BÀI TẬP 3

(Phương pháp Monte Carlo) THỐNG KÊ MÁY TÍNH VÀ ỨNG DỤNG

Câu 1. (2 điểm) Dùng phương pháp Monte Carlo, ước lượng các giá trị sau với sai số chuẩn không quá 0.01.

a)

$$I = \int_{-\infty}^{\infty} e^{-x^2} |\cos(x)| \, dx$$

b)

$$J = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(x^2 + (y+1)^2 - \frac{x(y-1)}{10}\right)} dx dy$$

Câu 2. (3 điểm) Chọn ngẫu nhiên 2 điểm A, B trong "hình vuông đơn vị K chiều" $[0,1]^K$. Gọi D là khoảng cách giữa 2 điểm A, B và μ, σ lần lượt là kì vọng và độ lệch chuẩn của D. Dùng phương pháp Monte Carlo:

- a) Với K=2, đưa ra khoảng tin cậy 95% cho ước lượng của μ , σ .
- b) Với K=2, ước lượng P(D>1.4) một cách hiệu quả. (Lưu ý: P(D>1.4) rất nhỏ.)
- c) Khảo sát μ , σ và phân phối của D theo $K=1,2,\ldots,10$. Nhận xét.

Câu 3. (2 điểm) Cho $U \sim \mathcal{U}(0,1)$, dùng phương pháp Monte Carlo, tìm khoảng tin cậy 95% cho

- a) $Cor(U, e^U)$.
- b) $Cor(U, \sqrt{1 U^2}).$

Câu 4. (2 điểm) Dùng 2 phương pháp giảm phương sai khác nhau để ước lượng giá trị I ở Câu (1.a). Tính (hoặc ước lượng) tỉ lệ giảm phương sai so với phương pháp ở Câu (1.a).

Câu 5. (1 điểm) Thiết kế thuật toán hiệu quả để sinh điểm ngẫu nhiên trong hình sau

<u>Lưu ý</u>:

- Trình bày bài làm (lời giải, công thức Toán, mã Python, kết quả, ...) trong tập tin notebook.
- Cần trình bày mã giả và cài đặt bằng Python các thuật toán.
- Cần kiểm tra và đánh giá kết quả chạy các thuật toán.
- Được phép dùng các hàm sinh số ngẫu nhiên từ thư viện numpy.random.

--- HẾT ---