

# Modelos de Regresión I: Enfoque basado en Modelos Lineales

Comprender y aplicar la regresión lineal para resolver problemas de predicción numérica en el mundo real.

**Gabriel Rengifo** 



# ¿Por qué necesitamos la regresión lineal?

En el mundo real enfrentamos constantemente preguntas de predicción numérica:



¿Cuál será el precio de una casa basándose en su ubicación, tamaño y características?

#### Eficiencia energética

¿Cómo predecir el consumo de combustible de un vehículo según sus especificaciones?



¿Cuánto tiempo durará una misión naval considerando múltiples factores?



Utilizamos **regresión lineal** cuando nuestra variable objetivo es numérica y continua.

### Fundamentos matemáticos

La regresión lineal establece una relación matemática entre una variable dependiente y y una o más variables independientes x.

### Fórmula general

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \epsilon$$

## Componentes clave:

- β (beta): coeficientes que determinan el peso de cada variable
- ε (épsilon): término de error que captura la variabilidad no explicada
- $\beta_0$ : intercepto o término constante



## ¿Qué es la Regresión?



Independent Variable

Construye una línea o curva que pasa a través de todos los puntos de datos en el gráfico de predicción objetivo de tal manera que la distancia vertical entre los puntos de datos y la curva de regresión es mínima.



# Tipos de regresión lineal

#### Regresión Simple

Utiliza una sola variable independiente para predecir la variable dependiente. Es el caso más básico y fácil de visualizar.

**Ejemplo**: Predecir el precio de una casa solo basándose en su tamaño en metros cuadrados.

## Regresión Múltiple

Incorpora múltiples variables independientes, capturando relaciones más complejas y realistas del mundo real.

**Ejemplo**: Predecir la tarifa del Titanic considerando clase, edad, sexo, número de familiares a bordo, puerto de embarque, etc.

# Tipos de modelos de Regresión



## Regresión lineal simple



 $h(x) = \theta_0 + \theta_1 \cdot x + \epsilon$ 

**Error aleatorio** 

Variable Dependiente (respuesta – y)

Variable Independiente (Explicatoria)



## Regresión lineal simple



## Regresión lineal simple - Residuo



- La distancia entre los datos y la curva construida.
- Indica si el modelo ha capturado la relación entre los predictores y la variable objetivo.

Residuo (e) = valor observado de salida - valor predicho

$$e = y - \hat{y}$$

Los modelos de regresión buscan minimizar el valor de **e** para el conjunto de predictores de entrenamiento.

# Supuestos fundamentales

Para que la regresión lineal funcione correctamente, debe cumplir cinco supuestos críticos:

| 01                                                                        | 02                                                                     | 03                                                                                         |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Linealidad                                                                | Independencia                                                          | Homocedasticidad                                                                           |
| La relación entre variables independientes y dependiente debe ser lineal. | Los errores de las observaciones deben<br>ser independientes entre sí. | La varianza de los errores debe ser<br>constante a lo largo de todas las<br>observaciones. |
| 04                                                                        | 05                                                                     |                                                                                            |
|                                                                           |                                                                        |                                                                                            |

#### Normalidad

Los errores deben seguir una distribución normal.

#### No multicolinealidad

Las variables independientes no deben estar altamente correlacionadas entre sí.

## Estimación de parámetros



Método de Mínimos Cuadrados Ordinarios (OLS)

Este método encuentra los coeficientes β que minimizan la suma de los errores al cuadrado:

$$\min \sum_{i=1}^{n} (y_i - y_i^2)^2$$

**Intuición**: Buscamos la "mejor recta" que se ajusta a nuestros datos, minimizando las distancias entre los puntos reales y la línea predicha.

2

3

Datos de entrada

Variables X y objetivo Y

Optimización OLS

Minimizar errores cuadráticos

Coeficientes β

Parámetros del modelo

## Métricas de evaluación

Para determinar qué tan bien funciona nuestro modelo, utilizamos métricas específicas:

%

## Coeficiente R² (Rcuadrado)

Indica qué proporción de la varianza en la variable dependiente es explicada por el modelo. Valores cercanos a 1 indican mejor ajuste.



## RMSE (Error Cuadrático Medio)

Mide qué tan lejos están las predicciones de los valores reales. Valores más bajos indican mejor precisión.



# MAE (Error Absoluto Medio)

Calcula el promedio de los errores absolutos, proporcionando una medida interpretable del error típico.

## Técnicas de regularización

Cuando tenemos demasiadas variables, el modelo puede sufrir sobreajuste. La regularización añade penalizaciones para controlarlo:



Aplicar técnicas de regularización



### Ridge (L2)

Penaliza coeficientes grandes, reduciendo su magnitud pero manteniéndolos todos en el modelo.



#### Lasso (L1)

Fuerza algunos coeficientes a ser exactamente cero, realizando selección automática de variables.



#### Elastic Net

Combina las penalizaciones L1 y L2, aprovechando las ventajas de ambas técnicas.

## Ejemplo práctico: Dataset Titanic



### Objetivo

Predecir la tarifa (Fare) que pagaron los pasajeros del Titanic basándose en sus características.

#### Preparación de datos

Dividir el dataset en conjuntos de entrenamiento (80%) y prueba (20%) para validación robusta.

#### Entrenamiento del modelo

Ajustar regresión lineal múltiple usando variables como clase, edad, sexo, número de familiares, puerto de embarque.

#### Evaluación de rendimiento

Medir performance usando R², RMSE y MAE en el conjunto de prueba.

#### Comparación de técnicas

Contrastar resultados con modelos Ridge y Lasso para evaluar beneficios de regularización.



## Puntos clave para recordar



#### Base fundamental

Los modelos lineales constituyen la piedra angular del aprendizaje supervisado y son esenciales para comprender técnicas más avanzadas.



#### Interpretabilidad

Son fáciles de interpretar y sirven como excelente línea base para comparar modelos más complejos.



#### Control de sobreajuste

Las técnicas de regularización (Ridge, Lasso, Elastic Net) son herramientas poderosas para evitar el sobreajuste.



### Benchmarking

En la práctica profesional, siempre debemos comparar contra modelos más sofisticados como Random Forest o Redes Neuronales.