

# Cluster-Aware Graph Summaries through Graph Matching Neural Networks

Achilleas Tsimichodimos, Angeliki Dimitriou, Nikolaos Chaidos, Giorgos Stamou

National Technical University of Athens



## **Embeddings-Based Clustering**

- Models generate embeddings:
- Based only on adjacency matrix: Spectral Clustering, Node2Vec
- Based on adjacency matrix and node features: VGAE
- Embeddings clustered with k-means



## **Clustering with GNNs**

- Cluster nodes of an attributed graph
- GNNs accounts both for topology and node features



|                                                                                                                                                                                    | Losses:                     |                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| MinCutPool:                                                                                                                                                                        | JustBalance:                | DMoN:                                                                                                                       |  |  |  |
| $-\frac{\operatorname{Tr}\left(S^{T}\tilde{A}S\right)}{\operatorname{Tr}\left(S^{T}\tilde{D}S\right)} + \left\ \frac{S^{T}S}{\ S^{T}S\ _{F}} - \frac{I_{K}}{\sqrt{K}}\right\ _{F}$ | $-\mathrm{Tr}(\sqrt{S^TS})$ | $\frac{\operatorname{Tr}\left(S^{T}\tilde{A}S\right)}{2E} - \frac{\sqrt{K}}{N} \left\  \sum_{i} S_{i}^{T} \right\ _{F} - 1$ |  |  |  |

## Results

| Name     | Nodes | Edges  | Features | Classes |
|----------|-------|--------|----------|---------|
| Cora     | 2708  | 10 556 | 1433     | 7       |
| Citeseer | 3327  | 9104   | 3703     | 6       |
| PubMed   | 19717 | 88 648 | 500      | 3       |

Datasets

|             | Cora  |         |         | CiteSeer |       |       | PubMed |        |       |       |         |        |
|-------------|-------|---------|---------|----------|-------|-------|--------|--------|-------|-------|---------|--------|
|             | NMI   | ACC     | ARI     | SIM      | NMI   | ACC   | ARI    | SIM    | NMI   | ACC   | ARI     | SIM    |
| SC          | 0.041 | 0.291 - | -0.002  | -        | 0.024 | 0.242 | 0.016  | -      | 0.182 | 0.587 | 0.129   | -      |
| Node2vec    | 0.081 | 0.243   | 0.225 - | -0.231   | 0.06  | 0.197 | 0.02 - | -0.382 | 0.002 | 0.368 | 0.001   | 0.087  |
| VGAE        | 0.535 | 0.712   | 0.523   | 0.665    | 0.262 | 0.437 | 0.136  | 0.558  | 0.284 | 0.665 | 0.271   | 0.591  |
| MinCut      | 0.382 | 0.528   | 0.293   | 0.711    | 0.247 | 0.470 | 0.230  | 0.513  | 0.248 | 0.578 | 0.244   | 0.330  |
| DMoN        | 0.292 | 0.419   | 0.179 - | -0.405   | 0.138 | 0.330 | 0.106  | 0.218  | 0.118 | 0.437 | 0.093 - | -0.408 |
| JustBalance | 0.361 | 0.479   | 0.266   | 0.253    | 0.162 | 0.394 | 0.112  | 0.259  | 0.202 | 0.570 | 0.160   | 0.518  |

Clustering Metrics



Evaluation Metrics on Cora

#### References

- [1] Yujia Li et al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019. arXiv: 1904.12787 [cs.LG].
- [2] Filippo Maria Bianchi. "Simplifying Clustering with Graph Neural Networks". In: Proceedings of the Northern Lights Deep Learning Workshop 4 (Jan. 2023). ISSN: 2703-6928. DOI: 10.7557/18.6790. URL: http://dx.doi.org/10.7557/18.6790.
- [3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral Clustering with Graph Neural Networks for Graph Pooling. 2020. arXiv: 1907.00481 [cs.LG].

### **Graph Matching Networks**

Graph Matching Networks (GMNs) are a specialized type of Graph Neural Networks that take a pair of graphs as an input and compute a similarity score between them.



GMNs utilize a cross-graph matching vector in each propagation layer, which evaluates how well a node in one graph matches with nodes in another graph, taking into account both the aggregated messages on the edges and the cross-graph relationships.

#### Improving Graph Clustering with GMN

- **Direct Integration**: From the beginning of training, the similarity score provided by the GMN is combined with the pooling loss.
- Fine-Tuning: In this approach, the models are initially trained using only the pooling loss. After this initial training phase, the models are fine-tuned by adding the GMN-based loss to the existing pooling loss.

## Impact of GMN in Graph Clustering



(a) JustBalance - Direct Integration





(b) JustBalance - Fine Tuning



## Conclusions

Integrating GMNs in the training process of graph clustering models leads to:

- similarity stabilization and improvements for all models
- traditional metric improvement for DMoN models

