

www.emergencetechnocm.com

Office du Baccalauréat du Cameroun Session 2012

Examen: Probatoire

Série: $F_{2-3-4-5-CI-EF-MEB-IS-IB-GT}$

Epreuve : Mathématiques

Durée : 2h Coefficient : 3

Le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie.

- On considère deux nombres complexes : z₁ = √3 − 3i, z₂ = −1 + i.
- 1-a) Déterminer le module et un argument de chacun des nombres complexes z_1 et z_2 .
- 1-b) Écrire sous la forme algébrique et sous la forme trigonométrique le produit z₁z₂.
- 1-c) Déduire des questions précédentes les valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$
- Soit ABC un triangle équilatéral.
- **2-a)** Construire le barycentre I de (A,1) et (B,2) et le barycentre J de (A,2) et (B,1).
- **2-b)** Écrire $\overrightarrow{MA} + 2\overrightarrow{MB}$ en fonction de \overrightarrow{MI} puis $2\overrightarrow{MA} + \overrightarrow{MB}$ en fonction de \overrightarrow{MJ} .
- **2-c)** Déterminer l'ensemble des points M du plan tels que : $\|\overrightarrow{MA} + 2\overrightarrow{MB}\| = \|2\overrightarrow{MA} + \overrightarrow{MB}\|$.

- 1) Calculer $A = (1 \sqrt{3})^2$.
- 2) Résoudre dans \mathbb{R} l'équation $2x^2 (1 + \sqrt{3})x + \frac{\sqrt{3}}{2} = 0$.
- 3) En déduire dans $[-\pi; \pi[$ la résolution de l'équation : $2\sin^2 x (1+\sqrt{3})\sin x + \frac{\sqrt{3}}{2} = 0$.
- 4) Soit la (u_n)_{n∈N} la suite géométrique telle que :
- 4-a) Déterminer la raison q de cette suite.
- **4-b)** Calculer le premier terme u_1 .
- **4-c)** Écrire le terme général u_n de cette suite en fonction de n

$\bigcirc_{\text{Partie A}}$

On effectue des essais sur un échantillon de 200 ampoules électriques afin de tester leur durée de fonctionnement. Les résultats sont regroupés en classe dans le tableau ci-dessous :

Durée de vie (heure)	[1200; 1300[[1300; 1400[[1400; 1500[[1500; 1600[[1600; 1700[
Nombre d'ampoule	30	50	75	25	20

- 1) Dresser le tableau des effectifs cumulés décroissants.
- Calculer la médiane et la moyenne de cette série.
- Évaluer le nombre d'ampoule dont la durée de vie est inférieure à 1400.

Le plan est muni d'un repère orthonormé (O, I, J) (unité sur les axes 1cm).

www.emergencetechnocm.com

On considère la fonction f définie pour tout $x \neq -2$ par : $f(x) = \frac{x^2 + 1}{x + 2}$. 1-a) Déterminer les limites de f en $+\infty$, en $-\infty$ puis en -2 par valeurs supérieures et par valeurs

- inférieures.
- 1-b) Calculer f'(x) où f' est la fonction dérivée de f.
- 1-c) Donner le sens de variation de f, puis dresser son tableau de variation.
- **2-a)** Déterminer trois réels a, b et c tels que : $f(x) = ax + b + \frac{c}{x+2}$. **2-b)** En déduire que la courbe (C) de f admet une asymptote oblique (D) dont on donnera suivant les valeurs de x, la position par rapport à (C).
- **2-c)** Tracer (C) et (D).