[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre de 2020

Transistor JFET

- 1. Transistor Canal N: Polarización
- 2. Transistor Canal N: Modelo de pequeña señal
- 3. Transistor Canal P: Polarización

Estructura de un JFET Canal N ...

Para lograr conducción...

 $ightharpoonup V_{GS} < 0
ightharpoonup$ Evita que la juntura PN este en directa y permite modular la SCR

 $ightharpoonup V_{DS} > 0
ightharpoonup$ Lograr circulación de electrones entre Source y Drain

→ Hacer el mismo razonamiento para un JFET Canal P.

Símbolos para el transistor JFET

Se identifican 3 regímenes de operación. Para un JFET canal N, sus ecuaciones simplificadas son:

Vp -> Tension de pinchoff
Idss

Corte:
$$VGS < V_P < 0 \rightarrow I_D = 0$$

$$\rightarrow \quad \text{Lineal/triodo}: \begin{cases} V_P < V_{GS} < 0 \\ V_{DS} < V_{GS} - V_P = V_{DS_{Sat}} \end{cases} \rightarrow \quad I_D = \frac{2 \, I_{DSS}}{V_P^2} \cdot \left(V_{GS} - V_P - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

Saturación :
$$\begin{cases} V_P < V_{GS} < 0 \\ V_{DS} > V_{GS} - V_P = V_{DS_{sat}} \end{cases} \rightarrow I_D = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)^2 \cdot \left(1 + \lambda \left(V_{DS} - V_{DS_{sat}}\right)\right)$$

$$I_D = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

$$\Rightarrow \text{Rango de } V_{GS} \text{ "acotado"}$$

$$\Rightarrow V_{GS} < 0 \text{ siempre}$$

$$\Rightarrow \text{Corriente máxima!}$$

$$\text{Saturación}$$

$$\text{Saturación}$$

Hallar el valor de la resistencia R_{G1} tal que la corriente de drain sea de $I_D=10\ mA$.

Datos:

-
$$R_D=100~\Omega$$
 - $R_2=10~k\Omega$

-
$$R_S = 400 \Omega$$
 - $V_P = -4 V$

-
$$V_{DD} = 10 V$$
 - $I_{DSS} = 25 mA$
- $I_D = 10 mA$ - $\lambda = 0$

-
$$I_D = 10 \, mA$$
 - $\lambda = 0$

Hallar el valor de la resistencia R_{G1} tal que la corriente de drain sea de $I_D=10\ mA$.

Datos:

-
$$R_D = 100 \Omega$$
 - $R_2 = 10 k\Omega$

-
$$R_S = 400 \Omega$$
 - $V_P = -4 V$

-
$$V_{DD} = 10 V$$
 - $I_{DSS} = 25 mA$
- $I_D = 10 mA$ - $\lambda = 0$

-
$$I_D = 10 \, mA$$
 - $\lambda = 0$

Comencemos definiendo tensiones y corrientes.

Hallar el valor de la resistencia R_{G1} tal que la corriente de drain sea de $I_D=10\ mA$.

Datos:

-
$$R_D = 100 \Omega$$
 - $R_2 = 10 k\Omega$
- $R_S = 400 \Omega$ - $V_P = -4 V$

$$R_{\rm S}=400~\Omega$$
 - $V_P=-4~V$

-
$$V_{DD} = 10 V$$
 - $I_{DSS} = 25 mA$

$$- I_D = 10 \ mA \quad - \lambda = 0$$

- Comencemos definiendo tensiones y corrientes.
- \longrightarrow Ojo! $V_{GS} \neq V_G$ pues el Source no esta a tierra.
- $\longrightarrow I_G \simeq 0$ pues es la corriente de un diodo en inversa (pero no es nula!)

Conocemos la corriente I_D , podemos obtener V_{GS} . Suponiendo saturación...

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Conocemos la corriente I_D , podemos obtener V_{GS} .
 Suponiendo saturación...

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$\downarrow \sqrt{\frac{I_{D}}{I_{DSS}}} = \left| 1 - \frac{V_{GS}}{V_{P}} \right| = \left(1 - \frac{V_{GS}}{V_{P}} \right) \longrightarrow V_{GS} = -1.47 V$$

$$|V_{P}| > |V_{GS}|$$

ightharpoonup Como $I_G \simeq 0$, R_{G1} y R_{G2} forman un divisor resistivo en el Gate.

$$V_{G} = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} \rightarrow 2.53 \ V = 10 \ V \cdot \frac{10k\Omega}{R_{G1} + 10 \ k\Omega}$$

$$R_{G1} = 29.5 \ k\Omega$$

 \longrightarrow Como $I_G \simeq 0$, R_{G1} y R_{G2} forman un divisor resistivo en el Gate.

$$V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} \to 2.53 \ V = 10 \ V \cdot \frac{10k\Omega}{R_{G1} + 10 \ k\Omega}$$

$$R_{G1} = 29.5 \ k\Omega$$

Falta verificar que estamos en Saturación.

$$V_{DS} = 5 V > V_{GS} - V_P = 2.53 V$$

