Aufgabenblatt 7 zur Diskreten Mathematik 2

(Algebraische Strukturen und Verknüpfungen)

Aufgabe 7.1

Für $a, b \in \mathbb{Z}$ definiere $\max(a, b) := \sup\{a, b\}.$

- (a) Begründen Sie, dass (\mathbb{Z}, \max) eine algebraische Struktur ist.
- (b) Gelten Kommutativ- und/oder Assoziativgesetz in (\mathbb{Z}, \max) ?
- (c) Welche Existenz- und/oder Eindeutigkeitssätze gelten in (\mathbb{Z}, \max) ?

Aufgabe 7.2

Geben Sie durch Angabe einer Verknüpfungstafel ein Beispiel für eine algebraische Struktur an, für die " $\forall a, b \in M \ \exists x \in M : a \circ x = b$ " wahr ist, aber " $\forall a, b \in M \ \exists x \in M : x \circ a = b$ " falsch ist.

Aufgabe 7.3

Es sei X eine mindestens 2-elementige Menge und $M := P(X \times X)$ die Menge aller Relationen auf M. Bezeichne mit " \circ " die Verkettung von Relationen, also $R \circ S := SR$ für alle $R, S \in M$. Gilt in der algebraischen Struktur (M, \circ) ein Existenz- und/oder Eindeutigkeitssatz?