Team	Wiki Page	Title	Problem	Solution	Summary
IIT-Roorkee	https://2020.igem.org/Team:IIT_ Roorkee/Parts	Pyomancer	Hospital Acquired Infections from multi-drug resistant bacteria	Antibacterial fusion protein	Design of novel antimicrobial protein complexes made by fusion of pyocins and bacteriophage tail fiber proteins
IISER- Berhampur	https://2020.igem.org/Team:IISE R_Berhampur/Model	FRaPPe	Lack of antivirals or vaccines against Dengue Virus	FRET based high throughput screeing method	FRaPPe system when cloned and transfected will report which peptides work best in interrupting host-virus PPIs
Manchester	https://2020.igem.org/Team:Manchester	Hipposol	Coral bleaching associated with traditional sunscreen products	Hipposudoric acid to act as a natural sunscreen	Used retrosynthesis and Flux balance analysis to design a biochemical pathway to generate hipposudoric acid
Harvard	https://2020.igem.org/Team:Harvard	MOTbox	Developing a delivery system for antibodies against COVID-19	Machine Learning with DNA origami	Designed and computationally validated a novel DNA origami nanostructure to selectively deliver the optimized antibody sequences to immune cells for rapid antibody production in vivo
Stanford	https://2020.igem.org/Team:Sta nford/Description	SEED	Lack of resources for testing during the COVID-19 Pandemic	Self-replicating diagnostic system	Creating a cell that is a live test that can infinitely replicate itself, be grown anywhere around the world, and wouldn't require any expertise or lab equipment to administer or read