



# Tema 9. Bagging y Boosting

Percepción (PER)

Curso 2017/2018

Departamento de Sistemas Informáticos y Computación

# Índice

PER - Curso 2017/2018

- 1 Introducción ▷ 3
- 2 Bagging ▷ 10
- 3 Boosting ▷ 14





# Índice

- 1 Introducción ▷ 3
  - 2 Bagging ▷ 10
  - 3 Boosting ▷ 14





## Introducción

- Las fuentes de error de un clasificador son:
  - **Bias** (sesgo): asunciones erróneas, error en la selección del tipo de clasificador. Relacionado con la capacidad de ajuste del clasificador elegido a los datos.
  - Variance (varianza): dependencia de los datos de entrenamiento. Relacionado con la bondad del aprendizaje del clasificador en función de la cantidad de datos disponibles.
  - Noise (ruido): ruido inherente en los datos
- Compromiso entre bias y variance para el diseño de un buen clasificador
- Caracterización de bias y variance de los distintos clasificadores





Clasificador como regresor (aprendido a partir de datos de entrenamiento)

$$G(x): E \to \mathbb{R}$$

y valor verdadero

$$y = F(x) + \epsilon$$

- F(x): función verdadera
- $\bullet$  c: ruido inherente de los datos

Representación del error como el valor esperado del error cuadrático:

$$\mathbb{E}[(y - G(x))^2]$$





Desarrollo del valor esperado del error:

$$\mathbb{E}\left[\left(y - G(x)\right)^{2}\right] = \mathbb{E}\left[y^{2} - 2yG(x) + G(x)^{2}\right] = \mathbb{E}\left[G(x)^{2}\right]$$
$$-2\mathbb{E}[G(x)]\mathbb{E}[y]$$
$$+\mathbb{E}\left[y^{2}\right]$$

Definiendo 
$$\overline{Z}=\mathbb{E}[Z]$$
, al ser  $\mathbb{E}[Z^2]=\mathbb{E}\left[\left(Z-\overline{Z}\right)^2\right]+\overline{Z}^2$ :

$$\mathbb{E}\left[\left(y - G(x)\right)^{2}\right] = \mathbb{E}\left[\left(G(x) - \overline{G(x)}\right)^{2}\right] + \overline{G(x)}^{2}$$

$$-2\overline{G(x)}\overline{y}$$

$$+ \mathbb{E}\left[\left(y - \overline{y}\right)^{2}\right] + \overline{y}^{2}$$





Al ser  $\overline{y} = \mathbb{E}\left[F(x) + \epsilon\right] = F(x)$  (por cancelación del error):

$$\mathbb{E}\left[\left(y - G(x)\right)^{2}\right] = \mathbb{E}\left[\left(G(x) - \overline{G(x)}\right)^{2}\right] + \overline{G(x)}^{2}$$

$$-2\overline{G(x)}F(x)$$

$$+ \mathbb{E}\left[\left(y - F(x)\right)^{2}\right] + F(x)^{2}$$

$$\begin{split} \mathsf{Como} \; \overline{G(x)}^2 - 2 \, \overline{G(x)} \, F(x) + F(x)^2 &= \left( \overline{G(x)} - F(x) \right)^2 \\ &\mathbb{E} \left[ \left( y - G(x) \right)^2 \right] = & \mathbb{E} \left[ \left( G(x) - \overline{G(x)} \right)^2 \right] \quad \mathsf{Variance} \\ &+ \left( \overline{G(x)} - F(x) \right)^2 \qquad \mathsf{Bias} \\ &+ \mathbb{E} \left[ \left( y - F(x) \right)^2 \right] \qquad \mathsf{Noise} \end{split}$$





- Variance: variación de G(x) según datos de entrenamiento
- **Bias**: error del clasificador promedio, capacidad de adaptarse al entrenamiento
- *Noise*: ruido presente en los datos





## Tipos de clasificadores

- Clasificadores con bias alto y variance bajo: (p.ej., clasificador lineal)
  - Poco flexibles
  - Pocos parámetros
  - Bajo requerimiento de datos de entrenamiento
  - Clasificadores débiles (weak learners): apenas mejores que el clasificador aleatorio
- Clasificadores con *bias* bajo y *variance* alto: (p.ej., k-NN)
  - Muy flexibles (aprenden cualquier frontera de decisión)
  - Muchos parámetros
  - Alto requerimiento de datos de entrenamiento
  - Clasificadores fuertes (*strong learners*): *arbitrariamente* precisos
- Ensemble learning: combinación de clasificadores
  - **Bagging**: combinación de clasificadores fuertes modificando el conjunto de entrenamiento
  - **Boosting**: construcción de clasificadores fuertes a partir de clasificadores débiles





Page 9.9

# Índice

- 1 Introducción ▷ 3
- 2 Bagging ▷ 10
  - 3 Boosting ▷ 14





# **Bagging**

**Bagging**: Bootstrap Agregating

Clasificadores  $G_i$  a partir de variación de los datos de entrenamiento X

- Obtener  $X_i$  por bootstrapping desde X
- Bootstrapping: muestreo aleatorio con reemplazamiento
- Entrenar  $G_i$  con  $X_i$

Combinación de clasificadores  $G_i$  por suma no ponderada





# **Bagging**

## Algoritmo Bagging:

Entrenamiento:

For 
$$i=1\cdots M$$
 Obtener  $X_i$  a partir de  $X$  Entrenar  $G_i$  con  $X_i$  End

Clasificación:

$$G(x) = \frac{1}{M} \sum_{i=1}^{M} G_i(x)$$

Bagging se emplea en clasificadores binarios, con  $\hat{c}(x) = \operatorname{sgn}(G(x))$ 





## Propiedades de Bagging

#### Variance

$$\mathbb{E}\left[\left(G(x)-\overline{G(x)}\right)^2\right]$$
  $G(x)=\frac{1}{M}\sum_{i=1}^M G_i(x)$ , el variance se reduce

■ Bias:

$$\left(\overline{G(x)} - F(x)\right)^2$$
  $\overline{G(x)}$  no cambia, y el bias no cambia

- El error del clasificador generado mediante Bagging se reduce
- Bagging es adecuado para combinar clasificadores fuertes (flexibles, bias bajo)



# Índice

- 1 Introducción ▷ 3
- 2 Bagging ▷ 10
- 3 Boosting ▷ 14





- Combinación de clasificadores débiles ponderando los datos de entrenamiento
- Se dispone de un conjunto de L clasificadores débiles:  $\mathcal{G} = \{G_1, \dots, G_L\}$
- Se asumen clasificadores débiles binarios:  $G_l(x) \in \{-1,1\}$
- Conjunto de entrenamiento:  $\mathcal{X} = \{(x_1, y_1), \dots, (x_N, y_N)\}$  con  $y_n \in \{-1, 1\}$
- ullet En cada iteración, selecciona  $C_i \in \mathcal{G}$  de menor error sobre  $\mathcal{X}$  ponderado por  $w^{(i)}$
- G(x) es la combinación lineal de los clasificadores seleccionados hasta iteración m:

$$G(x) = G^{(m)}(x) = \sum_{i=1}^{m} \alpha_i C_i(x)$$
 donde  $C_i \in \mathcal{G}$ 





En la iteración m seleccionamos un clasificador  $C_m$  junto con su peso  $\alpha_m$ 

$$G^{(m)}(x) = G^{(m-1)}(x) + \alpha_m C_m(x)$$

El criterio de error E a minimizar es la pérdida exponencial en cada dato

$$E = \sum_{i=1}^{N} \exp(-y_i G^{(m)}(x_i)) = \sum_{i=1}^{N} \exp(-y_i G^{(m-1)}(x_i) - y_i \alpha_m C_m(x_i))$$

Se buscan  $C_m$  y  $\alpha_m$  que minimicen E





El peso del dato  $x_i$  para la iteración m es la pérdida exponencial en ese dato:

$$w_i^{(m)} = \exp(-y_i G^{(m-1)}(x_i))$$

Luego:

$$E = \sum_{i=1}^{N} w_i^{(m)} \exp(-y_i \alpha_m C_m(x_i))$$

Separando en muestras bien  $(y_i \cdot C_m(x_i) = 1)$  y mal  $(y_i \cdot C_m(x_i) = -1)$  clasificadas:

$$E = \sum_{i=1}^{N} w_i^{(m)} \exp(-\alpha_m) + \sum_{i=1}^{N} w_i^{(m)} \exp(\alpha_m)$$

$$= \sum_{i=1}^{N} w_i^{(m)} \exp(-\alpha_m) + \sum_{i=1}^{N} w_i^{(m)} (\exp(\alpha_m) - \exp(-\alpha_m))$$

$$= \sum_{i=1}^{N} w_i^{(m)} \exp(-\alpha_m) + \sum_{i=1}^{N} w_i^{(m)} (\exp(\alpha_m) - \exp(-\alpha_m))$$





Tenemos:

$$E = \sum_{i=1}^{N} w_i^{(m)} \exp(-\alpha_m) + \sum_{y_i \neq C_m(x_i)} w_i^{(m)} (\exp(\alpha_m) - \exp(-\alpha_m))$$

Minimizamos E respecto a  $C_m$ :

- lacktriangle Primer sumatorio independiente de  $C_m$
- Asumimos  $(\exp(\alpha_m) \exp(-\alpha_m))$  constante

$$E \approx \sum_{y_i \neq C_m(x_i)} w_i^{(m)} = \sum_{y_i \neq C_m(x_i)} \exp(-y_i G^{(m-1)}(x_i))$$

Para minimizar E selecciona el clasificador  $C_m \in \mathcal{G}$  que minimice el error de clasificación  $(y_i \neq C_m(x_i))$  sobre los datos ponderados





Para calcular  $\alpha_m$ , derivarmos E respecto de  $\alpha_m$  e igualar a cero:

$$\frac{dE}{d\alpha_m} = -\sum_{y_i = C_m(x_i)} w_i^{(m)} \exp(-\alpha_m) + \sum_{y_i \neq C_m(x_i)} w_i^{(m)} \exp(\alpha_m) = 0$$

$$\exp(-\alpha_m) \sum_{y_i = C_m(x_i)} w_i^{(m)} = \exp(\alpha_m) \sum_{y_i \neq C_m(x_i)} w_i^{(m)} \to \frac{\sum_{y_i = C_m(x_i)} w_i^{(m)}}{\sum_{y_i \neq C_m(x_i)} w_i^{(m)}} = \exp(2\alpha_m) \to$$

$$\alpha_m = \frac{1}{2} \ln \left( \frac{\sum_{y_i = C_m(x_i)} w_i^{(m)}}{\sum_{y_i \neq C_m(x_i)} w_i^{(m)}} \right)$$

Se define 
$$\epsilon_m = \frac{\sum_{y_i \neq C_m(x_i)} w_i^{(m)}}{\sum_{i=1}^N w_i^{(m)}}$$
 (error en iteración  $m$ ):  $\alpha_m = \frac{1}{2} \ln \left( \frac{1 - \epsilon_m}{\epsilon_m} \right)$ 





## Algoritmo AdaBoost

#### Entrada:

- Conjunto de entrenamiento  $\mathcal{X} = \{(x_1, y_1) \dots (x_N, y_N)\}$
- Conjunto clasificadores débiles (binarios)  $\mathcal{G} = \{G_1, \dots, G_L\}$

#### Proceso:

**1.** 
$$w_i^{(1)} = \frac{1}{N}$$
  $i = 1, \dots, N$ 

**2.** Para m = 1 ... M

2.1. 
$$C_m = \operatorname{argmin}_{g \in \mathcal{G}} \sum_{y_i \neq g(x_i)} w_i^{(m)}$$

2.2. 
$$\epsilon_m = \min_{g \in \mathcal{G}} \sum_{y_i \neq g(x_i)} w_i^{(m)}$$

2.3. Si  $\epsilon_m > 0.5$  fin

2.3. 
$$\alpha_m = \frac{1}{2} \ln \left( \frac{1 - \epsilon_m}{\epsilon_m} \right)$$

2.4. 
$$w_i^{(m+1)} = \frac{w_i^{(m)} \exp(-y_i \alpha_m C_m(x_i))}{\sum_{i'=1}^N w_{i'}^{(m)} \exp(-y_{i'} \alpha_m C_m(x_{i'}))}$$

Salida: 
$$G(x) = \sum_{m=1}^{M} \alpha_m C_m(x)$$





## Propiedades de AdaBoost

## Boosting:

- Aprovecha el bajo variance de los clasificadores (débiles) combinados
- Reduce el *bias*
- Es más sensible a datos ruidosos
- En comparación con Bagging, puede comportarse peor según los datos





Page 9.21