Навигация и управление в робототехнических системах

Студенты 1-го курса бакалавриата КТиУ, СУиР Овчинников Н.М., Овчинников П.А., Румянцев А.А., Чебаненко Д.А. bsbbbrbc@gmail.com, opavel@internet.ru, myspecialuseracc@gmail.com, dchebanenko@gmail.com Университет ИТМО, Россия, Санкт-Петербург

30 мая 2023 г.

Аннотация

Научная работа посвящена изучению и анализу различных аспектов навигации и управления в робототехнических системах. Работа включает в себя исследование нейронных сетей для обнаружения объектов в задаче управления автономным транспортным средством, анализ алгоритмов траекторного управления роботом манипулятором, разработку методики планирования траектории движения группы мобильных роботов в неизвестной замкнутой среде с препятствиями, исследование навигации мобильного робота на основе методов лазерной дальномерии, изучение силомоментного ощущения электромеханического манипулятора и анализ траекторного управления мобильным роботом в условиях неопределенности.

Ключевые слова: навигация, управление, нейронные сети, робототехника, алгоритмы, траектория движения

Введение

В современном мире робототехнические системы играют всё более важную роль в различных сферах жизни, от промышленности до медицины и транспорта. Одними из ключевых аспектов, которые обеспечивают эффективное функционирование роботов, являются навигация и управление. Исследование и разработка методов, алгоритмов и технологий в этой области позволяет создавать более умные, автономные и надежные робототехнические системы.

Целью этой научной работы является изучение и анализ различных областей навигации и управления в робототехнических системах. Мы рассмотрим следующие темы:

- 1. **Исследование алгоритмов траекторного управления роботом-манипулятором.** Изучим различные методы и подходы к планированию и управлению траекториями движения манипуляторов, что улучшит точность и эффективность выполнения задач.
- 2. Методика планирования траектории движения группы мобильных роботов в неизвестной замкнутой среде с препятствиями. Исследуем проблему планирования оптимальных траекторий для группы роботов в условиях ограниченного пространства и наличия препятствий, что крайне важно для координации и сотрудничества роботов в различных задачах.
- 3. **Траекторное управление мобильным роботом в условиях неопределенности.** Рассмотрим методы и алгоритмы для планирования и управления траекторией движения мобильного робота в условиях, когда информация о среде ограничена или не определена.
- 4. **Навигация мобильного робота на основе методов лазерной дальномерии.** Будет исследовано использование лазерных дальномеров для определения окружающей среды и навигации мобильных роботов, что является одним из ключевых аспектов автономности и безопасности робототехнических систем.

- 5. **Силомоментное ощущение электромеханического манипулятора.** Исследуем применение силомоментного ощущения для контроля и управления движениями электромеханического манипулятора, что повысит его гибкость и точность выполнения задач.
- 6. Исследование нейронных сетей для обнаружения объектов в задаче управления автономным транспортным средством. Исследуем применение нейронных сетей в обнаружении и распознавании объектов на дороге, что является важным шагом в разработке автономных транспортных средств.

Исследование алгоритмов траекторного управления роботом-манипулятором [1]

В статье рассматривается задача траекторного управления трехзвенным роботом-манипулятором. Авторы исследуют четыре различные схемы управления и сравнивают их работу при наличии различных видов помех. Они пришли к выводу, что первая и четвертая схемы управления являются наиболее эффективными и что наилучший выбор схемы управления зависит от типа присутствующих помех.

Вот краткое изложение четырех схем управления, рассмотренных в статье:

- Пропорционально-дифференциальное (PD) управление это простая и часто используемая схема управления, которая эффективна при отсутствии помех. Однако он может быть неустойчивым при наличии шума или параметрической неопределенности.
- Управление в скользящем режиме это более сложная схема управления, более устойчивая к шуму и параметрической неопределенности. Однако она может быть менее плавной, чем управление PD.
- Управление PD с фильтрацией нижних частот это вариант управления PD, в котором для сглаживания управляющего сигнала используется фильтр нижних частот. Это может улучшить динамическую производительность системы, но также может снизить ее быстродействие.
- Адаптивное управление это схема управления, которая автоматически регулирует свои параметры, чтобы компенсировать изменения в системе. Это может сделать систему более устойчивой к шуму и параметрической неопределенности. Однако адаптивное управление может быть более сложным и дорогостоящим в вычислительном отношении, чем другие схемы управления.

Авторы статьи провели имитационное исследование для сравнения производительности четырех схем управления в различных условиях. Они обнаружили, что схема управления PD хорошо работала в отсутствие помех, но была нестабильной в присутствии шума или параметрической неопределенности. Схема управления скользящим режимом была более устойчивой к шуму и параметрической неопределенности, но менее плавной, чем управление PD. Схема управления частичным разрядом с фильтром нижних частот улучшила динамические характеристики управления частичным разрядом, но снизила чувствительность системы. Схема адаптивного управления была наиболее устойчивой к шуму и параметрической неопределенности, но она также была самой сложной и дорогостоящей в вычислительном отношении.

Рис. 1: График управляющего сигнала схемы 1 при помехах в виде высокочастотного гармонического сигнала

Рис. 2: График ошибки схемы 4 при помехах в виде белого шума

По результатам имитационного исследования авторы статьи рекомендуют использовать схему управления PD при отсутствии помех, схему управления скользящим режимом при наличии шума или параметрической неопределенности и схему адаптивного управления в приложениях, где требуется высокая робастность.

Вот еще аргументы в пользу ценности этой статьи:

- Исследование моделирования авторов дает ценную информацию о производительности четырех схем управления в различных условиях.
- Рекомендации авторов по выбору схемы управления основаны на надежных теоретических и экспериментальных данных.

В целом, статья представляет собой хорошо написанный и информативный вклад в области управления роботами.

Методика планирования траектории движения группы мобильных роботов в неизвестной замкнутой среде с препятствиями [2]

В статье рассматривается метод планирования траектории движения группы мобильных роботов в неизвестной замкнутой среде с препятствиями. Метод основан на децентрализованном подходе, при котором каждый робот в группе самостоятельно планирует свою собственную траекторию. Роботы общаются друг с другом для обмена информацией о своих позициях и расположении препятствий. Эта информация используется для предотвращения столкновений и для того, чтобы роботы не подходили слишком близко друг к другу.

Рис. 3: Кинематическая схема мобильного робота

Метод прост в реализации, так как реализован на языке программирования Python и был протестирован на модели. Результаты моделирования показывают, что метод успешно и эффективно планирует траектории движения группы роботов в неизвестной среде с препятствиями.

Вот некоторые из ключевых особенностей этого метода:

- Децентрализованный это означает, что каждый робот в группе самостоятельно планирует свою собственную траекторию. Это делает метод масштабируемым для больших групп роботов.
- Предотвращение столкновений: метод использует информацию о расположении препятствий, чтобы избежать столкновений между роботами.
- Безопасность: метод гарантирует, что роботы не будут подходить слишком близко друг к другу, что может предотвратить столкновения и другие проблемы.
- Эффективность с точки зрения вычислительных ресурсов.

Этот метод потенциально может использоваться в различных областях применения, таких как поисково-спасательные работы, ликвидация последствий стихийных бедствий и мониторинг окружающей среды.

Что касается ограничений этого метода:

- Гарантированно работает только в закрытых помещениях. В открытой среде роботы могут быть не в состоянии взаимодействовать друг с другом, что может привести к столкновениям.
- **Не гарантирует нахождения кратчайшего пути между начальной и конечной точками.** Метод находит путь, который позволяет избежать препятствий и гарантирует, что роботы не подойдут слишком близко друг к другу. Однако этот путь может быть не самым коротким из возможных.
- **Не гарантируется, что этот метод будет работать во всех средах.** Этот метод был протестирован в ходе моделирования, но не ясно, насколько хорошо он будет работать в реальных условиях.

В целом, метод похож на многообещающий подход для планирования траектории движения группы мобильных роботов в неизвестной среде. Он прост в реализации, эффективен с точки зрения вычислительных ресурсов и при моделировании. Однако имеются некоторые ограничения — например, гарантированная работа только в закрытых средах. Дальнейшие исследования могли бы быть сосредоточены на устранении этих ограничений.

Траекторное управление мобильным роботом в условиях неопределенности [3]

В статье рассматривается задача управления движением мобильного робота по заданной плавной траектории. Авторы предлагают новый метод расчета минимального расстояния от робота до траектории и робастный регулятор на основе метода последовательного компенсатора. Контроллер обеспечивает ограниченную ошибку ориентации и позиционирования и настраивается в соответствии с конкретными требованиями.

Авторы оценивают контроллер в моделировании и показывают, что он способен успешно отслеживать различные траектории, включая прямые линии, кривые и окружности. Контроллер также может обрабатывать возмущения, такие как изменение скорости робота или наличие препятствий.

Рис. 4: Мобильный робот, движущийся по траектории, представленной гладкой кривой

Авторы делают вывод, что предлагаемый контроллер является перспективным подходом для управления движением мобильных роботов. Контроллер надежен, прост в реализации и может быть настроен в соответствии с конкретными требованиями.

Ещё несколько выводов, которыми авторы делятся с нами в статье:

- Использование нелинейного наблюдателя для оценки минимального расстояния от робота до траектории является новым подходом. Наблюдатель способен точно оценить расстояние даже при наличии шума и помех.
- Контроллер последовательного компенсатора это простой и эффективный способ управления движением робота. Контроллер способен точно отслеживать траекторию и избегать препятствий.
- Контроллер оценивался в моделировании, но было бы интересно посмотреть, как он работает в реальных экспериментах.

В целом в статье представлен перспективный подход к управлению движением мобильных роботов. Контроллер надежен, прост в реализации и может быть настроен в соответствии с конкретными требованиями.

Навигация мобильного робота на основе методов лазерной дальнометрии [4]

В статье рассматривается проблема навигации мобильных роботов в динамической недетерминированной среде. Авторы предлагают навигационную систему для мобильного робота-спасателя, предназначенного для поиска пострадавших под завалами разрушенных сооружений. Она основана на лидаре, который позволяет роботу строить карту своего окружения и определять собственное положение. Также учитывается движение динамических препятствий, таких как падающие обломки, чтобы избежать столкновений.

Рис. 5: Типовая конструкция лидара

Авторы оценили систему в моделировании и показали, что она может успешно перемещаться в различных средах, включая загроможденные комнаты и поля с щебнем. Система также смогла избежать столкновений с динамическими препятствиями.

Исследователи приходят к выводу, что предлагаемая навигационная система является многообещающим подходом для мобильных роботов, работающих в динамических средах. Система надежна и может использоваться в различных приложениях, таких как поисково-спасательные работы, помощь при стихийных бедствиях и производство.

Вот к каким выводам можно прийти, прочитав статью:

- Использование лидара является многообещающим подходом к навигации мобильных роботов. Лидар может предоставить точную и достоверную информацию об окружающей среде, которая необходима для навигации в динамичных средах.
- Перспективен и подход авторов к учету движения динамических препятствий. Это сложная проблема, но подход авторов кажется эффективным.

В целом, в статье представлен многообещающий подход к навигации мобильных роботов в динамических средах. Система надежна и может использоваться в различных приложениях.

Силомоментное очувствление электромеханического манипулятора [5]

Системы измерения силы и момента — это устройства, которые измеряют силы и моменты, воздействующие промышленным роботом на объекты, с которыми он взаимодействует. Эти системы используются для повышения безопасности и производительности роботов путем обеспечения обратной связи о прилагаемых силах и моментах.

Существует два основных типа систем измерения силы и момента: контактные и бесконтактные. Контактные датчики используют физический контакт с объектом для измерения прилагаемых сил и моментов. Бесконтактные датчики используют такие датчики, как камеры или лазеры, для измерения расстояния и скорости робота и объекта, а затем используют эту информацию для расчета прилагаемых сил и моментов. Контактные датчики более точны, чем бесконтактные, но они также могут повредить манипулируемый объект. Бесконтактные датчики менее точны, но они безопаснее и могут использоваться для манипулирования деликатными объектами.

Выбор системы измерения силы и момента зависит от области применения. Для применений, где безопасность имеет решающее значение, например, в автомобильной промышленности, часто используются контактные датчики. Для применений, где точность важнее, к примеру, в полупроводниковой промышленности, часто используются бесконтактные датчики.

Системы измерения силы и момента являются важной частью современных промышленных роботов. Они повышают безопасность и производительность роботов, обеспечивая обратную связь о прилагаемых силах и моментах. Эта обратная связь может быть использована для предотвращения столкновений, повреждения объектов и травм операторов.

Преимущества систем измерения силы и момента:

- Повышенная безопасность: системы измерения силы и момента могут помочь предотвратить столкновения, обеспечивая обратную связь о прилагаемых силах и моментах. Это может помочь защитить операторов и объекты от повреждений.
- Улучшенная производительность: системы измерения силы и момента могут помочь улучшить производительность роботов, обеспечивая обратную связь о прикладываемых силах и моментах. Это может помочь роботам манипулировать объектами более точно и безопасно.
- Повышенная гибкость: системы измерения силы и момента могут сделать роботов более гибкими, позволяя им взаимодействовать с более широким спектром объектов.

Недостатки систем измерения силы и момента:

- Стоимость: системы крайне дорогостоящие.
- Сложность: системы могут быть сложными в установке и обслуживании.
- Точность: они менее точные, чем датчики других типов, такие как датчики зрения.

Системы измерения силы и момента являются важной частью современных промышленных роботов. Они повышают безопасность и производительность роботов, обеспечивая обратную связь о прилагаемых силах и моментах. Эта обратная связь может быть использована для предотвращения столкновений, повреждения объектов и травм операторов.

Однако системы измерения силового момента не лишены своих недостатков. Они могут быть дорогими, сложными и менее точными, чем датчики других типов. Несмотря на эти недостатки, системы измерения силы и момента являются ценным инструментом для повышения безопасности и производительности промышленных роботов.

Исследование нейронных сетей для обнаружения объектов в задаче управления автономным транспортным средством [6]

Автономная навигация беспилотных транспортных средств — сложная задача, имеющая множество потенциальных применений. Например, автономные транспортные средства можно использовать для доставки посылок, проверки инфраструктуры или даже исследования опасных или удаленных сред. Один из подходов к автономной навигации заключается в использовании обнаружения объектов для определения ориентиров в окружающей среде. Эту задачу можно выполнить при помощи различных методов, включая глубокое обучение. В этой статье авторы исследуют использование системы обнаружения объектов YOLO v2 для автономной навигации.

YOLO~v2 — это система глубокого обучения, которая может обнаруживать объекты на изображениях с высокой скоростью. Она может обнаруживать объекты за один проход по изображению, это делает ее хорошо подходящей для приложений реального времени, таких как автономная навигация.

В этой статье авторы обучили систему YOLO v2 обнаруживать ориентиры в наборе данных изображений, сделанных с транспортного средства. Система способна обнаруживать ориентиры с высокой точностью даже в сложных условиях, таких как плохое освещение и затенение. Затем они использовали систему YOLO v2 для управления транспортным средством в смоделированной среде. Транспортное средство может передвигаться автономно, объезжая препятствия и благополучно добираясь до места назначения.

Результаты этой статьи демонстрируют, что YOLO v2 является многообещающим подходом к автономной навигации. Система способна обнаруживать ориентиры с высокой точностью даже в сложных условиях. Это делает ее хорошо подходящей для реальных приложений, таких как доставка посылок или проверка инфраструктуры.

Сеть	MobileNet	Tiny YOLO (с нуля)	Tiny YOLO (предобученная)	Full YOLO
Размер входа	1024×768	960×544	102×768	1024×768
Качество (mAP) на первом наборе	0.4765	0.5294	0.4126	0.5566
Качество (mAP) на втором наборе	0.4936	0.4246	0.5576	0.7053

Табл. 1: Результаты тестирования архитектур нейронных сетей

В статье авторы представили метод автономной навигации беспилотных транспортных средств с использованием YOLO v2. При помощи этого метода в будущем планируется решить задачи по улучшению обнаружения объектов, планированию траектории и контролю. Мы считаем, что, решая эти задачи, можно разработать полностью автономное транспортное средство, способное безопасно передвигаться в самых разных условиях.

Заключение

В заключении следует сказать, что изучение и развитие приведенных тем имеют немаловажное значение для развития робототехнических систем управления. Полученные результаты и методы могут быть применены в различных областях, таких как производство, автономная навигация, медицина и другие. Дальнейшие исследования в этих областях могут привести к новым достижениям и применению роботов в ещё более широком спектре задач.

Список литературы

- [1] Ведякова А.О. Василенко И.В. "Исследование алгоритмов траекторного управления роботом манипулятором". В: Современные информационные технологии и ИТ-образование (2022).
- [2] Павлов А.С. "Методика планирования траектории движения группы мобильных роботов в неизвестной замкнутой среде с препятствиями". В: Системы управления, связи и безопасности (2021).
- [3] Пыркин А.А. Хоанг Дык Тхинь. "Траекторное управление мобильным роботом в условиях неопределенности". В: Известия высших учебных заведений. Приборостроение (2021).
- [4] Урваев И.Н. "Навигация мобильного робота на основе методов лазерной дальнометрии". В: Измерение. Мониторинг. Управление. Контроль (2021).
- [5] Дорофеева Е.С. Королёва Т.А. "Силомоментное очувствление электромеханического манипулятора". В: Актуальные проблемы авиации и космонавтики (2018).
- [6] Бахшиев А.В. Фомин И.С. Орлова С.Р. "Исследование нейронных сетей для обнаружения объектов в задаче управления автономным транспортным средством". В: *Материалы XII мультиконференции по проблемам управления (МКПУ-2019)* (2019).