Fachbereich DCSM Prof. Dr. Adrian Ulges

Test 2 zur Veranstaltung Statistik und Wahrscheinlichkeitsrechnung

Nachname:	Vorname:
Unterschrift:	Punkte:
Übungsgruppe <i>(bitte ankreuzen)</i> □ DO, 11:45 (Villmow) □ DO, 14:15 (Villmow) □ keine	☐ FR, 08:15 (Campos)☐ FR, 11:45 (Campos)☐ FR, 11:45 (Ulges)
□ Ich habe das Seminar bereits Übungszwecken mit.	bestanden und schreibe nur zu

Hinweise:

- Sie haben 30 Minuten Zeit.
- Sie dürfen auch die Rückseiten der Blätter beschreiben.
- Geben Sie Ergebnisse als Bruch oder gerundet auf 3 Nachkommastellen an.
- Die alleinige Angabe eines Endergebnisses ist nicht ausreichend. Geben Sie immer einen Rechenweg / eine Begründung an!
- Sie finden Tabellen zur Normalverteilung am Ende des Tests.

Viel Erfolg!

Aufgabe 1 (4 Punkte)

1. Der BVB gewinnt generell 70% aller Spiele. Bis zum Ende der Saison seien noch 7 Spiele zu absolvieren. Berechnen Sie die Wahrscheinlichkeit, dass der BVB mindestens zweimal nicht gewinnt.

$$P(\chi \ge 2) = 1 - P(\chi < 2)$$

$$1 - (7 \cdot 0.3^{3} \cdot 0.7^{6} + 0.7^{7}) = 0.67$$

2. Wir nehmen an, dass der BVB in 70% aller Fälle gewinnt, in 20% unentschieden spielt und in 10% verliert. Was ist die Wahrscheinlichkeit, dass der BVB in sieben Spielen $3\times$ gewinnt, $2\times$ unentschieden spielt und $2\times$ verliert?

Aufgabe 2 (4 Punkte)

1. Für eine normalverteilte Zufallsvariable X gelte E(X)=20 und Var(X)=100. Für eine normalverteilte Zufallsvariable X gelte E(X)=20 und Var(X)=100.

2. Eine normalverteilte Zufallsvariable Y besitze das 10%-Quantil $x_{10\%}=2$ und das 90%-Quantil $x_{90\%}=8$. Bestimmen Sie μ und σ .

$$\frac{5-1}{2} = 0$$

$$\frac{5-5}{5} = 1.282$$

$$3 = 1.282$$

$$3 = 1.282$$

$$\frac{3}{282} = 0$$

Aufgabe 3 (4 Punkte)

Ein fairer 3-seitiger Würfel zeigt mit gleicher Chance die Zahlen 1, 2 und 3. Wir werfen zwei solcher Würfel, erhalten zwei Zufallszahlen X_1 , X_2 , und betrachten deren Produkt:

$$Y := X_1 \cdot X_2$$
.

1. Geben Sie alle Realisierungen von Y und die zugehörigen Wahrscheinlichkeiten an.

2. Zeigen Sie formal: X_1 und Y sind abhängig.

2. Zeigen Sie formal:
$$X_1$$
 und Y sind abhängig.

$$P(X = 1, X_1 = 1) = P(X = 1) \cdot P(Y = 1)$$

$$\frac{1}{9} = \frac{1}{3} \cdot \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{3} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{3} \cdot \frac{1}{9} \cdot$$

Aufgabe 4 (3 Punkte)

Gegeben ist die Dichte einer uniformverteilten Zufallsvariablen mit a=-1 und b=3.

1. Berechnen Sie Var(X) mittels Integration.

$$\mathcal{E}(X) = \Lambda$$

$$\int_{-\infty}^{\infty} f(x) \cdot (x - M)^{2} dX = \int_{-\infty}^{3} \int_{0}^{25} \cdot (x - \Lambda)^{2} = \left[\frac{1}{2} x^{3} - \frac{4}{9}x^{2} + \frac{4}{9}x + c \right]^{3}$$

$$= \frac{22}{12} \cdot \frac{q}{9} + \frac{3}{4} + \frac{1}{12} + \frac{4}{9} + \frac{1}{9}$$

$$= 1 + \frac{4}{9} + \frac{1}{12} = 1 + \frac{1}{42} = 1$$

2. Fügen Sie dem obigen Plot die Dichte einer zweiten uniformverteilten Zufallsvariablen hinzu, die einen geringeren Erwartungswert aber ein höheres 99%-Quantil hat als X. Begründen Sie kurz.

Tabelle 1: Verteilungsfunktion $\phi(u)$ der Standardnormalverteilung

Schrittweite: $\Delta u = 0.01$

Für *negative* Argumente verwende man die Formel

$$\phi(-u) = 1 - \phi(u) \qquad (u > 0)$$

Für $u \geq 4$ ist $\phi(u) \approx 1$.

и	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5639	0,5675	0,5714	0,5754
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7258	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7518	0,7549
0,7	0,7580	0,7612	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7996	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8398
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0.9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Tabelle 2: Quantile der Standardnormalverteilung

p: Vorgegebene Wahrscheinlichkeit

$$(0$$

 u_p : Zur Wahrscheinlichkeit p gehöriges Quantil (*obere* Schranke)

Die Tabelle enthält für spezielle Werte von $\,p\,$ das jeweils zugehörige Quantil $\,u_p\,$ (einseitige Abgrenzung nach oben).

p	u_p	p	u_p
0,90	1,282	0,1	-1,282
0,95	1,645	0,05	-1,645
0,975	1,960	0,025	-1,960
0,99	2,326	0,01	-2,326
0,995	2,576	0,005	-2,576
0,999	3,090	0,001	-3,090

Formeln:

$$u_{1-p} = -u_p$$

$$u_p = -u_{1-p}$$