Plan de thèse

1875

Contents

1	Intr	oduction Générale	5
2		atexte de l'étude	7
	2.1	Etat de l'art: reconstruction du graphe par les incidents	7
	2.2	Problématique	7
3	Res	eau de flots et Mesures	9
	3.1	Graphe de flots: Réseau électrique	9
		3.1.1 Modélisation du réseau électrique	9
	3.2	Grandeurs physiques et caracteristiques	9
	3.3	Loi de conservation dans un réseau électrique	9
	3.4	Contraintes dans les réseaux électriques	9
4	Cor	rélation de mesures	11
	4.1	Mesures: des séries temporelles	12
		4.1.1 Séries Temporelles: Définitions et Propriétés	12
		4.1.2 Particularités des mesures	12
	4.2	Étude de l'art sur la corrélation de séries temporelles	12
		4.2.1 Corrélation sur les séries entières: {W,D}DTW, TWE, MSM, CID, DTDc,	
		COTE	
		4.2.2 Corrélation par intervalles: TSF, TSBF, LPS	12
		4.2.3 Corrélation par parties significatives(shapelets): FS, ST, LS	12
		1 0 0	12
	4.3	Proposition d'une méthode de corrélation de mesures électriques	12
	4.4	Formalisation et calcul de la Matrice de corrélation	12
5	\mathbf{Alg}	orithmes de graphes	13
	5.1	Matrice de Corrélation: un Line graph	13
		5.1.1 Line graphs: Définitions et Propriétés	13
		5.1.2 Particularités de la matrice de corrélation	13
	5.2	Étude de l'art sur la décomposition d'un Line graph	
	5.3	Proposition d'algorithmes de resolution de line graph	13
		5.3.1 Algorithme de couverture du Line graph	13
		0 1	13
			13
		1	13
	5.4	Construction du réseau électrique et Orientation des arêtes	13

4 CONTENTS

6	\sin	ulation avec des données réelles	15
	6.1	Réseau électrique: datacenter d'un opérateur de télécommunications	15
	6.2	Grandeurs et Mesures	15
	6.3	Matrice de corrélation	15
	6.4	Application des algorithmes de couverture et de correction	15
	6.5	Discussion sur le réseau proposé	15
7	7 Conclusions		17
8	Per	pectives	19

Chapter 1 Introduction Générale

Contexte de l'étude

2.1 Etat de l'art: reconstruction du graphe par les incidents

Dans cette partie, nous utilisons le cas du réseau électrique de ERDF, découvert à partir des incidents. Nous décrivons les étapes pour parvenir à ce resultat.

2.2 Problématique

Nous definirons le problème proxi-line qui est la distance de Hamming minimale selon les conditions suivantes:

Reseau de flots et Mesures

- 3.1 Graphe de flots: Réseau électrique
- 3.1.1 Modélisation du réseau électrique
- 3.2 Grandeurs physiques et caracteristiques
- 3.3 Loi de conservation dans un réseau électrique
- 3.4 Contraintes dans les réseaux électriques

Corrélation de mesures

- 4.1 Mesures: des séries temporelles
- 4.1.1 Séries Temporelles: Définitions et Propriétés
- 4.1.2 Particularités des mesures
- 4.2 Étude de l'art sur la corrélation de séries temporelles
- 4.2.1 Corrélation sur les séries entières: {W,D}DTW, TWE, MSM, CID, DTDc, COTE

Dynamic Time Warping: weight WDTW, derivative DDTW

Time Warp Edit TWE

Move-split-merge MSM

Complexity invariant Distance CID

Derivative Transform Distance DTDc

Elastic Ensemble EE

Collective of Transform Ensembles COTE

4.2.2 Corrélation par intervalles: TSF, TSBF, LPS

Time Series Forest TSF

Time Series Bag of Features TSBF

Learned Pattern Similarity LPS

4.2.3 Corrélation par parties significatives (shapelets): FS, ST, LS

Fast Shapelets FS

Shapelet Transform ST

Learned Shapelets LS

4.2.4 Corrélation par agrégation des features: BOP, SAXVSM, BOSS,

Algorithmes de graphes

- 5.1 Matrice de Corrélation: un Line graph
- 5.1.1 Line graphs: Définitions et Propriétés
- 5.1.2 Particularités de la matrice de corrélation
- 5.2 Étude de l'art sur la décomposition d'un Line graph
- 5.3 Proposition d'algorithmes de resolution de line graph
- 5.3.1 Algorithme de couverture du Line graph
- 5.3.2 Algorithme de correction du Line graph
- 5.3.3 Application sur un graphe Iourte
- 5.3.4 Complexité des algorithmes
- 5.4 Construction du réseau électrique et Orientation des arêtes

simulation avec des données réelles

- 6.1 Réseau électrique: datacenter d'un opérateur de télécommuni
- 6.2 Grandeurs et Mesures
- 6.3 Matrice de corrélation
- 6.4 Application des algorithmes de couverture et de correction
- 6.5 Discussion sur le réseau proposé

Conclusions

Perpectives

Contents