Bases formelles du TAL

Pierre-Léo Bégay

14 février 2020

La théorie des automates est l'algèbre linéaire de l'informatique [...], connaissance de base, fondamentale, connue de tous et utilisée par tous, qui fait partie du paysage intellectuel depuis si longtemps qu'on ne l'y remarquerait plus.

Jacques Sakarovitch, dans l'avant-propos de Eléments de théorie des automates

Table des matières

1	Lan	gages				
	1.1	Mots				
	1.2	Langage				
2	Expressions régulières 1					
	2.1	Lexique	et idée générale			
		2.1.1 I	Les lettres et ϵ , la base			
		2.1.2 .,	, la concaténation			
		2.1.3 *	f, l'itération			
		2.1.4 +	\vdash , la disjonction			
	2.2	Syntaxe				
	2.3	Sémantie	que			
		2.3.1 L	Les cas de base			
		2.3.2 S	Sémantique de la concaténation			
		2.3.3 S	Sémantique de la disjonction			
		2.3.4 S	Sémantique de l'itération			
	2.4	Mise en	application			
		2.4.1	Quelques astuces			
		2.4.2 S	Syntaxe en pratique			
		2.4.3	Calcul de l'appartenance			
3	Aut	Automates finis				
	3.1	Automa	tes finis déterministes			
			Principe général			
			Formalisation et implémentation			
	3.2	Automa	tes finis non-déterministes			
			Principe général			
			Formalisation et implémentation			
	3.3	Transfor	mation d'automates			
			Complétion			
		3.3.2 I	Déterminisation			
			Minimisation			
	3.4	Propriét	és de clôture			
		-	Jnion			
		3.4.2 I	ntersection			
			Concaténation			
			tération			

4	Grammaires formelles Introduction à la calculabilité Théorème de Kleene et hiérarchie de Chomsky				
5					
6					
A	Rappels mathématiques				
	A.1 Logique	38			
	A.1.1 Raisonnement par l'absurde	38			
	A.2 Ensembles	39			
	A.2.1 Ensemble des parties	39			
	A.2.2 Opérations entre ensembles	39			
	A.3 Algorithmique	40			
	A.3.1 Itératif vs. récursif, le cas des parcours d'arbre	40			

Langages

On définit d'abord la notion de mot, nécessaire à celle de langage. On verra ensuite comment décrire des langages à l'aide de notations ensemblistes, révisant ces dernières par la même occasion.

1.1 Mots

Définition 1.1.1: Mot

Un **mot** est une suite de lettres tirées d'un alphabet donné. L'ensemble des mots sur un alphabet Σ est noté Σ^* .

Exemple 1.1.1. Et ant donné l'alphabet $\Sigma = \{a, b, c\}$, on peut construire une infinité de mots parmi les quels

- --abc
- --aab
- -cc
- *c*

Remarque On va s'intéresser ici à des langages et mots complètement abstraits, en général composés uniquement de a, b et c.

Définition 1.1.2: Mot vide

Une suite de lettres peut être de longueur zéro, formant alors le mot vide. Quel que soit l'alphabet, ce dernier sera noté ϵ .

Définition 1.1.3: Concaténation

L'opération de ${f concaténation},$ notée ., consiste tout simplement à "coller" deux mots.

Exemple 1.1.2. Quelques concaténations :

 $\begin{array}{ll} -- ab.c = abc \\ -- ab.ba = abba \end{array}$

De plus, pour tout mot w,

$$w.\epsilon = \epsilon.w = w$$

Remarque Les algébristes enthousiastes remarqueront que $(\Sigma^*,.,\epsilon)$ forme un monoïde libre de base Σ

Définition 1.1.4: Longueur d'un mot

Etant donné un mot w, on note sa **longueur** |w|.

Exemple 1.1.3. Tout naturellement,

- |abc| = 3
- -|abba|=4
- |c| = 1
- $--|\epsilon|=0$

Définition 1.1.5: Principe d'induction sur un mot

Etant donnée une propriété P sur les mots. Si on a

- 1. $P(\epsilon)$ (cad. que P est vraie pour le mot vide)
- 2. $\forall w, \forall c \in \Sigma, (P(w) \to P(c.w))$ (cad. que si P est vraie pour un mot, alors elle reste vraie si on rajoute n'importe quelle lettre à gauche du mot)

Alors la propriété P est vraie pour tout mot w.

Remarque Est également valide le principe d'induction où, dans le cas récursif, la lettre est rajoutée à droite du mot plutôt qu'à sa gauche.

On va s'entraîner à utiliser ce principe d'induction en prouvant deux lemmes qui n'en nécessitaient sans doute pas tant :

Lemme 1. $\forall w \in \Sigma^*, |w| \geq 0$, cad. que tout mot a une longueur positive.

 $D\acute{e}monstration.$ On procède par induction sur w.

Dans le cas de base, $w = \epsilon$. On a donc $|w| = |\epsilon| = 0 \ge 0$.

Dans le cas récursif, w = c.w' avec $c \in \Sigma$ et on suppose $|w'| \ge 0$. On a $|c.w'| = 1 + |w'| \ge |w'| \ge 0$.

Lemme 2. Etant donnés deux mots w_1 et w_2 , $|w_1.w_2| = |w_1| + |w_2|$.

Démonstration. On procède par induction sur w_1 .

Dans le cas de base, $w_1 = \epsilon$. On a donc $|w_1.w_2| = |\epsilon.w_2| = |w_2| = 0 + |w_2| = |w_1| + |w_2|$.

Dans le cas récursif, $w_1 = c.w_1'$ avec $c \in \Sigma$ et on suppose $|w_1'.w_2| = |w_1'| + |w_2|$. On a

```
|w_1.w_2|
= |c.w'_1.w_2| par définition de w_1

= 1 + |w'_1.w_2| par définition de |.|

= 1 + (|w'_1| + |w_2|) par hypothèse d'induction

= (1 + |w'_1|) + |w_2| par associativité de l'addition

= |c.w'_1| + |w_2| par définition de |.|

= |w_1| + |w_2| par définition de w_1
```

On a donc bien nos deux conditions pour le raisonnement par induction.

Définition 1.1.6: Nombre d'occurrences d'une lettre

Etant donné un mot w et une lettre a, on note $|\mathbf{w}|_{\mathbf{a}}$ le nombre de a dans w.

Exemple 1.1.4. On a

- $--|abc|_a = 1$
- $--|abba|_b = 2$
- $|c|_a = 0$
- $--|\epsilon|_a=0$

Définition 1.1.7: Préfixe

Un mot p est un **préfixe** du mot w ssi $\exists v, w = p.v$, cad. ssi w commence par p.

Définition 1.1.8: Suffixe

Un mot s est un suffixe du mot w ssi $\exists v, w = v.s$, cad. ssi w finit par s.

Exemple 1.1.5. Le mot abba admet comme préfixes ϵ , a, ab, abb et abba. Ses suffixes sont, quant à eux, ϵ , a, ba, bba et abba.

Lemme 3. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des préfixes de } w$

Démonstration. Pour ϵ , il suffit de prendre v=w. A l'inverse, en prenant $v=\epsilon$, on voit que w est son propre préfixe.

Lemme 4. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des suffixes de } w$

Démonstration. Analogue au lemme précédent.

Exercice 1.1.1. Combien de préfixes et suffixes admet un mot w quelconque?

Définition 1.1.9: Facteur

Un mot f est un facteur du mot w ssi $\exists v_1 v_2, w = v_1.f.v_2$, cad. ssi f apparaît dans w.

Exemple 1.1.6. Les facteurs du mot abba sont ϵ , a, b, ab, ba, abb, bba et abba.

Lemme 5. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des facteurs de } w.$

Démonstration. Pour ϵ , il suffit de prendre $v_1 = w$ et $v_2 = \epsilon$ (ou l'inverse) et la condition est trivialement vérifiée. Pour w, on prend $v_1 = v_2 = \epsilon$.

Exercice 1.1.2. Donner l'ensemble des facteurs du mot abbba.

Exercice 1.1.3. (*) Donner la borne la plus basse possible du nombre de facteurs d'un mot w. Donner un mot d'au moins 3 lettres dont le nombre de facteurs est exactement la borne donnée.

Définition 1.1.10: Sous-mot

Un mot s est un **sous-mot** du mot w ssi $w = v_0 s_0 v_1 s_1 v_2 ... s_n v_n$ et $s = s_0 s_1 ... s_n$, cad. ssi w est "s avec (potentiellement) des lettres en plus".

Exemple 1.1.7. On souligne les lettres originellement présentes dans le sous-mot:

- ab est un sous-mot de baab, qu'on pourrait aussi voir comme baab
- abba est un sous-mot de baaabaabbaa.
- ba <u>n</u>'est pas un sous-mot de aaabbb (l'ordre du sous-mot doit être préservé dans le mot)

Lemme 6. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des sous-mots de } w.$

Démonstration. Pour ϵ , il suffit de prendre $n=0,\ s_0=\epsilon,\ v_0=w$ et $v_1=\epsilon$ (ou l'inverse) et la condition est trivialement vérifiée. Pour w, on prend $n=0,\ s_0=w$ et $v_0=v_1=\epsilon$.

Exercice 1.1.4. Montrer que tout facteur d'un mot en est également un sous-mot. A l'inverse, montrer qu'un sous-mot n'est pas forcément un facteur.

Exercice 1.1.5. Donner toutes les façons de voir abba comme sous-mot de baaabaabbaa (cf. exemple 1.1.7).

Exercice 1.1.6. Donner l'ensemble des sous-mots de abba

Exercice 1.1.7. (*) Donner la borne la plus basse possible du nombre de sous-mots d'un mot w. Donner un mot dont le nombre de sous-mots est exactement la borne donnée.

Exercice 1.1.8. (*) Dans l'exercice 1.1.1, on demande le nombre exact de préfixes et suffixes d'un mot, alors que dans les exercices 1.1.3 et 1.1.7, on demande une borne, pourquoi?

1.2 Langage

Définition 1.2.1: Langage

Un langage, c'est un ensemble de mots.

On distingue donc d'entrée les deux langages extrêmes : Σ^* , l'ensemble (infini) de tous les mots formés à partir de Σ , et \emptyset , le langage / ensemble vide, qui se caractèrise comme ne contenant aucun élément.

Remarque Ne surtout pas confondre \emptyset et $\{\epsilon\}$. Le premier est un ensemble vide, contenant donc $\mathbf{0}$ élément, trandis que le second contient $\mathbf{1}$ élément, le mot ide.

Définition 1.2.2: Produit de langages

Le produit de deux langages L_1 et L_2 , noté $L_1.L_2$, renvoie l'ensemble des mots composés d'un mot de L_1 puis d'un de L_2 :

 $L_1.L_2 = \{w_1.w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$

Il s'agit d'un cas particulier de produit d'ensembles (cf. définition A.2.2.

Exemple 1.2.1. Soit $L_1 = \{ab, b, \epsilon\}$ et $L_2 = \{a, b, aa\}$, on a

 $L_1.L_2$

- $= \{ab.a, ab.b, ab.aa, b.a, b.b, b.aa, \epsilon.a, \epsilon.b, \epsilon.aa\}$
- $= \{aba, abb, abaa, ba, bb, baa, a, b, aa\}$

Le produit de langage peut être itéré ¹ :

$$L^0 = \{\epsilon\}$$
$$L^{n+1} = L^n.L$$

Les langages disposent en plus d'un opérateur spécial :

Définition 1.2.3: Etoile de Kleene

Soit L un langage. On note L^* la concaténation de n'importe quel nombre de mots apparaissant dans L, cad.

$$L^* = \bigcup_{n \in \mathbf{N}} L^n = L^0 \cup L^1 \cup L^2 \cup \dots$$

Exemple 1.2.2. Soit $L = \{aa, b\}$, on a

^{1.} Concrètement, les puissances sur les langages ont le même sens que sur les nombres, avec la multiplication remplacée par la concaténation

```
 \begin{array}{ll} L^* = & \{epsilon\} \\ & \cup & \{aa,b\} \\ & \cup & \{aaaa,aab,baa,bb\} \\ & \cup & \{aaaaaa,aaaab,aabaa,aabb,baaaa,baab,bbaa,bbb\} \\ & \cup & \dots \end{array}
```

La question maintenant est maintenant de savoir comment on définit et parle de langages précis et plus "intermédiaires" que les deux précédents. En tout généralité, les ensembles peuvent être définis de façon **extensionnelle** ou **intentionnelle**.

Définition 1.2.4: Définition extensionnelle d'un ensemble

On définit extensionnellement un ensemble en en donnant la liste des éléments. L'ensemble vide se note quant à lui \emptyset .

Exemple 1.2.3. On définit par exemple l'ensemble (sans intérêt) suivant :

$$A = \{b, aca, abba\}$$

Les définitions extensionnelles ont le mérite d'être pour le moins simples, mais pas super pratiques quand il s'agit de définir des ensembles avec un nombre infini d'éléments, comme l'ensemble des mots de longueur pair.

Définition 1.2.5: Définition intensionnelle d'un ensemble

On définit intensionnellement un ensemble à l'aide d'une propriété que tous ses éléments satisfont. Étant donnés une propriété Q(x) (typiquement représentée sous la forme d'une formule logique) et un ensemble A, on note $\{x \in A \mid Q(x)\}$ l'ensemble des éléments de A qui satisfont P. Si l'ensemble A est évident dans le contexte, on s'abstiendera de le préciser.

Exemple 1.2.4. On peut définir l'ensemble des mots de longueur paire $\{w \in \Sigma^* \mid |w| \ pair \}$.

Si les définitions intentionnelles permettent, contrairement aux extensionnelles, de dénoter des ensembles contenant une infinité de mots, elles sont avant tout un outil théorique. En effet, une propriété comme "|w| paire" ne dit rien à un ordinateur en soi, et doit donc être définie formellement. Se pose alors la question d'un langage pour les propriétés.

Plusieurs logiques équipées des bonnes primitives peuvent être utilisées, mais les traductions sont rarement très agréables. Certaines propriétés nécessitent en effet de ruser contre le langage, voire sont impossibles à formaliser dans certaines logiques. Il existe heureusement un outil qui va nous aider, avec le premier problème du moins.

Expressions régulières

Les expressions régulières permettent définir de façon finie - et relativement intuitive - "la forme" des mots d'un langage, potentiellement infini. On en présentera d'abord le lexique et l'idée générale à l'aide d'exemples, puis on en définira formellement la syntaxe et la sémantique.

2.1 Lexique et idée générale

Une expression rationnelle (ou regex, pour regular expression 1) est, en gros, une forme de mot, écrite à l'aide de lettres et des symboles ., * et +.

2.1.1 Les lettres et ϵ , la base

Les regex sont construites récursivement, en partant bien sûr des cas de base. Étant donné un alphabet Σ , ces derniers sont les différentes lettres de Σ , ainsi que ϵ . Ces regex dénotent chacune un seul mot, la lettre utilisée dans le premier cas, et le mot vide dans le second.

Exemple 2.1.1. La regex a dénote le langage $\{a\}$.

2.1.2 ., la concaténation

On peut heureusement concaténer des regex en utilisant à nouveau le symbole .. La concaténation de deux expressions rationnelles e_1 et e_2 , notée $e_1.e_2$ donc, dénote l'ensemble des mots qui peuvent se décomposer en une première partie "de e_1 " et une deuxième "de e_2 ".

Remarque En pratique, on ne notera pas les . dans les regex, mais quelque chose comme abbc devrait en théorie être lu comme a.b.b.c

Exemple 2.1.2. La regex abca dénote l'ensemble {abca}.

 $^{1.\ {\}rm On}$ se trompera sans doute souvent en parlant d'" expression régulière"

2.1.3 *, l'itération

Le symbole * permet de dire qu'une regex peut être répétée autant de fois que voulu (y compris 0).

Exemple 2.1.3. La regex ab^*c dénote l'ensemble des mots de la forme "un a, puis une série (éventuellement vide) de b, puis un c", c'est-à-dire $\{ac, abc, abbc, abbc, ...\}$

En utilisant des parenthèses, on peut appliquer * à des facteurs entiers :

Exemple 2.1.4. La regex $(aa)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de deux a", c'est-à-dire $\{\epsilon, aa, aaaa, aaaaaa, ...\}$, ou encore les mots composés uniquement de a et de longueur paire.

On peut bien sûr utiliser plusieurs * dans une même expression. Dans ce cas, les nombres de "copies" des facteurs concernés ne sont pas liés, comme l'illustrent les examples suivant :

Exemple 2.1.5. La regex a^*b^* dénote l'ensemble des mots de la forme "Une série (éventuellement vide) de a, puis une série (éventuellement vide) de b", contenant notamment ϵ , a, b, aaab, abbbb, bb, aaa, ab, aabb et aaabb

Exemple 2.1.6. La regex $ab(bab)^*b(ca)^*b$ dénote l'ensemble des mots de la forme "ab, puis une série (éventuellement vide) de bab, puis un b, puis une série (éventuellement vide) de ca, puis un b", contenant notamment abbb, abbabb, abbabb, abbabbabbabbabbabbabbab.

Exercice 2.1.1. Donner 5 autres mots appartenant au langage dénotée par l'expression de l'exemple 2.1.6.

Exercice 2.1.2. Pourquoi le changement de formulation dans les exemples 2.1.5 et 2.1.6 par rapport aux exemples précédents ("c'est à dire $\{x, y, z...\}$ " qui devient "contenant notamment x, y ou z")?

On peut même faire encore plus rigolo, en enchâssant les étoiles :

Exemple 2.1.7. La regex $(a^*b^*)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de [(une série (éventuellement vide) de a] puis [une série (éventuellement vide) de b]]", contenant notamment ϵ , abba; baba ou abbbabba.

Remarque Certaines regex peuvent générer des mêmes mots de plusieurs façons. Si on prend l'expression de l'exemple 2.1.7 et le mot *abbbabba*, on peut la voir comme

Le premier déroulement (on parlera de **dérivation**) semble bien sûr plus "naturel" et optimal que les deux autres. Ils sont pourtant tout aussi valides, et il sera utile en pratique d'éviter des expressions fortement ambiguës comme celle-ci.

2.1.4 +, la disjonction

Le symbole + permet quant à lui de signifier qu'on a le choix entre plusieurs sous-regex.

Exemple 2.1.8. La regex aa + bb dénote l'ensemble $\{aa, bb\}$

Si on a par exemple $\Sigma = \{a, b, c\}$, alors (a + b + c) correspond à "n'importe quelle lettre de l'alphabet". On écrira cette expression plus simplement Σ .

Exemple 2.1.9. L'expression $\Sigma\Sigma\Sigma$, ou Σ^3 , correspond à n'importe quel mot de longueur 3.

La disjonction peut bien sûr se combiner avec *:

Exemple 2.1.10. La regex $(aa)^* + (bb)^*$ dénote l'ensemble des mots composés uniquement de a et de longueur paire, ou uniquement de b et de longueur également paire, par exemple ϵ , aa, bb, aaaa ou bbbbb. La dérivation du dernier mot serait alors de la forme

$$\underbrace{bb\ bb\ bb\ bb}_{(bb)^4}$$

$$\underbrace{(bb)^*}_{(aa)^* + (bb)^*}$$

Exemple 2.1.11. La regex $(aa + bb)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de aa et bb", par exemple aabb, aaaaaaaaaaaa ou bbaabbbbbaa. La dérivation du dernier mot ressemblerait alors à

$$\underbrace{aa + bb}_{aa + bb} \underbrace{aa}_{aa + bb} \underbrace{bb}_{aa + bb} \underbrace{bb}_{aa + bb} \underbrace{aa}_{aa + bb}$$

Exercice 2.1.3. Donner un mot acceptant deux dérivations avec la regex de l'exemple 2.1.10 (justifier en donnant les dérivations). Existe-t-il un autre mot admettant plusieurs dérivations?

Exercice 2.1.4. Existe-t-il un mot acceptant plusieurs dérivations pour la regex de l'exemple 2.1.11?

Exercice 2.1.5. Donner un mot accepté par la regex de l'exemple 2.1.11 mais pas celle de l'exemple 2.1.10. Est-il possible de trouver un mot qui, à l'inverse, est accepté par la deuxième mais pas la première?

Exercice 2.1.6. (*) Exprimer, en langue naturelle et de façon concise, le langage dénoté par la regex de l'exemple 2.1.7. Traduire ensuite ce langage en une regex non-ambiguë, c'est-à-dire où il n'y aura qu'une dérivation pour chaque mot.

Notez que dans l'exemple 2.1.10, on choisit d'abord de composer le mot de a ou de b, puis la longueur. A l'inverse, on choisit dans la regex de l'exemple 2.1.11 la longueur, puis a ou b pour chaque "morceau", et ce, individuellement. Pour mieux comprendre cette différence, il faut s'intéresser formellement à la mécanique des regex, qui se décompose bien évidemment entre syntaxe et sémantique.

2.2 Syntaxe

Les expressions rationnelles ont, comme à peu près tout langage, une structure. Elles sont définies à l'aide de 5 règles, dont 3 récursives, qui correspondent au lexique décrit précédemment :

FIGURE 2.1 – Syntaxe des expression régulières

La figure 2.1 se lit "une expression rationnelle e est

```
soit le symbole \epsilon
```

 $\mathbf{soit}\,$ une lettre appartenant à l'alphabet Σ

soit une expression rationnelle e_1 (définie à l'aide des mêmes règles), suivie de ., puis d'une expression rationnelle e_2

soit une expression rationnelle e_1 , suivie de +, puis d'une expression rationnelle e_2

soit une expression rationnelle e_1 auréolée d'un *

et rien d'autre".

Ces règles de dérivation nous permettent de parser des expressions rationnelles. En notant t() la fonction qui prend une regex et renvoie son arbre syntaxique, on peut la définir à l'aide des 5 règles de la figure 2.1:

- $t(\epsilon)$ renvoie une feuille annotée par ϵ .
- t(a) renvoie une feuille annotée par a.
- $t(e_1.e_2)$ renvoie un noeud . dont les descendants sont les arbres de e_1 et e_2 , comme sur la figure 2.2a
- $t(e_1 + e_2)$ renvoie un noeud + dont les descendants sont les arbres de e_1 et e_2 , comme sur la figure 2.2b
- $t(e_1^*)$ renvoie un noeud * avec un seul descendant, l'arbre de e_1 , comme sur la figure 2.2c

FIGURE 2.2 – Analyse syntaxique récursive de regex

Les règles décrites ci-avant ne disent pas comment parser une expression comme a.b + c. En effet, rien ne dit si elle doit être lue comme (ab) + c ou a.(b+c). Pour éviter d'avoir à mettre des parenthèses absolument partout, on va devoir définir les priorités entre les différentes opérations :

FIGURE 2.3 – Priorités pour les opérateurs d'expressions rationnelles

Concrètement, + < . veut dire qu'une expression comme a.b + c doit être interprétée comme $(a.b) + c^2$. De même, $a.b^*$ se lit $a.(b^*)$, et $a + b^*$ comme $a + (b^*)$.

Maintenant qu'on a les règles de dérivation et les priorités associées, on peut commencer à jouer avec quelques exemples.

Exemple 2.2.1. L'expression rationnelle $(aa)^* + (bb)^*$ peut être parsée comme

FIGURE 2.4 – Analyse syntaxique de $(aa)^* + (bb)^*$

On remarquera bien sûr l'absence habile dans l'exemple 2.2.1 de formes encore problématiques : a+b+c et a.b.c. En effet, rien ne nous dit pour l'instant auquel des arbres de la figure 2.5 la première regex correspond.

Comme on le verra dans la partie sémantique, les symboles + et . sont **associatifs**, ce qui veut dire que, pour toutes expressions e_1 , e_2 et e_3 , $(e_1+e_2)+e_3$ et $e_1+(e_2+e_3)$ ont le même sens 3 , et pareil avec la concaténation. Malgré une méfiance justifiée des arbres ternaires et plus, on se permettra donc d'écrire des expressions ambiguës comme $e_1+e_2+e_3$ ou $e_1e_2e_3$, et de les parser comme dans la figure 2.6

Exemple 2.2.2. L'expression rationnelle (aa(a+b)*bb)* s'analyse comme

- 2. De la même façon que $a \times b + c$ se comprend comme $(a \times b) + c$
- 3. Notez qu'en arithmétique, + et \times sont également associatives

FIGURE 2.5 – Ambiguïté syntaxique de a+b+c

Figure 2.6 – Ambiguïté syntaxique assumée de a+b+c

On a pour l'instant uniquement défini le lexique et la syntaxe des expressions régulières, mais les beaux arbres qu'on est désormais en mesure de constuire n'ont en soi aucun sens, et donc aucun intérêt. Il s'agit donc désormais d'en définir une sémantique.

2.3 Sémantique

Avant de regarder la tuyauterie d'une fonction, il s'agit d'en définir le type. La sémantique des expressions rationnelles, notée $[\![e]\!]$, prend en argument une expression et renvoie un langage, donc un ensemble de mots. Comme pour le parsing, il suffit de définir la sémantique sur les 5 constructeurs des expressions rationnelles pour pouvoir toutes les traiter :

2.3.1 Les cas de base

Ici, pas de surprise, $\llbracket \epsilon \rrbracket = \{ \epsilon \}$ et $\llbracket a \rrbracket = \{ a \}$.

2.3.2 Sémantique de la concaténation

La sémantique de la concaténation repose sur un produit d'ensembles avec la concaténation (cf. définition A.2.2). Formellement, on a

$$\begin{bmatrix} \cdot \\ e_1 & e_2 \end{bmatrix} = \llbracket e_1 \rrbracket . \llbracket e_2 \rrbracket = \{u.v \mid u \in \llbracket e_1 \rrbracket \ \land \ v \in \llbracket e_2 \rrbracket \} = \bigcup_{\substack{u \in \llbracket e_1 \rrbracket \\ v \in \llbracket e_2 \rrbracket}} u.v$$

Concrètement, ça veut dire que la sémantique de la concaténation de deux regex est la concaténation des sémantiques de e_1 et e_2 , c'est-à-dire l'ensemble des combinaisons d'un mot de $[e_1]$ concaténé à un mot de $[e_2]$. La notation $\bigcup_{u \in [e_1]} u.v$ est analogue une double boucle sur les éléments de $v \in [e_2]$

 $\llbracket e_1 \rrbracket$ et $\llbracket e_2 \rrbracket$, comme dans le pseudocode python suivant :

```
s = set()
for u in e1:
    for v in e2:
        s.add(u.v)
return s
```

Exemple 2.3.1. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression ab est

$$\begin{bmatrix} \dot{} \\ \mathbf{a} & \mathbf{b} \end{bmatrix} = \bigcup_{\substack{u \in [a] \\ v \in [b]}} u.v = \bigcup_{\substack{u \in \{a\} \\ v \in \{b\}}} u.v = \{a.b\} = \{ab\}$$

L'exemple n'est pas renversant, mais permet d'illustrer l'aspect purement systémique et récursif de la sémantique. Pour des exemples plus intéressants, on va avoir besoin d'ajouter des constructeurs à la sémantique.

2.3.3 Sémantique de la disjonction

Formellement, on a

$$\begin{bmatrix} + \\ \\ e_1 & e_2 \end{bmatrix} = \llbracket e_1 \rrbracket \cup \llbracket e_2 \rrbracket$$

Concrètement, ça veut dire que la sémantique de la disjonction de deux regex est l'union des sémantiques de e_1 et e_2 , c'est-à-dire l'ensemble des mots qui apparaissent dans $[e_1]$ ou (inclusif) $[e_2]$.

Remarque A partir d'ici et pour des raisons de mise en page, on ne mettra pas forcément tout sous forme d'arbres dans les exemples, et on comptera sur la capacité du lecteur ou de la lectrice

à parser automatiquement toute expression rationnelle qu'il ou elle lit. Ne vous y trompez pas cependant : l'analyse sémantique s'opère bien sur un arbre plutôt que sur une expression "plate".

Exemple 2.3.2. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression a(b+c) est

$$\begin{bmatrix} & \cdot & \\ & a & + \\ & & & \\ & & b & c \end{bmatrix} = \bigcup_{\substack{u \in [a] \\ v \in [b+c]}} u.v = \bigcup_{\substack{u \in \{a\} \\ v \in [b] \cup [c]}} = \bigcup_{\substack{u \in \{a\} \\ v \in \{b,c\}}} u.v = \{a.b,a.c\} = \{ab,ac\}$$

Exemple 2.3.3. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression (a + b)(b + a) est

$$\begin{bmatrix} & \ddots & \\ & + & + \\ & & & \\ \mathbf{a} & \mathbf{b} & \mathbf{b} & \mathbf{a} \end{bmatrix} = \bigcup_{\substack{u \in [\![a+b]\!] \\ v \in [\![b+a]\!]}} u.v = \bigcup_{\substack{u \in [\![a]\!] \cup [\![b]\!] \\ v \in [\![b]\!] \cup [\![a]\!]}} = \bigcup_{\substack{u \in \{a,b\} \\ v \in \{b,a\}}} u.v = \{a.b, a.a, b.b, b.a\} = \{ab, aa, bb, ba\}$$

Il ne nous manque maintenant que le plus ésotérique des constructeurs.

2.3.4 Sémantique de l'itération

Formellement, on a

$$[\![e^*]\!] = [\![e]\!]^* = \bigcup_{n \in \mathbf{N}} [\![e]\!]^n = \{[\![e]\!]^0, [\![e]\!]^1, [\![e]\!]^2, [\![e]\!]^3 \ldots \}$$

Concrètement, on fait l'union de $[e]^n$ pour tous les entiers n, $[e]^n$ étant n mots de [e] concaténés.

Exemple 2.3.4. La sémantique de l'expression $a(aa + bb)^*a$ est

2.4 Mise en application

On a abordé les expressions régulières sous un angle très théorique, mais on leur trouve bien sûr des applications concrètes.

2.4.1 Quelques astuces

On présente d'abord, sous forme d'exercices (corrigés dans un autre document), quelques astuces classiques, susceptibles d'aider les TAListes dans leurs futures oeuvres.

Exercice 2.4.1. Donner une regex pour les mots qui commencent par a.

Exercice 2.4.2. Donner une regex pour les mots qui finissent par b.

Exercice 2.4.3. Donner une regex pour les mots qui commencent par a finissent par b.

Exercice 2.4.4. Donner une regex pour les mots de longueur paire.

Exercice 2.4.5. Donner une regex pour les mots de longueur impaire qui contiennent au moins 4 lettres.

Exercice 2.4.6. Donner une regex pour les mots de longueur impaire, qui contiennent au moins 4 lettres, commencent par a et finissent par b.

2.4.2 Syntaxe en pratique

Les expressions régulières dans Unix, Python & cie utilisent une syntaxe différente, et surtout plus étendue que celle que l'on vient d'étudier. Celà est dû aux besoins différents que l'on a entre la théorie et la pratique.

Dans la théorie, on veut définir nos objets de façon minimale, c'est-à-dire avec le moins de symboles et de règles possible, afin d'en simplifier l'étude. Par exemple, le peu de règles permet une définition légère de la sémantique formelle des *regex*. De la même façon, toute preuve à leur propos en sera tout autant simplifiée :

Théorème 1. $\forall e, \exists w \in \llbracket e \rrbracket$, cad. que toute expression rationnelle dénote au moins un mot.

Démonstration. On procède par induction structurelle sur l'expression rationnelle e :

- Si $e = \epsilon$, alors $[e] = {\epsilon}$, qui contient bien un mot $(\epsilon \text{ donc})$
- Si e = a, alors $[e] = \{a\}$, qui contient bien un mot (a)
- Si $e = e_1 + e_2$, alors $[e] = [e_1] \cup [e_2]$. Par hypothèse d'induction, $[e_1]$ contient un mot w_1 et $[e_2]$ contient w_2 . [e] contient donc non pas un, mais au moins deux mots.
- Si $e = e_1.e_2$, alors $[e] = [e_1]$. $[e_2]$. Par hypothèse d'induction, $[e_1]$ contient un mot w_1 et $[e_2]$ contient w_2 . [e] contient donc un mot, w_1w_2 .

— Si $e = e_1^*$, alors $\llbracket e \rrbracket$ contient ϵ .

Dans la pratique, on préfère ne pas avoir à réinventer la roue chaque matin, la syntaxe des regex y est donc étendue. Ces extensions ne changent rien au fond, dans le sens où elles n'ajoutent pas

en expressivité. En effet, les nouveaux symboles peuvent tous être codés avec ceux de la syntaxe minimale :

-e?, ou "e une ou zéro fois", peut être codée comme $(e+\epsilon)$ -e+, ou "e au moins une fois", peut être codée comme ee^* remarque On trouve régulièrement cette notation dans la littérature académique sous la forme e^+ . Le e_1+e_2 qu'on a vu est lui, pour le coup, écrit $e_1|e_2$ en pratique. $-e\{n\}$, ou "e exactement n fois" peut être simplement traduite en $\underbrace{eee...eee}_{n \text{ fois}}$ $-e\{n,\}$, ou "e au moins n fois" peut être simplement traduite en $\underbrace{eee...eee}_{n \text{ fois}}$ $-e\{n,m\}$, ou "e entre n et m fois" peut se traduire $\underbrace{eee...eee}_{n \text{ fois}}$

Les traductions proposée ici ne correspondent pas forcément à ce qui se passe concrètement dans les bibliothèques de *regex* des différents langages de programmation (la dernière en particulier semble très ambigüe, et donc inefficace). L'objectif est seulement de montrer que les ajouts à la syntaxe n'ent modifient pas l'expressivité, et qu'il s'agit seulement de ce qu'on appelle du **sucre syntaxique**.

2.4.3 Calcul de l'appartenance

Soit l'expression rationnelle $e = ((\Sigma^*baaba^+)^*baa(abba)^+ba(bb)^*a)^*$, il n'est (normalement) pas totalement évident de déterminer automatiquement si un mot donné appartient à sa sémantique (on pourra se convaincre en essayant à la main avec par exemple baabbaaabaabababaaa). Or, pour mettre en application les expressions rationnelles ⁴, on va avoir besoin d'un tel algorithme. On pourrait par exemple instancier e de toutes les façons possibles en bornant les étoiles par la longueur du mot donné, mais la complexité d'une telle procédure n'est pas réaliste. Un algorithme plus raisonnable va nous être fourni via les **automates finis**.

^{4.} Notamment pour en repérer des occurences dans du texte

Automates finis

Les automates forment un langage de programmation un peu particulier, en ce qu'il est très visuel (chaque programme est un graphe annoté, ou plus prosaïquement des ronds et des flèches) et que tout programme a le même type : un mot en entrée, un booleen en sortie. Un automate définit donc un langage en donnant un moyen automatique de déterminer si n'importe quel mot donné en fait partie ou non ¹.

Les automates se divisent en de nombreuses sous-catégories, dont certaines ramifications seront explorées dans ce cours. On verra d'abord le fonctionnement général des automates finis déterministes (3.1) et non-déterministes (3.2), en allant à chaque fois du général au technique. On verra ensuite des algorithmes pour transformer (3.3) des automates. On étudiera enfin les combinaisons d'automates, et donc les propriétés de clôture des langages qu'ils définissent (3.4).

3.1 Automates finis déterministes

On introduit les Automates finis déterministes, noté AFD (ou DFA, pour deterministic finite $automaton^2$), avant d'en étudier la formalisation.

3.1.1 Principe général

Imaginez que vous développiez un jeu d'infiltration. Dans ce jeu, le comportement des méchants gardes ressemblerait sans doute à la figure 3.1.

Ce qu'est censé traduire ce graphe, c'est qu'un garde commence (la \rightarrow sur sa gauche) dans un **état** qui est le dodo, et que différents événements (un bruit, un ennemi trouvé ou non, ou encore tué) vont le faire changer d'**état**. Un AFD fonctionne sur un principe similaire ³, mais où les transitions sont déclenchées par la lecture de lettres : un AFD, en partant d'un état initial, lit le mot donné en argument lettre par lettre et, à chaque lecture, change d'état en fonction de la lettre.

^{1.} En ce sens, les automates sont des fonctions caractéristiques, qui sont aux ensembles ce que les videurs sont aux boîtes de nuit.

^{2.} Notez qu'on parle d'automaton au singulier et d'automata au pluriel

^{3.} Les AFD sont en fait des cas particuliers de Machines à états finis, qui sont effectivement employées dans la conception de jeux vidéo

FIGURE 3.1 – Comportement des gardes d'un jeu imaginaire

Exemple 3.1.1. L'automate de la figure 3.2 contient trois états, appelés 0, 1 et 2. La lecture de tout mot commence en 0, appelé état initial. Si on lui passe le mot abbaaba en argument, la première lettre (a) va nous faire passer de l'état 0 à 1. La deuxième lettre (b) nous refait passer en 0. La troisième (b) nous y fait rester. Les deux lettres suivantes nous font ensuite passer en 1 puis en 2. Les deux dernières lectures nous font rester en 2 (la virgule est à comprendre comme une disjonction, cad. comme un "ou").

Figure 3.2 – Un premier automate

Comme dit en introduction, un automate accepte ou rejette tout mot donné. Certains états, notés par une douche couche, sont appelés états finaux (ou terminaux). Un mot est accepté par un automate si et seulement si le parcours de ce mot dans l'automate se termine sur un état final.

Exemple 3.1.2. L'automate de la figure 3.2 accepte le mot abbaaba, puisqu'il nous fait passer de l'état initial 0 à 2, qui est un état final. Il n'accepte en revanche pas les mots bbaba (état 1), babbab ou ϵ (état 0 tous les deux).

Exercice 3.1.1. Les mots abbaba, ababbaab et abba sont-ils acceptés par l'automate de la figure 3.2?

Exercice 3.1.2. Quel est le langage reconnu, cad. l'ensemble des mots acceptés, par l'automate de la figure 3.2? Donner la réponse en français et sous forme d'expression rationnelle.

Remarque Un automate ne contient pas toujours une transition pour chaque couple d'état / lettre, auquel cas il est dit **incomplet**. Si un automate ne contient pas de chemin correspondant à un mot, ce dernier est rejetté.

Exemple 3.1.3. L'automate de la figure 3.3 rejette le mot aba, car il n'y a pas de transition partant de l'état 1 pour la lettre b.

Figure 3.3 – Un automate incomplet

Exercice 3.1.3. Les mots bbbaababbaaba, bbabaab et baaaaaab sont-ils acceptés par l'automate de la figure 3.3?

Exercice 3.1.4. Quel est le langage reconnu par l'automate de la figure 3.3? Donner la réponse en français et sous forme d'expression rationnelle.

Il nous semble important d'insister sur le point suivant : de la même façon qu'un programme devrait la traduction d'une logique sous-jacente plutôt qu'un bidouaille fait à la va-vite, les états d'un automate ont un sens. Avant d'écrire un automate, il convient donc de réfléchir quelles sont les informations à retenir au cours de la lecture du mot. Si la bonne réponse est trouvée, le reste de l'automate devrait s'écrire seul.

Exemple 3.1.4. On veut écrire un automate reconnaissant le langage $L = \{w \in \Sigma^* \mid |w|_a \text{ pair } et |w|_b \text{ impair}\}$, cad. l'ensemble des mots avec un nombre pair de a et impairs de b⁴.

Il n'est pas question de compter les a et les b comme on pourrait naïvement l'imaginer, non seulement puisqu'il faut se contenter d'un nombre fini d'états, mais aussi parce que c'est beaucoup plus d'information que nécessaire. Les seules données qui nous intéressent sont en effet la parité du nombre de a et du nombre de b du mot donné : a^2b comme $a^{26}b^{131}$ sont équivalents dans leur appartenance à L.

Le nombre de a et de b étant tous les deux pairs ou impairs, on a 4 possibilités. Nos états s'appeleront PP (nombre de a pair et nombre de b pair), PI (a pair et b impair), IP et II. La définition de L nous dit immédiatement que seul PI devrait être terminal. L'état initial devrait être celui qui correspond à ϵ , cad. PP.

Les transitions s'écrivent naturellement : en partant de PP, la lecture d'un a change la parité du nombre de a mais pas celle du nombre de b, et nous emmène donc vers IP, tandis que b pointe vers PI, et ainsi de suite. S'il y a d'autres lettres dans l'alphabet, elles devraient faire des boucles, puisqu'elles ne changent rien aux parités qui nous intéressent.

Au final, on obtient l'automate suivant :

^{4.} On conseillera tout d'abord au lecteur ou à la lectrice de tenter lui/elle-même l'exercice, afin de mesurer la pertinence de l'approche ici présentée

Exercice 3.1.5. (**) En reprenant l'exemple 3.1.4, montrer que $\forall w, w \in L \leftrightarrow$ l'automate accepte w. Vous pouvez procéder par induction sur w, en utilisant un objectif un peu plus précis que celui fourni.

Dans la série d'exercices qui suit, on utilisera comme alphabet $\Sigma = \{a, b\}$.

Exercice 3.1.6. Donner un automate qui reconnaît le langage $\{w \in \Sigma^* \mid |w| \geq 3\}$.

Exercice 3.1.7. Donner un automate pour les mots qui commencent par a.

Exercice 3.1.8. Donner un automate pour les mots qui finissent par b.

Exercice 3.1.9. Donner un automate pour les mots qui commencent par a finissent par b.

Exercice 3.1.10. Donner un automate pour les mots de longueur paire.

Exercice 3.1.11. Donner un autuomate pour les mots de longueur impaire qui contiennent au moins 4 lettres.

Exercice 3.1.12. Donner un automate pour les mots de longueur impaire, qui contiennent au moins 4 lettres, commencent par a et finissent par b.

3.1.2 Formalisation et implémentation

Un automate fini déterministe est un 5-uplet (cad. un "paquet" qui contient 5 éléments ordonnés)

$$\langle Q, \Sigma, q_0, F, \delta \rangle$$

avec

Q ensemble fini d'états

 Σ l'alphabet

 q_0 l'état initial

 $F \subseteq Q$, les états terminaux δ fonction partielle 5 de $Q \times \Sigma$ dans Q

^{5.} Une fonction partielle est une fonction qui n'attribue pas forcément une image à tout argument. Dans le cas d'un automate complet, la fonction de transition est donc une fonction totale.

La fonction δ est alors *liftée* aux mots ⁶ pour obtenir la fonction $\delta^*:(Q\times\Sigma^*)\to Q$ définie de la façon suivante :

```
— \delta^*(q, \epsilon) = q
— \delta^*(q, a.w) = \delta^*(\delta(q, a), w) (a est une lettre et w un mot, éventuellement vide)
```

Plus prosaïquement, la fonction δ^* applique δ sur w, lettre par lettre, de la gauche vers la droite. Dans ce cadre, on dit qu'un mot w est **reconnu** (ou accepté) par l'automate ssi. $\delta^*(q_0, w) \in F$. Dit encore autrement, un mot est accepté ssi en partant de l'état initial de l'automate et en suivant les transitions correspondant aux lettres successives du mot on finit dans un état terminal.

La définition de δ^* donne quasiment directement une implémentation de la reconnaissance via automate fini déterministe :

```
state = q_0
for c in w:
    state = delta(state,c)
return (state in F)
```

FIGURE 3.4 – Reconnaissance par un AFD

Exemple 3.1.5. L'automate de la figure 3.2 se formalise de la façon suivante :

```
\begin{array}{l} -- Q = \{0,1,2\} \\ -- \Sigma = \{a,b\} \\ -- q_0 = 0 \\ -- F = \{2\} \\ -- \delta(0,a) = 1; \delta(0,b) = 0; \delta(1,a) = 2; \delta(1,b) = 0; \delta(2,a) = 2; \delta(2,b) = 2 \end{array}
```

On peut vérifier qu'il accepte bien le mot abbaaba (lecture comme une BD) :

```
\delta^*(0, abbaaba)
                               \delta^*(\delta(0,a),bbaaba)
                                                                    \delta^*(1,bbaaba)
                              \delta^*(\delta(1,b),baaba)
                                                                   \delta^*(0,baaba)
                             \delta^*(\delta(0,b),aaba)
                                                            = \delta^*(0, aaba)
                        = \delta^*(\delta(0,a),aba)
                                                            = \delta^*(1, aba)
                        = \delta^*(\delta(1,a),ba)
                                                             =\delta^*(2,ba)
                        = \delta^*(\delta(2,b),a)
                                                             =\delta^*(2,a)
                                                                    \delta^*(2,\epsilon)
                               \delta^*(\delta(2,a),\epsilon)
                                                                    2 \in F
```

Exercice 3.1.13. Donner la formalisation de l'automate de l'exemple 3.1.4 et vérifier qu'il accepte le mot aababba.

On a introduit en 2.4.3 l'expression rationnelle $e = ((\Sigma^*baaba^+)^*baa(abba)^+ba(bb)^*a)^*$, qu'on était censé traduire en programme via les automates finis. Or, la traduction en AFD n'est à priori pas si évidente que ça (on conseille à nouveau d'essayer pour se rendre compte de la difficulté), du fait du haut niveau de non-déterminisme dans la regex. On va donc avoir besoin d'un modèle un peu plus permissif.

^{6.} On dit qu'une fonction est liftée lorsqu'on "soulève" le type d'un ou plusieurs de ses arguments, pour qu'elle s'applique par exemple à des listes ou des ensembles. Typiquement, si on a une fonction f de type $\mathbb{N} \to \mathbb{N}$, alors sa version liftée aux listes, étant donnée une liste $[a_1,...,a_n]$, renverra $[f(a_1),...,f(a_n)]$.

3.2 Automates finis non-déterministes

Les automates finis qu'on a vus jusqu'ici sont déterministes, en ce qu'un automate admet au maximum une seule transition par lettre, et donc que tout mot n'a lui-même pas plus d'un chemin. On va ici voir une nouvelle classe d'automates, les automates finis non-déterministes (AFND, ou NDFA pour non-deterministic finite automaton/a), qui vont justement nous libérer de cette contrainte.

3.2.1 Principe général

Le non-déterminisme se manifeste de deux facons. On a d'abord les ϵ -transitions, qui seront étudiées à part dans le cadre d'un DM. Ici, on se concentrera sur la possibilité d'avoir plusieurs transitions pour le même couple état × lettre, ainsi que plusieurs états initiaux.

On peut donc maintenant avoir dans un automate plusieurs chemins pour un même mot, chemins qui vont chacun mener ou non à un état terminal. On accepte tout mot qui mène à un état terminal via au moins un chemin.

Exemple 3.2.1. Le langage des mots qui contiennent le facteur aba, dénoté par la regex Σ^* aba Σ^* , est reconnu par l'automate suivant :

Si on regarde par exemple le mot aabab, il dispose de 3 parcours dans l'automate:

On peut aussi passer dans l'état 1 avec le premier a, mais il sera alors impossible de lire l'entiéreté du mot (le deuxième a n'aura pas de transition).

Des trois chemins possibles, un seul mène à un état terminal. C'est néanmoins suffisant pour que le mot soit accepté. A l'inverse, le mot abbaabbaaabba, bien que pouvant faire de très nombreux chemins dans l'automate, n'est pas accepté car aucun ne finit en 3

Un tel automate a l'avantage de reconnaître très clairement le langage $\Sigma^*aba\Sigma^*$. On peut par exemple le comparer à sa version déterministe qui, malgré la simplicité du langage, perd déjà pas mal en lisibilité:

La grande différence entre les deux automates est que le premier utilise le non-déterminisme pour être une transcription directe de la regex, là où le deuxième se bat avec le déterminisme pour reconnaître le langage de façon presque "accidentelle". En un sens, on est passé du domaine de la spécification à l'implémentation. La mauvaise nouvelle, c'est que les automates non-déterministes sont plus compliqués à mettre en pratique, du fait - ô surprise - du nondéterminisme, qui impose de tester énormément de chemins. La bonne nouvelle, c'est que, comme on va le voir en 3.3.2, on peut traduire automatiquement les automates non-déterministes en au-

tomates déterministes équivalents ⁷, avec bien sûr un certain coût. Mais avant de plonger dans ces histoires, on va voir encore quelques exemples d'AFND, et en étudier la formalisation.

Exemple 3.2.2. On veut reconnaître le langage des mots qui contiennent le facteur aba ou (inclusif) bab. On peut exploiter la possibilité d'avoir plusieurs états initiaux, et tout simplement produire l'automate suivant :

On notera bien sûr la symétrie entre l'automate ci-dessus, et la regex $\Sigma^*aba\Sigma^* + \Sigma^*bab\Sigma^*$.

On peut aussi tenter d'être un poil plus malin, se rendre compte que les états 0 et 4 ont le même **rôle**, que les états 3 et 7 aussi, et donc qu'on peut réduire le nombre d'états en les fusionnant :

^{7.} Pour se rendre compte du miracle que c'est, on peut comparer aux langages de programmation classiques. Ce n'est pas parce qu'on a spécifié formellement, par exemple, le tri d'une liste (ce qui est déjà surprenamment non-trivial) qu'on peut automatiquement obtenir un programme réalisant cette tâche. Même une fois qu'on a codé un tel programme, selon l'algorithme chopisi, il n'est pas forcément aisé de se convaincre qu'il est correct, et encore moins de le prouver formellement. Il est donc assez cool que tout ce passage de la spécification (la regex) à une représentation intermédiaire (l'automate non-déterministe) à l'implémentation (le déterministe) soit automatique et sûre.

Cette notion d'états équivalents et fusionnables sera formalisée en 3.3.3. On remarquera (à nouveau) la symétrie entre cet automate et la regex $\Sigma^*(aba + bab)\Sigma^*$.

Exercice 3.2.1. Donner une regex et un automate fini pour le langage $L = \{w \mid aba \text{ est un sous-mot } de w\}.$

Exercice 3.2.2. Donner une regex et un automate fini pour le langage des mots qui commencent par ab et finissent par ba.

3.2.2 Formalisation et implémentation

Les automates non-déterministes sont une généralisation 8 des automates déterministes, où

- L'état initial q_0 est remplacé par un ensemble d'états initiaux $I\subseteq Q$
- La fonction de transition δ change de type, en passant de $(Q \times \Sigma) \to Q$ à $(Q \times \Sigma) \to P(Q)^9$. Dit autrement, étant donnés un état $q \in Q$ et une lettre $c \in \Sigma$, on a (potentiellement) accès à un ensemble d'états plutôt qu'à un seul.

Puisqu'on a changé le type δ , on doit également changer son lift δ^* , qui renvoie maintenant un ensemble d'états et est donc de type $(Q \times \Sigma^*) \to P(Q)$:

$$\begin{array}{ll} & - & \delta^*(q,\epsilon) = \{q\} \\ & - & \delta^*(q,a.w) = \bigcup_{q' \in \delta(q,a)} \delta^*(q',w) \end{array}$$

Il nous reste à vérifier que l'ensemble d'états atteignales contient un état terminal. Un AFND accepte donc un mot w ssi. $\exists q \in ((\bigcup_{q_i \in I} \delta^*(q_i, w)) \cap F)$.

Pour ce qui est de la mise en application de δ^* , on est cette fois face à un parcours d'arbres (l'ensemble des chemins) plutôt que d'une liste, comme dans la version déterministe. On adapte donc l'annexe A.3.1 :

^{8.} En effet, un AFD peut-être vu comme un AFND qui se trouve être ... déterministe. Rien dans la définition d'un AFND n'impose que le non-déterminisme permis par le changement de type de δ soit exploité, et on peut donc très bien avoir $|\delta(q,c)| \le 1 \ \forall q \in Q$ et $\forall c \in \Sigma$.

^{9.} Pour rappel, P(Q) est l'ensemble des sous-parties de Q, cad. l'ensemble des ensembles d'états, cf A.2.1.

```
# fonction ndfa_acc(auto,w)
# renvoie true ssi. l automate auto accepte le mot w
todo = stack()
// On va empiler des couples etat x mot qu il faut tester
// On commence par se noter tous les etats initiaux
for i in initial(auto):
    todo.add(i,w)
while (todo pas vide):
    (q, mot) = todo.pop()
    // Si on a fini de lire le mot et qu on est
    // arrive sur un etat final, on accepte
    // Si l etat n est pas final, on ne renvoie
    // pas false, car il peut rester des chemins
    // qu il faut tester
    if mot is empty et q in F:
        return true
    elif mot is a.reste:
        // On continue la lecture du mot avec
        // chaque etat qu on peut atteindre
        // avec la premiere lettre
        next_states = delta(q,a)
        for suivant in next_states:
            todo.add(suivant, reste)
\ensuremath{//} Si on n a au final rien trouve, on dit non
return false
```

Figure 3.5 – Reconnaissance par un AFND - version iterative

```
# fonction ndfa_acc_bis(auto,w,q)
# renvoie true ssi. l automate auto accepte le mot w en partant de l etat q
if w is empty:
    return q in F
elif w is a.reste:
    for suivant in delta(q,a):
        if ndfa_acc_bis(auto,reste,suivant):
            return true
    return false

# fonction ndfa_acc(auto,w)
# renvoie true ssi. l automate auto accepte le mot w
for i in initial(auto):
    if ndfa_acc_bis(auto,w,i):
        return true
return false
```

Figure 3.6 – Reconnaissance par un AFND - version récursive

3.3 Transformation d'automates

La formalisation très limitée et simple des automates en fait des programmes particulièrement simple à manipuler, comme l'illustrent les algorithmes de transformation d'automates présentés ici.

3.3.1 Complétion

On peut facilement compléter un automate en rajoutant un état "poubelle", non terminal et bouclant, qui absorbera tous les transitions ajoutées.

Exemple 3.3.1. Si on complète l'automate de la figure 3.3, on rajoute un état P qui boucle sur lui-même. Il manquait dans l'automate uniquement une b-transition partant de l'état 1. On rajoute donc $1 \xrightarrow{b} P$, et on obtient

FIGURE 3.7 – Un automate complété

Exercice 3.3.1. Compléter le premier automate de l'exemple 3.2.2.

On peut se convaincre assez facilement que la complétion ne change pas le langage reconnu par un automate : un parcours prend de nouvelles transitions ssi. il ne pouvait aller jusqu'au bout dans l'automate initial. Dans les deux cas, le mot associé n'est pas accepté, puisqu'on boucle sur un état non-terminal dans le premier cas, et on "plante" dans le second.

Cette transformation se formalise également assez facilement. Soit un automate déterministe $\langle Q, \Sigma, q_0, F, \delta \rangle$, alors on renvoie l'AFD $\langle Q \cup \{P\}, \Sigma, q_0, F, \delta' \rangle$, avec

$$\begin{cases} \delta'(q,a) = \delta(q,a) & \text{si } \delta(q,a) \text{ défini,} \\ \delta'(q,a) = P & \text{si } \delta(q,a) \text{ non défini,} \\ \delta'(P,a) = P & \text{pour tout } a \in \Sigma \end{cases}$$

Notez qu'on met les cas $\delta'(P,a)$ à part, car (on suppose) $P \notin Q$, ce qui implique que $\delta(P,a)$ n'a pas de sens.

Exercice 3.3.2. Donner la formalisation de la complétion d'un automate non-déterministe.

3.3.2 Déterminisation

L'algorithme présenté ici prend en entrée un AFND et renvoie un AFD reconnaissant le même langage. L'idée est que l'AFD va simuler le comportement de l'AFND, et donc, étant donné un mot, que le (seul) parcours dans l'AFD va représenter tous ceux dans l'AFND.

Pour ça, l'ensemble d'états de l'AFD va être l'ensemble des combinaisons d'états de l'AFND. Par exemple, si on a dans ce derniers deux états initiaux i_1 et i_2 , l'automate initial de l'AFD sera l'état $\{i_1, i_2\}$. Supposons de plus que les transitions partant de i_1 et i_2 sont les suivantes :

- $\begin{array}{ll} -& i_1 \xrightarrow{a} q_1 \\ -& i_1 \xrightarrow{a} q_2 \\ -& i_2 \xrightarrow{a} q_1 \\ -& i_2 \xrightarrow{a} q_3 \end{array}$

Tout mot commençant par a lu par l'AFND peut donc faire son premier saut en q_1 , q_2 ou q_3 . On ajoute donc à l'AFD la transition $\{i_1, i_2\} \xrightarrow{a} \{q_1, q_2, q_3\}$, et ainsi de suite.

Arriver, après lecture d'un mot, dans un état X de l'AFD signifie donc que, dans l'AFND, on peut atterir dans chacun des états contenus dans X après la lecture du même mot. Puisqu'un AFND accepte quand au moins un des parcours termine sur un état terminal, tout état de l'AFD contenant un état terminal est lui-même terminal.

Exemple 3.3.2. Si on essaye de déterminiser l'automate de l'exemple 3.2.1, on obtient

On notera une grande proximité avec la déterminisation "à la main" qu'on avait initialement faite dans l'exemple. En effet, on a les correspondances suivantes entre les états:

- $-0 \approx 0$
- $-1 \approx 0,1$
- $-2 \approx 0,2$
- $-3 \approx 0, 1, 3 + 0, 2, 3 + 0, 3$

Exercice 3.3.3. Déterminiser le premier automate de l'exemple 3.2.2. (la correction de cet exercice contient, contrairement à l'exemple ci-dessus, quelques étapes intermédiaires).

La déterminisation se formalise aussi assez bien en termes de définitions. Soit un automate $\big\langle Q, \Sigma, I, F, \delta \big\rangle,$ alors on renvoie l'automate $\big\langle \mathrm{P}(\mathbf{Q}), \Sigma, \bigcup_{i \in I} i, F', \delta' \big\rangle, avec$

$$\delta'(X, a) = \bigcup_{q \in X} \delta(q, a)$$

$$F' = \{ X \in P(Q) \mid X \cap F \}$$

Notez que suivre cette définition génère un automate qui contient tout un tas d'états qui vont être inatteignables, et donc ne servir à rien. En l'appliquant sur l'exemple 3.3.2, on devrait notamment produire les états $\{1,2\}$ ou $\{2,3\}$. En pratique, on préfèrera donc suivre l'algorithme présenté avec les mains, qui consiste à partir de l'état initial et d'ajouter les états / transitions au fur à mesure, jusqu'à atteindre un point fixe.

Il s'agit d'un résultat extrêmement important de la théorie des automates, notamment en ce qu'il nous permet d'utiliser amplement le non-déterminisme dans nos conceptions d'automates, ce dernier pouvant être éliminé par cet algorithme. Cette transformation a cependant un coût, qui peut être très élevé. En effet, le lemme 8 implique que la déterminisation d'un automate à n états peut en avoir jusqu'à 2^n .

On peut commencer à voir pourquoi en re-regardant l'exemple 3.3.2, où on a 3 états terminaux alors qu'un seul serait suffisant : une fois qu'on a atteint l'état $\{0,1,3\}$, on ne fait que tourner entre trois états terminaux, ce qui veut dire que n'importe quel (reste de) mot sera accepté. L'algorithme de déterminisation ne s'intéresse pas au rôle des états (il est **syntaxique**, et non **sémantique**), et ne voit donc pas qu'une fusion est ici possible. De telles optimisations vont cependant nous être fournies par le prochain algorithme.

3.3.3 Minimisation

On a dit dans l'exemple 3.3.2 que plusieurs états avaient le même rôle et pouvaient être fusionnés. On va ici présenter un algorithme qui prend en entrée un automate déterministe complet ¹⁰ et en classe les états selon leur rôle, ce qui permet ensuite de fusionner à l'intérieur de chaque classe. On obtient alors un automate reconnaissant le même langage que celui en entrée, mais de façon minimale (par rapport au nombre d'états). On va présenter l'algorithme *via* l'exemple suivant :

Exemple 3.3.3. Soit l'automate suivant :

On disait plus haut qu'on veut regrouper les états selon leur rôle. Le rôle d'un état q est l'ensemble des mots qu'il accepte, cad. l'ensemble des mots qui vont de q à un état terminal, ou $\{w \mid \delta^*(q,w) \in F\}$. On va partir d'un regroupement très approximatif, et affiner petit à petit.

^{10.} Ce qui, grâce aux deux algorithmes précédents, sont des hypothèses gratuites.

Pour commencer, on peut séparer les états terminaux des non-terminaux en deux sous-ensembles, ou classes. En effet, les premiers acceptent le mot ϵ alors que les seconds non. On divise donc notre ensemble d'états en $T=\{4\}$ et $N=\{0,1,2,3\}$. On ne va manifestement pas pouvoir affiner T, contrairement à N. Pour ça, on va regarder toutes les paires d'états de N et, à chaque fois, vérifier si les deux états ont des désaccords en lisant a ou b:

- 0 vs. 1
 - $\delta(0,a) = 1$ et $\delta(1,a) = 3$. Pour l'instant, 1 et 3 appartiennent tous les deux à N, ce qui veut dire qu'on suppose que 1 accepte un mot w ssi. 3 accepte w. On peut donc conclure que, de ce qu'on sait, 0 accepte un mot a.w ssi. 1 accepte a.w.
 - $\delta(0,b) = 0$ et $\delta(1,b) = 2$. 0 et 2 appartiennent à la même classe, on suppose donc pour l'instant que 0 accepte un mot b.w ssi. 1 accepte un mot b.w.
 - \Rightarrow Pour l'instant, on conserve notre hypothèse selon laquelle 0 et 1 acceptent le même langage.
- 0 vs. 2
 - $\delta(0,a) = 1$ et $\delta(2,a) = 3$, 1 et 3 sont dans la même classe.
 - $-\delta(0,b)=0$ et $\delta(2,b)=2$. 0 et 2 appartiennent à la même classe.
 - \Rightarrow Pour l'instant, on conserve notre hypothèse selon laquelle 0 et 2 acceptent le même langage.
- 0 vs. 3
 - $\delta(0,a)=1$ et $\delta(3,a)=4$, 1 et 4 ne sont pas dans la même classe, ce qui veut dire qu'il existe un mot w^{11} sur lequel 1 et 4 ne sont pas d'accord, dans le sens où 1 accepte w alors que 4 non, ou l'inverse. On en déduit donc que 0 et 3 sont en désaccord sur a.w. Puisqu'ils sont en désaccord, ils ne devraient pas être dans la même classe.
 - \Rightarrow Pas besoin de tester avec b, on sait déjà qu'on va séparer 0 et 3.
- 1 vs. 2
 - $\delta(1,a) = 3$ et $\delta(2,a) = 3$, pas de souci.
 - $\delta(1,b) = 2 \text{ et } \delta(2,b) = 1, \text{ idem.}$
 - \Rightarrow On garde 1 et 2 dans la même classe.
- 1 vs. 3
 - $\delta(1, a) = 3$ et $\delta(3, a) = 4$.
- \Rightarrow 3 et 4 ne sont pas dans la même classe, on doit donc séparer 1 et 3.
- 2 vs. 3
 - $-\delta(2,a) = 3 \text{ et } \delta(3,a) = 4.$
 - ⇒ 3 et 4 ne sont pas dans la même classe, on doit donc les séparer.

Si on résume ce premier tour de manège, 3 est en désaccord avec 0, 1 et 2, mais ces trois restent compatibles. On divise donc N entre $N_1 = \{0, 1, 2\}$ et $N_2 = \{3\}$. Puisqu'on a scindé une classe en deux, les résultats de certains "duels" peuvent avoir changé. On refait donc une passe sur N_1 :

```
 \begin{array}{l} - \ 0 \ \text{vs.} \ 1 \\ - \ \delta(0,a) = 1 \ \text{et} \ \delta(1,a) = 3. \\ \Rightarrow \ 1 \ \text{et} \ 3 \ \text{\'etant maintenant dans des classes différentes, on doit s\'eparer} \ 0 \ \text{et} \ 1. \\ - \ 0 \ \text{vs.} \ 2 \\ - \ \delta(0,a) = 1 \ \text{et} \ \delta(2,a) = 3. \\ \Rightarrow \ \text{Idem, on doit donc s\'eparer} \ 0 \ \text{et} \ 2. \\ - \ 1 \ \text{vs.} \ 2 \\ - \ \delta(1,a) = 3 \ \text{et} \ \delta(2,a) = 3. \end{array}
```

 $-\delta(1,b) = 2 \text{ et } \delta(2,b) = 1.$

^{11.} En l'occurrence ϵ , mais savoir quel mot exactement n'a pas d'importance.

 \Rightarrow On ne sépare toujours pas 1 et 2.

On a donc séparé N_1 en $N_2 = \{0\}$ et $N_3 = \{1, 2\}$. Maintenant qu'on a eu une nouvelle séparation, on doit re-tester 1 et 2 :

- 1 vs. 2
-
$$\delta(1,a) = 3$$
 et $\delta(2,a) = 3$.
- $\delta(1,b) = 2$ et $\delta(2,b) = 1$.
 \Rightarrow On ne sépare toujours pas 1 et 2.

Pour résumer la série des séparations :

On peut maintenant s'amuser à répéter l'expérience autant de fois qu'on veut, mais à partir du moment où il y a eu un tour sans changement, il n'y en aura plus jamais. On accepte alors l'hypothèse selon laquelle 1 et 2 appartiennent à la même classe, ont donc le même rôle et peuvent être fusionnés. On introduit donc un état 1,2. L'état 0 menait initialement avec a à l'état 1, il pointe donc maintenant vers 1,2. 1 et 2 menaient l'un vers l'autre, ça devient une boucle en b sur 1,2. Enfin, 1,2 mène avec a vers 3. 1 et 2 n'étaient pas terminaux, 1,2 ne l'est donc pas non plus :

Remarque A la fin de l'exemple, on a justifié de façon un peu rapide et légère l'arrêt de l'algorithme. On n'entrera pas dans les détails ici, mais on donnera l'idée pour que le lecteur ou la lectrice intéressé.e ait matière à réfléchir : l'algorithme présenté ici revient à tester - de façon efficace - les différences d'acceptation entre paires d'états pour les mots de longueur 0, puis 1, puis 2, etc, jusqu'à atteindre un point fixe. Si on n'a pas de changement (ie. de séparation dans une classe) entre les mots de longueur n et n+1, on sait que la stabilité va se propager à l'infini. En effet, soient q_1 et q_2 qui appartiennent à la même classe, et w un mot de longueur n+1. $\delta(q_1,a)$ et $\delta(q_2,a)$ vont dans des états q_1' et q_2' qui appartiennent à la même classe, ce qui veut dire qu'aucun mot de longueur $\leq n+1$ ne peut les séparer. Alors $\delta^*(q_1,a.w) = \delta^*(q_1',w)$ et $\delta^*(q_2,a.w) = \delta^*(q_2',w)$ sont d'accord, et idem avec b. q_1 et q_2 sont donc d'accord sur les mots de longueur n+2. On peut itérer, ce qui implique qu'ils sont d'accord sur les mots de n'importe

quelle longueur, et sont donc équivalents.

Exercice 3.3.4. Minimiser (en utilisant l'algorithme) l'automate de l'exemple 3.3.2.

Exercice 3.3.5. Minimiser l'automate suivant :

3.4 Propriétés de clôture

- 3.4.1 Union
- 3.4.2 Intersection
- 3.4.3 Concaténation
- 3.4.4 Itération

Grammaires formelles

TODO

Introduction à la calculabilité

Théorème de Kleene et hiérarchie de Chomsky

TODO

Annexe A

Rappels mathématiques

A.1 Logique

A.1.1 Raisonnement par l'absurde

Définition A.1.1: Raisonnement par l'absurde

Un raisonnement par l'absurde consiste à prouver une chose en 1) supposant son contraire et 2) montrer que ça fout tout en l'air. Plus formellement, pour prouver P, on suppose $\neg P$ et on montre que ça nous permet de déduire \bot , ce qui veut dire soit que la logique est incohérente, soit que $\neg P$ est fausse, et donc que P est vraie.

Exemple A.1.1. Imaginons une situation où les rues sont sèches, et où on voudrait prouver qu'il n'a pas plu. On suppose alors l'inverse, c'est-à-dire qu'il a plu. Or, s'il a plu, les routes sont mouillées. On obtient alors que 1) les routes sont mouillées et 2) les routes ne sont pas mouillées, ce qui est un paradoxe. La seule hypothèse faite étant le fait qu'il a plu, elle doit être fausse.

Exemple A.1.2. On veut prouver qu'il existe une infinité de nombres premiers. On suppose l'inverse, cad. qu'il y en a un ensemble fini $\{p_1, ..., p_n\}$. Soit $n = 1 + \prod_{i \in [1-n]} p_i = 1 + p_1 \times ... \times p_n$. n, comme tout nombre, admet au moins un diviseur premier.

Or, n est strictement plus grand que tout nombre premier et ne peut donc pas en être un. De plus, pour tout $i \in [1-n], \frac{n}{p_i} = p_1 \times ... \times p_{i-1} \times p_{i+1} \times ... \times p_n + \frac{1}{p_i}$. Tout nombre premier étant $\geq 2, \frac{1}{p_i}$ ne forme pas un entier, et donc $\frac{n}{p_i}$ non plus.

On obtient une contradiction, notre hypothèse sur la finitude des nombres premiers est donc fausse.

A.2 Ensembles

A.2.1 Ensemble des parties

Soit un ensemble X, on note P(X) (parfois 2^X) l'ensemble de ses parties (ou powerset), cad l'ensemble des ensembles formés à partir d'éléments de X.

Exemple A.2.1. Soit $X = \{x, y, z\}$, alors - en classant les éléments par leur cardinal -

$$P(X) = \{ \quad \emptyset, \\ \{x\}, \qquad \{y\}, \qquad \{z\}, \\ \{x,y\}, \qquad \{x,z\}, \qquad \{y,z\} \\ \{x,y,z\} \qquad \}.$$

Lemme 7. $\forall X, \emptyset \in P(X) \land X \in P(X)$.

Lemme 8. $\forall X, |P(X)| = 2^{|X|}$.

Démonstration. Pour générer l'ensemble des sous-ensembles de X, on choisit de prendre ou non chaque élément de X. On a donc $\underbrace{2\times2\times...\times2}_{\text{n fois}}$ choix, d'où les $2^{|X|}$ au total.

A.2.2 Opérations entre ensembles

Définition A.2.1: Produit d'ensembles

Soit deux ensembles E_1 et E_2 , contenant respectivement des éléments de types τ_1 et τ_2 . Soit également · une opération de type $\tau_1 \to \tau_2 \to \tau_3$, cad. une opération qui prend en argument gauche un élément de type τ_1 et à droite un argument de type τ_2 et renvoie un objet de type τ_3 , alors

$$E_1 \cdot E_2 = \{x \cdot y \mid x \in E_1 \land y \in E_2\}$$

Dit autrement, un produit d'ensembles renvoie l'ensemble des combinaisons d'éléments de deux ensembles via une opération fournie. Si l'opération \cdot est un endormorphisme, cad. qu'elle est de type $\tau \to \tau \to \tau$, alors on peut itérer le produit de la façon suivante :

$$E^0 = \{1\}$$

 Où 1 est l'élément neutre de τ
$$E^{n+1} = E^n \cdot E$$

Cette notion très générale ne doit pas être confondue avec

Définition A.2.2: Produit cartésien

Soit deux ensembles E_1 et E_2 , ne contenant pas forcément des éléments de même type, alors

$$E_1 \times E_2 = \{(x, y) \mid x \in E_1 \land y \in E_2\}$$

Le produit cartésien, noté ×, renvoie l'ensemble des couples d'éléments de deux ensembles donnés. Il s'agit d'un cas particulier du produit d'ensemble, où l'opération est la "mise en couple". Cette opération ne pouvant pas être un endormorphisme, le produit cartésien ne peut être itéré.

A.3 Algorithmique

A.3.1 Itératif vs. récursif, le cas des parcours d'arbre

On va comparer les implémentations itératives et récursives d'un parcours d'arbre. On regardera, sans perte de généralité, un parcours préfixe qui effectue une opération f (par exemple afficher, peu importe) sur tous les éléments de l'arbre.

Commençons par l'itératif. Puisqu'on a (littéralement) des branchements, contrairement à une liste où on pourrait juste foncer tout droit, on va avoir besoin d'une mémoire. L'idée va être d'avoir une todo-list, sous forme de pile, et d'explorer l'arbre en la suivant. On commence avec seulement la racine dans la pile et, chaque fois qu'en extrait un noeud comme dans la figure A.1, exécuter f(x) et se noter qu'on doit explorer les arbre d_1 , d_2 et d_3 . Au total, on a l'algorithme de la figure A.2.

FIGURE A.1 – Exemple de noeud

```
# fonction tree_it(arbre)
todo = stack()
todo.add(root(arbre))
while (todo pas vide):
    current = todo.pop()
    if current is Leaf(x):
        f(x)
    // si current est un noeud interne avec
    // un element x et la liste de descendants descs
elif current is Noeud(x,descs):
    f(x)
    // pour du prefixe, on doit avoir
    // d1 plus haut dans la pile que d2
    for d in reverse(descs):
        todo.add(d)
```

FIGURE A.2 – Parcours itératif d'arbre

Il n'est pas totalement trivial de se convaincre que cet algorithme visite bien tous les noeuds d'un arbre donné dans un ordre préfixe, notamment en comparaison de la version récursive trouvable en figure A.3

La version récursive est dite **de haut-niveau**, dans le sens où elle est très proche de la définition d'un parcours d'arbre, alors que la version itérative est plus **de bas-niveau**, en ce qu'elle implémente cette définition. Dit autrement, la version récursive est plus abstraite, là où la version itérative est plus concrète, dans la mise en pratique de la définition. D'ailleurs, la figure A.2

```
# fonction tree_rec(arbre)
if arbre is Leaf(x):
    f(x)
elif arbre is Noeud(x,descs):
    f(x)
    for d in descs:
        tree_rec(d)
```

FIGURE A.3 – Parcours récursif d'arbre

correspond bien à l'exécution de la figure A.3, où la pile *todo* remplace la pile d'appels, qui gère les appels récursifs en suivant "où on en est" et ce qu'il reste à faire.

Ces deux approches ont bien sûr leurs avantages et inconvénients. La programmation de hautniveau permet de se convaincre - voire de prouver - bien plus facilement qu'un programme réalise ce qu'il est censé faire, et est plus facilement lisible / réutilisable. Par contre, jouer soimême avec l'implémentation de la récursion permet de gérer à la main ces mécanismes et donc potentiellement d'optimiser tout ça - bien que les compilateurs appliquent des optimisations de plus en plus puissantes, bien souvent plus sûres et malignes que ce qu'on peut imaginer.