GENERATING SPIN SPIRALS USING RYDBERG ATOMS

OVERVIEW

- What are spiral states?
- Why Spin Spiral?
- How to create spin spirals?
- Mapping to a spin Hamiltonian

1. WHAT ARE SPIN SPIRAL STATES?

$$|\Psi_{spiral}\rangle = \prod_{i} \sin\left(\frac{2\pi}{\lambda}x_{i}\right)\hat{x}_{i} + \cos\left(\frac{2\pi}{\lambda}x_{i}\right)\hat{y}_{i}$$

Y axis

1. WHAT ARE SPIN SPIRAL STATES?

$$|\Psi_{spiral}\rangle = \prod_{i} |\downarrow\rangle_{i} + e^{\frac{i2\pi}{\lambda}x_{i}} |\uparrow\rangle_{i}$$

2. WHY SPIN SPIRALS?

- Introduces a new length scale (λ) to the system
- Can study spin-spin correlation
- Understand spin dynamics better
- How far-from equilibrium systems relax

"SEEING" SPIRALS USING FLUORESCENCE IMAGING

3. HOW TO CREATE SPIN SPIRALS?

- The Protocol
- Choosing the two energy levels
- Setting the electrode voltages

3. HOW TO CREATE SPIN SPIRALS

A. THE PROTOCOL

3A. THE PROTOCOL

Consider a single qubit

under
$$H = |\downarrow\rangle\langle\downarrow| + \hbar\omega |\uparrow\rangle\langle\uparrow|$$

3A. THE PROTOCOL

For multiple qubits, create position dependent differences in ω

SO THE PROTOCOL TO CREATE SPIRAL STATES WOULD BE...

1. Initialize all spins in x-y plane

SO THE PROTOCOL TO CREATE SPIRAL STATES WOULD BE...

2. Create the position dependent frequency difference

3. Remove the position dependent frequency difference, when desired state is achieved (after τ_{spiral})

SPIRALIZATION TIME

Time to reach desired state (τ_{spin}) Maximum τ_{spin} needed:

For Neel state ($\lambda = 2a_0$):

CREATING A FREQUENCY VARIATION WITH POSITION $\left(\frac{\delta a}{\delta x}\right)$

Rydberg Hamiltonians in external fields

$$H(\vec{E}, \vec{B}) = H_o - \hat{d} \cdot \vec{E} - \hat{\mu} \cdot \vec{B} + \frac{1}{8m_e} |\hat{d} \times \vec{B}|^2$$

Electric dipole operator

Magnetic dipole operator

Better experimental control on \vec{E} than on \vec{B}

CREATING A FREQUENCY VARIATION WITH POSITION

 $\left(\frac{\delta\omega}{\delta x}\right)$

For a spiral state:

$$\begin{aligned} \phi(x) &\propto x \\ |\Psi_{spiral}\rangle &= \prod_{i} |\downarrow\rangle_{i} + e^{\frac{i2\pi}{\lambda}x_{i}} |\uparrow\rangle_{i} \\ \phi(x) &= \omega(x)\tau_{spiral} \end{aligned}$$

$$\omega(x) = \frac{\partial \omega(x)}{\partial x} x$$

$$\Delta \omega = \frac{\partial \omega(x)}{\partial x} \Delta x = \frac{\partial \omega(\vec{E})}{\partial |\vec{E}_{plane}|} \frac{\partial |\vec{E}_{plane}|}{\partial x} \Delta x$$

ACHIEVING LINEAR VARIATION OF ω

$$\Delta \omega = \frac{\partial \omega(\vec{E})}{\partial |\vec{E}_{plane}|} \frac{\partial |\vec{E}_{plane}|}{\partial x} \Delta x$$

Choosing two energy levels:

• $\frac{\partial \omega}{\partial |\vec{E}_{plane}|} \sim \text{constant}$

Adjusting electrodes voltages:

•
$$\frac{\partial |\vec{E}_{plane}|}{\partial x} \sim \text{constant}$$

3.B CHOOSING THE TWO LEVELS

RYDBERG ATOMS IN ELECTRIC FIELD $\left(\frac{\delta\omega}{\delta|\vec{E}|}\right)$

At $\vec{B} = 160 \ G \ \hat{z}$ variation of energy levels with \vec{E}

CRITERIA FOR CHOOSING ENERGY LEVELS

- Arr $\frac{\partial \omega}{\partial |\vec{E}_{plane}|} \sim \text{constant for considerable range}$
- $au_{spiral} \ll T_{interaction}$
- ullet $\frac{\partial \omega}{\partial |\vec{E}_{plane}|}$ large enough to get small au_{spiral}
- Large electric dipole moment

Reference dipole moment: 1.38 GHz (cm/V)

[for $|48 \ s \ 0.5 \ 0.5\rangle \rightarrow |48 \ p \ 1.5 \ 0.5\rangle$]

A CLOSER LOOK AT STARK MAPS

At $\vec{B} = 160~G~\hat{z}$ variation of energy levels with \vec{E}

CHOOSING THE TWO LEVEL SYSTEM

3C. SETTING ELECTRODE VOLTAGES

- A. Generating offset electric field
- B. Generating $\frac{\partial |\vec{E}_{plane}|}{\partial r}$
- C. Combining these two

DESIRED ELECTRIC FIELDS

$$\frac{\partial |\vec{E}_{plane}|}{\partial r} = constant$$

$$\frac{\partial |\vec{E}_{plane}|}{\partial r_{\perp}} \sim 0$$

$$\frac{\partial |\vec{E}_{plane}|}{\partial z} \sim 0$$

Electrode potentials < 40V (to be able to ramp faster)</p>

A. GENERATING CONSTANT $|\vec{E}_{plane}|$

THE OFFSET FIELDS GENERATED

FINALIZING V_o

B. GENERATING

$\frac{\partial |\vec{E}_{plane}|}{\partial r}$

THE GRADIENT FIELDS GENERATED

FINALIZING V_o

C. GENERATING OFFSET $|\vec{E}_{plane}|$ & $\frac{\partial |E_{plane}|}{\partial r}$

COMBINING THE OFFSET AND GRADIENT

CHARACTERIZING ALONG Z AXIS

FINAL DIRECTION OF SPIN SPIRAL

4. MAPPING TO A SPIN HAMILTONIAN

INTERACTION HAMILTONIAN FOR TWO ATOMS

To first order, as if dipoles are interacting

$$H_{Total} = H_1 \otimes \mathbb{I} + \mathbb{I} \otimes H_2 + H_{int}$$

$$H_{int} = \frac{1}{4\pi\epsilon_0} \frac{\widehat{d_1} \cdot \widehat{d_2} - 3(\widehat{d_1} \cdot \widehat{r})(\widehat{d_2} \cdot \widehat{r})}{|\vec{r}|^3}$$

HAMILTONIAN OF THE TWO ATOM SYSTEM

Using
$$\widehat{d_{\pm}} = \mp \frac{1}{\sqrt{2}} (\widehat{d_x} \pm i \ \widehat{d_y})$$
 and $\widehat{d_0} = \widehat{d_z}$

$$H_I(\theta, \phi, \vec{r}) = \frac{H_{dd}(\theta, \phi)}{4\pi\epsilon_0 |\vec{r}|^3}$$

$$H_{dd}(\theta,\phi) = \frac{1-3\cos^2(\theta)}{2} \left[2 \, \widehat{d_{10}} \cdot \widehat{d_{20}} + \widehat{d_{1+}} \cdot \widehat{d_{2-}} + \widehat{d_{1-}} \cdot \widehat{d_{2+}} \right] \leftarrow \text{No azimuthal dependence}$$

$$- \frac{3\sin^2(\theta)}{2} \left[\widehat{d_{1+}} \cdot \widehat{d_{2+}} e^{-i\phi} + \widehat{d_{1-}} \cdot \widehat{d_{2-}} e^{i\phi} \right]$$

$$- \frac{3\sin^2(\theta)}{2} \left[(\widehat{d_{1+}} \cdot \widehat{d_{20}} + \widehat{d_{10}} \cdot \widehat{d_{2+}}) e^{-i\phi} + (\widehat{d_{1-}} \cdot \widehat{d_{20}} + \widehat{d_{10}} \cdot \widehat{d_{2-}}) e^{i\phi} \right]$$
Some terms could be ignored for unperturbed states

Some terms could be

MAPPING TO A SPIN HAMILTONIAN

- |Chosen excited state $\rangle = |\uparrow\rangle \&$ |Chosen ground state $\rangle = |\downarrow\rangle$
- Single Atom Hamiltonian = $|\downarrow\rangle\langle\downarrow| + \omega|\uparrow\rangle\langle\uparrow|$
- Find H_{int} in the two spin basis : $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$
- Write H_{int} rotating frame of non-interacting Hamiltonians

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{1,2}^* & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{1,3}^* & a_{2,3}^* & a_{3,3}^* & a_{3,4} \\ a_{1,4}^* & a_{2,4}^* & a_{3,4}^* & a_{4,4} \end{pmatrix} \xrightarrow{e^{i(H_1 \otimes \mathbb{I} + \mathbb{I} \otimes H_2)t}} \begin{pmatrix} a_{1,1} & 0 & 0 & 0 \\ a_{1,2}^* & a_{1,3}^* & 0 & 0 \\ a_{1,3}^* & a_{1,4}^* & 0 & 0 & 0 \\ a_{1,3}^* & a_{1,4}^* & 0 & 0 & 0 \\ a_{1,3}^* & a_{2,3}^* & a_{3,3} & 0 \\ a_{1,4}^* & a_{1,4}^* & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\omega t} \begin{pmatrix} \omega t \\ 0 & a_{2,2} & a_{2,3} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\omega t} \begin{pmatrix} \omega t \\ \omega t \\ \omega t \\ \omega t \end{pmatrix}$$

MAPPING TO A SPIN HAMILTONIAN

$$H_{int} = \frac{1}{4\pi\epsilon_0 |\vec{r}|^3} \times \begin{pmatrix} \langle \uparrow \uparrow | H_{dd} | \uparrow \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} E_{\uparrow \uparrow} & 0 & 0 & 0 \\ 0 & E_{\downarrow \uparrow} & J/2 & 0 \\ 0 & J/2 & E_{\downarrow \uparrow} & 0 \\ 0 & 0 & 0 & E_{\downarrow \downarrow} \end{pmatrix} \begin{pmatrix} 0 \\ dd | \downarrow \uparrow \rangle & 0 \\ dd | \downarrow \uparrow \rangle & 0 \\ dd | \downarrow \uparrow \rangle & 0 \\ 0 \end{pmatrix}$$

$$\equiv J^{\perp}(S_1^x \otimes S_2^x + S_1^y \otimes S_2^y) + J^{\parallel}(S_1^z \otimes S_2^z) + h_z(S_1^z \otimes \mathbb{I} + \mathbb{I} \otimes S_2^z) + V\mathbb{I}$$

$$J^{\parallel} = E_{\downarrow\downarrow} + E_{\uparrow\uparrow} - 2E_{\downarrow\uparrow}$$

$$J^{\perp} = 2J$$

$$h_z = \frac{E_{\downarrow\downarrow} - E_{\uparrow\uparrow}}{2}$$

$$J^{\parallel} = E_{\downarrow\downarrow} + E_{\uparrow\uparrow} - 2E_{\downarrow\uparrow} \qquad J^{\perp} = 2J \qquad h_z = \frac{E_{\downarrow\downarrow} - E_{\uparrow\uparrow}}{2} \qquad V = \frac{E_{\uparrow\uparrow} + E_{\downarrow\downarrow} + 2E_{\uparrow\downarrow}}{4}$$

ANGULAR DEPENDENCE OF J^{\parallel} AND J^{\perp}

For $|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 1.5 \rangle$

ANGULAR DEPENDENCE OF J^{\parallel}/J^{\perp}

For $|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 1.5 \rangle$

ANOTHER TRANSITION EXAMPLE

For $|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 0.5 \rangle$

49

ANGULAR DEPENDENCE OF J^{\parallel} AND J^{\perp}

For $|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 0.5 \rangle$

ANGULAR DEPENDENCE OF J^{\parallel}/J^{\perp}

For
$$|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 0.5 \rangle$$

ANGULAR DEPENDENCE OF h_z AND J^{\parallel}/J^{\perp}

For
$$|48 s; J = 0.5; m_J = 0.5 \rangle \rightarrow |48 p; J = 1.5; m_J = 0.5 \rangle$$

OUTLOOK

- Can implement different Hamiltonians for different levels
- Analyze changes with principal quantum number
- Analyze effect of change in direction of fields on Spin model
- Look for Forster resonances

THANK YOU!

For making me a part of the Rydberg Team!