Entrada/Saída (E/S) – Input/Output (I/O)

Arquitetura computacional (Revisão)...

Clock

Gera interrupções em intervalos regulares

Dispositivos de E/S...

Dispositivos de blocos: Manipulam dados em unidades de alocação endereçáveis de tamanho fixo.

Dispositivos de caracteres: Lidam com um fluxo (*stream*) de bytes não endereçáveis.

	(E)	(S)
HDD, SSD, SSHD	\checkmark	\checkmark
CD, DVD, Blu-ray, Flash Drive	\checkmark	\checkmark
Teclado	\checkmark	
Mouse	\checkmark	
Impressora		\checkmark
Monitor*	\checkmark	\checkmark
Interface de Rede	\checkmark	\checkmark

Curiosidade

Software
---- Firmware --Hardware

Clocks

1. Mantém horário por intermédio de um contador de *clock ticks*. O número de *ticks* por segundo depende do hardware \rightarrow Um cristal de 1 GHz oscila 1 bilhão de vezes por segundo, logo o hardware é capaz de registrar o tempo em nanosegundos (ns).

Contador de 64 bits = $2^{64} \approx 18$ quintilhões $ns \approx 600$ anos

UNIX → 1 jan 1970 12:00 + ticks Windows → 1 jan 1980 00:00 + ticks

- 2. Gera sinais periódicos de sincronização. Overclock: Cuidado!
- **3.** Gera sinais de interrupção (CPU) \rightarrow contador decrescente. O escalonador do SO configura o *quantum* de um processo em *ticks* do relógio.
- **4.** Gera sinais de interrupção do tipo alarme (*timers*). Também utiliza um contador decrescente. Um único *timer* pode ser responsável por diversos alarmes → Gerenciado pelo SO.
- 5. Responsável pela contabilidade de uso da CPU por um processo.
- **6.** SO watchdog! Contador decrescente reconfigurado regularmente pelo SO antes de zerar. *O sistema travou?*

Os relógios programáveis permitem que os intervalos entre as interrupções sejam configurados.

Chamadas

Chamada síncrona

Quando a CPU envia uma requisição a um dispositivo de E/S (ex.: HDD), a thread atual é interrompida (chamada bloqueante) e o escalonador do SO atribui outra thread a CPU. Assim que a requisição for satisfeita, o dispositivo de E/S envia um sinal de interrupção a CPU e o controle é devolvido a thread que fez a requisição.

Chamada assíncrona

Uma chamada assíncrona é não-bloqueante. A thread continua a execução mesmo que a requisição ainda não tenha sido satisfeita. Um sinal de interrupção é enviado pela controladora de E/S de modo a notificar uma <u>outra thread</u> do término do processamento da requisição.

Teclado

Como o hardware age...

- Tecla é pressionada → Interrupção
- Tecla é liberada → Interrupção

Porta de E/S contém código de varredura da tecla (8 bits):

0	para teclas	pressionad	las
1	para teclas	liberadas	

O primeiro bit é utilizado para indicar o estado da tecla. Os outros 7 bits armazenam o código de varredura (128 teclas no máximo).

Código de varredura ≠ Código ASCII

Tecla "1" na fileira superior ≠ Tecla "1" no bloco numérico! Código de varredura da tecla que representa "A" ou "a" é único!

Questões a considerar...

- 1. Como saber se o usuário digitou uma letra maiúscula ou minúscula?
- 2. Se o sistema trava, pressionar teclas pode influenciar em algo?
- 3. Você consegue imaginar uma situação onde o teclado é utilizado como dispositivo de saída?