

Topics

Feature Extraction

Parametric models

Linear models for classification

Softmax classifiers

Loss functions

Feature Extraction Motivation

Our kNN classifier for cats and dogs performs poorly

- \blacktriangleright On CIFAR10 dataset, test accuracy is about 40%
- ▶ Humans achieve about 94%, similar to CNNs

Feature Extraction

Several reasons (later)

One is that we use raw images as feature vector \mathbf{x}

ightharpoonup But $k{\sf NN}$ has no understanding of images

Implications

- ▶ Input features x (pixel values) are indiscriminative
- ► *D* is large (curse of dimensionality)

Feature Extraction Motivation

Classification based on overall image similarity

- ▶ No concept of objects
- ► Background has strong effect (many pixels)

Feature Extraction Motivation

Raw pixel values are poor features

► A feature is certain property of data

Goal of feature extraction

- Extract discriminative features from images
- ▶ Discriminative features help distinguish between classes

Feature Extraction

HOG (Histogram of Oriented Gradients) Feature Extractor

Steps

- Compute gradient magnitude and orientation
- Divide image into overlapping cells
- Compute histogram of quantized orientations in every cell
- ► Combine cells to blocks, concatenate histograms
- Normalize blocks, concatenate to single vector

See [1] for details

Feature Extraction HOG Feature Extractor

Feature Extraction Low-Level Features

HOG features improve performance by about 10%

► Still not close to human and CNN levels

Reasons

- kNN is a simple classifier
- ► HOG features are low-level

Feature Extraction

Low-Level Features

HOG features are low-level

- Capture directions of local brightness changes
- ► Generally useful but not task-specific

This applies to all manually designed feature extractors

Impossible to design optimal task-specific extractors

Feature Extraction High-Level Features

We want task-specific high-level features

- ► Features that carry semantics
- ▶ E.g. presence of certain part of a human face

We cannot design them, so they must be learned

- CNNs are able to do this in a robust way
- Main reason why CNNs are so powerful

Parametric Models Motivation

kNN classifier has several limitations

- Must keep all training data for testing
- ► Testing (predicting class labels) is slow
- Not particularly powerful

Parametric models overcome these limitations

Parametric Models Definition

Let $\mathbf{x} \in \mathbb{R}^D$ be input and $\mathbf{w} \in \mathbb{R}^T$ be output

A model describes family of functions from ${\bf x}$ to ${\bf w}$

lackbox Particular function $f: \mathbf{x} \mapsto \mathbf{w}$ learned during training

Model defines the hypothesis space of a ML algorithm

- Set of functions allowed as solution
- Extending family increases capacity

Parametric Models

In parametric models f depends on parameters $oldsymbol{ heta}$

- We write $\mathbf{w} = f(\mathbf{x}; \boldsymbol{\theta})$
- Training entails finding good parameters
- ► Training set can be discarded after training

CNNs are parametric models

▶ Number of parameters can exceed 100 million (!)

Parametric Models

The most basic example are linear models

Hypothesis space comprises linear functions from \mathbb{R}^D to \mathbb{R}^T

$$\blacktriangleright \text{ Formally } \mathbf{w} = f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\mathbf{x} + \mathbf{b} \text{ with } \boldsymbol{\theta} = (\mathbf{W}, \mathbf{b})$$

 $\mathbf{W} \in \mathbb{R}^{T \times D}$ is called weight matrix

 $\mathbf{b} \in \mathbb{R}^T$ is called bias vector

Parametric Models Linear Models

Used in almost all CNNs (linear layers)

- ▶ In the classifier stage
- ► For final mapping to class labels w

We could directly estimate class label, $w \in \{1, ..., T\}$

▶ Limited information, complicates training

Instead we let $\mathbf{w} = (w_1, \dots, w_T)^\mathsf{T}$

- ▶ Want $arg max(\mathbf{w}) = c$ if image \mathbf{x} belongs to class c
- w encodes class scores (confidences)

Linear Models for Classification Example

A (unsuccessful) example prediction

Linear Models for Classification Example

Can think of T independent classifiers, one per class

T hyperplanes as decision boundaries in \mathbb{R}^D

▶ Weights define orientation, bias defines offset from 0

Hyperplane c should answer "is \mathbf{x} of class c?"

ightharpoonup Want ${f x}$ on positive side of hyperplane c iff of class c

 ${\bf x}$ is on positive side if ${\bf w}_c{\bf x}+b_c\geq 0$

 $ightharpoonup \mathbf{w}_c$ is row c of \mathbf{W}

Left side equals score of class c, that is w_c

Signed distance to plane is $w_c/\|\mathbf{w}_c\|$

► Hence class score increases with distance/confidence

During training, make hyperplanes always answer correctly

Only possible if classes are linearly separable

Hyperplanes do not work together

► Each hyperplane is an independent binary classifier

Template-Matching Interpretation

T learned templates that are matched with input images

- \triangleright Each \mathbf{w}_c encodes a template
- ▶ Matching using inner product $\mathbf{w}_c\mathbf{x}$ (plus b_c)
- ► Class score increases with similarity of image to template

Image from cs231n.github.io

Template-Matching Interpretation

Most templates have clear interpretation

- ▶ Horse template shows something horse-like
- ▶ Most cars training data seem to be red
- ▶ Background is (again) very dominant (sky, grass, water)

Image from cs231n.github.io

Template-Matching Interpretation

Linear classifiers cannot properly model intraclass variation

- ► Templates merge modes of variation
- ▶ What about blue cars, planes on ground, gray horses?

CNNs solve this problem

Image from cs231n.github.io

Much faster than kNN classifier

► Single matrix-vector multiplication

Number of parameters governed by \boldsymbol{D} and \boldsymbol{T}

- $\mathbf{W} \in \mathbb{R}^{T \times D}$ and $\mathbf{b} \in \mathbb{R}^T$
- ▶ CIFAR10 : T = 10 and D = 3,072, so 30,730 parameters

Can apply the bias trick to simplify f to $f(\mathbf{x}) = \mathbf{W}\mathbf{x}$

ightharpoonup Append b to W, append 1 to x

Loss Functions

For training any parametric model, we need

- A loss function
- ► An optimization algorithm

Loss Functions

Recall that parametric models have form $f(\mathbf{x}; \boldsymbol{\theta})$

A loss function $L(\theta)$ (or cost or objective function)

- ▶ Measures performance of $f(\cdot; \theta)$ (lower loss is better)
- $lackbox{ On some dataset } \mathcal{D} = \{(\mathbf{x}_s, \mathbf{w}_s)\}_{s=1}^S$
- ightharpoonup With respect to parameters heta

Choice of L depends on task

Goal during training is to change θ to minimize $L(\theta)$

For classification, most popular choice is cross-entropy loss

Standard loss for training CNNs

Dissimilarity between probability distributions p and q

 \blacktriangleright In terms of cross-entropy $H(p,q) = -\sum_x \left(p(x) \log q(x) \right)$

p and q are discrete probability distributions

▶ So $p(x) \ge 0$ and $\sum_x p(x) = 1$ (same for q)

Thus $\log q(x)$ is always negative or 0, as are summands

- Cross-entropy is always positive
- ▶ Generally not 0 even if p = q (but entropy of p)

In our case

- $p \sim \mathbf{w}_s$, encoding the true class distribution
- $lackbox{ } q \sim {f w}$, the predicted class distribution

Use one-hot encoding to obtain \mathbf{w}_s from single label w_s

- Vector of size T that is zero everywhere
- Except for element c=1 if $w_s=c$
- $ightharpoonup \mathbf{w}_s$ is valid probability distribution

Predictions w are not valid probability distributions

- Class-scores are unbounded
- ▶ w generally does not sum to 1

We solve this problem by

- ▶ Regarding w as unnormalized log probabilities
- ► And using the softmax function for normalization

$$\operatorname{softmax}_k(\mathbf{w}) = \frac{\exp(w_k)}{\sum_{t=1}^T \exp(w_t)}$$

Softmax transforms any vector $\mathbf{w} \in \mathbb{R}^T$

▶ Such that $w_t \ge 0$ and $\sum_{t=1}^T w_t = 1$

$$\mathsf{softmax}\begin{pmatrix} -1\\3\\1 \end{pmatrix}) \approx \begin{pmatrix} 0.016\\0.867\\0.117 \end{pmatrix}$$

We calculate the cross-entropy loss on ${\mathcal D}$ as

$$L(\theta) = \frac{1}{S} \sum_{s=1}^{S} H(\mathbf{w}_s, \operatorname{softmax}(f(\mathbf{x}_s; \boldsymbol{\theta})))$$

Minimize the average cross-entropy over whole dataset

► Corresponds to maximum likelihood estimation (MLE)

MLE $\hat{m{ heta}}$ is optimal in terms of data

lacktriangle Choice under which observed data ${\cal D}$ is most likely

Best we can do unless we have prior information about heta

We'll talk about this later (regularization)

Resulting classifier is called softmax classifier

- ▶ f still produces unnormalized log probabilities
- Must apply softmax to obtain probabilities

Loss Functions

Now that we have a good loss function, we can minimize it

- ▶ For this we need a suitable optimization algorithm
- Next lecture

Bibliography

- [1] N. Dalal and B. Triggs, *Histograms of oriented gradients for human detection*, CVPR.
- [2] Prince, Computer Vision Models. 2012.

