Examen Session 1

Lundi 4 novembre - 1h30

Documents manuscrits et polycopié de cours autorisés. Tout autre document et calculatrices interdits.

N.B. : La rédaction sera prise en compte dans la notation. Toute affirmation devra être justifiée.

Exercice 1

Soit (E, d) un espace métrique.

1. Montrer que

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

est une distance sur E.

- 2. Monter que tout sous-ensemble $A \subset E$ est borné dans (E, d') et de diamètre inférieur ou égal à 1.
- 3. Soit $E = \mathbb{R}^2$ et d la distance euclidienne. Expliciter, dans (E, d'), les boules ouvertes $B(0_E; 1/2)$, $B(0_E; 1)$ et l'ensemble

$$S(0_E; 1) = \{x \in E : d'(x, 0_E) = 1\}.$$

Exercice 2

Soit $E = C^0([0,1])$ l'espace des fonctions $f:[0,1] \to \mathbb{R}$ continues sur [0,1].

1. Montrer que

$$||f||_1 = \int_0^1 |f(x)| dx$$

est une norme sur E. Quelle distance est associée à cette norme?

2. Soit la suite $(f_n)_{n\geq 1}$ des fonctions définies par

$$f_n(x) = \begin{cases} (2x)^n, & x \in [0, \frac{1}{2}], \\ 1, & x \in [\frac{1}{2}, 1]. \end{cases}$$

Montrer que la suite $(f_n)_{n\geq 1}$ est une suite de Cauchy de $(E, \|\cdot\|_1)$.

3. L'espace E muni de la norme $\|\cdot\|_1$ est-il complet?

Exercice 3

Soit (E,d) un espace métrique complet, et $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

- 1. On suppose que $\sum_{n\in\mathbb{N}} d(x_n, x_{n+1})$ converge. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est convergente.
- 2. Montrer que $\sum_{n\in\mathbb{N}} d(x_n, x_{n+1})^2$ peut être convergente, sans que $(x_n)_{n\in\mathbb{N}}$ le soit. On pourra considérer $E = \mathbb{R}$ et $x_n = \ln n$ pour $n \in \mathbb{N}^*$.

Exercice 4

Soit E un espace vectoriel normé et C un sous-ensemble non vide, convexe¹ et compact de E. Soit $f \in \mathcal{L}(E)$ une application linéaire continue de E dans E, telle que $f(C) \subset C$. Soit enfin $a \in C$ fixé. On définit l'itération suivante :

$$a_0 = a$$
, $a_n = \frac{1}{n+1} \left(a + f(a) + f(f(a)) + \dots + f^{(n)}(a) \right), n \in \mathbb{N}.$

- 1. Montrer que (a_n) est une suite d'éléments de C.
- 2. Montrer que $f(a_n) a_n$ converge vers 0 lorsque $n \to +\infty$.
- 3. En déduire que f admet au moins un point fixe dans C.
- 4. Montrer que l'ensemble des points fixes de f est convexe et compact.
- 5. On se donne maintenant une famille finie d'applications linéaires continues $(f_i)_{i\in I}$ qui commutent, telles que $f_i(C) \subset C$. Montrer qu'elles admettent un point fixe commun. On pourra commencer par deux applications f_1 et f_2 , en remarquant que l'ensemble des points fixes de f_1 , soit F_1 , est stable par l'autre (c'est à dire $f_2(F_1) \subset F_1$).

¹On dit que $C \subset E$ est convexe si $\forall x, y \in C, \forall \alpha \in [0,1], \alpha x + (1-\alpha)y \in C$