TAREA 9 RESUELTA

Ejercicios.

(1) Sea \mathcal{B} la siguiente base ordenada de \mathbb{R}^{2x2}

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \right\}$$

- (a) Calcular las coordenadas de $\begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$ en la base ${\cal B}$
- (b) Encontrar la matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que su vector de coordenadas respecto a \mathcal{B} es (2,1,5,7)
- (2) Considere en \mathbb{R}^3 las siguientes bases ordenadas: \mathcal{C} y $\mathcal{B} = \{(1,0,-1),(0,1,3),(1,-1,0)\}$. Sea T la transformación lineal definida por

$$T(x, y, x) = (x + y, -y + z, x + y + z)$$

- (a) Calcular $[T]_{\mathcal{B},\mathcal{C}}$, o sea la matriz T de la base \mathcal{B} a la base \mathcal{C}
- (b) Sea $v \in \mathbb{R}^3$ tal que $[v]_{\mathcal{B}} = (1, -1, 2)$. Calcular T(v).

1. Solución

(1) (a) Escribimos la matriz $\begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$ como combinación lineal de los elementos de la base \mathcal{B} .

$$\begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix} = \alpha \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + \delta \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

los escalares $\alpha, \beta, \gamma, \delta$ son las coordenadas de la matriz respecto a la base \mathcal{B} . De la combinación lineal anterior, nos queda el sistema

$$\begin{cases} \alpha = 2 \\ \beta = 3 \\ \gamma + \delta = 4(*) \\ \gamma - \delta = 3(**) \end{cases}$$

Despejamos γ de (**) y obtenemos $\gamma=3+\delta$. Reemplazando ésta última expresión en (*) obtenemos que $3+2\delta=4\Rightarrow 2\delta=1\Rightarrow \delta=1/2$

Además
$$\gamma = 3 + \delta = 3 + \frac{1}{2} = \frac{7}{2}$$

Por lo tanto las coordenadas de la matriz respecto de la base \mathcal{B} son $(2,3,\frac{7}{2},\frac{1}{2})$

b) Escribimos la matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ como combinación lineal de las matrices de la base \mathcal{B} (los escalares de esta combinación lineal están dados por las componentes del vector de coordenadas).

1

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 1 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 5 \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \Rightarrow \begin{cases} a = 2 \\ b = 3 \\ c = 5 + 7 = 12 \\ d = 5 - 7 = -2(**) \end{cases}$$

Luego la matriz cuyo vector de coordenadas respecto a la base \mathcal{B} es (2,1,5,7) es

$$\begin{bmatrix} 2 & 1 \\ 12 & -2 \end{bmatrix}$$

2)a) Para calcular $[T]_{\mathcal{B},\mathcal{C}}$, en primer lugar calculamos las imagenes de los elementos de la base \mathcal{B} mediante la transformación lineal T.

$$T(1,0,-1) = (1,-1,0)$$

$$T(0,1,3) = (1,2,4)$$

$$T(1,-1,0) = (0,1,0)$$

El paso siguiente es determinar las coordenadas de esos vectores respecto de la base canónica.

$$(1, -1, 0) = \alpha(1, 0, 0) + \beta(0, 1, 0) + \delta(0, 0, 1)$$

$$(1,2,4) = \alpha(1,0,0) + \beta(0,1,0) + \delta(0,0,1)$$

$$(0,1,0) = \alpha(1,0,0) + \beta(0,1,0) + \delta(0,0,1)$$

Es claro que las coordenadas de un vector respecto de la base canónica coinciden con las componentes del vector dado.

Entonces, colocando cada vector T(v) de los elementos de la base \mathcal{B} como columnas, obtenemos la matriz

$$[T]_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 0 & 4 & 0 \end{bmatrix}$$

b) De la Proposición 4.6.2 vista en la teoría tenemos que $[T]_{\mathcal{C}} = [T]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}}$

En el punto anterio obtuvimos la matriz $[T]_{\mathcal{B},\mathcal{C}}$. Entonces

$$[T(v)]_{\mathcal{C}} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -4 \end{bmatrix}$$