

FAST ION MASS SPECTROMETRY AND CHARGED PARTICLE  
SPECTROGRAPHY INVESTIGATIONS OF TRANSVERSE ION ACCELERATION AND  
BEAM-PLASMA INTERACTIONS

by

W. C. Gibson  
W. M. Tomlinson  
J. A. Marshall

FINAL REPORT  
SwRI Project No. 15-7435  
NASA Contract No. NAS5-27430

Prepared for

NASA Goddard Space Flight Center  
Wallops Flight Facility  
Wallops Island, VA

January 1987

Approved:

  
\_\_\_\_\_  
James L. Burch, Vice President  
Instrumentation and Space Research

(NASA-CR-168348) FAST ION MASS SPECTROMETRY  
AND CHARGED PARTICLE SPECTROGRAPHY  
INVESTIGATIONS OF TRANSVERSE ION  
ACCELERATION AND BEAM-PLASMA INTERACTIONS  
Final Report (Southwest Research Inst.)

N87-22817

Unclassified  
G3/25 0071334

## TABLE OF CONTENTS

|                                             | <u>PAGE</u> |
|---------------------------------------------|-------------|
| 1. SCIENCE OBJECTIVES                       | 1           |
| 2. INSTRUMENT DESCRIPTION                   | 2           |
| 2.1 The Analyzers                           | 2           |
| 2.2 Power Supplies                          | 2           |
| 2.3 Central Electronics Package             | 7           |
| 2.3.1 Central Processing Unit               | 7           |
| 2.3.2 Control and Data Memory               | 21          |
| 2.3.3 Program Power Supply (PPS) Interfaces | 21          |
| 2.3.4 Detector Interface                    | 30          |
| 2.3.5 Software Operation                    | 30          |
| 3. LABORATORY CALIBRATION                   | 40          |
| 4. SCIENCE RESULTS                          | 48          |
| 5. REFERENCES                               | 61          |

APPENDIX A - FIMS C DATA LOGBOOK

APPENDIX B - SOFTWARE LISTING

APPENDIX C - LAB DATA PLOTS

APPENDIX D - LISTING OF POWER SUPPLY SETTINGS

## LIST OF ILLUSTRATIONS

| <u>Figure</u> |                                                                               | <u>Page</u> |
|---------------|-------------------------------------------------------------------------------|-------------|
| Plate 1       | The FIMS Flight Unit In Its Laboratory Configuration                          | 3           |
| 2-1           | Schematic Presentation of the Dual-Channel Fast Ion Mass Spectrometer (FIMS). | 4           |
| 2-2           | Schematic of Detector Amplifier Network                                       | 5           |
| 2-3           | Block Diagram of the Programmable Power Supply (PPS)                          | 6           |
| 2-4           | Component Layout of Motherboard                                               | 8           |
| 2-5           | Component Layout of the I/O Board                                             | 9           |
| 2-6           | Component Layout of the Control Board                                         | 10          |
| 2-7           | Component Layout of the H.V. Control Board                                    | 11          |
| 2-8           | Component Layout of the H.V. Board                                            | 12          |
| 2-9           | Component Layout of the Power Supply Board                                    | 13          |
| 2-10          | Component Layout of the Isolation Board                                       | 14          |
| 2.3-1         | FIMS CEP Block Diagram                                                        | 15          |
| 2.3-2         | FIMS Central Processor Card Schematic (sheet 1)                               | 16          |
| 2.3-3         | FIMS Central Processor Card Schematic (sheet 2)                               | 17          |
| 2.3-4         | FIMS Central Processor Card Schematic (sheet 3)                               | 18          |
| 2.3-5         | FIMS Central Processor Card Schematic (sheet 4)                               | 19          |
| 2.3-6         | FIMS Central Processor Card Schematic (sheet 5)                               | 20          |
| 2.3-7         | FIMS Processor Memory Board (sheet 1)                                         | 22          |
| 2.3-8         | FIMS Processor Memory Board (sheet 2)                                         | 23          |
| 2.3-9         | FIMS Processor Memory Board (sheet 3)                                         | 24          |
| 2.3-10        | FIMS Processor PPS Interface Board (sheet 1)                                  | 25          |
| 2.3-11        | FIMS Processor PPS Interface Board (sheet 2)                                  | 26          |
| 2.3-12        | FIMS Processor PPS Interface Board (sheet 3)                                  | 27          |
| 2.3-13        | FIMS Processor PPS Interface Board (sheet 4)                                  | 28          |
| 2.3-14        | FIMS Processor PPS Interface Board (sheet 5)                                  | 29          |

LIST OF ILLUSTRATIONS (Cont'd.)

| <u>Figure</u> |                                                                           | <u>Page</u> |
|---------------|---------------------------------------------------------------------------|-------------|
| 2.3-15        | FIMS Processor Detector Interface Card (sheet 1)                          | 31          |
| 2.3-16        | FIMS Processor Detector Interface Card (sheet 2)                          | 32          |
| 2.3-17        | FIMS Processor Detector Interface Card (sheet 3)                          | 33          |
| 2.3-18        | FIMS Processor Detector Interface Card (sheet 4)                          | 34          |
| 2.3-19        | FIMS Processor Detector Interface Card (sheet 5)                          | 35          |
| 2.3-20        | FIMS Flight Software Flow Chart                                           | 36          |
| 3-1           | Lab Data: Contour Plots of ESA Voltage vs. MSA Voltage                    | 41-43       |
| 3-2           | Azimuthal and Elevation Acceptance                                        | 44, 45      |
| 3-3           | Data Plotted Against $\tan\theta$ (Solid Line)                            | 46          |
| 3-4           | Block Diagram of the Preflight Verification Configuration                 | 47          |
| 4-1           | Data from the Original Andoya Tapes                                       | 49, 50      |
| 4-2a,b        | Data from Wallops Tape 1 (Outer Channel)                                  | 51, 52      |
| 4-3a,b        | Data from Wallops Tape 1 (Outer Channel) Eliminating High-Voltage Turn-On | 53, 54      |
| 4-4a          | Data from Wallops Tape 1 (Inner Channel)                                  | 55          |
| 4-4b          | Data from Wallops Tape 1 (Inner Channel) Eliminating High-Voltage Turn-On | 56          |
| 4-5a,b        | Data from Wallops Tape 2 (Outer Channel)                                  | 57, 58      |
| 4-6a,b        | Data from Wallops Tape 2 (Inner Channel)                                  | 59, 60      |

| <u>Tables</u> |                                      | <u>Page</u> |
|---------------|--------------------------------------|-------------|
| 2.3-1         | Energy/Charge Values Sampled by FIMS | 37          |
| 2.3-2         | Species Sampled by FIMS              | 38          |

## 1. SCIENCE OBJECTIVES

The principle scientific objective of this project is an investigation of ion acceleration transverse to the magnetic field in the topside ionosphere. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions (or "conics") commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Since these conics are observed in conjunction with ion cyclotron wave activity, the current theoretical understanding is that the ions are heated transverse to the magnetic field by VLF waves at harmonics of their gyrofrequencies, and then accelerated upward along the field by the magnetic mirror force. Such a mechanism is clearly important in the determination of the ultimate source of the magnetospheric plasma population (i.e. a terrestrial vs. a solar wind source).

Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions (e.g. Dusenberry and Lyons, 1981) indicate very rapid initial heating rates, depending on the ion species. These same theories (in concurrence with observations) predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required for this investigation; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions.

The FIMS instrument was designed to meet these criteria. To facilitate rapid scans, measurements were limited to those energies ( $<2\text{keV}$ ) and ions ( $\text{O}^+, \text{NO}^+, \text{H}^+, \text{He}^+$ ) predicted to dominate the ion conic events (see Klumpar, 1979). High spatial resolution was further enhanced by the low speed and high telemetry rate of the sounding rocket (as compared with those of a satellite). The complete measurement objectives are given below:

|                                                                      |                                                    |
|----------------------------------------------------------------------|----------------------------------------------------|
| Energy Range.....                                                    | 1 eV/q to 2 keV/q                                  |
| Ion Species.....                                                     | $\text{H}^+, \text{He}^+, \text{O}^+, \text{NO}^+$ |
| Pitch-Angle Resolution.....                                          | $\Delta\alpha = 1^\circ$                           |
| Pitch-Angle Range for E/q Measurements.....                          | $\alpha = 0^\circ - 180^\circ$                     |
| Pitch-Angle Range for M/q Measurements.....                          | $\alpha = 80^\circ - 130^\circ$                    |
| Time Resolution for complete (E/q, $\alpha$ ) Distribution.....      | 1.1 s                                              |
| Time Resolution for complete (E/q, M/q, $\alpha$ ) Distribution..... | 6.6 s                                              |

## 2. INSTRUMENT DESCRIPTION

### 2.1 The Analyzers

Plate 1 is a photograph of the FIMS with an MCP detector mounted on the rocket deck plate.

The FIMS instrument consists of two pairs of spherical section conducting plates ( $R_{in} = 28.9\text{mm}$ ,  $\Delta R_{in} = 3.02\text{mm}$ ;  $R_{out} = 37.6\text{mm}$ ,  $\Delta R_{out} = 3.88\text{mm}$ ) acting as a dual-channel energy filter, followed by a cylindrical dual-channel ( $R_{in} = 73.7\text{mm}$ ,  $\Delta R_{in} = 7.4\text{mm}$ ;  $R_{out} = 82.2\text{mm}$ ,  $\Delta R_{out} = 8.2\text{mm}$ ) ExB mass analyzer, and two channeltron detectors. Figure 2-1 is a schematic view of the instrument. The entrance housing provides a baffle for off-angle trajectories. The electrostatic plates are noryl coated with conducting paint and covered with lamp blacking to reduce scattering. The magnet is SmCo with a field strength of 1900 gauss. The ExB analyzer operates at a bias of -815V with respect to the electrostatic analyzer.

The flight detector consisted of two (2) Amperex B413-BL channeltrons with a grounded grid in front of them. The biasing network and amplifier circuit (supplied by Mullard Space Science Labs) used with them are shown in Figure 2-2.

The detector and pre-amp section of Figure 2-2 consists of two (2) Amptek, Inc., Model A111 Hybrid Charge Sensitive Pre-Amplifier/Discriminator and Bias Networks packaged on a printed circuit board. A second circuit board houses an Amptek D400 Quad 8-bit Binary Counter and a 74HC244 Bus Driver.

An aluminum housing provides mounting for the two boards, as well as the two channeltrons. A 15-pin sub D connector provides the interface for the power and data lines.

### 2.2 Power Supplies

The programmable power supply (PPS) developed for the Fast Ion Mass Spectrometer is a new and totally different design from that used on previous programs, such as the Centaur I Sounding rocket. To provide a greater number of voltage steps and the versatility of programming for different instruments, two CMOS UV erasable PROMs were used as a lookup table addressed by the Central Electronics Package (CEP). The PROM output data provided input to a 10-bit D/A converter which performs as a staircase generator used to control the driver of the high-voltage transformer stage, as well as the control for the dynamic high-voltage shunt regulator.

Through a network of high-value resistors, a reference voltage is fed back to the control section to form a closed-loop system for better voltage regulation. Figure 2-3 is a block diagram of the PPS.

Isolation of the power supply secondary voltages is provided by transformer coupling in the input DC/DC converter, which provides the necessary digital and analog supply voltages. In the case of the mass PPS where the high-voltage return is at a float potential of as much as 3 kV, an additional P.C. card is provided which contains opto-isolators for the data and control lines, and a V/F - F/V circuit for the analog current monitors.

ORIGINAL PAGE IS  
OF POOR QUALITY

3



Plate 1. The FIMS Flight Unit in its Laboratory Configuration.



Figure 2-1 SCHEMATIC PRESENTATION OF THE DUAL-CHANNEL FAST ION MASS SPECTROMETER (FIMS).

**ORIGINAL PAGE IS  
OF POOR QUALITY**



**Figure 2-2 Schematic of Detector Amplifier Network**



Figure 2-3 PPS Block Diagram

The fabrication of the power supply consisted of five separate epoxy glass P.C. boards and a single motherboard. The boards are divided into functional blocks to minimize circuit interconnects on the motherboard. For isolation, separate high-voltage connectors are used on the highvoltage sub-board to the motherboard where the high value resistor networks are located. The five boards are separated as follows: I/O board, Power Supply board, Control board, H.V. Control board, and H.V. board. In the isolated supply for the mass analyzer, an additional Isolation board is installed. A jumper board is installed for non-isolated operation. Figure 2-4 shows the component layout for the motherboard, and Figures 2-5 through 2-10 show the component layout for the six sub-boards.

The power supply is packaged in an aluminum housing, measuring 7 in. long x 4 in. wide x 2.5 in. deep. A 25-pin sub D connector provides the interconnections for the low-voltage control and supply. The high-voltage leads are routed through an epoxy glass insulator board and connected directly to the motherboard, eliminating exposed high-voltage terminals.

## 2.3 Central Electronics Package

The FIMS analyzer is controlled and monitored by a Central Electronics Package (CEP) shown in block diagram as Figure 2.3-1. The CEP is responsible for the generation of all Program Power Supply (PPS) commands as well as the acquisition of science data from the analyzer's detector assembly. Data acquired from the analyzer is formatted and relayed to the rocket's pulse code modulation (p.c.m.) telemetry subsystem at the appropriate time.

A 16 bit microprocessor with associated clock, memory and input/output circuitry is employed within the CEP. Circuitry for the CEP is contained on 4 plug-in printed wiring/stitchweld circuit boards all of which are housed in the single CEP enclosure. A detailed description of each of the 4 boards is contained in paragraphs to follow.

### 2.3.1 Central Processing Unit

Figures 2.3-2 through 2.3-6 are schematic diagrams of the FIMS CEP central processing unit (CPU). As can be seen in Figure 2.3-2, the CPU is controlled by an 80C86 microprocessor operating in the "minimum" configuration (without co-processors). The 80C86's clock and bus controller circuits can also be seen in Figure 2.3-2.

Since the 80C86 employs a multiplexed address/data bus it is necessary to de-multiplex the bus before it can be used to communicate with memory and I/O devices. Figures 2.3-3 and 2.3-4 show the manner in which the CPU bus is de-multiplexed within the FIMS CEP. The components used by the CEP are all complementary metal oxide semiconductor (CMOS) except for interface drivers.

In order to minimize the amount of circuitry needed by each of the 4 circuit boards for address decoding, a centralized I/O device decoding system, shown in Figure 2.3-6, is used by the CEP. To detect an I/O address, the system's 11 most significant address bits are compared to a preset values by 54HC688 octal comparators. When a true comparison is found, the system's

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-4 Component Layout of Motherboard

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-5 Component Layout of the I/O Board

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-6 Component Layout of the Control Board

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-7 Component Layout of the H. V. Control Board

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-8 Component Layout of the H. V. Board

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-9 Component Layout of the Power Supply Board

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-10 Component Layout of the Isolation Board

FIMS  
CENTRAL ELECTRONICS PACKAGE



Figure 2.3-1 FIMS CEP Block Diagram

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2-3-2

ORIGINAL PAGE IS  
OF POOR QUALITY

REFURBISHED



Figure 2.3-3

FIMS CENTRAL PROCESSOR CARD

15-7455-301

A

2 OF 5

ORIGINAL PAGE IS  
OF POOR QUALITY

A REFORMATTED



Figure 2.3-4

FIMS CENTRAL PROCESSOR CARD

15-7435-301

A

3 OF 5

ORIGINAL PAGE IS  
OF POOR QUALITY

REFORMATTED

A



Figure 2.3-5

F1MS CENTRAL PROCESSOR CARD

15-7435-301

A

4 OF 5

ORIGINAL PAGE IS  
OF POOR QUALITY

REFORMATTED



FINS CENTRAL PROCESSOR CARD

15-7435-301

A

6 OF 5

Figure 2.3-6

address bits add4-add6 are decoded in order to generate unique select lines for the individual I/O devices. Decoded addresses are then qualified against memory read and write control signal to produce the various strobe and enable signals needed for operation by the other 3 boards. Figure 2.3-6 shows the manner in which these several control signals are generated.

### 2.3.2 Control and Data Memory

Figures 2.3-7 through 2.3-9 show the circuitry used to provide the FIMS CEP with both control and data memory. As a media for storing software instructions, CMOS u.v. erasable/programmable read only memory (EPROM) devices are used. Between the two 27C64 EPROMs used in the CEP, a total of 16k bytes of program storage space is made available.

For data memory and program stack operations, CMOS static random access memory (RAM) is used. Figures 2.3-8 shows the circuitry used to produce a total of 4k bytes of ram for the CEP. Address recognition for the memory board is managed with 54HC688s as seen in Figures 2.3-7 and 2.3-8. Because of the short operating time of the FIMS instrument no attempt has been made to implement error detection/correction on control or data memory.

### 2.3.3 Program Power Supply (PPS) Interfaces

Figures 2.3-10 through 2.3-14 show the circuitry used to provide an interface between the CEP and the PPS's. Commands for the PPSs are latched in CMOS octal latches as shown in Figures 2.3-11 and 2.3-12. The strobe signals used by the latches to actually trap the PPS command words off of the system bus are produced on the CPU board itself as described earlier. Reference is made to the signal labeled "PPS1STR" in Figure 2.3-11 as an example of a PPS command strobe signal.

To provide electrical drive capability to the octal latches storing the 10 bit command words used by each of the 2 PPS's, CMOS hex inverters are used. Examples of these interface buffers can be seen in Figures 2.3-11 and 2.3-12. It should be noticed that the logical interface to both of the PPS's is through the 10 least significant bits of the CPU's 16 bit data bus.

In addition to providing a logical and physical interface to the PPS's, the PPS interface board also provides command monitoring capability. Figures 2.3-13 and 2.3-14 show the digital circuitry used to latch the PPS command words into parallel/serial shift registers. The same strobe signal used to latch the PPS command into the appropriate output buffer is also used to latch the command into the input section of a 10 bit shift register.

The shift registers used for the 2 PPS command interfaces can be clocked out by the rocket's p.c.m. telemetry interface as required. Attention is called to the fact that interfaces to the rocket's telemetry system are true differential with all output signals driven by high current line drivers and all inputs optically coupled.

ORIGINAL PAGE IS  
OF POOR QUALITY

A REFORMATTED



Figure 2.3-7

FINS PROCESSOR MEMORY BOARD

15-7435-302

A

1 OF 3

ORIGINAL PAGE IS  
OF POOR QUALITY

F1NS PROCESSOR MEMORY BOARD



Figure 2.3-8

REFORAMTED

A



Figure 2.3-9

F1MS PROCESSOR MEMORY BOARD

A  
15-7435-302  
3 OF 3

REFORMATTED

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2.3-10

ORIGINAL PAGE IS  
OF POOR QUALITY

A  
REFORMATTED



Figure 2.3-11

FIMS PROCESSOR PPS INTERFACE BOARD

15-7435-303

A

2 OF 5

ORIGINAL PAGE IS  
OF POOR QUALITY

A REFORMATTED



P1.15 PROCESSOR PPS INTERFACE BOARD

Figure 2.3-12

ORIGINAL PAGE IS  
OF POOR QUALITY

A REFORMATTED



Figure 2.3-13

15-7435-303

A

4 OF 5

**ORIGINAL PAGE IS  
OF POOR QUALITY**

REFORMATTED



Figure 2.3-14

THIS AGREEMENT IS MADE THIS 20TH DAY OF JUNE, 1985.

A  
5 OF 5

### 2.3.4 Detector Interface

Shown on Figures 2.3-15 through 2.3-19 are the electrical schematics of the interfaces between the CEP and the analyzer's detector subsystem. Two Amperex B413-BL channel electron multipliers (CEM) (Section 2.1) with associated preamplifiers and a 2 channel CMOS hybridized binary counter are used in the detector subsystem. Ions exiting the E X B analyzer will be detected by the CEMs producing pulses which will in turn be counted by the binary counter mentioned above. The CEP acquires detector counts from this hybridized counter through an 8 bit parallel interface shown in Figures 2.3-14 and 2.3-15. A handshaking systems is employed to assure proper data transfer between the CEP and the detector subsystem. Figure 2.3-19 is a timing diagram of this handshaking.

The 80C86 microprocessor communicates with the detector interface through an 82C55 programmable peripheral interface (PPI) device. The handshaking scheme described above is carried out using port c output bits from the 82C55. Although somewhat slow, this approach to handshaking uses very few components.

### 2.3.5 Software Operation

As mentioned earlier, the FIMS instrument is controlled and monitored by a 16 bit CMOS microprocessor. A simplified flowchart of the software operation of the microprocessor is shown in Figure 2.3-20. The controller is completely interrupt driven, depending on timing interrupts generated by telemetry interface circuitry for operation. Minor frame (0.8 ms) and major frame (25.6 ms) rate interrupts synchronize the operation of the instrument to the data acquisition rate of the telemetry system.

As each major frame rate interrupt is received, the microprocessor runs a software task which builds a pointer into a table of commands used by the energy analyzer's PPS. As seen in the flowchart, the process of building and transmitting energy PPS commands continues until a complete energy sweep ranging from 1ev/q to 2115 ev/q has been completed. Normally, an energy sweep is completed in 1.1 seconds. Table 2.3-1 shows the energy levels visited during a normal energy sweep.

At the completion of an energy sweep a new ion species is selected (via mass PPS commands) for measurement and the energy analysis begun again. Table 2.3-2 shows the atomic masses of the species examined and the order in which they are sampled. When all species have been analyzed in the order shown in Table 2.3-2 the software recycles and begins the "normal sweep" again.

Because of the cross coupling between the energy/charge and mass/charge analyzers it is necessary to make minor corrections to the mass PPS setting for each new energy command. It is therefore oversimplified to think that in normal operation only the energy PPS is stepped each major frame.

Reference has been made to a "normal sweep" in the paragraphs above in order to differentiate between the standard sweep and the fine mass resolution sweep which is also programmed into the 80C86 software. The phrase

REFORMATTED

2

Detailed description of the circuit:

- Power Supply:** V<sub>CC</sub>, GND, +5V.
- Shift Register:** A 74LS165 integrated circuit is used as the core component. It has 16 data inputs (D1-D16), 16 data outputs (Q1-Q16), and three control inputs: RD (Read), WR (Write), and CS (Chip Select).
- Control Logic:**
  - A 74LS10 inverter is connected to the RD input of the 74LS165.
  - Four 74LS14 buffers (labeled 1 through 4) are used to generate control signals. They receive their inputs from the 74LS165's Q1-Q4 outputs and provide enable signals to other logic gates.
  - Three 74LS11 buffers (labeled 1 through 3) receive their inputs from the 74LS165's Q1-Q4 outputs and provide enable signals to other logic gates.
  - Two 74LS12 buffers (labeled 1 and 2) receive their inputs from the 74LS165's Q1-Q4 outputs and provide enable signals to other logic gates.
  - Two 74LS13 buffers (labeled 1 and 2) receive their inputs from the 74LS165's Q1-Q4 outputs and provide enable signals to other logic gates.
  - A 74LS04 buffer (labeled 1) receives its input from the 74LS165's Q1 output and provides an enable signal to one of the 74LS14 buffers.
  - A 74LS08 buffer (labeled 1) receives its inputs from the 74LS165's Q1 and Q2 outputs and provides an enable signal to one of the 74LS14 buffers.
- Clock Generation:**
  - The 74LS165's Q1 output is connected to the clock input of the first 74LS14 buffer.
  - The 74LS165's Q2 output is connected to the clock input of the second 74LS14 buffer.
  - The 74LS165's Q3 output is connected to the clock input of the third 74LS14 buffer.
  - The 74LS165's Q4 output is connected to the clock input of the fourth 74LS14 buffer.
  - The 74LS165's Q5 output is connected to the clock input of the fifth 74LS14 buffer.
  - The 74LS165's Q6 output is connected to the clock input of the sixth 74LS14 buffer.
  - The 74LS165's Q7 output is connected to the clock input of the seventh 74LS14 buffer.
  - The 74LS165's Q8 output is connected to the clock input of the eighth 74LS14 buffer.
  - The 74LS165's Q9 output is connected to the clock input of the ninth 74LS14 buffer.
  - The 74LS165's Q10 output is connected to the clock input of the tenth 74LS14 buffer.
  - The 74LS165's Q11 output is connected to the clock input of the eleventh 74LS14 buffer.
  - The 74LS165's Q12 output is connected to the clock input of the twelfth 74LS14 buffer.
  - The 74LS165's Q13 output is connected to the clock input of the thirteenth 74LS14 buffer.
  - The 74LS165's Q14 output is connected to the clock input of the fourteenth 74LS14 buffer.
  - The 74LS165's Q15 output is connected to the clock input of the fifteenth 74LS14 buffer.
  - The 74LS165's Q16 output is connected to the clock input of the sixteenth 74LS14 buffer.
- Serial Output:** The 74LS165's Q16 output is connected to the serial output terminal (S).

FIM3 PROCESSOR DETECTOR INTERFACE CARD

A  
1 OF 5

**ORIGINAL PAGE IS  
OF POOR QUALITY.**



Figure 2.3-16

ORIGINAL PAGE IS  
OF POOR QUALITY

A  
REFORMATTED



FILE PROCESSOR DETECTOR INTERFACE BOARD

Figure 2.3-17

15-7435-304

3 OF 5

AS PER ECO NO. 7435-304-01

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 2.3-18

## FINS PROCESSOR DETECTOR INTERFACE BOARD

15-7435-304

A  
5 OF 5

Figure 2.3-19



**Figure 2.3-20.** FIMS Flight Software Flow Chart

TABLE 2.3-1 ENERGY/CHARGE VALUES SAMPLED BY FIMS

| STEP NUMBER | ENERGY/CHARGE SAMPLED (ev) |
|-------------|----------------------------|
| 1           | 1.00                       |
| 2           | 1.20                       |
| 3           | 1.44                       |
| 4           | 1.73                       |
| 5           | 2.07                       |
| 6           | 2.49                       |
| 7           | 2.98                       |
| 8           | 3.58                       |
| 9           | 4.30                       |
| 10          | 5.16                       |
| 11          | 6.19                       |
| 12          | 7.43                       |
| 13          | 8.91                       |
| 14          | 10.70                      |
| 15          | 12.83                      |
| 16          | 15.40                      |
| 17          | 18.48                      |
| 18          | 22.18                      |
| 19          | 26.61                      |
| 20          | 31.94                      |
| 21          | 38.32                      |
| 22          | 45.99                      |
| 23          | 55.18                      |
| 24          | 66.22                      |
| 25          | 79.47                      |
| 26          | 95.36                      |
| 27          | 114.43                     |
| 28          | 137.32                     |
| 29          | 164.78                     |
| 30          | 197.73                     |
| 31          | 237.28                     |
| 32          | 284.74                     |
| 33          | 341.69                     |
| 34          | 410.02                     |
| 35          | 492.03                     |
| 36          | 590.43                     |
| 37          | 708.52                     |
| 38          | 850.22                     |
| 39          | 1020.27                    |
| 40          | 1224.27                    |
| 41          | 1469.18                    |
| 42          | 1763.02                    |
| 43          | 2115.62                    |

TABLE 2.3-2 SPECIES SAMPLED BY FIMS

| SPECIES | AMU |
|---------|-----|
| NO+     | 30  |
| O+      | 16  |
| H+      | 1   |
| NO+     | 30  |
| O+      | 16  |
| He+     | 4   |

"normal sweep" is used to indicate an energy/mass set of commands which visits each of the ion species listed in Table 2.3-2 at each of the energy levels shown in Table 2.3-1. A normal sweep thus requires 6.6 seconds to complete. When 9 normal sweeps have been completed the FIMS software is programmed to enter the fine mass resolution mode. In this mode the energy PPS is held fixed for 9 major frame times while the mass PPS is commanded to the 4 closest command settings below and the 5 closest setting above the optimum mass PPS command for each species. In other words, the energy PPS is fixed and the mass PPS sweeps the 9 closest command settings to the optimal for the selected species.

The total number of major frames required to complete the fine mass scan mode is 42 (energy steps) X 9 (mass steps/cnrgy steps) X 6 (species) yielding a product of 2268 commands issued over 58.06 seconds. At the completion of the fine mass scan, the FIMS software resumes the normal scan mode.

A complete set of software listings for the FIMS CEP is contained in Appendix B of this document.

### 3. LABORATORY CALIBRATION

The FIMS instrument was first calibrated with laboratory electronics and detectors at the SwRI Ion Calibration Facility using hydrogen ( $H_+$ ) and nitrogen ( $N_+$ ) ions at energies from 100eV to 2 keV to test the inner and outer channels respectively. Contour plots, such as Figure 3-1, were used to confirm the analyzer constants for the two sections over the entire energy range. The plot shows voltage on the electrostatic analyzer (x axis) vs. voltage on the electric field plates in the ExB analyzer (y axis) vs. counts (shown as contours) for 2 keV  $N_+$ . These data give an average  $dE/E$  of about 10%. Mass resolution can be demonstrated by taking the separation in voltage applied to the ExB analyzer between masses of interest compared to the spread in voltage for an individual mass. All ions of interest are clearly resolved.

Scans of azimuthal and elevation throughput were also made to confirm the angular range of the instrument. Figure 3-2 shows the acceptance to be  $\pm 3^\circ$  in azimuth and  $\pm 12^\circ$  in elevation. Appendix C is a collection of plots of lab data.

A microchannel plate (MCP) detector was used in order to study exit z position of the particle trajectories vs. incoming  $\phi$  angle, for reference in future missions in which use of an MCP might allow such correlations to be recorded yielding additional information about the pitch angle dependence of the conic events. These data are shown in Figure 3-3, plotted against  $\tan\theta$  (solid line) which is the expected acceptance. We hope to investigate the discrepancy further with the next FIMS.

Finally, the flight power supplies (PPSs) and central electronics package (CEP) were integrated with the analyzer and the complete instrument was calibrated using an SC-1 Spacecraft Computer to simulate the rocket's communication buss. Figure 3-4 is a block diagram of the preflight verification configuration. Appendix D contains a table showing a listing of power supply settings for various energies and masses. Instrument performance in the final configuration was confirmed using several input ions.

ANALYSIS PAGE 19  
OF POOR QUALITY

### INNER CHANNEL H<sub>2</sub> 2 KeV



Figure 3-1a

**OUTER CHANNEL N<sub>2</sub> 2 KeV****Figure 3-1b**

**INNER CHANNEL H<sub>2</sub> 1 KeV****Figure 3-1c**

**INNER CHANNEL H<sub>2</sub> 1 KeV****Figure 3-2a**



Figure 3-2b



Figure 3-3



Figure 3-4

#### 4. SCIENCE RESULTS

In January of 1986 the Centaur II sounding Rocket was launched from the Andoya Range in Norway. Due to a mechanical failure, the nose cone of the rocket was never completely released, blocking the view of the scientific payload and resulting in an inappropriate and shortened trajectory. Telemetry tapes recorded at the station in Andoya, and also by the NASA Wallops portable tracking station onsite, were studied extensively in the hope that some data might be retrieved; however, no clear evidence of mass peaks or a mass/energy correlation could be found.

Figure 4-1 shows data from the original Andoya tapes; note the anomalous counts at powers of 2 (2, 4, 16, etc.). Figures 4-2 through 4-6 show data from the tapes supplied by Wallops. Figure 4-2 shows data from the first tape supplied by Wallops, selected for masses in the  $\text{NO}^+$  range in (a) and the  $\text{O}^+$  range in (b). Figure 4-3 shows the same data eliminating the time period in which the high voltage was turned on. Figure 4-4a shows data from the instrument inner channel and Figure 4-4b shows the same data eliminating the time interval for high-voltage turn-on. Figures 4-5a and 4-5b show data for the  $\text{O}^+$  range and the  $\text{NO}^+$  range, respectively, from the second Wallops tape. Finally, Figures 4-6a and 4-6b show data from the inner channel selected on the  $\text{H}_2^+$ ,  $\text{H}^+$  range and on the  $\text{NO}^+$ ,  $\text{O}^+$  range, respectively, from Wallops tape 2. Figure 4-6 clearly indicates that these counts are due to noise, since data are identical with the voltages set in the high-mass range (incorrect for the inner channel) and with voltages set in the low mass range (proper setting for this channel).

In summary, in all the outer channel data we see a noise pattern occurring at powers of two, and in all the inner channel data we see a constant (noise) count rate around 30-60 counts.



Figure 4-1



Masses Between 20  
and 40.

(c)

Figure 4-1



MASSES BETWEEN 20 AND 40 5000 TO 12000 WALLOPS TAPE 1

Figure 4-2a



MASSES BETWEEN 12 AND 20 5000 TO 12000 WALLOPS TAPE 1

Figure 4-2b



MASSES BETWEEN 12 AND 20 6000 TO 12000 WALLOPS TAPE 1

Figure 4-3a



MASSES BETWEEN 20 AND 40 6000 TO 12000 WALLOPS TAPE 1

**Figure 4-3b**



WALEOPS TAPE 1 MASSES LESS THAN 10

Figure 4-4a



MASSES LESS THAN 10 6000 TO 12000 WALLOPS TAPE 1

Figure 4-4b



MASSES BETWEEN 12 AND 20 1 TO 8000 WALLOPS TAPE 2

Figure 4-5a



MASSES BETWEEN 20 AND 40 1 TO 8000 WALLOPS TAPE 2

Figure 4-5b



MASSES BETWEEN 10 AND 40 WALLOPS TAPE 2

Figure 4-6a



MASSES LESS THAN 10 1 TO 8000 WALLOPS TAPE 2

Figure 4-6b

5. REFERENCES

Dusenberry, P.B. and Lyons L.R., "Generation of Ion-Conic Distribution by Upgoing Ionospheric Electrons", Journal of Geophysical Research, Vol.86, No.A9, pp. 7627-7638, September 1, 1981.

Klumpar, D.M., "Transversely Accelerated Ions: An Ionospheric Source of Hot Magnetosperic Ions", Journal of Geophysical Research, Vol.84, No. A8, pp. 4229-4237, August 1, 1979.

**APPENDIX A**  
**FIMS C Data Logbook**

identification data....

## SECTION 1 / IDENTIFICATION DATA

| SECTION 1 / IDENTIFICATION DATA              |                            |                                 |                                         |                                      |             |
|----------------------------------------------|----------------------------|---------------------------------|-----------------------------------------|--------------------------------------|-------------|
| ASSEMBLY/COMPONENT NAME                      | SPEC. NO.                  | MSFC PART NUMBER                | VENDOR PART NUMBER                      |                                      |             |
| (CALIBRATION ASSEMBLY<br>TELEMETER - MODEL 2 | IR NO.<br>REV. B<br>EO-902 | 50M 26170<br>REV. A<br>EO's 1,2 | 40M 26211<br>EO's 1,2,3<br>SER. NO. 060 | ER-65120<br>REV. C<br>EPL. 65120-100 | DAR'S/MRD's |
| SUBASSEMBLY NAME                             | IR NO.                     | PART NO.                        | REV.                                    | S/N                                  | EO's        |
| CONTROL PANEL                                | AP-328                     | 50M 12347                       | A                                       | 006                                  | NONE        |
| POWER SUPPLY                                 | 84-320                     | 50M 12368                       | C                                       | 004                                  | 1,2         |
| WIRING HARNESS                               | 92-021                     | 50M 12396                       | NE                                      | N/A                                  | 1           |
| (ALL ENTRIES<br>SAMPLE FICTITIOUS)           |                            |                                 |                                         |                                      |             |

**ORIGINAL PAGE IS  
OF POOR QUALITY**

**C  
O  
M  
P  
A  
C  
T  
S**

## Special Instructions:

| ALLOWABLE OPERATING TIME/CYCLES | 1000 hours | SECTION 2 / SPECIAL INSTRUCTIONS                                                                   |
|---------------------------------|------------|----------------------------------------------------------------------------------------------------|
| CALENDAR LIFE                   | 1 years    | Instructions/Storage Time/Environmental Lives/Cleanliness/Handling/Flight/Disqualification         |
| DATE                            |            | Record the following variables data in Section 4 during post manufacturing checkout:               |
| 2/01/71                         |            | 1. Calibration cycle time per paragraph 3.3.4c of Specification 50M26270B.                         |
|                                 |            | 2. Frequency check per paragraph 3.3.6d of Drawing 50M26270B.                                      |
|                                 |            | 3. Electrical circuitry contains polarity sensitive items. Reference Note 7 of Drawing 40M126271A. |
|                                 |            | 4. Any other special instructions of any nature should be entered here.                            |
|                                 |            | Record all unit "Power" On" time in hours/minutes in Section 3.                                    |
|                                 |            | 2/01/71 Record cycles on relay P/N 50M112370 in Section 3.                                         |
|                                 |            | 1. Energizing and deenergizing the component constitutes one cycle.                                |
|                                 |            | SAMPLE<br>SAMPLE FICTITIOUS<br>(ALL ENTRIES)                                                       |

ORIGINAL PAGE IS  
OF POOR QUALITY

# Section 2



### SECTION 3 / LIFE HISTORY

| ORGANIZATION<br>LOCATION | EVENT<br>NO.           | DATE    | TEST DOCUMENT NO. OF PEOPLES INVOLVED & DESC OF WAY TEST PERFORMED/MAINTENANCE/REPAIRS/MAINTENANCE/SHIPMENT/TEST/ENVIRON/TEST/LOC/ | RUNNING TIME/CYCLES/          | RUNNING TIME/CYCLES/          | STAMP,<br>INITIALS |
|--------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------|
|                          | SUBJECT                |         |                                                                                                                                    | START                         | STOP                          | NR/AS/TEST/        |
| PROD. RM CO.             | 1 Run-In               | 6-10-71 | POST MANUFACTURING RUN-IN TEST PER SPEC. RM-869                                                                                    | 09:46:09:56 00:1:53:02:39:91  | 09:46:09:56 00:1:53:02:39:91  | AA                 |
| QUAL. RM CO.             | 2 Accept. Test         | 6-11-71 | ACCEPTANCE FUNCTIONAL TEST PER RM-870<br>SWITCH S1 FAILED OPEN. REF. DR 01266.                                                     | 08:00:08:56 00:1:53:02:39:91  | 08:00:08:56 00:1:53:02:39:91  | AA                 |
| PROD. RM CO.             | 3 Rework               | 6-11-71 | REPLACED TOGGLE SWITCH S3 P/N 907342 ON<br>CONTROL PANEL (REF. WO 866)                                                             | 09:19:35:56 00:1:53:02:39:91  | 09:19:35:56 00:1:53:02:39:91  | AA                 |
| QUAL. RM CO.             | 4 Accept. Test         | 6-12-71 | ACCEPTANCE FUNCTIONAL TEST PER RM 870.                                                                                             | 08:00:08:56:12:39 00:06:23:30 | 08:00:08:56:12:39 00:06:23:30 | AA                 |
| PROD. PM CO.             | 5 Final Cleaning       | 6-15-71 | CLEANED AND PACKAGED PER SPECIFICATION<br>RM 816.                                                                                  | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| QUAL. RM CO.             | 6 Ship                 | 6-16-71 | SHIP TO MSFC (Ref. SO-1110)                                                                                                        | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| QUAL-AFR: Bldg. 4763     | 7 Receiving Inspection | 6-20-71 | VISUAL AND DIMENSIONAL                                                                                                             | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| QUAL-AFT: Bldg. 4768     | 8. A.C.E. Functional   | 1-4-71  | ACCEPTANCE FUNCTIONAL TEST PER ATP<br>40M8671-A                                                                                    | 10:00:12:00:01:00:00:33:39    | 10:00:12:00:01:00:00:33:39    | AA                 |
| QUAL-AP: Bldg. 4768      | 9 Transfer             | 1-10-71 | ROUTED TO STEPPE FOR STORAGE.                                                                                                      | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| PE-PMC: Bldg. 4768       | 10 Storage             | 1-10-71 | RECEIVED AT SR-86-7/10/71                                                                                                          | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| PE-PMC: Bldg. 4768       | 11 Assignment          | 8/1/71  | WITHDRAWN FROM STORAGE ON W.O. 11G-8671<br>ROUTED TO BLDG. 4768.                                                                   | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| PE-RM: Bldg. 4768        | 12 Installation        | 8/3/71  | INSTALLED ON 66M16016 UNIT S/N 000 PER<br>TPS-ATM-FLT-0421                                                                         | 08:13:32:56 00:1:53:02:39:91  | 08:13:32:56 00:1:53:02:39:91  | AA                 |
| QUAL-PC: Bldg. 4768      | 13 Check-out           | 8/14/71 | POST MANUFACTURING CHECKOUT PER<br>FLT-TCP-H-10009                                                                                 | 09:16:16:16:00:00:05:14:28    | 09:16:16:16:00:00:05:14:28    | AA                 |

(SAMPLE FICTITIOUS)  
ENTRIES  
(ALL)

# Section

3

SECTION 3 / LIFE HISTORY

SECTION 3 / LIFE HISTORY

| ORGANIZATION | EVENT                        | DATE                 | TEST DOCUMENT NO./ TEST DESCRIPTION / NATURE & DESCRIPTION OF MAL- FUNCTIONS / SERIAL NO. OF REMOVED OR REPLACED PARTS / MODIFICATIONS / ADJUSTMENTS / REPAIRS / MAINTENANCE / SHIPPED / RECD / ENVIRON. / ETC. | RUNNING TIME/CYCLES HOURS AND MINUTES ~ |          |                      | STAFF OR INITIALS |
|--------------|------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------------------|-------------------|
|              |                              |                      |                                                                                                                                                                                                                 | START                                   | STOP     | TOTAL TIME/CYC TOTAL |                   |
| AMCOR        | 11/12/86<br>11/13/86         | 11/12/86<br>11/13/86 | 11/12/86<br>11/13/86<br>11/14/86                                                                                                                                                                                | 17:00:00                                | 17:00:00 | 00:00:00             | 17:00:00          |
| W.E.I. INC.  | Verif. P.D.C.<br>TEST P.D.C. | 11/14/86             | PICKUP 11/13/86<br>PERFORM 11/13/86 ONLY.<br>MONITOR 11/13/86 ONLY                                                                                                                                              |                                         |          |                      | LUMX              |
| AUDYAN       | LAUNCH<br>18.14 Gmt          | 11/14/86             | REIN LOST AFTER X 125 SEC.<br>A.V. SWITCHED TO X 120 SEC.                                                                                                                                                       |                                         |          |                      |                   |
| ITD's        | Flight                       |                      | NOTATION INDICATED THE B.F. FUNCTION COUNTING ACTIVITY, DATA MAY BE PRE-TELEVED FROM FAIRCHILD                                                                                                                  |                                         |          |                      |                   |

ORIGINAL PAGE IS  
OF POOR QUALITY

## Test Data:

**Section 4:** (1) The variable test data required to be recorded will be specified by Design Engineering in Section 2. (2) Under "Description of Test" enter test procedure title or step and identification of the parameter being tested. (3) Identify the test procedure by number and revision level in the appropriate block. (4) Under "Test Limits" indicate the measurement limits for the test being conducted. (5) Under "Test Results" record the actual test measurement or satisfactory/unsatisfactory. (6) The test conductor's initials shall be noted in the column provided. (7) Normally, when tests are performed, detailed description of test, limits and results need not be recorded herein. Reference to the test procedure and data should be adequate, i.e., "Test performed in accordance with FLT-TCP-H-70009". (8) The **list E.O.** level which is used to test electrical assemblies shall be recorded under descriptor of test if applicable.

ORIGINAL PAGE IS  
OF POOR QUALITY

4

**com  
tech  
gen**

| SECTION 4 / TEST DATA                          |                    |     |                        |                   |         |                   |
|------------------------------------------------|--------------------|-----|------------------------|-------------------|---------|-------------------|
| DESCRIPTION OF TEST                            | TEST PROCEDURE NO. | REV | TEST LIMITS            | TEST RESULTS      | DATE    | STAMP OR INITIALS |
| Post Manufacturing Run-In                      | RM-009             | -   | Operate for 10 Minutes | Satisfactory      | 4/10/71 | J.D.              |
| Acceptance Functional                          | RM-010             | A   | Reference Procedure    | St Switch Failure | 4/11/71 | OU                |
| Acceptance Functional                          | RM-010             | A   | Reference Procedure    | Satisfactory      | 4/12/71 | OU                |
| Acceptance Functional                          | ATP 40M28571       | A   | Reference Procedure    | Satisfactory      | 4/13/71 | ATP               |
| Post Manufacturing Checkout                    | PLT-TCP-H-70009    | -   | Reference Procedure    | Satisfactory      | 4/14/71 | PLT               |
| a. Calibration Cycle Time<br>Paragraph VLC.1d. |                    |     | 100 ± 35 Milliseconds  | 100 Milliseconds  |         |                   |
| b. Frequency Check<br>Paragraph VLC.1f.        |                    |     | 1700 ± 51 Hertz        | 1694 Hertz        |         |                   |

KÜNSTLICHES LÄRM-UNTERHOLDUNGSSYSTEM

**ORIGINAL PAGE IS  
OF POOR QUALITY**

## DATE / COMPONENT / EVENT

## DESCRIPTION

|                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 JUNE 1985<br>CEP - CPU CARD ONLY<br>LOW VOLTAGE APPLIED.                                                                           | SUPPLYING 5V + RTN TO J5 OF CEP (PINS 5+6)                                                                                                                                                                                                                                                                                                                                                                          |
| 11 " "                                                                                                                                | MONITORED CURRENT WITH HP CLIP-ON DC MILLIAMMETER.<br>NOTICE A PECULIAR POWER-ON CURRENT, SUGGING ADJUST 200mA.<br>ADJUSTING TO 1.15mA OVER A 4.5sec PERIOD.                                                                                                                                                                                                                                                        |
| 28 JUNE<br>CEP + CPU MEMORY<br>CARDS<br>LOW VOLTAGE APPLIED                                                                           | MONITORING 5V LINES WITH SCOPE SEE QUITE A<br>BIT OF NOISE WITH SCOPE (TYPE E1146) ON 5V BUS CLOSEST<br>TO 82C84/B CLOCK GENERATOR CHIP. 5V LINE NOISE<br>CONNECTOR IS PRETTY CLEAN                                                                                                                                                                                                                                 |
|                                                                                                                                       | 240mA @ 5V<br>HENCE A VOLT RIPPLE ON 5V BUS (SCOPED)                                                                                                                                                                                                                                                                                                                                                                |
| 5 AUG. 85<br>POWER APPLIED TO CPU MEMORY<br>CPU REMOVED TO ALLOW DCE PLUG-IN                                                          | 240mA @ 5V<br>NO READY LINE - NO RAM READ/WRITE<br>CONTINUOUS NOISE PROBLEM ON 5V LINE OF CPU CARD<br>82PC08 DEVICES MAY OVER HEATED - PRESUMED DEAD                                                                                                                                                                                                                                                                |
| 11 Sept. 85<br>POWER APPLIED TO CPU MEMORY,<br>+ DETECTOR T/F. (CPU REMOVED)<br>VERY FIRST APPLICATION OF POWER<br>TO DETECTOR BOARD. | HIGH SYSTEM TURNAROUND NUT TIED TO GND.<br>THERE IS A DIFFERENCE IN THE 5V LINE - PROBLEMS WITH<br>WILDFLOW CURRENT TO MEMORY AND V. + GROUND JUST NOT<br>PLUGGED! NO EXPANSION SLOT FOR RECALLED<br>CPU MEM. + DET T/F CARDS EQUAL ≈ 500mA<br>ON 5V + 5V/RTN LINES.<br>NO EMULATOR, NO "RESET" SIGNAL APPEARS TO 4E<br>SUPPLIED TO THE DEVICE — PIN 69 ON CARD EDGE<br>IS OPEN, RESET IS WIRED TO THE CHIP ITSELF. |
| 11 Y - 4                                                                                                                              | HY-4<br>PINS 2+3 — SEEM TO HAVE ONE SENSE<br>HY-5<br>" " : SEEM TO HAVE OPPOSITE SENSE                                                                                                                                                                                                                                                                                                                              |
| PPS T/R CARD                                                                                                                          | HY-5 - 3 MIDDLE TERMINE = STANDARD 6E HY-4 - 3<br>HY-5 - 4 MAJOR FRAME CONTROL → EG58 HAS CENTER REFERENCED<br>HY-5 - 2 MINOR TERMINE MEDIUM FADING NOT HOME<br>HY-3 - 2 40MHz 200KHz SEEM TO BASIC WORKS                                                                                                                                                                                                           |
|                                                                                                                                       | 41-3 - DATA BIT 3 IS NEG'D COM - U6 - 8282 IAD,<br>REPLACED.                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                       | Turn on - 117.119 TAURUS SOFTWARE WIRED BACKWARDS.                                                                                                                                                                                                                                                                                                                                                                  |

## DATE / COMPONENT / EVENT

## DESCRIPTION

12 SEPT 85  
Full CEP.

NO MISWIRED SIGNALS IN CEP; TEST CASE

16 SEPT 85  
Processor PPS BROKEN

SERIAL DATA NOT CLOCKING OUT ON S9 BUT FOR  
DATA BITS 8+9, FOUND DRAWINGS CLEAR SPECIFYING  
PINS 5+6 OR U13 AND 11,12,13,14, S+4 OF U14 AS  
BEING GROUNDED WHICH IN FACT THOSE WERE LINE DATA LINES  
→ CORRECTED WIRING OR U13 + U14 WITH SOLID JUMPER  
JOINING DATA BUS ON U10 + U11. S9 DATA IS FUNCTIONAL.  
CEP HAVING NOW TESTED (STAND BOARDS) FOR POWER  
SUPPLY + SIGNAL INTEGRITY ON THE ACTUAL  
SOUNDING ROCKET BUS.

11 11 11

ANALOGUE MONITOR SIGNALS FOR (PCM SLOTS) A41-A50  
NOW VERIFIED USING O-JV P-P TRIANGLE WAVE. AN EXCISE  
SIGNAL, A54, WAS VERIFIED (PHOT PIN 44), PER BILL  
GIBSON'S REQUEST.  
190 kHz, E65B, MAS. CRANE, MINUTE FRAME ON J4 +  
E659 + E6510 on J3 FROM THE ROCKET BUS.

ORIGINAL PAGE  
OF POOR QUALITY IS

## DATE / COMPONENT / EVENT

## DESCRIPTION

13 OCT 85  
FIMS Analyser/Detector

30 Dec 85 / CED/Functional  
31 Dec 85 , Detector Bias Measurement.

TOW CALIBRATION CONFIRMED FOR FIMS ~~CEM~~ CEM  
DETECTOR.  
It is seen IN SUND C.H.A.N.NELS

Outer found & connected in CED flight card . Modifiable part replaced.  
Standard installed in Vom Lab. Main PPS standard. UVA 310 board.  
On detector, analog board, U9+U10 changed to C803 from 101A  
of the preliminary card showed very poor sensitivity.  
Gas needed is thicker changed back to 100R.  
External pulsed output voltage = -31167V. Before adjustment.  
Float V<sub>det</sub> = 8150.3. Before adjustment.  
Omegaics D 413BL/101 Channel bias in Vars, not connected for above measurements.

Inner channel is "IN 1" for digital board.  
Outer channel is "IN 2" to digital board.

Decision made to adjust preamp to -3000V and adjust divider ratio to get 815V float.

ORIGINAL PAGE IS  
OF POOR QUALITY

The following absolute voltage measurements were made directly on output of PPS.  
(E forward) E+ E- M+ M- (M Common) (Lev 02)  
+ 1.2% (85.01) 86.2 86.4 99.1 98.2 (98.69) + 0.3% 0.9%  
+ 4.6% (175.7) 184.3 185.0 163.7 155.8 (186.5) - 1.5% 0.4%  
95.2 94.4 (94.8) + 0.4% 0.4%  
187.4 182.1 (182.9) + 2.5% 0.4%

String chart, output of monitor signals on PPS - all verified well.  
+ C of absolute output voltage.

## DATE/COMPONENT/EVENT

## DESCRIPTION

|                                                                     |                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 DEC 85<br>FIMS IN STANDBY.<br>PRIOR TO VERIFICATION TESTS        | • 32 - 36 Amps DUAL STATE CURRENT TO CEP DURING FUNCTIONAL TEST<br>• 165 - 185A FOR BOTH PPS'S DURING FUNCTIONAL                                                                                                                                                            |
| 2 JAN 86 Calibration for M28, m30 @ 1026-12115 ev.                  | CONFIRMED N.MOREN @ 1.023 eV + 2133 eV<br>CONFIRMED OYGEN @ " "<br>FURTHERMENT A LITTLE DROPPED PULL FREQUENCY OF 2.9 KHZ T<br>CHARGE PPS AND OVERLOADS OF BURDEN. STILL NO UNMAPPING PROBLEMS.<br>DEFLECTION VOLTAGES APPARENTLY DROPPED OUT                               |
| 2 JAN 86<br>FIMS ENERGY PPS<br>VERIFICATION EFFORT - FLIGHT EPROMS. | INSPECTION OF EPROM PZOM CAUSED REVERSED<br>SEVERAL FINE PADS NOT SOLDERED TO EPROM PINS.<br>HIGH PROBABILITY THAT SIGNALS ARE INVERTED, RESULTANT<br>IN APPARENT DROP OUT OF PPS VALUES.<br>12 PADS ARE EFFECTED.                                                          |
| 11                                                                  | EPROM WILL BE RE-TESTED AFTER PINS HAVE BEEN SOLDERED.                                                                                                                                                                                                                      |
| 3 JAN 86<br>FIMS INSTRUMENT<br>PRIOR TO SHIPMENT.                   | ALL PPS BOARD REMOVED.<br>LOSE CAPACITORS REV'D IN PLACE.<br>ALL BURDEN CHANGED + VACUUM RICED<br>CEP BOARDS HAS ALL COMPONENTS SOLDERED + WERE COATED.<br>PRE-SHIPMENT FUNCTIONAL TEST<br>• 5 AMPS ON CEP PWR UP. CEP FUNCTIONAL TEST<br>IS DRAWN WITH INTEGRITY TO SC-1). |
| 11                                                                  | ORIGINAL PAGE OF POOR QUALITY IS                                                                                                                                                                                                                                            |
| 4 JAN 86<br>FIMS INSTRUMENT FINALE TEST.<br>PRIOR TO SHIPMENT.      | SYSTEM POWERED DOWN OVERLIGHT IN 10-8 TAPE<br>(OPERATIONAL TEST AND 1 KEV DETECTED). PROVER<br>PPS SYSTEM TO OPERATE PROPERLY. KEAM IN EXCISE AND<br>AKER SYSTEMS TESTED PROPERLY.<br>SYSTEM POWERED UP FOR SYSTEMS                                                         |

## DATE/COMPONENT/EVENT

## DESCRIPTION

10 JAN 86 ANDOYA TEST RANGE  
PIE - LAUNCH TEST. ~~WITH~~ WITH  
QSF

STATION INPUT TEST USING HF FUNCTION GENERATOR.  
MONITOR PCM DEMON.  
VOLT PEAK INPUT. FREQUENCY ADJUSTED TO FULL  
COUNTER. PCM COUNT MATCHED GEN. FREQ.

11 JAN 86 ANDOYA TEST RANGE  
PRE-LAUNCH END TO END TEST.  
TEST OPERATED FOR EQUIVALENT TIME OF FLIGHT, 800 SEC

ORIGINAL PAGE IS  
OF POOR QUALITY

**APPENDIX B**  
**Software Listing**

SERIES-III 8086/8087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE TABLE  
OBJECT-MODULE PLACED IN TFS-TABLE: ODU

SOURCE

```

1 **** TABLE.ASM ****
2
3 **** PROCEDURE NAME=TABLE ****
4 **** PROGRAMMER=W.T. GIBSON ****
5 **** LAST REVISITON 23 DEC 83 ****
6 **** INPUTS:NONE ****
7 **** OUTPUTS:JUMPS ADDRESSES FOR INTERRUPT TYPE CODE 20 ****
8 **** DESTROYS:NOTHING ****
9 ****
10 **** FUNCTIONS: THE PURPOSE OF THIS PROCEDURE IS TO PASS THE ****
11 **** INTERRUPT JUMP ADDRESS FOR IRQ 4 OF THE ****
12 **** SLAVE 8259 INTERRUPT CONTROLLER. ****
13 ****
14 ****
15 ****
16 ****
17 ****
18 ****
19 ****
20 ****
21 **** NAME=ADDRESS ****
22 ****
23 **** DATA SEGMENT ****
24 ****
25 **** DATA ENDS ****
26 ****
27 **** CODE SEGMENT ****
28 **** ASSUME CS:CODE DS:DATA ****
29 **** EXTRN INTFRAME:FRAME ****
30 **** PUBLIC TABLE ****
31 **** TABLE PROC NEAR ****
32 ****
33 **** PRESERVE WORKING REGISTERS ****
34 ****
35 **** ABSOLUTE MEMORY SEG. ****
36 **** 1SEG WHERE VECTOR IS LOADED ****
37 **** 1OFFSET FOR TYPE CODE OF 20 ****
38 **** 1OFFSET MAJOR-FRAME ****
39 **** 1SEND OFFSET OF INT.ROUTINE ****
40 **** 1LOAD AX:CODE ****
41 **** 1LOAD BX+21:AX ****
42 **** FOF AX ****
43 **** TRESTORE ****
44 **** POP DS ****
45 **** RET ****
46 **** TABLE ****
47 **** CDEE ****

```

SERIES-III 8086/8037/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE MAJOR  
OBJECT-MODULE PLACED IN TPI-MACR.OBJ  
INSTRUCTION-THE CONTROL-S: TITLE17:360016.FLT-85

LINE SPOT

**ORIGINAL PAGE IS  
OF POOR QUALITY**

| LOC               | OBJ | LINE | SOURCE                                         |
|-------------------|-----|------|------------------------------------------------|
| 000F-26C705F900   |     | 51   | MOV WORD PTR TESTBUF1,00F9H                    |
| 0014-C70500000000 | E   | 52   | MAJOR_FRAME_START:                             |
| 001A-E80000       | E   | 53   | MOV WORD PTR MINOR_FRAME, 0000H                |
| 001B-833E0000001  | E   | 54   | CALL GET_SCIENCE_DATA                          |
| 0022-7503         |     | 55   | CMP WORD PTR MODE,1                            |
| 0024-E28700       |     | 56   | JNE NORMAL_MODE                                |
| 0027-83060000002  | E   | 57   | JMP SPECIAL_MODE ;IIF MODE=1,SPECIAL MODE      |
| 002C-F700         |     | 58   | ADD WORD PTR ENERGY_COUTNTS,2                  |
| 0031-7D15         |     | 59   | CMP WORD PTR ENERGY_COUTNTS,B8                 |
| 0033-28150000     | E   | 60   | JGE ENERGY_MAX_NORMAL ?                        |
| 0037-2E8B870000   | E   | 61   | MOV DX,BX;WORD PTR ENERGY_COUTNTS              |
| 003C-F700         |     | 62   | MOV AX,BX;WORD PTR ENERGY_COMMANDSTEXTJ        |
| 003E-283EA000     | E   | 63   | NOT AX                                         |
| 0042-2E8703       |     | 64   | MOV DI,WORD PTR FFS2STR                        |
| 0045-E81470       |     | 65   | MOV ESTDTJAX TSEND ENERGY FFS CMD.             |
| 0048-C70500000000 | E   | 66   | JMP MASS_NORMAL ?CONTINUE WITH MASS            |
| 004E-2E8B870000   | E   | 67   | MOV WORD PTR MASS_COUTNTS,2                    |
| 0050-813E00000002 | E   | 68   | CMP WORD PTR MASS_COUTNTS,B16                  |
| 0054-832E0000     | E   | 69   | JGE MASS_MAX_NORMAL                            |
| 0058-268905       |     | 70   | MOV BX,BX;WORD PTR MASS_COUTNTS                |
| 005B-330500000002 | E   | 71   | MOV AX,BX;WORD PTR MASS_COMMANDSTEXTJ          |
| 0060-2E8B87000002 | E   | 72   | NOT AX                                         |
| 0064-7815         |     | 73   | MOV DI,WORD PTR FFS2STR                        |
| 0068-881E6000     | E   | 74   | MOV ESTDTJAX TSEND NORMAL MASS CMD.            |
| 006C-2E8B870000   | E   | 75   | JMP MAJOR_FRAME_OUT                            |
| 0071-F700         |     | 76   | MOV WORD PTR PASS_COUNT,10                     |
| 0073-2B3E0000     | E   | 77   | CMP WORD PTR PASS_COUNT,10                     |
| 0077-268905       |     | 78   | JC NOT_SPECIAL_MODE                            |
| 007A-E9A100       |     | 79   | MOV WORD PTR MODE,1                            |
| 007B-C70500000000 | E   | 80   | 1SET MODE SPECIAL                              |
| 0083-830600000001 | E   | 81   | MOV WORD PTR PASS_COUNT,0                      |
| 0088-833E00000A   | E   | 82   | JMP SPECIAL_MODE ENTER SPECIAL MODE            |
| 008B-720F         |     | 83   | MOV AX,BX;WORD PTR MASS_COMMANDS               |
| 008F-C70500000100 | E   | 84   | NOT AX                                         |
| 0093-C70500000006 | E   | 85   | MOV DI,WORD PTR FFS2STR TSEND 1ST MASS CMD.    |
| 0098-EB1190       |     | 86   | JMP MAJOR_FRAME_OUT                            |
| 009E-2EA10000     | E   | 87   | ADD WORD PTR ENERGY_COUTNTS_SPECIAL,2          |
| 00A4-8305000002   | E   | 88   | CMP WORD PTR ENERGY_COUTNTS_SPECIAL,775        |
| 00A8-813E00000003 | E   | 89   | JGE ENERGY_MAX_SPECIAL                         |
| 00AB-811E0000     | E   | 90   | MOV DX,BX;WORD PTR ENERGY_COUTNTS_SPECIAL      |
| 00BF-2E8B870000   | E   | 91   | MOV AX,BX;WORD PTR SPECIAL_MODE ENERGYBKJ      |
| 00C2-F700         |     | 92   | NOT AX                                         |
| 00C6-8B3E0000     | E   | 93   | MOV DI,WORD PTR FFS2STR TSEND SPECIAL ENERGY   |
| 00CA-260905       |     | 94   | JMP MASS_SPECIAL                               |
| 00CB-EB1490       |     | 95   | MOV WORD PTR ENERGY_COUTNTS_SPECIAL:           |
| 00E0-C70500000000 | E   | 96   | MOV AX,BX;WORD PTR SPECIAL_MODE ENERGY         |
| 00E6-2EA10000     | E   | 97   | NOT AX                                         |
| 00FA-F700         |     | 98   | MOV DI,WORD PTR FFS2STR TSEND MAX SPECIAL ENR. |
| 00FB-8B3E0000     | E   | 99   | JMP ESTDTJAX                                   |
| 00F0-268905       |     | 100  | MOV ESTDTJAX                                   |

| LOC  | ORJ            | LINE  | SOURCE                                |
|------|----------------|-------|---------------------------------------|
| 00E3 | BB6666666662   | E 106 | MASS_SPECTRAL:                        |
| 00E3 | 013E000001AEC  | E 107 | ADD WORD PTR MASS-COUNTS-SPECIAL,2    |
| 00EE | 7B15           | E 108 | CMP WORD PTR MASS-COUNTS-SPECIAL,3098 |
| 00F0 | 0B1E0000       | E 109 | JNE MASS_MAX-SPECIAL                  |
| 00F4 | 2E8B870000     | E 110 | MOV BX,WORD PTR MASS-COUNTS-SPECIAL   |
| 00F9 | F7B9           | E 111 | MOV AX,BX                             |
| 00FB | 9B3E000000     | E 112 | MOV PTR PTR_REGISTER,AX               |
| 00FF | 2669205        | E 113 | MOV DI,WORD PTR MASS_SPECTRAL         |
| 0102 | EB1A90         | E 114 | MOV ESTBDI,AX                         |
| 0105 | 07040000000000 | E 115 | MOV PTR_HADER_FRAME_OUT,DI            |
| 0108 | 07050000000000 | E 116 | MOV WORD PTR MASS-MODE,0              |
| 0111 | 2EA10000       | E 117 | MOV WORD PTR MASS-COUNTS-SPECIAL,0    |
| 0115 | F7B0           | E 118 | MOV AX,WORD PTR MASS-COMMANDS         |
| 0117 | 0B3E0000       | E 119 | MOV BX,WORD PTR PTR_REGISTER          |
| 011B | 2A69205        | E 120 | MOV ESTBDI,AX                         |
| 011E | 5B             | E 121 | JNE PTR_HADER_FRAME_OUT,DI            |
| 011F | 5B             | E 122 | POP BX                                |
| 0120 | 5F             | E 123 | POP DI                                |
| 0124 | C0             | E 124 | POKE PTR_HADER_FRAME_OUT,DI           |
| 0125 | 2A69205        | E 125 | JNE PTR_HADER_FRAME_OUT,DI            |
| 0126 | C0             | E 126 | ENDP                                  |
| 0127 | 2A69205        | E 127 | ENDC                                  |
| 0128 | C0             | E 128 | END                                   |
| 0129 | 2A69205        | E 129 | ENDC                                  |
| 012A | C0             | E 130 | END                                   |
| 012B | 2A69205        | E 131 | ENDC                                  |
| 012C | C0             | E 132 | END                                   |
| 012D | 2A69205        | E 133 | ENDC                                  |
| 012E | C0             | E 134 | END                                   |
| 012F | 2A69205        | E 135 | ENDC                                  |
| 0130 | C0             | E 136 | END                                   |
| 0131 | 2A69205        | E 137 | ENDC                                  |
| 0132 | C0             | E 138 | END                                   |
| 0133 | 2A69205        | E 139 | ENDC                                  |
| 0134 | C0             | E 140 | END                                   |
| 0135 | 2A69205        | E 141 | ENDC                                  |
| 0136 | C0             | E 142 | END                                   |
| 0137 | 2A69205        | E 143 | ENDC                                  |
| 0138 | C0             | E 144 | END                                   |
| 0139 | 2A69205        | E 145 | ENDC                                  |
| 013A | C0             | E 146 | END                                   |
| 013B | 2A69205        | E 147 | ENDC                                  |
| 013C | C0             | E 148 | END                                   |
| 013D | 2A69205        | E 149 | ENDC                                  |
| 013E | C0             | E 150 | END                                   |
| 013F | 2A69205        | E 151 | ENDC                                  |
| 0140 | C0             | E 152 | END                                   |
| 0141 | 2A69205        | E 153 | ENDC                                  |
| 0142 | C0             | E 154 | END                                   |
| 0143 | 2A69205        | E 155 | ENDC                                  |
| 0144 | C0             | E 156 | END                                   |
| 0145 | 2A69205        | E 157 | ENDC                                  |
| 0146 | C0             | E 158 | END                                   |
| 0147 | 2A69205        | E 159 | ENDC                                  |
| 0148 | C0             | E 160 | END                                   |
| 0149 | 2A69205        | E 161 | ENDC                                  |
| 014A | C0             | E 162 | END                                   |
| 014B | 2A69205        | E 163 | ENDC                                  |
| 014C | C0             | E 164 | END                                   |
| 014D | 2A69205        | E 165 | ENDC                                  |
| 014E | C0             | E 166 | END                                   |
| 014F | 2A69205        | E 167 | ENDC                                  |
| 0150 | C0             | E 168 | END                                   |
| 0151 | 2A69205        | E 169 | ENDC                                  |
| 0152 | C0             | E 170 | END                                   |
| 0153 | 2A69205        | E 171 | ENDC                                  |
| 0154 | C0             | E 172 | END                                   |
| 0155 | 2A69205        | E 173 | ENDC                                  |
| 0156 | C0             | E 174 | END                                   |
| 0157 | 2A69205        | E 175 | ENDC                                  |
| 0158 | C0             | E 176 | END                                   |
| 0159 | 2A69205        | E 177 | ENDC                                  |
| 015A | C0             | E 178 | END                                   |
| 015B | 2A69205        | E 179 | ENDC                                  |
| 015C | C0             | E 180 | END                                   |
| 015D | 2A69205        | E 181 | ENDC                                  |
| 015E | C0             | E 182 | END                                   |
| 015F | 2A69205        | E 183 | ENDC                                  |
| 0160 | C0             | E 184 | END                                   |
| 0161 | 2A69205        | E 185 | ENDC                                  |
| 0162 | C0             | E 186 | END                                   |
| 0163 | 2A69205        | E 187 | ENDC                                  |
| 0164 | C0             | E 188 | END                                   |
| 0165 | 2A69205        | E 189 | ENDC                                  |
| 0166 | C0             | E 190 | END                                   |
| 0167 | 2A69205        | E 191 | ENDC                                  |
| 0168 | C0             | E 192 | END                                   |
| 0169 | 2A69205        | E 193 | ENDC                                  |
| 016A | C0             | E 194 | END                                   |
| 016B | 2A69205        | E 195 | ENDC                                  |
| 016C | C0             | E 196 | END                                   |
| 016D | 2A69205        | E 197 | ENDC                                  |
| 016E | C0             | E 198 | END                                   |
| 016F | 2A69205        | E 199 | ENDC                                  |
| 0170 | C0             | E 200 | END                                   |
| 0171 | 2A69205        | E 201 | ENDC                                  |
| 0172 | C0             | E 202 | END                                   |
| 0173 | 2A69205        | E 203 | ENDC                                  |
| 0174 | C0             | E 204 | END                                   |
| 0175 | 2A69205        | E 205 | ENDC                                  |
| 0176 | C0             | E 206 | END                                   |
| 0177 | 2A69205        | E 207 | ENDC                                  |
| 0178 | C0             | E 208 | END                                   |
| 0179 | 2A69205        | E 209 | ENDC                                  |
| 017A | C0             | E 210 | END                                   |
| 017B | 2A69205        | E 211 | ENDC                                  |
| 017C | C0             | E 212 | END                                   |
| 017D | 2A69205        | E 213 | ENDC                                  |
| 017E | C0             | E 214 | END                                   |
| 017F | 2A69205        | E 215 | ENDC                                  |
| 0180 | C0             | E 216 | END                                   |
| 0181 | 2A69205        | E 217 | ENDC                                  |
| 0182 | C0             | E 218 | END                                   |
| 0183 | 2A69205        | E 219 | ENDC                                  |
| 0184 | C0             | E 220 | END                                   |
| 0185 | 2A69205        | E 221 | ENDC                                  |
| 0186 | C0             | E 222 | END                                   |
| 0187 | 2A69205        | E 223 | ENDC                                  |
| 0188 | C0             | E 224 | END                                   |
| 0189 | 2A69205        | E 225 | ENDC                                  |
| 018A | C0             | E 226 | END                                   |
| 018B | 2A69205        | E 227 | ENDC                                  |
| 018C | C0             | E 228 | END                                   |
| 018D | 2A69205        | E 229 | ENDC                                  |
| 018E | C0             | E 230 | END                                   |
| 018F | 2A69205        | E 231 | ENDC                                  |
| 0190 | C0             | E 232 | END                                   |
| 0191 | 2A69205        | E 233 | ENDC                                  |
| 0192 | C0             | E 234 | END                                   |
| 0193 | 2A69205        | E 235 | ENDC                                  |
| 0194 | C0             | E 236 | END                                   |
| 0195 | 2A69205        | E 237 | ENDC                                  |
| 0196 | C0             | E 238 | END                                   |
| 0197 | 2A69205        | E 239 | ENDC                                  |
| 0198 | C0             | E 240 | END                                   |
| 0199 | 2A69205        | E 241 | ENDC                                  |
| 019A | C0             | E 242 | END                                   |
| 019B | 2A69205        | E 243 | ENDC                                  |
| 019C | C0             | E 244 | END                                   |
| 019D | 2A69205        | E 245 | ENDC                                  |
| 019E | C0             | E 246 | END                                   |
| 019F | 2A69205        | E 247 | ENDC                                  |
| 01A0 | C0             | E 248 | END                                   |
| 01A1 | 2A69205        | E 249 | ENDC                                  |
| 01A2 | C0             | E 250 | END                                   |
| 01A3 | 2A69205        | E 251 | ENDC                                  |
| 01A4 | C0             | E 252 | END                                   |
| 01A5 | 2A69205        | E 253 | ENDC                                  |
| 01A6 | C0             | E 254 | END                                   |
| 01A7 | 2A69205        | E 255 | ENDC                                  |
| 01A8 | C0             | E 256 | END                                   |
| 01A9 | 2A69205        | E 257 | ENDC                                  |
| 01AA | C0             | E 258 | END                                   |
| 01AB | 2A69205        | E 259 | ENDC                                  |
| 01AC | C0             | E 260 | END                                   |
| 01AD | 2A69205        | E 261 | ENDC                                  |
| 01AE | C0             | E 262 | END                                   |
| 01AF | 2A69205        | E 263 | ENDC                                  |
| 01B0 | C0             | E 264 | END                                   |
| 01B1 | 2A69205        | E 265 | ENDC                                  |
| 01B2 | C0             | E 266 | END                                   |
| 01B3 | 2A69205        | E 267 | ENDC                                  |
| 01B4 | C0             | E 268 | END                                   |
| 01B5 | 2A69205        | E 269 | ENDC                                  |
| 01B6 | C0             | E 270 | END                                   |
| 01B7 | 2A69205        | E 271 | ENDC                                  |
| 01B8 | C0             | E 272 | END                                   |
| 01B9 | 2A69205        | E 273 | ENDC                                  |
| 01BA | C0             | E 274 | END                                   |
| 01BB | 2A69205        | E 275 | ENDC                                  |
| 01BC | C0             | E 276 | END                                   |
| 01BD | 2A69205        | E 277 | ENDC                                  |
| 01BE | C0             | E 278 | END                                   |
| 01BF | 2A69205        | E 279 | ENDC                                  |
| 01C0 | C0             | E 280 | END                                   |
| 01C1 | 2A69205        | E 281 | ENDC                                  |
| 01C2 | C0             | E 282 | END                                   |
| 01C3 | 2A69205        | E 283 | ENDC                                  |
| 01C4 | C0             | E 284 | END                                   |
| 01C5 | 2A69205        | E 285 | ENDC                                  |
| 01C6 | C0             | E 286 | END                                   |
| 01C7 | 2A69205        | E 287 | ENDC                                  |
| 01C8 | C0             | E 288 | END                                   |
| 01C9 | 2A69205        | E 289 | ENDC                                  |
| 01CA | C0             | E 290 | END                                   |
| 01CB | 2A69205        | E 291 | ENDC                                  |
| 01CC | C0             | E 292 | END                                   |
| 01CD | 2A69205        | E 293 | ENDC                                  |
| 01CE | C0             | E 294 | END                                   |
| 01CF | 2A69205        | E 295 | ENDC                                  |
| 01D0 | C0             | E 296 | END                                   |
| 01D1 | 2A69205        | E 297 | ENDC                                  |
| 01D2 | C0             | E 298 | END                                   |
| 01D3 | 2A69205        | E 299 | ENDC                                  |
| 01D4 | C0             | E 300 | END                                   |
| 01D5 | 2A69205        | E 301 | ENDC                                  |
| 01D6 | C0             | E 302 | END                                   |
| 01D7 | 2A69205        | E 303 | ENDC                                  |
| 01D8 | C0             | E 304 | END                                   |
| 01D9 | 2A69205        | E 305 | ENDC                                  |
| 01DA | C0             | E 306 | END                                   |
| 01DB | 2A69205        | E 307 | ENDC                                  |
| 01DC | C0             | E 308 | END                                   |
| 01DD | 2A69205        | E 309 | ENDC                                  |
| 01DE | C0             | E 310 | END                                   |
| 01DF | 2A69205        | E 311 | ENDC                                  |
| 01E0 | C0             | E 312 | END                                   |
| 01E1 | 2A69205        | E 313 | ENDC                                  |
| 01E2 | C0             | E 314 | END                                   |
| 01E3 | 2A69205        | E 315 | ENDC                                  |
| 01E4 | C0             | E 316 | END                                   |
| 01E5 | 2A69205        | E 317 | ENDC                                  |
| 01E6 | C0             | E 318 | END                                   |
| 01E7 | 2A69205        | E 319 | ENDC                                  |
| 01E8 | C0             | E 320 | END                                   |
| 01E9 | 2A69205        | E 321 | ENDC                                  |
| 01EA | C0             | E 322 | END                                   |
| 01EB | 2A69205        | E 323 | ENDC                                  |
| 01EC | C0             | E 324 | END                                   |
| 01ED | 2A69205        | E 325 | ENDC                                  |
| 01EE | C0             | E 326 | END                                   |
| 01EF | 2A69205        | E 327 | ENDC                                  |
| 01F0 | C0             | E 328 | END                                   |
| 01F1 | 2A69205        | E 329 | ENDC                                  |
| 01F2 | C0             | E 330 | END                                   |
| 01F3 | 2A69205        | E 331 | ENDC                                  |
| 01F4 | C0             | E 332 | END                                   |
| 01F5 | 2A69205        | E 333 | ENDC                                  |
| 01F6 | C0             | E 334 | END                                   |
| 01F7 | 2A69205        | E 335 | ENDC                                  |
| 01F8 | C0             | E 336 | END                                   |
| 01F9 | 2A69205        | E 337 | ENDC                                  |
| 01FA | C0             | E 338 | END                                   |
| 01FB | 2A69205        | E 339 | ENDC                                  |
| 01FC | C0             | E 340 | END                                   |
| 01FD | 2A69205        | E 341 | ENDC                                  |
| 01FE | C0             | E 342 | END                                   |
| 01FF | 2A69205        | E 343 | ENDC                                  |

ORIGINAL PAGE IS  
OF POOR QUALITY

SERIES-III 8086/8087/8038 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE MINOR  
 OBJECT MODULE PLACED IN "RF6MINOR.D0J"  
 INVOCATION LINE CONTROLS: TITLE(TO:25:00 17-OCT-85)

## Loc Obj Line Source

```

1      1 *          MINOR.ASH
2      2 *          MINOR.ASH
3      3 *          PROCEDURE NAME MINOR-FRAME-INTERRUPT
4      4 *          PROGRAMMED W.C. GIBSON
5      5 *          LAST REVISION 17 OCT 1985
6      6 *          INPUTS SCIENCE DATA WORD FROM "SCIENCE-DATA"
7      7 *          OUTPUT SENDS SCIENCE DATA WORD TO ROCKET
8      8 *          DESTROYS NOTHING
9      9 *          FUNCTIONS TO MOVE THE 2ND OF TWO SCIENCE DATA WORDS
10     10 *          FROM 11'S STORAGE LOCATION AT SCIENCE-DATA
11     11 *          TO THE ROCKET INTERFACE SHIFT REGISTER.
12     12 *          NAME MINOR
13     13 *          DATA SEGMENT PUBLIC
14     14 *          EXTRN SCIENCE-DATA NEAR
15     15 *          EXTRN MINOR-FRAME NEAR
16     16 *          PPIPORTA NEAR
17     17 *          PIC-ICWI NEAR
18     18 *          ENDSEGMENT
19     19 *          ASSUME CS:CODE DS:DATA
20     20 *          EXTRN GET-SCIENCE-DATA:NEAR
21     21 *          PUBLIC MINOR
22     22 *          DATA SEGMENT PUBLIC
23     23 *          EXTRN DATA NEAR
24     24 *          EXTRN DATA NEAR
25     25 *          EXTRN MINOR-FRAME NEAR
26     26 *          EXTRN PPIPORTA NEAR
27     27 *          EXTRN PIC-ICWI NEAR
28     28 *          ENDSEGMENT
29     29 *          ASSUME CS:CODE DS:DATA
30     30 *          EXTRN GET-SCIENCE-DATA:NEAR
31     31 *          PUBLIC MINOR-FRAME-INTERRUPT
32     32 *          PROC PUSH DI PRESERVE ... NEAR
33     33 *          PUSH BX TAIL ...
34     34 *          PUSH AX WORKING REGISTERS
35     35 *          MOV AX,0020H UNION-SPECIFIC EDI
36     36 *          MOV EDI,DX !SEND EDI COMMAND
37     37 *          AND WORD PTR MINOR-FRAME,1
38     38 *          CMP WORD PTR MINOR-FRAME,3
39     39 *          JNE MINOR-FRAME-1
40     40 *          CALL GET-SCIENCE-DATA
41     41 *          CMP WORD PTR MINOR-FRAME,2 !TEST FOR MINOR FRAME 1
42     42 *          JNE MINOR-FRAME-OUT
43     43 *          MOV BX,WORD PTR DATASR
44     44 *          MOV AX,WORD PTR SCIENCE-DATW
45     45 *          MOV ES:EDI,DX !SEND TO ROCKET
46     46 *          RETF AX ;RETURN ...
47     47 *          FETCH-NEXT-SCIENCE:
48     48 *          FETCH-SCIENCE-DATW:
49     49 *          MOV ES:EDI,DX !SEND TO ROCKET
50     50 *          RETF AX ;RETURN ...

```

ORIGINAL PAGE IS  
 OF POOR QUALITY

| LOC | OBJ     | LINE | SOURCE                    |
|-----|---------|------|---------------------------|
| 1   | 002E-5B | 51   | POP BX :ALL::             |
| 2   | 002F-5F | 52   | POP DI :WORKING REGISTERS |
| 3   | 0030-4F | 53   | RET :END                  |
| 4   |         | 54   | MINOR-FRAME=INTERRUPT     |
| 5   |         | 55   | ENBR                      |
| 6   |         | 56   | END                       |

ASSEMBLY COMPLETE, NO ERRORS FOUND

ORIGINAL PAGE IS  
OF POOR QUALITY

SERIES-III 8086/8087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE DATAN  
OBJECT MODULE PLACED IN 11:8:DATA:OBJ  
INVOCATION-LINE CONTROLS: TITLE02:20:00 17 DEC-85

ORIGINAL PAGE IS  
OF POOR QUALITY

## LOC OBJ LINE SOURCE

```

000F 268905      51    CLEAR_A0_AI:    MOV ESTDTJ,AX
0012 E84500      52    CALL DELAY          WAIT & MICRO.
0013 E80200      53    MOV AX,000EH   FCLEAR AI
0018 268903      54    READ_FIRST_WORD:  MOV ESTDTJ,AX
001B E83C00      55    CALL DELAY          WAIT AGAIN
001E E83900      56    CALL DELAY          iFETCH DET.
0021 268804      57    iFETCH_DATA_WORD: MOV AX,WORD PTR ESTDTJ
0024 F7D0        58    NOT AX             iSEND DATA
0026 803E0000    59    MOV DI,WORD PTR DATASTR
002A 268905      60    MOV WORD PTR ESTDTJ,AX
002D 803E0000    61    MOV DI,WORD PTR PPI_CONTROL
0031 E80700      62    MOV AX,0007H   SET AI
0034 268903      63    MOV ESTDTJ,AX
0037 E82000      64    CALL DELAY          WAIT
003A E80200      65    MOV AX,0002H   TCLR A0
003B 268905      66    MOV ESTDTJ,AX
0040 E81700      67    CALL DELAY          TCLR A0
0043 E81400      68    CALL DELAY          iFETCH_SECOND_WORD: iFETCH 2ND
0046 268804      69    NOT AX,WORD PTR ESTDTJ
0049 F7D0        70    MOV DI,WORD PTR PPI_PORTA
004B 803E0000    71    MOV WORD PTR ESTDTJ,AX
004F 268905      72    MOV WORD PTR SCIENCE_DATA2,AX
0052 A30200      73    POP AX           STORE 2ND WRD
0053 38          74    POP AX           RESTORE
0056 3B          75    POP BX           POP BX
0057 3E          76    POP SI           TALL
0058 3F          77    POP DI           REGISTERS
0059 C3          78    RET              DONE
005A 90          79    GET_SCIENCE_DATA
005B C3          80    DELAY 3 CLK'S
005C 90          81    PROC NEAR
005D C3          82    RET_NEAR
005E C3          83    DELAY 3 CLK'S
005F C3          84    CODE
0060 C3          85    ENDS

```

ASSEMBLY COMPLETE, NO ERRORS FOUND

ORIGINAL PAGE IS  
OF POOR QUALITY

SERIES-III 8086/8087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE FIMS  
 OBJECT MODULE PLACED IN :F&:FIMCAL.OBJ  
 INVOCATION LINE CONTROLS: TITLE(CAL ONLY 31 DEC. 85)

| LOC | OBJ | LINE | SOURCE           |
|-----|-----|------|------------------|
| 1   |     | 1    | *****            |
| 2   |     | 2    | ** ECAL.ASM      |
| 3   |     | 3    | *****            |
| 4   |     | 4    | *****            |
| 5   |     | 5    | *****            |
| 6   |     | 6    | *****            |
| 7   |     | 7    | *****            |
| 8   |     | 8    | *****            |
| 9   |     | 9    | *****            |
| 10  |     | 10   | *****            |
| 11  |     | 11   | *****            |
| 12  |     | 12   | *****            |
| 13  |     | 13   | *****            |
| 14  |     | 14   | *****            |
| 15  |     | 15   | *****            |
| 16  |     | 16   | *****            |
| 17  |     | 17   | *****            |
| 18  |     | 18   | *****            |
| 19  |     | 19   | *****            |
| 20  |     | 20   | *****            |
| 21  |     | 21   | *****            |
| 22  |     | 22   | *****            |
| 23  |     | 23   | *****            |
| 24  |     | 24   | *****            |
| 25  |     | 25   | *****            |
| 26  |     | 26   | *****            |
| 27  |     | 27   | *****            |
| 28  |     | 28   | DATA SEGMENT     |
| 29  |     | 29   | PSEIPHERALS DM   |
| 30  |     | 30   | PROM SEGMENT DM  |
| 31  |     | 31   | PROM_OFFSET DM   |
| 32  |     | 32   | RAM SEGMENT DM   |
| 33  |     | 33   | RAM_OFFSET DM    |
| 34  |     | 34   | STACK SEGMENT DM |
| 35  |     | 35   | STACK_POINTER DM |
| 36  |     | 36   | PPI_PORTA DM     |
| 37  |     | 37   | PPI_PORTB DM     |
| 38  |     | 38   | PPI_PORTC DM     |
| 39  |     | 39   | PPI_CONTROL DM   |
| 40  |     | 40   | PIC_ICW1 DM      |
| 41  |     | 41   | PPI_S1STR DM     |
| 42  |     | 42   | PPI_S2STR DM     |
| 43  |     | 43   | HATASIR DM       |
| 44  |     | 44   | PERIPHERALS      |
| 45  |     | 45   | FROM SEGMENT     |
| 46  |     | 46   | RAM SEGMENT      |
| 47  |     | 47   | RAM_OFFSET       |
| 48  |     | 48   | PUBLIC           |
| 49  |     | 49   | STACK SEGMENT    |
| 50  |     | 50   | STACK_POINTER    |

ORIGINAL PAGE  
OF POOR QUALITY



| LOC  | OBJ      | LINE | SOURCE                                       |
|------|----------|------|----------------------------------------------|
| 0026 | BS       | 97   | MOV AX,DATA<br>MOV DS,AX :RE_INIT.DS         |
| 0029 | SEDS     | 98   | MOV AX,WORD PTR PERIPHERALS                  |
| 002B | A10000   | 99   | MOV ES,AX :INIT_ES_TO_SEQ_OF_PERIPH'S        |
| 002E | SECO     | 100  | MOV AX,WORD PTR STACK SEGMENT                |
| 0030 | A10A00   | 101  | MOV SS,AX :INIT_SS_TO_STACK_SEGMENT!         |
| 0033 | SEDO     | 102  |                                              |
| 0035 | A10C00   | 103  | MOV AX,WORD PTR STACK_POINTER                |
| 0038 | 8BE0     | 104  | MOV SP,AX :INITIALIZE_SP                     |
| 003A | E80000   | 105  | CALL SB259 :CONFIGURE_8259_FOR_NORMAL_OP.    |
| 003D | E80000   | 106  | CALL SB255 :CONFIGURE_8253                   |
| 0040 | E80000   | 107  | CALL SB254 :LOAD_INTERRUPT_LINKAGE_ADDS      |
| 0043 | 813E1A00 | 108  | MOV DI,WORD PTR PPS2STR                      |
| 0047 | 2FA10000 | 109  | MOV AX,WORD PTR ENERGY_COMMANDS              |
| 0048 | F700     | 110  | NOT AX :INVERT_AX_FOR_INTERFACE              |
| 004D | 268305   | 111  | MOV ES,DLIJ.AX :SEND_STARTING_ENERGY_PPS_CMD |
| 0050 | 8B3E1800 | 112  | MOV DI,WORD PTR PPS3STR                      |
| 0054 | 2FA10800 | 113  | MOV AX,WORD PTR MASS_COMMANDS                |
| 0058 | F700     | 114  | NOT AX :INVERT_PPS_COMMANDS                  |
| 005A | 268305   | 115  | MOV ES,DLIJ.AX :SEND_JINIT_MASS_PPS_COMMAND  |
| 005D | 8B3E1C00 | 116  | MOV DI,WORD PTR DATASTR                      |
| 0061 | E80000   | 117  | MOV AX,0 :LOAD_1ST_SCIENCE_WORD              |
| 0064 | 268905   | 118  | MOV ES,DLIJ.AX :SEND_0_TO_ROCKET_1ST         |
| 0067 | FB       | 119  | SJ :TURN_ON_INTERRUPT_SYSTEM                 |
| 0068 | F4       | 120  | HLT :STOP_AND_WAIT_FOR_INTERRUPTS            |
| 0069 | EBFC     | 121  | JMP TURN_ON_INTERRUPTS                       |
|      |          | 122  | ENDS                                         |
|      |          | 123  | END                                          |
| 27   |          |      | ASSEMBLY COMPLETE. NO ERRORS FOUND           |

ORIGINAL PAGE IS  
OF POOR QUALITY

**APPENDIX C**

**Lab Data Plots**

INNER CHANNEL H<sub>2</sub> 1 KeV



### OUTER CHANNEL H<sub>2</sub> 1 KeV



**OUTER CHANNEL N<sub>2</sub> 500eV**



**OUTER CHANNEL  $N_2$  300eV**



**OUTER CHANNEL  $N_2$  1 KeV**



**2 KeV N<sub>1</sub><sup>+</sup> N<sub>2</sub><sup>+</sup>**  
**WIDE SCAN FOR GHOST PEAKS**



INNER CHANNEL  $H_2$  2 KeV



ES A VOLTAGE

C-2

**APPENDIX D**  
***Listing of Power Supply Settings***

0194

## FIMS COMMAND TABLES

| ENERGY   | ENERGY PPS | MASS PPS | PROM 1 | PROM2 | SPECIES |
|----------|------------|----------|--------|-------|---------|
| 1.000    | .150       | 25.063   | 0000   | 0203  | 30      |
| 1.200    | .150       | 25.077   | 0000   | 0203  | 30      |
| 1.439    | .150       | 25.092   | 0000   | 0203  | 30      |
| 1.727    | .150       | 25.111   | 0000   | 0203  | 30      |
| 2.073    | .173       | 25.134   | 000F   | 0203  | 30      |
| 2.487    | .207       | 25.161   | 0021   | 0203  | 30      |
| 2.985    | .249       | 25.193   | 0033   | 0203  | 30      |
| 3.582    | .298       | 25.232   | 0046   | 0204  | 30      |
| 4.298    | .358       | 25.279   | 0058   | 0204  | 30      |
| 5.158    | .430       | 25.336   | 006A   | 0204  | 30      |
| 6.189    | .516       | 25.403   | 007D   | 0204  | 30      |
| 7.427    | .619       | 25.484   | 008F   | 0205  | 30      |
| 8.913    | .743       | 25.582   | 00A1   | 0205  | 30      |
| 10.695   | .891       | 25.679   | 00B4   | 0205  | 30      |
| 12.834   | 1.070      | 25.839   | 00C6   | 0206  | 30      |
| 15.401   | 1.283      | 26.008   | 00D8   | 0207  | 30      |
| 18.481   | 1.540      | 26.210-  | 00EB   | 0207  | 30      |
| 22.177   | 1.848      | 26.453-  | 00FD   | 0208  | 30      |
| 26.613   | 2.218      | 26.746   | 010F   | 0209  | 30      |
| 31.935   | 2.661      | 27.097-  | 0122   | 020B  | 30      |
| 38.322   | 3.194      | 27.519 - | 0134   | 020C  | 30      |
| 45.987   | 3.832      | 28.027   | 0146   | 020E  | 30      |
| 55.184   | 4.599      | 28.638   | 0158   | 0210  | 30      |
| 66.221   | 5.518      | 29.373   | 016B   | 0213  | 30      |
| 79.465   | 6.622      | 30.258   | 017D   | 0216  | 30      |
| 95.358   | 7.947      | 31.324   | 018F   | 0219  | 30      |
| 114.430  | 9.536      | 32.610   | 01A2   | 021D  | 30      |
| 137.316  | 11.443     | 34.162   | 01B4   | 0222  | 30      |
| 164.779  | 13.732     | 36.035   | 01C6   | 0227  | 30      |
| 197.734  | 16.478     | 38.299   | 01D9   | 022E  | 30      |
| 237.281  | 19.773     | 41.038   | 01EB   | 0234  | 30      |
| 284.738  | 23.728     | 44.354   | 01FD   | 023C  | 30      |
| 341.685  | 28.474     | 48.374   | 0210   | 0245  | 30      |
| 410.022  | 34.169     | 53.251   | 0222   | 024F  | 30      |
| 492.027  | 41.002     | 59.175   | 0234   | 0259  | 30      |
| 590.432  | 49.203     | 66.377   | 0247   | 0265  | 30      |
| 708.518  | 59.043     | 75.138   | 0259   | 0271  | 30      |
| 850.222  | 70.852     | 85.804   | 026B   | 027F  | 30      |
| 1020.266 | 85.022)    | 98.796)  | 027E   | 028D  | 30      |
| 1224.320 | 102.027    | 114.624  | 0290   | 029C  | 30      |
| 1469.184 | 122.432    | 133.913  | 02A2   | 02AB  | 30      |
| 1763.020 | 146.918    | 157.416  | 02B5   | 02BC  | 30      |
| 2115.624 | 176.302    | 186.048  | 02C7   | 02CC  | 30      |
| 1.000    | .150       | 23.077   | 0000   | 01FB  | 28      |
| 1.200    | .150       | 23.089   | 0000   | 01FB  | 28      |
| 1.439    | .150       | 23.105   | 0000   | 01FB  | 28      |
| 1.727    | .150       | 23.123   | 0000   | 01FB  | 28      |
| 2.073    | .173       | 23.145   | 000F   | 01FB  | 28      |
| 2.487    | .207       | 23.172   | 0021   | 01FB  | 28      |
| 2.985    | .249       | 23.204   | 0033   | 01FB  | 28      |
| 3.582    | .298       | 23.242   | 0046   | 01FB  | 28      |
| 4.298    | .358       | 23.288   | 0058   | 01FC  | 28      |
| 5.158    | .430       | 23.344   | 006A   | 01FC  | 28      |
| 6.189    | .516       | 23.410   | 007D   | 01FC  | 28      |
| 7.427    | .619       | 23.490   | 008F   | 01FC  | 28      |
| 8.913    | .743       | 23.585   | 00A1   | 01FD  | 28      |
| 10.695   | .891       | 23.700   | 00B4   | 01FD  | 28      |
| 12.834   | 1.070      | 23.838   | 00C6   | 01FE  | 28      |
| 15.401   | 1.283      | 24.003   | 00D8   | 01FF  | 28      |
| 18.481   | 1.540      | 24.202   | 00EB   | 01FF  | 28      |
| 22.177   | 1.848      | 24.441   | 00FD   | 0200  | 28      |
| 24.413   | 2.218      | 24.729   | 010F   | 0202  | 28      |

31 Dec. 85

Funs-C

For 815v float  
Funs 3 Program

Cal.Prom

(94.4-182.1)m-  
(99.1-183.7)m+  
(95.2-184.4)m+  
(98.2-185.8)m-

Cal.Prom!

(86.4-185.0)E-  
(86.2 184.3)E+ORIGINAL PAGE IS  
OF POOR QUALITY

|          |          |         |      |      |    |
|----------|----------|---------|------|------|----|
| 38.322   | 3.194    | 25.487  | 0134 | 0205 | 28 |
| 45.987   | 3.832    | 25.986  | 0146 | 0207 | 28 |
| 55.184   | 4.599    | 26.586  | 0158 | 0209 | 28 |
| 66.221   | 5.518    | 27.308  | 016B | 020C | 28 |
| 79.465   | 6.622    | 28.178  | 017D | 020F | 28 |
| 95.358   | 7.947    | 29.226  | 018F | 0212 | 28 |
| 114.430  | 9.536    | 30.490  | 01A2 | 0217 | 28 |
| 137.316  | 11.443   | 32.015  | 01B4 | 021C | 28 |
| 164.779  | 13.732   | 33.858  | 01C6 | 0221 | 28 |
| 197.734  | 16.478   | 36.085  | 01D9 | 0228 | 28 |
| 237.281  | 19.773   | 38.781  | 01EB | 022F | 28 |
| 284.738  | 23.728   | 42.047  | 01FD | 0237 | 28 |
| 341.685  | 28.474   | 46.008  | 0210 | 0240 | 28 |
| 410.022  | 34.169   | 50.817  | 0222 | 024A | 28 |
| 492.027  | 41.002   | 56.661  | 0234 | 0255 | 28 |
| 590.432  | 49.203   | 63.769  | 0247 | 0261 | 28 |
| 708.518  | 59.043   | 72.423  | 0259 | 026E | 28 |
| 850.222  | 70.852   | 82.946  | 026B | 027B | 28 |
| 1020.266 | 85.022   | 95.816) | 027E | 028A | 28 |
| 1224.320 | 102.027  | 111.483 | 0290 | 0299 | 28 |
| 1469.184 | 122.432  | 130.588 | 02A2 | 02A9 | 28 |
| 1763.020 | 146.918  | 153.884 | 02B5 | 02B9 | 28 |
| 2115.624 | (176.302 | 182.282 | 02C7 | 02CA | 28 |
| 1.000    | .150     | .150    | 0000 | 0000 | 2  |
| 1.200    | .150     | .150    | 0000 | 0000 | 2  |
| 1.439    | .150     | .150    | 0000 | 0000 | 2  |
| 1.727    | .150     | .150    | 0000 | 0000 | 2  |
| 2.073    | .150     | .150    | 0000 | 0000 | 2  |
| 2.487    | .166     | .150    | 000B | 0000 | 2  |
| 2.985    | .199     | .150    | 001D | 0000 | 2  |
| 3.582    | .239     | .150    | 002F | 0000 | 2  |
| 4.298    | .287     | .150    | 0042 | 0000 | 2  |
| 5.158    | .344     | .150    | 0054 | 0000 | 2  |
| 6.189    | .413     | .150    | 0066 | 0000 | 2  |
| 7.427    | .495     | .150    | 0079 | 0000 | 2  |
| 8.913    | .594     | .150    | 008B | 0000 | 2  |
| 10.695   | .713     | .150    | 009D | 0000 | 2  |
| 12.834   | .856     | .150    | 00AF | 0000 | 2  |
| 15.401   | 1.027    | .150    | 00C2 | 0000 | 2  |
| 18.481   | 1.232    | .150    | 00D4 | 0000 | 2  |
| 22.177   | 1.478    | .150    | 00E6 | 0000 | 2  |
| 26.613   | 1.774    | .150    | 00F9 | 0000 | 2  |
| 31.935   | 2.129    | .150    | 010B | 0000 | 2  |
| 38.322   | 2.555    | .150    | 011D | 0000 | 2  |
| 45.987   | 3.066    | .150    | 0130 | 0000 | 2  |
| 55.184   | 3.679    | .150    | 0142 | 0000 | 2  |
| 66.221   | 4.415    | .150    | 0154 | 0000 | 2  |
| 79.465   | 5.298    | .150    | 0167 | 0000 | 2  |
| 95.358   | 6.357    | .150    | 0179 | 0000 | 2  |
| 114.430  | 7.629    | .150    | 018B | 0000 | 2  |
| 137.316  | 9.154    | .150    | 019E | 0000 | 2  |
| 164.779  | 10.985   | .150    | 01B0 | 0000 | 2  |
| 197.734  | 13.182   | .150    | 01C2 | 0000 | 2  |
| 237.281  | 15.819   | .150    | 01D5 | 0000 | 2  |
| 284.738  | 18.983   | .150    | 01E7 | 0000 | 2  |
| 341.685  | 22.779   | .150    | 01F9 | 0000 | 2  |
| 410.022  | 27.335   | .150    | 020C | 0000 | 2  |
| 492.027  | 32.802   | .150    | 021E | 0000 | 2  |
| 590.432  | 39.362   | .150    | 0230 | 0000 | 2  |
| 708.518  | 47.235   | .150    | 0243 | 0000 | 2  |
| 850.222  | 56.681   | .150    | 0255 | 0000 | 2  |
| 1020.266 | 68.018   | .150    | 0267 | 0000 | 2  |
| 1224.320 | 81.621   | .150    | 027A | 0000 | 2  |
| 1469.184 | 97.946   | .150    | 028C | 0000 | 2  |
| 1763.020 | 117.535  | .150    | 029F | 0000 | 2  |

ORIGINAL PAGE IS  
OF POOR QUALITY

75

|          |         |         |      |      |    |
|----------|---------|---------|------|------|----|
| 2115.624 | 141.042 | .130    | 0281 | 0000 | 2  |
| 1.000    | .150    | 26.861  | 0000 | 020A | 32 |
| 1.200    | .150    | 26.874  | 0000 | 020A | 32 |
| 1.439    | .150    | 26.890  | 0000 | 020A | 32 |
| 1.727    | .150    | 26.910  | 0000 | 020A | 32 |
| 2.073    | .173    | 26.933  | 000F | 020A | 32 |
| 2.487    | .207    | 26.960  | 0021 | 020A | 32 |
| 2.985    | .249    | 26.993  | 0033 | 020A | 32 |
| 3.582    | .298    | 27.033  | 0046 | 020B | 32 |
| 4.298    | .358    | 27.081  | 0058 | 020B | 32 |
| 5.158    | .430    | 27.138  | 006A | 020B | 32 |
| 6.189    | .516    | 27.207  | 007D | 020B | 32 |
| 7.427    | .619    | 27.289  | 008F | 020B | 32 |
| 8.913    | .743    | 27.388  | 00A1 | 020C | 32 |
| 10.695   | .891    | 27.507  | 00B4 | 020C | 32 |
| 12.834   | 1.070   | 27.650  | 00C6 | 020D | 32 |
| 15.401   | 1.283   | 27.821  | 00D8 | 020D | 32 |
| 18.481   | 1.540   | 28.027  | 00ED | 020E | 32 |
| 22.177   | 1.848   | 28.274  | 00FD | 020F | 32 |
| 26.613   | 2.218   | 28.571  | 010F | 0210 | 32 |
| 31.935   | 2.661   | 28.928  | 0122 | 0211 | 32 |
| 38.322   | 3.194   | 29.357  | 0134 | 0213 | 32 |
| 45.987   | 3.832   | 29.873  | 0146 | 0215 | 32 |
| 55.184   | 4.599   | 30.494  | 0158 | 0217 | 32 |
| 66.221   | 5.518   | 31.241  | 016B | 0219 | 32 |
| 79.465   | 6.622   | 32.140  | 017D | 021C | 32 |
| 95.358   | 7.947   | 33.223  | 018F | 021F | 32 |
| 114.430  | 9.536   | 34.529  | 01A2 | 0223 | 32 |
| 137.316  | 11.443  | 36.104  | 01B4 | 022B | 32 |
| 164.779  | 13.732  | 38.005  | 01C6 | 022D | 32 |
| 197.734  | 16.478  | 40.302  | 01D9 | 0233 | 32 |
| 237.281  | 19.773  | 43.079  | 01EB | 0239 | 32 |
| 284.738  | 23.728  | 46.441  | 01FD | 0241 | 32 |
| 341.685  | 28.474  | 50.514  | 0210 | 0249 | 32 |
| 410.022  | 34.169  | 55.454  | 0222 | 0253 | 32 |
| 492.027  | 41.002  | 61.451  | 0234 | 025D | 32 |
| 590.432  | 49.203  | 68.736  | 0247 | 0268 | 32 |
| 708.518  | 59.043  | 77.594  | 0259 | 0274 | 32 |
| 850.222  | 70.852  | 88.372  | 026B | 0282 | 32 |
| 1020.266 | 85.022  | 101.492 | 027E | 028F | 32 |
| 1224.320 | 102.027 | 117.466 | 0290 | 029E | 32 |
| 1469.184 | 122.432 | 136.920 | 02A2 | 02AE | 32 |
| 1763.020 | 146.918 | 160.611 | 02B5 | 02BE | 32 |
| 2115.624 | 176.302 | 189.455 | 02C7 | 02CE | 32 |
| 1.000    | .150    | 4.156   | 0000 | 014E | 16 |
| 1.200    | .150    | 4.167   | 0000 | 014F | 16 |
| 1.439    | .150    | 4.179   | 0000 | 014F | 16 |
| 1.727    | .150    | 4.195   | 0000 | 014F | 16 |
| 2.073    | .173    | 4.213   | 000F | 0150 | 16 |
| 2.487    | .207    | 4.235   | 0021 | 0150 | 16 |
| 2.985    | .249    | 4.261   | 0033 | 0151 | 16 |
| 3.582    | .298    | 4.292   | 0046 | 0152 | 16 |
| 4.298    | .358    | 4.330   | 0058 | 0152 | 16 |
| 5.158    | .430    | 4.375   | 006A | 0153 | 16 |
| 6.189    | .516    | 4.430   | 007D | 0155 | 16 |
| 7.427    | .619    | 4.495   | 008F | 0156 | 16 |
| 8.913    | .743    | 4.573   | 00A1 | 0158 | 16 |
| 10.695   | .891    | 4.668   | 00B4 | 015A | 16 |
| 12.834   | 1.070   | 4.781   | 00C6 | 015C | 16 |
| 15.401   | 1.283   | 4.917   | 00D8 | 015F | 16 |
| 18.481   | 1.540   | 5.080   | 00EB | 0163 | 16 |
| 22.177   | 1.848   | 5.277   | 00FD | 0166 | 16 |
| 26.613   | 2.218   | 5.513   | 010F | 016B | 16 |
| 31.935   | 2.661   | 5.797   | 0122 | 0170 | 16 |
| 38.322   | 3.194   | 6.139   | 0134 | 0176 | 16 |
| 45.987   | 3.832   | 6.551   | 0146 | 017C | 16 |

ORIGINAL PAGE IS  
OF POOR QUALITY