CÁLCULO NUMÉRICO UERJ

Zeros de funções - Método do Ponto Fixo

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

https://github.com/rodrigolrmadureira/CalculoNumericoUERJ/

Método do Ponto Fixo (MPF)

Seja $f(x) \in C[a, b]$, onde [a, b] é o intervalo que contém uma raiz r da equação f(x) = 0.

O Método do Ponto Fixo (MPF) consiste em transformar

$$f(x)=0\Rightarrow \varphi(x)=x,$$

e a partir de uma aproximação inicial x_0 , gerar uma sequência $\{x_k\}$ de aproximações para a única raiz r pela equação de recorrência

$$x_{k+1}=\varphi(x_k),$$

pois a função $\varphi(x)$ é tal que:

$$f(r) = 0 \Rightarrow \varphi(r) = r.$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Ans

Próxima iteração:

$$x_1 = 6 - (1.5)^2$$

Na calculadora, para escrever a expressão iterativa

$$6 - x_k^2$$
,

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Ans

Próxima iteração:

$$x_1 = 6 - (1.5)^2$$

Na calculadora, para escrever a expressão iterativa

$$6 - x_k^2$$
,

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Ans

Próxima iteração:

$$x_1 = 6 - (1.5)^2$$

Na calculadora, para escrever a expressão iterativa

$$6 - x_k^2$$

Chute inicial: $x_0 = 1.5$.

Usando a calculadora científica: Digite 1.5 e aperte a sequência de botões:

Próxima iteração:

$$x_1 = 6 - (1.5)^2$$

Na calculadora, para escrever a expressão iterativa

$$6-x_k^2$$
,

Então, aperte a sequência de botões:

Então, aperte a sequência de botões:

Ans

No display da calculadora aparece: $6 - Ans^2$.

O resultado é: $x_1 = 3.75$.

Então, aperte a sequência de botões:

Ans

No display da calculadora aparece: $6 - Ans^2$. O resultado é: $x_1 = 3.75$.

A partir de agora, aperte sempre o botão para obter os resultados das próximas iterações.

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06)$$

$$= -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59)$$

$$= -34.75.46$$

A partir de agora, aperte sempre o botão para obter os resultados das próximas iterações.

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06)$$

$$= -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59)$$

$$= -3475.46$$

A partir de agora, aperte sempre o botão para obter os resultados das próximas iterações.

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06)$$

$$= -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59)$$

$$= -34.75.46$$

A partir de agora, aperte sempre o botão para obter os resultados das próximas iterações.

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06)$$

$$= -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59)$$

$$= -3475.46$$

A partir de agora, aperte sempre o botão para obter os resultados das próximas iterações.

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06)$$

$$= -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59)$$

$$= -3475.46$$

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$
 $x_1 = 2.1213$

 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$

 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$

 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$

Conclusão: $\{x_k\} \to 2$.

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$X_2 = \varphi_2(X_1) = \varphi_2(2.1213)$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$X_5 = \varphi_2(X_4) = \varphi_2(1.9981)$$

= 2.0005

Conclusão: $\{x_k\} \rightarrow 2$.

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$$

$$= 1.9694$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$= 2.0076$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$= 1.9981$$

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

$$= 2.0005$$

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$
 $= 1.9694$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

= 2.0076
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$
= 1.9981

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

= 2.0005

Conclusão: $\{x_k\} \to 2$.

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$$

$$= 1.9694$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$= 2.0076$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$= 1.9981$$

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

Conclusão: $\{x_k\} \rightarrow 2$.

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$$

$$= 1.9694$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$= 2.0076$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$= 1.9981$$

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

Conclusão: $\{x_k\} \rightarrow 2$.

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$$

$$= 1.9694$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$= 2.0076$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$= 1.9981$$

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

$$= 2.0005$$

Conclusão: $\{x_k\} \rightarrow 2$.

11/21

Agora, insira a função de iteração linear na calculadora.

$$x_0 = 1.5$$

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

$$x_2 = \varphi_2(x_1) = \varphi_2(2.1213)$$

$$= 1.9694$$

$$x_3 = \varphi_2(x_2) = \varphi_2(1.9694)$$

$$= 2.0076$$

$$x_4 = \varphi_2(x_3) = \varphi_2(2.0076)$$

$$= 1.9981$$

$$x_5 = \varphi_2(x_4) = \varphi_2(1.9981)$$

$$= 2.0005$$

Conclusão: $\{x_k\} \rightarrow 2$.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$X_3 = 5.00$$

 $x_4 = 0.20$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_3 = 5.00$$

$$x_4 = 0.20$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

$$X_3 = 5.00$$

Conclusão: {x_e} oscila e

$$x_0 = 1.5$$

$$x_1 = 3.00$$

 $x_2 = 1.00$

$$x_3 = 5.00$$

$$x_4 = 0.20$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

 $x_3 = 5.00$

$$x_3 = 0.00$$

 $x_4 = 0.20$

Conclusão: $\{x_k\}$ oscila e não converge.

Situação 3: $\varphi_3(x) = \frac{6}{x} - 1$

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

$$x_3 = 5.00$$

$$x_4 = 0.20$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 2.40$$

$$x_2 = 1.76$$

$$x_3 = 2.18$$

$$x_4 = 1.88$$

Conclusão: $\{x_k\}$ converge lentamente

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$
 $x_4 = 1.88$

Conclusão: {*x_k*} converge lentamente.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$
 $x_4 = 1.88$

Conclusão: {*x_k*} converge lentamente.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$

Conclusão: $\{x_k\}$ converge lentamente.

$$x_0 = 1.5$$

$$x_1 = 2.40$$

$$x_2 = 1.76$$

$$x_3 = 2.18$$

$$x_4 = 1.88$$

Conclusão: $\{x_k\}$ converge entamente.

$$x_0 = 1.5$$

$$x_1 = 2.40$$

$$x_2 = 1.76$$

$$x_3 = 2.18$$

$$x_4 = 1.88$$

Conclusão: $\{x_k\}$ converge lentamente.

Resumo Comparativo dos Casos

$\varphi(\mathbf{x})$	$ \varphi'(x) $	Conclusão
$\varphi_1(x)=6-x^2$	$ \varphi_1'(x) > 1$	Divergente
$\varphi_2(x) = \sqrt{6-x}$	$ \varphi_1'(x) <1$	Convergente ($r=2$)
$\varphi_3(x) = \frac{6}{x} - 1$	$ \varphi_1'(x) > 1$	Oscilante / Não converge
$\varphi_4(x) = \frac{6}{x+1}$	$ \varphi_1'(x) <1$	Convergente (lento)

Exemplo 2

Ache a raiz da equação $f(x) = e^x + x - 2 = 0$ com tolerância $\epsilon = 10^{-3}$ usando as seguintes funções de iteração linear:

- $\varphi_1(x) = 2 e^x$;
- $\varphi_2(x) = \ln(2-x)$

Interseção y = x com $y = \varphi_1(x)$

A raiz $r \in (0, 1)$.

Pergunta: $\varphi_1(x)$ vai convergir para r?

Interseção $y = x \operatorname{com} y = \varphi_1(x)$

A raiz $r \in (0, 1)$.

Pergunta: $\varphi_1(x)$ vai convergir para r?

Interseção $y = x \operatorname{com} y = \varphi_1(x)$

A raiz $r \in (0, 1)$.

Pergunta: $\varphi_1(x)$ vai convergir para r?

Interseção y = x com $y = \varphi_2(x)$

A raiz $r \in (0, 1)$. Pergunta: $\varphi_2(x)$ vai convergir para r?

Interseção y = x com $y = \varphi_2(x)$

A raiz $r \in (0, 1)$.

Pergunta: $\varphi_2(x)$ vai convergir para r?

Interseção y = x com $y = \varphi_2(x)$

A raiz $r \in (0, 1)$.

Pergunta: $\varphi_2(x)$ vai convergir para r?

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4		

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$

k	x_k	$ X_k - X_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
	0.4400	0.0404
6	0.4469	$0.0104 > \epsilon$
7	0.4469	$0.0104 > \epsilon$ $0.0067 > \epsilon$
7	0	
7	0.4402	
7 8	0.4402	
7 8	0.4402 0.4445 0.4418	

	^K
0.5	_
0.4055	$0.0945 > \epsilon$
0.4666	$0.0611 > \epsilon$
0.4275	$0.0391 > \epsilon$
0.4527	$0.0252 > \epsilon$
0.4365	$0.0162 > \epsilon$
0.4469	$0.0104 > \epsilon$
0.4402	$0.0067 > \epsilon$
	0.4055 0.4666 0.4275 0.4527 0.4365 0.4469 0.4402 0.4445

 $|X_{k}-X_{k-1}|$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$
9	0.4418	$0.0027 > \epsilon$

k	X _k	$ X_k-X_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$
9	0.4418	$0.0027 > \epsilon$
10	0.4435	$0.0017 > \epsilon$

k	X _k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$
9	0.4418	$0.0027 > \epsilon$
10	0.4435	$0.0017 > \epsilon$
11	0.4424	$0.0011 > \epsilon$
12		

k	X_k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$
9	0.4418	$0.0027 > \epsilon$
10	0.4435	$0.0017 > \epsilon$
11	0.4424	$0.0011 > \epsilon$
12	0.4431	$0.0007 \le \epsilon$

k	X_k	$ x_k-x_{k-1} $
0	0.5	_
1	0.4055	$0.0945 > \epsilon$
2	0.4666	$0.0611 > \epsilon$
3	0.4275	$0.0391 > \epsilon$
4	0.4527	$0.0252 > \epsilon$
5	0.4365	$0.0162 > \epsilon$
6	0.4469	$0.0104 > \epsilon$
7	0.4402	$0.0067 > \epsilon$
8	0.4445	$0.0043 > \epsilon$
9	0.4418	$0.0027 > \epsilon$
10	0.4435	$0.0017 > \epsilon$
11	0.4424	$0.0011 > \epsilon$
12	0.4431	$0.0007 \le \epsilon$

Convergência do MPF

Teorema (Convergência do MPF)

Seja r uma raiz da equação f(x) = 0, isolada num intervalo \mathcal{I} centrado em r.

Seja $\varphi(x)$ uma função de iteração para a equação f(x) = 0.

Se

- \bullet $\varphi(x)$ e $\varphi'(x)$ são contínuas em \mathcal{I} ;
- $|\varphi'(x)| \leq M < 1$, para todo $x \in \mathcal{I}$;

então a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = \varphi(x_k)$ converge para r.

Condição suficiente de convergência

Pelo Teorema do Valor Médio, para φ contínua e diferenciável:

$$x_{i+1}-r=\varphi'(\xi_i)(x_i-r)$$

para algum ξ_i entre x_i e r. Assim,

$$|e_{i+1}| = |\varphi'(\xi_i)| |e_i|.$$

Se $|\varphi'(x)|$ < 1 em um intervalo contendo r, a iteração converge localmente para r.

Aplicando a condição aos exemplos

• Para $\varphi_2(x) = \ln(2 - x)$:

$$|arphi_2'(x)| = |-rac{1}{2-x}|, \quad |arphi_2'(0.5)| pprox 0.67 < 1 \Rightarrow {
m converge}.$$

• Para $\varphi_1(x) = 2 - e^x$:

$$|\varphi_1'(x)|=|-e^x|, \quad |\varphi_1'(0.5)|\approx 1.65>1\Rightarrow$$
 não converge

Aplicando a condição aos exemplos

• Para $\varphi_2(x) = \ln(2 - x)$:

$$|arphi_2'(x)| = |-rac{1}{2-x}|, \quad |arphi_2'(0.5)| pprox 0.67 < 1 \Rightarrow {
m converge}.$$

• Para $\varphi_1(x) = 2 - e^x$:

$$|\varphi_1'(x)| = |-e^x|, \quad |\varphi_1'(0.5)| \approx 1.65 > 1 \Rightarrow \text{n\~ao converge}.$$