

Simülasyon hidrolik_tasima

Tarih: 26 Ağustos 2025 Salı Tasarımcı: Solidworks Etüt adı: Static 1 Analiz tipi: Static

İçindekiler

Etüt Özellikleri	2
Birimler	2
Malzeme Özellikleri	3
Yükler ve Fikstürler	8
Etkileşim Bilgisi	9
Mesh bilgisi	10
Sonuç Kuvvetleri	11
Etüt Sonuçları	12
Sonuc	15

Etüt Özellikleri

Etüt adı	Static 1
Analiz tipi	Static
Mesh tipi	Katı Mesh
Termal Etki:	Açık
Termal seçenek	Sıcaklık yüklerini ekle
Sıfır gerilim sıcaklığı	298 Kelvin
SOLIDWORKS Flow Simulation'dan akışkan basınç etkilerini ekle	Kapalı
Çözümleyici tipi	Otomatik
Düzlemde Etkisi:	Kapalı
Yumuşak Yay:	Kapalı
Atalet Kabartması:	Kapalı
Uyumsuz bağlama seçenekleri	Otomatik
Büyük yer değiştirme	Kapalı
Serbest gövde kuvvetlerini hesapla	Açık
Sürtünme	Kapalı
Uyumlu Yöntemi Kullan:	Kapalı
Sonuç klasörü	SOLIDWORKS belgesi (C:\Users\Cem Onur\Desktop\ceo\hidrov10\hidrolik sistem)

Birimler

Birim sistemi:	SI (MKS)
Uzunluk/Yer Değiştirme	mm
Sıcaklık	Kelvin
Açısal hız	Rad/sn
Basınç/Gerilim	N/m^2

Malzeme Özellikleri

Ad: 1.0570 (\$355J2G3) Izotropik Doğrusal Elastik Analizi Varsayılan hata kriteri: Akma mukavemeti: Gerilme mukavemeti: Elastik modül: Poisson oranı: Kütle yoğunluğu: Yırtılma modülü: Termal genleşme katsayısı: Ad: 1.0570 (\$355J2G3) Izotropik Doğrusal Elastik Analizi Biltimmeyen 3,15e+08 N/m^2 4,9e+08 N/m^2 2,1e+11 N/m^2 2,1e+11 N/m^2 7,800 kg/m^3 7,9e+10 N/m^2 1,1e-05 /Kelvin	ler	Bileşenler
	Isotropik Doğrusal lastik Analizi solidB ilinmeyen Ekstrü solidB Ekstrü j-1/te solidB Ekstrü j-1/te solidB Ekstrü j-1/te solidB Ekstrü j-1/te solidB Ekstrü j-2/te solidB Ekstrü j-2/te solidB Ekstrü j-2/te solidB Ekstrü j-3/te solidB Ekstrü j-4/te solidB Ekstrü	dBody 1(Yükseklik- rüzyon1)(bar-1), dBody 1(Yükseklik- rüzyon1)(bar-2), dBody 1(Yükseklik- rüzyon1)(bar-5), dBody 1(Yükseklik- rüzyon1)(bar-6), dBody ddyus1)(base_1-1), dBody 1(Kes- rüzyon13)(base_2-1), dBody 1(Yükseklik- rüzyon1)(tekerlek_monta tek1-1), dBody 1(Kes- rüzyon1)(tekerlek_monta tek2-1), dBody 1(Yükseklik- rüzyon1)(tekerlek_monta tek2-2), dBody 1(Kes- rüzyon1)(tekerlek_monta tek2-1), dBody 1(Kes- rüzyon1)(tekerlek_monta

AISI 347 Tavlı Ad:

Paslanmaz Çelik (SS)

Model tipi: İzotropik Doğrusal

Elastik Analizi

Varsayılan hata Bilinmeyen

kriteri:

Akma mukavemeti: 2,75e+08 N/m²

6,55e+08 N/m² Gerilme

mukavemeti: Elastik modül: 1,95e+11 N/m²

Poisson orani: 0.27

Kütle yoğunluğu: 8.000 kg/m³ 7,7e+10 N/m^2 Yırtılma modülü: 1,7e-05 / Kelvin

Termal genleşme katsayısı:

SolidBody

1(Döndür1)(hidrolik_pompa-

3),

SolidBody

1(Döndür1)(hidrolik_yatak-2)

Eğri Verisi:N/A

Ad: 1.1191 (C45E)

Model tipi: İzotropik Doğrusal

Elastik Analizi

Bilinmeyen

Varsayılan hata kriteri:

Akma mukavemeti: 5,65e+08 N/m² Gerilme 7,5e+08 N/m²

mukavemeti:

Elastik modül: 2,1e+11 N/m²

Poisson orani: 0,28

Kütle yoğunluğu: 7.800 kg/m³ Yırtılma modülü: 7,9e+10 N/m² Termal genleşme 1,1e-05 / Kelvin

katsayısı:

SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-1), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-2), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-3), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-4), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-6), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-7)

Eğri Verisi:N/A

Alaşım Çelik Ad:

Model tipi: İzotropik Doğrusal

Elastik Analizi

Varsayılan hata Maks. von Mises

> kriteri: Gerilimi

Akma mukavemeti: 6,20422e+08 N/m²

Gerilme 7,23826e+08 N/m²

mukavemeti:

Elastik modül: 2,1e+11 N/m^2

Poisson oranı: 0,28

7.700 kg/m³ Kütle yoğunluğu: Yırtılma modülü: 7,9e+10 N/m² Termal genleşme 1,3e-05 / Kelvin

katsayısı:

SolidBody

1(BaseBody)(tekerlek_montaj -1/clevis pin headed_iso-1),

SolidBody

1(BaseBody)(tekerlek_montaj -2/clevis pin headed_iso-1),

SolidBody

1(BaseBody)(tekerlek_montaj

-3/clevis pin headed_iso-1),

SolidBody

1(BaseBody)(tekerlek_montaj -4/clevis pin headed iso-1),

SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-1),

SolidBody 1(Pah1)(tren yolu-

6-1/tren yolu -3-11),

SolidBody 1(Pah1)(tren yolu-

6-1/tren volu -3-39),

SolidBody 1(Pah1)(tren yolu-

6-1/tren yolu -3-40),

SolidBody 1(Pah1)(tren yolu-

6-1/tren yolu -3-41),

SolidBody 1(Pah1)(tren yolu-

6-1/tren yolu -3-42),

SolidBody 1(Pah1)(tren yolu-

6-1/tren yolu -3-43),

SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-44), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-45), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-46), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-47), SolidBody 1(Pah1)(tren volu-6-1/tren yolu -3-48), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-49), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-50), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-51), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-52), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-53), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-54), SolidBody 1(Pah1)(tren yolu-6-1/tren volu -3-55), SolidBody 1(Pah1)(tren yolu-6-1/tren yolu -3-56), SolidBody 1(Yükseklik-Ekstrüzyon1)(tren yolu-6-1/tren yolu-2-6), SolidBody 1(Yükseklik-Ekstrüzyon1)(tren yolu-6-1/tren yolu-2-8), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-100), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-101), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-102), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-103), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-104), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-105), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-106), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-107), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-108),

SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-109), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-110), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-111), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-112), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-113), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-114), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-115), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-116), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-117), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-118), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-119), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-120), SolidBody 1(Kes-Ekstrüzvon1)(tren volu-6-1/tren yolu-4-121), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-64), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-65), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-84), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-85), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-86), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-87), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-88),

SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-89), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-90), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-91), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-92), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-93), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-94), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-95), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren volu-4-96), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-97), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-98), SolidBody 1(Kes-Ekstrüzyon1)(tren yolu-6-1/tren yolu-4-99)

Eğri Verisi:N/A

Ad: 1.7225 (42CrMo4)
Model tipi: İzotropik Doğrusal

İzotropik Doğrusal Elastik Analizi

Varsayılan hata Bilinmeyen

kriteri:

Akma mukavemeti: 7,5e+08 N/m^2 Gerilme 1e+09 N/m^2

mukavemeti:

Elastik modül: 2,1e+11 N/m^2

Poisson orani: 0,28

Kütle yoğunluğu: 7.800 kg/m^3 Yırtılma modülü: 7,9e+10 N/m^2 Termal genleşme 1,1e-05 /Kelvin

katsayısı:

SolidBody 1(Kes-

 $Ekstr\"{u}zyon 1) (tekerlek_monta$

j-1/tekerlek-1), SolidBody 1(Kes-

Ekstrüzyon1)(tekerlek_monta

j-2/tekerlek-1), SolidBody 1(Kes-

Ekstrüzyon1)(tekerlek_monta

j-3/tekerlek-1), SolidBody 1(Kes-

Ekstrüzyon1)(tekerlek_monta

j-4/tekerlek-1)

Eğri Verisi:N/A

Yükler ve Fikstürler

Bileşenler

Tepki kuvveti(N)

Tepki Momenti(N.m)

Fikstür adı	Fikstür Resmi	Fikstür Detayları
Sabitlenmiş-1	i.	Objeler: 6 yüzler Tip: Sabit Geometri
Sonuç Kuvvetler	i	

15.000,3

0

Z

-1,61026

0

Sonuç

15.000,3

0

X

4,93645

0

Yük adı	Resim Yükle	Yük Detayları
Kuvvet-1		Objeler: 1 yüzler Tip: Normal kuvvet uygula Değer: 15.000 N

Etkileşim Bilgisi

Etkileşim	Etkileşim Görüntüsü	Etkileşim Özellikleri
Global Etkileşim	1	Tip: Birleşmiş Bileşenler: 1 bileşenler Seçenekler: Bağımsız mesh

Mesh bilgisi

Mesh tipi	Katı Mesh
Kullanılan Meshleyici:	Karışık eğrilik tabanlı mesh
Yüksek kaliteli mesh için jakoben noktalar	16 Noktalar
Maksimum eleman boyutu	200,66 mm
Minimum eleman boyutu	10,033 mm
Mesh Kalitesi	Yüksek
Başarısız parçaları bağımsız olarak yeniden meshle	Kapalı
Bir montajdaki aynı gövdeler için meshi yeniden kullan (Yalnızca karışık eğrilik tabanlı meshleyici)	Kapalı

Mesh bilgisi - Detaylar

Toplam Düğüm	390625
Toplam Elemanlar	224735
Maksimum En Boy Oranı	30,262
En-Boy oranı < 3 olan elemanların % oranı	82,4
En-Boy Oranı > 10 olan elemanların yüzdesi	2,59
Şekli bozulmuş elemanların yüzdesi	0
Mesh tamamlama süresi (sa;dk;sn):	00:00:31
Bilgisayar adı:	

Mesh Kalitesi Grafikleri

Ad	Tip	Min	Maks.
Kalite1	Mesh	-	-

Sonuç Kuvvetleri

Tepki kuvvetleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N	4,93645	15.000,3	-1,61026	15.000,3

Tepki Momenti

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N.m	0	0	0	0

Serbest gövde kuvvetleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N	-17,4581	-26,2337	-32,8922	45,551

Serbest gövde momentleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N.m	0	0	0	1e-33

Etüt Sonuçları

Ad	Tip	Min	Maks.
Yer değiştirme1	URES: Sonuç Yer Değiştirmesi	0,000e+00mm Düğüm: 91306	2,906e+00mm Düğüm: 25027

Ad	Tip	Min	Maks.
Gerinim1	ESTRN: Eşdeğer Gerilme	0,000e+00	4,479e-04
		Eleman: 46253	Eleman: 28995

Ad	Tip
Yer değiştirme1{1}	Deforme şekil

Sonuç

Yapılan analizler sonucunda tasarladığımız taşıyıcı araç tüm statik testlerinden geçmiştir.