

Comparación Curvas de Descarga de las Estaciones de telemetría del canal El Churque

1 El Churque - Entrada (FID:0, ID:36)

1.1 Resumen aforos El Churque - Entrada (FID:0, ID:36)

Se realizaron 19 aforos frente a la estación de monitoreo de caudal, cuya sección de aforo presenta un ancho de 1,31 m con una geometría rectangular y revestida en hormigón. Los aforos corresponden a 7 alturas de lámina de agua registradas en el limnímetro del pozo de aquietamiento de la estación, además se registró una lámina de nivel base o caudal de 0,0 l/s.

Cuadro 1: Resumen de aforos estación telemétrica El Churque - Entrada

Altura (m)	Caudal (I/s)	Caudal promedio (I/s)	Desviación estándar	Coeficiente de variabilidad (%)
0,31	257,002 260,054 260,514	259,190	1,909	0,736
0,33	275,469 279,748 280,542	278,586	2,729	0,979
0,37	329,665 331,859 332,002	331,175	1,310	0,396
0,39	370,140 376,337 378,582	375,020	4,373	1,166
0,51	542,485 543,938 548,722	545,048	3,263	0,599
0,64	776,961	776,961	NaN	NaN
0,67	948,238 950,686 952,687	950,537	2,228	0,234

1.2 Construcción curvas de descarga estación telemétrica El Churque - Entrada (FID:0, ID:36)

Se construyeron 2 curvas de descarga de caudal. La primera se denomina "Curva de descarga FID:0" y se generó mediante un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h), el cual utilizó una ecuación polinomial de segundo grado o cuadrática, desarrollada en el programa Microsoft Excel.

La segunda se denomina "Curva de descarga ID:36" y se generó mediante un modelo que utiliza un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h). Asumiendo un caudal constante, son dos los tipos de ecuaciones principalemente usados en hidrometría 1 , estas son las ecuación de potencia y la polinomial de segundo grado o cuadrática. Se utilizó la variación del coeficiente de determinación para evaluar el modelo a utilizar, ya que este coeficiente determina la calidad del modelo (se escoje el modelo que obtiene un valor de este indicador más cercano a 1). La construcción del modelo se realizó

¹En: W. Boiten. 2003. Hydrometry: IHE Delft Lecture Note Series. Capítulo 4.

según el algoritmo de resolución de problemas de mínimos cuadrados no lineales modificado por Levenberg-Marquard t^2 en el ambiente computacional/lenguaje de programación ${\bf R}$.

1.2.1 Curva de descarga FID:0

Ecuación de descarga de caudal:

$$Q = 1493 * h_w^2 + 334,45 * h_w + 3,8372$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

Cuadro 2: Tabla de altura - caudal FID:0

	altura (m)	Q (I/s)		altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	26	0,25	180,81	51	0,50	544,51
2	0,01	7,33	27	0,26	191,78	52	0,51	562,94
3	0,02	11,12	28	0,27	203,04	53	0,52	581,67
4	0,03	15,22	29	0,28	214,60	54	0,53	600,70
5	0,04	19,61	30	0,29	226,46	55	0,54	620,03
6	0,05	24,29	31	0,30	238,61	56	0,55	639,66
7	0,06	29,28	32	0,31	251,07	57	0,56	659,58
8	0,07	34,57	33	0,32	263,83	58	0,57	679,81
9	0,08	40,15	34	0,33	276,88	59	0,58	700,33
10	0,09	46,04	35	0,34	290,23	60	0,59	721,15
11	0,10	52,22	36	0,35	303,89	61	0,60	742,28
12	0,11	58,70	37	0,36	317,84	62	0,61	763,69
13	0,12	65,48	38	0,37	332,08	63	0,62	785,41
14	0,13	72,56	39	0,38	346,63	64	0,63	807,43
15	0,14	79,94	40	0,39	361,48	65	0,64	829,75
16	0,15	87,62	41	0,40	376,63	66	0,65	852,36
17	0,16	95,59	42	0,41	392,07	67	0,66	875,27
18	0,17	103,86	43	0,42	407,81	68	0,67	898,49
19	0,18	112,44	44	0,43	423,85			
20	0,19	121,31	45	0,44	440,19			
21	0,20	130,48	46	0,45	456,83			
22	0,21	139,95	47	0,46	473,77			
23	0,22	149,72	48	0,47	491,01			
24	0,23	159,78	49	0,48	508,54			
25	0,24	170,15	50	0,49	526,38			

²J.J. Moré, "The Leveng-Marquardt algorithm: implementation and theory," in *Lecture Notes* en *Mathematics* **630**: Numerial Analysis, G.A. Watson (Editor), Springer-Verlag: Berlín, 1978, pp. 105-116.

Ecuación de descarga de caudal:

$$Q = 351, 18 * h_w + 1477 * h_w^2$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

El coeficiente R^2 : 0,986

Cuadro 3: Tabla de altura - caudal ID:36

	altura (m)	Q (I/s)		altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	26	0,25	180,11	51	0,50	544,84
2	0,01	3,66	27	0,26	191,15	52	0,51	563,27
3	0,02	7,61	28	0,27	202,49	53	0,52	582,00
4	0,03	11,86	29	0,28	214,13	54	0,53	601,02
5	0,04	16,41	30	0,29	226,06	55	0,54	620,33
6	0,05	21,25	31	0,30	238,29	56	0,55	639,94
7	0,06	26,39	32	0,31	250,81	57	0,56	659,85
8	0,07	31,82	33	0,32	263,62	58	0,57	680,05
9	0,08	37,55	34	0,33	276,74	59	0,58	700,55
10	0,09	43,57	35	0,34	290,14	60	0,59	721,34
11	0,10	49,89	36	0,35	303,85	61	0,60	742,43
12	0,11	56,50	37	0,36	317,85	62	0,61	763,81
13	0,12	63,41	38	0,37	332,14	63	0,62	785,49
14	0,13	70,62	39	0,38	346,73	64	0,63	807,47
15	0,14	78,11	40	0,39	361,61	65	0,64	829,74
16	0,15	85,91	41	0,40	376,79	66	0,65	852,30
17	0,16	94,00	42	0,41	392,27	67	0,66	875,16
18	0,17	102,39	43	0,42	408,04	68	0,67	898,32
19	0,18	111,07	44	0,43	424,11			
20	0,19	120,04	45	0,44	440,47			
21	0,20	129,32	46	0,45	457,12			
22	0,21	138,88	47	0,46	474,08			
23	0,22	148,75	48	0,47	491,33			
24	0,23	158,91	49	0,48	508,87			
25	0,24	169,36	50	0,49	526,71			

1.3 Comparación curvas de descarga estación telemétrica El Churque - Entrada (FID:0, ID:36)

Las curvas de descarga generadas para este punto de control no presentan grandes diferencias al analizar las tablas de altura - caudal. Las principales diferencias se presentan en los caudales más bajos, lo cual se puede deber a que no se realizaron aforos con estos caudales.

2 Control Agrícola Tamaya (ID:37)

2.1 Resumen aforos Control Agrícola Tamaya (ID:37)

Se realizaron 16 aforos frente a la estación de monitoreo de caudal, cuya sección de aforo se encuentra revestida con hormigón en el fondo y losetas de hormigón en los costados, presenta una forma geométrica de tipo trapezoidal, por lo que el ancho o espejo de agua se encuentra condicionado a la altura de lámina de agua pasante, el cual varía hasta los 1,68 m según la máxima altura aforada. Los aforos corresponden a 6 alturas de lámina de agua registradas en el limnímetro del pozo de aquietamiento de la estación, además se registró una lámina de nivel base o caudal de 0,0 l/s.

Cuadro 4: Resumen de aforos estación telemétrica Control Agrícola Tamaya

Altura (m)	Caudal (I/s)	Caudal promedio (I/s)	Desviación estándar	Coeficiente de variabilidad (%)
0,34	233,342 233,700 233,735	233,592	0,217	0,093
0,38	283,597 284,092 284,099	283,929	0,288	0,102
0,46	472,592 472,888 473,931	473,137	0,703	0,149
0,50	499,055 504,825 505,768	503,216	3,634	0,722
0,54	555,199	555,199	NaN	NaN
0,64	784,376 786,095 788,091	786,187	1,859	0,237

2.2 Construcción curvas de descarga estación telemétrica Control Agrícola Tamaya (ID:37)

Se construyeron 2 curvas de descarga de caudal. La primera se denomina "Curva de descarga Control Agrícola Tamaya" y se generó mediante un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h), el cual utilizó una ecuación polinomial de segundo grado o cuadrática, desarrollada en el programa Microsoft Excel.

La segunda se denomina "Curva de descarga ID:37" y se generó mediante un modelo que utiliza un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h). Asumiendo un caudal constante, son dos los tipos de ecuaciones principalemente usados en hidrometría³, estas son las ecuación de potencia y la polinomial de segundo grado o cuadrática. Se utilizó la variación del coeficiente de determinación para evaluar el modelo a utilizar, ya que este coeficiente determina la calidad del modelo (se escoje el modelo que obtiene un valor de este indicador más cercano a 1). La construcción del modelo se realizó

³En: W. Boiten. 2003. Hydrometry: IHE Delft Lecture Note Series. Capítulo 4.

según el algoritmo de resolución de problemas de mínimos cuadrados no lineales modificado por Levenberg-Marquard 4 en el ambiente computacional/lenguaje de programación \mathbf{R} .

2.2.1 Curva de descarga Control Agrícola Tamaya

Ecuación de descarga de caudal:

$$Q = 1679, 8 * h_w^2 + 161, 58 * h_w - 2,416$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

Cuadro 5: Tabla de altura - caudal Control Agrícola Tamaya

	altura (m)	Q (I/s)		altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	23	0,22	114,4	45	0,44	393,9
2	0,01	0,6	24	0,23	123,6	46	0,45	410,5
3	0,02	1,5	25	0,24	133,1	47	0,46	427,4
4	0,03	3,9	26	0,25	143,0	48	0,47	444,6
5	0,04	6,7	27	0,26	153,1	49	0,48	462,2
6	0,05	9,9	28	0,27	163,7	50	0,49	480,1
7	0,06	13,3	29	0,28	174,5	51	0,50	498,3
8	0,07	17,1	30	0,29	185,7	52	0,51	516,9
9	0,08	21,3	31	0,30	197,2	53	0,52	535,8
10	0,09	25,7	32	0,31	209,1	54	0,53	555,1
11	0,10	30,5	33	0,32	221,3	55	0,54	574,7
12	0,11	35,7	34	0,33	233,8	56	0,55	594,6
13	0,12	41,2	35	0,34	246,7	57	0,56	614,9
14	0,13	47,0	36	0,35	259,9	58	0,57	635,5
15	0,14	53,1	37	0,36	273,5	59	0,58	656,4
16	0,15	59,6	38	0,37	287,3	60	0,59	677,7
17	0,16	66,4	39	0,38	301,5	61	0,60	699,3
18	0,17	73,6	40	0,39	316,1	62	0,61	721,2
19	0,18	81,1	41	0,40	331,0	63	0,62	743,5
20	0,19	88,9	42	0,41	346,2	64	0,63	766,1
21	0,20	97,1	43	0,42	361,8	65	0,64	789,0
22	0,21	105,6	44	0,43	377,7			

⁴J.J. Moré, "The Leveng-Marquardt algorithm: implementation and theory," in *Lecture Notes* en *Mathematics* **630**: Numerial Analysis, G.A. Watson (Editor), Springer-Verlag: Berlín, 1978, pp. 105-116.

Ecuación de descarga de caudal:

$$Q = 1787, 97 * h_w^{1,84}$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

El coeficiente R^2 : 0,986

Cuadro 6: Tabla de altura - caudal ID:37

	altura (m)	Q (I/s)		altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	23	0,22	110,42	45	0,44	395,06
2	0,01	0,38	24	0,23	119,83	46	0,45	411,73
3	0,02	1,34	25	0,24	129,58	47	0,46	428,71
4	0,03	2,83	26	0,25	139,69	48	0,47	446,01
5	0,04	4,80	27	0,26	150,14	49	0,48	463,61
6	0,05	7,24	28	0,27	160,93	50	0,49	481,53
7	0,06	10,12	29	0,28	172,06	51	0,50	499,76
8	0,07	13,44	30	0,29	183,53	52	0,51	518,29
9	0,08	17,18	31	0,30	195,33	53	0,52	537,14
10	0,09	21,34	32	0,31	207,47	54	0,53	556,29
11	0,10	25,90	33	0,32	219,95	55	0,54	575,74
12	0,11	30,86	34	0,33	232,75	56	0,55	595,50
13	0,12	36,22	35	0,34	245,89	57	0,56	615,56
14	0,13	41,96	36	0,35	259,35	58	0,57	635,93
15	0,14	48,09	37	0,36	273,14	59	0,58	656,60
16	0,15	54,60	38	0,37	287,26	60	0,59	677,57
17	0,16	61,48	39	0,38	301,70	61	0,60	698,84
18	0,17	68,73	40	0,39	316,46	62	0,61	720,41
19	0,18	76,35	41	0,40	331,54	63	0,62	742,27
20	0,19	84,33	42	0,41	346,95	64	0,63	764,44
21	0,20	92,67	43	0,42	362,67	65	0,64	786,90
22	0,21	101,37	44	0,43	378,70			,

2.3 Comparación curvas de descarga estación telemétrica Control Agrícola Tamaya (ID:37)

Las curvas de descarga generadas para este punto de control no presentan grandes diferencias al analizar las tablas de altura - caudal. Las principales diferencias se presentan en los caudales críticos, lo cual se puede deber a que se realizaron pocos o nulos aforos con estos caudales.

3 Embalse Rumay - Entrada (FID:15 ID:39)

3.1 Resumen aforos Embalse Rumay - Entrada (FID:15 ID:39)

Se realizaron 18 aforos frente a la estación de monitoreo de caudal, cuya sección de aforo presenta un ancho de 0.9 metros con una geometría rectangular y revestida en hormigón, además presenta un aforador de tipo vertedero, con una altura de 0,20 m, equivalentes al nivel base o caudal de 0,0 l/s. Los aforos corresponden a 6 alturas de lámina de agua registradas en el limnímetro del pozo de aquietamiento de la estación.

Cuadro 7: Resumen de aforos estación telemétrica Embalse Rumay - Entrada (FID:15 ID:39)

Altura (m)	Caudal (I/s)	Caudal promedio (I/s)	Desviación estándar	Coeficiente de variabilidad (%)
0,23	13,990 14,102 14,136	14,076	0,077	0,545
0,27	31,079 31,531 31,709	31,440	0,324	1,032
0,32	85,212 85,692 86,844	85,916	0,839	0,976
0,35	114,726 114,988 115,854	115,189	0,591	0,513
0,38	169,347 169,988 170,544	169,960	0,599	0,352
0,41	221,569 221,708 223,906	222,394	1,311	0,590

3.2 Construcción curvas de descarga estación telemétrica Embalse Rumay - Entrada (FID:15 ID:39)

Se construyeron 2 curvas de descarga de caudal. La primera se denomina "Curva de descarga FID:15" y se generó mediante un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h), el cual utilizó una ecuación polinomial de segundo grado o cuadrática, desarrollada en el programa Microsoft Excel.

La segunda se denomina "Curva de descarga ID:39" y se generó mediante un modelo que utiliza un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h). Asumiendo un caudal constante, son dos los tipos de ecuaciones principalemente usados en hidrometría 5 , estas son las ecuación de potencia y la polinomial de segundo grado o cuadrática. Se utilizó la variación del coeficiente de determinación para evaluar el modelo a utilizar, ya que este coeficiente determina la calidad del modelo (se escoje el modelo que obtiene un valor de este indicador más cercano a 1). La construcción del modelo se realizó

⁵En: W. Boiten. 2003. Hydrometry: IHE Delft Lecture Note Series. Capítulo 4.

según el algoritmo de resolución de problemas de mínimos cuadrados no lineales modificado por Levenberg-Marquardt⁶ en el ambiente computacional/lenguaje de programación **R**.

3.2.1 Curva de descarga FID:15

Ecuación de descarga de caudal:

$$Q = 4250, 6 * h_w^2 - 1544, 3 * h_w + 140, 59$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

Cuadro 8: Tabla de altura - caudal FID:15

	altura (m)	Q (I/s)		altura (m)	Q (I/s)
	0,20	2,0	17	0,36	135.7
2	0,21	3,9	18	0,37	151,3
3	0,22	6,8	19	0,38	167,7
4	0,23	10,5	20	0,39	185,0
5	0,24	15,0	21	0,40	203,2
6	0,25	20,4	22	0,41	222,2
7	0,26	26,6		·	
8	0,27	33,7			
9	0,28	41,6			
10	0,29	50,4			
11	0,30	60,1			
12	0,31	70,5			
13	0,32	81,9			
14	0,33	94,1			
15	0,34	107,1			
16	0,35	121,0			

⁶J.J. Moré, "The Leveng-Marquardt algorithm: implementation and theory," in *Lecture Notes* en *Mathematics* **630**: Numerial Analysis, G.A. Watson (Editor), Springer-Verlag: Berlín, 1978, pp. 105-116.

Ecuación de descarga de caudal:

$$Q = 190,56 * (h_w - h_0) + 4122,94 * (h_w - h_0)^2$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m); h_0 = peralte (m).

El coeficiente R^2 : 0,997

Cuadro 9: Tabla de altura - caudal ID:39

	altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,20	0,00	17	0,36	136,04
2	0,21	2,32	18	0,37	151,55
3	0,22	5,46	19	0,38	167,88
4	0,23	9,43	20	0,39	185,04
5	0,24	14,22	21	0,40	203,03
6	0,25	19,84	22	0,41	221,84
7	0,26	26,28			
8	0,27	33,54			
9	0,28	41,63			
10	0,29	50,55			
11	0,30	60,29			
12	0,31	70,85			
13	0,32	82,24			
14	0,33	94,45			
15	0,34	107,49			
16	0,35	121,35			

3.3 Comparación curvas de descarga estación telemétrica Embalse Rumay - Entrada (FID:15 ID:39)

Las curvas de descarga generadas para este punto de control no presentan grandes diferencias al analizar las tablas de altura - caudal. Las principales diferencias se presentan en los caudales críticos, lo cual se puede deber al ajuste de la "curva de descarga FID:15", ya que en el nivel base que corresponde a 0,0 l/s, esta comienza en 2,0 l/s.

4 Embalse Santa Cristina - Entrada (ID:41)

4.1 Resumen aforos Embalse Santa Cristina - Entrada (ID:41)

Se realizaron 19 aforos frente a la estación de monitoreo de caudal, cuya sección de aforo presenta un ancho de 1,40 metros con una geometría rectangular y revestida en hormigón. Los aforos corresponden a 6 alturas de lámina de agua registradas en el limnímetro del pozo de aquietamiento de la estación, además se registró el nivel base o caudal de 0,0 l/s.

Cuadro 10: Resumen de aforos estación telemétrica Embalse Santa Cristina - Entrada (ID:41)

Altura (m)	Caudal (I/s)	Caudal promedio (I/s)	Desviación estándar	Coeficiente de variabilidad (%)
0,08	41,394 41,798 42,701	41,965	0,669	1,595
0,10	58,106	58,106	NaN	NaN
0,13	92,681 92,874 94,002	93,186	0,713	0,765
0,16	116,162 117,045 117,492	116,900	0,676	0,579
0,20	184,047 185,166 185,571	184,928	0,789	0,427
0,25	271,999 272,496 273,070	272,522	0,536	0,197
0,28	327,382 328,358 328,924	328,221	0,780	0,238

4.2 Construcción curvas de descarga estación telemétrica Embalse Santa Cristina - Entrada (ID:41)

Se construyeron 2 curvas de descarga de caudal. La primera se denomina "Curva de descarga Embalse Santa Cristina - Entrada" y se generó mediante un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h), el cual utilizó una ecuación polinomial de segundo grado o cuadrática, desarrollada en el programa Microsoft Excel.

La segunda se denomina "Curva de descarga ID:41" y se generó mediante un modelo que utiliza un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h). Asumiendo un caudal constante, son dos los tipos de ecuaciones principalemente usados en hidrometría⁷, estas son las ecuación de potencia y la polinomial de segundo grado o cuadrática. Se utilizó la variación del coeficiente de determinación para evaluar el modelo a utilizar, ya que este coeficiente determina la calidad del modelo (se escoje el modelo que obtiene un valor de este indicador más cercano a 1). La construcción del modelo se realizó

⁷En: W. Boiten. 2003. Hydrometry: IHE Delft Lecture Note Series. Capítulo 4.

según el algoritmo de resolución de problemas de mínimos cuadrados no lineales modificado por Levenberg-Marquard 8 en el ambiente computacional/lenguaje de programación ${\bf R}$.

4.2.1 Curva de descarga Embalse Santa Cristina - Entrada

Ecuación de descarga de caudal:

$$Q = 3321, 5 * h_w^2 + 247, 27 * h_w + 0,322$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

Cuadro 11: Tabla de altura - caudal Embalse Santa Cristina - Entrada

		0 11 1			0 11 1
	altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	17	0,16	124,9
2	0,01	3,1	18	0,17	138,3
3	0,02	6,6	19	0,18	152,4
4	0,03	10,7	20	0,19	167,2
5	0,04	15,5	21	0,20	182,6
6	0,05	21,0	22	0,21	198,7
7	0,06	27,1	23	0,22	215,5
8	0,07	33,9	24	0,23	232,9
9	0,08	41,4	25	0,24	251,0
10	0,09	49,5	26	0,25	269,7
11	0,10	58,3	27	0,26	289,1
12	0,11	67,7	28	0,27	309,2
13	0,12	77,8	29	0,28	330,0
14	0,13	88,6			
15	0,14	100,0			
16	0,15	112,1			

⁸J.J. Moré, "The Leveng-Marquardt algorithm: implementation and theory," in *Lecture Notes* en *Mathematics* **630**: Numerial Analysis, G.A. Watson (Editor), Springer-Verlag: Berlín, 1978, pp. 105-116.

Ecuación de descarga de caudal:

$$Q = 251,01 * h_w + 3312,2 * h_w^2$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

El coeficiente R^2 : 0,999

Cuadro 12: Tabla de altura - caudal ID:41

	altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,00	0,00	17	0,16	124,95
2	0,01	2,84	18	0,17	138,39
3	0,02	6,35	19	0,18	152,50
4	0,03	10,51	20	0,19	167,26
5	0,04	15,34	21	0,20	182,69
6	0,05	20,83	22	0,21	198,78
7	0,06	26,98	23	0,22	215,53
8	0,07	33,80	24	0,23	232,95
9	80,0	41,28	25	0,24	251,02
10	0,09	49,42	26	0,25	269,76
11	0,10	58,22	27	0,26	289,17
12	0,11	67,69	28	0,27	309,23
13	0,12	77,82	29	0,28	329,96
14	0,13	88,61			
15	0,14	100,06			
16	0,15	112,18			

4.3 Comparación curvas de descarga estación telemétrica Embalse Santa Cristina - Entrada (ID:41)

Las curvas de descarga generadas para este punto de control no presentan grandes diferencias al analizar las tablas de altura - caudal.

5 Embalse Santa Cristina - Salida (ID:42)

5.1 Resumen aforos Embalse Santa Cristina - Salida (ID:42)

Se realizaron 18 aforos frente a la estación de monitoreo de caudal, cuya sección de aforo presenta un ancho de 1,40 metros con una geometría rectangular y revestida en hormigón. Los aforos corresponden a 6 alturas de lámina de agua registradas en el limnímetro del pozo de aquietamiento de la estación, además se registró el nivel base o caudal de 0,0 l/s, que corresponde a 0,20 m, debido al aforador de tipo vertedero presente.

Cuadro 13: Resumen de aforos estación telemétrica Embalse Santa Cristina - Salida (ID:42)

Altura (m)	Caudal (I/s)	Caudal promedio (I/s)	Desviación estándar	Coeficiente de variabilidad (%)
	17,765			
0,23	18,011	17,954	0,169	0,939
	18,087			
	43,106			
0,26	43,348	43,322	0,205	0,472
	43,513			
	86,922			
0,30	87,492	87,575	0,698	0,797
	88,310			
	146,084			
0,33	146,401	146,597	0,634	0,433
	147,306			
	222,779			
0,37	222,982	223,018	0,259	0,116
	223,293			
	309,019			
0,40	309,902	310,224	1,393	0,449
	311,750			

5.2 Construcción curvas de descarga estación telemétrica Embalse Santa Cristina - Salida (ID:42)

Se construyeron 2 curvas de descarga de caudal. La primera se denomina "Curva de descarga Embalse Santa Cristina - Salida" y se generó mediante un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h), el cual utilizó una ecuación polinomial de segundo grado o cuadrática, desarrollada en el programa Microsoft Excel.

La segunda se denomina "Curva de descarga ID:42" y se generó mediante un modelo que utiliza un proceso de regresión no lineal entre el caudal (Q) y el nivel de agua correspondiente (h). Asumiendo un caudal constante, son dos los tipos de ecuaciones principalemente usados en hidrometría 9 , estas son las ecuación de potencia y la polinomial de segundo grado o cuadrática. Se utilizó la variación del coeficiente de determinación para evaluar el modelo a utilizar, ya que este coeficiente determina la calidad del modelo (se escoje el modelo que obtiene un valor de este indicador más cercano a 1). La construcción del modelo se realizó

⁹En: W. Boiten. 2003. Hydrometry: IHE Delft Lecture Note Series. Capítulo 4.

según el algoritmo de resolución de problemas de mínimos cuadrados no lineales modificado por Levenberg-Marquard t^{10} en el ambiente computacional/lenguaje de programación ${\bf R}$.

5.2.1 Curva de descarga Embalse Santa Cristina - Salida

Ecuación de descarga de caudal:

$$Q = 6316, 6 * h_w^2 - 2267, 1 * h_w + 203, 04$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m).

Cuadro 14: Tabla de altura - caudal Embalse Santa Cristina - Entrada

	altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,20	2,28	17	0,36	205,52
2	0,21	5,51	18	0,37	228,96
3	0,22	10,00	19	0,38	253,66
4	0,23	15,76	20	0,39	279,63
5	0,24	22,77	21	0,40	306,86
6	0,25	31,05			
7	0,26	40,60			
8	0,27	51,40			
9	0,28	63,47			
10	0,29	76,81			
11	0,30	91,40			
12	0,31	107,26			
13	0,32	124,39			
14	0,33	142,77			
15	0,34	162,42			
16	0,35	183,34			

¹⁰J.J. Moré, "The Leveng-Marquardt algorithm: implementation and theory," in *Lecture Notes* en *Mathematics* **630**: Numerial Analysis, G.A. Watson (Editor), Springer-Verlag: Berlín, 1978, pp. 105-116.

Ecuación de descarga de caudal:

$$Q = 302,34 * (h_w - h_0) + 6150,9 * (h_w - h_0)^2$$

donde:

Q = Caudal (I/s); h_w = altura de referencia (m); h_0 = peralte (m).

El coeficiente R^2 : 0,998

Cuadro 15: Tabla de altura - caudal ID:42

	altura (m)	Q (I/s)		altura (m)	Q (I/s)
1	0,20	0,00	17	0,36	205,84
2	0,21	3,64	18	0,37	229,16
3	0,22	8,51	19	0,38	253,71
4	0,23	14,61	20	0,39	279,49
5	0,24	21,94	21	0,40	306,50
6	0,25	30,49			
7	0,26	40,28			
8	0,27	51,30			
9	0,28	63,55			
10	0,29	77,03			
11	0,30	91,74			
12	0,31	107,68			
13	0,32	124,85			
14	0,33	143,25			
15	0,34	162,89			
16	0,35	183,75			

5.3 Comparación curvas de descarga estación telemétrica Embalse Santa Cristina - Salida (ID:42)

Las curvas de descarga generadas para este punto de control no presentan grandes diferencias al analizar las tablas de altura - caudal.