Accurate Linear-Time Chinese Word Segmentation via Embedding Matching

Jianqiang Ma & Erhard Hinrichs

Department of Linguistics & SFB833 University of Tübingen, Germany

Chinese Word Segmentation

• Input: 请在一米线外等候

• Output: 请 在 一米线 外 等候

EN: Please wait behind the one-meter-line

Erroneous: 请 在 一 米线 外 等候

EN: Please wait outside rice-flour noodle.

Sequence Labeling for Word Segmentation

One Size Fits All?

One weight matrix for all cases!

Linear model: $f(W^T \cdot x)$

One Size Fits All?

One weight matrix for all cases!

Linear model: $f(W^T \cdot x)$

Not Really!

Motivation Examples

Configuration and Target Character

Config: 中国 格外

EN: Besides Chinese specifications ...

EN: Chinese –style especially (salient) ...

Target Characters Impact Labels

Config: 中国 格外

EN: Besides Chinese specifications ...

EN: Chinese – style especially (salient) ...

Target character feature	Impact on Label		
	В	I	
规 'rule'	+	-	
风 'wind'	-	+	

Conflicting Evidence: Same Target Character

Config: 中国 格夕

EN: Chinese – style especially (salient) ...

EN: The wind is strong today

Target character Feature	Impact on Label		
	В	I	
风 'wind'	_	+	
风 'wind'	+	_	

Conflicting Evidence: Same Configuration

Config: 中国 格外

EN: Besides Chinese specifications ...

EN: Chinese – style especially (salient) ...

Configuration feature	Impact on Label		
	В	I	
中国 B I	+	-	
中国 B I	_	+	

Character-Specific Tailoring of Labels

В

label =

EN: Chinese –style especially ...

Outline

- Embedding-based Matching
 - Matching & why embedding
 - Architecture, prediction & learning
- Experiments
 - Recent embedding-based models
 - State-of-the-art
- Conclusion

The Matching Formulation

Word Segmentation as Matching: Character-Specific Label

■Input: 请在一米线外等候

'Please wait behind the one-meter-line'

Character-specific Labels:

Word Segmentation as Matching: Features

Configuration Features:

Unigram	在,一,米,线,外
Bigram	在一,一米,米线,线外
Char-specific label	在_B, 一_B

Input sent: 请在一米线外等候

• Compare Match (config_{*}, #_B) with Match(config_{*}, #_I)

Why Embedding?

- Sequence labeling as matching?
 - |character| ~ 10³ 10⁴, |labels| ~ 10⁴
 - Annotated data ~ 10⁶ character tokens
- Embeddings
 - Low-dimension vector representation of words and beyond
 - Similar items share similar vectors
 - Trained "by predict"

Data sparseness!

Why Embedding?

- In our model: embeddings are parameters *learned* from training data
- Jointly Learn embeddings for
 - Input features
 - Output character specific labels such as # B, # I

Embedding-Based Model

Embedding Matching Model: Input Embedding

Input: 请在一米线外等候

'Please wait behind the one-meter-line'

Label: 请_B 在_B 一_B 米_I 线_I...

- Dim of each feature embedding: 50
- Dim of concatenated embedding: 550

Embedding Matching Model: Full Picture

Sentence: 请在一米线外等候 'Please wait behind the one-meter-line'

Model Characteristics

Sentence: 请在一米线外等候 'Please wait behind the one-meter-line'

- Input & output:
 - Embeddings to be learned
 - Learned jointly
 - Char-specific label: feature & output
- No hidden layer(s)
 - Embedding without complex NN
- Positive/negative cases

Sequence Prediction & Learning

- Greedy Search
- Learning
 - Objective: cross entropy + L2
 - Stochastic gradient descent
- Linear-time in search/learning

Experiments

Experiments: Data & Evaluation Metrics

- Data: PKU & MSR corpora
 - Bakeoff-2005
 - Standard split of training and test set

	PKU	MSR
Word types	5.5×10^4	8.8×10^{4}
Word tokens	1.1×10^{6}	2.4×10^6
Character types	5×10^3	5×10^3
Character tokens	1.8×10^{6}	4.1×10^{6}

Metrics: precision(P), recall (R) & balanced f-score (F)

$$F = \frac{2 \times P \times R}{P + R}$$

Recall for out-of-vocabulary words (R_{oov})

Comparison with Previous Embedding Models

Models	PKU Corpus				MSR Corpus			
Models	P	R	F	\mathbf{R}_{oov}	P	R	F	\mathbf{R}_{oov}
Zheng et al.(2013)	92.8	92.0	92.4	63.3	92.9	93.6	93.3	55.7
+ pre-training†	93.5	92.2	92.8	69.0	94.2	93.7	93.9	64.1
Mansur et al. (2013)	93.6	92.8	93.2	57.9	92.3	92.2	92.2	53.7
+ pre-training†	94.0	93.9	94.0	69.5	93.1	93.1	93.1	59.7
Pei et al. (2014)	93.7	93.4	93.5	64.2	94.6	94.2	94.4	61.4
+ pre-training†	94.4	93.6	94.0	69.0	95.2	94.6	94.9	64.8
+ pre-training & bigram†	_	_	95.2	-	_	-	97.2	-
This work (closed-set)	95.5	94.6	95.1	76.0	96.6	96.5	96.6	87.2

Numbers in percentage. Results with † (dagger) used extra corpora for (pre-)training

Comparison with the State-of-the-Art

Mode	PKU	MSR	Method
Best05 closed-set	95.0	96.4	Character-based CRF
Zhang et al. (2006)	95.1	97.1	CRF + dictionary matching
Zhang & Clark (2007)	94.5	97.2	Word-based structured perceptron
Wang et al. (2012)	94.1	97.2	Word-based LM + character CRF
Sun et al. (2009)	95.2	97.3	Latent variable model, character + word
Sun et al. (2012)	95.4	97.4	Adaptive training, new features
Zhang et al. (2013)	96.1	97.4	Semi-supervised co-training, new features
This work (closed set)	95.1	96.6	Embedding matching

Numbers in percentage.

Comparison with the State-of-the-Art

Mode	PKU	MSR	Method
Best05 closed-set	95.0	96.4	Character-based CRF
Zhang et al. (2006)	95.1	97.1	CRF + dictionary matching
Zhang & Clark (2007)	94.5	97.2	Word-based structured perceptron
Wang et al. (2012)	94.1	97.2	Word-based LM + character CRF
Sun et al. (2009)	95.2	97.3	Latent variable model, character + word
Sun et al. (2012)	95.4	97.4	Adaptive training, new features
Zhang et al. (2013)	96.1	97.4	Semi-supervised co-training, new features
This work (closed set)	95.1	96.6	Embedding matching

Numbers in percentage.

Learning Curve and Hyper-Parameters

Size of feature embed'
Size of output embed'
Window size
Initial learning rate
Regularization
Hybrid matching

 $N_1 = 50$ $N_2 = 550$ h = 5 $\alpha = 0.1$ $\lambda = 0.001$

Conclusion & Future

- Conclusion
 - Embedding matching model for Chinese word segmentation
 - First greedy segmenter comparable to the state-of-the-art
- Future Work
 - Better leverage external resources
 - Deep architecture
- Implementation publicly available: https://zenodo.org/record/17645

Take-Home Message

Better matching than one-size-fit-all

Embeddings empower fine-grained modeling such as matching

• Simplicity & greed(y search) is good

Thank you! 谢谢!

Questions?

Greedy & Exact Search-Based Models

Model	F-score/PKU	Training Time
Greey Search	0.975	1 X
Exact Search	0.944	7.8 X

- Each model is tailored to specific search errors
- Search is important only when model is inaccurate
- Zhang and Clark (2011): beam search > exact-search

Feature Impact

Feature	F-score	Feature	F-score
All features	95.1	uni-&bi-gram	94.6
w/o action	94.6	only action	93.3
w/o unigram	94.8	only unigram	92.1
w/o bigram	94.4	only bigram	94.2

Results on PKU corpus. Number in percentage.