Fundamentals of Control Systems Elec 372

Lab Experiment #4

Andre Hei Wang Law 4017 5600 Section UJ-X

TA: Saba Sanami

TA Email: sabasanami272@gmail.com

Professor: Amir Aghdam

Performed on March 19, 2024

Due on April 2, 2024

Table of Contents

1) Objectives	
2) Theory	3
3) Tasks / Results / Discussions	4
3.1 Closed-Loop Transient Response	4
3.1.1 Results	6
3.1.2 Analysis in MATLAB	8
3.2 Open-Loop Frequency Response	9
3.2.1 Results	13
3.3 Closed-Loop Frequency Response	14
3.3.1 Results: Spot-Frequency Measurement	17
3.3.2 Results: Sweep Frequency Measurement	20
4) Questions	21
5) Conclusions	21
6) Appendix.	22

"I certify that this submission is my original work and meets the Faculty's Expectations of Originality."

Andre Hei Wang Law 4017 5600 01/04/2024

1) Objectives

For the fourth experiment of the course Elec 372, students are tasked to investigate the transient and frequency response of control systems. For the transient response analysis, students aim to understand the behavior of open and closed loop systems under various conditions. For example, we will test with parameters such as rise time, peak time, overshoots and settling time. For the frequency response analysis, students will practice on observing response behavior under sinusoidal input signals of varying frequencies, observing changes in amplitude and phase. Overall, this experiment will provide practical insights to transient and frequency response.

2) Theory

Transient Response:

- -Study the behavior of open-loop and closed-loop systems using performance criteria such as rise time, peak time, overshoot, and settling time.
- -Investigate the effect of changing proportional gain factor (Kp) and introducing derivative feedback on system response.
- -Analyze the impact of increasing Kp on the damping ratio (ζ) and natural frequency (ωn).

Frequency Response:

- -Examine how systems respond to sinusoidal input signals of varying frequencies.
- -Measure magnitude ratio and phase shift as functions of frequency.
- -Use Bode plots and polar plots to visualize frequency response data.
- -Conduct spot-frequency and sweep frequency measurements to assess system behavior across different frequency ranges.

3) Tasks / Results / Discussions

3.1 Closed-Loop Transient Response

Closed-Loop Step Response $(K_p = 1)$

Obtain* values for: the damped natural frequency πd and the overshoot (OS) and using a suitable axis scaling of the plot. $(K_p = 1)$

$$\omega_d=rac{\pi}{T_p}$$
Peak Time is around 0.25sec $\omega_d=rac{\pi}{T_p}=rac{\pi}{0.25}=4\pi$

$$PO = 100 \left[\frac{X_1 - 4000}{4000} \right] \%$$

$$X_1 \text{ is around } 6800$$

$$PO = 100 \left[\frac{6800 - 4000}{4000} \right] \% = 70\%$$

Closed-Loop Step Response (Kp = 0.7)

Closed-Loop Step Response (Kp = 0.4)

Closed-Loop Step Response (Kp = 0.1)

3.1.1 Results

1) Tabulate ω_d and OS values for the above cases.

K_p	T_p	X_1	ω_{d}	PO
1	0.25	6800	4π or 12.57	70%
0.7	0.265	6600	11.86	65%
0.4	0.28	6400	11.22	60%
0.1	0.295	5300	10.65	32.5%

2) Write a brief summary about the difference between open-loop and closed-loop system?

An open-loop systems functions without any feedback from the output. For a closed-loop system, we have feedback which is used to adjust subsequent inputs. As such, closed-loop systems can monitor and adapt to changes or stabilise itself to a certain margin.

3) From the OS values, use Equation (6.2) to calculate and tabulate the values of ζ , corresponding to the four Kp values used. Obtain a plot showing the effect of increasing Kp on the damping ratio ζ and comment on the result.

$$\zeta = \sqrt{\frac{(\ln p)^2}{\pi^2 (\ln p)^2}}$$

K _p	р	ζ
1	70%	0.11
0.7	65%	0.14
0.4	60%	0.16
0.1	32.5%	0.34

It can be noticed that by increasing K_p , the damping ratio decreases exponentially. For example, with an increase of K_p from 0.4, 0.7 and 1, the damping ratio decreases marginally from 0.16, 0.14 and 0.11 respectively. However, the jump from K_p of 0.1 to 0.4, notice that the damping ratio decrease largely from 0.34 to 0.16.

4) From the tabulated values of ζ and ω_d , determine the corresponding ω_n values. Obtain a plot showing the effect of increasing Kp on the natural frequency ω_n and comment on the result.

$$\omega_n = \frac{\omega_d}{\sqrt{1 - \zeta^2}}$$

K _p	ω_{d}	ζ	ω_{n}
1	4π or 12.57	0.11	12.64
0.7	11.86	0.14	11.98
0.4	11.22	0.16	11.37
0.1	10.65	0.34	11.32

The natural frequency increases as K_p increases. The rate of increase in minimal as seen above.

3.1.2 Analysis in MATLAB

1) Use the following settings: Ts = 0.00442 sec, Kp = 0.1 Ki = 0 and Kd = 0.005 and the obtained model in Experiment #2, write MATLAB code to calculate CLTF in the configuration of "PI + velocity feedback", see formula 6.3.

$$CLTF = \frac{0.512}{0.00481s^2 + 0.02749s + 0.512}$$

2) Refer to sample code in Experiment #1, using MATLAB LTI Viewer to analysis system step response.

(Raw MATLAB export found in the appendix)

Closed-Loop Step Response $(K_p = 0.1)$

3) Compare the result with the exported raw data, for at least one Kp.

For $K_p = 0.1$, the above MATLAB figure has more peaks when compared to the one tested using ECP. Here, there are three peaks while the ECP only has two. In addition, MATLAB's curve is less smooth as seen from its pointy and sharp increases and decreases.

3.2 Open-Loop Frequency Response

Open-Loop Sinusoidal (f=0.04)

Open-Loop Sinusoidal (f=0.06)

Open-Loop Sinusoidal (f=0.08)

Open-Loop Sinusoidal (f=0.1)

Open-Loop Sinusoidal (f=0.2)

Phase Shift =
$$-360 * f * Tphase$$

 $w = 2 * pi * f$

Frequency	w(rad/sec)	$\Omega_{ m pp}$	Tphase (sec)	Phase Shift
0.04	0.25	190000	3.5	-50.4
0.06	0.38	160000	2	-43.2
0.08	0.50	145000	1.6	-46.08
0.1	0.63	98000	1.2	-43.2
0.2	1.26	70000	0.8	-57.6

Open-Loop Linear Sweep

Open-Loop Log Sweep

3.2.1 Results

1) Using the data tabulated in Step 4 above, use the conversion factor Ke to convert the values of Ω pp (counts/sec.) to Ω pp (radians/sec.). Plot Ω pp (radians/sec.) against the radian frequency ω using a linear scale.

$$K_p = 2546.5$$

 $\Omega pp (rad/sec) = \Omega pp (counts/sec)/K_p$

w(rad/sec)	Ωpp (counts/sec)	Ωpp (rad/sec)
0.25	190000	74.61
0.38	160000	62.83
0.50	145000	56.94
0.63	98000	38.48
1.26	70000	27.49

Ωpp (rad/sec) over w(rad/sec) with Linear Scale

2) Assuming that the input remained constant, the output magnitude should also be a constant (say, Y) at low frequencies approaching 0 Hz. Using the magnitude equation, it can be shown that the output magnitude will drop to $(1/2)^{0.5}$ Y or 0.707Y when $\omega_c = 1/\tau$, where ω_c is called the 'cut-off frequency' or 'break frequency'. Assuming Y is the magnitude corresponding to the frequency of 0.04 Hz, determine ω_c and hence find τ . How does this value compare with the value found in EXPR#2(Sect4.3.2)? Comment on any difference observed. (The value of $\tau = 1/\omega_c$ can also be estimated by finding fc =1/2pi ω_c where the phase shift is -45° .)

Phase Shift =
$$-360 * f * Tphase$$

Tphase = $\frac{Phase\ Shift}{-360 * f} = \frac{-45}{-360 * 0.04} = 3.125$
 $\omega_c = \frac{1}{\tau} = \frac{1}{3.125} = 0.32$

Yes, these values are similar to the value found in experiment #2 section 4.3.2.

3.3 Closed-Loop Frequency Response

Closed Loop Sinusoidal (f=0.5)

Closed Loop Sinusoidal (f=1)

Closed Loop Sinusoidal (f=2.75)

Closed Loop Sinusoidal (f=6.25)

Frequency (Hz)	Peak-Peak Output (Counts)	Tphase(sec)
0.5	410	0.04
1	510	0.03
2.75	700	0.05
4.5	380	0.3
6.25	190	0.048
8	100	0.04

3.3.1 Results: Spot-Frequency Measurement

1) Use the data table obtained in Step 3 to calculate and tabulate M(dB) and φ (degrees) against ω =2 π f (radians/sec). Obtain Bode magnitude and phase plots for the frequency range 0.05 to 8 Hz (~0.3 to 50.3 radians/sec). Use 3-cycle semi-logarithmic graph paper. Also draw the corresponding polar plot for your data range.

$$M(dB) = 20log_{10}(M)$$

where $M = Output/Input\ Amplitude$
 $Imput\ Amplitude = 500$

Frequency (Hz)	w(2*pi*f)	M(dB)	φ(degrees)
0.5	π	-1.72	7.2
1	2π	0.17	10.8
2.75	5.5π	2.92	49.5
4.5	9π	-2.38	486
6.25	12.5π	-8.4	108
8	16π	-13.98	115.2

M(dB) vs Phase Shift (scaled)

2) Attempt to fit the Bode magnitude data to an asymptotic plot and hence obtain an approximate transfer function.

M(dB) vs Radian Frequency

Phase Shift vs Radian Frequency

Closed Loop Linear Sine Sweep

Closed Loop Log Sine Sweep

Closed Loop Log Sine Sweep with M in DB

3.3.2 Results: Sweep Frequency Measurement

1) Evaluate the amplitude and frequency and at a few points on the curve and compare the results with the spot-frequency data obtained earlier. Comment on the results.

Frequency (Hz)	Amplitude (Counts), Spot	Amplitude (Counts), Sweep
0.5	410	420
1	510	500
2.75	700	720
4.5	380	370
6.25	190	220
8	100	130

While each individual amplitude values of the spot frequency data and the sweep frequency data are different, notice that the general trend remains the same. As we increase the frequency from 0.5Hz to 8Hz, notice how the amplitude increase until it peaks at frequency 2.75, then it reduces back down.

2) *Use MATLAB LTI viewer to do system frequency-domain analysis. Refer to the code in the section 6.3 CLOSED-LOOP TRANSIENT RESPONSE.

Closed Loop Transient Response MATLAB

3) Summarize the roles of engineering tool MATLAB/Simulink when you design a control system.

The role of the engineering tool MATLAB and Simulink when designing a control system is to provide a simulation environment to test and validate results. Given a correct set of instruction, it is able to predict theoretical values which is useful when trying to analyse the results. In our case, students used MATLAB to validate their experiments by exporting the raw data from the ECP 220. Overall, it is a very practical tool that can be used to facilitate control, system design as well as a simulation platform to verify experimental results.

4) Questions

(answered throughout the whole report)

5) Conclusions

In conclusion, the fourth experiment of Elec 372 provided practical insights into transient and frequency responses of control systems. By testing various input parameters such as rise time, overshoot and phase shift, students were able to analyse the behavior and stability of open and closed loop systems. For the second part, students practiced on frequency response on systems with different input frequencies such as magnitude and phase. Overall, this lab experiment contributed to the student's knowledge on control systems and their transient and frequency response.

6) Appendix

MATLAB file for 3.2.2 (Closed-Loop Step Response $K_p = 0.1$)

Thriffe in the for 5.2.2 (Closed Book Step Response in				
% Sample	Time	Commanded Pos	Encoder 1 Pos	Encoder 2 Pos
data = [0	0.000	4000	0
0;				
1	0.009	4000	18	0;
2	0.018	4000	80	3;
3	0.027	4000	170	18;
4	0.035	4000	276	45 ;
5	0.044	4000	402	84;
6	0.053	4000	557	128;
7	0.062	4000	747	175 ;
8	0.071	4000	961	226;
9	0.080	4000	1189	285;
10	0.089	4000	1428	348;
11	0.097	4000	1678	414;
12	0.106	4000	1937	481;
13	0.115	4000	2202	548;
14	0.124	4000	2468	616;
15	0.133	4000	2733	684;
16	0.142	4000	2994	750 ;
17	0.151	4000	3250	815;
18	0.159	4000	3495	879 ;
19	0.168	4000	3728	940;
20	0.177	4000	3951	996;
21	0.186	4000	4162	1048;
22	0.195	4000	4360	1096;
23	0.204	4000	4538	1141;
24	0.213	4000	4696	1183;
25	0.221	4000	4835	1219;
26	0.230	4000	4957	1251;
27	0.239	4000	5060	1276;
28	0.248	4000	5143	1296;
29	0.257	4000	5204	1311;
30	0.266	4000	5247	1322;
31	0.274	4000	5270	1327;
32	0.283	4000	5277	1328;
33	0.292	4000	5267	1327;
34	0.301	4000	5241	1320;
35	0.310	4000	5201	1310;
36	0.319	4000	5149	1296;
37	0.328	4000	5086	1280;
38	0.336	4000	5015	1262;
39	0.345	4000	4936	1241;

40	0.354	4000	4851	1220;
41	0.363	4000	4761	1197;
42	0.372	4000	4669	1173;
43	0.381	4000	4575	1149;
44	0.390	4000	4480	1125;
45	0.398	4000	4386	1100;
46	0.407	4000	4293	1077;
47	0.416	4000	4202	1053;
48	0.425	4000	4115	1031;
49	0.434	4000	4031	1009;
50	0.443	4000	3953	989;
51	0.452	4000	3879	971;
52	0.460	4000	3812	953;
53	0.469	4000	3750	938;
54	0.478	4000	3696	924;
55	0.487	4000	3649	912;
56	0.496	4000	3609	902;
57	0.505	4000	3576	894;
58	0.514	4000	3550	887;
59	0.522	4000	3531	882;
60	0.531	4000	3519	
61	0.540	4000	3513	879; 878;
62				
	0.549	4000	3511	877;
63	0.558	4000	3516	877;
64	0.567	4000	3527	880;
65	0.576	4000	3542	884;
66	0.584	4000	3561	889;
67	0.593	4000	3583	895;
68	0.602	4000	3608	901;
69	0.611	4000	3636	908;
70	0.620	4000	3665	915;
71	0.629	4000	3695	923;
72	0.638	4000	3726	931;
73	0.646	4000	3758	939;
74	0.655	4000	3789	947;
75	0.664	4000	3820	955;
76	0.673	4000	3850	963;
77	0.682	4000	3879	970;
78	0.691	4000	3907	977;
79	0.699	4000	3934	984;
80	0.708	4000	3958	990;
81	0.717	4000	3981	996;
82	0.726	4000	4002	1001;
83	0.735	4000	4021	1006;
84	0.744	4000	4038	1010;
85	0.753	4000	4052	1014;
86	0.761	4000	4064	1017;
87	0.770	4000	4074	1019;

88	0.779	4000	4082	1021;
89	0.788	4000	4087	1023;
90	0.797	4000	4091	1024;
91	0.806	4000	4092	1024;
92	0.815	4000	4092	1024;
93	0.823	4000	4091	1024;
94	0.832	4000	4087	1024;
95	0.841	4000	4082	1023;
96	0.850	4000	4076	1021;
97	0.859	4000	4069	1020;
98	0.868	4000	4061	1017;
99	0.877	4000	4053	1015;
100	0.885	4000	4044	1013;
101	0.894	4000	4036	1011;
102	0.903	4000	4027	1009;
103	0.912	4000	4018	1006;
104	0.921	4000	4009	1004;
105	0.930	4000	4000	1002;
106	0.939	4000	3992	1000;
107	0.947	4000	3984	998;
108	0.956	4000	3976	996;
109	0.965	4000	3969	994;
110	0.974	4000	3963	992;
111	0.983	4000	3957	991;
112	0.992	4000	3951	989;
113	1.001	4000	3947	988;
114	1.009	4000	3943	987;
114	1.018	4000	3940	987;
116	1.027	4000	3937	986;
117	1.036	4000	3935	985;
117	1.035	4000	3934	985;
119	1.054	4000	3934	985;
120	1.063	4000	3933	985;
	1.063			
121	1.071	4000	3933 3935	985;
122		4000		985;
123	1.089	4000	3935	985;
124	1.098	4000	3937	985;
125	1.107	4000	3939	985;
126	1.116	4000	3941	985;
127	1.124	4000	3943	985;
128	1.133	4000	3945	987;
129	1.142	4000	3947	987;
130	1.151	4000	3949	987;
131	1.160	4000	3951	988;
132	1.169	4000	3952	988;
133	1.178	4000	3954	989;
134	1.186	4000	3955	989;
135	1.195	4000	3957	989;

136	1.204	4000	3958	990;
137	1.213	4000	3959	990;
138	1.222	4000	3959	990;
139	1.231	4000	3960	990;
140	1.240	4000	3960	991;
141	1.248	4000	3961	991;
142	1.257	4000	3961	991;
143	1.266	4000	3961	991;
144	1.275	4000	3961	991;
145	1.284	4000	3961	991;
146	1.293	4000	3961	991;
147	1.302	4000	3961	991;
148	1.310	4000	3961	991;
149	1.319	4000	3961	991;
150	1.328	4000	3961	991;
151	1.337	4000	3961	991;
152	1.346	4000	3961	991;
153	1.355	4000	3961	991;
154	1.364	4000	3961	991;
155	1.372	4000	3961	991;
156	1.381	4000	3961	991;
157	1.390	4000	3961	991;
158	1.399	4000	3961	991;
159	1.408	4000	3961	991;
160	1.417	4000	3961	991;
161	1.426	4000	3961	991;
162	1.434	4000	3961	991;
163	1.443	4000	3961	991;
164	1.452	4000	3961	991;
165	1.461	4000	3961	991;
166	1.470	4000	3961	991;
167	1.479	4000	3961	991;
168	1.488	4000	3961	991;
169	1.496	4000	3961	991;
170	1.505	4000	3961	991;
171	1.514	4000	3961	991;
172	1.523	4000	3961	991;
173	1.532	4000	3961	991;
174	1.541	4000	3961	991;
175	1.549	4000	3961	991;
176	1.558	4000	3961	991;
177	1.567	4000	3961	991;
178	1.576	4000	3961	991;
179	1.585	4000	3961	991;
180	1.594	4000	3961	991;
181	1.603	4000	3961	991;
182	1.611	4000	3961	991;
183	1.620	4000	3961	991;

184	1.629	4000	3961	991;
185	1.638	4000	3961	991;
186	1.647	4000	3961	991;
187	1.656	4000	3961	991;
188	1.665	4000	3961	991;
189	1.673	4000	3961	991;
190	1.682	4000	3961	991;
191	1.691	4000	3961	991;
192	1.700	4000	3961	991;
193	1.709	4000	3961	991;
194	1.718	4000	3961	991;
195	1.727	4000	3961	991;
196	1.735	4000	3961	991;
197	1.744	4000	3961	991;
198	1.753	4000	3961	991;
199	1.762	4000	3961	991;
200	1.771	4000	3961	991;
201	1.780	4000	3961	991;
201	1.789	4000	3961	991;
202		4000	3961	
	1.797			991;
204	1.806	4000	3961	991;
205	1.815	4000	3961	991;
206	1.824	4000	3961	991;
207	1.833	4000	3961	991;
208	1.842	4000	3961	991;
209	1.851	4000	3961	991;
210	1.859	4000	3961	991;
211	1.868	4000	3961	991;
212	1.877	4000	3961	991;
213	1.886	4000	3961	991;
214	1.895	4000	3961	991;
215	1.904	4000	3961	991;
216	1.913	4000	3961	991;
217	1.921	4000	3961	991;
218	1.930	4000	3961	991;
219	1.939	4000	3961	991;
220	1.948	4000	3961	991;
221	1.957	4000	3961	991;
222	1.966	4000	3961	991;
223	1.974	4000	3961	991;
224	1.983	4000	3961	991;
225	1.992	4000	3961	991;
226	2.001	4000	3961	991;
227	2.010	4000	3961	991;
228	2.019	4000	3961	991;
229	2.028	4000	3961	991;
230	2.036	4000	3961	991;
231	2.045	4000	3961	991;
				,

232	2.054	4000	3961	991;
233	2.063	4000	3961	991;
234	2.072	4000	3961	991;
235	2.081	4000	3961	991;
236	2.090	4000	3961	991;
237	2.098	4000	3961	991;
238	2.107	4000	3961	991;
239	2.116	4000	3961	991;
	2.125		3961	
240		4000		991;
241	2.134	4000	3961	991;
242	2.143	4000	3961	991;
243	2.152	4000	3961	991;
244	2.160	4000	3961	991;
245	2.169	4000	3961	991;
246	2.178	4000	3961	991;
247	2.187	4000	3961	991;
248	2.196	4000	3961	991;
249	2.205	4000	3961	991;
250	2.214	4000	3961	991;
251	2.222	4000	3961	991;
252	2.231	4000	3961	991;
253	2.240	4000	3961	991;
254	2.249	4000	3961	991;
255	2.258	4000	3961	991;
256	2.267	4000	3961	991;
257	2.276	4000	3961	991;
258	2.284	4000	3961	991;
259	2.293	4000	3961	991;
260	2.302	4000	3961	991;
261	2.311	4000	3961	991;
262	2.320	4000	3961	991;
263	2.329	4000	3961	991;
264	2.338	4000	3961	991;
204	2.330	4000	3901	991,
265	2.346	4000	3961	991;
266	2.355	4000	3961	991;
267	2.364	4000	3961	991;
268	2.373	4000	3961	991;
269	2.382	4000	3961	991;
270	2.391	4000	3961	991;
271	2.399	4000	3961	991;
272	2.408	4000	3961	991;
273	2.417	4000	3961	991;
274	2.426	4000	3961	991;
275	2.435	4000	3961	991;
276	2.444	4000	3961	991;
				,

277	2.453	4000	3961	991;
278	2.461	4000	3961	991;
279	2.470	4000	3961	991;
280	2.479	4000	3961	991;
281	2.488	4000	3961	991;
282	2.497	4000	3961	991;
283	2.506	4000	3961	991;
284	2.515	4000	3961	991;
285	2.523	4000	3961	991;
286	2.532	4000	3961	991;
287	2.541	4000	3961	991;
288	2.550	4000	3961	991;
289	2.559	4000	3961	991;
290	2.568	4000	3961	991;
291	2.577	4000	3961	991;
292	2.585	4000	3961	991;
293	2.594	4000	3961	991;
293	2.603	4000	3961	991;
294	2.612	4000	3961	991;
295	2.621	4000		
	2.630		3961	991;
297		4000	3961	991;
298	2.639	4000	3961	991;
299	2.647	4000	3961	991;
300	2.656	4000	3961	991;
301	2.665	4000	3961	991;
302	2.674	4000	3961	991;
303	2.683	4000	3961	991;
304	2.692	4000	3961	991;
305	2.701	4000	3961	991;
306	2.709	4000	3961	991;
307	2.718	4000	3961	991;
308	2.727	4000	3961	991;
309	2.736	4000	3961	991;
310	2.745	4000	3961	991;
311	2.754	4000	3961	991;
312	2.763	4000	3961	991;
313	2.771	4000	3961	991;
314	2.780	4000	3961	991;
315	2.789	4000	3961	991;
316	2.798	4000	3961	991;
317	2.807	4000	3961	991;
318	2.816	4000	3961	991;
319	2.824	4000	3961	991;
320	2.833	4000	3961	991;
321	2.842	4000	3961	991;
322	2.851	4000	3961	991;
323	2.860	4000	3961	991;
324	2.869	4000	3961	991;

325	2.878	4000	3961	991;
326	2.886	4000	3961	991;
327	2.895	4000	3961	991;
328	2.904	4000	3961	991;
329	2.913	4000	3961	991;
330	2.922	4000	3961	991;
331	2.931	4000	3961	991;
332	2.940	4000	3961	991;
333	2.948	4000	3961	991;
334	2.957	4000	3961	991;
335	2.966	4000	3961	991;
336	2.975	4000	3961	991;
337	2.984	4000	3961	991;
338	2.993	4000	3961	991;
339	3.002	4000	3961	991;
340	3.010	4000	3961	991;
341	3.019	4000	3961	991;
342	3.028	4000	3961	991;
343	3.037	4000	3961	991;
344	3.046	4000	3961	991;
345	3.055	4000	3961	991;
346	3.064	4000	3961	991;
347	3.072	4000	3961	991;
348	3.081	4000	3961	991;
349	3.090	4000	3961	991;
350	3.099	4000	3961	991;
351	3.108	4000	3961	991;
352	3.117	4000	3961	991;
353	3.126	4000	3961	991;
354	3.134	4000	3961	991;
355	3.143	4000	3961	991;
356	3.152	4000	3961	991;
357	3.161	4000	3961	991;
358	3.170	4000	3961	991;
359	3.179	4000	3961	991;
360	3.188	4000	3961	991;
361	3.196	4000	3961	991;
362	3.205	4000	3961	991;
363	3.214	4000	3961	991;
364	3.223	4000	3961	991;
365	3.232	4000	3961	991;
366	3.241	4000	3961	991;
367	3.249	4000	3961	991;
368	3.258	4000	3961	991;
369	3.267	4000	3961	991;
370	3.276	4000	3961	991;
371	3.285	4000	3961	991;
372	3.294	4000	3961	991;

373	3.303	4000	3961	991;
374	3.311	4000	3961	991;
375	3.320	4000	3961	991;
376	3.329	4000	3961	991;
377	3.338	4000	3961	991;
378	3.347	4000	3961	991;
379	3.356	4000	3961	991;
380	3.365	4000	3961	991;
381	3.373	4000	3961	991;
382	3.382	4000	3961	991;
383	3.391	4000	3961	991;
384	3.400	4000	3961	991;
385	3.409	4000	3961	991;
386	3.418	4000	3961	991;
387	3.427	4000	3961	991;
388	3.435	4000	3961	991;
389	3.444	4000	3961	991;
390	3.453	4000	3961	991;
390	3.462	4000	3961	991;
391		4000		
	3.471		3961	991;
393	3.480	4000	3961	991;
394	3.489	4000	3961	991;
395	3.497	4000	3961	991;
396	3.506	4000	3961	991;
397	3.515	4000	3961	991;
398	3.524	4000	3961	991;
399	3.533	4000	3961	991;
400	3.542	4000	3961	991;
401	3.551	4000	3961	991;
402	3.559	4000	3961	991;
403	3.568	4000	3961	991;
404	3.577	4000	3961	991;
405	3.586	4000	3961	991;
406	3.595	4000	3961	991;
407	3.604	4000	3961	991;
408	3.613	4000	3961	991;
409	3.621	4000	3961	991;
410	3.630	4000	3961	991;
411	3.639	4000	3961	991;
412	3.648	4000	3961	991;
413	3.657	4000	3961	991;
414	3.666	4000	3961	991;
415	3.674	4000	3961	991;
416	3.683	4000	3961	991;
417	3.692	4000	3961	991;
418	3.701	4000	3961	991;
419	3.710	4000	3961	991;
420	3.719	4000	3961	991;

421	3.728	4000	3961	991;
422	3.736	4000	3961	991;
423	3.745	4000	3961	991;
424	3.754	4000	3961	991;
425	3.763	4000	3961	991;
426	3.772	4000	3961	991;
427	3.781	4000	3961	991;
428	3.790	4000	3961	991;
429	3.798	4000	3961	991;
430	3.807	4000	3961	991;
431	3.816	4000	3961	991;
432	3.825	4000	3961	991;
433	3.834	4000	3961	991;
434	3.843	4000	3961	991;
435	3.852	4000	3961	991;
436	3.860	4000	3961	991;
437	3.869	4000	3961	991;
438	3.878	4000	3961	991;
439	3.887	4000	3961	991;
440	3.896	4000	3961	991;
441	3.905	4000	3961	991;
442	3.914	4000	3961	991;
443	3.922	4000	3961	991;
444	3.931	4000	3961	991;
445	3.940	4000	3961	991;
446	3.949	4000	3961	991;
447	3.958	4000	3961	991;
448	3.967	4000	3961	991;
449	3.976	4000	3961	991;
450	3.984	4000	3961	991;
451	3.993	4000	3961	991;
452	4.002	0	3961	991;
453	4.011	0	3944	991;
454	4.020	0	3878	986;
455	4.029	0	3787	968;
456	4.038	0	3672	937;
457	4.046	0	3528	896;
458	4.055	0	3349	851;
459	4.064	0	3144	800;
460	4.073	0	2927	743;
461	4.082	0	2696	683;
462	4.091	0	2447	620;
463	4.099	0	2188	554;
464	4.108	0	1924	487;
465	4.117	0	1657	417;
466	4.126	0	1390	348;
467	4.135	0	1126	279;
468	4.144	0	865	211;
- 00		<u> </u>	2 0 0	/

469	4.153	0	610	146;
470	4.161	0	361	84;
471	4.170	0	123	25;
472	4.179	0	-100	-32;
473	4.188	0	-304	-85;
474	4.197	0	-491	-135;
475	4.206	0	-662	-179;
476	4.215	0	-817	-216;
477	4.223	0	-954	-249;
478	4.232	0	-1071	-278 ;
479	4.241	0	-1168	-303;
480	4.250	0	-1245	-323;
481	4.259	0	-1303	-339;
482	4.268	0	-1342	-349;
483	4.277	0	-1364	-354;
484	4.285	0	-1370	-355 ;
485	4.294	0	-1358	-353 ;
486	4.303	0	-1330	-345;
487	4.312	0	-1288	-334;
488	4.321	0	-1236	-320;
489	4.330	0	-1172	-303;
490	4.339	0	-1100	-284;
491	4.347	0	-1021	-264;
492	4.356	0	-935	-242;
493	4.365	0	-845	-219;
494	4.374	0	- 752	-195;
495	4.383	0	-657	-170;
496	4.392	0	-560	-145;
497	4.401	0	-464	-120;
498	4.409	0	-368	-95 ;
499	4.418	0	-274	-71;
500	4.427	0	-183	-48;
501	4.436	0	-96	-25;
502	4.445	0	-13	-4;
503	4.454	0	65	16;
504	4.463	0	137	34;
505	4.471	0	203	51;
506	4.480	0	262	66;
507	4.489	0	314	79;
508	4.498	0	360	91;
509	4.507	0	399	101;
510	4.516	0	430	109;
511	4.524	0	455	115;
512	4.533	0	473	120;
513	4.542	0	485	123;
514	4.551	0	490	124;
515	4.560	0	491	125;
516	4.569	0	484	125;

517	4.578	0	473	121;
518	4.586	0	458	117;
519	4.595	0	438	112;
520	4.604	0	415	106;
521	4.613	0	390	100;
522	4.622	0	362	93;
523	4.631	0	332	85;
524	4.640	0	301	77;
525	4.648	0	269	69;
526	4.657	0	237	60;
527	4.666	0	204	52;
528	4.675	0	172	44;
529	4.684	0	140	36;
530	4.693	0	109	28;
531	4.702	0	79	20;
532	4.710	0	50	13;
533	4.719	0	23	6;
534	4.728	0	-3	-1;
535	4.737	0	-26	-7;
536	4.746	0	-47	-12;
537	4.755	0	-65	-16;
538	4.764	0	-81	-20;
539	4.772	0	-94	-24;
540	4.781	0	-105	-27;
541	4.790	0	-113	-29;
542	4.799	0	-118	-30;
543	4.808	0	-121	-31;
544	4.817	0	-122	-31;
545	4.826	0	-122	-31;
546	4.834	0	-118	-31;
547	4.843	0	-113	-31;
548	4.852	0	-107	-29;
549	4.861	0	-100	-27;
550	4.870	0	-92	-25;
551	4.879	0	-83	-22;
552	4.888	0	-74	-20;
553	4.896	0	-64	-18;
554	4.905	0	-54	-15;
555	4.914	0	-44	-13;
556	4.923	0	-34	-10;
557	4.932	0	-25	-7;
558	4.932	0	-25 -15	-7; -5;
559	4.941		-15 -6	
		0		-3;
560	4.958	0	2	-1;
561	4.967	0	10	1;
562	4.976	0	17	3;
563	4.985	0	23	5;
564	4.994	0	28	6;

				_
565	5.003	0	33	7;
566	5.011	0	36	8;
567	5.020	0	38	9;
568	5.029	0	40	9;
569	5.038	0	41	10;
570	5.047	0	41	10;
571	5.056	0	41	10;
572	5.065	0	41	10;
573	5.073	0	40	10;
574	5.082	0	37	10;
575	5.091	0	35	10;
576	5.100	0	33	9;
577	5.109	0	31	9;
578	5.118	0	29	8;
579	5.127	0	27	7;
580	5.135	0	25	7;
581	5.144	0	23	6;
582	5.153	0	21	6;
583	5.162	0	20	5;
584	5.102			
		0	19	5;
585	5.180	0	17	5;
586	5.189	0	17	4;
587	5.197	0	16	4;
588	5.206	0	16	4;
589	5.215	0	16	4;
590	5.224	0	16	4;
591	5.233	0	16	4;
592	5.242	0	16	4;
593	5.251	0	16	4;
594	5.259	0	16	4;
595	5.268	0	16	4;
596	5.277	0	16	4;
597	5.286	0	16	4;
598	5.295	0	16	4;
599	5.304	0	16	4;
600	5.313	0	16	4;
601	5.321	0	16	4;
602	5.330	0	16	4;
603	5.339	0	16	4;
604	5.348	0	16	4;
605	5.357	0	16	4;
606	5.366	0	16	4;
607	5.374	0	16	4;
608	5.383	0	16	4;
609	5.392	0	16	4;
610	5.401	0	16	4;
611	5.410	0	16	4;
612	5.419	0	16	4;
012	0.119	9	10	- /

613	5.428	0	16	4;
614	5.436	0	16	4;
615	5.445	0	16	4;
616	5.454	0	16	4;
617	5.463	0	16	4;
618	5.472	0	16	4;
619	5.481	0	16	4;
620	5.490	0	16	4;
621	5.498	0	16	4;
622	5.507	0	16	4;
623	5.516	0	16	4;
624		0	16	
024	5.525	0	Τ 0	4;
625	5.534	0	16	4;
626	5.543	0	16	4;
627	5.552	0	16	4;
628	5.560	0	16	4;
629	5.569	0	16	4;
630	5.578	0	16	4;
631	5.587	0	16	4;
632	5.596	0	16	4;
633	5.605	0	16	4;
634	5.614	0	16	4;
635	5.622	0	16	4;
636	5.631	0	16	4;
637	5.640	0	16	4;
638	5.649	0	16	4;
639	5.658	0	16	4;
640	5.667	0	16	4;
641	5.676	0	16	4;
642	5.684	0	16	4;
643	5.693	0	16	4;
644	5.702	0	16	4;
645	5.711	0	16	4;
646	5.720	0	16	4;
647	5.729	0	16	4;
648	5.738	0	16	4;
649	5.746	0	16	4;
650	5.755	0	16	4; 4;
651	5.764	0	16	
				4;
652	5.773	0	16	4;
653 654	5.782	0	16	4;
654	5.791	0	16	4;
655	5.799	0	16	4;
656	5.808	0	16	4;
657	5.817	0	16	4;

658	E 006	0	16	4.
	5.826	0		4;
659	5.835	0	16	4;
660	5.844	0	16	4;
661	5.853	0	16	4;
662	5.861	0	16	4;
663	5.870	0	16	4;
664	5.879	0	16	4;
665	5.888	0	16	4;
666	5.897	0	16	4;
667	5.906	0	16	4;
668	5.915	0	16	4;
669	5.923	0	16	4;
670	5.932	0	16	4;
671	5.941	0	16	4;
672	5.950	0	16	4;
673	5.959	0	16	4;
674	5.968	0	16	4;
675	5.977	0	16	4;
676	5.985	0	16	4;
677	5.994	0	16	4;
678	6.003	0	16	4;
679	6.012	0	16	4;
680	6.021	0	16	4;
681	6.030	0	16	4;
682	6.039	0	16	4;
683	6.047	0	16	4;
684	6.056	0	16	4;
685	6.065	0	16	4;
686	6.074	0	16	4;
687	6.083	0	16	4;
688	6.092	0	16	4;
689	6.101	0	16	4;
690	6.109	0	16	4;
691	6.118	0	16	4;
692	6.127	0	16	4;
693	6.136	0	16	4;
694	6.145	0	16	4;
695	6.154	0	16	4;
696	6.163	0	16	4;
697	6.171	0	16	4;
698	6.180	0	16	4;
699	6.189	0	16	4;
700	6.198	0	16	4;
701	6.207	0	16	4;
702	6.216	0	16	4;
703	6.224	0	16	4;
704	6.233	0	16	4;
705	6.242	0	16	4;

706	6.251	0	16	4;
707	6.260	0	16	4;
708	6.269	0	16	4;
709	6.278	0	16	4;
710	6.286	0	16	4;
711	6.295	0	16	4;
712	6.304	0	16	4;
713	6.313	0	16	4;
714	6.322	0	16	4;
715	6.331	0	16	4;
716	6.340	0	16	4;
717	6.348	0	16	4;
718	6.357	0	16	4;
719	6.366	0	16	4;
720	6.375	0	16	4;
721	6.384	0	16	4;
722	6.393	0	16	4;
723	6.402	0	16	4;
724	6.410	0	16	4;
725	6.419	0	16	4;
726	6.428	0	16	4;
727	6.437	0	16	4;
728	6.446	0	16	4;
729	6.455	0	16	4;
730	6.464	0	16	4;
731	6.472	0	16	4;
732	6.481	0	16	4;
733	6.490	0	16	4;
734	6.499	0	16	4;
735	6.508	0	16	4;
736	6.517	0	16	4;
737	6.526	0	16	4;
738	6.534	0	16	4;
739	6.543	0	16	4;
740	6.552	0	16	4;
741	6.561	0	16	4;
742	6.570	0	16	4;
743	6.579	0	16	4;
744	6.588	0	16	4;
745	6.596	0	16	4;
746	6.605	0	16	4;
747 748	6.614 6.623	0	16 16	4;
748		0	16	4;
749	6.632 6.641	0	16	4; 4;
750	6.649	0	16	4; 4;
751	6.658	0	16	4; 4;
753	6.667	0	16	4;
155	0.007	U	10	٦,

754	6.676	0	16	4;
755 756	6.685	0	16	4;
756	6.694	0	16	4;
757	6.703	0	16	4;
758	6.711	0	16	4;
759	6.720	0	16	4;
760	6.729	0	16	4;
761	6.738	0	16	4;
762	6.747	0	16	4;
763	6.756	0	16	4;
764	6.765	0	16	4;
765	6.773	0	16	4;
766	6.782	0	16	4;
767	6.791	0	16	4;
768	6.800	0	16	4;
769	6.809	0	16	4;
770	6.818	0	16	4;
771	6.827	0	16	4;
772	6.835	0	16	4;
773	6.844	0	16	4;
774	6.853	0	16	4;
775	6.862	0	16	4;
776	6.871	0	16	4;
777	6.880	0	16	4;
778	6.889	0	16	4;
779	6.897	0	16	4;
780	6.906	0	16	4;
781	6.915	0	16	4;
782	6.924	0	16	4;
783	6.933	0	16	4;
784	6.942	0	16	4;
785	6.951	0	16	4;
786	6.959	0	16	4;
787	6.968	0	16	4;
788	6.977	0	16	4;
789	6.986	0	16	4;
790	6.995	0	16	4;
791	7.004	0	16	4;
792	7.013	0	16	4;
793	7.021	0	16	4;
794	7.030	0	16	4;
795	7.039	0	16	4;
796	7.048	0	16	4;
797	7.057	0	16	4;
798	7.066	0	16	4;
799	7.074	0	16	4;
800	7.083	0	16	4;
801	7.092	0	16	4;

802	7.101	0	16	4;
803	7.110		16	
804		0		4;
	7.119	0	16	4;
805	7.128	0	16	4;
806	7.136	0	16	4;
807	7.145	0	16	4;
808	7.154	0	16	4;
809	7.163	0	16	4;
810	7.172	0	16	4;
811	7.181	0	16	4;
812	7.190	0	16	4;
813	7.198	0	16	4;
814	7.207	0	16	4;
815	7.216	0	16	4;
816	7.225	0	16	4;
817	7.234	0	16	4;
818	7.243	0	16	4;
819	7.252	0	16	4;
820	7.260	0	16	4;
821	7.269	0	16	4;
822	7.278	0	16	4;
823	7.287	0	16	4;
824	7.296	0	16	4;
825	7.305	0	16	4;
826	7.314	0	16	4;
827	7.322	0	16	4;
828	7.331	0	16	4;
829	7.340	0	16	4;
830	7.349	0	16	4;
831	7.358	0	16	4;
832	7.367	0	16	4;
833	7.376	0	16	4;
834	7.384	0	16	4;
835	7.393	0	16	4;
836	7.402	0	16	4;
837	7.411	0	16	4;
838	7.420	0	16	4;
839	7.429	0	16	4;
840	7.438	0	16	4;
841	7.446	0	16	4;
842	7.455	0	16	4;
843	7.464	0	16	4;
844	7.473	0	16	4;
845	7.482	0	16	4;
846	7.491	0	16	4;
847	7.499	0	16	4;
848	7.508	0	16	4;
849	7.517	0	16	4;

850	7.526	0	16	4;
851	7.535	0	16	4;
852	7.544	0	16	4;
853	7.553	0	16	4;
854	7.561	0	16	4;
855	7.570	0	16	4;
856	7.579	0	16	4;
857	7.588	0	16	4;
858	7.597	0	16	4;
859	7.606	0	16	4;
860	7.615	0	16	4;
861	7.623	0	16	4;
862	7.632	0	16	4;
863	7.641	0	16	4;
864	7.650	0	16	4;
865	7.659	0	16	4;
866	7.668	0	16	4;
867	7.677	0	16	4;
868	7.685	0	16	4;
869	7.694	0	16	4;
870	7.703	0	16	4;
871	7.712	0	16	4;
872	7.721	0	16	4;
873	7.730	0	16	4;
874	7.739	0	16	4;
875	7.747	0	16	4;
876	7.756	0	16	4;
877	7.765	0	16	4;
878	7.774	0	16	4;
879	7.783	0	16	4;
880	7.792	0	16	4;
881	7.801	0	16	4;
882	7.809	0	16	4;
883	7.818	0	16	4;
884	7.827	0	16	4;
885	7.836	0	16	4;
886	7.845	0	16	4;
887	7.854	0	16	4;
888	7.863	0	16	4;
889	7.871	0	16	4;
890	7.880	0	16	4;
891	7.889	0	16	4;
892	7.898	0	16	4;
893	7.907	0	16	4;
894	7.916	0	16	4;
895	7.924	0	16	4;
896	7.933	0	16	4;
897	7.942	0	16	4;

```
898 7.951
                               0
                                               16
                                                                4;
   899
         7.960
                               0
                                              16
                                                                4;
   900
         7.969
                               0
                                              16
                                                                4;
   901
         7.978
                               0
                                              16
                                                                4;
   902
          7.986
                               0
                                              16
                                                                4];
K=4.92, B=0.0018, J=0.00386;
Kp=0.1, Kd=0.005;
s=tf('s');
cltf = (K*Kp) / (J*s^2 + (B+K*Kd) *s+K*Kp);
ltiview('step',cltf,0:0.1:10);
time = data(:,1);
y=data(:,3);
u=data(:,4);
plot(time,y);
hold on;
plot(time,u);
```