CSE 1003 Digital Logic and Design Module 4 Combinational Circuits II L1

DR. S.HEMAMALINI
PROFESSOR
SCHOOL OF ELECTRICAL ENGINEERING

VIT CHENNAI

Contents

6 hrs

Binary Parallel Adder - Look ahead carry

Magnitude Comparator

Decoders

Encoders

Multiplexers

Demultiplexers

CO4: Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder multiplexer, demultiplexer.

Applications – Magnitude Comparators

- Magnitude comparators are useful in control applications where a binary number representing the physical variable being controlled (e.g., position, speed, or temperature) is compared with a reference value. The comparator outputs are used to actuate circuitry to drive the physical variable toward the reference value.
- *Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).
- *Comparators are also used as process controllers and for Servo motor control.
- ❖ Used in password verification and biometric applications.

Magnitude Comparator

- ☐ The comparator is a 2n-input, 3-output combinational logic circuit.
- □ It compares the magnitude of two n-bit numbers and provides the relative result as the output.

$$A = (A_{n-1}A_{n-2} \dots A_0)_2$$

$$B = (B_{n-1}B_{n-2} \dots B_0)_2$$

$$f_1 = 1,$$
 if $A < B$
 $f_2 = 1,$ if $A = B$
 $f_3 = 1,$ if $A > B$

1-bit Magnitude Comparator

- The one-bit comparator is a combinational logic circuit with two inputs A and B and three outputs namely A < B, A = B and A > B.
- It compares the two single bit numbers A and B and produces an output that indicates the result of the comparison.
- Let the 1-bit numbers be $A = A_0$ and $B = B_0$.

Design of 1-bit Magnitude Comparator

K-map for A = B

K-map for A > B

Truth table of a one-bit comparator

Inputs		Outputs					
A	В	X(A < B)	Y(A = B)	Z(A > B)			
0	0	0	1	0			
0	1	1	0	0			
1	0	0	0	1			
1	1	0	1	0			

For
$$(A \le B)$$
, $X = \overline{A_0} B_0$
For $(A = B)$, $Y = \overline{A_0} \overline{B_0} + A_0 B_0 = \overline{A_0 \oplus B_0}$

For
$$(A > B)$$
, $Z = A_0 \overline{B_0}$

Using Basic Gates

Using AND and EX-NOR gates

Design of 2-bit Magnitude Comparator

- A comparator used to compare two binary numbers each of two bits is called a 2-bit magnitude comparator.
- It consists of four inputs and three outputs to generate less than, equal to and greater than between two binary numbers.
- Let the two 2-bit binary numbers be $A = A_1A_0$ and $B = B_1B_0$.
- Here each subscript represents one of the digits in the numbers.
- The binary numbers A and B will be equal if all the pairs of significant digits of both numbers are equal, i.e., $A_1 = B_1$ and $A_0 = B_0$

Truth Table of 2-bit Magnitude Comparator

INPUT				OUTPUT			
A1	A0	B1	В0	A < B	A = B	A > B	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

Procedure to compare 2 2bit binary numbers:

1. First compare the two most significant bits $(A_1 \text{ and } B_1)$.

If
$$A_1 > B_1$$
, then $A > B$;

if
$$A_1 < B_1$$
, then $A < B$.

If $A_1 = B_1$, then the next pair of bits $(A_0$ and $B_0)$ must be compared.

2. If $A_1 = B_1$ and $A_0 > B_0$, then A > B;

if
$$A_1 = B_1$$
 and $A_0 < B_0$, then $A < B$.

Again, if $A_1 = B_1$ and $A_0 = B_0$, then A = B.

Design of 2-bit Magnitude Comparator

Truth Table of 2-bit Magnitude Comparator

	INF	PUT	OUTPUT				
A1	A0	B1	В0	A < B	A = B	A > B	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

For A>B

$$Z = A_0 \, \overline{B}_1 \, \overline{B}_0 + A_1 \, A_0 \, \overline{B}_0 + A_1 \, \overline{B}_1$$

$$Y = \overline{A}_1 \overline{B}_1 \overline{A}_0 \overline{B}_0 + \overline{A}_1 A_0 \overline{B}_1 B_0 + A_1 A_0 B_1 B_0 + A_1 \overline{A}_0 B_1 \overline{B}_0$$

$$= \overline{A}_1 \overline{B}_1 (\overline{A}_0 \overline{B}_0 + A_0 B_0) + A_1 B_1 (A_0 B_0 + \overline{A}_0 \overline{B}_0)$$

$$= \overline{A}_1 \overline{B}_1 (A_0 \odot B_0) + A_1 B_1 (A_0 \odot B_0)$$

$$= (A_0 \odot B_0) (\overline{A}_1 \overline{B}_1 + A_1 B_1)$$

$$= (A_0 \odot B_0) (A_1 \odot B_1)$$

Design of 2-bit Magnitude Comparator

For A<B

$$X = \overline{A_1}B_1 + \overline{A_1}B_0\overline{A_0} + \overline{A_0}B_1B_0$$

For A=B

$$Y = \overline{A}_{1} \overline{B}_{1} \overline{A}_{0} \overline{B}_{0} + \overline{A}_{1} A_{0} \overline{B}_{1} B_{0} + A_{1} A_{0} B_{1} B_{0} + A_{1} \overline{A}_{0} B_{1} \overline{B}_{0}$$

$$= \overline{A}_{1} \overline{B}_{1} (\overline{A}_{0} \overline{B}_{0} + A_{0} B_{0}) + A_{1} B_{1} (A_{0} B_{0} + \overline{A}_{0} \overline{B}_{0})$$

$$= \overline{A}_{1} \overline{B}_{1} (A_{0} \odot B_{0}) + A_{1} B_{1} (A_{0} \odot B_{0})$$

$$= (A_{0} \odot B_{0}) (\overline{A}_{1} \overline{B}_{1} + A_{1} B_{1})$$

$$= (A_{0} \odot B_{0}) (A_{1} \odot B_{1})$$

For A>B

$$Z = A_0 \, \overline{B}_1 \, \overline{B}_0 + A_1 \, A_0 \, \overline{B}_0 + A_1 \, \overline{B}_1$$

Logic diagram of 2-bit Magnitude Comparator

Design of 4-bit Magnitude Comparator

- Let the two 4-bit numbers be $A = A_3 A_2 A_1 A_0$ and $B = B_3 B_2 B_1 B_0$
- **■**Steps used in comparing two 4-bit numbers:
- 1. First compare the two most significant bits $(A_3 \text{ and } B_3)$.

If
$$A_3 > B_3$$
, then $A > B$; if $A_3 < B_3$, then $A < B$.

If $A_3 = B_3$, the next pair of bits (A2 and B2) must be compared.

2. If $A_3 = B_3$ and $A_2 > B_2$, then A > B; if $A_3 = B_3$ and $A_2 < B_2$, then A < Bif $A_3 = B_3$ and $A_2 = B_2$, the next pair of bits $(A_1 \text{ and } B_1)$ will be compared.

- 3. If $A_3 = B_3$, $A_2 = B_2$ and $A_1 > B_1$; then A > B;

 if $A_3 = B_3$, $A_2 = B_2$ and $A_1 < B_1$, then A < B.

 if $A_3 = B_3$, $A_2 = B_2$ and $A_1 = B_1$, compare the LSBs $(A_0 \text{ and } B_0)$.
- 4. If $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$ and $A_0 > B_0$, then A > B; if $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$ and $A_0 < B_0$, then A < B.
- 5. If $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$, $A_0 = B_0$, then A = B.

Design of 4-bit Magnitude Comparator

A3B3	A2B2	A1B1	A0B0	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A3>B3	х	х	х	1	0	0
A3 <b3< td=""><td>x</td><td>x</td><td>х</td><td>0</td><td>1</td><td>0</td></b3<>	x	x	х	0	1	0
A3=B3	A2>B2	x	х	1	0	0
A3=B3	A2 <b2< td=""><td>x</td><td>х</td><td>0</td><td>1</td><td>0</td></b2<>	x	х	0	1	0
A3=B3	A2=B2	A1>B1	x	1	0	0
A3=B3	A2=B2	A1 <b1< td=""><td>х</td><td>0</td><td>1</td><td>0</td></b1<>	х	0	1	0
A3=B3	A2=B2	A1=B1	A0>B0	1	0	0
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td><td>0</td></b0<>	0	1	0
A3=B3	A2=B2	A1=B1	A0=B0	0	0	1

The output A > B logic expression can be written as

G = A3 $\overline{B3}$ + (A3 Ex-NOR B3) A2 $\overline{B2}$ + (A3 Ex-NOR B3) (A2 Ex-NOR B2) A1 $\overline{B1}$ + (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) A0 $\overline{B0}$

The logical expression for A<B output can be written as

 $L = \overline{A3} B3 + (A3 Ex-NOR B3) \overline{A2} B2 + (A3 Ex-NOR B3) (A2 Ex-NOR B2) \overline{A1} B1 + (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) <math>\overline{A0} B0$

The logical expression for A=B output can be written as

E = (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) (A0 Ex-NOR B0)

Design of 4-bit Magnitude Comparator

The output A > B logic expression can be written as

G = A3 $\overline{B3}$ + (A3 Ex-NOR B3) A2 $\overline{B2}$ + (A3 Ex-NOR B3) (A2 Ex-NOR B2) A1 $\overline{B1}$ + (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) A0 $\overline{B0}$

The logical expression for A<B output can be written as

 $L = \overline{A3} B3 + (A3 Ex-NOR B3) \overline{A2} B2 + (A3 Ex-NOR B3) (A2 Ex-NOR B2) \overline{A1} B1 + (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) <math>\overline{A0}$ B0

The logical expression for A=B output can be written as

E = (A3 Ex-NOR B3) (A2 Ex-NOR B2) (A1 Ex-NOR B1) (A0 Ex-NOR B0)

- Magnitude Comparators are available in IC form.
- □7485 is a 4-bit magnitude comparator of the TTL logic family.

Pin Configuration

Data Inputs

$$A = (A_3, A_2, A_1, A_0)_2$$

 $B = (B_3, B_2, B_1, B_0)_2$

Cascade Inputs

$$C1 \rightarrow A < B$$

 $C2 \rightarrow A = B$
 $C3 \rightarrow A > B$

Outputs

$$O_{A < B}$$

$$O_{A > B}$$

$$O_{A = B}$$

Cascading inputs provide a means for expanding the comparison operation to more than four bits by cascading two or more four-bit comparators.

TRUTH TABLE

COMPARING INPUTS			CASCADING INPUTS			OUTPUTS			
A _{3,} B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	$O_{A < B}$	O _{A=B}
A ₃ >B ₃ A ₃ <b<sub>3 A₃=B₃ A₃=B₃ A₃=B₃ A₃=B₃ A₃=B₃</b<sub>	X X $A_2 > B_2$ $A_2 < B_2$ $A_2 = B_2$ $A_2 = B_2$ $A_2 = B_2$ $A_2 = B_2$	X X X X A ₁ >B ₁ A ₁ <b<sub>1 A₁=B₁</b<sub>	X X X X X A ₀ >B ₀ A ₀ <b<sub>0</b<sub>	X X X X X	X X X X X	X X X X X	H L H L	L H L H L	
A ₃ =B ₃ A ₃ =B ₃ A ₃ =B ₃ A ₃ =B ₃	$A_2 = B_2$	$A_1=B_1$ $A_1=B_1$ $A_1=B_1$ $A_1=B_1$ $A_1=B_1$	$A_0 = B_0$	H L X L	L X L H	L H L	H L L H L	L H L H L	L H L L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

(a) 74HC85 wired as a four-bit comparator

(b) Two 74HC85s cascaded to perform an eight-bit comparison

Describe the operation of the eight-bit comparison arrangement in Figure for the following cases:

(b) $A_7A_6A_5A_4A_3A_2A_1A_0 = 101011111; B_7B_6B_5B_4B_3B_2B_1B_0 = 10101001$

Solution:

a)
$$O_{A < B} = 1$$

b)
$$O_{A>B}=1$$

Design a 5- bit comparator using a single 7485 and one gate.

The two 5-bit numbers to be compared are $X_4 X_3 X_2 X_1 X_0$ and $Y_4 Y_3 Y_2 Y_1 Y_0$

