4CCS1ELA: Elementary Logic with Applications (Formal) Syntax & Semantics of First-Order Logic

Enrico Malizia

(parts of these slides are based on material by Dr. Odinaldo Rodrigues)

Department of Informatics King's College London, UK

Term 1, 2020/21

Different semantics for FOL

- The language of first-order logic (or predicate logic) is characterized by the terms, the functions, the predicates, the quantifiers, and so on
- However, this is just a set of symbols
- Symbols do not carry with them their own meaning...
 - ▶ What does the sequence of characters "c o n f e t t i" mean?

English "confetti"

Italian "confetti" (if you wonder, these are sugar-coated almonds)

Different semantics for FOL

- Different meanings can be associated with a sequence of symbols
- Hence, different semantics can be associated with a first-order language; Two of them are:
 - Classical semantics
 - Herbrand semantics
- These two semantics are different but very similar, and under some circumstances equivalent
- The classical semantics is usually adopted in mathematical logics
- The Herbrand semantics is usually adopted in relational database theory & applications
- In these slides we will give intuitions on the classical semantics; if interested, more formal (and intricate) definitions of the classical semantics can be found in additional material on KEATS

Syntax of FOL: Vocabulary

We start by looking at the symbols of a first-order language

Definition

A vocabulary (or, signature) σ is a collection of:

- a non-empty set $\{c_1,\ldots,c_n\}$ of **constants** (symbols);
- a possibly empty set $\{f_1,\ldots,f_n\}$ of functions (symbols), each of them associated with an integer $arity(f_i)=a_i\geq 1$, i.e. the arity of f_i ;
- a possibly empty set $\{P_1, \ldots, P_n\}$ of **predicates** (or, **relations**) (symbols), each of them associated with an integer $arity(P_i) = a_i \geq 0$, i.e. the *arity* of P_i .

Syntax of FOL: Alphabet

• Besides the vocabulary, we need logical connectives & other symbols

Definition

Given a vocabulary σ , the alphabet A_{σ} of a first-order language over σ is the set of symbols comprising:

- a countably infinite set of variables $\{x,y,z,\ldots\}$ (with subscripts and superscripts);
- '⊤', '⊥' (i.e. Boolean values true, false);
- ' \neg ', ' \wedge ', ' \vee ', ' \rightarrow ', ' \leftrightarrow ' (i.e. the logical connectives);
- '∀', '∃' (i.e. the quantifiers' symbols);
- '=' (i.e. the equality symbol; ' $t_1 \neq t_2$ ' will replace '¬ $(t_1 = t_2)$ ');
- ')', '(' (i.e. the parentheses);
- ',' (i.e. the comma);
- all the constant, predicate, and function, symbols (with their associated arity) from σ .

Syntax of FOL: Expressions

- An *expression* of a first-order language is any finite sequence of symbols of the alphabet of the language
- \mathcal{A}_{σ}^* is the set of all expressions that can be build by the symbols in the alphabet \mathcal{A}_{σ}
- Since no constraint is imposed over how symbols can be arranged in expressions, surely many expressions are nonsensical; e.g.,

$$\forall \leftrightarrow \exists (\land x((Friend(\forall, \lor))))$$

Therefore, we need to select some expressions that make sense for us

Syntax of FOL: Terms

• Defining the statements making sense requires the concept of term

Definition

The σ -terms of a first-order language over σ are the expressions from \mathcal{A}_{σ}^* defined via the following rules:

- every variable is a σ -term;
- every constant in σ is a σ -term;
- if the expressions t_1, \ldots, t_n are σ -terms and f is an n-ary function in σ , then the expression $f(t_1, \ldots, t_n)$ is also a σ -term.

Syntax of FOL: Formulas

We are now ready to define first-order formulas

Definition

Given a vocabulary σ , the σ -formulas of a first-order language over σ are the expressions from \mathcal{A}_{σ}^* defined via the following rules:

- \top and \bot are σ -formulas;
- if t_1 and t_2 are σ -terms, then $t_1=t_2$ is also a σ -formula (an **atomic** formula);
- if t_1, \ldots, t_n are σ -terms and P is an n-ary predicate in σ , then the atom $P(t_1, \ldots, t_n)$ is also a σ -formula (another atomic formula);
- if ϕ is a σ -formula, then $\neg(\phi)$ is also a σ -formula;
- if ϕ and ψ are σ -formulas, then $(\phi \wedge \psi)$, $(\phi \vee \psi)$, $(\phi \to \psi)$, and $(\phi \leftrightarrow \psi)$ are also σ -formulas;
- if x is a variable and ϕ is a σ -formula $(\exists x)(\phi)$ and $(\forall x)(\phi)$ are also σ -formulas

Syntax of FOL: Language

- The first-order (or predicate logic) language over the vocabulary σ , denoted by $\mathcal{L}[\sigma]$, is the set of all expressions over \mathcal{A}_{σ}^* that are moreover σ -formulas
- To slimline the formulas of our first order languages, parentheses can be omitted by resorting to the precedence rules of the logical connectives

Semantic of FOL

- We have seen how FOL formulas are written, i.e., the syntax of FOL.
 We now see how to evaluate whether a FOL formula is true or false, i.e., the semantic of FOL
- Similarly to propositional logic, the truth-value of a FOL formula depends on the truth-values assigned to its "components"
- In propositional logic, an interpretation is a truth-value assignment to the propositions
- ullet An interpretation $\mathcal I$ for a first-order logic language consists of a nonempty domain D of objects, over which the variables may range, together with an assignment of a meaning to the predicate, constant and function, symbols
- Also in this case, an interpretation enables a truth-value to be assigned to a first-order formula

Semantic of FOL: Example

Consider the following formula:

$$\exists x(x+x=3)$$

- Consider an interpretation where the symbol "+" is interpreted as the usual sum symbol operation; and the symbol "3" is interpreted as the object "number 3"
- If the domain in the interpretation is the set $\mathbb N$ of natural numbers, then the formula is false in the interpretation
- On the other hand, if the domain in the interpretation is the set Q of rational numbers, then the formula is true in the interpretation
- Hence, the domain in the interpretation can make a difference in the truth value of a formula

Semantic of FOL: Example

Consider the following formula:

$$\forall x \exists y A(x,y)$$

- ullet Consider an interpretation with domain $\mathbb N$ (set of natural numbers)
- If the binary predicate A is interpreted as "successor", i.e. A(x,y) is true whenever y is the successor of x in $\mathbb N$ (e.g., we have A(2,3) and A(5,6) true, whereas A(3,6) and A(4,1) are false), then the formula is true (because every number in $\mathbb N$ has a successor in $\mathbb N$)
- On the other hand, if the binary predicate A is interpreted as "predecessor", i.e. A(x,y) is true whenever y is the predecessor of x in $\mathbb N$ (e.g., we have A(3,2) and A(6,5) true, whereas A(3,6) and A(4,1) are false), then the formula is false (because the number 0 does not have any predecessor in $\mathbb N$)
- Hence, different interpretations of the predicates can make a difference in the truth value of a formula

Semantic of FOL: Satisfaction of a formula

Definition

Let ϕ be a σ -formula of a first-order language $\mathcal{L}[\sigma]$, and let \mathcal{I} be an interpretation for $\mathcal{L}[\sigma]$. The interpretation \mathcal{I} satisfies the formula ϕ , denoted by $\mathcal{I} \models \phi$, based on the following inductive rules:

- ullet $\mathcal{I} \models op$ always; and $\mathcal{I} \models op$ never;
- for terms t_1 and t_2 , $\mathcal{I}\models t_1=t_2$ iff t_1 and t_2 are interpreted in \mathcal{I} as the same object in the domain;
- for an n-ary predicate P and terms t_1, \ldots, t_n , $\mathcal{I} \models P(t_1, \ldots, t_n)$ iff $P(t_1, \ldots, t_n)$ is true in \mathcal{I} ;
- for a formula ϕ , $\mathcal{I} \models \neg(\phi)$ iff $\mathcal{I} \models \phi$ does not hold; • for formulas ϕ and ψ , $\mathcal{I} \models (\phi \land \psi)$ iff $\mathcal{I} \models \phi$ and $\mathcal{I} \models \psi$;
- for formulas ϕ and ψ , $\mathcal{I} \models (\phi \lor \psi)$ iff $\mathcal{I} \models \phi$ or $\mathcal{I} \models \psi$;
- for formulas ϕ and ψ , $\mathcal{I} \models (\phi \rightarrow \psi)$ iff $\mathcal{I} \models (\neg \phi \lor \psi)$;
- for formulas ϕ and ψ , $\mathcal{I} \models (\phi \leftrightarrow \psi)$ iff $\mathcal{I} \models ((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$; [...]

Semantic of FOL: Satisfaction of a formula

Definition

- for a variable x and a formula ϕ , $\mathcal{I} \models (\exists x)(\phi)$ iff there exists an object $d \in D$ such that $\mathcal{I} \models \phi(x/d)$
 - For a D of finite size, $\mathcal{I} \models (\exists x)(\phi)$ equals $\mathcal{I} \models \bigvee_{d \in D} \phi(x/d)$
- for a variable x and a formula ϕ , $\mathcal{I} \models (\forall x)(\phi)$ iff, for all objects $d \in D$, $\mathcal{I} \models \phi(x/d)$
 - For a D of finite size, $\mathcal{I} \models (\forall x)(\phi)$ equals $\mathcal{I} \models \bigwedge_{d \in D} \phi(x/d)$

Notation: in the formulas above, ' $\phi(x/d)$ ' denotes the formula obtained from ϕ in which all the *free* occurrences of x are substituted for the object d **Example:** let ϕ be $P(x) \wedge \exists x \exists y P(x,y)$ and $D = \mathbb{N}$; then $\phi(x/0)$ is $P(0) \wedge \exists x \exists y P(x,y)$

Semantic of FOL: Satisfaction of a formula

- If $\mathcal I$ satisfies ϕ , $\mathcal I$ is said to be a **model** of ϕ
- ullet If ${\mathcal I}$ does not satisfy ϕ , it can be denoted by ${\mathcal I} \not\models \phi$
- For an interpretation $\mathcal I$ and a formula ϕ , we can also write $\mathcal I(\phi)=1$ and $\mathcal I(\phi)=0$ to say that $\mathcal I$ satisfies and do not satisfy ϕ , respectively
- A formula is satisfiable if it admits a model; e.g., this formula is satisfiable: $(\forall x)(P(x) \to Q(x))$
- A formula is unsatisfiable (or, a contradiction) if it does not admit any model; e.g., this formula is a contradiction $(\exists x)(P(x) \land \neg P(x))$
- A formula is valid (or, a tautology) if it is satisfied by all interpretations; e.g., this formula is a tautology $(\forall x)(P(x)) \rightarrow (\exists x)(P(x))$

Semantic of FOL: truth-value of a formula — Example

Consider the following formula:

$$\exists x \forall y (P(y) \to x = y)$$

- Does this formula evaluate to true or false in the following interpretations? (There are no function symbols)
- ullet $D=\{a\}$ and P(a) is true
- $D = \{a\}$ and P(a) is false
- $D = \{a, b\}$ and both P(a) and P(b) are true

 There is no witness, as shown by the following two counter-examples for each of the possible choices of x: (x = a; y = b); (x = b; y = a)
- ullet $D=\{a,b\}$ and both P(a) and P(b) are false
- $D=\{a,b\}$, and P(a) is true and P(b) is false The witness is x=a, as for this specific choice of x there is no counter-example on y

Semantic of FOL: truth-value of a formula — Example

- Consider the interpretations where the symbols "<", "+", and "×", are interpreted in the usual way as the symbols for "less than", the "sum operation", and the "multiplication operation", respectively; and "0" is the constant symbol interpreted as the "number zero"
- Tell if the following formulas are true or not depending on the domain of interpretation: \mathbb{N} , for the natural numbers; \mathbb{Z} , for the integer numbers; \mathbb{Q} , for the rational numbers; and \mathbb{R} , for the real numbers
- $(\exists z)(\forall n)(n \neq z \rightarrow z < n)$ $\mathbb{N}: \checkmark, \mathbb{Z}: \checkmark, \mathbb{Q}: \checkmark, \mathbb{R}: \checkmark$
- $(\forall x)(\forall y)(\exists z)(x+y=z)$ $\mathbb{N}: \checkmark, \mathbb{Z}: \checkmark, \mathbb{Q}: \checkmark, \mathbb{R}: \checkmark$
- $(\forall x)(\forall z)(\exists y)(x+y=z)$ $\mathbb{N}: \mathbf{X}, \mathbb{Z}: \mathbf{V}, \mathbb{Q}: \mathbf{V}, \mathbb{R}: \mathbf{V}$
- $(\forall x)(\forall y)(x < y \to (\exists z)(x < z \land z < y)) \ \mathbb{N}$: $\ X$, \mathbb{Z} : $\ X$, \mathbb{Q} : $\ \checkmark$, \mathbb{R} : $\ \checkmark$
- $(\forall x)(\forall y)(\exists z)(x \times y = z)$ \mathbb{N} : \checkmark , \mathbb{Z} : \checkmark , \mathbb{Q} : \checkmark , \mathbb{R} : \checkmark
- $(\forall x)(\forall z)(x \neq 0 \rightarrow (\exists y)(x \times y = z))$ $\mathbb{N}: \mathbf{X}, \mathbb{Z}: \mathbf{X}, \mathbb{Q}: \mathbf{V}, \mathbb{R}: \mathbf{V}$
- $(\forall y)(\neg(y<0)\rightarrow(\exists x)(x\times x=y))$ \mathbb{N} : \mathbf{X} , \mathbb{Z} : \mathbf{X} , \mathbb{Q} : \mathbf{X} , \mathbb{R} : \mathbf{V}

Semantic of FOL: Logical consequence

- An interpretation $\mathcal I$ is a **model** of a set Φ of σ -formulas, denoted by $\mathcal I \models \Phi$, iff $\mathcal I \models \phi$ for all $\phi \in \Phi$
- A set Φ of σ -formulas is **satisfiable** iff Φ admits a model
- The σ -formula γ is a (logical) consequence of a set Φ of σ -formulas, denoted by $\Phi \models \gamma$, iff every model of Φ is also a model of γ
- $\emptyset \models \phi$, also denoted by $\models \phi$, means that ϕ is valid, because all interpretations are models of the empty set \emptyset
- Two σ -formulas ϕ and ψ are logically equivalent, denoted by $\phi \equiv \psi$, iff $\{\psi\} \models \phi$ and $\{\phi\} \models \psi$