# Foundations of Natural Language Processing Lecture 17 Discourse Coherence

**Alex Lascarides** 

19 March 2019



## Making sense of actions



## **Changing our minds**



## **Observing Action**

- We assume action choice isn't arbitrary; choice is informed by the context
- So we infer more than we see.
- And may change these inferences as we see more.

## Coherence in Discourse: Making sense of verbal actions



It's a beautiful night.
We're looking for something dumb to do.
Hey baby, I think I wanna marry you.

### **Questions**

Coherence and Content

**Representation:** How should discourse coherence be represented formally and computationally?

**Construction:** What inference processes, and what knowledge sources, are used when identifying coherence relations?

## **Outline**

- Motivation for Discourse Coherence
- Representing Discourse Coherence
- Inferring Discoures Coherence

From Hobbs (1985)

John can open Bill's safe. He knows the combination

From Hobbs (1985)

John can open Bill's safe.

John He knows the combination.

• If "He" is John: Explanation ("because").

From Hobbs (1985)

John can open Bill's safe.

Bill He knows the combination.

• If "He" is John: Explanation ("because").

If "He" is Bill: at best we infer Continuation ("and") with a very vague topic.

From Hobbs (1985)

John can open Bill's safe. He should change the combination.

From Hobbs (1985)

John can open Bill's safe.

Bill He should change the combination.

• If "He" is Bill: Result ("so")

#### From Hobbs (1985)

John can open Bill's safe.

John He should change the combination.

If "He" is Bill: Result ("so")
 If "He" is John: a 'weaker' Result?

Subjects are more likely antecedents, but not here...

#### **Pronouns and Coherence**

 Pronouns interpreted in a way that maximises coherence, even if this conflicts with predictions from other knowledge sources!

## **Coherence and Time**

Max fell. John helped him up.

Max fell. John pushed him.

### **Coherence and Time**

John hit Max on the back of his neck. Max fell. John pushed him. Max rolled over the edge of the cliff.

## **Word Meaning**

A: Did you buy the apartment?

B: Yes, but we rented it./ No, but we rented it.

## **Bridging**

John took an engine from Avon to Dansville. He picked up a boxcar./He also took a boxcar.

## **Discourse Coherence and Implicit Agreement**

From Sacks *et al.* (1974):

- (1) a. M (to K and S): Karen 'n' I're having a fight,
  - b. M (to K and S): after she went out with Keith and not me.
  - c. K (to M and S): Wul Mark, you never asked me out.

## **Discourse Coherence and Dishonesty**

Example from Solan and Tiersma (2005)

- (2) a. P: Do you have any bank accounts in Swiss banks, Mr. Bronston?
  - b. B: No, sir.
  - c. P: Have you ever?
  - d. B: The company had an account there for about six months, in Zurich.
- (2)d interpreted as an indirect answer, implying *no...*

## **Discourse Coherence and Dishonesty**

Example from Solan and Tiersma (2005)

- (2) a. P: Do you have any bank accounts in Swiss banks, Mr. Bronston?
  - b. B: No, sir.
  - c. P: Have you ever?
  - d. B: The company had an account there for about six months, in Zurich.
- (2)d interpreted as an indirect answer, implying *no...*
- ... even if you know it conflicts with Bronston's beliefs.

## **Discourse Coherence and Dishonesty**

Example from Solan and Tiersma (2005)

- (2) a. P: Do you have any bank accounts in Swiss banks, Mr. Bronston?
  - b. B: No, sir.
  - c. P: Have you ever?
  - d. B: The company had an account there for about six months, in Zurich.
- (2)d interpreted as an indirect answer, implying *no...*
- ... even if you know it conflicts with Bronston's beliefs.
- Literally true, but negative answer false.
- Supreme court overruled conviction for perjury.
- Different ruling probable if Bronston had said "only".

## **Gesture**



Now one thing you could do is totally audiotape hours and hours...

... so that you get a large amount of data that you can think of as laid out on a time line.

#### Gesture



And exhaustively go through and make sure that you really pick up all the speech errors

... by individually analysing each acoustic unit along the timeline of your data.

## **Gesture**



Allow two different coders to go through it...

... and moreover get them to work independently and reconcile their activities.

#### Meaning of Multimodal Communicative Actions

Coherence relations connect speech and gesture and sequences of gestures.

 speech so that gesture speech by gesture speech and moreover gesture

## SDRT: The logical form (LF) of monologue

#### LF consists of:

- 1. Set A of labels  $\pi_1, \pi_2, \dots$  (each label stands for a segment of discourse)
- 2. A mapping  $\mathcal{F}$  from each label to a formula representing its content.
- 3. Vocabulary includes coherence relations; e.g., *Elaboration*( $\pi_1, \pi_2$ ).

#### LFs and Coherence

Coherent discourse is a single segment of rhetorically connected subsegments. More formally:

• The partial order over A induced by  $\mathcal{F}$  has a unique root.

## An Example

 $\pi_1$ : John can open Bill's safe.  $\pi_2$ : He knows the combination.

 $\pi_0$ :  $\textit{Explanation}(\pi_1, \pi_2)$   $\pi_1$ :  $\iota x(\textit{safe}(x) \& \textit{possess}(x, \textit{bill}) \& \textit{can}(\textit{open}(e_1, \textit{john}, x))$  $\pi_2$ :  $\iota y(\textit{combination}(y) \& \textit{of}(y, x) \& \textit{knows}(\textit{john}, y))$ 

- Bits in red are specific values that go beyond content that's revealed by linguistic form.
- They are inferred via commonsense reasoning that's used to construct a maximally coherent interpretation.

## SDRT: Logical form of dialogue Lascarides and Asher (2009)

- LF tracks all current public commitments for each agent, including commitments to coherence relations.
- (1) a. M (to K and S): Karen 'n' I're having a fight,
  - b. M (to K and S): after she went out with Keith and not me.
  - c. K (to M and S): Wul Mark, you never asked me out.

| Turn | M                                     | K                                           |
|------|---------------------------------------|---------------------------------------------|
| 1    | $\pi_{1M}: \textit{Explanation}(a,b)$ | Ø                                           |
| 2    | $\pi_{1M}: \textit{Explanation}(a,b)$ | $\pi_{2K}: \textit{Explanation}(a,b) \land$ |
|      |                                       | ${\it Explanation}(b,c)$                    |

- (2) a. P: Do you have any bank accounts in Swiss banks?
  - b. B: No, sir.
  - c. P: Have you ever?
  - d. B: The company had an account there for 6 months.

| Turn | Prosecutor                            | Bronston                                                                |
|------|---------------------------------------|-------------------------------------------------------------------------|
| 1    | $a:\mathcal{F}(a)$                    | Ø                                                                       |
| 2    | $a:\mathcal{F}(a)$                    | $\pi_{2B}: 	extit{Answer}(a,b)$                                         |
| 3    | $\pi_{3P}: 	extit{Continuation}(a,c)$ | $\pi_{2B}: 	extit{Answer}(a,b)$                                         |
| 4    | $\pi_{3P}: 	extit{Continuation}(a,c)$ | $\pi_{4B}: \textit{Answer}(a,b) \land \textit{Continuation}(a,c) \land$ |
|      |                                       | $\mathit{Indirect-Answer}(c,d)$                                         |

1. Plausible Deniability: Must test rigorously whether it's safe to treat the implied answer as a matter of public record.

- (2) a. P: Do you have any bank accounts in Swiss banks?
  - b. B: No, sir.
  - c. P: Have you ever?
  - d. B: The company had an account there for 6 months.

| Turn | Prosecutor                                          | Bronston                                                           |
|------|-----------------------------------------------------|--------------------------------------------------------------------|
| 1    | $a:\mathcal{F}(a)$                                  | Ø                                                                  |
| 2    | $a:\mathcal{F}(a)$                                  | $\pi_{2B}: 	extit{Answer}(a,b)$                                    |
| 3    | $\pi_{3P}: 	extcolor{black}{\it Continuation}(a,c)$ | $\pi_{2B}: 	extit{Answer}(a,b)$                                    |
| 4    | $\pi_{3P}: 	extit{Continuation}(a,c)$               | $\pi_{4B}: \textit{Answer}(a,b) \wedge \textit{Continuation}(b,d)$ |

- 1. Plausible Deniability: Must test rigorously whether it's safe to treat the implied answer as a matter of public record.
- 2. Neologism proof equilibria: distinguishes (2)d vs. "only".

## Symbolic approaches to constructing LF

- Draw on rich information sources:
  - linguistic content, world knowledge, mental states...
- Deploy reasoning that supports inference with partial information. Unlike classical logic, this requires consistency tests.
- Typically, construct LF and evaluate it in the same logic, making constructing LF undecidable.

#### **Further Problem**

- Like any knowledge rich approach involving hand-crafted rules, this is only feasible for very small domains.
- Ideally, we would like to learn a discourse parser automatically from corpus data.
- But there's a lack of corpora annotated with discourse structure.
  - RSTbank, Graphbank, Annodis, STAC are relatively small.
  - Discourse Penn Treebank is relatively large but not annotated with complete discourse structure.
  - Groningen Parellel Meaning Bank: full discourse structure (SDRSs) and getting bigger all the time.

## **Supervised Learning for SDRT**

Training on 100 dialogues

Parser based on Collins' parsing model:

Baldridge and Lascarides (2005)

- 72% f-score on segmentation (baseline: 53.3%)
- 48% f-score on segmentation and coherence relations (baseline: 7.4%)
- Doesn't attempt to estimate LFs of clauses.

Training on Groningen Meaning Bank

Liu and Lapata (2018)

Neural semantic parser, RNN computes structure first, fills in arguments later:

- 77% f-score on segmentation, coherence relations and LFs of clauses
- State of the Art!

- Coherence relations can be overtly signalled:
  - because signals EXPLANATION; but signals CONTRAST
- So produce a training set automatically:
  - Max fell because John pushed him⇒

EXPLANATION(Max fell, John pushed him).

#### **Results of Best Model**

- Test examples originally had a cue phrase: 60.9%.
- Test examples originally had no cue phrase: 25.8%
- Train on 1K manually labelled examples: 40.3%.
- Combined training set of manual and automatically labelled examples doesn't improve accuracy.

So you're better off manually labelling a small set of examples!

#### **Results of Best Model**

- Test examples originally had a cue phrase: 60.9%.
- Test examples originally had no cue phrase: 25.8%
- Train on 1K manually labelled examples: 40.3%.
- Combined training set of manual and automatically labelled examples doesn't improve accuracy.

So you're better off manually labelling a small set of examples!

#### Why?

#### Contrast to Elaboration

**Although** the electronics industry has changed greatly, possibly the greatest change is that very little component level manufacture is done in this country.

## Conclusion

- Interpretation governed by discourse coherence:
  - Constrains what can be said next
  - Augments meaning revealed by linguistic form.
- Computing logical form should be decidable; modularity is key to this.
- Data-driven approaches are a major challenge.
- Linking rich models of discourse semantics to models of human behaviour and decision making is also a major challenge, but essential for tackling dialogues where the agents' goals conflict.