Week 2: Risk and Reward: Modeling High Uncertainty Settings

- ♦ High-Uncertainty Settings: Stock Price Example
- Probability Distributions: Scenario Approach
- Parameters of the Probability Distributions: Expected Value, Variance, Standard Deviation
- Uncertainty and Risk

Session 1

Week 2: Risk and Reward: Modeling High Uncertainty Settings

- Common Scenarios for Multiple Random Variables
- Risk Reduction Example: Investing in a Pair of Stocks
- Calculating and Interpreting Correlation Values

Session 2

- Using Scenarios for Optimizing Under High Uncertainty: Portfolio Selection Problem
- Sensitivity Analysis and Efficient Frontier

Model of a Future Return on Stock A

Scenario	Probability
-0.00024	0.05
0.01760	0.05
-0.02114	0.05
-0.01178	0.05
-0.01515	0.05
-0.00353	0.05
-0.01772	0.05
-0.02345	0.05
0.03562	0.05
0.03108	0.05
0.01557	0.05
0.00073	0.05
-0.02188	0.05
0.02063	0.05
0.03044	0.05
0.01276	0.05
0.01214	0.05
0.00138	0.05
-0.00507	0.05
0.01134	0.05

◆ 40 parameters provide a complete description of this distribution

Model of a Future Return on Stock A

Scenario	Probability	
-0.00024	0.05	
0.01760	0.05	
-0.02114	0.05	
-0.01178	0.05	
-0.01515	0.05	
-0.00353	0.05	
-0.01772	0.05	
-0.02345	0.05	
0.03562	0.05	
0.03108	0.05	
0.01557	0.05	
0.00073	0.05	
-0.02188	0.05	
0.02063	0.05	
0.03044	0.05	
0.01276	0.05	
0.01214	0.05	
0.00138	0.05	
-0.00507	0.05	
0.01134	0.05	

Expected Value of R: $E(R) = p_1^* R_1 + p_2^* R_2 + ... + p_{19}^* R_{19} + p_{20}^* R_{20} \approx 0.003467$

Model of a Future Return on Stock A

Scenario	Probability
-0.00024	0.05
0.01760	0.05
-0.02114	0.05
-0.01178	0.05
-0.01515	0.05
-0.00353	0.05
-0.01772	0.05
-0.02345	0.05
0.03562	0.05
0.03108	0.05
0.01557	0.05
0.00073	0.05
-0.02188	0.05
0.02063	0.05
0.03044	0.05
0.01276	0.05
0.01214	0.05
0.00138	0.05
-0.00507	0.05
0.01134	0.05

Reward

Expected Value of R: $E(R) = p_1^* R_1 + p_2^* R_2 + ... + p_{19}^* R_{19} + p_{20}^* R_{20} \approx 0.003467$

Model of a Future Return on Stock A

Scenario	Probability	
-0.00024	0.05	
0.01760	0.05	
-0.02114	0.05	
-0.01178	0.05	
-0.01515	0.05	
-0.00353	0.05	
-0.01772	0.05	
-0.02345	0.05	
0.03562	0.05	
0.03108	0.05	
0.01557	0.05	
0.00073	0.05	
-0.02188	0.05	
0.02063	0.05	
0.03044	0.05	
0.01276	0.05	
0.01214	0.05	
0.00138	0.05	
-0.00507	0.05	
0.01134	0.05	

Expected Value of R:

$$E(R) = p_1^*R_1 + p_2^*R_2 + ... + p_{19}^*R_{19} + p_{20}^*R_{20} \approx 0.003467$$

Standard Deviation of R:

$$SD(R) = \sqrt{Var(R)}$$

$$= \sqrt{p_1*(R_1 - E(R))^2 + ... + p_{20}*(R_{20} - E(R))^2}$$

Model of a Future Return on Stock A

Scenario	Probability	
-0.00024	0.05	
0.01760	0.05	
-0.02114	0.05	
-0.01178	0.05	
-0.01515	0.05	
-0.00353	0.05	
-0.01772	0.05	
-0.02345	0.05	
0.03562	0.05	
0.03108	0.05	
0.01557	0.05	
0.00073	0.05	
-0.02188	0.05	
0.02063	0.05	
0.03044	0.05	
0.01276	0.05	
0.01214	0.05	
0.00138	0.05	
-0.00507	0.05	
0.01134	0.05	

Expected Value of R:

$$E(R) = p_1^*R_1 + p_2^*R_2 + ... + p_{19}^*R_{19} + p_{20}^*R_{20} \approx 0.003467$$

Standard Deviation of R:

$$SD(R) = \sqrt{Var(R)}$$

$$= \sqrt{p_1*(R_1 - E(R))^2 + ... + p_{20}*(R_{20} - E(R))^2}$$

Risk

Model of a Future Return on Stock A

Scenario	Probability	
-0.00024	0.05	
0.01760	0.05	
-0.02114	0.05	
-0.01178	0.05	
-0.01515	0.05	
-0.00353	0.05	
-0.01772	0.05	
-0.02345	0.05	
0.03562	0.05	
0.03108	0.05	
0.01557	0.05	
0.00073	0.05	
-0.02188	0.05	
0.02063	0.05	
0.03044	0.05	
0.01276	0.05	
0.01214	0.05	
0.00138	0.05	
-0.00507	0.05	
0.01134	0.05	

Reward

Expected Value of R:

$$E(R) = p_1^*R_1 + p_2^*R_2 + ... + p_{19}^*R_{19} + p_{20}^*R_{20} \approx 0.003467$$

Standard Deviation of R:

SD(R) =
$$\sqrt{\text{Var}(R)}$$

= $\sqrt{p_1*(R_1 - E(R))^2 + ... + p_{20}*(R_{20} - E(R))^2}$

Risk

Common Scenarios for Multiple Random Variables

 Consider stocks X and Y with returns "tomorrow" described by two equally probable scenarios

Scenario Return on Stock X		Return on Stock Y	Probability	
1	0.004	0.003	0.5	
2	-0.002	-0.001	0.5	

- Each scenarios can represent actual returns of Stock X and Stock Y observed on the same trading day in the past
- ◆ For example, under Scenario 1, the return on Stock X, R_X, is 0.004 and, simultaneously, the return on Stock Y, R_Y, is 0.003

Common Scenarios for Multiple Random Variables

 Consider stocks X and Y with returns "tomorrow" described by two equally probable scenarios

Scenario	Return on Stock X	Return on Stock Y	Probability
1	0.004	0.003	0.5
2	-0.002	-0.001	0.5

◆ Expected value of the R_X is E(R_X) = 0.5*0.004+0.5*(-0.002) = 0.001, standard deviation of R_X is SD(R_X) =

$$\sqrt{0.5*(0.004-0.001)^2+0.5*(-0.002-0.001)^2}=0.003$$

♦ Expected value of the R_Y is $E(R_Y) = 0.5*0.003+0.5*(-0.001) = 0.001$, standard deviation of R_Y is $SD(R_Y) =$

$$\sqrt{0.5*(0.003-0.001)^2+0.5*(-0.001-0.001)^2}=0.002$$

◆ A company invests \$50,000 into each of the stocks X and Y "today"

Scenario	Return on Stock X	Return on Stock Y	Probability
1	0.004	0.003	0.5
2	-0.002	-0.001	0.5

♦ How much profit will this investment bring "tomorrow"?

◆ A company invests \$50,000 into each of the stocks X and Y "today"

Scenario	Return on Stock X	Return on Stock Y	Probability
1	0.004	0.003	0.5
2	-0.002	-0.001	0.5

- ◆ If Scenario 1 is realized tomorrow, the company's profit will be \$50,000*(0.004)+\$50,000*(0.003) = \$200+\$150 = \$350
- ◆ If Scenario 2 is realized tomorrow, the company's profit will be \$50,000*(-0.002)+\$50,000*(-0.001) = -\$100+(-\$50) = -\$150
- Expected profit is 0.5*\$350+0.5*(-\$150) = \$100, and the standard deviation of profit is $\sqrt{0.5*(\$350-\$100)^2+0.5*(-\$150-\$100)^2} = \$250$

 Now, consider stock Z with returns "tomorrow" described by two equally probable scenarios

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

 Now, consider stock Z with returns "tomorrow" described by two equally probable scenarios

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

 Stock Z has returns that are identical to those for Stock Y, but in different scenarios

 Now, consider stock Z with returns "tomorrow" described by two equally probable scenarios

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

- Stock Z has returns that are identical to those for Stock Y, but in different scenarios
- ♦ Expected value of the R_Z is $E(R_Z) = 0.5^*(-0.001) + 0.5^*(0.003) = 0.001$, standard deviation of R_Z is $SD(R_Z) =$

$$\sqrt{0.5*(-0.001-0.001)^2+0.5*(0.003-0.001)^2}=0.002$$

◆ A company invests \$50,000 into each of the stocks X and Z "today"

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

- ♦ If Scenario 1 is realized tomorrow, the company's profit will be \$50,000*(0.004)+\$50,000*(-0.001) = \$200+(-\$50) = \$150
- ◆ If Scenario 2 is realized tomorrow, the company's profit will be \$50,000*(-0.002)+\$50,000*(0.003) = -\$100+\$150 = \$50
- Expected profit is 0.5*\$150+0.5*\$50 = \$75 + \$25 = \$100, the standard deviation of profit is $\sqrt{0.5*(\$150-\$100)^2+0.5*(\$50-\$100)^2}$ =\$50

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

 If company replaces Stock Y by Stock Z (stock with the same risk-reward "profile") in the portfolio, the portfolio risk will be drastically reduced

Side-by-Side Comparison: X only vs. X and Y

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

\$100,000

E(Profit) = \$100 SD(Profit) = \$300

$$E(Profit) = 0.5*\$100,000*0.004$$

+0.5*\\$100,000*(-0.002) = \\$100

$$\sqrt{0.5*(\$400-\$100)^2+0.5*(-\$200-\$100)^2}=\$300$$

Side-by-Side Comparison: Y only vs. X and Y

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

$$E(Profit) = 0.5*$100,000*0.003$$

$$+0.5*\$100,000*(-0.001) = \$100$$

$$\sqrt{0.5*(\$300-\$100)^2+0.5*(-\$100-\$100)^2}=\$200$$

Side-by-Side Comparison: X or Y only vs. X and Y

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

If company splits \$100,000 equally among Stocks X and Y, it will get the same expected return as Stocks X or Y, and the standard deviation of returns of \$250, between the standard deviation values for Stock X and Stock Y

Side-by-Side Comparison: X or Z only vs. X and Z

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

\$100,000

E(Profit) = \$100 SD(Profit) = \$300

$$E(Profit) = 0.5*\$100,000*0.004$$

 $+0.5*\$100,000*(-0.002) = \100

$$\sqrt{0.5*(\$400-\$100)^2+0.5*(-\$200-\$100)^2}=\$300$$

Side-by-Side Comparison: X or Z only vs. X and Z

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

E(Profit) = \$100 SD(Profit) = \$300

$$E(Profit) = 0.5*\$100,000*(-0.001)$$

$$+0.5*\$100,000*(0.003) = \$100$$

$$\sqrt{0.5*(-\$100-\$100)^2+0.5*(\$300-\$100)^2}=\$200$$

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

If company splits \$100,000 equally among Stocks X and Z, it will get the same expected return as Stock X or Stock Z, and the standard deviation of returns of \$50, **lower** than those of either Stock X or Stock Z

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

◆ Risk reduction can be achieved when combining random variables that "interact" in a particular way

Elimination of Risk: Y and Z

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

Profit Under Scenario 1

= \$50,000*(0.003)

+\$50,000*(-0.001) = \$100

Profit Under Scenario 2

= \$50,000*(-0.001)

+\$50,000*(0.003) = \$100

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

Why combining X and Y is not as beneficial for risk reduction as combining X and Z?

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5
E(R)	0.001	0.001	0.001	
SD(R)	0.003	0.002	0.002	

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5
E(R)	0.001	0.001	0.001	
SD(R)	0.003	0.002	0.002	

- ◆ In Scenario 1, returns for X and Y simultaneously "rise" above their respective expected values
- ◆ In Scenario 2, returns for X and Y simultaneously "drop" below their respective expected values
- ◆ Random variables that, on average, "move in unison" are said to be "positively correlated"

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5
E(R)	0.001	0.001	0.001	
SD(R)	0.003	0.002	0.002	

 In Scenario 1, return for X "rises" above its expected value, while the return for Z "drops" below its expected value

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5
E/D)	0.001	0.001	0.004	
E(R)	0.001	0.001	0.001	
SD(R)	0.003	0.002	0.002	

- In Scenario 1, return for X "rises" above its expected value, while the return for Z "drops" below its expected value
- In Scenario 2, return for X "drops" below its expected value, while the return for Z "rises" above its expected value
- Random variables that, on average, "move in opposite directions" are said to be "negatively correlated"

Correlation: Definition

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

Correlation between random variables A and B is defined as

$$Corr(A,B) = \frac{E(A*B)-E(A)*E(B)}{SD(A)*SD(B)}$$
Corr(A,B) is the same as Corr(B,A)

 In order to calculate the correlation between random variables A and B, we need to calculate their individual expected values and standard deviations, and, in addition, the expected value of the product of A and B

Calculating Correlation Between R_X and R_Y

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

Expected value of the product of R_X and R_Y

$$E(R_X*R_Y) = 0.5*(0.004*0.003)+0.5*(-0.002)*(-0.001)$$

= $5*12*10^{-7}+5*2*10^{-7} = 7*10^{-6} = 0.000007$

R_X and R_Y are "perfectly correlated"

◆ Correlation between R_x and R_y

$$Corr(R_X*R_Y) = \frac{E(R_X*R_Y) - E(R_X)*E(R_Y)}{SD(R_X)*SD(R_Y)} = \frac{7*10^{-6} - 0.001*0.001}{0.003*0.002} = 1$$

Calculating Correlation Between R_X and R_Z

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5

E(R)	0.001	0.001	0.001	
SD(R)	0.003	0.002	0.002	

Expected value of the product of R_X and R_Z

$$E(R_X*R_Z) = 0.5*(0.004)*(-0.001)+0.5*(-0.002)*(0.003)$$

$$= -5*4*10^{-7}-5*6*10^{-7} = -5*10^{-6} = -0.000005$$

◆ Correlation between R_X and R_Z

$$Corr(R_X*R_Z) = \frac{E(R_X*R_Z) - E(R_X) * E(R_Z)}{SD(R_X) * SD(R_Z)} = \frac{-5*10^{-6} - 0.001*0.001}{0.003*0.002} = -1$$

R_X and R_Z are "perfectly anti-correlated"

Calculating Correlation Between R_Y and R_Z

Scenario	Return on Stock X	Return on Sto	ck Y	Return on S	Stock Z	Probability
1	0.004	0.003		-0.001		0.5
2	-0.002	-0.001		0.003		0.5

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

Expected value of the product of R_Y and R_Z

$$E(R_Y*R_Z) = 0.5*(0.003)*(-0.001)+0.5*(-0.001)*(0.003)$$
$$= -5*3*10^{-7}-5*3*10^{-7} = -3*10^{-6} = -0.000003$$

◆ Correlation between R_Y and R_Z

$$Corr(R_Y^*R_Z) = \frac{E(R_Y^*R_Z) - E(R_Y) * E(R_Z)}{SD(R_Y) * SD(R_Z)} = \frac{-3*10^{-6} - 0.001*0.001}{0.002*0.002} = -1$$

R_Y and R_Z are also "perfectly anticorrelated"

Positive and Negative Correlation Values

- Perfect correlation and perfect anti-correlation are extreme cases of positive and negative correlation
- Correlation values always fall in the interval between -1 and 1
- In general, combining negatively correlated assets in a portfolio leads to a reduction in the standard deviation of the portfolio's return

Scenario	Return on Stock X	Return on Stock Y	Return on Stock Z	Probability
1	0.004	0.003	-0.001	0.5
2	-0.002	-0.001	0.003	0.5
				1

E(R)	0.001	0.001	0.001
SD(R)	0.003	0.002	0.002

◆ In our example, combining stocks with perfectly anti-correlated returns (X and Z) resulted lower risk as compared to combining stocks with perfectly correlated returns (X and Y)