Aula 10

>1 variável aleatória

Motivação

Trabalhamos frequentemente com grupos de variáveis relacionadas

- Peso e altura das pessoas
- Número de temporais em vários meses

X1 = número de temporais em Junho (0, 1, ou 2)

120 million photoreceptors

X2 = número de temporais em Julho (0, 1, ou 2)

Variáveis aleatórias multidimensionais

- Frequentemente temos situações em que os resultados possíveis são conjuntos de várias variáveis aleatórias, X1, X2,...
- Dois tipos de casos:
 - Experiência aleatória produz várias saídas
 - Repetições da experiência aleatória (com uma única saída)
- A um vector n-dimensional em que as componentes são as variáveis aleatórias X_1, X_2, \dots, X_n chama-se vector aleatório ou v.a. Vectorial

$$\mathbf{X} = (X_1 \quad X_2 \quad \dots \quad X_n)$$

Podemos ter vectores aleatórios discretos, contínuos e mistos

Multivariate random variable

- From Wikipedia:
- ... a multivariate random variable or random vector is a list of mathematical variables
 - each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value.
- The individual variables in a random vector are grouped together because there may be <u>correlations</u> among them
 - often they represent different properties of an individual statistical unit
 - e.g. a particular person, event, etc.

Vector aleatório

• Um vector aleatório X é uma função que atribuí um vector de números reais a todos os resultados ζ em S, o espaço de amostragem da experiência aleatória.

Exemplo

 $H(\zeta)$ = altura do estudante ζ em metros, $W(\zeta)$ = peso do estudante ζ em Kg, e $A(\zeta)$ = idade do estudante ζ em anos.

Como caracterizar estas variáveis aleatórias com n-dimensões ?

Funções de distribuição conjuntas

 Para lidar com estas situações envolvendo 2 ou mais variáveis, definem-se:

- Função de distribuição cumulativa conjunta
- Função de densidade conjunta
- Função probabilidade de massa conjunta

Função probabilidade de massa conjunta

Para duas variáveis discretas, X e Y:

•
$$p_{X,Y}(i,j) = P(X=i \land Y=j)$$

Exemplo: X= dado 1; Y= dado 2

$$p_{X,Y}(1,1) = p_{X,Y}(1,2) = \dots = p_{X,Y}(6,6) = 1/36$$

Exemplo (continuação)

Representação 3D

Função probabilidade de massa conjunta

A expressão generaliza para mais de 2 variáveis:

•
$$p_{X_1,X_1,...,X_n}(x_1,x_2,...,x_n) = P(X_1 = x_1,X_2 = x_2,...,X_n = x_n)$$

- Uma função em \mathbb{R}^n , não-negativa
- $\sum_{x_1,x_2,...,x_n} p_{X_1,X_1,...,X_n}(x_1,x_2,...,x_n) = 1$

função de distribuição acumulada conjunta

- Tal como no caso escalar, pode definir-se uma função de distribuição acumulada conjunta
 - Simples extensão
- Para duas variáveis, X e Y:

$$F_{X,Y}(x,y) = P(X \le x \land Y \le y)$$

Para n variáveis:

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n).$$

No caso discreto é uma função em terraços ...

Exemplo 1

Caso discreto

 Y_1 = número de temporais em Junho (0, 1, or 2)

 Y_2 = número de temporais in Julho (0, 1, or 2)

Tabela com probabilidades

					$f_{y1y2}(0,2)$
		Julho (y_2)			
		0	1	2	
Junho	0	0.05	0.1	0.15	
(y_1)	1	0.1	0.15	0.20	
	2	0.15	0.05	0.05	

Distribuição de cada uma das variáveis

- A distribuição de cada uma das variáveis pode ser obtida da distribuição conjunta
- Por exemplo, no caso com duas variáveis X e Y:
- $F_X(a) = P(X \le a)$
- = $P(X \le a, Y < \infty)$
- = $F_{X,Y}(a, \infty)$
- De forma similar:
- $F_X(b) = P(X \le b) = F_{X,Y}(\infty, b)$

Funções de probabilidade marginais

 Também se pode obter facilmente a função de probabilidade de massa de cada uma das variáveis

- As fórmulas para o caso discreto são:
- $p_X(x) = \sum_{\mathcal{Y}} p_{X,Y}(x, y)$
- $p_Y(x) = \sum_x p_{X,Y}(x,y)$

• • •

No caso de duas variáveis:

 Para obter a fpm de X somámos as linhas apropriadas da tabela representando a função de probabilidade conjunta

De forma similar obtém-se Y somando as colunas

Exemplo 1

Para o exemplo introduzido antes...

Julho (y_2)					
		0	1	2	$f(y_I)$
Junho	0	0.05	0.1	0.15	0.30
(y_I)	1	0.1	0.15	0.20	0.45
(\mathcal{Y}_I)	2	0.15	0.05	0.05	0.25
	$f(y_2)$	0.30	0.30	0.40	1.00

y_1	$fy_I(y_I)$
0	0.30
1	0.45
2	0.25
TOTAL	1.00

y_2	$fy_2(y_2)$
0	0.30
1	0.30
2	0.40
TOTAL	1.00

Generalização

- O caso de n variáveis discretas é uma generalização simples
- Se $X_1, X_1, ..., X_n$ são variáveis aleatórias discretas no mesmo espaço de amostragem com função de probabilidade conjunta:

$$p_{X_1,...X_n}(x_1,...x_n) = P(X_1 = x_1,...,X_n = x_n)$$

• A função de probabilidade marginal para X_1 é:

$$p_{X_1}(x_1) = \sum_{x_2,...,x_n} p_{X_1,...X_n}(x_1,...x_n)$$

• A função (bidimensional) para a função de probabilidade marginal de X_1 e X_2 :

$$p_{X_1X_2}(x_1, x_2) = \sum_{x_3, \dots, x_n} p_{X_1, \dots X_n}(x_1, x_2, x_3, \dots, x_n)$$

Independência

 Duas v.a. X e Y são independentes se, para qualquer a, b se verificar

•
$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

• Ou seja, são independentes se os eventos $E_a = \{X \le a\}$ e $E_b = \{Y \le b\}$ são independentes

Independência

 Em termos de função de distribuição acumulada conjunta:

Se e só se $F_{X,Y}(a,b) = F_X(a)F_Y(b)$ qualquer que seja a e b

• Também, no caso discreto, X e Y são independentes se e só se

$$p(x,y) = p_X(x) p_Y(y)$$

• E no caso contínuo $f_{XY}(x,y) = f_X(x) f_Y(y)$

Generalização – independência de n variáveis aleatórias

• n variáveis X_1, X_2, \dots, X_n são independentes se

$$f_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = \prod_{i=1}^n f_{X_i}(x_i), \quad \forall x_1,\dots,x_n \in \mathbb{R}$$

Exemplo 1

• Y1 e y2 são independentes ?

Julho (y_2)					
		0	1	2	$f(y_l)$
Junho	0	0.05	0.1	0.15	0.30
	1	0.1	0.15	0.20	0.45
(y_I)	2	0.15	0.05	0.05	0.25
	$f(y_2)$	0.30	0.30	0.40	1.00

Julho (y_2)					
		0	1	2	$f(y_l)$
Junho	0	0.09			0.30
(y_1)	1				0.45
(\mathcal{Y}_{I})	2				0.25
	$f(y_2)$	0.30	0.30	0.40	1.00

Esperança matemática

Extensão das definições

- Os momentos de ordem j k das variáveis X, Y definem-se como
- Caso discreto: $E[X^{j}Y^{k}] = \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} f_{XY}(x_{m}, y_{n})$
- Caso continuo: $E[X^{j}Y^{k}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{j}y^{k} f_{XY}(x,y) dx dy$
- Se j=1 e k=0 ou j=0 e k=1 temos os valores médios de X e Y
- Se j=2 e k=0 ou j=0 e k=2 temos os valores quadráticos médios

• • •

 Os momentos centrais conjuntos de ordem j k das variáveis X, Y definem-se como:

•
$$E[(X - E[X])^{j}(Y - E[Y])^{k}]$$

 Para j=2 e k=0 ou j=0 e k=2 obtemos as variâncias de X e Y

Correlação

- A correlação das variáveis X e Y é o seu momento de ordem j=k=1
 - Ou seja E[XY]

• Quando E[XY] = 0 as variáveis são ortogonais

E[XY] e Independência

Sendo X e Y independentes

$$E[XY] = E[X]E[Y]$$

• Demonstração (caso discreto):

$$E[XY] = \sum_{x,y} xy \, f_{X,Y}(x,y)$$

$$= \sum_{x,y} xy \, f_{X,Y}(x,y)$$

$$= \sum_{x,y} xy f_X(x) f_Y(y)$$

$$= \left[\sum_{x} x f_X(x)\right] \left[\sum_{y} y f_Y(y)\right]$$

$$=E[X]E[Y]$$

Covariância

- A covariância de duas variáveis X e Y é o seu momento central de ordem j=k=1
- Ou seja E[(X E[X]) (Y E[Y])]
- Designa-se por Cov(X,Y)
- Cov(X,Y) = E[(X E[X])(Y E[Y])]= E[XY - XE[Y] - YE[X] + E[X]E[Y]]= E[XY] - 2E[X]E[Y] + E[X]E[Y]= E[XY] - E[X]E[Y]
- E[X] = 0 ou $E[Y] = 0 \Rightarrow Cov(X, Y) = E[XY]$

• • •

• É uma generalização da Variância

- A covariância é uma medida de relação linear entre as variáveis aleatórias.
- Se a relação for não linear, a covariância pode não ser sensível à relação.

Covariância e independência

- Se X e Y são independentes Cov(X,Y) = 0
- "Demonstração":
- Como vimos Cov(X,Y) = E[XY] E[X]E[Y]
- X e Y são independentes implica

$$E[XY] = E[X]E[Y]$$

29

Nota: o contrário não é verdadeiro pode ter-se Cov(X,Y)=0 e as variáveis não serem independentes

Propriedades da Covariância

- Cov(X,X) = Var(X)
- Cov(X,Y) = Cov(Y,X)
- Cov(cX,Y) = c Cov(Y,X)
- Cov(X, Y + Z) = Cov(Y, X) + Cov(X, Z)

Demonstração:

$$= E[X(Y + Z)] - E[X]E[Y + Z] =$$

$$= E[XY] + E[XZ] - E[X]E[Y] - E[X]E[Z]$$

$$= E[XY] - E[X]E[Y] + E[XZ] - E[X]E[Z]$$

$$= Cov(X,Y) + Cov(X,Z)$$

• Generalização:
$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_i, Y_j)$$

15/10/2015 IVIPEL IVIIECI/LEI

30

Covariância de n variáveis

• Se tivermos um vector de n variáveis aleatórias $Y = (Y_1, Y_2, ..., Y_n)$

•
$$Cov(Y) = \begin{bmatrix} Cov(Y_1, Y_1) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \ddots & \vdots \\ Cov(Y_n, Y_1) & \cdots & Cov(Y_n, Y_n) \end{bmatrix}$$

$$\bullet = \begin{bmatrix} Var(Y_1) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \ddots & \vdots \\ Cov(Y_1, Y_n) & \cdots & Var(Y_n) \end{bmatrix}$$

Exemplo

 Considere a seguinte distribuição conjunta de X e Y e calcule Cov(X,Y)

Cov(X,Y)=?

- E(X) = ?= $1 \times 0.3 + 3 \times 0.7 = 2.4$
- E(Y) = ?
- = $1 \times 0.3 + 2 \times 0.4 + 3 \times 0.3 = 2.0$
- Cov(X,Y) = E[(X-E[X]) (Y-E[Y])]
- = $(1-2,4)(1-2,0) \times 0,1 + (1-2,4)(2-2,0) \times 0,2$
- $+(3-2,4)(1-2,0) \times 0,2 + (3-2,4)(2-2,0) \times 0.2$
- $+(3-2,4)(3-2,0) \times 0.3 = 0.2$

Coeficiente de correlação

A coeficiente de correlação de duas variáveis X e
 Y é:

$$\rho_{XY} = \frac{Cov(X,Y)}{\rho_X \ \rho_Y}$$

- Demonstra-se que $-1 \le \rho_{XY} \le 1$
- E que os valores extremos (1 e -1) se obtém para a relação linear Y = a X + b com a> 0 ou a <0, respectivamente

• • •

• Se $\rho_{XY} = 0$ as variáveis dizem-se descorrelacionadas

- Como se viu, se X e Y são independentes, a sua covariância é nula e portanto são descorrelacionadas
 - Mas o contrário não é verdadeiro

Exemplo de cálculo de ho_{XY}

x	У	P(x,y)
0	0	0,2
1	1	0,1
1	2	0,1
2	1	0,1
2	2	0,1
3	3	0,4
	SOMA	1,0

Cálculo de E[XY], E[X] e E[Y]

x	у	P(x,y)	xy P(x,y)	x P(x)	y P(y)	$x^2 P(x)$
0	0	0,2	0x0x0,2=0	0	0	0
1	1	0,1	1x1x0,1=0,1	0,1	0,1	0,1
1	2	0,1	0,2	0,1	0,2	0,1
2	1	0,1	0,2	0,2	0,1	0,4
2	2	0,1	0,4	0,2	0,2	0,4
3	3	0,4	3,6	1,2	1,2	3,6
	SOMA	1,0	4,5	1,8	1,8	4,6

Exemplo de cálculo de ho_{XY}

•
$$Var(X) = E[X^2] - (E[X])^2 = 4,6 - 3,24 = 1,36$$

Var(Y) é igual à de X

•
$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

•
$$= 4,5 - (1,8)(1,8) = 1,26$$

• Finalmente:

•
$$\rho_{XY} = \frac{Cov(X,Y)}{\rho_X \rho_Y} = \frac{1,26}{(\sqrt{1,36})(\sqrt{1,36})} = 0,926$$

Aula 11

Funções de probabilidade condicional

Como temos mais de uma variável, pode haver condicionamento

Funções de probabilidade condicional

A probabilidade da variável Y num acontecimento A conhecendo um valor exato x que a variável X assume, pode ser determinada usando a definição de probabilidade condicional 2.10:

$$P[Y \ em \ A|X = x] = \frac{P[Y \ em \ A, X = x]}{P[X = x]}$$

Se X for uma variável discreta pode-se determinar a função condicional de distribuição de Y se $X = x_k$:

$$F_Y(y|x_k) = \frac{P[Y \le y, X = x_k]}{P[X = x_k]}, P[X = x_k] \ne 0$$

Se ambas as variáveis são discretas pode-se definir a função condicional de probabilidade de Y se $X=x_k$:

$$p_Y(y_j|x_k) = P[Y = y_j|X = x_k] = \frac{P[X = x_k, Y = y_j]}{P[X = x_k]} = \frac{p_{XY}(x_k, y_j)}{p_X(x_k)}$$

se
$$P[X = x_k] \neq 0$$

... condicional

 The conditional PDF of a random variable y_i for a given value of some other random variable y_k is defined as:

$$f_{yi|yk}(y_i|y_k) = \frac{f_{yiyk}(y_i,y_k)}{f_{yk}(y_k)}$$
• The conditional density of y_i given y_k is

- a valid probability density function
- (e.g. the area under this function must

July (y_2)					
		0	1	2	$f(y_l)$
June	0	0.05	0.1	0.15	0.30
	1	0.1	0.15	0.20	0.45
(y_1)	2	0.15	0.05	0.05	0.25
	$f(y_2)$	0.30	0.30	0.40	1.00

The conditional density of y_1 (June storms) given that $y_2 = 1$ (one storm in July) is obtained by dividing the entries in the $y_2 = 1$ column by $f_{y_2}(y_2=1) = 0.3$:

y_1	$ fy_1 y_2(y_1 y_2=1)$
0	0.1/0.3 = 1/3
1	0.15/0.3 = 1/2
2	0.25/0.3 = 1/6
TOTAL	1.00

$$f_{y1|y2}(y_1 | y_2 = 1) = \frac{f_{y1|y2}(y_1, y_2 = 1)}{f_{y2}(y_2 = 1)}$$