

■联结词全功能集

■与非联结词,或非联结词

联结词的全功能集

定义 设S是一个联结词集合,如果任何 $n(n \ge 1)$ 元 真值函数都可以由仅含S中的联结词构成的公式表示,则称S是联结词全功能集.

说明: 若S是联结词全功能集,则任何命题公式都可用S中的联结词表示.

设 S_1 , S_2 是两个联结词集合,且 $S_1 \subseteq S_2$. 若 S_1 是全功能集,则 S_2 也是全功能集. 反之,若 S_2 不是全功能集,则 S_1 也不是全功能集.

м

联结词全功能集实例

定理 $\{\neg, \land, \lor\}$ 、 $\{\neg, \land\}$ 、 $\{\neg, \lor\}$ 、 $\{\neg, \rightarrow\}$ 都是 联结词全功能集.

证明每一个真值函数都可以用一个主析取范式表示,故{¬, ∧,∨}是联结词全功能集.

 $p \lor q \Leftrightarrow \neg (\neg p \land \neg q)$, 故 $\{\neg, \land\}$ 是全功能集. $p \land q \Leftrightarrow \neg (\neg p \lor \neg q)$, 故 $\{\neg, \lor\}$ 是全功能集. $p \rightarrow q \Leftrightarrow \neg p \lor q$, 故 $\{\neg, \rightarrow\}$ 也是全功能集.

м

复合联结词

与非式: $p \uparrow q \Leftrightarrow \neg (p \land q)$

或非式: $p \downarrow q \Leftrightarrow \neg (p \lor q)$

↑和↓与¬, ∧, ∨有下述关系:
¬ $p\Leftrightarrow\neg(p\land p)\Leftrightarrow p\uparrow p$ $p\land q\Leftrightarrow \neg\neg(p\land q)\Leftrightarrow \neg(p\uparrow q)\Leftrightarrow (p\uparrow q)\uparrow(p\uparrow q)$ $p\lor q\Leftrightarrow \neg(\neg p\land \neg q)\Leftrightarrow (\neg p)\uparrow(\neg q)\Leftrightarrow (p\uparrow p)\uparrow(q\uparrow q)$

复合联结词(续)

$$\neg p \Leftrightarrow p \downarrow p
p \land q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)
p \lor q \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$

定理 {↑}, {↓}是联结词全功能集.

可以证明: { \ , \ \ }不是全功能集, 从而{ \ \ }, { \ \ }也不是全功能集.

例

例将公式p人¬q化成只含下列各联结词集中的联结词的等值的公式。

(1)
$$\{\neg, \lor\}; (2) \{\neg, \to\}; (3) \{\uparrow\}; (4) \{\downarrow\}.$$

解 (1) $p \land \neg q \Leftrightarrow \neg (\neg p \lor q)$.

$$(2) p \land \neg q \Leftrightarrow \neg (\neg p \lor q) \Leftrightarrow \neg (p \rightarrow q).$$

$$(3) p \land \neg q \Leftrightarrow p \land (q \uparrow q) \Leftrightarrow \neg (\neg (p \land (q \uparrow q)))$$
$$\Leftrightarrow \neg (p \uparrow (q \uparrow q)) \Leftrightarrow (p \uparrow (q \uparrow q)) \uparrow (p \uparrow (q \uparrow q)).$$

$$(4) p \land \neg q \Leftrightarrow \neg (\neg p \lor q) \Leftrightarrow (\neg p) \downarrow q \Leftrightarrow (p \downarrow p) \downarrow q.$$

习题

- 1.将公式 $A=(p\rightarrow q) \lor r$ 转换成只含 $\{\neg, \land\}$ 中联结词的公式
- 2.将公式 \mathbf{B} =(¬ \mathbf{p} → \mathbf{q}) \land ¬ \mathbf{r} 转换成只含{¬, \lor }中 联结词的公式
- 3.将公式C=(p ∧ ¬ q) ∨ r转换成只含{¬, →}中 联结词的公式
- 4.将公式D=p → q转换成只含{↑}中联结词的公式

1.6 组合电路

- ■组合电路
- ■逻辑门

与门,或门,非门,与非门,或非门

■ 奎因-莫可拉斯基方法

组合电路

逻辑门: 实现逻辑运算的电子元件.

与门,或门,非门.

组合电路:实现命题公式的由电子元件组成的电路.

$$\frac{x}{y}$$
 $\xrightarrow{x \wedge y}$ $\frac{x}{y}$ \xrightarrow{x} $\frac{x}{y}$ \xrightarrow{x} $\frac{x}{y}$ \xrightarrow{x} 事门

组合电路的例子

 $(x \lor y) \land \neg x$ 的组合电路

第一种画法

第二种画法

例

例 楼梯的灯由上下2个开关控制,要求按动任何一个开关都能打开或关闭灯.试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.

$$F=m_0 \lor m_3=(\neg x \land \neg y) \lor (x \land y)$$

x	y	F(x,y)
0	0	1
0	1	0
1	0	0
1	1	1

.

例(续)

设计组合电路

步骤: 1.构造输入输出表(问题的真值函数),

- 2. 写出主析取范式,
- 3. 化简.

例 当且仅当 x=y=z=1 或 x=y=1且 z=0 时输出1. $F=m_6 \lor m_7 = (x \land y \land \neg z) \lor (x \land y \land z)$ 4个与门,1个或门和一个非门 $F \Leftrightarrow x \land y \qquad - \land$ 与门

最简展开式:包含最少运算的公式

W

奎因-莫可拉斯基方法

- 1. 合并简单合取式生成所有可能出现在最简展开式中的项。
- 2. 确定最简展开式中的项.

例 求下述公式的最简展开式:

$$F = (\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4) \lor (x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3 \land x_4) \lor (x_1 \land x_2 \land x_3 \land \neg x_4)$$

例(续)

解

编号	极小项	角码	标记
1	$x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4$	1110	*
2	$x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4$	1011	*
3	$\neg x_1 \land x_2 \land x_3 \land x_4$	0111	*
4	$x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4$	1010	*
5	$\neg x_1 \land x_2 \land \neg x_3 \land x_4$	0101	*
6	$\neg x_1 \land \neg x_2 \land x_3 \land x_4$	0011	*
7	$\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4$	0001	*

.

例(续)

第一批			第二批			
合并项	项	表示串	标记	合并项	项	表示串
(1,4)	$x_1 \wedge x_3 \wedge \neg x_4$	1–10		(3,5,6,7)	$\neg x_1 \land x_4$	01
(2,4)	$x_1 \wedge \neg x_2 \wedge x_3$	101-				
(2,6)	$ \neg x_2 \land x_3 \land x_4 $	-011				
(3,5)	$ \neg x_1 \land x_2 \land x_4 $	01–1	*			
(3,6)	$ \neg x_1 \wedge x_3 \wedge x_4 $	0–11	*			
(5,7)	$ \neg x_1 \wedge \neg x_3 \wedge x_4 $	0-01	*			
(6,7)	$-x_1 \wedge -x_2 \wedge x_4$	00-1	*			

标记*表示该项已被合并

或

例(续)

项	覆盖	运算符数
$x_1 \land x_3 \land \neg x_4$	(1,4)	3
$x_1 \wedge \neg x_2 \wedge x_3$	(2,4)	3
$-x_2 \wedge x_3 \wedge x_4$	(2,6)	3
$\neg x_1 \land x_4$	(3,5,6,7)	2

选择(1,4), (2,4)和(3,5,6,7), 或者(1,4), (2,6)和(3,5,6,7). 最简展开式为

$$F \Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_4)$$

$$F \Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (\neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_4)$$