MAT 380 REAL ANALYSIS

- A sequence (a_n) is **increasing** if and only if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$; **decreasing** if and only if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$; **monotone** if it is either increasing of decreasing.
- Set $A \subset \mathbb{R}$ is **bounded** if and only if there exists a number C such that $|a| \leq C$ for all $a \in A$.
- A sequence of numbers $(a_n)_{n=1}^{\inf}$ converges to the point L, if for every $\epsilon > 0$, there exists a natural number N > 0 such that $|an L| < \epsilon$ for all $n \ge \mathbb{N}$.
- (Ex13) Assume $s \in R$ is an upper bound for a set $M \subset \mathbb{R}$. Then $s = \sup(M)$ if and only if for every $\epsilon > 0$ there exists an element $x \in M$ such that $s \epsilon < M$ ($x < i + \epsilon$ for infimum as i is a lowerbound).

Exercise 32. (Resubmit,)

Prove that if a sequence is monotone and bounded, then it converges.

Proof. Suppose a sequence $A = \{a_n | n \in \mathbb{N}\}$ that is monotone and bounded. Since A has an upper-bound, by axiom of completeness, there exists $s = \sup(A)$. By Ex13, for some $N \in \mathbb{N}$,

$$a_N > s - \epsilon$$

Assuming that (a_n) is increasing, for all $n \ge N$,

$$a_n \geqslant a_N$$

for all $a_n \in A$, since s is an upperbound of a_n ,

$$s \geqslant a_n$$

$$s + \epsilon > s \geqslant a_n \geqslant a_N > s - \epsilon$$

Thus, $|a_n - s| < \epsilon$ for all $n \le N$, by def of convergence, $A = \{a_n | n \in \mathbb{N}\}$ converges when A is increasing. Similarly, when A is decreasing, consider i = inf(A), by property of infimum, definition of decreasing, and Ex13, for all $n \ge N$,

$$i - \epsilon < s \leqslant a_n \leqslant a_N < i + \epsilon$$

Thus, $|a_n - i| < \epsilon$ for all $n \le N$, by def of convergence, $A = \{a_n | n \in \mathbb{N}\}$ converges when A is decreasing. Therefore, combining both cases, $A = \{a_n | n \in \mathbb{N}\}$ converges.

- Let (a_n) be a sequence of real numbers and let $n_1 < n_2 < n_3 < n_4 < ...$ be an increasing sequences of natural numbers. Then the sequence $a_{n_1}, a_{n_2}, a_{n_3}, ...$ is called a **subsequence** of (a_n) and is denoted by (a_{n_j}) , where $j \in \mathbb{N}$ indexes the subsequence.
- Nested Interval Property. For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = x \in \mathbb{R} : a_n \leq x \leq b_n$. Assume also that I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals $I_1 \supseteq I2 \supseteq I3 \supseteq I4 \supseteq ...$ has a nonempty intersection; that is $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Exercise 34. (Resubmit,)

Prove that every bounded sequence has a convergent subsequence.

Proof. [Constructed a nested interval with a subsequence] Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence such that for all $n \in \mathbb{N}, \exists c \in \mathbb{R}^+$, $|a_n| \leq c$, so interval [-c, c] of length 2c contains infinite many terms of (a_n) . At least one half of the interval denoted as I_1 , is [-c, 0] or [0, c] with a length of c, contains infinite many terms of (a_n) , choose one term $n_1 \in (a_n)$ denoted as (a_{n_1}) . Then, divide I_1 by half, pick the interval that contains infinite many terms of (a_{n_1}) with a length of c/2 as I_2 , and pick one of the terms as such that $n_2 > n_1$, then $a_{n_2} \in I_2$. Continuing this fashion, a sequence of nested intervals can be constructed

$$I_1 \supseteq I_2 \supseteq I_3 \dots \supseteq I_n$$

where I_n has a length of $c/2^n$. Since each of the interval contains infinite many terms of (a_n) , a subsequence (a_{n_j}) can be constructed by picking one term out of each interval from I_1 to I_j .

[Prove convergence] By Nested Interval Property, there is at least one $x \in (a_n)$ contained in $\bigcap_{j=1}^{\infty} I_j$. Let $\epsilon > 0$. Since the length of $I_n = c/2^n$ converges to 0, let (by Archimedian there exists N) $N \in \mathbb{N}$ such that for all $j \geq N$, the length of $I_j < \epsilon$. Then, for all $j \geq N$,

since a_{n_j} and x are both in the closed interval I_j ,

$$|a_{n_j} - x| < \epsilon$$

Thus, by definition of convergence, the subsequence (a_{n_i}) converges.

- A sequence (a_n) is called a **Cauchy sequence** if, for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that whenever $n, m \ge N$ we have $|a_n a_m| < \epsilon$.
- 1. A function f is **continuous** at the point x = c if for every sequence $(a_n)_{n=1}^{\infty}$ that converges to c, the sequence $(f(a_n))_{n=1}^{\infty}$ converges to f(c). If a function is continuous at every point of some set S, we say f is continuous on S.
- 2. A function f is **continuous** at a point x if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(y) f(x)| < \epsilon$ for all y such that $|x y| < \delta$.

Exercise 43. (Resubmit,)

Prove that f(x) = -5x + 3 is continuous for all real numbers.

Proof by definition. Let $\epsilon > 0$, for $x, x_0 \in \mathbb{R}$, choose $\delta > 0$ and $\delta = min\{\epsilon/5, 1\}$ such that suppose $|x - x_0| < \delta$, then,

$$|f(x) - f(x_0)| = |-5x + 3 + 5x_0 - 3| = 5|x - x_0| < 5\epsilon/5 = \epsilon$$

Since f(x) converges to $f(x_0)$ for $x, x_0 \in \mathbb{R}$, f(x) is continuous for all real numbers. \square

• (Ex26) Convergence Property Suppose $(a_n)_{n=1}^{\infty}$ converges to L and $(b_n)_{n=1}^{\infty}$ converges to K, then $(a_nb_n)_{n=1}^{\infty}$ converges to LK.

Exercise 44. (Resubmit,)

Prove that $f(x) = x^2$ is continuous for all real numbers.

Proof by decomposing function. Let $(a_n) \in \mathbb{R}$ be a sequence that converges to c, by Ex26, $(a_n^2)_{n=1}^{\infty}$ converges to $c^2 = f(c)$. Since the sequence $(f(a_n))_{n=1}^{\infty}$ converges to f(c), f(x) is continuous for all real numbers.

Exercise 45. (Resubmit,)

Prove that the function f(x) where f(x) = 1 for all $x \neq c$ and f(c) = 2 is not continuous at x = c.

Prove by a counter-example. define (x_n) : let (x_n) be a sequence. Since $|f(x_n) - f(c)| = 1 > \epsilon$ for any arbitrary $\epsilon > 1$, Thus, $f(x_n)$ does not converge to f(c), and by definition, f(x) is not continuous.

Exercise 46. (Resubmit,)

Prove that our two definitions of continuity are equivalent.

Proof. \Rightarrow Since for (a_n) that converges to c, the sequence $(f(a_n))$ converges to f(c). By definition of convergence, for every $\delta > 0$ and $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - c| < \delta$ and $|f(a_n) - f(c)| < \epsilon$.

 \Leftarrow Let (a_n) be a sequence that converges to c, then by definition of convergence, there exists $\delta > 0$ such that $|a_n - c| < \delta$.

- 1. A function f is **continuous** at the point x = c if for every sequence $(a_n)_{n=1}^{\infty}$ that converges to c, the sequence $(f(a_n))_{n=1}^{\infty}$ converges to f(c). If a function is continuous at every point of some set S, we say f is continuous on S.
- 2. A function f is **continuous** at a point x if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(y) f(x)| < \epsilon$ for all y such that $|x y| < \delta$.
- A sequence (a_n) is called a **Cauchy sequence** if, for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that whenever $n, m \ge N$ we have $|a_n a_m| < \epsilon$.

!Exercise 51. (Resubmit, 2021/02/08)

Let f be a function defined on all of \mathbb{R} and assume there is a constant c such that 0 < c < 1 and $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in \mathbb{R}$.

(1) Show that f is continuous on \mathbb{R} .

Proof. Let $\epsilon > 0$, for $x, y \in \mathbb{R}$, choose $\delta > 0$ and $\delta = \frac{\epsilon}{c}$ such that $|x - y| < \delta$. Then $|f(x) - f(y)| \leqslant c|x - y| < c\delta = c\frac{\epsilon}{c} = \epsilon$

Since f(x) converges to f(y) for $x, y \in \mathbb{R}$, f is continuous on \mathbb{R} .

(2) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence $y_1, f(y_1), f(f(y_1)), ...$ In general, $y_{n+1} = f(y_n)$. Show that the sequence (y_n) is a Cauchy sequence. (Hence we may let $y = \lim_{n \to \infty} y_n$.)

Proof. Let $y_1 \in \mathbb{R}$ and construct the sequence $y_1, f(y_1), f(f(y_1)), ...$

(3) Prove that f(y) = y and that it is unique in this regard.

(4) Prove that if x is any arbitrary point in \mathbb{R} the sequence $x, f(x), f(f(x)), \dots$ converges to the y defined in (b).

• A function $f : \mathbb{R} \to \mathbb{R}$ is **uniformly continuous** on a set A if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Exercise 52. (Homework 12, 2021/02/08)

Prove that f(x) = 4x + 2 is uniformly continuous on \mathbb{R} .

Proof. Let $\epsilon > 0$. There exists $\delta = \epsilon/4 > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta = \epsilon/4$.

$$|f(x) - f(y)| = |4x + 2 - 4y - 2| = 4|x - y| < 4\epsilon/4 = \epsilon$$

Thus, by definition, since for every $x,y \in \mathbb{R}$, $|x-y| < \delta$ implies $|f(x)-f(y)| < \epsilon$, the function is uniformly continuous on \mathbb{R} .

Exercise 53. (Homework 12, 2021/02/08)

Prove that $f(x) = x^2 + 2$ is uniformly continuous on [a, b]. (not uniformly continuous on \mathbb{R})

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta$. Since $x, y \in [a, b]$, without loss of generality, assume that a < b. Then $a \leqslant x \leqslant b$ and $a \leqslant y \leqslant b$ implies $2a \leqslant x + y \leqslant 2b$. Let $c = max\{|2a|, |2b|\}$, then $|x + y| \leqslant c$. Choose $\delta = \frac{\epsilon}{c}$, then

$$|f(x) - f(y)| = |x^2 + 2 - y^2 - 2| = |x^2 - y^2| = |x + y||x - y| \le c|x - y| < c\delta = c\frac{\epsilon}{c} = \epsilon$$

Thus, by definition, since for every $x, y \in [a, b], |x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on [a, b].

Exercise 54. (Homework 12, 2021/02/08)

Prove that $f(x) = 1/x^2$ is uniformly continuous on $[1, \infty)$.

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta$. Since $x, y \in [1, \infty)$, $1 \le x$ and $1 \le y$ implies $\frac{1}{(xy)^2} \le 1$ and $|x + y| \ge 2$. Choose $\delta = \frac{\epsilon}{2}$, then

$$|f(x) - f(y)| = |1/x^2 - 1/y^2| = \frac{|x^2 - y^2|}{x^2 y^2} \leqslant \frac{|x + y||x - y|}{(xy)^2} \leqslant 2|x - y| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$$

Thus, by definition, since for every $x, y \in [1, \infty)$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on $[1, \infty)$.

• A function $A \to \mathbb{R}$ is called **Lipschitz** if there exists a bound M > 0 such that $|\frac{f(x) - f(y)}{x - y}| \le M$ for all $x, y \in A$ (and $x \ne y$).

Exercise 55. (Homework 12, 2021/02/08)

Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in A$, $|x - y| < \delta$. Since f is Lipschitz, $|\frac{f(x) - f(y)}{x - y}| \leqslant M$ implies $|f(x) - f(y)| \leqslant M|x - y|$. Choose $\delta = \frac{\epsilon}{M}$, then

$$|f(x) - f(y)| \le M|x - y| < M\delta = M\frac{\epsilon}{M} = \epsilon$$

Thus, by definition, since for every $x, y \in A$ and $x \neq y$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on A.

• Let $f: A \to R$, for $A \subset R$, $x, c \in A$. f is **continuous** at c if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x - c| < \delta$ and $x \in A$ implies that $|f(x) - f(c)| < \epsilon$.

Exercise 56. (Homework 12,)

Suppose a function f is continuous on [a, b] and $c \in [a, b]$ that satisfies f(c) > 0. Prove that there exists an open interval A such that f(x) > 0 for all $x \in A$.

Proof by contradiction. Since f is continuous on [a,b] and let $c \in [a,b]$, then for every $\epsilon > 0$, there exists $\delta > 0$ such that, $|x-c| < \delta$ implies $|f(x)-f(c)| < \epsilon$ for all $x \in [a,b]$. Suppose that there exists $z \in [a,b]$ such that $f(z) \leq 0$. Then, $|x-c| < \delta$ implies $|f(x)-f(c)| < \epsilon$ for every $\epsilon > 0$. Since f(x) > 0, $f(c) \leq 0$, |f(x)-f(c)| > 0 contradicting with the assumption that $|f(x)-f(c)| < \epsilon$. Thus, f(x) > 0 for all $x \in A$.

Exercise 57. (Homework 12,)

Suppose that f is a continuous function defined on the interval [a,b] and assume that f(a) < 0 < f(b). Prove that the set $A = \{x \in [a,b] : f(x) < 0\}$ has a supremum c such that $a \le c \le b$.

Proof. If f(a) < 0 < f(b), then there exists at least $a \in A$ such that f(a) < 0, so set A is not empty. Since f(a) < 0 < f(b), A is upper-bounded by b, by axiom of completeness, a supremum exists. Let $c = \sup(A)$, since c is the supremum, b is an upperbound of A, and a is an element of A, by definition of supremum, $a \le c \le b$.

Exercise 58. (Homework 12,)

Suppose that f is a continuous function defined on the interval [a,b] and assume that f(a) < 0 < f(b). Prove that the set $A = \{x \in [a,b] : f(x) < 0\}$ has a supremum c such that $a \le c \le b$.

Proof. If f(a) < 0 < f(b), then there exists at least $a \in A$ such that f(a) < 0, so set A is not empty. Since f(a) < 0 < f(b), A is upper-bounded by b, by axiom of completeness, a supremum exists. Let $c = \sup(A)$, since c is the supremum, b is an upperbound of A, and a is an element of A, by definition of supremum, $a \le c \le b$.

Exercise 59. (Homework 12,)

Suppose f is a continuous function defined on the interval [a, b] and assume that f(a) < 0 < f(b). Prove that there exists a number $c \in (a, b)$ such that f(c) = 0.

Proof by contradiction. (copied from HW 13, added in the contradiction marked as highlighted) Let $c \in [a, b]$ and f(c) = 0. Since $f(a), f(b) \neq 0, c \neq a, b$ so that $c \in (a, b)$. Since f is continuous, for every $\epsilon > 0$, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$ for every $x \in [a, b]$. Suppose that $f(c) \neq 0$, and choose $\epsilon = 0.1|f(c)|$, then $|x - c| < \delta$ implies |f(x) - f(c)| < 0.1|f(c)|. If f(c) < 0,

$$0.1f(c) + f(c) < f(x) < -0.1f(c) + f(c) < 0 \rightarrow f(x) < 0.9f(c) < 0$$

Then, since $x \in (c - \delta, c + \delta)$ and $(c - \delta, c + \delta) \subset [a, b]$, so for the set $A = \{x \in [a, b] : f(x) < 0\}$, $c + \delta > c$ would be the upperbound of A contradicting with Ex56 where c is the upperbound.

Else If f(c) > 0, then similarly, |f(x) - f(c)| < 0.1 f(c) gives

$$0 < -0.1f(c) + f(c) < f(x) < 0.1f(c) + f(c) \rightarrow 0 < 0.9f(c) < f(x)$$

Then, since $x \in (c - \delta, c + \delta)$ and $(c - \delta, c + \delta) \subset [a, b]$, for f(x) < 0, the interval of x is $[a, c - \delta) \cup (c + \delta, b]$ in either way, contradicting that c is the least upper bound proven in

Ex56. Thus, by contradiction, there must exist a number $c \in (a, b)$ such that f(c) = 0.

Exercise 60. (Homework 12,)

Suppose that f is a continuous function defined on the interval [a, b] and assume that f(a) < L < f(b). Prove that these exists a number $c \in (a, b)$ such that f(c) = L.

Proof. Define function g(x) = f(x) - L for $x \in [a, b]$. Then,

$$f(a) - L < L - L < f(b) - L \rightarrow g(a) < 0 < g(b)$$

By Ex56, there exists a number $c \in (a, b)$ such that g(c) = 0. Since by definition of g,

$$g(c) = f(c) - L = 0, f(c) = L.$$

Suppose that f is a continuous function defined on the interval [a, b] and assume that f(b) < L < f(a). Prove that there exists a number $c \in (a, b)$ such that f(c) = L.

Proof. Define function g(x) = -f(x) for $x \in [a, b]$, then,

$$f(b) < L < f(a) \rightarrow -f(b) > -L > -f(a) \rightarrow g(a) < -L < g(b)$$

By Ex57(a), since g(a) < -L < g(b), there exists a number $c \in (a, b)$ such that g(c) = -L.

Then,
$$g(c) = -f(c) = -L$$
 implies $f(c) = L$.

• Let $f: D \to \mathbb{R}$ be a function, and suppose $c \in D$. Then f has a **derivative** f'(c) at c if and only if for every sequence $(a_n)_{n=1}^{\infty}$ converging to c where $a_n \neq c$ and $a_n \in D$ for all $n \in \mathbb{N}$, the sequence $(\frac{f(a_n) - f(c)}{a_n - c})_{n=1}^{\infty}$ converges to f'(c).

Exercise 61. (Homework 12,)

Let $f(x) = x^2 + 2$. Use the definition to prove that f'(-3) = -6.

Proof. Let $(a_n) \in D$ be a sequence and $-3 \in D$ such that $(a_n)_{n=1}^{\infty} \to -3$. Then,

$$f'(c) = \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 + 2) - (3^2 + 2)}{a_n + 3}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 - 9)}{a_n + 3}\right)_{n=1}^{\infty} = (a_n - 3)_{n=1}^{\infty}$$

Since
$$(a_n)_{n=1}^{\infty} \to -3$$
, $(a_n)_{n=1}^{\infty} - 3 \to -3 - 3 = -6$. Thus, $f'(c) \to -6$.

Exercise 62. (Homework 12,)

Let $f(x) = x^2$. Use the definition to prove that f'(x) = 2x, for all $x \in \mathbb{R}$.

Proof. Let $(a_n) \in \mathbb{R}$ be a sequence and $c \in \mathbb{R}$ such that $(a_n)_{n=1}^{\infty} \to c$. Then,

$$f'(c) = \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2) - (c^2)}{a_n - c}\right)_{n=1}^{\infty} = (a_n + c)_{n=1}^{\infty}$$

Since $(a_n)_{n=1}^{\infty} \to c$, $(a_n)_{n=1}^{\infty} + c \to c + c = 2c$ for all $c \in \mathbb{R}$. Thus, $f'(c) \to 2c$ and f'(x) = 2x for all $x \in \mathbb{R}$.