Trabajo final de la Maestría en Sistema Embebidos

Sistema de enclavamiento en FPGA con altos niveles de desempeño RAMS

Esp. Ing. Martín Nicolás Menéndez

Directores: Dr. Ing. Ariel Lutenberg
Mg. Ing. Facundo Larosa

Grupo de Investigación en Calidad y Seguridad de las Aplicaciones Ferroviarias

Red ferroviaria argentina

La red ferroviaria requiere diversas mejoras. En particular, en los sistemas para evitar colisiones de trenes.

Red ferroviaria - Bypass

Circulación en ambas direcciones utilizando solo un vía.

Sirve para cubrir largas distancias con vías simples.

Estación ferroviaria típica

6

Terminal ferroviaria típica

¡Necesitamos coordinar trenes en simultáneo!

Necesitamos generar automáticamente la solución

1

Sistema ferroviario

Componentes principales

Cambios de vías

Permite acceder a diferentes vías.

Posición reversa: circulación ramificada

Tecnologías de enclavamientos

Mecánico

Electromecánico

Eléctronico

Sistema de enclavamiento ferroviario

El sistema de enclavamiento tiene que proteger al tren de colisiones desde atrás, coordinar todo el señalamiento (señales ferroviarias, barreras, cambios de vías) y evitar descarrilamientos.

¿Qué es una tabla de enclavamientos?

Ruta: camino entre dos semáforos consecutivos.

	Señal inicial	Señal final	Cambio	Ruta bloqueante
R1	A	С	N	R2 R3 R4
R2	В	D	R	R1 R3 R4
R3	С	A	N	R1 R2 R4
R4	D	В	R	R1 R2 R3

2

Funcional vs Geográfico

CISC vs RISC: enfoques en enclavamientos

Modelado del sistema

Los circuitos de vías son de solo lectura.

CISC: el enfoque funcional

"¡Una ruta para dominarlas a todas!" J.R.R Tolkien

Enfoque funcional

RISC: el enfoque geográfico

"¿Rutas? A donde vamos no necesitamos rutas."

Dr. Fmmett Brown

¿Puede un auto moverse sin un camino? SI ¿Puede un tren moverse sin una vía? NO

Topologías ferroviarias y redes de grafos

Analizador de redes ferroviarias

Podemos modelar cada bloque y sabemos cómo conectarlos ...

Es como jugar Lego!!

Analizador de redes ferroviarias

https://www.youtube.com/watch?v=MFB-p1lhvYs

RISC: el enfoque geográfico

Necesitamos MÁS bloques!

Enfoque geográfico

Cada uno de los nodos se procesa de forma concurrente.

Tal como ocurre en la realidad.

Enfoque geográfico

Microprocesador vs FPGA

Es esencial utilizar redundancias 2003

- Necesitamos más de 1 uC.
- No es completamente determinístico.
- Un uC puede quedar obsoleto.
- ¿Cuantos ciclos por proceso?

¡La cantidad de componentes crece enormemente!

- Fácilmente redundable.
- Determinístico, es HW puro.
- Latencia conocida.
- Concurrencia de procesos.
- Mantenible por décadas

Enfoque geográfico

Difícil de implementar

- Modular
- Completo
- Testing a priori
- Depende de la topología
- Minimo uso de memoria
- Mayores chances de <u>ser sintetizable</u>

Procesar el grafo puede ser complejo.

Define TODAS las posibles circulaciones.

Escalable.

Redundable.

3

Implementación

Ejemplo de topología Bypass

Análisis general

Diferentes topologías analizadas automáticamente

Bypass

La tabla es generada automáticamente contemplando TODAS las rutas soportadas por la red.

	Señal inicial	Señal final	Secuencia	Cambio	Sentido
R1	3	1	3-2-1	1-N	<
R2	3	5	3-4-5	1-N 2-N	>
R3	3	10	3-8-9-10	1-R	>
R4	5	3	5-4-3	1-N 2-N	<
R5	5	8	5-10-9-8	2-R	<
R6	5	7	5-6-7	2-N	>
R7	8	1	8-3-2-1	1-R	<
R8	10	7	10-5-6-7	2-R	>

Todos los archivos VHDL necesarios son creados automáticamente.

Red generada automáticamente en base al grafo.

La FPGA devuelve el estado del señalamiento y se muestran en la interfaz diseñada.

Ejemplo de dos formaciones en sentido opuesto.

La FPGA devuelve el estado del señalamiento y se muestran en la interfaz diseñada.

Ejemplo de dos formaciones en el mismo sentido.

5

Conclusiones

Trabajo realizado y próximos pasos.

Conclusiones

- Analizador de redes ferroviarias analiza correctamente las topologías.
- Generador de código en VHDL implementa el sistema para casi cualquier topología.
- El generador de tramas facilita la verificación de los sistemas generados.
- Publicación de artículos en IEEE Latin America y el CASE 2019.
- Se completó con éxito una beca de Maestría UBACyT.
- Se obtuvo una beca de doctorado en desarrollo estratégico de CONICET 2020-2025.

£55

Próximos pasos

- Optimización del analizador de grafos ferroviarios para topologías más complejas.
- Integración con la interfaz gráfica desarrollada en UTN Facultad Regional Haedo.
- Realización de pruebas en paralelo con la estación Olivos.
- Migración al hardware de CNEA.
- Ampliación de la batería de ensayos.
- Automatización de los ensayos con COCOTB.
- Ampliación del generador de tablas de enclavamiento.
- Aplicación de técnicas de redundancia y diversidad por votación.
- Realización de pruebas en una locación real.
- Determinación de los niveles RAMS alcanzados.

¡Muchas gracias!

¿Alguna pregunta?

SlidesCarnival icons are editable shapes.

This means that you can:

- Resize them without losing quality.
- Change line color, width and style.

Isn't that nice?:)

Examples:

