

Paradigmes et Interprétation

Types

Julien Provillard julien.provillard@univ-cotedazur.fr

TYPES

Question : Quelle est la valeur de l'expression suivante ? **{+ 1 2}** ☐ Réponse : 3 **Question**: Quelle est la valeur de l'expression suivante? {+ lambda 1 2} Réponse erronée : L'évaluation produit une erreur. ☐ Réponse: {+ lambda 1 2} n'est pas une expression.

Grammaire

Question: Le code suivant est-il une expression? {{lambda {} 1} 2} Réponse erronée : Non Réponse : Oui, le code est bien conforme à la grammaire. ☐ Question : Quelle est la valeur de l'expression ? Réponse: 1, avec une tolérance qui n'existe que dans de rares langages. ☐ Meilleur réponse : L'expression devrait être rejetée.

- Appelons ce genre d'expressions : expression mal formée.
 - {{lambda {} 1} 2} est mal formée car la fonction {lambda {} 1} n'attend pas d'argument.
- ☐ Partons du principe que l'interpréteur rejette les expressions mal formées.

- Question: Quelle est la valeur de l'expression suivante ? {{lambda {} 1} 2}
- Réponse : Aucune, l'expression est mal formée.

Question: L'expression suivante est-elle bien formée ? {+ {lambda {} 1} 2} Réponse : Oui, il n'y a pas d'application de fonction. **Question**: Quelle est la valeur de l'expression? Réponse : Aucune, une erreur se produit. interp: not a number Une addition ou une multiplication contenant une lambda-expression

sera également considérée comme mal formée.

- Question : L'expression suivante est-elle bien formée ? {+ {lambda {} 1} 2}
- ☐ Réponse : Non
- ☐ Question : L'expression suivante est-elle bien formée ?

```
{+ {{lambda {x} x} 1} 2}
```

- Réponse: Cela dépend de ce que l'on entend par ne pas contenir de lambda-expression.
 - Aucune sous-expression n'est une lambda-expression -> Non
 - Les arguments ne sont pas des lambda-expressions -> Oui
- Le résultat de l'expression étant 3, c'est bien entendu la deuxième interprétation qui convient.

☐ Question : L'expression suivante est-elle bien formée ?

```
{+ {{lambda {x} x} {lambda {} 1}} 2}
```

Réponse : Oui

☐ Mais on souhaiterait que ce ne soit pas le cas.

☐ Question : Est-il possible de définir un procédé algorithmique qui rejette toutes les expressions mal formées ?

☐ Réponse : Oui

Il suffit de rejeter toutes les expressions.

- ☐ Question : Est-il possible de définir un procédé algorithmique qui ne rejette que les expressions mal formées ?
- ☐ Réponse : Non

```
{+ 1 {if expression 2 {lambda {} 3}}}
```

- Si expression est l'expression true alors l'expression est bien formée.
- Si expression est l'expression false alors l'expression est mal formée.
- Dans le cas général, il faudrait connaître la valeur de expression et donc en particulier savoir si l'évaluation de l'expression termine. Ça impliquerait de résoudre le problème de la halte!

Validité des expressions : types

- □ Il n'est pas possible de ne rejeter que les expressions mal formées.
- Nous allons définir un procédé algorithmique qui rejette toutes les expressions mal formées. Il va donc nécessairement rejeter certaines expressions bien formées.
- ☐ {+ 1 {if expression 2 {lambda {} 3}}} sera rejeté quelque soit expression (y compris, si expression est true).
- ☐ Concrètement, cela consiste à :
 - Donner un type à chaque expression sans l'évaluer,
 - Calculer le type d'une expression complexe à partir du type de ses sousexpressions et
 - Rejeter les expressions que l'on ne peut pas typer.

Exemples

1 : num

true : bool

<Number> : num

true : bool

false : bool

Règles de typage

On assigne des types aux expressions atomiques et on se donne des règles de déduction pour les expressions composées.

Règles de typage

On assigne des types aux expressions atomiques et on se donne des règles de déduction pour les expressions composées.

```
<Number> : num
true : bool

false : bool
\frac{\text{expr}_1 : \text{num}}{\{+ \text{ expr}_1 \text{ expr}_2\}} : \text{num}}{\{+ \text{ 1 2}\} : \text{num}}
\frac{1 : \text{num}}{\{+ \text{ 1 2}\} : \text{num}} = 3 : \text{num}}{\{+ \text{ 1 2}\} : \text{num}}
```


Règles de typage : branchement conditionnel

La condition est booléenne. Les deux branches ont le même type. On peut assigner un type à l'expression.

La condition n'est pas booléenne. On ne peut pas assigner de type à l'expression.

Les deux branches n'ont pas le même type. On ne peut pas assigner de type à l'expression.

```
{if true 1 2}
bool num
num
```



```
{if true 1 false}
bool num bool
non typable
```


Règles de typage : branchement conditionnel

```
{if expr<sub>1</sub> expr<sub>2</sub> expr<sub>3</sub>} : τ
   true : bool 1 : num 2 : num
        {if true 1 2} : num
{if {+ 1 2} 1 2} : non typable
 true : bool 1 : num false: bool
    {if true 1 false} : non typable
```


Règles de typage : identificateurs et fonctions

☐ Une expression élémentaire peut être un identificateur. Quel est son type ?

X : ?

- On ne peut pas assigner de type à x.
- □ Il est nécessaire d'avoir des informations supplémentaires sur les identificateurs. Ceux-ci sont nécessairement introduits par des lambda-expressions, on va donc ajouter l'information de type à ce moment et s'en rappeler.

```
{lambda {[x : bool]} x}
(bool -> bool)
```


Règles de typage : identificateurs et fonctions

☐ On ajoute un environnement de typage pour se souvenir du type des identificateurs.

```
[..., (id, \tau), ...] + id : \tau
```

Si id est lié au type τ dans l'environnement, on peut retrouver son type.

☐ Quand on cherche à assigner un type au corps d'une fonction, il faut au préalable enrichir l'environnement de son paramètre formel.

```
(id, \tau_1), \Gamma + expr : \tau_2
\Gamma + {lambda {[id : \tau_1]} expr} : (\tau_1 -> \tau_2)
```

☐ Pour les règles précédentes, l'environnement est simplement transmis aux prémisses.

Règles de typage : identificateurs et fonctions

```
(id, \tau_1), \Gamma + expr : \tau_2
[..., (id, \tau), ...] + id : \tau
                                                 \Gamma + \{lambda \{[id : \tau_1]\} expr\} : (\tau_1 \rightarrow \tau_2)
Exemples:
                                     [] + x : non typable
                                   [(x, bool)] + x : bool
                       [] + {lambda {[x : bool]} x} : (bool -> bool)
     [(x, bool)] + x : bool   [(x, bool)] + 1 : num   [(x, bool)] + 2 : num
                               [(x, bool)] + \{if x 1 2\} : num
                  [] + {lambda {[x : bool]} {if x 1 2}} : (bool -> num)}
```


Règles de typage : appels de fonction

□ Il faut vérifier la cohérence entre le type de l'argument et celui du paramètre. Le type de l'expression est le type de retour de la fonction.

```
{{lambda {[x : bool]} {if x 1 2}} true}
                                             bool
 (bool -> num)
                    num
 {{lambda {[x : bool]} {if x 1 2}} 3}
                                             num
  (bool -> num)
                   non typable
                non typable
```


Règles de typage : appels de fonction

```
Règle :
                 \Gamma + \exp_1 : (\tau_1 \rightarrow \tau_2) \qquad \Gamma + \exp_2 : \tau_1
                        \Gamma + \{expr_1 expr_2\} : \tau_2
Exemple:
   [] + {{lambda {[x : bool]} {if x 1 2}} true} : num
    [] + {\{lambda \{[x : bool]\} \{if x 1 2\}\} 3\} : non typable}
                     [] + 1 : num [] + 2 : num
                       [] + \{1 2\} : non typable
```


Grammaire du langage typé

Implémentation

```
(define-type Exp
  [numE (n : number)]
  [idE (s : symbol)]
  [plusE (1 : Exp) (r : Exp)]
  [multE (1 : Exp) (r : Exp)]
  [lamE (par : symbol) (par-type : Type) (body : Exp)]
  [appE (fun : Exp) (arg : Exp)])
(define-type Type
  [numT]
  [boolT]
  [arrowT (par : Type) (res : Type)])
(define-type TypeBinding [tbind (name : symbol) (type : Type)])
(define-type-alias TypeEnv (listof TypeBinding))
```


Γ ⊦ <Number> : num


```
[..., (id, \tau), ...] + id : \tau
```



```
(define (typecheck [e : Exp] [env : TypeEnv]) : Type
  (type-case Exp e
    [(plusE l r)
     (type-case Type (typecheck 1 env)
       [(numT)
        (type-case Type (typecheck r env)
           [(numT) (numT)]
           [else (type-error r "num")])]
       [else (type-error 1 "num")])]
    ...))
```

```
\Gamma \vdash expr_1 : num \qquad \Gamma \vdash expr_2 : num
\Gamma \vdash \{+ expr_1 expr_2\} : num
```



```
(id, \tau_1), \Gamma + expr : \tau_2

\Gamma + {lambda {[id : \tau_1]} expr} : (\tau_1 -> \tau_2)
```



```
(define (typecheck [e : Exp] [env : TypeEnv]) : Type
  (type-case Exp e
    [(appE fun arg)
     (type-case Type (typecheck fun env)
       [(arrowT par-type res-type)
        (if (equal? par-type (typecheck arg env))
            res-type
            (type-error arg (to-string par-type)))]
       [else (type-error fun "function")])]
    ...))
```

```
\Gamma \vdash \expr_1 : (\tau_1 \rightarrow \tau_2) \qquad \Gamma \vdash \expr_2 : \tau_1
\Gamma \vdash \{expr_1 expr_2\} : \tau_2
```


Cas d'étude : paires vs listes

- ☐ En Racket, qui est un langage non typé, le mot clé cons permet de créer à la fois des paires et des listes.
- ☐ En fait une liste est soit la liste vide, soit une paire dont le deuxième élément est une liste.

☐ En plait, qui est typé, le mot clé cons sert uniquement à créer des listes. Les paires sont créées à l'aide du mode clé pair.

Pourquoi cette différence ?

Cas d'étude : paires vs listes

☐ Quels sont les types des expressions suivantes ?

```
(fst (pair 1 true)) : Number
(fst (pair 1 2)) : Number
(snd (pair 1 true)) : Boolean
(snd (pair 1 2)) : Number
(pair 1 true) : (Number * Boolean)
(pair 1 2) : (Number * Number)
```

Pourquoi ne pas faire cela pour les listes?

Cas d'étude : paires vs listes

- ☐ En programmation fonctionnelle, les listes sont les éléments de base pour la plupart des algorithmes récursifs.
- En particulier, lors de l'appel d'une fonction f sur une liste L, il est courant d'appeler (f (rest L)).
- ☐ Comme le type du paramètre de f est fixé, cela signifie que L et (rest L) doivent avoir le même type.
- Les listes ne sont donc pas des paires du point de vue du typage.
- □ Pour les mêmes raisons, tous les éléments d'une liste doivent partager le même type.

INFÉRENCE DE TYPE

Expressions et types

Question: Quel est le type de l'expression suivante ? {lambda {x} {+ x 1}}

Réponse : Ce n'est pas une expression de notre langage, il manque le paramètre de type.

☐ Mais on aurait envie de répondre (num -> num).

Inférence de type

- L'inférence de type est un procédé qui consiste à ajouter automatiquement les annotations de type lorsque le programmeur les omet.
- ☐ Dans notre langage, nous allons ajouter un type qui indique explicitement l'omission.

Inférence de type

- ☐ On va créer une nouvelle variable de type pour chaque ?.
- \Box Le type τ doit être num.
- □ On change la comparaison des types pour mettre en place une équivalence entre types.

Inférence de type

 \Box Le type τ doit être num.

Inférence de type : contradictions

- \Box Le type τ doit être bool.
- \Box Le type τ doit être num.
- \square Impossible, τ ne peut pas être à la fois num et bool.

Inférence de type : possibilités multiples

```
{lambda {[x : ?]} x}
\tau \qquad \tau
(\tau \rightarrow \tau)
```

- ☐ Dans certains cas, plusieurs types peuvent convenir.
 - (num -> num)
 - **■** (bool -> bool)
 - ((bool -> num) -> (bool -> num))
- Le vérificateur de type préserve alors la variable de type.

Inférence de type : appels de fonctions

Le type du paramètre et celui de l'argument doivent être équivalents.

Inférence de type : appels de fonctions

```
{lambda {[f: ?]} {f 0}}

\tau_1 \qquad \tau_1 \qquad \text{num}
\tau_2 \text{ et } \tau_1 = (\text{num } -> \tau_2)
((\text{num } -> \tau_2) \rightarrow \tau_2)
```

- On sait que f est une fonction mais on ne connait pas son type de retour.
- \square On crée une variable de type τ_2 pour celui-ci et on regarde les équivalences qui en découle.

Inférence de type : équations cycliques

```
{lambda {[f:?]} {f f}}  \tau_1 \qquad \tau_1 \qquad \tau_1 \qquad \tau_1   \tau_2 \operatorname{et} \tau_1 = (\tau_1 \rightarrow \tau_2)
```

- $\square \text{ Mais alors } \tau_1 = (\tau_1 \rightarrow \tau_2) = ((\tau_1 \rightarrow \tau_2) \rightarrow \tau_2) = \dots$
- ☐ Il n'y a pas de solution.
- De manière générale, on ne peut pas rendre équivalent un type τ_1 et un autre type qui contient τ_1 .

Unification

Auparavant, pour comparer les types, on utilisait une simple égalité.

```
equal? : (Type Type -> Boolean)
```

- ☐ Maintenant, on utilise des relations d'équivalence qui unifient des types.
- ☐ Soit on peut unifier les types et on ne renvoie rien.
- ☐ Soit ce n'est pas possible et on produit une erreur.

```
unify! : (Type Type -> Void)
```


Unification

□ Pour connaître le type réel d'une variable de type, il faudra résoudre les équivalences où elle intervient.

```
resolve : (Type -> Type)
```

 \square Par exemple, si τ_1 et τ_2 sont des nouvelles variables de type, alors :

```
(resolve \tau_1) = \tau_1 et (resolve \tau_2) = \tau_2
```

 \square Si on unifie τ_1 et num, alors :

```
(resolve \tau_1) = num et (resolve (\tau_1 \rightarrow \tau_2)) = (num \rightarrow \tau_2)
```

 \square Si on unifie τ_1 et τ_2 , alors :

```
(resolve \tau_2) = num
```


Représentation

```
(define-type Type
 [numT]
  [boolT]
  [arrowT (par : Type) (res : Type)]
 [varT (is : (Boxof (Optionof Type)))])
La boîte dans le type varT indique si une équivalence a été trouvée.
Une variable fraîche sera donc de la forme :
                           (varT (box (none)))
☐ Si cette même variable a été unifié avec le type num, elle sera alors de la
  forme:
```

(varT (box (some (numT))))

Représentation

☐ Dans certains cas, l'unification ne fait que vérifier la cohérence des types.

```
(test (unify! (numT) (numT)) (void))
(test (unify! (boolT) (boolT)) (void))
(test/exn (unify! (numT) (boolT)) "unable to unify")
```


☐ Dans d'autres, elle met en place les équivalences.

☐ Ce qui permet de faire des vérifications ultérieurement.

☐ Elle utilise énormément les effets de bords

```
(test/exn (let ([t (varT (box (none)))])
            (begin
              (unify! t (numT))
              (unify! t (boolT))))
          "unable to unify"); impossible d'unifier (numT) et (boolT)
(test (let ([t (varT (box (none)))])
        (begin
          (unify! t (numT))
          (unify! t (numT))))
      (void)); ici, il n'y a pas de problème
```


☐ Cas des fonctions

```
(test (let ([t (varT (box (none)))])
        (begin
          (unify! (arrowT t (boolT))
                  (arrowT (numT) (boolT)))
          (unify! t (numT))))
      (void))
(test/exn (let ([t (varT (box (none)))])
            (begin
              (unify! (arrowT t (boolT))
                      (arrowT (numT) (boolT)))
              (unify! t (boolT))))
          "unable to unify")
```


☐ Types cycliques

☐ Cohérence des variables

```
(test (let ([t1 (varT (box (none)))]
            [t2 (varT (box (none)))])
        (begin
          (unify! t1 t2)
          (unify! t1 (numT))
          (unify! t2 (numT))))
      (void))
(test/exn (let ([t1 (varT (box (none)))]
                [t2 (varT (box (none)))])
            (begin
              (unify! t1 t2)
              (unify! t1 (numT))
              (unify! t2 (boolT))))
          "unable to unify")
```


☐ Cohérence des variables

Unification: algorithme

(resolve τ_2) donne τ_1 ?

- \Box Unifier les types τ_1 et τ_2
 - Si τ_1 est une variable de type
 - Si τ_3 est assigné à τ_1 , unifier τ_3 et τ_2
 - Si τ_2 est déjà équivalent à τ_1 , ne rien faire
 - Si τ₂ contient τ₁, échouer ◄
 - Sinon, assigner τ_2 à τ_1

(occurs? τ_1 τ_2)

- Sinon
 - Si τ_2 est une variable de type, unifier τ_2 et τ_1
 - Si $\tau_1 = (\tau_3 \rightarrow \tau_4)$ et $\tau_2 = (\tau_5 \rightarrow \tau_6)$
 - Unifier τ_3 et τ_5
 - Unifier τ_4 et τ_6
 - Si τ_1 et τ_2 sont tous les deux num ou bool, ne rien faire
 - Sinon, échouer


```
(define (unify! [t1 : Type] [t2 : Type] [e : Exp]) : Void
  (type-case Type t1
    [(varT is1)
     (type-case (Option of Type) (unbox is1)
                                                   L'expression qui est à l'origine de l'unification.
       [(some t3) (unify! t3 t2 e)]
                                                   Permet de fournir des informations supplémentaires
       [(none)
                                                   en cas d'erreur de typage.
        (let ([t3 (resolve t2)])
           (cond
                                                   eq? Pour l'égalité en mémoire.
             [(eq? t1 t3) (void)]◀
             [(occurs t1 t3) (type-error e t1 t3)]
             [else (set-box! is1 (some t3))]))])
    [else
     ...]))
```



```
(define (unify! [t1 : Type] [t2 : Type] [e : Exp]) : Void
  (type-case Type t1
    [(varT is1)
     . . .
    [else
     (type-case Type t2
       [(varT is2) (unify! t2 t1 e)]
       [(arrowT t3 t4)
        (type-case Type t1
          [(arrowT t5 t6)
           (begin (unify! t3 t5 e)
                  (unify! t4 t6 e))]
          [else (type-error e t1 t2)])]
       [else (if (equal? t1 t2)
                 (void)
                 (type-error e t1 t2))])))
```



```
(define (resolve [t : Type]) : Type
  (type-case Type t
       [(varT is)
          (type-case (Optionof Type) (unbox is)
          [(none) t]
          [(some t2) (resolve t2)])]
       [(arrowT t1 t2) (arrowT (resolve t1) (resolve t2))]
       [else t]))
```



```
(define (typecheck [e : Exp] [env : TypeEnv]) : Type
  (type-case Exp e
    . . .
    [(appE fun arg)
     (let ([t1 (varT (box (none)))]
           [t2 (varT (box (none)))])
       (begin
         (unify! (typecheck fun env) (arrowT t1 t2) fun)
         (unify! (typecheck arg env) t1 arg)
        t2))]
    ...))
```