# 第 14 章 STP

为了减少网络的故障时间,我们经常会采用冗余拓扑。STP 可以让具有冗余结构的网络在故障时自动调整网络的数据转发路径。STP 重新收敛时间较长,通常需要 30—50 秒,为了减少这个时间,引入了一些补充技术,例如 uplinkfast、backbonefast 等。RSTP 则在协议上对 STP 作了根本的改进形成新的协议,从而减少收敛时间。STP 还有许多改进,例如 PVST、MST 协议,以及安全措施,本章将介绍这些常用的配置。

## 14.1 STP 简介

### 14.1.1 基本 STP

为了增加局域网的冗余性,我们常常会在网络中引入冗余链路,然而这样却会引起交换环路。交换环路会带来三个问题:广播风暴、同一帧的多个拷贝、交换机 CAM 表不稳定。STP(STP, Spanning Tree Protocol)可以解决这些问题,STP 基本思路是阻断一些交换机接口,构建一棵没有环路的转发树。STP 利用 BPDU(Bridge Protocol Data Unit)和其他交换机进行通信,从而确定哪个交换机该阻断哪个接口。在 BPDU 中有几个关键的字段,例如:根桥 ID、路径代价、端口 ID等。

为了在网络中形成一个没有环路的拓扑,网络中的交换机要进行以下三个步骤: (1)选举根桥、(2)选取根口、(3)选取指定口。这些步骤中,哪个交换机能获胜将取决于以下因素(按顺序进行):

- (1) 最低的根桥 ID:
- (2) 最低的根路径代价;
- (3) 最低发送者桥 ID;
- (4) 最低发送者端口 ID。

每个交换机都具有一个唯一的桥 ID, 这个 ID 由两部分组成: 网桥优先级+MAC 地址。网桥优先级是一个 2 个字节的数,交换机的默认优先级为 32768; MAC 地址就是交换机的 MAC 地址。具有最低桥 ID 的交换机就是根桥。根桥上的接口都是指定口,会转发数据包。

选举了根桥后,其他的交换机就成为非根桥了。每台非根桥要选举一条到根桥的根路径。 STP 使用路径 Cost 来决定到达根桥的最佳路径(Cost 是累加的,带宽大的链路 Cost 低), 最低 Cost 值的路径就是根路径,该接口就是根口;如果 Cost 职一样,就根据选举顺序选举 根口。根口是转发数据包的。

交换机的其他接口还要决定是指定口还是阻断口,交换机之间将进一步根据上面的四个 因素来竞争。指定口是转发数据帧的。剩下的其它的接口将被阻断,不转发数据包。这样网 络就构建出一棵没有环路的转发树。

当网络的拓扑发生变化时,网络会从一个状态向另一个状态过渡,重新打开或阻断某些接口。交换机的端口要经过几种状态: 禁用(Disable)、阻塞(Blocking)、监听状态(Listening)、学习状态(Learning)、最后是转发状态(Forwarding)。

#### 14. 1. 2 PVST

当网络上有多个 VLAN 时,PVST (Per Vlan STP) 会为每个 VLAN 构建一棵 STP 树。这样的好处是可以独立地为每个 VLAN 控制哪些接口要转发数据,从而实现负载平衡。缺点是如果 VLAN 数量很多,会给交换机带来沉重的负担。Cisco 交换机默认的模式就是 PVST。

### 14.1.3 portfast, uplinkfast, backbonefast

STP 的收敛时间通常需要 30—50 秒。为了减少收敛时间,有一些改善措施。Portfast 特性使得以太网接口一旦有设备接入,就立即进入转发状态,如果接口上连接的只是计算机或者其他不运行 STP 的设备,这是非常合适的。

Uplinkfast 则经常用在接入层交换机上,当它连接到主干交换机上的主链路上故障时,能立即切换到备份链路上,而不需要经过 30 秒或者 50 秒。Uplinkfast 只需要在接入层交换机上配置即可。

Backbonefast 则主要用在主干交换机之间,当主干交换机之间的链路上故障时,可以比原有的 50 秒少 20 秒就切换到备份链路上。Backbonefast 需要在全部交换机上配置。

### 14. 1. 4 RSTP

RSTP 实际上是把减少 STP 收敛时间的一些措施融合在 STP 协议中形成新的协议。RSTP 中,接口的角色有: 根接口、指定接口、备份接口(Backup Interface)、替代接口(Alternate Interface)。接口的状态有: 丢弃(Discarding)、学习状态(Learning)、转发状态(Forwarding)。接口还分为边界接口(Edge Port)、点到点接口(Point-to-Point Port)、共享接口(Share Port)。

#### 14. 1. 5 MST

在 PVST 中,交换机为每个 VLAN 都构建一棵 STP 树,不仅会带来 CPU 的很大负载,也会占用大量的带宽。MST 则是把多个 VLAN 映射到一个 STP 实例上,从而减少了 STP 实例。MST 可以和 STP、PVST 配合使用。对于运行 STP、PVST 的交换机来说,一个 MST 域看起来就像一台交换机。

## 14.1.6 STP 防护

STP 协议并没有什么措施对交换机的身份进行认证。在稳定的网络中如果接入非法的交换机将可能给网络中的 STP 树带来灾难性的破坏。有一些简单的措施来保护网络,虽然这些措施显得软弱无力。Root Guard 特性将使得交换机的接口拒绝接收比原有根桥优先级更高的 BPDU。而 BPDU Guard 主要是和 portfast 特性配合使用,portfast 使得接口一有计算机接入就立即进入转发状态,然而万一这个接口接入的是交换机很可能造成环路。BPDU Guard 可以使得 portfast 接口一旦接收到 BPDU,就关闭该接口。

## 14.2 实验 1: STP、PVST

### 1. 实验目的

通过本实验,读者可以掌握如下技能:

- (1) 理解 STP 的工作原理
- (2) 掌握 STP 树的控制
- (3) 利用 PVST 进行负载平衡

### 2. 实验拓扑



图 14-1 实验 1、实验 2、实验 4 拓扑图

图 14-1 中, S1 和 S2 模拟为核心层的交换机, 而 S3 为接入的交换机。S1 和 S2 实际上是三层交换机,我们这里并不利用其三层功能,所以它们也采用二层交换机的图标。

### 3. 实验步骤

我们要在网络中配置 2 个 VLAN,不同 VLAN 的 STP 具有不同的根桥,实现负载平衡。

(1) 步骤 1:利用 VTP 在交换机上创建 VLAN2,在 S1 和 S2 之间的链路配置 Trunk

S1(config) #vtp domain VTP-TEST

Changing VTP domain name from NULL to VTP-TEST

S1(config)#vlan 2

//在 S1 上配置 VTP 的域名,并创建 VLAN 2。由于默认时 S2 和 S3 的 VTP 域名为空,它们将自动学习到 S1 的 VTP 域名,同时 S2、S3 也将自动学习到 VLAN 2,请确认是否成功。

S1(config)#int f0/14

S1(config-if)#shutdown

//关闭该接口,以免影响我们的实验

S1(config)#int f0/13

S1(config-if)#switchport trunk encapsulation dot1q

S1(config-if)#switchport mode trunk

//S1 的 f0/13 改为 negotiate 后,由于默认时 S2 的 f0/13 为 auto 模式,S1 和 S2 将自动协商成功 Trunk。而默认时 S3 的以太网接口就是 desirable 模式,所以 S3 和 S1、S2 的链路也自动协商成功 Trunk。请确认三条链路的 Trunk 是否成功。

(2) 步骤 2: 检查初始的 STP 树

S1#show spanning-tree

VLAN0001

Spanning tree enabled protocol ieee

//以上表明运行的 STP 协议是 IEEE 的 802. 1D

Root ID Priority 32768

Address 0009. b7a4. b181

Cost 19

Port 17 (FastEthernet0/15)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

//以上显示 VLAN 1 的 STP 树的根桥信息,通过根桥的 MAC 地址可以确定 S3 是根桥。这是 因为 S3 是较早的交换机,具有较低的 MAC 地址。由于 S3 是一台低端的交换机,成为根桥 显然是不合理的。

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

#### //以上显示该交换机的桥 ID

| Interface | Role | Sts  | Cost | Prio.Nbr | Type |
|-----------|------|------|------|----------|------|
|           |      |      |      |          |      |
| Fa0/13    | Altn | RI K | 19   | 128 15   | P2n  |

Fa0/13 Alth BLK 19 128.15 P2p Fa0/15 Root FWD 19 128.17 P2p

//以上显示该交换机各个接口的状态,f0/13 为阻断状态,f0/15 为根口

#### VLAN0002

Spanning tree enabled protocol ieee

Root ID Priority 32768

Address 0009. b7a4. b182

Cost 19

Port 17 (FastEthernet0/15)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

| Interface | Role | Sts | Cost | Prio.Nbr | Type |
|-----------|------|-----|------|----------|------|
|           |      |     |      |          |      |
| Fa0/13    | Altn | BLK | 19   | 128. 15  | P2p  |
| Fa0/15    | Root | FWD | 19   | 128. 17  | P2p  |

//以上是 VLAN 2 的 STP 树情况, VLAN 2 的 STP 树和 VLAN 1 的类似。默认时, Cisco 交换机会为每个 VLAN 都生成一个单独的 STP 树, 称为 PVST (Per VLAN Spanning Tree)。

【技术要点】需要仔细分析为什么 STP 会是目前这种情况。三个交换机的默认优先级都是32768,而 S3 的 MAC 较低,所以成为了根桥,则 S3 上的 f0/1 和 f0/2 是指定口,处于 Forword 状态。S1 有两个接口可以到达 S3,一个接口是 f0/13,到达 S3 的 Cost 为 19+19=38,另一个接口是 f0/15,到达 S1 的 Cost 为 19,因此 f0/15 是根口,处于 Forword 状态。同样 S2 上,f0/15 也是根口,处于 Forword 状态。在 S1 和 S2 之间的链路上,要选举出一个指定口。根据选举的要素,根桥的 ID 是一样的,不能决出胜负;到达根桥的 Cost 值也是一样的,都为 19,不能决出胜负;但是发送者桥 ID 不一样,S1 的 MAC 地址高,S2 的 MAC 地址低,S2 获胜,所以 S2 的 f0/13 是指定口,处于 Forward 状态,S1 的 f0/13 就处于 Block 状态了。

(3) 步骤 3: 控制 S1 为 VLAN1 的根桥, S2 为 VLAN2 的根桥

S1(config) #spanning-tree vlan 1 priority 4096

S2(config)#spanning-tree vlan 2 priority 4096

//对于 VLAN 1 来说, S1 的优先级为 4096, 而 S2 和 S3 保持默认值 32768, 这样 S1 就成为了 VLAN 1 的根桥。同样我们控制 S2 成为了 VLAN 2 的根桥。优先级通常要是 4096 的倍数。

### S1#show spanning-tree

VLAN0001

Spanning tree enabled protocol ieee

Root ID Priority 4097

Address 0018. ball. f500

This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

### //S1 成为了 VLAN 1 的根桥了

Bridge ID Priority 4097 (priority 4096 sys-id-ext 1)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 15

 $\hbox{Interface } \qquad \hbox{Role Sts Cost} \qquad \hbox{Prio.\,Nbr Type}$ 

\_\_\_\_\_\_

Fa0/13 Desg FWD 19 128.15 P2p Fa0/15 Desg FWD 19 128.17 P2p

//对于 VLAN 1 来说, f0/13 和 f0/15 是指定口, 都处于转发状态了

#### VLAN0002

Spanning tree enabled protocol ieee

Root ID Priority 4098

Address 0018. ball. eb80

Cost 19

Port 15 (FastEthernet0/13)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

#### //S2 成为了 VLAN 2 的根桥了

Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 15

Interface Role Sts Cost Prio. Nbr Type

Fa0/13 Root FWD 19 128.15 P2p Fa0/15 Altn BLK 19 128.17 P2p

//对于 VLAN 2 来说, f0/13 是根口, 处于转发状态, 而 f0/15 却是阻断状态

#### S3#show spanning-tree brief

VLAN1

Spanning tree enabled protocol ieee

Root ID Priority 4097

Address 0018.ba11.f500

Cost 19

Port 1 (FastEthernet0/1)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32768

Address 0009. b7a4. b181

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

Interface Designated

Name Port ID Prio Cost Sts Cost Bridge ID Port ID

FastEthernet0/1 128.1 128 19 FWD 0 4097 0018.ball.f500 128.17 FastEthernet0/2 128.2 128 19 FWD 19 32768 0009.b7a4.b181 128.2

//在 S3 上,对于 VLAN1, S3 的 f0/1 和 f0/2 都处于转发状态。

VLAN2

Spanning tree enabled protocol ieee

Root ID Priority 4098

Address 0018. ball. eb80

Cost 19

Port 2 (FastEthernet0/2)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32768

Address 0009. b7a4. b182

 ${\it Hello Time} \quad {\it 2 sec} \quad {\it Max Age 20 sec} \quad {\it Forward Delay 15 sec}$ 

Aging Time 300

Interface Designated

Name Port ID Prio Cost Sts Cost Bridge ID Port ID

FastEthernet0/1 128.1 128 19 FWD 19 32768 0009. b7a4. b182 128.1

FastEthernet0/2 128.2 128 19 FWD 0 4098 0018. ball. eb80 128. 17

//S3 上,对于 VLAN2, S3 的 f0/1 和 f0/2 也都处于转发状态。

#### (4) 步骤 4: 控制指定口

在步骤 3 中可以看到对于 VLAN 1, S1 成为了根桥, S1 的 f0/13 和 f0/15 处于转发状态; S2 的 f0/13 是根口,也处于转发状态; S3 的 f0/1 是根口,也处于转发状态; 然而 S2 和 S3 之间的链路上,却是低端交换机 S3 的 f0/2 在转发数据,原因在于 S2 和 S3 在竞争指定口时,由于 S3 的 MAC 较低而获胜了,这是不合理的。 VLAN 2 的情况类似。

我们要控制指定口,这可以通过改变优先级实现,如下:

S2(config) #spanning-tree vlan 1 priority 8192

S1(config) #spanning-tree vlan 2 priority 8192

//对于 VLAN 1 来说,S2 的优先级为 8192, 比 S1 的 4096 低,不至于成为根桥,但是比 S3 的 32768 低,所以在竞争指定口时会获胜。VLAN 2 的情况类似。

S3#show spanning-tree brief

VLAN1

(此处省略)

| Interface       | Designated |           |          |                 |                 |  |  |
|-----------------|------------|-----------|----------|-----------------|-----------------|--|--|
| Name            | Port ID    | Prio Cost | Sts Cost | Bridge ID       | Port ID         |  |  |
|                 |            |           |          |                 |                 |  |  |
| FastEthernet0/1 | 128. 1     | 128 19    | FWD 0    | 4097 0018. ball | l. f500 128. 17 |  |  |
| FastEthernet0/2 | 128. 2     | 128 19    | BLK 19   | 8193 0018. ball | l. eb80 128. 17 |  |  |
| //S3 上,对于 VLAN  | 1, S3 的    | f0/1 处于   | 转发状态,    | 而 f0/2 处于[      | 且断状态。           |  |  |

VLAN2

(此处省略)

| Interface       |              | Desig         | nated                |            |
|-----------------|--------------|---------------|----------------------|------------|
| Name            | Port ID Prio | Cost Sts Cost | Bridge ID            | Port ID    |
|                 |              |               |                      |            |
| FastEthernet0/1 | 128. 1 128   | B 19 BLK 19   | 8194 0018. ball. f50 | 0 128.17   |
| FastEthernet0/2 | 128. 2 128   | 3 19 FWD 0    | 4098 0018. ball. eb8 | 0 128.17   |
| // S3上,对于 VLA   | N 2, S3的f    | 0/1 处于阻断状:    | 态,而 f0/2 处于转发        | 发状态,这样起到了负 |
| 载平衡的作用。         |              |               |                      |            |

## 14.3 实验 2: portfast、uplinkfast、backbonefast

## 1. 实验目的

通过本实验,读者可以掌握如下技能:

- (1) 理解 portfast 的工作场合和配置
- (2) 理解 uplinkfast 的工作场合和配置
- (3) 理解 backbonefast 的工作场合和配置

## 2. 实验拓扑

如图 14-1。

### 3. 实验步骤

在实验 1 的基础上继续本实验, 我们将只关心 VLAN 1 的 STP 树。

(1) 步骤 1: 配置 portfast

图 14-1 中,S1 的 f0/5 是用于接入计算机。当计算机接入时,f0/5 接口立即进入 Listening 状态,随后经过 Learning,最后才成为 Forwarding,这期间需要 30 秒的时间。这对于有些场合是不可忍受的,可以配置 portfast 特性,使得计算机一接入,接口立即进入 Forwarding。

S1(config)#int f0/5

S1(config-if)#spanning-tree portfast

%Warning: portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops. Use with CAUTION

 $\mbox{\sc MPortfast}$  has been configured on FastEthernet0/5 but will only

have effect when the interface is in a non-trunking mode.

//交换机会警告该接口只能用于接入计算机或者路由器,不要接入其他的交换机

(2) 步骤 2: 配置 uplinkfast

先确认实验 1 的 STP 树已经正确。在图 14-1 中的 S1 上,关闭 f0/15 接口,在 S3 上反复执行"show spanning-tree vlan 1 brief"观察 f0/2 接口的状态变化:

FastEthernet0/2 128.2 128 3019 LIS 19 8193 0018. ball. eb80 128. 17 大约 15 秒后变为:

FastEthernet0/2 128.2 128 3019 LRN 19 8193 0018. ball. eb80 128. 17 大约 15 秒后变为:

FastEthernet0/2 128.2 128 3019 FWD 19 8193 0018. ba11. eb80 128. 17 合计大约 15+15=30 秒,f0/2 变为转发状态。

S3(config)#spanning-tree uplinkfast

S1(config) #int f0/15

S1(config-if)#no shutdown

S1(config-if)#shutdown //等 STP 重新稳定后,才执行该语句

在 S3 上重复执行 "show spanning-tree vlan 1 brief",可以看到 f0/2 很快就进入了 Forwarding 状态。

【技术要点】没有配置 uplinkfast 时,交换机 S3 如果能直接检测到 f0/1 接口上的链路故障,f0/2 会立即进入 Listen 状态,这样 30 秒就能进入 Forward 状态。然而如果 S1 和 S3 之间存在一个 Hub,S1 上的 f0/15 接口故障了,S3 将无法直接检测到故障,S3 只能等待 10 个周期没有收到 S1 的 BPDU(每个周期 2 秒),20 秒中后,S3 的 f0/2 才进入 Listen 状态,这样总共 50 秒才就能进入 Forward 状态。所以 STP 重新收敛的时间通常需要 30—50 秒。

(3) 步骤 3: 配置 backbonefast

打开 S1 上 f0/15 接口,确认 STP 树已经正确。在图 14-1 中的 S1 上,关闭 f0/13 接口,在 S3 上反复执行 "show spanning-tree vlan 1 brief" 观察 f0/2 接口的状态变化:

FastEthernet0/2 128.2 128 3019 BLK 19 8193 0018. ball. eb80 128.17 大约 20 秒后变为:

FastEthernet0/2 128.2 128 3019 LIS 19 8193 0018. ball. eb80 128.17 大约 15 秒后变为:

FastEthernet0/2 128.2 128 3019 LRN 19 8193 0018. ball. eb80 128. 17 大约 15 秒后变为:

FastEthernet0/2 128.2 128 3019 FWD 19 8193 0018. ba11. eb80 128.17 合计大约 20+15+15=50 秒,f0/2 变为转发状态。

- S1(config)#spanning-tree backbonefast
- S2(config)#spanning-tree backbonefast
- S3(config)#spanning-tree backbonefast
- S1(config) #int f0/13
- S1(config-if)#no shutdown
- S1(config-if)#shutdown //等 STP 重新稳定后,才执行该语句

在 S3 上重复执行 "show spanning-tree vlan 1 brief",可以看到 f0/2 很快就进入了 Listening 状态,合计大约 15+15=30 秒后,f0/2 就变为转发状态,比之前的 50 秒少了 20 秒。

【提示】uplinkfast 命令只需要在 S3 配置即可,而 backbonefast 命令需要在 S1、S2、S3 三台交换机上都配置。

## 14.4 实验 3:RSTP

### 1. 实验目的

通过本实验,读者可以掌握如下技能:

(1) 熟悉 RSTP 的配置

### 2. 实验拓扑



图 14-2 实验 3 拓扑图

### 3. 实验步骤

(1) 步骤 1: 请把两台交换机的配置清除干净, 重启交换机

S1#delete flash:vlan.dat

S1#erase startup-config

S1#reload

S2#delete flash:vlan.dat

S2#erase startup-config

S2#reload

(2) 步骤 2: 配置 S1 和 S2 之间的 Trunk

S1 (config) #int f0/13

S1(config-if)#switchport trunk encapsulation dot1q

S1(config-if)#switchport mode trunk

S1 (config) #int f0/14

S1(config-if)#switchport trunk encapsulation dot1q

S1(config-if)#switchport mode trunk

(3) 步骤 3: 配置 S1 成为根桥

S1(config)#spanning-tree vlan 1 priority 4096

在 S1 和 S2 上用 "show spanning-tree" 命令检查 STP 的情况,S2 的 f0/14 应该处于阻断状态。

【技术要点】S1 是根桥,S2 要选取到达 S1 的根路径,有两条路径,Cost 都为 19。这时由于 S2 在 f0/13 接口上收到的 BPDU 中,发送者(S1)端口号为 13;在 f0/14 接口上收到的 BPDU 中,发送者端口号为 14。所以 f0/13 被选举为根口了,f0/14 则只能被阻断了。

(4) 步骤 4: 在 S2 上关闭 f0/13 接口,观察 STP 树的重新生成

在 S2 上关闭 f0/13 接口, 重复执行 "show spanning-tree", 可以看到 f0/14 经过 30 秒 后才进入了 Forwarding 状态。

(5) 步骤 5: 配置 RSTP

S1(config)#spanning-tree mode rapid-pvst

S2(config)#spanning-tree mode rapid-pvst

(6) 步骤 6: 在 S2 上关闭 f0/13 接口,观察 STP 树的重新生成

在 S2 上重新打开 f0/13 接口,确认 STP 稳定后,在 S2 上关闭 f0/13 接口,重复执行"show spanning-tree",可以看到 f0/14 立即进入了 Forwarding 状态。说明 RSTP 的收敛比普通 STP 有了很大的改善。

(7) 步骤 7: 配置链路类型

S1(config)#int range f0/13 -14

S1(config-if-range)#duplex full

S1(config-if-range) #spanning-tree link-type point-to-point

S2(config)#int range f0/13 -14

S2(config-if-range)#duplex full

S2(config-if-range)#spanning-tree link-type point-to-point

//S1 和 S2 之间的链路是 Trunk 链路,自动协商为全双工,RSTP 会自动把它们的链路类型标识为点到点。我们这里强制配置了一遍。

【技术要点】RSTP 中接口分为边界接口(Edge Port)、点到点接口(Point-to-Point Port)、共享接口(Share Port)。如果接口上配置了 spanning portfast,接口就为边界接口;如果接口是半双工,接口就为共享接口;如果接口是全双工,接口就为点到点接口。在接口上指明类型有利于 RSTP 的运行。

## 14.5 实验 4: MST

### 1. 实验目的

通过本实验,读者可以掌握如下技能:

- (1) 理解 MST 的工作原理
- (2) 掌握 MST 的配置

## 2. 实验拓扑

如图 14-1。

### 3. 实验步骤

我们要在网络中创建 4 个 VLAN, VLAN 1 和 VLAN 2 使用 MST 实例 1, VLAN 3 和 VLAN 4 使用 MST 实例 2。

(1) 步骤 1:利用 VTP 在交换机上创建 VLAN,在 S1 和 S2 之间的链路配置 Trunk

S1(config)#vtp domain VTP-TEST

Changing VTP domain name from NULL to VTP-TEST

S1(config)#vlan 2

S1(config)#vlan 3

S1(config)#vlan 4

```
S1(config)#int f0/14
```

S1(config-if)#shutdown

//关闭该接口,以免影响我们的实验

S1(config)#int f0/13

S1(config-if)#switchport trunk encapsulation dot1q

S1(config-if)#switchport mode trunk

S2 (config) #int f0/13

S2(config-if)#switchport trunk encapsulation dot1q

S2(config-if)#switchport mode trunk

(2) 步骤 2: 配置 MST

只有 S1 和 S2 才能支持 MST。

S1(config)#spanning-tree mode mst

//以上把生成树的模式改为 MST, 默认时是 PVST。

S1(config)#spanning-tree mst configuration

//以上是进入 MST 的配置模式下

S1(config-mst)#name TEST-MST

//以上命名 MST 的名字

S1(config-mst)#revision 1

//以上配置 MST 的 revision 号, 只有名字和 revision 号相同的交换机才是在同一个 MST 区域

S1(config-mst)#instance 1 vlan 1-2

//以上是把 VLAN 1 和 VLAN 2 的生成树映射到实例 1

S1(config-mst)#instance 2 vlan 3-4

//以上是把 VLAN~3~和 VLAN~4~的生成树映射到实例 2,我们这里一共有三个 MST~实例,实例 0 是系统要使用的

S1(config-mst)#exit

//要退出,配置才能生效

S1(config) #spanning-tree mst 1 priority 8192

S1(config) #spanning-tree mst 2 priority 12288

//以上配置 S1 为 MST 实例 1 的根桥

S2(config)#spanning-tree mode mst

S2(config)#spanning-tree mst configuration

S2(config-mst)#name TEST-MST

S2(config-mst)#revision 1

S2(config-mst)#instance 1 vlan 1-2

S2(config-mst)#instance 2 vlan 3-4

S2(config-mst)#exit

S2(config) #spanning-tree mst 1 priority 12288

S2(config) #spanning-tree mst 2 priority 8192

//以上配置 S2 为 MST 实例 2 的根桥

(3) 步骤 3: 检查生成树

S1#show spanning-tree

MST00

#### Spanning tree enabled protocol mstp

//以上表明运行的是 MST 协议

Root ID Priority 32768

Address 0009. b7a4. b181

Cost 200000

Port 15 (FastEthernet0/13)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32768 (priority 32768 sys-id-ext 0)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface Role Sts Cost Prio.Nbr Type

\_\_\_\_\_\_

Fa0/13 Root FWD 200000 128.15 P2p

Fa0/15 Altn BLK 200000 128.17 P2p Bound (PVST)

//以上的 MST00 是系统要使用的实例, BPDU 是通过它来发送的

#### MST01

Spanning tree enabled protocol mstp

Root ID Priority 8193

Address 0018.ball.f500

This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 8193 (priority 8192 sys-id-ext 1)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface Role Sts Cost Prio.Nbr Type

Fa0/13 Desg FWD 200000 128.15 P2p

Fa0/15 Boun BLK 200000 128.17 P2p Bound (PVST)

#### MST02

Spanning tree enabled protocol mstp

Root ID Priority 8194

Address 0018. ball. eb80

Cost 200000

Port 15 (FastEthernet0/13)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 12290 (priority 12288 sys-id-ext 2)

Address 0018. ball. f500

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface Role Sts Cost Prio. Nbr Type

------

Fa0/13 Root FWD 200000 128.15 P2p

Fa0/15 Boun BLK 200000 128.17 P2p Bound (PVST)

#### //以上显示的是 S1 上的 MST 实例情况。

#### S3#show spanning-tree brie

VLAN1

Spanning tree enabled protocol ieee

Root ID Priority 32768

Address 0009.b7a4.b181 This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32768

Address 0009. b7a4. b181

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 15

Interface Designated

Name Port ID Prio Cost Sts Cost Bridge ID Port ID

FastEthernet0/1 128.1 128 19 FWD 0 32768 0009. b7a4. b181 128. 1 FastEthernet0/2 128. 2 128 19 FWD 0 32768 0009. b7a4. b181 128. 2

(此处省略)

//以上表明 S3 成为了所有 VLAN 的根桥, f0/1 和 f0/2 都处于转发状态, 这不是我们想要的。

(4) 步骤 4: 控制 S1 成为根桥

S1(config)#spanning-tree mst 0 priority 4096

//注意这里应该配置 MST 0 的优先级,只有 MST 0 才发送 BPDU。

#### S3#show spanning-tree brief

VLAN1

Spanning tree enabled protocol ieee

Root ID Priority 4096

Address 0018. ball. f500

Cost 19

Port 1 (FastEthernet0/1)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

### //以上表明 S1 是 VLAN 1 的根桥了

Bridge ID Priority 32768

Address 0009. b7a4. b181

 ${\it Hello Time} \quad {\it 2 sec} \quad {\it Max Age 20 sec} \quad {\it Forward Delay 15 sec}$ 

Aging Time 300

| Interface       |         |        |        | Desi     | gnated  |                  |        |    |
|-----------------|---------|--------|--------|----------|---------|------------------|--------|----|
| Name            | Port ID | Prio C | Cost S | Sts Cost | Bridge  | e ID             | Port   | ID |
|                 |         |        |        |          |         |                  |        |    |
| FastEthernet0/1 | 128. 1  | 128    | 19 I   | FWD      | 0 4096  | 0018. ba11. f500 | ) 128. | 17 |
| FastEthernet0/2 | 128. 2  | 128    | 19 I   | BLK      | 0 32768 | 0018. ba11. eb80 | 128.   | 17 |
| (此处省略)          |         |        |        |          |         |                  |        |    |

//对于 S3 上所有的 VLAN 来说, f0/2 都是阻断的, 无法取得负载平衡。

(5) 步骤 5: 控制负载平衡

S3(config)#int f0/2

S3(config-if)#spanning-tree vlan 3 cost 10

S3(config-if)#spanning-tree vlan 4 cost 10

//以上改变 VLAN 3 和 VLAN 4 在 f0/2 接口上的 Cost 值。这样对于 VLAN 3 和 VLAN 4, S3 的 f0/2 接口就处于转发状态了。

## 14.6 实验 5: STP 保护

### 1. 实验目的

通过本实验,读者可以掌握如下技能:

- (1) ROOT GUARD 的使用
- (2) BPDU GUARD 的使用

### 2. 实验拓扑



图 14-3 实验 6 拓扑图

## 3. 实验步骤

- (1) 步骤 1: 关闭不需要的接口,配置 S1 和 S2 之间的 Trunk,
- S1 (config) #int f0/14
- S1(config-if)#shutdown
- S1(config)#int f0/15
- S1(config-if)#shutdown
- S1 (config) #int f0/13
- S1(config-if)#switchport trunk encapsulation dot1q
- S1(config-if)#switchport mode trunk
  - (2) 步骤 2: 配置 S1 成为根桥
- S1(config) #spanning-tree vlan 1 priority 8192
  - (3) 步骤 3: 在 S2 的 f0/15 上配置 guard root
- S2 (config) #int f0/15
- S2(config-if)#spanning-tree guard root
- (4) 步骤 4: 把 S3 改为根桥,观察 S2 的动作
- S3(config)#spanning-tree vlan 1 priority 4096

S2#show spanning-tree inconsistentports

Name Interface Inconsistency

VLANO001 FastEthernet0/15 Root Inconsistent

Number of inconsistent ports (segments) in the system: 1

//S2 将从 f0/15 收到 S3 发送的更优的 BPDU,然而由于该接口上配置 Root guard,S2 的接口进入阻断状态。

#### S2#show spanning-tree

VLAN0001

(此处省略)

Interface Role Sts Cost Prio.Nbr Type

Fa0/13

Root FWD 19

128. 15 P2p

Fa0/15

Desg BKN\*19

128.17 P2p \*R00T\_Inc

(5) 步骤 5: 配置 BPDU Guard

S2 (config) #int f0/15

S2(config-if)#shutdown

//关闭接口

S2(config-if)#no spanning-tree guard root

//去掉之前的配置

S2(config-if)#spanning-tree portfast

S2(config-if)#spanning-tree bpduguard enable

//以上配置 BPDU Guard

S2(config)#int f0/15

S2(config-if)#no shutdown

0:28:49: %SPANTREE-2-BLOCK\_BPDUGUARD: Received BPDU on port FastEthernet0/15 with BPDU Guard enabled. Disabling port.

 $00:28:49: \mbox{\em MPM-4-ERR\_DISABLE:}$  bpduguard error detected on Fa0/15, putting Fa0/15 in err-disable state

00:28:50: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/15, changed state to down //交换机从 f0/15 接口收到 S3 的 BPDU,f0/15 被 disable 了

#### S2#show interfaces f0/15

FastEthernet0/15 is down, line protocol is down (err-disabled) //可以看到 f0/15 接口关闭了。要重新开启,请先移除 BPDU 源,在接口下执行"shutdown"、"no shutdown"命令。

## 14.7 本章小结

本章首先介绍了 STP 的作用和基本工作原理,交换机通过 STP 协议有选择性地阻断了某些接口,从而构建无环路的转发路径,STP 需要选取根桥、根口、指定口。802.1D 的 STP 需要较长时间才收敛,通常为 30—50 秒。本章还介绍减少 STP 收敛的措施: uplinkfast、backbonefast 和 RSTP 协议。默认时 CISCO 交换机为每个 VLAN 构建一棵树,这样方便控制 STP 树,但导致 STP 树数量太多。MST 则可以为多个 VLAN 共同构建一棵树。本章最后介绍了

保护 STP 树的两个简单措施: Root Guard 和 BPDU Guard。表 14-1 是本章出现的命令。

表 14-1 本章命令汇总

| 命令                                     | 作用                            |  |  |  |  |
|----------------------------------------|-------------------------------|--|--|--|--|
| show spanning-tree                     | 查看 STP 树信息                    |  |  |  |  |
| spanning-tree vlan 1 priority 4096     | 配置 VLAN1 的桥优先级                |  |  |  |  |
| spanning-tree portfast                 | 配置接口为 portfast, 当有设备接入时立即     |  |  |  |  |
|                                        | 进入转发状态                        |  |  |  |  |
| spanning-tree uplinkfast               | 配置 uplinkfast 特性              |  |  |  |  |
| spanning-tree backbonefast             | 配置 backbonefast 特性            |  |  |  |  |
| spanning-tree mode rapid-pvst          | 把 STP 的运行模式设为 RSTP+PVST       |  |  |  |  |
| spanning-tree link-type point-to-point | 把接口的链路类型改为点对点                 |  |  |  |  |
| spanning-tree mode mst                 | 把生成树的模式改为 MST                 |  |  |  |  |
| spanning-tree mst configuration        | 进入 MST 的配置模式                  |  |  |  |  |
| name TEST-MST                          | 命名 MST 的名字                    |  |  |  |  |
| revision 1                             | 配置 MST 的 revision 号           |  |  |  |  |
| instance 1 vlan 1-2                    | 把 VLAN 1 和 VLAN 2 的生成树映射到实例 1 |  |  |  |  |
| spanning-tree guard root               | 在接口上配置 root guard 特性          |  |  |  |  |
| spanning-tree bpduguard enable         | 在接口上配置 bpduguard 特性           |  |  |  |  |