5. a)

```
diabetes <- read.csv("diabetes_fall2022.csv")
table1 <- table(diabetes$gender, diabetes$frame)
addmargins(table1)</pre>
```

```
##
##
            large medium small Sum
##
               38
                      112
                             66 216
     female
##
               58
                       64
                             33 155
     male
                             99 371
##
     Sum
               96
                      176
```

5. b)

5. c) H_0 : frame and gender are independent vs H_1 : frame and gender are associated $\alpha=0.05$

```
chisq.test(table1, correct=F)
```

##

```
Pearson's Chi-squared test
##
## data: table1
## X-squared = 18.734, df = 2, p-value = 8.548e-05
qchisq(1-0.05, df = (3-1)*(2-1))
## [1] 5.991465
We get a critical value of 5.9915 and a p-value of 0.00008548. Since 5.9915 < 18.734 = X^2 and 0.00008548 <
0.05 = \alpha, we reject the null hypothesis that frame and gender are independent and conclude that there is
an association between frame and gender. 6. a)
H_0: \sigma_m^2 = \sigma_f^2 \text{ vs } H_1: \sigma_m^2 \neq \sigma_f^2 \ \alpha = 0.01
s_m <- var(diabetes[diabetes$gender=="male",]$stab.glu)</pre>
n_m <- length(diabetes[diabetes$gender=="male",]$stab.glu)
s_f <- var(diabetes[diabetes$gender=="female",]$stab.glu)</pre>
n_f <- length(diabetes[diabetes$gender=="female",]$stab.glu)</pre>
f_obs <- s_m/s_f
f_obs
## [1] 2.114595
2*(1-pf(f_obs, n_m-1, n_f-1))
## [1] 4.123336e-07
Since p-value = 4.1233 * 10^{-7} < 0.01 = \alpha, we reject the null hypothesis that the variances of stabilized
glucose for gender are the same.
6. b)
H_0: \mu_m - \mu_f \le 0 \text{ vs } H_1: \mu_m - \mu_f > 0
t.test(diabetes[diabetes$gender=="male",]$stab.glu, diabetes[diabetes$gender=="female",]$stab.glu,
        alternative="greater", conf.level = 0.95)
##
##
    Welch Two Sample t-test
##
## data: diabetes[diabetes$gender == "male", ]$stab.glu and diabetes[diabetes$gender == "female", ]$st
## t = 1.5167, df = 255.2, p-value = 0.06529
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## -0.8043766
```

sample estimates:
mean of x mean of y
112.4194 103.3241

Since p-value = $0.0653 > 0.05 = \alpha$, we fail to reject the null hypothesis that the mean stabilized glucose of males is less than or equal to the stabilized glucose of females. 7. a)

Stabilized glucose over glycosylated hemoglobin

cor(diabetes\$glyhb, diabetes\$stab.glu)

[1] 0.7408235

There appears to be a moderately strong linear relationship between the two variables based on the correlation of 0.7408 and the scatterplor, indicating linear regression to be appropriate.

7. **b)** $H_0: \rho = 0 \text{ vs } H_1: \rho \neq 0 \quad \alpha = 0.05$

cor.test(diabetes\$glyhb, diabetes\$stab.glu)

```
##
## Pearson's product-moment correlation
##
## data: diabetes$glyhb and diabetes$stab.glu
## t = 21.186, df = 369, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:</pre>
```

```
## 0.6911384 0.7835390
## sample estimates:
##
         cor
## 0.7408235
qt(1-(0.05/2), df = length(diabetes$glyhb)-2)
## [1] 1.966414
We find the p-value to be less than 2.2*10^{-16} and the test statistic to be 21.186. Since 2.2*10^{-16} < 0.05 = \alpha,
we reject the null hypothesis that stabilized glucose and glycosylated hemoglobin are independent. 7. c)
lm1 <- lm(diabetes$stab.glu~diabetes$glyhb)</pre>
lm1
##
## Call:
## lm(formula = diabetes$stab.glu ~ diabetes$glyhb)
##
## Coefficients:
##
      (Intercept)
                    diabetes$glyhb
             6.945
                              17.930
The regression equation is y = 17.930x + 6.945
7. d) \alpha = 0.01
confint(lm1, level=0.99)
##
                        0.5 %
                                 99.5 %
## (Intercept)
                   -6.229659 20.11944
## diabetes$glyhb 15.739136 20.12179
We are 99% confident that the slope for the regression equation falls between 15.7391 and 20.1218.
7. e)
summary(lm1)
##
## Call:
## lm(formula = diabetes$stab.glu ~ diabetes$glyhb)
##
## Residuals:
##
                                        3Q
        Min
                   1Q
                         Median
                                                 Max
## -184.826 -15.391
                         -3.784
                                   10.282
                                            277.810
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      6.9449
                                 5.0882
                                            1.365
                                                      0.173
```

<2e-16 ***

0.8463 21.186

diabetes\$glyhb 17.9305

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.2 on 369 degrees of freedom
## Multiple R-squared: 0.5488, Adjusted R-squared: 0.5476
## F-statistic: 448.9 on 1 and 369 DF, p-value: < 2.2e-16</pre>
```

54.88% of the variability in the glycosylated hemoglobin is explained by its linear relationship with stabilized glucose.

7. f

```
lm2 <- lm(diabetes$stab.glu~diabetes$glyhb+diabetes$bmi+diabetes$frame)
lm2</pre>
```

```
##
## Call:
## lm(formula = diabetes$stab.glu ~ diabetes$glyhb + diabetes$bmi +
##
       diabetes$frame)
##
## Coefficients:
##
            (Intercept)
                                diabetes$glyhb
                                                          diabetes$bmi
                 9.3176
                                        17.7060
                                                                0.1715
##
## diabetes$framemedium
                           diabetes$framesmall
##
                -9.2878
                                        -6.2408
```

 $y_{large} = 17.7060x_{glyhb} * 0.1715x_{bmi} + 9.3176$ $y_{medium} = 17.7060x_{glyhb} * 0.1715x_{bmi} + 0.0298$ $y_{small} = 17.7060x_{glyhb} * 0.1715x_{bmi} + 3.0768$ The slope for all the equations is the same but each different frame has a different intercept.

7. g

summary(1m2)

```
##
## lm(formula = diabetes$stab.glu ~ diabetes$glyhb + diabetes$bmi +
##
       diabetes$frame)
##
## Residuals:
##
        \mathtt{Min}
                  1Q
                       Median
                                     3Q
                                             Max
                       -4.319
## -178.827 -15.397
                                 11.285
                                         278.504
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          9.3176
                                     11.7298
                                               0.794
                                                       0.4275
## diabetes$glyhb
                         17.7060
                                      0.8583
                                             20.630
                                                        <2e-16 ***
## diabetes$bmi
                          0.1715
                                      0.3137
                                               0.547
                                                       0.5849
## diabetes$framemedium -9.2878
                                      4.7065
                                             -1.973
                                                       0.0492 *
## diabetes$framesmall
                         -6.2408
                                      5.7661 -1.082
                                                       0.2798
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

```
## Residual standard error: 36.1 on 366 degrees of freedom
## Multiple R-squared: 0.5548, Adjusted R-squared: 0.55
## F-statistic: 114 on 4 and 366 DF, p-value: < 2.2e-16</pre>
```

Multiple R-squared is 0.5548 and the adjusted R-squared is 0.55, since the adjusted R-squared is lower, that means that we added a variable that is not impactful on the output.

7. h) H_0 : The bmi variable does not predict stabilized glucose vs H_1 : The bmi variable significantly predicts stabilized glucose H_0 : The frame variable does not predict stabilized glucose vs H_1 : The frame variable significantly predicts stabilized glucose $\alpha = 0.05$

```
lm3 <- lm(diabetes$stab.glu~diabetes$bmi+diabetes$frame)
anova(lm3)</pre>
```

```
## Analysis of Variance Table
##
## Response: diabetes$stab.glu
                  Df
                      Sum Sq Mean Sq F value
## diabetes$bmi
                        19271
                               19271 6.8555 0.009203 **
## diabetes$frame
                   2
                        20566
                               10283 3.6580 0.026727 *
## Residuals
                 367 1031652
                                2811
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

We find the test statistic for bmi to be 6.8555 and the test statistic for frame to be 3.6580. Since the bmi p-value = $0.009203 < 0.05 = \alpha$, we reject the null hypothesis that the bmi variable does not predict stabilized glucose. Since the frame p-value = $0.026726 < 0.05 = \alpha$, we reject the null hypothesis that the frame variable does not predict stabilized glucose.

7. i

```
par(mfrow=c(2,2))
plot(lm2)
```


In the residuals vs fitted graph, we see increasing variability which indicates that the relationship is potentially non-linear and our regression line is not appropriate for modeling the data. For our homoscedasticity, we do not see a constant variance across all values of x. The QQ plot shows that the data skews right which means that our values do not have a normal distribution.