teon	142 Discussion Week 7 Assignment Answer Key				
1)	Q0 = 240 - 4P				
	$Q_S = 2P$				
	Equilibrium Price & Quantity:				
	At Eq. QD = Qs. You can find eq. P by setting				
	the educations for QD & Qs equal to one another,				
	and then solving for P:				
	240-49 = 29				
	240 = 6P				
	240/6 = P				
	P = 40				
	The plug the eas P into either the Qs or Qo				
	equation to get the eQ:				
	Qs = ZP Qp = 240-4 (40)				
	= 2(40) = 240 - 160				
	= 80				
	So Q = 80				

consinued

consis	
1)	Price Elasticity of Demand =
	E=dOp P
	dP Q
	$dQ_0 = -4$ and $P = 40 = .5$
	dp @ 80
	So $\varepsilon = -4 \cdot (.5) = \boxed{-2}$ (exastic)
	Price Elasticity of Supply:
	E=dQs_P
	dP Q
Ny - 28 Feb.	$dQs = 2 \qquad and \qquad P = .6$
	d P Q
	So &= 2.(.5) = 1
	Impact of Price Increase on Total Revenue:
	I wrote or trice market our perental.
	Increase in price will decrease total revenue
	because duyand is elastic.

2

2)	Q0 = 100 - 1/2 P				
	$Q_s = 2P$				
	Eavilibrion Price & Avoutient:				
4	$Q_0 = Q_s$ $\begin{cases} Q_0 = 100 - \frac{1}{2}(40), & Q_s = 2(40) \end{cases}$				
	$100 - \frac{1}{2} \rho = 2 \rho$ = $100 - 20$ = 80				
	100 = 2.5P } = 80				
	100/2.5 = P				
	P = 40 \ Q = 80				
	Price Elasticity of Demand:				
	E = d00. P = -1/2. 40/80 = [25]				
	dr Q				
	(in elastic)				
	Price Elasticity of Supply:				
	E = dOs. P = 2. 40/80 = [1]				
	dP Q				
	Unit elastic				
	Price Changes & Rovenue:				
	Increasing price would increase revenue because				
	demand is inelastic. Decreasing price would				
	decrease revenue.				

3. Calculate price elasticity of demand based using the following table of values:

	Price	Quantity
Point A	\$3.50	2,000
Point B	\$3.30	2,100

$$E = \frac{\Delta Q/Q}{\Delta P/P}$$

$$\bar{Q} = \frac{2000 + 2100}{2} = 2060$$

$$\frac{\Delta P = 3.50 - 3.30 = .20}{P = 3.50 + 3.30} = \frac{6.8}{2} = 3.4$$

$$= -.0488 = 1$$

$$0.0588$$

$$\xi = \frac{100}{2060}$$

$$\frac{120}{3.4}$$

$$= -.0488 = \frac{1.83}{83}$$

Is demand elastic or inelastic between point A and point B?

It is inelastic because tollow E is less than 1 In absolute value.

If the quantity at point B were 2,500, what would the price elasticity of demand be? Is demand elastic or inelastic in this case?

$$\mathcal{E} = \frac{\Delta Q/\overline{Q}}{\Delta P/\overline{P}} = \frac{-500/2250}{.0588}$$
$$= \frac{22\overline{z}}{.22\overline{z}}$$

In this case the demand is elastic.