

Sistemas Linux

Fernando Demarchi Natividade Luiz

Roteiro

- 1. Apresentação
- 2. História
- 3. Sistema Operacional
- 4. Arquitetura de um Sistema Linux
- 5. Laboratório (hands-on)

Quem somos?

O que é o Celtab?

O CELTAB executa projetos de pesquisa aplicada nas diversas áreas e disciplinas inerentes ao tema tecnologias livres, promovendo a transferência de tecnologia e difusão do conhecimento por meio de parcerias com instituições públicas e privadas, acadêmicas e de pesquisa, de fomento e de produção, que contribuam para o desenvolvimento de soluções inovadoras que atendam à ITAIPU, as partes interessadas, e reforcem o desenvolvimento socioeconômico e tecnológico da região.

HISTÓRIA

- Escrito por Linus Torvals em 1991;
- Departamento de Ciência da Computação da Universidade de Helsinki, Finlândia;
- Inspirado no Minix, desenvolvido por Andrew S. Tanenbaum;
- Atende às normas POSIX (Portable Operating System Interface).

Linus Torvals

Minix

```
Executing in 32-bit protected mode.
Building process table: pm fs rs ds tty mem log init.
Physical memory: total 203060 KB, system 5700 KB, free 197360 KB.
PCI: video memory for device at 0.15.0: 134217728 bytes
Root device name is /dev/c0d0p0s0
AT-DO: multiword DMA modes supported: 0 1 2
AT-D0: Ultra DMA modes supported: 0 1 2
AT-DO: Ultra DMA mode selected: 2
Replacing root
Multiuser startup in progress ...: is cmos.
/dev/c0d0p0s2 is read-write mounted on /usr
/dev/c0d0p0s1 is read-write mounted on /home
Starting services: random lance inet printer.
Starting daemons: update cron syslogd.
Starting networking: dhcpd nonamed.
Alarm call
Unable to obtain an IP address.
Local packages (start): done.
/dev/rescue is read-write mounted on /boot/rescue
Minix Release 3 Version 1.2a (console)
145-116-229-112.uilenstede.casema.nl login:
```

O Minix é um sistema operacional Unix-LIKE, criado por Andrew Tanenbaum, em 1987.

O principal objetivo do sistema era auxiliar no ensino da computação.

Unix

Ken Thompson e Dennis Ritchie

- Linus Torvalds continua no processo de desenvolvimento do Linux;
- Disponibilização do código-fonte para a comunidade;
- Desenvolvimento de suporte à outras plataformas.

GNU - GNU is Not Unix

Richard Stallman

GNU/Linux

- Linus Torvalds desenvolveu o kernel do Linux enquanto estudava na Universidade de Helsinki em 1991;
- No ano passado, 75% do código criado para o Linux foi desenvolvido por programadores que trabalham em empresas privadas;
- Em dezembro de 2009 a IBM anunciou um novo sistema Mainframe desenhado para trabalhar com Linux;
- Os sistemas baseados em Linux encontram-se em 446 dos 500 supercomputadores mais potentes do mundo;
- 95% dos servidores que se utilizam nos estúdios de Hollywood para os filmes de animação rodam Linux.

Principais Distribuições

O que é um Sistema Operacional

Um sistema operacional (SO) é um software que gerencia os recursos de hardware e software do computador, fornecendo uma interface entre o computador e o usuário.

Arquitetura de um sistema Linux

Componentes

0 kernel é o núcleo do sistema operacional e se encarrega de executar todas as funções básicas e necessárias para o funcionamento correto do sistema.

Diagrama do Kernel Linux

Figura 1 – Relação entre as aplicações, o kernel e o hardware.

Kernel - Principais Funções

- Detecção de Hardware;
- Gerenciamento de entrada e saída;
- Manutenção do sistema de arquivos;
- Gerenciamento de memória e swapping;
- Controle da fila de processos.

Bibliotecas de funções padrão

- Funções responsáveis por realizar a comunicação entre as aplicações e o núcleo do Sistema Operacional;
- Uso de funções padrões, tais como:
 - open;
 - close;
 - read;
 - write.

- Processo responsável por ler os comandos de entrada de um terminal;
- Cria novos processos à medida que são requisitados;
- Permite ao usuário trocar de interpretador (Shell) durante a sessão, tais como:
 - Bash; Sh; Dash; Fish; tcsh.

Aplicações e Usuários

- Programas com os quais os usuários interagem:
 - Editores de texto;
 - Planilhas;
 - Compiladores.

O Fllesystem Hierarchy Standard define os principais diretórios, e o seu conteúdo, em um sistema operacional Linux ou do tipo Unix.

Filesystem Hierarchy Standard

Laboratório: Comandos básicos

Cheat sheet

Comando	Ação	
cd	Entra em um novo diretório	
pwd	Lista o diretório atual do usuário	
Is	Lista arquivos e diretórios	
date	Mostra a data atual	
mkdir	Cria um diretório	
clear	Limpa a tela	
touch	Cria um arquivo vazio	
ср	Copia um arquivo ou diretório	
mv	Move um arquivo ou diretório	

Comando	Ação
shutdown -h now (sudo)	Desliga o computador
reboot (sudo)	Reinicia o computador
cat	Exibe o conteúdo de um arquivo
more / less	Exibe o conteúdo de um arquivo de forma navegável
sudo	Executa um comando como root (super usuário)
man	Exibe a função de um determinado comando

Buscando informações sobre o Sistema

Comando	Ação
cat /etc/*-release	Informações gerais sobre a distribuição utilizada
Iscpu	Lista informações sobre o processador
Ispci	Lista dispositivos PCI
Isusb	Lista dispositivos USB
free - (b k m g)	Lista informações sobre a memória
uname -a / uname -r	Lista informações sobre o kernel e arquitetura do sistema

Laboratório: Desafio 01

https://github.com/nativanando/linux-course/blob/master/desafio_01.md

Sistemas Linux - Parte 2

Fernando Demarchi Natividade Luiz

Roteiro

- 1. Gerenciadores de pacotes;
- 2. Sistema de arquivos:
 - a. Tipos de arquivos;
 - b. Permissões de arquivos.
- 3. Laboratório (hands-on).

O que é um pacote?

É um arquivo, compactado, que contém todos os arquivos (binários, shell scripts, documentação, arquivos de configuração...) necessários para a instalação da aplicação.

No mundo Linux, os principais formatos de empacotamento são:

- .deb;
- rpm.

O que é um gerenciador de pacotes?

Um gerenciador de pacotes é um software, existente em uma distribuição Linux, cuja função é facilitar a instalação, remoção, configuração e manutenção dos pacotes.

No mundo Linux existem vários gerenciadores de pacotes, sendo que os principais são o DPKG (.deb) e o RPM (.rpm).

APT e YUM

Utilitários desenvolvidos para facilitar a instalação, remoção e atualização de softwares em suas respectivas distribuições.

YUM

Utilizado para administrar pacotes .rpm

APT

Utilizado para administrar pacotes .deb

Principais comandos: APT e YUM

Ação	APT	YUM
Instalar um novo pacote	apt-get install (-y) "pacote"	yum install (-y) "pacote"
"Reinstalar" um pacote	apt-get installreinstall "pacote"	yum reinstall "pacote"
Remover um pacote	apt-get remove "pacote"	yum remove "pacote"
Atualizar a lista de repositórios	apt-get update	yum update
Atualiza a lista de repositórios e pacotes já instalados no sistema	apt-get upgrade	yum upgrade
Informações de um pacote	apt-cache show "pacote"	yum info "pacote"
Busca um determinado pacote na lista de repositórios	apt-cache search "pacote"	yum search "pacote"

Estudo de caso: VIM

- Verificar se o pacote está disponível para instalação;
- Verificar informações sobre o pacote;
- Realizar a atualização da lista de repositórios;
- Realizar a instalação do pacote;
- Remover o pacote.

Estudo de caso: git

- Verificar se o pacote está disponível para instalação;
- Verificar informações sobre o pacote;
- Realizar a atualização da lista de repositórios;
- Realizar a instalação do pacote;
- Remover o pacote.

⁶⁶Em qualquer SO, é necessário armazenar dados em arquivos e organizá-los em diretórios. Essas ações são responsabilidades de um componente chamado Sistema de arquivos.

Sistema de arquivos Linux

Inode

Todo sistema de arquivos possui uma tabela de inodes e cada arquivo possui um inode associado a ele.

Tipos de arquivos

Tipo do arquivo	Simbolo	Definição e exemplos
Arquivo regular	-	Executável, texto, imagem.
Diretório	d	diretórios -
Arquivos de dispositivos	С	I/O, portas seriais, discos rígidos.
Socket	S	Comunicação bilateral entre procesos, ex: datagram socket (UDP), stream socket (TCP).
Named pipe	р	Permite a comunicação entre dois processos em uma mesma máquina.
Symbolic link	I .	Ponteiro para um arquivo existente

Permissões de arquivos

- Nove bits controlam quem poder ler, escrever e executar um arquivo.
- O linux define permissões em três camadas:
 - Dono do arquivo;
 - Grupo ao qual o arquivo pertence;
 - Outros usuários do sistema.

Permissões de arquivos

Permissão	Binário	Decimal
	000	0
X	001	1
-W-	010	2
-WX	011	3
r	100	4
r-x	101	5
ľW-	110	6
rwx	111	7

Comandos importantes

Comando	Ação
chown <novodono>:<novogrupo> <arquivo></arquivo></novogrupo></novodono>	Altera o dono e o grupo de um determinado arquivo
chmod "permissoes" arquivo	Altera a permissão de um determinado arquivo

Laboratório: Desafio 02

https://github.com/nativanando/linux-course/blob/master/desafio_02.md

Grupos e usuários

Grupos

A criação de grupos de usuários geralmente é feita para controlar o acesso a arquivos ou serviços. Cada grupo possui um nome e um identificador numérico único.

Essas informações podem ser encontradas nos arquivos /etc/group - /etc/gshadow

Arquivo /etc/group

Campo	Propósito
1 - Nome	Contém o nome do grupo
2 - Senha (x)	Contém a senha do grupo
3 - GID	Identificador numérico do grupo
4 - Lista de usuários	Lista de usuários pertencentes ao grupo, separados por ","

Adicionando e removendo grupos

Comando	Ação
addgroup "grupo"	Adicionar um novo grupo ao sistema
groupdel "grupo"	Exclui um grupo do sistema
groups "usuario"	Grupos que o usuário pertence
addgroup "usuario" "grupo"	Adicionar um usuário a um grupo
deluser "usuario" "grupo"	Excluir um usuário de um grupo

Usuários

No linux, apenas os usuários cadastrados podem acessar o sistema. Eles são identificados por:

- Um nome e uma senha;
- Um diretório de trabalho;
- Um interpretador de comandos (shell);
- Um identificador único.

/etc/passwd

Comandos para adicionar e remover usuários

Comando	Ação
adduserhome /home/diretorio usuario	Adicionar um novo usuário ao sistema
deluserremove-home usuario	Remover um usuário do sistema

Laboratório: Desafio 03

https://github.com/nativanando/linux-course/blob/master/desfaio_03.md

fernando.luiz@pti.org.br

Fernando Natividade

<u>Material</u>