Intermediate Test 2 – Solutions

Stellenbosch Camp 2018

1. For any real number x, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x, and let $\{x\} = x - \lfloor x \rfloor$ be the fractional part of x. Find all real numbers a, b, and c such that

$$\lfloor a \rfloor + \{b\} = -2.3,$$

$$[b] + \{c\} = 8.9,$$
 and

$$\lfloor c \rfloor + \{a\} = 23.4.$$

- 2. Lets PQRS be a cyclic quadrilateral such that PQ = QR, PR = SR and $PQ \parallel SR$. Let ASB be a tangent at S where A lies on PQ. If $\angle BSR = 72^{\circ}$, find the value of $\angle RPQ$.
- 3. Let n be a positive integer. Find the last digit of

$$n^{2018} + (n+1)^{2018} + \dots + (n+99)^{2018}$$
.

4. Let ABC be a triangle, and let the midpoint of AC be M. The circle tangent to BC at B and passing through M meets the line AB again at P. Prove that $AB \times BP = 2BM^2$.

Construct point N, the midpoint of AB. By midpoint $\operatorname{Th}^{\underline{m}}$, NM||BC. Using this and Tan-Chord $\operatorname{Th}^{\underline{m}}$, we get: $\angle BMN = \angle MBC = \angle MPB$. Since we also have that $\angle PBM = \angle MBN$, we have that $\triangle BMN \sim \triangle BPM$. So

$$\begin{split} \frac{BM}{BP} &= \frac{BN}{BM} \\ \Rightarrow BM^2 &= BN \cdot BP = \left(\frac{1}{2}AB\right) \cdot BP \end{split}$$

5. Show that for all positive real numbers x and y,

$$\frac{x^2}{x + 2y} + \frac{y^2}{2x + y} \ge \frac{x + y}{3}.$$

By the Cauchy-Schwarz inequality (in "Engel Form") we have that

$$\frac{x^2}{x+2y} + \frac{y^2}{2x+y} \ge \frac{\left(x+y\right)^2}{\left(x+2y\right) + \left(2y+x\right)} = \frac{x+y}{3}.$$