基礎コンピュータ工学 第2章 情報の表現 (パート4:2の補数の和差)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

2進数の和差の計算(復習)

- 2進数の場合は以下のようになる.
 - 1より大きくなる時に桁上げが発生する。 +

2進数の和差の計算(復習)

10進数の計算と2進数の計算をしなさい.

負数の表現(復習)

2の補数による負数の表現
 2の補数 (2ⁿ - x) を負数の表現に使用する。

4 ビット2進数の2の補数 $(2^4 - x = y)$

もとの数 (x)	補数へ変換		補数 (y)
0	$10000_2 - 0000_2$	=	10000_{2}
1	$10000_{2} - 0001_{2}$	=	1111_2
2	$10000_{2} - 0010_{2}$	=	1110_{2}
3	$10000_{2} - 0011_{2}$	=	1101_{2}
4	$10000_{2} - 0100_{2}$	=	1100_{2}
5	$10000_{2} - 0101_{2}$	=	1011_{2}
6	$10000_2 - 0110_2$	=	1010_{2}
7	$10000_{2} - 0111_{2}$	=	1001_{2}
8	$10000_{2} - 1000_{2}$	=	1000_{2}

負数の表現(復習)

● 2の補数の求め方

ビット反転
$$+1$$
 $x = +3_{10} = 0011_2$ (もとの数)
 $y = -3_{10} = 1100_2 + 1 = 1101_2$ (2の補数)
元に戻すのもビット反転 $+1$
 $y = -3_{10} = 1101_2$ (2の補数)
 $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

4 ビット:
$$-8\sim +7 (-2^3\sim +(2^3-1))$$
n ビット: $-2^{n-1}\sim +(2^{n-1}-1)$

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

負の数を含む計算

2の補数表現の負数は符号無し2進数と同じ手順で計算できる!!

• 最上位ビットからの桁上げは無視する.

- 仕組み
 - 正の数と負の数の和(-b を 2 の補数 $(2^n b)$ と表現する) 正の値 a と負の値-b の和を計算し 2^n (最上位の桁上げ)を無視する $a + (-b) = a + (2^n - b) = 2^n + a - b = a - b$
 - 負の数と負の数の和 (-a, -b を 2 の補数で表現する) 2^n (最上位からの桁上げ) を一つ無視すると $(-a) + (-b) = (2^n a) + (2^n b) = 2^n (a + b)$

負の数を含む計算

2の補数表現の負数は符号無し2進数と同じ手順で計算できる!!

• 最上位ビットの桁借りは制限なしとする.

- 仕組み
 - 正の数と負の数の差(-b を 2 の補数 $(2^n b)$ と表現する) 正の値 a と負の値-b の差を計算し -2^n (最上位の桁借り)を許す $a-(-b)=a-(2^n-b)=-2^n+a+b=a+b$
 - 負の数と負の数の差 (-a, -b を 2 の補数で表現する) 2^n (最上位からの桁上げ) を一つ無視すると $(-a)-(-b)=(2^n-a)-(2^n-b)=(-a)+b$

負数を含む計算(問題1/2)

問題 1 1:次の計算を 2進数と 10進数でしなさい。 (ただし、2進数は 2の補数表現形式になっている)

負数を含む計算(問題2/2)

3)
$$0110\ 0100_2 \\ + 1001\ 1100_2 \\ - \\ 2$$
 $+ \\ 1001\ 1100_2$

5)
$$0001\ 0000_2$$
 $0001\ 0000_2$ $0001\ 0000_2$ $0001\ 0000_2$ $0001\ 0000_2$ $0001\ 0000_2$ $0001\ 0000_2$