

Motivation

"The number one motivation is how to move faster

"All of us who build chips and systems for a living spend so much time and energy and money rebuilding the same stuff. If I'm building an ASIC, I have to include a memory interface, and I have to put a control interface on it. They just need so many things that you occupy either engineering time or money, or both. That is the same stuff everybody else is putting on their chips, and whether I have to pay for a piece of silicon that does that job, or whether I can get it for free, the fact that I can just get it

and focus my engineers on my special sauce

is a huge value to anyone doing development."

Steve Fields, IBM Fellow, Chief Engineer - IBM Power Systems

RISC-V v. Legacy ISAs

Disruptive **Technology**

Barriers

Complexity

Design freedom

License and Royalty fees

Design ecosystem

Software ecosystem

Legacy ISA

1500+ base instructions Incremental ISA

\$\$\$ - Limited

\$\$\$

Moderate

Extensive

RISC-VISA

47 base instructions Modular ISA

Free - Unlimited

Free

Growing rapidly. Numerous extensions, open and proprietary cores

Growing rapidly

RISC-V°

Calista Redmond
CEO RISC-V International

Legacy OS Architecture

Complex

How can software

"... move faster"?

RISC lessons

"If we review the history of computer families we find that the most common architectural change is the

trend toward ever more complex machines.

... While the trend towards architectural complexity may be one path towards improved computers,

this paper proposes another path

the Reduced Instruction Set Computer."

David A. Patterson, David R. Ditzel, "The case for the reduced instruction set computer", October 1980

Reduced OSA

Monolithic Kernel based Operating System

Microkernel based Operating System

Flexible OSA

How can software

"... focus engineers on the special sauce "?

Focus

Where's your special sauce?

- CPU / SoC / SoM
- PCB & Buses
- Peripherals

Where's your software effort?

- Kernel
- Custom Drivers
- Applications

Focused OSA

Micro kernel

Engineers

What skills are required?

Which staff are available?

Kernel space wizards

User space programmers

Verifiable OSA

Safe

Small enough to certify

Secure

Tiny attack surface

Reliable

Drivers can not crash kernel

ROSA solution

Reduced Operating System Architecture

RISC-V principles

What's Different About RISC-V? "RISC Five", 5th Berkeley RISC Easy to Enhance Free and Open Room to evolve Anyone can use For Cloud & Edge More competition From large to tiny ⇒ More innovation computers o Pick ISA first, Community evolves pick vendor later RISC-V International Simple, Elegant Core owns RISC-V ISA Far simpler than ARM and x86 Modular Optional vs Required 11:57 / 20:28

Permissive

Decouple technology from legality

 Apply permissive licenses to the specification and reference implementations only

 Allow closed and commercial licenses on any non-reference component or implementation

Next step: Draft the licensing policies

Simple core

Kernel = CPU + Memory only

All drivers are in user-space

Core includes essential communication and storage

Next step: Specify the kernel and core components

Modular

Component packaging system

- Automated component distribution
- RISC-V RV Bit-size, Privileged and Optional criteria <

Licensing, disclosure and authentication criteria

Next step: Specify the component distribution system

Extensible

Standardized extension interfaces

Boot media, FOTA update, Live patch, Virtualization

Next step: Enumerate the possible extension features

Scalable

Standardized scaling extension interfaces

- Microcontroller (MMU-less) operation
- Multi-core and multi-processor synchronization

Next step: Enumerate the scaling extension dimensions

Secure

Standardized security interfaces

- Secure-update extensions
- Secure-boot extensions
- Trusted-execution extension interfaces

Next step: Enumerate the security extension dimensions

Engaging

Collaborate with the stakeholders

- Minix3.org and Professor Tanenbaum
- RISCV.org leadership and working groups
- Engage collaborators to form a foundation

Next step: Engage the founders and foundations

First core reference

Port Minix 3 from ARM to RISC-V

~ 15k lines

~50 sys calls

BeagleBone Black ARM® Cortex-A8

RISC-V Dev Board TBD

Authors

Software

Firmware

Hardware

30 years

https://www.linkedin.com/in/

normanyoung

40 years

https://www.linkedin.com/in/

mike-sharkey

Request

Strategic Applications

Collaboration

Sponsors

Credits

₹ RISC-V	https://riscv.org/
	Grant C. https://www.flickr.com/photos/grant_subaru
Steve Fields, IBM	https://semiengineering.com/open-isas-gaining-traction/
RISC-V versus Legacy ISAs	Calista Redmond, CEO RISC-V International https://youtu.be/NWRAppH3ZBU?t=78
Linux kernel 2020	https://www.linuxfoundation.org/resources/publications/ 2020-kernel-history-report/
Linux kernel code	https://en.wikipedia.org/wiki/Linux_kernel#Development
Linux kernel map	By Conan at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=6092674
Linux	Copyright Linux kernel contributors https://github.com/torvalds/linux Trademark owned by Linus Torvalds

Patterson & Ditzel	ACM SIGARCH Computer Architecture News, October 1980 https://dl.acm.org/doi/10.1145/641914.641917
Minix 3 architecture	https://en.wikipedia.org/wiki/MINIX_3#Architecture
Minix	Andrew Tanenbaum and contributors http://www.minix3.org/ https://en.wikipedia.org/wiki/MINIX_3
Polar Berry SoM	Sundance https://www.sundance.com/polarberry-launch/
Lord of the Rings	Tolkien Estate, United Artists
	jencu https://www.flickr.com/photos/jennycu
RISC-V Differences	David Patterson, Vice Chair, RISC-V International https://www.youtube.com/watch?v=JHU1-2MR4QE
	Bill Smith https://www.flickr.com/photos/byzantiumbooks/

Wolfgang W. https://www.flickr.com/photos/cuxclipper1/

BeagleBone Black

Rawpixel Ltd. digitally-enhanced public domain NASA https://www.flickr.com/photos/vintage_illustration/

Ross Angus

Merlijn Bergisch https://www.flickr.com/photos/mbergisch/

https://www.flickr.com/photos/ross angus/

