1 Review

1.1 Vector

- Scalar is an *one*-entry object belongs to \mathbb{R} .
- **Vector** is a *three*-entry object represented by $\mathbf{x} = (x_1, x_2, x_3) = x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$, which represent an "arrow" in 3D space.
- Addition of vector: follows the head to tail rules.
- The **norm** $\|\cdot\|: V \to \mathbb{R}$ is a function which measures the *length* of the arrow. Defined by $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ (in our consideration).
- Dot Product:

"·":
$$V \times V \to \mathbb{R}$$

 $(\mathbf{v}_1, \mathbf{v}_2) \mapsto \mathbf{v}_1 \cdot \mathbf{v}_2 := v_{1x}v_{2x} + v_{1y}v_{2y} + v_{1z}v_{2z} = ||\mathbf{v}_1|| ||\mathbf{v}_2|| \cos \theta$

- Cross Product: " × " : $(\mathbf{v}_1, \mathbf{v}_2) \in V \times V \mapsto \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_{1x} & v_{1y} & v_{1z} \\ v_{2x} & v_{2y} & v_{2z} \end{bmatrix} \in V.$
- You are reminded the concept of **linearly independent**, **unit vector**, **orthogonal** and **determinant**.
- The way to find a equation of **line** passing through *two* points:
 - 1. Given points A, B, find \overrightarrow{AB} .
 - 2. Equation of line: $\overrightarrow{OA} + t\overrightarrow{AB} \ t \in \mathbb{R}$.
- The way to find a equation of **plane** passing through *three* points:
 - 1. Given points A, B and C, find vectors \overrightarrow{AB} and \overrightarrow{AC} .
 - 2. Find normal of plane $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC}$.
 - 3. Let P = (x, y, z), then equation of plane: $\overrightarrow{AP} \cdot \mathbf{n} = 0$.

1.2 Vector Valued Functions, Tangent/Normal Vectors, Curvature and Arc Length of Curve

- Vector valued function $V: t \in \mathbb{R} \mapsto \mathbf{r}(t) = (r_1(t), r_2(t), r_3(t)) \in \mathbb{R}^3$.
- Tangent vector $\mathbf{T}(t) := \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$, Normal vector $\mathbf{N}(t) := \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$.
- Arc length parametrization: parametrization of curve in which $|\mathbf{r}'(s)| = 1$.
- Curvature $\kappa := \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$.
- Arc length calculation: The arc length of the curve defined by $\mathbf{r}(t)$ for $a \leq t \leq b$ is given by $L = \int_a^b \sqrt{[r_1'(t)]^2 + [r_2'(t)]^2 + [r_3'(t)]^2} dt$.

1.3 Multivariable Functions, Limits and Differentiation

- Multivariable function is defined as the map $f: \mathbb{R}^n \to \mathbb{R}$.
- **Domain** D: Subset $D \subset \mathbb{R}^n$ on which the function is defined. **Range**: The set $\{f(\mathbf{x})|\mathbf{x} \in D\}$.
- Graph: The set $\{(x, y, f(x, y)) | (x, y) \in D\}$ for the domain D of f.
- Level curve: The curve with satisfying f(x, y) = k.
- Limit: The value that f "approach" as (x, y) approach (a, b)). Notationally,

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=L.$$

- If the limit exist, then **MUST** be unique.
- Evaluation can be done with $squeeze\ theorem$ or $polar\ coordinates$.
- Continuouity: f is continuous at \mathbf{x}_0 if it satisfies $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$.
- Partial derivative $\frac{\partial f}{\partial x_i}\Big|_{\mathbf{x}_0} := \lim_{h\to 0} \frac{f(\mathbf{x}_0 + h\mathbf{e}_i) f(\mathbf{x}_0)}{h}$. Other notations: f_{x_i} . One can regard unrelated variables as constants in taking partial derivative.
- Theorem (Clairaut): f_{xy} and f_{yx} are continuous $\Rightarrow f_{xy} = f_{yx}$.

1.4 Tangent Plane, Directional Derivatives and Implicit Differentiation

- Tangent plane of a multivariable function $P(\mathbf{x}) := f(\mathbf{x}_0) + \sum_{i=1}^n f_{x_i}(\mathbf{x}_0) \Delta x_i$. Total differential $df := \sum_{i=1}^n f_{x_i} \Delta x_i$.
- **Theorem**: Normal vector of the surface defined by $x_{n+1} = f(\mathbf{x})$ is $(f_{x_1}, \dots, f_{x_n}, -1)$.

- Gradient operator maps a function into a vector by $\nabla f := \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)$.
- Directional derivative in the direction of $\hat{\mathbf{v}}$ $D_{\hat{\mathbf{v}}} f(\mathbf{x}) := \lim_{t \to 0} \frac{f(\mathbf{x} + t\hat{\mathbf{v}}) f(\mathbf{x})}{t} = \nabla f \cdot \hat{\mathbf{v}}$.

 * Always the best to work with unit vector.
- Suppose $\mathbf{x}(t) \in \mathbb{R}^n$ are set of variables which depends on $\mathbf{t} \in \mathbb{R}^m$, then the **chain rule** in multivariable case is given by $\frac{\partial f}{\partial t_i} = \nabla f \cdot \frac{\partial \mathbf{x}}{\partial t_i}$. we can draw *tree diagram* for the chain relation.
- If $F(\mathbf{x}) = C$, we can find $\frac{\partial x_j}{\partial x_i}$ by **implicit differentiation**. Procedures:
 - 1. Take the partial derivative $F(\mathbf{x}) = C$ with respect to x_i , then we obtain the relation $\nabla F \cdot \frac{\partial \mathbf{x}}{\partial x_i} = 0$.
 - 2. Find the expression $\nabla F \cdot \frac{\partial \mathbf{x}}{\partial x_i} = 0$ with $\frac{\partial x_j}{\partial x_i}$ on left hand side.

1.5 Optimization Problem

- You are reminded the concepts of **local min/max** and **absolute min/max**.
- f has local min/max or saddle point at $\mathbf{x}_0 \Rightarrow f_{x_i} = 0$.
- The **Hessian matrix** for two-variable function f is defined as

$$H(f)(\mathbf{x}_0) := \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

If (1) $f_x(a,b) = f_y(a,b) = 0$ and (2) the second derivatives are continuous, then:

- (a) In case det H(f)(a,b) > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is local minimum.
- (b) In case det H(f)(a,b) > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is local maximum.
- (c) In case $\det H(f)(a,b) < 0$ then f(a,b) is neither local maximum nor local minimum, but a saddle point (think of a Pringles potato chip cut).
- (d) In case $\det H(f)(a,b) = 0$, the second derivative test is **inconclusive**.
- The absolute extrema of a function over a given domain is either the point of *local* extrema or on the boundary.
- The **method of Lagrange multiplier** in extrema evaluation is given as follows:
 - 1. Find all values of x_i 's and λ_i 's such that $\nabla f(\mathbf{x}) = \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x})$ given the constraints $g_i(\mathbf{x}) = k_i$.
 - 2. Evaluate f at all the \mathbf{x} 's obtained above. The largest and smallest give the extrema.

2 Problems

2.1 Vectors

- 1. (a) Find the equation of P_1 , P_2 in which P_1 satisfies: $(1/3, 1/3, 1/3) \in P_1$ and perpendicular to the vector $\langle 1, 1, 1 \rangle$. P_2 satisfies: $(1, 1, 0) \in P_2$ and perpendicular to the vector $\langle 1, 2, 1 \rangle$.
 - (b) Find the equation of line of intersection of P_1 and P_2 .

2. Show that two lines $\mathbf{r}_1(t) = \mathbf{a} + \mathbf{v}t$ and $\mathbf{r}_2(t) = \mathbf{b} + \mathbf{u}t$ will intersect if $\mathbf{a} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{b} \cdot (\mathbf{u} \times \mathbf{v})$.

2.2 Vector Valued Function

1. Find the curvature expression for the curve $r = 4\cos 2\theta$ for $0 \le \theta < 2\pi$.

$$r=460520$$

$$\int x = 460520 \cos \theta$$

$$y = 4\cos 20 \sin \theta$$

$$F(r) = <46052t \cos t, 4\cos 2t \sin t, 0>$$

$$F(r) = <46052t \cos t, 4\cos 2t \sin t, 0>$$

$$Need to do: compute $F'(t)$, $F''(t)$, $K(t) = \frac{r'(t) \times r''(t)}{|r'(t)|^3}$$$

Limit 2.3

- (a) Can the function $f(x,y) = \frac{\sin x \sin^3 y}{1 \cos(x^2 + y^2)}$ be defined at (0,0) such that it is continuous at (0,0)? If so, how?
 - (b) Let $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$. Calculate each of the following derivatives or explain why they do not exists:

(i) $f_x(0,0)$ (ii) $f_y(0,0)$ (iii) $f_{xy}(0,0)$ (iv) $f_{yx}(0,0)$ (v) $f_{xx}(0,0)$.

2. Find the limit $\lim_{(x,y)\to(0,0)} \frac{x^2y+xy^2+x^2+y^2+2xy}{1-\cos\sqrt{x^2+y^2}}$.

Derivatives 2.4

- (a) Show that if f is differentiable and $z = xf\left(\frac{x}{y}\right)$, then all tangent planes to the graph of this equation pass through a common point. Find the common point.
 - (b) Find the equation of the level curve of the function $z = g(x,y) = xf\left(\frac{x}{y}\right)$ at the point (x_0, y_0) . Show that $\nabla g(x_0, y_0)$ is normal to the tangent line to the level curve at (x_0, y_0) .

2.3 Limit

1. (a) Can the function $f(x,y) = \frac{\sin x \sin^3 y}{1-\cos(x^2+y^2)}$ be defined at (0,0) such that it is continuous at (0,0)? If so, how?

(b) Let
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$
.

Calculate each of the following derivatives or explain why they do not exists: (i) $f_x(0,0)$ (ii) $f_y(0,0)$ (iii) $f_{xy}(0,0)$ (iv) $f_{yx}(0,0)$ (v) $f_{xx}(0,0)$.

$$f_{x}(00) = \int_{x+2}^{2\pi/3} \frac{dx^{2}}{dx^{2}} = \int_{0}^{2\pi/3} \frac{dx$$

2. Find the limit $\lim_{(x,y)\to(0,0)} \frac{x^2y+xy^2+x^2+y^2+2xy}{1-\cos\sqrt{x^2+y^2}}$.

$$=\frac{V^{3}\overline{sin20}}{2(1-105V)}+\frac{V^{2}}{1-105V}+\frac{V^{3}\overline{sin20}}{1-105V}$$

2.4 Derivatives

- 1. (a) Show that if f is differentiable and $z = xf\left(\frac{x}{y}\right)$, then all tangent planes to the graph of this equation pass through a common point. Find the common point.
 - (b) Find the equation of the level curve of the function $z = g(x, y) = xf\left(\frac{x}{y}\right)$ at the point (x_0, y_0) . Show that $\nabla g(x_0, y_0)$ is normal to the tangent line to the level curve at (x_0, y_0) .

$$\frac{1}{2} = f(\frac{x}{y}) + \frac{x}{y} f'(\frac{x}{y})$$

$$\frac{1}{2} = -\frac{x}{y^2} f'(\frac{x}{y})$$

$$P(x_{1},y_{0})(x,y) = 20 + 2x(x_{0},y_{1})(x-x_{0})t$$

$$= 20 + 2x(x_{0},y_{1})(x-x_{0})t$$

$$= 2y(x_{0},y_{1})(y-y_{0})$$

(b) Find the equation of the level curve of the function $z = g(x, y) = xf\left(\frac{x}{y}\right)$ at the point (x_0, y_0) . Show that $\nabla g(x_0, y_0)$ is normal to the tangent line to the level curve at (x_0, y_0) .

Eq. of level curve: $\nabla x f\left(\frac{x}{y}\right) = \nabla x_0 f\left(\frac{x_0}{y_0}\right)$ We define $\langle x(t), y(t) \rangle$ by the level curve $\langle x(t), y(t) \rangle$ by the level curve $\langle x(t), y(t) \rangle$ by $\langle x(t), y($

2. If w = f(x, y) is differentiable. Suppose $x = s^2 + t^2$, $y = s^2 - t^2$. Use chain rule to find // // $(i) w_s$ (ii) w_{st} (iii) w_{st} .

1) Why w_s $w_$

= Wx Xs+ Wy ys = Wr (15)+ Wy (25) = 15(Wx+Wy)

2.5 Optimization Problems

- 1. Find the point on the surface $z^2=-\frac{1}{2}x^2+2y^2+xy$ which is closest to the point $\left(-\frac{1}{2},-3,0\right)$ through:
 - (a) reducing the problem into an unconstrained problem of 2-variables.
 - (b) the method of Lagrange multiplier.

(0,-1, 4/2)

2.5 Optimization Problems

- 1. Find the point on the surface $z^2 = -\frac{1}{2}x^2 + 2y^2 + xy$ which is closest to the point $\left(-\frac{1}{2}, -3, 0\right)$ through:
 - (a) reducing the problem into an unconstrained problem of 2-variables.
 - (b) the method of Lagrange multiplier.

a.
$$f(x,y,z) = N(x+z)^2 + (y+3)^2 + z^2$$
 $f(x,y,z)(x,y,z) = N(x+z)^2 + (y+3)^2 - \frac{1}{2}x^2 + 2y^2 + xy$

=) Take partial d, solve cultical print, there D text

2. Find the maximum and minimum of the function f(x,y,z) = xy + yz subject to the constraints x + 2y - 6 = 0 and x - 3z = 0 using the method of Lagrange multiplier. Also find the values of the Lagrange multipliers. \square