Beschreibung

5

10

30

Verfahren zur rechnergestützten Spracherkennung, Spracherkennungssystem und Steuereinrichtung zum Steuern eines technischen Systems und Telekommunikationsgerät

Die Erfindung betrifft ein Verfahren zur rechnergestützten Spracherkennung, ein Spracherkennungssystem sowie eine Steuereinrichtung zum Steuern eines technischen Systems mit einem Spracherkennungssystem und ein Telekommunikationsgerät.

Im Rahmen der rechnergestützten Spracherkennung wird ein von einem Benutzer eingesprochenes Sprachsignal im Rahmen der Vorverarbeitung digitalisiert und auf so genannte

15 Merkmalsvektoren, die auch als Featurevektoren bezeichnet werden, abgebildet und für die durchzuführende Spracherkennung gespeichert.

Die Merkmalsvektoren weisen je nach Anwendung eine fest
vorgegebene Anzahl von Merkmalsvektor-Komponenten auf, die
üblicherweise in dem Merkmalsvektor geordnet sind nach ihrer
Bedeutung im Rahmen der Spracherkennung, üblicherweise
geordnet nach Merkmalsvektor-Komponenten mit geringer
werdendem Informationsgehalt (kleiner werdender statistischer
Varianz).

Insbesondere in einer Spracherkennungsanwendung in einem Embedded System ist jedoch die zur Verfügung stehende Rechenleistung und der zur Verfügung stehende Speicherplatz knapp, weshalb es in den derzeit bekannten Spracherkennungsanwendungen insbesondere aufgrund einer sehr hohen Anzahl von Merkmalsvektor-Komponenten, häufig zu Problemen kommt.

35 In [1] ist ein Verfahren zum Berechnen von Abständen zwischen einem Merkmalsvektor und mehreren Vergleichsvektoren beschrieben. Bei diesem Verfahren wird für die Komponenten

2

des Merkmalsvektors jeweils deren Diskriminierungsfähigkeit ermittelt. Für diejenigen Komponenten des Merkmalsvektors, deren Diskriminierungsfähigkeit schlechter als ein vorgegebener Schwellenwert ist, wird ein erster Teilabstand zu einer Gruppe von Komponenten der Vergleichsvektoren ermittelt. Für diejenigen Komponenten des Merkmalsvektors, deren Diskriminierungsfähigkeit besser als der vorgegebene Schwellenwert ist, werden zweite Teilabstände zu den entsprechenden Komponenten der Vergleichsvektoren bestimmt. Aus dem ersten Teilabstand und den zweiten Teilabständen werden die Abstände von dem Merkmalsvektor zu den mehreren Vergleichsvektoren ermittelt.

Der Erfindung liegt das Problem zu Grunde, eine Möglichkeit
zur rechnergestützten Spracherkennung sowie ein
Spracherkennungssystem anzugeben, bei der eine verringerte
zur Verfügung stehenden Rechenleistung oder ein reduzierter
zur Verfügung stehenden Speicherplatz ausreicht.

- Das Problem wird durch das Verfahren zur rechnergestützten Spracherkennung, durch das Spracherkennungssystem, durch die Steuereinrichtung sowie durch das Telekommunikationsgerät mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.
- Bei einem Verfahren zur rechnergestützten Spracherkennung unter Verwendung von Merkmalsvektoren ist eine, vorzugsweise zu Beginn des Verfahrens, ermittelte Erkennungsraten-Information gespeichert, mit der für die Merkmalsvektoren abhängig von dem Informationsgehalt der Merkmalsvektor
 Komponenten angegeben wird, welche Spracherkennungsrate
- jeweils mit den Merkmalsvektoren mit den jeweils berücksichtigten Merkmalsvektor-Komponenten erzielbar ist.

In einem ersten Schritt wird für eine

35 Spracherkennungsanwendung ermittelt oder bestimmt, welche Spracherkennungsrate für die jeweilige Spracherkennungsanwendung benötigt wird.

```
2002 P 06499 - Auslandsfassung
                                                             Unter Verwendung der gespeicherten spracherkennungsraten-
unter Verwendung der gespeicherten spracher armitralt walcher
Toformation wird von dem Pachnar armitralt
                                                                                  Intormation wird von dem Merkmalsvektor-Komponenten mindestens
Intormationsgehalt der heatimmte anracherkennungerate zu
erforderlich ist
                                                                        unter verwendung der gespelcherten spracherkennungsre unter verwendung der gespelcherter ermittelt, welcher mittelt, welcher mittelt, welcher mittelt, werden mittelt, wennen mittelt, wennen mittelt, werden mittelt, wennen mittelt, wennen mittelt, wennen mittelt, werden mittelt, wennen 
                                                                                             Intormationsgenalt der Merkmalsvektor-Komponenten mindestens
um die bestimmte Spracherkennungsrate zu
erforderlich ist:
erforderleisten.
gewährleisten.
                                                                                                                          Ferner wird ermittelt, wie viele Merkmalsvektor-Komponenten
in dem garacherkenmingsgystem für die jeweilige
                                                                                                                                   rerner wird ermitteit, wie viele merkinalsvektuige
in dem Spracherkennungssystem
                                                                                                                                             In dem spracnerkennungssystem rur ale lewezzige
spracherkennungsanwendung erforderlich sind, um den
spracherkennungsanwendung
                                                                                                                                                          Spracher kennungsanwengung errorgehalt bereitzustellen.

Ermittelten Informationsgehalt bereitzustellen.
                                                                                                             gewährleisten.
                                                                                                                                                                                       Vorzugsweise wird terner für die jeweilige
Vorzugsweise wird terner für Codebuch erstellt unter
ein Codebuch angahl von
spracherkennungsanwendung ermittelten angahl von
Spracherkennung der zuvor ermittelten
Berücksichtigung
                                                                                                                                                                             Vorzugsweise wird ferner für die jeweilige
                                                                                                                                                                                                          Herucksichtigung der zuvor ermittelten Anzahl von

Herucksichtigung der zuvor ermittelten Spracherkennungssystem.

Merkmalsvektor-Komponenten in dem Spracherkennungssystem.
                                                                                                                                                                                                 Spracherkennungsanwengung ermittelten Anzahl von
Berücksichtigung der zuvor ermittelten Anzahl
Mertmel grocktor vommen ermittelten Anzahl von
                                                                                                                                                                                                                               Anschließend wird - vorzugsweise unter Verwendung des
                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                  Destimmten, Spracherkennungsanwendungs-spezillschen

Spracherkennung ausgeführt wird unter

die Spracherkennung mit der Anzahl von

Codebuchs von Merkmalevortnen mit der Anzahl
                                                                                                                                                                                                                                                                      Verwendung von Merkmalsvektoren mit der Anzahl von um den erforderlich sind, um den die erforderlich sind, um den die erforderlich sind, um den der Anzahl von Merkmalsvektoren die erforderlich haraitanstallen merkmalsvektor-komponenten, haraitanstallen met der Anzahl von um den mit der Anzahl von um den mit der Anzahl von um den mit der Anzahl von merkmalsvektoren mit der haraitansken met der haraitansken merkmalsvektoren merkmalsvektoren
                                                                                                                                                                                                                                                              codebuchs on Merkmalsvektoren mit der Anzahl von Merkmalsvektoren die orforderlich eind verwendung von Merkmalsvektoren die orforderlich eind
                                                                                                                                                                                                                                                                                                    Die Spracherkennung, das heißt das verfahren zum vergleichen der vermieinh der ineheanndere enmit der vermieinh der
                                                                                                                                                                                                                                                                                    nervinars vervor-nonponencen, ore error sin bereitzustellen.

Informationsgehalt bereitzustellen.

ermittelten
                                                                                                                                                             15
                                                                                                                                                                                                                                                                                                                 Ule Spracherkennung, insbesondere somit der gerracheimale mit au der Merkmalsvektoren einnes nennen einnes merkmalsvektoren ei
                                                                                                                                                                                                                                                                                                                      der Merkmalsvektoren insbesondere somit der Vergleich der

der Vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

vergleich der

ver
                                                                                                                                                                                                                                                                                                                                              Merkmalsvektoren won Reterenzwörtern, die in einem die in wird ausgeführt sind, wird ausgeführt sind, wird anvahl von Merkmalavektoren mit der Anvahl von elektronischen wörterbuch gespeichert mit der Anvahl von elektronischen word von Merkmalavektoren mit der Anvahl von elektronischen von Merkmalavektoren mit der von Merkmalavektoren
                                                                                                                                                                                                                                                                                                                                   Merkmalsvektoren von Referenzwörtern; eind "ird "
Merkmalsvektoren wärterhich geneichert eind "ird "
Merkmalsvektoren wärterhich geneichert eind "ird "
                                                                                                                                                                                                                                                                                                                                                      elektronischen Wörterbuch gespeichert sind, Wird ausgeführ nit der Anzahl von Aige arforderlich ist "m Aig unter Verwendung von Merkmalsvektoren aige arforderlich ist "m Aig unter Verwendung von Merkmalsvektoren die arforderlich ist "m Aigen ausgebindt
                                                                                                                                                                                                                                                                                                                                                                unter Verwendung von Merkmalsvektoren mit der Anzanl von die erforderlich ist, um die erforderli
                                                                                                                                                                                                                                                                                                                                                                           Merknalsvektor-komponenten, ale erroraerilan ist, um alf
zuvor bestimmte Spracherkennungsrate zu gewährleisten.
                                                                                                                                                                                                                                                                                                                                                                                             Rin spracherkennungssystem weist eine Spracherkennungseinheit akkonneltes
                                                                                                                                                                                                                                                                                                                                                                                                          Ein Spracherkennungssystem weist eine Spracherkennungseinheit gekoppeltes

Weist eine Spracherkennungseinheit gekoppeltes

Aer Spracherkennungseinheit der Spracherkennungseinheit der

Aem die im Rahmen der

auf sowie ein mit der Spracherkennungseinheit der
                                                                                                                                                                                                                                                                  25
                                                                                                                                                                                                                                                                                                                                                                                                                      aur sowie ein mit der spracherkennungseinneit gekoppe im Rahmen der in dem die im Rahmen in dem die im Rahmen in dem die im Rahmen der in dem dem der in dem der in dem der
                                                                                                                                                                                                                                                                                                                                                                                                                              elektronisches Wörterbuch, in dem Wörter gespeichert sind.

Spracherkennung
                                                                                                                                                                                                                                                                                                                                                                      35
```

Spracherkennungssystem vorgesehen.

5

10

15

20

25

4

Ferner ist in dem Spracherkennungssystem ein Erkennungsraten-Informations-Speicher vorgesehen, in dem Erkennungsraten-Information gespeichert ist, mit der für die Merkmalsvektoren abhängig von dem Informationsgehalt der Merkmalsvektor-Komponenten angegeben wird, welche Spracherkennungsrate jeweils mit den Merkmalsvektoren mit den jeweils berücksichtigten Merkmalsvektor-Komponenten erzielbar ist. Mittels einer ebenfalls vorgesehenen Erkennungsraten-Informations-Ermittlungseinheit zum Ermitteln der Erkennungsraten-Information wird vor Durchführung der eigentlichen Spracherkennung anhand vorzugsweise eines Trainingsdatensatzes die Erkennungsraten-Information ermittelt. Ferner ist eine Informationsgehalt-Ermittlungseinheit vorgesehen zum Ermitteln des Informationsgehalts für Merkmalsvektor-Komponenten eines Merkmalsvektors in dem Spracherkennungssystem. Ferner ist eine Merkmalsvektor-Komponenten-Auswahleinheit zum Auswählen von Merkmalsvektor-Komponenten, die im Rahmen der Spracherkennung zu berücksichtigen sind, in dem

Eine Steuereinrichtung zum Steuern eines technischen Systems weist das oben beschriebene Spracherkennungssystem auf, wobei in dem elektronischen Wörterbuch die zum Steuern des technischen Systems vorgesehenen Steuerbefehle zur, vorzugsweise sprecherunabhängigen, Spracherkennung gespeichert sind.

Anschaulich ist somit erfindungsgemäß erstmals ermöglicht,

die tatsächlichen anwendungsspezifischen Anforderungen an die
Erkennungsrate im Rahmen der Auswahl von MerkmalsvektorKomponenten von Merkmalsvektoren zur Spracherkennung flexibel
zu berücksichtigen, ohne dass für jede
Spracherkennungsanwendung erneut eine Spracherkennungsrate

35 ermittelt werden muss.

Auf diese Weise wird ein optimierter Kompromiss insbesondere hinsichtlich des zur Verfügung stehenden Speicherplatzbedarfs durch anwendungsabhängige Reduktion der Dimension der Merkmalsvektoren, anders ausgedrückt der Anzahl

berücksichtigter Merkmalsvektor-Komponenten erreicht. Die Reduktion der Anzahl berücksichtigter Merkmalsvektor-Komponenten im Rahmen der Spracherkennung führt zu einer erheblichen Reduktion der im Rahmen der Spracherkennung selbst benötigten Rechnerleistung.

10

Aus diesem Grund eignet sich die Erfindung insbesondere für den Einsatz in einem Embedded System.

Ferner wird eine erhebliche Einsparung an benötigter

Rechenzeit erreicht, da für eine neue
Spracherkennungsanwendung lediglich die Anzahl erforderlicher
Merkmalsvektor-Komponenten aus der zuvor lediglich einmal
ermittelten Erkennungsraten-Information bestimmt werden
braucht und das Codebuch unmittelbar unter Verwendung der

Merkmalsvektoren mit der bestimmten erforderlichen Anzahl von
Merkmalsvektor-Komponenten ermittelt werden kann.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

25

Die im Folgenden beschriebenen Ausgestaltungen der Erfindung betreffen sowohl das Verfahren, das Spracherkennungssystem als auch die Steuereinrichtung.

- Für die Spracherkennung selbst wird vorzugsweise ein Spracherkennungsverfahren zur sprecherunabhängigen Spracherkennung, besonders bevorzugt unter Verwendung von Hidden Markov Modellen durchgeführt.
- 35 Alternativ können zur Spracherkennung, insbesondere zur sprecherunabhängigen Spracherkennung statistische

Klassifikatoren, beispielsweise unter Verwendung künstlicher neuronaler Netze, eingesetzt werden.

Allgemein kann jedoch erfindungsgemäß jedes beliebige 5 Verfahren zur Spracherkennung eingesetzt werden.

Gemäß einer anderen Ausgestaltung der Erfindung ist es vorgesehen, dass die Merkmalsvektor-Komponenten mit relativ hohem Informationsgehalt unter den Merkmalsvektor-Komponenten des jeweiligen Merkmalsvektors ausgewählt werden und im Rahmen der Spracherkennung verwendet werden.

Durch diese Ausgestaltung der Erfindung wird gewährleistet, dass tatsächlich diejenigen Merkmalsvektor-Komponenten nicht berücksichtigt werden, die den geringsten Informationsgehalt innerhalb aller Merkmalsvektor-Komponenten aufweisen, womit gewährleistet wird, dass die verloren gegangene Information im Rahmen der Spracherkennung, die entsteht aufgrund der Nicht-Berücksichtigung einer Merkmalsvektor-Komponenten,

20 minimiert ist.

10

15

Als Steuereinrichtung zum Steuern eines technischen Systems eignen sich beispielsweise eine Steuereinrichtung zum Steuern eines Telekommunikationsgeräts, beispielsweise eines
25 Telefongeräts, eines Telefaxgeräts, eines PDAs, eines Notebooks, etc., oder zum Steuern eines Endgeräts, in dem mindestens zwei der oben beschriebenen Geräte-Funktionalitäten in einem gemeinsamen Gerät integriert sind. Insbesondere diese mit einem klar definierten und begrenzten Wortschatz zu steuernden Geräte können mittels eines Sprachdialogs gesteuert werden, der relativ übersichtlich und somit selbst mittels eines Embedded Systems kostengünstig realisierbar ist.

Die anwendungsangepasste erhebliche Reduktion der Dimension verarbeiteter Merkmalsvektoren führt zu einer erheblichen Zeiteinsparung im Rahmen der Entwicklung eines Spracherkennungssystems, insbesondere wird das verwendete Codebuch erheblich reduziert, womit der Speicherplatzbedarf ebenfalls in erheblichem Maße reduziert wird.

5 Ein Ausführungsbeispiel der Erfindung ist in den Figuren dargestellt und wird im Folgenden näher erläutert.

Es zeigen

15

20

- 10 Figur 1 ein Blockdiagramm eines Spracherkennungssystems gemäß einem Ausführungsbeispiel der Erfindung;
 - Figur 2 eine Skizze des Speichers des Rechners aus Figur 1 im Detail;
 - Figur 3 ein Blockdiagramm, in dem die einzelnen

 Verfahrensschritte zum Bestimmen einer

 Erkennungsraten-Information gemäß einem

 Ausführungsbeispiel der Erfindung dargestellt sind;
 - Figur 4 ein Ablaufdiagramm, in dem die einzelnen
 Verfahrensschritte zum Bestimmen einer
 Erkennungsraten-Information gemäß einem
 Ausführungsbeispiel der Erfindung dargestellt sind;
 - Figur 5 eine Skizze einer Erkennungsraten-Information gemäß einem Ausführungsbeispiel der Erfindung;
- Figur 6 ein Ablaufdiagramm, in dem die einzelnen

 Verfahrensschritte des Verfahrens zur Spracherkennung gemäß einem Ausführungsbeispiel der Erfindung dargestellt sind.
- Fig.1 zeigt ein Spracherkennungssystem 100 gemäß einem 35 Ausführungsbeispiel der Erfindung.

Das Spracherkennungssystem 100 arbeitet je nach Betriebsmodus in einem ersten Betriebsmodus als Spracherkennungseinrichtung, wobei in dem Spracherkennungsmodus eine eingesprochene Äußerung 101, eingesprochen von einem Benutzer (nicht dargestellt) des Spracherkennungssystems 100, von der Spracherkennungseinrichtung erkannt wird. Die Spracherkennung erfolgt unter Verwendung eines Verfahrens zur sprecherunabhängigen Spracherkennung.

10

15

5

In einem zweiten Betriebsmodus, im Weiteren auch bezeichnet als Trainingsmodus, wird unter Verwendung einer eingesprochenen Äußerung 101, wie im Weiteren näher erläutert wird, das Spracherkennungssystem 100 trainiert, gemäß diesem Ausführungsbeispiel bedeutet dies, dass einzelne Hidden Markov Modelle für eine Äußerung mittels der eingesprochenen Äußerung 101 trainiert werden.

In beiden Betriebsmodi wird das von dem Benutzer

20 eingesprochene Sprachsignal 101 einem Mikrofon 102 zugeführt
und als aufgenommenes elektrisches Analogsignal 103 einer
Vorverstärkung mittels einer Vorverstärkungseinheit 104
unterzogen und als verstärktes Analogsignal 105 einem Analog/Digitalwandler 106 zugeführt, dort in ein digitales Signal

25 107 umgewandelt und als digitales Signal 107 einer
Merkmalsextraktionseinheit 108 zugeführt, welche das digitale
Signal 107 einer Spektraltransformation unterzieht und zu dem
digitalen Signal 107 zu einer Äußerung eine Folge von
Merkmalsvektoren 109 bildet, welche das digitale Signal 107
repräsentieren.

Jeder Merkmalsvektor 109 weist eine vorgegebene Anzahl von Merkmalsvektor-Komponenten auf.

35 Gemäß diesem Ausführungsbeispiel weisen die Merkmalsvektoren jeweils 78 Merkmalsvektor-Komponenten auf.

35

Die Merkmalsvektoren 109 werden einem Rechner 110 zugeführt.

Es ist in diesem Zusammenhang anzumerken, dass das Mikrofon 102, die Vorverstärkungseinheit 104, insbesondere die Verstärkungseinheit, und der Analog-/Digitalwandler 106 sowie die Merkmalsextraktionseinheit 108 als separate Einheiten oder auch als in dem Rechner 110 integrierte Einheiten realisiert sein können.

10 Gemäß diesem Ausführungsbeispiel der Erfindung ist es vorgesehen, dass die Merkmalsvektoren 109 dem Rechner 110 über dessen Eingangsschnittstelle 111 zugeführt werden.

Der Rechner 110 weist ferner einen Mikroprozessor 112, einen Speicher 113 sowie eine Ausgangsschnittstelle 114 auf, welche alle miteinander mittels eines Computerbus 115 gekoppelt sind.

Mittels des Mikroprozessors 112 werden die im Folgenden
20 beschriebenen Verfahrensschritte, insbesondere die Verfahren
zum Ermitteln der im Folgenden erläuterten ErkennungsratenInformation sowie die Verfahren zur Spracherkennung
durchgeführt.

In einem im Folgenden näher erläuterten elektronischen Wörterbuch, welcher im Speicher 113 gespeichert ist, sind die Einträge in Form trainierter Hidden Markov Modelle enthalten, die im Rahmen der Spracherkennung als Referenzwörter, die überhaupt nur von dem Spracherkennungsalgorithmus überhaupt erkannt werden können, enthalten sind.

Alternativ kann zusätzlich ein digitaler Signalprozessor vorgesehen sein, der die jeweils eingesetzten Spracherkennungsalgorithmen implementiert hat und einen darauf spezialisierten Mikrocontroller aufweisen kann.

```
10 10 Bingangsschnittstelle
10 mittels der Ringangsschnittstelle
110 mittels der nommitermans 117 iher
113 mit einer mastatur 116 sowie einer commitermans 117 iher
2002 P 06499 - Auslandsfassung
                                                 Ferner ist der Rechner 110 mittels der Eingangsschnittstelle

Rechner 110 mittels der Computermaus 117 über

Computermaus 117 über computermaus 117 über

113 mit einer mastatur 118. 119 oder eine Funkverbindung.

113 mit einer Leitungen 118. 119 oder eine Funkverbindung.
                                                            LL3 mit einer Tastatur 116 sowie einer Computermaus 117 if

elektrische Leitungen Tnfrarnt-Verhindung Gelektrische eine Funkverbindung

heisnielsweise eine Tnfrarnt-Verhindung Gelektrische eine Funkverbindung

elektrische Leitungen Tnfrarnt-Verhindung Gelektrische eine Funkverbindung Gelektrische Eine Funkver
                                                                  elektrische Leitungen 118, 119 oder eine grunkverbindung oder eine Bluetoothbeispielsweise eine Infrarot-Verbindung oder eine beispielsweise eine nernnelt verhindung
                                                                                               iber zusätzliche Kabel oder Funkverbindung oder einer Bluetooth-
mittels einer Tnfrarot-Verhindung
                                                                                                       Uper Zusätzliche Kabel oder Funkverbindungen, Bluetooth-
mittels einer 121 jet der Renhaer
Verbindung 110 mittels einer 121 jet der
                                                                                                                         Verbindung 120, 121 ist der Rechner 120 mittels der 122 sowie

Nusgangsschnittstelle

Ausgangsschnittstelle

inem 122 rekonnelt
                                                                                                                  micreis einer infrarot-verbindung oder einer Bivetoot in mittels der Rechner 110 mittels der verbindung 120 ist der Rechner faut annahm faut annahm in mit einem faut e
                                                                                  Verbindung gekoppelt.
                                                                                                                                                      Der Aktor 123 repräsentiert in Fig. 1 allgemein jeden tachnie
                                                                                                                                                                Der Aktor im Rahmen der roalieiert in Rorm eines möglichen roieniele roalieiert in Rorm eines roalieiert in Rorm eines
                                                                                                                                                                                Systems, beispielsweise realisiert in Form eines computerprogramms für eines eines computerprogramms für eines eines eines eines ein melakommunikationsgerät.

Systems, beispielsweise neienieleweise ein melakommunikationsgerät.

And Real Asser heienieleweise eines ein melakommunikationsgerät.
                                                                                                                                       einem Aktor 123 gekoppelt.
                                                                                                                                                                        moglichen Aktor im kanmen der Steuerung eines tech
Systems beispielsweise realisiert in Rorm der Systems de Sy
                                                                                                                                                                                           den Fall, dass belsplelswelse ein videnrekorder ein oder ein anderes arerenanlane
                                                                                                                                                                                                              oder eine stereoanlage, and anderes stereoanlage, and anderes stereoanlage, and and and are sentener and and and are sentener and are sentener and are sentener and and are sentener and are senten
                                                                                                                                                                                                                     Autoradio, eine Stereoanlage, ein Videorekorder, ein videorekorder, andere 110 selbst oder irgendeine andere 110 selbst oder anii rernseher, der Rechner werden enii rernseher, Aniane neetemert werden terhnische Aniane
                                                                                               10
                                                                                                                                                                                                                                                  technische Anlage gesteuert werden soll.
                                                                                                                                                                                                                                                         Gemäß dem Austührungsbeighiel der Ertindung weist die einer Merkmalsextraktionseinheit 108 eine Aie Energie Aee Merkmalsextraktionseinheit weiche Aie Energie Aee Merkmalsextraktionseinheit weiche Aie Energie Aee
                                                                                                                                                                                                                                                                             Menrzani von Bandpassen aut, Welche die Energie des

Menrzani von Bandpassen aut, Welche die Energie des
                                                                                                                                                                                                                                                                  merxmalsexcrakclonselnnelt lub eine Filterbank mit einerkinalsexcrakclonselnnelt lub eine eine Energie des Mehrzahl von Bandpässen auf na ir eineralnen enracheinnale ina ir eineralnen enracheinnale innenahenen
                                                                                                                                                                                                                                                                                               messen. Mittels der Filterbank werden so genannte der indem die Ausgangssignale Andräg

kurzzeitspektren gebildet, deniättet und in kurzen kurzzeitspektren gebildet, deniättet und in kurzeitspektren gebildet, deniättet und in kurzzeitspektren gebildet, deniättet und in kurzzeitspektren gebildet, deniättet und in kurzzeitspektren gebildet.
                                                                                                                                                                                                                                                                                     eingegenenen sprachsignals 103 in einzeinen Frequer so genannte nessen. Mittels der Filterbank werden 30 genannte nessen.
                                                                                                                                                                                                                                                                                                      Kurzzeitspektren gebildet, indem die Ausgangssignale der Abständen geglättet und in kurzen alle geglättet und in kurzen alle alle Bandpässe gleichgerichtet, dem Ausführungsbeispiel alle andpässe gleichgen. gemäß dem Ausführungsbeispiel alle andpässe gleichgen.
                                                                                                                                                                                                                                                                                                                  Banapasse glelcngerlcntet, geglättet und in kurzen Abst

Banapasse glelcngerlcntet, geglättet und in kurzen Abst

Ausführungsbeispiel alle

abgetastet werden, alle 15 meer

abgetastet alrernativ alle 15 meer
                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                                                                                           Die mittels der Merkmalsextraktionseinheit 108 gebildeten

Congrammen voorfigienten
                                                                                                                                                                                                                                                                                                                            10 msec, alternativ alle 15 msec.
                                                                                                                                                                                                                                                                                                                                                      Die miccels der Merkmalsextraktlonselmnelt 108 ger

Cepstrum Koeffizienten

Merkmalaraktoren 100 hilden

Merkmalaraktoren 100 hilden

Merkmalaraktoren 100 hilden
                                                                                                                                                                                                                                                                                                                                                           Cepstrum-Koettizienten, die 13 Koettizienten der die 13 Koettizienten, die 13 Koettizien
                                                                                                                                                                                                                                                                                                                                                                     Merkmalsvektoren 109 bilden, werden als Merkmalsvektor 100 bilden, werden als Merkmalsvektor 100 Merkmalsvektor 100 Merkmalsvektoren 100 bilden, meen in dem Merkmalsvektoren 100 meen aufeinander in dem Merkmalsvektoren 200 aufeinander in dem Merkmalsvektoren 100 meen oder von 15 meen in dem Merkmalsvektoren 200 aufeinander in dem Merkmalsvektoren 200 meen in dem Merkmalsvektoren 100 meen in dem Merkmalsvektor 100 meen in dem Merkm
                                                                                                                                                                                                                                     25
                                                                                                                                                                                                                                                                                                                                                                              Komponenten von zwei aufeinander folgenden Zeitfenstern der in dem Merkmalsvektor 109

Komponenten von 10 msec oder von 15 msec in dem Merkmalsvektor 109

Größe von 10 msec
                                                                                                                                                                                                                                                                                   30
```

```
gespeichert. Ferner 100 jawaila aia raiticha arata Ahlaitur
2002 P 06499 - Auslandsfassung
                                                      gespeichert. Ferner sind als Merkmalsvektor-Komponenten in Merkmal
                                                                    KOETIIZIENTEN IN dem Merkmalsvektor und werden dem Rechner 110
Merkmalsvektor zusammengefasst und werden dem Rechner 120
Merkmalsvektor zusammengefasst
                                                                            sowle die zeitliche zweite Ableitung der cepstrum-
Koeffizienten in dem Merkmalsvektor
Koeffizienten in dem Merkmalsvektor
                                                                                                                     In dem Rechner 110 ist in Form eines Computerprogramms eine correctant in airem aretan
                                                                                                                             In dem Rechner 110 ist in Form eines computerprogramms (
realisiert und in dem gneicher 1
spracherkennungseinheit realisiert vin dem gneicher 1
spracherkennungseinheit nach 201 (1701)
                                                                                                                                      Spracherkennungseinheit realisiert und in dem Speicher pring speicherkennungseinheit auf dem pring speicherkennungseinheit auf dem pring speicherteilbereich 201 (vgl. speicherteilbereich anzaharbannungeeinheit auf dem pring speicherteilbereich anzaharbannungeeinheit auf dem pring speicherkennungseinheit auf dem pring speicherkennung speichen auf dem pring speichen pring speichen auf dem pring speichen auf dem pring speichen auch dem pring speichen auch dem pring speichen auch dem pring speichen auch dem pring speichen au
                                                                                                                                                 Spelchert, welche spracherkennungseinheit auf dem irrele Aer gespeichert, warken modelle haeiert gespeichert, warken modelle haeiert gespeichert.
                                                                                                                                                           gespeichert, welche Spracherkennungseinheit auf dem prinzip
der Hidden Markov Modelle basiert. Somit erfolgt mittels des
commitarnronramme eine enracherunahhändide spracherkennund.
                                                                                                                                                                      der Hladen Markov Modelle baslert. Somit errolgt mittels des computerprogramms eine sprecherunabhängige Spracherkennung.
                                                                                                       zugeführt.
                                                                                                                                                                                         Zu Beginn des Verfahrens werden zwei unterschiedliche
Ramitzarn
nataneätza mit unn ainam ndar mahraran
                                                                                                                                                                                                  Datensätze mit von einem oder mehreren zwel unterschledli

Datensätze mit von einem oder mehreren zwel unterschledli

Datensätze mit von einem oder mehreren zwel unterschledli
                                                                                                                                                                                                                eingesprochenen sprachäußerungen gebildet.
                                                                                                                                                                                                                                           Ein Trainingsdatensatz, gespeichert in einem zweiten

Ein Trainingsdatensatz, des Speichers in Aie ieweiligen

Speicherteilbereich in Form von für Aie ieweiligen

Speicherteilbereich in Form von für Aie ieweiligen
                                                                                                                                                                                                                                Ein Trainingsdatensatz, gespeichert in einem zweiten 113 weist die einem zweiten 113 weist die einem zweiten 113 weist die einem 200 des eneichers 113 weist die einem zweiten 200 des eneichert in einem zweiten 200 des einem 200 des 
                                                                                                       20
                                                                                                                                                                                                                                                            Sprachäußerungen gebildeten mrainieren der Hidden markov

Sprachäußerungen gebildeten mrainieren der Hidden markov

Sprachäußerungen gebildeten mrainieren der Hidden markov
                                                                                                                                                                                                                                                    Spelchercellperelch in Form von für die jeweiligen in Form von warien zur and in de spelchers warien zur and in de spelchers warien zur and in de spelcher w
                                                                                                                                                                                                                                                                       Sprachäußerungen gebildeten Merkmalsvektoren, auf Markov

Sprachäußerungen erläuterten Trainieren der Hidden Markov

Rolgenden näher erracherkannung eingegetat Merden

Modelle Melche auf
                                                                                                                                                                                                                                                                                Folgenden näner erläuterten "Tralnleren der Hladen Marko"
Modelle, welche zur Spracherkennung eingesetzt werden,
Modelle, werden
                                                                                                                                                         15
                                                                                                                                                                                                                                                                                                                         In einem dritten speichert das heißt die sprachäußerungen neeten das heißt die sprachäußerungen das heißt das heißt das heißt trainierten neeten das heißt d
                                                                                                                                                                                                                                                                                                                In einem dritten Speicherteilbereich 203 ist ein
                                                                                                                                                                                                                                                                                                                                             dle verwendet werden zum 'Testen der tralnlerten Testen der spracherkennungseinheit, modelle die in einem vierten spracherkennungseinheit der Modelle die in einem vierten spracherkennungseinheit der Modelle die in einem vierten worden werden werden werden worken wordelle die in einem vierten trainierten werden warken wordelle der trainierten der tr
                                                                                                                                                                                                       20
                                                                                                                                                                                                                                                                                                                                    Spracherkennungselnheit, anders ausgedruckt zum Testen de in einem vierten Modelle, die in einem vierten Modelle, eind trainierten Hidden Markov Modelle, eind trainierten Thereich 2014 geeneichert eind trainierten Thereich
                                                                                                                                                                                                                                                                                                verwendet werden.
                                                                                                                                                                                                                                                                                                                                                                                  Mittels des restdatensatzes wird, wie im Folgenden näher

Antitels des restdatensatzes wird, wie im Folgenden näher

Antitels des restdatensatzes wird, eine Arkennungeraten-Toformation armitte

Antitels des restdatensatzes wird, eine Arkennungeraten-Toformation armitte
                                                                                                                                                                                                                                                                                                                                                                                              Mittels des restdatensatzes wird, wie im Folgenden näher

Mittels des restdatensatzes wird, wie im Folgenden näher

mare in para one inherteinharainh 205 naaneinhart

malcha in ainam fiinfran anainhartailharainh 205 naaneinhartailharainh 205 naaneinhartailharainh 205 naaneinhartailharainh 205 naaneinhartailharainhartailharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainharainhar
                                                                                                                                                                                                                                                                                                                                                                  Speicherteilbereich 204 gespeichert sind.
                                                                                                                                                                                                                                                                                                                                                                                                       erlautert wird, einem fünften Speicherteilbereich 205 gespeichert welche in einem fünften
                                                                                                                                                                                                                                                          25
                                                                                                                                                                                                                                                                                                           30
                                                                                                                                                                                                                                                                                                                                                                                                                          sind.
```

In einem sechsten Speicherteilbereich 206 ist ferner eine im Weiteren näher erläuterte Tabelle gespeichert, in der für eine oder mehrere Anwendungen des Spracherkennungssystems eine Angabe darüber gespeichert ist, welche Erkennungsrate für die jeweilige Anwendung benötigt wird.

Es ist in diesem Zusammenhang darauf hinzuweisen, dass die einzelnen Elemente in unterschiedlichen Speicherbereichen desselben Speichers 113 gespeichert sein können, jedoch auch in unterschiedlichen, vorzugsweise an die jeweiligen Anforderungen der gespeicherten Elemente angepassten Speichern.

- 15 **Fig.3** und **Fig.4** zeigen in einem Blockdiagramm 300 (vgl. Fig.3) bzw. in einem Ablaufdiagramm (vgl. Fig.4) die einzelnen von dem Rechner 110 durchgeführten Verfahrensschritte des Verfahrens zum Ermitteln der in dem fünften Speicherteilbereich 205 gespeicherten
- 20 Erkennungsraten-Information.

25

35

Nach Starten des Verfahrens (Schritt 401) werden in einem Trainingsschritt die einzelnen Hidden Markov Modelle unter Verwendung des in dem zweiten Teilspeicherbereich 202 gespeicherten Trainingsdatensatzes trainiert.

Das Training der Hidden Markov Modelle erfolgt gemäß diesem Ausführungsbeispiel in drei Phasen:

- einer erste Phase (Schritt 402), in der die in der
 30 Trainings-Datenbank enthaltenen Sprachsignale 301
 segmentiert werden mittels einer Segmentierungseinheit
 302,
 - einer zweiten Phase (Schritt 403), in der die LDA-Matrix (lineare Diskriminanzanalyse-Matrix) berechnet wird sowie
 - einer dritten Phase (Schritt 405), in der das Codebuch, das heißt die HMM-Prototypen-Merkmalsvektoren für

jeweils eine in einem Auswahlschritt (Schritt 404) ausgewählte Anzahl von Merkmalsvektor-Komponenten berechnet werden.

5 Die Gesamtheit dieser drei Phasen wird im Weiteren als das Training der Hidden Markov Modelle bezeichnet (HMM-Training).

Das HMM-Training wird unter Verwendung des DSPs 123 sowie unter Verwendung von vorgegebenen Trainingskripts,

anschaulich von geeignet eingerichteten Computerprogrammen, durchgeführt.

Gemäß diesem Ausführungsbeispiel wird jede gebildete lautsprachliche Einheit, das heißt jedes Phonem, in drei aufeinander folgende Phonemsegmente aufgeteilt, entsprechend einer Initial-Phase (erstes Phonemsegment), einer zentralen Phase (zweites Phonemsegment) und einer Endphase (drittes Phonemsegment) eines Lauts, das heißt eines Phonems.

- Anders ausgedrückt wird jeder Laut in einem Lautmodell mit drei Zuständen, das heißt mit einem Drei-Zustands-HMM modelliert.
- Während der Spracherkennung werden die drei Phonemsegmente in einer Bakis-Topologie oder allgemein einer Links-RechtsTopologie aneinander gereiht und auf die Konkatenation dieser drei aneinander gereihten Segmente wird die Berechnung im Rahmen der sprecherunabhängigen Spracherkennung durchgeführt.
- Wie im Weiteren noch näher erläutert wird, wird in dem Spracherkennungsmodus ein Viterbi-Algorithmus zum Dekodieren der Merkmalsvektoren, welche aus dem eingegebenen Sprachsignal 101 gebildet werden, durchgeführt.
- Nach erfolgter Segmentierung wird die LDA-Matrix 304 (Schritt 403) mittels einer LDA-Matrix-Berechnungseinheit 303 ermittelt.

Die LDA-Matrix 304 dient zur Transformation eines jeweiligen Super-Merkmalsvektors \underline{y} auf einen Merkmalsvektor \underline{x} gemäß folgender Vorschrift:

5

$$\underline{\mathbf{x}} = \underline{\mathbf{A}}^{\mathrm{T}} \cdot \left(\underline{\mathbf{y}} - \underline{\underline{\mathbf{y}}}\right),\tag{1}$$

wobei mit

- 10 x ein Merkmalsvektor,
 - A eine LDA-Matrix,
 - y ein Super-Merkmalsvektor,
 - y ein globaler Verschiebungsvektor
- 15 bezeichnet wird.

Die LDA-Matrix A wird derart bestimmt, dass

- die Komponenten des Merkmalsvektors \underline{x} im statistischen Durchschnitt voneinander im Wesentlichen unkorreliert sind,
- die statistischen Varianzen innerhalb einer Segmentklasse im statistischen Durchschnitt normalisiert sind,
- die Zentren der Segmentklassen im statistischen
 Durchschnitt einen maximalen Abstand voneinander aufweisen und
 - die Dimension der Merkmalsvektoren <u>x</u> möglichst, vorzugsweise Spracherkennungsanwendungs-abhängig, reduziert wird.

30

20

Im Folgenden wird das Verfahren zum Bestimmen der LDA-Matrix A gemäß diesen Ausführungsbeispielen erläutert.

Es ist jedoch anzumerken, dass alternativ alle bekannten

Verfahren zum Bestimmen einer LDA-Matrix <u>A</u> ohne Einschränkung eingesetzt werden kann.

Es wird angenommen, dass J Segmentklassen existieren, wobei jede Segmentklasse j einen Satz D $_{y}$ -dimensionaler Super-Merkmalsvektoren \underline{y} enthält, das heißt, dass gilt:

5 Klasse
$$j = \left\{ \underline{Y}_{j}^{1}, \underline{Y}_{j}^{2}, \dots, \underline{Y}_{j}^{N_{j}} \right\},$$
 (2)

wobei mit N_j die Anzahl der in der Klasse j sich befindenden Super-Merkmalsvektoren \underline{y}_j bezeichnet wird.

10 Mit

15

$$N = \sum_{j=1}^{J} N_{j} \tag{3}$$

wird die Gesamtzahl der Super-Merkmalsvektoren \underline{y} bezeichnet.

- Es ist anzumerken, dass die Super-Merkmalsvektoren \underline{y}_j^k unter Verwendung der oben beschriebenen Segmentierung der Sprachsignal-Datenbank ermittelt worden sind.
- 20 Gemäß diesem Ausführungsbeispiel weist jeder Super-Merkmalsvektor \underline{y}_j^k eine Dimension \mathtt{D}_y von

$$D_{Y} = 78 \quad (= 2 \cdot 3 \cdot 13)$$

- auf, wobei 13 MFCC-Koeffizienten (Cepstrums-Koeffizienten) in dem Super-Merkmalsvektor \underline{y}_j^k enthalten sind, sowie deren jeweilige zeitliche erste Ableitung und deren jeweilige zeitliche zweite Ableitung (dies begründet obigen Faktor 3).
- 30 Ferner sind in jedem Super-Merkmalsvektor \underline{y}_j^k jeweils die Komponenten zweier zeitlich unmittelbar aufeinanderfolgender

Zeitfenster im Rahmen der Kurzzeitanalyse enthalten (dies begründet obigen Faktor 2).

Es ist in diesem Zusammenhang anzumerken, dass grundsätzlich eine beliebige, an die jeweilige Anwendung angepasste Zahl von Vektorkomponenten in dem Super-Merkmalsvektor \underline{y}_{j}^{k} enthalten sein kann, beispielsweise bis zu 20 Cepstrums-Koeffizienten und deren zugehörigen zeitlichen erste Ableitungen und zweite Ableitungen.

10

Der statistische Mittelwert oder anders ausgedrückt das Zentrum der Klasse j ergibt sich gemäß folgender Vorschrift:

$$\frac{1}{\underline{y}_{j}} = \frac{1}{N_{j}} \cdot \sum_{i=1}^{N_{j}} \underline{y}_{j}^{i} . \tag{4}$$

15

Die Kovarianzmatrix $\underline{\Sigma}_{j}$ der Klasse j ergibt sich gemäß folgender Vorschrift:

$$\underline{\Sigma}_{j} = \frac{1}{N_{j}} \cdot \sum_{i=1}^{N_{j}} \left(\underline{Y}_{j}^{i} - \overline{\underline{Y}}_{j} \right) \cdot \left(\underline{Y}_{j}^{i} - \overline{\underline{Y}}_{j} \right)^{T}.$$
 (5)

20

Die Durchschnitts-Intra-Streumatrix \underline{S}_{W} ist definiert als:

$$\underline{\mathbf{S}}_{\mathbf{W}} = \sum_{\mathbf{j}=1}^{\mathbf{J}} \mathbf{p}(\mathbf{j}) \cdot \underline{\mathbf{\Sigma}}_{\mathbf{j}} , \qquad (6)$$

25 mit

$$p(j) = \frac{N_j}{N}, \qquad (7)$$

wobei p(j) als Gewichtungsfaktor der Klasse j bezeichnet 30 wird.

In analoger Weise ist die Durchschnitts-Inter-Streumatrix \underline{S}_b definiert als:

$$\underline{\mathbf{S}}_{\mathbf{b}} = \sum_{j=1}^{\mathbf{J}} \mathbf{p}(j) \cdot \left(\underline{\underline{\mathbf{Y}}}_{j} - \underline{\underline{\mathbf{Y}}}\right) \cdot \left(\underline{\underline{\mathbf{Y}}}_{j} - \underline{\underline{\mathbf{Y}}}\right)^{\mathbf{T}}, \tag{8}$$

mit

5

$$\overline{\underline{y}} = \sum_{j=1}^{J} p(j) \cdot \overline{\underline{y}}_{j}$$
(9)

10 als dem Durchschnitts-Super-Merkmalsvektor über alle Klassen.

Die LDA-Matrix \underline{A} wird zerlegt gemäß folgender Vorschrift:

$$\underline{\mathbf{A}} = \underline{\mathbf{U}} \cdot \underline{\mathbf{W}} \cdot \underline{\mathbf{V}} \,, \tag{10}$$

15

wobei mit

- <u>U</u> eine erste Transformationsmatrix,
- \bullet <u>W</u> eine zweite Transformationsmatrix und
- 20 <u>V</u> eine dritte Transformationsmatrix

bezeichnet wird.

Die erste Transformationsmatrix <u>U</u> wird verwendet, um die Durchschnitts-Intra-Streumatrix <u>S</u>_W zu diagonalisieren und wird ermittelt, indem die positiv definite und symmetrische Durchschnitts-Intra-Streumatrix <u>S</u>_W in ihren Eigenvektorraum transformiert wird. In ihrem Eigenvektorraum ist die Durchschnitts-Intra-Streumatrix <u>S</u>_W eine Diagonal-Matrix, deren Komponenten positiv und größer oder gleich null sind. Die Komponenten, deren Werte größer null sind, entsprechen der Durchschnitts-Varianz in der jeweiligen durch die entsprechende Vektorkomponente definierten Dimension.

Die zweite Transformationsmatrix \underline{W} wird zum Normalisieren der Durchschnitts-Varianzen verwendet und wird ermittelt gemäß folgender Vorschrift:

5

$$\underline{\mathbf{W}} = \left(\underline{\mathbf{U}}^{\mathrm{T}} \cdot \underline{\mathbf{S}}_{\mathbf{W}} \cdot \underline{\mathbf{U}}\right)^{-\frac{1}{2}}.$$
(11)

Die Transformation $\underline{U} \cdot \underline{W}$ wird auch als Weißung bezeichnet.

10 Mit

$$\underline{\mathbf{B}} = \underline{\mathbf{U}} \cdot \underline{\mathbf{W}} \tag{12}$$

ergibt sich für die Matrix $\underline{B}^T \cdot \underline{S}_W \cdot \underline{B}$ die Einheitsmatrix, welche bei jeder beliebigen orthonormalen Lineartransformation unverändert bleibt.

Um die Durchschnitts-Inter-Streumatrix \underline{S}_b zu diagonalisieren wird die dritte Transformationsmatrix \underline{V} , die gebildet wird 20 gemäß folgender Vorschrift:

$$\underline{\mathbf{V}} = \underline{\mathbf{B}}^{\mathrm{T}} \cdot \underline{\mathbf{S}}_{\mathrm{b}} \cdot \underline{\mathbf{B}} , \qquad (13)$$

wobei $\underline{B}^T \cdot \underline{S}_b \cdot \underline{B}$ ebenfalls eine positiv definite und symmetrische Matrix darstellt, in ihren Eigenvektorraum transformiert wird.

In dem Transformationsraum

$$30 \quad \underline{\mathbf{x}} = \underline{\mathbf{A}}^{\mathrm{T}} \cdot \left(\underline{\mathbf{y}} - \underline{\underline{\mathbf{y}}}\right) \tag{14}$$

ergeben sich somit folgende Matrizen:

Eine diagonalisierte Durchschnitts-Intra-Streumatrix \underline{S}_W :

20

$$\underline{S}_{W} = \operatorname{diag}(\underline{1})_{d=1...D_{V}}$$
(15)

und eine diagonalisierte Durchschnitts-Inter-Streumatrix \underline{S}_b :

$$5 \quad \underline{S}_{b} = \operatorname{diag}\left(\sigma_{d}^{2}\right)_{d=1...D_{V}}, \tag{16}$$

wobei mit $\operatorname{diag}(c_d)_{d=1...D_Y}$ eine $\operatorname{D}_Y \times \operatorname{D}_Y$ Diagonalmatrix mit den Komponenten c_d in der Zeile/Spalte d und sonst mit Komponenten mit dem Wert Null, bezeichnet wird.

Die Werte σ_d^2 sind die Eigenwerte der Durchschnitts-Inter-Streumatrix \underline{S}_b und stellen ein Maß für die so genannte Pseudoentropie der Merkmalsvektor-Komponenten dar, welche im Folgenden auch als Informationsgehalt der Merkmalsvektor-Komponenten bezeichnet wird. Es ist anzumerken, dass die Spur jeder Matrix invariant ist bezüglich irgendeiner Orthogonaltransformation, womit sich ergibt, dass die Summe

$$\sigma^2 = \sum_{d=1}^{D_y} \sigma_d^2 \tag{17}$$

die Gesamt-Durchschnitts-Varianz des Durchschnitts-Vektors \underline{x}_{j} der J Klassen darstellt.

Es ergibt sich somit eine ermittelte Anhängigkeit der
Pseudoentropie der Merkmalsvektoren von den jeweils in dem
Merkmalsvektor enthaltenen bzw. berücksichtigten
Merkmalsvektor-Komponenten.

Gemäß diesem Ausführungsbeispiel wird anschließend eine 30 Dimensionsreduktion vorgenommen, indem die σ_{d}^{2} -Werte in in ihrer Größe abfallender Reihenfolge sortiert werden und die σ_{d}^{2} -Werte weggelassen werden, das heißt unberücksichtigt bleiben, die kleiner sind als ein vorgegebener Schwellwert.

Der vorgegebene Schwellwert kann ferner kumulativ definiert sein.

- Dann kann die LDA-Matrix \underline{A} angepasst werden, indem die Zeilen entsprechend den Eigenwerten σ_{d}^2 sortiert werden und die Zeilen weggelassen werden, die zu den ausreichend "kleinen" Varianzen gehören und damit nur einen geringen Informationsgehalt (geringe Pseudoentropie) aufweisen.
- Gemäß diesem Ausführungsbeispiel werden die Komponenten mit den 24 größten Eigenwerten σ_d^2 verwendet, anders ausgedrückt $D_{\rm X}$ = 24.
- Die vier oben beschriebenen Teilschritte zum Ermitteln der LDA-Matrix <u>A</u> 304 (Schritt 403) sind in folgender Tabelle zusammengefasst:

Nummer Verfahrensschritt	Ziel	Verfahren
1	Dekorrelieren der Merkmalsvektorkompo- nenten	Diagonalisieren der Durchschnitts- Intra-Klassen- Kovarianzmatrix Sw
2	Normalisieren der statistischen Varianzen innerhalb einer Klasse	Bestimmen der inversen Quadratwurzel der transformierten Durchschnitts- Intra-Klassen- Kovarianzmatrix UTSw.U

20

21

3	Maximieren der	Diagonalisieren
	Klassenzentren	der
		transformierten
		Durchschnitts-
		Inter-Klassen-
		Kovarianzmatrix
		$\underline{B}^{T} \cdot \underline{S}_{\underline{b}} \cdot \underline{B}$
4	Reduzieren der	Auswählen der
	Dimensionen der	Zeilen der Matrix
	Merkmalsvektoren	A mit den 24
		größten
·		Eigenwerten von
		$\underline{\underline{A}}^{\mathrm{T}} \cdot \underline{\underline{S}}_{\underline{b}} \cdot \underline{\underline{A}}$

Das letzte Verfahren zum Teil-Verfahren im Rahmen des Trainings der Hidden Markov Modelle ist das Clustern der Merkmalsvektoren (Schritt 405), welches mittels einer Clustereinheit 305 durchgeführt wird und welches als Ergebnis ein jeweiliges Codebuch 306 hat, jeweils spezifisch für einen Trainingsdatensatz mit einer vorgegebenen Anzahl von Merkmalsvektor-Komponenten.

Die Gesamtheit der Repräsentanten der Segmentklassen wird als Codebuch bezeichnet und die Repräsentanten selbst werden auch als Prototypen der Phonemsegmentklasse bezeichnet.

Die Prototypen, im Weiteren auch als Prototyp
Merkmalsvektoren bezeichnet, werden gemäß dem in [1]

beschriebenen Baum-Welch-Training ermittelt.

Somit sind die Basiseinträge des elektronischen Wörterbuches, das heißt die Basiseinträge zur sprecherunabhängigen Spracherkennung erstellt und gespeichert und die entsprechenden Hidden Markov Modelle trainiert.

Somit existiert für jeden Basiseintrag jeweils ein Hidden Markov Modell, womit das Codebuch 306 für den

Trainingsdatensatz mit der ausgewählten Anzahl von Merkmalsvektor-Komponenten in den Merkmalsvektoren in dem Trainingsdatensatz.

Nach erfolgtem Training der Hidden Markov Modelle liegen nunmehr die trainierten Hidden Markov Modelle in dem vierten Speicherteilbereich 204 vor.

In einem anschließenden Verfahrensschritt (Schritt 406) wird für die in dem Testdatensatz, welcher in dem dritten Teilspeicherbereich 203 gespeichert ist, die Erkennungsrate für die jeweiligen Merkmalsvektoren der aktuellen Dimension, das heißt für die Merkmalsvektoren mit der jeweils aktuellen Anzahl von Merkmalsvektor-Komponenten, ermittelt.

15

20

Dies erfolgt gemäß diesem Ausführungsbeispiel dadurch, dass für alle Sprachäußerungen, das heißt für alle Folgen von Merkmalsvektoren in dem Testdatensatz eine Spracherkennung mittels der trainierten Hidden Markov Modelle, anders ausgedrückt mittels einer Spracherkennungseinheit 307, durchgeführt wird und die Spracherkennungsergebnisse mit den Soll-Ergebnissen des Testdatensatzes verglichen werden.

Die ermittelte Erkennungsrate 308 ergibt sich aus dem
Verhältnis der Anzahl korrekter Erkennungsergebnisse, anders ausgedrückt aus der Anzahl von Übereinstimmungen zwischen dem Spracherkennungsergebnis und dem Soll-Ergebnis, welches in dem Testdatensatz angegeben ist, und der insgesamt zur Spracherkennung dargestellten Testdatensätze.

30

35

In einem nachfolgenden Schritt (Schritt 304) wird die ermittelte Erkennungsrate gemeinsam mit der Angabe, wie viele Merkmalsvektor-Komponenten zur Bestimmung der Erkennungsrate 308 für die Merkmalsvektoren des Testdatensatzes 203 verwendet worden sind, gespeichert.

Anschließend wird in einem Prüfschritt 407 überprüft, ob das Verfahren beendet werden soll.

Ist dies der Fall, so wird das Verfahren beendet (Schritt 408).

Soll das Verfahren noch nicht beendet werden, so wird die Anzahl der Merkmalsvektor-Komponenten der Merkmalsvektoren 109, die im Rahmen der Ermittlung der Erkennungsrate aus dem Testdatensatz verwendet werden, um einen vorgegebenen Wert, vorzugsweise um den Wert "1", das heißt um eine Merkmalsvektor-Komponente reduziert (Schritt 409).

Anschließend werden die Schritte des Clusterns (Schritt 405)

15 und somit des Erstellens des jeweiligen Codebuchs 306 und des
Bestimmens der Spracherkennungsrate (Schritt 406) erneut
durchgeführt, nunmehr jedoch für Merkmalsvektoren des
Testdatensatzes mit jeweils um eine Merkmalsvektor-Komponente
reduziertem Merkmalsvektoren.

20

30

5

Anders ausgedrückt bedeutet dies, dass bei 78 Merkmalsvektor-Komponenten in einem üblichen Merkmalsvektor gemäß diesem Ausführungsbeispiel der Erfindung in der zweiten Iteration die Erkennungsrate für einen Merkmalsvektor mit 77

Merkmalsvektor-Komponenten durchgeführt wird, in der dritten Iteration mit 76 Merkmalsvektor-Komponenten, usw.

Gemäß einer alternativen Ausgestaltung der Erfindung ist es vorgesehen, unmittelbar nicht mit allen Merkmalsvektor-Komponenten des Super-Merkmalsvektors (d.h. nicht mit allen 78 Merkmalsvektor-Komponenten), zu beginnen, sondern schon zu Beginn eine um einen anwendungsabhängigen Wert reduzierte

Ferner kann in jeder Iteration die Anzahl von Merkmalsvektor-Komponenten um mehr als um den Wert "1" reduziert werden.

Anzahl von Merkmalsvektor-Komponenten.

Somit liegen als Ergebnis diese oben beschriebenen Verfahrens einerseits eine Pseudoentropie-Abbildung und andererseits eine Erkennungsraten-Abbildung vor.

Mit der Pseudoentropie-Abbildung wird eine Abhängigkeit der Pseudoentropie der Merkmalsvektoren von den berücksichtigten Merkmalsvektor-Komponenten angegeben, also eine Abhängigkeit des Informationsgehalts, auch als Informationsmaß bezeichnet, von den berücksichtigten Merkmalsvektor-Komponenten.

10

30

Mit der Erkennungsraten-Abbildung wird eine Abhängigkeit der Spracherkennungsrate der Merkmalsvektoren von den berücksichtigten Merkmalsvektor-Komponenten angegeben.

Abbildung wird die Erkennungsraten-Information gebildet, indem eine Abhängigkeit der Spracherkennungsrate von der Pseudoentropie ermittelt wird unter Verwendung der jeweiligen berücksichtigten Merkmalsvektor-Komponenten. Es ist anzumerken, dass die Erkennungsraten-Information nunmehr unabhängig ist von der Anzahl der berücksichtigten Merkmalsvektor-Komponenten.

Die Erkennungsraten-Information wird in dem fünften 25 Teilspeicherbereich 205 gespeichert.

Ergebnis dieses Verfahrens ist somit die in **Fig.5** in einem Funktionsdiagramm dargestellte Erkennungsraten-Information 500, die über einer ersten Achse, auf der die ermittelte Pseudoentropie 501 aufgetragen ist, die erreichte Erkennungsrate 502 in Form von Daten-Tupeln 503 angibt.

Die Erkennungsraten-Information 500 stellt somit den Zusammenhang dar zwischen der Pseudoentropie und der mittels des Spracherkennungssystems erzielbaren Erkennungsrate.

Es ist in diesem Zusammenhang darauf hinzuweisen, dass die Erkennungsraten-Information 500 nur einmal für jedes Spracherkennungssystem, das heißt für jeden trainierten Satz von Hidden Markov Modellen durchgeführt werden muss.

5

20

- Fig.6 zeigt in einem Ablaufdiagramm 600 die einzelnen Verfahrensschritte des Verfahrens zur Spracherkennung gemäß dem Ausführungsbeispiel der Erfindung.
- Nach Starten des Verfahrens (Schritt 601) wird die Spracherkennungsanwendung ausgewählt oder bestimmt, in deren Rahmen die Spracherkennung durchgeführt werden soll (Schritt 602).
- 15 Als mögliche Anwendungen für die Spracherkennung sind gemäß diesem Ausführungsbeispiel folgende Spracherkennungsapplikationen vorgesehen:
 - ein Sprachdialogsystem:

 für ein Sprachdialogsystem mit einer

 Spracherkennungsrate von 92 93 % zu gewährleisten;
 - ein Fahrzeug-Navigationssystem:

 für diese Spracherkennungsapplikation ist eine

 Spracherkennungsrate von ungefähr 95 % zu gewährleisten;
- eine Steuerung eines technischen Systems, gemäß dem
 Ausführungsbeispiel eines Videorekorders:
 für diese Spracherkennungsapplikation ist eine
 Spracherkennung von ungefähr 95 % zu gewährleisten;
 - eine Telefon-Anwendung:

 für diese Anwendung ist eine Spracherkennungsrate von
 95 % zu gewährleisten;
 - ein Diktat, anders ausgedrückt das Erkennen von Sprachinformation und Umsetzen des erkannten Sprachsignals in ein Textverarbeitungssystem: für diese Applikation ist die mit dem Spracherkennungssystem maximal erreichbare
- 35 Spracherkennungssystem maximal erreichbare Spracherkennungsrate erforderlich, das heißt in diesem

Fall ist keine Reduktion von Merkmalsvektor-Komponenten sinnvoll.

Für die jeweilige Spracherkennungsanwendung erfolgt unter einem ebenfalls in dem zweiten Speicherteilbereich 202 gespeicherten, vorzugsweise Spracherkennungsanwendungsabhängigen Trainingsdatensatz eine Segmentierung der Super-Merkmalsvektoren (Schritt 603) in der gleichen, oben beschriebenen Weise.

10

Anschließend wird, ebenfalls in der gleichen, oben beschriebenen Weise eine LDA-Berechnung durchgeführt (Schritt 604), womit eine Spracherkennungsanwendungsabhängige LDA-Matrix 605 ermittelt wird.

15

20

25

30

Unter Verwendung der Spracherkennungsanwendungs-abhängigen LDA-Matrix 605 wird eine Spracherkennungsanwendungs-abhängige Pseudoentropie-Abbildung ermittelt, die einen Zusammenhang darstellt zwischen der erreichbaren Pseudoentropie und der jeweils berücksichtigten Anzahl von Merkmalsvektor-Komponenten in den Merkmalsvektoren.

Die jeweilige Spracherkennungsanwendungs-abhängige Pseudoentropie-Abbildung wird in dem sechsten Speicherteilbereich 206 gespeichert.

Unter Verwendung der zuvor ermittelten benötigten Spracherkennungsrate und der in dem sechsten Speicherteilbereich 206 gespeicherten Erkennungsraten-Information wird für die ausgewählte Anwendung in einem zusätzlichen Schritt die erforderliche Pseudoentropie ermittelt (Schritt 606).

Unter Verwendung der Spracherkennungsanwendungs-abhängigen
35 Pseudoentropie-Abbildung, wie sie zuvor ermittelt worden ist,
wird in einem anschließenden Schritt (Schritt 607) ermittelt,
wie viele Merkmalsvektor-Komponenten und welche

30

35

Merkmalsvektor-Komponenten, gemäß diesem Ausführungsbeispiel die jeweils die Merkmalsvektor-Komponenten mit jeweils kleinstem Informationsgehalt, im Rahmen der Spracherkennung weggelassen werden können, anders ausgedrückt unberücksichtigt bleiben können.

Ist in dem Schritt 607 nunmehr die Anzahl benötigter
Merkmalsvektor-Komponenten für die ausgewählte Anwendung
ermittelt, so wird in einem nachfolgenden Schritt für die
10 jeweilige Anwendung und für die bestimmte Anzahl von
Merkmalsvektor-Komponenten ein Clustering durchgeführt
(Schritt 608). Ergebnis des Clusterings ist ein
Spracherkennungsanwendungs-abhängiges Codebuch 609, anders
ausgedrückt eine Menge Spracherkennungsanwendungs-abhängiger
15 trainierter Hidden Markov Modelle, welches ebenfalls in dem
Speicher gespeichert wird. Das Clusterverfahren ist gleich
dem oben beschriebenen Clusterverfahren (Schritt 405) zum
Bestimmen der Erkennungsraten-Information 500.

- Anschließend erfolgt die sprecherunabhängige Spracherkennung unter Verwendung des gespeicherten Spracherkennungsanwendungs-abhängigen Codebuchs 609 (Schritt 610).
- Anders ausgedrückt bedeutet dies, dass eine anschließend eingesprochene Äußerung eines Benutzers unter Verwendung der Hidden Markov Modelle gemäß dem [1] beschriebenen Verfahren zur sprecherunabhängigen Spracherkennung unter Verwendung des Viterbi-Algorithmus durchgeführt wird (Schritt 610).

Wie zuvor beschrieben werden im Rahmen der Spracherkennung die reduzierten Merkmalsvektoren berücksichtigt, das heißt die Merkmalsvektoren ohne die nicht berücksichtigten Merkmalsvektor-Komponenten.

Anders ausgedrückt bedeutet dies, dass bei k Merkmalsvektor-Komponenten in einem Merkmalsvektor und bei n nicht

25

30

35

berücksichtigten Merkmalsvektor-Komponenten (n < k) lediglich (k - n) Merkmalsvektor-Komponenten im Rahmen der Spracherkennung berücksichtigt werden müssen.

Somit findet auch der Vergleich in einem Vergleichsraum der Dimension (k-n) statt.

Ferner wird erfindungsgemäß die Erkennungsraten-Information nur einmal bestimmt; für jede neue Spracherkennungsanwendung ist es lediglich erforderlich, unter Verwendung der Erkennungsraten-Information 500 zu ermitteln, wie viele und vorzugsweise welche Merkmalsvektor-Komponenten für die neue Spracherkennungsanwendung erforderlich sind, und das Codebuch für die ermittelte Anzahl benötigter Merkmalsvektor
Komponenten zu bestimmen.

Fig.5 zeigt das Beispiel, dass für die ausgewählte Anwendung eine Spracherkennungsrate von 95 % benötigt wird, in Fig.5 dargestellt mittels einer Schnittlinie 504.

Oberhalb der Schnittlinie befindende Datenpunkte repräsentieren eine Pseudoentropie, die größer ist als es eigentlich erforderlich wäre für die Anforderung der ausgewählten Anwendung, anders ausgedrückt, um eine Erkennungsrate von 95 % zu gewährleisten.

Gemäß diesem Ausführungsbeispiel können zwei Merkmalsvektor-Komponenten weggelassen werden, womit die Dimension der verarbeiteten Merkmalsvektoren um den Wert 2 reduziert werden konnte.

Anschaulich kann die Erfindung darin gesehen werden, dass für eine spezielle ausgewählte Spracherkennungsanwendung, beispielsweise aus dem Bereich Command and Control, anders ausgedrückt für eine Steuereinrichtung, unter bestimmten Bedingungen eine geringere Erkennrate des Spracherkenners akzeptiert werden kann und diese Erkenntnis erfindungsgemäß

umgesetzt wird in ein Reduzieren der Dimension der verarbeiteten Merkmalsvektoren.

Nach erfolgter Spracherkennung in Schritt 610 wird das 5 Verfahren beendet (Schritt 611).

In diesem Dokument ist folgende Veröffentlichung zitiert:

- [1] E.G. Schukat-Talamazzini, Automatische Spracherkennung, Grundlagen, statistische Modelle und effiziente Algorithmen, Vieweg Verlag, ISBN 3-528-05492-1, Seite 121 164, 1995
- [2] DE 199 39 101 A1

Patentansprüche

5

- 1. Verfahren zur rechnergestützten Spracherkennung unter Verwendung von Merkmalsvektoren, wobei eine Erkennungsraten-Information gespeichert ist, mit der für die Merkmalsvektoren abhängig von dem Informationsgehalt der Merkmalsvektor-Komponenten angegeben wird, welche Spracherkennungsrate jeweils mit den Merkmalsvektoren mit den jeweils berücksichtigten Merkmalsvektor-Komponenten erzielbar ist,
- bei dem bestimmt wird, welche Spracherkennungsrate für eine Spracherkennungsanwendung benötigt wird,
 - bei dem unter Verwendung der Erkennungsraten-Information ermittelt wird, welcher Informationsgehalt der Merkmalsvektor-Komponenten mindestens erforderlich ist, um die bestimmte Spracherkennungsrate zu gewährleisten,
 - bei dem ermittelt wird, wie viele Merkmalsvektor-Komponenten in dem Spracherkennungssystem für die Spracherkennungsanwendung erforderlich sind, um den ermittelten Informationsgehalt bereitzustellen,
- bei dem die Spracherkennung ausgeführt wird unter Verwendung von Merkmalsvektoren mit der Anzahl von Merkmalsvektor-Komponenten, die erforderlich sind, um den ermittelten Informationsgehalt bereitzustellen.
- 25 2. Verfahren gemäß Anspruch 1, bei dem für die Spracherkennung ein sprecherunabhängiges Spracherkennungsverfahren verwendet wird.
 - 3. Verfahren gemäß Anspruch 2,
- bei dem die Spracherkennung unter Verwendung von Hidden Markov Modellen durchgeführt wird.
- Verfahren gemäß einem der Ansprüche 1 bis 3,
 bei dem die Merkmalsvektor-Komponenten mit höchstem
 Informationsgehalt ausgewählt werden und im Rahmen der Spracherkennung verwendet werden.

5. Spracherkennungssystem mit

5

10

15

- einer Spracherkennungseinheit,
- einem mit der Spracherkennungseinheit gekoppelten elektronischen Wörterbuch, in dem die im Rahmen der Spracherkennung berücksichtigten Wörter gespeichert sind,
- einem Erkennungsraten-Informations-Speicher, in dem Erkennungsraten-Information gespeichert ist, mit der für die Merkmalsvektoren abhängig von dem Informationsgehalt der Merkmalsvektor-Komponenten angegeben wird, welche Spracherkennungsrate jeweils mit den Merkmalsvektoren mit den jeweils berücksichtigten Merkmalsvektor-Komponenten erzielbar ist,
- einer Erkennungsraten-Informations-Ermittlungseinheit zum Ermitteln der Erkennungsraten-Information,
- einer Informationsgehalt-Ermittlungseinheit, zum Ermitteln des Informationsgehalts für Merkmalsvektor-Komponenten eines Merkmalsvektors in dem Spracherkennungssystem,
- einer Merkmalsvektor-Komponenten-Auswahleinheit zum
 Auswählen von Merkmalsvektor-Komponenten, die im Rahmen
 der Spracherkennung zu berücksichtigen sind.
 - 6. Spracherkennungssystem gemäß Anspruch 5,
- 25 bei dem die Spracherkennungseinheit eingerichtet ist zur sprecherunabhängigen Spracherkennung.
 - 7. Spracherkennungssystem gemäß Ansprüche 5 oder 6, eingerichtet als ein Embedded System.
 - 8. Steuereinrichtung zum Steuern eines technischen Systems mit einem Spracherkennungssystem gemäß einem der Ansprüche 5 bis 7,
- wobei in dem elektronischen Wörterbuch die zum Steuern des technischen Systems vorgesehenen Steuerbefehle gespeichert sind.

9. Telekommunikationsgerät mit einer Steuereinrichtung gemäß Anspruch 8.

Zusammenfassung

5

Verfahr n zur rechnergestützten Spracherkennung, Spracherkennungssystem und Steuereinrichtung zum Steuern eines technischen Systems

Es wird für eine ausgewählte Spracherkennungsanwendung bestimmt, welche Spracherkennungsrate erforderlich ist. Unter Verwendung einer gespeicherten Spracherkennungsraten
10 Information wird ermittelt, welcher Informationsgehalt der Merkmalsvektor-Komponenten mindestens erforderlich ist, um die Spracherkennungsrate zu gewährleisten. Es wird die Anzahl der erforderlichen Merkmalsvektor-Komponenten ermittelt, die erforderlich ist, um den ermittelten Informationsgehalt bereitzustellen, und die Spracherkennung wird ausgeführt unter Verwendung von Merkmalsvektoren mit der ermittelten benötigten Anzahl von Merkmalsvektor-Komponenten.

Signifikante Figur 4

Bezugszeichenliste

- 100 Spracherkennungssystem
- 101 Analoges Sprachsignal
- 102 Mikrofon
- 103 Analoges aufgenommenes Sprachsignal
- 104 Vorverarbeitung
- 105 Vorverarbeitetes Sprachsignal
- 106 Analog-/Digitalwandler
- 107 Digitales Signal
- 108 Merkmalsextraktionseinheit
- 109 Merkmalsvektor
- 110 Rechner
- 111 Eingangsschnittstelle
- 112 Mikroprozessor
- 113 Speicher
- 114 Ausgangsschnittstelle
- 115 Computerbus
- 116 Tastatur
- 117 Computermaus
- 118 Elektrische Leitung
- 119 Elektrische Leitung
- 120 Funkverbindung
- 121 Funkverbindung
- 122 Lautsprecher
- 123 Aktor
- 201 Erster Speicherteilbereich
- 202 Zweiter Speicherteilbereich
- 203 Dritter Speicherteilbereich
- 204 Vierter Speicherteilbereich
- 205 Fünfter Speicherteilbereich
- 206 Sechster Speicherteilbereich
- 300 Blockdiagramm
- 301 Sprachsignal
- 302 Segmentierungseinheit

- 303 LDA-Matrix-Berechnungseinheit
- 304 LDA-Matrix
- 305 Clustereinheit
- 306 Codebuch
- 307 Spracherkennungseinheit
- 308 Erkennungsrate
- 400 Ablaufdiagramm
- 401 Start
- 402 Segmentieren Sprachsignal
- 403 Berechnen LDA-Matrix
- 404 Auswahl Anzahl Merkmalsvektor-Komponenten
- 405 Clustern Merkmalsvektoren
- 406 Ermitteln Erkennungsrate
- 407 Prüfschritt
- 408 Ende
- 409 Reduktion Anzahl Merkmalsvektor-Komponenten der Merkmalsvektoren
- 500 Funktionsdiagramm
- 501 Pseudoentropie
- 502 Erkennungsrate
- 503 Daten-Tupel
- 504 Schnittlinie
- 600 Ablaufdiagramm
- 601 Start
- 602 Auswählen Spracherkennungsanwendung
- 603 Segmentierung Sprachsignal
- 604 Berechnen LDA-Matrix
- 605 LDA-Matrix
- 606 Ermitteln erforderliche Pseudoentropie
- 607 Ermitteln Anzahl unnötiger Merkmalsvektor-Komponenten
- 608 Clustering
- 609 Spracherkennungsanwendungs-abhängiges Codebuch
- 610 Sprecherunabhängige Spracherkennung
- 611 Ende

Erfinderbenennung - Designation of inventor - Designation de l'inventeur

Ort, Datum Place, Date	Lieu, Date	Unterschrift(en) des (der) Anmelde	er(s) oder Vertreters
München, 23.09.2002		Chie Mittel Eric-Michael Dokter	•
Der Unterzeichnende versichert,	daß seines Wissens weitere Personen	an der Erfindung nicht beteiligt sir	nd.
Der (die) Erfinder ist (sind) The inventor(s) is (are) an e L'inventeur(s) est (sont) em	Arbeitnehmer der (des) Anmeld mployee(s) of the applicant(s). ployé(s) du demandeur(s).	ers.	
Das Recht auf das Patent ist auf The right to apply for the patent Le droit au brevet est passé au(x			
	mersheimer Str. 33, 81541 Mün	chen	
Dr. Michael Küstner.	Aiplspitzweg 5, 83629 Weyarn		
benennt (benennen) als Erfinder declare(s) as inventor(s): désigne(nt) en tant qu'inventeur(
der Erfindung: of the invention: de l'invention:	Verfahren zur rechnergestütz Steuereinrichtung zum Steue	ten Spracherkennung, Sprach rn eines technischen Systems	erkennungssystem und und Telekommunikationsgerät
No. de la demande:	81669 München		4
Der (Die) Anmelder: The Applicant(s):	Infineon Technologies AG StMartin-Str. 53		
Amtliches Aktenzeichen: Application No.: No. de la demande:		Anwaltsakte: Attorney's file: Référence du mandataire:	P23979

)

Keine Beglaubigung - No legalization - Légalisation non nécessaire

Signature(s) of applicant(s) or representative

Signature(s) du (des) demandeur(s) ou du (des) mandataire(s)

An das Deutsche Patent- und Markenamt **DEUTSCHES PATENT- UND MARKENAMT** 80297 München Sendungen des Deutschen Patent- und Markenamts sind zu In der Anrichten an: schrift Straße, Antrag Haus-Nr. und Viering, Jentschura & Partner ggf. Postfach auf Erteilung angeben Patent- und Rechtsanwälte Steinsdorfstr. 6 eines Patents 87538 runches ☐ TELEFAX vorab am Vordruck nicht für PCT-Ver Aktenzeichen (wird vom Deutschen Patent- und Markenamt vergeben) fahren verwenden 102 44 165.0 s. Rückseite Zeichen des Anmelders/Vertreters (max. 20 Stellen) (2)Telefon des Anmelders/Vertreters Datum P23979 089 210 697 0 23.09.2002 / AG Der Empfänger in Feld (1) ist der (3) ggf. Nr. der Allgemeinen Vollmacht Zustellungsbevollmächtigte Anmelder ∇ertreter Vertreter VIERING, JENTSCHURA & PARTNER (4)Anmelder nu Infineon Technologies AG Erhallen / Received auszufüllen wenn ab-St.-Martin-Str. 53 weichend von Feld (1) 81669 München 2 7 Sep. 2002 Handelsregi our bei Firmen Frist / Que Dalftsgericht anzugeben ☐ Der Anmelder ist eingetragen im Handelsregister Nr. (5) Anmeldercode-Nr. Vertretercode-Nr. Zustelladresscode-Nr. ERF soweit bekannt :/ (6)Bezeichnung der Erfindung s. auch Rückseite Verfahren zur rechnergestützten Spracherkennung, Spracherkennungssystem und IPC-Vorschlag d. Anmelders IPC-Vorschlag Steuereinrichtung zum Steuern eines technischen Systems und Telekommunikationsgerät ist unbedinat anzugeben, sofern bekannt (7)Sonstige Anträge Aktenzeichen der Hauptanmeldung (des Hauptpatents) s.Erläute-Die Anmeldung ist Zusatz zur Patentanmeldung (zum Patent) rung u. Kosten-Prüfungsantrag - Prüfung der Anmeldung mit Ermittlung der öffentlichen Druckschriften (§ 44 Patentgesetz) hinweise Rechercheantrag - Ermittlung der öffentlichen Druckschriften ohne Prüfung (§ 43 Patentgesetz) auf der Rückseite ☐ Aussetzung des Erteilungsbeschlusses auf Monate (§ 49 Abs. 2 Patentgesetz) (Max. 15 Mon. ab Anmelde- oder Prioritätstag) Erklärungen Aktenzeichen der Stammanmeldung ☐ Teilung/Ausscheidung aus der Patentanmeldung an Lizenzvergabe interessiert (unverbindlich) Nachanmeldung im Ausland beabsichtigt (unverbindlich) Inländische Priorität (Datum, Aktenzeichen der Voranmeldung) (9)🔲 Ausländische Priorität (Datum, Land, Aktenz. der Voranmeldung; vollständige Abschrift(en) der ausländischen Voranmeldung(en) beifügen) Rückseite (10)Gebührenzahlung in Höhe von 410,00 **EUR** Erläuterung und Kosten-☐ Überweisung (nach Erhalt Abbuchung von meinem/unserem Abbuchungskonto bei der Vordruck (A 9507) ist beigefügt hinweise der Empfangsbescheinigung) Dresdner Bank AG, München s. Rückseite Abbuchungsauftrag (V 1244) ist beigefügt Wird die Anmeldegebühr nicht innerhalb von 3 Monaten nach dem Tag des Eingangs der Anmeldung gezahlt, so gilt die Anmeldung als zurückgenommen! 5. 3 Seite(n) Patentansprüche (11)Anlagen 9 Anzahl Patentansprüche Blatt Zeichnungen Anlagen 1. Vertretervollmacht 6. 5 3. - 7. 2. Erfinderbenennung 7. Abschrift(en) d. Voranmeld. jeweils 3. Zusammenfassung 8. Zitierte Nichtpatentliteratur Eric-Michael Dokter 3-fach (ggf. mit Zeichnung Fig. 4) s. auch 9. Seite(n) Beschreibung (12) Unterschrift(en) Rückseite (ggf. mit Bezugszeichenliste) Nur von der Annahmestelle auszufüllen: Diese Patentanmeldung ist an dem durch Perforierung angegeb nt- und Markenamt eingegangen. Sie hat das o.a. Aktenzeichen erhalten. Dieses Aktenzeichen ist bei allen Eingaben anzugeben. Bei Zah zeichen und der Verwendungszweck in Form des Gebührencodes (s. Rückseite zu Feld (10)) zu vermerken. Bei Abbuchung bzw. Einzugsermächtigung: V 1244, A 9507 bzw. Dopp Die genannten Anlagen sind vollständig eingegangen. P 2007 Bitte beachten Sie die Hinweise (1.02 (o) Folgende o.a. Anlagen fehlen: auf der Rückseite der zurückgehaltenen Antragsdurchschrift

-6.03.03

Deutsches Patent- und Markenamt München, den

Ferndurchwah1: (089)2195-2852

Aktenzeichen: Ihr Zeichen:

102 44 165.0

Deutsches Patent- und Markenamt . 80297 München

P23979 Anmeldernr.: 10423648 Infineon Technologies AG

Viering, Jentschura & Partner Patent- und Rechtsanwälte Steinsdorfstr. 6

80538 München

VIERING, JENTSCHURA & PARTNER Erhalten / Received

1 2. März 2003

Frist / Due Date.

Bibliographie-Mitteilung

IPC Hk1 G10L 15/02 Akz 102 44 165.0 -53 1

Ant

Erf

23.09.2002 V

Verfahren zur rechnergestützten Bez

Spracherkennung, Spracherkennungssystem und

Steuereinrichtung zum Steuern eines technischen

Systems und Telekommunikationsgerät

Vnr 262498

Anr 10423648 Infineon Technologies AG, 81669 München, DE

Viering, Jentschura & Partner, 80538 München Küstner, Michael, Dr., 83629 Weyarn, DE; Sambeth, Ralf, Dr., 81541 München, DE

Die Veröffentlichung der Anmeldung erfolgt voraussichtlich am 25.03.2004. Sie unterbleibt, wenn die Anmeldung früher als 8 Wochen vor dem vorgesehenen Veröffentlichungstag zurückgenommen oder zurückgewiesen wird oder als zurückgenommen gilt (§ 32 Abs. 4 PatG).

Hinweise

Folgende angekreuzte Unterlagen sind innerhalb einer Frist von

... Monaten

...-fach nachzureichen (§§ 4-6, 8 PatAnmV):

() Druckfähige Zeichnungen () Patentansprüche () Beschreibung

() Zeichnung zur Zusammenfassung (§ 36 PatG)

() Weitere Anforderungen: Siehe gesonderter Bescheid

keine weiteren Anforderungen

Prüfungsstelle 11.53

Bitt Anm Ider und Akt nzeich n b i allen Eingab n angeben!

> Zweibrückenstr. 12 (Hauptgebäude) Deutsches Patent- und Markenamt 80331 München

Telefon (089) 2195-0 Telefax (089) 2195-2221 Internet: http://www.dpma.de

Bitte b acht n Si di wichtigen

Hinw is auf d r Rücks it!

Supplementary Form for Order to File Patent Applications

Our Ref.: 2002P06499 US

Based on the following invention disclosure:

2002E06495 DE

Priority / Priorities to be claimed

State	Filing date /	Application No.
DE	23.09.2002	10244165.0

Applicant(s) / Assignee(s), Address

Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, GERMANY

Inventor(s)
First Name, Family Name, Nationality, Address, Country of Residence

Michael) Ralf	Küstner Sambeth		Aiplspitzweg 5 Germersheimerstr. 33		Weyarn München	GERMANY GERMANY
-------------------	--------------------	--	--	--	-------------------	--------------------