Initialization & Library Loading

Circular Motion Worldline

 $\label{eq:loss_loss} $\inf_{\boldsymbol{\omega}} := \operatorname{SetAttributes}[r, \operatorname{Constant}];$$ $\operatorname{SetAttributes}[\boldsymbol{\omega}, \operatorname{Constant}];$$ $\operatorname{Assumptions} = r > 0 && \ \boldsymbol{\omega} > 0 && \ r \ \boldsymbol{\omega} < 1 && \ \boldsymbol{\lambda} \geq 0;$$$

CircularMotion[r_, ω] := t \mapsto mkFourVector[t, rCos[ω t], rSin[ω t]];

In[•]:= CircularMotion[r, ω][t]

 $Out[\circ] = FourVector[t, rCos[t \omega], rSin[t \omega], 0]$

Proper Time

In[•]:= Dtau[CircularMotion[r, ω]][λ]

Out[
$$\circ$$
]= $\sqrt{1-r^2}\omega^2$ Dt[λ]

In[•]:= ProperTime[CircularMotion[r, ω]][λ]

Out[
$$\circ$$
]= $\lambda - r^2 \omega^2$

In[•]:= ProperTimeToFrameTime[CircularMotion[r, ω]][τ] // Simplify

$$Out[\circ] = \left\{ \frac{\tau}{1 - r^2 \omega^2} \right\}$$

In[•]:= FrameTimeToProperTime[CircularMotion[r, ω]][t] // Simplify

$$Out[\circ] = \left\{ t - 1 - r^2 \omega^2 \right\}$$

In[•]:= ProperTimeParametrization[CircularMotion[r, ω]][τ] // Simplify

$$Out[*] = \left\{ FourVector \left[\frac{\tau}{\sqrt{1 - r^2 \omega^2}}, r Cos \left[\frac{\tau \omega}{\sqrt{1 - r^2 \omega^2}}, r Sin \left[\frac{\tau \omega}{\sqrt{1 - r^2 \omega^2}}, 0 \right] \right] \right\}$$

Frame Properties

 $In[\cdot] := FrameVelocity[CircularMotion[r, \omega]][\lambda]$

Out[•]=
$$\{-r \omega \operatorname{Sin}[\lambda \omega], r \omega \operatorname{Cos}[\lambda \omega], 0\}$$

 $In[\circ] := FrameAcceleration[CircularMotion[r, \omega]][\lambda] // Simplify$

Out[
$$\bullet$$
]= $\left\{-r\omega^2 \cos[\lambda\omega], -r\omega^2 \sin[\lambda\omega], 0\right\}$

Velocity and Acceleration

In[•]:= FourVelocity[CircularMotion[r, ω]][λ]

$$Out[*] = FourVector \left[\frac{1}{\sqrt{1-r^2 \omega^2}}, -\frac{r \omega Sin[\lambda \omega]}{\sqrt{1-r^2 \omega^2}}, \frac{r \omega Cos[\lambda \omega]}{\sqrt{1-r^2 \omega^2}}, 0 \right]$$

 $In[\cdot]:=$ ProperVelocity[CircularMotion[r, ω]][λ] // Simplify

Out[•]= **1**

In[•]:= FourAcceleration[CircularMotion[r, ω]][λ]

Out[•]= FourVector
$$\left[0, \frac{r \omega^2 \cos[\lambda \omega]}{-1 + r^2 \omega^2}, \frac{r \omega^2 \sin[\lambda \omega]}{-1 + r^2 \omega^2}, 0\right]$$

In[*]:= ProperAcceleration[CircularMotion[r, ω]][λ] // Simplify

$$Out[\circ] = -\frac{i r \omega^2}{-1 + r^2 \omega^2}$$