Prim Worksheet

Start with vertex A in a set by itself $T = \{A\}$ and with Tprim empty. At each step, choose a vertex not in T that can be joined to a vertex in T using an edge of least cost. Add the vertex to T and the edge to Tprim. Show T and Tprim at the end of each iteration

I1
$$T{A,B}$$
 Tprim = {5}

I2
$$T{A,B,G}$$
 Tprim = ${5,7}$

I3
$$T{A,B,G,E}$$
 Tprim = ${5,7,3}$

I4 T(A,B,G,E,C) Tprim =
$$\{5,7,3,2\}$$

I5
$$T{A,B,G,E,C,D}$$
 Tprim = ${5,7,3,2,2}$

I6 T(A,B,G,E,C,D,F} Tprim =
$$\{5,7,3,2,2,4\}$$

Kruskal Worksheet

1. List the edges in non-decreasing order of weight.

E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
DE	CE	GE	GF	GC	CD	AB	ВС	AG	EF	BG	AF
2	2	3	4	4	5	5	7	7	7	9	12

2. Start with spanning tree T = {}. For each edge in order, check whether it creates a cycle? If not, add it to T.

Edge	Cycle?		
E1	No		
E2	No		
E3	No		
E4	No		
E5	Yes		
E6	Yes		
E7	No		
E8	No		
E9	Yes		
E10	Yes		
E11	Yes		
E12	Yes		

Ackermann's Function

The Ackermann's function is defined by the following recurrence relation:

$$A(1, j) = 2j$$
 for $j \ge 1$

$$A(i, 1) = A(i - 1, 2)$$
 for $i \ge 2$

$$A(i, j) = A(i - 1, A(i, j - 1))$$
 for $i, j \ge 2$

Use the recurrence relation to fill up as many values as you can in the table below.

Start with Row 1 and work your way up to larger values of i and j.

Ackermann Table									
i/j	1	2	3	4					
1	2 ¹	2 ²	23	2 ⁴					
2	22	2 ⁴	2 ¹⁶	2 ⁶⁵⁵³⁶					
3	24	2 ¹⁶	2 ⁶⁵⁵³⁶						

What pattern emerges in Row 2?

The next element is 2^x where x is the value to it's left cell. For example, $2^2 \rightarrow 2^{2^2} \rightarrow 2^{2^{2^2}}$...