BQ Onboarding Assignment - Nathan Li

```
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import itertools
```

Data Collection & Preprocessing

```
# Companies to analyze
# tickers = ['LLY', 'NVO', 'JNJ', 'MRK', 'AZN', 'NVS', 'PFE', 'AMGN', 'SNY', 'BMY', 'GI
tickers = [
 'NEE',
 'DUK',
 'SO',
 'D',
 'AEP',
 'EXC',
 'SRE',
 'NGG',
 'WEC',
 'PPL']
coint_start_date = "2022-01-01"
coint_end_date = "2024-01-01"
backtest_start_date = "2024-01-01"
backtest_end_date = "2025-01-01"
df = yf.download(tickers, start=coint_start_date, end=coint_end_date)['Close']
df_backtest = yf.download(tickers, start=backtest_start_date, end=backtest_end_date)['(
    10 of 10 completed
    10 of 10 completed
df.head()
```

→	Ticker	AEP	D	DUK	EXC	NEE	NGG	PPL	S0
	Date								
	2022- 01-03	78.364891	68.188316	91.643494	36.548061	84.811531	61.720779	27.181438	60.763351
	2022- 01-04	78.400261	67.970741	91.572655	36.509632	83.904739	61.840271	27.046162	60.763351
	2022- 01-05	79.125458	68.936775	91.776329	36.484020	83.025726	61.242786	27.100271	60.834656
	2022- 01-06	78.868980	68.806236	91.625786	36.330322	79.361603	60.628227	27.064198	60.763351
	2022- 01-07	80.301682	69.807091	92.537880	36.272686	79.953789	61.123283	27.280642	61.182278

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df_backtest.head()

→	Ticker	AEP	D	DUK	EXC	NEE	NGG	PPL	SO
	Date								
	2024- 01-02	79.183723	46.157810	93.972870	35.010582	59.827850	63.885895	26.575058	68.335251
	2024- 01-03	79.374123	46.081696	94.904816	34.732189	60.235970	64.413406	26.719961	69.675919
	2024- 01-04	79.383636	45.862850	94.626198	34.578590	60.051342	64.978607	26.681322	69.164726
	2024- 01-05	80.030975	46.662121	94.674232	34.856991	60.323421	65.261200	26.806904	69.068283
	2024- 01-08	80.449829	46.633568	95.490891	35.221775	61.139645	65.157585	27.038748	69.598755

Next steps:

Generate code with df_backtest

View recommended plots

New interactive sheet

df.isnull().sum().sum()

→ 0

df_backtest.isnull().sum().sum()

→ 0

```
# Plot prices

plt.figure(figsize=(12, 6))
for ticker in tickers:
    plt.plot(df.index, df[ticker], label=ticker)

# Formatting
plt.title("Energy Stock Prices (2022-2024)")
plt.xlabel("Date")
plt.ylabel("Closing Price (USD)")
plt.legend(loc="upper left", fontsize=8)
plt.grid(True)
```



```
plt.figure(figsize=(12, 6))
for ticker in tickers:
    plt.plot(df_backtest.index, df_backtest[ticker], label=ticker)

# Formatting
plt.title("Energy Stock Prices (2024-2025)")
plt.xlabel("Date")
plt.ylabel("Closing Price (USD)")
plt.legend(loc="upper left", fontsize=8)
plt.grid(True)
```


Testing for Cointegration

Step 1: Test for Stationarity

Augmented Dickey-Fuller Test

Goal: Identify non-stationary stocks, as cointegration requires at least one non-stationary stock.

Method: Apply the Augmented Dickey-Fuller (ADF) test to each stock's price series.

Interpretation:

- p-value < 0.05 → Stock is stationary (not useful for cointegration).
- p-value > 0.05 → Stock is non-stationary (candidate for cointegration).

```
from statsmodels.tsa.stattools import adfuller

# Function to check if a stock is stationary
def check_stationarity(series):
    p_value = adfuller(series.dropna())[1] # Extract p-value
    return p_value

# Apply ADF test to all stocks
stationary_results = {stock: check_stationarity(df[stock]) for stock in df.columns}

# Filter only non-stationary stocks (p-value > 0.05)
```

```
non_stationary_stocks = [stock for stock, p_value in stationary_results.items() if p_value in stationary_results.items
```

Step 2: Engle-Granger Cointegration Test

Goal: Find pairs of non-stationary stocks that form a stationary spread.

Method:

- 1. **OLS regression:** Model one stock's price as a function of another's.
- 2. **ADF test on residuals:** If stationary, the stocks are **cointegrated**.

Interpretation:

- p-value < 0.05 → Stocks are cointegrated.
- p-value > 0.05 → Stocks are not cointegrated.

```
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller
# Ensure non_stationary_stocks contains column names
non_stationary_stocks = [stock for stock, p_value in stationary_results.items() if p_va
# Generate stock pairs correctly
stock pairs = list(itertools.combinations(non stationary stocks, 2))
cointegrated pairs = []
# Function to test cointegration
def test cointegration(stock x, stock y):
    if stock_x not in df.columns or stock_y not in df.columns:
        print(f"Skipping invalid pair: {stock x}, {stock y}")
        return 1.0 # Return high p-value to skip
   # OLS Regression
   X = sm.add_constant(df[stock_x])
   model = sm.OLS(df[stock_y], X).fit()
   # Explicitly use the correct coefficient (hedge ratio)
   hedge ratio = model.params[stock x] # Use stock name instead of index
   # Calculate residuals
   residuals = df[stock_y] - hedge_ratio * df[stock_x]
   # ADF test on residuals
   p value = adfuller(residuals)[1]
    return p_value, hedge_ratio
```

```
# Run cointegration tests on valid stock pairs
for stock_x, stock_y in stock_pairs:
    p_value, hedge_ratio = test_cointegration(stock_x, stock_y)
    if p_value < 0.05:
        cointegrated_pairs.append((stock_x, stock_y, p_value, hedge_ratio)))
print(f"Found {len(cointegrated_pairs)} cointegrated pairs.")</pre>
Found 5 cointegrated pairs.
```

Step 3: Rank Cointegrated Pairs

```
# Sort pairs by strongest cointegration (lowest p-value)
cointegrated_pairs_sorted = sorted(cointegrated_pairs, key=lambda x: x[2])[:10]

# Display pairs
print("Top Cointegrated Pairs:")
for pair in cointegrated_pairs_sorted:
    print(f"{pair[0]} - {pair[1]} | p-value: {pair[2]:.4f} | hedge-ratio: {pair[3]:.4f}

Top Cointegrated Pairs:
    AEP - WEC | p-value: 0.0021 | hedge-ratio: 0.8359
    AEP - NEE | p-value: 0.0076 | hedge-ratio: 0.9952
    D - EXC | p-value: 0.0207 | hedge-ratio: 0.1152
    NEE - WEC | p-value: 0.0234 | hedge-ratio: 0.5138
    D - WEC | p-value: 0.0394 | hedge-ratio: 0.3459
```

Implementing Trading Strategy

Goal Execute a **mean-reverting pairs trading strategy** using the **top cointegrated pairs** identified from the cointegration test.

The strategy will be implemented **for a 1-year period** using hedge ratios derived from past regression.

✓ Step 1: Compute Spread & Z-Score

Goal: Calculate the **spread** between each stock pair and normalize it using a **Z-score** to detect deviations from the mean.

Method:

1. **Compute the spread** using the hedge ratio (β) :

```
Spread_t = Stock_A - (\beta \times Stock_B)
```

- 2. Calculate the rolling mean & standard deviation of the spread:
 - Mean: μ = rolling mean of spread
 - Standard deviation: σ = rolling std deviation of spread

```
3. Compute Z-score: Z_t = \frac{\operatorname{Spread}_t - \mu}{\sigma}
```

- A high Z-score (Z > 2) means the spread is unusually high.
- \circ A low Z-score (Z < -2) means the spread is unusually low.

```
# Function to compute spread and Z-score
def compute_spread_zscore(stock_x, stock_y, hedge_ratio, df_backtest, window=30):
    spread = df_backtest[stock_x] - (hedge_ratio * df_backtest[stock_y])
    # Rolling mean & std for normalization
    spread mean = spread.rolling(window).mean()
    spread_std = spread.rolling(window).std()
    # Compute Z-score
    z_score = (spread - spread_mean) / spread_std
    # Store results in DataFrame
    spread_df = pd.DataFrame({
        'Spread': spread,
        'Spread_Mean': spread_mean,
        'Spread_Std': spread_std,
        'Z_Score': z_score
    })
    return spread_df
```

✓ Step 2: Define Entry & Exit Rules

Assume that if the spread deviates significantly, it will revert to the mean.

- Short the spread when Z > 2
- Long the spread (Buy Stock A, Sell Stock B) when Z < -2
- Close the position when Z returns to 0

```
def generate_trading_signals(spread_df, entry_threshold=2, exit_threshold=0):
    signals = pd.DataFrame(index=spread_df.index)
    signals['Z_Score'] = spread_df['Z_Score']

# Long entry (buy stock A, sell stock B)
    signals['Long_Entry'] = signals['Z_Score'] < -entry_threshold
    # Short entry (sell stock A, buy stock B)
    signals['Short_Entry'] = signals['Z_Score'] > entry_threshold
    # Exit signal (close position when Z-score returns to mean)
    signals['Exit'] = (signals['Z_Score'] < exit_threshold) & (signals['Z_Score'] > -exi
    return signals
```

Step 3: Simulate Trading & Compute PnL

1 . Execute trades based on trading signals

- When a Long Entry signal appears → Buy Stock A, Sell Stock B.
- When a Short Entry signal appears → Sell Stock A, Buy Stock B.
- Close trades when an **Exit signal** appears.

2 . Calculate PnL (Profit & Loss)

- Compute daily returns from price movements.
- Track **cumulative returns** over time.

3 . Evaluate Strategy Performance

- · Compare against buy & hold strategy.
- Measure Sharpe ratio, max drawdown, total return.

```
# Function to simulate trading and compute PnL
def simulate_trading(signals, df_backtest, stock_x, stock_y, hedge_ratio, initial_capit
    portfolio = pd.DataFrame(index=signals.index)
    # Calculate daily returns for each stock
    portfolio['Returns_A'] = df_backtest[stock_x].pct_change()
    portfolio['Returns_B'] = df_backtest[stock_y].pct_change()
    # Positions: +1 = long, -1 = short, 0 = no position
    portfolio['Position'] = 0
    portfolio.loc[signals['Long_Entry'], 'Position'] = 1
    portfolio.loc[signals['Short_Entry'], 'Position'] = -1
    portfolio.loc[signals['Exit'], 'Position'] = 0
    # Carry forward positions until an exit signal occurs
    portfolio['Position'] = portfolio['Position'].replace(0, np.nan).ffill()
    # Compute PnL
    portfolio['PnL'] = portfolio['Position'].shift(1) * (portfolio['Returns_A'] - hedge
    # Drop NaN values to avoid propagation
    portfolio['PnL'] = portfolio['PnL'].fillna(0)
    # Cumulative PnL Calculation
    portfolio['Cumulative_PnL'] = initial_capital * (1 + portfolio['PnL']).cumprod()
    return portfolio
```

Step 4: Performance Evaluation & Risk Analysis

```
# Function to compute performance metrics
def evaluate_performance(portfolio, risk_free_rate=0.02):
    Evaluate strategy performance metrics.
    :param portfolio: DataFrame with cumulative PnL
    :param risk_free_rate: Assumed risk-free return for Sharpe Ratio
    :return: Dictionary with performance metrics
    results = \{\}
    # Daily returns
    daily returns = portfolio['PnL'].dropna()
    # Sharpe Ratio Calculation
    sharpe_ratio = (daily_returns.mean() - risk_free_rate / 252) / daily_returns.std()
    results['Sharpe Ratio'] = sharpe_ratio
    # Maximum Drawdown Calculation
    cumulative_returns = portfolio['Cumulative_PnL']
    peak = cumulative returns.cummax()
    drawdown = (cumulative_returns - peak) / peak
    max drawdown = drawdown.min()
    results['Max Drawdown'] = max_drawdown
    # Total Return Calculation
    total_return = (cumulative_returns.iloc[-1] - cumulative_returns.iloc[0]) / cumulat
    results['Total Return'] = total_return
    return results
# Store performance results for all pairs
all results = {}
# Loop through top 10 cointegrated pairs
for stock_x, stock_y, p_value, hedge_ratio in cointegrated_pairs_sorted:
    # print(f"\nTesting Pair: {stock_x} - {stock_y} | Hedge Ratio: {hedge_ratio:.4f}")
    # Compute Spread & Z-score
    spread_df = compute_spread_zscore(stock_x, stock_y, hedge_ratio, df_backtest)
    # Generate Trading Signals
    signals = generate_trading_signals(spread_df)
    # Simulate Trading & Compute PnL
    portfolio = simulate trading(signals, df backtest, stock x, stock y, hedge ratio)
    # Evaluate Performance
    performance_results = evaluate_performance(portfolio)
```

```
# Store results
    all_results[f"{stock_x} - {stock_y}"] = performance_results
# Print all results
print("\nSummary of Performance Metrics for Cointegrated Pairs:")
for pair, results in all results.items():
    print(f"\n{pair}:")
    for metric, value in results.items():
        print(f" {metric}: {value:.4f}")
\rightarrow
    Summary of Performance Metrics for Cointegrated Pairs:
    AEP - WEC:
      Sharpe Ratio: -0.0816
      Max Drawdown: -0.1482
      Total Return: -0.1291
    AEP - NEE:
      Sharpe Ratio: 0.0860
      Max Drawdown: -0.0834
      Total Return: 0.2984
    D - EXC:
      Sharpe Ratio: 0.0464
      Max Drawdown: -0.1828
      Total Return: 0.1543
    NEE - WEC:
      Sharpe Ratio: -0.0366
      Max Drawdown: -0.2568
      Total Return: -0.1128
    D - WEC:
      Sharpe Ratio: 0.0829
      Max Drawdown: -0.1750
      Total Return: 0.2574
```

Final Results

```
# Average return
# Extract total returns from strategy results
strategy_returns = [-0.1291, 0.2984, 0.1543, -0.1128, 0.2574]
average_strategy_return = sum(strategy_returns) / len(strategy_returns)

print(f"Average Strategy Return: {average_strategy_return:.4f}")

Average Strategy Return: 0.0936
```

Comparison against general energy industry

benchmark = 'XLE'

benchmark_data = yf.download(benchmark, start=backtest_start_date, end=backtest_end_dat
benchmark_returns = (benchmark_data.iloc[-1].item() - benchmark_data.iloc[0].item()) /
benchmark_returns

Double-click (or enter) to edit

Start coding or generate with AI.