

Simulation-based Inference

Jo Hardin Professor, Pomona College

Twins (Original Data)

Twin data

Foster		Biological	
	80	<u> </u>	90
*	108	*	115
	116		115
***	93	*	83

Permuted twin data

Foster		Biological	
***	108	<u></u>	90
*	93	*	115
2	116	**	115
<u>\</u>	80	*	83

Permuted data (1) plotted

Original data

Permuted data (1)

Permuted data (2) plotted

Original data

Permuted data (2)

Permuted data (1) and (2)

Permuted data (1)

Permuted data (2)

Linear model on permuted data

```
twins %>%
  specify(Foster ~ Biological) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 10, type = "permute") %>%
  calculate(stat = "slope")
# A tibble: 10 x 2
            stat
  replicate
       <int> <dbl>
          1 0.0007709302
     2 -0.0353592305
     3 -0.0278627974
     4 -0.0072547982
 9 0.0581361900
# 10
         10 0.1598471947
```

Many permuted slopes

Permuted slopes with observed slope in red

Let's practice!

Simulation-based CI for slope

Jo Hardin Professor, Pomona College

Original Sample

Foster	Biological	
⊗ 80	% 90	
 108	÷ 115	
	⊗ 83	

Bootstrapped Sample

Foster		Biological	
	93		83
	108		115
	108		115
	93	O S	83

Permutation vs. bootstrap variability

Slopes from permuted data

Slopes from bootstrapped data

Permutation vs. boostrap code

Permutation:

```
twins %>%
  specify(Foster ~ Biological) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 100, type = "permute") %>%
  calculate(stat = "slope")
```

Bootstrap:

```
twins %>%
  specify(Foster ~ Biological) %>%
  generate(reps = 100, type = "bootstrap") %>%
  calculate(stat = "slope")
```

Sampling distribution: randomization vs. bootstrap

Slopes from permuted data

Slopes from bootstrapped data

Let's practice!