

Elektronika

Auditorne vježbe 8

ELEKTRONIČKI SKLOPOVI

- Sklopovi POJAČALA.
- Pojačalo linearni elektronički sklop za pojačavanje električnih signala (strujnih i/ili naponskih).
- Ulazni signal: strujni ili naponski
- Izlazni signal: strujni ili naponski

Izmjenični signali!!!

- Vrste pojačala:
 - Strujno (ulaz i izlaz: strujni signal)
 - Naponsko (ulaz i izlaz: naponski signal)
 - Otporno (ulaz: strujni, izlaz: naponski signal)
 - Strminsko (ulaz: naponski, izlaz: strujni signal)

Pojačanje

- Strujno pojačanje: $A_l = I_{iz}/I_{ul}$ $A_l [dB] = 20 log (A_l)$
- Naponsko pojačanje: $A_V = U_{iz}/U_{ul}$ $A_V [dB] = 20 log (A_V)$
- Pojačanje snage: $G=P_{iz}/P_{ul}$ G[dB] = 10 log (G)
- Pojačanje: relativno ili u decibelima [dB]

Zadatak 31.

 Na ulaz pojačala priključen je napon od 10 mV. Koliki je izlazni napon ako je pojačanje snage 10 puta, a otpor opterećenja 10 puta veći od ulaznog otpora pojačala?

☑ Rješenje: U_{izl}= 100 mV

Zadatak 32.

• Pojačalo ima pojačanje snage 50 dB, pojačanje napona 100 puta te izlazni otpor 100 Ω . Koliki je ulazni otpor pojačala?

 \square Rješenje: R_{III} = 1 k Ω

Zadatak 33.

• Na slici je prikazano naponsko pojačalo koje je opterećeno trošilom R_p =5k Ω . Na ulaz je spojen naponski izvor unutarnjeg otpora R_g =500 Ω . Naponsko pojačanje iznosi A_V =180, a pojačanje u odnosu na izvor signala A_{Vg} =150. Naponsko pojačanje A_V je 20% manje od naponskog pojačanja neopterećenog pojačala A_V . Izračunati parametre naponskog pojačala, naponsko pojačanje neopterećenog pojačala A_V , ulazni otpor R_{ul} i izlazni otpor R_{iz} .

Realizacija sklopa za pojačavanje

- Kako napraviti pojačalo????
- Aktivna komponenta... → tranzistor!
- ...i nekih pasivnih komponenata (otpornici, kondenzatori...)

Sklopovi s bipolarnim tranzistorom

- 4 područja rada → u sklopovima pojačala koristi se normalno aktivno područje rada.
- 3 elektrode: E, B, C
- Ulaz između 2 elektrode, izlaz između 2 elektrode
- Jedna je elektroda **zajednička**!!! → ZE, ZB, ZC
- Važno: karakteristika tranzistora je nelinearna!

Statički uvjeti rada

- Statička radna točka Q za ZE: U_{CEQ} , I_{CQ} , I_{BQ}
- Položaj statičke radne točke na izlaznoj karakteristici:

Model BJT u statičkim uvjetima rada

Razmatraju se dva područja:

Normalno aktivno područje

$$I_C = \beta \cdot I_B + (\beta + 1) \cdot I_{CB0}$$

$$I_C \approx \beta \cdot I_B$$

Područje zasićenja

Zadatak 34.

• Odrediti statičku radnu točku tranzistora u sklopu prema slici. Zadano je: U_{cc} =12 V, R_c =2k, β =100, a otpor u bazi iznosi:

a)
$$R_B = 300 \text{ k}$$

b)
$$R_{B} = 150 \text{ k}$$

☑ Rješenje:

a) $I_B=37.7 \mu A$, $I_C=3.77 m A$, $U_{CE}=4.47 V$

b) $I_B = 74.7 \mu A$, $I_C = 5.85 \text{ mA}$, $U_{CE} = 0.3 \text{ V}$

