回帰分析

モデルの評価

村田 昇

講義の内容

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• データの一部

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.60	0.00	24.53	0.00	SSE	2.80	1010.10	72.00	8.80
2022-08-02	31.60	0.00	24.78	0.00	SSE	2.50	1008.80	71.00	9.80
2022-08-03	31.50	0.00	21.24	0.00	SSE	2.30	1005.10	75.00	7.30
2022-08-04	24.60	18.00	3.46	0.00	NE	2.70	1006.00	89.00	10.00
2022-08-05	23.80	0.00	7.65	0.00	NE	2.90	1006.10	83.00	9.80
2022-08-06	25.20	0.00	17.06	0.00	SSE	2.40	1008.10	73.00	10.00
2022-08-07	27.60	0.00	14.45	0.00	SSE	2.20	1009.30	80.00	8.30
2022-08-08	29.80	0.00	22.52	0.00	S	4.50	1008.50	75.00	4.80
2022-08-09	30.90	0.00	25.50	0.00	S	5.50	1006.90	69.00	6.80
2022-08-10	30.50	0.00	25.99	0.00	S	5.30	1007.20	70.00	6.00
2022-08-11	29.50	0.00	22.90	0.00	S	5.40	1007.50	75.00	6.00
2022-08-12	28.30	2.00	15.36	0.00	S	5.80	1007.50	81.00	9.80

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 寄与率による比較

	モデル	決定係数	自由度調整済み決定係数
1	気温 = F(気圧)	0.064	0.031
2	気温 = F(日射)	0.641	0.628
3	気温 = F(気圧, 日射)	0.741	0.722
4	気温 = F(気圧, 日射, 湿度)	0.758	0.731
5	気温 = F(気圧, 日射, 雲量)	0.760	0.733

図 1: 散布図

図 2: モデル 1

図 3: モデル 2

図 4: モデル 3

図 5: モデルの比較

あてはめ値の性質

あてはめ値

• さまざまな表現

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$
を代入)
$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
を代入)
$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は **誤差項** の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は 誤差の重み付けの和 で表される

ハット行列

定義

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

• ハット行列 H による表現

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_j = (H)_{jj} y_j + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい:他のデータでも予測が可能
- テコ比が大きい:他のデータでは予測が困難

演習

問題

- ハット行列 H について以下を示しなさい
 - H は対称行列であること
 - H は羃等であること

$$H^2 = H$$
, $(I - H)^2 = I - H$

- 以下の等式が成り立つこと

$$HX = X$$
, $X^{\mathsf{T}}H = X^{\mathsf{T}}$

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

正規分布の重要な性質 (再生性)正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- 誤差の仮定: 独立, 平均 0 分散 σ^2 の 正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (X^{\mathsf{T}} X)^{-1}$$

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2} (X^{\mathsf{T}} X)^{-1})$$

演習

問題

- 誤差が独立で、平均 0 分散 σ^2 の正規分布に従うとき、最小二乗推定量 $\hat{\boldsymbol{\beta}}$ について以下を示しなさい
 - 平均は **β**(真の母数) となること
 - 共分散行列は $\sigma^2(X^\mathsf{T}X)^{-1}$ となること

誤差の評価

寄与率 (再掲)

決定係数 (R-squared): (回帰式で説明できるばらつきの比率)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared): (決定係数を不偏分散で補正)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - **β** の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(X^\mathsf{T}X)^{-1})$$

 $-\hat{\beta}_i$ の分布: 1 変量正規分布

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2)$$

* (A)_{ii} は行列 A の (j, j) (対角) 成分

標準誤差

• 標準誤差 (standard error) : \hat{eta}_i の標準偏差の推定量

s.e.
$$(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^{\mathsf{T}}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

演習

問題

- 以下を示しなさい
 - 不偏分散 $\hat{\sigma}^2$ が母数 σ^2 の不偏な推定量となる以下が成り立つことを示せばよい

$$\mathbb{E}\left[\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}\right] = (n-p-1)\sigma^{2}$$

係数の評価

t 統計量

• 回帰係数の分布 に関する定理

t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_i)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - $\hat{\sigma}^2$ と $\hat{\beta}$ は独立となる
 - $-(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $β_i$ = 0 (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率

$$(p \ \mbox{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

- f(x) は自由度 n-p-1 の t 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

モデルの評価

F 統計量

・ばらつきの比に関する定理:

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F 統計量 (F -statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - $-S_r$ と S は独立となる
 - S_r/σ^2 は自由度 p の χ^2 分布に従う
 - S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F 統計量を用いた検定

- ・ 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0 (S_r \text{ が } \chi^2 \text{ 分布になる})$
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率

$$(p \ \mbox{\'e}) = \int_F^\infty f(x) dx$$
 (片側検定)

- f(x) は自由度 p,n-p-1 の F 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

解析の事例

東京の8月の気候の分析 (再掲)

• データの一部

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.60	0.00	24.53	0.00	SSE	2.80	1010.10	72.00	8.80
2022-08-02	31.60	0.00	24.78	0.00	SSE	2.50	1008.80	71.00	9.80
2022-08-03	31.50	0.00	21.24	0.00	SSE	2.30	1005.10	75.00	7.30
2022-08-04	24.60	18.00	3.46	0.00	NE	2.70	1006.00	89.00	10.00
2022-08-05	23.80	0.00	7.65	0.00	NE	2.90	1006.10	83.00	9.80
2022-08-06	25.20	0.00	17.06	0.00	SSE	2.40	1008.10	73.00	10.00
2022-08-07	27.60	0.00	14.45	0.00	SSE	2.20	1009.30	80.00	8.30
2022-08-08	29.80	0.00	22.52	0.00	S	4.50	1008.50	75.00	4.80
2022-08-09	30.90	0.00	25.50	0.00	S	5.50	1006.90	69.00	6.80
2022-08-10	30.50	0.00	25.99	0.00	S	5.30	1007.20	70.00	6.00
2022-08-11	29.50	0.00	22.90	0.00	S	5.40	1007.50	75.00	6.00
2022-08-12	28.30	2.00	15.36	0.00	S	5.80	1007.50	81.00	9.80

- 気温を説明する5種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化 (再掲)

• 観測値とあてはめ値の比較

図 6: モデルの比較

モデルの比較

- 寄与率 $\cdot t$ 統計量 $\cdot F$ 統計量
- 変数名の対応
 - 気温 (temp), 気圧 (press), 日射 (solar), 湿度 (humid), 雲量 (cloud)
- ・診断プロット (モデル4)
- ・診断プロット (モデル 5)

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・第3回:モデルによる予測と発展的なモデル

図 7: モデルの比較

図 8: モデルの比較