Notes 9-13

1 Asymptotic analysis continued

We consider T(n) the worst-case running time of an algorithm. We typically omit clarifying worst-case, as we always consider worst-case runtimes in elementary algorithm analysis.

The big picture: to analyze runtimes we want tools like \leq , \geq , and =, but which ignore constants and small input sizes:

- $T(n) = \mathcal{O}(g(n))$ is an asymptotic upper bound (think \leq)
- $T(n) = \Omega(g(n))$ is an asymptotic lower bound (think \geq)
- $T(n) = \Theta(g(n))$ is a "tight" asymptotic bound, i.e. a matching asymptotic upper and lower bound (think =)

We defined $\mathcal{O}(g(n))$ last time. We will define $\Omega(g(n))$ in a very similar manner, except that it will act as a lower bound instead of an upper bound:

 $T(n) = \Omega(g(n))$ means $\exists c, n_0 > 0$ such that $\forall n \geq n_0, T(n) \geq c \cdot g(n)$.

Then, towards a notion of equal asymptotic runtimes, we define $T(n) = \Theta(g(n))$ means $T(n) = \mathcal{O}(g(n))$ and $T(n) = \Omega(g(n))$. This is similar to the notion that a < b and a > b implies a = b for numbers.

Example of proving that something is NOT \mathcal{O} of some function: Claim: $6n^3 \notin \mathcal{O}(n^2)$. Proof: Suppose $6n^3 = \mathcal{O}(n^2)$. That means $\exists c, n_0 > 0$ such that $\forall n \geq n_0, 6n^3 \leq c \cdot n^2$.

$$6n^{3} \le c \cdot n^{2}$$

$$6n \le c$$

$$n \le \frac{c}{6}$$

Therefore this is only true for $n \leq \frac{c}{6}$, not for all $n \geq n_0$, therefore $6n^3 \neq \mathcal{O}(n^2)$.

Example of proving that something is $\Omega(g(n))$: Claim: if p, q, r > 0, then $pn^2 + qn + r = \Omega(n^2)$. Proof: Let c = p, $n_0 = 1$. Then $pn^2 + qn + r \ge pn^2 = cn^2$ for all $n \ge n_0$.

Further, since last time we proved that $pn^2 + qn + r = \mathcal{O}(n^2)$, it is both upper and lower bounded asymptotically by n^2 , so it is $\Theta(n^2)$.

For the following section, note that since our time functions are always parameterized by n, we will omit then n (e.g. we write T(n) as T). These claims are same for Ω notation.

- Transitivity: $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f\mathcal{O}(h)$ (for numbers, we know this as: $a \leq b$ and $b \leq c$ then $a \leq c$).
- Transpose symmetry: $f \in \mathcal{O}(g) \Leftrightarrow g \in \Omega(f)$ (for numbers, we know this as: $a \leq b \Leftrightarrow b \geq a$).
- $f \in \mathcal{O}(h_1)$ and $g \in \mathcal{O}(h_2)$ then $f \cdot g \in \mathcal{O}(h_1 \cdot h_2)$ (for numbers, we know this as $a \leq b$ and $c \leq d \Rightarrow ac \leq bd$).
- $f \in \mathcal{O}(h_1)$ and $g \in \mathcal{O}(h_2)$ then $f + g \in \mathcal{O}(h_1 + h_2)$ and $f + g \in \mathcal{O}(\max(h_1, h_2))$ (for numbers, we know this as a + b and $c + d \Rightarrow a + c \le b + d$) and $a + c \le 2 \cdot \max(b, d)$.

One word of caution: it's possible that two functions f and g do not bound each other at all: i.e., it is possible that $f \notin \mathcal{O}(g)$ and $g \notin \mathcal{O}(f)$. This is different than numbers since it must be that either $a \leq b$ or $b \leq a$. For example, $f(n) = n^2$ if n is even, f(n) = n if n is odd, then $f(n) \notin \mathcal{O}(n)$ and $f(n) \notin \Omega(n)$.

Another tool for proving asymptotic bounds is the Limit Theorem. To use this, compute $\lim_{n\to\infty}\frac{f(n)}{g(n)}$.

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$ then $f(n) \in \mathcal{O}(g(n))$.
- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$ then $f(n) \in \Omega(g(n))$.
- If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, then both the above inequalities are true (> 0, and $<\infty$) and so $f(n)\in\Theta(g(n))$.

Claim: $\log(n^2) \in \Theta(\log n + 5)$. Proof: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{2}{n}}{\frac{1}{n}} = 2$.

¹Recall L'Hopital's rule: If f and g are differentiable such that $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} = 0$ or ∞ then $\lim_{n\to\infty} \frac{f'(n)}{g'(n)} = \lim_{n\to\infty} \frac{f(n)}{g(n)}$.