

How to prove
$$b_0 = \overline{y}_r$$
 and $b_1 = \overline{y}_g$?

 $b_0 = \overline{y} - b_0 \overline{x}$
 $b_1 = \overline{x} \frac{S_r}{S_r}$

Let's assume $b_0 = \overline{y}_0 - \overline{y}_r$ and

 $b_0 = (p \overline{y}_g + (1-p) \overline{x}_r) - (\overline{y}_g - \overline{y}_o)p$

Lest $p = \frac{ng}{n}$
 $= \overline{y}_r \cdot ((1-p)+p) = \overline{y}_r \sqrt{y}$
 $=$

Let's assume
$$bo = \overline{y}_0 - \overline{y}_r$$
 and $y = \frac{y_1 + y_2 + \dots + y_n}{n}$
 $b = (p\overline{y}_g + (1-p)\overline{y}_r) - (\overline{y}_g - \overline{y}_c)p$
 $lest p = \frac{ng}{n}$
 $= \overline{y}_r \cdot ((1-p)+p) = \overline{y}_r$
 $= \overline{y}_r \cdot ((1-p)+p) = \overline{y}_r \cdot ((1-p)+p)$
 $= \overline{y}_r \cdot ((1-p)$

Exple: x & X = {red, green, blue}

X={1 non NSA

Called reference

Category.

R2 is how good your model is"

