Implementacja protokołów populacyjnych oraz testy wydajnościowe

Grams, Stanisław Jezierski, Maciej Korczakowski, Juliusz MFI UG Algorytmy Numeryczne

10 stycznia 2019

1 Operacje na macierzach

1.1 O implementacji

Program "protocols" został napisany w języku C++ z użyciem bibliotek z standardu C++. Wyniki działania programu zapisywane są do poszczególnych plików *.csv.

1.2 Zaimplementowane algorytmy

- (PG Partial Gauss) Algorytm Gaussa z częściowym wyborem elementu
- $\bullet\,$ (PGO Partial Gauss Optimised) Algrotym Gaussa z optymalizacją dla macierzy rzadkich
- Algroytm Jacobiego
- Algorytm Jacobiego w wersji iteracyjnej
- Algorytm Gaussa-Seidela
- Algorytm Gaussa-Seidela z postacią iteracyjną
- Metoda Monte Carlo

2 Implementacja i jej poprawność

2.1 Generowanie układu równań dla danej liczby agentów

Generowanie układu równań dla danego N odbywa się w sposób następujący:

- 1. Określenie wszystkich możliwych przypadków (ilość agentów #Y oraz ilość agentów #N),
- 2. Wyliczenie wszystkich możliwych kombinacji bez powtórzeń za pomocą Symbolu Newtona $\binom{N}{2}$,
- 3. Wygenerowanie równań dla poszczególnych przypadków,
- 4. Osadzenie równań w macierzy,
- 5. Wypełnienie wektora B zerami.

2.2 Prawidłowość implementacji

By zweryfikować poprawność implementacji zarówno generowania macierzy jak i obliczania stworzonego w ten sposób układu równań, wszelkie obliczenia porównywane były z wyliczonym metodą Monte Carlo. Poniższy wykres obrazuje dokładność wszystkich zaimplementowanych algorytmów względem metody Monte Carlo na podstawie, którego można wnioskować o poprawności zaimplementowanych metod.

3 Analiza wyników i wydajność zaimplementowanych algorytmów

3.1 Analiza wyników

3.1.1 Gauss oraz Gauss z optymalizacją dla macierzy rzadkich

Przeanalizujmy poniższy wykres. Wynika z niego jednoznacznie, że optymalizacja nie wpływa na dokładność. Wyraźnie widać, że na praktycznie całej długości wykresu błąd wynosi 0 z rzadkimi wyjątkami na korzyść metody zoptymalizowanej.

3.1.2 Algorytmy iteracyjne

Obie zaimplementowane przez nasz zespół metody oferują przyzwoitą dokłądność jednak poniższe wykresy pozwalają wyciągnąć wniosek mówiący, że metoda Gaussa-Seidela jest dokładniejsza. Warto także zaznaczyć, że metody iteracyjne cechują się jednak najgorszymi wynikami zarówno w klasie dokładności jak i czasu wykonania.

3.2 Wydajność

3.2.1 Wydajność względem wielkości planszy

Analizując poniższe wykresy można wyciągnąć następujące wnioski:

- 1. Pod względem błędów obliczeń metody Gaussa oraz Gaussa z ulepszeniem dla macierzy rzadkich zdecydowanie wygrywają z innymi algorytmami oferując idealnie taką samą, wysoką dokładność.
- 2. Ze wzglęgu na swoją specyfikacje metoda Gaussa z ulepszeniem dla macierzy rzadkich wygrywa z klasyczną wersją tej metody pod względem czasu wykonania.

Powyższe wnioski wyraźnie wskazują, że w klasie wydajności względem wielkości planszy jako optymalny wybór należy wskazać metodę Gaussa z ulepszeniem dla macierzy rzadkich.

3.2.2 Wydajność względem zadanej dokładności

W przypadku tego kryterium możemy porównać tylko me
ody Jacobiego oraz Gaussa-Seidela. Na pierwszym wykresie widzimy różnicę błędów między powyższymi metodami, w tej kategorii zdecydowanie wygrywa metoda Gaussa-Seidela, którego dokładność spada dopiero po zadaniu bardzo wysokiego ϵ większego niż 10^{-14} . W kwestii czasu wykonania oba algorytmy plasują się bardzo podobnie, jednak tak jak w poprzednim przypadku w okolicach ϵ = 10^{-14} następuje załamanie tym razem jednak na korzyść Gaussa-Seidela.

Podsumowując, do pewnej dokładności metoda Gaussa dokładniejsza jednak przekraczając ją zyskuje na prędkości wykonania kosztem dokładności licząc względem metody Jacobiego.

4 Podział pracy

Stanisław Grams	Juliusz Korczakowski	Maciej Jezierski
Implementacja algorytmu	Implementacja algorytmu Jaco-	Implementacja algorytmu PG
Gaussa-Seidela	biego	oraz PGS
Implementacja symulacji Monte	Przygotowanie testów i ich uru-	Analiza wykresów oraz przygoto-
Carlo	chomienie	wanie sprawozdania
Implementacja algorytmu gene-	Przygotowanie wykresów końco-	Praca nad strukturą projektu
rowania macierzy	wych	