Hoja 1

Matrices

Problema 1.1 Dadas las siguientes matrices:

$$A = \begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix}; \quad B = \begin{pmatrix} 4 & -2 & 1 \\ 0 & 2 & 3 \end{pmatrix}; \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix};$$

$$D = \begin{pmatrix} 0 & -3 \\ -2 & 1 \end{pmatrix}; \qquad E = \begin{pmatrix} 4 & 2 \end{pmatrix}; \qquad F = \begin{pmatrix} -1 \\ 2 \end{pmatrix};$$

realizar, si es posible, las siguientes operaciones:

- 1. 3D 2A.
- 2. $B C^t$.
- 3. D + B C.
- 4. B^t B.
- 5. EAF.
- 6. $B^t C^t (C B)^t$.

Problema 1.2 Obtener la inversa de las siguientes matrices:

a)
$$A = \begin{pmatrix} 4 & 5 & 1 \\ 5 & 1 & 0 \\ -4 & 0 & 0 \end{pmatrix}$$
; b) $B = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & 5 & -1 \end{pmatrix}$.

Problema 1.3 Sea la matriz

$$A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 8 \end{array}\right)$$

y supongamos que

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

es su inversa. Determinar B resolviendo el sistema A $B=I_2$.

Problema 1.4 Si

$$A = \left(\begin{array}{cc} 1 & 4 \\ -3 & 1 \end{array}\right),$$

comprobar que $A^2 - 2A + 13I_2 = 0$ y utilizar esta expresión para deducir el valor de A^{-1} .

Problema 1.5 Si A es idempotente, probar que B = I - A también lo es.

Problema 1.6 Probar que si A y B son matrices ortogonales (es decir, que $A^{-1} = A^{t}$ y $B^{-1} = B^{t}$) y el producto AB existe, entonces A B es también ortogonal.

Problema 1.7 Mostrar con un ejemplo que A B = C B no implica que A = C. ¿En qué caso sí se verifica necesariamente?

Problema 1.8 Sea A una matriz $n \times 1$ (vector columna) tal que $A^t A = 1$. Construimos las matrices $B = I_n - A A^t y C = I_n - 2 A A^t$. Probar que B es idempotente y que $C^2 = I_n$.

Problema 1.9 Demostrar que si A es una matriz cuadrada ortogonal, entonces $det(A) = \pm 1$. Encontrar una matriz 2×2 que muestre que el resultado inverso no es cierto.

 $\textbf{Problema 1.10} \ \ Probar \ que \ si \ A \in \mathbb{K}^{m \times n} \ y \ B \in \mathbb{K}^{n \times m} \text{, entonces } tr(A \ B) = tr(B \ A).$

Problema 1.11 Si

$$A = \left(\begin{array}{ccc} 1 & -1 & 2 \\ x & 0 & 1 \\ 2 & x & -2 \end{array}\right),$$

calcular los valores reales del parámetro x para los que A no tiene inversa.