Practical aspects of deep learning

Quiz, 10 questions

1 point 1. If you have 10,000,000 examples, how would you split the train/dev/test set?			
33% train . 33% dev . 33% test 98% train . 1% dev . 1% test 60% train . 20% dev . 20% test			
1 point 2. The dev and test set should:			
Come from the same distribution			
Come from different distributions			
Be identical to each other (same (x,y) pairs)			
Have the same number of examples			
1 point			

3

If your Neural Network model seems to have high bias, what of the following would be promising things to try? (Check all that apply.)

Practical as	Get more training data pects of deep learning
Quiz, 10 questions	Make the Neural Network deeper
	Add regularization
	Get more test data
	Increase the number of units in each hidden layer
	1 point
	ou are working on an automated check-out kiosk for a supermarket, and are uilding a classifier for apples, bananas and oranges. Suppose your classifier otains a training set error of 0.5%, and a dev set error of 7%. Which of the llowing are promising things to try to improve your classifier? (Check all that oply.)
	Increase the regularization parameter lambda
	Decrease the regularization parameter lambda
	Get more training data
	Use a bigger neural network
,	hat is weight decay?
	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
	Gradual corruption of the weights in the neural network if it is trained on noisy data.
	The process of gradually decreasing the learning rate during training.
	A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.

Practical aspects of deep learning Quiz, 10 questions

6. What h	appens when you increase the regularization hyperparameter lambda?
	Weights are pushed toward becoming smaller (closer to 0)
	Weights are pushed toward becoming bigger (further from 0)
	Doubling lambda should roughly result in doubling the weights
	Gradient descent taking bigger steps with each iteration (proportional to lambda)
1 point	
7. With th	e inverted dropout technique, at test time:
	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.
	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training
	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training
1 point	
	ing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the ng: (Check the two that apply)
	Increasing the regularization effect
	Reducing the regularization effect
	Causing the neural network to end up with a higher training set error

Causing the neural network to end up with a lower training set error Practical aspects of deep learning

Quiz, 10 questions

1 point	
9.	
	of these techniques are useful for reducing variance (reducing ng)? (Check all that apply.)
	Exploding gradient
	Vanishing gradient
	Data augmentation
	L2 regularization
	Gradient Checking
	Dropout
	Xavier initialization
1 point	
10.	
Why do	we normalize the inputs x ?
\bigcirc	It makes it easier to visualize the data
	It makes the parameter initialization faster
	It makes the cost function faster to optimize
	Normalization is another word for regularizationIt helps to reduce variance
	Upgrade to submit