Studium przypadku

Szymon Pasternak, 148146

14.06.2024

Wstęp

Praca dotyczy analizy zbioru danych oddanych rzutów w koszykarskiej lidze NBA. Głównym celem jest utworzenie klasyfikatora będącego w stanie przewidzieć efekt akcji rzutowej opisanej przez atrybuty warunkowe takie jak na przykład odległość od kosza czy czas posiadania piłki przed rzutem.

Opis zbioru danych

Wybrany zbiór danych to to nba-shot-logs. Zawiera on dane o rzutach oddanych w meczach koszykarskiej ligi NBA. Oryginalne dane posiadają 21 atrybutów oraz prawie 130 tysięcy przypadków. Atrybuty dostępne w zbiorze to:

- GAME_ID id meczu, w którym odbył się rzut,
- MATCHUP opis kiedy i jakie drużyny grały ze sobą mecz,
- LOCATION lokalizacja meczu, w którym doszło do opisanego rzutu. Wartość A oznacza mecz na wyjeździe, a wartość H w domu,
- W wygrana (W) lub przegrana (L) zepsołu, którego zawodnik oddał rzut,
- FINAL_MARGIN ostateczna różnica punktów pomiędzy drużynami w meczu,
- SHOT_NUMBER numer rzutu, którym był ten oddany przez gracza, np pierwszy rzut, drugi, itd.
- PERIOD numer kwarty, w której rzut został oddany,
- GAME_CLOCK czas ubiegły od rozpoczęcia kwarty podczas oddawania rzuty w formacie mm:ss,
- SHOT CLOCK liczba sekund jaka minęła już w akcji,
- DRIBBLES liczba kozłów wykonanych przez zawodnika przed oddaniem rzutu,
- TOUCH TIME czas posiadania piłki zawodnika przed oddaniem rzutu,
- SHOT_DIST dystans od kosza mierzony w stopach,
- PTS TYPE typ rzutu, posiada wartość 2 lub 3,
- SHOT_RESULT rezultat rzutu, made jeśli trafiony, missed jeśli nietrafiony,
- CLOSEST DEFENDER nawisko i imię najbliższego obrońcy,
- CLOSEST_DEFENDER_PLAYER_ID id najbliższego obrońcy,
- CLOSE DEF DIST dystans do najbliższeo obrońcy mierzony w stopach,
- FGM wartość 0 lub 1 oznaczająca nietrafienie lub trafienie rzutu,
- PTS liczba zdobytych punktów,
- player_name imię i nazwisko zawodnika oddającego rzut,
- player id id zawodnika oddającego rzut,

Dostosowanie zbioru danych

Zbiór danych zawiera sporo błędów, dlatego trzeba go poprawić. Prace związane ze wstępnym przetworzeniem danych zawierały:

usunięcie wierszy, w których któraś z wartości jest pusta,

• usunięcie kolumny MATCHUP - jest ona zapisana w różny sposób i nie wnosi wiele informacji przydatnych do zadania,

- zamieniene formatu mm:ss z atrybutu GAME_CLOCK na czas w sekundach oraz usunięcie wartości mniejszych od 0 i większych od 12:00,
- usunięcie wartości SHOT_CLOCK mniejszych od 0 oraz większych od 24,
- usunięcie wartośći TOUCH_TIME mniejszych od 0 oraz większych od 24,
- usunięcie wartośći mniejszych od 0 w SHOT_DIST oraz wszystkich wierszy, gdzie dystans jest mniejszy niż 22 stopy i jest oznaczony w PTS_TYPE jako rzut za 3 punkty oraz rzutów dalszych niż 23.75 m oznaczonych jako rzuty za 2 punkty,
- usunięcie kolumny CLOSEST_DEFENDER, ponieważ wystarczy id obrońcy,
- usunięcie wartości CLOSE_DEF_DIST mniejszych od 0,
- usunięcie kolumny FGM, ponieważ jest ona innym zapisem atrybutu SHOT_RESULT,
- usunięcie kolumny PTS, ponieważ przekazuje informację o trafieniu lub nietrafieniu rzutu,
- usunięcie kolumny player_name, ponieważ wystarczy id zawodnika,
- wykonanie kodowania one-hot dla danych kategorycznych w celu umożliwienia działania na przykład klasyfikatorów drzew decyzyjnych.

Korelacje w zbiorze danych

Poniższy obrazek przedstawia macierz korelacji atrybutów w zbiorze. Pominięte zostały atrybuty będące identyfikatorami zawodników lub meczów, z uwagi na ich dużą liczbę. Na wykresie można zauważyć, że najsilniej skorelowane są następujące atrybuty:

- PERIOD z SHOT_NUMBER, czyli numer kwarty z numerem rzutu korelacja oznacza, że im wyższy numer kwarty w której oddawany był rzut, tym był to zazwyczaj wyższy numer rzutu oddanego przez danego zawodnika,
- TOUCH_TIME z DRIBBLES, czyli czas posiadania piłki oraz liczba kozłów korelacja ta jest dodatnia, czyli im dłuższy czas prz piłce, tym więcej kozłów,
- SHOT_DIST z CLOSE_DEF_DIST, czyli odległość zawodnika od kosza w momencie oddawania rzutu oraz odległość najbliższego obrońcy do zawodnika tutaj również korelacja jest dodatnia, co oznacza, że wraz ze zwiększeniem odległości od kosza, zwiększała się również odległość od najbliższego obrońcy. Działa to również w drugą stronę, czyli że wraz ze zbliżeniem się do kosza robi się "ciaśniej". Podobną korelację można zauważyć pomiędzy PTS TYPE a CLOSE DEF DIST,
- Ciekawą korelacją, chociaż już mniejszymi (o wpsółczynnikach korelacji o wartości bezwzględnej około
 0.2) jest to, że LOCATION jest skrelowane z FINAL_MARGIN, czyli drużyny wygrywały większą różnicą
 punktów (lub przegrywały mniejszą) na meczach domowych, a na wyjeździe było odwrotnie,
- Kolejnymi równie ciekawymi korelacjami są te pomiędzy TOUCH_TIME (oraz razem z nim DRIBBLES) a
 SHOT_DIST oraz TOUCH_TIME (i DRIBBLES) a CLOSE_DEF_DIST. Wynika z nich, że im dłużej zawodnik
 miał piłkę, tym częściej jego akcja kończyła się rzutem z bliższej odległości. Wraz ze wzrostem
 posiadania piłki przez zawodnika zmniejszała się również jego odległość do obrońcy, co jest powiązane
 z korelacją pomiędzy SHOT_DIST a CLOSE_DEF_DIST.

W analizie pominięte zostały oczywiste korelacje takie jak odległość od kosza SHOT_DIST i typ rzutu PTS_TYPE, ostateczna różnica punktowa FINAL_MARGIN i informacja o wygranej W oraz korelacje wynikające z zastosowanie kodowania one-hot dla atrybutów kategorycznych takich jak W, LOCATION czy PTS_TYPE.

Atrybut decyzyjny

SHOT_RESULT

Atrybut SHOT_RESULT odpowiada za rezultat rzutu. Posiada wartość made jeśli rzut został trafiony, a missed jeśli nie został trafiony.

Na wykresie można zaobserwować, że liczba przykładów w każdej z klas jest bliska połowie wszystkich przykładów w zbiorze - dane są zbalansowane.

Atrybuty warunkowe

GAME_ID

Atrybut GAME_ID jest identyfikatorem meczu, w którym został oddany rzut. Każy mecz pojawia się średnio 64 razy w zbiorze danych, co oznacza, że dla jednego meczu są średnio 64 zarejestrowane akcje rzutowe.

LOCATION

Atrybut LOCATION odpowiada za lokalizacje meczu, w którym doszło do opisanego rzutu. Wartość A oznacza mecz na wyjeździa, a H w domu.

Atrybut rozłożony jest pomiędzy dwie możliwe wartości po równo. W zestawie danych znajduje się podobna liczba rzutów oddanych w grach na wyjeździe i w domu.

W

Atrybut W odpowiada za oznaczenie wygranej lub przegranej drużyny zawodnika oddającego rzut w akcji. Wartość W oznacza wygraną, a wartość L przegraną.

Wartości atrybutu ₩ podobnie jak w innych atrybutach binarnych są rozłożone po równo pomiędzy obie opcje.

FINAL_MARGIN

FINAL_MARGIN to różnica punktów pomiędzy drużyną zawodnika oddającego rzut a drużyną przeciwną. Liczba ujemna świadczy o przegranej, a dodatnia o wygranej.

W koszykówce mecz nie może zakończyć się remisem, więc wartość 0 nie występuje w danych. Najczęstsze różnice punktowe w meczach to około 5 punktów na korzyść jednej z drużyn. Mniejsze lub większe różnice występują rzadziej z pojedynczymi przypadkami z różnicami większymi niż 30 punktów.

SHOT_NUMBER

SHOT_NUMBER jest numerem z kolei rzutu oddawanym przez zawodnika, którym jest zarejestrowany rzut.

Wśród danych, najczęściej dotyczą one pierwszego rzutu zawodnika. Rozkład przypomina dodatnią połowę rozkładu normalnego.

PERIOD

Atrybut PERIOD to numer kwarty, w której został oddany rzut.

Mecz koszykówki trwa w sumie 4 kwarty. Ewentualne wyższe liczby oznaczają dodatkowe kwarty, które rozgrywane są w przypadku remisu po obowiązkowych 4 kwartach. Gdy w piątej kwarcie mecz nie zostanie rozstrzygnięty, to rozgrywana jest kolejna. Mecz kończy się gdy skończy się czas dogrywki i jedna z drużyn ma więcej punktów. Stąd najmniej danych pochodzi z piątej i szóstej kwarty.

GAME_CLOCK

Atrybut GAME_CLOCK opisuje liczbę sekund, które minęły odrozpoczęcia kwarty do momentu oddania rzutu. Każda kwarta trwa 12 minut, czyli 720 sekund. Kwarty będące dogrywkami trwają 5 minut, czyli 300 sekund.

Dane rozłożone są równomiernie w czasie trwania meczu. Widoczny jest mały spadek oddanych rzutów w okolicach końca kwarty.

SHOT_CLOCK

Atrybut SHOT_CLOCK opisuje liczbę, które upłynęły od początku akcji do jej zakończenia w momencie oddania rzutu. Czas na akcję wynosi 24 sekundy.

Dane rozłożone są równomiernie w czasie trwania meczu nie licząc piku w 24 sekundzie. W koszykówce w momencie upłynięcia czasu akcji, zawodnicy często oddają jakikolwiek rzut, aby dać sobie szansę trafienia. Jeśli tego nie zrobią, odgwizdany zostanie błąd 24 sekund. Widoczne jest to na wykresie.

DRIBBLES

Atrybut DRIBBLES jest liczbą kozłów wykonanych przez gracza przed oddaniem rzutu.

Najwięcej rzutów odawanych jest z tak zwanych akcji 'catch and shoot', które polegają na oddaniu rzutu od razu po złapaniu piłki.

TOUCH_TIME

TOUCH_TIME to czas posiadania piłki przez zawodnika przed oddaniem rzutu.

Podobnie jak w przypadku atrybutu DRIBBLES, widoczny jest duży udział akcji 'catch and shoot' w akcjach rzutowych zarejestrowanych w zbiorze danych.

SHOT_DIST

SHOT_DIST opisuje odległość zawodnika od kosza, mierzona w stopach, w momencie oddania rzutu.

Na wykresie zaobserwować można dużą liczbę rzutów z bliska, czyli okolic 4 stóp od kosza. Jest również ciekawy pik w okolicach linii rzutów za 3 punkty. W koszykówce gracze bardzo rzadko decydują się na rzut dwu punktowy z dalekiej odległości. Dużo bardziej opłacalne jest cofnięcie się jeszcze o kilka kroków i spróbowanie zdobycia 3 punktów.

PTS_TYPE

PTS_TYPE przyjmuje wartości 2 lub 3 i jest typem rzutu oddanego przez zawodnika. Jest to rzut dwu- lub trzypunktowy.

Atrybut PTS_TYPE w większości przyjmuje wartość 2, co oznacza, że gracze chętniej oddają rzuty za 2 punkty. Liczba oddanych rzutów za 3 punkty jest około 3 razy mniejsza.

CLOSEST_DEFENDER_PLAYER_ID

Atrybut CLOSEST_DEFENDER_PLAYER_ID określa ID najbliższego zawodnika z przeciwnej drużyny w momencie oddania rzutu. Każdy obrońca pojawia się średnio 34 razy w zbiorze.

CLOSE_DEF_DIST

CLOSE_DEF_DIST jest dystansem dzielącym zawodnika oddającego rzut od obrońcy

Najczęściej obrońcy oddaleni są o około 5 stóp od rzucającego zawodnika.

player_id

Atrybut player_id jest identyfikatorem zawodnika oddającego rzut. Każdy zawodnik posiada zarejestrowane około 443 rzuty.

Przykłady przypadków ze zbioru

Poniżej przedstawione zostały 2 przykładowe przypdaki ze zbioru wraz z ich opisem.

Atrybut	Pierwszy przypadek	Drugi przypadek
GAME_ID	21400533	21400182
LOCATION	Н	A
W	W	L
FINAL_MARGIN	15	-13
SHOT_NUMBER	5	5
PERIOD	2	3
GAME_CLOCK	368	37
SHOT_CLOCK	15.4	12.3
DRIBBLES	1	0
TOUCH_TIME	2.3	1.3
SHOT_DIST	3.2	1.4
PTS_TYPE	2	2
CLOSEST_DEFENDER_PLAYER_ID	202730	201578
CLOSE_DEF_DIST	0.0	0.0
player_id	203110	203497

Oba przypadki pochodzą z dwóch różnych meczów oznaczonych identyfikatorami widocznymi w tablece. Pierwszy mecz odbył się w domu, a drugi na wyjeździe. Pierwszy rzut oddany został w meczy wygranym 15 punktami, a drugi w przegranej 13. Oba rzuty były piątymi rzutami zawodnika. Pierwszy z nich miał miejsce w połowie drugiej kwarty, a drugi na początku trzeciej. Pierwszy i drugi rzut oddane były po około 15 sekundach trwania akcji. Pierwszy rzut oddany był po jednym koźle i 2.3 sekundach posiadania piłki, a drugi bez kozła po 1.3 posiadania piłki. Oba rzuty były rzutami dwupunktowymi z podobnej odległości przy bliskiej odległości obrońcy.

Wykorzystane algorytmy

Do próby wykrycia rezultatu akcji rzutowej posłużyły następujące techniki. Do wszystkich zostały wykorzystane implementacje dostępne w bibliotece scikit-learn.

- DecisionTreeClassifier
- RandomForestClassifier
- LogisticRegression
- AdaBoostClassifier
- VotingClassifier

DecisionTreeClassifier

Do znalezienia najlepszych parametrów klasyfikatora DecisionTree wykorzystany został GridSearchCV z poniższymi sprawdzanymi parametrami.

```
param_grid = {
    'max_depth': [None, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'min_samples_split': [2, 5, 10, 20],
    'min_samples_leaf': [1, 2, 4, 8, 16],
    'criterion': ['gini', 'entropy']
}
```

Najlepszymi okazały się parametry przedstawione poniżej.

```
max_depth=5
min_samples_split=2
min_samples_leaf=4
criterion='entropy'
```

Algorytm został nauczony metodą walidacji krzyżowej z podziałem próby na 10 części. Osiągnął średnią wartość accuracy podczas walidacji krzyżowej równą 59.02% przy odchyleniu standardowym równym 2.15% oraz accuracy na zbiorze testowym równą 62.58%. Najważniejszymi atrybutami okazały się SHOT_DIST z wskaźnikiem ważności równym ponad 0.5, CLOSE_DEF_DIS z ważnością równą około 0.23 oraz TOUCH_TIME z ważnością równą około 0.1. Pozostałe atrybuty posiadają wartość ważności mniejszą od 0.05. Wizualizacja drzewa przedstawiona została na poniższym obrazku.

RandomForestClassifier

Do znalezienia najlepszych parametrów klasyfikatora RandomForest wykorzystany został GridSearchCV z poniższymi sprawdzanymi parametrami.

```
param_grid = {
    'n_estimators': [100, 150, 200],
```

```
'max_depth': [10, 20, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
```

Najlepszymi okazały się parametry przedstawione poniżej.

```
n_estimators=200
max_depth=20
min_samples_split=5
min_samples_leaf=1
```

Algorytm został nauczony metodą walidacji krzyżowej z podziałem próby na 10 części. Osiągnął średnią wartość accuracy podczas walidacji krzyżowej równą 60.75% przy odchyleniu standardowym równym 1.01% oraz accuracy na zbiorze testowym równą 62.79%.

LogisticRegression

Do znalezienia najlepszych parametrów regresji logistycznej wykorzystany został GridSearchCV z poniższymi sprawdzanymi parametrami.

```
param_grid = {
    'penalty': ['l1', 'l2'],
    'C': [0.001, 0.01, 0.1, 1, 10, 100],
    'solver': ['liblinear', 'saga'],
    'class_weight': [None, 'balanced']
}
```

Najlepszymi okazały się parametry przedstawione poniżej.

```
penalty='l1'
C=0.1
solver='saga'
class_weight=None
```

Algorytm został nauczony metodą walidacji krzyżowej z podziałem próby na 10 części. Osiągnął średnią wartość accuracy podczas walidacji krzyżowej równą 58.38% przy odchyleniu standardowym równym 1.07% oraz accuracy na zbiorze testowym równą 61.33%.

AdaBoostClassifier

Do znalezienia najlepszych parametrów regresji logistycznej wykorzystany został GridSearchCV z poniższymi sprawdzanymi parametrami.

```
param_grid = {
    'n_estimators': [50, 100],
    'learning_rate': [0.05, 0.1, 0.5]
}
```

Najlepszymi okazały się parametry przedstawione poniżej.

```
n_estimators=100
learning_rate=0.1
```

Algorytm został nauczony metodą walidacji krzyżowej z podziałem próby na 10 części. Osiągnął średnią wartość accuracy podczas walidacji krzyżowej równą 61.54% przy odchyleniu standardowym równym 0.97% oraz accuracy na zbiorze testowym równą 62.69%.

VotingClassifier

VotingClassifier składa się z trzech podstawowych klasyfikatorów. Są to RandomForestClassifier, LogisticRegression oraz AdaBoostClassifier z parametrami takimi, jakie zostały wyliczone za pomocą GridSearchCV.

Algorytm został nauczony metodą walidacji krzyżowej z podziałem próby na 10 części. Dla parametru voting ustawionego na wartość 'hard' osiągnął średnią wartość accuracy podczas walidacji krzyżowej równą 61.28% przy odchyleniu standardowym równym 1.27% oraz accuracy na zbiorze testowym równą 62.93%. Dla parametru voting ustawionego na wartość 'soft' osiągnął on lepszą, średnią wartość accuracy podczas walidacji krzyżowej równą 60.01% przy odchyleniu standardowym równym 1.74% oraz accuracy na zbiorze testowym równą 61.97%.

Wnioski

Wszystkie klasyfikatory osiągają podobne, oscylujące w okolicach 60% wartość accuracy. Najlepiej wypada RandomForestClassifier, AdaBoostClassifier oraz VotingClassifier w wersji 'hard'. Najgorzej wypada regresja logistyczna, a DecisionTreeClassifier i VotingClassifier w wersji 'soft' wypadają pomiędzy.

Na pierwszy rzut oka może wydawać się to rozczarowujące, ponieważ mamy do czynienia z klasyfikatorami binarnymi i gdyby poprosić dziecko o zgadywanie jaki powinien być efekt rzutu, to miało by ono accuracy równe około 50%. Tak słabe wyniki mogą wynikać ze specyfiki zbioru i trudności w jego interpretacji przez model. Zjawiska jakie przedstawia, czyli rezultaty akcji rzutowych w meczach NBA w rzeczywistośći są bardzo trudne do przewidzenia. Zawodnicy czasami trafiają trudne akcje, które mogłoby się wydawać, że "nie mają prawa wpaść", a czasami nie trafiają prostych sytuacji. Inną rzeczą jest to, że gdy mają do czynienia z trudną sytuacją, czyli taką gdzie na przykład są daleko od kosza lub gdy mają blisko siebie obrońcę, to nie oddają rzutu i czekają na lepszą pozycję. Po analizie zbioru, można dojść do wniosku, że lepszym pomysłem byłaby próba analizy zapisu danych dotyczących rzutów na treningach lub dane zawierające więcej danych dotyczących zmęczenia zawodnika jak na przykład jego czas spędzony na boisku. Biorąc pod uwagę trudności w przewidzeniu skuteczności akcji rzutowej można stwierdzić, że modele radzą sobie w tej sytuacji lepiej niż człowiek, który musiałby zdać się na szczęście i trafienie z poprawnymi predykcjami.

Literatura i źródła

- https://www.kaggle.com/datasets/dansbecker/nba-shot-logs/data
- https://scikit-learn.org/