

Amateur Research

Improve the Thermal Stability of the CrO2 Films

Wuhan University

School of Physics and Technology, 15 Hongyi Class

报告人:陈亦林

需要解决 的问题

解决方案

初步成果和 需要改进的地方

参考文献

鸣谢

目录 / CONTENTS

Part 1

研究背景

Background

需要解决的问题

解决方案

初步成果和一些问题

参考文献

鸣谢

随着科学技术的迅速发展,对各种电子设备的性能要求也不断提高,为了适应高密度信息存储,快速读写和自动化传感的需要,磁电阻的研究不断地发展起来。

磁电阻(MR)效应

在磁场作用下,某些铁磁体电阻值发生变化的现象

庞磁电阻(CMR)

Colossal Magneto Resistance

巨磁电阻(GMR)

Giant Magneto Resistance

隧道磁电阻(TMR)

Tunnel Magneto Resistance

需要解决的问题

解决方案

初步成果和一些问题

参考文献

鸣谢

TMR效应原理

TMR效应是一种与自旋极化输运过程相关的现象。以发现该

TJ)为例赖 效应的引 V(x)说明一丁 之下表现 具有 出铁磁性 当一 的"三明 治结构 量子力学 根据经典 中量子院 逐越大, 电子隧穿势垒示意图 表现出来

TMR效应通俗一点说:铁磁层的磁化方向可以在外磁场的控制下被独立的切换。如果**极化方向平行**,那么电子隧穿过绝缘层的可能性会更大,其宏观表现为**电阻小**;如果**极化方向反平 行**,那么电子隧穿过绝缘层的可能性较小,其宏观表现是**电阻 极大**。因此,这种结可以在两种电阻状态中切换,即高阻态和低阻态。

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

隧道磁电阻值

$$TMR = 2P_1P_3/(1 - P_1P_3)$$

其中, P_1 和 P_3 分别为第一,第三铁磁层的自旋极化率 并且可以看出,这两层**铁磁层的自旋极化率越高,隧道磁电阻越大**。

而寻求**磁电阻值高,饱和磁场小,磁场灵敏度高**的磁阻材料是当前研究工作的重点 因此铁磁层最理想的材料是半金属,因为其自旋极化率理论上达到100%。 而其中**CrO**2就是是一种结构简单的半金属。

需要解决的一些问题

研究背景

需要解决的问题:

解决方案

初步成果和一些问题

参考文献

鸣谢

非磁性层上 生长二氧化铬 非常困难

"三明治型" MR,两边是二氧化铬,中间是非磁性层。晶格匹配的非磁性层很少。

膜很薄时 薄膜厚度很难精准控制

很难控制很薄的薄膜厚度。

热稳定性不高

◆CrO₂薄膜只能在390-410℃通过化学气相沉积法(CVD)制备(以CrO₃为先导物,TiO₂为基底),而且很容易有杂相Cr₂O₃。因此不仅导致制备困难,并且常温应用条件下,表面缓慢分解,形成绝缘的反铁磁的Cr₂O₃层,导致其很难运用到器件中

Part 3

解决方案 Solution

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

通过掺杂

Ti元素的优点

寻找Ti源

选择TiF4的优点

希望通过掺杂其他 元素来提高二氧化 铬的热稳定性 1.TiO₂是一种非常稳定的单晶,与CrO₂的晶格结构具有很高的匹配度。2,理论可以通过元素替代提高CrO₂稳定性。

1.熔点要求:要尽量和纯CrO2的制备温度范围相近2.尽量减少杂相Cr2O3的生成

1.熔点符合要求 2.实验结果看出 热稳定性提高, 制备温度范围变 宽

〉 解决方案

研究背景

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

TiO2, CrO2晶格结构

需要解决的问题

解决方案

初步成果和一些问题

参考文献

鸣谢

四氟化钛TiF4

TiF4熔点377°C(CVD温度390°C以上)

其他的无机钛源的熔点一般很高,常远高于制备条件而有机钛源虽然熔点比较低,但是很容易被三氧化铬(先导物"铬源")氧化而覆盖在三氧化铬的表面,阻断反应的继续进行。

"钛源" TiF4晶格结构

TiF4 CrO₃

通入O2 100ml/min - (流速可调,并且对

CrO2生长速度和最终

能否形成薄膜影响很大)

> 具体流程

化学气相沉积法(CVD) (Chemical Vapor Deposition)

TiO2基底(110/100) 可以先用HF处理表面,更容易 形成薄膜

根据需求设置反应时间,所示情况下,一般30min,掺杂的CrO2薄膜可以生长100nm厚

掺杂后的CrO2薄膜外观

光滑,表面有金属光泽的黑色镜面

Part 4

初步成果 和一些问题 Conclusion&Problem

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

不同制备温度下样品的X-ray diffraction (XRD)图

1.相对于纯CrO₂薄膜的制备温度范围390-410℃) 掺杂了Ti的CrO₂薄膜温度 范围变广,并且更加耐受 高温热稳定性提高 2. 杂相Cr₂O₃出现的温度 显著提高,也是样品热稳 定性提高的表现

图1 不同实验温度条件下,掺杂后的 CrO2薄膜的XRD图

(以在100方向的TiO₂基底上生长为例, 110方向的温度范围大约为390-500°C)

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

样品不同温度退火处理后的XRD图

从右图可以看出,退火温度至510℃仍无杂相出现,退火温度为520℃时,杂相 火温度为520℃时,杂相 Cr₂O₃慢慢出现。当退火温 度达到530℃时,CrO₂完全 转化为杂相Cr₂O₃。

图2 掺杂后的CrO2薄膜 在不同温度下退火处理后,样品的XRD图

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

1.选择TiF4为钛源,通过化学气相沉积法成功地制备了掺杂Ti的CrO2薄膜。

2.从不同温度下制备和退火的XRD图可以看出,相较于纯CrOz薄膜,掺杂了Ti的CrOz薄膜热稳定性提高,更加耐受高温,制备的温度范围变广,因此初步认为达到了提高CrOz薄膜热稳定性的目的。

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

亟待解决的一些问题

- 1.掺杂后的薄膜的居里点(铁磁顺磁的相变点的温度)降低,虽然在低掺 杂浓度下仍高于室温。
- 2.单轴的各向异性降低。

需要解决的问题

解决方案

初步成果和一些问题

参考文献

鸣谢

[1]Q Zhao, JJ Yuan. Preparation and magnetoresistance of thin CrO 2 films [J]. Journal of Magnetism & Magnetic Materials, 2008, (3):2356-2358.

[2] K Schwarz. CrO2 predicted as a half-metallic ferromagnet [J]. Journal of Physics F Metal Physics, 2000, (16).

[3] RS Keizer, ST Goennenwein. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 [J]. Nature, 2010, (2).

需要解决的问题

解决方案

初步成果 和一些问题

参考文献

鸣谢

感谢熊锐教授和张振华学长一直以来的知道指导和支持!

Thanks