# MIT WORLD PEACE UNIVERSITY

Software Engineering and Testing Second Year B. Tech, Semester 4

# ACTIVITY AND STATE DIAGRAMS

## ASSIGNMENT 6

Prepared By

Krishnaraj Thadesar Cyber Security and Forensics Batch A1, PA 20

 $April\ 16,\,2023$ 

# Contents

| 1 | Aim                                           | 1 |
|---|-----------------------------------------------|---|
| 2 | Objectives                                    | 1 |
| 3 | Problem Statement                             | 1 |
| 4 | Theory                                        | 1 |
|   | 4.1 State Diagram                             | 1 |
|   | 4.1.1 What is a State Diagram                 | 1 |
|   | 4.1.2 What is the use of a State Diagram      | 1 |
|   | 4.1.3 Elements of a State Diagram             | 2 |
|   | 4.1.4 State Diagram for the Problem Statement |   |
|   | 4.2 Activity Diagram                          | 4 |
|   | 4.2.1 What is an Activity Diagram             | 4 |
|   | 4.2.2 What is the use of an Activity Diagram  | 4 |
|   | 4.2.3 Elements of an Activity Diagram         | 4 |
|   | 4.3 Diagram for the Problem Statement         | 6 |
| 5 | Platform                                      | 7 |
| 6 | Conclusion                                    | 7 |
| 7 | FAQ                                           | 8 |

### 1 Aim

Object Oriented Analysis and design using UML diagrams: Activity and State Chart diagram, using Open Source Tool.

### 2 Objectives

- 1. To learn the relationships and notions of Activity diagram.
- 2. To learn the relationships and notions of State Chart diagram.

#### 3 Problem Statement

#### Draw Activity Diagram and State Diagram for The Following Problem:

The Purpose of an Attandence Assistant App is to help reduce the time taken for recording the attendance of a classroom in a school or college. The app will be able to record the attendance of a class in a matter of a few Seconds with minimum Energy Expended. It will record data on cloud, and be accessible to all the Teachers.

The tasks we have to do are:

- 1. You will have to identify the main entities (objects) for this system.
- 2. You will have to find out the relationships between these objects.
- 3. You will have to find the necessary attributes and functions that need to be associated with each object to implement the functionality mentioned above.
- 4. You will make a final comprehensive diagram show and all objects and their relations along with their attributes and functions.

## 4 Theory

#### 4.1 State Diagram

#### 4.1.1 What is a State Diagram

A state diagram is a type of behavioral diagram that shows the flow of control from one state to another. A state diagram is a dynamic diagram because it shows the behavior of the system.

#### 4.1.2 What is the use of a State Diagram

- 1. *Describing the behavior of a system*: A state diagram can be used to describe the behavior of a system, including the various states the system can be in and the transitions between those states.
- 2. *Modeling complex systems*: A state diagram can be used to model complex systems and help identify potential problems or errors in the system's design.

- 3. *Designing software programs*: State diagrams can be used in software design to map out the different states of a program and the actions that occur during transitions between those states.
- 4. *Understanding complex processes*: State diagrams can be used to help understand complex processes, such as manufacturing or logistics processes, by breaking them down into smaller, more manageable steps.
- 5. Communicating ideas: State diagrams are a useful tool for communicating ideas and concepts to others, as they provide a visual representation of a process or system that can be easily understood.

#### 4.1.3 Elements of a State Diagram

- 1. **State:** A state is a situation in which a system is in a particular condition. It is a scenario that describes the interaction between a user and a system to achieve a particular goal. A state is represented as a rectangle in a state diagram.
- 2. **Flow of Control:** Flow of control is the direction of the flow of control from one state to another. It is represented as a line with an arrowhead. The arrowhead points in the direction of the flow of control.
- 3. **Initial State:** The initial state is the state in which a system is present at the beginning of a scenario. It is represented as a circle in a state diagram.
- 4. **Final State:** The final state is the state in which a system is present at the end of a scenario. It is represented as a double circle in a state diagram.
- 5. **Transition:** A transition is a change from one state to another. It is represented as a line with an arrowhead. The arrowhead points in the direction of the flow of control.



Figure 1: State Diagram Elements

| 4.1.4 | State Diagram for the Problem Statement |
|-------|-----------------------------------------|
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |
|       |                                         |

SET Assignment 6 - Activity and State diagrams

#### 4.2 Activity Diagram

#### 4.2.1 What is an Activity Diagram

An activity diagram is a type of behavioral diagram that shows the flow of control from one activity to another. An activity diagram is a dynamic diagram because it shows the behavior of the system.

#### 4.2.2 What is the use of an Activity Diagram

- Modeling business processes: Activity diagrams can be used to model business processes, helping to visualize and analyze the flow of information and tasks between different departments and stakeholders.
- 2. *Software design*: Activity diagrams are used to model the behavior of software systems, such as software modules or classes, and to visualize how the system will interact with users or other systems.
- 3. *Analyzing workflows*: Activity diagrams can be used to analyze workflows within an organization, identifying inefficiencies and areas for improvement.
- 4. *Communication*: Activity diagrams are a powerful tool for communicating ideas and processes to stakeholders and team members, providing a visual representation of complex processes that is easy to understand.
- 5. *Testing and quality assurance*: Activity diagrams can be used in testing and quality assurance to ensure that software systems and business processes are working as intended and to identify potential problems or bottlenecks.

#### 4.2.3 Elements of an Activity Diagram

- 1. **Activity:** An activity is a set of actions that are performed to achieve a goal. It is a scenario that describes the interaction between a user and a system to achieve a particular goal. An activity is represented as a rectangle in an activity diagram.
- 2. **Flow of Control:** Flow of control is the direction of the flow of control from one activity to another. It is represented as a line with an arrowhead. The arrowhead points in the direction of the flow of control.
- 3. **Decision:** Decision is a decision point in the activity diagram. It is represented as a diamond in an activity diagram.
- 4. **Fork:** Fork is a point in the activity diagram where the flow of control splits into two or more parallel paths. It is represented as a circle with a line through it in an activity diagram.
- 5. **Join:** Join is a point in the activity diagram where the flow of control joins from two or more parallel paths. It is represented as a circle with a line through it in an activity diagram.
- 6. **Initial Node:** Initial node is the starting point of the activity diagram. It is represented as a circle in an activity diagram.
- 7. **Final Node:** Final node is the ending point of the activity diagram. It is represented as a circle in an activity diagram.



Figure 2: Activity Diagram Elements

| 4.3 | Diagram for the Problem Statement |
|-----|-----------------------------------|
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |

SET Assignment 6 - Activity and State diagrams

## 5 Platform

Operating System: Arch Linux x86-64

IDEs or Text Editors Used: Visual Studio Code External Programs for Diagrams : Draw.io

### 6 Conclusion

Thus, we learnt about Use case diagrams, and UML Class diagrams in detail.

## 7 FAQ

#### 1. Give the significance of Activity diagram.

Activity diagrams are an important modeling tool in software development as they allow developers to visually represent the flow of activities and actions within a system. Some of the key significances of activity diagrams are:

- (a) They help to identify the sequence of activities and actions that are involved in a process, making it easier to understand and optimize the process.
- (b) They help to identify the different actors or roles involved in a process, and how they interact with each other.
- (c) They help to identify the various conditions and decision points that exist in a process, and how they affect the flow of activities.
- (d) They can be used to communicate complex processes and workflows to stakeholders, making it easier for them to understand and provide feedback.

#### 2. Explain any 2 terminologies used in Activity diagrams.

- (a) Action: An action is a single step or operation that is performed as part of an activity. It represents a specific behavior that is performed by an object, system, or actor. Actions are represented by rectangular shapes with rounded corners in an activity diagram.
- (b) Decision node: A decision node is used to represent a decision point in an activity diagram. It is represented by a diamond-shaped symbol with multiple outgoing edges. The edges represent the different possible paths that can be taken based on the outcome of the decision.

#### 3. Explain the message passing in State Chart diagram.

Message passing is a key concept in state chart diagrams. It is used to model the communication and interaction between different objects or entities in a system. In a state chart diagram, message passing is represented using arrows between states, with the arrows labeled with the message that is being passed.

When an object or entity sends a message to another object or entity, it can trigger a transition from one state to another. The receiving object or entity can then process the message and respond accordingly, which can cause further state transitions.

4. Illustrate the use of a state diagram, consider software embedded within the Safe Home control panel that is responsible for reading user input