Exercise 1 (1.2.4). If $V = y^2U_1 - x^2U_3$ and $W = x^2U_1 - zU_2$, find functions f and g such that the vector field fV + gW can be expressed in terms of U_2 and U_3 only.

If we let $f = x^2$ and $g = -y^2$, then the vector field fV + gW becomes

$$fV + gW = (fy^2 + gx^2)U_1 - gzU_2 - fx^2U_3$$

= $(x^2y^2 - x^2y^2)U_1 + y^2zU_2 - x^4U_3$
= $y^2zU_2 - x^4U_3$.

Exercise 2 (1.2.5). Let $V_1 = U_1 - xU_3$, $V_2 = U_2$, and $V_3 = xU_1 + U_3$.

- a. Prove that the vectors $V_1(\mathbf{p}), V_2(\mathbf{p})$, and $V_3(\mathbf{p})$ are linearly independent at each point of \mathbb{R}^3 .
- b. Express the vector field $xU_1 + yU_2 + zU_3$ as a linear combination of V_1, V_2 , and V_3 .
- a. We must show that if α_i are scalars, then for all $\mathbf{p} \in \mathbb{R}^3$,

$$\alpha_1 V_1(\mathbf{p}) + \alpha_2 V_2(\mathbf{p}) + \alpha_3 V_3(\mathbf{p}) = \mathbf{0}$$

implies that each α_i is zero. Substituting in the definition of each V_i gives

$$(\alpha_1 + \alpha_3 x(\mathbf{p}))U_1(\mathbf{p}) + \alpha_2 U_2(\mathbf{p}) + (\alpha_3 - \alpha_1 x(\mathbf{p}))U_3(\mathbf{p}) = \mathbf{0}.$$

Since the coefficients of each $U_i(\mathbf{p})$ must be 0 in order for their sum to be the zero vector, this clearly shows that $\alpha_2 = 0$. Additionally, we have the system

$$\alpha_1 + \alpha_3 x(\mathbf{p}) = 0$$

 $\alpha_3 - \alpha_1 x(\mathbf{p}) = 0.$

Solving for α_1 in terms of α_3 in the first equation and substituting into the second yields

$$\alpha_3(1+x(\mathbf{p})^2)=0.$$

Since $(1 + x(\mathbf{p})^2)$ can never be 0, this shows $\alpha_3 = 0$, from which $\alpha_1 = 0$ follows. Since \mathbf{p} was arbitrary, \mathbf{p} , $V_1(\mathbf{p})$, $V_2(\mathbf{p})$, and $V_3(\mathbf{p})$ are linearly independent for all $\mathbf{p} \in \mathbb{R}^3$.

b. If β_i is a scalar field, then we must solve the system

$$\beta_1 + \beta_3 x = x$$
$$\beta_2 = y$$
$$\beta_3 - \beta_1 x = z.$$

This has the solution

$$\beta_1 = \frac{x(1-z)}{1+x^2}$$

$$\beta_2 = y$$

$$\beta_3 = \frac{x^2+z}{1+x^2}.$$

Exercise 3 (1.3.3). Let $V = y^2U_1 - xU_3$, and let $f = xy, g = z^3$. Compute the following functions.

- a. $V[f] = y^2 U_1[xy] xU_3[xy] = y^3 0 = y^3$.
- b. $V[g] = y^2 U_1[z^3] x U_3[z^3] = 0 3xz^2 = -3xz^2$.
- c. $V[fg] = V[f]g = fV[g] = y^3z^3 3x^2yz^2$.
- d. $fV[g] gV[f] = -3x^2yz^2 y^3z^3$ (this is just the above expression but with the first term negated).
- e. $V[f^2+g^2]=V[f^2]+V[g^2]$. To reuse old computations, we can notice that since the reals commute, so do scalar fields. Thus by the Leibniz rule, this is $2fV[f]+2gV[g]=2xy^4-6xz^5$.
- f. $V[V[f]] = V[y^3]$, but V is not in terms of U_2 at all, so this is equal to 0.

Exercise 4 (1.3.4). Prove the identity $V = \sum_i V[x_i]U_i$, where the x_i are the natural coordinate functions.

Any vector space can be written in terms of its Euclidean coordinate functions as $V = \sum_i v_i U_i$, so evaluating V on the natural coordinate function x_j gives

$$\begin{aligned} V[x_j] &= \sum_i v_i U_i[x_j] \\ &= \sum_i v_i \frac{\partial x_j}{\partial x_i} \\ &= \sum_i v_i \delta_{ij} \\ &= v_j. \end{aligned}$$

Thus $\sum_{i} V[x_i]U_i = \sum_{i} v_i U_i = V$.

Exercise 5 (1.5.1). Let $\mathbf{v} = (1, 2, -3)$ and $\mathbf{p} = (0, -2, 1)$. Evaluate the following 1-forms on the tangent vector $\mathbf{v}_{\mathbf{p}}$:

$$a. y^2 dx$$

$$b. z dy - y dz$$

c.
$$(z^2-1) dx - dy + x^2 dz$$
.

a.
$$(y^2 dx)(\mathbf{v_p}) = y^2(\mathbf{p})dx(\mathbf{v_p}) = 4\mathbf{v_p}[x] = 4v_1 = 4.$$

b.
$$(z dy - y dz)(\mathbf{v}_{\mathbf{p}}) = z(\mathbf{p})dy(\mathbf{v}_{\mathbf{p}}) - y(\mathbf{p})dz(\mathbf{v}_{\mathbf{p}}) = v_2 + 2v_3 = -4.$$

c.
$$((z^2-1)dx-dy+x^2 dz)(\mathbf{v_p}) = (z^2-1)(\mathbf{p})v_1-v_2+x^2(\mathbf{p})v_3 = 0-2+0 = -2.$$

Exercise 6 (1.5.2). If $\phi = \sum_i f_i dx_i$ and $V = \sum_i v_i U_i$, show that the 1-form ϕ evaluated on the vector field V is the function $\phi(V) = \sum_i f_i v_i$.

This relies on the fact that if $\phi = \sum_i f_i dx_i$, then $f_i = \phi(U_i)$. Then since ϕ is linear,

$$\phi(V) = \phi\left(\sum_{i} v_{i} U_{i}\right)$$
$$= \sum_{i} v_{i} \phi(U_{i})$$
$$= \sum_{i} v_{i} f_{i}.$$

Exercise 7 (1.5.4a). Express the differential $d(f^5)$ in terms of df.

This is a straightforward application of the identity d(h(f)) = h'(f) df.

$$d(f^5) = 5f^4 df.$$

Exercise 8 (1.5.6a). For $f = xy^2 - yz^2$, compute the differential of f and find the directional derivative $\mathbf{v_p}[f]$, for $\mathbf{v_p}$ as in Exercise 1.5.1.

For general f, the differential is $df = \sum_i \frac{\partial f}{\partial x_i} dx_i$. Then the differential for our particular f is

$$df = y^2 dx + (2xy - z^2) dy - 2yz dz.$$

The directional derivative of f with respect to the tangent vector from Exercise 1.5.1 is then

$$\mathbf{v_p}[f] = df(\mathbf{v_p})$$

$$= p_2^2 v_1 + (2p_1 p_2 - p_3^2) v_2 - 2p_2 p_3 v_3$$

$$= 4 - 2 - 12$$

$$= -10.$$

Exercise 9 (1.5.9). A 1-form of ϕ is zero at a point \mathbf{p} provided $\phi(\mathbf{v_p}) = 0$ for all tangent vectors at \mathbf{p} . A point whose differential df is zero is called a **critical point** of the function f. Prove that \mathbf{p} is a critical point of f if and only if

$$\frac{\partial f}{\partial x}(\mathbf{p}) = \frac{\partial f}{\partial y}(\mathbf{p}) = \frac{\partial f}{\partial z}(\mathbf{p}) = 0.$$

Find all critical points of $f = (1 - x^2)y + (1 - y^2)z$.

Forward: Let \mathbf{p} be a critical point of f, then for all tangent vectors $\mathbf{v}_{\mathbf{p}}$ of \mathbf{p} ,

$$df(\mathbf{v_p}) = \sum \frac{\partial f}{\partial x_i}(\mathbf{p}) dx_i(\mathbf{v_p}) = 0.$$

Evaluating this on the tangent vector $(1,0,0)_{\mathbf{p}}$ yields

$$\frac{\partial f}{\partial x_1}(\mathbf{p}) = 0.$$

Similarly, evaluating on $(0,1,0)_{\mathbf{p}}$ and $(0,0,1)_{\mathbf{p}}$ show that the other two partial derivatives are also 0.

Backward: Suppose the three given partial derivatives of f are 0 at p, then

$$df(\mathbf{v_p}) = \sum \frac{\partial f}{\partial x_i}(\mathbf{p}) dx_i(\mathbf{v_p}) = \sum 0 dx_i(\mathbf{v_p}) = 0$$

for all tangent vectors $\mathbf{v_p}$ of \mathbf{p} . Thus p is a critical point of f.

Finding critical points: For the given function f, the three partial derivatives are

$$\begin{aligned} &\frac{\partial f}{\partial x} = -2xy,\\ &\frac{\partial f}{\partial y} = 1 - x^2 - 2yz, \text{ and}\\ &\frac{\partial f}{\partial z} = 1 - y^2. \end{aligned}$$

Setting these to 0 gives a system whose solutions are the critical points of f. Using $\frac{\partial f}{\partial z} = 0$, we see that $y(\mathbf{p})$ must be ± 1 . Then by $\frac{\partial f}{\partial x} = 0$, since $y(\mathbf{p})$ is

nonzero, it must be the case that $x(\mathbf{p})$ is zero. We can then solve for $z(\mathbf{p})$ using $\frac{\partial f}{\partial u} = 0$, giving the two critical points

$$(0, 1, 1/2)$$
 and $(0, -1, -1/2)$.

Exercise 10 (1.5.10). Prove that the local maxima and local minima of f are critical points of f.

It suffices to show only the case of local maxima, as the local minima of f are the local maxima of -f. Thus we will show that if \mathbf{p} is a local max of f, then $df(\mathbf{v_p}) = 0$ for all tangent vectors $\mathbf{v_p}$ of \mathbf{p} . By Exercise 1.5.9, this is equivalent to showing that the partial derivatives of f with respect to the Euclidean coordinate functions are all 0.

We first consider

$$\frac{\partial f}{\partial x}(\mathbf{p}) = \lim_{h \to 0} \frac{f(\mathbf{p} + h\mathbf{e}_1) - f(\mathbf{p})}{h}.$$

Assuming f is differentiable, this quantitiy exists. First note that since \mathbf{p} is a local maximum of f, there is some $\delta > 0$ such that

$$f(\mathbf{p} + he_1) \le f(\mathbf{p})$$

when $0 < h < \delta$. Then the limit from above, since h is always positive, satisfies

$$\lim_{h \searrow 0} \frac{f(\mathbf{p} + he_1) - f(\mathbf{p})}{h} \le 0.$$

When h approaches 0 from below, however, the denominator is negative, so the limit from below satisfies

$$\lim_{h \to 0} \frac{f(\mathbf{p} + he_1) - f(\mathbf{p})}{h} \ge 0.$$

Since the limit exists, these two quantities must be equal, meaning that $\frac{\partial f}{\partial x}(\mathbf{p}) = 0$.

Similarly, the partial derivaties $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ are also 0 at **p**. Thus **p** is a critical point of f.

Exercise 11 (1.6.3). For any function f, show that d(df) = 0. Deduce that $d(f dg) = df \wedge dg$.

Since $df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i$, we can write d(df) as

$$d(df) = \sum_{i} d\left(\frac{\partial f}{\partial x_i}\right) dx_i$$
$$= \sum_{i,j} \frac{\partial^2 f}{\partial x_j \partial x_i} dx_j \wedge dx_i.$$

Since f is continuous,

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

for all pairs i, j. Then for all pairs i, j, there are two terms in the sum

$$\frac{\partial^2 f}{\partial x_i \partial x_i} dx_j \wedge dx_i \text{ and } \frac{\partial^2 f}{\partial x_i \partial x_j} dx_i \wedge dx_j$$

whose coefficients are equivalent. Then by the anti-commutativity of the wedge product, the sum of each of these pairs is 0, so the whole sum is 0. Thus d(df) = 0.

Then $d(f dg) = df \wedge dg + f d(dg) = df \wedge dg$.

Exercise 12 (1.6.4). Simplify the following forms:

a.
$$d(f dg + g df)$$
.

b.
$$d((f-g)(df+dg))$$
.

$$c. d(f dg + g df).$$

$$d. d(qf df) + d(f dq).$$

All of these calculations at some point or another use the identities $d^2 = 0$ and $d(f dg) = df \wedge dg$, as derived in the previous problem.

a.

$$d(f dg + gdf) = df \wedge dg + dg \wedge gf$$
$$= df \wedge dg - df \wedge dg$$
$$= 0.$$

b.

$$\begin{split} d((f-g)(df+dg)) &= d(f-g) \wedge (df+dg) + (f-g)d(df+dg) \\ &= (df-dg) \wedge (df+dg) + (f-g)0 \\ &= (df \wedge dg) - (dg \wedge df) \\ &= 2(df \wedge dg). \end{split}$$

c.

$$\begin{split} d(f\ dg \wedge g\ df) &= (d(f\ dg) \wedge g\ df) - (f\ dg \wedge d(g\ df)) \\ &= (df \wedge dg \wedge g\ df) - (f\ dg \wedge dg \wedge df) \\ &= 0 - 0 \\ &= 0. \end{split}$$

d.

$$\begin{split} d(gf\ df) + d(f\ dg) &= (d(gf) \wedge df) + (df \wedge dg) \\ &= ((dg)f + g\ df) \wedge df + (df \wedge dg) \\ &= (f\ dg \wedge df) + (df \wedge dg) \\ &= (1 - f)(df \wedge dg). \end{split}$$

Exercise 13 (1.6.6). If r, θ, z are the cylindrical coordinate functions on \mathbb{R}^3 , then $x = r \cos \theta$, $y = r \sin \theta$, and z = z. Compute the **volume element** dx dy dz of \mathbb{R}^3 in cylindrical coordinates (that is, express dx dy dz in terms of the functions r, θ, z , and their differentials).

In cylindrical coordinates, dx, dy, and dz become

- $dx = d(r\cos\theta) = dr \cos\theta + r d(\cos\theta) = \cos\theta dr r\sin\theta d\theta$,
- $dy = dr \sin \theta + rd(\sin \theta) = \sin \theta dr + r \cos \theta d\theta$, and
- dz = dz.

Their wedge product simplifies considerably, as the $dr \wedge dr$ and $d\theta \wedge d\theta$ terms become 0.

$$dx \wedge dy \wedge dz = (\cos \theta \ dr - r \sin \theta \ d\theta) \wedge (\sin \theta \ dr + r \cos \theta \ d\theta) \wedge dz$$
$$= (r \cos^2 \theta) \ dr \ d\theta \ dz - (r \sin^2 \theta) \ d\theta \ dr \ dz$$
$$= r(\cos^2 \theta + \cos^2 \theta) \ dr \ d\theta \ dz$$
$$= r \ dr \ d\theta \ dz,$$

where the last line follows from the identity $\cos^2 \theta + \sin^2 \theta = 1$.

Exercise 14 (1.6.7). Prove that for any 1-form ϕ , $d(d\phi) = 0$.

 $\phi = \sum f_i dx_i$, so $d\phi$ is the 2-form $\sum df_i \wedge dx_i$. By the definition of d on forms, applying d to just the scalar components of this 2-form is the same result as applying d to each df_i . Then by Exercise 1.6.3,

$$d\phi = \sum d(df_i) \wedge dx_i = 0.$$

Exercise 15 (1.6.8). Prove that the gradient, curl, and divergence can be expressed as exterior derivatives.

a. The differential of f can be written

$$df = \sum \frac{\partial f}{\partial x_i} dx_i$$

and the gradient of f is

$$\operatorname{grad} f = \sum \frac{\partial f}{\partial x_i} U_i.$$

Then corresponding every dx_i and U_i gives $df \stackrel{(1)}{\leftrightarrow} \operatorname{grad} f$.

b. Assume $\phi \overset{\text{(1)}}{\leftrightarrow} V$. Applying d to ϕ then yields

$$d\phi = df_1 dx + df_2 dy + df_3 dz.$$

Expanding each df_i and removing instances of $dx_i \wedge dx_i$ gives

$$\begin{split} &= \left(\frac{\partial f_1}{\partial x_2} dy + \frac{\partial f_1}{\partial x_3} dz\right) dx + \left(\frac{\partial f_2}{\partial x_1} dx + \frac{\partial f_2}{\partial x_3} dz\right) dy + \\ &\left(\frac{\partial f_3}{\partial x_1} dx + \frac{\partial f_3}{\partial x_2} dy\right) dz \\ &= \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx \ dy - \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) dx \ dz + \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dy \ dz. \end{split}$$

The given (2) correspondence then allows us to associate this with

$$\left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) U_1 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) U_2 + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) U_3,$$

which, since $\phi \stackrel{(1)}{\leftrightarrow} V$, corresponds to curl V.

c. Assume $\mu \stackrel{(1)}{\leftrightarrow} V$. We can write any 2-form μ as

$$\mu = f_3 dx dy + f_2 dz dx + f_1 dy dz,$$

so applying d yields

$$d\mu = df_3 dx dy + df_2 dz dx + df_1 dy dz$$
.

Expanding each df_i and removing $dx_i \wedge dx_i$ terms gives

$$= \frac{\partial f_3}{\partial x_3} dz \ dx \ dy + \frac{\partial f_2}{\partial x_2} dy \ dz \ dx + \frac{\partial f_1}{\partial x_1} dx \ dy \ dz$$
$$= \left(\sum_i \frac{\partial f_i}{\partial x_i}\right) dx \ dy \ dz.$$

Since $\mu \stackrel{(1)}{\leftrightarrow} V$, this is the same as (div V)dx dy dz.