Contents

1. In-Depth EDA	2
1.1 PRODUCTOS DATA (pro)	3
1.2 AGOTADOS DATA (ago)	5
1.3 EXHIBICIONES DATA (exh)	8
1.4 INVENTARIO DATA (inv)	11
1.5 PRECIOS DATA (pre)	18
1.6 PUNTOS DE VENTA DATA (pdv)	19
Index of Figures	
Figure 1 Overview of Tables information	2
Figure 2 Data size pie chart	2
Figure 3. Standardization Table Productos	3
Figure 4 Standardize table "Productos" (pro)	3
Figure 5 Frequency table grouped by Category	4
Figure 6 Frequency by Measure Unit	
Figure 7 False and True Frequency for Agotados	7
Figure 8 Frequency Table Monthly Quantity	8
Figure 9 Exhibitions Frequency Table per Month	
Figure 10 Frequency Table of Categoria	10
Figure 11 Total Stock per Months	12
Figure 12 Histogram Stock by Categorie Per Dates Nation Wide I	15
Figure 13Histogram Stock by Categorie Per Dates Nation Wide II	16
Figure 14Histogram Stock by Categorie Per Dates Nation Wide III	17
Figure 15 Boxplot of the Valor Column	19
Figure 16Frequency Table Puntos de Venta per City	21
Figure 17 Frequency Table Puntos de Venta per Department	22

Week 7 Project Submission: In-Depth EDA – Team 108

1. In-Depth EDA

In order to perform the In-Depth EDA applied to the data received for the project case chosen with the Eficacia company, we initially take a general overlook of the data contained on each of the csv files received from the customer, and try to identify possible relations that could potentially exist between all of them, this as an initial approach in order to identify next steps such as relations, possible scenarios and which of the tables contain a higher volume of information.

For this step we left as evidence the general overview of the table sizes and number of rows, below find the evidence of this initial exploration to the data:

File	Size (KB)	Number of Columns	Number of Rows
Agotados.csv	88553	11	1'364.563
Exhibiciones.csv	8456	11	87.357
Inventarios.csv	2728	6	62.166
Precios.csv	2095	8	32.287
Productos.csv	17	7	233
PuntosVenta.csv	241	19	1.702
Ventas.csv	95767	8	1'397.331

Figure 1 Overview of Tables information

We can see on the pie chart below that most of the data is contained in two tables "Ventas" and "Agotados" on this initial exploratory analysis this does not give us a lot of insights about the data contained on the table nonetheless it gives us an idea of where the exploratory analysis should be focused in this case the correlation between the sales and the out of stock will be very important therefore having the higher volume of information on "Ventas" and "Agotados" could be a good indicator about the data need for the analysis and future models to be implemented

Figure 2 Data size pie chart

1.1 PRODUCTOS DATA (pro)

The table "productos" as its name indicates contain the information related to all the products that are sold according to the provide by the customer.

The table "productos" initially have 7 columns in order to simplify and standardize the data we proceed to update the column names and assign a more appropriate data type in order to facilitate the future analysis, also columns Unnamed and Linea are deleted the first one is an index which is not need since the IdProducto is the primary key and unique index for each row and Linea is deleted since it contains duplicated information that is already contained in "categoria":

Figure 3. Standardization Table Productos

Once the standardization process is completed, we proceed to create the data frame and display the 3 first rows shown on the image below:

	IDProducto	Linea	Categoria	SubCategoria	UnidadMedida	Peso
0	122902	Quitagrasa	Quitagrasa	Quitagrasa Pistola	ML	500
1	122904	Quitagrasa	Quitagrasa	Quitagrasa Repuesto	ML	2000
2	122905	Quitagrasa	Quitagrasa	Multiusos Repuesto	ML	500

Figure 4 Standardize table "Productos" (pro)

Metrics for each column:

Columna	Distintos	Descripcion
IDProducto	233	identificador del producto
Linea	15	linea a la que pertenece
Categoria	15	Categoria a la que pertenece
SubCategoria	76	Sub categoria a la que pertenece
UnidadMedida	4	unidad de medida del producto
Peso	56	medida segun cada unidad

We see that the `Line` and `Category` columns have 15 different values and they seem the same, evaluating that they are equal, we proceed to discard the `Line` column. Additionally we rename the `Peso` column to `Cantidad`

	IDProducto	Categoria	SubCategoria	${\sf UnidadMedida}$	Cantidad
0	122902	Quitagrasa	Quitagrasa Pistola	ML	500
1	122904	Quitagrasa	Quitagrasa Repuesto	ML	2000
2	122905	Quitagrasa	Multiusos Repuesto	ML	500

Next step, some categorical variables are graphed to visualize the information more easily.

Figure 5 Frequency table grouped by Category

Figure 6 Frequency by Measure Unit

As an initial conclusion of this dataframe, it is found that there are 233 different products, grouped into 15 categories and 76 subcategories, with two additional columns that serve as descriptors of the product in question plus the quantity.

a) Review of N/A values on table productos

This is to confirm that there are not N/A values that could potentially distorsionate the data contain on the table and the future analysis:

1 pro.isna()	, , ,
IDProducto	False
Linea	False
Categoria	False
SubCategoria	False
UnidadMedida	False
Peso	False
dtype: bool	1 0136

b) Identification of unique values for IdProducto, Linea, Categoria y Subcategoria

To be able to perform join and merge operations with this tables to others we consider important to find the unique values for the index in this table, which is the IdProducto, Linea, Categoria y Subcategoria

```
1 print(pro['IDProducto'].unique())
['122902', '122904', '122905', '122907', '122908', ..., '122903', '122906', '129214', '122954', '122955']
Length: 233
Categories (233, object): ['122902', '122904', '122905', '122907', ..., '122906', '129214', '122954', '122955']
 1 print(pro['Linea'].unique())
['Quitagrasa' 'Limpia Vidrios' 'Limpia Baños' 'Detergentes'
  'Lava Vajillas' 'Limpia Pisos Especializados' 'Cuidado Mueble
'Limpiadores Especializados' 'Desmanchadores' 'Limpia Pisos'
                                                                                 'Cuidado Muebles
   'Betun' 'Ambientadores' 'Desinfeccion' 'Prelavado']
 1 print(pro['Categoria'].unique())
['Quitagrasa' 'Limpia Vidrios' 'Limpia Baños' 'Detergentes'
 'Lava Vajillas' 'Limpia Pisos Especializados' 'Cuidado Muebles
'Limpiadores Especializados' 'Desmanchadores' 'Limpia Pisos' '
  'Betun' 'Ambientadores' 'Desinfeccion' 'Prelavado']
 1 print(pro['SubCategoria'].unique())
['Quitagrasa Pistola' 'Quitagrasa Repuesto' 'Multiusos Repuesto' 'Multiusos Pistola' 'Vidrios Repuesto' 'Vidrios Pistola' 'Liqui 'Pastillas Blanco' 'Pastillas Azules' 'Ropa Oscura 1800ml'
  'Todos Los Dias 1800ml' 'Todos Los Dias 3785ml' 'Ropa Oscura 3785ml'
 'Ropa Bebe 900ml' 'Ropa Oscura 500ml' 'Ropa Oscura 5000ml' 'Todos Los Dias 5000ml' 'Ropa Oscura 900ml' 'Todos Los Dias 900ml'
  'Todos Los Dias 300ml' 'Ropa Bebe 2000ml' 'Tabletas' 'Abrillantador'
 'Todos Los Dias 3785ml + 900 Ml' 'Ropa Oscura 3785ml + 900 Ml' 'Todos Los Dias 1900ml' 'Todos Los Dias 2000ml' 'Todos Los Dias 3785ml X2' 'Todos Los Dias 1000ml + 2000ml' 'Ropa Oscura 1000ml' 'Ropa Oscura 2000ml' 'Ropa Oscura 3785ml X2'
 'Ropa Bebe 1000ml' 'Polvo' 'Todos Los Dias 5400ml'
'Todos Los Dias 3600ml' 'Ropa Bebe 3785ml' 'Pisos' 'Cubrerasguños'
 'Lustramuebles' 'Bronce Y Otros Pulidores De Metales'
'Limpiadores De Hornos' 'Pulidores De Metales En Plata' 'Liquido Blanco'
'Liquido Rosa' 'Polvo Blanco' 'Polvo Rosa' 'Alegria' 'Energia'
 'Iranquilidad' 'Canela Manzana' 'Yainilla' 'Lavanda' 'Prelavado Pistola'
'Prelavado Pistola + Repuesto' 'Liquido Blanco Y Rosa'
'Prelavado Repuesto' 'Perfumados' 'Especializados' 'Brillo Instantaneo'
'Maximo Brillo' 'Sanpic Mascotas' 'Pasta 96gr Negro' 'Cremoso 100ml'
 'Pasta 65gr Cherry' 'Pasta 30gr Cherry' 'Liquidos Cherry' 'Pasta 12gr Cherry' 'Liquidos Griffin' 'Ambientadores Electricos' 'Ambientadores Fm' 'Repuesto X 2' 'Aerosoles' 'Pañitos' 'Lysol Cocina'
```

1.2 AGOTADOS DATA (ago)

The table "Agotados" provide us the information regarding the out of stock products on this table we can see that there is a foreign key coming from the previous table productos which allows us to identify information such as the out of stock product id, the cause of the out of stock, date, among others.

Next, the summary of the table after a first delimiting of data types by columns:

Column	Unique	Description
IDRegistro	1364262	sample registration
Agotado	2	product is available
Presente	2	Product present at the point of sale
NOManejo	2	Product that is not handled or is not coded at the Point of Sale
Causal	1	Main out of stock cause
SubCausal	8	Secondary out of stock cause
IDProducto	229	Product identifier
IDPdv	704	Point of Sale Identifier
IDUser	97	User identifier
Fecha	194	sample date

First five rows:

	IDRegistro	Agotado	Presente	NOManejo	Causal	SubCausal	IDProducto	IDPdv	IDUser	Fecha
0	313610627	False	True	False	NaN	NaN	122894	1597217	123008	2021-09-27
1	313610624	False	True	False	NaN	NaN	122921	1597217	123008	2021-09-27
2	313610625	False	True	False	NaN	NaN	123072	1597217	123008	2021-09-27
3	313610626	False	True	False	NaN	NaN	123033	1597217	123008	2021-09-27
4	313610628	False	True	False	NaN	NaN	122959	1597217	123008	2021-09-27

In the following table we can identify the data types of the dataset:

IDRegistro	category
Agotado	bool
Presente	bool
NOManejo	bool
Causal	object
SubCausal	object
IDProducto	category
IDPdv	category
IDUser	category
Fecha	datetime64[ns]

Statistical summary:

	count	unique	top	freq	first	last
IDRegistro	1364563	1364262	3.41e+08	82	NaT	NaT
Agotado	1364563	2	False	1299160	NaT	NaT
Presente	1364563	2	True	1257143	NaT	NaT
NOManejo	1364563	2	False	1322546	NaT	NaT
Causal	65505	1	Agotado	65505	NaT	NaT
SubCausal	65505	8	Pedido Insuficiente	40009	NaT	NaT
IDProducto	1364563	229	123082	14069	NaT	NaT
IDPdv	1364563	704	1596708	12402	NaT	NaT
IDUser	1364563	97	123563	66951	NaT	NaT
Fecha	1364563	194	2022-03-28 00:00:00	12829	2021-09-27	2022-05-21

Also, we check the percentage of null data in the dataset:

IDRegistro	0.0
Agotado	0.0
Presente	0.0
NOManejo	0.0
Causal	95.2
SubCausal	95.2
IDProducto	0.0
IDPdv	0.0
IDUser	0.0
Fecha	0.0

From the above result, we identify that exist a huge number of non-values in the Columns Causal and SubCausal. In the following step, we will identify deeper about the relation of this result with the Agotados column.

We can look for a distribution in the columns Agotado and Fecha with a bar graph, we identify that the quantity of out-of-stock products have almost the same frequency of the Causal and SubCausal columns, so they are related and important for the Advance EDA.

Figure 7 False and True Frequency for Agotados

We see then the huge difference between these two values in the same column (False 1'299.160 and True 65.403).

The following is a graph of the count measures for each month. In this moment, this does not tell us too much about the behavior of the data, we should identify the products out-of-stock, filter by them, by location (City, Depto, Region and City) and more features looking for relevant information in the advance EDA.

Figure 8 Frequency Table Monthly Quantity

1.3 EXHIBICIONES DATA (exh)

The table "Exhibiciones" contain the information related to the products that are currently being exhibited on the different sales points on this table we can see that we have foreign keys to identify important information such as de Point of Sale identification and the product category that will later help us to identify the relation between the out of stock and the exhibitions.

This table have the following columns and description:

Column	Unique	Description
IDPdv	693	Point of Sale Identifier
Fecha	157	Sample date
IDRegistro	13144	Sample Registration
Categoria	12	Product category
Implementacion	84389	The implementation is done
Causal	4	Main reason for no implementation
POP	2	There is publicity material
BloqueMarca	2	There is a block for the product
OpeLogis	3	Logistic operator indentifier

First five rows of the Dataframe

	IDPdv	Fecha	IDRegistro	Categoria	Implementacion	Causal	POP	BloqueMarca	OpeLogis
0	1596927	2021-11-30	1596927-127115-2021/11/30	DESINFECCION	True	NaN	False	False	2
1	1596627	2021-11-26	1596627-121221-2021/11/26	BETUN	True	NaN	False	True	2
2	1596627	2021-11-26	1596627-121221-2021/11/26	BETUN	True	NaN	False	True	2
3	1597233	2021-11-29	1597233-123565-2021/11/29	DESMANCHADORES	True	NaN	True	True	2
4	1596627	2021-11-30	1596627-123565-2021/11/30	DESINFECCION	False	BAJO INVENTARIO	True	False	1

Datatypes

IDPdv	category
Fecha	datetime64[ns]
IDRegistro	category
Categoria	object
Implementacion	object
Causal	object
POP	object
BloqueMarca	object
OpeLogis	category

Statistical summary

	count	unique	top	freq	first	last
IDPdv	87357	693	1597201	610	NaT	NaT
Fecha	87357	157	2022-04-04 00:00:00	940	2021-11-13	2022-05-23
IDRegistro	87357	13144	1597312-141223-2022/04/21	133	NaT	NaT
Categoria	87357	12	DESMANCHADORES	13606	NaT	NaT
Implementacion	84389	2	True	78167	NaT	NaT
Causal	6604	4	BAJO INVENTARIO	2779	NaT	NaT
POP	84080	2	False	66697	NaT	NaT
BloqueMarca	84080	2	True	76290	NaT	NaT
OpeLogis	58326	3	2	46145	NaT	NaT

This dataset has information about 693 IDPdv compared to the total 1702 from the dataset IDPdv.

IDPdv	0.0
Fecha	0.0
IDRegistro	0.0
Categoria	0.0
Implementacion	3.4
Causal	92.4
POP	3.8
BloqueMarca	3.8
OpeLogis	33.2

Here we see some null data in the columns, but in future steps it will be clearly if those columns add information for the objective of project or not.

We can search for distribution in the columns. With a value_counts(), it is easier to see the range of data from each IDPdv, this will be crucial for the data analysis due to the differences in the values from each IDPdv.

count	693.000000
mean	126.056277
std	105.282546
min	1.000000
25%	47.000000
50%	104.000000
75%	171.000000
max	610.000000

For the Dates, we also see a different behavior for each month, this also generates a behavior in the data that we must describe for a better understanding.

Figure 9 Exhibitions Frequency Table per Month

This column will be compared to the same in the dataset of Products, but in this moment it is not possible to discard this one from the dataset.

Figure 10 Frequency Table of Categoria

In conclusion, this table give us information about the exhibitions on each point of sale, but we will have to check if this data can create useful information for the project problem in future steps.

1.4 INVENTARIO DATA (inv)

This table have the following columns and description:

Column	Unique	Description
Fecha	148	Sample date
IDPdv	1462	Point of sale identifier
IDProducto	199	Product Identifier
StockUnidades		Average daily products
StockTrans		Average of products until supply

We can see that StockUnidades and StockTrans are columns with incorrect values, looking closely to these, we found that there are 735 negative values mixed with the data:

We must find the reason for this data in future steps or decide to delete this data depending on what additional information is possible to analyse.

First five rows of the dataset:

	Fecha	IDPdv	IDProducto	StockUnidades	StockTrans
0	2021-10-03	1596624	122907	0	0
1	2021-10-03	1596633	123048	0	0
2	2021-10-03	1596629	122938	0	0
3	2021-10-03	1614610	122894	0	0
4	2021-10-03	1614610	122893	0	0

Datatypes

Fecha	datetime64[ns]
IDPdv	category
IDProducto	category
StockUnidades	int64
StockTrans	int64

Statistical summary

	count	unique	top	freq	first	last	
Fecha	62166	148	2022-05-19 00:00:00	46663	2021-04-02	2022-05-19	
IDPdv	62166	1462	7701008009196	129	NaT	NaT	
IDProducto	62166	199	123042	944	NaT	NaT	
StockUnidades	62166.0	NaN	NaN	NaN	NaT	NaT	Ξ
StockTrans	62166.0	NaN	NaN	NaN	NaT	NaT	

Distributions

Figure 11 Total Stock per Months

The previous bar graph tells us that the behavior of the data is not stable or maybe it is affected by an event that made the collected data lesser to other months.

Since the inventory table is one of the most important because the project will be focusing on out of stock and how to predict them, we perform several process to clean the data contain on this table to later have an easiest way to analyze the info

a) Review of N/A values

This is to confirm that there are not N/A values that could potentially distorsionate the data contain on the table and the future analysis:

```
In [15]: 1 inv.isna().any()

Out[15]: Fecha False
IDPdv False
IDProducto False
StockUnidades False
StockTrans False
dtype: bool
```

b) Negative Values on Quantity Column Table Inventarios

We could identify that there were negative values on the column quantity in inventories we confirm about this with the client since it doesn't make to have a variable such as quantity with negative values and they confirm that this could be either due to mistaken information or inventory shortages, in order to avoid any misleading on the analysis due to this information we deleted from the table after this was identify

```
1 inv.drop(inv[inv['StockUnidades'] < 0].index, inplace = True)</pre>
    print(inv)
                          IDPdv IDProducto StockUnidades StockTrans
           Fecha
      2021-10-03
                        1596624
                                    122907
      2021-10-03
                        1596633
                                    123048
                                                                    0
      2021-10-03
                        1596629
                                    122938
                        1614610
     2021-10-03
                        1614610
                                   122893
                                                        0
                                                                    0
62161 2022-05-19 7701001040578
                                    122941
62162 2022-05-19 7701001040578
                                    122940
62163 2022-05-19 7701001040578
                                    122906
                                                       15
                                                                    0
62164 2022-05-19 7701001040578
                                    122907
62165 2022-05-19 7701001040271
                                    122964
[61431 rows x 5 columns]
 1 # Se realiza verificación de que las 735 filas con datos negativos hayan sido eliminadas
 2 inv.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 61431 entries, 0 to 62165
Data columns (total 5 columns):
                    Non-Null Count Dtype
   Fecha
                    61431 non-null datetime64[ns]
    IDPdv
                    61431 non-null category
                    61431 non-null category
    StockUnidades 61431 non-null int64
StockTrans 61431 non-null int64
    StockTrans
dtypes: category(2), datetime64[ns](1), int64(2)
```

c) Asociation "Categoria" from table "productos" to table "Inventarios"

15

122907

4 2022-05-19 1596810

The table inventarios does not contain information that allow us to group the data into similar categories for that reason and after identifying the different categories the products have on the table "productos" column "categoria" we associate it into the table inventarios creating a new column and using a merge operation

```
pro_categoria = pro[['IDProducto','Linea']].copy()
   pro_categoria.head()
  IDProducto
                Linea
     122902 Quitagrasa
     122904 Quitagrasa
2
   122905 Quitagrasa
     122907 Quitagrasa
  122908 Quitagrasa
 1 inv = pd.merge(
                    inv.
                    pro_categoria,
                    on = 'IDProducto',
                    how = 'inner')
 6 inv.head()
     Fecha IDPdv IDProducto StockUnidades StockTrans
                                                                           Depto
0 2021-10-03 1596624
                    122907
                                         0
                                             0 2021-10
                                                                         NARIÑO Quitagrasa
1 2021-08-02 1614355
                       122907
                                                   0 2021-08
                                                                 VALLE DEL CAUCA Quitagrasa
                                                                 LA GUAJIRA Quitagrasa
2 2022-05-19 1599404
                                        3
                                                   0 2022-05
                       122907
3 2022-05-19 1596792
                                        60
                                                   0 2022-05
                                                                      SANTANDER Quitagrasa
                                                0 2022-05 NORTE DE SANTANDER Quitagrasa
```

c) Asociation "Departamentos" from table "pdv" to table "Inventarios"

In order to facilitate a geographical analysis, we take the "departamento" column coming from the "puntos de venta" table and associate it so we can analyze the behavior of the total stock by departments and category

d) Histogram of Average Stock total country (Colombia)

After having the products information complemented with the category so we can group the data and also after including the department we proceed to prepare an histogram by categories with the total stock per all the dates provided on the inventarios table

Figure 12 Histogram Stock by Categorie Per Dates Nation Wide I

Figure 13Histogram Stock by Categorie Per Dates Nation Wide II

Figure 14Histogram Stock by Categorie Per Dates Nation Wide III

1.5 PRECIOS DATA (pre)

These are the columns in the dataset.

Column	Unique	Description
IDRuta	680	Route identifier
IDPdv	479	Sales point identifier
IDProducto	135	Product Identifier
Valor	1861	Product's value
Fecha	184	Sample date
PreSugerido	153	Suggested price

First five rows.

	IDRuta	IDPdv	IDProducto	Valor	Fecha	PreSugerido
0	1596677123545	1596677	122965	9990	2021-10-01	11400
1	1596677123545	1596677	123072	6190	2021-10-01	7950
2	1596677123545	1596677	122945	2990	2021-10-01	37300
3	1596677123545	1596677	123033	13990	2021-10-01	16750
4	1596677123545	1596677	122959	37390	2021-10-01	47800

Data types.

IDRuta	category
IDPdv	category
IDProducto	category
Valor	int64
Fecha	datetime64[ns]
PreSugerido	int64

Statistical summary.

	count	unique	top	freq	first	last	mean
IDRuta	32287	680	1612656123584	698	NaT	NaT	NaN
IDPdv	32287	479	1612656	970	NaT	NaT	NaN
IDProducto	32287	135	122907	559	NaT	NaT	NaN
Valor	32287.0	NaN	NaN	NaN	NaT	NaT	53979.713073
Fecha	32287	184	2021-10-23 00:00:00	1255	2021-10-01	2022-05-23	NaN
PreSugerido	32287.0	NaN	NaN	NaN	NaT	NaT	13610.665903

After looking the data, we found outliners in the column Valor, so looking deeper, we see that the 99% quantile is 43.863 pesos, we filter for values greater than 50.000:

	IDRuta	IDPdv	IDProducto	Valor	Fecha	PreSugerido
343	1597351123585	1597351	123057	116090	2021-10-02	16200
2168	1597172123585	1597172	123081	318000	2021-10-11	26000
3717	1596642123585	1596642	123049	65900	2021-10-22	17100
4859	1597004123556	1597004	123054	64500	2021-10-23	5500
4871	1597004123556	1597004	123055	64500	2021-10-23	5500
31361	1596668123579	1596668	122959	51990	2022-05-05	47800
31362	1596685147042	1596685	122959	51990	2022-05-19	47800
31363	1596987123579	1596987	122959	57300	2022-05-10	47800
31365	1597166142752	1597166	122959	50400	2022-05-04	47800
31697	1596731135753	1596731	122901	115090	2022-05-09	9550

121 rows × 6 columns

It is decided to eliminate the 121 columns that are outside the 99% quantile and the following is the result of the distribution.

Figure 15 Boxplot of the Valor Column

The Precios dataframe has 135 products with a price (98 less than in the Productos table), in 479 different points of sale, this information was taken 184 times, in a period of 234 days from October 1, 2021 to May 23, 2022.

121 rows with an abnormally high price range were found, these values were eliminated considering that they correspond to less than 1% of the dataset. It remains for further analysis to review the difference between the Value column and the Suggested Price.

1.6 PUNTOS DE VENTA DATA (pdv)

These are the columns in the dataset

Column	Unique	Description
IDPdv	1702	Point of Sale Identifier
Ciudad	160	City
Depto	26	Department
Cadena	87	chain store
Canal	3	Sales channel
SubCanal	6	Sub-sales channel
Tipologia	22	Tipology of the sales point
Regional	8	Region
Formato	48	Channel format
DiaEntregaPedidoNombre	11	Days of product delivery
DiaEntregaPedido	7	Order delivery day
DiaHoy	1	Actual day
DiaRestante	7	Days left for new delivery
Lat		Latitude
Lon		Longitude

First five rows.

	IDPdv	Ciudad	Depto	Cadena	Canal	SubCanal	Tipologia	Regional	Formato	DiaEntregaPedidoNombre	DiaEntregaPedido	DiaHoy	DiaRestante	Lat	Lon
0	1596878	Medellin	ANTIOQUIA	Cooperativa De Consumo	Dtt	Smi	SMI P	Antioquia-Choco	Surtiventas	NaN	0	1	6	200.0	200.0
1	1596877	Medellin	ANTIOQUIA	Cooperativa De Consumo	Dtt	Smi	SMI P	Antioquia-Choco	Surtiventas	NaN	0	1	6	200.0	200.0
2	1596876	Medellin	ANTIOQUIA	Cooperativa De Consumo	Dtt	Smi	SMI P	Antioquia-Choco	Surtiventas	NaN	0	1	6	200.0	200.0
3	1596875	Medellin	ANTIOQUIA	Cooperativa De Consumo	Dtt	Smi	SMI P	Antioquia-Choco	Surtiventas	NaN	0	1	6	200.0	200.0
4	1614373	Bogotá	BOGOTA D.C	Cencosud	Mt	Ka	CONVENIENCE	Cundi-Boyaca	Metro Express	NaN	0	1	6	NaN	NaN

Data types.

IDPdv	category
Ciudad	object
Depto	object
Cadena	object
Canal	object
SubCanal	object
Tipologia	object
Regional	object
Formato	object
DiaEntregaPedidoNombre	object
DiaEntregaPedido	category
DiaHoy	category
DiaRestante	category
Lat	float64
Lon	float64

Statistical summary

	count	unique	top	freq	mean
IDPdv	1702	1702	1596620	1	NaN
Ciudad	1702	160	Bogotá	491	NaN
Depto	1702	26	BOGOTA D.C	491	NaN
Cadena	1702	87	Grupo Comercial Éxito	504	NaN
Canal	1702	3	Mt	1251	NaN
SubCanal	1702	6	Ка	1113	NaN
Tipologia	1702	22	SUPERP	385	NaN
Regional	1702	8	Cundi-Boyaca	607	NaN
Formato	1702	48	Olimpica Sto	298	NaN
DiaEntregaPedidoNombre	448	11	Miercoles - Lunes	103	NaN
DiaEntregaPedido	1702	7	0	1254	NaN
DiaHoy	1702	1	1	1702	NaN
DiaRestante	1702	7	6	1254	NaN
Lat	1135.0	NaN	NaN	NaN	2700680.044053
Lon	1135.0	NaN	NaN	NaN	-31091783.244934

From the previous information, we can infer that the columns have information without the presence of null values, except for the Lat and Lon columns. There is a lot of information, but this should be filtered in future steps for its applicability in forecast models.

Distributions.

Figure 16Frequency Table Puntos de Venta per City

From the previous graph, it is evident that the highest percentage of points of sale are in the city of Bogota, being a reference for the results and conclusions of the dataset study. This also infers that most of the work will be carried out for this city, those that present a considerable volume of data to be able to analyze.

Figure 17 Frequency Table Puntos de Venta per Department

This graph confirms the above statement, it should be considered to select only the representative values for further analysis.