Image Smoothing

Neighbourhood Operations

What are Neighbourhood Operations

 Neighbourhood operations simply operate on a larger neighbourhood than pixel itself

.

į,

What are Neighbourhood Operations

- Neighbourhood operations simply operate on a larger neighbourhood than pixel itself
- Neighbourhood are mostly a rectangle around a centre pixel

٠

What are Neighbourhood Operations

- Neighbourhood operations simply operate on a larger neighbourhood than pixel itself
- Neighbourhood are mostly a rectangle around a centre pixel
- This rectangle can be of any size

Simple Neighbourhood Operations

```
†
```

4

↓

Simple Neighbourhood Operations

- These include:
 - ▶ Min: Set the pixel value to the minimum in the neighbourhood
 - ▶ **Max:** Set the pixel value to the maximum in the neighbourhood
 - ▶ **Mean:** Set the pixel value to the neighbourhood mean
 - ▶ **Weighted Mean:** Set pixel value to weighted neighbourhood mean

a	b	С
d	e	f
g	h	i

Original Image Pixels

a	b	С		r	S	t
d	e	f	*	и	v	W
g	h	i		X	у	Z

Filter

$$e_{processed} = v^*e + \\ r^*a + s^*b + t^*c + \\ u^*d + w^*f + \\ x^*g + y^*h + z^*i$$

Original Image

Pixels

Smoothing Spatial Filters

†

 \downarrow

1

1

Smoothing Spatial Filters

- One of the simplest spatial filtering operations we can perform is a unweighted smoothing process
 - Simply average all of the pixels in a neighbourhood around a central value
 - Especially useful in removing noise from images but may lead to edge blurring
 - Also useful for highlighting gross detail

Smoothing Spatial Filters

- One of the simplest spatial filtering operations we can perform is a unweighted smoothing process
 - ▶ Simply average all of the pixels in a neighbourhood around a central value
 - Especially useful in removing noise from images but may lead to edge blurring
 - Also useful for highlighting gross detail

Simple Averaging Filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9


```
+
```

► The image at the top left is an original image of size 500*500 pixels

1

1

- ► The image at the top left is an original image of size 500*500 pixels
- ► The subsequent images show the image after filtering with an un-weighted averaging filter of increasing rectangular filter sizes
 - > 3, 5, 9, 15 and 35

1

- ► The image at the top left is an original image of size 500*500 pixels
- ► The subsequent images show the image after filtering with an un-weighted averaging filter of increasing rectangular filter sizes
 - > 3, 5, 9, 15 and 35
- ► Notice how detail begins to disappear with increase in neighbourhood size

Weighted Smoothing Filters

```
†
```

Weighted Smoothing Filters

- ► More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function
 - ▶ Pixels closer to the central pixel are more important
 - Often referred to as a weighted averaging
 - Less blurring compared to un-weighted filter

Weighted Smoothing Filters

- ► More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function
 - ▶ Pixels closer to the central pixel are more important
 - Often referred to as a weighted averaging
 - Less blurring compared to un-weighted filter

¹ / ₁₆	² / ₁₆	¹ / ₁₆
² / ₁₆	⁴ / ₁₆	² / ₁₆
¹ / ₁₆	² / ₁₆	1/16

Weighted averaging filter

Averaging Filter Vs. Median Filter Example

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

1

Averaging Filter Vs. Median Filter Example

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

- ▶ Filtering is often used to remove noise from images
- ▶ Sometimes a median filter works better than an averaging filter

Strange Things Happen At The Edges!

However strange things happen at the edges of an image since we are missing pixels to form a neighbourhood

