Medidas resumo

Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

27/03/2018

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados
 - Medidas de posição para VAs discretas
- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- Exercícios recomendados

Características importantes de qualquer conjunto de dados

- Centro
- Variação
- Distribuição
- Valores atípicos

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados
 - Medidas de posição para VAs discretas
- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- Exercícios recomendados

Definição

É um valor no centro, ou meio, do conjunto de dados

Ferramentas para resumo e análise de dados

- Média
- Mediana
- Moda

Moda

A **moda** é o valor que ocorre com **maior frequência** em um conjunto de dados

Dependendo do conjunto de dados, ele pode ser

- Sem moda quando nenhum valor se repete
- Unimodal quando existe apenas um valor repetido com maior frequência
- Bimodal quando existem dois valores com a mesma maior frequência
- Multimodal quando mais de dois valores se repetem com a mesma frequência

Mediana

A mediana é uma medida de centro que é o valor do meio, quando os dados são arranjados de maneira ordenada

É o valor cuja posição separa o conjunto de dados em duas partes iguais

Quando as observações são ordenadas em ordem crescente, vamos denotar a menor observação por $x_{(1)}$, a segunda por $x_{(2)}$, e assim por diante, obtendo-se

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n-1)} \le x_{(n)}$$

Estas observações odenadas são chamadas de estatísticas de ordem.

Média

A média aritmética de um conjunto de dados é a medida de tendência central encontrada pela soma de todos os valores, dividida pelo número total de elementos, ou seja,

$$\bar{x}_{obs} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}.$$

Se os dados estiverem organizados em uma tabela de frequência, a média pode ser obtida com

$$\bar{x}_{obs} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_k x_k}{n_1 + n_2 + \dots + n_k} = \frac{\sum_{i=1}^k n_i x_i}{n}.$$

Média

Como exemplo, considere a tabela de frequência abaixo:

Número	n _i	f_i
0	4	0,20
1	5	0,25
2	7	0,35
3	3	0,15
5	1	0,05
Total	20	1

A média é calculada por:

$$\bar{x}_{obs} = \frac{1}{20} \cdot (0 \cdot 4 + 1 \cdot 5 + \dots + 5 \cdot 1)$$

$$= \frac{1}{20} \cdot (33)$$

$$= 1,65$$

Média

Para variáveis resumidas em classes de valores, podemos usar o **ponto médio** de cada classe. Por exemplo:

n _i	f_i
10	0,278
12	0,333
8	0,222
5	0,139
1	0,028
36	1
	10 12 8 5 1

Considerando os pontos médios de cada classe, a média é calculada por

$$ar{x}_{obs} = rac{1}{36} \cdot (6 \cdot 10 + 10 \cdot 12 + \dots + 22 \cdot 1)$$

$$= rac{1}{36} \cdot (404)$$

$$= 11, 22$$

Exemplo 4.1

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como contendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99 e 100. Calcular média, mediana e moda.

- $\bar{x}_{obs} = 98.6$.
- $md_{obs} = 99$.
- $mo_{obs} = 100$.

Média e mediana

Para notar como a média é influenciada pela presença de valores extremos (se ao invés de 95, o valor fosse 45):

95 96 97 98 99 99 100 100 100 102
$$\Rightarrow$$
 $\bar{x}_{obs} = 98,6$ e $Md = 99$

45 96 97 98 99 99 100 100 100 102
$$\Rightarrow \bar{x}_{obs} = 93,6 \text{ e } Md = 99$$

Nos casos onde se deseja comparar bases de dados diferentes, normalmente a mediana é mais indicada, por ser uma medida mais **robusta**, *não influenciada por valores extremos*.

Média, mediana e moda

Exemplo 4.4

Um estudante está procurando um estágio para o próximo ano. As companhias A e B têm programas de estágios e oferecem uma remuneração por 20 horas semanais com as seguintes características.

Companhia	Α	В
média	2,5	2,0
mediana	1,7	1,9
moda	1,5	1, 9

Qual companhia você escolheria?

Exemplo 4.3

Foram coletadas 150 observações da variável X, representando o número de vestibulares FUVEST (um por ano) que um mesmo estudande prestou. Com os dados da tabela abaixo, calcule as medidas de posição de X.

Χ	n _i
1	75
2	47
3	21
4	7

Suponha ainda que o interesse é estudar o gasto dos alunos associado com as despesas do vestibular. Para simplificar, suponha que se atribui para cada aluno, uma despesa fixa de 1300,00 relativa a preparação e mais 50 para cada vestibular prestado. Calcule as medidas de posição central para a variável D (despesa com vestibular).

Medidas de posição para VAs discretas

Sabemos que a descrição completa do comportamento de uma VA discreta é feita através de sua **função de probabilidade**.

Assim como fizemos para um conjunto de dados qualquer, podemos obter as medidas de posição para qualquer variável aleatória.

Lembrando que os possíveis valores de uma VA X sejam x_1, x_2, \ldots, x_n , com correspondentes probabilidades p_1, p_2, \ldots, p_k , então as medidas de posição podem ser definidas a seguir.

Medidas de posição para VAs discretas

A Média é chamada de valor esperado ou esperança

$$E(X) = \sum_{i=1}^k x_i p_i.$$

A Mediana é o valor Md que satisfaz as seguintes condições

$$P(X \ge Md) \ge 1/2$$
 e $P(X \le Md) \le 1/2$.

A Moda é o valor (ou valores) com maior probabilidade de ocorrência

$$P(X = Mo) = \max\{p_1, p_2, ..., p_k\}.$$

Exemplo 4.5

Conside a VA X com a seguinte função discreta de probabilidade:

Calcule as medidas de tendência central.

Exemplo 4.6

Conside uma VA X com função de probabilidade dada por

Calcule as medidas de posição para a VA Y = 5X - 10.

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados
 - Medidas de posição para VAs discretas
- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- 4 Exercícios recomendados

O resumo de um conjunto de dados exclusivamente por uma medida de centro, **esconde** toda a informação sobre a variabilidade do conjunto de observações.

Não é possível analisar um conjunto de dados apenas através de uma medida de tendência central.

Por isso precisamos de medidas que resumam a **variabilidade** dos dados em relação à um valor central

40

60

100

Х

120

140

80

160

Cinco grupos de alunos se submeteram a um teste, obtendo as seguintes notas

Grupo	Notas	x
A	3, 4, 5, 6, 7	5
В	1, 3, 5, 7, 9	5
C	5, 5, 5, 5, 5	5
D	3, 5, 5, 7	5
Е	3, 5, 5, 6, 6	5

O que a média diz a respeito das notas quando comparamos os grupos?

Definição

São medidas estatísticas que caracterizam o quanto um conjunto de dados está disperso em torno de sua tendência central.

Ferramentas para resumo e análise de dados:

- Amplitude
- Desvio-médio (ou mediano)
- Variância
- Desvio-padrão
- Coeficiente de Variação

Amplitude

A amplitude de um conjunto de dados é a diferença entre o maior e o menor valor.

$$\Delta = \max - \min$$

Como a amplitude usa **apenas** os valores máximo e mínimo, é muito **sensível** a valores extremos.

Para melhorar a medida de variabilidade, devemos considerar **todos os** dados disponíveis.

A melhor forma de se fazer isso é considerar o **desvio** de cada valor em relação à uma medida de posição (média ou mediana).

Desvio médio e mediano

Como queremos um **resumo** da variabilidade, devemos fazer a **média** dos desvios dos valores **absolutos**.

Se a medida de tendência central utilizada for a mediana, então temos o desvio mediano

desvio mediano =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - md_{obs}|$$
.

Mas se a média for utilizada, então temos o desvio médio

desvio médio =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}_{obs}|$$
.

Desvio médio

Considere as notas do grupo A do exemplo acima ($\bar{x}=5$). O desvio médio (DM) pode ser calculado da seguinte forma:

Grupo A	$x_i - \bar{x}$	$ x_i - \bar{x} $
3	-2	2
4	-1	1
5	0	0
6	1	1
7	2	2
Soma	0	6

$$DM = \frac{6}{5} = 1, 2$$

Mas, o desvio médio é baseado em uma operação **não algébrica** (módulo), o que torna mais difícil o estudo de suas propriedades.

Variância e desvio-padrão de um conjunto de dados

Uma alternativa melhor seria usar a soma dos quadrados dos desvios, que dá origem à variância de um conjunto de dados

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2$$

Para manter as mesmas unidades dos dados originais, definimos o **desvio** padrão como

$$dp_{obs} = \sqrt{var_{obs}}$$

Uma expressão alternativa da variância (mais fácil de calcular) é

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}_{obs}^2$$

Exemplo

No exemplo anterior

Grupo A	$x_i - \bar{x}$	$ x_i - \bar{x} $	$(x_i - \bar{x})^2$	x_i^2
3	-2	2	4	9
4	-1	1	1	16
5	0	0	0	25
6	1	1	1	36
7	2	2	4	49
Soma	0	6	10	135

A variância é

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2 = var_{obs} = \frac{10}{5} = 2.$$

Ou, usando a fórmula alternativa

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}_{obs}^2 = var_{obs} = \frac{135}{5} - 5^2 = 2.$$

Coeficiente de variação

O coeficiente de variação para um conjunto de dados é definido por

$$cv_{obs} = \frac{dp_{obs}}{\bar{x}_{obs}}$$

É uma medida **adimensional**, e geralmente apresentada na forma de porcentagem.

No exemplo anterior: $dp_{obs} = \sqrt{var_{obs}} = \sqrt{2} = 1,414.$

Portanto:

$$cv_{obs} = \frac{dp_{obs}}{\bar{x}_{obs}} = \frac{1,414}{5} = 0,283 \approx 2,8\%$$

Variância em tabelas de frequência

Assim como no caso da média, se tivermos n observações da variável X, das quais n_1 são iguais a x_1 , n_2 são iguais a x_2 , ..., n_k são iguais a x_k , então a variância pode ser definida por:

$$var_{obs}(X) = \frac{1}{n} \sum_{i=1}^{n} n_i (x_i - \bar{x}_{obs})^2$$

Ou, pela fórmula alternativa:

$$var_{obs}(X) = \frac{1}{n} \sum_{i=1}^{n} n_i x_i^2 - \bar{x}_{obs}^2$$

Exemplo

Como exemplo, considere a tabela de frequência abaixo ($\bar{x} = 1,65$):

Número	ni	f _i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
0	4	0,20	-1,65	2,72
1	5	0,25	-0,65	0,42
2	7	0,35	0,35	0,12
3	3	0,15	1,35	1,82
5	1	0,05	3,35	11,22
Total	20	1		

A variância pode ser calculada por:

$$var_{obs} = \frac{1}{20} \cdot [4 \cdot 2, 72 + 5 \cdot 0, 42 + \dots + 1 \cdot 11, 22]$$

= $\frac{1}{20} \cdot (30, 55)$
= 1, 528

Exemplo

Considere a seguinte tabela de distribuição de frequência ($\bar{x}=11,22$):

Classe	$PM = x_i$	ni	f _i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
[4, 8)	6	10	0,278	-5,222	27,272
[8, 12)	10	12	0,333	-1,222	1,494
[12, 16)	14	8	0,222	2,778	7,716
[16, 20)	18	5	0,139	6,778	45,938
[20, 24)	22	1	0,028	10, 778	116,160
Total		36	1		

Considerando os **pontos médios** de cada classe como os valores x_i , a variância pode ser calculada por

$$var_{obs} = \frac{1}{36} \cdot [10 \cdot 27, 272 + 12 \cdot 1, 494 + \dots + 1 \cdot 116, 160]$$

= $\frac{1}{36} \cdot (698, 22)$
= 19, 395

Exemplo 4.9

No Exemplo 4.3, definimos a quantidade D, despesa no vestibular, obtida a partir de X pela expressão D=50X+1300, com X indicando o número de vestibulares prestados.

Χ	ni
1	75
2	47
3	21
4	7

Calcule a variância de D.

Fazer também: Exemplo 4.10.

Variância de uma va

- $Var(X) = \sum_{i=1}^{k} (x_i \mu)^2 p_i$.
- $Var(X) = \overline{E[(X \mu)^2]} = E(X^2) E^2(X)$.
- Ver Tabelas resumo 4.2 e 4.3 pg. 111.

Exemplo 4.11

Uma pequena cirurgia dentária pode ser realizada por três métodos diferentes cujos tempos de recuperação (em dias) são modelados pelas variáveis X_1 , X_2 e X_3 . Admita suas funções de probabilidades são dadas por

Calcule as medidas de posição central e dispersão para cada VA e decida sobre o método mais eficiente.

Esperança e variância de modelos teóricos

- Exemplo 4.14: Seja X com distribuição Bernoulli de parâmetro p.
 Calcule a esperança e a variancia de X.
- Exemplo 4.15: Seja X com distribuição Binomial parâmetros n e p.
 Calcule a esperança e a variancia de X.
- Ver resultados da Tabela 4.4 pg. 113.

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados
 - Medidas de posição para VAs discretas
- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- Exercícios recomendados

Exercícios recomendados

- Seção 4.2 1, 2, 3, 4 e 6.
- Seção 4.3 1, 2, 3, 4, 5 e 6.