SERIE N°2

Exercice 1:

1. Etablir les tables de vérité des fonctions suivantes :

$$\checkmark$$
 F1 = (X +Y)(\bar{X} +Y + Z)

✓
$$F2 = (\overline{X}Y + X\overline{Y})\overline{Z} + (\overline{X}\overline{Y} + XY)Z$$

2. Démontrer à l'aide de tables de vérité les équivalences suivantes :

$$X + YZ = (X+Y)(X+Z)$$

$$(\bar{X}+Y)(X+Z)(Y+Z) = (\bar{X}+Y)(X+Z)$$

Exercice 2:

1. Simplifier algébriquement les expressions suivantes :

$$\checkmark$$
 $(x+ y+xy)(xy+xz+yz)$

$$\checkmark$$
 $(x + y + z)(\bar{x} + y + z) + xy + yz$

- ✓ $abcd + abchg + \overline{d}hg + abcdefh$.
- \checkmark a \overline{c} de + \overline{d} + \overline{e} + c
- 2. Démontrer algébriquement les égalités suivantes :

$$\checkmark \quad A \ \overline{B} + \ \overline{A} \ \overline{C} \ \overline{D} + \ \overline{A} \ \overline{B}D + \ \overline{A} \ \overline{B}C \ \overline{D} = \ \overline{A} \ \overline{C} \ \overline{D} + \ \overline{B}$$

$$\checkmark$$
 A.B+ \bar{A} .C +B.C=A.B+ \bar{A} .C

$$\checkmark$$
 AB + ACD + \bar{B} D = AB+ \bar{B} D

$$\checkmark$$
 AB + \bar{B} C = $(A + \bar{B})(B + C)$

Exercice 3:

Simplifier à l'aide du théorème de De Morgan :

$$S = \overline{(x + \overline{y + z})(x + \overline{y} \overline{z})} + \overline{x} \overline{y}(\overline{z}t + tz)$$

$$T = \overline{\frac{\overline{b}(b+c+\overline{d}) + bc}{(a\ \overline{b})(b+c+\overline{d}) + bc}}$$

Exercice 4:

- 1. Dresser la table de vérité du circuit ci-dessous.
- 2. Extraire l'équation de S à partir de la table de vérité.

Exercice 5:

Simplifier les fonctions données par les tableaux de Karnaugh. Réaliser les circuits à l'aide de portes NAND uniquement, puis NOR uniquement:

\ab cd\	00	01	11	10
cd				
00	1	1	1	
01		1	1	
11		1	1	
10	1	1	1	1

\ab	00	01	11	10
\ab cd\				
00	1			1
01		1	1	
11		1	1	
10	1			1

∖ab	00	01	11	10
cd				
00	1			1
01	1	1		1
11		1	1	
10	1		1	1

/	ab d	00	01	11	10
co	/t				
(00		X	X	1
()1		1	1	1
1	1		1	1	
1	0		1	1	

\ab	00	01	11	10
cd				
00	1			1
01	X	1	1	1
11	X	1	1	X
10	X			

\ab	00	01	11	10
cd				
00	1	1		1
01	1	1	X	1
11	1	1		1
10	X	X		

Exercice 6:

Simplifier à l'aide du Tableau de Karnaugh les fonctions suivantes puis réaliser les circuits correspondants à l'aide de portes NOR ou NAND.

 $F(a, b, c) = \pi(0, 1, 2, 3, 4, 7)$

 $G(a, b, c, d) = \sum (2, 6, 7, 10, 11, 12, 14)$

Exercice 7:

1. Soit la fonction F composée de NOR uniquement :

$$F = \overline{(x+y+z)} + (\overline{x+y+\overline{z}}) + \overline{x+y+z}$$

Donnez la table de vérité, la première forme canonique ainsi que la fonction correspondante composée de NAND uniquement.

- 2. Soit la fonction F(A,B,C) définie comme suit:
- $F(A,B,C) = 1 \text{ si } (ABC)_2 \text{ comporte un nombre impair de 1;}$
- F(A,B,C) = 0 sinon.
- a) Etablir la table de vérité de F.
- b) Donner l'équation algébrique de F.
- c) Donner le schéma du circuit C1 de la fonction F avec le minimum de portes logiques.

