

Netzteiloptimierung

Fin Rechner sei wie folgt konfiguriert:

Komponente	+3,3 Volt	+5 Volt	+12 Volt	Anzahl	Leistung
Prozessor I7 11700K			10,42 A	1	10,42*12 =125,04W
Mainboard mit Onboard-Geräten	1,5 A	1 A	0,2 A	1	1,5*3,3 + 5 + 0,2 =12,35W
Systemlüfter			0,17 A	2	(0,17*12) * 2 = 4,08W
Prozessorlüfter			0,2 A	1	0,2*12 =2,4W
Speichermodule (RAM)			0,11 A	4	(0,11 * 12) * 4 = 5,28W
Grafikkarte GeForce GTX 1660			10 A	1	=120W
SATA-Festplatte		0,7 A	0,55 A	2	(0,7*5 + 0,55*12) *2 = 20,20 W
DVD-ROM Laufwerk		0,5 A	0,4 A	1	0,5*5 + 0,4* 12 = 7,3W
Tastatur		0,2 A		1	0,2*5 = 1W
Maus		0,2 A		1	=1 W
Gesamt:		3,3 A			= 298,65W

Tabelle 1: exemplarischer Rechner

Sie möchten anhand dieses Rechners prüfen, ob es sich lohnt, hier ein neues Netzteil zu verbauen.

Aufgabe 1: Ergänzen Sie die Leistungswerte in Tabelle 1 (Gesamtampere, Gesamtleistung).

Aufgabe 2: Auf dem Typenschild des Netzteils für den Rechner aus Aufgabe 1 steht 750 Watt. Was sagt die Wattanzahl im Hinblick auf Leistungsaufnahme und Leistungsabgabe aus? Wie viel das Gerät an Energie verteilen kann.

Aufgabe 3: Durch ein Messgerät stellen Sie fest, dass das Netzteil 350 Watt verbraucht.

- a) Wo bleibt die Differenz zwischen 298,65 und 350 Watt? Wird in Wärme umgewandelt
- **b)** Berechnen Sie den Wirkungsgrad des Netzteils (in %)! 85,32%

Formel:
$$\eta = \frac{\text{genutzte Energie}}{\text{zugeführte Energie}}$$

c) Nehmen Sie an, dass der exemplarische Rechner im 24/7 Modus läuft. Wie hoch sind die Verbrauchskosten für diesen Rechner bei Stromkosten von 0,25 €/kWh? Geben Sie die Kosten pro Tag, pro Monat und pro Jahr an!¹

Tag 2,10€ Monat 63,00€ Jahr 756,00€

d) Sie überlegen, das alte Netzteil durch ein 80 Plus Titan Netzteil mit ca. 95% Wirkungsgrad Tag auszutauschen. Das Netzteil kostet 90 €, die kWh kostet 0,25€. Wann hat sich das Netzteil Monat 56,52€ amortisiert?² Nach ca 1,14 Jahren (1 Jahr, 1 Monat, 19 Tage)

1,88€ Jahr 678,24€

Hilfestellung: Gehen Sie bei d) wie folgt vor:

- Berechnen Sie den Stromverbrauch (an der Steckdose) des neuen Netzteils.
- Berechnen Sie die Leistungsdifferenz zwischen neuem und altem Netzteil.
- Nutzen Sie folgende Formel: *Kosten Netzteil = Differenz in kWh * Strompreis*

¹ Hinweis: Rechnen Sie mit 30 Tagen pro Monat und 360 Tagen im Jahr.

² amortisieren = die Kosten/Investitionen durch die Erträge wieder "einbringen"