Cálculo de Programas

Lic. em Engenharia Informática (3º ano) Lic. Ciências da Computação (2º ano) UNIVERSIDADE DO MINHO

2022/23 - Ficha nr.º 2

1. Considere o circuito booleano

que calcula a função $f((a, b), c) = (a \land b) \oplus c$, onde \oplus é a operação "exclusive-or".

- Escreva uma definição dessa função $(\mathbb{B} \times \mathbb{B}) \times \mathbb{B} \xrightarrow{f} \mathbb{B}$ que não recorra às variáveis a, b ou c^1 e desenhe o respectivo diagrama. (**Sugestão**: recorde a função uncurry da ficha anterior.)
- Qual é o tipo da função $g = \langle \pi_1, f \rangle$?
- 2. Recorde as propriedade universal do combinador $\langle f, g \rangle$,

$$k = \langle f, g \rangle \equiv \begin{cases} \pi_1 \cdot k = f \\ \pi_2 \cdot k = g \end{cases}$$

da qual, como se disse na aula teórica, podem ser derivadas todas as outras que aparecem no respectivo grupo, no formulário. Use-a para demonstrar a lei

$$\langle h, k \rangle \cdot f = \langle h \cdot f, k \cdot f \rangle$$

que também consta desse formulário sob a designação fusão-×.

3. O combinador

$$\begin{array}{l} \mathsf{const} \, :: a \to b \to a \\ \mathsf{const} \, a \, b = a \end{array}$$

está disponível em Haskell para construir funções constantes, sendo habitual designarmos constk por \underline{k} , qualquer que seja k. Demonstre a igualdade

$$(b,a) = \langle \underline{b}, \underline{a} \rangle \tag{F1}$$

a partir da propriedade universal do produto e das propriedades das funções constantes que constam do formulário.

¹Definições de funções que recorrem a variáveis dizem-se "pointwise"; as correspondentes versões sem variáveis dizem-se "pointfree".

4. Uma das operações essenciais em processamento da informação é a sua duplicação:

$$x \longrightarrow x$$

$$dup \ x = (x, x)$$

Recorra à lei de fusão-× para demonstrar a seguinte propriedade da duplicação de informação:

$$dup \cdot f = \langle f, f \rangle \tag{F2}$$

5. Considere o diagrama

$$(A \times B) \times C \cong A \times (B \times C)$$
assocl

onde assocl = $\langle id \times \pi_1, \pi_2 \cdot \pi_2 \rangle$. Apresente justificações para o cálculo que se segue em que se resolve em ordem a assocr a equação assocl · assocr = id:

$$= \begin{cases} & & & \\ & &$$

6. Sabendo que uma dada função xr satisfaz a propriedade

$$xr \cdot \langle \langle f, g \rangle, h \rangle = \langle \langle f, h \rangle, g \rangle \tag{F3}$$

para todo o f, g e h, derivar de (F3) a definição de xr:

$$xr = \langle \pi_1 \times id, \pi_2 \cdot \pi_1 \rangle \tag{F4}$$