

Computer Security and Cryptography

CS381

来学嘉

计算机科学与工程系 电院3-423室

34205440 1356 4100825 laix@sjtu.edu.cn

2016-06

Contents

- **Introduction** -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions and MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking

Network security

SSL **IPSEC**

Firewall VPN

Computer security

Access control

Malware

Ddos/Intrusion

Password

Smartcard-TCP

Examples

Bitcoin Wireless

contents

- · Hardware-based security
 - Smartcard
 - Trusted Computing

Why hardware?

- Computer is often operating in insecure environment (worms, backdoor..)
- · Lack of trusted in/ouput
- · Software is easy to copy and modify
- Hardware
 - controlled, tamper-proof
 - Difficult to copy and modify

4

HSM

- hardware security module (HSM) is a physical device for computing key-related crypto operations.
- · Secret is always inside the device
- · Is tamper resistant
- Used in critical infrastructure

like PKI: CA HSM

• Smartcard, Chip-card, IC-card

5

Security hardware

Smart Cards

- Types
- Applications
 - Payment
 - authentication
- Interface
- Physical Security

TCP

2016/6/4

3

SIM card

SIM (subscriber identity modules) card

9

Security hardware

Smart Cards

- Types
- Applications
 - Payment
 - authentication
- Interface
- Physical Security

TCP

2016/6/4 5

EMV - Europay, MasterCard, Visa

the objectives of EMV

- EMV (www.emvco.com) specifies the requirements for interoperability between smart credit/debit cards (IC cards or smart cards) and interoperability between the terminals (ATM, POS).
- RSA key-length: 1024, 1152, 1408, 1984 bits are used.
- Europay, MasterCard, Visa, discovery, 银联

Motivation

- Against harvest PINs and clone of magnetic card
- **Europe** (2013); US (2014); China (2014)

Manage passwords for different applications

Smart Card Terminal Interfaces

- PC/SC Personal Computer / Smart Card
 - Version 1.0 specified in December 1997 by Bull, HP, Microsoft, Schlumberger, Siemens, Gemplus, IBM, Sun, Verifone and Toshiba.
 - PC/SC standard comprises 8 parts.
 - Originally targeted at Windows-based PCs
 - Ported to Linux thanks to the M.U.S.C.L.E project (pcsc-lite)
 - APIs for C, C++, Java and BASIC

PC/SC Workgroup

- OCF Open Card Framework
 - Java-based interface, independent of the underlying operating system.
 - Has become an industry standard in Java environments.

PKCS#11 Cryptographic Token Interface Standard Connected C_OpenSession(slo Session openC_Login(user, pin) Logged in to reader C Initialize() C_GetAttributeValue(cert) C_SignHash(hash) **Fetched** Generated Start certificate signature C_CloseSession() C_Logout() Session C_CloseSession() Logged C_Finalize() closed

- Standardized C/C++ Cryptoki API (cryptoki.h, pksc11.h)
- Simple object-based approach (slots, objects, attributes)
- Most smartcard vendors offer dynamic libraries (pkcs11.dll)

Finnish Electronic Identification Card (FINEID)

- Issued by the Finnish local police. Cost 29 €, valid for 3 years
- Used for personal digital signatures over the Internet
- Contains two X.509 user certificates and matching RSA private kevs
- Uses PKCS#15 Cryptographic Token Information Format Standard

The Estonian ID Card

- Contains two X.509 user certificates and matching RSA private keys
- Certified email address: name.surname nnnn@eesti.ee
- Uses PKCS#15 Cryptographic Token Information Format Standard
- Uses OpenSC PKCS#11 drivers for Windows

Additional PKCS#15 based Applications

- Electronic ID Cards
 - Austria, Belgium, Estonia, Finnland, Italy, Latvia, Malta, Slovenia, Spain, Sweden. Germany in pilot phase.
- WIM Wireless Identification Module
 - Uses SIM (GSM) or USIM (UMTS) or a second smart card in a dual slot mobile phone.
 - Can be used for client side authentication in the Wireless Transport Layer Security protocol WTLS that is part of WAP.
 - AID is A0 00 00 00 00 63 (RID) and "WAP-WIM" (PIX)
- The PKCS#15 standard is rapidly gaining wide-spread popularity and has become the de-facto standard for the information structure on cryptographic tokens.

Security hardware

Smart Cards

- Types
- Applications
 - Payment
 - authentication
- Interface
- Physical Security

TCP

- ID-1 54 x 85.6 mm (ISO 7810 credit card format)
- ID-00 33 x 66 mm
- ID-000 15 x 25 mm (GSM SIM card)

Classical Microprocessor Layout

Typical Smart Card Chip Components

- · CPU:
 - 8051 8 bit architecture
 - 6805 8 bit architecture
 - · H8 (Hitachi), 16 bit architecture
 - ARM 7, MIPS 32 bit
- RAM:

256 - 2048 Bytes (1 RAM cell = 4 EEPROM cells)

- EEPROM:
 - 1 64 kBytes (1 EEPROM cell
- = 4 ROM cells)
- ROM:
- 8 64 kByte

Infineon

SLE 66CX160S

Standard cell Random cell placement

Regular Structures Scrambled Addressing

EEPROM

- Electrically Erasable Programmable Read-Only Memory (e.g. Flash memory)
- individual bytes in a traditional EEPROM can be independently read, erased, and re-written.
- An EPROM can't be erased electrically, must be removed from the device for erasing and programming

37

Passivation Layer Removal Detection

- When cooled to -60 ° C, RAM cells can keep their charge up to several weeks after the power supply has been switched off.
- The content of a RAM cell can be read out using electron-beam microscope.

the passivation and metallization layers covering the RAM structure must first be physically removed, leading to the destruction of the RAM cells.

Power and Timing Analysis

2016/6/4

Security hardware

18

Smart Cards

- Types
- Applications
 - Payment
 - authentication
- Interface
- Physical Security

TCP - Trusted Computing

TCP means essentially using TPM

- TCP Trusted Computing Platform
- TCG Trusted computing Group, nonprofit industry standard organization
- TPM -- Trusted Platform Module, A chip embedded on the motherboard

• A new embedded security subsystem build into many computers • Protected capability • Shielded locations

Why TPM?

- Software cannot be made completely secure
 - Complexity: Unix/Windows..1 bug/1000 lines of source codes...
 - Compatibility: How can we replace the billions of lines of code in and for existing OS?
 - Compromise: Any attempt to detect malicious changes in software without HW support could be circumvented.
- How can TPM help?
 - To provide an anchor in the sea of software
 - · Private keys cannot be stolen or given away.
 - The addition of malicious code is always detected.
 - · Malicious code is prevented from using the private keys.
 - · Encryption keys are not easily available to a physical thief.

Trusted Computing Platform:

TPM + OS + Software + Network infrastructure

Trusted computing Group

- · Dependable computing
- TCPA
 - 2000, CMU, NASA, ...
 - Specify the construction of secure HW platform
- TCG
 - 2003
 - Non-profit industry standard organization
 - Adopt the specification of TCPA
 - Incorporate "Root of Trust"
 - Not rely on specific vender

Fundamental Features of TPM

- Protected Capability
 - A set of commands to access shielded locations (places to safely operate on sensitive data)
 - Function: to protect and report integrity measurements, store keys, key management, random number generation, sealing data...
- Attestation
 - Vouch for the accuracy of information
 - By the TPM / To the TPM / Of the TPM/ Authentication of the platform
- Integrity Measurement and Reporting
 - Integrity Measurement
 - Integrity logging
 - Integrity reporting

Trust Boundary and Transitive Trust

- Root of Trust: RTM RTS RTR
- Chain of Trust

Key Type - migration

- · Migratable VS. Non-Migratable
 - Migratable key
 - Usage: Key transfer, more than one system to use a key, info backup to another platform /clone or update
 - Use the parent key to unwrap the private part of a migratable key, and rewrap it with a different parent key
 - Non-migratable key
 - Usage: To identify a machine, store migratable key,...
 - Only be created by the TPM and only when the parent key is present
 - · E.g. EK, SRK
 - Key is only valid on the TPM on which it was created unless migrated by the user to a new TPM

Key Types - functions

- Storage key: used to store other things (NOT symmetric key), 2048bit, RSA type, migratable or not. (not for signing)
- Binding Key: Used to store small amount of data (not for signing)
- Identity Key: AIK, non-migratable, provide two functions
 - Sign PCR as required
 - Sign other keys
- Signature key: at most 2048bit, RSA type(not for binding)
- Authentication Keys: Symmetric key used to protect transport session involving the TPM
- Legacy key: both sign and encryption, created outside the TPM

TPM Based Authentication

- PCs shipped with a TPM chip capabilities beyond traditional tokens or smart cards.
- The key differentiator: TPMs uniquely support both user and machine authentication in one token
- Only authorized users and authorized PCs are on the network

reality

- TCP enabled computers are not well accepted (root, 越狱, DRM)
- TCM Chinese version of TPM (+encryption)
- Windows 8.1 banned
- · Effective in protecting devices
- Trusted Handy

64

Exercise 20

- 1. Is it possible to clone a smartcard?
- 2. What kind of properties of EEPROM are used to provide security for smartcard?
- Describe the similarities and differences of PKCS15 and PKCS11
- 4. How is TPM used to provide security for computers?

Hand in your answer whenever you like

65

