§ 6.3 系统微观运动状态的描述

一、基本概念

全同粒子系统 就是由具有完全相同属性(相同的质量、自旋、电荷等)的同类粒子所组成的系统。如自由电子气体。

近独立粒子系统: 粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。将整个系统的能量表达为单个粒子的能量之和。(如理想气体: 近独立的粒子组成的系统)

 $E = \sum_{i} \varepsilon_{i}$

二、系统微观运动状态的经典描述

全同粒子是可以分辨的。在全同粒子系统中,将两个粒子的运动状态加以交换,则系统的力学运动状态是不同的。

任一粒子的状态发生变化,则整个系统的微观状态发生变化

经典描述单粒子的状态要r个广义坐标和r个广义动量,N个粒子系统的微观运动状态需要 $q_{i1},q_{i2},\cdots q_{ir};\;p_{i1},p_{i2},\cdots p_{ir}$ (i=1,2,...,N)共2Nr个变量来确定。在 μ 空间中要用N个点表示系统某时刻的一个微观运动状态。

三、系统微观运动状态的量子描述

A) 全同粒子是不可分辨的。交换任何一对粒子不改 变整个系统的微观状态。

但定域系粒子可辨(定域系——粒子位置被限定)

B) 粒子状态是分立的。

B) 粒子状态是分立的。 粒子所处的状态叫量子态 (单粒子态)。

量子态用一组量子数表征(如自由粒子 n_x, n_v, n_z)。 不同量子态的量子数取值不同。

量子描述单粒子的状态是确定单粒子的量子态,对于 N 个粒子的系统,就是确定各个量子态上的粒子数。

1、玻耳兹曼系统 (如定域系) 粒子可以分辨,每个个体量子态上的粒子数不受限制。

确定系统的微观状态要求确定每个粒子所处的个体量子态。确定了每个粒子所处的量子态就确定了系统的一个微观状态

例: 设系统由A、B两个粒子组成(定域子)。粒子的个体量子态有3个,讨论系统有那些可能的微观状态?

	1	2	3	4	(5)	6	7	8	9
量子态1	AB			A	В	A	В		
量子态2		AB		В	A			A	B
量子态3			AB			В	A	В	A

因此,对于定域系统可有9种不同的微观状态,即 32。

一般地为 ω^a 。

2、不可分辨的全同粒子系统 对于不可分辨的全同粒子,必须考虑全同性原理。

确定由全同近独立粒子组成的**系统的**微观状态归结为确定每一个体量子态上的粒子数。或: 确定了每个量子态上的粒子数就确定了系统的微观状态

(1) 玻色系统:即自旋量子数为整数的粒子组成的系统。

如光子自旋为1、π介子自旋为0。由玻色子构成的复合 粒子是玻色子,由偶数个费米子构成的复合粒子也是玻色子

粒子不可分辨,每个量子态上的粒子数不限(即不受泡利原理限制)

上例变为(A=B)

两个玻色子占据 3个量子态有6种 方式

	1	2	3	4	(5)	6
量子态1	AA			A	A	
量子态2		AA		A		A
量子态3			AA		A	A

(2) 费米系统: 即自旋量子数为半整数的粒子组成的系统。

如电子、质子、中子等都是自旋为1/2的费米子。由奇数个费米子构成的复合粒子也是费米子。

粒子不可分辨,每个个体量子态上最多能容纳一个粒子(费米子遵从泡利原理)。

热统

仍为 A=B

	4	(5)	6
量子态1	A	A	
量子态2	A		A
量子态3		A	A

两个费米子占据3个量子态有3种占据方式

对于不同统计性质的系统,即使它们有相同的粒子数、相同的量子态,系统包含的微观状态数也是不同的。

上例仅为两个粒子组成的系统、三个量子态。对于大量微观粒子组成的实际系统,其微观状态数目是大量的。

§ 6.4 等概率原理

宏观态: 系统的热力学状态。

用少数几个宏观参量即可确定系统的宏观态。

微观态: 系统的力学状态。

确定方法: ①可分辨的全同粒子系统(玻耳兹曼系统);

②不可分辨的全同粒子系统(玻色、费米系)。

宏观性质是大量微观粒子运动的集体表现;

宏观物理量是相应微观物理量的统计平均值。

确定各微观状态出现的概率就能用统计的方法求出 微观量的统计平均值,从而求出相应宏观物理量,因此确定各微观状态出现的概率是统计物理学的基本问题。

等概率原理:对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的!

对于孤立系统,会出现大量的微观状态。这些微观状态都满足具有确定的N、E、V的宏观条件。从能量上讲这些微观状态应是平权的。

等概率原理是统计物理学中的一个基本假设,是平 **衡态统计物理学理论的基础。不能直接从实验上验证。它** 的正确性在于从它推出的各种结论上的正确性。

例: ① 静止容器中平衡态气体——平动动能为零;

② 重力场中平衡态气体——压强按高度分布。

§ 6.5 分布和微观状态

系统具有确定的N,E,V(孤立系)。这时系统有大量微观态。

一、分布

若确定了各能级上的粒子数,则确定了系统的一个分布。

N粒子系统的 能 级 ε_1 , ε_2 , …, ε_l , …

简并度 ω_1 , ω_2 ,…, ω_l ,…

粒子数 a_1 , a_2 ,…, a_l ,…

即:能级 ε_1 上有 a_1 个粒子,

能级 ε_2 上有 a_2 个粒子,……。

这就给出一个分布,即数列 $\{a_i\}$

$$\begin{bmatrix} \boldsymbol{\varepsilon}_l - - - a_l \\ \vdots - - a_2 \end{bmatrix}$$

满足约束条件

$$\sum_{l} a_{l} = N, \qquad \sum_{l} a_{l} \varepsilon_{l} = E$$

分布只表示每一个能级上有多少个粒子。一种分布包含大量的微观状态。

每一种不同的占据方式都是不同的微观运动状态。

对一个确定的分布,它相应的微观状态数是确定的。

热统

二、分布 $\{a_i\}$ 包含的微观状态数(量子描述)

1、玻耳兹曼系统 (定域系统):

粒子可以分辨(可编号),每个量子态上的粒子数不限。

- $(1) a_l$ 个粒子占据 ϵ_l 上的 ω_l 个量子态的占据方式数: $\omega_l^{a_l}$
- (2) 各个能级都考虑在内,系统总的占据方式数: $\omega_1^{a_1}$
- (3) 由于粒子可分辨,能级之间粒子的交换是新的占据方式,能级之间粒子的交换有 $N!/\prod a_i!$ 种不同的交换方式。(未改变分布)

例:系统有6个可分辨粒子,共两个能级, ω_1 =3, ω_2 =4 给定分布: a_1 =4, a_2 =2

能级之间粒子交 换的方式数目为

$$\frac{N!}{\prod_{l} a_{l}!}$$

(4) 系统分布 $\{a_l\}$ 包含的总微观状态数为

$$\Omega_{M,B} = \frac{N!}{\prod_{l} a_{l}!} \cdot \prod_{l} \omega_{l}^{a_{l}} = N! \prod_{l} \frac{\omega_{l}^{a_{l}}}{a_{l}!}$$

2、玻色系统分布 $\{a_i\}$ 包含的微观状态数

粒子不可分辨,交换任意一对粒子不改变系统的微观态。每个量子态上的粒子数不受限制。

- (1) a_l 个粒子占据能级 ε_l 上的 ω_l 个量子态的占据方式数: 用 \blacksquare 表示量子态, \bullet 表示粒子。
 - 规定: 粒子占据左边的量子态。 例如:

这样就确定了每个量子态上的粒子数,即确定了一种占据方式(一个微观态)。

改变排列,可得到新的占据方式。

量子态、粒子各种交换(排列)总数 $(\omega_l + a_l - 1)!$

其中粒子与粒子的交换、量子态与量子态的交换 不产生新的微观态。只有量子态与粒子交换导致不同 微观态。

- ▲ 显然, 粒子和粒子之间的交换 不会产生新的占据方式。
- ▲ 粒子和量子态之间的交换 会产生新的占据方式:

▲ 量子态和量子态之间的交换 不产生新的占据方式:

热统

量子态交换数 $(\omega_l - 1)!$

粒子交换数 a_l !

各种交换共有 $\frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!}$ 种可能的方式。

(2) 将各种能级的结果相乘,就得到玻色系统与分布 $\{a_i\}$ 相应的微观状态数为:

$$\Omega_{B.E.} = \prod_{l} \frac{(\omega_l + a_l - 1)!}{a_l! (\omega_l - 1)!}$$

热统

3、费米系统分布 $\{a_i\}$ 包含的微观状态数:

粒子不可分辨,每一个量子态最多能容纳一个粒子。 a_l 个粒子占据能级 ε_l 上的 ω_l 个量子态,占据方式数为:从 ω_l 个量子态中选取 a_l 个量子态让 a_l 个粒子占据,即

$$C_{\omega_l}^{a_l} = \frac{\omega_l!}{a_l!(\omega_l - a_l)!}$$

将各能级的结果相乘,得到费米系统与分布 $\{a_l\}$ 相应的微观状态数为:

$$\Omega_{F.D.} = \prod_{l} \frac{\omega_{l}!}{a_{l}!(\omega_{l} - a_{l})!}$$

热统

三、经典极限条件下三种分布微观状态数的关系

若满足
$$\frac{a_l}{\omega_l}$$
 << 1 ,称为经典极限条件(或非简并性条件)

此时有

$$\Omega_{B.E.} = \prod_{l} \frac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!}$$

$$\Omega_{M.B.} = N! \prod_{l} \frac{\omega_{l}^{a_{l}}}{a_{l}!}$$

$$= \prod_{l} \frac{(\omega_l + a_l - 1)(\omega_l + a_l - 2) \cdots \omega_l (\omega_l - 1)!}{a_l! (\omega_l - 1)!}$$

$$\approx \prod_{l} \frac{\omega_{l}^{a_{l}}}{a_{l}!} = \frac{\Omega_{M.B.}}{N!}$$

$$\Omega_{F.D.} = \prod_{l} \frac{\omega_{l}!}{a_{l}!(\omega_{l} - a_{l})!}$$

$$=\prod_{l}\frac{\omega_{l}(\omega_{l}-1)\cdots(\omega_{l}-a_{l}+1)(\omega_{l}-a_{l})!}{a_{l}! (\omega_{l}-a_{l})!}$$

$$\approx \prod_{l} \frac{\omega_{l}^{a_{l}}}{a_{l}!} = \frac{\Omega_{M.B.}}{N!}$$

即在经典极限条件下

$$\Omega_{B.E.} = \Omega_{F.D.} = \frac{\Omega_{M.B.}}{N!}$$

四、经典系统中的分布和微观状态数

经典粒子状态由 $q_1...q_r$, $p_1...p_r$ 的值确定。N 粒子系统对应 μ 空间中的N个点。

坐标和动量取值连续,微观状态不可数。处理如下 第一步:

 μ 空间各轴上取间隔 $dq_1...dq_r$, $dp_1...dp_r$ 围成体积元

$$d\omega = dq_1 dq_2 \cdots dq_r dp_1 dp_2 \cdots dp_r \approx h_0^r$$

若体积元很小,其内各点的状态都看作相同 h_0^r ——相格。

即:处于同一相格内的各代表点状态都相同。不同相格内代表点的状态不同。每个相格就是一个状态。

在一定的相体积内包含多少相格,则此体积中就有多少个力学运动状态(微观态)。

经典力学中 h_0 可以任意小,量子力学中 h_0 最小为h。

第二步:

再把 μ 空间按能量大小划分成许多能量层,每层体积分别为 $\Delta\omega_1$ 、 $\Delta\omega_2$ 、 …、 $\Delta\omega_l$ 、 ,每层内包含许多相格。

同一能层内各状态(代表点)的能量相同。(能层很薄)

不同能层中各点的能量则不同。 ε_1 , ε_2 , ··· , ε_l , ···

某能量层的体积为 $\Delta \omega_l$,则此层内包含的相格数为: $\frac{\Delta \omega_l}{h_0^r}$

这些相格的状态不同,但具有相同的能量,故相当于量子 描述中的简并度。于是有分布

能级

$$\mathcal{E}_1$$
,

$$\mathcal{E}_{2},\cdots,$$

$$\mathcal{E}_1, \cdots$$

$$\frac{\Delta\omega_1}{h_0^r}$$
, $\frac{\Delta\omega_2}{h_0^r}$,..., $\frac{\Delta\omega_l}{h_0^r}$,...

粒子数

$$a_1$$
,

$$a_2,\cdots,$$

$$a_l, \cdots$$

给定了一种分布 $\{a_i\}$

所以经典系统分布 $\{a_i\}$ 对应的微观状态数为可参照

玻耳兹曼系统

$$\Omega_{M.B.} = \frac{N!}{\prod_{l} a_{l}!} \cdot \prod_{l} \omega_{l}^{a_{l}}$$

得到
$$\Omega_{cl} = \frac{N!}{\prod_{l} a_{l}!} \prod_{l} \left(\frac{\Delta \omega_{l}}{h_{0}^{r}}\right)^{a_{l}}$$

热统