K-Means Clustering and Gaussian Mixture Model

Il-Chul Moon

Department of Industrial and Systems Engineering

KAIST

icmoon@kaist.ac.kr

K-MEANS ALGORITHM

Clustering Problem

- How to cluster the unlabeled data points?
 - No concrete knowledge of their classes
 - Latent (hidden) variable of classes
 - Optimal assignment to the latent classes

How to assign data points to classes?

→ Clustering (here classes == clusters)

K-Means Algorithm

- K-Means algorithm
 - Setup K number of centroids (or prototypes) and cluster data points by the distance from the points to the nearest centroid
- Formally,
 - $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n \mu_k||^2$
 - Minimize J by optimizing
 - r_{nk} : the assignment of data points to clusters
 - μ_k : the location of centroids
 - Iterative optimization
 - Why?
 - Two variables are interacting

Expectation and Maximization

- $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n \mu_k||^2$
 - Expectation
 - Expectation of the log-likelihood given the parameters
 - Assign the data points to the nearest centroid
 - Maximization
 - Maximization of the parameters with respect to the log-likelihood
 - Update the centroid positions given the assignments
- *r_{nk}*
 - $r_{nk} = \{0,1\}$
 - Discrete variable
 - Logical choice: the nearest centroid μ_k for a data point of x_n
- μ_k

•
$$\frac{dJ}{d\mu_k} = \frac{d}{d\mu_k} \sum_{n=1}^{N} \sum_{l=1}^{K} r_{nl} \|x_n - \mu_l\|^2 = \frac{d}{d\mu_k} \sum_{n=1}^{N} r_{nk} \|x_n - \mu_k\|^2 = \sum_{n=1}^{N} -2r_{nk}(x_n - \mu_k) = -2(-\sum_{n=1}^{N} r_{nk}\mu_k + \sum_{n=1}^{N} r_{nk}x_n) = 0$$

•
$$\mu_k = \frac{\sum_{n=1}^{N} r_{nk} x_n}{\sum_{n=1}^{N} r_{nk}}$$

Progress of K-Means Algorithm

- EM iterations to
 - Optimize the assignments with respect to the sum of distances
 - Optimize the parameters with respect to the sum of distances

Properties of K-Means Algorithm

- # of clusters is uncertain
- Initial location of centroids
 - Some initial locations might not result in the reasonable results
- Limitation of distance metrics
 - Euclidean distance is very limited knowledge of information
- Hard clustering
 - Hard assignment of data points to clusters
 - $r_{nk} = \{0,1\}$
 - This can be the smoothly distributed probability
 - Any alternatives?
 - Soft clustering

GAUSSIAN MIXTURE MODEL

Multinomial Distribution

- Binary variable
 - Selecting 0 or 1 → binomial distribution
- How about K options?
 - X = (0,0,1,0,0,0) when K = 6 and selecting the third option
 - $\sum_{k} x_{k} = 1$, $P(X|\mu) = \prod_{k=1}^{K} \mu_{k}^{x_{k}}$ such that $\mu_{k} \geq 0$, $\sum_{k} \mu_{k} = 1$
 - A generalization of binomial distribution → Multinomial distribution
- Given a dataset D with N selections, x_1, \dots, x_n
 - $P(X|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{\sum_{n=1}^{N} x_{nk}} = \prod_{k=1}^{K} \mu_k^{m_k}$
 - When $m_k = \sum_{n=1}^N x_{nk}$
 - Number of selecting kth option out of N selections
 - How to determine the maximum likelihood solution of μ ?
 - Maximize $P(X|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{m_k}$
 - Subject to $\mu_k \ge 0$, $\sum_k \mu_k = 1$

Lagrange Method

Maximize
$$P(X|\mu) = \prod_{k=1}^K \mu_k^{m_k}$$

Subject to $\mu_k \geq 0$, $\sum_k \mu_k = 1$
When $m_k = \sum_{n=1}^N x_{nk}$

- Method of finding a local maximum subject to constraints
 - Maximize f(x,y)
 - Subject to g(x,y)=c
 - Assuming that f and g have continuous partial derivatives
 - 1) Lagrange function and multiplier (do you recall this?)

•
$$L(x, y, \lambda) = f(x, y) + \lambda(g(x, y) - c)$$

•
$$L(\mu, m, \lambda) = \sum_{k=1}^{K} m_k \ln \mu_k + \lambda (\sum_{k=1}^{K} \mu_k - 1)$$

- Using the log likelihood
- 2) Take the partial first-order derivative of variables, and set it to be zero

•
$$\frac{d}{d\mu_k}L(\mu, m, \lambda) = \frac{m_k}{\mu_k} + \lambda = 0 \rightarrow \mu_k = -\frac{m_k}{\lambda}$$

3) Utilize the constraint to get the optimized value

•
$$\sum_k \mu_k = 1 \to \sum_k -\frac{m_k}{\lambda} = 1 \to \sum_k m_k = -\lambda \to \sum_k \sum_{n=1}^N x_{nk} = -\lambda \to N = -\lambda$$

• $\mu_k = \frac{m_k}{N}$: MLE parameter of multinomial distribution

Multivariate Gaussian Distribution

- Probability density function of the Gaussian distribution
 - $N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$
 - $N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$
 - $\ln N(x|\mu, \Sigma) = -\frac{1}{2}\ln|\Sigma| \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu) + C$
 - $\ln N(X|\mu, \Sigma) = -\frac{N}{2} \ln |\Sigma| \frac{1}{2} \sum_{n=1}^{N} (x_n \mu)^T \Sigma^{-1} (x_n \mu) + C$ $\propto -\frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} Tr[\Sigma^{-1} (x_n - \mu)(x_n - \mu)^T]$ $= -\frac{N}{2} \ln |\Sigma| - \frac{1}{2} Tr[\Sigma^{-1} \sum_{n=1}^{N} ((x_n - \mu)(x_n - \mu)^T)]$
 - $\frac{d}{d\mu}\ln N(X|\mu,\Sigma) = 0 \rightarrow -\frac{1}{2}\times 2\times -1\times \Sigma^{-1}\sum_{n=1}^{N}(x_n-\widehat{\mu}) = 0 \rightarrow \widehat{\mu} = \frac{\sum_{n=1}^{N}x_n}{N}$
 - $\frac{d}{d\Sigma^{-1}} \ln N(X|\mu, \Sigma) = 0 \rightarrow \widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n \widehat{\boldsymbol{\mu}}) (\mathbf{x}_n \widehat{\boldsymbol{\mu}})^T$
 - Beyond the scope of the course
 - Use "trace trick" and 1) $\frac{d}{dA}\log|A| = A^{-T}$, 2) $\frac{d}{dA}Tr[AB] = \frac{d}{dA}Tr[BA] = B^T$

Samples of Multivariate Gaussian Distribution

- Samples of multivariate Gaussian distributions
 - With various covariance matrixes
 - Covariance matrix should a positive-definite matrix
 - $z^T \Sigma z > 0$ for every non-zero column vector z
 - $\begin{bmatrix} a \ b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^2 + b^2 > 0$ when a, b are non-zero

Mixture Model

- Imagine that the samples are drawn from three different normal distributions
 - Subpopulation
 - The conventional distributions cannot explain the distribution accurately
 - We need to mix the three normal distribution →
 Create a new distribution adapted to the samples
 - Mixture distribution
- $P(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \sigma_k)$
 - Mixing coefficients, π_k : A normal distribution is chosen out of K options with probability
 - Works as weighting
 - $\sum_{k=1}^{K} \pi_k = 1, 0 \le \pi_k \le 1$
 - This is a probability (as well as weighting!)
 - Then, which distribution?
 - New variable? Let's say Z!
 - Mixture component, $N(x|\mu_k, \sigma_k)$: A distribution for the subpopulation
- $P(x) = \sum_{k=1}^{K} P(z_k) P(x|z_k)$
 - Why this ordering of variables?

Gaussian Mixture Model

- Let's assume that the data points are drawn from a mixture distribution of multiple multivariate Gaussian distributions
 - $P(x) = \sum_{k=1}^{K} P(z_k) P(x|z) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$
 - How to model such mixture?
 - Mixing coefficient, or Selection variable: z_k
 - The selection is stochastic which follows the multinomial distribution

•
$$z_k \in \{0,1\}, \sum_k z_k = 1, P(z_k = 1) = \pi_k, \sum_{k=1}^K \pi_k = 1, 0 \le \pi_k \le 1$$

- $P(Z) = \prod_{k=1}^K \pi_k^{z_k}$
- Mixture component

•
$$P(X|z_k = 1) = N(x|\mu_k, \Sigma_k) \to P(X|Z) = \prod_{k=1}^K N(x|\mu_k, \Sigma_k)^{z_k}$$

 This is the marginalized probability. How about conditional?

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^{K} P(z_j = 1)P(x | z_j = 1)}$$

$$= \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x | \mu_j, \Sigma_j)}$$

- Log likelihood of the entire dataset is
 - $\ln P(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)\}$

Expectation of GMM

- Similar problem of K-means algorithm
 - Two interacting parameters
 - As before, we apply the expectation and the maximization algorithm
 - Expectation: the assignment between the clusters and the data points
 - Maximization: the update of the parameters
- Expectation step
 - Assign a data point to a nearest cluster → the assignment probability
 - Given the parameters and the data point, calculate the likelihood

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^K P(z_j = 1)P(x | z_j = 1)} = \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x | \mu_j, \Sigma_j)}$$

- Here, x, π, μ, Σ are given, calculate $\gamma(z_{nk})$
- $\gamma(z_{nk})$ are used to calculate π, μ, Σ
- The new $\gamma(z_{nk})$ motivates the update of the old parameters

Maximization of GMM

Maximization step

- Update the parameters given $\gamma(z_{nk})$ $\frac{d}{d\mu}\ln N(X|\mu,\Sigma) = 0 \rightarrow -\frac{1}{2} \times 2 \times -1 \times \Sigma^{-1} \sum_{n=1}^{N} (x_n \hat{\mu}) = 0 \rightarrow \hat{\mu} = \frac{\sum_{n=1}^{N} x_n}{N}$
- Parameters to update: π, μ, Σ

•
$$\ln P(X|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x|\mu_k,\Sigma_k)\}$$

- Typical methods
 - Derivative \rightarrow set the equation to zero when the function is smooth z_{nk} = $\frac{\pi_k N(x|\mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i N(x|\mu_i, \Sigma_i)}$

 $N(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}))$

 $\ln N(x|\mu,\Sigma) = -\frac{1}{2}\ln|\Sigma| - \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu) + C$

 $\ln N(X|\mu,\Sigma) = -\frac{N}{2}\ln|\Sigma| - \frac{1}{2}\sum_{n=1}^{N}(x_n - \mu)^T \Sigma^{-1}(x_n - \mu) + C$

 $\frac{d}{d\Sigma^{-1}}\ln N(X|\mu,\Sigma) = 0 \to \widehat{\Sigma} = \frac{1}{N}\sum_{n} (x_n - \widehat{\mu})(x_n - \widehat{\mu})^T$

Lagrange method when there is a constraint.
 Which parameter has the constraint?

•
$$\frac{d}{d\mu_k} \ln P(X|\pi, \mu, \Sigma) = \sum_{n=1}^N \frac{\pi_k N(x|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x|\mu_j, \Sigma_j)} \Sigma^{-1}(x_n - \widehat{\mu_k}) = 0$$

 $\to \sum_{n=1}^N \gamma(z_{nk}) (x_n - \widehat{\mu_k}) = 0 \to \widehat{\mu_k} = \frac{\sum_{n=1}^N \gamma(z_{nk}) x_n}{\sum_{n=1}^N \gamma(z_{nk})}$

•
$$\frac{d}{d\Sigma_k} \ln P(X|\pi, \mu, \Sigma) = 0$$

$$\to \Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (x_n - \widehat{\mu_k}) (x_n - \widehat{\mu_k})^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

Progress of GMM Log Likelihood Soft clustering Estimated parameters Soft assignment of data points to clusters itr =8 EM Iteration itr =2 itr = 4itr =16 itr =32 1 itr =99¹

KAIST

Properties of GMM

- Pros and cons of Gaussian mixture model
 - Pros
 - More information
 - Soft clustering
 - Not a simple and discrete assignment
 - Information loss
 - More and more information
 - Learn the latent distribution
 - Distance is not always the answer of the distribution
 - Cons
 - Long computation time
 - Why?
 - Falling into local maximum
 - Deciding K
- Anyways to mitigate the disadvantage?
 - Fast K-means and slow GMM

Relation between K-Means and GMM

•
$$N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

•
$$P(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma_k|^{1/2}} \exp(-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k))$$

- Let's say $\Sigma_k = \epsilon I$
 - Here, I is the identity matrix and ϵ is not updated by the EM process
 - $I = I^{-1}$

• =
$$\frac{1}{(2\pi)^{D/2}\epsilon^{1/2}} \exp\left(-\frac{1}{2\epsilon}(\mathbf{x} - \boldsymbol{\mu}_k)^T(\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

• =
$$\frac{1}{(2\pi)^{D/2} \epsilon^{1/2}} \exp(-\frac{1}{2\epsilon} ||x - \mu_k||^2)$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

K-Means Algorithm

•
$$\gamma(z_{nk}) = \frac{\pi_k N(x|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x|\mu_j, \Sigma_j)} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}||x - \mu_k||^2)}{\sum_{j=1}^K \pi_j \exp(-\frac{1}{2\epsilon}||x - \mu_k||^2)}$$

- When $\epsilon \to 0$, the term of smallest $||x \mu_k||^2$ approaches zero most slowly
- When all other terms are zero, the term of the smallest $||x \mu_k||^2$ has a value
- Now, it becomes the hard assignment
- Still, GMM with ϵI is not K-Means. Why?
 - Soft assignment + Covariance matrix learning

EM ALGORITHM

Inference with Latent Variables

- Difference between classification and clustering
- Let's say
 - {*X*, *Z*}: complete set of variables
 - X: observed variables
 - Z: hidden (latent) variables
 - θ : parameters for distributions
 - $P(X|\theta) = \sum_{Z} P(X, Z|\theta) \rightarrow \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\}$
 - Any problem here?
 - The locations of summation and log make this complicated
 - Eventually, we want to exchange the locations of the two operators
- What we want to know is
 - The values of Z and θ
 - Optimizing $P(X|\theta) = \sum_{Z} P(X, Z|\theta)$
 - The interacting terms for the optimization

Probability Decomposition

•
$$l(\theta) = \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\} = \ln \{\sum_{Z} q(Z) \frac{P(X, Z|\theta)}{q(Z)}\}$$

- Use the Jensen's inequality
- $\ln \left\{ \sum_{Z} q(Z) \frac{P(X, Z|\theta)}{q(Z)} \right\} \ge \sum_{Z} q(Z) \ln \frac{P(X, Z|\theta)}{q(Z)}$
- = $\sum_{Z} q(Z) \ln P(X, Z|\theta) q(Z) \ln q(Z)$
 - Recall the second term?
 - $H(X) = -\sum_{X} P(X = x) \log_b P(X = x)$
- = $E_{q(Z)} \ln P(X, Z|\theta) + H(q)$
 - $Q(\theta, q) = E_{q(Z)} \ln P(X, Z|\theta) + H(q)$
 - This hold for any distribution of q
 - This is only the lower bound of $l(\theta)$
 - Need to make it tight!
 - How to?

Jensen's Inequality

When $\varphi(x)$ is concave

$$\varphi\left(\frac{\sum a_i x_i}{\sum a_j}\right) \ge \frac{\sum a_i \varphi(x_i)}{\sum a_j}$$

When $\varphi(x)$ is convex

$$\varphi\left(\frac{\sum a_i x_i}{\sum a_j}\right) \le \frac{\sum a_i \varphi(x_i)}{\sum a_j}$$

Maximizing the Lower Bound (1)

•
$$l(\theta) = \ln P(X|\theta) = \ln \left\{ \sum_{Z} q(Z) \frac{P(X,Z|\theta)}{q(Z)} \right\} \ge \sum_{Z} q(Z) \ln \frac{P(X,Z|\theta)}{q(Z)} = Q(\theta,q)$$

- $Q(\theta, q) = E_{q(Z)} \ln P(X, Z|\theta) + H(q)$
- The other storyline is

•
$$l(\theta) \ge \sum_{Z} q(Z) \ln \frac{P(X, Z|\theta)}{q(Z)} = \sum_{Z} q(Z) \ln \frac{P(Z|X, \theta)P(X|\theta)}{q(Z)}$$
$$= \sum_{Z} \left\{ q(Z) \ln \frac{P(Z|X, \theta)}{q(Z)} + q(Z) \ln P(X|\theta) \right\} = \ln P(X|\theta) + \sum_{Z} \left\{ q(Z) \ln \frac{P(Z|X, \theta)}{q(Z)} \right\}$$

•
$$L(\theta, q) = \ln P(X|\theta) - \sum_{Z} \left\{ q(Z) \ln \frac{q(Z)}{P(Z|X, \theta)} \right\}$$

- Here, the second term is a very special term
 - $KL(q(Z)||P(Z|X,\theta)) = \sum_{Z} \left\{ q(Z) \ln \frac{q(Z)}{P(Z|X,\theta)} \right\}$
 - Kullback-Leiber divergence, or KL divergence: $KL(P||Q) = \sum_i P(i) \ln \left(\frac{P(i)}{Q(i)}\right)$
 - Non-symmetric measure of the difference between two probability distributions, or KL(P||Q)
 - Measures the difference
 - $KL(P||Q) \ge 0$
 - When there is no difference between P and Q, KL(P||Q) = 0

KL Divergence

- Kullback-Leiber divergence, or KL divergence: $KL(P||Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)}\right)$
 - Measures the matching performance of P and Q
 - Consider Gaussian distribution and Gaussian mixture distribution

Maximizing the Lower Bound (2)

•
$$l(\theta) = \ln P(X|\theta) = \ln \left\{ \sum_{Z} q(Z) \frac{P(X,Z|\theta)}{q(Z)} \right\} \ge \sum_{Z} q(Z) \ln \frac{P(X,Z|\theta)}{q(Z)} = Q(\theta,q)$$

•
$$Q(\theta, q) = E_{q(Z)} \ln P(X, Z|\theta) + H(q)$$

•
$$L(\theta, q) = \ln P(X|\theta) - \sum_{Z} \left\{ q(Z) \ln \frac{q(Z)}{P(Z|X, \theta)} \right\}$$

- Why do we compute $L(\theta, q)$?
 - We do not know how to optimize $Q(\theta, q)$ without further knowledge of q(Z)
 - The second term of $L(\theta, q)$ tells how to set q(Z)
 - The first term is fixed when θ is fixed at time t
 - The second term can be minimized to maximize $L(\theta, q)$
 - $KL(q(Z)||P(Z|X,\theta)) = 0 \rightarrow q^t(Z) = P(Z|X,\theta^t)$
 - Now, the lower bound with optimized q is
 - $Q(\theta, q^t) = E_{q^t(Z)} \ln P(X, Z | \theta^t) + H(q^t)$
- Then, optimizing θ to retrieve the tight lower bound is
 - $\theta^{t+1} = argmax_{\theta}Q(\theta, q^t) = argmax_{\theta}E_{q^t(Z)}\ln P(X, Z|\theta)$
 - $q^t(Z) \rightarrow$ Distribution parameters for latent variable is at time t
 - $\ln P(X, Z | \theta) \rightarrow$ optimized log likelihood parameters is at time t + 1

Tells how to setup Z by setting $q^t(Z) = P(Z|X, \theta^t)$

Relax the KL divergence by updating θ^t to θ^{t+1}

EM Algorithm

$$\begin{split} l(\theta) &= \ln P(X|\theta) = \ln \left\{ \sum_{Z} q(Z) \frac{P(X,Z|\theta)}{q(Z)} \right\} \geq \sum_{Z} q(Z) \ln \frac{P(X,Z|\theta)}{q(Z)} = Q(\theta,q) \\ Q(\theta,q) &= E_{q(Z)} \ln P(X,Z|\theta) + H(q) \\ L(\theta,q) &= \ln P(X|\theta) - \sum_{Z} \{q(Z) \ln \frac{q(Z)}{P(Z|X,\theta)} \} \end{split}$$

- EM algorithm
 - Finds the maximum likelihood solutions for models with latent variables
 - $P(X|\theta) = \sum_{Z} P(X, Z|\theta) \rightarrow \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\}$
- EM algorithm
 - Initialize θ^0 to an arbitrary point
 - Loop until the likelihood converges
 - Expectation step
 - $q^{t+1}(z) = argmax_q Q(\theta^t, q) = argmax_q L(\theta^t, q) = argmin_q KL(q||P(Z|X, \theta^t))$
 - $\rightarrow q^t(z) = P(Z|X,\theta) \rightarrow \text{Assign Z by } P(Z|X,\theta)$
 - Maximization step
 - $\theta^{t+1} = argmax_{\theta}Q(\theta, q^{t+1}) = argmax_{\theta}L(\theta, q^{t+1})$
 - fixed Z means that there is no unobserved variables
 - → Same optimization of ordinary MLE

Rethinking GMM Learning Process

- GMM, K-Means
 - We used EM algorithm to find the assignment of latent variables and the related distribution parameters
- EM algorithm
 - Initialize θ^0 to an arbitrary point
 - Loop until the likelihood converges
 - Expectation step
 - Assign Z by $P(Z|X,\theta)$

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^K P(z_j = 1)P(x | z_j = 1)} = \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x | \mu_j, \Sigma_j)}$$

- Maximization step
 - Same optimization of ordinary MLE

•
$$\frac{d}{d\mu_k}\ln P(X|\pi,\mu,\Sigma) = 0, \frac{d}{d\Sigma_k}\ln P(X|\pi,\mu,\Sigma) = 0, \frac{d}{d\pi_k}\ln P(X|\pi,\mu,\Sigma) + \lambda\left(\sum_{k=1}^K \pi_k - 1\right) = 0$$

•
$$\widehat{\mu_k} = \frac{\sum_{n=1}^N \gamma(z_{nk}) x_n}{\sum_{n=1}^N \gamma(z_{nk})}$$
, $\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (x_n - \widehat{\mu_k}) (x_n - \widehat{\mu_k})^T}{\sum_{n=1}^N \gamma(z_{nk})}$, $\pi_k = \frac{\sum_{n=1}^N \gamma(z_{nk})}{N}$

Further Readings

- Bishop Chapter 2 and 9
- Murphy Chapter 11