k-Nearest Neighbors (k-NN)

Instance-Based Learning

- Knn works like a classifier in supervised mode.
 - ▶ Have training examples: (x_i, y_i) , i=1, ..., N
 - ▶ x_i could have discrete or real value
 - Try to predict the class for new example x
 - ▶ $y=f(x) \in \{C_1, \dots, C_c\}$
- The main idea to determine the class
 - Similar examples have similar label
 - Algorithm:
 - 1. Find most similar training examples x_n
 - 2. Classify x "like" these most similar examples
- Questions:
 - How to determine similarity?
 - How many similar training examples to consider?
 - How to resolve in consistencies among the training examples?

1-Nearest Neighbor

- One of the simplest of all machine learning classifiers
- > Simple idea: label a new point the same as the closest known point

3-Nearest Neighbors

- Generalizes I-NN to smooth away noise in the labels
- A new point is now assigned the most frequent label of its k nearest neighbors

K-Nearest Neighbors (KNN)

K-Nearest neighbour:

- Given a query instance x,
- First locate the k nearest training examples $x_1, x_2, ..., x_k$
- Classification:
 - Discrete values target function
 - ▶ Take vote among its k nearest neighbors
- Regression
 - Real valued target function
 - lacktriangle Take the mean of the f values of the k nearest neighbors

Remember. We have to answer to:

- I. How to determine similarity?
- 2. How many similar training examples to consider?
- 3. How to resolve in consistencies among the training examples?

1. How to determine similarity?

It is possible to use any function that respects the following principles

- It's from 'distance properties'
 - Non-negative: d(i, j) > 0
 - d(i,i) = 0
 - Symmetry: d(i, j) = d(j, i)
 - ► Triangle inequality: $d(i, k) \le d(i, j) + d(j, k)$

Some distance

- Euclidian distance: $d(x, y) = \sqrt{\sum (x_i y_i)^2}$
- Manhattan distance ("city-block"): $d(x, y) = \sum |x_i yi|$
- Uniform or weighted distance
 - Weigted: assign weights to the neighbors based on their "distance" from the query point
 - \Box Generally weight = $\frac{1}{distance}$

Knn need to normalize each feature

- The distance measure is influenced by the units of the different variables, especially if there is a wide variation in units.
 - Variables with "larger" units will influence the distances more than others.

$$b di, j = \sqrt{\sum (xi - xj)2}$$

An example

	Income in \$	Age
Carry	\$31 779	36
Sam	\$32 739	40
Miranda	\$33 880	38

- d(Carry, Sam) = $((31779 32739)^2 + (36 40)^2)^{1/2}$ = $((960)^2 + (4)^2)^{1/2} = (921600 + 16)^{1/2} = 960,008$ ± difference of income
- In order to take into account all the features, the dataset must be standardized.

Knn need to normalize each feature

	Income in \$	Age	Normalized income	Normalized Age
Carry	\$31 779	36	0	0
Sam	\$32 739	40	0,46	1
Miranda	\$33 880	38	1	0,5

With un-normalized features

	distance	rank
d(Carry,Sam)	960	1
d(Sam, Miranda)	1 141	2
d(Miranda, Carry)	2 101	3

With normalized features

	distance	rank
d(Carry,Sam)	1,1	3
d(Sam, Miranda)	0,73	1
d(Miranda,Carry)	1,12	2

2. How many similar training examples to consider?

Selecting the Number of Neighbors

- ▶ Increase *k*:
 - Makes KNN less sensitive to noise
- Decrease *k*:
 - Allows capturing finer structure of space
- Hard to tune!

3. How to resolve in consistencies among the training examples?

- Try to use more neighbours
- But give less weight to the far neighbours compared to the close neighbours

Hard to tune to!

K-Nearest Neighbors in python

- from sklearn.neighbors import KNeighborsClassifier
 - ▶ 3 main parameters
 - Choose the neighbors: n_neighbors (k)
 - ▶ Choose the distance: p (power): $(\sum |a_i bi|^p)^{1/p}$ for Minskowski distance
 - □ p==1: Manhattan
 - □ p==2: Euclidian
 - ▶ Choose the proximity weight
 - □ with weight ('distance') or without ('uniform')
- clf = KNeighborsClassifier(n_neighbors=5, weights='uniform', p=2)
- clf.fit(X_train, y_train)
- y_pred = clf.predict(X_test) or clf.predict_proba(X_test)

K-Nearest Neighbors in python

Other parameters

- Weights ('uniform', 'distance') or callable, default='uniform'
 - weight function used in prediction.
- Algorithm {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
 - Algorithm used to compute the nearest neighbors:
 - 'ball_tree' will use <u>BallTree</u>
 - 'kd_tree' will use <u>KDTree</u>
 - b 'brute' will use a brute-force search.
 - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to <u>fit</u> method.
- ▶ **leaf_size**, default=30
 - Leaf size passed to BallTree or KDTree.
- metric {str or callable}, default='minkowski'
 - ▶ the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric.
- metric_params, default=None
 - Additional keyword arguments for the metric function.
- n_jobs, default=None
 - ▶ The number of parallel jobs to run for neighbors search.

Regression with k-NN

- Exactly the same approach
- use the neighbor label value to calculate the value of a new point

from sklearn.neighbors import KNeighborsRegressor

PRO of k-NN

- Highly efficient inductive inference method for noisy training data and complex target functions
- Learning is very simple
- k-NN is simple to understand and implement
- k-NN has no assumptions other than the need to standardize features.
- No training step: each new entry is labelled according to these neighbours
- It is possible to enrich the model with run-of-river data.
- No specific work to do to go from a problem with 2 classes, multiclasses or regression
- A very wide variety of distances can be chosen (although we mainly looked at Minkowski)
- It's an excellent algorithm for replacing missing values...

CONS of k-NN

- Need a distance that "matches" the target function, possibly the distance depends on the feature
- k-NN must read the whole dataset for each prediction. Very expensive for large datasets
- k-NN works well with a small number of features
 - but the accuracy degrades as the number increases.
- k-NN works well with a properly balanced dataset
- Need to standardize the data to give equal weight to each feature
- k-NN doesn't work with missing value
- **k-NN is very sensitive to outliers** because it simply chooses neighbors based on distance criteria.
- But one of the main problems with k-NN is to choose the optimal number of neighbors to be considered when classifying the new data entry.

Today lab.

- Part I. K-nearest neighbors for classification
- ▶ Part II. K-nearest neighbors for regression

Read and understand the code

Part III. K-nearest neighbors from scratch

Read the code later

- Part IV. Your work
 - 1. Impute missing and build knn model
 - Plot confusion matrix
 - Print classification report
 - find the previous values from the confusion matrix (put the formulas in a commented cell)

- Part V. Papers reading
 - Try to understand ANN (Approximate Nearest Neighbors)

Read at least the first 2 papers before the next class