MODELAGEM INFORMACIONAL

MIR

Júlio César Chaves

julio.cesar.chaves@prof.fgv.edu.br

Conteúdo

Modelagem Informacional de Requisitos.

Casos de Uso

01

MIR

02

MOBITAXI

03

Questionário

04

Casos de Uso

Diagrama de Casos de Uso

O diagrama de casos de uso expressa as expectativas dos stakeholders, e pode ser usado durante todo o processo de análise e clarificação de requisitos.

O diagrama de casos de uso pode responder as três perguntas abaixo:

O que está sendo descrito?

Que sistema está sendo modelado? Sistema acadêmico? Financeiro? Etc.

Quem interage com o sistema?

Quem são os atores (papéis) que interagem com que sistemas?

O que os atores (papéis) podem fazer?

Através da diagramação, os casos de uso revelam onde cada ator pode interagir.

Diagrama de Casos de Uso

A partir da figura...

Sistema

Que sistema buscamos compreender ou modelar? O sistema "eclass".

Atores

Quem está interagindo com o sistema? O professor.

Casos de Uso

- O que o ator pode fazer?
- 1) Consultar dados de aluno,
- 2) Submeter trabalho,
- 3) Verificar plágio.

O Caso de Uso

Descreve as funcionalidades esperadas de um sistema em desenvolvimento. Também é útil em compreender sistemas sem documentação.

Propicia benefícios tangíveis aos atores que se comunicam com o caso de uso. O caso de uso é uma representação gráfica das expectativas coletadas dos stakeholders.

O conjunto de todos os casos de uso descreve, em alto nível, todas as funcionalidades que o sistema deve prover.

Os Atores

Os atores interagem com o sistema quando:

- 1) usam dos casos (e.g. atores que iniciam uma execução de um caso de uso),
- 2) são usados pelos casos (e.g. atores que tornam possível a execução dos casos de uso).

O uso de figuras para representar os atores é livre, quanto mais intuitivo, melhor.

Atores representam papéis, que podem ser humanos ou não-humanos.

Usuários específicos podem desempenhar múltiplos papéis simultaneamente.

Atores não fazem parte do sistema, por isso ficam fora dos limites do sistema.

Tipos de Atores

Humano - Estudante, Professor.

Não-humano - Servidor de e-mail.

Primário - Principal beneficiário da execução do caso de uso.

Secundário - Não recebe nenhum benefício direto.

Ativo - Inicia a execução do caso de uso.

Passivo - Propicia funcionalidades para a execução do caso de uso.

Associações entre Caso de Uso e Ator

Caso de Uso Base

Necessita que seja feita a execução de (B) antes que o própria (A) seja executado.

Caso de Uso incluído

Pode ser executado sozinho.

Descrição de Casos de Uso

Cada caso de uso pode ser estruturado da seguinte forma:

Nome:

Descrição curta:

Precondições: pré-requisitos para que a execução inicie com sucesso.

Póscondições: estado esperado do sistema após uma execução com sucesso.

Situações de erro: erros relevantes ao domínio do problema.

Estado do sistema na decorrência de um erro:

Atores que se comunicam com o caso de uso:

Gatilho de acionamento: eventos que irão iniciar o caso de uso.

Processo principal:

Processos alternativos: desvios que podem ocorrer a partir do processo principal.

Observe os aspectos comportamentais

Descrição de Caso de Uso de exemplo, Reserva de Sala

Observe os aspectos comportamentais

Nome: Reserva de Sala.

Descrição curta: Um funcionário reserva uma sala para aula.

Precondições: O funcionário precisa ter autorização para

reservar uma sala de aula.

Póscondições: Sala de aula reservada.

Situações de erro: Falta de sala de aula livre.

Estado do sistema na decorrência de um erro: O funcionário

não consegue reservar a sala de aula.

Atores que se comunicam com o caso de uso: Funcionário.

Gatilho de acionamento: Funcionário precisa reservar uma sala de aula.

Processo principal:

- (1) Funcionário entra no sistema; (2) Funcionário escolhe uma sala;
- (3) Funcionário escolhe uma data; (4) Sistema confirma que a sala está livre;
- (5) Funcionário confirma reserva.

Processos alternativos:

(4') Sala de aula está ocupada; (5') Sistema proponho uma sala de aula alternativa; (6') Funcionários seleciona a sala de aula alternativa e confirma a reserva.

Dicas

Identificação de Atores

Quem usa os principais casos de uso ?

Quem precisa de apoio para as tarefas de trabalho do cotidiano?

Quem é responsável pela administração do sistema ?

Quais são os dispositivos ou sistemas externos com os quais o sistema em análise precisa se comunicar?

Quem está interessado nos resultados do sistema?

Identificação de Casos de Uso

Quais são as principais tarefas que o ator precisa executar?

O ator deseja consultar ou modificar uma informação contida no sistema?

O ator deseja informar no sistema alguma mudança realizada em outros sistemas ?

O ator deveria ser informado sobre eventos inesperados dentro do sistema ?

MIR Modelagem Informacional de Requisitos

Fonte

Workshop em Engenharia de Requisitos

Workshop en Ingeniería de Requerimientos Workshop on Requirements Engineering

Anais do WER V. 8, 2005. Porto - Portugal

MODELAGEM INFORMACIONAL DE REQUISITOS

Michel Heluey Fortuna^{1,2} Marcos R. S. Borges^{1§}

michelhf@posgrad.nce.ufrj.br , mborges@nce.ufrj.br

¹Programa de Pós-Graduação em Informática

Universidade Federal do Rio de Janeiro

²Universidade Federal de Juiz de Fora

Origem

A MIR - Modelagem Informacional de Requisitos foi proposta como uma especialização do modelo de Casos de Uso, em função de algumas limitações:

Ênfase excessiva no detalhamento do comportamento sistêmico, Falta de regra objetiva para orientar os níveis de abstração, Insuficiente detalhamento da informação que flui entre o sistema e o ambiente.

A MIR busca transpor essas limitações.

Em especial o conceito de objetivo informacional substitui o de Caso de Uso, associando um nível de abstração específica aos objetivos considerados na modelagem.

Para entender a MIR precisamos antes compreender o caso de uso.

Conceitos

Informação

Dado interpretado segundo um contexto. A informação é transformada e/ou comunicada pelos processos do sistema.

Processo

Conjunto de atividades logicamente organizadas e condicionadas, cuja execução visa alcançar um objetivo determinado. Um processo pode ou não exibir um comportamento.

Ator

Os atores representam papéis que interagem com o sistema, buscando alcançar seus objetivos. Um ator pode ser humano (ex.: estudante, professor) ou nãohumano (ex.: eclass, correio eletrônico).

Comportamento (de um processo)

Refere-se a trajetória percorrida por um processo. Trata-se de todo o efeito <u>observável</u> no ambiente externo do processo. Em sistemas de informação, um comportamento é a comunicação de informações do sistema a seus atores.

Objetivo (de um ator)

Refere-se ao objetivo de um ator. Expressão do desejo de mudança de estado de si próprio ou do ambiente com o qual interage.

Um objetivo se define com precisão através da explicitação de dois estados: o estado inicial e o estado final (estado-objetivo).

Comportamento é uma expressão dinâmica de processo, enquanto objetivo é uma expressão estática.

No caso de uso vemos vários aspectos comportamentais, e o objetivo está embutido no "gatilho de acionamento".

Princípios da solução

Focar nos objetivos

"Objetivo é o nível mais alto de abstração de um processo, e portanto, o mais adequado para uma primeira representação dos requisitos de um sistema. Sendo a expressão de um desejo de um ator, é sempre significativo do ponto de vista do ambiente externo ao sistema."

Atribuir níveis de abstração aos objetivos

O nível de abstração de objetivos corresponde a uma estratégia de particionamento funcional do sistema com base no conhecimento do domínio do problema.

Veremos a decomposição de objetivos organizacionais em objetivos informacionais.

Focar no detalhamento da informação

Cada objetivo exprime uma mudança de estado que é concretizada pela execução do seu processo subjacente. O fluxo de informação que entra e sai do sistema durante a execução do processo é o foco do detalhe.

Veremos a Interface Informacional.

Objetivos Informacionais

Responder a pergunta:

"Que eventos originados no ambiente externo (pelos atores) exigem intervenção atômica do sistema com trocas de informação (entre o sistema e o ambiente) capazes de mudar o estado do ambiente, do sistema, ou de ambos?"

Intervenção atômica

Significa que se processa sem interrupções ou temporizadores.

Uma vez concluída, coloca o sistema em estado de espera para o próximo evento.

Esses eventos disparam processos do sistema responsáveis pela realização dos objetivos informacionais dos atores. Normalmente a MIR é iniciada com a identificação de pelo menos um ator e seus objetivos informacionais.

Os atores e objetivos mais relevantes costumam ficar claros logo no início.

As dificuldades em descobrir novos objetivos podem indicar a necessidade de detalhar a interface informacional.

MOBITAXI exemplo guiado

APP MOBITAXI

- 1. Listar os requisitos
- 2. MIR

Minimundo de uma cooperativa de Táxi

A cooperativa MOBITAXI deseja construir um aplicativo de celular para atender seus passageiros. Todos os motoristas e clientes precisam estar cadastrados com nome, número de telefone e endereço. O passageiro pode chamar o táxi de qualquer local dentro do estado do Rio de Janeiro. A posição (GPS) do celular do cliente indicará o local aonde o motorista deverá buscá-lo. Para evitar concorrência predatória entre os colegas taxistas e diminuir o tempo de espera do cliente, o sistema deverá escolher e direcionar a corrida ao motorista mais próximo. Ao final da corrida, o valor será debitado do cartão de crédito do cliente e creditado na conta do motorista. Sabe-se de 1% de todas as corridas são da administração. O cliente ainda poderá avaliar a corrida pontuando-a entre o-5, além de escrever um comentário. A administração da cooperativa poderá "solicitar" a saída de motoristas mal avaliados.

APP MOBITAXI

- 1. Listar os requisitos
- 2. MIR

1. Lista de requisitos

- 1. Manter cadastro de motoristas e colaboradores (nome, celular e endereço), um motorista pode possuir mais de um veículo, assim como pode emprestá-lo;
- 2. Manter cadastro de veículos (marca, modelo, ano, placa), um veículo pode ser conduzido por mais de um motorista;
- 3. Manter cadastro de clientes (nome, celular e endereço), um cliente pode possuir mais de um endereço;
- 4. Manter cadastro de viagens feitas pelo cliente, que só pode avaliar um motorista por corrida;
- 5. Manter registro de créditos da cooperativa, considerando que 1% dos créditos sustentam a administração;
- 6.A administração da MOBITAXI pode fazer uma avaliação dos motoristas a partir da #viagens realizadas e da pontuação dada pelos clientes. Além de poder acessar os contadores básicos: #motoristas, #clientes, e #viagens por mês.

Exemplo do APP MOBITAXI

1. Lista de requisitos

- 1. Manter cadastro de motoristas e colaboradores (nome, celular e endereço), um motorista pode possuir mais de um veículo, assim como pode emprestá-lo;
- 2. Manter cadastro de veículos (marca, modelo, ano, placa), um veículo pode ser conduzido por mais de um motorista;
- 3. Manter cadastro de clientes (nome, celular e endereço), um cliente pode possuir mais de um endereço;
- 4. Manter cadastro de viagens feitas pelo cliente, que só pode avaliar um motorista por corrida;
- 5.Manter registro de créditos da cooperativa, considerando que 1% dos créditos sustentam a administração;
- 6.A administração da MOBITAXI pode fazer uma avaliação dos motoristas a partir da #viagens realizadas e da pontuação dada pelos clientes. Além de poder acessar os contadores básicos: #motoristas, #clientes, e #viagens por mês.

Objetivos Informacionais

Exemplo da MOBITAXI.

1. Listar os requisitos

2. MIR

Objetivos informacionais do ator				
Motorista	Passageiro	Administração		
1 – Ver oferta de corrida	6 – Pedir corrida	10 – Cadastrar motoristas		
2 – Atender corrida	7 – Cancelar corrida	11 – Cadastrar administradores		
3 – Recusar corrida	8 – Avaliar corrida	12 – Cadastrar veículos		
4 – Fechar corrida	9 – Atualizar cadastro	13 – Avaliar motorista		
5 – Atualizar cadastro		14 – Administrar caixa		

Interface Informacional de um objetivo

Função

Descrever os fluxos de informação de entram e saem durante o processamento do objetivo pelo sistema, dividese em duas partes:

- 1) Especificação dos fluxos,
- 2) Dicionário de itens elementares

Especificação de fluxos

Os sinais → e ← indicam o fluxo de entrada e o fluxo de saída das informações, do ponto de vista do sistema.

Pode ser útil expressar os mínimos e os máximos como:

⇒ inscr_major = estudante.Matr + estudante.Nome + 1 {major. MajorName} 1

Dicionário de itens elementares

Organiza os tópicos descritivos por atributos, esclarecendo tipos de dados e domínios, quando aplicáveis.

A definição dos nomes e tipos de dados neste dicionário, vai economizar muito trabalho nas etapas posteriores.

Interface Informacional de um objetivo

Ator: Motorista Objetivo 1: Ver oferta de corrida

oferta_corrida = id_cliente + nome_cliente + avaliação_cliente + ponto_partida_gps + dt_hr_pedido

<u>Descrição</u>: Informações de um passageiro pedindo uma corrida. <u>Propósito</u>: Dar ao motorista a opção de aceitar ou não a corrida. Frequência: 100/dia.

Listar os requisitos

2. MIR

Ator: Motorista Objetivo 2: Atender corrida

→ aceite_corrida = id_motorista + nome_motorista + localização_gps + dt hr aceite

<u>Descrição</u>: Uma vez que o motorista aceitou a corrida, o tempo começa a contar até chegar ao passageiro e nenhum outro motorista pode pegar a mesma corrida.

<u>Propósito</u>: Informar ao sistema a posição, as informações do motorista e a previsão de chegada ao passageiro.

Frequência: 100/dia.

Dicionário de itens elementares

1. Listar os requisitos

2. MIR

Ator: Motorista Objetivo 1: Ver oferta de corrida			
Nome	Descrição	Tipo	Domínio
Id_cliente	Id do cliente	Num. Sequencial natural	Gerado automaticamente
Nome_cliente	Nome do cliente	Str	
Avaliação_cliente	Média de avaliação do cliente por outros motoristas	Num. Natural	{15}
Ponto_partida_gps	Posição geográfica (Lat/Long) do passageiro pedindo corrida	Float	Coordenadas WGS 84
Dt_hr_pedido	Data e hora em que o passageiro fez o pedido	Timestamp	

Objetivos Organizacionais

Conceito

Um conjunto de "sequencias admissíveis" de objetivos informacionais, que representa uma "linha de trabalho", um "objetivo de negócio" relevante no domínio da aplicação, para um ou mais atores.

Sequências admissíveis de Objetivos Informacionais

Sejam a e b objetivos informacionais:

$$(a,b) \in dt$$

Sequencia de objetivos informacionais em relação de dependência temporal **dt**

$$(a,b) \in ic$$

Sequencia de objetivos informacionais em relação de incompatibilidade **ic**

$$(a,b) \in ic \land (b,a) \notin ic$$

Sequencia de objetivos informacionais em relação de incompatibilidade **ic** em apenas um sentido

Exemplo: Atender Passageiro

1. Listar os requisitos

2. MIR

Exemplo errado "over" Atender Passageiro

Lembrar de ser objetivo e focar no que diz respeito ao fluxo sistêmico e informacional

Exemplo errado obscuro Atender Passageiro

Lembrar de ser objetivo, focar no que diz respeito ao fluxo informacional e que seja inteligível para público não técnico.

Dicas: as mesmas do Caso de Uso

Identificação de Atores

Quem precisa de apoio para as tarefas de trabalho do cotidiano?

Quem é responsável pela administração do sistema ?

Quais são os dispositivos ou sistemas externos com os quais o sistema em análise precisa se comunicar?

Quem está interessado nos resultados do sistema?

Identificação de objetivos informacionais

Quais são as principais tarefas que o ator precisa executar?

O ator deseja consultar ou modificar uma informação contida no sistema?

O ator deseja informar no sistema alguma mudança realizada em outros sistemas ?

O ator deveria ser informado sobre eventos inesperados dentro do sistema ?

Questionário

MIR ZAGI

Questionário no eclass

Uma questão de múltipla escolha dissertativa Uma questã para cada etapa da Modelagem Informacinal de Requisitos.