[복습] 최적화, 초기화, 정규화

학습 목표

• Day2에 배웠던 내용들을 복습해본다.

최적화

Gradient Descent

Gradient Descent

Parameter Update

$$heta^+ = heta - lpha rac{\partial J}{\partial heta}$$
 Step Size ______ Gradient

3D View

훈련 단위

Gradient Descent Trajectory

[그림] https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Issue 학습률이 자동으로 조정되지 않는다.

Gradient Descent 수렴 경로

학습률이 큰 경우 2.00 1.75 1.50 1.25 2 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -0.50 0.25 0.00 -0.25 -0.50 -0.75 -0.50

최소점 부근에서 수렴하지 못하고 진동

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Issue III-Conditioning 상태에서는 잘 수렴되지 않는다.

[그림] Convex Optimization, Stephen Boyd, Lieven Vandenberghe

$$f(x) = \frac{1}{2}(x_1^2 + 10x_2^2)$$

condition number: 10

Condition number란?

- 타원에서의 장축과 단축의 비율
- Hessian 행렬에서 가장 큰 singular value와 가장 작은 singular value의 비율

Issue 임계점에서 탈출하지 못한다.

Saddle Point

어떤 차원으로는 Maximum이고 어떤 차원으로는 Minimum인 지점

차원이 높아질수록 Saddle Point가 많아진다!

Issue Summary

Stochastic Gradient Descent는

- 경사에 따라 학습률이 자동으로 조정되지 않는다.
- III-Conditioning 상태에서는 잘 수렴되지 않는다.
- 임계점에서 탈출하지 못한다.
- 수렴 경로가 많이 왔다 갔다 한다.

SGD + Momentum

SGD + Momentum

• ρ : "friction" 마찰 계수로 0.9이나 0.99를 사용

$$x_{t+1} = x_t - \alpha v_{t+1}$$

장점

Local Minima & Saddle Point

장점

<u>SGD</u>

SGD+Momentum

•+ Gets to the optimal quicker

11

http://www.thushv.com/deep-learning/a-practical-guide-to-understanding-stochastic-optimization-methods-workhorse-of-machine-learning/

단점

SGD+Momentum

- 최소점에 도달한 이후에도 Overshooting 될 수 있음
 즉, 현재 Gradient가 작더라도 Velocity가 크면 최적 화가 계속 진행됨

AdaGrad

경로의 변화가 크면 적은 폭으로 이동하고 변화가 없으면 큰 폭으로 이동하자!

변화량에 따라 자동으로 조절되게 할 수는 없을까?

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

AdaGrad

총 Gradient 크기는 전체 변화량이므로 이것으로 학습률을 정해보자!

총 Gradient의 크기 =
$$\|\nabla f(x)\|_2 = \sqrt{\nabla f(x_1)^2 + \nabla f(x_2)^2 + \dots + \nabla f(x_n)^2}$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\| \nabla f(x) \|_2}$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)^2}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

AdaGrad: adaptive gradient algorithm

장점

$$r_{t+1} = r_t + \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

- 모델 파라미터 별로 개별적인 Learning Rate를 갖게 되는 효과
- "Per-parameter learning rates" or "adaptive learning rates"

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

단점

경로가 길어질수록 총 Gradient 크기가 점점 커지는 문제 발생

- Convex 문제에 적합
- 신경망에서는 훈련 초반부터 학습률이 급격히 감소하는 문제가 있음

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

RMSProp

최근 변화량을 중심으로 이동 폭을 정해보자

RMSProp

지수 가중 이동 평균 (Exponentially Weighted Moving Average)

$$r_{t+1} = \alpha r_t + (1 - \alpha) \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha \nabla f(x_t)}{\sqrt{r_{t+1}} + \epsilon}$$

α: 가중치 0.9 사용

 ϵ : 분모가 0이 되기 않게 더해주는 상수 (1e-7 or 1e-8 사용)

18

RMSPop: Root Mean Square Propagation

Adam

Adaptive Moments 전략

Momentum

+

Adaptive Learning Rate

Adam

19

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$
 first momentum (velocity)

$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$
 second momentum (sum of squared gradient)

$$x_{t+1} = x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon}$$

 ϵ : 분모가 0이 되기 않게 더해주는 상수

Adam (almost)

•
$$\beta_1 = 0.9, \beta_2 = 0.999$$

• learning_rate α = 1e-3 or 5e-4

$$v_0 = 0, r_0 = 0$$

for t in range(1, num_iterations):

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$
$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$x_{t+1} = x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon}$$

첫번째 단계에서 어떤 일이 벌어질까요?

$$v_1 = 0.1 * \nabla f(x_0)$$

 $r_1 = 0.001 * \nabla f(x_0)^2$

- $r_0 = 0$ 으로 시작하므로 r_1 이 매우 작은 숫자가 됨 따라서, step size가 매우 커져서 최적화에 좋지 않은 지점으로 이동할 수 있음

RMSProp 역시 훈련 초반에 크게 편향되는 문제가 있음

Algorithm

$$v_0 = 0, r_0 = 0$$

for t in range(1, num_iterations):

$$v_{t+1} = \beta_1 v_t + (1 - \beta_1) \nabla f(x_t)$$

$$r_{t+1} = \beta_2 r_t + (1 - \beta_2) \nabla f(x_t)^2$$

$$v_{t+1} = \frac{v_{t+1}}{(1 - \beta_1^t)}$$

$$r_{t+1} = \frac{r_{t+1}}{(1 - \beta_2^t)}$$

$$x_{t+1} = x_t - \frac{\alpha v_{t+1}}{\sqrt{r_{t+1}} + \epsilon}$$

훈련 초반에 발생하는 편향을 제거

$$v_1 = \nabla f(x_0)$$

$$r_1 = \nabla f(x_0)^2$$

- t가 커질수록 분모항이 1로 수렴하므로 원래의 식으로 복원됨

초기화 (Initialization)

가중치 초기화란?

초기화 문제는 손실 곡면의 어느 위치에서 출발하면 좋은 지의 문제

 θ : 파라미터

가우시안 분포 초기화 – 분산이 작은 경우

Activation 분포

Activation이 점점 0으로 변화

- Layer가 10개
- Layer 별 뉴런은 500개
- tanh 사용
- 초기화 : 분산이 0.01

W = 0.01 * np.random.randn(D, H)

Activation이 0이면 Gradient도 0! 학습이 진행되지 않음!

24

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

가우시안 분포 초기화 – 분산이 큰 경우

• 초기화 : 분산이 1

W = 1.0 * np.random.randn(fan_in, fan_out)

- 가중치가 커지면 tanh 입력 값이 커짐
- 따라서, tanh가 saturation 되어 출력이 1이나 -1로 값이 편향됨

Gradient Saturation이 일어나 학습이 진행되지 않음!

25

Saturated Activation (-1 or 1)

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

입력과 출력의 분산이 같아지도록 가중치로 초기화하자!

x의 분산과 y의 분산을 같게 하려면?

$$y=n=w_1x_1+w_2x_2+\cdots+w_nx_n+b$$
 x_i 와 w_i 는 독립이고 iid $Var(x_iw_i)=Var(x_i)Var(w_i)$ 이므로 $Var(y)=nVar(x_i)Var(w_i)$ $Var(x_i)=Var(y)$ $Var(x_i)=\frac{1}{n}$

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

각 Layer 마다 Unit-Gaussian Input 및 Output을 근사하게 됨

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

5000

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

Non-Linear Activation인 ReLU를 사용하면?

- 정규 분포의 음수 영역이 ReLU Activation 과정에서 0으로 바뀜
- Layer가 깊어질수록 Activation이 점점 0으로 치우치게 됨

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

Activation 분포

Activation이 점점 0으로 변화

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

He Initialization

가중치의 분산을 2배로 키워서 Activation을 넓게 퍼지게 만든

$$y = w_0 x_0 + w_1 x_1 + \dots + w_{n-1} x_{n-1} + b$$

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He (2015)

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

He Initialization

Activation 분포

Activation이 균일하게 분포

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

정규화

정규화 (Regularization)

정규화란?

- 일반화 오류가 최소화 되도록 학습 알고리즘을 보완하는 기법
- 일반화 오류가 작다는 것은 새로운 입력에 대해 얼마나 잘 예측을 잘 하는가를 의미
- Underfitting이나 Overfitting을 막는 방법

정규화 기법

✓ 배치 정규화 (Batch Normalization)

⊘ 앙상블 (Ensemble)

노이즈 추가 (Noise Robustness)

⊘ 학습 조기 종료 (Early Stopping)

다중 태스크 학습 (Multi-task learning)

⊘ 데이터 확장 (Data Augmentation)

파라미터 공유 (Parameter Sharing)

✓ 드롭아웃 (Dropout)

다양한 연구가 활발히 진행 중

Internal Covariate Shift

Deep Neural Net의 학습이 어려운 이유는?

• 훈련을 할 때마다 입력 데이터의 분포가 각 계층에서 Shift 되어 원래 분포에서 멀어지게 됨

"Internal covariate shift"

↓ 작은 학습률 사용 가중치를 신중하게 초기화

But, 학습 속도가 느리고 어렵다!

하위 계층의 작은 오차가 상위 계층 으로 갈수록 큰 영향을 주게 됨

36

배치 정규화

모든 계층의 데이터 분포가 Zero-Mean Unit-Variance가 되게 해보자!

각 뉴런에서 입력 데이터를 정규화

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

입력 데이터의 각 차원 별로 평균과 분산을 구해서 $\mathcal{N}(0,1)$ 정규화

데이터 분포가 동일한 분포로 유지됨

37

Scale and Shift

내부 공변량이 이동이 제거된 원래의 분포로 만들어 보자!

Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

Scale and Shift

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

Mean & Variance Learning

$$\gamma^{(k)} = \sqrt{Var[x^{(k)}]}$$
$$\beta^{(k)} = \mathbb{E}[x^{(k)}]$$

데이터 분포를 가장 잘 표현하는 평균과 분산을 학습

Extra Flexibility!

어떤 가중치가 좋은가?

결정 경계 (Decision boundary):

$$wx = b$$

양 변에 2를 곱하면 해인 x가 달라지는가?

$$2wx = 2b$$

Q. w와 2w 중 어떤 것이 좋은 가중치인가?

w가 작을 수록 variance를 줄어들어 최적화가 용이해지고 과적합이 방지된다.

가중치 감소 (Weight Decay)

$$\tilde{J}(W;X,y)=J(W;X,y)+\lambda R(W)$$
 $\lambda: 전대화 상수$

Data Loss

모델 오차가 최소화 기중치 크기를 작게 만들어 모델이 과적합 되지 않게 함

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

40

Regularizer 종류

L₂ Regularizer

$$\tilde{J}(\boldsymbol{W};\boldsymbol{X},\boldsymbol{y}) = J(\boldsymbol{W};\boldsymbol{X},\boldsymbol{y}) + \frac{\lambda}{2} \| \boldsymbol{W} \|_2^2$$

리지 회귀 Ridge regression

L_1 Regularizer

$$\tilde{J}(\boldsymbol{W}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{W}; \boldsymbol{X}, \boldsymbol{y}) + \lambda \parallel \boldsymbol{W} \parallel_1^2$$

라소 회귀 Rasso regression

Parameter Norm Penalty 형태로 Prior에 따라 다양한 Norm을 사용할 수 있음

조기 종료 (Early Stopping)

- 훈련을 하면서 주기적으로 검증을 해서 오차가 높아지거나 정확도가 내려가면 종료
- 가장 성능이 좋은 모델의 스냅샷을 저장해 두었다가 사용

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

42

데이터 확장 (Data Augmentation)

일반화를 위해 가장 좋은 방법은 많은 데이터로 훈련시키는 것!

데이터 확장이 결합된 학습 과정

Classification과 같은 transformation invariant task에 매우 적합

이미지 데이터 확장 기법

여러 방법들을 혼합해서 사용

- translation
- rotation
- stretching
- shearing
- lens distortions (warping)

44

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

앙상블 (Ensemble)

"여러 단순한 모델을 합쳐서 예측 정확도를 높이는 방법"

배깅 (Bagging)

- 일종의 Model Averaging 기법
- 모델의 종류는 상관 없음
- 데이터는 부트스트랩 방식으로 모델의 개수만큼 생성해서 병렬 실행

각 모델의 결과는 Voting을 거쳐서 결정

드롭아웃 (Dropout)

"한 신경망 모델에서 무한히 많은 모델을 생성하는 일종의 배깅(Bagging) 방법"

<u>신경망</u>

드롭아웃 적용 신경망

46

- 미니 배치 실행 시마다 뉴런을 랜덤하게 dropout해서 새로운 모델을 만드는 방법
 계산 시간이 거의 들지 않고 다양한 모델에 대해 정규화 할 수 있는 강력한 방법
- 배깅과 다른 점은 파라미터를 모든 모델이 공유한다는 점

"Dropout: A simple way to prevent neural networks from overfitting", Srivastava et al, JMLR 2014

추론 방식

Output at test time = Expected output at training time

추론 방식

훈련

$$\mathbb{E}[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y) + \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$$

$$= \frac{1}{2}(w_1x + w_2y)$$
평균을 구하게 되면 Dropout의 뉴런 유지 확률과 동일

변호트 가중치에 Dropout의 확률을 곱해 중
$$\mathbb{E}[a] = w_1 x + w_2 y$$
 \longrightarrow $\mathbb{E}[a] = \frac{1}{2}(w_1 x + w_2 y)$

Weight scaling inference rule

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

Thank you!

