Department of Physiology

Dr. K. Medagoda

- The electrical activity of the heart can be recorded from the body surface
 - ▶ The body fluid contains ions
 - ▶ Therefore it is a volume conductor
- The surface electrodes
 - Records algebraic sum of the electrical fluctuations of the heart muscle fibers
- The record of these potential fluctuations during a cardiac cycle is the ECG

- The surface electrodes are known as ECG leads
- Bipolar lead
 - Both the electrodes are actively recording
- Unipolar lead
 - Active electrode is connected to an indifferent electrode at zero point

- Einthoven's triangle
 - A triangle with a heart at its centre
- Can be simulated by
 - Placing electrodes on the both arms and the left leg

- Einthoven's triangle
 - The sum of the potential at the points of this equilateral triangle is zero

Depolarization moving towards an active electrode records a positive deflection

Depolarization moving <u>away</u> from an active electrode records a <u>negative</u> deflection

- ECG leads
- There are bipolar leads
 - Both leads are actively recording the potential
- Unipolar leads
 - One active lead recording the potential while it is connected to an indifferent electrode at zero potential

- Bipolar leads
 - Standard limb leads records potential difference between two arms
 - Lead I- L I
 - Lead II- L II
 - Lead III- L III

- Unipolar leads (V leads)
- 1. Three Unipolar limb leads
- 2. Six Unipolar chest leads
- Augmented Unipolar limb leads designated by 'a'
 - The three Unipolar limb leads
 - Records between one limb and two other limbs
 - Increases the size of potential by 50% without changing the configuration of the non-augmented lead

- Augmented Unipolar limb leads
 - 1. aVR
 - 2. aVL
 - 3. aVF
- Unipolar chest leads
 - \triangleright V₁ to V₆

- Fixing of ECG leads
- Standard limbs leads (Bipolar limb leads) I, II and III
 - Lead I [left arm(+ve)- right arm(-ve)].
 - Lead II [right arm(-ve)- left leg(+ve)].
 - Lead III [left leg (+ve)- left arm (-ve)].

- Fixing of ECG leads
- Unipolar limb leads
 - aVR [right arm(+ve)] aVL [left arm(+ve)]

 - aVF [left leg(+ve)]

- Fixing of ECG leads
- Unipolar chest leads
 - V₁ 4th intercostal space just to the right of sternum
 - \triangleright V₂ 4th intercostal space just to the left of sternum
 - V_3 halfway between V_2 and V_4
 - V_4 left 5th intercostal space in the mid-claviclular line
 - V_5 on same horizontal line as V_4 in anterior axillary line
 - V_6 on same horizontal line as V_4 in the mid-axillary line

- ECG paper
 - A paper with a grid
 - Has small and large squares
 - ▶ Small square is of 1mm X 1mm size
 - Five small squares make a one large square
 - Horizontal axis records the time scale
 - Vertical axis records the voltage

- Paper Speed of the machine
 - Standard speed is 25mm/s (5 large squares)
 - \blacktriangleright One large square = 1/5=0.2s
 - **One small square**= 0.2/5 = 0.04s
- Calculate the number of large and small squares for a minute
- Voltage
 - Recorded on the vertical axis
 - Standard ECG 1mv is shown by 10mm (two large squares.)

8

ECG wave forms named from letters PQRST

- ECG wave forms named from letters PQRST
- P wave
 - is the first wave in an ECG
 - Produced by atrial depolarization
- Q wave first negative deflection after P
 - Produced by septal depolarization

- R wave
 - First positive wave after P
 - Produced by rest of the ventricular depolarization
 - S wave
 - Negative wave after R
- T wave
 - Produced by part of the ventricular repolarization
- U wave
 - Inconstant finding
 - Due to slow repolarization of papillary muscles

Durations and intervals

- Durations and intervals
- PR interval-0.12-0.22s
 - Beginning of the P to beginning of QRS
 - atrial depolarization and Av node conduction occurs during this time
- QRS duration- 0.08-0.10s
 - Ventricular depolarization
- ST segment and T wave
 - Whole of ventricular repolarization
- Where is the atrial repolarization?

- The configuration of the ECG wave pattern depends on
 - Sequential electrical activity
 - Position of the electrodes relative to the heart

- aVR lead 'looks at' the cavities of the heart
 - All the electrical activities are moving away from the lead except septal depolarization
 - Therefore all the wave forms are negative deflections except septum
 - Results small R

- In right sided Lead V₁ and V₂ there is no Q wave
 - As Septum depolarises from left to right

In left sided leads V_{4} , V_{5} and AVL has a small Q wave due to septal depolarization

- Calculation of the hear rate from the ECG
 - In the ECG paper 1second = 5 large squares
 - ▶ One minute = 300 large squares = 1500 small squares
 - ▶ Hear rate = number of QRS complexes for 1 minute
- Heart rate= 300/ number of large squares between consecutive R waves (R-R interval in large squares)
- Or 1500/ R-R interval in small squares

Cardiac arrhythmias

- Normal cardiac rhythm originates in SA node
- Known as normal sinus rhythm (NSR)
- Rate about =70/minute
- Normal Range =60-100/minute
- Sinus arrhythmia
 - Variation of heart rate during phases of respiration
 - Normal phenomenon -Commonly seen in young
- Heart rate increases in inspiration decreases in expiration

Cardiac arrhythmias

- Sinus bradycardia
 - Heart rate less than 60/minute
- Sinus tachycardia
 - Heart rate more than 100/minute
- List causes for sinus bradycardia and sinus tachycardia

Heart blocks (atrioventricular blocks)

- First degree heart block-I⁰ block
 - The PR interval is longer than 0.22s
 - But all the atrial impulses reach the ventricles

Heart blocks (atrioventricular blocks)

- Second degree heart block- 20 block
 - Some P waves are conducted to the ventricles
 - Some are not conducted
 - Depending on the atrial rate every second (2:1) or every third (3:1) P waves are conducted to the ventricles

2:1 second degree block

Heart blocks (atrioventricular blocks)

- Third degree heart block -3⁰ or Complete heart block
 - Conduction from atria to ventricles is completely interrupted
 - Due to damage to His bundle
 - Ventricles beat at a low rate on their own
 - Ventricles beat independently of the atria- the idioventricular rate

Heart blocks (atrioventricular blocks

- Third degree heart block -3° or Complete heart block
 - Latent ventricular pacemaker has a average rate 0f 35/ minute
 - Resulting cerebral ischaemia causes fainting attacks (syncope) –Strokes-Adams syndrome

- Atrial flutter
 - The atria discharges rapidly
 - The atrial rate is 200-350/minute
 - Node cannot conduct more than 300/minute
 - ▶ Therefore associated with 2:1 or greater AV block

- Atrial flutter
- ECG findings
 - Rapid atrial rate
 - P waves produces a characteristic saw-tooth pattern of flutter waves
 - R waves occur at regular intervals
- The pulse is regular

Atrial flutter

- Atrial fibrillation
 - Atria depolarization occurs at very rapid rate
 - In completely irregular and disorganised fashion
 - Rate 300-500/minute
 - AV node discharges at irregular intervals
 - Ventricles depolarize at completely irregulars rate
 - Ventricular contractions become irregular

- Atrial fibrillation
- ECG findings
 - P waves are not seen-replaced by fine irregular fibrilatory waves
 - R waves occur completely irregularly
- Pulse is irregularly irregular

Atrial fibrillation

Ventricular arrhythmias

- Ventricular tachycardia
 - Series of rapid ventricular depolarizations
 - Ventricular rate is regular
 - Results reduction of cardiac out put

Ventricular arrhythmias

- Ventricular fibrillation
 - A life threatening condition
 - Ventricles depolarise and contract in a totally irregular, disorganised and ineffective way
 - Contracts like a 'Bag of worms'
 - Cardiac output drop to zero
 - Pulse is not palpable
- ECG completely irregular complexes

Ventricular arrhythmias

Ventricular fibrillation

Myocardial infarction

- Acute myocardial infarction
 - Changes are seen in ST segment
 - Results ST elevation
- After some days
 - ST Segment changes subsides and T wave inversion occurs
 - Development of Q wave persists

Myocardial infarction

Metabolic effects

Hyperkalaemia- Rise in K⁺ results tall peaked T waves

Hypokalaemia – Low K⁺ results inverted or flat T waves with Prominent U waves

