Towards implementation of ADAPT-VQE in real quantum hardware

Nonia Vaquero Sabater PhD Student

• Ground state energy Minimum eigenvalue

- Ground state energy
 Minimum eigenvalue
- Molecular Hamiltonian in second quantization

$$H = \sum_{pq} h_{pq} a_p^\dagger a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^\dagger a_q^\dagger a_r a_s$$

- Ground state energy
 Minimum eigenvalue
- Molecular Hamiltonian in second quantization

$$H=\sum_{pq}h_{pq}a_{p}^{\dagger}a_{q}+rac{1}{2}\sum_{pqrs}h_{pqrs}a_{p}^{\dagger}a_{q}^{\dagger}a_{r}a_{s}$$

Define a fermion to qubit mapping

Jordan-Wigner:
$$|\chi_i
angle
ightarrow |q_i
angle$$

Molecular Hamiltonian in second quantization

$$H = \sum_{pq} h_{pq} a_p^\dagger a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^\dagger a_q^\dagger a_r a_s \hspace{1cm} \longmapsto \hspace{1cm} H = \sum_i h_i P_i \hspace{0.3cm} with \hspace{0.3cm} P_i = \prod_j p_j, \hspace{0.3cm} p_j \in \{X,Y,Z\}$$

Define a fermion to qubit mapping

Jordan-Wigner:
$$|\chi_i
angle
ightarrow |q_i
angle$$

Ansatz:

 $\langle \psi(heta)|H|\psi(heta)
angle$

Ansatz:

 $|\psi(\theta)\rangle$

1. Prepare trial state $|\psi(\theta)\rangle$

 $\langle \psi(heta)|H|\psi(heta)
angle$

1. Prepare trial state $|\psi(\theta)\rangle$ 2. Measure cost function $\frac{|0\rangle}{|0\rangle} \qquad \qquad U(\theta) \qquad \qquad \langle \psi(\theta)|H|\psi(\theta)\rangle$

Final state:

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle .$$

Improving Initial State

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle)$$

Improving Initial State

$$|\psi
angle = \prod_{\dot{i}} e^{ heta_i \hat{A}_i} |\psi_{HF}
angle)$$
 — Correlated orbitals basis set

Improving Initial State

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}} (|\psi_{HF}
angle)$$
 — Correlated orbitals

$$|\psi
angle = \prod_i \widehat{e^{ heta_i \hat{A}_i}} |\psi_{HF}
angle$$

$$|\psi
angle = \prod_i \widehat{e^{ heta_i \hat{A}_i}} |\psi_{HF}
angle$$

$$\hat{A}=i\sum_{j}P_{j}\quad with\quad P_{j}=\prod_{k}p_{k},\quad p_{k}\in\{X,Y,Z\}$$

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle$$
 $\hat{A}=i\sum_j P_j \quad with \quad P_j=\prod_k p_k, \quad p_k\in\{X,Y,Z\}$ $e^{i heta_i\sum_j P_j}
eq \prod_j e^{i heta_i P_j}$ when terms do not commute

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle \ \hat{A} = i \sum_j P_j \quad with \quad P_j = \prod_k p_k, \quad p_k \in \{X,Y,Z\} \ e^{i heta_i \sum_j P_j} pprox \prod_j e^{i heta_i P_j}$$

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle \ e^{i heta_i \sum_j P_j} pprox \prod_j e^{i heta_i P_j}$$

$$|\psi
angle = \prod_i e^{ heta_i \hat{A}_i} |\psi_{HF}
angle \ e^{i heta_i \sum_j P_j} pprox \prod_i e^{i heta_i P_j}$$

Inverse staircase algorithm

 $e^{i heta XXXZ}$

 $e^{i heta XXXZ}$

 $e^{i heta XXXZ}$

 $e^{i heta XXXZ}$

Transpiling

Real Hardware Simulation Result

Real Hardware Simulation Result

IBM Torino

What error mitigation I have?

Linear H_4 IBM Torino simulation results zne mitigation and measure -1.3mitigation -1.4(resilience level 2) -1.5Energy (Ha) -1.5 -1.5 zne mitigation, measure -1.7mitigation and twirling Torino 10000 shots -1.8Torino 10000 shots twirling Hartree-Fock solution -1.9**Exact ADAPT-VQE solution** -2.0

Experiment

What error mitigation I have?

Estimator

Sampler

- Resilience: Advanced options for configuring error mitigation methods such as measurement error mitigation, ZNE, and PEC.
- Dynamical decoupling: Options for dynamical decoupling.
- Execution: Primitive execution options, including whether to initialize qubits and the repetition delay.
- Twirling: Twirling options, such as whether to apply two-qubit gate twirling and the number of shots to run for each random sample.
- Environment: Execution environment options, such as the logging level to set and job tags to add.
- Simulator: Simulator options, such as the basis gates, simulator seed, and coupling map. Applies to local testing mode only.

Take into account incompatibilities, such as PEC and ZNE

https://docs.quantum.ibm.com/guides/runtime-options-overview#options-compatibility-table

How does qiskit optimize?

- ☐ Using known equalities reduces the number of gates in the circuit
- Using known commutation relations

Example:

About the pass manager I used

Pass manager stages:

- Init stage: decomposition into 1 and 2 qubit gates
- Layout stage: mapping circuit qubits to qubits in the target
- Routing stage: fixes connectivity introducing SWAP when needed
- Translation stage: transforms operations into ones supported by the target
- Optimization stage: optimization, eliminates not needed gates
- Scheduling stage: scheduling the circuit to account for the timing of operations in the circuit

About trotter circuits implementation

$$\hat{X} = \hat{H}\hat{Z}\hat{H}$$

$$\hat{Y} = \hat{S}\hat{X}\hat{S}^{\dagger} = \hat{S}\hat{H}\hat{Z}\hat{H}\hat{S}^{\dagger}$$

$$\hat{Y} = \hat{R}_x(-\pi/2)\hat{Z}\hat{R}_x(\pi/2)$$

About trotter circuits implementation

$$\frac{Z}{Z}$$
 = $\frac{Z}{Z}$

$$\hat{Z}\hat{Z} = \widehat{\text{CNOT}}\,\hat{Z}\hat{I}\,\widehat{\text{CNOT}}$$

CCSD ansatz

$$\langle \psi^{ ext{CCSD}}
angle = e^{\hat{T}_1 + \hat{T}_2} | \psi^{ ext{HF}}
angle$$

$$\hat{T}_1 = \sum_{ia} \hat{t}_i^a = \sum_{ia} t_i^a \hat{a}_a^{\dagger} \hat{a}_i$$

$$\hat{T}_2 = \sum_{i < j, a, b} \hat{t}_{ij}^{ab} = \sum_{i < j, a < b} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_i \hat{a}_j$$

Grimsley, H. R., Economou, S. E., Barnes, E., & Mayhall, N. J. (2019). An adaptive variational algorithm for exact molecular simulations on a quantum computer. *Nature Communications*, *10*(1). https://doi.org/10.1038/s41467-019-10988-2

UCCSD ansatz

$$|\Psi_{\text{UCCSD}}\rangle = e^{\hat{\mathcal{T}}_1 + \hat{\mathcal{T}}_2}|0\rangle$$

$$\hat{\mathcal{T}}_1 = \sum_{ia} \theta_{ia} \left(a_a^{\dagger} a_i - a_i^{\dagger} a_a \right)$$

$$\hat{\mathcal{T}}_2 = \sum_{ijab} \theta_{ijab} \left(a_a^{\dagger} a_b^{\dagger} a_i a_j - a_j^{\dagger} a_i^{\dagger} a_b a_a \right)$$

Grimsley, H. R., Claudino, D., Economou, S. E., Barnes, E., & Mayhall, N. J. (2019). Is the Trotterized UCCSD Ansatz

Chemically Well-Defined? Journal of Chemical Theory and Computation, 16(1), 1-6. https://doi.org/10.1021/acs.jctc.9b01083

UCCSD ansatz trotterized

$$\hat{U}(ec{ heta}) = \prod_{p>r} \exp\Bigl\{ heta_{pr}(\hat{c}_p^\dagger \hat{c}_r - ext{H. c.})\Bigr\} \prod_{p>q>r>s} \exp\Bigl\{ heta_{pqrs}(\hat{c}_p^\dagger \hat{c}_q^\dagger \hat{c}_r\,\hat{c}_s - ext{H. c.})\Bigr\}$$

About VQE size

Orbitals	UCCSD operators
8	14
10	27
12	44
14	65
16	90

About Torino

Available gates

CZ, ID, RX, RZ, RZZ, SX, X

About basis sets

CO's visualization

NO's visualization

Time transpilation

S gate

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

