

Track Number: AN0007C MXCHIP Co., Ltd

Version: 1.1 2016.7.21

Category: Application Note Open

EMW3165 客户设计注意事项

摘要(Abstract)

本文档列举了客户在使用 MXCHIP 模块设计产品过程中,各个阶段需要注意的事项。请客户先熟悉本文档,提前考虑在设计,生产,烧录固件,测试阶段可能出现的问题并有效规避,以达到快速量产的目的。

获取更多帮助(More Help)

登录上海庆科官方网站: <http://mxchip.com/>, 获取公司最新产品信息。

登录 MiCO 开发者论坛: < http://mico.io/>, 获取更多 MiCO 最新开发资料。

登录 FogCloud 开发者中心: < http://easylink.io/>, 获取更多 FogCloud 云开发文档。

版权声明(Copyright Notice)

未经许可,禁止使用或复制本手册中的全部或任何一部分内容,这尤其适用于商标、机型命名、零件号和图形。

版本记录

日期	版本	更新内容
2016-6-1	V1.0	正式版本
2016-7-21	V1.1	更新文档格式

目录

EN	IW3165	· 客户设计注意事项	1
版	本记录.		1
1.	概述.		4
2.	硬件证	设计注意事项	6
	2.1	机械尺寸	6
	2.2	参考封装设计	6
	2.3	DC 电源设计	7
	2.4	RF 设计	
		2.4.1 PCB 天线设计	9
		2.4.2 外接天线模块的天线接头	
	2.5	ESD 设计	
3.	入库槽	佥测方法	11
	3.1	准备工作	
	3.2	系统连接	
	3.3	入库测试	
		3.3.1 软件设置	12
		3.3.2 模块测试	
		3.3.3 测试结果	
	3.4	重要声明	
4.	SMT	注意事项	
	4.1	开钢网注意事项	
	4.2	回流焊炉温曲线图	
5.	量产源	则试及产品升级	
	5.1	量产测试	17
		5.1.1 半二次开发固件	
		5.1.2 完全二次开发固件	
	5.2	产品升级	17
6.	服务与	5支持	18
		图目录	
	图 1.	1.模块外观图	4
	图 1.	2 硬件框图	5
	图 2.	1 机械尺寸俯视图	6
	图 2.	2 机械尺寸侧视图	6
	图 2.	3 SMT 推荐封装	7

冬	2.4 电源参考设计	8
冬	2.5 PCB 参考设计	8
冬	2.6 PCB 天线最小净空区	9
冬	2.7 外接天线接头尺寸	1(
冬	3.1 开发板开关设置	.11
冬	3.2 超级终端设置图	12
冬	3.3 放置模块	13
冬	3.4 按下手柄	13
冬	3.5 7767,7679	14
冬	4.1 波峰焊过炉方向	15
冬	4.2 二次回流焊炉温曲线	16
	表目录	
表	3.1 入库检测设备清单	.11

1. 概述

本文档列举了客户在使用 MXCHIP 模块设计产品过程中,各个阶段需要注意的事项。请客户先熟悉本文档,提前考虑在设计,生产,烧录固件,测试阶段可能出现的问题并有效规避,以达到快速量产的目的。

适用模块型号:

EMW3165 系列

需要注意的阶段:

- 硬件设计
- 测试固件
- · 产品 SMT 阶段
- 在线升级

模块基本特点:

- · 每个模块都有全球唯一的 MAC ID
- · PCB 板载天线、外部天线和接插件外接天线三种型号
- ▶ 最大顺势电流 320mA@3.3V
- · 模块出厂自带产测模式
- · 模块出厂自带 OTA 模式
- · SMT 时可以二次回流焊接

EMW3165 正面图

图 1.1.模块外观图

EMW3165 型号列表

模块型号	天线类型	说明
EMW3165	PCB 天线	默认
EMW3165-E	IPEX 连接天线	可选
EMW3165-B	天线贴盘	可选

硬件原理框图

图 1.2 硬件框图

2. 硬件设计注意事项

2.1 机械尺寸

EMW3165 机械尺寸图 (单位: mm)

图 2.1 机械尺寸俯视图

图 2.2 机械尺寸侧视图

2.2 参考封装设计

阻焊层开窗应与焊盘大小一致。详见图 2.3 (单位: mm)

图 2.3 SMT 推荐封装

2.3 DC 电源设计

模块峰值电流为320mA 左右, MXCHIP 推荐使用最大输出电流为600mA 以上的 DC/DC 电源芯片。

在电源设计中除了输出电压(3.3V)和最大输出电流(600mA)外,还要特别注意布线方式。请参考 DC/DC 芯片的技术手册进行 DC/DC 供电部分的设计。

由于 LDO 在电源转换过程中的效率比较低,所以不推荐使用。

由于模块上电瞬间有较大的峰值电流,所以建议布板时将各个模组的电源和 GND 分割开。

DC 电源部分的硬件设计请参考图 2.4 和图 2.5。

图 2.4 电源参考设计

图 2.5 PCB 参考设计

2.4 RF 设计

2.4.1 PCB 天线设计

在 WIFI 模块上使用 PCB 天线时,需要确保主板 PCB 和其它金属器件距离至少 15mm 以上。下图中阴影部分标示区域需要禁止铺铜,远离金属器件、传感器、干扰源以及其它可能造成信号干扰的材料。模块 PCB 天线底部,即红色虚框的底部位置,建议镂空。

图 2.6 PCB 天线最小净空区

2.4.2 外接天线模块的天线接头

下图是模块上外接天线接头的尺寸,选择天线的接头时要和供应商确认接头是否吻合。

图 2.7 外接天线接头尺寸

2.5 ESD 设计

模块 ESD 等级:人体模型 (HBM)为 2000V,器件模型 (CDM)为 500V,如果产品有更高的 ESD 要求,就要特别注意,所有可能与外界接触的引脚,如连接到 USB 座、SD 卡槽等这些接插件的,都要预留 ESD 保护器件的位置。

如果模块不是直接焊接或插到板子上,而是通过外拉引线来工作,就要注意 EMI 问题,最好用屏蔽 线连接,或者板上预留共模扼流圈的位置。

3. 入库检测方法

3.1 准备工作

表 3.1 入库检测设备清单

设备	数量
PC 电脑	1 (台)
烧录模块的治具	1 (台)
EMW3165 开发底板	1 (块)

设备清单如表 2.1, 另外还需要应用软件和固件。

PC 安装 FT230XS 驱动程序,下载链接:

http://www.ftdichip.com/Drivers/VCP.htm

EMWE-3165-A V1.0 开发板下端的两个拨动开关拨至 "L"方向, EMWE-3165-A V1.0 开发板左侧的滑动开关拨至开发板上方,详见图 3.1。

图 3.1 开发板开关设置

3.2 系统连接

治具通过排针(2*20,2.0mm)与 EMWE-3165-A V1.0 开发板链接, EMWE-3165-A V1.0 开发板通过 USB Mini 型连接线与 PC 电脑链接。此时 EMWE-3165-A V1.0 开发板上的红灯会亮起。

3.3 入库测试

3.3.1 软件设置

使用"超级终端"软件测试模块。

串口号在设备管理器中确认。其他设置参见下图。

图 3.2 超级终端设置图

3.3.2 模块测试

点击"超级终端"中的拨号按钮后,将开发板和电脑的串口连接。

将模块放置在治具中,如下图所示。

图 3.3 放置模块

将治具红色手边按下。

图 3.4 按下手柄

当显示"Succeed···请换模块"则烧录完成,即可更换模块,计时器也会计时。

3.3.3 测试结果

测试加过将在超级终端窗口中显示,包括: Bootloader 版本、库版本、应用版本、驱动版本、MAC 地址、热点名称及信号强度,如下图:

图 3.5 烧录完成

一般在 2-5 米范围内是热点对应的强度为 0~-70。

3.4 重要声明

MXCHIP有义务保证每批次交给客户的模块没有质量问题。

如果客户在抽检中发现模块有问题,有权利要求 MXCHIP 及时换货。

如果客户没有做入库检测,导致模块焊接到底板上后才发现问题,MXCHIP只负责赔偿模块部分。

MXCHIP 有义务帮助客户在固件开发中解决各种技术问题,但不会保留使用任何客户的 MVA/bin 档。客户有义务将固件开发中的各个固件版本记录下来,并在最终生产前按需求烧录对应固件版本。

4. SMT 注意事项

4.1 开钢网注意事项

建议钢网厚度: 0.12mm(0.1~0.15mm), 激光打磨开孔。建议锡膏: 无铅锡膏 SAC305。

下图为模块建议钢网尺寸图,焊盘开孔向外延伸 0.15mm, 能增强爬锡能力; 如果 SMT 线没有 AOI 检测,通过肉眼也能检查模块是否放正,降低虚焊的风险。设计 PCB 时建议助焊层按此设计:

图 4.1 波峰焊过炉方向

4.2 回流焊炉温曲线图

下图为建议回流焊炉温曲线图,按此温度曲线图控制炉温能够降低虚焊的风险。

回流焊次数≤2 次

峰值温度: <250 C

图 4.2 二次回流焊炉温曲线

5. 量产测试及产品升级

客户在开发程序时,除了要考虑产品功能,还需要考虑产品在量产时如何做测试以及今后如何方便的 在已有产品上升级固件。

5.1 量产测试

避免在PCB主板安装进整机后才发现问题。

5.1.1 半二次开发固件

模块和客户的 MCU 通过串口连接,模块的固件二次开发时,可以直接将测试命令加入到模块的固件中,比如,通过串口发送指定的测试命令后,模块扫描周围的热点 并通过串口将结果返回。可以同时测试模块的串口和射频功能,触发方式同。

5.1.2 完全二次开发固件

客户的应用完全基于模块二次开发

这种模式下,测试方法比较灵活。可以设置一个测试模式,专门用于测试模块的各项功能;可以将模块固件中的默认配置设置为测试专用的路由器,只要模块一上电就自动连接该路由器。具体的测试内容由客户的应用决定。

5.2 产品升级

推荐通过 OTA 方式升级。OTA OVER THE AIR,是一种无线升级的方式。

mxchipWNetTM 支持这种升级方式,并提供详细的例程供客户参考。

客户在固件中加入该功能后可以通过 OTA 远程控制模块升级至最新的固件。

6. 服务与支持

如需技术支持或产品咨询,请在办公时间拨打电话咨询上海庆科信息技术有限公司。

办公时间:

星期一至星期五 上午: 9:00~12:00, 下午: 13:00~18:00

网址 : http://mxchip.com/

联系电话: +86-21-52655026

联系地址:上海市普陀区金沙江路 2145 弄 5 号楼 9 楼

邮编 : 200333

Email : sales@mxchip.com