

Advanced Control Technology SoSe 2019

Bioreactor System (5)

Presented by

Md. Saiful Islam Sajol (30042836)

Sayed Rafay Bin Shah (30043073)

Bioreactor

Fig. 1: Bioreactor system

The Bioreactor system can be modeled by the following state space equation:

$$\dot{\boldsymbol{x}} = \boldsymbol{a}(\boldsymbol{x}) + \boldsymbol{b}(\boldsymbol{x}) \cdot \boldsymbol{u} = \begin{bmatrix} \mu(x_2) \cdot x_1 \\ -\frac{1}{\alpha} \mu(x_2) \cdot x_1 \end{bmatrix} + \begin{bmatrix} -x_1 \\ K - x_2 \end{bmatrix} \boldsymbol{u},$$

$$\boldsymbol{y} = \boldsymbol{g}(\boldsymbol{x}) = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}.$$

Where,
$$\mu(x_2) = \frac{\mu_0 x_2}{k_1 + x_2 + k_2 x_2^2}$$

Where:

Maximal growth rate, $\mu_0=2$ Affinity constant, $k_1=0.06$ Affinity constant, $k_2=0.3$ Feed concentration of glucose, K = 2 Yield constant, $\alpha=0.7$

Concentration of **biomass** =**x1** Concentration of **substrate** = **x2**

Assignment 2

Objectives

- To choose a suitable control method for the Nonlinear system
- To design the controller for the system
- Results
- Comparison of results with Linearized model

Choosing Control method for Nonlinear System

Step 1: Detect presence of Internal Dynamics using Lie Derivative

System has internal dynamics if, $\delta < n$

Where,

 δ = Relative degree,

n = system dimension = 2

We know for Lie derivative,

$$y^{(\delta)} = L_a^{(\delta)} c(x) + L_b L_a^{(\delta-1)} c(x) \cdot u$$

For 1st order derivative, $\delta = 1$,

$$L_a^{-1}c(x) = \frac{\partial c(x)}{\partial x}$$
. $a(x) = \mu(x_2)$. x_1 and, $L_b c(x) = \frac{\partial c(x)}{\partial x}$. $b(x) = -x_1$

Hence,
$$\dot{y} = L_a c(x) + L_b c(x)$$
. u
= $\mu(x_2)$. $x_1 - x_1$. u ; which is nonzero. i.e., $\delta = 1 < n$ (=2)

: System has internal dynamics

Choosing Control method for Nonlinear System (Contd.)

Step 2: Choose Fuzzy Logic Control Method

- > Experience-based approach
- ➤ Mechanism logic based on experience of human operator
- > Easy to manipulate
- > Can process analog input with continuous values (between 0 and 1)

Mamdani Fuzzy Controller

Fig. 9: Fuzzy logic controller with Bioreactor system

Design of Mamdani Fuzzy Controller

• Step 1: Assign Inputs and Output

➤ Using MATLAB Fuzzy Logic Designer App

• Step 2: Assign Membership Functions (MF) and Linguistic Variables

	Inputs								Output									
Parameters	Biomass Concentration (x1)			Substrate Concentration (x2)				Feed Rate (u)										
Linguistic Variables	L	MTL	M	Н	VH	VVH	VL	L	M	Н	VH	VVH	Z	VL	L	M	н	VH
Type of MFs	TRIANGULAR																	

• Step 2: Assign Membership Functions (MF) and Linguistic Variables (Contd.)

• Step 3: Create Rule Base

Number of rules in Rule Base system is given by,

$$R = \prod_{j=1}^{n} N_j$$

: Number of rules in Bioreactor system = $6 \times 6 = 36$.

	If x1 is	And x2 is	Then u is
1	L	VL	VH
2	L	L	Н
3	L	M	М
4	L	Н	L
5	L	VH	VL
6	L	VVH	Z
7	MTL	VL	VH

	If x1 is	And x2 is	Then u is
8	MTL	L	Н
9	MTL	M	М
10	MTL	Н	L
11	MTL	VH	VL
12	MTL	VVH	Z
13	М	VL	Н
14	М	Ĺ	Н

• Step 3: Create Rule Base (Contd.)

	If x1 is	And x2 is	Then u is
15	М	M	М
16	M	Н	М
17	M	VH	VL
18	М	VVH	Z
19	Н	VL	Н
20	Н	L	Н
21	Н	M	М
22	Н	Н	L
23	Н	VH	VL
24	VH	VVH	Z
25	VH	VL	М

	If x1 is	And x2 is	Then u is
26	VH	L	М
27	VH	M	L
28	VH	Н	L
29	VH	VH	VL
30	VH	VVH	Z
31	VVH	VL	Z
32	VVH	L	Z
33	VVH	M	Z
34	VVH	Н	Z
35	VVH	VH	Z
36	VVH	VVH	Z

• Step 3: Create Rule Base (Contd.)

For,
$$x1 = 0.2271$$
 and $x2 = 1.676$, $u = 1.36$

• Step 3: Create Rule Base (Contd.)

Fig. 12. Fig. 10: Fuzzy Controller Surface plot.

• <u>Step 4:</u> Mamdani Fuzzy Controller + Bioreactor System (Simulink Block)

Fig. 13: Simulink diagram of Mamdani Fuzzy controller with Bioreactor system

Results

Fig. 1\(\begin{aligned} \text{Response of u and } \times \begin{aligned} 2 \text{ of Bioreactor system with Mamdani Fuzzy controller} \end{aligned} \)

Comparison of Results with Linearized model

Stabilization time for x1 & x2							
	Linear Feedback Controller						
	Poles at -2 ± 0.3j	Poles at -2 ± 5j	Controller				
X1	3.2 s	2.5 s	No response				
(Biomass Concentration)							
X2 (Substrate Concentration)	3.2 s	2.5 s	4.8 s				

Bioreactor System_(5)

THANK YOU!