Smart Farmer-IOT Enabled Smart Farming Application

DELIVERY OF SPRINT-4

Project Title:	Smart Farmer-IOT Enabled Smart Farming Application
Team Id:	PNT2022TMID25834
Date:	10 Nov 2022

5.5 Receiving commands from IBM cloud using Python program

```
import time import
sys
import ibmiotf.application
import ibmiotf.device import
random
#Provide your IBM Watson Device
Credentialsorganization = "157uf3"
deviceType = "abcd" deviceId = "7654321"
authMethod = "token" authToken =
"87654321"
# Initialize GPIO
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
                             if status=="motoron":
                     elif status == "motoroff":
print ("motor is on")
                                                  print
("motor is off")
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
```

```
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from
DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                    def
myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback)
                                              if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
| Import time import sys import ibmiotr.device Credentials organization = "157uf3" deviceType = "abcd" deviceOptions = {"org": organization," type": deviceType, "id": deviceId, "auth-method": authMedeviceOptions)

| Import time import sys import ibmiotf.device import print ("motor is off") else: print ("please send proper command")

| Introduction = "157uf3" deviceType = "abcd" deviceType, "id": deviceId, "auth-method": authMedeviceId = "7654321" deviceType, "id": deviceId, "auth-method": authMedeviceCli = ibmiotf.device.Client(deviceOptions) | Command to the content of th
```

Ln: 22 Col: 21

6. Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.