ME400 Capstone Design 1: Design Review 3

#### **Members**

Hwi-jun Koo Sung-min Park Hyun-bin Kim Hyeon-seong Kim Jae-ho Lee Jeong-ha Lee Je-gyeong Cho

#### **Professor**

Hae-won Park



Final Design and Analysis Results System Design

**Motor Control** 

Vision Processing

System Integration

Prototype Demo Video

Mission Completion



# How Can We Design a Good Robot?







# Overall Design

Rollers

Gears

Sorting Board



### Safer!

Safe Path Algorithm

TCP/IP Error Handling

Fault Pickup Handling

**Fast Calculation** 









### PMS Circuit





# Data Line











# Structure Design

Gears

Problem

Robot's translation motion is too slow!







From Dynamixel MX-28AT data spec, Maximum no load speed  $\omega_{\text{no load}} = 55$ rpm Let safety factor S.F. = 3Radius of mecanum wheel  $r_w = 45$ mm

Possible maximum length of path  $\sim 12 \text{m}$ Target mission completion time  $t \leq 50 \text{sec}$ Target maximum speed  $v_{\text{max}} = 0.24 \text{m/s}$ 

Apply gear ratio = 3:1
Then maximum wheel speed  $v_{w,\text{max}} = 0.26 \text{m/s}$ 

Gear Ratio = 3:1

Max. Wheel speed = 26 cm/s

Using gears will make robot move faster!

# Structure Design

### Suspension

Problem

- Vibration & pitching motion occurs!
- 3 point support is not desired!







2 springs for each wheel:

$$k = 0.98$$
kN/m

Springs are connected in parallel for 4 wheels:

$$k_{net} = 4 \times (2k)$$
$$= 7.84 \text{kN/m}$$

Total mass of the robot:

$$M = 10.1$$
kg

Pressed height:

$$h = \frac{Mg}{k_{net}} = 12.6$$
cm

Using springs will improve traction!

# Function Design

### Rollers

Problem

Robot must not stop to pickup the balls!







Robot doesn't have to stop to pickup balls if we use 2 rollers!

# Function Design

### Sorting Board

Problem

If robot avoids red balls, path gets longer!







Picking both colored balls will make path shorter!



# Thermal Design

Fin & Fan

Problem

Components of PMS circuit gets too hot (especially DC-DC converters)









Only Fin (No Fan)



Both Fin & Fan

Using both fin & fan cools down the system enough!





# Motor Control







# TCP/IP Communication

2 TCP/IP Loops

Problem

Sending data for sorting might be delayed!

#### Loop sending less data will iterate faster



▲ For Overall Control

▲ For Sorting Board

2 loops will reduce chance of sorting error!



# TCP/IP Communication





### Motor Control

# TCP/IP Communication



## Sub VIs for AX Dynamixels

#### Hierarchy of Control VI



### Motor Control

### Xbox Controller













### More Webcams



### Distance Measurement

Goal

To determine near ball, we have to compare appropriate value!

#### Calculated Distance

Calculate distance using radius of the ball

Values are discrete, farther distance leads to more discreteness & error (1.792m ~ 2.589m)

Unstable, Large Error



#### Pixel Value



Relatively more continuous values, error is not affected by distance (±1 pixel)

Doesn't requires additional algorithm

Stable, Small Error

Using pixel value is better to compare distance!

# Wider Angle

Goal

Our path algorithm requires to detect all balls at the start of the mission!

For wider angle, aspect ratio of 16:9 is better than 4:3



Wider angle can detect all balls safely!

### Lower Resolution

Goal

Find appropriate resolution of aspect ratio 16:9.



Too Slow



Lower resolution's calculation speed is faster!









### System SW Overview



### System SW Overview

### Version 1



#### Goal

Catch the target ball certainly(exactly)

Remove the path generation process

Determine 3 path cases based on pixel y-coordinates of the ball

Update the target ball with the smallest y-coordinate of pixels per loop

#### Goal

Safe and predictable behavior algorithm

Reduce rotation in opposite direction

Pickup the ball with a large x-coordinate order

Update the target ball with a large x-coordinate of pixels per loop

Problem Can't detect the target ball

Reason Comparing incorrect absolute distance



Remove the path generation process

### Development Process

### Version 1

Problem Detect the wrong target ball

Reason Comparing incorrect absolute distance



Remove the path generation process

### Development Process

### Version 2

Determine 3 path cases based on pixel y-coordinates of the ball



Target ball

=> smallest pixel y-coordinate

Certainly detect the target

### Development Process

Version 2

Problem 1

The target changes after rotation



Exclude other balls using x-coordinate when straight

### Development Process

Version 2

Problem 2

Target is constantly changing when the y coordinates of the balls are similar



Determine target by distance if y coordinates are similar

Problem 3

Unpredictable behavior Rotation in opposite direction



Safe and simple algorithm

### Development Process

### Version 3

Pickup the ball with a large x-coordinate order



#### Target ball

=> largest pixel x-coordinate

No rotation in opposite direction

Safe and predictable behavior

# Path Algorithm

### Process 1. Search blue ball & Pick up balls





Repeat this process until number of picked blue ball = 3

# Path Algorithm

#### Process 1. Search blue ball & Pick up balls

Record degree and direction of rotation during process



Add rotation angle

Subtract rotation angle

Record the total rotated angle

# Path Algorithm

#### Process 2. Return to basket



✓ Determine direction to turn at the position where the 3<sup>rd</sup> blue ball is picked up.



✓ Go back to basket using backside camera

# Path Algorithm

#### Process 3. Aligned parallel to the basket & Drop-off



✓ Align robot to basket in parallel

Y align process y1 > y2 y1 > y2 y2 = y1 y2 = y1

#### X align process



#### Properties of Path Algorithm

# Efforts for Accuracy and Safety

- ✓ Go straight to the center of the ball
- ✓ Using the green balls to return the center of the basket
- ✓ Process consist of several stages
- ✓ Predictable algorithm

#### Efforts to Reduce Time

- ✓ Make robot rotate less
- ✓ Return to the basket with a backward run
- ✓ Pick up all balls without avoiding motion

# Efforts to Cope with Emergency Situation

✓ check blue balls before releasing motion

#### Properties of Path Algorithm

#### Efforts for Accuracy and safety

Go straight to the center of the ball



Improve pick-up ability

Using the green balls on both sides, return the center of the basket



Improve release accurancy: prevent the ball from escaping of the basket when releasing the ball.

#### Properties of Path Algorithm

#### Efforts for Accuracy and safety

#### Process divided into stages



#### Predictable algorithm

distance is not correct

y coordinate can be changed while rotating

use x coordinate relatively correct

- ✓ Easily move desired process using stage number
- ✓ Easily find the source of error

✓ Robot behavior can be accurately predicted

#### Properties of Path Algorithm

#### Efforts to reduce time

Record degree and direction of rotation during process



- ✓ Determine the time efficient direction of rotation at the 3th blue ball position
- ✓ Save time by reducing unnecessary rotations

#### Properties of Path Algorithm

#### Efforts to reduce time

Use backward movement when coming back to the basket



✓ Save time by reducing unnecessary rotations

Pick up all balls without avoiding motion



✓ Save time by reducing unnecessary movements

#### Properties of Path Algorithm

#### Efforts to cope with emergency situation





If robot do not pick up all the blue balls completely, go back to stage 2 or 4 depending on the remaining blue balls and pick them up again before drop-off

#### ROS nodes

Sorting node

Goal 1

Sorting balls regarding their color





## ROS nodes

#### Sorting node

Goal 2

Calculate picked red/blue ball number



Ball's y coordinate decrease

Ball's y coordinate < OFFSET

Judge the ball was picked up

#### ROS nodes

#### Data integration node

Goal 1

Go straight to the center of the blue ball







Target ball's x coordinate  $\leq 0$ 

Set the ball with the largest x coordinate as the target go straight toward center of the blue ball

#### ROS nodes

#### Data integration node

Goal 2

Record the rotation & determine the rotation direction





Record degree and direction of rotation during whole process

Determine the time efficient direction of rotation at the 3th blue ball position

## ROS nodes

#### Data integration node

Goal 3

Align the robot parallel to the basket







#### ROS nodes

#### Data integration node

Goal 3

Align the robot parallel to the basket

1. Compute the coordinates of specific point using the coordinates of two green balls



2. X align process



#### ROS nodes

#### Data integration node

Goal 3

Align the robot parallel to the basket

3. Y align process





4. X align process



## ROS nodes

#### Data integration node

Goal 4

Go back to specific stage and pick up blue balls again



do not pick up all the blue ball

Go back to previous stage

#### ROS nodes

#### Data integration node

Goal 4

Go back to specific stage and pick up blue balls again



Stage 11: Release the balls

Two blue balls remain One blue balls remain Go back to stage 2 Go back to stage 4





# Demo Video





# Demo Video



# Demo Video



# THANK YOU FOR LISTENING



ROLL'S ROYCE







# KEEP and (33) ROLLS ROYCE