CS1200 Module-1: Discrete Structures
Friends & Strangers at a Party (continued in language of Graph Theory
Consider a complete graph Kn (where n = 1),
and color the edges pink & blue. Will there always be either a pink Kz
Will there always be either a pink Kz
Most popular ression. Wikipedia: Theorem on friends & strangers. Wikipedia: Theorem on friends & strangers.
Partial answer: Yes—once n is "big enough". How big? (TIY) Try to formulate a conjecture (& prove it).
Why do we care about K_3 ? (nontrivial) It is the smallest case that is interesting.
Ransey number Rp,p: This simple-to-State problems R4,4 known smallest R5,5 NOT known
that any blue-pink- Kn Ramsey Theory (a branch of combinatorics)
blue kp. a subset of discrete math
Frank Ramsey: British philosopher, mathematician & economist
contributed to all fields lied at 26:-

CS1200 Module-1: Discrete Structures

Clearly, every symmetric relation can be represented/modeled

woing a finite/infinite graph.

> we construct a graph & Example: U= {1,2,3,4,5,6,7,8,9,10}-V(G)= U Two distinct restices a, b EV(6)

Consider the relation" " are copsime". Two integers a & b are coprime if the ONLY positive are adjacent in G

integer that divides both a & b is 1.

Corresponding Graph: Question: Can every finite/infinite graph be thought of as

just a symmetric relation?

YES (& NO-later.)

first we will define relations more generally.

Any relation R (defined on a set U) can be thought of as a subset of U×U.

For example:

Set operation: Cartesian Product A,B: sets

Cartesian Product of A&B denoted by AxB, is the

set of all ordered pairs

(a,b) where a EA & b EB.

The relation "divides" (on IN) can be viewed as a subset of INXIN. Some elements of this relation: (3,6), (3,9), (4,12), (6,18), (10,100),

Definition: A relation Ron a set U is any subset of UXU.

DIY: Define all the special properties of relations discussed earlier (reflexivity, symmetry, transitivity, antisymmetry) in this language (or, in other words, wring this viewpoint).

Example: A relation R (on a set U) is

Symmetric if whenever (a,b) ER then (b,a) ER

(for distinct a,b EU).

Question: (an every finite infinite graph be thought of as just a symmetric relation?

Example: G: 4 3

 $T = \{1,2,3,4\}$ $R = \{(1,2),(2,1),(1,4),(4,1),(2,4),(4,2),(4,3),(3,4)\}$

Graphs are more general than symmetric relations.

Recall: A graph G:= (V, E) has:

(i) V=V(G): a set of vertices/nodes

(ii) E=E(G): a set of edges

each edge ?s

an unordered

peir of vertices

Example:

these are called ends

of the edge