

CADERNO DE EXERCÍCIOS

Métodos Numéricos e Otimização Não Linear

Ano letivo de 2024/25

Métodos Numéricos

Sistemas de equações lineares

1. Um engenheiro supervisiona a produção de 3 marcas de automóveis. Para a sua produção, são necessários 3 tipos de materiais: metal, tecido e borracha. As quantidades para produzir um carro de cada marca são:

carro	metal(lb/carro)	tecido(lb/carro)	borracha(lb/carro)
1	1500	25	100
2	1700	33	120
3	1900	42	160

Estão disponíveis por dia, respetivamente 106000, 2170, 8200 lb de metal, tecido e borracha. Quantos automóveis podem ser produzidos por dia?

Resolva o sistema por um método direto e estável (usando 4 casas decimais nos cálculos).

2. Considere o seguinte sistema de equações lineares

$$\begin{cases} 0.8x_1 + 1.4x_2 + 3.0x_3 &= 12.6\\ 0.6x_1 + 0.9x_2 + 2.8x_3 &= 10.8\\ 2.0x_1 + 1.0x_2 + 1.1x_3 &= 4.0 \end{cases}$$

- (a) Resolva-o usando um método direto e estável.
- (b) Calcule o seu determinante.
- 3. Dada a matriz

$$A = \begin{pmatrix} 2.4 & 6.0 & -2.7 & 5.0 \\ -2.1 & -2.7 & 5.9 & -4.0 \\ 3.0 & 5.0 & -4.0 & 6.0 \\ 0.9 & 1.9 & 4.7 & 1.8 \end{pmatrix}$$

e o vetor $b = (14.6, -11.4, 14.0, -0.9)^T$.

Resolva o sistema correspondente por um método direto e estável.

4. Um engenheiro foi contratado para construir casas em 3 estilos diferentes arquitetónicos: barroco, colonial e rústico. Para tal, determinou as quantidades de materiais (ferro, madeira e cimento) que serão empregues em cada estilo, conforme a tabela seguinte:

Estilo/Materiais	ferro	madeira	cimento
barroco	4	2	1
colonial	2	5	3
rústico	1	2	6

Pretende-se saber o número de unidades necessárias, de cada material, para que se possam construir 13 casas barrocas, 15 casas coloniais e 22 casas rústicas.

- (a) Apresente a formulação matemática do problema na forma de sistema de equações lineares.
- (b) Resolve o sistema por um método direto e estável.
- 5. Considere a figura que representa um sistema de 4 molas ligadas em série sujeito a uma força F de 2000 Kg. Numa situação de equilíbrio, as equações força-balanço deduzidas definem inter-relações entre as molas:

$$\begin{cases} k_2(x_2 - x_1) &= k_1 x_1 \\ k_3(x_3 - x_2) &= k_2(x_{2-} x_1) \\ k_4(x_4 - x_3) &= k_3(x_{3-} x_2) \\ F &= k_4(x_{4-} x_3) \end{cases}$$

em que $k_1=150,\ k_2=50,\ k_3=75$ e $k_4=225$ são as constantes das molas (kg/s²). Resolva o sistema por um método direto e estável.

Equação não linear

6. Uma bola esférica de raio r=10cm feita de uma substância cuja densidade é $\rho=0.638$, foi colocada num recipiente com água. Calcule a distância x da parte submersa da bola sabendo que verifica:

$$\frac{\pi \left(x^3 - 3x^2r + 4r^3\rho\right)}{3} = 0.$$

Use o método de Newton para calcular uma aproximação à solução, usando no critério de paragem $\varepsilon_1 = \varepsilon_2 = 0.001$ (ou faça no máximo 3 iterações).

7. A função

$$a(x) = 2.02x^5 - 1.28x^4 + 3.06x^3 - 2.92x^2 - 5.66x + 6.08$$

é utilizada num estudo do comportamento mecânico de materiais, representando a(x) o comprimento da fissura e x (> 0) uma fração do número de ciclos de propagação.

Pretende-se saber para que valores de x a velocidade de propagação da fissura é nula. Utilize um método que não recorre ao cálculo de derivadas, usando no critério de paragem $\varepsilon_1 = \varepsilon_2 = 10^{-2}$ ou no máximo 3 iterações.

8. O volume v de um líquido num tanque esférico de raio r está relacionado com a profundidade h do líquido da seguinte forma:

$$v = \frac{\pi h^2 (3r - h)}{3}.$$

- (a) Calcule, utilizando um método que não recorre ao cálculo de derivadas, a profundidade h, num tanque de raio r=1 para um volume de 0.5. Utilize para aproximação inicial o intervalo [0.25, 0.5] e considere $\varepsilon_1 = \varepsilon_2 = 10^{-2}$ ou no máximo 3 iterações.
- (b) Repita os cálculos, nas mesmas condições da alínea anterior, mas utilizando para aproximação inicial o intervalo [2.5, 3]. Comente os resultados e analise a viabilidade da solução encontrada.
- 9. A concentração de uma bactéria c(t) num depósito decresce de acordo com a seguinte expressão

$$c(t) = 70e^{-1.5t} + 25e^{-0.075t}.$$

Utilize um método iterativo que recorre ao cálculo da derivada para determinar o tempo necessário até a concentração da bactéria ficar reduzida a 9. Use a seguinte aproximação inicial $t_1=5$. Para a paragem do processo iterativo use $\varepsilon_1=\varepsilon_2=0.05$ ou $n_{\rm max}=3$.

10. Baseado num trabalho de Frank-Kamenetski, em 1955, a temperatura no interior de um material, quando envolvido por uma fonte de calor, pode ser determinada se resolvermos a seguinte equação não linear em x:

$$\frac{e^{-0.5x}}{\cosh(e^{0.5x})} = \sqrt{0.5L}.$$

Para L=0.088, calcule a raiz da equação, usando um método iterativo que não recorra a derivadas. Sabendo que a raiz está no intervalo [0,2], pare o processo iterativo quando o critério de paragem for verificado para $\varepsilon_1=0.5$ e $\varepsilon_2=0.1$, ou ao fim de 2 iterações.

Nota:
$$cosh(y) = \frac{e^y + e^{-y}}{2}$$

11. A velocidade ascendente, v, de um foguetão pode ser calculada pela seguinte expressão:

$$v = u \ln(\frac{m_0}{m_0 - gt}) - gt$$

em que u é a velocidade relativa a que o combustível é expelido, m_0 é a massa inicial do foguetão no instante $t=0,\ q$ é a taxa de consumo de combustível e g é a aceleração da gravidade. Considerando $u=2200\ m/s,\ g=9.8m/s^2,\ m_0=1.6\times 10^5\ Kg$ e $q=2680\ Kg/s,$ calcule o tempo para o qual o foguetão atinge a velocidade $v=1000\ m/s$, sabendo que esse instante está entre $20\ s$ e $30\ s$.

Utilize o método que achar mais adequado, com $\varepsilon_1=10^{-2}$ e $\varepsilon_2=10^{-1}$ ou no máximo 3 iterações.

12. Pela aplicação do Princípio de Arquimedes para determinação do calado de embarcações, pretende determinar-se a profundidade h correspondente ao equilíbrio tal que

$$\gamma_s V_s = \gamma_l V_l(h)$$

com $\gamma_s = 918.35 \ kg/m^3$ (densidade do sólido), $V_s = 1700m^3$ (volume do sólido), $\gamma_l = 1.025kg/m^3$ (densidade do líquido) e $V_l(h)$ volume do líquido deslocado (ver figura).

Utilize o método de Newton para calcular o valor de h, supondo $V_l(h) = h(h-40)^2$. Utilize para aproximação inicial $h^{(1)} = 140$ e $\epsilon_1 = \epsilon_2 = 10^{-4}$, ou no máximo 3 iterações.

13. A figura representa um vulção em erupção. A relação entre a distância y (milhas) percorrida pela lava e o tempo t (horas) é dada por:

$$y = 7 (2 - 0.9^t).$$

Existe uma aldeia no sopé da montanha a uma distância de y=10. O gabinete de proteção civil advertiu os moradores da aldeia de que a lava chegaria às suas casas em menos de 6 horas.

Calcule utilizando um método iterativo que recorre ao cálculo de derivadas o instante de tempo em que a lava do vulcão atinge a aldeia.

Considere $\varepsilon_1 = \varepsilon_2 = 10^{-3}$ ou no máximo 3 iterações. Nota: $(a^x)' = a^x \ln(a)$, para a constante.

Sistemas de equações não lineares

- 14. Pensei em dois números x e y. O produto dos dois somado ao cubo do segundo é igual a 3 e o logaritmo neperiano do segundo adicionado à metade do primeiro é 1. Em que números pensei?
 - (a) Formule o problema como um sistema de equações.
 - (b) Resolva-o utilizando para aproximação inicial o ponto (1.9, 1.1). Apresente o resultado no final de uma iteração e a correspondente estimativa do erro relativo.
- 15. A posição de um determinado objeto O_1 no plano XY é descrita em função do tempo (t) pelas seguintes equações:

$$x_1(t) = t$$
 $y_1(t) = 1 - e^{-t}$

A posição de um segundo objeto O_2 é descrita pelas seguintes equações:

$$x_2(t) = 1 - t\cos(\alpha)$$
 $y_2(t) = -0.1t^2 + t\sin(\alpha)$

em que α representa o ângulo, como mostra a figura.

Determine os valores de t e α na posição em que os dois objetos colidem, *i.e.*, na posição em que se igualam as coordenadas x e y:

$$t = 1 - t\cos(\alpha)$$
$$1 - e^{-t} = -0.1t^2 + t\sin(\alpha)$$

Considere os valores iniciais $(t, \alpha)^{(1)} = (4.3, 2.4)$ e $\varepsilon_1 = \varepsilon_2 = 0.015$ ou no máximo duas iterações.

16. Em problemas de navegação, é necessário encontrar a posição de um ponto (x,y), através dos valores das distâncias r_1 e r_2 a dois pontos de posição conhecida (x_1,y_1) e (x_2,y_2) , como mostra a figura.

(a) Formule o problema como um sistema de equações não lineares em função das coordenadas do ponto (x, y).

- (b) Considerando $(x_1, y_1) = (10, 10)$, $(x_2, y_2) = (10, -10)$, $r_1 = 14$ e $r_2 = 16$, calcule as coordenadas do ponto (x, y) através do método iterativo de Newton considerando a seguinte aproximação inicial $(x, y)^{(1)} = (0, 0)$. Apresente o valor ao fim de duas iterações com a correspondente estimativa do erro relativo.
- 17. Num coletor solar, um balanço de energia na placa absorvente e na placa de vidro produz o seguinte sistema de equações não lineares nas temperaturas absolutas da placa absorvente (x_1) e da placa de vidro (x_2)

$$\begin{cases} x_1^4 + 0.068x_1 - x_2^4 - 0.058x_2 &= 0.015 \\ x_1^4 + 0.058x_1 - 2x_2^4 - 0.117x_2 &= 0 \end{cases} .$$

Considerando a seguinte aproximação inicial $(x_1, x_2)^{(1)} = (0.3, 0.3)$, implemente duas iterações do método de Newton. Apresente uma estimativa do erro relativo da aproximação calculada.

18. A concentração de um poluente num lago depende do tempo t e é dada por

$$C(t) = 70 e^{\beta t} + 20 e^{\omega t}$$
.

Efetuaram-se duas medições da concentração que foram registadas na seguinte tabela

$$\begin{array}{c|cccc} t & 1 & 2 \\ \hline C(t) & 27.5702 & 17.6567 \end{array}$$

Utilize o método de Newton para determinar β e ω . Considere a aproximação inicial $(\beta,\omega)^{(1)} = (-1.9, -0.15)$. Implemente um iteração e apresente um estimativa do erro relativo da aproximação calculada.

Interpolação polinomial

19. Os registos efetuados numa linha de montagem são os seguintes:

- (a) Tendo sido recebidos pedidos para a montagem de 2 unidades e 8 unidades, use interpolação cúbica para estimar o tempo (em horas) necessário para satisfazer cada pedido.
- (b) Estime o erro de truncatura cometido na alínea anterior.
- 20. Pretende-se construir um desvio entre duas linhas de caminho de ferro paralelas. O desvio deve corresponder a um polinómio de grau três que une os pontos $(x_0, f_0) = (0, 0)$ e (x_4, f_4) , como mostra a figura

Com base nos dados da tabela

x_i	0	1	1.5	2	x_4
$f_i = p_3(x_i)$	0	0.3125	0.6328125	1	f_4

verifique se o ponto $(x_4, f_4) = (4, 2)$ pertence ao polinómio. Use 7 casas decimais nos cálculos.

21. A tabela apresenta a população dos Estados Unidos da América (em milhões) de 1940 a 1980.

Ano	1940	1950	1960	1970	1980
População	132.165	151.326	179.323	203.302	226.542

- (a) Construa o polinómio interpolador de Newton de grau 4 para estimar a população em 1965.
- (b) A população em 1930 foi 123.203. Qual a precisão do valor calculado em a)?
- 22. Considere a seguinte tabela da função f(x)

Determine a de modo a que o polinómio interpolador de f(x) nos pontos da tabela dada seja de grau 3. Justifique.

23. A figura representa um reservatório. Considere que, no início, o reservatório tem água até uma altura de 2.1 metros. Num certo instante abre-se a válvula e o reservatório começa a ser esvaziado. A altura (em metros) de água no reservatório, t horas depois de este ter começado a ser esvaziado, é dada por h(t), de acordo com a tabela

Instante, t_i	0	1	4	7	8	10	14
Altura de água, $h(t_i)$	2.1	2.0	1.8	1.5	1.4	1.1	0

- (a) Use um polinómio de interpolação de grau 3 para estimar a altura de água no reservatório ao fim de 5 horas.
- (b) Suponha que a altura de água pode ser estimada pelo modelo

$$M(t; c_1, c_2) = \ln(c_1 - c_2 t).$$

Determine c_1 e c_2 tomando apenas os três pontos da tabela que se encontram igualmente distanciados e use quatro casas decimais nos cálculos. Qual o valor da altura de água que o modelo calculado fornece para t=5 horas.

24. Considere a seguinte tabela de uma função polinomial

Sem recorrer à expressão analítica de p(x):

- (a) Mostre que p(x) é um polinómio interpolador de grau 2.
- (b) Determine p(10).
- 25. Considere uma função f da qual se conhecem os seguintes valores

- (a) Construa a tabela das diferenças divididas.
- (b) Determine a (real) para o qual a tabela representa um polinómio de grau 3.
- (c) Determine a (real) para o qual o coeficiente do termo de maior grau do polinómio interpolador de Newton, calculado com base em todos os pontos da tabela, é igual a um.
- 26. A velocidade de ascensão de um foguetão, v(t), é conhecida para diferentes tempos conforme a seguinte tabela. Esta velocidade pode ser estimada através de um polinómio de colocação de grau dois.

t(seg.)	v(t)(metros/seg.)
0	0
5	106.8
10	227.04
15	362.78
20	517.35
30	901.67

- (a) Calcule o polinómio e estime a velocidade do foguetão para t = 8 seg.
- (b) Estime a aceleração do foguetão para t = 8 seg.
- (c) Estime a precisão do valor calculado em (a).

Aproximação dos mínimos quadrados

27. A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os valores da tabela.

x_i	1.5	2.0	3.0	4.0
$f(x_i)$	4.9	3.3	2.0	1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados: uma reta, uma parábola e o modelo linear $M(x, c_1, c_2) = c_1/x + c_2x$.

- (a) Calcule a reta.
- (b) Calcule a parábola.
- (c) Calcule o modelo M.
- (d) Qual dos modelos escolheria? Justifique a sua escolha.
- 28. O comprimento de uma barra metálica varia com a temperatura. Numa barra metálica obtiveram-se as seguintes medições

$$\begin{array}{c|cccc} t(^{o} \text{ C}) & 10 & 20 & 30 \\ \hline c(\text{mm}) & 1003 & 1010 & 1015 \\ \end{array}$$

em que t representa a temperatura e c o comprimento da barra. Nalguns materiais esta variação é linear, sabendo-se que c(t) = at + b, em que a e b são constantes. Determine as constantes a e b utilizando a técnica dos mínimos quadrados. Use 6 casas decimais nos cálculos. Calcule uma estimativa do comprimento da barra para a temperatura de 18^o .

29. Um carro inicia a sua marcha num dia frio de inverno e um aparelho mede o consumo de gasolina verificado no instante em que percorreu x Km. Os resultados obtidos foram:

x (distância em Km)	0	1.25	2.5	3.75	5	6.25
f(x) (consumo em l Km ⁻¹)	0.260	0.208	0.172	0.145	0.126	0.113

Construa um modelo quadrático, para descrever o consumo de gasolina em função da distância percorrida, usando a técnica dos mínimos quadrados.

30. Foram efetuadas várias medições do nível de água no Mar do Norte, H(t), para diferentes valores de t conforme a seguinte tabela:

t (horas)	2	4	8	10
H(t) (metros)	1.6	1.4	0.2	0.8

Aproxime a função H(t), no sentido dos mínimos quadrados, por um modelo do tipo

$$M(t; c_1, c_2, c_3) = c_1 + c_2 \operatorname{sen}\left(\frac{2\pi t}{p}\right) + c_3 \cos\left(\frac{2\pi t}{p}\right).$$

Nota: p = 12 horas representa uma aproximação da periodicidade do nível de água.

31. Um sistema simples de comunicações pode ser representado por um transmissor e um recetor. O transmissor recebe um símbolo, m, e modula o sinal a transmitir, $s_m(t)$, num canal com ruído. O recetor recebe o sinal modulado com o ruído adicionado, y(t), e prevê qual foi o símbolo transmitido. Neste sistema simples suponha que o transmissor apenas transmite dois sinais

$$s_1(t) = 0.2\alpha_1 sen(20\pi t) + 0.2\beta_1 sen(22\pi t)$$

$$s_2(t) = 0.2\alpha_2 sen(20\pi t) + 0.2\beta_2 cos(20\pi t)$$

(a) Transmitindo o primeiro sinal $(s_1(t))$ e fazendo uma análise ao transmissor observaram-se os valores tabela. Determine os valores de α_1 e β_1 no sentido dos mínimos quadrados.

$$\begin{array}{|c|c|c|c|c|c|} \hline t_i & 0.11 & 0.52 & 0.79 \\ \hline s_{1i} & -3.1127 & 0.0625 & 3.0351 \\ \hline \end{array}$$

(b) Suponha que $\alpha_1 = -10$, $\beta_1 = -10$, $\alpha_2 = 10$ e $\beta_2 = 10$. Sabendo que o recetor recebeu o sinal indicado na tabela seguinte determine qual foi o sinal transmitido (isto é, aquele que se ajusta melhor ao sinal recebido, no sentido dos mínimos quadrados)

t_i	0.1	0.45	0.63		
$y(t_i)$	1.9863	-2.0100	1.2742		

32. A tabela seguinte contém os registos efetuados dos valores médios da radiação solar numa região de Portugal:

$m\hat{e}s(x_i)$	J(1)	F(2)	M(3)	A(4)	M(5)	J(6)	J(7)	A(8)	S(9)	O(10)	N(11)	D(12)
Radiação	122	-	188	-	_	270	-	-	-	160	-	120

Ajuste o modelo

$$M(x) = c_1 x + c_2 sen(x)$$

aos valores da tabela, no sentido dos mínimos quadrados, e use o modelo encontrado para prever a radiação média no mês de Agosto.

33. Um fio está suspenso entre dois postes. A distância entre os postes é de 30 metros. A distância do fio ao solo f(x), em metros, depende de x como mostra a figura. A tabela mostra 5 valores conhecidos de f.

x_i	0	8	12	16	20
$f(x_i)$	15.43	10.2	10.2	11.86	15.43

- (a) Calcule a parábola que melhor se ajusta aos valores de $f(x_i)$ e determine a distância do fio ao solo quando x = 10.
- (b) A partir da parábola da alínea anterior, verifique se x = 10 é o ponto em que a distância do fio ao solo é mínima.
- (c) Determine o polinómio de grau 3 que melhor se ajusta aos valores de $f(x_i)$.

(d) Determine os coeficientes c_1 e c_2 do modelo

$$M(x; c_1, c_2) = c_1 e^{1 - 0.1x} + c_2 e^{0.1x - 1}$$

que melhor se ajusta à função f(x) de acordo com $\min_{c_1,c_2} \sum_{i=1}^5 (f(x_i) - M(x_i;c_1,c_2))^2$.

- (e) Qual dos modelos anteriormente determinados escolheria para ajustar a distância do fio ao solo. Justifique.
- 34. Em sistemas de transportes urbanos, o preço das viagens depende da procura. Quanto maior é a procura, x, mais baixo é o preço, P(x) (em euros). Os registos obtidos nos últimos 4 meses foram:

Pretende-se construir um modelo que descreva o comportamento de P em função de x. Com base no modelo M(x)

$$M(x; c_1, c_2) = c_1 x + c_2 e^{-x},$$

determine c_1 e c_2 no sentido dos mínimos quadrados.

35. A pressão máxima, P, em Kg/mm² que um cabo metálico suporta em função do seu diâmetro pode ser modelado de acordo com

$$P(d) = c_1 d^2 + c_2 \ln(d)$$

em que d é o diâmetro em mm. Foram realizadas três experiências cujos resultados se encontram na tabela

$$\begin{array}{c|cccc} d_i \text{ (mm)} & 0.239212 & 0.239215 & 0.239221 \\ \hline P_i \text{ (Kg/mm}^2) & a & 0.00020 & 0.00030 \\ \end{array}$$

Pretende-se calcular os coeficientes c_1 e c_2 de modo a que o modelo se aproxime dos valores da tabela no sentido dos mínimos quadrados.

- (a) Apresente o sistema das equações normais em função de a. Use 6 casas decimais nos cálculos.
- (b) Para a = 0.00015, determine $c_1 e c_2$.

Interpolação Spline

36. Considere um desvio entre duas linhas de caminho de ferro paralelas. O desvio agora deve corresponder a um polinómio de grau três que une os pontos (0,0) e (4,2), como mostra a figura.

Com base nos quatro pontos da tabela

x_i	-1	0	4	5
$f_i = f(x_i)$	0.4375	0	2	1.5625

construa a spline cúbica natural que descreve a trajetória desenhada e calcule f(2).

37. Ao efetuar observações astronómicas medindo as variações na magnitude aparente, M, de uma estrela variável chamada $variável\ Cepheid$, ao longo de um período de tempo, t, foram obtidos os seguintes valores:

tempo (t)	0.0	0.3	0.5	0.6	0.8
Magnitude aparente (M)	0.302	0.106	0.240	0.579	0.468

Seja s(t) a spline cúbica natural, interpoladora da função tabelada. Determine um valor aproximado (dado pela função spline) da magnitude aparente da variável Cepheid no instante t=0.4.

38. Os dados da tabela representam os pesos e as alturas de uma amostra de quatro crianças:

x (Altura (cm))	80	95	110	115
f(x) (Peso (Kg))	9	15	20	24

- (a) Estime o peso de uma criança com altura de 100 cm usando uma spline cúbica, cuja curvatura nos extremos é dada por: $s_3^{1\prime\prime}(80)=0.25$ e $s_3^{n\prime\prime}(115)=0.55$.
- (b) Determine o erro de truncatura cometido na alínea anterior, supondo que uma criança com $120~\mathrm{cm}$ pesa $25~\mathrm{Kg}.$

39. A partir de uma experiência foram obtidos os seguintes valores de y em função da variável t:

t_i	-1	-0.96	-0.86	-0.79	0.22	0.5	0.93
y_i	-1	-0.151	0.894	0.986	0.895	0.5	-0.306

Foram calculados dois modelos, $M_1(t)$ baseado numa spline cúbica e $M_2(t)$ baseado num polinómio interpolador de Newton, para aproximar os dados, e que estão representados na figura. Diga, justificando, a que modelo corresponde cada uma das linhas - a linha contínua e a linha a tracejado.

40. A seguinte função segmentada $s_3(x)$ no intervalo [0,3], representa o lucro obtido na venda de um produto sazonal. No 1º mês de vendas, o lucro é representado por $s_3^1(x)$ e no 2º e 3º meses é descrito po $s_3^2(x)$. Poderá a função segmentada $s_3(x)$ representar uma spline cúbica? Justifique.

$$s_3(x) = \begin{cases} s_3^1(x) = 3x^3 - x^2 + x - 2, & 0 \le x \le 1\\ s_3^2(x) = 2x^3 + 2x - 3, & 1 \le x \le 3 \end{cases}$$

41. Num certo campeonato regional de futebol há 7 equipas. No fim da temporada, o número de pontos ganhos e o número de golos sofridos por 6 das equipas estão representados na tabela

Equipa	F.C.Sol	F.C.Lá	S.C.Gato	Nova F.C.	Vila F.C.	F.C.Chão
N^o pontos, x_i	10	12	18	27	30	34
N^o golos, $f(x_i)$	20	18	15	9	12	10

- (a) Use uma *spline* cúbica completa para descrever a relação entre o número de pontos e o número de golos sofridos pelas equipas no campeonato. Sabendo que a 7^a equipa terminou o campeonato com 29 pontos, estime o número de golos que terá sofrido.
- (b) Calcule uma estimativa do erro de truncatura cometido na alínea anterior.

42. A resistência de um certo fio de metal, f(x), varia com o diâmetro desse fio, x. Foram medidas as resistências de 6 fios de diversos diâmetros:

x_i						
$f(x_i)$	4.9	3.3	3.0	2.0	1.75	1.5

Como se pretende estimar a resistência de um fio de diâmetro 1.75, use uma *spline* cúbica natural para calcular esta aproximação.

43. Um braço de um robô deve passar nos instantes t_0, t_1, t_2, t_3, t_4 e t_5 por posições pré-definidas $\theta(t_0), \theta(t_1), \theta(t_2), \theta(t_3), \theta(t_4)$ e $\theta(t_5)$, onde $\theta(t)$ é o ângulo (em radianos) que o braço do robô faz com o eixo dos X.

t_i	1	2	3	4	5	6
$\theta_i = \theta(t_i)$	1	1.25	1.75	2.25	3	3.15

- (a) Com base nos dados da tabela, aproxime a trajetória do robô por uma spline cúbica completa. Indique também uma aproximação da posição do robô no instante t = 1.5.
- (b) Calcule uma aproximação à velocidade do robô no instante t=1.5
- (c) Calcule um limite superior do erro de truncatura que se comete quando se usa a derivada da *spline* calculada para aproximar a velocidade do robô.
- 44. Considere as duas seguintes funções spline cúbicas:

$$S_3(x) = \begin{cases} -x+5, & 0 \le x \le 1\\ 3.75x^3 - 11.25x^2 + 10.25x + 1.25, & 1 \le x \le 3\\ -3.75x^3 + 56.25x^2 - 192.25x + 203.75, & 3 \le x \le 5 \end{cases}$$

e

$$R_3(x) = 2x^3 - 3x^2 + 5, \qquad 0 \le x \le 5$$

e a tabela da função f(x):

Verifique se alguma das duas funções $S_3(x)$ e $R_3(x)$, corresponde à função spline cúbica completa, interpoladora de f(x) nos pontos da tabela dada.

45. Considere a função f(x) definida por

Estime f(-1) através de uma spline cúbica completa, sabendo que f'(-2) = 12 e f'(2) = 20.

Integração numérica

46. Dada a tabela de valores da função f,

(a) calcule $\int_0^{2.1} f(x) dx,$ usando toda a informação da tabela

- (b) estime o erro de truncatura cometido na aproximação calculada em (a).
- 47. Foram registados os consumos, $f(x_i)$, de um aparelho em determinados instantes, x_i (em segundos):

x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	3.6	6.6	9.6	9.8	10
$f(x_i)$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.6	0.6	0.6	0.7	0.8

Calcule o consumo total ao fim de 10 segundos.

48. Considere a tabela de valores de uma função polinomial p de grau 3

- (a) Use a fórmula de Simpson com h=2 para calcular uma aproximação a $I=\int_0^4 p(x)\,dx$. Use 6 casas decimais nos cálculos.
- (b) Utilizando a fórmula composta de Simpson com base em todos os pontos da tabela para aproximar I, determine o valor de a. Justifique.
- 49. Uma corrida de *dragsters* tem duas fases distintas: na primeira fase, a mais curta, o movimento do carro é perfeitamente não determinístico, dependendo das derrapagens e da forma como o condutor consegue dominar o carro. Na segunda fase, o carro tem um movimento muito rápido, cuja aceleração está perfeitamente definida.

Considere-se a prova do condutor Don Nase de duração 7.5 s. Na primeira fase os valores da aceleração em cada instante encontram-se na tabela:

t_i	0	0.5	1	1.5
$a(t_i)$	0	0.35	0.55	0.9

Na segunda fase da corrida a aceleração é definida pela seguinte expressão:

$$a(t) = 0.5t^2 - 0.15t$$
 para $t \in [1.5, 7.5]$.

- (a) Estime a velocidade na primeira fase da corrida, utilizando a fórmula de integração mais adequada.
- (b) Estime a velocidade na segunda fase da corrida, utilizando a fórmula composta do trapézio com erro de truncatura em valor absoluto inferior a 0.3.
- (c) Estime o erro de truncatura cometido na alínea (a).
- 50. O comprimento do arco da curva y = f(x) ao longo do intervalo [a, b] é dado por

$$\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx.$$

Calcule uma aproximação numérica ao comprimento do arco da curva $f(x) = e^{-x}$ no intervalo [0,1], usando 5 pontos igualmente espaçados no intervalo.

51. A figura mostra uma pessoa que desliza, sem atrito, do alto de um escorrega (ponto A), acoplando-se a um carrinho que se encontra em repouso no ponto B. A partir deste instante, a pessoa e o carrinho movem-se juntos na água até parar.

(a) Sabendo que a velocidade do conjunto pessoa-carrinho imediatamente após o acoplamento é 4 m/s e que a velocidade, v, em cada instante t na água é dada pela tabela seguinte, calcule (usando todos os pontos da tabela) a distância percorrida na água pelo conjunto pessoa-carrinho até parar.

- (b) Estime o erro de truncatura cometido na alínea anterior.
- (c) Selecione o maior número possível de pontos da tabela por forma a obter um conjunto de pontos igualmente espaçados, e calcule a mesma distância usando uma única fórmula composta de integração no intervalo [0, 4.2].
- 52. A curva de carga típica de uma determinada cidade (MW) está representada na figura

ou pela correspondente tabela

tempo (horas)	1	3	5	7	8	10	12	14	16	18	20	21	22	24
potência (MW)	30	29	33	40	39	33	39	38	30	31	45	50	44	30

- (a) Estime o consumo de energia diário desta cidade.
- (b) Estime o erro de truncatura cometido para a altura do dia de maior consumo.
- 53. A resposta de um transdutor a uma onda de choque causada por uma explosão é dada pela função $F(t)=8e^{-t}\frac{I(a)}{\pi}$ para $t\geq a$, em que

$$I(a) = \int_{1}^{2} f(x, a)dx \qquad \text{com } f(x, a) = \frac{e^{ax}}{x}$$

Calcule I(1) usando a fórmula composta do trapézio com erro de truncatura (em valor absoluto) inferior a 0.05.

54. A função distribuição normal acumulada é uma função importante em estatística. Sabendo

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2}/2} dx = \frac{1 + \frac{1}{\sqrt{2\pi}} \int_{-z}^{z} e^{-x^{2}/2} dx}{2}$$

calcule uma estimativa de F(1), usando a fórmula composta do trapézio com 5 pontos no cálculo do integral.

55. O trabalho realizado por uma força F(x) cujo ângulo entre a direção do movimento e a força é dado por $\theta(x)$, pode ser obtido pela seguinte fórmula:

$$W = \int_{x_0}^{x_n} F(x) \cos(\theta(x)) dx$$

em que x_0 e x_n são a posição inicial e final, respetivamente.

(a) Calcule a melhor aproximação ao trabalho realizado, W, ao puxar um bloco da posição $0 \, \text{ft}$ até à posição $30 \, \text{ft}$ sabendo que a força aplicada e o ângulo usado são dados na tabela seguinte.

x	0	2.5	5	15	20	25	30
F(x)							
$\theta(x)$	0.5	0.9	1.4	0.9	1.3	1.48	1.5

- (b) Calcule uma estimativa do erro de truncatura cometido no intervalo [5, 15].
- 56. Considere a seguinte função dada pela tabela

e seja $I = \int_1^{1.9} f(x) dx$. Ao utilizar as fórmulas compostas de Simpson e dos três oitavos foram obtidas as seguintes aproximações a I, respetivamente S(0.15) = 20.005 e 3/8(0.15) = 20.030625. Determine os valores de a e b. Use 6 casas decimais nos cálculos.

57. Considere a seguinte tabela da função f(x)

$$\begin{array}{c|cccc} x_i & 0.0 & 1.0 & 2.0 \\ \hline f(x_i) & 0.0000 & 0.8415 & 0.9093 \\ \end{array}$$

- (a) Determine um valor aproximado de $I=\int_0^2 f(x)\,dx$, usando a fórmula composta do trapézio com h=1.
- (b) Sabendo que um valor aproximado de I, usando a fórmula composta do trapézio com h=0.5 é T(0.5)=1.2667, determine uma nova aproximação de I, usando a fórmula composta de Simpson com h=0.5.