SÉRIE D'EXERCICES : RÉSOLUTION D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES EXERCICE 1

Préparé par : Unité Pédagogique de Mathématiques

Exercice 1

Enoncé

On considère le problème de Cauchy suivante

(PC):
$$\begin{cases} x'(t) = -\frac{1}{1+t^2}x(t) \\ x(0) = 5 \end{cases}$$

(1) Vérifier que la solution analytique du problème de Cauchy (*PC*) est donnée par:

$$x(t) = 5 \exp(-\arctan(t)) \text{ pour } t \ge 0$$

- (2) Donner le schéma d'Euler implicite (régressif) avec un pas de temps h constant.
- (3) En déduire que pour $h=\frac{1}{2}$, la solution numérique x_{n+1} (approchant la solution exacte x au point de discrétisation t_{n+1} , $n \ge 0$) du problème de Cauchy (PC) trouvée par la méthode d'Euler implicite vérifie la relation suivante :

$$x_{n+1} = \frac{4 + (n+1)^2}{6 + (n+1)^2} x_n, \quad \forall n \ge 0$$

- (4) Appliquer le schéma itératif de la question (3) pour résoudre numériquement (*PC*) sur l'intervalle [0, 2].
- (5) Calculer l'erreur commise par la méthode d'Euler implicite au point t=2.

Exercice 1

Solution

Question 1: Vérifier que la solution analytique du problème de Cauchy (PC) est donnée par : $x(t) = 5 \exp(-\arctan(t))$ pour $t \ge 0$.

Pour que $x(t) = 5 \exp(-\arctan(t))$ soit la solution analytique de (PC) pour $t \ge 0$ il faut vérifier que $t \mapsto x(t)$ de classe C^1 sur $[0, +\infty[$ et $t \mapsto x(t)$ vérifie le système (PC).

- Il est évident que $t \mapsto 5 \exp(-\arctan(t))$ est de classe C^1 sur $[0, +\infty[$.
- On a

$$x'(t) = -5(\arctan(t))' \exp(-\arctan(t)) = -5\frac{1}{1+t^2} \exp(-\arctan(t))$$

$$= -\frac{1}{1+t^2} x(t).$$

• De plus pour t = 0 on a

$$x(0) = 5 \exp(-\arctan(0)) = 5 \exp(0) = 5.$$

Donc x(t) vérifie les deux équations du système (PC). Ainsi $x(t) = 5 \exp(-\arctan(t))$ est la solution analytique de (PC) pour $t \ge 0$.

Question 2 : Donner le schéma d'Euler implicite (régressif) avec un pas de temps h constant.

On commence d'abord par la discrétisation de l'intervalle de temps avec un pas de temps h.

On pose: $t_0 = 0$, $t_1 = t_0 + h = h,...,t_n = t_0 + nh = nh,...$ et on note $x(t_n) = x_n$. Le schéma d'Euler implicite (régressif) avec un pas de temps h pour le système (PC) est donnée par

$$x'(t_{n+1}) = f(t_{n+1}, x_{n+1})$$
 avec $f(t, x) = -\frac{1}{1+t^2}x$

x'(t) est donnée par la méthode de dérivation numérique en $t=t_{n+1}$ par :

$$x'(t_{n+1}) = \frac{x(t_{n+1}) - x(t_n)}{t_{n+1} - t_n} = \frac{x(t_{n+1}) - x(t_n)}{h}$$

Par suite le schéma d'Euler implicite pour tout $n \ge 0$ s'écrit:

$$\frac{x(t_{n+1}) - x(t_n)}{h} = f(t_{n+1}, x_{n+1}) \Leftrightarrow \frac{x(t_{n+1}) - x(t_n)}{h} = -\frac{1}{1 + t_{n+1}^2} x(t_{n+1})$$

$$\Leftrightarrow x(t_{n+1}) = x(t_n) - h \frac{1}{1 + t_{n+1}^2} x(t_{n+1})$$

$$\Leftrightarrow x_{n+1} = x_n - h \frac{1}{1 + t_{n+1}^2} x_{n+1}$$

Donc, le schéma d'Euler implicite pour (PC)

$$\begin{cases} x_{n+1} = x_n - h \frac{1}{1 + t_{n+1}^2} x_{n+1}, & \forall n \ge 0 \\ x_0 = 5 \end{cases}$$

Question 3: En déduire que pour $h = \frac{1}{2}$, la solution numérique x_{n+1}

vérifie
$$x_{n+1} = \frac{4 + (n+1)^2}{6 + (n+1)^2} x_n, \ \forall n \ge 0$$

Pour $h = \frac{1}{2}$ alors on a $t_0 = 0$, $t_1 = t_0 + h = \frac{1}{2},...,t_n = t_0 + nh = \frac{n}{2}$ ainsi $t_{n+1}=rac{n+1}{2}$. Si on remplace t_{n+1} par $rac{n+1}{2}$ dans le schéma d'Euler implicite pour

(PC) alors on a :
$$\forall n \geq 0$$

$$x_{n+1} = x_n - h \frac{1}{1 + t_{n+1}^2} x_{n+1} \Leftrightarrow x_{n+1} = x_n - \frac{1}{2(1 + t_{n+1}^2)} x_{n+1}$$

$$\Leftrightarrow x_{n+1} = x_n - \frac{1}{2(1 + (\frac{n+1}{2})^2)} x_{n+1}$$

$$\Leftrightarrow x_{n+1} = x_n - \frac{1}{2(1 + \frac{(n+1)^2}{4})} x_{n+1}$$

$$\Leftrightarrow x_{n+1} (1 + \frac{1}{2(1 + \frac{(n+1)^2}{4})}) = x_n$$

$$\Leftrightarrow x_{n+1} (1 + \frac{1}{2 + \frac{n^2}{4}}) = x_n$$

Le schéma d'Euler implicite pour (*PC*) est :

$$\begin{cases} x_{n+1} = x_n \left(\frac{4 + (n+1)^2}{6 + (n+1)^2} \right), & \forall n \ge 0 \\ x_0 = 5 \end{cases}$$

Question 4 Appliquer le schéma itératif de la question (3) pour résoudre numériquement (PC) sur [0,2].

On cherche la solution du problème (*PC*) au point $t_0=0$, $t_1=\frac{1}{2}$, $t_2=1$, $t_3=\frac{3}{2}$ et $t_4=2$

- Pour $t_0 = 0$, $x_0 = 5$.
- Pour n = 0, $t_{n+1} = t_1 = \frac{1}{2}$ on a $x_1 = x_0 \left(\frac{4 + (0+1)^2}{6 + (0+1)^2}\right) = 5\left(\frac{5}{7}\right) = \frac{25}{7} = 3.5714$
- Pour n = 1 $t_{n+1} = t_2 = 1$ on a $x_2 = x_1 \left(\frac{4 + (1+1)^2}{6 + (1+1)^2} \right) = \frac{25}{7} \frac{8}{10} = \frac{20}{7} = 2.8571$
- Pour n = 2 $t_{n+1} = t_3 = \frac{3}{2}$ on a $x_3 = x_2 \left(\frac{4 + (2+1)^2}{6 + (2+1)^2} \right) = \frac{20}{7} \cdot \frac{13}{15} = \frac{52}{21} = 2.4761$
- Pour n = 3 $t_{n+1} = t_4 = 2$ on a $x_4 = x_3 \left(\frac{4 + (3+1)^2}{6 + (3+1)^2}\right) = \frac{52}{21} \frac{10}{11} = \frac{520}{231} = 2.2510$

La solution du problème (*PC*) au point $t_0=0$, $t_1=\frac{1}{2}$, $t_2=1$, $t_3=\frac{3}{2}$ et $t_4=2$ est donnée par le tableau suivant:

ti	t_0	t_1	t_2	<i>t</i> ₃	t_4
Xi	5	3.571428571	2.857142857	2.476190476	2.251082251

Table : Valeur de x_i à l'instant t_i .

Question 5 Calculer l'erreur commise par la méthode d'Euler implicite au point t=2.

L'erreur commise par la méthode d'Euler implicite au point t=2 est donnée par:

$$E(t=2) = |x(t=2) - x_4|$$

avec $x(2) = 5 \exp(-\arctan(2)) = 1.652499838$ par suite

$$E(t=2) = |1.652499838 - 2.251082251| = 0.598582413$$

