Page No.1

Exht - Detail 2	
polymer by viscosity	molecular weight of a Average method
Aim To determine the a polymer in soluti viscometer.	molecular weight of
flasks stop watch	Pald's viscometer, volumetri , standard flasts.
Reagent seguired Polyr	ner, suitable solvents.
Principle It a polymer	is soluble in a
suitable solvent, meas	urement of solution
	elar molecular weight
determination. In a	capillary viscometer
(sstwald (Vbb elhode)	the niscority of a
liquid & proportion	une of a liquid
by a known vol	une of a liquid
to flow through a	capillary under a
specified hydrostati	a pressure at a fixed
SCHOLAR STREET	Teacher's Signature :

Date
Page No. 2

temperature. The condition for the flow
should enjury that the How is lancing.
Using Poiseulle's equation it is possible
to show that it, t, n & p are the
flow time, viscosity and density of a
solution respectively; and to, no, fo are
those of the pure solvent, then
$\eta/\eta_0 = f/\rho_0 \cdot t/t_0$
The value of 1/10, is known as the
selative viscosity, pre. In dilute solutions,
which are often employed. For molecular
weight deternination, P & not nuch
different from so and hence
$\eta_{rel} = \eta_{no} = t t_0$
The specific viscosity is defined as
7 sp = 7 sel - 1
A plot of Meple vs C is a straight line for rollute solutions, the intercept
line for rolllute solutions, the intercept
$C \xrightarrow{\text{lins}} O \left(\frac{\gamma_{sp}}{C} \right) = \gamma_{int}$
C-30 (C) (the

Teacher's Signature :___

Expt. No.

SCHOLAR VRITE IT, UNE TI,

* Calculate New and Nep. Plot Reple vs C, extrapolate to C=0 to obtains nine. From the given values of K and a, calculate the molecular weight

	Print All Land Comment			CONTRACTOR OF THE PERSON OF TH	
p.in.	Concentration of the polymer dolution	Tipu of flow in sec (average)	Relative Viscosity Ned= no = tilto	Specific Viscosity Nep = Prel-1	Reduced Viscosity Reple
1.	Pure Solvent	to = 55	- 100	Daniel Control	-
2.	0.1,1.	ts = 58	1.0545	0.0545	54-5
3.	0.2.1.	ts=62	1 1 2 73	0.1273	63.6
4.	0.3.10	ts=67	1.2181	0.2181	72.7
5.	0.4%	ts = 72	1.3090	0.3090	77.2
6.	0.5%	ts=79	1.4363	0.4363	87.2

[K = 45.3 × 10-3, X = 0.64]

and the second s

Charvi Jain RA2111047010113 Scale X-axis: 2 cm - 0.1% Y-axis: 2 cm - 10 units Reduced viscosity (nsp /c) × 100 50 40 0.3 0.4 0.5 Concentration of Polynier Solution (C°10)

* Calculation

Solvent used = water Now, η int = $k \times M^{\alpha}$

Taking log on both sides log Nine = log k + log Mx

=) log nine = log x + x log M

-) × log M = log Tine - log K

From, 1int = 46.5, Given $k = 45.3 \times 10^{-3}$, x = 0.64

=) log M = log 46.5 - log 45.3 x 10-9

 $= \frac{\log 46.5 - \log 45.3 + 3 \log 10}{0.64}$ $= \frac{1.66 - 1.65 + 3}{0.64} = \frac{3.01}{0.64} = 4.703$

... M = artilog (4.703) = 50,466.13 g

Result

Jhe mountai menght of
given polymer = 50,466.139

Date
Expt. No
niscosity Mint.
The standiger-Mark-Houwink equation which relates Nint with molecular weight
Mint = K(M) «
where 'k' is an empirical parameter characteristic of a particular solution solution pair and 'a' is a shipe parameter, characteristic which can vary from about 0.5 for well woiled polymens in poor solvents to about 2. For ridgidly extended rod like polymers. From known values of k and a Molecular helight can be determined.
Preparation of variation concentration of polymer in water (solvent)
J°10 solution of polymen in neater neill be supplied. We need to prepare at least '5' délution niz. 0.1°10, 0.2°10, 0.3°10, 0.4°1- and 0.5°, polymer in neater before carring out the experiment.
Teacher's Signature :

_	Date
Expt.	Page No
	Dilutions can be done by using volumetric solution from a 1% solution, volume &
	$V_1 = V_2 \times N_2 = 100 \text{ ml } \times 0.2^{\circ}/. = 20 \text{ ml}$ $N_1 = 1^{\circ}/ \times 1^$
	Similarly, any other dilution can be prepared by the above method.
	Soup the Ostwald (or libbelhode) viscometer and measure the flow time (to) of a fixed volume of the pure solvent. Jake an average of their readings. Rinse the viscometer throughly with the most oblive solvetion, measured the flow time (t) kuping the flow-volume the same. Repeat the procedure for other solutions.

Teacher's Signature :_