생산 전력의 판매 계약 체결 전략 및 매출액 추정

심민규

2025, 4, 24

4장. 생산 전력의 판매 계약 체결 전략 및 매출액 추정

- 1 개요
- 2 전략 1: 생산 시설 다각화
- 3 전략 2: 판매 계약 형태 다각화
- 4 PV-WT 발전량의 계절 변동성
- 5 결론 및 요약

연구 범위

- 지난 보고서
 - PV: 2000MW, WT: 150MW 설치 후 40MW/h 24시간 공급 시 ESS: 2000MWh 필요
- 판매 계약 체결 전략 제안
 - 전략 1: 생산 시설 다각화 (PV-WT의 포트폴리오 효과 극대화)
 - 전략 2: 판매 계약 형태 다각화 (24시간 공급 계약 + 10시간 공급 계약 등의 다양한 혼합)

제안 전략

1. 생산 시설 다각화 (WT 증설)

2. 판매 계약 형태 다각화 (24h 공급 + 10h 공급)

Capacity firming

- 변동이 큰 PV 발전 전력을 데이터센터의 고정수요에 맞춰 공급
- 방법
 - ESS를 통한 에너지 저장
 - PV-WT의 포트폴리오 효과

현재 파악된 문제 상황

- Capacity firming를 위해서 대용량 ESS 필요
- 낮 시간대에는 많은 잉여 전력 발생

제안 전략

- 4-2. 생산 시설 다각화
 - WT 증설로 PV-WT 포트폴리오 효과 극대화
- 4-3. 판매 계약 형태의 다각화
 - 시간범위를 다양하게 판매 계약 수립
 - 하루 24시간 공급 (데이터센터)
 - 하루 10시간 공급 (산업단지)

4-2. 전략 1: 생산 시설 다각화

WT 증설 시뮬레이션 수행 (170MW → 1000MW)

효과 1. 포트폴리오 효과

4-2. 전략 1: 생산 시설 다각화

WT 증설 시뮬레이션 수행 (170MW → 1000MW)

효과 2. 필요 ESS 용량 감소

• ESS용량: 8000MWh → 3000MWh (PV 2950MW, 수요 24시간 200MW/hr 공급, 99% 수요충족률 가정)

효과 3. 필요 ESS 용량 감소로 WT 설치비용 커버

표 1. WT 증설 시 전체 비용 차감 효과

	Total	PV (2950MW)	WT	ESS
WT 증설 전 (170MW)	8.5조원	4.1조원	0.4조원	4.0조원 (8GW)
WT 증설 후 (1000MW)	8.2조원	4.1조원	2.6조원	1.5조원 (3GW)

4-2. 전략 1: 생산 시설 다각화

(Appendix) 시뮬레이션 가정과 예시

- 1. 비용 가정
- 설치단가 = 직접비(모듈, 토목공사, 전기공사 등) + 간접비(설계감리, 인허가 등)

PV	WT (육상)	ESS
14억원/MW	26억원/MW	5억원/MWh

참조: 에너지경제연구원, 2023 재생에너지 공급확대를 위한 중장기 발전단가(LCOE)전망 시스템구축 및 운영

2. 발전량 예측 및 시뮬레이션

- Data 기반 연간 시간대별 PV-WT 발전량 예측 모델
 - PV data 활용: 2023년 영암군 내 타 태양광 발전소(0.9MW)
 - WT data 활용: 2023년 장흥군 병무산일대 풍력발전소 (18MW)
 - 기상청 영암지역 기상 데이터 활용
 - 365일×24시간 발전 시뮬레이션 예시:

일시	PV 발전량(MWh)	WT 발전량(MWh)	수요 전력량(MWh)	ESS 충전 상태(MWh)
1월 1일 09:00	806.7	33.4	200	500
1월 1일 10:00	1781.9	37.2	200	500
:	:	:	:	:
12월 31일 23:00	0.1	50.1	200	500
12월 31일 24:00	0.1	53.5	200	350.2

4-3. 전략 2: 판매 계약 형태 다각화

판매 계약 형태 다각화 시뮬레이션 (PV 2950MW, WT 1000MW)

시나리오 1 (데이터센터)

시나리오 2 (데이터센터+산업단지 6곳)

효과 1. 필요 ESS 용량 감소

- ESS용량: 4,000MWh → 3,750MWh

효과 2. 매출액 증대 및 잉여 전력량 감소

- 매출액: 3,388억원 → 4,386억원
- 잉여 전력량: 4,132GWh → 3,692GWh
- (잉여 전력량 없이 발전량을 전부 판매 시, 연 매출액 약 1조원 추정)

4-3. 전략 2: 판매 계약 형태 다각화

(Appendix) 매출액 추정 시의 가정

전력판매 매출액

- 매출액 = [(계약용량 × 기본요금) + (수요전력 × 전력량 요금)] × 0.9배
- 한전-산업용(을) 전기요금표를 기준으로 함
- REC 판매 등 재생E 지원 제도를 통한 수익은 고려하지 않음

표 2. 한전 산업용(을) 전기요금표

구분	기본요금 (원/kW)	전력량 요금(원/kWh)			
		시간대	여름철(6~8월)	봄·가을철 (3~5,9~10월)	겨울철(11~2월)
선택 III 8	8,090	경부하	103.1	103.1	110.0
		중간부하	156.0	126.0	155.6
		최대부하	236.9	156.4	212.2

4-4. PV-WT의 계절 변동성

PV-WT의 월별 예상 발전량 (PV 2950MW, WT 170MW)

문제 상황

- ESS로 장기 저장이 현실적으로 불가능함
- Seasonality를 가진 수요처를 개발하는 것이 바람직함
- 피크 기간 가격 차등 계약, 겨울철 공급 계약용량 축소 등 대응 전략이 필요

결론

요약

- 생산 시설 및 판매 계약 형태별 공급 안정성 및 경제성 검토
- 잉여 전력 처리에 대한 중요성을 재확인

추진전략 제언

- 1. 생산의 다각화 (PV와 WT의 포트폴리오 효과 극대화)
- 2. 수요처의 다각화 (24시간 공급 계약 + 10시간 공급 계약 등의 다양한 혼합)
- 3. 저장 방식의 다각화 (대안 ESS에 대한 조사 -> 다음 장에서 논의)

향후 연구방향

• 발주처 의견 수렴 후 진행

5장. ESS 대안 기술

- 1 개요
- 2 기술별 개요 및 분류
- 3 저장 기술 포지셔닝
- 4 실현 가능성

배 경 PV-WT 계절별 발전량 변동성 (PV 2950MW, WT 170MW)

- 11월-1월의 발전량이 평균에 크게 못 미침
 - 리튬 ESS 만으로는 수 개월의 저장이 불가능
 - 다양한 저장 기간을 가진 대안의 ESS에 대한 조사가 필요함

LiB (1M) vs RFB (6M 저장가능) 비교

Case 1. LIB 사용

- 당월에 에너지 사용
- 최대 월별 계약 공급량: 약 220 GWh

Case 2. RFB 사용

- 6개월간 에너지 저장 가능
- 월별 최대 공급량 : 약 350 GWh

→ RFB 도입 시 월별 계약의 규모를 늘릴 수 있음

5-2. 기술별 개요 및 분류

유형	최종 효율(%)	TRL	저장 가능 시간대	주요 특성	
리튬이온 배터리	85~90	9	단기 (3~4일)	높은 효율, 빠른 응답, 용량 확장성 어려움	
레독스 흐름 전지	65~80	7~8	중기 (3~6개월)	장기 저장 가능, 용량 확장 용이, 비싼 구축 비용	
수소 저장 시스템	30~40	6~7	중장기(9개월~2년)	장거리 운송 가능, 낮은 효율	
암모니아 저장 시스템	25~40	4~5	장기(수년~)	장기 저장 가능, 기존 인프라 활용, 실증 단계 기술	

5-3. 저장 기술 포지셔닝

- 리튬: 즉시 도입 가능
- 레독스: 높은 기술적 안정성, 현실적인 도입 방안, 중장기 저장
- 수소: 장기 저장, 기술적 성능 낮음. 중장기적 확보와 실증을 병행
- 암모니아: 효율성 및 기술 완성도가 가장 낮음. 연구 개발 단계

5-4. 실현 가능성

- 리튬: 즉시 도입 가능
- 레독스: 높은 기술적 안정성, 현실적인 도입 방안, 중장기 저장
- 수소: 장기 저장, 기술적 성능 낮음. 중장기적 확보와 실증을 병행
- 암모니아: 효율성 및 기술 완성도가 가장 낮음. 연구 개발 단계

5-4. 실현 가능성

연환산 비용 비교 (100MW, 10시간)

	리튬이온 배터리	RFB	수소	암모니아		
구축 비용 (CAPEX)						
저장장치 본체	약 350억 원	약 384억 원	약 424억 원	약 540억 원		
전력 변환장치(PCS)	약 22억 원	약 17억 원	약 29억 원	약 22억 원		
시스템 통합/제어장치	약 36억 원	약 58억 원	약 3억 원	약 15억 원		
설치 공사 비용	약 101억 원	약 126억 원	-	약 80억 원		
Total CAPEX	약 509억 원	약 585억 원	약 456억 원	약 657억 원		
		운영 비용 (OPEX)				
고정 운영비	약 117억 원	약 189억 원	약 290억 원	약 496억 원		
유지보수	약 66억 원	약 112억 원	약 59억 원	약 247억 원		
주요 부품 교체	약 308억 원	약 284억 원	약 25억 원	약 247억 원		
RTE 손실 전력 보충 비용	약 394억 원	약 802억 원	약 1,509억 원	약 2,345억 원		
보험/세금 등	약 73억 원	약 87억원	약 73억 원	약 94억 원		
기타 운영비	약 4억 원	약 4억 원	약 4억 원	약 15억 원		
Total OPEX	약 963억 원	약 1,478억 원	약 1,960억 원	약 3,444억 원		
총 비용 (TotalCAPEX+TotalCPEX)	약 1,472억 원	약 2,063억 원	약 2,416억 원	약 4,101억 원		
연간 비용 (기술별 수명 대비)	약 98억 원	약 103억 원	약 121억 원	약 205억 원		

5-4. 실현 가능성 - RFB 사례

다롄 프로젝트 (다롄, 중국)

• 기업 : Rongke Power/퍼시픽그린

● 용도 : **상업용**

● 2022년에 100MW/400MWh 1단계 운전 시작

● 2024년 말 200MW/800MWh로 완공되어

세계 최대 흐름전지 설비[2]

스미토모 전기 (홋카이도, 일본)

• 기업 : <u>Sumitomo</u> Electric

● 용도 : **상업용**

● 2015년 15MW/60MWh RFB 설치하여 풍력 출 력변동 완화 실증

● 2024년 가시와자키시에 1MW/8MWh <u>RFB</u> 시 스템 추가 설치[10]

5-4. 실현 가능성 - 수소 사례

ACES Delta 프로젝트 (유타주 델타시, 미국)

- 담당 : Intermountain Power Agency, Mitsubishi Power
- 용도 : 실증 프로젝트
- 2025년까지 220MW <u>알칼라인</u> 수전해 설비로 수소를 생산하여 염전굴에 저장
- 840MW 수소혼소 발전소에 공급
- 300GWh의 거대한 저장용량 설비 구축[12]

Underground Sun Storate (감페른, 오스트리아)

- 담당 : Rag Austria AG
- 용도 : 실증 프로젝트
- 지하 가스 저장소에 수소 형태로 재생 에너지 를 대규모로 저장
- 100% 효율을 목표[13]

5-4. 실현 가능성 - 수소 사례

제주 상명풍력단지 (제주, 한국)

● 담당: 한국중부발전

● 용도 : **실증 프로젝트**

● 200kW급 수전해 · 연료전지를 포함한 수소저장 실증플랜트 구축

● 도서지역 마이크로그리도에 활용[14]

거제 수소터빈 발전 실증 (거제, 한국)

● 담당: 두산에너빌리티

용도 : 실증 프로젝트

● 2027년까지 50MW의 수소터빈 발전 프로젝트 진행

● 이와 연계한 <u>수소 저장</u> 인프라 구축 예정[15]

결론

요약

- 리튬 ESS의 한계점에 대한 공유 → 대안 ESS의 불가피성
- 빠른 속도의 기술발전과 실용화를 감안하여 수소 ESS의 긍정적 검토 필요

추진전략 제언

저장 방식의 다각화 → 유연하고 기능과 위험이 분산된 저장 시설 추구

향후 연구방향

• 발주처 의견 수렴 후 진행

감사합니다