Fonction expo (TS2)

Initiation expo

1. Simplifier au maximum les expressions suivantes :

$$A = \frac{e^{3 + \ln x^2}}{2x} \qquad B = \frac{e^{3x} + e^x}{e^{2x} + 1}$$

2. Prouver que pour tout réel *x* :

a)
$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

b)
$$\ln(1 + e^x) = x + \ln(1 + e^{-x})$$

Exercice 2

On considère le polynôme $P(x) = 2x^3 - 9x^2 + x + 12$.

1. Résoudre dans \mathbb{R} : $P(x) \leq 0$.

2. En déduire les solutions de l'équation et l'inéquation suivantes.

a)
$$2e^{3x} - 9e^{2x} + e^x + 12 = 0$$
 b) $\frac{e^{2x}(2e^x - 9)}{e^x + 12} \le -1$.

b)
$$\frac{e^{2x}(2e^x-9)}{e^x+12} \le -1.$$

Exercice 3

Résoudre dans \mathbb{R}^2 les systèmes suivants :

a)
$$\begin{cases} 2e^x + 3e^{1+y} = 13 \\ e^x + e^{1+y} = 5 \end{cases}$$
 b)
$$\begin{cases} xy = -15 \\ e^x \times e^y = e^2 \end{cases}$$

Exercice 4

Calculer la dérivée de chacune des fonctions suivantes.

1)
$$f(x) = (x^2 - 5x + 1)e^{3x - 1}$$
 2) $f(x) = \sqrt{x}e^{-x^2}$ 3) $f(x) = \ln(1 + e^x)$
4) $f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ 5) $f(x) = \ln(\frac{e^x - 1}{x + e^x})$ 6) $f(x) = \exp(\frac{1}{x^2 - x})$

Exercice 5

Etudier les limites suivantes :

1)
$$\lim_{x \to +\infty} (e^x - x^2 - x)$$
 2) $\lim_{x \to 0} \frac{1 - e^{-2x}}{3x}$ 3) $\lim_{x \to 0} \frac{e^{2x} - e^{-x}}{x}$ 4) $\lim_{x \to -\infty} e^{-2x} + 3x$

5)
$$\lim_{x \to 0^+} \frac{\ln(2 - e^{-x})}{x}$$
 6) $\lim_{|x| \to +\infty} (x+2)e^{-x}$

Exercice 6

Dresser le tableau de variations des fonctions suivantes.

1)
$$f(x) = e^{2x} - e^{-2x} - 4x$$
 2) $f(x) = (x^2 - 5x + 7)e^{2x}$ 3) $f(x) = x - \frac{e^x}{e^x + 2}$

4)
$$f(x) = x - e^{\frac{x-2}{2}}$$
 5) $f(x) = (x-1)(2 - e^{-x})$

Exercice 7

Soit
$$f(x) = 1 - \frac{4e^x}{1 + e^{2x}}$$
 et \mathscr{C} sa courbe.

- 1. Démontrer que pour tout x, f(-x) = f(x). Que peut-on en déduire pour la courbe \mathscr{C} ?
- 2. Déterminer $\lim_{x \to +\infty} f(x)$. Interpréter.

3. Vérifier que
$$\forall x \in \mathbb{R}$$
 $f'(x) = \frac{4e^x(e^{2x} - 1)}{(e^{2x} + 1)^2}$

- 4. En déduire le sens de variation de la fonction f sur l'intervalle $[0, +\infty[$.
- 5. Montrer que la courbe $\mathscr C$ coupe l'axe des abscisses en un unique point A d'abscisse a positive. Montrer que 1,31 < a < 1,32. Donner une allure de $\mathscr C$ dans le repère.
- 6. Donner le signe de f(x) pour $x \in \mathbb{R}$.

Exercice 8

Soit
$$f(x) = \begin{cases} -x + 7 - 4e^x & \text{si } x \le 0 \\ x + 3 - x \ln x & \text{si } x > 0 \end{cases}$$

- 1. (a) Etudier la continuité de f en 0.
 - (b) Etudier la dérivabilité de f en 0. Interpréter le résultat graphiquement.
 - (c) Ecrire l'équation de la tangente à \mathscr{C}_f au point d'abscisse e.
- 2. Déterminer les limites aux bornes de Df.
- 3. Etudier les branches infinies de \mathscr{C}_f .
- 4. Établir le tableau de variations de f.
- 5. Démontrer que l'équation f(x) = 0 admet une solution unique $\alpha > 0$.
- 6. Construire la courbe \mathscr{C}_f .

Exercice 9

On considère la suite (U_n) de nombres réels définie pour tout entier naturel n par :

$$\begin{cases} U_0 = 0 \\ U_{n+1} = \ln(1 + e^{U_n}) \end{cases}$$

- 1. Calculer U_3 .
- 2. Exprimer U_n en fonction de U_{n+1} .
- 3. Soit la suite (V_n) définie par : $V_n = e^{U_n}$, $n \in \mathbb{N}$.
 - (a) Montrer que (V_n) est une suite arithmétique dont on précisera la raison et le

premier terme.

- (b) Exprimer V_n puis U_n en fonction de n.
- (c) Etudier la convergence de la suite (U_n) et préciser sa limite.