CS557: Cryptography

Elementary Number Theory-IV

S. Tripathy IIT Patna

Previous Class

- Elementary Number Theory
 - -GCD
 - Euclidean Algorithm.
 - Group Theory
 - Modular arithmetic

Multiplicative inverses in Zn

- Multiplicative inverse -
 - SOME, but not ALL elements have unique multiplicative inverse.
 - In Z9:
 - 3*0=0, 3*1=3, 3*2=6, 3*3=0, 3*4=3, 3*5=6, ..., so 3 does not have a multiplicative inverse.
 - · What about 4,

$$4*2=8$$
, $4*3=3$, $4*7=1$ i.e, $4^{-1}=7$

 In Zn, x has a multiplicative inverse if and only if x and n are relatively prime.

E.g., in
$$\mathbb{Z}_9$$
, 3 (does not have) but 4 (has =7)

- If gcd(x,m) = 1, as y varies, y*x takes on m distinct values, so for some value, y*x=1 mod m.

Fermat's theorem to compute Inverse

Thm: Let p be a prime

$$\forall x \in (Z_p)^* : x^{p-1} = 1 \text{ in } Z_p$$

So:
$$x \in (Z_p)^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \text{ in } Z_p$$

Another way to compute inverses, but less efficient

Example: p=5. What is the inverse of 3 mod 5?

$$3^4 = 81 = 1$$
 in Z_5

$$3^3 = 27 \mod 5 = 2$$

2 11 (3) + 8(-4)

S

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

```
-GCD(a,b) = GCD(b, a mod b)
```

• Euclidean Algorithm to compute GCD(a,b) is:

```
EUCLID(a,b)
1. A = a; B = b
2. if B = 0 return A = gcd(a, b)
3. R = A mod B
```

5. B = R

4. A = B

6. goto 2

Finding Inverses

EXTENDED EUCLID (m, b)

- **1.** (A1, A2, A3) = (1, 0, m); (B1, B2, B3) = (0, 1, b)
- 2. if B3 = 0 return A3 = gcd(m, b); no inverse
- 3. if B3 = 1 // B3 = gcd(m, b);
 return B2 = b⁻¹ mod m
- **4.** Q = A3 div B3
- 5. (T1, T2, T3) = (A1 Q B1, A2 Q B2, A3 Q B3)
- **6.** (A1, A2, A3) = (B1, B2, B3); (B1, B2, B3) = (T1, T2, T3)
- **8.** goto 2

	Q	A1	A2	A3	B 1	B2	В3
-		1	0	1759	0	1	550
	3	0	1	550	1	-3	109
	5	1	-3	109	-5	16	5
	21	-5	16	5	106	-339	4
	1	106	-339	4	-111	355	1

Inverse of 550 mod 1759 = 355

Application Examples

Ex: Find a s.t. $3a \equiv 1 \pmod{7}$.

Sol: since gcd(3,7) = 1. the inverse of 3 (mod 7) exists and can be computed by the Euclidean algorithm: $7 = 3 \times 2 + 1 \Rightarrow 1 = 7 + 3 (-2)$. $\therefore 3 (-2) \equiv 1 \pmod{7}$ $\Rightarrow a = -2 + 7k$ for all $k \in \mathbb{Z}$.

Sol: -2 is an inverse of 3 (mod 7). EX: Find all solutions of $3x \equiv 4 \pmod{7}$.

=> x = 4(-2) + 7k where $k \in Z$ is a general solution of x.

Fast Exponentiation

- Usual approach to compute x^c is inefficient when c is large.
- Instead, represent c as bit string $b_{k-1} \dots b_0$ and use the following algorithm:
- z = 1
- For i = k-1 downto 0 do $z = z^2 \mod n$ if bi = 1 then $z = z * x \mod n$
- Endfor
- Complexity: (k+k=) 2k modular multiplication

30³⁷ (mod 77)?

i	b	Z	
5	1	30	=1*1*30 mod 77
4	0	53	=30*30 mod 77
3	0	37	=53*53 mod 77
2	1	29	=37*37*30 mod 77
1	0	71	=29*29 mod 77
0	1	2	=71*71*30 mod 77

Thanks