Driver assistance system design A

Control of dynamic systems

Carlo Novara

Politecnico di Torino Dip. Elettronica e Telecomunicazioni

Outline

Basic concepts

2 Control system structures

Basic concepts

2 Control system structures

What is control?

- Goal of control: obtain a desired behavior of a dynamic system.
- ullet Controlling a dynamic system (plant): using a command u such that the corresponding output y tracks a desired reference r.
- The controlled system should be as little as possible sensitive to the disturbance d.

Control design problem: Find a system, called the controller, such that $y \cong r$ for a set of reference signals of interest. \square

Other examples

- Automotive control applications:
 - lateral control / lane keeping
 - longitudinal control / cruise control / adaptive cruise control
 - vehicle stability control (VSC) / electronic stability program (ESP)
 - vertical dynamics control / suspension control
 - active braking system (ABS)
 - engine control / emission control
 - heating system control
 - etc . . .
- Other control applications:
 - aerospace
 - robotics
 - physics
 - biology
 - medicine
 - econometrics
 - etc . . .

Control design methods

- Time-domain methods:
 - ▶ eigenvalue (pole) placement
 - proportional integrative derivative (PID)
 - optimal control (LQR)
 - model predictive control (MPC)
 - internal model control (IMC)
 - gain-scheduling
 - feedback linearization
 - sliding mode control
 - etc ...
- Frequency domain methods:
 - pole placement
 - proportional integrative derivative (PID)
 - root locus
 - lead-lag compensator
 - internal model control (IMC)
 - $ightharpoonup H_{\infty}$ control
 - etc ...

Basic concepts

2 Control system structures

A general structure

Systems:

 $P: \mathsf{plant}$

C: controller

A: actuators

 T_r : sensors (transducers)

Signals:

r: reference

 $y:\mathsf{output}$

 $u: \mathsf{command} \ \mathsf{input}$

e = r - y: tracking error

 d_y, d_a, d_t : disturbances

A simplified structure

Systems:

A included in P

 $T_r = 1$

Signals:

r: reference

 $y:\mathsf{output}$

 $u: \mathsf{command} \ \mathsf{input}$

e = r - y: tracking error

 $\emph{d}:$ unique disturbance accounting

for d_y, d_a, d_t

LTI systems: important transfer functions

Loop function: product of all transfer functions appearing in the loop:

$$L(s) = P(s)C_2(s).$$

LTI systems: important transfer functions

Sensitivity:

transfer function $d \rightarrow y$

Complementary sensitivity:

transfer function $r \rightarrow y$

$$S(s) = \frac{y(s)}{d(s)} = \frac{1}{1 + P(s)C_2(s)}.$$

$$T(s) = \frac{y(s)}{r(s)} = \frac{P(s)C_1(s)}{1 + P(s)C_2(s)}.$$

For particular choices of C_1 and C_2 : T(s) + S(s) = 1.

Basic concepts

2 Control system structures

• Ideal control:

```
T=1 \Rightarrow exact reference tracking; S=0 \Rightarrow complete disturbance rejection.
```

Real control:

- Stability:
 - * A closed-loop system is as. stable iff all its subsystems (from all inputs to all outputs) are as. stable.
- Well-damped response.
- Quick response.
- Precision in steady-state.
- Reduced influence of uncertainties (robustness).
- ▶ Low command effort ↔ low energy consumption.

- Consider the step response of a closed-loop system, i.e., its output when the reference is a step signal. Suppose that the following limit exists: $y_{ss} \doteq \lim_{t \to \infty} y(t)$.
- Well-damped response \leftrightarrow "small" overshoot.

Quick response ↔ "short" rise time.

LTI systems

• In the case of LTI plant, overshoot and rise time are related to the loop function L(s).

Definitions:

Cross-over frequency:

$$\omega_c : |L(j\omega_c)| = 1.$$

• Phase margin:

$$m_{\phi} = \angle L(j\omega_c) + 180^{\circ}.$$

- ▶ Increase $\omega_c \rightarrow \text{reduce } t_r$
- ▶ Increase m_{ϕ} → reduce \hat{s} , increase closed-loop robustness.
- Typical required values: $m_{\phi} \gtrsim 45^{\circ}$.

- In general: Precision in steady-state $\leftrightarrow e_{ss} \doteq \lim_{t \to \infty} e(t)$ "small".
- LTI systems: Precision in steady-state ↔ high loop gain at low frequency or integrators in the loop (it can be proven, see the recap material).

