Approximating functional programs: Taylor subsumes Scott, Berry, Kahn and Plotkin

Davide Barbarossa and Giulio Manzonetto

barbarossa@lipn.univ-paris13.fr LIPN, Université Sorbonne Paris Nord

May 5, 2020

Possible behaviours of a program $F = F\{x\}$

Normalizing	Meaningless
$z \leftarrow 1$ $z \leftarrow \frac{z + x/z}{2}$ write <i>i</i> -th digit of z	while(True){ DoNothing }
F(2)=1,5	F(2) produces no information!

Possible behaviours of a program $F = F\{x\}$

Normalizing	Solvable (Babylonians)	Meaningless
$z \leftarrow 1$ $z \leftarrow \frac{z + x/z}{2}$ write <i>i</i> -th digit of z	$z \leftarrow 1; i \leftarrow 0$ while(True){ $i + +$ $z \leftarrow \frac{z + x/z}{2}$ write i -th digit of z }	while(True){ DoNothing }
F(2)=1,5	$F(2) \rightarrow 1,41$ $\rightarrow 1,414$ $\rightarrow 1,4142$ $\cdots \rightarrow_{\infty} \sqrt{2}$	F(2) produces no information!

Böhm Trees

λ -calculus (Church)

The set Λ of programs is given by $M := x \mid \lambda x.M \mid MM$.

Computation step: $(\lambda x.M)N \to M\{N/x\}$.

Böhm trees (Barendregt)

The map BT : $\Lambda \to \mathcal{B}$ associates each λ -term F with its $B\ddot{o}hm$ tree:

$$\mathrm{BT}(F) := \mathrm{BT}(\mathrm{hnf}(F)), \qquad \mathrm{BT}(F) := \bot \text{ if } F \text{ is unsolvable,}$$

$$\mathrm{BT}(\lambda \vec{x}.y\ Q_1\dots Q_k) := \lambda \vec{x}.y$$
 $\mathrm{BT}(Q_1) \cdots \mathrm{BT}(Q_k)$

The equivalence $=_{\mathrm{BT}}$ is a λ -theory. So $\mathcal{B}_{\Lambda} \simeq \Lambda/_{=_{\mathrm{BT}}}$ is a semantics for Λ . The set of all normal forms is dense in \mathcal{B}_{Λ} (in analogy with $\mathbb Q$ dense in $\mathbb R$).

Finite approximants

- The set ${\cal A}$ of finite approximants is defined as:

$$P ::= \perp | \lambda \vec{x}.y P...P$$

with the intuition that \perp means no information.

- Fix \leq the prorder on \mathcal{A} generated by taking $\perp \leq P$ for all P.
- The set A(F) of the finite approximants of $F \in \Lambda$ is:

$$\mathcal{A}(F) := \{ P \in \mathcal{A} \text{ s.t } \exists N \in \Lambda \text{ s.t } F \twoheadrightarrow_{\beta} N \ge P \}$$

Approximation Theorem

$$\mathrm{BT}(F) = \sup_{P \in \mathcal{A}(F)} P$$

in analogy to the fact that $\sqrt{2}$ is the limit of BabylonianProgram(2).

Derivatives!

	Analysis	λ -calculus
Application	F(x)	Fx
Taylor expansion $\Theta(\cdot)$	$\sum_{n} \frac{1}{n!} F^{(n)}(0) x^{n}$	$\sum_{n} \frac{1}{n!} (\mathbb{D}^{n} \Theta(F) \bullet x^{n}) 0$

Differential λ -calculus

Programs live in the module $\mathbb{Q}^+\langle \Lambda^r \rangle_{\infty}$ and are subject to the equation:

$$D(\lambda x.M) \bullet N = \lambda x. \left(\frac{d}{dx} M \cdot N\right)$$

where $\frac{d}{dx}(PQ) \cdot N := \left(\frac{d}{dx}P \cdot N\right)Q + \left(DP \bullet \left(\frac{d}{dx}Q \cdot N\right)\right)Q$ is the linear substitution of N in M for x.

Ehrhard and Régnier:

 Θ defines a function $\Lambda \to \mathbb{Q}^+ \langle \Lambda^r \rangle_{\infty}$ (called the *full Taylor expansion*):

$$\Theta(\cdot) = \sum_{t \in \mathcal{T}(\cdot)} \frac{1}{\mathrm{m}(t)} t$$

where $m(t) \in \mathbb{N}$ is difficult and $\mathcal{T}(\cdot) : \Lambda \to \mathcal{P}(\Lambda^r)$ is easy (i.e. inductive). Furthermore,

$$NF(\Theta(\cdot)) = \Theta(BT(\cdot)).$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$

Reduction:

$$(\lambda x.t)[s_1, s_2, s_3] \rightarrow ?$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \dots, t]$$

Reduction:

$$(\lambda x.t)[s_1, s_2, s_3] \to t\{s_1/x^{(1)}, s_2/x^{(2)}, s_3/x^{(3)}\}$$

$$x \longrightarrow \text{output}$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$

We need formal (*idempotent*) sum $\mathbb{T} = t_1 + \cdots + t_n$ of resource terms. Reduction:

$$(\lambda x.t)[s_1, s_2, s_3] \to \sum_{\sigma \in \mathfrak{S}_3} t\{s_{\sigma(1)}/x^{(1)}, s_{\sigma(2)}/x^{(2)}, s_{\sigma(3)}/x^{(3)}\}$$

$$x \longrightarrow x \longrightarrow x \longrightarrow x \longrightarrow x \longrightarrow x$$
output

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$

We need formal (*idempotent*) sum $\mathbb{T} = t_1 + \cdots + t_n$ of resource terms. Reduction:

$$(\lambda x.t)[s_1, s_2, s_3] \rightarrow ?$$

Define the set Λ^r of Resource terms:

$$t ::= x \mid \lambda x.t \mid t [t, \dots, t]$$

We need formal (*idempotent*) sum $\mathbb{T} = t_1 + \cdots + t_n$ of resource terms. Reduction:

$$(\lambda x.t)[s_1, s_2, s_3] \to 0$$

$$x \longrightarrow 0$$

Resource terms live a tough life

They may experience non-determinism:

$$\Delta[x,y] := (\lambda x.x[x])[y,y'] \to y[y'] + y'[y]$$

But also starvation:

$$\Delta[\Delta,\Delta] \to (\lambda x.x[x])[\Delta] \to 0$$

As well as surfeit:

$$(\lambda x \lambda y.x)[I][I] \rightarrow (\lambda y.I)[I] \rightarrow 0$$

Summing up: $(\lambda x.t)[s_1,\ldots,s_n] \not\rightarrow 0 \Rightarrow t$ uses each s_i exactly once!

Main Properties:

- Linearity: Cannot erase non-empty bags (unless annihilating). □
- ullet Strong Normalization: Trivial, as there is no duplication. \Box
- ullet Confluence: Locally confluent + strongly normalizing. \square

Qualitative Taylor Expansion

The (support of the full) Taylor expansion is the map $\mathcal{T}(\cdot): \Lambda \to \mathcal{P}(\Lambda^r)$:

$$\mathcal{T}(x) = \{x\}$$

$$\mathcal{T}(\lambda x.M) = \{\lambda x.t \in \Lambda^r \text{ s.t. } t \in \mathcal{T}(M)\}$$

$$\mathcal{T}(MN) = \{t[s_1, \dots, s_k] \in \Lambda^r \text{ s.t. } k \in \mathbb{N}, t \in \mathcal{T}(M), s_i \in \mathcal{T}(N)\}.$$

Qualitative Taylor Expansion

The (support of the full) Taylor expansion is the map $\mathcal{T}(\cdot): \Lambda \to \mathcal{P}(\Lambda^r)$:

$$\mathcal{T}(x) = \{x\}$$

$$\mathcal{T}(\lambda x.M) = \{\lambda x.t \in \Lambda^r \text{ s.t. } t \in \mathcal{T}(M)\}$$

$$\mathcal{T}(MN) = \{t[s_1, \dots, s_k] \in \Lambda^r \text{ s.t. } k \in \mathbb{N}, t \in \mathcal{T}(M), s_i \in \mathcal{T}(N)\}.$$

Examples:

$$\mathcal{T}(\lambda x.x) = \{\lambda x.x\}$$

$$\mathcal{T}(\lambda x.xx) = \{\lambda x.x[x^n] \mid n \in \mathbb{N}\}$$

$$\mathcal{T}(\Omega) = \{(\lambda x.x[x^{n_0}])[\lambda x.x[x^{n_1}], \dots, \lambda x.x[x^{n_k}]] \mid k, n_0, \dots, n_k \in \mathbb{N}\}$$

$$\mathcal{T}(\Delta_f) = \{\lambda x.f[x^n][x^k] \mid n, k \in \mathbb{N}\}$$

$$\mathcal{T}(Y) = \{\lambda f.t[s_1, \dots, s_k] \mid k \in \mathbb{N}, t, s_1, \dots, s_k \in \mathcal{T}(\Delta_f)\}$$

where $Y = \lambda f.\Delta_f\Delta_f$ and $\Delta_f = \lambda x.f(xx)$.

Approximating through resources

Computing the normal form:

$$NF(\mathcal{T}(M)) = \bigcup_{t \in \mathcal{T}(M)} nf(t)$$

Examples

$$NF(\mathcal{T}(Y)) = \{ \lambda f. f1, \lambda f. f[f1], \lambda f. f[f1, f1], \lambda f. f[f1, f[f1], f[f1]], \dots \}.$$

 $NF(\mathcal{T}(\Omega)) = \emptyset$. This is the case for all unsolvables.

Approximating through resources

Computing the normal form:

$$NF(\mathcal{T}(M)) = \bigcup_{t \in \mathcal{T}(M)} nf(t)$$

Examples

NF(
$$\mathcal{T}(Y)$$
) = { $\lambda f.f1, \lambda f.f[f1], \lambda f.f[f1,f1], \lambda f.f[f1,f[f1]], f[f[f1]], \dots$ }.
NF($\mathcal{T}(\Omega)$) = \emptyset . This is the case for all unsolvables.

Taylor Expansion of Böhm Trees

$$\mathcal{T}(\bot) := \emptyset$$

$$\mathcal{T}(\mathrm{BT}(M)) := \bigcup_{P \in \mathcal{A}(M)} \mathcal{T}(P)$$

Approximating through resources

Computing the normal form:

$$\operatorname{NF}(\mathcal{T}(M)) = \bigcup_{t \in \mathcal{T}(M)} \operatorname{nf}(t)$$

Examples

$$NF(\mathcal{T}(Y)) = \{\lambda f. f1, \lambda f. f[f1], \lambda f. f[f1, f1], \lambda f. f[f1], f[f1], f[f1]], \dots\}.$$

 $\mathrm{NF}(\mathcal{T}(\Omega)) = \emptyset$. This is the case for all unsolvables.

Taylor Expansion of Böhm Trees

$$\mathcal{T}(\bot) := \emptyset$$
 $\mathcal{T}(\mathrm{BT}(M)) := \bigcup_{P \in \mathcal{A}(M)} \mathcal{T}(P)$

The diagramm commutes!

A common structure

- Source language → Resource version
 (gain confluence and strong normalization)
- 2 via a Taylor Expansion, providing:
 - static analysis (coherence/cliques),
 - dynamic analysis (normalization)
- 3 and (when possible) a:

Commutation Theorem

$$NF(\mathcal{T}(P)) = \mathcal{T}(BT(P))$$

Corollary

$$\mathrm{BT}(M)=\mathrm{BT}(N)\Leftrightarrow \mathrm{NF}(\mathcal{T}(M))=\mathrm{NF}(\mathcal{T}(N))$$

A common structure

- Source language → Resource version
 (gain confluence and strong normalization)
- 2 via a Taylor Expansion, providing:

"Understanding the relation between the term and its full Taylor expansion might be the starting point of a

and renewing of the theory of approximations".

Commut Ehrhard and Régnier

$$\operatorname{NF}(\mathcal{T}(P)) = \mathcal{T}(\operatorname{BT}(P))$$

Corollary

$$\operatorname{BT}(M) = \operatorname{BT}(N) \Leftrightarrow \operatorname{NF}(\mathcal{T}(M)) = \operatorname{NF}(\mathcal{T}(N))$$

Classic results via labelled reduction

Classic results via Resource Approximation

Equality mod BT is a λ -theory

Contextuality of Böhm trees

Let $C(\cdot)$ be a context.

$$\operatorname{BT}(M) = \operatorname{BT}(N) \quad \Rightarrow \quad \operatorname{BT}(C(M)) = \operatorname{BT}(C(N))$$

Equality mod NFT is a λ -theory

Monotonicity of contexts w.r.t. \leq_{NFT}

Let $C(\cdot)$ be a context.

$$\mathrm{NF}(\mathcal{T}(M)) \subseteq \mathrm{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \mathrm{NF}(\mathcal{T}(C(M))) \subseteq \mathrm{NF}(\mathcal{T}(C(N)))$$

Proof. Induction on C. The interesting case is $C = C_1 C_2$.

Equality mod NFT is a λ -theory

Monotonicity of contexts w.r.t. \leq_{NFT}

Let $C(\cdot)$ be a context.

$$\operatorname{NF}(\mathcal{T}(M)) \subseteq \operatorname{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \operatorname{NF}(\mathcal{T}(C(\!(M)\!))) \subseteq \operatorname{NF}(\mathcal{T}(C(\!(N)\!)))$$

Proof. Induction on C. The interesting case is $C = C_1 C_2$.

$$t \in \mathrm{NF}(\mathcal{T}(C(M))) \quad \Rightarrow \quad \exists t' \in \mathcal{T}((C_1(M))(C_2(M))) \text{ such that } :$$

with
$$\operatorname{nf}(s_1) \subseteq \operatorname{NF}(\mathcal{T}(C_1 |\!\!| M |\!\!|))$$

and $\operatorname{nf}(u_1), \dots, \operatorname{nf}(u_k) \subseteq \operatorname{NF}(\mathcal{T}(C_2 |\!\!| M |\!\!|))$

Equality mod NFT is a λ -theory

Monotonicity of contexts w.r.t. \leq_{NFT}

Let $C(\cdot)$ be a context.

$$\operatorname{NF}(\mathcal{T}(M)) \subseteq \operatorname{NF}(\mathcal{T}(N)) \quad \Rightarrow \quad \operatorname{NF}(\mathcal{T}(C(\!(M)\!))) \subseteq \operatorname{NF}(\mathcal{T}(C(\!(N)\!)))$$

Proof. Induction on C. The interesting case is $C = C_1 C_2$.

$$t \in \mathrm{NF}(\mathcal{T}(C(M))) \quad \Rightarrow \quad \exists t' \in \mathcal{T}((C_1(M))(C_2(M))) \text{ such that } :$$

$$t' = s_1[u_1, \dots, u_k] \xrightarrow{\longrightarrow} t + \mathbb{T}$$

$$\inf(s_1)[\inf(u_1), \dots, \inf(u_k)]$$

with
$$\operatorname{nf}(s_1) \subseteq \operatorname{NF}(\mathcal{T}(C_1(M))) \subseteq \operatorname{NF}(\mathcal{T}(C_1(M)))$$

and $\operatorname{nf}(u_1), \dots, \operatorname{nf}(u_k) \subseteq \operatorname{NF}(\mathcal{T}(C_2(M))) \subseteq \operatorname{NF}(\mathcal{T}(C_2(M)))$.
Easily conclude that $t \in \operatorname{NF}(\mathcal{T}(C(M)))$.

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \forall M \in \Lambda$.

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \ \forall M \in \Lambda$.

Proof. C(U) normalizable $\Rightarrow \exists t \in NF(T(C(U)))$ such that:

" $\operatorname{nf}_{\beta}(C(U)) = t$ " and all its bags are singletons.

So $\exists t' \in \mathcal{T}(C(U))$ such that:

$$t' = c(s_1, \ldots, s_k) \longrightarrow t + \mathbb{T}$$

for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$.

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \forall M \in \Lambda$.

Proof. C(U) normalizable $\Rightarrow \exists t \in NF(T(C(U)))$ such that:

" $\operatorname{nf}_{\beta}(C(U)) = t$ " and all its bags are singletons.

So $\exists t' \in \mathcal{T}(C(U))$ such that:

$$t' = c(s_1, \ldots, s_k) \xrightarrow{\hspace{1cm}} t + \mathbb{T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$.

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \ \forall M \in \Lambda$.

Proof. C(U) normalizable $\Rightarrow \exists t \in NF(T(C(U)))$ such that:

"nf $_{\beta}(C(U)) = t$ " and all its bags are singletons.

So $\exists t' \in \mathcal{T}(C(U))$ such that:

$$t'=c(s_1,\ldots,s_k) \overset{ wo}{\longrightarrow} t+\mathbb{T}$$
 $c(0,\ldots,0)$

for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. $(U \text{ unsolvable } \Rightarrow \text{nf}(s_i) = 0)$

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \forall M \in \Lambda$.

Proof. C(U) normalizable $\Rightarrow \exists t \in NF(T(C(U)))$ such that:

" $\operatorname{nf}_{\beta}(C(U)) = t$ " and all its bags are singletons.

So $\exists t' \in \mathcal{T}(C(U))$ such that:

$$t' = c(s_1, \dots, s_k) \xrightarrow{\longrightarrow} t + \mathbb{T}$$

$$0 = c(0, \dots, 0)$$

for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$.

Genericity Property

Let U unsolvable. If C(U) has a β -nf, then $C(U) =_{\beta} C(M) \forall M \in \Lambda$.

Proof. C(U) normalizable $\Rightarrow \exists t \in NF(T(C(U)))$ such that:

" $\operatorname{nf}_{\beta}(C(U)) = t$ " and all its bags are singletons.

So $\exists t' \in \mathcal{T}(C(U))$ such that:

$$t' = c(s_1, \dots, s_k) \xrightarrow{\qquad} t + \mathbb{T}$$

$$0 \neq c(0, \dots, 0)$$

for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$.

No hole can occur in c!

Therefore: $t' = c(s_1, \ldots, s_k) = c \in \mathcal{T}(C(M))$ and hence $t \in NF(\mathcal{T}(C(M)))$.

Since and bags of t are singletons, " $t = \inf_{\beta} (C(M))$ ".

Perpendicular Lines Property

PLP: If a context $C(\cdot, ..., \cdot)$: $\Lambda^n \to \Lambda$ is constant on n perpendicular lines, then it must be constant everywhere.

Perpendicular Lines Property

PLP: If a context $C(\cdot, ..., \cdot)$: $\Lambda^n \to \Lambda$ is constant on n perpendicular lines, then it must be constant everywhere.

True in $\Lambda/_{=_{\mathrm{BT}}}$, Barendregt's Book 1982 Proof: via Sequentiality.

?? in
$$\Lambda^o/_{=_{\mathrm{BT}}}$$

False in $\Lambda^o/_{=\beta}$, Barendregt & Statman 1999 Counterexample: via Plotkin's terms.

True in $\Lambda/_{=\beta}$, De Vrijer & Endrullis 2008 Proof: via Reduction under Substitution.

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\operatorname{BT}} & N_{1} \\ C(M_{21},Z,\ldots\ldots,M_{2n}) & =_{\operatorname{BT}} & N_{2} \\ & \ddots & \vdots & \vdots \\ C(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\operatorname{BT}} & N_{n} \end{array} \right. \Rightarrow \forall \vec{Z}, \ C(\vec{Z}) =_{\operatorname{BT}} N_{1}.$$

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(\!(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\operatorname{BT}} & N_1 \\ C(\!(M_{21},Z,\ldots\ldots,M_{2n})) & =_{\operatorname{BT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(\!(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\operatorname{BT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z} \,, \, C(\!(\vec{Z})) =_{\operatorname{BT}} N_1.$$

How can a context $C(\cdot)$ be constant in $\Lambda/_{=_{BT}}$?

- **1** $C(\cdot)$ does not contain the hole at all (the trivial case);
- 2 the hole is erased during its reduction;
- the hole is "hidden" behind an unsolvable;
- 4 the hole is never erased but "pushed into infinity".

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\mathrm{NFT}} & N_1 \\ C(M_{21},Z,\ldots\ldots,M_{2n}) & =_{\mathrm{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\mathrm{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z} \,, \, C(\vec{Z}) =_{\mathrm{NFT}} N_1.$$

- ① c does not contain the hole at all (the trivial case);
- the hole is erased during its reduction;
- the hole is "hidden" behind an unsolvable;
- 4 the hole is never erased but "pushed into infinity".

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\mathrm{NFT}} & N_1 \\ C(M_{21},Z,\ldots\ldots,M_{2n}) & =_{\mathrm{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\mathrm{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z}\,,\,\, C(\vec{Z}) =_{\mathrm{NFT}} N_1.$$

- ① c does not contain the hole at all (the trivial case);
- the hole is erased during its reduction (linearity);
- the hole is "hidden" behind an unsolvable;
- 4 the hole is never erased but "pushed into infinity".

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\mathrm{NFT}} & N_1 \\ C(M_{21},Z,\ldots\ldots,M_{2n}) & =_{\mathrm{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\mathrm{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z}\,,\,\, C(\vec{Z}) =_{\mathrm{NFT}} N_1.$$

- ① c does not contain the hole at all (the trivial case);
- the hole is erased during its reduction (linearity);
- the hole is "hidden" behind an unsolvable (strong normalization);
- 1 the hole is never erased but "pushed into infinity".

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(|Z,M_{12},\ldots\ldots,M_{1n}) & =_{\mathrm{NFT}} & N_1 \\ C(|M_{21},Z,\ldots\ldots,M_{2n}) & =_{\mathrm{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(|M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\mathrm{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z}\,,\,\, C(|\vec{Z}|) =_{\mathrm{NFT}} N_1.$$

- c does not contain the hole at all (the trivial case!);
- the hole is erased during its reduction (linearity);
- the hole is "hidden" behind an unsolvable (strong normalization);
- the hole is never erased but "pushed into infinity" (finiteness).

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(\!(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\operatorname{NFT}} & N_1 \\ C(\!(M_{21},Z,\ldots\ldots,M_{2n}) & =_{\operatorname{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(\!(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\operatorname{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z} \,, \, C(\!(\vec{Z})) =_{\operatorname{NFT}} N_1.$$

Claim.

If
$$c \in \mathcal{T}(C(\cdot))$$
 then:

$$nf(c) \neq 0 \implies c \text{ contains no hole.}$$

PLP	β	BT
open	√	√
closed	Χ	?

By induction on the size of c.

Perpendicular Lines Property

$$\forall Z \left\{ \begin{array}{ll} C(\!(Z,M_{12},\ldots\ldots,M_{1n}) & =_{\mathrm{NFT}} & N_1 \\ C(\!(M_{21},Z,\ldots\ldots,M_{2n})) & =_{\mathrm{NFT}} & N_2 \\ & \ddots & \vdots & \vdots \\ C(\!(M_{n1},\ldots,M_{n(n-1)},Z)) & =_{\mathrm{NFT}} & N_n \end{array} \right. \Rightarrow \forall \vec{Z} \,, \, C(\!(\vec{Z})) =_{\mathrm{NFT}} N_1.$$

Our proof does not need open terms!

PLP holds in $\Lambda^o/_{=_{\rm RT}}$ \checkmark

PLP	β	BT
open	√	√
closed	X	√

The End!