

SEQUENCE LISTING

<110> DellaPenna, Dean
Tian, Li
Kim, Joonyul

<120> Novel Carotenoid Hydroxylases for Use in Engineering Carotenoid Metabolism in Plants

<130> MSU-08604

<140> 10/751,235
<141> 2004-01-02

<160> 74

<170> PatentIn version 3.2

<210> 1
<211> 77
<212> PRT
<213> Arabidopsis thaliana

<400> 1

Leu Gln Pro Tyr Ala Glu Asp Gly Ser Ala Val Asn Met Glu Ala Lys
1 5 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Glu Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Ile Asp Ala Leu Cys Lys Ile Val Pro Arg Gln
65 70 75

<210> 2
<211> 77
<212> PRT
<213> Arabidopsis thaliana

<400> 2

Leu Asp Ala Ala Ala Leu Lys Gly Glu Glu Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly Val Ile Glu Ala Val Tyr
35 40 45

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ser Pro Ile Pro Val
50 55 60

Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln
65 70 75

<210> 3
<211> 84
<212> PRT
<213> Arabidopsis thaliana

<400> 3

Glu Lys Leu Ile Arg Glu Lys Glu Thr Ser Ser Gly Glu Asp Thr Ile
1 5 10 15

Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser Leu Ala Leu Asp Ile Ile
20 25 30

Gly Leu Ser Val Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser
35 40 45

Pro Val Ile Lys Ala Val Tyr Gly Thr Leu Phe Glu Ala Glu His Arg
50 55 60

Ser Thr Phe Tyr Phe Pro Tyr Trp Asn Phe Pro Pro Ala Arg Trp Ile
65 70 75 80

Val Pro Arg Gln

<210> 4
<211> 539
<212> PRT
<213> Arabidopsis thaliana

<400> 4

Met Glu Ser Ser Leu Phe Ser Pro Ser Ser Ser Tyr Ser Ser Leu
1 5 10 15

Phe Thr Ala Lys Pro Thr Arg Leu Leu Ser Pro Lys Pro Lys Phe Thr
20 25 30

Phe Ser Ile Arg Ser Ser Ile Glu Lys Pro Lys Pro Lys Leu Glu Thr
35 40 45

Asn Ser Ser Lys Ser Gln Ser Trp Val Ser Pro Asp Trp Leu Thr Thr
50 55 60

Leu Thr Arg Thr Leu Ser Ser Gly Lys Asn Asp Glu Ser Gly Ile Pro
65 70 75 80

Ile Ala Asn Ala Lys Leu Asp Asp Val Ala Asp Leu Leu Gly Gly Ala
85 90 95

Leu Phe Leu Pro Leu Tyr Lys Trp Met Asn Glu Tyr Gly Pro Ile Tyr
100 105 110

Arg Leu Ala Ala Gly Pro Arg Asn Phe Val Ile Val Ser Asp Pro Ala
115 120 125

Ile Ala Lys His Val Leu Arg Asn Tyr Pro Lys Tyr Ala Lys Gly Leu
130 135 140

Val Ala Glu Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala
145 150 155 160

Glu Gly Pro Leu Trp Thr Ala Arg Arg Arg Ala Val Val Pro Ser Leu
165 170 175

His Arg Arg Tyr Leu Ser Val Ile Val Glu Arg Val Phe Cys Lys Cys
180 185 190

Ala Glu Arg Leu Val Glu Lys Leu Gln Pro Tyr Ala Glu Asp Gly Ser
195 200 205

Ala Val Asn Met Glu Ala Lys Phe Ser Gln Met Thr Leu Asp Val Ile
210 215 220

Gly Leu Ser Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr Thr Asp Ser
225 230 235 240

Pro Val Ile Glu Ala Val Tyr Thr Ala Leu Lys Glu Ala Glu Leu Arg
245 250 255

Ser Thr Asp Leu Leu Pro Tyr Trp Lys Ile Asp Ala Leu Cys Lys Ile
260 265 270

Val Pro Arg Gln Val Lys Ala Glu Lys Ala Val Thr Leu Ile Arg Glu
275 280 285

Thr Val Glu Asp Leu Ile Ala Lys Cys Lys Glu Ile Val Glu Arg Glu
290 295 300

Gly Glu Arg Ile Asn Asp Glu Glu Tyr Val Asn Asp Ala Asp Pro Ser
305 310 315 320

Ile Leu Arg Phe Leu Leu Ala Ser Arg Glu Glu Val Ser Ser Val Gln
325 330 335

Leu Arg Asp Asp Leu Leu Ser Met Leu Val Ala Gly His Glu Thr Thr
340 345 350

Gly Ser Val Leu Thr Trp Thr Leu Tyr Leu Leu Ser Lys Asn Ser Ser
355 360 365

Ala Leu Arg Lys Ala Gln Glu Glu Val Asp Arg Val Leu Glu Gly Arg
370 375 380

Asn Pro Ala Phe Glu Asp Ile Lys Glu Leu Lys Tyr Ile Thr Arg Cys
385 390 395 400

Ile Asn Glu Ser Met Arg Leu Tyr Pro His Pro Pro Val Leu Ile Arg
405 410 415

Arg Ala Gln Val Pro Asp Ile Leu Pro Gly Asn Tyr Lys Val Asn Thr
420 425 430

Gly Gln Asp Ile Met Ile Ser Val Tyr Asn Ile His Arg Ser Ser Glu
435 440 445

Val Trp Glu Lys Ala Glu Glu Phe Leu Pro Glu Arg Phe Asp Ile Asp
450 455 460

Gly Ala Ile Pro Asn Glu Thr Asn Thr Asp Phe Lys Phe Ile Pro Phe
465 470 475 480

Ser Gly Gly Pro Arg Lys Cys Val Gly Asp Gln Phe Ala Leu Met Glu
485 490 495

Ala Ile Val Ala Leu Ala Val Phe Leu Gln Arg Leu Asn Val Glu Leu
500 505 510

Val Pro Asp Gln Thr Ile Ser Met Thr Thr Gly Ala Thr Ile His Thr
515 520 525

Thr Asn Gly Leu Tyr Met Lys Val Ser Gln Arg
530 535

<210>	5
<211>	2467
<212>	DNA
<213>	Arabidopsis thaliana
<400>	5
atggagtctt cactcttttc tccatcttcc tcttcttact cttctctttt cactgcaaaa	60
cctacgcgtc ttttatcacc aaaacccaaa ttcacattct ccatcagatc ctccatttag	120
aaacccaaac ccaaactcga gaccaattca tcgaaatccc aatcatgggt cagtcccgat	180
tggctcacaa cactcactcg taccctttcc tcagaaaaaa acgacgagtc aggtatacca	240
atcgcaacg cgaagctcga cgatgtcgct gatctcctcg gaggtgctctt ctttttacct	300
ctctacaaat ggatgaatga gtacggaccc attaccgtc tcgctgctgg tcctcgtaat	360
ttcgtaattg tgagcgaccc agcgatagct aaacatgttt tgaggaatta tccaaagtac	420
gctaaaggct tagtcgctga agtctctgaa tttctatttg gttcgggttt cgctatcgct	480
gaaggacctc tttggacagt aatttcatct cctcctatct caattttgaa gtttttggaa	540
ttgtggaagt aatgtgtgac tgtcttgtat gataagtaac tctaatttttta gggtttagat	600
tccaatcttc tctattgggc ttagctgaag tctgatttt tacataggcg aggcttagag	660
cggtggttcc atcgcttcac aggaggtatt tgtctgtgat tgtggagaga gtattctgca	720
aatgtgcaga gaggcttgaa gagaagttgc agccttatgc agaagacgga agtgcgtgta	780
atatggaagc gaagttctct cagatgacac ttgatgtcat tgggttgtct ctttttaact	840
acaatttcga ttctttgact actgatagtc ctgtcattga agctgtttac actgcttta	900
aagaagctga gcttcgttct actgatcttc tgccatatttga aggcaagt ttctgtgtt	960
ttttctgtgg ttgttgatt gtgtgaaaca attggattct tgtaatttga gagggtttgg	1020
ttgtttttt cagatcgatg cattgtgtaa gatagtcccg agacaggtga aagctgaaaa	1080
ggctgttaact ttgataaggg aaactgttga agacatttatt gctaagtgtta aagaaattgt	1140
cgaaagagaa ggcgaaagaa tcaatgtatgaa ggagtatgtaaatgtatgctg acccaagtat	1200
cctgcgttcc ttgcttgcaaa gcagagaaga ggtttaact ttttcctta agttataag	1260
caaatttggc ctttcattat cgcataatcg aagctgatgt tgcatgtga gggttttcag	1320
gtatcaagtgtgc tgcagttacg ggtatgtctt ctctcaatgc tcgttagcggg tcatgaaacc	1380
actggatctg tcctcacttg gacactttat ctcctaagta aggtacctta atgtatcttc	1440
tactttgcta tgcttagagaa ttacttgaa tggagcttc tctgttctca tttaccttt	1500
caaattctct atgttcatag aactcatctg cattaaggaa agcacaagaa gaagttagaca	1560
gagtgttaga aggaagaaac ccggcttcg aggtataaaa ggagttgaag tacatcactc	1620
gttgtataaaa cgagtcaatg cgtctctatc ctcatcctcc tgtaagcaat caagctcatc	1680

tctctaatta	ttcatgaact	aaatttctg	attgatttgc	ttcctggtag	gtcttgataa	1740
gaagagctca	agttcctgac	attcttcctg	ggaactataa	ggtaataacc	ggacaagaca	1800
ttatgatttc	agtctataac	atccatcggt	cttccgaggt	.acagttctct	tccttctctc	1860
gtccatagta	taacataggg	gagcctaatac	cttctcttca	atgatctttg	tgtggttcgg	1920
atatctaacc	ggagtggaca	ttcctagttat	tacattcatg	cccacatttc	ttatgtgttt	1980
gttgggtt	attccaaagg	tatggaaaaa	agctgaggaa	tttctgcctg	aacgattcga	2040
catagatggc	gcaatcccta	acgaaacaaa	cactgatttc	aagtaaactc	agtagaacac	2100
atctttgac	acaaaactact	gaatcaagat	tagtggttt	gattaggaa	tttaaaagat	2160
gattttctt	ttcaccaga	ttcatccat	tcagtggagg	gcctagaaaa	tgtgtaggcg	2220
atcagttgc	attgatggag	gcaattgtgg	cactcgcggt	gttcttcag	cggtaaacg	2280
ttgagctgg	tcctgatcag	accattagca	tgaccacagg	agcaaccata	cacaccacca	2340
atgtatgcc	atgttctcac	actcgagaga	ttaatgagag	tgtctgttt	gtttagaatg	2400
attccaattt	ctctaatgct	gatatttca	attcagggaa	ttgtatatga	aggtgagcca	2460
aaggtaa						2467

<210> 6
 <211> 4170
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 6	cctggtaag	agagagcaga	aattgctgat	acgcacatctt	gtcagagaga	agcttcctga	60
	gttcatccac	gctacagaaa	agtatacact	attcaaaaag	aagacataca	aaaaaaacgc	120
	acactcgaga	gaaggataac	aaacaaacaa	acaaaaagag	caaacccttt	gtcttcag	180
	aagacgataa	tgccagctgc	ttcacccgg	gatacttgt	ctgaaatctg	acctgaactt	240
	tgaggccgg	atgagcttg	cgagctaact	aaagaaggcg	agtaccatgg	cgactgtgaa	300
	gaagcttcct	gaggacgaga	ttgcccttgt	tgttgtctt	ttgatcccct	tcacgtacac	360
	aacaaaaaaaaa	agaaacatca	tcaactaact	atctcagctt	ccaagttaat	ataatacatc	420
	acctcataaa	cttcaaagg	gttataac	agcacatcat	tgtaaaccta	atatcagtaa	480
	ctatgaaccc	taaatcagta	gctgagcaaa	atctacactt	gtcaattcac	ctcaaaaaacc	540
	tcaaataat	cattatacgt	caacaaacta	cacaacaaca	agatttcctt	aatcgtaac	600
	agacctaatt	tctggatcac	gcaatttcat	caataacata	tgaatcagat	ggcaaaaaat	660
	tcgcacaaatc	ataccagaaa	ttgaacatcg	tttcttagat	tcgcccacta	acgaaaggaa	720
	ttgacttttt	cttgcgtct	tgtacttctt	cttcctacca	gatcgacaaa	attnaacaac	780
	tttacagaaa	cagagtttac	agagttcaa	agaaaattcg	atcttctctg	tttcgtttca	840

gattttgcata cttgtttta aaaggcccaa atacgaggag gcccatatta agttttgatt 900
aacaaaacgt agtcgtttta tgcacatcgctcg tccttatcca cgcgtaacgg ttgcgcgttc 960
tacacagagt caaatatttc tgcacggaag ctgcggaaag aggtcatcaa tggagtcttc 1020
actctttctt ccatcttcct cttcttactc ttctctcttc actgaaaac ctacgcgtct 1080
tttatcacca aaacccaaat tcacattctc catcagatcc tccattgaga aacccaaacc 1140
caaactcgag accaattcat cgaaatccca atcatgggtc agtcccgtt ggctcacaac 1200
actcactcgt accctttcct caggaaaaaa cgacgagtca ggtataccaa tcgcgaacgc 1260
gaagctcgac gatgtcgctg atctcctcg aggtgtctc ttcttacctc tctacaaatg 1320
gatgaatgag tacggaccca tttaccgtct cgctgctggt cctcgtaatt tcgtaattgt 1380
gagcgaccca gcgatagcta aacatgtttt gaggaattat ccaaagtacg ctaaaggctt 1440
agtcgctgaa gtctctgaat ttctatttg ttcgggtttc gctatcgctg aaggacctct 1500
ttggacagta atttcatctc ctcctatctc aatttgaag ttttggaaat tgtggaaagta 1560
atgtgtact gtcttgtatg ataagtaact ctaatttttag gtttagatt ccaatctct 1620
ctattggct tagctgaagt ctgattttt acataggcga ggcgttagagc ggtggttcca 1680
tcgcttcaca ggaggtattt gtctgtgatt gtggagagag tattctgaa atgtgcagag 1740
aggcttggta agaagttgca gccttatgca gaagacggaa gtgctgtgaa tatggaaagcg 1800
aagttctctc agatgacact tgatgtcatt gggttgtctc ttttaacta caatttcgat 1860
tctttgacta ctgatagtc tgcatgttaca gctgtttaca ctgctctaa agaagctgag 1920
cttcgttcta ctgatcttct gccatattgg aaggcaagtt tcctgtgttt tttctgtggt 1980
ttgttggattt tgtggaaacaa ttggattctt gtaatttgag agggttgggt tgttttttc 2040
agatcgatgc attgtgtaaat atgtcccga gacaggtgaa agctgaaaag gctgtaactt 2100
tgataaggaa aactgttgaa gaccttattt ctaagtgtaa agaaattgtc gaaagagaag 2160
gcgaaagaat caatgatgag gagtatgtaa atgatgctga cccaaatgtc ctgcgtttct 2220
tgcttgcaag cagagaagag gttttaactt tttccttac gtttataagc aaatttggcc 2280
tttcattatc gcataatcga agctgatgtt gcattgtgag gttttcagg tatcaagtgt 2340
gcagttacgg gatgatctt ctcataatgtc cgtacgggtt catgaaacca ctggatctgt 2400
cctcaactgg acactttatc tcctaagtaa ggtaccttaa tgtatcttct actttgctat 2460
gctagagaat ttacttggat gggagcttct ctgttctcat ttacctcttc aaattctcta 2520
tgttcataga actcatctgc attaaggaaa gcacaagaag aagtagacag agtggtagaa 2580
ggaagaaacc cggtttcga ggtataaaag gagttgaagt acatcactcg ttgtataaac 2640
gagtcaatgc gtctctatcc tcataccttc gtaagcaatc aagctcatct ctctaattat 2700

tcatgaacta aattttctga ttgatttgg tccctggtagg tcttgataag aagagctcaa	2760
gttcctgaca ttcttcctgg gaactataag gtcaataccg gacaagacat tatgattca	2820
gtctataaca tccatcggtc ttccgaggta cagttctt ccttctctcg tccatagtat	2880
aacatagggg agcctaatacc ttctcttcaa tgatcttgcgt gtgggtcgaa tatctaaccg	2940
gagtggacat tcctagtatt acattcatgc ccacattct tatgtgtttt tggttggta	3000
ttccaaaggt atggaaaaaa gctgaggaat ttctgcctga acgattcgac atagatggcg	3060
caatccctaa cgaaacaaac actgattca agtaaactca gtagaacaca tctttgaca	3120
caaactactg aatcaagatt agtggtttt attagggat taaaagatg attttctttt	3180
ttcaccagat tcatcccatt cagtggaggg cctagaaaat gtgttaggcga tcagttgca	3240
ttgatggagg caattgtggc actcgccgtg tttcttcagc ggttaaacgt tgagctggtt	3300
cctgatcaga ccattagcat gaccacagga gcaaccatac acaccaccaa tgtatgccaa	3360
tgttctcaca ctcgagagat taatgagagt gtctgtttt tttagaatga ttccaatttc	3420
tctaattgctg atattttcaa ttccagggat tgtatatgaa ggtgagccaa aggtaaaaac	3480
cagaatttat gtttcatga taattgattt gtgtgaatgg acttgttca tagtacttt	3540
gagaaataac cacaaaaaaa tgaattatgg aaaatagttt taccatcgga aatgtgaatt	3600
ttgaacagtg agatgctagt accattaaag tttggtaatt gtgttatcat ttcaaattcaa	3660
actttcatac agcttgcgtt tggtctccat tttcagtaa ttacgaaaat caaaattttt	3720
ttttttttt aatttctaaa taatagacta aggtctaaaa ccatcccatt ccatatggac	3780
cacacgtaac attaacccctta aaaaccatat aaaaccatat aaaaccaata ctatgggtt	3840
ctatagcgat gtgttagttt acttcacgt acgaggaaga ttaaaaaaaaaa tggagaacga	3900
aagctcagag agtagaaaca gagctcgct tgccattatg gagcttgcta acatgattag	3960
cgttccatg tctctcaatg ccggccgtcg actaggcatt gcccacgcca ttggaaacgg	4020
cgaggccaat tctcctctct ctggccggca gatcctccct cgcctccacc taccatctca	4080
cactaccatt ggtggcgacc ccgagaatct tcagcgtata cttcggatgc tcaccagcta	4140
cggtgtcttc tccgaacacc ttgttggatc	4170

<210> 7
 <211> 2467
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 7 atggagtctt cactcttttcc tccatcttcc tcttcttact cttctctt cactgcaaaa	60
cctacgcgtc ttttatcacc aaaacccaaa ttcacattct ccatcagatc ctccattgag	120
aaacccaaac ccaaactcga gaccaattca tcgaaatccc aatcatgggt cagtcccgat	180

tggctcacaa cactcactcg tacccttcc tcagaaaaaa acgacgagtc aggtatacca	240
atcgcaacg cgaagctcga cgatgtcgct gatctcctcg gaggtgctct cttcttacct	300
ctctacaaat gnatgaatga gtacggaccc attaccgtc tcgctgctgg tcctcgtaat	360
ttcgtaattg tgagcgaccc agcgatagct aaacatgttt tgaggaatta tccaaagtac	420
gctaaaggct tagtcgctga agtctctgaa tttctatttg gttcgggttt cgctatcgct	480
gaaggacctc tttggacagt aatttcatct cctccttatct caattttgaa gttttggaa	540
tttgtgaagt aatgtgtgac tgtcttgtat gataagtaac tctaattttttagat	600
tccaatcttc tctattggc ttagctgaag tctgatttt tacataggcg aggctagag	660
cgggtgttcc atcgcttcac aggaggtatt tgtctgtat tgtggagaga gtattctgca	720
aatgtgcaga gaggcttgc gagaagttgc agccttatgc agaagacgga agtgctgtga	780
atatggaagc gaagttctct cagatgacac ttgatgtcat tgggttgtct ctttttaact	840
acaatttcga ttcttgact actgatagtc ctgtcattga agctgtttac actgctctta	900
aagaagctga gcttcgttct actgatcttc tgccatatttga aggcaagt ttcctgtgtt	960
ttttctgtgg tttgttgatt gtgtgaaaca attggattct tgtaattga gagggtttgg	1020
ttgtttttt cagatcgatg cattgtgtaa gatagtcccg agacaggtga aagctgaaaa	1080
ggctgttaact ttgataaggg aaactgttga agacatttatt gctaagtgtta aagaaattgt	1140
cgaaagagaa ggcgaaagaa tcaatgtatga ggagtatgtta aatgtatgtc acccaagtat	1200
cctgcgttcc ttgctgcaa gcagagaaga ggtttaact ttttcctta agtttataag	1260
caaatttggc ctttcattat cgccataatcg aagctgtatgt tgcattgtat ggttttcag	1320
gtatcaagtgt tgcagttacg ggtatgttctt ctctcaatgc tcgttagcggg tcatgaaacc	1380
actggatctg tcctcaacttgc gacactttat ctccataatgttta agataccatc atgtatcttc	1440
tactttgtat tgcttagagaa tttacttgaa tggagcttc tctgttctca tttaccttctt	1500
caaattctct atgttcatatg aactcatctg catataggaa agcacaagaa gaagttagaca	1560
gagtgttaga aggaagaaac ccggcttgc aggtataaaa ggagttgaag tacatcactc	1620
gttgtataaaa cgagtcaatg cgtctctatc ctcatcctcc tgtaagcaat caagctcatc	1680
tctctaatta ttcatgtact aaattttctg attgattgt ttcctggtag gtcttgataa	1740
gaagagctca agttcctgac atttttcctg ggaactataa ggtcaataacc ggacaagaca	1800
ttatgatttc agtctataac atccatcgatc cttccgaggt acagttctct tccttctctc	1860
gtccatagta taacataggg gagcctaatac cttctttca atgatctttg tgtggttcgg	1920
atatctaacc ggagtggaca ttccttagtat tacattcatg cccacatttc ttatgtgttt	1980
gttgggttttattccaaagg tatggaaaaa agctgaggaa tttctgcctg aacgattcga	2040

catagatggc gcaatcccta acgaaacaaa cactgattc aagtaaactc agtagaacac 2100
atctttgac acaaactact gaatcaagat tagtggttt gattaggaa tttaaaagat 2160
gattttctt ttccaccaga ttcatccat tcagtggagg gcctagaaaa tgtgtaggcg 2220
atcagttgc attgatggag gcaattgtgg cactcgcggt gtttcttcag cggttaaacg 2280
ttgagctggc tcctgatcag accattagca tgaccacagg agcaaccata cacaccacca 2340
atgtatgcc aatgttcac actcgagaga ttaatgagag tgtctgttt gtttagaatg 2400
attccaattt ctctaattgct gatatttca atttcaggga ttgttatatga aggtgagcca 2460
aaggtaa 2467

<210> 8

<400> 8
000

<210> 9

<400> 9
000

<210> 10

<211> 24
<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 10

Leu Val Ala Glu Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile
1 5 10 15

Ala Glu Gly Pro Leu Trp Thr Ala
20

<210> 11

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 11

Met Glu Ser Ser Leu Phe Ser Pro Ser Ser Ser Tyr Ser Ser Leu
1 5 10 15

Phe Thr Ala Lys Pro Thr Arg Leu Leu Ser Pro Lys Pro Lys Phe Thr
20 25 30

Phe Ser Ile Arg
35

<210> 12

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> X is alanine or glycine.

<220>

<221> misc_feature

<222> (3)..(3)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> X is aspartic acid or glutamic acid.

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> X is threonine or serine.

<400> 12

Xaa Gly Xaa Xaa Thr Xaa
1 5

<210> 13

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 13

Ala Gly His Glu Thr Thr
1 5

```

<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic

<220>
<221> misc_feature
<222> (2)..(3)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (5)..(7)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (9)..(9)
<223> Xaa can be any naturally occurring amino acid

<400> 14

Phe Xaa Xaa Gly Xaa Xaa Xaa Cys Xaa Gly
1           5           10

<210> 15
<211> 10
<212> PRT
<213> Arabidopsis thaliana

<400> 15

Phe Ser Gly Gly Pro Arg Lys Cys Val Gly
1           5           10

<210> 16
<211> 561
<212> PRT
<213> Oryza sativa

<400> 16

Met Ala Ala Ala Ala Ala Ala Val Pro Cys Val Pro Phe Leu Cys
1           5           10           15

Pro Pro Pro Pro Leu Val Ser Pro Arg Leu Arg Arg Gly His Val
20          25          30

Arg Leu Arg Leu Arg Pro Pro Arg Ser Ser Gly Gly Gly Gly Gly
35          40          45

Gly Ala Gly Gly Asp Glu Pro Pro Ile Thr Thr Ser Trp Val Ser Pro
50          55          60

```

Asp Trp Leu Thr Ala Leu Ser Arg Ser Val Ala Thr Arg Leu Gly Gly
65 70 75 80

Gly Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp Asp Val
85 90 95

Arg Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys Trp Phe
100 105 110

Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg Asp Leu
115 120 125

Val Val Val Ser Asp Pro Ala Val Ala Arg His Val Leu Arg Gly Tyr
130 135 140

Gly Ser Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu
145 150 155 160

Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala Leu Trp Thr Val Arg
165 170 175

Arg Arg Ser Val Val Pro Ser Leu His Lys Arg Phe Leu Ser Val Met
180 185 190

Val Asp Arg Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu Lys Leu
195 200 205

Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala Arg Phe
210 215 220

Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr Asn
225 230 235 240

Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr Thr
245 250 255

Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr Trp
260 265 270

Lys Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln Ile Lys Ala Glu
275 280 285

Lys Ala Val Asn Ile Ile Arg Asn Thr Val Glu Asp Leu Ile Thr Lys
290 295 300

Cys Lys Lys Ile Val Asp Ala Glu Asn Glu Gln Ile Glu Gly Glu Glu
305 310 315 320

Tyr Val Asn Glu Ala Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala Ser
325 330 335

Arg Glu Glu Val Thr Ser Val Gln Leu Arg Asp Asp Leu Leu Ser Met
340 345 350

Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp Thr Ile
355 360 365

Tyr Leu Leu Ser Lys Asp Pro Ala Ala Leu Arg Arg Ala Gln Ala Glu
370 375 380

Val Asp Arg Val Leu Gln Gly Arg Leu Pro Arg Tyr Glu Asp Leu Lys
385 390 395 400

Glu Leu Lys Tyr Leu Met Arg Cys Ile Asn Glu Ser Met Arg Leu Tyr
405 410 415

Pro His Pro Pro Val Leu Ile Arg Arg Ala Ile Val Asp Asp Val Leu
420 425 430

Pro Gly Asn Tyr Lys Ile Lys Ala Gly Gln Asp Ile Met Ile Ser Val
435 440 445

Tyr Asn Ile His Arg Ser Pro Glu Val Trp Asp Arg Ala Asp Asp Phe
450 455 460

Ile Pro Glu Arg Phe Asp Leu Glu Gly Pro Val Pro Asn Glu Thr Asn
465 470 475 480

Thr Glu Tyr Arg Phe Ile Pro Phe Ser Gly Gly Pro Arg Lys Cys Val
485 490 495

Gly Asp Gln Phe Ala Leu Leu Glu Ala Ile Val Ala Leu Ala Val Val
500 505 510

Leu Gln Lys Met Asp Ile Glu Leu Val Pro Asp Gln Lys Ile Asn Met
515 520 525

Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Tyr Met Asn Val
530 535 540

Ser Leu Arg Lys Val Asp Arg Glu Pro Asp Phe Ala Leu Ser Gly Ser
545 550 555 560

Arg

<210> 17
<211> 545
<212> PRT
<213> Hordeum vulgare

<220>
<221> misc_feature
<222> (529)..(529)
<223> Xaa can be any naturally occurring amino acid
<400> 17

Met Pro Ala Ala Ala Phe Ala Ser Ala Leu Ala Ser Pro Pro Pro Pro
1 5 10 15

Trp Ala Pro Arg Pro Ser Pro Arg His Ala Ser Leu Arg Leu Pro Pro
20 25 30

Pro Arg Ser Ser Gly Gly Gly Asp Lys Pro Thr Thr Ser Trp Val
35 40 45

Ser Pro Asp Trp Leu Thr Ser Leu Ser Arg Ser Val Leu Gly Arg Gly
50 55 60

Asn Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp Asp Val
65 70 75 80

Gln Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys Trp Phe
85 90 95

Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg Asp Phe
100 105 110

Val Ile Val Ser Asp Pro Ala Val Ala Lys His Val Leu Arg Gly Tyr
115 120 125

Gly Thr Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu
130 135 140

Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala Leu Trp Thr Val Arg
145 150 155 160

Arg Arg Ala Val Val Pro Ser Leu His Lys Arg Phe Leu Ser Val Met
165 170 175

Val Asp Lys Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu Lys Leu
180 185 190

Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg Phe
195 200 205

Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr Asn
210 215 220

Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr Thr
225 230 235 240

Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr Trp
245 250 255

Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln Ile Lys Ala Glu
260 265 270

Lys Ala Val Asn Thr Ile Arg Asn Thr Val Glu Glu Leu Ile Ile Lys
275 280 285

Cys Lys Ala Ile Val Asp Ala Glu Asn Glu Gln Ile Glu Gly Glu Glu
290 295 300

Tyr Val Asn Glu Ala Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala Ser
305 310 315 320

Arg Glu Glu Val Ser Ser Leu Gln Leu Arg Asp Asp Leu Leu Ser Met
325 330 335

Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp Thr Ile
340 345 350

Tyr Leu Leu Ser Lys Asp Pro Val Ala Leu Arg Arg Ala Gln Asp Glu
355 360 365

Val Asp Arg Val Leu Gln Gly Arg Leu Pro Arg Tyr Glu Asp Val Lys
370 375 380

Glu Leu Lys Tyr Leu Met Arg Cys Ile Asn Glu Ser Met Arg Leu Tyr
385 390 395 400

Pro His Pro Pro Val Leu Ile Arg Arg Ala Leu Val Asp Asp Val Leu
405 410 415

Pro Gly Asn Tyr Lys Val Lys Thr Gly Gln Asp Ile Met Ile Ser Val
420 425 430

Tyr Asn Ile His Arg Ser Pro Glu Val Trp Asp Arg Ala Asp Glu Phe
435 440 445

Ile Pro Glu Arg Phe Asp Leu Glu Gly Pro Ile Pro Asn Glu Ser Asn
450 455 460

Thr Asp Phe Arg Phe Ile Pro Phe Ser Gly Gly Pro Arg Lys Cys Val
465 470 475 480

Gly Asp Gln Phe Ala Leu Leu Glu Ala Ile Val Ala Leu Ala Ile Val
485 490 495

Ile Gln Lys Met Asp Val Gln Leu Val Ala Asp Gln Lys Ile Ser Met
500 505 510

Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Tyr Met Asn Val
515 520 525

Xaa Leu Arg Lys Val Glu Gln Glu Ala Asp Leu Ala Leu Ser Pro Ser
530 535 540

Gly
545

<210> 18
<211> 362
<212> PRT
<213> Triticum aestivum

<400> 18

Met Pro Ala Ala Ala Phe Ala Ser Ala Phe Ala Ser Pro Pro Pro Pro
1 5 10 15

Trp Ala Pro Arg Pro Pro Pro Arg His Ala Ser Leu Arg Leu Pro Pro
20 25 30

Pro Arg Ser Ser Ser Asn Asn Ser Gly Gly Gly Gly Asp Lys Pro
35 40 45

Thr Thr Ser Trp Val Ser Pro Asp Trp Leu Thr Ser Leu Ser Arg Ser
50 55 60

Val Leu Gly Arg Gly Asn Asp Asp Ser Gly Ile Pro Val Ala Ser Ala
65 70 75 80

Lys Leu Asp Asp Val Gln Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro
85 90 95

Leu Phe Lys Trp Phe Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala
100 105 110

Gly Pro Arg Asp Phe Val Ile Val Ser Asp Pro Ala Val Ala Lys His
115 120 125

Val Leu Arg Gly Tyr Gly Thr Arg Tyr Glu Lys Gly Leu Val Ala Glu
130 135 140

Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala
145 150 155 160

Leu Trp Thr Val Arg Arg Arg Ala Val Val Pro Ser Leu His Lys Arg
165 170 175

Phe Leu Ser Val Met Val Asp Lys Val Phe Cys Lys Cys Ala Glu Arg
180 185 190

Leu Val Glu Lys Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn
195 200 205

Met Glu Ala Arg Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser
210 215 220

Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile
225 230 235 240

Asp Ala Val Tyr Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp
245 250 255

Leu Leu Pro Tyr Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg
260 265 270

Gln Ile Lys Ala Glu Lys Ala Val Asn Thr Ile Arg Asn Thr Val Glu
275 280 285

Glu Leu Ile Thr Lys Cys Lys Ala Ile Val Asp Ala Glu Asn Glu Gln
290 295 300

Ile Glu Gly Glu Glu Tyr Val Asn Glu Ala Asp Pro Ser Ile Leu Arg
305 310 315 320

Phe Leu Leu Ala Ser Arg Glu Glu Val Ser Ser Leu Gln Leu Arg Asp
325 330 335

Asp Leu Leu Ser Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val
340 345 350

Pro Asp Tyr Arg Leu Gln Ala Gln Gly Ser
355 360

<210> 19
<211> 279
<212> PRT
<213> Lycopersicon esculentum

<400> 19

Cys Arg Cys Ala Glu Arg Met Val Glu Lys Leu Leu Pro Asp Ala Ile
1 5 10 15

Ser Gly Ser Ala Val Asn Met Glu Ala Lys Phe Ser Gln Leu Thr Leu
20 25 30

Asp Val Ile Gly Leu Ala Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr
35 40 45

Thr Asp Ser Pro Val Ile Asp Ala Val Tyr Thr Ala Leu Lys Glu Ala
50 55 60

Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr Trp Gln Ile Lys Ala Leu
65 70 75 80

Cys Lys Phe Ile Pro Arg Gln Ile Lys Ala Glu Asn Ala Val Ser Leu
85 90 95

Ile Arg Gln Thr Val Glu Glu Leu Ile Ala Lys Cys Arg Glu Ile Val
100 105 110

Glu Thr Glu Gly Glu Arg Ile Asn Glu Asp Glu Tyr Val Asn Asp Arg
115 120 125

Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala Ser Arg Glu Glu Val Ser
130 135 140

Ser Leu Gln Leu Arg Asp Asp Leu Leu Ser Met Leu Val Ala Gly His
145 150 155 160

Glu Thr Thr Gly Ser Val Leu Thr Trp Thr Ala Tyr Leu Leu Ser Lys
165 170 175

Asp Pro Ser Ser Leu Glu Lys Ala His Glu Glu Val Asp Arg Val Leu
180 185 190

Gly Gly Arg Ser Pro Thr Tyr Glu Asp Met Lys Asn Leu Lys Phe Leu
195 200 205

Thr Arg Cys Ile Thr Glu Ser Leu Arg Leu Tyr Pro His Pro Pro Val
210 215 220

Leu Ile Arg Arg Ala Gln Val Ala Asp Val Leu Pro Gly Asn Tyr Lys
225 230 235 240

Val Asn Val Gly Gln Asp Ile Met Ile Ser Val Tyr Asn Ile His His
245 250 255

Ser Ser Lys Val Trp Asp Arg Ala Glu Glu Phe Asp Pro Glu Arg Phe
260 265 270

Asp Leu Glu Arg Ser Arg Pro
275

<210> 20
<211> 177
<212> PRT
<213> Zea mays

<400> 20

Leu Glu Pro Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg
1 5 10 15

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Val Gly Phe Leu Cys Lys Ile Ile Pro Arg Gln Ile Lys Ala
65 70 75 80

Glu Asn Ala Val Thr Ile Ile Arg Asn Thr Val Glu Glu Leu Ile Met
85 90 95

Lys Cys Lys Glu Ile Val Glu Ala Asn Glu Gln Ile Glu Gly Glu
100 105 110

Glu Tyr Val Asn Glu Gly Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala
115 120 125

Ser Arg Asp Glu Val Ser Ser Val Gln Leu Arg Asp Asp Leu Leu Ser
130 135 140 145

Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp Thr
145 150 155 160

Ile Tyr Leu Leu Ser Lys Asp Pro Thr Ala Leu Arg Arg Ala Gln Asp
165 170 175

Glu

<210> 21
<211> 208
<212> PRT
<213> Helianthus annuus

<400> 21

Gly Pro Arg Asn Phe Val Ile Val Ser Asp Pro Glu Ile Ala Lys His
1 5 10 15

Val Leu Arg Asn Tyr Gly Ser Ile Tyr Ala Lys Gly Leu Val Ala Glu
20 25 30

Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ser
35 40 45

Leu Trp Thr Ala Arg Arg Arg Ala Val Val Pro Ser Leu His Lys Lys
50 55 60

Tyr Leu Ser Val Ile Val Asp Arg Val Phe Cys Lys Cys Ser Glu Arg
65 70 75 80

Leu Val Glu Lys Leu Arg Ser Tyr Ala Arg Ser Asp Thr Ser Val Asn
85 90 95

Met Glu Gln Gln Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala
100 105 110

Val Phe Asn Tyr Asn Phe Asp Ser Leu Thr Ala Asp Ser Pro Val Ile
115 120 125

Glu	Ser	Val	Tyr	Thr	Ala	Leu	Lys	Glu	Ala	Glu	Ala	Arg	Ser	Thr	Asp
130					135					140					
Leu	Leu	Pro	Tyr	Trp	Lys	Ile	Ser	Ala	Leu	Cys	Lys	Ile	Ile	Pro	Arg
145					150					155					160
Gln	Ile	Lys	Ala	Glu	Gln	Ala	Val	Thr	Val	Ile	Arg	Glu	Thr	Val	Glu
					165				170					175	
Glu	Leu	Ile	Ile	Lys	Cys	Lys	Glu	Ile	Val	Glu	Lys	Glu	Gly	Glu	Lys
					180				185					190	
Ile	Asp	Asp	Glu	Asp	Tyr	Val	Asn	Asp	Ala	Thr	Tyr	Ile	Phe	Ile	Cys
					195				200					205	
<210>	22														
<211>	1686														
<212>	DNA														
<213>	Oryza sativa														
<400>	22														
atggccgccc	ccgccccccc	cggcgccccg	tgcgtaccat	tcctgtgcc	gcctcctccg										60
ccattggct	cggcgcgct	ccgccccgtgg	cacgtccgccc	tccgcctgcg	gccgccaagg										120
agcagcggcg	gtggaggcg	aggcgagcg	gggggagacg	agccgccc	caccacctcg										180
tgggtgagcc	ccgactggct	cacggcgctc	tcccgcctcg	tggcaacc	cctcggcg										240
ggcgacgact	cgggatccc	cgtcgccctcc	gccaagctcg	acgacgtgcg	ggacccctc										300
ggcgccgcgc	tcttcctccc	tctttcaag	tggttccgcg	aggaaggccc	cgttaccgc										360
ctcgccgcgg	ggccgcggga	tctcgctg	gtcagcgatc	ccgcccgttg	caggcacgtg										420
ctgcgtgggt	acggttcgag	gtacgagaag	gggctcg	ccgaggtttc	cggatcc										480
ttcggctccg	gttccat	cggcggggc	gctctctgg	cggtgagacg	tgcgttgc										540
gtaccatctc	tacacaaacg	atttctctcg	gtgatgg	acagat	ttgtaaatgt										600
gctgagagat	tagtgagaa	gcttgagaca	tctgtttaa	gtggcaaacc	tgtaaatatg										660
gaagcaaggt	tctctcaa	gacttagat	gtgattgg	tgcctt	caattacaat										720
tttattccc	tcacatcaga	tagccctgtt	attgatg	tttacactgc	actcaaggaa										780
gcagaacttc	gttctacaga	tctttacca	tactg	ttgatttg	gtgcaagatt										840
gttcctagac	aaataaaa	agaaaaggca	gttaacatca	ttaggaa	cgttgaggac										900
ctaattacca	aatgcaagaa	gattgttagat	gctgagaatg	aacaattga	gggtgaggaa										960
tatgtaaatg	aggcagaccc	tagcatcctg	cgattcctac	ttgctagcc	tgaagaggt										1020
accagtgtgc	agttacgtga	tgatctattg	tcaatgttag	ttgctgg	tcaaacaaca										1080

ggctctgtac	tgacgtggac	tatttatctt	ctcagtaagg	atccagcagc	gctgaggaga	1140
gctcaagcag	aggttgcaccg	tgttctacaa	ggtagactcc	ccagatatga	agatctaaaa	1200
gagctgaagt	acttgatgcg	ctgtataaat	gagtctatgc	ggctttatcc	acaccacac	1260
gtgttatac	ggcgagccat	agttgatgat	gtgcttcccg	'gaaactataa	gatcaaagct	1320
ggtcaagata	ttatgatttc	agtgtacaat	atacacaggt	cacctgaggt	ttgggacaga	1380
gctgatgatt	ttattcctga	gagatttgat	ttagagggac	ctgttccaaa	tgagacaaac	1440
actgaataca	gatttatccc	attcagtgg	ggtcctcgga	aatgtgttgg	agatcagtt	1500
gctctttgg	aagcaattgt	ggcacttgct	gttgtgtgc	agaagatgga	cattgagctt	1560
gtgccagatc	aaaaaattaa	catgactact	ggggccacaa	ttcataacaac	caatggcctg	1620
tatataatg	taagtctcg	taaagttgac	agggAACCTG	atTTTGCACT	cagtgggtcc	1680
agatga						1686

<210> 23
 <211> 1638
 <212> DNA
 <213> Hordeum vulgare

<220>						
<221>	misc_feature					
<222>	(1587)..(1587)					
<223>	n is a, c, g, or t					
<400>	23					
atgccccccg	cgccattcgc	ctccgcgctc	gcgtctccctc	ctcctccatg	ggccccacga	60
ccgtccccctc	ggcacgctag	cctccgcctg	ccccgcacaa	ggagcagcgg	cgccggaggg	120
gacaagccca	ccacgtcgtg	ggtcagcccc	gactggctca	cgtcgctgtc	ccgctcggtg	180
ctcggccggg	gaaacgacga	ctcggggatc	ccgtcgccct	ccgccaagct	cgacgacgtg	240
caggacctcc	tcgggggcgc	gctttccctc	ccgctttca	agtggttccg	cgaggaagggg	300
cccgcttacc	gcctcgccgc	ggggccgcgc	gacttcgtca	tcgtcagcga	ccccgcctg	360
gccaaaggac	tcctccgcgg	gtacggcacg	cggtacgaga	aggggctcg	cgccgaggtc	420
tccgagttcc	tctttggctc	tgggttcgccc	atcgccgagg	gagcgctctg	gacggtgaga	480
cgttagagcag	ttgttaccatc	tctacacaaa	agatttctt	cagtaatggt	tgataaaagt	540
ttttgtaaat	gtgctgagag	attggtgaa	aagctcgaga	catatgctt	gagcggtgaa	600
cctgttaata	tggaagcgag	atTTTCTCAA	atgacactag	atgtgattgg	tttgtcttt	660
ttcaactaca	actttgattc	cctcacatca	gatagtccctg	ttattgatgc	tgtttacacc	720
gcactgaaag	aagcagaggc	tcgttctaca	gatctttac	catactggca	gattgatttg	780
ctgtgcaaga	ttgttccatg	acagatcaa	gcagaaaagg	cagttaacac	aataaggaat	840

actgttgaag	agctaattat	aaaatgcaag	gcaatcgtag	atgctaaaaa	tgaacagatt	900
gagggtgaag	aatatgtaaa	tgagggagat	cctagcatcc	tgcgttttt	acttgctagc	960
cgtgaagagg	tcagcagttt	gcagttacgt	gatgatctat	tgtcaatgtt	agttgctggt	1020
cacgaaacaa	caggctctgt	actgacatgg	actatttata	ttctcagtaa	ggatccagta	1080
gcactaagga	gagcccaaga	tgagggat	cgtgttctac	aaggttagact	cccaagatat	1140
gaagatgtaa	aagagctgaa	gtacttgatg	cgctgtatca	atgagtccat	gcggctatac	1200
ccacatcctc	ctgtgctgat	acggcgtgca	ctagttgatg	atgtgcttcc	tggaaactac	1260
aaggtaaga	ctggtcaaga	tattatgatt	tctgtgtaca	atattcacag	atcacctgag	1320
gtatggaca	gagcagatga	attcattcca	gagagattt	atttggaggg	tcccattcca	1380
aatagtc当地	acaccgattt	caggttatac	ccttcagtg	gaggcctcg	aaaatgtgtt	1440
ggagatcagt	ttgcttttt	agaagcaatt	gtggcacttg	caattgtcat	acaaaagatg	1500
gacgttcagc	ttgtggcaga	tcaaaaaatc	agcatgacca	ctggggccac	catccatata	1560
accaatggac	tgtacatgaa	tgtaagnctg	cgtaaagttt	agcaagaagc	tgacttagca	1620
ctgagtc当地	caggctag					1638

<210> 24
 <211> 1086
 <212> DNA
 <213> *Triticum aestivum*

<400> 24	atgccccccg	cggcattcgc	ctccgcgttc	gcgtctcctc	ctcctccgtg	ggccccacga	60
	ccgcctcctc	gccacgcccag	cctccgcctg	ccccgc当地	ggagcagcag	caacaacagc	120
	ggccggccgc	gaggggacaa	gccaccacc	tcgtgggtca	gccccactg	gctgacgtcg	180
	ctgtctcgct	cggtgctcgg	ccgggggaac	gacgactcgg	ggataaccgt	cgccctccgccc	240
	aagctcgacg	acgtgcagga	cctcctcggg	ggcgcgctct	tcctgccgct	cttcaagtgg	300
	ttcccgagg	aaggcccgt	ctaccgcctc	gccgc当地	cgcgcgactt	cgtcatcg	360
	agcgaccccg	ccgtagccaa	gcacgtcctc	cgc当地	gcacgc当地	cgagaagggg	420
	ctcgcccg	aggctccga	gttcctcttt	ggctctgggt	tcgccatcgc	cgagggagcg	480
	ctctggacgg	tgagacgtag	agcagttgt	ccatctctac	acaaaagatt	tctctcagta	540
	atggtcgata	aagtgttctg	taaatgtgct	gagagattgg	tggaaaagct	cgagacttat	600
	gctttgagtg	gtgaacctgt	taatatggaa	gcgaggttt	ctcaaatgac	attagatgtg	660
	attggtttat	ccttgttcaa	ctacaacttt	gattccctca	catcagatag	tcctgttatt	720
	gatgctgttt	acactgcact	caaagaagct	gaggctcg	ctacagatct	tttaccatac	780
	tggcagatcg	atttgctgtg	caagattgtt	cctagacaga	taaaagcgg	aaaagcagtt	840

aacacaataa	ggaataccgt	tgaagagcta	attacaaaat	gcaaggcaat	cgttagatgct	900
aaaaatgaac	agattgaggg	tgaagaatat	gtaaatgagg	cagatcctag	catcctgcgg	960
ttttacttg	ctagccgtga	agaggtcagc	agtttgcagt	tacgtatga	tctattgtca	1020
atgttagttg	ctggtcatga	aacaacaggt	tctgtaccag	actatcgatt	acaagccaa	1080
ggttcc						1086

<210> 25
<211> 839
<212> DNA
<213> Lycopersicon esculentum

<400> 25	tgcagatgt	ctgagagaat	ggtggagaaa	ctttacctg	atgcaatttc	tggctctgca	60
gtgaatatgg	aggcaaagtt	ttctcaacta	acacttgatg	ttattggcct	tgcactcttc		
aattacaatt	ttgattccct	tactactgac	agtccagtt	ttgatgcagt	ttacactgca	180	
ctaaaagaag	cagaactccg	ttcaactgat	ttgttgccat	attggcagat	caaagctta	240	
tgtaagttca	tcccacgaca	aataaaggct	gagaatgcag	tgtcattaat	cagacaaaca	300	
gttgaagaac	ttattgcgaa	gtgcagagag	attgtagaaa	ctgagggtga	gaggattaat	360	
gaagatgagt	acgtaatga	tagagatcca	agcatccttc	gattttgct	tgctagccgt	420	
gaggaggttt	caagtttaca	acttcgagat	gatcttctgt	caatgctagt	tgctggcat	480	
gaaaccacag	gttcagttt	gacttggacg	gcatacctgc	tgagtaagga	cccttcctct	540	
ttggaaaaag	cacatgagga	agtagacaga	gtttggag	gacgctctcc	gacttatgaa	600	
gatatgaaga	atctcaagtt	cttaacacgg	tgcataactg	agtcactcag	actctatcca	660	
catccacctg	tcctgataag	acgagctcaa	gtagctgatg	tcctccccgg	gaattacaaa	720	
gtcaatgtt	gtcaggatat	aatgatttcg	gtatataaca	ttcatcattc	ttcaaaagta	780	
tgggatagag	ctgaagaatt	tgatcctgaa	agattcgact	tggaaaggc	ccgtcccaa	839	

<210> 26
<211> 531
<212> DNA
<213> Zea mays

<400> 26	cttgagccat	atgctttgag	tggggaacct	gtcaatatgg	aagcgagggt	ttctcagttg	60
acattggatg	tgattggttt	atcattgttc	aactacaatt	ttgattccct	cacaacagat		
agtccctgtca	ttgatgctgt	ttatactgca	ctcaaagaag	cagagcttcg	ttctacagat	180	
cttttgcacat	actggaaggt	tggttcttg	tgcaagataa	tcccaagaca	gataaaagca	240	
gagaatgcgg	ttacgattat	aaggaacact	gttgaagacg	tgattatgaa	gtgtaaagaa	300	

atagtggaaag ctgaaaatga acagatttag ggtgaggaat atgtaaacga aggggatcct	360
agcattctac gcttcctact tgctagccga gatgaggtaa gcagtgtaca attacgttat	420
gatctttgtt caatgttagt tgctggcat gaaacaacag gctctgtact gacgtggaca	480
atctatcttc tcagtaagga tccgactgca ctgaggagag ctcaagatga a	531
<210> 27	
<211> 624	
<212> DNA	
<213> Helianthus annuus	
<400> 27	
gggccaagaa actttgtat tgtgagtgc ccggagattt ctaagcatgt gttgaggaat	60
tatggagta ttatgtcaa aggccctgtt gctgaggtct ctgagttctt gttgggtct	120
ggtttgcca ttgctgaagg ctctttgg actgcaaggc gcagggctgt agttccatca	180
cttcacaaga agtacttatac agtaatagtt gatcgtgtat tttgcaaattt ctccgagagg	240
cttgcgaaa agctaagatc atacgcacgc agtgacacgt ctgttaacat ggagcaacag	300
tttgcagt taacccttga ttttatcggt ctagccgtat ttaactacaa ttttactca	360
cttacggccg atagtcctgt aattgaatct gtttataccg cactaaaaga agctgaagcc	420
cgttcaactg atctttgcc atattggaaat ataagtgcgt tatgttaagat tataccaaga	480
caaataaaag ccgagcaagc agtactgtt attagagaaa ctgtcgaaga acttattata	540
aaatgcaagg aaatcggttga aaaggaaggt gaaaaaatag acgtgaaga ttacgtaaat	600
gatgcaacct atatcttcat ctgc	624
<210> 28	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 28	
cttccttttc ttactttctt ctcttcact	29
<210> 29	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 29	
aagaacgatg gatgttatag actgaaatc	29

```

<210> 30
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 30
ccgtctcgct gctggtcctc g 21

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 31
ggatgaatga gtacggaccc at 22

<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 32
gggtcgctca caattacgaa a 21

<210> 33
<211> 595
<212> PRT
<213> Arabidopsis thaliana

<400> 33

Met Ala Met Ala Phe Pro Leu Ser Tyr Thr Pro Thr Ile Thr Val Lys
1 5 10 15

Pro Val Thr Tyr Ser Arg Arg Ser Asn Phe Val Val Phe Ser Ser Ser
20 25 30

Ser Asn Gly Arg Asp Pro Leu Glu Glu Asn Ser Val Pro Asn Gly Val
35 40 45

Lys Ser Leu Glu Lys Leu Gln Glu Glu Lys Arg Arg Ala Glu Leu Ser
50 55 60

Ala Arg Ile Ala Ser Gly Ala Phe Thr Val Arg Lys Ser Ser Phe Pro
65 70 75 80

```

Ser Thr Val Lys Asn Gly Leu Ser Lys Ile Gly Ile Pro Ser Asn Val
85 90 95

Leu Asp Phe Met Phe Asp Trp Thr Gly Ser Asp Gln Asp Tyr Pro Lys
100 105 110

Val Pro Glu Ala Lys Gly Ser Ile Gln Ala Val Arg Asn Glu Ala Phe
115 120 125

Phe Ile Pro Leu Tyr Glu Leu Phe Leu Thr Tyr Gly Gly Ile Phe Arg
130 135 140

Leu Thr Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro Ser Ile
145 150 155 160

Ala Lys His Ile Leu Lys Asp Asn Ala Lys Ala Tyr Ser Lys Gly Ile
165 170 175

Leu Ala Glu Ile Leu Asp Phe Val Met Gly Lys Gly Leu Ile Pro Ala
180 185 190

Asp Gly Glu Ile Trp Arg Arg Arg Arg Ala Ile Val Pro Ala Leu
195 200 205

His Gln Lys Tyr Val Ala Ala Met Ile Ser Leu Phe Gly Glu Ala Ser
210 215 220

Asp Arg Leu Cys Gln Lys Leu Asp Ala Ala Leu Lys Gly Glu Glu
225 230 235 240

Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly
245 250 255

Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly
260 265 270

Val Ile Glu Ala Val Tyr Thr Val Leu Arg Glu Ala Glu Asp Arg Ser
275 280 285

Val Ser Pro Ile Pro Val Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser
290 295 300

Pro Arg Gln Arg Lys Val Ala Thr Ser Leu Lys Leu Ile Asn Asp Thr
305 310 315 320

Leu Asp Asp Leu Ile Ala Thr Cys Lys Arg Met Val Glu Glu Glu
325 330 335

Leu Gln Phe His Glu Glu Tyr Met Asn Glu Arg Asp Pro Ser Ile Leu
340 345 350

His Phe Leu Leu Ala Ser Gly Asp Asp Val Ser Ser Lys Gln Leu Arg
355 360 365

Asp Asp Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Ser Ala Ala
370 375 380

Val Leu Thr Trp Thr Phe Tyr Leu Leu Thr Thr Glu Pro Ser Val Val
385 390 395 400

Ala Lys Leu Gln Glu Glu Val Asp Ser Val Ile Gly Asp Arg Phe Pro
405 410 415

Thr Ile Gln Asp Met Lys Lys Leu Lys Tyr Thr Thr Arg Val Met Asn
420 425 430

Glu Ser Leu Arg Leu Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ser
435 440 445

Ile Asp Asn Asp Ile Leu Gly Glu Tyr Pro Ile Lys Arg Gly Glu Asp
450 455 460

Ile Phe Ile Ser Val Trp Asn Leu His Arg Ser Pro Leu His Trp Asp
465 470 475 480

Asp Ala Glu Lys Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly Pro Asn
485 490 495

Pro Asn Glu Thr Asn Gln Asn Phe Ser Tyr Leu Pro Phe Gly Gly
500 505 510

Pro Arg Lys Cys Ile Gly Asp Met Phe Ala Ser Phe Glu Asn Val Val
515 520 525

Ala Ile Ala Met Leu Ile Arg Arg Phe Asn Phe Gln Ile Ala Pro Gly
530 535 540

Ala Pro Pro Val Lys Met Thr Thr Gly Ala Thr Ile His Thr Thr Glu
545 550 555 560

Gly Leu Lys Leu Thr Val Thr Lys Arg Thr Lys Pro Leu Asp Ile Pro
565 570 575

Ser Val Pro Ile Leu Pro Met Asp Thr Ser Arg Asp Glu Val Ser Ser
580 585 590

Ala Leu Ser
595

<210> 34
<211> 632
<212> PRT
<213> Oryza sativa

<400> 34

Met Ala Ala Thr Ser Ser Ala Ala Ala Ala Pro Pro Pro Cys Arg
1 5 10 15

Leu Leu Gly Ser Gly Gln Ala His Leu Arg Leu Pro Pro Ser Ala Ala
20 25 30

Ala Ala Ala Ala Ser Ala Arg Arg Arg Leu Leu Leu Arg Cys Ala Ala
35 40 45

Ser Gly Gly Asn Gly Lys Gly Gly Gly Gly Asp Gly Ser Gly Ser Asp
50 55 60

Pro Val Leu Glu Glu Arg Arg Arg Arg Arg Gln Ala Glu Leu Ala Ala
65 70 75 80

Arg Ile Ala Ser Gly Glu Phe Thr Ala Gln Gly Pro Ala Trp Ile Ala
85 90 95

Pro Leu Ala Val Gly Leu Ala Lys Leu Gly Pro Pro Gly Glu Leu Ala
100 105 110

Ala Ala Leu Leu Thr Lys Val Ala Gly Gly Gly Pro Glu Ile Pro
115 120 125

Gln Ala Val Gly Ser Met Ser Ala Val Thr Gly Gln Ala Phe Phe Ile
130 135 140

Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly Ile Phe Arg Leu Asn
145 150 155 160

Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro Ala Ile Ala Lys
165 170 175

His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser Lys Gly Ile Leu Ala
180 185 190

Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu Ile Pro Ala Asp Gly
195 200 205

Glu Ile Trp Arg Val Arg Arg Ala Ile Val Pro Ala Met His Gln
210 215 220

Lys Tyr Val Thr Ala Met Ile Ser Leu Phe Gly Tyr Ala Ser Asp Arg
225 230 235 240

Leu Cys Gln Lys Leu Asp Lys Ala Ala Thr Asp Gly Glu Asp Val Glu
245 250 255

Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala
260 265 270

Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val
275 280 285

Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser
290 295 300

Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg
305 310 315 320

Gln Lys Lys Val Asn Glu Ala Leu Ala Leu Ile Asn Lys Thr Leu Asp
325 330 335

Glu Leu Ile Asp Ile Cys Lys Arg Leu Val Glu Glu Asp Leu Gln
340 345 350

Phe His Glu Glu Tyr Met Asn Glu Gln Asp Pro Ser Ile Leu His Phe
355 360 365

Leu Leu Ala Ser Gly Asp Asp Val Ser Ser Lys Gln Leu Arg Asp Asp
370 375 380

Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Ser Ala Ala Val Leu
385 390 395 400

Thr Trp Thr Phe Tyr Leu Leu Ser Lys Tyr Pro Asn Val Met Ala Lys
405 410 415

Leu Gln Asp Glu Ala Asp Thr Val Leu Gly Asp Arg Leu Pro Thr Ile
420 425 430

Glu Asp Val Lys Lys Leu Lys Tyr Thr Thr Arg Val Ile Asn Glu Ser
435 440 445

Leu Arg Leu Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ser Ile Glu
450 455 460

Glu Asp Met Leu Gly Gly Tyr Pro Ile Gly Arg Gly Glu Asp Ile Phe
465 470 475 480

Ile Ser Val Trp Asn Leu His His Cys Pro Lys His Trp Asp Gly Ala
485 490 495

Asp Val Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn
500 505 510

Glu Thr Asn Gln Asn Phe Ser Tyr Leu Pro Phe Gly Gly Pro Arg
515 520 525

Lys Cys Val Gly Asp Met Phe Ala Thr Phe Glu Thr Val Val Ala Thr
530 535 540

Ala Met Leu Val Arg Arg Phe Asp Phe Gln Met Ala Pro Gly Ala Pro
545 550 555 560

Pro Val Glu Met Thr Thr Gly Ala Thr Ile His Thr Thr Glu Gly Leu
565 570 575

Lys Met Thr Val Thr Arg Arg Thr Lys Pro Pro Val Ile Pro Asn Leu
580 585 590

Glu Met Lys Val Ile Ser Asp Ser Pro Glu Asn Met Ser Thr Thr Thr
595 600 605

Ser Met Pro Val Ser Ala Ala Ser Ile Ala Ser Gly Glu Asp Gln Gln
610 615 620

Gly Gln Val Ser Ala Thr Arg Ile
625 630

<210> 35
<211> 508
<212> PRT
<213> Hordeum vulgare

<400> 35

Ser Ala Arg Gly Gln Ala Val Gly Ser Leu Ala Ser Val Ala Gly Glu
1 5 10 15

Ala Phe Phe Leu Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly Val
20 25 30

Phe Arg Leu Asn Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro
35 40 45

Asp Val Ala Lys His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser Lys
50 55 60

Gly Ile Leu Ala Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu Ile
65 70 75 80

Pro Ala Asp Gly Glu Val Trp Arg Val Arg Arg Arg Ala Ile Val Pro
85 90 95

Ala Leu His Gln Lys Tyr Val Thr Ala Met Ile Gly Leu Phe Gly Asn
100 105 110

Ala Ser Asp Arg Leu Cys Gln Lys Leu Asp Lys Ala Ala Ser Asp Gly
115 120 125

Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Val
130 135 140

Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr Asp
145 150 155 160

Asn Gly Ile Val Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu Met
165 170 175

Arg Ser Thr Ser Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys Asp
180 185 190

Ile Ser Pro Arg Gln Arg Lys Val Asn Glu Ala Leu Ala Ile Asn
195 200 205

Asn Ile Leu Asp Glu Leu Ile Ala Thr Cys Lys Arg Met Val Asp Glu
210 215 220

Glu Asp Leu Gln Phe His Glu Glu Tyr Met Asn Glu Lys Asp Pro Ser
225 230 235 240

Ile Leu His Phe Leu Leu Ala Ser Gly Asp Asp Val Ser Ser Lys Gln
245 250 255

Leu Arg Asp Asp Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Ser
260 265 270

Ala Ala Val Leu Thr Trp Thr Phe Tyr Leu Leu Ser Lys Tyr Pro Asn
275 280 285

Val Met Ser Lys Leu Gln Ala Glu Ala Asp Ala Val Leu Gly Asp Gly
290 295 300

Leu Pro Thr Ile Asp Asp Val Lys Lys Leu Lys Tyr Thr Thr Arg Val
305 310 315 320

Ile Asn Glu Ser Leu Arg Leu Tyr Pro Gln Pro Pro Val Leu Ile Arg
325 330 335

Arg Ser Leu Glu Asp Asp Met Leu Gly Glu Tyr Pro Ile Gly Lys Gly
340 345 350

Glu Asp Ile Phe Ile Ser Ile Trp Asn Leu His Arg Cys Pro Lys His
355 360 365

Trp Asp Asp Ala Asp Val Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly
370 375 380

Pro Asn Pro Asn Glu Thr Asn Gln Lys Phe Ser Tyr Leu Pro Phe Gly
385 390 395 400

Gly Gly Pro Arg Lys Cys Val Gly Asp Met Phe Ala Thr Phe Glu Thr
405 410 415

Val Val Ala Thr Ala Met Leu Val Lys Arg Phe Asp Phe Gln Met Ala
420 425 430

Pro Gly Ala Pro Pro Val Glu Met Thr Thr Gly Ala Thr Ile His Thr
435 440 445

Thr Lys Gly Leu Asn Met Thr Val Thr Arg Arg Ile Lys Pro Pro Val
450 455 460

Ile Pro Asn Leu Glu Met Lys Ile Val Ser Asp Pro Glu Gly Ser Thr
465 470 475 480

Ser Ser Thr Ala Ser Val Ala Val Ser Thr Ala Ser Ile Ala Ser Gly
485 490 495

Glu Gly Gln Gln Val Glu Val Ser Thr Ser Gln Val
500 505

<210> 36
<211> 425
<212> PRT
<213> Glycine max

<400> 36

Gly Lys Gly Leu Ile Pro Ala Asp Gly Glu Ile Trp Arg Val Arg Arg
1 5 10 15

Arg Ala Ile Val Pro Ala Leu His Gln Lys Tyr Val Ala Ala Met Ile
20 25 30

Gly Leu Phe Gly Gln Ala Ala Asp Arg Leu Cys Gln Lys Leu Asp Ala
35 40 45

Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg
50 55 60

Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp
65 70 75 80

Ser Leu Ser Asn Asp Thr Gly Ile Val Glu Ala Val Tyr Thr Val Leu
85 90 95

Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val Trp Glu Ile
100 105 110

Pro Ile Trp Lys Asp Ile Ser Pro Arg Leu Arg Lys Val Asn Ala Ala
115 120 125

Leu Lys Phe Ile Asn Asp Thr Leu Asp Asp Leu Ile Ala Ile Cys Lys
130 135 140

Arg Met Val Asp Glu Glu Leu Gln Phe His Glu Glu Tyr Met Asn
145 150 155 160

Glu Gln Asp Pro Ser Ile Leu His Phe Leu Leu Ala Ser Gly Asp Asp
165 170 175

Val Ser Ser Lys Gln Leu Arg Asp Asp Leu Met Thr Met Leu Ile Ala
180 185 190

Gly His Glu Thr Ser Ala Ala Val Leu Thr Trp Thr Phe Tyr Leu Leu
195 200 205

Ser Lys Glu Pro Arg Val Met Ser Lys Leu Gln Glu Glu Val Asp Ser
210 215 220

Val Leu Gly Asp Gln Tyr Pro Thr Ile Glu Asp Met Lys Lys Leu Lys
225 230 235 240

Tyr Thr Thr Arg Val Ile Asn Glu Ser Leu Arg Leu Tyr Pro Gln Pro
245 250 255

Pro Val Leu Ile Arg Arg Ser Leu Glu Asp Asp Val Leu Gly Glu Tyr
260 265 270

Pro Ile Lys Arg Gly Glu Asp Ile Phe Ile Ser Val Trp Asn Leu His
275 280 285

Arg Ser Pro Lys Leu Trp Asp Asp Ala Asp Lys Phe Lys Pro Glu Arg
290 295 300

Trp Ala Leu Asp Gly Pro Ser Pro Asn Glu Thr Asn Gln Asn Phe Lys
305 310 315 320

Tyr Leu Pro Phe Gly Gly Pro Arg Lys Cys Val Gly Asp Leu Phe
325 330 335

Ala Ser Tyr Glu Thr Val Val Ala Leu Ala Met Leu Met Arg Arg Phe
340 345 350

Asn Phe Gln Ile Ala Val Gly Ala Pro Pro Val Glu Met Thr Thr Gly
355 360 365

Ala Thr Ile His Thr Thr Gln Gly Leu Lys Met Thr Val Thr His Arg
370 375 380

Ile Lys Pro Pro Ile Val Pro Ser Leu Gln Met Ser Thr Leu Glu Val
385 390 395 400

Asp Pro Ser Ile Ser Leu Ser Asp Gln Asp Glu Val Ser Gln Lys Gly
405 410 415

Glu Val Tyr Gln Ala Gln Ala Gln Ser
420 425

<210> 37
<211> 342
<212> PRT
<213> Triticum aestivum

<400> 37

Gly Cys Arg Leu Pro Gln Ala Val Gly Ser Leu Ala Ser Val Ala Gly
1 5 10 15

Glu Ala Phe Phe Leu Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly
20 25 30

Val Phe Arg Leu Asn Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp
35 40 45

Pro Asp Val Ala Lys His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser
50 55 60

Lys Gly Ile Leu Ala Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu
65 70 75 80

Ile Pro Ala Asp Gly Glu Val Trp Arg Val Arg Arg Arg Ala Ile Val
85 90 95

Pro Ala Leu His Gln Lys Tyr Val Thr Ala Met Ile Gly Leu Phe Gly
100 105 110

Asn Ala Ser Asp Arg Leu Cys Gln Lys Leu Asp Lys Ala Ala Ser Asp
115 120 125

Gly Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp
130 135 140

Val Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr
145 150 155 160

Asp Asn Gly Ile Val Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu
165 170 175

Met Arg Ser Thr Ser Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys
180 185 190

Asp Ile Ser Pro Arg Gln Cys Pro Lys His Trp Asp Asp Ala Asp Val
195 200 205

Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn Glu Thr
210 215 220

Asn Gln Lys Phe Ser Tyr Leu Pro Phe Gly Gly Gly Pro Arg Lys Cys
 225 230 235 240

Val Gly Asp Met Phe Ala Thr Phe Glu Thr Val Val Ala Thr Ala Met
 245 250 255

Leu Val Lys Arg Phe Asp Phe Gln Met Ala Pro Gly Ala Pro Pro Val
 260 265 270

Glu Met Thr Thr Gly Ala Thr Ile His Thr Thr Lys Gly Leu Asn Met
 275 280 285

Thr Val Thr Arg Arg Ile Lys Pro Pro Val Ile Pro Asn Leu Glu Met
 290 295 300

Lys Ile Val Ser Asp Ser Glu Gly Ser Thr Ser Ser Thr Ala Ser Val
 305 310 315 320

Ala Val Ser Thr Ala Ser Ile Ala Ser Gly Glu Gly Gln Gln Val Glu
 325 330 335

Val Ser Thr Ser Gln Val
 340

<210> 38
 <211> 579
 <212> PRT
 <213> Lycopersicon esculentum

<400> 38

Gln Phe Pro Thr His His Tyr Ser Lys Ser Arg Leu Thr Leu Ser Pro
 1 5 10 15

Lys Phe Lys Gly Ser Val Ser Asn Phe Thr Ile Arg Cys Ser Asn Ser
 20 25 30

Asn Gly Lys Gln Pro Glu Ser Val Asp Glu Gly Val Lys Lys Val Glu
 35 40 45

Lys Leu Leu Asp Glu Lys Arg Arg Ala Glu Leu Ser Ala Arg Ile Ala
 50 55 60

Ser Gly Glu Phe Thr Val Glu Gln Ser Gly Phe Pro Ser Leu Leu Lys
 65 70 75 80

Asn Gly Leu Ser Lys Leu Gly Val Pro Lys Glu Phe Leu Glu Phe Phe
 85 90 95

Ser Arg Arg Thr Gly Asn Tyr Pro Arg Ile Pro Glu Ala Lys Gly Ser
100 105 110

Ile Ser Ala Ile Arg Asp Glu Pro Phe Phe Met Pro Leu Tyr Glu Leu
115 120 125

Tyr Leu Thr Tyr Gly Gly Ile Phe Arg Leu Ile Phe Gly Pro Lys Ser
130 135 140

Phe Leu Ile Val Ser Asp Pro Ser Ile Ala Lys His Ile Leu Lys Asp
145 150 155 160

Asn Ser Lys Ala Tyr Ser Lys Gly Ile Leu Ala Glu Ile Leu Asp Phe
165 170 175

Val Met Gly Lys Gly Leu Ile Pro Ala Asp Gly Glu Ile Trp Arg Val
180 185 190

Arg Arg Arg Ala Ile Val Pro Ala Leu His Gln Lys Tyr Val Ala Ala
195 200 205

Met Ile Gly Leu Phe Gly Lys Ala Thr Asp Arg Leu Cys Lys Lys Leu
210 215 220

Asp Val Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu Phe
225 230 235 240

Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr Asp
245 250 255

Phe Asp Ser Leu Thr Val Asp Thr Gly Ile Val Glu Ala Val Tyr Thr
260 265 270

Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val Trp
275 280 285

Glu Leu Pro Ile Trp Lys Asp Ile Ser Pro Lys Leu Lys Lys Val Asn
290 295 300

Ala Ala Leu Lys Leu Ile Asn Asp Thr Leu Asp Asp Leu Ile Ala Ile
305 310 315 320

Cys Lys Arg Met Val Asp Glu Glu Glu Leu Gln Phe His Glu Glu Tyr
325 330 335

Met Asn Glu Lys Asp Pro Ser Ile Leu His Phe Leu Leu Ala Ser Gly
340 345 350

Asp Glu Val Ser Ser Lys Gln Leu Arg Asp Asp .Leu Met Thr Met Leu
355 360 365

Ile Ala Gly His Glu Thr Ser Ala Ala Val Leu Thr Trp Thr Phe Tyr
370 375 380

Leu Leu Ser Lys Glu Pro Ser Val Met Ala Lys Leu Gln Asp Glu Val
385 390 395 400

Asp Ser Val Leu Gly Asp Arg Leu Pro Thr Ile Glu Asp Leu Lys Lys
405 410 415

Leu Arg Tyr Thr Thr Arg Val Ile Asn Glu Ser Leu Arg Leu Tyr Pro
420 425 430

Gln Pro Pro Val Leu Ile Arg Arg Ser Ile Glu Glu Asp Val Val Gly
435 440 445

Gly Tyr Pro Ile Lys Arg Gly Glu Asp Ile Phe Ile Ser Val Trp Asn
450 455 460

Leu His Arg Cys Pro Asn His Trp Glu Glu Ala Asp Arg Phe Asn Pro
465 470 475 480

Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn Glu Thr Asn Gln Asn
485 490 495

Phe Ser Tyr Leu Pro Phe Gly Gly Pro Arg Lys Cys Val Gly Asp
500 505 510

Met Phe Ala Thr Phe Glu Asn Leu Val Ala Val Ala Met Leu Val Gln
515 520 525

Arg Phe Asp Phe Gln Met Ala Leu Gly Ala Pro Pro Val Lys Met Thr
530 535 540

Thr Gly Ala Thr Ile His Thr Thr Glu Gly Leu Lys Met Thr Val Thr
545 550 555 560

Arg Arg Ser Arg Pro Pro Ile Val Pro Asn Leu Glu Met Ala Thr Leu
565 570 575

Glu Val Asp

<210> 39
 <211> 367
 <212> PRT
 <213> Chlamydomonas reinhardtii
 <400> 39

Ala	Arg	Arg	Arg	Ala	Val	Val	Pro	Ala	Leu	His	Arg	Lys	Tyr	Val	Met
1					5					10					15

Ser Met Val Asp Met Phe Gly Asp Cys Ala Ala His Gly Ala Ser Ala
 20 25 30

Thr Leu Asp Lys Tyr Ala Ala Ser Gly Thr Ser Leu Asp Met Glu Asn
 35 40 45

Phe Phe Ser Arg Leu Gly Leu Asp Ile Ile Gly Lys Ala Val Phe Asn
 50 55 60

Tyr Asp Phe Asp Ser Leu Ala His Asp Asp Pro Val Ile Gln Ala Val
 65 70 75 80

Tyr Thr Leu Leu Arg Glu Ala Glu His Arg Ser Thr Ala Pro Ile Ala
 85 90 95

Tyr Trp Asn Ile Pro Gly Ile Gln Phe Val Val Pro Arg Gln Lys Arg
 100 105 110

Cys Gln Glu Ala Leu Val Leu Val Asn Glu Cys Leu Asp Gly Leu Ile
 115 120 125

Asp Lys Cys Lys Lys Leu Val Glu Glu Asp Ala Val Phe Gly Glu
 130 135 140

Glu Phe Leu Ser Glu Arg Asp Pro Ser Ile Leu His Phe Leu Leu Ala
 145 150 155 160

Ser Gly Asp Glu Ile Ser Ser Lys Gln Leu Arg Asp Asp Leu Met Thr
 165 170 175

Met Leu Ile Ala Gly His Glu Thr Thr Ala Ala Val Leu Thr Trp Thr
 180 185 190

Leu Tyr Leu Leu Ser Gln His Pro Glu Ala Ala Ala Ile Arg Lys
 195 200 205

Glu Val Asp Glu Leu Leu Gly Asp Arg Lys Pro Gly Val Glu Asp Leu
 210 215 220

Arg Ala Leu Lys Met Thr Thr Arg Val Ile Asn Glu Ala Met Arg Leu
 225 230 235 240

Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ala Leu Gln Asp Asp His
 245 250 255

Phe Asp Gln Phe Thr Val Pro Ala Gly Ser Asp Leu Phe Ile Ser Val
 260 265 270

Trp Asn Leu His Arg Ser Pro Lys Leu Trp Asp Glu Pro Asp Lys Phe
 275 280 285

Lys Pro Glu Arg Phe Gly Pro Leu Asp Ser Pro Ile Pro Asn Glu Val
 290 295 300

Thr Glu Asn Phe Ala Tyr Leu Pro Phe Gly Gly Arg Arg Lys Cys
 305 310 315 320

Ile Gly Asp Gln Phe Ala Leu Phe Glu Ala Val Val Ala Leu Ala Met
 325 330 335

Leu Met Arg Arg Tyr Glu Phe Asn Leu Asp Glu Ser Lys Gly Thr Val
 340 345 350

Gly Met Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Asn
 355 360 365

<210> 40
 <211> 2057
 <212> DNA
 <213> Arabidopsis thaliana

<400> 40		
gtgatttgag ttttatttt gcgggtggcgt tgtatggcta tggcctttcc tctttcttat		60
actccgacga ttactgttaa accagtaacg tactctcgga gatcgaacctt tgttagtttc		120
tgcgtcgagtt ctaatggacg agatccttaa gaggagaatt cagtagctaa tggtgtgaaa		180
agcttggaga agcttcaaga agagaagcgt cgtgctgagt tatctgctag gattgcttct		240
ggagctttca ctgtacggaa atctagttt ccatctacag tgaagaatgg tttatctaag		300
atggaaatac caagcaatgt tcttgatttc atgtttgatt ggactggttc tgaccaagac		360
taccccaagg ttcctgaggc taaaggctcg attcaggcgg tccggaacga agctttcttc		420
atccctttgt atgagcttt ccttacttat ggtgaaattt tcaggttgac ctttgggcct		480
aagtcttct tgatcgtgtc ggatccttct attgctaaac atatattgaa ggacaatgca		540
aaagcttact ccaagggat ttttagctgaa attctagatt ttgtgatggg aaaaggactc		600

atccctgctg atggggagat atggcgtaga cgaaggcgtg ccattgttcc tgcattgcat
caaaaatgt tagcagctat gattagttt ttcggagaag cttcagatag gctttgtcag 660
aagcttgcatt ctgctgcattt gaaagggaa gaagtagaga tggaatcact cttctctcg 720
ttgacacttg atattattgg caaggcggtt ttcaattacg actttgactc ccttactaat 780
gataccgtg tgatcgaggc agtgtacact gttctaagag aagctgaaga cagaagtgtt 840
tcacctattc ctgtttggga cataccatt tggaaagata tttccccacg tcagagggaaa 900
gttgctactt ctttgcattt aatcaatgac acacttgcattt atttgattgc aacatgcaag 960
agaatggtag aagaagagga gttgcagttt cacgaggagt atatgaacga aagagatcct 1020
agcatccttc actttctttt agttcagga gatgtatgtct ctagtaagca gcttcgtgat 1080
gacttgcattttaacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1140
gtttacccatgcaatgcattt agccggacat gaaacatcgccggcagttt aacatggacc 1200
ttttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1260
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1320
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1380
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1440
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1500
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1560
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1620
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1680
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1740
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1800
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1860
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1920
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 1980
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 2040
gtttacccatgcaatgcattt taacaacggacc accaagtgtt gttgcacaaac ttcaagaaga gggttgcattt 2057

```
<210> 41
<211> 1788
<212> DNA
<213> Arabidopsis thaliana
```

<400> 41
atggctatgg ccttcctct ttcttatact ccgacgatta ctgttaaacc agtaacgtac 60
tctcggagat cgaactttgt agtttctcg tcgagttcta atggacgaga tcctttagag 120
gagaattcag tacctaattgg tgtgaaaagc ttggagaagc ttcaagaaga gaagcgtcgt 180
gctgagttat ctgctaggat tgcttctgga gcttcactg tacggaaatc tagtttcca 240
tctacagtga agaatggttt atctaagatt ggaataccaa gcaatgttct tgatttcatg 300
tttgatttggc ctggttctga ccaagactac cccaaaggttc ctgaggctaa aggctcgatt 360
caggcggtcc ggaacgaagc tttcttcatt cctttgtatg agctttct tacttatgg 420
ggaattttca ggttgcacctt tgggcctaag tcattcttga tcgtgtcgga tccttctatt 480
gctaaacata tattgaagga caatgaaaaa gcttactcca aggggatttt agctgaaatt 540
ctagattttg ttagggaaaa aggactcatt cctgctgtatg gggagatatg gcgttagacga 600
aggcgtgcca ttgttcctgc attgcatcaa aagtatgtatc cagctatgtatc tagtttattc 660
ggagaagctt cagataggct ttgtcagaag cttgtatgtatc ctgcatttgc aggggaagaa 720
gttagagatgg aatcactctt ctctcgttt acacttgata ttattggcaa ggccggtttc 780
aattacgact ttgactccct tactaatgtatc accgggtgtatc tcgaggcagt gtacactgtt 840
ctaagagaag ctgaagacag aagtgttca cctattcctg tttggacat acccatttgg 900
aaagatattt ccccacgtca gaggaaagtt gctacttcct tgaaattaat caatgacaca 960
cttgcatttgcatt tgattgcac atgcaagaga atggtagaaag aagaggagtt gcagttcac 1020
gaggagtttgcatt tgaacgaaag agatccttagc atccttcact ttcttttagc ttcaggagat 1080
gatgtctcta gtaagcagct tcgtgtatgc ttgtatgacaa tgctttagc cggacatgaa 1140
acatcgccgg cagtatttac atggaccttt tacctttaa caacggaaacc aagtgttagtt 1200
gccaaacttc aagaagaggt tgattctgtatc attggagata gattccaaac catacaagat 1260
atgaaaaagc tgaatatac tactcgagtc atgaatgagt cattgagatt atatccacaa 1320
ccaccagtac tgatccgtcg ttctatagat aatgatatac ttggagagta tccgataaaaa 1380
aggggagagg atatcttcatt ctcgggtttgg aatctacatc gaagtcctct gcattggat 1440
gatgcagaga agttcaatcc cgagagatgg cctttggatg gaccaaacc aatgagaca 1500
aacccaaact tcagttactt accttcgggt ggaggaccgc ggaaatgtat aggcgcacatg 1560
tttgcttcct ttgagaatgt ggttagcaatc gcaatgttta ttcaagatt taactttcag 1620
attgcaccag gagctcctcc ggtgaaaatg actacaggag ctacaatac caccacagaa 1680
ggattgaaat tgacagtaac aaagaggaca aaacctctgg acataccatc cgtaccgata 1740
cttccaaatgg atacttcaccq qgatqaagtt tcatctgctc.tttcttaa 1788

<210>	42					
<211>	5071					
<212>	DNA					
<213>	Oryza sativa					
<400>	42					
atggcggcta	cctcctctgc	ggccgcccgt	gctccacctc	cgtgccgctt	actcggtcc	60
ggtcaggcac	acctgcgcct	tcctccttct	gctgctgctg	ctgctgcttc	agctcgctgc	120
cgcctgctcc	tccgctgcgc	cgcctcgggc	ggcaacggga	aaggcggtgg	tggcgacggc	180
tccggctccg	acccggttct	tgaggagcgg	cggcggcggc	gccaggctga	gctggcggcg	240
cgcattgcgt	ccggcgagtt	caccgccccaa	ggcccccgt	cagtgctcat	tctctctctc	300
tctctctctc	acgttgcggc	cgccttcct	tcctccttgc	atgatctgat	ggagagctcc	360
ctctctcttt	ttcaggtgga	ttgctccct	cgcgggtgggg	cttgccaagc	tcggcccacc	420
gggggagctc	gccggccgcgc	tgctcaccaa	ggtcggcgggt	.ggcggcggac	cgagataacc	480
gcaggcggtg	gggtctatga	gtgcggtgac	agggcaggct	ttcttcatcc	cgctctatga	540
tctcttcctt	acctatggcg	gcatcttcg	cctcaatttc	ggccctaagg	tgatgcacaa	600
tcagaccaat	ttgctctcca	actcggcaac	tcccaatttt	gtgttattat	tgatggccta	660
aactttgttc	ttttcttgtt	ttccccagtc	tttcctcatt	gtctctgatc	cagctatagc	720
taagcacatc	ctgagggaca	actccaaggc	ttattccaag	gttttgtgtt	gtcaattttg	780
gatgtagacg	tgtcttaggc	tgtgctctag	aaattaacgg	cctgcatttt	gattgtggtg	840
gggcagggt	attctggcag	aaattttaga	gtttgtgatg	ggtacgggtt	tgatccctgc	900
tgatggggag	atttggcgtg	ttagaggcg	cgcattgtta	ccagcaatgc	accagaaggt	960
tctacatcat	ttctgtacca	ggtttagcat	gattgatct	tcgggttgtg	attgaactga	1020
tctgaatttc	gctttgcagt	acgttaccgc	aatgataagt	ctcttcggat	atgcttcaga	1080
tcggctctgc	cagaagttgg	acaaggcagc	aacggatggg	gaggatgtgg	agatggaatc	1140
tttggctct	cgactaacac	tggatgtcat	tggaaaggca	gtcttcaatt	atgatttcga	1200
ctcattgtct	tacgataatg	gaatagttga	ggttagtatt	cagtctgtta	ctgtaatttt	1260
ggaattcatt	atacattcta	tttggttcatg	tttggtttct	taaaatttta	ccttttttg	1320
gattgatgat	caggcagtgt	atgtgacact	gcgagaagca	gaaatgcgga	gcacttctcc	1380
tataccaact	tggaaatac	ccatatggaa	agatattcc	ccgcggcaga	agaaggtcaa	1440
tgaagctctt	gcgctgataa	ataagactct	tgatgaacta	attgacatct	gcaaggtgaa	1500
cttctttct	tatgttctga	ccttattatt	tatttttaa	aaaaatcaag	gcttttagat	1560
tggctgctgt	tactcttgca	gagattggtc	gaggaagaag	atctgcagtt	tcatgaagaa	1620
tacatgaatg	agcaagaccc	cagtatcctc	cactttctt	tggcatctgg	agatgatgt	1680

tggtgtacct	gcagttaaa	atattataga	tctccaaaca	ttctggcct	cacattgctt	1740
caatttgc	tcattaggc	tccagcaagc	aactccgtga	tgatctgatg	acaatgctca	1800
ttgctggcca	tgagacctct	gcagcagtct	tgacatggac	attttatctt	ctatctaagg	1860
tatcaatatg	ttccgttagct	gttcccaaaa	gaaaatatgt	tcagcaactc	aatcattga	1920
tgtattaatg	tagcaatatg	taatgatgaa	tattgtatac	gtcaaaccac	tcatgtttt	1980
ccttcttgg	cattggtaac	ttgcagtatc	caaatgtaat	ggccaaactc	caagatgagg	2040
taaattcgct	tttacattta	ggattgttat	tttagaggc	acgtgcttct	acatcttaca	2100
agttgcaaat	gacttgttcc	actcacttat	ggacaggctg	atactgttct	aggtgaccgt	2160
ttaccaacaa	ttgaggatgt	gaagaaattg	aagtatacta	ctagagtaat	taacgaagta	2220
agtgataaac	agtgctacct	cattaaacaa	tgagtatgat	cactgaatga	atatgtcatt	2280
caatcaccac	tttgcagtc	attgagactc	tatccacagc	caccagttt	aattcgtcgc	2340
tctattgagg	aggatatgct	gggagggta	ccaattggcc	ggtaaagaaa	actctagcag	2400
aacttatttc	tcaagtgtag	gaaatctctc	ctgtagtcct	gttgactgtt	gttacaattg	2460
gaataggaaa	acagaaagat	catgcctagt	atcacaccag	taaagttctg	gtgaaactga	2520
gtctaagggc	ctctttattt	aggcttaagt	ttattggttt	agtattttaa	gtcagtttt	2580
ttggcttata	tgatttataa	gccaatggat	ttaaagtcct	aagtttaatg	gtggagtcat	2640
acctctatct	cacataagcc	aaaaaacctt	ttccaaaccta	gttttgc	taatagtgt	2700
acagttcgct	gagccttaat	agtgtatag	tggttatgg	cttttttttt	aaacatgcga	2760
aaagctgttt	gtttgttag	gcttagactt	ttcagctcat	aagctggctt	ataagcctaa	2820
acaaagaggg	cctaagatat	gtgcaagtat	aagttatcta	accaatctt	tttttagagaa	2880
tatctcccc	atcttgcgt	atataaaaa	gtttctgct	tgtataaccat	ttctggcgt	2940
agctctagag	tatthaattt	tctgaattgt	tcctttttaa	aaatttcagt	acaaatttga	3000
acttcaccta	taattctgat	aagatatttt	ttccctttgt	ttcccagggg	agaagacatt	3060
ttcatatccg	tgtggAACCT	acatcattgc	ccaaagcatt	ggatggtgc	agatgtttt	3120
aatccagaaa	gatggcctt	ggatggacca	aatccaaatg	aaacaaacca	aaattcagg	3180
ttccatctct	attaatgcta	tgaaatgcat	tagctttta	tttggatgca	ccttacact	3240
ctaattcccc	cattttatta	gttctgctt	tctactacaa	aaatcagtag	acatttgatt	3300
atgctcggt	tagttgtgtt	cttggatgac	gagaagttt	cgttttaca	tctactaaca	3360
ctaagttatt	tggcatgct	atgcacctgt	tgtaattatt	ctagagataa	aaaaacaaaa	3420
aactctagct	gatttcggtt	ttcttctttt	atgcaaatac	tcaaattttc	ttcatgtgat	3480
tcgttataat	ttagtgcataa	tgcggcatg	tgcatacgca	caatcttgcataa	-	3540

ggcagtcaca acaacataaa gaaaaatggg accttttct tttgaagcag taaagatgag	3600
ataactgtga tgacttgatt cctaaattta tggtttggg agctaaacca cagtttatga	3660
caatcatgtt aaaatgatat tcataatggct ataagcaaca tgtgccaaa tgctattgt	3720
ctttcaaact gatagtgcct gaaagtactt ttcaacttta ccacatcgcc agaactgtta	3780
actggttacg cagaaacagt acttggata gtaatttgt ataaactgat agtatgtcgt	3840
atgagttcct tacctgttagc aagtatgtca acagcagaac cctttgtatg gatcaacaaa	3900
catcagaggt gcttgaaca aaatccttac ttgatttagaa gacgtaacaa ttcgtgccat	3960
cctgagttaa tgaagacttc cgactggact acaaacttct tccgtgtgc agtcttcag	4020
ggagttgatg cacggcataa aacctgtgac ctgcaaatac tgttaattga aaaacaacca	4080
acgtatcatc aactataatg tacagcaagt ctcttaggc tcacactgaa actaaaaat	4140
ggtaatctgc atttacttgg cacatgacat gtcccattat tttgtcagct tagattgaac	4200
tcactgcgga acacatctt cttcaagac aacatccaaa ttattgatt tcagttggca	4260
tgtcaaactt tttaagctcc aattttaggc tgtggtagct ttcattctgt gtattgcggc	4320
tagcatctgt tagctgtcac tgccctactg gctaattaa tatatttgcat gaatctacat	4380
agctaaatgg gactcacgtg ttctgtgaa ttctcagtta cttgccattt ggtggcggac	4440
caaggaaatg tgttaggtgac atgtttgcctt cttcgaggt aatttgcattt agttttgaa	4500
ggatttcttc tttaatttc aaaatgtcat tttaaggaaa catagcaaac ttatgtatgg	4560
tccagtctta ctgaacccttgg tgccttgag cttctgttg tctaccataa ggacattata	4620
tctcatgcca tgataaataa tgttagtacaa taactattga gcatgcaaga ttccaactct	4680
aataacatgg atatgccgga acttgcgtgc agactgtggt ggcaactgca atgctgtca	4740
ggcgcttga ttttcaaatac gctccaggag ctccctcggt ataattctg tctgcttcct	4800
ggttcttcat agttatcaac atacagataa tcactgtgaa gtatcaatat gataggttga	4860
gatgacaact ggagcaacga ttccacacaac tgaggggttg aaaatgactg ttactcgag	4920
gacaaagcca cctgtaatcc caaacctaga gatgaaagtc atttctgatt caccagaaaa	4980
catgagttact actacatcaa tgccctttc tgctgcttagt attgcttcag gagaagatca	5040
acaaggcataa gtctcagcaa ctcgaatctg a	5071

<210>	43					
<211>	1899					
<212>	DNA					
<213>	Oryza sativa					
<400>	43					
atggcggcta	cctcctctgc	ggccgcccgt	gctccacctc	cgtgccgctt	actcggtcc	60
ggtcaggcac	acctgcgcct.	tcctccttct	gctgctgctg	ctgctgcttc	agctcgctgc	120
cgcctgctcc	tccgctgcgc	cgcctcgggc	ggcaacggga	aaggcggtgg	tggcgacggc	180
tccggctccg	accgggttct	tgaggagcgg	cggcggcggc	gccaggctga	gctggcggcg	240
cgcattgcgt	ccggcgagtt	caccgccccaa	ggcccccgcgt	ggattgctcc	cctcgcggtg	300
gggcttgcca	agctcgccc	accgggggag	ctcgccgccc	cgctgctcac	caaggtcgcc	360
ggtgtggcg	gaccggagat	accgcaggcg	gtggggtcta	tgagtgcggt	gacagggcag	420
gctttcttca	tcccgtctta	tgatcttttc	cttacccatg	gccccatctt	tcgcctcaat	480
ttcgcccta	agtctttcct	cattgtctct	gatccagcta	tagctaagca	catcctgagg	540
gacaactcca	aggcttattc	caagggtatt	ctggcagaaa	tttagagtt	tgtgatgggt	600
acgggttga	tccctgtga	tggggagatt	tggcgtgtta	ggaggcgcgc	cattgtacca	660
gcaatgcacc	agaagtacgt	taccgcaatg	ataagtctct	tcggatatgc	ttcagatcgg	720
ctctgccaga	agttggacaa	ggcagcaacg	gatggggagg	atgtggagat	ggaatcttg	780
ttctctcgac	taacactgga	tgtcattggg	aaggcagtct	tcaattatga	tttcgactca	840
ttgtcttacg	ataatggaat	agttgaggca	gtgtatgtga	cactgcgaga	agcagaaaatg	900
cggagactt	tccttatacc	aacttggaa	ataccatat	ggaaagatat	ttccccgcgg	960
cagaagaagg	tcaatgaagc	tcttgcgtg	ataaataaga	ctcttgcgtg	actaattgac	1020
atctgcaaga	gattggtcga	ggaagaagat	ctgcagttc	atgaagaata	catgaatgag	1080
caagacccca	gtatcctcca	ctttcttttgc	gcatctggag	atgatgtctc	cagcaagcaa	1140
ctccgtgatg	atctgatgac	aatgctcatt	gctggccatg	agacctctgc	agcagtcttgc	1200
acatggacat	tttatcttct	atctaagtat	ccaaatgtaa	tggccaaact	ccaagatgag	1260
gctgatactg	ttcttaggtga	ccgtttacca	acaattgagg	atgtgaagaa	attgaagtat	1320
actactagag	taattaacga	atcattgaga	ctctatccac	agccaccagt	tttaattcgt	1380
cgctctattg	aggaggatat	gctgggaggg	tacccaatttgc	gccggggaga	agacattttc	1440
atatccgtgt	ggaacctaca	tcattgccc	aaggcattggg	atggcgcaga	tgttttaat	1500
ccagaaaat	ggcctttgga	tggaccaa	ccaaatgaaa	caaaccaaaa	tttcagttac	1560
ttgccat	gtggcggacc	aaggaaatgt	gttagtgaca	tgtttgcac	tttcgagact	1620
gtggtgccaa	ctgcaatgct	tgtcaggcgc	tttgatttgc	aaatggctcc	aggagctcct	1680

ccgggttggaga	tgacaactgg	agcaacgatt	cacacaactg	agggggttcaa	aatgactgtt	1740
actcggagga	caaagccacc	tgttatccca	aacctagaga	tgaaagtcat	ttctgattca	1800
ccagaaaaca	tgagtactac	tacatcaatg	cccgttctg	ctgcttagtat	tgcttcagga	1860
gaagatcaac	aaggcaagt	ctcagcaact	cgaatctga			1899
<210>	44					
<211>	1527					
<212>	DNA					
<213>	Hordeum vulgare					
<400>	44					
tcggcacgag	ggcaggccgt	cgggtcgctg	gcttccgtcg	ccggggaggc	cttcttcctg	60
ccgcctctacg	acctcttcct	cacctacggc	ggcgcttcc	gcctcaactt	cgggcccaag	120
tcttcctca	tcgtctctga	tccggatgt	gctaagcata	tcctcaggga	caactcaaag	180
gcttattcca	agggtatcct	tgccgaaata	ctggagttt	tgtgggcac	aggctgtatc	240
ccggctgatg	gggaggtctg	gcgtgttcga	cgcggtgcca	ttgtaccagc	attgcatacg	300
aagtaacgtga	cagcgatgat	aggctctttt	ggaaacgctt	cagaccggct	ctgccagaag	360
ctcgacaagg	ctgcttcgga	cggggaggat	gtggagatgg	aatctctttt	ctcccacta	420
acgctggatg	tcatcggaa	ggcggtgttc	aattatgatt	ttgattcatt	atcttacgat	480
aatggaatag	ttgaggctgt	gtatgtaca	ctgcggaaag	cagaaatgcg	gagtacatct	540
cctattccaa	catggaaat	accatatgg	aaagacatct	cccctcggca	gaggaaggtc	600
aatgaagcgc	ttgcactgat	aaataatatt	ctcgatgaac	taattgctac	gtgcaagagg	660
atggtagatg	aagaagatct	gcagttcat	gaggaataca	tgaatgagaa	agaccctagt	720
attcttca	ttcttattggc	atctggagat	gatgtgtcca	gcaaggagct	ccgtgtatgc	780
ctgatgacaa	tgctcatagc	tggccatgag	acctctgcag	cagtcttgac	atggacattt	840
tatcttctat	ctaagtatcc	caacgtaatg	tccaagctcc	aagctgaggc	tgatgtgtt	900
ctaggagatg	gtctgccaac	aattgtatgat	gtgaagaaac	tgaagtatac	tactcgagtt	960
attaatgaat	cttgagact	ataccccacag	ccgcccagttt	taattcgccg	ctcccttgag	1020
gatgatatgc	taggagagta	cccgatcgcc	aagggagaag	atattttat	atccatctgg	1080
aaccttcatac	gctgcccataa	gcattggat	gacgcggatg	ttttcaatcc	ggaaagggtgg	1140
cctttggacg	gaccgaatcc	aaatgagaca	aaccaaaaat	tcaagtactt	gccatttggt	1200
ggccggaccaa	ggaaatgtgt	agggtatatg	tttgctactt	ttgagactgt	ggtagcaaca	1260
gcaatgcttg	tcaagcgatt	tgatttcag	atggctccag	gagcacctcc	ggtcgagatg	1320
acaaccggag	caacgattca	cacaactaag	ggactgaaca	tgactgttac	tcggaggata	1380

aagccacctg taattccaaa cttagagatg aaaatcgaaa ccgatccaga aggaagcaca	1440
agttctactg cgtcagtggc tggttctact gctagtattg catccggaga aggtcaacaa	1500
gtggaggtgt cgacaagtca agtgtga	1527
<210> 45	
<211> 1278	
<212> DNA	
<213> Glycine max	
<400> 45	
gggaaaggc ttatcccagc ttaggtgaa atatggcgag tttagacgtcg tgctata	60
ccagcattgc accagaagta tggatcgact atgattggcc ttttcggaca agctgcagat	120
aggctctgcc agaagctaga tgcgtctgca tccgatggag aagatgttga gatggaatca	180
cttttctctc gattgacctt ggacatcatt ggcaaggcag tattcaatta tgattttgat	240
agtttatcaa atgacactgg tatagttgag gctgttata ctgtactgag agaagcagaa	300
gatcgaagtg ttgctccat tccagtctgg gagatccaa tatggaaaga catatcacca	360
cgtctaagga aggttaatgc agctctaaa ttcatcaatg atacgcttga tgatctgata	420
gcaatatgca agagaatggt ggttggaa gagttacagt ttcatgagga gtacatgaat	480
gagcaagatc caagtattct acacttcttgc ttggcgtag gagatgtgt gtcaagtaag	540
caacttcgtg atgacttaat gaccatgctc attgctggac atgaaacatc agctgctgtt	600
ttaacttgga ctttttatct tctatccaag gagccaagag tcatgtccaa gctccaagaa	660
gaggttgact ctgtacttgg agatcaatat ccaactatag aagacatgaa gaaactcaaa	720
tatacaaccc gagtgatcaa ttagtcatttgg aggcttacc cacaaccacc tgtgttaatt	780
cggccgtctc ttgaggatga tggatcgacttggaa gagtaccctaa taaagagagg tgaagatatc	840
tttatatctg tatggAACCT gcatcgacttggaa ccaaaactat gggatgtgc tgacaagttt	900
aaacctgaaa gatggcatt agatggacca agtcctaatttgc agacaaatca aaacttcaaa	960
tatcttcgtt ttggggcgaccacggaaa tggatcgacttggaa ccaaaactat gggatgtgc tgacaagttt	1020
acggtagtag cactcgcaat gcttatgaga cgattcaact ttcaaatagc agttggagct	1080
ccaccgggttggaa agatgactac tggatcgacttggaa ccaaaactat gggatgtgc tgacaagttt	1140
gtaactcaca gaataaaacc tcctattgttgc ccctcatttgc agatgtcaac tttggaaatgttgc	1200
gatccatcca taaggcatttc tggatcgacttggaa ccaaaactat gggatgtgc tgacaagttt	1260
gctcaggcgtc agtcctaa	1278

<210> 46
 <211> 1031
 <212> DNA
 <213> Triticum aestivum

<400> 46
 ggctgcaggg tgccgcaggc ggtcggtcg ctggcgccg tcgccccggga ggccttcttc 60
 ctgccgtct acgacacctt cctcacctac ggccggcgtct tccgcctcaa cttcgccc 120
 aagtcttcc tcatcgctc tgatccggat gtagctaagc atatcctgag ggacaactcc 180
 aaggcttatt ccaagggtat cttgcggaa atattggagt ttgtgatggg cacaggtctg 240
 atcccgctg atggggaggt ctggcgtgtt cgacggcgtg ccattgtacc agcattgcat 300
 cagaagtacg tgacagcgat gataggctc ttccggaaatg ctccagaccg tctgtgccag 360
 aagctggaca aggccggatc cgatggggag gatgtggaga tggaaatctt cttctctcga 420
 ctaacgctgg atgtcatcg gaaggcagtg ttcaattatg attttgattt attatcttac 480
 gataatggaa tagtgaggc tgtgtatgta acattacggg aagcgaaat gcggagcaca 540
 ttccttattt caacttggaa aataccata tggaaagaca tctccctcg gcagagtgcc 600
 caaagcattt ggacgatgcg gatgtttca atccagaaag gtggcctttg gacggaccga 660
 atccaaatga gacaaaccaa aaattcagtt atttgcatt tggtggcggg ccaaggaaat 720
 gtgtaggcga tatgtttctt acttttggaa ctgtggtggc aacagcaatg cttgtcaagc 780
 gatttgattt tcagatggct ccaggagcac ctccggcgtga gatgacaact ggagcaacga 840
 ttcacacaac taagggactc aacatgactg ttactcggag gataaagcca cctgttaattc 900
 caaacttaga gatgaaaatc gttccgatt cagaaggaag cacaagttct actgcgtcag 960
 tggctgtttc tactgcttagt attgcattcg gagaaggtca acaagtagag gtgtcgacaa 1020
 gtcaagtgtg a 1031

<210> 47
 <211> 1737
 <212> DNA
 <213> Lycopersicon esculentum

<400> 47
 caatttccaa cacaccatta ctctaaatct agactcactc tctcacctaa attcaagggt 60
 agtgtatcaa attttacaat taggtgttct aattctaattt gaaaaacagcc tgagtggta 120
 gatgaaggag tcaaaaaggt gaaaaagctt ttagatgaga aaaggcgagc tgaattatct 180
 gctcgtattt ctccaggcga atttactgtt gaacaatctg gcttcccgatc attgtcaaaa 240
 aatggttgt ctaaatttggg tgtaccaaag gaatttcttgc agttcttctc tcgacgaacg 300
 ggcaattatc ctgcattcc agaggcaaaa ggatccatca gtgctattcg ggatgagcc 360
 ttcttcatgc cgctttatga gcttacctt acttatggcg gaattttccg gttgattttt 420

ggtcccaagt ctttttaat agtttctgat ccatcaatag ccaaacacat actgaaaagat 480
aattctaagg cttattctaa gggtatccta gctgaaatat tggactttgt gatgggaaag 540
ggacttatac ctgcagatgg agaaatttgg cgcgtcagggc ggcgtgccat tgtaccagca 600
ttgcaccaaa agtacgttagc agctatgatt ggcttattt gaaaagcaac cgataggttg 660
tgcaaaaagc ttgatgttgc tgcaactgat ggagaagatg tagagatgga atcaactttc 720
tcccgtctaa cattggacat cattggcaaa gctgtattt attatgattt tgactcttta 780
actgttagata ctggtatcgt ggaggctgta tatacagtagc ttagagaagc agaagatcgt 840
agtgttgcac caattccagt ttgggagttg cctatctgga aagatatctc tccgaagcta 900
aaaaaggta atgcagctct caagttgatt aatgacacat tggatgatct gattgctata 960
tgtaagagga tggtagacga agaagagttg cagtttcacg aggaatacat gaatgaaaaa 1020
gatcctagca tcctccattt cttgttagca tctggagatg aggtctcaag caagcaacctt 1080
cgtgatgacc tcatgacaat gcttatagcg ggacatgaaa catctgcagc agtgctcaca 1140
tggacccccc atctgttgc caaggaacct agtgtcatgg ccaagcttca agatgaggtc 1200
gattcagttc tagggatag gttaccaacc attgaagatc taaagaaact cagatacaca 1260
actcgtgtga ttaatgagtc tttaagacta tatccacagc caccagtctt gattcgtcgt 1320
tctattgaag aggacgttagt tggaggttac ccgattaaaa ggggtgaaga cattttcattt 1380
tctgtttgga acttgcacatcg atgccccaat cattgggaag aagccgatag attcaatcct 1440
gagaggtggc cacttgatgg acctaaccctt aatgagacga accaaaattt cagttacctt 1500
cccttcgggtg gtggaccaag aaaatgtgtg ggagacatgt ttgcccatt tgagaattta 1560
gttagcagttg caatgcttgc tcaacgattt gattttcaaa tggctcttgg agtccttcct 1620
gttaaaatga caactggggc taccatccac accacagaag gattaaaaat gactgttaaca 1680
cgaagatcaa gacccaaat agttcccaac ttggagatgg caacattaga agtagat 1737

```
<210> 48
<211> 1101
<212> DNA
<213> Chlamydomonas reinhardtii
```

<400> 48 ggcgtgttca actacgactt cgactcgctg gcgacgacg accccgtcat ccaggccgtg
atgttcggcg actgcgcggc gcacggcgcg tccgccacac tagacaagta tgccgcctca
ggcaccagcc tggacatgga aaacttcttc agccggctgg gtctggacat catcgccaag
tacacgttgc tgcgcgaagc ggagcacccgc tccacagcgc ccatcgcccta ctgaaacatt
cccggcatcc agtttgtggc gccgcggcag aagcgctgcc aggaggcgct ggtgctggta 360

aatgagtgcc	tggacggcct	catcgacaag	tgcaagaagc	tggtcgagga	ggaggacgcg	420
gtgtttgggg	aggagttcct	tagcgagcgc	gaccctcca	tcctgcactt	cctcctcgcg	480
tctggagacg	agatttcctc	gaagcagttg	cgcgatgacc	tgatgactat	gctgattgcg	540
gggcacgaga	ccaccgcccgc	cgtgctgacg	tggacgctgt	acctgctgtc	ccaacacccc	600
gaggcggcag	cggccatccg	caaggaggta	gacgagctcc	ttggggaccg	caagcccgaa	660
gtggaagacc	tcaagagcgt	caagatgacg	actcgcgtca	tcaacgaggc	gatgcggctc	720
tacccacagc	cgcctact	cattcgccgc	gctgctgcagg	acgaccactt	cgaccagttc	780
acggtgccgg	ccggcagcga	cctgttcatc	agcgtgtgga	acttgcaccg	cagccctaag	840
ctgtggacg	agcccgacaa	gttcaagccg	gagcgcttcg	gaccgctgga	cagccccatc	900
cccaacgagg	tgactaaaa	cttcgcctac	ctgcccatttgc	gccccgtggccg	ccgcaagtgc	960
attggcgacc	agttcgctt	gttcgaggcg	gttggcgcgc	tggccatgct	gatgcggcga	1020
tacgagttca	acctggacga	gtccaagggg	acagtggcga	tgacaacagg	tgccaccatc	1080
cacaccacca	acggtctaaa	c				1101

<210> 49
 <211> 576
 <212> PRT
 <213> Arabidopsis thaliana

<400> 49

Met	Ala	Phe	Pro	Ala	Ala	Ala	Thr	Tyr	Pro	Thr	His	Phe	Gln	Gly	Gly
1															15

Ala	Leu	His	Leu	Gly	Arg	Thr	Asp	His	Cys	Leu	Phe	Gly	Phe	Tyr	Pro
															30

Gln	Thr	Ile	Ser	Ser	Val	Asn	Ser	Arg	Arg	Ala	Ser	Val	Ser	Ile	Lys
															45

Cys	Gln	Ser	Thr	Glu	Pro	Lys	Thr	Asn	Gly	Asn	Ile	Leu	Asp	Asn	Ala
															50
															55
															60

Ser	Asn	Leu	Leu	Thr	Asn	Phe	Leu	Ser	Gly	Gly	Ser	Leu	Gly	Ser	Met
															65
															70
															75
															80

Pro	Thr	Ala	Glu	Gly	Ser	Val	Ser	Asp	Leu	Phe	Gly	Lys	Pro	Leu	Phe
															85
															90
															95

Leu	Ser	Leu	Tyr	Asp	Trp	Phe	Leu	Glu	His	Gly	Gly	Ile	Tyr	Lys	Leu
															100
															105
															110

Ala Phe Gly Pro Lys Ala Phe Val Val Ile Ser Asp Pro Ile Ile Ala
115 120 125

Arg His Val Leu Arg Glu Asn Ala Phe Ser Tyr Asp Lys Gly Val Leu
130 135 140

Ala Glu Ile Leu Glu Pro Ile Met Gly Lys Gly Leu Ile Pro Ala Asp
145 150 155 160

Leu Asp Thr Trp Lys Leu Arg Arg Arg Ala Ile Thr Pro Ala Phe His
165 170 175

Lys Leu Tyr Leu Glu Ala Met Val Lys Val Phe Ser Asp Cys Ser Glu
180 185 190

Lys Met Ile Leu Lys Ser Glu Lys Leu Ile Arg Glu Lys Glu Thr Ser
195 200 205

Ser Gly Glu Asp Thr Ile Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser
210 215 220

Leu Ala Leu Asp Ile Ile Gly Leu Ser Val Phe Asn Tyr Asp Phe Gly
225 230 235 240

Ser Val Thr Lys Glu Ser Pro Val Ile Lys Ala Val Tyr Gly Thr Leu
245 250 255

Phe Glu Ala Glu His Arg Ser Thr Phe Tyr Phe Pro Tyr Trp Asn Phe
260 265 270

Pro Pro Ala Arg Trp Ile Val Pro Arg Gln Arg Lys Phe Gln Ser Asp
275 280 285

Leu Lys Ile Ile Asn Asp Cys Leu Asp Gly Leu Ile Gln Asn Ala Lys
290 295 300

Glu Thr Arg Gln Glu Thr Asp Val Glu Lys Leu Gln Glu Arg Asp Tyr
305 310 315 320

Thr Asn Leu Lys Asp Ala Ser Leu Leu Arg Phe Leu Val Asp Met Arg
325 330 335

Gly Val Asp Ile Asp Asp Arg Gln Leu Arg Asp Asp Leu Met Thr Met
340 345 350

Leu Ile Ala Gly His Glu Thr Thr Ala Ala Val Leu Thr Trp Ala Val
355 360 365

Phe Leu Leu Ser Gln Asn Pro Glu Lys Ile Arg Lys Ala Gln Ala Glu
370 375 380

Ile Asp Ala Val Leu Gly Gln Gly Pro Pro Thr Tyr Glu Ser Met Lys
385 390 395 400

Lys Leu Glu Tyr Ile Arg Leu Ile Val Val Glu Val Leu Arg Leu Phe
405 410 415

Pro Gln Pro Pro Leu Leu Ile Arg Arg Thr Leu Lys Pro Glu Thr Leu
420 425 430

Pro Gly Gly His Lys Gly Glu Lys Glu Gly His Lys Val Pro Lys Gly
435 440 445

Thr Asp Ile Phe Ile Ser Val Tyr Asn Leu His Arg Ser Pro Tyr Phe
450 455 460

Trp Asp Asn Pro His Asp Phe Glu Pro Glu Arg Phe Leu Arg Thr Lys
465 470 475 480

Glu Ser Asn Gly Ile Glu Gly Trp Ala Gly Phe Asp Pro Ser Arg Ser
485 490 495

Pro Gly Ala Leu Tyr Pro Asn Glu Ile Ile Ala Asp Phe Ala Phe Leu
500 505 510

Pro Phe Gly Gly Pro Arg Lys Cys Ile Gly Asp Gln Phe Ala Leu
515 520 525

Met Glu Ser Thr Val Ala Leu Ala Met Leu Phe Gln Lys Phe Asp Val
530 535 540

Glu Leu Arg Gly Thr Pro Glu Ser Val Glu Leu Val Ser Gly Ala Thr
545 550 555 560

Ile His Ala Lys Asn Gly Met Trp Cys Lys Leu Lys Arg Arg Ser Lys
565 570 575

<210> 50
 <211> 552
 <212> PRT
 <213> Pisum sativum

 <400> 50

Met	Val	Ala	Ala	Pro	Ile	Ser	Thr	Val	Lys	Leu	Thr	Asp	Ala	Asn	Leu
1									10						15

His	Thr	Arg	Phe	His	Ser	Ser	Ser	Ser	Thr	Pro	Ser	Thr	Leu	Ser
				20				25					30	

Leu	Pro	Leu	Ser	Leu	His	Phe	His	Phe	Ser	Ser	His	Ser	Lys	Arg	Phe
					35			40				45			

Ser	Ser	Ile	Arg	Cys	Gln	Ser	Val	Asn	Gly	Glu	Lys	Arg	Lys	Gln	Ser
				50		55				60					

Ser	Arg	Asn	Val	Phe	Asp	Asn	Ala	Ser	Asn	Leu	Leu	Thr	Ser	Leu	Leu
65					70					75			80		

Ser	Gly	Ala	Asn	Leu	Gly	Ser	Met	Pro	Ile	Ala	Glu	Gly	Ala	Val	Thr
						85			90				95		

Asp	Leu	Phe	Asp	Arg	Pro	Leu	Phe	Phe	Ser	Leu	Tyr	Asp	Trp	Phe	Leu
					100			105				110			

Glu	His	Gly	Ser	Val	Tyr	Lys	Leu	Ala	Phe	Gly	Pro	Lys	Ala	Phe	Val
						115		120				125			

Val	Val	Ser	Asp	Pro	Ile	Val	Ala	Arg	His	Ile	Leu	Arg	Glu	Asn	Ala
					130		135				140				

Phe	Ser	Tyr	Asp	Lys	Gly	Val	Leu	Ala	Asp	Ile	Leu	Glu	Pro	Ile	Met
145						150				155			160		

Gly	Lys	Gly	Leu	Ile	Pro	Ala	Asp	Leu	Glu	Thr	Trp	Lys	Gln	Arg	Arg
					165			170				175			

Arg	Val	Ile	Ala	Pro	Gly	Phe	His	Thr	Ser	Tyr	Leu	Glu	Ala	Met	Val
						180		185			190				

Gln	Leu	Phe	Thr	Ser	Cys	Ser	Glu	Arg	Thr	Val	Leu	Lys	Val	Asn	Glu
							195			200		205			

Leu	Leu	Glu	Glu	Gly	Arg	Asp	Gly	Gln	Lys	Ser	Val	Glu	Leu	Asp	
					210		215				220				

Leu Glu Ala Glu Phe Ser Asn Leu Ala Leu Glu Ile Ile Gly Leu Gly
225 230 235 240

Val Phe Asn Tyr Asp Phe Gly Ser Val Thr Asn Glu Ser Pro Val Ile
245 250 255

Lys Ala Val Tyr Gly Thr Leu Phe Glu Ala Glu His Arg Ser Thr Phe
260 265 270

Tyr Ile Pro Tyr Trp Lys Phe Pro Leu Ala Arg Trp Ile Val Pro Arg
275 280 285

Gln Arg Lys Phe Gln Asp Asp Leu Lys Val Ile Asn Thr Cys Leu Asp
290 295 300

Gly Leu Ile Arg Asn Ala Lys Glu Ser Arg Gln Glu Thr Asp Val Glu
305 310 315 320

Lys Leu Gln Gln Arg Asp Tyr Ser Asn Leu Lys Asp Ala Ser Leu Leu
325 330 335

Arg Phe Leu Val Asp Met Arg Gly Val Asp Val Asp Asp Arg Gln Leu
340 345 350

Arg Asp Asp Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Thr Ala
355 360 365

Ala Val Leu Thr Trp Ala Val Phe Leu Leu Ala Gln Asn Pro Asp Lys
370 375 380

Met Lys Lys Ala Gln Ala Glu Val Asp Leu Val Leu Gly Met Gly Lys
385 390 395 400

Pro Thr Phe Glu Leu Leu Lys Lys Leu Glu Tyr Ile Arg Leu Ile Val
405 410 415

Val Glu Thr Leu Arg Leu Tyr Pro Gln Pro Pro Leu Leu Ile Arg Arg
420 425 430

Ser Leu Lys Pro Asp Val Leu Pro Gly Gly His Lys Gly Asp Lys Asp
435 440 445

Gly Tyr Thr Ile Pro Ala Gly Thr Asp Val Phe Ile Ser Val Tyr Asn
450 455 460

Leu His Arg Ser Pro Tyr Phe Trp Asp Arg Pro Asn Asp Phe Glu Pro
465 470 475 480

Glu Arg Phe Leu Val Gln Asn Asn Asn Glu Glu Val Glu Gly Trp Ala
485 490 495

Gly Phe Asp Pro Ser Arg Ser Pro Gly Ala Leu Tyr Pro Asn Glu Ile
500 505 510

Ile Ser Asp Phe Ala Phe Leu Pro Phe Gly Gly Pro Arg Lys Cys
515 520 525

Val Gly Asp Gln Phe Ala Leu Met Glu Ser Thr Val Ala Leu Val Cys
530 535 540

Cys Tyr Arg Ile Ser Met Trp Asn
545 550

<210> 51
<211> 576
<212> PRT
<213> Glycine max

<400> 51

Met Ser Val Asp Thr Ser Ser Thr Leu Ser Thr Val Thr Asp Ala Asn
1 5 10 15

Leu His Ser Arg Phe His Ser Arg Leu Val Pro Phe Thr His His Phe
20 25 30

Ser Leu Ser Gln Pro Lys Arg Ile Ser Ser Ile Arg Cys Gln Ser Ile
35 40 45

Asn Thr Asp Lys Lys Ser Ser Arg Asn Leu Leu Gly Asn Ala Ser
50 55 60

Asn Leu Leu Thr Asp Leu Leu Ser Gly Gly Ser Ile Gly Ser Met Pro
65 70 75 80

Ile Ala Glu Gly Ala Val Ser Asp Leu Leu Gly Arg Pro Leu Phe Phe
85 90 95

Ser Leu Tyr Asp Trp Phe Leu Glu His Gly Ala Val Tyr Lys Leu Ala
100 105 110

Phe Gly Pro Lys Ala Phe Val Val Val Ser Asp Pro Ile Val Ala Arg
115 120 125

His Ile Leu Arg Glu Asn Ala Phe Ser Tyr Asp Lys Gly Val Leu Ala
130 135 140

Asp Ile Leu Glu Pro Ile Met Gly Lys Gly Leu Ile Pro Ala Asp Leu
145 150 155 160

Asp Thr Trp Lys Gln Arg Arg Arg Val Ile Ala Pro Ala Phe His Asn
165 170 175

Ser Tyr Leu Glu Ala Met Val Lys Ile Phe Thr Thr Cys Ser Glu Arg
180 185 190

Thr Ile Leu Lys Phe Asn Lys Leu Leu Glu Gly Glu Gly Tyr Asp Gly
195 200 205

Pro Asp Ser Ile Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser Leu Ala
210 215 220

Leu Asp Ile Ile Gly Leu Gly Val Phe Asn Tyr Asp Phe Gly Ser Val
225 230 235 240

Thr Lys Glu Ser Pro Val Ile Lys Ala Val Tyr Gly Thr Leu Phe Glu
245 250 255

Ala Glu His Arg Ser Thr Phe Tyr Ile Pro Tyr Trp Lys Ile Pro Leu
260 265 270

Ala Arg Trp Ile Val Pro Arg Gln Arg Lys Phe Gln Asp Asp Leu Lys
275 280 285

Val Ile Asn Thr Cys Leu Asp Gly Leu Ile Arg Asn Ala Lys Glu Ser
290 295 300

Arg Gln Glu Thr Asp Val Glu Lys Leu Gln Gln Arg Asp Tyr Leu Asn
305 310 315 320

Leu Lys Asp Ala Ser Leu Leu Arg Phe Leu Val Asp Met Arg Gly Ala
325 330 335

Asp Val Asp Asp Arg Gln Leu Arg Asp Asp Leu Met Thr Met Leu Ile
340 345 350

Ala Gly His Glu Thr Thr Ala Ala Val Leu Thr Trp Ala Val Phe Leu
355 360 365

Leu Ala Gln Asn Pro Ser Lys Met Lys Lys Ala Gln Ala Glu Val Asp
370 375 380

Leu Val Leu Gly Thr Gly Arg Pro Thr Phe Glu Ser Leu Lys Glu Leu
385 390 395 400

Gln Tyr Ile Arg Leu Ile Val Val Glu Ala Leu Arg Leu Tyr Pro Gln
405 410 415

Pro Pro Leu Leu Ile Arg Arg Ser Leu Lys Ser Asp Val Leu Pro Gly
420 425 430

Gly His Lys Gly Glu Lys Asp Gly Tyr Ala Ile Pro Ala Gly Thr Asp
435 440 445

Val Phe Ile Ser Val Tyr Asn Leu His Arg Ser Pro Tyr Phe Trp Asp
450 455 460

Arg Pro Asp Asp Phe Glu Pro Glu Arg Phe Leu Val Gln Asn Lys Asn
465 470 475 480

Glu Glu Ile Glu Gly Trp Ala Gly Leu Asp Pro Ser Arg Ser Pro Gly
485 490 495

Ala Leu Tyr Pro Asn Glu Val Ile Ser Asp Phe Ala Phe Leu Pro Phe
500 505 510

Gly Gly Gly Pro Arg Lys Cys Val Gly Asp Gln Phe Ala Leu Met Glu
515 520 525

Ser Thr Val Ala Leu Thr Met Leu Leu Gln Asn Phe Asp Val Glu Leu
530 535 540

Lys Gly Thr Pro Glu Ser Val Glu Leu Val Thr Gly Ala Thr Ile His
545 550 555 560

Thr Lys Asn Gly Leu Trp Cys Asn Leu Arg Lys Arg Ser Ser Leu His
565 570 575

<210> 52
<211> 588
<212> PRT
<213> Oryza sativa

<400> 52

Met Ala Ala Ala Ala Ala Ala Val Pro Cys Val Pro Phe Leu Cys
1 5 10 15

Pro Pro Pro Pro Leu Val Ser Pro Arg Leu Arg Arg Gly His Val
20 25 30

Arg Leu Arg Leu Arg Pro Pro Arg Ser Ser Gly Gly Phe Thr Gly
35 40 45

Gly Gly Gly Ala Gly Gly Asp Glu Pro Pro Ile Thr Thr Ser Trp Val
50 55 60

Ser Pro Asp Trp Leu Thr Ala Leu Ser Arg Ser Val Ala Thr Arg Leu
65 70 75 80

Gly Gly Gly Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp
85 90 95

Asp Val Arg Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys
100 105 110

Trp Phe Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg
115 120 125

Asp Leu Val Val Val Ser Asp Pro Ala Val Ala Arg His Val Leu Arg
130 135 140

Gly Tyr Gly Ser Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu
145 150 155 160

Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala Leu Trp Thr
165 170 175

Val Arg Arg Arg Ser Val Val Pro Ser Leu His Lys Arg Phe Leu Ser
180 185 190

Val Met Val Asp Arg Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu
195 200 205

Lys Leu Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala
210 215 220

Arg Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn
225 230 235 240

Tyr Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val
245 250 255

Tyr Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro
260 265 270

Tyr Trp Lys Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln Ile Lys
275 280 285

Ala Glu Lys Ala Val Asn Ile Ile Arg Asn Thr Val Glu Asp Leu Ile
290 295 300

Thr Lys Cys Lys Lys Ile Val Asp Ala Glu Asn Glu Gln Ile Glu Gly
305 310 315 320

Glu Glu Tyr Val Asn Glu Ala Asp Pro Ser Ile Leu Arg Phe Leu Leu
325 330 335

Ala Ser Arg Glu Glu Val Thr Ser Val Gln Leu Arg Asp Asp Leu Leu
340 345 350

Ser Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp
355 360 365

Thr Ile Tyr Leu Leu Ser Lys Asp Pro Ala Ala Leu Arg Arg Ala Gln
370 375 380

Ala Glu Val Asp Arg Val Leu Gln Gly Arg Leu Pro Arg Tyr Glu Asp
385 390 395 400

Leu Lys Glu Leu Lys Tyr Leu Met Arg Cys Ile Asn Glu Ser Met Arg
405 410 415

Leu Tyr Pro His Pro Pro Val Leu Ile Arg Arg Ala Ile Val Asp Asp
420 425 430

Val Leu Pro Gly Asn Tyr Lys Ile Lys Ala Gly Gln Asp Ile Met Ile
435 440 445

Ser Val Tyr Asn Ile His Arg Ser Pro Glu Val Trp Asp Arg Ala Asp
450 455 460

Asp Phe Ile Pro Glu Arg Phe Asp Leu Glu Gly Pro Val Pro Asn Glu
465 470 475 480

Thr Asn Thr Glu Tyr Arg Phe Ile Pro Phe Ser Gly Gly Pro Arg Lys
485 490 495

Cys Val Gly Asp Gln Phe Ala Leu Leu Glu Ala Ile Val Ala Leu Ala
500 505 510

Val Val Leu Gln Lys Met Asp Phe Thr Ile Glu Leu Val Pro Asp Gln
515 520 525

Lys Ile Asn Met Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu
530 535 540

Tyr Met Asn Val Val Asn Ile Gly Val Gln Val Asp Glu Ala Arg Lys
545 550 555 560

His Gly Tyr Asn Ser Phe Ile Val Tyr Gly Tyr Thr Leu Tyr Ala Tyr
565 570 575

Ile Ser Pro Arg Ile Trp Ser Ala Met Pro Val Leu
580 585

<210> 53
<211> 1734
<212> DNA
<213> Arabidopsis thaliana

<400> 53
atggcttttc ctgccgctgc tacttatccc acccatttcc aaggcggcgc tcttcatctg 60
ggtaggaccg atcattgcct ctccggtttc taccctcaaa ccatttcctc tgtgaattct 120
cgagagacct ctgtttccat caagtgccaa tctacggagc caaagacgaa tggtaacata 180
ttggacaatg cgagcaacct tttgacaaat ttttaagtg gtggaagttt ggggtcaatg 240
cctactgctg aaggctctgt ctctgatttg tttggaaagc ctctctttt atctctttac 300
gactggttct tggagcatgg aggaatttat aaacttgcgt ttggtccaaa agcctttgtt 360
gtcatctcag atcccattat tgcaaggcat gtcctccggg aaaaatgcttt ttcttatgac 420
aagggagttc ttgctgagat cttagagccg attatggaa aagggttaat accggctgat 480
ctagatacgt ggaagttaag aagaagagct atcactcccg cattccataa attgtatcta 540
gaggccatgg tcaaagtatt tagtgactgt tcggagaaaa tgatattgaa atctgagaaa 600
ctcataaggg agaaagaaac ttcaagcggg gaggacacca ttgagttgga tctggaaagca 660
gaattctcga gtctggctct tgatattata ggtcttagcg tggtaacta cgattttggc 720
tctgtcacaa aagagtcccc tgtgatcaag gcagtttatg gaactctttt cgaggcagag 780
catcggtcta ctttctactt cccttattgg aactttcctc cagctagatg gatagttccg 840
aggcaacgaa agttccaaag cgatctgaag attataaacg attgccttga tggcctcatt 900
caaaatgcta aagagacaag acagcaggaa acagatgttgc agaagctcca ggaaaggac 960

tacactaatc tcaaggatgc aagtcttttgc	cggttcttag tcgatatgcg cggtgttgac	1020
attgatgacc ggcagctgag ggatgacttg atgactatgc	taattgctgg tcatgagaca	1080
acagcagcag tacttacttg ggctgtttc cttctgtcac	aaaatcctga aaaaattagg	1140
aaagctcaag ctgagattga tgctgtgctt ggtcaaggtc	cacccactta tgaatcaatg	1200
aaaaagctcg agtacatacg actgatcggt gttagaagtcc	ttcgtctctt tcctcagcca	1260
ccttgctca tcagacgcac tctcaaaccg gaaacattac	ccgggtggaca caaaggggaa	1320
aaagaaggtc ataaagttcc aaaaggact gatatctca	tttctgtata taatctccat	1380
agatctccat acttttgga taatccccac gattttgagc	ctgagagggtt tttaagaaca	1440
aaggagagca atggaattga aggatggct ggcttgatc	catctcgtag ccccgggca	1500
ctatatccga atgagataat agcagacttt gcattctac	catttgtgg aggaccaaga	1560
aatgcattg gagaccagtt tgcaactatg gaatcgaccg	tcgcactagc tatgttgttt	1620
cagaaattcg atgtggagct gcgtgaaacg ccagaatctg	ttgaactcgt gagcggcgca	1680
acgattcatg ccaaaaatgg gatgtggtgc aaactaaaga	'gaagatcaaa gtga	1734

<210> 54
 <211> 1926
 <212> DNA
 <213> Pisum sativum

<400> 54		
catcaacttac cactaactga aacttgcaag caccattctc	aacttaacac cgtcgtcacc	60
gccatggttg ccgcccstat ctcaaccgtc	aaacttaccg atgcaatct tcacaccaga	120
tttcattcct cttcttcttc tacaccatcc accctcagtc	ttccactctc tttcatttt	180
cactttctt ctcactccaa acgctttct tctatcagat	gtcaatcggt taatggtgaa	240
aagcgaaaac aaagtagtag aaatgtgttt gacaatgcta	gcaacctcct tacaagcttg	300
ttaagtggtg caaattttagg gtccatgccc atagctgaag	gtgcgtcac agatctgttt	360
gaccggccgc tgaaaaatctc actatatgtat tggttcttag	agcatggttc tgtgtataaa	420
ctggcgtttgc gaccgaaagc atttgggtt gtatcagatc	ccattgtgc aagacatatt	480
ctgcgagaaa atgcattttc ttatgacaag ggagtacttg	ctgatatcct agaaccaatt	540
atggggaaaag gactcataacc tgcaaacctt gagacatgga	'agcaaaggag aagagtgatt	600
gctccgggtt tccataccctc atacttggaa gctatggtag	aactattcac ttcatgttca	660
gaaagaactg tggatggatggactt ctggacccatgc	ggcagaattt tcaaatttgg ctctttagat tattgggcta	720
tcagttgaat tggacccatgc ggcagaattt tcaaatttgg	ctctttagat tattgggcta	780
gggtgtttca actatgactt tggttctgtc accaatgaat	ctcccggttat taaggctgtc	840
tatggcactc ttttgaagc cgaacataga tccactttct	atattccata ttggaaattt	900

ccattagcaa	ggtggattgt	gcccaggcaa	aggaagttc	aggatgacct	taaagtctt	960
aataacttgtc	ttgatggact	tatcagaaat	gcaaaagaga	gcaggcagga	aacagatgtt	1020
gagaaaactgc	agcaaaggaa	ttactcaaat	ttgaaggatg	caagtcttct	gcgttccta	1080
gttgatatgc	ggggagttga	tgttcatgtat	cgtcagttga	gggatgattt	aatgacaatg	1140
cttattgctg	gtcatgagac	gacggctgca	gttcttacat	gggcagttt	cctgcttagct	1200
caaaaatcctg	acaaaatgaa	gaaggctcaa	gcagaggtag	atttggtgct	ggggatgggg	1260
aagccaactt	ttgaattgct	taaaaagttg	gagtacatta	ggttaattgt	tgtggagact	1320
cttcgattat	atccacaacc	acctctgctg	attagacgtt	cactcaaacc	tgtgttttgc	1380
ccaggtggac	ataaaggta	caaagatggt	tatacaattc	ctgctggac	tgtgtcttc	1440
atttctgtat	ataatctcca	tcgatctcca	tattttggg	accgcctaa	tgacttcgag	1500
cctgaacgat	ttcttagtgca	aaacaataat	gaagaagttg	aagggtggc	tggtttgac	1560
ccatctcgaa	gtcctggagc	cttgtatcca	aacgagatta	tatcagattt	tgcattcttgc	1620
ccttttgtg	gtggaccacg	aaaatgcgtt	ggagaccaat	ttgctctcat	ggaatccact	1680
gtagcgctag	tatgctgcta	cagaatttcg	atgtgaaact	gaaggggacc	cctgaatcgg	1740
ttgaactagt	tactggggca	actatccata	ccaaaaatgg	attgtggtgc	aatttggaga	1800
agagatctag	tttacattga	catgttaact	gcaacatttt	tcttatgcag	aatgatgtac	1860
aaaatattta	tcatttaaaa	tgacattaac	attgaatagt	gtctaataca	gctaaagggt	1920
atttac						1926

<210> 55
 <211> 1731
 <212> DNA
 <213> Glycine max

<400>	55					
atgagtgtcg	acacttcctc	caccctctcc	accgtcacccg	atgccaatct	tcactccaga	60
tttcattctc	gtcttgttcc	attcactcat	catttctcac	tttctcaacc	caaacggatt	120
tcttcataatca	gatgccaatc	aattaatacc	gataagaaga	aatcaagttag	aaatctgctg	180
ggcaatgcaa	gtaacctcct	cacggactta	ttaagtggtg	gaagtatagg	gtctatgccc	240
atagctgaag	gtgcagtctc	agatctgctt	ggtcgaccc	tcttttctc	actgtatgat	300
tggttcttgg	agcatggtgc	ggtgtataaa	cttgcctttg	gaccaaaagc	atttgggtt	360
gtatcagatc	ccatagttgc	tagacatatt	ctgcgagaaa	atgcattttc	ttatgacaag	420
ggagtacttg	ctgatatcct	tgaaccaata	atgggcaaag	gactcataacc	agcagacctt	480
gatacttgaa	agcaaaggag	aagagtcatt	gctccggctt	tccataactc	atacttgaa	540
gctatggta	aaatattcac	aacttggta	gaaagaacaa	tattgaagtt	taataagctt	600

cttgaaggag	agggttatga	tggacctgac	tcaattgaat	'tggatcttga	ggcagagttt	660
tctagttgg	ctcttgatat	tattggcctt	ggtgtttca	actatgactt	tggttctgtc	720
accaaagaat	ctccagttat	taaggcagtc	tatggcactc	ttttgaagc	tgaacacaga	780
tccactttct	acattccata	ttggaaaatt	ccattggcaa	ggtggatagt	cccaaggcaa	840
agaaagtttc	aggatgacct	aaaggtcatc	aatacttgc	ttgatggact	tatcagaaat	900
gcaaaagaga	gcagacagga	aacagatgtt	gagaaattgc	agcagaggga	ttacttaaat	960
ttgaaggatg	caagtcttct	gcgttccctg	gttgatatgc	ggggagctga	tgttgatgat	1020
cgtcagttga	gggatgattt	aatgacaatg	cttattgccg	gtcatgaaac	aacggctgca	1080
gttcttactt	gggcagtttt	cctcctagct	caaattccta	gcaaaatgaa	gaaggctcaa	1140
gcagaggtag	atttggtgct	gggtacgggg	aggccaactt	ttgaatcact	taaggaaattg	1200
cagtagtacat	gattgattgt	tgtggaggct	cttcgtttat	accccccaacc	acctttgctg	1260
attagacgtt	cactcaaattc	tgtatgtttt	ccaggtggc	acaaaggta	aaaagatggt	1320
tatgcaattc	ctgctggac	tgtatgtttc	atttctgtat	ataatctcca	tagatctcca	1380
tatTTTGGG	accgcctga	tgacttcgaa	ccagagagat	ttcttgtc	aaacaagaat	1440
gaagaaattg	aaggatgggc	tggcttgat	ccatctcgaa	gtcccgagc	cttgtatccg	1500
aacgaggtta	tatcgattt	tgcattctt	cctttggtg	gcggaccacg	aaaatgtgtt	1560
ggggaccaat	ttgctctgat	ggagtccact	gtagcgttga	ctatgctgct	ccagaatttt	1620
gacgtggAAC	taaaaggAAC	ccctgaatcg	gtgaaactag	ttactggggc	aactattcat	1680
accaaaaatg	aatgtggtg	cagattgaag	aagagatcta	atttacgttg	a	1731

<210> 56
 <211> 659
 <212> PRT
 <213> Skeletonema costatum

<400> 56

Met Ala Ser Tyr Glu Ser Asp Leu Leu Ser Thr Trp Asp Glu Asp Pro
 1 5 10 15

Ser Leu Gln Lys Gly Phe Asp Trp Glu Ile Glu Lys Leu Arg Arg Tyr
 20 25 30

Phe Ala Gly Leu Arg Gln Thr Pro Asp Gly Arg 'Trp Val Arg Lys Ser
 35 40 45

Thr Leu Phe Glu Phe Leu Val Thr Asn Ser Pro Ser Lys Val Val Gly
 50 55 60

Val Gly Pro Asp Gly Glu Arg Tyr Glu Ser Pro Pro Lys Pro Val Asn
65 70 75 80

Ile Phe Asp Val Gly Val Leu Val Gly Lys Asn Thr Leu Thr Trp Leu
85 90 95

Gly Phe Gly Pro Asn Leu Gly Met Ala Ala Val Pro Asp Ala Val Ile
100 105 110

Gln Lys Tyr Glu Gly Ser Phe Phe Thr Phe Ile Lys Gly Ala Leu Gly
115 120 125

Gly Asp Leu Gln Thr Leu Ala Gly Gly Pro Leu Phe Leu Leu Leu Ala
130 135 140

Lys Tyr Tyr Thr Asp His Gly Pro Ile Phe Asn Leu Ser Phe Gly Pro
145 150 155 160

Lys Ser Phe Leu Val Ile Ser Asp Pro Val Met Ala Arg His Ile Leu
165 170 175

Arg Asp Ser Ser Pro Glu Gln Tyr Cys Lys Gly Met Leu Ala Glu Ile
180 185 190

Leu Glu Pro Ile Met Gly Asp Gly Leu Ile Pro Ala Asp Pro Lys Ile
195 200 205

Trp Lys Val Arg Arg Arg Ala Val Val Pro Gly Phe His Lys Lys Trp
210 215 220

Leu Asn Ser Met Ile Gly Leu Phe Gly Asp Cys Gly Asp Arg Leu Val
225 230 235 240

Asp Asp Leu Glu Lys Arg Ser Thr Ser Asp Lys Pro Val Ile Asp Met
245 250 255

Glu Glu Arg Phe Cys Ser Val Thr Leu Asp Ile Ile Gly Lys Ala Val
260 265 270

Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser Pro Ile Val Lys
275 280 285

Ala Val Tyr Arg Val Leu Arg Glu Ala Glu His Arg Ser Ser Ser Phe
290 295 300

Ile Pro Tyr Trp Asn Leu Pro Tyr Ala Glu Lys Trp Met Val Gly Gln
305 310 315 320

Val Glu Phe Arg Lys Asp Met Gly Met Leu Asp Asp Ile Leu Ala Lys
325 330 335

Leu Ile Asn Arg Ala Val Glu Thr Arg Gln Glu Ala Thr Val Glu Glu
340 345 350

Leu Glu Glu Arg Glu Thr Ser Asp Asp Pro Ser Leu Leu Arg Phe Leu
355 360 365

Val Asp Met Arg Gly Glu Asp Leu Thr Ser Lys Val Leu Arg Asp Asp
370 375 380

Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Thr Ala Ala Met Leu
385 390 395 400

Thr Trp Thr Met Phe Gly Leu Val Ser Asn Asp Pro Gly Met Met Lys
405 410 415

Glu Ile Gln Ala Glu Val Arg Thr Val Met Gly Asn Lys Ser Arg Pro
420 425 430

Asp Tyr Asp Asp Val Val Ala Met Lys Lys Leu Arg Tyr Ala Leu Ile
435 440 445

Glu Ala Leu Arg Leu Tyr Pro Glu Pro Pro Val Leu Ile Arg Arg Ala
450 455 460

Arg Gln Glu Asp Thr Leu Pro Pro Gly Gly Thr Gly Leu Ser Gly Gly
465 470 475 480

Val Lys Val Leu Arg Gly Thr Asp Ile Phe Ile Ser Thr Trp Asn Leu
485 490 495

His Arg Ala Pro Glu Tyr Trp Glu Asn Ala Asp Lys Tyr Asp Pro Thr
500 505 510

Arg Trp Glu Arg Pro Phe Lys Asn Pro Gly Val Lys Gly Trp Asn Gly
515 520 525

Tyr Asp Pro Glu Lys Gln Ser Ser Gln Ser Leu Tyr Pro Asn Glu Ile
530 535 540

Thr Ser Asp Tyr Ala Phe Leu Pro Phe Gly Ala Gly Lys Arg Lys Cys
545 550 555 560

Ile Gly Asp Gln Phe Ala Met Leu Glu Ala Ser Val Thr Leu Ser Met
565 570 575

Ile Met Asn Lys Phe Asp Phe Thr Leu Val Gly Thr Pro Glu Asp Val
580 585 590

Gly Met Lys Thr Gly Ala Thr Ile His Thr Met Asn Gly Leu Asn Met
595 600 605

Met Val Ser Pro Arg Ser Glu Thr Asn Pro Ile Pro Gly Thr Asn Glu
610 615 620

Trp Trp Thr Lys Gln His Leu Met Arg Gly Leu Ser Ser Thr Gly Arg
625 630 635 640

Pro Tyr Thr Ser Asp Glu Asp Ala Ala Trp Thr Thr Ser Ala Asn Gly
645 650 655

Met Arg Pro

<210> 57
<211> 1980
<212> DNA
<213> Skeletonema costatum

<400> 57
atggcctcct acgagagtga tctgctctca acatgggatg aagatccatc gctgaaaaag 60
gggtttgact gggagattga aaagctccgt cggtaacttg ccggactgcg tcaaacacca 120
gacgggcat gggtgcgcaa gtcgacactg tttgagttc ttgtgacaaa ctctccaagt 180
aaagtagttg gggtaggtcc ggatggggaa cggtatgaaa gccctccgaa accagtcaat 240
atcttcgatg tgggagtggtt agtcggtaag aatacactca cttgggtggg atttggaccg 300
aatttggta tggccgcggt acccgatgca gtcattcaaa agtatgaggg tagttcttc 360
acctttatca agggagcatt ggggggtgat ttgcaaactt tggcgggtgg tccttgc 420
ttattgcttg ccaagtatta tacggatcat ggaccattt tcaacttgag ttttggacca 480
aagagctttt tggtgatttc ggatcctgtt atggcgaggc atattttgag ggatagttca 540
ccggagcagt attgttaaggg aatgcttgcg gagattttgg aaccgatcat gggtgatgga 600
ttgattcctg cagatccaaa gatttggaaag gttcgctgaa gagctgtcgt acctggttc 660
cacaaaaagt ggctgaacag catgatttgtt ttgttcggag actgtggtga tcgtctcg 720
gacgatctag aaaagcgttc tacttcagat aaacctgtaa ttgacatgga agaacgattc 780
tggtccgtca cactcgatcatcgtaag gcagtattca actatgattt tggtcgttg 840

acaaggaaat cacctattgt aaaggcagta tacagagtgt tacgtgaggc ggagcacaga	900
tcatcttcgt tcatcccta ctggaaacttgc ctttatgctg agaaaatggat ggttaggacag	960
gttgaattcc gcaaagatat gggaaatgctt gacgatatct tggcaaaact gatcaatcgt	1020
gctgttgaga ctaggcaaga agctactgtc gaagagttgg aagagagaga aacaagcgat	1080
gatccgagtc tcttaagggtt cctagttgtat atgaggggag aagatttaac gagtaaagtg	1140
ttgagagatg atttgcgtac aatgcatttgc acggacatg aaacaacagc ggcaatgctg	1200
acgtggacaa tggttggct agtaagcaac gatcctggca tggatgaagga aatccaggca	1260
gaagttcgaa ctgtcatggg caataagtct cgaccagatt acgtatgtgt tgtggcgatg	1320
aaaaaagtta ggtatgctt gattgaagca cttcgattat atcccggcc acccggttg	1380
attcgcaggc caaggcaaga ggacactt ccaccagggt gtacgggtct ttctggaggt	1440
gtcaaagtat tgcgttggaaac agatatctt atttctactt ggaaccttca ccgcgttcca	1500
gaataactggg agaatgcaga caaatatgac cctactcgat gggagcgtcc gttcaaaaac	1560
ccaggtgtta agggttggaa tggatatgtat ccggaaaaac aatcatctca atcactttat	1620
cctaacgaga taacgtcaga ctatgcttcc ttcccttttgc gtgctggaa gagaaaaatgt	1680
atcggggatc agtttgcata gctcgaggct tcgggttacac tatcgatgtat tatgaataaa	1740
tttgacttca cggttggcg taccctgaa gatgtcggca tgaagaccgg agcaactatt	1800
cataccatga atgggctcaa catgtggtc agccctcgat cagagacaaa cccgatttcca	1860
gggacaaaatg agtgggtggac gaaacaacat ctaatgagag gtttgatgttc tactggaaaga	1920
ccatacactt ccgtatgaaga tgccgcgtgg acgacatccg ctaatggcat gagaccgtga	1980

<210> 58

<400> 58
000

<210> 59

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 59

cacacacaca cacacaca

18

<210> 60
<211> 77
<212> PRT
<213> Oryza sativa

<400> 60

Leu Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala Arg
1 5 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln
65 70 75

<210> 61
<211> 77
<212> PRT
<213> Zea mays

<400> 61

Leu Glu Pro Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg
1 5 10 15

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Val Gly Phe Leu Cys Lys Ile Ile Pro Arg Gln
65 70 75

<210> 62
<211> 77
<212> PRT
<213> Hordeum vulgare

<400> 62

Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg
1 5 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln
65 70 75

<210> 63
<211> 77
<212> PRT
<213> Triticum aestivum

<400> 63

Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg
1 5 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln
65 70 75

<210> 64
<211> 77
<212> PRT
<213> Arabidopsis thaliana

<400> 64

Leu Gln Pro Tyr Ala Glu Asp Gly Ser Ala Val Asn Met Glu Ala Lys
1 5 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Glu Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Ile Asp Ala Leu Cys Lys Ile Val Pro Arg Gln
65 70 75

<210> 65
<211> 77
<212> PRT
<213> Helianthus annuus

<400> 65

Leu Arg Ser Tyr Ala Arg Ser Asp Thr Ser Val Asn Met Glu Gln Gln
1 5 10 15

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala Val Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Ala Asp Ser Pro Val Ile Glu Ser Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Lys Ile Ser Ala Leu Cys Lys Ile Ile Pro Arg Gln
65 70 75

<210> 66
<211> 77
<212> PRT
<213> Lycopersicon esculentum

<400> 66

Leu Leu Pro Asp Ala Ile Ser Gly Ser Ala Val Asn Met Glu Ala Lys
1 5 10 15

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala Leu Phe Asn Tyr
20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr
35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr
50 55 60

Trp Gln Ile Lys Ala Leu Cys Lys Phe Ile Pro Arg Gln
65 70 75

<210> 67
<211> 77
<212> PRT
<213> Hordeum vulgare

<400> 67

Leu Asp Lys Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr
35 40 45

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr
50 55 60

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln
65 70 75

<210> 68
<211> 77
<212> PRT
<213> Triticum aestivum

<400> 68

Leu Asp Lys Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr
35 40 45

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr
50 55 60

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln
65 70 75

<210> 69
<211> 77
<212> PRT
<213> Oryza sativa

<400> 69

Leu Asp Lys Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr
35 40 45

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr
50 55 60

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln
65 70 75

<210> 70
<211> 77
<212> PRT
<213> Glycine max

<400> 70

Leu Asp Ala Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Ser Asn Asp Thr Gly Ile Val Glu Ala Val Tyr
35 40 45

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val
50 55 60

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Leu
65 70 75

<210> 71
<211> 77
<212> PRT
<213> Lycopersicon esculentum

<400> 71

Leu Asp Val Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Thr Val Asp Thr Gly Ile Val Glu Ala Val Tyr
35 40 45

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val
50 55 60

Trp Glu Leu Pro Ile Trp Lys Asp Ile Ser Pro Lys Leu
65 70 75

<210> 72
<211> 77
<212> PRT
<213> Arabidopsis thaliana

<400> 72

Leu Asp Ala Ala Ala Leu Lys Gly Glu Glu Val Glu Met Glu Ser Leu
1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly Val Ile Glu Ala Val Tyr
35 40 45

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ser Pro Ile Pro Val
50 55 60

Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln
65 70 75

<210> 73
<211> 77
<212> PRT
<213> Chlamydomonas reinhardtii

<400> 73

Leu Asp Lys Tyr Ala Ala Ser Gly Thr Ser Leu Asp Met Glu Asn Phe
1 5 10 15

Phe Ser Arg Leu Gly Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Ala His Asp Asp Pro Val Ile Gln Ala Val Tyr
35 40 45

Thr Leu Leu Arg Glu Ala Glu His Arg Ser Thr Ala Pro Ile Ala Tyr
50 55 60

Trp Asn Ile Pro Gly Ile Gln Phe Val Val Pro Arg Gln
65 70 75

<210> 74
<211> 85
<212> PRT
<213> Arabidopsis thaliana

<400> 74

Glu Lys Leu Ile Arg Glu Lys Glu Thr Ser Ser Gly Glu Asp Thr Ile
1 5 10 15

Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser Leu Ala Leu Asp Ile Ile
20 25 30

Gly Leu Ser Val Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser
35 40 45

Pro Val Ile Lys Ala Val Tyr Gly Thr Leu Phe Glu Ala Glu His Arg
50 55 60

Ser Thr Phe Tyr Phe Pro Tyr Trp Asn Phe Pro Pro Ala Arg Trp Ile
65 70 75 80

Val Pro Arg Gln Arg
85