MA 515 Homework 1

Zheming Gao

August 28, 2017

Problem 1

Proof. To show that (X, d) is a metric space, we need to verify that d(x, y) is well defined as a distance. Obviously, $\forall x, yin X, d(x, x) = 0$ and d(x, y) = d(y, x) due to the properties of absolute value. Hence, we only need to verify the triangle inequality holds.

Let $a = \sqrt{|x-y|}$ and $b = \sqrt{|y-z|}$. Hence, a and b are non-negative, which promise the following relations,

$$(a+b)^2 - (a^2 + b^2) = 2ab \geqslant 0.$$

Therefore, we have

$$d(x,y) + d(y,z) = a + b \geqslant \sqrt{a^2 + b^2} = \sqrt{|x - y| + |y - z|} \geqslant \sqrt{|x - z|} = d(x,z).$$

which proves the triangle inequality. In conclusion, (X, d) is a metric space.

Problem 2

Yes. (X, d) is a metric space.

Proof. We will use the result from problem 1 to show this. Still, with the properties of absolute value and integration, we know that $\forall f, g \in X, d(f, f) = 0$ and d(f, g) = d(g, f). Then, we only need to prove the triangle inequality. $\forall f, g, h \in X$, use the linearity of integration, triangle inequality for absolute value and result from problem 1, we have

$$\begin{split} d(f,g) + d(g,h) &= \int_a^b |g(t) - f(t)| + \sqrt{|g(t) - f(t)|} dt + \int_a^b |h(t) - g(t)| + \sqrt{|h(t) - g(t)|} dt \\ &= \int_a^b |g(t) - f(t)| + |h(t) - g(t)| + \sqrt{|g(t) - f(t)|} + \sqrt{|h(t) - g(t)|} dt \\ &\geqslant \int_a^b |h(t) - f(t)| + \sqrt{|h(t) - f(t)|} dt = d(f,h). \end{split}$$

In conclusion, (X, d) is a metric space.

Problem 3

We will prove (b) first and use it to prove (a).

1. (b)

Proof. Since (X,d) is a metric space, so $\forall x,y,z\in X$ we apply triangle inequality on d(x,z) and obtain $d(x,z)\leqslant d(x,y)+d(y,z)$, from where we know that $d(x,z)-d(y,z)\leqslant d(x,y)$. Similarly, from $d(y,z)\leqslant d(y,x)+d(x,z)$, we know $d(y,z)-d(x,z)\leqslant d(x,y)$. In conclusion, $\forall x,y,z\in X$,

$$|d(x,z) - d(y,z)| \le d(x,y).$$

2. (a)

Proof. Now we use (b) to show (a). Rewrite left hand side and use triangle inequality,

$$\begin{split} LHS &= |d(x,y) - d(z,w)| = |d(x,y) - d(y,z) + d(y,z) - d(z,w)| \\ &\leqslant |d(x,y) - d(y,z)| + |d(y,z) - d(z,w)| \\ &= |d(y,x) - d(y,z)| + |d(z,y) - d(z,w)| \\ &\leqslant d(x,z) + d(y,w) \end{split}$$

This proves the inequality in (a).

Problem 4

1. (a)

Example:

We might let $x = \{x_n\}_{n \in \mathbb{N}}$ and $x_n = 1/\sqrt{n}$. This satisfies $x_n \to 0$ as $n \to +\infty$, but doesn't satisfy $x \in \ell^2$ since

$$\sum_{n=1}^{+\infty} |x_n|^2 = \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty.$$

2. (b)

Example:

Use the same $x = \{x_n\}_{n \in \mathbb{N}} = \{1/\sqrt{n}\}. \ x \notin \ell^2$, but $x \in \ell^3$ since

$$\sum_{n=1}^{+\infty} |x_n|^3 = \sum_{n=1}^{+\infty} \left(\frac{1}{n}\right)^{3/2} < +\infty.$$

Problem 5

Proof. We will prove this by contradiction. Let $x := \{x_n\}_{n=1}^{+\infty} \in \ell^p$, so x satisfies $\sum_{n=1}^{+\infty} |x_n|^p < +\infty$. (p > 1)

Suppose that x is not a bounded sequence, i.e., for any M>0, $\exists N$ such that $\forall n>N$, $|x_n|>M$. We might let M=1, then there exists N_0 such that $\forall n>N_0$,

$$\sum_{n=1}^{+\infty} |x_n|^p \geqslant \sum_{n=N_0+1}^{+\infty} |x_n|^p > \sum_{n=N_0+1}^{+\infty} M^p > +\infty.$$

which contradicts to the fact that $x \in \ell^p$. Hence, x is a bounded sequence. Equivalently, x is in $\ell^{+\infty}$.

Problem 6

1. (a)

Proof. Need to show that $d_f(x,y)$ is a metric. First of all, $\forall x \in X$, since (X,d) is a metric space, we have

$$d_f(x,x) = f \circ d(x,x) = f(0) = 0.$$

Also, $\forall x, y \in X$,

$$d_f(x,y) = f \circ d(x,y) = f \circ d(y,x) = d_f(y,x).$$

For triangle inequality, $\forall x, y, z \in X$, use supper-additivity of f and obtain

$$d_f(x,y) + d_f(y,z) = f \circ d(x,y) + f \circ d(y,z)$$

$$\geqslant f \circ (d(x,y) + d(y,z)) \geqslant f \circ d(x,z) = d_f(x,z).$$

In conclusion, (X, d_f) is a metric space.

2. (b)

Proof. Let $f: \mathbb{R}_+ \to \mathbb{R}_+$. f(x) = x/(1+x). It is clear that

(i) f(0) = 0 and f(s) > 0 for all s > 0,

(ii) f has supper-additivity, because $\forall x, y \ge 0$,

$$f(x+y) - f(x) - f(y) = \frac{x+y}{1+x+y} - \frac{x}{1+x} - \frac{y}{1+y}$$
$$= \left(\frac{x}{1+x+y} - \frac{x}{1+x}\right) + \left(\frac{y}{1+x+y} - \frac{y}{1+y}\right) \le 0.$$

With the result in part (a), $d_f(x,y) = \tilde{d}(x,y)$ is a metric.

Problem 7

1. (a)

Proof. To prove d is a metric, we need to verify three conditions. First of all, $\forall x \in X$, $d(x,x) = d_1(x_1,x_1) + d_2(x_2,x_2) = 0$.

Also, $\forall x, y \in X$,

$$d(x,y) = d_1(x_1, y_1) + d_2(x_2, y_2) = d_1(y_1, x_1) + d_2(y_2, x_2) = d(y, x).$$

For triangle inequality, $\forall x, y, z \in X$, we have

$$d(x,y) + d(y,z) = d_1(x_1, y_1) + d_2(x_2, y_2) + d_1(y_1, z_1) + d_2(y_2, z_2)$$

= $[d_1(x_1, y_1) + d_1(y_1, z_1)] + [d_2(x_2, y_2) + d_2(y_2, z_2)]$
 $\geqslant d_1(x_1, z_1) + d_2(x_2, z_2) = d(x, z).$

Hence, d is a metric.

2. (b)

Proof. Similarly to part (a), it is only need to show the triangle inequality for \tilde{d} .

 $\forall x, y \in X$, let $\tilde{d}(x, y) = ||x - y||$. Actually, $||\cdot||$ is the Euclidean norm defined on \mathbb{R}^2 . We would like to show that the triangle inequality holds for $||\cdot||$. And it is enough to show that $\forall a, b \in X$, $||a + b|| \leq ||a|| + ||b||$. Use Cauchy-Schwartz inequality,

$$||a+b||^2 = (a+b)^T (a+b) = ||a||^2 + ||b||^2 + 2a^T b$$

 $\leq ||a||^2 + ||b||^2 + 2||a||||b|| = (||a|| + ||b||)^2$

Hence, \tilde{d} is a metric.

Problem 8

Proof. $\forall x,y \in X$ and $K \subset X, K \neq \phi$, consider $d(x,y) + d_K(x)$.

$$d(x,y) + d_K(x) = d(x,y) + \inf_{w \in K} d(x,w)$$

= $\inf_{w \in K} \{d(x,y) + d(x,w)\}$
 $\geqslant \inf_{w \in K} d(y,w) = d_K(y).$

Hence, $d_K(y) - d_K(x) \leq d(x, y)$.

Similarly, consider $d(x,y)+d_K(y)$ and with similar argument, we will get $d(x,y)\geqslant d_K(y)-d_K(x)$.

In all, d_K is 1-Lipschitz continuous. i.e.,

$$|d_K(y) - d_K(x)| \le d(x, y) \quad \forall x, y \in X.$$