Balanced tree

Operations on a binary search tree (most of them)
take time directly proportional to the tree's height

→ it is desirable to keep the height small

Balanced tree: no leaf is much farther away from the root than any other leaf.

Different balancing schemes allow different definitions of "much farther" and different amounts of work to keep them balanced.

Self-balancing binary search tree:

- a binary search tree
- & keep it balanced

Popular balanced tree

- red-black tree
- AVL tree

Height-balanced tree

Height-balanced tree:

A tree whose subtrees differ in height by no more than one and the subtrees are height-balanced, too.

An empty tree is height-balanced.

Height-balanced tree

• AVL tree

Red-black tree

Cormen

Red-Black tree

- A red-black tree is a binary search tree which satisfies:
- 1. Every node is either red or black.
- 2. Every leaf (NIL) is black.
- 3. If a node is red, then both its children are black.
- 4. Every path from a node to a descendant leaf contains the same number of black nodes.
- one extra information per node: its *color*, which can be either RED or BLACK.

Red-Black tree

- black-height of a node x: bh(x)
 the number of black nodes on any path from x to a leaf node
- black-height of a red-black tree: the black-height of its root.

Lemma

A red-black tree with n internal nodes has height at most $2*log_2(n+1)$.

Rotation

DS

TColor = (red, black)

TreeNode:

info: TCE

left: ^TreeNode

right: ^TreeNode

parent: ^TreeNode

color: TColor

end

Red-black tree: operation insert

insert in BSTree
new node x
x is red

• if the parent of x is red fix the tree!!

Red-black tree: operation insert

Cormen

RBT_insert(T,e)

```
x:=BST-insert(T,e)
[x].color := red
while x <> rootPos(T) and Color(x^n.parent) = red do
  if x^*.parent = x^*.parent^*.parent^*.left then
       y:= x^*.parent^*.parent^*.right
       if Color(y)=red then
              Color(x^.parent) := black
                                                           Case 1
              Color(y):=black
              x := x^{\cdot}.parent^{\cdot}.parent
              Color(x) := red
       else
```

```
if x = x^*.parent^.right then
                    x:=x^{\wedge}.parent
                                                           Case 2
                    LeftRotate(T,x)
             endif
             Color(x^.parent) :=black
             Color(x^.parent^.parent) := red
                                                     Case 3
             RightRotate(T, x^.parent^.parent)
      endif
  else
  endif
endwhile
//
```

Red-black tree: operation delete

Delete as in BSTree

- A node to be deleted will have at most one child If a discrepancy arises for the red-black tree, fix it!
- If the deleted node is red the tree is still a red-black tree
- If the deleted node is black:
 - if its child is red, repaint the child to black.
 - otherwise: fix the tree !!
 mark the child as double black: x (and fix the problem!)


```
while x <> rootPos(T) and Color(x) = black do
  if x=x^.parent^.left then
      w:=x^.parent^.right
      if Color(w) = red then
                                                       Case 1
             Color(w) :=black
             Color(x^.parent) :=red
             LeftRotate(T, x^.parent)
             w:= x^*.parent^*.right
      endif
        if Color(w^.left) =black and Color(w^.right) =black
        then
                                                        Case 2
             Color(w) :=red
             x := x^{\wedge}.parent
        else
```

```
if Color(w^.right) =black then
               Color(w^.left) :=black
               Color(w) :=red
                                                              Case 3
               RightRotate(T,w)
               w := x^n.parent^n.right
       endif
       Color(w) := Color(x^n.parent)
       Color(x^.parent) :=black
       Color(w^.right) :=black
                                                              Case 4
       LeftRotate(T, x^.parent)
       x = root(T)
    endif
  else
  endif
endwhile
Color(x) := black
```

AVL

Definition

An AVL tree is a binary search tree which satisfies: the heights of the two child sub trees of any node differ by at most one

Remark:

Representation stores the balance factor or the height of the node

Operations over AVL

- search, insert and delete

all take O(log n) time in average and worst cases where n is the number of nodes in the tree prior to the operation.

Consider the next representation:

AVLTreeNode = record

info: TComparable left: ^ AVLTreeNode right: ^ AVLTreeNode

h: Integer

end

Search

- BST search

Insert

Insertion:

- require the tree to be rebalanced
 - insert an element like in BST case
 - rebalance the tree (if it is the case)

consider all the ancestors (to the root)

 $rebalance \rightarrow$ one or more tree rotations.

When to rebalance:

Insert cases - examples

Rotations


```
/* Representation without link to parent */
```

/* Update heights, then return new root */

```
Function RotateRight ( p )
    q := p^.left
    p^.left := q^.right;
    q^.right := p;
    p^.h := Max( Height( p^.left ), Height( p^.right ) ) + 1;
    q^.h := Max( Height( q^.left ), Height ( q^.right ) ) + 1;
    RotateRight := q /* New root */
end_RotateRight

Functin RotateLeft ( p )
```

```
Functin RotateLeft ( p )
    q := p^.right;
    p^.right = q^.left
    q^.left = p
    p^.h = Max( Height( p^.left ), Height( p^.right ) ) + 1
    q^.h = Max( Height( q^.left ), Height( q^.right ) ) + 1
    RotateLeft := q
end_RotateLeft
```



```
Function DblRotateLeftRight ( p)
    p^.left := RotateLeft (p^.left )
    DblRotateLeftRight := RotateRight ( p );
end_DblRotateLeftRight
```

```
Function insert_rec(p, el)
// ElementType el, AvlTreeNode p
// return the new p
 if (p = NIL)
        p := new AvlTreeNode
        p^{\wedge}.info := el
        p^{h} := 0;
        p^{\cdot}.left := NIL
        p^*.right := NIL
else
        if (el < p^*.info) then
               p^.left := insert_rec(p^.left , el )
                if(Height(p^*, right) - Height(p^*, left) = -2)
                       if( el < p^.left^.info)
                               p := RotateRight ( p )
                       else
                               p := DblRotateLeftRight ( p )
                       endif
                endif
        else
                       /\!/ el >= [p].info
                p^.right = insert_rec(p^.right, el)
                if (Height (p^*.right) - Height (p^*.left) = 2)
                       if( el > p^.right^.info ) then
                               p := RotateLeft (p)
                       else
                               p := DblRotateRightLeft( p );
                       endif
               endif
        endif
        p^h := Max(Height(p^h.left), Height(p^h.right)) + 1;
endif
insert_rec := p
End_insert_rec
Subalg. insert(T, el)
        p := getRoot(T)
        np :=insert_rec(p, el)
        setRoot(T, np)
end_insert
```

Delete

- find the node x where k is stored
- delete the contents of node x ~similar with BST
 Deleting a node in an AVL tree can be reduced to deleting a leaf (next) alg. delete_rec – delete leaves

rebalance

go from the deleted leaf towards the root
-update the balance factor
-rebalance with rotations if necessary.

Rebalance cases

endif endif if p<> NIL then p^.h = Max(Height(p^.left), Height(p^.right)) + 1 endif

endif else // el(el < [p].info)

//...

delete_rec := p End_ delete_rec