No	m					
Pré	nom			Note		
Gro	oupe			11000		
		Algorithmic	ane		1	
		INFO-SPÉ S			2	
]
		Contrôle nº 4	` '		3	
		28 février 2022			4	
		Feuilles de rép	onses		5	
$Rcute{e}po$	nses 1	$({ m Biconnexit\'e} - \textit{3 points})$				
1.	Les poir	nts d'articulation de ce graphe sont	:			
2.	Les isth	nmes de ce graphe sont :				
3.	Les com	nposantes biconnexes de ce graphe s	sont:			
$R\'epo$	nses 2	(Plus Courts Chemins – 3	points)			
1.	Donnez	deux algorithmes de calcul de plus	courts chemins:			
		les deux raisons d'existence d'un pl	us court chemin entre d	deux somm	ets d'un graph	ne orienté
	valué.					
3.	Quel est	t, s'il existe, le plus court chemin d	u sommet 1 au somme	t 5?		
4	Quelle e	est la distance de ce plus court cher	nin s'il existe?			
-1.	waciic (sse la distance de ce prus court cher	IIII b II CAIbio ;			

EPITA

$R\'{e}ponses \ 3 \ (Warshall - 3 \ points)$

Spécifications:

La fonction $\mathtt{CCFromWarshall}(M)$ construit la liste des composantes connexes (une liste de listes de sommets, chaque sous-liste représente une composante) du graphe G à partir de M matrice d'adjacence de la fermeture transitive de G.

Réponses 4 (Composante fortement connexe – 9 points)

1. Level 1	: Simples parcours profondeur
(a)	Ensemble des sommets de la composante fortement connexe de x dans G^{-1} :
(b)	Comment construire l'ensemble S_X en utilisant également G^{-1} ?
Level 2	: Tarjan
(a)	$S_X=$
(b)	Comment ne conserver que la liste des sommets de l'arbre couvrant appartenant à S_X ?

2. Spécifications:

La fonction component (G, x) construit la liste des sommets de la composantes fortement connexe du sommet x dans le graphe orienté G.

Niveau choisi : Level 1 - Level 2

$R\'{e}ponses~5~$ (Five room puzzle – 2 points)

Est-il possible de trouver un chemin qui passe une seule fois par chacune des portes?	OUI - NON
Justification:	

