Predictors of Diversity Outbred Cholesterol Levels

Dave Bridges and Cody Cousineau

March 25, 2022

Contents

1	Purpose	1
2	Experimental Details	1
3	Raw Data	1
4	Analysis 4.1 Cholesterol Levels for NCD Annimals	2 2
5	Cholesterol Classification	5
6	Classification Tree	6
7	Random Forests	2 1
8	Session Information	24

1 Purpose

To analyze cholesterol levels from diversity outbred mice, identifying predictors of elevated choelsterol.

2 Experimental Details

This analysis uses the complete dataset (F01-F425 and M01-M425).

3 Raw Data

```
phenotype.filename <- 'Svenson_DO-phenotypes.csv'

library(readr) #loads the readr package

phenotype.data <- read_csv(phenotype.filename)

#set phenotypes of zero or to na
phenotype.data[phenotype.data < 0] <- NA
```

4 Analysis

4.1 Cholesterol Levels for NCD Annimals

```
cholesterol.data %>%
  group_by(sex,diet) %>%
  summarize_at(.vars=vars(chol1,chol2,chol.avg), .funs=list(~shapiro.test(.)$p.value)) %>%
  kable(caption="Groupwise Shapiro-Wilk normality tests for cholesterol levels")
```

Table 1: Groupwise Shapiro-Wilk normality tests for cholesterol levels

sex	diet	chol1	chol2	chol.avg
F	chow	0.217	0.016	0.219
F	hf	0.015	0.000	0.002
M	chow	0.000	0.001	0.000
${\bf M}$	hf	0.048	0.013	0.108


```
summary.data.complete <-
  cholesterol.data %>%
  group_by(sex,diet) %>%
  summarize_at(.vars=vars(chol1,chol2,chol.avg), .funs=list(mean=~mean(., na.rm=T),se=se))
kable(summary.data.complete, caption="Cholesterol levels at 11 and 18 weeks")
```

Table 2: Cholesterol levels at 11 and 18 weeks

sex	diet	chol1_mean	chol2_mean	chol.avg_mean	chol1_se	chol2_se	chol.avg_se
\mathbf{F}	chow	80.0	78.7	79	1.16	1.48	1.23
\mathbf{F}	hf	108.0	113.3	111	1.79	2.38	1.86
\mathbf{M}	chow	96.4	96.5	97	1.47	1.57	1.37
M	hf	128.4	129.4	128	2.06	2.32	1.90

4.1.1 Similarity at Both Time Points

Table 3: Pairwise t-test ofcholesterol levels week 11 and week 18

statistic	p.value	method	alternative
149882	0.456	Wilcoxon signed rank test with continuity correction	two.sided

```
summary.data <-
  cholesterol.data %>%
  group_by(sex,diet) %>%
  summarize_at(.vars=vars(chol1), .funs=list(mean=~mean(., na.rm=T),se=se))

library(broom)
lm(chol1~sex*diet, data=cholesterol.data) %>%
  tidy %>%
  kable(caption="Global interactions between sex and diet")
```

Table 4: Global interactions between sex and diet

term	estimate	std.error	statistic	p.value
(Intercept)	80.0	1.68	47.63	0.000
sexM	16.4	2.38	6.91	0.000
diethf	28.0	2.38	11.81	0.000
sexM:diethf	3.9	3.37	1.16	0.248

```
lm(chol1~sex+diet, data=cholesterol.data) %>%
  tidy %>%
  kable(caption="Global effects of sex and diet, no interaction")
```

Table 5: Global effects of sex and diet, no interaction

term	estimate	std.error	statistic	p.value
$\frac{\text{(Intercept)}}{\text{sexM}}$	79.0 18.4	1.46 1.69	54.3 10.9	0
diethf	30.0	1.69	17.8	0

```
cholesterol.data %>%
  group_by(sex,diet) %>%
  filter(!is.na(chol1)) %>%
  count %>%
  kable(caption="Total cholesterol values for complete DO dataset")
```

Table 6: Total cholesterol values for complete DO dataset

sex	diet	n
$\overline{\mathbf{F}}$	chow	200
\mathbf{F}	hf	200
M	chow	199
M	hf	196

```
library(ggplot2)
cholesterol.data %>%
  ggplot(aes(y=chol1,x=sex,
             fill=Diet)) +
  geom_violin() +
  geom_jitter(alpha=0.2,
              position = position_jitterdodge(dodge.width = 0.9,
                                               jitter.width = 0.5,
                                               jitter.height = 0)) +
  labs(y="Blood Cholesterol (mg/dL)",
       x="Sex") +
  scale_fill_grey() +
  scale_color_grey() +
  theme_classic() +
  theme(text=element_text(size=16),
        legend.position = c(0.15,0.8))
```


There is no evidence of an interaction between sex and diet, though both covariates were significant individually.

5 Cholesterol Classification

Classified elevated cholesterol as being >mean for the 19 week cholesterol data for all mice

```
cholesterol.data <-
  cholesterol.data %>%
  mutate(High.Chol = chol2 > mean(chol2,na.rm=T)) %>%
```

```
mutate(sex = as.factor(sex),
    diet = as.factor(diet))
```

6 Classification Tree

First used only sex and diet to predict using classification trees

```
library(tree)
tree.sex.diet <- tree(High.Chol~sex+diet, data=cholesterol.data)</pre>
summary(tree.sex.diet)
##
## Regression tree:
## tree(formula = High.Chol ~ sex + diet, data = cholesterol.data)
## Number of terminal nodes: 4
## Residual mean deviance: 0.196 = 161 / 820
## Distribution of residuals:
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
   -0.743 -0.398 -0.130
                             0.000
                                             0.870
                                     0.419
plot(tree.sex.diet)
text(tree.sex.diet, pretty=0)
```



```
# load libraries
library(rpart)
library(rattle)

tree.sex.diet <- rpart(High.Chol~sex+diet, data=cholesterol.data)

fancyRpartPlot(tree.sex.diet)</pre>
```


Rattle 2022-Nov-27 11:33:47 davebrid

Next included fat mass as a predictor

```
tree.fat <- rpart(High.Chol~sex+diet+fat_mri, data=cholesterol.data)
log.fat <- glm(High.Chol~sex+diet+fat_mri, data=cholesterol.data, family='binomial')
log.fat %>% tidy %>% kable(caption="Logistic regression for sex and diet as predictors of above average
```

Table 7: Logistic regression for sex and diet as predictors of above average cholesterol levels

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	-2.333	0.440	-5.303	0.000
sexM	0.769	0.372	2.068	0.039
diethf	2.741	0.425	6.449	0.000
fat_mri	0.029	0.042	0.692	0.489

fancyRpartPlot(tree.sex.diet)

Rattle 2022-Nov-27 11:33:48 davebrid

```
#function to figure out if all columns are na, pass to select
not_all_na <- function(x) any(!is.na(x))

cholesterol.data %>%
    select(where(not_all_na)) %>% #remove columns with all nA
    select(-sample,-chol2,-chol1, -hdld1,-hdld2,-sqlalchemy_id) -> #remove cholesterol and hdl columns
    chol.pred.data.high #testing higher than average cholesterol

cholesterol.data %>%
    select(where(not_all_na)) %>% #remove columns with all nA
    select(-sample,-chol1,-High.Chol, -hdld1,-hdld2,-sqlalchemy_id) -> #remove cholesterol and hdl column
    chol.pred.data.cont #testing continuous cholesterol levels

chol.pred.data.high %>%
    dim %>%
    kable()
```

 $\frac{x}{846}$ 163

```
chol.pred.data.cont %>% rpart(chol2~., data=., method="anova") -> tree.all.cont
chol.pred.data.high %>% rpart(High.Chol~., data=., method="class") -> tree.all.high
fancyRpartPlot(tree.all.cont, main="Full tree, predicting continuous cholesterol levels")
```

Full tree, predicting continuous cholesterol levels

Rattle 2022-Nov-27 11:33:49 dayebrid

fancyRpartPlot(tree.all.high, main="Full tree, predicting above average cholesterol levels")

Full tree, predicting above average cholesterol levels

Rattle 2022-Nov-27 11:33:49 davebrid

#pruning of the continuous model, first showed the complexity parameter table
tree.all.cont\$cptable %>% kable(captiomn="Complexity parameter table, used to idenfiy minumum crossvalie")

СР	nsplit	rel error	xerror	xstd
0.562	0	1.000	1.004	0.059
0.139	1	0.438	0.453	0.029
0.095	2	0.299	0.312	0.018
0.023	3	0.204	0.229	0.015
0.017	4	0.181	0.211	0.014
0.016	5	0.164	0.190	0.013
0.011	6	0.148	0.176	0.013
0.010	7	0.137	0.169	0.013

```
prune(tree.all.cont, cp=0.0365) -> tree.all.cont.pruned
fancyRpartPlot(tree.all.cont.pruned, uniform=TRUE, main="Pruned tree predicting continuous cholesterol")
```

Pruned tree predicting continuous cholesterol levels

Rattle 2022-Nov-27 11:33:49 davebrid

```
log.calcium <- glm(High.Chol~sex+diet+tg2+calcium2, data=cholesterol.data, family='binomial')
summary(log.calcium)</pre>
```

```
##
## Call:
## glm(formula = High.Chol ~ sex + diet + tg2 + calcium2, family = "binomial",
##
       data = cholesterol.data)
##
## Deviance Residuals:
               1Q Median
                               3Q
                                      Max
## -2.665 -0.793 -0.318
                            0.845
                                    2.554
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.51257
                            1.08294
                                    -9.71 < 2e-16 ***
```

```
## sexM
                1.08639
                           0.18686
                                     5.81 6.1e-09 ***
                2.08519
                           0.20100
## diethf
                                     10.37 < 2e-16 ***
## tg2
                0.00807
                           0.00184
                                      4.40 1.1e-05 ***
## calcium2
                0.84150
                           0.11269
                                      7.47 8.2e-14 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1063.49 on 771 degrees of freedom
## Residual deviance: 783.56 on 767 degrees of freedom
    (74 observations deleted due to missingness)
##
## AIC: 793.6
##
## Number of Fisher Scoring iterations: 5
library(ggplot2)
ggplot(data=cholesterol.data,
      aes(y=chol2,
          x=calcium2,
           col=diet)) +
 geom_point() +
 facet_grid(.~sex) +
 geom_smooth(method=lm)
```



```
lm.calcium.1 <- lm(chol2~calcium2, data=cholesterol.data)
lm.calcium.2 <- lm(chol2~calcium2+sex, data=cholesterol.data)</pre>
```

```
lm.calcium.3 <- lm(chol2~calcium2+sex+diet, data=cholesterol.data)</pre>
lm.calcium.4 <- lm(chol2~calcium2+sex+tg2, data=cholesterol.data)</pre>
lm.calcium.5 <- lm(chol2~calcium2+sex+bw_19, data=cholesterol.data)</pre>
lm.calcium.6 <- lm(chol2~sex+diet+calcium2, data=cholesterol.data)</pre>
lm.calcium.7 <- lm(chol2~sex+diet+calcium2+tg2, data=cholesterol.data)</pre>
lm.calcium.8 <- lm(chol2~sex+diet+calcium2+tg2+bw_19, data=cholesterol.data)</pre>
anova(lm.calcium.3,lm.calcium.4)
## Analysis of Variance Table
## Model 1: chol2 ~ calcium2 + sex + diet
## Model 2: chol2 ~ calcium2 + sex + tg2
     Res.Df
               RSS Df Sum of Sq F Pr(>F)
## 1
        768 465701
        768 613655 0 -147954
lm.calcium.9 <- lm(chol2~sex+diet*calcium2, data=cholesterol.data)</pre>
aov.calcium <- aov(chol2~sex+diet+calcium2, data=cholesterol.data)</pre>
summary(lm.calcium.1) %>% tidy %% kable(caption="Effects of calcium on cholesterol at 18w", digits=50)
```

Table 10: Effects of calcium on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	-29.2	9.47	-3.08	2.12e-03
calcium2	14.5	1.03	14.11	2.19e-40

summary(lm.calcium.2) %>% tidy %>% kable(caption="Sex adjusted effects of calcium on cholesterol at 18w

Table 11: Sex adjusted effects of calcium on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	-40.3	9.12	-4.42	1.12e-05
calcium2	14.7	0.98	14.99	9.67e-45
sexM	17.9	2.04	8.75	1.37e-17

summary(lm.calcium.3) %>% tidy %>% kable(caption="Sex and diet adjusted effects of calcium on cholester

Table 12: Sex and diet adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-35.0	7.941	-4.41	1.19e-05
calcium2	12.7	0.862	14.69	3.03e-43
sexM	17.9	1.775	10.08	1.58e-22
diethf	28.4	1.797	15.78	8.40e-49

summary(lm.calcium.4) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on ch

Table 13: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-39.676	9.1133	-4.35	1.52e-05
calcium2	14.193	1.0101	14.05	4.45e-40
sexM	16.728	2.1168	7.90	9.47e-15
tg2	0.036	0.0184	1.95	5.10e-02

summary(lm.calcium.5) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on ch

Table 14: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

estimate	$\operatorname{std.error}$	statistic	p.value
-61.87	9.136	-6.77	2.52e-11
13.09	0.960	13.65	4.11e-38
6.90	2.375	2.91	3.76e-03
1.23	0.149	8.22	8.97e-16
	-61.87 13.09 6.90	-61.87 9.136 13.09 0.960 6.90 2.375	-61.87 9.136 -6.77 13.09 0.960 13.65 6.90 2.375 2.91

summary(lm.calcium.6) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on ch

Table 15: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-35.0	7.941	-4.41	1.19e-05
sexM	17.9	1.775	10.08	1.58e-22
diethf	28.4	1.797	15.78	8.40e-49
calcium2	12.7	0.862	14.69	3.03e-43

summary(lm.calcium.7) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on ch

Table 16: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-32.181	7.7007	-4.18	3.27e-05
sexM	14.259	1.7914	7.96	6.21e-15
diethf	32.024	1.8134	17.66	0.00e+00
calcium2	10.801	0.8736	12.36	3.78e-32
tg2	0.116	0.0162	7.19	1.50e-12

summary(lm.calcium.8) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on che

Table 17: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-40.248	8.1030	-4.97	8.39e-07
sexM diethf	10.594	2.1570	4.91	1.11e-06 2.67e-46
	29.767	1.9456	15.30	
calcium2	10.478	0.8760	11.96	2.40e-30
tg2	0.111	0.0162	6.86	1.43e-11
bw_19	0.430	0.1407	3.06	2.30e-03

lm.calcium.chow <- lm(chol2~sex+calcium2, filter(cholesterol.data, diet == "chow"))
summary(lm.calcium.chow) %>% glance %>% kable

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.325	0.322	19.9	98.4	0	2	409	412

 $lm.calcium.hf <- lm(chol2~sex+calcium2, filter(cholesterol.data, diet == "hf")) \\ summary(lm.calcium.hf) %>% glance %>% kable$

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.278	0.274	28.9	68.8	0	2	357	360


```
lm.tg.1 <- lm(chol2~sex+tg2, data=cholesterol.data)
lm.tg.2 <- lm(chol2~sex+diet+tg2, data=cholesterol.data)
lm.tg.3 <- lm(chol2~sex+calcium2+tg2, data=cholesterol.data)
lm.tg.4 <- lm(chol2~sex+bw_19+tg2, data=cholesterol.data)
lm.tg.5 <- lm(chol2~sex+diet+tg2+calcium2, data=cholesterol.data)
lm.tg.6 <- lm(chol2~sex+diet+tg2+calcium2+bw_19, data=cholesterol.data)
lm.tg.male <- lm(chol2~diet*tg2, dplyr::filter(cholesterol.data, sex == "M"))
lm.tg.female <- lm(chol2~diet*tg2, dplyr::filter(cholesterol.data, sex == "F"))
lm.tg.complicated <- lm(chol2~diet + sex + diet*tg2 + sex*tg2 + sex*diet + sex*diet*tg2, data=cholester aov.tg <- aov(chol2~sex+diet+tg2, data=cholesterol.data)</pre>
summary(lm.tg.1) %>% tidy %>% kable(caption="Sex adjusted effects of tg on cholesterol at 18w", digits=
```

Table 20: Sex adjusted effects of tg on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	84.4052	2.65	31.80	0.00e+00
sexM	13.6869	2.34	5.85	7.01e-09
tg2	0.0988	0.02	4.94	9.61e-07

summary(lm.tg.2) %>% tidy %>% kable(caption="Sex and diet adjusted effects of tg on cholesterol at 18w"

Table 21: Sex and diet adjusted effects of tg on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	57.688	2.5315	22.79	0.00e+00
sexM	11.396	1.9108	5.96	3.66e-09
diethf	38.544	1.8938	20.35	0.00e+00
tg2	0.179	0.0168	10.68	5.33e-25

summary(lm.tg.3) %>% tidy %>% kable(caption="Sex and diet adjusted effects of tg on cholesterol at 18w"

Table 22: Sex and diet adjusted effects of tg on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	-39.676	9.1133	-4.35	1.52e-05
sexM	16.728	2.1168	7.90	9.47e-15
calcium2	14.193	1.0101	14.05	4.45e-40
tg2	0.036	0.0184	1.95	5.10e-02

summary(lm.tg.4) %>% tidy %>% kable(caption="Sex and diet adjusted effects of tg on cholesterol at 18w")

Table 23: Sex and diet adjusted effects of tg on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	36.5354	5.2576	6.949	7.50e-12
sexM	-0.2733	2.5866	-0.106	9.16e-01
bw_19	1.6440	0.1588	10.355	1.06e-23
tg2	0.0903	0.0189	4.788	2.00e-06

summary(lm.tg.5) %>% tidy %>% kable(caption="Sex and diet adjusted effects of tg on cholesterol at 18w"

Table 24: Sex and diet adjusted effects of tg on cholesterol at 18w

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	term	estimate	std.error	statistic	p.value
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(Intercept)	-32.181	7.7007	-4.18	3.27e-05
tg2 0.116 0.0162 7.19 1.50e-1	sexM	14.259	1.7914	7.96	6.21e-15
	diethf	32.024	1.8134	17.66	0.00e+00
calcium 2 10.801 0.8736 12.36 3.78e-3	tg2	0.116	0.0162	7.19	1.50e-12
	calcium2	10.801	0.8736	12.36	3.78e-32

summary(lm.tg.6) %>% tidy %>% kable(caption="Sex and diet adjusted effects of tg on cholesterol at 18w"

Table 25: Sex and diet adjusted effects of tg on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	-40.248	8.1030	-4.97	8.39e-07
sexM	10.594	2.1570	4.91	1.11e-06
diethf	29.767	1.9456	15.30	2.67e-46
tg2	0.111	0.0162	6.86	1.43e-11

term	estimate	std.error	statistic	p.value
calcium2	10.478	0.8760	11.96	2.40e-30
bw_19	0.430	0.1407	3.06	2.30e-03

summary(lm.tg.male) %>% tidy %>% kable(caption="Sex and diet adjusted effects of calcium on cholesterol)

Table 26: Sex and diet adjusted effects of calcium on cholesterol at $18\mathrm{w}$ for males

term	estimate	std.error	statistic	p.value
(Intercept)	67.619	4.6946	14.40	3.60e-38
diethf	50.051	6.3200	7.92	2.39e-14
tg2	0.194	0.0292	6.65	9.42e-11
diethf:tg2	-0.101	0.0417	-2.43	1.57e-02

 ${\tt summary(lm.tg.female)~\%>\%~tidy~\%>\%~kable({\tt caption="Sex~and~diet~adjusted~effects~of~calcium}~on~cholester)}\\$

Table 27: Sex and diet adjusted effects of calcium on cholesterol at $18\mathrm{w}$ for females

term	estimate	std.error	statistic	p.value
(Intercept)	54.282	4.4127	12.30	6.95e-30
diethf	27.651	6.5939	4.19	3.36e-05
tg2	0.202	0.0336	6.01	4.17e-09
diethf:tg2	0.145	0.0604	2.40	1.70e-02

 $summary (lm.tg.complicated) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects of calcium on cholerate adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ kable (caption="Sex and diet adjusted effects) \ \%>\% \ tidy \ \%>\% \ tid$

Table 28: Sex and diet adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	54.2816	4.4710	12.141	2.68e-31
diethf	27.6507	6.6810	4.139	3.86e-05
sexM	13.3372	6.4380	2.072	3.86e-02
tg2	0.2015	0.0340	5.927	4.56e-09
diethf:tg2	0.1447	0.0612	2.366	1.82e-02
sexM:tg2	-0.0073	0.0446	-0.164	8.70e-01
diethf:sexM	22.4002	9.1393	2.451	1.45e-02
diethf:sexM:tg2	-0.2460	0.0738	-3.336	8.88e-04

lm.tg.chow <- lm(chol2~sex+tg2, filter(cholesterol.data, diet == "chow"))
summary(lm.tg.chow) %>% glance %>% kable

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.34	0.337	20	112	0	2	436	439

```
lm.tg.hf <- lm(chol2~sex+tg2, filter(cholesterol.data, diet == "hf"))
summary(lm.tg.hf) %>% glance %>% kable
```

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.114	0.109	32.1	24.5	0	2	382	385

```
library(effectsize)
omega_squared(aov.calcium, partial = TRUE) %>%
   kable(caption="Partial effect size estimates for predictors of continuous cholesterol levels")
```

Table 31: Partial effect size estimates for predictors of continuous cholesterol levels

Parameter	Omega2_partial	CI	CI_low	CI_high
sex	0.107	0.95	0.075	1
diet	0.299	0.95	0.257	1
calcium2	0.218	0.95	0.177	1

```
dplyr::filter(cholesterol.data, sex == "M")
## # A tibble: 421 x 169
      sample acr1 acr2 adiponectin b_area1 b_area2
##
                                                       bmc1
                                                              bmc2
                                                                      bmd1
                                                                              bmd2
##
      <chr> <dbl> <dbl>
                               <dbl>
                                                                     <dbl>
                                       <dbl>
                                               <dbl>
                                                     <dbl>
                                                             <dbl>
                                                                             <dbl>
##
   1 F142
               NA
                     NΑ
                                 NA
                                        8.31
                                                8.74
                                                     0.423
                                                            0.477
                                                                    0.0509 0.0546
##
   2 M01
               NA
                                 NA
                                       9.97
                                                9.82 0.496
                                                            0.538
                                                                    0.0497
                     NA
                                                                            0.0547
##
   3 M02
               NA
                     NA
                                 NA
                                       9.02
                                                8.57 0.489
                                                            0.497
                                                                    0.0542 0.058
## 4 MO3
               NA
                                                9.48 0.542
                                                            0.594 0.0598 0.0627
                     NA
                                 NA
                                       9.05
## 5 MO4
               NA
                     NA
                                 NA
                                       9.55
                                               9.36 0.546
                                                            0.533 0.0572 0.057
## 6 MO5
               NA
                     NA
                                 NA
                                       8.78
                                               8.47
                                                     0.500
                                                            0.482 0.0569
                                                                           0.0568
##
  7 M06
               NA
                                 NA
                                      11.4
                                                                   0.0577 0.0568
                     NA
                                               10.9
                                                      0.654
                                                            0.620
## 8 MO7
               NA
                     NA
                                  NA
                                       9.24
                                               9.81 0.547
                                                            0.594
                                                                    0.0592 0.0606
## 9 MO8
               NA
                     NA
                                 NA
                                      10.7
                                               11.0
                                                      0.640 0.662 0.0596 0.06
## 10 MO9
               NA
                                  NA
                                      NA
                                               NA
                                                     NA
                                                            NA
## # ... with 411 more rows, and 159 more variables: bun1 <dbl>, bun2 <dbl>,
      bw_10 <dbl>, bw_11 <dbl>, bw_12 <dbl>, bw_13 <dbl>, bw_14 <dbl>,
      bw_15 <dbl>, bw_16 <dbl>, bw_17 <dbl>, bw_18 <dbl>, bw_19 <dbl>,
## #
      bw_20 <dbl>, bw_21 <dbl>, bw_22 <dbl>, bw_23 <dbl>, bw_24 <dbl>,
## #
      bw_25 <dbl>, bw_26 <dbl>, bw_27 <dbl>, bw_28 <dbl>, bw_29 <dbl>,
## #
      bw_3 <dbl>, bw_30 <dbl>, bw_4 <dbl>, bw_5 <dbl>, bw_6 <dbl>, bw_7 <dbl>,
      bw_8 <dbl>, bw_9 <dbl>, bw_pc1 <dbl>, bw_pc2 <dbl>, calcium1 <dbl>, ...
ggplot(data=cholesterol.data,
       aes(y=chol2,
          x=bw_19,
           col=diet)) +
  geom_point() +
  facet_grid(.~sex) +
  geom smooth(method=lm)
```



```
lm.bw.1 <- lm(chol2~bw_19, data=cholesterol.data)
lm.bw.2 <- lm(chol2~bw_19+sex, data=cholesterol.data)
lm.bw.3 <- lm(chol2~sex+diet+bw_19, data=cholesterol.data)
lm.bw.4 <- lm(chol2~sex+calcium2+bw_19, data=cholesterol.data)
lm.bw.5 <- lm(chol2~sex+tg2+bw_19, data=cholesterol.data)
lm.bw.6 <- lm(chol2~sex+diet+bw_19+tg2, data=cholesterol.data)
lm.bw.7 <- lm(chol2~sex+diet+bw_19+tg2+calcium2, data=cholesterol.data)
lm.bw.6 <- lm(chol2~sex+diet+bw_19+tg2+calcium2, data=cholesterol.data)
summary(lm.bw.1) %>% tidy %>% kable(caption="Effects of calcium on cholesterol at 18w", digits=50)
```

Table 32: Effects of calcium on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	43.68	4.694	9.31	1.18e-19
bw_19	1.75	0.135	13.02	2.19e-35

summary(lm.bw.2) %>% tidy %>% kable(caption="Sex adjusted effects of calcium on cholesterol at 18w", di

Table 33: Sex adjusted effects of calcium on cholesterol at 18w

term	estimate	std.error	statistic	p.value
(Intercept)	45.22	5.000	9.045	1.06e-18
bw_19	1.68	0.161	10.427	5.48e-24

term	estimate	std.error	statistic	p.value
sexM	2.30	2.564	0.896	3.70e-01

summary(lm.bw.3) %>% tidy %>% kable(caption="Sex and diet adjusted effects of calcium on cholesterol at

Table 34: Sex and diet adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	56.16	4.554	12.33	3.57e-32
$\hat{s}exM$	9.72	2.360	4.12	4.22e-05
diethf	29.47	2.089	14.11	1.25e-40
bw_19	0.84	0.156	5.39	9.26e-08

 $summary(lm.bw.4) \%>\% \ tidy \%>\% \ kable(caption="Sex and diet and tg adjusted effects of calcium on cholest)$

Table 35: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	-61.87	9.136	-6.77	2.52e-11
sexM	6.90	2.375	2.91	3.76e-03
calcium2	13.09	0.960	13.65	4.11e-38
bw_19	1.23	0.149	8.22	8.97e-16

summary(lm.bw.5) %>% tidy %>% kable(caption="Sex and diet and tg adjusted effects of calcium on cholest

Table 36: Sex and diet and tg adjusted effects of calcium on cholesterol at $18\mathrm{w}$

term	estimate	std.error	statistic	p.value
(Intercept)	36.5354	5.2576	6.949	7.50e-12
sexM	-0.2733	2.5866	-0.106	9.16e-01
tg2	0.0903	0.0189	4.788	2.00e-06
bw_19	1.6440	0.1588	10.355	1.06e-23

lm.bw.chow <- lm(chol2~sex+bw_19, filter(cholesterol.data, diet == "chow"))
summary(lm.bw.chow) %>% glance %>% kable

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.18	0.176	22.3	47.8	0	2	435	438

lm.bw.hf <- lm(chol2~sex+bw_19, filter(cholesterol.data, diet == "hf"))
summary(lm.bw.hf) %>% glance %>% kable

r.squared	adj.r.squared	sigma	statistic	p.value	df	df.residual	nobs
0.08	0.075	32.7	16.7	0	2	382	385

```
library(effectsize)
omega_squared(aov.calcium, partial = TRUE) %>%
  kable(caption="Partial effect size estimates for predictors of continuous cholesterol levels")
```

Table 39: Partial effect size estimates for predictors of continuous cholesterol levels

Parameter	Omega2_partial	CI	CI_low	CI_high
sex	0.084	0.95	0.056	1
diet	0.270	0.95	0.229	1
bw_19	0.033	0.95	0.016	1

```
dplyr::filter(cholesterol.data, sex == "M")
## # A tibble: 421 x 169
##
      sample acr1 acr2 adiponectin b area1 b area2
                                                       bmc1
                                                              bmc2
                                                                      bmd1
                                                                              bmd2
##
      <chr> <dbl> <dbl>
                               <dbl>
                                                     <dbl>
                                                                     <dbl>
                                       <dbl>
                                              <dbl>
                                                             <dbl>
                                                                             <dbl>
##
   1 F142
               NA
                                       8.31
                                               8.74 0.423
                                                            0.477
                                                                   0.0509 0.0546
  2 M01
##
               NA
                     NA
                                 NA
                                       9.97
                                               9.82 0.496
                                                            0.538
                                                                   0.0497 0.0547
##
   3 MO2
               NA
                                 NA
                                       9.02
                                               8.57
                                                     0.489
                                                            0.497
                                                                   0.0542
## 4 MO3
               NA
                                 NA
                                       9.05
                                               9.48 0.542
                                                            0.594 0.0598 0.0627
                     NA
## 5 MO4
               NA
                     NA
                                 NA
                                       9.55
                                               9.36 0.546
                                                            0.533 0.0572 0.057
## 6 MO5
               NA
                     NA
                                 NA
                                       8.78
                                               8.47 0.500
                                                            0.482 0.0569 0.0568
   7 M06
                                              10.9
                                                      0.654
                                                            0.620
                                                                   0.0577 0.0568
               NA
                     NA
                                 NA
                                      11.4
## 8 MO7
               NA
                     NA
                                 NA
                                       9.24
                                               9.81 0.547
                                                            0.594
                                                                   0.0592 0.0606
## 9 MO8
                                      10.7
                                                      0.640 0.662 0.0596 0.06
               NA
                     NA
                                 NA
                                              11.0
## 10 M09
               NA
                     NA
                                 NA
                                      NA
                                              NA
                                                     NA
                                                            NA
                                                                   NA
## # ... with 411 more rows, and 159 more variables: bun1 <dbl>, bun2 <dbl>,
      bw_10 <dbl>, bw_11 <dbl>, bw_12 <dbl>, bw_13 <dbl>, bw_14 <dbl>,
      bw_15 <dbl>, bw_16 <dbl>, bw_17 <dbl>, bw_18 <dbl>, bw_19 <dbl>,
      bw_20 <dbl>, bw_21 <dbl>, bw_22 <dbl>, bw_23 <dbl>, bw_24 <dbl>,
## #
      bw_25 <dbl>, bw_26 <dbl>, bw_27 <dbl>, bw_28 <dbl>, bw_29 <dbl>,
## #
      bw 3 <dbl>, bw 30 <dbl>, bw 4 <dbl>, bw 5 <dbl>, bw 6 <dbl>, bw 7 <dbl>,
## #
## #
      bw_8 <dbl>, bw_9 <dbl>, bw_pc1 <dbl>, bw_pc2 <dbl>, calcium1 <dbl>, ...
```

7 Random Forests

```
library(caret)
library(ipred)

# Specify 10-fold cross validation
ctrl <- trainControl(method = "cv", number = 10)

# train bagged model
bagged_cv <- bagging(
  formula = chol2~diet+calcium2,</pre>
```

```
data = chol.pred.data.cont,
  coob=TRUE
# assess 10-50 bagged trees
ntree <- 10:50
# create empty vector to store OOB RMSE values
rmse <- vector(mode = "numeric", length = length(ntree))</pre>
for (i in seq_along(ntree)) {
  # reproducibility
  set.seed(123)
  # perform bagged model
  model <- bagging(</pre>
  formula = chol2~diet+sex+calcium2+tg2,
       = chol.pred.data.cont,
  coob=TRUE,
  nbagg = ntree[i]
  # get OOB error
  rmse[i] <- model$err</pre>
plot(ntree, rmse, type = '1', lwd = 2)
abline(v = 25, col = "red", lty = "dashed")
```



```
predict_model<-predict(bagged_cv, chol.pred.data.cont)

ggplot(chol.pred.data.cont, aes(x=predict_model,y=chol2)) +
    geom_point()</pre>
```


forest

predict_model<-predict(forest, chol.pred.data.cont)</pre>

8 Session Information

```
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur/Monterey 10.16
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
  [1] randomForest_4.7-1.1 ipred_0.9-13
                                                  caret_6.0-93
## [4] lattice_0.20-45
                             effectsize_0.8.2
                                                  rattle_5.5.1
## [7] bitops_1.0-7
                             tibble_3.1.8
                                                  rpart_4.1.19
## [10] tree_1.0-42
                             broom_1.0.1
                                                  ggplot2_3.4.0
## [13] forcats 0.5.2
                             readr 2.1.3
                                                  dplyr_1.0.10
                             knitr_1.41
## [16] tidyr_1.2.1
```

```
##
## loaded via a namespace (and not attached):
   [1] TH.data 1.1-1
                              colorspace 2.0-3
                                                   ellipsis 0.3.2
   [4] class_7.3-20
                              estimability_1.4.1
                                                   parameters_0.19.0
##
##
   [7] rstudioapi 0.14
                              listenv_0.8.0
                                                   farver_2.1.1
## [10] bit64 4.0.5
                             prodlim 2019.11.13
                                                   fansi 1.0.3
## [13] mvtnorm 1.1-3
                             lubridate 1.9.0
                                                   codetools 0.2-18
## [16] splines_4.2.0
                                                   compiler_4.2.0
                             pROC_1.18.0
       emmeans_1.8.2
## [19]
                             backports_1.4.1
                                                   assertthat_0.2.1
## [22] Matrix_1.5-3
                              fastmap_1.1.0
                                                   cli_3.4.1
## [25] htmltools_0.5.3
                              tools_4.2.0
                                                   coda_0.19-4
## [28]
       gtable_0.3.1
                              glue_1.6.2
                                                   reshape2_1.4.4
                              vctrs_0.5.1
## [31] Rcpp_1.0.9
                                                   nlme_3.1-160
                              insight_0.18.7
                                                   timeDate_4021.106
## [34] iterators_1.0.14
## [37] gower_1.0.0
                             xfun_0.35
                                                   stringr_1.4.1
## [40]
       globals_0.16.1
                              timechange_0.1.1
                                                   lifecycle_1.0.3
## [43] future_1.29.0
                             MASS_7.3-58.1
                                                   zoo_1.8-11
## [46] scales 1.2.1
                             vroom 1.6.0
                                                   hms 1.1.2
## [49] parallel_4.2.0
                              sandwich_3.0-2
                                                   RColorBrewer_1.1-3
## [52] rpart.plot 3.1.1
                              yaml 2.3.6
                                                   stringi_1.7.8
## [55] highr_0.9
                             bayestestR_0.13.0
                                                   foreach_1.5.2
## [58] hardhat 1.2.0
                              lava_1.7.0
                                                   rlang_1.0.6
## [61] pkgconfig_2.0.3
                              evaluate_0.18
                                                   purrr_0.3.5
## [64] recipes 1.0.3
                             labeling 0.4.2
                                                   bit_4.0.5
## [67] tidyselect_1.2.0
                             parallelly_1.32.1
                                                   plyr_1.8.8
## [70] magrittr_2.0.3
                             R6_2.5.1
                                                   magick_2.7.3
## [73] generics_0.1.3
                             multcomp_1.4-20
                                                   DBI_1.1.3
                              withr_2.5.0
## [76]
       pillar_1.8.1
                                                   mgcv_1.8-41
## [79] survival_3.4-0
                              datawizard_0.6.4
                                                   nnet_7.3-18
## [82] future.apply_1.10.0
                             crayon_1.5.2
                                                   utf8_1.2.2
## [85] tzdb_0.3.0
                             rmarkdown_2.18
                                                   grid_4.2.0
## [88] data.table_1.14.6
                             ModelMetrics_1.2.2.2 digest_0.6.30
## [91] xtable_1.8-4
                              stats4_4.2.0
                                                   munsell_0.5.0
```