Trials and Tribulations of Projecting 2D Car Crash Data onto 1 Dimension

Data

Paul Gaona
Scout Jarman
Kenneth Pomeyie
Tom Kerby
Department of Mathematics and Statistics
Utah State University

April 7, 2022

Outline

- **1** Introduction
- 2 Data
- 3 Analysis

Problem Motivation

Can we determine if there are parts of I-15 that are more or less dangerous than others?

Data Sources:

- Car Crash Data Utah Department of Public Safety
 - Latitude Longitude of accident
- I-15 Data Performance Measurement System (PeMS)
 - Flow (# Cars per hour)
 - Station Postmile
 - Conversion table from P.M. to lon/lat

Data Cleaning

- Combine north bound and south bound data
- Aggregate station data when they are located in the same place
- Convert from postmiles to longitude and latitude coordinates

Create a Single Line string for I-15

Projected vs Unprojected Car Crashes

Null Hypothesis

- H₀: Car crashes are uniformly distributed according to station flow.
- We will find the expected number of crashes per station, and conduct a χ^2 test to see if there is a difference.
- Let f_i be the flow for station i, and let n_i be the number of crashes at station i, and let N be the total number of stations.
- For a station s, the expected number of crashes will be:

$$E_{s} = \left(\sum_{i=1}^{N} n_{i}\right) \cdot \frac{f_{s}}{\sum_{i=1}^{N} f_{i}}$$

All Stations, $\chi^2=23323$, p-value ≈ 0

Actual VS Expected Number of Crashes

Effect of Station Range

Wasatch Front: $\chi^2 = 9183$, p-value ≈ 0

Actual VS Expected Number of Crashes

Results Summary

- Considering all stations, the test is very significant $(\chi^2 = 23323, p \approx 0)$.
- The range of a station plays a role after accounting for flow, so we only consider the Wasatch Front.
- Consider the Wasatch Front, the test is still significant $(\chi^2 = 9183, p \approx 0)$.
- We conclude there are more factors that influence the number of crashes on I-15 besides how busy the road is (flow).

Road Work

Future Work

- Improve data quality (find better data source), including a better representation of I-15, and having a smoother representation of flow.
- Fully investigate and model the dynamics between flow, range of station, and the number of crashes.
- Have a better way to find which stations are particularly off.
- What is the effect of direction of travel (Northbound/Southbound), what about time of travel?