Loan Approval Predictive Model

Presentation Group 5:

Artemis Lu

Yiling Ding

Sherry Xu

Ashley Sun

Yichen Yang

Agenda

- ¹ Introduction
- ^{2.} Data EDA
- 3. Machine Learning
- 4 Interpretation
- 5. Conclusion

Introduction

Why Loan?

Loan approval is a cornerstone of the financial sector, directly tied to credit risk assessment. Building a predictive model addresses the critical need to:

- Minimize default risk: Financial institutions aim to approve loans for applicants with a low likelihood of default.
- **Streamline decision-making**: Automating loan approvals based on predictive models saves time and reduces human biases.
- Enhance financial inclusion: Such models can be tuned to ensure fairer evaluations, improving access to credit for underserved populations.

Introduction Loan Approval Predictive Model

Data Source

Dataset titled

Loan Approval Classification Data
sourced from Kaggle

Significance

Enhance decision-making, promote fairness, and improve transparency in loan evaluation for financial institutions

Project Objective

Develop a predictive model to classify loan applications as approved or rejected using historical data

Utilize logistic regression for binary outcome predictions: approval (1) or rejection (0).

Data EDA

Dataset Overview

The dataset contains 45,000 records and 14 variables

Column	Description	Туре		
person_age	ge of the person			
person_gender	ender of the person (female, male)			
person_education	Highest education level (Master, High School, Bachelor, Associate, Doctorate)	Categorical		
person_income	Annual income	Float		
person_emp_exp	Years of employment experience	Integer		
person_home_ownership	Home ownership status (RENT, OWN, MORTGAGE, OTHER)	Categorical		
loan_amnt	oan amount requested			
loan_intent	Purpose of the loan (PERSONAL, EDUCATION, MEDICAL, VENTURE, HOMEIMPROVEMENT, DEBTCONSOLIDATION)	Categorical		
loan_int_rate	Loan interest rate	Float		
loan_percent_income	Loan amount as a percentage of annual income	Float		
cb_person_cred_hist_length	Length of credit history in years	Float		
credit_score	Credit score of the person	Integer		
previous_loan_defaults_on_file	Indicator of previous loan defaults (No, Yes)	Categorical		
loan_status (dependent variable)	Loan approval status: 1 = approved; 0 = rejected	Integer		

Dependent variable!

	person_age	person_income	person_emp_exp	loan_amnt	loan_int_rate	loan_percent_income	cb_person_cred_hist_length	credit_score	loan_status
count	45000.000000	4.500000e+04	45000.000000	45000.000000	45000.000000	45000.000000	45000.000000	45000.000000	45000.000000
mean	27.764178	8.031905e+04	5.410333	9583.157556	11.006606	0.139725	5.867489	632.608756	0.222222
std	6.045108	8.042250e+04	6.063532	6314.886691	2.978808	0.087212	3.879702	50.435865	0.415744
min	20.000000	8.000000e+03	0.000000	500.000000	5.420000	0.000000	2.000000	390.000000	0.000000
25%	24.000000	4.720400e+04	1.000000	5000.000000	8.590000	0.070000	3.000000	601.000000	0.000000
50%	26.000000	6.704800e+04	4.000000	8000.00000	11.010000	0.120000	4.000000	640.000000	0.000000
75%	30.000000	9.578925e+04	8.000000	12237.250000	12.990000	0.190000	8.000000	670.000000	0.000000
max	144.000000	7.200766e+06	125.000000	35000.000000	20.000000	0.660000	30.000000	850.000000	1.000000

Conclusion

Loan Status Distribution

- Loans in category O account for 77.78% of the total dataset.
- Loans in category 1 account for 22.22% of the total dataset.
- The majority of the loans fall into category O (Rejected)

Loan Status VS Loan Interest Rate

- Loan Status O's median interest rate is lower compared to Loan Status 1.
- The maximum interest rate of Loan Status 1 appears to be higher than in Loan Status O, with no visible extreme outliers.
- Loans with higher interest rate are more likely to be approved.

Loan Status VS Previous Default Status

- Individuals with a history of default are significantly more likely to have their loan applications rejected.
- The approval rate for individuals with a default history is relatively low.

Correlation Heat Map

- A history of previous loan defaults strongly correlates with loan rejections.
- Higher credit scores are positively associated with loan approvals.
- Higher interest rates
 may be associated with
 approved loans, though
 the relationship is weak.

Machine Learning

Principal Component Analysis

 Goal: To reduce the dimensionality of the dataset while retaining the most important information.
 This helps to simplify the dataset for faster computations and improved model performance

Details:

- Applied Principal Component Analysis (PCA)
 to reduce features while retaining 91.49% of
 the original dataset's variance
- Selected 13 principal components out of 27 original features based on the explained variance threshold
- Top 3 components explained 51.25% of the total variance

Binormal Model

- Target: Build a predictive model to classify whether a loan application will be approved or not
- Reasons to Choose Binomial Regression
 - Binary Outcome: Designed for binary (yes or no) classification tasks
 - Interpretability: Provides interpretable coefficients that explain the impact of each feature on the probability of approval
 - Efficiency: Computationally efficient and works well even with relatively large datasets
 - Baseline Model: Serves as a strong baseline to compare with other models

2001000 1212000000								
Dep. Vari	lable:		loan_	status	70.00 a	bservations:		36000
Model:				GLM		siduals:		35986
Model Fan			Bi	nomial	Df Mo			13
Link Fund	ction:			Logit	Scale			1.0000
Method:		_		IRLS		ikelihood:		-8007.0
Date:		Fri,	06 De		Devia			16014.
Time:			18	:41:57		on chi2:		1.81e+04
No. Itera				11	Pseud	o R-squ. (CS):	0.4588
Covariand	ce Type:		non	robust				
	coe	f	std er	 r	z	P> z	[0.025	0.975]
const	-12.455	 9	0.44	 0 -2	8.287	0.000	-13.319	-11.593
x1	0.184	7	0.01	5 1	1.698	0.000	0.154	0.216
x2	3.241	3	0.09	4 3	4.570	0.000	3.058	3.425
x3	-3.426	7	0.10	3 –3	1.849	0.000	-3.638	-3.216
×4	3.414	0	0.13	5 2	5.304	0.000	3.150	3.678
x5	1.228	4	0.02	5 4	7.917	0.000	1.178	1.279
x6	0.464	2	0.03	3 1	4.219	0.000	0.400	0.528
×7	11.277	2	0.40	3 2	7.953	0.000	10.486	12.068
x8	10.348	2	0.40	3 2	5.649	0.000	9.557	11.139
x9	0.217	4	0.03	3	5.786	0.000	0.144	0.291
x10	-0.230	2	0.03) –	5.839	0.000	-0.308	-0.153
×11	-1.571	1	0.09	5 -1	6.322	0.000	-1.760	-1.382
x12	0.270	8	0.05	9	5.449	0.000	0.173	0.368
x13	-0.171	0	0.04	3 –	3.546	0.000	-0.265	-0.076

Formula for Binomial Logistic Regression

$$P(Y=1|X) = rac{1}{1 + e^{-(eta_0 + eta_1 X_1 + eta_2 X_2 + \cdots + eta_p X_p)}}$$

- ullet P(Y=1|X): Probability of the outcome Y=1 given predictors $X=(X_1,X_2,\ldots,X_p)$.
- β_0 : Intercept term (bias).
- $\beta_1, \beta_2, \dots, \beta_p$: Coefficients for the predictor variables.
- X_1, X_2, \ldots, X_p : Predictor variables (features).

Model Methodology

Binomial Logistic Regression is typically estimated using the Maximum Likelihood Estimation (MLE) method.

 Binomial regression models the probability of a binary outcome (Y=1 or Y=0) based on predictor variables. Unlike Ordinary Least Squares (OLS), the outcome is not continuous but rather probabilistic, making MLE the preferred method.

• MLE finds the set of parameters that **maximize the likelihood** of observing the given data.

Model Performance

Classification	Report: precision	recall	f1-score	support
0 1	0.92 0.77	0.94 0.74	0.93 0.75	6990 2010
accuracy macro avg weighted avg	0.85 0.89	0.84 0.89	0.89 0.84 0.89	9000 9000 9000

Overall Accuracy: 0.89

ROC curve

Introduction Data EDA ML Model Interpretation Conclusion

18

Interpretation

Interpretation I: Our model is better and statistically sound

Metric	Full Model	Our Model
Log-Likelihood	-10,880	-8,007
Deviance	21,760	16,014
AIC (Akaike Criterion)	21,804	16,042
BIC (Bayesian Criterion)	-4601,53	-361,525

Insights:

Our selected model performs better

- 1. Variables included: 13 (91.5% explained variance)
- 2. Log-likelihood: Less negative; Better fit
- 3. Deviance:
 - Our model is lower & better by removing less useful features

20

- 4. AIC: Our model performs better
 - Simpler and more effective
 - The selected model has a better balance
- 5. BIC: Less negative; more fit

Interpretation II: Train and Test Set

Metric	Training Data	Test Data
Accuracy	0.8949	0.8929
ROC-AUC Score	0.9533	0.9516
Precision (Class 0)	0.93	0.92
Recall (Class 0)	0.94	0.94
F1-Score (Class 0)	0.93	0.93
Precision (Class 1)	0.77	0.77
Recall (Class 1)	0.74	0.74
F1-Score (Class 1)	0.76	0.75
Macro Avg (F1-Score)	0.85	0.84
Weighted Avg (F1-Score)	0.89	0.89

Interpretation II-Extra: Cross-Validation

To further validate our model performance, we conducted 5 folds

Insights:

The average C-V accuracy score of about 0.895:

A good indication: the model generalize well.

The standard deviation C-V accuracy 0.003:

- Very low
- Model performance is stable

The accuracy scores for each of the 5 folds:

- Fold 1: 0.89125
- Fold 2: 0.89986
- Fold 3: 0.89375
- Fold 4: 0.89583
- Fold 5: 0.89264

Interpretation III: PCA-transformed Feature Importance

PC/	A-transfo	rmed Coeffici	ent Comparison:
	Feature	Coefficient	Absolute Coefficient
6	PC7	8.435353	8.435353
7	PC8	7.504869	7.504869
2	PC3	-2.679868	2.679868
1	PC2	2.592622	2.592622
3	PC4	2.473071	2.473071
4	PC5	1.133722	1.133722
10	PC11	-0.942629	0.942629
5	PC6	0.343937	0.343937
9	PC10	-0.179319	0.179319
8	PC9	0.165668	0.165668
11	PC12	0.124084	0.124084
0	PC1	0.105884	0.105884
12	PC13	-0.076440	0.076440

Insights:

- 1. PC7 and PC8 have **the largest positive** influence.
 - a. A positive and large coefficient; When the value of PC7 is high, the model is much more likely to predict the positive class.
- 2. PC3 has a **strong negative** influence.
 - a. PC3's coefficient is about -2.680
 - b. 1-unit increase in PC3 decreases the probability of default by approximately 2.68%

23

Further Analysis Needed:

Recognize which original features contribute most to the high-impact principal components (PCs) since <u>each PC is a linear combination of original features</u>

Interpretation IV: Original Features Importance from PC7-Feature

Original Feature Variable	Coefficient
loan_intent_HOMEIMPROVEMENT	0.39
person_home_ownership_OWN	-0.37
person_age	0.36
loan_amnt	-0.23
person_emp_exp	-0.20
cb_person_cred_hist_length	-0.16
loan_int_rate	0.14
loan_percent_income	-0.06
previous_loan_defaults_on_file_Yes	0.04
loan_intent_MEDICAL	0.03

Insights:

- Each coefficient indicates whether and how a feature influences the likelihood of a positive outcome (loan_status=1).
- 2. Features with positive coefficients raise the odds of the loan being in a positive state.
 - a. A large positive coefficient i.e.:
 "loan_intent_HOMEIMPROVEMENT", suggest
 this type of loan resulting in a higher chance
 of loan outcome.
 - o. A negative coefficient i.e.:

 "person_home_ownership_OWN", suggest
 owning a home is linked to a lower likelihood
 of that same positive result

24

Interpretation V: Competing Model - GAM

```
GAM Results:
Accuracy: 0.8493333333333334
ROC AUC Score: 0.8579179211239938
Classification Report:
                                      precision
                                                   recall f1-score
                                                                       support
                   0.87
                             0.95
                                        0.91
                                                  6990
                   0.75
                             0.48
                                        0.59
                                                  2010
                                        0.85
                                                  9000
    accuracy
                                        0.75
                   0.81
                              0.72
                                                  9000
  macro avg
                                        0.84
weighted avg
                   0.84
                              0.85
                                                  9000
```

- Advantage: Performed better in non-linear relationships between the features and the target variable
- **Result:** It achieved a high Recall score for group 0 but performed significantly worse across all indicators for group 1.

Conclusion

The binomial logistic regression model achieves strong performance, with:

- 89% accuracy and a 95% ROC-AUC score on both training and test datasets.
- Balanced performance across groups, though stronger for rejected loans (class 0).

Our Model

- Identification of principal components and key features influencing loan approvals.
- Actionable recommendations for improving decision-making processes.

The model generalizes well, demonstrating robustness and reliability, making it suitable for real-world applications.

This approach enhances **transparency**, **fairness**, and **efficiency** in loan approval system

Appendix

Loan Status VS Credit Score

Loan Status VS Loan Percent Income

- The median loan percent on income is relatively low in Loan Status O
- People who with a lower loan percent on income are less likely to be approved
- Weird

