

Bo Chen, Cody Nguyen, Daniel Mower, Harris Ashraf, Ryan Wong, Travis Jefferies, Sharmila Baskaran

CREATING THE NEXT

Motivation

- Loan defaults can result in huge losses for banks.
- They were the cause of the 2007-2008 global financial crisis.
- Traditional approaches to predicting risk are subject to shortfalls.

Our Goal

 Create interactive visualization tools for users to view historical mortgage default characteristics and gauge their level of riskiness.

Literature Survey

- Analyzed the pros and cons of various prediction models such as K-Nearest Neighbors, Random Forest, and Deep Learning.
- Gathered information on different ways to visualize our findings.
- Researched efficient methods used to process large datasets.

How Is It Done Today? Limits?

- Banks employ large teams of analysts and economists.
- Use portfolio-level models to forecast 1-2 years out.
- Upcoming changes to *FASB rules will require modeling on an individual loan basis.

Our Approach

- 25 million loans from Freddie Mac and historical macroeconomic data from *FRED.
- Build a loan-level model for mortgage default probability.
- Present historical default statistics and default probability using a web based *UI.

Note:

- FASB: Financial Accounting Standards Board
- FRED: Federal Reserve Economic Data
- UI: User Interface

Our Approach Cont'd

Users can change filters to explore different segments.

Users can examine their risk rating.

Our Approach Cont'd

- Who Cares Financial institutions, researchers, and home buyers.
- Impact Provide banks with a risk rating tool and support in adhering to *CECL.
- Measure of Success: An informative and interactive visualization tool based on a stable and accurate model.
- Risks Accuracy and time.
- Payoffs Allow our users to vet their loan opportunities with less cost and time.
- Cost None (open source and free credits if using cloud computing).
- Time 45 days.

Note

CECL: Current expected credit loss standard

Milestones

- Milestone 1
 - Data Cleaning, Feature Extraction
 - Preliminary Data Analysis and Visualization For One State
- Milestone 2
 - Fine Tuning Data Analysis
 - Final Visualizations For entire United States

Tools

- Hadoop clustering
- Python (pandas, numpy, sklearn) modeling
- SQLite database querying
- Javascript (D3, React), Tableau interface
- Selenium web scraping

Group member contributions

- Work distribution should be equal (~14% per person), using multiple teams
- Web scraping: Sharmila
- Data modeling: Daniel, Travis, Sharmila
- Visualization: Ryan, Bo, Cody
- Clustering/Cloud: Harris, Bo, Cody