B.E. All Branches Second Semester (C.B.S.) / B.E. (Fire Engineering) Second Semester

Applied Mathematics - II

P. Pages: 3
Time: Three Hours

NJR/KS/18/4342/4998

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.

1. a) Show that if
$$n > -1$$
,

$$\int_{0}^{\infty} x^{n} e^{-k^{2}x^{2}} dx = \frac{1}{2k^{n+1}} \left[\frac{n+1}{2} \right]$$

6

b) Evaluate: $\int_{0}^{1} \frac{x^{a} - x^{b}}{\log x} dx$, a > 0, b > 0

by differentiating under integral sign.

OR

2. a) Evaluate:
$$\int_{0}^{2a} x \sqrt{2ax - x^2} dx$$

6

Find the R.M.S. value for one complete period of the function $f(t) = \frac{1}{2} + \cos t$. Hence Show that peak value = $\sqrt{3}$ (R.M.S. Value)

6

3. a) Trace the curve $ay^2 = x(x-a)^2$.

6

b) Find the perimeter of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.

6

6

OR

4. a) Find the area outside the circle $r = 2a \cos \theta$ and inside the cardioid $r = a (1 + \cos \theta)$.

Find the volume of the solid obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the X axis.

NJR/KS/18/4342/4998 1 P.T.O

- Evaluate $\iint \frac{xy}{\sqrt{1-y^2}} dx dy$, over the positive quadrant of the circle $x^2 + y^2 = 1$.
 - b) Evaluate $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$, by changing the order of integration.
 - c) Change into polar coordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^2 + y^2\right)} dy \ dx \ .$

OR

- 6. a) Evaluate $\int_{1}^{3} \int_{1/x}^{1} \int_{0}^{\sqrt{xy}} xyz \, dz dy dx$
 - b) Find the mass of the area bounded by the curves $y = x^2$ and $x = y^2$, if the density at any point is $\rho = \lambda (x^2 + y^2)$.
 - c) Find the area outside the circle $r = a \cos \theta$ and inside the circle $r = 2a \cos \theta$.
- 7. a) Show that vector $\overline{\mathbf{d}}$ can be expressed in form $\overline{\mathbf{d}} = \frac{[\overline{\mathbf{d}} \, \overline{\mathbf{b}} \, \overline{\mathbf{c}}] \, \overline{\mathbf{a}} + [\overline{\mathbf{d}} \, \overline{\mathbf{c}} \, \overline{\mathbf{a}}] \, \overline{\mathbf{b}} + [\overline{\mathbf{d}} \, \overline{\mathbf{a}} \, \overline{\mathbf{b}}] \, \overline{\mathbf{c}}}{[\overline{\mathbf{a}} \, \overline{\mathbf{b}} \, \overline{\mathbf{c}}]}$ if $[\overline{\mathbf{a}} \, \overline{\mathbf{b}} \, \overline{\mathbf{c}}] \neq 0$.
 - Find the directional derivative of $x^2 y^2 z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $x = e^t$, $y = \sin 2t + 1$, $z = 1 \cos t$ at t = 0.
 - Show that $\overline{F} = (2xy + z^3)i + x^2j + 3xz^2k$ is irrotational and hence find its scalar potential.

OR

- **8.** a) Show that
 - i) curl grad $\phi = 0$
 - ii) div curl $\overline{A} = 0$ where $\overline{A} = A_{1i} + A_{2j} + A_{3k}$
 - b) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5. Find the components of its velocity and acceleration at t = 1 in the direction of i 3j + 2k.
 - Find the value of n for which vector $\mathbf{r}^n \overline{\mathbf{r}}$ will be solenoidal.

6

9. Verify Green's theorem in the plane for

$$\oint \left[\left(3x^2 - 8y^2 \right) dx + (4y - 6xy) dy \right]$$

where C is the boundary of the region bounded by $y = \sqrt{x}$ and y = x.

OR

10. If $\overline{A} = (y-2x)i + (3x+2y)j$, Find the circulation of \overline{A} about a circle C in the XY-plane with centre at origin and radius 2 if C is traverse in the positive direction.

7

7

11. a) Fit a curve $y = ax^b$ to the following data.

X	1	2	3	4	5	6	
у	2.98	4.26	5.21	6.10	6.80	7.5	

b) Using Lagranges interpolation formula, find two missing terms from following table.

X	\1()	3	4	8	10
y	8	_	11	32	_

OR

12. a) Solve $y_{n+2} + 5y_{n+1} + 6y_n = n + 2^n$.

6

7

b) Find the coefficient of correlation between the variables x and y hence find the regression lines.

X	3	5	6	8	9	11/
у	2	3	4	6	5	8
