#### Prof. Márcio Bueno ed2tarde@marciobueno.com / ed2noite@marciobueno.com

Fonte: Material da Profa Ana Eliza Lopes Moura

#### Situação Problema

- Memória Principal
  - Volátil e limitada
- Aplicações
  - Grandes quantidades de informação
  - Armazenamento permanente de informações
- Chaves mantidas em memória secundária

#### Situação Problema

- Arvores de Busca Binária
  - Apropriada para memória principal
  - Ineficiente em memória secundária
    - Acesso: cerca de log<sub>2</sub>n passos
    - · Grande quantidade de acessos a disco
      - Acesso feito em blocos

#### Situação Problema

- Necessidade
  - Reduzir o número de acessos a disco
- Solução
  - Agrupar várias chaves dentro de um nó
    - · Obter com o mesmo acesso várias chaves
    - Reduzir o número de acessos
    - Diminuir o tempo necessário para inserções, remoções e pesquisas.

#### Definição

- Uma árvore de busca multivias de ordem
   M é uma árvore n-ária na qual todos os nós têm grau menor ou igual a M.
- Um nó com M descendentes contém M-1 valores de chave.

Exemplo: M = 3



- Desempenho da Busca
  - Árvores multivias de N chaves e fator de ramificação S.
  - Caminho médio de busca:  $O(log_5N)$
  - Se N =  $10^6$  e S = 100, então uma busca requer, em média,  $log_{100}10^6$  = 3 passos.
  - Árvore de busca binária:  $log_2 10^6 = 20$  passos.

- Problema
  - Inserções aleatórias de maneira irrestrita
  - Aumento do caminho de busca
- Solução
  - Balanceamento

- Definição
  - Bayer e McCreight em 1970.
  - Uma árvore B de ordem M é uma árvore de busca multivias balanceada.
  - Uma árvore B ou está vazia ou possui nós com K apontadores e K-1 chaves.
  - OBS: Um nó de uma árvore B é chamado de página.

- Utilização
  - Árvores B são utilizadas como forma de armazenamento em diversos sistemas de BD comerciais.

- Características Estruturais:
  - Na raiz, K deve ser, no mínimo, 2.
    - · Ou seja, a raiz possui no mínimo dois filhos e uma chave.
  - Nos demais nós, K deve ser, no mínimo,
     M/2.
    - Ou seja, os demais nós possuem, no mínimo, M/2 filhos e M/2-1 chaves;
    - Exceção: Folhas não têm filhos.

- Características Estruturais (cont.):
  - O valor máximo de K é M
    - Ou seja, todos os nós têm, no máximo, M-1 chaves e M filhos;
  - Todas as folhas estão no mesmo nível (balanceamento).
  - OBS: M deve ser escolhido de forma que o número máximo de chaves nos nós da árvore seja uma potência de 2

- Características Estruturais (cont.)
  - Formato do nó:
    - N,  $A_0$ ,  $(C_1A_1)$ ,  $(C_2A_2)$ , ...,  $(C_{M-1}A_{M-1})$  onde:
      - N, M/2 ≤ N ≤ M, é o número de entrada ativas (ocupadas) de um nó em um dado momento;
      - $A_i$ ,  $0 \le i \le M-1$ , é um apontador para uma subárvore;
      - $C_i$ ,  $1 \le i \le M-1$ , é um valor de chave e  $C_i$  <  $C_{i+1}$ ;
      - O par  $(C_iA_i)$  é chamado de entrada;
      - O apontador  $A_0$  também é definido como entrada de Dados II Márcio Bueno

Características Estruturais (cont.)

- Definição do nó:

```
typedef char Tipo;

struct no {
  int n;
  Tipo chv[M-1];
  no* pont[M];
};
```

- Características (cont.):
  - Seja uma página com D chaves:
    - Para qualquer chave y, pertencente à página apontada por  $A_0$ ,  $y < C_1$ ;
    - Para qualquer chave y, pertencente à página apontada por  $A_i$ ,  $1 \le i \le D-1$ ,  $C_i < y < C_{i+1}$ ;
    - Para qualquer chave y, pertencente à página apontada por  $A_D$ ,  $y > C_D$ .

 Comparação em termos de nós e chaves por nível entre uma árvore binária e uma árvore B de ordem M de mesma altura.

| Nível | Binária | Árvore B                          |
|-------|---------|-----------------------------------|
| 0     | 1 nó    | 1 nó x M-1 chaves                 |
| 1     | 2 nós   | M nós x (M-1) chaves              |
| 2     | 4 nós   | M x M nós x (M-1) chaves          |
| 3     | 8 nós   | M x M x M nós x (M-1) chaves      |
| •••   | •••     | •••                               |
| n     | 2º nós  | M <sup>n</sup> nós x (M-1) chaves |

#### Observações:

- A ordem M determina as quantidades máximas e mínimas de chaves dentro de cada nó.
- O número mínimo de chaves é estabelecido para determinar o percentual mínimo de ocupação dentro de um nó. Na árvore B esse percentual é de 50% (não considerando a raiz).

#### Inserção

- Em uma árvore B, a inserção de uma nova chave ocorre sempre em um nó folha.

#### - Passos:

- Localizar a folha dentro da qual a chave deve ser inserida;
- Se a folha não estiver completa, inserir chave na ordem correta;
- Se a folha estiver completa, realizar a cisão da página.

- Inserção: Exemplo M = 5
  - Inserir chave 85

- Inserir chave 60 | 60 | 85 |

- Inserir chave 52 | 52 | 60 | 85 |

- Inserir chave 70 | 52 | 60 | 70 | 85

- Inserir chave 58 \( \text{Realizar cisão} \)

- Inserção
  - Cisão de Página
    - O processo de cisão consiste em separar a folha completa em duas: folha esquerda e folha direita.

- Inserção -> Cisão de Página
  - As M chaves serão divididas em três grupos:
    - As (M / 2) chaves menores ficam na folha esquerda;
    - As (M / 2) chaves maiores ficam na folha direita;
    - A chave do meio é colocada no nó pai, se possível.
  - Obs.: A divisão é inteira

- Inserção (Exemplo cont.)
  - Inserir chave 58 (antes) 52 | 60 | 70 | 85

- Inserir chave 58 (depois)



- Inserção (Exemplo cont.)
  - Inserir chaves 37, 111, 23, 205



- Inserir chave 5 \( \text{Realizar cisão} \)

- Inserção (Exemplo cont.)
  - Inserir chave 5 (depois)



- Inserir chave 97 \( \text{Realizar cisão} \)

- Inserção (Exemplo cont.)
  - Inserir chave 97 (depois)



- Inserção (Exemplo cont.)
  - Inserir chaves 64,14, 90, 30



- Inserir chave 75 \( \text{Realizar cisão} \)

- Inserção (Exemplo cont.)
  - Inserir chave 75 (depois)



- Inserir chave 25 \( \text{Realizar cisão} \)

#### Inserção

- A inserção da nova entrada no nó pai pode acarretar a necessidade de uma nova cisão;
- A cisão de páginas é propagável, podendo atingir até mesmo a raiz da árvore.
- Neste caso, surge uma nova raiz, o que implica em alteração da altura da árvore.
- Após o processo de inserção, a árvore permanece balanceada.

- Inserção (Exemplo cont.)
  - Inserir chave 25 (depois)



#### Consulta

- Verifica se a chave procurada está na raiz;
- Caso não esteja, se a chave for menor que a chave  $C_i$ ,  $1 \le i \le N-1$ , então repetir a pesquisa na subárvore  $A_{i-1}$ ;
- A pesquisa termina quando encontramos a chave ou um apontador  $A_i$  igual a nulo.

- Consulta Exemplo:
  - Procurar chave 52



#### Arvores B

#### Consulta - Algoritmo:

```
void BuscaB(Tipo x, no *raiz, no *&pt, bool &f, int &g) {
  no *p = raiz; pt = null; f = false;
  while (p != null) {
    int qtd = p->n, i; i = g = 0; pt = p;
    while (i < qtd)
      if (x > p->chv[i]) {
        i = q = i + 1;
       } else if (x == p->chv[i]) {
         f = true; return;
       } else {
         p = p-pont[i]; i = qtd + 1;
    if (i == qtd)
       p = p-pont[qtd];
```

- Consulta Algoritmo:
  - Os parâmetros **pt**, **f** e **g** fornecem o resultado da busca.
  - Se a chave for encontrada na tabela, f é verdadeiro, pt contém o endereço da página que contém a chave e g contém a posição da chave dentro da página.
  - Se a chave não for encontrada, f continua falso,
     pt aponta para a última página examinada e g
     informa a posição, nesta página, onde a chave
     seria incluída.

- Consulta Algoritmo:
  - A pesquisa dentro de um nó é sequencial.
  - Se a ordem da árvore for maior que 10, devemos considerar a utilização de pesquisa binária.

- Remoção de uma chave X
  - Caso 1: A chave X não se encontra em uma folha
    - X é substituída pela chave Y, imediatamente maior;
    - · Y necessariamente pertence a uma folha.

- Remoção (Exemplo)
  - <u>Caso 1</u>: Remover a chave 37 (antes)



- Remoção (Exemplo)
  - <u>Caso 1</u>: Remover a chave 37 (depois)



- Remoção
  - <u>Caso 2</u>: A chave X se encontra em uma folha
    - · A chave é simplesmente removida.

- Remoção (Exemplo)
  - <u>Caso 2</u>: Remover a chave 58 (antes)



- Remoção (Exemplo)
  - <u>Caso 2</u>: Remover a chave 58 (depois)



- Remoção
  - Quando uma chave é retirada de um nó folha, o número de chaves restantes pode ser menor que (M-1)/2.
  - Tratamentos:
    - · Concatenação
    - · Redistribuição

- Remoção com Concatenação
  - Duas páginas P e Q são chamada irmãos adjacentes se têm o mesmo pai W e são apontadas por ponteiros adjacentes em W.
  - P e Q podem ser concatenadas se são irmãos adjacentes e juntas possuem menos de M-1 chaves.

- Remoção com Concatenação
  - A concatenação agrupa as entradas de duas páginas em uma só;
  - No nó pai deixa de existir uma entrada: aquela da chave que se encontra entre os ponteiros para P e Q.
  - Essa chave passa a fazer parte do nó concatenado e seu ponteiro desaparece.

- Remoção com Concatenação
  - Exemplo: Remover a chave 25 (antes)



- Remoção com Concatenação
  - Exemplo: Remover a chave 25 (depois)





- Remoção com Concatenação
  - Como foi retirada uma chave do nó W, caso ele passe a ter menos de (M-1)/2 chaves, o processo se repete;
  - Ou seja, a concatenação é um processo propagável;
  - Se a propagação atingir a raiz, a árvore diminuirá de altura.

- Remoção com Concatenação
  - Exemplo: Remover a chave 25 (cont.)
    - ⇒ Propagação



- Remoção com Concatenação
  - Exemplo: Remover a chave 25 (cont.)
    - ⇒ Propagação



- Remoção com Redistribuição
  - Se a página P e seu irmão adjacente Q possuem em conjunto M-1 ou mais chaves, estas podem ser equilibradamente distribuídas:
    - · Concatena-se P e Q;
    - · Efetua-se a cisão da página resultante.

- Remoção com Redistribuição
  - Exemplo: Remoção da chave 30 (antes)



- Remoção com Redistribuição
  - Exemplo: Remoção da chave 30 (depois)



- Remoção com Redistribuição
  - A redistribuição não é propagável;
  - A página W, pai de P e Q, é modificada, mas seu número de chaves permanece o mesmo.