This is the transition rate A_{nm} for a spontaneous emission process $\psi_n \to \psi_m$.

$$A_{nm} = \frac{e^2}{3\pi\varepsilon_0 \hbar c^3} \,\omega_{nm}^3 \,|\langle r_{nm}\rangle|^2$$

The angular frequency ω_{nm} is

$$\omega_{nm} = \frac{1}{\hbar} (E_n - E_m)$$

For a hydrogen atom we have

$$E_n = -\frac{\mu}{2n^2} \left(\frac{e^2}{4\pi\varepsilon_0 \hbar} \right)^2$$

where μ is reduced electron mass.

The radial density is

$$|\langle r_{nm}\rangle|^2 = |\langle x_{nm}\rangle|^2 + |\langle y_{nm}\rangle|^2 + |\langle z_{nm}\rangle|^2$$

where

$$\langle x_{nm} \rangle = \int \psi_m^* (r \sin \theta \cos \phi) \, \psi_n \, dV$$
$$\langle y_{nm} \rangle = \int \psi_m^* (r \sin \theta \sin \phi) \, \psi_n \, dV$$
$$\langle z_{nm} \rangle = \int \psi_m^* (r \cos \theta) \, \psi_n \, dV$$

Let us compute A_{21} for a hydrogen atom. For n=2 there are four possible states.

The following table shows the radial density for every possible transition.

$$\psi_{2,1,1} \to \psi_{1,0,0} \quad \psi_{2,1,-1} \to \psi_{1,0,0} \quad \psi_{2,1,0} \to \psi_{1,0,0} \quad \psi_{2,0,0} \to \psi_{1,0,0}$$

$$\langle x_{21} \rangle = \quad -\frac{128}{243} a_0 \qquad \frac{128}{243} a_0 \qquad 0 \qquad 0$$

$$\langle y_{21} \rangle = \quad -\frac{128}{243} i a_0 \qquad -\frac{128}{243} i a_0 \qquad 0 \qquad 0$$

$$\langle z_{21} \rangle = \qquad 0 \qquad \qquad 0 \qquad \frac{128}{243} \sqrt{2} a_0 \qquad 0$$

$$|\langle r_{21} \rangle|^2 = \quad \frac{32768}{59049} a_0^2 \qquad \frac{32768}{59049} a_0^2 \qquad \frac{32768}{59049} a_0^2 \qquad 0$$

Note that the transition rate of $\psi_{2,0,0} \to \psi_{1,0,0}$ is zero. For the allowed transitions, the radial density $|\langle r_{21} \rangle|^2$ is independent of ℓ and m.

Symbol a_0 is the Bohr radius

$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{e^2\mu}$$

We have

$$\omega_{21} = \frac{1}{\hbar} (E_2 - E_1) = \frac{3e^4 \mu}{128\pi^2 \varepsilon_0^2 \hbar^3}$$

Hence

$$A_{21} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \left(\frac{3e^4\mu}{128\pi^2\varepsilon_0^2\hbar^3}\right)^3 \frac{32768}{59049} \left(\frac{4\pi\varepsilon_0\hbar^2}{e^2\mu}\right)^2 = \frac{e^{10}\mu}{26244\pi^5\varepsilon_0^5\hbar^6c^3} = 6.27 \times 10^8 \operatorname{second}^{-1}$$

$$\omega_{21} \qquad |\langle r_{21}\rangle|^2$$