Significant Figures Worksheet

Use the rules of significant figures and rounding to determine the number of significant figures for measurements to complete this worksheet. See pages 46-50 and the Math Tutor (pg. 21) in your book.

A.	For each of the following numbers, indicate how many significant figures there are. Then round each of them to
	the number of significant figures indicated.

	1.234 cm	has <u>4</u> significant figures and rounded to 2 significant figures is <u>1.2 cm</u>
1.	0.6034 g	has significant figures and rounded to 2 significant figures is
2.	12,700 L	has significant figures and rounded to 2 significant figures is
3.	12,7001.0 mg	has significant figures and rounded to 2 significant figures is
4.	0.0000983 g	has significant figures and rounded to 2 significant figures is
5.	200,800 km	has significant figures and rounded to 2 significant figures is
6.	10.0005 m	has significant figures and rounded to 2 significant figures is
7.	21.589 mL	has significant figures and rounded to 2 significant figures is
8.	$6.02 \times 10^{23} \text{ atoms}$	has significant figures and rounded to 2 significant figures is

B. The following number sequences represent calculations done on a calculator with the answer given as the calculator would show it. Write the answers with the appropriate number of significant figures for the measurements made.

	6.00 sec x 3.00 sec	=	18 sec^2	The answer should be 18.0 sec^2 .
1.	23.00°C + 46.00°C	=	69°C	The answer should be
2.	23.0 cm + 46.0 cm	=	69 cm	The answer should be
3.	253 m + 345.8 m	=	598.8 m	The answer should be
4.	56.0 L – 35.0 L	=	21 L	The answer should be
5.	56.00 g – 35.00 g	=	21 g	The answer should be
6.	16 mm x 12 mm	=	192 mm^2	The answer should be
7.	3.24 m x 5.63 m	=	18.2412 m ²	The answer should be
8.	3.20 g / 4.0 mL	=	0.8 g/mL	The answer should be
9.	8.12 g / 5.0 mL	=	1.624 g/mL	The answer should be
10.	59.0 cm x 5.01 cm	=	295.59 cm^2	The answer should be

Scientific Notation Worksheet

Many of the numbers that you will be working with in Chemistry will be very large or very small. It is easier to use **scientific notation** than to work with the large numbers involved. For example, 1,000,000,000 cm and 1 x 10⁹ cm mean the same thing, but the scientific notation, 1 x 10⁹ cm, is easier to use. YOU WILL NEED TO KNOW HOW TO USE YOUR CALCULATOR TO SOLVE THESE PROBLEMS.

Don't forget Units and Significant Figures!!!

I.	Write the following in scientific notation or, if the regular numbers.	y are in scientific notation, as
1.	56,000 L	
2.	0.00725 cg	
3.	555,000,000 g	
4.	0.000000625 mg	
5.	1.85 x 10 ⁵ kg	
6.	7.25 x 10 ⁻⁶ kg	
II.	Solve the problems, then express the answer in s	scientific notation.
7.	Add 3.00 x 10 ⁵ L and 5 x 10 ⁵ L	
8.	Add 4.50 x 10 ⁴ g and 3.0 x 10 ⁵ g	
9.	Subtract 2.5 x 10 ⁴ mL from 7.50 x 10 ⁵ mL	
10.	Subtract 3.0 x 10 ⁴ kg from 5.00 x 10 ⁵ kg	
11.	Multiply 8100 m by 7.50 x 10 ⁵ m	
12.	Multiply 2.50 x 10 ³ cm by 520 cm	
13.	Divide 9600 kg by 3.00 x 10 ⁻³ kL	
14.	Divide 1.6 x 10 ⁻⁵ g by 2.000 x 10 ⁻⁴ L	
15.	Divide 1.60 x 10 ⁵ m by 2.0 x 10 ⁻⁴ sec	