CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 3.1: Examples using Cost Models

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

- → Estimate the performance of algorithms by
 - → Experiments & Observations
 - → Precise Mathematical Calculations
 - → Approximate Mathematical Calculations using Cost Models
 - → Every basic operation costs 1 time unit
 - → Keep only the higher-order terms
 - → Count only some operations
- → Classification according to running time order of growth

1

Common order-of-growth classifications

Good news. The set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int $i = 0$; $i < N$; $i++$) for (int $j = 0$; $j < N$; $j++$) $\{ \dots \}$	double loop	check all pairs	4
N 3	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N?

```
int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) "inner loop" count++; \binom{N}{3} = \frac{N(N-1)(N-2)}{3!} A. \sim \frac{1}{6}N^3 array accesses. \sim \frac{1}{6}N^3
```

- → Count only array accesses
- → Cost of each array access: 1 time unit
- → use tilde notation

Order of Growth: N³

TODAY

→ Examples:

→ Binary Search

→ Insertion Sort

3

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- · Too small, go left.
- Too big, go right.
- · Equal, found.

successful search for 33

Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then $a[]o] \le key \le a[hi]$.

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ key compares to search in a sorted array of size N.

Def. T(N) = # key compares to binary search a sorted subarray of size $\leq N$.

Binary search recurrence.
$$T(N) \le T(N/2) + 1$$
 for $N > 1$, with $T(1) = 1$.

left or right half possible to implement with one (floored division) 2-way compare (instead of 3-way)

Pf sketch. [assume N is a power of 2]

$$T(N)$$
 $\leq T(N/2) + 1$ [given]
$$\leq T(N/4) + 1 + 1$$
 [apply recurrence to first term]
$$\leq T(N/8) + 1 + 1 + 1$$
 [apply recurrence to first term]
$$\vdots$$

$$\leq T(N/N) + 1 + 1 + \dots + 1$$
 [stop applying, $T(1) = 1$]
$$= 1 + \lg N$$

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N?

Can we do better?

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the *N* (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

What is the order of growth?

30 -40 -20 -10 40 0 10 5 sort -40 -20 -10 5 10 30 40 binary search (-40. -20)(-40, -10)(-40.0) 40 (-40,5) (-40, 10)30 30 (-20, -10)(-10,0) 10

input

(10.

(10,

(30,

30)

40)

40)

only count if a[i] < a[i] < a[k]

to avoid double counting

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the N (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

input

30 -40 -20 -10 40 0 10 5

sort

-40 -20 -10 5 10 30 40

Analysis. Order of growth is $N^2 \log N$.

- Step 1: N^2 with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

Remark. Can achieve N^2 by modifying binary search step.

binary search

$$(-40, 0)$$
 40

$$(10, 40)$$
 -5 $(30, 40)$ -7

(10,

only count if

Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-SuM is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1

ThreeSum.java

N	time (seconds)
1,000	0.14
2,000	0.18
4,000	0.34
8,000	0.96
16,000	3.67
32,000	14.88
64,000	59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.