Dictionary data structures for the Inverted Index

This lecture

- Dictionary data structures
 - Exact search
 - Prefix search

- "Tolerant" retrieval
 - Edit-distance queries
 - Wild-card queries
 - Spelling correction
 - Soundex

Basics

 The dictionary data structure stores the term vocabulary, but... in what data

A naïve dictionary

An array of struct:

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	 →

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

- How do we store a dictionary in memory efficiently?
- How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hash table
 - Tree
 - Trie

 Some IR systems use hashes, some trees/tries

Hashing with chaining

• Link records in the same slot into a list.

The current version is **MurmurHash** (vers 3) yields a 32-bit or 128-bit hash value.

Prefix search

Prefix-string Search

Given a dictionary D of K strings, of total length N, store them in a way that we can efficiently support prefix searches for a pattern P over them.

Ex. Pattern P is pa

Dict = {abaco, box, <u>pa</u>olo, <u>pa</u>trizio, pippo, zoo}

Trie: speeding-up searches

Pro: O(p) search time = path scan

Cons: edge + node labels + tree structure

Tries

Do exist many variants and their implementations

Pros:

Solves the prefix problem

Cons:

- Slower: O(p) time, many cache misses
- From 10 to 60 (or, even more) bytes per node

2-level indexing

Front-coding: squeezing dict

Gzip may be much better...

2-level indexing

Spelling correction

Spell correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - But what about: from → form
 - Context-sensitive is more effective
 - Look at surrounding words
 - e.g., I flew form Heathrow to Narita.

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc. (including the mis-spellings)
 - Mining algorithms to derive the possible corrections

Isolated word correction

- Given a lexicon and a character sequence
 Q, return the words in the lexicon closest
 to Q
- What's "closest"?

- We'll study several measures
 - Edit distance (Levenshtein distance)
 - Weighted edit distance
 - n-gram overlap

Brute-force check of ED

Given query Q,

- enumerate all character sequences within a preset (weighted) edit distance (e.g., 2)
- •Intersect this set with list of "correct" words

Show terms you found to user as suggestions

How the time complexity grows with #errors allowed and string length?

Edit distance

- Given two strings S_1 and S_2 , the minimum number of *operations* to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace (possibly, Transposition)
- E.g., the edit distance from dof to dog is 1
 - From cat to act is 2 (Just 1 with transpose)
 - from *cat* to *dog* is 3.
- Generally found by dynamic programming.

DynProg for Edit Distance

- Let E(i,j) = edit distance to transform $S_1[1,i]$ in $S_2[1,j]$
- Example: cat versus dea
- Consider the sequence of ops: ins, del, subst, match
 - Model the edit distance as an alignment problem where **insertion** in S_2 correspond to a − in S_1 whereas **deletion** from S_1 correspond to a − in S_2 .
 - If $S_1[i] = S_2[j]$ then last op is a **match**, and thus it is not counted
 - Otherwise the last op is: $\mathbf{subst}(S_1[i], S_2[j])$ or $\mathbf{ins}(S_2[j])$ or $\mathbf{del}(S_1[i])$

```
E(i,0)=i, E(0,j)=j
E(i,j)=E(i-1,j-1) \qquad \text{if } S_1[i]=S_2[j]
E(i,j)=1+\min\{E(i,j-1),
E(i-1,j),
E(i-1,j-1)\} \qquad \text{if } S_1[i]\neq S_2[j]
```

Example

Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture keyboard errors, e.g. m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller cost than by q
- Requires weighted matrix as input
- Modify DP to handle weights

One-error correction

The problem

 1-error = insertion, deletion or substitution of one single character

Farragina → Ferragina (substitution)

Feragina → Ferragina (insertion)

Ferrragina → Ferragina (deletion)

- A string of length L over A chars \rightarrow #variants = L (A-1) + (L+1)A + L = A * (2L+1)
- You could have many candidates
- You can still deploy keyb statistical information (w

Do we need to make the enumeration?

A possible approach

at [cat], ca [cat], ct [cat]

Create two dictionaries: D1 = { strings } D2 = { strings of D1 with one deletion } $D1 = \{cat, cast, cst, dag\}$ $D2 = {$ ■ ag [→ dag], da [dag], dg [dag], ■ ast $[\rightarrow cast]$, cas $[\rightarrow cast]$, cat $[\rightarrow cast]$, cst $[\rightarrow cast]$ cs [cst], ct [cst], st [cst]}

Assume a fast string-check in a dictionary

An example

```
D1 = {cat, cast, cst, dag}
D2 = { ag [dag], ast [cast], at [cat], ca [cat],
cas [cast], cat [cast], cs [cst], cst [cast], ct [cat; cst],
da [dag], dg [dag], st [cst] }
```

•Query(«cat»):

- Perfect match: Search(P) in D1, 1 query [→ cat]
- P 1-char less: Search(P) in D2, 1 query [→ cat [cast]]
- P 1-char more: Search(P -1 char) in D1, p queries [search for {at, ct, ca} in D1 → No match]
- Substitution: Search(P -1 char) in D2, p queries [e.g. {at,ct, ca} in D2 → at [cat], ct [cst], ca [cat]]

A possible approach

- Query(P):
 - Perfect match: Search for P in D1, 1 query
 - P 1-char less: Search for P in D2 , 1 query
 - P 1-char more: Search for P -1 char in D1 , p queries
 - Substitution: Search for P -1 char in D2 , p queries
- We need 2p + 2 hash computations for P
 - Pro: CPU efficient, no cache misses for computing P's hashes; but O(p) cache misses to search in D1 and D2
 - Cons: Large space because of the many strings in D2 which must be stored to search in the hash table of D2, unless we avoid collision (perfect hash)
 - FALSE MATCHES: ctw matches cat and cst as SUBST.

Overlap vs Edit distances

K-gram index (useful for >1 errors)

The k-gram index contains for every k-gram (here k=2) all terms including that k-gram.

Append k-1 symbol \$ at the front of each string, in order to generate a number L of k-grams for a string of length L.

Overlap Distance

Enumerate all 2-grams in Q = mon (\$m, mo, on)

Use the 2-gram index to rank all lexicon terms according to the <u>number of matching</u> 2-grams (moon)

Overlap Distance *versus* Edit Distance

Select terms by **threshold on matching** *k*-grams

- If the term is L chars long (it consists of L k-grams)
- If E is the number of allowed errors (E*k of the k-grams of Q might be different from term's ones because of the E errors)
- So at least L E*k of the k-grams in Q must match a dictionary term to be a candidate answer

```
Necessary but not sufficient condition !! T=\$mom, Q=\$omo, L-E*k=3-1*2=1, T\cap Q=\{mo,om\} but EditDist = 2
```

Example with trigrams (K=3)

- Suppose the term to compare is \$\$november
 - Trigrams are \$\$n, \$no, nov, ove, vem, emb, mbe, ber

- The query Q = \$\$december
 - Trigrams are \$\$d, \$de, dec, ece, cem, emb, mbe, ber

- |Q|=8, K=3, if E=1 \rightarrow L E*k = 8 1*3 = 5 NO!
- |Q|=8, K=3, if E=2 \rightarrow L E*k = 8 2*3 = 2 Post Priter is needed to check that the distance >

Fast searching for k-grams

Assume we wish to match the following bigrams (*lo, or, rd*) against a 2-gram index built over a dictionary of terms.

Standard postings "merge" will enumerate terms with their cardinality

Then choose terms if #occ possibly filter out < L - k*E

Context-sensitive spell correction

Text: I flew from Heathrow to Narita.

Consider the phrase query "flew form Heathrow"

•We'd like to respond
Did you mean "flew from Heathrow"?

because no docs matched the query phrase.

General issues in spell correction

- We enumerate multiple alternatives and then need to figure out which to present to the user for "Did you mean?"
- Use heuristics
 - The alternative hitting most docs
 - Query log analysis + tweaking
 - For especially popular, topical queries
- Spell-correction is computationally expensive
 - Run only on queries that matched few docs

Other sophisticated queries

Wild-card queries: *

- mon*: find all docs containing words beginning with "mon".
 - Use a Prefix-search data structure
- *mon: find words ending in "mon"
 - Maintain a prefix-search data structure for reverse terms.

How can we solve the wild-card query **pro*cent**?

What about * in the middle?

co*tion

We could look up **co*** AND ***tion** and intersect the two lists (expensive)

- se*ate AND fil*er
 This may result in many Boolean ANDs.
- The solution: transform wild-card queries so that the *'s occur at the end
- This gives rise to the **Permuterm** Index.

Permuterm index

- For term *hello*, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello
 - where \$ is a special symbol.
- Queries:
 - X lookup on X\$
 - X* lookup on \$X*
 - *X lookup on X\$*
 - *X* lookup on X*
 - X*Y lookup on Y\$X*
 - **X*Y*Z** ??? Exercise!

Permuterm query processing

- Rotate query wild-card to the right
 - P*Q → Q\$P*
- Now use prefix-search data structure
- Permuterm problem: ≈ 4x lexicon size

Empirical observation for English.

Soundex

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev → tchebycheff
- Invented for the U.S. census in 1918

Soundex - typical algorithm

- Turn every token to be indexed into a reduced form consisting of 4 chars
- Do the same with query terms
- Build and search an index on the reduced forms

Soundex - typical algorithm

- 1. Retain the first letter of the word.
 - Herman → H...
- 2. Change all occurrences of the following letters to '0' (zero): 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.
 - Herman → H0rm0n
- 3. Change letters to digits as follows:
 - B, F, P, V → 1
 - C, G, J, K, Q, S, X, Z → 2
 - D,T → 3
 - L → 4
 - M, N → 5
 - R → 6

H0rm0n → H06505

Soundex contd

- 4. Remove all pairs of consecutive equal digits. H06505 → H06505
- 5. Remove all zeros from the resulting string. H06505 → H655
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit>.

E.g., *Hermann* also becomes H655.

Soundex

- Soundex is the classic algorithm, provided by most databases (Oracle, Microsoft, ...)
- Not very useful for information retrieval
- Okay for "high recall" tasks (e.g., Interpol), though biased to names of certain nationalities
- Other algorithms for phonetic matching perform much better in the context of IR

Conclusion

- We have
 - Positional inverted index (with skip pointers)
 - Wild-card index
 - Spell-correction
 - Soundex
- We could solve queries such as

(SPELL(moriset) AND toron*to) OR SOUNDEX(chaikofski)