Query Optimization in Relational Database Systems

It is safer to accept any chance that offers itself, and extemporize a procedure to fit it, than to get a good plan matured, and wait for a chance of using it.

Thomas Hardy (1874) in *Far from the Madding Crowd*

Query Optimization

- Since each relational op returns a relation, ops can be *composed*!
- Queries that require multiple ops to be composed may be composed in different ways thus *optimization* is necessary for good performance, e.g. A ⋈ B ⋈ C ⋈ D can be evaluated as follows:
 - (((A ⋈ B) ⋈ C) ⋈ D)
 - ((A ⋈ B) ⋈ (C ⋈ D))
 - ((B ⋈ A) ⋈ (D ⋈ C))

•

Query Optimization

 Each strategy can be represented as a query evaluation plan (QEP) - Tree of R.A. ops, with choice of algorithms for each op.

 Goal of optimization: To find the "best" plan that compute the same answer (to avoid "bad" plans)

Motivating Examples

Sailors (*sid*: integer, *sname*: string, *rating*: integer, *age*: real) Reserves (*sid*: integer, *bid*: integer, *day*: dates, *rname*: string)

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5

Example

Logical plans

SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5

- Cost: 500 + 500*1000 I/Os
- Memory: 1 for R

 1 for S
 1 for output

Example (Cont)

Query Evaluation Plan:

Physical plan

Alternative Plan 1 (No Indexes)

- Main difference: push selections down
- Assume 5 buffers, T1 = 10 pages (100 boats, uniform distribution), T2 = 250 pages (10 ratings, uniform distribution)
- Cost of plan:
 - Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution)
 - Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings)
 - Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
 - Total: 4060 page I/Os

Alternative Plan 2 (With Indexes)

- Clustered index on bid of Reserves
 - 100,000/100 = 1000 tuples on 1000/100 = 100 pages
- Hash index on sid (format 2). Join column sid is a key for Sailors
- INL with <u>pipelining</u> (outer is not materialized)
 - Project out unnecessary fields from outer doesn't help
- At most one matching tuple, unclustered index on sid OK
- Did not push "rating>5" before the join. Why?
- Cost?
 - Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*2.2); total 2210 I/Os

Query Optimization: Find Optimal Plan From A Set of QEPs

Relational Algebra Equivalences

What about $\sigma_{p1\vee p2\ldots \vee pn}(R)$?

- ▶ Cascading of selections: $\sigma_{p_1 \wedge p_2 \wedge \cdots \wedge p_n}(R) \equiv \sigma_{p_1}(\sigma_{p_2}(\cdots(\sigma_{p_n}(R))\cdots))$
- ▶ Commutativity of selections: $\sigma_{p_1}(\sigma_{p_2}(R)) \equiv \sigma_{p_2}(\sigma_{p_1}(R))$
- ▶ Cascading of projections: $\pi_{L_1}(R) \equiv \pi_{L_1}(\pi_{L_2}(\cdots(\pi_{L_n}(R))\cdots))$, where $L_i \subseteq L_{i+1}$ for $i \in [1, n)$
- ▶ Commutativity of cross-products: $R \times S \equiv S \times R$
- ▶ Associativity of cross-products: $R \times (S \times T) \equiv (R \times S) \times T$
- ▶ Commutativity of joins: $R \bowtie S \equiv S \bowtie R$
- ▶ Associativity of joins: $R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$
- ▶ Others: $R \cup S = S \cup R$, $R \cap S = S \cap R$, $R \cup (S \cup T) = (R \cup S) \cup T$, $R \cap (S \cap T) = (R \cap S) \cap T$, etc.

Relational Algebra Equivalences

- \blacktriangleright $\pi_L(\sigma_p(R)) \equiv \sigma_p(\pi_L(R))$ if σ involves only attributes retained by π
- $R \bowtie_p S \equiv \sigma_p(R \times S)$
- $\sigma_p(R \times S) \equiv \sigma_p(R) \times S$ if σ refers to attributes only in R but not in S
- $\sigma_p(R \bowtie S) \equiv \sigma_p(R) \bowtie S$ if σ refers to attributes only in R but not in S
- $\pi_L(R \times S) \equiv \pi_{L_1}(R) \times \pi_{L_2}(S) \text{ if } L_1 = L \cap attr(R) \& L_2 = L \cap attr(S)$
- ▶ $\pi_L(R \bowtie_p S) \equiv \pi_{L_1}(R) \bowtie_p \pi_{L_2}(S)$ if $L_1 = L \cap attr(R)$, $L_2 = L \cap attr(S)$, & every attribute in p also appears in L
- ▶ Others: $\sigma_p(R \cup S) = \sigma_p(S) \cup \sigma_p(R)$, etc.

Example

 $\sigma_p(R \bowtie S) \equiv \sigma_p(R) \bowtie S$ if σ refers to attributes only in R but not in S

Bags vs. Sets

$$R = \{a,a,b,b,b,c\}$$

$$S = \{b,b,c,c,d\}$$

$$R \cup S = ?$$

- SUM is implemented: $R \cup S = \{a,a,b,b,b,b,c,c,c,d\}$
- Some rules cannot be used for bags
 - e.g. $A \cap_s (B \cup_s C) = (A \cap_s B) \cup_s (A \cap_s C)$

```
Let A, B and C be \{x\}
B \cup_B C = \{x, x\} \qquad A \cap_B (B \cup_B C) = \{x\}
A \cap_B B = \{x\} \qquad A \cap_B C = \{x\} \qquad (A \cap_B B) \cup_B (A \cap_B C) = \{x, x\}
```

Query Optimizer

- Find the "best" plan (more often avoid the bad plans)
- Comprises the following
 - Plan space
 - huge number of alternative, semantically equivalent plans
 - computationally expensive to examine all
 - Conventional wisdom: avoid bad plans
 - need to include plans that have low cost
 - Enumeration algorithm (Search space)
 - search strategy (optimization algorithm) that searches through the plan space
 - has to be efficient (low optimization overhead)
 - Cost model
 - facilitate comparisons of alternative plans
 - has to be "accurate"

Join Plan Notation

Plan Space

- Left-deep trees: right child has to be a base table
- Right-deep trees: left child has to be a base table
- Deep trees: one of the two children is a base table
- Bushy tree: unrestricted

Query Plan Space for R S T

This has not accounted for the algorithms!

Search Algorithms (and Search Space)

- Exhaustive (Complete space)
 - enumerate each possible plan, and pick the best
- Greedy Techniques (Very small polynomial)
 - smallest relation next
 - smallest result next
 - typically polynomial time complexity
- Randomized/Transformation Techniques (Large space can be complete if you run the algorithms indefinitely)
- System R approach (Almost complete)
 - Dynamic Programming with Pruning

Multi-Join Queries

- Focus on multi-join queries first
 - Join is the most expensive operations
 - Selections and projections can be pushed down as early as possible
- Query
 - A query graph whose nodes are relations and edges represent a join condition between the two nodes

Greedy Algorithm (Example)

• Heuristic 1: Smallest relation next

• Suppose $R_i < R_k$ for i < k

All plans must begin with R₁

Join Graph

All plans beginning with R_2 - R_5 have been pruned!

Greedy Algorithm (Example)

- Smallest relation next
 - What if R1 < R5 < R3 < R2 < R4???

Another heuristic: Smallest result next?

Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality i are constructed as extensions of the best plan for a set of cardinality i-1
 - For each set of cardinality i, we only keep ONE best plan

Dynamic Programming (Cont)

Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality i are constructed as extensions of the best plan for a set of cardinality i-1
 - Keep only ONE best plan for each set of cardinality i
- Search space can be pruned based on the principal of optimality
 - if two plans differ only in a subplan, then the plan with the better subplan is also the better plan

Principle of Optimality

Dynamic Programming (Left-Deep Trees) (System R)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations
 - Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
 - Plans for a set of cardinality i are constructed as extensions of the best plan for a set of cardinality i-1
 - Keep only ONE best plan for each set of cardinality i
- Search space can be pruned based on the principal of optimality
 - if two plans differ only in a subplan, then the plan with the better subplan is also the better plan
- Computation overhead reduced due to overlapping subproblems
 - Multiple sets of cardinality i uses same set at ardinality (i-1)

Dynamic Programming (Left-Deep Trees)

- accessPlan(R) produces the best plan for relation (single table) R
- joinPlan(p1,R) extends the (partial) join plan p1 into another plan p2 in which the result of p1 is joined with R in the best possible way
 - p1 = R1 JOIN R2 JOIN R3
 - p2 = joinPlan(p1, R) = (R1 JOIN R2 JOIN R3) JOIN R4
- Optimal plans for subsets are stored in optplan() array and are reused rather than recomputed

Dynamic Programming (Cont)

```
for i = 1 to N
    optPlan({Ri}) = accessPlan(Ri)
for i = 2 to N {
    forall S subset of {R<sub>1</sub>, R<sub>2</sub>, ... R<sub>n</sub>} such that |S|=i {
             bestPlan = dummy plan with infinite cost
             forall Rj, Sj, |Sj| = i-1 such that S = \{Rj\} \cup Sj \{
                        p = joinPlan(optPlan(Si), Ri)
                        if cost(p) < cost(bestPlan)</pre>
                                                                                   {2}
                                                                                          {3}
                                                                          {1}
                             bestPlan = p
             optPlan(S) = bestPlan
                                                                              {1 2 4}
                                                                                        {2 3 4}
                                                                      {1 2 3}
                                                                                                  \{1 \ 3 \ 4\}
P_{ont} = optPlan\{R_1, R_2, ..., R_n\}
                                                                                   \{1 \ 2 \ 3
```

Dynamic Programming: A Concrete Example

- Schema: R(A,B,C,D), S(X,Y), T(E,F,G)
- Query:

```
select * from R join S on R.A = S.X join T on R.D = T.F where R.B > 10 and R.C = 20 and T.E < 100
```

- Available B⁺-tree indexes: I_B, I_C, I_E
- Assumptions on database system
 - Supports only one join algorithm: hash join
 - Avoids cartesian products

```
\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), p = (R.B > 10) \land (R.C = 20) \land (T.E < 100)
```

Enumeration of Single-relation Plans

$$\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), p = (R.B > 10) \land (R.C = 20) \land (T.E < 100)$$

▶ Plans for {R}

- Plan P1: Table scan with "(B > 10) ∧ (C = 20)"
- Plan P2: Index seek with IB & RID-lookups with "C = 20"
- Plan P3: Index seek with I_C & RID-lookups with "B > 10"
- Plan P4: Index intersection with I_B & I_C, and RID-lookups
- ▶ Assume cost(P3) < cost(P4) < cost(P2) < cost(P1)</p>
- ▶ optPlan({R}) = P3

Plans for {S}

- Plan P5: Table scan of S
- ▶ optPlan({S}) = P5

Plans for {T}

- ▶ Plan P6: Table scan of T with "(E < 100)"</p>
- ▶ Plan P7: Index seek with I_E & RID-lookups
- Assume cost(P7) < cost(P6)
- ▶ optPlan({ T}) = P7

Enumeration of Two-Relation Plans

$$\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), p = (R.B > 10) \land (R.C = 20) \land (T.E < 100)$$

▶ Plans for {R,S}

- Assume cost(P8) < cost(P9)
- optPlan($\{R,S\}$) = P8

▶ Plans for {R,T}

- Assume cost(P11) < cost(P10)
- ▶ optPlan({R, T}) = P11

Enumeration of Three-Relation Plans

$$\sigma_p(R \bowtie_{R.A=S.X} S \bowtie_{R.D=T.F} T), p = (R.B > 10) \land (R.C = 20) \land (T.E < 100)$$

- Assume cost(P12) < cost(P13)
- ▶ optPlan({R, S, T}) = P12

Optimal Plan

Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k 1$ entries!
 - For bushy trees, $O(3^k)$
- Is DP (as presented) optimal?

Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k 1$ entries!
 - For bushy trees, $O(3^k)$
- Is DP optimal?
- DP may maintain multiple plans per subset of relations
 - Interesting orders

Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k 1$ entries!
 - For bushy trees, $O(3^k)$
- Is DP optimal?
- DP may maintain multiple plans per subset of relations
 - Interesting orders
- Is DP with interesting orders optimal?

Randomized Techniques

- Employ randomized/transformation techniques for query optimization
- State space -- space of plans, State -- plan
- Each state has a cost associated with it
 - determined by some cost model
- A move is a perturbation applied to a state to get to another state
 - a move set is the set of moves available to go from one state to another
 - any one move is chosen from this move set randomly
 - each move set has a probability associated to indicate the probability of selecting the move
- Two states are neighboring states if one move suffices to go from one state to the other

Randomized Algorithm (Example)

More on Randomized Techniques

- A local minimum in the state space is a state such that its cost is lower than that of all neighboring states
- A global minimum is a state which has the lowest cost among all local minima
 - at most one global minimum
- A move that takes one state to another state with a lower cost is called a downward move; otherwise it is an upward move
 - in a local/global minimum, all moves are upward moves

Local Optimization

```
Repeat until
                          S = initialize() // initial plan
a near-optimal
minimum
                          minS = S // cost of plan S – currently the best
Is reached
                          repeat {
                              repeat {
        By doing so
                                 newS = move(S) // move to a new plan
        repeatedly,
                                 if (cost(newS) < cost(S))
                                                                A move is accepted if it is a
        a local minimum
                                                                  downward move, i.e., has
                                    S = newS
        can
                                                                  a lower cost
        be reached
                              } until ("local minimum reached")
                              if (cost(S) < cost(minS))</pre>
                                 minS = S
                              newStart(S); // iterate with a different initial plan
                          } until ("stopping condition satisfied")
                          return (minS);
```

Issues on Local Optimization

- How is the start state obtained?
 - The state in which we start a run
 - The start state of the first run is the initial state
 - All start states should be different
 - Should be obtained quickly
 - Random
 - greedy heuristics
 - making a number of moves from the local minimum, except that this time each move is accepted irrespective of whether it increases or decreases the cost
- How is the local minimum detected?
- How is the stopping criterion detected?

Run: sequence of moves to a local minimum from the start state

Issues on Local Optimization (Cont)

- How is the local minimum detected?
 - Not practical to examine all neighbors to verify that one has reached a local minimum
 - Based on random sampling
 - examine a sufficiently large number of neighbors
 - if any one is lower, we move to that state, and repeat the process
 - if no tested neighbor is of lower cost, the current state can be considered a local minimum
 - the number of neighbors to examine can be specified as a parameter, and is called the sequence length
 - Can also be me-based

Issues in Local Optimization (Cont)

- How is the stopping criterion detected?
 - Determines the number of times that the outer loop is executed
 - Can be fixed and is given by sizeFactor*N, where sizeFactor is a parameter, N is the number of relations
 - Why N? Can it be a constant?

What about the MOVEs? Transformation Rules

- Restricted to left-deep trees
 - all possible permutations of the N relations
 - let S be the current state, S = (... i ... j ... k ...)
 - swap
 - select two relations, say i and j at random. Swapped i and j to get the new state newS = (... j ... i ... k ...)
 - 3Cycle
 - select three relations, say i and j and k at random. The move consists of cycling i, j and k: i is moved to the position of j, j is moved to the position of k and k is moved to the position of i. The resultant new state newS = (... k ... i ... j ...)
- Other methods (e.g., join methods)? Bushy trees?

sometimes there is a need to accept a upward plans - to jump out of the current local minimum

Comparison between Exhaustive, Greedy and Randomized Algorithms

- Search space
- Plan quality
- Optimization overhead

Cost Models

- Typically, a combination of CPU and I/O costs
- Objective is to be able to rank plans
 - exact value is not necessary
- Relies on
 - statistics on relations and indexes
 - formulas to estimate CPU and I/O cost
 - formulas to estimate selectivities of operators and intermediate results

Cost Estimation

- For each plan considered, must estimate cost:
 - Must estimate cost of each operation in plan tree
 - Depends on input cardinalities
 - Depends on buffer size, availability of indexes, algorithms used, etc.
 - We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
 - Must estimate size of result for each operation in tree!
 - Use information about the input relations
 - Typical assumptions like uniform distribution of data and independence of predicates can simplify size estimation but is error prone

Statistics and Catalogs

- Need information about the relations and indexes involved Catalogs typically contain at least:
 - # tuples of R (||R||), #bytes in each R tuple (S(R))
 - # blocks/pages to hold all R tuples (|R|)
 - # distinct values in R for attribute A (V(R,A))
 - NPages for each index
 - Index height, low/high key values (Low/High) for each tree index
- Catalogs updated periodically
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok

Estimation Assumptions

- Uniformity assumption
 - Uniform distribution of attribute values
- Independence assumption
 - Independent distribution of values in different attributes
- Inclusion assumption
 - For $R \bowtie_{R.A=S.B} S$, if $V(R, A) \leq V(R, B)$, then $\pi_A(R) \subseteq \pi_B(S)$
 - V(R, A) is the number of distinct values of R.A

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte string

D: 5 byte string

$$||R|| = 5$$
 $S(R) = 37$
 $V(R,A) = 3$ $V(R,C) = 5$
 $V(R,B) = 1$ $V(R,D) = 4$

Size estimate for $W = \sigma_{Z=val}(R)$

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$||\mathbf{W}|| = \frac{||\mathbf{R}||}{V(\mathsf{R,Z})}$$

$$S(W) = S(R)$$

Assumption:

Values in select expression Z = val are *uniformly* distributed over possible V(R,Z) values

Alternative assumption: use DOM(R,Z)

What about $W = \sigma_{z \ge val}(R)$?

Solution: Estimate values in range

R
$$Z$$

$$Min=1 \quad V(R,Z)=10$$

$$\downarrow \quad W=\sigma_{z \geq 15}(R)$$

$$Max=20$$

f (fraction of range) =
$$\frac{20-15+1}{20-1+1} = \frac{6}{20}$$
 ||W|| = f × ||R||

Alternative: (Max(Z)-value)/(Max(Z)-Min(Z))

$W = R1 \bowtie R2$

Assumption:

 $V(R1,A) \le V(R2,A) \Rightarrow \text{Every A value in } R1 \text{ is in } R2$ $V(R2,A) \le V(R1,A) \Rightarrow \text{Every A value in } R2 \text{ is in } R1$

"containment of value sets"

Computing T(W) when $V(R1,A) \leq V(R2,A)$

1 tuple of R1 matches with $\frac{||R2||}{V(R2,A)}$ tuples of R2

so
$$||W|| = ||R1|| \times \frac{||R2||}{V(R2,A)}$$

If
$$V(R2,A) \le V(R1,A)$$
 $||W|| = \frac{||R2|| \times ||R1||}{V(R1,A)}$

For complex expressions, need intermediate T,S,V results

E.g.
$$W = [\sigma_{A=a}(R1)] \bowtie R2$$

Treat as relation U

$$||U|| = ||R1||/V(R1,A)$$
 $S(U) = S(R1)$

Also need V (U, *)!!

Example

\mathbf{D}	1
$\boldsymbol{\Gamma}$	J

Α	В	U	Δ
cat	1	10	10
cat	1	20	20
dog	1	30	10
dog	1	40	30
bat	1	50	10

$$V(R1,A)=3$$

$$V(R1,B)=1$$

$$V(R1,C)=5$$

$$V(R1,D)=3$$

$$U = \sigma_{A=a}(R1)$$

$$V(U,A) = ? | V(U, B) = ? |$$

this is 1 since selecting 1 of the distinct value

1 since only 1 distinct value

$$V(U,C) = ? \frac{||R1||}{V(R1,A)}$$

will be the number of tuples in the result since all values are distinct

V(D,U) ... somewhere in between V(U,B) and V(U,C)

For Joins $U = R1(A,B) \bowtie R2(A,C)$

$$V(U,A) = min \{ V(R1, A), V(R2, A) \}$$

 $V(U,B) = V(R1, B)$
 $V(U,C) = V(R2, C)$

(Assumption: Preservation of value sets)

problem would be when U is smaller than all the other tables

Example

$$Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)$$

$$R1 | ||R1|| = 1000 V(R1,A)=50 V(R1,B)=100$$

R2
$$||R2|| = 2000 \text{ V(R2,B)} = 200 \text{ V(R2,C)} = 300$$

$$|R3|$$
 $|R3|$ = 3000 V(R3,C)=90 V(R3,D)=500

$$Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)$$

$$||R1|| = 1000 \text{ V(R1,A)} = 50 \text{ V(R1,B)} = 100$$

$$||R2|| = 2000 \text{ V(R2,B)} = 200 \text{ V(R2,C)} = 300$$

$$||R3|| = 3000 \text{ V(R3,C)} = 90 \text{ V(R3,D)} = 500$$

Partial Result:
$$U = R1 \triangleright \triangleleft R2$$

$$||U|| = 1000 \times 2000$$

$$V(U,A) = 50$$

$$V(U,B) = 100$$

$$V(U,C) = 300$$

$$Z = U \bowtie R3$$

$$||Z|| = 1000 \times 2000 \times 3000$$

$$200 \times 300$$

$$V(Z,A) = 50$$

$$V(Z,B) = 100$$

$$V(Z,C) = 90$$

$$V(Z,D) = 500$$

Errors in Estimating Size of Plan

Errors

 source include uniformity assumption, and inability to capture correlation, accuracy of cost model, statistics, etc.

 propagated to other operators at the higher level of the plan tree

Dealing with errors

- Maintain more detailed statistics (at finer granularity)
- During runtime, may need to sample the actual intermediate results
 - gynamic query optimization

Statistical Summaries of Data

- More detailed information are sometimes stored e.g., histograms of the values in some attributes
 - a histogram divides the values on a column into k buckets
 - k is predetermined or computed based on space allocation
 - several choices for "bucketization" of values
 - If a table has n records, an equi-depth histogram divides the set of values on a column into k ranges such that each range has approximately the same number of records, i.e., n/k
 - Equi-width histogram each bucket has (almost) equal number of values
 - Witihin each bucket, records are uniformly distributed across the range of the bucket
 - Frequently occurring values may be placed in singleton buckets

Histograms

Estimations with Histograms

Query Q: $\sigma_{A=6}(R)$

Actual value, ||Q|| = 3Without histogram, ||Q|| = 45/15 = 3Equiwidth histogram, ||Q|| = 15/3 = 5Equidepth histogram, ||Q|| = 14/4 = 3.5

Query Q:
$$\sigma_{A=10}(R)$$

Actual value, ||Q|| = 0Without histogram, ||Q|| = 45/15 = 3Equiwidth histogram, ||Q|| = 1Equidepth histogram, ||Q|| = 1.75

Summary

- Query optimization is NP-hard
- Instead of finding the best, the objective is largely to avoid the bad plans
- Many different optimization strategies have been proposed
 - greedy heuristics are fast but may generate plans that are far from optimal
 - dynamic programming is effective at the expense of high optimization overhead