

SenseWalk 2.0

Group 23

Ross Applegate - Electrical Engineer Chad Borgelin - Computer Engineer Benoit Brummer - Computer Engineer Diego Merida - Computer Engineer

Project Goals and Objectives

- Create a device which helps the visually impaired navigate life
 - Warn user of obstacles ahead of time
 - Provide navigation assistance
 - Audio input/output
- This project was inspired by Sensewalk. Improvements include:
 - Faster response time
 - Lighter weight
 - Improved battery life
 - Greater precision

Design Constraints

- Economic and Time Constraints
 - Printed circuit board manufacture takes three weeks
 - Any design mistake results in failure
 - Hand assembly of extremely small (0.5mm pitch)components by inexperienced students
 - Any excessive shaking results in failure
 - Professional assembly is costly (used for some components of SenseWalk 2)
- Firmware update may result in a bricked device
- Everything was learned on the spot

Block Diagram - 1st Design

Block Diagram - 2nd Design

Block Diagram - Current Design

Bluetooth

Name	Bluetooth Classic	Bluetooth 4.0 Low Energy (BLE)	WiFi
IEEE Standard	802.15.1	802.15.1	802.11 (a, b, g, n)
Frequency (GHz)	2.4	2.4	2.4 and 5
Maximum raw bit rate (Mbps)	1-3	1	11 (b), 54 (g), 600 (n)
Typical data throughput (Mbps)	0.7-2.1	0.27	7 (b), 25(g), 150 (n)
Maximum (Outdoor) Range (Meters)	10 (class 2), 100 (class 1)	50	100-250
Relative Power Consumption	Medium	Very low	High
Example Battery Life	Days	Months to years	Hours
Network Size	7	Undefined	255

Audio Output

- Audio Codec:
 - Easy design
 - Handles MPEG Audio Files

- Bluetooth to Headphone
 - User has freedom to choose a headphone or speaker device that best fits them.

STA013 MPEG 2.5 LAYER III AUDIO DECODER

Microchip RN52

<u>FEATURES</u>	
Update Rate	5Hz -10 Hz
Channels	66 (22 tracking)
Power Consumption	3.3 V @ 41 mA
LED Indicator	Fix or no Fix
	Hot Start 1s,Cold Start 32
Acquisition Time	S
Max altitude	5000 m
Embedded Antenna	
	Preserve the system data
	for rapid satellite
	acquisition
Built-in micro battery	
Velocity	515 m/s
Price	\$59.99

Locosys LS20031

PIN ASSIGNMENT

<u>PIN#</u>	NAME	DESCRIPTION
1	VCC	Power Input
2	RX	Data Input
3	TX	Data Output
4	GND	Ground
5	GND	Ground

\$GPGGA,053740.000,2503.6319,N,12136.0099,E,

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 5.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W indicator	Е		E=east or W=west
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Mode	A		A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position, S=Simulator

GPS DATA RECEIVED

Data no Valid

```
$GPGGA,000147.599,...,0,0 M,,M,,*4F
$GPGLL....000147.599.V.N*7D
$GPGSA,A,1,....*1E
$GPGSV.1.1.00*79
$GPRMC.000147.599,V,...,0.00,0.00,060180,,,N*45
$GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32
$GPGGA,000147.799,...,0,0,.,M,,M,,*4D
$GPGLL,,,,000147.799,V,N*7F
$GPGSA,A,1....*1E
$GPGSV.1.1.00*79
$GPRMC,000147.799,V,...,0.00,0.00,060180,..N*47
$GPVTG.0.00.T..M.0.00.N.0.00.K.N*32
$GPGGA,000148.000,...,0,0,,,M,,M,,*45
$GPGLL...,000148.000,V,N*77
$GPGSA,A.1....*1E
$GPGSV.1.1.00*79
$GPRMC,000148.000,V,...,0.00,0.00,060180,..N*4F
$GPVTG.0.00.T..M.0.00.N.0.00.K.N*32
$GPGGA,000148.200,...,0,0,,,M,,M,,*47
$GPGLL....000148.200, V, N*75
$GPGSA,A,1,....*1E
$GPGSV.1.1.00*79
$GPRMC,000148.200,V,...,0.00,0.00,060180,..N*4D
$GPVTG.0.00.T..M.0.00.N.0.00.K.N*32
$GPGGA,000148.400,....0,0,...M.,M.,*41
$GPGH 000148 400 V N*73
```

- -Routes will pre-set as shown in the figure
- -Routes will be given a specific name, for example "route one". "School", "restaurant one"
- -User will be able to request which route to go through verbal commands since device will be able to receive and output audio since a microphone and a headset will be incorporated.
- -Once the request is processed, the gps will read the user position and a voice command will tell the user how to get to the next coordinate
- For example: go left, once user gets to the specific coordinate, a new voice command will be given to the user, "go right" and so on until the user gets to the final destination.

Magnetometer

A magnetometer is used to provide the user with a compass functionality, and to assist the GPS in directing the user.

We chose the Melexis **MLX90393** Triaxis Magnetometer, which measures the magnetic field magnetic field in the X, Y, and Z direction using the Hall Effect. It returns three μT (micro Tesla) values.

Hardware: The MLX90393 comes in a 16-pads QFN package. (0.5mm pitch)

Interface: SPI with precise timing requirements

Software: Remember each axis' min and max value for calibration

Fun fact: The MLX90393 is made in Belgium

CPU vs MCU

CPU > MCU

of components

Software libraries

SLOW mmmmi

TI MSP43X, ATmel ATMega 16 MHz - 40 MHz (too slow)

Choice of MCU

ARM Cortex-M7 Up to 300 MHz

Freescale Kinetis: \$160 development board \$200 programmer/debugger **STMicroelectronics STM32 F7:** \$50 development board

\$20 programmer/debugger

life.augmente

STM32F7-Disco board: \$49

ARM Cortex-M7, SD port

STM32L4-Nucleo board: \$10.99

ARM Cortex-M4, ultra-low power

ST-Link/V2 programmer/debugger: \$20.82

Serial-wire (2-wires), OpenOCD (\$3.21 on eBay)

STM32F746

LQFP100,144,... 216MHz 320KB RAM 1MB Flash

STM32L476

LQFP64 512KB-1MB Flash 80MHz 128KB RAM

and

ARM mbed

STM32L4

Sensewalk 9000 schematic

Sensewalk 9000 PCB layout

Microcontroller

STMicroelectronics STM32L476

Programming/debugging headers

MicroSD card

Molex 5033981892

Power subsystem

Lithium-ion rechargeable battery

18650 form-factor, user-replaceable
3.3V DC-DC switching regulator

Diodes Inc. PAM2301

5V DC-DC switching regulator

Skyworks AAT1217

Battery management (USB charger)

Microchip MCP73811

Laser / mount

LightWare SF10-A

Audio decoder

STMicroelectronics STA013

Software/hardware audio decoder switch

Bluetooth 3.0 module

Microchip RN52

GPS module

Locosys LS20031

Microphone (MEMS)
——— STMicroelectronics ADMP401

Push buttons

Sensewalk 2 schematic | The content of the

Sensewalk 2 PCB layout

Solar cell and DC-DC charger BQ25504 Battery management evaluation board. solar cell charges at .45W and the DC-DC charger BQ24123 supports the charge of 3.7 volts.

Charging management

Battery charger schematic

Videos

https://youtu.be/BOnTJOjk9Rg

https://youtu.be/O5-MO2XVdNk

https://youtu.be/qOPLyxzlnzM

https://youtu.be/VR2hmE7ErHA

Expenses

	Benoit	Chad	Diego	Ross	Funding
Laser			DICEV	TC(AK	286.15
Lasei					280.13
Development boards	121.98		40		21.98
PCB	95.74			X	
Bluetooth BB					89.9
GPS			70.37		
Audio decoder					58.35
Memory (unused)					45.51
Batteries / chargers	36				
MEMS microphone/breakout (unused)					27.8
Image sensors (unused)	25.58				
Debugger / programmer	24.51	3.20			
MicroSD sockets	24.31	3.20			20.36
	17.75				40.47
•	17.73				45.64
	16.87				43.04
		28.47			37.96
	14.89				
	12.45				
	8.05				25.02
Vibrator	4.64				12
LEDs	1.86				
Misc				X	10.5
Total	413.28	31.67	110.37		758.76

Distribution of Workload

Ross Applegate	Chad Borgelin	Benoit Brummer	Diego Merida	
Power (Solar Panel & Lithium Battery integration)	luetooth audio output Hardware components selection, development environment selection		GPS	
Schematic Design (SW2)		Laser detection		
PCB Design (SW2)		Magnetometer		
		SD card / file system		
		Pinouts		
		Schematic design (SW9k)		
		PCB design (SW9k)		
		Boards bringup		
		Software integration		

Sponsors

