Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	9
З ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм метода Mas_create класса MyClass	10
3.2 Алгоритм функции main	10
3.3 Алгоритм функции func	11
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	15
5.1 Файл main.cpp	15
5.2 Файл MyClass.cpp	16
5.3 Файл MyClass.h	17
6 ТЕСТИРОВАНИЕ	19
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- конструктор по умолчанию, в начале работы выдает сообщение;
- параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. В начале работы выдает сообщение;
- конструктор копии, обеспечивает создание копии объекта в новой области памяти. В начале работы выдает сообщение;
- деструктор, который в начале работы выдает сообщение;
- метод, который создает целочисленный массив в закрытой области, согласно ранее заданной размерности;
- метод ввода значений элементов созданного массива;
- метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- метод который, суммирует значения элементов массива и возвращает это значение;
- метод последовательного вывода содержимого элементов массива, которые

разделены двумя пробелами.

Назовём класс описания данного объекта cl_obj.

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Инициализация указателя на объект класса cl_obj адресом объекта, созданного с использованием параметризированного конструктора.
- 2. С использованием указателя на объект класса cl_obj вызов метода создания массива.
- 3. С использованием указателя на объект класса cl_obj вызов метода ввода значений элементов массива.
- 4. С использованием указателя на объект класса cl_obj вызов метода 2.
- 5. Возврат указателя на объект класса cl_obj.

В основной функции реализовать алгоритм:

- 6. Ввод размерности массива.
- 7. Если размерность массива некорректная, вывести сообщение и завершить работу алгоритма.
- 8. Вывод значения размерности массива.
- 9. Объявить первый указатель на объект класса cl_obj.
- 10.Присвоение первому указателю результата работы функции func с аргументом, содержащим значение размерности массива.
- 11.С использованием первого указателя вызов метода 1.
- 12.Инициализация второго указателя на объект класса cl_obj адресом объекта, созданного с использованием конструктора копии с аргументом первого объекта.
- 13.С использованием второго указателя вызов метода 2.
- 14. Вывод содержимого массива первого объекта.
- 15. Вывод суммы элементов массива первого объекта.

- 16. Вывод содержимого массива второго объекта.
- 17. Вывод суммы элементов массива второго объекта.
- 18.Второму объекту присвоить первый объект.
- 19.С использованием первого указателя вызов метода 1.
- 20. Вывод содержимого массива второго объекта.
- 21. Вывод суммы элементов массива второго объекта.

1.1 Описание входных данных

```
Первая строка:

«Целое число»
Вторая строка:

«Целое число» «Целое число» . . .

Пример:

4
3 5 1 2
```

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак: «Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

«Целое число» «Целое число» «Целое число» . . .

Пример вывода:

2 МЕТОД РЕШЕНИЯ

Для решения задачи используются:

Объекты ввода/вывода cin/cout

Объекты new/delete

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода Mas_create класса MyClass

Функционал: Создание динамического массива.

Параметры: Отсутствуют.

Возвращаемое значение: Целый тип.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода Mas_create класса MyClass

N	Предикат	Действия	No
			перехода
1		mas = new int[len]	Ø

3.2 Алгоритм функции main

Функционал: Основная функция.

Параметры: Отсутствуют.

Возвращаемое значение: Целый тип.

Алгоритм функции представлен в таблице 2.

Таблица 2 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		Инициализация l	2
2	1 > 2) && (1 % 2 == 0)		3
		Вывод 1"?"	Ø

No	Предикат	Действия	№ перехода
3		Создание указателя на объект класса obj_a	4
4		Присвоение obj_a значений возравщаймых	5
		функцией func(l)	
5		Вызов метода Met_a() для obj_a	6
6		Создание указателя на объект obj_b типа MyClass c	
7		Вызов метода Met_b() для obj_b	8
8		Вызов метода Print() для obj_a	9
9		Вывод результатов метода Summ() для объекта	10
		obj_a	
1		Вызов метода Print() для obj_b	11
0			
1		Вывод результатов метода Summ() для объекта	12
1		obj_b	
1		*obj_b = *obj_a	13
2			
1		Вызов метода Met_a() для obj_a	14
3			
1		Вызов метода Print() для obj_b	15
4			
1		Вывод результатов метода Summ() для объекта	16
5		obj_b	
1		Отчистка памяти выделенной под указатели	Ø
6			

3.3 Алгоритм функции func

Функционал: Функция из постановки задачи.

Параметры: int l.

Возвращаемое значение: Указатель на MyClass.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции func

N₂	Предикат	Действия	No
			перехода
1		Создание указателя на объект класса obj_func	2
2		Вызов метода Mas_create()	3
3		Вызов метода Input()	4
4		Вызов метода Met_b()	5
5		Возвращение obj_func	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include "MyClass.h"
MyClass* func(int 1)
      MyClass* obj_func = new MyClass(1);
      obj_func->Mas_create();
      obj_func->Input();
      obj_func->Met_b();
      return obj_func;
}
int main()
{
      int 1;
      cin >> 1;
      cout << 1;
      if ((1 > 2) \&\& (1 \% 2 == 0))
            MyClass* obj_a;
            obj_a = func(1);
            obj_a->Met_a();
            MyClass* obj_b = new MyClass(obj_a);
            obj_b->Met_b();
            obj_a->Print();
            cout << endl << obj_a->Summ();
            obj_b->Print();
            cout << endl << obj_b->Summ();
            *obj_b = *obj_a;
            obj_a->Met_a();
            obj_b->Print();
            cout << endl << obj_b->Summ();
            delete obj_a;
            delete obj_b;
      else
      {
            cout << "?";
      }
```

5.2 Файл MyClass.cpp

Листинг 2 – MyClass.cpp

```
#include "MyClass.h"
int dest = 0;
MyClass::MyClass()
      cout << "\nDefault constructor";</pre>
}
MyClass::MyClass(int 1)
      cout << "\nConstructor set";</pre>
      len = 1;
      mas = new int[len];
}
MyClass::~MyClass()
      cout << "\nDestructor";</pre>
      if (mas != nullptr && dest == 3)
      {
            delete []mas;
      }
}
MyClass::MyClass(MyClass* obj)
      cout << "\nCopy constructor";</pre>
      len = obj->len;
      mas = new int[len];
      for (int i = 0; i < len; i++)
      {
            mas[i] = obj->mas[i];
      }
}
void MyClass::Input()
      for (int i = 0; i < len; i++)
            cin >> mas[i];
      }
}
void MyClass::Met_a()
      for (int i = 0; i+1 < len; i = i + 2)
      {
            mas[i] = mas[i] + mas[i+1];
      }
}
```

```
void MyClass::Met_b()
{
      for (int i = 0; i+1 < len; i = i + 2)
            mas[i] = mas[i] * mas[i+1];
      }
}
int MyClass::Summ()
      int summ = 0;
      for (int i = 0; i < len; i++)
            summ = summ + mas[i];
      return summ;
}
void MyClass::Print()
      cout << endl;
      for (int i = 0; i < len; i++)
            cout << mas[i];</pre>
            if (i != len-1)
                   cout << " ";
            }
      }
}
void MyClass::Mas_create()
      mas = new int[len];
```

5.3 Файл MyClass.h

Листинг 3 - MyClass.h

```
#ifndef __MYCLASS_H__
#define __MYCLASS_H__
#include <iostream>
using namespace std;
class MyClass
{
public:
    MyClass();
    MyClass(int 1);
    MyClass(MyClass* obj);
    ~MyClass();
    void Input();
    void Met_a();
```

```
void Met_b();
  int Summ();
  void Print();
  void Mas_create();
private:
    int *mas, len = 0;
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

Ожидаемые выходные	Фактические выходные
данные	данные
4	4
Constructor set	Constructor set
Copy constructor	Copy constructor
20 5 4 2	20 5 4 2
31	31
100 5 8 2	100 5 8 2
115	115
25 5 6 2	25 5 6 2
38	38
Destructor	Destructor
Destructor	Destructor
3?	3?
	Данные 4 Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 25 5 6 2 38 Destructor Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).