<Tu vstavi zelo dober naslov >

Rok Mlinar Vahtar

August 2023

1 Uvod

< tu vstavi fenomenalno napisan uvod >

2 Standardni TFIM model

Hamiltonian za standardni Isingov model z tranzverzalnim poljem se glasi

$$\hat{H} = \sum_{\langle i,j \rangle} -J \hat{\sigma_i^z} \hat{\sigma_j^z} - h \sum_i \hat{\sigma_i^x}$$
 (1)

in ga za dimenzije N < 10 lahko rešimo z eksaktno diagonalizacijo v doglednem času.

2.1 Ekzaktna diagonalizacija TFIM modela

Da izvedemo eksaktno diagonalizacijo moramo najprej sestaviti matriko, ki predstavlja hamiltonian. Najprej moramo določiti bazo, ki jo bomo uporabljali, saj hočemo, da za vektor \vec{x} , ki bo predstavljal stanje velja naslednje: $\vec{x}^T \hat{H} \vec{x} = E$, kjer je E energija tega stanja. Bazni vektorji morajo skupaj predstavljati vsa možna stanja z-projekcije vseh N spinov. Če si za bazo izberemo stanja, tako da je n-to stanje enako kot binarno zapisan n (Peto stanje je 0...000101), kjer 0 in 1 predstavljata spin dol in gor, lahko hamiltonian zapišmo kot tentzorski produkt Paulijevih matrik in identitet. To pomeni, da za vsak člen v zgornji vsoti, tenzorsko pomnožimo Paulijevi matriki na mestih i in j, ter identitete povsod drugod, v vrstnem redu, kot si sledijo spini v verigi.

Ko je matrika sestavljena jo le še diagonaliziramo z poljubnim algoritmom. Sam uporabljam python metodo scipy.linalg.eigsh, ki izkoristi hermitskost in redkost naše matrike, v zameno za to, da lahko izračuna le nekatere izmed lastnih vektorjev. Ker nas v resnici zanima le osnovno stanje, nam to ne dela težav, saj vedno lahko najdemo lastni vektor z najnižjo energijo.

Sedaj, ko imamo diagonaliziran hamiltonian, se lahko lotimo analize. Dobra mera za stanje sistema, ki nas bo tu zanimala, je magnetizacija, ki jo definiramo kot:

$$M = \frac{1}{N} \sum_{i=0}^{N} \sigma_i^z \tag{2}$$

Vse naslednje metode, predstavljene v tem poglavju se nahajajo v datoteki TFIM_QuSpin.py . Če fiksiramo J=1 in variiramo h, ter vsakič izračunamo magnetizacijo, dobimo naslednji graf, ki kaže fazni prehod pri $h\approx J$. To opravlja funkcija main().

Če želimo videti, kako se, ko $N \to \infty$, magnetizacija približuje stopnici, si lahko obledamo tudi ta graf.

Če variiramo oba J in h lahko narišemo naslednja 3D in contour grafa.

Grafa narisana preko plot3d() in plot_contour().

Na grafu lahko opazimo naslednje lastnosti:

- Simetrija čez ravnino h=0, kar ni nepričakovano, saj je veriga sama po sebi simetričan. Če polje obremo v drugo smer lahko zato pričakujemo, da bo rezultat le prezrcaljena rešitev za polje v prvotno smer. To pa ne vpliva na magnetizacijo, ki je "izpovprečena" čez celo verigo.
- ullet Če se osredotočimo na presek h=0, vidimo, da se pri J>>0 spini obnašajo kot feromagnet, saj so vsi spini poravnani. Za J<<0 pa lahko sumimo, da se obnaša kot antiferomagnet in so sosednji spini obrnjeni nasprotno. To lahko potrdimo, če izračunamo naslednjo količino in vidimo, da je zelo blizu 1.

$$|\frac{1}{N}\sum_{i=0}^{N}\sigma_{i}^{z}(-1)^{i}|\tag{3}$$

• Na prvi pogled vidimo tudi, dase magnetizacija ustali a neki končni vrednosti okoli 0.2, ko gre $h \to \infty$. To res velja za majhne sisteme, ampak za realne sisteme, kjer je $N \to \infty$, se ta končna vrednost bliža 0. To tendenco lahko vidimo v naslednjih grafih.

$$N = 6$$

N = 8

$$N = 10$$

3 Sklopljeni verigi

Še malce bolj komplicirana varianta Isingovega modela je ta, ki nas tu v resnici zanima. Tega dobimo tako, da dve verigi spinov, za kateri velja TFIM, sklopimo med sabo. Hamiltonian tega modela se glasi:

$$\hat{H} = \sum_{\langle i,j \rangle} -J \hat{\sigma}_{1i}^{\hat{z}} \hat{\sigma}_{1j}^{\hat{z}} + \sum_{\langle i,j \rangle} -J \hat{\sigma}_{2i}^{\hat{z}} \hat{\sigma}_{2j}^{\hat{z}} - h \sum_{i} \hat{\sigma}_{1i}^{\hat{x}} - h \sum_{i} \hat{\sigma}_{2i}^{\hat{x}} - J_{T} \sum_{i} \hat{\sigma}_{1j}^{\hat{z}} \hat{\sigma}_{2i}^{\hat{z}}$$

$$\tag{4}$$

Za dimenzije N<10 lahko rešimo z direktno diagonalizacijo v doglednem času. Vse naslednje metode, predstavljene v tem poglavju se nahajajo v datoteki TFIM_QuSpin_2.py . Dobra mera za stanje sistema, ki

nas bo tu zanimala, je zoped magnetizacija, ki jo definiramo kot:

$$M = \frac{1}{N} \sum_{i=0}^{N} \sigma_{1i}^{z} + \frac{1}{N} \sum_{i=0}^{N} \sigma_{2i}^{z}$$
 (5)

Če zoped variiramo J in h, pri fiksnem $J_T=1$ in N=8, dobimo naslednji graf:

Če vari
iramo oba hter J_T pri fiksne
mJ=1lahko narišemo 3D in contour grafa

Grafa ko je fiksen J in ko je fiksen J_T sta si zelo podobna. To je zato, ker si lahko, prav tako kot si sklopitev z J_T predstavljamo kot dve verigi dolžine N naloženi ena na drugo, predstavljamo sklopitev z J kot N verig dolžine 2, naloženih ena na drugo.

4 Časovna evolucija sistema