YAN AZDOUD, Ph.D.

yazdoud1@jhu.edu Tel (USA) +1 (443) 240 8318 French citizenship

1807 Saint Paul Street, 21202 Baltimore, Maryland Personal website

Experience

Research:

Postdoctoral researcher, CMRL, civil eng. dept., Johns Hopkins University, Baltimore, MD, USA

Feb 2014-Present

Task: Adaptive enrichment of the Crystal Plasticity Finite Element Model (CPFEM)

Principal Investigator: Prof. Somnath Ghosh

Skills: Finite deformation, wavelet decomposition and hierarchical FEM for crystal plasticity

Doctoral student researcher, COHMAS, KAUST, Saudi Arabia

2010-2014

Thesis title: A hybrid local/nonlocal framework for the simulation of damage and fracture

Advisor: Prof. Gilles Lubineau

Skills: Development under C++ and OpenMP, non-local mechanics, damage mechanics, non-local

fracture mechanics, coupling methods

Research intern, Sandia National Lab at Albuquerque NM, USA

Summer 2011

Task: Development of composite models on EMU

Advisor: Dr. Stewart Silling

Skills: Development under FORTRAN and MPI, non-local mechanics, damage mechanics, laminated

composite theory

Graduate student researcher, LMT Cachan, France

Spring 2010

Thesis title: Two optimization algorithms by multi-time-stepping for explicit dynamic simulations

Advisor: Prof. Christian Rey

Skills: Domain decomposition, multi-time stepping, 2D FEM solution in MATLAB

Research intern, Department of Mechanical Engineering, UC Berkeley, CA, USA

Summer 2009

Task: Simulation of embed SiC sensor in composite structures

Advisor: Prof. Albert P. Pisano, Prof. Debbie Senesky

Skills: Simulation in Abaqus, stress criteria in anisotropic models

Teaching:

Volunteer instructor at the Station North Tool Library, Baltimore, MD, USA

2015-Present

Topics: Acoustics and Metallurgy

About 60 students, 40 hours of instruction

Teaching Assistant, advanced FEM and multiscale methods, JHU, Baltimore, MD, USA

2015

Professor: Professor S. Ghosh

Substitute lecturer for Introduction to Finite Elements, KAUST, Saudi Arabia

2013

Topics: Solved problems on weak and strong form concepts

Professor: Prof. Gilles Lubineau

Two 1.5 hours class for about 20 students

Private tutoring, Paris, France

2005-2009

Topics: High school and college mathematics, physics and French literature About 400 hours for 6 students

Education

Ph. D. in Mechanical Engineering, King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Graduated in Feb 2014

M. S. in Mechanical Engineering, Advanced Techniques in Structure Calculus (TACS), ENS de Cachan

Graduated in 2010

B. S. in Mechanical Engineering, ENS de Cachan, France

Graduated in 2008

Classe Preparatoire, Lycée Saint-Louis, Paris, France

2005-2007

Baccalauréat, French high school equivalent, El Jadida, Morocco

Completed in 2005

Skills

Mechanical engineering

Theoretical skills

Computational mechanics, local continuum mechanics, non-local fracture, non-linear solver, Peridynamics, damage mechanics, dynamic simulation, laminate theory, XFEM/GFEM, homogenization methods, coupling methods, wavelet methods, FFT methods, hierarchical FEM, DG/FEM, CAD-CAM

Experimental skills

Preparation of composite laminate (vacuum infusion, molding, curing and post-curing), metal casting and working, long distance microscopy, indentation test, traction and microtraction test, image correlation, CNC machining and rapid prototyping, wood working

Languages

Fluent in French and English, conversational in Spanish and Arabic

Programming

Languages: C, C++, FORTRAN, HTML/CSS, Javascript, MATLAB

Libraries: OpenMP, MPI, Cuda, OpenGL shaders

Software

OS: Windows, Mac, Linux

Engineering: Comsol Multiphysics, Abaqus, CATIA, Solidworks,

Mathematica, EMU, Tecplot, Paraview

General: Latex, Adobe Illustrator, Photoshop, Premiere

Conferences and publications

Peer reviewed publications:

- [8] F. Han, G. Lubineau, **Y. Azdoud**, Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure, Journal of the Mechanics and Physics of Solids, (2016)
- [7] F Han, G. Lubineau, Y. Azdoud, A. Askari, A morphing approach to couple state-based peridynamics with classical continuum mechanics, Computer Methods in Applied Mechanics and Engineering, (2016)
- [5] **Y. Azdoud**, F. Han, G. Lubineau, *The morphing method as a flexible tool for adaptive local/non-local simulation of fracture*, Computational mechanics, Vol 54, 711-722, (2014)
- [4] F. Han, **Y. Azdoud**, G. Lubineau, *Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Microstructural characterization and geometric modeling*, Computational Materials Science, Vol 81, 641-651, (2014)
- [3] F. Han, **Y. Azdoud**, G. Lubineau, *Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling*, Computational Materials Science, Vol 81, 652-661, (2014)
- [2] **Y.Azdoud**, F. Han, G. Lubineau, *A morphing framework to couple non-local and local anisotropic continua*, International Journal of Solids and Structures, Vol 50, **9**, 1332-1341, (2013)
- [1] G. Lubineau, **Y. Azdoud**, F. Han, C. Rey and A. Askari, *A morphing strategy to couple local to non-local continuum mechanics*, Journal of the Mechanics and Physics of Solids, Vol 60, **6**, 1088-1102, (2012)

In preparation

- **Y. Azdoud,** J. Cheng, S. Ghosh, *Adaptive Wavelet-Enhanced Hierarchical Finite Element Model for Polycrystalline Microstructures*, **under preparation**
- **Y. Azdoud,** S. Ghosh, Adaptive Wavelet Enhancement for Finite Deformation Generalized Crystal Plasticity Finite Element Method, under preparation

Book chapters

- [6] A. Askari, **Y. Azdoud**, F. Han, G. Lubineau, S. Silling, *Peridynamics for analysis of failure in advanced composite materials*, Chapter 19 (12), **Numerical Modelling of Failure in Advanced Composite Materials**, Woodhead Publishing (2015)
- [9] **Y. Azdoud**, F. Han, D. Littlewood, G. Lubineau and P. Seleson, *Coupling Local and Nonlocal Models*, Chapter 14, **Handbook of Peridynamic Modeling**, Chapman and Hall/CRC, (2016)

Conferences and workshops

- S.Ghosh, **Y. Azdoud**, *Advancing Computational Methods for Image-based Modeling of Polycrystalline Metallic Material*, AFOSR 2016 Multiscale Structural Mechanics Annual Grantees Meeting, Dayton, OH (2016)
- **Y. Azdoud,** J. Cheng, S. Ghosh, *The Adaptive Wavelet Enhancement of the Crystal Plasticity Finite Element Method*, Engineering Mechanics Institute Conference 2016, Nashville, TN (2016)

- **Y.Azdoud,** J.Cheng, S. Ghosh, *The Adaptive Wavelet Enhancement for Crystal Plastic Finite Element Method*, 13th US National Congress on Computational Mechanics, San Diego, CA (2015)
- S. Ghosh, **Y. Azdoud**, *Advancing Computational Methods for Image-based Modeling of Polycrystalline Metallic Material*, AFOSR 2015 Multiscale Structural Mechanics Annual Grantees Meeting, Fort Walton, FL (2015)
- S.Ghosh, **Y. Azdoud**, *Advancing Computational Methods for Image-based Modeling of Polycrystalline Metallic Material*, AFOSR 2014 Multiscale Structural Mechanics Annual Grantees Meeting, Albuquerque, NM (2014)
- G. Lubineau, F. Han and **Y. Azdoud**, *How can peridynamics and damage mechanics work together to achieve objective simulation of failure?* MM&FGM 2014, Sao Paulo, Brazil (2014)
- **Y.Azdoud,** F.Han, G. Lubineau, *Adaptive coupling for the simulation of non-local static fracture*, CEMAM workshop, KAUST, Thuwal, KSA (2013)
- Y. Azdoud, Multiscale Simulation of Non-Local Models, Noor for Research, KAUST, Thuwal, KSA (2013)
- **Y. Azdoud**, F. Han, G. Lubineau, *Static fracture in non-local simulation using adaptive DGFEM*, NDF2013, San Antonio, TX, USA (2013)
- **Y. Azdoud**, G. Lubineau, F. Han, *Ghost Forces in Non-Local-to-Local Continua Coupling by the Morphing Method*, ESMC'12, Graz, Austria (2012)
- G. Lubineau, **Y. Azdoud**, F. Han, C. Rey and A. Askari, *A gradient-based coupling method between Cauchy and non-local continuum*, WCCM'12, Sao Paulo, Brazil (2012)
- **Y. Azdoud** and G. Lubineau, A Gradient-based Coupling Method between Cauchy Continuum Model and Bond-Based Peridynamics, CFRAC'11, Barcelona, Spain (2011)
- G. Lubineau, **Y. Azdoud**, F. Han, C. Rey and A. Askari, *A gradient-based Coupling method between Cauchy and Non-local continuum*, USNCCM'11, Minneapolis, MN, USA (2011)

Awards, recognition and fellowship

Crowdfunding research project: \$2611 granted	2016
Member of USACM	2015-present
KAUST Provost academic achievement award: \$10000 granted	2010-2011
KAUST Ph.D. student fellowship	2010-2014
ENS Normalien fellowship	2007-2010

Additional information

Sport: Soccer, squash and natation

Volunteering: Instructor in KAUST for WEP (2013)

Instructor in the Baltimore Station North Tool Library (2015-present)

Music: Derbuka (traditional Arabic hand drum)

Hobbies: Steel forging, gardening, photography, and astro-photography