Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Etching 刻蚀 Part III: Dry 干法

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Etching Methods

■ Wet Etching 湿法刻蚀

■ Dry Etching 干法刻蚀

CMP and other methods

Challenges for Wet Etching

Most wet etching processes are chemical, isotropic

 For features < 3 μm, dry etching has much better resolution

Dry Etching

Dry Etch without Plasma

• $2XeF_2(g) + Si(s) = 2Xe(g) + SiF_4(g)$

SiF₄ boiling point 4 °C

very isotropic and selective

Ion Milling

- Heavy ions (e.g. Ar)
- Highly anisotropic
- Poor selectivity
 - □ for Au, Pt, ...

Ion Milling

- Heavy ions (e.g. Ar)
- Highly anisotropic
- Poor selectivity

- mask erosion
- mask redeposition

charging of mask: ion path distortion

Plasma Etch

- Chemically reactive ions
 - improved selectivity
 - lower power
- Example: Si etch
 - □ CF₄ gas does not react with Si
 - energized F⁻ plasma can react with Si
 - SiF₄ is volatile (boiling point 4 °C)
- Very isotropic
 - no direction

Reactive Ion Etching (RIE)

- Improved directionality by applied fields
 - more anisotropic

RIE - Si and SiO₂

- Si
 - **□** SF₆ plasma
- SiO₂
 - CF₄ / CHF₃ plasma
- Photoresists can be used as masks
 - F ions etch PR very slowly

RIE - Si and SiO₂

- Si
 - SF₆ plasma
- SiO₂
 - □ CF₄ / CHF₃ plasma

SF₆ is heavier than air

- Photoresists can be used as masks
 - F ions etch PR very slowly

RIE - Organics

- O₂ plasma
 - \Box C-H-O + O- = CO₂ + H₂O
- O₂ plasma does not etch Si, SiO₂, or metals
 - □ SiO₂ / metal oxides are non-volatile

RIE - III-Vs

- Cl₂ / BCl₃ / SiCl₄ plasma
 - □ GaAs/AlGaAs, InP, GaN/InGaN, ...

Q: why?

GaAs trenches

product	boiling point (°C)
GaF₃	1000
AIF ₃	> 1000
InF ₃	> 1000
GaCl ₃	200
AICI ₃	180
AsCl ₃	130

RIE - Recipes

Table 6.2 Materials and corresponding RIE gases	
Materials to be etched	Chemical gases (multi choices)
Single-crystal silicon	CF ₃ Br, HBr/NF ₃ , SF ₆ /O ₂
Polysilicon	SiCl ₄ /Cl ₂ , BCl ₃ /Cl ₂ , HBr/Cl ₂ /O ₂ , HBr/O ₂ , Br ₂ /SF ₆
Al	SiCl ₄ /Cl ₂ , BCl ₃ /Cl ₂ , HBr/Cl ₂
Al-Si-Cu, Al-Cu	$BCl_3/Cl_2 + N_2$
W	SF ₆ , NF ₃ /Cl ₂
TiW	SF ₆
WSi ₂ , TiSi ₂ , CoSi ₂	CCl ₂ F ₂ /NF ₃ , CF ₄ /Cl ₂
SiO_2	CCl ₂ F ₂ , CHF ₃ /CF ₄ , CHF ₃ /O ₂ , CH ₃ CHF ₂
Si_3N_4	CF ₄ /O ₂ , CF ₄ /H ₂ , CHF ₃ , CH ₃ CHF ₂
GaAs	SiCl ₄ /SF ₆ , SiCl ₄ /NF ₃ , SiCl ₄ /CF ₄
InP	CH_4/H_2
Photoresists	O_2

ICP-RIE

- Inductively Coupled Plasma (ICP)
 - higher power
 - mostly for III-Vs

Quality of Etching

- Quality is controlled by the experiments
 - **□** gas type, pressure, power, ...

Deep RIE for Si

alternative etch / passivation

'Bosch process'

Atomic Layer Etching (ALE)

- 1. $Si + 2Cl_2 = SiCl_4$
- 2. SiCl₄ removed by plasma
- 3. Repeat 1 and 2

Issues in Dry Etch

Summary of Dry Etch

Type of Etching

Excitation Energy

Pressure

Gas/Vapor Etching

none

high (760-1 torr)

isotropic, chemical, very selective
(e.g. XeF₂ gas etch Si even without plasma)

Plasma Etching

10's to 100's of Watts

- isotropic, chemical, selective

Medium (>100 torr)

Reactive Ion Etching

100's of Watts

Low

- directional, physical & chemical, fairly selective (10-100 mtorr)

Sputter Etching

100's to 1000's of Watts

Low

directional, physical, low selectivity
(e.g. ion beam etching/milling using Ar⁺)

(~10 mtorr)