

Development of Space-Based Laser Systems at Goddard Space Flight Center

Elisavet Troupaki Branch Head NASA Goddard Space Flight Center, Greenbelt, MD 20771

elisavet.troupaki-1@nasa.gov

Agenda

- Laser & Electro-Optics Branch at GSFC
- Lidar Applications & Areas of Interest
 - GSFC Solid State Lasers and Fiber Lasers for Space
 - Space-Based Topographic Mapping Lidar Results
 - Laser Interferometer Space Antenna (LISA)
 - Lasers for in-Situ Planetary Lander Instruments
 - New generation lidar instruments
 - Laser Spectroscopy
 - Laser Communications
- General Laser Requirements
- Preparing for the future
- Challenges
- Conclusions
- Acknowledgments

Laser & Electro-Optics Branch at GSFC

Who "we" are:

NASA =>

What we do:

Conceive, propose, design, fabricate, test and deploy one-of-a-kind space (or on a pathway to space) science instruments (e.g., laser altimeters, atmospheric lidars, spectroscopic lidars) AND spacecraft systems (e.g., laser communication, 3D laser vision, etc.)

For whom:

International science community, US taxpayer, other US Government Agencies.

NASA GSFC Annual Reports can be found at: https://www.nasa.gov/centers/goddard/about/rep_plan.html

Lidar Applications & Areas of Interest

□ Earth

- Agriculture
- Forestry
- Geology
- Hydrology
- Sea Ice
- Land Cover Biomass Mapping
- Mapping
- Oceans and Coastal Monitoring
- Planetary
 - Planetary topography
 - Surface, atmosphere and radiant temperatures
 - Surface and atmospheric mineral and

chemical compositions

- Gravity, atmospheric pressure and atmospheric density information
- Composition of the planetary surface and/or near-subsurface materials.
- ☐ Astrophysics
 - Gravitational Waves
- ☐ Heliophysics
 - Space weather
 - Atmospheric Dynamics
- ☐ Laser Communications
- ☐ Satellite Servicing

GSFC Solid State Lasers and Fiber Lasers for Space

IEEE J Sel Top Appl Earth Obs Remote Sens. 2020 October 02; 2020: . doi:10.1109/IGARSS39084.2020.9323088

Space-Based Topographic Mapping Lidar Results

- Mars Orbiter Laser Altimeter (MOLA)
- Geoscience Laser Altimeter System (GLAS)
- Mercury Laser Altimeter (MLA)
- Lunar Orbiter Laser Altimeter (LOLA) still active
- Advanced Topographic Laser Altimeter System (ATLAS)- active

ICESat-2 and GEDI Data from Space

ICESat-2 Sees the Trees in Mexico

GEDI - Canopy structure taken over South Carolina

January 11, 2017 - October 19, 2018

IEEE J Sel Top Appl Earth Obs Remote Sens. 2020 October 02; 2020: . doi:10.1109/IGARSS39084.2020.9323088

Laser Interferometer Space Antenna (LISA)

Lasers for in-Situ Planetary Lander Instruments

(Mass Spectrometers)

- UV and visible solid-state lasers to explore the surface chemistry of planetary bodies across the Solar System.
- The lasers serve as ionization and excitation sources for mass and Raman spectrometer instruments.
- The laser architecture is based on diode-pumped solid-state laser oscillator and amplifier (when needed) with various stages of non-linear frequency conversion to achieve the required output wavelength for the science instrument.
- Laser enclosures are pressurized with >1 atm of clean dry air to minimize the risk of contamination induced damage associated with UV lasers operating in vacuum.

Common Science Themes

- Search for extraterrestrial life and potentially habitable environments beyond Earth.
- Further our understanding of the timing and formation of the Solar System.
- Identify potentially viable economic resources such as water and/or valuable metal assets.

Dragonfly Mission – THANOS laser

- Dragonfly Mass Spectrometer (DraMS)
- Instrument PI: Melissa Trainer/GSFC
- Launch 2027

The Dragonfly mission will carry a mass spectrometer, DraMS, to characterize the chemical composition of the Titan surface and atmosphere. DraMS will analyze samples in three different modes: Gas Chromatography Mass Spectrometry (GCMS), Laser Desorption Mass Spectrometry (LDMS), and Atmospheric enrichment mass spectrometry (ATM).

The Throttled Hydrocarbon Analysis by Nanosecond Optical Source (THANOS) Laser shown. This includes the diode enclosure, laser optics box, and BSU. It is required to do the following to generate ions for large molecule study on sampled collected on Titan by:

- Generating 266 nm light in ≤ 2 ns pulses
 Generating 0.013 to 0.35 J/cm² @ 100 Hz
 Generating up to 50 shot bursts
 Provide tunable energy for each laser pulse
 Survive transit to Titan and produce 2 x 10⁶ shots (includes margin)

THANOS laser ETU unit

Coyle et. al. https://doi.org/10.1117/12.2644728

New generation lidar instruments

High Res. 3D Mapping, Robotic Servicing, Hazard Detection

- 1. Satellite servicing: OSAM-1 Kodiak laser (https://nexis.gsfc.nasa.gov/osam-1.html)
- 2. Dragonfly Ocellus Laser Altimeter
- 3. Safe Landing for Space Exploration Hazard Detection Lidar (HDL)
- 4. Adaptive Wavelength Scanning Lidar (AWSL)

AWSL lidar system block diagram with three major blocks: laser transmitter, receiver, and electronics (Yang et. al. doi: 10.1109/IGARSS46834.2022.9884418)

The SPLICE HDL system mounted to a pickup to test how it maps the surrounding areas. Source: NASA

Artist's concept of OSAM-1.
Credit: NASA

KODIAK SYSTEM LASER REQUIREMENTS

Requirements	Values		
Operational Time (testing + on-orbit)	~ 1000 Hours		
Center Wavelength	1553.xx nm ± 1.0 nm		
Spectral Width	±0.5 nm		
Wavelength Drift over	±3.0 nm and <1.0 nm		
Temperature	per 10°C		
Minimum Repetition Rate	100 kHz		
Maximum Repetition Rate	200 kHz		
Pulse Width	2.5 ns (TBR) ± 0.5ns		
Peak Pulse Energy @ 100 kHz	$3\mu J \pm 10\%$		
Peak Pulse Energy @ 200 kHz	$3\mu J \pm 10\%$		
Dynamic Range	10 dB		

Laser Spectroscopy

- B-SoLiTARe: Balloon Sodium Lidar to measure Tides in the Antarctic Region (Heliophysics)
- Formaldehyde Integrated Path Differential LIDAR
- Laser-based Remote Sensing of Atmospheric Carbon Dioxide

A. W. Yu et al., doi:10.1109/IGARSS39084.2020.9323088.

MOPA Laser at 1572 nm

A. W. Yu et al., doi:10.1109/IGARSS39084.2020.9323088.

IPDA lidar uses a tunable laser to measure HCHO with absorption spectroscopy. Instrument includes a tunable laser, a reference cell for HCHO, and a transceiver samples the return signal from the ground.

LASER REQUIREMENTS FOR B-SOLITARE

Laser Transmitter Parameters	Value		
Waxalanatha	589.15900 nm		
Wavelengths	589.15846 nm 589.15790 nm		
Average laser power	1 W		
Laser pulse rate	10 kHz		
Laser divergence angle	75 μrad		

Laser Communications

13

Integrated Laser Communication Relay Demonstration Payload at NASA Goddard Space Flight Center

The Low Cost Optical Terminal (LCOT) facility at GSFC

Also: High precision optical ranging and range rate experiments planned with LCRD on orbit.

General Laser Requirements

Parameters	Altimetry	Trace Gas Sensing and Spectroscopy	Time-of-Flight Mass Spectrometer	Laser Communications	Precision Ranging
Pulsed Repetition Frequency [PRF]	10's Hz to < 10 kHz for Earth applications to minimize range ambiguity <tbd (or="" atmospheric="" composition="" depending="" for="" khz="" lack="" of)="" on="" planetary="" structure<="" td=""><td>Few kHz to < 10 kHz for Earth applications to minimize range ambiguity</td><td>single shot to 10's kHz</td><td>Depending on data format</td><td>CW with phase modulation (typ in GHz rate)</td></tbd>	Few kHz to < 10 kHz for Earth applications to minimize range ambiguity	single shot to 10's kHz	Depending on data format	CW with phase modulation (typ in GHz rate)
Wavelength	1 μm typical	Species dependent. e.g. •1572 nm for CO ₂ ; •1640 nm or 1651 nm for CH ₄ ; •589 nm for Sodium; •308 nm for OH	UV, NIR & MIR	User's choice	1 μm
Spectral Width	< 1 nm, for narrow bandpass filter on receiver end	Single frequency - typ. 100's MHz	< 1 nm	100's kHz	Not critical but frequency noise in mHz to kHz band is the driving requirements
Average Power or Pulse Energies	100's μJ	100's μJ to 10's mJ	10's to 100's ய	few Watts	few Watts
Pulse Width	picosecond to nanosecond	Transform limited pulse width	femtosecond to picosecond	Depending on data format	N/A

Technology Readiness Levels (TRL)

TRL9

Actual system "flight proven" through successful mission operations

Preparing for the Future

- Common requirements for all laser-based instruments
 - Lifetime
 - Reliability
 - Efficiency
- For Earth and Planetary Sciences
 - \Box High rep rate (10's kHz), lower pulse energy (10's 100's μJ), fS μS pulses
 - High efficiency laser systems (>15% wall plug)
 - Highly reliable laser systems (multi-Billion shots, or 10+ years in space operation)
 - High sensitivity detector and detector arrays with low-noise, high speed ROICs
 - linear mode PC in the NIR because of its wavelength advantages

Electro-optics and Photonics Systems for Space Challenges

- Leveraging investments from the telecom and other industries
 - e.g., Telcordia qualified components
- Extensive testing put them through the paces – TRL4 to TRL6
- Non-Hermetic or environmental sealed components
 - Evaluation of BOM
 - Material selection
 - Contamination induced damages
 - Pressurized enclosure
- Quality Control/Workmanship
- Contamination Control

- Environmental Testing
 - Temperature (Operation and Survival)
 - Vacuum
 - Radiation
 - Shock/Vibration
- Reliability/Lifetime
 - Redundancy Strategies
 - Contamination induced damages
 - Laser induced damages
- Limited Resources
 - Wall Plug Efficiency
 - Operation Margins
- Obsolescence

- NASA GSFC has been involved in space-borne laser instrument development since mid-90's
- We are actively seeking innovative solutions to meet future science missions' objectives and goals
- Leverage industries and other agencies' funded programs on components and systems development.

Acknowledgement

Represents the work of hundreds of people –

NASA ESTO; NASA PICASSO; HTIDeS; H-FORT; ASTID programs;

GSFC Lasers & Electro-Optics Branch; GSFC IRAD program;

SBIR/STTR programs, Physics of the Cosmos Study (PCOS) Office

and the

Instrument and Science Teams of:

MOLA, ICESat/GLAS, MLA, LOLA, ICESat-2, GEDI, DRAMS, LIST SDT, ASCENDS,

LADEE, LCRD and many more