Internship Program Report

By

GUNJI USHA SRI -19485A0240

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11 th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switch gear construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Bus ducts	11
18 th May2021: Detailing about Motor Starters and Sizingof motors	12
19 th May2021: Describing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations	19
2nd june2021: Calculations of Earthing and Lighting protection	20
5thjune 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	22
Foodback	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organizer

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Auto cad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A AUTOCAD BASIC KEYS							
STAND	ARD	DRA	W	MODI	FY	FORM	AT
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO
OPEN	Ctrl+O	RAY	RAY	COPY	СО	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	Α	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN, STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	Χ		
		BOUNDARY	ВО				
		DONUT	DO				

EXTRA			DRAF	TING	PAPER SIZE	
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID 🖟	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the auto cad basic keys like standard, modify,draw,format,papersize etc..

ROLL NO:19485A0240

7th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system		
	design for typical		
	diagrams		
		Load lists schedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and	Different types of	Different types of Generators
	Generators	Transformers	

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switch gear construction and power factor improvement

7 Classification of Switch gear construction and power factor improvement Classification of Different types of Switch gear assembles	Power factor improvement	
---	--------------------------	--

Topic details:

Classification of Switch gear construction and Power Factor Improvement

JUNE 2021

17th May2021: Detailing about UPS system and Bus ducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Bus ducts	system	ř

Topic details: Power distribution of UPS system and Bus ducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Describing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

JUNE 2021

Topic details: Describing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG

Lux Applicable Standards: IS 6665: Code of practice for industrial lighting, IS

3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX	Lighting or illumination systems	Operation software	of	dialu
	software				

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their		
	Type and calculations	Cabling calculations	Types of cabling materials

Topic details: Cabling and their types and calculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland selection	Cabling calculations	Cable gland selection
----	--	----------------------	-----------------------

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

28th May2021: Load calculations and Transformer sizing calculations

15	Load calculations		
	and TR	Load calculations	TR calculations
	calculations		

Cable Gland Selection Table Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	entry Threads "C" e Metric Thread hs Available)	Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion Length "F"
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	8.0	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

Topic details:

List of electrical load calculations.

ELECTRICAL LOAD CALCULATIONS LV MCC

	Rigal person ref. No.	Equipment Description	Breaker Rating	Elma ker Type	No. of	ELCB	Absorbed	Molar / Last	Losed	Efficiency	Power			COUNTRY	7.1		W. 100	Remark
				1 70	Poles	Rating	Last	Rating	Factor at Load Pactor at Continuous Intermittent Load Factor (C) Factor (C) Factor (C)	Stand-	Stand-by							
		5	400	190		mA	KWV	kW .	dedmal		cons	kW	MAR	MW	MAR	kW.	MAR	12
1			3 3	- 88		85 8		8 8					-	3				2
27	UZ315	Sites the field pump	8 8 8	- 88		88 9	43.84	45.00	0.97	0.91	0.76	48.18	38.65		8 -	Š	2	2
	U 2314-A	Assorbeant/Neutral of pump (VI)	34 6	- 10		W- 6	12.73	15.00	0.85	0.65		15.0		41		M	65	85
P1	U 2314 B	Asserbeant Neutral of pump (5)	32. 8	1 1		27 1	10.98	11.00	1.00	0.85				0		12.9	12.1	
PI	U2305	Feed Pump (Superator)	30. 8	1 18		27 1	44.28	45.00	0.98	0.91	0.78	48.7	39.0	D.	V 1	2	(A	Z.
	X2305	MOER (VI)	30 8			72 9	44.62	41.00	0.99	0.91	0.78	49.0		V .		V 5000	2	8
	X 2304	MXER (S)	3 . 3	1	_	31 8	44.62	45.00	0.99	0.91	0.78	1000	No. of the			49.0	39.3	12
100	W2313	Bow	310 0	- 33		82 3	19.16	22.00	0.87	0.91	0.78	21.1	169	0		n 56558	150000	0
	otary valve	TK 2313 B (B	77.0	- 3	-	100 3	1.86	2.20	0.85	0.85		10000	1	2.2	2.0	3	100	10
	C2314	Sowii cominyor (6)	1000	1 2		SE 3	4.30	4.70	0.91	0.85		10.100.0	Sec.	5.06	474	5		100
	G 2324A	Citric acid ten agitator (VII)	- 1		-	100	3.23	3.70	0.87	0.85	0.73	180	356			ā		7.5
	G 23246	Cliric acid fan k agitator (5)	90 3			77	3.23	3.70	0.87	0.85		2533		2		1.5	3.6	11
	G 2305	Citric oil rection vessol agilistor	- 1		_	29 8	11.75	15.00	0.78	0.85		13.82	12.94	5			- 20	S.
	G 2309	Lye of reaction wasel agrator	-	-	-	22 2	4.27	4.70	0.91	0.85		5.02	4.70	9		ř.	1	1
	G 2310	Lye of reaction vessel agrator		-	_	22 2	4.27	4.70	0.91	0.85	0.73	5.02	4.70	8		8	1	1
	G 2314	Spap Advantum Tenk Agitator	- 1 - 1	-	_	101 17	7.48	7.50	1.00	0.85		0.80	8.24	5		Č.	624	859
- 1	92319	Sup American Interceptation	- 1	-	_	-	1.000	7,00	1000	u.as	u.s	4.00	924	-		Š.		252
+		S CONTRACTOR OF THE CONTRACTOR	- 1	- 3	_	85 3		2 3	- 3	- 3				9		g -	2	2
+			- 3 - 3	- 3	_	80 8		8	- 8	- 3	1 1	-		8	-	8	2	20
+			- 1	- 6	_	77 7		200	- 9	-	1 1	-	-	9	-	9	-	-
		ė.	3 3	- 25		88 8		E 88	- 8	- 3	1		3 -	8	3 -	8	2	2
			9/ 0	- 8		15 3		n 33	- 3		- 3		5 -	8	8 -	Š	\$ -	2
	laximum of norm lat. xXII + yXII)				KVAR		sopt (kW*+kV4R*j •	287.3	M/A	TOTAL	218.37	182.09	7.25	6.78	65.73	54.97	86
	eak Load : lat. :NE + yNF	+ z%G)		189.6	KWAR			KW*+KVAR*) •		M/A	KVA	284.3	2	9.9	1	85.68		
(0	at set . yes	* ASG									S 3	(35	3		8
	ssumptions	Ridency and Power factor.																
10	Last scar, Li	Load Rating (kW)		ency		Power to												
1		e- 20		85		0.73												
1		*20 - ** 45	a			0.78												
1		*45 - *150		23		082												
		- 150	a			091												
1			-			-												

Transformer Calculations:

29th May2021: DG set calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections.

	DG SIZING CALCULATIONS	
	Design Data	
	Ra ted Volatge	415
	Power factor (CosØ)	0.87
	Efficiency	0.74
	Total operating load on DG set in kVA at 0.87 power factor	287.3
	Largest motor to start in the sequence - load in KW	45
	to ted Volatge Tower factor (Cos®) Ifficiency Total operating load on DG set in kVA at 0.87 power factor argest motor to start in the sequence - load in KW tunning kVA of last motor (Cos®= 0.91) Istarting current ratio of motor Istarting current ratio of motor Running kVA of Hast motor X Starting current ratio of motor) Istarting KVA of Hast motor X Starting current ratio of motor) Istarting kVA of last motor X Starting current ratio of motor) Istarting kVA of last motor X Starting current ratio of motor) Istarting kVA of Istarting load in kVA Total operating load in kVA — Running kVA of last motor) Istarting kVA of DG set based on continuous operation under load P1 Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor+Base load of DG set in KVA Istarting kVA of the last motor (Xd*) Istarting kVA of the last motor Istarting for last motor P3 Istarting kVA of last motor Istarting for last m	70
		6
	Starting KVA of the largest motor	419
	(Running kVA of last motor X Starting current ratio of motor)	
	Base load of DG set in KVA	217
	(Total operating load in kVA – Running kVA of last motor)	
A	Continous operation under load -P1	
	Capacity of DG set based on continuous operation under load P1	217
В	Transient Voltage dip during starting of Last motor P2	
	Total momentary load in KVA	637
	(Starting KVA of the last motor+Base load of DG set in KVA	
	Subtransient Reactance of Generator (Xd")	7.91%
	Transient Reactance of Generator (Xd')	10.065%
	$Xd^{\prime\prime\prime\prime}=(Xd^{\prime\prime}+Xd^{\prime\prime})/2$	0.08987
	Transient Voltage Dip	15%
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA xXd* x (1-Transient Voltage Dip) (Transient Voltage Dip)	324
c	Overload capacity P3	
	Capacity of DG set required considering overload capacity	
	Total momentary load in KVA	637
	overcurrent capacity of DG (K)	150%
	(Ref: IS/IEC 60034-1, Clause 9.3.2)	
		425
	Considering the last value amongst P1, P2 and P3	
	Continous operation under load -P1	217
	Transient Voltage dip during Soft starter starting of Last motor P2	324
	Overload capacity P3	425
	Considering the last value amongst P1, P2 and P3	425
	Hence, Existing Generator 425 KVA is adequate to cater the loads as per re-scheduled loads.	

2nd june 2021: Calculations of Earthing and Lighting protection.

1	7 Calculation of		
	Earthing and	Earthing calculations	Lighting protection
	Lighting		calculation
	protection		
	calculations		

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculations:

Lightining Calculations:

5thjune 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and cable tray	Cable sizing calculations	Cable tray calculation
	sizing calculations	C	,

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

JUNE 2021

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ELECTRICAL LOAD CALCULATIONS LV MCC

Assignment 1

												kW = [A] / [D]		Consumed L	oad .	kVAR = kW >	k tan φ	
SI.	Equipment	Equipment Description	Breaker	Breaker		ELCB	Absorbed	Motor / Load	Load	Efficiency	Power							Remark
No.	No.		Rating	Туре	No. of	Rating	Load	Rating	Factor	at Load	Factor at	Continue	ous	Intermi	ttent	Stand-l	ру	
					Poles				[A] / [B]	Factor [C]	Load Factor [C]							
							[A]	[B]	[C]	[D]	i actor [O]							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
	PU2315	Silica filter feed pump					43.84		0.97	0.91	0.78	48.18	38.65					
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					12.73		0.85	0.85	0.73	15.0	14.0					
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					10.96		1.00		0.73					12.9	12.1	
	PU2305	Feed Pump (Seperator)					44.28		0.98		0.78		39.0					
5	MX2305	MIXER (W)					44.62		0.99	0.91	0.78	49.0	39.3					
6	MX 2308	MIXER (S)					44.62	45.00	0.99	0.91	0.78	3				49.0	39.3	
7	BW2313	Blower					19.16		0.87	0.91	0.78	21.1	16.9					
8	Rotary valve	TK 2313B (I)					1.86		0.85	0.85	0.73	3		2.2	2.0			
9	SC2314	Screw conveyor (I)					4.30		0.91	0.85	0.73	3	•	5.06	4.74			
10	AG 2324A	Citric acid tan agitator (W)					3.23	3.70	0.87	0.85	0.73	3.80	3.56					
11	AG 2324B	Citric acid tank agitator (S)					3.23	3.70	0.87	0.85	0.73	3				3.8	3.6	
12	AG 2305	Citric oil rection vessol agitator					11.75		0.78	0.85	0.73	13.82						
13	AG 2309	Lye oil reaction vessel agitator					4.27	4.70	0.91	0.85	0.73	5.02	4.70					
14	AG 2310	Lye oil reaction vessel agitator					4.27	4.70	0.91	0.85	0.73	5.02	4.70					
15	AG 2314	Soap Adsorbant Tank Agitator					7.48	7.50	1.00	0.85	0.73	8.80	8.24					
	Maximum of norn	nal running plant load : 220.5 kW		10/1	kVAR		cart	kW² +kVAR²) =	287.3	k\/A	TOTAL	218.37	182.09	7.25	6.78	65.73	54.97	
	(Est. x%E + y%F)	5 ,		104.1	KVAR		Sqrt	KVV- +KVAR-) -	207.3	KVA	TOTAL	210.37	102.09	7.25	0.76	05.73	54.97	
	(
	Peak Load:	227.1 kW		189.6	kVAR		sqrt ($kW^2 + kVAR^2$) =	295.9	kVA	kVA	284.32	2	9.93	3	85.68	3	
	(Est. $x\%E + y\%F$	+ z%G)																

Assumptions
1) Load factor, Efficiency and Power factor.

Load Rating (kW)	Efficiency	Power factor
<= 20	0.85	0.73
> 20 - <= 45	0.91	0.78
> 45 - < 150	0.93	0.82
>= 150	0.94	0.91

2) Coincidence factors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and standby load.

	Design Data	
	Rated Volatge	415
	Power factor (CosØ)	0.87
	Efficiency	0.74
	Total operating load on DG set in kVA at 0.87 power factor	287.3
	Largest motor to start in the sequence - load in KW	45
	Running kVA of last motor ($CosØ = 0.91$)	70
	Starting current ratio of motor	6
	Starting KVA of the largest motor	419
	(Running kVA of last motor X Starting current ratio of motor)	
	Base load of DG set in KVA	217
	(Total operating load in kVA – Running kVA of last motor)	
Α	Continous operation under load -P1	
	Capacity of DG set based on continuous operation under load P1	217
В	Transient Voltage dip during starting of Last motor P2	
	Total momentary load in KVA	637
	(Starting KVA of the last motor+Base load of DG set in KVA	
	Subtransient Reactance of Generator (Xd")	7.91%
	Transient Reactance of Generator (Xd')	10.065%
	Xd''' =(Xd"+Xd')/2	0.089875
	Transient Voltage Dip	15%
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip) (Transient Voltage Dip)	324
С	Overload capacity P3	
	Capacity of DG set required considering overload capacity	
	Total momentary load in KVA	637
	overcurrent capacity of DG (K)	150%

(Ref: IS/IEC 60034-1, Clause 9.3.2)		
Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	425	
overcurrent capacity of DG (K)		
Considering the last value amongst P1, P2 and P3		
Continous operation under load -P1	217	
Transient Voltage dip during Soft starter starting of Last motor P2		
Overload capacity P3	425	
Considering the last value amongst P1, P2 and P3	425	
Hence, Existing Generator 425 KVA is adequate to cater the loads as per re-scheduled loads		
NOTE:VOLTAGE DIP CONSIDERED - 15%		

Assignment-3

Calculation for Transformer Capacity

Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 295.9 kVA

 Spare capacity
 =
 59.2 kVA

 Required capacity
 =
 355.1 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follow

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

Assignment-4 Earthing calculations:	2
Maximum line-to-ground fault in kA for 1 sec	16
Earthing material (Earth rod & earth strip)	GI
Depth of earth flat burrial in meter	0.5
Average depth / length of Earth rod in meters	4.5
Soil resistivity Ω -meter	11
Ambient temperature in deg C	55
Plot dimensions (earth grid) L x B in meters	80
Number of earth rods in nos.	6
Ambient temperature in deg C Plot dimensions (earth grid) L x B in meters	55 80

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	16
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
16 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	130
Earth rod dia in mm	13
Earth rod dia (including 25% corrosion allowance) in mm	16

Earth flat sizing:

 $\label{lem:conductor} \mbox{Ac-Required conductor cross section in $\tt sq.mm$}$

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{I-g} - RMS fault current in kA = 50 KA	16
tc - Short circuit current duration sec	1

Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
16 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	130
Earth flat area in mm	13
Earth flat area (including 25% corrosion allowance) in mm	16
Selected flat size W * Thk in sq mm	20

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20/A}} \right] \right\}$$

ρ - Soil resistivity in Ω-meter=	11
L - Total buried length of ground conductor in meter	440
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	11200

Rq - Grid resistance

0.071

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

ρ - Soil resistivity in Ω -meter, 16.96	11
n - No of earth electrodes	6
Lr - Length of earth electrode in meter	4.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	11200

Rr - Earth Electrode resistance 4.04156

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_g \ x \ R_2 - {R_m}^2$$

$$R_s = \frac{}{R_g + R_2 - 2R_m}$$

 R_{m} - Mutual ground resistance between the group of ground conductors, R_{g} and group of electrodes, R_{r} in $\Omega.$ Neglected $R_{m}\text{,}$ since this is for homogenous soil

Rs - Total earthing system resistance 0.070 The calculated resistance grounding system is less than the allowable 1 Ω value.

Assignment-5

Lightning calculations:

	1	2	3
Location	Mangalore	Bangalore	Visakhapatnam
Building	Concrete, Industrial	Srtuctural, Industrial	Concrete, Hospital
Type of Building	Flat Roofs (a)	Triangle Roofs (c)	Flat Roofs (a)
Building Length (L)	14	18	20
Building breadth (W)	4	8	9
Building Height (H)	5	6	8

4 Nellore Concrete, School Triangle Roofs (c) 22	5 Karnool Concrete, Industrial Flat Roofs (a) 15	6 Jaipur Srtuctural, Industrial Triangle Roofs (c) 19	7 Udaipur Concrete, Hospital Flat Roofs (a) 17	8 Rajkot Concrete, School Triangle Roofs (c) 15
8	5	7	7	6
9	6	7	9	7
9 Surat	10 Vadodara	11 Gwalior	12 Bellari	13 Bhopal
Concrete, Industrial	Srtuctural, Industrial	Concrete, Hospital	Concrete, School	Concrete, Industrial
Flat Roofs (a)	Triangle Roofs (c)	Flat Roofs (a)	Triangle Roofs (c)	Flat Roofs (a)
14	13	20	21	15
8	7	9	8	6
5	6	7	8	6
14	15	16	17	18
Delhi	Raichur	Rajkot	Khammam	Hyderabad
Srtuctural, Industrial	Concrete, Hospital	Concrete, School	Concrete, Industrial	Srtuctural, Industrial
Triangle Roofs (c)	Flat Roofs (a)	Triangle Roofs (c)	Flat Roofs (a)	Triangle Roofs (c)
11	17	12	11	9
7	7	6	7	6
5	9	8	9	7

19 Nizamabad Concrete, Hospital Flat Roofs (a)

12

7

9

Location	Gwalior
Building	Concrete, Hospital
Type of Building	Flat Roofs (a)
Building Length (L)	20
Building breadth (W)	9
Building Height (H)	7

Risk Factor Calculation

1 Collection Area (A_c)

Ac	=	(L*W) + (2*L*H) + (2*W*H) 739.86
2 Probability of Being Struck (P)		
P	=	Ac * Ng * 10-6
		0.002737482
3 Overall weighing factor		
a) Use of structure (A)	=	1.7
b) Type of construction (B)	=	1.0
c) Contents or consequential effects (C)	=	1.7
d) Degree of isolation (D)	=	1.0
e) Type of country (E)	=	0.3
Wo - Overall weighing factor	=	A * B * C * D * E
	=	0.510

Po

Ро

P * Wo 0.001396116

10-5

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

4 Overall Risk Factor

Perimeter of the building	=	2(L+W)			
	=	58	Mts.		
6 Down Conductors					
Perimeter of building	=	58	Mts.		
No. of down conductors based on perimeter	=	3	Nos.		

Hence 3 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Ste (As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip

Assignment-6

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of Load Curren	Motor Starting Current (A)	Load P.F. Running	SIN Ф Running	Motor P.F Staring	SIN Φ Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)				Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	size	OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silica filter feed pump	43.8	45.0	<mark>00</mark> 415	3 76.2	457.44	0.8	0.6	8.0	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	9.95	2.40	59.07	14.23	OK	22	20
4	LV MCC	PU2322A	Soft water pump	12.7	3 15.0	<mark>00</mark> 415	3 22.1	132.83	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	7.01	1.69	41.84	10.08	OK	18	20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	10.9	6 11.0	<mark>00</mark> 415	3 19.1	114.36	0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	60	5.9000	0.0947	9.46	2.28	56.66	13.65	OK	17	20s
6	LV MCC	PU2324	Citric Acid Tank pump	44.2	8 45.0	<mark>00</mark> 415	3 77.0	462.03	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	8.99	2.17	53.38	12.86	OK	22	20s
7	LV MCC	PU2333	Slop Oil pump	44.6	45.0	<mark>00</mark> 415	3 77.6	465.58	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	75	0.9300	0.0816	7.99	1.93	47.46	11.44	OK	22	20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	44.6	45.0	<mark>)0</mark> 415	3 77.6	465.58	8.0	0.6	8.0	0.5	2	1	4.0	35	148	0.98	0.9	1	1	0.882	130.5	105	0.6710	0.0794	8.25	1.99	48.81	11.76	OK	24	20s
9	LV MCC	PU2321A	Lye/Simplex Metering Pump	19.1	6 22.0	<mark>)0</mark> 415	3 33.3	199.92	8.0	0.6	8.0	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	100	1.4700	0.0815	7.07	1.70	42.13	10.15	OK	21	20s
10	LV MCC	PU2321B	Lye storage tank pump	1.8	36 2.2	2 <mark>0</mark> 415	3 3.2	19.41	8.0	0.6	8.0	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	100	5.9000	0.0947	2.68	0.64	16.03	3.86	OK	17	20s
11	LV MCC	PU2305	Feed Pump(Seperator)	4.3	30 4.7	<mark>'0</mark> 415	3 7.5	44.87	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	3.11	0.75	18.63	4.49	OK	18	20
12	LV MCC	PU2332	Saop Stock Pump	3.2	3.7	<mark>'0</mark> 415	3 5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	8.18	1.97	49.02	11.81	OK	16	20s
13	LV MCC	MX2305	Mixer	3.2	3.7	<mark>'0</mark> 415	3 5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.34	0.56	14.00	3.37	OK	18	20
14	LV MCC	MX2308	Mixer	11.7	5 15.0	<mark>00</mark> 415	3 20.4	122.60	0.8	0.6	8.0	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2.3400	0.0852	7.15	1.72	42.69	10.29	OK	18	20
15	LV MCC	CF2312	Separator	4.2	7 4.7	<mark>'0</mark> 415	3 7.4	44.55	0.8	0.6	8.0	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	0.87	0.21	5.15	1.24	OK	22	32
16	LV MCC	BW2313	Blower	4.2	7 4.7	0 415	3 7.4	44.55	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	9.34	2.25	55.97	13.49	OK	16	20s
17	LV MCC	RV 2314	Rotary valve	7.4	8 7.5	415	3 13.0	78.05	0.8	0.6	8.0	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	65	5.9000	0.0947	7.00	1.69	41.89	10.09	OK	17	20s
19																															\leftarrow		
20																																	
21																																	
22																																	
23 24																															\longrightarrow		
25																															\leftarrow		
26																																	
27																																	-
																																	-
																																	-
																																	-
						_			1			1				1																	

Basi

1. Overall derating factor $k = k1 \times k2 \times k3 \times k4$

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

Assignment-7

		ASSIGNMENT-7							
TC	ABLES								
	ETRAY: FROM	LT-4		TO	Ľ	T-6			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm 2)	No. of Cable	Diameter of each Cable	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	16	1	21	21	1	1	
2	PU2322A	4	10	1	18	18	0.9	0.9	
3	PU 2314A	4	2.5	1	16	16	0.5	0.5	
4	PU2316	4	16	1	21	21	1	1	
5	PU2322A	4	16	1	21	21	1	1	
6	PU 2314A	4	25	1	22	22	1.4	1.4	
7	PU2317	4	10	1	18	18	0.9	0.9	
8	PU2322A	4	10	1	18	18	0.9	0.9	
9	PU 2314A	4	6	1	18	18	0.7	0.7	
10	PU2318	4	2.5	1	16	16	0.5	0.5	
11	PU2322A	4	6	1	18	18	0.7	0.7	
12	PU 2314A	4	6	1	18	18	0.7	0.7	
13	PU2319	4	25	1	22	22	14	1.4	
14	PMCC-2TO AUXILIARY PANEL-2(AIC)	4	2.5	1	16	16	0.5	0.5	
15	PMCC-2TO COOLING TOWER DOSING SYSTEM PACKAGE	4	2.5	1	16	16	0.5	0.5	
				_					
_				_					
				_					
	Total			15		279	126	12.6	
	ulation					Result			
	um Cable Diameter:		22	mm		Selected Cable Tr		0.К	
	fer Spare Capacity of Cable Tray:		30%			Selected Cable T		0.K	
	ce between each Cable:		0	mm		Selectrd Cable To		O.K	Including Spare Capacity
	ated Width of Cable Tray:		363	mm		Selected Cable T	ray Size:	0.K	Including Spare Capacity
	ated Area of Cable Tray:		7979	Sq.mm					
	Layer of Cables in Cable Tray:		1			Required Cable T		600 x 100	mm
	ed No of Cable Tray:		1	Nos.		Required Nos of		1	No
	ed Cable Tray Width:		600	mm		Required Cable T		90.00	Kg/Meter/Tray
	ed Cable Tray Depth:		100	mm		Type of Cable Tra	y:	Lad der	
	ed Cable Tray Weight Capacity:		90	Kg/Meter		Calle Town Harry	A B		
	f Cable Tray:		Lad der			Cable Tray Width		40%	
rotal /	Area of Cable Tray:		60000	Sq.mm		Cable Tray Area F	romaning:	87%	