CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

INTERNETWORKING

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

Midterm! Midterm! (Chapter 1 – 4)

- October 11th (In less than a month!)
 - 90 minutes 1:15PM 2:30PM
 - If you have a conflict, let me know NOW!
 - Location TBD
- Closed book, no laptop, phone, or calculator!
- One cheat sheet allowed (one letter paper any note you want)
- Only from the book and lecture notes, no programming questions

Project groups

- Let me know by 09/20, Friday.
 - If I don't hear from you by Friday, you will be assigned to a random group!

Midterm! Midterm! (Chapter 1 - 4)

- What do I study?
 - Think about the fundamentals
 - Why this protocols are designed this way?
 - Why not use bit correction on Ethernet frames?
 - Why use CSMA/CA for wireless and not CSMA/CD?
 - What will happen if I change this aspect of the protocol?
 - What will happen if we make the sliding window infinite?
 - Simple calculations
 - Calculate the total delay of a link
 - Study the homeworks!

So far...

- we saw how to build a local network
- How do we interconnect different types of networks to build a large global network?

Why another layer?

Kurose -Ross

Switching

- Switch
 - A mechanism to interconnect links to form a large network
 - Forward frames
 - Separate the collision domains
 - Filter packets between LANs

LAN 1
Collision domain 1

LAN 2 Collision domain 2

Connects two or more LAN segments - Bridging

Switches are Self learning!

No configuration needed

• Send frames to needed segment LAN 1

Collision domain:

How do they construct such a table?

Host D Host E Switch 1 Host F Switch 2 Host C Host G Host B Switch 3 **Collision domain 1** LAN 2 **Collision domain 2**

Switches are self learning!

- Inspect the source MAC address
 - What is a mac address?

- Associate mac address and incoming interface
- Store this association for later use, (for some time)
 - aging-timer

Switching Table

64	48	48	16		32
Preamble	Dest addr	Src addr	Туре	Body	CRC

To decide how to forward a packet, a switch consults a

forwarding table

Switching Table

- Unknown destination → send out on all Interfaces (flooding)
 - Skip the incoming interface

Switching Table Algorithm

- Create the table first!
 - For each packet
 - If destination address in arriving segment
 - Drop
 - If destination is in another segment
 - Forward
 - If destination unknown
 - Flood!

Switching Table Algorithm

- Send frame from C to F
- Switch 1 →
 - Notes C is on Interface 3
 - Floods
- Switch 2 →
 - Notes C is on Interface 3
 - Floods
- Host F replies
 - Switch 2 notes F is on Interface 1
 - Sends back over Interface 3
- Switch 1 notes F is on Interface 1
 - Sends back over Interface 3
 - Host c receives frame

Bridges

- Bridges and LAN Switches
 - Class of switches that is used to forward packets between sharedmedia LANs such as Ethernets
 - Known as LAN switches
 - Referred to as Bridges
- Suppose you have a pair of Ethernets that you want to interconnect
 - One approach is put a repeater in between them, physical limitations
- An alternative would be to put a node between the two Ethernets and have the node forward frames from one Ethernet to the other
 - This node is called a Bridge
 - A collection of LANs connected by one or more bridges is usually said to form an Extended LAN

Flooding over bridges causes forwarding loops

Spot the loop Why?

Loop

Spot the loop Why?

Solution? Spanning Tree

Think of the extended LAN as being represented by a graph that possibly has loops (cycles)

 A spanning tree is a sub-graph of this graph that covers all the vertices but contains no cycles

• Spanning tree keeps all the vertices of the original graph but throws out some of the

edges

Example of (a) a cyclic graph; (b) a corresponding spanning tree.

Next Steps

How to construct a spanning tree! Virtual LANs IP

Link Layer Recap – All this for a cat picture

