Data Scientist, Verily Life Sciences jessicaloohw@gmail.com https://jessicaloohw.github.io/

EDUCATION

PhD, Biomedical Engineering, Duke University 3.94 GPA

August 2017 - May 2022

 $BEng/MEng,\,Biomedical\,Engineering,\,Imperial\,College\,London$

October 2011 – August 2015

1st Class Honours (equivalent to 4.0 GPA)

RESEARCH / WORK EXPERIENCE

Data Scientist, Verily Life Sciences

June 2022 - Present

Developing machine learning-based algorithms for clinical applications in pathology.

Graduate Research Assistant, Vision and Image Processing Laboratory, Duke University

August 2017 – May 2022

- Developed and validated deep learning-based algorithms for clinical applications in ophthalmology such as the automatic segmentation and quantification of biomarkers in retinal and corneal diseases on optical coherence tomography, angiography, and slit-lamp photography.
- Developed image analysis software for optical coherence tomography, scanning laser ophthalmoscopy, microperimetry, and color fundus images for clinical studies and trials.

Data Science Intern, Verily Life Sciences

May 2021 – August 2021

Developed deep learning-based algorithms for quality control of autofluorescence images for clinical applications in pathology.

Software Engineer (Research & Development), Neuramatix Sdn. Bhd.

January 2016 - May 2017

- Developed a deep learning-based classification algorithm to predict property age based on Google Street View images for property insurance applications.
- Developed image processing algorithms for automatic detection of salient points in images for robotic applications.

Undergraduate Research Assistant, Developmental Biomechanics Laboratory, Imperial College London June 2014 – August 2015

- Developed a diagnostic test for the classification of fetal health based on leg and head movement parameters modelled and extracted from clinical cine-MRI scans.
- Developed image processing algorithms to semi-automatically track the positions of the hip, knee, ankle, and spine in fetal clinical cine-MRI scans for investigations into how skeletal development is affected by fetal movement in the womb.

SELECTED JOURNAL PUBLICATIONS

- J. Loo, K. Y. C. Teo, C. H. Vyas, J. M. N. Jordan-Yu, A. B. Juhari, G. J. Jaffe, C. M. G. Cheung, and S. Farsiu, "Joint Multimodal Deep Learning-Based Automatic Segmentation of ICGA and OCT Images for Assessment of PCV Biomarkers," Ophthalmology Science (In Press), 2023.
- **J. Loo**, G. J. Jaffe, J. L. Duncan, D. G. Birch, and S. Farsiu, "Validation of a Deep Learning-Based Algorithm for Segmentation of the Ellipsoid Zone on Optical Coherence Tomography Images of an *USH2A*-Related Retinal Degeneration Clinical Trial," *Retina* 42(7), 1347-1355, **2022.**
- **J. Loo**, C. X. Cai, J. Choong, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu, "Deep Learning-Based Classification and Segmentation of Retinal Cavitations on Optical Coherence Tomography Images of Macular Telangiectasia Type 2," *British Journal of Ophthalmology* 106(3), 396-402, **2022.**
- J. R. Abraham, G. J. Jaffe, P. K. Kaiser, S. J. Chiu, **J. Loo**, S. Farsiu, L. Bouckaert, V. Karageozian, M. Sarayba, S. K. Srivastava, and J. P. Ehlers, "Impact of Baseline Quantitative OCT Features on Response to Risuteganib for the Treatment of Dry AMD The Importance of Outer Retinal Integrity," Ophthalmology Retina 6(11), 1019-1027, **2022**.
- J. Loo, M. A. Woodward, V. Prajna, M. F. Kriegel, M. Pawar, M. Khan, L. M. Niziol, and S. Farsiu, "Open-Source Automatic Biomarker Measurement on Slit-Lamp Photography to Estimate Visual Acuity in Microbial Keratitis," *Translational Vision Science & Technology* 10(12), 2, 2021.
- **J. Loo**, M. F. Kriegel, M. M. Tuohy, K. H. Kim, V. Prajna, M. A. Woodward, and S. Farsiu, "Open-Source Automatic Segmentation of Ocular Structures and Biomarkers of Microbial Keratitis on Slit-Lamp Photography Images Using Deep Learning," *IEEE Journal of Biomedical and Health Informatics* 25(1), 88-99, **2021.**
- D. Y. Kim, J. Loo, S. Farsiu, and G. J. Jaffe, "Comparison of Single Drusen Size on Color Fundus Photography and Spectral-Domain Optical Coherence Tomography," *Retina* 41(8), 1715-1722, **2021**.
- J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu, "Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis Reproduces Clinical Trial Outcome," Ophthalmology 127(6), 793-801, 2020.
- M. F. Kriegel, J. Loo, S. Farsiu, V. Prajna, M. Tuohy, K. H. Kim, A. N. Valicevic, L. M. Niziol, H. Tan, H. A. Ashfaq, D. Ballouz, and M. A. Woodward, "Measurement Reliability for Anterior Segment and Keratitis Morphology," *Cornea* 39(12), 1503-1509, **2020.**
- K. J. McHugh, D. Li, J. C. Wang, L. Kwark, **J. Loo,** V. Macha, S. Farsiu, L. A. Kim, and M. Saint-Geniez, "Computational Modeling of Retinal Hypoxia and Photoreceptor Degeneration in Patients with Age-Related Macular Degeneration," *PLOS One* 14(6), e0216215, **2019**.
- J. Loo, L. Fang, D. Cunefare, G. J. Jaffe, and S. Farsiu, "Deep Longitudinal Transfer Learning-Based Automatic Segmentation of Photoreceptor Ellipsoid Zone Defects on Optical Coherence Tomography Images of Macular Telangiectasia Type 2," *Biomedical Optics Express* 9(6), 2681-2698, 2018.

SELECTED CONFERENCE PRESENTATIONS

- E. M. Lad, W. Liang, G. J. Jaffe, Z. Deng, J. Loo, D. Mukherjee, and S. Farsiu, "The RUSH2A Study: Baseline Microperimetry and SD-OCT Measures," ARVO Annual Meeting, 2021 (Virtual).
- J. Loo, C. X. Cai, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu, "Deep Learning-Based Automatic Segmentation of Retinal Cavitations on OCT Images of MacTel2," ARVO Annual Meeting, 2020 (Virtual).
- S. Farsiu, J. Loo, J. L. Duncan, D. G. Birch, and G. J. Jaffe, "Deep Learning-Based Automatic Segmentation of Intact Ellipsoid Zone Area on Optical Coherence Tomography Images of USH2A-Related Retinal Degeneration," ARVO Annual Meeting, 2020 (Virtual).
- S. Onal, J. Loo, T. Nguyen, M. Cherukury, S. Farsiu, and G. J. Jaffe, "In-Vivo Quantitative Analysis of Pterygium Volume Using Anterior Segment Optical Coherence Tomography Imaging," ARVO Annual Meeting, 2020 (Virtual).
- A. Hasan, Z. Deng, J. Loo, D. Mukherjee, J. L. Duncan, D. G Birch, G. J. Jaffe, and S. Farsiu, "Meta-Learning Approach to Automatically Register Multivendor Retinal Images," ARVO Annual Meeting, 2020 (Virtual).
- J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu, "Automatic Deep Learning OCT Analysis Algorithm Reliably Reproduces Expert-Evaluated Outcome of a Randomized Clinical Trial for Macular Telangiectasia Type 2 Treatment," ARVO Annual Meeting, Vancouver, BC, 2019 (Poster).
- S. Farsiu, J. Loo, M. F. Kriegel, M. Tuohy, V. Prajna, and M. A. Woodward, "Deep Learning-Based Automatic Segmentation of Stromal Infiltrates and Associated Biomarkers on Slit-Lamp Images of Microbial Keratitis," ARVO Annual Meeting, Vancouver, BC, 2019 (Poster).
- M. F. Kriegel, J. Loo, V. Praina, S. Farsiu, M. Tuohy, P. M. Gompa, L. Niziol, and M. A. Woodward, "Reliability of Physicians' Measurements When Manually Annotating Images of Microbial Keratitis," ARVO Annual Meeting, Vancouver, BC, 2019 (Poster).
- J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu, "Deep Learning Retinal OCT Analysis Reliably Predicts the Outcome of a Real-World Clinical Trial," Ophthalmic Technologies XXIX, San Francisco, CA, 2019 (Podium).
- J. Loo, L. Fang, D. Cunefare, G. J. Jaffe, and S. Farsiu, "Deep Learning-Based Automatic Segmentation of Ellipsoid Zone Defects in Optical Coherence Tomography Images of Macular Telangiectasia type 2," ARVO Annual Meeting, Honolulu, HI, 2018 (Podium).

TEACHING EXPERIENCE

BME 544 Digital Image Processing (Teaching Assistant)

Fall 2020

- Developed and taught lectures on deep learning for inverse problems (denoising, super-resolution, etc.) and motion estimation.
- Held weekly office hours, communicated with students via email, graded assignments, and prepared solutions.

BME 671L Signal Processing & Applied Mathematics (Teaching Assistant)

Spring 2021

- Conducted weekly lab sessions on signal processing using MATLAB.

	AWARDS
Outstanding Teaching Assistant Award (Duke University) Honorable Mention	2021
John T. Chambers Fellowship Program (Duke University) One Year Special Award	2019, 2020
Medical Imaging Training Program (Duke University) Affiliated Scholar	2019
Duke Ophthalmology Trainee Day Scientific Symposium (Duke University) Best Research Presentation Award	2018
Fitzpatrick Institute for Photonics Symposium (Duke University) 2 nd Place Poster Award	2018
Stephen Richardson Prize (Imperial College London) Best MEng Project Award for Thesis: "Fetal Movements as Biomarkers for Fetal Health"	2015
Engineering Dean's List (Imperial College London) Top 10% of the Class	2013, 2014, 2015

AREAS OF INTEREST Data Science, Deep Learning, Machine Learning, Computer Vision, Image Analysis, Medical Imaging

TECHNICAL SKILLS Python, MATLAB, C/C++, TensorFlow, PyTorch, MatConvNet

Machine Learning by Stanford University (Coursera certification: WBV7QCZLNFZV) OTHER QUALIFICATIONS

Trinity-Guildhall Music Performance, Grade 8 (Piano); ABRSM, Grade 5 (Music Theory)

LANGUAGES English (Fluent), Malay (Fluent), Spanish (Basic), Mandarin (Conversational)