Review material for Midterm 1

Math 51 Spring 2022

exam date 2022-02-14

The midterm will cover course material from the following sections of (Nitecki and Guterman 1992):

- Introduction to differential equations §1.1
- Separation of variables §1.2
- First-order linear ODEs §1.3
- Existence & Uniqueness Theorem §1.6
- Linear differential equations §2.2
- Homogeneous linear ODEs & the Wronskian §2.3
- Linear independence of functions §2.4
- const coeff linear ODES (Real Roots) §2.5

This is the material covered in the lectures; you can find the corresponding lecture notes on Canvas You should review the problem sets PS1, PS2, PS3, PS4.

Here are some further review problems:

- 1. (multiple-choice) Which of the following represents a linear ODE?
 - a. $x \cdot x'' + x + 1 = \sin(t)$
 - b. $t \cdot x'' + x^2 + 1 = \sin(t)$
 - c. $t^2 \cdot x'' + (t+1) \cdot x + 1 = \sin(t)$
 - d. $(D^2 + D + t)x^2 = \sin(t)$
- 2. (multiple-choice) Consider the Wronskian $W(t) = W(f_1, f_2, f_3)(t)$ of the functions

$$f_1(t) = 1,$$
 $f_2(t) = 1 + t$ and $f_3(t) = \ln(1 + t).$

Which of the following statements is most correct?

- a. The Wronskian is given by $W(t) = -1/(1+t)^2$; since W(1) = -1/4 is non-zero, the functions are linearly independent on the interval $(-1, \infty)$.
- b. Since W(1) = 0, the functions are linearly dependent on $(-1, \infty)$.
- c. Since W(t) is not defined on $(-\infty, \infty)$, the Wronskian test doesn't apply.
- d. None of the above.
- 3. (multiple-choice) Let P(D) be a differential operator of order 4, and suppose that $h_1(t), h_2(t), h_3(t), h_4(t)$ are solutions to the homogeneous equation

$$(\heartsuit) \quad P(D)x = 0.$$

Suppose that

$$h_1(t) + h_2(t) + h_3(t) + h_4(t) = 0$$

for every $t, -\infty < t < \infty$.

Which of the following statements is most correct?

a. The general solution to (\heartsuit) is given by

$$x(t) = c_1 h_1(t) + c_2 h_2(t) + c_3 h_3(t) + c_4 h_4(t).$$

- b. The functions $h_1(t), h_2(t), h_3(t), h_4(t)$ are linearly dependent.
- c. A particular solution to (\heartsuit) has the form

$$q(t)=\int h_1(t)dt.$$

d. For some values of k_1, k_2 and k_3 , the expression $q(t) = k_1 h_1(t) + k_2 h_2(t) + k_3 h_3(t)$ provides a particular solution to the ODE

$$P(D)x = e^t$$
.

- 4. Consider the ODE $\frac{dx}{dt} = x^2 \cos(t)$.
 - a. Find the general solution to this ODE.
 - b. Find a solution x satisfying x(0) = 1.
 - c. What is the largest interval containing $t_0 = 0$ on which this solution is defined?
- 5. Consider the differential equation

$$(\clubsuit) \quad (t+2)\frac{dx}{dt} + 2x = t+1.$$

- a. Find the largest interval containing $t_0 = 0$ on which this equation is normal.
- b. Find the general solution to (\clubsuit) .
- 6. Consider the ODE $\frac{dx}{dt} = \frac{x}{t} + 1$ for t > 0.
 - a. Find the general solution x(t) to this ODE.
 - b. find the particular solution of the ODE for which x(1) = 0.
- 7. For what value(s) of α is the determinant

$$\det \begin{bmatrix} 1 & \alpha & 1 \\ 1 & 1 & 0 \\ 0 & 1 & \alpha \end{bmatrix}$$

equal to 0?

8. Consider the system of linear equations

$$\begin{split} u_1 + 2u_2 + 3u_3 &= -1, \\ 3u_1 + 2u_2 + 1u_3 &= -1, \\ 5u_1 - 2u_2 + 2u_3 &= -1. \end{split}$$

The coefficient matrix has

$$\det \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 5 & -2 & 2 \end{bmatrix} = -48$$

Use Cramer's Rule to give a formula for u_3 in terms of determinants. Do not evaluate the determinants.

2

- 9. Consider a 3rd order linear ODE which is normal on $(-\infty, \infty)$ and suppose that x_1 and x_2 are solutions. Which of the following statements is most correct?
 - a. If $x_1(0) = x_2(0)$ and $x_1(1) = x_2(1)$, then $x_1 = x_2$.
 - b. If $x_1(0) = x_2(0)$, $x_1'(0) = x_2'(0)$ and $x_1''(0) = x_2''(0)$, then $x_1 = x_2$.
 - c. If $x_1(0) > 0$ then it is also true that $x_2(0) > 0$.
- 10. Indicate which of the following ODEs is normal on the interval $(0, 2\pi)$.
 - a. $\frac{1}{t}\frac{d^3x}{dt^3} + \sin(t)\frac{dx}{dt} = \cos(t).$
 - b. $D^2x + \cos(t)Dx = \ln(t-1)$
 - c. $(t+1)D^5x + x = \frac{1}{\cos(t/8)}$
- 11. Consider the functions

$$h_1(t) = -1 + 7t + 8t^2, \qquad h_2(t) = 1 + 2t + t^2, \qquad h_3(t) = -1 + t + 2t^2.$$

- a. Find constants a,b so that $h_1(t)=a\cdot h_2(t)+b\cdot h_3(t).$
 - Hint: Equate coefficients of powers of t.
- b. Are the functions $h_1(t), h_2(t), h_3(t)$ linearly dependent? (What does your answer to (a) tell you about linear dependence?)
- 12. A particular solution to the equation

$$(\clubsuit)$$
 $(D^2 - 16)x = e^{4t}$

- is $p(t) = \frac{1}{8} \cdot t \cdot e^{4t} + e^{-4t}$. Find the general solution.
- 13. Use the exponential shift formula

$$P(D)[e^{\lambda t}y] = e^{\lambda t}P(D+\lambda)[y]$$

- to compute the function P(D)[f] in each of the following cases:
 - a. $P(D) = D^2 + D 6$ and $f = t^2 e^{2t}$.
 - b. $P(D) = D^2 + 3$ and $f = e^t \cos(3t)$.
 - c. $P(D) = (D+3)(D-1)^2$ and ft^2e^t .
- 14. Find the general solution to the differential equation

$$(t+1)x'=\frac{x}{t-1},\quad t>1.$$

15. Solve the initial value problem

$$(\clubsuit) \quad 2\frac{dx}{dt} - x = t \cdot e^t; \quad x(0) = 1$$

16. Solve the initial value problem

$$4x'' + 4x' - 3x = 0;$$
 $x(0) = 0,$ $x'(0) = 1.$

Bibliography

Nitecki, Zbigniew, and Martin Guterman. 1992. Differential Equations: A First Course. Saunders.