Variable aleatoria bidimensional

• Se llama variable aleatoria bidimensional (X, Y) a toda aplicación

$$(X, Y): \Omega \longrightarrow \mathbb{R}^2$$

- Correlación
- Discretas y continuas
- Continuas: intervalos → superficies
- Ejemplo: longitud y peso de los peces de una especie.

$$(X, Y) = \{(3'1, 28), (2'5, 19'9), (4'86, 37'222), ...\}$$

• <u>Ejemplo</u>: lanzar dos dados, siendo Xel nº del primero e Y la suma de ambos resultados.

$$(X, Y) = \{(1, 7), (5, 7), (2, 4), ...\}$$

Tema 3. Variables Aleatorias

Grado en Ingeniería Informática

Dpto. de Ciencia de la Computación e Inteligencia Artificial

V.A. bidimensional discreta: fc conjunta

Dada una v.a. bidimensional **discreta**, con todos los posibles valores (x_i, y_i) que puede tomar, se llama función de cuantía conjunta a la función real de dos variables

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$f(x,y) = P(X = x, Y = y) = P(X = x \cap Y = y)$$

- Propiedades:
 - $0 \le f(x,y) \le 1, \forall (x,y) \in \mathbb{R}^2$
 - $\sum_{x_i} \sum_{x_i} f(x_i, y_i) = 1$, para todos los valores $X = \{x_i\}$, $Y = \{y_i\}$

Problema 3.9 (fc conjunta)

• En una biblioteca hay 8 libros de medicina, 6 de física, 5 de química y 1 de biología. Se cogen dos libros al azar, tomando la v.a. $X = \{n^0 \text{ de libros de medicina}\}\$ e $Y = \{n^0 \text{ de libros de biología}\}\$. Hallar la función de cuantía conjunta.

V.A. bidimensional continua: fd conjunta

• Dos v.a. X e Y tienen una distribución **continua** conjunta si existe una función f(x,y) no negativa en \mathbb{R}^2 , tal que para cualquier recinto A del plano

$$P((X,Y) \in A) = \iint_A f(x,y) dxdy$$

- La probabilidad de tomar un valor discreto es cero, aun cuando una de las dos pertenezca a un intervalo.
- Se debe verificar:
 - $f(x,y) \ge 0$
 - $\bullet \iint_{\mathbb{R}^2} f(x, y) \, dx dy = 1$

Doble integración

• Con una v.a. continua integramos un **intervalo** y obtenemos un área (la probabilidad):

área (la probabilidad):

 Con una v.a. bidimensional continua integramos un área y obtenemos un volumen (la probabilidad):

Integrales dobles posibles

•
$$A = \{(x,y): a \le x \le b, c \le y \le d\}$$

$$\int_{a}^{b} \left[\int_{c}^{d} f(x,y) \, dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) \, dx \right] dy$$

•
$$A = \{(x,y): a \le x \le b, f_1(x) \le y \le f_2(x)\}$$

$$\int_a^b \left[\int_{f_1(x)}^{f_2(x)} f(x,y) \, dy \right] dx$$

•
$$A = \{(x,y): g_1(y) \le x \le g_2(y), c \le y \le d\}$$

$$\int_{c}^{d} \left[\int_{g_1(y)}^{g_2(y)} f(x,y) \, dx \right] dy$$

Problema 3.10 x e y entre constantes

Sea la *fd*:

$$f(x,y) = \begin{cases} xy, & (x,y) \in [0,2] \times [0,1] \\ 0, & resto \end{cases}$$

Calcular la probabilidad del área donde está definida.

Problema 3.11 y entre funciones

Sea la *fd*:

$$f(x,y) = \begin{cases} x + y, & (x,y) \in [0,1] \times [0,1] \\ 0, & resto \end{cases}$$

Calcular la probabilidad para $x + y \le 1$

Problema 3.12 x entre funciones

• Sea la *fd*:

$$f(x,y) = \begin{cases} kxy, & y^2 \le x \le y, 0 \le y \le 1 \\ 0, & resto \end{cases}$$

Calcular k.

Distr. conjunta discreta uniforme

- Una v.a. bidimensional **discreta** (X,Y) es **uniforme** si todos los pares (x_i, y_j) que puede tomar son equiprobables.
 - Si hay n pares (x_i, y_i) la probabilidad de cada uno será:

$$f(x_i, y_j) = P(X = x_i, Y = y_j) = \frac{1}{n}$$

Distr. conjunta continua uniforme

 Una v.a. bidimensional continua (X,Y) es uniforme si la fd conjunta es uniforme en el recinto A del plano donde está definida:

• La *fd* tendrá la forma:
$$f(x,y) = \begin{cases} k, & (x,y) \in A \\ 0, & (x,y) \notin A \end{cases}$$

La constante se halla:

$$\iint_{A} k \, dx dy = 1 = k \cdot \iint_{A} dx dy = k \cdot \operatorname{área}(A) \to k = \frac{1}{\operatorname{área}(A)}$$

· La prob. de un recinto será proporcional al área que ocupa:

$$\iint_{B} k \, dx dy = k \cdot \text{área}(B) = \frac{\text{área}(B)}{\text{área}(A)}$$

Tema 3. Variables Aleatorias Estadística
Grado en Ingeniería Informática

Problema 3.13 (distr. cjta. continua uniforme)

 Calcular la fd de una v.a. dada por las coordenadas de un punto aleatorio del primer cuadrante del círculo unidad.

Función de distribución conjunta

 Dada una v.a. bidimensional discreta o continua, se llama función de distribución conjunta (FD) a la función

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$F(x,y) = P(X \le x, Y \le y) = P(X \le x \cap Y \le y)$$

- Propiedades:
 - $0 \le F(x,y) \le 1, \forall x,y \in \mathbb{R}$
 - $F(-\infty, y) = P(X < -\infty, Y \le y) = 0$. $F(x, -\infty) = 0$.
 - $F(+\infty, +\infty) = P(X < +\infty, Y < +\infty) = 1$
 - $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ = $F(a_2, b_2) - F(a_1, b_2) - F(a_2, b_1) + F(a_1, b_1)$

Relación fc, fd ↔ FD

- Variable discreta
 - Función de **cuantía** vs Función de **distribución**

$$F(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$$

- Variable continua
 - Función de densidad vs Función de distribución

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) dt ds$$
$$f(x,y) = \frac{\partial^{2} F(x,y)}{\partial x \partial y}$$

Problema 3.14 (FD conjunta discreta)

 Dada la v.a. bidimensional discreta dada por la función de cuantía conjunta:

$oldsymbol{Y}$					
2	1/17	0	1/17	0	
1	3/17	5/17	0	1/17	
0	0	4/17	1/17	1/17	
f(x,y)	20	30	40	50	

Obtener F(30, 1)

Problema 3.15 (FD conjunta continua)

• Obtener la *FD* para la *fd*:

f(x,y) =	$\left\{\frac{3}{4}xy^2,\right.$	$(x,y) \in [0,1] \times [0,2]$
$Y \leq y$	0,	resto

<i>X</i> , <i>Y</i>	$F(x, y) = P(X \le x, Y \le y)$			
$x \le 0 \text{ ó } y \le 0$	0			
$0 \le x \le 1$ $0 \le y \le 2$	$\int_0^x \int_0^y \frac{3}{4} st^2 dt ds = \int_0^x \frac{3}{4} s \left[\frac{t^3}{3} \right]_0^y ds =$ $= \int_0^x s \frac{y^3}{4} ds = \frac{y^3}{4} \left[\frac{s^2}{2} \right]_0^x = \frac{x^2 y^3}{8}$			
$ \begin{array}{c} 1 \le x \\ 0 \le y \le 2 \end{array} $	$\int_0^1 \int_0^y \frac{3}{4} st^2 dt ds = \dots = \frac{y^3}{8}$			
$0 \le x \le 1$ $2 \le y$	$\int_0^x \int_0^2 \frac{3}{4} st^2 dt ds = \dots = x^2$			
$ \begin{array}{c} 1 \le x \\ 2 \le y \end{array} $	$\int_0^1 \int_0^2 \frac{3}{4} st^2 dt ds = \dots = 1$			

