Enunciado Prático nº4

Maria José Borges Pires - A86268

11 de novembro de 2020

1 Exercício 1

Para a resolução do exercício 1, após a leitura do dataset de teste através do nodo File Reader é feita a exploração dos dados recorrendo ao nodo Data Explorer, onde se podem observar os valores da tendencia central e dispersão estatistica dos dados carregados.

Figure 1: Excerto da tabela de dados carregados

Column 🎵	Exclude Column	Minimum 🏗	Maximum 🎵	Mean ↓↑	Standard Deviation 🕼	Variance 	Skewness J1	Kurtosis 🎵
fixed acidity		4.600	15.900	8.416	1.742	3.035	0.940	1.084
volatile acidity	0	0.120	1.580	0.526	0.180	0.032	0.720	1.346
citric acid		0	1	0.275	0.195	0.038	0.275	-0.811
residual sugar		0.900	15.500	2.544	1.405	1.975	4.471	28.063
chlorides		0.012	0.611	0.088	0.048	0.002	5.622	40.506
free sulfur dioxide		1	72	15.614	10.464	109.503	1.274	2.005
total sulfur dioxide		6	289	46.806	33.252	1105.702	1.497	3.771
density		0.990	1.004	0.997	0.002	0.000	0.015	0.958
❶ pH		2.740	4.010	3.306	0.155	0.024	0.243	0.900
sulphates		0.330	2	0.659	0.173	0.030	2.427	11.470
alcohol		8.400	14.900	10.412	1.078	1.161	0.891	0.229

Figure 2: Valores de tendência central e dispersão estatística do dataset

2.1 Fazer cast do atributo quality para inteiro

Para transformar o atributo quality do dataset num inteiro foi aplicado o nodo String Replacer com os settings que se podem observar na figura seguinte:

Figure 3: Settings aplicados ao nodo String Replacer

Figure 4: Excerto da coluna quality após a aplicação do nodo em questão

2.2 Normalizar todos os atributos numéricos

Para normalizar os atributos numéricos foi utilizado o nodo Normalizer.

Figure 5: Settings aplicados ao nodo Normalizer

2.3 Criar 4 bins de igual frequência para a feature *citric* acid, substituindo a feature original

Para criar quatro bins de igual frequência utilizou-se o nodo Auto-Binner

Figure 6: Settings aplicados ao nodo Auto-Binner

2.4 Renomear cada bin de forma a que o primeiro corresponda a Low, o segundo a Medium, o terceiro a High e o quarto a Very High.

Figure 7: Settings aplicados ao nodo Cell Replacer

Figure 8: Settings aplicados ao nodo Table Creator

Figure 9: Excerto da tabela obtida

3.1 Análise de Componentes Principais (PCA) de forma a projetar os dados em apenas duas dimensões

Figure 10: Settings aplicados ao nodo PCA

3.2 Utilizar um scatter plot para visualização dos resultados obtidos pelo PCA

Figure 11: Settings aplicados ao nodo $Scatter\ Plot$

Figure 12: Scatter Plot das feautures Fixed Acidity e Volatile Acidity

4.1 Segmentar o dataset aplicando o método k-means

Figure 13: Settings aplicados ao nodo K-means

Figure 14: Tabela com os 3 clusters obtidos

4.2 Atribuir diferentes cores por qualidade do vinho e diferentes formas aos clusters

Figure 15: Settings de cor aplicados à qualidade do vinho

Figure 16: Excerto da tabela após a aplicação do nodo Color Manager

Figure 17: Settings aplicados ao nodo Shape Manager

4.3 Criar scatter plots e scatter matrixes que permitam ter uma noção gráfica, em duas dimensões, dos atributos e dos clusters criados

Figure 18: Settings aplicados ao nodo Scatter Plot

Figure 19: $Scatter\ Plot\ das\ features\ quality\ e\ alcohol$

Figure 20: Scatter Matrix

4.4 Ler e tratar os dados de teste de forma a que, com base no modelo desenvolvido nos passos anteriores, seja atribuído um cluster a cada registo deste ficheiro

Figure 21: Fluxo de tratamento do $\mathit{dataset}$ de teste

Figure 22: Fluxo para a atribuição de um cluster a cada registo do ficheiro

Row ID	citric D residu	. D chlori	D free s	D total s	D density	D pH	D sulph	D alcohol	S quality	S citric	D PCA d	D PCA d	S Cluster
Row0	0.065	0.081	0.033	0.034	0.391	0.614	0.37	0.658	6	Bin 1	0.325	0.293	cluster_2
Row1	0	0.193	0.049	0.025	0.391	0.281	0.185	0.158	5	Bin 1	-0.106	0.284	cluster_0
Row2	0.226	0.228	0.262	0.437	0.635	0.105	0.185	0.105	5	Bin 3	-0.588	0.154	cluster_0
Row3	0.073	0.203	0.164	0.403	0.628	0.368	0.204	0.211	5	Bin 3	-0.335	0.056	cluster_0
Row4	0.081	0.198	0.016	0.017	0.476	0.719	0.481	0.526	6	Bin 4	0.335	0.059	cluster_2
RowS	0.065	0.345	0	0	0.568	0.456	0.222	0.632	6	Bin 4	0.192	-0.049	cluster_2
Row6	0.024	0.203	0.016	0	0.558	0.789	0.37	0.25	3	Bin 1	0.072	0.488	cluster_0
Row7	0.04	0.162	0.016	0.017	0.489	0.719	0.426	0.474	6	Bin 1	0.208	0.432	cluster_2
Row8	0.065	0.345	0	0	0.568	0.456	0.222	0.632	6	Bin 4	0.192	-0.049	cluster 2
Row9	0.048	0.183	0.197	0.109	0.949	0.491	0.537	0.421	6	Bin 4	-0.085	-0.234	cluster_1
Row10	0.024	0.122	0.033	0.067	0.212	0.316	0.5	0.553	5	Bin 4	0.357	-0.45	cluster_2
Row11	0.056	0.046	0.344	0.303	0.67	0.649	0.63	0.184	6	Bin 3	-0.116	-0.172	cluster_0

Figure 23: Excerto do output gerado pelo nodo $Cluster\ Assigner$

4.5 Guardar o resultado da atribuição num ficheiro csv

Figure 24: Settings aplicados ao nodo CSV Writer

5 Exercício 5

Para parametrizar o *workflow* recorreu-se ao nodo *Integer input* para criar uma variável de fluxo **local** para o número de bins e clusters.

Figure 25: Settings aplicados ao nodo Integer Input

Figure 26: Configuração das variaveis de fluxo associadas ao nodo Auto-Binner

Figure 27: Settings aplicados ao nodo Integer Input

Figure 28: Configuração das variaveis de fluxo associadas ao nodo K-Means Quanto aos títulos dos gráficos, criou-se também um variável local através

do nodo $String\ Widget.$

Figure 29: Configuração das variaveis de fluxo associadas ao títulos dos gráficos

Figure 30: Configuração do nodo $\mathit{Scatter\ Plot}$ para utilização da variavel local difinida

Para poder visualizar facilmente todo o *workflow* foram utilizados 2 meta-nodos para agrupar a segementação de dados e os nodos de visualização. Para as diferentes partes do tratamento de dados foram utilizadas anotações. Apresenta-se de seguida o fluxo global final obtido e os meta-nodos.

Figure 31: Workflow final

Figure 32: Metanodo Segmentação

Figure 33: Metanodo Graphic Visualization

Figure 34: Calculo de vetor de distancia através do vetor $\it Distance\ Matrix\ Calculator$

Figure 35: Settings aplicados ao nodo K-Medoids

Figure 36: Scatter Matrix após segmentar os dados com o nodo K-Medoids

Figure 37: Settings aplicados ao nodo Fuzzy

Figure 38: Scatter Matrix após segmentar os dados com o nodo Fuzzy C-Means