Московский государственный технический университет имени Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ДОКЛАД на тему

МОДЕЛИРОВАНИЕ ДЕГРАДАЦИИ В ГЕТЕРОСТРУКТУРАХ НА ПРИМЕРЕ РТГС

Содержание

BE	ведени	e			4			
1	Teop	етическ	я часть		5			
	1.1	Полу	роводник		5			
		1.1.1	Зонная структура		5			
		1.1.2	Зонная диаграмма		6			
		1.1.3	Плотность состояний		7			
		1.1.4	Концентрация носителей заряда		8			
		1.1	4.1 Собственный полупроводник		9			
		1.1	4.2 Легированный полупроводни	К	10			
	1.2	Разме	рное квантование		11			
	1.3	Гетер	оструктура		14			
		1.3.1	Зонная диаграмма гетероперехода.		14			
		1.3.2	Уравнение Пуассона-Больцмана		14			
	1.4	.4 Деградация приборов на основе гетероструктур						
	1.5 Диффузия							
		1.5.1	Законы Фика		16			
		1.5.2	Механизмы диффузии		16			
		1.5.3	Коэффициент диффузии		16			
	1.6	1.6 Токоперенос через ГС						
	1.7	1.7 Метод конечных разностей для решения одномерного						
		неста	ционарного уравнения диффузии		19			
		1.7.1	Коэффициент диффузии не зависит	от концентрации	19			
		1.7.2	Коэффициент диффузии зависит от	концентрации	21			
	1.8	Мето	конечных разностей для расчета тог	коперенос через				
		гетер	оструктуру		22			
2	Исследование параметров РТГС на основе $Al_xGa_{1-x}As$							
	2.1	Иссле	дование парметров ямы		23			
		2.1.1	Исследование глубины ямы		23			
		2.1	1.1 BAX PTΓC		23			
		2.1	1.2 Прозрачность РТГС		23			
		2.1.2	Исследование ширины ямы		23			
		2.1	2.1 BAX PTΓC		23			

		2.1.2.2	Прозрачность РТГС	23	
	2.2	Исследовани	ие парметров барьеров	24	
		2.2.1 Иссле	едование высоты барьеров	24	
		2.2.1.1	BAX PTΓC	24	
		2.2.1.2	Прозрачность РТГС	24	
		2.2.2 Иссле	едование ширины барьеров	24	
		2.2.2.1	BAX PTΓC	24	
		2.2.2.2	Прозрачность РТГС	24	
	2.3	Исследовани	ие парметров спейсеров	25	
		2.3.1 Иссле	едование влияния размеров спейсера	25	
		2.3.1.1	BAX PTΓC	25	
		2.3.1.2	Прозрачность РТГС	25	
		2.3.1.3	Концентрация электронов в РТГС	25	
3	Моде	лирование дег	радации РТГС на основе $Al_xGa_{1-x}As$	26	
	3.1 Дуффузионное расплытие активной области				
	3.2 Диффузия легирующей примесита				

Введение

Цель работы:

а) Изучение процессов деградации гетероструктур.

Задача работы:

а) Получить модель описывающую процессы деградации в гетероструктурах.

1 Теоретическая часть

1.1 Полупроводник

Рассматривая полупродники, мы будем говорить о кристалических телах. Для анализа таких тел необходимо решить уравнение Шредингера для нахождения, к примеру, энергитеских уровней. В целях упрощения задачи и сохранения наиболее характерных черт системы в Зонной теории вводится ряд допущений [?]:

- а) Атомные ядра являются неподвижными источниками поля, действующего на электроны;
- б) Расположения атомных ядер в пространстве является строго переодичным: они распологаются в узлах идеальной кристалической решетки;
- в) Взаимодейсвие электронов друг с другом заменяется некоторым внешним полем.

1.1.1 Зонная структура

В следствии симметрии и переодичности идеального кристалла по разлиным направлениям и теории Блоха, для описания дисперсии электронов используют зоны Бриллюэна. Так как закон дисперсии переодичен на всем кристалле, для его описания можно использовать только первую зону Бриллюэна.

Рисунок 1.1 — Зонная структура GaAs

Рисунок 1.2— Элементарная ячейка типа Цинковой обманки

1.1.2 Зонная диаграмма

Для наглядного представления и сравнения полупроводников и других материалов удобно использовать зонную диаграмму (рис. 1.3).

Рисунок 1.3 — Характерный вид зонной диаграммы для различных материалов

где E_c — дно зоны проводимости (ЗП);

 E_v — потолок валентной зоны (ВЗ);

 E_{F} — уровень (квазиуровень) Ферми;

 E_g — запрещенная зона (33);

 χ — электронное сродство;

 φ — работа выхода.

Параметры зонной структуры $Al_xGa_{1-x}As$ приведены в табл. 1.1.

Таблица 1.1 — Основные параметры $Al_xGa_{1-x}As$

Параметр	$Al_xGa_{1-x}As$
Кристаллическая структура	Типа цинковой обманки
Постоянная решетки $a[nm]$	0.56533 + 0.00078x
$E_g^{\Gamma}[eV], x < 0.45$	1.424 + 1.247x
$E_g^{\Gamma}[eV], x > 0.45$	$1.656 + 0.215x + 0.143x^2$
m_e^Γ	0.067 + 0.083x
m_{lh}	0.082 + 0.071x
$N_{atoms}[1/sm^{-3}]$	$(4.42 - 0.17x)10^{22}$

1.1.3 Плотность состояний

Для вычисления числа электронов в зоне проводимости (ЗП) необходимо знать количество разрешенных состояний в ЗП. Для этого рассмотрим фазовое пространство, в котором объем $V_{\rm фаз}$ занимаемый одним электроном:

$$V_{\phi a3} = V_{xyz} V_{p_x p_y p_z}; \tag{1.1}$$

$$V_{xyz} = xyz; (1.2)$$

$$V_{p_x p_y p_z} = \frac{4}{3} \pi p^3; (1.3)$$

$$p = \sqrt{2mE},\tag{1.4}$$

где V_{xyz} — объем в координатном пространстве;

 $V_{p_xp_yp_z}$ — объем в импульсном пространстве.

Согласно закону Гейзенбега:

$$\Delta p_x \Delta x \geqslant h,\tag{1.5}$$

где h — постоянная Планка.

Тогда для трехмерного движения неопределенность составит:

$$\Delta p_x \Delta x \Delta p_y \Delta y \Delta p_z \Delta z \geqslant h^3 \tag{1.6}$$

Из (1.1), (1.2), (1.3), (1.6) получим полное число электронов (N(p)) в единичном объеме:

$$N(p) = 2 * \frac{V_{\phi a3}}{V_{xyz}h^3} = \frac{8\pi p^3}{3h^3} \Rightarrow$$
 (1.7)

$$\Rightarrow N(E) = \frac{8\pi (2mE)^{3/2}}{3h^3}.$$
 (1.8)

Двойка появилась из-за того, что электрон имеет квантовое спиновое число равное $\pm 1/2$, и два электрона с разным спином могут занимать одно состояние.

Плотность разрешённых состояний (g(E)) — число электронов в единице объёма с энергией E, приходящихся на единичный интервал энергии. По определению:

$$g(E) = \frac{d}{dE} N(E) = \frac{4\pi (2m)^{3/2}}{h^2} \sqrt{E}.$$
 (1.9)

1.1.4 Концентрация носителей заряда

Так как электроны имеют полуцелый спин (фермионы) — они подчиняются статистике Ферми-Дирака:

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}},\tag{1.10}$$

где E — энергия электрона;

 E_F — уровень Ферми;

 k_{B} — постоянная Больцмана;

T — температура;

 k_BT — «опорный» потенциал.

Физический смысл статистики Ферми-Дирака: вероятность электрона иметь энергию равную E.

Рисунок 1.4 — Статистика Ферми-Дирака

Концентрацию электронов (n) зависит от плотности состояний (g(E)) в ЗП и функции распределения электронов по энергиям (f(E)):

$$n = \int_{0}^{+\infty} g(E)f(E) dE = \frac{2^{1/2}m^{3/2}}{\pi^{2}\hbar^{3}} \int_{0}^{+\infty} \frac{\sqrt{E}}{e^{\frac{E-\mu}{kT}} + 1} dE,$$
 (1.11)

где \hbar — постоянная Дирака.

1.1.4.1 Собственный полупроводник

В случаи собственного проводника, когда уровень Ферми лежит в центре 33, и полупроводник является невырожденным расчет интеграла (1.11) упрощается в приближении идеального электронного газа (Максвелла-Больцмана):

$$n = \int_{0}^{+\infty} g(E) f_{FD}(E) dE \approx \int_{0}^{+\infty} g(E) f_{MB}(E) dE =$$

$$= \frac{2^{1/2} m^{3/2}}{\pi^2 \hbar^3} e^{-\frac{E_c - E_F}{k_B T}} \int_{0}^{+\infty} E^{1/2} e^{-E} dE = \frac{m^{3/2}}{2^{1/2} \pi^{3/2} \hbar^3} e^{-\frac{E_c - E_F}{k_B T}};$$

$$n = N_c e^{-\frac{E_c - E_F}{k_B T}}; (1.12)$$

$$N_c = 2\left(\frac{m}{2\pi\hbar^2}\right)^{3/2},\tag{1.13}$$

где N_c — эффективная плотность состояний в ЗП;

 E_c — энергия дна ЗП;

m — эффективная масса электрона в ЗП.

Проведя аналогичные рассуждения для дырок в ВЗ получим:

$$p = N_v e^{-\frac{E_F - E_v}{k_B T}}; (1.14)$$

$$N_v = 2\left(\frac{m}{2\pi\hbar^2}\right)^{3/2},\tag{1.15}$$

где N_v — эффективная плотность состояний в ВЗ;

 E_v — энергия потолка ВЗ;

m - эффективная масса дырки в ВЗ.

Так как в чистом (*intrinsic*) полупроводнике количество дырок равно количеству, перемножив обе части получим:

$$np = n_i^2 = N_c N_v e^{-\frac{E_F - E_v}{k_B T}} e^{-\frac{E_C - E_F}{k_B T}} = N_c N_v e^{-\frac{E_C - E_v}{k_B T}};$$
(1.16)

$$n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_B T}}, \tag{1.17}$$

где n_i — концентрация собственных носителей заряда;

 E_q — ширина 33;

 N_v — эффективная плотность состояний в ВЗ;

 N_c — эффективная плотность состояний в 3Π .

Формула (1.16) называется «законом действующий масс».

1.1.4.2 Легированный полупроводник

При легировании полупроводника донорной или акцепторной примесью, уровень Ферми подымается к дну ЗП или опускается к потолку ВЗ соответственно.

Если разница между дном ЗП (потолком ВЗ) и уровнем Ферми превышает несколько энергий теплового колебания и уровень Ферми лежит в ЗЗ, то полупроводник невырожденный:

$$E_c - E_F > 3k_B T; (1.18)$$

$$E_F - E_v > 3k_B T. \tag{1.19}$$

1.2 Размерное квантование

Квантоворазмерный эффект (квантовый размерный эффект) — изменение термодинамических и кинетических свойств кристалла, когда хотя бы один из его геометрических размеров становится соизмеримым с длиной волны де Бройля электронов. Этот эффект связан с квантованием энергии носителей заряда, движение которых ограничено в одном, двух или трёх направлениях.

Волны де Бройля — волны вероятности, определяющие плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.

$$\lambda = \frac{h}{p} = \frac{h}{\hbar k} = \frac{h}{mv};$$

$$\psi(x,t) = A * e^{\frac{i}{\hbar}(px - Et)} = A * e^{i(kx - \omega t)}.$$

Чтобы лучше понимать размерное квантование определим количество квантовых состояний и плотность состояний.

Рассмотрим 3D кристалл (bulk):

Рисунок 1.5 — к-пространство (шар)

Число состояний частицы G(E) и плотность состояний g(E), энергия которых не превышает некоторого фиксированного значения E, нахо-

дятся из формул:

$$G(E) = \frac{V_{sphere}}{V_{single-state}} = J_z \frac{\frac{1}{8} \frac{4}{3} \pi k^3}{\frac{\pi^3}{V}} = \frac{k^3 V}{3\pi^2} = \frac{(2m)^{\frac{3}{2}} V}{3\pi^2 \hbar^3} E^{\frac{3}{2}};$$

$$k = \frac{\sqrt{2mE}}{\hbar};$$

$$g(E) = \frac{dG(E)}{dE} = \frac{(2E)^{\frac{1}{2}} m^{\frac{3}{2}}}{\pi^2 \hbar^3} V.$$

Рассмотрим 2D кристалл (well):

Рисунок 1.6 — k-пространство (круг)

$$G(E) = \frac{V_{circul}}{V_{single-state}} = J_z \frac{\frac{1}{4}\pi k^2}{\frac{\pi^2}{S}} = \frac{k^2}{2\pi} = \frac{mS}{\pi\hbar^2} E;$$
$$g(E) = \frac{dG(E)}{dE} = \frac{m}{\pi\hbar^2} S.$$

Рассмотрим 1D кристалл (wire):

Рисунок 1.7 - k-пространство (линия)

$$G(E) = \frac{V_{line}}{V_{single-state}} = J_z \frac{k}{\frac{\pi}{L}} = \frac{kL}{pi} = \frac{\sqrt{2mL}}{\pi\hbar} E^{\frac{1}{2}};$$
$$g(E) = \frac{dG(E)}{dE} = \frac{\sqrt{mL}}{\sqrt{2\pi\hbar}} E^{-\frac{1}{2}}.$$

 J_z — определяет число состояний не связанных с перемещением частицы в пространстве (например, число возможных проекций спина). В нашем случае, для электрона $J_z=2$.

Рисунок 1.8 — Плотность состояний в 3D, 2D, 1D, 0D, где $g(E) = \rho_{energy}$

Таблица 1.2 — Основные параметры $Al_xGa_{1-x}As$

Dispersion (kinetic energy)	Density of state	Effective density
$\frac{\hbar^2}{2m}(k_x^2 + k_y^2 + k_z^2)$	$rac{2^{rac{1}{2}m^{rac{3}{2}}}}{\pi^2\hbar^3}E^{rac{1}{2}}$	$\frac{(2m)^{\frac{3}{2}}}{3\pi^2\hbar^3}E^{\frac{3}{2}}$
$\frac{\hbar^2}{2m}(k_x^2 + k_y^2) + \frac{\pi^2 \hbar^2 n^2}{2mL^2}$	$rac{m}{\pi\hbar^2}$	$\frac{m}{\pi\hbar^2}E$
$\frac{\hbar^2}{2m}(k_x^2) + \frac{\pi^2\hbar^2}{2m} \left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{L_2^2}\right)$	$\frac{\sqrt{m}}{\sqrt{2}\pi\hbar}E^{-\frac{1}{2}}$	$\frac{\sqrt{2m}}{\pi\hbar}E^{\frac{1}{2}}$
$rac{\pi^2\hbar^2}{2m} \left(rac{n_1^2}{L_1^2} + rac{n_2^2}{L_2^2} + rac{n_3^2}{L_3^2} ight)$	$2\delta E$	2
	$\frac{\frac{\hbar^2}{2m}(k_x^2 + k_y^2 + k_z^2)}{\frac{\hbar^2}{2m}(k_x^2 + k_y^2) + \frac{\pi^2\hbar^2n^2}{2mL^2}}$ $\frac{\hbar^2}{2m}(k_x^2) + \frac{\pi^2\hbar^2}{2m}\left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{L_2^2}\right)$	$\frac{\frac{\hbar^{2}}{2m}(k_{x}^{2}+k_{y}^{2}+k_{z}^{2})}{\frac{\hbar^{2}}{2m}(k_{x}^{2}+k_{y}^{2})+\frac{\pi^{2}\hbar^{2}n^{2}}{2mL^{2}}} \frac{\frac{2^{\frac{1}{2}}m^{\frac{3}{2}}}{\pi^{2}\hbar^{3}}E^{\frac{1}{2}}}{\frac{m}{\pi\hbar^{2}}}$ $\frac{\hbar^{2}}{2m}(k_{x}^{2}+k_{y}^{2})+\frac{\pi^{2}\hbar^{2}n^{2}}{2mL^{2}} \frac{m}{\pi\hbar^{2}}$ $\frac{\hbar^{2}}{2m}(k_{x}^{2})+\frac{\pi^{2}\hbar^{2}}{2m}\left(\frac{n_{1}^{2}}{L_{1}^{2}}+\frac{n_{2}^{2}}{L_{2}^{2}}\right) \frac{\sqrt{m}}{\sqrt{2}\pi\hbar}E^{-\frac{1}{2}}$

1.3 Гетероструктура

Гетероструктура — полупроводниковая структура с несколькими гетеропереходами ($\Gamma\Pi$).

Гетеропереход — контакт двух различных по химическому составу монокристаллических или аморфных полупроводников.

Наиболее распротраненные полупроводники для составления ГС:

- a) GaAs-AlAs;
- б) GaN-AlN;
- в) GaSb–AlSb–InAs;
- Γ) GaAs–Ge.

1.3.1 Зонная диаграмма гетероперехода

1.3.2 Уравнение Пуассона-Больцмана

1.4 Деградация приборов на основе гетероструктур

Деградация — процесс ухудшения характеристик какого-либо объекта с течением времени.

Изучая деградацию ГС рассматривают следующие параметры:

- Вольт-амперная характеристика (ВАХ);
- Высота потенциального барьера (ПБ);
- Ширина потенциального барьера;
- Ширина потенциальной ямы (ПЯ);
- Т.д...

ГС используют для построения резонансно-туннельный диод (РТД), квантовых точек (КТ), транзисторов с высокой подвижностью электронов (НЕМТ) и так далее.

Химический состав ГС определяет ее зонную структуру, из чего вытекают особенности работы тех или иных устройств на ГС.

Одна из причин деградации ΓC — диффузионное размытие $\Gamma \Pi$, вызванное:

- Градиентом температуры;
- Градиентом концентрации;
- Градиентом давления;
- и т.д...

Диффузионное размытие под действием градиента концентрации описывается с помощью законов Фика.

1.5 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

Диффундировать могут как собственные атомы решетки, так и атомы растворенных в полупроводнике элементов, а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

Законы Фика 1.5.1

Первый закон Фика говорит, что плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C). Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.20}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.21}$$

(1.22)

Второй закон Фика связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.23}$$

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \qquad (1.23)$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \qquad (1.24)$$

1.5.2 Механизмы диффузии

Вакансионный механизм диффузии — заключается в миграции атомов по кристаллической решётке при помощи вакансий.

Межузельный механизм диффузии — заключается в переносе вещества межузельными атомами.

Прямой обмен атомов местами — заключается в том, что два соседних атома одним прыжком обмениваются местами в решетке кристалла.

1.5.3 Коэффициент диффузии

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры(Т) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.25}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

С учетом эффекта уровня Ферми коэффициент диффузии Al и Si в GaAs получен в работах \cite{C} , \cite{C} , \cite{C} , \cite{C} .

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{N_D}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3,$$
 (1.26)

где n — концентрация донорной примеси (Si);

 n_i — концентрация собственных носителей заряда.

Концентрация собственных носителей заряда [?]:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right]; \tag{1.27}$$

$$N_c = 2 \left[\frac{2\pi m_e^* k_B T}{h^2} \right]^{\frac{3}{2}}; \tag{1.28}$$

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}},\tag{1.29}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.6 Токоперенос через ΓC

1.7 Метод конечных разностей для решения одномерного нестационарного уравнения диффузии

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей.

1.7.1 Коэффициент диффузии не зависит от концентрации

Одномерное нестационарное уравнение диффузии, соответствующее второму закону Фика имеет вид:

$$\frac{\delta}{\delta t}C = D\frac{\delta^2}{\delta x^2}C; \tag{1.30}$$

Аппроксимация первой производной по времени в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta}{\delta t}C_j^i = \frac{C_j^{i+1} - C_j^i}{\Delta t};\tag{1.31}$$

Аппроксимация первой производной по координате в момент времени t_i концентрации $C_j(t_i)=C_j^i$ в точке j:

$$J_{j}^{i} = \frac{\delta}{\delta x} C_{j}^{i} = \frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x}; \tag{1.32}$$

Аппроксимация второй производной по координате в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta^2}{\delta x^2} C_j^i = \frac{\delta}{\delta x} \left[\frac{C_{j+1}^i - C_j^i}{\Delta x} \right] = \frac{\frac{C_{j+1}^i - C_j^i}{\Delta x} - \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x} =$$

$$= \frac{C_{j+1}^i - 2C_j^i + C_{j-1}^i}{\Delta x^2}; \tag{1.33}$$

Подставляя в (1.31) аппроксимацию производных (1.32), (1.34), получим связь C_j^{i+1} с $C_j^i,$ т.е. изменение концентрации через Δt :

$$C_i^{i+1} = \lambda C_{i-1}^i + (1 - 2\lambda)C_i^i + \lambda C_{i+1}^i, \tag{1.34}$$

где $\lambda = \frac{D\Delta t}{\Delta x^2}$ — связь коэффициента диффузии и шагов по сетке времени и координаты.

Уравнение (1.35) справедливо для всех не крайних точек конечно разностной схемы, при коэффициенте диффузии не зависящем от концентрации.

Выделим два граничных приближения для концентрации:

- а) «Закрытая система» концентрация на границе не изменяется $(J_0^i=0,\,J_{N+1}^i=0);$
- б) «Открытая система» поток частиц подходящий к границе равен потоку уходящих частиц $(J_0^i=J_1^i,\,J_N^i=J_{N+1}^i).$

Для «закрытой системы» должно выполняться условие $J^i_0=0,$ $J^i_{N+1}=0.$ Рассмотрим $(1.33),\,(1.35)$ для точки j=1:

$$J_0^i = \frac{C_1^i - C_0^i}{\Delta x} = 0 \Rightarrow C_0^i = C_1^i;$$

$$C_1^{i+1} = \lambda C_0^i + (1 - 2\lambda)C_1^i + \lambda C_2^i = \lambda C_1^i + (1 - 2\lambda)C_1^i + \lambda C_2^i =$$

$$= (1 - \lambda)C_1^i + \lambda C_2^i = C_1^{i+1};$$

Рассматривая точки $N-1,\,N,\,N+1$ аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (1.35)$$

Для «открытой» системы должно выполняться условие $J_0^i=J_1^i,$ $J_N^i=J_{N+1}^i.$ Рассмотрим (1.33), (1.34), (1.35) для точки j=1:

$$J_0^i = J_1^i$$

$$\frac{C_1^{i+1} - C_1^i}{\Delta t} = \frac{J_1^i - J_0^i}{\Delta x} = \frac{0}{\Delta x} = 0 \Rightarrow$$

$$\Rightarrow C_1^{i+1} = C_1^i;$$

Рассматривая точки N-1, N, N+1 аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (1.36)$$

1.7.2 Коэффициент диффузии зависит от концентрации

Если коэффициенте диффузии (D) зависит от концентрации, тогда уравнение диффузии принимает вид:

$$\frac{\delta}{\delta t}C = \frac{\delta}{\delta x}D\frac{\delta}{\delta x}C; \tag{1.37}$$

Тогда уравнение конечно-разностной схемы будет [?]:

$$\frac{C_j^{i+1} - C_j^i}{\Delta t} = \frac{D_{j+1/2}^i \frac{C_{j+1}^i - C_j^i}{\Delta x} - D_{j-1/2}^i \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x};$$
(1.38)

$$D_{j\pm 1/2}^{i} = \frac{D_{j}^{i} + D_{j\pm 1}^{i}}{2} = D_{j\pm}^{i}.$$
 (1.39)

Проводя рассуждения аналогичные предыдущему параграфу получит конечно-разностную схему для открытой схемы:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda_-^i C_{j-1}^i + (1 - \lambda_+^i - \lambda_-^i) C_j^i + \lambda_+^i C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda_+^i = D_{j+\frac{\Delta t}{\Delta x^2}}^i; \\
\lambda_-^i = D_{j-\frac{\Delta t}{\Delta x^2}}^i.
\end{cases}$$
(1.40)

1.8 Метод конечных разностей для расчета токоперенос через гетероструктуру

- 2 Исследование параметров РТГС на основе $Al_xGa_{1-x}As$
- 2.1 Исследование парметров ямы
- 2.1.1 Исследование глубины ямы
- 2.1.1.1 BAX PTΓC
- 2.1.1.2 Прозрачность РТГС
- 2.1.2 Исследование ширины ямы
- 2.1.2.1 BAX PTΓC
- 2.1.2.2 Прозрачность РТГС

- 2.2 Исследование парметров барьеров
- 2.2.1 Исследование высоты барьеров
- 2.2.1.1 BAX PTCC
- 2.2.1.2 Прозрачность РТГС
- 2.2.2 Исследование ширины барьеров
- 2.2.2.1 BAX PTCC
- 2.2.2.2 Прозрачность РТГС

- 2.3 Исследование парметров спейсеров
- 2.3.1 Исследование влияния размеров спейсера
- 2.3.1.1 BAX PTCC
- 2.3.1.2 Прозрачность РТГС
- 2.3.1.3 Концентрация электронов в РТГС

- 3 Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$
- 3.1 Дуффузионное расплытие активной области

3.2 Диффузия легирующей примесита