LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang*, Dan Pei Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun and Rong Zhou

Accepted by IJCAI 19

Internet Services

Internet services provide various types of services

The traffic are growing rapidly

Stability of services are becoming increasingly more important.

Anomalies will impact revenue and user experience

Anomaly detection plays an important role in service management.

Logs for Anomaly Detection

Logs are one of the most valuable data sources for anomaly detection

- Diverse: record a vast range of runtime information
- General: every IT system or device generates logs

Types	Timestamps	Detailed messages
Switch	Jul 10 19:03:03	Interface te-1/1/59, changed state to down
Supercomputer	Jun 4 6:45:50	RAS KERNEL INFO instruction cache corty error corrected. INFO dfs.DataNode\$PacketReskonder: PackStresponder 1 for block blk
HDFS	Jun 8 13:42:26	INFO dfs.DataNode\$PacketRestonder.PagStkesponder 1 for bloth blk 1608999687919862906 termination text
Router	Jul 11 11:05:07	Neighbour(rid:10.231.0.43, addr:10.231.39.61) on vian25, changed state from Exchange to Loading

Logs for Anomaly Detection

Manual Inspection

Incomplete information of the overall system

The explosion of logs

Not all anomalies are explicitly displayed

Some anomalies hide in log sequence.

Normal OSPF Startup process:

Down \rightarrow Attempt \rightarrow Init \rightarrow Two-way \rightarrow Exstart \rightarrow Exchange \rightarrow Loading \rightarrow Full

Runtime logs:

OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Attempt** to **Init** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Init** to **Two-way** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Two-way** to **Exstart** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Two-way** to **Exstart**

Line protocol on Interface ae3, changed state to **down**Interface ae3, changed state to **down**Interface ae3, changed state to **up**Line protocol on Interface ae3, changed state to **up**Line protocol on Interface ae3, changed state to **down**Interface ae3, changed state to **down**Interface ae3, changed state to **up**.

Line protocol down (the number of up/down is not equal)

Each log is normal, but OSPF failed to start

77/15 Weibin Meng

Manual Inspection

Incomplete information of the overall system

The explosion of logs

Not all anomalies are explicitly displayed

Automatically and accurately detect anomalies based on unstructured logs

N

DOWN - ALLEMPL - IMIL - IWO-WAY - EXSLAIL - EXCHANGE - LOAGING - FUIL

Runtime logs:

OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Attempt** to **Init** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Init** to **Two-way** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Two-way** to **Exstart** OSPF ADJCHG, Nbr 1.1.1.1 on FastEthernet0/0 from **Two-way** to **Exstart**

Interface aes, changed state to down

Interface ae3, changed state to **up**

Line protocol on Interface ae3, changed state to **up**

Line protocol on Interface ae3, changed state to **down**

Interface ae3, changed state to **down**

Interface ae3, changed sto up.

Each log is normal, but OSPF failed to start

Line protocol down (the number of up/down is not equal)

Weibin Meng

7

Previous Studies

Two categories

- Quantitative pattern based approaches
- Sequential pattern based approaches

Logs:

L₁. Interface ae3, changed state to down

L₂. Vlan-interface vlan22, changed state to down

L₃. Interface ae3, changed state to up.

L₄. Interface ae1, changed state to down

L₅. Vlan-interface vlan22, changed state to up

L₆. Interface ae1, changed state to up

Templates (log keys):

T₁. Interface *, changed state to down

T₂. Vlan-interface *, changed state to down

T₃. Interface *, changed state to up

T₄. Vlan-interface *, changed state to up

Logs -> Template keys:

 $L_1 - T_1$, $L_2 - T_2$, $L_3 - T_3$

 $L_4 - > T_1$, $L_5 - > T_4$, $L_6 - > T_3$

Log template key sequence:

 T_1 , T_2 , T_3 , T_1 , T_4 , T_3

Quantitative anomaly detection methods

Sequential anomaly detection methods

Previous Studies

Quantitative anomaly detection methods Two categories: Sliding/session windows Quantitative pattern based approaches $|\Delta t| \Delta t |\Delta t| \Delta t |\Delta t|$ **Count Matrix** Only comparing template key loses the [']10) L₁. Interface information hidden in template semantics L₂. Vlan-inte L₃. Interface L₄. Interface Cannot detect quantitative and sequential L₅. Vlan-inte L₆. Interface anomalies simultaneously

Sequential anomaly detection methods

 1_1 , 1_2 , 1_3 , 1_1 , 1_2

Challenges

Valuable information could be lost if only log template key is used.

• Some templates are similar in semantics but different in keys

Services can generate new log templates between two adjacent re-trainings

 Existing approaches cannot address this problem Existing methods cannot detect sequential and quantitative anomalies simultaneously.

Overview of LogAnomaly

Template Representation

Template Representation

Insights

- Some existing templates have similar semantics
- Some logs containing antonyms look similar but have opposite semantics

Goals

- Convert log templates to "soft" representations (vectors)
- Takes antonyms and synonyms into consideration

Logs:

1.Interface ae3, changed state to down
2.Vlan-interface vlan22, changed state to down
3.Interface ae3, changed state to up
4.Vlan-interface vlan22, changed state to up
5.Interface ae1, changed state to down
6.Vlan-interface vlan20, changed state to down
7.Interface ae1, changed state to up

8.Vlan-interface vlan20, changed state to up

Templates:

1.Interface *, changed state to down
2.Vlan-interface *, changed state to down
3.Interface *, changed state to up
4.Vlan-interface *, changed state to up
Logs>Templates:
L1->T1 L2->T2 L3->T3 L4->T4
L5->T1 L6->T2 L7->T3 L8->T4

template2Vec

Construct the set of synonyms and antonyms

Combine domain knowledge and WordNet dataset

Generate word vectors by using dLCE^[1]

• dLCE is a distributional lexical-contrast embedding model

Calculate template vectors

Relations	Word	Adding methods	
Synonyms	down	low	WordNet
	Interface	port	Operators
Antonyms	DOWN	UP	WordNet
	powerDown	powerOn	Operators

14

Template Approximation

Template Approximation

Automatically merge new templates into existing templates

- Extract a template for the log of new type
- Generate a temporary template vector for the new template
- Mapping the temporary template vector into one of the existing vectors

Quantitative pattern (e.g., up = down)

Sequential pattern

sequence next
$$[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3] \longrightarrow \ \mathbf{v}_1$$

$$[\mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_1] \longrightarrow \ \mathbf{v}_4$$

$$[\mathbf{v}_3 \ \mathbf{v}_1 \ \mathbf{v}_4] \longrightarrow \ \mathbf{v}_3$$

Logs:

L₁ Interface ae3, changed state to down

L₂ Vlan-interface v2, changed state to down

L₃ Interface ae3, changed state to up. **Conversions:**

L₄ Interface ae1, changed state to down

L₅ Vlan-interface v2, changed state to up

L₆ Interface ae1, changed state to up

Templates (log keys):

T₁ Interface *, changed state to down

T₂ Vlan-interface *, changed state to down

T₃ Interface *, changed state to up
T₄ Vlan-interface *, changed state to up

Templates index sequence:

$$T_1 \ T_2 \ T_3 \ T_1 \ T_4 \ T_3$$

 $L_1 \rightarrow T_1$

 $L_2 \rightarrow T_2$

 $L_3 \rightarrow T_3$

 $L_4 \rightarrow T_1$

 $L_5 \rightarrow T_4$

 $L_6 \rightarrow T_3$

Combine Sequential and Quantitative relationship

- For a log sequence, we sort the possible next template vector based on their probabilities, which is learned according to the LSTM model.
- If the observed next template vector is included in the top k candidates (or similar enough), we regard it as normal.

Evaluation Datasets & Baselines

Datasets:

- BGL:
 - Generated by the Blue Gene/L supercomputer.
- HDFS:
 - Collected from more than 200 Amazon nodes.

Baselines:

- LogCluster (ICSE' 16)
- Invariants Mining (ATC' 10)
- PCA (SOSP' 09)
- Deeplog (CCS' 17)

Datasets	Duration	# of logs	# of anomalies
BGL	7 months	4,747,963	348,460 (logs)
HDFS	38.7 hours	11,175,629	16,838 (blocks)

Evaluation Results

Case Study

Dataset

 Logs form an aggregation switch deployed in a top cloud service provider.

Anomaly description

- The traffic forwarded by this switch dropped from 15:00, Oct 13
- The services provided by this switch were impacted from 22:15, Oct 13
- The switch recovered at 1:16, Oct 14.

Results

- All of LogAnomaly's alarms were during 15:59 ~
 1:16
- LogAnomaly successfully detected it and generated no false alarm.

Conclusion

LogAnomaly

• Unsupervisedly detect quantitative and sequential log anomalies simultaneously

template2Vec

• Represent template without losing semantic information.

Merge templates of new types automatically

Evaluation and case study

Thanks

zhangsl@nankai.edu.cn

Evaluation of Online Detection

# template in training logs	# template in detection logs	# unmatched logs by training templates
251	523	299,174

Table 3: BGL dataset for online detection

Methods	Precision	Recall	F1 score
DeepLog	0.3817	0.9768	0.5489
LogAnomaly	0.8039	0.9319	0.8632

Table 4: Accuracy on online detection

Case in Intro

- L_1 . 1537885119 IFNET/2/linkDown_active(I):CID= $\underline{0x807a0405}$, alarmID= $\underline{0x0852003}$; The interface status changes.
- L_2 . 1537885119 LACP/4/LACP_STATE_DOWN(I): CID=0x804804, PortName=40GE1/0/3; The LACP state is down. Reason = **The interface went down physically**.
- L₃. 1537885130 DEVM/3/LocalFaultAlarm_clear(I): CID=0x852003, clearType= service_resume, The local fault alarm has resumed.
- L_4 . 1537885135 IFNET/2/linkDown_clear(I): CID=0x807a0405, alarmID=0x0852003; The interface status changes. Physical link is up, mainName=Eth-Trunk104.
- L_5 . 1539139152 IFNET/2/linkDown_active(I):CID= $\underline{0x807a0406}$, alarmID= $\underline{0x0852007}$; The interface status changes.
- L₆. 1539138152 LACP/4/LACP_STATE_DOWN(I): CID=0x804807, PortName=40GE1/0/3; The LACP state is down. Reason = **No LCAPDUs were received**.
- L₇. 1539138164 DEVM/3/LocalFaultAlarm_clear(I): CID=<u>0x852004</u>, clearType=<u>service_resume</u>, The local fault alarm has resumed.
- L₈. 1539138164 IFNET/2/linkDown_clear(I): CID=0x807a0406, alarmID=0x0852007; The interface status changes. Physical link is up, mainName=Eth-Trunk104.

Template2Vec

