Trabajo Práctico 10.

Contador con Display de 7 Segmentos

Introducción

El presente trabajo práctico se enfoca en el desarrollo de un contador ascendente de 0 a 9 utilizando un microcontrolador PIC16F648A y un display de 7 segmentos. El contador es controlado por un dip switch de 8 bits y un pulsador, lo que permite modificar el valor mostrado y avanzar en el conteo.

El Microcontrolador PIC16F648A

El PIC16F648A es un microcontrolador de 8 bits perteneciente a la familia de microcontroladores PIC de Microchip Technology. Se caracteriza por su arquitectura RISC (Reduced Instruction Set Computer), que le permite ejecutar instrucciones de manera eficiente y rápida. Algunas de sus características principales son:

- **Memoria de programa Flash:** 3.5 KB de memoria de programa no volátil, que almacena el código del programa.
- **Memoria de datos RAM:** 192 bytes de memoria de datos volátil, utilizada para almacenar variables y datos temporales.
- Puertos de entrada/salida (I/O): 12 pines de I/O configurables como entradas o salidas digitales.
- **Temporizadores:** Un temporizador de 8 bits y un temporizador de 16 bits, útiles para generar retardos y eventos periódicos.
- Convertidor Analógico-Digital (ADC): Un ADC de 8 canales y 10 bits, que permite leer señales analógicas.
- **Comparadores analógicos:** Dos comparadores analógicos, que permiten comparar señales analógicas con voltajes de referencia.

Diseño del Circuito

El circuito utilizado en este trabajo práctico consta de los siguientes componentes:

- **PIC16F648A:** El microcontrolador encargado de controlar el contador y el display.
- **Display de 7 segmentos:** Un dispositivo de visualización que muestra los dígitos del 0 al 9.
- **Dip switch de 8 bits:** Un conjunto de interruptores que permite ingresar un valor binario de 8 bits.
- Pulsador: Un botón que, al ser presionado, incrementa el valor del contador.
- **Resistencias pull-up:** Resistencias conectadas a los pines del dip switch para garantizar que los niveles lógicos sean altos cuando los interruptores están abiertos.

Funcionamiento del Contador

El código del programa, escrito en lenguaje ensamblador, implementa el siguiente algoritmo:

1. Configuración inicial:

- o Configurar el puerto B como salida para controlar el display de 7 segmentos.
- o Configurar el puerto A como entrada para leer el dip switch.
- o Inicializar el valor del contador en 0.

2. Bucle principal:

- o Leer el estado del pulsador.
- o Si el pulsador es presionado, incrementar el valor del contador.
- Leer el valor del dip switch.
- Utilizar el valor del dip switch como índice en una tabla de búsqueda para obtener el patrón de bits correspondiente al dígito que se mostrará en el display.
- Enviar el patrón de bits al puerto B para activar los segmentos adecuados del display.
- o Repetir el bucle principal.

Resultados y Conclusiones

El trabajo práctico permitió implementar un contador ascendente de 0 a 9 utilizando un microcontrolador PIC16F648A y un display de 7 segmentos. El contador fue controlado por un dip switch y un pulsador, lo que permitió modificar el valor mostrado y avanzar en el conteo.

Este proyecto demuestra la versatilidad del PIC16F648A para aplicaciones de control y visualización. El uso de lenguaje ensamblador permitió tener un control preciso sobre el hardware y optimizar el código para el microcontrolador específico.

Referencias

- Microchip Technology. (2024). PIC16F648A Data Sheet.
- [Tutoriales y proyectos relacionados con PIC16F648A]