Proof Theory of Modal Logic Lecture 3, part 1: Labelled Proof Systems

Tiziano Dalmonte, Marianna Girlando

Free University of Bozen-Bolzano, University of Amsterdam

ESSLLI 2024 Leuven, 5-9 August 2024

The plan

- Labelled sequent calculus for K
- ▶ Frame conditions: a general recipe
- Semantic completeness

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(\stackrel{\textbf{P}}{\rightarrow} \left(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty) vectors of variables;
- ▶ $m \ge 0$;
- ▶ P, Q_1 ,..., Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{y}_1, \dots, \vec{y}_m$ do not occur in \vec{P} .

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(\stackrel{\textbf{P}}{\rightarrow} \left(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty) vectors of variables;
- ▶ $m \ge 0$;
- ▶ P, Q_1 ,..., Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{y}_1, \ldots, \vec{y}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$\mathsf{GA} \frac{\Xi_1[\vec{z}_1/\vec{y}_1], \Pi, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_m[\vec{z}_m/\vec{y}_m], \Pi, \Gamma \Rightarrow \Delta}{\Pi, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi$ is the multiset of atomic formulas in P:
- ▶ Ξ_i is the multiset of atomic formulas in Q_i , for each $i \leq m$;
- $ightharpoonup \vec{z}_1, \dots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(P \to \left(\exists \vec{y}_1(Q_1) \lor \dots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty) vectors of variables;
- ▶ $m \ge 0$;
- ▶ P, Q_1 ,..., Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{y}_1, \ldots, \vec{y}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$\mathsf{GA} \frac{\Xi_1[\vec{Z}_1/\vec{y}_1], \Pi, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_m[\vec{Z}_m/\vec{y}_m], \Pi, \Gamma \Rightarrow \Delta}{\Pi, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi$ is the multiset of atomic formulas in P:
- $\triangleright \equiv_i$ is the multiset of atomic formulas in Q_i , for each $i \le m$;
- $\triangleright \vec{z}_1, \dots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

$$\begin{split} & \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, _{y \, \, \text{fresh}} \quad \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

$$\begin{split} \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \,_{y \, \, \text{fresh}} \quad & \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad & \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

For $X \subseteq \{d, t, b, 4, 5\}$, lab $K \cup X$ is defined by adding to labK the rules for frame conditions corresponding to elements of X, plus the rules obtained by to satisfy the closure condition (contracted instances of the rules):

$$\operatorname{euc} \frac{yRy, xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \rightsquigarrow \quad \operatorname{euc'} \frac{yRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Example: labK \cup {5} denotes the proof system labK \cup {euc, euc'}.

We denote by $\vdash_{labK \cup X} S$ derivability of labelled sequent S in labK $\cup X$.

For $X \subseteq \{d, t, b, 4, 5\}$:

Theorem (Soundness). If $\vdash_{labK \cup X} \mathcal{R}, \Gamma \Rightarrow \Delta$ then $\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$.

Example. If the premiss of rule ser is valid in all serial models, then its conclusion is valid in all serial models.

$$\operatorname{ser} \frac{\mathit{xRy}, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, \mathit{y} \, \operatorname{fresh}$$

Lemma (Cut). The cut rule is admissible in labK \cup X:

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad x : A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

For Γ set of formulas and $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$:

Theorem (Syntactic Completeness). If $\Gamma \vdash_{\mathsf{K} \cup \mathsf{X}} A$ then $\vdash_{\mathsf{lab}\mathsf{K} \cup \mathsf{X}} x : \Gamma \Rightarrow x : A$.

$$GA_{0} = \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$
for $k_{1}, \ldots, k_{m} \ge n$

$$\begin{split} GA_0 &= \forall \vec{x} \Big(\stackrel{P}{P} \rightarrow \Big(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \Big) \Big) \\ GA_1 &= \forall \vec{x} \Big(\stackrel{P}{P} \rightarrow \Big(\exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \Big) \Big) \\ GA_{n+1} &= \forall \vec{x} \Big(\stackrel{P}{P} \rightarrow \Big(\exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \Big) \Big) \end{split}$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

$$GA_{0} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Gödel-Löb provability logic (GL):

Transitivity: *R* is transitive
Converse well-foundedness: there are no infinite *R*-chains

$$GA_{0} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$

for $k_1, \ldots, k_m \geq n$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Gödel-Löb provability logic (GL):

Transitivity: R is transitive

Converse well-foundedness: there are no infinite R-chains

[Negri, 2005]: labelled proof system for GL!

Proofs or countermodels

For $X \subseteq \{d, t, b, 4, 5\}$:

Theorem (Proof or Countermodel). For $\mathcal S$ labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} \mathcal S$ or $\mathcal S$ has a countermodel satisfying the frame conditions in $\mathsf X$.

A semantic proof of completeness

```
For X \subseteq \{d, t, b, 4, 5\}, \Gamma set of formulas and x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}:
```

Theorem (Semantic completeness). If $\Gamma \models_X A$ then $\vdash_{\mathsf{lab}\mathsf{K}\cup\mathsf{X}} x:\Gamma \Rightarrow x:A$.

- 0. Given a sequent S_0 , place S_0 at the root of \mathcal{T} .
- 1. For every rule R $\in \{ \land_L, \land_R, \lor_L, \lor_R, \rightarrow_L, \rightarrow_R, \Box_L, \Box_R, \diamondsuit_L, \diamondsuit_R \}$, apply the following:
 - a) If every topmost sequent of T is initial, terminate.
 → S₀ is provable in labK ∪ X, and T defines a labK ∪ X proof for it.
 - b) Otherwise, write above each non-initial sequent S_i of T the sequent(s) obtained by exhaustively apply rule R to S_i .
- For every rule R ∈ {ref, tr, sym, ser, euc} in labK ∪ X (if any), apply the following:
 - a) If every topmost sequent of $\ensuremath{\mathcal{T}}$ is initial, terminate.
 - $\rightsquigarrow \ \mathcal{S}_0 \text{ is provable in labK} \cup X \text{, and } \mathcal{T} \text{ defines a labK} \cup X \text{ proof for it.}$
 - b) Otherwise, write above each non-initial sequent S_i of T the sequent(s) obtained by exhaustively apply rule R to S_i .
- 3. If there is a topmost sequent S_i of \mathcal{T} which is non-initial and to which none of the steps in 1 and 2 applied, then terminate.
 - $\leadsto S_0$ is not provable in labK \cup X, and the branch \mathcal{B}^{\times} of \mathcal{T} to which S_i belongs defines a countermodel for S_0 . Otherwise, go to step 1.

Theorem (Proof or Countermodel). For S labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} S$ or S has a countermodel satisfying the frame conditions in X.

Theorem (Proof or Countermodel). For $\mathcal S$ labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} \mathcal S$ or $\mathcal S$ has a countermodel satisfying the frame conditions in $\mathcal X$.

Proof. Run the proof search algorithm for labK \cup X taking $S_0 = S$. Then:

Theorem (Proof or Countermodel). For $\mathcal S$ labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} \mathcal S$ or $\mathcal S$ has a countermodel satisfying the frame conditions in $\mathcal X$.

Proof. Run the proof search algorithm for labK \cup X taking $S_0 = S$. Then:

▶ If the algorithm terminates in Step 1 or Step 2, then ⊢_{labK∪X} S.

Theorem (Proof or Countermodel). For S labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} S$ or S has a countermodel satisfying the frame conditions in X.

Proof. Run the proof search algorithm for labK \cup X taking $S_0 = S$. Then:

- ▶ If the algorithm terminates in Step 1 or Step 2, then $\vdash_{labK\cup X} S$.
- ▶ If the algorithm terminates in Step 3: We construct a countermodel for S from the finite branch B[×] produced by the algorithm.

Theorem (Proof or Countermodel). For S labelled sequent, either $\vdash_{\mathsf{labK} \cup \mathsf{X}} S$ or S has a countermodel satisfying the frame conditions in X.

Proof. Run the proof search algorithm for labK \cup X taking $S_0 = S$. Then:

- ▶ If the algorithm terminates in Step 1 or Step 2, then $\vdash_{labK\cup X} S$.
- ▶ If the algorithm terminates in Step 3: We construct a countermodel for S from the finite branch B[×] produced by the algorithm.
- ▶ If the algorithm does not terminate, then all branches of $\mathcal T$ are infinite. We construct a countermodel for $\mathcal S$ from any infinite branch $\mathcal B^\times$ of $\mathcal T$.

Constructing the countermodel for \mathcal{S} [Negri, 2009]

Let $\mathcal{B}^{\times}=(\mathcal{R}_i,\Gamma_i\Rightarrow\Delta_i)_{i< k}$ be a finite branch in \mathcal{T} produced by the algorithm $(k\in\mathbb{N})$, or an infinite branch in \mathcal{T} $(k=\omega)$. In both cases, $\mathcal{S}=\mathcal{R}_0,\Gamma_0\Rightarrow\Delta_0$.

We construct a countermodel \mathcal{M}^{\times} from \mathcal{B}^{\times} as follows:

- V W $\times = \{x \mid x \text{ occurs in } \mathcal{B}^{\times}\};$
- ▶ $xR^{\times}y$ iff xRy occurs in $(\mathcal{R}_i)_{i< k}$;

Let $\mathcal{B}^{\times}=(\mathcal{R}_i,\Gamma_i\Rightarrow\Delta_i)_{i< k}$ be a finite branch in \mathcal{T} produced by the algorithm $(k\in\mathbb{N})$, or an infinite branch in \mathcal{T} $(k=\omega)$. In both cases, $\mathcal{S}=\mathcal{R}_0,\Gamma_0\Rightarrow\Delta_0$.

We construct a countermodel \mathcal{M}^{\times} from \mathcal{B}^{\times} as follows:

- ▶ $xR^{\times}y$ iff xRy occurs in $(\mathcal{R}_i)_{i< k}$;

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions \mathcal{X} .

Let $\mathcal{B}^{\times}=(\mathcal{R}_i,\Gamma_i\Rightarrow\Delta_i)_{i< k}$ be a finite branch in \mathcal{T} produced by the algorithm $(k\in\mathbb{N})$, or an infinite branch in \mathcal{T} $(k=\omega)$. In both cases, $\mathcal{S}=\mathcal{R}_0,\Gamma_0\Rightarrow\Delta_0$.

We construct a countermodel \mathcal{M}^{\times} from \mathcal{B}^{\times} as follows:

- $W^{\times} = \{x \mid x \text{ occurs in } \mathcal{B}^{\times}\};$
- ▶ $xR^{\times}y$ iff xRy occurs in $(\mathcal{R}_i)_{i< k}$;

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions \mathcal{X} .

Truth Lemma. Take $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{B}^{\times} . Then:

- ▶ If $x:A \in (\Gamma_i)_{i < k}$, then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If $x:A \in (\Delta_i)_{i < k}$, then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Let $\mathcal{B}^{\times}=(\mathcal{R}_i,\Gamma_i\Rightarrow\Delta_i)_{i< k}$ be a finite branch in \mathcal{T} produced by the algorithm $(k\in\mathbb{N})$, or an infinite branch in \mathcal{T} $(k=\omega)$. In both cases, $\mathcal{S}=\mathcal{R}_0,\Gamma_0\Rightarrow\Delta_0$.

We construct a countermodel \mathcal{M}^{\times} from \mathcal{B}^{\times} as follows:

- ▶ $xR^{\times}y$ iff xRy occurs in $(\mathcal{R}_i)_{i< k}$;

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions \mathcal{X} .

Truth Lemma. Take $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{B}^{\times} . Then:

- ▶ If $x:A \in (\Gamma_i)_{i \le k}$, then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If $x:A \in (\Delta_i)_{i < k}$, then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Therefore, \mathcal{M}^{\times} , $\rho^{\times} \not\models \mathcal{S}$.

Proof search for \Rightarrow 0: $\Diamond \square p$ in labK $\cup \{t, 4\}$

$$\begin{array}{c} 0R2,2R2,1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p,1: \Box p,2: p \\ \hline \\ 1R2,0R2,1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p,1: \Box p,2: p \\ \hline \\ 1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p,1: \Box p,2: p \\ \hline \\ 1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p,1: \Box p \\ \hline \\ 0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p \\ \hline \\ 1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p,1: p \\ \hline \\ 0R1,0R0 \Rightarrow 0: \Diamond \Box p,0: \Box p \\ \hline \\ 0R0 \Rightarrow 0: \Diamond \Box$$

$$\operatorname{ser} \frac{\vdots}{2R3, 1R2, 0R1 \Rightarrow 0:p} \\
\operatorname{ser} \frac{1R2, 0R1 \Rightarrow 0:p}{\operatorname{ser} \frac{0R1 \Rightarrow 0:p}{\Rightarrow 0:p}}$$

 $\overline{0R2,1R2,0R1,0}R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p, 2: \Box p$ $0R2, 1R2, 0R1, 0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p$ $1R2,0R1,0R0 \Rightarrow 0:\Diamond \Box p,0:\Box p,1:p,1:\Box p,2:p$ $0R1, 0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p$ $0R1, 0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p$

In the literature:

- ▶ [Negri, 2005]: Minimality argument for some logics in the S5-cube (K, T, S4, S5);
- ▶ [Negri, 2014]: Termination for intermediate logics;
- [Garg, Genovese and Negri, 2012]: Termination for multi-modal logics (without symmetry).

As a case study, we shall consider labK \cup {t, 4}, shortened in labS4.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

$$\begin{array}{c} \inf \overline{\mathbb{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ & \stackrel{\mathsf{Init}}{\mathbb{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ & \stackrel{\mathsf{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta}{\mathbb{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathsf{R}, \Gamma \Rightarrow \Delta, x : A \land B, \Gamma \Rightarrow \Delta}{\mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A} \\ & \stackrel{\mathsf{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A}{\mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ & \stackrel{\mathsf{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathbb{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ & \stackrel{\mathsf{R}, \pi : A \lor B, \pi : A \land B}{\mathbb{R}, \pi : A \lor B, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \Gamma \Rightarrow \Delta}{\mathbb{R}, x : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \Gamma \Rightarrow \Delta}{\mathbb{R}, \pi : A \to B, x : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \Gamma \Rightarrow \Delta}{\mathbb{R}, \pi : A \to B, x : A \to B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \Gamma \Rightarrow \Delta, x : A \to B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \Gamma \Rightarrow \Delta, x : A \to B} \\ & \stackrel{\mathsf{R}, \pi : A, \Gamma \Rightarrow \Delta}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, x : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, \pi : B} \\ & \stackrel{\mathsf{R}, \pi : A \to B, \pi : B}{\mathbb{R}, \pi : A \to B, \pi : B} \\ &$$

Main ideas

Rules should be applied exhaustively

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- $\,\,{}^{}_{}_{}_{}_{}_{}_{}_{}_{}$ We need to limit applications of \Box_R, \diamondsuit_L

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- ▶ We need to limit applications of □_R, ⋄_L

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- ▶ We need to limit applications of □_R, ⋄_L

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (ref) If x occurs in S, then xRx occurs in R;
 - (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;
- (\land_B) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ;
- (\Box_L) If xRy occurs in $\mathcal R$ and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ .

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- ▶ We need to limit applications of □_R, ⋄_L

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (ref) If x occurs in S, then xRx occurs in R;
 - (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;
- (\land_B) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ;
- (\Box_L) If xRy occurs in \mathcal{R} and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_{R}) If $x:\square A$ occurs in Δ , then either
 - a) there is a k such that kRx occurs in R and $k \sim x$; otherwise
 - b) there is a y such that xRy occurs in \mathcal{R} and y:A occurs in Δ .

- Rules should be applied exhaustively
- Rules shouldn't be applied redundantly
- ▶ We need to limit applications of □_R, ⋄_L

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (ref) If x occurs in S, then xRx occurs in R;
 - (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;
- (\land_B) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ;
- (\square_L) If xRy occurs in \mathcal{R} and $x:\square A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_{B}) If $x:\square A$ occurs in Δ , then either
 - a) there is a k such that kRx occurs in R and $k \sim x$; otherwise
 - b) there is a y such that xRy occurs in \mathcal{R} and y:A occurs in Δ .
 - If a) holds, we say that x is a \square -copy of k at S.

Does $\Gamma \models_{\{\text{ref,tr}\}} A \text{ hold}$?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- For every topmost sequent S_i of T, apply as much as possible non-redundant instances of the rules: ref. tr, ∧₁, ∧_B, ∨₁, ∨_B, →₁, →_B, □₁, ⋄_B.
- 2. If every topmost sequent of $\mathcal T$ is initial, terminate.
 - \rightsquigarrow $x:\Gamma \Rightarrow x:A$ is provable in labS4.
- 3. Otherwise, pick a non-initial topmost sequent S_k of T.
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not provable in labS4.

A countermodel \mathcal{M}^{\times} for a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$ which is non-initial and to which only redundant rules can be applied is defined as follows:

- $V W^{\times} = \{x \mid x \text{ occurs in } S\}$:
- ▶ To define R[×], first define:
 - $xR_{\perp}^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $kR_2^{\times}x$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the reflexive and transitive closure of $R_1^{\times} \cup R_2^{\times}$.

It is easy to verify that \mathcal{M}^{\times} satisfies the frame conditions ref, tr.

Truth Lemma. Take $\rho^{\times}(x) = x$, for each label x occurring in S. Then:

- ▶ If x:A occurs in Γ, then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If x:A occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Does $\models_{\{ref,tr\}} \Diamond \square p$ hold?

$$\lozenge_{R} \frac{0R2, 2R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p, 2: \Box p}{2R2, 0R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p} \\ tr \frac{2R2, 1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p}{1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p} \\ \frac{1R2, 1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p, 1: \Box p}{\lozenge_{R} \frac{1R1, 0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p, 1: p}{\lozenge_{R} \frac{0R1, 0R0 \Rightarrow 0: \lozenge \Box p, 0: \Box p}{\lozenge_{R} \frac{0R0 \Rightarrow 0: \lozenge \Box p}{\lozenge_{R} 0R0 \Rightarrow 0: \lozenge \Box p}} }$$

Does $\models_{\{ref,tr\}} \Diamond \square p$ hold?

$$\begin{array}{c} 0R2,2R2,1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p, 2: \Box p \\ \hline \\ \frac{2R2,0R2,1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p \\ \hline \\ \text{ref} \\ \hline \\ \frac{2R2,1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p \\ \hline \\ \frac{1R2,1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p, 1: \Box p, 2: p \\ \hline \\ \Diamond_{R} \\ \hline \\ \frac{1R1,0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p \\ \hline \\ 0R1,0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box p, 1: p \\ \hline \\ \Diamond_{R} \\ \hline \\ \frac{0R0 \Rightarrow 0: \Diamond \Box p}{\Rightarrow 0: \Diamond \Box p} \\ \hline \\ \downarrow_{R} \\ \downarrow_{$$

Summing up

Termination. The algorithm terminates in a finite number of steps, yielding either a proof or a sequent from which a countermodel can be extracted.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

Theorem (Semantic completeness). If $\Gamma \models_{\{\text{ref,tr}\}} A$ then $\vdash_{\text{labS4}} x:\Gamma \Rightarrow x:A$.

Termination. The algorithm terminates in a finite number of steps, yielding either a proof or a sequent from which a countermodel can be extracted.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

Theorem (Semantic completeness). If $\Gamma \models_{\{\text{ref.tr}\}} A$ then $\vdash_{\text{labS4}} x:\Gamma \Rightarrow x:A$.

Corollary. S4 has the finite model property.

Termination. The algorithm terminates in a finite number of steps, yielding either a proof or a sequent from which a countermodel can be extracted.

Theorem (Proof or Finite Countermodel). For $S = x:\Gamma \Rightarrow x:A$ labelled sequent, either $\vdash_{labS4} S$ or S has a finite countermodel satisfying ref, tr.

Theorem (Semantic completeness). If $\Gamma \models_{\{\text{ref.tr}\}} A$ then $\vdash_{\text{labS4}} x:\Gamma \Rightarrow x:A$.

Corollary. S4 has the finite model property.

Corollary. The validity problem of S4 is decidable.

Properties of labK $\cup X$

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
$labK \cup X$	no	yes	yes	yes, for most	yes, easy!	yes

- 1. Check whether $\models_{\{\text{ref},\text{tr}\}} \Diamond \Box (p \lor \Box (p \to \bot))$ using the terminating algorithm for S4. If the formula is not valid, produce a countermodel.
- 2. Let \mathcal{M}^{\times} be the countermodel for a sequent \mathcal{S} as defined in Slide 20. Verify that \mathcal{M}^{\times} satisfies the frame conditions ref, tr. Then, for $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{S} , verify that the Truth Lemma holds, for the cases:
 - ▶ If $x: \Box A$ occurs in Γ, then $\mathcal{M}^{\times}, \rho^{\times} \models x: \Box A$
 - ▶ If $x: \Box A$ occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x: \Box A$