

Electivo III: Machine Learning

Problema de Overfitting

Joel S. Torres

Departamento de Ciencias de la Ingeniería Ingeniería Civil Informática

www.ulagos.cl

MACHINE LEARNING

Overfitting

Volvamos un poco al modelo de regresión lineal

Si existen demasiados atributos, el modelo puede ajustarse excesivamente bien al conjunto de entrenamiento $(J(\theta) \approx 0)$, pero falla al generalizar las predicciones a nuevos datos de entrada.

Overfitting

Si vemos el mismo fenómeno en clasificación

$$\begin{aligned} h_{\theta}(x) &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) & g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \\ \text{(g = sigmoid function)} & +\theta_3 x_1^2 + \theta_4 x_2^2 \\ & +\theta_2 x_2 x_2 \end{aligned}$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Overfitting

Opciones para evitar este problema

- Reducir el número de atributos
 - Seleccionar un conjunto manualmente
 - Utilizar un modelo de selección
- Regularización
 - Mantiene los atributos, pero reduce la magnitud de los parámetros θ_i
 - Funciona bien con un conjunto de atributos, ya que cada atributo contribuye un poco a predecir la salida

Regularizando la función de costo: Intuición

 $\theta_0 + \theta_1 x + \theta_2 x^2$

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Se penalizan los valores θ

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + 1000\theta_3^2 + 1000\theta_4^2$$

¿Qué es Regularización? Se penalizan los valores $heta_0,..., heta_n$

- Es una hipótesis más simple
- Compensa el sobreajuste

Ejemplo: Boston Housing

- Atributos: $x_1, ..., x_m$ (Boston: 13 atributos)
- Parámetros: $\theta_0, ..., \theta_n$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

El simbolo λ es el parámetro de regularización

- Permite que el modelo se ajuste adecuadamente
- Minimiza los parámetros
- Es un valor de penalización (si es demasiado grande, entonces el modelo no se ajustará)

Algorithm 1: Descenso de Gradiente

Result: Encuentra $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

repeat

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)};$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) * x^{(i)} + \frac{\lambda}{m} \theta_j\right], j \in \{1, ..., n\};$$

until Converger;

Algorithm 2: Descenso de Gradiente

Result: Encuentra $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

repeat

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)};$$

$$\theta_j := \theta_j (1 - \alpha \frac{1}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) * x^{(i)}, j \in \{1, ..., n\};$$
until Converger;

$$1 - \alpha \frac{\lambda}{m} < 1$$

9/11

Ecuación Normal

 $\theta = (X^T + \lambda L)^{-1} X^T y$

donde,

$$L = \begin{bmatrix} 0 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \dots & \\ & & & & 1 \end{bmatrix}$$

Siguiente Clase

- Redes Neuronales
- Aprendizaje No Supervisado

