Festkörperphysik, SoSe 2023 Übungsblatt 5

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de) II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 10.05.2023

Abgabe: Mittwoch, 17.05.2023, bis 8 Uhr über ILIAS

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	5	5	5	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).

•	Die van der Waals Wechselwirkung
	$-$ wirkt auf Atome in Festkörpern und Flüssigkeiten, aber nicht auf Atome in Gasen. \Box
	$-$ ist eine fluktuierende Quadrupol-Quadrupol Wechselwirkung. \square
	$-$ zeigt $-\frac{1}{r^{-12}}$ Abstandsabhängigkeit. \square
	– zeigt Interferenzeffekte, d.h. wenn ein Atom mit vielen anderen Atomen wechselwirkt,
	dann ist die Wirkung auf dieses Atom nicht rein additiv, sondern die Wechselwirkungsbeiträge unterschiedlicher Atome können sich gegenseitig auslöschen.
	- führt dazu, dass alle Edelgase Kristalle bilden. □
•	Die Pauli Repulsion
	 − tritt auf, wenn die Wahrscheinlichkeitsdichte zweier Elektronen mit gleichen Quanten- zahlen sich überlappt.
	$-$ zeigt eine r^{-6} Abstandsabhängigkeit. \square
	$-$ wird durch das Born-Mayer Potential parametrisiert. \square
	– tritt nicht zwischen Atomen verschiedener chemischer Elemente auf, da für die Elek-
	tronen dieser Elemente die Quantenzahlen nicht übereinstimmen. \Box
	 vermindert bei Ionenkristallen die Bindungsenergie im Gleichgewichtsabstand um ca. 10 − 15%

• Ionenkristalle
$-$ bestehen typischerweise aus zwei Sorten von Ionen in der Edelgaskonfiguration. \square
$-$ werden durch die Coulombwechselwirkung zwischen Ionen mit unterschiedlichem Vorzeichen der Ladung gebunden. \Box
$-$ zeigen in drei Dimensionen eine schlechte Konvergenz ihrer Madelung-Konstanten. \Box
 gewinnen ihre Bindungsenergie im Wesentlichen aus der Differenz von Ionisations- energie und Elektronenaffinität beim Transfer des Elektrons von einem Atom der einen Sorte auf ein Atom der anderen Sorte. □
$-$ besitzen eine Kristallstruktur, bei der sich die gleichnamigen Ionen mit Ionenradius r gegenseitig nicht berühren. \Box
• Der Gleichgewichtsabstand in einem Kristall
 wird notwendig bestimmt durch die Forderung, dass die Ableitung der Gesamtenergie nach dem nächsten Nachbarabstand identisch zu Null sein muss.
$-$ kann bei Ionenkristallen typischerweise als Summe der Ionenradien der beiden beteiligten Ionensorten verstanden werden. \Box
$-$ kann nicht ohne Berücksichtigung der Pauli Repulsion ermittelt werden. \Box
 kann nicht ohne Berücksichtigung des Born-Haber Kreisprozesses bestimmt werden.
$-$ wird in einem Edelgaskristall auch durch die quantenmechanischen Nullpunktsfluktuationen mitbestimmt. \Box
• Die Bindungsenergie eines Kristalls
$-$ wird bei 1-elementigen Kristallen durch die Kohäsivenergie beschrieben. \Box
$-$ wird bei Ionenkristallen pro Ionenpaar angegeben. \square
$-$ kann bei Ionenkristallen durch den Born-Haberkreisprozess bestimmt werden. \Box
$-$ hängt bei Ionenkristallen auch von der Van der Waals Wechselwirkung ab. \square
$-$ ist im Gleichgewichtsabstand der Atome maximal. \Box
Punkte Gittersummen
hätzen Sie die Gittersummen A_6 und A_{12} für das bcc-Gitter ab, indem Sie nur die Beiträge

2. **[5**

bis inklusive eines Abstands von 2R berücksichtigen (R = Abstand nächster Nachbarn). Wie groß ist die Änderung der Abschätzung von A_k , wenn Sie den nächstgrößeren Abstand mitberücksichtigen?

3. [5 Punkte] Madelung-Konstante

- (a) Erklären Sie in eigenen Worten die physikalische Bedeutung der Madelung-Konstante.
- (b) Der anziehenden Wechselwirkung der Ionen steht ein repulsives Potential entgegen, dass wir als von der Form A/\mathbb{R}^n annehmen. Sei R_0 der Gleichgewichtsabstand, der sich in Folge einstellt. Zeigen Sie, dass für die potentielle Energie des Kristalls dann gilt:

$$U = -2\ln 2 \frac{Nq^2}{4\pi\epsilon_0 R_0} (1 - \frac{1}{n})$$

mit $N \to \infty$ der Anzahl der Ionenpaare.

4. [5 Punkte] NaCl

Approximieren Sie die Madelung-Konstante α für ein zweidimensionales Gitter einfach geladener Ionen (siehe Abbildung). Berechnen Sie dazu Näherungswerte α_n analog zum in der Vorlesung behandelten dreidimensionalen Fall.

Vergleichen Sie das Ergebnis mit der 1- und 3-dimensionalen NaCl-Struktur (siehe Vorlesung)! Wie groß ist jeweils die Coulombenergie für ein einzelnes Ionenpaar, wenn man annimmt, dass es möglich wäre, die entsprechenden 1- und 2-dim. NaCl-Strukturen mit der realen Gitterkonstanten von a=0.562 nm zu erzeugen.

Erreichbare Gesamtpunktzahl: 20