Električni krugovi – Lab

#169

Lab 3. Priprema RC Električni Krugovi

Ime i Prezime:	duta	Pervert
Asistent:		oli et o benegli indene, e i improvintante
Grupa:		

Napomena: Popunjena Lab Priprema se pokazuje asistentu na početku laboratorijskih vježbi, a na kraju se predaje na ocjenu sa Lab Izvješćem.

1. Ako konstantna istosmjerna struja iznosa I_0 = 1 mA počevši od trenutka t=0 teče u kapacitet C= 100 μ F, a početni napon na kapacitetu u trenutku t=0 je $u_C(0)$ =0 koliki će biti napon na kapacitetu nakon 2 sekunde? Rješenje:

10 = lyn A = 10 = A (0) = 0 9 U = Q = 10 = 10 3.2 - 120V]

2. Opiši što bi se desilo teoretski ako bi se spojio istosmjerni strujni izvor struje I na slijedeće električne krugove. Upotrijebi vremenski crtež napona na kapacitetu i otporu da bi to ilustrirao. Rješenje:

3. Serijski RC krug na slici pobuđen naponskim izvorom koji ima pobudu oblika $u(t)=U_0S(t)$ će imati eksponencijalni valni oblik odziva napona na kapacitetu u općem obliku: $u_C(t) = A + Be^{-t/RC}$ $u_C(t) = A + Be^{-t/RC}$ $u_C(t) = u_C(t) =$

$$u_{c}(t) = A + Be^{-t/RC}$$

$$u_{c}(t) = A + Be^{-t/RC}$$

$$u_{c}(t) = u_{c}(t) = u_{c}(t)$$

gdje konstanta A označava konačni napon, a konstanta B razliku između početnog i konačnog napona.

a. Zadano je R= 30 k Ω i C= 60 nF , početni napon je 0V, a završni napon je 5V. Koliki će biti napon u trenutku t=1ms? Rješenje:

napon u trenutku
$$t=1$$
ms? Rješenje:
 $\vec{y} = R \cdot c = 80 \times 10^3 \cdot 60 \times 10^9 = 1800 \times 1$

b. U kojem trenutku je napon 0.5V ? Rješenje:

4. Pretpostavimo da su zadane dvije crne kutije koje sadrže ili serijsku ili paralelnu kombinaciju R i C. U slučaju serijskog RC niste u mogućnosti dotaknuti čvor između R i C unutar crne kutije. Kako biste odredili R i C pomoću signalnog generatora, osciloskopa i vanjskog otpornika? Izvesti sve potrebne formule. (Vidi uputu za laboratorijsku vježbu).

 R_2 , $u_2(t)$ ako je poticaj naponski generator valnog oblika u(t)=S(t). Zadane su vrijednosti elemenata R_1 = 2 k Ω , R_2 = 2 k Ω , C_1 = 120 nF. Koliko iznosi RC vremenska konstanta kruga? Rješenje:

Električni krugovi - Lab

Lab 3. Izvješće RC Električni Krugovi

Ime i Prezime:	Muster	Paret	0.1
Asistent:	a de la partir a comita de la partir de la pa	A CANADA DE PROPERTO DE P	4
Grupa:		the state of the state of the state of	701

Napomena: Pojedine točke ovog Lab Izvješća se popunjavaju tokom izrade laboratorijskih vježbi prema istim točkama koje su detaljno opisane u Lab Uputama. Lab Izviješće se predaje asistentu na ocjenu po završetku laboratorijskih vježbi.

Vježba 1: Određivanje naponskih odziva u serijskom RC krugu, derivator, integrator:

Uz zadanu pobudu u opisu zadatka u točkama 1.1–1.2 u Lab-Uputi, nacrtati valne oblike napona na otporu $u_R(t)$ (derivator) i kapacitetu $u_C(t)$ (inegrator) za slijedeće slučajeve RC krugova zadanih u Lab-Uputi a) T >> RC, b) $T \approx RC$ i c) T << RC.

a) T>>RC $u_{R}(t)$ $u_{C}(t)$

Vježba 2: Određivanje konfiguracije RC kruga:

2.1 Da li ste u stanju izmjeriti vrijednost otpora R u serijskom RC krugu na slici 6(a)? Ako ne, objasnite razlog zašto ne možete napraviti mjerenje. Odgovor:

Ne jer je 2= R+ juis a budući do je Dc -> ruma abojemo, 2-00
pa ni prolozi struja

2.2 Objasnite kako ommetar mjeri električni krug na slici 6(b). Zašto treba neko vrijeme prije nego što se očitanje na ommetru stabilizira? Odgovor:

Treba nelso vrijane da se napani i led se napani stabilistranje $(9,96k\Omega)$

2.3 Ako crna kutija u sebi sadrži serijski ili paralelni RC krug, da li je moguće odrediti konfiguraciju RC kruga pomoću ommetra? Ako da, kako? Odgovor:

Da, prema prosta dua zadaten, Orismo o pokazivanje OMWeka -> 2-00 - surijsta Z(stabilan br) paralelan Vježba 3: Određivanje elemenata u serijskom i paralelnom RC krugu unutar crne kutije:

a. Serijski RC krug u crnoj kutiji:

3.1 Koliko iznosi vremenska konstanta (RC)1? Koja je vrijednost od Rx1? Odgovor:

3.2 Kolika je vremenska konstanta (RC)₂? Kolika je vrijednost od Rx₂? Odgovor:

$$t$$
-28ms
 $T = 12.73ms$
 $Rx_0 = 10k \Omega$

3.3 Izračunajte vrijednosti otpornika R_B i kapaciteta C_B pomoću formule za vremensku konstantu $C_B(R_S+R_B+R_X)$ uvrstivši rezultate oba pokusa. Rješenje:

Robstanti CB(RS+RX) =
$$\mathcal{J}$$
 CB = $\frac{\mathcal{J}_1}{RS+RX_1}$ $\longrightarrow \mathcal{J}_2 = \frac{\mathcal{J}_1}{RS+RX_2}$ (RS+RX2) [RS=2,5\Lambda] $\longrightarrow \mathcal{J}_1 = C_8(R_6+R_{X_1})$ (CB=2,5\Lambda] $\longrightarrow C_8(R_6+R_{X_2})$ $\longrightarrow C_8=1\mu$]
$$\mathcal{J}_2 = C_8(R_6+R_{X_2})$$

3.4 Usporedite izračunate i izmjerene vrijednosti kapaciteta i otpornika u serijskoj crnoj kutiji. Da li se točne vrijednosti dobro slažu sa vrijednostima koje smo dobili eksperimentalno? Ako postoje neke značajnije razlike, objasnite zašto. Odgovor:

b. Paralelni RC krug u crnoj kutiji:

3.5 Koja je izmjerena vrijednost otpornika R_B u crnoj kutiji? Odgovor:

3.6 Izmjerite vremensku konstantu kruga pomoću testnog otpora Rx. Nacrtajte valni oblik napona na otporu Rx. Odgovor: $+ = I_t + mS$

3.7 Pomoću izmjerene vremenske konstante kruga i poznate vrijednosti $R_{\rm B}$ izračunajte vrijednost kapaciteta $C_{\rm B}$. Odgovor:

Rul =
$$C_B = \frac{R_B \cdot R_X}{R_X + R_B} \cdot C_B = 5$$

$$C_B = \frac{R_X + R_B}{R_B \cdot R_X}$$

3.8 Usporedite izračunate i izmjerene vrijednosti otpornika i kapaciteta u paralelnoj crnoj kutiji. Da li se točne vrijednosti dobro slažu sa vrijednostima koje smo dobili eksperimentalno? Ako postoje neke značajnije razlike, objasnite zašto. Odgovor:

Postoje rela mange raskite ali to je do ottorna oscilostopa