

Unicode

- Unicode was developed for international use → Because ASCII did not have enough characters
- Unicode uses 2¹⁶ characters (that's 65,000!)
- The first 256 (28) characters correspond to ASCII
- Not all of the codes have been used so UNICODE can be expanded

Numbers & the Machine

- We think in decimal (Base 10)
- Computers use Binary (Base 2) 0's & 1's
- We need to be able to convert from decimal to binary
- o Since Binary numbers get long fast...
 - Eg (10000001) = 129
 - It is easier for us to convert from binary to octal or hexadecimal equivalents
 - It is easier to convert to binary from oct and hex
 - $lue{}$ \rightarrow than from decimal to binary

The Decimal System

- Brought to us by the Hindus (400 A.D.)
- They Arabs picked up on it in (800 A.D.)
- And Europeans discovered it in (1200 A.D.)
- o It is a great system because
 - It is easy to deal with large quantities with relatively few symbols
 - It is easy to carry and borrow
 - The decimal systems makes use of 10 digits (0-9)
 - These symbols have a "place value" or "positional concept" which allow us to represent any whole number
 - The term digit (relates to fingers and toes) → we have 10 so this system makes sense to us

Positional concept

- Position MATTERS
 - 352 in decimal
 - = 300 + 50
 - $= 3 \times 10^2 + 5 \times 10^1 + 2 \times 10^0$
 - The position determines the power in which we raise the base
 - 10 = ten because we use base 10 ■ If we used base 2, 10 would = 2
- Base (AKA Radix)

Positional Notation

Rules for Positional Notation:

- 1. The number of distinct symbols equals the base (in base 10 they are 0,1,2,3,4,5,6,7,8,9)
- 2. The largest value represented by 1 symbol is one less than the base

(for base 10 this is 9)

3. Each value of a number is multiplied by the base raised to the appropriate power relative to its position

(e.g. $352=3 \times 10^2 + 5 \times 10^1 + 2 \times 10^0$)

4. The symbols 10 represents the base

(for base 10 this is ten)

	Decimal	Binary	Octal	Hexadecimal
	0	0	0	0
	1	1	1	1
	2	10	2	2
	3	11	3	3
	4	100	4	4
	5	101	5	5
	6	110	6	6
	7	111	7	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	A
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	E
	15	1111	17	F
	16	10000	20	10
(c) Michele Ro	usseau	Numbers in	the Machine	

-	

_			
-			
-			
_			
-			

	Sum of the Expansion of the Products
	• Works for any base
	Converting to base 10 (decimal)
	\circ 125 ₈ = 1 x 8 ² + 2 x 8 ¹ + 5 x 8 ⁰
	= 1 x 64 + 2 x 8 + 5 x 1 Anything raised to the 0th
	= 64 + 16 + 5 power = 1
	= 85 ₁₀
	\bullet AB ₁₆ = A x 16 ¹ + B x 16 ⁰
	=10 x 16 + 11 x 1
	= 160 + 11
(c) Micho	= 171 ₁₀

```
Exercises
Convert to decimal using the sum of the expansion of products
• 11011112

• 163<sub>8</sub>
```

Dibble Dabble To convert FROM decimal to any base we use the "dibble-dabble" method to DIBBLE-DABBLE →Use successive divisions by the base → Keep track of the remainder Convert 35₁₀ to binary 35/2 = 17 -- remainder 1 (least significant bit) 17)2 = 8 -- remainder 1 Read from 8/2 = 4 -- remainder 0 the bottom 4/2 = 2 -- remainder 0 Uр 2/2 = 1 -- remainder 0 1/2 = 0 -- remainder 1 (most significant bit) Thus, $35_{10} = 100011_2$ You can use the same method for Octal or Hexidecimal

```
Dibble Dabble Oct & Hex
o 435<sub>10</sub> Decimal to Octal
   • Dibble - Dabble Method
                                          Read from
     435 / 8 = 54 - REMAINDER 3
                                          the bottom
      54 / 8 = 6 - REMAINDER 6
       6 / 8 = 0 - REMAINDER 6
   Reverse the numbers 435_{10} = 663_8
o 435<sub>10</sub> Decimal to Hex
   • Dibble - Dabble Method
                                           Read from
     435 / 16 = 27 - REMAINDER 3
                                           the bottom
      27 / 16 = 1 - REMAINDER 11 = B
                                           Up
      1 / 16 = 0 - REMAINDER 1
   Reverse the numbers 435_{10} = 1B3_{16}
```

	Alternate Method											
	o 435 ₁₀ FROM Decimal to Binary - Alternative method											
	• Think of the positional notation											
	•	Step	1: St	tart w	rith 1,	mult	iply b	y eac	h suc	cessiv	e pos	sition by 2
	do this until you get to a # greater than or equal to											
	the # you are converting.											
	Step 2: Put a 1 under the largest value that you can subtract											
	without having a negative result.											
	Step 3: Subtract that value from the # you are converting											
	•	Step	4: R	epeat	until	you g	get to	0				
		29	28	27	26	25	24	2 ³	2 ²	21	20	
		512	256	128	64	32	16	8	4	2	1	•
		0	1	1	0	1	1	0	0	1	1	
	512 is too big so 256 51 - 32 = 19 To go back to Decimal use											
	435 - 256 = 179											
	3 - 2 = 1 your binary the locations											
	1 - 1 = 0 - Add the positions w/ Is 64 is too big so go to 32 We're Done! 110110011											
(c) Miche	C) Michele Rousseau											


```
Addition Base 10

    Process of Adding

 Step 1: Add the two digits in the first position.
           Check if the solution is greater than or equal to the base.
           If not then just write down the solution. You're done.
 Otherwise go to step 2.
  Step 2: Carry 1.
           Subtract the base from the solution found in step one.
           Write this down - this is your solution for that position.
  Step 3: Add 1 to the position to the left.
 Step 4: Repeat this for all positions.
                       9+2=11 - this is > 9 (base -1), so we have to carry
     Base 10 Add the carry too 11-10=1 write down 1 & add 1 to the position to the left.
        19910
                      9+2+1=12 - this is > 9 so we have to carry.

12-10=2 so write down 1 & add 1 to
      +2210
                                       the position on the left
        221<sub>10</sub>
                       1+1=2 Not > 9 so no carry
```

```
Addition Bases 8 & 2
• Same as in Base 10 except you carry when you
   reach the base #
   Base 8
      11
162<sub>8</sub>
               7 + 2 = 9
                               9 is greater than 7(base-1) → CARRY
                               9-8 =1 (solution -base) - write down 1
                               Add 1 to the next position
    <u>+ 47</u><sub>8</sub>
               6+4+1=11
                               11 > 7, so 11 - 8 = 3, We write down 3.
      2318
                               carry the 1
               1 + 1 = 2
     Base 2
      1001_{2} 1+1=2
                            2>1 \rightarrow \text{carry}, so 2-2=0 – write down 0, carry1
    +10112
                0+1+1=2
                            Same as above
                1+0=1
                             No Carry
     10100_{2}
                1+1=1
                             2>1\rightarrow again, 2-2=0, write 0 & Carry the 1
```

Addition Base 16 • Same as in Base 10 except you carry when you reach the base # (ir this case if the # > 15) • Note in Base 16 we count 0-9 just like in decimal then we represent 10 with an A, 11=B, 12=C, 13=D, 14=E, 15=F AE9₁₆ 9 + 7 = 1616 is greater than 16(base-1) → CARRY The Base 16 - 16 = 0 (solution-base) \rightarrow write 0 + 67₁₆ Add 1 to the next position B50. **E**+ 6 + 1 = 21 21 > 15, so 21 - 16 = 5, We write 5 carry the 1 11=B, so we write B A + 1 = 11 FFA_{16} A+9 = 19 19>15 **→** carry, so 19-16= 3 - write down 3, carry 1 +A9₁₆ F+A+1 =15+10+1=26 $26>15 \rightarrow carry$ 10A3 ₁₆ so 26-16=10 - write down A, carry 1 F+1 = 1616>15, 16-16=0, so 0, carry 1

```
Exercises

• Same as in Base 10 except you carry when you reach the base #

Base 8

Base 16

125<sub>8</sub>

+72<sub>8</sub>

+71<sub>16</sub>

Base 2

11011<sub>2</sub>

+1001<sub>2</sub>

(c) Michele Rousseau

Base 10

125<sub>8</sub>

Humber In the Machine

25
```

```
Subtraction Base 10

    Basic Process of Subtraction

 {\bf Step \, 1:} \  \  \, {\bf Check \, the \, two \, digits \, in \, the \, first \, position \, to \, see \, if \, you \, have \, to}
            borrow. If not then just subtract. If so, go to step 2.
 \label{eq:Step 2: Borrowing 1 - if the position on the left > 0.}
             Subtract 1 from the position to the left.
             Add the base to the current position and subtract.
 Step 3: If the position on the left = 0.
             Then borrow from the next position.
 Step 4: Repeat this for all positions.
                       1-3 = -2
          9
1 ½0 10
                            -2<0 \, , so we have to borrow. The position on the left
         2 0 1<sub>10</sub>
                           (the 10s) = 0 so we have to borrow the base from the position to the left (the hundreds). 
* Remember to borrow we subtract 1 and borrow the base
       - <u>23</u><sub>10</sub>
         1 7 8<sub>10</sub>
                           In this case, we borrow from the 100s, so 2-1=1, give 10 to the 10s position. Borrow again so 10-1=9, and
                       add the base (10 to the ones position).
So now we have 10+1-3 =8
                        1-0 = 1
```

```
Subtraction Base 16

Same as in Base 10 except you borrow the base (in this case 16)

Again, note in Base 16 we count 0-9 just like in decimal then we represent 10 with an A, 11=B, 12=C, 13=D, 14=E, 15=F

13 16

9 - A =

A \not \in 9_{16}
9 - 10= -1

Need to Borrow.

Subtract 1 from the position to the left (E-1=D)

4 14 14 16

P \not \in A_{16}
Borrowed

Add the base, (16) + 9 - A = 16 + 9 - 10 = 15 = F

A-C= 10-12=-2

Need to borrow,

50 F-1=E,

16 A-C= 16 + 10 - 12 = 14 = E

Need to borrow,

50 F-1 = E

16 + B - F = 16 + 14 - 15 = 15 = F

E - 2 = 14 - 2 = 12 = C

(c) Michele Rousseau
```

	• Same as in E the base	Base 10 except you borrow when	n you reach
	Base 8	Base 16	
	551 ₈	F 0 3 ₁₆	
Exe/	<u>- 12</u> ₈	<u>- 1 A</u> ₁₆	
rcis-			
es 1	Base 2		
	1001		
	1001 ₂		
	<u>- 101</u> ₂		
(c) Michol	e Pousseau	North and in the Heating	28

For More Help

http://www.saddleback.edu/faculty/lperez/ algebra2go/compsci/index.html

+ Additional links online

Announcement

• Quiz next class on the Numbers in the Machine