

SPÉCIALITÉ MATHÉMATIQUES

Liste des thèmes abordés dans ces annales :

- 1. Dérivées
- 2. Suites
- 3. Limites
- 4. Logarithme et exponentielle
- 5. Domaine de définition
- 6. Primitives et équations différentielles
- 7. Dénombrement et probabilités
- 8. Géométrie dans l'espace

ÉNONCÉS DES ANNALES

Répondre à ces QCM sans justifier, une ou plusieurs réponses sont possibles suivant les questions.

Question 1

Soit (u_n) une suite géométrique de raison 2 telle que $u_2 = 1$. Alors

a.
$$u_7 = 32$$

b.
$$u_7 = 64$$

c.
$$u_7 = 128$$

d.
$$u_7 = 16$$

e. rien de ce qui précède

Question 2

Soient A et B deux événements d'un univers Ω de probabilité non nulle. Alors $P_A(B)$ est égale à

a.
$$\frac{P(A \cap B)}{P(B)}$$

b.
$$\frac{P(A \cap B)}{P(A)}$$

c. $P(A \cap B)$ si A et B sont indépendants

d. P(A) si A et B sont indépendants

e. rien de ce qui précède

Question 3

$$\displaystyle \lim_{x \to +\infty} \frac{3x^2 + x - 2}{x^2 - e^x + 1}$$
est égale à

a. 0

b. $+\infty$

c. 3

d. -2

e. 1

Parmi les fonctions suivantes, laquelle est une solution de l'équation différentielle 2y'-y=x-1:

a.
$$x \longmapsto e^{2x} - x - 1$$

b.
$$x \longmapsto x - 1$$

c.
$$x \longmapsto 1 - x$$

d.
$$x \longmapsto e^{2x}$$

e. rien de ce qui précède

Question 5

Soit $f: x \longmapsto \sqrt{x^2 - x + 2}$. Alors le domaine de définition de f est

a.
$$\mathbb{R}$$

b.
$$[-1, 2]$$

c.
$$]-\infty,-1] \cup [2,+\infty[$$

e. rien de ce qui précède

Question 6

Soit $f: x \mapsto \ln^9(x)$. Alors pour tout $x \in \mathbb{R}_+^*$, f'(x) est égale à

a.
$$9 \ln^8(x)$$

b.
$$\frac{1}{x^9}$$

c.
$$\frac{9}{x^8}$$

d.
$$9\ln(x)$$

e. rien de ce qui précède

Question 7

Soit F une primitive d'une fonction f continue sur [-1,1]. Alors

a.
$$f' = F$$

b.
$$F' = f$$

c.
$$F(-1) = f(-1)$$
 et $F(1) = f(1)$

d.
$$F(-1) = F(1) = 0$$

Dans une jeu de 32 cartes, on tire une main de 6 cartes (on rappelle que dans une main, l'ordre des cartes ne compte pas). Alors le nombre de mains possibles est

- a. 6^{32}
- b. 32^6
- c. $\binom{32}{6}$
- d. $\frac{32!}{6!}$
- e. rien de ce qui précède

Question 9

Soit (u_n) une suite réelle. Alors

- a. si (u_n) est décroissante et minorée, (u_n) converge
- b. si (u_n) est bornée, (u_n) converge
- c. si (u_n) est croissante et majorée, (u_n) converge
- d. si (u_n) est croissante et non majorée, (u_n) diverge
- e. rien de ce qui précède

Question 10

Dans un repère orthonormé de l'espace, on considère la droite d passant par A(2,-1,1) et de vecteur

Dans un repert directeur \overrightarrow{u} $\begin{pmatrix} 1\\2\\-5 \end{pmatrix}$. Alors

- a. $B(0, -2, 1) \in d$
- b. $B(0,1,-2) \in d$
- c. $B(3,1,-4) \in d$
- d. $B(1, -3, -6) \in d$
- e. rien de ce qui précède

Question 11

Une primitive de la fonction $x \mapsto \ln(x)$ sur \mathbb{R}_+^* est

- a. $x \longmapsto x \ln(x) x$
- b. $x \longmapsto \frac{1}{x}$
- c. $x \longmapsto e^x$
- d. $x \mapsto \ln(x)$
- e. $x \longmapsto \frac{1}{\ln(x)}$

Soit $f: x \longmapsto \sqrt{x^2 + x - 20} \ln(1 - x^2)$. Alors le domaine de définition de f est

a.
$$]-1,1[$$

b.
$$]-\infty, -5] \cup [4, +\infty[$$

c. Ø

d.
$$]-5,4[$$

e. rien de ce qui précède

Question 13

$$\lim_{x\to -\infty} \frac{x^2+x-7}{1-x}$$
est égale à

a.
$$-\infty$$

b. 1

c.
$$-1$$

d.
$$+\infty$$

e. rien de ce qui précède

Question 14

Dans un repère orthonormé de l'espace, on considère les points A(1, -1, 2) et B(2, 1, -1). Alors une équation cartésienne du plan orthogonal à la droite (AB) passant par C(3, 3, -4) est

a.
$$x + 2y - 3z + 21 = 0$$

b.
$$x + 2y - 3z + 15 = 0$$

c.
$$x + 2y - 3z - 15 = 0$$

d.
$$x + 2y - 3z - 1 = 0$$

e. rien de ce qui précède

Question 15

Parmi les fonctions suivantes, laquelle est une solution de l'équation différentielle 3y'-y=2-x:

a.
$$x \mapsto e^{x/3} + x + 1$$

b.
$$x \longmapsto 2 - x$$

c.
$$x \longmapsto -1 - x$$

d.
$$x \longmapsto e^{3x}$$

Soit $f: x \longmapsto \frac{e^{x^2}}{x}$. Alors pour tout $x \in \mathbb{R}^*$, f'(x) est égale à

a.
$$\frac{(2x-1)e^{x^2}}{x^2}$$

b.
$$e^{x^2}$$

c.
$$\frac{(x-1)e^{x^2}}{x^2}$$

d.
$$\frac{(2x^2-1)e^{x^2}}{x^2}$$

e. rien de ce qui précède

Question 17

Le nombre de façons de prélever simultanément 2 cartes parmi 4 est

- a. 8
- b. 6
- c. 12
- d. 16
- e. rien de ce qui précède

Question 18

Dans un repère orthonormé de l'espace, on considère le point A(2, -1, 1) et le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix}$. Alors une représentation paramétrique de la droite d passant par A et de vecteur directeur \overrightarrow{u} est

a.
$$\begin{cases} x = 2 + k \\ y = -1 + 2k ; k \in \mathbb{R} \\ z = 1 - 5k \end{cases}$$

b.
$$\begin{cases} x = 1 + 2k \\ y = 2 - k \\ z = -5 + k \end{cases} ; k \in \mathbb{R}$$

c.
$$\begin{cases} x = -2 + k \\ y = 1 + 2k \\ z = -1 - 5k \end{cases} ; k \in \mathbb{R}$$

d.
$$\begin{cases} x = 2 - k \\ y = -1 - 2k ; k \in \mathbb{R} \\ z = 1 + 5k \end{cases}$$

Soient (u_n) et (v_n) deux suites réelles quelconques. Alors

- a. $[(u_n) \text{ converge et } (v_n) \text{ converge}] \Longrightarrow (u_n + v_n) \text{ converge.}$
- b. $[(u_n) \text{ diverge et } (v_n) \text{ diverge}] \Longrightarrow (u_n + v_n) \text{ diverge.}$
- c. $[(u_n) \text{ converge et } (v_n) \text{ diverge}] \Longrightarrow (u_n + v_n) \text{ diverge.}$
- d. $[(u_n)$ diverge et (v_n) converge] $\Longrightarrow (u_n + v_n)$ converge.
- e. rien de ce qui précède

Question 20

$$\lim_{x\to +\infty} \frac{2x^2+x+1}{1-x+5x^2} \text{ est égale à}$$

- a. 0
- b. $+\infty$
- c. 2
- d. 1
- e. rien de ce qui précède

Question 21

Soit $f: x \longmapsto (e^x + x)^5$. Alors, pour tout $x \in \mathbb{R}$, f'(x) est égale à

- a. $5(e^x + x)^4$
- b. $5(e^x + 1)^4$
- c. $5(e^x + x)^4(e^x + 1)$
- d. $5(\ln(x)+1)^4$
- e. rien de ce qui précède

Question 22

Une primitive de $x \longmapsto \frac{1}{\ln(x)}$ sur $]1, +\infty[$ est

- a. $x \longmapsto \ln(\ln(x))$
- b. $x \longmapsto \frac{1}{2} \ln^2(x)$
- c. $x \longmapsto \frac{x}{\ln(x)}$
- d. $x \longmapsto \frac{\ln(x)}{x}$
- e. rien de ce qui précède

Soit $f: x \longmapsto \ln(-x^2 + x - 2)$. Alors le domaine de définition de f est

- a. [-1, 2]
- b. \mathbb{R}_+^*
- c. $]-\infty,-1]\cup[2,+\infty[$
- d. \emptyset
- e. rien de ce qui précède

Question 24

Le nombre de façons de ranger 3 objets distincts dans 5 tiroirs sachant qu'un tiroir ne peut contenir qu'un seul objet est

- a. 15
- b. 60
- c. 120
- d. 125
- e. rien de ce qui précède

Question 25

Soit (u_n) une suite géométrique de raison $q \neq 1$. Alors $u_1 + u_2 + \cdots + u_n$ est égale à

a.
$$u_1 \frac{1 - q^{n-1}}{1 - q}$$

b.
$$u_1 \frac{1 - q^{n-2}}{1 - q}$$

c.
$$u_1 \frac{1 - q^{n-3}}{1 - q}$$

d.
$$u_1 \frac{1 - q^n}{1 - q}$$

Dans un repère orthonormé de l'espace, on considère les points A(1,-1,2) et B(2,1,-1). Alors une équation paramétrique de la droite (AB) est

a.
$$\begin{cases} x = 1 + 2t \\ y = -1 + t \\ z = 2 - t \end{cases} ; t \in \mathbb{R}.$$

b.
$$\begin{cases} x = 1 + t \\ y = -1 + 2t \\ z = 2 - 3t \end{cases} ; t \in \mathbb{R}.$$

c.
$$\begin{cases} x = 1 + t \\ y = 2 - t \\ z = -3 + 2t \end{cases} ; t \in \mathbb{R}.$$

$$\mathrm{d.} \left\{ \begin{array}{l} x = 3 + t \\ y = -t \\ z = 1 + 2t \end{array} \right. ; t \in \mathbb{R}.$$

e. rien de ce qui précède

Question 27

Soient A et B deux événements indépendants quelconques. Alors

a.
$$P(A \cup B) = P(A) + P(B)$$

b.
$$P(A \cup B) = P(A)P(B)$$

c.
$$P(A \cap B) = P(A) + P(B)$$

d.
$$P(A \cap B) = P(A)P(B)$$

e. rien de ce qui précède

Question 28

Soit $f: x \longmapsto \sin(x)\cos(x)$. Alors une primitive de f sur \mathbb{R} est

a.
$$x \longmapsto \frac{1}{2}\cos^2(x)$$

b.
$$x \longmapsto \frac{1}{2}\sin^2(x)$$

c.
$$x \mapsto -\cos(\sin(x))$$

d.
$$x \longmapsto -\frac{1}{2}\sin^2(x)$$

 $\lim_{x\to -\infty} 2xe^{-x}$ est égale à

- a. $-\infty$
- b. $+\infty$
- c. 0
- d. 1
- e. rien de ce qui précède

Question 30

Soient A et B deux événements incompatibles quelconques. Alors

a.
$$P(A \cup B) = P(A)P(B)$$

b.
$$P(A \cup B) = P(A) + P(B)$$

c.
$$P(A \cap B) = P(A) + P(B)$$

d.
$$P(A \cap B) = P(A)P(B)$$

e. rien de ce qui précède

Question 31

Soit (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k$. Alors la limite de (u_n) lorsque n tend vers l'infini est

- a. 0
- b. 1
- c. 2
- $d. +\infty$
- e. $\frac{1}{2}$

Soit $f: x \longmapsto \sqrt{\ln(x)}$. Alors, pour tout $x \in]1, +\infty[$, f'(x) est égale à

a.
$$\frac{1}{2\sqrt{\frac{1}{x}}}$$

b.
$$\frac{1}{2\sqrt{\ln(x)}}$$

c.
$$\frac{1}{2x\sqrt{\ln(x)}}$$

$$d. -\frac{1}{2\sqrt{\ln(x)}}$$

e. rien de ce qui précède

Question 33

Soit $f: x \longmapsto \frac{\ln(1-x)}{\ln(2-x)}$. Alors le domaine de définition de f est

a.
$$]1, +\infty[$$

b.
$$]2, +\infty[$$

c.
$$]-\infty, 2[$$

d.
$$]-\infty,1[$$

e. rien de ce qui précède

Question 34

Soit (u_n) une suite réelle convergeant vers -1. Alors

a.
$$u_n - 1 \xrightarrow[n \to +\infty]{} 0$$

b.
$$|u_n - 1| \xrightarrow[n \to +\infty]{} 0$$

c.
$$|u_n| \xrightarrow[n \to +\infty]{} 1$$

d.
$$(u_n)$$
 est bornée

e. rien de ce qui précède

Question 35

Soit X une variable aléatoire suivant une loi binomiale de paramètres (n, p). Alors

a.
$$E(X) = np$$

b.
$$E(X) = \frac{n}{p}$$

c.
$$V(X) = n(1-p)$$

d.
$$V(X) = np(1-p)$$

Parmi les fonctions suivantes, laquelle est une solution de l'équation différentielle y'-y=x-3:

a.
$$x \mapsto e^x + x - 3$$

b.
$$x \longmapsto x - 3$$

c.
$$x \longmapsto 2 - x$$

d.
$$x \longmapsto e^x$$

e. rien de ce qui précède

Question 37

Soit (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$. Alors la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n - \ell$ est géométrique de raison 2 si

a.
$$\ell = 1$$

b.
$$\ell = -3$$

c.
$$\ell = 2$$

d.
$$\ell = 3$$

e. rien de ce qui précède

Question 38

Soit f la fonction définie sur \mathbb{R} par $f(x) = -4x^3 + 6x^2 + 8$. La primitive de f sur \mathbb{R} qui vaut 2 en 0 est

a.
$$-16x^4 + 18x^3 + 8x + 1$$

b.
$$-x^4 + 2x^3 + 8x + 10$$

c.
$$-x^4 + 2x^3 + 8x + 2$$

d.
$$-x^4 + 2x^3 + 8x$$

e. rien de ce qui précède

Question 39

Dans un repère orthonormé de l'espace, on considère la droite d de vecteur directeur $\overrightarrow{u} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ passant par

A(2,1,0) et la droite d' de vecteur directeur $\overrightarrow{v}\begin{pmatrix} -2\\-2\\-1 \end{pmatrix}$ passant par B(1,-2,2). Alors d et d' sont sécantes de point d'intersection

a.
$$M(1, -1, 2)$$

b.
$$M(1,1,-2)$$

c.
$$M(3,0,3)$$

d.
$$M(2,1,-3)$$

Soit $f: x \longmapsto \sqrt{1 - \ln(x)}$. Alors le domaine de définition de f est

- a. \mathbb{R}_+^*
- b. $]e, +\infty[$
- c. $]1, +\infty[$
- d. $]-\infty, e]$
- e. rien de ce qui précède

Question 41

Soit $f: x \longmapsto \frac{x^2 - 3x - 2}{x^2 - 3x + 2}$. Alors pour tout $x \in]2, +\infty[, f'(x)]$ est égale à

- a. 1
- b. $\frac{-6x^2 + 6x 9}{(x^2 3x + 2)^2}$
- c. $\frac{-6x^2 3x + 5}{(x^2 3x + 2)^2}$
- d. $\frac{4(2x-3)}{(x^2-3x+2)^2}$
- e. rien de ce qui précède

Question 42

Une primitive de $t \longmapsto \frac{3t}{\sqrt{t^2+1}}$ sur $\mathbb R$ est

a.
$$t \longmapsto 3\sqrt{t^2+1}$$

- b. $t \longmapsto \frac{3}{2}\sqrt{t^2+1}$
- c. $t \longmapsto 3t\sqrt{t^2+1}$
- d. $t \longmapsto -3\sqrt{t^2+1}$
- e. rien de ce qui précède

Question 43

Soit (u_n) la suite définie par la donnée de u_0 et, pour tout $n \in \mathbb{N}^*$, $u_n = 3u_{n-1} + 1$. Alors

- a. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n + 1$ est géométrique
- b. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n 1$ est géométrique
- c. pour tout $n \in \mathbb{N}$, $u_n = 3^n u_0$
- d. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n \frac{1}{2}$ est géométrique
- e. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n + \frac{1}{2}$ est géométrique

$$\lim_{x\to +\infty} \frac{x-\sqrt{x}}{3-\ln(x)}$$
est égale à

- a. 0
- b. $+\infty$
- c. $-\infty$
- d. 1
- e. rien de ce qui précède

Question 45

Soient A et B deux événements quelconques de probabilités non nulles. Alors

a.
$$P_A(B) = P_B(A)$$

b.
$$P_A(B) = \frac{P_B(A)P(A)}{P(B)}$$

c.
$$P(A \cap B) = P_B(A)P(B)$$

d.
$$P_A(B) = \frac{P_B(A)P(B)}{P(A)}$$

e. rien de ce qui précède

Question 46

Soit $f: x \longmapsto \frac{\ln(x)}{\sqrt{x-2}}$. Alors le domaine de définition de f est

- a. \mathbb{R}_+^*
- b. $]2, +\infty[$
- c. \mathbb{R}
- d. Ø
- e. rien de ce qui précède

Question 47

Une primitive de $x \longmapsto e^{x^2}$ sur \mathbb{R} est

- a. $x \longmapsto e^{x^2}$
- b. $x \longmapsto 2e^{x^2}$
- c. $x \longmapsto 2xe^{x^2}$
- d. $x \longmapsto e^{x^3/3}$
- e. rien de ce qui précède

Soit $f: x \mapsto x \ln(x) + x$. Alors, pour tout $x \in \mathbb{R}_+^*$, f'(x) est égale à

- a. ln(x)
- b. $-\ln(x)$
- c. $\ln(x) + 2$
- d. $\frac{1}{x} + 1$
- e. rien de ce qui précède

Question 49

Une équation cartésienne du plan P contenant A(1,2,-1) et de vecteur normal $\overrightarrow{n} \begin{pmatrix} -1\\1\\2 \end{pmatrix}$ est

- a. -x + y + 2z 1 = 0
- b. x y 2z + 1 = 0
- c. 3y z = 0
- d. -x + y + 2z + 1 = 0
- e. rien de ce qui précède

Question 50

Soit (u_n) une suite arithmétique telle que $u_0 = 1$ et $u_2 = 9$. Alors la raison de (u_n) est

- a. 9
- b. 3
- c. 4
- d. 6
- e. rien de ce qui précède

Question 51

On tire avec remise 5 cartes d'un jeu de 32 cartes. Soit X le nombre de rois obtenus. Alors la loi de X est

- a. Une loi binomiale de paramètres $\left(5, \frac{1}{4}\right)$
- b. Une loi binomiale de paramètres $\left(5, \frac{1}{8}\right)$
- c. Une loi binomiale de paramètres $\left(5, \frac{1}{2}\right)$
- d. Une loi binomiale de paramètres $\left(5, \frac{1}{16}\right)$
- e. rien de ce qui précède

Les solutions de l'équation différentielle y' + y = 0 sur \mathbb{R} sont les fonctions

- a. $x \longmapsto ke^{-x}$ où $k \in \mathbb{R}$
- b. $x \longmapsto ke^x$ où $k \in \mathbb{R}$
- c. $x \longmapsto kx$ où $k \in \mathbb{R}$
- d. $x \mapsto k + x$ où $k \in \mathbb{R}$
- e. rien de ce qui précède

Question 53

Soit D le domaine de définition de la fonction $f: x \longmapsto \frac{1}{x \ln(x) \ln(\ln(x))}$. Une primitive de f sur D est

- a. $x \mapsto \ln(x \ln(x))$
- b. $x \mapsto \ln(\ln(\ln(x)))$
- c. $x \longmapsto \frac{\ln(x)}{x}$
- d. $x \mapsto \frac{\ln(\ln(x))}{x}$
- e. rien de ce qui précède

Question 54

Soit $f: x \longmapsto \ln\left(\frac{1-x}{2-x}\right)$. Alors le domaine de définition de f est

- a. $]1, +\infty[$
- b. $]2, +\infty[$
- c.]1,2[
- $d. \mathbb{R}_{+}^{*}$
- e. rien de ce qui précède

Question 55

Soit (u_n) une suite arithmétique telle que $u_5 = -13$ et $u_9 = -25$. Alors u_3 est égal à

- a. -12
- b. $\frac{-22}{3}$
- c. -14
- d. -7
- e. rien de ce qui précède

Soit $f: x \longmapsto \frac{1}{(x^2+2)^4}$. Alors, pour tout $x \in \mathbb{R}$, f'(x) est égale à

a.
$$-\frac{4}{(x^2+2)^5}$$

b.
$$-\frac{8x}{(x^2+2)^3}$$

c.
$$-\frac{4x}{(x^2+2)^5}$$

d.
$$-\frac{8x}{(x^2+2)^5}$$

e. rien de ce qui précède

Question 57

Soient A, B et C trois événements quelconques. Alors

a.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) - P(A \cap B \cap C)$$

b.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

c.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$$

d.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

e. rien de ce qui précède

Question 58

Soit $f: x \longmapsto \ln\left(\frac{x^2 - 3x + 2}{x + 1}\right)$. Alors le domaine de définition de f est

a.]-1,1[
$$\cup$$
]2,+ ∞ [

b.
$$\mathbb{R}\setminus\{-1\}$$

c.
$$]-\infty,1[\cup]2,+\infty[$$

d.
$$\mathbb{R}_+^*$$

e. rien de ce qui précède

Question 59

$$\lim_{x\to +\infty} \frac{x^2-x+7}{3-2x+5x^3}$$
est égale à

- a. 0
- b. $\frac{1}{5}$
- c. $+\infty$
- d. 1
- e. rien de ce qui précède

Soit $f: x \longmapsto e^{\cos(\cos(x))}$. Alors f'(x) est égale à

- a. $2\cos(x)e^{\cos(\cos(x))}$
- b. $-2\cos(x)\sin(x)e^{\cos(\cos(x))}$
- c. $\cos(\cos(x))e^{\cos(\cos(x))}$
- d. $-\sin(\cos(x))\sin(x)e^{\cos(\cos(x))}$
- e. rien de ce qui précède

Question 61

Soient (u_n) et (v_n) deux suites réelles telles que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$.

- a. Si (v_n) est croissante, (u_n) est majorée
- b. Si (v_n) est décroissante, (u_n) est minorée
- c. Si (v_n) converge, (u_n) converge
- d. Si (v_n) est bornée, (u_n) est bornée
- e. rien de ce qui précède

Question 62

Dans un repère orthonormé de l'espace, soit d la droite de représentation paramétrique

$$\left\{ \begin{array}{l} x=2-3t\\ y=1-t\\ z=1+2t \end{array} \right. ; \ t\in \mathbb{R}.$$

Alors un vecteur directeur de d est

a.
$$\begin{pmatrix} 2\\1\\1 \end{pmatrix}$$

b.
$$\begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}$$

c.
$$\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$$

Le domaine de définition de $x \mapsto \ln(x^2 + x + 2)$ est

- a. \mathbb{R}
- b. $]0, +\infty[$
- c. $]-\infty, -1[\cup]2, +\infty[$
- d.]-1,2[
- e. rien de ce qui précède

Question 64

Soit (u_n) une suite arithmétique de raison 3 telle que $u_0 = 2$. Alors $u_4 + \cdots + u_7$ est égal à

- a. 111
- b. 74
- c. 98
- d. 100
- e. rien de ce qui précède

Question 65

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 + 3} \right) \text{ est \'egale \`a}$$

- a. 0
- b. $+\infty$
- c. $-\infty$
- d. 1
- e. rien de ce qui précède

Question 66

On tire dans un jeu de 32 cartes une main de 5 cartes (on rappelle que dans une main, l'ordre des cartes ne compte pas). Alors le nombre de mains contenant exactement 1 as est

a.
$$\binom{4}{1} + \binom{28}{4}$$

b.
$$\frac{\binom{4}{1} \times \binom{28}{4}}{\binom{32}{5}}$$

c.
$$\binom{4}{1} \times \binom{28}{4}$$

d.
$$\frac{\binom{4}{1} + \binom{28}{4}}{\binom{32}{5}}$$

Dans un repère orthonormé de l'espace, on considère les points A(1,-1,2) et B(2,1,-1). Alors

- a. $C(3, 2, -1) \in (AB)$
- b. $C(3,3,-4) \in (AB)$
- c. $C(3, -4, 3) \in (AB)$
- d. $C(3,0,1) \in (AB)$
- e. rien de ce qui précède

Question 68

- a. Toute suite arithmétique (non constante) diverge.
- b. Toute suite géométrique converge.
- c. Toute suite géométrique de raison q converge si q>1.
- d. Toute suite géométrique de raison q converge si $0 \le q \le 1$.
- e. rien de ce qui précède

Question 69

Soit $f: x \longmapsto \ln(e^x + 1)$. Alors le domaine de définition de f est

- a. \mathbb{R}
- b. \mathbb{R}_+^*
- c. Ø
- d. \mathbb{R}_+
- e. rien de ce qui précède

Question 70

Soit $f: x \mapsto x \sin(2x)$. Alors pour tout $x \in \mathbb{R}$, f'(x) est égale à

- a. $\sin(2x) 2x\cos(2x)$
- b. $\sin(2x) + x\cos(2x)$
- c. $\sin(2x) x\cos(2x)$
- d. $\sin(2x) + 2x^2 \cos(2x)$
- e. rien de ce qui précède

Question 71

Soit (u_n) la suite définie par $u_0 = 2$ et pour tout $n \in \mathbb{N}^*$, $u_n = 2u_{n-1} + 1$. Alors

- a. pour tout $n \in \mathbb{N}$, $u_n = 2^n u_0$
- b. pour tout $n \in \mathbb{N}$, $u_n = 2^{n-1}u_0$
- c. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n + 1$ est géométrique
- d. la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_n 1$ est géométrique
- e. rien de ce qui précède

 $\lim_{x \to +\infty} \left(\ln(x) - 3x^2 + 5 \right) \text{ est \'egale \`a}$

- a. $-\infty$
- b. $+\infty$
- c. 0
- d. 3
- e. rien de ce qui précède

Question 73

Soit $f: x \longmapsto x^2 + e^{-x} - \ln(x)$. Alors, pour tout $x \in \mathbb{R}_+^*$, f'(x) est égale à

- a. $2 + e^{-x} \frac{1}{x}$
- b. $2 e^{-x} \frac{1}{x}$
- c. $2x e^{-x} + \frac{1}{x}$
- d. $2x e^{-x} + \frac{1}{x^2}$
- e. rien de ce qui précède

Question 74

Soit $E = \{a; b; c; d; e; f\}$. Alors le nombre de sous-ensembles de E contenant 3 éléments est

- a. 6^3
- b. 3^6
- c. 18
- d. $\binom{6}{3}$
- e. rien de ce qui précède

Question 75

Une primitive de $\frac{1}{(u+1)^2}$ sur $]-1,+\infty[$ est

- a. ln(u+1)
- b. $\ln^2(u+1)$
- c. $\frac{1}{u+1}$
- $d. -\frac{1}{u+1}$
- e. rien de ce qui précède

Soit (u_n) une suite réelle.

- a. Si (u_n) est convergente alors (u_n) ne prend qu'un nombre fini de valeurs
- b. Si (u_n) ne prend qu'un nombre fini de valeurs, alors elle est convergente
- c. Si pour tout $n \in \mathbb{N}$, $0 \leq u_n \leq 1$, alors (u_n) converge
- d. Si pour tout $n \in \mathbb{N}$, $u_n 1 \leq e^{-n}$ alors (u_n) converge vers 1
- e. rien de ce qui précède

Question 77

$$\displaystyle \lim_{x \to +\infty} \frac{x^2 - x + 1}{1 - x}$$
est égale à

- a. $+\infty$
- b. 0
- c. $-\infty$
- d. 1
- e. rien de ce qui précède

Question 78

Soit $f: x \mapsto \ln(\ln(x))$. Alors le domaine de définition de f est

- a. \mathbb{R}_+^*
- b. 0
- c. $]e, +\infty[$
- d. $]1, +\infty[$
- e. rien de ce qui précède

Dans un repère orthonormé de l'espace, une équation cartésienne du plan P passant par A(1,-1,2) et perpendiculaire à la droite d de représentation paramétrique $\begin{cases} x=1-t \\ y=2t \\ z=3+t \end{cases}$; $t \in \mathbb{R}$ est

a.
$$x - 3z + 2 = 0$$

b.
$$-x + 2y + z + 1 = 0$$

c.
$$x - y + 2z + 1 = 0$$

d.
$$x - 2y - z + 2 = 0$$

e. rien de ce qui précède

Question 80

Une primitive de $\frac{e^x}{x}$ sur \mathbb{R}_+^* est

a.
$$\ln(e^x)$$

b.
$$e^x \ln(x)$$

c.
$$e^{\ln(x)}$$

d.
$$\ln\left(\frac{x}{e^x}\right)$$

e. rien de ce qui précède

Question 81

Soit $f: x \longmapsto e^{\sqrt{x^2-3x+2}}$. Alors le domaine de définition de f est

a.
$$\mathbb{R}$$

b.
$$[1, 2]$$

c.
$$]-\infty,1] \cup [2,+\infty[$$

e. rien de ce qui précède

Question 82

Soit (u_n) la suite définie par $u_{50}=7$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=u_n+2$. Alors u_{100} vaut

- a. 207
- b. 107
- c. 307
- d. 57
- e. rien de ce qui précède

Soit f la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = \frac{e^x}{1 + e^x}$. Alors pour tout $x \in \mathbb{R}$, f'(x) est égale à

a.
$$\frac{2e^{2x} + e^x}{(1+e^x)^2}$$

b.
$$\frac{1}{(1+e^x)^2}$$

c.
$$\frac{e^x}{(1+e^x)^2}$$

d.
$$-\frac{e^{2x}}{(1+e^x)^2}$$

e. rien de ce qui précède

Question 84

Soit
$$f: x \longmapsto \frac{1}{x}$$
. Alors

a. la fonction $x \mapsto \ln(ex)$ est une primitive de la fonction f sur \mathbb{R}_+^*

- b. la fonction $x \longmapsto e + \ln(x)$ est une primitive de f sur \mathbb{R}_+^*
- c. la fonction $x \mapsto e \ln\left(\frac{1}{x}\right)$ est une primitive de f sur \mathbb{R}_+^*
- d. la fonction $x \longmapsto \ln(x)$ est une primitive de f sur \mathbb{R}_+^*
- e. rien de ce qui précède

Question 85

On suppose que si on choisit au hasard un individu dans la population française, la probabilité que cette personne soit gauchère est 0,10. On observe sur une journée un groupe de 256 candidats du concours Advance. On note N la variable aléatoire égale au nombre de gauchers dans cette échantillon. Alors

a.
$$P(N = 200) = {200 \choose 256} (0.10)^{256} (1 - 0.10)^{56}$$

b.
$$P(N = 200) = {256 \choose 200} (0.10)^{256} (1 - 0.10)^{56}$$

c.
$$P(N = 200) = {256 \choose 200} (0.10)^{200} (1 - 0.10)^{56}$$

d.
$$P(N = 200) = {200 \choose 256} (0.10)^{200} (1 - 0.10)^{56}$$

Soit $f: x \longmapsto \ln\left(\frac{x^2 - 3x + 2}{x + 1}\right) \sqrt{e^x - 1}$. Alors le domaine de définition de f est

- a. \mathbb{R}_+
- b. \mathbb{R}_+^*
- c. $[0,1] \cup]2,+\infty[$
- d. $]-\infty,1[\cup]2,+\infty[$
- e. rien de ce qui précède

Question 87

Soit (u_n) une suite arithmétique. Alors $u_5 + \cdots + u_n$ est égale à

a.
$$\frac{(n-4)(u_5+u_n)}{2}$$

b.
$$\frac{(n-5)(u_5+u_n)}{2}$$

c.
$$\frac{(n-6)(u_5+u_n)}{2}$$

d.
$$\frac{u_5 + u_n}{2}$$

e. rien de ce qui précède

Question 88

Dans un repère orthonormé de l'espace, on considère les points A(1, -1, 2) et B(2, 1, -1). Alors une équation cartésienne du plan orthogonal à la droite (AB) passant par C(3, 3, -4) est

a.
$$x + 2y - 3z + 21 = 0$$

b.
$$x + 2y - 3z + 15 = 0$$

c.
$$x + 2y - 3z - 15 = 0$$

d.
$$x + 2y - 3z - 1 = 0$$

e. rien de ce qui précède

Question 89

Quand x tend vers 0, $x \cos\left(\frac{1}{x}\right)$

- a. n'a pas de limite
- b. tend vers 0
- c. tend vers 1
- d. tend vers $+\infty$
- e. rien de ce qui précède

Soit $f: x \longmapsto (e^x)^2$. Alors, pour tout $x \in \mathbb{R}$, f'(x) est égale à

- a. $2xe^{x^2}$
- b. e^{2x}
- c. $2e^x$
- d. $2e^{2x}$
- e. rien de ce qui précède

Question 91

Une primitive de $x \longmapsto \tan(x)$ sur $\left]0, \frac{\pi}{2}\right[$ est

- a. $x \mapsto -\ln(\cos(x))$
- b. $x \longmapsto 1 + \tan^2(x)$
- c. $x \longmapsto \frac{1}{\cos^2(x)}$
- d. $x \mapsto \ln(\sin(x))$
- e. rien de ce qui précède

Question 92

Soit $f: x \longmapsto \sqrt{x^2 - x - 2}$. Alors le domaine de définition de f est

- a. [-1, 2]
- b. [-2,1]
- c. $]-\infty, -1] \cup [2, +\infty[$
- d. $]-\infty, -2] \cup [1, +\infty[$
- e. rien de ce qui précède

Question 93

Le nombre de façons de tirer simultanément 3 cartes parmi 5 est

- a. 60
- b. 6
- c. 10
- d. 24
- e. rien de ce qui précède

Soit (u_n) une suite géométrique à termes positifs telle que $u_0 = 1$ et $u_2 = 16$. Alors

- a. la raison de (u_n) est 16
- b. la raison de (u_n) est 4
- c. la raison de (u_n) est 8
- d. aucune suite géométrique ne vérifie ces conditions
- e. rien de ce qui précède

Question 95

Dans un repère orthonormé de l'espace, on considère les points A(1, -1, 2), B(2, 0, 1) et C(0, 1, 1). Alors une équation cartésienne du plan (ABC) est

a.
$$x - y + 3z - 1 = 0$$

b.
$$x - 2y + z - 7 = 0$$

c.
$$x - 3y - z + 2 = 0$$

d.
$$x + 2y + 3z - 5 = 0$$

e. rien de ce qui précède

Question 96

Soit $f: x \longmapsto \sqrt{1-e^x}$. Alors, pour tout $x \in \mathbb{R}_+^*$, f'(x) est égale à

a.
$$\frac{1}{2\sqrt{1-e^x}}$$

b.
$$\frac{1 - e^x}{2\sqrt{1 - e^x}}$$

c.
$$\frac{e^x}{2\sqrt{1-e^x}}$$

$$d. \frac{e^x}{1 - e^x}$$

e. rien de ce qui précède

Question 97

Soit F une primitive d'une fonction dérivable f sur un intervalle I de \mathbb{R} . Alors une primitive de f' est

a.
$$f + 42$$

b.
$$\frac{1}{2}f^2$$

- c. fF
- d. F
- e. rien de ce qui précède

Soit $f: x \longmapsto \sqrt{\frac{x-1}{x-2}}$. Alors le domaine de définition de f est

- a. [1, 2]
- b. \mathbb{R}
- c. [1, 2]
- d. $]-\infty, 1] \cup]2, +\infty[$
- e. rien de ce qui précède

Question 99

Soit (u_n) une suite réelle convergeant vers $\ell \in \mathbb{R}$. Alors

- a. $(u_n \ell)$ converge vers 0
- b. $(|u_n \ell|)$ converge vers 0
- c. $(|u_n| |\ell|)$ converge vers 0
- d. (u_n) est bornée
- e. rien de ce qui précède

Question 100

$$\lim_{x\to +\infty} \frac{6x^3-x+2}{3x^2+\ln(x)-1} \text{ est égale à}$$

- a. 2
- b. $+\infty$
- c. 0
- d. 1
- e. rien de ce qui précède

Question 101

Soit $f: x \longmapsto x^2 \ln(x)$. Alors, pour tout $x \in \mathbb{R}_+^*$, f'(x) est égale à

- a. $\frac{2}{x}$
- b. $2x + \frac{1}{x}$
- c. $2x \ln(x) + x$
- d. $2 + \frac{1}{x}$
- e. rien de ce qui précède

Soit X une variable aléatoire discrète quelconque. Alors

a.
$$E(X - E(X)) = V(X)$$

b.
$$E(X - E(X)) = 0$$

c.
$$E(X - E(X)) = \sqrt{V(X)}$$

d.
$$E((X - E(X))^2) = V(X)$$

e. rien de ce qui précède

Question 103

Soit (u_n) une suite arithmétique de raison 2 et de premier terme $u_2=1$. Alors

a.
$$u_7 = 15$$

b.
$$u_7 = 13$$

c.
$$u_7 = 11$$

d.
$$u_7 = 17$$

e. rien de ce qui précède

Question 104

Dans un univers Ω , on dit que (A_1, \ldots, A_n) est un système complet d'événements si

a.
$$A_1 \cup \cdots \cup A_n = \Omega$$
 et pour tout $i \neq j$, $A_i \cap A_j = \emptyset$

b.
$$A_1 \cap \cdots \cap A_n \neq \{0\}$$
 et pour tout $i \neq j$, $A_i \cup A_j \neq \emptyset$

c.
$$A_1 \cup \cdots \cup A_n = \Omega$$
 et pour tout $i \neq j$, $A_i \cap A_j \neq \{0\}$

d.
$$A_1 \cup \cdots \cup A_n = \Omega$$
 et pour tout $i \neq j$, $A_i \cap A_j \neq \emptyset$

e. rien de ce qui précède

Question 105

Une primitive de la fonction $x \mapsto \frac{x}{(x^2+1)^2}$ sur \mathbb{R} est

a.
$$x \longmapsto \frac{1}{x^2 + 1}$$

b.
$$x \longmapsto \frac{2}{x^2 + 1}$$

c.
$$x \longmapsto \frac{1}{2(x^2+1)}$$

d.
$$x \longmapsto -\frac{1}{x^2 + 1}$$

Soit (u_n) une suite géométrique de raison q avec $u_0 = 1$. Alors

- a. (u_n) diverge vers $+\infty$ si q > 1
- b. (u_n) diverge vers $+\infty$ si 0 < q < 1.
- c. (u_n) converge vers 0 si 0 < q < 1.
- d. (u_n) converge vers 0 si q > 1
- e. rien de ce qui précède

Question 107

Soit $f: x \longmapsto \sqrt{e^{-x}}$. Alors le domaine de définition de f est

- a. R
- b. \mathbb{R}_+
- c. \mathbb{R}_+^*
- d. \emptyset
- e. rien de ce qui précède

Question 108

Soit $f: x \mapsto x^2 e^x$. Alors, pour tout $x \in \mathbb{R}$, f'(x) est égale à

- a. $2xe^x$
- b. $(2+x)xe^{x}$
- c. $2x + e^x$
- d. $2e^x$
- e. rien de ce qui précède

Question 109

On lance un dé. On note A et B les événements suivants :

A: « on obtient un numéro pair » et B: « on obtient un multiple de 4 ». Alors

- a. A et B sont incompatibles
- b. A et B ne sont pas incompatibles
- c. A et B sont indépendants
- d. A et B ne sont pas indépendants
- e. rien de ce qui précède

Question 110

$$\lim_{x\to -\infty} \frac{x}{1+e^{-x}}$$
est égale à

- a. $-\infty$
- b. $+\infty$
- c. 0
- d. 1
- e. rien de ce qui précède

Dans un repère orthonormé de l'espace, soient P_1 et P_2 deux plans d'équations respectives

$$x - y + 2z - 3 = 0$$
 et $x + 2y - z = 0$.

Alors une représentation paramétrique de la droite d, intersection des plans P_1 et P_2 , est

a.
$$\begin{cases} x = 1 - t \\ y = -1 + t \\ z = 2 + t \end{cases} ; t \in \mathbb{R}.$$

b.
$$\begin{cases} x = 1 - t \\ y = 1 + t \\ z = 2 + t \end{cases} ; t \in \mathbb{R}.$$

c.
$$\begin{cases} x = 2 - t \\ y = -1 + t \\ z = -t \end{cases} ; t \in \mathbb{R}.$$

d.
$$\begin{cases} x = 1 - t \\ y = -2 + t \\ z = -1 + 2t \end{cases} ; t \in \mathbb{R}.$$

e. rien de ce qui précède

Question 112

Soit (u_n) la suite définie par $u_{10}=42$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=42u_n$. Alors u_{1000} vaut

a.
$$42^{991}$$

b.
$$42^{1010}$$

c.
$$42^{1011}$$

d.
$$10 \times 42^{990}$$

e. rien de ce qui précède

Question 113

Quand x tend vers $+\infty$, $\frac{\sin(x)}{x^2}$

- a. tend vers 1
- b. n'a pas de limite
- c. tend vers $+\infty$
- d. tend vers 0
- e. rien de ce qui précède

Une primitive de $x \longmapsto \frac{1}{x \ln(x)}$ sur $]1, +\infty[$ est

- a. $x \mapsto \ln(\ln(x))$
- b. $x \longmapsto \ln(x \ln(x))$
- c. $x \longmapsto \frac{1}{4} \ln(x^2 \ln^2(x))$
- d. $x \mapsto \ln\left(\frac{x}{\ln(x)}\right)$
- e. rien de ce qui précède

Question 115

Soit (u_n) la suite réelle définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + n$. Alors

- a. (u_n) est géométrique
- b. (u_n) est arithmétique
- c. $\lim_{n \to +\infty} u_n = +\infty$
- d. (u_n) est croissante
- e. rien de ce qui précède

Question 116

Soit $f: x \longmapsto \ln(|x^2 - 1|)$. Alors le domaine de définition de f est

- a.]-1,1[
- b. \mathbb{R}
- c. $]-\infty, -1[\cup]1, +\infty[$
- d. (
- e. rien de ce qui précède

Question 117

Soit $f: x \mapsto e^{-2x}$. Alors, pour tout $x \in \mathbb{R}$, f'(x) est égale à

- a. e^{-x^2}
- b. $-2xe^{-2x}$
- c. e^{-2x}
- d. $-2e^x$
- e. rien de ce qui précède

Soient A un événement et (B_1, B_2, B_3) un système complet d'événements d'un univers Ω . Alors

a.
$$P(A) = P(A \cap B_1)P(B_1) + P(A \cap B_2)P(B_2) + P(A \cap B_3)P(B_3)$$

b.
$$P(A) = P_{B_1}(A)P(B_1) + P_{B_2}(A)P(B_2) + P_{B_3}(A)P(B_3)$$

c.
$$P(A) = P(A \cup B_1)P(B_1) + P(A \cup B_2)P(B_2) + P(A \cup B_3)P(B_3)$$

d.
$$P(A) = P(A \cup B_1) + P(A \cup B_2) + P(A \cup B_3)$$

e.
$$P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$$

Question 119

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 2} - 2x \right) \text{ est égale à}$$

- a. 0
- b. $+\infty$
- c. $-\infty$
- d. -1
- e. rien de ce qui précède

Question 120

- a. Toute suite réelle croissante et minorée tend vers $+\infty$
- b. Toute suite réelle croissante et bornée converge
- c. Toute suite réelle décroissante et non minorée tend vers $-\infty$
- d. Toute suite réelle croissante et non majorée tend vers $+\infty$
- e. rien de ce qui précède

STAGES PRÉPA CONCOURS ADVANCE

LA MEILLEURE PRÉPA ADVANCE

- Réveiller la motivation et l'enthousiasme
- Formules de préparation modulables
- Des intervenants spécialistes du concours
- · Ateliers de prises de parole

STAGES PRÉPA CONCOURS ADVANCE EN LIGNE

- Une prépa en ligne avec suivi dès l'inscription
- Préparation rigoureuse, méthodique et efficace
- Conseils de méthodologie
- Stage en ligne prépa concours Advance