

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-142148

(43)Date of publication of application: 02.06.1995

(51)Int,CI.

H05B 3/00 H05B 3/00

G03G 15/20

(21)Application number: 05-287996

(71)Applicant: ROHM CO LTD

(22)Date of filing:

17.11.1993

(72)Inventor: TAGASHIRA FUMIAKI

(54) HEATING DEVICE

(57)Abstract:

PURPOSE: To provide a heater capable of being used in common in response to power supplies with different voltages and extend the life of heating elements by changing the resistance value of the heater via a simple action.

CONSTITUTION: Belt-like heating elements 3a-3d of a heater H have the same width, the same length, and fixed resistance values as independent heating elements. Terminals 4b of the heating elements 3a-3d are connected in parallel by wires 8 and connected to the contact 9a of a switching means 9, and wires 8b branched from the terminals 4b are connected to contacts 10a-10d of an automatic selecting means 10. The terminal 100 of the automatic selecting means 10 is connected to the contact 9b of the switching means 9. In the first state when the contact 9a is selected, the heating elements 3a-3b are connected in parallel to an AC power supply 7. In the second state when the contact 9b is selected, the contacts 10a-10b are switched in sequence at each fixed period based on a timer counting the operating time of the heater H, and only one of the heating elements 3a-3d is connected to the power supply 7 via the automatic selecting means 10.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Offic

(12)公開特許公報 (A) (11)特許出願公開番号

特開平7-142148

(43)公開日 平成7年(1995)6月2日

(51) Int. Cl. ⁶ H 0 5 B	3/00		庁内整理番号 7715-3K	FI	技術表示箇所
		3 7 0	7715— 3 K		
G 0 3 G	15/20	101			

	審査請求 未請求 請求項の数4	OL	(全6頁)		
(21)出願番号	特願平5-287996 平成5年(1993)11月17日	(71)出願人	000116024 ローム株式会社 京都府京都市右京区西院溝崎町21番地		
		(72)発明者	田頭 史明 京都市右京区西院溝崎町21番地 ローム株 式会社内		
		(74)代理人	弁理士 吉田 稔 (外3名)		

(54) 【発明の名称】発熱装置

(57)【要約】

して共用しうる発熱装置を提供することを目的とする。 【構成】 本願発明の発熱装置1は、絶縁基板2に、そ の長手方向に延びる複数の帯状発熱体3を形成してなる 加熱ヒータHと、電源7に対して上記複数の帯状発熱体 3を並列または直列に接続する第一の状態と、電源に対 して上記複数の帯状発熱体のうちの選択された一つを接 続する第二の状態とを切り換えることができる切り換え 手段9と、上記第二の状態が選択されている場合に、上 記複数の帯状発熱体から一つの帯状発熱体を順次自動的 に選択する自動選択手段10と、を備えることを特徴と している。

【目的】 利用できる商用交流電源の電圧の相違に対応

【特許請求の範囲】

【請求項1】 絶縁基板に、その長手方向に延びる複数 の帯状発熱体を形成してなる加熱ヒータと、電源に対し て上記複数の帯状発熱体を並列に接続する第一の状態 と、電源に対して上記複数の帯状発熱体のうちの選択さ れた一つを接続する第二の状態とを切り換えることがで きる切り換え手段と、上記第二の状態が選択されている 場合に、上記複数の帯状発熱体から一つの帯状発熱体を 順次自動的に選択する自動選択手段と、を備えることを 特徴とする、発熱装置。

【請求項2】 上記加熱ヒータの絶縁基板上には4つの 帯状発熱体が形成されており、上記切り換え手段によっ て第一の状態を選択して100V系の電源に対応するこ とができるとともに、第二の状態を選択して200V系 の電源に対応することができるように構成したことを特 徴とする、請求項1の発熱装置。

【請求項3】 絶縁基板に、その長手方向に延びる複数 の帯状発熱体を形成してなる加熱ヒータと、電源に対し て上記複数の帯状発熱体を直列に接続する第一の状態 と、電源に対して上記複数の帯状発熱体のうちの選択さ 20 れた一つを接続する第二の状態とを切り換えることがで きる切り換え手段と、上記第二の状態が選択されている 場合に、上記複数の帯状発熱体から一つの帯状発熱体を 順次自動的に選択する自動選択手段と、を備えることを 特徴とする、発熱装置。

【請求項4】 上記加熱ヒータの絶縁基板上には4つの 帯状発熱体が形成されており、上記切り換え手段によっ て第一の状態を選択して200V系の電源に対応するこ とができるとともに、第二の状態を選択して100V系 の電源に対応することができるように構成したことを特 30 徴とする、請求項3の発熱装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本願発明は、電子写真プロセスに おいて感光ドラムから用紙上に転写されたトナーを定着 する場合等に用いると好適な発熱装置に関し、電圧の異 なる電源に対応して共通使用することができるようにな したものに関する。

[0002]

【従来の技術】いわゆる電子写真プロセスにおいては、 感光ドラムから用紙上に転写されたトナーがヒータによ って加熱融着させられることにより、定着させられる。 このような電子写真プロセスは、乾式複写器、レーザプ リンタ、LEDプリンタ、ファクシミリの印字部等に広 く応用されている。

【0003】ところで、上記電子写真プロセスにおける 定着部の小型化、軽量化を図るとともに、使用可能温度 への昇温時間を短縮するために、上記定着用の加熱ヒー タとして、ハロゲンランプを内挿した筒型の伝統的なヒ 加熱ヒータが用いられる場合がある(たとえば特開平5 -182750号公報参照)。

【0004】かかる加熱ヒータは、セラミック等ででき た絶縁基板上に、銀・パラジウムペースト等の抵抗体ペ ーストを用いて帯状に印刷・焼成してなる発熱抵抗体を 形成するという、簡単な製造プロセスによって得ること ができるとともに、概して薄状であり、しかも発熱体両 端部間への通電後、瞬時にしてトナー定着可能温度に昇 温するため、上記電子写真プロセスにおける定着部の構 成を小型化、軽量化、低コスト化することができるのみ ならず、通電後の待ち時間をほとんど無くすことができ るという利点をもっている。

[0005]

【発明が解決しようとする課題】ところで、上記のよう な電子写真プロセスにおける定着用加熱ヒータは、大電 力を消費するため、直流安定化電源を内蔵するといった ことなく、交流商用電源をそのまま用いるのが一般であ る。

【0006】しかしながら、電子写真プロセスを組み込 んだ製品の仕向け地によっては、交流商用電源の電圧が 異なるため、従来は、仕向け地の電源電圧に応じて、抵 抗値の異なる加熱ヒータを定着部に組み込む必要があっ た。このことは、加熱ヒータとして複数種類のものを製 造しておく必要があることから、電子写真プロセスを備 える装置のコスト上昇を招くとともに部品管理も煩雑に なり、ユーザにとっても、電源電圧の異なる地域に上記 の装置を移転する場合において、その装置の使用が不可 能になるという不具合が生じることを意味している。

【0007】本願発明は、上記のような事情のもとで考 え出されたものであって、加熱ヒータの抵抗値を適宜簡 便な操作によって変更して、電圧の異なる電源に対応し て共通使用することができるともに、発熱抵抗体の寿命 を従来に比較して延長することができる発熱装置を提供 することをその課題としている。

[0008]

【課題を解決するための手段】上記の課題を解決するた め、本願発明では、次の技術的手段を講じている。

【0009】すなわち、本願の請求項1に記載した発明 装置は、絶縁基板に、その長手方向に延びる複数の帯状 発熱体を形成してなる加熱ヒータと、電源に対して上記 複数の帯状発熱体を並列に接続する第一の状態と、電源 に対して上記複数の帯状発熱体のうちの選択された一つ を接続する第二の状態とを切り換えることができる切り 換え手段と、上記第二の状態が選択されている場合に、 上記複数の帯状発熱体から一つの帯状発熱体を順次自動 的に選択する自動選択手段と、を備えることを特徴とし ている。

【0010】そして、本願の請求項2に記載した発熱装 置は、上記請求項1に記載した発熱装置において、上記 ータに代え、絶縁基板上に発熱体を帯状に配置してなる 50 加熱ヒータの絶縁基板上には4つの帯状発熱体が形成さ

れており、上記切り換え手段によって第一の状態を選択 して100V系の電源に対応することができるととも に、第二の状態を選択して200V系の電源に対応する ことができるように構成したことを特徴としている。

【0011】さらに、本願の請求項3に記載した発熱装 置は、絶縁基板に、その長手方向に延びる複数の帯状発 熱体を形成してなる加熱ヒータと、電源に対して上記複 数の帯状発熱体を直列に接続する第一の状態と、電源に 対して上記複数の帯状発熱体のうちの選択された一つを 接続する第二の状態とを切り換えることができる切り換 10 え手段と、上記第二の状態が選択されている場合に、上 記複数の帯状発熱体から一つの帯状発熱体を順次自動的 に選択する自動選択手段と、を備えることを特徴とす る、発熱装置。

【0012】さらに、本願の請求項4に記載した発熱装 置は、上記請求項3に記載した発熱装置において、上記 加熱ヒータの絶縁基板上には4つの帯状発熱体が形成さ れており、上記切り換え手段によって第一の状態を選択 して200V系の電源に対応することができるととも に、第二の状態を選択して100V系の電源に対応する 20 ことができるように構成したことを特徴としている。 [0013]

【発明の作用および効果】たとえば、100 Vの電源 と、200Vの電源を用いる場合において、いずれの場 合にも一定の発熱エネルギを得ようとすれば、加熱ヒー 夕に設けられる発熱抵抗体に流れるべき電流は、100 Vの電源を用いる場合の電流値が、200Vの電源を用 いる場合の電流値の2倍になる。このことは、100V の電源を用いる場合の発熱抵抗体の抵抗値と、200V の電源を用いる場合の発熱抵抗体の抵抗値の比を1:4 30 とする必要があることを意味する。

【0014】したがって、従来、100Vの商用電源が 利用可能な仕向け地用と、200Vの商用電源が利用可 能な仕向け地用とで、発熱抵抗体の抵抗値比を1:4と した別個の加熱ヒータを製造しておき、これらのいずれ かを仕向け地の商用電源の電圧に対応して電子写真プロ セス装置の定着部に組み込む必要があった。

【0015】本願の請求項1に記載した発明では、加熱 ヒータに複数設けられた帯状発熱体を電源に対して並列 接続する状態と、複数の発熱抵抗体の1つを電源に対し 40 て接続する状態とを選択できるようにして、この加熱ヒ ータを含む発熱装置を、製品仕向け地の商用電源の電圧 に対応して共用できるようにしている。

【0016】すなわち、請求項2においてより具体化し ているように、たとえば、加熱ヒータに設けるべき帯状 発熱体を4つとすると、これを並列に接続する場合と、 これらの1つを選択する場合とでは、全体として、加熱 ヒータの抵抗値が1:4となり、100V電源に対応す る場合には4つの帯状発熱抵抗体を並列接続する第一の 状態を選択し、200V電源に対応する場合には、一つ 50 矩形短冊状をしたセラミック等でできた絶縁基板2の上

の発熱抵抗体を用いる第二の状態を選択すれば、同様の 発熱エネルギを得ることができるようになる。

【0017】一方、本願の請求項3に記載した発明で は、加熱ヒータに複数設けられた帯状発熱体を電源に対 して直列に接続する状態と、複数の発熱体の一つを電源 に対して接続する状態とを選択できるようにして、この 加熱ヒータを含む発熱装置を、製品仕向け地の商用電源 の電圧に対応して共用できるようにしている。

【0018】すなわち、請求項4においてより具体化し ているように、たとえば、加熱ヒータに設けるべき帯状 発熱体を4つとすると、これを直列に接続する場合と、 これらの一つを選択する場合とでは、全体として、加熱 ヒータの抵抗値が4:1となり、200V電源に対応す る場合には4つの帯状発熱抵抗体を直列接続する第一の 状態を選択し、100V電源に対応する場合には、一つ の発熱抵抗体を用いる第二の状態を選択すれば、同様の 発熱エネルギを得ることができるようになる。

【0019】上記請求項1または3の発明において、そ れぞれ第一の状態と第二の状態とを切り換える切り換え 手段は、たとえばマニュアルスイッチとすることがで き、製品出荷段階において、仕向け地の商用電源電圧に 応じて、上記のマニュアルスイッチを切り換えて上記第 一の状態または第二の状態を選択しておけば、共通の発 熱装置により、仕向け地の商用電源電圧に容易に対応す ることができるのである。

【0020】それだけではなく、本願の上記各発明にお いては、たとえば4つの帯状発熱抵抗体のうちのいずれ か1つを選択する第二の状態を切り換え手段によって選 択している場合に、自動的に4つの帯状発熱抵抗体を順 次切り換え選択するようにしている。そうすると、4つ の発熱抵抗体の熱破壊による劣化の進行が平均化され、 その結果、加熱ヒータの寿命が延長されることになる。 【0021】このように、本願発明によれば、製品仕向 け地の商用電源の電圧が異なっていても、これに対応し て共通の発熱装置を使用することができるようになり、 発熱装置、とりわけ加熱ヒータの製造コストが全体とし て低減されるとともに、部品管理の煩雑さも軽減され、 これによるコストダウンを期待することもできる。ま た、加熱ヒータの寿命が、従来に比較して相対的に延長 されることになる。

[0022]

【実施例の説明】以下、本願発明の好ましい実施例を、 図面を参照して、具体的に説明する。

【0023】図1および図2は、本願発明の一形態を示 している。この発明の発熱装置1に用いられる加熱ヒー タHは、基本的には、前に紹介した特開平5-1827 50号公報に示されたこの種のヒータと同様の手法によ って作製される。

【0024】図1および図2に示されるように、平面視

面には、その長手方向に延びる所定幅の帯状発熱体3 a,3b,3c,3dが複数本互いに平行をなすようにして一括形成され、各発熱体3a,3b,3c,3dの両端部には、一部がこれに重なるようにして、導体電極部4a,4bがそれぞれ形成されている。そして、各発熱体3a,3b,3c,3dないし上記電極部4a,4bを覆うようにして、保護ガラスコーティング5が施される(図2参照)。ただし、上記導体電極部4a,4bの一部は、上記保護ガラスコーティング5に覆われることなく露出させられており、この露出部が端子部として10利用される。

【0025】上記帯状発熱体3a,3b,3c,3dは、銀・パラジウムペースト、あるいは酸化ルテニウムペースト等の抵抗体ペーストを用いて印刷・焼成等することにより、簡便に形成される。さらには、上記導体電極部4a,4bも、銀ペースト等の導体ペーストを用いて、上記帯状発熱体3a,3b,3c,3dの形成と同様の手法により、すなわち、印刷・焼成により、簡便に形成することができる。

【0026】図1に示す例において、上記加熱ヒータH 20 の帯状発熱体3a,3b,3c,3dは、4本形成されており、各帯状発熱体は、同一の幅と同一の長さをもっていて、各独立した帯状発熱体としては、一定の抵抗値をもつように形成される。そして、各帯状発熱体3a,3b,3c,3dの抵抗値は、200Vの商用交流電源を用いた場合に、所定の発熱エネルギを生じることができるように設定される。

【0027】図1にはまた、4本の帯状発熱体3a,3b,3c,3dを有する加熱ヒータHを用いた本願発明の発熱装置1の回路例を模式的に示している。各帯状発 30熱体3a,3b,3c,3dの一端側(図1の左側)端子4aには、配線6が並列接続されて交流電源7の一方の端子7aにつながれている。

【0028】そして、各発熱体3a,3b,3c,3dの他端側(図1の右側)端子4bは、配線8によって並列接続され、切り換え手段9の第一接点9aに至っているとともに、各端子から枝分かれさせられた配線8bが、自動選択手段10の各接点10a,10b,10c,10dに至っている。この自動選択手段10の選択端子10。は、上記切り換え手段9の第二の切り換え接40点9bに接続されている。また、この切り換え手段9の切り換え端子9。は、交流電源7のもう一方の端子7bに接続されている。

【0029】上記切り換え手段9は、マニュアル操作によって交流電源7を上記第一の接点9aまたは第二の接点9bに切り換え接続することができるスイッチ手段によって形成することができるが、たとえば、商用電源の電圧を自動的に検知して、その電圧値に応じて第一の接点9aまたは第二の接点9bのいずれかに自動的に接続する自動スイッチによって構成することもできる。

【0030】上記自動選択手段10は、上記切り換え手段9が第二の接点9bを選択している場合において、たとえば装置作動時間を計時するタイマに基づいて、一定時間毎に各接点10a,10b,10c,10dを順次切り換え選択するように構成することができる。また、装置の作動時間によるのではなく、この発熱装置が用い

られるプリンタ等において、印刷枚数を計数し、その計数値が一定値に達する度毎に各接点10a,10b,10c,10dを順次選択切り換えするように構成することもできる。

【0031】以上の構成において、上記切り換え手段9において第一の接点9aが選択されている場合(第一の状態)、加熱ヒータH上の4本の帯状発熱体3a,3b,3c,3dは、交流電源7に対して並列接続されることになる。こうして並列接続される4本の帯状発熱体の全体としての抵抗値は、各帯状発熱体の抵抗値の1/4となる。

【0032】一方、上記切り換え手段9において第二の接点9bが選択されている場合(第二の状態)、上記自動選択手段10を介して、加熱ヒータH上の4本の帯状発熱体3a,3b,3c,3dのうち、いずれか1本のみが交流電源7に接続されることになる。

【0033】したがって、切り換え手段9において第一の接点9aが選択されている場合と、第二の接点9bが選択されている場合における加熱ヒータH全体としての抵抗値の比は、1:4となる。

【0034】ところで、世界的にみて、交流の商用電源の電圧は、たとえば日本のような100V系と、たとえばアメリカのような200V系に分かたれる。すなわち、商用電源の電圧比は、仕向け地によって、1:2となる。

【0035】この種の発熱装置1を電子写真プロセスの 定着部における定着ヒータとして用いる場合、いずれの 仕向け地においても、加熱ヒータに要求される発熱エネルギは一定に設定される。前述したように、利用しうる 商用交流電源の電圧比が1:2である場合、一定の発熱エネルギを得るために加熱ヒータに求められる抵抗値の 比は、1:4となるのであり、したがって、上記図1に示す例の場合、100Vの電源が利用できる仕向け地用としては、上記切り換え手段9の第一の接点9aを選択し、200Vの電源が利用できる仕向け地に対しては、第二の接点9bを選択しておけば、作動時において、加熱ヒータによる発熱エネルギは一定となるのである。

【0036】したがって、上記の構成の発熱装置を用いれば、共通の発熱装置により、100V系の電源を利用できる仕向け地用と、200V系の電源を利用できる仕向け地用として、共用することが可能になる。

【0037】そのため、抵抗体材料の配合を変更するなどして抵抗値の異なる二種類の加熱ヒータを準備せざる をえなかった従来に比較して発熱装置を形成するための 製造コストがそれだけ低減できるとともに、発熱装置の 部品管理も容易となり、それによるコストダウン効果を 期待することもできる。

【0038】それだけではなく、上記発熱装置1におい ては、上記切り換え手段9によって第二の接点9bが選 択されている場合において、すなわち、200V電源用 として対応させている場合において、4つの帯状発熱体 3a, 3b, 3c, 3dを順次自動的に切り換えて選択 するようにしている。したがって、各発熱体3a,3 b, 3 c, 3 dを効率的に用いながら、それらの熱破壊 10 るプリンタ等において、印刷枚数を計数し、この計数値 による劣化の進行を平均化させることができ、したがっ て、加熱ヒータH全体としての寿命を著しく延長するこ とができる。

【0039】ところで、上記図1に示した発熱装置1 は、4つの帯状発熱体を電源に対して並列に接続する状 熊と、いずれか1つの帯状発熱体のみを電源に対して接 続する状態とを切り換えることができるようにして、抵 抗値比1:4を達成し、100V系の電源と200V系 の電源に対応することができるよにした例であるが、4 つの帯状発熱体を加熱ヒータ上に形成する場合、図3に 20 る場合には、加熱ヒータH上の4つの帯状発熱体3a, 示すように、4つの帯状発熱体3a, 3b, 3c, 3d を電源に対して直列に接続する状態と、いずれか1つの 帯状発熱体のみを電源に対して接続する状態とを切り換 えるようにしても、抵抗値比4:1を達成し、200V 系の電源と100V系の電源に対応することができるよ うにすることができる。

【0040】すなわち、図3に示す例では、加熱ヒータ H上の4つの帯状発熱体3a, 3b, 3c, 3dを直列 に接続する配線系8を電源7を挟むようにして配置した 二つの連動型切り換えスイッチ9′, 9′からなる切り 30 換え手段9の各第一の切り換え接点9a、9aに接続す る一方、各帯状発熱体3a, 3b, 3c, 3dの両端 を、それぞれが4つの切り換え接点10a, 10b, 1 0 c, 10 dをもつ二つの連動スイッチ10', 10' からなる自動選択手段10の各対応する切り換え接点に 接続している。そして、各連動スイッチ10', 10' の選択端子10。, 10。は、上記各切り換えスイッチ 9', 9'の各第二の切り換え接点9b, 9bに接続さ れている。

【0041】上記切り換え手段9を構成する二つの連動 40 型切り換えスイッチ9', 9'は、マニュアル操作によ って交流電源7を各第一の接点9 a または第二の接点9 bに切り換え接続することができるようにするほか、た とえば、商用電源の電圧を自動的に検知して、その電圧 値に応じて第一の接点9aまたは第二の接点9bのいず

れかに自動的に接続する自動スイッチによって構成する こともできる。

【0042】また、上記自動選択手段10もまた、図1 に示した実施例と同様、上記切り換え手段9が第二の接 点9bを選択している場合において、たとえば装置作動 時間を計時するタイマに基づいて、一定時間ごとに各接 点10a, 10b, 10c, 10dを順次連動して切り 換え選択するように構成することができる。また、装置 の作動時間によるのではなく、この発熱装置が用いられ が一定値に達する度ごとに各接点10a, 10b, 10 c, 10dを順次選択切り換えするように構成すること ができる。

【0043】図3に示す例において、上記切り換え手段 9の各スイッチ9', 9'が第一の接点9 a, 9 a を選 択している場合には、加熱ヒータH上の4つの帯状発熱 体3a, 3b, 3c, 3dは、電源7に対して直列に接 続されることになる。一方、上記切り換え手段9の各ス イッチ9', 9'が第二の接点9b, 9bを選択してい 3 b. 3 c. 3 dの選択した一つのみが電源7に対して 接続されることになる。それぞれが同じ抵抗値をもつ4 つの発熱抵抗体が直列に接続される場合の抵抗値は、い ずれか一つの発熱抵抗体の抵抗値の4倍であり、したが って、この図3に示す例の場合、切り換え手段9が第一 の接点9a, 9aを選択する状態が200V系の電源に 対応する状態であり、第二の接点9 b, 9 bを選択する 状態が100Vの電源に対応する状態となる。

【0044】したがって、この図3に示した例によって も、図1の例について説明したのと同様の作用効果を期 待することができる。

【図面の簡単な説明】

【図1】本願発明の発熱装置の一実施例を模式的な回路 と併せ示す平面図である。

【図2】図1のII-II線拡大断面図である。

【図3】本願発明の発熱装置の他の実施例を模式的な回 路と併せ示す平面図である。

【符号の説明】

- 1 発熱装置
- 2 絶縁基板
 - 3 a, 3 b, 3 c, 3 d 带状発熱体
 - 7 交流電源
 - 9 切り換え手段
 - 10 自動選択手段
 - H 加熱ヒータ

【図1】

[図2]

【図3】

