

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 4-ALGEBRA BOOLEANĂ ȘI LOGICA DIGITALĂ

Algebra booleană și logica digitală

- Funcții booleene;
- Forma canonică;
- Forma standard;
- Aspecte legate de implementarea porţilor logice;

Funcții booleene

- \square O funcţie de comutaţie de n variabile $f(X_0, X_1, ..., X_{n-1})$ unde variabilele X_i iau valorile 0 şi 1, pentru i=0÷n-1, se defineşte ca o aplicaţie a mulţimii $\{0,1\}^n$ în mulţimea $\{0,1\}$.
- \square Prin $\{0,1\}^n$ s-a notat produsul cartezian al mulţimii $\{0,1\}$ cu ea î**nsăş**i de n ori.
- □ Domeniul de definiție al funcției f este:

$$X = \{0,1\}^n = \{(X_0,X_1,...,X_{n-1}) | X_0 \in \{0,1\}, X_1 \in \{0,1\},...,X_{n-1} \in \{0,1\}\}$$
 ale cărei elemente sunt n-upluri de 1 și 0 $\{X_0,...,X_{n-1}\}$

Funcție booleană/de comutație

Expresie algebrică care este formată variabile binare şi din operatorii: şi, or, negare

Exemplu:

$$F = xy + xy'z + x'yz$$
 $F = 1 \operatorname{daca} x = 1 \operatorname{si} y = 1, \operatorname{sau}$
 $\operatorname{daca} x = 1 \operatorname{si} y = 0 \operatorname{si} z = 1, \operatorname{sau}$
 $\operatorname{daca} x = 0 \operatorname{si} y = 1 \operatorname{si} z = 1;$
 $\operatorname{altfel}, F = 0.$

Funcții booleene

□ Tabel de adevăr prin care este specificată

X	у	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Complementul unei funcții

Funcția F', unde F' poate fi obținută prin interschimbarea lui 0 cu 1 în tabelul de adevăr

×	У	Z	F'
0	0	0	0→1
0	0	1	0→1
0	1	0	0→1
0	1	1	1→0
1	0	0	0→1
1	0	1	1→0
1	1	0	1→0
1	1	1	1→0

Complementul unei funcții

Funcţia F', unde F' poate fi obţinută prin aplicarea repetată a teoremelor lui DeMorgan

Exemplu

$$F' = (xy + xy'z + x'yz)'$$

$$= (xy)' (xy'z)' (x'yz)'$$

$$= (x' + y')(x' + y + z')(x + y' + z')$$

Complementul unei funcții

Funcţia F', unde F' poate fi obţinută folosind principiu dualităţii

Exemplu

mintermi

Un **minterm** este o funcţie elementară de n variabile notată m_i^n unde n indică numărul de variabile ale funcţiei iar i este echivalentul zecimal al **mintermi** n-uplului funcţiei aplicat în 1, interpretat ca număr binar cu n poziţii.

Ez	X_2	X_{I}	X_0	m_0^3	m_1^3	m_2^3	m_3^3	m_4^3	m_5^3	m_6^3	m_7^3
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

mintermi

Dacă $i = b_{n-1}...b_0$ e un număr binar între 0 și 2^{n-1} , at. un minterm de n variabile $x_{n-1}, x_{n-2}..., x_0$, poate fi reprezentat astfel:

mi
$$(x_{n-1}, x_{n-2}, x_0) = y_{n-1}, y_0$$

unde $y_k = \begin{cases} x_k \text{ dc. } b_k = 1 \\ x_k' \text{ dc. } b_k = 0 \end{cases}$

Sumă de mintermi

- In funcţia minterm $m_2^3(X_0, X_1, X_2) = \overline{X_2} \cdot X_1 \cdot \overline{X_0}$ are expresia 1 dacă $X_2 = 0$, $X_1 = 1$ şi $X_0 = 0$, şi valoarea 0 în rest;
- □ orice funcţie booleană de n variabile poate fi reprezentată ca sumă logică de funcţii minterm

$$f(X_{0,}X_{1}...X_{n-1}) = \sum_{i \in K} m_{i}^{n}$$

Sumă de mintermi

$$F = xy + xy'z + x'yz$$

$$F = \sum (3,5,6,7)$$

$$F = m_3^3 + m_5^3 + m_6^3 + m_7^3$$

Х	У	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	-	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Formă canonică disjunctivă

$$F = \sum (3,5,6,7)$$

$$F = m_3^3 + m_5^3 + m_6^3 + m_7^3$$

- □ forma canonică disjunctivă a funcţiei;
- forma canonică termenii produs logic ai funcţiei conţin toate variabilele funcţiei, între termeni realizându-se operaţia SAU (disjuncţie).

Maxterm

- maxterm este o functie elementară de n variabile notate unde i este echivalentul zecimal al n-uplului funcţiei, aplicat in "O", interpretat ca un număr binar cu n poziţii.
- □ Functiei ma¼termî îi corespunde o expresie generată de n variabile în formă
- directă sau negată, (sumă logică) care în urma
- evoluării pentru toate n-uplurile, ia aceeasi valoare ca

 $Si M_{i}^{n}$

2. Reprezentarea funcţiilor de comutaţie

Ez	X_2	X_I	X_{0}	M_0^3	M_1^3	M_2^3	M_3^3	M_4^3	M_5^3	M_6^3	M_7^3
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

Fig. 2.4 Funcţiile maxterm de 3 variabile

2. Reprezentarea funcțiilor de comutație

Funcția maxterm de exemplu are expresia

$$=0$$
 pentru $=0$, $=1_{M_3^3=X_2+\overline{X_1}+\overline{X_0}}$

$$X_{2}^{=} + \overline{X_{1}} + \overline{X_{0}} \qquad X_{2} \qquad X_{1} \qquad X_{0}$$

 $X_2=1$ $\overline{X_1}$ X_2 X_1 X_0 pentru celelalte atribuiri având valoarea "1". O funcție

de comutație de n variabile poate fi $f(X_0, X_1, \dots, X_{n-1}) = \prod_{i=1}^n X_i$ printr K_0 un produs de maxtermi:

unde este mulţimea

indicilor

echivalentului zecimal al n-uplurilor

Sumă de mintermi

- Orice funcție booleană poate fi convertită într-o sumă de maxtermi Any Boolean expression can be converted into a sumofmaxterms
- by generating the truth table and listing all the 0-
- maxterms.
- $\square \quad \textbf{Example: } F = x'y' + xz$

n variabile \rightarrow 2^{2^n} funcții

NAND

X	Υ	Z
0	0	1
0	1	1
1	0	1
1	1	0

$$Z = X \cdot Y$$

AND

Х	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = X \cdot Y$$

NOR

X	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	0

$$Z = X + Y$$

OR

$$Z = X + Y$$

Porți logice (cont.)

XOR (X⊕Y)

Х	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

 $Z = X \overline{Y} + \overline{X} Y$ X or Y but not both
("inequality", "difference")

XNOR

Х	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	1

Z = X Y + X Y X and Y the same ("equality") Porți logice elementare

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns
Inverter	x	F = x'	2	1
Driver	x	F = x	4	2
AND	x- y	F = xy	6	2.4
OR	x	F = x + y	6	2.4
NAND	x	F = (xy)'	4	1.4
NOR	x	F = (x + y)'	4	1.4
XOR	x	$F = x \oplus y$	14	4.2
XNOR	x y	$F = x \odot y$	12	3.2

Întrebări?

Enough Talking Let's Get To It !!Brace Yourselves!!

