Synchronous Sequential Logic

Sequential vs Combinational Ckts

- Recall definition of combinational logic
 - Outputs are a function of inputs
 - Combinational delay (each gate has some propagation delay)

- Sequential circuits
 - Outputs depend on inputs <u>and</u> previous values of outputs
 - Outputs depend on previous state of the circuit
 - State is stored in memory elements (registers, latches, fliplops)

Sequential Circuits

- So far: combinational circuits
 - Output of circuit depends only on inputs
- Most real-world circuits also contain memory
 - Pocket calculators
 - Counters
 - Computer systems, etc.
- Sequential circuit:

Synchronous Sequential Circuits

- Synchronous sequential circuits
 - Storage elements change only at discrete instances of time
- Timing controlled by "clock"
 - Clock generator provides train of clock pulses:

Storage Elements

- Binary storage device capable of storing one bit
- <u>Latch</u> = level-sensitive device
 - State changes with input when enabled (e.g., when clock = 1)
 - Holds last input value when disabled (when clock = 0)
- Flip-flop = edge-triggered device
 - State of flip-flop can only change during clock transition
 - Example: Flip-flops change on rising/falling edge of clock

- Why change on an edge?
 - Couldn't we change state while clock is 1?
 - That would be a latch!
- Edge is moment in time, state is duration
 - Feedback would continue during clock being 1, causing possible race conditions

Level-sensitive vs Edge-triggered

Latches are <u>level-sensitive</u>

Flip-flops are <u>edge-sensitive</u>

Analysis of Sequential Circuits

- Behavior of clocked sequential circuit determined by
 - Inputs
 - Outputs
 - State of flip-flops
- Analysis process
 - Consider all combinations of
 - » Inputs
 - » Flip-flop states
 - Determine next state and output of circuit
- Concept of a Finite State Machine (FSM)
- Methods
 - State equations
 - State table
 - State diagram

Example Circuit

- Sequential circuit
 - Input: x
 - Output: y
 - Flip-flops:
 - 2 D-type A and B
- When is y=1?
 - Very difficult to answer
 - Systematic analysis necessary

State Equations

- State equation specifies next state
 - Function of current state and inputs
- State equation for flip-flops: x
 - A(t+1) = A(t) x(t) + B(t) x(t)
 - B(t+1) = A'(t) x(t)
- Output expression:
 - y(t) = (A(t) + B(t)) x'(t)
- Simplified:
 - A(t+1) = A x + B x
 - B(t+1) = A'x
 - y = (A+B) x'

Flip-flop Input Equations

- Similar to state equations
 - Specifies type of flip-flop used
- Example:
 - $D_A = A x + B x$
 - $D_B = A'x$
 - y = (A + B) x'

State Table

- What needs to be considered in table?
 - Inputs
 - State of flip-flops
 - Next state of flip-flops
 - Outputs

"left side" of table

"right side" of table

- How many entries in state table?
 - n inputs
 - m states
 - Total of 2^{m+n} entries
- For every entry
 - Determine flip-flop change by input and current state
 - » State equation
 - Determine the output
 - » Output equation

State Table

State table

state	input	next	state	output
В	х	Α	В	у
0	0	0	0	0
0	1	0	1	0
1	0	0	0	1
1	1	1	1	0
0	0	0	0	1
0	1	1	0	0
1	0	0	0	1
1	1	1	0	0
		B x 0 0 0 1 1 0 1 1 0 0 0 1	B x A 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1	B x A B 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0

State Table

Alternate form:

current state	next	state	output	
	x=0	x=1	x=0	x=1
AB	AB	AB	у	у
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

- Note that state combinations can be concatenated
 - AB = 00 instead of A = 0 and B = 0

State Diagram

- State transitions represented as graph
 - Vertices indicate states
 - Edges represent transitions
 - » Edge annotation: "x/y" meaning input is x and output is y
- Easiest generated from state table

current				
state	next	state	output	
	x=0	x=1	x=0	x=1
AB	AB	AB	у	у
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

Analysis Example

Circuit:

- Equation:
 - A(t+1) = A⊕x⊕y (state equation)
 - D_A(t+1) = A⊕x⊕y (flip-flop equation)
- State table:

•	State diagram:	00,11	
	- Natar na autorita		

Note: no outputs

Present state	Inp	uts	Next state
\boldsymbol{A}	x	y	\boldsymbol{A}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Finite State Machines

State diagrams are representations of Finite State Machines

(FSM)

- Two flavors of FSMs:
 - » Mealy FSM
 - » Moore FSM
- Difference:
 - How output is determined
- Mealy FSM
 - Output depends on <u>input</u> and state
 - Output is not synchronized with clock
 - » can have temporarily unstable output
- Moore FSM
 - Output depends only on <u>state</u>

Two Flavors of FSM

Mealy vs Moore machine

Mealy Machine

Output based on state and present input

Output changes <u>during transition</u>

Moore Machine

- Output based on state only
 - Output is <u>associated with state</u>

Design of Sequential Circuits

- How can we design a sequential circuit?
 - E.g., circuit that detects 3 or more consecutive 1's in input
- Design procedure:
 - Derive state diagram from description
 - Reduce number of states if necessary
 - Assign binary values to states
 - Obtain binary coded state table (transition table)
 - Choose type of flip-flops
 - Derive flip-flop input equations and output equations
 - Draw logic diagram
- Steps 1 & 3 require insight
- Steps 2, 4–7 can be automated
 - Design that follows well-defined procedure called synthesis

Canonical form of Sequential Circuits

- Graphs are hard to compare
 - Arbitrary state names
 - Arbitrary coding
- Graphs are generally very difficult to deal with
 - Determining if two graphs are identical is the "graph isomorphism problem"
 - No known algorithm exists that can determine isomorphism in polynomial time for arbitrary graphs
 - » Problem reduces to trying every possible matching
 - » Requires exponential time (very, very long for large graphs)
- Canonical form of sequential circuit would require solution to graph isomorphism problem
- No canonical form for sequential circuits exists

State Assignment

- States are represented by flip-flop values in circuit
 - Need to encode state in binary
- What is the minimum number of flip-flops that are necessary to encode m states?
 - Need at least \[log₂(m) \] bits (\[\] is "ceiling" function)
- Many possible encodings:
- Terminology:
 - "State table" uses uncoded states
 - "Transition table" uses coded states

State	Binary	Gray	One-hot
а	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
е	100	110	10000

- Circuit specification:
 - Design a circuit that outputs a 1 when three consecutive 1s have been applied to input, and 0 otherwise."
- Step 1: derive state diagram
 - What should a state represent?
 - E.g., "number of 1's seen so far"
 - Moore or Mealy FSM?
 - » Both possible
 - Chose Moore to simplify diagram
 - State diagram:
 - » State S0: zero 1s detected
 - » State S1: one 1 detected
 - » State S2: two 1s detected
 - » State S3: three 1s detected

- Step 2: reduce number of states
 - State table:

current	next	state	output
state	x=0	x=1	
S ₀	S ₀	S ₁	0
Տ ₀ Տ ₁	S ₀	S_2 S_3	0
S ₂	S ₀	S_3	0
S ₂ S ₃	S ₀	S_3	1

- Which states are equivalent?
 - » None no state reduction possible
- Step 3: state assignment
 - Two flip-flops
 - Binary state coding

- Step 4: Binary coded state table
 - Name flip-flops A and B

current	state		next	state		output
		x=0		x=1		
Α	В	Α	В	Α	В	
0	0	0	0	0	1	0
0	1	0	0	1	0	0
1	0	0	0	1	1	0
1	1	0	0	1	1	1

- Step 5: Choose type of flip-flops
 - E.g., D flip-flop
 - Characteristic equation: Q(t+1)=D_Q

- Step 6: derive flip-flop input equations and output equation
 - Use state table

•
$$A(t+1) = D_A(A,B,x)$$

= $\Sigma(3,5,7)$

•
$$B(t+1) = D_B(A,B,x)$$

= $\Sigma(1,5,7)$

•
$$y(A,B,x) = \Sigma(6,7)$$

or $y(A,B) = \Sigma(3)$

current	state	input	next	state	output
Α	В	х	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

- Step 6b: minimize equations
 - $A(t+1) = \Sigma(3,5,7)$
 - $B(t+1) = \Sigma(1,5,7)$
 - $y(A,B) = \Sigma(3) \text{easy: } y = AB$
- Karnaugh maps for A and B:

$$D_A = Ax + Bx$$

$$D_B = Ax + B'x$$

Step 7: Circuit diagram

•
$$D_A = Ax + Bx$$

- $D_B = Ax + B'x$
- Y = AB

Terminology

 (Q.5.5) A sequential circuit with two D flip-flops A and B, two inputs x and y, and one output z is specified by the following next state and output equations

```
A(t+1)=x'y+xB

B(t+1)=x'A+xB

Z=A
```

- a) Draw the logic diagram of the circuit.
- b) List the state table for the sequential circuit.
- c) Draw the corresponding state diagram.

- (Q.5.12) Design a sequential circuit with two D flip-flops A and B and one input x_in.
 - a) When x_in=0, the state of the circuit remains the same. When x_in=1, the circuit goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats.
 - b) When x_in=0, the state of the circuit remains the same. When x_in=1, the circuit goes through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats.

- (Q.5.14) Design a sequential circuit with two D flip-flops A and B and two inputs E and F.
 - If E=0, the circuit remains in the same state regardless of the value of F.
 - When E=1 and F=1, the circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats.
 - When E=1 and F=0, the circuit goes through the state transitions from 00 to 11, to 10, to 01, back to 00, and repeats.
 - (Up and down counter with enable. Count up when F=1, count down when F=0.)

 (Q.5.15) A sequential circuit has three flip-flops A,B,and C; one input x in; and one output y_out. The state diagram is shown at right. The circuit is to be designed by treating the unused states as don't-care conditions. Analyze the circuit obtained from the design to determine the effect of the unused states.

