Universidad Nacional de Río Negro - Profesorados de Física y Química

Física I A Guía 05 - Evolución Estelar

Asorey - Cutsaimanis

2012

25. Ley de Wien

Hallar el valor de ξ utilizando los datos de la siguiente tabla y compararlo con el valor aceptado, $\xi = 2,897 \times 10^6$ nm K.

$\lambda_{ ext{máx}}\left[ext{nm} ight]$	T [K]	(ayuda: realice los cambios de variables apropiados para linealizar
29000	100	
5750	500	
1170	2500	
510	5500	
280	11000	

la ecuación y grafique, calculando la pendiente de la recta obtenida).

26. Colores

Utilice la ley de Wien para determinar $\lambda_{\text{máx}}$, la correspondiente frecuencia $f_{\text{máx}}$, y el color de cada una de las siguientes estrellas:

Nombre	T [K]
Sol	5777
Mintaka	31000
Betelgeuse	3400
Sirio A	9540
Rigel	11000
η -Carinae	39000

27. (*) Betelgeuse y Rigel

Betelgeuse (α -Ori) y Rigel (β -Ori) son las dos estrellas más brillantes de la constelación de Orión. Sus posiciones se conocen con excelente precisión, habiéndose medido un paralaje de 5.07×10^{-3} arcseg para Betelgeuse y 4.22×10^{-3} arcseg para Rigel. Utilizando un bolómetro en órbita, ha sido posible medir los flujos de energía en la Tierra: $\mathscr{F}_{\text{Betelgeuse}} = 8.6845 \, \text{W m}^{-2}$ y $\mathscr{F}_{\text{Rigel}} = 3.7819 \, \text{W m}^{-2}$.

- *a*) Calcule la distancia de la Tierra a estas dos estrellas, medidas en m, años-luz y parsecs (recuerde que si el paralaje es 1 arcseg la estrella se encuentra a 1 parsec de distancia, y la relación es inversamente proporcional).
- b) Calcule las luminosidades de Betelgeuse y Rigel. Expresarlas en unidades de L_{\odot} y en W_{\odot}
- c) Calcule las masas de Betelgeuse y Rigel ($M_{\odot} = 1,899 \times 10^{30} \text{kg}$).

- *d*) Utilice las temperaturas de las estrellas dadas en el ejercicio 26 para estimar los radios de las mismas.
- e) ¿Dentro de que clasificación espectral las colocaría? ¿En que posición del diagrama H-R las ubicaría? Justifique.
- f) Calcule los radios mínimos y máximos de la zona de habitabilidad de cada estrella.

28. Observación astronómica

Durante el invierno, mirando hacia el Este y a media altura antes de la medianoche es posible observar la constelación de Scorpio. La estrella más brillante (Antares) se encuentra a 600 años luz de la Tierra. Sabiendo que tiene el mismo color que Betelgeuse y que su masa es $M=15,5M_{\odot}$, calcule la Luminosidad y el radio de Antares. Luego determine el tamaño mínimo y máximo de la zona de habitabilidad.

29. Temperaturas

La temperatura superficial del Sol es T = 5777 K. Entonces:

- *a*) Utilice la ley de Steffan-Boltzmann para estimar el valor de L_{\odot} y compárelo con el valor conocido.
- b) En los últimos estadios de su vida, se sabe que el Sol se transformará en una gigante roja. Suponiendo que la temperatura superficial disminuirá hasta T=3200, calcule cuál deberá ser la luminosidad solar para que la distancia entre la Tierra y la superficie del Sol hinchado sea mayor de 10^7 km. Exprese el resultado en watts y en unidades de la luminosidad solar actual.
- c) ¿Cuál será el destino final del Sol? Suponiendo que el objeto resultante tiene un 90% de la masa solar actual y el radio típico de esos objetos, calcule la densidad, el valor de g y la velocidad de escape v_e sobre la superficie del mismo.
- d) ¿Cuál sería el nuevo valor de $\lambda_{\text{máx}}$ si por alguna razón la temperatura superficial aumenta hasta T=10500 K? En este caso, y suponiendo que L_{\odot} no cambiaría, ¿qué debería pasar con el radio solar?

30. (*) Supernova supernueva

Cuando una estrella se convierte en supernova, hasta el 1% de su masa se libera en forma de energía. De esta energía, el 99% se libera en forma de neutrinos y el resto como radiación electromagnética. Imaginemos que Canopus (α -Car, F0, M=8,5 M_{\odot} , d=310 años-luz) se convierte en supernova.

- a) Calcule la cantidad de energía liberada como neutrinos (indetectable).
- *b*) Calcule el flujo de energía electromagnética que se medirá en la Tierra. Compare este valor con la constante solar, $\mathcal{F}_{\odot} = 1400\,\mathrm{W}\,\mathrm{m}^{-2}$.
- c) El objeto resultante será una estrella de neutrones, con un radio aproximado de $R=20\,\mathrm{km}$. Calcule la densidad, el valor de g y la velocidad de escape v_e sobre la superficie de la estrella de neutrones.
- d) Calcule el radio de Schwarzschild de Canopus. Compárelo con el obtenido para el Sol.

31. Con una estrella en nuestro interior

- *a*) Calcule la Luminosidad L del cuerpo humano ($T_h = 310 \, \text{K}$) suponiendo que la temperatura del entorno es de 20°C ($T_e = 293 \, \text{K}$). Recuerde que es posible aproximar al cuerpo humano por un cilindro de densidad $d = 1010 \, \text{kg m}^{-3}$, con una masa $m = 70 \, \text{kg y} \, h = 170 \, \text{cm}$ de altura. Expresar el resultado en W.
- b) ¿De dónde proviene esta energía? ¿Qué importancia tiene este resultado en la vida diaria?
- c) Imaginemos ahora que multiplicamos la L obtenida en el punto anterior por un factor 10^{25} y situamos a esta nueva estrella a una distancia de 65,2 años luz de la Tierra. Calcule:
 - 1) La Luminosidad en unidades de L_{\odot} .
 - 2) La masa en kg.
 - 3) El radio de la estrella, suponiendo que es esférica y su temperatura efectiva es $T = 3400 \,\mathrm{K}$
 - 4) ¿En qué zona del diagrama H-R ubicaría usted a esta estrella?
 - 5) ¿Cuál de los tres posibles finales usted espera debe tener esta estrella?

32. Producción de energía (Optativo)

La masa de un núcleo es menor que la suma de las masas de los protones y neutrones que lo componen. Esto se debe a la contribución negativa de la energía de unión, que según la relación $E = mc^2$ corresponde a una masa. Esa diferencia se denomina *defecto de masa*:

$$\Delta m = Nm_n + Zm_p - m$$

donde:

- *m* es la masa del núcleo
- N es el número de neutrones (por ende N = A Z, dónde A es el número másico)
- *Z* es el número atómico (igual al número de protones)
- $m_p = 938,3 \,\mathrm{MeV/c^2}$ y $m_n = 939,6 \,\mathrm{MeV/c^2}$ son las masas del protón y del neutrón respectivamente.

En este contexto, la energía de ligadura por nucleón queda dada por:

$$B = \frac{\Delta m c^2}{A}$$

Calcule el defecto de masa y la energía de ligadura por nucleón de los siguientes átomos:

- a) ${}_{2}^{4}$ He (Helio-4, $m = 3728,4 \text{ MeV/c}^{2}$).
- b) $_{26}^{56}$ Fe (Hierro-56, $m = 52103 \,\text{MeV/c}^2$).
- c) $^{208}_{82}$ Pb (Plomo-208, $m = 193729 \text{ MeV/c}^2$).
- d) $^{40}_{20}$ Ca (Calcio-40, $m = 37225 \text{ MeV/c}^2$).
- e) $^{41}_{20}$ Ca (Calcio-41, $m = 38156 \text{ MeV/c}^2$).

33. Atucha (Optativo)

La central nuclear Atucha obtiene su energía de la reacción de fisión del isótopo $^{235}_{92}$ U (Uranio-235), con una masa de $m = 218942 \text{ MeV/c}^2$.

- *a*) Determine la cantidad de neutrones del isótopo.
- b) Calcule el defecto de masa del Uranio-235 en MeV/c².
- c) Calcule la energía de unión por nucleón.