UNCLASSIFIED

AD NUMBER			
AD835090			
NEW LIMITATION CHANGE			
TO Approved for public release, distribution unlimited			
FROM Distribution authorized to DoD only; Administrative/Operational Use; 08 MAY 1968. Other requests shall be referred to Naval Air Systems Command, Washington, DC 20360.			
AUTHORITY			
USNASC notice, 4 Dec 1970			

VARIABLE GEOMETRY SHROUDED PROPELLER TEST PROGRAM FINAL REPORT

VOLUME II

TEST DATA

8 May 1968

Prepared under Contract N00019-67-C-0087 for the Naval Air Systems Command, Department of the Navy by Hamilton Standard, Division of United Aircraft, Windsor Locks, Connecticut.

Distribution of this document is unlimited.

EACH TRANSMITTAL OF THIS DOCUMENTS
OUTSIDE THE DEPARTMENT OF DEFENSE
MUST HAVE PRIOR APPROVAL OF: THE
COMMANDER, NAVAL AIR SYSTEMS COMMAND

MR-5362 Woshin. e. 20361

VARIABLE GEOMETRY SHROUDED PROPELLER TEST PROGRAM

FINAL REPORT

VOLUME II

TEST DATA

8 May 1968

Prepared by: United Aircraft Research Laboratories

Approved by Carl Kohrback my Head of Aerodynamics and Hydrodynamics

Carl Rohrbach

Chief of Technical Staff

William E. Fortmann

Ol O. (Royall Chief Project Engineer

Al D. Croxall

Number of Pages 214

Report F331012-1

Wind Tunnel Tests of Variable

Geometry Shrouded Propellers

TABLE OF CONTENTS

•	Page
SUMMARY	. 1
INTRODUCTION	. 2
TEST FACILITY, PROPELLER DYNAMOMETER AND TEST MODELS	
Wind Tunnel Facility	. 2
Propeller Dynamometer and Shroud Balance	. 3
Propeller Dynamometer and Shroud Installation	. 4
Test Models	. 4
TEST PROCEDURES	
Initial Testing	. 6
Performance Testing	. 6
Pressure Testing	• 7
DATA REDUCTION AND STATEMENT OF ACCURACY	. 7
PRESENTATION OF DATA	. 9
REFERENCES	. 11
LIST OF SYMBOLS	. 12

TABLE OF CONTENTS (Contd.)

	Tage
APPENDICES - HS VG SHROUDED PROPELLER TEST	
I - Model Component Identification and Dimensional Data	19
II - Pressure Sensing Instrumentation and Traversing Probe Calibration	29
III - Tunnel Blockage Corrections	37
IV - Propeller Dynamometer Buoyancy Investigations	41
V - Propeller Hub Skin Friction Tare	48
VI - Shroud Support Tare and Interference Effects	50
VII - Data Reduction Equations	58
FIGURES 1 - 47	lowing e 61
TAPLES - HS VG SHROUDED PROPELLER TEST fol Fig	lowing • 47
I - Test Schedule	I-1
II - Wind Tunnel Run Log	II-1
III - Performance Data	III-1
IV - Pressure Data (Shroud Inlet Velocities and Exit Pressures)	IV-1.
V - Shroud Inlet Data	V-1
VI - Traversing Probe Data	VI-1
VII - Pressure Data (Shroud Surface Pressure Coefficients, Inlet Velocities and Exit Pressures)	VII-3

Report F331012-1

Wind Tunnel Tests of Variable

Geometry Shrouded Propellers

SUMMARY

Wind tunnel tests of variable geometry shrouded propeller models were conducted for the Hamilton Standard Division of the United Aircraft Corporation in the 18-ft and 8-ft test sections of the UARL Large Subsonic Wind Tunnel during the period from May 1 to May 18, 1967. The test model comprised a shroud propeller assembly which was attached to a propeller dynamometer through strain gage balances. The balances provided shroud chord force, propeller thrust and propeller torque data. Various pressure measurements were also obtained including shroud inlet pitot-static pressures, shroud exit total pressures, shroud surface pressure distributions, and velocity-angularity radial traverse probe data. These data were obtained for three shroud configurations and two sets of propellers. Shroud variables included lip contour, length and exit area; propeller variables included blade planform and blade-shroud tip clearance. Test data for these model configurations were obtained through ranges of blade rotational speed at various blade pitch angles and at tunnel Mach numbers from 0.02 to 0.60.

A complete transcript of preliminary performance test data and descriptive information pertinent to the test models, equipment and techniques was forwarded to Hamilton personnel by June 19, 1967. Post-test efforts were suspended on June 28, 1967 and resumed on November 1, 1967 at Hamilton's request. On November 19, 1967, the transmittal of all performance and pressure data in final reduced form was completed. This report presents an explanatory text, detailed tabulations of the performance and pressure data, and a complete graphical presentation of the performance data.

This project was undertaken for Hamilton Standard under Purchase Order WPI IF1 BCO-104A dated March 7, 1966 and Purchase Order 46746 dated January 12, 1967.

INTRODUCTION

Interest in shrouded propeller studies has been stimulated by the advantages of ducted propellers over free-air propellers. The former is capable of producing the same thrust-to-power ratio as a free-air propeller of approximately twice its diameter (Ref. 1). Past shrouded propeller studies have been directed toward an optimum shroud configuration for overall performance throughout the propeller's anticipated operational speed regime. However, configurations designed for high thrust at low subsonic speeds require large bellmouth inlets as well as high exit-to-propeller area ratios which are undesirable for high subsonic speed flight because of their inherently high drag. A shroud designed for good high subsonic speed performance requires a sharp inlet lip and low exit-to-propeller area ratio which conversely produces poor low subsonic speed performance. As a consequence, this program was initiated to obtain data for shroud geometries applicable to both ends of the flight spectrum. These data supplement Hamilton's previous results obtained under Bureau of Naval Weapons, Contract NOw 64-0707-d. The subject data are applicable to a shroud capable of altering its shape to optimize performance (i.e., variable geometry shroud).

The subject shrouded propeller tests comprise the experimental phase of a program contracted by Hamilton Standard with the Naval Air Systems Command to provide systematically varied performance curves which are sufficient to permit empirical performance estimates for the pertinent flight conditions of a variable geometry shrouded propeller. The data obtained are presented herein in detailed tabular and graphical formats; the test apparatus and techniques are also described.

TEST FACILITY, PROPELLER DYNAMOMETER AND TEST MODELS

Wind Tunnel Facility

The UARL Large Subsonic Wind Tunnel, shown in Fig. 1, is a single-return closed-throat facility with interchangeable 18-ft and 8-ft octagonal test sections. Maximum tunnel velocity is approximately 200 mph in the 18-ft section and near sonic Mach numbers can be obtained in the 8-ft section. Tunnel stagnation pressure equals atmospheric pressure, and the stagnation temperature of the airstream was held constant in the 64 to 98 F range by means of air exchanger valves. Electric power may be supplied to test models

by two motor generator sets each of which develop a maximum of 375 hp at frequencies of 0 to 400 cps. Auxiliary vacuum systems and a 400 psig air supply are also available. A small digital computer and a static data acquisition system (capable of recording 200 steady pressures or temperatures) located in the tunnel control room are employed to record and process test data. A detailed description of the wind tunnel and its auxiliary equipment is given in Ref. 2.

Propeller Dynamometer and Shroud Balance

The model propellers were driven by the UARL propeller dynamometer, schematically illustrated in Fig. 2, which consists of two variable-speed motors, mounted in tandem and housed within a streamlined cast-steel pod with an integral support strut. The motors are mounted in hydrostatic bearings to restrain all motion except axial motion along or rotational motion about the longitudinal axis of the dynamometer. These motions were restrained by load cells which measure thrust and torque of the model propeller. Each motor is capable of delivering 375 hp at 12,000 rpm; together they provide a maximum torque of 330 lb-ft at any operational speed. Model speed was controlled by the variable frequency electrical power supplied by two motor-generator sets, and the model speed was measured with a Berkley EPUT meter and a 60-tooth gear signal generator. The dynamometer was faired to minimize the axial static pressure gradient in the plane of the propeller, Ref. 3. Additional data on airflow distortion and buoyancy effects produced by the dynamometer were obtained during the subject test program and are discussed in this report. The dynamometer is also designed so that the model propeller and hub are the only portion of the metric system exposed to the airstream. Pressure instrumentation was provided within the dynamometer in order to correct the measured thrust for any difference in pressure between the front face of the hub and an equal area in the rear fairing. Further details of the propeller dynamometer, are presented in Ref. 3.

The shroud strain gage balance system, shown in Fig. 3, was used to support the shroud on the propeller dynamometer and to measure shroud-chord forces. The balance ground structure was provided by a new fairing of heavy gage rolled boiler plate machined to provide essentially the same shape as the metal fairing normally used. The shroud was supported on the ground structure by a three-point linkage schematically illustrated in Fig. 4. Support points P_1 and P_2 , shown in Figs. 3 and 4, were fixed in the y-z plane (Fig. 4) by two "A" frames which were free to pivot at both ends. Points P_1 and P_2 were restrained in the axial direction by flexured load cells (C_4, C_5) which attached to the non-metric structure and which permitted lateral as well as vertical rotation, thus only axial chord forces (C_4, C_5) were transmitted through these points. Forces

 N_1 and N_2 (not required for this test) could have been obtained directly from load cells which measure a bending moment in the lateral plane between points P_1 and P_2 and the shroud. Support point P_3 was fixed in space by a rigid support arm projecting forward from the fairing of the extension shaft housing. A flexured load cell (N_3) could have been inserted between the side arm and shroud and used to determine the side force on the latter, but the normal forces at zero degrees yaw were found to be negligibly small in Ref. 4 and the side force was therefore not determined during the subject test. The tare and interference effect of the "A" frames was obtained with the use of a dummy support system.

Propeller Dynamometer and Shroud Installation

The shroud-dynamometer was installed in each test section at a yaw angle of zero degrees and with the thrust axis coincident with the tunnel centerline elevation. Figures 5 and 6 illustrate the model installation in both the 8and 18-ft sections, respectively. Dynamometer monitoring instrumentation consisted of an EPUT meter for rotational speed, a vibration meter with provision for selecting vertical or horizontal motion and a Speed-O-Max display for numerous thermocouple temperatures. Pressure leads from the dynamometer and electrical leads from the dynamometer and shroud balance were connected at the dynamometer strut bulkhead then led across the tunnel balance chamber to the appropriate facility in the control room. Pressure tubing leads from the shroud and exit rakes were led downstream across the shroud balance linkage, along and down the leading edge of the dynamometer, and into the balance chamber where they were connected to a patch panel. Pressure tubing leads from the inlet rakes and spinner (P1 in Fig. 2) were led upstream through the spinner and a sting, through the sting support struts, and into the balance chamber where they were connected to the patch panel. At the patch panel the leads were directed to the static data acquisition system and manometer boards in the tunnel control room. The electrical and pressure leads from the traversing probe were led into the balance chamber and then directed to the appropriate facility in the control room.

Test Models

The test models consisted of two high-speed, 20-in. chord shrouds, one low-speed, 23-in. chord shroud and two sets of propeller blades. Each shroud configuration was fabricated from a solid aluminum ring with circumferential grooves for the implacement of pressure instrumentation. These grooves were

then filled with plastic filler and blended to match the local contours. Figure 7 shows two shroud models and identifies some of the model components, all of which are specified in detail in Appendix I.

The test models included two sets of propeller blades, illustrated in Fig. 8, comprising wide and narrow tip planform three-way configurations previously used during Ref. 4 testing. The geometry of each blade is described in Appendix I, Figs. I-5 and I-6. The blades were aluminum although the wide tip set incorporated fiberglass tips which during a previous test (Ref. 4) provided for tip clearance variations between the blade tip and shroud. The blades installed in the 7.5-in. diameter steel hub provided a disc diameter of approximately 30 in. Both propellers had an activity factor of 168 and a design camber of 0.4. Changes in blade angle were accomplished by manually turning worm gears in the hub that mesh with integral gear sectors on the blade root.

Provisions for the mounting of inlet pitot-static rakes and an exit total pressure rake were provided in addition to the static pressure orifices incorporated in the model shroud components. The 15-orifice, pitot-static inlet rake and the 25-orifice total pressure exit rake were nonmetrically supported from the spinner and dynamometer cowl fairing, respectively. A probe which traversed the exit of each shroud was mounted from the tunnel floor. A complete description of this instrumentation is provided in Appendix II.

The configuration designation system used herein is a continuation of that used in Ref. 4 and is based on 16 symbols, each consisting of a letter with subscripts denoting variables. A typical sample would be $L_4C_1E_7B_3P_{WT}T_1$, which defines the complete shroud-propeller model with inlet lip four (L_4) , propeller at 40-percent shroud chord (C_1) , diffuser exit area ratio of 1.0 (E_7) , three-way hub (B_3) , wide-tip planform blade (P_{WT}) and basic blade tip-shroud clearance (T_1) . The symbols are concisely defined in Appendix I and illustrated in Figs. 7 and 8. Special forms of these symbols used in computen tabulations are included in parenthesis after the symbol definition in Appendix I.

TEST PROCEDURES

Initial T ting

Initial testing consisted of traversing probe calibration, tunnel blockage calibration, dynamometer buoyancy investigation, hub tare, and "A"-frame tare and interference runs. The traversing probe calibration, as described in Appendix II, defined the parameters required for interpretation of velocity-angularity data. The blockage calibrations, as described in Appendix III, provided a technique for setting tunnel speed. The buoyancy investigation, as described in Appendix IV, defined the local airflow distortion that occurred at the shroud inlet and exit stations due to the dynamometer presence as well as the resultant buoyancy drag effects for shroud chord force corrections. The hub tare runs, as described in Appendix V, defined the hub skin friction effects for thrust measurement corrections.

The tare and interference runs, as described in Appendix VI, defined the effects of the "A" frame which were to be deleted from the shroud chord force data. Based on stress data observed during the previous shrouded propeller test (Ref. 4), a safe operating range (windmill rpm to 8000 rpm) was established for the blades used. Propeller dynamic balance calibrations were interspersed in the test program and were conducted following assembly and static balancing of each hub propeller configuration. These calibrations consisted of monitoring horizontal and vertical vibration as sensed by the vibration gages immediately downstream of the hub as shown in Fig. 2. A safe operating limit of ±0.005 in. has been established for the subject test rig.

Performance Testing

The performance test program consisted of recording and processing propeller thrust and torque, shroud chord force and shroud inlet and exit pressures for various model blade angles through a range of rotational speed at constant Mach number, shroud configuration and zero yaw angle. Each rotational speed setting constituted a test point and each range of rotational speed defined a data run.

The performance data instrumentation consisted of one EPUT meter for propeller rotational speed and seven strain gage unit potentiometers for torque, thrust, delta thrust, chord force (two load cells), and local Mach

number at the hub (two transducers). This instrumentation incorporated a locking circuit which provided a simultaneous visual sample of each signal which was manually recorded and at the same time punched into a digital computer in the tunnel control room for processing. The almost simultaneous reduction of the basic data permitted a manual on-line graphic presentation of the data in coefficient form. The inlet and exit pressure data were displayed on manometer boards in the control room and recorded both photographically and on paper tape with the static data acquisition system. The latter data were reduced upon completion of the test program at the UARL Computation Laboratory.

Performance data in the Mach number ranges from 0.02 to 0.20 and 0.2 to 0.6 were obtained in the 18-ft and 8-ft test sections, respectively. A functional sequence of shroud configurations with attendant run numbers and figure numbers is presented in Table I, and a detailed listing of each run obtained during the entire program is given in Table II.

Pressure Testing

The pressure program consisted of recording and processing pressures sensed by a probe traversed radially across the shroud exit area for various model blade angles, rotational speeds, Mach numbers, and shroud configurations. Each radial station setting constituted a test point and each complete traverse across the shroud exit area at constant (design) rotational speed, plus that data generated at a specified rotational speed above and below the design rpm for one radial position of the traversing probe, defined a pressure run. In addition to the traverse probe data, pressures sensed with the inlet pitot-static rake, the exit total pressure rake and the static orifices on the shroud were recorded on paper tape and processed at the Computation Laboratory.

DATA REDUCTION AND STATEMENT OF ACCURACY

The reduction of the performance and pressure data which were obtained during the runs listed in Table I is discussed herein. Additional calibration and tare data are described in Appendices II through VI. The data reduction equations for the performance data are presented in Appendix VII in the initial five sections. The first section (Eqs. 1 to 4) is preliminary in nature and includes standard calculations for determining tunnel air density and velocity based on the nominal test section Mach number and an equation for solid and wake blockage corrections to tunnel velocity. The symbols used in these equations and all subsequently discussed equations are defined in the List of

Symbols. The second group of equations (Eqs. 5 to 7) converts the force and moment gage readings to thrust, torque and chord force. The third and fourth groups of equations (Eqs. 8 to 12) indicate expressions for tare and interference corrections and balance interactions to the basic force and moment equations. The fifth group of equations (Eqs. 13 to 22) converts thrust, torque and chord force to aerodynamic coefficient form and also includes standard calculations for advance ratio, efficiency, shaft horsepower and propeller tip speed. These equations also indicate the "A"-frame tare and interference correction on chord force. The parameters defined by Eqs. 13 to 22 represent the required performance data in their final algebraic form.

The data reduction equations for the pressure data are presented in the remaining three sections. Section VI (Eqs. 23 to 29) presents the equations used to determine the actual free-stream values of dynamic pressure, Mach number, static pressure and velocity, and application of these to the pressure coefficient calculation. The propeller thrust effect correction used in performance parameter data reduction Eq. 4 was not applied to dynamic pressure (Eq. 25) nor the other flow parameters used in pressure coefficient data reduction for convenience and consistency with Ref. 4. Section VII (Eqs. 30 and 31) presents the equations used in calculating the inlet velocities. The final group of equations (Eqs. 32 to 37) includes expressions for converting traversing probe pressures to the inclined velocity and to a projected velocity component parallel to the thrust axis.

At the conclusion of the test program a statistical analysis based on methods outlined in Ref. 5 was made of approximately 75 static zero shifts noted for each of the three balance components. Estimates of static data accuracy (two standard deviations) based on these results are tabulated below.

Component	System Capacity	Measured Force or Moment		Coefficient (5000 RPM)	
		Current Test	Ref. 4	Current Test	Ref. 4
Thrust, 1b Torque, ft-1b	700 500	±0.34 ±0.25	±0.93 ±0.54	±0.0006 ±0.0011	±0.002
Chord Force, 1b	±1000	±0.92	±1.26	±0.0016	±0.004

The above coefficients are based on air density equals 0.0022 slugs/cu ft and propeller diameter equals 2.495 ft.

Accuracy in setting propeller rotational speed and propeller blade angle is estimated as ± 1 rpm and ± 0.1 deg, respectively. Accuracy in setting tunnel Mach number is estimated as ± 0.005 in the 18-ft tunnel and ± 0.021 in the 8-ft section.

Overall data repeatability as influenced by all of these parameters and also by model configuration duplication is illustrated in Figs. 9 to 14 of the Data Repeatability tab section. Figures 9 and 10 present data repeatability in the speed regime of the 18-ft tunnel; Figs. 11 to 14 present data repeatability in the 8-ft test section. The plots presented are of the repeat runs conducted intermittently throughout the test program and are felt to be representative of the overall data repeatability.

An arithmetic mean estimate of the pressure data repeatability based on a small number of samples indicated values of ± 0.06 in surface pressure coefficient, ± 1.0 fps in inlet velocity, ± 0.01 psi in exit total pressure, ± 0.5 deg in traverse probe yaw angle (ZETA), ± 1.0 deg in traverse probe pitch angle (THETA), and ± 5 fps in traverse probe velocity (V'). The accuracy in setting the traversing probe radial position was estimated as 0.012 in.

PRESENTATION OF DATA

The presentation of the performance data is in the form of aerodynamic coefficient plots and tabulations. The plots are divided into three tabsectioned groups descriptively annotated as: Data Repeatability, Low Speed Shroud Effects and High Speed Shroud Effects. The first tab section presents a comparison of the data repeatability as discussed in the preceding section of this report (Data Reduction and Statement of Accuracy). All performance data are presented so that the effects of a specific change in model geometry is illustrated. Within each tab-sectioned group the salient aerodynamic parameters for low (M = 0.02 to 0.10) and high (M = 0.20 to 0.60) speed performance are presented in sets of two and three figures. The low-speed performance plots present power coefficient, thrust coefficient, net thrust coefficient and chord force versus advance ratio. The high-speed performance plots present efficiency, net efficiency and power coefficient with cross plots of constant efficiencies overlayed versus advance ratio. In addition to the graphic presentation of the performance data, a complete tabulation of these data is presented in Table III.

The efficiencies presented in the high-speed performance data are noted to be in excess of 100 percent and the efficiencies in the low-speed performance data are noted to be irregularly low, ranging from 10 to 50 percent. It is felt that this is an effect of the definition of efficiency as presented in Appendix VII and used in the data reduction. As presented herein, efficiency is based on free-stream velocity as an approximation of the velocity field felt by the shroud and propeller. This was done to be consistent with the previous results presented in Ref. 4 to aid in overall comparisons and because of the difficulty in defining the correct propeller velocity.

Concurrent with the acquisition of performance data and in addition to the pressure data obtained during the pressure data phase of the test program, the shroud inlet velocity and shroud exit total pressure data were obtained. Complete tabulations of these data have been transmitted to HS personnel and only selections (at a propeller speed of 6000 rpm) of these results are presented in Table IV in the form of data tabulations. The shroud inlet velocity data generated during the "A"-frame tare and interference phase of testing are presented in Table V.

The presentation of the remainder of pressure data obtained during the pressure data phase of the test program is also in the form of data tabulations. Table VI is a complete tabulation of the traversing probe data acquired and Table VII is a representative tabulation of shroud surface pressure coefficients, inlet velocities and exit total pressures simultaneously acquired with the traversing probe data at a single probe radial position for each propeller rotational speed. The identification system for identifying the tabulated pressure coefficients presented in Table VII is presented in Appendix I.

REFERENCES

- 1. Hamilton Standard letter from H. St. John to Bureau of Naval Weapons dated November 12, 1965.
- 2. R&D Source Capabilities. Laboratories Facilities. UARL Report SR-2000-184, January 1967.
- 3. Lanz, H.: Description of UARL 12,000 RPM Propeller Test Rig. UARL Report R-14493-1, November 1953.
- 4. Simmonds, A. W.: Wind Tunnel Test of Shrouded Propellers. UARL Report E330590-1, March 1967.
- 5. Ireson, W. and E. Grant: Handbook of Industrial Engineering and Management. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1955.
- 6. Pope, A. and W. J. Harper: Low Speed Wind Tunnel Testing. John Wiley & Sons, New York, 1966.
- 7. Grose, R. M.: Wind Tunnel Tests of Shrouded Propellers at Mach Numbers from 0 to 0.60. UARL, December 1958 (WADC Technical Report 58-604).
- 8. Black, D.: Tare and Interference (T&I) for the Shroud "A"-Frame Support System for the 8-Foot Tunnel Testing. Memorandum to A. Simmonds, June 24, 1966.

LIST OF SYMBOLS

A	Ordinate intercept of hub skin friction tare equation, lb, Ref. Appendix V
$\mathtt{A}_{\mathbf{e}}$	Area of the shroud exit, station 100% chord, sq ft
$^{\mathtt{A}}_{\mathbf{P}}$	Disc area of 2.494 ft diameter propeller (T1), sq ft
\mathtt{A}_{T}	Cross-sectional area of test section; 49 sq ft for 8-ft test section, 268 sq ft for 18-ft test section
AX	Shroud total included frontal area, $\pi(R + t_{max})^2$; 5.768 cu ft for 8-ft test section, 7.426 cu ft for 18-ft test section
В	Slope of hub skin friction tare versus local Mach number, $1b/M_{\mbox{\scriptsize L}}$, Ref. Appendix V
ъ	Elade local chord, ft
C	Shroud chord force, lb
c _c	Shroud chord force coefficient, positive upstream (CC)
$\mathtt{c_{c_t}}$	"A"-frame chord force tare coefficient, Ref. Appendices VI, VII
$\mathtt{C}_{\mathbf{L}}$	Integrated design lift coefficient
$c^{\mathbf{L}^{\mathbf{D}}}$	Blade design lift coefficient
$^{\mathrm{C}}_{\mathrm{P}}$	Power or pressure coefficient, (CP)
$\mathtt{C}_{\mathbf{T}}$	Thrust coefficient, (CT)
CTNET	Net thrust coeffic ient, (CT NET)
c ₄	Shroud chord force measured at point P1, (Fig. 4)
c ₅	Shroud chord force measured at point P2, (Fig. 4)
c	Shroud chord length, in.

D	Traversing probe orifice distance from propeller axis, in.
$D_{\mathbf{B}}$	Buoyancy drag due to pressure gradient along tunnel axis, lb, Ref. Appendices IV, VII
đ	Traversing probe orifice height off tunnel flcor during calibration
$\mathbf{d}_{\mathbf{p}}$	Actual model propeller diameter, ft, Ref. Appendix I
d _s	Shroud internal diameter at propeller plane, 30.0 in.
ā	Average diameter to shroud camber line
е	"A"-frame drag parameter, Ref. Appendices IV, VII, positive downstream
f	Correction term in "A"-frame tare equation, Ref. Appendices VI, VII, 2.71e
${ t f}_{ t h_{ t t}}$	Hub skin friction tare on thrust, lb, Ref. Appendix V, positive downstream
g	Acceleration due to gravity, 32.16 ft/sec/sec
H	Barometric pressure, psf, (H)
HP	Horsepower, (HP)
h	Elade local thickness, ft
J	Advance ratio
K	Slope of ΔT_R , sgu/psf
ĸ	Constant for determining static pressure at traversing probe; obtained from probe calibration data, Ref. Appendix II
ĸ	Slope of torque strain gage unit (sgu) readout instrument, 0.049843 ft-lb/sgu

K ₂	Slope of thrust (sgu) readout instrument, 0.073047 lb/sgu
к ₃	Slope of ΔT (sgu) readout instrument, 0.008812 lb/sgu
K ₇	Slope of chord force, C _h (upper "A"-frame load cell), readout instrument, 0.043222 lb/sgu
к ₈	Slope of chord force, C ₅ (lower "A"-frame load cell), readout instrument, 0.044113 lb/sgu
к ₉	Slope of local (hub), total pressure readout instrument, 0.035457 psf/sgu
K ₁₀	Slope of local (hub), static pressure readout instrument, 0.071247 psf/sgu
LER	Leading edge radius, % chord
M	Nominal Mach number, uncorrected for blockage (performance data), (M)
M _L	Mach number at 20-deg azimuth approximately 1.5 in. above hub surface, Ref. Appendix V
M _r	Mach number pressure ratio at traversing probe, Ref. Appendix II
M_{SB}	Mach number at upstream speed orifice
M _{TP}	Mach number at traversing probe, Ref. Appendix VII
M_u	Clear test section Mach number
M _{co}	Mach number at propeller plane corrected for shroud total blockage only, (MINF)
N	Rotational speed, rpm, (N)
N_1	Shroud normal forces measured at point P1, (Fig. 4)

N 2	Shroud normal forces measured at point P2, (Fig. 4)
N 3	Shroud normal forces measured at point P3, (Fig. 4)
n	Rotational speed, rps
P	Pressure, psf or power, ft-lb/sec
P _{SB}	Pressure at upstream speed orifice, psf
PÌR	Propeller test rig
P ₁₋₄	Dynamometer pressures, Ref. Fig. 2, psf or load points, Ref. Fig. 4
Δ P _t	Hub pressure differential tare (buoyancy) on thrust, lb
Q	Torque, ft-1b
$Q_{\mathbf{p}}$	Torque uncorrected for thrust interaction on torque, ft-1b
q	Dynamic pressure corrected for shroud total and propeller wake blockage (performance data); or, corrected for shroud blockage only (pressure data), psf, (Q)
· q t	Interaction slope of torque on thrust, O lb T/ft-lb Qp
q _u	Dynamic pressure uncorrected for blockage, psf
R	Gas constant, 1722 ft ² /sec ^{2 OR} ; nominal blade radius, 15 in.
r	Local propeller radius, in.
s	Shroud cross-sectional area for sector i
T	Thrust, 1b
TER	Trailing edge radius, % chord
$ extbf{T}_{ extbf{NET}}$	Net thrust (T+C), 1b

T _. P	Thrust uncorrected for hub pressure differential tare, hub skin friction tare and balance interactions, lb
TS	Test section
T _{SC}	Settling chamber temperature, OR, (TSC)
T _{TP}	Temperature at traversing probe
ΔΤ	Increment of thrust due to axial pressure differential across hub, lb
. t	Shroud or blade thickness, in.
$t_{f q}$	Interaction slope of thrust on torque, O ft-lb Q/lb Tp
v	Velocity
v _o	Velocity of airstream corrected for shroud solid and wake blockage and propeller wake blockage, fps, (VO)
$v_{\mathbf{T}}$	Propeller tip speed, fps, (VT)
v_{TP}	Velocity measured at traversing probe, fps, (VTP)
v_u	Velocity of airstream uncorrected for blockage, fps
Λ.	Velocity component parallel to thrust axis at traversing probe, fps, (VPR)
. V _@	Velocity corrected for shroud blockage, (VINF)
β	Blade twist, deg, Ref. Appendix I
γ	Ratio of specific heat of air, 1.4
(AP)	Axial pressure gradient in shroud sector i
e _s	Shroud solid and wake blockage correction, 0.0294 for the 8-ft test section; 0.00693 for the 18-ft test section, Ref. Appendix VII

- Z Angle of yaw at traversing probe, deg, (ZETA)
- η Propeller efficiency, (ETA)
- $\eta_{
 m NET}$ Net propeller efficiency, (ETA NET)
- Blade angle at 3/4 blade radius, (THETA 3/4); or pitch angle at traversing probe, (THETA), deg, Ref. Appendix II
- $heta_{
 m r}$ Ratio of pressure differential across axial static orifices to traverse orifices on traversing probe, Ref. Appendix II
- π Constant, 3.1416
- ρ Mass density of free airstream, slugs/cu ft; (RHO)
- ψ Angle of yaw, deg, (PSI)

Subscripts

- AVE Average value across shroud inlet station, (AVE)
- i Conditions at inlet static orifices 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, (Fig. II-2) or axial division of shroud stations for evaluation of buoyancy drag
- j Inlet total orifices 2, 5, 8, 11, 14 used with static i = j±l (Fig. II-2)
- Local condition, 1.5 in. above hub surface
- m Model surface
- o Initial or zero gage reading or ambient condition
- P Parameters uncorrected for interactions, buoyancy and tares
- R Strain gage reading, sgu

Subscripts (Contd.)

- s Static pressure
- t Total pressure
- u Uncorrected for blockage
- ∞ Free-stream conditions, corrected for solid blockage, (INF)
- 1-5 Orifices on traversing probe, (see Fig. II-4)

APPENDIX I

HS VG SHROUDED PROPELLER TEST

Model Component Identification and Dimensional Data

This appendix presents a listing of the model component symbols, surface pressure orifice identification and associated dimensional data.

Fig. I - Model Component Designation Symbols Chord force "A"-frame dummy, (AD) $A_{\rm D}$ VI-1 Propeller hub configuration $\mathbb{B}_{\mathbf{X}}$ 7 where subscript X = 3, 3-way hub, (B3) X = 4, 4-way hub, (B4) c_1 Propeller plane located at 40% shroud chord, (C1) I-1 - I-3 7, I-1 - I-3 $\mathbf{E}^{\mathbf{X}}$ Diffuser section where subscript X = 6, shroud exit area divided by shroud internal area at propeller equal 0.9, (E6) X = 7, shroud exit area divided by shroud internal smea at propeller equal 1.0, (E7) $X = \partial$, shroud exit area divided by shroud internal area at propeller equal 1.4, (E8) LX Inlet lip 7, I-1 - I-3 where subscript X = 4, high speed lip, (L4) X = 5, low speed lip, (L5)

APPENDIX I (Contd.)

			Fig.
I-	Model	Component Designation Symbols - (Contd.)	
	PXX	Planform of propeller blades	I-5 - I-6
		where subscript XX = WT, wide tip planform, (PWF) XX = NT, narrow tip planform, (PNT)	
	PTR	Propeller dynamometer, (PTR)	2, 3
	R ₁	Inlet pitot-static velocity rake at 20-deg azimuth, (R1)	7, II-1 - II-2
	$R_{ m E}$	Exit total pressure rake at 75-deg azimuth, (RE)	7, II-1 - II-3
	R _E 5	Exit pitot-static velocity rake at 130-deg azimuth, (RE5)	II-1 - II-2
	$R_{G_{\mathbf{X}}}$	Buoyancy (pressure gradient) rake	IV-1 - IV-2
		where subscript $X = 1$, 20-deg azimuth, (RG1) X = 5, 130-deg azimuth, (RG5)	
	T _P	Traversing probe at 166.5 deg azimuth and at trailing edge of shroud diffuser (tunnel station, 71.75 in. for the 18-ft section; 69.96 in. for the 8-ft section), (TP)	7, II-1 - II-4
	$T_{ m Pl}$	Traversing probe protruding from tunnel floor at tunnel station -32 in., (TP4)	•
	TX	Blade tip-shroud clearance	
		where subscript X = 1, 29.925 in. diameter propeller, (T1) X = 2, 29.850 in. diameter propeller, (T2)	

NOTE: Minimum internal shroud diameter = 30.0 in. for

all shrouds.

APPENDIX I (Contd.)

II - Surface Pressure Orifice Identification System for Table VII

A. Symbols

- S Shroud
- 1 45 deg azimuth
- B Inside Surface
- 2 135 deg azimuth

LEO - Leading Edge

T - Outside

B. Orifice Legend

APPENDIX I (Contd.)

III - Model Dimensional Data

Title and Description	Fig.
Shroud L ₄ C ₁ E ₆ Ordinates	I-1
Shroud L ₄ C ₁ E ₇ Ordinates	I-2
Shroud L ₅ C ₁ E ₈ Ordinates	I-3
Spinner Ordinates	I-4
3-Way Wide Tip Blade Geometry	I-5
3-Way Narrow Tip Blade Geometry	I - 6

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SHROUD L4C1E6 ORDINATES AREA RATIO = 0.9

^{*} L.E.R. = LEADING EDGE RADIUS

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SHROUD L₄C₁E₇ ORDINATES AREA RATIO = 1.0

STATION	ORDINATE Y		
PERCENT CHORD	UPPER	LOWER	
0.00	2 .3 25	2.325	
0.50	2.710	1.860	
1.25	2.890	1.640	
2.50	3.290	1.460	
5.00	3.750	1.315	
7.50	4.085	1.190	
10.00	4.375	0.990	
15.00	4.875	0.840	
20.00	5.265	0.600	
25.00	5.565	0.400	
30.00	5.780	0.225	
35.00	5,910	0.115	
40.00	6.00	0.000	
45.00	6.00	0.000	
50.00	5,860	0.000	
60.00	5.275	0.000	
70.00	4.790	0.002	
80.00	3.030	0.050	
90.00	1.660	0.065	
100.00	0.100	0.100	

^{*} L.E.R. = LEADING EDGE RADIUS

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SHROUD $L_5C_1E_8$ ORDINATES AREA RATIO = 1.4

STATION	ORDINATE Y		STATION	ORDINATE Y	
PERCENT CHORD	UPPER	LOWER	PERCENT CHORD	UPPER	LOWER
0.00	10.868	10.868			
0.22	12.172	9.303	30.40	5.151	0.052
0.44	12.606	8.564	34.80	5.216	0,000
0.65	12.954	8.020	39.30	5.216	0.000
0.87	13.215	7.607	40.30	5.303	0.078
1.30	13.650	6.868	41.40	5.434	0.183
1.74	13.976	6.260	42.60	5.651	0.313
2.17	14.215	5.738	43.60	5.825	0.469
2.61	14.476	5.216	47.80	6.521	1.269
3.48	14.867	4.347	52.10	7.216	2.108
4.36	14.997	3.630	56.50	7.912	2.965
5.21	14.932	3.021	60.80	8.520	3.825
6.08	14.454	2.521	65.20	9,129	4.677
6.95	12.954	2.087	69.50	9.694	5.521
8.70	9.998	1.413	73.90	10.172	6.381
11.30	7.173	0.782	78.20	10.433	7.229
13.90	5.564	0.543	82.60	1.0.781	8.085
15.65	4.990	0.435	87.00	11.085	8.933
17.40	4.716	0.356	91.30	11.346	9.781
21.70	4.869	0.226	95.60	11.520	10.641
26.10	5.043	0.122	100.00	11.520	11.520

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SPINNER ORDINATES

STATION PERCENT OF LENGTH	SPINNER ORDINATE, Y UPPER AND LOWER
0	0.0
1	2.69
2	3.81
3 4	4.74
	5.56
5	6.31
10	9.36
15	11.73
20	13.65
25	15.32
30	16.81
35	18.15
40	19.36
45	20.45
50	21.42
60	23.08
70	24.33
80	25.21
90	25.74
100	25.90

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA 3- WAY WIDE TIP BLADE GEOMETRY SK 57144 DESIGN CL = 0.4

HS VG SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA 3 - WAY NARROW TIP BLADE GEOMETRY SK 57145 DESIGN C_L = 0.4

APPENDIX II

HS VG SHROUDED PROPELLER TEST

Pressure Sensing Instrumentation and Traversing Probe Calibration

This appendix describes the pressure sensing instrumentation used during the subject test. As shown in Fig. II-1, the instrumentation consisted of a pitot-static rake located at the shroud inlet station, an exit total pressure rake, shroud surface static pressure orifices at two azimuth angles, and a traversing probe. Pressures sensed by these devices were converted to electrical signals with transducers and recorded on paper tape with the static data acquisition system located in the tunnel control room. In addition to the paper tape record, a photographic record of the pressures as displayed on manometer boards was obtained. Sketches of the inlet pitot-static rake, the exit total pressure and pitot-static rakes and the traversing probe are presented in Figs. II-2, II-3, and II-4. Figures II-5 and II-6 present the results of the traversing probe calibration conducted immediately after the 8-ft section test and used in the final reduction of traversing probe data obtained in the 8- and 18-ft test sections.

The traversing probe calibration was performed to extend the scope of the existing calibration into the region of more negative pitch angles. The calibration data generally conformed with the anticipated results based upon the previous UARL calibration as reported in Ref. 4. The repeatability of overlapping calibration points between the two UARL calibrations reaffirmed the mutual UARL-HS decision to employ the UARL generated calibration data, and renewed confidence in the probe's reliability. The calibration data were used in conjunction with Eqs. 30 through 37 of Appendix VII to define the velocity and angularity of the airflow at the probe station.

The test technique employed with the traversing probe consisted of recording pressures P_1 through P_5 at discrete radial stations at the shroud exit plane and a shroud azimuth of 166.5 deg. Radial positioning of the probe was remotely controlled at a console in the tunnel control room which also provided for rotating the probe to balance the pressures P_2 and P_3 shown in Fig. II-4. Nulling of these pressures provided a yaw angle (ZETA) in numerical display through an electro-mechanical system integral in the control console. With a discrete radial position and yaw angle the parameters M_r and θ_r were determined by Eqs. 32 and 33 of Appendix VII, respectively. With values M_r

APPENDIX II (Contd.)

and θ_r , pitch angle (THETA) and subsequently parameter K were determined from the calibration data presented in Figs. II-5 and II-6, respectively. Linear interpolation was used to determine pitch angle and K for values of M_r and θ_r parameter intermediate to the presented curves. The parameter K was used to determine a corrected static pressure (Eq. 34) which in turn leads to the determination of Mach number, velocity and the axial component of velocity by Eqs. 35 through 37, respectively.

HS VG SHROUDED PROPELLER TEST

PRESSURE SENSING INSTRUMENTATION ARRANGEMENT VIEW LOOKING DOWNSTREAM

HS VG SHROUDED PROPELLER TEST PITOT-STATIC RAKE ORIFICE LOCATIONS AND DESIGNATIONS

NOTE: DIMENSIONS SHOWN IN INCHES

HS VG SHROUDED PROPELLER TEST EXIT RAKE ORIFICE LOCATIONS AND DESIGNATIONS NOTE: DIMENSIONS SHOWN IN INCHES

HS VG SHROUDED PROPELLER TEST TRAVERSING PROBE INSTALLATION

NOTE: DIMENSIONS SHOWN IN INCHES POSITIVE ANGLES SHOWN

HS VG SHROUDED PROPELLER TRAVERSING PROBE CALIBRATION CURVES

HS VG SHROUDED PROPELLER TEST TRAVERSING PROBE CALIBRATION DATA

APPENDIX III

HS VG SHROUDED PROPELLER TEST

Tunnel Blockage Corrections

In the 18-ft test section the average static pressure in the propeller plane at the two vertical walls of the test section was compared with an average of four static pressures on the 45-deg sides of the octagonal test section (speed ring) located 167.56 in. upstream of the propeller plane. This comparison was made with the dynamometer installed in the test section with and without the shroud present. As implied by Fig. III-1, the static pressure at the tunnel walls in the propeller plane does not differ significantly from the upstream value due to the addition of the dynamometer with or without the shroud. Therefore, the desired tunnel speed in the 18-ft test section was set according to the calibration curve, Fig. III-1. using the speed ring as reference and then the desired tunnel speed was analytically corrected for shroud solid and wake blockage and propeller thrust effect. The shroud solid and wake blockage correction was calculated (Appendix VII) to be approximately equal to 0.7 percent (equivalent to the Ref. 4 effect) and it is applied to the data in Fig. III-1 for comparison. This differed from the procedure followed by Ref. 4 where shroud blockage was considered negligible in the 18-ft test section and tunnel speed was set at the propeller plane.

In the 8-ft test section the propeller is farther upstream in the throat of the test section and thus it was not possible to establish an upstream pressure reference which was equal to the test section static pressure without being influenced by the model. The average of three pressures from the speed bump located in the test section bellmouth 81.4 in. upstream of the propeller was selected as the reference pressure. The speed bump data are plotted in Fig. III-2 against data from speed plate orifices in the propeller plane at the upper east inclined wall of the test section for the clear test section and for the dynamometer with and without the shroud. As indicated in Fig. III-2, an increase in speed of approximately three percent is caused by the presence of the dynamometer-shroud combination. Since the dynamometer itself does not significantly increase the propeller plane wall pressure, it appears that its blockage effects are negligible. As it is difficult to accurately determine the tunnelcenterline correction from the measured wall data for a realistic model, a shroud blockage correction based on model geometry was employed. The model geometry term, which approximates the sum of the shroud

APPENDIX III (Contd.)

solid and wake blockage, is defined as one quarter of the ratio of the total included model frontal area to the test section cross-sectional area (Ref. 6, $\epsilon_{\rm S} = A_{\rm X}/4A_{\rm T}$). This term was selected to be approximately equal in magnitude to the Ref. 4 term. Therefore, the desired tunnel speed in the 8-ft test section was set according to the calibration curve presented in Fig. III-2 using the speed bump as reference and then the desired speed was analytically corrected for shroud solid and wake blockage and propeller thrust effects. The shroud blockage correction was calculated as defined in Appendix VII to be equal to 2.94 percent and it is applied to the data in Fig. III-2 for comparison.

HS VG SHROUDED PROPELLER TEST BLOCKAGE EFFECT OF THE SHROUD

18-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	1	VARY	PTR W/O SHROUD + BLADES	
. 🛆	2	•	L5C1 E8B4 R1RE	

NOTE: SOLID SYMBOLS DENOTE DATA WITH SHROUD BLOCKAGE CORRECTIONS APPLIED

HS VG SHROUDED PROPELLER TEST BLOCKAGE EFFECT OF PROPELLER DYNAMOMETER WITH AND WITHOUT SHROUD

8-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	25	VARY	CLEAR TEST SECTION	
Δ	27		L4C1E7B4R1RE	
0	26	T	PTR W/Q SHROUD + BLADES	1

NOTE: SOLID SYMBOLS DENOTE DATA WITH SHROUD BLOCKAGE CORRECTIONS APPLIED

APPENDIX IV

HS VG SHROUDED PROPELLER TEST

Propeller Dynamometer Buoyancy Investigations

Tunnel calibrations were performed with the dynamometer installed without the shroud or blades in both test sections in order to determine whether an axial pressure gradient existed at the shroud location due to the dynamometer presence. The existence of such a gradient would require that the measured shroud chord force be corrected for a resultant buoyancy drag. It is stated in Ref. 7 that this gradient is very small throughout the test Mach number range and which resulted in a chord force correction coefficient of 0.0016. Subsequently, as this is the magnitude of chord force accuracy, the buoyancy correction was considered negligible in Ref. 4. However, due to the proximity of the trailing edge of the low-speed shroud to the dynamometer cowl and because of the E6 diffuser is a converging nozzle, further study was deemed necessary for this program.

The axial static pressures along two azimuth positions, 20 and 130 deg, were determined using the two buoyancy rakes shown in Figs. IV-1 and IV-2. The resultant pressure distribution at the shroud location (15.28 in. from the hub centerline) is illustrated in Fig. IV-3. The buoyancy drag force which resulted from the application of these data (Appendix VII and Ref. 6) is presented in Fig. IV-4. This buoyancy drag force represents approximately 0.5 percent of the overall drag felt by this shroud.

Radial velocity profile data at the shroud inlet and exit stations were measured simultaneously with the axial pressure distribution data by the buoyancy rakes. These data were generated to determine if and what type of buoyancy corrections would be necessary for propeller performance data in future test programs. The buoyancy rake data recorded at the shroud exit station were questionable as the downstream rake was situated in the wake of the inlet rake. Exit velocities measured with these rakes were determined assuming the exit plane total pressure equaled free-stream total pressure. The resulting velocity profiles were substantiated at the conclusion of the shroud data phases of the program by comparable data obtained using an inlet pitot-static rake (R_1), an exit pitot-static rake (R_{E_5}), an exit total pressure rake and the traversing probe (Figs. II-2, II-3 and II-4). A composite velocity profile for both shroud stations and each test section Mach number is presented in Figs. IV-5 and IV-6, with typical data point distributions indicated for M = 0.3 and 0.6, respectively.

HS VG SHROUDED PROPELLER TEST PROPELLER DYNANOMETER WITH BOUYANCY RAKES

VIEW FROM UPSTREAM - SPINNER FIG 1-4 STATION AA FREESTREAM (TYP) 20 DEG AZIMUTH BOUYANCY RAKE ORIFICE LOCATIONS AND DESIGNATIONS LOCATED AT-130 DEG AZIMUTH RGS |- 6. |- 6. |- 6. a G HS VG SHROUDED PROPELLER TEST -4.280-0.912 PROP EXTENSION FAIRING 0.75 INLET PITOT STATIC RAKE -FIG II -2 12.0 12.436 NOTE : DIMENSIONS SHOWN IN INCHES 15.280 0.537 1.020 0 3.940 -759.02 (FOR ORIFICE SPACING SEE FIG II-2) 0.50 DIA 30 DEG (TYP) /

HS VG SHROUDED PROPELLER TEST AXIAL STATIC PRESSURE DISTRIBUTION AT SHROUD STATION PROPELLER TEST RIG WITHOUT SHROUD

SYM	RAKE	AZIMUTH	TS
0	R _{G1}	20	18
Δ	R _{G5}	130	18
0	R _{G1}	20	8
0	R _G	130	8

NOTE : CLOSED SYMBOLS (A)
DENOTE Po /H

HS VG SHROUDED PROPELLER TEST BUOYANCY DATA EVALUATED BY METHOD OF AREA SUMMATIONS

$$D_B = -\pi \overline{d} \sum_i S_i \left(\frac{\Delta P}{\Delta X} \right)_i$$
 REF. 6

SYM	SHROUD	T5
0	L5C1E8	18
Δ	L4C1E7	8
0	L4C1E6	8

HS VG SHROUDED PROPELLER TEST VELOCITY PROFILES AT THE SHROUD INLET AND EXIT STATIONS PROPELLER TEST RIG WITHOUT SHROUD

HS VG SHROUDED PROPELLER TEST VELOCITY PROFILES AT THE SHROUD INLET AND EXIT STATIONS PROPELLER TEST RIG WITHOUT SHROUD

APPENDIX V

HS VG SHROUDED PROPELLER TEST

Propeller Hub Skin Friction Tare

The forces measured by the dynamometer's thrust balance represent a summation of the propeller thrust, a hub skin friction drag and a thrust force derived from the pressure differential across the hub. The pressure differential thrust is determined from direct measurement of the pressures across the hub at each data point. The hub skin friction drag tare was determined from a calibration made without blades through a Mach number range at zero hub rotational speed. The gross thrust measured during this calibration is equal to the independently measured pressure thrust and the skin friction drag since the propeller thrust is equal to zero. Hub skin friction tare values measured in this manner are shown in Fig. V-1. Due to scatter in the data generated in both test sections, a composite linear function of local Mach number was fitted to the overall data as shown in this plot. The individual test section values of the tare parameters are included for comparison. The values derived from the composite were used in the final data reduction equations, Appendix VII. Local Mach number was selected as the independent variable rather than tunnel speed in order to account for the effect due to the shroud presence. It should be noted that the intention in so defining the hub skin friction as a function of local Mach number was to simplify computer application of the data and, further, that the included results are applicable only with the finite spinner.

HS VG SHROUDED PROPELLER TEST PROPELLER HUB SKIN FRICTION TARE

SYM	RUN NO.	CONFIGURATION	TS
0	2	L5C: E8B4R1RE	18
Δ	27	L4C1E7B4R1RE	8
0	81	L4C1 E B4R1RE	
◊	8 2	L4C1E6B4R1RERE5	1

APPENDIX VI

HS VG SHROUDED PROPELLER TEST

Shroud Support Tare and Interference Effects

The tare and interference effects of the shroud support system are presented in this appendix for the three shroud configurations tested. The support system consisted of a side arm and two "A"-frame attachment points as illustrated in Fig. 3. The interference effects (no tare effect applicable) of the side arm support were evaluated in a previous test (Ref. 4) and found to be negligible and corrections for these effects were not applied to the performance data presented in this report. Unlike the side arm interference, the "A"-frame tare and interference effects were found to be significant to chord force measurements. Derivation of the "A"-frame tare and interference effects were achieved from two methods: a) the tare produced from the air loads on the isolated "A"-frames and b) the tare and interference produced from the airloads on the "A"-frames, shown in Fig. VI-1, in proximity of the three shroud configurations.

Concurrent with the dynamometer buoyancy investigations an "A"-frame correction to chord force was obtained based on chord force measurements of the two isolated (no shroud) "A"-frames rather than from the dummy "A"-frame image. This technique was developed in a previous test (Ref. 4) because of the inconsistencies in the data obtained with the image system, and the direct measurements were made of the isolated system to improve the correction.

With the measurements of "A"-frame chord force presented in Fig. VI-2 and the approach described in Ref. 8, a chord force correction as a function of propeller advance ratio and thrust coefficient was derived as given in Eq. 9 of Appendix VII. The correction does not include the "interference" of tare and interference (shroud not present), nor does it account for changes associated with variations in "A"-frame shroud attachment proximities. However, these effects were checked by measuring the effects of the airloads on the dummy "A"-frame system in proximity of each of the three shroud configurations. These effects were determined by obtaining the difference in shroud chord force coefficient without and with a single dummy "A"-frame installed (this configuration produces half of the effect of the two "A"-frames). These differences compared poorly with the results obtained from the isolated "A"-frames because the predetermined values of the drag parameter were based on the free-stream Mach number.

F331012-1

FIG. V1-1

HS VG SHROUDED PROPELLER TEST "A"- FRAME IMAGE SYSTEM

HS VG SHROUDED PROPELLER TEST "A" - FRAME DRAG TARE

$$C_{C_{\dagger}} = \left[e + f\left(\frac{C_{T}}{J^{2}}\right)\right]J^{2}$$
 (APP VII EQ. 9)

WHERE f = 2.71e

HS VG SHROUDED PROPELLER TEST COMPARISON OF "A" - FRAME TARE CORRECTION WITH TEST DATA

SYM	RUN NO.	MACH NO. CONFIGURATION		£ 3/4
0	13	0.02	LSC1 EBB3 PWT TIR1RE	36.0
Δ	16		L5C1E8B3PWTT1R1AD	

NOTES: OPEN CIRCLE SYMBOLS — UNCORRECTED DATA, STANDARD SUPPORT SYSTEM.

OPEN TRIANGLE SYMBOLS — UNCORRECTED DATA, DUMMY "A"—FRAME ADDED.

SOLID SYMBOLS — DATA WITH DUMMY "A"—FRAME CORRECTED FOR ONE ISOLATED "A"—FRAME.

HS VG SHROUDED PROPELLER TEST COMPARISON OF "A" - FRAME TARE CORRECTION WITH TEST DATA

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	11	0.10	L5C1E8B3PWTT1R1RE	36.0
Δ	15		L5C1E8B3PWTT1R1AD	

NOTES: OPEN CIRCLE SYMBOLS - UNCORRECTED DATA, STANDARD SUPPORT SYSTEM.

OPEN TRIANGLE SYMBOLS - UNCORRECTED DATA, DUMMY "A"-FRAME ADDED.

SOLID SYMBOLS - DATA WITH DUMMY "A"-FRAME CORRECTED FOR ONE ISOLATED "A"-FRAME.

F331012-1

FIG. VI-6

HS VG SHROUDED PROPELLER TEST COMPARISON OF "A" - FRAME TARE CORRECTION WITH TEST DATA

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	46	0.60	L4 C1 57 83 PNT T2 R1 RE	49.0
Δ	50		L4 C1 57 B3 PNT T2 R1 AD	1
0	65		L4 C1 E6 B3 PNT T2 R1 RE	41.0
◊	74		L4 C1 E6 83 PNT T2 R1 AD	· .

NOTES: OPEN CIRCLE AND SQUARE SYMBOLS — UNCORRECTED DATA, STANDARD SUPPORT SYSTEM.

OPEN TRIANGLE AND DIAMOND SYMBOLS — UNCORRECTED DATA, DUMMY "A"—FRAME ADDED.

SOLID SYMBOLS — DATA WITH DUMMY "A"—FRAME CORRECTED FOR ONE ISOLATED "A"—FRAME.

57

APPENDIX V11 HS VG SHROUDED PROPELLEP. TEST DATA REDUCTION EQUATIONS

I - PRELIMINARY CALCULATIONS

$$\rho_0 = \frac{H}{RT_{SC}}$$
 (1)

$$\rho = \rho_0 \left[\frac{\gamma g R T_{SC}}{1 + \frac{\gamma - 1}{2} M^2} \right]^{-\frac{1}{\gamma - 1}}$$
 (2)

$$V_{U} = M \left[\frac{\gamma gRT_{SC}}{1 + \frac{\gamma - 1}{2} M^{2}} \right]^{0.5}$$
 (3)

$$V_0 = V_U \left[1 + \frac{A_X}{4A_T} - \frac{T_{NET}}{4A_T q_U \left[1 + \frac{T_{NET}}{q_U A_P} \right]^{0.5}} \right]$$
 (4)

WHERE TNET = T + C, (T AND C DEFINED IN EQS. 10 AND 12)

AND
$$q_u = \frac{\rho V_u^2}{2}$$

11 CONVERSION OF STRAIN GAGE READINGS

$$T_P = K_2(T_R - T_0)$$
 (5)

$$Q_{P} = K_{I}(Q_{R} - Q_{O})$$

$$(6)$$

$$C_{u} = K_{7}(C_{4_{R}} - C_{4_{0}}) + K_{8}(C_{5_{R}} - C_{5_{0}})$$
 (7)

III HUB SKIN FRICTION AND "A" - FRAME TARE AND INTERFERENCE

$$f_{h_{\uparrow}} = A + BM_{\mathcal{L}}$$
 (8)

WHERE
$$\frac{P_{S_{\ell}}}{P_{t_{\ell}}} = \frac{H - K_{10}(P_{S_{\ell R}} - P_{S_{\ell Q}})}{H - K_{9}(P_{t_{\ell R}} - P_{t_{\ell Q}})}$$

AND
$$M_{\ell} = \left[\frac{\left(P_{S_{\ell}} / P_{t_{\ell}} \right)^{-\frac{\gamma-1}{\gamma}} - 1}{\frac{\gamma-1}{2}} \right]^{0.5}$$

APPENDIX V11 (CONTD)

$$C_{C_{\dagger}} = \left[e + f\left(\frac{C_{\dagger}}{J^2}\right) \right] J^2$$
 (9)

IV HUB SKIN FRICTION, BALANCE INTERACTIONS AND HUB AND PTR BUOYANCY CORRECTIONS

$$T = T_P + f_{h_1} - K_3 (\Delta T_R - \Delta T_0) - Q_P Q_1$$
 (10)

WHERE $\Delta T_R = K(P_1 - P_4)$

$$Q = Q_p - T_p \uparrow_q \tag{11}$$

$$C = C_u + D_B \tag{12}$$

WHERE
$$D_B = -\pi \overline{d} \sum_i S_i \left(\frac{\Delta P}{\Delta X} \right)_i$$

V CONVERSION OF FORCE COMPONENTS TO PERFORMANCE PARAMETERS

$$n = \frac{\overline{N}}{60}$$
 (13)

$$C_{T} = \frac{T}{\rho n^2 a_p^4} \tag{14}$$

$$C_{P} = \frac{2\pi Q}{\rho n^2 d_{p}^5} \tag{15}$$

$$C_{\rm C} = \frac{C}{\rho \, n^2 \, d_{\rm D}^4} + C_{\rm Ct} \tag{16}$$

$$C_{\mathsf{T}_{\mathsf{NET}}} = C_{\mathsf{T}} + C_{\mathsf{C}} \tag{17}$$

$$J = \frac{V_0}{r_1 d_p}$$
 (18)

$$\eta = \frac{C_T}{C_P} J \tag{19}$$

$$\eta_{\text{NET}} = \frac{C_{\text{TNET}}}{C_{\text{P}}} J$$

$$HP = \frac{\overline{N}Q}{5252} \tag{21}$$

APPENDIX V11 (CONTD)

$$V_{T} = \pi n d_{p}$$
 (22)

VI CALCULATION OF FREESTREAM VALUES (PRESSURE DATA) AND PRESSURE COEFFICIENT

$$\rho_{\rm u} = \rho_{\rm 0} \left(\frac{\rho_{\rm SB}}{H} \right) \frac{1}{7} \tag{23}$$

WHERE $\rho_0 = \frac{H}{RTsc}$

$$V_{U} = M_{U} \left[\frac{\gamma g RT_{SC}}{1 + \frac{\gamma - 1}{2} M_{U}^{2}} \right]^{0.5}$$
 (24)

WHERE Mu = f (MSB) FROM APP III, FIG III-1 AND FIG III-2

AND
$$M_{SB} = \left[\frac{(P_{SB}/H)^{-\frac{\gamma-1}{\gamma}} - 1}{\frac{\gamma-1}{2}} \right]^{0.5}$$

$$q_{\infty} = q_{u} \left(1 + \frac{Ax}{2AT} \right) \tag{25}$$

WHERE
$$q_u = \frac{\rho_u \vee_u^2}{2}$$

$$q_{\infty} = \frac{\gamma}{2} H M_{\infty}^{2} \left(1 + \frac{\gamma - 1}{2} M_{\infty}^{2} \right)^{-\frac{\gamma}{\gamma - 1}} \qquad (SOLVED FOR M_{\infty})$$
 (26)

$$P_{\infty} = H\left(1 + \frac{\gamma_{-1}}{2} M_{\infty}^{2}\right)^{-\frac{\gamma}{\gamma_{-1}}}$$
 (27)

$$V_{\infty} = \left(\frac{2q_{\infty}}{\rho}\right)^{0.5} \tag{28}$$

WHERE
$$\rho = \rho_0 \left(\frac{\rho_\infty}{H} \right) \frac{1}{\gamma}$$

$$C_{P} = \frac{P_{m} - P_{\infty}}{Q_{m}} \tag{29}$$

VII CALCULATION OF INLET VELOCITIES

$$V_{i} = M_{i} \left[\frac{\gamma g R T_{SC}}{1 + \frac{\gamma - 1}{2} M_{i}^{2}} \right]^{0.5}$$
 (30)

APPENDIX V11

(CONTD)

WHERE
$$M_i = \left[\frac{\left(P_{S_i}/P_{\uparrow_j}\right)^{-\frac{\gamma-1}{\gamma}}-1}{\frac{\gamma-1}{2}}\right]^{0.5}$$

$$V_{AVE} = \sum_{i} \frac{V_{i}}{1C} \qquad (31)$$

VIII REDUCTION OF TRAVERSING PROBE DATA

$$M_r = \frac{P_1 - P_2}{P_1} \tag{32}$$

$$\theta_{r} = \frac{P_{4} - P_{5}}{P_{1} - P_{2}} \tag{33}$$

$$P_{S} = P_{i} - \overline{K}(P_{i} - P_{2}) \tag{34}$$

WHERE
$$\theta = f(M_r, \theta_r)$$
, FROM APP. II, FIG. II-6

AND
$$\overline{K} = f(M_r, \theta)$$
 FROM APP. II, FIG. II-7

$$M_{TP} = \left[\frac{(P_S/P_1)^{-\frac{\gamma_{-1}}{\gamma}} - 1}{\frac{\gamma_{-1}}{2}} \right]^{0.5}$$
(35)

$$V_{IP} = M_{TP} \left[\frac{\gamma g_{RT_{SC}}}{1 + \frac{\gamma - 1}{2} M_{TP}^2} \right]^{0.5}$$
(36)

$$V' = V_{TP} \cos \theta \cos Z$$
 (37)

RDT 5875

'HS VG SHROUDED PROPELLER TEST SCHEMATIC DRAWING OF PROPELLER DYNAMOMETER

HS VG SHROUDED PROPELLER TEST SHROUD BALANCE SYSTEM

HS VG SHROUDED PROPELLER TEST SCHEMATIC DIAGRAM OF SHROUD BALANCE

$$N = N_3 - N_1 - N_2$$

 $C = C_4 + C_5$

HS VG SHROUDED PROPELLER TEST MODEL PROPELLER TEST DYNAMOMETER INSTALLED IN 18-FT TEST SECTION VIEW LOCKING DOWNSTREAM

HS VG SHROUDED PROPELLER TEST MODEL COMPONENT DESIGNATION SYMBOLS

HS VG SHROUDED PROPELLER TEST PROPELLER TEST BLADES

3-WAY

3-WAY WIDE TIP, PWT NARROW TIP, PNT

HS VG SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 18-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
©	8	0.05	L5C1E8B3PWTT1R1RE	29.0
Δ	21			V

HS VG SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 18-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	8	0.05	LSC1E8B3PWTTiRIRE	29.0
Δ	21			1

HS VG SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 8-FT TEST SECTION

HS VG SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 8-FT TEST SECTION

HS VG SHRQUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 8-FT TEST SECTION

HS VG SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN THE 8-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	40	0.20	L4 C1 E7 B3 PNT T2 R1 RE	30.0
Δ	48		+	
0	62		L4 C1 E6 B3 PNT T2 R1 RE	28.0
◊	71			1

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON LOW SPEED SHROUDED PROPELLER PERFORMANCE

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON LOW SPEED SHROUDED PROPELLER PERFORMANCE

HS VG SHROUDED PROPELLER TEST MODEL PROPELLER TEST DYNAMOMETER INSTALLED IN 18-FT TEST SECTION VIEW LOGKING DOWNSTREAM

SYM	RUN NO.	MACH NO.	CONFIGURATION	$\theta_{3/4}$
0	14	0.20	L5C1E8B3PWTT1R1RE	36.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON LOW SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	14	0.20	LSC1E8B3PWTT1R1RE	36.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	39	0.20	L4 C1 57 83 PNT T2 R1 RE	22.0
Δ	40			30.0
0	42		1	40.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	39	0.20	L4 C1 57 83 PNT T2 R1 RE	22.0
Δ	40			30.0
0	42		 	40.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	39	0.20	L4 C1 57 83 PNT T2 R1 RE	22.0
Δ	40			30.0
0	42			40.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	41	0.40	L4 C1 57 83 PNT T2 R1 RE	32.0
Δ	43			43.0
0	45			49.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ·3/4
0	41	0.40	L4 C1 E7 B3 PNT T2 R1 RE	32.0
Δ	43			43.0
0	45			49.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	41	0.40	L4 C1 E7 B3 PNT T2 R1 RE	32.0
Δ	43			43.0
0	45			49.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	44	0.60	L4 C1 E7 B3 PNT T2 R1 RE	43,0
Δ	46			49.0
0	47			54.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE.

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	44	0.60	L4 C1 67 83 PNT T2 R1 RE	43.0
Δ	46			49.0
0	47	1	.	54.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	44	0.60	L4 C1 57 B3 PNT T2 R1 RE	43.0
Δ	46			49.0
0	47			54.0

HS VG SHROUDED PROPELLER TEST EFFECT OF DIFFUSER E₆ ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	61	0.20	L4 C1 E6 B3 PNT T2 R1 RE	22.0
Δ	62			28.0
0	70			38.0

HS VG SHROUDED PROPELLER TEST EFFECT OF DIFFUSER E₆ ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	63	0.40	L4 C1 E6 B3 PNT T2 R1 RE	30.0
Δ	64			41.0
0	66	1	V	47.0

HS VG SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER E₆ ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	63	0.40	L4 C1 E6 B3 PNT T2 R1 RE	30.0
Δ	64			41.0
0	66	T +		47.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	63	0.40	L4 C1 E6 B3 PNT T2 R1 RE	30.0
Δ	64			41.0
0	66			47.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER E₆ ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	65	0.60	L4 C1 E6 B3 PNT T2 R1 RE	41.0
Δ	,			47.0
0	68			52.0
◊	69			38.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER E6 ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	65	0.60	L4 C1 E6 B3 PNT T2 R1 RE	41.0
Δ	67			47.0
0	. 68			52.0
◊	69			38.0

HS VG SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER E6 ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	65	0.60	L4 C1 E6 B3 PNT T2 R1 RE	41.0
Δ	67			47.0
Ō	68			52.0
\Q	69			38.0

SYM	RUN NO:	MACH NO.	CONFIGURATION	θ 3/4
0	29	0.20	L4C1E7B3PWTT1R1RE	20.0
Δ	30			30.0
0	33			40.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	29	0.20	L4C1E7B3PWTT1R1RE	20.0
Δ	30			30.0
0	33		1	40.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	€ 3/4
0	29	0.20	L4C1E7B3PWTT1R1RE	20.0
Δ	30			30.0
Ø	33			40.0

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	29	0.20	L4C1E7B3PWTT1R1RE	20.0
Δ	30			30.0
0	33			40.0

HS VG SHROUDED PROPELLER TEST

EFFECT OF BLADE GEOMETRY ON HIGH SPEED SKROUDED PROPELLER PERFORMANCE

SYM	RUN XQ.	MACH NO.	CONFIGURATION	θ 3/4
0	32	0.40	L4C1E7B3PWTT1R1RE	36.0
Δ	34	1		43.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE GEOMETRY ON HIGH SPL...D SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4		
0	· 32	0.40	L4C1E7B3PWTT1R1RE	36.0		
Δ	34	1	•	43.0		

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE GEOMETRY ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	32	0.40	L4C1E7B3PWTT1R1RE	36.0
Δ	34			43.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE GEOMETRY ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	37	0.60	L4C1E7B3PWTT1R1RE	50.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE GEOMETRY ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	37	0.60	L4C1E7B3PWTT1R1RE	50.0

HS VG SHROUDED PROPELLER TEST
EFFECT OF BLADE GEOMETRY ON HIGH SPEED SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4	
0	37	0.60	L4C1E7B3PWTT1R1RE	50.0	-

TABLE I

HS VG SHROUDED PROPELLER TEST

Test Schedule

I. Performance Data (Table III)

Configuration	Run Number	Mach Number Range	Figure Number		
L5C1E8B3PWTT1R1RE	4-14, 21	0.02, 0.05, 0.10, 0.20	9, 10, 15-20		
L _{l4} E ₇	29-37	0.2, 0.4, 0.6	11, 12, 39-47		
P _{MT} T ₂	39-48	0.2, 0.4, 0.6	13, 14, 21-29		
E ₆ .	60-71	0,2, 0.4, 0.6	13, 14, 30-38		

II. Pressure Data (Tables VI and VII)

				•					Tal	bulation	s Pres	sented	
Con	figu	ratio	on				Run Number	Mach Number Range	1	. Probe Le VI		essure Le VII	
L ₅ 0	1 ^E 8 ^E	3PWT	r _l F	18	E	P	22-24	0.02, 0.05, 0.10		X	·X		
L ₄	E ₇	P _{NT}	₂				54-59	0.2, 0.4, 0.6					
	E ₆		,	1			77-80	0.2, 0.4, 0.6					

^{*} Surface pressures, inlet rake, exit rake at one radial station and three propeller rotational speeds, excepting Run 56 where two rotational speeds are included.

PABLE II

HS VC SHROUDED PROPELLER TEST

Wind Tunnel Run Log

	Γ		_		_	_	_		_	_				Test Cond	itic	ns	Tes	t	
Run			Co	ni	۲i٤	gu:	ra	ti	O	a		θ	3/4	Mach No.	RI	M	Objec	tive	Remarks
1		PΊ	R	+	R	G ₁	R _G	5				!	_	Varied	-		Calib	•	
2		L ₅	C _l	E	3 B)	₊ R	LR _J	E					-	Varied -		Calib	•		
3		L ₅	C ₁	E	3 B	3 ^P 1	WI.	r ₁	R	LR _j	E]	.0	0	Var	ied	Stati	c bal.	
4			T					T				2	2	.02			Perfo	rmance	
5								T						.05					
6								T						.10					
7												2	:9	.02					
8														.05					
9														.10	-				٠
10												(1)	6	.02					Aborted: incorrect M
11								Ţ						.10					
12														.05					
13								ľ					,	.02					
14	Ī													.20					
15										A	D			.10			A-fra T&I†s	ne	
16														.02					

TABLE II. (Contd.)

	Γ					_								Test	Cond	itio	ns	Test			
Run			C	on	fie	gu	ra	ti	.on			θ_3	/4		n No.		PM	Object	ive	Remar	ks
17	Ι	15(211	-8	B ₃ 1	PW	T	1R	1A	D		22		.02	2 '	Var	ied	A-fram T&I's	e		
18												,		.0	5				·		
19				Ī								29	-								
20		,				1			,					.10)						
21				R _E						.05			Performance			mance	Repeat Run 8	of			
22										T	P			.02	2	700	0	Pressure		Addl. 7500 & rpm	pts. at : 6500
23														.05	5						
24				Ţ	Ţ						,			.10)						
25	С	1ε	:a:	•	Гe	st	s	ec	ti	on			•	Vari	.ed	-	· · ·	Calib.			
26	P	TF	} +	. ;	R _{G]}	L ^R	G ₅														
27	┿	_	_		В4				R	1 ^R	E	,			ļ				*		A \$
28					B ₃ I	W	T ^T	1				10		0		Var:	ied	Static	balance		
29					T							20		.20)			Perfor	nance		
30			Γ			Ī						30									
31														.40	}					Aborte	1
32					36							•									

TARLE II (Contd.)

Run			Co	nf	igu	ıra	ti	on		θ _{3/4}		t Cond		ns PM	Test Object:	ive	Remarks
33	I	C	ιE	— 7 ^В	3 ^P V	wT ^T	1 ^R	l ₁ R ₁	E	40	.2	0	Var	ied	Perfor	ance	
34										43	.4	0					
35										50							<i>'</i> .
36								•					•				Repeat of Run
37											.6	0			-		Aborted: blade damage
38					P	T	2			10	0				Static	balance	
39										22	.2	0 ,			Perform	ance	
40										30							
41									·	32	.4	0					
42										40	.2	0			7		
43					П					43	. 4	0					
44											.6	0					٠,
45										49	.4	0					
46											.6	0					•
47										54	.6	0					
48										30	.2	0		٠			Repeat of Run 40
49								A)						A-fr T&I		

TABLE II (Contd.)

											H.	<u></u>		t Cond			Test	1	
Run			Co.	Ωf	igu	ıre	ti	on'			θ_3	/4	Mac	h No.	R	PM	Object	ive	Remarks
50	L	4 ^C	1 ^E	7 ^B	3 ^P 1	TT	2 ^R	1 ¹	TD		49		.6	0	Var	ied	A-fran T&I‡s	ne	·
51													.44	0					
52											43		.60	0					
53									•	•			.44	0					
54								F	E.	P		ž	.40	0	700	0	Pressi	ıre	Addtl. data at 4300 & 5500 rpm
55																			Addtl. data at 4300 & 5500 rpm
56													.60)					Addtl. data at 6300 rpm
57											32		. 40	0					Addtl. data at 6000 & 8000 rpm
58											30		.20	0					Addtl. data at 6000 & 8000 rpm
59				ŗ													,		Repeat of Run 58. Addtl. data at 6000 & 8000 rpm
60			E	6				*			22			,	Varied		d Perfo. nance		Aborted: LGP-30 ir rerative
61									ļ					,	,				

TABLE II (Contd.)

Run			Co	nf	igu	ıra	ti	on.	~	9 3/4	Test C	 ition RE		Test Object	ive	Remarks
62	Ι	ن _ا د	i ^E	6 I	3 ₃ P ₁	WT.	² 1	≀ ₁ R	E	28	.20	Var	ied	Perfor	nance	
63	Ť									30	.40					
64										41						
65	,										.60					
66										47	.40					,
67			,								.60					
68										52						
69										38						
70											.20					
71										28						Repeat of Run 62
72								A	D	28			•	A-frame T&I's	9	
73										41	.40					
74										J	.60					
7 5										47	.40					Power limit @6950 rpm
76	t										.60					Power limit @6800 rpm
77								R	P P	28	.20	6500		Pressu	re	Addtl. data @5500 & 7500 rpm

TABLE II (Contd.)

	1	;	_						_,,				٦		- ', -	Tes	t Cond	iti	ons	Те	st		
Run				Ċ	O	ıf	ig	ur	at:	io	n		1	8 3	3/4	Mac	h No.		RPM	Obje	ctive	Ren	narks
78		L	4	c ₁	E	5 B	3 P	NT.	r _e	Ę,T	R _E	T		30)	.4	0	650	00	Pres	sure		orted: ive press. oud LE
79						,								1									data @ 7500 rpm
80											Ì			41	•	.6	0	1			,		
81		,		,		B	4							-		Var	ied	•	-	Shroud & pres	forces sure		
82				·						1	+		-							PTR bu	oyancy		
83		P	Ţ	R	+			R	E5	R_1	RE	$ ext{T}_{ ext{I}}$,			.2	0 *					<i>,</i>	i
84						1				1	T					.1	0				-		
85										Ī						.30	, .50						
86	1										Ī			,		.4	0						
87					,					Ī						.6	0	,					,
88	1					В	P ₁	NT		Ţ	Ţ	Ţ	1	43		. 4	0	Vai	ried				. (
89		T	ΡĮ	4					-	<u> </u>				***		Var	ied	•	•	Calil		$\theta = -1^{\circ}$ $d = 32$	-
90		,												•						,		$\theta = -12$ $d = 30$	

ȚARLE II (Contd.)

			Test Cond	itions	Test	····
Run	Configuration	$\theta_{3/4}$	Mach No.	RPM	Objective	Remarks
91	$ ext{T}_{ ext{P}4}$	_	Varied	•	Calib.	$\theta = 23^{\circ}22^{\circ}$ d = 29.74"
92						$\theta = -44^{\circ}12^{\circ}$ d = 27.83"
93						$\theta = 32^{\circ}40^{\circ}$ $d = 28.83^{\circ}$

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KUI1 4	M = 0.02	THETA	3/4 = 22.	00 DEG	CONF L	5 C1 E8 B3	PWT TI RI RE
PT	J	۷o	ETA	CT	CP	440	• •
	•	VT	ETA NET	CT NET	CF	HP	CC
2							
2	.1784	22.57		.1424	.1335	6.892	.1257
3	a == = ==	392,04		•2682			*****
3	.1523	22.57		.1421	.1326	10.864	.1371
4	4 5 4 4	457.36		.2792			110/1
*	.1522	22.57		•1429	.1403	11.496	.1444
5	4707	457.36		.2873	_		••
J	.1327	22.57	.143	•1426	.1324	16.167	.1578
6	1.50	522.42	.301	•3004			***************************************
0	.1175	22.57	.127	.1422	.1315	22.890	.1597
7	4007	587.87	•269	•3020			42071
•	.1053	22.57	.113	.1424	.1319	31.447	.1690
8	ancà	652.92	.248	.3114			***************************************
•	.0952	22,57	•102	.1427	.1323	42.160	.1721
9	0000	719.16	•226	.3148		, , , , ,	· · · · · · · · · · · · · · · · · · ·
7	.0869	22.57	.092	··1436	.1344	55.470	.1846
10	.0799	783.95	.212	• 3282			~ · · ·
20	.0199	22.57	.084	.1442	.1358	71,175	.1871
11	.0748	849.01	.195	.3313			· -
••	•0/40	22.57	•078	.1447	.1377	90.135	.1926
12	.0698	914.33	.183	.3373			
••	• 0070	22.57	•071	.1464	.1423	114.579	.2029
13	.0654	979.65	.171	.3493			•
•		22.57 1045.23	•065	•1452	.1451	141.916	.2002
	•	1070123	•155	.3454			

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	5	M = 0.05	THETA	3/4 = 22.	00 DEG	CONF L5	C1 E8 B3	PWT T1 R1 RE
P	T	J	VO VT	ETA ETA NET	CT CT NET	ÇP	HP	СС
i	2	•4528		.427	•1163	.1232	6.351	.0402
	3	.3876	56.41	.380	•1565 •1257	.1280	10.460	.0624
4	4	.3385		.340	•1880 •1294	.1287	15.715	.0763
!	5	.3004	522.55 56.41	.309	.2058	.1285	22.330	.0887
(6	•2698	587.73 56.41	.277	.2211	.1305	31.128	.1005
•	7	. •2449	653.18 56.41	.253	.2349	.1314	41.697	.1106
8	3	.2241	718.37 56.41	.231	.2467	.1331	54.834	.1203
Ģ	9	.2064	783.82 6.41	.213	.2580 .1391	.1348	70.642	.1297
10)	.1913	849.27 56.41	.411 .156	•2688 •1403	.1369	89.629	.1381
11	l	.1781	914.59 56.41	.389	.2784 .1421	.1401	112.744	.1711
12	2	.1669	979.78 56.41 1044.97	.398 .165 .339	•3132 •1418 •2910	.1433	139.907	.1492

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

PT J V0 ETA CT CP HP CC VT ETA NET CT NET 2 .9149 113.27 -1.6750102 .0056 .2840715 392.17 -13.3670818	
VT ETA NET CT NET 2 .9149 113.27 -1.6750102 .0056 .2840715 392.17 -13.3670818	
392.17 -13.3670818	
3 .7833 113.27 .564 .0371 .0514 4.1540399	
457.490420027	
4 .6848 113.27 .584 .0646 .0757 9.1120158	
522.68 .441 .0488	
5 .6082 113.27 .543 .0813 .0910 15.587 .0009	
587.87 .549 .0821	
6 .5466 113.27 .513 .0937 .0999 23.497 .0190	
653,45 .617 .1127	
7 .4976 113.37 .478 .1032 .1072 33.369 .0318	
717.72 .626 .1350	
8 .4553 113.37 .404 .1004 .1131 45.838 .0442	
783.82 .582 .1446	
9 .4196 113.37 .410 .1151 .1175 60.666 .0553	
849.53 .608 .1704	
10 .3893 113.37 .384 .1206 .1222 78.744 .0664	
914.72 .595 .1870	
11 .3631 113.37 .353 .1242 .1276 101.085 .0767	
979.91 .571 .2009	
12 .3400 113.37 .327 .1257 .1307 125.698 .0820	
1045.49 .540 .2077	
13 .3893 113.37 .382 .1206 .1227 79.076 .0662 914.72 .592 .1869	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	7	M = 0.02	T''ETA	3/4 =	29.0	O DEG	CONF	L5	C1	E8	B3	PWT	T1	R1	RE
	ΡŤ	J	VO		ΓA_	CT	СР		H	IP		C	;		
			VT	ETA N	NET (CT NET									
	2	.1775	22.57	7 •1	152	.1919	.22	32	11	1.54	+2	.19	38		
			392.30	.3	306	.3857									
	3	.1515	22.57	7 .1	130	.1930	.22	50	18	3.44	+0	.20	97		
			457.36	• 6	271	.4027									
	4	.1319	22.57	7 • 1	104	.1774	.22	48	27	7.54	+2	.22	201		
			522.94		233	.3975									
	5	.1165	22.57	' •1	101	. 1964	.22	66	39	.53	38	.23	387		
			588.39		223	.4351									
	6	.1043	22.57	' •(08 9	.1963	.22	83	54	1.60)1	.25	554		
			653.58	• 6	206	•4517									
	7	.0943	22.57	· (081	.1983	.22	98	73	5.10)1	.26	546		
			718.76	• 1	190	•4630									
	8	.0872	22.57	7 .(074	.1996	.23	29	96	5.3	11	.27	715		
			784.48		176	.4711									
	9	.0805	22.57	7 .(068	.2020	.23	75	124	1.62	26	.27	721		
			849.27	7 • 1	160	.4742									
	10	.0752	22.57	7 .(063	.2064	.24	58	161	1.14	₹3	05	569		
			914.72		045	.1495									
	11	•0698	22.57		73	.2731	.25	90	209	• 01	16	.29	996		
			980.30		154	•5727									
	12	.0654	22.57		051	.2061	.26	38	258	3.23	32	.28	398		
			1045.49		123	.4959									
	13	.1320	22.57		102	.1767	.22	83	27	7.9	01	.22	226		
			522.55		231	.3993									
	14	.0805			168	.2016	.23	80	124	1.97	73	.27	707		
			849.53	3	159	.4723									

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA:

KUN 8	M = 0.05	THETA	3/4 = 29.	00 DEG	CONF LS	5 C1 E8 B3	PWT T1 R1 RE	
PT	J ·	VO	ETA	CT	CP	HP	C 0	
		VT	ETA NET	CT NET	U ,	HE	CC	
2	.4517	56.41 392.17		•1711 •2610	.2015	10.398	.0899	
3	•3865	56.41 457.49	.323	•1764 •2883	.2109	17.282	.1120	
4	.3374	56.41 522.81	•300	.1908 .3238	.2143	26.206	.1330	
5	.2992	56.41 588.39	.257	•1865 •3398	.2170	37.828	.1533	
6		56.41 653.58	.230	•1890 •3577	.2206	52.702	.1687	
7	. 2440	56.41 718.50	.210	.1925 .3752	.2237	70.987	.1827	
8	.2231	56.41 784.21	·190 •385	.1942 .3920	.2271	93.716	.1978	
9	.2056	56.41 849.14	•173 •357	•1969 •4058	.2331	122.140	.2089	
10	.1904	56.41 914.46	•143 •336	.2070 .4274	.2549	205.428	.2406	
11	•1772	56.41 980.17	•143 •311	.2070 .4476	•2549	205,428	.2406	
12		56.41 1045.23	.129 .281	.2027 .4401	.2592	253.232	.2374	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KÙN · 9	M = 0.10	THETA	3/4 = 29.	00 DEG	CONF LS	C1 E8 83	PWT T1 R1 F	RE
PT	J	VO	ETA	CT	СР	HP	СС	
		VT	ETA NET	CT NET	•	•••		
Ż	•9099			.0795	.1222	6.265	0232	
-		392.04	•	.0563				
3	•7796	•	•	.1179	•1635	13.294	0008	
44		457.49	•	.1170				
4	.6812	112,95		.1392	•1830	22.223	.0304	
L	4050	522.94	•631	•1697				
5	•6054	113.06	•475	.1526	.1944	33.546	.0513	
4	E 11 11 C	588,26	•6 3 5	.2039				
6	•5446	113.06	.435	.1590	.1988	46.986	•0 6 86	
7	4040	653.31	.623	.2276				
,	•4940	112.95	•400	.1643	.2028	63.964	.0852	
8	4507	718.76	•607	.2495				
J	.4527	113.06	•368	.1707	•2097	85.740	.1012	
9	.4174	784.21	•587	.2719		. .		
,	•71/4	113.06	.338	r1768	.2178	113.265	.1176	
10	.3875	849.66	.564	.2944				
10	• 36 / 3	113.16	.313	.1840	.2277	147.542	.1336	
11	.3613	914.85 113.16	•540	.3176	-			
••	.0010	979.91	.285	.1900	.2405	191.492	.1486	
12	.3385	113,16	•508	.3386		4		
<u></u>	•0000	1045.23	.259	.1877	.2448	236.527	.1526	
13	•6064	113.16	•470 # 7 #	.3403	1050	37 600		
••	.0004	587.87	•474 •630	.1524 .2026	.1950	33.524	.0502	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 11	M = 0.10	THETA 3	/4 = 36.	00 DEG	CONF L5	C1 E8 B3	PWT T1 R1 RE	
P T	J	VO VŤ (ETA ETA NET	CT NET	СР	HP	cc	
2	.9075	112.74 392.17	.506 .534	•1757 •1854	.3146	16.182	.0096	
3	.7780	112.84 457.36	.496 .613	.1900 .2348	.2978	24.254	.0448	
4	•6797	112.84 522.81	.450 .621	.2067 .2852	.3122	37.980	.0785	
5	.6039	112.95 588.26	.407 .606	.2198	.3261	56.409	.1075	
6	•5428	112.95 653.71	.364 .577	.2273	.3381	80.257	.1322	
7	•4931	112.95 718.63	•332 •554	.2362	.3501	110.415	.1573	
8	.4512	112.95 784.35	.302 .525	.2440 .4230	. 3634	149.001	.1790	
9	.4159	112.95 849.53	.275 .496	.2553 .4594	.3850	200.574	.2041	
10	.3861	113.06 914.72	.249 .464	.2697 .5014	.4167	270.455	.2317	
11	.3600	113.06 979.78	.225 .427	.2681 .5080	.4283	341.650	.2399	
12	.3373	113.06 1045.10	.204 .392	.2585 .4974	.4270	413.397	.2390	
13	•6055	113.16 587.87	.401 .596	.2192 .3251	.3303	56.799	.1059	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 12	M = 0.05	THETA 3	/4 = 36.	00 DEG	CONF L5	C1 E8 B3	PWT T1 R1 RE
PT	J	V0 VT (ETA ETA NET	CT CT NET	СР	HP	СС
2	•4507	56.41 392.30	.313 .516	•2356 •3888	.3392	17.527	.1532
3	.3857	56.41 457.36	.270 .474	.2430 .4266	.3470	28.407	.1836
4	• 3366	56,41 522,81	.235 .435	.2480 .4580	.3541	43.297	.2100
5	•2983	56.41 588.52	.208 .402	.2523 .4866	.3603	62.847	.2343
6	•2680	56.41 653.58	.185 .371	•2536 •5076	.3667	87.600	.2540
7	•2430	56.41 718.76	.167	.2575 .5347	.3738	118.790	.2772
8	•2222	56.41 783.95	.151 .321	•2627 •5566	.3854	158.893	.2938
9	.2045	56.41 849.53	.137 .297	.2736 .5920	.4064	213.226	.3184
10	.1894	56.41 914.46	.123 .273	.2864 .6314	.4376	286.321	.3450
11	.1765	56.46 980.04	.111 .248	.2808 .6256	.4441	357.048	.3448
12	.1653	56.46 1045.10	.101 .226	.2692 .6044	•4404	429.340	.3352

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

_a RUŅ	13	M = 0.02	THETA 3	3/4 = 36.	00 DEG	CONF LS	C1 E8 B3	PWT T1	R1 RE
p	т	J	۷o	ETA	CT	CP	HP	CC	
•	•	·	VT	ETA NET	CT NET				
	2	•1764	22.53 392.43	•124 •256	•2535 •5228	• 3593	18.673	.2693	
	3	.1502	22.53 457.23	.123	.2962	.3617	29.728	.3083	
	4	.1308	22.53	.092	.2588	. 3 665	44.995	.3262	
	5	.1155	522.68 22.53	081	.5851 .2593	. 3699	64.745	.3331	
*	6	.1045	588.26 22.53		.5924 .2594	.3731	89.463	.3556	
	7	•0950	653.31 22.53	.172	.6150 .2604	.3797	121.096	.3638	
			718.50	.156	.6243			.3794	
	8	.0870	22.53 784.35	.144	.2660 .6454	.3893	161.537	*	
	9	.0803	22.53 849.53		.2769 .6692	.4092		.3923	
1	.O	.0746	22.53 914.98		.2877 .6958	•4390	289.144	.4081	
RUN	14	M = 0.20	THETA	3/4 = 36.	00 DEG	CONF L	5 C1 E8 B3	PWT T1	R1 RE
P	T	J	VO VT	ETA ETA NET	CT CT NET	CP	HP	CC	
	2	1.3714	226.48 522.81		.0428 1050	• 0899	10.634	1478	. 1
	3	1.0930	225.85 653.18	.618	.1250	.2210	51.247	0503	
	4	.9137	226.90 784.08	.548	.1696 .1706	.2824	112.212	.0009	
	5	.7821	226,90	.471	.1982 .2574		207.297	.0591	
•	6	.6837	914.59 226.90 1045.23	.390	.2000		329.923	.0821	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KUN 29	M = 0.20	THETA	3/4 = 20.	00 DEG	CONF L4	C1 E7 B3	PWT T1 R1	RE
PT	· J	VC VT	ETA ETA NET	CT NET	СР	HP	СС	
2	1.4393	224.79 505.83		0387 0350	0242	-2.572	.0037	
3	1.2941	224.79 561.74	.485	.0080	.0213	3.101	.0015	
4	1.2364		.805	.0220	.0338	5.634	0004	
5	1,1110	-	.912	.0521	.0634	14.514	0024	
6	1.0087		.918	.0791	.0870	26.458	0031	
7	•9220	225,00 783,69	.921	.1118	.1118	44.179	0004	
8	•8495	225.00 848.88	.869	.1253	.1225	61.482	.0007	
9	.7866		.816	•1406 •1438	.1355	85.033	.0032	
10	.7317	225.00 980.17	.774	•1586 •1672	.1498	115.780	.0086	
11	•6847	225.00 1044.97	.715	.1641	.1570	147.043	.0122	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	30	M = 0.20	THETA	3/4 = 30.	00 DES	CONF L4	C1 E7 B3	PWT T1 R1	RE
ĺ	PT	J	VO	ETA	CT	CP	HP	СС	
			VT	ETA NET	CT NET				
	2	1.7955	224.79	.839	.0191	.0410	2.235	0004	
			404.84	.822	.0188				
	3	1.5868	224.79	1.041	.0840	.1280	10.067	0046	
			457.36	.983	.0793				
	4	1.3864.	224.79	1.008	.1410	.1940	22.727	0046	
			522,29	.975	•1365				
	5	1,2294	224.79	.956	.1718	.2210	36.890	0021	
			587.73	.944	•1697				
	6	1.1038	224.79	.880	.1880	.2356	54.010	0002	
			653.31	.880	•1878				
	7	1.0013	224.79	.820	.2073	.2529	77.080	.0038	
			718.37	.836	.2111				
•	8	.9153	224.79	.759	.2239	.2699	106.879	.0076	
			783.82	.784	.2314				
	9	.8421	224.79	.703	.2441	.2920	147.084	.0152	
			849.27		.2593				
	10	.7790	224.79	.647	.2679		202.713	.0255	
			914.59	-	.2934				
	11	.7246	224.79		.2847		272.466	.0337	
			979.78						
	12	.6777	224.79	.527	.2789	.3582	336.731	.0341	
			1045.6	.592	.3130				

-~-_7

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 3	32 M	1 = 0.40	THETA	3/4 = 36.	00 DEG	CONF L4	C1 E7 B3	PWT T1	R1 RE
P1	r	J	VO	ETA	CT	СР	HP	CC	
•	,	•	VT	ETA NET	CT NET	•	•••	•••	
								,	
2	2	2.3151	448.91	15.470	.0163	.0024	•455	•0056	
			627.06		.0219				
3	3	2.2255	-	-	.0420	.0938	19.696	.0023	
•			653.31		.0443				
•	•	1.8540	450.57		.1644	•2805	101.373	0093	
_		4 7000	783.95		.1550	7700	450 007	0.00	
•	Ó	1.7098	450.57 849.14		1968	• 3332	152.983	0093	
ŝ	8	1.4788	450.98		.1876 .2481	.4162	203 347	0025	
•		1.4/60	980.17		.2457	•4102	293.367	0025	
c	9	1.3855	450.98		.2576	.4339	370.926	0047	
•	•	110000	1045.23		.2529	14007	3194920	0047	
10	0	2.0265	450.98		.1066	.2038	56.653	0061	
			718.76		.1004	•		0.000	
11	1	1.5884	451.40		.2288	.3795	216.931	0088	
			914.59		.2199			-	
2°-418-4									
RUN 3	33 M	1 = 0.20	THETA	3/4 = 40.	00 DEG	CONF L4	C1 E7 B3	PWT T1	R1 RE
		- "							R1 RE
RUN S		1 = 0.20 J	۷o	ETA	CT	CONF L4	C1 E7 B3	PWT T1	R1 RE
		- "							R1 RE
PI	Γ	J	V0 VT	ETA ETA NET	CT CT NET	СР	HP	СС	R1 RE
PI		- "	V0 VT 225.43	ETA ETA NET 1.013	CT CT NET				R1 RE
P1	T 2	J 1.8532	V0 VT 225.43 392.17	ETA ETA NET 1.013 .946	CT NET .2063	CP	HP 18.660	CC 0137	
P1	Γ	J	V0 VT 225.43 392.17 225.43	ETA ETA NET 1.013 .946 .924	CT CT NET .2063 .1926 .2432	СР	HP	СС	
P1	T 2 3	J 1.8532 1.5858	V0 VT 225.43 392.17 225.43 457.36	ETA ETA NET 1.013 .946 .924 .896	CT CT NET .2063 .1926 .2432 .2358	.3771 .4170	HP 18.660 32.727	CC 0137 0074	
P1	T 2	J 1.8532	V0 VT 225.43 392.17 225.43 457.36 225.64	ETA ETA NET 1.013 .946 .924 .896 .829	CT NET .2063 .1926 .2432 .2358 .2740	CP	HP 18.660	CC 0137	
P1	T 2 3	J 1.8532 1.5858	V0 VT 225.43 392.17 225.43 457.36	ETA ETA NET 1.013 .946 .924 .896 .829 .825	CT NET .2063 .1926 .2432 .2358 .2740 .2729	.3771 .4170	HP 18.660 32.727	CC 0137 0074	
P1	T 2 3	J 1.8532 1.5858 1.3860 1.2308	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722	CT NET .2063 .1926 .2432 .2358 .2740 .2729	.3771 .4170 .4581	HP 18.660 32.727 53.525	CC 0137 0074	
P1	T 2 3	J 1.8532 1.5858 1.3860	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 587.08 225.64	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922	.3771 .4170 .4581	HP 18.660 32.727 53.525	CC 0137 0074	
P1	7 2 3 4 5	J 1.8532 1.5858 1.3860 1.2308 1.1038	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 587.08 225.64 653.31	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952	.3771 .4170 .4581 .4904 .5114	HP 18.660 32.727 53.525 81.246 116.753	CC013700740011 .0045 .0102	
P1	T 2 3 4	J 1.8532 1.5858 1.3860 1.2308	V0 VT 225.43 392.17 225.43 457.36 225.64 527.08 225.64 653.31 225.64	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952	.3771 .4170 .4581 .4904	HP 18.660 32.727 53.525 81.246	0137 0074 0011 .0045	
P1	7 2 3 4 5	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 553.31 225.64 718.24	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2790	.3771 .4170 .4581 .4904 .5114	HP 18.660 32.727 53.525 81.246 116.753 155.750	013700740011 .0045 .0102 .0147	
P1	7 2 3 4 5	J 1.8532 1.5858 1.3860 1.2308 1.1038	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 553.31 225.64 718.24 225.85	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2790 .2937	.3771 .4170 .4581 .4904 .5114	HP 18.660 32.727 53.525 81.246 116.753	CC013700740011 .0045 .0102	
P1	7 3 4 5	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020 .9166	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 557.08 225.64 718.24 225.85 784.21	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573 .487	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2770 .2977	.3771 .4170 .4581 .4904 .5114 .5134	HP 18.660 32.727 53.525 81.246 116.753 155.750 205.662	CC013700740011 .0045 .0102 .0147 .0200	
P1	7 2 3 4 5	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020	V0 VT 225.43 392.17 225.43 457.36 225.64 522.55 225.64 587.08 225.64 718.24 225.85 784.21 225.85	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573 .487 .522	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2790 .2937 .2777 .2977	.3771 .4170 .4581 .4904 .5114	HP 18.660 32.727 53.525 81.246 116.753 155.750	013700740011 .0045 .0102 .0147	
P1	7 3 4 5 7 3	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020 .9166 .8440	V0 VT 225.43 392.17 225.43 457.36 225.64 5225.64 587.08 225.64 718.24 225.85 784.21 225.85 849.93	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573 .487 .522 .440	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2790 .2977 .2777 .2977	CP .3771 .4170 .4581 .4904 .5114 .5134 .5218	HP 18.660 32.727 53.525 81.246 116.753 155.750 205.662 261.485	CC013700740011 .0045 .0102 .0147 .0200 .0246	
P1	7 3 4 5 7 3	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020 .9166	V0 VT 225.43 392.17 225.43 457.36 225.64 5225.64 587.08 225.64 718.24 225.85 784.21 225.85 849.93 225.85	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573 .487 .522 .440 .480 .402	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2850 .2952 .2952 .2790 .2937 .2777 .2720 .2966 .2713	.3771 .4170 .4581 .4904 .5114 .5134	HP 18.660 32.727 53.525 81.246 116.753 155.750 205.662	CC013700740011 .0045 .0102 .0147 .0200	
P1	7 3 4 5 7 3	J 1.8532 1.5858 1.3860 1.2308 1.1038 1.0020 .9166 .8440	V0 VT 225.43 392.17 225.43 457.36 225.64 5225.64 587.08 225.64 718.24 225.85 784.21 225.85 849.93	ETA ETA NET 1.013 .946 .924 .896 .829 .825 .722 .733 .615 .637 .544 .573 .487 .522 .440 .480 .402	CT NET .2063 .1926 .2432 .2358 .2740 .2729 .2876 .2922 .2850 .2952 .2790 .2977 .2777 .2977	CP .3771 .4170 .4581 .4904 .5114 .5134 .5218	HP 18.660 32.727 53.525 81.246 116.753 155.750 205.662 261.485	CC013700740011 .0045 .0102 .0147 .0200 .0246	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	34	M = 0.40	THETA 3	5/4 = 43.	00 DEG	CONF L4	C1 E7 B3	PWT T1	R1 RE
6	> T	J	VO OT	ETA T 0	CT 3T 0	СР	HP	CC	
	2	2.9158	447.67 496.42	1.100 1.184	.0529 .0570	.1403	13,163	.0040	~7
	3	2.7722	448.50 522.94	1.088	.0874	.2225	24.313	.0004	
	4-	2.4659	448.91 588.00	.986 .937	.1498	.3746	58.093	0074	
	5	2.2182	449.33 653.58	1.046	.2119	•4490	95.434	0109	
	6	1.8488	450.16 783.82	.927 .890	.2908 .2792	.5799	211.823	0116	
	8	1.7050	450.57 849.53	.852 .828	.3237 .3145	.6474	300.553	0091	
	9	1.5818	450.57 914.85	.775 .761	.3240	•6609	383.144	0056	
,	10	2.4743	450.57 588.13		.1630 .1508	.3731	57.465	0122	
RUN	35	M = 0.40	THETA	3/4 = 50 .	ባባ DEG	CONF L4	C1 E7 B3	PWT T1	R1 RF
				J/4 - JU					114 III
*!	PT	J	VO VT	ETA ETA NET	CT CT NET	CP	HP	CC	
	2	3.7084	449.74	1.045	.0622	.2204			
			-				10.113	.0051	
	3	3.1793	392.17 450.16 457.49		.0673 .1835		38.718	.0051	•
	4	3.1793 2.7881	392.17 450.16 457.49 451.40 522.81	1.132 1.095 1.051 .972	.0673 .1835 .1761 .2264 .2130	•5326 •6494	38.718	0074 0134	•
	4 5	3.1793 2.7881 2.4771	392.17 450.16 457.49 451.40 522.81 451.81 588.39	1.132 1.095 1.051 .972 .914 .967	.0673 .1835 .1761 .2264 .2130 .2869	.5326 .6494 .7197	38.718 70.073 110.493	0074 0134 0158	•
	4 5 6	3.1793 2.7881 2.4771 2.2262	392.17 450.16 457.49 451.40 522.81 451.81 588.39 451.81 654.10	1.132 1.095 1.051 .972 .914 .987 .933 .899	.0673 .1835 .1761 .2264 .2130 .2869 .2711 .3140	.5326 .6494 .7197 .7772	38.718 70.073 110.493 163.936	0074 0134 0158 0159	•
	4 5 6 7	3.1793 2.7881 2.4771 2.2262 2.0250	392.17 450.16 457.49 451.40 522.81 451.81 588.39 451.81 654.10 451.81 718.63	1.132 1.095 1.051 .972 .914 .987 .933 .899 .854 .794	.0673 .1835 .1761 .2264 .2130 .2869 .2711 .3140 .2981 .3086	.5326 .6494 .7197 .7772 .7867	38.718 70.073 110.493 163.936 220.048	0074 0134 0158 0159 0126	•
	4 5 6 7 8	3.1793 2.7881 2.4771 2.2262 2.0250 1.8576	392.17 450.16 457.49 451.40 522.81 451.81 588.39 451.81 654.10 451.81 718.63 452.22 783.82	1.132 1.095 1.051 .972 .914 .987 .933 .899 .854 .794 .762 .688	.0673 .1835 .1761 .2264 .2130 .2869 .2711 .3140 .2981 .3088 .2961 .2818	.5326 .6494 .7197 .7772 .7867	38.718 70.073 110.493 163.936 220.048 275.598	0074 0134 0158 0159 0126 0110	
	4 5 6 7 8	3.1793 2.7881 2.4771 2.2262 2.0250 1.8576 1.7136	392.17 450.16 457.49 451.40 522.81 451.81 588.39 451.81 654.10 451.81 718.63 452.22 783.82 452.22 849.27	1.132 1.095 1.051 .972 .914 .987 .933 .899 .854 .794 .762 .688 .661 .608	.0673 .1835 .1761 .2264 .2130 .2869 .2711 .3140 .2981 .3088 .2961 .2818 .2708 .2666	.5326 .6494 .7197 .7772 .7867 .7607	38.718 70.073 110.493 163.936 220.048 275.598 345.808	0074013401580159012601100089	
	4 5 6 7 8	3.1793 2.7881 2.4771 2.2262 2.0250 1.8576	392.17 450.16 457.49 451.40 522.81 451.81 588.39 451.81 654.10 451.81 718.63 452.22 783.82 452.22	1.132 1.095 1.051 .972 .914 .987 .933 .899 .854 .794 .762 .688 .661 .608	.0673 .1835 .1761 .2264 .2130 .2869 .2711 .3140 .2981 .3088 .2961 .2818 .2708	.5326 .6494 .7197 .7772 .7867 .7607 .7504	38.718 70.073 110.493 163.936 220.048 275.598	0074 0134 0158 0159 0126 0110	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 36	M = 0.40	THETA	3/4 = 50.	00 DEG	CONF L4	C1 E7 B3	PWT T1 R1 RE
PT	J	VO VT	ETA ETA NET	CT CT NET	CP	HP	CĊ
2	3.7013	449.33 392.56		•0634 •0687	•2255	10.40৬	.0053
3	2.7774	449.74 522.81	1.057	·2438 ·2308	•6403	69.693	0130
4	2.2243	450.98 653.45	.001	.3144	.7771	164.247	0150
5 6	1.8519	450,98 784.08	.660	•2794 •2696	•7565	276.259	0098
	2.7856	451.40 523.20		•2449 •2299	•6493	70.315	0150
RUN 37	M = 0.60	THETA	3/4 = 50.	00 DEG	CONF L4	C1 E7 B3	PWT T1 R1 RE
ТЧ	J	VO VT	ETA ETA NET	CT NET	СР	HP	cc
2	3.6817	669.80 588.26		•0698 •0869	•2498	34.401	.0171
3	3.3108	669.20 653.18	1.095 1.067	•1771 •1726	•5352	101.071	0045
4	3.0084	669.20 718.37	1.067	•2498 •2383	•7042	176.914	0115

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KUN	39	M = 0.20	THETA	3/4 = 22.	00 DEG	CONF	L4	C1 E7	83 F	TNS	T2	R1	RE	
	PT	J	۷o	ETA	CT	CP		HP		C	;			
			VT	ETA NET	CT NET									
	2	1.2660	224.37	.340	.0085	.031	7	4.928	8	.00	02			
			573.09	.350	.0088	•			-	•••				
	3	1.1123	224.37	.803	.0471	.065	2	14.85	2 .	· 00	26			
			651.09	.759	.0445				_	•				
	4	1.0086	224.37	•905	.0842	.093	В	28.447	7 -	00	21			
			716.20	.882	.0821		_		-					
	5	•9225	224.37	.887	.1049	.109	D	42.941	l -	.00	80			
			781.44	.880	.1041				_	•••				
	6	.8496	224.37	.847	.1209	.121	2	60.718	3	.00	05			
			846.68	.851	.1214		_			• • •				
	7	.7873	224.37	.806	.1364	.133	2	83.227	7	.00	34			
			911.40	.826	.1398									
	8	.7328	224.37	.760	.1480	.1426	5	109.698	3	.00	68			
			976.77	.795	.1548					•	-			
	9	.6856	224.37	.708	.1544	.149	3	139.393	5	.00	99			
			1041.75	.754	.1643									

HS VG SHROUDED PROPELLER TEST
PERFORMANCE DATA

KUN	40	M = 0.20	THETA	3/4 = 30.	GG DEG	CONF L	4 C1 E7 B3	3 PNT T2 R1 RE
í	75	J	V0 VT	ETA ETA NET	CT CT NET	СР	HP	CC
	2	1.7143			.0201	050=		
	3		423.21	.632	.0201	•0503	3.146	0016
		1.5905	224,37 455.63	•971 •919	•0655 •0620	•1073	8.368	0035
	4	1.3891	224.37 520.74	•975	.1149	.1637	19.051	 0058
	5	1.2312	224.37	.941	•1091 •1572	.2056	34.129	 0036
	ó	1.1060	586.11 224.37	•920 •885	•1536 •1762	.2202		
	7	1.0029	651.09	.881	•1755		50.108	0007
	8		716.20	•8 3 3 •849	•1972 •2010	.2373	71.874	.0038
		•9170	224.37 781.44	•774 •798	•2118 •2186	.2509	98.696	.0067
,	9	.8439	224.37 846.55	.724	.2304	.2682	134.127	.0142
1	0	.7808	224.37	•769 •672	•2446 •2516	.2921	182.448	
1:	1	.7262	911.66 224.37	•735 •612	•2751 •2733	·		.0235
12	2	•6795	976.51	•689	.3079	•3242	248.873	.0347
	•	13793	224.37 1041.62	•551 •621	•2683 •3021	.3304	307.826	.0338
			C					

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	41	M = 0.40	THETA 3	1/4 = 32.	00 DEG	CONF L4	C1 E7 B3	PNT T2	R1 RE
	PT	J	VO	ETA	СТ	CP	HP	СС	
			VT	ETA NET	CT NET				
	2	1.8939	443.49	.522	.0148	.0538	18.156	.0028	
	•	1,0,0,	757.22	.619	.0176				
	3	1.8450	446.00		.0343	.0796	29.159	.0006	
			781.44	.810	.0349	4 11 3 11	E	0070	
	4	1.7064	447.25	.968	.0814	.1434	66.375	0038	
	æ	4 5020	846.42	.923	.0776	.1971	113.814	0063	
	5	1.5839	447.67 911.66	.991 .941	.1234	• 12/1	113,614	~.0005	
	6	1.4769	447.67	.949	.1439	.2239	159.030	0066	
	•	101107	976.77		.1374	•		•	
	7	1.3832			.1592	.2485	214.230	0066	
			1042.01	.849	.1525				
					,				
RUN	42	M = 0.20	THETA 3	3/4 = 40.	00 DEG	CONF L4	C1 E7 B3	PNT T2	R1 RE
	ΡŢ	J	VO	ETA	СТ	СР	HP	CC	
	• /	~	VT	ETA NET	CT NET				
								0474	
	2	2.3530	224.37	.900	.0460	.1201	2.899	0131	
		4 0505	308.35	.643	.0328 .1828	.3399	16.683	0160	
	3	1.8525	224.37 390.65	.996 .909	.1668	• 5577	10,000	10100	
	4	1.5843		.931	.2217	.3770	29.404	0100	
	•		455.89		.2117	•	_		
	5	1.3849		.352	.2598	.4220	48.957	0039	•
	•		520.74		.2559				
	6	1.2273			.2833		75.008	.0016	
	-	4 4050	586.11	.771	.2850		109.090	.0082	
	7	1.1032	224.79 651.09		.2942 .3024		1034030	10002	
	8	1.0004			.2934	.4988	150.353	.0155	
	J	1,0004	716.33		.3090	• 1000	•		
	9	.9149			.2953	.5135	200.833	.0230	
	-				.3183				
			781.31						
	10	.8424	224.79	.476	.2950		259.618	.0272	
			224.79 846.55	.476 .520	.2950 .3222				
	10 11	.8424 .7804	224.79 846.55 224.79	.476 .520 .433	.2950 .3222 .2955	.5324	259.618	.0272	
	11	.7804	224.79 846.55 224.79 911.53	.476 .520 .433 .482	.2950 .3222 .2955 .3294	.5324	330.698	.0339	
			224.79 846.55 224.79 911.53	.476 .520 .433 .482 .398	.2950 .3222 .2955 .3294 .2981	.5324 .5445			

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	43, 1	1 =	0.40	Ti	1ET/	A 3	/4	= (43.	00	DE	•	CONF	· F	_4	C1	E7	в3	PNT	T2	R1	RE
P.	T		J		۷O			ET	A	(T		CP)	•	۲	IP		C	2		
·	•				۷T		ETA				NE	ΞŢ										
	_							_											_			
	2	2.	7418		17.			.7			03		. 1	202	2	13	3.45	5 5	.00	020		
	3	•	4673		27.! 47.				73 27		.033 .114		4	715	_	4. 1	- 46	-	0	061		
	3	2	4673		36.		4	.9			. 108		• 4	2715	9	41	.69) <i>(</i>	0	001		
	4	2.	2189		47.		1	1.0					3	893	3	81	.87	70	0	103		
	•	- '			51.				63		.169				_	•			• • •	•••		
	5	2.	0156		48.				99		.21		. 4	414	4	123	5.5	57	0	113		
					16.				47		·20°											
	6	1.	8473		48.				55		. 254		• 4	917	7	178	3.22	27	0	116		
	_				81.				12		. 24											
	7	1	7018		48.				96		.30		• 5	85	3	269	9.96	53	0	080		
	_				46.				73		.30				_				•			
	8	1	5802		48.				17		. 320		• 6	308	В	362	2.30	36	0	041		
	_		50. 3		11.				07		. 32									. 7.0		
	9	1.	.5247		48.				78		.32		• 6	40:	1	408	3.7	2	0	USU		
	^		04.50		44.				71		. 32				^	4 7 6	3 7/		- 0	4 24		
1	0	1	.8478		48. 81.				54		. 25 ¹		• "	1921	U	1/0	3.3	+0	0	124		
				/	01.	03		• 7	07		• 24.	1 /										
RUN	44	M =	0.60	T	HET	A 3	3/4	=	43.	00	DE	G	CONF	۱ ا	L4	C1	E7	B3	PNT	T2	R1	RE
P	T		J		V0			ET	Α		CT		CF	•			4P		C	С		
			_		VT		ET	A N	ET	C	T N	ET										
	2	2	.7385		61.				06		.03		• 1	132	4	4:	5.29	90	• 0	V61	٠,	
					81.				32		.04						_				•	
	3	2	.5335		63.				90		.09		. 2	243	3	100	5.5	B 0	• 0	005		
		_			46.				95		.09								_			
	4	2	.3540		64.				77		.12		• •	311	4	16	0.4	56	0	040		
	,-	_	400=		11.				47		.12				_		. -	~=	_ ^	04 F		
	5	2	.1983		64.				14		.15		• •	367	b	23	2.3	7 3	0	COU		
	_	^	064#		76.				75		.14			+80	K	74	B.3	1 =	0	087		
	6	2	.0614		65. 42.				26		.16		• •	+00	J	200	3 • J	13	0	UO /		
	7	2	.5165		42. 59.				88		.09			240	U	100	0.6	1 1	0	ივი		
	•	2	• 2103		39. 46.				57		.09		• •	-70	J	TO	• • •		- • 0	4 40		
				0	701	77		• 7			• • •	47										

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 45	M = 0.40	THETA	3/4 = 49	00 DEG	CONF L4	C1 E7 B3	PNT T2 R1 RE
PT	J	VO VT	ETA ETA NET	CT CT NET	CP .	HP	СС
. 2	3.1725	447.67 456.15		.1100	.3389	24.434	0070
3	2.7744	447.67 521.13	1.051	.2042 .1892	•5388	57.919	0150
4	2.4667	448.08 586.24	1.016	.2450 .2286	• 5944	90.791	0164
5	2.2182	448.08 651.22	•956	.2907 .2756	.6743	141.196	0151
6	2.0159	448.50 716.33	.891	.3345	.7564	210.390	0129
7	1.8482	448.50 780.14	.864	.3805 .3710	.8133	292.241	0096
8	1.7039	448.50 846.55	.694	.3013	.7398	339.638	0084
9	1.6285	448.91 885.88	688	.3156	•7469	392.216	0073
10	2.2236	449.33 651.48	•	.2910 .2726	.6775	141.252	0184
	e e e e e e e e e e e e e e e e e e e						
RUN 46	M = 0.60	THETA	3/4 = 49	00 DEG	CONF L4	C1 E7 B3	PNT T2 R1 RE
19	J	00 TV ≇≱,	ETA ETA NET	CT CT NET	СР	HP	СС
2	3.2945	663.75 651.35		.0883 .0943	.2946	55.303	•0060
3	2.9971	664.36	1.042	.1742	.5008	124.749	0044
4	2.7477	664.97	1.015	.2281	.6172	199.329	0106
5	2.5354	664.97 846.42	.949	.2555 .2419	.6824	280.058	0136
6	2.3522	654.97 911.92	.825	.2685 .2542	.7245	371.846	0143
7	2.2869	664.97 9 37. 83		.2679 .2533	.7322	408.727	0146

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	47	M = 0.60	THETA	3/4 = 54.	00 DEG	CONF L	+ C1 E7 B3	PNT T2 R1	RE
	PT	J	۷o	ETA	CT	СР	HP.	CC	
			VT	ETA NET	CT NET	••	•••		
	^				2004				
	2	4.0116	662.54		.0921	.3880	40.281	.0098	
	3	7 4505	534.02		.1019	6000	06 440	0010	
	3	3.6585	663.75		.1814	.628 8	86.110	0010	
	4	3,2959	586.37		.1805	930"	155 403	- 0005	
	•	3.2737	664.36 651.09		.2606	.8304	155.403	0095	
	5	2.9922	664.36		.2511	0304	272 102	- 0157	
	•	E 1 7726	716.72		.3158 .3004	.9301	232.182	0153	
	6	2.7432	664.97		• 3408	1.0264	332.302	- 0206	
	•	211475	782.09		.3202	1.0504	332.302	0206	
			102.07	•000	10202				
RUN	48	M = 0.20	THETA	3/4 = 30.	00 DEG	CONF L	C1 E7 B3	PNT T2 R1	RE
	~*								
	PT	J	VO	ETA	CT	CP	HP	CC	
			VT	ETA NET	CT NET				
	2	1.6055	226.48	.889	.0472	.0852	6.478	- 0050	
	-	1,6055	455.89		.0413	• 0032	0.4/0	0059	
	3	1.4009	226.48		.1116	.1587	18.045	0053	
	•	214007	521.26		.1064	12001	101043	-10055	
	4	1.2435	226.48		.1507	.1970	31.816	0043	
	•	2. 12.400	585,98		.1464	11710	321020	-10040	
	5	1.1167	226.48		.1737	.2164	47.925	0013	
	•		651.09		.1725	12107	411720	.0010	
	6	1.0119	226.27		.1874	.2279	67.345	.0023	
	•		716.33		.1897	,,,,,	;5 / (5 / 5	,	
	7	.9254	226.27		.2059	.2435	93.384	.0059	
		***************************************	781.31	.805	.2119	12.00		***************************************	
	8	.8512	226,27		.2261	.2610	127.442	.0134	
			846.81	.781	.2395	0.2.2.0			
	9	.7873	226.06		.2459	.2820	172.058	.0219	
			911,53	.744	.2668				
	10	.7322		.625	.2654	.3107	233.105	.0319	
		•	976.64	.700	.297'3			•	
	11	.6848	226.06	•565	.2680	.3247	295.717	.0333	
			1041.75	•635	.3013				
	12	1.6023	226.06		.0469	.0892	6.811	0021	
			455.89	.803	.0447				

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	61	M = 0.20	THETA	3/4 = 22.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 R	E
	PT	J	VO	ETA	CT	CP	HP	СС	
			VT	ETA NET	CT NET				
	2	1,4003	225.64	,363	.0089	.0343	3.988	0075	
			521.26		.0014				
	3	1,2420	225.64		.0596	.0749	12.395	0074	
			586.50		.0522				
	4	1.1161	225.64		.0909	.0984	22.315	0108	
			651.48		.0800				
	5	1.0134	225.64		.1151	.1153	34.710	0135	
	_		716.20		.1016				
	6	.9270	225.64		.1330	.1267	49.547	0138	
	_	• • • • • • • • • • • • • • • • • • • •	781.44		.1191	•			
	7	.8534	225.64		.1488	.1370	68.206	0127	
	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	846.94		.1360				
	8	.7906	225.64		.1634		91.728	0107	
	_	• • • • • • • • • • • • • • • • • • • •	912.05		.1528				
	9	.7363	225.64	-	.1746		118.929	0091	
	•	***************************************	977.16		.1655				
	10	.6884	225.64		.1842		153.098	~. 0057	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1042.53		.1785				
	11	1.3182	225.85		.0395		8.673	0042	
			553.56		.0353				

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KÜN	62	M = 0.20	THETA	3/4 = 28.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1	RE
	PT	J .	۷o	ETA	CT	СР	· HP	СС	
			VT	ETA NET	CT NET				
	2	1.8558	223.94		.0000	.0231	1.138	0187	
	3	1 5040	390.52 223.94		0187	1130	0 035	_ 0000	
	J	1.5868	455.76		.0800 .0701	.1130	8.835	0099	
	4	1.3871	224.15		.1353	.1675	19.512	0172	
			520.87		.1182				
	5	1.2307	224.15		.1641	.1890	31.346	0199	
		•	585,98	.938	.1441			•	
	6	1.1060	224.15	1.000	.1798	.1988	45.212	0203	
			650.96		•1595				
	7	1.0029	224.15		.1996	.2139	64.775	0189	
			716.20		.1806				
	8	.9170	224.15		.2175	.2275	89.455	0162	
			781.31		.2013				
	9	.8443		-	. 2346	.2414	120.640	0122	
			846.29	.777	.2223				
*	10	.7813			.2558	.2615	163.289	0070	
			911.53		.2489				
	11	.7268	224.15		.2764	.2881	221.189	0009	
			976.51	. 694	.2754				
	12	.6794	224.15	.628	.2786	.3014	281.023	.0060	
			1041.88	.641	.2847	•			

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	63	M = 0.40	THETA	3/4 = 30	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1	RE
	PT	J	٧o	ETA	СТ	CP		0.0	
		•	٧T	ETA NET	CT NET	CP	HP	CC	
			• •	CIA HEI	CI NEI				
	2	2.0120	445.17	.686	.0175	.0512	14.450	0270	
			715.81		0096	10012	14.430	0270	
	3	1.8481	446.84		.0724	.1183	43.104	~.0187	
			781.31	.838	.0536	12100	101101	.0101	
	4	1.7059	447.25	1.173	.1162	.1689	78.083	0161	
			846.29		.1001			*****	
	5	1.5806	446.84		.1533	.2091	121.039	0204	
			911.53		.1329				
	6	1.4763	447.67		.1776	.2365	167.786	0243	
	_		976.77		.1534				
	7	1.3830	447.67		•1924	.2568	221.085	0262	
			1041.75	.895	•1662				
KUN	64	M = 0.40	TUETA	= 44		_			
11011	04	M - 11 - 41	IMPIA	3/4 = 41.	NO DEC	COME 11	AL EL DY	DIE	_~
11011	04	M = 0.40	IMEIA .	3/4 = 41.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 R	RE
	PT	J	VO	•				3	RE
				3/4 = 41. Eta Eta net	СТ	CONF L4	C1 E6 B3	CC CC	RE
	PT	J	VO VT	ETA .				3	RE
			V0 VT 446.84	ETA ETA NET	CT CT NET		HP	cc	RE
	PT 2	J 2.7746	V0 VT 446.84 520.87	ETA ETA NET 1.144 .283	CT NET .0650 .0161	СР		3	RE
	PT	J	V0 VT 446.84 520.87 448.08	ETA ETA NET 1.144 .283 1.229	CT NET .0659 .0161 .1516	СР	HP	CC 0489	RE
	PT 2 3	J 2.7746 2.4745	V0 VT 446.84 520.87 448.08 585.07	ETA ETA NET 1.144 .283 1.229 .920	CT NET .0650 .0161 .1516 .1135	.1575 .3052	HP 17.006	cc	RE
	PT 2	J 2.7746	V0 VT 446.84 520.87 448.08 585.07 448.08	ETA ETA NET 1.144 .283 1.229 .920 1.195	CT NET .0659 .0161 .1516 .1135	CP •1575	HP 17.006	CC 0489	RE
	2 3 4	J 2.7746 2.4745 2.2215	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007	CT NET .0659 .0161 .1516 .1135 .2007	.1575 .3052 .3728	HP 17.006 46.434 78.152	CC 0489 0381 0317	RE
	PT 2 3	J 2.7746 2.4745	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09 448.50	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350	.1575 .3052	HP 17.006 46.434	CC 0489 0381	RE
	2 3 4 5	2.7746 2.4745 2.2215 2.0188	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09 448.50 716.46	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350	.1575 .3052 .3728	HP 17.006 46.434 78.152 114.613	0489 0381 0317 0324	RE
	2 3 4	J 2.7746 2.4745 2.2215	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09 448.50 716.46	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026	.1575 .3052 .3728	HP 17.006 46.434 78.152	CC 0489 0381 0317	RE
	2 3 4 5	2.7746 2.4745 2.2215 2.0188 1.8493	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09 448.50 716.46 448.50 781.31	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752	.1575 .3052 .3728 .4110 .4629	HP 17.006 46.434 78.152 114.613 167.408	CC04890381031703240388	RE
	2 3 4 5	2.7746 2.4745 2.2215 2.0188	V0 VT 446.84 520.87 448.08 585.07 448.08 651.09 448.50 716.46 448.50 781.31	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944 1.029	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752 .2364	.1575 .3052 .3728	HP 17.006 46.434 78.152 114.613	0489 0381 0317 0324	RE
	2 3 4 5 6 7	2.7746 2.4745 2.2215 2.0188 1.8493 1.7039	V0 VT 446.84 520.87 448.08 585.07 448.50 716.46 448.50 781.31 448.50 846.81	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944 1.029 .889	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752 .2364 .3204	.1575 .3052 .3728 .4110 .4629	HP 17.006 46.434 78.152 114.613 167.408 244.145	CC048903810317032403880436	RE
	2 3 4 5	2.7746 2.4745 2.2215 2.0188 1.8493	V0 VT 446.84 520.87 448.08 585.07 448.50 716.46 448.50 781.31 448.50 846.81 448.50	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944 1.029 .889 .941	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752 .2364 .3204 .2767	.1575 .3052 .3728 .4110	HP 17.006 46.434 78.152 114.613 167.408	CC04890381031703240388	RE
	2 3 4 5 6 7 8	2.7746 2.4745 2.2215 2.0188 1.8493 1.7039 1.5811	V0 VT 446.84 520.87 448.08 585.07 448.50 716.46 448.50 781.31 448.50 846.81 448.50 911.40	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944 1.029 .889 .941 .820	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752 .2364 .3204 .2767 .3455	.1575 .3052 .3728 .4110 .4629 .5303	HP 17.006 46.434 78.152 114.613 167.408 244.145 333.042	0489038103170324038804360444	RE
	2 3 4 5 6 7	2.7746 2.4745 2.2215 2.0188 1.8493 1.7039	V0 VT 446.84 520.87 448.08 585.07 448.50 716.46 448.50 781.31 448.50 846.81 448.50	ETA ETA NET 1.144 .283 1.229 .920 1.195 1.007 1.154 .995 1.099 .944 1.029 .889 .941	CT NET .0659 .0161 .1516 .1135 .2007 .1690 .2350 .2026 .2752 .2364 .3204 .2767	.1575 .3052 .3728 .4110 .4629	HP 17.006 46.434 78.152 114.613 167.408 244.145	CC048903810317032403880436	RE

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	é 5	M = 0.60	THETA 3	3/4 = 41.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 RE	
ı	7	Ū	VO VT	ETA ETA NET	CT CT NET	CP	HP	СС	
	2	2.8493	665.57 755.79	1.043 516	.0527 0261	.1440	42.137	0788	
	3	2.7613	666.79 781.05	1.150	.0821	.1972	63.468	0743	
	4	2.5506	667.99 846.42	1.232 .715	.1574	•3258	132.935	0659	
	5	2.3680	668.60 911.92	1.195 .832	.1979	•3921	199.713	0600	
	6	2.2096	668.60 976.64	1.129 .863	.2277 .1742	•4455	278.729	0535	
	7	2.0718	669.20 1042.01	1.045 .821	.2425 .1905	.4805	364.518	0519	
					,				
KUN	66	M = 0.40	THETA	3/4 = 47.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 RE	,
	PT	j	VO VT	ETA ETA NET	CT CT NET	СР	HP	СС	
	PT 2	J 3,6330	VT 448.50	1.083	.0658	.2207	HP 10.653	CC 0888	
		·	VT	1.083 378 1.231	.0658 0230 .1701				
	2	3,6330	VT 448.50 399.38 448.50	1.083 378 1.231	.0658 0230 .1701 .1041 .2365	.2207 .4396 .5432	10.653 31.564 58.261	0888 0660 0515	
	2 3 4 5	3.6330 3.1802	VT 448.50 399.38 448.50 455.89 448.50 521.13 448.50 585.98	1.083 378 1.231 .753 1.210 .946 1.145	.0658 0230 .1701 .1041 .2365 .1850 .2843	.2207 .4396 .5432 .6131	10.653 31.564 58.261 93.484	0888 0660 0515 0430	
	2 3 4 5 6	3.6330 3.1802 2.7797 2.4698 2.2204	VT 448.50 399.38 448.50 455.89 448.50 521.13 448.50 585.98 448.50 651.22	1.083 378 1.231 .753 1.210 .946 1.145 .972 1.046 .896	.0658 0230 .1701 .1041 .2365 .1850 .2843 .2413 .3160 .2706	.2207 .4396 .5432 .6131	10.653 31.564 58.261 93.484 140.342	0888 0660 0515 0430	
	2 3 4 5 6 7	3.6330 3.1802 2.7797 2.4698 2.2204 2.0173	VT 448.50 399.38 448.50 455.89 448.50 521.13 448.50 585.98 448.50 651.22 448.50 716.33	1.083 378 1.231 .753 1.210 .946 1.145 .972 1.046 .896 .916 .790	.06580230 .1701 .1041 .2365 .1850 .2843 .2413 .3160 .2706 .3139	.2207 .4396 .5432 .6131 .6705	10.653 31.564 58.261 93.484 140.342 192.483	0888 0660 0515 0430 0454 0432	
	2 3 4 5 6 7 8	3.6330 3.1802 2.7797 2.4698 2.2204 2.0173 1.8484	VT 448.50 399.38 448.50 455.89 448.50 521.13 448.50 651.22 448.50 716.33 448.50 781.31	1.083 378 1.231 .753 1.210 .946 1.145 .972 1.046 .896 .916 .790 .811	.06580230 .1701 .1041 .2365 .1850 .2843 .2413 .3160 .2706 .3139 .2707 .3068	.2207 .4396 .5432 .6131 .6705 .6910	10.653 31.564 58.261 93.484 140.342 192.483 252.707	0888 0660 0515 0430 0454 0432 0405	
	2 3 4 5 6 7	3.6330 3.1802 2.7797 2.4698 2.2204 2.0173	VT 448.50 399.38 448.50 455.89 448.50 585.98 448.50 651.22 448.50 716.33	1.083 378 1.231 .753 1.210 .946 1.145 .972 1.046 .896 .916 .790 .811 .703 .728 .638	.06580230 .1701 .1041 .2365 .1850 .2843 .2413 .3160 .2706 .3139 .2707	.2207 .4396 .5432 .6131 .6705 .6910	10.653 31.564 58.261 93.484 140.342 192.483	0888 0660 0515 0430 0454 0432	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

KUN 67	M = 0.60	THETA	3/4 = 47.	.00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 RE
PT	j	V0	ETA	CT	CP	HP	CC
		VT	ETA NET	CT NET			
2	3.6719	664 . 97 585 . 98		.0749 0600	.2488	33.994	1349
3	3.3185	667.99 650.96	1.215	•1610 •0462	.4396	81.600	1148
4	3.0161	668.60 716.33	1.231 .751	.2429	•5950	146.907	0946
5	2.7661	669.20 781.31	1.197	.2854	•6594	210.855	0847
6	2.5536	669.80 846.29	1.126	.3530	.8004	324.669	0795
7	2.4470	670.41 883.66	1.072	•3622 •2849	.8264	380.932	0772
RUN 68	M = 0.60	THETA	3/4 = 52.	00 DEG	CONF L4	C1 E6 B3	PNT T2 R1 RE
PT	J	V0 VT	ETA ETA NET	CT CT NET	СР	HP	СС
2	4.1468	667.99 521.13	1.214	.1453 0288	.4959	47.209	1741
3	3. 6890 ,		1.245 .535	.2476	.7334	99.078	1411
4	3.3293	670.41 650.70	1.217 .736	.2940	.8042	147.959	1161
5	3.0210	670.41 716.59	1.152	.3564	•9348	229.685	1033
6	2.7718	671.01 781.18	1.067	.3975 .3062	1.0320	327.929	0913

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN 69	M = 0.60	THETA :	3/4 = 38.	00 DEG	CONF L4	C1 E6 B3	PNT T2	R1 RE
PT	J	VO VT	ETA ETA NET	CT NET	СР	HP	СС	
2	2.7064	664.97 794.98	1.006 600	.0435 0260	.1171	39.861	0695	•
3	2.5443	666.18 846.68	1.189	.0976	•2088	85.524	0648	•
4	2.4522	666.79 878.98	1.209	.1259	.2554	116.844	0623	
5	2.3671	667.39 911.14		.1455	.285 5	145.224	0586	
6	2.2860	667.99 943.95		.1678	.3201	180.724	0557	
7	2.2100	668.60 977.03	1.164	.1813 .1288	.3441	215.041	0524	
8	2.0752	669.80 1041.75		.2027 .1539	.387 5	292.528	0488	
				(f				
RUN 70	M = 0.20	THETA	3/4 = 38.	00 DEG	CONF L4	C1 E6 B3	PNT T2	R1 RE
PT	J	VO VT	ETA ETA NET	CT CT NET	СР	HP	CC	
2	1.8805	227.74 390.65		.2014 .1671	.3372	16.000	0343	
3	1.6056	227.32 455.89	1.042	.2420	.3726	28.208	0371	
4	1.4019	227.32 521.00	.943 .817	.2759 .2390	.4100	46.324	0369	í
5	1.2414	226.90 585.98		.2934 .2620	.4397	70,935	0314	
6	1.1140	226.90 651.61	.654	.2978 .2725	.4639	102.909	0254	
7	1.0104	226.69 716.20	.591	.2997 .2805	.4788	141.296	0192	
8	.9231 .8501	226.48 781.31 226.48	•545	,5012 .2892 .3022	•4895 •4990	187.907 243.539	0120 0067	
10	.7869	846.42 226.27	.503	.2955 .3022	.5070	309.462	0014	
11	.7327	911.40 226.27	.466	.3008 .3020	.5125	384.803	.0044	
12	.7006	976.51 226.27	.438	.3065	.5202	444.254	.0083	
••	,,,,,,	1019.35		.3121	, , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••	

TABLE III

HS VG SHROUDED PROPELLER TEST

PERFORMANCE DATA

RUN	71	M = 0.20	THETA	3/4 = 28.	00 DEG	CONF L4	C1 E6 B3	PNT T2	R1 RE
ρ	T	J	VO	ETA	CT	CP	HP	CC	
•	•	•	VŢ	ETA NET	CT NET	O.F	* **	30	
			- •	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••				
	2	1.7742	225.21	.834	.0270	.0574	3.231	0172	
			410.58		.0098			•	
	3	1,5979	225.43	_	.0803	.1146	8.799	0113	
	**		455.63		•0689				
	4	1.3971	225.64	-	.1331	.1679	19.198	0175	
	5	1.2389	520.61 225.64		.1155	4037	74 517	.0000	
	3	1.2303	585.98		•1665 •1456	.1933	31.517	0209	
	6	1,1128	225.64		.1824	.2031	45.467	0208	
			651.22		1616	.2001	456467	-10200	
	7	1.0098	225.64		.2017	.2180	64.868	0195	
			716.07		.1822		•	*****	
	8	•9229	225.64		.2213	.2327	89.982	0167	
			781.44		.2046				
-	9	•8495	225.64		.2378	•2462	121.128	0133	
		7075	846.68		.2245	0450		0.00	
1	10	.7865	225.64		.2577	•2659	163.313	0087	
1	11	.7308	911.66 225.43		.2490 .2811	.2945	222.784	0006	
•	•	• , 505	976.64		.2805	12943	2221104	0000	
1	12	.6828	225.21		.2817	.3064	281.823	.0038	
			1041.75	•	.2855	•		******	
RUN	88	M = 0.40	THETA	3/4 =	DEG	CONF PT	R + B3 PN	T T1 R1	RE5 RE
	_								4 (
P	7	J	۷O	ETA	CT	Cb	HP	CC	
			VŤ	ETA NET	CT NET				
	2	2.4881	451.40	.801	.0370	.1149	17.528	• 0	
	-	214002	586.63	•	.0370	• 447	171520	• •	
	3	2.2388	451.40		.1017	.2467	51.505	• 0	
			651.35		.1017			• •	
	4	2.0341	451.40		.1524	.3328	92.388	• 0	
	_		716.20		.1524				
	5	1.8628	451.40		.1843	.3800	136.944	• 0	
	6	1 7170	751,31		.1843		406 (00	•	
	0	1.7178	451,40 846,42		.2071 .2071	.4073	186.602	• 0	
	7	1.5930	451.40		.2416	.4620	264.399	• 0	
	•	-10,00	911.53		.2416	• 4050	2071077	• •	^
	8	1.4840	451.40		.2751	.5300	373.473	•0	
		•	977.03		.2751		# · = v · • #	* -	

-ARI F 1V

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 5997 RPM RHO = .00235 SLUGS/CU FT THETA 3/4 =29.0 DEG 3.781 pSF TSC = 68 DEG F 3,729 PSF CONF. L5 C1 E8 B3 PWT T1 R1 AD 30 PINF = 2136,22 PSF VINF = 56,71 FPS 21-8 MINF = ,0503 H = 2140 PSF RUN-PT

INLET VELOCITIES, FPS

. 01 03 04 06 07 09 10 12 13 15 AVE 297.56 290.56 273.60 273.49 251.79 251.54 232.74 231.81 223.09 219.74 254.59

EXIT TOTAL PRESSURES, PSIA

03 04 05 06 07 08 09 10 11 12 13 14.94 15.00 15.03 15.04 15.05 15.07 15.08 15.10 15.11 15.13 15.14 14 15 16 17 18 19 20 21 22 23 24 15.14 15.15 15.16 15.17 15.17 14.84 15.18 15.19 15.19 15.18 02 14.91 01. 14.86 ORIF. PRES.

ARIE IV

HS SAKIAGLE GEOMETRY SHROUDED PROPELLEP TEST

PRESSURE DATA

N = 5999 RPM RHU = .00225 SLUGS/CU FT THETA 3/4 =20.0 DEG 56.616 PSF ii تن TSC = 71 DEG F GU = 53.472 PSF COLF. L4 C1 E7 E3 PW1 T1 K1 RE PINF = 2009.c2 PSF VIN = 224.45 FPS KUE-PT 29- 7 MINF = .1991 H = 2097 FSF

INLET VELOCITIES, FPS

ORIF. Ul 03 04 06 C7 69 10 12 13 15 AVE VEL. 222:8% 224.29 220.32 223.36 218.79 220.37 218.10 219.97 219.58 219.72 220.73

EXIT TOTAL PRESSURES, PSIA

66 67 68 09 10 11 12 13 14.68 14.70 14.72 14.72 14.72 14.72 14 15 16 17 16 19 20 21 22 23 24 25 14.74 14.74 14.57 14.56 14.56 14.56 33 04 05 14.63 14.67 14.68 ं 60° के र संघ 01 14-53 CRIF. PRES. OKLT. PRES.

MS PARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DAIN

N = 6000 RPM RHO = .00225 SLU65/CU FT THETA 3/4 =30.0 DEG 59.528 PSF i1 3 70 DEG F 56.222 PSF COMF. L4 C2 L7 B3 LT 73 K1 RE TSC = 33 PINF = 2036.05 PSF VINF = 230.01 FPS 30- 0 A 1 2397 PSF MAINF = .2043 KUN-PH

INLET VELOCITIES, FPS

ORIF. 01 03 04 06 67 09 10 12 13 15 AVE VEL. 263.48 200.27 261.69 263.85 255.93 256.06 253.79 253.41 251.85 249.44 257.58

EXIT 10TAL PRESSURES, PSIA

13 12 14.86 11 14.84 24 14.56 10 14.83 23 14.56 69 14.81 22 14,56 08 14.79 21 14.62 07 14.77 20 14.95 66 14.75 10 14.96 05 14 • 74 16 14•95 14.72 14.94 14.69 14.93 9.7 05 14.64 25 24.91 14.90 OHIF. PRES.

RPM

TABLE 1V

HS VAKIAJLE GEUMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =36.0 DEG N = 6001	RHO = .00204 SLUGS/CU FT	4 = 220.763 PSF
WT TA RA RE	TSC = 85 DEG F	4U = 208,503 PSF
COUF. L4 C1 E7 B3 PHT T1 R1 RE	PINF = 1655.70 PSF	VINF = 464.76 FPS
(tull-PT 32- 5 COUF.	H = 2086 PSF	111.4F = .4122

INLET VELOCITIES, FPS

		12 14.71	25
AVE 402.09		08 09 10 11 12 14.66 14.67 14.68 14.70 14.71	19 20 21 22 23 24 25 14.74 14.72 14.09 14.49 14.49 14.49
06 07 09 10 12 13 15 AVE 404.39 35.20 400.42 400.41 403.31 407.09 407.43 402.09		10 14.68	23
13		14.67	22
12 403,31		08 14.66	21.
10 400•41	PSIA	05 07 14.64 14.65	20
00 400.45	SSURES	95 34.64	29 34.74
07 398,20	EXIT TOTAL PRESSURES, PSIA	04 05 14.56 14.52	17 18 14.7+ 14.74
06 404.39	TOT TO	04 14.56	17
	Ĕ	03 14.45	16 14.74
03. 403.18		02 14.33	15
021F. 01 03, 04 VEL. 398.uí 403.18 398.47	×	OT-AT	24 14•73
URIF.		URIF. PRES.	ORIF.

13 14.73

TABLE 1V

11S TARLIAGLE GEGGETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =40.0 DEG N = 6004 RPM	RHO = .00224 SLUGS/CU FT	© = 56.311 PSF
THE		3
E7 E3 PUT 13 R1 RE	TEC = 74 PEG F	ui = 53,183 psF
CONF. L4 C.	PINF = 2647.13 PSF	VINF = 224.04 FPS
RUN-PT 33- 2	H = 2104 PSF	MINF = .1982

INLET VELOCITIES, FPS

		######################################	
		06 09 10 11 12 13 : 14.95 14.98 15.01 15.04 15.05 15.08))
AVE 269.73		11115.04	•
07 09 10 12 13 15 AVE 267.69 270.19 264.65 265.69 265.56 264.71 269.73		10 15.61	
13 265.56		09 14•98	
12 265.69		66 14,95	
10 264,65	FSIA	07	
89 276,19	SSUPES	CS 06 07 14.88 14.90 14.92	
03 267 . 69	EXIT TOTAL PRESSURES, PSIA	05 14.88	
06 276.26	IT TOT	94 14.05	
OKIF. 01 03 04 06 VEL. 274.33 277.21 270.94 276.16	X W	٠ <u>٠</u> ٠ -	,
03 277,21		02 0 1 14.77 14	*
61 274-33		ORIF. UI PRES. 14.71	
ORIF.		OR.F.	11.00

22 23 24 14.61 14.61 14.61

21

16 1° 20 15.07 15.04 15.01

16 17 15-15 15-51

16 15 25.10 15.12

ORIF. PRES. A MAN COM

ABLE 1V

HS VARIAGLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG CONF. L4 C1 L7 B3 PLT T1 R1 RE KUN-PT 34- 7

N = 6000 RPM

RHO = .00212 SLUGS/CU FT 73 DEG F 15C = PINF = 1879.10 PSF H = 2106 PSF

@ = 217.740 PSF CU = 205.648 PSF. VINF = 453,74 FPS MINF = .4069

INLET VELOCITIES, FPS

OR1F. .01 03 04 06 07 09 10 12 13 15 AVE VE...417.74 423.71 416.57 422.48 414.89 415.77 415.63 416.83 419.11 417.52 418.02

EXIT TOTAL PRESSURES, PSIA

11 14,97 24 14,62 10 14,94 23 14.62 69 14.92 22 14.62 06 14.90 21 07 14,86 19 20 15.17 15.14 06 14,83 18 15•16 03 04 05 14.61 14.71 14.75 17. 16 15.12 15 15.10 01 14•42 24 15.67

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 5000 RPM THETA 3/4 =50.0 DEG CONF. L4 C3 E7 B3 PUT T1 K1 RE 35- 35 アルファージア

RHO = .00208 SLUGS/CU FT 750 = 85 HEG F PINF = 187%, UB PSF H = 2108 PSF

Q = 220.514 PSF ₩ = 208.268 PSF VINF = 400.94 FPS 9604. = 3titis

INLET VELOCYTES, FPS

51 05 04 06 07 09 10 12 13 15 AVE 517.50 423.57 418.16 421.68 421.68 424.80 427.77 426.66 422.43

EXIT YOTAL PRESSURES PSIA

09 10 11 12 13 15.01 15.03 15.06 15.09 15.13 21 22 23 24 25 14,37 14,64 14,64 14,64 14.98 15 17 16 19 20 15.20 15.20 15.14 15.08 15.03 14.67 14.76 14.04 14.90 14.94 20 15 15.18 24. 25. 25. 约4.41 PRES.

8 8

ABLE 1V

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 374 =50.0 DEG N = 6002	RH0 = .00207 SLUGS/CU FT	Q = 220.411 PSF
AT TI RI RE	TSC = 86 DEG F	QU = 208.170 PSF
CONF. L4 C). E7 83 PUT TI RI RE	PINF = 1681.21 PSF	VINF = 461.71 FPS
RUN-PT 36- 5 CONF.	H = 2111 PSF	MINF = .4091

INLET VELOCIJIES, FPS

AVE 422.31
15
12 13 424,24 427,48
12 424
10,419.97
06 07 09 10 42 424.98 417.56 421.37 419.97
07 41.7.56
06 424.98
04 418.42
03 424.78
01 417.74
ORIF. VEL.

EXIT TOTAL PRESSURES, PSIA

13 15.16	
12 15.12	25
11 15,10	24
15.06	23
15.04	22
08 15.01	21
14.97	20 21 15.65 14.70
16.93	15,10
05 14•88	18-16
64 14.79	17
03 14.69	16 17 15.23 15.22
02 14.60	15
01 3.4.51	14. 15.18
OKIF. PRES.	ORIF. PRES.

TABLE IV

HS YARTABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =50.0 DEG N = 5499 RPM	RHO = .00183 SLUGS/CU FT	0 = 446.210 PSF
27 B3 PWT TI RI RE	TSC = 95 DEG F	3U = 421.430 PSF
CONF. L.C. C. 27 B3 PV	PINF = 1619.13 PSF	VINF = 698.77 FPS
4 - TE Telebion	H = 2111 PSF	SALE = . 6275

THEET VELOCITIES. FPS

41 574.51 377.25 583.66 583.72 574.77
15 583,72
13 583.66
12 577.25
10 574,51
09 570 . 41
07 569 . 39
04 06 07 09 566.67 575.33 569.39 570,41 5
04 556 . 67
03 580.40
42. 5003
JRIF. VEL.

EXIT YOTAL PRESSURES, PSIA

13 14.95	
12	25
14.93	14.66
11	24
14.92	14.66
10	23
14.90	14.66
14.69	22 14.66
06 14.83	21
U7 14.86	20
úe	19
14.65	15,06
05	18
14.82	14•99
14.71	17 14.98
03	16
14.51	14.9ē
02	15
14,26	14,96
10.037 10.037	(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
ORIF.	OKIE.

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLEP TEST

PRESSUFE DATA

THETA 3/4 =22.0 DEG N = 6001 RPM	RHO = .00228 SLUGS/CU FT	Q = 56.658 PSF
COMF. L4 C2 h7 63 phi 72 R1 RE	PINF = 2053.78 PSF TSC = 68 DEG F	VINF = 223.10 FPS 0U = 53.512 PSF
kUII-PT 39- 5	H = 2111 PSF	Main = 1985

MALLY VELOCITIES, FPS

ORIF. 01 03 64 06 07 09 10 12 13 15 AVE VEL. 214.67 217.96 205.46 204.62 215.37 218.69 215.39 217.27 212.06 217.89 214.34
01 03 64 06 07 09 10 12 13 21 21 21 21 21 21 21 21 21 21 21 21 21
01 03 64 06 07 09 10 12 13 21 21 21 21 21 21 21 21 21 21 21 21 21
01 03 04 06 07 09 10 214.67 217.96 205.46 200.62 215.37 218.69 215.39
01 03 04 06 07 09 10 214.67 217.96 205.46 200.62 215.37 218.69 215.39
01 03 04 06 214.67 217.96 205.46 200.62
01 03 04 06 214.67 217.96 205.46 200.62
01 03 04 06 214.67 217.96 205.46 200.62
01 03 04 214.67 217.96 205.46
214.67
ORIF. VEL.

EXIT TOTAL PRESSURES, PSIA

24 25 66 14,66 14,66
22 23 -14.66 14.66
21
20 14.66
69°n1
18 14•74
17, 14, 79
16 14.81
15.63
24 24•85
ORIF. PRES.

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =30.0 DEG CONF. L4 C: E7 B3 PNT T2 R1 RE 40- 6 おしたードフ

N = 6001 RPM

RH0 = .00227 SLUGS/CU FT TSC = 68 DEG F PINF = 2047.25 PSF 11 = 2108 PSF

60.119 PSF i1 3 aU = 56.781 PSF VINF = 230.12 FPS NILLE - SUME

INLET VELOCITIES, FPS

Ul 03 04 66 07 09 16 12 13 15 AVE 256-67 259-34 244-39 246-84 251-80 255-15 249-09 248-59 234-90 248-56 249-73

EXIT TOTAL PRESSURES, PSIA

12 13 14.97 14.97 25 14.64 11 14.97 22 23 24 14.64 14.64 14.64 08 69 10 14.93 14.94 14.96 21 14.59 07 14.52 26 14.89 26°77 18 19 14.94 : 10.91 03 C4 05 14.65 14.69 14.91 16 17 14.96 14.95 15 14.96 62 14 • 79 (1) 14.09 14.97 URIF. PRES.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =32.0 DEG COMF. L4 C1 E7 B3 PNT T2 R1 RE 41- 3 **KON-P+**

N = 6001 RPM

RH0 = .00213 SLUGS/CU FT 68 DEG F TSC = PIGF = 1872,94 PSF H = 2106 PSF

Q = 223.385 PSF 46 = 210.980 PSF VINF = 457,96 FPS MINF = .4128

INLET VELOCITIES, FPS

01 03 04 06 07 09 16 12 13 15 AVE 364.97 370.42 358.75 363.77 373.68 378.02 373.63 378.24 370.21 384.51 371.62

EXIT TOTAL PRESSURES, PSIA

13 12 14•72 11 10 14.66 09 14.72 08 14.72 14.71 14.71 05 14•.70 04 14•69 03 14.59 **** 14.25 ORIF. PRES.

25 14.62 23 14,62 22 14•62 21 13,78 20 14.54 19 14.56 13 14.61 £7. 16 14.67 15 14.70 14 24•71 ORIF. PRES.

I**V-**12

TABLE 1V

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =40.0 DEG N = 6000 RPM	RHO = .00226 SLUGS/CU FT	0 = 57.529 PSF
27 83 PHT T2 RI RE	TSC = 70 DEG F	JU = 54.334 PSF
	PINF = 2046.69 PSF	VINF = 225.53 FPS
RUN-PT 42- 9 CONF. L4 C1	H = 2105 PSF	MINT = .2304

INLET VELOCITIES. FPS

AVE	269,55
15	269,03
	250.16
12	271.30
10	269,05
60	278,00
0.7	271.26
Ĵö	267.02
a t (2)	262.33
03	280.37
ťo	4.76.10
ORIF.	VEL.

EXIT TOTAL PRESSURES, PSIA

13 15.22	
12 15.19	25 14.62
11 15,15	24 14.62
10 15,11	23
15.09	22
08 15.11	21
07 15,10	20 14.85
06 15,08	14.88
05 15.06	18 14.91
04 15.01	14.97
03 14.92	16 2.7 15.06 14.97
02 14.30	15 15•15
14.71	14 15.21
ORIT. PRES.	OK.F.

RPE

ABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG N = 6000	RHC = .00208 SLUGS/CU FT	Q = 223.736 PSF
IT IZ RI RE	TSC = 79 DEG F	QU = 211.311 PSF
CONF. L4 C3 E7 83 PMT T2 R1 RE	PINF = 1876.54 PSF	VINF = 463,35 FPS
RUN-PT 43- 6	H = 2104 PSF	MINF = . 4134

INLET VELOCITIES, FPS

			12	14.99	25	14.61
AVE	412.72	-	11	14.98	24	14.61
15	419.03		10	14.97	23	14.61
06 07 09 10 12 13 15 AVE	396,82		60	14.96 14.97 14.98 14.99	17 18 19 20 21 22 23 24 25	14.61
12	416.22		90	14.95	័ដ	14.12
10	413,30	PSIA	. 07	14,93	200	14,92
60	420.10	SSURES	90	3,4.89	19	14.97
0.7	415.43	EXIT TOTAL PRESSURES, PSIA	05	14.75 14.83 34.89 14.93 14.95	18	14.99
96	40.0.0.0.	for TI	. 10		17	15.00
90	404.11	E	03	14.64	16	15.00
60	419.01		02	75.41	14 15 16	15.00
OKIF. 01 03 04	413.96		10	14.40	† T	15.01
OKIF.	VEL.		ORIF.	PRES.	ORIF.	PRES.

R P M

ABLE 1V

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG N = 6002	RH0 = .00186 SLUGS/CU FT	6 = 449.615 PSF
IIT TZ KI RE	TSC = 80 DEG F	QU = 424.646 PSF
CONF. L4 C1 E7 33 PHT T2 R1 RE	PINF = 1604.57 PSF	VINF = 694.59 FPS
RUH-PT 44-2 CONF.	H = 2101 PSF	MILIF = .6327

INLET VELOCITIES, FPS

AVE	540.38
15	556.98 540.38
Ю H	549.54 534.01
12	549.54
70	55 546.16
60	542.47 547.55 546.16
07	245.47
90	533,62
70	526.04
03	557,86
13	529.59
ORIF.	VE.

EXIT TOTAL PRESSURES, PSIA

13 14,68	
12 14.68	25 14,59
11,14,69	24
10	23
69 14.69	22
08 14.69	21 12,81
0.7 14,63	26
06 14.67	3.9 14.53
05 14•66	16 14•58
04 14.62	17.
03 14•46	16 14.64
02 14.16	15 14.65
e1 13,76	14.07
ORIF. PRES.	OKIF.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N # 5991 RPM .00208 SLUGS/CU FT THETA 3/4 =49.0 DEG RHO II 80 DEG F L4 C1 E7 83 PNT T2 R1 RE TSC = PINF = 187. . 06 PSF CONF. 45- 7 H = 2099 PSF スロベード

4 :: 218.662 PSF OU = 206,519 PSF VINF = 458.60 FPS HINF = .4086

INLET VELUCITAES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 430.55 435.64 419.03 425.11 426.35 434.08 426.67 426.98 402.34 429.00 425.74

EXIT TOTAL PRESSURES, PSIA

25 14.58 11 15,10 24 14.57 23 14.57 15,03 22 14.58 21 14.27 06 14,97 07 14.91 20 15.01 06 14,86 19 15.05 18 15,10 63 64 05 14.74 14.81 14.84 16 17 15.14 15.13 15 35.14 15°14 14.47 PHES.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 6001 RPM .00184 SLUGS/CU FT THETA 3/4 =49.0 DEG Q = 450.038 PSF RHO II 86 DEG F QU = 425.045 PSF CONF. L4 C1 E7 B3 PHT T2 R1 RE TSC = PINF = 1597,85 PSF = 700.16 FPS VINF 46- 4 H = 2095 PSF MINF = .6343 ドローとつび

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 562.78 571.17 559.66 567.69 572.25 577.18 573.79 575.37 558.32 581.78 570.00

IV-17

EXIT TOTAL PRESSURES, PSIA

25 14.55 23 14.55 09 14.87 22 14.55 08 14.86 21 13,15 07 14.85 20 14.72 06 14,80 14,83 14,79 05 14•73 17 14.69 14.34 14.61 16 14,90 02 14.01 15 14,91 14,92 ORIF. PRES. ORIF. PRES.

TABLE 1V

HS VARIABLE GEOMETRY SHROUGED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =54.0 DEG CONF. L4 C1 L7 B3 PMT T2 R1 RE 27- 6 パロシード

RHO :: 87 DEG F TSC = PINF = 1507.11 PSF H = 2092 PSF

NINF = .6331 VINF = 699.54 FPS @

aU = 423.271 PSF 0 = 448.160 PSF

M = 6006 RPM

.uniss stues/cu FT

INLET VELOCITIES, FPS

61 63 14 66 87 69 1.0 12 13 15 AVE 579.66 587.65 574.91 553.01 588.65 593.49 588.01 589.04 570.42 593.71 584.95

EXIT TOTAL PRESSURES, PS1/A

12 13 15,09 15,10 25 14.53 09 10 11 15.01 15.05 15.08 23 24 14.53 14.53 22 14.53 21. 13,40 08 14.99 07 14,94 16 17 18 19 20 15.08 15.07 15.06 15.03 14.91 06 14,88 05 14•77 03 Ct. 14.27 14.55 15 15.60 32 14.02 24 35.00 10.92 URIF. PRES. OKIF. PRES.

HS VARIABLE SEGMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 6000 RPM THETA 3/4 =30.0 DEG CONF. L4 C1 E7 83 PNT T2 R1 RE 48- 7 RUN-PT

RH0 = .00221 SLUGS/CU FT 59,756 PSF 11 G TSC = 77 DEG F 56,438 PSF) | | | PINF = 2030.61 PSF VINF = 232,31 FPS MINF = .2050 H = 2091 PSF

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 257.40 259.89 247.86 250.95 252.82 255.36 248.88 250.04 236.54 248.75 250.85

EXIT TOTAL PRESSURES, PSIA

IV-19

13 14 683 12 14,83 25 14.52 11 14,82 24 14.52 10 14.82 23 14.52 09 14.80 22 14.52 08 14,79 21 14,47 07 14.78 20 03 04 05 06 14,72 14,75 14,77 14,77 16 17 18 19 14,83 14,82 14,80 14,76 15 14•83 14.84 ORIF. PRES.

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 6001 RPM

RH0 = .00226 SLUGS/CU FT

59.142 PSF

THETA 3/4 =22.0 DEG CONF. L4 C1 E6 B3 PNT T2 R1 RE RUN-PT 61- 6

H = 2120 PSF PINF = 2060,25 PSF TSC = 74 DEG F

MINF = .2025 VINF = 228.83 FPS QU = 55.857 PSF Q =

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 195.30 190.43 185,39 183.55 195.18 198,22 198.23 201,07 197.97 203.77 194.41

EXIT TOTAL PRESSURES, PSIA

12 14.96 25 14.72 11 14,96 24 14,75 10 14.96 23 14.72 09 14.96 21 22 14,64 14.72 07 08 14,94 14,95 20 14.49 19 96 14,94 05 14.93 18 14,81 17 03 04 14,89 14,91 16 14,90 02 14.86 15 14.92 01 14.79 14 14,95

13 14.95 TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

RUM-PT 62-8 COMF. L4 C) E6 H3 PNT T2 R1 RE

N = 6000 RPM

THETA 3/4 =28.0 DEG

PINF = 2043.27 PSF TSC _ 67 0EG F

H = 2104 PSF

RHO = .00227 SLUGS/CU FT

9 = 60.094 PSF 56.757 PSF .. Ug VINF = 230.08 FPS MINF = .2050

INLET VELOCITIES, FPS

61 03 84 06 07 09 10 12 13 15 8VE 211.31 215.97 204.75 209.56 214.74 218.78 216.78 216.93 208.42 218.96 213.62

IV-21

EXIT TOTAL PRESSURES PSIA

10 11 11 11 11 11 14.94 08 14.91 07 14.9∂ 06 14•89 n5 14.88 53 04 14.85 14.88 14.81 14.72

25 23 34 14,61 14,61 22 14.61 21 14.52 20 14.42 19 14•85 15 16 17 18 14.94 14.93 14.91 14.87 14.95

TABLE 1V

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 #30.0 DEG N # 6000 RP	RHO = .00211 SLUGS/QU FT	@ = 223.011 PSF
E6 5 PNT T2 R1 RE	TSC 72 PEG F	6U = 210.627 :-58
CONF. L4 C = E6 73 PA	PINF = 1871,33 PSF	VINF = 459.51 FPS
RUN-PT 63- 3	H = 2104 PSF	MINF = .4126

INLET VELOCITIES, FPS

AVE 319.54
15 342∙6⊕
13
12 333•ņ5
10 327,66
1 325-14
07 319.53
.28 307.67 319.53
04 300,28
03 3v7.66
. 01 300.62
ORI; . VEL.

IV-22

EXIT TOTAL PRESSURES, PSIA

13	
12 4.75	25
11	_4
14.75	14.61
10	23
14.75	14.58
69	22
14•76	14.45
08	21
14.76	13.88
07	2.1
14.74	13.70
06	19
14•74	14•59
05 14.74	18.01
14.71	17
₽3	36
14•63	14.70
02 14.46	15
61 14.33	14.74
ORIF.	ORIF.
PRES.	PRES.

1	>
L	į
ã	֚֚֚֚֚֚֚֚֓֝֝֝֝֝֝֜֝֜֜֝֜֜֝֓֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֜֜֜֜֓֡֓֡֓֜֜֡֡֓֜֜֡֓֜֡֓

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =41.0 DEG N = 6000 RPM	RHO = .00208 SLUGS/CU FT	S 1 223.667 735
E6 83 PNT T2 R1 RE	TSC 79 DEG F	0U = 211.246 ESE
5 CONF. L4 C1 E6 83 F	PINF = 1869.61 PSF	VINF = 463,39 FPS
RUN-PT 64- 5	H = 2103 PSF	MINF. I. 4104

INLET VELOCITIES, FPS

		· •	
		08 09 10 11 12 1 14.96 14.99 14.99 15.01 15.01 15	25 . 14.61
AVE 347.38		11 15.01	21 22 23 24 25 14.61 14.61 14.61
15 366.47		10 14,99	23 14.6
06 U7 09 10 12 13 15 AVE 38,74 348,79 355,07 354,78 358,(3 347,29 366,47 347,38		09 14.99	22,14.60
12 358•€3		08 14.96	21
10 354,78	PSIA	14.93	25 13,72
09 355•07	SSURES,	06 24•88	19
07 348.79	TOTAL PRESSURES, PSIA	04 05 06 07 4.76 14.63 14.88 14.93	17 18 19 15.(1 14.99 14.95
06 338,74	EXIT TOT	04 14.76	17 15,(1
04 330.e1	û	55 14.69 1	16 15.02
03 340.98		02 14.65	15 15.02
ORIG. U1 03 04 0 VEL. 332.63 340.98 330.61 338		01 14.5	14 15.63
ORIG. VEL.		ORIF. PRES.	ORIF.

ABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 5998 RPY RHO = .00183 SLUGS/CU FT THETA 3/4 =41.0 DEG 89 DEG F CONF. L4 C1 E6 P3 PNT T2 R1 RE **1**SC PINF = 1596,36 PSF H = 2182 PSF RUN-PT

0 = 456.990 FSE

QU = 431,611 PSF

VINF = 707.32 FPS

MINF = .6395

INLET VELOCITIES, FPS

EXIT TOTAL PRESSURES, PSIA

14.60 09 10 il 14.75 14.74 14.77 23 22 13.93 08 14.74 21 12,78 07 14.73 20 12,44 06 14•72 16 17 18 19 14.70 14.67 14.62 14.58 03 04 05 14,49 14,57 34,72 62 14.21 15 01 13,53 14,73 ORI#. PRES.

TABLE IV

HS VARIABLE GEOMETHY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 5000 RPH RHO = .0020B SLUGS/CU FT THETA 3/4 =47.0 DEG 0 = 224.261 PSF 0U = 211,807 PSF TSC = 80 PEG F CONF. L4 C3 E6 63 PNT T2 R1 RE VINF = 464,61 FPS PINF = 1867,96 PSF 56- 8 H = 2132 PSF MINF = .4141 RUN-PT

INLET VELOCITIES, FPS

ORI". 101 03 34 06 07 09 10 12 13 15 AVE VEL: 335.89 344.75 335.40 344.49 353.41 362.10 362.75 367.66 353.03 376.14 353.56

EXIT TOTAL PRESSURES, PSIA

01 02 03 04 15 05 07 08 09 10 11 12 13 14.64 14.91 14.95 15.01 15.8 15.12 15.17 $\frac{13}{15.19}$ 14 15 16 17 18 19 20 21 22 23 4 25 15.15.16 15.08 15.00 14.54 14.90 14.89 13.71 14.24 14.60 14.6. 14.60

TABLE IV

HS VARIABLE GEOWETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =47.0 DEG N = 6000 RP4	RHO = .00182 SLUGS/CU FT	0 = 451.418 PSF
CONF. L4 C1 E6 U3 PNT T2 R1 RE	PINF = 1603,35 PSF TSC = 94 DEG F	VINF = 705,09 FPS . QU = 426,349 PSF
RUN-PT 67- 5 CONF. L4 C1	H = 2102 PSF	MINF = .6342

INLET VELOCITIES, FPS

15 AVE 509.60:481.30	
15 509,60	
10 12 13 493,57 478,24 486,22 5	¥
12 438.24	
10 493,57	U
09 490•16	
06 07 09 468.95 482.64 490.16	
06 468.95	
:4 50.51	
. n1 03 455.72 467.40 40	
. n1 455.72	
ORIF.	
<u> </u>	_

EXIT TOTAL PRESSURES PSIA

13 15.00	
12 . 4 . 98	25 14•60
11	14.60
10 14.94	23 14.59
03 14.95	22
08 14.93	21 13•06
07 14.91	25 12.68
06 14•88	19.4.88
05 14.93	18 14.95
04 14.68	17
24°46	, 6 15.00
02 14.23	15 15.00
14.07	14 15.01
ORI:	ORIN. PRES.

RP

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

RESSURE DATA

6665 H N .00181 SLUGS/CU FT THETA 3/4 =52.0 DEG 0 = 447.814 PSF RHO II 98 DEG F QU = 422,945 PSF L4 C1 E6 83 PNT T2 R1 RE PINF = 1606.82 PSF VINF = 704.30 FPS CONF. MINF . = .6310 68- 6 H = 2101 PSF RUN-PT

INLT VELOCITIES, FPS

01 03 f4 06 c7 09 10 12 13 15 AVE 467.21 478.96 481.14 493.36 501.79 503.50 508.06 489.95 517.63 491.34 60

EXIT TOTAL PRESSURES, PSIA

25 14.59 23 14.59 09 10 15.09 15.1% 22 08 15•05 21 13.26 20 12,53 07 14.99 19 14•85 06 14•89 53 04 55 14.46 14.63 14.78 15.18 15.16 15.11 15 15,19 61 · 14.20 14 15.20 ORIM. PRES. ORIT. PRES.

TABLE IV

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

ORESSURE DATA

THETA 3/4 =38.0 DEG N = 6105 RPM	RHO = .00183 SLUGS/CU FT	0 = 448.556 PSF
E6 83 PNT T2 RJ RE	TSC = 88 DEG F	QU = 423,646 ;:SF
	PINF = 1601.77 PSF	VINF = 699,52 FPS
RUN-PT 69- 2 CONF. L4 C3	H = 2097 PSF	MINF 26325

INLET VELOCITIES, FPS

AVE 458.48	•
15 489.35	
13	
10 12 471.99 475.10	
09 467.62	
457,66	
14 06 436.49	
13¢	
03	!
429.31	
ORI~. VEL.	

EXIT TOTAL PRESSURES PSIA

ORIT. PRES.	13.93	02 14.22	्उ 14.46	04 14,61	35 14.65	06 14.65	07 14.66	08 14•66	09 14.67	10 14.68	1.1 14.69	12 4.68	13
ORIF.	14.65	15	16 14.60	17	18 14.52	19 14.51	20 120 45	21 12.70	22 13.73	23 14,29	<u>e4</u> 14,53	25 4 . 56	

TABLE 1V

VARIABLE GEOMETRY SHROUDED PROPELLER TEST

"RESSURE DATA

.00221 SLUGS/CU FT THETA 3/4 =38.0 DEG 59.444 PSF RHO II II G 56.143 PSF 79 DEG F L4 C1 E6 ~3 PNT T2 R1 RE 7SC 🚆 || |} = 231,79 FPS . = 2036,93 PSF CONF. PINE VINF 70- 9 H = 2097 PSF MINF = .2042

N = 5000 RPM

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 226.24 235.3 223.47 232. 3 235.30 242.57 240.95 243.21 226.96 243.90 235.18 ORIF. VEL.

EXIT TOTAL PRESSURES, PSIA

23 14.56 22 14.56 08 15.07 21 14.52 07 15.05 20 14.42 06 15•04 19 14.83 05 15•03 16.83 04 14.98 17 14.84 3 14,89 16 14.90 15 15.00 02 14.77 14.69 15.11 ORIF. PRES. ORIF.

		L RPM						13	•	
		N = 6001 RPM	FT			i i	* '	12 14.88	25 14·56	
		1	.00223 SLU6S/CU FT	u		AVE 214.79		11 14.88	24 14.56	
TEST	,	HETA 3/4 =28.0 DEG	.00223	60.573 PSF		15 AVE . 219.79	; ; ;	10 14.87	23 14.55	
i i		HETA 3/	RHO =	9		13	F	14.87	22 14.55	
PROPELLER	entero america, estrución de desta de desta esta entero en		E F	pSF	*	10 12 13 217.45 219.20 209.45	*	08 14.86	21	1
SHROUDED	DATA	RE	= 74 DEG F	57.209 PSF	FPS	10 217.45	PSIA	14.85	20,14,36	, , , , , , , , , , , , , , , , , , ,
TABLE TRY SHR	PRESSURE	IT T2 R	150	# 28 #	LOCITIES, F	09 218.90	PRESSURES,	14.84	14.80	
GEONETRY	PR	L4 C1 E6 B3 PNT T2 R1	18 PSF	FPS	VELOC	215.97		05 14.83	14.82	: 4 4 1
VARIABLE		L4 C1 E	: 2034.78 PSF	: 232.99 FPS	INCET	212.09	EXIT TOTAL	14.82	14.86	:
HS VI		CONF	PINE =	NINE :		211.50 216.39 207.41 212.09 215.97	EX	14.80	14.88	
	×	71- 8	PSF	.2062		03		14.75	15.15	
		RUN-PT 7	H = 2096 PSF	MINF		211.50		14.26	14.89	***************************************
		28	- · · · · · · · · · · · · · · · · · · ·	Z		ORIF. VEL		ORIF. PRES.	ORIF. PRES.	· · · · · · · · · · · · · · · · · · ·

TABLE V

HS VG SHROUDED PROPELLER TEST

SHROUD INLET VELOCITIES - FT/SEC

	2134 2136 2136 2136 246 246 246 246 246 246 246 246 246 24		VAVE 186.48- 237.26 359.34
	V15 196•53 231•89 274•93 325•84		7158.0 158.0 24.0 29.0 20.0 20.0
	V13 197.62 236.0 279.13 332.40	i	V13 161.28 204.97 251.46 308.2
R1 AD	V12 203.29 243.09 288.63 344.71	R1 A5	V12 168.52 213.57 265.19 322.96
83 PWT T1	710 205.56 293.08 349.85 349.85	83 P.J.T	V10 172.48 218.73 268.44 328.49
C1 E8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	را و و	2000 2000 2000 2000 2000 2000 2000 200
CONF LS	207 214-55 258-23 307-42 368-63 368-63	CONFLS	707 183.40 233.14 286.77
0 DEC	206 276 376 334 405 405 405 405	OO DEG	VC6 199.48 254.81 317.32
3/4 = 36.00	V04 229.84 277.72 333.55 403.00 403.12	3/4 = 36.00	V24 202.70 255.90 317.61
THETA 3	V03 220.40 278.67 341.57 419.61	THETA 3	V03 215.85 275.65 340.69
□ 0•10	V01 226.62 284.56 349.58 427.01	6] C:	V01 282 • €2 282 • 83 340 • 94 428 • 9¢
č Š	8000 5000 5000 7000 7000	16 æ	RPM 4001 5004 6002 7002
NOW .	<u>σ</u> ⊢ αω 4 τυ ο	ν ν ν-1	┏ ┗ Ⴗ ฌ 4 Ⴊ

132.05 168.05 24.03

> 116.46 142.53 175.9

117.40

182.08 183.08 183.09

111,00 154,15 187,77

131.65 167.05 201.03

142.02 177.03 220.37 264.00

141.01 170.02 210.63 263.75

701 157,56 199.80 243.00 291,42

APM 4000 5000 7000 7001

♥ 00040

V12

. 110

R1 AD

B3 PWT T1

C1 FR

CONF L5

THETA 3/4 = 22.00 DEG

Z~00 ±

Σ

17

ν 5 α ر. ۲۱

TABLE V

HS VG SHROUDED PROPELLER TEST

SHPOUD INLET VELOCITIES - FT/SEC

	VAVE 130.12 172.55 21 .27		VAVA 112444 11266 1266 1276 1276 1276 1276 1276 127		VAVE 89.04 655.03 14.000
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		> 1111		V18 178,31 2 6.14 2 237.77 2
	V13 127.42 155.39 187.5		713 1113 1116 1116 113 113 113 113 113 11		> 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P.1 AD	V12 132.1 16.1.6 16.1.6 19.1 19.1 19.1 19.1 19.	R1 AD	V12 119.89 136.60 155.15 170.30 191.25 210.39 229.53	R1 An	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
B3 PWT T1	V10 132•11 161•90 195•76 228•65	13 PWT T1	V10 96.70 133.92 153.92 192.03 192.05 213.03 234.03 234.03	3 PWT T1	200 100 100 100 100 100 100 100 100 100
C1 E8 E	V09 130•0 169•9 205•8	C1 E8 B	2000 2000	C1 F9 3	0000 0000 0000 0000 0000 0000 0000
CONF LS	707 139.07 170.69 207.92 212.44	CONF LS	VO7 126 • 52 145 • 82 164 • 10. 185 • 01 206 • 04 226 • 83 248 • 76 296 • 57	CONF LS	7.77 1.001 2.001 2.001 2.001 3.001 3.001 3.001 3.001 3.001 3.001
00 0EG	000 146.05 182.95 282.95 262.95	nc DEG	V06 133.87 155.17 176.21 198.83-222.00 246.02) 530 0v	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/4 = 22.0C	704 147.24 182.79 723.97	3/4 = 29.	V04 134 • 10 156 • 72 177 • 40 100 • 13 222 • 06 246 • 54 270 • 93 326 • 18	0,	2001 - 000 2001 - 000 2001 - 000 2000 - 000 2000 - 000 2000 - 000
THETA 3	VO3 148.96 101.17 236.47 270.44	THETA 3.	V03 137•50 160•42 185•31 210•40 235•82 262•11 289•11	THETA 3/4	2
S0.00 =	V01 153•36 196•05 242•50 286•89	= 0.05	VO1 161.39 165.24 190.77 217.18 241.70 267.91 296.98 355.23	0.10	VO1 243.00 294.61 354.28
18	RPM 4001 5000 5993 7003	1 0 E	RPW 3202 3502 4501 4500 5501 7600 7600	20 M	4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N58	g. ⊢ ഗ ພ ∢ സ	2 20 20		S S S	. ⊢иш4п

TABLE

HS VG SHROUDED PROPELLER TEST

à.

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		VAVE 548•29		VAVE 371.•4 38 •8 367.• 9 369.è8
	226464646473488		V15 563•74		V15 382-77 39 -72 362-98 372-85
	V13 199•4 213•05 232•96 256•73		V13 445•15	•	V13 370.57 375.75 403.65
RI AD	V12 207•73 222•83 246•69 278•21 245•21	R1 AD	V12 557•25	R1 AD	V12 377.04 385.68 360.45
B3 PNT T2	V10 204 • 96 220 • 24 247 • 73 278 • 67 245 • 80	B3 PNT T2	V10 553.67	83 PNT T2	V10 374.40 383.35 358.61 358.94
C1 E7	009 206.9 226.4 254.0 288.0	C1 E7 E	V09 554•∺	C1 E7 B	V09 376.8 386.7 367.7 374.1
CONF L4	205.11 223.49 249.99 283.90 247.75	CONF L4	V07 550 • 53	CONF L4	007 370.77 380.56 360.31 363.53
OO DEG	006 198•34 220•37 246•76 282•25 244•13	DEG	V06 541.56	DEG	V06 363.48 373.07 362.71
THETA 3/4 = 30.00	V04 196•11 216•76 242•87 279•06 241•77	THETA 3/4 = 49.00	V04 535.00	374 = 49.00	V04 361•31 371•85 355•45
THETA 3	V03 206.23 225.99 256.78 297.97	THETA 3	V03 545•06	THETA 3,	V03 371.08 382.53 372.11
0.20 =	. V21 204.24 225.01 255.04 294.18 253.39	09•0	V91 537•26	± 0•4₽	. VO1 365.75 376.81 366.67 362.00
Q	5000 5000 6000 7003	20 30	RPM	.¥.	2501 4001 6002 6002
RUN	ያ ተ <i>ሰ</i> ሠ4 የህ የ	v -3	q v	NO.	₽ רטטוטס

TABLE V

HS VG SHROUDED PROPELLÉR TEST

	VAVE 5546.45 557.44 552.57 752.57 752.57		27 V AV 37 V A		VAVE 1755 1 1929.63 215.16
	V15 562. 569.8 524.6 531.72		212 202 203 203 203 203 203 203 203 203 20		V15 166.92 187.82 211.99 244.76
	71		V13 376.07 389.82 403.54		V13 170.25 190.31 216.68
P1, AD	V12 554.93 562.33 571.31 526.33	R1 AD	<12<182<401<401<400<401<401<401<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<403<l><403<403<403<403<403<li< th=""><th>R1 AD</th><th>⇔ o o o o o</th></li<></l>	R1 AD	⇔ o o o o o
83 PNT T2	V10 551.16 559.12 563.55 569.92 530.75	83 PNT T2	V10 379.48 398.83 419.95	B3 PNT T2	V10 169.06 189.42 212.28
C1 E7	V09 552.3 561.4 571.1	C1 E7	V09 374.1 403.1 419.1 460.3	C1 E6 B	V09 175°2 191°8 215°4 244°C
CONF L4	707 547.88 551.11 565.94 573.19	CONF L4	707 377.45 396.49 420:11 452.70	CONF L4	VO7 179•49 196•92 220•56 250•63
OO DEG	006 539.37 547.69 558.02 520.27	D F G	V06 370-92 382-16 415-76	DEG	V06 181.04 197.40 218.57 245.51
/4 = 43.00	V04 532.26 545.23 550.57 567.26	3/4 = 43.00	V04 367.22 386.54 410.73 445.19	'4 = 28•∩0	V04 182.42 197.08 219.10 244.60
THETA 3/4 =	V03 544•15 551•60 561•12 574•79	ТНЕТА З,	V03 374.84 397.21 422.47 460.82	THETA 3/4	VA3 176•74 190•15 208•66 229•25
09•0	V01 535.25 543.75 548.28 570.67	0.40	V01 368.80 391.47 418.93 454.91	0.20	V01 183.22 199.23 219.75 244.61
£ 32 ₹	RPM 6053 6503 7003 7506	X	RPM 4052 5002 6002 7002	72 M	APM 4000 5001 5999 7000
RUN	T 4 20 0 F	₹ 7-4	<u>σ</u> ⊢иш4π	N N N	T ⊢ И Ш 4 Ю

TABLE V

HS VG SHROUDED PROPELLER TEST

	VAVE 315.73 329.13 349.23		A A C C C C C C C C C C C C C C C C C C		VAVE 325.37 34.92 359.57 369.15
-	218 211. 311. 338. 361. 961.		✓ 13.5✓ 43.5✓ 43.6✓ 72.5✓ 56.5		V15 3 7 · 81 324 · 91 336 · 88
	V13 302.96 317.94 341.885	•	V13 4037-94 448-16 464-494		V13 314-84 331-54 344-59 358-25
R1 AD	V1 301 315 337 362	R1 AD	V12 436.21 445.59 460.00	R1 AD	V12 311.00 326.10 339.29
B3 PNT 12	V10 307.23 321.39 345.11	83 PNT 12	V10 443.13 453.32 469.51	B3 PNT T2	V10 315.60 333.91 348.31 362.68
C1 E6	V09 315.7 328.5 349.4 375.4	C1 E6	V09 455•1 463•1 479•1	C1 ES	V09 324.8 341.3 353.9
CONF LA	V07 320.84 336.26 357.47	CONF L4	V07 463.75 473.41 487.43	CONF L4	707 332-21 349-11 363-93
OO DEG	V06 323•16 336•21 356•37 383•32	no des	V06 457.95 476.37 489.46	DEG	006 333.79 348.29 363.47 279.26
THETA 3/4 = 41.00	V04 327.57 340.53 359.53 385.33	THETA 3/4 = 41.00	V04 472.75 480.23 494.88	3/4 = 47.00	V04 337.65 352.40 367.34
THETA	V03 325.59 333.81 345.42 363.47	THETA 3	V03 467.21 472.88 481.91	THETA 3	V03 331.58 341.06 352.97 366.84
M = 0.40	V01 335-87 349-38 365-47 389-30	09*0 =	V01 481•78 489•76 502•70	0.40	V01 344.41 359.70 374.99 391.92
H E7	RPM 4001 5001 6000 7001	7 A	RPM 55558 6004 7003	75 M	A000 5002 6001 6951
NOW	ፓ ⊢ ጣ ພ 4· RU	V- 5	t u m 4	NOW	T 0 € 4 €

母母

TABLE V

HS VG SHROUDED PROPELLER TEST

25	76 H	09.0 = 1	THETA 3	3/4 = 47.00	DEG	CONF L4	L4 C1 E6	BR PNT		T2 R1 AD	
T d	A CA	107	V03	407	907	407	607	V10	0	V12	>
0	4504	482.95	471.12	39	469.09	•	455.0	444	• 55 4	437.37	440
n	5000	494.26	477.61		479.35		46.7.2	457	457:91	450.21	452
*	6003	505-16	484.76	497.25	492.23		481.3	471	• 05	462.16	467
n	6802	518.94	494.48	513,35	508 • 16		497.9	489	• 56	478.94	485
ø	6002	505,24	485.05	496.77	491.61	488.88	481.1	4.71	•84	462:59	467
^	5001	493.85	478.69	484.93	478.96		467.2	450	.81	449.01	452

TABLE VI

HS VG SHROUDED PROPELLER TEST

TRAVERSING PROBE DATA

DEG	SLUGS/CU FT		VTP VPR FPS FPS	1.66 212 3.62 265 9.34 265	277.95 260.05 320.42 286.71 245.97 237.06	DEG	SLUGS/CU FT		VTP VPR FPS FPS	172.60 148.11 249.51 235.02 298.13 250.11 277.42 245.74 319.86 278.11 336.72 287.07 274.59 261.25
11 R1 RE TP THETA 3/4 = 29.0	TSC = 74 DE6 RH0 = 0.00232	9 = 0.62 PSF N = 7000 RPM	ZETA THETA TTP PT PS DEG DEG F PSIA PSIA	-42.79 71 15.16 1 -39.30 71 15.30 1 -26.30 70 15.19 1		R1 RE TP THETA 3/4 = 29.0	TSC = 74 DEG RHO = 0.00231	0 = 3.74 PSF N = 7000 RPM	ZETA THETA TTP PT PS DEG DEG F PSIA PSIA	2.00 28.69 69 14.88 14.64 0.80 -16.48 69 15.01 14.50 8.00 -32.10 70 15.16 14.43 7.80 -26.61 70 15.11 14.48 8.10 -28.57 71 15.22 14.38 1.80 -31.47 72 15.28 14.35 5.20 -17.18 72 15.11 14.50
RUN 22 CONF. LS CI E8 B3 PWT T	H = 2133 PSF PINF = 2132 PSF	M = 0.0230 VINF = 23.12 FPS	PT NO DISTANCE D Z	17.00 15.00 10.00	5 10.00 (6500 RPM) 8 6 10.00 (7500 RPM) 8 7 6.00 11	RUN 23 CONF. LS C1 E8 B3 PWT T1	H = 2131 PSF PINF = 2127 PSF	M = 0.0503 VINF = 56.88 FPS	PT NO DISTANCE D ZI	2 6.00 4 10.00 5 10.00 (6500 RPM) 7 6 10.00 (7500 RPM) 8 7 15.00

TABLE VI

HS VG SHROUDED PROPELLER TEST

TRAVERSING PROBE DATA

				, x
	FT		VPR FPS	208.02 266.73 254.11 247.95 278.30 253.96
DEG	RHO = 0.00230 SLUGS/CU FT	1	VTP FPS	273.00 342.98 301.82 280.63 324.56 257.32
THETA 3/4 = 29.0 DEG	00230	RPM	PS PSIA	900 c c c c c c c c c c c c c c c c c c
4 3/4 =	· 이 비 우	N = 7003	PT	15.06 15.06 15.00 15.00 16.00 16.00
THET/			TTP DEG F	1222211
RE TP	= 76 DEG	15.75 PSF	THETA	-40.28 -38.95 -27.39 -30.24 -2.64 32.11
CONF. L5 C1 E8 B3 PWT T1 R1 RE TP	TSC =	 G5:	ZETA DE6	2 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 .
33 PWT	5 PSF	FPS		RPM)
1 E8 E	NF = 2116 PSF	= 117.08	۵	(6500
F. LS (PINF	VINF =	DISTANCE (17.00 15.00 10.00 10.00 6.00
	PSF		SIO	
- 24	= 2132 PSF	M = 0.1022	9	
X CN	I	X	PT NO	0 4 6. U F U D

			ex rv	90	r) ±	2 4	61	5	22	92	39	12
	Ħ		VPR	146.	120.	408.	463.	550.	504.	405	575	481
DE6	RH0 = 0.00207 SLU6S/CU		VTP	495.09	579.25	408.66	464.47	557.39	515,18	417.48	580.64	491.92
43.0	00207	RPM	PS PSIA	13.22	12.83	13,41	13.26	12.91	13.11	13.44	12.83	13.23
THETA 3/4 = 43.0	.0 .0	= 7000	PT	5.11	5,43	4.70	4.93	5,31	5,15	4.78		5,09
THETA		Z	TTP DEG F	84	84	11	80	1 0	84	80	86	86
RE TP	= 84 DEG	224 -16 PSF	THETA	-10.04	.28	22	16	.65	2,85	6.08	.31	-9.60
PNT T2 RI RE TP	150	11	ZETA DE6	72.50	78.00	9.	3.50	8.70	11,50	12.20	7.70	7.20
3 PNT	PSF	FPS		•	• -		RPM)				٠	
L4 C1 E7 B3	1NF = 1876	:: 465.37 FPS					(5500					
_	PINF :	11	DISTANCE D IN	.75	00•	000	00.	00.	00.	69*1	12.00	7.70
55 CONF.	PSF	3 VINE	OISTA	7.7	75	12	12	5	Ψ	-	12	7
	2109 PSF	M = 0.4133	9				_				_	
₹ 5	II	II T	PT NO	N	M	+	ល	Q	_	90	6	10

TABLE VI

HS VG SHROUDED PROPELLER TEST TRAVERSING PROBE DATA

	SLUGS/CU FT	•	VTP VPR FPS FPS	7.17 54 7.72 61 5.20 59	5.53 613.4 3.85 575.5		SLUGS/CU FT		VTP VPR FPS FPS	25 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6
74 = 43.0 DEG	0182		PS PSIA	61 12.35 55 84 12.07 61 71 12.17 59 94 11.97 64	1 12.15 61 7 12.31 58	4 = 32.0 DEG	0.00206	7000 RPM	PS PSIA	77 13.49 409.409.409.409.409.409.459.459.459.459.459.459.459.459.459.45
E TP THETA 3/4 =	96 DEG RHO :	450.06 PSF N = 7	THETA TTP POSE OF PS	0.49 90 14 06 94 14 17 93 14	95 14	TP THETA 3/4	88 DEG RHO =	PSF N H	THETA TTP PT DEG DEG F PSI	36 84 14 69 84 14 76 84 14 76 84 14 76 82 14 53 82 14
PNT T2 R1 RE	PSF TSC =	FPS 0 = 450	ZETA T DEG	- 100 m	·	PNT T2 R1 RE	PSF TSC = {	FPS 0 = 224.47	ZETA TH	7.00 3.50 2.00 3.50
· L4 C1 È7 B3	PINF = 1614 F	VINF = 703.16 F	ANCE D IN	14.75 12.00 12.00 (6300 RP 9.00	69.4	L4 C1 E7 B3	PINF = 1877 P	VINF = 467.19 FI	ANCE D In	4.69 6.00 9.00 2.00 4.75 (8000 RPM)
RUN 56 CONF.	H = 2111 PSF	M = 0.6311 V	PT NO DISTAN	എഎ്ല് വേഗദേശം		RUN 57 CONF.	H = 2111 PSF	M = 0.4134 V	PT NO DISTANC	# 15 15 15 15 15 15 15 15 15 15 15 15 15

TABLE VI

HS VG SHROUDED PROPELLER TEST TRAVERSING PROBE DATA

	J FT		VPR FPS	314.05 331.20 332.05 466.35 354.05 269.91
DEG	RH0 = 0.00222 SLUGS/CU FT		VTP FPS	321.64 394.99 334.94 475.44 392.68 366.12
THETA 3/4 = 30.0 DEG	.00222	O RPM	PS PSIA	14.14 13.92 14.08 13.66 13.92 14.01
FA 3/4	0 = 0H2	N = 7000	PT PSIA	14.96 15.15 14.97 15.45 15.14 14.91
THE			N TTP DEG F	83 83 83 83 84 84 85 85
RE TP	= 81 DEG	61.12 PSF	THETA DEG	-9.20 -83 31 10
L4 C1 E7 B3 PNT T2 R1 RE	150	II •	ZETA DEG	7,40 7,90 6,40 9,90 10,90 14,70
B3 PN.	9 PSF	3 FPS		RPM M
C1 E7	= 2049	= 234.73 FPS	۵	0009)
	PINF	VINF =	DISTANCE D IN	14.75 12.00 12.00 9.00 6.00
58 CONF.	= 2111 PSF	₩90	ŠÍO	
S NOV	H = 211	M = 0.2064	PT NO	ころもららでら

,	FT		> [288 354 354 3690 316 316 316
DEG	RHO = 0.00222 SLUGS/CU FT		VTP FPS	306.98 366.98 392.28 394.36 333.55 475.49
THETA 3/4 = 30.0 DEG	00222	RPM	PS PSIA	14.16 113.93 113.93 14.08
4 3/4 :	'0 # 약	N = 7000	PT PSIA	14.91 15.08 15.08 15.16 14.97
THET/		•	TTP DEG F	76 78 78 76 76
RE TP	= 80 DE6	60.75 PSF	THETA DEG	1.50 1.76 1.21 1.16 1.16 1.34
NF. L4 C1 E7 B3 PNT T2 R1 RE TP	TSC :	 }	ZETA DEG	18.40 16.70 10.80 8.10 6.30 7.80
33 PN	PSF	FPS		RPM)
C1 E7 E	PINF = 2051 PSF	VINF = 233.74 FPS	0	0009)
F. L4	PINF	VINF II	STANCE D	4.69 6.00 9.00 12.00 12.00 14.75
ខ	PSF	157	615	•
29	H = 2112 PSF	M = 0.2057	9	
2 2 8	I	II Z	0N % %	ひょうら するこ

TABLE VI

HS VG SHROUDED PROPELLER TEST

TRAVERSING PROBE DATA

	<u></u>		> r 9 9 8 0	282.05 351.24 358.73 305.65 421.95 335.13
DEG	SLUGS/CU FT	·	VTP	290.78 355.26 364.67 309.41 430.83 345.90
28.0	+22000=	RPM	PS PSIA	14.09 113.93 14.03 113.69 113.69
THETA 3/4 = 28.0 DEG	RH0 = 0.	= 6500	PT PSIA	14.77 14.94 14.96 115.19 114.91
THET	EG R	SF N	TTP DEG F	66 67 69 69 65
RE IP.	= 70 DEG	60.42 PSF	THETA DEG	12.97 2.68 3.68 1.98 6.59
L4 C1 E6 B3 PNT T2 R1 RE	TSC :	11 3	ZETA Deg	5.50 7.90 10.00 8.30 11.30 14.20
B3 PN1	1 PSF	5 FPS		RPM)
C1 E6	INF = 2031	232.0	۵	(5500
77 CONF. L4	<u>a</u>	VINF = 232.05 FPS	DISTANCE D IN	14.26 12.00 10.00 10.00 6.69
	H = 2092 PSF	= 0.2062		
RUN	I	II E	PT NO	のよのられをで

				**
	. FT	•	> F F S S	384.07 402.64 433.63 378.08 487.72 416.14
DEG	SLUGS/CU FT		VTP	388.09 404.43 434.52 378.35 490.25 416.85
30.0	= 0.00208	RPM	PS PSIA	13.49 13.42 13.29 13.11 13.35
THETA 3/4 = 30.0 DEG	RH0 = 0.	= 6500	PT PSIA	14.65 14.68 14.74 14.53 14.97
THET/	EG R	SFN	TTP DEG F	76 78 78 74 73
RE TP	= 76 DEG	222.93 PSF	THETA Deg	2.04 2.37 2.13 2.83 17.86
T2 R1	TSC	11	ZETA DEG	8.00 5.30 2.80 5.10 1.70
C1 E6 B3 PNT T2 R1 RE TP	= 1859 PSF	462.59 FPS		(5500 RPM)
79 CONF. L4 C	PINF	VINF =	DISTANCE D IN	4.69 6.69 10.00 10.00 12.00
	2092 PSF	= 0.4139		
R S S	II I	II	PT NO	るとの られをで

TABLE VI

HS VG SHROUDED PROPELLER TEST

TRAVERSING PROBE DATA

	FT		YPR PPS	652 603 525 663 665 665 665 665 665 665 665 665 66	7 H
DEG	= 0.00180 SLUGS/CU FT		VTP FPS	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
THETA 3/4 = 41.0 DEG	00180	RPM	PS PSIA	125.13 125.13 125.13 125.23 125.23	-
3/4 =	RH0 = 0.	= 6500	PT	14,37 14,37 14,79 14,77 15,09	1
THETA	.G R	SF N	TTP DEG F	98 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7
RE TP	= 94 DEG	= 450.27 PSF	THETA DEG	123 11.75 11.69 11.69 11.69	ナま・ト
E6 83 PNT T2 R1 RE TP	TSC :	11	ZETA	32 30 30 30 30 30 30 30 30 30 30 30 30 30	1 - 1 13
33 PNT	PSF	FPS		RPM)	
1 56	= 1592	NF = 706.50	_	(5500	
CONF. L4 C1	PINF	VINF =	DISTANCE D IN	14.26 12.00 10.00 10.00 6.69	トコート
08	2090 PSF	= 0.6356			
R C N	II I	11 2	PT NO	なようられるこ)

VARIABLE GEOMETRY SHROUDED PROPELLER TEST

¥

PRESSURE DATA

N # 7000 RPM .00232 SLUGS/CU FT THETA 3/4 =29.0 DEG 1.160 PSF R75 II II G 74 DEG F 1.144 PSF LS C1 E8 B3 PWT T1 R1 RE TP 1SC = 11 23 PINF = 2131,84 PSF 31,63 FPS VINF = CONF. 22- 4 MINF = .0279 H = 2133 PSF アロートレイ

SHROUD SURFACE PRESSURE COEFFICIENTS

LEO 01 02 04 06 08 10 125 15 15 20 25 25 25 25 25 15 15 52-114,68-114,45 30 35 40 50 60 70 80 90 92 94 96 98 S18-105.51-80.749-73.106-38.026-27.493-18.264 -4.002 -4.825 -2.563 m2.873 -2.378 -1.448 S2T .908 1.093 .567 .846 .444 .660 .475 .538 -6.147 .815 .877 .754 .661 .907-19.947 -5.778

150 194

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 362.39 353.71 326.20 325.62 296.28 295.53 274.56 270.72 259.37 253.83 301.82

11 15,16 24 15,28 15.14 23 15,31 09 15.12 22 15.31 08 15,10 21 15,31 15,08 20 15,30 EXIT TOTAL PRESSURES, PSIA 06. 15.06 19 15,28 05 15.04 18 15•28 04 14,99 17 16 15,25 14.91 02 14,87 15,23 15 14.81 15.22

ORIF.

12 13 15.19 15.21

25 15,21

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

.00232 SLU65/CU FT THETA 3/4 =29.0 DEG .655 PSF RHO II 11 G 74 DEG F .646 PSF L5 C1 E8 83 PWT T1 R1 RE TP TSC = ။ ကွ PINF = 2132,34 PSF VINF = 23,77 FPS CONF. 22- 5 MINF = .0210 H = 2133 PSF RUN-PT

N II 6500 RPM

SHROUD SURFACE PRESSURE COEFFICIENTS

TE0 LEO 01 02 04 06 08 10 125 15 175 20 25 25 16-238.94-206.03-190.07-171.10-171.76 30 35 40 50 60 70 80 90 92 94 96 98 S21 .782 85-109.83-68.235-44.204-28.256 8.184 -7.412 -4.828 -4.938 -3.893 2.354 S2T .782 .570 1.165 .341 .835 .451 .560 .291-11.327 345 .182 .509 . 236 1.330-26.434 -7.073

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 329.24 321.62 299.13 298.81 270.73 270.27 250.64 247.34 236.92 231.96 275.67

EXIT TOTAL PRESSURES, PSIA

09 10 11 12 13 15.07 15.10 15.12 15.14 15.15 24 15,20 23 15,22 22 15.22 08 15.06 21 15,22 07 15,04 20 15,21 06 15,03 19 15,20 18 15,19 05 15.01 17 15,19 04 14.98 14.90 16 15,17 15 15,16 14,87 01 14.82 14 15,15 ORIF. PRES. ORIF. PRES.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N II 7500 RPM .00232 SLUGS/CU FT THETA 3/4 =29.0 DEG 1.234 PSF RHO 11 () () 74 DEG F 1.218 PSF LS C1 E8 B3 PWT T1 R1 RE TP 1SC = 11 13 13 PINF = 2131.77 PSF 32,63 FPS VINF = CONF. 22- 6 MINF = .0288 H = 2133 PSF RUN-PT

SHROUD SURFACE PRESSURE COEFFICIENTS

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 395.39 385.59 357.22 357.04 323.11 322.81 299.76 296.34 283.60 276.56 329.74 ORIF. VEL.

EXIT TOTAL PRESSURES, PSIA

12 15.24 25 15,27 24 15,37 10 15.18 23 15.41 08 09 15,13 15,16 22 15.42 20 21 15,40 15,41 15,11 06 15,09 19 15,38 05 15.06 18 15,37 04 15.01 17,15,35 03 14,91 16 15,33 02 14,86 15,30 01 14.81 14 15,29 ORIF. PRES. ORIF. PRES.

TABLE VII

TEST
PROPELLER
SHROUDED
GEOMETRY
VARIABLE
¥.

PRESSURE DATA

RUN-PT 23- 4	L CONF. LS CI EB B3 PWT TI RI RE	RE	THETA 3/4 =29.0 DEG N = 7002 RPM
H = 2131 PSF	PINF = 2127,44 PSF TSC =	TSC = 74 DEG F	RHO = .00231 SLUGS/CU FT
MINF = .0489	VINF = 55.43 FPS QU =	QU = 3.508 PSF	9 II 3.556 PSF

SHROUD SURFACE PRESSURE COEFFICIENTS

25	966.
20 37.174-	96798
04 06 08 10 125 15 175 20 25 3.825-62.031-60.783-59.099-51.502-44.097-40.815-37.174-37.114 .425 .940 .850 .790 .780 .890 .880 -1.379	96
15 44, 097-	92
125 51.502-	90 -1.677 .062
10 59.099-	80 90 -1.799 -1.677 .274 .062
50.783-	-6.119 -294
06 62.031-0	60 -9.598 -
04 53.825- .425	50 .016 .597
02 +3.012-:	40 24,375-13
.E0 01 02 215-40.973-43.012-53. -8.890 .950	30 35 118-34.284-26.586-24 121 .609
LE0	30 4.284-2
518-19.2. S2T	S18-3 S2T

INLET VELOCITIES, FPS

AVE 304.19
15 259.09
13 266.08
12 276.36
10 278.42
09 298,35
07 298.56
06 326,80
04 328•45
03 351.03
01 358.71
ORIF. VEL.

12 H	
12,14	25 15, 20
11, 15, 12	24
10 15.11	23
09	22
15.09	15.28
08	21
15.07	15.28
07	20
15,04	15.27
06 15,01	19,25
05	17 18
14,99	15.23 15.24
14.97	17
03	16
14.38	15.22
02	15
14.84	15,21
01	14
14.79	15.13
ORIF.	ORIF.
PRES.	PRES.

GEOMETRY SHROUDED PROPELLER VARIABLE

Z.

PRESSURE DATA

.00231 SLUGS/CU FT THETA 3/4 =29.0 DEG RHO == CONF. L5 C1 E8 B3 PWT T1 R1 RE 23- 5 H = 2131 PSF RUN-PT

N # 6500 RPM

3.775 PSF

II G

74 DEG F 3.724 PSF TSC = ။ ∂¢ PINF = 2127.22 PSF VINF = 57,12 FPS MINF = .0504

COEFFICIENTS PRESSURE SHROUD SURFACE

LEO 01 02 04 06 08 10 125 15 175 20 25 S1B-13.816-31.379-33.246-41.908-48.847-47.526-46.550-40.807-35.007-32.093-29.444-29.434 S2T -5.652 .934 .725 .736 .717 .755 .868 .887 .802 -1.233

92-30 35 40 50 60 70 80 90 S18-27.443-21.459-19.419-12.292 -7.756 -4.850 -1.725 -1.388 S27 .584 .530 .582 .354 .316 .135 .135

1E0

98.

96 -.579

94-

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 325.22 319.32 299.02 297.65 273.31 272.62 254.77 253.65 244.41 238.02 277.80

EXIT TOTAL PRESSURES, PSIA

12 13 15.09 15.11 .25 15,12 11 15,08 24 15,18 15,07 23 15,19 09 15.06 22 15,19 21 15,19 04 05 06 07 08 14.95 14.97 14.99 15.01 15.04 17 18 19 20 15.16 15.17 15.18 15.18 03 14.87 16 15,15 15,14 01 14.78 14 15,13 ORIF. PRES. ORIF. PRES.

TABLE VII

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

A		
7500	_	
11	·L	
Z	2	
THETA 3/4 =29.0 DEG N = 7500 RPM	RHO = .00231 SLUGS/CU FT	F
0.0	31	a.
129	00	920
ŧ	•	3.920. PSF
n	11	
THETA	A C	II G
	L	SF
	DEG	ā.
	3	96
Æ	_	n
Ŕ	15C = 74	QU = 3.866 PSF
+	150	"
E8 83 PWT T1 R1 RE		Ø
b) Tr	= 2127.08 PSF	Ŋ
isi 	ă	,20 FPS
E	• 06	20
CI	127	•
L5 C	<i>N</i>	= 58
•	ii Le:	
TY.C	PINF	VINF
CONF.	•	
•	SF	13
23- 6	ā.	00
W	131	= ,0513
F _d	H = 2131 PSF	
₹UÑ-PŢ	I	MINT
K		

SHROUD SURFACE PRESSURE COEFFICIENTS

	150 157
25,445	98 • 393
06 08 10 125 15 175 20 25-66,810-65,400-63,631-55,006-47,238-43,685_39,197-39,445	96 796
175 43.685	94.
15 47,238– 691	92 -,851
125 55.006-	90 -1.694 .195
10 63.631-	60 70 80 90 10.173 -6.449 -1.915 -1.694 .579 .350 .387 .195
08 65.400-	70
06 56.810-	60 10,173
58.323- 044	50 14.698-
02 46.685-	40 25.596-
01 45.017- 10.861	35 29.145-
LEO 01 02 04 S18-21,778-45,017-46,685-58,323-6 S2T -10.861 ,927044	30 35 40 50 18-35.592-29.145-25.596-14.698-1 2T .709 .817 .588
S18-	518- 52T

INLET VELOCITIES, FPS

AVE 331,47
15 282.06
1 289.30
12 301.2
10 303,00
09 325,22
324.83
357.14
357.68
03 362,76
01 391.54
ORIF. VEL.

:	
13 15.22	
12 15,19	25 15,30
11,11,15,17	24 15,37
10. 15.15	23 15,39
15.13	22 15.39
08 15.10	21 15,38
07 15,07	20
06 15,04	15,34
05 15.02	18 15,33
04 14.98	17
03 14.89	16 15,30
02 14,83	15 15,28
01 14.78	14
ORIF. PRES.	ORIF. PRES.

VARIÀBLE GEOMETRY SHROUDED PROPELLER TEST

Ę

PRESSURE DATA

N # 7003 RPM .00230 SLUGS/CU FT THETA 3/4 =29.0 DEG 15.676 PSF RHO II II G TSC = 76 DEG F 15,463 PSF LS C1 E8 B3 PWT T1 R1 RE ။ ၁၉ PINF = 2116,28 PSF VINF = 116,81 FPS CONF 24- 4 MINF = .1029 RUN-PT

SHROUD SURFACE PRESSURE COEFFICIENTS

. 030 02 04 06 08 10 125 15 175 20 25 -6.970-10.194-12.332-12.783-12.811-11.247 -9.665 -8.981 -8.071 -8.256 .998 .294 .308 .271 .248 .239 .251 .244 .358 96 -94 950.-518 -7.669 -6.377 -5.977 -3.060 -2.303 -1.428 527 .403 .508 .419 .284 .183 -.854 -5.758 . S18 **S2**T

150 193

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 356.24 351.88 336.99 336.89 309.97 311.21 293.39 291.98 283.01 277.92 315.15

EXIT TOTAL PRESSURES, PSIA

10 11 15,08 15,10 24 15.22 23 15,23 09 15,06 22 15.23 08 15.04 21 15,23 07 15,02 20 15,22 06 15.00 15 16 17 18 19 15.17 15.19 15.20 15.20 15.21 03 04 05 14.90 14.96 14.99 02 14,83 14 15.16 01 14.75 ORIF. PRES.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 6500 RPM .00230 SLUGS/CU FT THETA 3/4 =29.0 DEG 15.398 PSF RF6 11 II G QU = 15,189 PSF TSC = 76 DEG F CONF. LS C1 E8 B3 PWT T1 R1 RE PINF = 2116,56 PSF VINF = 115,77 FPS 24- 5 MINF = .1019 H = 2132 PSF RUNIPT

SHROUD SURFACE PRESSURE COEFFICIENTS

LEO 01 02 04 06 08 10 125 15 175 20 25 -372 -4.560 -5.637 -8.531-10.986-10.897-10.928 -9.729 -8.331 -7.675 -6.999 -7.065 -9.72 -4.560 -5.989 .139 .194 .159 .157 .136 .139 .115 .303 98 011 96 -.057 94-92 90 -279 -079 .381 .123 518 -6.628 -5.604 -5.237 -3.142 -2.029 -1.281 S2T .192 .442 .416 .295 .146 S1B S2T

7E0

INLET VELOCITIES, FPS

01 03 04 06 07 09 10 12 13 15 AVE 327.30 322.79 309.54 308.72 286.89 286.56 270.98 270.51 262.47 257.49 290.33

EXIT TOTAL PRESSURES, PSIA

12 15.06 11 15.05 24 15,13 10 23 15,15 15.03 22 15,15 08 15,02 21 15,15 07 15,00 20 15,14 14,97 18 19 15.14 15.14 05 14,95 17 03 04 14.89 14.93 16 15.13 02 14.82 15,11 14.74 14 15•10 ORIF. PRES. ORIF. PRES.

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N II 7500 RPM .00230 SLUGS/CU FT THETA 3/4 =29.0 DEG 15.094 PSF REG 11 # G 76 DEG F QU = 14.888 PSF CONF. L5 C1 E8 B3 PWT T1 R1 RE **TSC** = PINF = 2116.87 PSF VINF = 114,61 FPS 24- 6 H = 2132 PSF MINF = .1009 RUN-P1

SHROUD SURFACE PRESSURE COEFFICIENTS

1E0 98 LEO 01 C2 04 06 08 10 125 15 175 20 25 518 -1.575 -7.478 -8.853-12.743-15.237-15.710-15.701-13.716-11.629-10.979 -9.831 -9.984 527 .779 1.003 .455 .372 .318 .313 .280 .304 .273 .330 -.113 94 92 •.156 90 • 394 • 078 80 -.565 .149 50 50 70 70 518 -9.130 -7.830 -7.145 -4.113 -2.817 -1.760 527 .512 .587 .420 .294 .144

INLET VELOCITIES, FPS

01 03 04 66 07 09 10 12 13 15 AVE 389.20 382.28 364.50 364.94 334.38 334.67 315.02 314.82 304.43 298.5₁ 340.28

15,11 15,12 15,14 15,16 24. 15,29 23 15,33 22 15.33 21 15.10 15.07 20 15,32 EXIT TOTAL PRESSURES, PSIA 15.04 15,29 15.00 18 15•28 16 17 15,26 15,27 03 04 14.90 14.97 02 14,82 15,24 14 15.22 ORIF. PRES. ORIF. PRES.

TABLE VII

HS VARIABLE SEDACTRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG N = 7001 RPM	RHO = .00207 SLUGS/CU FT	@ = 223,438 PSF
PAT TO RI RE TO	TSC = 84 DEG F	W. = 211.030 PSF
CONF. L4 C1 E7 B3	354 68.5751 = 7: Ia	VI F = 464.55 FPS
Kimept 85-3	n = 2109 PSF	MINF = .4125

SHROUD PRESSURE COEFFICIENTS

	7E0
1.021 061	98 296
200. 000. 004. 04.	96 330
175 .050 042	94° 34°
15 .027 029	92
125	90 346 151
10 045 011	367
8 4 6 8	70 378 202
052	.373 065
074 078	
05. 107 064	0 4 C C C C C C C C C C C C C C C C C C
01. 189	35 015 074
986	30 015 056
ທຸນ ໝາ-	ກ I- ທັ ທ ິ
1	/II - 10

INLET VELOCITIES. FPS

AVE 449.20
15 450÷09
13
12 450,92
10,644
05°654
07
05
04 443.28
03
01
OR F

15.43	
12	25 14.65
11 15,36	24 14.65
10	23
15.24	22
08 15.17	21,43
07 15.10	20
05 15.04	13 15,33
05 15•03	15.36 15.36
34.36	17, 29
03	16
02	15
10°41	15. 15.
P. X.	CH. T.

V11	
ABLE	

大きり

AS VAPIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG N # 4304 RPM	RHO = .00207 SLUGS/CU FT	@ = 223.793 PSF
E7 33 PMT T2 81 RE TP	TSC = 84 DEG F	00 = 211,364 PSF
55-4 COM, L4 C1 E7 33 PA	PI,F = 1875.51 FSF	VINF = 454.95 Pps
RUN-PT 55- 4	H = 2109 FSF	MINF = ,4129

SHROUD PRESSURE COEFFICIENTS

	7E0
135	0.0 84 89
20 308 139	96 268
175 .327 -138	94 • 275
15 3337 - 139	92 .278
125 354 -129	90 284 120
10 384 -137	80 292 037
08 •495 •169	70 00 00 00 00 00 00 00 00 00 00 00 00 0
06 434 -178	60 292
34 499 206	50
0.2 608 355	9.55.9
01 780 424	35 223 36
LE3	30.270
N'N	<i>w</i> w
	VII-11

INLET VELOCITIES, FPS

AVE 379.94
15 392.04
13 376.86
12 386,35
383.21
09 385,94
379.99 3
06 372•14
մե 369 _• 45
03 379.36
374.00
OR F

EXIT TOTAL PPESSINES, PSIA

13	
12.74	25 14.65
11 14.75	24 14.65
10,10	23
14.75	22 14•64
08 14.74	21
14.73	20 14.65
26 14.73	19 14,67
95 14.73	18 14•69
54 14.70	17
03 14.53	16 1+,72
52 14.43	15 14.75
01 14.26	14 14 13
P.K.S.	20 gr 7. X. X. Y.

HS VAPIDBLE GEOMETRY SHROUDED PROPELLER TEST

PRESSUME DATA

ر ا ا		
THETA 3/4 =43.0 DEG N = 5503 RPM	. RHO = .00207 SLUGS/CU FT	0 = 223,324 PSF
1 E7 B3 PNT TO R1 RE TP	TSC = 84 DES F 7 RHO	301 = 216,922 PSF
55- 5 COW. L4 C1 E7 B3 P4	PI F = 1376.02 PSF	VI F = 464.42 FPS
RUN-eT 55- S	H = 2109 FSF	WINF = 4124

SHAOUD PRESSURE COEFFICIENTS

	750 .274
25 171 106	98 . 265
. 000 000 000 000	96 .289
175 -260	968
15 238 091	305
125	301
10 -272 -072	30 317 055
000 000 1	700. 700.
311 099	60 .319 693
.362 103	50 311 126
094. 1056	66 55 10 10 10 10 10 10 10 10 10 10 10 10 10 1
01 .604 -18G	35 139
LE0.	30 180 - 095
ره بر اد	n ⊢ n ⊢
v	I -1 2

INLET VELOCITIES, FPS

AVE	403,06
15	391.35 410.38
13	391.35
12	407.69
ů.	405,11
60	410,23
70	#0# 0E
90	395,06 396,84
90	395,06
63	407.73
01	402.11
OR. FI	VE,

13 14.95	
12.14.94	25 14•64
11	24 14.65
10 14.92	23 14.65
09 14.92	22 14•64
06 14.92	21.44.10
67 14.90	200 14.000
98° # र	00° 11° 10° 10°
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	18
04 14•76	17
67 14.64	10. 14.93
02 14.51	44 45 • 40 6
01 14.45	なったなったなった。
OK. F.	האיר האיר הייר

TABLE VII

HS JARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

Z Q		
THETA 3/4 =43.0 DEG N = 7001 RPM	RHO = .00182 SLUGS/CU FT	454 664 644 E
ST 63 PAT TE RI RE TP	TSC = 96 0EG F	QU = 424,819 PSF
56- 3 CO.F. L4 C1 E7 83 P	PI'F = 1614.65 PSF	VI ;F = 702,90 FPS
RU:1-PT 56- 3	H = 2111 PSF	MINF = .6308

. SHROUD PRESSURE COEFFICIENTS

	150 295
25.17.	27.
20 • 649 • 144	96 299
175 464 -148	94 310
15 346 -141	92
125 .368	90 315 133
10 389 132	. 331 . 048
05 •410 •168	330
06 .439 -1.79	60 329 -126
503	50 331
025 380 333 333	40 267
.781 -362	233
. 699	. 282 - 136
ง.ง ¤ ⊢ั	N W
v:	II - 13

INLET VELOCITIES, FPS

	AVE	569.68
	12	583.21
	13	559.93
	12	577,90
	01.	573,74
*	70	571.77 517,52
·		
,	:t O	.558,01.563.14
1 ,	0.3	-
	10	561.56 570.0
ţ	OR F	VE,
•		1

13. 15.02	
12 15.02	25 14.66
11. 15.02	24. 14.66
10 15.00	23 14.66
09 15.00	22 14.66
08 14,99	21 13,15
14.97	20
06 14,96	19
05 14.93	18 14.è3
94 14•78	17
03 14.51	16 14,95
02	15
01 13.86	14,15.01
P. R. R. S. R. S.	ox T. X.

TABLE VII

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =43.0 DEG N = 6303 RPM	RHO = .00182 SLUGS/CU FT	9 = 449.634 PSF
E7 53 PMT T2 R1 RE TP	75C = 96 DEG F	30 = 424.664 PSF
COMF. L4 C1 E7 83 PF	PI:F = 1614.86 PSF	VINF = 702,74 FFS
AUN-PT 55- 4	H = 2111 PSF	F029. = FNIW

SHROUD PRESSURE COEFFICIENTS

	750 .284
1 100 100 100 100 100	262
20 -651	96 . 285
175 466 -168	294 293
15 15 164	29.0 29.0
125 396 153	301
1945 1945 1946 1946	80 •319 •036
08	70 317
06 477 216	60 .318 143
04 .540 -250	50 318 -186
02 661 22	40 183
924	35 -255 -163
LE0 141	30
งง ฃษ	งัง ก
ν̈́τ	I-14

INLET VELOCITIES, FPS

	AVE	558.52
	15	573.65
`	13	551.42
	12	13 567,23 5
	01	562,83
	60	565,39
	20	560.52
	90	552.04
	# 0	546,43
		556,67
		549.04
	OR F.	VE.

10 11 14.86 14.86	24 14.66
	23 14.66
09 14.86	22 14.65
08 14.84	21 13,00
14.83	20
06 14.81	19.14.66
05 14.81	18
14.75	17
Ů3 14.51	16 14,61
62 91	15
01 13.80	ñ
PK. F.	14.33

•
•
-
-
Щ
2
AE

HS VARIABLE GEOWETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =32.0 DEG N = 7003 RPM	RHO = .00206 SLUGS/CU FT	© = 225.746 PSF
E7 53 PNT T2 RI RE TP	TSC = 88 DEG F	ارا = 213,209 pSF
כסאב. ויי כז	PINF = 1875.38 PSF	VI:F = 466.64 FPS
RUM-PT 57- 5	H = 2111 PSF	MINF I SAIR

SHROUD PRESSURE COEFFICIENTS

	288 288
101	98
.272 -100	96 286
175 -014 -103	298
15 279 - 095	98 99 5
1.05	.301 .144
.314 082	80 •316 •660
00 338 -110	70 016
.356 115	.310 085
04 425 -127	50 305 -125
3.0.0 0.00 0.00 0.00 0.00	4.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
01 684 -237	35 -198
.061	30 098
S, S	3 N
V.	I I- 15

INLET VELOCITIES, FPS

AVE	396,41
15	406.63
13	390.13
	402,17
10	399,71
60	402,80
70	397.12
90	389.99
70	386,35
03	397.46
01	391.75.397.46
OR. F.	VE.

13	
12 14.92	25
11	24
10	23
14.92	14.66
09	22
14•91.	14•66
06	21
14.92	13,92
07	20
14.91	14.66
06° 71	19
05	18
14.88	14•30
04 14.61	17
03	16
14,67	14.68
02	15
14.50	14.90
01 14.36	14.91
PR. N	0K. F.

TABLE VII

S VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

Æ Σ		
THETA 3/4 =32.0 DEG N = 6003 RPM	RHO = .00206 SLUGS/CU FT	G = 223.674 PSF
E7 B3 PNT T2 RI RE TP	TSC = 88 DEG F	QU = 211,252 PSF
57-6 CONF. L4 C1 E7 B3 P8	PINF = 1877.65 FSF	VI;#F = 466,28 FPS
RUN-PT 57- 6	H = 2111 PSF	MINF = ,4125

SHROUD PRESSURE COEFFICIENTS

	7E0
1.25	00 C C C C C C C C C C C C C C C C C C
20 .287	. 260
175 .006 148	94 • 265
15 374 - 149	98 98 98
125 .386 -138	90 .268 .115
10. •412 •152	
08 435	70 -286 -042
06 .468 205	60 -285
536 239	50 300 152
658 658 -410	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 521	
692	323
w w	o H
· •	vII <u>-</u> 16

INLET VELOCITIES, FPS

AVE 375.14
15 388.10
12 13 382,57.375,70
12 382,57
379,11
09 380,6 3
375.81
06 366.98
04 3,13
03 372.12
01 367.24
OR,F. 01 03 VE, 367.24 372.12 36

	13	
	12 14.72	25 14.66
	11,14,73	24 14.66
~ ;	10 14.72	23 14.66
	09 14.74	22 14.66
	14,73	21 13.81
PSIA	14.73	20 14.54
PRESSUPES, PSIA	14,72	19 14,57
AL PRE	05 14•72	18 14•61
EXIT TOTAL	04	17
E E	03.	16 17 14,67 14,64
*	02	15.
; ;	08.F. 01 PR.S. 14.29	14.72
	08. P. S.	OR, F.

TABLE VII

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

Z = 8000 RPM				10 10
6 11 2	/CU FT			1.096
DEG	.00206 SLUGS/CU FT	SF	Þ	20.279
THETA 3/4 =32.0 DEG	.00206	= 225,185 PSF	:	175 014 087
3/4	11	22	i s	15 199 074
THËTA	RHO	II .	* * *	
	:0 F	PSF	ENTS	125
RE TP	88 DES F	QU = 212,680 PSF	OUDPRESSURECOEFFICIENTS	0.8 10 222 2248 222 054 054
R	TSC =	21	0)	60 40
NT T2	15	ē	SSURE	09 248
ET 83 FNT TZ R1 RE TP	.99 pSF	FPS	PRE	. 06 . 257 . 058
		VI:F = 468,00 FPS	SHR	510 570
7	11	11		•
CONF. L4 C1	PI;:F = 1875	VINE	4 4 5 6 6 5 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8	02 383 5. 189
57-7	PSF	4141		LE0 01 520 535
PT 55	H = 2111 PSF	MINF = .4141		LE0 .520
RUN-PT	I	X		S T
			1 2 1 1 1 1 1	į

INLET VELOCITIES, FPS

96 • 290

	04 06 07 09 10 12 13 15 AVE 106,86 411.51 417.41 423,99 418,94 422,27 407.03 425.00 416.83
	15 425.00
	13
1	12,124
	10 418,94
	09 423,99.
· · ·	417-41
	06 411.51
** * ** **	04 406,86
1 + 4 × 4 · 4 ·	03 5_420.17_4(
· · · · · · · · · · · · · · · · · · ·	415-15
; ;	OR F.

			EX	EXIT TOTAL PRESSURES,	AL PRE	SSUPES,	PSIA						
98. F.	01 14.50	02 14.64	03 14,78	14.91	05. 15.01	06 15,05	15.08	08 15,11	09 15.12	10 15,13	11 15,13	12 15.13	15.13
R X	14, 15,13	14,15 15,13 15,10	16 15,07	17	18 14.92	19	20 14.78	21	22 14.66	23 14.66	24 14.66	25 14.66	

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =30.0 DEG N = 7003 RPM	RHO = .00222 SLUGS/CU FT	30 PSF Q = 61.019 PSF
E7 33 PNT T2 R1 RE TP	TSC = 81 DEG F	45 = 57.630 PSF
CONF. L4 C1 E7 83 PA	PINF = 2049.33 PSF	VINF = 234,54 FPS
RUN-PT 58- 3 CONF. L4 C1	H = 2111 PSF	MINF = .2062

SHROUD PRESSURE COEFFICIENTS

, 4	279 279
. 629 . 629	324
617	383
175 -2.717 -134	94 94 •406 •383
5 15 175 9598 -2.717 4 157134	413
125 - 629	.411 .200
10	444
08	40 80 80
06 - 786 341	444
960	.019
-1.165 -597	. 550 - 093 . 639 - 068
1.E0 01 341 -1.556	. 550 039
.341	30 - 562 - 054
1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 F √ √ √
# 1 1	

INLET VELOCITIES, FPS

:		į
į		4
M =:	AVE	.61 282-77
	12	7.275.61
	13	58.1
1)	12	.05 279,31 2
	01	281,05
	60	290,38
	07	34.66 285.54 29
AND THE PARTY OF T	90	284.66
	Ť0	281,46
THE RESIDENCE AND PARTY AN	03	-297.14
	10	294.41
	OR F	VE,
		ı

13 15.16	
12,16	25.
11,15,15	24 14.66
10.15.12	23 14.66
15.10	.22 14.66
15.09	21,14,71
15.03	20 15,06
15,02	15,10
05 15.05	18 15.14
15.03	17,15,15
03	16 15,16
14.89	15
14.75	15.16
OR.F. 01 02 03 04 PR.S. 14.75 14.89 14.97 15.03	PR_S. 15.16 15.16 15.15 15.15

TABLE VII

VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

THETA 3/4 =30.0 DEG N = 6002 RPM	RHO = .00222 SLUGS/CU FT	0 = 58.176 PSF	***************************************
CONF. L4 C1 E7 B3 PNT T2 R1 RE TP	PINF = 2052,23 PSF	VINF = 228.89 FPS GU = 54.945 PSF	
RUN-PT 58- 4	H = 2111 PSF	MINF = ,2012	

-SHROUD. PRESSURE...COEFFICIENTS.

25 - 301 - 062	98.
20 268 045	314
125 15 175 -300 -305 -2,897 -033 -016 -031 -	92 94 .331 .319
15. 265 016	.331
125	.321 •145
06 03 10 -280 -104 -1046	.379 .052
03 310 068	374
06 -305 104	.371 .095
046 - 340	348
427	021
01 532 -514	.286 089
LE0 .973	30 - 263 - 060
N.V.	ш н у у
, -	; i

LET VELOCITIES, FPS

•	,
一年 日本	AVE -248.74
	15 245.55
TO THE	13
THE PERSON NAMED IN	12 13
tine a series a man	248.49
COMMENT OF THE PERSON NAMED IN	07 09 1.21.253,78-3
	251.21
;	06 24 6 •66
	04 245,09
	01 03 5,17 258,17 2
	25
	OR F

13	
12	25 4.66
11 14.96	24
10	23
96 77 7	22 .
08 14.9	21
07	20
06 14,91	19
05 14.90	18 14.93
04 14•89	17,14,96
03	16 14,97
02 4.86	15 14.97
01	14.97
OR T	PRS

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

N = 8001 RPM			
11	1		
Z	5		
THETA 3/4 =30.0 DEG	0 = .00222 SLUGS/CU FT	SF	
0.0	222	9	
13	00	91	
3/4	11	a = 59.817 PSF	
٨	RHO ::	II	
1 1 1	歪	Œ	
	iL.	SF	
, Q .	DEG	Z.	
F 7	TSC = 81 DEG F	454 56*495 PSF	
E E	11	56	
C.	.sc	11	
1 1	-	9	
á	ΙŤ	1.00	
83	9	FPS	
E I	.56	11	
t C1	1050	32.	
7	11	11	
ñ	PINF = 2050.56 PSF	VI:,F = 232,17 FPS	
CONF. L4 C1 E7 B3 PNT T2 R1 RE TP	J d	٧ĩ	
ហ	ŠF	141	
58~ 5	4	.20	
	211	11	
I-p1	11	INF	
É	I	, X	
RUN-PT 50	H = 2111 FSF	MINF = .2041	

-SHROUD ...PRESSURE --- COEFFICIÉNTS-

. :	292	
.25 -1.031 -123	372	
20 -1.050	96	
175 2.778 190	95 94	
-1.310 -1.227 -1.162 -1.120 -2.778 -1.050 -1.031 -387 -339 -284 -250 -190 -173 -123	, ,	
125 -1.162 -284	453	
1.227	.508 .508	
08 -1.310 387	70 518 578	
06 -1.406 -	.506 .518	
04 591 593	.416	
02 -2.257 	#0 3 - 196 0 - 028	
-3.975 -984	-890 -773 -196 -109 -080	
S.B -1,201 -3,975 -2,257 -1,591 S.T -984 -818 593	890	
i	ш-20 II-20	•
1	1 :	

INLET VELOCITIES, FPS

•		ģ
	AVE	3
į	◂	7
,		F) Å
1		ស្ដ
ĺ	=	ġ
		M
		2
į	13	ď
	- •	ă
ていた。 1967年 こうした 1988年 1		16,53 322,34 319,87 326,05 314,69 312,92 285,70 306,55 317,46
ŧ.	a	ð
, ,	-	ď
1		i
		9
	10	į
•		न
*		6
ł	0	9
;	0	97
		L)
		87
•	0	ġ.
4		3
*		Ī
	9	
		Ä
•		
•	±	ij
Ì	õ	9
į		7
į		3
	03	7
į		7
* ! . ! ! ! ! ! !		ij
į	Ħ	7
ř	_	Ž
•	_	
	L,	·
Ì	ğ	Ą
,	_	7

15.43	
12,39	25 56 14.66
	24 14.66
10 11 15.34 15.36	23.
09 15.32	22
08 09 28 15,30 15,32	21
15.2	20 21 15,18 14,82
06 15,25	19 15.24
05 15.24	18,34
15.20	15.42
15,11	15,45
	.15. 15.46
OR.F. 01 02 PR_S. 14.82 14.96	15.45
OR F.	PAS

TABLE VII

HS VARIABLE SEOMETRY SHROUDED PROPELLER TEST

⋖
-
⋖
-
W
O.
S
S
Ш
œ
7
-

RPM	•	1	7E0		*
N = 7002		2.00 00 00 00 00 00 00 00 00 00 00 00 00	98 .322	1 2 V V V V V V V V V V V V V V V V V V	† † † † † † † † † † † † † † † † † † †
Š	PSF :	20-644-071	96 388	,	AVE 281.82
THETA 3/4 = 50.0 DEG RHO = .00222 SLUG	60.571 P	175 -2.717 -083	.94 398	* * * * * * * * * * * * * * * * * * *	15 274.62
HETA 3/	0		.393		10 12 13 15 280 29 279 02 257 27 274 62
	,	125 650 -151	.398 .398		12 279 02
1 RE TP = 80 D	57,207 PSF Coefficient	10 712	80. •445 •135	Sd	10
	SSS.39 FPS QU = 57.207 PSF SHRGUD PRESSURECOEFFICIENTS	732 226	70- 447 •033	VELOCITIES, FPS	09
E7	9 FPS UD PRE	06 818 -292	60 437 608		284.06
= 2050.7	= 233,39	04 -874 414	476 476	NLET	06 282.77
P. P	1 ;	02 -1.190 -603	126	,	04 280,37
59	*602*	LEO 01 02 .273 -1.633 -1.190 .846603	35 575 011	,	03
KUN-PI 59-5 H = 2112 PSF MTMS - 2058		LE0 273	50 -,611 027	·	OR, F. 01 03 04 06 07 09
2 • •		w.M.	ม. พ.พ์	* *	VE. F.

24 14,66

23

22 14.67

20 . 21

19. 15,12

18 15,16

16 17 15,17 15,17

. 15

07 08 15,09 15,11

05 15•05

15.03

02 03 .14.89 14,99

TABLE VII

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE DATA

COMF. L4 C1 E7 83 PNT T2 R1 RE TP THETA 3/4 =30.0 DEG N = 6000 RPN	PINF = 2049.38 PSF TSC = 80 DEG F RHO = .00222 SLUGS/CU FT	VINF = 236.09 FPS QU = 58,511 PSF Q = 61,951 PSF
CONF. L4 C1	PINF = 2049.	VINF = 236.0
RUN-PT 59- 6	H = 2112 PSF	MINF = .2078

SHROUD PRESSURE COEFFICIENTS.

		1E0
	25 - 247 - 032	286 66
	20 20 1.032	96 348
	175 -2.609 016	. 355
	15-227	
)	125 -215 -025	351
	10 224 060	.365
1	03 229 069	347
	.285 285	.356 079
	04 -257 -177	
	02 - 367	
	.395 -492	35 - 243 - 058
	1E0 .	.30. 210 058
	ww. IV	0.25 - 2.20 0.12 - 2.20 0.12 - 2.20
	,	;

INLET VELOCITIES, FPS

	į
	AVE 250.59
	15
	13 15
	12 250.60
	10 251,11
1	256,05
. ** (* * *	07 252.25
	06 248.86
	247,05
	259.01
	01 256.65
· 化香 · · · · · · · · · · · · · · · · · ·	08,F, 01 03 VE, 256,65 259,01 24

•	
12 14.99	25 14.66
11.14.98	24 14.66
10	23
14.95	14.67
08 14.94	21
14.94	14.87
06 14,94	1.9 14.90
05 14.92	18 14.94
04 14.89	14,76
14,87	16,97
02	
14.71	OR.F. 14.97 14.97
Pings14.7114.31 .14.87	PR S

TABLE VII

HS VARIABLE GEOMETRY SHROUDED PROPELLER TEST

PRESSURE ' DATA

S S		
THETA 3/4 =30.0 DEG N = 8001 RPM	RHO = .00222 SLUGS/CU FT	9 = 61.202 PSF
11 E7 83 PNT T2 H1 RE TP	TSC = 80 DEG F	4U = 57,803 PSF
59-7 CONF. L4 C1 E7 B3 Ph	PINF = 2050.14 PSF	VINF = 234,62 FPS
RUN-PT 59- 7	H = 2112 PSF	MINF = .2065

SHROUD PRESSURE COEFFICIENTS 176 176

	7E0
25 - 974 - 130	98
-1.015 -186	. 421
-2.664 -217	46.
15 -1.076	. 466
5 -1.084 -1.076 -2.664 -5 -252 -217	
10.	.523 .178
0 0 m	542
06 -1.395 -498	. 600. • 5544 • 054
04 -1.546 -607	40 50 -148 430 082 022
62 04 8 -2,213 -1,546 - 1 .813607	40 148 .082
01 -3.848 1.001	30 35 -,846 -,732 ,109 ,086
S.B -1.172 -3.848 -: S.T	30 - 846 - 109
S. S.	ีย⊬ งัง
V	TT-CJ

INLET VELOCITIES, FPS

	,
1	AVE -317,75
	15 AVE 307.72 317.7
	13 1.285.61
	10 12 13 315,77.313,06.285,6
が だい こう かい こう かい こう かい こう はい こう かい こう はい ない こう はい はない はない はない はい	315,77
	06 07 09 10 35 322,38 320,48 328,28 315,77
*** x · · · ·	320.48
1 . 1	06 322.38
東 、 東 の長野 生 一 夫 人間をお見る 一 は 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	316,35
2 :	336.04
	331.84
	VE T

	15.4	
	12 13	25. 14.67
	11	24 14.67
×	10 11 15,37 15,40	23 24 25. 14.67 14.67 14.67
PRESSURES, PSIA		21 22 14.67
,	07 08 09 15.30 15.32 15.33	21
PSIA	15.30	20
SSURES,	15,29	19 . 15,25
TOTAL PRESSURES, PSIA	05 15-27	18 . 15,35
EXIT TOT	04 05 06 15.22 15.27 15,29	.17 18 19 15.25
EX	03 15,12	16 15,47
	OH.F. 01 02 PR.S. 14.83 14.98	14. 15 16 15,46 15,47 15,47
· · · · · · · · · · · · · · · · · · ·	01	14.
1	OK. P. S.	R r. n.

F	Š.	3 3
•		

† † !		RPM					,	TEO	.293	1	i i		13	• !	! ! !
		= 6500 RPM	U FT			25	.548	96	.338			-	12 14.87	25	14.52
		DEG	SLU6S/CU	L.		20	.785	96	.385	1	AVE 476.16	1	11 14.86	56	14.51
·		3/4 =41.0 DE6	.00181	447.771 PSF		175	• 608 -• 304	\$6	.428	1	15 501.78		10	23	14.48
ER TEST	es, espirate hais entretino peres diseas.	THETA 3/4	RHO =	C++ = 0		15	.627 331	92	1.075		13		14.84	22	14.09
PROPELLER	AND	1	F 6	PSF	ENTS	125	.652	90	.627		12 493.31		08 14.82		12.95
SHROUDED	DATA	RE TP	94 DEG	452.904	COEFFICIENTS	10	.681 389	80	.497	PS	10	PSIA	14.80	20	12.42
ETRY SHR	RESSURE	PNT T2 R1	TSC =	7 = No	ESSURE C	08	.704	70	. 540 049	CITIES, FPS	09 483.75	RESSURES	06 14.78	19	14.68
GEOMET	PRE	E6 83 PN	3 PSF	Ju	PR	90	.753	9	.559 165	VELOCI	07 475•83	D.	05 14.77	18	14.75
VARIABLE		L4 C1 E	1595.53	100,004	SHROUD	\$.812	20	.603	INCET	06 467•21	IT TOTAL	14.63	17	14.81
HS VA		CONF.	= JNTd	= JNTA		02	.922 1.107	0	.530		04 424	EXIT	14.39	16	14.83
1		8 0- 4	PSF	6332		10	1.048	35	.479		03 461-16		562 14012	15	14.84
! ! !		RUN-PT 8	= 2000	# 1.17 H		LEO	1,107	30	. 523	, 44 4× 14 50 000 00	01		13.92	3.6	14.86
		NO.	I	I			51B 52T		S18 S21	1	ORIF.	1	ORIF.	ORIE	PRES.

F3310	i 12-1			1				1	<u>!</u>	
	; ! !		RPM	; ; ;		· [TEO	.276
			N = 5504 RPM	SU FT			25	.591	96	.318
			Ī	.00180 SLU6S/CU FT	4.5		20	.785	96	.362
Not the last the same and	15		+ =41.0	.00180	= 449.577 PSF		175	.646	† 6	\$04.
er open beg dags de p	ER TEST	*	THETA 3/4 =41.0 DEG	RHO III	## !! @		15	. 556	95	1.073
day man yes yes	PROPELLER			i6 F	PSF	ENTS	125	.693	06	• 645
111		DATA	RE TP	= 94 DEG F	424.610 PSF	COEFFICIENTS	10	.718	90	465
TABLE	GEOMETRY SHROUDED	PRESSURE	PNT T2 R1 RE TP	TSC =	ne	ESSURE	80	.744	20	.501
1		PR		27 PSF	1 FPS	A.	90	.785	9	.521
	VARIABLE		L4 C1 E6 B3	= 1593.27 PSF	VINF = 705.81 FPS	SHROUD	70	.951 .852 .104 -1.217	20	.565
ar, the state case that the state of	HS		COMF.	PINE	JNTA		92	1.104	0#	.517
	, <u> </u>		80- 5	0 PSE	69249		01	1.008	35	.519
	1		RUN-PT 6	H = 2090 PSF	STOP I SOTH		LEO	-	30	.566
	1		3					548 52T		818 818
表 · · · · · · · · · · · · · · · · · · ·	1		!					1	VII-	25

* *		2	14.59 14.60 14.61 14.61 14.60 14.61 14.62 14.62 14.60	i	
 	- - -	12	14.62		14.51
11 :- # # # # #		11	14.62	24	14.48 14.47 12.43 12.69 13.67 14.23 14.47 14.51
		10	14.61	23	14.23
# # #	, , ,	60	14.60	22	13.67
)	; ; ;	90	14.61	21	12.69
- 1	i	07	14.61	20	12,43
and the test than the test	PRESSURES, PSIA	90	14.60	19	14.47
1	اي	05	14.59	18	
*** ** *** ** ** **	EXIT TOTA	40	14.54	17	14.53
; ; ;	1	£Ú	14.39	16	14.55
1 1 1		02	14.13	15	14.57
1 1 1		01	PRES. 13.85 14.13 14.39 14.54	- 5	•
		ORIF.	PRES	ORIF	PRES.
1	1	[[!	!

INLET VELOCITIES, FPS

012-1	. 				 		1	TEO	.261					13	
	1	7501	F -	***	 	25	.302	96	.357		[12	25
	,	DE6 N	SEU65/CU		1	20	303	96	904.		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	AVE 491.29		111	24
	•	41.0	00101	.430 PSF	! !	175	. 296 296	46	.455			15 515.04		10	23
ER TEST			RHO II	***	1	15	. 322 - 322	95	1.074			13 492.70		90 v	25
PROPELLER		I.		724	ENTS	125	.616	06	.652	•163	1	12 507.35	 	08	21
SHROUDED	DATA	RE TP	94 DEG	419.748	COEFFICIENTS	10	.644	A	.526	.071	FPS	10 501.74	PSIA	70	200
TRY SHR	PRESSURE	ONT TE RI	TSC =	# = No	SSURE C	90	.668 401	70	.574	045		00 500 56	RESSURES,	90	7604
GEOMET	PRE	E6 83 PN	1 PSF	FPS	P.	90	.716	09	. 595	160	VELOCITIES.	490.92	i a	05	14008
VARIABLE		17 C1 E	1599.71 PSF	700.75	SHROUD	**	.778		617	-,211	INLET	06 484.48	EXIT TOTAL	į	24.70
HS VA		CONF.	# JNId	= JNIA		ūS	.689		550	-,232	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	04 473,35	E	03	14.48
} } !		9 -08	PSF	.6300		0.1	1.025		150	250	1	03 479.36	1	0.2	14.20
		RUN-PT 8	= 2390	MINF II		1 60	1.109		701	- 276		01 467.42	 	0	14.09
		RUN	I	I	1		516	- 36	6,5	527	1	ORIF.	1	ORIF.	PRESA