Mathematics

Robin Adams

June 21, 2024

Contents

Ι	Category Theory	9
1	Foundations	11
2	Categories	13
	2.1 Categories	13
	2.1.1 Definition of a Category	13
	2.2 Preorders	14
	2.3 Monomorphisms and Epimorphisms	14
	2.4 Sections and Retractions	16
	2.5 Isomorphisms	17
	2.6 Initial and Terminal Objects	17
3	Functors	19
	3.1 Comma Categories	19
11	· · · · · · · · · · · · · · · · · · ·	2125
4	Semigroups	27
	9-1	
5	Monoids	29
6	Groups	31
	6.1 Symmetric Groups	34
	6.2 Order of an Element	35
	6.3 Generators	37
	6.4 <i>p</i> -groups	39
7	Group Homomorphisms	41
	7.1 Subgroups	43
	7.2 Kernel	44
	7.3 Inner Automorphisms	45

4	
4 CON	ITENTS

10	Ext	ensions	11
.		-	
	9.9	9.8.1 Transitive Subgroups	
	9.8	Symmetric Groups	
	9.7	Nilpotent Groups	
	9.6	Conjugation on Sets	
	9.5	Conjugacy Class	
	9.4	Centralizer	
	9.3	Center	
	9.2	Category of G -Sets	
	9.1	Group Actions	
9		up Actions	8
	8.6	Solvable Groups	•
		Derived Series	
	8.4	Commutator Subgroups	
	8.3 8.4	Commutator Subgroups	
	-	Free Abelian Groups	
	8.1 8.2	The Category of Abelian Groups	
8		clian Groups The Category of Abelian Croups	
	7.20	Series of Subgroups	•
		Sylow Subgroups	
		Simple Groups	
		Characteristic Subgroups	
		Cayley Graphs	
		Cokernels	
		Index of a Subgroup	
		Presentations	
		Commutator Subgroup	
		Cyclic Groups	
	7.10	3 - 3	
	7.9	Cosets	
	7.8	Quotient Groups	
	7.7	Normal Subgroups	
	7.6	Free Groups	
	7.5	Direct Products	
	7.4	Semidirect Products	

CONTENTS	T T
CONTENTS	·

IV Ring Theory	133
12 Rngs	135
12.1 Commutative Rngs	137
12.2 Rng Homomorphisms	137
12.3 Quaternions	137
13 Rings	139
13.1 Units	140
13.2 Euler's ϕ -function	142
13.3 Nilpotent Elements	144
14 Ring Homomorphisms	145
14.1 Products	147
15 Subrings	149
15.1 Centralizer	149
15.2 Center	149
16 Monoid Rings	151
16.1 Polynomials	151
16.2 Laurent Polynomials	153
16.3 Power Series	154
17 Ideals	155
17.1 Characteristic	158
17.2 Nilradical	158
17.3 Principal Ideals	158
17.4 Maximal Ideals	159
18 Integral Domains	161
18.1 Prime Ideals	162
19 Unique Factorization Domains	165
20 Principal Ideal Domains	167
21 Euclidean Domains	169
22 Division Rings	171
23 Simple Rings	173
24 Reduced Rings	175
25 Boolean Rings	177

6 CONTENTS

26	Modules	179
	26.1 Homomorphisms	180
	26.2 Submodules	181
	26.3 Quotient Modules	182
	26.4 Products	183
	26.5 Coproducts	183
	26.6 Direct Sum	183
	26.7 Kernels and Cokernels	184
	26.8 Free Modules	185
	26.9 Generators	
	26.10Projections	
	26.11Pullbacks	
	26.12Pushouts	188
27	Cyclic Modules	189
2 8	Simple Modules	191
29	Noetherian Modules	193
30	Noetherian Rings	195
21	Algebras	197
01	31.1 Rees Algebra	
	31.2 Free Algebras	
32	Algebras of Finite Type	201
33	Finite Algebras	203
34	Division Algebras	205
35	Chain Complexes	207
	35.1 Split Exact Sequences	218
36	Homology	221
\mathbf{V}	Field Theory	223
37	Fields	225
38	Algebraically Closed Fields	229
\mathbf{V}	Linear Algebra	231
39	Vector Spaces	233

CONTENTS	7
VII Linear Algebra	235
40 Vector Spaces	237
VIII Measure Theory	239

8 CONTENTS

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed.

Categories

2.1 Categories

2.1.1 Definition of a Category

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set $\mathcal{C}[A, B]$ of morphisms from A to B. We write $f: A \to B$ for $f \in \mathcal{C}[A, B]$.
- For any object A, a morphism $id_A: A \to A$, the identity morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f:A\to B,\ g:B\to C$ and $h:C\to D,$ we have $h\circ (g\circ f)=(h\circ g)\circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Example 2.2 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 2.3 (Endomorphism). In a category C, an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 2.4 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

2.2 Preorders

Definition 2.5 (Preorder). A *preorder* on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Definition 2.6 (Discrete Preorder). For any set A, we have (A, =) is a preorder, called a *discrete* preorder.

2.3 Monomorphisms and Epimorphisms

Definition 2.7 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 2.8 (Epimorphism). In a category, let $f: A \to B$. Then f is a epimorphism or epi iff, for every object X and morphism $x,y: B \to X$, if xf = yf then x = y.

Proposition 2.9. The composite of two monomorphism is monic.

```
Proof:
```

```
\langle 1 \rangle 1. Let: f:A \rightarrowtail B and g:B \rightarrowtail C be monic. \langle 1 \rangle 2. Let: x,y:X \to A
```

$$\langle 1 \rangle 3$$
. Assume: $g \circ f \circ x = g \circ f \circ y$

(1)3. ASSUME:
$$g \circ f \circ x = g \circ f \circ \langle 1 \rangle 4$$
. $f \circ x = f \circ y$

 $\langle 1 \rangle 5. \ \ x = y$

Proposition 2.10. The composite of two epimorphisms is epi.

Proof: Dual.

Proposition 2.11. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 2.12. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 2.13. A function is a monomorphism in **Set** iff it is injective.

Proof:

 $\langle 1 \rangle 1$. Let: $f: A \to B$

PROOF: Immediate from definitions.

```
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
           PROVE: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 2.14. A function is an epimorphism in Set iff it is surjective.
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. \ x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            Prove: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle5. Pick a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
Proposition 2.15. In a preorder, every morphism is monic and epi.
```

2.4 Sections and Retractions

Definition 2.16 (Section, Retraction). In a category, let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Proposition 2.17. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions.

Proposition 2.18. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 2.19. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 2.20. Every section is monic.

Proof:

 $\langle 1 \rangle 1.$ Let: $s:A \to B$ be a section of $r:B \to A.$ $\langle 1 \rangle 2.$ Let: $x,y:X \to A$ satisfy sx=sy. $\langle 1 \rangle 3.$ rsx=rsy $\langle 1 \rangle 4.$ x=y

Proposition 2.21. Every retraction is epi.

Proof: Dual.

Proposition 2.22. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \Box

Example 2.23. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

2.5 **Isomorphisms**

Definition 2.24 (Isomorphism). In a category \mathcal{C} , a morphism $f:A\to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 2.25. The inverse of an isomorphism is unique.

Proof: Proposition 2.18. \square

Proposition 2.26. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 2.27. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 2.28. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 2.19. \square

Definition 2.29 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

2.6 **Initial and Terminal Objects**

Definition 2.30 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 2.31. The empty set is the initial object in **Set**.

Definition 2.32 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 2.33. Every singleton is terminal in Set.

Proposition 2.34. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 2.35. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Functors

Definition 3.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 3.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 3.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

3.1 Comma Categories

Definition 3.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 3.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 3.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

$\begin{array}{c} {\bf Part~II} \\ {\bf Number~Theory} \end{array}$

Definition 3.8 (Partition). A partition of a natural number n is a nonincreasing sequence of positive integers whose sum is n.

Part III Group Theory

Semigroups

Definition 4.1 (Semigroup). A *semigroup* consists of a set S and an associative binary operation \cdot on S.

Monoids

Definition 5.1 (Monoid). A *monoid* consists of a semigroup M such that there exists $e \in M$, the *unit*, such that, for all $x \in M$, we have xe = ex = x.

We identify a monoid M with the category with one object whose morphisms are the elements of M, with composition given by \cdot .

Groups

Definition 6.1 (Group). Let \mathcal{C} be a category with finite products. A *group* (object) in \mathcal{C} consists of an object $G \in \mathcal{C}$ and morphisms

$$m:G^2 \to G, e:1 \to G, i:G \to G$$

such that the following diagrams commute.

$$G^{3} \xrightarrow{m \times \operatorname{id}_{G}} G^{2}$$

$$\downarrow \operatorname{id}_{G} \times m \qquad \downarrow m$$

$$G^{2} \xrightarrow{m} G$$

$$1 \times G \xrightarrow{e \times \operatorname{id}_{G}} G^{2} \qquad G \times 1 \xrightarrow{\operatorname{id}_{G} \times e} G^{2}$$

$$\stackrel{\cong}{\downarrow} m \qquad \stackrel{\cong}{\downarrow} m$$

$$G$$

$$G \xrightarrow{\Delta} G^{2} \xrightarrow{\operatorname{id}_{G} \times i} G^{2} \qquad G \xrightarrow{\Delta} G^{2} \xrightarrow{i \times \operatorname{id}_{G}} G^{2}$$

$$\downarrow m \qquad \downarrow \qquad \downarrow m$$

$$1 \xrightarrow{e} G$$

$$1 \times G \xrightarrow{id_{G} \times i} G^{2} \qquad G \xrightarrow{\Delta} G^{2} \xrightarrow{i \times \operatorname{id}_{G}} G^{2}$$

$$\downarrow m \qquad \downarrow \qquad \downarrow m$$

$$1 \xrightarrow{e} G$$

Definition 6.2 (Group). We write just 'group' for 'group in **Set**'. Thus, a group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

The *order* of a group G, denoted |G|, is the number of elements in G if G is finite; otherwise we write $|G| = \infty$.

Proposition 6.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 6.4. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- $\bullet \ \mathbb{Q}$ is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \mathbb{C} is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication
- $\{-1,1\}$ is a group under multiplication
- For any category \mathcal{C} and object $A \in \mathcal{C}$, we have $\operatorname{Aut}_{\mathcal{C}}(A)$ is a group under $gf = f \circ g$.

For A a set, we call $S_A = \operatorname{Aut}_{\mathbf{Set}}(A)$ the symmetric group or group of permutations of A.

- For $n \geq 3$, the dihedral group D_{2n} consists of the set of rigid motions that map the regular n-gon onto itself under composition.
- Let $SL_2(\mathbb{Z})=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right):a,b,c,d\in\mathbb{Z},ad-bc=1\right\}$ under matrix multiplication.
- The quaternionic group Q_8 is the group

$$\{1, -1, i, -i, j, -j, k, -k\}$$

with multiplication table

Example 6.5. • The only group of order 1 is the trivial group.

• The only group of order 2 is \mathbb{Z}_2 .

- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Proposition 6.6 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 6.7. Let G be a group and $g, h \in G$. Then $(gh)^{-1} = h^{-1}g^{-1}$.

PROOF: Since $ghh^{-1}g^{-1} = e$. \square

Definition 6.8. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 6.9. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n \ .$$

Proof:

 $\langle 1 \rangle 1$. For all $k \in \mathbb{Z}$ we have $g^{k+1} = g^k g$

 $\langle 2 \rangle 1$. For all $k \ge 0$ we have $g^{k+1} = g^k g$

PROOF: Immediate from definition.

 $\langle 2 \rangle 2$. $g^{-1+1} = g^{-1}g$

PROOF: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^k g$$

$$= g^{-k}g$$

 $\langle 1 \rangle 2$. For all $k \in \mathbb{Z}$ we have $g^{k-1} = g^k g^{-1}$

PROOF: Substitute k = k - 1 above and multiply by g^{-1} .

 $\langle 1 \rangle 3. \ g^{m+0} = g^m g^0$

PROOF: Since $g^m g^0 = g^m e = g^m$.

 $\langle 1 \rangle 4$. If $g^{m+n} = g^m g^n$ then $g^{m+n+1} = g^m q^{n+1}$

Proof:

$$\begin{split} g^{m+n+1} &= g^{m+n}g \\ &= g^m g^n g \\ &= g^m g^{n+1} \end{split} \tag{$\langle 1 \rangle 1$)}$$

$$\langle 1 \rangle 5. \text{ If } g^{m+n} = g^m g^n \text{ then } g^{m+n-1} = g^m g^{n-1}$$
 Proof:
$$g^{m+n-1} g = g^{m+n} \qquad (\langle 1 \rangle 1)$$

$$= g^m g^n$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$

$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$
$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 6.10. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$(g^m)^n = g^{mn} .$$

Proof:

 $\langle 1 \rangle 1. \ (g^m)^0 = g^0$

PROOF: Both sides are equal to e.

 $\langle 1 \rangle 2$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 6.9)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 6.9)

 $=g^{mn+m}$ $\langle 1\rangle 3.$ If $(g^m)^n=g^{mn}$ then $(g^m)^{n-1}=g^{m(n-1)}.$

Proof:

$$(g^m)^n = g^{mn}$$

$$\therefore (g^m)^{n-1}g^m = g^{mn-m}g^m \qquad (Proposition 6.9)$$

$$\therefore (g^m)^{n-1} = g^{mn-m} \qquad (Cancellation)$$

П

Definition 6.11 (Commute). Let G be a group and $g, h \in G$. We say g and h commute iff gh = hg.

Definition 6.12. Let G be a group. Given $g \in G$ and $A \subseteq G$, we define

$$gA = \{ga : a \in A\}, \qquad Ag = \{ag : a \in A\} .$$

Given sets $A, B \subseteq G$, we define

$$AB = \{ab : a \in A, b \in B\} .$$

Symmetric Groups 6.1

Definition 6.13. Let n be a natural number and $a_1, \ldots, a_r \in \{1, \ldots, n\}$ be distinct. The cycle or r-cycle

$$(a_1 \ a_2 \ \cdots \ a_r) \in S_n$$

is the permutation that sends a_i to a_{i+1} $(1 \le i < r)$ and a_r to a_1 .

We call r the *length* of the cycle.

A transposition is a 2-cycle.

Proposition 6.14. Disjoint cycles commute.

Proof: Easy. \square

Proposition 6.15. For any cycle $(a_1 \ a_2 \ \cdots \ a_r)$ in S_n and $\tau \in S_n$ we have

$$\tau(a_1 \ a_2 \ \cdots \ a_n)\tau^{-1} = (\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_n)) \ .$$

Proof: Easy.

6.2 Order of an Element

Definition 6.16 (Order). Let G be a group. Let $q \in G$. Then q has finite order iff there exists a positive integer n such that $g^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 6.17. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e \ then \ |g| \mid n$.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

PROOF: Division Algorithm.

 $\langle 1 \rangle 2. \ g^d = e$

Proof:

$$e=g^n$$

$$=g^{q|g|+d}$$

$$=(g^{|g|})^qg^d$$
 (Propositions 6.9, 6.10)
$$=e^qg^d$$

$$=g^d$$

 $\langle 1 \rangle 3. \ d = 0$

PROOF: By minimality of |g|.

$$\langle 1 \rangle 4. \ n = q|g|$$

Corollary 6.17.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 6.18. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.

 $\langle 1 \rangle 2$. Pick i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$. Proof: Otherwise $g^0, g^1, \ldots, g^{|G|}$ would be |G|+1 distinct elements of G.

- $\langle 1 \rangle 3. \ g^{j-i} = e$
- $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$

PROOF: Since $|g| \le j - i \le j \le |G|$.

Proposition 6.19. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$. Then

$$|g^m| = \frac{\operatorname{lcm}(m,|g|)}{m} = \frac{|g|}{\gcd(m,|g|)}$$

Proof: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md \qquad \qquad \text{(Corollary 6.17.1)}$$

$$\Leftrightarrow \operatorname{lcm}(m,|g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m,|g|)}{m} \mid d$$
 and so $|g^m| = \frac{\operatorname{lcm}(m,|g|)}{m}$ by Corollary 6.17.1. \square

Corollary 6.19.1. If g has odd order then $|g^2| = |g|$.

Proposition 6.20. Let G be a group. Let $g, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

Proof: Since $(gh)^{\operatorname{lcm}(|g|,|h|)} = g^{\operatorname{lcm}(|g|,|h|)}h^{\operatorname{lcm}(|g|,|h|)} = e.$

Example 6.21. This example shows that we cannot remove the hypothesis that gh = hg.

In $GL_2(\mathbb{R})$, take

$$g = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \qquad h = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right) \ .$$

Then |g| = 4, |h| = 3 and $|gh| = \infty$.

Proposition 6.22. Let G be a group and $g, h \in G$ have finite order. If gh = hgand gcd(|g|, |h|) = 1 then |gh| = |g||h|.

Proof:

$$\begin{array}{l} \text{TROOT:} \\ \langle 1 \rangle 1. \text{ LET: } N = |gh| \\ \langle 1 \rangle 2. \ g^N = (h^{-1})^N \\ \langle 1 \rangle 3. \ g^{N|g|} = e \\ \langle 1 \rangle 4. \ |g^N| \mid |g| \\ \langle 1 \rangle 5. \ h^{-N|h|} = e \end{array}$$

$$\langle 1 \rangle 2. \ g^N = (h^{-1})^N$$

$$\langle 1 \rangle 3. \ g^{N|g|} = e$$

$$\langle 1 \rangle 4$$
. $|g^{N}| | |g|$

$$\langle 1 \rangle 5, h^{-N|h|} = 0$$

$$\langle 1 \rangle 6. |g^N| |h|$$

$$\langle 1 \rangle 7$$
. $|g^N| = 1$

PROOF: Since gcd(|g|, |h|) = 1.

$$\langle 1 \rangle 8. \ g^N = e$$

$$\langle 1 \rangle 9$$
. $|g| | N$

$$\langle 1 \rangle 9. |g| | N$$

 $\langle 1 \rangle 10. h^{-N} = e$

$$\langle 1 \rangle 11$$
. $|h| |N$

$$\langle 1 \rangle 12$$
. $N = |g||h|$

Proof: Using Proposition 6.20.

Proposition 6.23. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 6.24. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 6.24.1. If a finite group has even order, then it contains an element of order 2.

Proposition 6.25. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

PROOF: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow g^n = e$$

Proposition 6.26. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$. \square

Proposition 6.27. Let G be a group of order n. Let k be relatively prime to n. Then every element in G has the form x^k for some x.

- $\langle 1 \rangle 1$. PICK integers a and b such that an + bk = 1.
- $\langle 1 \rangle 2$. Let: $g \in G$
- $\langle 1 \rangle 3. \ g = (g^b)^k$

Proof:

$$g = g \cdot (g^n)^{-a} \qquad (g^n = e)$$
$$= g^{1-an}$$
$$= g^{bk}$$

6.3 Generators

Definition 6.28 (Generator). Let G be a group and $a \in G$. We say a generates the group iff, for all $x \in G$, there exists an integer n such that $x^n = a$.

Example 6.29. $SL_2(\mathbb{Z})$ is generated by

$$s = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \qquad t = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Proof:

 $\langle 1 \rangle 1$. Let: $H = \langle s, t \rangle$

 $\langle 1 \rangle 2$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \in H$.

PROOF: It is t^q .

 $\langle 1 \rangle 3$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \in H$.

Proof:

$$st^{-q}s^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$$

 $\langle 1 \rangle 4$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & q \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & qa+b \\ c & qc+d \end{array}\right)$$

 $\langle 1 \rangle 5$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ q & 1 \end{array}\right) = \left(\begin{array}{cc} a+qb & b \\ c+qd & d \end{array}\right)$$

 $\langle 1 \rangle 6$. For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, if c and d are both nonzero, then there exists $N \in H$ such that the bottom row of MN has one entry the same as M and one entry with smaller absolute value.

PROOF: From $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ taking q = -1.

 $\langle 1 \rangle 7$. For any $M \in \mathrm{SL}_2(\mathbb{Z})$, there exists $N \in H$ such that MN has a zero on the bottom row.

PROOF: Apply $\langle 1 \rangle 6$ repeatedly.

 $\langle 1 \rangle 8$. Any matrix in $SL_2(\mathbb{Z})$ with a zero on the bottom row is in H.

$$\langle 2 \rangle 1. \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in H$$
PROOF: $\langle 1 \rangle 2$

$$\langle 2 \rangle 2. \begin{pmatrix} -1 & b \\ 0 & -1 \end{pmatrix} \in H$$

PROOF: It is $s^2 \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ since $s^2 = -I$.

$$\langle 2 \rangle 3. \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix} \in H$$

PROOF: It is $\begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} s$.

$$\langle 2 \rangle 4. \quad \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix} \in H$$

PROOF: It is $s^2 \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s$.

 $\langle 1 \rangle 9$. Every matrix in $SL_2(\mathbb{Z})$ is in H.

6.4. p-GROUPS

39

6.4 p-groups

Definition 6.30 (p-group). Let p be a prime. A p-group is a finite group whose order is a power of p.

Chapter 7

Group Homomorphisms

Definition 7.1 (Homomorphism). Let G and H be groups. A (group) homomorphism $\phi: G \to H$ is a function such that, for all $x, y \in G$,

$$\phi(xy) = \phi(x)\phi(y) .$$

Proposition 7.2. Let G and H be groups with identities e_G and e_H . Let $\phi: G \to H$ be a group homomorphism. Then $\phi(e_G) = e_H$.

PROOF: Since $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ and so $\phi(e_G) = e_H$ by Cancellation. \square

Proposition 7.3. Let $\phi: G \to H$ be a group homomorphism. For all $x \in G$ we have $\phi(x^{-1}) = \phi(x)^{-1}$.

PROOF: Since $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$. \square

Proposition 7.4. Let G, H and K be groups. If $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms then $\psi \circ \phi: G \to K$ is a homomorphism.

PROOF: For $x, y \in G$ we have $\psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) \ .$

Proposition 7.5. Let G be a group. Then $id_G: G \to G$ is a group homomor-

Proposition 7.5. Let G be a group. Then $id_G : G \to G$ is a group homomorphism.

PROOF: For $x, y \in G$ we have $id_G(xy) = xy = id_G(x)id_G(y)$. \square

Proposition 7.6. Let $\phi: G \to H$ be a group homomorphism. Let $g \in G$ have finite order. Then $|\phi(g)|$ divides |g|.

PROOF: Since $\phi(g)^{|g|} = \phi(g^{|g|}) = e$. \square

Definition 7.7 (Category of Groups). Let **Grp** be the category of groups and group homomorphisms.

Example 7.8. There are 49487365402 groups of order 1024 up to isomorphism.

Proposition 7.9. A group homomorphism $\phi: G \to H$ is an isomorphism in **Grp** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Assume: ϕ is bijective.

PROVE: ϕ^{-1} is a group homomorphism.

 $\langle 1 \rangle 2$. Let: $h, h' \in H$

$$\langle 1 \rangle 3. \ \phi(\phi^{-1}(hh')) = \phi(\phi^{-1}(h)\phi^{-1}(h'))$$

PROOF: Both are equal to hh'.

$$\langle 1 \rangle 4. \ \phi^{-1}(hh') = \phi^{-1}(h)\phi^{-1}(h')$$

Corollary 7.9.1.

$$D_6 \cong C_3$$

PROOF: The canonical homomorphism $D_6 \to C_3$ is bijective. \square

Corollary 7.9.2.

$$(\mathbb{R}, +) \cong (\{x \in \mathbb{R} : x > 0\}, \cdot)$$

PROOF: The function that maps x to e^x is a bijective homomorphism. \square

Proposition 7.10. The trivial group is the zero object in Grp.

PROOF: For any group G, the unique function $G \to \{e\}$ is a group homomorphism, and the only group homomorphism $\{e\} \to G$ maps e to e_G . \square

Proposition 7.11. For any groups G and H, the set $G \times H$ under (g,h)(g',h') = (gg',hh') is the product of G and H in **Grp**.

Proof:

- $\langle 1 \rangle 1$. $G \times H$ is a group.
 - $\langle 2 \rangle 1$. The multiplication is associative.

PROOF: Since $(g_1, h_1)((g_2, h_2)(g_3, h_3)) = ((g_1, h_1)(g_2, h_2))(g_3, h_3) = (g_1g_2g_3, h_1h_2h_3).$

 $\langle 2 \rangle 2$. (e_G, e_H) is the identity.

PROOF: Since $(g, h)(e_G, e_H) = (e_G, e_H)(g, h) = (g, h)$.

 $\langle 2 \rangle 3$. The inverse of (g,h) is (g^{-1},h^{-1}) .

PROOF: Since $(g,h)(g^{-1},h^{-1})=(g^{-1},h^{-1})(g,h)=(e_G,e_H).$

 $\langle 1 \rangle 2$. $\pi_1 : G \times H \to G$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3$. $\pi_2 : G \times H \to H$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4$. For any group homomorphism $\phi : K \to G$ and $\psi : K \to H$, the function $\langle \phi, \psi \rangle : K \to G \times H$ where $\langle \phi, \psi \rangle (k) = (\phi(k), \psi(k))$ is a group homomorphism.

Proof:

$$\langle \phi, \psi \rangle (kk') = (\phi(kk'), \psi(kk'))$$

$$= (\phi(k)\phi(k'), \psi(k)\psi(k'))$$

$$= (\phi(k), \psi(k))(\phi(k'), \psi(k'))$$

$$= \langle \phi, \psi \rangle (k) \langle \phi, \psi \rangle (k')$$

7.1. SUBGROUPS 43

7.1 Subgroups

Definition 7.12 (Subgroup). Let (G, \cdot) and (H, *) be groups such that H is a subset of G. Then H is a subgroup of G iff the inclusion $i: H \hookrightarrow G$ is a group homomorphism.

Proposition 7.13. *If* (H, *) *is a subgroup of* (G, \cdot) *then* * *is the restriction of* \cdot *to* H.

PROOF: Given $x, y \in H$ we have $x * y = i(x * y) = i(x) \cdot i(y) = x \cdot y \ . \qquad \Box$

Example 7.14. For any group G we have $\{e\}$ is a subgroup of G.

Proposition 7.15. Let G be a group. Let H be a subset of G. Then H is a subgroup of G iff H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

Proof:

 $\langle 1 \rangle 1$. If H is a subgroup of G then H is nonempty.

PROOF: Since every group has an identity element and so is nonempty.

- $\langle 1 \rangle 2$. If H is a subgroup of G then, for all $x, y \in H$, we have $xy^{-1} \in H$. PROOF: Easy.
- $\langle 1 \rangle 3$. If H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$, then H is a subgroup of G.
 - $\langle 2 \rangle 1$. Assume: H is nonempty.
 - $\langle 2 \rangle 2$. Assume: $\forall x, y \in H.xy^{-1} \in H$
 - $\langle 2 \rangle 3. \ e \in H$

PROOF: Pick $x \in H$. We have $e = xx^{-1} \in H$.

 $\langle 2 \rangle 4. \ \forall x \in H.x^{-1} \in H$

PROOF: Given $x \in H$ we have $x^{-1} = ex^{-1} \in H$.

 $\langle 2 \rangle$ 5. H is closed under the restriction of \cdot

PROOF: Given $x, y \in H$ we have $xy = x(y^{-1})^{-1} \in H$.

 $\langle 2 \rangle 6$. H is a group under the restriction of \cdot

PROOF: Associativity is inherited from G and the existence of an identity element and inverses follows from $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$.

 $\langle 2 \rangle$ 7. The inclusion $H \hookrightarrow G$ is a group homomorphism.

PROOF: For $x, y \in H$ we have i(xy) = i(x)i(y) = xy.

Corollary 7.15.1. The intersection of a set of subgroups of G is a subgroup of G.

Corollary 7.15.2. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of H. Then $\phi^{-1}(K)$ is a subgroup of G.

Proof:

```
\langle 1 \rangle 1. \phi^{-1}(K) is nonempty.
PROOF: Since e \in \phi^{-1}(K).
```

 $\langle 1 \rangle 2$. Let: $x, y \in \phi^{-1}(K)$

$$\begin{array}{ll} \langle 1 \rangle 3. & \phi(x), \phi(y) \in K \\ \langle 1 \rangle 4. & \phi(x)\phi(y)^{-1} \in K \\ \langle 1 \rangle 5. & \phi(xy^{-1}) \in K \\ \langle 1 \rangle 6. & xy^{-1} \in \phi^{-1}(K) \\ \sqcap \end{array}$$

Corollary 7.15.3. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of G. Then $\phi(K)$ is a subgroup of H.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } x,y \in \phi(K) \\ \langle 1 \rangle 2. & \text{Pick } a,b \in K \text{ such that } x = \phi(a) \text{ and } y = \phi(b) \\ \langle 1 \rangle 3. & xy^{-1} = \phi(ab^{-1}) \\ \langle 1 \rangle 4. & xy^{-1} \in \phi(K) \\ & \square \end{array}
```

Proposition 7.16. Let G be a subgroup of \mathbb{Z} . Then there exists $d \geq 0$ such that $G = d\mathbb{Z}$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $G \neq \{0\}$ Proof: Since $\{0\} = 0\mathbb{Z}$.

 $\langle 1 \rangle 2$. Let: d be the least positive element of G.

Prove: $G = d\mathbb{Z}$

PROOF: If $n \in G$ then $-n \in G$ so G must contain a positive element.

 $\langle 1 \rangle 3. \ G \subseteq d\mathbb{Z}$

 $\langle 2 \rangle 1$. Let: $n \in G$

 $\langle 2 \rangle 2$. Let: q and r be the integers such that n = qd + r and $0 \le r < d$.

 $\langle 2 \rangle 3. \ r \in G$

PROOF: Since r = n - qd.

 $\langle 2 \rangle 4. \ r = 0$

PROOF: By minimality of d.

 $\langle 2 \rangle 5$. $n = qd \in d\mathbb{Z}$

 $\langle 1 \rangle 4. \ d\mathbb{Z} \subseteq G$

7.2 Kernel

Definition 7.17 (Kernel). Let $\phi: G \to H$ be a group homomorphism. The kernel of ϕ is

$$\ker \phi = \{ g \in G : \phi(g) = e \} .$$

Proposition 7.18. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a subgroup of G.

Proof: Corollary 7.15.2. \square

Proposition 7.19. Let $\phi: G \to H$ be a group homomorphism. Then the inclusion $i : \ker \phi \hookrightarrow G$ is terminal in the category of pairs $(K, \alpha : K \to G)$ such that $\phi \circ \alpha = 0$.

Proof:

- $\langle 1 \rangle 1. \ \phi \circ i = 0$
- $\langle 1 \rangle 2$. For any group K and homomorphism $\alpha : K \to G$ such that $\phi \circ \alpha = 0$, there exists a unique homomorphism $\beta: K \to \ker \phi$ such that $i \circ \beta = \alpha$.

Proposition 7.20. Let $\phi: G \to H$ be a group homomorphism. Then the following are equivalent:

- 1. ϕ is monic.
- 2. $\ker \phi = \{e\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is monic.
 - $\langle 2 \rangle 2$. Let: $i : \ker \phi \hookrightarrow G, j : \{e\} \hookrightarrow \ker \phi \hookrightarrow G$ be the inclusions.
 - $\langle 2 \rangle 3. \ \phi \circ i = \phi \circ j$
 - $\langle 2 \rangle 4. \ i = j$
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\ker \phi = \{e\}$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3$. Assume: $\phi(x) = \phi(y)$

 - $\langle 2 \rangle 4. \quad \phi(xy^{-1}) = e$ $\langle 2 \rangle 5. \quad xy^{-1} \in \ker \phi$ $\langle 2 \rangle 6. \quad xy^{-1} = e$

 - $\langle 2 \rangle 7. \ x = y$
- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

Proposition 7.21. A group homomorphism is an epimorphism if and only if it is surjective.

Inner Automorphisms 7.3

Proposition 7.22. Let G be a group and $g \in G$. The function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism on G.

Proof:

 $\langle 1 \rangle 1$. γ_q is a homomorphism.

Proof:

$$\gamma_g(ab) = gabg^{-1}$$

$$= gag^{-1}gbg^{-1}$$

$$= \gamma_g(a)\gamma_g(b)$$

 $\langle 1 \rangle 2$. γ_g is injective.

PROOF: By Cancellation.

 $\langle 1 \rangle 3$. γ_q is surjective.

PROOF: Given $b \in G$, we have $\gamma_g(g^{-1}bg) = b$.

Definition 7.23 (Inner Automorphism). Let G be a group. An *inner automorphism* on G is a function of the form $\gamma_g(a) = gag^{-1}$ for some $g \in G$. We write Inn(G) for the set of inner automorphisms of G.

Proposition 7.24. Let G be a group. The function $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ that

PROOF: Since $\gamma_{gh}(a) = ghah^{-1}g^{-1} = \gamma_g(\gamma_h(a))$. \square

Corollary 7.24.1. Inn(G) is a subgroup of $Aut_{Grp}(G)$.

7.4 Semidirect Products

maps g to γ_g is a group homomorphism.

Definition 7.25 (Semidirect Product). Let N and H be groups. Let $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be a homomorphism. The *semidirect product* $N \rtimes_{\theta} H$ is the group $N \times H$ under

$$(n_1, h_1)(n_2, h_2) = (n_1\theta(h_1)(n_2), h_1h_2)$$

If N and H are subgroups of a group G, we write $N \rtimes H$ for $N \rtimes_{\theta} H$ where $\theta(n)(h) = nhn^{-1}$.

We prove that this is a group.

Proof:

 $\langle 1 \rangle 1$. Associativity

PROOF:

$$(n_1, h_1)((n_2, h_2)(n_3, h_3)) = (n_1, h_1)(n_2\theta(h_2)(n_3), h_2h_3)$$

$$= (n_1\theta(h_1)(n_2\theta(h_2)(n_3)), h_1h_2h_3)$$

$$= (n_1\theta(h_1)(n_2)\theta(h_1h_2)(n_3), h_1h_2h_3)$$

$$= (n_1\theta(h_1)(n_2), h_1h_2)(n_3, h_3)$$

$$= ((n_1, h_1)(n_2, h_2))(n_3, h_3)$$

 $\langle 1 \rangle 2. \ (e_N, e_H)(n, h) = (n, h)$ PROOF:

$$(e_N, e_H)(n, h) = (e_N \theta(e_H)(n), e_H h)$$
$$= (n, h)$$

$$\langle 1 \rangle 3. \ (n,h)(e_N,e_H) = (n,h)$$

Proof:

$$(n,h)(e_N,e_H) = (n\theta(h)(e_N),he_H)$$

$$= (n,h)$$

$$\langle 1 \rangle 4. \ (n,h)(\theta(h^{-1})(n^{-1}),h^{-1}) = (e_N,e_H)$$
PROOF:
$$(n,h)(n^{-1},h^{-1}) = (n\theta(h)(\theta(h^{-1})(n^{-1})),hh^{-1})$$

$$= (nn^{-1},hh^{-1})$$

$$= (e_N,e_H)$$

$$\langle 1 \rangle 5. \ (\theta(h^{-1})(n^{-1}),h^{-1})(n,h) = (e_N,e_H)$$
PROOF:
$$(\theta(h^{-1})(n^{-1}),h^{-1})(n,h) = (\theta(h^{-1})(n^{-1})\theta(h^{-1})(n),h^{-1}h)$$

$$= (e_N,e_H)$$

Example 7.26. Let n > 0. Let D_{2n} be presented by $(a, b \mid a^n, b^2, (ab)^2)$. Define $\theta: C_2 \to \operatorname{Aut}_{\mathbf{Grp}}(C_n)$ by

$$\theta(1)(i) = n - i$$

Then $\phi: C_n \rtimes_{\theta} C_2 \cong D_{2n}$ with the isomorphism being given by

$$\phi(i,j) = a^i b^j$$
 $(0 \le i < n, 0 \le i < 2)$.

Proposition 7.27. The function $i: N \to N \rtimes_{\theta} H$ that maps n to (n, e_H) is a $group\ monomorphism.$

Proof:

$$\langle 1 \rangle 1. \ i(nn') = i(n)i(n')$$

Proof:

$$i(n)i(n') = (n, e_H)(n', e_H)$$
$$= (n\theta(e_H)(n'), e_He_H)$$
$$= (nn', e_H)$$
$$= i(nn')$$

 $\langle 1 \rangle 2$. *i* is injective.

Proposition 7.28. The function $J: h \to N \rtimes_{\theta} H$ that maps h to (e_N, h) is a group monomorphism.

Proof:

$$\langle 1 \rangle 1. \ j(hh') = j(h)j(h')$$

Proof:

$$j(h)j(h') = (e_N, h)(e_N, h')$$

$$= (e_N \theta(h)(e_N), hh')$$

$$= (e_N, hh')$$

$$= j(hh')$$

 $\langle 1 \rangle 2$. *i* is injective.

Proposition 7.29. The natural projection $N \rtimes_{\theta} H \to H$ is a surjective group homomorphism with kernel N.

Proof: Easy. \square

Proposition 7.30. Let N and H be groups and $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ a homomorphism. Let $G = N \rtimes_{\theta} H$. Let $i: H \hookrightarrow G$ and $j: N \hookrightarrow G$ be the injections. Then θ is realised by conjugation in G. That is, for all $h \in H$ and $n \in N$ we have

$$j(\theta(h)(n)) = i(h)j(n)i(h)^{-1}$$

I.e.

$$j \circ \theta(h) = \gamma_{i(h)}$$
.

Proof:

$$i(h)j(n)i(h)^{-1} = (e_N, h)(n, e_H)(e_N, h)^{-1}$$

$$= (e_N, h)(n, e_H)(\theta(h^{-1})(e_N), h^{-1})$$

$$= (e_N, h)(n, e_H)(e_N, h^{-1})$$

$$= (\theta(h)(n), h)(e_N, h^{-1})$$

$$= (\theta(h)(n)\theta(h)(e_N), hh^{-1})$$

$$= (\theta(h)(n), e_H)$$

$$= j(\theta(h)(n))$$

Proposition 7.31. Let G be a group. Let N and H be subgroups of G with N normal. Assume $N \cap H = \{e\}$ and G = NH. Let $\gamma : H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be conjugation. Then

$$G \cong N \rtimes_{\gamma} H$$

Proof:

 $\langle 1 \rangle 1$. Let: $\phi: N \rtimes_{\gamma} H \to G$ be the homomorphism

$$\phi(n,h) = nh$$
.

Proof:

$$\phi((n_1, h_1)(n_2, h_2)) = \phi(n_1\theta(h_1)(n_2), h_1h_2)$$

$$= n_1\theta(h_1)(n_2)h_1h_2$$

$$= n_1h_1n_2h_1^{-1}h_1h_2$$

$$= n_1h_1n_2h_2$$

$$= \phi(n_1, h_1)\phi(n_2, h_2)$$

- $\langle 1 \rangle 2$. $\ker \phi = \{e\}$
- $\langle 1 \rangle 3$. ϕ is surjective.

PROOF: Since G = NH.

П

Definition 7.32 (Internal Product). Let G be a group. Let N and H be subgroups of G. Then G is the *internal product* of N and H iff N is normal, $N \cap H = \{e\}$ and G = NH.

7.5 Direct Products

Definition 7.33 (Direct Product). The *direct product* of groups G and H is their product in Grp.

Proposition 7.34. $G \times H$ is the semidirect product $G \rtimes_{\theta} H$ where $\theta(g) = e$ for all $g \in G$.

Proof: Easy.

7.6 Free Groups

Proposition 7.35. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is a group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: W(A) be the set of words in the alphabet whose elements are the elements of A together with $\{a^{-1} : a \in A\}$.
- $\langle 1 \rangle 2$. Let: $r: W(A) \to W(A)$ be the function that, given a word w, removes the first pair of letters of the form aa^{-1} or $a^{-1}a$; if there is no such pair, then r(w) = w.
- $\langle 1 \rangle 3$. Let us say that a word w is a reduced word iff r(w) = w.
- $\langle 1 \rangle 4$. For any word w of length n, we have $r^{\lceil \frac{n}{2} \rceil}(w)$ is a reduced word.

PROOF: Since we cannot remove more than n/2 pairs of letters from w.

- $\langle 1 \rangle$ 5. Let: $R: W(A) \to W(A)$ be the function $R(w) = r^{\lceil \frac{n}{2} \rceil}(w)$, where n is the length of w.
- $\langle 1 \rangle 6$. Let: F(A) be the set of reduced words.
- $\langle 1 \rangle 7$. Define $\cdot : F(A)^2 \to F(A)$ by $w \cdot w' = R(ww')$
- $\langle 1 \rangle 8$. · is associative.

PROOF: Both $w_1 \cdot (w_2 \cdot w_3)$ and $(w_1 \cdot w_2) \cdot w_3$ are equal to $R(w_1 w_2 w_3)$.

- $\langle 1 \rangle 9$. The empty word is the identity element in F(A)
- $\langle 1 \rangle 10$. The inverse of $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ is $a_n^{\mp 1} \cdots a_2^{\mp 1} a_1^{\mp 1}$.
- $\langle 1 \rangle 11$. Let: $j:A \to F(A)$ be the function that maps a to the word a of length
- $\langle 1 \rangle 12$. Let: G be any group and $k: A \to G$ any function.
- (1)13. The only morphism $f: (F(A), j) \to (G, k)$ in \mathcal{F}^A is $f(a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}) = k(a_1)^{\pm 1} k(a_2)^{\pm 1} \cdots k(a_n)^{\pm 1}$.

Definition 7.36 (Free Group). For any set A, the *free group* on A is the initial object (F(A), i) in \mathcal{F}^A .

Proposition 7.37. $i: A \to F(A)$ is injective.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in A$

- $\langle 1 \rangle 2$. Assume: $x \neq y$ Prove: $i(x) \neq i(y)$
- $\langle 1 \rangle 3$. Let: $f: A \to C_2$ be the function that maps x to 0 and all other elements of A to 1.
- $\langle 1 \rangle 4$. Let: $\phi : F(A) \to C_2$ be the group homomorphism such that $f = \phi \circ i$.
- $\langle 1 \rangle 5. \ f(x) \neq f(y)$
- $\langle 1 \rangle 6. \ \phi(i(x)) \neq \phi(i(y))$
- $\langle 1 \rangle 7. \ i(x) \neq i(y)$

Proposition 7.38.

$$F(0) \cong \{e\}$$

PROOF: For any set A, the unique group homomorphism $\{e\} \to A$ makes the following diagram commute.

Proposition 7.39. The free group on 1 is \mathbb{Z} with the injection mapping 0 to 1.

PROOF: Given any group G and function $a:1\to G$, the required unique homomorphism $\phi:\mathbb{Z}\to G$ is defined by $\phi(n)=a(0)^n$. \square

Proposition 7.40. For any sets A and B, we have that F(A + B) is the coproduct of F(A) and F(B) in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F(A), i_B: B \to F(B), j: A+B \to F(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3$. Let: G be any group and $f: F(A) \to G$, $g: F(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.

 $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.

 $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Definition 7.41 (Subgroup Generated by a Group). Let G be a group and A a subset of G. Let $\phi: F(A) \to G$ be the unique group homomorphism such that $\phi(a) = a$ for all $a \in A$. The subgroup *generated* by A is

$$\langle A \rangle := \operatorname{im} \phi$$

$$F(A) \xrightarrow{\phi} G$$

$$\uparrow$$

$$A$$

Proposition 7.42. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the set of all elements of the form $a_1^{\pm 1}a_2^{\pm 1}\cdots a_n^{\pm 1}$ (where $n \geq 0$) such that $a_1,\ldots,a_n \in A$.

PROOF: Immediate from definitions.

Corollary 7.42.1. Let G be a group and $g \in G$. Then

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \} .$$

Proposition 7.43. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the intersection of all the subgroups of G that include A.

Proof: Easy.

Definition 7.44 (Finitely Generated). Let G be a group. Then G is *finitely generated* iff there exists a finite subset A of G such that $G = \langle A \rangle$.

Proposition 7.45. Every subgroup of a finitely generated free group is free.

PROOF: TODO.

Proposition 7.46. F(2) includes subgroups isomorphic to the free group on arbitrarily many generators.

PROOF: TODO

Proposition 7.47.

$$[F(2), F(2)] \cong F(\mathbb{Z})$$

PROOF: TODO

7.7 Normal Subgroups

Definition 7.48 (Normal Subgroup). A subgroup N of G is *normal* iff, for all $g \in G$ and $n \in N$, we have $gng^{-1} \in N$.

Example 7.49. Every subgroup of Q_8 is normal.

Proposition 7.50. Let G be a group and N a subgroup of G. Then the following are equivalent.

- 1. N is normal.
- $\textit{2. } \forall g \in G.gNg^{-1} \subseteq N$
- 3. $\forall g \in G.gNg^{-1} = N$
- 4. $\forall g \in G.gN \subseteq Ng$
- 5. $\forall g \in G.gN = Ng$

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If 2 holds then we have $gNg^{-1} \subseteq N$ and $g^{-1}Ng \subseteq N$ hence $N = gNg^{-1}$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: Trivial.

 $\langle 1 \rangle 4$. $2 \Leftrightarrow 4$

Proof: Easy.

 $\langle 1 \rangle 5$. $3 \Leftrightarrow 5$

PROOF: Easy.

Proposition 7.51. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a normal subgroup of G.

PROOF: Given $g \in G$ and $n \in \ker \phi$ we have

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1}$$
$$= e$$

and so $qnq^{-1} \in \ker \phi$. \square

Proposition 7.52. If H and K are normal subgroups of a group G then HK is normal in G.

PROOF: For $g \in G$, $h \in H$ and $k \in K$ we have $ghkg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$.

53

7.8 Quotient Groups

Definition 7.53. Let G be a group. Let \sim be an equivalence relation on G. Then we say that \sim is *compatible* with the group operation on G iff, for all $a, a', g \in G$, if $a \sim a'$ then $ga \sim ga'$ and $ag \sim a'g$.

Proposition 7.54. Let G be a group. Let \sim be an equivalence relation on G. Then there exists an operation $\cdot: (G/\sim)^2 \to G/\sin$ such that

$$\forall a,b \in G.[a][b] = [ab]$$

iff \sim is compatible with the group operation on G. In this case, G/\sim is a group under \cdot and the canonical function $\pi: G \to G/\sim$ is a group homomorphism, and is universal with respect to group homomorphisms $\phi: G \to G'$ such that if $a \sim a' \ then \ \phi(a) = \phi(a').$

Proof: Easy.

Definition 7.55 (Quotient Group). Let G be a group. Let \sim be an equivalence relation on G that is compatible with the group operation on G. Then G/\sim is the quotient group of G by \sim under [a][b] = [ab].

Proposition 7.56. Let G be a group and H a subgroup of G. Then H is normal if and only if there exists a group K and homomorphism $\phi: G \to K$ such that $H = \ker \phi$.

PROOF: One direction is given by Proposition 7.51. For the other direction, take K = G/H and ϕ to be the canonical map $G \to G/H$. \sqcup

Definition 7.57 (Modular Group). The modular group $PSL_2(\mathbb{Z})$ is $SL_2(\mathbb{Z})/\{I, -I\}$.

Proposition 7.58. $\operatorname{PSL}_2(\mathbb{Z})$ is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

PROOF: By Example 6.29.

Proposition 7.59 (Roger Alperin). $PSL_2(\mathbb{Z})$ is presented by $(x, y|x^2, y^3)$.

Proof:

$$\langle 1 \rangle 1$$
. Let: $x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
 $\langle 1 \rangle 2$. Let: $y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

 $\langle 1 \rangle 3$. Define an action of $PSL_2(\mathbb{Z})$ on $\mathbb{R} - \mathbb{Q}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} r = \frac{ar+b}{cr+d} .$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} r = \frac{ar+b}{cr+d} .$ $\langle 2 \rangle 1. \text{ Given } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{Z}) \text{ and } r \text{ irrational we have } \frac{ar+b}{cr+d} \text{ is irrational.}$

 $\langle 3 \rangle 1$. Assume: for a contradiction $\frac{ar+b}{cr+d} = \frac{p}{q}$ where p and q are integers with q > 0.

$$\langle 3 \rangle 2$$
. $aqr + bq = cpr + dp$

$$\langle 3 \rangle 3$$
. $(aq - cp)r = dp - bq$

$$\langle 3 \rangle 4$$
. $aq = cp = dp - bq = 0$

$$\langle 3 \rangle 5$$
. $adq - cdp = 0$

$$\langle 3 \rangle 6$$
. $cdp - cbq = 0$

$$\langle 3 \rangle 7$$
. $(ad - cb)q = 0$

PROOF: Since ad - cb = 1.

$$\langle 3 \rangle 8. \ q = 0$$

 $\langle 3 \rangle 9$. Q.E.D.

PROOF: This contradicts $\langle 3 \rangle 1$.

$$\langle 2 \rangle 2$$
. $-Ir = r$

PROOF: Since $-Ir = \frac{-r}{-1} = r$. $\langle 2 \rangle 3$. Given $A, B \in \mathrm{PSL}_2(\mathbb{Z})$ we have A(Br) = (AB)r.

Proof:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} r \end{bmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{er + f}{gr + h}$$

$$= \frac{a \frac{er + f}{gr + h} + b}{c \frac{er + f}{gr + h} + d}$$

$$= \frac{a(er + f) + b(gr + h)}{c(er + f) + d(gr + h)}$$

$$= \frac{(ae + bg)r + (af + bh)}{(ce + dg)r + (cf + dh)}$$

$$= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} r$$

$$= \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{bmatrix} r$$

 $\langle 1 \rangle 4$.

$$yr = 1 - \frac{1}{r}$$

 $\langle 1 \rangle 5$.

$$y^{-1}r = \frac{1}{1-r}$$

PROOF: Since $y^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$

$$yxr = 1 + r$$
PROOF: Since $yx = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$.

 $\langle 1 \rangle 7$.

$$y^{-1}xr = \frac{r}{1+r}$$

PROOF: Since $y^{-1}x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

 $\langle 1 \rangle 8$. If r > -1 is positive then yxr is positive.

55

 $\langle 1 \rangle 9$. If r is positive then $y^{-1}xr$ is positive.

 $\langle 1 \rangle 10$. If r < -1 then $y^{-1}xr$ is positive.

 $\langle 1 \rangle 11$. If r is negative then yr is positive.

 $\langle 1 \rangle 12$. If r is negative then $y^{-1}r$ is positive.

 $\langle 1 \rangle 13$. No product of the form

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)$$

with one or more factors can equal the identity.

PROOF: If the last factor is (yx), then the product maps numbers in (-1,0) to positive numbers. If the last factor is $(y^{-1}x)$, then the product maps numbers <-1 to positive half $\langle 1 \rangle 14$. No product of the form $(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)y^{\pm 1}$ < -1 to positive numbers.

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)y^{\pm 1}$$

with one or more factors can equal the identity.

Proof: The product maps negative numbers to positive numbers.

 $\langle 1 \rangle 15$. PSL₂(\mathbb{Z}) is presented by $(x, y | x^2, y^3)$.

Corollary 7.59.1. $PSL_2(\mathbb{Z})$ is the coproduct of C_2 and C_3 in Grp.

Theorem 7.60. Every group homomorphism $\phi: G \to H$ may be decomposed as

$$G \longrightarrow G/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow H$$

Proof: Easy.

Corollary 7.60.1 (First Isomorphism Theorem). Let $\phi: G \to H$ be a surjective group homomorphism. Then $H \cong G/\ker \phi$.

Proposition 7.61. Let H_1 be a normal subgroup of G_1 and H_2 a normal subgroup of G_2 . Then $H_1 \times H_2$ is a normal subgroup of $G_1 \times G_2$, and

$$\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2} .$$

PROOF: $\pi \times \pi : G_1 \times G_2 \twoheadrightarrow G_1/H_1 \times G_2/H_2$ is a surjective homomorphism with kernel $H_1 \times H_2$. \square

Example 7.62.

$$\mathbb{R}/\mathbb{Z} \cong S^1$$

PROOF: Map a real number r to $(\cos r, \sin r)$. The result is a surjective group homomorphism with kernel \mathbb{Z} . \sqcup

Proposition 7.63. Let H be a normal subgroup of a group G. For every subgroup K of G that includes H, we have H is a normal subgroup of K, and K/H is a subgroup of G/H. The mapping

 $u: \{subgroups \ of \ G \ including \ H\} \rightarrow \{subgroups \ of \ G/H\}$

with u(K) = K/H is a poset isomorphism.

Proof:

- $\langle 1 \rangle 1$. If K is a subgroup of G that includes H then H is normal in K.
- $\langle 1 \rangle 2$. If K is a subgroup of G that includes H then K/H is a subgroup of G/H.
- $\langle 1 \rangle 3$. If $H \subseteq K_1 \subseteq K_2$ then $K_1/H \subseteq K_2/H$.
- $\langle 1 \rangle 4$. If $K_1/H = K_2/H$ then $K_1 = K_2$
 - $\langle 2 \rangle 1$. Assume: $K_1/H = K_2/H$
 - $\langle 2 \rangle 2$. $K_1 \subseteq K_2$
 - $\langle 3 \rangle 1$. Let: $k \in K_1$
 - $\langle 3 \rangle 2. \ kH \in K_2/H$
 - $\langle 3 \rangle 3$. Pick $k' \in K_2$ such that kH = k'H
 - $\langle 3 \rangle 4. \ kk'^{-1} \in H$
 - $\langle 3 \rangle 5. kk'^{-1} \in K_2$
 - $\langle 3 \rangle 6. \ k \in K_2$
 - $\langle 2 \rangle 3. \ K_2 \subseteq K_1$

PROOF: Similar.

- $\langle 1 \rangle$ 5. For any subgroup L of G/H, there exists a subgroup K of G that includes H such that L = K/H.
 - $\langle 2 \rangle 1$. Let: L be a subgroup of G/H.
 - $\langle 2 \rangle 2$. Let: $K = \{k \in G : kH \in L\}$
 - $\langle 2 \rangle 3$. K is a subgroup of G.

PROOF: Given $k, k' \in K$ we have $kH, k'H \in L$ hence $kk'^{-1}H \in L$ and so $kk'^{-1} \in K$.

 $\langle 2 \rangle 4$. $H \subseteq K$

PROOF: For all $h \in H$ we have $hH = H \in L$.

 $\langle 2 \rangle 5$. L = K/H

PROOF: By definition.

Proposition 7.64 (Third Isomorphism Theorem). Let H be a normal subgroup of a group G. Let N be a subgroup of G that includes H. Then N/H is normal in G/H if and only if N is normal in G, in which case

$$\frac{G/H}{N/H}\cong \frac{G}{N}$$

Proof:

- $\langle 1 \rangle 1$. If N/H is normal in G/H then N is normal in G.
 - $\langle 2 \rangle 1$. Assume: N/H is normal in G/H.
 - $\langle 2 \rangle 2$. Let: $q \in G$ and $n \in N$.
 - $\langle 2 \rangle 3. \ gng^{-1}H \in N/H$
 - $\langle 2 \rangle 4$. Pick $n' \in N$ such that $gng^{-1}H = n'H$

 - $\langle 2 \rangle$ 5. $gng^{-1}n'^{-1} \in H$ $\langle 2 \rangle$ 6. $gng^{-1}n'^{-1} \in N$
 - $\langle 2 \rangle 7$. $gng^{-1} \in N$
- $\langle 1 \rangle 2$. If N is normal in G then N/H is normal in G/H and $(G/H)/(N/H) \cong$ G/N.

7.9. COSETS 57

 $\langle 2 \rangle 1$. Assume: N is normal in G.

 $\langle 2 \rangle 2$. Let: $\phi: G/H \to G/N$ be the homomorphism $\phi(gH) = gN$

 $\langle 3 \rangle 1$. If gH = g'H then gN = g'N

PROOF: If $gg'^{-1} \in H$ then $gg'^{-1} \in N$.

 $\langle 3 \rangle 2. \ \phi((gH)(g'H)) = \phi(gH)\phi(g'H)$

PROOF: Both are gg'N.

 $\langle 2 \rangle 3$. ϕ is surjective.

 $\langle 2 \rangle 4$. $\ker \phi = N/H$

 $\langle 2 \rangle 5. \ (G/H)/(N/H) \cong G/N$

PROOF: By the First Isomorphism Theorem.

П

Proposition 7.65 (Second Isomorphism Theorem). Let H and K be subgroups of a group G. Assume that H is normal in G. Then:

- 1. HK is a subgroup of G, and H is normal in HK.
- 2. $H \cap K$ is normal in K, and

$$\frac{HK}{H} \cong \frac{K}{H \cap K} \ .$$

Proof:

 $\langle 1 \rangle 1$. HK is a subgroup of G.

PROOF: Since $hkh'k' = hh'(h'^{-1}kh')k' \in HK$.

- $\langle 1 \rangle 2$. H is normal in HK.
- $\langle 1 \rangle 3$. $H \cap K$ is normal in K and $HK/H \cong K/(H \cap K)$

PROOF: The function that maps k to kH is a surjective homomorphism K woheadrightarrow HK/H with kernel $H \cap K$. Surjectivity follows because $hkH = hkh^{-1}H$.

See also Proposition 7.80 for a result that holds even if H is not normal.

7.9 Cosets

Proposition 7.66. Let G be a group. Let \sim be an equivalence relation on G such that, for all $a, b, g \in G$, if $a \sim b$ then $ga \sim gb$. Let $H = \{h \in G : h \sim e\}$. Then H is a subgroup of G and, for all $a, b \in G$, we have

$$a \sim b \Leftrightarrow a^{-1}b \in H \Leftrightarrow aH = bH$$
.

Proof:

- $\langle 1 \rangle 1. \ e \in H$
- $\langle 1 \rangle 2$. For all $x, y \in H$ we have $xy^{-1} \in H$.
 - $\langle 2 \rangle 1$. Assume: $x \sim e$ and $y \sim e$.
 - $\langle 2 \rangle 2$. $e \sim y^{-1}$

PROOF: Since $yy^{-1} \sim ey^{-1}$.

 $\langle 2 \rangle 3$. $xy^{-1} \sim e$

```
PROOF: Since xy^{-1} \sim ey^{-1} \sim e.
```

 $\langle 1 \rangle 3$. If $a \sim b$ then $a^{-1}b \in H$.

PROOF: If $a \sim b$ then $a^{-1}b \sim a^{-1}a = e$.

- $\langle 1 \rangle 4$. If $a^{-1}b \in H$ then aH = bH.
 - $\langle 2 \rangle 1$. Assume: $a^{-1}b \in H$
 - $\langle 2 \rangle 2$. $bH \subseteq aH$

PROOF: For any $h \in H$ we have $bh = aa^{-1}bh \in aH$.

 $\langle 2 \rangle 3$. $aH \subseteq bH$

PROOF: Similar since $b^{-1}a \in H$.

- $\langle 1 \rangle 5$. If aH = bH then $a \sim b$.
 - $\langle 2 \rangle 1$. Assume: aH = bH
 - $\langle 2 \rangle 2$. Pick $h \in H$ such that a = bh.
 - $\langle 2 \rangle 3. \ b^{-1}a = h$
 - $\langle 2 \rangle 4. \ b^{-1}a \in H$
 - $\langle 2 \rangle 5. \ b^{-1}a \sim e$
 - $\langle 2 \rangle 6$. $a \sim b$

PROOF: $a = bb^{-1}a \sim be = b$.

Definition 7.67 (Coset). Let G be a group and H a subgroup of G. A *left coset* of H is a set of the form aH for $a \in G$. A *right coset* of H is a set of the form Ha for some $a \in G$.

We write G/H for the set of all left cosets of H, and $G\backslash H$ for the set of all right cosets of H.

Proposition 7.68.

$$G/H \cong G \backslash H$$

PROOF: The function that maps aH to Ha^{-1} is a bijection. \square

Proposition 7.69. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $a^{-1}b \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a, b, g \in G$, if $a \sim b$, then $ga \sim gb$. The equivalence class of a is aH.

PROOF

- $\langle 1 \rangle 1$. For any subgroup H, we have \sim_H is an equivalence relation on G.
 - $\langle 2 \rangle 1$. \sim is reflexive.

PROOF: For any $a \in G$ we have $a^{-1}a = e \in H$.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If $a^{-1}b \in H$ then $b^{-1}a \in H$.

 $\langle 2 \rangle 3$. \sim is transitive.

PROOF: If $a^{-1}b \in H$ and $b^{-1}c \in H$ then $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$.

 $\langle 1 \rangle 2$. If $a \sim_H b$ then $ga \sim_H gb$.

PROOF: If $a^{-1}b \in H$ then $(ga)^{-1}(gb) = a^{-1}g^{-1}gb = a^{-1}b \in H$.

 $\langle 1 \rangle 3$. For any equivalence relation \sim on G such that, whenever $a \sim b$, then $qa \sim qb$, there exists a subgroup H such that $\sim = \sim_H$.

Proof: Proposition 7.66.

7.9. COSETS 59

 $\langle 1 \rangle 4$. The \sim_H -equivalence class of a is aH. Proof:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$
$$\Leftrightarrow \exists h \in H.a^{-1}b = h$$
$$\Leftrightarrow \exists h \in H.b = aH$$
$$\Leftrightarrow b \in aH$$

Proposition 7.70. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $ab^{-1} \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a, b, g \in G$, if $a \sim b$, then $ag \sim bg$. The equivalence class of a is Ha.

Proof: Similar.

Proposition 7.71. Let G be a group and H be a subgroup of G. Define \sim_L and \sim_R on G by:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H, \qquad a \sim_R b \Leftrightarrow ab^{-1} \in H.$$

Then $\sim_L = \sim_R$ if and only if H is normal.

PROOF:

- $\langle 1 \rangle 1$. If $\sim_L = \sim_R$ then H is normal.
 - $\langle 2 \rangle 1$. Assume: $\sim_L = \sim_R$
 - $\langle 2 \rangle 2$. Let: $h \in H$ and $g \in G$
 - $\langle 2 \rangle 3. \ g \sim_L gh^{-1}$
 - $\langle 2 \rangle 4. \quad g \sim_R gh^{-1}h$ $\langle 2 \rangle 5. \quad ghg^{-1} \in H$
- $\langle 1 \rangle 2$. If H is normal then $\sim_L = \sim_R$.
 - $\langle 2 \rangle 1$. Assume: *H* is normal.
 - $\langle 2 \rangle 2$. If $a \sim_L b$ then $a \sim_R b$.
 - $\langle 3 \rangle 1$. Assume: $a \sim_L b$
 - $\langle 3 \rangle 2. \ a^{-1}b \in H$
 - $\langle 3 \rangle 3. \ aa^{-1}ba^{-1} \in H$
 - $\langle 3 \rangle 4. \ ba^{-1} \in H$
 - $\langle 3 \rangle 5$. $a \sim_R b$
 - $\langle 2 \rangle 3$. If $a \sim_R b$ then $a \sim_L b$.

PROOF: Similar.

Corollary 7.71.1. Let G be a group and H be a normal subgroup of G. Define \sim on G by $a \sim b$ iff $a^{-1}b \in H$. Then $G/\sim is$ a group under [a][b]=[ab].

Definition 7.72 (Quotient Group). Let G be a group and H be a normal subgroup of G. The quotient group G/H is G/\sim where $a\sim b$ iff $a^{-1}b\in H$, under [a][b] = [ab] or (aH)(bH) = abH.

Corollary 7.72.1. Let H be a normal subgroup of a group G. For every group homomorphism $\phi: G \to G'$ such that $H \subseteq \ker \phi$, there exists a unique group homomorphism $\overline{\phi}: G/H \to G'$ such that the following diagram commutes.

Proposition 7.73. $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements.

PROOF: Every integer is congruent to one of $0, 1, \ldots, n-1$ by the division algorithm, and no two of them are conguent to one another, since if $0 \le i < j < n$ then 0 < j - i < n. \square

Proposition 7.74. Let m and n be integers with n > 0. The order of m in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{\gcd(m,n)}$.

PROOF: By Proposition 6.19 since the order of 1 is n. \square

Proposition 7.75. The integer m generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m,n) = 1.

Proof: By Proposition 7.74. \square

Corollary 7.75.1. If p is prime then every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ is a generator.

Proposition 7.76.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

Proof: Every permutation of $\{(1,0),(0,1),(1,1)\}$ gives an automorphism of $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. \square

Example 7.77. Not all monomorphisms split in Grp.

Define $\phi: \mathbb{Z}/3\mathbb{Z} \to S_3$ by

$$\phi(0) = id_3, \qquad \phi(1) = (1\ 3\ 2), \qquad \phi(2) = (1\ 2\ 3).$$

Then ϕ is monic but has no retraction.

For if $r: S_3 \to \mathbb{Z}/3\mathbb{Z}$ is a retraction, then we would have

$$r(1\ 2) + r(2\ 3) = 1,$$
 $r(2\ 3) + r(1\ 2) = 2$

which is impossible.

Proposition 7.78. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to gh is a bijection $H \cong gH$.

Proof: By Cancellation. \square

Proposition 7.79. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to hg is a bijection $H \cong Hg$.

PROOF: By Cancellation. \square

Proposition 7.80. Let H and K be finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|} .$$

Proof:

 $\langle 1 \rangle 1$. Let: $f: \{ hK : h \in H \} \to H/(H \cap K)$ be the function $f(hK) = h(H \cap K)$ Proof: This is well-defined because if hK = h'K then $h^{-1}h' \in H \cap K$ so $h(H \cap K) = h'(H \cap K)$.

 $\langle 1 \rangle 2$. f is injective.

PROOF: If $h(H \cap K) = h'(H \cap K)$ then hK = h'K.

 $\langle 1 \rangle 3$. f is surjective.

PROOF: Clear.

 $\langle 1 \rangle 4$.

$$\frac{|HK|}{|K|} = \frac{|H|}{|H \cap K|}$$

7.10 Congruence

Definition 7.81 (Congruence). Given integers a, b, n with n positive, we say a is congruent to b modulo n, and write $a \equiv b \pmod{n}$, iff $a + n\mathbb{Z} = b + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$.

Proposition 7.82. Given integers a, b, n with n positive, we have $a \equiv b \pmod{n}$ iff $n \mid a - b$.

PROOF: By Proposition 7.66.

Proposition 7.83. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a + b \equiv a' + b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid (a' + b') - (a + b)$. \square

Proposition 7.84. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid a'b' - ab = a'(b' - b) + (a' - a)b$. \square

7.11 Cyclic Groups

Definition 7.85 (Cyclic Group). The *cyclic* groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for positive integers n.

Proposition 7.86. If m and n are positive integers with gcd(m,n) = 1 then $C_{mn} \cong C_m \times C_n$.

PROOF: The function that maps x to $(x \mod m, x \mod n)$ is an isomorphism. \square

Proposition 7.87. Let G be a group and $g \in G$. Then $\langle g \rangle$ is cyclic.

PROOF: If g has finite order then $\langle g \rangle \cong C_{|g|}$, otherwise $\langle g \rangle \cong \mathbb{Z}$. \square

Proposition 7.88. Every finitely generated subgroup of \mathbb{Q} is cyclic.

Proof:

- $\langle 1 \rangle 1$. Let: $G = \langle a_1/b, \ldots, a_n/b \rangle$ where a_1, \ldots, a_n, b are integers with b > 0
- $\langle 1 \rangle 2$. Let: $a = \gcd(a_1, \ldots, a_n)$
- $\langle 1 \rangle 3. \ G = \langle a/b \rangle$

Corollary 7.88.1. \mathbb{Q} is not finitely generated.

Proposition 7.89. Let n > 0. Let G be a subgroup of $\mathbb{Z}/n\mathbb{Z}$. Then there exists d such that $d \mid n$ and $G = \langle d \rangle$.

Proof:

- $\langle 1 \rangle 1$. Let: $\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the canonical projection.
- $\langle 1 \rangle 2$. Let: $G' = \pi^{-1}(G)$
- $\langle 1 \rangle 3$. G' is a cyclic subgroup of \mathbb{Z} .
- $\langle 1 \rangle 4$. Pick $d \in \mathbb{Z}$ such that d > 0 and $G' = \langle d \rangle$.
- $\langle 1 \rangle 5$. $G = \langle d \rangle$
- $\langle 1 \rangle 6. \ n \in G'$
- $\langle 1 \rangle 7. \ d \mid n$

7.12 Commutator Subgroup

Definition 7.90 (Commutator). Let G be a group and $g, h \in G$. The *commutator* of g and h is

$$[g,h] = ghg^{-1}h^{-1}$$
 .

Definition 7.91 (Commutator Subgroup). Let G be a group. The *commutator subgroup*, denoted [G, G] or G', is the subgroup generated by the elements of the form $aba^{-1}b^{-1}$.

We write $G^{(i)}$ for the result of taking the commutator subgroup i times starting with G.

Lemma 7.92. Let $\phi: G_1 \to G_2$ be a group homomorphism. Then, for all $g, h \in G_1$, we have

$$\phi([g,h]) = [\phi(g),\phi(h)]$$

and so $\phi(G_1') \subseteq G_2'$.

Proof: Easy. \square

Lemma 7.93. Let N and H be normal subgroups of a group G. Then $[N, H] \subseteq N \cap H$.

Proof:

```
\langle 1 \rangle 1. \text{ Let: } n \in N \text{ and } h \in H
\text{Prove: } nhn^{-1}h^{-1} \in N \cap H
\langle 1 \rangle 2. \ nhn^{-1} \in H
\text{Proof: Since } H \text{ is normal.}
\langle 1 \rangle 3. \ nhn^{-1}h^{-1} \in H
\langle 1 \rangle 4. \ hn^{-1}h^{-1} \in N
\text{Proof: Since } N \text{ is normal.}
\langle 1 \rangle 5. \ nhn^{-1}h^{-1} \in N
\langle 1 \rangle 6. \ nhn^{-1}h^{-1} \in N \cap H
```

Corollary 7.93.1. Let N and H be normal subgroups of G. If $N \cap H = \{e\}$, then every element in N commutes with every element in H.

Proposition 7.94. Let N and H be normal subgroups of G. If $N \cap H = \{e\}$ then $NH \cong N \times H$.

Proof: From Proposition 7.31. \square

7.13 Presentations

Definition 7.95 (Presentation). A presentation of a group G is a pair (A, R) where A is a set and $R \subseteq F(A)$ is a set of words such that

$$G \cong F(A)/N(R)$$

where N(R) is the smallest normal subgroup of F(A) that includes R.

Example 7.96. • The free group on a set A is presented by (A, \emptyset) .

- S_3 is presented by $(x, y|x^2, y^3, xyxy)$.
- $(a, b \mid a^2, b^2, (ab)^n)$ is a presentation of D_{2n} .
- $(x,y \mid x^2y^{-2}, y^4, xyx^{-1}y)$ is a presentation of Q_8 .

Proposition 7.97 (Word Problem). Let (A, R) be a presentation of the group G. Let $w_1, w_2 \in F(A)$ be two words. Then it is undecidable in general if $w_1N(R) = w_2N(R)$ in G.

Definition 7.98 (Finitely Presented). A group is *finitely presented* iff it has a presentation (A, R) where both A and R are finite.

Proposition 7.99. Let (A|R) be a presentation of G and (A'|R') a presentation of H. Assume w.l.o.g. A and A' are disjoint. Then the group G * G' presented by $(A \cup A'|R \cup R')$ is the coproduct of G and G' in Grp.

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G * G'$ and $\kappa_2 : G' \to G * G'$ be the unique homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 2$. Let: $\phi: G \to H$ and $\psi: G' \to H$ be any homomorphisms.
- $\langle 1 \rangle 3$. Let: $[\phi, \psi] : F(A \cup A') \to H$ be the unique homomorphism such that ...
- $\langle 1 \rangle 4. \ R \cup R' \subseteq \ker[\phi, \psi]$
- $\langle 1 \rangle 5$. $[\phi, \psi]$ factors uniquely through the morphism $F(A \cup A') \to G * G'$

7.14Index of a Subgroup

Definition 7.100 (Index). Let G be a group and H a subgroup of G. The index of H in G, denoted |G:H|, is the number of left cosets of H in G if this is finite, otherwise ∞ .

Theorem 7.101 (Lagrange's Theorem). Let G be a finite group and H a subgroup of G. Then

$$|G| = |G:H||H|.$$

PROOF: G/H is a partition of G into |G:H| subsets, each of size |H|. \square

Corollary 7.101.1. For p a prime number, the only group of order p is C_n .

PROOF: Let G be a group of order p and $g \in G$ with $g \neq e$. Then $|\langle g \rangle|$ divides p and is not 1, hence is p, that is, $G = \langle g \rangle$. \square

Theorem 7.102 (Cauchy's Theorem). Let G be a finite group. If p is prime and $p \mid |G|$ then the number of cyclic subgroups of order p is congruent to 1 modulo p. In particular, there exists an element of order p.

Proof:

$$\langle 1 \rangle 1$$
. Let: $S = \{(a_1, a_2, \dots, a_p) \in G^p : a_1 a_2 \cdots a_p = e\}$ $\langle 1 \rangle 2$. $|S| = |G|^{p-1}$

PROOF: Given any $a_1, \ldots, a_{p-1} \in G$, there exists a unique a_p such that $(a_1, \ldots, a_p) \in S$, namely $a_p = (a_1 \cdots a_{p-1})^{-1}$.

- $\langle 1 \rangle 3. p \mid |S|$
- $\langle 1 \rangle 4$. Define an action of $\mathbb{Z}/p\mathbb{Z}$ on S by

$$m \cdot (a_1, \dots, a_p) = (a_m, a_{m+1}, \dots, a_p, a_1, a_2, \dots, a_{m-1})$$
.
PROOF: If $(a_1, \dots, a_p) \in S$ then $(a_2, a_3, \dots, a_p, a_1) \in S$ since $a_1 = (a_2 \cdots a_p)^{-1}$.

7.15. COKERNELS

Proposition 7.103. Let G be a group. Let K be a subgroup of G and H a subgroup of K. If |G:H|, |G:K| and |K:H| are all finite then

$$|G:H| = |G:K||K:H|$$
 .

```
Proof:
```

```
⟨1⟩1. Let: G/K = \{g_1K, g_2K, \dots, g_mK\} ⟨1⟩2. Let: K/H = \{k_1H, k_2H, \dots, k_nH\} ⟨1⟩3. G/H = \{g_ik_jH : 1 \le i \le m, 1 \le j \le n\} ⟨2⟩1. Let: g \in G ⟨2⟩2. Pick i such that gK = g_iK ⟨2⟩3. g^{-1}g_i \in K ⟨2⟩4. Pick j such that g^{-1}g_iH = k_jH ⟨2⟩5. g^{-1}g_ik_j \in H ⟨2⟩6. gH = g_ik_jH ⟨1⟩4. If g_ik_jH = g_{i'}k_{j'}H then i = i' and j = j'. ⟨2⟩1. Assume: g_ik_jH = g_{i'}k_{j'}H ⟨2⟩2. g_iK = g_{i'}K ⟨2⟩3. i = i' ⟨2⟩4. k_jH = k_{j'}H ⟨2⟩5. j = j'
```

7.15 Cokernels

Proposition 7.104. Let $\phi: G \to H$ be a homomorphism between groups. Then there exists a group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

 $\langle 1 \rangle 1.$ Let: N be the intersection of all the normal subgroups of H that include im $\phi.$

```
\langle 1 \rangle 2. Let: K = H/N and \pi be the canonical homomorphism. \langle 1 \rangle 3. Let: \pi \circ \phi = 0 \langle 1 \rangle 4. Let: \alpha : H \to L satisfy \alpha \circ \phi = 0 \langle 1 \rangle 5. im \phi \subseteq \ker \alpha \langle 1 \rangle 6. N \subseteq \ker \alpha \langle 1 \rangle 7. There exists a unique \overline{\alpha} : H/\operatorname{im} \phi \to L such that \overline{\alpha} \circ \pi = \alpha
```

Definition 7.105 (Cokernel). For any homomorphism $\phi: G \to H$ in **Grp**, the *cokernel* of ϕ is the group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Example 7.106. It is not true that a homomorphism with trivial cokernel is epi. The inclusion $\langle (1\ 2) \rangle \hookrightarrow S_3$ has trivial cokernel but is not epi.

7.16 Cayley Graphs

Definition 7.107 (Cayley Graph). Let G be a finitely generated group. Let A be a finite set of generators for G. The Cayley graph of G with respect to A is the directed graph whose vertices are the elements of G, with an edge $g_1 \to g_2$ labelled by $a \in A$ iff $g_2 = g_1 a$.

Proposition 7.108. G is the free group on A iff the Cayley graph with respect to A is a tree.

PROOF: Both are equivalent to saying that the product of two different strings of elements of A and/or their inverses are not equal. \square

7.17 Characteristic Subgroups

Definition 7.109 (Characteristic Subgroup). Let G be a group. Let H be a subgroup of G. Then H is a *characteristic* subgroup of G iff, for every automorphism ϕ of G, we have $\phi(H) \subseteq H$.

Proposition 7.110. Characteristic subgroups are normal.

PROOF: Take ϕ to be conjugation with respect to an arbitrary element. \square

Proposition 7.111. Let G be a group. Let K be a normal subgroup of G and H a characteristic subgroup of K. Then H is normal in G.

PROOF: For any $a \in G$ we have conjugation by a is an automorphism on K, hence H is closed under it. \square

Proposition 7.112. Let G be a group. Let H be a subgroup of G. Suppose there is no other subgroup of G isomorphic to H. Then H is characteristic, hence normal.

PROOF: For any automorphism ϕ on G, we have $\phi(H)$ is isomorphic to H, hence $\phi(H) = H$. \square

Proposition 7.113. Let G be a finite group. Let K be a normal subgroup of G. Assume |K| and |G/K| are relatively prime. Then K is characteristic.

Proof:

- $\langle 1 \rangle 1$. Let: K' be a subgroup of G isomorphic to K. Prove: K' = K
- $\langle 1 \rangle 2$. $|K'/(K \cap K')|$ divides both |K'| = |K| and |G/K|
- $\langle 1 \rangle 3. \ |K'/(K \cap K')| = 1$
- $\langle 1 \rangle 4. \quad K' = K \cap K'$
- $\langle 1 \rangle 5. K' = K$

Proposition 7.114. The commutator subgroup of a group is characteristic.

PROOF: Lemma 7.92.

7.18 Simple Groups

Definition 7.115 (Simple Group). A group G is *simple* iff its only normal subgroups are $\{e\}$ and G.

Proposition 7.116. Let G be a group. Then G is simple if and only if the only homomorphic images of G are 1 and G.

PROOF: Both are equivalent to saying that, for any surjective homomorphism $\phi: G \to G'$, either ϕ has kernel $\{e\}$ (in which case it is an isomorphism) or ϕ has kernel G (in which case G' = 1.) \square

7.19 Sylow Subgroups

Definition 7.117 (Sylow Subgroup). Let p be a prime number. Let G be a finite group. A p-Sylow subgroup of G is a subgroup of order p^r , where r is the largest integer such that p^r divides |G|.

Proposition 7.118. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. If P is normal then P is characteristic.

Proof: Proposition 7.113. \square

Corollary 7.118.1. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Let H be a subgroup of G that includes P. If P is normal in H and H is normal in G then P is normal in G.

Proposition 7.119. Let G be a finite group. Let P_1, \ldots, P_r be its nontrivial Sylow subgroups. Assume all P_i are normal in G. Then

$$G \cong P_1 \times \cdots \times P_r$$
.

```
Proof:
```

- $\langle 1 \rangle 1$. $P_1 P_2 \cdots P_r \cong P_1 \times P_2 \times \cdots \times P_r$
 - $\langle 2 \rangle 1. P_1 \cong P_1$
 - $\langle 2 \rangle$ 2. For $1 \leq i < r$, if $P_1 P_2 \cdots P_i \cong P_1 \times P_2 \times \cdots \times P_i$ then $P_1 P_2 \cdots P_i P_{i+1} \cong P_1 \times P_2 \times \cdots P_i \times P_{i+1}$
 - $\langle 3 \rangle 1$. Let: $1 \leq i < r$
 - $\langle 3 \rangle 2$. Assume: $P_1 P_2 \cdots P_i \cong P_1 \times P_2 \times \cdots \times P_i$
 - $\langle 3 \rangle 3$. $P_1 P_2 \cdots P_i$ is normal in G.
 - $\langle 3 \rangle 4. \ P_1 P_2 \cdots P_i \cap P_{i+1} = \{e\}$
 - $\langle 4 \rangle 1$. Let: $|P_j| = p_j^{k_j}$ for all j.
 - $\langle 4 \rangle 2$. The order of any element of $P_1 P_2 \cdots P_i$ divides $p_1^{k_1} p_2^{k_2} \cdots p_i^{k_i}$
 - $\langle 4 \rangle 3$. The order of any element of P_{i+1} divides $p_{i+1}^{k_{i+1}}$
 - $\langle 4 \rangle 4$. The p_j are all distinct.

PROOF: Any p_j -Sylow subgroup is congruent to P_j hence equal to P_j since P_j is normal.

- $\langle 4 \rangle$ 5. The only element in $P_1 P_2 \cdots P_i$ and P_{i+1} is e.
- $\langle 3 \rangle 5. P_1 P_2 \cdots P_i P_{i+1} \cong P_1 P_2 \cdots P_i \times P_{i+1}$

Proof: Proposition 7.94.

- $\langle 3 \rangle 6. \ P_1 P_2 \cdots P_i P_{i+1} \cong P_1 \times P_2 \times \cdots \times P_i \times P_{i+1}$
- $\langle 1 \rangle 2$. $G = P_1 P_2 \cdots P_r$

PROOF: Since $|G| = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$.

7.20 Series of Subgroups

Definition 7.120 (Series of Subgroups). Let G be a group. A *series* of subgroups of G is a sequence (G_n) of subgroups of G such that

$$G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots$$

It is a normal series iff G_{n+1} is normal in G_n for all n.

Proposition 7.121. The maximal length of a normal series in G is 0 iff G is trivial.

PROOF: Since 1 is normal in G for every G. \square

Proposition 7.122. The maximal length of a normal series in G is 1 iff G is non-trivial and simple.

PROOF: Immediate from definitions.

Example 7.123. \mathbb{Z} has normal series of arbitrary length.

PROOF: We have $\mathbb{Z} \supseteq 2\mathbb{Z} \supseteq 4\mathbb{Z} \supseteq \cdots$.

Example 7.124. The maximal length of a normal series in $\mathbb{Z}/n\mathbb{Z}$ is the number of primes in the prime factorization of n.

PROOF: Let $n = p_1 p_2 \cdots p_k$. A normal series of maximal length is $\mathbb{Z}/p_1p_2\cdots p_k\mathbb{Z} \supseteq \mathbb{Z}/p_1p_2\cdots p_{k-1}\mathbb{Z} \supseteq \cdots \supseteq \mathbb{Z}/p_1\mathbb{Z} \supseteq \{e\} . \square$

Definition 7.125 (Equivalent Normal Series). Let

$$G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots \supsetneq G_n = \{e\}$$

$$G = G'_0 \supsetneq G'_1 \supsetneq G'_2 \supsetneq \cdots \supsetneq G'_m = \{e\}$$

be two normal series in a group G. Then the two series are equivalent iff m = nand there exists a permutation $\sigma \in S_n$ such that, for all i, we have $G_i/G_{i+1} \cong$ $G'_{\sigma(i)}/G'_{\sigma(i)+1}$.

Definition 7.126 (Composition Series). Let G be a group. A composition series for G is a series of subgroups in G

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = \{e\}$$

such that, for all i, we have G_i/G_{i+1} is simple.

Proposition 7.127. A normal series of maximal length in a group is a composition series.

Proof: Easy.

Corollary 7.127.1. Every finite group has a composition series.

Corollary 7.127.2. If a group has a composition series then every normal subgroup has a composition series.

Definition 7.128 (Refinement). A series of subgroups S_1 is a refinement of the series S_2 iff every subgroup in S_2 appears in S_1 .

Lemma 7.129. Let G be a group. Let Q, N and L be subgroups of G. Assume L is a normal subgroup of Q and qN = Nq for all $q \in Q$. Then

$$\frac{QN}{LN} \cong \frac{Q}{L(Q \cap N)} \ .$$

Proof:

 $\langle 1 \rangle 1$. QN is a subgroup of G.

Proof: Since QN = NQ.

 $\langle 1 \rangle 2$. LN is a subgroup of G.

PROOF: Since LN = NL.

 $\langle 1 \rangle 3$. LN is normal in QN.

- $\langle 2 \rangle 1$. Let: $l \in L$, $q \in Q$, and $n, n' \in N$. Prove: $qnln'n^{-1}q^{-1} \in LN$
- $\langle 2\rangle 2.$ Pick $n_1\in N$ such that $nl=ln_1$ $\langle 2\rangle 3.$ Pick $n_2\in N$ such that $n_1n'n^{-1}q^{-1}=q^{-1}n_2$
- $\langle 2 \rangle 4. \ qnln'n^{-1}q^{-1} = qlq^{-1}n_2 \in LN$

PROOF: Since L is normal in Q.

- $\langle 1 \rangle 4.$ The function $f:Q \to QN/LN$ that maps q to qLN is a surjective homomorphism.
- $\langle 1 \rangle 5$. ker $f = L(Q \cap N)$
 - $\langle 2 \rangle 1$. ker $f \subseteq L(Q \cap N)$
 - $\langle 3 \rangle 1$. Let: $x \in \ker f$
 - $\langle 3 \rangle 2. \ x \in LN$
 - $\langle 3 \rangle 3$. Pick $l \in L$ and $n \in N$ such that x = ln
 - $\langle 3 \rangle 4. \ n = l^{-1}x \in Q \cap N$
 - $\langle 3 \rangle 5. \ x \in L(Q \cap N)$
 - $\langle 2 \rangle 2$. $L(Q \cap N) \subseteq \ker f$

PROOF: Since $L(Q \cap N) \subseteq Q$ and $L(Q \cap N) \subseteq LN$.

 $\langle 1 \rangle 6$. Q.E.D.

PROOF: First Isomorphism Theorem.

П

Theorem 7.130 (Schreier). Any two normal series in a group have equivalent refinements.

Proof:

- $\langle 1 \rangle 1$. Let: G be a group.
- $\langle 1 \rangle$ 2. Let: $S_1: G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots \supsetneq G_m = \{e\}$ and $S_2: G = H_0 \supsetneq H_1 \supsetneq H_2 \supsetneq \cdots \supsetneq H_n = \{e\}$ be two normal series in G.
- $\langle 1 \rangle 3$. For each i, we have

$$G_i = G_i \cap H_0 \supseteq G_i \cap H_1 \supseteq \cdots \supseteq G_i \cap H_n = \{e\}$$

is a series of subgroups in G_i .

 $\langle 1 \rangle 4$. For each i, we have

$$G_i = (G_i \cap H_0)G_{i+1} \supseteq (G_i \cap H_1)G_{i+1} \supseteq \cdots \supseteq (G_i \cap H_n)G_{i+1} = G_{i+1}$$
 is a normal series in G_i .

 $\langle 2 \rangle 1$. Let: $0 \le i < m$ and $0 \le j < n$

PROVE: $(G_i \cap H_{i+1})G_{i+1}$ is normal in $(G_i \cap H_i)G_{i+1}$

- (2)2. Let: $x \in G_i \cap H_{j+1}, y \in G_{i+1}, a \in G_i \cap H_j \text{ and } b \in G_{i+1}$ Prove: $abxyb^{-1}a^{-1} \in (G_i \cap H_{j+1})G_{i+1}$
- $\langle 2 \rangle 3. \ axa^{-1} \in G_i \cap H_{j+1}$

PROOF: Since $a, x \in G_i$ and H_{i+1} is normal in H_i .

 $\langle 2 \rangle 4. \ ax^{-1}bxa^{-1} \in G_{i+1}$

PROOF: Since G_{i+1} is normal in G_i .

- $\langle 2 \rangle 5. \ yb^{-1} \in G_{i+1}$
- $\langle 2 \rangle 6. \ ayb^{-1}a^{-1} \in G_{i+1}$

PROOF: Since G_{i+1} is normal in G_i .

- $\langle 2 \rangle 7$. $abxyb^{-1}a^{-1} = (axa^{-1})(ax^{-1}bxa^{-1}ayb^{-1}a^{-1}) \in (G_i \cap H_{i+1})G_{i+1}$
- $\langle 1 \rangle$ 5. Let S be the series obtained by concatenating the series $\langle 1 \rangle$ 4 for G_0 to G_1, G_1 to G_2, \ldots, G_{m-1} to G_m
- $\langle 1 \rangle 6$. S is a refinement of S_1 .
- $\langle 1 \rangle 7$. S is normal.
- $\langle 1 \rangle 8$. Let: T be the similarly constructed normal refinement of S_2 .

 $\langle 1 \rangle 9$. For all i, j we have

$$\frac{(G_i \cap H_j)G_{i+1}}{(G_i \cap H_{j+1})G_{i+1}} \cong \frac{G_i \cap H_j}{(G_i \cap H_{j+1})(G_{i+1} \cap H_j)}$$

$$\langle 2 \rangle 1. \ G_i \cap H_{j+1} \text{ is normal in } G_i \cap H_j$$

 $\langle 2 \rangle 2$. For all $q \in G_i \cap H_j$ we have $qG_{i+1} = G_{i+1}q$

PROOF: Since for all $q \in G_i$ we have $qG_{i+1} = G_{i+1}q$.

 $\langle 2 \rangle 3$. Q.E.D.

Proof: Lemma 7.129

 $\langle 1 \rangle 10$. For all i, j we have

$$\frac{(G_i\cap H_j)H_{j+1}}{(G_{i+1}\cap H_j)H_{j+1}}\cong \frac{G_i\cap H_j}{(G_{i+1}\cap H_j)(G_i\cap H_{j+1})}$$

Proof: Lemma 7.129

 $\langle 1 \rangle 11$. For all i, j we have

$$\frac{(G_i \cap H_j)G_{i+1}}{(G_i \cap H_{j+1})G_{i+1}} \cong \frac{(G_i \cap H_j)H_{j+1}}{(G_{i+1} \cap H_j)H_{j+1}}$$

 $\langle 1 \rangle 12$. S and T are equivalent.

Corollary 7.130.1 (Jordan-Hölder). Any two composition series for a group are equivalent.

Definition 7.131 (Composition Factors). Let G be a group that has a composition series. The multiset of composition factors of G is the multiset of quotients of any composition series.

Example 7.132. Non-isomorphic groups can have the same composition factors. For example, $C_2 \times C_2$ and C_4 both have composition factors $\{|C_2, C_2|\}$.

Proposition 7.133. Let G be a group. Let N be a normal subgroup of G. Then G has a composition series if and only if N and G/N both have composition series, in which case the composition factors of G are the union of the composition factors of N and the composition factors of G/N.

Proof:

- $\langle 1 \rangle 1$. If G has a composition series then N and G/N have composition series.
 - $\langle 2 \rangle 1$. Let: $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = \{e\}$ be a composition series for G.
 - $\langle 2 \rangle 2$. N has a composition series.
 - $\langle 3 \rangle 1$. For all i, we have $\frac{G_i \cap N}{G_{i+1} \cap N}$ is either trivial or isomorphic to G_i/G_{i+1} .
 - $\langle 4 \rangle 1$. The homomorphism $G_i \cap N \hookrightarrow G_i \twoheadrightarrow G_i/G_{i+1}$ has kernel $G_{i+1} \cap N$.
 - $\langle 4 \rangle 2$. There is an injective homomorphism $(G_i \cap N)/(G_{i+1} \cap N) \to G_i/G_{i+1}$. Proof: First Isomorphism Theorem.
 - $\langle 4 \rangle 3$. $(G_i \cap N)/(G_{i+1} \cap N)$ is either trivial or isomorphic to G_i/G_{i+1} . PROOF: Since G_i/G_{i+1} is simple.
 - $\langle 3 \rangle 2$. Eliminating all duplicates from the series $N = G_0 \cap N \supseteq G_1 \cap N \supseteq$ $G_2 \cap N \supseteq \cdots \supseteq G_n \cap N = \{e\}$ gives a composition series for N.
 - $\langle 2 \rangle 3$. G/N has a composition series.

- $\langle 3 \rangle 1$. For all i we have $\frac{(G_i N)/N}{(G_{i+1} N)/N}$ is either trivial or isomorphic to G_i/G_{i+1} .

 - $\langle 4 \rangle$ 1. Let: $0 \le i < n$ $\langle 4 \rangle$ 2. $\frac{(G_i N)/N}{(G_{i+1} N)N} \cong G_i N/G_{i+1} N$

PROOF: Third Isomorphism Theorem.

 $\langle 4 \rangle 3$. There exists a surjective homomorphism

$$\frac{G_i}{G_{i+1}} \twoheadrightarrow \frac{G_i N}{G_{i+1} N} .$$

- $\langle 5 \rangle 1$. Let: f be the homomorphism $G_i \hookrightarrow G_i N \twoheadrightarrow G_i N/G_{i+1} N$
- $\langle 5 \rangle 2$. f is surjective.
- $\langle 5 \rangle 3. \ f(G_{i+1}) = \{e\}$
- $\langle 5 \rangle 4$. Q.E.D.

PROOF: By the universal property of quotient groups.

 $\langle 4 \rangle 4$. $G_i N / G_{i+1} N$ is either trivial or isomorphic to G_i / G_{i+1} .

Proof: Proposition 7.116.

- $\langle 3 \rangle 2$. Eliminating all duplicates from the series $G/N = G_0 N/N \supseteq G_1 N/N \supseteq$ $G_2N/N \supseteq \cdots \supseteq G_nN/N = \{e\}$ gives a composition series for G/N.
- $\langle 1 \rangle 2$. If N and G/N have composition series, then G has a composition series. and the composition factors of G are the union of the composition factors of N and the composition factors of G/N.
 - $\langle 2 \rangle 1$. Let: $N = N_0 \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n = \{e\}$ be a composition series
 - $\langle 2 \rangle 2$. Let: $G/N = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_m = \{e\}$ be a composition series for G/N.
 - $\langle 2 \rangle 3.$ $G = \pi^{-1}(H_0) \supseteq \pi^{-1}(H_1) \supseteq \cdots \pi^{-1}(H_m) = N_0 \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n$ is a composition series for G.

Proposition 7.134. Let G_1 and G_2 be groups. Then $G_1 \times G_2$ has a composition series if and only if G_1 and G_2 both have composition series.

Proof:

- $\langle 1 \rangle 1$. If $G_1 \times G_2$ has a composition series then G_1 has a composition series.
 - $\langle 2 \rangle 1$. Let: $G_1 \times G_2 = A_0 \supsetneq A_1 \supsetneq \cdots \supsetneq A_n = \{e\}$ be a composition series.
 - $\langle 2 \rangle 2$. For each i, we have $\pi_1(A_i)/\pi_1(A_{i+1})$ is either isomorphic to A_i/A_{i+1} or trivial.
 - $\langle 2 \rangle 3$. Eliminating duplicates from $G_1 = \pi_1(A_0) \supseteq \pi_1(A_1) \supseteq \cdots \supseteq \pi_1(A_n) =$ $\{e\}$ gives a composition series for G_1 .
- $\langle 1 \rangle 2$. If $G_1 \times G_2$ has a composition series then G_2 has a composition series. Proof: Similar.
- $\langle 1 \rangle 3$. If G_1 and G_2 have composition series then $G_1 \times G_2$ has a composition
 - $\langle 2 \rangle 1$. Let: $G_1 = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_m = \{e\}$ be a composition series for G_1 .
 - $\langle 2 \rangle 2$. Let: $G_2 = K_0 \supsetneq K_1 \supsetneq \cdots \supsetneq K_n = \{e\}$ be a composition series for G_2 .
 - $\langle 2 \rangle 3. \ G_1 \times G_2 = H_0 \times K_0 \supseteq H_1 \times K_0 \supseteq \cdots \supseteq H_m \times K_0 \supseteq H_m \times K_1 \supseteq \cdots \supseteq$ $H_m \times K_n = \{e\}$ is a composition series for $G_1 \times G_2$.

Definition 7.135 (Cyclic Series). A normal series of subgroups is cyclic iff every quotient is cyclic.

Chapter 8

Abelian Groups

Definition 8.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 8.2. Every group of order ≤ 4 is Abelian.

Example 8.3. For any positive integer n, we have $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.

Example 8.4.
$$S_n$$
 is not Abelian for $n \geq 3$. If $x = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ then $xy = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and $yx = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Example 8.5. There are 42 Abelian groups of order 1024 up to isomorphism.

Proposition 8.6. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

PROOF: For any $g, h \in G$ we have

$$ghgh = e$$
∴ $hgh = g$ (multiplying on the left by g)
∴ $hg = gh$ (multiplying on the right by h)

Proposition 8.7. Let G be a group. Then G is Abelian if and only if the function that maps g to g^{-1} is a group homomorphism.

Proof

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^{-1} is a group homomorphism.

PROOF: Since $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$.

 $\langle 1 \rangle 2$. If the function that maps g to g^{-1} is a group homomorphism then G is Abelian.

PROOF: Since $gh = (g^{-1})^{-1}(h^{-1})^{-1} = (g^{-1}h^{-1})^{-1} = hg$.

Proposition 8.8. Let G be a group. Then G is Abelian if and only if the function that maps g to g^2 is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^2 is a group homomorphism.

PROOF: Since $(gh)^2 = g^2h^2$.

 $\langle 1 \rangle 2$. If the function that maps g to g^2 is a group homomorphism then G is Abelian.

PROOF: Since we have $(gh)^2 = ghgh = g^2h^2$ and so hg = gh.

Proposition 8.9. Let G be a group. Then G is Abelian if and only if the homomorphism $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ is the trivial homomorphism.

Proof:

 $\langle 1 \rangle 1$. If G is Abelian then γ is trivial.

PROOF: Since $\gamma_q(a) = gag^{-1} = a$.

 $\langle 1 \rangle 2$. If γ is trivial then G is Abelian.

PROOF: If $\gamma_g(a) = gag^{-1} = a$ for all g and a then ga = ag for all g, a.

Proposition 8.10. Let G be an Abelian group. Let $g, h \in G$. If g has maximal finite order in G, and h has finite order, then |h| |g|.

PROOF.

- $\langle 1 \rangle 1$. Assume: for a contradiction $|h| \nmid |g|$.
- $\langle 1 \rangle 2$. PICK a prime p such that $|g| = p^m r$, $|h| = p^n s$ where $p \nmid r$, $p \nmid s$ and m < n.
- $\langle 1 \rangle 3. |g^{p^m} h^s| = p^n r$

Proof: Proposition 6.22.

- $\langle 1 \rangle 4$. $|g| < |g^{p^m} h^s|$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the maximality of |g|.

Proposition 8.11. Given a set A and an Abelian group H, the set H^A is an Abelian group under

$$(\phi + \psi)(a) = \phi(a) + \psi(a) \qquad (\phi, \psi \in H^A, a \in A) .$$

- $\langle 1 \rangle 1. \ \phi + (\psi + \chi) = (\phi + \psi) + \chi$
- $\langle 1 \rangle 2. \ \phi + \psi = \psi + \phi$
- $\langle 1 \rangle 3$. Let: $0: A \to H$ be the function 0(a) = 0.
- $\langle 1 \rangle 4. \ \phi + 0 = 0 + \phi = \phi$

$$\langle 1 \rangle$$
5. Given $\phi : A \to H$, define $-\phi : A \to H$ by $(-\phi)(a) = -(\phi(a))$. $\langle 1 \rangle$ 6. $\phi + (-\phi) = (-\phi) + \phi = 0$

Proposition 8.12. Given a group G and an Abelian group H, the set Grp[G, H]is a subgroup of H^G .

Proof:

 $\langle 1 \rangle 1$. Given $\phi, \psi : G \to H$ group homomorphisms, we have $\phi - \psi$ is a group homomorphism.

Proof:

$$(\phi - \psi)(g + g') = \phi(g + g') - \psi(g + g')$$

$$= \phi(g) + \phi(g') - \psi(g) - \psi(g')$$

$$= \phi(g) - \psi(g) + \phi(g') - \psi(g')$$

$$= (\phi - \psi)(g) + (\phi - \psi)(g')$$

Proposition 8.13. Let G be a group. The following are equivalent.

- 1. Inn(G) is cyclic.
- 2. Inn(G) is trivial.
- 3. G is Abelian.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $Inn(G) = \langle \gamma_g \rangle$
 - $\langle 2 \rangle 2$. g commutes with every element of G
 - $\langle 3 \rangle 1$. Let: $x \in G$
 - $\langle 3 \rangle 2$. PICK $n \in \mathbb{Z}$ such that $\gamma_x = \gamma_g^n \langle 3 \rangle 3$. $\forall y \in G.xyx^{-1} = g^nyg^{-n}$

 - $\langle 3 \rangle 4$. $xgx^{-1} = g$
 - $\langle 2 \rangle 3. \ \gamma_g = \mathrm{id}_G$
- $\langle 1 \rangle 2$. $2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\forall g \in G. \gamma_q = \mathrm{id}_G$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3. \ \gamma_x(y) = y$
 - $\langle 2 \rangle 4$. $xyx^{-1} = y$
 - $\langle 2 \rangle 5$. xy = yx
- $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: If xy = yx for all x, y then $\gamma_x(y) = y$ for all x, y.

 $\langle 1 \rangle 4. \ 2 \Rightarrow 1$

Proof: Easy.

Corollary 8.13.1. If $Aut_{Grp}(G)$ is cyclic then G is Abelian.

Proposition 8.14. Every subgroup of an Abelian group is normal.

PROOF: Let G be an Abelian group and N a subgroup of G. Given $g \in G$ and $n \in N$ we have $gng^{-1} = n \in N$. \square

Proposition 8.15. For any group G, the group G/[G,G] is Abelian.

PROOF: For any $g, h \in G$ we have

$$gh(hg)^{-1} \in [G, G]$$
$$\therefore gh[G, G] = hg[G, G]$$

Proposition 8.16. Let G be a finite Abelian group. Let p be a prime divisor of |G|. Then G has an element of order p.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Pick $g \in G \{0\}$.
- $\langle 1 \rangle 3$. PICK an element $h \in \langle g \rangle$ with prime order q.
- $\langle 1 \rangle 4$. Case: q = p

Proof: h is the required element.

- $\langle 1 \rangle 5$. Case: $q \neq p$
 - $\langle 2 \rangle 1$. Pick $r \in G$ such that $r + \langle h \rangle$ has order p in $G/\langle h \rangle$.

PROOF: By induction hypothesis since $|G/\langle h \rangle| = |G|/q$.

- $\langle 2 \rangle 2. \ pr \in \langle h \rangle$
- $\langle 2 \rangle 3$. Pick k such that pr = kh
- $\langle 2 \rangle 4$. pqr = e
- $\langle 2 \rangle 5$. qr has order p.

Corollary 8.16.1. For n an odd integer, any Abelian group of order 2n has exactly one element of order 2.

PROOF: If x and y are distinct elements of order 2 then $\langle x,y\rangle=\{e,x,y,xy\}$ has size 4 and so 4 | 2n which is a contradiction. \square

Example 8.17. It is not true that, if G is a finite group and $d \mid |G|$, then G has an element of order d. The quaternionic group has no element of order d.

Proposition 8.18. If G is a finite Abelian group and $d \mid |G|$ then G has a subgroup of size d.

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result is true for all d' < d.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $d \neq 1$.
- $\langle 1 \rangle 3$. PICK a prime p such that $p \mid d$.
- $\langle 1 \rangle 4$. Pick an element $g \in G$ of order p.
- $\langle 1 \rangle 5. \ d/p \mid |G/\langle g \rangle|$
- $\langle 1 \rangle 6$. Pick a subgrop H of $G/\langle g \rangle$ of size d/p.
- $\langle 1 \rangle 7$. $\pi^{-1}(H)$ is a subgroup of G of size d.

Proposition 8.19. Let (G, \cdot) be a group. Let $\circ : G^2 \to G$ be a group homomorphism such that (G, \circ) is a group. Then \circ and \cdot coincide, and G is Abelian.

Proof:

 $\langle 1 \rangle 1$. For all $g_1, g_2, h_1, h_2 \in G$ we have

$$(g_1g_2)\circ(h_1h_2)=(g_1\circ h_1)(g_2\circ h_2)$$

 $\langle 1 \rangle 2$. $e \circ e = e$

Proof:

$$e \circ e = (ee) \circ (ee)$$

= $(e \circ e)(e \circ e)$

Hence $e \circ e = e$ by Cancellation.

 $\langle 1 \rangle 3$. e is the identity of (G, \circ)

 $\langle 1 \rangle 4$. For all $g, h \in G$ we have

$$g \circ h = gh$$

Proof:

$$g \circ h = (ge) \circ (eh)$$

= $(g \circ e)(e \circ h)$
= ah

 $\langle 1 \rangle 5$. For all $g, h \in G$ we have gh = hg.

Proof:

$$gh = (e \circ g)(h \circ e)$$
$$= (eh) \circ (ge)$$
$$= h \circ g$$
$$= hg$$

П

Corollary 8.19.1. If $(G, m : G^2 \to G, e : 1 \to G, i : G \to G)$ is a group object in **Grp** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Grp** where e(*) = e and $i(g) = g^{-1}$.

Proposition 8.20. Let G be a group. If every element of G has order ≤ 2 then G is Abelian.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in G$

Prove: xy = yx

 $\langle 1 \rangle 2$. Assume: w.l.o.g. $x \neq e \neq y$.

 $\langle 1 \rangle 3. \ x^2 = e = y^2$

 $(1)4. \ x^{-1} = x \text{ and } y^{-1} = y.$

 $\langle 1 \rangle 5$. Case: xy = e

PROOF: Then $y = x^{-1}$ and so xy = yx = e.

 $\langle 1 \rangle 6$. Case: $xy \neq e$

$$\langle 2 \rangle 1$$
. $(xy)^2 = e$

$$\langle 2 \rangle 2$$
. $xyxy = e$

$$\langle 2 \rangle 3. \ xy = y^{-1}x^{-1}$$

 $\langle 2 \rangle 4. \ xy = yx$

Proposition 8.21. Every Abelian group is solvable.

PROOF: If G is Abelian then $G' = \{e\}$. \square

Proposition 8.22. The only non-trivial simple finite Abelian groups are $\mathbb{Z}/p\mathbb{Z}$ for p a prime.

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-trivial simple finite Abelian group.
- $\langle 1 \rangle 2$. PICK a prime p that divides |G|.
- $\langle 1 \rangle 3$. PICK an element $a \in G$ of order p.

PROOF: Cauchy's Theorem.

Proposition 8.23. If $N \rtimes_{\theta} H$ is Abelian then $N \rtimes_{\theta} H \cong N \times H$.

PROOF: By Proposition 7.34 since $\theta(h)(n) = hnh^{-1} = n$.

Lemma 8.24. Let p be a prime integer and $r \ge 1$. Let G be a noncyclic Abelian group of order p^{r+1} , and let $g \in G$ be an element of order p^r . Then there exists an element $h \in G$ such that $h \notin \langle g \rangle$ and |h| = p.

Proof:

- $\langle 1 \rangle 1$. Let: $K = \langle G \rangle$
- $\langle 1 \rangle 2$. Pick $h' \in G$ such that $h' \notin K$.
- $\langle 1 \rangle 3$. |G/K| = p
- $\langle 1 \rangle 4. \ ph' \in K$
- $\langle 1 \rangle 5$. Let: k = ph'
- $\langle 1 \rangle 6$. |k| is a power of p.
- $\langle 1 \rangle 7. |k| \neq p^r$

PROOF: If $|k| = p^r$ then $|h'| = p^{r+1}$ contradicting the hypothesis that G is not cyclic.

- $\langle 1 \rangle 8$. Pick s < r such that $|\langle k \rangle| = p^s$.
- $\langle 1 \rangle 9. \ \langle k \rangle = \langle p^{r-s}g \rangle$

Proof: Proposition 7.89.

- $\langle 1 \rangle 10$. Pick $m \in \mathbb{Z}$ such that k = mpg.
- $\langle 1 \rangle 11$. Let: h = h' mg
- $\langle 1 \rangle 12. |h| = p$

$$ph = ph' - pmg$$
$$= k - k$$
$$= 0$$

8.1 The Category of Abelian Groups

Definition 8.25 (Category of Abelian Groups). Let **Ab** be the full subcategory of **Grp** whose objects are the Abelian groups.

Proposition 8.26. If $(G, m : G^2 \to G, e : 1 \to G, i : G \to G)$ is a group object in **Ab** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Ab** where e(*) = e and $i(g) = g^{-1}$.

PROOF: Immediate from Corollary 8.19.1.

Definition 8.27 (Direct Sum). Given Abelian groups G and H, we also call the direct product of G and H the direct sum and denote it $G \oplus H$.

Proposition 8.28. Given Abelian groups G and H, the direct sum $G \oplus H$ is the coproduct of G and H in \mathbf{Ab} .

PROOF:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G \oplus H$ be the group homomorphism $\kappa_1(g) = (g, e_H)$.
- $\langle 1 \rangle 2$. Let: $\kappa_2 : H \to G \oplus H$ be the group homomorphism $\kappa_2(h) = (e_G, h)$.
- $\langle 1 \rangle$ 3. Given group homomorphism $\phi : G \to K$ and $\psi : H \to K$, define $[\phi, \psi] : G \oplus H \to K$ by $[\phi, \psi](g, h) = \phi(g) + \psi(h)$.
- $\langle 1 \rangle 4$. $[\phi, \psi]$ is a group homomorphism.

PROOF:

$$\begin{aligned} [\phi, \psi]((g, h) + (g', h')) &= [\phi, \psi](g + g', h + h') \\ &= \phi(g + g') + \psi(h + h') \\ &= \phi(g) + \phi(g') + \psi(h) + \psi(h') \\ &= \phi(g) + \psi(h) + \phi(g') + \psi(h') \\ &= [\phi, \psi](g, h) + [\phi, \psi](g', h') \end{aligned}$$

 $\langle 1 \rangle 5. \ [\phi, \psi] \circ \kappa_1 = \phi$ PROOF:

$$[\phi, \psi](\kappa_1(g)) = [\phi, \psi](g, e_h)$$
$$= \phi(g) + \psi(e_H)$$
$$= \phi(g) + e_K$$
$$= \phi(g)$$

 $\langle 1 \rangle 6. \ [\phi, \psi] \circ \kappa_2 = \psi$

PROOF: Similar.

 $\langle 1 \rangle$ 7. If $f: G \oplus H \to K$ is a group homomorphism with $f \circ \kappa_1 = \phi$ and $f \circ \kappa_2 = \psi$ then $f = [\phi, \psi]$.

$$f(g,h) = f((g,e_H) + (e_G,h))$$
$$= f(\kappa_1(g)) + f(\kappa_2(h))$$
$$= \phi(g) + \psi(h)$$

П

Theorem 8.29. Every finitely generated Abelian group is a direct sum of cyclic groups.

PROOF: TODO

Proposition 8.30. Let G be an Abelian group. Let H and K be subgroups of G such that |H| and |K| are relatively prime. Then $H + K \cong H \oplus K$.

Proof: Proposition 7.94.

Corollary 8.30.1. Every finite Abelian group is the direct sum of its Sylow subgroups.

8.2 Free Abelian Groups

Proposition 8.31. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is an Abelian group and j is a function $A \to G$, with morphisms $f:(G,j)\to(H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbb{Z}^{\oplus A}$ be the subgroup of \mathbb{Z}^A consisting of all functions $\alpha : A \to \mathbb{Z}$ such that $\alpha(a) = 0$ for only finitely many $a \in A$.
- (1)2. Let: $i:A\to\mathbb{Z}^{\oplus A}$ be the function such that i(a)(b)=1 if a=b and 0 if $a\neq b$.
- $\langle 1 \rangle 3$. Let: G be any Abelian group and $j: A \to G$ any function.
- $\langle 1 \rangle$ 4. The unique homomorphism $\phi: \mathbb{Z}^{\oplus A} \to G$ required is defined by $\phi(\alpha) = \sum_{a \in A} \alpha(a) j(a)$

Definition 8.32 (Free Abelian Group). For any set A, the *free Abelian group* on A is the initial object $(F^{ab}(A), i)$ in \mathcal{F}^A .

Proposition 8.33. For any sets A and B, we have that $F^{ab}(A+B)$ is the coproduct of $F^{ab}(A)$ and $F^{ab}(B)$ in **Grp**.

- $\langle 1 \rangle 1$. Let: $i_A: A \to F^{ab}(A), i_B: B \to F^{ab}(B), j: A+B \to F^{ab}(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F^{ab}(A) \to G, \, g: F^{ab}(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F^{ab}(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Proposition 8.34. For A and B finite sets, if $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

Proof:

- $\langle 1 \rangle 1$. For any set C, define \sim on $F^{ab}(C)$ by: $f \sim f'$ iff there exists $g \in F^{ab}(C)$ such that f f' = 2g.
- $\langle 1 \rangle 2$. For any set C, \sim is an equivalence relation on $F^{ab}(C)$.
- $\langle 1 \rangle 3$. For any set C, we have $F^{ab}(C) / \sim$ is finite if and only if C is finite, in which case $|F^{ab}(C)| / \sim |=2^{|C|}$.

PROOF: There is a bijection between $F^{ab}(C) / \sim$ and the finite subsets of C, which maps f to $\{c \in C : f(c) \text{ is odd}\}.$

 $\langle 1 \rangle 4$. If $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

PROOF: If $|F^{ab}(A)/\sim| = |F^{ab}(B)/\sim|$ then $2^{|A|} = 2^{|B|}$ and so |A| = |B|.

Proposition 8.35. Let G be an Abelian group. Then G is finitely generated if and only if there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

Proof:

 $\langle 1 \rangle 1$. If G is finitely generated then there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

PROOF: Let $G = \langle a_1, \dots, a_n \rangle$. Define $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ by $\phi(i_1, \dots, i_n) = i_1 \cdot a_1 + \dots + i_n \cdot a_n$.

 $\langle 1 \rangle 2$. If there exists a surjective homomorphism $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n then G is finitely generated.

Proof: G is generated by $\phi(1,0,\ldots,0),\,\phi(0,1,0,\ldots,0),\,\ldots,\,\phi(0,\ldots,0,1).$

Proposition 8.36. Let A be a set. Let $i: A \hookrightarrow F(A)$ be the free group on A. Then $\pi \circ i: A \to F(A)/[F(A), F(A)]$ is the free Abelian group on A.

Proof:

- $\langle 1 \rangle 1$. Let: G be an Abelian group and $f: A \to G$ a function.
- $\langle 1 \rangle 2$. Let: $g: F(A) \to G$ be the unique group homomorphism such that $g \circ i = f$.
- $\langle 1 \rangle 3. \ [F(A),F(A)] \subseteq \ker g$ Proof: For all $x,y \in F(A)$ we have $g(xyx^{-1}y^{-1}) = g(x) + g(y) g(x) g(y) = 0.$
- (1)4. Let: h: F(A)/[F(A),F(A)] be the unique group homomorphism such that $h \circ \pi = g$.
- $\langle 1 \rangle$ 5. h is the unique group homomorphism such that $h \circ \pi \circ i = f$.

Corollary 8.36.1. Let A and B be sets. Let F(A) and F(B) be the free groups on A and B respectively. If $F(A) \cong F(B)$ then $A \cong B$.

Proof: Proposition 8.34. \square

8.3 Cokernels

Proposition 8.37. Let $\phi: G \to H$ be a homomorphism between Abelian groups. Then there exists an Abelian group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

- $\langle 1 \rangle 1$. Let: $K = H/\operatorname{im} \phi$ and π be the canonical homomorphism.
- $\langle 1 \rangle 2$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 3$. Let: $\alpha: H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 4$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle$ 5. There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$

Definition 8.38 (Cokernel). For any homomorphism $\phi: G \to H$ in \mathbf{Ab} , the cokernel of ϕ is the Abelian group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proposition 8.39. $\pi: H \to \operatorname{coker} \phi$ is initial among functions $f: H \to X$ such that, for all $x, y \in H$, if $x + \operatorname{im} \phi = y + \operatorname{im} \phi$ then f(x) = f(y).

Proof: Easy. \square

Proposition 8.40. Let $\phi: G \to H$ be a homomorphism of Abelian groups. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- ϕ is surjective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is epi.
 - $\langle 2 \rangle 2$. Let: $\pi: H \to \operatorname{coker} \phi$ be the canonical homomorphism.
 - $\langle 2 \rangle 3$. $\pi \circ \phi = 0 \circ \phi$
 - $\langle 2 \rangle 4. \ \pi = 0$
 - $\langle 2 \rangle$ 5. coker $\phi = \operatorname{im} \pi$ is trivial.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If coker $\phi = H/\operatorname{im} \phi$ is trivial then $\operatorname{im} \phi = H$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

PROOF: If it is surjective then it is epi in **Set**.

8.4 Commutator Subgroups

Proposition 8.41. Let G be a group. Let G' be the commutator subgroup of G. Then G/G' is Abelian.

PROOF: Since $ghg^{-1}h^{-1}G'=G'$ so ghG'=hgG'. \square

Proposition 8.42. Let G be a group and A an Abelian group. Let $\alpha: G \to A$ be a homomorphism. Then $G' \subseteq \ker \alpha$.

Proof: Since $\phi([g,h]) = \phi(g)\phi(h)\phi(g)^{-1}\phi(h)^{-1} = e$. \square

Corollary 8.42.1. Let G be a group. The canonical projection G woheadrightarrow G/G' is initial in the category of homomorphisms from G to an Abelian group.

Definition 8.43 (Abelian Series). A normal series of subgroups is *Abelian* iff every quotient is Abelian.

Lemma 8.44. Let G be a group. Let H be a normal subgroup of G. If G/H is Abelian then $G' \subseteq G/H$.

PROOF: Given $g, h \in G$ we have

$$ghH = hgH$$
$$\therefore ghg^{-1}h^{-1} \in H$$

Derived Series 8.5

Definition 8.45 (Derived Series). Let G be a group. The derived series of G is the series of subgroups

$$G\supset G'\supset G''\supset G'''\supset\cdots$$

where G' is the commutator subgroup of G.

We write $G^{(i)}$ for the i+1st entry in the derived series

Proposition 8.46. Each $G^{(i)}$ is characteristic.

```
Proof:
```

 $\langle 1 \rangle 1$. G is characteristic in G.

PROOF: Trivial.

- $\langle 1 \rangle 2$. If $G^{(i)}$ is characteristic in G then $G^{(i+1)}$ is characteristic in G.
 - $\langle 2 \rangle 1$. Assume: $G^{(i)}$ is characteristic.
 - $\langle 2 \rangle 2$. Let: $\phi : G \cong G$ be an automorphism of G.
 - $\langle 2 \rangle 3$. For all $g, h \in G^{(i)}$ we have $\phi([g, h]) \in G^{(i+1)}$.

PROOF: Since $\phi([g,h]) = [\phi(g), \phi(h)]$ and $\phi(g), \phi(h) \in G^{(i)}$. $\langle 2 \rangle 4. \ \phi(G^{(i+1)}) \subseteq G^{(i+1)}$

Solvable Groups 8.6

Definition 8.47 (Solvable). A group is *solvable* iff its derived series terminates in $\{e\}$.

Theorem 8.48 (Feit-Thompson). Every finite group of odd order is solvable.

Corollary 8.48.1. Every non-Abelian finite simple group has even order.

Proof: A non-Abelian finite simple group of odd order is solvable, hence its composition factors are all Abelian. But a simple group is its own only composition factor. \square

Proposition 8.49. Let H be a nontrivial normal subgroup of a solvable group G. Then H contains a nontrivial Abelian subgroup that is normal in G.

Proof:

- $\langle 1 \rangle 1$. Let: r be the largest number such that $H \cap G^{(r)}$ is non-trivial.
- $\langle 1 \rangle 2$. Let: $K = H \cap G^{(r)}$
- $\langle 1 \rangle 3$. K is Abelian.

PROOF: Since $[K, K] \subseteq G^{(r+1)} = \{e\}.$

 $\langle 1 \rangle 4$. K is normal.

Proof: Proposition 8.46.

Theorem 8.50 (Burnside). Let p and q be primes. Every group of order p^aq^b is solvable.

Proposition 8.51. The semidirect product of two solvable groups is solvable.

```
PROOF: \begin{split} \langle 1 \rangle 1. & \text{ LET: } N \text{ and } H \text{ be solvable groups.} \\ \langle 1 \rangle 2. & \text{ LET: } \theta : H \to \text{Aut}_{\mathbf{Grp}}(N) \\ [(n_1, h_1), (n_2, h_2)] &= (n_1, h_1)(n_2, h_2)(n_1, h_1)^{-1}(n_2, h_2)^{-1} \\ &= (n_1, h_1)(n_2, h_2)(\theta(h_1^{-1})(n_1^{-1}), h_1^{-1})(\theta(h_2^{-1})(n_2^{-1}), h_2^{-1}) \\ &= (n_1\theta(h_1)(n_2), h_1h_2)(\theta(h_1^{-1})(n_1^{-1})\theta(h_1^{-1})(\theta(h_2^{-1})(n_2^{-1})), h_1^{-1}h_2^{-1}) \\ &= (n_1\theta(h_1)(n_2), h_1h_2)(\theta(h_1^{-1})(n_1^{-1}\theta(h_2^{-1})(n_2^{-1})), h_1^{-1}h_2^{-1}) \end{split}
```

= $(n_1\theta_{h_1}(n_2)\theta_{h_1h_2h_1^{-1}}(n_1^{-1})\theta_{[h_1,h_2]}(n_2^{-1}), [h_1,h_2])$

 $= (n_1\theta(h_1)(n_2)\theta(h_1h_2)(\theta(h_1^{-1})(n_1^{-1}\theta(h_2^{-1})(n_2^{-1}))), [h_1, h_2])$

Proposition 8.52. Let G be a finite group. The following are equivalent.

- 1. All composition factors of G are cyclic.
- 2. G has a cyclic series of subgroups ending in $\{e\}$.
- 3. G has an Abelian series of subgroups ending in $\{e\}$.
- 4. G is solvable.

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

PROOF: Trivial.

 $\langle 1 \rangle 2$. $2 \Rightarrow 3$

Proof: Trivial.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 4$

 $\langle 2 \rangle 1$. Let: $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ be an Abelian series of subgroups.

 $\langle 2 \rangle 2$. For all i we have $G^{(i)} \subseteq G_i$.

Proof: Lemma 8.44.

$$\langle 2 \rangle 3. \ G^{(n)} = \{e\}$$

 $\langle 1 \rangle 4. \ 4 \Rightarrow 1$

Proof: Extend the derived series of G to a composition series, using the fact that every simple Abelian group is cyclic.

Corollary 8.52.1. All p-groups are solvable.

PROOF: Their composition factors are simple p-groups, hence cyclic. \sqcup

Corollary 8.52.2. Let G be a group and N a normal subgroup. Then G is solvable if and only if both N and G/N are solvable.

Proof: By Proposition 7.133. \square

Corollary 8.52.3. The semidirect product of two solvable groups is solvable.

Corollary 8.52.4. Let G be a finite solvable group. Then the composition factors of G are exactly C_p for p a prime factor of G (with the same multiplicities).

Proof: Since each composition factor is simple and cyclic hence removes one prime factor in |G|. \square

Chapter 9

Group Actions

9.1 Group Actions

Definition 9.1 (Action). Let G be a group. Let A be an object of a category C. A (left) action of G on A is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(A)$. It is faithful or effective iff it is injective.

Proposition 9.2. Let A be a set. An action of the group G on the set A is given by a function $\cdot : G \times A \to A$ such that

- $\forall a \in A.ea = a$
- $\forall g, h \in G. \forall a \in A. (gh)a = g(ha)$

Proof: Just unfolding definitions.

Example 9.3. Left multiplication defines a faithful action of any group on its own underlying set.

In fact, for any subgroup H of a group G, left multiplication defines an action of G on G/H.

Corollary 9.3.1 (Cayley's Theorem). Every group G is a subgroup of a symmetric group, namely $\operatorname{Aut}_{\mathbf{Set}}(G)$.

Example 9.4. Conjugation $g * h = ghg^{-1}$ is an action of any group on its own underlying set.

Definition 9.5 (Transitive). An action of a group G on a set A is transitive iff, for all $a, b \in A$, there exists $g \in G$ such that ga = b.

Example 9.6. Left multiplication of a group G is a transitive action of G on G.

Definition 9.7 (Orbit). Given an action of a group G on a set A and $a \in A$, the *orbit* of a is

$$O_G(a) := \{ga : g \in G\}$$
.

Proposition 9.8. Given an action of a group G on a set A, the orbits form a partition of A.

Proof:

 $\langle 1 \rangle 1$. Every element of A is in some orbit.

PROOF: Since $a \in O_G(a)$.

- $\langle 1 \rangle 2$. Distinct orbits are disjoint.
 - $\langle 2 \rangle 1$. Let: $a \in \mathcal{O}_G(b) \cap \mathcal{O}_G(c)$
 - $\langle 2 \rangle 2$. Pick $g, h \in G$ such that a = gb = hc.
 - $\langle 2 \rangle 3$. $O_G(b) \subseteq O_G(c)$

PROOF: For all $k \in G$ we have $kb = kg^{-1}hc$.

 $\langle 2 \rangle 4$. $O_G(c) \subseteq O_G(b)$ PROOF: Similar.

Proposition 9.9. Given an action of a group G on a set A and $a \in A$, the action is transitive on $O_G(a)$.

Proof:

 $\langle 1 \rangle 1$. The restriction of the action is an action on $O_G(a)$.

PROOF: Since g(ha) = (gh)a, the action maps $O_G(a)$ to itself.

 $\langle 1 \rangle 2$. The restricted action is transitive.

PROOF: Given $ga, ha \in \mathcal{O}_G(a)$, we have $ha = (hg^{-1})(ga)$.

Definition 9.10 (Stabilizer Subgroup). Given an action of a group G on a set A and $a \in A$, the *stabilizer subgroup* of a is

$$Stab_{G}(a) := \{g \in G : ga = a\} .$$

Proposition 9.11. Stabilizer subgroups are subgroups.

PROOF: If $g, h \in \operatorname{Stab}_G(a)$ then $gh^{-1}a = a$ so $gh^{-1} \in \operatorname{Stab}_G(a)$. \square

Proposition 9.12. Let G act on a set A. Let $a \in A$ and $g \in G$. Then

$$\operatorname{Stab}_{G}(ga) = g\operatorname{Stab}_{G}(a)g^{-1}$$
.

Proof:

$$h \in \operatorname{Stab}_G(ga) \Leftrightarrow hga = ga$$

 $\Leftrightarrow g^{-1}hga = a$
 $\Leftrightarrow g^{-1}hg \in \operatorname{Stab}_G(a)$
 $\Leftrightarrow h \in g\operatorname{Stab}_G(a)g^{-1}$

Corollary 9.12.1. Let G be an action on a set A and $a \in A$. If $\operatorname{Stab}_{G}(a)$ is normal in G, then for any $b \in \operatorname{O}_{G}(a)$ we have $\operatorname{Stab}_{G}(a) = \operatorname{Stab}_{G}(b)$.

Definition 9.13 (Free). An action of a group G on a set A is *free* iff, whenever ga = a, then g = e.

Example 9.14. The action of left multiplication is free.

Proposition 9.15. Let G be a group. Let H be a subgroup of G of finite index n. Then H includes a subgroup K that is normal in G and such that |G:K| divides gcd(|G|, n!).

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } \sigma : G \to \operatorname{Aut}_{\mathbf{Set}} (G/H) \text{ be the action of left multiplication.}   \langle 1 \rangle 2. \text{ Let: } K = \ker \sigma   \langle 1 \rangle 3. K \subseteq H   \langle 2 \rangle 1. \text{ Let: } g \in K   \langle 2 \rangle 2. \sigma(g)(H) = H   \langle 2 \rangle 3. gH = H   \langle 2 \rangle 4. g \in H   \langle 1 \rangle 4. K \text{ is normal in } G.  PROOF: Proposition 7.51.  \langle 1 \rangle 5. |G:K| \mid |G|  PROOF: Lagrange's Theorem.  \langle 1 \rangle 6. |G:K| \mid n!  PROOF: Since G/K is a subgroup of \operatorname{Aut}_{\mathbf{Set}} (G/H).  \square
```

Corollary 9.15.1. Let G be a finite group. Let H be a subgroup of G of index p where p is the smallest prime that divides |G|. Then H is normal in G.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Pick a subgroup } K \text{ of } H \text{ normal in } G \text{ such that } |G:K| \text{ divides } \gcd(|G|,p!). \\ \langle 1 \rangle 2. & |G:K| \text{ divides } p. \\ \langle 1 \rangle 3. & |G:H||H:K| \text{ divides } p. \\ \langle 1 \rangle 4. & |H:K| = 1 \\ \langle 1 \rangle 5. & H=K \\ \langle 1 \rangle 6. & H \text{ is normal.} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}
```

Corollary 9.15.2. Any subgroup of index 2 is normal.

Proposition 9.16. Let G be a group with finite set of generators A. Then left multiplication defines a free action of G on its Cayley graph.

PROOF: Easy since if $g_2 = g_1 a$ then $hg_2 = hg_1 a$. \square

Corollary 9.16.1. A free group acts freely on a tree.

Theorem 9.17. If a group G acts freely on a tree then G is free.

Corollary 9.17.1. Every subgroup of the free group on a finite set is free.

PROOF: If H is a subgroup of F(A) then left multiplication defines a free action of H on the Cayley graph of F(A), which is a tree. \square

Proposition 9.18. Let S be a finite set. Let G be a group acting on S. Let Z be the set of fixed points of the action:

$$Z = \{a \in S : \forall g \in G. ga = a\} .$$

Let A be a set of representatives for the nontrivial orbits of the action. Then

$$|S| = |Z| + \sum_{a \in A} [G : \operatorname{Stab}_G(a)]$$
.

PROOF: Immediate from the fact that the orbits partition S. \square

Corollary 9.18.1. Let p be a prime. Let S be a finite set. Let G be a p-group acting on S. Let Z be the set of fixed points of the action. Then $|Z| \cong |S| \pmod{p}$.

Corollary 9.18.2. Let p be a prime. Let S be a finite set. Let G be a p-group acting on S. If p does not divide |S| then the action has a fixed point.

9.2 Category of G-Sets

Definition 9.19. Given a group G, let $G - \mathbf{Set}$ be the category with:

- objects all pairs (A, ρ) such that A is a set and $\rho : G \times A \to A$ is an action of G on A;
- morphisms $f:(A,\rho)\to (B,\sigma)$ are functions $f:A\to B$ that are (G-)equivariant, i.e.

$$\forall g \in G. \forall a \in A. f(\rho(g, a)) = \sigma(g, f(a))$$
.

Proposition 9.20. A G-equivariant function $f: A \to B$ is an isomorphism in G – **Set** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Let: $f: A \to B$ be G-equivariant and bijective. Prove: f^{-1} is G-equivariant.

 $\langle 1 \rangle 2$. Let: $g \in G$ and $b \in B$

 $\langle 1 \rangle 3. \ f^{-1}(gb) = gf^{-1}(b)$

Proof:

$$f(f^{-1}(gb)) = gb$$

= $gf(f^{-1}(b))$
= $f(gf^{-1}(b))$

Proposition 9.21. Let G be a group and A a transitive G-set. Let $a \in A$. Then A is isomorphic to $G/\operatorname{Stab}_G(a)$ under left multiplication.

Proof:

 $\langle 1 \rangle 1$. Let: $f: G/\operatorname{Stab}_G(a) \to A$ be the function $f(g\operatorname{Stab}_G(a)) = ga$.

 $\langle 2 \rangle 1$. Assume: $g\operatorname{Stab}_{G}(a) = h\operatorname{Stab}_{G}(a)$

Prove: ga = ha

 $\langle 2 \rangle 2. \ g^{-1}h \in \operatorname{Stab}_G(a)$

 $\langle 2 \rangle 3.$ $g^{-1}ha = a$

 $\langle 2 \rangle 4$. ha = ga

 $\langle 1 \rangle 2$. f is G-equivariant.

PROOF: Since $f(gh\operatorname{Stab}_G(a)) = gha = gf(h\operatorname{Stab}_G(a))$.

 $\langle 1 \rangle 3$. f is injective.

PROOF: If ga = ha then $g^{-1}h \in \operatorname{Stab}_G(a)$ so $g\operatorname{Stab}_G(a) = h\operatorname{Stab}_G(a)$.

 $\langle 1 \rangle 4$. f is surjective.

PROOF: Since for all $b \in A$ there exists $g \in G$ such that ga = b.

Corollary 9.21.1. If O is an orbit of the action of a finite group G on a set A, then O is finite and |O| divides |G|.

Corollary 9.21.2. Let H be a subgroup of G and $g \in G$. Then

$$G/H \cong G/(gHg^{-1})$$

in $G - \mathbf{Set}$.

PROOF: Taking A = G/H and a = gH. \square

Proposition 9.22. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\prod_{i\in I} A_i$ is their product in G – Set under

$$g\{a_i\}_{i\in I} = \{ga_i\}_{i\in I}$$
.

Proof: Easy.

Proposition 9.23. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\coprod_{i\in I} A_i$ is their product in G – **Set** under

$$q(i, a_i) = (i, qa_i)$$
.

Proof: Easy.

Proposition 9.24. Every finite G-set is a coproduct of G-sets of the form G/H.

PROOF: If $O(a_1), \ldots, O(a_n)$ are the orbits of the G-set A, then G is the coproduct of $G/\operatorname{Stab}_G(a_1), \ldots, G/\operatorname{Stab}_G(a_n)$. \square

Proposition 9.25. For any group G we have $G \cong \operatorname{Aut}_{G-\mathbf{Set}}(G)$ (considering G as a G-set under left multiplication).

Proof:

 $\langle 1 \rangle 1$. Define $\phi : G \to \operatorname{Aut}_{G-\mathbf{Set}}(G)$ by $\phi(g)(g') = g'g^{-1}$.

 $\langle 2 \rangle 1$. Let: $g \in G$ PROVE: $\lambda g' \in G.g'g^{-1}$ is an automorphism of G in $G - \mathbf{Set}$. $\langle 2 \rangle 2$. $\phi(g)$ is G-equivariant. PROOF: Since $\phi(g)(h_1h_2) = h_1h_2g^{-1} = h_1\phi(g)(h_2)$. $\langle 2 \rangle 3$. $\phi(g)$ is injective. PROOF: By Cancellation. $\langle 2 \rangle 4$. $\phi(g)$ is surjective. PROOF: For any $h \in G$ we ahev $h = \phi(g)(hg)$. $\langle 1 \rangle 2$. ϕ is a group homomorphism. PROOF: $\phi(g_1g_2)(h) = hg_2^{-1}g_1^{-1} = \phi(g_1)(\phi(g_2)(h)).$ $\langle 1 \rangle 3$. ϕ is injective. PROOF: If $\phi(g) = \phi(g')$ then $g = \phi(g)(e) = \phi(g')(e) = g'$.

 $\langle 1 \rangle 4$. ϕ is surjective.

 $\langle 2 \rangle 1$. Let: $\sigma \in \operatorname{Aut}_{G-\mathbf{Set}}(G)$

 $\langle 2 \rangle 2$. Let: $g = \sigma(e)$ PROVE: $\sigma = \phi(g^{-1})$

 $\langle 2 \rangle 3. \ \sigma(h) = hg$ PROOF: $\sigma(h) = \sigma(he) = h\sigma(e) = hg$.

9.3 Center

Definition 9.26 (Center). The *center* of a group G, Z(G), is the kernel of the conjugation action $\sigma: G \to S_G$.

Proposition 9.27. The center of a group G is

$$Z(G) = \{ g \in G : \forall a \in G.ag = ga \} .$$

Proof: Immediate from definitions. \square

Lemma 9.28. Let G be a finite group. Assume G/Z(G) is cyclic. Then G is Abelian and so G/Z(G) is trivial.

Proof:

- $\langle 1 \rangle 1$. PICK $q \in G$ such that qZ(G) generates G/Z(G).
- $\langle 1 \rangle 2$. Let: $a, b \in G$
- (1)3. PICK $r, s \in \mathbb{Z}$ such that $aZ(G) = g^r Z(G)$ and $bZ(G) = g^s Z(G)$
- $\langle 1 \rangle 4$. Let: $z = g^{-r}a \in Z(G)$ and $w = g^{-s}b \in Z(G)$
- $\langle 1 \rangle 5$. $a = g^r z$ and $b = g^s w$
- $\langle 1 \rangle 6$. ab = ba

$$ab = g^r z g^s w$$

$$= g^{r+s} z w$$

$$= g^s w g^r z$$

$$= ba$$

9.3. CENTER 95

П

Proposition 9.29. Let G be a group. Let N be a subgroup of Z(G). Then N is normal in G.

PROOF: For all $n \in N$ and $g \in G$ we have $gng^{-1} = ngg^{-1} = n \in N$ since $n \in Z(G)$. \square

Proposition 9.30. For any group G we have $G/Z(G) \cong \text{Inn}(G)$.

PROOF: The homomorphism $g \mapsto \gamma_g$ is a surjective homomorphism with kernel Z(G). \square

Proposition 9.31. Let p and q be prime integers. Let G be a group of order pq. Then either G is Abelian or the center of G is trivial.

PROOF: Otherwise we would have |Z(G)| = p say and so $|\operatorname{Inn}(G)| = q$, meaning $\operatorname{Inn}(G)$ is cyclic, hence trivial, which is a contradiction. \square

Theorem 9.32 (First Sylow Theorem). Let p be a prime and $k \in \mathbb{N}$. Let G be a finite group. If p^k divides |G| then G has a subgroup of order p^k .

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the statement is true for all groups smaller than G.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $k \neq 0$ and $|G| \neq p$
- $\langle 1 \rangle 3$. Case: There exists a proper subgroup H of G such that p does not divide [G:H].

PROOF: Then H has a subgroup of order p^k by induction hypothesis $\langle 1 \rangle 1$.

- $\langle 1 \rangle 4$. CASE: For every proper subgroup H of G we have p divides [G:H].
 - $\langle 2 \rangle 1$. p divides |Z(G)|.

PROOF: By the Class Formula.

 $\langle 2 \rangle 2$. Pick $a \in Z(G)$ that has order p.

PROOF: Cauchy's Theorem.

- $\langle 2 \rangle 3$. Let: $N = \langle a \rangle$
- $\langle 2 \rangle 4$. N is normal.

Proof: Proposition 9.29.

- $\langle 2 \rangle 5.$ p^{k-1} divides |G/N|.
- $\langle 2 \rangle$ 6. PICK a subgroup Q of G/N of order p^{k-1} .

PROOF: Induction hypothesis $\langle 1 \rangle 1$.

- $\langle 2 \rangle 7$. Let: $P = \pi^{-1}(Q)$
- $\langle 2 \rangle 8. |P| = p^k$

Theorem 9.33 (Second Sylow Theorem). Let G be a finite group. Let f be a prime. Let f be a p-Sylow subgroup of f. Let f be a subgroup of f that is a p-group. Then f is a subgroup of a conjugate of f.

 $\langle 1 \rangle 1$. PICK a fixed point gP for the action of H on the set of left cosets of P by left multiplication.

PROOF: Corollary 9.18.2.

- $\langle 1 \rangle 2$. For all $h \in H$ we have hgP = gP
- $\langle 1 \rangle 3. \ H \subseteq gPg^{-1}$

Proposition 9.34.

$$Z(G \times H) = Z(G) \times Z(H)$$

Proof:

$$(g,h) \in Z(G \times H) \Leftrightarrow \forall g' \in G. \forall h' \in H.(g,h)(g',h') = (g',h')(g,h)$$

$$\Leftrightarrow \forall g' \in G. \forall h' \in H.(gg',hh') = (g'g,h'h)$$

$$\Leftrightarrow \forall g' \in G. \forall h' \in H(gg' = g'g \wedge hh' = h'h)$$

$$\Leftrightarrow g \in Z(G) \wedge h \in Z(H)$$

9.4 Centralizer

Definition 9.35 (Centralizer). Let G be a group. Let $a \in G$. The *centralizer* or *normalizer* of a, denoted $Z_G(a)$, is the stabilizer of a under the action of conjugation.

Proposition 9.36.

$$Z_G(a) = \{ g \in G : ga = ag \}$$

PROOF: Immediate from definitions. \Box

9.5 Conjugacy Class

Definition 9.37 (Conjugacy Class). Let G be a group. Let $a \in G$. The *conjugacy class* of a, denoted [a], is the orbit of a under the action of conjugation.

Proposition 9.38 (Class Formula). Let G be a finite group. Let A be a set of representatives of the non-trivial conjugacy classes. Then

$$|G| = |Z(G)| + \sum_{a \in A} [G : Z(a)]$$
.

Proof: Proposition 9.18.

Corollary 9.38.1. Let p be a prime. Let G be a p-group and H a nontrivial normal subgroup of G. Then $H \cap Z(G) \neq \{e\}$.

PROOF: Let A be a set of representatives of the non-trivial conjugacy classes. Let $A \cap H = \{a_1, \dots, a_n\}$. Then

$$|H| = |H \cap Z(G)| + \sum_{i=1}^{n} [G : Z(a_i)].$$

Since $p \mid |H|$ and $p \mid [G: Z(a_i)]$ for all i, we have $p \mid |H \cap Z(G)|$. \square

Corollary 9.38.2. Let p be a prime. Every p-group has a non-trivial center.

Corollary 9.38.3. Let p be a prime. Every group G of order p^2 is Abelian.

PROOF: By Proposition 9.31.

Proposition 9.39. Let p be a prime and r a non-negative integer. Let G be a group of order p^r . Then, for k = 0, 1, ..., r, we have G has a normal subgroup of order p^k .

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result holds for r' < r.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. k > 0

PROOF: Since $\{e\}$ is a normal subgroup of order p^0 .

- $\langle 1 \rangle 3$. Pick a subgroup N of Z(G) of order p.
 - $\langle 2 \rangle 1. p \mid |Z(G)|$

PROOF: From Corollary 9.38.2.

 $\langle 2 \rangle 2$. Z(G) has a subgroup of order p.

PROOF: Cauchy's Theorem.

 $\langle 1 \rangle 4$. N is normal.

PROOF: Proposition 9.29.

 $\langle 1 \rangle$ 5. PICK a normal subgroup M of G/N of order p^{k-1} .

PROOF: From the induction hypothesis $\langle 1 \rangle 1$.

 $\langle 1 \rangle$ 6. $\pi^{-1}(M)$ is a normal subgroup of G of order p^k .

Example 9.40. The only non-Abelian group of order 6 is S_3 .

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Adelian group of order 6.
- $\langle 1 \rangle 2$. $Z(G) = \{e\}$

PROOF: Otherwise Z(G) has order 2 or 3 and is cyclic, contradicting Lemma 9.28.

 $\langle 1 \rangle 3$. G has three conjugacy classes: Z(G), a class of size 2 and a class of size 3.

PROOF: By the Class Formula since the only way to make 5 using non-trivial factors of 6 is 2+3.

 $\langle 1 \rangle 4$. PICK an element $y \in G$ of order 3.

PROOF: It cannot be that every element is of order ≤ 2 by Proposition 8.20.

 $\langle 1 \rangle 5$. $\langle y \rangle$ is normal in G.

PROOF: Since it has index 2.

 $\langle 1 \rangle 6$. The conjugacy class y is $\{y, y^2\}$.

PROOF: Since $\langle y \rangle$ must be a union of conjugacy classes.

 $\langle 1 \rangle 7$. The conjugacy class of size 2 is $\{y, y^2\}$.

PROOF: Since y^2 has order 3 and so its conjugacy class is of size 2 similarly, and there is only one conjugacy class of size 2.

 $\langle 1 \rangle 8$. Pick $x \in G$ such that $yx = xy^2$.

PROOF: y^2 is conjugate to y so there exists x such that $x^{-1}yx = y^2$.

 $\langle 1 \rangle 9$. x has order 2.

PROOF: x is not in the conjugacy class of size 2 so its order cannot be 3.

 $\langle 1 \rangle 10$. x and y generate G.

PROOF: Since e, y, y^2, x, xy, xy^2 are all distinct.

 $\langle 1 \rangle 11$. $G \cong S_3$

Proof: We now know the entire multiplication table of G.

Proposition 9.41. Let G be a finite group. Let H be a subgroup of G of order 2. Let $a \in H$. Let $[a]_H$ be the conjugacy class of a in H, and $[a]_G$ the conjugacy class of a in G. If $Z_G(a) \subseteq H$ then $[a]_H$ is half the size of $[a]_G$; otherwise, $[a]_H = [a]_G$.

Proof:

 $\langle 1 \rangle 1$. *H* is normal in *G*.

PROOF: Corollary 9.15.2.

- $\langle 1 \rangle 2$. $HZ_G(a)$ is a subgroup of G.
- $\langle 1 \rangle 3$. H is normal in $HZ_G(a)$.
- $\langle 1 \rangle 4$. $H \cap Z_G(a)$ is normal in $Z_G(a)$.
- $\langle 1 \rangle 5$.

$$\frac{HZ_G(a)}{H} \cong \frac{Z_G(a)}{H \cap Z_G(a)}$$

 $\langle 1 \rangle 6$. If $Z_G(a) \subseteq H$ then $|[a]_H| = |[a]_G|/2$.

PROOF: In this case we have $Z_H(a) = Z_G(a)$ and so $|[a]_H| = |H|/|Z_H(a)| = (|G|/2)/|Z_G(a)| = |[a]_G|/2$.

 $\langle 1 \rangle 7$. If $Z_G(a) \nsubseteq H$ then $[a]_H = [a]_G$.

Proof:

- $\langle 2 \rangle 1$. Pick $b \in Z_G(a) H$
- $\langle 2 \rangle 2$. $Hb^{-1} = G H$
- $\langle 2 \rangle 3.$ $G = HZ_G(a)$

PROOF: For $x \in H$ we have x = xe and for $x \notin H$ we have $x \in Hb^{-1}$ hence $xb \in H$ and x = (xb)b.

 $\langle 2 \rangle 4. \ |[a]_H| = |[a]_G|$

$$|[a]_{H}| = \frac{|H|}{|Z_{H}(a)|}$$

$$= \frac{|H|}{|H \cap Z_{G}(a)|}$$

$$= \frac{|Z_{G}(a)||H|}{|Z_{G}(a)||H \cap Z_{G}(a)|}$$

$$= \frac{|HZ_{G}(a)|}{|Z_{G}(a)|}$$

$$= \frac{|G|}{|Z_{G}(a)|}$$

$$= |[a]_{G}|$$

9.6 Conjugation on Sets

Definition 9.42 (Conjugation). Let G be a group. Define an action of G on $\mathcal{P}G$ called *conjugation* that takes g and A to

$$gAg^{-1} = \{gag^{-1} : a \in A\}$$
.

Proposition 9.43. The conjugate of a subgroup is a subgroup.

PROOF: Let H be a subgroup of G. Given $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$, we have $(gh_1g^{-1})(gh_2g^{-1})^{-1} = gh_1h_2^{-1}g^{-1} \in gHg^{-1}$.

Definition 9.44 (Normalizer). Let G be a group and $A \subseteq G$. The *normalizer* of A, denoted $N_G(A)$, is its stabilizer under conjugation.

Proposition 9.45. Let G be a group, $g \in G$ and A a finite subset of G. If $gAg^{-1} \subseteq A$ then $gAg^{-1} = A$ and so $g \in N_G(A)$.

PROOF: Conjugation by q is an injection from A into A, hence a bijection. \square

Proposition 9.46. Let G be a group and H a subgroup of G. Then $N_G(H)$ is the largest subgroup of G that includes H such that H is normal in $N_G(H)$.

Proof:

 $\langle 1 \rangle 1$. $N_G(H)$ is a subgroup of G.

PROOF: If $a, b \in N_G(H)$ then $ab^{-1}Hba^{-1} = aHa^{-1} = H$ so $ab^{-1} \in N_G(H)$.

 $\langle 1 \rangle 2$. $H \subseteq N_G(H)$

PROOF: Easy.

 $\langle 1 \rangle 3$. H is normal in $N_G(H)$.

PROOF: If $a \in N_G(H)$ then $aHa^{-1} = H$ by definition.

 $\langle 1 \rangle 4$. For any subgroup K of G, if $H \subseteq K$ and H is normal in K then $K \subseteq N_G(H)$.

PROOF: H is normal in K means that, for all $a \in K$, we have $aHa^{-1} = H$ and so $a \in N_G(H)$.

Corollary 9.46.1. Let G be a group and H a subgroup of G. Then H is normal if and only if $G = N_G(H)$.

Proposition 9.47. Let G be a group and H a subgroup of G. If $[G : N_G(H)]$ is finite, then it is the number of subgroups conjugate to H.

PROOF: By the Orbit-Stabilizer Theorem.

Corollary 9.47.1. Let G be a group and H a subgroup of G. If [G : H] is finite, the the number of subgroups conjugate to H is finite and divides [G : H].

Lemma 9.48. Let H be a p-group that is a subgroup of a finite group G. Then

$$[N_G(H):H] \equiv [G:H] \pmod{p} .$$

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. H is non-trivial.
- $\langle 1 \rangle$ 2. gH is a fixed point of the action of H on the set of left cosets of H by left multiplication if and only if $g \in N_G(H)$.

Proof:

gH is a fixed point $\Leftrightarrow \forall h \in H.hgH = gH$

$$\Leftrightarrow H \subseteq gHg^{-1}$$

$$\Leftrightarrow H = gHg^{-1} \qquad (|gHg^{-1}| = |H|)$$

$$\Leftrightarrow g \in N_G(H)$$

- $\langle 1 \rangle 3$. The number of fixed points in $[N_G(H):H]$.
- $\langle 1 \rangle 4$. Q.E.D.

Proof: Corollary 9.18.1.

П

Proposition 9.49. Let H be a p-subgroup of a finite group G that is not a p-Sylow subgroup. Then there exists a p-subgroup H' of G such that H is a normal subgroup of H' and [H':H]=p.

Proof:

 $\langle 1 \rangle 1$. p divides $[N_G(H):H]$.

Proof: Lemma 9.48.

 $\langle 1 \rangle 2$. Pick $gH \in N_G(H)/H$ of order p.

PROOF: Cauchy's Theorem.

- $\langle 1 \rangle 3$. Let: $H' = \pi^{-1}(\langle gH \rangle)$
- $\langle 1 \rangle 4$. H is a normal subgroup of H'.
- $\langle 1 \rangle 5. \ [H':H] = p$

Corollary 9.49.1. No p-group of order $\geq p^2$ is simple.

Lemma 9.50. Let p be a prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Every p-subgroup of $N_G(P)$ is a subgroup of P.

Proof:

- $\langle 1 \rangle 1$. Let: H be a p-subgroup of $N_G(P)$.
- $\langle 1 \rangle 2$. P is normal in $N_G(P)$.

Proof: Proposition 9.46.

 $\langle 1 \rangle 3$. PH is a subgroup of $N_G(P)$.

PROOF: Second Isomorphism Theorem.

 $\langle 1 \rangle 4$. $|PH/P| = |H/(P \cap H)|$

PROOF: Second Isomorphism Theorem.

- $\langle 1 \rangle 5$. PH is a p-group.
 - $\langle 2 \rangle 1$. Assume: for a contradiction q is prime, $q \mid |PH|$ and $q \neq p$

```
9.6. CONJUGATION ON SETS
   \langle 2 \rangle 2. q \mid |PH/P|
   \langle 2 \rangle 3. \ q \mid |H/(P \cap H)|
   \langle 2 \rangle 4. q \mid |H|
   \langle 2 \rangle5. Q.E.D.
      PROOF: This contradicts the fact that H is a p-group, \langle 1 \rangle 1.
\langle 1 \rangle 6. PH = P
   PROOF: By maximality of P.
\langle 1 \rangle 7. H \subseteq P
Lemma 9.51. Let p be a prime. Let G be a finite group. Let P be a p-Sylow
subgroup of G. Let P act by conjugation on the set of p-Sylow subgroups of G.
Then P is the unique fixed point of this action.
Proof:
\langle 1 \rangle 1. P is a fixed point of this action.
   PROOF: For any x \in P we have xPx^{-1} = P.
\langle 1 \rangle 2. If Q is any fixed point of the action then Q = P.
   \langle 2 \rangle 1. Let: Q be a fixed point of the action.
   \langle 2 \rangle 2. For all x \in P we have xQx^{-1} = Q.
   \langle 2 \rangle 3. \ P \subseteq N_G(Q)
   \langle 2 \rangle 4. P \subseteq Q
      PROOF: Lemma 9.50.
   \langle 2 \rangle 5. \ P = Q
      PROOF: Since |P| = |Q|.
```

Theorem 9.52 (Third Sylow Theorem). Let p be a prime. Let G be a finite group of order p^rm where p does not divide m. Then the number of p-Sylow subgroups of G divides m and is congruent to 1 modulo p.

```
Proof:
```

```
\langle 1 \rangle 1. Let: N_p be the number of p-Sylow subgroups of G.
\langle 1 \rangle 2. PICK a p-Sylow subgroup P.
  Proof: One exists by the First Sylow Theorem.
\langle 1 \rangle 3. The p-Sylow subgroups of G are exactly the conjugates of P.
  PROOF: Second Sylow Theorem
\langle 1 \rangle 4. \ m = N_p[N_G(P):P]
  PROOF: Since N_p = [G : N_G(P)] by Proposition 9.47.
\langle 1 \rangle 5. N_p divides m.
\langle 1 \rangle 6. mN_p \equiv m \pmod{p}
   \langle 2 \rangle 1. m \equiv [N_G(P) : P] \pmod{p}
     Proof: Lemma 9.48.
   \langle 2 \rangle 2. mN_p \equiv m \pmod{p}
     Proof: By \langle 1 \rangle 4.
\langle 1 \rangle 7. N_p \equiv 1 \pmod{p}
```

```
\langle 1 \rangle 1. Let: N_p be the number of p-Sylow subgroups of G.
\langle 1 \rangle 2. Pick a p-Sylow subgroup P of G.
   PROOF: First Sylow Theorem.
\langle 1 \rangle 3. N_p is the number of conjugates of P.
   PROOF: Second Sylow Theorem.
\langle 1 \rangle 4. N_p \mid m
   Proof: Corollary 9.47.1.
\langle 1 \rangle 5. P acts on the set of conjugates of P with one fixed point.
   Proof: Lemma 9.51.
\langle 1 \rangle 6. \ N_p \equiv 1 \pmod{p}
   Proof: Corollary 9.18.1.
Corollary 9.52.1. Let G be a finite group. Let p be a prime number. If
|G| = mp^r and the only divisor d of m such that d \equiv 1 \pmod{p} is d = 1, then G
is not simple.
PROOF: There must be 1 p-Sylow subgroup, which has order p^r and is normal.
Corollary 9.52.2. Let G be a finite group. Let p be a prime number. If
|G| = mp^r where 1 < m < p then G is not simple.
Proposition 9.53. Let p and q be prime numbers with p < q. Let G be a group
of order pg with a normal subgroup H of order p. Then G is cyclic.
Proof:
\langle 1 \rangle 1. Let: \gamma : G \to \operatorname{Aut}_{\mathbf{Grp}}(H) be the action of conjugation.
\langle 1 \rangle 2. H is cyclic of order p.
\langle 1 \rangle 3. |\operatorname{Aut}_{\mathbf{Grp}}(H)| = p - 1
\langle 1 \rangle 4. |\operatorname{im} \gamma| |pq|
   PROOF: Since im \gamma is a quotient group of G.
\langle 1 \rangle 5. |\operatorname{im} \gamma| |p-1
\langle 1 \rangle 6. |\operatorname{im} \gamma| = 1
\langle 1 \rangle 7. \ \gamma = 0
\langle 1 \rangle 8. \ H \subseteq Z(G)
\langle 1 \rangle 9. G is Abelian.
   Proof: Lemma 9.28.
\langle 1 \rangle 10. PICK an element g of order p.
   PROOF: Cauchy's Theorem.
\langle 1 \rangle 11. Pick an element h of order q.
   PROOF: Cauchy's Theorem.
\langle 1 \rangle 12. |gh| = pq
   Proof: Proposition 6.22.
Proof:
```

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $q \not\equiv 1 \pmod{p}$

PROOF: Since the only non-cyclic group of order 6 is S_3 which does not have a normal subgroup of order 2.

- $\langle 1 \rangle 2$. PICK a subgroup K of order q.
- $\langle 1 \rangle 3$. K is normal.

PROOF: Since K is the unique q-Sylow subgroup by the Third Sylow Theorem.

- $\langle 1 \rangle 4$. $H \cap K = \{e\}$
- $\langle 1 \rangle 5$. $HK \cong H \times K$

PROOF: Proposition ??.

- $\langle 1 \rangle 6$. |HK| = pq
- $\langle 1 \rangle 7$. HK = G
- $\langle 1 \rangle 8. \ G \cong \mathbb{Z}/pq\mathbb{Z}$

Proof:

$$\begin{split} G &\cong H \times K \\ &\cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \\ &\cong \mathbb{Z}/pq\mathbb{Z} \end{split}$$

Corollary 9.53.1. Let p and q be prime numbers with p < q and $q \not\equiv 1 \pmod{p}$. Then the only group of order pq is the cyclic group.

PROOF: By the Third Sylow Theorem, such a group must have exactly one p-Sylow subgroup, which is therefore normal. \square

Proposition 9.54. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Then

$$N_G(N_G(P)) = N_G(P)$$
.

Proof:

 $\langle 1 \rangle 1$. P is normal in $N_G(P)$.

Proof: Proposition 9.46.

 $\langle 1 \rangle 2$. $N_G(P)$ is normal in $N_G(N_G(P))$.

Proof: Proposition 9.46.

 $\langle 1 \rangle 3$. P is normal in $N_G(N_G(P))$.

Proof: Corollary 7.118.1.

 $\langle 1 \rangle 4$. $N_G(N_G(P)) \subset N_G(P)$

Proof: Proposition 9.46.

$$\langle 1 \rangle 5. \ N_G(N_G(P)) = N_G(P)$$

Proposition 9.55. Let p, q and r be three distinct prime numbers. Then there is no simple group of order pqr.

- $\langle 1 \rangle 1$. Let: G be a group of order pqr.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. p < q < r
- $\langle 1 \rangle 3$. Assume: for a contradiction G is simple.
- $\langle 1 \rangle 4$. The number of subgroups of order p is at least p+1.

PROOF: Third Sylow Theorem

 $\langle 1 \rangle 5$. The number of subgroups of order q is at least q+1.

Proof: Third Sylow Theorem

 $\langle 1 \rangle 6$. The number of subgroups of order r is pq.

PROOF: By the Third Sylow Theorem, the number divides pq, and it cannot be 1 (lest that subgroup be normal) or p or q (as these are less than r hence not congruent to 1 modulo r).

- $\langle 1 \rangle$ 7. There are at least p^2-1 elements of order p. $\langle 1 \rangle$ 8. There are at least q^2-1 elements of order q.
- $\langle 1 \rangle 9$. There are at least pqr pq elements of order r.
- $\langle 1 \rangle 10$. Q.E.D.

PROOF: This is a contradiction as the total number of elements of order 1, p, q and r is

$$1 + (p^{2} - 1) + (q^{2} - 1) + (pqr - pq) = p^{2} + q^{2} + pqr - pq - 1$$

$$> pqr + p^{2} - 1$$

$$> pqr$$

П

Proposition 9.56. Let G be a finite simple group. Let H be a subgroup of Gof index N > 1. Then |G| divides N!.

- (1)1. PICK a subgroup K of H that is normal in G such that [G:K] divides $\gcd(|G|, N!).$
- $\langle 1 \rangle 2. \ K = \{e\}$
- $\langle 1 \rangle 3. \ [G:K] = |G|$
- $\langle 1 \rangle 4$. |G| divides N!

Corollary 9.56.1. Let G be a finite simple group. Let p be a prime factor of |G|. Let N_p be the number of p-Sylow subgroups of G. Then |G| divides $N_p!$.

PROOF: Since $N_p = [G: N_G(P)]$ and $N_p > 1$ since G is simple. \square

Definition 9.57 (Centralizer). Let G be a group and $A \subseteq G$. The *centralizer* of A is

$$Z_G(A) := \{ g \in G : \forall a \in A. gag^{-1} = a \} .$$

Proposition 9.58. Let H and K be subgroups of G with $H \subseteq N_G(K)$. Then the function $\gamma: H \to \operatorname{Aut}_{\mathbf{Grp}}(K)$ defined by conjugation

$$\gamma_h(k) = hkh^{-1}$$

is a homomorphism of groups with $\ker \gamma = H \cap Z_G(K)$.

Proof:

- $\langle 1 \rangle 1$. For all $g, h \in H$ we have $\gamma_{gh} = \gamma_g \circ \gamma_h$. PROOF: Since $\gamma_{gh}(k) = \gamma_g(\gamma_h(k)) = ghkh^{-1}g^{-1}$.
- $\langle 1 \rangle 2$. For all $h \in H$ we have $\gamma_h = \mathrm{id}_K$ iff $h \in Z_G(K)$.

PROOF: Both are equivalent to $\forall k \in K.hkh^{-1} = k$, i.e. $\forall k \in K.hk = kh$.

9.7 Nilpotent Groups

Definition 9.59 (Nilpotent). Let G be a group. Define inductively a sequence (Z_n) of subgroups of G by $Z_0 = \{e\}$, and Z_{i+1} is the inverse image under π of the center of G/Z_i .

Then G is nilpotent iff $Z_n = G$ for some n.

We prove this is well-defined by proving that, for all i, we have Z_i is normal in G.

Proof:

 $\langle 1 \rangle 1$. Assume: as induction hypothesis Z_i is normal in G.

PROVE: Z_{i+1} is normal in G.

 $\langle 1 \rangle 2$. Let: $x \in Z_{i+1}$ and $g \in G$

PROVE: $gxg^{-1} \in Z_{i+1}$

PROVE: For all $h \in G$ we have $gxg^{-1}hZ_i = hgxg^{-1}Z_i$

 $\langle 1 \rangle 3$. Let: $h \in G$

 $\langle 1 \rangle 4. \ qxq^{-1}hZ_i = hqxq^{-1}Z_i$

Proof:

$$gxg^{-1}hZ_i = gg^{-1}hxZ_i$$
$$= hxZ_i$$
$$= hgg^{-1}xZ_i$$
$$= hqxg^{-1}Z_i$$

Proposition 9.60. Every Abelian group is nilpotent.

PROOF: Let G be an Abelian group. The center of G/Z_0 is G/Z_0 , hence $Z_1=G$.

Example 9.61. The semidirect product of two nilpotent groups is not necessarily nilpotent. S_3 is the semidirect product of $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ but is not nilpotent.

Proposition 9.62. Let G be a group. Then G is nilpotent if and only if G/Z(G) is nilpotent.

Proof:

- $\langle 1 \rangle 1$. Let: (Z_n) be the sequence of subgroups of G where $Z_0 = \{e\}$ and Z_{n+1} is the inverse image of the center of G/Z_n .
- $\langle 1 \rangle 2$. $G/Z_0 \cong G$
- $\langle 1 \rangle 3. \ Z_1 = Z(G)$
- $\langle 1 \rangle 4$. The corresponding sequence of subgroups for G/Z(G) is G/Z(G), $Z_2/Z(G)$, $Z_3/Z(G)$, . . .
- $\langle 1 \rangle$ 5. G is nilpotent iff G/Z(G) is nilpotent.

PROOF: Both are equivalent to $\exists n. Z_n = g$ and to $\exists n. Z_n/Z(G) = G/Z(G)$.

l

Proposition 9.63. Every p-group is nilpotent.

PROOF: Each Z_n is a p-group and so has non-trivial center, hence each Z_{n+1} is larger than Z_n and so the sequence must terminate. \square

Proposition 9.64. Every nilpotent group is solvable.

PROOF: Let (Z_n) be the defining sequence of subgroups. Then $Z_{n+1}/Z_n = Z(G/Z_n)$ is Abelian for all n, hence the group is solvable by Proposition 8.52.

Example 9.65. The converse is not true — S_3 is solvable but not nilpotent.

Proposition 9.66. Let G be a nilpotent group. Then every nontrivial normal subgroup of G intersects Z(G) non-trivially.

Proof:

- $\langle 1 \rangle 1$. Let: H be a nontrivial normal subgroup of G.
- $\langle 1 \rangle 2$. Let: (Z_n) be the sequence of subgroups with $Z_0 = \{e\}$ and Z_{n+1} the inverse image of $Z(G/Z_n)$.
- $\langle 1 \rangle 3$. Let: r be least such that $H \cap Z_r \neq \{e\}$.
- $\langle 1 \rangle 4$. Pick $h \in H \cap Z_r$ with $h \neq e$.
- $\langle 1 \rangle 5. \ hZ_{r-1} \in Z(G/Z_{r-1})$
- $\langle 1 \rangle 6$. For all $g \in G$ we have $ghZ_{r-1} = hgZ_{r-1}$
- $\langle 1 \rangle 7$. For all $g \in G$ we have $ghg^{-1}h^{-1} \in Z_{r-1}$
- $\langle 1 \rangle 8$. For all $g \in G$ we have $ghg^{-1}h^{-1} = e$

PROOF: Since $ghg^{-1}h^{-1} \in H$ and $H \cap Z_{r-1} = \{e\}$.

- $\langle 1 \rangle 9$. For all $g \in G$ we have gh = hg
- $\langle 1 \rangle 10. \ h \in H \cap Z(G)$

]

Example 9.67. We cannot weaken the hypothesis to G being solvable. S_3 is solvable and $\mathbb{Z}/2\mathbb{Z}$ is a nontrivial normal subgroup but its intersection with $Z(S_3)$ is just $\{e\}$.

Proposition 9.68. Let G be a finite nilpotent group. Let H be a proper subgroup of G. Then $H \subseteq N_G(H)$.

PROOF

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the theorem holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Z(G) is non-trivial.
- $\langle 1 \rangle 3$. Case: $Z(G) \not\subseteq H$
 - $\langle 2 \rangle 1$. Pick $g \in Z(G) H$
 - $\langle 2 \rangle 2. \ g \in N_G(H) H$
- $\langle 1 \rangle 4$. Case: $Z(G) \subseteq H$
 - $\langle 2 \rangle 1. \ H/Z(G) \subsetneq N_{G/Z(G)}(H/Z(G))$

PROOF: By induction hypothesis $\langle 1 \rangle 1$.

- $\langle 2 \rangle 2$. Pick g such that $gZ(G) \in N_{G/Z(G)}(H/Z(G)) H/Z(G)$
- $\langle 2 \rangle 3. \ g \in N_G(H)$
 - $\langle 3 \rangle 1$. Let: $h \in H$

```
Prove: ghg^{-1} \in H
    \langle 3 \rangle 2. ghg^{-1}Z(G) \in H/Z(G)
    \langle 3 \rangle 3. Pick h_1 \in H such that ghg^{-1}Z(G) = h_1Z(G)
   \langle 3 \rangle 4. \ ghg^{-1}h_1^{-1} \in Z(G)
\langle 3 \rangle 5. \ ghg^{-1}h_1^{-1} \in H
        Proof: \langle 1 \rangle 4
    \langle 3 \rangle 6. \ ghg^{-1} \in H
\langle 2 \rangle 4. \ g \notin H
```

Corollary 9.68.1. Let G be a finite group. Then G is nilpotent if and only if every Sylow subgroup of G is normal.

```
Proof:
\langle 1 \rangle 1. If G is nilpotent then every Sylow subgroup of G is normal.
   \langle 2 \rangle 1. Assume: G is nilpotent.
   \langle 2 \rangle 2. Let: P be Sylow subgroup of G
   \langle 2 \rangle 3. \ N_G(P) = N_G(N_G(P))
      Proof: Proposition 9.54.
   \langle 2 \rangle 4. N_G(P) = G
      Proof: Proposition 9.68.
   \langle 2 \rangle 5. P is normal.
\langle 1 \rangle 2. If every Sylow subgroup of G is normal then G is nilpotent.
   \langle 2 \rangle 1. Assume: As induction hypothesis the result holds for all groups smaller
                       than G.
   \langle 2 \rangle 2. Assume: Every Sylow subgroup of G is normal.
   \langle 2 \rangle 3. Let: P_1, \ldots, P_r be the nontrivial Sylow subgroups of G.
   \langle 2 \rangle 4. G \cong P_1 \times \cdots \times P_r
      Proof: Proposition 7.119.
   \langle 2 \rangle5. Assume: w.l.o.g. r > 1
      PROOF: The case r = 1 holds by Proposition 9.63.
   \langle 2 \rangle 6. \ Z(G) \cong Z(P_1) \times \cdots \times Z(P_r)
      Proof: Proposition 9.34.
   \langle 2 \rangle 7. \ G/Z(G) \cong P_1/Z(P_1) \times \cdots \times P_r/Z(P_r)
      Proof: Proposition 7.61.
   \langle 2 \rangle 8. The nontrivial Sylow subgroups of G/Z(G) are P_1/Z(P_1), \ldots, P_r/Z(P_r).
   \langle 2 \rangle 9. Every Sylow subgroup of G/Z(G) is normal.
   \langle 2 \rangle 10. |G/Z(G)| < |G|
      PROOF: Because of Corollary 9.38.2.
   \langle 2 \rangle 11. G/Z(G) is nilpotent.
      PROOF: By the induction hypothesis ??.
   \langle 2 \rangle 12. G is nilpotent.
      Proof: Proposition 9.62.
```

9.8Symmetric Groups

Proposition 9.69. Every permutation in S_n is the product of a unique set of disjoint cycles.

Proof: Since any permutation acts as a cycle on any of its orbits. \sqcup

Corollary 9.69.1. The transpositions generate S_n .

PROOF: Since any cycle is a product of transpositions:

$$(a_1 \ a_2 \ \cdots \ a_n) = (a_1 \ a_n) \circ \cdots \circ (a_1 \ a_3) \circ (a_1 \ a_2) \ . \square$$

Corollary 9.69.2. S_n is generated by $(1\ 2)$ and $(1\ 2\ 3\ \cdots\ n)$.

Proof:

 $\langle 1 \rangle 1$. Any transposition of the form $(i \ i+1)$ is in the subgroup generated by these two permutations.

PROOF: It is $(1 \ 2 \ \cdots \ n)^i (1 \ 2) (1 \ 2 \ \cdots \ n)^{-i}$.

 $\langle 1 \rangle 2$. Any transposition of the form (1 i) is in the subgroup generated by these two permutations.

PROOF: It is $(i-1 \ i) \cdots (3 \ 4)(2 \ 3)(1 \ 2)(2 \ 3) \cdots (i-1 \ i)$.

 $\langle 1 \rangle$ 3. Any transposition is in the subgroup generated by these two permutations.

PROOF: Since $(i \ j) = (1 \ i)(1 \ j)(1 \ i)$

 $\langle 1 \rangle 4$. These two permutations generate S_n .

Proof: By the previous Corollary.

Definition 9.70 (Type). For any $\sigma \in S_n$, the type of σ is the partition of n consisting of the sizes of the orbits of σ .

Proposition 9.71. Two permutations in S_n are conjugate if and only if they have the same type.

Proof:

 $\langle 1 \rangle 1$. Two permutations that are conjugate have the same type.

Proof: Since

$$\tau(a_1 \ a_2 \ \cdots \ a_r)(b_1 \ b_2 \ \cdots \ b_s) \cdots (c_1 \ c_2 \ \cdots \ c_t)tau^{-1} = (\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_r))(\tau(b_1) \ \tau(b_2) \ \cdots \ \tau(b_s)) \cdots (\tau(b_s) \ \tau(b_s) \ \cdots \ \tau(b_s)) \cdots (\tau(b_s) \ \tau(b_s) \ \tau(b_s)$$

 $\langle 1 \rangle 2$. Two permutaitons with the same type are conjugate.

$$\langle 2 \rangle$$
1. Let: $\rho = (a_1 \ a_2 \ \cdots \ a_r)(b_1 \ b_2 \ \cdots \ b_s) \cdots (c_1 \ c_2 \ \cdots \ c_t)$ and $\sigma = (a'_1 \ a'_2 \ \cdots \ a'_r)(b'_1 \ b'_2 \ \cdots \ b'_s) \cdots (c'_1 \ c'_2 \ \cdots \ c'_t)$
 $\langle 2 \rangle$ 2. Let: τ be the permutation $\tau(a_i) = a'_i, \tau(b_i) = b'_i, \ldots, \tau(c_i) = c'_i$

$$\langle 2 \rangle 3. \ \sigma = \tau \rho \tau^{-1}$$

Corollary 9.71.1. The number of conjugacy classes in S_n equals the number of permutations of n.

Definition 9.72 (Sign). Define $\Delta_n \in \mathbb{Z}[x_1,\ldots,x_n]$ by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j)$$

Define an action of S_n on $\mathbb{Z}[x_1,\ldots,x_n]$ by

$$\sigma p(x_1,\ldots,x_n) = p(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$
.

The sign of a permutation $\sigma \in S_n$ is the number $\epsilon(\sigma) \in \{1, -1\}$ such that

$$\sigma \Delta_n = \epsilon(\sigma) \Delta_n .$$

We say σ is even if $\epsilon(\sigma) = 1$ and odd if $\epsilon(\sigma) = -1$.

Proposition 9.73. ϵ is a group homomorphism $S_n \to \mathbb{Z}^*$.

Proof:

- $\langle 1 \rangle 1$. Let: $\rho, \sigma \in S_n$
- $\langle 1 \rangle 2$. $(\rho \circ \sigma) \Delta_n = \rho(\sigma \Delta_n)$
- $\langle 1 \rangle 3. \ \epsilon(\rho \circ \sigma) \Delta_n = \epsilon(\rho) \epsilon(\sigma) \Delta_n$
- $\langle 1 \rangle 4. \ \epsilon(\rho \circ \sigma) = \epsilon(\rho)\epsilon(\sigma)$

Proposition 9.74. Let $\sigma = \tau_1 \cdots \tau_r$ where each τ_i is a transposition. Then σ is even if and only if r is even.

PROOF: Since every transposition is odd and ϵ is a homomorphism, we have $\epsilon(\tau_1 \cdots \tau_r) = (-1)^r$. \square

Corollary 9.74.1. A cycle is even if and only if its length is odd.

9.8.1 Transitive Subgroups

Definition 9.75 (Transitive). A subgroup of S_n is *transitive* iff its action on $\{1, \ldots, n\}$ is transitive.

Proposition 9.76. If G is a transitive subgroup of S_n then $n \mid |G|$.

PROOF: By Proposition 9.18 we have

$$n = [G : \operatorname{Stab}_{G}(1)]$$

and so $n \mid |G|$. \sqcup

9.9 Alternating Groups

Definition 9.77. Let $n \in \mathbb{N}$. The alternating group A_n is the subgroup of S_n consisting of the even permutations.

We call A_5 the *icosahedral* (rotating) group.

Proposition 9.78. For $n \geq 2$ we have A_n is normal in S_n and

$$[S_n:A_n]=2.$$

PROOF: Since $\epsilon: S_n \to \{1, -1\}$ is a homomorphism with kernel A_n . \sqcup

Proposition 9.79. Let $n \geq 2$ and $\sigma \in A_n$. Let $[\sigma]_{A_n}$ be the conjugacy class of σ in A_n , and $[\sigma]_{S_n}$ the conjugacy class of σ is S_n . Then:

1. If
$$Z_{S_n}(\sigma) \subseteq A_n$$
 then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$.

2. If not then $[\sigma]_{S_n} = [\sigma]_{A_n}$.

Proof:

$$\langle 1 \rangle 1. \ Z_{A_n}(\sigma) = A_n \cap Z_{S_n}(\sigma)$$

$$\langle 1 \rangle 2. |[\sigma]_{S_n}| = [S_n : Z_{S_n}(\sigma)]$$

PROOF: Orbit-Stabilizer Theorem.

$$\langle 1 \rangle 3. |[\sigma]_{A_n}| = [A_n : Z_{A_n}(\sigma)]$$

PROOF: Orbit-Stabilizer Theorem.

 $\langle 1 \rangle 4$. If $Z_{S_n}(\sigma) \subseteq A_n$ then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$. PROOF:

$$|[\sigma]_{S_n}| = [S_n : Z_{S_n}(\sigma)]$$

= $[S_n : A_n][A_n : Z_{S_n}(\sigma)]$
= $2|[\sigma]_{A_n}|$

 $\langle 1 \rangle 5$. If $Z_{S_n}(\sigma) \nsubseteq A_n$ then $[\sigma]_{S_n} = [\sigma]_{A_n}$.

 $\langle 2 \rangle 1$. Assume: $Z_{S_n}(\sigma) \nsubseteq A_n$

 $\langle 2 \rangle 2$. $A_n Z_{S_n}(\sigma) = S_n$

PROOF: Since $A_n \subseteq A_n Z_{S_n}(\sigma)$ and $[S_n : A_n] = 2$.

 $\langle 2 \rangle 3. |[\sigma]_{S_n}| = |[\sigma]_{A_n}|$

Proof:

$$\begin{split} |[\sigma]_{S_n}| &= [S_n: Z_{S_n}(\sigma)] \\ &= [A_n Z_{S_n}(\sigma): Z_{S_n}(\sigma)] \\ &= [A_n: A_n \cap Z_{S_n}(\sigma)] \qquad \text{(Second Isomorphism Theorem)} \\ &= [A_n: Z_{A_n}(\sigma)] \\ &= |[\sigma]_{A_n}| \end{split}$$

Proposition 9.80. Let $n \geq 2$. Let $\sigma \in A_n$. Then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$ if and only if the type of σ consists of distinct odd numbers.

PROOF

 $\langle 1 \rangle 1$. If $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$ then the type of σ consists of distinct odd numbers.

 $\langle 2 \rangle 1$. If the type of σ has an even number then $Z_{S_n}(\sigma) \nsubseteq A_n$.

PROOF: If $(a_1 \ a_2 \cdots a_n)$ is an even cycle that is a factor of σ then $(1 \ 2 \cdots n)$ is an odd permutation in $Z_{S_n}(\sigma)$.

 $\langle 2 \rangle 2$. If the type of σ has an odd number repeated then $Z_{S_n}(\sigma) \nsubseteq A_n$. PROOF: If $(a_1 \ a_2 \ \cdots \ a_n)$ and $(b_1 \ b_2 \ \cdots \ b_n)$ are two distinct odd factors of σ then $(a_1 \ b_1)(a_2 \ b_2) \cdots (a_n \ b_n)$ is an odd permutation in $Z_{S_n}(\sigma)$.

 $\langle 2 \rangle 3$. Q.E.D.

Proof: Proposition 9.79

 $\langle 1 \rangle 2$. If the type of σ consists of distinct odd numbers then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$.

- $\langle 2 \rangle 1$. Let: $\sigma = (a_{11} \cdots a_{1\lambda_1})(b_{21} \cdots b_{2\lambda_2}) \cdots (c_{n1} \cdots c_{n\lambda_n})$ where the λ_i are all odd and distinct. $\langle 2 \rangle 2$. Let: $\tau \in Z_{S_n}(\sigma)$ Prove: τ is even. $\langle 2 \rangle 3$. $(\tau(a_{i1}) \cdots \tau(a_{i\lambda_i})) = (\tau_{i1} \cdots \tau_{i\lambda_i})$ $\langle 2 \rangle 4$. The action of τ on $\{a_{i1}, \ldots, a_{i\lambda_i}\}$ is $(a_{i1} \cdots a_{i\lambda_i})^{r_i}$ for some r_i
- $\langle 2 \rangle 5. \ \tau = \prod_{i=1}^n (a_{i1} \cdots a_{i\lambda_i})^{r_i}$

 $\langle 2 \rangle 6$. τ is even.

Corollary 9.80.1. A_5 is simple.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction G is a non-trivial proper normal subgroup of A_5 .
- $\langle 1 \rangle 2$. |G| is one of 2, 3, 4, 5, 6, 10, 12, 15, 20 or 30.
- $\langle 1 \rangle$ 3. There are conjugacy classes in A_5 whose sizes total to 1, 2, 3, 4, 5, 9, 11, 14, 19 or 29.
- $\langle 1 \rangle 4$. The types of the even permutations in S_5 are [1, 1, 1, 1, 1], [2, 2, 1], [3, 1, 1] and [5].
- $\langle 1 \rangle$ 5. The size of the conjugacy class of type [2, 2, 1] in S_5 is 15. PROOF: There are 5 ways to choose the element not in the 2-cycles, and then
- 3 ways to arrange the other 4 elements into two 2-cycles, and ther
- $\langle 1 \rangle$ 6. The size of the conjugacy class of type [2, 2, 1] in A_5 is 15.

Proof: Proposition 9.80.

 $\langle 1 \rangle 7.$ The size of the conjugacy class of type [3,1,1] in S_5 is 20.

PROOF: There are 10 ways to choose the three elements in the 3-cycle, and then two 3-cycles that they can form.

- $\langle 1 \rangle 8$. The size of the conjugacy class of type [3, 1, 1] in A_5 is 20. PROOF: Proposition 9.80.
- $\langle 1 \rangle 9$. The size of the conjugacy class of type [5] in S_5 is 24.

PROOF: There are four choices for the value at 1, then three choices for its value, then two choices for its value, then one choice for its value.

 $\langle 1 \rangle 10.$ The size of the conjugacy class of type [5] in S_5 is 12.

Proof: Proposition 9.80.

 $\langle 1 \rangle 11$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Proposition 9.81. A_6 is simple.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction G is a non-trivial proper normal subgroup of A_6 .
- $\langle 1 \rangle 2. \ |G|$ is one of 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180.
- $\langle 1 \rangle$ 3. There are conjugacy classes in A_6 whose sizes total to 1, 2, 3, 4, 5, 7, 8, 9, 11, 14, 17, 19, 23, 29, 35, 39, 44, 59, 71, 89, 119 or 179.

```
\langle 1 \rangle 4. The types of the even permutations in S_6 are [1,1,1,1,1,1], [2,2,1,1],
       [3, 1, 1, 1], [3, 3], [4, 2], [5, 1].
\langle 1 \rangle 5. The size of the conjugacy class of type [2, 2, 1, 1] in S_6 is 45.
\langle 1 \rangle 6. The size of the conjugacy class of type [2, 2, 1, 1] in A_6 is 45.
\langle 1 \rangle 7. The size of the conjugacy class of type [3, 1, 1, 1] in S_6 is 40.
\langle 1 \rangle 8. The size of the conjugacy class of type [3, 1, 1, 1] in A_6 is 40.
\langle 1 \rangle 9. The size of the conjugacy class of type [3, 3] in S_6 is 80.
\langle 1 \rangle 10. The size of the conjugacy class of type [3, 3] in A_6 is 80.
\langle 1 \rangle 11. The size of the conjugacy class of type [4, 2] in S_6 is 90.
\langle 1 \rangle 12. The size of the conjugacy class of type [4, 2] in A_6 is 90.
\langle 1 \rangle 13. The size of the conjugacy class of type [5, 1] in S_6 is 144.
\langle 1 \rangle 14. The size of the conjugacy class of type [5, 1] in A_6 is 72.
\langle 1 \rangle 15. The size of the conjugacy class of type [6] in S_6 is 120.
\langle 1 \rangle 16. The size of the conjugacy class of type [6] in A_6 is 120.
\langle 1 \rangle 17. Q.E.D.
  PROOF: This is a contradiction.
```

Proposition 9.82. The icosahedral group A_5 is the group of symmetries of an icosahedron obtained through rigid motions.

PROOF: Routine.

Proposition 9.83. The alternating group A_n is generated by 3-cycles.

Proof:

```
\langle 1 \rangle 1. The product of two transpositions is generated by 3-cycles. \langle 2 \rangle 1. (ab)(ab) = e \langle 2 \rangle 2. (ab)(ac) = (acb) for b \neq c \langle 2 \rangle 3. (ab)(cd) = (adc)(abc) for c \neq d and c, d \notin \{a, b\}
```

Proposition 9.84. Let $n \geq 5$. If a normal subgroup of A_n contains a 3-cycle, then it contains all 3-cycles.

Proof:

- $\langle 1 \rangle 1$. Let: N be a normal subgroup of A_n .
- $\langle 1 \rangle 2$. Let: $(abc) \in N$
- $\langle 1 \rangle 3$. N contains the conjugacy class of (abc).
- $\langle 1 \rangle 4$. The conjugacy class of (abc) in N is the same as its conjugacy class in S_n . PROOF: Proposition 9.80 since the type of (abc) is $[3, 1, 1, \ldots]$.
- $\langle 1 \rangle 5$. N contains all 3-cycles.

Proposition 9.85. For $n \geq 4$, the center of A_n is trivial.

Theorem 9.86. For $n \geq 5$, the alternating group A_n is simple.

Proof:

```
\langle 1 \rangle 1. A_5 is simple.
   Proof: Corollary 9.80.1.
\langle 1 \rangle 2. For n \geq 6 we have A_n is simple.
   \langle 2 \rangle 1. Let: n \geq 6
   \langle 2 \rangle 2. Let: N be a nontrivial normal subgroup of A_n.
   \langle 2 \rangle 3. N contains a 3-cycle.
      \langle 3 \rangle 1. Pick \tau \in N such that \tau \neq \text{id} and \tau acts on at most 6 elements.
      \langle 3 \rangle 2. PICK T \subseteq \{1, \ldots, n\} with |T| = 6 such that \tau acts on T.
      \langle 3 \rangle 3. Consider A_6 as a subgroup of A_n by letting it act on T.
      \langle 3 \rangle 4. N \cap A_6 is normal.
      \langle 3 \rangle 5. N \cap A_6 is nontrivial.
      \langle 3 \rangle 6. \ N \cap A_6 = A_6
         Proof: Proposition 9.81.
      \langle 3 \rangle 7. N contains a 3-cycle.
   \langle 2 \rangle 4. N contains all 3-cycles.
      Proof: Proposition 9.84.
   \langle 2 \rangle 5. \ N = A_n
      Proof: Proposition 9.83.
```

Corollary 9.86.1. For $n \geq 5$, we have S_n is unsolvable.

PROOF: Since the composition factors of S_n are C_2 and A_n . \square

Chapter 10

Extensions

Definition 10.1 (Extension). Let G, N and H be groups. Then G is an extension of H by N iff there exist homomorphisms $phi: N \to G$ and $\psi: G \to H$ such that

$$1 \to N \to G \to H \to 1$$

is an exact sequence; i.e. ϕ is injective, ψ is surjective, and im $\phi = \ker \psi$.

Proposition 10.2. Let G be an extension of H by N. Then the composition factors of G are the union of the composition factors of H and the composition factors of N.

PROOF: From Proposition 7.133 since $H \cong G/N$. \square

Definition 10.3 (Split Extension). An exact sequence of groups

$$1 \to N \to G \to H \to 1$$

splits iff H is a subgroup of G and $N \cap H = \{e\}$.

Example 10.4. The sequence

$$0 \to \mathbb{Z} \stackrel{\times 2}{\to} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

is exact but does not split as there is no subgroup of \mathbb{Z} isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

Proposition 10.5. Let N be a normal subgroup of G and let H be a subgroup such that G = NH and $N \cap H = \{e\}$. Then G is a split extension of H by N.

Proof:

- $\langle 1 \rangle 1. \ G/N \cong H$
 - $\langle 2 \rangle 1$. Let: α be the homomorphism $H \hookrightarrow G \twoheadrightarrow G/N$
 - $\langle 2 \rangle 2$. α is injective.

PROOF: Since $\ker \alpha = \{e\}$

 $\langle 2 \rangle 3$. α is surjective.

PROOF: For all $g \in G$, pick $n \in N$ and $h \in H$ such that $g^{-1} = nh$. Then $gN = \alpha(h^{-1})$.

 $\langle 2 \rangle 4$. $\alpha : H \cong G/N$ is an isomorphism.

 $\langle 1 \rangle 2.$ The exact sequnce $1 \to N \to G \twoheadrightarrow G/N \cong H \to 1$ splits. \sqcap

Proposition 10.6. Let N and H be groups. Let $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be a homomorphism. The sequence

$$1 \to N \to N \rtimes_{\theta} H \to H \to 1$$

is split exact.

Proof: Easy.

Proposition 10.7. Let G be an Abelian p-group. Let $g \in G$ be an element of maximal order. Then the exact sequence

$$0 \to \langle q \rangle \to G \to G/\langle q \rangle \to 0$$

splits.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the proposition is true for all Abelian p-groups smaller than G.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. G is non-trivial.
- $\langle 1 \rangle 3$. Let: $|g| = p^r$
- $\langle 1 \rangle 4$. Let: $K = \langle g \rangle$
- $\langle 1 \rangle$ 5. K is normal.
- $\langle 1 \rangle 6$. Assume: w.l.o.g. $G \neq K$
- $\langle 1 \rangle 7$. PICK an element $h + K \in G/K$ of order p.

PROOF: Cauchy's Theorem

- $\langle 1 \rangle 8$. Let: $G' = \pi^{-1}(\langle h + K \rangle)$
- $(1)^{9}$. $|G'| = p^{r+1}$
- $\langle 1 \rangle 10. \ K \subseteq G'$
- $\langle 1 \rangle 11$. G' is not cyclic.

PROOF: By maximality of the order of g.

 $\langle 1 \rangle 12$. Pick $h \in G'$ with $h \notin K$ and |h| = p.

Proof: Lemma 8.24.

- $\langle 1 \rangle 13$. Let: $H = \langle h \rangle$
- $\langle 1 \rangle 14$. $K \cap H = \{0\}$
 - $\langle 2 \rangle 1$. Let: $x \in K \cap H$
 - $\langle 2 \rangle 2$. Let: x = ih where $0 \le i < p$
 - $\langle 2 \rangle 3. \ x + K = K$
 - $\langle 2 \rangle 4$. ih + K = K
 - $\langle 2 \rangle 5$. i = 0

PROOF: Since the order of h + K is p.

 $\langle 1 \rangle 15. |G/H| < |G|$

- $\langle 1 \rangle 16$. Let: $K' = \langle g + H \rangle$
- $\langle 1 \rangle 17$. K' is a cyclic subgroup of maximal order in G/H.

Proof:

$$K' = \frac{K + H}{H}$$

$$\cong \frac{K}{K \cap H}$$
 (Second Isomorphism Theorem)
$$\cong K$$

- $\langle 1 \rangle 18$. PICK a subgroup L' of G/H such that K' + L' = G/H and $K' \cap L' = \{0\}$. PROOF: By the induction hypothesis $\langle 1 \rangle 1$.
- $\langle 1 \rangle 19$. Let: $L = \pi^{-1}(L')$
- $\langle 1 \rangle 20$. $H \subseteq L$
- $\langle 1 \rangle 21$. K + L = G
- $\langle 1 \rangle 22. \ K \cap L = \{0\}$

Proposition 10.8. Let p be a prime. If

$$G = \frac{\mathbb{Z}}{p^{r_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_m}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p^{s_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{s_n}\mathbb{Z}}$$

with $r_1 \ge \cdots \ge r_m$ and $s_1 \ge \cdots \ge s_n$ then m = n and $r_i = s_i$ for all i.

Proof:

- $\langle 1 \rangle 1.$ Assume: as induction hypothesis the result is true for all groups smaller than G.
- $\langle 1 \rangle 2$. Let: pG be the image of the homomorphsim $g \mapsto pg$

 $\langle 1 \rangle 3$.

$$pG \cong \frac{\mathbb{Z}}{p^{r_1-1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_m-1}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p^{s_1-1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{s_n-1}\mathbb{Z}}$$

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: The result follows by induction.

Corollary 10.8.1. Every finite Abelian group is the direct sum of a unique multiset of cyclic p-groups.

Definition 10.9. Let G be a finite Abelian group. The multiset of *elementary divisors* of G are the numbers e_1, \ldots, e_n such that each is a power of a prime and

$$G \cong \frac{\mathbb{Z}}{e_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{e_n \mathbb{Z}}$$
.

Proposition 10.10. For any finite Abelian group G, there exist positive integers d_1, \ldots, d_s such that

$$1 < d_1 \mid \cdots \mid d_s$$

and

$$G \cong \frac{\mathbb{Z}}{d_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_s \mathbb{Z}}$$
.

Proof:

 $\langle 1 \rangle 1$. Let: p_1, \ldots, p_s be the prime factors of |G|.

 $\langle 1 \rangle 2$. For i = 1, ..., s, let n_{ij} be the integers such that $n_{i1} \geq n_{i2} \geq \cdots$ such that either $p_i^{n_{ij}}$ is an elementary divisor of G, or $n_{ij} = 0$

 $\langle 1 \rangle 3$. Let: r be the greatest integer such that some n_{ir} is non-zero.

 $\langle 1 \rangle 4$. Let: $d_{r-j+1} = \prod_i p_i^{n_{ij}}$

 $\langle 1 \rangle 5$.

$$\frac{\mathbb{Z}}{d_{r-j+1}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p_1^{n_{1j}}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p_s^{n_{sj}}\mathbb{Z}}$$

$$\langle 1 \rangle 6.$$

$$G \cong \frac{\mathbb{Z}}{d_1\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_r\mathbb{Z}}$$

Definition 10.11 (Invariant Factors). For any finite Abelian group G, the invariant factors of G are the positive integers d_1, \ldots, d_s such that

$$1 < d_1 \mid \cdots \mid d_s$$

and

$$G \cong \frac{\mathbb{Z}}{d_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_s \mathbb{Z}}$$
.

Lemma 10.12. Let G be a finite Abelian group. Assume that, for every n, the number of elements g such that ng = 0 is at most n. Then G is cyclic.

Proof:

 $\langle 1 \rangle 1$. Let: $1 < d_1 \mid \cdots \mid d_r$ be the invariant factors of G. Prove: r = 1 hence $G \cong \mathbb{Z}/d_1\mathbb{Z}$

 $\langle 1 \rangle 2$. Assume: for a contradiction s > 1

 $\langle 1 \rangle 3. |G| > d_s$

 $\langle 1 \rangle 4$. For all $g \in G$ we have $d_s g = 0$.

 $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts the assumption that the number of elements g such that $d_s g = 0$ is at most d_s .

Chapter 11

Classification of Groups

Example 11.1. • The only group of order 1 is the trivial group.

- The only group of order 2 is C_2 .
- The only group of order 3 is C_3 .
- There are two groups of order 4: C_4 and $C_2 \times C_2$.
- The only group of order 5 is C_5 .
- There are two groups of order 6: C_6 and S_3 .
- The only group of order 7 is C_7 .
- There are two groups of order 9: C_9 and $C_3 \times C_3$.
- There are two groups of order 10: C_{10} and D_{10} .
- The only group of order 11 is C_{11} .
- The only group of order 13 is C_{13} .
- There are two groups of order 14: C_{14} and D_{14} .
- The only group of order 15 is C_{15} .

Proposition 11.2. The only non-Abelian groups of order 8 are D_8 and Q_8 .

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Abelian group of order 8.
- $\langle 1 \rangle 2$. G has no element of order 8.

PROOF: If it does then it is C_8 and hence Abelian.

- $\langle 1 \rangle 3$. PICK an element y of order 4.
 - $\langle 2 \rangle 1$. Pick an element a of order 2.
 - $\langle 2 \rangle 2$. $G/\langle a \rangle$ is isomorphic to C_4 or $C_2 \times C_2$.
 - $\langle 2 \rangle 3$. PICK an element $y \langle a \rangle$ of order 2 in $G/\langle a \rangle$

- $\langle 2 \rangle 4. \ y^2 \in \langle a \rangle$
- $\langle 2 \rangle 5$. Case:

$$y^2 = a$$

PROOF: In this case y is of order 4.

 $\langle 2 \rangle 6$. Case:

$$y^2 = e$$

- PROOF: In this case $G\cong C_2^3$ which is Abelian. $\langle 1\rangle 4$. PICK $x\notin \langle y\rangle$ such that $x^2=e$ or $x^2=y^2$
 - $\langle 2 \rangle 1. \ G/\langle y \rangle \cong C_2$
 - $\langle 2 \rangle 2$. Pick $x \langle y \rangle \in G/\langle y \rangle$ of order 2.

 - $\langle 2 \rangle 3. \quad x^2 \in \langle y \rangle$ $\langle 2 \rangle 4. \quad x^2 \neq y \text{ and } x^2 \neq y^3$ $\langle 2 \rangle 5. \quad x^2 = e \text{ or } x^2 = y^2$
- $\langle 1 \rangle 5$. $xy = y^3 x$
 - $\langle 2 \rangle 1. \ xy \neq e$

PROOF: Since $y^{-1} = y^3 \neq x$.

 $\langle 2 \rangle 2$. $xy \neq y$

PROOF: xy = y implies x = e.

 $\langle 2 \rangle 3$. $xy \neq y^2$

PROOF: $xy = y^2$ implies x = y.

 $\langle 2 \rangle 4. \ xy \neq y^3$

PROOF: $xy = y^3$ implies $x = y^2$.

 $\langle 2 \rangle 5$. $xy \neq x$

PROOF: xy = x implies y = e.

 $\langle 2 \rangle 6. \ xy \neq yx$

PROOF: xy = yx implies G is Abelian.

- $\langle 2 \rangle 7$. $xy \neq y^2 x$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $xy = y^2x$
 - $\langle 3 \rangle 2$. $xy^2 = x$

Proof:

$$xy^2 = y^2xy$$
$$= y^4x$$
$$= x$$

$$\langle 3 \rangle 3. \ y^2 = e$$

 $\langle 1 \rangle 6$. The multiplication table of G is one of the following.

e		y^2		x		y^2x	
	y^2			yx		y^3x	
	y^3	e	y			x	yx
y^3	e	y	y^2	y^3x	x		y^2x
x	y^3x	y^2x	yx	e		y^2	y
yx	x					y^3	y^2
y^2x	yx	\boldsymbol{x}	y^3x	y^2			y^3
y^3x	y^2x	yx	x	y^3	y^2	y	e

 $\langle 1 \rangle 7$. $G \cong D_8$ or $G \cong Q_8$.

Corollary 11.2.1. The groups of order 8 are D_8 , Q_8 , $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Proposition 11.3. Let q be an odd prime. Then D_{2q} is the only non-Abelian group of order 2q.

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Abelian group of order 2q.
- $\langle 1 \rangle 2$. Pick $y \in G$ of order q.

PROOF: Cauchy's Theorem

 $\langle 1 \rangle 3$. $\langle y \rangle$ is the only subgroup of order q.

PROOF: Third Sylow Theorem

- $\langle 1 \rangle 4$. $\langle y \rangle$ is normal.
- $\langle 1 \rangle 5$. Pick $x \in G \langle y \rangle \{e\}$
- $\langle 1 \rangle 6. |x| = 2$

PROOF: We cannot have |x| = 2q since G is not cyclic, and $|x| \neq q$ since $\langle x \rangle$ is not the subgroup of order q.

 $\langle 1 \rangle 7. \ xyx^{-1} \in \langle y \rangle$

PROOF: Since $x\langle y\rangle x^{-1} = \langle y\rangle$ by $\langle 1\rangle 3$.

- $\langle 1 \rangle 8$. PICK r such that $0 \le r < q$ and $xyx^{-1} = y^r$.
- $\langle 1 \rangle 9. \ y^{r^2} = y$

Proof:

$$y^{r^2} = (xyx^{-1})^r \qquad (\langle 1 \rangle 8)$$

$$= xy^r x^{-1}$$

$$= x^2 y x^{-2} \qquad (\langle 1 \rangle 8)$$

$$= y \qquad (\langle 1 \rangle 6)$$

 $\langle 1 \rangle 10. \ q \mid (r-1)(r+1)$

PROOF: Since $y^{(r-1)(r+1)} = e$ and |y| = q by $\langle 1 \rangle 2$.

 $\langle 1 \rangle 11$. r = 1 or r = q - 1

PROOF: Since $0 \le r < q$ by $\langle 1 \rangle 8$.

- $\langle 1 \rangle 12. \ r \neq 1$
 - $\langle 2 \rangle 1$. Assume: for a contradiction r = 1.
 - $\langle 2 \rangle 2$. xy = yx

Proof: $\langle 1 \rangle 8$

 $\langle 2 \rangle 3$. |xy| = 2q

```
PROOF: Proposition 6.22 \langle 2 \rangle 4. G is cyclic. \langle 2 \rangle 5. Q.E.D. PROOF: This contradicts \langle 1 \rangle 1. \langle 1 \rangle 13. x^2 = e and y^q = e and yx = xy^{q-1} \langle 1 \rangle 14. G \cong D_{2q}
```

Corollary 11.3.1. For q an odd prime, the only groups of order 2q are C_{2q} and D_{2q} .

Proposition 11.4. There is no non-Abelian simple group of order less than 60.

PROOF: We rule out the other sizes as follows:

- 1 Only group is the trivial group.
- 2 Prime therefore cyclic
- 3 Prime therefore cyclic
- 4 Corollary 9.49.1
- 5 Prime therefore cyclic
- 6 Corollary 9.52.2
- 7 Prime therefore cyclic
- 8 Corollary 9.49.1
- 9 Corollary 9.49.1
- 10 Corollary 9.52.2
- \bullet 11 Prime therefore cyclic
- 12
 - $\langle 1 \rangle 1$. There is no simple non-Abelian group of order 12.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 12.
 - $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. G has 8 elements of order 3.
 - $\langle 2 \rangle 4$. G has 3 elements of order 2 or 4.
 - $\langle 2 \rangle$ 5. G has one 2-Sylow subgroup.
 - $\langle 2 \rangle$ 6. The 2-Sylow subgroup of G is normal.
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

• 13 — Prime therefore cyclic

- 14 Corollary 9.52.2
- 15 Corollary 9.52.2
- 16 Corollary 9.49.1
- 17 Prime therefore cyclic
- 18 Corollary 9.52.2
- 19 Prime therefore cyclic
- 20 Corollary 9.52.2
- 21 Corollary 9.52.2
- 22 Corollary 9.52.2
- ullet 23 Prime therefore cyclic
- 24
 - $\langle 1 \rangle 2$. There is no simple non-Abelian group of order 24.
 - $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 24.
 - $\langle 2 \rangle 2$. G has 3 2-Sylow subgroups.
 - $\langle 2 \rangle 3$. Let: $\gamma: G \to S_3$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

PROOF: γ cannot be injective since $|G| > |S_3|$.

- $\langle 2 \rangle 5$. ker $\gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

- 25 Corollary 9.49.1
- 26 Corollary 9.52.2
- 27 Corollary 9.49.1
- 28 Corollary 9.52.2
- 29 Prime therefore cyclic
- 30 Proposition 9.55
- 31 Prime therefore cyclic
- 32 Corollary 9.49.1
- 33 Corollary 9.52.2

- 34 Corollary 9.52.2
- 35 Corollary 9.52.2
- 36
 - $\langle 1 \rangle 3$. There is no simple non-Abelian group of order 36.
 - $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 36.
 - $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. Let: $\gamma: G \to S_4$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

Proof: γ cannot be injective since $|G| > |S_4|$.

- $\langle 2 \rangle 5$. $\ker \gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

Proof: This contradicts $\langle 2 \rangle 1$.

- 37 Prime therefore cyclic
- 38 Corollary 9.52.2
- 39 Corollary 9.52.2
- 40 There can be only 1 5-Sylow subgroup.
- 41 Prime therefore cyclic
- 42 Proposition 9.55
- 43 Prime therefore cyclic
- 44 Corollary 9.52.2
- $\bullet~45$ There can be only 1 5-Sylow subgroup.
- 46 Corollary 9.52.2
- 47 Prime therefore cyclic
- 48
 - $\langle 1 \rangle 4$. There is no simple non-Abelian group of order 48.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 48.
 - $\langle 2 \rangle 2$. G has 3 2-Sylow subgroups.
 - $\langle 2 \rangle$ 3. Let: $\gamma: G \to S_3$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

PROOF: γ cannot be injective since $|G| > |S_3|$.

- $\langle 2 \rangle 5$. ker $\gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

- 49 Corollary 9.49.1
- 50 Corollary 9.52.2
- 51 Corollary 9.52.2
- 52 Corollary 9.52.2
- 53 Prime therefore cyclic
- 54 Corollary 9.52.2
- 55 Corollary 9.52.2
- 56 Corollary 9.52.2
- 57 Corollary 9.52.2
- 58 Corollary 9.52.2
- 59 Prime therefore cyclic

Proposition 11.5. Every simple group of order 60 has a subgroup of index 5.

Proof:

- $\langle 1 \rangle 1$. Let: G be a simple group of order 60.
- $\langle 1 \rangle 2$. The number of 2-Sylow subgroups of G is either 5 or 15.
 - $\langle 2 \rangle$ 1. Let: n be the number of 2-Sylow subgroups.
 - $\langle 2 \rangle 2$. 60|n!

Proof: Corollary 9.56.1.

- $\langle 2 \rangle 3. \ n \geq 5$
- $\langle 2 \rangle 4$. $n \mid 15$

PROOF: Third Sylow Theorem

- $\langle 2 \rangle 5$. n = 5 or n = 15
- $\langle 1 \rangle 3$. Assume: w.l.o.g. G has 15 2-Sylow subgroups.
- $\langle 1 \rangle 4$. G has 4 or 10 3-Sylow subgroups.
- $\langle 1 \rangle$ 5. G has 10 3-Sylow subgroups.

Proof: Corollary 9.56.1.

- $\langle 1 \rangle 6$. G has exactly 6 5-Sylow subgroups.
- $\langle 1 \rangle$ 7. The number of elements of order 3 is 20.
- $\langle 1 \rangle 8$. The number of elements of order 5 is 24.
- $\langle 1 \rangle 9$. The number of elements of order 2 or 4 is 15.
- $\langle 1 \rangle 10$. Pick two 2-Sylow subgroups H_1 and H_2 with non-trivial intersection.
- $\langle 1 \rangle 11$. Let: $g \in G$ be such that $H_1 \cap H_2 = \{e, g\}$.
- $\langle 1 \rangle 12$. Let: $K = Z_G(H_1 \cap H_2)$

 $\langle 1 \rangle 13$. |K| = 12 or |K| = 20PROOF: We have $4 \mid |K|$ since $H_1 \leq K$, and $|K| \geq 6$ since $H_1 \cup H_2 \subseteq K$. We also have $|K| \mid 60$. $\langle 1 \rangle 14$. $[G:K] \neq 3$ PROOF: There cannot be an embedding of G in S_3 . $\langle 1 \rangle 15$. [G:K] = 5

Theorem 11.6. A_5 is the only simple group of order 60.

Proof:

- $\langle 1 \rangle 1$. Let: G be a simple group of order 60.
- $\langle 1 \rangle 2$. PICK a subgroup K of G of index 5.
- $\langle 1 \rangle 3$. Let: $\phi: G \to S_5$ be the action of G on G/K of left multiplication.
- $\langle 1 \rangle 4$. ϕ is injective.

PROOF: Since $\ker \phi$ is a proper normal subgroup of G hence $\ker \phi = \{e\}$.

- $\langle 1 \rangle 5$. $\phi(G)$ is a subgroup of S_5 of index 2.
- $\langle 1 \rangle 6$. $\phi(G)$ is normal in S_5 .
- $\langle 1 \rangle 7$. $\phi(G) \cap A_5$ is a normal subgroup of A_5
- $\langle 1 \rangle 8. \ \phi(G) \cap A_5 = \{e\} \text{ or } \phi(G) \cap A_5 = A_5$

Proof: Corollary 9.80.1.

 $\langle 1 \rangle 9. \ \phi(G) \cap A_5 = A_5$

PROOF: We cannot have $\phi(G) \cap A_5 = \{e\}$ lest $|\phi(G)A_5| = |\phi(G)||A_5|/|\phi(G) \cap A_5| = 3600$

by the Second Isomorphism Theorem.

 $\langle 1 \rangle 10. \ \phi(G) = A_5$ $\langle 1 \rangle 11. \ \phi : G \cong A_5$

Proposition 11.7. There is no non-Abelian simple group of order between 60 and 168.

PROOF: We rule out the other sizes as follows:

- 61 prime therefore cyclic
- 62 Corollary 9.52.2
- 63 Corollary 9.52.1
- 64 Corollary 9.49.1
- 65 Corollary 9.52.2
- 66 Corollary 9.52.2
- 67 prime therefore cyclic
- 68 Corollary 9.52.2
- 69 Corollary 9.52.2

- 70 Proposition 9.55
- 71 prime therefore cyclic
- 72
 - $\langle 1 \rangle 1$. There is no simple non-Abelian group of order 72

Proof:

- $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 72.
- $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
- $\langle 2 \rangle$ 3. Let: $\gamma: G \to S_4$ be the action of conjugation on the set of 3-Sylow subgroups.
- $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Since $|G| > |S_4|$.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial proper subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

- 73 prime therefore cyclic
- 74 Corollary 9.52.2
- 75 Corollary 9.52.2
- 76 Corollary 9.52.2
- 77 Corollary 9.52.2
- 78 Corollary 9.52.2
- 79 prime therefore cyclic
- 80
 - $\langle 1 \rangle 2$. There is no simple non-Abelian group of order 80.

Proof:

- $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 80.
- $\langle 2 \rangle 2$. G has 5 2-Sylow subgroups.
- $\langle 2 \rangle 3$. Let: $\gamma: G \to S_5$ be the action of conjugation on the set of 2-Sylow subgroups.
- $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Otherwise im γ would be a subgroup of S_5 of order 80, contradicting Lagrange's Theorem.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial normal subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

 \bullet 81 — Corollary 9.49.1

- 82 Corollary 9.52.2
- 83 prime therefore cyclic
- 84 Corollary 9.52.1
- 85 Corollary 9.52.2
- 86 Corollary 9.52.2
- 87 Corollary 9.52.2
- 88 Corollary 9.52.2
- 89 prime therefore cyclic
- 90 Corollary 9.52.1
- 91 Corollary 9.52.2
- 92 Corollary 9.52.2
- 93 Corollary 9.52.2
- 94 Corollary 9.52.2
- 95 Corollary 9.52.2
- 96 There are 3 2-Sylow subgroups. The kernel of the action of conjugation $G \to S_3$ is a non-trivial normal subgroup of G.
- 97 prime therefore cyclic
- 98 Corollary 9.52.2
- 99 Corollary 9.52.2
- 100 Corollary 9.52.2
- 101 prime therefore cyclic
- 102 Proposition 9.55
- 103 prime therefore cyclic
- 104 Corollary 9.52.2
- 105 Proposition 9.55
- 106 Corollary 9.52.2
- 107 prime therefore cyclic
- 108 There are 4 3-Sylow subgroups. The kernel of the action of conjugation $G \to S_4$ is a non-trivial normal subgroup of G.

- 109 prime therefore cyclic
- 110 Proposition 9.55
- 111 Corollary 9.52.2
- 112
 - $\langle 1 \rangle 3$. There is no simple non-Abelian group of order 112.
 - $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 112.
 - $\langle 2 \rangle 2$. G has exactly 7 2-Sylow subgroups.
 - $\langle 2 \rangle$ 3. Let: $\gamma: G \to A_7$ be the action of conjugation of G on the set of 2-Sylow subgroups.

PROOF: $\gamma(g)$ is always an even permutation since G has no subgroup of index 2.

 $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Since |G| does not divide $|A_7| = 7!/2$.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial normal subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.
- 113 prime therefore cyclic
- 114 Proposition 9.55
- 115 Corollary 9.52.2
- 116 Corollary 9.52.2
- 117 Corollary 9.52.2
- 118 Corollary 9.52.2
- 119 Corollary 9.52.2
- 120
 - $\langle 1 \rangle 4$. There is no simple non-Abelian group of order 120.

Proof:

- $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 120.
- $\langle 2 \rangle 2$. There are exactly 6 5-Sylow subgroups.
- $\langle 2 \rangle$ 3. Let: $\gamma: G \to A_6$ be the action of conjugation on the set of 5-Sylow subgroups.
- $\langle 2 \rangle 4$. im γ is a subgroup of A_6 of order 120.
- $\langle 2 \rangle$ 5. Q.E.D.

PROOF: This is a contradiction by inspection of the list of subgroups of A_6 .

• 121 — Corollary 9.49.1

- 122 Corollary 9.52.2
- 123 Corollary 9.52.2
- 124 Corollary 9.52.2
- 125 Corollary 9.49.1
- 126 Corollary 9.52.1
- 127 prime therefore cyclic
- 128 Corollary 9.49.1
- 129 Corollary 9.52.2
- 130 Proposition 9.55
- 131 prime therefore cyclic
- 132
 - $\langle 1 \rangle$ 5. There is no simple non-Abelian group of order 132.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 132.
 - $\langle 2 \rangle 2$. There are at least 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. There are at least 8 elements of order 3.
 - $\langle 2 \rangle 4$. There are exactly 12 11-Sylow subgroups.
 - $\langle 2 \rangle$ 5. There are exactly 120 elements of order 11.
 - $\langle 2 \rangle 6$. There are exactly 3 elements of order 2.
 - $\langle 2 \rangle$ 7. There is a unique 2-Sylow subgroups.
 - $\langle 2 \rangle 8$. Q.E.D.

PROOF: This is a contradiction.

- 133 Corollary 9.52.2
- 134 Corollary 9.52.2
- 135 Corollary 9.52.1
- 136 Corollary 9.52.2
- 137 prime therefore cyclic
- 138 Proposition 9.55
- 139 prime therefore cyclic
- 140 Corollary 9.52.1
- 141 Corollary 9.52.2
- 142 Corollary 9.52.2

- 143 Corollary 9.52.2
- 144 Burnside's Theorem
- 145 Burnside's Theorem
- 146 Burnside's Theorem
- 147 Burnside's Theorem
- 148 Burnside's Theorem
- 149 prime therefore cyclic
- 150 There are exactly 6 5-Sylow subgroups. The kernel of the action of conjugation G → A₅ is a non-trivial normal subgroup since 150 does not divide |A₅| = 60.
- 151 prime therefore cyclic
- 152 Burnside's Theorem
- 153 Burnside's Theorem
- 154 Proposition 9.55
- 155 Burnside's Theorem
- 156 Corollary 9.52.2
- 157 prime therefore cyclic
- 158 Burnside's Theorem
- 159 Burnside's Theorem
- 160 Burnside's Theorem
- 161 Burnside's Theorem
- 162 Burnside's Theorem
- 163 prime therefore cyclic
- 164 Burnside's Theorem
- 165 Proposition 9.55
- 166 Burnside's Theorem
- 167 prime therefore cyclic

Proposition 11.8. Every group of order < 120 and $\neq 60$ is solvable.

Proof:

- $\langle 1 \rangle 1$. Let: G be a group of order n where n < 120 and $n \neq 60$.
- $\langle 1 \rangle 2$. If *n* is odd then *G* is solvable.

PROOF: Feit-Thompson Theorem

 $\langle 1 \rangle 3$. If n has at most two prime factors then G is solvable.

PROOF: Burnside's Theorem

 $\langle 1 \rangle 4$. Case: n = pqr for some primes p, q, r

PROOF: Its composition factors must be C_p , C_q and C_r .

 $\langle 1 \rangle 5$. Case: n = 84

PROOF: By the Third Sylow Theorem, the 7-Sylow subgroup is normal. Since every group of order 12 is solvable, so is every group of order 84.

Proposition 11.9. Let p and q be primes with p < q.

- 1. If $q \not\equiv 1 \pmod{p}$, then the only group of order pq is C_{pq}
- 2. If $q \equiv 1 \pmod{p}$, then there are exactly two groups of order pq: the cyclic group C_{pq} and a non-Abelian group.

Proof:

- $\langle 1 \rangle 1$. Let: |G| = pq
- $\langle 1 \rangle 2$. Assume: G is not cyclic.
- $\langle 1 \rangle 3$. There is exactly one q-Sylow subgroup $\langle a \rangle$, say.

PROOF: Third Sylow Theorem.

- $\langle 1 \rangle 4$. There is more than one *p*-Sylow subgroup.
- $\langle 1 \rangle$ 5. The number of p-Sylow subgroups divides q and is congruent to 1 modulo p.
- $\langle 1 \rangle 6. \ q \equiv 1 \pmod{p}$
- $\langle 1 \rangle 7$. Pick an element b of order q.
- $\langle 1 \rangle 8$. Let: $N = \langle a \rangle$ and $H = \langle b \rangle$
- $\langle 1 \rangle 9. \ N \cap H = \{e\}$
- $\langle 1 \rangle 10. \ G = NH$
- $\langle 1 \rangle 11$. Define $\gamma : H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ by $\gamma(h)(n) = hnh^{-1}$
- $\langle 1 \rangle 12$. Aut_{**Grp**} $(N) \cong C_{q-1}$
- $\langle 1 \rangle 13$. Aut_{Grp} (N) has a unique subgroup of order p.

Part IV Ring Theory

Chapter 12

Rngs

Definition 12.1 (Ring). A rng consists of a set R and binary operations $+, \cdot : R^2 \to R$ such that:

- (R, +) is an Abelian group
- \bullet · is associative.
- The distributive properties hold: for all $r, s, t \in R$ we have

$$(r+s)t = rt + st,$$
 $r(s+t) = rs + rt.$

Example 12.2. • The zero rng is $\{0\}$.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is a rng.
- Given a rng R and natural number n, then the set $\mathfrak{gl}_n(R)$ of all $n \times n$ matrices with entries in R is a rng under matrix addition and matrix multiplication.
- For any set S, the power set $\mathcal{P}S$ is a rng under $A+B=(A\cup B)-(A\cap B)$ and $AB=A\cap B$.
- Given a rng R and a set S, then R^S is a rng under (f+g)(s)=f(s)+g(s) and (fg)(s)=f(s)g(s) for all $f,g\in R^S$ and $s\in S$.
- The set $\mathfrak{sl}_n(\mathbb{R}) = \{ M \in \mathfrak{gl}_n(\mathbb{R}) : \operatorname{tr} M = 0 \}$ is a rng.
- The set $\mathfrak{sl}_n(\mathbb{C}) = \{ M \in \mathfrak{gl}_n(\mathbb{C}) : \operatorname{tr} M = 0 \}$ is a rng.
- $\mathbb{Z}/n\mathbb{Z}$ is a rng.

• The ring \mathbb{H} of quaternions is \mathbb{R}^4 under the following operations, where we write (a, b, c, d) as a + bi + cj + dk:

$$(a+bi+cj+dk) + (a'+b'i+c'j+d'k) = (a+a') + (b+b')i$$

$$+ (c+c')j + (d+d')k$$

$$(a+bi+cj+dk)(a'+b'i+c'j+d'k) = (aa'-bb'-cc'-dd')$$

$$+ (ab'+ba'+cd'-dc')i$$

$$+ (ac'-bd'+ca'+db')j$$

$$+ (ad'+bc'-cb'+da')k$$

• For any Abelian group G, the set $\operatorname{End}_{\mathbf{Ab}}(G)$ is a ring under pointwise addition and composition.

Proposition 12.3. In any rng R we have

$$\forall x \in R. x0 = 0x = 0 .$$

Proof:

$$x0 = x(0+0)$$
$$= x0 + x0$$

and so x0 = 0 by Cancellation. Similarly 0x = 0. \square

Definition 12.4 (Zero Divisor). Let R be a rng and $a \in R$.

Then a is a left-zero-divisor iff there exists $b \in R - \{0\}$ such that ab = 0.

The element a is a right-zero-divisor iff there exists $b \in R - \{0\}$ such that ba = 0.

Example 12.5. 0 is a left- and right-zero-divisor in every non-zero rng. The zero rng is the only ring with no zero-divisors.

Proposition 12.6. Let R be a rng and $a \in R$. Then a is not a left-zero-divisor if and only if left multiplication by a is an injective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is not a left-zero-divisor then left multiplication by a is injective.
 - $\langle 2 \rangle 1$. Assume: a is not a left-zero-divisor.
 - $\langle 2 \rangle 2$. Let: ab = ac
 - $\langle 2 \rangle 3$. a(b-c)=0
 - $\langle 2 \rangle 4$. b-c=0
 - $\langle 2 \rangle 5.$ b = c
- $\langle 1 \rangle 2$. If a is a left-zero-divisor then left multiplication by a is not injective.
 - $\langle 2 \rangle 1$. Pick $b \neq 0$ such that ab = 0.
- $\langle 2 \rangle 2$. ab = a0 but $b \neq 0$

12.1 Commutative Rngs

Definition 12.7 (Commutative). A rng R is commutative iff $\forall x, y \in R.xy = yx$.

Example 12.8. • The zero rng is commutative.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative.
- $2\mathbb{Z}$ is commutative.
- $\mathfrak{gl}_2(\mathbb{R})$ is not commutative.
- For any set S, the rng $\mathcal{P}S$ is commutative.
- If R is commutative then R^S is commutative.

12.2 Rng Homomorphisms

Definition 12.9. Let R and S be rngs. A rng homomorphism $\phi: R \to S$ is a function such that, for all $x, y \in R$, we have

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

Let **Rng** be the category of rngs and rng homomorphisms.

12.3 Quaternions

Definition 12.10 (Norm). The *norm* of a quaternion is defined by

$$N(a+bi+cj+dk) = a^2 + b^2 + c^2 + d^2$$
.

Chapter 13

Rings

Definition 13.1 (Ring). A ring R is a rng such that there exists $1 \in R$, the multiplicative identity, such that

$$\forall x \in R.x1 = 1x = x$$
.

Example 13.2. • The zero rng is a ring with 1 = 0.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is not a ring.
- If R is a ring then $\mathfrak{gl}_n(R)$ is a ring.
- For any set S, the rng PS is a ring with 1 = S.
- If R is a ring then R^S is a ring.
- $\mathfrak{sl}_n(\mathbb{R})$ is not a ring for n > 0.
- $\mathfrak{sl}_n(\mathbb{C})$ is not a ring for n > 0.
- $\mathfrak{so}_n\left(\mathbb{R}\right)=\left\{M\in\mathfrak{sl}_n\left(\mathbb{R}\right):M+M^T=0\right\}$ is not a ring.
- $\mathbb{Z}/n\mathbb{Z}$ is a ring.

Proposition 13.3. In any ring R, if 0 = 1 then R is the zero ring.

PROOF: For any $x \in R$ we have x = 1x = 0x = 0. \square

Proposition 13.4. In any ring we have (-1)x = -x.

PROOF: Since

$$x + (-1)x = 1x + (-1)x$$

$$= (1 + (-1))x$$

$$= 0x$$

$$= 0$$

13.1 Units

Definition 13.5 (Left-Unit, Right-Unit). Let R be a ring and $a \in R$. Then a is a *left-unit* iff there exists $b \in R$ such that ab = 1. The element a is a *right-unit* iff there exists $b \in R$ such that ba = 1.

An element is a *unit* iff it is a left-unit and a right-unit.

Proposition 13.6. Let R be a ring and $a \in R$. Then a is a left-unit iff left multiplication by a is a surjective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is a left-unit then left multiplication by a is surjective.
 - $\langle 2 \rangle 1$. Pick $b \in R$ such that ab = 1.
 - $\langle 2 \rangle 2$. For all $c \in R$ we have c = a(bc).
- $\langle 1 \rangle 2.$ If left multiplication by a is surjective then a is a left-unit.

PROOF: Immediate.

Proposition 13.7. Let R be a ring and $a \in R$. Then a is a right-unit iff right multiplication by a is a surjective function $R \to R$.

Proof: Similar.

Proposition 13.8. No left-unit is a right-zero-divisor.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction ab = 1 and ca = 0 where $c \neq 0$.
- $\langle 1 \rangle 2.$ c=0

PROOF:

$$0 = 0b$$

$$= cab$$

$$= c1$$

$$= c$$

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: This is a contradiction.

Proposition 13.9. No right-unit is a left-zero-divisor.

Proof: Similar.

Proposition 13.10. The inverse of a unit is unique.

PROOF: If ba = 1 and ac = 1 then b = bac = c. \square

Proposition 13.11. The units of a ring form a group under multiplication.

Proof:

 $\langle 1 \rangle 1$. If a and b are units then ab is a unit.

PROOF: We have $b^{-1}a^{-1}ab = 1$ and $abb^{-1}a^{-1} = 1$.

13.1. UNITS 141

```
\langle 1 \rangle 2. 1 is a unit.

PROOF: Since 1 \cdot 1 = 1.

\langle 1 \rangle 3. If a is a unit then its inverse is a unit.

PROOF: Immediate from definitions.
```

Definition 13.12 (Group of Units). For any ring R, we write R^* for the group of the units of R under multiplication.

Example 13.13. The quaternionic group is a subgroup of \mathbb{H}^* .

Example 13.14. The norm is a group homomorphism $\mathbb{H}^* \to \mathbb{R}^+$ where \mathbb{R}^+ is the group of positive real numbers under multiplication with kernel isomorphic to $\mathrm{SU}_2(\mathbb{C})$. The isomorphism maps a quaternion a+bi+cj+dk to $\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$.

Theorem 13.15 (Fermat's Little Theorem). Let p be a prime number and a any integer. Then $a^p \equiv a \pmod{p}$.

PROOF: If $p \mid a$ then $a^p \equiv a \equiv 0 \pmod{p}$. Otherwise, we have $a^{p-1} \equiv 1 \pmod{p}$ by applying Lagrange's Theorem to $(\mathbb{Z}/p\mathbb{Z})^*$. \square

Example 13.16. It is not true that, if $n \mid |G|$, then G has a subgroup of order n. The group A_4 has order 12 but no subgroup of order 6.

Proposition 13.17. If p is prime then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: g be an element of maximal order in $(\mathbb{Z}/p\mathbb{Z})^*$.
- $\langle 1 \rangle 2$. For all $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $h^{|g|} = 1$.

Proof: Proposition 8.10.

- $\langle 1 \rangle 3$. There are at most |g| elements x such that $x^{|g|} = 1$ in $\mathbb{Z}/p\mathbb{Z}$
- $\langle 1 \rangle 4$. $p-1 \leq |g|$
- $\langle 1 \rangle 5$. |g| = p 1
- $\langle 1 \rangle 6$. g generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Example 13.18. $(\mathbb{Z}/12\mathbb{Z})^*$ is not cyclic. Its elements are 1, 5, 7 and 11 with orders 1, 2, 2 and 2.

Theorem 13.19 (Wilson's Theorem). A positive integer p is prime if and only if $(p-1)! \equiv 1 \pmod{p}$.

- $\langle 1 \rangle 1$. If p is prime then $(p-1)! \equiv 1 \pmod{p}$.
 - $\langle 2 \rangle 1$. Assume: p is prime.
 - $\langle 2 \rangle 2$. (p-1)! is the product of all the elements of $(\mathbb{Z}/p\mathbb{Z})^*$
 - $\langle 2 \rangle 3$. The only element of $(\mathbb{Z}/p\mathbb{Z})^*$ with order 2 is -1.
 - $\langle 2 \rangle 4$. $(p-1)! \equiv -1 \pmod{p}$

Proof: Proposition 6.23.

```
⟨1⟩2. If (p-1)! \equiv -1 \pmod{p} then p is prime. ⟨2⟩1. Assume: ( (p-1)! \equiv -1 \pmod{p}) ⟨2⟩2. Let: d be a proper divisor of p. Prove: d=1 ⟨2⟩3. d \mid (p-1)! ⟨2⟩4. d \mid 1 Proof: Since d \mid p \mid (p-1)! + 1. ⟨2⟩5. d=1
```

Proposition 13.20. If p and q are distinct odd primes then $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & |(\mathbb{Z}/pq\mathbb{Z})^*| = (p-1)(q-1) \\ \langle 1 \rangle 2. & \text{Let: } g \in (\mathbb{Z}/pq\mathbb{Z})^* \\ & \text{Prove: } g \text{ does not have order } (p-1)(q-1) \\ \langle 1 \rangle 3. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } p) \\ \langle 1 \rangle 4. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } q) \\ \langle 1 \rangle 5. & pq \mid g^{(p-1)(q-1)/2} = 1 (\text{mod } pq) \\ \langle 1 \rangle 6. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } pq) \\ \langle 1 \rangle 7. & |g| \mid (p-1)(q-1)/2 \\ \square \end{array}
```

Proposition 13.21. For any prime p, we have $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$.

```
Proof:
```

```
\begin{split} &\langle 1 \rangle 1. \text{ Let: } \phi: \operatorname{Aut}_{\mathbf{Grp}}(C_p) \to (\mathbb{Z}/p\mathbb{Z})^* \text{ be the function } \phi(\alpha) = \alpha(1). \\ &\operatorname{PROOF: } \alpha(1) \text{ has order } p \text{ in } C_p \text{ and so is coprime with } p. \\ &\langle 1 \rangle 2. \ \phi \text{ is a homomorphism.} \\ &\operatorname{PROOF: } \phi(\alpha \circ \beta) = \alpha(\beta(1)) = \alpha(\beta(1)1) = \beta(1)\alpha(1) = \phi(\alpha)\phi(\beta) \\ &\langle 1 \rangle 3. \ \phi \text{ is injective.} \\ &\operatorname{PROOF: } \operatorname{If } \phi(\alpha) = \phi(\beta) \text{ then for any } n \text{ we have } \alpha(n) = n\alpha(1) = n\phi(\alpha) = n\phi(\beta) = n\beta(1) = \beta(n). \\ &\langle 1 \rangle 4. \ \phi \text{ is surjective.} \\ &\operatorname{PROOF: } \operatorname{For any } r \in (\mathbb{Z}/p\mathbb{Z})^* \text{ we have } r = \phi(\alpha) \text{ where } \alpha(n) = nr \operatorname{mod} p. \\ &\langle 1 \rangle 5. \ (\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1} \end{split}
```

13.2 Euler's ϕ -function

Proposition 13.22. For n a positive integer, we have $(\mathbb{Z}/n\mathbb{Z})^* = \{m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m,n)=1\}.$

Proof:

$$m \in (\mathbb{Z}/n\mathbb{Z})^* \Leftrightarrow \exists a.am \equiv 1 \pmod{n}$$

 $\Leftrightarrow \exists a, b.am + bn = 1$
 $\Leftrightarrow \gcd(m, n) = 1$

Definition 13.23 (Euler's Totient Function). For n a positive integer, let $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Proposition 13.24. If n is an odd positive integer then $\phi(2n) = \phi(n)$.

Proof:

- $\langle 1 \rangle 1$. Let: n be an odd positive integer.
- $\langle 1 \rangle$ 2. For any integer m, if gcd(m,n) = 1 then gcd(2m+n,2n) = 1PROOF: For p a prime, if $p \mid 2m+n$ and $p \mid 2n$ then $p \neq 2$ (since 2m+n is odd) so $p \mid n$ and hence $p \mid m$, which is a contradiction.
- $\langle 1 \rangle 3$. For any integer r, if $\gcd(r, 2n) = 1$ then $\gcd(\frac{r+n}{2}, n) = 1$

PROOF: If $p \mid n$ and $p \mid \frac{r+n}{2}$ then $p \mid r+n$ so $p \mid r$ which is a contradiction.

 $\langle 1 \rangle 4$. The function that maps m to 2m+n is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.

Theorem 13.25. For any positive integer n we have

$$\sum_{m>0,m|n}\phi(m)=n .$$

Proof:

- $\langle 1 \rangle 1$. Define $\chi : \{0, 1, \dots, n-1\} \to \{(m, d) : m > 0, m \mid n, d \text{ generates } \langle n/m \rangle \}$ by: $\chi(x) = (\gcd(x, n), x)$.
- $\langle 1 \rangle 2$. χ is injective.
- $\langle 1 \rangle 3$. χ is surjective.

PROOF: Given (m, d) such that d generates $\langle n/m \rangle$ we have $\chi(d) = (m, d)$.

 $\langle 1 \rangle 4$. $n = \sum_{m>0, m|n} \phi(m)$

PROOF: Since $\langle n/m \rangle \cong C_m$ and so has $\phi(m)$ generators.

Proposition 13.26. For any positive integers a and n, we have $n \mid \phi(a^n - 1)$.

PROOF: Since the order of a is n in $(\mathbb{Z}/(a^n-1)\mathbb{Z})^*$. \square

Theorem 13.27 (Euler's Theorem). For any coprime integers a and n we have $a^{\phi(n)} \equiv a \pmod{n}$.

PROOF: Immediate from Lagrange's Theorem.

Proposition 13.28.

$$|\operatorname{Aut}_{\mathbf{Grp}}(C_n)| = \phi(n)$$

PROOF: An automorphism α is determined by $\alpha(1)$ which is any element of order n, and g has order n iff $\gcd(g,n)=1$. \square

Example 13.29.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}) \cong C_2$$

PROOF: The only automorphisms are the identity and multiplication by -1. \square

13.3 Nilpotent Elements

Definition 13.30 (Nilpotent). Let R be a ring and $a \in R$. Then a is nilpotent iff there exists n such that $a^n = 0$.

Proposition 13.31. Let R be a ring and $a, b \in R$. If a and b are nilpotent and ab = ba then a + b is nilpotent.

Proof:

 $\langle 1 \rangle 1$. Pick m and n such that $a^m = b^n = 0$.

 $\langle 1 \rangle 2$. $(a+b)^{m+n} = 0$

PROOF: Since $(a+b)^{m+n} = \sum_{k} \binom{m+n}{k} a^k b^{m+n-k}$ and every term in this sum is 0 since, for every k, either $k \geq m$ or $m+n-k \geq n$.

Proposition 13.32. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$ if and only if m is divisible by all the prime factors of n.

Proof:

- $\langle 1 \rangle 1$. If m is nilpotent then m is divisible by all the prime factors of n.
 - $\langle 2 \rangle 1$. Assume: $m^a \equiv 0 \pmod{n}$
 - $\langle 2 \rangle 2$. For every prime p, if $p \mid n$ then $p \mid m^a$.
 - $\langle 2 \rangle 3$. For every prime p, if $p \mid n$ then $p \mid m$.
- $\langle 1 \rangle 2$. If m is divisible by all the prime factors of n then m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.
 - $\langle 2 \rangle 1$. Assume: m is divisible by all the prime factors of n.
 - $\langle 2 \rangle 2$. Let: a be the largest number such that $p^a \mid n$ for some prime p.
 - $\langle 2 \rangle 3$. For every prime p that divides n we have $p^a \mid m^a$
 - $\langle 2 \rangle 4$. $n \mid m^a$
 - $\langle 2 \rangle 5$. $m^a \equiv 0 \pmod{n}$
 - $\langle 2 \rangle 6$. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

П

Ring Homomorphisms

Definition 14.1 (Ring Homomorphism). Let R and S be rings. A ring homomorphism $\phi: R \to S$ is a rng homomorphism such that $\phi(1) = 1$.

Proposition 14.2. The zero-ring is terminal in Ring.

Proof: Easy.

Proposition 14.3. The ring \mathbb{Z} is initial in Ring.

Proof: Easy.

Proposition 14.4. Let R and S be rings and $\phi: R \to S$ be a rng homomorphism. If ϕ is surjective, then ϕ is a ring homomorphism.

Proof:

$$\langle 1 \rangle 1$$
. Pick $a \in R$ such that $\phi(a) = 1$

$$\langle 1 \rangle 2. \ \phi(1) = 1$$

Proof:

$$\phi(1) = \phi(1)\phi(a)$$

$$= \phi(1a)$$

$$= \phi(a)$$

$$= 1$$

Example 14.5. For any set S we have $\mathcal{P}S \cong (\mathbb{Z}/2\mathbb{Z})^S$ in Ring with the isomorphism

$$\phi: \mathcal{P}S \cong (\mathbb{Z}/2\mathbb{Z})^S$$

$$\phi(A)(s) = \begin{cases} 1 & \text{if } s \in A \\ 0 & \text{if } s \notin A \end{cases}$$

Example 14.6. The function $\mathbb{H} \to \mathfrak{gl}_4(\mathbb{R})$ that maps a + bi + cj + dk to

$$\begin{pmatrix}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{pmatrix}$$

is a monomorphism in **Ring**, as is the function $\mathbb{H} \to \mathfrak{sl}_2(\mathbb{C})$ that maps a+bi+cj+dk to

$$\left(\begin{array}{cc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right) .$$

Proposition 14.7. Ring homomorphisms preserve units.

PROOF: If uv = 1 then $\phi(u)\phi(v) = 1$.

Proposition 14.8. Let $\phi: R \to S$ be a ring homomorphism. Then the following are equivalent.

- 1. ϕ is a monomorphism.
- 2. $\ker \phi = \{0\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is a monomorphism.
 - $\langle 2 \rangle 2$. Let: $r \in \ker \phi$
 - $\langle 2 \rangle 3$. Let: ev $_r: \mathbb{Z}[x] \to R$ be the unique ring homomorphism such that ev $_r(x) = r$.
 - $\langle 2 \rangle$ 4. Let: ev₀ : $\mathbb{Z}[x] \to R$ be the unique ring homomorphism such that ev₀(x) = 0.
 - $\langle 2 \rangle 5. \ \phi \circ \text{ev}_r = \phi \circ \text{ev}_0$
 - $\langle 2 \rangle 6$. $ev_r = ev_0$
 - $\langle 2 \rangle 7. \ r = 0$
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

Proof: Proposition 7.20.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

П

Example 14.9. It is not true that every epimorphism in **Ring** is surjective. The inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism but not surjective.

The same example shows that a ring homomorphism may be a monomorphism and an epimorphism but not be an isomorphism.

Example 14.10.

$$\operatorname{End}_{\mathbf{Ab}}\left(\mathbb{Z}\right)\cong\mathbb{Z}$$

The isomorphism maps any group endomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$ to $\phi(1)$.

14.1. PRODUCTS 147

Example 14.11. The group of units of $\mathrm{End}_{\mathbf{Ab}}\left(G\right)$ is $\mathrm{Aut}_{\mathbf{Ab}}\left(G\right).$

Example 14.12. Let R be a ring. Then the function $\lambda:R\to\operatorname{End}_{\mathbf{Ab}}(R)$ defined by

$$\lambda(a)(b) = ab$$

is a ring monomorphism.

Proof: Easy. \square

14.1 Products

Proposition 14.13. Let R and S be rings. Then $R \times S$ is a ring under componentwise addition and multiplication, and this ring is the product of R and S in Ring.

Proof: Easy.

Subrings

Definition 15.1 (Subring). Let S be a ring. A *subring* of S is a ring R such that R is a subset of S and the inclusion $R \hookrightarrow S$ is a ring homomorphism.

Proposition 15.2. Let R and S be rings. Then R is a subring of S if and only if R is a subset of S, the unit 1 of S is an element of R, and the operations of R are the restrictions of the operations of S to R.

Proof: Easy.

Corollary 15.2.1. The zero ring is not a subring of any non-zero ring.

Proposition 15.3. Let $\phi: R \to S$ be a ring homomorphism. Then $\phi(R)$ is a subring of S.

Proof: Easy.

15.1 Centralizer

Definition 15.4 (Centralizer). Let R be a ring and $a \in R$. The *centralizer* of a is $\{r \in R : ar = ra\}$.

Proposition 15.5. The centralizer of a is a subring of R.

Proof: Easy.

15.2 Center

Definition 15.6 (Center). The *center* of a ring R is $\{x \in R : \forall y \in R.xy = yx\}$.

Proposition 15.7. The center of a ring is a subring.

Proof: Easy. \square

Proposition 15.8. Let R be a ring. The center of $\operatorname{End}_{\mathbf{Ab}}(R)$ is isomorphic to the center of R.

```
Proof:
```

Corollary 15.8.1. If R is a commutative ring then R is isomorphic to the center of $\operatorname{End}_{\mathbf{Ab}}(R)$.

Example 15.9. For n a positive integer we have $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$. Since, for any $\phi \in \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ we have $\phi(m) = m\phi(1)$ and so the whole of $\operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ is the image of λ .

Monoid Rings

Definition 16.1 (Monoid Ring). Let R be a ring and M a monoid. Define R[M] to be the ring whose elements are the families $\{a_m\}_{m\in M}$ such that $a_m=0$ for all but finitely many $m\in M$, written

$$\sum_{m \in M} a_m m ,$$

under

$$\sum_{m} a_m m + \sum_{m} b_m m = \sum_{m} (a_m + b_m) m$$

$$\left(\sum_{m} a_m m\right) \left(\sum_{m} b_m m\right) = \sum_{m \in M} \sum_{m_1 m_2 = m} a_{m_1} b_{m_2} m$$

Example 16.2. Ring homomorphisms do not necessarily preserve zero-divisors. The canonical homomorphism $\pi: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ maps the non-zero-divisor 2 to a zero-divisor.

16.1 Polynomials

Definition 16.3 (Polynomial). Let R be a ring. The ring of polynomials R[x] is $R[\mathbb{N}]$. We write

$$\sum_{n} a_n x^n \text{ for } \sum_{n} a_n n .$$

Concretely, a polynomial in R is a sequence (a_n) in R such that there exists N such that $\forall n \geq N.a_n = 0$. We write the polynomial as

$$\sum_{n=0}^{N-1} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} .$$

We write R[x] for the set of all polynomials in R.

Define addition and multiplication on R[x] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

A constant is a polynomial of the form $a + 0x + 0x^2 + \cdots$ for some $a \in R$. We write $R[x_1, \dots, x_n]$ for $R[x_1][x_2] \cdots [x_n]$.

Proposition 16.4. For any ring R, the set of polynomials R[x] is a ring.

Proof: Easy. \square

Definition 16.5 (Degree). The *degree* of a polynomial $\sum_n a_n x^n$ is the largest integer d such that $a_d \neq 0$. We take the degree of the zero polynomial to be $-\infty$.

Proposition 16.6. Let R be a ring and $f,g \in R[x]$ be nonzero polynomials. Then

$$deg(f+g) \le max(deg f, deg g)$$
.

PROOF: If $a_n + b_n \neq 0$ then $a_n \neq 0$ or $b_n \neq 0$. \square

Proposition 16.7. The function $i: n \to \mathbb{Z}[x_1, \ldots, x_n]$ that maps k to x_k is initial in the category with:

- objects all pairs $j: n \to R$ where R is a commutative ring and j a function
- morphisms $\phi:(j_1,R_1)\to (j_2,R_2)$ are ring homomorphisms $\phi:R_1\to R_2$ such that $\phi\circ j_1=j_2$.

PROOF: The unique morphism $(i, \mathbb{Z}[x_1, \dots, x_n]) \to (j, R)$ maps a polynomial p to $p(j(0), j(1), \dots, j(n-1))$. \square

Proposition 16.8. Let $\alpha: R \to S$ be a ring homomorphism. Let $s \in S$ commute with $\alpha(r)$ for all $r \in R$. Then there exists a unique ring homomorphism $\overline{\alpha}: R[x] \to S$ such that $\overline{\alpha}(x) = s$ and the following diagram commutes:

PROOF: The map $\overline{\alpha}$ is given by $\overline{\alpha}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = \alpha(a_0) + \alpha(a_1)s + \alpha(a_2)s^2 + \dots + \alpha(a_n)s^n$.

Definition 16.9. Let R be a commutative ring. Given a polynomial $p \in R[x]$, the polynomial function $p: R \to R$ is the function given by: $p(r) = \alpha_r(p)$, where $\alpha_r: R[x] \to R$ is the unique ring homomorphism such that the following diagram commutes.

$$R[x] \xrightarrow{\alpha_r} R$$

$$x \uparrow \qquad r \downarrow$$

Proposition 16.10. $\mathbb{Z}[x,y]$ is the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in the category of commutative rings.

PROOF: Given ring homomorphisms $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$, the required morphism $\mathbb{Z}[x,y] \to R$ maps p(x,y) to p(f(x),g(y)). \sqcup

Example 16.11. $\mathbb{Z}[x,y]$ is not the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in Ring. Given $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$ with $f(x) \neq g(y)$, the mediating morphism $\mathbb{Z}[x,y] \to R$ cannot exist since it must map xy to both f(x)g(y) and g(y)f(x).

Definition 16.12. A polynomial is *monic* iff its last non-zero coefficient is 1.

Proposition 16.13. A monic polynomial is not a left- or right-zero-divisor.

Proof: Easy.

Proposition 16.14. Let R be a ring. Let $f, g \in R[x]$ with f monic. Then there exist unique polynomials $q, r \in R[x]$ with deg $r < \deg f$ such that

$$g = qf + r$$
.

Proof:

 $\langle 1 \rangle 1$. Let: $d = \deg f$

 $\langle 1 \rangle 2$. For all $a \in R$ and n > d, there exists $h \in R[x]$ with $\deg h < n$ such that $ax^n = ax^{n-d}f + h$.

PROOF: Take $h = ax^n - ax^{n-d}f$.

 $\langle 1 \rangle 3$. For all $a \in R$ and n > d, there exists $q, h \in R[x]$ with deg $h \leq d$ such that $ax^n = qf + h$.

PROOF: Repeating $\langle 1 \rangle 2$ by induction.

 $\langle 1 \rangle 4$. Let: $g = \sum_{i=0}^{n} a_i x^i$ $\langle 1 \rangle 5$. For i > d, Pick $q_i h_i \in R[x]$ with $\deg h < \deg f$ such that $a_i x^i = q_i f + h_i$

 $\langle 1 \rangle 6.$ $g = \left(\sum_{i=d+1}^{n} q_i\right) f + \sum_{i=d+1}^{n} h_i$ $\langle 1 \rangle 7.$ q and r are unique.

PROOF: If $q_1f + r_1 = q_2f + r_2$ then $r_1 - r_2 = (q_2 - q_1)f$ and so $r_1 - r_2 =$ $(q_2 - q_1)f = 0$ since $\deg(r_1 - r_2) < \deg f$.

Laurent Polynomials 16.2

Definition 16.15 (Laurent Polynomial). Let R be a ring. The ring of Laurent polynomials is the group ring $R[\mathbb{Z}]$. We write $\sum_{n\in\mathbb{Z}} a_n x^n$ for $\sum_n a_n n$.

16.3 Power Series

Definition 16.16 (Power Series). Let R be a ring. A power series in R is a sequence (a_n) in R. We write the power series as

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots .$$

We write R[[x]] for the set of all power series in R. Define addition and multiplication on R[[x]] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

Proposition 16.17. For any ring R, the set of power series R[[x]] is a ring.

Proof: Easy.

Proposition 16.18. A power series $\sum_n a_n x^n$ is a unit in R[[x]] if and only if a_0 is a unit in R.

Proof:

 $\langle 1 \rangle 1$. If $\sum_n a_n x^n$ is a unit then a_0 is a unit. $\langle 2 \rangle 1$. Let: $\sum_n b_n x^n$ be the inverse of $\sum_n a_n x^n$.

 $\langle 2 \rangle 2$. $a_0 b_0 = b_0 a_0 = 1$

 $\langle 1 \rangle 2$. If a_0 is a unit then $\sum_n a_n x^n$ is a unit. PROOF: Define the sequence (b_n) in R by

$$b_n = -a_0^{-1} \sum_{i=1}^{n} a_i b_{n-1}$$

 $b_n = -{a_0}^{-1} \sum_{i=1}^n a_i b_{n-i}$ Then $\sum_n b_n x^n$ is the inverse of $\sum_n a_n x^n$.

Ideals

Definition 17.1 (Left-Ideal). Let R be a ring.

A subgroup I of R is a *left-ideal* iff, for all $r \in R$, we have $rI \subseteq I$.

A subgroup I of R is a right-ideal iff, for all $r \in R$, we have $Ir \subseteq I$.

A subgroup I of R is a (two-sided) ideal iff it is a left-ideal and a right-ideal.

Example 17.2. Let R be a ring and $a \in R$. Then Ra is a left-ideal and aR is a right-ideal.

In particular, {0} is always a two-sided ideal.

Example 17.3. Let S be a set and $T \subseteq S$. Then $\{X \in \mathcal{P}S : X \subseteq T\}$ is an ideal in $\mathcal{P}S$.

Proposition 17.4. Let S be a finite set. Then every ideal in $\mathcal{P}S$ is of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$.

Proof:

```
\langle 1 \rangle 1. Let: I be an ideal in \mathcal{P}S.
```

 $\langle 1 \rangle 2$. Let: $T = \bigcup I$

 $\langle 1 \rangle 3$. For all $i \in T$ we have $\{i\} \in I$.

 $\langle 2 \rangle 1$. Let: $i \in T$

 $\langle 2 \rangle 2$. Pick $X \in I$ such that $i \in X$

 $\langle 2 \rangle 3. \ \{i\} = \{i\} \cap X \in I$

 $\langle 1 \rangle 4$. For all $X \subseteq T$ we have $X \in I$.

PROOF: If $X = \{x_1, ..., x_n\}$ then $X = \{x_1\} + \cdots + \{x_n\} \in I$.

Example 17.5. If S is an infinite set, then there is always an ideal in $\mathcal{P}S$ that is not of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$, namely the set of all finite subsets of S.

Proposition 17.6. Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then $\phi(J)$ is an ideal in S.

Proof:

- $\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } j \in J \text{ and } s \in S \\ & \text{Prove: } s\phi(j), \phi(j)s \in \phi(J) \\ \langle 1 \rangle 2. & \text{Pick } r \in R \text{ such that } \phi(r) = s \\ \langle 1 \rangle 3. & rj, jr \in J \\ \langle 1 \rangle 4. & s\phi(j), \phi(j)s \in \phi(J) \\ & \square \end{array}$
- **Example 17.7.** We cannot remove the hypothesis that ϕ is surjective. Let $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$ be the inclusion. Then $i(2\mathbb{Z}) = 2\mathbb{Z}$ is not an ideal in \mathbb{Q} .

Proposition 17.8. Let $\phi: R \to S$ be a ring homomorphism and I a (left-right-)ideal in S. Then $\phi^{-1}I$ is a (left-, right-)ideal in R.

Proof: Easy.

Corollary 17.8.1. Let $\phi: R \to S$ be a ring homomorphism. Then $\ker \phi$ is an ideal in R.

Definition 17.9 (Quotient Ring). Let I be an ideal in R. The quotient ring R/I is the quotient group R/I under

$$(a+I)(b+I) = ab+I .$$

This is well-defined as, if a + I = a' + I and b + I = b' + I then

$$a - a' \in I$$

$$b - b' \in I$$

$$\therefore ab - a'b \in I$$

$$a'b - a'b' \in I$$

$$\therefore ab - a'b' \in I$$

Proposition 17.10. Let I be an ideal in R. Then the canonical group homomorphism $\pi: R \to R/I$ is a ring homomorphism.

Proof: By construction. \square

Proposition 17.11. Let I be an ideal in a ring R. For every ring homomorphism $\phi: R \to S$ such that $I \subseteq \ker \phi$, there exists a unique ring homomorphism $\overline{\phi}: R/I \to S$ such that the following diagram commutes.

Proof: Easy. \square

Corollary 17.11.1. Every ring homomorphism $\phi: R \to S$ decomposes as follows.

Corollary 17.11.2 (First Isomorphism Theorem). Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Then

$$S \cong R/\ker \phi$$
.

Theorem 17.12 (Third Isomorphism Theorem). Let I and J be ideals in R with $I \subseteq J$. Then J/I is an ideal in R/I, and

$$\frac{R/I}{J/I} \cong R/J$$

PROOF: Since the function $R/I \to R/J$ that maps r+I to r+J is a surjective ring homomorphism with kernel J/I. \square

Corollary 17.12.1. Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then

$$\frac{S}{\phi(J)}\cong \frac{R}{\ker S+J}$$

Proposition 17.13. Let R be a ring and J an ideal in $\mathfrak{gl}_n(R)$. Let $A \in \mathfrak{gl}_n(R)$. Then $A \in J$ if and only if the matrices obtained by placing any entry of A in any position and zeros elsewhere all belong to J.

PROOF: Each such matrix can be obtained by pre- and post-multiplying A by matrices which have a single 1 and 0s elsewhere. Conversely, A is a sum of such matrices. \square

Corollary 17.13.1. Let R be a ring. Let J be an ideal in $\mathfrak{gl}_n(R)$. Let I be the set of all entries of elements of J. Then I is an ideal in R, and J is the set of all matrices whose entries are in I.

Proposition 17.14. Let R be a ring. Let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a family of ideals in R.

$$\sum_{\alpha \in A} I_\alpha = \{ \sum_{\alpha \in A} r_\alpha : \forall \alpha. r_\alpha \in I_\alpha, r_\alpha = 0 \text{ for all but finitely many } \alpha \in A \} \ .$$

Then $\sum_{\alpha \in A} I_{\alpha}$ is an ideal, and is the smallest ideal that includes every I_{α} .

Proof: Easy. \square

Proposition 17.15. The intersection of a set of ideals is an ideal.

Proof: Easy. \square

17.1 Characteristic

Definition 17.16 (Characteristic). The *characteristic* of a ring R is the nonnegative integer n such that $n\mathbb{Z}$ is the kernel of the unique ring homomorphism $\mathbb{Z} \to R$.

Proposition 17.17. Let R be a ring. If the unit 1 has finite order in R, then its order is the characteristic of R; otherwise, the characteristic of R is 0.

Proof: Easy. \square

Example 17.18. The zero ring is the only ring with characteristic 1.

17.2 Nilradical

Definition 17.19 (Nilradical). Let R be a commutative ring. The *nilradical* of R is the set of all nilpotent elements.

Proposition 17.20. Let R be a commutative ring. The nilradical of R is an ideal in R.

PROOF: If $a^n = 0$ then for any b we have $(ba)^n = 0$. \square

Example 17.21. We cannot remove the assumption that R is commutative. In $\mathfrak{gl}_2(\mathbb{R})$ we have that $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent but $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is not.

17.3 Principal Ideals

Definition 17.22 (Principal Ideal). Let R be a commutative ring and $a \in R$. The *principal ideal* generated by a is (a) = Ra = aR.

Example 17.23. $\{0\} = (0)$ and $R = \{1\}$ are principal ideals.

Definition 17.24. Let R be a commutative ring and $\{a_{\alpha}\}_{{\alpha}\in A}$ be a family of elements of R. The *ideal generated by the elements* a_{α} is

$$(a_{\alpha})_{\alpha \in A} := \sum_{\alpha \in A} (a_{\alpha})$$
.

An ideal is *finitely generated* iff it is generated by a finite family of elements.

Definition 17.25. Let R be a commutative ring and I, J be ideals in R. Then IJ is the ideal generated by $\{ij\}_{i\in I, j\in J}$.

Proposition 17.26.

$$IJ \subseteq I \cap J$$

Proof: Easy.

Proposition 17.27. Let R be a commutative ring. Let I and J be ideals in R. If I + J = R then $IJ = I \cap J$.

Proof:

- $\langle 1 \rangle 1$. Let: $r \in I \cap J$
- $\langle 1 \rangle 2$. Pick $i \in I$ and $j \in J$ such that i + j = 1.
- $\langle 1 \rangle 3. \ ri, rj \in IJ$
- $\langle 1 \rangle 4. \ r = ri + rj \in IJ$

Proposition 17.28. Let R be a commutative ring. Let $f \in R[x]$ be a monic polynomial of degree d. Then the function

$$\phi: R[x] \to R^{\oplus d}$$

that sends a polynomial g to the remainder of the division of g by f induces an isomorphism of Abelian groups

$$\frac{R[x]}{(f(x))} \cong R^{\oplus d} \ .$$

PROOF: It is clearly a group homomorphism; it is surjective since it maps any polynomial of degree < d to itself, and its kernel is (f(x)) since these are the polynomials with remainder 0. \square

Corollary 17.28.1. Let R be a commutative ring and $a \in R$. Then we have

$$\frac{R[x]}{(x-a)} \cong R$$

Proof:

- $\langle 1 \rangle 1$. Let: $\phi : R[x] \to R$ be evaluation at a.
- $\langle 1 \rangle 2$. $\phi(g)$ is the remainder when dividing g by x a.

PROOF: If g = (x - a)q + r then g(a) = (a - a)q(a) + r = r.

 $\langle 1 \rangle 3$. ϕ induces a group isomorphism $R[x]/(x-a) \cong R$

PROOF: By the theorem.

 $\langle 1 \rangle 4$. This isomorphism is a ring isomorphism.

PROOF: Since evaluation at a is a ring homomorphism.

Example 17.29. We have

$$\frac{\mathbb{R}[x]}{(x^2+1)} \cong \mathbb{C}$$

as rings.

17.4 Maximal Ideals

Definition 17.30 (Maximal Ideal). Let R be a ring and I an ideal in R. Then I is a maximal ideal iff $I \neq R$ and, whenever J is an ideal with $I \subseteq J$, then either I = J or J = R.

Integral Domains

Definition 18.1 (Integral Domain). An integral domain is a non-trivial commutative ring with no nonzero zero-divisors.

Example 18.2. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are integral domains.

Proposition 18.3. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is prime.

Proof:

$$n$$
 is prime $\Leftrightarrow \forall a, b \in \mathbb{Z}(n \mid ab \Rightarrow n \mid a \lor n \mid b)$
 $\Leftrightarrow \forall a, b \in \mathbb{Z}/n\mathbb{Z}(ab \cong 0 \pmod{n}) \Rightarrow a \cong 0 \pmod{n} \lor b \cong 0 \pmod{n})$
 $\Leftrightarrow \mathbb{Z}/n\mathbb{Z}$ is an integral domain

Proposition 18.4. In an integral domain, if $x^2 = 1$ then $x = \pm 1$.

PROOF: We have
$$x^2 - 1 = (x - 1)(x + 1) = 0$$
 so $x - 1 = 0$ or $x + 1 = 0$.

Proposition 18.5. Let R be an integral domain and $f, g \in R[x]$. Then

$$\deg(fg) = \deg f + \deg g$$

Proof:

- $\langle 1 \rangle 1.$ Let: $f = \sum_n a_n x^n$ and $g = \sum_n b_n x^n.$ $\langle 1 \rangle 2.$ Let: $d = \deg f$ and $e = \deg g.$
- $\langle 1 \rangle 3$. The d + eth term of fg is

$$a_d b_e x^{d+e}$$

which is non-zero.

$$\langle 1 \rangle 4$$
. For $n > d + e$ the *n*th term of fg is 0.

Corollary 18.5.1. Let R be a ring. Then R[x] is an integral domain if and only if R is an integral domain.

Proposition 18.6. Let R be a ring. Then R[[x]] is an integral domain if and only if R is an integral domain.

Proof:

 $\langle 1 \rangle 1$. If R[[x]] is an integral domain then R is an integral domain. Proof: Easy.

 $\langle 1 \rangle 2$. If R is an integral domain then R[[x]] is an integral domain.

 $\langle 2 \rangle 1$. Assume: R is an integral domain.

$$\langle 2 \rangle 2$$
. Let: $(\sum_n a_n x^n) (\sum_n b_n x^n) = 0$
 $\langle 2 \rangle 3$. $a_0 b_0 = 0$

 $\langle 2 \rangle 4$. $a_0 = 0$ or $b_0 = 0$

 $\langle 2 \rangle$ 5. Assume: w.l.o.g. $b_0 \neq 0$ PROVE: For all n we have $a_n = 0$

 $\langle 2 \rangle 6$. Assume: as induction hypothesis $a_0 = a_1 = \cdots = a_{n-1} = 0$

 $\langle 2 \rangle 7. \sum_{i=0}^{n} a_i b_{n-i} = 0$

 $\langle 2 \rangle 8. \ \overrightarrow{a_n b_0} = 0$

 $\langle 2 \rangle 9. \ a_n = 0$

Proposition 18.7. Let R be a ring and S an integral domain. Every rng homomorphism $\phi: R \to S$ is a ring homomorphism.

Proof:

$$\phi(1) = \phi(1 \cdot 1)$$
$$= \phi(1)\phi(1)$$

and so $\phi(1) = 1$ by Cancellation. \square

Proposition 18.8. The characteristic of an integral domain is either 0 or a prime number.

Proof:

 $\langle 1 \rangle 1$. Let: D be an integral domain.

 $\langle 1 \rangle 2$. Let: n be the characteristic of D

 $\langle 1 \rangle 3$. Assume: $n \neq 0$

 $\langle 1 \rangle 4$. Assume: n = ab

 $\langle 1 \rangle 5$. ab = 0 in D

 $\langle 1 \rangle 6$. a = 0 or b = 0 in D

 $\langle 1 \rangle 7$. $n \mid a \text{ or } n \mid b$

 $\langle 1 \rangle 8$. One of a, b is 1 and the other is n.

Prime Ideals 18.1

Definition 18.9 (Prime Ideal). Let I be an ideal in a commutative ring R. Then I is a prime ideal iff R/I is an integral domain.

Example 18.10. Let R be a commutative ring and $a \in R$. Then (x - a) is a prime ideal in R iff R is an integral domain.

Proposition 18.11. Let R be a commutative ring and I a proper ideal in R. Then I is prime iff, whenever $ab \in I$, then $a \in I$ or $b \in I$.

PROOF: The condition is the same as saying that, if (a+I)(b+I)=I, then a+I=I or b+I=I. \square

Definition 18.12 (Spectrum). The *spectrum* of a commutative ring R, Spec R, is the set of prime ideals.

Proposition 18.13. Let $\phi: R \to S$ be a ring homomorphism. If I is a prime ideal in S then $\phi^{-1}(I)$ is a prime ideal in R.

PROOF:If $ab \in \phi^{-1}(I)$ then $\phi(a)\phi(b) \in I$ so either $\phi(a) \in I$ or $\phi(b) \in I$, i.e. either $a \in \phi^{-1}(I)$ or $b \in \phi^{-1}(I)$. \square

Proposition 18.14. Let R be a commutative ring. Suppose there exists a prime ideal P in R such that the only zero-divisor in P is 0. Then R is an integral domain.

Proof:

```
\langle 1 \rangle 1. Assume: ab = 0 in R \langle 1 \rangle 2. ab \in P \langle 1 \rangle 3. a \in P or b \in P \langle 1 \rangle 4. a = 0 or b = 0
```

Proposition 18.15. Let R be a commutative ring. The nilradical of R is included in every prime ideal of R.

PROOF: Let P be a prime ideal. If $a^n = 0$ then $a^n \in P$ hence $a \in P$. \square

Definition 18.16 (Krull Dimension). The (Krull) dimension of a commutative ring R is the length of the longest chain of prime ideals in R.

Example 18.17. $\mathbb{Z}[x]$ has Krull dimension 2.

Unique Factorization Domains

Example 19.1. \mathbb{Z} is a UFD.

Principal Ideal Domains

Definition 20.1 (Principal Ideal Domain). A commutative ring is a *principal ideal domain (PID)* iff every ideal is principal.

Example 20.2. \mathbb{Z} is a PID by Proposition 7.16.

Example 20.3. $\mathbb{Z}[x]$ is not a PID. The ideal (2, x) is not principal.

Proposition 20.4. Every nonzero prime ideal in a PID is maximal.

```
Proof:
\langle 1 \rangle 1. Let: R be a PID.
\langle 1 \rangle 2. Let: I be a nonzero prime ideal in R.
\langle 1 \rangle 3. Pick a \in R such that I = (a).
\langle 1 \rangle 4. Let: J be an ideal such that I \subseteq J
\langle 1 \rangle 5. Pick b \in R such that J = (b).
\langle 1 \rangle 6. Pick t \in R such that a = bt.
\langle 1 \rangle 7. \ b \in I \text{ or } t \in I
\langle 1 \rangle 8. Case: b \in I
   PROOF: Then J \subseteq I so I = J.
\langle 1 \rangle 9. Case: t \in I
    \langle 2 \rangle 1. PICK s \in R such that t = as.
   \langle 2 \rangle 2. a = ast
   \langle 2 \rangle 3. \ st = 1
       PROOF: Since R is an integral domain.
    \langle 2 \rangle 4. \ 1 \in I
    \langle 2 \rangle 5. \ I = R
```

Corollary 20.4.1. Any PID has Krull dimension 1.

Euclidean Domains

Example 21.1. \mathbb{Z} is a Euclidean domain.

Division Rings

Definition 22.1 (Division Ring). A division ring is a ring in which every nonzero element is a two-sided unit.

Example 22.2. The quaternions form a division ring, with the inverse of a non-zero element a + bi + cj + dk being

$$\frac{1}{a^2 + b^2 + c^2 + d^2}(a - bi - cj - dk) \ .$$

Example 22.3. For any ring R, the ring of polynomials R[x] is not a division ring, since x has no inverse.

Proposition 22.4. Every centralizer in a division ring is a division ring.

PROOF: If ar = ra then $ra^{-1} = a^{-1}r$. \square

Proposition 22.5. A non-trivial ring R is a division ring if and only if its only left-ideals and right-ideals are $\{0\}$ and R.

Proof:

- $\langle 1 \rangle 1.$ If R is a division ring then the only left-ideals and right-ideals are $\{0\}$ and R
 - $\langle 2 \rangle 1$. Assume: R is a division ring.
 - $\langle 2 \rangle 2$. The only left-ideals are $\{0\}$ and R.
 - $\langle 3 \rangle 1$. Let: I be a left-ideal that is not $\{0\}$. Prove: I = R
 - Thove. I = It
 - $\langle 3 \rangle 2$. Pick $a \in I \{0\}$
 - $\langle 3 \rangle 3$. PICK a left inverse b for a
 - $\langle 3 \rangle 4. \ 1 \in I$

PROOF: Since 1 = ba.

 $\langle 3 \rangle 5. I = R$

PROOF: For any $r \in R$ we have $r = r1 \in I$.

 $\langle 2 \rangle 3$. The only right-ideals are $\{0\}$ and R.

PROOF: Similar.

 $\langle 1 \rangle 2.$ If the only left-ideals and right-ideals are $\{0\}$ and R then R is a division ring. \Box

Proposition 22.6. Let K be a division ring and R a non-trivial ring. Every ring homomorphism $K \to R$ is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $\phi : K \to R$ be a ring homomorphism.
 - Prove: $\ker \phi = \{0\}$
- $\langle 1 \rangle 2$. Let: $x \in \ker \phi$
- $\langle 1 \rangle 3$. Assume: for a contradiction $x \neq 0$.
- $\langle 1 \rangle 4. \ \phi(xx^{-1}) = 1$
- $\langle 1 \rangle 5. \ 0 = 1$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the assumption that R is non-trivial.

Simple Rings

Definition 23.1 (Simple Ring). A non-trivial ring is R simple iff its only two-sided ideals are $\{0\}$ and R.

Example 23.2. For any simple ring R we have $\mathfrak{gl}_n(R)$ is simple, by Corollary 17.13.1.

Proposition 23.3. Let R be a ring and I an ideal in R. Then I is maximal iff R/I is simple.

Proof:

```
R/I is simple \Leftrightarrow the only ideals in R/I are \{I\} and R/I \Leftrightarrow the only ideals in R that include I are I and R \Leftrightarrow I is maximal
```

173

Reduced Rings

Definition 24.1 (Reduced Ring). A ring is *reduced* iff it has no non-zero nilpotent elements.

Proposition 24.2. Let R be a commutative ring. Let N be its nilradical. Then R/N is reduced.

Proof:

```
\langle 1 \rangle 1. Let: r+N be nilpotent. \langle 1 \rangle 2. Pick n such that (r+N)^n=N \langle 1 \rangle 3. r^n \in N \langle 1 \rangle 4. Pick k such that (r^n)^k=0 \langle 1 \rangle 5. r^{nk}=0 \langle 1 \rangle 6. r \in N \langle 1 \rangle 7. r+N=N
```

Proposition 24.3. Let R be a commutative ring. Let I and J be ideals in R. If R/IJ is reduced then $IJ = I \cap J$.

Proof:

```
\begin{split} \langle 1 \rangle 1. & \text{ Let: } r \in I \cap J \\ & \text{ Prove: } r \in IJ \\ \langle 1 \rangle 2. & r^2 \in IJ \\ \langle 1 \rangle 3. & (r+IJ)^2 = IJ \\ \langle 1 \rangle 4. & r+IJ = IJ \\ & \text{ Proof: Since } R/IJ \text{ is reduced.} \\ \langle 1 \rangle 5. & r \in IJ \\ & \Box \end{split}
```

Boolean Rings

Definition 25.1 (Boolean). A ring is *Boolean* iff $a^2 = a$ for every element a.

Example 25.2. For any set S, the ring PS is Boolean.

Proposition 25.3. Every non-trivial Boolean ring has characteristic 2.

PROOF: We have 4 = 2 and so 2 = 0. \square

Proposition 25.4. Every Boolean ring is commutative.

Proof:

$$(a+b)^2 = a+b$$

$$\therefore a^2 + ab + ba + b^2 = a+b$$

$$\therefore a + ab + ba + b = a+b$$

$$\therefore ab + ba = 0$$

$$\therefore ab = -ba$$

$$= ba$$
(Proposition 25.3)

Example 25.5. The only Boolean integral domain is $\mathbb{Z}/2\mathbb{Z}$. For, if D is a Boolean integral domain and $x \in D$, we have $x^2 = x$, so $x^2 - x = x(x - 1) = 0$ and so x = 0 or x = 1, i.e. $D = \{0, 1\}$.

Proposition 25.6. Every Boolean ring has Krull dimension 0.

Proof:

- $\langle 1 \rangle 1$. Let: R be a Boolean ring.
- $\langle 1 \rangle 2$. Let: I be a prime ideal in R. Prove: I is maximal.
- $\langle 1 \rangle 3$. Let: J be an ideal with $I \subseteq J$
- $\langle 1 \rangle 4$. Pick $a \in J$ with $a \notin I$
- $\langle 1 \rangle 5$. $a^2 a = 0 \in I$
- $\langle 1 \rangle 6. \ a(a-1) \in I$

$$\begin{array}{l} \langle 1 \rangle 7. \ a-1 \in I \\ \langle 1 \rangle 8. \ a-1 \in J \\ \langle 1 \rangle 9. \ 1 \in J \\ \langle 1 \rangle 10. \ J=R \\ \Box \end{array}$$

Modules

Definition 26.1 (Left Module). Let R be a ring and M an Abelian group. A left-action of R on M is a ring homomorphism

$$R \to \operatorname{End}_{\mathbf{Ab}}(M)$$
.

A left R-module consists of an Abelian group M and a left-action of R on M.

Proposition 26.2. Let R be a ring and M an Abelian group. Let $\cdot : R \times M \to M$. Then \cdot defines a left-action of R on M if and only if, for all $r, s \in R$ and $m, n \in M$:

- r(m+n) = rm + rn
- (r+s)m = rm + sm
- (rs)m = r(sm)
- 1m = m

PROOF: Immediate from definitions.

Proposition 26.3. In any R-module M we have 0m = 0 for all $m \in M$.

PROOF: Since 0m = (0+0)m = 0m + 0m and so 0m = 0 by cancellation in M.

Proposition 26.4. In any R-module M we have (-1)m = -m for all $m \in M$.

PROOF: Since m + (-1)m = 1m + (-1)m = (1 + (-1))m = 0m = 0.

Proposition 26.5. Every Abelian group is a \mathbb{Z} -module in exactly one way.

Proof: Since \mathbb{Z} is initial in Ring. \square

Definition 26.6 (Right Module). Let R be a ring. A right R-module consists of an Abelian group M and a function $\cdot: M \times R \to M$ such that, for all $r, s \in R$ and $m, n \in M$:

- (m+n)r = mr + nr
- m(r+s) = mr + ms
- m(rs) = (mr)s
- m1 = m

26.1 Homomorphisms

Definition 26.7 (Homomorphism of Left-Modules). Let R be a ring. Let M and N be left-R-modules. A homomorphism of left-R-modules $\phi: M \to N$ is a group homomorphism such that, for all $r \in R$ and $m \in M$, we have $\phi(rm) = r\phi(m)$.

Let $R-\mathbf{Mod}$ be the category of left-R-modules and left-R-module homomorphisms.

Example 26.8.

$$\mathbb{Z} - \mathbf{Mod} \cong \mathbf{Ab}$$

Example 26.9. The trivial group 0 is the zero object in $R - \mathbf{Mod}$.

Proposition 26.10. Every bijective R-module homomorphism is an isomorphism.

Proof: Easy. \square

Proposition 26.11. Let R be a ring. Let M be an R-module. Then

$$M \cong R - \mathbf{Mod}[R, M]$$

as R-modules.

PROOF: The isomorphism maps m to the function $\lambda r.rm$. Its inverse maps an R-module homomorphism α to $\alpha(1)$. \square

Proposition 26.12. Let R be a commutative ring. Let M be an R-module. Then there is a bijection between the set of R[x]-module structures on M that extend the given R-module structure and $\operatorname{End}_{R-\operatorname{\mathbf{Mod}}}(M)$.

Proof:

- $\langle 1 \rangle 1$. Let: $\alpha : R \to \operatorname{End}_{\mathbf{Ab}}(M)$ be the given R-module structure on M.
- $\langle 1 \rangle$ 2. An R[x]-module structure on M that extends α is a ring homomorphism $\beta: R[x] \to \operatorname{End}_{\mathbf{Ab}}(M)$ such that $\beta \circ i = \alpha$, where i is the inclusion $R \to R[x]$.
- $\langle 1 \rangle$ 3. There is a bijection between the R[x]-module structures on M that extend α and the elements $s \in \operatorname{End}_{\mathbf{Ab}}(M)$ that commute with $\alpha(r)$ for all $r \in R$. PROOF: By the universal property for polynomials.
- $\langle 1 \rangle 4$. There is a bijection between the R[x]-module structures on M that extend α and the R-module homomorphisms $(M, \alpha) \to (M, \alpha)$.

П

Proposition 26.13. Let R be a commutative ring. Let M and N be R-modules. Then $R - \mathbf{Mod}[M, N]$ is an R-module under

$$(\phi + \psi)(m) = \phi(m) + \psi(m)$$
$$(r\phi)(m) = r\phi(m)$$

Proof: Easy.

Proposition 26.14. *Let* R *be an integral domain. Let* I *be a nonzero principal ideal of* R. Then $I \cong R$ in $R - \mathbf{Mod}$.

Proof:

 $\langle 1 \rangle 1$. PICK $a \in R$ such that I = (a).

 $\langle 1 \rangle 2$. Let: $\phi : R \to I$ be the map $\phi(r) = ra$.

 $\langle 1 \rangle 3$. ϕ is an *R*-module homomorphism.

PROOF: Since (r+s)a = ra + sa and (rs)a = r(sa).

 $\langle 1 \rangle 4$. ϕ is surjective.

 $\langle 1 \rangle 5$. ϕ is injective.

PROOF: If ra = sa then (r - s)a = 0 so r - s = 0 and r = s.

 $\langle 1 \rangle 6. \ \phi : R \cong I$

Ò

26.2 Submodules

Definition 26.15 (Submodule). Let M be a left-R-module and $N \subseteq M$. Then N is a submodule of M iff N is a subgroup of M and $\forall r \in R. \forall n \in N. rn \in N$.

Proposition 26.16. Let R be a ring and $I \subseteq R$. Then I is a left-ideal in R iff I is a submodule of R as an R-module.

Proof: Immediate from definitions.

Proposition 26.17. Let R be a ring. Let M and N be left-R-modules and $\phi: M \to N$ an R-module homomorphism. Then $\ker \phi$ is a submodule of M and $\operatorname{im} \phi$ is a submodule of N.

Proof: Easy.

Proposition 26.18. Let R be a commutative ring. Let M be a left-R-module. Let $r \in R$. Then $rM = \{rm : m \in M\}$ is a submodule of M.

Proof: Easy.

Proposition 26.19. Let R be a ring. Let M be a left-R-module. Let I be a left-ideal in R. Then $IM = \{rm : r \in I, m \in M\}$ is a submodule of M.

Proof:

- $\langle 1 \rangle 1$. IM is a subgroup of M.
 - $\langle 2 \rangle 1$. Let: $r, s \in I$ and $m, n \in M$.
 - PROVE: $rm + sn \in IM$ $\langle 2 \rangle 2$. rm + sn = r(m-n) + (s-r)n
- $\langle 1 \rangle$ 2. For all $r \in R$ and $x \in IM$ we have $rx \in IM$.

26.3 Quotient Modules

Definition 26.20 (Quotient Module). Let R be a ring. Let M be a left-R-module. Let N be a submodule of M. Then the quotient module M/N is the quotient group M/N under

$$r(m+N) = rm + N .$$

Proposition 26.21. Let R be a ring. Let M and P be left-R-modules. Let N be a submodule of M. Let $\phi: M \to P$ be an R-module homomorphism. If $N \subseteq \ker \phi$, then there exists a unique R-module homomorphism $\overline{\phi}: M/N \to P$ such that the following diagram commutes.

Proof: Easy. \square

Theorem 26.22. Every R-module homomorphism $\phi: M \to M'$ may be decomposed as:

$$M \longrightarrow M/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow N$$

Proof: Easy.

Corollary 26.22.1 (First Isomorphism Theorem). Let $\phi: M \to M'$ be a surjective R-module homomorphism. Then

$$M' \cong \frac{M}{\ker \phi}$$
.

Proposition 26.23 (Second Isomorphism Theorem). Let R be a ring. Let M be a left-R-module. Let N and P be submodules of M. Then N+P is a submodule of M, $N\cap P$ is a submodule of P, and

$$\frac{N+P}{N} \cong \frac{P}{N \cap P}$$

PROOF: The function that maps P to p+N is a surjective homomorphism $P \to (N+P)/N$ with kernel $N \cap P$. \square

Proposition 26.24 (Third Isomorphism Theorem). Let R be a ring. Let M be a left-R-module. Let N be a submodule of M and P a submodule of N. Then N/P is a submodule of M/P and

$$\frac{M/P}{N/P} \cong \frac{M}{N}$$

PROOF: The canonical map $M \to M/N$ induces a surjective homomorphism $M/P \to M/N$ which has kernel N/P. \square

Proposition 26.25. Let R be a ring. Let M be a left-R-module. The sum and intersection of a family of submodules of M are submodules of M.

Proof: Easy.

26.4 Products

Proposition 26.26. R-Mod has products.

PROOF: Given a family $\{M_{\alpha}\}_{{\alpha}\in A}$ of left-R-modules, we make $\prod_{{\alpha}\in A} M_{\alpha}$ into a left-R-module by

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$
$$(rf)(\alpha) = rf(\alpha)$$

26.5 Coproducts

Proposition 26.27. $R-\mathbf{Mod}$ has coproducts.

PROOF: Given a family $\{M_{\alpha}\}_{\alpha\in A}$ of left-R-modules, take $\bigoplus_{\alpha\in A}M_{\alpha}$ to be $\{f\in\prod_{\alpha\in A}M_{\alpha}:f(\alpha)=0\text{ for all but finitely many }\alpha\in A\}$. \square

26.6 Direct Sum

Definition 26.28 (Direct Sum). Let R be a ring. Let M and N be left-R-modules. Then the direct sum $M \oplus N$ is an R-module under

$$r(m,n) = (rm,rn)$$
.

Proposition 26.29. $M \oplus N$ is the biproduct of M and N in $R - \mathbf{Mod}$.

Proof: Easy.

Example 26.30. Infinite products and coproducts are in general different. We have $\mathbb{Z}^{\mathbb{N}} \ncong \mathbb{Z}^{\oplus \mathbb{N}}$ since $\mathbb{Z}^{\mathbb{N}}$ is uncountable but $\mathbb{Z}^{\oplus \mathbb{N}}$ is countable.

26.7 Kernels and Cokernels

Proposition 26.31. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then $\ker \phi \hookrightarrow M$ is terminal in the category of left-R-module homomorphisms $\alpha: P \to M$ such that $\phi \circ \alpha = 0$.

Proof: Easy. \square

Proposition 26.32. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then $N \to \operatorname{coker} \phi$ is initial in the category of left-R-module homomorphisms $\alpha: N \to P$ such that $\alpha \circ \phi = 0$.

Proof: Easy.

Proposition 26.33. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then the following are equivalent.

- ϕ is a monomorphism.
- $\ker \phi$ is trivial.
- ϕ is injective.

Proof: Easy. \square

Proposition 26.34. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- ϕ is surjective.

Proof: Easy.

Proposition 26.35. Every monomorphism in $R-\mathbf{Mod}$ is the kernel of some homomorphism.

PROOF: If $\phi: M \to N$ is a monomorphism then it is the kernel of $N \twoheadrightarrow N/\operatorname{im} \phi$. \sqcap

Proposition 26.36. Every epimorphism in $R-\mathbf{Mod}$ is the cokernel of some homomorphism.

PROOF: If $\phi: M \to N$ is epi then it is the cokernel of $\ker \phi \hookrightarrow M$. \square

Example 26.37. Monomorphisms do not split in $R-\mathbf{Mod}$. Multiplication by 2 is a monomorphism $\mathbb{Z} \to \mathbb{Z}$ but has no left inverse.

Example 26.38. Epimorphisms do not split in $R-\mathbf{Mod}$. The canonical map $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is an epimorphism without a right inverse.

26.8 Free Modules

Proposition 26.39. Let R be a ring and A a set. Then there exists a left-Rmodule $F^R(A)$ and function $j: A \to F^R(A)$ such that, for any left-R-module M and function $f:A \to M$, there exists a unique left-R-module homomorphism $\overline{f}: F^R(A) \to M$ such that the following diagram commutes.

Proof:

 $\langle 1 \rangle 1$. Let: $R^{\oplus A} = \{ \alpha : A \to R : \alpha(a) = 0 \text{ for all but finitely many } a \in A \}$ under the operations

$$(\alpha + \beta)(a) = \alpha(a) + \beta(a)$$
$$(r\alpha)(a) = r\alpha(a)$$

- $\langle 1 \rangle 2$. $R^{\oplus A}$ is a left-R-module.
- $\langle 1 \rangle 3$. Let: $j: A \to R^{\oplus A}$ be the function

$$j(a)(a') = \begin{cases} 1 & \text{if } a = a' \\ 0 & \text{if } a \neq a' \end{cases}$$

- $\langle 1 \rangle 4.$ Let: M be any left-R -module.

$$\begin{array}{l} \langle 1 \rangle 4. \text{ Let: } M \text{ be any left-}R\text{-module.} \\ \langle 1 \rangle 5. \text{ Let: } \underline{f}: A \to M \text{ be a function.} \\ \langle 1 \rangle 6. \text{ Let: } \overline{f}: R^{\oplus A} \to M \text{ be the function} \\ \overline{f}(\alpha) = \sum_{a \in A, \alpha(a) \neq 0} \alpha(a) f(a) \\ \langle 1 \rangle 7. \ \overline{f} \text{ is a left-}R\text{-module homomorphism.} \end{array}$$

- $\langle 1 \rangle 7$. \overline{f} is a left-R-module homomorphism.
- $\langle 1 \rangle 8. \ \overline{f} \circ j = f$
- $\langle 1 \rangle 9$. \overline{f} is unique.

Definition 26.40. We call $j: A \to F^R(A)$ the free left-R-module over A.

Proposition 26.41. *j* is injective.

PROOF: By the proof of the previous proposition.

Proposition 26.42. Let R be a ring. Let F be a non-zero free left-R-module. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ is onto if and only if, for every left-R-module homomorphism $\alpha: F \to N$, there exists a left-Rmodule homomorphism $\beta: F \to M$ such that the diagram below commutes.

Proof:

- $\langle 1 \rangle 1$. Let: F be the free left-R-module over A with injection $j: A \to F$.
- $\langle 1 \rangle 2$. If ϕ is onto then, for every homomorphism $\alpha : F \to N$, there exists a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$.
 - $\langle 2 \rangle 1$. Assume: ϕ is onto.
 - $\langle 2 \rangle 2$. Let: $\alpha : F \to N$ be a homomorphism.
 - $\langle 2 \rangle 3$. For $a \in A$, Pick $f(a) \in M$ such that $\phi(f(a)) = \alpha(j(a))$
 - $\langle 2 \rangle 4$. Let: $\beta: F \to M$ be the unique homomorphism such that $\beta \circ j = f$
 - $\langle 2 \rangle 5. \ \phi \circ \beta = \alpha$

PROOF: Each is the unique homomorphism such that $\alpha \circ j = \phi \circ f$.

- $\langle 1 \rangle$ 3. If, for every homomorphism $\alpha : F \to N$, there exists a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$, then ϕ is onto.
 - $\langle 2 \rangle$ 1. Assume: For every homomorphism $\alpha: F \to N$ there exists a homomorphism $\beta: F \to M$ such that $\phi \circ \alpha = \beta$.
 - $\langle 2 \rangle 2$. Let: $n \in N$
 - $\langle 2 \rangle 3.$ Let: $\alpha: F \to N$ be the unique homomorphism such that, for all $a \in A,$ we have $\alpha(j(a)) = n$
 - $\langle 2 \rangle 4$. PICK a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$
 - $\langle 2 \rangle$ 5. Pick $a \in A$
- $\langle 2 \rangle 6. \ \phi(\beta(j(a))) = n$

26.9 Generators

Definition 26.43 (Submodule Generated by a Set). Let R be a ring. Let M be a left-R-module. Let A be a subset of M. Let $\phi_A : F^R(A) \to M$ be the unique left-R-module homomorphism such that the following diagram commutes.

The submodule of M generated by A, denoted $\langle A \rangle$, is defined to be im ϕ_A .

Definition 26.44 (Finitely Generated). Let R be a ring. Let M be a left-R-module. Then M is *finitely generated* iff there exists a finite set $A \subseteq M$ such that $M = \langle A \rangle$.

Example 26.45. A submodule of a finitely generated module is not necessarily finitely generated.

Let $R = \mathbb{Z}[x_1, x_2, \ldots]$. Then R is finitely generated as an R-module, but (x_1, x_2, \ldots) is not.

Proposition 26.46. The homomorphic image of a finitely generated module is finitely generated.

Proof: Easy.

Proposition 26.47. Let R be a ring. Let M be a left-R-module. Let N be a submodule of M. If N and M/N are finitely generated then M is finitely generated.

Proof:

- $\langle 1 \rangle 1$. PICK a_1, \ldots, a_n that generate N.
- $\langle 1 \rangle 2$. PICK b_1, \ldots, b_m such that $b_1 + N, \ldots, b_m + N$ generate M/N. PROVE: $a_1, \ldots, a_n, b_1, \ldots, b_m$ generate M.
- $\langle 1 \rangle 3$. Let: $m \in M$
- $\langle 1 \rangle 4$. PICK $r_1, \ldots, r_m \in R$ such that $m + N = r_1 b_1 + \cdots + r_m b_m + N$
- $\langle 1 \rangle 5. \ m r_1 b_1 \dots r_m b_m \in N$
- $\langle 1 \rangle 6$. PICK $s_1, \ldots, s_n \in R$ such that $m r_1 b_1 \cdots r_m b_m = s_1 a_1 + \cdots + s_n a_n$
- $\langle 1 \rangle 7. \ m = r_1 b_1 + \dots + r_m b_m + s_1 a_1 + \dots + s_n a_n$

26.10 Projections

Definition 26.48 (Projection). Let R be a ring. Let M be a left-R-module. Let $p: M \to M$ be a left-R-module homomorphism. Then p is a projection iff $p^2 = p$.

Proposition 26.49. Let R be a ring. Let M be a left-R-module. Let $p: M \to M$ be a projection. Then

$$M \cong \ker p \oplus \operatorname{im} p$$
.

Proof:

- $\langle 1 \rangle 1$. Let: $\phi: M \to \ker p \oplus \operatorname{im} p$ be the map $\phi(m) = (m p(m), p(m))$
- $\langle 1 \rangle 2$. ϕ is a left-R-module homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
- $\langle 1 \rangle 4$. ϕ is surjective.

26.11 Pullbacks

Proposition 26.50. R-Mod has pullbacks.

Proof:

- $\langle 1 \rangle 1$. Let: $\mu: M \to Z$, $\nu: N \to Z$ be left-R-module homomorphisms.
- (1)2. Let: $M \times_Z N = \{(m, n) \in M \times N : \mu(m) = \nu(n)\}$ under (m, n) + (m', n') = (m + m', n + n')

$$r(m,n) = (rm, rn)$$

 $\langle 1 \rangle 3.$ $M \times_Z N$ is the pullback of M and N.

26.12 Pushouts

Proposition 26.51. R-Mod has pushouts.

Proof:

 $\langle 1 \rangle 1.$ Let: $\mu:A \to M$ and $\nu:A \to N$ be left-R-module homomorphisms.

Cyclic Modules

Definition 27.1 (Cyclic Module). Let R be a ring. Let M be a left-R-module. Then M is cyclic iff there exists $m \in M$ such that $M = \langle m \rangle$.

Proposition 27.2. Let R be a ring. Let M be a left-R-module. Then M is cyclic if and only if there exists a left-ideal I in R such that $M \cong R/I$.

Proof:

- $\langle 1 \rangle 1$. If M is cyclic then there exists a left-ideal I in R such that $M \cong R/I$.
 - $\langle 2 \rangle 1$. Assume: M is cyclic.
 - $\langle 2 \rangle 2$. Pick $m \in M$ such that $M = \langle m \rangle$
 - $\langle 2 \rangle 3$. Let: $\phi: R \to M$ be the left-R-module homomorphism $\phi(r) = rm$.
 - $\langle 2 \rangle 4$. ϕ is surjective.
 - $\langle 2 \rangle 5$. $M \cong R / \ker \phi$
- $\langle 1 \rangle 2$. For every left-ideal I in R, we have that R/I is cyclic.

PROOF: R/I is generated by 1+I.

Proposition 27.3. A quotient of a cyclic module is cyclic.

PROOF: If M is generated by m then M/N is generated by m+N. \square

Proposition 27.4. Let R be a ring. For any left-ideal I in R and any left-R-module N, we have

$$R - \mathbf{Mod}[R/I, N] \cong \{n \in N : \forall a \in I.an = 0\}$$
.

Proof:

 $\langle 1 \rangle 1$. Let: $\Phi: R - \mathbf{Mod}[R/I, N] \to \{n \in N : \forall a \in I.an = 0\}$ be the function $\Phi(\alpha) = \alpha(1+I)$

PROOF: For all $a \in I$ we have $a\alpha(1+I) = \alpha(a+I) = \alpha(I) = 0$.

 $\langle 1 \rangle 2$. Φ is injective.

PROOF: If $\alpha(1+I) = \beta(1+I)$ then $\alpha(r+I) = r\alpha(1+I) = r\beta(1+I) = \beta(r+I)$ for all $r \in R$, hence $\alpha = \beta$.

 $\langle 1 \rangle 3$. Φ is surjective.

PROOF: Given $n \in N$ such that $\forall a \in I.an = 0$, define $\alpha : R/I \to N$ by $\alpha(r+I) = rn$.

 $\langle 1 \rangle 4.$ If R is commutative then Φ is an R-module homomorphism. \sqcap

Corollary 27.4.1. For all $a, b \in \mathbb{Z}$ we have $\mathbf{Ab}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}] \cong \mathbb{Z}/\gcd(a, b)\mathbb{Z}$.

Proof:

$$\mathbf{Ab}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}] \cong \mathbb{Z} - \mathbf{Mod}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}]$$

$$\cong \{ n \in \mathbb{Z}/b\mathbb{Z} : \forall x \in a\mathbb{Z}.xn \cong 0 (\text{mod } b) \}$$

$$\cong \{ n \in \mathbb{Z}/b\mathbb{Z} : \forall x \in \mathbb{Z}.b \mid xan \}$$

$$= \{ n \in \mathbb{Z}/b\mathbb{Z} : b \mid an \}$$

Proof:

 $\langle 1 \rangle 1$. Assume: $\phi \neq 0$ $\langle 1 \rangle 2$. $\ker \phi = 0$

Simple Modules

Definition 28.1 (Simple Module). Let R be a ring. An R-module M is *simple* or *irreducible* iff its only submodules are $\{0\}$ and M.

Proposition 28.2 (Schur's Lemma). Let R be a ring. Let M and N be simple R-modules. Let $\phi: M \to N$ be an R-module homomorphism. Then either $\phi = 0$ or ϕ is an isomorphism.

```
\begin{array}{l} \langle 1 \rangle 3. \text{ im } \phi = N \\ \text{ Proof: Since im } \phi \text{ is a submodule of } N \text{ that is not } \{0\}. \\ \hline \\ \textbf{Proposition 28.3. } Every simple module is cyclic. \\ \\ \textbf{Proof: } \langle 1 \rangle 1. \text{ Let: } M \text{ be a simple module.} \\ \langle 1 \rangle 2. \text{ Assume: w.l.o.g. } M \neq \{0\} \\ \text{Proof: } \{0\} = \langle 0 \rangle \text{ is cyclic.} \\ \langle 1 \rangle 3. \text{ PICK } m \in M \text{ with } m \neq 0 \\ \langle 1 \rangle 4. \langle m \rangle = M \\ \text{Proof: Since } \langle m \rangle \text{ is a submodule of } M \text{ that is not } \{0\}. \\ \hline \end{array}
```

PROOF: Since ker ϕ is a submodule of M that is not M.

Noetherian Modules

Definition 29.1 (Noetherian Module). Let R be a ring. A left-R-module is *Noetherian* iff every submodule is finitely generated.

Proposition 29.2. Let R be a ring. Let M be a left-R-module and N a submodule of M. Then M is Noetherian if and only if N and M/N are Noetherian.

Proof:

 $\langle 1 \rangle 1$. If M is Noetherian then N is Noetherian.

PROOF: Every submodule of N is a submodule of M, hence finitely generated.

- $\langle 1 \rangle 2$. If M is Noetherian then M/N is Noetherian.
 - $\langle 2 \rangle 1$. Assume: M is Noetherian.
 - $\langle 2 \rangle 2$. Let: $\pi : M \to M/N$ be the canonical epimorphism.
 - $\langle 2 \rangle 3$. Let: P be a submodule of M/N.
 - $\langle 2 \rangle 4$. PICK $a_1, \ldots, a_n \in M$ that generate $\pi^{-1}(P)$.
 - $\langle 2 \rangle 5$. $a_1 + N$, ..., $a_n + N$ generate P.
- $\langle 1 \rangle 3$. If N and M/N are Noetherian then M is Noetherian.
 - $\langle 2 \rangle 1$. Assume: N and M/N are Noetherian.
 - $\langle 2 \rangle 2$. Let: P be a submodule of M.
 - $\langle 2 \rangle 3$. PICK $a_1, \ldots, a_m \in P$ such that $a_1 + N, \ldots, a_m + N$ generate $\pi(P)$.
 - $\langle 2 \rangle 4$. PICK $b_1, \ldots, b_n \in M$ that generated $P \cap N$. PROVE: $a_1, \ldots, a_m, b_1, \ldots, b_n$ generate P.
 - $\langle 2 \rangle$ 5. Let: $p \in P$
 - $\langle 2 \rangle$ 6. PICK $r_1, \ldots, r_m \in R$ such that $p + N = r_1 a_1 + \cdots + r_m a_m + N$
 - $\langle 2 \rangle 7. \ p r_1 a_1 \dots r_m a_m \in P \cap N$
 - $\langle 2 \rangle 8$. PICK $s_1, \ldots, s_n \in R$ such that $p r_1 a_1 \cdots r_m a_m = s_1 b_1 + \cdots + s_n b_n$
- $\langle 2 \rangle 9. \ p = r_1 a_1 + \dots + r_m a_m + s_1 b_1 + \dots + s_n b_n$

Noetherian Rings

Definition 30.1 (Noetherian Ring). A commutative ring is *Noetherian* iff it is Noetherian as a module over itself.

Proposition 30.2. The homomorphic image of a Noetherian ring is Noetherian.

Proof:

 $\langle 1 \rangle 1$. Let: R be a Noetherian ring, S be a commutative ring, and $\phi: R \to S$ a surjective ring homomorphism.

 $\langle 1 \rangle$ 2. Let: I be an ideal in S. $\langle 1 \rangle$ 3. Let: $\phi^{-1}(I) = (a_1, \dots, a_n)$ $\langle 1 \rangle$ 4. $I = (\phi(a_1), \dots, \phi(a_n))$

Proposition 30.3. Every PID is Noetherian.

Proof: Trivial.

Proposition 30.4. If R is a Noetherian ring then $R^{\oplus n}$ is a Noetherian left-R-module.

PROOF: The proof is by induction on n. The case n=1 is immediate. The induction step holds by Proposition 29.2 since $R^{\oplus (n+1)}/R^{\oplus n} \cong R$. \square

Corollary 30.4.1. If R is a Noetherian ring and M is a finitely generated left-R-module then M is Noetherian.

PROOF: There is a surjective homomorphism $R^{\oplus n} \twoheadrightarrow M$ for some n, so M is a quotient of $R^{\oplus n}$. \square

Algebras

Definition 31.1 (Algebra). Let R be a commutative ring. An R-algebra consists of a ring S and a ring homomorphism $\alpha: R \to S$ such that $\alpha(R)$ is included in the center of S. We write rs for $\alpha(r)s$.

Proposition 31.2. Let R be a commutative ring and S a ring. Let $\cdot : R \times S \rightarrow S$. Then there exists $\alpha : R \rightarrow S$ that makes S into an R-algebra such that

$$rs = \alpha(r)s$$
 $(r \in R, s \in S)$

iff S is an R-module under \cdot and, for all $r_1, r_2 \in R$ and $s_1, s_2 \in S$,

$$(r_1s_1)(r_2s_2) = (r_1r_2)(s_1s_2)$$
.

Proof: Immediate from definitions.

Example 31.3. Let R be a commutative ring. Then R is an R-algebra under multiplication.

Example 31.4. Let R be a commutative ring and I an ideal in R. Then R/I is an R-algebra.

Example 31.5. Let R be a commutative ring and M an R-module. Then $\operatorname{End}_{R-\operatorname{\mathbf{Mod}}}(M)$ is an R-algebra under composition.

Example 31.6. Let R be a commutative ring. Then $\mathfrak{gl}_n(R)$ is an R-algebra under matrix multiplication.

Definition 31.7 (Algebra Homomorphism). Let R be a commutative ring. Let S and T be R-algebras. An R-algebra homomorphism $\phi: S \to T$ is a ring homomorphism such that, for all $r \in R$ and $s \in S$, we have $\phi(rs) = r\phi(s)$.

Let $R - \mathbf{Alg}$ be the category of R-algebras and R-algebra homomorphisms.

Example 31.8.

$$\mathbb{Z}-\mathbf{Alg}\cong\mathbf{Ring}$$

Example 31.9. Let R be a commutative ring. Then $R[x_1, \ldots, x_n]$, and any quotient ring of $R[x_1, \ldots, x_n]$, is a commutative R-algebra.

Example 31.10. R is the initial object in $R - \mathbf{Alg}$.

Rees Algebra 31.1

Definition 31.11 (Rees Algebra). Let R be a commutative ring. Let I be an ideal in R. The Rees algebra is the direct sum

$$\operatorname{Rees}_R(I) = \bigoplus_{j \ge 0} I^j$$

under the multiplication

$$(r_0, r_1, r_2, r_3, \ldots)(s_0, s_1, s_2, \ldots) = (r_0 s_0, r_1 s_0 + r_0 s_1, r_0 s_2 + r_1 s_1 + r_2 s_0, \ldots)$$

 $r(r_0, r_1, r_2, \ldots) = (rr_0, rr_1, rr_2, \ldots)$

Proposition 31.12. Let R be a commutative ring. Let $a \in R$ be a non-zerodivisor. Then R[x] is the Rees algebra of (a).

Proof:

- (1)1. Let: $\phi: R[x] \to \operatorname{Rees}_R((a))$ be the function $\phi(r_0 + r_1x + r_2x^2 + \cdots) =$ $(r_0, r_1 a, r_2 a^2, \ldots).$
- $\langle 1 \rangle 2$. ϕ is an R-algebra homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
 - $\langle 2 \rangle 1$. Let: $\phi(r_0 + r_1 x + r_2 x^2 + \cdots) = \phi(s_0 + s_1 x + s_2 x^2 + \cdots)$
 - $\langle 2 \rangle 2$. For all n we have $r_n a^n = s_n a^n$
 - $\langle 2 \rangle 3. \ (r_n s_n)a^n = 0$
 - $\langle 2 \rangle 4$. $r_n s_n = 0$

PROOF: Since a is not a zero-divisor.

- $\langle 2 \rangle 5$. $r_n = s_n$
- $\langle 1 \rangle 4$. ϕ is surjective.

Proposition 31.13. Let R be a commutative ring. Let $a \in R$ be a non-zerodivisor. Let I be an ideal of R. Then $\operatorname{Rees}_R(I) \cong \operatorname{Rees}_R(aI)$.

Proof:

- $\langle 1 \rangle 1$. Let: $\phi : \operatorname{Rees}_R(I) \to \operatorname{Rees}_R(aI)$ be the function $\phi(r_0, r_1, r_2, \ldots) = (r_0, ar_1, a^2r_2, \ldots)$.
- $\langle 1 \rangle 2$. ϕ is an R-algebra homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
- $\langle 1 \rangle 4$. ϕ is surjective.

Free Algebras 31.2

Proposition 31.14. Let R be a ring. Then $R[x_1, \ldots, x_n]$ is the free commutative R-algebra on $\{1,\ldots,n\}$.

Proof: Easy.

Proposition 31.15. Let R be a ring and A a set. Let A^* be the free monoid on A. Then the monoid ring $R[A^*]$ is the free R-algebra on A.

Proof: Easy. \square

Proposition 31.16. Let R be a commutative ring and S a commutative R-algebra. Then S is finitely generated as an R-algebra if and only if S is finitely generated as a commutative R-algebra.

PROOF: Since a subalgebra of a commutative subalgebra is commutative, so the smallest algebra that contains $\{a_1,\ldots,a_n\}$ is the smallest commutative subalgebra that contains $\{a_1,\ldots,a_n\}$. \square

Algebras of Finite Type

Definition 32.1 (Algebra of Finite Type). Let R be a ring. Let S be an R-algebra. Then R is of *finite type* iff S is a finitely generated R-algebra.

Proposition 32.2. Let R be a Noetherian ring. Let S be a finite-type R-algebra. Then S is a Noetherian ring.

Finite Algebras

Definition 33.1 (Finite Algebra). Let R be a ring. Let S be an R-algebra. Then S is a *finite* R-algebra iff it is a finitely generated left-R-module.

Proposition 33.2. Let R be a ring. Every finite R-algebra is of finite type.

PROOF: If S is generated by a_1, \ldots, a_n as an R-module, then it is generated by a_1, \ldots, a_n as an R-algebra. \square

Example 33.3. The converse does not hold. R[x] is of finite type but is not finite.

Division Algebras

Definition 34.1 (Division Algebra). Let R be a commutative ring. A *division* R-algebra is an R-algebra that is a division ring.

Example 34.2. Let R be a commutative ring. Let M be a simple R-algebra. Then $\operatorname{End}_{R-\mathbf{Mod}}(M)$ is a division algebra. For if $\phi \circ \psi = 0$ then ϕ and ψ cannot both be isomorphisms, hence $\phi = 0$ or $\psi = 0$ by Schur's Lemma.

Chain Complexes

Definition 35.1 (Chain Complex). Let R be a ring. A chain complex of left-R-modules $M_{\bullet} = (M_{\bullet}, d_{\bullet})$ consists of a family of left-R-modules $\{M_i\}_{i \in \mathbb{Z}}$ and a family of left-R-module homomorphisms $\{d_i : M_i \to M_{i-1}\}_{i \in \mathbb{Z}}$ such that, for all i,

$$d_i \circ d_{i+1} = 0 .$$

We call each d_i a differential and the family $\{d_i\}_i$ the boundary of the chain complex.

Definition 35.2 (Exact). A chain complex M_{\bullet} is *exact* at M_i iff im $d_{i+1} = \ker d_i$.

It is exact or an exact sequence iff it is exact at M_i for all i.

Proposition 35.3. A complex

$$\cdots \to 0 \to L \stackrel{\alpha}{\to} M \to \cdots$$

is exact at L iff α is a monomorphism.

PROOF: Since both are equivalent to ker $\alpha = 0$. \square

Proposition 35.4. A complex

$$\cdots \to M \stackrel{\beta}{\to} N \to 0 \to \cdots$$

is exact at N iff β is a epimorphism.

PROOF: Since both are equivalent to im $\beta = N$. \square

Definition 35.5 (Short Exact Sequence). A *short exact sequence* is an exact complex of the form

$$0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$$
.

Proposition 35.6 (Four-Lemma). If

$$A_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{g_{1}} C_{1} \xrightarrow{h_{1}} D_{1}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta}$$

$$A_{2} \xrightarrow{f_{2}} B_{2} \xrightarrow{g_{2}} C_{2} \xrightarrow{h_{2}} D_{2}$$

is a commutative diagram of left-R-modules with exact rows, α is an epimorphism, and β and δ are monomorphisms, then γ is an monomorphism.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in C_1$
- $\langle 1 \rangle 2$. Assume: $\gamma(x) = \gamma(y)$
- $\langle 1 \rangle 3. \ \delta(h_1(x)) = \delta(h_1(y))$
- $\langle 1 \rangle 4. \ h_1(x) = h_1(y)$

PROOF: δ is injective.

- $\langle 1 \rangle 5$. $x y \in \ker h_1$
- $\langle 1 \rangle 6. \ x y \in \operatorname{im} g_1$
- $\langle 1 \rangle 7$. PICK $b \in B_1$ such that $g_1(b) = x y$.
- $\langle 1 \rangle 8.$ $g_2(\beta(b)) = 0$

PROOF: $g_2(\beta(b)) = \gamma(g_1(b)) = \gamma(x - y) = 0$

- $\langle 1 \rangle 9. \ \beta(b) \in \ker g_2$
- $\langle 1 \rangle 10. \ \beta(b) \in \operatorname{im} f_2$
- $\langle 1 \rangle 11$. PICK $a' \in A_2$ such that $f_2(a') = \beta(b)$
- $\langle 1 \rangle 12$. PICK $a \in A_1$ such that $\alpha(a) = a'$

PROOF: α is surjective.

- $\langle 1 \rangle 13. \ \beta(f_1(a)) = \beta(b)$
- $\langle 1 \rangle 14. \ f_1(a) = b$

PROOF: β is injective.

 $\langle 1 \rangle 15. \ 0 = g_1(b)$

PROOF: Since $g_1(b) = g_1(f_1(a)) = 0$.

 $\langle 1 \rangle 16. \ x = y$ PROOF: $\langle 1 \rangle 7$

Proposition 35.7 (Four-Lemma). If

$$\begin{array}{ccccc} A_1 & \xrightarrow{f_1} & B_1 & \xrightarrow{g_1} & C_1 & \xrightarrow{h_1} & D_1 \\ \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\delta} & & \downarrow^{\epsilon} \\ A_2 & \xrightarrow{f_2} & B_2 & \xrightarrow{g_2} & C_2 & \xrightarrow{h_2} & D_2 \end{array}$$

is a commutative diagram of left-R-modules with exact rows, β and δ are epimorphisms, and ϵ is a monomorphism, then γ is an epimorphism.

Proof:

 $\langle 1 \rangle 1$. Let: $b_2 \in B_2$

```
\langle 1 \rangle 2. PICK c_1 \in C_1 such that \delta(c_1) = g_2(b_2)
    Proof: \delta is surjective.
\langle 1 \rangle 3. \ \epsilon(h_1(c_1)) = 0
\langle 1 \rangle 4. \ h_1(c_1) = 0
    PROOF: \epsilon is injective.
\langle 1 \rangle 5. c_1 \in \ker h_1
\langle 1 \rangle 6. \ c_1 \in \operatorname{im} g_1
\langle 1 \rangle 7. PICK b_1 \in B_1 such that g_1(b_1) = c_1
\langle 1 \rangle 8. \ g_2(\gamma(b_1)) = g_2(b_2)
\langle 1 \rangle 9. \ \gamma(b_1) - b_2 \in \ker g_2
\langle 1 \rangle 10. \ \gamma(b_1) - b_2 \in \operatorname{im} f_2
\langle 1 \rangle 11. PICK a_2 \in A_2 such that f_2(a_2) = \gamma(b_1) - b_2.
\langle 1 \rangle 12. PICK a_1 \in A_1 such that \beta(a_1) = a_2.
    PROOF: \beta is surjective.
\langle 1 \rangle 13. \ \gamma(f_1(a_1)) = \gamma(b_1) - b_2
\langle 1 \rangle 14. \ b_2 = \gamma(b_1 - f_1(a_1))
```

Theorem 35.8 (Snake Lemma). Suppose we have R-modules and homomorphisms

$$0 \longrightarrow L_1 \xrightarrow{\alpha_1} M_1 \xrightarrow{\beta_1} N_1 \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L_0 \xrightarrow{\alpha_0} M_0 \xrightarrow{\beta_0} N_0 \longrightarrow 0$$

such that the diagram commutes and the two rows are short exact sequences. Then there exists a homomorphism $\delta : \ker \nu \to \operatorname{coker} \lambda$ such that the following is an exact sequence.

$$0 \to \ker \lambda \overset{\alpha_1}{\to} \ker \mu \overset{\beta_1}{\to} \ker \nu \overset{\delta}{\to} \operatorname{coker} \lambda \overset{\alpha_0}{\to} \operatorname{coker} \mu \overset{\beta_0}{\to} \operatorname{coker} \nu \to 0 \ .$$

Proof:

- $\langle 1 \rangle 1$. Define $\delta : \ker \nu \to \operatorname{coker} \lambda$.
 - $\langle 2 \rangle 1$. Let: $a \in \ker \nu$
 - $\langle 2 \rangle 2$. Pick $c \in M_1$ such that $\beta_1(c) = a$.

PROOF: Since β_1 is surjective.

- $\langle 2 \rangle 3$. Let: $d = \mu(c)$
- $\langle 2 \rangle 4$. $d \in \ker \beta_0 = \operatorname{im} \alpha_0$

PROOF: Since $\beta_0(d) = \beta_0(\mu(c)) = \nu(a) = 0$.

- $\langle 2 \rangle$ 5. Let: $e \in L_0$ be the element such that $\alpha_0(e) = d$.
- $\langle 2 \rangle 6$. Let: $\delta(a) = e + \operatorname{im} \lambda$
- $\langle 1 \rangle 2$. δ is a left-R-module homomorphism.
 - $\langle 2 \rangle 1$. For $a, a' \in \ker \nu$ we have $\delta(a + a') = \delta(a) + \delta(a')$.
 - $\langle 3 \rangle 1$. Let: $a, a' \in \ker \nu$

 $\langle 3 \rangle 2$. Let: $c, c', c'' \in M_1$ and $e, e', e'' \in L_0$ be the elements such that

$$\beta_1(c) = a$$

$$\beta_1(c') = a'$$

$$\beta_1(c'') = a + a'$$

$$\alpha_0(e) = \mu(c)$$

$$\alpha_0(e') = \mu(c')$$

$$\alpha_0(e'') = \mu(c'')$$

$$\delta(a) = e + \operatorname{im} \lambda$$

$$\delta(a') = e' + \operatorname{im} \lambda$$

$$\delta(a + a') = e'' + \operatorname{im} \lambda$$

- $\langle 3 \rangle 3. \ c'' c c' \in \ker \beta_1 = \operatorname{im} \alpha_1$
- $\langle 3 \rangle 4$. Pick $g \in L_1$ such that $\alpha_1(g) = c'' c c'$.
- $\langle 3 \rangle 5$. $\alpha_0(\lambda(g)) = \alpha_0(e'' e e')$
- $\langle 3 \rangle 6$. $\lambda(g) = e'' e e'$
- $\langle 3 \rangle 7. \ e'' e e' \in \operatorname{im} \lambda$
- $\langle 3 \rangle 8. \ e'' + \operatorname{im} \lambda = e + e' + \operatorname{im} \lambda$
- $\langle 3 \rangle 9. \ \delta(a+a') = \delta(a) + \delta(a')$
- $\langle 2 \rangle 2$. For $r \in R$ and $a \in \ker \nu$ we have $\delta(ra) = r\delta(a)$.
 - $\langle 3 \rangle 1$. Let: $r \in R$ and $a \in \ker \nu$
 - $\langle 3 \rangle 2$. Let: $c, c' \in M_1$ and $e, e' \in L_0$ be the elements such that

$$\beta_1(c) = a$$

$$\beta_1(c') = ra$$

$$\alpha_0(e) = \mu(c)$$

$$\alpha_0(e') = \mu(c')$$

$$\delta(a) = e + \operatorname{im} \lambda$$

$$\delta(ra) = e' + \operatorname{im} \lambda$$

- $\langle 3 \rangle 3$. $rc c' \in \ker \beta_1 = \operatorname{im} \alpha_1$
- $\langle 3 \rangle 4$. PICK $g \in L_1$ such that $\alpha_1(g) = rc c'$.
- $\langle 3 \rangle 5$. $\alpha_0(\lambda(g)) = \alpha_0(re e')$
- $\langle 3 \rangle 6$. $\lambda(g) = re e'$
- $\langle 3 \rangle 7$. $re e' \in \operatorname{im} \lambda$
- $\langle 3 \rangle 8. \ re + \operatorname{im} \lambda = e' + \operatorname{im} \lambda$
- $\langle 3 \rangle 9. \ r\delta(a) = \delta(ra)$
- $\langle 1 \rangle 3$. The sequence is exact at ker λ .

PROOF: Since α_1 is injective.

 $\langle 1 \rangle 4$. The sequence is exact at ker μ .

PROOF: Since im $\alpha_1 = \ker \beta_1$.

- $\langle 1 \rangle$ 5. The sequence is exact at ker ν , i.e. $beta_1(\ker \mu) = \ker \delta$.
 - $\langle 2 \rangle 1$. Let: $a \in \ker \nu$
 - $\langle 2 \rangle$ 2. Let: $c \in M_1$ and $e \in L_0$ be the elements such that $\beta_1(c) = a$, $\alpha_0(e) = \mu(c)$, and $\delta(a) = e + \operatorname{im} \lambda$.

```
\langle 3 \rangle 1. Assume: \delta(a) = \operatorname{im} \lambda
         \langle 3 \rangle 2. \ e \in \operatorname{im} \lambda
        \langle 3 \rangle 3. Pick g \in L_1 such that \lambda(g) = e
        \langle 3 \rangle 4. \mu(\alpha_1(g)) = \mu(c)
         \langle 3 \rangle 5. \ c - \alpha_1(g) \in \ker \mu
         \langle 3 \rangle 6. a = \beta_1(c - \alpha_1(g))
    \langle 2 \rangle 4. If a \in \beta_1(\ker \mu) then \delta(a) = \operatorname{im} \lambda
         \langle 3 \rangle 1. Assume: c' \in \ker \mu and a = \beta_1(c')
         \langle 3 \rangle 2. c - c' \in \ker \beta_1 = \operatorname{im} \alpha_1
         \langle 3 \rangle 3. Pick g \in L_1 such that \alpha_1(g) = c - c'
         \langle 3 \rangle 4. \alpha_0(\lambda(g)) = \mu(c) - \mu(c') = \alpha_0(e) - 0 = \alpha_0(e)
         \langle 3 \rangle 5. \lambda(g) = e
         \langle 3 \rangle 6. \ e \in \operatorname{im} \lambda
         \langle 3 \rangle 7. \ \delta(a) = \operatorname{im} \lambda
\langle 1 \rangle 6. THe sequence is exact at coker \lambda.
    \langle 2 \rangle 1. Let: e \in L_0
                PROVE: e + \operatorname{im} \lambda \in \operatorname{im} \delta \text{ iff } \alpha_0(e) \in \operatorname{im} \mu.
    \langle 2 \rangle 2. For all a \in \ker \nu, if \delta(a) = e + \operatorname{im} \lambda then \alpha_0(e) \in \operatorname{im} \mu
        PROOF: From \langle 1 \rangle 1 and the fact that \alpha_0 is injective hence e is unique given
    \langle 2 \rangle 3. For all e \in L_0, if \alpha_0(e) \in \operatorname{im} \mu then e + \operatorname{im} \lambda \in \operatorname{im} \delta.
         \langle 3 \rangle 1. Let: e \in L_0
         \langle 3 \rangle 2. Assume: \alpha_0(e) \in \operatorname{im} \mu
        \langle 3 \rangle 3. Pick c \in M_1 such that \mu(c) = \alpha_0(e).
                    PROVE: e + \operatorname{im} \lambda = \delta(\beta_1(c))
        \langle 3 \rangle 4. PICK c' \in M_1 and e' \in L_0 such that \beta_1(c') = \beta_1(c), \alpha_0(e') = \mu(c')
                    and \delta(\beta_1(c)) = e' + \operatorname{im} \lambda
         \langle 3 \rangle 5. c - c' \in \ker \beta_1 = \operatorname{im} \alpha_1
         \langle 3 \rangle 6. Pick g \in L_1 such that \alpha_1(g) = c - c'.
        \langle 3 \rangle 7. \alpha_0(\lambda(g)) = \alpha_0(e - e')
         \langle 3 \rangle 8. \ \lambda(g) = e - e'
        \langle 3 \rangle 9. e + \operatorname{im} \lambda = e' + \operatorname{im} \lambda = \delta(\beta_1(c))
\langle 1 \rangle 7. The sequence is exact at coker \mu.
    PROOF: Since im \alpha_0 = \ker \beta_0.
\langle 1 \rangle 8. The sequence is exact at coker \nu.
    PROOF: Since \beta_0 is surjective.
```

 $\langle 2 \rangle 3$. If $\delta(a) = \operatorname{im} \lambda$ then $a \in \beta_1(\ker \mu)$

Corollary 35.8.1. Suppose we have R-modules and homomorphisms

such that the diagram commutes and the two rows are short exact sequences.

Suppose μ is surjective and ν is injective. Then λ is surjective and ν is an isomorphism.

PROOF: We have $\ker \nu = \operatorname{coker} \mu = 0$ and so $0 \xrightarrow{\delta} \operatorname{coker} \lambda \xrightarrow{\alpha_0} 0$ is an exact sequence, hence $\operatorname{coker} \lambda = 0$ and so λ is surjective.

Since coker $\mu=0$ we have $0\to \operatorname{coker}\nu\to 0$ is an exact sequence and so coker $\nu=0$, hence ν is surjective, hence ν is an isomorphism. \square

Proposition 35.9 (Short Five-Lemma). Suppose we have R-modules and homomorphisms

$$0 \longrightarrow L_1 \xrightarrow{\alpha_1} M_1 \xrightarrow{\beta_1} N_1 \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L_0 \xrightarrow{\alpha_0} M_0 \xrightarrow{\beta_0} N_0 \longrightarrow 0$$

such that the diagram commutes and the two rows are short exact sequences. If λ and ν are isomorphisms then μ is an isomorphism.

Proof:

 $\langle 1 \rangle 1$. There exists a homomorphism $\delta: 0 \to L_0$ such that the following is an exact sequence.

$$0 \to 0 \to \ker \mu \to 0 \xrightarrow{\delta} L_0 \xrightarrow{\alpha_0} \operatorname{coker} \mu \xrightarrow{\beta_0} N_0 \to 0$$
.

Proof: Snake Lemma

 $\langle 1 \rangle 2$. $\ker \mu = 0$

 $\langle 1 \rangle 3$. coker $\mu = M_0$

Proposition 35.10. If $L \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} N$ is an exact sequence and L and N are Noetherian then M is Noetherian.

Proof:

- $\langle 1 \rangle 1$. Let: P be a submodule of M.
- $\langle 1 \rangle 2$. Pick a_1, \ldots, a_m generate $\alpha^{-1}(P)$.
- $\langle 1 \rangle 3$. PICK c_1, \ldots, c_n that generate $\beta(P)$.
- $\langle 1 \rangle 4$. For i = 1, ..., n, PICK b_i such that $\beta(b_i) = c_i$. PROVE: $\alpha(a_1), ..., \alpha(a_m), b_1, ..., b_n$ generate P.
- $\langle 1 \rangle 5$. Let: $p \in P$
- $\langle 1 \rangle 6$. PICK $r_1, \ldots, r_n \in R$ such that $r_1 c_1 + \cdots + r_n c_n = \beta(p)$
- $\langle 1 \rangle 7$. $r_1 b_1 + \cdots + r_n b_n p \in \ker \beta = \operatorname{im} \alpha$
- $\langle 1 \rangle 8$. PICK $s_1, \ldots, s_m \in R$ such that $\alpha(s_1 a_1 + \cdots + s_m a_m) = r_1 b_1 + \cdots + r_n b_n p$.
- $\langle 1 \rangle 9. \ p = s_1 \alpha(a_1) + \dots + s_m \alpha(a_m) + r_1 b_1 + \dots + r_n b_n$

Proposition 35.11. Let R be a ring. Let

$$0 \to M \stackrel{\alpha}{\to} N \stackrel{\beta}{\to} P \to 0$$

be a short exact sequence of left-R-modules. Let L be an R-module. Then the following is an exact sequence:

$$0 \to R - \mathbf{Mod}[P, L] \overset{R - \mathbf{Mod}[\beta, \mathrm{id}_L]}{\longrightarrow} R - \mathbf{Mod}[N, L] \overset{R - \mathbf{Mod}[\alpha, \mathrm{id}_L]}{\longrightarrow} R - \mathbf{Mod}[M, L] \ .$$

Proof:

 $\langle 1 \rangle 1$. $R - \mathbf{Mod}[\beta, \mathrm{id}_L]$ is injective.

PROOF: Since β is epi.

- $\langle 1 \rangle 2$. im $R \mathbf{Mod}[\beta, \mathrm{id}_L] = \ker R \mathbf{Mod}[\alpha, \mathrm{id}_L]$
 - $\langle 2 \rangle 1$. im $R \mathbf{Mod}[\beta, \mathrm{id}_L] \subseteq \ker R \mathbf{Mod}[\alpha, \mathrm{id}_L]$

PROOF: For any $\gamma \in R - \mathbf{Mod}[P, L]$ we have $\gamma \circ \beta \circ \alpha = 0$ because $\beta \circ \alpha = 0$.

- $\langle 2 \rangle 2$. ker $R \mathbf{Mod}[\alpha, \mathrm{id}_L] \subseteq \mathrm{im} R \mathbf{Mod}[\beta, \mathrm{id}_L]$
 - $\langle 3 \rangle 1$. Let: $\gamma \in \ker R \mathbf{Mod}[\alpha, \mathrm{id}_L]$
 - $\langle 3 \rangle 2$. $\gamma \circ \alpha = 0$
 - $\langle 3 \rangle 3$. PICK $\delta: P \to L$ by: for all $p \in P$, we have $\delta(p) = \gamma(n)$ where $n \in N$ is an element such that $\beta(n) = p$.

Prove: $\delta \circ \beta = \gamma$

 $\langle 3 \rangle 4$. Let: $n \in N$

Prove: $\delta(\beta(n)) = \gamma(n)$

- $\langle 3 \rangle 5$. PICK $n' \in N$ such that $\delta(\beta(n)) = \gamma(n')$ and $\beta(n') = \beta(n)$
- $\langle 3 \rangle 6$. $n n' \in \ker \beta = \operatorname{im} \alpha$
- $\langle 3 \rangle 7$. Pick $m \in M$ such that $\alpha(m) = n n'$
- $\langle 3 \rangle 8. \ 0 = \gamma(\alpha(m)) = \gamma(n) \gamma(n')$
- $\langle 3 \rangle 9. \ \gamma(n) = \gamma(n') = \delta(\beta(n))$

Theorem 35.12 (Nine-Lemma). Let the following be a commuting diagram of left-R-modules.

If the rows are exact and the two rightmost columns are exact then the left column is exact.

Proof:

 $\langle 1 \rangle 1$. (L_2, f_2) is the kernel of g_2 , (L_1, f_1) is the kernel of g_1 and (L_0, f_0) is the kernel of g_0 .

- $\langle 1 \rangle 2$. 0 is the cokernel of g_2 , g_1 and g_0 .
- $\langle 1 \rangle$ 3. PICK a homomomorphism $\delta: L_0 \to 0$ such that the following is an exact sequence:

$$L_2 \stackrel{\beta_1 \upharpoonright L_2}{\to} L_1 \stackrel{\beta_0 \upharpoonright L_1}{\to} L_0 \stackrel{\delta}{\to} 0 \to 0 \to 0$$

Proof: Snake Lemma.

- $\langle 1 \rangle 4$. $\beta_1 \upharpoonright L_2 = \alpha_1$
- $\langle 1 \rangle 5. \ \beta_0 \upharpoonright L_1 = \alpha_0$
- $\langle 1 \rangle 6$. The following is an exact sequence:

$$0 \to L_2 \stackrel{\alpha_1}{\to} L_1 \stackrel{\alpha_0}{\to} L_0 \to 0$$

Theorem 35.13. Let the following be a commuting diagram of left-R-modules.

Assume the central column is a complex and every row is an exact complex. Then the left and right columns are complexes. Further, if any two of the columns are exact, then so is the third.

Proof:

- $\langle 1 \rangle 1$. The left column is a complex.
 - $\langle 2 \rangle 1$. Let: $x \in L_{i+1}$
 - $\langle 2 \rangle 2$. $f_{i-1}(\alpha_i(\alpha_{i+1}(x))) = 0$
 - $\langle 2 \rangle 3. \ \alpha_i(\alpha_{i+1}(x)) = 0$

PROOF: f_{i-1} is injective.

- $\langle 1 \rangle 2$. The right column is a complex.
 - $\langle 2 \rangle 1$. Let: $x \in N_{i+1}$
 - $\langle 2 \rangle 2$. PICK $y \in N_{i+1}$ such that $g_{i+1}(y) = x$
 - $\langle 2 \rangle 3. \ \gamma_i(\gamma_{i+1}(x)) = 0$

Proof:

$$\gamma_i(\gamma_{i+1}(x)) = \gamma_i(\gamma_{i+1}(g_{i+1}(y)))
= g_{i-1}(\beta_i(\beta_{i+1}(y)))
= g_{i-1}(0)
= 0$$

```
\langle 1 \rangle3. If the left and center columns are exact then the right column is exact.
    \langle 2 \rangle 1. Let: n_i \in \ker \gamma_{i-1}
               PROVE: n_i \in \operatorname{im} \gamma_i
    \langle 2 \rangle 2. Pick m_i \in M_i such that g_i(m_i) = n_i
    \langle 2 \rangle 3. \ g_{i-1}(\beta_i(m_i)) = 0
    \langle 2 \rangle 4. \beta_i(m_i) \in \ker g_{i-1} = \operatorname{im} f_{i-1}
    \langle 2 \rangle 5. Pick l_{i-1} \in L_{i-1} such that f_{i-1}(l_{i-1}) = \beta_i(m_i)
    \langle 2 \rangle 6. \ \beta_{i-1}(f_{i-1}(l_{i-1})) = 0
    \langle 2 \rangle 7. \ f_{i-2}(\alpha_{i-1}(l_{i-1})) = 0
    \langle 2 \rangle 8. \ \alpha_{i-1}(l_{i-1}) = 0
    \langle 2 \rangle 9. \ l_{i-1} \in \ker \alpha_{i-1} = \operatorname{im} \alpha_i
    \langle 2 \rangle 10. Pick l_i \in L_i such that \alpha_i(l_i) = l_{i-1}
    \langle 2 \rangle 11. \ \beta_i(f_i(l_i)) = \beta_i(m_i)
    \langle 2 \rangle 12. f_i(l_i) - m_i \in \ker \beta_i = \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 13. PICK m_{i+1} \in M_{i+1} such that \beta_{i+1}(m_{i+1}) = f_i(l_i) - m_i
    \langle 2 \rangle 14. \ \gamma_{i+1}(-g_{i+1}(m_{i+1})) = n_i
\langle 1 \rangle 4. If the left and right columns are exact then the center column is exact.
    \langle 2 \rangle 1. Let: x \in \ker \beta_i
               PROVE: x \in \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 2. g_{i-1}(\beta_i(x)) = 0
    \langle 2 \rangle 3. \ \gamma_i(g_i(x)) = 0
    \langle 2 \rangle 4. \ g_i(x) \in \ker \gamma_i = \operatorname{im} \gamma_{i+1}
    \langle 2 \rangle5. PICK n_{i+1} \in N_{i+1} such that \gamma_{i+1}(n_{i+1}) = g_i(x)
    \langle 2 \rangle 6. Pick m_{i+1} \in M_{i+1} such that g_{i+1}(m_{i+1}) = n_{i+1}
    \langle 2 \rangle 7. \ g_i(\beta_{i+1}(m_{i+1})) = g_i(x)
    \langle 2 \rangle 8. \ \beta_{i+1}(m_{i+1}) - x \in \ker g_i = \operatorname{im} f_i
    \langle 2 \rangle 9. Pick l_i \in L_i such that f_i(l_i) = \beta_{i+1}(m_{i+1}) - x
    \langle 2 \rangle 10. \ \beta_i(f_i(l_i)) = 0
    \langle 2 \rangle 11. \ f_{i-1}(\alpha_i(l_i)) = 0
    \langle 2 \rangle 12. \alpha_i(l_i) = 0
    \langle 2 \rangle 13. \ l_i \in \ker \alpha_i = \operatorname{im} \alpha_{i+1}
    \langle 2 \rangle 14. PICK l_{i+1} \in L_{i+1} such that \alpha_{i+1}(l_{i+1}) = l_i
    \langle 2 \rangle 15. \ \beta_{i+1}(f_{i+1}(l_{i+1})) = \beta_{i+1}(m_{i+1}) - x
    \langle 2 \rangle 16. \ \ x = \beta_{i+1} (m_{i+1} - f_{i+1}(l_{i+1}))
\langle 1 \rangle5. If the center and right columns are exact then the left column is exact.
    \langle 2 \rangle 1. Let: l_i \in \ker \alpha_i
              PROVE: l_i \in \operatorname{im} \alpha_{i+1}
    \langle 2 \rangle 2. \beta_i(f_i(l_i)) = 0
    \langle 2 \rangle 3. f_i(l_i) \in \ker \beta_i = \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 4. Pick m_{i+1} \in M_{i+1} such that \beta_{i+1}(m_{i+1}) = f_i(l_i)
    \langle 2 \rangle 5. \ \gamma_{i+1}(g_{i+1}(m_{i+1})) = 0
    \langle 2 \rangle 6. \ g_{i+1}(m_{i+1}) \in \ker \gamma_{i+1} = \operatorname{im} \gamma_{i+2}
    \langle 2 \rangle 7. PICK n_{i+2} \in N_{i+2} such that \gamma_{i+2}(n_{i+2}) = g_{i+1}(m_{i+1})
    \langle 2 \rangle 8. Pick m_{i+2} \in M_{i+2} such that g_{i+2}(m_{i+2}) = n_{i+2}
    \langle 2 \rangle 9. \ g_{i+1}(\beta_{i+2}(n_{i+2})) = g_{i+1}(m_{i+1})
    \langle 2 \rangle 10. \ \beta_{i+2}(n_{i+2}) - m_{i+1} \in \ker g_{i+1} = \operatorname{im} f_{i+1}
```

$$\langle 2 \rangle 11$$
. PICK $l_{i+1} \in L_{i+1}$ such that $f_{i+1}(l_{i+1}) = \beta_{i+2}(n_{i+2}) - m_{i+1}$
 $\langle 2 \rangle 12$. $f_i(\alpha_{i+1}(l_{i+1})) = -f_i(l_i)$
 $\langle 2 \rangle 13$. $l_i = \alpha_{i+1}(-l_{i+1})$

Corollary 35.13.1 (Nine-Lemma). Let the following be a commuting diagram of left-R-modules.

$$0 \longrightarrow L_{2} \xrightarrow{f_{2}} M_{2} \xrightarrow{g_{2}} N_{2} \longrightarrow 0$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\beta_{1}} \qquad \downarrow^{\gamma_{1}}$$

$$0 \longrightarrow L_{1} \xrightarrow{f_{1}} M_{1} \xrightarrow{g_{1}} N_{1} \longrightarrow 0$$

$$\downarrow^{\alpha_{0}} \qquad \downarrow^{\beta_{0}} \qquad \downarrow^{\gamma_{0}}$$

$$0 \longrightarrow L_{0} \xrightarrow{f_{0}} M_{0} \xrightarrow{g_{0}} N_{0} \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

If the rows are exact and the two leftmost columns are exact then the right column is exact.

Proposition 35.14. Let the following be a commuting diagram of left-R-modules.

If the rows are exact and the left and right columns are exact then β_1 is monic.

PROOF: By the Snake Lemma, the following is an exact sequence

$$0 \to \ker \alpha_1 \to \ker \beta_1 \to \ker \gamma_1$$

But $\ker \alpha_1 = \ker \gamma_1 = 0$ so $\ker \beta_1 = 0$. \square

Proposition 35.15. Let the following be a commuting diagram of left-R-modules.

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow L_2 \xrightarrow{f_2} M_2 \xrightarrow{g_2} N_2 \longrightarrow 0$$

$$\downarrow^{\alpha_1} \qquad \downarrow^{\beta_1} \qquad \downarrow^{\gamma_1}$$

$$0 \longrightarrow L_1 \xrightarrow{f_1} M_1 \xrightarrow{g_1} N_1 \longrightarrow 0$$

$$\downarrow^{\alpha_0} \qquad \downarrow^{\beta_0} \qquad \downarrow^{\gamma_0}$$

$$0 \longrightarrow L_0 \xrightarrow{f_0} M_0 \xrightarrow{g_0} N_0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

If the rows are exact and the left and right columns are exact then β_0 is epi.

Proof: Similar. \square

Proposition 35.16. Let the following be a commuting diagram of left-R-modules.

If the rows are exact, the left and right columns are exact, and the central column is a complex, then the central column is exact.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \ker \beta_0$ Prove: $x \in \operatorname{im} \beta_1$
- $\langle 1 \rangle 2. \ \gamma_0(g_1(x)) = 0$
- $\langle 1 \rangle 3. \ g_1(x) \in \ker \gamma_0 = \operatorname{im} \gamma_1$
- $\langle 1 \rangle 4$. PICK $n_2 \in N_2$ such that $\gamma_1(n_2) = g_1(x)$
- $\langle 1 \rangle 5$. Pick $m_2 \in M_2$ such that $g_2(m_2) = n_2$
- $\langle 1 \rangle 6. \ g_1(\beta_1(m_2)) = g_1(x)$
- $\langle 1 \rangle 7$. $\beta_1(m_2) x \in \ker g_1 = \operatorname{im} f_1$
- $\langle 1 \rangle 8$. PICK $l_1 \in L_1$ such that $f_1(l) = \beta_1(m_2) x$.

 $\begin{array}{l} \langle 1 \rangle 9. \ f_0(\alpha_0(l_1)) = 0 \\ \langle 1 \rangle 10. \ \alpha_0(l_1) = 0 \\ \langle 1 \rangle 11. \ l_1 \in \ker \alpha_0 = \operatorname{im} \alpha_1 \\ \langle 1 \rangle 12. \ \operatorname{PICK} \ l_2 \in L_2 \ \operatorname{such \ that} \ \alpha_1(l_2) = l_1. \\ \langle 1 \rangle 13. \ \beta_1(f_2(l_2)) = \beta_1(m_2) - x \\ \langle 1 \rangle 14. \ x = \beta_1(m_2 - f_2(l_2)) \end{array}$

Example 35.17. We cannot remove the hypothesis that the central column is a complex. Consider the situation

This diagram commutes, the rows are exact, the left and right columns are exact, but the central column is not a complex and im $\Delta \neq \ker \pi_1$.

35.1 Split Exact Sequences

Definition 35.18 (Split Sequence). Let $0 \to M_1 \stackrel{\alpha}{\to} N \stackrel{\beta}{\to} M_2 \to 0$ be a short exact sequence. Then this sequence *splits* iff there exists an isomorphism

$$\phi: N \cong M_1 \oplus M_2$$

such that $\phi \circ \alpha = \kappa_1 : M_1 \to M_1 \oplus M_2$ and $\beta \circ \phi^{-1} = \pi_2 : M_1 \oplus M_2 \to M_2$.

Proposition 35.19. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ has a left-inverse if and only if the sequence

$$0 \to M \stackrel{\phi}{\to} N \to \operatorname{coker} \phi \to 0$$

splits.

PROOF:

- $\langle 1 \rangle 1$. If ϕ has a left-inverse then the sequence splits.
 - $\langle 2 \rangle 1$. Assume: ϕ has a left-inverse $\psi : N \to M$.
 - $\langle 2 \rangle 2$. Define $i: N \to M \oplus \operatorname{coker} \phi$ by $i(n) = (\psi(n), n + \operatorname{im} \phi)$.

 $\langle 2 \rangle 3$. Define $i^{-1}: M \oplus \operatorname{coker} \phi$ by $i^{-1}(m, x + \operatorname{im} \phi) = \phi(m) + x - \phi(\psi(x))$.

 $\langle 2 \rangle 4. \ i \circ i^{-1} = \mathrm{id}_{M \oplus \mathrm{coker} \, \phi}$

Proof:

$$\psi(\phi(m) + x - \phi(\psi(x))) = m + \psi(x) - \psi(x)$$

$$- m$$

 $\langle 2 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_N$

Proof:

$$i^{-1}(\psi(n), n + \operatorname{im} \phi) = \phi(\psi(n)) + n - \phi(\psi(n))$$
$$= n$$

 $\langle 2 \rangle 6. \ i \circ \phi = \kappa_1 : M \to M \oplus \operatorname{coker} \phi$

Proof:

$$i(\phi(m)) = (\psi(\phi(m)), \phi(m) + \operatorname{im} \phi)$$
$$= (m, \operatorname{im} \phi)$$

 $\langle 2 \rangle 7$. $\pi \circ i^{-1} = \pi_2 : M \oplus \operatorname{coker} \phi \to \operatorname{coker} \phi$

Proof:

$$i^{-1}(\psi(n), n + \operatorname{im} \phi) + \operatorname{im} \phi = \phi(\psi(n)) + n - \phi(\psi(n)) + \operatorname{im} \phi$$
$$= n + \operatorname{im} \phi$$

 $\langle 1 \rangle 2$. If the sequence splits then ϕ has a left-inverse.

PROOF: Since $\kappa_1: M \to M \oplus \operatorname{coker} \phi$ has left inverse π_1 .

Proposition 35.20. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ has a right-inverse if and only if the sequence

$$0 \to \ker \phi \to M \stackrel{\phi}{\to} N \to 0$$

splits.

Proof:

- $\langle 1 \rangle 1$. If ϕ has a right-inverse then the sequence splits.
 - $\langle 2 \rangle 1$. Let: $\psi : N \to M$ be a right inverse to ϕ .
 - $\langle 2 \rangle 2$. Let: $i: M \to \ker \phi \oplus N$ be the function $i(m) = (m \psi(\phi(m)), \phi(m))$. Proof: $m \psi(\phi(m)) \in \ker \phi$ since $\phi(m \psi(\phi(m))) = \phi(m) \phi(m) = 0$.
 - $\langle 2 \rangle 3$. Let: i^{-1} : $\ker \phi \oplus N \to M$ be the function $i^{-1}(x,n) = x + \psi(n)$.
 - $\langle 2 \rangle 4. \ i \circ i^{-1} = \mathrm{id}_{\ker \phi \oplus N}$

Proof:

$$i(i^{-1}(x,n)) = i(x + \psi(n))$$

$$= (x + \psi(n) - \psi(\phi(x)) - \psi(\phi(\psi(n))), \phi(x) + \phi(\psi(n)))$$

$$= (x + \psi(n) - \psi(n), n)$$

$$= (x, n)$$

 $\langle 2 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_M$

Proof:

$$i^{-1}(i(m)) = m - \psi(\phi(m)) + \psi(\phi(m))$$
$$= m$$

$$\langle 2 \rangle 6. \ i \circ \iota = \kappa_1$$

PROOF: For $m \in \ker \phi$ we have $i(m) = (m - \psi(\phi(m)), \phi(m)) = (m, 0)$. $\langle 2 \rangle 7$. $\phi \circ i^{-1} = \pi_2$

Proof:

$$\phi(i^{-1}(x,n)) = \phi(x) + \phi(\psi(n))$$
$$= 0 + n$$
$$= n$$

 $\langle 1 \rangle 2$. If the sequence splits then ϕ has a right-inverse.

PROOF: Since $\kappa_2: N \to M \oplus N$ is a right-inverse to π_2 .

Proposition 35.21. Let

$$0 \to M \xrightarrow{\alpha} N \xrightarrow{\beta} F \to 0$$

be a short exact sequence where F is free. Then the sequence splits.

Proof:

- $\langle 1 \rangle 1$. Let: $F = R^{\oplus A}$
- $\langle 1 \rangle 2$. PICK $\gamma : F \to N$ such that $\mathrm{id}_F = \beta \circ \gamma$
- $\langle 1 \rangle 3$. Let: $i: M \oplus F \to N$ be the homomorphism $i(m, f) = \alpha(m) + \gamma(f)$
- $\langle 1 \rangle 4$. *i* is injective.
 - $\langle 2 \rangle 1$. Assume: i(m, f) = i(m', f')
 - $\langle 2 \rangle 2$. $\alpha(m) + \gamma(f) = \alpha(m') + \gamma(f')$
 - $\langle 2 \rangle 3$. $\alpha(m-m') = \gamma(f-f')$
 - $\langle 2 \rangle 4$. f f' = 0

PROOF: Applying β to both sides of $\langle 2 \rangle 3$.

- $\langle 2 \rangle 5.$ f = f'
- $\langle 2 \rangle 6$. $\alpha(m-m')=0$
- $\langle 2 \rangle 7. \ m = m'$

PROOF: Since α is injective.

- $\langle 1 \rangle 5$. *i* is surjective.
 - $\langle 2 \rangle 1$. Let: $n \in N$
 - $\langle 2 \rangle 2$. $n \gamma(\beta(n)) \in \ker \beta = \operatorname{im} \alpha$
 - $\langle 2 \rangle 3$. Pick $m \in M$ such that $\alpha(m) = n \gamma(\beta(n))$
 - $\langle 2 \rangle 4$. $n = i(m, \beta(n))$
- $\langle 1 \rangle 6. \ \alpha = i \circ \kappa_1$
- $\langle 1 \rangle 7. \ \beta \circ i = \pi_2$

Homology

Definition 36.1 (Homology). Let $(M_{\bullet}, d_{\bullet})$ be a chain complex. The *ith homology* of the complex is the R-module

$$H_i(M_{\bullet}) := \frac{\ker d_i}{\operatorname{im} d_{i+1}}$$
.

Proposition 36.2. Consider the complex

$$0 \to M_1 \stackrel{\phi}{\to} M_0 \to 0$$
.

The 1st homology is $\ker \phi$, and the 0th homology is $\operatorname{coker} \phi$.

Part V Field Theory

Fields

Proof: Easy.

 $\langle 1 \rangle 3$. Z is non-trivial.

 $\langle 1 \rangle 1$. Let: R be a division ring. $\langle 1 \rangle 2$. Let: Z be the center of R.

Proof:

Example 37.2. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.
Proposition 37.3. Every field is an integral domain.
Proof: By Propositions 13.8 and 13.9. \square
Example 37.4. The converse does not hold: $\mathbb Z$ is an integral domain but not a field.
Proposition 37.5. Every finite integral domain is a field.
Proof: In a finite integral domain, multiplication by any non-zero element is injective, hence surjective. \Box
Corollary 37.5.1. For any positive integer n, the following are equivalent:
• n is prime.
$ullet$ $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
$ullet$ $\mathbb{Z}/n\mathbb{Z}$ is a field.
Theorem 37.6 (Wedderburn's Little Theorem). Every finite division ring is a field.
Proposition 37.7. Every subring of a field is an integral domain.

Definition 37.1 (Field). A *field* is a non-trivial commutative division ring.

Proposition 37.8. The center of a division ring is a field.

```
Proof: Since 1 \in Z. \langle 1 \rangle 4. Z is commutative. \langle 1 \rangle 5. Z is a division ring. \langle 2 \rangle 1. Let: a \in Z \langle 2 \rangle 2. a^{-1} \in Z \langle 3 \rangle 1. Let: x \in R \langle 3 \rangle 2. ax = xa \langle 3 \rangle 3. xa^{-1} = a^{-1}x
```

Definition 37.9. For any prime p and positive integer r, define a multiplication on $(\mathbb{Z}/p\mathbb{Z})^r$ that makes this group into a field by:

Proposition 37.10. A commutative ring is a field if and only if it is simple.

Proof: Proposition 22.5.

Corollary 37.10.1. Every field has Krull dimension 0.

Proposition 37.11. Let K be a field. Then K[x] is a PID, and every non-zero ideal in K[x] is generated by a unique monic polynomial.

Proof:

- $\langle 1 \rangle 1$. Let: I be a non-zero ideal in K[x]
- $\langle 1 \rangle 2$. PICK a monic polynomial $f \in K[x]$ of minimal degree.

Prove: I = (f)

- $\langle 1 \rangle 3$. Let: $g \in I$
- (1)4. PICK polynomials q, r with deg $r < \deg f$ such that g = qf + r
- $\langle 1 \rangle 5. \ r \in I$
- $\langle 1 \rangle 6. \ r = 0$
- $\langle 1 \rangle 7. \ g \in (f)$

Proposition 37.12. Let R be a commutative ring and I an ideal in R. Then I is maximal iff R/I is a field.

PROOF: From Proposition 23.3.

Example 37.13. Let R be a commutative ring and $a \in R$. Then (x - a) is a maximal ideal in R[x] iff R is a field, since $R[x]/(x - a) \cong R$.

Example 37.14. The ideal (2, x) is a maximal ideal in $\mathbb{Z}[x]$, since $\mathbb{Z}[x]/(2, x) \cong \mathbb{Z}/2\mathbb{Z}$.

Proposition 37.15. Every maximal ideal in a commutative ring is a prime ideal.

PROOF: Since every field is an integral domain.

Proposition 37.16. Let R be a commutative ring and I an ideal in R. If I is a prime ideal and R/I is finite then I is a maximal ideal.

PROOF: Since every finite integral domain is a field. \square

Proposition 37.17. Let R be a commutative ring and I a proper ideal in R. Then I is maximal iff, whenever J is an ideal and $I \subseteq J$, then I = J or J = R.

Example 37.18. The inverse image of a maximal ideal under a homomorphism is not necessarily maximal.

Let $i: \mathbb{Z}[x] \to \mathbb{Q}[x]$ be the inclusion. Then (x) is maximal in $\mathbb{Q}[x]$ but its inverse image (x) is not maximal in $\mathbb{Z}[x]$.

Definition 37.19 (Maximal Spectrum). Let R be a commutative ring. The maximal spectrum of R is the set of all maximal ideals in R.

Proposition 37.20. Let K be a field. The Krull dimension of $K[x_1, \ldots, x_n]$ is n.

Theorem 37.21 (Hilbert's Nullstellensatz). Let K be a field and L a subfield of K. If K is an L-algebra of finite type, then K is a finite L-algebra.

Proposition 37.22. Let K be a subfield of L. Then L is a K-algebra under multiplication.

Proof: Easy.

Theorem 37.23. Let F be a field. Let G be a finite subgroup of F^* . Then G is cyclic.

Proof:

- $\langle 1 \rangle 1$. For every n, there are at most n elements $a \in G$ such that $a^n = 1$. PROOF: Since the polynomial $x^n - 1$ in F[x] can have at most n linear factors (x - a).
- $\langle 1 \rangle 2$. Q.E.D.

Proof: Lemma 10.12.

Algebraically Closed Fields

Definition 38.1 (Algebraically Closed). A field K is algebraically closed iff, for every $f \in K[x]$ that is not constant, there exists $r \in K$ such that f(r) = 0.

Theorem 38.2. \mathbb{C} is algebraically closed.

Proposition 38.3. Let K be an algebraically closed field. Let I be an ideal in K[x]. Then I is maximal if and only if I = (x - c) for some $c \in K$.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \text{ If } I \text{ is maximal then there exists } c \in K \text{ such that } I = (x-c). \\ \langle 2 \rangle 1. \text{ Assume: } I \text{ is maximal.} \\ \langle 2 \rangle 2. \text{ PICK } f \text{ monic of minimal degree such that } f \in I. \\ \langle 2 \rangle 3. f \text{ is not constant.} \\ \text{PROOF: Otherwise } f = 1 \text{ and } I = K[x]. \\ \langle 2 \rangle 4. \text{ PICK } c \in K \text{ such that } f(c) = 0 \\ \langle 2 \rangle 5. x - c \mid f \\ \langle 2 \rangle 6. I \subseteq (x-c) \\ \langle 2 \rangle 7. I = (x-c) \\ \langle 1 \rangle 2. \text{ For all } c \in K \text{ we have } (x-c) \text{ is maximal.} \\ \text{PROOF: Example 37.13.} \\ \Box \end{array}
```

Part VI Linear Algebra

Vector Spaces

Definition 39.1 (Vector Space). Let K be a field. A K-vector space is a K-module. A linear map is a homomorphism of K-modules. We write $K - \mathbf{Vect}$ for $K - \mathbf{Mod}$.

Definition 39.2. Let $GL_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices. $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication.

Definition 39.3. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices. $GL_n(\mathbb{C})$ acts on \mathbb{C}^n by matrix multiplication.

Definition 39.4. Let $SL_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : \det M = 1 \}.$

Proposition 39.5. $\mathrm{SL}_n(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_n(\mathbb{R})$.

PROOF: If det M = 1 then det $(AMA^{-1}) = (\det A)(\det M)(\det A)^{-1} = 1$.

Proposition 39.6.

$$\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R}) \cong \mathbb{R}^*$$

Definition 39.7. Let $\mathrm{SL}_n(\mathbb{C}) = \{ M \in \mathrm{GL}_n(\mathbb{C}) : \det M = 1 \}.$

Definition 39.8. Let $O_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : MM^T = M^TM = I_n \}.$

Proposition 39.9. The action of $O_n(\mathbb{R})$ on \mathbb{R}^n preserves lengths and angles.

Definition 39.10. Let $SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) : \det M = 1 \}.$

Definition 39.11. Let $U_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : MM^{\dagger} = M^{\dagger}M = I_n \}.$

Definition 39.12. Let $SU_n(\mathbb{C}) = \{M \in U_n(\mathbb{C}) : \det M = 1\}.$

Proposition 39.13. Every matrix in $SU_2(\mathbb{C})$ can be written in the form

$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$

for some $a, b, c, d \in \mathbb{R}$ with $a^2 + b^2 + c^2 + d^2 = 1$.

PROOF:

$$\langle 1 \rangle 1$$
. LET: $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SU_2(\mathbb{C})$
 $\langle 1 \rangle 2$. $M^{-1} = M^{\dagger}$
 $\langle 1 \rangle 3$. $\begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$

$$\langle 1 \rangle 2. \ M^{-1} = M^{-1}$$

$$\langle 1 \rangle 3. \quad \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$$

$$\langle 1 \rangle 4$$
. Let: $\alpha = a + bi$ and $\beta = c + di$.

$$\langle 1 \rangle 5$$
. $\delta = \overline{\alpha} = a - bi$

$$\langle 1 \rangle 6. \ \gamma = -\overline{\beta} = -c + di$$

$$\langle 1 \rangle 6. \quad \gamma = -\overline{\beta} = -c + di$$

$$\langle 1 \rangle 7. \quad \det M = a^2 + b^2 + c^2 + d^2 = 1$$

Corollary 39.13.1. $SU_2(\mathbb{C})$ is simply connected.

Corollary 39.13.2.

$$SO_3(\mathbb{R}) \cong SU_2(\mathbb{C})/\{I, -I\}$$

PROOF: The function that maps
$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$
 to $\begin{pmatrix} a^2+b^2-c^2-d^2 & 2(bc-ad) & 2(ab-ad) \\ 2(ad+bc) & a^2-b^2+c^2-d^2 & 2(ab-ac) & 2(ab+cd) & a^2-b^2 \end{pmatrix}$

is a surjective homomorphism with kernel $\{I, -I\}$. \square

Corollary 39.13.3. The fundamental group of $SO_3(\mathbb{R})$ is C_2 .

Part VII Linear Algebra

Vector Spaces

Definition 40.1 (Vector Space). Let K be a field. A *vector space* over K is a module over K. A *linear transformation* is a K-module homomorphism.

Definition 40.2 (Bilinear Map). Let K be a field. Let U, V and W be vector spaces over K. A function $f: U \times V \to W$ is bilinear iff, for all $u_1, u_2 \in U$ and $v_1, v_2 \in V$ and $\alpha \in K$,

$$f(u_1 + \alpha u_2, v_1) = f(u_1, v_1) + \alpha f(u_2, v_1)$$

$$f(u_1, v_1 + \alpha v_2) = f(u_1, v_1) + \alpha f(u_1, v_2)$$

Theorem 40.3. Let K be a field. Let U and V be vector spaces. There exists a vector space $U \otimes V$ over K and bilinear map $-\otimes -: U \times V \to U \otimes V$, unique up to isomorphism, such that, for every vector space W over K and bilinear map $f: U \times V \to W$, there exists a unique linear map $\overline{f}: U \otimes V \to W$ such that the following diagram commutes.

$$U \otimes V \xrightarrow{\overline{f}} W$$

$$- \otimes - \uparrow \qquad \qquad \downarrow$$

$$U \times V$$

Further, $-\otimes -$ is injective and its image spans $U\otimes V$.

PROOF: We can construct $U \otimes V$ as follows. Let L be the free vector space generated by $U \times V$. Let R be the subspace generated by all vectors of the form $(u_1 + \alpha u_2, v) - (u_1, v) - \alpha(u_2, v)(u, v_1 + \alpha v_2) - (u, v_1) - \alpha(u, v_2)$ Take $U \otimes V := L/R$. \square

Proposition 40.4. If $\sum_{i=1}^{n} u_i \otimes v_i = 0$ and v_1, \ldots, v_n are linearly independent in V then $u_1 = \cdots = u_n = 0$.

Proof:

 $\langle 1 \rangle 1$. Let: $f: U \times V \to V^{U^*}$ be the function $f(u,v)(\Phi) = \Phi(u)v$

- $\langle 1 \rangle 2$. f is bilinear.
- \(\frac{1}{2}\). \(\frac{1}{3}\). Let: \(\frac{f}{f}: U \otimes V \rightarrow V^{U^*}\) be the induced linear transformation. \(\frac{1}{2}\)4. \(\frac{f}{f}(\sum_{i=1}^n u_i \otimes v_i) = 0\)
 \(\frac{1}{5}\)5. \(\sum_{i=1}^n f(u_i, v_i) = 0\)
 \(\frac{1}{6}\)6. For all \(\Phi \in U^*\) we have \(\sum_{i=1}^n \Phi(u_i)v_i = 0\)
 \(\frac{1}{6}\)7. For all \(\Phi \in U^*\) we have \(\Phi(u_1) = \cdots = \Phi(u_n) = 0\)

- $\langle 1 \rangle 8. \ u_1 = \dots = u_n = 0$

Proposition 40.5. Let U and V be vector spaces over K with bases \mathcal{B}_1 and \mathcal{B}_2 . Then $\mathcal{B} = \{b_1 \otimes b_2 : b_1 \in \mathcal{B}_1, b_2 \in \mathcal{B}_2\}$ is a basis for $U \otimes V$.

Proof:

- $\langle 1 \rangle 1$. \mathcal{B} is linearly independent.

 - $\langle 2 \rangle 1$. Assume: $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij} b_i \otimes b'_j = 0$ $\langle 2 \rangle 2$. For all j we have $\sum_{i=1}^{m} \alpha_{ij} b_i = 0$ PROOF: Proposition $\overline{40.4}$.
 - $\langle 2 \rangle 3$. Each α_{ij} is 0.
- $\langle 1 \rangle 2$. \mathcal{B} spans $U \otimes V$.

$$u \otimes v = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j (b_i \otimes b'_j)$$

PROOF: If $u = \alpha_1 b_1 + \dots + \alpha_m b_m$ and $v = \beta_1 b'_1 + \dots + \beta_n b'_n$ then $u \otimes v = \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_j (b_i \otimes b'_j)$ The result follows since the vectors of the form $u \otimes v$ span $U \otimes V$.

Corollary 40.5.1. If U and V are finite dimensional vector spaces over K then

$$\dim(U \otimes V) = (\dim U)(\dim V) .$$

Proposition 40.6. Vect_K is a symmetric monoidal category under \otimes .

Part VIII Measure Theory

Definition 40.7 (σ -algebra). Let X be a set. A σ -algebra on X is a nonempty set $\Sigma \subseteq \mathcal{P}X$ that is closed under complement, countable union, and countable intersection.

A measurable space consists of a set with a σ -algebra.

Definition 40.8 (Measure). Let (X, σ) be a measurable space. A *measure* on (X, σ) is a function $\mu: \Sigma \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ such that:

- $\mu(\emptyset) = 0$
- For any countable set of pairwise disjoint sets $\{E_n : n \in \mathbb{N}\}\$ in Σ ,

$$\mu\left(\bigcup_{n=0}^{\infty} E_n\right) = \sum_{n=0}^{\infty} \mu(E_n) .$$