Problem Statement:

To predict and analyze which fuel giving high mileage.By using linear regres sion

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
#reading the dataset
df=pd.read_csv(r"C:\Users\raja\Downloads\used_cars_data.csv")
df
```

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owr
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	
7253 rows x 14 columns								

7253 rows × 14 columns

→

In [3]:

df=df[['Kilometers_Driven','Price']]

In [4]:

```
#Changing the column names
df.columns=['kilometers','price']
df
```

Out[4]:

	kilometers	price
0	72000	1.75
1	41000	12.50
2	46000	4.50
3	87000	6.00
4	40670	17.74
7248	89411	NaN
7249	59000	NaN
7250	28000	NaN
7251	52262	NaN
7252	72443	NaN

7253 rows × 2 columns

In [5]:

```
df.head()
```

Out[5]:

	kilometers	price
0	72000	1.75
1	41000	12.50
2	46000	4.50
3	87000	6.00
4	40670	17.74

In [6]:

df.describe()

Out[6]:

	kilometers	price
count	7.253000e+03	6019.000000
mean	5.869906e+04	9.479468
std	8.442772e+04	11.187917
min	1.710000e+02	0.440000
25%	3.400000e+04	3.500000
50%	5.341600e+04	5.640000
75%	7.300000e+04	9.950000
max	6.500000e+06	160.000000

In [7]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 kilometers 7253 non-null int64
1 price 6019 non-null float64
```

dtypes: float64(1), int64(1)

memory usage: 113.5 KB

In [8]:

```
df.isna().any()
```

Out[8]:

kilometers False price True

dtype: bool

In [9]:

```
sns.lmplot(x="kilometers",y="price",data=df,order=1,ci=None)
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x1e2ff599db0>

In [10]:

```
df.fillna(method='ffill',inplace=True)
```

C:\Users\raja\AppData\Local\Temp\ipykernel_24304\1148763211.py:1: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

In [12]:

```
x = np.array(df['kilometers']).reshape(-1,1)
y = np.array(df['price']).reshape(-1,1)
```

In [13]:

```
df.dropna(inplace=True)
```

C:\Users\raja\AppData\Local\Temp\ipykernel_24304\1379821321.py:1: SettingW ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [14]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
regr = LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

-0.0025098947898587465

In [15]:

sns.pairplot(df)

Out[15]:

<seaborn.axisgrid.PairGrid at 0x1e284da3520>

