Imperial College London

[E1.10 (Maths 1) 2013]

B.ENG. and M.ENG. EXAMINATIONS 2013

PART I: MATHEMATICS 1 (ELECTRICAL ENGINEERING)

Date Thursday 30th May 2013 10.00 - 12.00

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer Question 1 and THREE of the remaining five

Answer Section A and Section B in different answerbooks.

Question 1 carries twice the marks of each of the other questions.

CALCULATORS MAY **NOT** BE USED.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of SIX questions. Ask the invigilator for a replacement if your copy is faulty.]

1. (i) Find all roots of

$$z^4 + 2z^2 + 2 = 0$$

in polar form, i.e. $z = r \exp(i\varphi)$ with $r, \varphi \in \mathbb{R}$.

(ii) Express

$$\exp(i\pi/3) + \exp(-i2\pi/3)$$

in Cartesian form, i.e. z = x + iy with $x, y \in \mathbb{R}$.

(iii) Find q so that the limit

$$\lim_{x \to \infty} x^q \left(\sqrt{x} - \sqrt{x - 1} \right)$$

is finite and non-zero.

Do not use L'Hôpital's rule.

(iv) Find the limit

$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3}$$

You can use L'Hôpital's rule.

You can use $\lim_{x\to 0} \sin(x)/x = 1$.

(v) Differentiate

$$(\tan(x))^{\exp(x)}$$

(vi) Integrate

$$\int \tan(x) \, \mathrm{d}x$$

(vii) Integrate

$$\int_0^1 \tan(x)^2 \, \mathrm{d}x$$

Q1 CONTINUES ON THE NEXT PAGE

(viii) Find the Taylor expansion of

$$\frac{1}{\exp(x) + 1}$$

about x=0 to first order (up to and including the term linear in x) and state the remainder term $R_{2}\left(x\right) .$

(ix) Find the general solution of the following first order ODE:

$$2y'(x) = \frac{y(x)^2}{x^2} + 1$$

(x) Find the general solutions of the following second order ODE:

$$y''(x) + y(x) = \sin(2x)$$

2. Find $\frac{dy}{dx}$ as a function of x in each of the following cases :

(i)
$$y(x) = \frac{\exp(2x)}{\sin(3x^2)};$$

(ii)
$$y(x) = (1+x^2) \tan^{-1}(x)$$
;

Note: $tan^{-1}(x)$ denotes the inverse tan function

(iii)
$$y(x) = \frac{x+3}{(x+1)(x-2)};$$

(iv)
$$y(x) = x^{(x^2)}$$
.

Note: This is x raised to the power x^2 .

(v) Find the following nth derivative

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x \ln(x) \right)$$

for $n \geq 2$.

Note: Simplify the result as much as possible.

3. Evaluate the following limits without using L'Hôpital's rule unless specified:

(i)
$$\lim_{x \to 1} \frac{x}{\sin(x)} ;$$

Do not use L'Hôpital's rule.

(ii)
$$\lim_{x \to 1} \frac{x - 1}{\sin(x\pi)} ;$$

Do not use L'Hôpital's rule.

(iii)
$$\lim_{x \to \infty} x^{2/3} \left((1+x)^{1/3} + (1-x)^{1/3} \right);$$

Consider only real roots. Do not use L'Hôpital's rule.

(iv)
$$\lim_{x\to 1} \frac{x^n-1}{x^m-1} \text{ for integer } n,m>0;$$

You may use L'Hôpital's rule.

(v)
$$\lim_{x \to 1} \frac{\exp(x) - \exp(1)(1 + x^2)/2}{(x - 1)^3};$$

Do use L'Hôpital's rule.

4. (i) Integrate $\int_0^{2\pi} \sin(mx) \sin(nx) dx$ for positive integers $0 < n, m \in \mathbb{N}$.

Note: The case n=m requires special attention.

(ii) Show that
$$\int_0^\infty x^n \exp(-x^2) dx = \frac{n-1}{2} \int_0^\infty x^{n-2} \exp(-x^2) dx$$
 for any positive integer n , i.e. $0 < n \in \mathbb{N}$.

(iii) Integrate
$$\int \frac{(x-1)(x^2 + \frac{5}{2}x + 1)}{2x^2 - 3x + 1} dx$$
.

(iv) Integrate
$$\int \frac{\mathrm{d}x}{2 + \cos(x)}$$
.

5. (i) Express in polar form

$$(1-i)^3$$
 and $(\sqrt{3}i+1)^{1/2}$.

- (ii) Find the real part of $\left(\frac{1}{\sin(\theta) + i\cos(\theta)}\right)^4$ in terms of $\cos(2\theta)$.
- (iii) Find all solutions of the equation

$$\cos(z) = \frac{5}{3}$$

in the Cartesian form, i.e. z=x+iy with $x,y\in\mathbb{R}.$

6. (i) Find the solution y(x) of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -xy(x) \ .$$

(ii) Find the general solution y(x) of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \; + \; \frac{\mathrm{d}y}{\mathrm{d}x} \; + \; \frac{1}{2}y(x) \; = \; \sin(x) \; .$$

(iii) Find the solution y(x) of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -xy(x)$$

by expressing y(x) in a MacLaurin series, $y(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$, and determining the recurrence relation for a_n . Determine the value of a_2 .

Note: Do not attempt to solve the recurrence relation.

END OF PAPER

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question	TODIC	-
1	TOPIC General	Marks & seen/unseen
Parts (i)	$2^4 + 22^2 + 2 = 0$	
(ii)	$= 2^{2} + 1)^{2} = -1 = 2^{2} = \pm 2^{0} - 1 = 2^{2} = \pm 2^{0} - 1 = 2^{2} = $	4
	$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$ $+ \frac{1}{2} 2 \left(\sqrt{\frac{3}{4}} - \sqrt{\frac{3}{4}} \right) = 0$ or observe $-2^{2\frac{3}{3}} = e^{2\frac{3}{3} - 2\pi} = e^{-2\frac{2\pi}{3}}$	4
(iii)	$\sqrt{x^{2}-\sqrt{x-1}} = \frac{x^{2}-(x-1)}{\sqrt{x^{2}+\sqrt{x-1}}} = \frac{1}{\sqrt{x^{2}+\sqrt{x-1}}}$ $= \frac{1}{\sqrt{x^{2}+\sqrt{x-1}}} = \frac{1}{\sqrt{x^{2}+\sqrt{x-1}}} = \frac{1}{\sqrt{x^{2}+\sqrt{x-1}}}$ $= \frac{1}{\sqrt{x^{2}+\sqrt{x-1}}} = \frac{1}{\sqrt{x^{2}$	4
	Setter's initials Checker's initials 68	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question	TODIC	
1	TOPIC General	Marks & seen/unseen
Parts (iv)	$\lim_{x\to 0} \frac{SM(x) - x}{x^2} = \lim_{x\to 0} \frac{\cos(x) - 1}{3x^2}$	
	$=\lim_{x\to 0}\frac{-\sinh(x)}{6x}=-\frac{1}{6}$	4
(v)	$\frac{d}{dx}\left(\tan(x)\right)^{\ell \times p(x)} = \frac{d}{dx} \exp\left(\ln\left(\tan(x)\right) \exp(x)\right)$	
	$= \left\{ \frac{1}{\tan(x)} \frac{1}{\cos^2(x)} e^{-x} p(x) + \ln(\tan(x)) \exp(x) \right\}$ $\tan(x) \exp(x)$	4
	= $\left\{\frac{1}{\sin(x)} \frac{1}{\cos(x)} \exp(x) + \ln(\tan(x)) \exp(x)\right\}$ $\tan(x) \exp(x)$	
(vi)	$\int tan(x) dx = -\int \frac{d}{dx} \ln(cos(x)) dx$	
	=-ln(cos(x))+C	4
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question	TOPIC General	Marks & seen/unseen
Parts (vii)	$\int_0^1 \tan^2(x) dx = -\int_0^1 \left(1 - \frac{1}{\cos^2(x)}\right) dx$	
	$= -x + \zeta' + \int \frac{d}{dx} t_{am} \times dx = t_{am} \times -x + \zeta'$ $= t_{am}(1) - 1$	4
(viii)	$f'(x) = (exp(x)+1)^{-1}$ $f'(x) = -(exp(x)+1)^{-2} exp(x)$ $f''(x) = 2 (exp(x)+1)^{-3} exp(ex) + f'(x)$ $f(0) = 1/2$	
	$f'(0) = -1/4$ $f''(0) = 0 (uot needed)$ $= f(x) = \frac{1}{2} - \frac{1}{4}x + R_2(x)$	4
	with $R_2(x) = \frac{x^2}{2} f''(\xi)$ $\xi \in [0, x]$ Setter's initials Checker's initials	Description
	Setter's initials Checker's initials	Page number

=> ln x	ION QUESTIONS/SOLUTIONS 2012-13	Course
(ix) 2y'= ===================================	General	Marks & seen/unseen
=> ln x	y ²	
=> ln x	$\frac{y^2}{x^2} + 1$ homogeneous	
	$v = \frac{1}{2}, f(v) = \frac{1}{2}v^2 + 1$	
	$+\zeta' = \int \frac{dv}{f(v)-v} = 2 \int \frac{dv}{(v-1)^2}$	х 5
=>	$=\frac{-2}{v-1}=\frac{2}{1-v}$	
	$\frac{2}{x+\zeta'} = 1 - \frac{y}{x} \implies y = x - \frac{2x}{g_{nx+\zeta'}}$	4
Setter's initials	/ All Checker's initials	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question	TOPIC General	Marks & seen/unsee
arts (X)	y''(x) + y(x) = Sin(2x) Complementary function, oscillatory can y''(x) + y'(x) = Sin(2x) y''(x) + y'(x) = Sin(2x) y''(x) + y'(x) = Sin(2x)	
	Particular Integral, try $y_{p_1}(x) = C \sin(2x) + D \cos(2x)$ => $(C-4c) \sin(2x) + (D-4D) \cos(2x) = \sin(2x)$ => $D=0$, $C=-\frac{1}{3}$	
	Genual solution $ y(x) = A sm(x) + B cos(x) - \frac{1}{3} sm(2x) $	4
		40
S	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 2	TOPIC Diffeentiation	Marks & seen/unseen
Parts (i)	$y(x) = \frac{e^{2x}}{s_{M(3x_{1}^{2})}} = y'(x) = \frac{2e^{2x}}{s_{M(3x_{2}^{2})}} - 6x \frac{conste^{2x}}{s_{M(3x_{2}^{2})}}$	
(ii)	$y(x) = (1+x^2) \tan^{-1}(x) = \frac{2e^{2x}}{S_1 \ln(3x^2)} \left(1 - 3x \cot(3x^2)\right)$	
F	=> $y'(x) = (1+x^2) \frac{1}{1+x^2} + 2x \tan^{-1}(x)$	4
(iii)	$= 1 + 2 \times tan^{-1}(x)$ $2x^2-2x-4$	Τ
(000)	$y(x) = \frac{2x^2-2x-4}{(x+1)(x-2)}$	Separate sheet
	Either note that $y(x) = 2 = 3$ $y'(x) = 0$ or brak force: $y'(x) = \frac{4x - 2}{(x+1)(x-2)} - \frac{2x^2 - 2x - 4}{(x+1)^2(x-2)^2} ((x+1) + (x-2))$ $= 2\frac{2x - 1}{(x+1)(x-2)} \left\{ 1 - \frac{x^2 - x - 2}{(x+1)(x-2)} \right\} = 0$ $= 0$	4
(iv)	$y(x) = x^{(x^2)} = exp(x^2 ln(x))$ $\frac{d}{dx} y(x) = (2x ln(x) + x) x^{(x^2)}$	4
υ)	$\frac{d^{4}}{dx^{4}} \times lm \times = \sum_{k=0}^{m} {n \choose k} \times {n \choose k$	4
5	Setter's initials	(20) age number \$ 2

į š	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 2		Marks & seen/unseen
Parts	$ \frac{dy}{dx} = \frac{1}{(x+1)(x-2)} - \frac{(x+3)}{(x+1)^{2}(x-2)} - \frac{(x+3)}{(x+1)(x-2)^{2}} $ $ = \frac{1}{(x+1)^{2}(x-2)^{2}} \left\{ (x+1)(x-2) - (x+3)(x-2) - (x+3)(x+1) \right\} $ $ = \frac{1}{(x+1)^{2}(x-2)^{2}} \left\{ -2x + 4 - x^{2} - 4x - 3 \right\} $ $ = -\frac{x^{2} + 6x - 1}{(x+1)^{2}(x-2)^{2}} $ $ = \frac{x+3}{(x+1)(x-2)} = \frac{1}{x-2} + \frac{2}{(x+1)(x-2)} $ $ \frac{dy}{dx} = \frac{-1}{(x-2)^{2}} - \frac{2(x-2+x+1)}{(x+1)^{2}(x-2)^{2}} $ $ = -\frac{x^{2} + 2x + 1 + 4x - 2}{(x+1)^{2}(x-2)^{2}} = -\frac{x^{2} + 6x - 1}{(x+1)^{2}(x-2)^{2}} $	4
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-1	3 Course
Question 3 Parts	TOPIC Limits	Marks &
(i)	$\lim_{x\to 1} \frac{x}{\sin(x)} = \frac{1}{\sinh(1)}$	3 Seen similer for all
(ii)	$\lim_{x \to 1} \frac{x^{-1}}{Sin(x\pi)} = \lim_{y \to 0} \frac{y}{Sin(\pi + y\pi)}$.5
	$=\lim_{u\to 0}\frac{u/\pi}{-\sin(u)}=-\frac{1}{17}$	
(122)	$\lim_{x\to\infty} x^{2/3} \left((1+x)^{\sqrt{3}} + (1-x)^{\sqrt{3}} \right)$ $= \lim_{x\to\infty} x^{2/3} \frac{(1+x) + (1-x)}{(1+x)^{2/3} - (1+x)^{2/3} (1-x)^{2/3} + (1-x)^{2/3}}$	5
(iv)	$= 2 \lim_{x \to \infty} \frac{1}{(1+\frac{1}{x})^{\frac{1}{x}} + (1+\frac{1}{x})^{\frac{1}{x}} (1+\frac{1}{x})^{\frac{1}{x}} + (1+\frac{1}{x})^{\frac{1}{x}}}{(1+\frac{1}{x})^{\frac{1}{x}} + (1+\frac{1}{x})^{\frac{1}{x}} + (1+\frac{1}{x})^{\frac{1}{x}}}$ $= \frac{2}{3}$ $\lim_{x \to 1} \frac{x^{\frac{1}{x}} - 1}{x^{\frac{1}{x}} - 1} = \lim_{x \to 1} \frac{1}{x^{\frac{1}{x}}} =$	
	$\lim_{x \to 1} \frac{x^{n-1}}{x^{n-1}} = \lim_{x \to 1} \frac{(x-1)(x^{n-1} + x^{n-2} + \dots + 1)}{(x-1)(x^{n-1} + x^{n-2} + \dots + 1)}$ $= \frac{h}{m}$	3
S	Setter's initials Checker's initials	Page number

٨	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 3 Parts	TOPIC Limits	Marks & seen/unseen
(v)	$\lim_{x \to 1} \frac{e^{x} - e(1+x^{2})/2}{(x-1)^{3}}$ $= \lim_{x \to 1} \frac{e^{x} - ex}{3(x-1)^{2}} = \lim_{x \to 1} \frac{e^{x} - e}{6(x-1)}$ $= \lim_{x \to 1} \frac{e^{x}}{6} = \frac{e}{6}$	4

-	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 4 Parts	TOPIC lu tegration	Marks & seen/unseer
	$\int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi$	5
6	AND STATE OF	
Set	tter's initials Checker's initials Pa	ge number S/O

ž.	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 4 Parts	TOPIC Inkgrahion	Marks & seen/unseer
ii	$\int_{0}^{\infty} x^{n} e^{-x^{2}} dx = \lim_{b \to \infty} \int_{0}^{b} x^{n} e^{x} \rho(-x^{2}) dx$ $\int_{0}^{b} x^{n} e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{b^{2}} y^{\frac{n-1}{2}} e^{-y} dy$ $= -\left[\frac{1}{2}y^{\frac{n-1}{2}}e^{-y}\right]_{0}^{b^{2}} + \frac{1}{2} \int_{0}^{b^{2}} \frac{u^{-1}}{2}y^{\frac{n-2}{2}} e^{-y} dy$ $= -\left[\right] + \frac{u^{-1}}{2} \int_{0}^{b} x^{n-2} e^{-x^{2}} dx$ $\int_{0}^{b} x^{n} e^{x} \rho(-x^{2}) dx = \lim_{b \to \infty} \int_{0}^{b} x^{n-2} e^{-x^{2}} dx$ $\int_{0}^{\infty} x^{n} e^{x} \rho(-x^{2}) dx = \lim_{b \to \infty} \int_{0}^{\infty} x^{n-2} e^{-x^{2}} dx$	Seen smiles for all
Se	checker's initials Checker's initials Pa	ge number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-:	13 Course
Question 4	TOPIC lutegration	Marks & seen/unseen
(iv)	$I = \int \frac{(x-1)(x^2 + \frac{1}{2}x + 1)}{2x^2 - 3x + 1} dx$ $Denominator 2x^2 - 3x + 1 = (x-1)(2x-1)$ $= 7 I = \int \frac{x^2 + \frac{5}{2}x + 1}{2x - 1} dx = \int \frac{\frac{1}{2}x(2x - 1) + 3x + 1}{2x - 1} dx$ $= \int \frac{1}{2}x + \frac{3}{2} + \frac{\frac{5}{2}}{2x - 1} dx = \frac{1}{4}x^2 + \frac{3}{2}x + \frac{5}{4}\ln(2x - 1) + \frac{1}{4}x^2 + \frac{1}{4}x^2$	
		(20)
5	Setter's initials Checker's initials 6P	Page number S 12

	EXAMINATION QUESTIONS/SOLUTIONS 2012-	13 Course
Question 5	TOPIC Complex numbers	Marks & seen/unseen
(i)	$ (1-2)^{3} = 2^{3/2} e^{-2\frac{\pi}{4}3} $ also allow $ e^{2\frac{\pi}{4}\pi} $ $ (1+\sqrt{3}2)^{1/2} = \sqrt{2}e^{2\frac{\pi}{3}\frac{1}{2}} \sqrt{2}e^{2\frac{\pi}{4}\pi} $ $ (\frac{1}{\sin(\theta)+2\cos(\theta)})^{4} = (\frac{-2}{e^{-2\theta}})^{4} $	4
	$= e^{4i\theta} \left(= \cos(4\theta) + i \sin(4\theta) \right)$ $= \left(e^{2i\theta} \right)^{2} = \left(\cos(2\theta) + i \sin(2\theta) \right)^{2}$ $= \left(\cos(2\theta) \right)^{2} - \left(\sin(2\theta) \right)^{2} + 2i \sin(2\theta) \cos(2\theta)$ $= 2 \left(\cos(2\theta) \right)^{2} - 1 + 2i \sin(2\theta) \cos(2\theta)$ $= 2 \left(\cos(2\theta) \right)^{2} - 1 + 2i \sin(2\theta) \cos(2\theta)$ $\Rightarrow Re \left(\left(\frac{1}{\sin\theta + i \cos\theta} \right)^{4} \right) = 2 \cos^{2}(2\theta - 1)$	6
و		
	etter's initials 1444 Checker's initials	(05)

	EXAMINATION QUESTIONS/SOLUTIONS 2012-1	3 Course
Question 5	TOPIC Complex numbers	Marks & seen/unseen
(iii)	$\cos(z) = \frac{1}{2} \left(e^{2z} + e^{-z^2 z} \right)$	seen/ unseen
	2= y-2x	
	======================================	
	$\frac{3}{3} = \frac{1}{2} \cos(y) \left(e^{x} + e^{-x} \right)$	
	$\theta = \frac{1}{2} sm (g) (e^{x} - e^{-x})$ from the in $\sigma = \pi$	
	from the second like e=e== 1 seems a solution but then there is no yER	
	With $\cos(y) = \frac{5}{3} = y = h\pi$, $n \in \mathcal{U}$ => $\cos(y) = (-)^n = y$	
	3 = 1 (-) " (e"+e") -> neven	
	$=> e^{2x} - \frac{10}{3}e^{x} + 1 = 0$	
مل ا	=> $e^{\times} = \frac{10}{3} \pm \frac{100}{9} - \frac{1}{3} = \frac{5}{3} \pm \frac{4}{3}$	
	$=> \times = \pm \ln(3)$	
	$= 2 = \pm i \ln(3) + 2k\pi, k \in \mathbb{Z}$	10
Set	ter's initials Checker's initials Pa	sge number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course
Question 6	TOPIC ODE'S	Marks & seen/unseen
Parts (i)	y'=-xy separase	scriy disect
(iii) (iii) (ii) page	$\int \frac{dg}{g} = -\int x dx = \sum \ln g + \zeta' = -\frac{1}{L} x^{2}$ $y(x) = A e^{-\frac{1}{2}x^{2}}$ $y = \sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}$ $y' = \sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} a_{n+1} \frac{x^{n}}{n!}$ $y'' = -xy = \sum a_{n+2} \frac{x^{n}}{n!} = -\sum a_{n} \frac{x^{n}}{n!}$	4
	$y'' = -xy \implies \sum_{n=0}^{\infty} a_{n+2} n! = -\sum_{n=0}^{\infty} a_{n} \cdot \frac{n!}{(n-1)!}$ $= -\sum_{n=1}^{\infty} a_{n-1} \cdot \frac{x^{n}}{(n-1)!} = -\sum_{n=1}^{\infty} a_{n-1} \cdot \frac{x^{n}}{(n-1)!}$ $= -\sum_{n=1}^{\infty} a_{n-1} \cdot \frac{x^{n}}{(n-1)!} = -\sum_{n=1}^{\infty} a_{n-1} \cdot \frac{x^{n}}{(n-1)!}$ $= -\sum_{n=1}^{\infty} a_{n-1} \cdot \frac{x^{n}}{(n-1$	8
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-2013	Course
Question 6 Parts	TOPIC ODE'S	Marks & seen/unseen
ĊĊ	$y'' + y' + \frac{1}{2}y = Sin(x)$ $a=1, b=1, c=\frac{1}{2} \qquad b^2 - 4ac = -1 < 0 \text{ or } c$ $S=\frac{1}{2}$	
	$y_{cf} = (A \sin \frac{\lambda}{2} + B \cos \frac{\lambda}{2})e^{-\frac{\lambda}{2}}$ $y_{pi} = C \sin x + D \cos x$ $y_{pi} = C \cos x - D \sin x$ $y_{pi}^{"} = -y_{pi}$	
1. 3.	$= 2 \qquad y_{p_1}^{1} - \frac{1}{2} y_{p_1} = (C - \frac{D}{2}) \cos x - (D + \frac{C}{2}) \sin x = \sin x$ $= 2 \qquad C = \frac{D}{2} \qquad \Rightarrow 2 \qquad -D = \frac{4}{5}, C = -\frac{2}{5}$	
	$y_{x_1} = -\frac{2}{5} \sin x - \frac{4}{5} \cos x$ Genual soln: $y_{(x)} = \left(A \sin \frac{\pi}{2} + B \cos \frac{\pi}{2} \right) - \frac{2}{5} \sin x - \frac{4}{5} \cos x$ $e^{-\frac{\pi}{2}}$	8
		20
	Setter's initials Checker's initials GP	Page number \$16