Augmenting transferred representations for stock classification

Elizabeth Fons¹ Paula Dawson² Xiao-jun Zeng¹ John Keane¹ Alexandros Iosifidis³

¹University of Manchester ²AllianceBernstein ³Aarhus University

ICASSP 2021 11 June, 2021

Motivation

- Stock classification is challenging: high degree of noise and volatility due to external factors.
- One approach is to use a deep learning model to predict stock movement and then implement a trading rule to test profitability.
- In general, previous work has focused on predicting either movement of an index or of a small number of stocks.

Contribution

In this work, we present a model that can learn a trading rule directly from a large-scale stock dataset.

- We use transfer learning, where we pre-train a model with past returns of all constituent stocks of the S&P500 index, and then transfer it and fine-tune it on a dataset with the trading rule included.
- We propose the use of data augmentation on the feature space defined as the output of the pre-trained model and we compare this approach with the standard augmentation in the input space.
- We test our model by building the learned trading rule and calculate profitability taking into account transaction fees.

Problem formulation

- Original task: Binary classification problem: 1 denotes up (price above the daily median) and 0 denotes down (price below the daily median).
- Trading rule: 3-class problem, top 10 stocks labelled *buy*, bottom 10 stocks labelled *sell* and the rest (\approx 480) as *do nothing*.
- Daily returns of all S&P500 constituents between 1990 and 2018, divided into 25 data splits consisting of 750 days of training/validation and 250 days for testing.
- Each stock is segmented into sequences of 240 time steps used to predict the next day price movement $((750 240) \cdot 500 \approx 255 \text{K})$.
- Cross-entropy loss with a term that maximizes returns:

$$\mathcal{L}_{R+CE}(\Theta) = \mathcal{L}_{CE} + \alpha \mathcal{L}_{returns} = \mathcal{L}_{CE} + -\alpha \frac{1}{B} \sum_{i} R(i, t)$$
 (1)

Transfer learning

• **Jittering (Jit-inp):** Gaussian noise with a mean $\mu=0$ and standard deviation $\sigma=0.05$ is added to the time series.

- **Jittering (Jit-inp):** Gaussian noise with a mean $\mu=0$ and standard deviation $\sigma=0.05$ is added to the time series.
- Magnify: a variation of window slicing, we randomly slice windows between 40% and 80% of the original time series, but always from the fixed end.

- **Jittering (Jit-inp):** Gaussian noise with a mean $\mu=0$ and standard deviation $\sigma=0.05$ is added to the time series.
- Magnify: a variation of window slicing, we randomly slice windows between 40% and 80% of the original time series, but always from the fixed end.
- **Pool:** Reduces the temporal resolution without changing the length of the time series by averaging a pooling window.

- **Jittering (Jit-inp):** Gaussian noise with a mean $\mu=0$ and standard deviation $\sigma=0.05$ is added to the time series.
- Magnify: a variation of window slicing, we randomly slice windows between 40% and 80% of the original time series, but always from the fixed end.
- **Pool:** Reduces the temporal resolution without changing the length of the time series by averaging a pooling window.
- **Time warp:** time intervals between samples are distorted based on a random smooth warping curve by cubic spline with four knots at random magnitude.

• Noise: Gaussian noise is generated with zero mean and per-element standard deviation calculated across all transformed vectors; the noise is scaled by a global parameter γ : $c_i' = c_i + \gamma X, X \sim \mathcal{N}\{0, \sigma_i^2\}$

Augmenting transferred representations

- **Noise:** Gaussian noise is generated with zero mean and per-element standard deviation calculated across all transformed vectors; the noise is scaled by a global parameter γ : $\mathbf{c}_i' = \mathbf{c}_i + \gamma X, X \sim \mathcal{N}\{0, \sigma_i^2\}$
- **Jittering (Jit-feat):** Random noise with mean $\mu = 0$ and standard deviation $\sigma = 0.05$ is added to the context vector.

- Noise: Gaussian noise is generated with zero mean and per-element standard deviation calculated across all transformed vectors; the noise is scaled by a global parameter γ : $\mathbf{c}_i' = \mathbf{c}_i + \gamma X, X \sim \mathcal{N}\{0, \sigma_i^2\}$
- Jittering (Jit-feat): Random noise with mean $\mu=0$ and standard deviation $\sigma=0.05$ is added to the context vector.
- **Interpolation:** for each sample, we find its K intra-class nearest neighbours in feature space and for each pair c_k and c_j , a new vector c_i' is generated using interpolation: $c_i' = (c_k c_j)\lambda + c_j$

- Noise: Gaussian noise is generated with zero mean and per-element standard deviation calculated across all transformed vectors; the noise is scaled by a global parameter γ : $\mathbf{c}_i' = \mathbf{c}_i + \gamma X, X \sim \mathcal{N}\{0, \sigma_i^2\}$
- **Jittering (Jit-feat):** Random noise with mean $\mu = 0$ and standard deviation $\sigma = 0.05$ is added to the context vector.
- **Interpolation:** for each sample, we find its K intra-class nearest neighbours in feature space and for each pair c_k and c_j , a new vector c_i' is generated using interpolation: $c_i' = (c_k c_j)\lambda + c_j$
- Extrapolation: similarly, we apply extrapolation to the feature space vectors in the following way, with $\lambda = 0.2$: $c'_i = (c_j c_k)\lambda + c_j$

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(25) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL (25)+ $\mathcal{L}_{\mathit{CE}}$	12.99	38.15	0.34	25.48	0.52	$73.13 {\pm} 18.94$	33.57 ± 6.5
$TL+FC(25)+\mathcal{L}_{CE}$	32.25	30.29	1.06	19.6	1.65	$68.34 {\pm} 16.5$	31.79 ± 5.12
$TL+FC(25)+\mathcal{L}_{R+CE}$	34.62	30.20	1.15	19.59	1.77	64.79 ± 16.86	30.72±5.28

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(25) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL (25)+ $\mathcal{L}_{\mathit{CE}}$	12.99	38.15	0.34	25.48	0.52	$73.13{\pm}18.94$	33.57 ± 6.5
$TL+FC(25)+\mathcal{L}_\mathit{CE}$	32.25	30.29	1.06	19.6	1.65	$68.34 {\pm} 16.5$	31.79 ± 5.12
$TL+FC(25)+\mathcal{L}_{R+CE}$	34.62	30.20	1.15	19.59	1.77	$64.79{\pm}16.86$	30.72 ± 5.28
TL+FC(25) Extrapolation	39.70	29.43	1.35	18.96	2.09	62.90±17.87	30.10±5.81
TL + FC(25) Interpolation	36.87	29.69	1.24	18.93	1.95	$62.46 {\pm} 17.80$	$29.95{\pm}5.74$
TL + FC(25) Noise	30.97	29.15	1.06	19.14	1.62	$62.43 {\pm} 18.12$	$29.95{\pm}5.81$
TL+FC(25) Jitter-feat	39.11	29.93	1.31	19.22	2.03	62.71±17.84	30.04±5.71

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(25) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL (25)+ $\mathcal{L}_{\mathit{CE}}$	12.99	38.15	0.34	25.48	0.52	$73.13{\pm}18.94$	33.57 ± 6.5
$TL + FC(25) + \mathcal{L}_{\mathit{CE}}$	32.25	30.29	1.06	19.6	1.65	$68.34 {\pm} 16.5$	31.79 ± 5.12
$TL+FC(25)+\mathcal{L}_{R+CE}$	34.62	30.20	1.15	19.59	1.77	$64.79{\pm}16.86$	30.72 ± 5.28
TL+FC(25) Extrapolation	39.70	29.43	1.35	18.96	2.09	62.90±17.87	30.10±5.81
TL+FC(25) Interpolation	36.87	29.69	1.24	18.93	1.95	62.46 ± 17.80	$29.95{\pm}5.74$
TL+FC(25) Noise	30.97	29.15	1.06	19.14	1.62	$62.43 {\pm} 18.12$	$29.95{\pm}5.81$
TL + FC(25) Jitter-feat	39.11	29.93	1.31	19.22	2.03	62.71 ± 17.84	$30.04{\pm}5.71$
TL+FC(25) Jitter-input	29.74	39.94	0.96	20.12	1.48	68.23±16.62	31.75±5.06
TL + FC(25) Magnify	20.39	29.41	0.69	19.86	1.03	63.78 ± 16.78	30.42 ± 5.47
TL+FC(25) Pool	27.18	29.96	0.91	19.64	1.38	57.71 ± 17.43	28.38 ± 5.72
TL+FC(25) Time Warp	32.76	29.46	1.11	19.21	1.71	$61.81 {\pm} 19.96$	$29.80{\pm}5.48$

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(100) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL $(100)+\mathcal{L}_{R+CE}$	21.05	39.95	0.55	25.9	0.84	57.02 ± 21.95	28.24 ± 8.12
$TL + FC(100) + \mathcal{L}_\mathit{CE}$	30.83	30.31	1.02	19.79	1.56	$68.88 {\pm} 15.93$	$31.95{\pm}4.76$
$TL + FC(100) + \mathcal{L}_{R+CE}$	32.14	29.97	1.07	19.87	1.62	64.72 ± 17.25	30.7±5.41

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(100) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL $(100)+\mathcal{L}_{R+CE}$	21.05	39.95	0.55	25.9	0.84	57.02 ± 21.95	28.24 ± 8.12
$TL + FC(100) + \mathcal{L}_\mathit{CE}$	30.83	30.31	1.02	19.79	1.56	$68.88 {\pm} 15.93$	31.95 ± 4.76
$TL + FC(100) + \mathcal{L}_{R+CE}$	32.14	29.97	1.07	19.87	1.62	$64.72 {\pm} 17.25$	30.7 ± 5.41
TL+FC(100) Extrapolation	27.38	29.33	0.93	19.42	1.41	62.74±17.73	30.05±5.81
TL + FC(100) Interpolation	30.84	29.72	1.04	19.38	1.59	62.49 ± 17.35	30.01 ± 5.63
TL+FC(100) Noise	29.02	29.44	0.99	19.2	1.51	$62.2 {\pm} 17.82$	$29.87{\pm}5.73$
TL+FC(100) Jitter-feat	37.14	29.31	1.27	18.92	1.96	61.84±17.89	29.75±5.75

Table: Performance of the k=10 long-short portfolios after transaction costs, for the TL+FC(100) model trained with different augmentation methods and the combined loss \mathcal{L}_{R+CE} .

Method	Ann ret	Ann vol	IR	D. Risk	DIR	Acc	Macro-F1
LSTM	29.2	28.66	1.02	19.08	1.53	_	_
No TL (100)+ \mathcal{L}_{R+CE}	21.05	39.95	0.55	25.9	0.84	57.02 ± 21.95	28.24 ± 8.12
$TL + FC(100) + \mathcal{L}_\mathit{CE}$	30.83	30.31	1.02	19.79	1.56	$68.88 {\pm} 15.93$	$31.95{\pm}4.76$
$TL + FC(100) + \mathcal{L}_{R+CE}$	32.14	29.97	1.07	19.87	1.62	64.72 ± 17.25	$30.7 {\pm} 5.41$
TL+FC(100) Extrapolation	27.38	29.33	0.93	19.42	1.41	62.74±17.73	30.05±5.81
TL + FC(100) Interpolation	30.84	29.72	1.04	19.38	1.59	62.49 ± 17.35	30.01 ± 5.63
TL + FC(100) Noise	29.02	29.44	0.99	19.2	1.51	$62.2 {\pm} 17.82$	$29.87{\pm}5.73$
TL + FC(100) Jitter-feat	37.14	29.31	1.27	18.92	1.96	$61.84{\pm}17.89$	29.75 ± 5.75
TL+FC(100) Jitter-input	29.49	30.32	0.97	19.73	1.49	67.79 ± 17.18	31.64±5.46
TL + FC(100) Magnify	22.11	30.36	0.73	20.21	1.09	67.12 ± 16.68	$30.34{\pm}5.27$
TL+FC(100) Pool	27.64	29.50	0.94	18.98	1.46	57.64 ± 17.89	$28.37{\pm}5.89$
TL+FC(100) Time Warp	26.64	29.65	0.90	19.49	1.37	$65.55{\pm}18.03$	$29.69{\pm}5.89$

Conclusions

- Using transfer learning on a stock classification task where a trading rule is included in the training dataset improves financial performance when compared to training a neural network from scratch.
- Using a training loss that combines a classification objective with maximization of returns improves risk adjusted returns when compared with the single cross-entropy loss.
- We investigated the use of data augmentation on the feature space (defined as the output of the pre-trained model) and compared it with traditional data augmentation methods on the input space. Augmentation on the feature space improves up to 20% risk adjusted returns when compared to a transferred model without augmentation.

Thank you!