Интеграл Лебега

Определение. Пусть $E \subset R, E \neq \emptyset$.

Определим функцию χ_E , $\chi_E(x) = 1$, $x \in E$, $\chi_E(x) = 0$, $x \notin E$

Функцию χ_E , будем называть характеристической функцией множества E.

Простой функцией будем называть выражение $s(x) = \sum_{j=1}^n c_j \chi_{E_j}(x)$ где $c_j \in R$, а E_j - множества, не обязательно различные.

Заметим, что если $x \in E_j \cup E_k \cup E_m$ то $s(x) = c_j + c_k + c_m$. Учитывая это равенство, простую функцию можно переписать в виде $s(x) = \sum_{k=1}^m A_k \chi_{F_k}(x)$,

где множества F_k попарно не пересекаются, а числа A_k различны.

Множества F_k получаются из множеств E_j пересечениями каких-то из E_1, \ldots, E_n и последующими объединениями получаемых множеств, что приводит к следующему утверждению.

Лемма.

Пусть множества E_1, \ldots, E_n измеримы. Тогда множества F_1, \ldots, F_m измеримы.

Теорема.

Простые функции измеримы.

Доказательство.

Воспользуемся записью простой функции s(x) с помощью множеств F_1, \ldots, F_m , не уменьшая общности, считаем, что $A_1 < A_2 < \cdots < A_m$

Тогда A_1, A_2, \ldots, A_m - это все значения, которые принимает функция s(x).

Тогда при $a < A_1$, имеем $E_{< a} = \emptyset$,

при
$$A_1 < a \le A_2$$
 имеем $E_{< a} = F_1,$ при $A_2 < a \le A_3$ $E_{< a} = F_1 \cup F_2,$...

при
$$A_{m-1} < a \le A_m$$
 имеем $E_{< a} = F_1 \cup \dots \cup F_{m-1}$,

при
$$a > A_m$$
 $E_{\leq a} = F_1 \cup \cdots \cup F_m$.

Поскольку по лемме все множества F_1, \ldots, F_m измеримы, то и любые их объединения измеримы, т.е. все множества $E_{< a}$ измеримы при $\forall a \in R$, , т.е. s(x)–измерима. Теорема доказана.

Определение интеграла Лебега от простой функции

Пусть
$$s(x) = \sum_{j=1}^{n} c_j \chi_{E_j}(x)$$

где все множества E_j измеримы, $E = \bigcup_{j=1}^n E_j$

Считаем что если для какого то j_0 выполнено $mE_{j_0}=\infty$, то $c_{j_0}=0$ Полагаем по определению

$$\int_{E} s(x)dm = *\sum_{j=1}^{n} c_{j} m E_{j}$$

где знак $*\sum$ означает суммирование по тем индексам j, для которых $mE_j < \infty$

Из определения (1) следует свойства интеграла от простых функций:

$$1)s(x) = \chi_E \rightarrow \int_E s(x)dm = \int_E 1dm = mE$$

$$(2)\int_E ks(x)dm = k\int_E s(x)dm$$

3)
$$\int_{E} (s_1(x) + s_2(x)) dm = \int_{E} s_1(x) dm + \int_{E} s_2(x) dm$$

 $s1, s_2$ - простые функции, определенные на множестве E.

Определение интеграла Лебега от неотрицательной измеримой функции

Пусть $E \subset R, E \neq \emptyset$ - измеримое множество, $f: E \to R \cup +\infty, \ f(x) \geq 0$ -функция, заданная на E, измеримая и неотрицательна.

Обозначим через A(f) множество всех простых функций s(x), заданных на E, измеримых, неотрицательных и удовлетворяющих условию

$$s(x) \le f(x), x \in E$$

Множество A(f) непусто, поскольку функция $s_0(x) \equiv 0$ удовлетворяет приведенным условиям, т.е. $s_0(x) \leq f(x)$ (по условию $f(x) \geq 0$).

Тогда положим $\int_E f(x) dm = \sup_{s \in A(f)} \int_E s(x) dm$

Не исключена ситуация, когда $\int_E f(x)dm = +\infty$

Рассмотрим, например функцию f(x):

$$f(x) = 0, -1 \le x < 0, \quad f(x) = +infty, 0 \le xleq 1$$

положим

$$s_n(x) = 0, -1 \le x < 0, \quad s_n(x) = n, 0 \le x leq 1$$

$$\int_{E} s_n(x)dm = 0 \cdot 1 + n \cdot 1 = n$$

$$\sup_{s \in A(f)} \int_E s_n(x) dm = +infty \rightarrow \int_E f(x) dm = +infty$$

Поскольку для $s(x) \ge 0$, если $x \in E$, имеем $\int_E s(x) dm \ge 0$,

то для $f(x) \ge 0, x \in E$ выполнено

$$\int_{E} f(x)dm \ge 0,$$

Если $\int_E f(x)dm\infty$, то говорят, что функция f суммируется на E, будем записывать это выражением $f\in\mathcal{L}(E)$

. Определение интеграла Лебега от функции любого знака Пусть $f: E \to R \cup \pm \infty$ - измеримая функция,

определим функции f^+ , f^- , как это сделано в лекции об измеримых функциях,

$$f = f^+ - f^-, f^+(x) \le 0, f^-(x) \le 0$$

Предположим, что $f^+ \in \mathcal{L}(E), f^- \in \mathcal{L}(E)$

Тогда говорят, что f суммируема на $E, f \in \mathcal{L}(E)$

$$\int_E f(x)dm = \int_E f^+(x)dm - \int_E f^-(x)dm$$

Утверждение.

$$f \in \mathcal{L}(E) \iff |f| \in \mathcal{L}(E)$$

Доказательство.

Пусть $|f| \in \mathcal{L}(E)$ По определению функций f^+ , f^- имеем неравенства $f^+(x) \le |f|, \ f^-(x) \le |f|$

поэтому
$$A(f^+)\subset A(|f|),\ A(f^-)\subset A(|f|)$$

$$\sup_{s \in A(f^+)} \int_E s dm \le \sup_{s \in A(|f|)} \int_E s dm < \infty$$

$$\sup_{s \in A(f^-)} \int_E s dm \le \sup_{s \in A(|f|)} \int_E s dm < \infty$$

T.e.
$$f^+ \in \mathcal{L}(E), f^- \in \mathcal{L}(E)$$

С другой стороны, если $E^+=\{x\in E: f(x\geq 0\},\ E^-=\{x\in E: f(x< 0\},\$ то для

 $\forall s \in A(|f|)$ имеем

$$\chi_{E^+} s(x) \in A(f^+), \ \chi_{E^-} s(x) \in A(f^-)$$

$$\int_E s(x) dm = \int_{E^+} \chi_{E^+}(x) s(x) dm + \int_{E^-} \chi_{E^-}(x) s(x) dm$$

Утверждение доказано.