Data Collection and Preprocessing Phase

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description														
Data Overview	<u>Dimension:</u> 949 rows × 39 columns														
	Descriptive statistics:														
	Quantity of SNO Age Duration of alcohol alcohol alcohol (g/dl) PCV (%) RBC (million MCV all mirror) (g/dl) PCV (%) Cellt/microllter) (femtollters/cell) (%) (dsh/m/m) (mg/dl) (mg/dl) (mg/dl) (mg/dl)														
	count 950,000000 950,00000 950,000000 950,000000 950,000000 950,000000 950,000000 950,000000 950,000000 950,00000 950,00000 950,00000 950,00000 <														
Univariate Analysis	sns.countplot(data-df,x='place(location where the patient lives)') plt.title("tocation",color='y',size=2e,loc='left') sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) caxesSubplot:xlabel='place(location where the patient lives)', ylabel='Age'> location sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) caxesSubplot:xlabel='place(location where the patient lives)', ylabel='Age'> location and place(location where the patient lives) sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) caxesSubplot:xlabel='place(location where the patient lives)', ylabel='Age'> location place(location where the patient lives) sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) plt.show() sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) sns.barplot(x=df['place(location where the patient lives)'],y=df['Age']) sns.barplot(x=df['place(location where the patient lives)'],y=df['Age'])														

Data Preprocessing Code Screenshots

	0		.read_	Datase excel(*		Codes\Data\HealthCa	reData.xlsx*)												
		s.NO	Age (Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Hepatitis B infection	c	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL	HDL Hemoglobi	n PCV l) (%)
Loading Data	0	1	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0 12	.0 40.0
	1	2	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0 9	2 40.0
	2	3	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0 10	2 40.0
	3	4	55	male	rural	12	2	branded liquor	negative	negative	NO	138/90	no	no	NaN	NaN	NaN	NaN 7.	2 40.0
	4	5	55	female	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0 10	2 40.0

```
df['Tct']-df['Tct'].fillna(df['Tct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct'].fillna(df['Nct'].mean())
df['Sonoptis (%)']-df['Sonoptis (%)'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Sonoptis (%)'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Ict'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Ict'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Ict'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Sonoptis (%)'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Sonoptis (%)'].mean())
df['Sonoptis (%)']-df['Sonoptis (%)'].fillna(df['Sonoptis (%)'].mean())
df['Sonoptis (%)'
Handling Missing Data
                                                                                                                                                                                              df['A/G Ratio']=df['A/G Ratio'].fillna(df['A/G Ratio'].mode()[0])
                                                                                                                                                                                                            from sklearn.preprocessing import StandardScaler
                                                                                                                                                                                                            sc = StandardScaler()
                                                                                                                                                                                                          x_train = sc.fit_transform(x_train)
#x_test = sc.transform(x_test)
                                                                                                                                                                                                            x_train
                                                                                                                                                                                            ..., 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846, -0.20286021, -0.14674577], [0.49748762, -1.84159498, -0.76458992, ..., 2.61774893, -0.20286021, -0.14674577], [0.15458485, 0.50365769, -0.76458992, ..., 0.20015892, -0.20286021, -0.14674577]])
Data Transformation
                                                                                                                                                                                                                                from sklearn.preprocessing import LabelEncoder
                                                                                                                                                                                                                                le = LabelEncoder()
                                                                                                                                                                                                                                 for column in df.columns:
                                                                                                                                                                                                                                                 # Check if the column has categorical data
                                                                                                                                                                                                                                                if df[column].dtype == 'object':
    # Perform label encoding
                                                                                                                                                                                                                                                              df[column] = le.fit_transform(df[column])
```

```
categorical features = df.select dtypes(include=[np.object])
                                                 categorical features.columns
                                             Index(['Gender', 'Place(location where the patient lives)',
                                                      'Type of alcohol consumed', 'Hepatitis B infection',
                                                      'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                                     'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                                     'Total Bilirubin
                                                                           (mg/dl)', 'A/G Ratio',
                                                     'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                                    dtype='object')
                                                 numeric_features = df.select_dtypes(include=[np.number])
Feature Engineering
                                                 numeric_features.columns
                                             Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                                      'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                                     'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)', 'MCV (femtoliters/cell)', 'MCH (picograms/cell)', 'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%)',
                                                     'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)', 'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct (mg/dl)',
                                                                      (mg/dl)', 'Total Protein (g/dl)', 'Albumin (g/dl)',
                                                                                                    (U/L)', 'SGOT/AST
                                                     'Globulin (g/dl)', 'AL.Phosphatase
                                                                                                                                  (U/L)',
                                                     'SGPT/ALT (U/L)'],
                                                    dtype='object')
                                                 # Save the cleaned and processed DataFrame to a CSV file
                                                 df.to csv('cleaned data.csv', index=False)
                                                 df.head()
                                               ✓ 0.0s
                                                                                               Quantity of
                                                              Place(location
                                                                                                            Type of alcohol
                                                                                                                              Blood
                                                                          Duration of alcohol
                                                                                                  alcohol
                                                                                                                   Diabetes
                                                  Age Gender
                                                                 where the
                                                                                                                            pressure Obesity
                                                                           consumption(years)
                                                                                             consumption
                                                                                                                     Result
                                                               patient lives)
                                                                                                          consumed
                                                                                                                            (mmhg)
                                                                                            (quarters/day)
Save Processed Data
                                               0 550
                                                                                       12.0
                                                                                                     20
                                                                                                                                 32
                                                                                       12.0
                                                                                                     2.0
                                                                                                                                 32
                                               1 55.0
                                                                                        12.0
                                                                                                      2.0
                                                                                                                                 32
                                                                                                                                          0
                                               2 55.0
                                                                                                                                         0
                                              3 55.0
                                                                                       12.0
                                                                                                     2.0
                                                                                                                                 32
                                                                                                                                          0
                                               4 55.0
```