Probability [Moments] $\mu^k = E(X^k) = \int x^k f(x) dx$ [Deduce X = 0] If $X \ge 0$ a.s. and EX = 0 then X = 0 a.s. [Variance, Covariance] $Var(X) = E[(X - EX)(X - EX)^T], \ Cov(X, Y) = E[(X - EX)(Y - EY)^T], \ Corr(X, Y) = Cov(X, Y)/(\sigma_X \sigma_Y), \ E(a^T X) = a^T EX,$ $Var(a^TX) = a^TVar(X)a$ [CHF] $\phi_X(t) = E\left[exp(\sqrt{-1}t^TX)\right] = E\left[\cos(t^TX) + \sqrt{-1}\sin(t^TX)\right] \ \forall \ t \in \mathcal{R}^d$, well defined with $|\phi_X| \le 1$ [MGF] $\psi_X(t) = E\left[exp(t^TX)\right] \ \forall \ t \in \mathcal{R}^d$, [MGF properties] $\psi_{-X}(t) = \psi_X(-t)$, if $\psi(t) < \infty \ \forall \ ||t|| < \delta \Rightarrow E|X|^a < \infty \ \forall \ a > 1$ and $\phi_X(t) = \psi_X(\sqrt{-1}t) \text{ [Conditional Exp] } f_{X|Y}(x|Y=y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{Y|X}(y|X=x)f_X(x)}{f_Y(y)}$ Integration [MCT] $0 \le f_1 \le f_2 \le \cdots \le f_n$ and $\lim_n f_n = f$ a.e. $\Rightarrow \int \lim_n f_n d\nu = \lim_n \int f_n d\nu$ [Fatou] $f_n \ge 0 \Rightarrow \int \lim_n f_n d\nu \le f_n$ $\liminf_n \int f_n d\nu$ [DCT] $\lim_{n\to\infty} f_n = f$ and $|f_n| \leq g$ a.e. $\Rightarrow \int \lim_n f_n d\nu = \lim_n \int f_n d\nu$. g is an integrable function. [Interchange Diff and Integral of the content ① $\partial f(\omega,\theta)/\partial \theta$ exists in (a,b) ② $|\partial f(\omega,\theta)/\partial \theta| \leq g(\omega)$ a.e. \Rightarrow ① $\partial f(\omega,\theta)/\partial \theta$ integrable in (a,b) ② $\frac{d}{d\theta} \int f(\omega,\theta) d\nu(\omega) = \int \frac{\partial f(\omega,\theta)}{\partial \theta} d\nu(\omega)$ [Chapter 1] $Y = g(X), X = g^{-1}(Y) = h(Y)$ and A_i disjoint, $f_Y(y) = \sum_{j:1 \leq j \leq m, y \in g(A_j)} \left| \det \left(\frac{\partial h_j(y)}{\partial y} \right) \right| f_X(h_j(y))$. Simple version: $f_Y(y) = \int_{0}^{\infty} \frac{\partial h_j(y)}{\partial y} dy$ $|det(\partial h(y)/\partial y)|f_X(h(y))$ Inequalities [Cauchy-Schewarz] $Cov(X,Y)^2 \leq Var(X)Var(Y)$, and $E^2[XY] \leq EX^2EY^2$ [Jensen] φ is convex $\Rightarrow \varphi(EX) \leq E\varphi(X)$ e.g. $(EX)^{-1} < E(X^{-1})$ and E(logX) < log(EX) [Chebyshev] If $\varphi(-x) = \varphi(x)$, and φ non-decreasing on $[0,\infty) \Rightarrow \varphi(t)P(|X| \geq$ $t) \leq \int_{\{|X| \geq t\}} \varphi(X) dP \leq E \varphi(X) \forall \ t \geq 0. \ \text{e.g.} \ P(|X - \mu| \geq t) \leq \frac{\sigma_X^2}{t^2} \text{ and } P(|X| \geq t) \leq \frac{E|X|}{t} \text{ [H\"older] } p,q > 0 \text{ and } 1/p + 1/q = 1$ or $q = p/(p-1) \Rightarrow E|XY| \le (E|X|^p)^{1/p}(E|Y|^q)^{1/q}$. Equality $\Leftrightarrow |X|^p$ and $|Y|^q$ linearly dependent Young $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, equality $\Leftrightarrow a^p = b^q$ [Minkowski] $p \ge 1$, $(E|X + Y|^p)^{1/p} \le (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}$ [Lyapunov] for 0 < s < t, $(E|X|^s)^{1/2} \le (E|X|^t)^{1/t}$ [KL] $K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)} = \int \log \left(\frac{f_0(x)}{f_1(x)}\right) f_0(x) d\nu(x) \ge 0$ equality $\Leftrightarrow f_1(\omega) = f_0(\omega)$ Convergence [a.s] $X_n \xrightarrow{\text{a.s.}} X$ if $P(\lim_{n\to\infty} X_n = X) = 1$. Can show $\forall \epsilon > 0, \sum_{i=1}^{\infty} P(|X_n - X| > \epsilon) < \infty$ via BC lemma [Infinity often] $\{A_n \ i.o.\} = \cap_{n\geq 1} \cup_{j\geq n} A_j := \limsup_{n\to\infty} A_n$ [Borel-Cantelli lemmas] (First BC) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(A_n \ i.o.) = 0$ (Second BC) Given pairwisely independent events $\{A_n\}_{n=1}^{\infty}$, if $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(A_n \ i.o.) = 1$ $L^p X_n \xrightarrow{L_p} X$ if $\lim_{n\to\infty} E|X_n - X|^p = 1$ 0, given p>0, $E|X|^p<\infty$ and $E|X_n|^p<\infty$ [Probability] $X_n\xrightarrow{P}X$ if $\forall \epsilon>0 \lim_{n\to\infty}P(|X_n-X|>\epsilon)=0$. Can show

Analysis [Matrix] $c^T c = ||c||^2 = c_1^2 + \cdots + c_k^2$, cc^T is $k \times k$ matrix with (i, j)th element as $c_i c_j$, [Max, Min] $\max(a, b) = \frac{1}{2}(a + b + |a - b|)$,

 $E(X_n) = X$, $\lim_{n\to\infty} Var(X_n) = 0$ [Distribution] $X_n \xrightarrow{D} X$ if $\lim_{n\to\infty} F_n(x) = F(x)$ for every $x\in\mathcal{R}$ at which F is continuous [Relationships between convergence] ① $L^p \Rightarrow L^q \Rightarrow P$ ② $a.s. \Rightarrow P, P \Rightarrow D$ ③ $X_n \rightarrow_D C \Rightarrow X_n \rightarrow_P C$ ④ If $X_n \rightarrow_P X \Rightarrow \exists$ sub-seq s.t. $X_{n_i} \to_{\text{a.s.}} X$. [Continuous mapping] If $g: \mathcal{R}^k \to \mathcal{R}$ is continuous and $X_n \stackrel{*}{\to} X$, then $g(X_n) \stackrel{*}{\to} g(X)$, where * is either

(a) a.s. (b) P (c) D. [Convengence properties] (1) Unique in limit: X = Y if $X_n \to X$ and $X_n \to Y$ for (a) a.s., (b) P, (c) L^p . (d) If $F_n \to F$ and $F_n \to G$, then $F(t) = G(t) \ \forall \ t \ (2)$ Concatenation: $(X_n, Y_n) \to (X, Y)$ when (a) P (b) a.s. (c) $(X_n, Y_n) \xrightarrow{D} (X, c)$ only when c is constant. 3 Linearity: $(aX_n + bY_n) \to aX + bY$ when a a.s. b $P \odot L^p$ d NOT for distribution. 4 Cramér-Wold

device: for k-random vectors, $X_n \xrightarrow{D} X \Leftrightarrow c^T X_n \xrightarrow{D} c^T X$ for every $c \in \mathcal{R}^k$ [Lévy continuity] $X_n \xrightarrow{D} X \Leftrightarrow \phi_{X_n} \to \phi_X$ pointwise Scheffés theorem If $\lim_{n\to\infty} f_n(x) = f(x) \Rightarrow \lim_{n\to\infty} \int |f_n(x) - f(x)| d\nu = 0$ and $P_{f_n} \to P_f$. Useful to check pdf converge in distribution. [Slutsky's theorem] If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} c$ for constant c. Then $X_n + Y_n \xrightarrow{D} X + c$, $X_n Y_n \xrightarrow{D} cX$, $X_n / Y_n \xrightarrow{D} X / c$ if $c \neq 0$ [Skorohod's theorem] If $X_n \xrightarrow{D} X$, then $\exists Y, Y_1, Y_2, \cdots$ s.t. $P_{Y_n} = P_{X_n}, P_Y = P_X$ and $Y_n \xrightarrow{\text{a.s.}} Y$ [δ -method - first order] If $\{a_n\} > 0$

and $\lim_{n\to\infty} a_n = \infty$ and $a_n(X_n - c) \xrightarrow{D} Y$ and $c \in \mathcal{R}$ and g'(c) exists at c, then $a_n[g(X_n) - g(c)] \xrightarrow{D} g'(c)Y$ [δ -method - higher order] If $g^{(j)}(c) = 0$ for all $1 \leq j \leq m-1$ and $g^{(m)}(c) \neq 0$. Then $a_n^m[g(X_n) - g(c)] \xrightarrow{D} \frac{1}{m!}g^{(m)}(c)Y^m$ [δ -method - multivariate] If X_i, Y are k-vectors rvs and $c \in \mathbb{R}^k$ and $a_n[g(X_n) - g(c)] \xrightarrow{D} \nabla g(c)^T Y$ [Stochastic order - Real] for a constant c > 0 and all n, (1) $a_n = O(b_n) \Leftrightarrow |a_n| \le c|b_n| \ \textcircled{2} \ a_n = o(b_n) \Leftrightarrow \lim_{n \to \infty} a_n/b_n = 0 \ \text{[Stochastic order - RV]} \ \textcircled{1} \ X_n = O_{\text{a.s.}}(Y_n) \Leftrightarrow P\{|X_n| = O(|Y_n|)\} = 1$ $\textcircled{2} \ X_n = o_{\text{a.s.}}(Y_n) \Leftrightarrow X_n/Y_n \xrightarrow{\text{a.s.}} 0, \ \textcircled{3} \ \forall \ \epsilon > 0, \\ \exists C_\epsilon > 0, \\ n_\epsilon \in \mathcal{N} s.t. \ X_n = O_P(Y_n) \Leftrightarrow \sup_{n \geq n_\epsilon} P\left(\{\omega \in \Omega : |X_n(\omega) \geq C_\epsilon |Y_n(\omega)|\}\right) < \epsilon = 0.$ (4) If $X_n = O_P(1)$, $\{X_n\}$ is bounded in probability. (5) $X_n = o_P(Y_n) \Leftrightarrow X_n/Y_n \xrightarrow{P} 0$ [Stochastic Order Properties] (1) If $X_n \xrightarrow{\text{a.s.}} X$, then $\{\sup_{n\geq k}|X_n|\}_k$ is $O_p(1)$. ② If $X_n\stackrel{D}{\to}X$ for a rvs, then $X_n=O_P(1)$ (tightness). ③ If $E|X_n|=O(a_n)$, then $X_n=O_P(a_n)$ ④ If

 $E|X_n| = o(a_n)$, then $X_n = o_P(a_n)$ [SLLN, iid] $E|X_1| < \infty \Leftrightarrow \frac{1}{n} \sum_{i=1}^n X_1 \xrightarrow{\text{a.s.}} EX_1$ [SLLN, non-idential but independent] If $\exists p \in [1,2]$ s.t. $\sum_{i=1}^{\infty} \frac{E|X_i|^p}{i^p} < \infty$, then $\frac{1}{n} \sum_{i=1}^{n} (X_i - EX_i) \xrightarrow{\text{a.s.}} 0$ [USLLN, idd] Suppose ① $U(x,\theta)$ is continuous in θ for any fixed x ② for each θ , $\mu(\theta) = EU(X,\theta)$ is finite ③ Θ is compact ④ There exists function M(x) s.t. $EM(X) < \infty$ and $|U(x,\theta)| \le M(x)$ for all $x, \theta. \text{ Then } P\left\{\lim_{n\to\infty}\sup_{\theta\in\Theta}\left|\frac{1}{n}\sum_{i=1}^nU(X_j,\theta)-\mu(\theta)\right|=0\right\}=1 \text{ [WLLN, iid] } a_n=E(X_1I_{\{|X_1|\leq n\})}\in[-n,n] \text{ } nP(|X_1|>n)\to 0 \Leftrightarrow 0$

 $\frac{1}{n}\sum_{i=1}^{n}X_{i}-a_{n}\xrightarrow{P}0\text{ [WLLN, non-identical but independent]}\text{ If }\exists\ p\in[1,2]\text{ s.t. }\lim_{n\to\infty}\frac{1}{n^{p}}\sum_{i=1}^{n}E|X_{i}|^{p}=0\text{, then }\frac{1}{n}\sum_{i=1}^{n}(X_{i}-EX_{i})\xrightarrow{P}X_{i}$

0 [Weak Convergency] $\int f d\nu_n \to \int f d\nu$ for every bounded and continous real function $f: X_n \xrightarrow{D} X \Leftrightarrow E[h(X_n)] \to E[h(X)]$ [CLT, iid] Suppose $\Sigma = VarX_1 < \infty$, then $\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - EX_i) \xrightarrow{D} N(0, \Sigma)$ [CLT, non-identical but independent] Suppose ① $k_n \to \infty$ as $n \to \infty$

② (Lindeberg's condition) $0 < \sigma_n^2 = Var\left(\sum_{j=1}^{k_n} X_{nj}\right) < \infty$. ③ If for any $\epsilon > 0$, $\frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} E\left\{(X_{nj} - EX_{nj})^2 I_{\{|X_{nj} - EX_{nj}| > \epsilon \sigma_n\}}\right\} \to 0$.

Then $\frac{1}{\sigma_n} \sum_{j=1}^{k_n} (X_{nj} - EX_{nj}) \xrightarrow{D} N(0,1)$ [Check Lindeberg condition] Option ① (Lyapunov condition) $\frac{1}{\sigma_n^{2+\delta}} \sum_{j=1}^{k_n} E|X_{nj} - EX_{nj}|^{2+\delta} \rightarrow$

0 for some $\delta > 0$ Option ② (Uniform boundedness) If $|X_{nj}| \leq M$ for all n and j and $\sigma_n^2 = \sum_{j=1}^{k_n} Var(X_{nj}) \to \infty$ [Feller's condition]

Ensures Lindeberg's condition is sufficient and necessary (else only sufficient). $\lim_{n\to\infty} \max_{j\leq k_n} \frac{Var(X_{n_j})}{\sigma^2} = 0$

Exponential Families [NEF] $f_{\eta}(X) = \exp \{ \eta^T T(X) - \mathcal{C}(\eta) \} h(x)$, where $\eta = \eta(\theta)$ and $\mathcal{C}(\eta) = \log \{ \int_{\Omega} \exp \{ \eta^T T(X) \} h(X) dX \}$. NEF

is full rank if Ξ contains open set in \mathbb{R}^p , $\Xi = \{\eta(\theta) : \theta \in \Theta\} \subset \mathbb{R}^p$. Suppose $X_i \sim f_i$ independently with f_i Exp Fam, then joint

distribution X is also Exp Fam. [Showing non Exp Fam] For an exp fam P_{θ} , there is nonzero measure λ s.t. $\frac{dP_{\theta}}{d\lambda}(\omega) > 0$ λ -a.e. and for

all θ . Consider $f = \frac{dP_{\theta}}{d\lambda}I_{(t,\infty)}(x)$, $\int fd\lambda = 0$, $f \geq 0 \Rightarrow f = 0$. Since $\frac{dP_{\theta}}{d\lambda} > 0$ by assumption, then $I_{(t,\infty)}(x) = 0 \Rightarrow v([t,\infty)) = 0$. Since t is arbitary, consider $v(\mathcal{R}) = 0$ (contradiction) [NEF MGF] Suppose η_0 is interior point on Ξ , then $\psi_{\eta_0}(t) = \exp\{\mathcal{C}(\eta_0 + t) - \mathcal{C}(\eta_0)\}$

and is finite in neighborhood of t=0. [NEF Moments] Let $A(\theta)=\mathcal{C}(\eta_0(\theta)), \frac{dA(\theta)}{d\theta}=\frac{d\mathcal{C}(\eta_0(\theta))}{d\eta_0(\theta)}\cdot\frac{d\eta_0(\theta)}{d\theta}, T(x)=\frac{\partial\mathcal{C}(\eta)}{\partial\eta}$ (a) $E_{\eta_0}T=\frac{d\psi_{\eta_0}}{dt}|_{t=0}=\frac{d\mathcal{C}}{d\eta_0}=\frac{A''(\theta)}{\eta_0'(\theta)},$ (b) $E_{\eta_0}T^2=\mathcal{C}''(\eta_0)+\mathcal{C}'(\eta_0)^2,$ (c) $Var(T)=\mathcal{C}''(\eta_0)=\frac{A''(\theta)}{[\eta_0(\theta)]^2}-\frac{\eta_0(\theta)''A'(\theta)}{[\eta_0(\theta)]^3}=\frac{\partial^2\mathcal{C}(\eta)}{\partial\eta\partial\eta^T}$ [NEF Differential] $G(\eta):=F(\eta_0)=\int_{\mathbb{R}^3} g(x)\,dx$ $E_{\eta}(g) = \int g(\omega) \exp\left\{\eta^T T(\omega) - \mathcal{C}(\eta)\right\} h(\omega) d\nu(\omega)$ for η in interior of Ξ_g ① G is continuous and has continuous derivatives of all orders. ② Derivatives can be computed by differentiation under the integral sign. $\frac{dG(\eta)}{d\eta} = E_{\eta} \left[g(\omega) \left(T(\omega) - \frac{\partial}{\partial \eta} \xi(\eta) \right) \right]$ where Ξ_g is set η such that $\int |g(\omega)| \exp \{\eta^T T(\omega) - \mathcal{C}(\eta)\} h(\omega) d\nu(\omega) < \infty$ [NEF Min Suff] ① If there exists $\Theta_0 = \{\theta_0, \theta_1, \cdots, \theta_p\} \subset \Theta$ s.t. vectors $\eta_i = \eta(\theta_i) - \eta(\theta_i) = \eta(\theta_i)$ $\eta(\theta_0), i \in [1, p]$ are linearly independent in \mathbb{R}^p , then T is also minimal sufficient. Check $det([\eta_1, \dots, \eta_p])$ is non-zero $\mathfrak{D} \equiv \{\eta(\theta) : \theta \in \Theta\}$

contains
$$(p+1)$$
 points that do not lie on the same hyperplane ③ Ξ is full rank. [NEF complete and sufficient] If \mathcal{P} is NEF of full rank then $T(X)$ is complete and sufficient for $\eta \in \Xi$ [NEF MLE] $\hat{\theta} = \eta^{-1}(\hat{\eta})$ or solution of $\frac{\partial \eta(\theta)}{\partial \theta} T(x) = \frac{\partial \xi(\theta)}{\partial \theta}$ [NEF Fisher Info] If $\underline{I}(\eta)$ is fisher info natural parameter η , then $Var(T) = \underline{I}(\eta)$. Let $\psi = E[T(X)]$. Suppose $\overline{I}(\psi)$ is fisher info matrix for parameter ψ , then $Var(T) = \underline{I}(\eta)$.

 $[I(\psi)]^{-1}$ [NEF RLEs] RLE regularity condition (1, 2, 3, 4) holds due to proposition 3.2 and theorem 2.1, and result for (3). Only need to check condition on Fisher Info, then when n is large, there exists $\hat{\eta}_n$ s.t. $g(\hat{\eta}_n) = \hat{\mu}_n$ and $\hat{\eta}_n \to_{\text{a.s.}} \eta \sqrt{n}(\hat{\eta}_n - \eta) \to_D N \left(0, \left| \frac{\partial^2}{\partial \eta \partial \eta^T} C(\eta) \right| \right)$ Where $g(\eta) = \frac{\partial \mathcal{C}(\eta)}{\partial \eta}$ and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n T(X_i)$ [UMP NEF] (a) UMP T(Y) = I(Y > c) (i) $\eta(\theta)$ increasing and $H_1: \theta \geq \theta_0$ (ii) $\eta(\theta)$

where
$$g(\eta) = \frac{1}{\partial \eta}$$
 and $\mu_n = \frac{1}{n} \sum_{i=1} I(X_i)$ [UMP NEF] (a) UMP $I(I) = I(I) > C$) (f) $\eta(\theta)$ increasing and $H_1 : \theta \ge \theta_0$ (ii) $\eta(\theta)$ decreasing and $H_1 : \theta \le \theta_0$ (ii) $\eta(\theta)$ decreasing and $H_1 : \theta \le \theta_0$ (ii) $\eta(\theta)$ decreasing and $H_1 : \theta \ge \theta_0$ [UMP Normal results] Given $X_i \sim N(\mu, \sigma^2)$ and $H_0 : \sigma^2 = \sigma_0^2$ (a) $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ independent to \bar{X} (b) $V = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$ (c) $t = \frac{\sqrt{n}(\bar{X} - \mu)/\sigma}{\sqrt{V/(n-1)}} = \frac{Z}{\sqrt{V/(n-1)}} \sim t_{(n-1)}$ (only if $X_i \sim N$) [UMPU NEF $\eta(\theta) = \theta$] Require: (1) suff stat Y for θ (2) suff and complete U for ϕ such that ϕ is full rank [UMPU NEF $H_0 : \theta \le \theta_0$ or $\theta \ge \theta_0$ $H_1 : \theta \le \theta_0$ $\Pi(V, U) = I(\sigma_0(U) \le V \le \sigma_0(U))$

suff and complete U for φ such that φ is full-rank [UMPU NEF $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ $H_1: \theta_1 < \theta < \theta_2$] $T(Y,U) = I(c_1(U) < Y < c_2(U))$ s.t. $E_{\theta_1}[T(Y,U)|U=u] = E_{\theta_2}[T(Y,U)|U=u] = \alpha$ [UMPU NEF $H_0: \theta_1 \leq \theta \leq \theta_2$ $H_1: \theta < \theta_1$ or $\theta > \theta_2$] $T(Y,U) = I(Y < c_1(U))$ or

s.t.
$$E_{\theta_1}[T(Y,U)|U=u] = E_{\theta_2}[T(Y,U)|U=u] = \alpha$$
 [UMPU NEF $H_0: \theta_1 \leq \theta \leq \theta_2$ $H_1: \theta < \theta_1$ or $\theta > \theta_2$] $T(Y,U) = I(Y < c_1(U)$ or $Y > c_2(U)$ s.t. $E_{\theta_1}[T(Y,U)|U=u] = E_{\theta_2}[T(Y,U)|U=u] = \alpha$ [UMPU NEF $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$] $T(Y,U) = I(Y < c_1(U)$ or $Y > c_2(U)$ s.t. $E_{\theta_0}[T_*(Y,U)|U=u] = \alpha$ and $E_{\theta_0}[T_*(Y,U)|U=u] = \alpha E_{\theta_0}[Y|U=u]$ [UMPU NEF $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$] $T(Y,U) = I(Y > c(U))$ s.t. $E_{\theta_0}[T(Y,U)|U=u] = \alpha$ [UMPU Normal] Require UMPU NEF (1), (2) and (3) $V(Y,U)$ independent of U

T(Y,U) = I(Y > c(U)) s.t. $E_{\theta_0}[T(Y,U)|U = u] = \alpha$ [UMPU Normal] Require UMPU NEF ①, ② and ③ V(Y,U) independent of U

$$E_{\theta_2}[T(V)] = \alpha \text{ [UMPU Normal } H_0: \theta_1 \leq \theta \leq \theta_2 H_1: \theta < \theta_1 \text{ or } \theta > \theta_2] \text{ (4) } V \text{ to be increasing in } Y \Rightarrow T(V) = I(V < c_1 \text{ or } V > c_2) \text{ s.t. } E_{\theta_1}[T(V)] = E_{\theta_2}[T(V)] = \alpha \text{ [UMPU Normal } H_0: \theta = \theta_0 H_1: \theta \neq \theta_0] \text{ (4) } V(Y,U) = a(u)Y + bU \Rightarrow T(V) = I(V < c_1 \text{ or } V > c_2) \text{ s.t. } E_{\theta_0}[T(V)] = \alpha \text{ and } E_{\theta_0}[T(V)V] = \alpha E_{\theta_0}(V) \text{ [UMPU Normal } H_0: \theta \leq \theta_0 H_1: \theta > \theta_0] \text{ (4) } V \text{ to be increasing in } Y \Rightarrow T(V) = I(V > c)$$

$$E_{\theta_0}[T(V)] = \alpha$$
 and $E_{\theta_0}[T(V)V] = \alpha E_{\theta_0}(V)$ [UMPU Normal $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$] (4) V to be increasing in $Y \Rightarrow T(V) = I(V > c)$ s.t. $E_{\theta_0}[T(V)] = \alpha$
Statistics [Sufficiency] $T(X)$ is sufficient for $P \in \mathcal{P} \Leftrightarrow P_X(x|Y=y)$ is known and does not depend on P . T sufficient for \mathcal{P}_0 but not necessarily \mathcal{P}_1 , $\mathcal{P}_0 \subset \mathcal{P} \subset \mathcal{P}_1$. [Factorization theorem] $T(X)$ is sufficient for $P \in \mathcal{P} \Leftrightarrow \mathcal{P}_0$ there are non-negative Borel functions P 0

Statistics [Sufficiency]
$$T(X)$$
 is sufficient for $P \in \mathcal{P} \Leftrightarrow P_X(x|Y=y)$ is known and does not depend on P . T sufficient for \mathcal{P}_0 but not necessarily \mathcal{P}_1 , $\mathcal{P}_0 \subset \mathcal{P} \subset \mathcal{P}_1$. [Factorization theorem] $T(X)$ is sufficient for $P \in \mathcal{P} \Leftrightarrow$ there are non-negative Borel functions h with ① $h(x)$ does not depend on P ② $g_P(t)$ which depends on P s.t. $\frac{dP}{d\nu}(x) = g_P(T(x))h(x)$ [Minimal sufficiency] T is minimal sufficient $\Leftrightarrow T = \psi(S)$ for any other sufficient statistics S . Min suff is unique and usually exist. [Min Suff-Method 1] (Theorem A)

Suppose $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s. If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$ (Theorem B) Suppose \mathcal{P} contains PDFs f_0, f_1, \cdots w.r.t a σ -finite measure. (a) Define $f_{\infty}(x) = \sum_{i=0}^{\infty} c_i f_i(x)$ and $T_i(x) = f_i(x)/f_\infty(x)$, then $T(X) = (T_0(X), T_1(X), \cdots)$ is minimal sufficient for \mathcal{P} . Where $c_i > 0, \sum_{i=0}^{\infty} c_i = 1, f_\infty(x) > 0$. (b) If

$$\{x: f_i(x) > 0\} \subset \{x: f_0(x) > 0\}$$
 for all i , then $T(X) = (f_1(x)/f_0(x), f_2(x)/f_0(x), \cdots$ is minimal sufficient for \mathcal{P} [Min Suff-Method 2] (Theorem C) If (a) $T(X)$ is sufficient, and (b) $\exists \phi$ s.t. for $\forall x, y$. $f_P(x) = f_P(y)\phi(x, y) \ \forall P \in \mathcal{P} \Rightarrow T(x) = T(y)$. Then $T(X)$ is minimal sufficient for \mathcal{P} [Ancillary statistics] A statistics $V(X)$ is ancillary for \mathcal{P} if its distribution does not depend on population $P \in \mathcal{P}$ (First-order ancillary) if $E_P[V(X)]$ does not depend on $P \in \mathcal{P}$ [Completeness] $P(X)$ is complete for $P \in \mathcal{P} \Rightarrow T(x)$ for any Borel function $P(X)$ is uncompleted and sufficient, then $P(X)$ is an independent w.r.t any Sufficiency [Basu's theorem] If $P(X)$ is an independent w.r.t any

 $P \in \mathcal{P}$ [Completeness for Varying Support] $\int_0^\theta g(x)x^{n-1}dx = 0 \implies g(\theta)\theta^{n-1} = 0, \implies g(\theta) = g(X_{(n)}) = 0$ and thus $X_{(n)}$ is complete Fisher information $I(\theta) = E\left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^{2} = \int \left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^{2} f_{\theta}(X) d\nu(x) = E\left\{\frac{\partial}{\partial \theta}\log f_{\theta}(X)\left[\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right]^{T}\right\}$ [Parameterization] If $\theta = \psi(\eta)$ and ψ' exists, $\tilde{I}(\eta) = \psi'(\eta)^2 I(\psi(\eta))$ [Twice differentiable] Suppose f_{θ} is twice differentiable in θ and $\int \frac{\partial^2}{\partial \theta^2} f_{\theta}(x) I_{f_{\theta}(x)>0} d\nu = 0$,

then
$$I(\theta) = -E\left[\frac{\partial^2}{\partial\theta\partial\theta^T}\log f_{\theta}(X)\right]$$
 [Independent samples] If $\int \frac{\partial}{\partial\theta} f_{\theta}(x)d\nu = 0$ holds, then $I_{(X,Y)}(\theta) = I_X(\theta) + I_Y(\theta)$, and $I_{(X_1,\dots,X_n)}(\theta) = nI_{X_1}(\theta)$
Comparing decision rules [Compare decision rules] (a) as good as if $R_{T_1}(P) \leq P_{T_2}(P)$. $\forall P \in \mathcal{P}$ (b) better if $R_{T_1}(P) < R_{T_2}(P)$

for some $P \in \mathcal{P}$ (and T_2 is dominated by T_1). \bigcirc equivalent if $R_{T_2}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$ [Optimal] T_* is \mathcal{J} -optimal if T_* is as good as any other rule in \mathcal{J} , Admissibility $T \in \mathcal{J}$ is \mathcal{J} -admissible if no $S \in \mathcal{J}$ is better than T in terms of the risk. [Minimaxity]

$$T_* \in \mathcal{J}$$
 is \mathcal{J} -minimax if $\sup_{P \subset \mathcal{P}} R_{T_*}(P) \leq \sup_{P \subset \mathcal{P}} R_T(P)$ for any $T \in \mathcal{J}$ [Bayes Risk] A form of averaging $R_T(P)$ over $P \in \mathcal{P}$. Bayes risk $r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P)$, $R_T(\Pi)$ is Bayes risk of T wrt a known probability measure Π . [Bayes rule] T_* is \mathcal{J} -Bayes rule wrt Π if $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathcal{J}$. [Finding Bayes rule] Let $\tilde{\theta} \sim \pi$, $X | \tilde{\theta} \sim P_{\tilde{\theta}}$, then $r_{\pi}(T) = E\left[L(\tilde{\theta}, T(X))\right] = E\left[E\left[L(\tilde{\theta}, T(X))\right] | X\right]$ where

 $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathcal{J}$. [Finding Bayes rule] Let $\tilde{\theta} \sim \pi$, $X | \tilde{\theta} \sim P_{\tilde{\theta}}$, then $r_{\pi}(T) = E |L(\tilde{\theta}, T(X))| = E |E|L(\tilde{\theta}, T(X))| |X|$ where

$$(\Pi) \leq r_T(\Pi)$$
 for any $T \in \mathcal{J}$. [Finding Bayes rule] Let $\tilde{\theta} \sim \pi$, $X | \tilde{\theta} \sim P_{\tilde{\theta}}$, then $r_{\pi}(T) = E\left[L(\tilde{\theta}, T(X))\right] = E\left[E\left[L(\tilde{\theta}, T(X))\right] | X\right]$ where is taken jointly over $(\tilde{\theta}, X)$. Then find $T_*(x)$ that minimises the conditional risk. [Rao-Blackwell] (a) Suppose $L(P, a)$ is convex and T_* sufficient and S_0 is decision rule satisfying $E_P |||S_0|| < \infty$ for all $P \in \mathcal{P}$. Let $S_1 = E[S_0(X)|T]$, then $R_{S_1}(P) \leq R_{S_0}(P)$. (b) If $L(P, a)$ strictly convex in a , and S_0 is not a function of T , then S_0 is inadmissible and dominated by S_1 .

E is taken jointly over $(\tilde{\theta}, X)$. Then find $T_*(x)$ that minimises the conditional risk. [Rao-Blackwell] (a) Suppose L(P, a) is convex and T is sufficient and S_0 is decision rule satisfying $E_P|||S_0|| < \infty$ for all $P \in \mathcal{P}$. Let $S_1 = E[S_0(X)|T]$, then $R_{S_1}(P) \leq R_{S_0}(P)$. b If L(P,a)is strictly convex in a, and S_0 is not a function of T, then S_0 is inadmissible and dominated by S_1 .

MOM [MoM] $\mu_j = E_{\theta} X^j = h_j(\theta), \implies \hat{\theta} = h_j^{-1}(\hat{\mu}_j)$. Provided h_j^{-1} exists and $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$. [MOM asymptotic] θ_n is unique if

then use CLT and δ -method. V_{μ} is $k \times k$ with $(i,j) = \mu_{i+j} - \mu_i \mu_j \sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} N(0, [\nabla g]^T V_{\mu} \nabla g)$ MOM is \sqrt{n} -consistent, and if k = 1 $amse_{\hat{\theta}_n}(\theta) = g'(\mu_1)^2 \sigma^2 / n, \ \sigma^2 = \mu_2 - \mu_1^2$

 $h^{-1}(X)$ exists. Strongly consistent if h^{-1} is continuous via SLLN and continuous mapping. If h^{-1} is differentiable and $E|X_1|^{2k} < \infty$

MLE [MLE] $\hat{\theta} = \arg \max_{\theta} L(\theta)$. Consider (a) boundary opint (b) $\partial L(\theta)/\partial \theta = 0$ and $\partial^2 L(\theta)/\partial \theta^2 < 0$ (Concave), note MLE may not

exist MLE Consistency Suppose (1) Θ is compact (2) $f(x|\theta)$ is continuous in θ for all x (3) There exists a function M(x) s.t. $E_{\theta_0}[M(X)] < 0$

 ∞ and $|\log f(x|\theta) - \log f(x|\theta_0)| \le M(x)$ for all x, θ (4) identifiability holds $f(x|\theta) = f(x|\theta_0)$ ν -a.e. $\Rightarrow \theta = \theta_0$. Then MLE estimate $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta_0$ [RLE] [Roots of the Likelihood Equation] θ that solves $\frac{\partial}{\partial \theta} \log L_n(\theta) = 0$ [RLE regularity conditions] Suppose ① Θ is open subset

of \mathcal{R}^k ② $f(x|\theta)$ is twice continuously differentiable in θ for all x, and $\frac{\partial}{\partial \theta} \int f(x|\theta) d\nu = \int \frac{\partial}{\partial \theta} f(x|\theta) d\nu$, $\frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta^T} f(x|\theta) d\nu = \int \frac{\partial^2}{\partial \theta \partial \theta^T} f(x|\theta) d\nu$. ③ $\Psi(x,\theta) = \frac{\partial^2}{\partial \theta \partial \theta^T} \log f(x|\theta)$, there exists a constant c and non-negative function H s.t. $EH(X) < \infty$ and $\sup_{||\theta - \theta_*|| < c} ||\Psi(x,\theta)|| \le C$

H(x). 4 Identifiable [RLE consistency] Under RLE regularity conditions, there exists a sequence of $\hat{\theta}_n$ s.t. $\frac{\partial}{\partial \theta} \log L_n(\hat{\theta}_n) = 0$ and $\hat{\theta}_n \to_{\text{a.s.}} \theta_*$. [RLE asymptotic normality] Assume RLE regularity conditions, and $I(\theta) = \int \frac{\partial}{\partial \theta} \log f(x|\theta) \left[\frac{\partial}{\partial \theta} \log f(x|\theta) \right]^T d\nu(x)$ is positive definite and $\theta = \theta_*$. Then any consistent sequence $\{\tilde{\theta_n}\}$ of RLE it holds $\sqrt{n}(\tilde{\theta_n} - \theta_*) \xrightarrow{D} N\left(0, \frac{1}{I(\theta_*)}\right)$ [One-step MLE] Often asym

efficient, useful to adjust an non asym efficient estimators provided $\hat{\theta}_n^{(0)}$ is \sqrt{n} -consistent. $\hat{\theta}_n^{(1)} = \hat{\theta}_n^{(0)} - \left|\nabla s_n(\hat{\theta}_n^{(0)})\right|^{-1} s_n(\hat{\theta}_n^{(0)})$ Unbiased Estimators [UMVUE] T(X) is UMVUE for $\theta \Leftrightarrow Var(T(X) \leq Var(U(X))$ for any $P \in \mathcal{P}$ and any other unbiased es-

timator U(X) of θ Lehmann-Scheffe If T(X) is sufficient and complete for θ . If θ is estimable, then there is a unique unbiased

estimator of θ that is of the form h(T). [UMVUE method1] Using Lehmann-Scheffé, suppose T is sufficient and complete manipulate $E(h(T)) = \theta$ to get $\hat{\theta}$. [UMVUE method2] Using Rao-Blackwellization. Find (1) unbiased estimator of $\theta = U(X)$ (2) sufficient and complete statistics T(X) (3) then E(U|T) is the UMVUE of θ by Lehmann-Scheffé. [UMVUE method3] Useful when no com-

plete and sufficient statistics. Can use to find UMVUE, check if estimator is UMVUE, show nonexistence of UMVUE. T(X) is UMVUE $\Leftrightarrow E[T(X)U(X)] = 0$ (a) T is unbiased estimator of η with finite variance, \mathcal{U} is set of all unbiased estimators of 0 with

finite variances. (b) T = h(S), where S is sufficient and h is Borel function, \mathcal{U}_S is subset of \mathcal{U} consisting of Borel functions of S. [Using method3] ① Find U(x) via E[U(x)] = 0 ② Construct T = h(S) s.t. T is unbiased ③ Find T via E[TU] = 0 [Corollary] If T_j is UMVUE of η_j with finite variances, then $T = \sum_{j=1}^k c_j T_j$ is UMVUE of $\eta = \sum_{j=1}^k c_j \eta_j$. If T_1, T_2 are UMVUE of η with finite variances, then $T_1 = T_2$ a.s. $P, P \in \mathcal{P}$ [Cramér-Rao Lower Bound] Suppose ① Θ is an open set and P_θ has pdf f_θ ② f_{θ} is differentiable and $\frac{\partial}{\partial \theta} \int f_{\theta}(x) d\nu = \int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$. 3 $g(\theta)$ is differentiable and T(X) is unbiased estimator of $g(\theta)$ s.t.

 $g'(\theta) = \frac{\partial}{\partial \theta} \int T(x) f_{\theta}(x) d\nu = \int T(x) \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu, \theta \in \Theta. \text{ Then } Var(T(X)) \geq \frac{g'(\theta)^2}{I(\theta)} = \left[\frac{\partial}{\partial \theta} g(\theta)\right]^T [I(\theta)]^{-1} \frac{\partial}{\partial \theta} g(\theta) \text{ [CR LB for biasd estimator]}$ $Var(T) \geq \frac{[g'(\theta) + b'(\theta)]^2}{I(\theta)} \text{ [CR LB iff] CR achieve equality } \textcircled{a} \Leftrightarrow T = \left[\frac{g'(\theta)}{I(\theta)}\right] \frac{\partial}{\partial \theta} \log f_{\theta}(X) + g(\theta) \textcircled{b} \Leftrightarrow f_{\theta}(X) = \exp(\eta(\theta)T(x) - \xi(\theta))h(x),$

s.t. $\xi'(\theta) = g(\theta)\eta'(\theta)$ and $I(\theta) = \eta'(\theta)g'(\theta)$ [UMVUE asymptotic] Typically consistent, exactly unbiased, ratio of mse over Cramér-Rao

LB converges to 1 (asym they are the same). Other estimators [Upper semi-continuous (usc)] $\lim_{\rho \to 0} \left\{ \sup_{|\theta' - \theta|| < \rho} f(x|\theta') \right\} = f(x|\theta)$ [USC in θ] Suppose (1) Θ is compact with metric $d(\cdot, \cdot)$ (2) $f(x|\theta)$ is use in θ and for all x (3) there exists a function M(x) s.t. $E_{\theta_0}|M(X)| < \infty$ and $\log f(x|\theta) - \log f(x|\theta_0) \le M(x)$

for all x and θ (4) for all $\theta \in \Theta$ and sufficiency small $\rho > 0$, $\sup_{d(\theta',\theta) < \rho} f(x|\theta')$ is measurable in x (5) identifiable $f(x|\theta) = f(x|\theta_0) \nu$ -a.e.

 $\Rightarrow \theta = \theta_0$. Then $d(\hat{\theta}_n, \theta_0) \rightarrow_{\text{a.s.}} 0$ [Asym Covariance Matrix] $V_n(\theta)$ is $k \times k$ positive definite matrix called asym covariance matrix. $V_n(\theta)$ is usually in form of $n^{-\delta}V(\theta)$, higher δ means faster convergence. $[V_n(\theta)]^{-1/2}(\hat{\theta}_n - \theta) \to_D N_k(0, I_k)$ [Information Inequalities] $A \preceq B$

means B-A is positive semi-definite. Suppose two estimators $\hat{\theta}_{1n}$, $\hat{\theta}_{2n}$ satisfy asym covariance matrix with $V_{1n}(\theta)$, $V_{2n}(\theta)$. $\hat{\theta}_{1n}$ is asym

more efficient than $\hat{\theta}_{2n}$ if (1) $V_{1n}(\theta) \leq V_{2n}(\theta)$ for all $\theta \in \Theta$ and all large n (2) $V_{1n}(\theta) \leq V_{2n}(\theta)$ for at least one $\theta \in \Theta$ But note $\hat{\theta}_n$ is asym unbiased but CR LB might not hold even if regularity condition is satisfied. [M-estimators] General method to find $\hat{\theta}_n$ maximises criterion function $S_{\theta}(x)$, for MLE $s_{\theta}(x) = \log f(x|\theta)$. $E_{\theta_0} s_{\theta}(X) < E_{\theta_0} s_{\theta_0}(X) \forall \theta \neq \theta_0$. $\theta \mapsto S_n(\theta) = \frac{1}{n} \sum_{i=1}^n s_{\theta}(X_i)$ [Consistency of *M*-estimators] $S_n(\theta)$ is random function while $S(\theta)$ is fixed s.t. $\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)| \to_P 0$ and for every $\rho > 0$ $\sup_{\theta : d(\theta, \theta_0) \ge \rho} S(\theta) < S(\theta_0)$. Then any

 $\bar{X}_n \ge n^{-1/4}$ and $t\bar{X}_n$ otherwise. $V_n(\theta) = 1/n$ if $\theta \ne 0$ and t^2/n otherwise. if $\theta \ne 0$: $\sqrt{n}(\hat{\theta} - \theta) = \sqrt{n}(\bar{X}_n - \theta) - (1 - t)\sqrt{n}\bar{X}_nI_{|\bar{\theta}_n| < n^{-1/4}}$ if $\theta = 0$: $= t\sqrt{n}(\bar{X}_n - \theta) + (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{X}_n| \ge n^{-1/4}}$ [Super-efficiency] Point where UMVUE failed Hodeges' estiamtor in information inequality (2). But under the basic regularity condition and if Fisher Information is positive definite at $\theta = \theta_*$, if $\hat{\theta}_n$ satisfies Asym covariance matrix, then there is a $\Theta_0 \subset \Theta$ with Lebesgue measure 0 s.t. information inequality (2) holds for any $\theta \notin \Theta_0$ [Asym efficiency] Assume Fisher Info $I_n(\theta)$ is well-defined and positive definite for every n, seq of estimators $\{\hat{\theta}_n\}$ satisfies asym cov matrix is asym

sequence of estimators $\hat{\theta}_n$ with $S_n(\hat{\theta}_n) \geq S_n(\theta_0) - o_P(1)$ converges in probability to θ_0 [Hodges' estimator] $X_i \sim N(\theta, 1), \ \hat{\theta}_n = \bar{X}_n$ if

efficient or asym optimal if and only if $V_n(\theta) = [I_n(\theta)]^{-1}$. **Asymptotics** [Consistency of point estimators] (a) consistent $T_n(X) \xrightarrow{P} \theta$ (b) strongly consistent $T_n(X) \xrightarrow{\text{a.s.}} \theta$ (c) a_n -consistent $a_n(T_n(X) - \theta) = O_P(1), \{a_n\} > 0$ and diverge to ∞ (d) L_r -consistent $T_n(X) \xrightarrow{L^P} \theta$ for some fixed r > 0. [Remark on consistency]

A combination of LLN, CLT, Slustky's, continuous mapping, δ -method are used. If T_n is (strongly) consistent for θ and g is continuous at θ then $g(T_n)$ is (strongly) consistent for $g(\theta)$ [Affine estimator] Consider $T_n = \sum_{i=1}^n c_{ni} X_i$ (1) If $c_{ni} = c_i/n$ s.t $\frac{1}{n} \sum_{i=1}^n c_{ni} \to 1$ and $\sup_i |c_i| < \infty$ then T_n is strongly consistent. (2) If population variance is finite, then T_n is consistent in mse $\Leftrightarrow \sum_{i=1}^n c_{ni} \to 1$ and $\sum_{i=1}^{n} c_{ni}^{2} \to 0$ [Asymptotic distribution] $\{a_{n}\} > 0$ and either (a) $a_{n} \to \infty$ (b) $a_{n} \to a > 0$, s.t. $a_{n}(T_{n} - \theta) \xrightarrow{D} Y$. When estimator's expectations or second moment are not well defined, we need asymptotic behaviours. [Asymptotic bias] $b_{T_n} = EY/a_n$,

asymptotically unbiased if $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$, $b_{T_n}(P) := ET_n(X) - \theta$ [Asymptotic expectation] If $a_n \xi_n \to^D \xi$, $E|\xi| < \infty$, then asymptotically unbiased if $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$, $b_{T_n}(P) := ET_n(X) - \theta$ [Asymptotic expectation] If $a_n \xi_n \to^D \xi$, $E|\xi| < \infty$, then asymptotic expectation f(x) = 0, ftotic expectation of ξ_n is $E\xi/a_n$ [Asymptotic MSE] asymptotic expectation of $(T_n - \theta)^2$ or $\operatorname{amse}_{T_n}(P) = EY^2/a_n^2$ (Remark) $EY^2 \leq \lim \inf_{n \to \infty} E[a_n^2(T_n - v)^2]$ (amse is no greater than exact mse) [Asymptotic variance] $\sigma_{T_n}^2(P) = Var(Y)/a_n^2$ [Asym Relative Efficiency] $e_{T_{1n},T_{2n}} = amse_{T_{2n}(P)}/amse_{T_{1n}(P)}$. Note efficiency of estimator T refers to $1/[I(\theta)MSE_T(\theta)]$ [δ -method corollary] If $a_n \to \infty$, g is differentiable at θ , $U_n = g(T_n)$. Then (a) amse of U_n is $[g'(\theta)^2 EY^2]/a_n^2$ (b) asym var of U_n is $[g'(\theta)^2 Var(Y)]/a_n^2$ [Quantiles asymptotic]

 $F(\theta) = \gamma \in (0,1)$ and $\hat{\theta}_n := \lfloor \gamma n \rfloor$ -th order statistics, $F'(\theta) > 0$ and exists. $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} N\left(0, \frac{\gamma(1-\gamma)}{[F'(\theta)]^2}\right)$ Hypothesis testing [Hypothesis tests] Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}, \mathcal{P}_1 = \mathcal{P} \setminus \mathcal{P}_0$. Hypothesis testing decides between $H_0: P \in \mathcal{P}_0, H_1: P \in \mathcal{P}_1$. Action space $\mathcal{A} = \{0,1\}$, decision rule is called a test $T: \mathcal{X} \to \{0,1\} \Rightarrow T(X) = I_C(X)$ for some $C \subset \mathcal{X}$. C is

called the region/critical region. [0-1 loss] Common loss function for hypo test, L(P,j)=0 for $P\in\mathcal{P}_j$ and =1 for $P\in\mathcal{P}_{1-j}, j\in\{0,1\}$ Risk $R_T(P) = P(T(X) = 1) = P(X \in C)$ if $P \in \mathcal{P}_0$ or $P(T(X) = 0) = P(X \notin C)$ if $P \in \mathcal{P}_1$ [Type I and II errors] Type I: H_0 is rejected when H_0 is true. $\beta_T(\theta_0) = E_{H_0}(T) \le \alpha$ (within controlled with size α) Error rate: $\alpha_T(P) = P(T(X) = 1), P \in \mathcal{P}_0$ Type II: H_0 is accepted

when H_0 is false. $1 - \beta_T(\theta)$ for $\theta \in \Theta_1$ Error rate: $1 - \alpha_T(P) = P(T(X) = 1), P \in \mathcal{P}_1$ [Power function of T] $\alpha_T(P)$, Type I and Type II error rates cannot be minimized simultaneously. [Significance level] Under Neyman-Pearson framework, assign pre-specified bound α (significance level of test): $\sup_{P \subset \mathcal{P}_0} P(T(X) = 1) \leq \alpha$ [size of test] α' is the size of the test $\sup_{P \subset \mathcal{P}_0} P(T(X) = 1) = \alpha'$ [NP Test]

(Steps) (1) Find joint distribution $f(X_1, \dots, X_n)$ - MLR/NEF (2) Hypothesis H_0, H_1 - simple/composite, must be θ and not $f(\theta)$ (3) Form N-P test structure T_* (4) Find test dist, rejection/acceptance region. [Generalised NP] (Want to) $\max_{\phi} \int \phi f_{m+1} d\nu$ s.t. $\int \phi f_1 d\nu \leq t_1$, $\int \phi f_2 d\nu \leq t_2, \cdots \int \phi f_m d\nu \leq t_m$, (condition) If $\exists c_1, \cdots, c_m$ s.t. $\phi_*(x) = I(f_{m+1}(x) > c_1 f_1(x) + \cdots + c_m f_m(x))$, then ϕ_* maximises objective function with equality constraint. If $c_i \geq 0$ then ϕ_* maximises with inequality constraint. NP test has non-trival power $\alpha < \beta_{H_1}(T)$ unless $P_0 = P_1$, and is unique up to γ (randomised test) [Show T_* is UMP] UMP when $E_1[T_*] - E_1[T] \ge 0$, keyequation: $(T_* - T)(f_1 - cf_0) \ge 0$. $\Rightarrow \int (T_* - T)(f_1 - cf_0) = \beta_{H_1}(T_*) - \beta_{H_1}(T) \ge 0$. [Composite hypothesis] Simple \Rightarrow Composite when $\beta_T(\theta_0) \geq \beta_T(\theta \in H_0)$ and/or $\beta_T(\theta_0) \leq \beta_T(\theta \in H_1)$ (or does not depend on θ . For MLR this is satisfied, others need to check. [Monotone Likelihood Ratio] $\theta_2 > \theta_2$, increasing likelihood ratio in Y if $g(Y) = \frac{f_{\theta_2}(Y)}{f_{\theta_1}(Y)} > 1$ or g'(Y) > 0. For NEF, check

(3) $H_0: \theta \leq \theta_1 \text{ or } \theta \geq \theta_2 H_1: \theta_1 < \theta < \theta_2, \Rightarrow T(Y) = I(c_1 < Y < c_2), \beta_T(\theta_1) = \beta_T(\theta_2) = \alpha \text{ (UMP) Satisfy (1) pre-set size } \alpha = E_{H_0}(T)$ (2) max power $\beta_T(P) = E_{H_1}(T)$ (Neyman-Pearson) $T(X) = I(f_1(X) > cf_0(X)) + \gamma I(f_1(X) = cf_0(X))$ (unique up to randomised test) [No UMP] $H_0: \theta = \theta_1, H_1: \theta \neq \theta_1$ and $H_0: \theta \in (\theta_1, \theta_2)$ $H_1: \theta \notin (\theta_1, \theta_2)$ [Simultaneous] (Bonferroni) adjust each parameter level to $\alpha_t = \alpha/k$ (Bootstrap) Monte Carlo percentile estimate Asymptotic test [LR test] $\lambda(X) = \frac{\sup_{\theta \in \theta_0} \ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)}$ Rejects $H_0 \Leftrightarrow \lambda(X) < c \in [0,1]$. 1-param Exp Fam LR test is also UMP. Assume MLE regularity condition, under H_0 , $-2 \log \lambda(X) \to \chi_r^2$, where $r := dim(\theta) \ T(X) = I\left[\lambda(X) < \exp(-\chi_{r,1-\alpha}^2/2)\right]$ where $\chi_{r,1-\alpha}^2$ is the $(1-\alpha)$ th quantile of χ^2_r . [Asymptotic Tests] $H_0: R(\theta) = 0$, $\lim_{n \to \infty} W_n, Q_n \sim \chi^2_r$, $T(X) = I(W_n > \chi^2_{r,1-\alpha})$ or $I(Q_n > \chi^2_r)$ $\chi^2_{r,1-\alpha}$ [Wald's test] $W_n = R(\hat{\theta})^T \{C(\hat{\theta})^T I_n^{-1}(\hat{\theta})C(\hat{\theta})\}^{-1} R(\hat{\theta}) C(\theta) = \partial R(\theta)/\partial \theta, I_n(\theta)$ is fisher info for $X_1, \dots, X_n, \hat{\theta}$ is unrestricted MLE/RLE of θ . if $H_0: \theta = \theta_0 \Rightarrow R(\theta) = \theta - \theta_0$, and $W_n = (\hat{\theta} - \theta_0)^T I_n(\hat{\theta})(\hat{\theta} - \theta_0)$ [Rao's score test] $Q_n = s_n(\tilde{\theta})^T I_n^{-1}(\tilde{\theta}) s_n(\tilde{\theta})$. $s_n(\theta) = \partial \log \ell(\theta)/\partial \theta$ is score function, $\hat{\theta}$ is MLE/RLE of θ under $H_0: R(\theta) = 0$ (under H_0). Non-param tests [Sign test] $X_i \sim^{iid} F$, u is fixed constant, p = F(u), $\Delta_i = I(X_i - u \le 0)$, $P(\Delta_i = 1) = p$, $p_0 \in (0,1)$ $H_0: p \le p_0$ $H_{1}: p > p_{0} \Rightarrow T(Y) = I(Y > m), Y = \sum_{i=1}^{n} \triangle_{i} \sim Bin(n, p), m, \gamma \text{ s.t. } \alpha = E_{p_{0}}[T(Y)] \ H_{0}: p = p_{0} \ H_{1}: p \neq p_{0} \Rightarrow T(Y) = I(Y < c_{1} \text{ or } Y > c_{2}), E_{p_{0}}[T] = \alpha \text{ and } E_{p_{0}}[TY] = \alpha np_{0} \ \text{[Permutation test]} \ X_{i1}, \dots, X_{in_{i}} \sim^{iid} F_{i}, i = 1, 2 \ H_{0}: F_{1} = F_{2} \ H_{1}: F_{1} \neq F_{2}, \Rightarrow T(X) \text{ with } A_{i} = 1, 2 \ H_{0}: F_{1} = F_{2} \ H_{1}: F_{2} = F_{2} \ H_{2}: F_{1} = F_{2} \ H_{2}: F_{2} = F_{2} \ H_{3}: F_{1} = F_{2} \ H_{3}: F_{2} = F_{2} \ H_{3}: F_{3} = F_{2} \ H_{3}: F_{3} = F_{3} \ H$ $\frac{1}{n!}\sum_{z\in\pi(x)}T(z)=\alpha\;\pi(x)$ is set of n! points obtained from x by permuting components of x E.g. $T(X)=I(h(X)>h_m),\;h_m:=(m+1)^{th}$ largest $\{h(z:z\in\pi(x))\}\ \text{e.g } h(X) = |\bar{X}_1 - \bar{X}_2|\ \text{or}\ |S_1 - S_2|\ \text{[Rank test]}\ X_i \sim^{iid} F, Rank(X_i) = \#\{X_j:X_j\leq X_i\},\ H_0:F\ \text{symm and }0,\ H_1:F\}$ H_0 false, R_+^o vector of ordered R_+ . (Wilcoxon) $T(X) = I[W(R_+^o) < c_1 \text{ or } W(R_+^o > c_2)], W(R_+^o) = J(R_{+1}^o/n) + \dots + J(R_{+n_*}^o/n) c_1, c_2 \text{ are } (m+1)^{th} \text{ smallest/largest of } \{W(y): y \in \mathcal{Y}\}, \gamma = \alpha 2^n/2 - m \text{ [KS test] } X_i \sim^{iid} F H_0: F = F_0, H_1: F \neq F_0, \Rightarrow T(X) = I(D_n(F_0) > c),$ $D_n(F) = \sup_{x \in \mathcal{R}} |F_n(x) - F(x)|$ With F_n Emp CDF, and for any d, n > 0, $P(D_n(F) > d) \le 2 \exp(-2nd^2)$, [Cramer-von test] Modified KS with $T(X) = I(C_n(F_0) > c)$, $C_n(F) = \int \{F_n(x) - F(x)\}^2 dF(x) \, nC_n(F_0) \xrightarrow{D} \sum_{j=1}^{\infty} \lambda_j \chi_{1j}^2$, with $\chi_{1j}^2 \sim \chi_1^2$ and $\lambda_j = j^{-2}\pi^{-2}$ [Empirical LR] $X_{i} \sim^{iid} F, \ H_{0} : \Lambda(F) = t_{0} \ H_{1} : \Lambda(F) \neq t_{0}, \ \Rightarrow T(X) = I(ELR_{n}(X) < c) \ ELR_{n}(X) = \frac{\ell(\hat{F}_{0})}{\ell(\hat{F})}, \ \ell(G) = \prod_{i=1}^{n} P_{G}(\{x_{i}\}), \ G \in \mathcal{F}. \ \ (\mathcal{F} := 1)$ collection of CDFs, $P_G := \text{measure induced by CDF } G$) Confidence set $C(X): X \to \mathcal{B}(\Theta)$, Require $\inf_{P \in \mathcal{P}} P(\theta \in C(X)) \geq 1 - \alpha$. Conf coeff more than level (via pivotal qty) C(X) = C(X) $\{\theta: c_1 \leq \mathcal{R}(X,\theta) \leq c_2\}, \text{ not dependent on } P, \text{ common pivotal qty: } (X_i - \mu)/\sigma \text{ (invert accept region) } C(X) = \{\theta: x \in A(\theta)\},$ Acceptance region $A(\theta) = \{x : T_{\theta_0}(x) \neq 1\}$. $H_0 : \theta = \theta_0$, H_1 any [Shortest CI] (unimodal) $f'(x_0) = 0$ $f'(x) < 0, x < x_0$ and $f'(X) > 0, x > x_0$ (Pivotal $(T - \theta)/U$, f unimodal at x_0) $[T - b_*U, T - a_*U]$, shortest when $f(a_*) = f(b_*) > 0$ $a_* \leq x_0 \leq b_*$ (Pivotal T/θ , $x^2 f(x)$ unimodal at x_0) $[b_*^{-1}T, a_*^{-1}T_*]$ shortest when $a_*^2 f(a_*) = b_*^2 f(b_*) > 0$ $a_* \le x_0 \le b_*$ (General) Suppose f > 0, integrable, unimodal at x_0 , want: $\min b - a$ s.t. $\int_a^b f(x)dx$ and $a \leq b$ sol: a_*, b_* satisfy (1) $a_* \leq x_0 \leq b_*$ (2) $f(a_*) = f(b_*) > 0$ (3) $\int_{a_*}^{b_*} f(x) dx = 1 - \alpha \text{ [asym] require } \lim_{n \to \infty} P(\theta \in C(X)) \ge 1 - \alpha, \text{ (asym pivotal) } \mathcal{R}_n(X, \theta) = \hat{V}_n^{-1/2}(\hat{\theta}_n - \theta) \text{ does not depend on } P \text{ in } P(\theta) = 0$ $\lim_{t \to \infty} (LR) C(X) = \left\{ \theta : \ell(\theta, \hat{\varphi}) \ge \exp(-\chi_{r, 1-\alpha}^2 - \alpha/2) \ell(\hat{\theta}) \right\} (Wald) C(X) = \left\{ \theta : (\hat{\theta} - \theta)^T \left[C^T \left(I_n(\hat{\theta}) \right)^{-1} C \right]^{-1} (\hat{\theta} - \theta) \le \chi_{r, 1-\alpha}^2 \right\} (Rao)$ Bayesian [Method] (Bayes formula) $\frac{dP_{\theta|X}}{d\Pi} = \frac{f_{\theta}(X)}{m(X)}$. (Bayes action $\delta(x)$) arg min_a $E[L(\theta, a)|X = x]$, when $L(\theta, a) = (\theta - a)^2$, $\delta(x) = (\theta - a)^2$ $E(\theta|X=x)$. (Generalised Bayes action) $\arg\min_a \int_{\Theta} L(\theta,a) f_{\theta}(x) d\Pi$, works for improper prior where $\Pi(\Theta) \neq 1$ (Interval estimation -Credible sets) $P_{\theta|x}(\theta \in C) = \int_C p_x(\theta) d\lambda \ge 1 - \alpha$ (HPD (highest posterior dentsity)) $C(x) = \{\theta : p_x(\theta) \ge c_\alpha\}$, often shortest length credible set. Is a horizontal line in the posterior density plot. Might not have confidence level $1-\alpha$. (Hierarchical Bayes) With hyperpriors as hyper-parameters on the priors. [Empirical Bayes] Estimate hyper-parameter via data using MoM (no MLE as not independent).

 $\eta'(\theta) > 0$. [MLR] (Monotone Likelihood ratio in Y(X)) for any $\theta_1 < \theta_2$, $f_{\theta_2}(x)/f_{\theta_1}(x)$ nondecreasing in Y(x). [MLR for one-param exp fam] $\eta(\theta)$ nondecreasing in θ . [Simply NP test] $T(X) = I(Y(X) > c) + \gamma I(Y(X) = c)$ (increasing MLR, $H_0: \theta \leq \theta_0, H_1: \theta > \theta_0$) [UMP] ① $H_0: P = p_0 \ H_1: P = p_1 \Rightarrow T(X) = I(p_1(X) > cp_0(X)), \ \beta_T(p_0) = \alpha$ ② $H_0: \theta \leq \theta_0 \ H_1: \theta > \theta_0 \Rightarrow T(Y) = I(Y > c), \ \beta_T(\theta_0) = \alpha$

 $C(X) = \left\{ \theta : \left[s_n(\theta, \hat{\varphi}) \right]^T \left[I_n(\theta, \hat{\varphi}) \right]^{-1} \left[s_n(\theta, \hat{\varphi}) \right] \le \chi_{r, 1 - \alpha}^2 \right\}$

 $X_i \sim N(\mu, \sigma^2), \ \mu | \xi \sim N(\mu_0, \sigma_0^2), \ \sigma^2 \text{ known}, \ \xi = (\mu_0, \sigma_0^2), \text{ Using MoM } E_{\xi}(X|\xi) = E_{\xi}(E[X|\mu, \xi]) = E_{\xi}(\mu | \xi) = \mu_0 \approx \bar{X}, \ E_{\xi}(X^2|\xi) = E_{\xi}(\mu^2 + \sigma^2|\xi) = \sigma^2 + \mu_0^2 + \sigma_0^2 \approx \frac{1}{n} \sum_{i=1}^{n} X_i^2 \Rightarrow \sigma_0^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 - \sigma^2 \text{ [Normal posterior]} \text{ Normal posterior with prior unknown } \mu$ and known $\sigma^2 N(\mu_*(x), c^2)$: $\mu_*(x) = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \mu_0 + \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2} \bar{x}, \ c^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2} C(x) = [\mu_*(x) - cz_{1-\alpha/2}, \ \mu_*(x) + cz_{1-\alpha/2}].$ [Decision theory]

(Admissibility) (1) $\delta(X)$ unique \Rightarrow admissible, (2, 3) $r_{\delta}(\Pi) < \infty$, $\Pi(\theta) > 0$ for all θ and δ is Bayes action with respect to $\Pi \Rightarrow$ admissible.

Not true for improper priors, Improper priors require excessive risk ignorable, take limit and observe if risk is admissible. (Bias) Under squared error loss, $\delta(X)$ is biased unless $r_{\delta}(\Pi) = 0$. No applicable to improper priors. (Minimax) If T is (unique) Bayes estimator under

 Π and $R_T(\theta) = \sup_{\theta'} R_T(\theta')$ π -a.e., then T is (unique) minimax. Limit of Bayes estimators If T has constant risk and $\liminf_i r_i \geq R_T$,

then T is minimax. [Admissibility] $\delta(X)$ is a Bayes rule with prior Π , δ is admissible if (1) if δ is unique (2) If Θ is countable, $\Pi(\theta) > 0$ $\forall \Theta$. Note, not true for generalised Bayes rules unless limit is Bayes rule. [Simul est] Simultaneous estimate vector-valued $\mathcal V$ with e.g.

squared loss $L(\theta, a) = ||a - \theta||^2 = \sum_{i=1}^p (a_i - \theta_i)^2$ [Asymptotic] (Posterior Consistency) $X \sim P_{\theta_0}$ and $\Pi(U|X_n) \xrightarrow{P_{\theta_0}} 1$ for all open U containing θ_0 . (Wald type consistency) Assume $p_{\theta}(x)$ is continuous, measurable, θ_* is unique maximizer then MLE converge to true parameter θ^* P_* a.s. Furthermore, if θ^* is in the support of the prior, then posterior converges to θ^* in probability. (Posterior Robustness) all priors that lead to consistent posteriors are equivalent. [BM] Bernstein-von Mises: assume regularity conditions,

posterior $T_n = \sqrt{n}(\tilde{\theta_n} - \hat{\theta_n}) \sim \mathcal{N}(\hat{\theta}_n, V^*/n)$ asymptotically. (Well-specified) $V^* = E_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1}$ (same as MLE, with θ^* as true parameter, CI = CR) (Mis-specified) $V^* = \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta_*}(Y) \right]^{-1} = \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{$

(differ from MLE, with θ_* the projection of P_* to parameter space) (Result) $\sqrt{n} \left(\hat{\theta}_n - E_{\theta}[\theta | X_1, \cdots, X_n] \right) \xrightarrow{P} 0$ (If MLE has asym normality, so is posterior mean)

[Linear Model] $X = Z\beta + \epsilon$ (or $X_i = Z_i^T\beta + \epsilon_i$) Estimate with $b = \min_b ||X - Zb||^2 = ||X - Z\hat{\beta}||^2$, (solution = normal equation) $Z^Zb = Z^TX$ (Full rank): $\hat{\beta} = (Z^TZ)^{-1}Z^TX$ (Non-full rank): $\hat{\beta} = (Z^TZ)^{-2}Z^TX$ (A1 Gaussian noise) $\epsilon \sim N_n(0, \sigma^2 I_n)$ (A2 homoscedastic noise) $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2 I_n$ (A3 general noise) $E(\epsilon) = 0$, $Var(\epsilon) = \Sigma$ [Inference] Estimate linear combination of coefficient (General)

Necce and Suff condition: ℓ $inR(Z) = R(Z^TZ)$ (A3) LSE $\ell^T\hat{\beta}$ is unique and unbiased (A1) if $\ell \notin R(Z)$, $\ell^T\beta$ not estimable Properties Require $\ell \in R(Z) = R(Z^T Z)$ (A1) (i) LSE $\ell^T \hat{\beta}$ is UMVUE of $\ell^T \beta$, (ii) UMVUE of $\hat{\sigma}^2 = (n-r)^{-1} ||X - Z \hat{\beta}||^2$, r is rank of Z (iii) $\ell \hat{\beta}$ and $\hat{\sigma}^2$ are independent, $\ell^T \hat{\beta} \sim N(\ell^T \beta, \sigma^2 \ell^T (Z^T Z) - \ell)$, $(n-r)\hat{\sigma}/\sigma^2 \sim \chi_{n-r}^2$ (A2) LSE $\ell^T \hat{\beta}$ is BLUE (Best Linear Unbiased Estimator, best

```
as in min var) [A3] Following are equivalent: (a) \ell^T \hat{\beta} is BLUE for \ell^T \beta (also UMVUE), (b) E[\ell^T \hat{\eta}^T X) = 0, any \eta is s.t. E[\eta^T X] = 0 (c) Z^T var(\epsilon)U = 0, for U s.t. Z^T U = 0, R(U^T) + R(Z^T) = R^n (d) Var(\epsilon) = Z\Lambda_1 Z^T + U\Lambda_2 U^T, for some \Lambda_1, \Lambda_2, U s.t. Z^T U = 0, R(U^T) + R(Z^T) = R^n (e) Z(Z^T Z)^- Z^T Var(\epsilon) is symmetric [Asymptotic] \lambda_+[A] is the largest eigenvalue of A_n = (Z^T Z)^-. (Consistency) Suppose \sup_n \lambda_+[Var\epsilon)] < \infty and \lim_{n \to \infty} \lambda_+[A_n] = 0, \ell^T \hat{\beta} is consistent in MSE. (Asym Normality) \ell^T (\hat{\beta} - \beta)/\sqrt{Var(\ell^T \hat{\beta})} \to_d N(0,1) suff cond: \lambda_+[A_n] \to 0, Z_n^T A_n Z_n \to 0 as n \to \infty, and there exist \{a_n\} s.t. a_n \to \infty, a_n/a_{n+1} \to 1, Z^T Z/a_n converge to positive definite matrix. [Testing] Under A1, \ell \in R(Z), \theta_0 fixed constant, (Hypothesis testing) (simple) \ell \in R(Z), H_0: \ell^T \beta \leq \theta_0, H_1: \ell^T \beta > \theta_0, or H_0: \ell^T \beta = \theta_0, H_1: \ell^T \beta \neq \theta_0, t(X) = \frac{\ell^T \beta - \theta_0}{\sqrt{\ell^T (Z^T Z)^- \ell \sqrt{SSR/(n-r)}}} \sim t_{n-r} under H_0, UMPU reject t(X) > t_{n-r,\alpha} or |t(X)| > t_{n-r,\alpha/2} (multiple) L_{s \times p}, s \le r and all rows = \ell_j \in R(Z) H_0: L\beta = 0, H_1: L\beta \neq 0 W = \frac{(\|X - Z \hat{\beta}\|^2 - \|X - Z \hat{\beta}\|^2)/s}{\|X - Z \hat{\beta}\|^2 / (n-r)} \sim F_{s,n-r} with non-central param \sigma^{-2} \|Z\beta - \Pi_0 Z\beta\|^2, reject W > F_{s,n-r,1-\alpha} (Confidence set) Pivotal qty: R(X,\beta) = \frac{(\beta - \beta)^T Z^T Z(\beta - \beta)/p}{\|X - Z \hat{\beta}\|^2 / (n-p)} \sim F_{p,n-p}, \hat{\beta} is LSE of \beta, C(X) = \{\beta : \mathcal{R}(X,\beta) \le F_{p,n-p,1-\alpha}\} Linear models (Normal equation) Z^T Z b = Z^T X (LSE) \hat{\beta} = (Z^T Z)^- Z^T X (Generalised inverse) Moore-Penrose inverse A^+ AA^+ = A^+, A = (Z^T Z) (Projection matrix) P_Z = Z(Z^T Z)^- Z^T, P_Z^2 = P_Z, P_Z Z = Z, rank(P_Z) = tr(P_Z) = r [Assumptions] (A1 Gaussian noise) \epsilon \sim N_n(0, \sigma^2 I_n) (A2 homosecdastic noise) E(\epsilon) = 0, Var(\epsilon) = \sigma^2 I_n (A3 general noise) E(\epsilon) = 0, Var(\epsilon) = \Sigma [Estimable] Estimate \nu = \ell^T \beta for some \ell \in \mathcal{R}^p. (Necc Suff) \ell \in \mathcal{R}(Z) = \mathcal{R}(Z^T Z) (linear subspace) (A3 + above)
```