

# Lessons learned on Data, Systems, and Organization modeling in UAF

NDIA Systems and Mission Engineering Conference

Nov 1, 2022

Charles Stirk, Michael Shearin, Nathaniel Thompson, Awele Anyanhun

Charles.Stirk@gtri.gatech.edu | 303-517-9092

## Agenda

- Enterprise Data Projects and UAF
- Organization Modeling
- System Modeling
- Data Architecture and Data Modeling
- Useful Tools



## Types of Enterprise Data Architecture Projects

- Within an enterprise information domain
  - E.g. Engineering, Test, Logistics, Contracts, Finance, Human Resources, IT ...
  - Many legacy siloed systems and ad-hoc data exchanges
  - New architectures SOA and common API's/data models
- Cross-domains within an enterprise
  - Domains have different modeling maturity, styles, technology, and documentation
  - Governance and resource commitment/coordination
  - Overlaps support cross-domain analytics, but can lead to unnecessary duplication and redundancy
- Cross-organizations in a supply chain (gov.-prime-supplier tiers)
  - Moving from documents to data models
  - Proprietary data and contractual issues
  - Different tools for the same functions



#### UAF 1.2 Views - Domains (Rows) and Model Kinds (Columns)

| UAF<br>ONG URBER<br>PARKETURE<br>PARKETURE    | Motivation<br>Mv                    | Taxonomy<br>Tx                                   | Structure<br>Sr                         | Connectivity<br>Cn                         | Processes<br>Pr                                | States<br>St                 | Sequences<br>Sq                   | Information <sup>c</sup><br>If | Parameters <sup>d</sup><br>Pm                            | Constraints<br>Ct                                   | Roadmap<br>Rm                                                                                        | Traceability<br>Tr                    |
|-----------------------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------|-----------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|
| Architecture<br>Management <sup>a</sup><br>Am | Architecture<br>Principles<br>Am-Mv | Architecture<br>Extensions<br>Am-Tx <sup>e</sup> | Architecture<br>Views<br>Am-Sr          | Architecture<br>References<br>Am-Cn        | Architecture<br>Development<br>Method<br>Am-Pr | Architecture Status<br>Am-St |                                   | Dictionary<br>Am-If            | Architecture<br>Parameters<br>Am-Pm                      | Architecture<br>Constraints<br>Am-Ct                | Architecture<br>Roadmap<br>Am-Rm                                                                     | Architecture<br>Traceability<br>Am-Tr |
| Summary & Overview Sm-Ov                      |                                     |                                                  |                                         |                                            |                                                |                              |                                   |                                |                                                          |                                                     |                                                                                                      |                                       |
| Strategic<br>St                               | Strategic Motivation<br>St-Mv       | Strategic Taxonomy<br>St-Tx                      | Strategic Structure<br>St-Sr            | Strategic<br>Connectivity<br>St-Cn         | Strategic Processes<br>St-Pr                   | Strategic States<br>St-St    |                                   | Strategic Information<br>St-If | Environment En-Pm and Measurements Me-Pm and Risks Rk-Pm | Strategic Constraints<br>St-Ct                      | Strategic<br>Deployment,<br>St-Rm-D<br>Strategic Phasing<br>St-Rm-P                                  | Strategic Traceability<br>St-Tr       |
| Operational<br>Op                             | Requirements<br>Rq-Mv               | Operational<br>Taxonomy<br>Op-Tx                 | Operational<br>Structure<br>Op-Sr       | Operational<br>Connectivity<br>Op-Cn       | Operational<br>Processes<br>Op-Pr              | Operational States<br>Op-St  | Operational<br>Sequences<br>Op-Sq |                                |                                                          | Operational<br>Constraints<br>Op-Ct                 |                                                                                                      | Operational<br>Traceability<br>Op-Tr  |
| Services<br>Sv                                |                                     | Services Taxonomy<br>Sv-Tx                       | Services Structure<br>Sv-Sr             | Services Connectivity<br>Sv-Cn             | Services Processes<br>Sv-Pr                    | Services States<br>Sv-St     | Services Sequences<br>Sv-Sq       | Resources<br>Information       |                                                          | Services Constraints<br>Sv-Ct                       | Services Roadmap<br>Sv-Rm                                                                            | Services Traceability<br>Sv-Tr        |
| Personnel<br>Ps                               |                                     | Personnel Taxonomy<br>Ps-Tx                      | Personnel Structure<br>Ps-Sr            | Personnel<br>Connectivity<br>Ps-Cn         | Personnel Processes<br>Ps-Pr                   | Personnel States<br>Ps-St    | Personnel Sequences<br>Ps-Sq      |                                |                                                          | Competence, Drivers,<br>Performance<br>Ps-Ct        | Personnel Availability<br>Ps-Rm-A<br>Personnel Evolution<br>PS-Rm-E<br>Personnel Forecast<br>Ps-Rm-F | Personnel<br>Traceability<br>Ps-Tr    |
| Resources<br>Rs                               |                                     | Resources Taxonomy<br>Rs-Tx                      | Resources Structure<br>Rs-Sr            | Resources<br>Connectivity<br>Rs-Cn         | Resources Processes<br>Rs-Pr                   | Resources States<br>Rs-St    | Resources Sequences<br>Rs-Sq      |                                |                                                          | Resources<br>Constraints<br>Rs-Ct                   | Resources evolution,<br>Resources forecast<br>Rs-Rm                                                  | Resources<br>Traceability<br>Rs-Tr    |
| Security<br>Sc                                | Security Controls<br>Sc-Mv          | Security Taxonomy<br>Sc-Tx                       | Security Structure<br>Sc-Sr             | Security Connectivity<br>Sc-Cn             | Security Processes<br>Sc-Pr                    |                              |                                   |                                |                                                          | Security Constraints<br>Sc-Ct                       |                                                                                                      | Security<br>Traceability<br>Sc-Tr     |
| Projects<br>Pj                                |                                     | Project Taxonomy<br>Pj-Tx                        | Project Structure<br>Pj-Sr              | Project Connectivity<br>Pj-Cn              | Project Processes<br>Pj-Pr                     |                              |                                   |                                |                                                          |                                                     | Project Roadmap<br>Pj-Rm                                                                             | Project Traceability<br>Pj-Tr         |
| Standards<br>Sd                               |                                     | Standards Taxonomy<br>Sd-Tx                      | Standards Structure<br>Sd-Sr            |                                            |                                                |                              |                                   |                                |                                                          |                                                     | Standards Roadmap<br>Sd-Rm                                                                           | Standards<br>Traceability<br>Sd-Tr    |
| Actual Resources<br>Ar                        |                                     |                                                  | Actual Resources<br>Structure,<br>Ar-Sr | Actual Resources<br>Connectivity,<br>Ar-Cn |                                                | Simulation <sup>b</sup>      |                                   |                                |                                                          | Parametric<br>Execution/<br>Evaluation <sup>b</sup> |                                                                                                      |                                       |

### Information is of Services, Operations, and Resources





#### **UAF** Information

- View Specification
- Data and Information View (DIV)
   Conceptual DIV-1
   Logical DIV-2
   Physical DIV-3



Domain Metamodel Elements





# Starting a Data Architecture Project

- Enterprise Architecture Guide for UAF is nominal, idealized workflow
- Actual projects are
  - Fast-paced with interim deliverables
  - Parallel across UAF layers (grid rows)
  - Mixed maturity (UAF grid columns)
- As-is scenario for data projects
  - Legacy systems and applications (Resources)
  - Existing organizations and personnel
  - Data models and exchanges
- To-be scenario and roadmap often iteratively refined by learning

#### Information Relationships Between Major Steps

| 1. Architecture Drivers & Challenges  |  | > |   |   |   |   |   |   |   |
|---------------------------------------|--|---|---|---|---|---|---|---|---|
| 2. Enterprise Strategy & Capabilities |  | 2 | ^ |   |   |   |   | > |   |
| 3. Operational Architectures          |  | ^ | 3 | > | > | > | > |   |   |
| 4. Service Architectures              |  | ^ | ^ | 4 | ^ |   |   |   | ^ |
| 5. Resource Architectures             |  |   | ^ | ( | 5 | > |   |   | > |
| 6. Personnel Architectures            |  |   | ^ |   | ^ | 6 | > | > | > |
| 7. Security Architectures             |  |   | ^ |   | ^ |   | 7 | > | ^ |
| 8. Projects Portfolio Management      |  | ^ |   |   | < |   |   | 8 | ^ |
| 9. Resource Realization               |  |   |   |   |   |   |   |   | 9 |



# Robust UAF Organizational Modeling

- UAF organizational models
  - -General and specific Organization attributes by layer/echelon
  - Posts also have structure and connectivity

- «Post»

  Manager

  Apost»

  Project Manager

  Apost»

  Product Manager

  Apost»

  A
- Generic and Actual- and —Organization, -Post, -Person, -Responsibility
  - -Generic are reusable patterns and Actual are specific instances
  - -Relate Organization and Project Views
- Person, Roles, Responsibilities and Competencies
  - -Rapid changes in these affect Projects and drive Roadmaps
  - -Slower evolution in Organizations and Posts
- Linking of concepts is overly complicated
  - –ActualPost > Project > ProjectMilestone > ActualResource
  - -Could use "responsible for" relation to link ActualPost > ActualResource



#### **Data Architecture**

- Interface Control Agreement (ICA)
  - Contract between sender and receiver of data
  - -Interface control document (ICD) is not a structured form with validation
- Data architecture includes DIV, Operational, Service and Resource views
  - Diagram views should be built from ICA forms (different syntax, same semantics)
  - Diagrams in a portfolio across different systems, information domains, or enterprises need common syntax, semantics, and validation
- Authoritative sources and data sets
  - Identify unnecessary duplication and redundancy
  - Shadow IT (unacknowledged systems and data sources)
  - -Some data sets are composite across systems



#### Middle-Out Approach to Data Architecture

- Start with DIV's and work toward Operations, Services and Resources
- Layers and traceability enable flexible model evolution
  - -Systems, Information Domains, Enterprise, and Supply-chain
- Alternate working toward top and bottom
  - -Start Information Domain at dominant systems
  - -Start cross-domain at Information Domain DIV-1's, work up to enterprise and down to DIV-2
  - -Start supply-chain at top-tier for data exchanges and composite models
- Overlaps and data exchanges define common data models
  - -Use/extend existing standards and specifications as appropriate
  - Beware of redundancy and shadow IT (outside ownership or control)



### Data, Information, Knowledge Model Evolution

- Data models evolve like UAF grid columns (model kinds)
  - Data as a UAF domain (horizontal rows)
- Conceptual DIV-1
  - Taxonomy (concept generalization/specialization)
  - Structure (concept association relationships)
  - Correspond to data elements in Operational models
- Logical DIV-2
  - Taxonomy (conceptual-logical and logical-logical generalization/specialization)
    Structure (aggregation, composition, multiplicity relationships)
    Connectivity (defined in Operational processes, states, interaction scenarios)

  - Constraints (syntactic/semantic model validation rules, ontology inference rules, transformation rules)
  - Correspond to Standards Profile or Forecast
- Physical DIV-3
  - Taxonomy, Structure as above
  - Connectivity (defined in Services processes, states, interactions)
  - Constraints (validation, inference and translation implementation)
- All DIVs have Metadata, Roadmaps, Standards, and Traceability (Operations, Services, Resources, Personnel, Projects, Security, Strategic Capabilities, and Requirements)



# Long Term Archiving and Retrieval (LOTAR)

- Consortium between AIA, ASD-Stan, AFNeT, ProSTEP, PDES
- Aircraft manufacturers driven by FAA type certification (and European ESA)
- Workgroups
  - 3D Mechanical CAD with Product Manufacturing Information (PMI)
  - -3D Visualization
  - Metadata for Archive Package
  - Product Data Management
  - Composites
  - Electrical Harness
  - Engineering Analysis and Simulation
  - MBSE (AADL, SysML, UML etc.)
- Works with MBx-IF, PDM-IF, NAFEMS, INCOSE, OMG, ISO ...



#### **ASD Strategic Standardization Group Radar Screen**



Version: V1.10d (October 2019)

## Data Exchanges and Functions

- REaCT Redundancy Evaluator and Clustering Toolset
  - -GTRI developed tool
  - Evaluates functional decompositions for coupling and cohesion
  - -Functions and interfaces (Data I/O) as connected graph
  - Origin in FASTR (Functional Architecture for Strategic Reuse)
- Benefits for Data Modeling
  - Identify coverage gaps, commonality, redundancy, model errors/incomplete





## **Automating Import and Diagram Creation**

- Rapid Modeling Tools
  - -GTRI developed Cameo plugin
  - Open sourced on Github
  - Import data from Excel files
  - -Columns match SysML diagram patterns
  - -Patterns can be composed
  - Load rows into diagrams
  - Update matching capability
- Used to load volumes of data from other sources into Cameo models
  - Database tables
  - Other enterprise architecture tools





#### Model Governance

Model Governance Guide

Developed by Mantech IntelligentSystems Engineering organization

SysML profile and model to build a governance plan

Design model governance system

 Design digital engineering environment infrastructure

Govern individual and composite models

Automated validation rules

H. Davidz and D. Orellana, 2022 MBSE Cyber Experience Symposium



# OpenAPI Generation from SysML Data Models

- API Toolkit developed by MITRE Corp.
  - -SysML profile for OpenAPI specification for REST API's
  - Cameo plugin that imports/exports OpenAPI specification files

Bi-Directional data exchange with industry standard OpenAPI Specification files for defining REST Interfaces



Wizard Driven GUI to capture next level of interface detail according to OpenAPI meta-modal

N. Norwood and J. Hurvitz, API Toolkit Plugin, NIWIC PAC MBSE COP, 2019

Service orchestration with sequence diagram using defined API Endpoint operations and Responses





### **Summary and Conclusions**

- Data architecture for information domain, enterprise, and supply-chain projects have unique challenges that can partly be addressed by UAF
- DIV's can be organized as UAF domains that evolve
- Data architecture projects start in DIV's, and proceed in parallel across Operations,
   Services, Personnel and Resources
- Models need common syntax and semantics with validation
- Enterprise projects emphasis on commonality, redundancy and composite models
- Standards can jump-start and tools can accelerate projects

