Fizyka 3.1 - Laboratorium

Wyznaczanie współczynnika rozszerzalności termicznej oraz badanie procesów przekazywania ciepła

Ćwiczenie 29

Data wykonania ćwiczenia: 18.04.2024 Data oddania sprawozdania: 25.04.2024

1 Wstęp

Rozszerzalność cieplna to w dużym uproszczeniu tłumacząc zmiana rozmiarów lub objętości ciała stałego, cieczy lub gazu pod wpływem temperatury. Zjawisko to jesteśmy w stanie zauważyć w termometrach gdzie alkohol lub rtęć zwiększają swoją objętość pod wpływem wzrostu temperatury otoczenia. Aby wyjaśnić to zjawisko możemy posłużyć się modelem budowy ciała stałego który ma budowę krystaliczną. Atomy w sieci krystalicznej drgają wokół swoich położeń równowagi. Wraz ze wzrostem temperatury rośnie także amplituda drgań oraz średnie odległości między atomami co powoduje że ciało stałe się rozszerza.

2 Wyniki i analiza pomiarów

Pomiary polegały na doprowadzeniu prądu o coraz większej wartości do metalowego drutu i pomiarze temperatury wraz z zmianą długości drutu. Dokonaliśmy dwóch serii pomiarów, z czego jedna była z zamontowaną osłoną, a druga bez. Zebrane dane ukazane są w poniższych tabelach oraz wykresy przyrostu długości do przyrostu temperatury.

Pomiary z osłoną					
Т	u(T)	Δl	$\Delta l/l$	$u_c(\Delta l/l)$	
$^{\circ}C$	$^{\circ}C$	mm	-	-	
24.1	0.51205	0	0	$1.14 \cdot 10^{-4}$	
26.3	0.51315	0.15	$1.7 \cdot 10^{-4}$	$1.14 \cdot 10^{-4}$	
31.7	0.51585	0.7	$8 \cdot 10^{-4}$	$1.14 \cdot 10^{-4}$	
40	0.52	1.8	0.00206	$1.14 \cdot 10^{-4}$	
50.6	0.5253	3.2	0.00366	$1.14 \cdot 10^{-4}$	
62.2	0.5311	4.7	0.00537	$1.14 \cdot 10^{-4}$	
77.1	0.53855	6.8	0.00777	$1.14 \cdot 10^{-4}$	
92.7	0.54635	9.8	0.0112	$1.14 \cdot 10^{-4}$	
110.5	0.55525	11.3	0.01291	$1.14 \cdot 10^{-4}$	
127	0.5635	13.7	0.01566	$1.14 \cdot 10^{-4}$	
147.8	0.5739	15.9	0.01817	$1.14 \cdot 10^{-4}$	

Pomiary bez osłony				
Т	u(T)	Δl	$\Delta l/l$	$u_c(\Delta l/l)$
$^{\circ}C$	$^{\circ}C$	mm	-	-
25.4	0.5127	0	0	$1.14 \cdot 10^{-4}$
26.3	0.51315	0.1	$1.14 \cdot 10^{-4}$	$1.14 \cdot 10^{-4}$
29.2	0.5146	0.5	$5.72 \cdot 10^{-4}$	$1.14 \cdot 10^{-4}$
34.3	0.51715	1.2	0.00137	$1.14 \cdot 10^{-4}$
41.3	0.52065	2	0.00229	$1.14 \cdot 10^{-4}$
49.3	0.52465	3.1	0.00354	$1.14 \cdot 10^{-4}$
59.6	0.5298	4.6	0.00526	$1.14 \cdot 10^{-4}$
69.5	0.53475	6	0.00686	$1.14 \cdot 10^{-4}$
81.1	0.54055	7.6	0.00869	$1.14 \cdot 10^{-4}$
94.7	0.54735	9.4	0.01074	$1.14 \cdot 10^{-4}$
144	0.572	15.5	0.01771	$1.14 \cdot 10^{-4}$

Po wykonaniu regresji liniowej dla powyższych wykresów otrzymaliśmy współczynniki rozszerzalności termicznej.

Z osłoną
$$\alpha = (1.52227 \pm 0.02865) \cdot 10^{-4} \frac{1}{^{\circ}C}$$
Bez osłony $\alpha = (1.51316 \pm 0.01410) \cdot 10^{-4} \frac{1}{^{\circ}C}$

Do obliczenia mocy użyliśmy kolejnych pomiarów dokonywanych jednocześnie z poprzednimi.

Pomiary z osłoną					
I	u(I)	U	u(U)	P	u(P)
A	A	V	V	W	W
0	0.01	0	0.01	0	0
0.19	0.0119	0.8	0.018	0.152	0.01012
0.39	0.0139	1.5	0.025	0.585	0.02302
0.6	0.016	2.3	0.033	1.38	0.04179
0.82	0.0182	3.1	0.041	2.542	0.06568
1.01	0.0201	3.8	0.048	3.838	0.09047
1.23	0.0223	4.7	0.057	5.781	0.1261
1.41	0.0241	5.4	0.064	7.614	0.15837
1.63	0.0263	6.3	0.073	10.269	0.20399
1.82	0.0282	7	0.08	12.74	0.24529
2.02	0.0302	7.8	0.088	15.756	0.29511

Pomiary bez osłony					
I	u(I)	U	u(U)	P	u(P)
A	A	V	V	W	W
0	0.01	0	0.01	0	0
0.2	0.012	0.8	0.018	0.16	0.01025
0.4	0.014	1.5	0.025	0.6	0.02326
0.62	0.0162	2.4	0.034	1.488	0.04423
0.8	0.018	3.1	0.041	2.48	0.06473
1.01	0.0201	3.9	0.049	3.939	0.09271
1.21	0.0221	4.6	0.056	5.566	0.12217
1.41	0.0241	5.4	0.064	7.614	0.15837
1.62	0.0262	6.2	0.072	10.044	0.19998
1.82	0.0282	7	0.08	12.74	0.24529
2.4	0.034	9.3	0.103	22.32	0.40136

3 Wnioski

Analizując wyniki pomiarów i patrząc się na współczynnik rozszerzalności cieplnej materiału jesteśmy w stanie wywnioskować, że badany drut jest wykonany z miedzi. Niestety ze względu na małą ilość pomiarów nie byliśmy w stanie uzyskać dokładnej wartości z tabeli która wynosi $16,5^{-4}\frac{1}{\circ C}$.

Nieliniowość wykresu temperatury od mocy wynika z tego, że opór elektryczny metali wzrasta wraz ze wzrostem jego temperatury, przez co do ogrzewania potrzebna jest coraz większa ilość mocy.