

Uncertainty quantification in a nonlinear transmission model for Zika virus

Eber Dantas

Michel Tosin

Americo Cunha Jr

eber.paiva@uerj.br

michel.tosin@uerj.br

americo@ime.uerj.br

NUMERICO – Nucleus of Modeling and Experimentation with Computers

Introduction

- Zika virus: global widespread and connection with congenital diseases
- 2016: Zika becomes a public health emergency of international concern
- Main vector: Aedes mosquitoes
- 30 countries in the last 20 years
- 140,000 confirmed cases in Brazil
- 3,000 confirmed cases of related birth defects and growth disorders in Brazil

Aedes aegypti

Zika virus **Objectives**

- Incorporate a general uncertainty quantification framework
- Perform sensitivity analysis and construct confidence bands

• Generate more robust predictions and diverse statistics

Computational Model

Compartmental Model

Dynamical system

$$\frac{\mathrm{d}S_h}{\mathrm{d}t} = -\beta_h \, S_h \, \frac{I_v}{N_v}$$

$$\frac{\mathrm{d}S_h}{\mathrm{d}t} = -\beta_h S_h \frac{I_v}{N_v}, \qquad \qquad \frac{\mathrm{d}S_v}{\mathrm{d}t} = \delta N_v - \beta_v S_v \frac{I_h}{N_h} - \delta S_v,$$

$$\frac{\mathrm{d}E_h}{\mathrm{d}t} = \beta_h \, S_h \, \frac{I_v}{N_v} - \alpha_h \, E$$

$$\frac{\mathrm{d}E_h}{\mathrm{d}t} = \beta_h S_h \frac{I_v}{N_v} - \alpha_h E_h , \qquad \frac{\mathrm{d}E_v}{\mathrm{d}t} = \beta_v S_v \frac{I_h}{N_h} - (\alpha_v + \delta) E_v ,$$

$$\frac{\mathrm{d}I_h}{\mathrm{d}t} = \alpha_h E_h - \gamma I_h \,,$$

$$\frac{\mathrm{d}I_h}{\mathrm{d}t} = \alpha_h E_h - \gamma I_h , \qquad \qquad \frac{\mathrm{d}I_v}{\mathrm{d}t} = \alpha_v E_v - \delta I_v ,$$

$$\frac{\mathrm{d}R_h}{\mathrm{d}t} = \gamma I_h \,,$$

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \alpha_h E_h .$$

+ Initial Conditions

Quantities of interest (QoI)

- Cumulative cases of infectious: $C(t) = \int_{\tau=0}^{t} \alpha_h E_h(\tau) d\tau$
- New cases per week: $\mathcal{N}_w = C_w C_{w-1}$, $w = 1 \dots 52$, $\mathcal{N}_1 = C_1$

UQ Framework

Stochastic modeling

Input	Computational	Output
Parameters	Model	QoI
$\mathbf{X} \sim F_{\mathbf{X}}$	$Y_t = \mathcal{M}(\mathbf{X}, t)$	$Y \sim F_{Y_t}$

Sensitivity analysis (SA)

The Hoeffding-Sobol' decomposition for n iid inputs $X_i \sim \mathcal{U}(0,1)$ gives $Y_t = \mathcal{M}_0 + \sum \mathcal{M}_i(X_i) + \sum \mathcal{M}_{ij}(X_i, X_j) + \dots + \mathcal{M}_{1\dots n}(X_1 \dots X_n),$ $1 \le i < j \le n$

 $\mathcal{M}_0 = \mathbb{E}[Y_t], \ \mathcal{M}_i(X_i) = \mathbb{E}[Y_t|X_i] - \mathcal{M}_0, \ \mathcal{M}_{ij}(X_i,X_j) = \mathbb{E}[Y_t|X_i,X_j] - \mathcal{M}_0 - \mathcal{M}_i - \mathcal{M}_j.$

Sobol' Indices: interaction effect of inputs in u

$$S_{\mathbf{u}} = \operatorname{Var} \left[\mathcal{M}_{\mathbf{u}}(X_{\mathbf{u}}) \right] / \operatorname{Var} \left[\mathcal{M}(\mathbf{X}) \right]$$

Metamodelling: Polynomial Chaos

The Polynomial Chaos Expansion of model $Y = \mathcal{M}(\mathbf{X})$, for a multivariate orthonormal polynomial family Φ_{α} with coefficients y_{α} ,

$$Y_t = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^k} y_{\boldsymbol{\alpha}}(t) \, \Phi_{\boldsymbol{\alpha}}(\mathbf{X}) \,,$$

enables analytic computation of Sobol Indices:

$$S_{\mathbf{u}} = \sum_{\alpha \in \mathcal{A}_{\mathbf{u}}} y_{\alpha}^2 / \sum_{\alpha \in \mathcal{A} \setminus 0} y_{\alpha}^2, \quad \mathcal{A}_{\mathbf{u}} = \{ \alpha \in \mathcal{A} : i \in \mathbf{u} \iff \alpha_i \neq 0 \}$$

Maximum entropy principle

The most unbiased distribution of X maximizes the entropy

$$\mathcal{E}(p_{\mathbf{X}}(\mathbf{X})) = -\int_{\mathcal{S}_{\mathbf{x}}} p_{\mathbf{X}}(\mathbf{x}) \ln p_{\mathbf{X}}(\mathbf{x}) d\mathbf{x},$$

while abiding to $\mu + 1$ restrictions

$$\int_{\mathcal{C}} p_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x} = 1, \quad \int_{\mathcal{C}} \mathbf{g}(\mathbf{x}) \, p_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x} = \mathbf{b},$$

where $\mathbf{g}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^{\mu}$ and $\mathbf{b} \in \mathbb{R}^{\mu}$ compiles the available information

MaxEnt distribution with $\mu+1$ restrictions

$p_{\mathbf{X}}(\mathbf{x}) = \mathbb{1}_{\mathcal{S}_n}(\mathbf{x}) \exp(-\lambda_0) \exp(-\lambda_0)$

Results

Sobol' Indices

Calibration tuning

First probabilistic model

R.V.: β_h , $\beta_v \sim \text{MaxEnt. b: support, mean.}$

Second probabilistic model

R.V.: β_h , $\beta_v \sim \text{MaxEnt.}$ b: support, mean, dispersion

95% prob. nominal unmber of 1.5 time (weeks) time (weeks) C(t) - CV : 10%

CONFERENCE ON PERSPECTIVES IN NONLINEAR DYNAMICS

Third probabilistic model

R.V.: β_h , β_v , CV ~ MaxEnt. b: support and mean for β , support for CV.

Statistics and predictions

Histograms for the time average of cumulative infectious

Evolution of QoI histograms per epidemiological week

Cumulative distribution function for the time average until EW 20

Final Remarks

- Implementation of a UQ framework with robust determination of parameter distributions in the epidemiological context via MaxEnt
- Observation of general parametric behavior exposed via SA
- Investigation of dispersion influence, changes in skewness, evolution of stochastic QoIs and statistical simulations

Acknowledgements

References

- [1] E. Dantas, M. Tosin and A. Cunha Jr, Calibration of a SEIR-SEI epidemic model to describe Zika virus outbreak in Brazil. Applied Mathematics and Computation, 338: 249-259, 2018. doi.org/10.1016/j.amc.2018.06.024
- [2] E. Dantas, M. Tosin and A. Cunha Jr. Uncertainty quantification in the nonlinear dynamics of Zika virus, 2019. hal.archives-ouvertes.fr/hal-02005320
- [3] C. Soize. Uncertainty Quantification: an Accelerated Course with Advanced Applications in Computational Engineering, Springer, 2017.