80818 Intuitionistic Logic - Exercise Sheet 6

October 7, 2021

- 1. Let X be a locally connected topological space, and consider the standard topological model of **HAS** on the open sets of X.
 - (a) Suppose that $A \in \mathcal{M}_S$ and that $x \in \llbracket \forall n \ n \in A \lor n \notin A \rrbracket$. Show that there is an open neighbourhood U of x and a function $g : \mathbb{N} \to 2$ such that for all n, if g(n) = 1 then $U \subseteq \llbracket n \in A \rrbracket$ and if g(n) = 0 then $U \subseteq \llbracket n \notin A \rrbracket$.
 - (b) Suppose that A, x and U are as above. Show that $U \subseteq [\exists n \, n \in A \lor \forall n \, n \notin A]$. (You may assume **LPO** in the metatheory.)
 - (c) Show that the following formulation of **LPO** holds in the standard topological model of **HAS** on any locally connected topological space.

$$\forall X (\forall x \, x \in X \, \lor \, x \notin X) \, \to \, (\exists x \, x \in X) \, \lor \, (\forall x \, x \notin X)$$

- 2. Let (X, \approx_X) , (Y, \approx_Y) and (Z, \approx_Z) be H-sets on a complete Heyting algebra H.
 - (a) Show that $\approx_X : X \times X \to H$ is a functional relation from X to X.
 - (b) Suppose that F is a functional relation from X to Y and G is a functional relation from Y to Z. Show that we can define a functional relation H from X to Z by $H(x,z) := \bigvee_{y \in Y} F(x,y) \wedge G(y,z)$.
- 3. Let (X, \mathcal{O}_X) be any topological space. Define an H-set (\mathbb{N}, \approx) on the open sets of X by setting $n \approx n = \top$ and $n \approx m = \bot$ for $m \neq n$.
 - (a) Let F be a functional relation from \mathbb{N} to \mathbb{N} . Show that for every $x \in X$ and every $n \in \mathbb{N}$ there exists a unique m such that $x \in F(n, m)$.
 - (b) Show that the function $f: X \to \mathbb{N}^{\mathbb{N}}$ resulting from the construction in (a) is continuous for any functional relation F (where $\mathbb{N}^{\mathbb{N}}$ has the Baire space topology).
 - (c) Given a continuous function $g: X \to \mathbb{N}^{\mathbb{N}}$, show that there is a functional relation G from \mathbb{N} to \mathbb{N} such that applying the construction in (a) to G yields g.