched on.

After switching on, the instrument is ready for immediate use, and will meet specifications after a warming-up period of 30 minutes and at constant position.

2.2.2. Selecting the waveform and setting the duty cycle

The basic output signals can be selected by operation of the relevant pushbutton (\sim , $^{\checkmark}$, or $^{!}$) of the WAVEFORM selector. The time sequence of the waveform within one period can be adjusted by rotation of the DUTY CYCLE control after operation of the DUTY CYCLE pushbutton. The influence of DUTY CYCLE adjustment on the basic signals is shown in Fig. 4.

Fig. 4. Duty cycle of the different signals

2.2.3. Setting the frequency

The frequency is adjustable by the use of three separate controls:

- 1. FREQUENCY dial, with linear scale
- 2. Frequency-range selector, FREQUENCY Hz
- 3. Frequency-offset control, FREQ OFFSET

The nominal frequency is adjusted by means of the FREQUENCY dial and frequency-range selector (FREQUENCY Hz), with the FREQ OFFSET control remaining in mid-position.

The output frequency equals the product of the value on the FREQUENCY linear dial and the value of the selected frequency-range switch (e.g. FREQUENCY dial setting $1.9 \times range$ switch $10 \times range$ switch

A detuning of -5 ... +5 % of the nominal frequency can be performed with the FREQ OFFSET control.

2.2.4. Setting the amplitude and d.c. offset

The signal amplitude at the OUTPUT BNC-socket is continuously variable from an open-circuit voltage of 2 V_{p-p} up to 30 V_{p-p} by means of the AMPLITUDE control.

A d.c. voltage can be added to the output signal by operation of the DC OFFSET pushbutton and rotation of the DC OFFSET potentiometer. The DC OFFSET potentiometer provides continuous adjustment of the d.c. offset-voltage between -10 V and +10 V (open-circuit).

The output signal, and the d.c. offset-voltage if selected, can be attenuated by 20, 40 or 60 dB by selecting the relevant ATTENUATION pushbutton.

Caution: By simultaneous control of AMPLITUDE and DC OFFSET the output amplifier can be overloaded. In order to guarantee the quality of the output signal therefore, the output open-circuit voltage must not exceed ± 15 V when the step attenuator is set at 0 dB. The limit decreases linearly with the attenuation selected.

2.2.5. Frequency control

The frequency of the generator can be controlled by applying a signal to input SWEEP IN (Fig. 5). The frequency changes linearly with the control voltage as a function of the following formula:

$$f_0 = m \left(n_s + \frac{2Uc}{V} \right) Hz$$
, when $0 < \left(n_s + \frac{2Uc}{V} \right) < 10$

where: f_O = signal frequency at the generator output

m = frequency-range selected (x0.1, x1, to x100 k)

n_s = frequency-dial value selected (0.1, to 10)

Uc = control voltage at SWEEP IN input

In order to obtain a jitter-free signal for the lower sweep frequencies, (frequency- and phase-jitter results from interference on the control signal), it is recommended that the generator be set to the lowest frequency desired, and that the entire sweep range be covered by a control signal of positive polarity.

Fig. 5. Sweep range PM 5127

Example:

Dial set to 6 Voltage on "sweep in" -2,5 V Resulting frequency 1x selected range.

Example:

Dial set to 2 Voltage on "sweep in" +5 V Resulting frequency ...x selected range.

Example:

Dial set to 4 Voltage on "sweep in" \sim 2 V_{pp} Resulting frequency sweep; continuous between 2 and 6x selected range

2.2.6. TTL Impulse-signal output

A TTL-compatible impulse-signal is available at socket \int OUT. The frequency and duty cycle of this signal can be set as described in sections 2.2.2. and 2.2.3. This signal is not influenced by any of the other controls.

Notice d'emploi

1. Généralités

1.1. INTRODUCTION

Le générateur de fonctions PM 5127 offre une large gamme de fréquence de 0,01 Hz à 1 MHz. Cette fréquence peut être commandée manuellement ou par un signal externe. Avec ce dernier un balayage en fréquence nominale de deux décades peut être obtenu.

Les signaux de sortie peuvent être sélectionnés: sinusoïdaux, triangulaires ou rectangulaires. Ces signaux peuvent être fournis à facteur de marche fixe de 0,5 ou réglable entre 0,1 et 0,9 (= 10 jusqu'à 90 %). La tension de sortie en circuit ouvert est continuellement variable jusqu'à 30 V_{CC}. Dans cette gamme, une tension continue réglable entre -10 V et +10 V peut être ajoutée au signal de sortie, lequel présente une impédance de 50 Ω et est exempt de courts-circuits.

Une seconde sortie fournit un signal rectangulaire avec amplitude TTL fixe, fréquence et facteur de marche étant réglable.

1.2. CARACTERISTIQUES TECHNIQUES

Instructions générales

Les propriétés exprimées en valeurs numériques avec tolérances sont garanties par l'usine. Les spécifications sont obtenues après une periode de préfonctionnement de 30 minutes et en position constante. A moins qu'indiquées différemment, les tolérances relatives (en % ou ppm) se réfèrent à la valeur réglée.

Fréquence

Plage

Gamme de mesure

Réglage

Imprécision

Imprécision supplémentaire avec button **DUTY CYCLE enfoncé**

Gamme nominale de la commande FREQ. OFFSET

Coefficient de température (gamme de

fonctionnement nominale)

Dérive à long terme dans les 7 heures Dérive à court terme dans les 15 minutes Variation de fréquence

: 0,01 Hz à 1 MHz

: 0,1 Hz à 1 MHz en 7 sous-gammes se chevauchant

: - cadran avec échelle linéaire, 0,1 à 10,2

- 7 sélecteurs de gamme, x0.1 Hz, x1 Hz à x100 kHz - commande FREQ. OFFSET avec échelle -5 % à +5 %

: ± 5 % dans la gamme x0.1 Hz

± 3 % dans la gamme x1 Hz à 10 kHz

± 5 % dans la gamme x100 kHz

: ± 10 % dans toutes les gammes

: -5 % à +5 %

: < 0,24 %/°C dans la gamme x0.1 Hz

< 0,08 %/°C dans la gamme x1 Hz à x10 kHz

< 0,16 %/°C dans la gamme x100 kHz

: < 0,2 %

: < 0.1 %

: < 10 ppm à la tension secteur nominale \pm 15 %

Signaux

: - sinusoidal

triangulaire

rectangulaire

Après sélection par bouton-poussoir DUTY CYCLE le rapport cyclique peut être continuellement varié de 10 % à 90 % environ (voir Section 2.2.2.) avec la commande

DUTY CYCLE.

distorsion

: < 0,4 % jusqu'à 100 kHz < 2,5 % de 100 kHz à 1 MHz

- temps de montée rectangulaire

: < 70 ns à la douille OUTPUT < 25 ns à la douille \int OUT

dépassement et ondulation de signal

rectangulaire

: < 1 % à la douille OUTPUT

Douille OUTPUT

Connecteur

: douille BNC

Tension de sortie en circuit ouvert

valeur nominale

: 30 V_{cc}

valeur limite

: \pm 15 V pour usage simultané des commandes AMPLITUDE

et DC OFFSET, atténuateur en position 0 dB

Résistance interne

- valeur nominale

50 Ω

Charge maximale

: en permanence exempt de courts-circuits

Atténuation par échelons

: 0 dB, 20 dB, 40 dB, 60 dB

imprécision

: < 0,2 dB par échelon, à 1 kHz : 23 dB

Gamme AMPLITUDE

Coefficient de température du signal

d'amplitude

: < 800 ppm/°C

Réponse d'amplitude

DUTY CYCLE non sélectionné

: ± 1 %, jusqu'à 100 kHz

 \pm 3 %, jusqu'à 1 MHz, atténuateur sur 0 dB \pm 5 %, jusqu'à 1 MHz, atténuateur sur -60 dB

- DUTY CYCLE sélectionné

: ± 2 %, jusqu'à 100 kHz

± 20 %, jusqu'à 1 MHz, atténuateur sur 0 dB

Gamme d'offset continu (circuit ouvert)

: -10 ... +10 V, commutateur DC OFFSET enfoncé

DOUILLE J OUT

Connecteur

: douille BNC

Tension de sortie en circuit ouvert

: compatible à TTL

valeur nominale

.

Réponse d'amplitude

: < 3 %

Charge maximale

: exempt de courts-circuits en permanence

fan-out

: 20

Entrée SWEEP IN

Connecteur

: douille BNC

Résistance d'entrée

: 1 kΩ

Gamme de balayage

: ≥ 2 décades de fréquence

Caractéristique de balayage

: linéaire

Tension de commande

: 0,5 V par intervalle du cadran FREQUENCY, p.ex. de

3 à 4.

Avec une tension positive on obtient un balayage vers fréquences supérieures, tandis qu'avec une tension négative

on obtient un balayage vers fréquences inférieures.

Fréquence maxi de balayage

: > 500 Hz, en gamme = 2 décades et pour signal

triangulaire

Fréquence maxi de modulation

(balayage de phase < 5 %)

: 50 kHz (limite 3 dB pour balayage de fréquence à tension

sinuso idale constante)

Tension maximale admise

: ± 15 V

CONDITIONS D'ENVIRONNEMENT

Température ambiante

- de référence

: 23 °C

de fonctionnement nominal

: +5 à +40 °C

pour transport et stockage

: -40 à +70 °C

Position de travail

: arbitraire

Tension d'alimentation

: secteur alternatif

- valeur de référence

: 230 V

- valeurs nominales

: 115 V, 230 V

- gamme de fonctionnement nominal

: ± 15 % de la valeur nominal choisie

Fréquence

: 50 à 100 Hz

- tolérance

: ± 5 %

Consommation

: 30 W

COFFRET

Classe de protection (VDE 0411)

: Classe 1, conducteur de protection

Type de protection (DIN 40 050)

: IP 20

Dimensions totales

hauteur

: 145 mm

largeur

: 240 mm

profondeur

: 300 mm

Poids

: 3,6 kg

1.3. ACCESSOIRES

Fourni avec l'appareil

: mode d'emploi

Fournis en option

: charge 50 Ω , 3 W

PM 9581

cordon coaxial BNC-BNC

PM 9075

cordon coaxial BNC-BNC

PM 9074

1.4. DESCRIPTION DU SCHEMA SYNOPTIQUE (Fig. 1)

L'oscillateur est composé d'une source de courant pilotée (CONTROLLED CURRENT SOURCE), d'un intégrateur (INTEGRATOR) et d'un détecteur double niveau (TWO-LEVEL DETECTOR). Cet oscillateur produit et détermine la fréquence du signal de sortie en fonction du réglage du cadran FREQUENCY, du sélecteur FREQUENCY Hz (gamme de fréquence) et de la commande FREQ. OFFSET. Le passage de signaux symétriques en temps (rapport cyclique 0.5 = 50 %) à signaux asymétriques, il suffit d'enfoncer le bouton-poussoir DUTY CYCLE.

Le rapport cyclique peut être réglé à l'aide de la commande DUTY CYCLE dans la gamme 0.1 à 0.9 \triangleq 10 % à 90 %. La fréquence de l'oscillateur peut être commandée en appliquant une tension externe à la douille BNC SWEEP IN.

L'oscillateur fournit également un signal rectangulaire compatible pour TTL, lequel est appliqué à la douille OUT par l'intermédiaire d'un amplificateur. Ce signal présente un rapport cyclique réglable à l'aide de la commande DUTY CYCLE.

L'oscillateur fournit un signal triangulaire ou rectangulaire au sélecteur WAVEFORM. Lorsque le bouton-poussoir cet enfoncé, le signal triangulaire est appliqué au conformateur d'impulsions sinusoïdales (SINE SHAPER). La forme d'onde sélectionnée est alors disponible à la sortie du sélecteur de forme d'onde. La commande AMPLITUDE dans l'atténuateur (ATTENUATOR) permet de varier le signal de sortie d'une façon continue.

Le signal de sortie est amplifié au niveau requis par l'amplificateur de sortie (OUTPUT AMPLIFIER). Dans ce dernier le signal peut être réglé sur un niveau continu entre —10 V et +10 V à l'aide de la commande DC OFFSET. Le signal amplifié est appliqué à l'atténuateur par échelons, lequel est capable d'atténuer le signal de sortie par échelons de 20, 40 et 60 dB. Le signal est alors disponible à la douille OUTPUT du générateur.

L'alimentation fournit une tension continue stabilisée pour les différents circuits.

Fig. 1. Schéma synoptique du générateur

2. Mode d'emploi

2.1. INSTALLATION

2.1.1. Règles de sécurité (normes IEC 238 et VDE 0411)

Avant d'utiliser l'appareil après stockage et transport, vérifier s'il présente des dommages matériels.

Au cas où un doute subsisterait quant à l'efficacité de la protection, contrôler ce point.

Si la protection n'est pas assurée, l'appareil doit être débranché du secteur.

L'appareil doit toujours être débranché avant de l'ouvrir.

Les travaux d'entretien et de maintenance à effectuer sur un appareil alimenté ne peuvent être réalisés que par un technicien qualifié.

La fiche secteur ne peut être mise que dans une prise secteur avec contact de terre.

Cette sécurité ne peut pas être supprimée, même avec un câble de prolongement inadéquat par exemple.

2.1.2. Position

L'appareil doit être placé horizontalement ou incliné après avoir pivoté l'étrier-support.

Les ouvertures de ventilation dans les plaques supérieure et inférieure ne peuvent pas être recouvertes.

Veiller à ne pas mettre l'appareil sur des objets produisants de la chaleur.

2.1.3. Branchement au secteur

L'appareil ne peut être alimenté qu'en alternatif.

A la livraison, il est réglé sur 230 V ± 15 %.

En cas d'utilisation sur 115 V ± 15 %, procéder comme suit:

- Débrancher la fiche secteur
- Enlever la plaque de base après avoir dévissé les deux vis à l'arrière.
- Modifier le circuit du primaire en fonction du schéma (fig. 2).
- Remettre la plaque de base et enlever le couvercle
- Changer la plaquette de tension secteur à l'arrière conformément à la tension réglée
- Fermer l'appareil

Fig. 2. Schéma de branchement pour différentes tensions d'alimentation

2.1.4. Mise à la terre

La protection terre du générateur doit répondre aux règles de sécurité locales. Le cordon secteur livré présente un conducteur de protection relié au contact terre de la fiche. Cette fiche ne peut donc être branchée que sur une prise secteur à contact de terre. La protection terre de l'appareil n'est garantie que de cette façon.

Le potentiel zéro du générateur (contacts externes des connecteurs BNC) est relié au boîtier par l'intermédiaire d'un circuit parallèle RC.

Une mise à la terre HF correcte est ainsi obtenue.

Les contacts extrêmes BNC ne peuvent pas être utilisés à la connexion d'un conducteur de protection.

2.1.5. Bornes et réglages (voir fig. 3)

Fig. 3. Vue de face, bornes et réglages

2.2. MODE D'EMPLOI

2.2.1. Mise en service

Brancher le générateur selon 2.1.3. et 2.1.4. et mettre l'appareil en service en enfonçant le bouton POWER. La lampe-témoin correspondante s'allume, indiquant que l'appareil est prêt à l'usage. La partie blanche du bouton POWER indique également que l'appareil est en service.

Après sa mise en service, l'appareil est prêt à l'usage et répond aux spécifications après une période de chauffage de 30 minutes.

2.2.2. Sélection de la forme d'onde et du rapport cyclique

Les signaux de sortie sont sélectionnés en enfonçant le bouton correspondant (\sim , \sim , $\lceil \rfloor$) du sélecteur WAVEFORM. La séquence de temps de la forme d'onde est réglée par rotation de la commande DUTY CYCLE après avoir enfoncé le bouton-poussoir DUTY CYCLE. L'influence du réglage DUTY CYCLE sur les signaux de base est illustrée à la figure 4.

Fig. 4. Rapport cyclique des differents signaux

2.2.3. Réglage de fréquence

La fréquence peut être réglée de trois façons:

- 1. par la commande FREQUENCY avec l'échelle linéaire
- 2. par le commutateur de gamme FREQUENCY Hz
- 3. par la commande de variation de fréquence FREQ. OFFSET

Dans les deux premiers cas la fréquence nominale requise est réglée, la commande de variation de fréquence étant réglée en position médiane.

La fréquence de sortie est égale au produit de la valeur sur l'échelle linéaire FREQUENCY et de la valeur du commutateur de gamme (exemple: échelle FREQUENCY 1.9 x commutateur de gamme 10 k = fréquence de sortie 19 kHz)

Une variation de fréquence peut être obtenue à l'aide de la commande de variation de fréquence, à savoir de -5% à +5% de la valeur nominale.

2.2.4. Réglage d'amplitude et d'offset continu

L'amplitude sur la borne BNC OUTPUT est continuellement réglable d'une tension en circuit ouvert 2 V_{CC} à 30 V_{CC} à l'aide de la commande AMPLITUDE.

Une tension continue peut être ajoutée au signal de sortie en actionnant le bouton-poussoir DC OFFSET et en tournant le potentiomètre DC OFFSET. Ce dernier donne un réglage continu de la tension d'offset continue entre -10 V et +10 V (circuit ouvert).

Le signal de sortie et, si sélectionnée, la tension d'offset continue peuvent être atténués de 20, 40 ou 60 dB en fonction de l'atténuation choisie.

Attention: En cas de commande simultanée de AMPLITUDE et DC OFFSET, l'amplificateur de sortie peut être surchargé. Pour garantir la qualité du signal de sortie, la tension de sortie en circuit ouvert ne doit pas excéder ± 15 V, l'atténuateur étant réglé sur 0 dB. La limite diminue linéairement avec l'atténuation choisie.

2.2.5. Commande de fréquence

La fréquence du générateur peut être réglée en appliquant un signal à l'entrée SWEEP IN (Fig. 5). La fréquence varie linéairement avec la tension de commande selon la fonction:

$$f_0 = m \left(n_s + \frac{2U_c}{V} \right) Hz$$
, lorsque $0 < \left(n_s + \frac{2U_c}{V} \right) < 10$

f_O = fréquence du signal de sortie

n = facteur réglé avec le commutateur de gamme (x0.1, x1 à x100 k)

n_s = valeur réglée sur l'échelle linéaire (0.1 à 10)

U_C = tension de commande à l'entrée SWEEP IN

Afin d'obtenir un signal sans jitter à fréquences inférieures de balaye, lequel jitter résulte de petites interférences sur le signal de commande, il est recommandé de régler le générateur sur la plus basse fréquence requise et de couvrir la gamme totale par un signal de polarité positive.

Fig. 5. Gamme de balayage

Exemple:

Echelle réglée sur 6 Tension réglée sur "sweep in" –2,5 V Fréquence résultante 1x gamme

Exemple:

Echelle réglée sur 4 Tension réglée sur "sweep in" +5 V Fréquence résultante ...x gamme

Exemple:

Echelle réglée sur 4 Tension réglée sur "sweep in" \sim 2 $\rm V_{CC}$ Balayage de fréquence résultante; continu entre 2 et 6x gamme

2.2.6. Sortie TTL

Un signal compatible au TTL est disponible à la douille \int OUT. Fréquence et rapport cyclique peuvent être réglés comme décrit aux points 2.2.2. et 2.2.3.
Le signal n'est influencé par aucune des autres commandes.

3. Service data

3.1. GAINING ACCESS TO THE PARTS

3.1.1. **Cabinet**

The upper and lower plates are fixed to the rear by means of 2 screws each.

3.1.2. Knobs

- Remove the cap from the knob.
- Unscrew the nut and remove the knob.
- When mounting the knob back, make sure that the white marks appear at the correct side.

3.1.3. Textplate

- Remove upper and bottom plate
- Remove all knobs
- Carefully remove the ornamental frame
- Remove pilot lamp POWER from the holder; therefore, slightly shift the textplate to the front
- Remove the textplate

3.2. REPLACING A SWITCH OF THE PUSH-BUTTON UNIT

- Straighten the 4 retaining lugs of the relevant switch as shown in Fig. 6.
- Break the body of the relevant switch by means of a pair of pliers and remove the pieces. The soldering pins are then accessible.
- Remove the soldering pins and clean the holes in the printed-wiring board (e.g. with a suction soldering iron).
- Solder the new switch onto the printed-wiring board.
- Bend the 4 retaining lugs back to their original positions.

Fig. 6. Replacing a push-button switch

Service data

10 10 10 10 10 10 10 10	SETTING	SETTING	SETTING	SETTING	SETTING	SETTING	SETTING	SETTING	ETTING	NG									MEASURING	RING	ADJUSTMENT
17.0 10.00	PUSHBUTTONS	PUSHBUTTONS	PUSH-BUTTONS CONTROLS	PUSH-BUTTONS CONTROLS	UTTONS CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS							-			,	
50.10 Cap 201-1 U 115 ± 5/1 V AD - U 115 ± 5/1 V AD - U 115 ± 5/1 V AD - U 115 V AD - U	Q. DUTY DC. CYCLE OFFSET OFFSET FREQ. OFFSET FREQ. CYCLE OFFSET DUTY OFFSET DUTY OFFSET DUTY OFFSET 852/1 852/1 852/2 852/4 852/4 852/6 853 624 615 636 761	DUTY DC WAVEFORM ATTEN FREQ. FREQ. DUTY DC CYCLE OFFSET CYCLE OFFSET CYCLE OFFSET 852/1 852/2 852/4 852/6 853/6 853/6 853 624 615 636 761	DC WAVEFORM ATTEN FREQ. FREQ. DUTY DC OFFSET CYCLE OFFSET CYCLE OFFSET 852/2 852/3 852/4 852/5 853 624 615 636 761	DC WAVEFORM ATTEN FREQ. FREQ. DUTY DC OFFSET CYCLE OFFSET CYCLE OFFSET 852/2 852/3 852/4 852/5 853 624 615 636 761	WAVEFORM ATTEN FREQ. FREQ. OUTY DC Color Cl IL OFFSET FREQ. GYCLE OFFSET 852/3 852/4 862/5 863 634 615 636 761	WAVEFORM ATTEN FREQ. FREQ. DUTY DC CVCLE OFFSET CYCLE OFFSET SS2/4 852/4 853 624 615 636 761	TL ATTEN FREG. FREG. CYCLE OFFSET 652/5 853 624 615 636 761	FREG. DUTY DC OFFSET CYCLE OFFSET 624 615 636 761	FREG. DUTY DC OFFSET CYCLE OFFSET 624 615 636 761	FREQ. CYCLE OFFSET 615 636 761	CYCLE OFFSET 636 761	DC OFFSET 761	AMPL TUDE 750			00T 0U7 L Zo E 2 873	TPUT Mea 50 Ω poir		Measured value		Position no.
500 500	- x 0 dB 1	- x 0 dB 1	- × 0 dB 1	x 0 dB 1	x 0 dB 1	0 dB 1	0 dB 1						Max.	1		90 (U_ = — (15 ± 0,1) V		610 (608 in mid-position)
5 5 10 10 10 10 10 10	x1k - x 0dB 1 Max.	x 0 dB	x 0 dB	x 0 dB	x 0 dB	x 0 dB	0 dB 1	dB 1			Max.	Max.	Max.	ı		20 ((+) 60	$U_{+} = +15 \text{ V}; \triangle U < 0,05 \text{ V}$ $1 \leqslant \pm 5 \text{ mV}$	- n+	608
C OUTPUT 110 and 100 ± 10 mounts to 100 ± 10 moun	(o) \	* X	O V	O V	O V	O V	< 0,1	< 0,1	<0,1	<0,1				. L 1			8-9		± 0,02) V	$U_{pp} = U_{+} - U_{-} $ DVM (DC) Turn control FREO. as far that the voltmeter shows a deviation in the 3 mV range. Then adjust the dial at approximately 2 marks further than the lowest indication V (AC)	679 dial FREQ.
C OUTPUT 110-00 ULD 11 m/S Treatment with restriction C OUTPUT 110-10 ULD 11 m/S VIO Values to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO VIO Values according to 10 ULD 11 m/S VIO	Desolder connection from potentiometer DUTY CYCLE (636) to UNIT 1 (contacts 31 and 33). Interconnect contact a4-a5 and b7-b8 at switch DUTY CYCLE (852/1).	connection from potentiometer DUTY CYCLE (636) to UNIT 1 (contacts 31 set contact a4-a5 and b7-b8 at switch DUTY CYCLE (852/1).	connection from potentiometer DUTY CYCLE (636) to UNIT 1 (contacts 31 set contact a4-a5 and b7-b8 at switch DUTY CYCLE (852/1).	DUTY CYCLE (636) to UNIT 1 (contacts 31 witch DUTY CYCLE (852/1).	DUTY CYCLE (636) to UNIT 1 (contacts 31 witch DUTY CYCLE (852/1).	DUTY CYCLE (636) to UNIT 1 (contacts 31 witch DUTY CYCLE (852/1).	DUTY CYCLE (636) to UNIT 1 (contacts 31 witch DUTY CYCLE (852/1).	to UNIT 1 (contacts 31 (852/1).	to UNIT 1 (contacts 31 (852/1).	1 (contacts 31	cts 31	nd 33).		ł							,
C OUTPUT ¼ = 00 1,00 1,00 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 0 1,10 √ 10 √		x x 0 dB	x x 0 dB								,					O	.00 3		and t10-	1	ı
C OUTPUT 1 = (10.6.06) kHz C OUTPUT 1 = (1	x100 x 0 dB <0,1 x100 x 0 dB <0,1	8 8 8 0 0 x x	BPO x x	0 dB	0 dB	0 dB	0 dB	VV	<0,1	<0,1				+		0	00. 3-		1 +1 1	U10 Values according t10+ Seq. no. 6	611 646 647
C OUTPUT f = (10 ± 0.05) kHz In order to obtain symmetry of prefer page. C OUTPUT f = (10 ± 0.05) kHz f = (10 ± 0.05) kHz C OUTPUT f = (10 ± 0.01) kHz f = est froquency C OUTPUT f = (10 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 0.01) kHz f = est froquency C OUTPUT f = (100 ± 1) kHz f = est froquency C OUTPUT f = (100 ± 1) kHz f = est froquency C OUTPUT f = (100 ± 1) kHz f = est froquency C OUTPUT f = (100 ± 1) kHz f = f = est froquency C OUTPUT f = (100 ± 1) kHz f = f = est froquency C OUTPUT f = (10 ± 1) kHz f = f = est froquency	Remove the interconnection of contacts a4-a5 and b7-b8 at switch DUTY CYCLE.	he interconnection of contacts a4-a5 and b7-b8 at sw	he interconnection of contacts a4-a5 and b7-b8 at sw	-a5 and b7-b8 at sw	-a5 and b7-b8 at sw	-a5 and b7-b8 at sw	-a5 and b7-b8 at sw			OUTY CYCLE.).LE.	-		-		-	-				
c OUTPUT T = (10±0.05) kHz c OUTPUT T = (100±0.05) kHz c OUTPUT T = (100±0.05) ms c OUTPUT T = (100±0.05) kHz c OUTPUT T = (100±1.05) kHz c OUTPUT T = (1±0.019) kHz c OUTPUT T = (1000±4.0) kHz c OUTPUT T = (1000±4.0) kHz c OUTPUT T = (1000±4.0) kHz c OUTPUT T = (100±1.0 kHz f(2) = (1000±4.0) kHz t = (0.05.00 kHz c OUTPUT T = (100±1.0 kHz f(2) = (1000±4.0) kHz t = (0.5 kmz) c OUTPUT T = (10±0.0 kHz f(2) = (1000±4.0) kHz t = (0.5 kmz) c OUTPUT T = (10±0.0 kHz f(2) = (1000±4.0) kHz t = (0.5 kmz) c	connection potentionneter DU 17 CYCLE to DUI	connection potentionneter DU 17 CYCLE to DUI	connection potentionneter DU 17 CYCLE to DUI	× 0 dB	× 0 dB	× 0 dB	× 0 dB			10 10 10 10 10 10 10 10 10 10 10 10 10 1	7					O .	00		at 0/+5 % = Δ f at 0/-	In order to obtain symmetry of both ranges, adjust FREQ. OFFSET again.	
C OUTPUT T = (100.5 0.0) fm C OUTPUT T = (100.5 0.0) fm C OUTPUT T = (100.5 0.0) fm C OUTPUT T = (100.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 0.0) kHz In a set traquency C OUTPUT T = (10.5 1.0) kHz True interval measurement C OUTPUT T = (10.2 1.0) kHz True interval measurement C OUTPUT T = (10.2 0.0) kHz True interval measurement Osc. OUTPUT T = (10.2 0.0) kHz True interval measurement C OUTPUT T = (10.2 0.0) kK True interval measurement C OUTPUT T = (10.2 0.0) kK True interval measurement C OUTPUT T = (10.2 0.0) kK <	x1k x 0 dB 0 10	0 dd	0 dB 0	0 dB 0	0 dB 0	0 dB 0	0 dB 0	0		10					Meteory	O	8		f = (10 ± 0,05) kHz		613
C OUTPUT T = (100 ± 0.6) ma C OUTPUT T = (100 ± 0.6) kHz fo = set frequency C OUTPUT T = (1 ± 0.0) fils s fo = set frequency C OUTPUT T = (1 ± 0.0) fils s See evaluation according to set, on 20 C OUTPUT T = (1 ± 0.0) fils s See evaluation according to set, on 20 C OUTPUT T = (1000 + 40) kHz See evaluation according to set, on 20 C OUTPUT T = (1000 + 40) kHz See evaluation according to set, on 20 C OUTPUT T = (1000 + 40) kHz Col 5 % when (1) is on 0 col 40 kHz C OUTPUT T = (100 + 40) kHz To obtain symmetry of both on 0 col 60 kHz C OUTPUT T = (100 + 40) kHz To obtain symmetry of both on 0 col 60 kHz C OUTPUT T = (10 ± 1) kHz To obtain symmetry of both on 0 col 60 kHz C OUTPUT A = (15 ± 0.6) % To obtain symmetry of both on 0 col 7 kHz C OUTPUT A = (15 ± 0.6) % To obtain symmetry of both on 0 col 7 kHz C OUTPUT A = (15 ± 0.6) % To obtain symmetry	app O O	0 8p0 0 x x x	0 0 8p0 0 x x	0 dB 0	0 dB 0	0 dB 0	0 dB 0	0		10			_	+) U	8 8	+	T = (10 ± 0,05) ms	The store is a second design of the second design o	620
C OUTPUT T = (1 ± 0.0.1) kHz fo = set frequency C OUTPUT T = (1 ± 0.0.15) kHz See explanation according to seq. C OUTPUT T = (10.0.15) kHz See explanation according to seq. C OUTPUT T = (10.0.15) kHz See explanation according to seq. C OUTPUT T = (100 ± 4.0) kHz See explanation according to seq. C OUTPUT T = (100 ± 4.0) kHz See explanation according to seq. C OUTPUT T = (100 ± 4.0) kHz C output C OUTPUT T = (100 ± 1.0) kHz C output C OUTPUT T = (10 ± 0.1) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OUTPUT T = (10 ± 0.3) kHz C output C OU	0 8 0 0 x	x 0 dB 0 10	x 0 dB 0 10	0 dB 0 10	0 dB 0 10	0 dB 0 10	0 dB 0 10	0 10	10		1 1			††		0	8		T = (100 ± 0,5) ms		619
C OUTPUT T = (1 ± 0.015) kHz C OUTPUT t = (10 ± 1.5) kHz See explanation according to seq. C OUTPUT t = (100 ± 1.5) kHz See explanation according to seq. C OUTPUT t = (100 ± 4) kHz Description according to seq. C OUTPUT t = (100 ± 4) kHz Description according to seq. C OUTPUT t = (100 ± 4) kHz Description according to seq. C OUTPUT t = (100 ± 4) kHz Description according to seq. C OUTPUT t = (10 ± 0.3) kHz Description according to seq. C OUTPUT t = (10 ± 0.3) kHz Concert in the whole range. C OUTPUT t = (10 ± 0.3) kHz Concert distortion research action of the value according to seq. C OUTPUT t = (10 ± 0.3) kHz Concert distortion research action of the value according to seq. C OUTPUT t = (10 ± 0.3) kHz Concert distortion research action of the value action of the value according bridge according to seq. C OUTPUT t = (10 ± 0.3) kHz Concert distortion research according to seq. C	x 0 dB 0 1,210	x 0 dB 0 1,210	x 0 dB 0 1,210	0 dB 0 1,210	0 dB 0 1,210	0 dB 0 1,210	0 dB 0 1,210	0 1,210	1,210	.10	-			$\dashv \dashv$	-) (J.	8 8		$f = f_0 \pm 2\%$	f _o = set frequency	070
C OUTPUT f = (100 ± 1.5) kHz See explanation according to seq. C OUTPUT f = 350 kH± ± 0.5 % See explanation according to seq. C OUTPUT f(1) = (1000 + 40) kHz If required, reseat adjunting 19. The control content to the seq. C OUTPUT f = (100 ± 1) kHz The required, reseat adjunting 19. The control content to the seq. C OUTPUT f = (10 ± 1) kHz The required and reseat adjunting 19. The control content to the seq. C C outPUT f = (10 ± 1) kHz The required and reseat adjunting 19. The control content to the seq. C C outPUT f = (10 ± 0.3) kHz C outPUT C OUTPUT f = (10 ± 0.3) kHz C connect distortion measuring bridge C OUTPUT f = (10 ± 0.3) kHz C connect distortion measuring bridge C OUTPUT f = (10 ± 0.3) kHz C connect distortion measuring bridge C OUTPUT f = (10 ± 0.3) kHz C connect distortion measuring bridge C OUTPUT f = (10 ± 0.3) kHz C connect distortion measuring bridge C OUTPUT f = (10 ± 0.3) kHz C connect distort	0 8P0 x x	0 8P0 x x	0 dB 0	0 dB 0	0 dB 0	0 dB 0	0 dB 0	0 0		10				_		0 0	<u>6</u>		13 11		
C OUTPUT (11) = (100 − 4) kHz district frequency center adjusting 18 The district frequency must be changed (12) = (1000 + 40) kHz district frequency must be changed (12) = (1000 + 40) kHz district frequency must be changed (12) = (1000 + 40) kHz district frequency must be changed (12) = (1000 + 40) kHz district frequency must be changed (12) = (10 ± 1) kHz district frequency must be changed (12) = (10 ± 1) kHz district frequency must be changed (13) = (10 ± 1) kHz district frequency must be changed (14) = (10 ± 1) kHz district frequency must be changed (14) = (10 ± 1) kHz district frequency must be changed (14) = (10 ± 1) kHz district frequency from the assuring object, and just control of (14) = (10 ± 0.5) % district frequency must be changed (14) = (10 ± 0.5) % district frequency from the assuring object, and just control of (14) = (10 ± 0.5) % district frequency from the souring object and frequency must be districted frequency must be districted frequency must be districted frequency from the souring object and frequency from the souring object and frequency freq	0 0	x x x 0 dB 0 0	0 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0		10						O O	9 9			See explanation according to seq.	- 525
C and OUTPUT f = (10 ± 1) kHz Trum potentiometer DUTY C and OUTPUT f = (10 ± 1) kHz C and OUTPUT f = (10 ± 1) kHz C and OUTPUT f = (10 ± 2) C and OUTPUT f = (10 ± 2) C and OUTPUT f = (10 ± 2) kHz C and OUTPUT f = (10 ± 2) kHz C and OUTPUT f = (10 ± 2) kHz C and output f = (10 ± 2) kHz C and output f = (10 ± 2) kHz C and output f = (10 ± 2) kHz C and output f = (10 ± 2) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f = (10 ± 0.6) kHz C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and output f bpp = (15 ± 1.25) V C and f f f f f f f f f f f f f f f f f f f		O	0 Bp 0	0 Bp 0	0 Bp 0	0 Bp 0	0 Bp 0	0		- 0				 		O .	no .		- 4) kHz + 40) kHz	no. 20 If required, repeat adjusting 19. The adjusting frequency must be changed to e.g. 250 kHz ± 0,5 % when f(1) is out of tolerance and to e.g. 450 kHz ± 0,5 % when f(2) is out of	. 1
C and OUTPUT (1902) 10 ± 2 Time-interval messurement. To obtain symmetry of both the satisfies to both the satisfies to be the measuring values, readilate control food. OutPUT (1902) Time-interval messurement. To obtain output (1°4) C and OUTPUT (1902) (10 ± 0.3) % (x1k x - x 0dB 0 10 %-	0 MB0 ×	0 dB 0 x	0 dB 0 x	0 dB 0 x	0 dB 0 x	0 dB 0 10	0 10	10		10 %-			 		O	6	<u> </u>	= (10 ± 1)	Turn potentiometer DUTY CYCLE slowly over the whole range.	1
C and OUTPUT Pros. = 10 ± 2 Post. = 10 ± 2 Potention and Post.	x x 1k x - x 0dB 0 10 10%	x 0 dB 0 10	x 0 dB 0 10	0 dB 0 10	0 dB 0 10	0 dB 0 10	0 dB 0 10	0 10	10		10 %		-			C a Osc			= 10 ± 2	Time-interval measurement. To obtain symmetry of both measuring values, readjust control	ŀ
C OUTPUT Δf = + (5 ± 0,5) % Act C OUTPUT √f = - (5 ± 0,5) % Act C OUTPUT f = (10 ± 0,3) kHz Connect distorsion measuring bridge C OUTPUT f = (11 ± 0,3) kHz Connect distorsion measuring bridge K B52/3+3 k < 2,5 %	x x 0 dB 0 10 90%	x 0dB 0 10 90	x 0 dB 0 10 90	x 0 dB 0 10 90	x 0 dB 0 10 90	x 0 dB 0 10 90	x 0 dB 0 10 90	0 10 90	10	06	% 06					O O				knob DUTY CYCLE on the potentiometer axis. theg = negative part period (T-t) tpos = positive part period (t) see Section 2.2.2.	
C OUTPUT f = (10 ± 0.3) kHz C OUTPUT W (4 (distance) > 34 dB C OUTPUT W (4 (distance) > 34	apo x	apo x	x x	gp 0 ×	0 dB	0 dB	0 dB	T	0+5 % 10	5 % 10				+		0 0	8		$\Delta f = + (5 \pm 0.5) \%$	A THE STATE OF THE	
Seg/3-b3 K < 2,5 % Connect distorsion measuring bridge K = 2,5 % K = 2,5 % K = 4 do sc.			0 C	0 0	0 0	0 0	0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o co					+2,25 V		8 8 8		$f = (10 \pm 0.3) \text{ kHz}$	A CONTRACTOR OF THE CONTRACTOR	1
K OUTPUT k (distance) > 34 dB on the scope; optimalize the peaks. V(DC) OUTPUT $U < 30 \text{mV}$ $U < 30 \text{mV}$ SO Ω OUTPUT $U < 30 \text{mV}$ $U < 30 \text{mV}$ SO Ω OUTPUT $U = 1 + 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1 + 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1 + 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1 + 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1 + 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1,125 \text{l}$ $U = 1,125 \text{l}$ SO Ω OUTPUT $U = 1,100 \text{l}$ $U = 1,100 \text{l}$ SO Ω OUTPUT $U = 1,100 \text{l}$ $U = 1,100 \text{l}$ V(AC) OUTPUT $U = 1,100 \text{l}$ $U = 1,100 \text{l}$ V(AC) OUTPUT $U = 1,100 \text{l}$ $U = 1,100 \text{l}$ V(DC) OUTPUT $U = 1$	8 P O O	x	0 dB 10	0 dB 10	0 dB 10	0 dB 10	0 dB 10	10			Min	Min	Min.				827		k < 2,5%	Connect distorsion measuring bridge KF and osc. If required, alternately adjust K to minimum. Optically well-adjust the sine-wave	693 698 737
V(DC) OUTPUT U < 30 mV V(DC) OUTPUT U < 30 mV	x –	- x	- x - 00 dB	0 dB	0 dB	0 dB	10	10	10	10	Max.	Max.	Max.			×	100		k (distance) > 34 dB	on the scope; optimalize the peaks.	
V(DC) OUTPUT Ueff = (5,3 ± 0,265) mV (VAC) 50.Ω OUTPUT Ueff < 0,41 V 50.Ω OUTPUT Ueff < 0,41 V 50.Ω OUTPUT Upp = (15 ± 1,275) V 50.Ω OUTPUT Upp = (15 ± 1,275) V 50.Ω OUTPUT Uf0 : overshoot < 1,5 % 50.Ω OUTPUT Uf0 = 1 ± 0,03 ≈ 50.Ω OUTPUT0 Uf0 = 1 ± 0,03 ≈ 50.Ω OUTPUT0 Uf0 = 1 ± 0,03 ≈ 50.Ω OUTPUT0 Uf	The following measurements must be performed with the instrument closed.	following measurements must be performed with the instrument	measurements must be performed with the instrument	must be performed with the instrument	must be performed with the instrument	must be performed with the instrument	erformed with the instrument closed.	with the instrument closed.	strument closed.	nt closed.					-	1)/\			11 < 30 mV		779/783
V(AC) 50 Ω V(AC) 50 Ω V(AC) 50 Ω OUTPUT $ U_{pf} = (15 \pm 1,125) V $ 50 Ω OUTPUT $ U_{pp} = (15 \pm 1,275) V $ 50 Ω OUTPUT $ U_{1k} = 1 \pm 0.03 \stackrel{?}{=} 1 \pm 0.03$	8 p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x 10 0 dB 10	01 8b0 x -	x x 0 0 dB 10	0 dB 10 0 dB 10	10	10	10	10	10	Max.	Max.	Max.	++-		20 05		11	± 0,265)		741
50 Ω OUTPUT $U_{pp} = (15 \pm 1,125) V$ Soc. 50 Ω OUTPUT $U_{pp} = (15 \pm 1,275) V$ Soc. 50 Ω OUTPUT $U_{pp} = (15 \pm 1,275) V$ Soc. 50 Ω OUTPUT $U_{pp} = (15 \pm 1,275) V$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 Ω OUTPUT $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 51 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 52 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 53 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 54 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 55 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 56 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 57 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 58 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 59 $U_{pp} = 1 \pm 0,03 \cong 0$ Soc. 50 $U_{pp} = 1 \pm 0,03 $	x - 0 dB 10	x - 0 dB 10	01 8p0 x -	x 0dB 10	0 dB 10	10	10	10			Min	Min	Ē	<u> </u>		V()		_	>		
50.Ω 50.Ω 50.Ω 50.Ω 50.Ω 50.Ω 50.Ω 50.Ω	10	x 0dB	01 8 0 0 dB	x 0 dB	0 dB	0 dB	10	10			Max	Max.	Max.			20 <			1,125)		-
Osc. Osc. 50 Ω OUTPUT $U^{\dagger}U_1$: overshoot < 1,5 %	x100 A OdB 10 Max.	01 × 0 0 dB	x 0 dB 10	x 0 dB	0 dB 10	0 dB 10	0 dB 10	10			Max.	Max.	Max.	_		90 Os		-	$U_{DD} = (15 \pm 1,275) \text{ V}$		man and the second seco
50.Ω OUTPUT $\frac{U_{fo}}{U_{1} \text{ kHz}} = 1 \pm 0,03 \stackrel{\triangle}{=} $ reference value: amplitude at 1 kHz reference value: amplitude at 1 kHz $\frac{50 \Omega}{U_{1} \text{ kHz}} = \frac{1 \pm 0,03}{U_{1} \text{ kHz}} \stackrel{\triangle}{=} \frac{A}{4} = 3\%$ reference value: amplitude at 1 kHz reference value: amplitude value: amplitude at 1 kHz reference value: amplitude value: amplitude value: amplitude value: amplitude value: amplitud	x 0 dB	x 0dB	0 dB 10	0 dB 10	0 dB 10	0 dB 10	0 dB 10	10			≈2/3	≈2/3	≈2/3			. 20 S			Մ ြ : overshoot < 1,5 %	Adjust to minimum	533
50 Ω OUTPUT $\frac{U_{fo}}{U_{1}_{KHZ}} = \frac{1 \pm 0.03}{\Delta R} \approx \pm 3\%$ 50 Ω OUTPUT U_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω OUTPUT u_{ij} : Ringing < 1,5 % 50 Ω	x100k x 0 dB 0 1,210 Max.	x 0 dB 0 1,210	x 0 dB 0 1,210	x 0 dB 0 1,210	0 dB 0 1,210	0 1,210	0 1,210	0 1,210	1,210	10		Max	Max.	 		200			1 11	∆A = Amplitude response reference value: amplitude at 1 kHz	
50 Ω OUTPUT U [*] ₁ : Ringing < 1,5 % Osc. 50 Ω OUTPUT a = (20 ± 0,2 dB) per step V(AC) V(DC) OUTPUT U = + (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (10 ± 0,2) V	x100k x 0 dB 0 1,210 Max.	- x 0 dB 0 1,210	x 0 dB 0 1,210	x 0 dB 0 1,210	0 dB 0 1,210	0 dB 0 1,210	0 1,210	0 1,210	1,210	10		May	May	1;	-	50			Ufo = 1 ± 0,03 = 14 0,03 = 14 0,03 = 14 0,03		-
50 Ω OUTPUT a = (20 ± 0,2 dB) per step V(AC) V(DC) OUTPUT U = + (10 ± 1) V V(DC) OUTPUT U = - (10 ± 1) V V(DC) OUTPUT U = - (40 ± 1) V I OUT UHIGH = + (4,5 ± 0,5) V U _{LOW} = (0 ± 0,2) V	×100k X 0 dB 8	8 8 8 8 1 I	8 Bp 0	8 Bp 0	8 Bp 0	8 Bp 0	8 Bp 0	60			Ä	W.	ž	Max.		200		+	U几:Ringing<1,5%		
V(BC) OUTPUT V(BC) OUTPUT	xfk x 0,20dB 1 40 dB 60 dB	- x 0,20dB 1 40 dB 60 dB	0,20dB 1 40 dB 60 dB	0,20dB 1 40 dB 60 dB	0,20dB 1 40 dB 60 dB	0,20dB 40 dB 60 dB	-	-	-			\ <u>\</u>	∇	<15V _{pp}		02 V(,			a = (20 ± 0,2 dB) per step	a = attenuation	
∏ our	× × ×	x 0 dB 1 +10 V	x 0 dB 1 +10 V	x 0 dB 1 +10 V	0 dB 1 +10 V · · · · 0 dB 1 -10 V	0 dB 1 +10 V · · · · 0 dB 1 -10 V	0 dB 1 +10 V · · · · 0 dB 1 -10 V	1 +10 V	1 +10 V	+10 V -10 V	 	 	ΣΣ	<u>.</u> .		V(I			U = + (10 ± 1) V U = (10 ± 1) V		1
	×0,1	×							-						ő>	, DC)			$U_{HIGH} = + (4,5 \pm 0,5) \text{ V}$ $U_{LOW} = (0 \pm 0,2) \text{ V}$		

-																-								-				
1	525	I	1	I		1			-	693	737		****		779/783	741	1	-			533							
	See explanation according to seq. no. 20	If required, repeat adjusting 19. The adjusting frequency must be changed to e.g. 250 kHz \pm 0,5% when f(1) is out of tolerance and to e.g. 450 kHz \pm 0,5% when f(2) is out of tolerance.	Turn potentiometer DUTY CYCLE slowly over the whole range.	Time-interval measurement. To obtain symmetry of both measuring values reading control	measuring series, readjost control knob DUTY CYCLE on the potentiometer axis. theg = negative part period (T-t) t _{nos} = positive part period (t)	see Section 2.2.2.				Connect distorsion measuring bridge	KF and osc. If required, alternately adjust K to	optically well-adjust the sine-wave on the scope; optimalize the peaks.									Adjust to minimum	ΔA = Amplitude response reference value; amplitude at 1 kHz	-		a = attenuation			
f = (100 ± 1,5) kHz	f = 350 kHz ± 0,5 %	f(1) = (100 – 4) kHz f(2) = (1000 + 40) kHz	f = (10±1) kHz	$\frac{t_{\text{neg.}}}{t_{\text{pos.}}} = 10 \pm 2$	thos. = 10 ± 2	Check position 50 %	Af = - (5 + 0.5) %	f = (10 ± 0.3) kHz		k <2,5%			k (distance) > 34 dB		U < 30 mV	U < 30 mV	U _{eff} = (5,3 ± 0,265) mV	U _{eff} < 0,41 V	U _{pp} = (15 ± 1,125) V	U _{pp} = (15 ± 1,275) V	Մ Ղ ։ overshoot < 1,5 %	Ufo 1 ± 0,03 ≘ U1 kHz △A ≤ ± 3 %	Ufo = 1 ± 0,03 ≘ U1 kHz △A ≤ ± 3 %	ՍՂ, : Ringing < 1,5 %	a = (20 ± 0,2 dB) per step	U = + (10 ± 1) V	U = - (10 ± 1) V	$U_{HIGH} = + (4,5 \pm 0,5) V$ $U_{LOW} = (0 \pm 0,2) V$
OUTPUT	OUTPUT	ООТРОТ	OUTPUT	OUTPUT	OUTPUT	TIME	OUTPLIT	OUTPUT	OUTPUT	852/3-b3			OUTPUT		OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	Поит
<u>0</u>		U	O	C and Oşc.	C and Osc.	ن	0	O	C				¥		V(DC)	V(DC)	50 Ω V(AC)	50 Ω V(AC)	50 \\ \text{O} \\ \text{Osc.}	50 Ω Osc.	50 Ω Osc.	50 Ω V(AC)	50 Ω Osc.	50 Ω Osc.	50 \(\Omega\)	V(DC)	·V(DC)	Ο̈
-		·					-	+2,25 V	-2,25V																			Osc. V(DC)
			,							Min.			Max.			Max.	Мах.	Min.	Max.	Max.	≈2/3	Max.	Max.	Max.	<15Vpp	Min.	Min.	
-												,														+10 V	-10 V	
			10 %—	10 %	% 06													,				0	0					
10	3,5	- 0	10	. 10	0	0+5 % 10	05 % 10	5,5	5,5	2	·		10	t closed.	10	10	10	0.	10	10	10	1,210	1,210	8	-	_	1	-
	0	0	0	0	0		T	1	0					nstrumer			_					0	0		dB B	-		
0 dB	0 dB	0 dB	0 dB	8 0 dB	8 p 0	0 dB	0 dB	1		0 dB			0 dB	with the	0 dB	0 dB	0 dB	9 O dB	0 dB	0 dB	0 dB	0 dB	0 dB	0 dB	0,20dB 40 dB 60 dB	0 dB	0 dB	
×	×	×	×	×	×	×	×	×	×					rformed	1			,		×	×			×		×	×	×
_			:				-							ust be pe	1	_			×				×					
				-			-			×			×	The following measurements must be performed with the instrument closed	1	×	×	× ·				×			×	-		
-	1	ı		1	- 1	1	1	1		I	·		ŀ	g measur	ı	1	1	1	1	1	1	1	١.	ı	1	×	×	
<u>ح</u>	ا ا	Š.	×	×	×	1	+	1		1			0k -	followin	-	1	0	0	0	0	ا ب	ž.	- YC	1	1 -			
18 ×10k	19 ×100K	×1000 ×1000	21 ×1k	22 ×1k	23 ×1k	24 ×1k	+-	26 ×1k	27 ×1k	28 ×1 k			29 ×100k	The	-	-+		33 ×100	34 ×100		36 ×10k	7 ×100k	x x100k	×100k	x X	1 ×1 ×1	-	3 ×0,1
-	-		••	• •	1	10	100	100	Lea	. 4			(A)	- 1	is!	(7)	33	(r)	(2)	co	n	37	88	8	5	4	42	43

CHECKING AND ADJUSTING

- The tolerances mentioned in this chapter only apply for a newly adjusted instrument and can deviate from the value mentioned in chapter 1.2. TECHNICAL DATA.
- The instrument only must be adjusted after a warming-up of at least 30 minutes at an ambient temperature of + (23 ± 3) °C.
- If not indicated differently, the voltages given in this chapter are measured with respect to the signal earth ($\frac{1}{2}$).
- The following abbreviations are used for the various indications and measuring instruments:

= Push-button depressed

= Push-button released

V (DC) = d.c. voltmeter DVM (DC) = Digital voltmeter (d.c.) V (AC)

= a.c. voltmeter

= Oscilloscope-= Counter

= Distorsion measuring bridge = Distorsionmeter

 50Ω = Load resistor 50 Ω , 3 W

Max. = Maximum Min. = Minimum

Osc

С

KF

Κ

e.g. PHILIPS PM 2403

e.g. PHILIPS PM 2421 e.g. PHILIPS PM 2454B e.g. PHILIPS PM 3250

e.g. PHILIPS PM 6620 e.g. Boonton

e.g. H.P. type 334A

3.4. PARTS LIST

3.4.1. Mechanical

<i>Item</i>	Fig.	Quantity	Order number	Description
1	7	1	5322 447 94068	Top cover
2	7	1	5322 460 64002	Ornamental frame
3	7	2	5322 460 64003	Ornamental strip
4	7	. 1	5322 276 64015	Duty cycle, DC-Offset, Waveform (5 push-button switches, 852)
5	7	. 3	5322 414 34082	Control knob
6	7	3	5322 414 74014	Cap for control knob (item 5)
7	7	1	5322 276 44037	ATTENUATION (4 push-button switches, 853)
8	7	1	5322 447 94068	Bottom cover
9	7 .	3	5322 532 50824	Insulating ring
10	7	3	5322 267 10004	BNC-Socket
11	7	3	5322 532 54056	Insulating disk for mounting BNC-socket
12	7	1	5322 498 54032	Handle assembly
13	7	1	5322 276 74015	Range selector (7 push-button switches, 851)
14	7	1	5322 414 74047	Arrow
15	7	1	5322 455 74035	Text plate
16	7	1	5322 414 34075	Control knob
17	7	1	5322 414 74015	Cap for control knob (item 16)
18	7	1	5322 414 44046	Dial
19	7	1	5322 414 74025	Control knob
20	7	1	5322 414 74042	Cap for control knob (item 19)
21	7	1	5322 134 44112	Indication lamp POWER ON
22	7 .	1	5322 276 14198	Mains switch (854)
23	7	4	5322 462 44121	Foot
24	7	4	5322 492 64338	Spring for foot (item 23)

Fig. 7. Front view, mechanical components

Item	Fig.	Quantity	Order number	Description
25	8	1	5322 325 50101	Strain relief grommet
26	8	1	5322 321 14001	Mains cable
27	9	1	5322 520 34138	Bearing bush, left
28	9	2	5322 466 93308	Mounting support
29	9	1	5322 290 64124	Transistor connection board
30	9	2	4822 532 50928	Mica washer
31	9	2 .	5322 255 44069	Washer
32	9	2	5322 498 74003	Cap for handle
33	9	2	5322 535 74367	Spindle for handle
34	9	1	5322 520 34139	Bearing bush, right
35	9	1	4822 252 20001	Thermal fuse
36	9	1	5322 146 34055	Mains transformer
37	_	4	5322 255 40006	Washer for mounting transistors 303, 304, 363, 364
38	_	4	5322 255 44064	Heatsink for transistor 303, 304, 363, 364

Fig. 8. Rear view, mechanical components

Fig. 9. Bottom view, mechanical components

3.4.2. Electrical

3.4.2.1. Not on units

ITEM	ORDERING NUMBER	TYPE/DE	SCRIPTION		
Transistors			•		
301 302	5322 130 44357 5322 130 44415	BD262 BD263			
ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
Capacitors					
555	4822 120 41125	4+7N	10	400	POLYESTER
ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
Resistors					
615 624 636 750 761 807	5322 103 64018 5322 101 24064 4822 101 20296 4822 101 20297 4822 101 20299 4822 110 53161	5+0K 100 1+0K 2+2K 10K 100K	5	3W/40 CR37	WIRE=WOUND POTENTIOMETER CARBON POTM LIN CARBON POTM LIN CARBON POTM LIN CARBON POTM LIN CARBON

3.4.2.2. UNIT 1

ITEM	ORDERING	NUMBER	TYPE/DESCRIPTION
Transistors			
303	5322 130	40665	BD138
304	5322 130	40664	BD137
305+306	5322 130	44196	BC548C
307	4822 130	40937	BC548B
308=310	5322 130	44197	BC558B
311	4822 130	40937	BC548B
312	5322 130	40408	BFW11
313-315	5322 130		BCY79/1x
316=318	5322 130		BCY58X
319	5322 130	40408	BFW11
320	4822 130	40965	BC547
321,322	5322 130		BD137
323	5322 130	30188	BCY89
324	4822 130		BC548B
325-330	5322 130		8C558B
331+333	5322 130		BC548C
335+336	4822 130		BC548B
335 • 336	5322 130		BC558B
337	5322 130		BSX20
338	5322 130		BD137

ITEM	ORDERING NUMBER	TYPE/DESCR	IPTION		
339 340 341=343 344+345 346 347 348+349 350 351 352 353+354	4822 130 40959 5322 130 44196 5322 130 44197 4822 130 40937 5322 130 44197 4822 130 40937 5322 130 44197 4822 130 40937 4822 130 40959 5322 130 44197 4822 130 40937	BC547B BC548C BC558B BC558B BC558B BC558B BC558B BC558B BC5548B			
355 356 • 357 358 359 360 361 362 363 364	5322 130 44034 5322 130 40468 5322 130 44034 4822 130 40937 5322 130 44197 5322 130 44034 5322 130 40468 5322 130 40664 5322 130 40665	2N2219A 2N2905A 2N2219A BC548B BC558B 2N2219A 2N2905A BD137 BD138			
Integrated circ	suite				
381 382=385	5322 209 84715 5322 209 84342	SG4501N TBA221			
Diodes		•			
401,402 421=436 451,452 453,454 455,456 457 458 459 460,461 462=464 465	5322 130 30414 5322 130 34321 5322 130 34398 5322 130 30765 5322 130 30264 5322 130 34298 5322 130 30264 5322 130 34119 5322 130 34047 5322 130 34049 5322 130 30666	BY164 1N4151 BZX79=B24 BZX75=C3V6 BZX79=C4V7 BZX79=C4V7 BZX79=C8V2 BZX75=C1V4 BZX75=C2V1 BZX79=C7V5			
ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
Capacitors					
501.502 503.504 505.506 507.508 509.510 511 512.513 514 515.516 517.518 519 520 521 522 523 524 525	4822 121 40232 5322 124 24067 4822 124 20491 4822 122 30043 4822 122 30103 4822 122 30114 5322 124 10176 4822 122 31058 4822 122 31058 4822 122 30043 5322 121 54004 5322 121 54097 5322 121 54124 4822 122 31072 5322 121 54085 4822 122 31072 5322 125 50058	220N 1000MU 1+0MU 10N 10MU 22N 2+2N 2+7M 15P 10N 10MU 1+0MU 1+0MU 100N 10N 976P 47P 5+5=40P	20/+80 =20/+80 =20/+80 1 2 =20/+80 10 10 1	100 63 63 63 25 63 63 63 63 63 63 63 125 100 100	POLYESTER FOIL ELECTROLYTIC ELECTROLYTIC CERAMIC PLATE ELECTROLYTIC CERAMIC PLATE CERAMIC PLATE ELECTROLYTIC TANTALUM CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE POLYSTYRENE FOIL POLYSTYRENE FOIL POLYSTYRENE FOIL POLYSTYRENE FOIL POLYSTYRENE FOIL CERAMIC PLATE TRIMMER

ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
526	4822 122 30043	10N	*20/+80	63	CERAMIC PLATE
527	4822 122 30101	220P	2	100	CERAMIC PLATE
528	4822 122 30043	10N	-20/+80	63	CERAMIC PLATE
529	4822 122 31221	1.5N	10	100	CERAMIC PLATE
530	4822 122 31072	47P	. 2	100	CERAMIC PLATE
531	4822 122 31085	150P	Ž	63	CERAMIC PLATE
532	5322 125 50058	5+5=40P	_	iõo	TRIMMER
536+537	4822 122 30128	4,7N	10	100	CERAMIC PLATE
538	4822 121 40232	220N	žo	Īoo	POLYESTER FOIL
539	4822 122 30043	10N	=20/+80	63	CERAMIC PLATE
540	4822 122 31047	5+6P	0+25P	100	CERAMIC PLATE
541	4822 121 40232	220N	20	100	POLYESTER FOIL
542	4822 122 30043	10N	-20/+80	63	CERAMIC PLATE
543	4822 122 31125	4.7N	#20/+80	63	CERAMIC PLATE
544	4822 121 40232	220N	20	100	POLYESTER FOIL
545	4822 122 30043	10N	#20/+80	63	CERAMIC PLATE
546	4822 121 40232	220N	20	100	POLYESTER FOIL
547	4822 122 30043	10N	m20/+80	63	· · · · · · · · · · · · · · · · · · ·
548,549	4822 122 30103	22N	#20/+80		CERAMIC PLATE
550+551	4822 124 20475	10MU	# & U / * Q U	63	CERAMIC PLATE
552	4822 122 31076	68P	2	25 100	ELECTROLYTIC
553	4822 124 20475	10MU	2	100	CERAMIC PLATE
554	4822 124 20488	100MU		25	ELECTROLYTIC
556 • 557	4822 124 20475	10000		25	ELECTROLYTIC
558	5322 124 14066	1040		25	ELECTROLYTIC
559	4822 122 31072	47P	-	3	ELECTROLYTIC TANTALUM
560	4822 122 31085	150P	2	100	CERAMIC PLATE
561	5322 124 14069	6 • 8MU	2	63	CERAMIC PLATE
301		O F O C C		16	ELECTROLYTIC TANTALUM
ITEM	ORDERING NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
Resistors					
601+602	4822 110 60113	1+6K	5	CR25	CARBON
603+604	4822 110 63081	100	5	CR25	CARBON
605	5322 113 44157	1.6	10	0 . 5W	WIRE-WOUND
606	5322 113 44156	1,3	10	0,5W	WIRE-WOUND
607	4822 110 60184	750K	5	CR25	CARBON
608	4822 100 10088	220K	#F	- · · · · ·	CARBON TRIMMING POTM
609	4822 110 63156	68K	5	CR25	CARBON
610	4822 100 10079	47K	**	- · · · · · ·	CARBON TRIMMING POTM
611	4822 100 10038	470			CARBON TRIMMING POTM
612	5322 116 50509	4.87K	1	MR25	METAL FILM
613	5322 101 14069	25K	₩		CARBON TRIMMING POTM
614	4822 110 63072	47	5	CR25	CARBON
616-618	5322 116 50747	1 • OK	ī	MR25	METAL FILM
619+620	4822 100 10037	1,0K	•		CARBON TRIMMING POTM
621	5322 116 50555	1,27	1	MR25	METAL FILM
622	5322 116 54567	1.69	ī	MR25	METAL FILM
623	5322 116 54541	825	i	MR25	METAL FILM
625	5322 116 54482	133	i	MR 25	METAL FILM
626	4822 100 10038	470	•	ा करू की व	CARBON TRIMMING POTM
627=628	5322 116 50747	1+0K	1	MR25	METAL FILM
629	4822 110 63116	2+2K	5	CR25	CARBON
630	5322 116 54131	48.7K	í	MR24	METAL FILM
631	5322 116 54768	4.87K	•	.,	METAL FILM
632	4822 110 63116	2 , 2K	5	CR25	CARBON
633,634	5322 116 50747	1 • OK	ī	MR24	METAL FILM
635	5322 116 54835	511	ī	MR24	METAL FILM
637	4822 110 60082	110	5	CR 25	CARBON
			•	E - 1 FT E -	where the second of the second

ITEM	ORDERING NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
638	5322 116 54835	511	1	MR24	METAL FILM
640	4822 110 60082	110	5	CR25	CARBON
641+642	5322 116 51034	442	1	MR 24	METAL FILM
643.644	5322 116 54541	825	1	MR25	METAL FILM
645	5322 116 50572	12.1K	ī	MR25	METAL FILM
646+647	4822 100 10035	10K			CARBON TRIMMING POTM
648.649	5322 116 50747	Ī+OK	1	MR25	METAL FILM
	5322 116 54587	3+65K	ĺ	MR25	METAL FILM
650 • 653	5322 116 54545	909		MR25	METAL FILM
654	4822 110 63074	56	1 5	CR25	CARBON
655,656	5322 116 50842	1,1K	ī	MR25	METAL FILM
657 659	5322 116 54529	619	ī	MR25	METAL FILM
658 450	4822 110 63081	100	5	CR25	CARBON
659	4822 110 63136	1 2 K	5	CR25	CARBON
660	4822 110 60119	3 • OK	5	CR25	CARBON
661	5322 116 54469	100	í	MR 25	METAL FILM
662		511		MR24	METAL FILM
663	5322 116 54835	442	1	MR24	METAL FILM
664	5322 116 51034	2+49	1	MR25	METAL FILM
665	5322 116 50581		1	MR 25	METAL FILM
666,667	5322 116 54536	750	i e	CR25	CARBON
668 6669	4822 110 60131	7+5K	5	MR25	METAL FILM
670	5322 116 50664	2+05	5	CR25	CARBON
671	4822 110 60131	7,5K	2	MR24	METAL FILM
672	5322 116 51065	133	.	MR24	METAL FILM
673	5322 116 54997	53.6	<u> </u>	MR25	METAL FILM
674	5322 116 50492	46+4	Ţ	MR 25	METAL FILM
675	5322 116 50581	2 • 49K	<u>.</u>	CR25	CARBON
676	4822 110 63118	2.7K	5	MR24	METAL FILM
677	5322 116 50344	267	1	MR24	METAL FILM
678	5322 116 54405	750	1		CARBON TRIMMING POTM
679	5322 100 10125	10K	بنو	CR25	CARBON
680	4822 110 60119	3+0K	5	MR24	METAL FILM
681.682	5322 116 50175	649	1	PKCM	CARBON TRIMMING POTM
683	4822 100 10075	100		0027	METAL FILM
684	5322 116 54955	91	5	PR37 CR25	CARBON
685	4822 110 63112	1 • 5K	5		CARBON
686	4822 110 53096	390	5	CR37	METAL FILM
687	5322 116 50669	205	Į.	MR 25	
688	5322 116 50491	22+6	1	MR 25	METAL FILM CARBON
689	4822 110 60088	200	5	CR 25	
690	5322 116 54958	430	5	PR52	METAL FILM
691	5322 116 50452	20	1	MR25	METAL FILM
692	5322 116 54627	13.3K	1	MR25	METAL FILM
693	4822 100 10036	417			CARBON TRIMMING POTM
694	5322 116 50675	2,26K	1	MR25	METAL FILM
695	5322 116 54536	750	ĩ	MR25	METAL FILM
696	5322 116 54617	9+53K	ī	MR25	METAL FILM
697	5322 116 54005	3,32K	ī	MR25	METAL FILM
698	4822 100 10038	470	•		CARBON TRIMMING POTM
699	5322 116 54005	3+32K	1	MR 25	METAL FILM
700	5322 116 54617	9,53K	ī	MR 25	METAL FILM
701	5322 116 54536	750	i	MR25	METAL FILM
	5322 116 50491	22.6	i i	MR25	METAL FILM
702	5322 116 50678	20.5	i	MR25	METAL FILM
703	5322 116 50493	27,4	i	MR25	METAL FILM
704	5322 116 50409	36.5	i	MR25	METAL FILM
705	5322 116 50511	48.7	i	MR 25	METAL FILM
706	#### 11# #W### #299 11# #####	68,1	i	MR25	METAL FILM
707	5322 116 54455	64,9	i	MR25	METAL FILM
708 709	5322 116 54453 5322 116 50491	22+6	i	MR25	METAL FILM
	9922 IIO 30971	£ £ 7 ¥		MR25	METAL FILM

ITEM	ORDERING NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
711	5322 116 50493	27+4	1	MR25	METAL FILM
712	5322 116 50409	36.5	Ĭ.	MR 25	METAL FILM
713	5322 116 50511	48.7	ì	MR25	METAL FILM
714	5322 116 54455	68.1	ì	MR25	METAL FILM
715	5322 116 54453	64.9	1	MR25	METAL FILM
716	5322 116 54496	200	. 1	MR 25	METAL FILM
717	5322 116 50592	442	1	MR25	METAL FILM
718	5322 116 54541	825	1	MR25	METAL FILM
719	5322 116 50779	1+33K	1	MR25	METAL FILM
720	5322 116 50675	2126K	1	MR 25	METAL FILM
721	5322 116 54005	3.32K	1	MR25	METAL FILM
722	5322 116 54648	24.9K	1	MR 25	METAL FILM
723	5322 116 50926	40.2	1	MR 25	METAL FILM
724	5322 116 50926	40+2	1	MR 25	METAL FILM
725.726	5322 116 54648	24.9K	1	MR25	METAL FILM
727	5322 116 54592	4 • 02K	1	MR25	METAL FILM
728	5322 116 50572	12.1K	1	MR 25	METAL FILM
729	5322 116 54592	4 • 0 2 K	1	MR25	METAL FILM
730	5322 116 50572	12.1K	1	MR25	METAL FILM
731 • 732	5322 116 50581	2+49K	1	MR 25	METAL FILM
733.734	5322 116 50664	2 • 05K	1	MR 25	METAL FILM
735	5322 116 54516	365	1	MR25	METAL FILM
736	5322 116 54442	51.1	1	MR 25	METAL FILM
737	4822 100 10019	220	_	14m 75	CARBON TRIMMING POTM
738 • 739	5322 116 50524	3.01K	1	MR 25	METAL FILM
740	5322 116 54567	1,69K	1	MR25	METAL FILM
741	4822 100 10035	10K		MBSE	CARBON TRIMMING POTM METAL FILM
742	5322 116 50451	21.5K	Ť	MR25	METAL FILM
743	5322 116 54678	59K		MR25 MR25	METAL FILM
744	5322 116 50451	21.5K	1	MR 25	METAL FILM
745	5322 116 54012	6+81K	<u> </u>	MR25	METAL FILM
746	5322 116 50581	2,49	į	MR 25	METAL FILM
747	5322 116 54562	1 + 4K	<u> </u>	MR 25	METAL FILM
748	5322 116 50592	442 2-36K		MR 25	METAL FILM
749	5322 116 50675 5322 116 50766	2•26K 150	<u>.</u>	MR 25	METAL FILM
751 753	4822 110 63161	iãok	5	CR25	CARBON
752	4822 110 60111	1+3K	5 5	CR25	CARBON
753+754	4822 110 63085	150	5	CR25	CARBON
755+756 757	5322 116 50747	1.ok	ĺ	MR25	METAL FILM
758+759	5322 116 54545	909	i	MR 25	METAL FILM
760	5322 116 50415	1+15K	i	MR25	METAL FILM
762	5322 116 54519	402	i	MR 25	METAL FILM
763	5322 116 54011	5+62K	i	MR25	METAL FILM
764	5322 116 50728	1 • 87K	i	MR25	METAL FILM
765 766	4822 110 60126	5,1K	5	CR25	CARBON
767.768	5322 116 50818	44.2	ī	MR25	METAL FILM
770	5322 116 54451	61.9	i	MR25	METAL FILM
771	5322 116 54571	1.96K	ĩ	MR25	METAL FILM
772.773	4822 110 63063	22	5	CR25	CARBON
774-777	5322 116 54536	750	ī	MR 25	METAL FILM
778	5322 116 54608	7+5K	ī	MR25	METAL FILM
779	4822 100 10075	100	•	11000	CARBON TRIMMING POTM
780	5322 116 54592	4+02K	1	MR25	METAL FILM
	5322 116 54613	8 • 66K	i	MR25	METAL FILM
781	5322 116 50583	5,9K	i	MR 25	METAL FILM
782	4822 110 63054	10	5	CR25	CARBON
784 785-784	4822 110 63072	47	5 5	CR25	CARBON
785.786 787	4822 110 63054	10	5	CR25	CARBON
788 • 789	4822 112 21061	18	ĩo	WRO61E	WIRE-WOUND
1001107	ACEC TIE ETOOT	* ~	* ~	7 1 1 T W W W	ंकारास्य सरकाञ्चर रेल्य

ITEM	ORDERING NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
790=793	5322 116 50838	11.5	1	MR25	METAL FILM
794	5322 116 54956	24	5	PR52	METAL FILM
808	5322 116 50557	46.4K	1	MR 25	METAL FILM
809	4822 110 53107	1 . OK	5	CR37	CARBON
810	4822 116 51152	27	5	PR52	METAL FILM
811	5322 116 54012	6.81K	ī	MR 25	METAL FILM
812	5322 116 50636	2.74K	ī	MR25	METAL FILM
813	5322 116 50779	1,33K	ī	MR25	METAL FILM
ITEM	ORDERING NUMBER	TYPE/DE	SCRIPTION		
Coils					
820	5322 158 14004		15MUH		

3.4.2.3. UNIT 2

ITEM	ORDERING NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
Resistors					
					CARBON TRIMMING POTM
795	5322 116 54544	887	1	MR25	METAL FILM
796	5322 116 54545	909	ì	MR25	METAL FILM
797	5322 116 54446	56.2	ī	MR25	METAL FILM
798	4822 110 63125	4 , 7K	5	CR25	CARBON
799	5322 116 50536	464	ï	MR25	METAL FILM
800	4822 110 63138	15K	5	CR25	CARBON
801	5322 116 54446	56+2	1	MR25	METAL FILM
802	4822 110 63125	4 + 7K	5	CR25	CARBON
803	5322 116 50536	464	ì	MR25	METAL FILM
804	4822 110 63138	15K	5	CR25	CARBON
805	5322 116 54446	56.2	ì	MR25	METAL FILM
806	4822 110 63125	4 . 7 K	5	CR25	CARBON

Fig. 10. Printed-wiring board U1

Fig. 11. Printed-wiring board U2

Fig. 12. Overall circuit diagram PM 5127

QUALITY REPORTING

CODING SYSTEM FOR FAILURE DESCRIPTION

The following information is meant for Philips service workshops only and serves as a guide for exact reporting of service repairs and maintenance routines on the workshop charts.

For full details reference is made to Information G1 (Introduction) and Information Cd 689 (Specific information for Test and Measuring Instruments).

LOCATION

Unit number

e.g. 000A or 0001 (for unit A or 1; not 00UA or 00U1)

or: Type number of an accessory (only if delivered with the equipment)

e.g. 9051 or 9532 (for PM 9051 or PM 9532)

or: Unknown/Not applicable 0000

CATEGORY

- Unknown, not applicable (fault not present, intermittent or disappeared)
- 1 Software error
- 2 Readjustment
- 3 Electrical repair (wiring, solder joint, etc.)
- 4 Mechanical repair (polishing, filing, remachining, etc.)
- 5 Replacement
- 6 Cleaning and/or lubrication
- 7 Operator error
- 8 Missing items (on pre-sale test)
- 9 Environmental requirements are not met

COMPONENT/SEQUENCE NUMBER

ППП

Enter the identification as used in the circuit diagram, e.g.:

GR1003 Diode GR1003
TS0023 Transistor TS23
IC0101 Integrated circuit IC101
R0.... Resistor, potentiometer

CO.... Capacitor, variable capacitor BO.... Tube, valve

LA... Lamp
VL.... Fuse
SK.... Switch

BU.... Connector, socket, terminal

T0.... Transformer L0.... Coil

X0.... Crystal
CB.... Circuit block

RE.... Relay BA.... Battery

Chopper

TR....

Parts not identified in the circuit diagram:

990000 Unknown/Not applicable
990001 Cabinet or rack (text plate, emblem, grip, rail, graticule, etc.)
990002 Knob (incl. dial knob, cap, etc.)
990003 Probe (only if attached to instrument)
990004 Leads and associated plugs

990004 Leads and associated plugs
 990005 Holder (valve, transistor, fuse, board, etc.)
 990006 Complete unit (p.w. board, h.t. unit, etc.)
 990007 Accessory (only those without type number)

990008 Documentation (manual, supplement, etc.)
990009 Foreign object

990009 Foreign object 990099 Miscellaneous

Sales and service all over the world

Alger: Sadetel; 41 Rue des Frères Mouloud Alger; tel. 656613–656607

Argentina: Philips Argentina S.A., Cassila Correo 3479, Buenos Aires; tel. T.E. 70, 7741 al 7749

Australia: Philips Electrical Pty Ltd., Philips House, 69-79 Clarence Street, Box 2703 G.P.O., Sydney; tel. 2.0223

België/Belgique: M.B.L.E, Philips Bedrijfsapparatuur, 80 Rue des Deux Gares, Bruxelles; tel. 02/13.76.00

Bolivia: Industrias Bolivianas Philips S.A. LA Jón postal 2964 La Paz tel. 50029

Brasil: S.A. Philips Do Brasil; Avenida Paulista 2163; P.O. Box 8681; Sao Paulo S.P.; tel 81–2161.

Burundi: Philips S.A.R.L., Avenue de Grèce, B.P. 900, Bujumbura

Canada: Philips Electronic Industries Ltd., Scientific and Electronic Equipment Division, Philips House, 116 Vanderhoof Avenue, Toronto 17 M 4G 2 Jl. tel. (416)-425-5161.

Chile: Philips Chiléna S.A., Casilla 2687, Santiago de Chile; tel. 94001

Colombia: Industrias Philips de Colombia S.A., Calle 13 no. 51-03, Apartado Nacional 1505, Bogota; tel. 473640

Costa Rica: Philips de Costa Rica Ltd., Apartado Postal 4325, San José; tel. 210111

Danmark: Philips Elektronik Systemer A/S Afd. Industri & Forskning; Strandlodsvej 4 2300-København S; Tel (0127) AS 2222; telex 27045

Deutschland (Bundesrepublik): Philips Elektronik Industrie GmbH, 2000 Hamburg 73, Meiendorferstraße 205; Postfach 730 370; tel. 6797-1

Ecuador: Philips Ecuador S.A., Casilla 343, Quito; tel. 239080

Egypt: Ph. Scientific Bureau 5 Sherif Str. Cairo – A.R. Egypt P.O. Box 1807; tel. 78457-57739

Eire: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel. 976611

El Salvador: Philips de El Salvador, Apartado Postal 865, San Salvador; tel. 217441

España: Philips Ibérica S.A.E., Avenida de America, Apartado 2065, Madrid 17; tel 2462200

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), P.O.B. 2565; Cunningham Street, Addis Abeba: tel. 48300

Finland: Oy Philips Ab, Postboks 10255, Helsinki 10; tel. 10915

France: Philips Industrie, Division de la S.A. Philips Industrielle et Commerciale 105 Rue de Paris, 93 002 Bobigny; tel. 830-11-11

Ghana: Philips (Ghana) Ltd., P.O.B. M 14, Accra; tel. 66019

Great Britain: Pye Unicam Ltd., York Street, Cambridge; tel. (0223) 58866

Guatemala: Philips de Guatemala S.A., Apartado Postal 238, Guatemala City; tel. 64857 Hellas: Philips S.A. Hellénique, 54, Ave Syngrou, Athens; tel 230476, P.O. Box 153

Honduras: Hasbun de Honduras Apartado Postal 83, Tegucigalpa; tel. 2-9121...5

Hong kong: Philips Hong Kong Ltd., P.O.B. 2108, St. George's Building, 21st floor, Hong Kong; tel. 5-249246

India: Philips India Ltd., Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 18; tel. 370071

Indonesia: P. T. Philips Development Corporation, Jalan Proklamasi 33, P.O.B. 2287, Jakarta; tel. 51985-51986

Iran: Philips Iran Ltd., P.O.B. 1297, Teheran; tel. 662281

Iraq: Philips Iraq W.L.L. Munir Abbas Building 4th Floor; South Gate. P.O. box 5749 Baghdad; tel. 80409

Island: Heimilistaeki SF, Saetún 8, Reykjavík; tel. 24000

Islas Canarias: Philips Ibérica S.A.E., Triana 132, Las Palmas; Casilla 39-41, Santa Cruz de Tenerife

Italia: Philips S.p.A., Sezione PIT; Viale Elvezia 2, 20052 Monza; tel. (039) 361-441; telex 35290

Kenya: Philips (Kenya) Ltd., P.O.B. 30554, Nairobi; tel. 29981

Malaysia: Philips Malaya Sdn Bhd. P.O. Box 332, Kuala Lumpur;/Selangor W. Malaysia; tel. 774411

Mexico: Philips Comercial S.A. de C.V., Uruapan 7, Apdo 24-328, Mexico 7 D.F.; tel. 25-15-40

Nederland: Philips Nederland B.V., Boschdijk, Gebouw VB, Eindhoven; tel. 793333

Ned. Antillen: N.V. Philips Antillana, Postbus 523, Willemstad; tel. Curação 36222-35464

New Zealand: Philips Electronical Industries (N.Z.) Ltd., Professional and Industrial Division, 70-72 Kingsford Smith Street, P.O.B. 2097, Lyall Bay, Wellington; tel. 73-156

Nigeria: Philips (Nigeria) Ltd., 6 Ijora Causeway, P.O.B. 1921, Lagos; tel. 45414/7

Nippon: Nihon Philips Corporation, P.O.B. 13, World Trade Center, 32nd Floor, Tokyo 105; tel. (03) 435-5211

Norge: Norsk A.S. Philips, Postboks 5040, Oslo; tel. 463890

Österreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Triesterstrasse 64, A-1101 Wien; tel. (0222) 645511/

Pakistan: Philips Electrical Co. of Pakistan Ltd., El-Markaz, M.A. Jinnah Road, P.O.B. 7101, Karachi; tel. 70071

Paraguay: Philips del Paraguay S.A., Casilla de Correo 605, Asuncion; tel. 8045-5536-6666

Perú: Philips Peruana S.A., Apartado Postal 1841, Lima; tel. 326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo P.O.B. 911, Makati

Rizal D-708; tel. 889453 to 889456

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duarte Pacheco, 6 – Lisboa – 1

Rwanda: Philips Rwanda S.A.R.L., B.P. 449, Kigali

Saoudi Arabia: A. Rajab and A. Silsilah P.O. box 203 Jeddah - Saudi Arabia; tel. 5113-5114

Schweiz-Suisse-Svizzera: Philips A.G., Binzstrasse 15, Postfach 8027, Zürich; tel. 051-442211

Singapore: Philips Singapore Private Ltd. P.O. Box 340; Toa Payoh Central Post Office; Singapore 12; tel. 538811

South Africa: South African Philips (Pty) Ltd., P.O.B. 7703, 2, Herb Street, New Doornfontein, Johannesburg; tel. 24-0531

Sverige: Svenska A.B. Philips, Fack, Lidingövägen_50, Stockholm 27: tel. 08/635000

Syria: Philips Moyen-Orient S.A. Rue Fardoss 79 Immeuble Kassas and Sadate B.P. 2442 Damas; tel. 18605-21650

Taiwan: Yung Kang Trading Co. Ltd., San Min Building, Gnd Floor, 57-1 Chung Shan N Road, 2 Section, P.O.B. 1467, Taipei; tel. 577281

Tanzania: Philips (Tanzania) Ltd., Box 20104, Dar es Salaam; tel. 29571

Thailand: Philips Thailand Ltd., 283, Silom Road, Bangkok; tel. 36980, 36984-9

Turkey: Türk Philips Ticaret A.S., Posta Kutusu 504, Beyoglu; Gümüssüyü Caddesl 78/80 Istanbul 1 Turkye

Uganda: Philips Uganda Ltd. p.o. Box 5300 Kampala; tel. 59039

Uruguay: Industrias Philips del Uruguay, Avda Uruguay 1287, Montevideo; tel 915641 Casilla de Correo 294

U.S.A.: Philips Test and Measuring Instruments Inc.; 400 Crossways Park Drive, Woodbury, N.Y. 11797; tel. (516) 921-8880

Venezuela: C.A. Philips Venezolana, Apartado Postal 1167, Caracas; tel. 360511

Zaire: Philips S.Z.R.L., B.P. 1798, Kinshasa; tel. 31887-31888-31693

Zambia: Philips Electrical Ltd., Professional Equipment Division, P.O.B. 553 Kitwe; tel. 2526/7/8; Lusaka P.O. Box 1878

750101

For information on change of address:

N.V. Philips

Test and Measuring Instruments Dept. Eindhoven - The Netherlands

For countries not listed:

N.V. Philips PIT Export Dept. Test and Measuring Instruments Dept. Eindhoven - The Netherlands