

**Znalostné systémy**Bayesova metóda šírenia neurčitosti v inferenčnej sieti

**AUTORI: Dmytro Lahunov** Vypracované: 6.12.2020 Dávid Lacko

#### Obsah:

- 1. Ciel zadania
- 2. Bayesova metóda
- 3. Main
- 4. Class Bayes\_model
- 5. Class GUY
- 6. Výstup

#### Ciel zadania:

Cieľom zadania bolo naprogramovať bayesovú metódu šírenia neurčitosti v nami zvolenom jazyku.

Pre riešenie tej to úlohy sme zvolili programovací jazyk python.

## Bayesova metóda:

Bayesiánska štatistika je teória v oblasti štatistiky založená na Bayesovskej interpretácii pravdepodobnosti, kde pravdepodobnosť vyjadruje určitú vieru v udalosť .

Miera viery môže byť založená na predchádzajúcich znalostiach o udalosti, ako sú napríklad výsledky predchádzajúcich experimentov, alebo na osobnom presvedčení o udalosti.

Bayesovské štatistické metódy využívajú Bayesovu vetu na výpočet a aktualizáciu pravdepodobností po získaní nových údajov.

Bayesova veta popisuje podmienenú pravdepodobnosť udalosti na základe údajov, ako aj predbežných informácií alebo presvedčení o udalosti alebo podmienkach súvisiacich s udalosťou

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)},$$

#### Main:

Je hlavný súbor určený na spustenie tried Bayes\_model a GUY.

#### Class Bayes model:

Je trieda určená na výpočet CTR a GLOB.

## **Class GUY:**

Je trieda určená na graficky výstup.

Vykresľovanie okna bolo vytvorené za pomoci knižnice PyQt5.

# Výstup:

Baza znalosti:

|   | P(Ei) | P(H Ei) | P(H ~Ei) | P(H) | OD | Min | Max |  |
|---|-------|---------|----------|------|----|-----|-----|--|
| 1 | 0.3   | 0.86    | 0.34     | 0.7  | -3 | -5  | 5   |  |
| 2 | 0.1   | 0.90    | 0.10     | 0.7  | 0  | -5  | 5   |  |
| 3 | 0.5   | 0.53    | 0.18     | 0.7  | 4  | -5  | 5   |  |

#### Baza znalosti s CTR:

|   | P(Ei) | P(H Ei) | P(H ~Ei) | P(H) | OD | Min | Max | P(E E`) | P(H E`) |
|---|-------|---------|----------|------|----|-----|-----|---------|---------|
| 1 | 0.3   | 0.86    | 0.34     | 0.7  | -3 | -5  | 5   | 0.12    | 0.5     |
| 2 | 0.1   | 0.90    | 0.10     | 0.7  | 0  | -5  | 5   | 0.10    | 0.7     |
| 3 | 0.5   | 0.53    | 0.18     | 0.7  | 4  | -5  | 5   | 0.90    | 0.6     |

#### $P(Ei) P(H|Ei) P(H|\sim Ei) P(H) OD Min Max P(E|E') P(H|E') O(H|E')$ 1 0.3 0.86 0.34 0.7 -3 -5 5 0.12 0.5 1.00 -5 0 5 2 0.1 0.90 0.10 0.7 0.10 0.7 2.33 -5 3 0.5 0.53 0.18 0.7 4 5 0.90 0.6 1.50

L 1 0.43 2 1.00 3 0.64

