Describing Variation & Patterns of Diversity

BIOL 1435

January 31, 2023

Icebreaker

Name, Year, Major, and what was the last song you listened to today?

Overview

1. ATGC's of life & encoding DNA

2. Measures of sequence diversity

3. In class coding exercise

Overview

1. ATGC's of life & encoding DNA

2. Measures of sequence diversity

3. In class coding exercise

DNA consists of four nucleotides

ATGC

DNA is organized onto chromosomes

Ploidy (#N): number of sets of chromosomes

Ploidy (#N): number of sets of chromosomes

2N = diploid

Q: How does genetic variation arise?

A: Mutations

How do we encode DNA?

$$m$$
 (sites) $\times n$ (chromosomes)

How do we encode DNA?

Genotype matrices

0 = reference or ancestral allele

1 =alternative or derived allele

Genotype matrices

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

Genotype matrices

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Some terminology...

- Single nucleotide polymorphism (SNP)
- Single nucleotide variant (SNV)
- Variant site
- Segregating site

Overview

1. ATGC's of life & encoding DNA

2. Measures of sequence diversity

3. In class coding exercise

How would you summarize this genotype matrix?

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

Measurements of genetic variation

- Segregating sites (S)
- Site frequency spectrum (SFS)
- Gene diversity (h & H)
 - Also referred to as expected heterozygosity
- Nucleotide diversity ($\Pi \& \pi$)

Measurements of genetic variation

- Segregating sites (S)
- Site frequency spectrum (SFS)
- Gene diversity (h & H)
 - Also referred to as expected heterozygosity
- Nucleotide diversity ($\Pi \& \pi$)

Definition

A segregating site is a site that is polymorphic in the data—i.e., there are multiple alleles observed.

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \rightarrow S = 4$$

Measurements of genetic variation

- Segregating sites (S)
- Site frequency spectrum (SFS)
- Gene diversity (h & H)
 - Also referred to as expected heterozygosity
- Nucleotide diversity ($\Pi \& \pi$)

Definition

Minor allele frequency spectrum: Histogram of the frequency of the less common allele which range from 1/n to 0.5 where n is the total number of chromosomes.

Definition

Minor allele frequency spectrum: Histogram of the frequency of the less common allele which range from 1/n to 0.5 where n is the total number of chromosomes.

Derived allele frequency spectrum: Histogram of the frequency of the derived allele—normally determined by the use of an outgroup—which range from 1/n to (n-1)/n.

Definition

Minor allele frequency spectrum: Histogram of the frequency of the less common allele which range from 1/n to 0.5 where n is the total number of chromosomes.

Derived allele frequency spectrum: Histogram of the frequency of the derived allele—normally determined by the use of an outgroup—which range from 1/n to (n-1)/n.

Note

 $\label{eq:minor_spectrum} \mbox{Minor allele frequency spectrum} = \mbox{Folded SFS}$

Derived allele frequency spectrum = Unfolded SFS

Site frequency spectrum has the shape $x_i = \frac{\theta}{i}$

Measurements of genetic variation

- Segregating sites (S)
- Site frequency spectrum (SFS)
- Gene diversity (h & H)
 - Also referred to as expected heterozygosity
- Nucleotide diversity ($\Pi \& \pi$)

Gene diversity (h & H)

Definition

Gene diversity is the probability that two random DNA sequences are different.

Gene diversity (h & H)

Definition

Gene diversity is the probability that two random DNA sequences are different.

Equation

$$h = 1 - \sum_{i=1}^{m} p_i^2 \tag{1}$$

Where p_i is the frequency of the i^{th} allele out of m observed alleles.

$$H = \frac{1}{L} \sum_{i=1}^{L} h_j \tag{2}$$

Where h_i is the gene diversity for site j and L is to the total number of sites.

Dave's tips and tricks

Note

$$h = 1 - (p^2 + q^2)$$

Where p is the frequency of the derived/alternate allele and q = (1 - p)

Gene diversity (h & H)

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

Gene diversity (h & H)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 - \left(0^2 + 1^2\right) \\ 1 - \left(3^2/5^2 + 2^2/5^2\right) \\ 1 - \left(3^2/5^2 + 2^2/5^2\right) \\ 1 - \left(1^2/5^2 + 4^2/5^2\right) \\ 1 - \left(1^2/5^2 + 4^2/5^2\right) \end{bmatrix}$$

Gene diversity (h & H)

$$egin{bmatrix} 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
ightarrow egin{bmatrix} 1 - \left(0^2 + 1^2
ight) \ 1 - \left(3^2/5^2 + 2^2/5^2
ight) \ 1 - \left(3^2/5^2 + 2^2/5^2
ight) \ 1 - \left(1^2/5^2 + 4^2/5^2
ight) \ 1 - \left(1^2/5^2 + 4^2/5^2
ight) \end{bmatrix}
ightarrow h_j = egin{bmatrix} 0 \ 12/25 \ 12/25 \ 12/25 \ 8/25 \ 8/25 \ 8/25 \ \end{bmatrix}$$

Gene diversity (h & H)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 - (0^2 + 1^2) \\ 1 - (3^2/5^2 + 2^2/5^2) \\ 1 - (3^2/5^2 + 2^2/5^2) \\ 1 - (1^2/5^2 + 4^2/5^2) \\ 1 - (1^2/5^2 + 4^2/5^2) \end{bmatrix} \rightarrow h_j = \begin{bmatrix} 0 \\ 12/25 \\ 12/25 \\ 8/25 \\ 8/25 \end{bmatrix}$$

 $H = 40/25 \times 1/5 = 8/25$

Behavior of h

Measurements of genetic variation

- Segregating sites (S)
- Site frequency spectrum (SFS)
- Gene diversity (h & H)
 - Also referred to as expected heterozygosity
- Nucleotide diversity $(\Pi \& \pi)$

Definition

Nucleotide diversity is the average number of pairwise differences between genotypes drawn from the same population.

Definition

Nucleotide diversity is the average number of pairwise differences between genotypes drawn from the same population.

Equation

$$\Pi = \frac{\sum_{i < j} k_{ij}}{\binom{n}{2}} \tag{3}$$

Where k_{ij} is the number of nucleotide differences between the i^{th} and j^{th} sequence in the sample and the denominator represents the number of unique comparisons being made between n sequences.

$$\pi = \frac{\Pi}{I} \tag{4}$$

Where L is to the total number of sites.

Dave's tips and tricks

Note

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

```
\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} (0+0+0+0) = 0 \\ (3+1+1+1) = 6 \\ \rightarrow (3+1+2+0) = 6 \\ (1+1+1+1) = 4 \\ (4+0+0+0) = 4 \end{matrix}
```

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} (0+0+0+0) = 0 \\ (3+1+1+1) = 6 \\ \rightarrow (3+1+2+0) = 6 \rightarrow \Pi = 20 \div \frac{5(5-1)}{2} = 2 \\ (1+1+1+1) = 4 \\ (4+0+0+0) = 4 \end{matrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{ (0+0+0+0) = 0 } (3+1+1+1) = 6$$

$$\rightarrow (3+1+2+0) = 6 \rightarrow \Pi = 20 \div \frac{5(5-1)}{2} = 2$$

$$(1+1+1+1) = 4$$

$$(4+0+0+0) = 4$$

$$\pi = 2 \times \frac{1}{5} = \frac{2}{5}$$

Overview

1. ATGC's of life & encoding DNA

2. Measures of sequence diversity

3. In class coding exercise