Home Problem 1

Jesper Olsson 19990907-8991

Stochastic Optimization Algorithms, FFR105 Date: September 20, 2022

Problem 1.1

The goal of the problem is to find the minimum of the function

$$f(x_1, x_2) = (x_1 - 1)^2 + 2(x_2 - 2)^2,$$
(1)

subject to the constraint

$$g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0. (2)$$

1)

We wish to find $f_p(\mathbf{x}, \mu) = f(\mathbf{x}) + p(\mathbf{x}; \mu)$, where $p(\mathbf{x}; \mu) = \mu \left(\sum_{i=1}^m \left(\max\{g_i(\mathbf{x}, 0\})^2 + \sum_{j=1}^k \left(h_i(\mathbf{x})^2 \right) \right) \right)$. In our case, we have no equality constraints h, and only one inequality constraint g, meaning

$$p(\mathbf{x}; \boldsymbol{\mu}) = \boldsymbol{\mu} \left(\max\{g(\mathbf{x}), 0\} \right)^2 \tag{3}$$

Thus, we define f_p as

$$f_p(\mathbf{x}; \boldsymbol{\mu}) = \begin{cases} (x_1 - 1)^2 + 2(x_2 - 2)^2 + \boldsymbol{\mu} \left(x_1^2 + x_2^2 - 1 \right)^2, & if x_1^2 + x_2^2 - 1 \ge 0 \\ (x_1 - 1)^2 + 2(x_2 - 2)^2, & \text{otherwise.} \end{cases}$$
(4)

2)

For the above function $f_p(x_1, x_2; \mu)$, we calculate the gradient as $\nabla f_p(x_1, x_2; \mu) = \left[\frac{\partial f_p}{\partial x_1}, \frac{\partial f_p}{\partial x_2}\right]^T$.

In our case, we divide the gradient into two versions, depending on if the constraint g is fulfilled or not. For the case where g is fulfilled, i.e. in the constrained case where if $x_1^2 + x_2^2 - 1 \le 0$, we obtain

$$\nabla f_p = \begin{bmatrix} 2x_1 - 2 \\ 4x_2 - 8 \end{bmatrix},\tag{5}$$

where in the unconstrained case

$$\nabla f_p = \begin{bmatrix} 2x_1 - 2 + 4\mu x_1 (x_1^2 + x_2^2 - 1) \\ 4x_2 - 8 + 4\mu x_2 (x_1^2 + x_2^2 - 1) \end{bmatrix}.$$
 (6)

We observe that in the unconstrained case, the gradient equals the sum of the gradient in the constrained case and $\nabla \left(\mu(x_1^2+x_2^2-1)^2\right)$.

3)

To find a starting point for the unconstrained minimum, where $\mu = 0$, we set $\nabla f_p(\mathbf{x}; \mu) = 0$, and solve for \mathbf{x} to find

$$\begin{cases} 2(x_1 - 1) = 0 \\ 4(x_1 - 2) = 0 \end{cases} \implies \begin{cases} x_1 = 1 \\ x_2 = 2 \end{cases}$$
 (7)

Table 1: Parameter values for the penalty method runs.

Parameter	Value(s)	
μ	1,10,50,100,1000	
η	0.0001	
T	10^{-5}	

Program Results

When running the program to minimize f, the following parameters were used:

The program gave the following result regarding the estimated values of \mathbf{x}^* for each value of $\boldsymbol{\mu}$:

Table 2: values of x^* for different values of μ .

μ	$\mathbf{x}^* = (x_1^*, x_2^*)$
1	(0.4338, 1.2102)
10	(0.3314, 0.9955)
100	(0.3137, 0.9553)
500	(0.3120, 0.9512)
1000	(0.3118, 0.9507)

We find that the values converge around ca. $(x_1^*, x_2^*) = (0.31, 0.95)$ at around $\mu = 100$. We can also visualize the convergence by plotting the values of x_1^*, x_2^* by observing figure 1.

Figure 1: Shows the obtained values of x_1^* and x_2^* for each value of μ .

Problem 1.2

-

Problem 1.3

a)

Below, in Table 3, the chosen values of the parameters are presented.

Table 3: Parameter values for the single runs of the GA algorithm.

Parameter	Value
Tournament size	3
$p_{ m tour}$	0.8
p_{cross}	0.8
$p_{ m mut}$	0.03
# generations	1500

The program was run 10 times using the above parameter values, yielding the following values for $x_1^*, x_2^*, g(x_1^*, x_2^*)$ presented in Table ?? below.

Table 4: Results from 10 runs of the GA algorithm.

Run	x_1^*	x_2^*	$g(x_1^*, x_2^*)$
1	2.9924755690	0.4980467408	1.000009290398105
2	2.9956054090	0.4988096803	1.000003329231438
3	2.9980444312	0.4994963258	1.000000621200897
4	2.9882788059	0.4970790594	1.000022278883427
5	2.9687499395	0.4921500531	1.000161861260038
6	2.9906343815	0.4971046894	1.000021421032643
7	3.0066015722	0.5017091483	1.000007061393736
8	2.9882805940	0.4968260377	1.000023733542026
9	2.9995339513	0.4998777956	1.000000035792665
10	2.9975866675	0.4993637055	1.000000966651146

b) Below, in Table 5, the results from the batch runs with different values of p_{mut} are presented.

Table 5: Median performance for different values of p_{mut} .

$p_{ m mut}$	Median performance (F)
0.00	0.993782439775741
0.02	0.999857602698811
0.05	0.999824574054263
0.10	0.999763037943086
0.20	0.999366037331218
0.25	0.999136577867517
0.35	0.998947754692627
0.45	0.999009880723805
0.60	0.998476643622652
0.80	0.998760322853456

The results from the above runs are also presented in a plot displayed in figure 2.

Considering the above results, we see that the optimal value of p_{mut} is expected to lie around 0.02.

Figure 2: Caption

c)

To prove that the estimated minimum $\mathbf{x}^* = (0.3, 0.5)$ from task a) is indeed a stationary point, we calculate the gradient $\nabla g(x_1, x_2)$ and insert \mathbf{x}^* , hoping to find that $\nabla g(\mathbf{x}^*) = \mathbf{0}$.

We have that $\nabla g(x_1, x_2) = \left[\frac{\partial g}{\partial x_1}, \frac{\partial g}{\partial x_2}\right]^T$, so we begin by finding the partial derivatives:

$$\begin{split} \frac{\partial g}{\partial x_1} &= 2(1.5 - x_1 + x_1 x_2)(x_2 - 1) + 2(2.25 - x_1 + x_1 x_2^2)(x_2^2 - 1) + 2(2.625 - x_1 + x_1 x_2^3)(x_2^3 - 1) \\ \frac{\partial g}{\partial x_2} &= 2(1.5 - x_1 + x_1 x_2)x_1 + 2(2.25 - x_1 + x_1 x_2^2)2x_1 x_2 + 2(2.625 - x_1 + x_1 x_2^3)3x_2^2 x_1 \end{split}$$

Inserting $\mathbf{x}^* = (0.3, 0.5)$, we find that $\nabla g(0.3, 0.5) = (-8.5, 3.1)^T$. This indicates that the estimate is not close to the true minimum. However, that is if we assume that the above calculations are correct.