

Lecture 9

topic: Decision Trees

material: Chapters 9 (book "Data Mining for Business Intelligence")

https://www.youtube.com/watch?v=AmCV4g7_-QM

Steps in the DM Process:

Business understanding → Data preparation → <u>Model building</u> → Testing & Evaluation → Deployment

Agenda

Date	Lecture contents		Lecturer	Lab topics	Test
Jan-07	1	Intro. to BI+ Data Management	Caron		
Jan-30				SQL-1	1
Jan-28	2	Data warehousing	Caron		
Feb-06				SQL-2	2
Feb-03	3	OLAP business databases & dashboard	Caron		
Feb-13				SQL-3 & OLAP	3a & 3b
Feb-10	4	Data mining introduction	loannou		
Lep-10	5	Regression models	loannou		
F-b 17	6	Naïve Bayes	loannou		
Feb-17	7	k nearest neighbors	loannou		
Feb-20				Bayes & neighbors	4
Feb-27	8	Performance measures	loannou		
Mar-02	9	Decision trees	loannou		
Mar-05				Dec. trees	5
Mar-09	10	Association rules	Ioannou		
Mar-11,12&13				Ass. Rules	6
Mar-16	11	Clustering (+20 mins exam preparation)	Ioannou		
Mar-19				Clustering	7

Classification: Learning & Applying

Attrib1	Attrib2	Attrib3	Class
Yes	Large	125K	No
No	Medium	100K	No
No	Small	70K	No
Yes	Medium	120K	No
No	Large	95K	Yes
No	Medium	60K	No
Yes	Large	220K	No
No	Small	85K	Yes
No	Medium	75K	No
No	Small	90K	Yes
Training Set			

У

Training Set

X

Tid

2

5

8

10

		X'		у'
Tid	Attrib1	Attrib2	Attrib3	Class

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Decision Tree

- Data-driven method
- Popular classification technique

Reasons

- Performs well across a wide range of situations
- Does not require much effort from the analyst
- Easy understandable by the consumers
 - At least when the trees are not too large
- Can be used for both
 - Classification, called classification trees
 - Prediction, called regression trees

Example

- Classifying bank customers as acceptors on not of a loan offer
- Decision tree:
 - Based on various attributes,
 e.g., income, education level
 - Created using the data from the available records

- Values above the white nodes give the splitting value on a predictor
- Values below the nodes gives the number of records in the split
- The gray nodes, named terminals, marked with 0 or 1 corresponding to a non acceptor (marked with 0) or acceptor (marked with 1)

Example

- Trees are easy translated into a set of rules
- In this example, rules are for classifying one bank customer

IF Family<2.5 AND Education<1.5 AND Income≥106
THEN Class=0

Main processing

- Separate records into subgroups by creating splits on predictors
- Splits create logical rules that are transparent and easily understandable
 - ∘ E.g., IF ··· THEN Class = ·
- Resulting subgroups should be more homogeneous in terms of the outcome variable
 - Creating useful prediction or classification rules

Induction

Test Set

Induction (with a Greedy Strategy)

- Tree is constructed in a top-down recursive divideand-conquer manner
- At start, all the training instances are at the root
- Instances, i.e., from the training set, are then partitioned recursively based on selected attributes

Induction (with a Greedy Strategy)

Issues, discussed in the next slides:

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Specifying Test Condition

- Depends on attribute type
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - Binary split, i.e., 2-way
 - Multi-way split

Splitting Based on Nominal Attributes

- Multi-way split:
 - Use as many partitions as distinct values

X_1	X ₂	У
CarType		Class
Family		
Family		
Luxury		
Sports		
Sports		

- Binary split:
 - Divides values into two subsets

Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static, discretize once at the beginning
 - Dynamic, ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering
- Binary Decision (i.e., $X_i < v$ or $X_i \ge v$)
 - Finds the best cut among all possible splits
 - Can be more compute intensive

X_{1}	X_n	У
	Income	Class
	10K	
	20K	
	23K	
	100K	
	25K	

Recursive Partitioning

X₁ ... X_i ... y Class

Algorithm examines:

- 1. Each predicator variable
 - I.e., X₁, X₂, ...
- 2. All possible split values
 - ∘ I.e., each value in Xi

Determining the Best Split

X_1	X_2	X_1	у
Own Car	Car type	Student ID	Class

• Before Splitting:10 records of class C0 and 10 records of class C1

→ Which test condition is the best?

Strategy:

- Split the records based on an attribute test that optimizes certain criterion

 Information Gain
- Need a measure of node impurity

 Gini Index, Entropy, etc.

Information Gain

Gini Index

GINI(node) =
$$1 - \sum_{k=1}^{m} (pk)^2$$

We denote:

- The m classes of the response variable by k=1, 2, ..., m
- The proportion of instances that belong to class k as p_k

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $GINI(a) = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $GINI(b) = 1 - (1/6)^2 - (5/6)^2 = 0.278$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

GINI(c) =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$
 Tilburg

Entropy measure

entropy(node) =
$$-\sum_{k=1}^{m} p_k \log_2(p_k)$$
 • The m classes of the resonant variable by k=1, 2, ..., m • The proportion of instant

We denote:

- The m classes of the response
- The proportion of instances that belong to class k as p_k

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy(a) =
$$-0 \log_2(0) - 1 \log_2(1) = -0 - 0 = 0$$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Entropy(b) = -(1/6) log_2(1/6) - (5/6) log_2(5/6) = 0.65$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

P(C1) = 2/6 P(C2) = 4/6
Entropy(b) = - (2/6)
$$\log_2(2/6)$$
 - (4/6) $\log_2(4/6)$ = 0.92

Combined impurity

- The combined impurity created by a split is a weighted average of the impurity measures
- Weighted by the number of records in each split

	Parent
C1	6
C2	6
Gini	= 0.500

dilli(N1)
$= 1 - (5/7)^2 - (2/7)^2$
= 0.41
Gini(N2)
$= 1 - (1/5)^2 - (4/5)^2$
= 0.32

Cini(N1)

	N1	N2
C1	5	1
C2	2	4
Gini=0.37		

→ GINI impurity index decreases from 0.5 before the split to 0.37 after the split

Categorical Attributes

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType		
	Family	Sports	Luxury
C1	1	2	1
C2	4	1	1
Gini	0.393		

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury}	{Family}	
C1	3	1	
C2	2	4	
Gini	0.400		

	CarType	
	{Sports}	{Family, Luxury}
C1	2	2
C2	1	5
Gini	0.419	

Stopping Criteria for Tree Induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Overfitting

Underfitting: when model is too simple, both training and test errors are large

How to Address Overfitting

Pre-Pruning

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some userspecified threshold
 - Stop if expanding the current node does not improve impurity measures, e.g., Gini or information gain

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node
- Class label of leaf node is determined from majority class of instances in the sub-tree

Proc and Cons

- Advantages:
 - Easy to understand (domain experts love them!)
 - Easy to generate rules
- Disadvantages:
 - May suffer from overfitting
 - Classifies by rectangular partitioning (so does not handle correlated features very well)
 - Can be quite large pruning is necessary
 - Does not handle streaming data easily
 - -... but a few successful ideas/techniques exist

