Leçon 229: Fonctions monotones. Fonctions convexes. Exemples et applications.

Développements :

Ellipsoïde de John-Loewner (FGN Al
3), Dini-Cantelli, Processus de Galton Watson .

Bibliographie:

Rombaldi, Elements d'analyse réelle (Rom), Ramis Deschamps Odoux, Cours de mathémataiques spéciales 3 (RDO), Gourdon, Analyse (G), Garet, De l'intégration aux probabilités, Objectif agrégation (OA)

Plan

1 Fonctions monotones

1.1 Définitions et propriétés [RDO]

Définition 1 (RDO p.118). Fonctions (strictement) croissantes - (strictement) décroissantes.

Exemple 2. $x \to x + 2$ est stt croissante sur \mathbb{R} .

Soit D partie de \mathbb{R} .

Proposition 3 (RDO prop2 a) p.118). f injective ssi strictement monotone **1.5** et induit une bijection de D sur f(D).

Proposition 4 (RDO prop2 b) à f) p.118). Opérations sur fct monotones.

Théorème 5 (G. p.228). Thm Dini.

Théorème 6. Thm limite monotone

Corollaire 7 (RDO cor1 p.119). Application croissante et a pt adhérent à $D \cap]a, \infty[$. On a EQU:

f a une limite finie a droite en a ssi f minorée dur $D \cap [a, \infty[$

Corollaire 8 (RDO cor2 p.119). $f: I \to \mathbb{R}$ est monotone et $a \in I$. Si $a \neq sup(I)$ alors f a une limite à droite finie $f(a^+)$ et $a \neq inf(I)$ alors a une limite finie $f(a^-)$.

1.2 Monotonie et continuité [RDO]

Proposition 9 (RDO p.120). Fonction monotone a un nb dénombrable de discontinuité.

Proposition 10 (RDO p.121). Soient I intervalle et $f: I \to \mathbb{R}$ monotone. On a f continue sur I ssi f(I) intervalle de \mathbb{R}

Corollaire 11 (RDO thm2 p.121). Theorème des fct réciproques.

Exemple 12 (RDO P.127 et P.128). Dérivées de arcsin et arccos.

Théorème 13 (RDO thm3 p.121). $f: I \to J$ ou I et J intervalle de \mathbb{R} . f homéo alors f stt monotone.

1.3 Monotonie et dérivabilité [RDO]

Théorème 14 (RDO THM 1 p.122). f continue et dérivable à droite de dérivée f_d . Equ entre sens variation de f et signe de f'_d .

Théorème 15 (RDO THM2 p.122). Caractérisation des appli stt monotones. f stt croissante (resp. decroissante) ssi $f'_d \geq 0$ (resp $f'_g \leq 0$) et $X = \{t \in Int(I) : f'_d(t) = 0\}$ soit d'intérieur vide.

Contre-exemple 16.

1.4 Comparaison série-intégrale

 $Gourdon\ p.203$

1.5 Un exemple de fonctions monotones : Fct de répartition [Garet]

Définition 17 (Garet p. 104). Fonction de répartition

Proposition 18 (Garet p. 105). propriétés

Proposition 19 (Garet p. 104). Caractérise la loi

Théorème 20 (Glivencko-Cantelli). [Garet p. 304]

2 Fonctions convexes [Rom]

Soit E un espace-vectoriel. Soit $I \subset E$ convexe.

2.1 Définition et opérations

Définition 21 (Rom p 233). Fonction convexe - strictement convexe - concave

Exemple 22 (Rom p.235).

- Une norme est convexe (ineg trianulaire).
- Une fonction affine est concave et convexe.

Proposition 23 (Rom. p.235). Une combinaison linéaire à coefficients positifs de fonctions convexes est convexe.

Remarque 24 (Rom p.235).

- Le produit de fonction convexe n'est pas forcément convexe. Par ex. $x \mapsto x^3$ n'est pas convexe alors que $x \mapsto x$ et $x \mapsto x^2$ le sont.
- La composée de fct convexe pas forcement convexe. Ex. Composée d'une convexe f non affine avec $x\mapsto -x$ donne -f qui est concave.

Proposition 25 (Rom p.236). Limite simple de fonctions convexes est convexe.

2.2 Caractérisations des fonctions convexes

Théorème 26 (Rom 9.1 - p.233). Caractérisation de la convexité avec la convexité de l'épigraphe.

Définition 27 (Rom p.238). Définition de la fonction pente.

Théorème 28 (Rom 238). Théorème équivalence de la convexité et inégalité des pentes+ croissance pentes+ schéma p.239 dans annexe

Proposition 29 (Rom 9.6 p.237).

$$f: I \to \mathbb{R} \ convexe \ ssi \ f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2} \quad \forall (x,y) \in I^2.$$

Corollaire 30 (Rom p. 240). cste ssi convexe majorée

2.3 Régularité et convexité

2.3.1 En dimension 1

Théorème 31 (Rom - thm9.12 - p.242). Si on est convexe on a des derivées à droite et à gauche. en tout point de l'intérieur de I. Les fcts derivées à droites et gauches sont croissantes.

Corollaire 32 (Rom - cor9.3 - p.242). Fonction convexe sur I est continue sur l'intérieur de I.

Contre-exemple 33 (Rom - rmq9.2 - p.243). Faux sur I tout entier.

Proposition 34 (Rom - thm9.13 - p.243). Si f convexe sur Int(I) et continue sur I alors f convexe sur I.

Théorème 35 (Rom - thm9.14 - p.243).

Soient I intervalle réel ouvert non-vide de \mathbb{R} et $f: I \to R$. On a EQU: f convexe sur I.

f continue dérivable à droite sur I de dérivée droite croissante.

Théorème 36 (Rom - thm915 - p.244). Si f est derivable alors on a EQU: f convexe sur I - f' croissante - f située au-dessus de ses tangentes.

Théorème 37 (Rom - thm9.18 - p.246). Si f deux fois dérivable sur I. f convexe (resp concave) ssi f'' > 0 (resp. f'' < 0).

Exemple 38 (Rom p.246). exp est convexe sur \mathbb{R} . log est concave sur $\mathbb{R}^{+,*}$

Théorème 39 (Rom - thm9.17 - p.245). Si f est derivable alors on a EQU: f strict convexe sur I - f' strict croissante - f située strict au-dessus de ses tangentes.

Application 40. Processus de Galton-Watson

Théorème 41 (Rom p.246). f est strictement convexe ssi f'' > 0 et zéros de f sont isolées.

Exemple 42 (Rom p.246). $x \mapsto x^p$ stt convexe sur $\mathbb{R}^{+,*}$ pour p > 1.

2.3.2 En dimension supérieure

Théorème 43 (Rom thm9.16 - p.245). Soit I ouvert d'un evn E et $f: I \to \mathbb{R}$ différentiable. On a EQU:

(i) f convexe sur I.

(ii) $\forall (x,y) \in I \quad (df(x) - df(y)).(y - x) \ge 0.$

 $(iii) \ \forall x, y \in I \quad f(x) \ge f(y) + df(y) \cdot (x - y)$

3 Inégalité de convexité - Optimisation

3.1 Inégalité de convexité

Théorème 44 (Rom - thm9.21 p.249). Jensen

Exemple 45. Jensen en proba

Avec la convexité et stricte convexité de exp,

Proposition 46 (Rom p.247). $\forall x \in \mathbb{R}$ $e^x \geq x + 1$.

$$e^{\frac{a+b}{2}} \le \frac{e^a + e^b}{2}$$

Avec la concavité et stricte concavité de ln,

Proposition 47 (Rom p.247). $ln(x) \le x - 1$ pour x > 0.

Proposition 48 (Rom - lemme9.1 - p.247). Inégalité de Young

Application 49. Inégalité de Hölder et Minkovsky. Permet de montrer que pour $p \ge 1$, $||.||_p$ est une norme.

Proposition 50 (Rom p.252). Comparaison moyennes gémoétriques et arithmétiques.

Application 51 (FGN). Concavité logarithmique du déterminant.

Application 52 (FGN). Ellipsoïde de John-Loewner

3.2 Optimisation et fonctions convexes [OA]

Proposition 53 (Rouv p. 371 ex 119 ou Rom p. 241 à adapter dimension). Point critique et $min\ global$

Proposition 54 (OA p.30 ou Rom p.242). Pour une fct convexe, min local est global.

Proposition 55 (OA p.30). strict convexe ⇒ unicité du minimum

Proposition 56 (OA p.30). Min local ssi d^2f positive

Proposition 57. Sur un espace de Hilbert séparable H, U convexe fermée, J convexe, dérivable coercice alors elle admet un minimum et l'atteint