Université de Haute-Alsace

2022/2023

Outils Géométrie CPB 1 ENSCMU - PC renfort

Quentin Ehret quentin.ehret@uha.fr

Chapitre 4 : Application linéaires et théorème du rang

 \mathbb{K} désigne \mathbb{Q} , \mathbb{R} ou \mathbb{C} . L'objectif de ce chapitre est de décrire les applications linéaires, qui sont des applications entre espaces vectoriels qui préservent la structure d'espace vectoriel, dans un sens que l'on précisera.

1 Généralités

$\{ {f D} {f e} {f finition} \,\, {f 1} \,)$

Soient E et F deux \mathbb{K} -ev, et $f: E \longrightarrow F$ une application. f est dite \mathbb{K} -linéaire si

- 1. pour tous $x, y \in E$, f(x + y) = f(x) + f(y);
- 2. pour tous $x \in E$ et $\lambda \in \mathbb{K}$, $f(\lambda x) = \lambda f(x)$.

Notation : On note $\mathcal{L}_{\mathbb{K}}(E,F)$ l'ensemble des application \mathbb{K} -linéaires de E vers F.

Exemples:

1. L'application nulle :

$$f_0: E \longrightarrow F$$

 $x \longmapsto 0_F;$

2. L'application identité :

$$id: E \longrightarrow E$$

 $x \longmapsto x;$

3. La dérivation de polynômes :

$$d: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$
$$P \longmapsto P';$$

4. Autres exemples:

$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto 2x - y;$

$$f_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x,y) \longmapsto \begin{pmatrix} 2x - y \\ x + y \\ 2y \end{pmatrix};$$

$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto \begin{pmatrix} x-y \\ x+y \end{pmatrix};$

$$f_5: \mathbb{R}[X] \longrightarrow \mathbb{R}$$

 $P \longmapsto P(2);$

$$f_4: \mathcal{C}([a,b],\mathbb{R}) \longrightarrow \mathbb{R}^2$$

$$g \longmapsto \begin{pmatrix} \int_a^b g \\ g(1) \end{pmatrix}.$$

Contrexemples : les deux applications suivantes ne sont pas linéaires :

$$g: \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (x^2, 2x);$

$$t_a: \mathbb{R} \longrightarrow \mathbb{R}, \quad \text{(pour } a \neq 0\text{)}$$

 $x \longmapsto x + a.$

Proposition 2 (propriétés des applications linéaires)

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

- 1. $f(0_E) = 0_F$;
- 2. f(-x) = -f(x);
- 3. $f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) = \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n);$
- 4. $\mathcal{L}_{\mathbb{K}}(E, F)$ est \mathbb{K} -ev.

$\{ \mathbf{D\'efinition} \ \mathbf{3} \}$

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

- Si E = F, f est appelée **endomorphisme**.
- \bullet Si f est bijective, f est appelée **isomorphisme**.
- \bullet Si f est à la fois un endomorphisme et un isomorphisme, f est appelée **automorphisme**.
- Si $F = \mathbb{R}$, f est appelée forme linéaire.

Exemple d'automorphisme :

$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto \begin{pmatrix} x-y \\ x+y \end{pmatrix}$$

est un automorphisme. Son inverse est donnée par

$$(f_3)^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(u,v) \longmapsto \begin{pmatrix} \frac{u+v}{2} \\ \frac{u-v}{2} \end{pmatrix}.$

2 Image et noyau d'une application linéaire

Définition 4

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

- $\ker(f) = \{x \in E, \ f(x) = 0\}$ est le **noyau** de f.
- $\operatorname{im}(f) = \{ y \in F, \exists x \in E, y = f(x) \} \text{ est } l'image \text{ de } f.$

Proposition 5

im(f) et ker(f) est des sous-espaces vectoriels de F et E, respectivement.

Démonstration. Soient $x, y \in \ker(f)$ et $\lambda \in \mathbb{K}$. Montrons que $\lambda x + y \in \ker(f)$.

$$f(\lambda x + y) = \lambda f(x) + f(y) = 0 + 0 = 0.$$

Soient $u, v \in \text{im}(f)$ et $\lambda \in \mathbb{K}$. Montrons que $\lambda u + v \in \text{im}(f)$. On écrit $u = f(x), x \in E$ et $v = f(y), y \in E$. Ainsi,

$$\lambda u + v = \lambda f(x) + f(y) = f(\lambda x + y).$$

De plus, ces deux ensembles sont non-vides car $0_E \in \ker(f)$ et $0_F \in \operatorname{im}(f)$.

Exemples:

On reprend les applications des exemples précédents :

- 1. $\ker(f_0) = E$; $\operatorname{im}(f_0) = \{0_F\}$.
- 2. $\ker(id) = \{0_E\}$; $\operatorname{im}(id) = E$.
- 3. $\ker(f_1) = \{(x, y) \in E, y = 2x\}; \operatorname{im}(f_1) = \{u \in \mathbb{R}, u = 2x y\} = \mathbb{R}.$

3.
$$\ker(f_1) = \{(x,y) \in E, \ y = 2x\}, \ \min(f_1) = \{u \in \mathbb{R}, \ u = 2x - y\} = \mathbb{R}.$$

$$4. \ \ker(f_2) = \{(x,y) \in E, \ (x-2y, \ x+y \ 2y) = (0,0,0)\} = \{(0,0,0)\}; \ \operatorname{im}(f_2) = \operatorname{plan} \begin{cases} u = x - 2y \\ v = x + y \\ w = 2y \end{cases}$$

Exercice: Trouver les noyaux et images des autres exemples.

Définition 6

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$. On appelle **rang** de f le nombre

$$rg(f) := dim(im(f)).$$

Proposition 7

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

- 1. f injective $\iff \ker(f) = \{0_E\}.$
- 2. f surjective \iff im(f) = F.

Démonstration. 1. (\Rightarrow) Supposons f injective. Soit $x \in \ker(f)$, montrons que x = 0. Par définition, f(x) = 0. Or, f(0) = 0. Comme f est injective, on conclut que x = 0.

- (\Leftarrow) Supposons $\ker(f) = \{0\}$. Soient $x, y \in E$ tels que f(x) = f(y). Montrons que x = y. On a 0 = f(x) f(y) = f(x y), donc $x y \in \ker(f)$. Ainsi x y = 0.
- 2. (\Rightarrow) Supposons f surjective. Alors pour tout $y \in F$, il existe $x \in E$ tel que y = f(x), donc $y \in \text{im}(f)$. Ainsi, $F \subset \text{im}(F)$. Or, il est clair que $\text{im}(f) \subset F$, donc F = im(f).
 - (\Leftarrow) Supposons que im(f) = F. Soit $y \in F$. Alors $y \in \text{im}(F)$, donc il existe x tel que y = f(x), donc f est surjective.

Proposition 8

Soient $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ et $\{x_1, x_2, ... x_n\}$ une famille de vecteurs de E.

- 1. Si f est injective et $\{x_i\}_i$ est libre dans E, alors $\{f(x_i)\}_i$ est libre dans F.
- 2. Si f est surjective et $\{x_i\}_i$ est génératrice de E, alors $\{f(x_i)\}_i$ est génératrice de F.
- Démonstration. 1. Supposons f injective et $\{x_i\}_i$ libre. Soient $\lambda_1, ..., \lambda_p \in \mathbb{K}$ tels que $\sum_i \lambda_i f(x_i) = 0$. Montrons que tous les λ_i sont nuls. En utilisant la linéarité de f, on obtient que

$$f\left(\sum_{i=1}^{p} \lambda_i x_i\right) = 0.$$

Or, f est injective, donc son noyau est réduit à 0. Ainsi $\sum_{i=1}^{p} \lambda_i x_i = 0$. Mais la famille $\{x_i\}_i$ est libre, donc tous les λ_i sont nuls.

2. Soit $y \in F$, y = f(x), $x \in E$ (car f surjective). Comme $\{x_i\}_i$ est génératrice, on peut écrire $x = \sum_i \lambda_i x_i$. Donc

$$y = f(x) = f\left(\sum_{i} \lambda_{i} x_{i}\right) = \sum_{i} \lambda_{i} f(x_{i}).$$

Donc $\{f(x_i)\}_i$ est génératrice de F.

Théorème 9

Deux K-ev de dimension finie sont isomorphes si et seulement si ils ont même dimension.

 $D\acute{e}monstration$. Soient E et F de dimension finie.

- (\Rightarrow) Supposons qu'il existe un isomorphisme $f: E \longrightarrow F$, qui est donc injectif et surjectif. Soit $\{e_i\}$ une base de E. Par le résultat précédent, $\{f(e_i)\}$ est une base de F. Donc ils ont même dimension.
- (\Leftarrow) Supposons $\dim(E) = \dim(F) = n$, et notons $\{e_i\}$ une base de E. Alors

$$f:E\longrightarrow \mathbb{K}^n$$

$$x = (x_1e_1 + \dots + x_ne_n) \longmapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

est un isomorphisme. Ainsi $E \cong \mathbb{K}^n$. De même, $F \cong \mathbb{K}^n$. Finalement $E \cong F$.

Théorème 10 (Théorème du rang)

Soient E, F de dimension finie et $f \in \mathcal{L}_{\mathbb{K}}(E, F)$. Alors

$$\dim_{\mathbb{K}}(E) = \operatorname{rg}(f) + \dim_{\mathbb{K}}(\ker(f)).$$

 $D\acute{e}monstration$. Supposons $\dim_{\mathbb{K}}(E) = n$, $\dim_{\mathbb{K}}(\ker(f)) = r$. Montrons que $\dim(\operatorname{im}(f)) = n - r$.

Soit $\{w_1,...,w_r\}$ une base de $\ker(f)$. On peut compléter cette famille en une base de E: on note $\{v_1,...,v_{n-r}\}$ une famille telle que $\{w_1,...,w_r,v_1,...,v_{n-r}\}$ soit une base de E. On pose alors

$$\mathcal{B} = \{f(v_1), ..., f(v_{n-r})\}.$$

On va montrer que \mathcal{B} est une base de $\operatorname{im}(f)$, ce qui prouvera que $\operatorname{dim}(\operatorname{im}(f)) = n - r$.

• \mathcal{B} est génératrice. Soit $y = f(x) \in \text{im}(f)$. On écrit

$$x = \lambda_1 w_1 + \dots + \lambda_r w_r + \mu_1 v_1 + \dots + \mu_{n-r} v_n - r.$$

Ainsi,

$$y = \underbrace{\lambda_1 f(w_1) + \dots + \lambda_r f(w_r)}_{= 0} + \mu_1 f(v_1) + \dots + \mu_{n-r} f(v_{n-r})$$
$$= 0 + \sum_{i=1}^{n-r} \mu_i f(v_i).$$

• \mathcal{B} est libre. Soient $\lambda_i \in \mathbb{K}$ tels que $\sum_{i=1}^{n-r} \lambda_i f(v_i) = 0$. Alors $\sum_{i=1}^{n-r} \lambda_i (v_i) \in \ker(f)$. Comme les w_i forment une base de $\ker(f)$, on écrit

$$\sum_{i=1}^{n-r} \lambda_i(v_i) = a_1 v_1 + \dots + a_r w_r, \ a_i \in \mathbb{K}.$$

Ainsi, on a

$$a_1v_1 + ... + a_rw_r + \lambda_1v_1 + ... + \lambda_{n-r}v_{n-r} = 0.$$

Mais $\{w_1, ..., w_r, v_1, ..., v_{n-r}\}$ est une base de E, donc est libre. Ainsi on déduit que les a_i et les λ_j sont tous nuls. En particulier, \mathcal{B} est libre.

Corollaire 11

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$. Supposons $\dim(E) = \dim(F)$, finie. Alors

f injective $\iff f$ surjective $\iff f$ bijective.

Démonstration. Il suffit de montrer f injective $\iff f$ surjective.

f injective $\iff \ker(f) = \{0\} \iff \dim(E) = \operatorname{rg}(f)$ par le théorème du rang. Or, $\dim(E) = \dim(F)$, donc $\dim(F) = \operatorname{rg}(f)$. Finalement, on a montré que f injective $\iff F = \operatorname{im}(f)$, ce qui est équivalent à f surjective.

Remarque. FAUX en dimension infinie! Par exemple,

$$\mathbb{K}[X] \longrightarrow \mathbb{K}[X]$$

$$P \longmapsto P'$$

est surjective, mais pas injective.

3 Matrice d'une application linéaire

On a vu que $f: E \longrightarrow F$ linéaire est entièrement définie si on stipule les images par f des vecteurs de base de E. Cela signifie que si $\mathcal{B} = \{e_i\}$ est une base de E, alors la donnée de $\{f(e_i)\}$ détermine complètement f:

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n \in E \Longrightarrow f(x) = x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n) \in F.$$

Ceci va permettre d'exprimer f sous forme de matrice.

3.1 Matrice associée à une application linéaire

Soient E, F deux \mathbb{K} -ev, $\dim(E) = n$, $\dim(F) = p$. Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$. On note $\mathcal{B} = \{e_1, ..., e_n\}$ une base de E et $\mathcal{B}' = \{\varepsilon_1, ..., \varepsilon_p\}$ une base de F. On peut alors écrire les équations suivantes, en décomposant les images des vecteurs de la base \mathcal{B} dans la base \mathcal{B}' :

$$\begin{cases} f(e_1) = a_{11} \,\varepsilon_1 + \dots + a_{p1} \,\varepsilon_p \\ f(e_2) = a_{12} \,\varepsilon_1 + \dots + a_{p2} \,\varepsilon_p \\ \vdots \\ f(e_n) = a_{1n} \,\varepsilon_1 + \dots + a_{pn} \,\varepsilon_p \end{cases}$$

On obtient alors la matrice de f dans les bases \mathcal{B} et \mathcal{B}' en écrivant dans le colonne i les composantes du vecteur $f(e_i)$ dans la base \mathcal{B} :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pn} \end{pmatrix} = (a_{i,j})_{i,j}.$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$f(e_1) \quad f(e_2) \qquad f(e_n)$$

Remarque.

- La matrice dépend clairement du choix des bases;
- Si f est un endomorphisme, on prend $\mathcal{B} = \mathcal{B}'$ et on note alors $\mathrm{Mat}_{\mathcal{B}}(f)$.

Proposition 12

Soient E, F deux \mathbb{K} -ev, de dimension n et p respectivement, et munis des bases \mathcal{B} pour E et \mathcal{B}' pour F. Alors

$$\alpha: \mathcal{L}_{\mathbb{K}}(E, F) \longrightarrow M_{pn}(\mathbb{K})$$
$$f \longmapsto \operatorname{Mat}_{\mathcal{B}\mathcal{B}'}(f)$$

est un isomorphisme de K-ev.

Remarque. Cela signifie qu'il est équivalent de se donner une application linéaire de E vers F ou une matrice de $M_{pn}(\mathbb{K})$. En particulier, pour $\lambda \in \mathbb{K}$ et $f, g \in \mathcal{L}_{\mathbb{K}}(E, F)$,

$$\operatorname{Mat}_{\mathcal{B}\mathcal{B}'}(\lambda f + g) = \lambda \operatorname{Mat}_{\mathcal{B}\mathcal{B}'}(f) + \operatorname{Mat}_{\mathcal{B}\mathcal{B}'}(g).$$

De plus, $\dim_{\mathbb{K}}(\mathcal{L}_{\mathbb{K}}(E, F)) = np$.

Exemples:

1. Application identité:

$$id : E \longrightarrow E$$
$$x \longmapsto x,$$

avec dim(E) = n et \mathcal{B} une base de E. Alors $\mathrm{Mat}_{\mathcal{B}}(\mathrm{id}) = I_n$.

2. Projection : soit $E = \mathbb{R}^2$ muni de la base canonique $\{e_1, e_2\}$.

$$p_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x,0).$

On calcule:
$$p_1(e_1) = e_1$$
, $p_1(e_2) = 0$. Ainsi, $Mat(p_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

3. Rotation : $E = \mathbb{R}^2$, muni de la base canonique. Soit $\theta \in \mathbb{R}$. On regarde l'application f qui effectue une rotation d'angle θ .

On obtient
$$Mat(f) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

4. On note $\{\varepsilon_1, \varepsilon_2\}$ la base canonique de \mathbb{R}^2 et $\{e_1, e_2, e_3\}$ celle de \mathbb{R}^3 . On considère

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (x - y, z - y).$

On calcule: $f(e_1) = \varepsilon_1$; $f(e_2) - \varepsilon_1 - \varepsilon_2$; $f(e_3) = \varepsilon_2$. On trouve donc

$$Mat(f) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

L'importance de ce point de vue est mis en lumière par la proposition suivante :

Proposition 13

Soient E, F deux \mathbb{K} -ev. On note $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ une base de E, et $\mathcal{B}' = (\varepsilon_i)_{1 \leq i \leq p}$ une base de F. Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$. Si $x \in E$, on l'écrit sous forme d'un vecteur colonne X avec ses coordonnées dans la base \mathcal{B} . De même, on écrit f(x) sous la forme d'un vecteur colonne Y dans la base \mathcal{B}' . Alors

$$Y = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) \cdot X.$$

7

Note : Si
$$x = x_1e_1 + ... + x_ne_n$$
, alors $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

Démonstration. Notons $\operatorname{Mat}(f) = (a_{ij})_{1 \leq i \leq n}^{1 \leq j \leq p}$. Alors $f(e_j) = \sum_{i=1}^p a_{ij} \, \varepsilon_i$. Si $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in E$, alors

$$f(X) = \sum_{j=1}^{n} x_j f(e_j) = \sum_{j=1}^{n} x_j \sum_{k=1}^{p} a_{kj} \varepsilon_k = \sum_{k=1}^{p} \underbrace{\sum_{j=1}^{n} a_{kj} x_j}_{y_k} \varepsilon_k = \sum_{k=1}^{p} y_k \varepsilon_k.$$

On a montré que $Y = f(x) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix}$ dans la base \mathcal{B}' . D'autre part, un calcul matriciel rapide montre que

Mat(f)X = Y.

Exemple: Dans \mathbb{R}^2 muni de la base canonique, quelle est l'image du vecteur (3,2) par f la rotation d'angle $\frac{\pi}{6}$?

$$\operatorname{Mat}(f) = \operatorname{Mat}(f) = \begin{pmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Donc:

$$f\begin{pmatrix}3\\2\end{pmatrix}=\begin{pmatrix}\frac{\sqrt{3}}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{\sqrt{3}}{2}\end{pmatrix}\begin{pmatrix}3\\2\end{pmatrix}=\begin{pmatrix}\frac{3\sqrt{3}}{2}-1\\\frac{3}{2}+\sqrt{3}\end{pmatrix}.$$

Proposition 14

Soient E, F, G trois \mathbb{K} -ev, de dimension finie, munis des bases $\mathcal{B}, \mathcal{B}' \mathcal{B}''$. Soient $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ et $g \in \mathcal{L}_{\mathbb{K}}(F,G)$. Alors

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}''}(g\circ f)=\operatorname{Mat}_{\mathcal{B}',\mathcal{B}''}(g)\cdot\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f).$$

Remarque. Si f est bijective, cette proposition implique que $Mat(f^{-1}) = Mat(f)^{-1}$.

Changement de base. Comment un changement de base affecte la représentation matricielle d'une application? On considère $f \in \mathcal{L}_{\mathbb{K}}(E,F)$, avec \mathcal{B},\mathcal{B}' deux bases de E et \mathcal{C},\mathcal{C}' deux bases de F. Si $A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$, que valent $\operatorname{Mat}_{\mathcal{B},\mathcal{C}'}(f)$, $\operatorname{Mat}_{\mathcal{B}',\mathcal{C}}(f)$ et $\operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(f)$?

Proposition 15

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$, $\mathcal{B}, \mathcal{B}'$ deux bases de E et $\mathcal{C}, \mathcal{C}'$ deux bases de F. On note $A = \operatorname{Mat}_{\mathcal{B}, \mathcal{C}}(f)$, $A' = \operatorname{Mat}_{\mathcal{B}', \mathcal{C}'}(f)$, $P = P_{\mathcal{B} \longrightarrow \mathcal{B}'}$ et $Q = P_{\mathcal{C} \longrightarrow \mathcal{C}'}$. Alors

$$A' = Q^{-1}AP.$$