

(19) World Intellectual Property Organization International Bureau



(43) International Publication Date  
25 March 2004 (25.03.2004)

PCT

(10) International Publication Number  
**WO 2004/024161 A1**

(51) International Patent Classification<sup>7</sup>: C07D 403/04, A61P 3/06

(74) Agent: SCHUCK, Alexander; Isenbruck-Bösl-Hörschler-Wichmann-Huhn, Patentanwälte, Theodor-Heuss-Anlage 12, 68165 Mannheim (DE).

(21) International Application Number:

PCT/EP2003/010036

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:  
10 September 2003 (10.09.2003)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English  
(26) Publication Language: English

(30) Priority Data:  
02 020 255.2 10 September 2002 (10.09.2002) EP

(71) Applicant (for all designated States except US): **PHENEX PHARMACEUTICALS AG [DE/DE]**; Im Neuenheimer Feld 515, 69120 Heidelberg (DE).

**Published:**

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

**A1** (54) Title: NOVEL 2-AMINO-4-OXOQUINAZOLONES AS LXR NUCLEAR RECEPTOR BINDING COMPOUNDS WITH PARTIAL AGONISTIC PROPERTIES



(57) Abstract: The present invention relates to compounds according to the general formula (I) which bind to the Liver X receptors (LXR receptors, LXRApha/NR1H3 and LXRBeta/NR1H2) and act as selective agonists of the LXR receptors. The invention further relates to the treatment of diseases and/or conditions through binding of said nuclear receptors and selective agonistic effects by said compounds and the production of medicaments using said compounds. In particular the compounds are useful in the treatment of hypercholesterolemia, obesity or other diseases associated with elevated lipoprotein (LDL) levels.

WO 2004/024161 A1

NOVEL 2-AMINO-4-OXOQUINAZOLONES AS LXR NUCLEAR RECEPTOR BINDING COMPOUNDS  
WITH PARTIAL AGONISTIC PROPERTIES

Liver X Receptor (LXR) is a prototypical type 2 nuclear receptor which activates  
10 genes upon binding to promoter region of target genes in a prototypical heterodimeric  
fashion with Retinoid X Receptor (hereinafter RXR, Forman et al., Cell, 81, 687-93,  
1995). The term LXR includes all subtypes of this receptor. Specifically LXR includes  
LXRa (also known as LXRA, RLD-1 and NR1H3) and LXRb (also known as  
15 LXRBeta, NER, NER1, UR, OR-1, R1P15 and NH1H2) and ligands of LXR should be  
understood to include ligands of LXRa or LXRb. The relevant physiological ligands  
of LXR seem to be oxidized derivatives of cholesterol, including 22-  
hydroxycholesterol and 24,25(S)-epoxycholesterol (Lehmann, et al., Biol. Chem.  
272(6), 3137-40, 1997). The oxysterol ligands bound to LXR were found to regulate  
the expression of several genes that participate in cholesterol metabolism (Janowski,  
20 et al., Nature, 383, 728-31, 1996).

LXR is proposed to be a hepatic oxysterol sensor. Upon activation (e.g. binding of  
oxysterols) it influences the conversion of dietary cholesterol into bile acids by  
upregulating the transcription of key genes which are involved in bile acid synthesis  
25 such as CYP7A1. Hence, activation of LXR in the liver could result in an increased  
synthesis of bile acids from cholesterol which could lead to decreased levels of  
hepatic cholesterol. This proposed LXR function in hepatic cholesterol metabolism  
was experimentally confirmed using knockout mice. Mice lacking the receptor LXRA  
lost their ability to respond normally to an increase in dietary cholesterol and did not  
30 induce transcription of the gene encoding CYP7A1. This resulted in accumulation of  
large quantities of cholesterol in the livers and impaired hepatic function (Peet, et al.,  
Cell, 93, 693-704, 1998).

Besides its important function in liver, LXR plays an important role in the regulation of  
35 cholesterol homeostasis in macrophages and intestinal mucosa cells where it  
upregulates cholesterol transporters from the ABC (=ATP binding cassette) family of  
membrane proteins (Repa, et al., J Biol Chem. 2002 May 24;277(21):18793-800).

5 These transporters are believed to be crucially involved in the uptake of cholesterol from the diet since mutations in their genes leads to diseases such as sitosterolemia (Berge, et al., Science (2000);290(5497):1771-5.).

10 Other members of the ABC transporter family seem to be responsible for the efflux of cholesterol from loaded macrophages, a process which is thought to prevent the generation of atherosclerotic lesions. Stimulation of LXR by synthetic ligands might result in an increased cholesterol efflux from macrophages and a decreased building up of cholesterol loaded atherosclerotic plaques (Venkateswaran, et al., PNAS (2000) 97(22):12097-102; Sparrow, et al., J Biol Chem (2002) 277(12):10021-7;

15 Joseph, et al., PNAS (2002);99(11):7604-9). Direct evidence that synthetic LXR ligands inhibit the development of atherosclerosis has been provided in two animal models of atherosclerosis: A significant reduction in the formation of atherosclerotic plaques were shown in two studies in animal models using full LXR agonists Joseph et al. PNAS (2002) 99:7604-9 and Terasaka et al. (2003) Terasaka et al. FEBS Lett.

20 (2003) 536:6-11. In addition, two recent reports have highlighted the potential use of LXR agonists in diabetes (Cao et al., (2003) J Biol Chem. 278:1131-6 and inflammatory disorders (Joseph et al., (2003) Nat Med. 9:213-9.

25 However, in animal studies it was observed that activation of LXR in the liver by full agonists like T0901317 does not only increase bile acid synthesis but also stimulates the de novo synthesis of fatty acids and triglycerids through the upregulation of key enzymes such as Fatty Acid Synthase (FAS) or Stearyl-CoA Desaturase (SCD-1) (Schultz, et al., Genes Dev (2000) 14(22):2831-8). Elevation of serum triglyceride levels is an independent risk factor for atherosclerosis (for review see Miller (1999 )

30 Hosp Pract (Off Ed) 34: 67-73.).

Thus, LXR activity needs to be selectively modulated for therapeutic benefit. In particular, compounds need to be found that stimulate reverse cholesterol transport, but do not significantly increase triglyceride levels. This might be particularly relevant for the usage of such compounds in diabetic patients since a even more severe lipogenic effect was reported for the full agonist T0901317 in db/db mice which serve as an animal model for diabetes (Chisholm et al. (2003) J.Lipid Res (epub August 16)).

5  
Therefore, an ideal synthetic LXR binding compound should have properties that retain the agonistic activity on hepatic bile acid formation and ABC-transporter - mediated decrease in cholesterol uptake from the diet and increased cholesterol efflux from macrophages. In parallel such a compound should lack the hyperlipidemic  
10 potential which is exerted through increased fatty acid and triglyceride synthesis.

To date only few compounds have been described which bind the LXR receptor and thus show utility for treating diseases or conditions which are due to or influenced by said nuclear receptor (Collins, et al., J Med Chem. (2002) 45(10):1963-6; Schultz, et  
15 al., Genes Dev (2000) 14(22):2831-8; Sparrow, et al., J Biol Chem (2002)  
277(12):10021-7). No non-steroidal compounds have so far been described which show selectivity regarding the induction of ABC transporter genes without simultaneous induction of lipogenic genes like FAS and SREBP-1c (Kaneko et al.  
(2003) J Biol Chem (epub July 7).

20  
It is thus an object of the invention to provide for compounds which by means of binding the LXR receptor act as partial agonists of said receptor with a selective property regarding the upregulation of genes like the ABC transporters in macrophages and/or other cell types and a strongly reduced liability to increase the  
25 expression of genes involved in triglyceride synthetic pathways (like FAS and SREBP-1c). These compounds should show utility for treating diseases or conditions  
which are due to or influenced by said nuclear receptor.

30  
It is further an object of the invention to provide for compounds that may be used for the manufacture of a medicament for the treatment of cholesterol associated conditions or diseases. It is still a further object of the invention to provide for compounds that lower serum cholesterol and/or increase High Density Lipoproteins (HDL) and/or decrease Low Density Lipoproteins (LDL). It is also an object of the invention to provide for compounds that may be used for the treatment of lipid  
35 disorders including hypercholesterolemia, atherosclerosis, Alzheimer's disease, skin disorders, inflammation, obesity and diabetes.

5 The present invention provides, *inter alia*, novel LXR nuclear receptor protein binding compounds according to the general formula (I) shown below. Said compounds are also binders of mammalian homologues of said receptor. Further the object of the invention was solved by providing for amongst the LXR nuclear receptor protein binding compounds according to the general formula (I) such compounds which act 10 as partial agonists or mixed agonists / antagonists of the human LXR receptor or a mammalian homologue thereof. Further the object of the invention was solved by providing for amongst the LXR receptor protein binding compounds according to the general formula (I) such compounds which act as partial agonists of the human LXR receptor resulting therefore in the induction of ABC transporter proteins such as 15 ABCA1 or ABCG1 in cell types such as macrophages but lacking a strong potential to induce genes involved in triglyceride synthetic pathways such as fatty acid synthase (FAS) or SREBP1c.

20 The invention provides for LXR agonists that may be used for the manufacture of a medicament for the treatment of cholesterol associated conditions or diseases. In a preferred embodiment compounds are provided that lower serum cholesterol and/or increase High Density lipoproteins (HDL) and/or decrease Low Density Lipoproteins (LDL). Also compounds are provided that may be used for the treatment of lipid disorders including hypercholesterolemia, atherosclerosis, Alzheimer's disease, skin 25 disorders, inflammation, obesity and diabetes.

30 )  
The invention provides for a compound of the formula (I), or pharmaceutical acceptable salts or solvates thereof, hereinafter also referred to as the "compounds according to the invention" including particular and preferred embodiments thereof.



5

(I)

10 The compounds of the invention can also exist as solvates and hydrates. Thus, these compounds may crystallize with, for example, waters of hydration, or one, a number of, or any fraction thereof of molecules of the mother liquor solvent. The solvates and hydrates of such compounds are included within the scope of this invention.

In one embodiment of the invention in formula (I) above, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub>, - independent from each other - H, halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or phenyl,

25 and R<sub>5</sub> is H, C<sub>1</sub> to C<sub>8</sub> alkyl, C<sub>1</sub> to C<sub>8</sub> substituted alkyl, C<sub>7</sub> to C<sub>12</sub> alkylphenyl or C<sub>7</sub> to C<sub>12</sub> substituted phenylalkyl.

In an other embodiment of the invention in formula (I) above R<sub>1</sub>, R<sub>3</sub> and R<sub>4</sub> are H, R<sub>2</sub> is halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or phenyl,

and R<sub>5</sub> is H, C<sub>1</sub> to C<sub>8</sub> alkyl, C<sub>1</sub> to C<sub>8</sub> substituted alkyl.

5

- The symbol "H" denotes a hydrogen atom.

The term "C<sub>1</sub> to C<sub>7</sub> acyl" encompasses groups such as formyl, acetyl, propionyl, butyryl, pentanoyl, pivaloyl, hexanoyl, heptanoyl, benzoyl and the like. Preferred acyl groups are acetyl and benzoyl.

The term "C<sub>1</sub> to C<sub>7</sub> substituted acyl" denotes the acyl group substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, cyclohexyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl ester, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N,N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C<sub>1</sub> to C<sub>4</sub> alkylthio or C<sub>1</sub> to C<sub>4</sub> alkylsulfonyl groups. The substituted acyl groups may be substituted once or more, and preferably once or twice, with the same or with different substituents.

The term "substituted phenyl" specifies a phenyl group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino, N- (phenylsulfonyl)amino or phenyl, wherein the phenyl is substituted or unsubstituted, such that, for example, a biphenyl results.

35

Examples of the term "substituted phenyl" includes a mono- or di(halo)phenyl group such as 2, 3 or 4-chlorophenyl, 2,6-dichlorophenyl, 2,5-dichlorophenyl, 3,4-dichlorophenyl, 2, 3 or 4-bromophenyl, 3,4-dibromophenyl, 3-chloro-4-fluorophenyl,

5 2, 3 or 4-fluorophenyl and the like; a mono or di(hydroxy)phenyl group such as 2, 3 or  
- 4-hydroxyphenyl, 2,4-dihydroxyphenyl, the protected-hydroxy derivatives thereof and  
the like; a nitrophenyl group such as 2, 3 or 4-nitrophenyl; a cyanophenyl group, for  
example, 2, 3 or 4-cyanophenyl; a mono- or di(alkyl)phenyl group such as 2, 3 or 4-  
10 methylphenyl, 2,4-dimethylphenyl, 2, 3 or 4-(iso-propyl)phenyl, 2, 3 or 4-ethylphenyl,  
2, 3 or 4-(n-propyl)phenyl and the like; a mono or di(alkoxyl)phenyl group, for  
example, 2,6-dimethoxyphenyl, 2, 3 or 4-methoxyphenyl, 2, 3 or 4-ethoxyphenyl, 2, 3  
or 4-(isopropoxy)phenyl, 2, 3 or 4-(t-butoxy)phenyl, 3-ethoxy-4-methoxyphenyl and  
the like; 2, 3 or 4-trifluoromethylphenyl; a mono- or dicarboxyphenyl or (protected  
15 carboxy)phenyl group such as 2, 3 or 4-carboxyphenyl or 2,4-di(protected  
carboxy)phenyl; a mono- or di(hydroxymethyl)phenyl or (protected  
hydroxymethyl)phenyl such as 2, 3, or 4-(protected hydroxymethyl)phenyl or  
3,4-di(hydroxymethyl)phenyl; a mono- or di(aminomethyl)phenyl or (protected  
aminomethyl)phenyl such as 2, 3 or 4-(aminomethyl)phenyl or 2,4-(protected  
aminomethyl)phenyl; or a mono- or di(N-(methylsulfonylamino))phenyl such as 2, 3  
20 or 4-(N-(methylsulfonylamino))phenyl. Also, the term "substituted phenyl" represents  
disubstituted phenyl groups wherein the substituents are different, for example, 3-  
methyl-4-hydroxyphenyl, 3-chloro-4-hydroxyphenyl, 2-methoxy-4-bromophenyl,  
4-ethyl-2-hydroxyphenyl, 3-hydroxy-4-nitrophenyl, 2-hydroxy 4-chlorophenyl and the  
like.

25

The term "heteroaryl" means a heterocyclic aromatic derivative which is a five-  
membered or six-membered ring system having from 1 to 4 heteroatoms, such as  
oxygen, sulfur and/or nitrogen, in particular nitrogen, either alone or in conjunction  
with sulfur or oxygen ring atoms. Examples of heteroaryls include pyridinyl,  
30 pyrimidinyl, and pyrazinyl, pyridazinyl, pyrrolo, furano, thiopheno, oxazolo, isoxazolo,  
phthalimido, thiazolo and the like.

The term "substituted heteroaryl" means the above-described heteroaryl is  
substituted with, for example, one or more, and preferably one or two, substituents  
35 which are the same or different which substituents can be halogen, hydroxy,  
protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted  
alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy, protected  
carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected

5 hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected  
- (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide,  
N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub>  
to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino or N-  
(phenylsulfonyl)amino groups.

10

The term "substituted naphthyl" specifies a naphthyl group substituted with one or more, and preferably one or two, moieties either on the same ring or on different rings chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy,

15 protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino or N-(phenylsulfonyl)amino.

20 Examples of the term "substituted naphthyl" includes a mono or di(halo)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-chloronaphthyl, 2, 6-dichloronaphthyl, 2, 5-dichloronaphthyl, 3, 4-dichloronaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-bromonaphthyl, 3, 4-dibromonaphthyl, 3-chloro-4-fluoronaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-fluoronaphthyl and the like; a mono or di(hydroxy)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-hydroxynaphthyl, 2, 4-dihydroxynaphthyl, the protected-hydroxy derivatives thereof and the like; a nitronaphthyl group such as 3- or 4-nitronaphthyl; a cyanonaphthyl group, for example, 1, 2, 3, 4, 5, 6, 7 or 8-cyanonaphthyl; a mono- or di(alkyl)naphthyl group such as 2, 3, 4, 5, 6, 7 or 8-methylnaphthyl, 1, 2, 4-dimethylnaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(isopropyl)naphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-ethylnaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(n-propyl)naphthyl and the like; a mono or di(alkoxy)naphthyl group, for example, 2, 6-dimethoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-methoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-ethoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(isopropoxy)naphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(t-butoxy)naphthyl, 3-ethoxy-4-methoxynaphthyl and the like; 1, 2, 3, 4, 5, 6, 7 or 8-trifluoromethylnaphthyl; a mono- or dicarboxynaphthyl or (protected carboxy)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-carboxynaphthyl or 2, 4-di(-protected carboxy)naphthyl; a mono- or

- 5 di(hydroxymethyl)naphthyl or (protected hydroxymethyl)naphthyl such as 1, 2, 3, 4, 5, 6, 7 or 8-(protected hydroxymethyl)naphthyl or 3, 4-di(hydroxymethyl)naphthyl; a mono- or di(amino)naphthyl or (protected amino)naphthyl such as 1, 2, 3, 4, 5, 6, 7 or 8-(amino)naphthyl or 2, 4-(protected amino)-naphthyl, a mono- or di(aminomethyl)naphthyl or (protected aminomethyl)naphthyl such as 2, 3, or
- 10 4-(aminomethyl)naphthyl or 2, 4-(protected aminomethyl)-naphthyl; or a mono- or di-(N-methylsulfonylamino) naphthyl such as 1, 2, 3, 4, 5, 6, 7 or 8-(N-methylsulfonylamino)naphthyl. Also, the term "substituted naphthyl" represents disubstituted naphthyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxynaphth-1-yl, 3-chloro-4-hydroxynaphth-2-yl, 2-methoxy-4-
- 15 bromonaphth-1-yl, 4-ethyl-2-hydroxynaphth-1-yl, 3-hydroxy-4-nitronaphth-2-yl, 2-hydroxy-4-chloronaphth-1-yl, 2-methoxy-7-bromonaphth-1-yl, 4-ethyl-5-hydroxynaphth-2-yl, 3-hydroxy-8-nitronaphth-2-yl, 2-hydroxy-5-chloronaphth-1-yl and the like.
- 20 The term "C<sub>1</sub> to C<sub>8</sub> alkyl" denotes such radicals as methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, amyl, tert-amyl, hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-methyl-1hexyl, 2-methyl-2hexyl, 2-methyl-3-hexyl, n-octyl and the like.
- 25 The term "C<sub>2</sub> to C<sub>6</sub> alkenyl" denotes such radicals as propenyl or butenyl.

Examples of the above substituted alkyl groups include the 2-oxo-prop-1-yl, 3-oxo-but-1-yl, cyanomethyl, nitromethyl, chloromethyl, hydroxymethyl, tetrahydropyranoyloxymethyl, trityloxymethyl, propionyloxymethyl, amino, 30 methylamino, aminomethyl, dimethylamino, carboxymethyl, allyloxycarbonylmethyl, allyloxycarbonylaminomethyl, methoxymethyl, ethoxymethyl, t-butoxymethyl, acetoxymethyl, chloromethyl, bromomethyl, iodomethyl, trifluoromethyl, 6-hydroxyhexyl, 2,4-dichloro(n-butyl), 2-aminopropyl, 1-chloroethyl, 2-chloroethyl, 1-bromoethyl, 2-chloroethyl, 1-fluoroethyl, 2-fluoroethyl, 1- iodoethyl, 2-iodoethyl, 1-chloropropyl, 2-chloropropyl, 3- chloropropyl, 1-bromopropyl, 2-bromopropyl, 3-bromopropyl, 1-fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 1- iodopropyl, 2-iodopropyl, 3-iodopropyl, 2-aminoethyl, 1- aminoethyl, N-benzoyl-2-aminoethyl, N-acetyl-2-aminoethyl, N-benzoyl-1-aminoethyl, N-acetyl-1-aminoethyl and the like.

5

- The term "C<sub>1</sub> to C<sub>8</sub> substituted alkyl" denotes that the above C<sub>1</sub> to C<sub>8</sub> alkyl groups are substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, C<sub>3</sub> to C<sub>7</sub> cycloalkyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, 10 guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N,N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C<sub>1</sub> to C<sub>4</sub> alkylthio or C<sub>1</sub> to C<sub>4</sub> 15 alkylsulfonyl groups. The substituted alkyl groups may be substituted once or more, and preferably once or twice, with the same or with different substituents.

The term "C<sub>7</sub> to C<sub>12</sub> phenylalkyl" denotes a C<sub>1</sub> to C<sub>6</sub> alkyl group substituted at any position by a phenyl, substituted phenyl, heteroaryl or substituted heteroaryl.

- 20 Examples of such a group include benzyl, 2-phenylethyl, 3-phenyl(n-propyl), 4-phenylhexyl, 3-phenyl(n-amyl), 3-phenyl(sec-butyl) and the like. Preferred C<sub>7</sub> to C<sub>12</sub> phenylalkyl groups are the benzyl and the phenylethyl groups.

The term "C<sub>7</sub> to C<sub>12</sub> substituted phenylalkyl" denotes a C<sub>7</sub> to C<sub>12</sub> phenylalkyl group substituted on the C<sub>1</sub> to C<sub>6</sub> alkyl portion with one or more, and preferably one or two,

- 25 groups chosen from halogen, hydroxy, protected hydroxy, oxo, protected oxo, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, nitro,

- 30 carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-(C<sub>1</sub> to C<sub>6</sub> dialkyl)carboxamide, cyano, N-(C<sub>1</sub> to C<sub>6</sub> alkylsulfonyl)amino, thiol, C<sub>1</sub> to C<sub>4</sub> alkylthio, C<sub>1</sub> to C<sub>4</sub> 35 alkylsulfonyl groups; and/or the phenyl group may be substituted with one or more, and preferably one or two, substituents chosen from halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy,

carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino,

5 (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino,  
carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl) carboxamide, protected N-  
(C<sub>1</sub> to C<sub>6</sub> alkyl) carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-  
((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, cyclic C<sub>2</sub> to C<sub>7</sub> alkylene or a  
phenyl group, substituted or unsubstituted, for a resulting biphenyl group. The  
10 substituted alkyl or phenyl groups may be substituted with one or more, and  
preferably one or two, substituents which can be the same or different.

Examples of the term "C<sub>7</sub> to C<sub>12</sub> substituted phenylalkyl" include groups such as 2-  
phenyl-1-chloroethyl, 2-(4-methoxyphenyl)ethyl, 4-(2,6-dihydroxy phenyl)n-hexyl, 2-  
15 (5-cyano-3-methoxyphenyl)n-pentyl, 3-(2,6-dimethylphenyl)n-propyl, 4-chloro-3-  
aminobenzyl, 6-(4-methoxyphenyl)-3-carboxy(n-hexyl), 5-(4-aminomethylphenyl)- 3-  
(aminomethyl)n-pentyl, 5-phenyl-3-oxo-n-pent-1-yl and the like.

20

The term "heterocycle" or "heterocyclic ring" denotes optionally substituted five-  
membered to eight-membered rings that have 1 to 4 heteroatoms, such as oxygen,  
sulfur and/or nitrogen, in particular nitrogen, either alone or in conjunction with sulfur  
25 or oxygen ring atoms. These five-membered to eight-membered rings may be  
saturated, fully unsaturated or partially unsaturated, with fully saturated rings being  
preferred. Preferred heterocyclic rings include morpholino, piperidinyl, piperazinyl,  
2-amino-imidazoyl, tetrahydrofuran, pyrrolo, tetrahydrothiophen-yl,  
hexylmethleneimino and heptylmethyleneimino.

30

The term "substituted heterocycle" or "substituted heterocyclic ring" means the  
above-described heterocyclic ring is substituted with, for example, one or more, and  
preferably one or two, substituents which are the same or different which substituents  
can be halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>12</sub> alkyl, C<sub>1</sub> to C<sub>12</sub>  
35 alkoxy, C<sub>1</sub> to C<sub>12</sub> substituted alkoxy, C<sub>1</sub> to C<sub>12</sub> acyl, C<sub>1</sub> to C<sub>12</sub> acyloxy, carboxy,  
protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl,  
protected hydroxymethyl, amino, protected amino, (monosubstituted)amino,  
protected (monosubstituted)amino, (disubstituted)amino carboxamide, protected

5 carboxamide, N-(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>12</sub> alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, heterocycle or substituted heterocycle groups.

10

The term "C<sub>1</sub> to C<sub>8</sub> alkoxy" as used herein denotes groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy and like groups. A preferred alkoxy is methoxy. The term "C<sub>1</sub> to C<sub>8</sub> substituted alkoxy" means the alkyl portion of the alkoxy can be substituted in the same manner as in relation to C<sub>1</sub> to C<sub>8</sub> substituted alkyl.

15

The term "C<sub>1</sub> to C<sub>8</sub> aminoacyl" encompasses groups such as formyl, acetyl, propionyl, butyryl, pentanoyl, pivaloyl, hexanoyl, heptanoyl, octanoyl, benzoyl and the like.

20 The term "C<sub>1</sub> to C<sub>8</sub> substituted aminoacyl" denotes the acyl group substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, cyclohexyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl,

25 pyrrolidinyl, C<sub>1</sub> to C<sub>12</sub> alkoxy, C<sub>1</sub> to C<sub>12</sub> acyl, C<sub>1</sub> to C<sub>12</sub> acyloxy, nitro, C<sub>1</sub> to C<sub>12</sub> alkyl ester, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, N,N-di(C<sub>1</sub> to C<sub>12</sub> alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C<sub>1</sub> to C<sub>10</sub> alkylthio or C<sub>1</sub> to C<sub>10</sub> alkylsulfonyl groups. The substituted acyl groups may be substituted once or

30 more, and preferably once or twice, with the same or with different substituents.

Examples of C<sub>1</sub> to C<sub>8</sub> substituted acyl groups include 4-phenylbutyroyl, 3-phenylbutyroyl, 3-phenylpropanoyl, 2- cyclohexanylacetyl, cyclohexanecarbonyl, 2-furanoyl and 3-dimethylaminobenzoyl.

35

This invention also provides a pharmaceutical composition comprising an effective amount of a compound according to the invention. Such pharmaceutical compositions can be administered by various routes, for example oral,

5 subcutaneous, intramuscular, intravenous or intracerebral. The preferred route of administration would be oral at daily doses of the compound for adult human treatment of about 0.01-5000 mg, preferably 1-1500 mg per day. The appropriate dose may be administered in a single dose or as divided doses presented at appropriate intervals for example as two, three four or more subdoses per day.

10

For preparing pharmaceutical compositions containing compounds of the invention, inert, pharmaceutically acceptable carriers are used. The pharmaceutical carrier can be either solid or liquid. Solid form preparations include, for example, powders, tablets, dispersible granules, capsules, cachets, and suppositories.

15

A solid carrier can be one or more substances which can also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material.

20 In powders, the carrier is generally a finely divided solid which is in a mixture with the finely divided active component. In tablets, the active compound is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

25 For preparing pharmaceutical composition in the form of suppositories, a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient-sized molds and allowed to cool and solidify.

30

Powders and tablets preferably contain between about 5% to about 70% by weight of the active ingredient, preferably comprising (especially consisting of) one or more of the compounds according to this invention. Suitable carriers include, for example, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin,

35 starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter and the like.

5 The pharmaceutical compositions can include the formulation of the active compound  
with encapsulating material as a carrier providing a capsule in which the active  
component (with or without other carriers) is surrounded by a carrier, which is thus in  
association with it. In a similar manner, cachets are also included. Tablets, powders,  
cachets, and capsules can be used as solid dosage forms suitable for oral  
10 administration.

Liquid pharmaceutical compositions include, for example, solutions suitable for oral  
or parenteral administration, or suspensions, and emulsions suitable for oral  
administration. Sterile water solutions of the active component or sterile solutions of  
15 the active component in solvents comprising water, ethanol, or propylene glycol are  
examples of liquid compositions suitable for parenteral administration.

Sterile solutions can be prepared by dissolving the active component in the desired  
solvent system, and then passing the resulting solution through a membrane filter to  
20 sterilize it or, alternatively, by dissolving the sterile compound in a previously  
sterilized solvent under sterile conditions.

In a preferred embodiment of the invention in the compounds claimed, or the  
pharmaceutical acceptable salts or solvates thereof, R<sub>1</sub>, R<sub>3</sub> and R<sub>4</sub> are H, R<sub>2</sub> is  
25 halogen and preferably iodine over bromine and chlorine and R<sub>5</sub> is H, C<sub>1</sub> to C<sub>8</sub> alkyl  
or C<sub>1</sub> to C<sub>8</sub> substituted alkyl.

A particularly preferred compound which may act as a partial agonist of LXR is  
shown in formula (II) below (MOLNAME TR1040001892). It has been demonstrated  
30 that this compound has a low effective concentration at LXR with an EC<sub>50</sub> of 2 μM in  
a FRET assay wherein the EC<sub>50</sub> reflects the half-maximal effective concentration,  
and which is higher than the EC<sub>50</sub> of 0.015 μM for the published LXR agonist  
TO901317 (J. Schultz et al., Genes Dev. 14, 2831-2838, 2000). Compound  
according to formula (II) does show selective upregulation of ABCA1 and ABCG1 in  
35 THP-1 macrophages but does not significantly upregulate FAS and much reduced  
SREBP-1c in HepG2 cells (see EXAMPLE 5 further down).

5



(II)

It has also been found that the compound according to formula (III) (Molname TR1040011382) to be active as partial agonist of the LXR human nuclear receptors 10 with a selective upregulation of the target genes ABCA1 and ABCG1 in THP-1 cells compared to FAS and SREBP-1c in HepG2 cells.



(III)

It has also been found that the compounds according to formulas (IV) (Molname 15 TR1040002211) and (V) (Molname TR1040002212) to be active as partial agonist of the LXR human nuclear receptors however with a reduced selectivity regarding the upregulation of the target genes ABCA1 and ABCG1 in THP-1 cells versus FAS and SREBP-1c in HepG2 cells compared to compounds of formula (II) and (III) (see EXAMPLE 5 further down)

20



5

(IV)



(V)

10

In particular the invention relates to a compound as described above wherein said compounds is capable of binding the LXR receptor protein or a portion thereof encoded by a nucleic acid according to SEQ ID NO:1 or NO:2 (Fig. 3 ) or a 15 mammalian homologue thereof. This compound can bind to the LXR receptor protein or a portion thereof in a mixture comprising 10-200 ng of LXR receptor protein, a fusion protein containing LXR or a portion thereof, preferably the ligand binding domain, fused to a Tag, 5-100 mM Tris/HCl at pH 6,8-8,3; 60-1000 mM KCl; 0-20 mM MgCl<sub>2</sub>; 100-1000ng/ $\mu$ l BSA in a total volume of preferably about 25  $\mu$ l[see 20 also EXAMPLE 1 and Fig.2).

A mammalian receptor protein homologue of the protein encoded by a nucleic acid according to SEQ ID NO:1 or 2, as used herein is a protein that performs substantially the same task as LXR does in humans and shares at least 40% 25 sequence identity at the amino acid level, preferably over 50 % sequence identity at the amino acid level more preferably over 65 % sequence identity at the amino acid

5 level, even more preferably over 75 % sequence identity at the amino acid level and  
most preferably over 85 % sequence identity at the amino acid level.

10 The invention in particular concerns a method for prevention or treatment of a LXR  
receptor protein or LXR receptor protein homologue mediated disease or condition in  
a mammal comprising administration of a therapeutically effective amount of a  
compound according to the invention wherein the prevention or treatment is directly  
or indirectly accomplished through the binding of a compound according to the  
invention to the LXR receptor protein or to the LXR receptor protein homologue.

15 The term mediated herein means that the physiological pathway in which the LXR  
receptor protein acts is either directly or indirectly involved in the disease or condition  
to be treated or prevented. In the case where it is indirectly involved it could be that,  
e.g. modulating the activity of LXR by a compound according to the invention  
influences a parameter which has a beneficial effect on a disease or a condition. One  
20 such example is that modulation of LXR activity leads to decreased levels of serum  
cholesterol or certain lipoproteins which in turn have a beneficial effect on the  
prevention and treatment of atherosclerosis. Herein a condition is a physiological or  
phenotypic state which is desirably altered. One such example would be obesity  
which is not necessarily medically harmful but nonetheless a non desirable  
25 phenotypic condition. In a preferred embodiment of the invention the method for  
prevention or treatment of a LXR receptor protein mediated disease or condition is  
applied to a human. This may be male or female.

30 Pharmaceutical compositions generally are administered in an amount effective for  
treatment or prophylaxis of a specific condition or conditions. Initial dosing in human  
is accompanied by clinical monitoring of symptoms, such symptoms for the selected  
condition. In general, the compositions are administered in an amount of active agent  
of at least about 100 µg/kg body weight. In most cases they will be administered in  
one or more doses in an amount not in excess of about 20 mg/kg body weight per  
35 day. Preferably, in most cases, doses is from about 100 µg/kg to about 5 mg/kg body  
weight, daily.

5 For administration particularly to mammals, and particularly humans, it is expected  
that the daily dosage level of active agent will be 0,1 mg/kg to 10 mg/kg and typically  
around 1 mg/kg.

By "therapeutically effective amount" is meant a symptom-alleviating or symptom-reducing amount, a cholesterol-reducing amount, a cholesterol absorption blocking amount, a protein and/or carbohydrate digestion-blocking amount and/or a de novo cholesterol biosynthesis-blocking amount of a compound according to the invention.

15 Likewise the invention concerns a method of treating in mammal a disease which is correlated with abnormal cholesterol, triglyceride, or bile acid levels or deposits comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to the invention.

20 Accordingly, the compounds according to the invention may also be used in a method of prevention or treatment of mammalian atherosclerosis, gallstone disease, lipid disorders, Alzheimer's disease, skin disorders, inflammation, obesity or cardiovascular disorders such as coronary heart disease or stroke.

25 The invention further concerns a method of blocking in a mammal the cholesterol absorption in the intestine in need of such blocking comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to the invention. The invention may also be used to treat obesity in humans.

30 The Liver X Receptor alpha is a prototypical type 2 nuclear receptor meaning that it activates genes upon binding to the promoter region of target genes in a heterodimeric fashion with Retinoid X Receptor. The relevant physiological ligands of LXR are oxysterols. The compounds have been demonstrated to have a high binding  
35 efficacy (binding coefficients measured as EC50 in the range of 1-5 µM) as well as agonistic and/or partial agonistic properties. Consequently they may be applied to regulate genes that participate in bile acid, cholesterol and fatty acid homeostasis as well as other downstream regulated genes. Examples of such genes are but are not

5 limited to lipid absorption, cholesterol biosynthesis, cholesterol transport or binding,  
bile acid transport or binding, proteolysis, amino acid metabolism, glucose  
biosynthesis, protein translation, electron transport, and hepatic fatty acid  
metabolism. LXR often functions in vivo as a heterodimer with the Retinoid X  
Receptor. Published non-steroidal LXR agonists such as the "Tularik" compound  
10 "TO901317" (see figure 5) are known to influence the regulation of various liver  
genes. Genes found to be regulated by TO901317 can be found in figure 6. Thus, the  
invention also concerns a method of modulating a gene whose expression is  
regulated by the LXR receptor in a mammal comprising administration of a  
therapeutically effective amount of a compound according to the invention to said  
15 mammal.

A number of direct and indirect LXR target genes have been described whose  
regulated expression contribute to cholesterol homeostasis and lipogenesis. In this  
respect the direct regulation of Cyp7A, which was shown to be a direct target gene of  
20 LXR at least in the rodent lineage is an important aspect of cholesterol removal by  
increased metabolism of bile acids (Lehmann et al., J Biol.Chem. 272 (6) 3137-3140;  
1007). Gupta et al. (Biochem. Biophys Res.Com, 293; 338-343, 2002) showed that  
LXR  $\alpha$  regulation of Cyp7A is dominant over FXR inhibitory effects on Cyp7A  
transcription.

25 A key transcription factor that was also shown to be a direct target gene for the LXR  
receptor is SREBP-1C (Repa et al., Genes and Development, 14:2819-2830; 2000;  
Yoshikawa et al.; Mol.Cell.Biol.21 (9) 2991-3000, 2001). SREBP-1C itself activates  
transcription of genes involved in cholesterol and fatty acid synthesis in liver but also  
30 other mammalian tissues. Some of the SREBP1c target genes involved in  
lipogenesis like FAS and SCD have shown to be additionally direct targets of the  
LXR receptors (Joseph et al.; J Biol Chem. 2002 Mar 29;277(13):11019-25; Liang et  
al., J Biol Chem. 2002 Mar 15;277(11):9520-8.).

35 A primary limitation for the applicability of LXR agonists as e.g. anti-atherosclerotic  
drugs comes from the observation that compounds with full agonistic activity, e.g.  
T0901317, not only elevate HDL cholesterol levels but do also increase plasma  
triglyceride levels in mice (Schultz et al., 2000 Genes Dev. 14:2831-8.).  
Concomitantly, not only genes that are involved in cholesterol efflux such as the  
19

5 cholesterol transporter ABCA1 (Venkateswaran et al., 2000 PNAS. 97:12097-102.),  
• ABCG1 as well as the lipid binding protein Apolipoprotein E (Laffite et al. 2001 PNAS  
98:507-512) are induced by full LXR agonists, but also genes involved in  
lipogenesis, including the fatty acid synthase FAS (Joseph et al 2002 J Biol Chem.  
277:11019-11025), and SREB P-1c (Yoshikawa et al., 2001 Mol Cell Biol. 21:2991-  
10 3000). Elevation of serum triglyceride levels is an independent risk factor for  
atherosclerosis (for review see Miller (1999 ) Hosp Pract (Off Ed) 34: 67-73.). Thus, LXR  
activity needs to be selectively modulated for therapeutic benefit. In particular,  
compounds need to be found that stimulate reverse cholesterol transport, but do not  
significantly increase triglyceride levels.

15 Another gene that has been shown to be directly regulated by LXRs is the LPL gene,  
that codes for a key enzyme that is responsible for the hydrolysis of triglycerides in  
circulating lipoprotein, releasing free fatty acids to peripheral tissues. (Zhang et al. J  
Biol Chem. 2001 Nov 16;276(46):43018-24.) This enzyme is believed to promote  
20 uptake of HDL cholesterol in liver, thereby promoting reverse cholesterol transport. A  
similar functional involvement in HDL clearance is described for the CETP gene  
product that facilitated the transfer of HDL cholesterol esters from plasma to the liver.  
LXR response elements were found in the CETP promoter and direct activation of  
this gene by LXR was demonstrated (Luo and Tall; J Clin Invest. 2000  
25 Feb;105(4):513-20.).

The regulated transport of cholesterol through biological membranes is an important  
mechanism in order to maintain cholesterol homeostasis. A pivotal role in these  
processes in multiple tissues like e.g. macrophages and intestinal mucosa cells is  
30 maintained by the ATP-binding cassette transporter proteins (ABC). ABCA1 and  
ABCG1 were identified as direct LXR target genes (Costet et al.; J Biol Chem. 2000  
Sep 8;275(36):28240-5) that mediate cholesterol efflux and prevent thereby e.g.  
generation of artherogenic plaques in macrophages (Singaraja et al. J Clin Invest.  
2002 Jul;110(1):35-42). Other ABC transporters like ABCG5 and ABCG8 , primarily  
35 expressed in hepatocytes and enterocytes have also been reported to be directly  
responsive to LXR agonists ( Repa et al., J Biol Chem. 2002 May 24;277(21):18793-  
800. Kennedy et al., J Biol Chem. 2001 Oct 19;276(42):39438-47) and mediate the  
secretion of sterols from the liver and efflux of dietary sterols from the gut .

5 Apolipoproteins E, C-I, C-II, and C-IV, that fulfill important roles in lipoprotein/lipid  
homeostasis have also been shown to be direct targets of the LXR receptor ( Laffitte  
et al., Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):507-12; Mak et al.; J Biol Chem.  
2002 May 24 [epub ahead of print]). These proteins have been found to be crucial  
components of chylomicrons, VLDL, IDL, and HDL and are among other things  
10 associated with hypertriglyceridemia and arteriosclerosis.

Recently the LXR $\alpha$  itself was shown to be regulated by both LXR receptors in human  
cell types including macrophages suggesting an autoregulatory amplification event in  
the response to LXR ligands which could e.g. lead to an enhanced stimulation of LXR  
15 target genes like e.g. ABCA1 (Bolten et al.; Mol Endocrinol. 2002 Mar;16(3):506-14.;  
Laffitte et al., Mol Cell Biol. 2001 Nov;21(22):7558-68; Whitney et al.; J Biol Chem.  
2001 Nov 23;276(47):43509-15).

20 Besides the important function of LXR receptors in tissues like liver and  
macrophages it has recently been reported that that stimulation of epidermal  
differentiation is mediated by Liver X receptors in murine epidermis. Differentiation  
maker genes like involucrin, loricin and profilaggrin have been shown to be  
upregulated upon LXR ligand treatment (Kömüves et al.; J Invest Dermatol. 2002  
Jan;118(1):25-34.).

25 Another recent report describes the regulation of cholesterol homeostasis (primarily  
the regulation of ABCA1, ABCG1 and SREBP-1C) by the LXR receptors in the  
central nervous system suggesting that LXRs may prove beneficial in the treatment of  
CNS diseases such as Alzheimer's and Niemann-Pick disease that are known to be  
30 accompanied by dysregulation of cholesterol balance (Whitney et al.; Mol Endocrinol.  
2002 Jun;16(6):1378-85).

35 Activation of LXR by an agonist improves glucose tolerance in a murine model of  
diet-induced obesity and insulin resistance. Gene expression analysis in LXR  
agonist-treated mice reveals coordinate regulation of genes involved in glucose  
metabolism in liver and adipose tissue, e.g. the down-regulation of peroxisome  
proliferator-activated receptor gamma coactivator-1 alpha (PGC-1),  
phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase

5 expression and induction of glucokinase in liver. In adipose tissue, activation of LXR  
led to the transcriptional induction of the insulin-sensitive glucose transporter,  
GLUT4. LXR agonist may limit hepatic glucose output and improve peripheral  
glucose uptake (Laffitte et al. (2003) PNAS 100:5419-24).

10 Therefore one other important embodiment of the invention concerns methods that  
enhances or suppresses amongst other today yet unknown LXR target genes the  
above mentioned genes and the associated biological processes and pathways  
through LXR compounds that are subject of this invention.

15 The compounds according to the invention may be used as medicaments, in  
particular for the manufacture of a medicament for the prevention or treatment of a  
LXR receptor protein or LXR receptor protein homologue mediated disease or  
condition in a mammal wherein the prevention or treatment is directly or indirectly  
accomplished through the binding of the compound according to the invention to the  
LXR receptor protein or LXR receptor protein homologue. These pharmaceutical  
20 compositions contain 0,1 % to 99,5 % of the compound according to the invention,  
more particularly 0,5 % to 90 % of the compound according to the invention in  
combination with a pharmaceutically acceptable carrier.

25 The invention concerns also the use of a compound according to the invention for the  
manufacture of a medicament for the prevention or treatment of a LXR receptor  
protein mediated disease or condition wherein the mammal described above is a  
human. The medicament may be used for regulating the cholesterol transport  
system, for regulating levels of cholesterol, triglyceride, and/or bile acid in a mammal  
preferentially a human by activating the LXR receptor. The medicament may be used  
30 for the treatment of atherosclerosis, gallstone disease, lipid disorders, Alzheimer's  
disease, skin disorders, obesity or a cardiovascular disorder.

35 The invention further concerns the use of a compound according to the invention for  
the manufacture of a medicament capable for blocking in a mammal, preferentially in  
a human the cholesterol absorption in the intestine. Further the claimed compound  
may be used for the manufacture of a medicament for treating obesity in humans and

5 for modulating a gene whose expression is regulated by the LXR receptor (see details above and figures).

## EXAMPLES

### EXAMPLE 1

In vitro screening for compounds which influence LXR binding to coactivators.

For screening purposes a GST and 6 x His fusion of the LBD (from amino acids 155 of hLXRalpha to 447) of human LXRalpha is constructed by first cloning a Gateway cassette (Invitrogen) in frame into the Sma I site of the pAGGHLT Polylinker (Pharmingen). Then a PCR fragment specifically amplified from human liver cDNA is cloned into the resulting pACGHLT-GW following the manufacturers instructions for Gateway cloning (Invitrogen) to yield pACGHLT-GW-hLXRalphaLBD.

Primers used for Amplification are:

GGGGACAAGTTGTACAAAAAAGCAGGCTCGCTCGCAAATGCCGTAG and  
GGGGACCACTTGTACAAGAAAGCTGGGTCCCCTCTCAGTCTGTTCCACTT .

100 % sequence integrity of all recombinant products is verified by sequencing.

Recombinant Baculovirus is constructed from pACGHLT-GW-hLXRalphaLBD using the Pharmingen Baculovirus Expression vector system according to instructions of the manufacturer. Monolayer cultures of SF9 cells are infected by the virus as recommended by Pharmingen or 200ml cultures of  $1 \times 10^6$  cells/ml grown in 2 liter Erlenmeyer flasks on an orbital shaker at 30 rpm are infected by 10ml of same virus stock. In both cases cells are harvested 3 days after infection. All cell growth is performed in Gibco SF900 II with Glutamine (Invitrogen) medium without serum supplementation at 28°C. Since SF9 cells contain significant amounts of endogenous GST, purification is performed via His and not via GST affinity chromatography. To this end instructions of Pharmingen for purification of recombinant His tagged proteins from SF9 cells are followed with the following modifications: All detergents are omitted from the buffers and cells were lysed on ice by 5 subsequent sonication pulses using a sonicator needle at maximum power. All eluates are dialyzed against 20 mM Tris/HCl pH 6,8, 300 mM KCl; 5 mM MgCl<sub>2</sub>; 1 mM DTT; 0,2 mM PMSF; 10% Glycerol. A typical dialyzed eluate fraction contains the fusion protein at a purity of more than 80%. Total protein concentration is 0,1-0,3 mg/ml.

For *E. coli* expression of a NR coactivator, pDest17-hTif2BD expressing a NR interaction domain from amino acids 548-878 of human Tif2 (Acc. No: XM\_011633 RefSeq) tagged by 6 N-terminal His residues is constructed. Therefore, a PCR fragment specifically amplified from human liver cDNA is subcloned into pDest 17 (Invitrogen) following the manufacturers instructions for Gateway cloning (Invitrogen). Primers used for Amplification are:

GGGGACAAGTTGTACAAAAAAGCAGGCTCGTTAGGGTCATCGTTGGCTTCACC  
and

GGGGACCACTTGTACAAGAAAGCTGGGTCTCAAAGTTGCCCTGGTCGTGGGT  
TA

For *E. coli* expression plasmid DNA is transformed into chemically competent *E. coli* BL21 (Invitrogen, USA) and cells are grown to an OD600 of 0.4-0.7 before expression was induced by addition of 0,5 mM IPTG according instructions of the manufacturer (Invitrogen). After induction for 8 hours at 30°C cells are harvested by centrifugation for 10 minutes at 5000 x g. Fusion proteins are affinity purified using Ni-NTA Agarose (QIAGEN) according to the instructions of the manufacturer. Recombinant Tif2 construct is dialyzed against 20 mM Tris/HCL pH 7.9; 60 mM KCl; 5 mM MgCl<sub>2</sub>; 1 mM DTT, 0,2 mM PMSF; 10% glycerol. A typical dialyzed eluate fraction contains the fusion protein at a purity of more than 80%. Total protein concentration is 0,1-0,3 mg/ml.

The TIF2 fragment is subsequently biotinylated by addition of 5-40 µl/ml Tif2 fraction of a Biotinamidocaproate N-Hydroxysuccinimide-ester (Sigma) solution (20 mg/ml in DMSO). Overhead rotating samples are incubated for 2 hours at room temperature. Unincorporated label is then separated using G25 Gel filtration chromatography (Pharmacia Biotech, Sweden). Protein containing fractions from the column are pooled and tested for activity in the assay as described below.

For screening of compound libraries as provided for by the methods shown below in the examples for substances which influence the LXR/Tif 2 interaction, the Perkin Elmer LANCE technology is applied. This method relies on the binding dependent energy transfer from a donor to an acceptor fluorophore attached to the binding partners of interest. For ease of handling and reduction of background from compound fluorescence LANCE technology makes use of generic fluorophore labels and time resolved detection (for detailed description see Hemmilä I, Blomberg K and

Hurskainen P, Time-resolved resonance energy transfer (TR-FRET) principle in LANCE, Abstract of Papers Presented at the 3 rd Annual Conference of the Society for Biomolecular Screening, Sep., California (1997 )

For screening, 20-200 ng of biotinylated Tif 2 fragment and 10-200 ng of GST-LXR fragment are combined with 0.5-2 nM LANCE Eu-(W1024) labelled anti-GST antibody (Perkin Elmer) and 0,1-0,5 $\mu$ g of highly fluorescent APC-labelled streptavidin (Perkin Elmer, AD0059) in the presence of 50 $\mu$ M of individual compounds to be screened in a total volume of 25  $\mu$ l of 20 mM Tris /HCl pH 6,8; 300 mM KCl; 5 mM MgCl<sub>2</sub>; 100-1000 ng/ $\mu$ l/ BSA DMSO content of the samples is kept below 4%. Samples are incubated for a minimum of 60 minutes in the dark at room temperature in FIA-Plates black 384well med. binding (Greiner).

The LANCE signal is detected by a Perkin Elmer VICTOR2V™ Multilabel Counter applying the detection parameters listed in Fig. 2. The results are visualized by plotting the ratio between the emitted light at 665 nm and at 615 nm. For every batch of recombinant proteins amount of proteins, including BSA and labeling reagents giving the most sensitive detection of hits is determined individually by analysis of dose response curves for 22R Hydroxycholesterol and TO 901317

## EXAMPLE 2

Experimental procedure for the preparation of the compounds according to the invention.

### *o*-AZIDOBENZOIC ACID SYNTHESIS (2)

The anthranilic acid (1, 1 eq., 0.5-1 M) is suspended in 6 M HCl, containing enough AcOH (0-20% dependent upon the anthranilic acid) to facilitate dissolution of the anthranilic acid and/or the intermediate diazonium salt, and cooled to 0 °C. NaNO<sub>2</sub> (1.1 eq., 1.3-2.5 M) dissolved in H<sub>2</sub>O is added to the anthranilic acid solution at a rate such that the temperature of the reaction solution remains below 5 °C. The resulting homogeneous solution of the diazonium salt is slowly filtered through a sintered glass funnel into a solution of NaN<sub>3</sub> (1.1 eq., 0.7-1.1 M) and NaOAc (12 eq.) in H<sub>2</sub>O. The

reaction mixture is stirred/shaken for 30-60 min following cessation of vigorous N<sub>2</sub> evolution. Following acidification of the reaction mixture to pH 1 with concentrated HCl, the mixture was cooled to 0 °C to encourage complete precipitation of the o-azidobenzoic acid. The precipitate is collected by filtration and washed with 6 M HCl (2x) and H<sub>2</sub>O (2x). The o-azidobenzoic acid product (2) is dried *in vacuo* (500 mtorr, 30 °C).

#### ACYLATION OF HYDROXYMETHYL RESIN (4)

To hydroxymethyl resin (1.0 eq., 1.3 mmol/g) and the o-azidobenzoic acid (1, 2.5 eq.) is added DMF (to give 400 mM o-azidobenzoic acid ,1), CsCO<sub>3</sub> (2.0 eq.) and KI (2.0 eq.). Following agitation of the reaction mixture for 36-48 h, the resin-bound o-azidobenzoic acid (4) is washed with MeOH (2 cycles), CH<sub>2</sub>Cl<sub>2</sub> (3 cycles), MeOH (3 cycles), DMF (3 cycles), MeOH (3 cycles) and CH<sub>2</sub>Cl<sub>2</sub> (3 cycles), and dried *in vacuo*.

#### AZA-WITTIG FORMATION (5)

To the resin-bound o-azidobenzoic acid (4,1.0 eq.) is added a solution of PPh<sub>3</sub> (THF, 500 mM, 5.0 eq.). After 6 h, the resin is washed with 3 cycles of the following: THF (3 cycles), toluene (3 cycles), CH<sub>2</sub>Cl<sub>2</sub> (3 cycles) and hexanes (3 cycles). Followed by drying *in vacuo* to afford resin bound iminophosphorane (5)

#### CARBODIIMIDE FORMATION (6)

To the resin-bound iminophosphorane (5, 1 eq.) is added isocyanate (9 , 5 eq., 450 mM) dissolved in ClCH<sub>2</sub>CH<sub>2</sub>Cl. The compounds are shaken at ambient temperature for 16 h, washed with 3 cycles of the following: THF (3 cycles), toluene (3 cycles), CH<sub>2</sub>Cl<sub>2</sub> (3 cycles) and hexanes (3 cycles), and dried *in vacuo* to afford carbodiimide (6).

#### GUANIDINE FORMATION / CYCLIZATION

To the carbodiimide functionalized resin (6) is added secondary amine (10, 0.6 eq., 500 mM) dissolved in  $\text{ClCH}_2\text{CH}_2\text{Cl}$ . The reaction mixture is heated to 50 °C in an incubator for 12-72 h to afford 2-aminoquinazoline (8).

All of the final products are analyzed using an Evaporative Light Scattering Detector (ELSD) detection to determine purity.

### EXAMPLE 3

This example illustrates that compounds according to the invention (experiments shown were done with MOLSTRUCTURE TR1040001892, TR1040011382 , TR1040002211 and TR1040002212 (see formulas (II) to (V) for structural formulas)) activate luciferase reporter gene expression in a dose dependent manner mediated through GAL4-LXRa-LBD or GAL4-LXRb-LBD constructs in HEK293 cells. TR1040001892 and TR1040011382 do activate LXR beta LBD truct mediated luciferase activity much stronger than with LXR alpha construct which is in contrast to the similar activation of both LXR alpha and LXR beta LBD containing constructs by TR1040002211 and TO901317.

HEK293 cells are grown in 96 well plates and co-transfected with pFR-luc (Stratagene) and pCMV-BD-LXRa-LBD or pCMV-BD-LXRb-LBD (each 100 ng of plasmid DNA per well). Transfection is carried using Lipfectamine 2000 (Gibco-BRL) according to the manufacturers protocol. The ligand binding domains (LBD) of LXRa and LXRb are cloned into the pCMV-BD-GW (the Gateway Reading Frame Cassette B is cloned as an EcoRV fragment into SmaI site of pCMV-BD) applying the manufacturer protocols for the Gateway™ system (Invitrogen). Luciferase reporter activity is measured in triplicates from extracts of cells after incubating cells in culture medium (DMEM [Gibco-BRL] + 10% FCS [PAA laboratories]) for 16 hours (5%  $\text{CO}_2$ , 37°C) containing 0,5% DMSO (control) or 0,5% DMSO with increasing concentrations of TR1040001892, TR1040002211 or T0901317 (Sigma T 2320, see figure 5 for structural formula). The type of assay used here is a mammalian one hybrid (M1H) assay that is known to those skilled in the art.

Dose-dependent luciferase activities originating from pFR-luc demonstrate the relative activities of the compounds with the LXRa or LXRb LBDs in this mammalian one hybrid type approach.

#### EXAMPLE 4

This example shows that described compounds can increase the abundance of mRNA of LXR target genes like ABCA1 and ABCG1 in THP-1 cells which are treated with TPA or FAS and SREBP-1c in HepG2 cells as shown in Fig 8A-D.

THP-1 cells are seeded in 24 well plates at  $3 \times 10^5$  cells per well in RPMI 1640 medium containing 10 % FCS and 100 nM TPA for 24 h. HepG2 cells are seeded in poly-L-Lysine coated 24well plates at  $1 \times 10^6$  cells per well in EMEM medium containing 10 % FCS until they are appr. 60% confluent.

Before treatment with LXR compounds, the growth medium is changed to medium containing 10% charcoal/dextran-stripped FCS for 12 h. Treatment is done for 12h (THP-1 cells) and 24h (HepG2 cells), respectively, in medium containing 10% charcoal/dextran-stripped FCS (and 100 nM PMA in the case of THP-1 cells).

LXR compounds are dissolved in DMSO, with the final solvent concentration never exceeding 0.125% . All treatments are done in triplicates and experiments repeated twice. Total RNA is extracted using the Qiagen Rneasy Mini Kit and treated with DNase (DNAfree kit, Ambion). RNA is reverse transcribed with Oligo(dT) primer and real-time reverse transcription PCR (TaqMan) is performed using the ABI Prism 7900HT Sequence Detection System and reagents supplied by Applied Biosystems. mRNA steady state levels are normalised to H3 histone (H3F3A ) expression levels. The sequences of forward primers, reverse primers and TaqMan probes are as follows :

FAS : CTGAGACGGAGGCCATATGCT, GCTGCCACACGCTCCTCTAG, FAM-CAGCAGTTCACGGACATGGAGCACAA-TAMRA  
ABCA1 :TCCTGTGGTGTCTGGATGAAC, CTTGACAACACTAGGGCACAAATTC, FAM- ACCACAGGCATGGATCCCAAAGCC-TAMRA

## EXAMPLE 5

All compounds T0901317, TR1040002211, TR1040002212, TR1040001892, TR1040011382, LN0000006662 and LN0000006674 cause a marked increase in cholesterol export in differentiated THP-1 macrophages (see Figure 9 A).

Strikingly, the compound T0901317 causes a marked increase in triyglyceride mass in HepG2 liver cells, while compounds like TR1040001892 and TR1040011382 do not cause a significant increase in triglyceride mass. Compounds TR1040002211 and TR1040002212 cause a slight increase in triglyceride mass.

This behavior is similar to the selective transcriptional effect of compounds like TR1040001892 and TR1040011382 on the LXR target genes in HepG2 versus THP-1 cells.

**Methods:** Cultures of the monocyte-macrophage cell line and the hepatocytes HepG2 are obtained from the American Type tissue Culture Collection, Rockville, MD and were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 10 mM HEPES, 2 mM Pyruvat, 50 µM  $\beta$ -Mercaptoethanol (THP-1) and Minimum essential medium (Eagle) with 2 mM L-glutamine and Earle's BSS supplemented with 10% fetal bovine serum, 2 mM glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate (HepG2), respectively, at 37°C in 5% CO<sub>2</sub>.

THP-1 cells are differentiated into macrophages by addition of 100 nM Phorbol 12-Myristate 13-Acetate (PMA; Sigma P8139) and PMA included in the medium of all subsequent experiments to maintain differentiation.

For cholesterol efflux measurements and triglyceride analysis cells are seeded in 6well plates at 1.8x10<sup>6</sup> cells (THP-1) and 1x10<sup>6</sup> cells (HepG2) per well, respectively.

## CHOLESTEROL EFFLUX

THP-1 cells are seeded in 6well plates at 1X10<sup>6</sup> cells per well in RPMI 1640 medium containing 10 % FCS and 100 nM TPA for 72 h. After washing with PBS cells are incubated 24 h with fresh in RPMI 1640 medium containing 10 % FCS and 100 nM TPA. Cells are washed twice with PBS and RPMI 1640 medium containing 0.15% BSA and 100 nM TPA is added for further 24 h. Treatment with LXR compounds is done for 24 h in RPMI 1640 medium containing 0.15% BSA, 100 nM TPA and 40

µg/ml ApoA1 (Calbiochem # 178452). Medium is collected, centrifuged to remove cell debris and assayed for cholesterol using a commercial fluorometric kit (Molecular Probes A-12216). The remaining cellular proteins are lysed with 0.3 N NaOH and protein content measured with the Biorad Bradford reagent.

### TRIGLYCERIDE ASSAY

HepG2 cells are seeded in poly-L-Lysine coated 6well plates at  $1 \times 10^6$  cells per well in EMEM medium containing 10 % FCS until they were appr. 60% confluent. Before treatment with LXR compounds growth medium is changed to medium containing 10% charcoal/dextran-striped FCS for 12 h. Treatment is done for 24h in medium containing 10% charcoal/dextran-striped FCS. Cells are washed twice with ice-cold PBS/0.2% BSA and twice with cold PBS and all liquid carefully removed. Triglyceride are extracted with with 1.5 ml hexane/ isopropanol = 3:2 per well with gentle shaking for 2-3 h at RT according to Pan et al. (2002) JBC 277, 4413-4421 and Goti et al. (1998) Biochem J, 332 , 57-65 . The extraction solution is collected, dried under vacuum and redissolved in isopropanol/ 1.5% triton. The remaining cellular proteins are lysed with 0.3 N NaOH and protein content measured with the Biorad Bradford reagent.

Triglyceride levels are measured as esterified glycerol using a commercial enzymatic colorimetric kit (Sigma 343-25P). In a preliminary assay it is checked by omitting the lipase enzyme that contribution of free glycerol is negligible.

### FIGURE CAPTIONS

#### FIG. 1

Fig. 1 shows the synthesis of the compounds according to the invention as also described in EXAMPLE 2.

**FIG. 2**

Fig. 2 shows the measurement parameters employed by the Wallace VICTOR2V™ Multilabel Counter which was used for measuring the EC<sub>50</sub> values (see also EXAMPLE 1)

**FIG. 3**

Shows a table with the accession numbers for the key genes

**FIG. 4**

Fig. 4 shows the internal molecular name used by the applicant (MOLNAME) as well as the corresponding structures of preferred compounds according to the invention. The figure further shows their respective EC<sub>50</sub> values (EC50 AVG) as established according to the Example 1 in multiple experiments (see above), as well as their respective average efficacy (% activity relative to TO901317 control agonist).

**FIG. 5**

Figure 5 shows various known LXR ligands. The compound TO901317 is used as a reference compound here. It is apparent from their structures that the inventors have identified novel compounds which are structurally not related to these known ligands.

**FIG. 6**

Figure 6 shows various genes that have been found to be regulated through binding of an LXR agonist to the LXR protein.

**FIG. 7**

Fig 7A and Fig 7B show dose dependence of indicated compounds with LXR alpha LBD (7A) or LXR beta (7B) LBD containing constructs in mammalian one hybrid (M1H) type assays. The respective μM concentrations of the compounds T0901317,

TR1040002211, TR1040002212, TR1040001892 and TR1040011382 are given on the x-axis and the relative light units (RLU) are depicted on the y-axis.

**Fig. 8**

Analysis of mRNA content of the indicated genes (ABCA1, ABCG1, FAS and SREBP-1c) in total RNA isolated from THP-1 cells (8A and 8B) or HepG2 cells (8C and 8D) treated for 12 or 24 hours with indicated concentrations ( $\mu$ M on x-axis) of T0901317, TR1040011382, TR1040001892 and TR1040002211. The relative fold induction is depicted on the y-axis.

**Fig. 9**

Analysis of relative fold increase in total cholesterol from supernatants of cultivated THP-1 cells (indicated on the y-axis) incubated with ApoA1 and with or without 10 $\mu$ M of the compounds T0901317, TR1040002211, TR1040002212, TR1040001892, TR1040011382, LN0000006662 and LN0000006674 as indicated on the X-axis of Fig 9A.

Analysis of relative levels of total triglyceride (TG) content in HepG2 cells (indicated on the y-axis) treated with 25 $\mu$ M of the indicated compounds T0901317, TR1040002211, TR1040002212, TR1040001892, TR1040011382, LN0000006662 and LN0000006674 (indicated on the x-axis).

**Claims:**

1. A compound of the formula (I), or pharmaceutically acceptable salts or solvates thereof,



wherein substituents and indices have the following meanings:

$R_1, R_2, R_3, R_4$ , - independent from each other - is H, halogen, hydroxy, protected hydroxy, cyano, nitro,  $C_1$  to  $C_6$  alkyl,  $C_1$  to  $C_6$  substituted alkyl,  $C_1$  to  $C_7$  alkoxy,  $C_1$  to  $C_7$  substituted alkoxy,  $C_1$  to  $C_7$  acyl,  $C_1$  to  $C_7$  substituted acyl,  $C_1$  to  $C_7$  acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide,  $N-(C_1$  to  $C_6$  alkyl)carboxamide, protected  $N-(C_1$  to  $C_6$  alkyl)carboxamide,  $N, N$ -di( $C_1$  to  $C_6$  alkyl)carboxamide, trifluoromethyl,  $N-((C_1$  to  $C_6$  alkyl)sulfonyl)amino,  $N$ -(phenylsulfonyl)amino or phenyl,

$R_5$  is H,  $C_1$  to  $C_8$  alkyl,  $C_2$  to  $C_6$  alkenyl,  $C_1$  to  $C_8$  substituted alkyl,  $C_7$  to  $C_{12}$  alkylphenyl or  $C_7$  to  $C_{12}$  substituted phenylalkyl.

2. A compound of the formula (I), or pharmaceutically acceptable salts or solvates thereof,



wherein the substituents and indices have the following meanings:

$R_1$ ,  $R_3$  and  $R_4$  are H,  $R_2$  is halogen, hydroxy, protected hydroxy, cyano, nitro, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl, C<sub>1</sub> to C<sub>7</sub> alkoxy, C<sub>1</sub> to C<sub>7</sub> substituted alkoxy, C<sub>1</sub> to C<sub>7</sub> acyl, C<sub>1</sub> to C<sub>7</sub> substituted acyl, C<sub>1</sub> to C<sub>7</sub> acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, protected N-(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, N, N-di(C<sub>1</sub> to C<sub>6</sub> alkyl)carboxamide, trifluoromethyl, N-((C<sub>1</sub> to C<sub>6</sub> alkyl)sulfonyl)amino, N- (phenylsulfonyl)amino or phenyl, and  $R_5$  is H, C<sub>1</sub> to C<sub>8</sub> alkyl, C<sub>2</sub> to C<sub>6</sub> alkenyl ,C<sub>1</sub> to C<sub>8</sub> substituted alkyl.

3. A compound according to claim 1 or 2 with:  $R_1$ ,  $R_3$  and  $R_4$  being H,  $R_2$  being halogen and preferably iodine over bromine and chlorine and  $R_5$  being H, C<sub>1</sub> to C<sub>6</sub> alkyl, C<sub>3</sub> to C<sub>5</sub> alkenyl, C<sub>1</sub> to C<sub>6</sub> substituted alkyl.
4. A compound according to any of claims 1 to 3 being



5. A compound according to any of claims 1 to 3 being



6. A compound according to claim 1 being



7. A compound according to claim 1 being



(V)

8. A compound according to any of claims 1 to 3 being



(VI)

9. A compound according to claim 1 or 2 being



(VII)

10. A compound of according to any of claims 1 to 9 wherein said compound is capable of binding the NR1H3 receptor protein encoded by a nucleic acid comprising SEQ ID NO:2 or a portion thereof or a mammalian homologue thereof.
11. A compound of according to any of claims 1 to 9 wherein said compound is capable of binding the NR1H2 receptor protein encoded by a nucleic acid comprising SEQ ID NO:1 or a portion thereof or a mammalian homologue thereof.
12. A compound according to any of claims 1 to 9 for use as a medicament.
13. A method for prevention or treatment of a NR1H3 and/or NR1H2 receptor protein mediated disease or NR1H3 and/or NR1H2 receptor protein homologue mediated disease or condition in a mammal comprising administration of a therapeutically effective amount of a compound according to claims 1 to 9 wherein the prevention or treatment is directly or indirectly accomplished through the binding of the compound according claims 1 to 9 to the NR1H3 and/or NR1H2 receptor proteins or to the NR1H3 and/or NR1H2 receptor protein homologues.
14. A method for regulating the cholesterol synthesis or transport in a mammal which comprises activating the NR1H3 and/or NR1H2 receptors with a therapeutically effective amount of a compound according to claims 1 to 9.
15. A method of treating in mammal a disease which is affected by cholesterol, triglyceride, bile acid, glucose or glucocorticoid levels comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to claims 1 to 9.
16. A method of treating in a mammal Atherosclerosis, Alzheimers disease, Type II diabetes, lipid disorders, obesity, an inflammatory or a cardiovascular

disorder comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to claims 1 to 9.

17. A method according to any of claims 13 to 16 wherein the expression of one or more of the genes out of the group comprising ABCA1, ABCG1, ABCG5, ABCG8, apolipoprotein-Cl, -CII, -CIV, -E, LPL (lipoprotein lipase), CETP (cholesteryl ester transfer protein) or other genes that positively regulate cholesterol homeostasis is increased upon compound administration.
18. A method according to any of claims 13 to 16 wherein the expression of one or more of the genes out of the group comprising 11- $\beta$ -HSD (11- $\beta$  hydroxysteroid dehydrogenase), PEPCK (phosphoenolpyruvat carboxykinase), G-6-P (glucose-6-phosphatase) is reduced upon compound administration.
19. A method according to any of claims 13 to 16 wherein the expression of one or more of the genes out of the group comprising FAS (Fatty Acid Synthase), SREBP-1c (Sterol-response element binding protein), SCD-1 (Stearoyl-CoA Desaturase), Angiopoietin like protein 3 (Angptl3) or other genes which are relevant for controlling serum triglyceride or glucose levels are not or more weakly increased in liver and or other organs compared to administration of a full agonist like TO901317.
20. A method of blocking in a mammal the cholesterol or fatty acid absorption in the intestine of a mammal in need of such blocking comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to claims 1 to 9.
21. A method for treating obesity in a mammal comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 9.
22. A method of modulating a gene whose expression is regulated by the NR1H3 and/or NR1H2 receptor in a mammal comprising administering a therapeutically effective amount of a compound according to claims 1 to 9.

23. A method according to any of claims 13 to 19 wherein the expression of ABCA1 and/or ABCG1 and/or ABCG5 and/or ABCG8 are increased.
24. Use of a compound according to any of claims 1 to 9 in a method according to claims 13 to 23 wherein the mammal is a human
25. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for the prevention or treatment of a NR1H3 and/or NR1H2 receptor protein or NR1H3 and/or NR1H2 receptor protein homologue mediated disease or condition in a mammal wherein the prevention or treatment is directly or indirectly accomplished through the binding of the compound to the NR1H3 and/or NR1H2 receptor protein or NR1H3 and/or NR1H2 receptor protein homologue.
26. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for prevention or treatment of a NR1H3 and/or NR1H2 receptor protein mediated disease or condition wherein the mammal is a human.
27. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for regulating the cholesterol transport system in a mammal by activating the NR1H3 and/or NR1H2 receptor.
28. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for regulating levels of cholesterol, triglyceride, and/or bile acid.
29. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for treating in a mammal atherosclerosis, alzheimer disease, gallstone disease, lipid disorders, inflammatory disorder, type II diabetis, obesity or a cardiovascular disorder.
30. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament capable for blocking in a mammal the cholesterol and/or fatty acid absorption in the intestine.

31. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for treating obesity in a mammal.
32. Use of a compound according to any of claims 1 to 9 for the manufacture of a medicament for modulating a gene whose expression is regulated by the NR1H3 and/or NR1H2 receptor.
33. Use of a compound according to any of claims 1 to 9 in a mammal for the selective up-regulation of one or more genes selected from the group comprising ABCA1, ABCG1, ABCG5, ABCG8, apolipoprotein-CI, -CII, -CIV, -E, LPL (lipoprotein lipase), CETP (cholesteryl ester transfer protein) or other genes that positively regulate cholesterol homeostasis are increased and a weaker regulation of one or more of the genes selected from the group comprising FAS and SREBP-1c or other genes that positively regulate lipogenesis, said compound showing a larger difference in regulation of the two groups of genes when compared with the regulatory behaviour of a full agonist like T0901317 on both groups of genes.
34. Use of a compound according any of claims 1 to 9 in a use according to claims 25 to 33 wherein the mammal is human.

**Fig.1**

**Fig. 2**

|                                                      |            |
|------------------------------------------------------|------------|
| Number of repeats .....                              | 1          |
| plate: GREINER FIA-Plate black 384 well med. binding |            |
| Measurement height .....                             | 3.50 mm    |
| Label technology .....                               | TR-F Lance |
| Emission filter name .....                           | D615       |
| Emission filter slot .....                           | A1         |
| Emission aperture .....                              | Normal     |
| Excitation filter .....                              | D340       |
| Delay .....                                          | 50 µs      |
| Window time .....                                    | 400 µs     |
| Cycle .....                                          | 1000 µs    |
| Light integrator capacitors .....                    | 1          |
| Light integrator ref. level .....                    | 95         |
| Flash energy area .....                              | High       |
| Flash energy level .....                             | 223        |
| Flash absorbance measurement .....                   | No         |
| Beam .....                                           | Normal     |
| Label technology .....                               | TR-F Lance |
| Emission filter name .....                           | D665       |
| Emission filter slot .....                           | A8         |
| Emission aperture .....                              | Normal     |
| Excitation filter .....                              | D340       |
| Delay .....                                          | 50 µs      |
| Window time .....                                    | 400 µs     |
| Cycle .....                                          | 1000 µs    |
| Light integrator capacitors .....                    | 1          |
| Light integrator ref. level .....                    | 95         |
| Flash energy area .....                              | High       |
| Flash energy level .....                             | 223        |
| Flash absorbance measurement .....                   | No         |
| Beam .....                                           | Normal     |

**Fig. 3**

| <b>Gene definition</b>         | <b>NCBI Accession number<br/>of gene</b> | <b>Corresponding SEQ<br/>ID Number</b> |
|--------------------------------|------------------------------------------|----------------------------------------|
| Liver X receptor beta NR1H2    | NM_007121                                | <b>1</b>                               |
| Liver X receptor alpha NR1H3   | NM_005693                                | <b>2</b>                               |
| Steroid receptor coactivator 1 | U90661                                   | <b>3</b>                               |

**Fig. 4 A**

| MOLNAME  | MOLECULE STRUCTURE | EC50 AVG<br>[μM] | EFF<br>AV |
|----------|--------------------|------------------|-----------|
| TO901317 | <br>TO901317       | 0,1              | 10        |

| MOLNAME      | MOLECULE STRUCTURE                                                                  | EC50 AVG<br>( $\mu$ M) | %EF<br>AV |
|--------------|-------------------------------------------------------------------------------------|------------------------|-----------|
| TR1040002211 |   | 1,5                    | 50        |
| TR1040002212 |   | 4                      | 75        |
| TR1040011382 |  | 12                     | 80        |
| TR1040001892 |  | 4                      | 50        |

|              |                                                                                     |   |    |
|--------------|-------------------------------------------------------------------------------------|---|----|
|              |                                                                                     |   |    |
|              |                                                                                     |   |    |
| LN0000006662 |    | 4 | 60 |
| LN0000006674 |   | 5 | 20 |
| LN0000007460 |  | 5 | 50 |

**Fig. 5**

**Fig. 6**

| Protein / Gene Name                                    | NCBI Acccesion number of gene | Corresponding SEQ ID number |
|--------------------------------------------------------|-------------------------------|-----------------------------|
| Liver X receptor beta, LXRB                            | NM_007121                     | 1                           |
| Liver X receptor alpha, LXR $\alpha$                   | NM_005693                     | 2                           |
| Cholesterol 7 $\alpha$ hydroxylase, Cyp7A1             | NM_000780                     | 3                           |
| Fatty Acid Synthase FAS                                | NM_004104                     | 4                           |
| Stearyl CoA desaturase, SCD                            | XM_030447                     | 5                           |
| Sterol Response Element Binding Protein 1C, SREBP-1C   | NM_004176                     | 6                           |
| ATP binding cassette transporter A1; ABCA1             | NM_005502                     | 7                           |
| ATP binding cassette transporter G1; ABCG1             | XM_032950                     | 8                           |
| ATP binding cassette transporter G5; ABCG5             | NM_022436                     | 9                           |
| ATP binding cassette transporter G8; ABCG8             | AF324494                      | 10                          |
| Apolipoprotein E, apoE                                 | NM_000041                     | 11                          |
| Apolipoprotein C-I, apoC-I                             | NM_001645                     | 12                          |
| Apolipoprotein C-II apoC-II                            | NM_000483                     | 13                          |
| Apolipoprotein C-IV, apoC-IV                           | U32576                        | 14                          |
| Lipoprotein Lipase, LPL                                | M15856                        | 15                          |
| Cholesteryl Ester Transfer Protein, CETP               | NM_000078                     | 16                          |
| Phosphoenolpyruvate carboxykinase 1 (PEPCK)            | NM_002591                     | 17                          |
| Glucose-6-phosphatase (G6P)                            | NM_000151                     | 18                          |
| Insulin-responsive glucose transporter (GLUT4)         | M20747                        | 19                          |
| Angiopoietin-like 3, ANGPTL3                           | NM_01445                      | 20                          |
| 11-beta Hydroxysteroid dehydrogenase HSD11B1 variant 2 | NM_181755                     | 21                          |
| 11-beta Hydroxysteroid dehydrogenase HSD11B1 variant 1 | NM_005525                     | 22                          |

**Fig. 7A****Fig. 7B**

**Fig. 8A****Fig. 8B**

**Fig. 8C****Fig. 8D**

**Fig. 9 A**

**Fig. 9 B**

## SEQUENCE LISTING

<110> Phenex Pharmaceuticals AG

<120> Novel selective LXR Nuclear Receptor Binding Compounds with partial agonistic properties

<130> PX62420PC

<160> 23

<170> PatentIn version 3.1

<210> 1

<211> 2010

<212> DNA

<213> Homo sapiens

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| <400> 1                                                            |     |
| caagaagtgg cgaagttacc tttgagggtta tttgagtagc ggcggtgtgt caggggctaa | 60  |
| agaggaggac gaagaaaagc agagcaaggg aacccagggc aacaggagta gttcactccg  | 120 |
| cgagaggccg tccacgagac ccccgcgcgc aggcatgagc cccgcccccc acgcatgagc  | 180 |
| cccgcccccc gctgttgctt ggagaggggc gggacctgga gagaggctgc tccgtgaccc  | 240 |
| caccatgtcc ttccttacca cgagttccct ggataccccc ctgcctggaa atggcccccc  | 300 |
| tcagcctggc gccccttctt cttcacccac tgtaaaggag gagggtccgg agccgtggcc  | 360 |
| cgggggtccg gaccctgatg tcccaggcac tgatgaggcc agctcagcct gcagcacaga  | 420 |
| ctgggtcatc ccagatcccc aagaggaacc agagcgcaag cgaaagaagg gcccagcccc  | 480 |
| gaagatgctg ggccacgagc tttgccgtgt ctgtgggac aaggcctccg gcttccacta   | 540 |
| caacgtgctc agctgcaaggg cttctccgg cgcagtgtgg tccgtgggtgg            | 600 |
| ggccaggcgc tatgcctgcc ggggtggcgg aacctgccag atggacgctt tcatgcggcg  | 660 |
| caagtgccag cagtgccggc tgcgcaagtg caaggaggca gggatgaggg agcagtgcgt  | 720 |
| ccttctgaa gaacagatcc ggaagaagaa gattcgaaa cagcagcagc aggagtacaca   | 780 |
| gtcacagtcg cagtcacctg tggggccgca gggcagcagc agctcagcct ctggccctgg  | 840 |
| ggcttccctt ggtggatctg aggcaggcag ccagggtcc ggggaaggcg aggggtgtcca  | 900 |
| gctaacagcg gctcaagaac taatgatcca gcagttggtg gcggcccaac tgcagtgc当地  | 960 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| caaacgctcc ttctccgacc agcccaaagt cacgccctgg cccctggcg cagacccccca   | 1020 |
| gtccc gagat gcccgcgc aacgcttgc ccacttcacg gagctggcca tcatctcagt     | 1080 |
| ccaggagatc gtggacttcg ctaagcaagt gcctggttc ctgcagctgg gccgggagga    | 1140 |
| ccagatcgcc ctccctgaagg catccactat cgagatcatg ctgctagaga cagccaggcg  | 1200 |
| ctacaaccac gagacagagt gtatcacctt cttgaaggac ttcacacctaca gcaaggacga | 1260 |
| cttccaccgt gcaggcctgc aggtggagtt catcaacccc atcttcgagt tctcgcggc    | 1320 |
| catgcggcgg ctgggcctgg acgacgctga gtacgcctg ctcatcgcca tcaacatctt    | 1380 |
| ctcgccgcac cggcccaacg tgcaaggagcc gggccgcgtg gaggcgttgc agcagcccta  | 1440 |
| cgtggaggcg ctgctgtcct acacgcgcac caagaggccg caggaccagc tgcgcttccc   | 1500 |
| gcgcacatgctc atgaagctgg tgagcctgcg cacgctgagc tctgtgcact cggagcaggt | 1560 |
| cttcgccttg cggctccagg acaagaagct gccgcctctg ctgtcggaga tctggacgt    | 1620 |
| ccacgagtga ggggctggcc acccagccccc acagcctgc ctgaccaccc tccagcagat   | 1680 |
| agacgcggc acccccttcct cttccttaggg tggaaagggc cctggcgag cctgtagacc   | 1740 |
| tatcggtctt catcccttgg gataagcccc agtccaggc caggaggctc cctccctgccc   | 1800 |
| cagcgagtct tccagaaggg gtgaaagggt tgcagggtccc gaccactgac cttcccgcc   | 1860 |
| tgccctccct ccccagctta cacctcaagc ccagcacgca gcgtaccttg aacagaggga   | 1920 |
| ggggaggacc catggctctc ccccccctagc ccgggagacc aggggccttc ctcttcctct  | 1980 |
| gcttttattt aataaaaaata aaaacagaaaa                                  | 2010 |

&lt;210&gt; 2

&lt;211&gt; 1528

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| <400> 2                                                            |     |
| cagtgccttg gtaatgacca gggctccaga aagagatgtc cttgtggctg gggccccc    | 60  |
| tgcctgacat tcctcctgac tctgcggtgg agctgtggaa gccaggcgca caggatgcaa  | 120 |
| gcagccaggc ccagggaggc agcagctgca tcctcagaga ggaagccagg atgccccact  | 180 |
| ctgctggggg tactgcaggg gtggggctgg aggctgcaga gcccacagcc ctgcacca    | 240 |
| ggcagagcc cccttcagaa cccacagaga tccgtccaca aaagcggaaa aaggggccag   | 300 |
| cccccaaaat gctgggaac gagctatgca gcgtgtgtgg ggacaaggcc tcggccttcc   | 360 |
| actacaatgt tctgagctgc gagggctgca agggattctt ccgcgcagc gtcataagg    | 420 |
| gagcgcacta catctgccc acgtggcgcc actgccccat ggacacctac atgcgtcgca   | 480 |
| agtgccagga gtgtcggtt cgcaaattgcc gtcaggctgg catgcgggag gagtgtgtcc  | 540 |
| tgtcagaaga acagatccgc ctgaagaaac tgaagcggca agaggagggaa caggctcatg | 600 |

|             |             |            |            |            |            |      |
|-------------|-------------|------------|------------|------------|------------|------|
| ccacatcctt  | cccccccagg  | cgttcctcac | ccccccaaat | cctgccccag | ctcagccgg  | 660  |
| aacaactggg  | catgatcgag  | aagctcgtag | ctgcccagca | acagtgtaac | cggcgctcct | 720  |
| tttctgaccg  | gcttcgagtc  | acgccttggc | ccatggcacc | agatccccat | agccgggagg | 780  |
| cccgtagca   | gcgccttgcc  | cacttcactg | agctggccat | cgtctctgtg | caggagatag | 840  |
| ttgactttgc  | taaacagcta  | cccggttccc | tgcagctcag | ccgggaggac | cagattgcc  | 900  |
| tgctgaagac  | ctctgcgatc  | gaggtgatgc | ttctggagac | atctcggagg | tacaaccctg | 960  |
| ggagtgagag  | tatcacccctc | ctcaaggatt | tcagttataa | ccgggaagac | tttgccaaag | 1020 |
| cagggctgca  | agtggaaattc | atcaacccca | tcttcgagtt | ctccagggcc | atgaatgagc | 1080 |
| tgcaactcaa  | tgatgccgag  | tttgccttgc | tcattgctat | cagcatcttc | tctgcagacc | 1140 |
| ggcccaacgt  | gcaggaccag  | ctccaggtgg | agaggctgca | gcacacatat | gtggaagccc | 1200 |
| tgcataccta  | cgtctccatc  | caccatcccc | atgaccgact | gatgttccca | cggatgctaa | 1260 |
| tgaaacttgtt | gagcctccgg  | accctgagca | gcgtccactc | agagcaagtg | tttgcactgc | 1320 |
| gtctgcagga  | caaaaagctc  | ccaccgctgc | tctctgagat | ctggatgtg  | cacgaatgac | 1380 |
| tgttctgtcc  | ccatattttc  | tgttttcttg | gccggatggc | tgaggcctgg | tggctgcctc | 1440 |
| ctagaagtgg  | aacagactga  | gaagggcaaa | cattcctggg | agctgggcaa | ggagatcctc | 1500 |
| ccgtggcatt  | aaaagagagt  | caaagggt   |            |            |            | 1528 |

&lt;210&gt; 3

&lt;211&gt; 2877

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|         |            |             |            |            |            |             |     |
|---------|------------|-------------|------------|------------|------------|-------------|-----|
| <400> 3 | gtggcatcct | tccctttcta  | atcagagatt | ttcttcctca | gagatttgg  | cctagatttg  | 60  |
|         | caaaatgatg | accacatctt  | tgatttgggg | gattgtata  | gcagcatgt  | gttgtctatg  | 120 |
|         | gcttattctt | ggaatttagga | gaaggcaaac | gggtgaacca | cctctagaga | atggattaat  | 180 |
|         | tccatacctg | ggctgtgctc  | tgcaatttgg | tgccaatcct | ctttagttcc | tcagagcaaa  | 240 |
|         | tcaaaggaaa | catggtcatg  | tttttacctg | caaactaatg | ggaaaatatg | tccatttcat  | 300 |
|         | cacaaatccc | ttgtcataacc | ataaggtgtt | gtgccacgga | aaatattttg | attggaaaaa  | 360 |
|         | atttcacttt | gctacttctg  | cgaaggcatt | tggcacaga  | agcattgacc | cgtggatgg   | 420 |
|         | aaataccact | gaaaacataa  | acgacacttt | catcaaaacc | ctgcagggcc | atgccttgaa  | 480 |
|         | ttccctcacf | gaaagcatga  | tggaaaacct | ccaacgtatc | atgagacctc | cagtctcctc  | 540 |
|         | taactcaaag | accgctgcct  | gggtgacaga | agggatgtat | tcttctgtct | accgagtgtat | 600 |
|         | gtttgaagct | gggttatttaa | ctatcttgg  | cagagatctt | acaaggcggg | acacacagaa  | 660 |
|         | agcacatatt | ctaaacaatc  | ttgacaactt | caagcaattc | gacaaagtct | ttccagccct  | 720 |

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ggtagcaggc ctccccattc acatgttcag gactgcgcac aatgcccggg agaaaactggc   | 780  |
| agagagcttggcaggcacgaga acctccaaaa gagggaaagc atctcagaac tgatcagcct   | 840  |
| gcatgttt ctaatgaca ctttgtccac ctttgatgat ctggagaagg ccaagacaca       | 900  |
| cctcggtc ctctggcat cgcaagcaaa caccattcca gcgactttct ggagtttatt       | 960  |
| tcaaattgatt aggaacccag aagcaatgaa agcagctact gaagaagtga aaagaacatt   | 1020 |
| agagaatgct ggtcaaaaag tcagcttggaggcaatcct atttggatgt gtcaagcaga      | 1080 |
| actgaatgac ctgccagtat taaatagtat aatcaaggaa tcgctgaggc ttccagtgc     | 1140 |
| ctccctcaac atccggacag ctaaggagga ttctactttg caccttgagg acggttccta    | 1200 |
| caacatccga aaagatagca tcatagctctt accccacag ttaatgcact tagatccaga    | 1260 |
| aatctacccaa gacccttga cttttaata tgataggtat cttgatgaaa acggaaagac     | 1320 |
| aaagactacc ttctattgtatggactcaa gttaaagtat tactacatgc cctttggatc      | 1380 |
| gggagctaca atatgtcctg gaagattgtt cgctatccac gaaatcaagc aattttgtat    | 1440 |
| tctgatgctt tcttattttg aattggagct tatagagggc caagctaaat gtccacctt     | 1500 |
| ggaccagtcc cggcaggct tggcatttt gccgcattt aatgatattt aattttaaata      | 1560 |
| taaattcaag catttggaa tacatggctg gaataagagg acactagatg atattacagg     | 1620 |
| actgcagaac accctcacca cacagtcctt ttggacaaat gcatttagt gtggtagaaa     | 1680 |
| tgattcacca ggtccaatgt tggtcaccag tgcttgctt tgaatctt cattttggtg       | 1740 |
| acagttcca gatgctatca cagactctgc tagtggaaat aactagttc taggagcaca      | 1800 |
| ataatttgtt ttcatgttta taagtccatg aatgttcata tagccagggat tggaaatgtt   | 1860 |
| ttatttcaa aggaaaacac ctttatttttta tttttttca aatgaagat acacattaca     | 1920 |
| gccaggtgtg gtagcaggca cctgttagtct tagctactcg agaggccaaa gaaggaggat   | 1980 |
| ggcttgagcc caggaggta agaccagcct ggacagctt gtgagatccc gtctccgaag      | 2040 |
| aaaagatatg tattctaaatggcatttttggatgtt tttttctttaa ggaaactgct ttat    | 2100 |
| aaaactgcct gacaattatg aaaaaatgtt caaattcactt ttcttagtggaa actgcattat | 2160 |
| ttgttgacta gatgggggg ttcttcgggt gtgatcatat atcataaagg atatttcaaa     | 2220 |
| tgattatgat tagttatgtc ttttataaaa aaggaaatat ttttcaactt ctttatatc     | 2280 |
| caaaattcag ggctttaaac atgattatct tgatttccca aaaacactaa aggtggttt     | 2340 |
| atttccctt catgtttaa cttattgtt ctgaaaactc tatgtccggc tttactatc        | 2400 |
| ttctctatat ttttatttca ttcacattaa tgagaagagt tttctcagag attaaaaaaag   | 2460 |
| gtagtttttc tgtcattgtt aaatacacat tatcactgaa aaaatgtgc ttttatgtat     | 2520 |
| tatgtttaa agttaaaact ggatggaaat agccatttgg aagctttggt tatgaaacat     | 2580 |
| gtggagtgta ttaagtgcag cttgacatta tgttttat taaatgccttt tatgcctaa      | 2640 |
| tgacttgacatgaaaaaaaaa ctaaggtgac tcgagtgat taaatgcctgt gtacaacaat    | 2700 |
| gcttgataa aatattttaa ggtatgagtt atcagctcta tgtcaattga tatttctgtg     | 2760 |

tagtatttat atttaaatta tatttacctt tttgcttatt ttacaaatat taagaaaata 2820  
 ttctaacatt tgataatttt gaaatgattc atcttcaga aataaaagta tgaatct 2877

<210> 4

<211> 8461

<212> DNA

<213> Homo sapiens

<400> 4  
 gagggagcca gagagacggc agcgccccgc gcctccctct ccggccgcgt tcagcctccc 60  
 gctccgccgc gctccagcct cgctctccgc cgccccgcacc gcccgcgcg ccctcaccag 120  
 agcagccatg gaggaggtgg tgattgccgg catgtccggg aagctgccag agtcggagaa 180  
 cttgcaggag ttctgggaca acctcatcgg cggtgtggac atggtcacgg acgatgaccg 240  
 tcgctggaag gcggggctct acggcctgccc ccggcggtcc ggcaagctga aggacctg 300  
 taggtttgat gcctccttct tcggagtcca ccccaagcag gcacacacga tggaccctca 360  
 gctgcggctg ctgctggaag tcacctatga agccatcgtg gacggaggca tcaacccaga 420  
 ttcactccga ggaacacaca ctggcgtctg ggtggcgtg agcggctctg agacctcgga 480  
 ggccctgagc cgagaccccg agacactcgt gggctacagc atggtggtgc gccagcggc 540  
 gatgatggcc aaccggctct cttcttctt cgacttcaga gggcccagca tcgcactgga 600  
 cacagcctgc tcctccagcc ttagtggccct gcagaacgccc taccaggcca tccacagcgg 660  
 gcagtgccct gccgccccatcg tggggggcat caatgtcctg ctgaagccca acacccctgt 720  
 gcagttcttg aggctgggaa tgctcagccc cgagggcacc tgcaaggcct tcgacacagc 780  
 gggaaatggg tactgccgt cgaggagggtgt ggtggccgtc ctgctgacca agaagtccct 840  
 ggcccccggg gtgtacgcca ccatcctgaa cgccggcacc aatacagatg gttcaagga 900  
 gcaaggcgtg accttccct cagggatat ccaggagcag ctcattccgt cgttgtacca 960  
 gtcggccgga gtggccctg agtcatttga atacatcgtaa gcccacggca caggcaccaa 1020  
 ggtggcgtac ccccaggagc tgaatggcat cacccgagcc ctgtgcgcct cccggcagga 1080  
 gccgctgctc atcggctcca ccaagtccaa catggggcac ccggagccag cctggggct 1140  
 ggcagccctg gccaagggtgc tgctgtccct ggagcacggg ctctggccct ccaacctgca 1200  
 cttccatagc cccaaccctg agatcccagc gctgttggat gggcggtgc aggtgggtgga 1260  
 ccagccctg cccgtccgtg gcggcaacgt gggcatcaac tcctttggct tcggggctc 1320  
 caacgtgcac atcatcctga ggcacaacac gcagccccc cccgcaccccg ccccacatgc 1380  
 cacccctgccc cgtctgctgc gggccagcgg acgcacccct gaggccgtgc agaagctgct 1440  
 ggagcagggc ctccggcaca gccaggacct ggcttcctg agcatgctga acgacatcgc 1500  
 ggctgtcccc gccaaccggca tgcccttccg tggctacgct gtgctgggtg gtgagcgcgg 1560

|             |             |             |            |             |            |      |
|-------------|-------------|-------------|------------|-------------|------------|------|
| tggcccagag  | gtgcagcagg  | tgcccgctgg  | cgagcgcccg | ctctggttca  | tctgctctgg | 1620 |
| gatgggcaca  | cagtggcgcg  | ggatggggct  | gagcctcatg | cgcctggacc  | gcttccgaga | 1680 |
| ttccatccta  | cgctccgatg  | aggctgtgaa  | gccattcggc | ctgaaggtgt  | cacagctgct | 1740 |
| gctgagcaca  | gacgagagca  | cctttgatga  | catcgccat  | tcgtttgta   | gcctgactgc | 1800 |
| catccagata  | ggcctcatag  | acctgctgag  | ctgcatgggg | ctgaggccag  | atggcatcg  | 1860 |
| cggccactcc  | ctgggggagg  | tggcctgtgg  | ctacgcccac | ggctgcctgt  | cccaggagga | 1920 |
| ggccgtcctc  | gctgcctact  | ggaggggaca  | gtgcatcaaa | gaagccatc   | tcccgccggg | 1980 |
| cgc当地ggca   | gccgtgggct  | tgtcctggga  | ggagtgtaaa | cagcgctgcc  | ccccggcggt | 2040 |
| ggtgcccggcc | tgccacaact  | ccaaggacac  | agtcaccatc | tcgggacctc  | aggccccgg  | 2100 |
| gtttgagttc  | gtggagcagc  | tgaggaagga  | gggtgtgtt  | gccaaggagg  | tgcggaccgg | 2160 |
| cggtatggcc  | ttccactcct  | acttcatgga  | ggccatcgca | ccccactgc   | tgcaggagct | 2220 |
| caagaaggtg  | atccgggagc  | cgaagccacg  | ttcagcccgc | tggctcagca  | cctctatccc | 2280 |
| cggaggccag  | tggcacagca  | gcctggcacg  | cacgtcctcc | gccgagtaca  | atgtcaacaa | 2340 |
| cctggtgagc  | cctgtgtgt   | tccaggaggc  | cctgtggcac | gtgcctgagc  | acgcgggtgt | 2400 |
| gctggagatc  | gcgccccacg  | ccctgctgca  | ggctgcctg  | aagcgtggcc  | tgaagccag  | 2460 |
| ctgcaccatc  | atccccctga  | tgaagaagga  | tcacagggac | aacctggagt  | tcttcctggc | 2520 |
| cggcatccgg  | aggctgcacc  | tctcaggcat  | cgacgccaac | ccaaatgcct  | tgtttccacc | 2580 |
| tgtggagttc  | ccagctcccc  | gaggaactcc  | cctcatctcc | ccactcatca  | agtgggacca | 2640 |
| cagcctggcc  | tgggacgtgc  | cggccgcccga | ggacttcccc | aacggttcag  | gttccccctc | 2700 |
| agccgccatc  | tacaacatcg  | acaccagctc  | cgagtctcct | gaccactacc  | tggtgacca  | 2760 |
| caccctcgac  | ggtcgcgtcc  | tcttccccgc  | cactggctac | ctgagcatag  | tgtggaagac | 2820 |
| gctggcccg   | cccctgggccc | tggcgctcga  | gcagctgcct | gtgggtttt   | aggatgtgg  | 2880 |
| gctgcaccag  | gccaccatcc  | tgcccaagac  | tgggacagtg | tccctggagg  | tacggctcct | 2940 |
| ggaggccctcc | cgtgccttcg  | agggtgtcaga | gaacggcaac | ctggtagtga  | gtgggaaggt | 3000 |
| gtaccagtgg  | gatgaccctg  | accccaggct  | cttcgaccac | ccggaaagcc  | ccaccccaa  | 3060 |
| ccccacggag  | cccctcttcc  | tggcccaggc  | tgaagtttac | aaggagctgc  | gtctgcgtgg | 3120 |
| ctacgactac  | ggccctcatt  | tccagggcat  | cctggaggcc | agcctggaaag | gtgactcggg | 3180 |
| gaggctgctg  | tggaaggata  | actgggtgag  | cttcatggac | accatgctgc  | agatgtccat | 3240 |
| cctgggctcg  | gccaaagcacg | gcctgtacct  | gcccacccgt | gtcaccgcca  | tccacatcga | 3300 |
| ccctgccacc  | cacaggcaga  | agctgtacac  | actgcaggac | aaggcccaag  | tggctgacgt | 3360 |
| ggtgtgtgagc | aggtgtgtga  | gggtcacagt  | ggccggaggc | gtccacatct  | ccgggctcca | 3420 |
| cactgagtcg  | gccccgcggc  | ggcagcagga  | gcagcagggt | cccatcctgg  | agaagtttg  | 3480 |
| tttcaactccc | cacacggagg  | aggggtgcct  | gtctgagcgc | gctgcccgtc  | aggaggagct | 3540 |
| gcaactgtgc  | aaggggctgg  | tgcaggcact  | gcagaccaag | gtgacccagc  | aggggctgaa | 3600 |

|                                                                      |      |
|----------------------------------------------------------------------|------|
| gatggtggtg cccggactgg atggggccca gatccccgg gaccctcac agcaggaact      | 3660 |
| gcccccggctg ttgtcggtcg cctgcaggct tcagctcaac gggAACCTGC agctggagct   | 3720 |
| ggcgcaggta ctggcccagg agaggccaa gctgccagag gaccctctgc tcagcggcct     | 3780 |
| cctggactcc ccggcactca aggccgtcct ggacactgcc gtggagaaca tgcccagcct    | 3840 |
| gaagatgaag gtggtgagg tgctggccgg ccacggtcac ctgtattccc gcattccagg     | 3900 |
| cctgctcagc ccccatcccc tgctgcagct gagctacacg gccaccgacc gccaccccca    | 3960 |
| ggccctggag gctgcccagg ccgagctgca gcagcacgac gttgcccagg gccagtggga    | 4020 |
| tcccgagac cctgccccca gcgcctggg cagcggcgtc ctcctggtgt gcaactgtgc      | 4080 |
| tgtggctgcc ctcggggacc cggcctcagc tctcagcaac atggtggtcg ccctgagaga    | 4140 |
| agggggcttt ctgctcctgc acacactgct ccggggcac ccctcgggac atgtggcctt     | 4200 |
| cctcacctcc actgagccgc agtatggcca gggcatcctg agccaggacg cgtggagag     | 4260 |
| cctttctcc agggtgtccg tgccctggg gggcctgaag aagtcccttct acggctccac     | 4320 |
| gctttccctg tgccgcggc ccacccgcga ggacagcccc atcttcctgc cggtggacga     | 4380 |
| taccagcttc cgctgggtgg agtctctgaa gggcatcctg gctgacgaag actcttcccg    | 4440 |
| gcctgtgtgg ctgaaggcca tcaactgtgc cacccggcgttggacttg tggtaactg        | 4500 |
| tctccgcga gagccggcg gaacgctccg gtgtgtgctg ctctccaacc tcagcac         | 4560 |
| ctcccacgtc ccggagggtgg accccggcgtc cgcaaaactg cagaagggtgt tgcaaggaga | 4620 |
| cctgggtatg aacgtctacc gcgacggggc ctggggggct ttccgcact tcctgctgga     | 4680 |
| ggaggacaag cctgaggagc cgacggcaca tgccttggt agcaccctca cccgggggga     | 4740 |
| cctgtcctcc atccgctggg tctgctcctc gctgcgccat gcccagccca cctgcccgg     | 4800 |
| cgcccaagctc tgcacggctc actacgcctc cctcaacttc cgacatca tgctggccac     | 4860 |
| tggcaagctg tcccctgatg ccatcccagg gaagtggacc tcccaggaca gcctgctagg    | 4920 |
| tatggagttc tcggggccag acgccagcgg caagcgtgtg atgggactgg tgccctgcca    | 4980 |
| gggcctggcc acctctgtcc tgctgtcacc ggacttcctc tggatgtgc cttccaactg     | 5040 |
| gacgctggag gaggcggcct cggcgtctgt cgtctacagc acggcctact acgcgtgg      | 5100 |
| ggtgctgggg cgggtgcgccc ccggggagac gctgctcatc cactcgggt cggcggcgt     | 5160 |
| gggccaggcc gccatcgcca tcgcctcag tctggctgc cgcttca ccaccgtggg         | 5220 |
| gtcggctgag aagcggcgt acctccaggc caggtcccc cagctcgaca gcaccagctt      | 5280 |
| cgccaaactcc cgggacacat cttcgagca gcatgtgctg tggcacacgg gcgggaagg     | 5340 |
| cggtgacact gtcttgaact cttggcgga agagaagctg caggccagcg tgaggtgctt     | 5400 |
| ggctacgcac ggtcgcttcc tggaaattgg caaattcgac ctttctcaga accacccgt     | 5460 |
| cgccatggct atttccctga agaacgtgac attccacggg gtcctactgg atgcgttctt    | 5520 |
| caacgagagc agtgctgact ggcgggaggt gtggcgctt gtgcaggccg gcatccggga     | 5580 |
| tgggtggta cggccctca agtgcacggt gttccatggg gcccaggtgg aggacgcctt      | 5640 |

|             |             |             |             |            |            |      |
|-------------|-------------|-------------|-------------|------------|------------|------|
| ccgctacatg  | gcccaaggga  | agcacattgg  | caaagtgc    | gtgcaggtgc | ttgcggagga | 5700 |
| gccggaggca  | gtgctgaagg  | ggccaaacc   | caagctgatg  | tcggccatct | ccaagacctt | 5760 |
| ctgcccggcc  | cacaagagct  | acatcatcgc  | tggtgtctg   | ggtggcttcg | gcctggagtt | 5820 |
| ggcgcatgg   | ctgatacagc  | gtggggtgca  | gaagctcgt   | ttgacttctc | gctccggat  | 5880 |
| ccggacaggc  | taccaggcca  | agcaggc     | ccgggtggagg | cgccaggcg  | tacaggtgca | 5940 |
| ggtgtccacc  | agcaacatca  | gctcactgga  | gggggcccgg  | ggcctcattt | ccgaggcggc | 6000 |
| gcagcttggg  | cccgtggcg   | gcgtcttcaa  | cctggccgt   | gtcttgagag | atggcttgct | 6060 |
| ggagaaccag  | accccaagagt | tcttccagga  | cgtctgcaag  | cccaagtaca | gcggcaccct | 6120 |
| gaacctggac  | agggtgaccc  | gagaggcgt   | ccctgagct   | gactactt   | tggtcttctc | 6180 |
| ctctgtgagc  | tgcgggcgt   | gcaatgcgg   | acagagcaac  | tacggctt   | ccaattccgc | 6240 |
| catggagcgt  | atctgtgaga  | aacgcccggca | cgaaggcctc  | ccaggcctt  | ccgtgcagt  | 6300 |
| gggcgcacatc | ggcgacgtgg  | gcatttttgt  | ggagacgatg  | agcaccaacg | acacgatcgt | 6360 |
| cagtggcacg  | ctgccccagc  | gcatggcg    | ctgcctggag  | gtgctggacc | tcttcctgaa | 6420 |
| ccagccccac  | atggtcctga  | gcagctt     | gctggctgag  | aaggctgcgg | cctataggga | 6480 |
| cagggacagc  | cagcgggacc  | tggtgaggc   | cgtggcacac  | atcctggca  | tccgcactt  | 6540 |
| ggctgctgtc  | aacctggaca  | gctcactggc  | ggacctggc   | ctggactcgc | tcatgagcgt | 6600 |
| ggaggtgcgc  | cagacgctgg  | agcgtgagct  | caacctgg    | ctgtccgtgc | gcgaggtgcg | 6660 |
| gcaactcacg  | ctccggaaac  | tgcaggagct  | gtcctcaaag  | gcggatgagg | ccagcgagct | 6720 |
| ggcatgcccc  | acgccccagg  | aggatggtct  | ggcccagcag  | cagactcagc | tgaacctgcg | 6780 |
| ctccctgctg  | gtgaacccgg  | agggcccccac | cctgatgcgg  | ctcaactcc  | tgcagagctc | 6840 |
| ggagcggccc  | ctgttcctgg  | tgcacccaaat | cgagggctcc  | accaccgtgt | tccacagcct | 6900 |
| ggcctcccg   | ctcagcatcc  | ccacctatgg  | cctgcagtgc  | acccgagct  | cgcccttga  | 6960 |
| cagcatccac  | agcctggct   | cctactacat  | cgactgc     | aggcagg    | agcccgagg  | 7020 |
| cccctaccgc  | gtggccggct  | actcctacgg  | ggcctgcgt   | gcctttgaaa | tgtgctccca | 7080 |
| gctgcaggcc  | cagcagagcc  | cagccccac   | ccacaacagc  | ctttcctgt  | tcgacggctc | 7140 |
| gcccacctac  | gtactggcct  | acacccagag  | ctaccggca   | aagctgaccc | caggctgt   | 7200 |
| ggctgaggct  | gagacggagg  | ccatatgctt  | cttcgtgcag  | cagttcacgg | acatggagca | 7260 |
| caacaggg    | ctggaggcgc  | tgctgcc     | gaagggcta   | gaggagcgt  | tggcagccgc | 7320 |
| cgtggacctg  | atcatcaaga  | gccaccagg   | cctggaccgc  | caggagct   | gtttgcggc  | 7380 |
| ccggtccttc  | tactacaagc  | tgcgtgcc    | tgagcagtac  | acacccaagg | ccaagtacca | 7440 |
| tggcaacgt   | atgctactgc  | gcgccaagac  | gggtggcgcc  | tacggcgagg | acctggcg   | 7500 |
| ggactacaac  | ctctcccagg  | tatgcgacgg  | gaaagtatcc  | gtccacgtca | tcgagggt   | 7560 |
| ccaccgcacg  | ctgctggagg  | gcagcggcct  | ggagtccatc  | atcagcatca | tccacagctc | 7620 |
| cctggctgag  | ccacgcgt    | gcgtgcgg    | ggcttagg    | cgtcccc    | cctgccaccg | 7680 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| gaggtcactc caccatcccc accccacccc accccacccc cgccatgcaa cgggattgaa  | 7740 |
| gggtcctgcc ggtgggaccc tgtccggccc agtgcactg ccccccgagg ctgctagacg   | 7800 |
| taggtgttag gcatgtccca cccacccgcc gcctcccacg gcacctcggg gacaccagag  | 7860 |
| ctgccgactt ggagactcct ggtctgtgaa gagccggtgg tgcccgtgcc cgccaggaact | 7920 |
| gggctggcc tcgtgcgcc tcgtggctcg cgcttggct ttctgtgctt ggatttgcat     | 7980 |
| atttattgca ttgctggtag agaccccccag gcctgtccac cctgccaaga ctcctcaggc | 8040 |
| agcgtgtggg tcccgcaactc tgccccatt tccccatgt cccctgcggg cgccggcagc   | 8100 |
| cacccaagcc tgctggctgc ggccccctct cggccaggca ttggctcagc ccgctgagtg  | 8160 |
| gggggtcgtg ggccagtccc cgaggagctg ggccctgca caggcacaca gggccggcc    | 8220 |
| acacccagcg gccccccgca cagccacccg tgggtgctg cccttatgcc cggcgccggg   | 8280 |
| caccaactcc atgtttggtg tttgtctgtg tttgttttc aagaaatgat tcaaattgct   | 8340 |
| gcttggattt tcaaattttac tgtaactgtc agtgtacacg tctggacccc gtttcatttt | 8400 |
| tacaccaatt tggtaaaaat gctgctctca gcctcccaca attaaaccgc atgtgatctc  | 8460 |
| c                                                                  | 8461 |

<210> 5

<211> 1444

<212> DNA

<213> Homo sapiens

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| <400> 5                                                             |     |
| acggtcaccc gttgccagct ctagccttta aattcccgcc tcggggacct ccacgcacccg  | 60  |
| cggctagcgc cgacaaccag ctagcgtgca aggccggcg gctcagcgcg taccggcggg    | 120 |
| cttcgaaacc gcagtcctcc ggcgaccccg aactccgctc cggagcctca gccccctgga   | 180 |
| aagtgtatccc ggcaccccgag agccaagatg ccggcccact tgctgcagga cgatatctct | 240 |
| agtcctata ccaccacccac caccattaca gcgcctccct ccagggtcct gcagaatgga   | 300 |
| ggagataagt tggagacgt gcccctctac ttggaaagacg acattcgcggc tgatataaaaa | 360 |
| gatgatatat atgacccac ctacaaggat aaggaaggcc caagccccaa ggttgaatat    | 420 |
| gtctggagaa acatcatcct tatgtctctg ctacacttgg gagccctgta tgggatcact   | 480 |
| ttgattccta cctgcaagtt ctacacctgg ctttgggggg tattctacta ttttgcagt    | 540 |
| gccctggca taacagcagg agctcatcgt ctgtggagcc accgctctta caaagctcgg    | 600 |
| ctgcccctac ggctctttct gatcattgcc aacacaatgg cattccagaa tgatgtctat   | 660 |
| aatggggctc gtgaccaccg tgccaccac aagtttcag aaacacatgc tgatcctcat     | 720 |
| aattcccgac gtggctttt cttctctcac gtgggttggc tgcttgcgc caaacaccca     | 780 |
| gctgtcaaag agaaggggag tacgctagac ttgtctgacc tagaagctga gaaactggtg   | 840 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| atgttccaga ggaggtacta caaacctggc ttgctgatga tgtgcttcat cctgcccacg  | 900  |
| cttgcgcct ggtatttctg gggtaaaact tttcaaaaca gtgtgttcgt tgccactttc   | 960  |
| ttgcgatatg ctgtggtgct taatgccacc tggctggtga acagtgcgtc ccacctttc   | 1020 |
| ggatatcgtc cttatgacaa gaacattagc ccccggaga atatcctggt ttcacttgga   | 1080 |
| gctgtgggtg agggcttcca caactaccac cactccttc cctatgacta ctctgccagt   | 1140 |
| gagtaccgct ggcacatcaa cttcaccaca ttcttcattt attgcattggc cgccctcggt | 1200 |
| ctggcctatg accggaagaa agtctccaag gccgcattct tggccaggat taaaagaacc  | 1260 |
| ggagatggaa actacaagag tggctgagtt tgggtccct caggttccct tttcaaaaac   | 1320 |
| cagccaggca gaggtttaa tgtctgttta ttaactactg aataatgcta ccaggatgct   | 1380 |
| aaagatgatg atgttaaccc attccagtac agtattttt taaaattcaa aagtattgaa   | 1440 |
| agcc                                                               | 1444 |

&lt;210&gt; 6

&lt;211&gt; 4154

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                                                                    |      |
|--------------------------------------------------------------------|------|
| <400> 6                                                            |      |
| taacgaggaa cttttcgccg gcgcgggccc gcctctgagg ccagggcagg acacgaacgc  | 60   |
| gcggagcggc ggcggcgact gagagccggg gccgcggcgg cgctccctag gaagggccgt  | 120  |
| acgaggcggc gggccggcg ggcctccgg aggaggcggc tgccatgg acgagccacc      | 180  |
| cttcagcggag gcggctttgg agcaggcgct gggcgagccg tgcatctgg acgcggcgct  | 240  |
| gctgaccgac atcgaagaca tgcttcagct tatcaacaac caagacagtg acttccctgg  | 300  |
| cctatttgc ccaccctatg ctgggagtgg ggcagggggc acagaccctg ccagccccga   | 360  |
| taccagctcc ccaggcagct tgtctccacc tcctgccaca ttgagctcct ctcttgaagc  | 420  |
| cttcctgagc gggccgcagg cagcgcctc acccctgtcc cctcccccagc ctgcacccac  | 480  |
| tccattgaag atgtaccgt ccatgcccgc tttctccct gggctggta tcaaggaaga     | 540  |
| gtcagtgcca ctgagcatcc tgcaaaaaac caccccacag cccctgcccag gggccctcct | 600  |
| gccacagagc ttcccagccc cagccccacc gcagttcagc tccacccttgc tgtaggcta  | 660  |
| ccccagccct ccgggaggct tctctacagg aagccctccc gggAACACCC agcagccgct  | 720  |
| gcctggcctg ccactggctt ccccgccagg ggtcccgccc gtctccttgc acaccaggt   | 780  |
| ccagagtgtg gtcccccagc agtactgac agtcacagct gccccacgg cagccctgt     | 840  |
| aacgaccact gtgacctcgc agatccagca ggtcccggtc ctgctgcagc cccacttcat  | 900  |
| caaggcagac tcgctgcttgc tgacagccat gaagacagac ggagccactg tgaaggcggc | 960  |
| aggcttcagt cccctggcttgc tggcaccac tgtcagacaa gggcccttgc cgaccctgg  | 1020 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gagtggcgga accatcttgg caacagtccc actggtcgt aatgcggaga agctgcctat    | 1080 |
| caaccggctc gcagctggca gcaaggcccc ggcctctgcc cagagccgtg gagagaagcg   | 1140 |
| cacagcccac aacgccattg agaagcgcta ccgctcctcc atcaatgaca aaatcattga   | 1200 |
| gctcaaggat ctggtgtgg gcactgaggc aaagctgaat aaatctgctg tcttgcgcaa    | 1260 |
| ggccatcgac tacattcgct ttctgcaaca cagcaaccag aaactcaagc aggagaacct   | 1320 |
| aagtctgcgc actgctgtcc aaaaaagcaa atctctgaag gatctggtgt cggcctgtgg   | 1380 |
| cagtggaggg aacacagacg tgctcatgga gggcgtgaag actgaggtgg aggacacact   | 1440 |
| gaccccaccc ccctcgatg ctggctcacc tttccagagc agcccttgc cccctggcag     | 1500 |
| caggggcagt ggcagcggtg gcagtggcag tgactcggag cctgacagcc cagtcttga    | 1560 |
| ggacagcaag gcaaagccag agcagcggcc gtctctgcac agccggggca tgctggaccg   | 1620 |
| ctcccgctg gccctgtgca cgctcgctt cctctgcctg tcctgcaacc ccttggcctc     | 1680 |
| cttgctgggg gcccggggc ttcccagccc ctcagatacc accagcgtct accatagccc    | 1740 |
| tggcgcaac gtgctggca ccgagagcag agatggccct ggctggggcc agtggctgct     | 1800 |
| gccccagtg gtctggctgc tcaatgggcgtt gttggtgctc gtctccttgg tgcttctctt  | 1860 |
| tgtctacggt gagccagtca cacggcccca ctcaggcccc gccgtgtact tctggaggca   | 1920 |
| tcgcaagcag gctgacctgg acctggcccc gggagacttt gcccaggctg cccagcagct   | 1980 |
| gtggctggcc ctgcggcac tggccggcc cctgcccacc tcccacctgg acctggcttg     | 2040 |
| tagcctcctc tggAACCTCA tccgtcacct gctgacgctg ctctgggtgg gccgctggct   | 2100 |
| ggcaggccgg gcagggggcc tgcagcagga ctgtgctctg cgagtggatg ctgcgcac     | 2160 |
| cgcccgagac gcagccctgg tctaccataa gctgcaccag ctgcacacca tgggaaagca   | 2220 |
| cacaggcggg cacctcactg ccaccaacct ggcgctgagt gccctgaacc tggcagatg    | 2280 |
| tgcagggat gccgtgtctg tggcgacgct ggccgagatc tatgtggcgg ctgcatttag    | 2340 |
| agtgaagacc agtctcccac gggccttgca ttttctgaca cgcttcttcc tgagcagtgc   | 2400 |
| ccgcccaggcc tgcctggcac agagtggctc agtgcccttgc gccatgcagt ggctctgcca | 2460 |
| ccccgtggcc caccgtttct tcgtggatgg ggactggtcc gtgctcagta ccccatggga   | 2520 |
| gagcctgtac agcttggccg ggaacccagt ggacccctg gcccaggta ctcagctatt     | 2580 |
| ccggaaacat ctcttagagc ggcactgaa ctgtgtgacc cagcccaacc ccagccctgg    | 2640 |
| gtcagctgat ggggacaagg aattctcgga tggccctcggg tacctgcagc tgctgaacag  | 2700 |
| ctgttctgat gctgcggggg ctccctgccta cagcttctcc atcagttcca gcatggccac  | 2760 |
| caccacccggc gtagacccgg tggccaagtg gtggccctct ctgacagctg tggtgatcca  | 2820 |
| ctggctgcgg cggatgagg aggccgtga gcggctgtgc ccgctgggtgg agcacctgccc   | 2880 |
| ccgggtgctg caggagtctg agagacccct gcccaggca gctctgcact cttcaaggc     | 2940 |
| tgcccgccct ctgctgggct gtgccaaggc agagtcgtt ccagccagcc tgaccatctg    | 3000 |
| tgagaaggcc agtgggtacc tgcaggacag cctggctacc acaccagccca gcagctccat  | 3060 |

|            |             |             |            |             |            |      |
|------------|-------------|-------------|------------|-------------|------------|------|
| tgacaaggcc | gtgcagctgt  | tcctgtgtga  | cctgcttctt | gtgggtgcga  | ccagcctgtg | 3120 |
| gcggcagcag | cagcccccg   | ccccggcccc  | agcagcccag | ggcaccagca  | gcaggcccc  | 3180 |
| ggcttccgcc | cttgagctgc  | gtggcttcca  | acgggacctg | agcagcctga  | ggcggctggc | 3240 |
| acagagcttc | cggcccgcca  | tgcggagggt  | gttcctacat | gaggccacgg  | cccggtcgat | 3300 |
| ggcgaaaaaa | agccccacac  | ggacacacca  | gctcctcgac | cgcagtctga  | ggcggcgggc | 3360 |
| aggccccgt  | ggcaaaggag  | gcgcgggtggc | ggagctggag | ccgcggccca  | cgcggcggga | 3420 |
| gcacgcggag | gccttgcgtc  | tggcctcctg  | ctacctgccc | cccggtttcc  | tgtcggcgcc | 3480 |
| cgggcagcgc | gtgggcattgc | tggctgaggc  | ggcgccaca  | ctcgagaagc  | ttggcgatcg | 3540 |
| ccggctgctg | cacgactgtc  | agcagatgct  | catgcgcctg | ggcgggtggga | ccactgtcac | 3600 |
| ttccagctag | accccggtgc  | cccgccctca  | gcacccctgt | ctctagccac  | tttggtcccg | 3660 |
| tgcagcttct | gtcctgcgtc  | gaagcttga   | aggccgaagg | cagtgcaga   | gactctggcc | 3720 |
| tccacagttc | gacctgcggc  | tgctgtgtgc  | cttcgcggtg | gaaggcccga  | ggggcgcgat | 3780 |
| cttgacccta | agaccggcgg  | ccatgatggt  | gctgacctct | ggtggccgat  | cggggcactg | 3840 |
| cagggccga  | gccattttgg  | ggggccccc   | tccttgctct | gcaggcacct  | tagtggcttt | 3900 |
| tttcctccgt | tgtacaggga  | agagagggt   | acatttcct  | gtgctgacgg  | aagccaactt | 3960 |
| ggctttcccg | gactgcaga   | agggctctgc  | cccagaggcc | tctctctccg  | tcgtgggaga | 4020 |
| gagacgtgta | catagtag    | gtcagcgtgc  | ttagccctt  | gacctgaggc  | tcctgtgcta | 4080 |
| ctttgccttt | tgcaaacttt  | atttcatag   | attgagaagt | tttgtacaga  | gaattaaaaa | 4140 |
| tgaaattatt | tata        |             |            |             |            | 4154 |

&lt;210&gt; 7

&lt;211&gt; 10412

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|            |            |            |            |             |            |     |
|------------|------------|------------|------------|-------------|------------|-----|
| <400>      | 7          |            |            |             |            |     |
| gtaattgcga | gcgagagtga | gtggggccgg | gacccgcaga | gccgagccga  | cccttctctc | 60  |
| ccgggctgcg | gcagggcagg | gcggggagct | ccgcgcacca | acagagccgg  | ttctcagggc | 120 |
| gttttgctcc | ttgttttttc | cccggttctg | ttttctcccc | ttctccggaa  | ggcttgc当地  | 180 |
| ggggtaggag | aaagagacgc | aaacacaaaa | gtggaaaaca | gttaatgacc  | agccacggcg | 240 |
| tccctgctgt | gagctctggc | cgctgccttc | cagggctccc | gagccacacg  | ctgggggtgc | 300 |
| tggctgaggg | aacatggctt | gttggcctca | gctgagggtt | ctgctgtgga  | agaacctcac | 360 |
| tttcagaaga | agacaaacat | gtcagctgct | gctggaagtg | gcctggccctc | tatttatctt | 420 |
| cctgatcctg | atctctgttc | ggctgagcta | cccaccctat | gaacaacatg  | aatgccattt | 480 |
| tccaaataaa | gccatgcct  | ctgcaggaac | acttccttgg | gttcagggga  | ttatctgtaa | 540 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| tgccaacaac ccctgtttcc gttacccgac tcctggggag gctcccggag ttgttgaaa   | 600  |
| ctttaacaaa tccattgtgg ctcgcctgtt ctcagatgct cgaggccttc ttttatacag  | 660  |
| ccagaaagac accagcatga aggacatgcg caaagttctg agaacattac agcagatcaa  | 720  |
| gaaatccagc tcaaacttga agcttcaaga tttcctggtg gacaatgaaa ccttctctgg  | 780  |
| gttcctgtat cacaacctct ctctccaaa gtctactgtg gacaagatgc tgagggctga   | 840  |
| tgtcattctc cacaaggat tat ttttgcagg ctaccagtta catttgacaa gtctgtgca | 900  |
| tggatcaaaa tcagaagaga tgattcaact tggtgaccaa gaagtttctg agctttgtgg  | 960  |
| cctaccaagg gagaaactgg ctgcagcaga gcgagttactt cgttccaaca tggacatcct | 1020 |
| gaagccaatc ctgagaacac taaactctac atctcccttc ccgagcaagg agctggctga  | 1080 |
| agccacaaaa acattgctgc atagtcttgg gactctggcc caggagctgt tcagcatgag  | 1140 |
| aagctggagt gacatgcgac aggaggtgat gtttctgacc aatgtgaaca gctccagctc  | 1200 |
| ctccacccaa atctaccagg ctgtgtctcg tattgtctgc gggcatcccg agggaggggg  | 1260 |
| gctgaagatc aagtctctca actggatgaa ggacaacaac tacaaagccc tctttggagg  | 1320 |
| caatggcact gaggaagatg ctgaaacctt ctatgacaac tctacaactc cttactgcaa  | 1380 |
| tgattttagt aagaatttgg agtcttagtcc tctttccgc attatctgga aagctctgaa  | 1440 |
| gccgctgctc gttggaaaga tcctgtatac acctgacact ccagccacaa ggcaggtcat  | 1500 |
| ggctgaggtg aacaagaccc tccaggaact ggctgtgttc catgatctgg aaggcatgtg  | 1560 |
| ggaggaactc agccccaa tctggacctt catggagaac agccaagaaa tggaccttgc    | 1620 |
| ccggatgctg ttggacagca gggacaatga ccactttgg gaacagcagt tggatggctt   | 1680 |
| agattggaca gccaagaca tcgtggcggtt tttggccaag cacccagagg atgtccagtc  | 1740 |
| cagtaatggt tctgtgtaca cctggagaga agctttcaac gagactaacc aggcaatccg  | 1800 |
| gaccatatct cgcttcatgg agtgtgtcaa cctgaacaag ctagaaccctt tagcaacaga | 1860 |
| agtctggctc atcaacaagt ccatggagct gctggatgag aggaagttct gggctggat   | 1920 |
| tgtgttcaact ggaattactc caggcagcat tgagctgccc catcatgtca agtacaagat | 1980 |
| ccgaatggac attgacaatg tggagaggac aaataaaatc aaggatgggt actggacccc  | 2040 |
| tggccctcga gctgaccctt ttgaggacat gcggtagtgc tggggggct tcgcctactt   | 2100 |
| gcaggatgtg gtggagcagg caatcatcag ggtgctgacg ggcaccgaga agaaaactgg  | 2160 |
| tgtctatatg caacagatgc cctatccctg ttacgttgc gacatcttc tgcgggtat     | 2220 |
| gagccggta atgccccctt tcatgacgct ggcctggatt tactcagtgg ctgtgatcat   | 2280 |
| caagggcatc gtgtatgaga aggaggcacg gctgaaagag accatgcgga tcatggcct   | 2340 |
| ggacaacagc atcctctgggtt ttagctggtt cattagtagc ctcattccctc ttcttgc  | 2400 |
| cgctggcctg ctatggatca tcctgaagtt aggaaacctg ctgcctaca gtatcccag    | 2460 |
| cgtgggtttt gtctccctgt ccgtgtttgc tgtggtgaca atcctgcagt gcttcctgat  | 2520 |
| tagcacactc ttctccagag ccaacctggc agcagcctgt gggggcatca tctacttcac  | 2580 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gctgtacctg ccctacgtcc tgtgtgtggc atggcaggac tacgtggct tcacactcaa    | 2640 |
| gatttcgct agcctgctgt ctccgtggc ttttgggtt ggctgtgagt actttgcct       | 2700 |
| tttgaggag cagggcattg gagtcagtg ggacaacctg tttgagagtc ctgtggagga     | 2760 |
| agatggcttc aatctcacca cttcggtctc catgatgctg tttgacacct tcctctatgg   | 2820 |
| ggtgatgacc tggtacattg aggctgtctt tccaggccag tacggaattc ccaggccctg   | 2880 |
| gtatttcct tgccccaagt cctactggtt tggcgaggaa agtgatgaga agagccaccc    | 2940 |
| tggttccaac cagaagagaa tatcagaaat ctgcatggag gaggaaccca cccacttcaa   | 3000 |
| gctgggcgtg tccattcaga acctggtaaa agtctaccga gatggatgaa agtgtggctgt  | 3060 |
| cgtggcctg gcactgaatt tttatgaggg ccagatcacc tccttcctgg gccacaatgg    | 3120 |
| agcgggaaag acgaccacca tgtcaatcct gaccgggttg ttccccccga cctcgggcac   | 3180 |
| cgcctacatc ctggaaaag acattcgctc tgagatgagc accatccggc agaacctggg    | 3240 |
| ggtctgtccc cagcataacg tgctgtttga catgctgact gtcgaagaac acatctggtt   | 3300 |
| ctatgcccgc ttgaaaggc tctctgagaa gcacgtgaag gcggagatgg agcagatggc    | 3360 |
| cctggatgtt ggttgcct caagcaagct gaaaagcaaa acaagccagc tgtcaggtgg     | 3420 |
| aatgcagaga aagctatctg tggcctggc ctttgcggg gatatctaagg ttgtcattct    | 3480 |
| gatgaaccc acagctggtg tggaccctta ctccgcagg ggaatatggg agctgctgct     | 3540 |
| gaaataccga caaggccgca ccattattct ctctacacac cacatggatg aagcggacgt   | 3600 |
| cctggggac aggattgcca tcatctccc tggaaagctg tgctgtgtgg gctccctccct    | 3660 |
| gtttctgaag aaccagctgg gaacaggcta ctacctgacc ttggtaaaga aagatgtgga   | 3720 |
| atcctccctc agttcctgca gaaacagtag tagcactgtg tcatacctga aaaaggagga   | 3780 |
| cagtgtttct cagagcagtt ctgatgctgg cctggcagc gaccatgaga gtgacacgct    | 3840 |
| gaccatcgat gtctctgcta tctccaaacct catcaggaag catgtgtctg aagccggct   | 3900 |
| ggtggaaagac atagggcatg agctgaccta tgtgctgcca tatgaagctg ctaaggaggg  | 3960 |
| agcctttgtg gaactcttc atgagattga tgaccggctc tcagacctgg gcatttctag    | 4020 |
| ttatggcatc tcagagacga ccctggaaga aatattcctc aaggtggccg aagagagtgg   | 4080 |
| ggatggatgtc gagacccatc atggtaacctt gccagcaaga cgaaacaggc gggccttcgg | 4140 |
| ggacaaggcag agctgtttc gcccgttcac tgaagatgat gctgctgatc caaatgattc   | 4200 |
| tgacatagac ccagaatcca gagagacaga cttgctcagt gggatggatg gcaaagggtc   | 4260 |
| ctaccaggtg aaaggctgga aacttacaca gcaacagttt gtggcccttt tgtgaaagag   | 4320 |
| actgctaatt gccagacgga gtcggaaagg atttttgct cagattgtct tgccagctgt    | 4380 |
| gtttgtctgc attgcccctt tttcagcct gatcgtgcca cccttggca agtaccccg      | 4440 |
| cctggaactt cagccctgga tgtacaacga acagtacaca tttgtcagca atgatgctcc   | 4500 |
| tgaggacacg ggaaccctgg aactctaaa cgcctcacc aaagaccctg gcttcgggcac    | 4560 |
| ccgctgtatg gaaggaaacc caatcccaga cacgcctgc caggcagggg aggaagagtg    | 4620 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gaccactgcc ccagttcccc agaccatcat ggacctcttc cagaatggga actggacaat   | 4680 |
| gcagaaccct tcacctgcat gccagtgtag cagcgacaaa atcaagaaga tgctgcctgt   | 4740 |
| gtgtccccca gggcagggg ggctgcctcc tccacaaaga aaacaaaaca ctgcagatat    | 4800 |
| ccttcaggac ctgacaggaa gaaacatttc ggattatctg gtgaagacgt atgtgcagat   | 4860 |
| catagccaaa agcttaaaga acaagatctg ggtgaatgag ttttaggtatg gcggctttc   | 4920 |
| cctgggtgtc agtaatactc aagcacttcc tccgagtcaa gaagttaatg atgccatcaa   | 4980 |
| acaaatgaag aaacacctaag cagtgccaa ggacagttct gcagatcgat ttctcaacag   | 5040 |
| cttgggaaga tttatgacag gactggacac caaaaataat gtcaagggtgt ggtcaataaa  | 5100 |
| caagggctgg catgcaatca gctcttcct gaatgtcatc aacaatgcca ttctccggc     | 5160 |
| caacctgcaa aaggagaga accctagcca ttatggaatt actgcttca atcatcccct     | 5220 |
| gaatctcacc aagcagcagc tctcagaggt ggctctgatg accacatcag tggatgtcct   | 5280 |
| tgtgtccatc tgtgtcatct ttgcaatgtc cttcgccca gccagcttgc tcgtattcct    | 5340 |
| gatccaggag cgggtcagca aagcaaaaca cctgcagttc atcagtggag tgaaggctgt   | 5400 |
| catctactgg ctctctaatt ttgtctggg tatgtcaat tacgttgtcc ctgccacact     | 5460 |
| ggtcattatc atcttcatct gcttccagca gaagtcctat gtgtcctcca ccaatctgcc   | 5520 |
| tgtgctagcc cttctacttt tgctgtatgg gtggtaatc acacctctca tgtacccagc    | 5580 |
| ctcccttgc ttcaagatcc ccagcacagc ctatgtggc ctcaccagcg tgaaccttct     | 5640 |
| cattggcatt aatggcagcg tggccacctt tgtgctggag ctgttcaccg acaataagct   | 5700 |
| gaataatatc aatgatatcc tgaagtccgt gttcttgatc ttcccacatt tttgcctggg   | 5760 |
| acgagggctc atcgacatgg tgaaaaacca ggcaatggct gatgccctgg aaaggtttgg   | 5820 |
| ggagaatcgc tttgtgtcac cattatcttgg ggacttggg ggacgaaacc tcttcgccat   | 5880 |
| ggccgtggaa ggggtgggtgt tcttcctcat tactgttctg atccagtaca gattttcat   | 5940 |
| caggcccaga cctgtaaatg caaagctatc tcctctgaat gatgaagatg aagatgtgag   | 6000 |
| gcgggaaaga cagagaattc ttgatggtgg aggccagaat gacatcttag aaatcaagga   | 6060 |
| gttgacgaag atatatagaa ggaagcggaa gcctgctgtt gacaggattt gcgtggcat    | 6120 |
| tcctcctgggt gagtgctttgg ggctcctggg agttaatggg gctggaaaat catcaacttt | 6180 |
| caagatgtta acaggagata ccactgttac cagaggagat gctttcctta acaaaaatag   | 6240 |
| tatcttatca aacatccatg aagtacatca gaacatgggc tactgccctc agtttgatgc   | 6300 |
| catcacagag ctgttgactg ggagagaaca cgtggagttc tttgcccttt tgagaggagt   | 6360 |
| cccagagaaa gaagttggca aggttggta gtggcgatt cgaaaactgg gcctcgtgaa     | 6420 |
| gtatggagaa aaatatgctg gtaactatag tggaggcaac aaacgcaagc tctctacagc   | 6480 |
| catggctttg atcggcgggc ctcctgtggt gtttctggat gaacccacca caggcatgga   | 6540 |
| tcccaaagcc cggcggttct tgtggatttgc tggccctaagt gttgtcaagg agggagatc  | 6600 |
| agtagtgctt acatctcata gtatggaaaga atgtgaagct ctttgacta ggatggcaat   | 6660 |

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| catggtcaat ggaagggttca ggtgccttgg cagtgtccag catctaaaaaa ataggtttgg   | 6720 |
| agatggttat acaatagttg tacgaatagc agggtccaac ccggacctga agcctgtcca     | 6780 |
| ggatttctt ggacttgcat ttccttggaa tgttctaaaaa gagaaacacc ggaacatgct     | 6840 |
| acaataccag cttccatctt cattatcttc tctggccagg atattcagca tcctctccc      | 6900 |
| gagcaaaaag cgactccaca tagaagacta ctctgtttct cagacaacac ttgaccaagt     | 6960 |
| atttgtgaac tttgccaagg accaaagtga ttagtgcaccat taaaagacc tctcattaca    | 7020 |
| caaaaaccag acagtagtgg acgttgcagt tctcacatct tttctacagg atgagaaaagt    | 7080 |
| gaaagaaaagc tatgttatgaa gaatccgtt catacggggt ggctgaaaagt aaagaggaac   | 7140 |
| tagactttcc tttgcaccat gtgaagtgtt gtggagaaaa gagccagaag ttgatgtggg     | 7200 |
| aagaagtaaa ctggatactg tactgatact attcaatgca atgcaattca atgcaatgaa     | 7260 |
| aacaaaattc cattacaggg gcagtgccct ttagtgcctat gtcttgcata gctctcaagt    | 7320 |
| gaaagacttg aattttgtt tttacctata cctatgtgaa actctattat ggaacccaat      | 7380 |
| ggacatatgg gtttgaactc acactttttt tttttttttt gttcctgtgt attctcattg     | 7440 |
| gggttgcac aataattcat caagtaatca tggccagcga ttattgtatca aaatcaaaag     | 7500 |
| gtaatgcaca tcctcattca ctaagccatg ccatgcccag gagactgggtt tcccggtgac    | 7560 |
| acatccatttgc ctggcaatgaa gtgtgccaga gttattagtg ccaagttttt cagaaagttt  | 7620 |
| gaagcaccat ggtgtgtcat gtcactttt gtgaaagctg ctctgctcag agtctatcaa      | 7680 |
| cattgaatat cagttgacag aatggtgcca tgcgtggcta acatcctgct ttgattccct     | 7740 |
| ctgataagct gttctgggtt cagtaacatg caacaaaaat gtgggtgtct ccaggcacgg     | 7800 |
| gaaacttgggtt tccattgtt tattgtccta tgcttcgagc catgggtcta cagggtcata    | 7860 |
| cttatgagac tcttaaatat acttagatcc tggtaagagg caaagaatca acagccaaac     | 7920 |
| tgctggggct gcaagctgct gaagccaggg catgggatta aagagattgt gcgttcaaacc    | 7980 |
| ctagggaaagc ctgtgccccat ttgtcctgac tgtctgctaa catggtaacac tgcatactcaa | 8040 |
| gatgtttatc tgacacaagt gtattatttc tggctttttt aattaatcta gaaaatgaaa     | 8100 |
| agatggagtt gtattttgac aaaaatgtttt gtactttta atgttatttg gaattttaag     | 8160 |
| ttctatcagt gacttctgaa tccttagaat ggcctctttt tagaaccctg tggatagag      | 8220 |
| gagtagtgcc actgccccac tatttttattt ttcttatgta agttgcata tcagtcata      | 8280 |
| ctagtgcccta gaaagcaatg tgatggtcag gatctcatga cattatattt gagttcttt     | 8340 |
| cagatcattt aggatactct taatctcact tcatcaatca aatattttt gagtgtatgc      | 8400 |
| tgttagctgaa agagtagtgcata cgtacgtata agactagaga gatattaagt ctcagtcac  | 8460 |
| ttcctgtgcc atgttattca gtcactgggt ttacaaatat aggttgcattt gtgggtgttag   | 8520 |
| gagcccaactg taacaataact gggcagcctt tttttttttt ttttaatttgc caacaatgca  | 8580 |
| aaagccaaaga aagtataagg gtcacaagtc taaacaatgaa attctcaac agggaaaaca    | 8640 |
| gctagctgaa aaacttgctg aaaaacacaa cttgtgttta tggcatttag taccttcaaa     | 8700 |

|                                                                     |       |
|---------------------------------------------------------------------|-------|
| taattggctt tgcagatatt ggataccccca tttaaatctga cagtctcaa             | 8760  |
| cttcaatcac tagtcaagaa aaatataaaaa acaacaaaata cttccatatg gagcatttt  | 8820  |
| cagagtttc taacccagtc ttatTTTct agtcagtaaa catttgtaaa aatactgttt     | 8880  |
| cactaatact tactgttaac tgtcttgaga gaaaagaaaa atatgagaga actattgttt   | 8940  |
| ggggaaGttc aagtgtatTTtcaatATcat tactaacttc ttccacttt tccagaattt     | 9000  |
| gaatattaac gctaaaggTg taagacttca gatttcaaAT taatCTTCT atattttta     | 9060  |
| aatttacaga atattatata acccactgct gaaaaagaaa aaaatgattt gtttagaagt   | 9120  |
| taaagtcaat attgatTTtta aatataagta atgaaggcat atttccaata actagtgata  | 9180  |
| tggcatcgTT gcattttaca gtatCTTCAA aaatacagaa ttTatAGAAT aatttctcct   | 9240  |
| catttaatat ttTcaaaaat caaagttatg gtttcctcat ttTactaaaa tcgtattcta   | 9300  |
| attcttcatt atagtaaATC tatgagcaac tccttacttc gtttcctctg atttcaaggc   | 9360  |
| catattttaa aaaatcaaaa ggcactgtga actattttga agaaaacaca acattttat    | 9420  |
| acagattgaa aggacctctt ctgaagctag aaacaatcta tagttataca tcttcattaa   | 9480  |
| tactgtgtta cttttaaaa tagtaatTTt ttacattttc ctgtgtAAAC ctaattgtgg    | 9540  |
| tagaaatttt taccaactct atactcaatC aagcaaaattt tctgttatatt ccctgtggaa | 9600  |
| tgtacctatg tgagtttcag aaattctcaa aatacgtgtt caaaaatttc tgctttgca    | 9660  |
| tctttggac acctcagaaa acttattaac aactgtgaat atgagaaaata cagaagaaaa   | 9720  |
| taataagccc tctatacata aatGCCcAGC acaattcatt gttaaaaaac aaccaaacct   | 9780  |
| cacactactg tatttcatta tctgtactga aagcaaATgc ttgtgacta ttAAATgttg    | 9840  |
| cacatcattt attcactgtta tagtaatcat tgactaaAGC catttGTCTG tgTTTCTTC   | 9900  |
| ttgtggTTgt atatATCAGG taaaatattt tccaaAGAGC catgtgtcat gtaatactga   | 9960  |
| accactttga tattgagaca ttaatttGta cccttGTTat tatctactag taataatgtA   | 10020 |
| atactgtaga aatattGCTC taattttttt caaaattGtt gcatccccct tagaatgttt   | 10080 |
| ctatttccat aaggatttag gtatGCTATT atccCTTCTT ataccctaAG atgaagctgt   | 10140 |
| ttttgtgCTC ttgttcatc attggccCTC attCCAAGCA ctTtacGCTG tctgtatgg     | 10200 |
| gatctatTTt tgcaCTGGAA tatctgagaa ttGcaAAact agacAAAAGt ttcaacaacAG  | 10260 |
| atttctaagt taaatcattt tcattaaaAG gaaaaaAGAA aaaaaattttt gtatgtcaat  | 10320 |
| aactttatAT gaagtattaa aatgcataTT tctatGTTgt aatataatGA gtcacaaaat   | 10380 |
| aaagctgtga cagttctgtt ggtctacaga aa                                 | 10412 |

&lt;210&gt; 8

&lt;211&gt; 3473

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|             |              |             |            |            |             |      |
|-------------|--------------|-------------|------------|------------|-------------|------|
| <400>       | 8            |             |            |            |             |      |
| ttctttccaa  | gggtctctgg   | tgaggcccgg  | tgaccttccc | aagcctctcc | ctgtcttgc   | 60   |
| aaacctgggc  | gtgatataacc  | tcccttttag  | ggctgctgcg | atcatttagg | cagattaaac  | 120  |
| ctcataagtg  | gtttccata    | caagaaagat  | gctagcagt  | caacagacag | aacacttaacc | 180  |
| tgcctgccct  | cccgccagga   | ggtgtcttc   | caactttgc  | ccggagtcta | cagagggtgg  | 240  |
| gccctcttg   | ctggggctcc   | gggacatgg   | caggaggt   | tggtctgtct | gtaccgccat  | 300  |
| tctcttgcc   | agactgtgg    | gtctggtccc  | tactcacacc | ttcctgtcag | agtatccaga  | 360  |
| ggccgcagag  | tatccacacc   | ctggctgggt  | gtactggcta | cagatggctg | tggctccagg  | 420  |
| tcacctgcgt  | gcctgggtga   | tgagaaataa  | tgtcacaaca | aatatcccat | ctgcattctc  | 480  |
| tgggacactg  | acccatgaag   | agaaagcagt  | tctcacagtt | tttacaggca | cagccacagc  | 540  |
| cgtgcatgta  | caggtggcag   | ctttagcttc  | tgctaaactg | gagagctcag | tgtttgtgac  | 600  |
| agactgcgtg  | tcctgcaaaa   | tcgaaaatgt  | ctgtgattca | gctttcagg  | aaaaaagggt  | 660  |
| gccgatgtct  | ggcctacagg   | gctcaagcat  | tgtcatcatg | cccccatcca | accgtccact  | 720  |
| cgccagtgcg  | gcattctgca   | cgtggtcagt  | ccaagtcag  | ggagggcccc | atcacctggg  | 780  |
| ggtgtcgc    | atcagtggca   | aagtcttgc   | agcagtcat  | ggggcaggaa | gggcctatgg  | 840  |
| ttgggggttt  | cctggcgatc   | ccatggagga  | aggatacaag | accctcctga | aaggaatttc  | 900  |
| cgggaagttc  | aatagtggtg   | agttggtgcc  | cattatgggt | cttccgggg  | ccgggaagtc  | 960  |
| cacgctgatg  | aacatccctgg  | ctggatacag  | ggagacgggc | atgaaggggg | ccgtcctcat  | 1020 |
| caacggcctg  | ccccgggacc   | tgcgctgctt  | ccggaaggtg | tcctgctaca | tcatgcagga  | 1080 |
| tgacatgctg  | ctgcccgcattc | tcactgtgca  | ggaggccatg | atggtgtcgg | cacatctgaa  | 1140 |
| cttgctgtct  | tgcgccaaca   | cgcggaccgg  | gagcctgtca | ggtgtcagc  | gcaagcgcct  | 1200 |
| ggccatcgcg  | ctggagctgg   | tgaacaacccc | tccagtcatg | ttcttcgatg | agcccaccag  | 1260 |
| cggcctggac  | agcgccctcct  | gcttccaggt  | ggtctcgctg | atgaaaggc  | tgcgtcaagg  | 1320 |
| gggtcgctcc  | atcatttgca   | ccatccacca  | gcccagcgcc | aaactcttcg | agctttcga   | 1380 |
| ccagctttac  | gtcctgagtc   | aaggacaatg  | tgtgtaccgg | ggaaaagtct | gcaatcttgt  | 1440 |
| gccatatttg  | agggatttgg   | gtctgaactg  | cccaacctac | cacaacccag | cagattttgt  | 1500 |
| catggaggtt  | gcatccggcg   | agtacggtga  | tcagaacagt | cggtgggtga | gagcggttcg  | 1560 |
| ggagggcatg  | tgtgactcag   | accacaagag  | agacctcggg | ggtgatgccg | aggtgaaccc  | 1620 |
| ttttcttgg   | caccggccct   | ctgaagaggt  | aaagcagaca | aaacgattaa | aggggttgag  | 1680 |
| aaaggactcc  | tcgtccatgg   | aaggctgcca  | cagttctct  | gccagctgcc | tcacgcagtt  | 1740 |
| ctgcattcc   | ttcaagagga   | ccttcctcag  | catcatgagg | gactcggtcc | tgacacacct  | 1800 |
| gcgcattcacc | tcgcacattg   | ggatcggcct  | cctcattggc | ctgctgtact | tggggatcgg  | 1860 |
| gaacgaagcc  | aagaaggct    | ttagcaactc  | cggcttcctc | ttcttctcca | tgctgttcct  | 1920 |
|             |              |             |            |            |             | 1980 |

|             |            |             |            |             |            |      |
|-------------|------------|-------------|------------|-------------|------------|------|
| catgttcgcg  | gccctcatgc | ctactgttct  | gacattccc  | ctggagatgg  | gagtctttct | 2040 |
| tcgggaacac  | ctgaactact | ggtacagcct  | gaaggcctac | tacctggcca  | agaccatggc | 2100 |
| agacgtgccc  | tttcagatca | tgttcccagt  | ggcctactgc | agcatcgtgt  | actggatgac | 2160 |
| gtcgcccg    | tccgacgccc | tgcgctttgt  | gctgttgcc  | gcgcgtggca  | ccatgacctc | 2220 |
| cctggtggca  | cagtcctgg  | gcctgctgat  | cggagccgcc | tccacgtccc  | tgcaggtggc | 2280 |
| cactttcgt   | ggcccagtga | cagccatccc  | ggtgctcctg | ttctcggggt  | tcttcgtcag | 2340 |
| cttcgacacc  | atccccacgt | acctacagtg  | gatgtcctac | atctcctatg  | tcaggtatgg | 2400 |
| gttcgaaggg  | gtcatccct  | ccatctatgg  | cttagaccgg | gaagatctgc  | actgtgacat | 2460 |
| cgacgagacg  | tgccacttcc | agaagtcgga  | ggccatcctg | cggagctgg   | acgtggaaaa | 2520 |
| tgccaagctg  | tacctggact | tcatcgtact  | cgggattttc | ttcatctccc  | tccgcctcat | 2580 |
| tgcctatTTT  | gtcctcaggt | acaaaatccg  | ggcagagagg | taaaacacct  | aatgccagg  | 2640 |
| aaacaggaag  | attagacact | gtggccgagg  | gcacgtctag | aatcgaggag  | gcaagcctgt | 2700 |
| gcccggaccga | cgacacagag | actcttctga  | tccaaCCCT  | agaaccgcgt  | tgggtttgtg | 2760 |
| ggtgtctcgt  | gctcagccac | tctgcccagc  | tgggttggat | tttctctcca  | ttcccTTTC  | 2820 |
| tagcttaac   | taggaagatg | taggcagatt  | ggtggTTTT  | tttttttaa   | catacagaat | 2880 |
| tttaaatacc  | acaactgggg | cagaatttaa  | agctgcaaca | cagctggta   | tgagaggctt | 2940 |
| cctcagtcca  | gtcgctccTT | agcaccaggc  | accgtgggtc | ctggatgggg  | aactgcaagc | 3000 |
| agcctctcag  | ctgatggctg | cacagtcaga  | tgtctggtg  | cagagagtcc  | gagcatggag | 3060 |
| cgattccatt  | ttatgactgt | tgtttttcac  | atTTTcatct | ttctaagggtg | tgtcttttt  | 3120 |
| ccaatgagaa  | gtcatttttg | caagccaaaa  | gtcgatcaat | cgcattcatt  | ttaagaaatt | 3180 |
| atacctttt   | agtacttgct | gaagaatgat  | tcaggtaaa  | tcacatactt  | tgttagaga  | 3240 |
| ggcgaggggt  | ttaaccgagt | cacccagctg  | gtctcataca | tagacagcac  | ttgtgaagga | 3300 |
| ttgaatgcag  | gttccaggtg | gagggaaagac | gtggacacca | tctccactga  | gccatgcaga | 3360 |
| cattttaaa   | agctatacaa | aaaattgtga  | gaagacattg | gccaaCTT    | tcaaagtctt | 3420 |
| tctttttcca  | cgtgcttctt | atTTtaagcg  | aaatatattg | tttggTTCTT  | cct        | 3473 |

&lt;210&gt; 9

&lt;211&gt; 2740

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;400&gt; 9

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| aagtcccagt | cctgctgtcc | caagggactc | cggggtcagg | tggagcaggc | agggcagtct | 60  |
| gccacgggct | ccccaaCTGA | agccactctg | gggagggTCC | ggccaccaga | aaatttgcCC | 120 |
| agctttgctg | cctgttggcc | atgggtgacc | tctcatctt  | gacCCCCGGA | gggtccatgg | 180 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gtctccaagt aaacagaggc tcccagagct ccctggaggg ggctcctgcc accgccccgg   | 240  |
| agcctcacag cctgggcatac ctccatgcct cctacagcgt cagccaccgc gtgaggccct  | 300  |
| ggtggacat cacatcttgc cgccagcagt ggaccaggca gatcctaaa gatgtctcct     | 360  |
| tgtacgtgga gagcgggcag atcatgtgca tcctaggaag ctcaggctcc gggaaaacca   | 420  |
| cgctgctgga cgccatgtcc gggaggctgg ggcgcgcggg gaccttcctg ggggagggtgt  | 480  |
| atgtaaccg ccgggcgctg cggcgggagc agttccagga ctgcttctcc tacgtcctgc    | 540  |
| agagcgacac cctgctgagc agcctcaccg tgccgcagac gctgcactac accgcgctgc   | 600  |
| tggccatccg cgcggcaat cccggctcct tccagaagaa ggtggaggcc gtcatggcag    | 660  |
| agctgagtct gagccatgtg gcagaccgac tgattggcaa ctacagcttg gggggcattt   | 720  |
| ccacgggtga gcggcgcgg gtcctccatcg cagccagct gtcaggat cctaaggta       | 780  |
| tgctgtttga tgagccaaacc acaggcctgg actgcatgac tgctaattcag attgtcgtcc | 840  |
| tcctgggtgga actggctcgc aggaaccgaa ttgtggttct caccattcac cagccccgtt  | 900  |
| ctgagcttt tcaagctttt gacaaaattt ccattcctgag ctgcggagag ctgatttct    | 960  |
| gtggcacgcc agcgaaatg cttgatttct tcaatgactg cggttaccct tgtcctgaac    | 1020 |
| attcaaacc ttttgacttc tatatggacc tgacgtcagt ggatacccaa agcaaggaac    | 1080 |
| gggaaataga aacctccaag agatccaga tgatagaatc tgcctacaag aaatcagcaa    | 1140 |
| tttgcataaa aactttgaag aatattgaaa gaatgaaaca cctgaaaacg ttaccaatgg   | 1200 |
| ttcccttcaa aaccaaagat tctcctggag tttctctaa actgggtgtt ctcctgagga    | 1260 |
| gagtgacaag aaacttggtg agaaataagc tggcagtgat tacgcgtctc cttcagaatc   | 1320 |
| tgatcatggg tttgttcctc cttttcttcg ttctgcgggt ccgaagcaat gtgctaaagg   | 1380 |
| gtgctatcca ggaccgcgta ggtctcctt accagttgt gggcgccacc ccgtacacag     | 1440 |
| gcatgctgaa cgctgtgaat ctgtttcccg tgctgcgagc tgtcagcgtc caggagagtc   | 1500 |
| aggacggcct ctaccagaag tggcagatga tgctggcta tgcactgcac gtcctcccct    | 1560 |
| tcagcggtgt tgccaccatg atttcagca gtgtgtgcta ctggacgcgtg ggcttacatc   | 1620 |
| ctgaggttgc ccgatttggaa tattttctg ctgctctctt ggccccccac ttaattggtg   | 1680 |
| aatttctaac tcttgtgcta cttggatcg tccaaaatcc aaatatagtc aacagtgttag   | 1740 |
| tggctctgct gtccattgcg ggggtgcttg ttggatctgg attcctcaga aacatacaag   | 1800 |
| aaatgcccatt tcctttaaa atcatcagtt atttacatt caaaaaatat tgcagtgaga    | 1860 |
| ttcttgtagt caatgagttc tacggactga atttcacttg tggcagctca aatgtttctg   | 1920 |
| tgacaactaa tccaaatgtgt gccttcactc aaggaattca attcattgag aaaacctgcc  | 1980 |
| caggtgcaac atctagattc acaatgaact ttctgatggt gtattcattt attccagctc   | 2040 |
| ttgtcattcct aggaatagtt gttttcaaaa taagggatca tctcatttagc aggtagtgaa | 2100 |
| agccatggct gggaaaatgg aagtgaagct gccgactgtg catgactgct ctgaacgtct   | 2160 |
| gaaatgagag tgccatgtat ttctttcttg acaggacatc tcaagtctt taaccattaa    | 2220 |

|             |             |            |            |            |            |      |
|-------------|-------------|------------|------------|------------|------------|------|
| gactccattt  | gtgccttttg  | gatccaagca | ggccttgaat | gcaatggaag | tggtttatag | 2280 |
| tcccttgctc  | ttacaacttg  | cagggacatg | tggttatttg | gaaattgtga | ctgagcggac | 2340 |
| ccaagaatgt  | aaataaatatt | cataaaccta | tgggagactc | gtgtgactat | tttttttcct | 2400 |
| tgttcttaggc | acagaaaaaa  | ataggtcagc | ttaaaaatat | gtttacattg | gataaaggat | 2460 |
| taggcaaaaa  | taaaatgttt  | caaggattcc | tgaccataag | tgacagagaa | agagagttgt | 2520 |
| gggtttagat  | gaagcaaggt  | tatcatgcag | aattggtaa  | gaatgcttct | gttcctggaa | 2580 |
| gaccagagt   | taaatgcaga  | tgtccacacg | aggggtcgg  | gttacctgat | cacatcgaga | 2640 |
| gagtgctggg  | cagatggatg  | gtgagcacca | ctgctacaga | gcacccagtg | attttactga | 2700 |
| ggattaaaat  | aaaaaacccgt | aggaatgggc | tcaacagtga |            |            | 2740 |

&lt;210&gt; 10

&lt;211&gt; 2679

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|          |            |             |             |             |            |            |      |
|----------|------------|-------------|-------------|-------------|------------|------------|------|
| <400> 10 | ctccaggaaa | cagagtgaag  | acactggccc  | tggcaggcag  | cagctgggtc | taagagagct | 60   |
|          | gcagcccagg | gtcacagacc  | tgtgggcccc  | atggccggga  | aggcggcaga | ggagagaggg | 120  |
|          | ctgccgaaag | gggccactcc  | ccaggatacc  | tcgggcctcc  | aggatagatt | gttctcctct | 180  |
|          | gaaagtgaca | acagcctgta  | cttcacctac  | agtggccagc  | ccaacaccct | ggaggtcaga | 240  |
|          | gacctcaact | gccaggtgga  | cctggcctct  | caggtccctt  | gttttgagca | gctggctcag | 300  |
|          | ttcaagatgc | cctggacatc  | tcccagctgc  | cagaattctt  | gtgagctggg | catccagaac | 360  |
|          | ctaagcttca | aagtgagaag  | tggcagatg   | ctggccatca  | tagggagctc | aggttgtggg | 420  |
|          | agaggcctct | tgcttagatgt | gatcaactggc | cgaggtcacf  | gcggcaagat | caagtcaggc | 480  |
| -        | cagatctgga | tcaatgggca  | gcccagctcg  | cctcagctgg  | tgaggaagtg | tgtggcccac | 540  |
|          | gtgcgccagc | acaaccagct  | gctccccaac  | ttgactgtgc  | gagagacctt | ggccttcatt | 600  |
|          | gcccagatgc | ggctgcccag  | aacttctcc   | caggcccagc  | gtgacaaaag | ggtggaggac | 660  |
|          | gtgatcgcgg | agctgcggct  | taggcagtgc  | gctgacacccc | gcgtggcaa  | catgtacgt  | 720  |
|          | cgggggttgt | cgggggtgt   | gcmcaggaga  | gtcagcattt  | gggtgcagct | cctgtggAAC | 780  |
|          | ccaggaatcc | ttattctcga  | cgaacccacc  | tctggctcg   | acagttcac  | agcccacaac | 840  |
|          | ctggtaaga  | ccttgtccag  | gctggccaaa  | ggcaaccggc  | tgttgctcat | ctccctccac | 900  |
|          | cagcctcgct | ctgacatctt  | caggctgttt  | gatctggtcc  | tcctgatgac | gtctggcacc | 960  |
|          | cccatctact | tagggcggc   | ccagcacatg  | gtccagtatt  | tcacagccat | cggctacccc | 1020 |
|          | tgtcctcgct | acagcaatcc  | tgctgacttc  | tatgtggacc  | tgaccagcat | tgacaggcgc | 1080 |
|          | agcagagagc | .aggaattggc | caccaggag   | aaggctcagt  | cactcgcagc | cctgtttcta | 1140 |

|             |             |             |              |             |             |      |
|-------------|-------------|-------------|--------------|-------------|-------------|------|
| gaaaaagtgc  | gtgacttaga  | tgactttcta  | tggaaagcag   | agacgaagga  | tcttgacgag  | 1200 |
| gacaccgtgt  | tggaaagcag  | cgtgacccca  | ctagacacca   | actgcctccc  | gagtcctacg  | 1260 |
| aagatgcctg  | ggcggtgca   | gcagttacg   | acgctgatcc   | gtcgtcagat  | ttccaacgac  | 1320 |
| ttccgagacc  | tgcccaccct  | cctcatccat  | ggggcggagg   | cctgtctgt   | gtcaatgacc  | 1380 |
| atcggttcc   | tctattttgg  | ccatgggagc  | atccagctct   | ccttcatgga  | tacagccgcc  | 1440 |
| ctcttgtca   | tgatcggtgc  | tctcatccct  | ttcaacgtca   | ttctggatgt  | catctccaaa  | 1500 |
| tgttactcag  | agagggcaat  | gctttactat  | gaactggaag   | acgggctgta  | caccactggt  | 1560 |
| ccatatttct  | ttgccaagat  | cctcggggag  | cttccggagc   | actgtgccta  | catcatcatc  | 1620 |
| tacgggatgc  | ccacctactg  | gctggccaac  | ctgaggccag   | gcctccagcc  | cttccctgctg | 1680 |
| cacttcctgc  | tggtgtggct  | ggtggctttc  | tgttgcagga   | ttatggccct  | ggccgcccgcg | 1740 |
| gccctgctcc  | ccaccttcca  | catggcctcc  | ttcttcagca   | atgccctcta  | caactccttc  | 1800 |
| tacctcgccg  | ggggcttcat  | gataaaacttg | agcagcctgt   | ggacagtgcc  | cgcgtggatt  | 1860 |
| tccaaagtgt  | cttcctgctg  | gtgggttttt  | gaagggctga   | tgaagattca  | gttcagcaga  | 1920 |
| agaacttata  | aaatgcctct  | cggAACCTC   | accatcgccg   | tctcaggaga  | taaaatcctc  | 1980 |
| agtgccatgg  | agctggactc  | gtaccctctc  | tacgccccatct | acctcatcgt  | cattggcctc  | 2040 |
| agcgggtggct | tcatggcct   | gtactacgtg  | tccttaaggt   | tcatcaaaca  | gaaaccaagt  | 2100 |
| caagactggt  | gattcacgccc | agacgtctgc  | ccgctggtgg   | gggacctgag  | cagacccttc  | 2160 |
| aactgcactc  | cctcctcagg  | agcccttcc   | tggggacagt   | gaggacaatg  | accctacaga  | 2220 |
| tgctcagcta  | catccggccc  | agggtgctgc  | ggtggcacag   | accagccaca  | ggatggcagt  | 2280 |
| agaataaaga  | cagtcgaaag  | ggatttctgc  | tcactggcag   | gagactgcga  | tgactggag   | 2340 |
| aaaacctgca  | ctcggtggca  | cctacaacgt  | tgctaattta   | tttcctttt   | atatgcattt  | 2400 |
| atataggcaa  | ctcgatata   | gatgggagca  | aacttaggaat  | gaattgggt   | gctagactgt  | 2460 |
| gcaggaattt  | ttggAACCTG  | gagggAACAA  | taacagtacc   | tagcagattt  | ggcttcatct  | 2520 |
| tccagggggcc | ccacactccg  | tggtgagcca  | ccatcaatac   | agaaaagtgac | ctaagatgt   | 2580 |
| ccagcaagat  | gccatccctt  | cttttgtgt   | ggggtcatgg   | gctccaaaag  | ccaacgtgaa  | 2640 |
| caattaaaaaa | tgtattgagc  | atctaaaaaa  | aaaaaaaaaa   |             |             | 2679 |

&lt;210&gt; 11

&lt;211&gt; 1156

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|             |            |           |            |            |            |     |
|-------------|------------|-----------|------------|------------|------------|-----|
| <400> 11    |            |           |            |            |            |     |
| cgcagcggag  | gtgaaggacg | tccttccca | ggagccgact | ggccaatcac | aggcaggaag | 60  |
| atgaagggttc | tgtggctgc  | gttgctggc | acattcctgg | caggatgcc  | ggccaagggt | 120 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gagcaagcgg tggagacaga gccggagccc gagctgcgcc agcagaccga gtggcagagc   | 180  |
| ggccagcgct gggactggc actgggtcgc ttttggatt acctgcgctg ggtgcagaca     | 240  |
| ctgtctgagc aggtgcagga ggagctgctc agctcccagg tcacccagga actgagggcg   | 300  |
| ctgatggacg agaccatgaa ggagttgaag gcctacaat cggactgga ggaacaactg     | 360  |
| accccggtgg cggaggagac gcgggcacgg ctgtccaagg agctgcaggc ggcgcaggcc   | 420  |
| cggctggcg cggacatgga ggacgtgtgc ggccgcctgg tgcagtaccg cggcgaggtg    | 480  |
| caggccatgc tcggccagag caccgaggag ctgcgggtgc gcctgcctc ccacctgcgc    | 540  |
| aagctgcgta agcggctcct ccgcgatgcc gatgacctgc agaagcgctt ggcagtgtac   | 600  |
| caggccgggg cccgcgaggg cgccgagcgc ggcctcagcg ccatccgcga ggcctgggg    | 660  |
| ccccctggtgg aacagggccg cgtgcgggccc gccactgtgg gtcctctggc cggccagccg | 720  |
| ctacaggagc gggcccaggc ctggggcgag cggctgcgcg cgcggatgga ggagatgggc   | 780  |
| agccggaccc gcgaccgcct ggacgaggtg aaggagcagg tggcggaggt ggcgcccaag   | 840  |
| ctggaggagc aggcccagca gatacgcctg caggccgagg cttccaggc ccgcctcaag    | 900  |
| agctggttcg agcccttgtt ggaagacatg cagcgcctgtt gggccgggtt ggtggagaag  | 960  |
| gtgcaggctg ccgtggcac cagcgcgc cctgtgccta gcgcacaatca ctgcgcgcg      | 1020 |
| aagcctgcag ccatgcgacc ccacgcacc ccgtgcctcc tgcctccgcg cagcctgcag    | 1080 |
| cgggagaccc tgtccccgcc ccagccgtcc tcctgggtg gaccctagtt taataaaagat   | 1140 |
| tcaccaagtt tcacgc                                                   | 1156 |

&lt;210&gt; 12

&lt;211&gt; 417

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| <400> 12                                                           |     |
| acctcccaac caagccctcc agcaaggatt caggagtgcc cctcgggcct cgccatgagg  | 60  |
| ctctccctgt cgctcccggt cctgggtgtt gttctgtcga tcgtcttggaa aggcccagcc | 120 |
| ccagcccagg ggaccccaga cgtctccagt gccttggata agctgaagga gtttggaaac  | 180 |
| acactggagg acaaggctcg ggaactcatc agccgcataa aacagagtga actttctgcc  | 240 |
| aagatgcggg agtggtttc agagacattt cagaaagtga aggagaaaact caagattgac  | 300 |
| tcatgaggac ctgaagggtg acatccagga ggggcctctg aaatttccca caccggcgcg  | 360 |
| cctgtgctga ggactccgc catgtggccc caggtgccac caataaaaat cctaccg      | 417 |

&lt;210&gt; 13

&lt;211&gt; 753

&lt;212&gt; DNA

<213> Homo sapiens

<400> 13  
 gttgtggctg tggagcgaa gtgggtctca accactataa atcctctctg tgcccgatccg 60  
 gagctggta ggacagcctg ccagagtctg gtctctggac actatggca cacgactcct 120  
 cccagctctg tttcttgc tcctggatt gggatttgag gtccaggaga cccaacagcc 180  
 ccagcaagat gagatgccta gcccgacctt cctcacccag gtgaaggaat ctctctccag 240  
 ttactggag tcagcaaaga cagccgcccc gaacctgtac gagaagacat acctgcccgc 300  
 tgttagatgag aaactcaggg acttgtacag caaaagcaca gcagccatga gcacttacac 360  
 aggcatttt actgaccaag ttctttctgt gctgaagggg gaggagtaac agccagaccc 420  
 cccatcagtg gacaagggg gagtccctta ctccctgat ccccccaggat cagactgagc 480  
 tcccccttcc cagtagctct tgcatttcctcc tcccaactct agcctgaatt ctttcaata 540  
 aaaaatacaa ttcaagttgc ttctcatgga tggcactgct tttctgagga ctcaagggcc 600  
 aagatggagg ggctgactca gtccagccaa catttaatga gcacctactt tatgtatgga 660  
 gctctaaccct atgggtccat ggaataaaag cagtgaatag taacaataaa taatcgtaac 720  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 753

<210> 14

<211> 5950

<212> DNA

<213> Homo sapiens

<400> 14  
 gaattccagg ggacatctgt tgccaccta ctgtgctcac gctggggcct ctgggatgga 60  
 caggattctg ccaaggcaga catctgggtc aagacagtcc tgcacagttt ttcagggttgt 120  
 ggccaagggtt gcgttgcag atttgcattg taaaaataca ggatgcttag ttacatttga 180  
 atttcagatt aatagcaaaa aaaactttt ggtataattc tgaaatattt catggacat 240  
 atttatacta aaacgtcatg cactgttgat ttgaaattca aatgtatgg ggcctcctct 300  
 atttcgtctg gcaagcgttag aaaaaagaat ccagtcagg ccaggcgcag tggctcaagc 360  
 ctgtaatccc agcactttgg gaggccgagg cggccggatc acgaggtcag gagatcgaga 420  
 ccatcctggc taacacggtg aaaccccgtc tctactaaaa atacaaaaaa ttagctggc 480  
 gtggtggcgg gtgcctgttag tcccagctac tcgggaggct gaggcaggag aatggcgtga 540  
 acctgggagg cggagcttgc agtgagccga gatcgccca cagcactcca gcctggcga 600  
 cagagccaga ctctgtctca aaaaaaaaaa aaagaatcca gtccatagtc ccctgagcca 660  
 tgtgccctgg ggtgcagctg ggtcccttcag gagaaaaatg ctctatttct ggcactggga 720

|                                                                    |      |
|--------------------------------------------------------------------|------|
| ccgagcctga tgtgggttt ttgttggtt ttgttgttgt tattgtttt gagacaagg      | 780  |
| ctcgctccac cacaccggc taattttgt attttagta gagacgggt ttcactacgt      | 840  |
| tggccaggct ggtcttgaac tcctgacctc aagtgagccg cctgcctcgg cctccaaag   | 900  |
| tgctggatt acaggtggg a gccaccgccc tggccctggg cctgatgtt atgacacct    | 960  |
| actatgtgca cctgcagctc tcctgcatag gcctcagccg tcctgcatga ggacactggg  | 1020 |
| aggcaggtgc tccctatcaa ccccgtgtt cagttgaaca aactgagccc cagaaaagaa   | 1080 |
| aacgtatttgc cccaggtcac acggtaaga agtgaggat tcgaagccca ggtccatctg   | 1140 |
| aagccagagt cacccagagg agaaagagt ggaattgaga actcaaggaa tgcttggaa    | 1200 |
| tgatcggct cgagccacc taggaagaaa cagaggctgg agacatgaga ctgtgttgc     | 1260 |
| atttcctctc atcaaccctt gggccctatt gaggccctac cacaagctg gccctgcagc   | 1320 |
| ccagtgacta ggagaaatta gacacaagat aataataaca gcaatgatct tttttttt    | 1380 |
| tctgagacgg agtcttgctc tttcgccag gctggactgc agtggcgcga tctcggctca   | 1440 |
| atgcaagctc cacctcccag gttcacgcca ttctcctgcc tcagcctccc gagtagctag  | 1500 |
| gactacaggc gcctgccacc acgcctggct aattttcat atttttagta gagatgggt    | 1560 |
| ttcaccgtgt tagccaagat ggtctcaatc tcctgacctc gtgatccgcc tgcctcggcc  | 1620 |
| tcccaaagtg ttggggttac aggcatgagc caccgcgcct ggccaacagc aatgatctt   | 1680 |
| gagcacctat attgccagtc tccacggtaa gagcttctt catttttgt ttttgttgc     | 1740 |
| ttcaagacag agtcttgctc tgtcacccag gctggagtgc agtggtgtga tcgcggctca  | 1800 |
| ctgcagcctt cacttcccgg gttcaagcca ttctcctgcc tcagcctccc aagttagctgg | 1860 |
| gattacaggc acgcatcaact acttctggct aattttgtt ttttttagtag ggacagggtt | 1920 |
| tttcaccatg ttggccaggt tggctcaaa ctcctggcct catatgatct gcccacctcg   | 1980 |
| gcctccaaa gtgctggat tacaggcgtg agccactgcg cctttcttg tatttggta      | 2040 |
| agtaatatac tgaaatatgt actgtgcctc ccactttatg gaggaggaaa ctgaggccag  | 2100 |
| caaatgaggc tgtcatggg ggtggagaca ggatttgaac ctgcctcagt gcaggaggct   | 2160 |
| caagagcctc tgtcttctct cagggcactg tgtggaggg tgagaaggag ggaggcccac   | 2220 |
| agaggcatga cctctgattt ccactgtcac ctggccctg ctctctgaag tctctgcca    | 2280 |
| gcggggaggt ggccggggg gggccctgct ctgtgcagcc tccccctcccc cggcccgac   | 2340 |
| agttgagcac agagggacag aggcacggaa cccccagaaa tgtccctcct cagaaacagg  | 2400 |
| ctccaggccc tgcctgccct gtgcctctgc gtgctggtcc tggcctgcat tgggggtgag  | 2460 |
| aagaagtggg tggagggatg tggggccac acctgggtggg tgtgagtgt gctgtgtgc    | 2520 |
| ctgtggctct gtagccacgt gagacatgag tacggagtgt gtgcgtttca tggcgtgcgt  | 2580 |
| atgcacatgtgc gtgtcgggg ggtgtgtgt cggtggctga gagtgaagtg tgaatgtcac  | 2640 |
| attggtacaa actgggatca tctgtgtgtg tgcacgtgcg tgcgtgaaag tggggatgt   | 2700 |
| cagtcgtggt aaaaaagtgc atgtctgtgt gcatatgtgtt atttgtgtgc acctgtctct | 2760 |

|             |            |             |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|-------------|------|
| ctgtgggta   | tgtgttgca  | aaatatttga  | gtgtgtggac  | atgtgtgagg  | gggtgagtgt  | 2820 |
| gtgctggtgt  | gtacgtctgt | gttttgcata  | tgcattttt   | ttttttttt   | ttagacggag  | 2880 |
| tctcaactcg  | tcacccaggc | tggagtgcag  | tggtagcagt  | ggtgcgatct  | tggctcaactg | 2940 |
| catcatccgc  | ctacccgtt  | caagggattc  | tcctgcctca  | gtcttcagag  | tatttggac   | 3000 |
| tacagacaca  | cgccaccatg | cctggctaat  | ttttttttt   | tgagacggag  | tctcgctctg  | 3060 |
| ttacccaggc  | tggagtgcag | tggcgtgatc  | ttggctcaact | gcaagctccg  | cctcccgggt  | 3120 |
| tcacgcccatt | ctcctgcctc | agcctcccga  | gtagctggga  | ctacaggagc  | ccaccaccac  | 3180 |
| gcctggctaa  | ttttttgtat | ttttaactaga | gacggggttt  | cggcgtgtt   | gccaggatgg  | 3240 |
| tctccatatc  | ctgacctcgt | gatccgcctg  | cctcggcctt  | ccaaagtgct  | aggattatag  | 3300 |
| gcgtgagcca  | ctgcgcctgg | ccaatgcctg  | gctaattttt  | ttatattttt  | ggtagagaca  | 3360 |
| gggttttgc   | atgttgc    | ggctggtctt  | gaaatcctga  | cctcaggtga  | tccgcccgc   | 3420 |
| ttggcctccc  | aaagtgtgg  | gattacaggc  | atgagccacc  | acgcccggcc  | atgtacttta  | 3480 |
| tgttaaaatg  | ggatcatatt | ctagatcagc  | attatccagt  | agaaaatttaa | attttaata   | 3540 |
| cagggccagg  | cacggtg    | catgcctgta  | atcccagcac  | tttcggag    | cgaggcgggt  | 3600 |
| ggatcgcaag  | gtcaggagat | ttgagatcat  | cctggtaac   | agatggtaa   | aaacccatct  | 3660 |
| ctactaaaaa  | tacaaaaat  | tagccatgca  | tggtggcatg  | cgcctgt     | cccagctact  | 3720 |
| cgggaggctg  | aggccggaga | atca        | cccggaggc   | agagg       | ttgca       | 3780 |
| atcgccac    | tgcattccaa | cctgggtgac  | agagc       | gagac       | tccgtctgaa  | 3840 |
| aatttaacac  | gtatgtagac | aatgtgcaag  | gcaccattcc  | atgtgc      | atcg        | 3900 |
| ctcttaattc  | tcacgataac | cctgaggtag  | atattattac  | cccgttctac  | aaaaggagaa  | 3960 |
| acagtcc     | ggagacagga | taagt       | caccg       | gccaagg     | acagct      | 4020 |
| cccg        | gtac       | ggctgg      | tctc        | tgtagg      | cgag        | 4080 |
| ggcc        | gg         | gg          | gt          | gg          | gt          | 4140 |
| tcac        | ct         | ct          | ct          | cc          | ct          | 4200 |
| gaga        | ac         | cc          | cc          | cc          | cc          | 4260 |
| tcag        | agg        | tt          | tt          | tt          | tt          | 4320 |
| aggact      | act        | gg          | gg          | gg          | gg          | 4380 |
| gaca        | aa         | gg          | gg          | gg          | gg          | 4440 |
| atcc        | ttt        | gg          | gg          | gg          | gg          | 4500 |
| caac        | aa         | cc          | cc          | cc          | cc          | 4560 |
| tgc         | ttt        | cc          | cc          | cc          | cc          | 4620 |
| ggagg       | cc         | cc          | cc          | cc          | cc          | 4680 |
| aaagagg     | tt         | tt          | tt          | tt          | tt          | 4740 |
| agggc       | tt         | tt          | tt          | tt          | tt          | 4800 |

|            |             |            |             |             |             |      |
|------------|-------------|------------|-------------|-------------|-------------|------|
| ggggattcta | gggtcccagc  | ctacccaagt | tgccctctgg  | ttccacctag  | catgccagcc  | 4860 |
| agaggcccag | gaaggaaccc  | tgagccccc  | accaaagcta  | aagatgagtc  | gctggagcct  | 4920 |
| ggtaggggc  | aggatgaagg  | agctgctgga | gacagtggtg  | aacaggacca  | gagacgggtg  | 4980 |
| gcaatggttc | tggtaggggt  | tgctggcct  | gggtggtggg  | aggggactcc  | tgggtctgag  | 5040 |
| ggaggagggg | ctggggcctg  | gaccctgag  | tctcagggag  | gaggaaaggg  | tgggagtggt  | 5100 |
| gctgtacccc | ctaggctctgg | gaggagtgga | gggttagagc  | tgagagcagg  | aactcctagg  | 5160 |
| tcacagagag | gagcggataa  | atggggcaga | gaacacctgg  | ggagagctgg  | ggcctccact  | 5220 |
| gtgatgtcct | ctctcctgta  | ggagcccgag | cacccctccgg | ggcttcatgc  | agacctaacta | 5280 |
| tgacgaccac | ctgagggacc  | tgggtccgct | caccaaggcc  | tggttcctcg  | aatccaaaga  | 5340 |
| cagcctcttg | aagaagaccc  | acagcctgtg | ccccaggctt  | gtctgtgggg  | acaaggacca  | 5400 |
| gggttaaaat | gttcataaaaa | gccaggtgtg | gttgtggcgg  | gtgcctgttag | tcccagctac  | 5460 |
| tcaggaggct | gaggtaggat  | gttggcttga | gcccaggagt  | tcgagaccag  | cctgggcaac  | 5520 |
| acagcgagat | ctcttggggg  | taaaacaaaa | agaaaaaaaaa | aagttcatac  | ttctccaata  | 5580 |
| aataaagtct | cacctgtgtc  | cctgtctgga | tccttccccca | gtgtggccag  | aaaaaaaaccc | 5640 |
| accccactgc | ctcccaggaa  | tcaatgagta | gaagaggtga  | cacctgatgg  | ggaaggaaga  | 5700 |
| gtagggaggt | cgggaagggt  | atcaaggaat | aacaccctat  | tgtggcttg   | cggagaatgg  | 5760 |
| gggacttcaa | ggcgtgtcag  | tttcaggagg | gtgagggcag  | gagcgtgggt  | ggagtcagca  | 5820 |
| ggtccccatg | atggccctca  | ctgagagctt | cgccttgtc   | tcctacaagc  | tctgactcca  | 5880 |
| ttcccagtgg | gcacccagca  | cctccaaccc | ctccacagcc  | cccaacccag  | cctctgtcgg  | 5940 |
| aggcgaattc |             |            |             |             |             | 5950 |

&lt;210&gt; 15

&lt;211&gt; 3549

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|          |             |            |            |            |            |              |     |
|----------|-------------|------------|------------|------------|------------|--------------|-----|
| <400> 15 | ccccctttcc  | tcctcctcaa | ggaaaagctg | cccacttcta | gctgccctgc | catccccctt   | 60  |
|          | aaagggcgac  | ttgctcagcg | ccaaaccgag | gctccagccc | tctccagcct | ccggctcagc   | 120 |
|          | cggctcatca  | gtcggtccgc | gccttgcagc | tcctccagag | ggacgcgc   | cgagatggag   | 180 |
|          | agcaaagccc  | tgctcgtgct | gactctggcc | gtgtggctcc | agagtctgac | cgcctcccgc   | 240 |
|          | ggaggggtgg  | ccgcccgg   | ccaaagaaga | gattttatcg | acatcgaaag | taaatttgcc   | 300 |
|          | ctaaggaccc  | ctgaagacac | agctgaggac | acttgccacc | tcattccgg  | agttagcagag  | 360 |
|          | tccgtggcta  | cctgtcattt | caatcacagc | agcaaaacct | tcatggtgat | ccatggctgg   | 420 |
|          | acggttaacag | aatgtatga  | gagttgggtg | ccaaaacttg | tggccgc    | ctgtacaagaga | 480 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| gaaccagact ccaatgtcat tgtggtggac tggctgtcac gggctcagga gcattaccca  | 540  |
| gtgtccgcgg gctacaccaa actggtgaaa caggatgtgg cccggtttat caactggatg  | 600  |
| gaggaggagt ttaactaccc tctggacaat gtccatctct tggatacag ccttggagcc   | 660  |
| catgctgctg gcattgcagg aagtctgacc aataagaaag tcaacagaat tactggcctc  | 720  |
| gatccagctg gacctaactt tgagtatgca gaagccccga gtcgtcttc tcctgtatgat  | 780  |
| gcagattttg tagacgtctt acacacattc accagagggt cccctggcg aagcattgga   | 840  |
| atccagaaac cagttggca tggacatt taccgaatg gaggtacttt tcagccagga      | 900  |
| tgtaacattt gagaagctat ccgcgtgatt gcagagagag gacttggaga tgtggaccag  | 960  |
| ctagtgaagt gctcccacga gcgcgtccatt catctttca tcgactctct gttaatgaa   | 1020 |
| aaaaatccaa gtaaggccta caggtgcagt tccaaggaag ccttgagaa aggctctgc    | 1080 |
| tttagttgtt gaaagaaccg ctgcaacaat ctggctatg agatcaataa agtcagagcc   | 1140 |
| aaaagaagca gcaaaatgta cctgaagact cgttctcaga tgccctacaa agtcttccat  | 1200 |
| taccaagtaa agattcattt ttctggact gagagtggaa cccataccaa tcaggcctt    | 1260 |
| gagatttctc tgtatggcac cgtagccgag agtgagaaca tcccattcac tctgcctgaa  | 1320 |
| gtttccacaa ataagaccta ctccctccta atttacacag agtagatat tggagaacta   | 1380 |
| ctcatgttga agctcaaattt gaagagtgtat tcatacttta gctggcaga ctggggagc  | 1440 |
| agtccggct tcgccattca gaagatcaga gtaaaagcag gagagactca gaaaaagggtg  | 1500 |
| atcttctgtt ctagggagaa agtgtctcat ttgcagaaag gaaaggcacc tgcggatttt  | 1560 |
| gtgaaatgcc atgacaagtc tctgaataag aagtcaggct gaaaactgggc gaatctacag | 1620 |
| aacaaagaac ggcattgtt aatgtggatgg aggaagtaac ttttacaaaa             | 1680 |
| cataccagt gtttgggtt tttcaaaaat ggattttcct gaatattaat cccagcccta    | 1740 |
| ccctgttag ttatTTTtagg agacagtctc aagcactaaa aagtggctaa ttcaatttt   | 1800 |
| gggtatagt ggcataatag cacatcctcc aacgttaaaa gacagtggat catgaaaatgt  | 1860 |
| gctgtttgt ctttgagaa agaaataatt gtttggcgc agagtaaat aaggctcctt      | 1920 |
| catgtggcgt attggccat agcctataat tggtagaac ctcctatttt aattggatt     | 1980 |
| ctggatctt cggactgagg cttctcaaa cttaactcta agtctccaag aatacagaaa    | 2040 |
| atgcTTTCC gcggcacgaa tcagactcat ctacacagca gtatgaatga tggatTTGAGA  | 2100 |
| tgattccctc ttgctattgg aatgtggtcc agacgtcaac caggaacatg taacttggag  | 2160 |
| agggacgaag aaagggtctg ataaacacag aggtttaaa cagtcctac cattggcctg    | 2220 |
| catcatgaca aagttacaaa ttcaaggaga tataaaatct agatcaatta attcttaata  | 2280 |
| ggctttatcg ttatTTGCTT aatccctctc tccccctct ttttggcgt aagattat      | 2340 |
| tataataatg ttctctgggt aggtgttggaa aatgagcctg taatcctcag ctgacacata | 2400 |
| atTTGAATGG TGCAGAAAAA AAAAGATAAC CGTAATTAA TTATTAGATT CTCCAATGA    | 2460 |
| TTTCATCAA TTAAAATCA TTCAATATCT GACAGTTACT CTTAGTTT AGGCTTACCT      | 2520 |

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| tggtcatgct tcagttgtac ttccagtgcg tctctttgt tcctggctt gacatgaaaa       | 2580 |
| gataggttt agttcaaatt ttgcattgtg tgagcttcta cagattttag acaaggaccg      | 2640 |
| ttttactaa gtaaaaagggt ggagaggttc ctggggtgga ttcctaagca gtgcttgtaa     | 2700 |
| accatcgcgt gcaatgagcc agatggagta ccatgagggt tgttatttgc tgtttttaac     | 2760 |
| aactaatcaa gagtgagtga acaactattt ataaactaga tctcctatattt ttcagaatgc   | 2820 |
| tcttctacgt ataaatatga aatgataaaag atgtcaaata tctcagaggc tatacgctgg    | 2880 |
| aacccgactg tgaaagtatg tgatatctga acacatacta gaaagctctg catgtgtgtt     | 2940 |
| gtccttcagc ataattcggg agggaaaaca gtcgatcaag ggatgtatttga acatgtcg     | 3000 |
| gagtagaaat tgttcctgat gtgccagaac ttcgaccctt tctctgagag agatgatcgt     | 3060 |
| gcctataaaat agtaggacca atgttgcatttta acatcatc aggcttgaa tgaattctct    | 3120 |
| ctaaaaataa aatgatgtat gatttgcatttggcatcccc tttattaattt cattaaattt     | 3180 |
| ctggattttgg gttgtgaccc aggggtgcatt aactaaaaag attcactaaa gcagcacata   | 3240 |
| gcactgggaa ctctggctcc gaaaaactttt gtttatata tcaaggatgt tctggcttta     | 3300 |
| cattttatattt attagctgtt aatacatgtg tggatgtgtt aatggagctt gtacatattt   | 3360 |
| gaaaggtcat tgtggctatc tgcatttata aatgtgtgtt gctaactgtt tgcatttttt     | 3420 |
| tcagtgtatgg tctcacagag ccaactcact cttatgaaaat gggctttaac aaaacaagaa   | 3480 |
| agaaacgtac ttaactgtgtt gaagaaaatgg aatcagcttt taataaaaattt gacaacattt | 3540 |
| tattaccac                                                             | 3549 |

&lt;210&gt; 16

&lt;211&gt; 1790

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| <400> 16                                                             |     |
| gtgaatctct ggggcccagga agaccctgct gcccggaaga gcctcatgtt ccgtgggggc   | 60  |
| tggccggaca tacatatacg ggctccaggc tgaacggctc gggccactta cacaccactg    | 120 |
| cctgataacc atgctggctg ccacagtcct gaccctggcc ctgctggca atgcccattgc    | 180 |
| ctgctccaaa ggcaccccgac acgaggcagg catcggtgc cgcatcacca agcctgccc     | 240 |
| cctgggtttt aaccacgaga ctgccaaggat gatccagacc gccttccagc gagccagcta   | 300 |
| cccgatatac acgggcgaga aggcattgtat gctccttggc caagtcaagt atgggttgca   | 360 |
| caacatccag atcagccact tgcatttcgc cagcagccag gtggagctgg tggaagccaa    | 420 |
| gtccattgtat gtcatttcgc agaacgtgtc tgcatttgc aaggggaccc tgaagtatgg    | 480 |
| ctacaccact gcctgggtggc tgggtattga tcagtccatt gacttcgaga tcgactctgc   | 540 |
| cattgacccctc cagatcaaca cacagctgac ctgtgactct ggttagagtgc ggaccgatgc | 600 |

ccctgactgc tacctgtctt tccataagct gtcctgcat ctccaagggg agcgagagcc 660  
tgggtggatc aagcagctgt tcacaaaattt catctccccc accctgaagc tggcctgaa 720  
gggacagatc tgcaaagaga tcaacgtcat ctctaacatc atggccgatt ttgtccagac 780  
aagggtcgcc agcatccccc cagatggaga cattgggtg gacattttccc tgacaggtga 840  
tcccgtcatc acagcctcctt acctggagtc ccatcacaag ggtcatttca tctacaagaa 900  
tgtctcagag gacccccc tccccacctt ctcgcccaca ctgctgggg actcccgcat 960  
gctgtacttc tggttctctg agcgagtctt ccactcgctg gccaaggtag cttccagga 1020  
tggccgcctc atgctcagcc tgatggaga cgagttcaag gcagtgctgg agacctgggg 1080  
cttcaacacc aaccaggaaa tcttccaaga gttgtcgcc ggcttcccca gccaggccca 1140  
agtcaccgtc cactgcctca agatgcccaa gatctcctgc caaaacaagg gagtcgtgg 1200  
caattcttca gtgatggtga aattcctctt tccacgcccc gaccagcaac attctgtac 1260  
ttacacattt gaagaggata tcgtactac cgtccaggcc tcctattcta agaaaaagct 1320  
cttcttaagc ctcttgatt tccagattac accaaagact gttccaact tgactgagag 1380  
cagctccgag tccatccaga gttccctgca gtcaatgatc accgctgtgg gcatccctga 1440  
ggtcatgtct cggctcgagg tagtgtttac agccctcatg aacagcaaag gcgtgagcct 1500  
cttcgacatc atcaaccctg agattatcac tcgagatggc ttccctgctgc tgcatgtgg 1560  
ctttggcttc cctgagcacc tgctggtgga tttccctccag agcttgagct agaagtctcc 1620  
aaggaggtcg ggatggggct tgttagcagaa ggcaagcacc aggctcacag ctggAACCT 1680  
ggtgtctccct ccagcgtggt ggaagttggg ttaggagttac ggagatggag attggctccc 1740  
aactccccc tatcctaaag gcccactggc attaaagtgc tgtatccaaag 1790

<210> 17  
<211> 2688  
<212> DNA  
<213> *Homo sapiens*

<400> 17  
tttaaagctg ggagggtctg ccacccaagca cggccttccc actggaaaca caaacttgct 60  
ggcgggaaga gcccgaaaag aaacctgtgg atctcccttc gagatcatcc aaagagaaga 120  
aaggtgacct cacattcgtg ccccttagca gcactctgca gaaatgcctc ctcagctgca 180  
aacacggcctg aacctctcgg ccaaagttgt ccagggaaagc ctggacagcc tgccccaggc 240  
agtgagggag tttctcgaga ataacgctga gctgtgtcag cctgatcaca tccacatctg 300  
tgacggctct gaggaggaga atggcggtc tctggccag atggaggaag agggcatcct 360  
caggcggctg aagaagtatg acaactgctg gttggctctc actgacccca gggatgtggc 420  
caggatcgaa agcaagacgg ttatcgac ccaagagcaa aqaqacacacq tqcccatccc 480



|                                                                    |      |
|--------------------------------------------------------------------|------|
| ggccaagatg acctactagt ttcccttcaa aaaaagttgc tttgttattt atattgtgt   | 2580 |
| taaatttattt ttatacacca ttgttcctta cctttacata attgcaatat ttccccctta | 2640 |
| ctacttcttg gaaaaaaatt acaaaatgaa gttttataga aaagatgg               | 2688 |

<210> 18

<211> 3095

<212> DNA

<213> Homo sapiens

|                                                                     |      |
|---------------------------------------------------------------------|------|
| <400> 18                                                            |      |
| tagcagagca atcaccacca agcctggaat aactgcaagg gctctgctga catcttcctg   | 60   |
| aggtgccaag gaaatgagga tggaggaagg aatgaatgtt ctccatgact ttgggatcca   | 120  |
| gtcaacacat tacctccagg tgaattacca agactcccag gactggttca tcttggtgtc   | 180  |
| cgtgatcgca gacctcagga atgccttcta cgtcctcttc cccatcttgtt tccatcttca  | 240  |
| ggaagctgtg ggcattaaac tcctttgggt agctgtgatt ggagactggc tcaacctcgt   | 300  |
| ctttaagtgg attctctttg gacagcgtcc atactggtgg gttttggata ctgactacta   | 360  |
| cagcaacact tccgtgcccc tgataaagca gttccctgta acctgtgaga ctggaccagg   | 420  |
| gagccctctt ggccatgcca tgggcacagc aggtgtatac tacgtgatgg tcacatctac   | 480  |
| tcttccatc tttcagggaa agataaagcc gacctacaga ttccgggtct tgaatgtcat    | 540  |
| tttgggttg ggattctggg ctgtgcagct gaatgtctgt ctgtcacgaa tctaccttgc    | 600  |
| tgctcatttt cctcatcaag ttgttgcctgg agtcctgtca ggcattgctg ttacagaaac  | 660  |
| tttcagccac atccacacca tctataatgc cagcctcaag aaatattttc tcattacctt   | 720  |
| cttcctgttc agttcgcaca tcggattttt tctgctgctc aagggactgg gtgttagacct  | 780  |
| cctgtggact ctggagaaag cccagaggtg gtgcgagcag ccagaatggg tccacattga   | 840  |
| caccacaccc ttgccagcc tcctcaagaa cctggcacg ctctttggcc tgggctggc      | 900  |
| tctcaactcc agcatgtaca gggagagctg caagggaaa ctcagcaagt ggctccatt     | 960  |
| ccgcctcagc tctattttagt cctccctcgt cctcctgcac gtctttgact ccttggaaacc | 1020 |
| cccatcccaa gtcgagctgg tcttctacgt cttgtccttc tgcaagagt cggttagtgcc   | 1080 |
| cctggcatcc gtcagtgtca tcccctactg cctcgtccag gtcctggcc agccgcacaa    | 1140 |
| gaagtcgttg taagagatgt ggagtcttcg gtgtttaaag tcaacaacca tgccaggat    | 1200 |
| tgaggaggac tactatttga agcaatgggc actggatttt ggagcaagt acatgccatc    | 1260 |
| cattctgccc tcgtggatt aaatcacgga tggcagattt gagggtcgcc tggcttattc    | 1320 |
| ccatgtgtga ctccagccctg ccctcagcac agactcttc agatggaggt gccatatacac  | 1380 |
| gtacaccata tgcaagtttc cggccaggag gtcctccttct ctctacttga atactctcac  | 1440 |
| aagtagggag ctcactccca ctggaacagc ccattttatc tttgaatggt cttctgcccag  | 1500 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| cccatttga ggccagaggt gctgtcagct caggtggtcc tctttacaa tcctaatacat    | 1560 |
| attgggtaat gttttgaaa agctaataaaaa gctattgaga aagacactgtt gctagaagtt | 1620 |
| gggttgttct ggattttccc ctgaagactt acttattctt ccgtcacata tacaaaagca   | 1680 |
| agacttccag gtagggccag ctcacaagcc caggctggag atcctaactg agaattttct   | 1740 |
| acctgtgttc attcttaccg agaaaaggag aaaggagctc tgaatctgtat aggaaaagaa  | 1800 |
| ggctgcctaa ggaggagttt ttagtatgtg gcgtatcatg caagtgtat gccaaagccat   | 1860 |
| gtctaaatgg cttaattat atagtaatgc actctcagta atgggggacc agcttaagta    | 1920 |
| taattaatag atggtagtg ggttaattct gcttctagta ttttttttac tgtgcataca    | 1980 |
| tgttcatcgt atttccttgg atttctgaat ggctgcagtg acccagatat tgcactaggt   | 2040 |
| caaaacattc aggtataagct gacatctcct ctatcacatt acatcatcct ctttataagc  | 2100 |
| ccagctctgc ttttccaga ttcttccact ggctccacat ccacccact ggatcttcag     | 2160 |
| aaggctagag ggcgactctg gtggtgctt tgtatgttc aattaggctc tgaaatctg      | 2220 |
| ggcaaaatga caaggggagg gccaggattc ctctctcagg tcactccagt gttacttttta  | 2280 |
| attcctagag ggtaaatatg actccttct ctatccaaag ccaaccaaga gcacattctt    | 2340 |
| aaaggaaaaag tcaacatctt ctctttttt tttttttttt gagacagggc ctcactatgt   | 2400 |
| tgcccaggct gctttgaat tcctgggctc aagcagtcct cccaccctac cacagcgtcc    | 2460 |
| cgcgttagctg gcatacaggt gcaagccact atgtccagct agccaactcc tcctgcctg   | 2520 |
| ctttctttt ttttctttt tttgagacgg cgcacctatc acccaggctg gägtggagtg     | 2580 |
| gcacgatctt ggctcaactgc aacctttcc tcctggttca agcgattctc atgtctcagc   | 2640 |
| ctcctcagta gctaggacta ccggcgtgca ccaccatgcc aggctaattt ttatattttt   | 2700 |
| agaatttttag aagagatggg atttcatcat gttggccagg ctggtctcga actcctgacc  | 2760 |
| tcaagtgtac cacctgcctt ggcctccaa ggtgcttaga ttacaggcat gagccaccgc    | 2820 |
| accggccct cttgcctgt tttcaatct catctgatcat gcagagtatt tctgccccac     | 2880 |
| ccacctaccc cccaaaaaaaaa gctgaagcct atttatttga aagtccttgt tttgctact  | 2940 |
| aattatataag tataccatac attatcatttca aaaacaacca tcctgctcat aacatcttg | 3000 |
| aaaagaaaaaa tatatatgtg cagtattta ttaaagcaac attttattta agaataaaagt  | 3060 |
| cttggtaatt actatatttt agatgcaatg tgatc                              | 3095 |

&lt;210&gt; 19

&lt;211&gt; 2128

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                                                                                |    |
|--------------------------------------------------------------------------------|----|
| <400> 19<br>gggggtccca tcgggccccgc cctcgacgt cactccggga ccccccgcggc ctccgcaggt | 60 |
|--------------------------------------------------------------------------------|----|

|             |             |              |             |             |                      |            |      |
|-------------|-------------|--------------|-------------|-------------|----------------------|------------|------|
| tctgcgctcc  | aggccggagt  | cagagactcc   | aggatcggtt  | ctttcatctt  | cgccgccc             | 120        |      |
| gcgcgtccag  | ctcttctaag  | acgagatgcc   | gtcgggcttc  | caacagatag  | gctccgaaga           | 180        |      |
| tgggaaaccc  | cctcagcagc  | gagtgactgg   | gaccctggtc  | cttgctgtgt  | tctctgcgg            | 240        |      |
| gcttggctcc  | ctgcagtttgc | ggtacaacat   | tgggtcattc  | aatgccc     | ctc agaagggtat       | 300        |      |
| tgaacagagc  | tacaatgaga  | cgtggctggg   | gaggcagggg  | cctgaggac   | ccagctccat           | 360        |      |
| ccctccaggc  | accctcacca  | ccctctggc    | cctctccgtg  | gccatcttt   | ccgtggcgg            | 420        |      |
| catgatttcc  | tccttcctca  | ttggtatcat   | ctctcagtgg  | cttggaaagga | aaagggccat           | 480        |      |
| gctggtaaac  | aatgtccctgg | cggtgctggg   | gggcagcctc  | atgggcctgg  | ccaacgctgc           | 540        |      |
| tgcctccatat | gaaatgctca  | tccttggacg   | attcctcatt  | ggcgcctact  | cagggctgac           | 600        |      |
| atcagggctg  | gtgcccattgt | acgtggggga   | gattgctccc  | actcacctgc  | ggggcgc              | 660        |      |
| ggggacgctc  | aaccaactgg  | ccattgttat   | cggcattctg  | atgc        | cccagg tgctggc       | 720        |      |
| ggagtcctc   | ctgggcactg  | ccagcctgtg   | gccactgctc  | ctgggcctca  | cagtgc               | 780        |      |
| tgcctccctg  | cagctggtcc  | tgctgcctt    | ctgtccc     | gag         | ccccccgct acctctacat | 840        |      |
| catccagaat  | ctcgaggggc  | ctgccagaaa   | gagtctgaag  | cgcctgacag  | gctggccg             | 900        |      |
| tgttctgga   | gtgctggctg  | agctgaagga   | tgagaagcgg  | aagctggagc  | gtgagcggcc           | 960        |      |
| actgtccctg  | ctccagctcc  | tggcagccg    | tacccaccgg  | cagccc      | ctga tcattgc         | 1020       |      |
| cgtgc       | ctgc        | agcc         | actctctg    | catcaatg    | ct gtttctatt attc    | 1080       |      |
| catcttcgag  | acagcagggg  | taggcccagcc  | tgcctatgcc  | accataggag  | ctgggtg              | 1140       |      |
| caacacagtc  | ttcaccttgg  | tctcggtgtt   | gttggtgag   | cgggcggggc  | gccggacg             | 1200       |      |
| ccatctcctg  | ggcctggcgg  | gcatgtgtgg   | ctgtgccatc  | ctgatgactg  | tggctctg             | 1260       |      |
| cctgctggag  | cgagttccag  | ccatgagcta   | cgtctccatt  | gtggccatct  | ttggcttc             | 1320       |      |
| ggcatttttt  | gagattggcc  | ctggcccat    | tccttggttc  | atcg        | tgcc agtcc           | 1380       |      |
| ccagggaccc  | cgcccggcag  | ccatggctgt   | ggctggttc   | tccaactgga  | cgagcaactt           | 1440       |      |
| catcattggc  | atggtttcc   | agtatgtgc    | ggaggtatg   | ggccctacg   | tcttc                | tttct      | 1500 |
| atttgcggc   | ctcctgctgg  | gcttcttcat   | cttcaccttc  | ttaagagtac  | ctgaaactcg           | 1560       |      |
| aggccggacg  | tttgaccaga  | tctcagctgc   | cttccaccgg  | acacc       | ctc ttttagagca       | 1620       |      |
| ggaggtgaaa  | cccagcacag  | aacttgagta   | tttagggcca  | gatgagaacg  | actgagggc            | 1680       |      |
| caggcagggg  | tgggagagcc  | agctctct     | acccggccca  | gagacc      | cccttcc              | 1740       |      |
| gcagcactt   | aaccctctct  | tccctattat   | ttccgggtgg  | aaaagaatcc  | ctgcagc              | ctg        | 1800 |
| gtagaattgg  | gaagctgggg  | gaagggtgg    | ctgagcaccc  | cctcattccc  | ctcg                 | gtgac      | 1860 |
| tctcttggat  | tat         | ttatgtgc     | ttgtggtttgc | gccgtggcca  | tcagggtgg            | ccactctccc | 1920 |
| ctccctcttc  | cttccccc    | cat          | cccc        | tttccctc    | ccccac               | ctc cccaga | 1980 |
| acttcttcg   | ctgctagaga  | agggggatttgc | gagggaa     | agac        | aggtagtct            | ac         | 2040 |
| ggacaaacca  | gagcagagag  | caggacagga   | gacaagaat   | ccagttccc   | accac                | ttgg       | 2100 |

actcctccca caatctggga ctttcact 2128

<210> 20

<211> 1496

<212> DNA

<213> Homo sapiens

|                                                                      |      |  |
|----------------------------------------------------------------------|------|--|
| <400> 20                                                             |      |  |
| ggcacgagga aaatcaagat aaaaatgttc acaattaagc tccttcttt tattgttcct     | 60   |  |
| ctagttattt cctccagaat ttagtcaagac aattcatcat ttgattctct atctccagag   | 120  |  |
| ccaaaatcaa gatttgctat gtttagacgat gtaaaaattt tagccaatgg cctccttcag   | 180  |  |
| ttgggacatg gtcttaaaga ctttgtccat aagacgaagg gccaaattaa tgacatattt    | 240  |  |
| caaaaaactca acatatttga tcagtcttt tatgatctat cgctgcaaac cagtgaard     | 300  |  |
| aaagaagaag aaaaggaact gagaagaact acatataaac tacaagtcaa aaatgaagag    | 360  |  |
| gtaaaagaata tgtcacttga actcaactca aaacttgaaa gcctcctaga agaaaaattt   | 420  |  |
| ctacttcaac aaaaagtgaa atatttagaa gagcaactaa ctaacttaat tcaaaaatcaa   | 480  |  |
| cctgaaactc cagaacacccc agaagtaact tcacttaaaa cttttgtaga aaaacaagat   | 540  |  |
| aatagcatca aagaccccttcc ccagaccgtg gaagaccaat ataaacaatt aaaccaacag  | 600  |  |
| catagtcaaa taaaagaaat agaaaatcag ctcagaagga ctagtattca agaaccacaca   | 660  |  |
| gaaatttctc tatcttccaa gccaaagagca ccaagaacta ctcccttct tcagttgaat    | 720  |  |
| gaaataagaa atgtaaaaca ttagtggcatt cctgctgaat gtaccaccat ttataacaga   | 780  |  |
| ggtgaacata caagtggcat gtatgccatc agacccagca actctcaagt ttttcatgtc    | 840  |  |
| tactgtgatg ttatatcagg tagtccatgg acattaattc aacatcgaat agatggatca    | 900  |  |
| caaaaacttca atgaaacgtg ggagaactac aaatatggtt ttgggaggct ttagtggagaa  | 960  |  |
| ttttgggtgg gcctagagaa gatatactcc atagtgaagc aatctaatta tgtttacga     | 1020 |  |
| attgagttgg aagactggaa agacaacaaa cattatattt aatattcttt ttacttggaa    | 1080 |  |
| aatcacgaaa ccaactatac gctacatcta gttgcgatta ctggcaatgt ccccaatgca    | 1140 |  |
| atccccggaaa acaaagattt ggttttct acttgggatc acaaagcaaa aggacacttc     | 1200 |  |
| aactgtccag agggttattc aggaggctgg tggtggcatg atgagtgtgg agaaaacaaac   | 1260 |  |
| ctaaatggta aatataacaa accaagagca aaatctaagc cagagaggag aagaggatta    | 1320 |  |
| tcttggaaatg tctaaaatgg aaggttatac tctataaaaat caaccaaaaat gttgatccat | 1380 |  |
| ccaacagatt cagaaagctt tgaatgaact gaggcaaatt taaaaggcaa taattnaaac    | 1440 |  |
| attAACCTCA ttccaagttt atgtggtcta ataatctggt attaaatcct taag          | 1496 |  |

<210> 21

<211> 1415

<212> DNA

<213> Homo sapiens

|                                                                     |      |
|---------------------------------------------------------------------|------|
| <400> 21                                                            |      |
| ggaggaggga gagagagaga agagaagaaa aagaaaaaaag aacatcaata aaaagaagtc  | 60   |
| agatttgttc gaaatcttga ggagtcttca ggccagctcc ctgtcggatg gcttttatga   | 120  |
| aaaaatatct cctccccatt ctggggctct tcatggccta ctactactat tctgcaaacg   | 180  |
| aggaattcag accagagatg ctccaaggaa agaaagtatgtatgtacacaggg gccagcaaag | 240  |
| ggatcggaaag agagatggct tatcatctgg cgaagatggg agcccatgtg gtggtgacag  | 300  |
| cgaggtcaaa agaaactcta cagaagggtgg tatcccactg cctggagctt ggagcagcct  | 360  |
| cagcacacta cattgctggc accatggaag acatgacctt cgccagagcaa tttgttgc    | 420  |
| aagcaggaaa gctcatggaa ggactagaca tgctcattct caaccacatc accaacactt   | 480  |
| ctttgaatct ttttcatgat gatattcacc atgtgcgcaa aagcatggaa gtcaacttcc   | 540  |
| ttagttacgt ggtcctgact gtagctgcct tgcccatgct gaagcagagc aatggaagca   | 600  |
| ttgttgcgt ctccctctcg gctggaaag tggcttatcc aatggttgct gcctattctg     | 660  |
| caagcaagtt tgctttggat gggttcttct cctccatcag aaaggaatat tcagtgtcca   | 720  |
| gggtcaatgt atcaatcact ctctgtgttc ttggcctcat agacacagaa acagccatga   | 780  |
| aggcagttc tgggatagtc catatgcaag cagctccaaa ggaggaatgt gccctggaga    | 840  |
| tcatcaaagg gggagctctg cgccaagaag aagtgtatta tgacagctca ctctggacca   | 900  |
| ctcttctgat cagaaatcca tgcaggaaga tcctggaatt tctctactca acgagctata   | 960  |
| atatggacag attcataaac aagtaggaac tccctgaggg ctggcatgc tgagggattt    | 1020 |
| tgggactgtt ctgtctcatg tttatctgag ctcttatcta tgaagacatc ttcccagagt   | 1080 |
| gtccccagag acatgcaagt catgggtcac acctgacaaa tggaggagt tcctctaaca    | 1140 |
| tttgc当地ggatggtaa taataatgaa tgtcatgcac cgctgcagcc agcagttgta        | 1200 |
| aaattgttag taaacatagg tataattacc agatagttat attaaattta tatcttat     | 1260 |
| ataataatgt gtgatgatta atacaatatt aattataata aaggtcacat aaactttata   | 1320 |
| aattcataaac tggtagctat aacttgagct tattcaggat ggtttcttta aaaccataaa  | 1380 |
| ctgtacaaat gaaatttttc aatatttgc tctta                               | 1415 |

<210> 22

<211> 1405

<212> DNA

<213> Homo sapiens

<400> 22

|                         |                        |                       |      |
|-------------------------|------------------------|-----------------------|------|
| acaattcaga ggctgctgcc   | tgcttaggag gttgtagaaa  | gctctgtagg ttctctctgt | 60   |
| gtgtcctaca ggagtcttca   | ggccagctcc ctgtcgatg   | gcttttatga aaaaatatct | 120  |
| cctccccatt ctgggcctc    | tcatggccta ctactactat  | tctgcaaacg aggaattcag | 180  |
| accagagatg ctccaaggaa   | agaaaagtgtat           | tgtcacaggg gccagcaaag | 240  |
| agagatggct tatcatctgg   | cgaagatggg agcccatgtg  | gtggtgacag cgaggtcaaa | 300  |
| agaaaactcta cagaagggtgg | tatcccactg cctggagctt  | ggagcagcct cagcacacta | 360  |
| cattgctggc accatgaaag   | acatgacctt cgccagagcaa | tttgttgcct aagcaggaaa | 420  |
| gctcatggga ggactagaca   | tgctcattct caaccacatc  | accaacactt ctttgaatct | 480  |
| ttttcatgat gatattcacc   | atgtgcgcaa aagcatggaa  | gtcaacttcc tcagttacgt | 540  |
| ggtcctgact gtagctgcct   | tgcccatgct gaagcagagc  | aatggaagca ttgttgcgt  | 600  |
| ctccctctcg gctggaaag    | tggcttatcc aatgggtgct  | gcctattctg caagcaagtt | 660  |
| tgcttggat gggttcttct    | cctccatcag aaaggaatat  | tcagtgtcca gggtaatgt  | 720  |
| atcaatcaact ctctgtgttc  | ttggcctcat agacacagaa  | acagccatga aggcatgttc | 780  |
| tgggatagtc catatgcaag   | cagctccaaa ggaggaatgt  | gccctggaga tcatcaaagg | 840  |
| gggagctctg cgccaagaag   | aagtgtatta tgacagctca  | ctctggacca ctcttctgat | 900  |
| cagaaatcca tgcaggaaga   | tcctgaaatt tctctactca  | acgagctata atatggacag | 960  |
| attcataaac aagtaggaac   | tcctgaggg ctggcatgc    | tgagggattt tggactgtt  | 1020 |
| ctgtctcatg tttatctgag   | ctcttatcta tgaagacatc  | ttcccagagt gtccccagag | 1080 |
| acatgcaagt catgggtcac   | acctgacaaa tggaggagt   | tcctctaaca tttgcaaaat | 1140 |
| ggaaatgtaa taataatgaa   | tgtcatgcac cgctgcagcc  | agcagttgta aaattgttag | 1200 |
| taaacatagg tataattacc   | agatagttat attaaattta  | tatcttataat ataataat  | 1260 |
| gtgatgatta atacaatatt   | aattataata aaggtcacat  | aaactttata aattcataac | 1320 |
| tggtagctat aacttgagct   | tattcaggat ggtttcttta  | aaaccataaa ctgtacaaat | 1380 |
| gaaattttc aatatttgtt    | tctta                  |                       | 1405 |

&lt;210&gt; 23

&lt;211&gt; 1944

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

|                       |                       |                       |                       |     |
|-----------------------|-----------------------|-----------------------|-----------------------|-----|
| <400> 23              | ccctctcgcg ccccaggccg | gtgtacccccc gcactcccg | ccccggccta gaagctctct | 60  |
| ctccccgctc cccggcccg  | ccccggccccc           | gccccggccc agcccgctgg | gccgcccattgg          | 120 |
| agcgctggcc ttggccgtcg | ggcggcgcct            | ggctgctcg             | ggctgcccgc gcgctgctgc | 180 |
| agctgctgcg ctcagacctg | cgtctgggcc            | gcccgcgtc             | ggcggcgctg gcgctgctgg | 240 |

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ccgcgctcgatggctgtgc cagcgcctgc tgcccccggc ggccgcactc gccgtgctgg      | 300  |
| ccgcccggctggatcgcttgc tttgtcccgcc tggcgccccc gcagcgccctg ccggtgccca  | 360  |
| ctcgccgggt gtcataccggctgtgact ctgggtttgg caaggagacg gccaagaaac       | 420  |
| tggactccat gggcttcacg gtgctggcca ccgtatttga gttgaacacgc cccggtgccca  | 480  |
| tcgagctgcgtacatgtgc tccccctcgcc taaggctgct gcagatggac ctgaccaaacc    | 540  |
| caggagacat tagccgcgttagagttca ccaaggccca caccaccagg accggcctgt       | 600  |
| ggggcctcgtaacaacgcga ggccacaatg aagttagttgc tgatgcggag ctgtctccag    | 660  |
| tggccacttt ccgtagctgc atggaggtga atttcttgg cgcgctcgag ctgaccaagg     | 720  |
| gcctcctgccctgctgc agctcaaggg gcccgcattgt gactgtgggg agcccagcgg       | 780  |
| gggacatgccatatccgtgc ttgggggcct atggAACCTC caaagcggcc gtggcgctac     | 840  |
| tcatggacac attcagctgt gaactccttc cctgggggtt caaggtcagc atcatccagc    | 900  |
| ctggctgctt caagacagatc tcaatgtgagaa acgtgggtca gtggaaaaag cgcaagcaat | 960  |
| tgcgtctggccaaacctgcct caagagctgc tgcaggccta cggcaaggac tacatcgagc    | 1020 |
| acttgcattgg gcagttccctg cactcgctac gcctggccat gtccgaccc accccagttt   | 1080 |
| tagatgccat cacagatgcgtgctggcag ctcggccccc cgcgcgttat taccggcc        | 1140 |
| agggcctggg gctcatgtac ttcatccact actacccgtcc tgaaggcctg cggcgccgt    | 1200 |
| tcctgcaggc cttcttcatc agtcaatgtc tgcctcgagc actgcagccct ggccagcctg   | 1260 |
| gcactacccc accacaggac gcagcccagg gcccacccct gagccccggc cttcccccag    | 1320 |
| cagtggctcg gtgagccatg tgcacccatg gcccagccac tgcagcacag gaggctccgt    | 1380 |
| gagcccttgg ttccctcccg aaaaccccca gcattacgt ccccaagtg tcctggaccc      | 1440 |
| tggcctaaag aatcccaccc ccacttcatg cccactgccc atgcccacat caggccgggt    | 1500 |
| gaggccaaagg ttccctccgt agccctctgcg cctctccact gtttcatgag cccaaacacc  | 1560 |
| ctcctggcac aacgctctac cctgcagctt ggagaactcc gctggatggg gagtctcatg    | 1620 |
| caagacttca ctgcagccctt tcacaggact ctgcagatag tgcctctgca aactaaggag   | 1680 |
| tgacttaggtg ggttggggac cccctcagga ttgtttctcg gcaccagtgc ctcagtgc     | 1740 |
| caattgaggg ctaaatccca agtgtcttt gactggctca agaatttaggg ccccaactac    | 1800 |
| acaccccaa gcccacaggaa agcatgtact gtactccca attgccacat tttaataaaa     | 1860 |
| gacaaatttt tatttcttct aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa    | 1920 |
| aaaaaaaaaaaa aaaaaaaaaa aaaa                                         | 1944 |

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP 03/10036

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC 7 A61K31/517 C07D403/04 A61P3/06

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relevant to claim No. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | <p>DATABASE CHEMCATS<br/>         CHEMICAL ABSTRACTS SERVICES, COLUMBUS,<br/>         OHIO, US;<br/>         XP0002225148<br/>         ORDER NUMBER: TRG10400#07364-D;<br/>         TRG10400#01815-D;TRG10400#01814-D;<br/>         TRG10400#01812-D; TRG10400#01811-D;<br/>         TRG10400#01809-D; TRG10400#01736-D;<br/>         TRG10400#01735-D;<br/>         TRG10400#01732-D;TRG10400#01729-D<br/>         &amp; "Chem.Folio"<br/>         15 May 2001 (2001-05-15), LION BIOSCIENCE<br/>         , HEIDELBERG, GERMANY</p> <p>-----</p> <p>-/-</p> | 1-3                   |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

\*&\* document member of the same patent family

Date of the actual completion of the international search

12 January 2004

Date of mailing of the international search report

30/01/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl  
 Fax: (+31-70) 340-3016

Authorized officer

Kollmannsberger, M

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP 03/10036

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                     | Relevant to claim No. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | <p>COLLINS J L ET AL: "Identification of a Nonsteroidal Liver X Receptor Agonist through Parallel Array Synthesis of Tertiary Amines"<br/> JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US,<br/> vol. 45, 2002, pages 1963-1966,<br/> XP002225147<br/> ISSN: 0022-2623<br/> the whole document</p> <p>-----</p>                                                              | 1-34                  |
| A          | <p>GUPTA C M ET AL: "Drugs acting on the central nervous system. Syntheses of substituted quinazolones and quinazolines and triazepino- and triazocinoquinazolones"<br/> JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US,<br/> vol. 11, no. 2,<br/> 26 February 1968 (1968-02-26), pages 392-395, XP002156695<br/> ISSN: 0022-2623<br/> example 15; table 1</p> <p>-----</p> | 1-34                  |
| A          | <p>WO 97/20823 A (CRISCIONE LEOLUCA ; YAMAGUCHI YASUCHIKA (CH); CIBA GEIGY AG (CH); MAH) 12 June 1997 (1997-06-12)<br/> page 74; example 28<br/> claims 1,12</p> <p>-----</p>                                                                                                                                                                                                                          | 1-34                  |

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/EP 03/10036

### Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:  

Although claims 13-24, 33,34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds/compositions.
2.  Claims Nos.:  
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

### Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

#### Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No

PCT/EP 03/10036

| Patent document cited in search report | Publication date | Patent family member(s)                       | Publication date                       |
|----------------------------------------|------------------|-----------------------------------------------|----------------------------------------|
| WO 9720823                             | A 12-06-1997     | AU 7692996 A<br>WO 9720823 A2<br>ZA 9610020 A | 27-06-1997<br>12-06-1997<br>01-06-1997 |