

IDENTIFICACIÓN DE ENTIDADES EN PRESCRIPCIONES CON EL OBJETIVO DE DETECTAR ERRORES DE MEDICACIÓN.

DANIEL CARMONA, MARTÍN SEPÚLVEDA, MONSERRAT PRADO, CAMILO CARVAJAL

ENTIDADES MINSAL

TABLA DE CONTENIDO

RECOMENDACIONES Y CONCLUSIONES.

DESCRIPCIÓN DEL PROBLEMA

- Existen recetas médicas que pueden carecer de cierta información importante, llevando a errores de medicación y a un empeoramiento en el estado del paciente.
- Las recetas electrónicas pueden contener campos de texto libre.
- Esto dificulta la verificación de la completitud de la prescripción.
- Reconocimiento de entidades facilita la detección de errores.

11 DESCRIPCIÓN DEL PROBLEMA

- Dado un campo de texto libre, utilizar algoritmos de NLP para reconocer entidades.
- Detectar errores de completitud o gramática en las indicaciones.

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

PRINCIPIO_ACTIVO

FORMA-FARMA

ADMIN

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL

PERIODICIDAD

DURACIÓN

cada 12 horas durante 15 dias

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

PRINCIPIO_ACTIVO

FORMA-FARMA

ADMIN

DOMPERIDONA 10 MG COMPRIMIDO 1 COMPRIMIDO

PERIODICIDAD

ORAL cada 6 horas

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

PRINCIPIO_ACTIVO

FORMA-FARMA

LEVETIRACETAM 100 MG/ML SOL. ORAL Suministro

ADMIN

PERIODICIDAD

inmediato primera vez. 1 FRASCO ORAL cada 12 horas

DURACIÓN

durante 12 horas.

DESCRIPCIÓN DEL PROBLEMA

Un acercamiento a través de entidades en texto libre.

PRINCIPIO_ACTIVO

FORMA-FARMA

LEVETIRACETAM 100 MG/ML SOL. ORAL Suministro

ADMIN

PERIODICIDAD

inmediato primera vez. 1 FRASCO ORAL cada 12 horas

durante 12 horas.

/2 DA

12 DATOS Y PREPROCESAMIENTO

DATOS Y PREPROCESAMIENTO

Resumen de la prescripción

DATOS Y PREPROCESAMIENTO

DATOS Y PREPROCESAMIENTO

/2 DATOS Y PREPROCESAMIENTO

NÚMERO DE EJEMPLOS ÚNICOS SEREDUCEA 108.049

DATOS Y PREPROCESAMIENTO

El problema se convierte en una clasificación para cada token en la secuencia.

PRINCIPIO_ACTIVO FORMA-FARMA ADMIN

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL

PERIODICITY DURATION

cada 12 horas durante 15 dias

DATOS Y PREPROCESAMIENTO

- Se etiquetan los datos a través de reglas.
- Se definen 5 entidades:
 - ACTIVE_PRINCIPLE
 - FORMA_FARMA
 - ADMIN
 - PERIODICITY
 - DURATION

PARACETAMOL	B-ACTIVE_PRINCIPLE
500	B-FORMA_FARMA
MG	I-FORMA_FARMA
COMPRIMIDO	I-FORMA_FARMA
1	B-ADMIN
COMPRIMIDO	I-ADMIN
ORAL	I-ADMIN
CADA	B-PERIODICITY
6	I-PERIODICITY
HORAS	I-PERIODICITY
DURANTE	B-DURATION
3	I-DURATION
DIAS	I-DURATION

DATOS Y PREPROCESAMIENTO ETIQUETADO DE DATOS MANUAL

- Se utilizó la herramienta Label Studio.
- Se etiquetaron 1000 recetas.

/3 MODELAMIENTO

MODELO REGEX

- Se utlizan 2 conjuntos de Principio Activo y Forma Farma
- Se reconocen expresiones regulares de Periodicidad,
 Duración y Admin.

['TRAMADOL'	'B-ACTIVE_PRINCIPLE']
['100'	'O']
['MG/ML'	'O']
['SOLUCIÓN'	'B-FORMA_FARMA']
['ORAL'	'I-FORMA_FARMA']
['FRASCO'	'O']
['10'	'O']
['ML'	'O']
['0,2'	'O']
['ML'	'O']
['ORAL'	'B-VIA_ADMIN']
['CADA'	'B-PERIODICITY']
['8'	'I-PERIODICITY']
['HORAS'	'I-PERIODICITY']
['DURANTE'	'B-DURATION']
['15'	'I-DURATION']
['DIAS'	'I-DURATION']

/3 MODELAMIENTO MODELO RNN

- Recurrent Neural Network (RNN)
- Una capa de embedding, 3 capas de LSTM y una capa lineal.
- A todas se les aplica dropout de 0.5.
- Entrada: vectores one-hot.
- Métricas a utilizar: recall, precision y puntuación F1.

MODELO RNN

RANITIDINA 50 MG SOLUCIÓN INYECTABLE

RANITIDINA

50

MG

SOLUCIÓN INYECTABLE

MODELO BETO

- Modelo basado en Transformers
- Un modelo de 12 capas pre-entrenado
- Fine-tuning con datos clínicos
- Entrada: tokenizador, embeddings iniciales y codificación posicional
- Fine-tuning para entidades
- Métricas a utilizar: recall, precision y puntuación F1.

MODELO BETO

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

/4 RESULTADOS

/5 NUEVAS ITERACIONES.

PRIMEROS MODELOS CON 5 ENTIDADES

Trabajo Paralelo

FINE TUNING

NUEVAS ETIQUETAS

NUEVOS RESULTADOS Y CONCLUSIONES

MODELO BETO

Pre-entrenado con big spanish corpus

Fine-tuning con dataset clínico

MODELO BETO

Conocimiento experto

y lógica

/5 NUEVAS ITERACIONES.

/5 NUEVAS ITERACIONES.

/5 NUEVAS ITERACIONES: NUEVAS ETIQUETAS

Agregar nuevas etiquetas para obtener más datos relevantes.

15 NUEVAS ITERACIONES: NUEVAS ETIQUETAS

Agregar nuevas etiquetas para obtener mas datos relevantes.

MODELO BETO ADMIN

Pre-entrenado con big spanish corpus Fine-tuning con dataset clínico

Fine-tuning para reconocimiento de entidades

(RegEx + ground truth)

Fine-tuning para reconocimiento de entidades

Conocimiento experto

copiar modelo

/5 NUEVAS ITERACIONES.

F1 Score

Accuracy

Recall

RESUMENY RECOMENDACIONES

¿En qué estado están los modelos? ¿Qué se puede lograr con estos? ¿De qué manera pueden aportar?

MODELO BETO ADMIN

Uso de ambos modelos

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

PRINCIPIO_ACTIVO FORMA-FARMA ADMIN PERIODICITY DURATION

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

MODELO BETO ADMIN

Uso de ambos modelos

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

PRINCIPIO_ACTIVO FORMA-FARMA ADMIN PERIODICITY DURATION

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

DEMO

Modelos disponibles en repositorio HuggingFace

Demo disponible en repositorio Github

Input

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

Input

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

Output modelo

PRINCIPIO_ACTIVO

FORMA-FARMA

ADMIN

PERIODICITY

DURATION

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

CANT

UND

VIA_ADMIN

Input

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS Output modelo

PRINCIPIO_ACTIVO **FORMA-FARMA PERIODICITY ADMIN DURATION** HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS UND VIA_ADMIN Rangos apropiados para

Conocimiento experto y lógica

cada principio activo

Input

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

Output modelo

PRINCIPIO_ACTIVO **FORMA-FARMA PERIODICITY ADMIN DURATION** HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS UND VIA_ADMIN Alertas en caso de Rangos apropiados para **Conocimiento experto** errores de prescripción cada principio activo y lógica

76 RECOMENDACIONES

Agregar más etiquetas para obtener mas datos relevantes.

RECOMENDACIONES

Agregar más etiquetas para obtener mas datos relevantes.

6 CONCLUSIONES

- El lenguaje semi-estructurado influyó en la obtención de buenas métricas.
- Los modelos se diferencian en gasto computacional y reproducibilidad.
- Beto posee mas reproducibilidad y robustez, se debe comprobar con datos de otros hospitales.
- El estado actual de los modelos puede detectar la gran mayoría de errores de incompletitud.
- Da pie a la posibilidad de agrupar y generar mayor cantidad de datos para el uso de otros algoritmos de detección de outliers.

DANIEL CARMONA, MARTÍN SEPÚLVEDA, MONSERRAT PRADO, CAMILO CARVAJAL

REFERENCIAS

• Sang, E. F., De Meulder, F.

Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 (142–147), 2003.

• Bose, P., Srinivasan, S., Sleeman IV, W. C., Palta, J., Kapoor, R., Ghosh, P.

A survey on recent named entity recognition and relationship extraction techniques on clinical texts. In Applied Sciences (11(18), 8319.), 2021.

• Báez, P., Villena, F., Rojas, M., Durán, M., Dunstan, J. (2020, November).

The Chilean Waiting List Corpus: a new resource for clinical named entity recognition in Spanish. InProceedings of the 3rd clinical natural language processing workshop (pp. 291-300)., 2020.

• Báez, P., Bravo-Marquez, F., Dunstan, J., Rojas, M., Villena, F.

Automatic Extraction of Nested Entities in Clinical Referrals in Spanish.

In ACM Transactions on Computing for Healthcare, (3(3), 1-22.) - 2022.

Rojas, M., Dunstan, J., Villena, F.

Clinical Flair: A Pre-Trained Language Model for Spanish Clinical Natural Language Processing. In Proceedings of the 4th Clinical Natural Language Processing Workshop, (pp. 87-92)., 2022.

• Jiang, M., Sanger, T., Liu, X.

Combining contextualized embeddings and prior knowledge for clinical named entity recognition: evaluation study. In JMIR medical informatics, (7(4), e14850.) - 2019