Natural Policy Gradient 와 Fisher Information Matrix

Natural Policy Gradient 와 Fisher Information Matrix

Fisher Information Matrix

Propostion

Fisher Information Matrix

Empirical Fisher Information Matrix

Fisher and Hessian

Proposition

Summary of Midterm

Natural Gradeint Descent

KL Divergence

Note

Fisher Information and KL_Divergence

Proposition: Hessian of KL-Divergence - Fisher Information Matrix

Steepest Descent in Distribution Space

Proposition: Taylor Expansion of KL-Divergence

Definition : Natural Gradient Algorithm : Natural Gradient Descent

Conclusion Reference

다음 사이트를 참조한다.

• Fisher Information Matrix https://wiseodd.github.io/techblog/2018/03/11/fisher-information/

• Natural Gradient https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

- keywords
 - o A stochastic quasi-newton method

Fisher Information Matrix

Parameter vector θ 의 model로 data $x \in \mathbf{R}^n$ 에 대한 확률분포를 $p(x|\theta)$ 라 하자. Maximum likelihood of $p(x|\theta)$ 를 위한 θ 를 구하는 것이 목표이다. 이때 θ 를 Estimation 하기 위해 다음의 Score function을 정의한다.

• Score function : Gradient of log likelihood function

$$s(\theta) = \nabla_{\theta} \log p(x|\theta) \tag{1}$$

Propostion

The expected value of score function is zero.

Proof. Below, the gradient is w.r.t. θ .

$$\mathbb{E}_{p(x|\theta)}[s(\theta)] = \mathbb{E}_{p(x|\theta)}[\nabla \log p(x|\theta)]$$

$$= \int \nabla \log p(x|\theta)p(x|\theta)dx$$

$$= \int \frac{\nabla p(x|\theta)}{p(x|\theta)}p(x|\theta)dx$$

$$= \int \nabla p(x|\theta)dx$$

$$= \nabla \int p(x|\theta)dx$$

$$= \nabla \int p(x|\theta)dx$$

$$= \nabla 1 = 0$$
(2)

- 사실, $p(x|\theta)$ 의 거의 대부분의 경우 Gradient는 0이며 Maximum likelihood가 가능한 Local 영역만 Gradient가 0이 되지 않는다. 그러므로 Vanishing gradient는 매우 자연스러운 것이라 볼 수 있다.
- 이 특징을 사용하여 Score 함수의 Covariance를 다음 과 같이 정의한다.

$$\mathbb{E}_{p(x|\theta)}[(s(\theta) - 0)(s(\theta) - 0)^T] \tag{3}$$

Fisher Information Matrix

식 (3) 을 Fishert Information Matrix 라고 하면 다음과 같이 정의된다.

$$\mathbf{F} = \mathbb{E}_{p(x|\theta)} [\nabla \log p(x|\theta) \nabla \log p(x|\theta)^T]$$
(4)

Empirical Fisher Information Matrix

실제로 Fisher Information Matrix를 구할 때 Rigorous 하게 구하기는 어려우므로 다음과 같이 단순 평균을 사용하는 경우가 많다. 이 경 우를 Empirical Fisher Information이라고 한다.

$$\mathbf{F} = \frac{1}{N} \sum_{i=1}^{N} \nabla \log p(x_i|\theta) \nabla \log p(x_i|\theta)^T$$
 (5)

Fisher and Hessian

- 해당 특징은 완벽히 증명/해석된 것은 아니나, 매우 유력하다.
- Model의 Maximum Likelihood 의 **Expected Hessian** 의 **Negative** 값이다.

Proposition

The negative expected Hessian of log likelihood is equal to the Fisher Information Matrix ${f F}$.

proof. Log Likelihood 의 Hessian은 Log Likelihood 함수의 Gradient의 Jacobian 과 같으므로

$$\mathbf{H}_{\log p(x|\theta)} = \mathbf{J}(\log p(x|\theta)) = \mathbf{J}\left(\frac{\nabla p(x|\theta)}{p(x|\theta)}\right)$$

$$= \frac{\mathbf{H}_{p(x|\theta)}}{p(x|\theta)} - \frac{\nabla p(x|\theta)\nabla p(x|\theta)^{T}}{p(x|\theta)p(x|\theta)}$$

$$= \frac{\mathbf{H}_{p(x|\theta)}}{p(x|\theta)} - \left(\frac{\nabla p(x|\theta)}{p(x|\theta)}\right)\left(\frac{\nabla p(x|\theta)}{p(x|\theta)}\right)^{T}$$
(6)

ullet 위에서 구한 $\mathbf{H}_{\log p(x| heta)}$ 의 Expectation value를 구하면

$$\mathbb{E}_{p(x|\theta)}[\mathbf{H}_{\log p(x|\theta)}] = \mathbb{E}_{p(x|\theta)} \left[\frac{\mathbf{H}_{\log p(x|\theta)}}{p(x|\theta)} - \left(\frac{\nabla p(x|\theta)}{p(x|\theta)} \right) \left(\frac{\nabla p(x|\theta)}{p(x|\theta)} \right)^{T} \right] \\
= \int \frac{\mathbf{H}_{p(x|\theta)}}{p(x|\theta)} p(x|\theta) dx - \mathbb{E}_{p(x|\theta)} [\nabla \log p(x|\theta) \nabla \log p(x|\theta)^{T}] \\
= \int \frac{\partial}{\partial x} \frac{\nabla p(x|\theta)}{p(x|\theta)} p(x|\theta) dx - \mathbf{F}, \quad \because \mathbf{F} = \mathbb{E}_{p(x|\theta)} [\nabla \log p(x|\theta) \nabla \log p(x|\theta)^{T}] \\
= \frac{\partial}{\partial x} \int \frac{\nabla p(x|\theta)}{p(x|\theta)} p(x|\theta) dx - \mathbf{F} \\
= \frac{\partial^{2}}{\partial x^{2}} \int p(x|\theta) dx - \mathbf{F}, \quad \because \int p(x|\theta) dx = 1 \\
= -\mathbf{F}$$
(7)

• 그러므로 Log Likelihood 함수의 Hessian의 Expectation은 Fisher Information 이다.

$$\mathbf{F} = -\mathbb{E}_{p(x|\theta)} \mathbf{H}_{\log \mathbf{p}(\mathbf{x}|\theta)} \tag{8}$$

Summary of Midterm

- Fisher Information Matrix \(\begin{aligned} \text{Curvature matrix of a Log Likehood function.} \end{aligned} \)
- Fisher Information Matrix는 negative expected Hessian of log likelihood function 이다.
- 따라서 Optimization에서 Fisher Information Matrix는 Hessian을 대체할 수 있다.
- Fisher Information Matrix는 **KL Divergence** 와 연관된다.
 - o 이는 Native Gradient의 유도로 이어진다.

Natural Gradeint Descent

- Likelihood function 자체는 Probability distribution이므로 이러한 공간을 Distribution Space라 칭한다.
 - o 따라서, Steepest descent direction in this distribution space를 Parameter space대신으로 생각한다.

KL Divergence

- Reference
 - https://hyunw.kim/blog/2017/10/27/KL_divergence.html
- Cross Entropy
 - ㅇ 확률변수 $\{x_i\}_{i=1}^N$ 에 대하여 확률분포 $p(x_i), q(x_i)$ 가 존재할 때, Cross Entropy는 다음과 같이 정의된다.

$$H(p,q) = -\sum_{i} p(x_i) \log q(x_i)$$
(9)

o 그런데, Cross Entropy를 전개해 보면 다음과 같이 Entropy가 전개됨을 알 수 있다.

$$H(p,q) = -\sum_{i} p(x_{i}) \log q(x_{i})$$

$$= -\sum_{i} p(x_{i}) \log q(x_{i}) - \sum_{i} p(x_{i}) \log p(x_{i}) + \sum_{i} p(x_{i}) \log p(x_{i})$$

$$= -\sum_{i} (p(x_{i}) \log q(x_{i}) - p(x_{i}) \log p(x_{i})) - \sum_{i} p(x_{i}) \log p(x_{i})$$

$$= \sum_{i} p(x_{i}) (\log p(x_{i}) - \log q(x_{i})) + H(p), \quad \because H(p) = -\sum_{i} p(x_{i}) \log p(x_{i})$$

$$= \sum_{i} p(x_{i}) \log \frac{p(x_{i})}{q(x_{i})} + H(p)$$
(10)

o 여기에서 KL-Divergence는 다음과 같이 Cross Entropy와 Entropy의 결합으로 설명된다.

$$KL(p||q) = \sum_{i} p(x_i) \log \frac{p(x_i)}{q(x_i)} = H(p,q) - H(p)$$
 (11)

- 두 Distribution간의 유사성에 대한 Measure
 - Non symmetric 이므로 True Norm or Metric이라 볼 수 없다.
 - \circ 그런데, 일반적인 Loss function $\mathcal L$ 에 대하여 다음 식과 같이 정의되므로

$$\frac{-\nabla_{\theta} \mathcal{L}(\theta)}{\|\nabla_{\theta} \mathcal{L}(\theta)\|} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \underset{\text{d s.t. } \|d\| \le \epsilon}{\operatorname{arg \, min}} \mathcal{L}(\theta + d) \tag{12}$$

d
ightarrow 0 인 경우 KL-Divergence는 점근적으로 Symmetric이 된다

- KL Divergence는 만일 전체를 알 수 없는 데이터 set $\{x\}$ 의 확률분포가 p(x) 로 주어지고, 이 데이터를 모델링하려는 파라미터 θ 를 가진 Model의 확률분포를 $q(x|\theta)$ 라하자.
 - ㅇ 이전의 논의에서는Likelihood $q(x|\theta)$ 의 (Log) Maximization을 논하였다.
 - ㅇ 이때, p(x)를 따르는x를 N개 추출하는데 다음과 같이 empirical KL Divergence를 놓는다고 하면 (i.e. $p(x_n)=rac{1}{N}$)

$$KL(p||q) \approx \frac{1}{N} \sum_{n=1}^{N} \left[-\log q(x_n|\theta) + \log p(x_n) \right] \tag{13}$$

ㅇ 만일, 추출된 x_n 이 $p(x_n)$ 을 따른다고 하면

$$KL(p||q) pprox \sum_{n=1}^{N} p(x_n) [-\log q(x_n| heta) + \log p(x_n)] = \sum_{n=1}^{N} [-p(x_n)\log q(x_n| heta) + p(x_n)\log p(x_n)] = H(p,q) - H(p) \quad (14)$$

- ㅇ 여기에서 $p(x_n)$ 은 θ 에 독립적이므로 변화가 없는 반면
- ㅇ $q(x_n|\theta)$ 는 θ 를 어떻게 하느냐에 따라 $\log q(x_n|\theta)$ 를 Maximize 시킬 수 있다.
- \circ 그런데 $\log q(x_n| heta)$ 가 maximize 되면 KL(p||q)는 **minimize** 되므로
- o (Log) likelihood miximization은 KL Divergence의 Minimization이 된다.

Note

- KL divergence KL(p||q)는 p를 기준으로 q와의 Measure가 된다.
 - \circ p는 Data의 분포 q는 데이터 분포로 부터 Model의 분포로 생각할 수 있다.
 - $\circ p$ 는 기준점 x_0 에서의 분포 q는 x_0+d 에서의 분포로 생각할 수 있다.
 - o 즉, Left에서 Right로의 Divergence 이다.
- KL Divergence 는 다음과 같이 재 정의된다.

$$KL(p||q) = \sum_{i} p(x_i) \log \frac{p(x_i)}{q_i}$$

$$= \sum_{i} p(x_i) \log p(x_i) - \sum_{i} p(x_i) \log q_i$$

$$= \mathbb{E}_{p(x)} \log p(x) - \mathbb{E}_{p(x)} \log q(x)$$

$$(15)$$

Fisher Information and KL_Divergence

Proposition: Hessian of KL-Divergence - Fisher Information Matrix

Fisher Information Matrix F is the **Hessian of KL-Divergence** between two distribution $p(x|\theta)$ and $q(x|\theta')$, with respect to θ' , evaluated at $\theta'=\theta$.

proof.

 $p(x|\theta)$ 와 $p(x|\theta')$ 의 KL Divergence의 정의에 의해

$$KL[p(x|\theta)||p(x|\theta')] = \mathbb{E}_{p(x|\theta)}[\log p(x|\theta)] - \mathbb{E}_{p(x|\theta)}[\log p(x|\theta')]$$
(16)

heta'에 대한 1차 미분은 (heta'= heta+d 이므로 이에 대하여 미분이 되어야 d 에 대한 변화율을 알 수 있다.)

$$\nabla_{\theta'} KL[p(x|\theta)|| \ p(x|\theta')] = \nabla_{\theta'} \mathbb{E}_{p(x|\theta)}[\log p(x|\theta)] - \nabla_{\theta'} \mathbb{E}_{p(x|\theta)}[\log p(x|\theta')]$$

$$= -\nabla_{\theta'} \mathbb{E}_{p(x|\theta)}[\log p(x|\theta')]$$

$$= -\mathbb{E}_{p(x|\theta)}[\nabla_{\theta'} \log p(x|\theta')]$$

$$= -\int p(x|\theta) \nabla_{\theta'} \log p(x|\theta') dx$$
(17)

heta'에 대한 2차 미분은 따라서 다음과 같이 간단히 구해진다.

$$\frac{\partial}{\partial \theta'} \nabla_{\theta'} KL[p(x|\theta)||p(x|\theta')] = -\int \left[\frac{\partial}{\partial \theta'} p(x|\theta) \cdot \nabla_{\theta'} \log p(x|\theta') + p(x|\theta) \cdot \frac{\partial}{\partial \theta'} \nabla_{\theta'} \log p(x|\theta') \right] dx$$

$$= -\int 0 + p(x|\theta) \frac{\partial^{2}}{\partial \theta'^{2}} \log p(x|\theta') dx$$

$$= -\int p(x|\theta) \nabla_{\theta'}^{2} \log p(x|\theta') dx$$
(18)

Hessian w.r.t. θ evaluated at $\theta'=\theta$ is

$$\mathbf{H}_{KL[p(x|\theta)||p(x|\theta')]} = -\int p(x|\theta) \nabla_{\theta'}^{2} \log p(x|\theta') dx$$

$$= -\int p(x|\theta) \mathbf{H}_{\log p(x|\theta')} dx$$

$$= -\mathbb{E}_{p(x|\theta)} [\mathbf{H}_{\log p(x|\theta')}]$$

$$= \mathbf{F}$$
(19)

- KL Divergence의 Hessian이 Log Likelihood의 Hessian의 부호만 바뀐 이유는
 - KL Divergence의 한쪽 분포가 데이터에 대한 분포인 관계로 파라미터에 대한 미분에 대해 독립이어서 0으로 떨어지기 때문이다
 - o 따라서, KL Divergencerk 엔트로피 기반인 관계로 (-) 부호가 붙어 KL Divergence의 2차 미분은 Fisher Information Matrixrk 가 되다
- KL Divergence의 1차 미분은 또한 다음과 같다. (결국, 결론적으로 Maximization of Log Likelihood)

$$\nabla_{\theta'} KL[p(x|\theta)||p(x|\theta')] = -\mathbb{E}_{p(x|\theta)}[\nabla_{\theta'} \log p(x|\theta')] \tag{20}$$

Steepest Descent in Distribution Space

Proposition: Taylor Expansion of KL-Divergence

Let d o 0 . The second order Taylor series expansion of KL-Divergence is $KL[p(x|\theta)||p(x|\theta+d)] pprox rac{1}{2}d^TFd$ Proof. KL-Divergence의 2차 Taylor 전개는 다음과 같다.

$$KL[p_{\theta}||p_{\theta+d}] \approx KL[p_{\theta}||p_{\theta}] + (\nabla_{\theta'}KL[p_{\theta}||p_{\theta'}]|_{\theta'=\theta})^{T}d + \frac{1}{2}d^{T}\mathbf{H}_{KL[p(x|\theta)||p(x|\theta')]}d$$

$$= KL[p_{\theta}||p_{\theta}] - \mathbb{E}_{p(x|\theta)}[\nabla_{\theta}\log p(x|\theta)]^{T}d + \frac{1}{2}d^{T}\mathbf{F}d$$

$$= \frac{1}{2}d^{T}\mathbf{F}d, \quad \because KL[p_{\theta}||p_{\theta}] = 0, \ \mathbb{E}_{p(x|\theta)}[\nabla_{\theta}\log p(x|\theta)] = 0$$

$$(21)$$

따라서,

$$KL[p_{\theta}||p_{\theta+d}] \approx \frac{1}{2}d^T \mathbf{F} d$$
 (22)

• Loss function $\mathcal{L}(\theta)$ 를 최소화 시키는데 Distribution Space에서 최소화 시키는 것을 생각해보면 다음과 같이 쓸 수 있다.

$$d^* = \operatorname*{arg\,min}_{d \text{ s.t. } KL[p_\theta \mid |p_{\theta+d}| = c} \mathcal{L}(\theta + d) \tag{23}$$

o KL Divergence를 Constant로 고정 시키는 것은 KL Divergence의 변화가 등속도로 이루어지도록 하기 위해서이다.

- 이를 통해 Curvature의 변화에 무관한 알고리즘을 만들기 위해서이다.
- ㅇ 그러나 실제로 최적화 공식을 유도하면 이와 무관한 방정식이 도출된다.
- 식 (22) 을 Largarngian 형식으로 다시 쓰고 여기에 **1차 Taylor Expansion**을 $\mathcal{L}(\theta)$ 에 적용하면 (KL Divergence에는 2차 Taylor Expansion 적용)

$$d^* = \underset{d}{\arg\min} \mathcal{L}(\theta + d) + \lambda (KL[p_{\theta}||p_{\theta+d}] - c)$$

$$\approx \underset{d}{\arg\min} \mathcal{L}(\theta) + \nabla_{\theta} \mathcal{L}(\theta)^T d + \lambda \frac{1}{2} d^T \mathbf{F} d - \lambda c$$
(24)

ullet Minimization 을 구하기 위해 d에 대해 미분하고 미분 값이 0이 되도록 하면

$$0 = \frac{\partial}{\partial d} \left(\mathcal{L}(\theta) + \nabla_{\theta} \mathcal{L}(\theta)^{T} d + \frac{1}{2} \lambda d^{T} \mathbf{F} d - \lambda c \right)$$

$$= \nabla_{\theta} \mathcal{L}(\theta) + \lambda \mathbf{F} d$$

$$\Rightarrow \lambda \mathbf{F} d = -\nabla_{\theta} \mathcal{L}(\theta)$$

$$\Rightarrow d = -\frac{1}{\lambda} \mathbf{F}^{-1} \nabla_{\theta} \mathcal{L}(\theta)$$
(25)

Definition: Natural Gradient

$$\tilde{\nabla}_{\theta} \mathcal{L}(\theta) = \mathbf{F}^{-1} \nabla_{\theta} \mathcal{L}(\theta) \tag{26}$$

Algorithm: Natural Gradient Descent

- Repeat
 - \circ Do forward pass on the model and compute loss ${\cal L}$
 - Compute the gradient $\nabla_{\theta} \mathcal{L}(\theta)$
 - \circ Compute Fisher Information Matrix ${f F}$ or its emppirical version
 - \circ Compute the natural gradient $ilde{
 abla}_{ heta}\mathcal{L}(heta) = \mathbf{F}^{-1}
 abla_{ heta}\mathcal{L}(heta)$
 - Update the parameter: $\theta \leftarrow \theta \alpha \tilde{\nabla}_{\theta} \mathcal{L}(\theta)$
- Until Converge

Conclusion

- Big Data에서는 Fisher Information Matrix의 크기가 너무나 커지기 때문에 natural gradient를 사용할 수 없다.
 - 。 이는 Newton Based 알고리즘이 Deep Learning에서 사용되지 않는 이유와 같다.
- 따라서, Fisher Information Matrix를 Approximation 하는 방법론이 필요하다.
 - o ADAM의 경우 그 한 예가 되며 Second moment 가 Fisher Information Matrix를 Diagonal 하게 Approximation 하는 방법이다.

Reference

```
1  @misc{byrd2015stochastic,
2          title={A Stochastic Quasi-Newton Method for Large-Scale Optimization},
3          author={R. H. Byrd and S. L. Hansen and J. Nocedal and Y. Singer},
4          year={2015},
5          eprint={1401.7020},
6          archivePrefix={arXiv},
7          primaryClass={math.oc}
```