

Validation of a RANS Solver for the TUDa-GLR-Open-Stage

Dongming Cao¹, Dingxi Wang^{1,2}

¹Northwestern Polytechnical University, Xi'an, Shaanxi, China, 710072 ²Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engines, China, 710129 2021/12/15

Content

- > Computational domain and mesh configurations
- > Solver introduction
- CFD setup and overall performance
- Radial profiles
- Unsteady flow behaviors

Computational domain and mesh configurations

First cell width: 5e-6m, with wall function used

Grid level	Coarse	Medium	Fine
Rotor	608872	1229652	2440380
Stator	291153	574209	1168873
Strut	929945	1838781	3627617
Full-annulus	~30million	~60million	~120million

Meridional view and b2b view of the medium grid

Solver introduction

Turbostream:

multi-block structured grids Spalart-Allmaras turbulence model

spatial discretization:

- (1) Convective fluxes: take the average of the flow variables at the corner points of the cell face.
- (2) Diffusive fluxes: evaluate the derivatives of velocity and temperature at the center of the cell using Gauss's theorem, and then average the cell values on either side of a cell face to get the face value.
- (3) Artificial dissipation: a blend of second and fourth order.

Steady-state: explicit time-stepping, mixing plane.

Time-accurate: dual time-stepping, sliding plane.

CFD setup

- 1. Inlet total pressure profiles are normalized by the total pressure at ME03
- 2. Average over different operating points
- 3. Multiply the total pressure at the ISO condition

► Inlet total pressure profile

- Correct the rotating speed at different operating points
- 2. Average over different operating points

CFD setup

Constant total temperature,
Total pressure profile,
Axial flow direction.

100(~156) physical time steps per rotor passing period at 100%(65%) of the design speed, Physical time step: 1.8750e-06s

Overall performance

The performance is calculated based on the area-averaged data at ME15 and ME30.

Flow angle(alpha) and total pressure ratio at ME21(rotor outlet).

Unsteady results(65% speed)

Rotating instability(65% speed)

Rotating stall(65% speed, stable)

Rotating stall(65% speed, stable)

Rotating stall(100% speed, unstable)

Rotating stall(100% speed, unstable)

Dongming Cao

Conclusion

- 1. Calculated radial profiles of total pressure ratio, total temperature ratio and flow angle at a near choke and a near stall point match the test data well at both 65% and 100% of the design speed.
- 2. Total pressure ratio, efficiency and stall margin calculated from unsteady analyses at both 65% and 100% of the design speed match the test data well.
- 3. Unsteady flows at near stall conditions at 65% and 100% of the design speed are analyzed, with rotating stalls being found.

Thanks for your attention!