Algorithme 1: Insertion de coefficients dans la matrice

Soit
$$A := \left(\begin{array}{c|c} M & 0 \\ \hline 0 & 0 \end{array}\right)$$

pour chaque p_k : points du bord faire

 p_k : le point de bord considéré d'indice global k

si p_k est un point du maillage alors | On passe au point p_k suivant

fin

 p_l : premier voisin de p_k d'indice global l

 p_r : deuxième voisin de p_k d'indice global \boldsymbol{r}

 γ : axe sur lequel est placé l'arête $[p_l, p_r]$ (ie soit x ou y ou z)

Nous devons dans un premier temps les interactions entre p_l et p_r :

$$A[l,r] = A[r,l] = 0$$

Il nous faut ensuite actualiser la ligne k:

$$A[k,:] = 0$$
 Actualise ligne (k, γ)

Et il nous faut actualiser les lignes l et r:

$${\bf Actualise_ligne} \ (l,\gamma) \qquad \ \ {\bf Actualise_ligne} \ (r,\gamma)$$

fin

Algorithme 2 : Actualise_ligne (Entier m, axe_arête γ)

 p_m : le point considéré d'indice global m

 p_l : voisin de p_m dans la direction $(-\gamma)$ d'indice global de l

 p_r : voisin de p_m dans la direction $(+\gamma)$ d'indice global de r

 d_r : distance entre p_r et p_m

 d_l : distance entre p_m et p_l

$$moy = \frac{d_l + d_r}{2}$$

Calculons l'interaction entre m et l:

$$A[m, l] = -\frac{D}{moy} \times \frac{1}{d_l}$$

Calculons l'interaction entre m et r:

$$A[m,r] = -\frac{D}{mov} \times \frac{1}{d_r}$$

Écrasons temporairement le coefficient diagonal:

$$A[m,m]=0$$

Sommons la ligne m pour avoir le coefficient diagonal :

$$A[m,m] = -\sum_{i=0}^{N} A[m,i]$$

$$\begin{pmatrix} \frac{1}{d1} + \frac{2}{2}\frac{dx^2}{D} + \frac{2}{dx^2} + \frac{2}{2}\frac{dx^2}{D} + \frac{-\frac{dx^2}{D}}{D} + \frac{-\frac{dx^2}{D}}{D}$$