CS118 Discussion 1B, Week 6

Zhehui Zhang HAINES A2 / Friday / 12:00pm-1:50pm

Outline

- Network Layer
 - Overview: data v.s. control plane
 - IPv4/IPv6, DHCP, NAT
- Midterm review

Network layer: overview

- Basic functions for network layer
 - Forwarding/Routing
- Network service model
 - Guaranteed delivery
 - Guaranteed delivery w/ bounded delay
 - In-order packet delivery
 - Guaranteed minimal bandwidth

Network layer: overview

- Connection v.s. connection-less delivery
 - circuit switch/packet switch
- Network layer protocols
 - Addressing and fragmentation: IPv4, IPv6
 - Routing: RIP, OSPF, BGP, DVMRP, PIM
 - Others: DHCP, ICMP, NAT

IPv4 Header

- Header length: 4-byte unit
- Length: 1-byte unit
- Fragmentation: id + MF/DF + offset (8-byte unit)
- TTL: time to live
- Checksum
 - Is it redundant?
 - Why is it just checksum for header?
- Protocol: identifies the upper layer protocol
- Source and destination IP addresses

IP address

- Globally recognizable identifier
- IPv4: 0.0.0.0~255.255.255.255
 - Most IP addresses are globally unique
 - Exception why?
- Network id, host id
- CIDR address

IP address classes

http://www.vlsm-calc.net/ipclasses.php

Class	1 st Octet Decimal Range	1st Octet High Order Bits	Network/Host ID (N=Network, H=Host)	Default Subnet Mask	Number of Networks	Hosts per Network (Usable Addresses)
А	1 – 126*	0	N.H.H.H	255.0.0.0	126 (2 ⁷ – 2)	16,777,214 (2 ²⁴ – 2)
В	128 – 191	10	N.N.H.H	255.255.0.0	16,382 (214 – 2)	65,534 (216 – 2)
С	192 – 223	110	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ – 2)	254 (28 – 2)
D	224 – 239	1110	Reserved for Multicasting			
Е	240 – 254	1111	Experimental; used for research			

Class	Private Networks	Subnet Mask	Address Range
А	10.0.0.0	255.0.0.0	10.0.0.0 - 10.255.255.255
В	172.16.0.0 - 172.31.0.0	255.240.0.0	172.16.0.0 - 172.31.255.255
С	192.168.0.0	255.255.0.0	192.168.0.0 - 192.168.255.255

Hierarchical addressing

- subnet: a portion of addressing space
 - extend bits from the network id
 - <network address>/<subnet mask>
- route aggregation

Quick question

How many subnets

CIDR address

- a.b.c.d/x
 - x: # bits in network ID portion of the address
 - address: a.b.c.d, network mask: 2^32 2^(32-x)

CIDR <u>11001000 00010111 0001000</u>0 00000000

IP prefix 200.23.16.0/23

netmask 11111111 1111111 1111110 00000000

255.255.254.0

IP fragmentation and reassembly

MTU: maximum transmission unit

- identifier
- flag bit: three bit
 - DF (Do not Fragment) = 0
 - MF (More Fragments) = 0?
- offset

Quick question

Consider following IP packet

4 5 123	TOS 45	2400 0 0 0			
25 6		checksum			
10.1.1.1					
80.233.250.61					
data (6103 bytes)					

 Assume MTU = 1450 Bytes. Show the header length, total length, identification, flags, fragment offset, TTL, and IP payload size.

Quick question

Consider following IP packet

4	5	TOS	2400		
12345 0 0 0					
25 6			checksum		
10.1.1.1					
80.233.250.61					

 Assume MTU = 1450 Bytes. Show the header length, total length, identification, flags, fragment offset, TTL, and IP payload size.

For the first packet: 20 bytes, 1444 bytes, ID = 12345, 01, Offset = 0, TTL = 25, 1424 bytes. For the second packet: 20 bytes, 976 bytes, ID = 12345, 00, Offset = 178, TTL = 25, 956 bytes.

Switching

Longest prefix matching

Destination Address Range	Link interface
11001000 00010111 00011000 *****	0
11001000 00010111 00010*** *****	1
11001000 00010111 0001**** ******	2
****** ***** ***** ****	3

Linear lookup

DHCP: Dynamic Host Configuration Protocol

- Dynamically allocates the following info to a host
 - IP address for the host
 - IP address for default router
 - Subnet mask
 - IP address for DNS caching resolver
- Allows address reuse

DHCP: operations

- Host broadcasts "DHCP discovery" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- Host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

Important example on Chapter 4 slides 45—46!

NAT (network address translation)

- Depletion of IPv4 addresses short-term solution
 - IP tunneling?
- Use private IP addresses
- Side-benefit: security
- How to achieve?
 - <public IP:port> <pri>private IP:port> mapping

NAT: detail

- outgoing packets:
 - replace (source IP address, source port #) of every outgoing packet to (NAT IP address, new port #)
- remote clients/servers will respond using (NAT IP address, new port #) as destination address
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming packets:
 - replace (destination NAT IP address, destination port #) of every incoming packet with corresponding (source IP address, port #) stored in NAT table

NAT: downside

- Increased complexity
- Single point of failure
- Cannot run services inside a NAT box

Midterm tips

- Show intermediate steps
- Explain your answers
- Use diagrams

(a)
$$10 + 100 + 100 = 210 \text{ms}$$

(a) $10 + 100 + 100 = 210 \text{ms}$

(a) $10 + 100 + 100 = 210 \text{ms}$

(b) 100ms where 100ms where 100ms is 100ms where 100ms is 100ms where 100ms is 100ms and 100ms is 100ms and 100ms is 100ms and 100ms and 100ms is 100ms and 100ms and 100ms is 100ms and 1