# Typing Assumptions Improve Identification in Causal Discovery



Philippe Brouillard <sup>1,2</sup>



Perouz Taslakian <sup>1</sup>



Alexandre



Sébastien Lachapelle<sup>2</sup>



Alexandre Drouin <sup>1</sup>



<sup>&</sup>lt;sup>1</sup> Element AI, a ServiceNow company

<sup>&</sup>lt;sup>2</sup> Mila & DIRO, Université de Montréal

#### Motivation

Can a light bulb change the state of a switch?





#### Motivation

Can the temperature of a city alter its altitude?





#### Motivation

- As humans, we understand the implausibility of causal relationships between certain types of entities.
- In fact, most of the time, we use prior knowledge to generalize causal relation between similar entities.
  [Griffiths et al., 2011, Schulz & Gopnik, 2004, Gopnik & Sobel, 2000]



# Causal Discovery

The task of causal discovery consists of learning the structure of G based on observations from  $P_{\rm X}$ .

| X            | Y            | Z            |
|--------------|--------------|--------------|
| 1.21<br>1.50 | 1.58<br>1.84 | 0.33<br>0.51 |
| :            | :            | :            |
| 0.96         | 1.07         | 0.11         |





# Markov Equivalence Class

Unfortunately, from observational data, one can only retrieve a set of equivalent DAGs called the Markov Equivalence Class (MEC).

| X            | Y            | Z            |
|--------------|--------------|--------------|
| 1.21<br>1.50 | 1.58<br>1.84 | 0.33<br>0.51 |
| :            | ·            | :            |
| 0.96         | 1.07         | 0.11         |





# Variable types

In our new setting, each vertex has an associated type (that might have been given by an expert). We call these graphs t-DAGs.

| X            | Υ            | Z            |
|--------------|--------------|--------------|
| 1.21<br>1.50 | 1.58<br>1.84 | 0.33<br>0.51 |
| :            | :            | :            |
| 0.96         | 1.07         | 0.11         |





# Type consistency: constraints on type interactions

**Assumption:** all edges between a pair of types are oriented in the same direction.

We call t-DAGs that satisfy this condition **consistent t-DAGs**.











#### t-MEC: an equivalence class for consistent t-DAGs

With this assumption, the size of the MEC can be greatly reduced by removing t-DAGs that violate type consistency. We call this equivalence class a t-MEC.

| X    | Υ    | Z    |
|------|------|------|
| 1.21 | 1.58 | 0.33 |
| 1.50 | 1.84 | 0.51 |
|      |      |      |
| •    |      | •    |
| •    | •    | •    |
| 0.96 | 1.07 | 0.11 |





## Theorem: identification guarantees for random graphs

- We show that there exists conditions under which our assumptions lead to benefits in identification.
- For a random sequence of t-DAGs with a fixed number of types, the size of the t-MEC converge to a singleton exponentially fast with the number of vertices (measured variables).
- Proof sketch: There exists a structure, called a two-type fork, that forces the orientation of edges due to type consistency. As the graph grows, the probability of observing it converges to 1 and thus all edges of the t-DAG are oriented.



Two-type fork





## **Experiments**

As the number of vertices increase, |t-MEC| decreases while |MEC| increases.





#### Conclusion

This work shows that our typing assumptions can help reduce the size of the MEC and thus help in causal discovery when our assumptions hold.

#### Future work:

- Explore practical applications (tiered background knowledge [Andrews, 2020])
- Relax our assumption for more realistic settings
- Learn types automatically from metadata related to each variable



# Thank you!







Perouz Taslakian 1



Alexandre Lacoste 1



Sébastien Lachapelle 2



Alexandre Drouin 1

#### Come to our poster to learn more about:

- our assumptions based on variable types.
- a simple algorithm to incorporate these assumptions in causal discovery.
- the theoretical result that guarantee convergence of the equivalence class to a singleton.



#### References

Andrews, B. (2020).

On the completeness of causal discovery in the presence of latent confounding with tiered background knowledge.

In S. Chiappa & R. Calandra (Eds.), The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research (pp. 4002–4011).; PMLR,

Gopnik, A. & Sobel, D. M. (2000).

Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child development, 71(5), 1205-1222.

Griffiths, T. L., Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2011).

Bayes and blickets: Effects of knowledge on causal induction in children and adults.

Cognitive Science, 35(8), 1407-1455.

Schulz, L. E. & Gopnik, A. (2004).

Causal learning across domains.

Developmental psychology, 40(2), 162,

