Notas de aula de Lógica para Ciência da Computação

Daniel Oliveira Dantas

11 de setembro de 2020

Sumário

1	A linguagem da lógica proposicional	1	
2			
3	Propriedades semânticas da lógica proposicional 3.1 Propriedades semânticas	5 6 7	
	3.4 Formas normais na lógica proposicional	8 9 11	
4	4.1 Introdução	13 13 13 14 16 19 19 20 20	
5	5.1 Introdução	21 21 22 28	
6	6.1 O alfabeto da lógica de predicados	29 29 30 30 30 31	

6.8	Exercícios	32
	leaux semânticos na lógica de predicados Exercícios	35

Capítulo 1

A linguagem da lógica proposicional

Capítulo 1 de Souza, Lógica para Ciência da Computação [2].

- Alfabeto: o alfabeto da Lógica Proposicional é composto por
 - Símbolos de pontuação: ()
 - \bullet Símbolos de verdade: $true\ false$
 - \bullet Símbolos proposicionais: A B C P Q R A1 A2 A3 a b c \dots
 - \circ Não se usam as letras V, v, F, f, T e t para não confundir com os valores de verdade.
 - Conectivos proposicionais: $\sim \lor \land \rightarrow \leftrightarrow$
- Fórmula: as fórmulas da linguagem da lógica proposicional são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo símbolo de verdade é uma fórmula.
 - Todo símbolo proposicional é uma fórmula.
 - \bullet Se H é fórmula, ${\sim}H$ é fórmula.
 - Se H e G são fórmulas, $(H \vee G)$, $(H \wedge G)$, $(H \to G)$ e $(H \leftrightarrow G)$ são fórmulas.
- Fórmulas mal formadas: são fórmulas não obtidas da definição anterior.
- Ordem de precedência:
 - $\bullet \sim$ Precedência maior.
 - ullet $\rightarrow \leftrightarrow$ $A \rightarrow B \leftrightarrow C$ possui duas interpretações.
 - ^
 - \vee Precedência menor.

— Comprimento de uma fórmula:

- Se H é um símbolo proposicional ou de verdade, comp(H) = 1.
- Se H é fórmula, $comp(\sim H) = comp(H) + 1$.
- \bullet Se H e G são fórmulas:
 - $\circ \operatorname{comp}(H \ \lor \ G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$

— Subfórmulas:

- \bullet H é subfórmula de H.
- Se $H = \sim G$, G é subfórmula de H.
- Se H é uma fórmula do tipo $(G \vee E), (G \wedge E), (G \rightarrow E)$ ou $(G \leftrightarrow E),$ então G e E são subfórmulas de H.
- ullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.

Capítulo 2

A semântica da lógica proposicional

Capítulo 2 de Souza, Lógica para Ciência da Computação [2].

- Função: é uma relação entre dois conjuntos que associa cada elemento do conjunto de entrada a um único elemento do conjunto de saída
- Função binária: é uma função em que seu contradomínio possui apenas dois elementos
- Interpretação I é uma função binária tal que:
 - O domínio de I é constituído pelo conjunto de fórmulas da lógica proposicional.
 - O contradomínio de I é o conjunto $\{T, F\}$.
 - I(true) = T, I(false) = F.
 - Se P é um símbolo proposicional, $I(P) \in \{T, F\}$.
- Interpretação de fórmulas: dadas uma fórmula E e uma interpretação I, o significado ou interpretação de E, denotado por I(E), é determinado pelas regras:
 - Se E=P, onde P é um símbolo proposicional, então I(E)=I(P), onde $I(P)\in\{T,F\}$.
 - Se E = true, então I(E) = I(true) = T.
 - Se E = false, então I(E) = I(false) = F.
 - Seja H uma fórmula, se $E = \sim H$ então:
 - $\circ I(E) = I(\sim H) = T \Leftrightarrow I(H) = F.$
 - $\circ I(E) = I(\sim H) = F \Leftrightarrow I(H) = T.$
 - Sejam H e G duas fórmulas, se $E = (H \vee G)$ então:
 - $\circ I(H) = T \text{ e/ou } I(G) = T \Leftrightarrow I(E) = I(H \vee G) = T.$
 - $\circ I(H) = F \ \ e \ \ I(G) = F \Leftrightarrow I(E) = I(H \lor G) = F.$
 - Sejam H e G duas fórmulas, se $E = (H \land G)$ então:
 - $\circ I(H) = T \ e \ I(G) = T \Leftrightarrow I(E) = I(H \land G) = T.$

- $\circ I(H) = F \text{ e/ou } I(G) = F \Leftrightarrow I(E) = I(H \land G) = F.$
- \bullet Sejam He Gduas fórmulas, se $E=(H\to G)$ então:
 - $\circ I(H) = T$ então $I(G) = T \Leftrightarrow I(E) = I(H \to G) = T$.
 - $\circ I(H) = F \text{ e/ou } I(G) = T \Leftrightarrow I(E) = I(H \to G) = T.$
 - $\circ I(H) = T \ \ e \ \ I(G) = F \Leftrightarrow I(E) = I(H \to G) = F.$
- Sejam H e G duas fórmulas, se $E = (H \leftrightarrow G)$ então:
 - $\circ \ I(H) = I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = T.$
 - $\circ \ I(H) \neq I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = F.$

Capítulo 3

Propriedades semânticas da lógica proposicional

Capítulo 3 de Souza, Lógica para Ciência da Computação [2].

3.1 Propriedades semânticas

— Tautologia: uma fórmula H é tautologia ou válida se e somente se (sse) para toda interpretação I

$$I(H) = T$$

— Satisfatibilidade: uma fórmula H é satisfatível ou factível se e somente se (sse) existe pelo menos uma interpretação I tal que

$$I(H) = T$$

— Contingência: uma fórmula H é uma contingência se e somente se (sse) existem interpretações I e J tais que

$$I(H) = T \in J(H) = F$$

— Contradição: uma fórmula H é contraditória se e somente se (sse) para toda interpretação I

$$I(H) = F$$

— Implicação: dadas duas fórmulas $H \in G$, $H \models G$ (H implica G) see para toda interpretação I

se
$$I(H) = T$$
 então $I(G) = T$

— Equivalência: dadas duas fórmulas H e G, H equivale a G sse para toda interpretação I

$$I(H) = I(G)$$

— Dada uma fórmula H e uma interpretação I, dizemos que I satisfaz H se

$$I(H) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é satisfatível sse existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é insatisfatível sse não existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

3.2 Relações entre propriedades semânticas

Proposição 3.1: seja H uma fórmula,

H é tautologia $\Rightarrow H$ é satisfatível.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ existe interpretação I tal que $I(H) = T \Leftrightarrow H$ é satisfatível. ■
- Proposição 3.3: seja H uma fórmula,

H é tautologia $\Rightarrow H$ não é contingência.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ não existe interpretação I tal que $I(H) = F \Rightarrow$ não existem interpretações I e J tais que I(H) = F e $J(H) = T \Leftrightarrow H$ não é contingência. \blacksquare
- Proposição 3.4: seja ${\cal H}$ uma fórmula,

Hé contingência $\Rightarrow H$ é satisfatível.

- Demonstração: H é contingência \Leftrightarrow existem interpretações I e J tais que I(H) = T e J(H) = F \Rightarrow existe interpretação I tal que I(H) = T \Leftrightarrow H é satisfatível. ■
- Proposição 3.5: seja H uma fórmula,

H é tautologia $\Leftrightarrow \sim H$ é contraditória.

• Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ para toda interpretação I, $I(\sim H) = F \Leftrightarrow \sim H$ é contraditória.

— Proposição 3.7: sejam $H \in G$ duas fórmulas,

$$H$$
 equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia.

- Demonstração: H equivale a G \Leftrightarrow para toda interpretação I, I(H) = I(G) \Leftrightarrow para toda interpretação I, $I(H \leftrightarrow G) = T \Leftrightarrow (H \leftrightarrow G)$ é tautologia. ■
- Proposição 3.8: sejam $H \in G$ duas fórmulas,

$$H$$
implica $G \Leftrightarrow (H \to G)$ é tautologia.

• Demonstração: H implica $G \Leftrightarrow \text{para toda interpretação } I$, se I(H) = T então $I(G) = T \Leftrightarrow \text{para toda interpretação } I$, $I(H \to G) = T \Leftrightarrow (H \to G)$ é tautologia. ■

3.3 Relações semânticas entre os conectivos da lógica proposicional

- Conjunto de conectivos completo: o conjunto de conectivos ψ é dito completo se é possível expressar os conectivos $\{\sim, \vee, \wedge, \rightarrow, \leftrightarrow\}$ usando apenas os conectivos de ψ .
 - O conectivo \rightarrow pode ser expresso com $\{\sim, \vee\}$:

$$(P \to Q) \equiv (\sim P \lor Q)$$

• O conectivo \land pode ser expresso com $\{\sim, \lor\}$:

$$(P \land Q) \equiv \sim (\sim P \lor \sim Q)$$

• O conectivo \leftrightarrow pode ser expresso com $\{\sim, \vee\}$:

$$(P \leftrightarrow Q) \equiv \sim (\sim (\sim P \lor Q) \lor \sim (\sim Q \lor P))$$

- O conjunto $\{\sim, \vee\}$ é completo, pois é possível expressar os conectivos $\{\sim, \vee, \wedge, \rightarrow, \leftrightarrow\}$ usando apenas $\{\sim, \vee\}$.
- Proposição 3.15 (regra da substituição): sejam G, G', H e H' fórmulas da lógica proposicional tais que:
 - G e H são subfórmulas de G' e H' respectivamente.
 - G' é obtida de H' da substituição de H por G em H'.

$$G \equiv H \Rightarrow G' \equiv H'$$

- Definição: o conectivo NAND $(\overline{\wedge})$ é definido por $(P \overline{\wedge} Q) \equiv \sim (P \wedge Q)$.
 - O conectivo \sim pode ser expresso com $\{\overline{\wedge}\}$:

$$(\sim P) \equiv (P \overline{\wedge} P)$$

• O conectivo \vee pode ser expresso com $\{\overline{\wedge}\}$:

$$(P \lor Q) \equiv ((P \bar{\land} P) \bar{\land} (Q \bar{\land} Q))$$

3.4 Formas normais na lógica proposicional

- Literais: um literal na lógica proposicional é um símbolo proposicional ou sua negação.
- Forma normal: dada uma fórmula H da lógica proposicional, existe uma fórmula G, equivalente a H, que está na forma normal. Forma normal é uma estrutura de fórmula pré-definida.
 - \bullet Forma normal disjuntiva (FND): é uma disjunção (\vee) de conjunções (\wedge).
 - Forma normal conjuntiva (FNC): é uma conjunção (\wedge) de disjunções (\vee).
- Obtenção de formas normais:
 - FND:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é T.
 - \circ Para cada linha selecionada, faça a conjunção (\wedge) de todos os símbolos proposicionais cuja interpretação é T com a negação dos símbolos proposicionais cuja interpretação é F.
 - \circ Faça a disjunção (\vee) das fórmulas obtidas no passo anterior.
 - FNC:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é F.
 - \circ Para cada linha selecionada, faça a disjunção (\vee) de todos os símbolos proposicionais cuja interpretação é F com a negação dos símbolos proposicionais cuja interpretação é T.
 - \circ Faça a conjunção (\wedge) das fórmulas obtidas no passo anterior.

— Exemplo: encontre a FND e a FNC da fórmula $((P \rightarrow Q) \land R)$.

P	Q	R	$P \rightarrow Q$	$(P \to Q) \wedge R$	FND	FNC
\overline{T}	T	T	T	T	$P \wedge Q \wedge R$	
T	T	F	T	F		$\sim P \vee \sim Q \vee R$
T	F	T	F	F		$\sim P \vee Q \vee \sim R$
T	F	F	F	F		$\sim P \vee Q \vee R$
F	T	T	T	T	$\sim P \wedge Q \wedge R$	
F	T	F	T	F		$P \vee \sim Q \vee R$
F	F	T	T	T	$\sim P \wedge \sim Q \wedge R$	
F	F	F	T	F		$P \vee Q \vee R$

• FND:
$$(P \land Q \land R) \lor (\sim P \land Q \land R) \lor (\sim P \land \sim Q \land R)$$

• FNC:
$$(\sim P \lor \sim Q \lor R) \land (\sim P \lor Q \lor \sim R) \land (\sim P \lor Q \lor R) \land (P \lor \sim Q \lor R) \land (P \lor Q \lor R)$$

3.5 Exercícios

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee P$
 - (b) $((\sim \sim P \lor Q) \leftrightarrow (P \to Q)) \land true$
 - (c) $P \rightarrow ((Q \rightarrow R) \rightarrow ((P \rightarrow R) \rightarrow (P \rightarrow R)))$
 - (d) $((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$
 - (e) $\sim (P \rightarrow \sim P)$
- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $(P \rightarrow \land true)$
 - (b) $(P \land Q) \rightarrow ((Q \leftrightarrow P) \lor \sim \sim R)$
 - (c) $\sim \sim P$
 - (d) $\vee Q$
 - (e) $(P \lor Q) \to ((Q \leftrightarrow R))$
 - (f) PQR
 - (g) $A \sim$
- 3. Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.
 - (a) $I(P \land Q) = T \Leftrightarrow I(\sim(\sim P \lor \sim Q)) = T$
 - (b) $I(P \land Q) = F \Leftrightarrow I(\sim(\sim P \lor \sim Q)) = F$
 - (c) $I(P \land Q) = T \Leftrightarrow I(\sim P \lor \sim Q) = F$
 - (d) $I(P \to Q) = F \Leftrightarrow I(\sim P \lor Q) = F$

- (e) $I(P \to Q) = T \Leftrightarrow I(\sim P \lor Q) = T$
- (f) $I(P \to Q) = F \Leftrightarrow I(P \land \sim Q) = T$

Responda as questões 4, 5 e 6 conforme os exemplos abaixo.

- (a) Se I(P) = F, o que se pode concluir a respeito de I(H)? R: Pode-se concluir que I(H) = T.
- (b) Se I(P) = T, o que se pode concluir a respeito de I(H)? R: Nada se pode concluir.
- 4. Seja $H=(P\to Q)$ e I uma interpretação.
 - (a) Se I(H) = T, o que se pode concluir a respeito de I(P) e I(Q)?
 - (b) Se I(H) = T e I(P) = T, o que se pode concluir a respeito de I(Q)?
 - (c) Se I(Q) = T, o que se pode concluir a respeito de I(H)?
 - (d) Se I(H) = T e I(P) = F, o que se pode concluir a respeito de I(Q)?
 - (e) Se I(Q) = F e I(P) = T, o que se pode concluir a respeito de I(H)?
- 5. Seja I uma interpretação tal que $I(P \leftrightarrow Q) = T$. O que se pode concluir a respeito de
 - (a) $I(\sim P \land Q)$
 - (b) $I(P \vee \sim Q)$
 - (c) $I(Q \to P)$
 - (d) $I((P \land R) \leftrightarrow (Q \land R))$
 - (e) $I((P \lor R) \leftrightarrow (Q \lor R))$
- 6. Repita o exercício anterior considerando $I(P \leftrightarrow Q) = F$.
- 7. Sejam H e G as fórmulas indicadas a seguir. Identifique, justificando sua resposta, os casos em que H implica G.
 - (a) $H = (P \land Q), G = P$
 - (b) $H = (P \vee Q), G = P$
 - (c) $H = (P \lor \sim Q), G = false$
 - (d) H = false, G = P
 - (e) H = P, G = true
- 8. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) Proposição 3.6: H não é satisfatível $\Leftrightarrow H$ é contraditória.
 - (b) H é satisfatível $\Leftrightarrow H$ não é contraditória.
 - (c) ${\sim}H$ é tautologia $\Leftrightarrow H$ é contraditória.
 - (d) H não é tautologia $\Leftrightarrow H$ é contraditória.
- 9. Encontre a FND e a FNC das das fórmulas a seguir.
 - (a) $(P \leftrightarrow Q) \land (P \lor R)$
 - (b) $(P \to Q) \land (P \to R)$

3.6 Exercícios v.2

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee Q$
 - (b) $\sim (P \to Q) \leftrightarrow (R \land S)$
 - (c) $(\sim P \lor \sim Q) \leftrightarrow \sim (P \land Q)$
 - (d) $(A \wedge (B \wedge (C \wedge D))) \vee (\sim A \wedge (\sim B \wedge (C \wedge D)))$
- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $P \to ((Q \to R) \to ((P \to R) \to (P \to R)))$
 - (b) $(P \lor \to Q) \land R$
 - (c) $((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$
 - (d) $P \sim \rightarrow Q$
- 3. Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.
 - (a) $I(P \to Q) = T \Leftrightarrow I(\sim (P \land Q)) = T$
 - (b) $I(\sim P \rightarrow \sim Q) = T \Leftrightarrow I(\sim (\sim P \land Q) = T$

Responda as questões 4 conforme os exemplos abaixo.

- (a) Se I(P) = F, o que se pode concluir a respeito de I(H)? R: Pode-se concluir que I(H) = T.
- (b) Se I(P) = T, o que se pode concluir a respeito de I(H)? R: Nada se pode concluir.
- 4. O que se pode concluir a respeito de
 - (a) $I(P \wedge Q)$ se I(P) = T
 - (b) $I(P \wedge Q)$ se I(P) = F
 - (c) $I(P \vee Q)$ se I(Q) = T
 - (d) $I(P \vee Q)$ se I(Q) = F
 - (e) $I(P \to Q)$ se I(P) = T
 - (f) $I(P \to Q)$ se I(Q) = T
 - (g) $I(P \to Q)$ se I(P) = F
 - (h) $I(P \to Q)$ se I(Q) = F
 - (i) $I(P \leftrightarrow Q)$ se I(P) = T
 - (j) $I(P \leftrightarrow Q)$ se I(P) = F
- 5. Mostre se os conjuntos de fórmulas a seguir são satisfatíveis ou insatisfatíveis.
 - (a) $\{(P \land Q), (P \lor Q)\}$

- (b) $\{(P \land Q), (P \rightarrow Q)\}$
- (c) $\{(P \lor Q), (P \leftrightarrow Q)\}$
- (d) $\{(P \land Q), (P \rightarrow \sim Q)\}$
- 6. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) H é satisfatível $\Leftrightarrow \sim H$ é satisfatível
 - (b) H é contraditória $\Leftrightarrow \sim H$ é tautologia
 - (c) H é tautologia $\Leftrightarrow {\sim} H$ é contraditória
 - (d) H é tautologia $\Rightarrow H$ é satisfatível
 - (e) H implica $G \Leftrightarrow (H \to G)$ é tautologia
 - (f) H equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia
- 7. Demonstre se as fórmulas a seguir são tautologias usando o método da tabela verdade e o da árvore semântica.
 - (a) $H = (P \lor Q) \leftrightarrow (\sim P \rightarrow Q)$
 - (b) $H = \sim (P \leftrightarrow Q) \leftrightarrow (\sim P \leftrightarrow Q)$
 - (c) $H = (\sim P \leftrightarrow \sim Q) \leftrightarrow \sim (P \leftrightarrow \sim Q)$
 - (d) $H = (P \lor \sim Q) \leftrightarrow (\sim P \to \sim Q)$
- 8. Demonstre por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $(P \land Q) \leftrightarrow (\sim P \lor Q)$
 - (b) $(P \lor Q) \leftrightarrow (\sim P \lor Q)$
 - (c) $(P \land Q) \leftrightarrow (P \land \sim P)$

Capítulo 4

Métodos semânticos de dedução na lógica proposicional

Capítulo 4 de Souza, Lógica para Ciência da Computação [2].

4.1 Introdução

— Validade de fórmulas: uma fórmula é válida se todas as suas interpretações são iguais a T.

4.2 Método da tabela verdade

- Método da tabela verdade: é um método exaustivo, ou seja, enumera todas as possibilidades. A desvantagem é que, se houver muitos símbolos proposicionais, a tabela fica muito grande.
- Exemplo: seja $H = \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q)$, demonstre que H é uma tautologia usando o método da tabela verdade.

P	Q	$\sim P$	$\sim Q$	$(P \wedge Q)$	$\sim (P \land Q)$	$(\sim P \lor \sim Q)$	H
\overline{T}	T	F	F	T	F	F	T
T	F	F	T	F	T	T	T
F	T	T	F	F	T	T	T
F	F	T	T	F	T	T	T

4.3 Método da negação ou absurdo

- Método da negação ou absurdo: funciona da seguinte maneira.
 - Faça uma suposição.
 - Se todas as substituições possíveis levarem a contradições, a suposição é falsa. Ou seja, a negação da suposição é verdadeira.

- Exemplo: seja $H=((P\to Q) \land (Q\to R))\to (P\to R)$, demonstre por absurdo que H é uma tautologia.
 - \bullet Demonstração: assuma por absurdo que existe interpretação Ital que I(H)=F.

Então
$$I((P \to Q) \land (Q \to R)) = T \in I(P \to R) = F.$$

Como
$$I(P \to R) = F$$
, então $I(P) = T$ e $I(R) = F$.

Distribuindo na fórmula os valores de verdade encontados, temos

$$\begin{array}{ccc} ((P \rightarrow Q) \ \land \ (Q \rightarrow R)) \rightarrow (P \rightarrow R) \\ T & F & F & T & F & F \end{array}$$

de onde obtemos

Portanto, a suposição inicial de que existe interpretação I tal que I(H) = F é falsa. Em outras palavras, para todo I, I(H) = T, ou seja, H é tautologia.

- Exemplo: seja $H=(P\to Q) \wedge (\sim (\sim P \vee Q))$, demonstre por absurdo que H é uma contradição.
 - \bullet Demonstração: assuma por absurdo que existe interpretação Ital que I(H)=T.

Então
$$I(P \to Q) = T$$
 e $I(\sim(\sim P \lor Q)) = T$.

Como
$$I(\sim (\sim P \lor Q)) = T$$
, então $I(\sim P \lor Q) = F$. E portanto, $I(Q) = F$, $I(\sim P) = F$ e $I(P) = T$.

Distribuindo na fórmula os valores de verdade encontados, temos

$$(P \to Q) \land (\sim(\sim P \lor Q))$$

$$T \quad T \quad F \quad T \quad F \quad F$$

mas se I(P) = T, temos que I(Q) precisa ser T já que $I(P \to Q) = T$, portanto obtemos

Absurdo

Portanto, a suposição inicial de que existe interpretação I tal que I(H) = T é falsa. Em outras palavras, para todo I, I(H) = F, ou seja, H é contradição.

— Observe que para demonstrar corretamente que uma fórmula H é tautologia, é necessário chegar a um absurdo em todas as substituições possíveis. Caso alguma substituição não chegue a um absurdo, pode-se interromper a demonstração e concluir que a fórmula não é tautologia. Isso é evidente, pois, se você assume que I(H) = F e não chega a um absurdo, significa que essa substituição específica faz com que I(H) seja F e, portanto, com que H não seja tautologia. Diferentes substituições representam diferentes linhas da tabela verdade, e pode ocorrer de algumas linhas serem iguais a T, caso em que há absurdo, e outras linhas iguais a F, caso em que não há absurdo. Por isso é necessário explorar todas as substituições possíveis. O mesmo vale para a contradição.

4.4 Método da árvore semântica

— Método da árvore semântica: é um método que permite a verificação da validade de uma fórmula sem ser exaustivo. A depender da fórmula, pode ser possível obter a resposta sem

verificar todas as interpretações possíveis. Este conteúdo está na primeira edição do livro de Souza $L\'{o}gica~para~Ci\^{e}ncia~da~Computaç\~{a}o~[1].$

— Exemplo: seja $H = \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	\sim	(P	\wedge	Q)	\leftrightarrow	$(\sim$	P	V	\sim	Q)
2		T				F	T			
3	T	F	F		T	T	F	T		
4	F	T	T	T	T	F	T	F	F	\overline{T}
5	T	T	F	F	T	F	T	T	T	\overline{F}

— Exemplo: seja $H=(P\vee\sim Q)\leftrightarrow(\sim P\to\sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	P	\vee	\sim	Q)	\leftrightarrow	$(\sim$	P	\rightarrow	\sim	Q)
2	T	T			T	F	T	T		
3	F					T	F			
4	F	F	F	T	T	T	F	F	F	T
5	F	T	T	F	T	T	F	T	T	F

4.5 Método dos tableaux semânticos

- Tableau semântico: sequência de fórmulas construída de acordo com um conjunto de regras e apresentada em forma de árvore. O método dos tableaux semânticos é um mecanismo de decisão para a pergunta $\beta \vdash H$, sim ou não?
- Elementos do sistema de tableaux semânticos da lógica proposicional:
 - Alfabeto da lógica proposicional sem os símbolos de verdade true e false.
 - Conjunto das fórmulas da lógica proposicional.
 - Um conjunto de regras de dedução.
- Regras de dedução do tableau semântico: sejam A e B duas fórmulas da lógica proposicional, as regras de dedução do sistema de tableaux semânticos são

$$R_{1} = A \wedge B \qquad R_{2} = A \vee B \qquad R_{3} = A \rightarrow B$$

$$A \qquad A \qquad B \qquad \neg A \qquad B$$

$$R_{4} = A \leftrightarrow B \qquad R_{5} = \neg \neg A \qquad R_{6} = \neg (A \wedge B)$$

$$A \wedge B \qquad \neg A \wedge \neg B \qquad \neg A \qquad \neg B$$

$$R_{7} = \neg (A \vee B) \qquad R_{8} = \neg (A \rightarrow B) \qquad R_{9} = \neg (A \leftrightarrow B)$$

$$A \qquad A \qquad A \qquad \neg B$$

$$A \qquad A \qquad \neg A \qquad \neg B$$

- Construção de um tableau semântico: se dá aplicando alguma regra de dedução uma vez para cada linha que não seja um literal (símbolo proposicional ou sua negação). O tableau resultante tende a ficar mais simples se aplicarmos primeiro as regras de dedução que não geram bifurcações (R_1, R_5, R_7, R_8) .
 - Exemplo: considere o conjunto de fórmulas $\beta = \{P \lor (Q \lor \sim R), P \to \sim R, Q \to \sim R\}$. Verifique se $\beta \vdash \sim R$.
 - o Uma possível solução seria montar a árvore semântica de $\sim ((P \lor (Q \lor \sim R)) \land (P \to \sim R) \land (Q \to \sim R) \to \sim R)$.
 - o Uma solução equivalente é listar as hipóteses de β seguidas da negação da conclusão.

$$\{P \ \lor \ (Q \ \lor \ \sim\!\! R), P \to \sim\!\! R, Q \to \sim\!\! R\} \vdash \sim\!\! R$$

- Ramo: é uma sequência de fórmulas onde cada fórmula é derivada das anteriores através das regras de dedução. A primeira fórmula do ramo é sempre a primeira fórmula do tableau.
- Ramo saturado: é um ramo onde, para todas as suas fórmulas,
 - já foi aplicada alguma regra de dedução; ou
 - não é possível aplicar nenhuma regra de derivação, isto é, a fórmula é um literal.
- Ramo fechado: é um ramo que contém uma fórmula e sua negação. Um ramo pode ser fechado sem ser saturado.
- Ramo aberto: é um ramo saturado não fechado.
- Tableau fechado: é um tableau onde todos os ramos são fechados.
- Tableau aberto: é um tableau onde algum ramo é aberto.
- Prova de H no sistema de tableaux semânticos: é um tableau fechado iniciado com a fórmula $\sim H$
 - Exemplos: verifique se as fórmulas abaixo são tautologias:

$$\circ H_1 = \sim ((P \to Q) \land \sim (P \leftrightarrow Q) \land \sim \sim P)$$

$$\circ H_2 = (P \leftrightarrow Q) \lor \sim P$$

$$\circ H_3 = (((P \land Q) \land (Q \to Q_1)) \land ((P \land Q_1) \to \sim P_1)) \to \sim P_1$$

■ Observe que o tableau foi desenvolvido até que todos os ramos ficassem saturados. Alternativamente, é possível fechar os ramos à medida que são encontrados pares de fórmulas contraditórias entre si, como na versão abaixo

$$(((P \land Q) \land (Q \to Q_{1})) \land ((P \land Q_{1}) \to \sim P_{1})) \to \sim P_{1}$$
1. $\sim ((((P \land Q) \land (Q \to Q_{1})) \land ((P \land Q_{1}) \to \sim P_{1})) \to \sim P_{1}) \checkmark$ $\sim H_{3}$
2. $(((P \land Q) \land (Q \to Q_{1})) \land ((P \land Q_{1}) \to \sim P_{1})) \checkmark$ $R_{8} \text{ em } 1$
3. $\sim \sim P_{1} \checkmark$ $R_{8} \text{ em } 1$
4. P_{1} $R_{5} \text{ em } 3$
5. $(P \land Q) \land (Q \to Q_{1}) \checkmark$ $R_{1} \text{ em } 2$
6. $(P \land Q_{1}) \to \sim P_{1} \checkmark$ $R_{1} \text{ em } 2$
7. $P \land Q \checkmark$ $R_{1} \text{ em } 5$
8. $Q \to Q_{1} \checkmark$ $R_{1} \text{ em } 5$
9. P $R_{1} \text{ em } 7$
10. Q $R_{1} \text{ em } 7$
11. $\sim (P \land Q_{1}) \checkmark \sim P_{1}$ $R_{3} \text{ em } 6$
12. $\sim Q$ Q_{1} $R_{3} \text{ em } 8$
13. $\otimes Q \to Q_{1} \to Q_{1}$ $R_{4} \text{ em } 1$
 $\otimes Q \to Q_{1} \to Q_{1}$ $R_{4} \text{ em } 1$
 $\otimes Q \to Q_{1} \to Q_{1}$ $R_{4} \text{ em } 1$
 $\otimes Q \to Q_{1} \to Q_{1}$ $R_{4} \text{ em } 1$

- Pergunta: um tableau iniciado com uma tautologia necessariamente terá todos os ramos abertos?
 - o Resposta: não. Um contra-exemplo é a fórmula $(P \ \land \ \sim\!\! P) \ \lor \ (Q \to Q)$
- Para provar que uma fórmula H é tautologia, iniciamos um tableau semântico com $\sim H$, que é uma contradição. Se H for realmente uma tautologia, todas as interpretações de $\sim H$ devem ser iguais a F, fazendo com que todos os ramos do tableau sejam fechados. O método do tableau semântico pode ser visto como uma variação do método da negação ou absurdo, onde ramos fechados correspondem a substituições que levam a um absurdo. Ramos abertos por sua vez correspondem a substituições que não levam a um absurdo, ou seja, substituições que fazem $I(\sim H) = T$.

4.5.1 Prova de que uma fórmula é uma contradição

— Na seção anterior, vimos que é possível mostrar que H é uma tautologia iniciando um tableau semântico com $\sim H$, que é uma contradição e obtendo um tableau com todos os ramos fechados. Da mesma maneira, é possível mostrar que H é uma contradição iniciando um tableau com H e obtendo um tableau com todos os ramos fechados.

4.5.2 Consequência lógica em tableaux semânticos

- Dada uma fórmula H e um conjunto de hipóteses $\beta = \{A_1, A_2, \ldots, A_n\}$, dizemos que H é uma consequência lógica de β ($\beta \vdash H$) se existe uma prova de $(A_1, A_2, \ldots, A_n) \to H$.
 - Exemplo: Considere as sentenças
 - $\circ P = \text{Guga \'e determinado}$
 - $\circ Q = \text{Guga}$ é inteligente
 - $\circ (P \land R) \rightarrow \sim P_1 = \text{Se Guga \'e determinado e atleta, então ele não \'e um perdedor}$

- o $Q_1 \to R$ Guga é atleta se ele é amante de tênis
- $\circ Q \to R_1$ Guga é amante de tênis se ele é inteligente
 - A afirmação abaixo é conseqência lógica das anteriores?
- $\circ \sim P_1$ Guga não é um perdedor

4.5.3 Prova de que um conjunto de fórmulas é insatisfatível

— Como foi visto na seção 3.1, um conjunto de fórmulas $\beta = \{H_1, H_2, \ldots, H_n\}$ é dito insatisfatível sse não existe interpretação que faça com que todas as fórmulas tenham interpretação igual a T ao mesmo tempo. Em outras palavras, se o conjunto β é insatisfatível, podemos dizer que $I(H_1 \wedge H_2 \wedge \ldots \wedge H_n) = F$ para toda interpretação, ou seja, essa fórmula é contraditória. É possível então mostrar que o conjunto de fórmulas β é insatisfatível através de um tableau semântico fechado iniciado por $H_1 \wedge H_2 \wedge \ldots \wedge H_n$.

4.6 Exercícios

- 1. Determine por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $H_1 = (H \vee H) \rightarrow H$
 - (b) $H_2 = H \rightarrow (G \lor H)$
 - (c) $H_3 = (H \to G) \to ((E \lor H) \to (G \lor E))$
 - (d) $H_4 = (H \to G) \to ((G \to E) \to (H \to E))$
 - (e) $H_5 = ((G \rightarrow (E \rightarrow H)) \land (G \rightarrow E)) \rightarrow (G \rightarrow H)$
 - (f) $H_6 = A \rightarrow ((B \land C) \rightarrow ((D \land E) \rightarrow ((G \land H) \rightarrow A)))$
 - (g) $H_7 = ((((A \rightarrow B) \rightarrow (\sim C \rightarrow \sim D)) \rightarrow C) \rightarrow E) \rightarrow ((E \rightarrow A) \rightarrow (D \rightarrow A))$
- 2. Determine por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $H_1 = \sim (\sim H) \leftrightarrow H$
 - (b) $H_2 = \sim (H \to G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (c) $H_3 = \sim (H \leftrightarrow G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (d) $H_4 = (H \leftrightarrow G) \leftrightarrow ((H \to G) \land (G \to H))$
 - (e) $H_5 = (H \land (G \lor E)) \leftrightarrow ((H \land G) \lor (H \land E))$
 - (f) $H_6 = ((H \rightarrow G) \land (G \rightarrow H)) \rightarrow (H \rightarrow H)$
 - (g) $H_7 = ((H \leftrightarrow G) \land (G \leftrightarrow H)) \rightarrow (H \leftrightarrow H)$
 - (h) $H_8 = H \rightarrow (H \land G)$
- 3. Repita os exercícios anteriores usando o método do tableau semântico.

Capítulo 5

Um método sintático de dedução na lógica proposicional

Capítulo 5 de Souza, Lógica para Ciência da Computação [2].

5.1 Introdução

- Métodos sintáticos são diferentes dos métodos semânticos de dedução. Enquanto nos métodos semânticos é levada em consideração a semântica das fórmulas, ou seja, a sua interpretação, nos métodos sintáticos as deduções são puramente simbólicas, ou seja, dependem da sequência de símbolos da fórmula.
- Para denotar implicação semântica, usamos o símbolo ⊨, mas para denotar implicação sintática, usamos o símbolo ⊢.
- Um método semântico nos permitiria inferir diretamente que $\sim \sim P \vDash P$, já que sabemos que ambos possuem a mesma tabela verdade ou que uma dupla negação, se eliminada, resulta na mesma interpretação. Em um método sintático, não podemos simplesmente afirmar que $\sim \sim P \vdash P$. Para demonstrar essa implicação, precisamos usar os axiomas e regras de dedução disponíveis.

5.2 O sistema formal Pa

- Alfabeto da lógica proposicional na forma simplificada: é constituído por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: false
 - Símbolos proposicionais: $A B C P Q R A_1 A_2 A_3 a b c \dots$
 - \bullet Conectivos proposicionais: $\sim \vee$
- Sistema axiomático Pa: é um sistema formal composto por
 - Alfabeto da lógica proposicional na forma simplificada sem o símbolo de verdade false.
 - Conjunto das fórmulas da lógica proposicional.
 - Um subconjunto das fórmulas, denominadas axiomas.
 - Um conjunto de regras de dedução ou de inferência.
- Axiomas do sistema Pa
 - Axioma 1: $\sim (H \vee H) \vee H$
 - Axioma 2: $\sim H \vee (G \vee H)$
 - Axioma 3: $\sim (\sim H \vee G) \vee (\sim (E \vee H) \vee (G \vee E))$

Usando outros conectivos, os axiomas do sistema Pa podem ser denotados por

- Axioma 1: $(H \vee H) \rightarrow H$
- Axioma 2: $H \to (G \lor H)$
- Axioma 3: $(H \to G) \to ((E \lor H) \to (G \lor E))$
- Notação:
 - $(H \to G)$ denota $(\sim H \lor G)$
 - $(H \leftrightarrow G)$ denota $(H \to G) \land (G \to H)$
 - $(H \wedge G)$ denota $\sim (\sim H \vee \sim G)$
- Postulado modus ponens: é uma regra de inferência do sistema Pa definida pelo procedimento

tendo
$$H$$
 e ($\sim H \vee G$) deduza G

ou, usando a notação alternativa,

tendo
$$H$$
 e $(H \to G)$ deduza G .

Em outras palavras, se H e $(H \to G)$ são fórmulas válidas, então G também é válida. Uma regra de inferência nos permite inferir novas fórmulas a partir de fórmulas já inferidas.

Exercícios

1. Prove $H_1 = P \rightarrow (Q \lor P)$.

R: Fazendo $H = P \in G = Q$, a fórmula H_1 é obtida do axioma 2.

2. Prove $H_2 = (P \to (Q \lor P)) \to ((\sim P \lor P) \to ((Q \lor P) \lor \sim P))$.

R: Fazendo $H=P,\,G=(Q\ \lor\ P)$ e $E=\ \sim\!P,\,$ a fórmula H_2 é obtida do axioma 3.

3. Considere o conjunto de hipóteses $\beta = \{G_1, G_2\}$ onde $G_1 = P$ e $G_2 = (P \to Q)$. Prove $(R \lor Q)$ a partir de β no sistema axiomático Pa.

R:

Fórmulas	Justificativa
$H_1 = P$	Hipótese G_1
$H_2 = P \to Q$	Hipótese G_2
$H_3 = Q$	Modus ponens em H_1 e H_2
$H_4 = Q \rightarrow (R \lor Q)$	Axioma 2, $H = Q \in G = R$
$H_5 = R \ \lor \ Q$	Modus ponens em H_3 e H_4

4. Considere o conjunto de hipóteses $\beta = \{G_1, \dots, G_9\}$ onde

$$G_1 = (P \land R) \rightarrow P$$

$$G_2 = Q \rightarrow P_4$$

$$G_3 = P_1 \rightarrow Q$$

$$G_4 = (P_1 \land P_2) \to Q$$

$$G_5 = (P_3 \land R) \to R$$

$$G_6 = P_4 \to P$$

$$G_7 = P_1$$

$$G_8 = P_3 \to P$$

$$G_9 = P_2$$

Prove $(S \vee P)$ a partir de β no sistema axiomático Pa.

R:

Fórmulas	Justificativa
$H_1 = P_1$	Hipótese G_7
$H_2 = P_1 \to Q$	Hipótese G_3
$H_3 = Q$	Modus ponens em H_1 e H_2
$H_4 = Q o P_4$	Hipótese G_2
$H_5 = P_4$	Modus ponens em H_3 e H_4
$H_6 = P_4 \to P$	Hipótese G_6
$H_7 = P$	Modus ponens em H_5 e H_6
$H_8 = P \rightarrow (S \lor P)$	Axioma 2, $H = P \in G = S$
$H_9 = S \vee P$	Modus ponens em H_7 e H_8

- Consequência lógica sintática no sistema Pa: dada uma fórmula H e um conjunto de hipóteses β , dizemos que H é consequência lógica sintática de β em Pa se existe uma prova de H em Pa a partir de β . A notação para isso é $\beta \vdash H$.
- Teorema no sistema Pa: uma fórmula H é um teorema em Pa se existe uma prova de H em Pa que utiliza apenas os axiomas. É permitido usar outros teoremas, já que também foram provados usando apenas axiomas. Teoremas são denotados por $\vdash H$, já que o conjunto de hipóteses é vazio.

— Proposição 1: sejam β um conjunto de hipóteses, e $A,\,B$ e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (C \lor A)$ então $\beta \vdash (B \lor C)$

Demonstração:

Demonstração.	
$H_1 = (A \to B)$	$\beta \vdash (A \to B)$
$H_2 = (A \to B) \to ((C \lor A) \to (B \lor C))$	Axioma 3, $H = A$, $G = B$ e $E = C$
$H_3 = (C \lor A) \to (B \lor C)$	Modus ponens (MP) em H_1 e H_2
$H_4 = (C \lor A)$	$\beta \vdash (C \lor A)$
$H_5 = (B \lor C)$	MP em H_4 e H_3

— Proposição 2: temos que $\vdash (P \lor \sim P)$.

Demonstração:

$$H_1 = ((P \lor P) \to P) \to ((\sim P \lor (P \lor P)) \to (P \lor \sim P))$$
 Axioma 3, $H = (P \lor P)$, $G = P$ e
$$E = \sim P$$

$$H_2 = (P \lor P) \to P$$
 Axioma 1, $H = P$
$$H_3 = (\sim P \lor (P \lor P)) \to (P \lor \sim P)$$
 MP em H_2 e H_1
$$H_4 = \sim P \lor (P \lor P)$$
 Axioma 2, $H = P$ e $G = P$ MP em H_4 e H_3 \blacksquare

- Proposição 3, regra da substituição: sejam β um conjunto de hipóteses e H uma fórmula da lógica proposicional, tais que $\beta \vdash H$. Seja $\{P_1, \ldots, P_n\}$ um conjunto de símbolos proposicionais que ocorrem em H mas não ocorrem em β , seja G a fórmula obtida de H substituindo P_1, \ldots, P_n pelas fórmulas E_1, \ldots, E_n respectivamente. Temos que $\beta \vdash G$.
 - Para entender o porque de evitar substituir símbolos que ocorrem em β , observe os seguintes exemplos.
 - o Considere $\beta = \{P_1, P_2\}$ e a substituição $P_1 = P$ e $P_2 = \sim P$. Acabamos de obter resultados contraditórios entre si, o que torna nosso sistema inconsistente.
 - o Considere $\beta = \{P_1, P_2, P_1 \land P_2\}$ e a substituição $P_1 = P$ e $P_2 = \sim P$. Acabamos de demonstrar a contradição $(P \land \sim P)$ o que torna nosso sistema incorreto.

— Proposição 4a: temos que $\vdash (P \to {\sim}{\sim} P)$.

Demonstração:

$H_1 = P \lor \sim P$	Prop. 2
$H_2 = \sim P \lor \sim \sim P$	Regra da Substituição (RS) em H_1
_	
$H_3 = P \rightarrow \sim \sim P$	Mudança de notação (MN) em H_2

— Proposição 4b: temos que $\vdash (\sim \sim P \rightarrow P)$.

Demonstração:

Demonstração.	
$H_1 = P \rightarrow \sim \sim P$	Prop 4a
$H_2 = \sim P \rightarrow \sim \sim \sim P$	RS em H_1
$H_3 = (\sim P \rightarrow \sim \sim \sim P) \rightarrow ((P \lor \sim P) \rightarrow (\sim \sim \sim P \lor P))$	Axioma 3, $H = \sim P$, $G = \sim \sim \sim P$ e $E =$
	P
$H_4 = (P \lor \sim P) \to (\sim \sim P \lor P)$	MP em H_2 e H_3
$H_5 = P \lor \sim P$	Prop. 2
$H_6 = \sim \sim \sim P \lor P$	MP em H_5 e H_4
$H_7 = \sim \sim P \to P$	MN em $H_6 \blacksquare$

— Proposição 5: temos que $\vdash (P \rightarrow P)$.

Demonstração:

Demonstração.	
$H_1 = P \rightarrow \sim \sim P$	Prop. 4a
$H_2 = (P \rightarrow \sim \sim P) \rightarrow ((P \lor P) \rightarrow (\sim \sim P \lor P))$	Axioma 3, $H=P, G=\sim\sim P$ e $E=P$
$H_3 = (P \lor P) \rightarrow (\sim \sim P \lor P)$	$MP \text{ em } H_1 \text{ e } H_2$
$H_4 = (P \rightarrow \sim \sim P) \rightarrow ((\sim \sim P \lor P) \rightarrow (\sim \sim P \lor \sim \sim P))$	Axioma 3, $H = P$, $G = \sim \sim P$ e $E =$
	$\sim \sim P$
$H_5 = (\sim \sim P \lor P) \to (\sim \sim P \lor \sim \sim P)$	$MP \text{ em } H_1 \text{ e } H_4$
$H_6 = \sim P \lor (P \lor P)$	Axioma 2, $H = P \in G = P$
$H_7 = (\sim \sim P \lor P) \lor \sim P$	Prop. 1 em H_3 e H_6
$H_8 = \sim P \rightarrow \sim \sim \sim P$	RS em Prop. 4a
$H_9 = \sim \sim \sim P \lor (\sim \sim P \lor P)$	Prop. 1 em H_8 e H_7
$H_{10} = (\sim \sim P \lor \sim \sim P) \lor \sim \sim \sim P$	Prop. 1 em H_5 e H_9
$H_{11} = \sim \sim \sim P \rightarrow \sim P$	RS em Prop. 4b
$H_{12} = \sim P \lor (\sim \sim P \lor \sim \sim P)$	Prop. 1 em H_{11} e H_{10}
$H_{13} = (\sim \sim P \lor \sim \sim P) \rightarrow \sim \sim P$	Axioma 1, $H = \sim \sim P$
$H_{14} = \sim \sim P \lor \sim P$	Prop. 1 em H_{13} e H_{12}
$H_{15} = \sim \sim \sim P \lor \sim \sim P$	RS em H_{14}
$H_{16} = \sim \sim P \to P$	Prop. 4b
$H_{17} = P \lor \sim \sim \sim P$	Prop. 1 em H_{16} e H_{15}
$H_{18} = \sim P \vee P$	Prop. 1 em H_{11} e H_{17}
$H_{19} = P \rightarrow P$	MN em H_{18}

— Proposição 6, comutatividade: temos que

$$\vdash (A \lor B) \to (B \lor A).$$

Demonstração:

$H_1 = B \rightarrow B$	RS em Prop. 5
$H_2 = (B \to B) \to ((A \lor B) \to (B \lor A))$	Axioma 3, $H = B$, $G = B$ e $E = A$
$H_3 = (A \lor B) \to (B \lor A)$	$MP \text{ em } H_1 \text{ e } H_2 \blacksquare$

— Proposição 6b: sejam β um conjunto de hipóteses, e A e B duas fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \lor B)$$
 então $\beta \vdash (B \lor A)$.

— Proposição 7: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (B \rightarrow C)$ então $\beta \vdash (A \rightarrow C)$.

Demonstração:

Bellionsuração.	
$H_1 = B \to C$	$\beta \vdash (B \to C)$
$H_2 = \sim A \vee B$	$\beta \vdash (A \to B)$
$H_3 = C \vee \sim A$	Prop. 1 em H_1 e H_2
$H_4 = (C \lor \sim A) \to (\sim A \lor C)$	RS em Prop. 6
$H_5 = \sim A \lor C$	MP em H_3 e H_4
$H_6 = A \to C$	MN em $H_5 \blacksquare$

— Proposição 8: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow C)$$
 e $\beta \vdash (B \rightarrow C)$ então $\beta \vdash ((A \lor B) \rightarrow C)$.

Demonstração:

Demonstração.	
$H_1 = B \to C$	$\beta \vdash (B \to C)$
$H_2 = (B \to C) \to ((A \lor B) \to (C \lor A))$	Axioma 3, $H = B$, $G = C$ e $E = A$
$H_3 = (A \lor B) \to (C \lor A)$	$MP \text{ em } H_1 \text{ e } H_2$
$H_4 = A \to C$	$\beta \vdash (A \to C)$
$H_5 = (A \to C) \to ((C \lor A) \to (C \lor C))$	Axioma 3, $H = A$, $G = C$ e $E = C$
$H_6 = (C \lor A) \to (C \lor C)$	MP em H_4 e H_5
$H_7 = (A \lor B) \to (C \lor C)$	Prop. 7 em H_3 e H_6
$H_8 = (C \lor C) \to C$	Axioma 1, $H = C$
$H_9 = (A \lor B) \to C$	Prop. 7 em H_7 e H_8

— Proposição 9: sejam β um conjunto de hipóteses, e A, B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow C)$$
 e $\beta \vdash (\sim A \rightarrow C)$ então $\beta \vdash C$.

Demonstração:

Demonstração.	
$H_1 = A \to C$	$\beta \vdash (A \to C)$
$H_2 = \sim A \to C$	$\beta \vdash (\sim A \to C)$
$H_3 = (A \lor \sim A) \to C$	Prop. 8 em H_1 e H_2
$H_4 = (A \lor \sim A)$	Prop. 2
$H_5 = C$	MP em H_4 e H_3

— Proposição 10: sejam β um conjunto de hipóteses, e $A,\,B$ e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 então $\beta \vdash (A \rightarrow (C \lor B))$ e $\beta \vdash (A \rightarrow (B \lor C))$.

Demonstração:

—	
$H_1 = A \to B$	$\beta \vdash (A \to B)$
$H_2 = B \to (C \lor B)$	Axioma 2, $H = B \in G = C$
$H_3 = A \rightarrow (C \lor B)$	Prop. 7 em H_1 e H_2
$H_4 = (C \lor B) \to (B \lor C)$	Prop. 6
$H_5 = A \rightarrow (B \lor C)$	Prop. 7 em H_3 e H_4

— Proposição 11, associatividade: temos que

$$\vdash ((A \lor B) \lor C) \to (A \lor (B \lor C)).$$

Demonstração:

Demonstração.	
$H_1 = A \rightarrow A$	Prop. 5
$H_2 = A \to (A \lor (B \lor C))$	RS, Prop 10 em H_1
$H_3 = B \to B$	Prop. 5
$H_4 = B \to (B \lor C)$	Prop 10 em H_3
$H_5 = B \to (A \lor (B \lor C))$	Prop 10 em H_4
$H_6 = (A \lor B) \to (A \lor (B \lor C))$	Prop 8 em H_2 e H_5
$H_7 = C \to C$	Prop. 5
$H_8 = C \rightarrow (B \lor C)$	Prop 10 em H_7
$H_9 = C \rightarrow (A \lor (B \lor C))$	Prop 10 em H_8
$H_{10} = ((A \lor B) \lor C) \to (A \lor (B \lor C))$	Prop 8 em H_6 e H_9

— Proposição 12, associatividade: sejam β um conjunto de hipóteses, e A,B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash ((A \lor B) \lor C)$$
 então $\beta \vdash (A \lor (B \lor C))$.

— Proposição 13: sejam β um conjunto de hipóteses, e A,B e C três fórmulas da lógica proposicional. Temos que

se
$$\beta \vdash (A \rightarrow B)$$
 e $\beta \vdash (A \rightarrow (B \rightarrow C))$ então $\beta \vdash (A \rightarrow C)$.

Demonstração:

$H_1 = A \rightarrow B$	$\beta \vdash (A \to B)$
$H_2 = A \to (B \to C)$	$\beta \vdash (A \to (B \to C))$
$H_3 = \sim A \lor (\sim B \lor C)$	$MN \text{ em } H_2$
$H_4 = (\sim B \lor C) \lor \sim A$	Prop. 6b em H_3
$H_5 = \sim B \lor (C \lor \sim A)$	Prop. 12 em H_4
$H_6 = B \to (C \lor \sim A)$	$MN \text{ em } H_5$
$H_7 = A \to (C \lor \sim A)$	Prop. 7 em H_1 e H_6
$H_8 = \sim A \lor (C \lor \sim A)$	$MN \text{ em } H_7$
$H_9 = (C \lor \sim A) \lor \sim A$	Prop. 6b em H_8
$H_{10} = C \lor (\sim A \lor \sim A)$	Prop. 12 em H_9
$H_{11} = (\sim A \lor \sim A) \rightarrow \sim A$	Axioma 1, $H = \sim A$
$H_{12} = \sim A \lor C$	Prop. 1 em H_{11} e H_{10}
$H_{13} = A \to C$	MN em $H_{12} \blacksquare$

5.3 Exercícios

- 1. Demonstre os teoremas abaixo no sistema axiomático Pa. Use os axiomas e proposições vistos em aula.
 - (a) $\vdash (\sim P \lor P)$
 - (b) $\vdash (\sim P \lor \sim \sim P)$
 - (c) $\vdash (H \rightarrow (H \lor G))$
 - (d) $\vdash (H \to (G \to H))$
 - (e) $\vdash ((H \to G) \to (\sim G \to \sim H))$
- 2. Demonstre os teoremas abaixo no sistema axiomático Pa. Use os axiomas e proposições vistos em aula.
 - (a) Se $\beta \vdash (A \rightarrow B)$ e $\beta \vdash (C \lor A)$ então $\beta \vdash (C \lor B)$
 - (b) Se $\beta \vdash (A \rightarrow \sim B)$ e $\beta \vdash (C \rightarrow A)$ então $\beta \vdash (B \rightarrow \sim C)$
- 3. Considere um sistema axiomático igual ao Pa mais o axioma 4 dado abaixo. Mostre que se $\beta \vdash H$ então $\beta \vdash \sim H$.

Axioma 4: $H \to (H \lor G)$

Capítulo 6

A linguagem da lógica de predicados

Capítulo 6 de Souza, Lógica para Ciência da Computação [2].

6.1 O alfabeto da lógica de predicados

- Alfabeto: o alfabeto da lógica de predicados é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - \bullet Símbolos para variáveis: $x~y~z~w~x_1~y_1~z_1~x_2\dots$
 - Símbolos para funções: $f g h f_1 g_1 h_1 f_2 \dots$
 - Símbolos para predicados: $p q r s p_1 q_1 r_1 s_1 p_2 \dots$
 - Conectivos: $\sim \lor \land \rightarrow \leftrightarrow \forall \exists$
- Associado a cada função ou predicado está um número inteiro $k \ge 0$ que indica a sua "aridade", ou seja, seu número de argumentos.
- Os símbolos para funções zero-árias, isto é, funções constantes, são: $a\ b\ c\ a_1\ b_1\ c_1\ a_2\dots$
- Os símbolos para predicados zero-ários, isto é, símbolos proposicionais, são: $P Q R S P_1 Q_1 R_1 S_1 P_2 \dots$

6.2 Fórmulas da lógica de predicados

- Termo: um termo pode ser
 - uma variável
 - $f(t_1, \ldots, t_n)$ onde f é uma função n-ária e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM TERMO É UM OBJETO MATEMÁTICO

— Átomo: um átomo pode ser

- um símbolo de verdade
- $p(t_1, \ldots, t_n)$ onde p é um predicado n-ário e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM ÁTOMO É UM VALOR DE VERDADE $\in \{T, F\}$

- Fórmula: as fórmulas da linguagem da lógica de predicados são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo átomo é uma fórmula.
 - Se H é fórmula, $\sim H$ é fórmula.
 - Se H e G são fórmulas, então $(H \vee G), (H \wedge G), (H \rightarrow G)$ e $(H \leftrightarrow G)$ são fórmulas.
 - Se H é fórmula e x é variável, então, $((\forall x)H)$ e $((\exists x)H)$ são fórmulas.
 - Expressão: uma expressão pode ser
 - um termo
 - uma fórmula

6.3 Correspondência entre quantificadores

$$\begin{array}{lcl} -- ((\forall x)H) & \equiv & \sim ((\exists x)(\sim H)) \\ -- ((\exists x)H) & \equiv & \sim ((\forall x)(\sim H)) \end{array}$$

6.4 Símbolos de pontuação

- Ordem de precedência:
 - $\bullet \sim$ Maior
 - $\bullet \ \forall \ \exists$
 - $\bullet \to \leftrightarrow A \to B \leftrightarrow C$ possui duas interpretações.
 - ^
 - V Menor

6.5 Características sintáticas das fórmulas

- Subtermo, subfórmula e subexpressão:
 - Se E = x então x é subtermo de E.
 - Se $E = f(t_1, \ldots, t_n)$ então $t_1, \ldots, t_n, f(t_1, \ldots, t_n)$ são subtermos de E.
 - \bullet Se H é fórmula, H é subfórmula de H.
 - Se $E = \sim H$, então H e $\sim H$ são subfórmulas de E.
 - Se E é uma fórmula do tipo $(G \vee H)$, $(G \wedge H)$, $(G \to H)$ ou $(G \leftrightarrow H)$, então G e H são subfórmulas de E.
 - Se E é uma fórmula do tipo $(\forall x)H$ ou $(\exists x)H$, então H é subfórmula de E.
 - \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.
 - Todo subtermo ou subfórmula é também subexpressão.
- Comprimento de uma fórmula:
 - Se H é um átomo, comp(H) = 1.
 - Se H é fórmula, $comp(\sim H) = comp(H) + 1$.

ullet Se H e G são fórmulas:

```
 \begin{split} & \circ \operatorname{comp}(H \, \vee \, G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1. \\ & \circ \operatorname{comp}(H \, \wedge \, G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1. \\ & \circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1. \\ & \circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1. \\ & \bullet \operatorname{Se} \, H = ((\forall x)G) \ \operatorname{ou} \, H = ((\exists x)G), \ \operatorname{ent\ \~ao} \ \operatorname{comp}(H) = \operatorname{comp}(G) + 1. \end{split}
```

6.6 Formas normais

- Literal: um literal pode ser
 - um átomo
 - a negação de um átomo
- Forma normal: uma fórmula está na
 - ullet forma normal conjuntiva (FNC) se for uma conjunção (\wedge) de disjunções (\vee) de literais
 - \bullet forma normal disjuntiva (FND) se for uma disjunção (\lor) de conjunções (\land) de literais

6.7 Classificações de variáveis

- Escopo de um quantificador: seja G uma fórmula da lógica de predicados:
 - Se $(\forall x)H$ é uma subfórmula de G, então o escopo de $(\forall x)$ em G é a subfórmula H.
 - \bullet Se $(\exists x)H$ é uma subfórmula de G, então o escopo de $(\exists x)$ em G é a subfórmula H.

Exercícios

1. Considere a fórmula abaixo.

$$G = (\forall x)(\exists y)((\forall z)p(x, y, z, w) \to (\forall y)q(z, y, x, z_1))$$

Qual é o escopo de

- (a) $(\forall x)$
- (b) $(\exists y)$
- (c) $(\forall z)$
- (d) $(\forall y)$
- Ocorrência livre e ligada: sejam x uma variável e G uma fórmula.
 - Uma ocorrência de x em G é ligada se x está no escopo de um quantificador $(\forall x)$ ou $(\exists x)$.
 - ullet Uma ocorrência de x em G é livre se não for ligada.
- Variável livre e ligada: sejam x uma variável e G uma fórmula.
 - \bullet A variável x é ligada em G se existe pelo menos uma ocorrência ligada de x em G.
 - A variável x é livre em G se existe pelo menos uma ocorrência livre de x em G.
- Símbolo livre: seja G uma fórmula, os seus símbolos livres são as variáveis com ocorrência livre em G, símbolos de função e símbolos de predicado.
- Fórmula fechada: uma fórmula é fechada quando não possui variáveis livres.
- Fecho de uma fórmula: seja H uma fórmula da lógica de predicados, e $\{x_1, \ldots, x_n\}$ o conjunto das variáveis livres de H.
 - O fecho universal de H, indicado por $(\forall *)H$, é dado pela fórmula $(\forall x_1)(\forall x_2)\dots(\forall x_n)H$.
 - O fecho existencial de H, indicado por $(\exists *)H$, é dado pela fórmula $(\exists x_1)(\exists x_2)\dots(\exists x_n)H$.

6.8 Exercícios

- 1. Determine o comprimento das fórmulas a seguir.
 - (a) $H_1 = p(x, y, f(z))$
 - (b) $H_2 = (P \lor \sim Q) \to \sim (q(x, y) \lor r(z))$
 - (c) $H_3 = (\exists y) r(y) \leftrightarrow \sim (\exists y) P$
 - (d) $H_4 = \sim (p(x, y, z)) \rightarrow \sim ((\forall x)(\forall y)(\forall z)p(x, y, z))$
- 2. Determine o conjunto de subespressões das expressões a seguir.
 - (a) $H_1 = p(x, y, f(z))$
 - (b) $H_2 = g(x, y, f(z))$
 - (c) $H_3 = (\exists y) r(y) \leftrightarrow \sim (\exists y) P$
 - (d) $H_4 = \sim (p(x, y, z)) \rightarrow \sim ((\forall x)(\forall y)(\forall z)p(x, y, z))$
- 3. Verdadeiro ou falso?

- (a) Toda variável é um termo
- (b) Todo termo é uma variável
- (c) Toda função é um termo
- (d) Todo termo é uma função
- (e) Toda variável é um átomo
- (f) Todo átomo é uma variável
- (g) Todo termo é um átomo
- (h) Todo átomo é um termo
- (i) Todo termo é uma fórmula
- (j) Toda fórmula é um termo
- (k) Todo átomo é um literal
- (l) Todo literal é um átomo
- (m) Todo átomo é uma fórmula
- (n) Toda fórmula é um átomo
- (o) Todo literal é uma fórmula
- (p) Toda fórmula é um literal
- (q) Toda variável é uma expressão
- (r) Toda expressão é uma variável
- (s) Todo átomo é uma expressão
- (t) Toda expressão é um átomo
- (u) Todo literal é uma expressão
- (v) Toda expressão é um literal
- (w) Todo termo é uma expressão
- (x) Toda expressão é um termo
- 4. Indique se os itens abaixo são ou não variáveis, termos, funções, átomos, literais, fórmulas e expressões.
 - (a) z
 - (b) a
 - (c) $P \leftrightarrow Q$
 - (d) g(x, y, z)
 - (e) p(x, y, z)
 - (f) $\sim P$
- 5. Escreva uma fórmula equivalente usando o quantificador existencial $\exists.$
 - (a) $H_1 = (\forall x)P$
 - (b) $H_2 = \sim (\forall x)P$

- (c) $H_3 = (\forall x) \sim P$
- (d) $H_4 = \sim ((\forall x) \sim P)$
- 6. Considere a fórmula $(\forall y)((\exists x) \sim q(x) \land (\exists y)(\forall z)p(y,z))$. Qual é o escopo de
 - (a) $(\forall y)$
 - (b) $(\exists x)$
 - (c) $(\exists y)$
 - (d) $(\forall z)$
- 7. Indique o escopo de todos os quantificadores das fórmulas abaixo.
 - (a) $(\forall x)((\forall z)p(x,y,z) \leftrightarrow (\forall y)q(x,y,z))$
 - (b) $(\forall x)p(x,y,z) \to (\forall y)(\exists z)q(x,y,z)$
- 8. Indique se as ocorrências de variáveis nas fórmulas abaixo são livres ou ligadas.
 - (a) $(\forall x)((\forall z)p(x, y, z, w) \leftrightarrow (\forall y)q(x, y, z, z_1))$
 - (b) $(\forall x)(\ p(x,y,z_1) \rightarrow (\forall y)(\exists z)(\ q(w,x,y) \land \ (\forall w)r(w,x,z)\)$)
- 9. Indique se as variáveis nas fórmulas da questão anterior são livres ou ligadas.
- 10. Encontre o fecho universal e o fecho existencial das fórmulas da questão anterior.

Capítulo 7

Tableaux semânticos na lógica de predicados

Capítulo 13 de Souza, Lógica para Ciência da Computação [1].

- Elementos do sistema de tableaux semânticos da lógica de predicados:
 - Alfabeto da lógica de predicados
 - Conjunto das fórmulas da lógica de predicados
 - Um conjunto de regras de dedução
- Regras de dedução do tableau semântico: sejam A e B duas fórmulas da lógica de predicados, as regras R_1 a R_9 são as mesmas do sistema de tableaux semânticos da lógica de predicados. As demais são

$$R_{10} = \frac{\neg(\forall x)A}{(\exists x)\neg A}$$

$$R_{11} = \frac{\neg(\exists x)A}{(\forall x)\neg A}$$

$$R_{12} = \frac{(\exists x)A}{A(t)}$$

$$R_{13} = \frac{(\forall x)A}{A(t)}$$
onde t é novo
onde t é qualquer.

 \bullet Exemplo: mostre que a fórmula $H=(\forall x)(\forall y)p(x,y)\to p(a,a))$ é tautologia. $(\forall x)(\forall y)p(x,y)\to p(a,a))$

1.
$$\sim ((\forall x)(\forall y)p(x,y) \to p(a,a)) \checkmark$$
 $\sim H$
2. $(\forall x)(\forall y)p(x,y) \checkmark$ $R_8 \text{ em 1}$
3. $\sim p(a,a)$ $R_8 \text{ em 1}$
4. $(\forall y)p(a,y) \checkmark$ $R_{13} \text{ em 2}, x = a$
5. $p(a,a)$ $R_{13} \text{ em 4}, y = a$

• Exemplo: mostre que a fórmula $H=(\forall x)p(x)\to (\exists y)p(y)$ é tautologia. $(\forall x)p(x)\to (\exists y)p(y)$

1.
$$\sim ((\forall x)p(x) \to (\exists y)p(y)) \checkmark$$
 $\sim H$
2. $(\forall x)p(x) \checkmark$ $R_8 \text{ em 1}$
3. $\sim (\exists y)p(y) \checkmark$ $R_{11} \text{ em 3}$
4. $(\forall y)\sim p(y) \checkmark$ $R_{13} \text{ em 4}, y = a$
6. $p(a)$ $R_{13} \text{ em 2}, x = a$

• Exemplo: mostre que a fórmula $H=(\exists x)(\exists y)p(x,y)\to p(a,a))$ é tautologia. $(\exists x)(\exists y)p(x,y)\to p(a,a))$

```
1. \sim ((\exists x)(\exists y)p(x,y) \to p(a,a)) \checkmark \sim H

2. (\exists x)(\exists y)p(x,y) \checkmark \qquad R_8 \text{ em 1}

3. \sim p(a,a) \qquad R_8 \text{ em 1}

4. (\exists y)p(b_1,y) \checkmark \qquad R_{13} \text{ em 2}, x = b_1

5. p(b_1,b_2) \qquad R_{13} \text{ em 4}, y = b_2
```

O tableau não pode ser fechado, então H não é tautologia.

- Teorema no sistema de tableaux semânticos da lógica de predicados.
 - Considere o teorema $H=(\forall x)(p(x) \land q(x)) \rightarrow (\forall x)P(x)$. O tableau abaixo mostra que $\vdash H$.

```
(\forall x)(p(x) \land q(x)) \to (\forall x)p(x)
```

```
\sim ((\forall x)(p(x) \land q(x)) \rightarrow (\forall x)p(x)) \checkmark
                                                                                             \sim H
2.
                           (\forall x)(p(x) \land q(x)) \checkmark
                                                                                             R_8 \text{ em } 1
3.
                                  \sim (\forall x) P(x) \checkmark
                                                                                             R_8 \text{ em } 1
4.
                                   (\exists x) \sim p(x) \checkmark
                                                                                             R_{10} \text{ em } 3
                                         \sim p(a)
                                                                                            R_{12} \text{ em } 3, x = a
5.
6.
                                                                                             R_{13} \text{ em } 2, x = a
                                 p(a) \wedge q(a) \checkmark
7.
                                                                                             R_1 \text{ em } 6
                                           p(a)
8.
                                           q(a)
                                                                                             R_1 \text{ em } 6
                                              \otimes
                                             5,7
```

• O tableau abaixo porém, onde a aplicação das regras é invertida, não é fechado.

$$(\forall x)(p(x) \land q(x)) \rightarrow (\forall x)p(x)$$

```
\sim ((\forall x)(p(x) \land q(x)) \rightarrow (\forall x)p(x)) \checkmark
1.
                                                                                            \sim H
                           (\forall x)(p(x) \land q(x)) \checkmark
2.
                                                                                            R_8 \text{ em } 1
3.
                                 \sim (\forall x) P(x) \checkmark
                                                                                            R_8 \text{ em } 1
4.
                                  (\exists x) \sim p(x) \checkmark
                                                                                            R_{10} \text{ em } 3
5.
                                p(a) \wedge q(a) \checkmark
                                                                                            R_{13} \text{ em } 2, x = a
                                          p(a)
                                                                                           R_1 \text{ em } 5
6.
                                          q(a)
                                                                                            R_1 \text{ em } 5
7.
                                                                                            R_{12} \text{ em } 4, x = b
8.
                                         \sim p(b)
```

- Ao desenvolver um tableau, priorize sempre a aplicação de R_{12} em detrimento de R_{13} . Assim o termo usado na aplicação de R_{13} pode ser o mesmo usado na aplicação de R_{12} , facilitando a repetição de fórmulas necessária para fechar os ramos do tableau.
- Podemos afirmar o seguinte sobre tableaux semânticos associados a fórmulas da lógica de predicados.
 - \circ Se H é tautologia, então existe tableau fechado associado a H.
 - \circ Se H é tautologia, então pode existir tableau aberto associado a H.
 - \circ Se H não é tautologia, então todo tableau associado a H é aberto.
 - \circ Se um tableau associado a H é fechado, então H é tautologia.
 - \circ Se um tableau associado a H é aberto, então não se pode concluir que H não é tautologia.
 - \circ Se todo tableau associado a H é aberto, então Hnão é tautologia.

- Consequência lógica em tableaux semânticos:
 - Sejam H_1 e H_2 duas fórmulas da lógica de predicados. Dizemos que H_1 equivale a H_2 se e somente se $H_1 \leftrightarrow H_2$ é tautologia.
- Exemplo: sejam $H_1 = (\exists x)(p(x) \to q(x))$ e $H_2 = (\forall x)p(x) \to (\exists x)q(x)$. Mostre que H_1 equivale a H_2 . $(\exists x)(p(x) \to q(x)) \leftrightarrow ((\forall x)p(x) \to (\exists x)q(x))$

15,17

15,18

- ullet Sejam H_1 e H_2 duas fórmulas da lógica de predicados. Dizemos que H_1 implica em H_2 se e somente se $H_1 \to H_2$ é tautologia.
- Exemplo: sejam $H_1 = (\forall x)(p(x) \to q(x))$ e $H_2 = (\exists x)p(x) \to (\forall x)q(x)$. Mostre que H_2 implica em H_1 .

$$((\exists x)p(x) \rightarrow (\forall x)q(x)) \rightarrow (\forall x)(p(x) \rightarrow q(x))$$
1. $\sim (((\exists x)p(x) \rightarrow (\forall x)q(x)) \rightarrow (\forall x)(p(x) \rightarrow q(x))) \checkmark \qquad \sim (H_1 \leftrightarrow H_2)$
2. $(\exists x)p(x) \rightarrow (\forall x)q(x) \checkmark \qquad R_8 \text{ em } 1$
3. $\sim (\forall x)(p(x) \rightarrow q(x)) \checkmark \qquad R_8 \text{ em } 1$
4. $(\exists x)\sim (p(x) \rightarrow q(x)) \checkmark \qquad R_{10} \text{ em } 3$
5. $\sim (p(a) \rightarrow q(a)) \checkmark \qquad R_{12} \text{ em } 4, x = a$
6. $p(a) \checkmark \qquad R_8 \text{ em } 5$
7. $\sim q(a) \checkmark \qquad R_8 \text{ em } 5$
8. $\sim (\exists x)p(x) \checkmark \qquad (\forall x)q(x) \checkmark \qquad R_9 \text{ em } 5$
8. $\sim (\exists x)p(x) \checkmark \qquad R_{12} \text{ em } 8$
9. $(\forall x)\sim p(x) \checkmark \qquad R_{12} \text{ em } 8$
10. $\sim p(a) \qquad q(a) \qquad R_{13} \text{ em } 8; R_{13} \text{ em } 9, x = a$

q(a)

7,10

7.1 Exercícios

10.

- 1. Determine se as fórmulas a seguir são ou não equivalentes usando o método dos tableaux semânticos.
 - (a) $(\forall x)q(y) \in q(y)$
 - (b) $(\exists x)q(y) \in q(y)$
 - (c) $(\forall x)(p(x) \land q(y)) \in (\forall x)(p(x) \land q(y))$

 $\sim p(a)$ \otimes

6,10

- (d) $(\exists x)(p(x) \land q(y)) \in (\exists x)(p(x) \land q(y))$
- (e) $(\forall x)(p(x) \lor q(y))$ e $(\forall x)(p(x) \lor q(y))$
- (f) $(\exists x)(p(x) \lor q(y)) e (\exists x)(p(x) \lor q(y))$
- (g) $(\forall x)(p(x) \to q(y))$ e $(\forall x)(p(x) \to q(y))$
- (h) $(\exists x)(p(x) \to q(y))$ e $(\exists x)(p(x) \to q(y))$

Referências Bibliográficas

- [1] João Nunes de Souza. Lógica para Ciência da Computação. Campus, Brasil, 1st edition, 2002.
- [2] João Nunes de Souza. Lógica para Ciência da Computação e Áreas Afins. Campus-Elsevier, Brasil, 3rd edition, 2014.