Алгебра.*

B. A. Петров lektorium.tv

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных". Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M, 0 \in M)$ с аксиомами:

- A_1) $\forall a, b, c \in M : (a + b) + c = a + (b + c)$ ассоциативность сложения
- A_2) $\forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент
- A_3) $\forall a,b \in M: a+b=b+a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M, + : M^2 \to M, \cdot : M^2 \to M, 0 \in M, 1 \in M)$:

- $D) \ \forall a, b, k \in M : k(a+b) = ka + kb, \ (a+b)k = ak + bk$ дистрибутивность
- M_1) $\forall a, b, c \in M : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения
- M_2) $\forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- M_3) $\forall a,b \in M : a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M \setminus \{0\} : \exists \, a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

Кольцо — набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.

Ассоциативное кольцо — кольцо с M_1 .

Кольцо с единицей — кольцо с M_2 .

^{*}Этот текст содержит критические недочёты. Вы можете помочь исправить их, написав мне по почте (minaevgleb@yandex.ru) или в ВКонтакте (@lounres).

Тело — кольцо с M_1, M_2 .

Поле — кольцо с M_1, M_2, M_3, M_4 .

 $\mathbf{\Pi}$ олукольцо — кольцо без A_4 .

 $\Pi pumep \ 1. \ Eсли \ взять \ \mathbb{R}^3,$ то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u \cdot v;av+bu+u \times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

 Π емма. $0 \cdot a = 0$

Определение 4. Коммутативное кольцо без делителей нуля называетсся *областью* (*целостности*).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. Подкольцо — это подмножество кольца, согласованное с его операциями.

Как следствие ноль и обратимость соглассуются автоматически.

Утверждение 1. Если R — подкольцо области целостности S, то R — область целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b\in\mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

Замечание 1. Замкнутое относительно сложения **И** умножения подмножество — подкольцо.

 Πpu мер 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

1 Теория делимости

Пусть R — область целостности.

Определение 9. "a делит b" или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 2. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b accoulumusны*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 3. " \sim " — отношение эквивалентности.

Утверждение 4. $a \sim b \Leftrightarrow \exists \ \textit{обратимый } \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c, d : ac = b, bd = a$. Тогда a(1-cd) = a - acd = a - bd = a - a = 0, значит либо a = 0, либо cd = 1. В первом случае b = ac = 0c = 0, значит можно просто взять $\varepsilon = 1$. Во втором случае, cd = 1, значит c и d обратимы, тогда можно взять $\varepsilon = d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \mid a;$
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \mid b$.

Таким образом $a \sim b$.

 $\Pi pumep 4$. В $\mathbb{Z}[i]$ есть только следующие обратимые элементы: 1, -1, i и -i. Поэтому все ассоциативные элементы получаются друг из друга домножением на один из 1, -1, i, -i и вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 5. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 6. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 7. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

Замечание 2. То же верно и в некоммутативном R.

 $\Pi pumep$ 5. В поле есть только 0R и 1R.

Пример 6. В \mathbb{Z} есть только $m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}$.

Определение 12. Пусть P — кольцо. $I \subseteq P$ называется $npaвым \ udeалом$, если

- 1. $0 \in I$;
- $2. \ a,b \in I \Rightarrow a+b \in I;$
- 3. $a \in I \Rightarrow -a \in I$;
- $4. \ a \in I, r \in R \Rightarrow ar \in I.$

I называется левым идеалом, ессли аксиому 4 заменить на " $a \in I, r \in R \Rightarrow ra \in I$ ". Также I называется двухсторонним идеалом, если является левым и правым идеалом, и обозначается как $I \triangleleft P$.

Замечание 3. В коммутативном кольце (и в частности в области целостности) все идеалы двухсторонние.

 $\Pi p u м e p 7.$ Пусть дано кольцо P и фиксированы $a_1, \ldots, a_n \in P$. Тогда $a_1 P + \cdots + a_n P = \{a_1 x_1 + \cdots + a_n x_n \mid x_1, \ldots, x_n \in P\}$ есть правый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n . Аналогично $Pa_1 + \cdots + Pa_n = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in P\}$ — левый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n .

Определение 13. Область главных идеалов — область целостности, где все идеалы главные.

Определение 14. Область целостности R называется Eвклидовой, если существует функция ("Евклидова норма") $N: R \setminus \{0\} \to \mathbb{N}$, что

$$\forall a, b \neq 0 \; \exists q, r : a = bq + r \land (r = 0 \lor N(r) < N(b))$$

Теорема 1. Евклидово кольцо — область главных идеалов.

Доказательство. Пусть наше кольцо — R. Если $I = \{0\}$, то I = 0R. Иначе возьмём $d \in I \setminus \{0\}$ с минимальной Евклидовой нормой. Тогда $\forall a \in I$ либо $d \mid a$, либо $\exists q, r : a = dq - r$. Во втором случае $dq \in I$, $r = a - dq \in I$, но N(r) < N(d) — противоречие. Значит I = dR.

Определение 15. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (HOД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 2 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\phi(a) \geqslant \phi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\phi(r) < \phi(b) \leqslant \phi(a)$, значит $\phi(a) + \phi(b) > \phi(r) + \phi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\phi(a) + \phi(b)$ не может бесконечнго уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Теорема 3 (линейное представление НОД). $\forall a, b \in R \; \exists p, q \in R : ap + bq = (a, b).$

Доказательство. Докажем по индукции по N(a) + N(b).

База. N(a) + N(b) = 0. Значит N(a) = N(b) = 0, а тогда a и b не могут не делиться друг на друга, значит НОД — любой из них. А в этом случае разложение очевидно.

Шаг. WLOG $N(a) \geqslant N(b)$. Если $b \mid a$, то b — НОД, а тогда разложение очевидно. Иначе по аксиоме Евклида $\exists q, r: a = bq + r$. Заметим, что (a,b) = (b,r) = d, но $N(a) + N(b) \geqslant N(b) + N(b) > N(b) + N(r)$. Таким образом по предположению индукции для b и r получаем, что d = bk + rl для некоторых k и l, значит d = bk + (a - bq)l = al + b(k - ql).

Определение 16. Элемент p области целостности R назвывается nenpusodumum, если $\forall d \mid p$ либо $d \sim 1$, либо $d \sim p$.

Определение 17. Элемент p области целостности R назвывается npocmым, если из условия $p \mid ab$ следует, что $p \mid a$ или $p \mid b$.

Утверждение 8. Любое простое неприводимо.

Доказательство. Предположим противное, т.е. некоторое простое p представляется в виде произведения неделителей единицы a и b. Тогда WLOG $p \mid a$. Значит $p \sim a$, а $b \sim 1$ — противоречие.

Утверждение 9. В области главных идеалов неприводимые просты.

Доказательство. Пусть неприводимое p делит ab. Пусть тогда pR + aR = dR. В таком случае $d \sim p$, значит либо $d \sim p$, либо $d \sim 1$. Если $d \sim p$, то $p \mid a$. Иначе px + ay = 1, значит pxb + aby = b. Но $p \mid pxb$ и $p \mid aby$, значит $p \mid b$. Поскольку рассуждение не зависит от a и b, то p просто.

Определение 18. Назовём разложением числа a на неприводимые множители предстваление его в виде произведения $\alpha \prod_{i=1}^{n} p_i$ с точностью до перестановки членов произведения и домножения их на делители 1 (т.е. их ассоциативности), где все p_i просты.

Область целостности называется факториальным кольцом, если в нём все ненулевые элементы разложимы на неприводимые множители единственным образом (также говорят, что в области целостности верна основная теорема арифметики).

Утверждение 10. В факториальном кольце неприводимые просты.

Теорема 4. Область главнымх идеалов удовлетворяет условию обрыва цепи главнымх идеалов.

Доказательство. Пусть наша область — R. Сначала докажем существование разложения.

Предположим противное, т.е. существует последовательность $\{a_n\}_{n=0}^{\infty}$, что a_{n+1} — собственный делитель a_n (т.е. $a_{n+1} \mid a_n \wedge a_n \nsim a_{n+1}$). Тогда $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \ldots$ Тогда $\exists x : xR = \bigcup_{n=0}^{\infty} a_nR$, так как это объединение — идеал. Но тогда $x \in a_jR$ для некоторого j, а значит $xR \subseteq a_jR$, а тогда $a_{j+1}R \subseteq a_jR$ — противоречие.

Теорема 5. Пусть R — область целостности. Тогда следующие утверждения равносильны.

- 1. R факториально.
- 2. R удовлетворяет условию обрыва возрастающей цепи главных идеалов.

Доказательство. Сначала докажем в одну сторону. Пусть R факториально.

Лемма 6. Любой неприводимый в R прост.

Доказательство. Пусть $p \mid ab$ для любого неприводимого p и каких-то a и b. Тогда имеем px = ab для некоторых x, а значит по факториальности, что $a = p_1 \dots p_k$, $b = q_1 \dots q_l$, $x = r_1 \dots r_m$. Тогда имеем два разложения px = ab на простые: $p \cdot r_1 \cdot \dots \cdot r_m$ и $p_1 \cdot \dots \cdot p_k \cdot q_1 \cdot \dots \cdot q_l$. Значит по факториальности оба разложения совпадают, а значит p равно какому-то неприводимому из разложений a и b. А значит $p \mid a$ или $p \mid b$, что и означает простоту p.

Лемма 7. Если $a \mid b$, то разложение на неприводимые в a есть подмножество разложения на неприводимые b.

Доказательство. Пусть p — неприводимый из разложения a. Тогда $p \mid b$, а значит p делит какой-то неприводимый q из разложения b, значит $p \sim q$, значит $a' \mid b'$, где a'p = a, b'q = b. Тогда спуском по кол-ву неприводимых в разложении a получаем требуемое утверждение.

Проверить начиная с этого момента до конца раздела формальные моменты и довести доказа-тельства.

Пусть нашлась возрастающая последовательность главных иделаов $\{a_n R\}_{n=0}^{\infty}$, тогда a_{n+1} — собственный делитель a_n для всех n. Тогда разложение на неприводимые a_0 является собственным подмножеством разложением a_n , а поскольку разложение по определению конечно, то такой последовательности быть не может.

Теперь докажем в обратную сторону. Пусть R удовлетворяет условию обрыва возрастающей цепи главных идеалов.

Лемма 8. $ab \sim cd$, $b \sim d$, значит $a \sim c$.

Доказательство.
$$b = \varepsilon d$$
, $ab = \delta cd$, где $\varepsilon \sim \delta \sim 1$. тогда $(a\varepsilon - \delta c)d = a\varepsilon d - \delta cd = ab - \delta cd = 0$, значит $a = \varepsilon^{-1}\delta c$, значит $a \sim c$.

Теперь предположим имеется R, удовлетворяющее условию обрыва возрастающей цепи главных идеалов. Тогда у каждого числа есть неприводимый делитель, так как иначе есть подъём идеалов: $a_0 = a_1b_1$, $a_1 = a_2b_2$ и т.д., значит $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \dots$ противоречие. Тогда и каждое число

2 Идеалы

Теорема 9. Пусть даны $I \triangleleft R$ и $a \sim b \Leftrightarrow a - b \in I$. Тогда $\sim -$ отношение эквивалентности, $a R/I := R/\sim -$ кольцо.

Доказательство. Проверим, что \sim — отношение эквивалентности:

- $a-a=0 \in I$, значит $a \sim a$;
- $a \sim b$, значит $a b \in I$, значит $b a = -(a b) \in I$, значит $a \sim a$;
- $a \sim b, \, b \sim c$, значит $a b \in I, \, b c \in I$, значит $a c = (a b) + (b c) \in I$, значит $a \sim c$.

Определим на R/I операции сложения и умножения, нуля, противоположного, единицы и обратного:

- [a] + [b] := [a + b];
- $[a] \cdot [b] := [a \cdot b];$
- 0 := [0] = I;
- -[a] := [-a];
- 1 := [1];
- $[a]^{-1} := [a^{-1}].$

Покажем, что R/I — кольцо:

$$A_1$$
) $\forall a, b, c \in R : ([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])$

$$A_2$$
) $\forall a \in R : [a] + [0] = [a+0] = a = [0+a] = [0] + [a]$

$$A_3$$
) $\forall a, b \in R : [a] + [b] = [a+b] = [b+a] = [b] + [a]$

$$A_4) \ \forall a \in R: [a] + -[a] = [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a] = -[a] + [a]$$

$$D) \ \forall a,b,k \in R : [k]([a]+[b]) = [k][a+b] = [k(a+b)] = [ka+kb] = [ka]+[kb] = [k][a]+[k][b], \\ ([a]+[b])[k] = [a+b][k] = [(a+b)k] = [ak+bk] = [ak]+[bk] = [a][k]+[b][k]$$

$$M_1) \ \forall a,b,c \in R : ([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = [(a \cdot b) \cdot c] = [a \cdot (b \cdot c)] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c])$$

$$M_2$$
) $\forall a \in R : [a] \cdot [1] = [a \cdot 1] = [a] = [1 \cdot a] = [1] \cdot [a]$

$$M_3$$
) $\forall a, b \in R : [a] \cdot [b] = [a \cdot b] = [b \cdot a] = [b] \cdot [a]$

$$M_4) \ \forall a \in R \setminus \{0\} : [a] \cdot [a]^{-1} = [a] \cdot [a^{-1}] = [a \cdot a^{-1}] = [1] = [a^{-1} \cdot a] = [a^{-1}] \cdot [a] = [a]^{-1} \cdot [a]$$

Замечание 4. Доказательство для классов эквивалентности каждой аксиомы основывалось только на соответсвующей аксиоме и определениях ранее.