

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C03C 17/25, G02B 1/11 // C01B 33/148		A1	(11) 国際公開番号 WO99/29635
			(43) 国際公開日 1999年6月17日 (17.06.99)
<p>(21) 国際出願番号 PCT/JP98/05557</p> <p>(22) 国際出願日 1998年12月8日 (08.12.98)</p> <p>(30) 優先権データ 特願平9/338363 1997年12月9日 (09.12.97) JP</p> <p>(71) 出願人 (米国を除くすべての指定国について) 日本板硝子株式会社 (NIPPON SHEET GLASS CO., LTD.)[JP/JP] 〒541-0045 大阪府大阪市中央区道修町3丁目5番11号 Osaka, (JP)</p> <p>(72) 発明者 ; および (75) 発明者 / 出願人 (米国についてのみ) 高橋康史 (TAKAHASHI, Kouji) [JP/JP] 岡本秀樹 (OKAMOTO, Hideki) [JP/JP] 〒541-0045 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 Osaka, (JP)</p> <p>(74) 代理人 弁理士 松永孝義 (MATSUNAGA, Takayoshi) 〒103-0027 東京都中央区日本橋3丁目15番2号 高愛ビル Tokyo, (JP)</p>		<p>(81) 指定国 US, 欧州特許 (DE, FR, GB, IT).</p> <p>添付公開書類 国際調査報告書</p>	
<p>(54) Title: ANTIREFLECTION GLASS PLATE, PROCESS FOR PRODUCING THE SAME, AND ANTIREFLECTION COATING COMPOSITION</p> <p>(54) 発明の名称 反射防止ガラス板、その製造方法および反射防止膜用被覆組成物</p> <p>(57) Abstract An anti-visible-reflection glass plate comprising fine chain-silica particles and other silica in the content of 5-30 % by weight based on the fine silica particles and having a 110-250 nm thick film covering at least one of the glass substrate surfaces, the film having unevennesses formed on its surface. This plate has a low reflectivity at a high angle of incidence and is suitable for automotive windows improved in visibility.</p>			

(57)要約

本発明は、鎖状シリカ微粒子およびその鎖状シリカ微粒子の重量に対して5～30重量%の前記鎖状シリカ微粒子以外のシリカからなり、110～250nmの厚みを有する膜がガラス基板表面の少なくとも一方に被覆されており、その膜表面に凹凸が形成されている、可視光反射防止ガラス板である。このガラス板は高入射角での反射率が小さく、視認性が向上した自動車窓に適している。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦	ES スペイン	LI リヒテンシュタイン	SG シンガポール
AL アルバニア	FI フィンランド	LK スリ・ランカ	SI スロヴェニア
AM アルメニア	FR フランス	LR リベリア	SK スロヴァキア
AT オーストリア	GA ガボン	LT レント	SL シエラ・レオネ
AU オーストラリア	GB 英国	LT リトアニア	SN セネガル
AZ アゼルバイジャン	GD グレナダ	LU ルクセンブルグ	SZ スワジ兰
BA ボスニア・ヘルツェゴビナ	GE グルジア	LV ラトヴィア	TD ティアード
BB バルバドス	GH ガーナ	MC モナコ	TG トーゴー
BE ベルギー	GM ガンビア	MD モルドバ	TJ タジキスタン
BF ブルガリア・ファン	GN ギニア	MG マダガスカル	TM トルクメニスタン
BG ブルガリア	GW ギニア・ビサオ	MK マケドニア旧ユーゴスラヴィア	TR トルコ
BJ ベナン	GR ギリシャ	共和国	TT トリニダット・トバゴ
BR ブラジル	HR クロアチア	ML マリ	UA ウクライナ
BY ベラルーシ	HU ハンガリー	MN モンゴル	UG ウガンダ
CA カナダ	ID インドネシア	MR モーリタニア	US 米国
CF 中央アフリカ	IE アイルランド	MW マラウイ	UZ ウズベキスタン
CG コンゴ	IL イスラエル	MX メキシコ	VN ヴィエトナム
CH スイス	IN インド	NE ニジエール	YU ユーゴースラビア
CI コートジボアール	IS アイスランド	NL オランダ	ZA 南アフリカ共和国
CM カメルーン	IT イタリア	NO ノールウェー	ZW ジンバブエ
CN 中国	JP 日本	NZ ニュージーランド	
CU キューバ	KE ケニア	PL ポーランド	
CY キプロス	KG キルギスタン	PT ポルトガル	
CZ チェコ	KP 北朝鮮	RO ルーマニア	
DE ドイツ	KR 韓国	RU ロシア	
DK デンマーク	KZ カザフスタン	SD スーダン	
EE エストニア	LC セントルシア	SE スウェーデン	

明細書

反射防止ガラス板、その製造方法および反射防止膜用被覆組成物

技術分野

本発明は反射防止ガラス板、特に可視光反射率が小さく、自動車窓に適したガラス板、およびそれを製造する方法ならびに反射防止膜用被覆組成物に関する。

背景技術

従来、ガラス板その他のガラス物品の表面で可視光が反射して、透視性および光透過率が低下したり、眩しくなることを防止するために、ガラス物品の表面に反射防止処理を施すことが行われている。

例えば5～30 nmの粒子径を有するシリカゾルと、アルコキシランの加水分解物を溶媒に含有させた塗布液を基材に塗布、硬化した低屈折率反射防止膜が知られている（特開平8-122501号）。

自動車のフロントウィンドウガラスにおいて、車内のインパネ（インストルメントパネル）、ダッシュボード等からの光がフロントウィンドウガラスの表面で反射して、インパネ、ダッシュボードの反射像が運転者の視界に入るために、運転者の前方の視認性が低下する問題がある。インパネ、ダッシュボードから発して、フロントウィンドウガラスに対してかなり大きな入射角で入射し、反射した光が運転者の目に入るため、この視認性を向上するためには、高入射角（例えば60度）でのフロントウィンドウガラスの反射率を低減する必要がある。そして上記低屈折率反射防止膜では高入射角での反射率の低減には十分でなく、視認性が十分に高いとは言えない。

そこで、本発明は高入射角での可視光の反射率が小さく、視認性が向上した、自動車窓に適した反射防止ガラス板、その製造方法および反射防止膜用被覆組成物を提供することを目的とする。

発明の開示

本発明は、鎖状シリカ微粒子およびその鎖状シリカ微粒子の重量に対して5～30重量%の前記鎖状シリカ微粒子以外のシリカからなり、110～250nmの厚みを有する膜がガラス基板表面の少なくとも一方に被覆されており、その膜表面に凹凸が形成されている、可視光反射防止ガラス板である。

また本発明は、鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなり、110～250nmの厚みを有する膜がガラス基板表面の少なくとも一方に被覆されており、膜内で互いに隣接する鎖状シリカ微粒子の間に空隙が生じていてその膜が1.25～1.40の屈折率を有しており、その膜表面に凹凸が形成されている、高入射角での反射率が小さい可視光反射防止ガラス板である。

本発明において、ガラス基板の表面に鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなる反射防止用の膜が被覆されており、その膜の表面には、そこに突出して存在する鎖状シリカ微粒子の表面形状による凹凸が形成されている。

上記膜は鎖状シリカ微粒子およびそれよりも少量の、好ましくは鎖状シリカ微粒子の重量に対して5～30重量%の、微粒子形状をもたない前記鎖状シリカ微粒子以外のシリカからなり、前記鎖状シリカ微粒子以外のシリカはバインダーとして鎖状シリカ微粒子同士の接着およびシリカ微粒子とガラス基板表面との接着に役立っている。

上記鎖状シリカ微粒子としては、直線状にまっすぐに伸びた形状のものでもよいが、二次元的に、より好ましくは三次元的に湾曲した形状のものが最も好ましく用いられる。鎖状形状のシリカ微粒子を用いることにより、膜中で、隣接する鎖状微粒子同士の間には、5～20nm幅の間隙（間隔）が形成される。この間隙は、もし鎖状シリカ微粒子の代わりに同重量の球状シリカ微粒子を用いたとしたときに形成される間隙に比して、はるかに大きな総体積を有する。しかも鎖状微粒子同士を接着するバインダーとしての前記鎖状シリカ微粒子以外のシリカの使用量が少ないので、上記間隙がシリカバインダーで充填しつくされるされることはなく、間隙の大部分が、空気または気体が占める空隙（空間）として残存する。その空隙の存在により、膜全体としての屈折率の値はシリカの屈折率（約1.45）よりも小さくなつて1.25～1.40となる。理論的に反射率がゼロと

なる反射防止膜の屈折率の値は、ガラス基板の屈折率（1.50）の平方根値、すなわち1.225であるが、本発明の反射防止膜の屈折率をこの値に近づけることができる。

膜中の、バインダーとしての前記鎖状シリカ微粒子以外のシリカの量があまり少なすぎて、例えば鎖状シリカ微粒子の重量に対して5重量%未満である場合には、鎖状シリカ微粒子の接着が不十分となり、膜の機械的強度が低下する。また逆にシリカの量があまり多すぎて、例えば鎖状シリカ微粒子の重量に対して30重量%を超える場合には、鎖状シリカ微粒子同士の間の間隙をシリカが埋めつくしてしまって空隙が残らないので、膜の屈折率を小さくすることができなくなり、反射率を低くすることができなくなる。上記の空隙の体積は、実測した上記膜の屈折率と、鎖状シリカ微粒子に対し前記鎖状シリカ微粒子以外のシリカ量を多くして、鎖状シリカ微粒子同士の間隙を前記鎖状シリカ微粒子以外のシリカで埋め尽くした膜の屈折率（約1.45）との差から計算して、膜全体の体積の50～80%であると推定される。

また、膜表面には主として鎖状シリカ微粒子の凸表面による微少の凹凸が形成されているので、反射光を拡散させて反射像の映り込みを防止し、しかも透視像の解像度が低下することもない。そして膜中のバインダーとしてのシリカの量があまり多すぎると、鎖状シリカ微粒子全体が鎖状シリカ微粒子以外のシリカの下に沈み込んでしまう。そのために、後述する膜表面の算術平均粗さ（Ra）が5nm未満となり、また膜表面の凹凸の平均間隔（Sm）が300nmを超えやすくなって、反射像の映り込みを効果的に防止することができなくなる。従って、膜の機械的強度を低下させることなく膜の屈折率を低くし、しかも膜表面に上記凹凸を形成させるためには、膜内の前記鎖状シリカ微粒子以外のシリカの量は、鎖状シリカ微粒子の重量に対して5～30重量%とすることが好ましく、より好ましくは10～20重量%である。

上記鎖状シリカ微粒子の大きさは、10～20nmの平均直径と60～200nmの平均長さを有することが好ましい。ここで平均直径とは、取り出した100個の試料のそれぞれの直径を電子顕微鏡により測定し、その測定値にその体積に比例したウェイトをつけて平均を求めた値であり、同様に平均長さとは取り出

した100個の試料のそれぞれの長さ（湾曲している場合はその曲がりに沿った長さ）を電子顕微鏡により測定し、その測定値にその体積に比例したウェイトをつけて平均を求めた値である。

鎖状シリカ微粒子の平均直径が10nm未満または平均長さが60nm未満では、（1）隣接する微粒子同士の間の間隙の総体積が小さくなり、したがって空隙の総体積が小さくなって、膜としての屈折率の値を小さくすることができなくなり、また、（2）得られる膜表面の算術平均粗さ（Ra）が5nm未満となつて、反射像の映り込みを防止するに十分な効果的な凹凸を形成できなくなるので好ましくない。また平均直径が20nmを超えたり、平均長さが200nmを超えると、膜表面の算術平均粗さ（Ra）が50nmより大きくなり、ヘイズが発生し易くなったり透視像の解像度が低下しやすくなつて、視認性が低下するので好ましくない。

ここで、算術平均粗さ（Ra）および凹凸の平均間隔（Sm）は、原子間力顕微鏡（AFM）（セイコー電子工業（株）製、走査型プローブ顕微鏡「SP13700」、カンチレバー；シリコン製「SI-DF20」）を用いて、二次元で定義されるJIS B 0601（1994）を三次元に拡張した方法で測定することができる。この場合、試料の測定面積は1μm×1μmの正方形であり、測定点数 512×256点、スキャン速度1.02Hz、DFM（サイクリックコンタクトモード）にて表面形状を測定し、ローパスフィルターによる補正と、測定データのレベルリング補正（最小二乗近似によって曲面を求めてフィッティングし、データの傾きを補正し、更にZ軸方向の歪みを除去する）を行い、表面粗さRaおよびSm値を算出した。原子間力顕微鏡の他に、電子顕微鏡（例えば、株式会社日立製作所製H-600）を用いて観察、測定した断面曲線から計算することができる。

ガラス基板の表面に、ガラス基材の屈折率よりも小さな屈折率（n）と膜厚（d）を有する膜を被覆したとき、入射角αでの反射率が最小になる条件は、λを光の波長とし、mをゼロまたは正の整数として、下記数式1で表される。

$$d (n^2 - \sin^2 \alpha)^{1/2} = \lambda (1 + 2m) / 4 \quad (1)$$

高入射角、例えば60度の入射角での可視光反射率が最小になる膜厚（d）は、上記数式1に $\alpha = 60$, $m = 0$ を代入して得られる下記数式2で表される。数式2において、屈折率nの膜は、可視光域の380～780nmのいずれかの波長入において、下記式の膜厚（d）を満足すれば、その波長の光の反射率を最小にすることができる。なお、mを1または2以上とすると、膜厚が非常に大きくなつて可視光の吸収が大きくなるので好ましくない。本発明における鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなる膜の屈折率は上述のように1.25～1.40であるので、可視光反射率が最小となる膜厚は、上記数式2から86～216nmとなる。しかし、本発明における膜厚は、ガラス板表面から、表面凹凸を有する膜の凸部頂上までの高さと定義する。従つてこの定義の膜厚は上記数式2の膜厚に比して、膜表面の算術平均粗さ（Ra）と同程度だけ大きくなるので、実際には、本発明における膜厚は110～250nmであることが好ましい。

$$d = (\lambda / 4) \times (n^2 - 3 / 4)^{-1/2} \quad (2)$$

鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなる膜はガラス基板の一方表面または両表面に形成される。ガラス板の両表面が空気、気体のような屈折率が1に近い媒体に面して使用される場合は、この膜をガラス基板の両表面に形成させる方が高い反射防止効果が得られる。しかし、ガラス基板の一方表面がガラス基板の屈折率に近い媒体に面して使用される場合、例えば2枚のガラス板がその間にポリビニルブチラールのような透明樹脂層を介して接合される場合には、ガラス板と透明樹脂層との界面での可視光反射は無視することができる。鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなる膜は、透明樹脂層に面するガラス板表面には形成させずに、各ガラス板の外側表面のみに形成させるだけで十分である。

鎖状シリカ微粒子は、溶媒分散ソルの形で好ましく用いられる。鎖状シリカ微粒子ソルの例としては、例えば日産化学工業株式会社製の「スノーテックス-〇

UP」、「スノーテックス-UP」が挙げられる。これらは10～20nmの平均直径と60～200nmの平均長さを有し、三次元的に湾曲した形状を有する。

上記微粒子の溶媒は、実質的に微粒子が安定に分散していれば、特に限定されないが、水、メタノール、エタノール、プロパノール、エチルセロソルブ、ブチルセロソルブ、プロピルセロソルブ等の単体または混合体が好ましく、水、プロピルセロソルブがさらに好ましい。これら水および低級アルコールは、上記有機金属化合物を含む溶液と簡単に混じり合い、また成膜後の熱処理によって簡単に除去できるので良い。このうち水およびプロピルセロソルブは、製造環境上最も好ましい。

本発明において、ガラス基板への表面凹凸を有するシリカ膜の被覆は、例えば、鎖状シリカ微粒子と、加水分解・縮重合可能な有機珪素化合物、クロロシリル基含有珪素化合物およびそれらの加水分解物からなる群より選ばれた、少なくとも1種の珪素化合物とを含む液をガラス基板上に塗布して形成する。

上記微粒子を上記加水分解・縮重合可能な有機珪素化合物や、クロロシリル基含有珪素化合物を含む溶液に添加する際、分散助剤を添加しても良い。分散助剤は特に限定されず、一般に用いられる添加剤、例えば、リン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸カリウム、塩化アルミニウム、塩化鉄等の電解質、各種界面活性剤、各種有機高分子、シランカップリング剤、チタンカップリング剤等が用いられ、その添加量は上記コロイドや微粒子に対して通常0.01～5重量%である。

上記鎖状シリカ微粒子とともに、液中に含ませる加水分解・縮重合可能な有機珪素化合物は、加水分解、脱水縮合を行うものであれば基本的にはどんな化合物でも良いが、珪素のアルコキシドや珪素のキレートが好ましい。

珪素アルコキシドとして具体的には、珪素のメトキシド、エトキシド、プロポキシド、ブトキシドなどが、単体あるいは混合体として好ましく用いられ、珪素キレートとしては珪素のアセチルアセトネート錯体が好ましく用いられる。

また、上記有機珪素化合物として、高分子量タイプのアルキルシリケート、例えばコルコート株式会社製「エチルシリケート40」や、三菱化学株式会社製「MS56」なども用いることができる。

上記有機珪素化合物加水分解物として、市販のアルコキシシラン加水分解液、例えばコルコート株式会社製「HAS-10」、株式会社日板研究所製「セラミカG-91」、「G-92-6」、日本曹達株式会社製「アトロンNSI-500」などを用いることができる。

上記鎖状シリカ微粒子とともに、液中に含ませるクロロシリル基含有化合物とは、クロロシリル基 ($-SiCl_{n}X_{3-n}$ 、ここで n は 1, 2, または 3 であり、 X は水素、またはそれぞれ炭素数が 1 ~ 10 のアルキル基、アルコキシ基、またはアシロキシ基である) を分子内に少なくとも 1 個有する化合物であり、その中でも、少なくとも 2 個の塩素を有する化合物が好ましく、シラン Si_nH_{2n+2} (ここで n は 1 ~ 5 の整数) の中の少なくとも 2 個の水素を塩素で置換し、他の水素を必要に応じて上記アルキル基、アルコキシ基、またはアシロキシ基で置換したクロロシランおよびその縮重合物が好ましく、例えば、テトラクロロシラン (四塩化珪素、 $SiCl_4$)、トリクロロシラン ($SiHCl_3$)、トリクロロモノメチルシラン ($SiCH_3Cl_3$)、ジクロロシラン (SiH_2Cl_2)、および $Cl-SiCl_3$ (n は 1 ~ 10 の整数) 等を挙げることができる。上記クロロシリル基含有化合物の加水分解物も使用することができ、これらの中から、単独でまたは複数を組み合わせて使用することができるが、最も好ましいクロロシリル基含有化合物はテトラクロロシランである。クロロシリル基は反応性が非常に高く、自己縮合または基板表面と縮合反応をすることにより強固な接着力を示す。

上記鎖状シリカ微粒子を分散させ、そして上記有機珪素化合物またはクロロシリル基含有化合物、またはそれらの加水分解物を含む溶液の溶媒は、実質的に上記有機珪素化合物またはその加水分解物を溶解すれば基本的に何でも良いが、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、プロピルセロソルブが最も好ましい。上記溶媒に溶解させる上記有機珪素化合物の濃度があまり高すぎると、分散させる鎖状シリカ微粒子の量も関係するが、膜中の上記微粒子の間に十分な空隙を生じさせることができなくなるので、20重量%以下とすることが好ましく、1 ~ 20重量%の濃度が好ましい。そして溶液中の鎖状シリカ微粒子の量に対する、上記有機珪

素化合物またはクロロシリル基含有化合物、またはそれらの加水分解物の量（合計）は、シリカ換算で、鎖状シリカ微粒子100重量%に対して5～30重量%が好ましい。

上記有機珪素化合物の加水分解には水が必要である。これは、酸性、中性の何れでも良いが、加水分解を促進するためには、塩酸、硝酸、硫酸、酢酸、クエン酸、スルホン酸等で酸性にした水を用いるのが好ましい。酸の添加量は特に限定されないが、有機珪素化合物に対してモル比で0.001～2が良い。添加酸量が、モル比で0.001より少ないと、有機珪素化合物の加水分解の促進が充分でなく、またモル比で2より多くても、もはや加水分解促進の効果が向上せず、好ましくない。

上記有機珪素化合物の加水分解に必要な水の添加量は、有機珪素化合物に対してモル比で0.1～100が良い。水添加量がモル比で0.1より少ないと、有機珪素化合物の加水分解の促進が充分でなく、またモル比で100より多いと、液の安定性が低下する傾向になり好ましくない。

上記クロロシリル基含有化合物を用いる場合には、必ずしも水や酸の添加は必要ではない。付加的に全く水や酸を添加しなくても、溶媒中に含まれていた水分や雰囲気中の水分などにより加水分解が進行する。また、この加水分解に伴って液中に塩酸が遊離し、さらに加水分解が進行する。しかし、付加的に水や酸を加えても何ら差し支えない。

上記鎖状シリカ微粒子と、上記有機珪素化合物やクロロシリル基含有化合物、またはそれらの加水分解物を溶媒とともに混合し、必要に応じて水、酸触媒、および分散助剤を添加して、基板上に凹凸を形成するためのコーティング液を調製する。この時、有機金属化合物とクロロシリル基含有化合物は、単独で用いても混合して用いてもどちらでも良い。このコーティング液の好ましい原料配合比は、次の表1の通りである。ここで珪素化合物とは、上記有機珪素化合物やクロロシリル基含有化合物、またはそれらの加水分解物をその合計で表している。

[表1]

珪素化合物	100重量部
鎖状シリカ微粒子	100～800重量部
水	4～150重量部
酸触媒	0.00001～5重量部
分散助剤	0.001～10重量部
溶媒	500～10000重量部

上記有機金属化合物またはクロロシリル基含有化合物を溶媒に溶かし、触媒と水を加え、10℃と溶液の沸点の間の所定の温度で、5分間から2日間加水分解する。そこへ鎖状シリカ微粒子と必要に応じ分散助剤を加えて、必要に応じさらに10℃と溶液の沸点の間の所定の温度で5分間から2日間反応させ、コーティング液を得る。なお、クロロシリル基含有化合物を用いる場合には、触媒および水は特別に添加する必要はない。また鎖状シリカ微粒子は、上記加水分解工程の前に加えても良い。また、有機珪素化合物の加水分解工程を省略するために、上記市販の有機金属化合物加水分解物溶液を用いても良い。得られたコーティング液は、その後コーティング方法に応じて適当な溶媒で希釈しても構わない。

上記コーティング液をガラス基板上に塗布し、乾燥して、ガラス基板上にシリカ凹凸膜を形成する。

上記塗布の方法は、公知の技術を用いればよく特に限定されないが、スピンドルコーティング、ロールコーティング、スプレーコーティング、カーテンコーティング等の装置を用いる方法や、浸漬引き上げ法（ディップコーティング法）、流し塗り法（フローコーティング法）などの方法や、スクリーン印刷、グラビア印刷、曲面印刷などの各種印刷法が用いられる。

ガラス基板によっては、上記コーティング液をはじくなどして均一に塗布できない場合があるが、これは基板表面の洗浄や表面改質を行うことで改善できる。洗浄や表面改質の方法としては、アルコール、アセトン、ヘキサンなどの有機溶媒による脱脂洗浄、アルカリや酸による洗浄、研磨剤により表面を研磨する方法、

超音波洗浄、紫外線照射処理、紫外線オゾン処理、プラズマ処理などが挙げられる。

塗布後のガラス基板は、室温から200℃の間の温度で1分間から2時間乾燥することにより、シリカ凹凸膜が形成される。必要に応じてその後に、400℃～750℃の間の温度で5秒から5時間熱処理すると、これにより、ガラス基板表面のシリカ凹凸膜は強固になる。この凹凸膜は鎖状シリカ微粒子とシリカ（有機金属化合物から由来する）のマトリックスからなり、鎖状シリカ微粒子がシリカマトリックスによりガラス基板に固着され、鎖状シリカ微粒子の表面形状がこの膜の凹凸を形成する。

上記塗布される前のガラス基板としては、曲げ工程および合わせ工程を終えた自動車用のウィンドシールド、リアウインドウ、フロントドア、またはリアドア等のガラス板でもよく、また合わせ工程の前の、または曲げ工程の前の、または所定寸法に切断される前のガラス板であってもよい。

シリカ凹凸膜を被覆した自動車用ガラス板は、更にその表面に撥水性被膜または防曇性被膜を被覆することができる。撥水性被膜を被覆することにより撥水性能が得られ、また汚れが付着した場合、汚れ除去性も改善できる。また防曇性被膜を被覆することにより防曇性能が得られ、また汚れが付着した場合、汚れ除去性も改善できる。ガラス板（合わせガラス板でもよい）の両表面にシリカ凹凸膜を被覆し、その一方の表面または両表面の上に撥水性被膜を被覆してもよく、ガラス板の片側表面にシリカ凹凸膜を被覆し、シリカ凹凸膜および無処理ガラス表面の両方、またはいずれか一方の上に撥水性被膜を被覆してもよい。シリカ凹凸膜の上に撥水性被膜が被覆されていても、可視光反射防止性能および視認性が低下することはない。

同様にガラス板（合わせガラス板でもよい）の両表面にシリカ凹凸膜を被覆し、その少なくとも一方の表面上に防曇性被膜を被覆してもよく、ガラス板（合わせガラス板でもよい）の片側表面にシリカ凹凸膜を被覆し、シリカ凹凸膜および無処理ガラス表面の両方またはそのいずれか一方の上に防曇性被膜を被覆してもよい。

また、本発明が自動車用窓に適用される場合、ガラス板（合わせガラス板でも

よい)の両側表面にシリカ凹凸膜が被覆され、片側の前記膜の表面(車内側)に防曇性被膜が被覆され、他方側の前記層膜面(車外側)に撥水性被膜が被覆されていることが好ましい。

発明を実施するための最良の形態

以下、本発明の実施の形態を説明するが、本発明はこれらによって限定されるものではない。

[実施例 1]

エチルシリケートの加水分解縮重合液(商品名: HAS-10、コルコート株式会社製、 SiO_2 含量 10 重量%) 3.0 重量部と、平均直径が約 15 nm で平均長さが約 170 nm の鎖状シリカコロイド(商品名: スノーテックス OUP、日産化学工業株式会社製、固体分 15 重量%、分散助剤含有) 13.3 重量部と、2-プロパノール 74.9 重量部を室温で混合し、これを 2-プロパノールで 3 重量倍に希釈して、室温で 2 時間攪拌して、低屈折率凹凸層形成用コーティング液を得た。このコーティング液中には、鎖状シリカ微粒子およびエチルシリケートが、それぞれシリカ換算で 100 : 15 の重量比で含有されていた。また、このコーティング液は、珪素化合物 100 重量部に対して、鎖状シリカ微粒子を 670 重量部、水分を 45 重量部、酸触媒を 4.5 重量部、および溶剤をそれぞれ含有していた。

酸化セリウム系研磨剤で表面研磨・洗浄し、さらに純水中で超音波洗浄を行い乾燥したソーダライム珪酸塩ガラス板(65 mm × 150 mm × 3 mm)を、前記低屈折率凹凸層形成用コーティング液に浸漬し、20 cm/分の速度で引き上げることにより、コーティング液をガラス板の両表面上に塗布した。このガラス板を 100 °C で 30 分間乾燥させ、さらに 250 °C で 30 分間乾燥させた後、500 °C のオーブン内で 1 時間熱処理し、厚み 140 nm のシリカ凹凸膜が各表面に形成されたガラス板を得た。なおこの膜厚 140 nm は、入射角(α)が 60 度のときに反射率が最小となる条件、すなわち膜の屈折率(n) = 1.340 として、550 nm の波長(λ)の光に対して膜厚が、上記式 2 を計算した値 134 nm にほぼ等しい。

シリカ凹凸膜の厚み、膜の屈折率、膜空隙率および膜表面粗度、ならびにシリカ凹凸膜付きガラス板の可視光反射率、および視認性の測定は次のようにして行った。

シリカ凹凸膜の厚み；シリカ凹凸膜が被覆されたガラス板の断面を電子顕微鏡で倍率10万倍にて観察し、ガラス板表面から凹凸膜の凸部頂上までの高さを膜厚とした。

膜の屈折率；エリブソメーターにより550nmの波長の光での値を求める。

膜空隙率；電子顕微鏡写真から空隙の大きさを測定して計算する。

膜表面粗度；原子間力顕微鏡（セイコー電子株式会社製S P I 3700）を用いて膜を観察して、測定した断面曲線から 算術平均粗さ（Ra値）、凹凸の平均間隔（Sm値）はJ I S B 0601（1994）記載の方法により定義される値を計算した。

可視光反射率；入射角12度および60度での可視光（380～780nm波長）の反射率を、分光光度計（M C P D - 1000、大塚電子株式会社製）を用いて、ガラス板の両面からの反射光を測定した。

視認性；自動車のウィンドシールドの片側（右半分）にシリカ凹凸膜付きガラス板を、他の片側（左半分）は無処理のガラス板をそれぞれ組み付け、車内側から車外を見た場合、前方の風景の見やすさ、すなわちインパネの写り込みによる視界妨害の程度を左右のガラス板を比較して見ることで、官能評価した。判定基準は下記表2に示す基準で1～5段階で行った。

それらの測定結果を表3に示す。

[表2]

点数	視認性官能評価基準
	基準
1	インパネ写り込みが気になり、前方風景が見にくく。
2	インパネ写り込みが少し気になるが注意して見ると前方風景が見える。
3	インパネ写り込みは少しあるが前方風景が容易に見える。
4	インパネ写り込みはほとんどなく前方風景がほぼ明瞭に見える。
5	インパネ写り込みが全くなく前方風景が明瞭に見える。

[比較例1]

実施例1で使用したコーティング液の鎖状シリカコロイド13.3重量部の代わりに、粒子粒径50nmのシリカコロイド（商品名：スノーテックスOL、日産化学工業株式会社製、固形分20重量%）10.0重量部を使用したコーティング液（シリカ微粒子およびエチルシリケートが、それぞれシリカ換算で100:15の重量比で含有）を用いて、実施例1と同様にガラス板の両表面に浸漬塗布、乾燥、熱処理して厚み118nmのシリカ凹凸膜が各表面に形成されたガラス板を得た。なおこの膜厚118nmは、入射角(α)が60度のときに反射率が最小となる条件、膜の屈折率(n)=1.454として、550nmの波長入の光に対して光学膜厚が4/ λ になる条件、すなわち膜厚は、上記数式2を計算した値118nmに等しい。得られたシリカ凹凸膜の厚み、膜の屈折率、膜空隙率および膜表面粗度、ならびにシリカ凹凸膜付きガラス板の可視光反射率、および視認性の測定結果を表3に示す。

[比較例2および3]

実施例1で使用したコーティング液のエチルシリケートの加水分解縮重合液の使用量3.0重量部を20重量部として、コーティング液中の鎖状シリカ微粒子およびエチルシリケートを、それぞれシリカ換算で50:50の重量比としたほかは、実施例1と同様にガラス板の両表面に浸漬塗布、乾燥、熱処理して厚み1

20 nmのシリカ凹凸膜が各表面に形成されたガラス板を得た（比較例2）。

なお、この膜厚120 nmは、入射角（ α ）が60度のときに反射率が最小となる条件、膜の屈折率（n）=1.432として、550 nmの波長入の光に対して光学膜厚が $4/\lambda$ になる条件、すなわち膜厚は、上記数式2を計算した値121 nmにほぼ等しい。

また、コーティング液中の鎖状シリカコロイドの使用量をゼロとしたほかは、実施例1と同様に、ガラス板の両表面に浸漬塗布、乾燥、熱処理して厚み115 nmのシリカ膜が、各表面に形成されたガラス板を得た（比較例3）。

なお、この膜厚115 nmは、入射角（ α ）が60度のときに反射率が最小となる条件、膜の屈折率（n）=1.473として、550 nmの波長入の光に対して膜厚は、上記数式2を計算した値115 nmに等しい。得られたシリカ凹凸膜の厚み、膜の屈折率、膜空隙率および膜表面粗度、ならびにシリカ凹凸膜付きガラス板の可視光反射率、および視認性の測定結果を表3に示す。

なお、未処理のガラス板（屈折率1.5）の12度および60度入射角の可視光線反射率は、それぞれ約7%および約14%である。

[表3]

	膜厚 (nm)	屈折率 (%)	空隙率 (体積%)	表面粗度 (nm)		可視光 反射率(%)		視認性
				Ra	Sm	入射角 12度	入射角 60度	
実施例1	140	1.340	60	7	20	0.8	1.9	5
比較例1	118	1.454	15	6	20	1.8	4.3	4
比較例1	120	1.432	2	5	-	4	8	3
比較例3	115	1.473	0	0	-	8	14.5	1

[実施例2]

上記実施例1で使用したソーダライム珪酸塩ガラス板（65 mm×150 mm×3 mm）の代わりに、同じソーダライム珪酸塩ガラス組成を有する自動車ウィ

ンドシールド用ガラス板（約150cm×約60cm×3mm）を用い、実施例1と同様に浸漬塗布、乾燥した後、公知の曲げ工程（570℃で15分間加熱）により熱処理して、厚み120nmのシリカ凹凸膜が各表面に形成された自動車ウィンドシールド用ガラス板を製造した。

このガラス板について、凹凸膜の厚み、膜の屈折率、膜空隙率、膜表面粗度、可視光反射率、および視認性を測定したところ、実施例1と同じ結果が得られた。そして、膜の強度については、市販のガラスクリーナーを付けた綿布を用いて500gfの荷重をかけながら100往復擦りを行った後、その膜を肉眼で観察して異常の有無を調べ、これを1回と数えて繰り返して試験を行った。実施例1では300回の擦りで異常を示したが、実施例2では5000回の擦りまで異常を示さなかった。

上記のシリカ凹凸膜付き自動車ウィンドシールド用ガラス板を2枚準備し、公知の合わせ工程を通過させて、厚みが0.7mmのポリビニルブチラール中間膜を介して接合された自動車ウィンドシールド用合わせガラス板を得た。この合わせガラス板は実施例1とほぼ等しい可視光反射率、および視認性を示した。

[実施例3]

温度計、攪拌機および冷却器を備えた1リットルのガラス製の反応器に、式 $C_8F_{17}CH_2CH_2Si(OCH_3)_3$ で示されるパーフロロ基含有有機珪素化合物10.0g、下記化学式(1)で示される加水分解性基含有メチルポリシロキサン化合物10.0g、t-ブタノール360.0g、および0.1Nの塩酸水溶液1.94gを仕込み、80℃で5時間共加水分解反応させ、さらに、疎水性溶媒であるn-ヘキサン160.0gを加えて室温で10時間攪拌した。

次いで、これに下記化学式(2)で示される、オルガノポリシロキサン10.0g、およびメタンスルホン酸5.0gを加え、10分間攪拌し、撥水膜形成用組成物を得た。

前記実施例1で得られたシリカ凹凸層被覆ガラス板の一方の凹凸層の表面に、上記撥水膜形成用組成物0.1mLを綿布で10回塗りのばし、乾布で余剰の塗布液を拭き取った後、100℃で10分間熱処理して、膜厚が40nmの撥水膜を有する低反射撥水性ガラス板を得た。また撥水膜を肉眼で観察して異常の有無を調べたが外観品質は良好であった。

得られた撥水膜の水との接触角は、接触角計（協和界面科学株式会社製「CA-DT」）を用いて、直径約2mmの水滴の接触角を測定し、耐摩耗性、耐薬品性および耐候性試験を実施した。接触角が高いほど撥水性が優れていることを示すが、結果は表4に示す通り、耐候性試験後の接触角は低いものの、初期接触角、耐摩耗性試験後の接触角および耐薬品性試験後の接触角はいずれも95度以上であって非常に優れていた。そしてこの低反射撥水性ガラス板について、その撥水膜面とは反対の表面から光を入射させて、可視光反射率を測定し、また撥水膜面を車外側にして視認性を測定したところ、初期値、耐摩耗性試験後の値、および耐薬品性試験後の値はいずれも実施例1と全く同等の結果が得られた。

なお、ここで、耐摩耗性試験は、新東科学製の往復摩耗試験機に乾布を取り付けて、荷重0.3kg/cm²で撥水膜表面を3000往復させた後の接触角を測定することにより、耐薬品性試験は、飽和した石灰水溶液に24時間浸漬した後の接触角を測定することにより、耐候性は、耐候性試験機「アイス-パーUVテスターW13」（岩崎電気製）を用いて、照度76±2mW/m²、ブラック

パネル温度48±2℃、1時間ごと30秒間ずつのシャワリングという条件で、400時間紫外線照射後の接触角を測定することにより、それぞれ実施した。

[表4]

	撥水膜		初期接触角	耐摩耗性	耐薬品性	耐候性
	膜厚(μm)	外観品質(度)	(度)	(度)	(度)	
実施例3	40	良好	107	100	101	85

[実施例4]

1000m lの市販エタノール(99.5%)に、0.1N酢酸を1m l添加し攪拌した。このエタノールを主体とする液796gに[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン(チッソ株式会社製「S I M 6 4 9 2.7」、含有率90%、分子量460~590、エチレンオキサイド単位6~9)を4g添加し、30℃で1時間攪拌して、オルガノシラン塗布液を調製した。

前記実施例1で得られたシリカ凹凸層被覆ガラス板を、純水中で超音波洗浄し乾燥した後、上記オルガノシラン塗布液に浸漬し、5cm/分の速度で引き上げることにより、液をシリカ凹凸膜付ガラス板の両表面上に塗布した。このガラス板を120℃で30分間乾燥・熱処理し、室温まで冷やした後純水で軽く洗浄して、ポリエチレンオキシド基を分子内に含む、厚みが約8nmのオルガノシラン層が形成された防曇性シリカ凹凸膜付ガラス板を得た。

この低反射防曇性ガラス板について、光を入射させて可視光反射率を測定し、また視認性を測定したところ、実施例1と全く同等の結果が得られた。

また、この防曇性シリカ凹凸膜付ガラス板について、次に示す方法で、表面粗度測定、接触角測定、初期および繰り返し防曇性評価を行った。これらの測定結果は表5に示すように優れた防曇性能を有し、汚れが吸着し難く、良好な防曇維持性および防汚性能を有することがわかった。

[表 5]

サンプル	表面粗度 (nm)		初期			繰り返し防曇性	
	R a	S m	接触角 (度)	曇り 評価	歪み 評価	曇り 評価	歪み 評価
実施例 4	6	20	3	◎	◎	4	5

表面粗度、接触角測定

上記オルガノシラン被覆シリカ凹凸膜が形成されたガラス板について、算術平均粗さ (R a)、および凹凸の平均間隔 (S m) を、実施例 1 のシリカ凹凸膜についての測定と同じ方法で求めた。また、0.4 mg の水滴に対する接触角を、接触角計（協和界面科学株式会社製「CA-DT」）を用いて測定した。接触角の値が小さいほど防曇性が優れていることを示す。

防曇性評価

上記防曇性シリカ凹凸膜が形成されたガラス板を、温度 5 °C、相対湿度 10 % の恒温恒湿槽内に置き 10 分間静置した後、温度 25 °C、相対湿度 70 % の恒温恒湿槽内に移し、30 秒経過したときから 2 分経過するまでの間の曇りの程度と 2 分経過後の透視像の歪みの程度の両方で観察して、ガラス板の表面の微小水滴付着状態を調べ、表 6 に示す 4 段階評価を行った。

[表6]

曇り評価	曇り状態
◎	全く曇らない
○	薄く曇る
△	ゆっくりだが濃く曇る
×	すぐ濃く曇る
透視歪み評価	透視像歪み状態
◎	全く歪まない
○	少し歪む
△	かなり歪む
×	激しく歪む

繰返し防曇性評価

J I S S 4 0 3 0 - 1 9 9 5 「眼鏡用くもり止め剤試験方法」に記載の冷却装置（透明プラスチック製）に上記サンプル板を設置し、サンプル裏面を冷却水に接触させサンプル温度を20℃に保った。サンプルをこの状態で冷却したまま、温度45℃、相対湿度80%RHの恒温恒湿槽内に置き、3分間保った。その後、サンプルを冷却装置に着けたまま、これを温度20℃、相対湿度10%RHの恒温恒湿槽内に置き、3分間乾燥させた。この高湿度雰囲気暴露と低湿度雰囲気暴露の操作を1サイクルとし、30サイクルの繰返しを行った。

この繰返し操作の後、プラスチック板上に印刷した透視歪み判定用テストチャートを上記冷却装置の裏面に貼り付け、板と冷却装置裏面の隙間に水をしみ込ませ、サンプル側から透視歪み判定用テストチャートが観察できるようにした。透視歪み判定用テストチャートは、J I S S 4 0 3 0 - 1 9 9 5 の付図1記載のテストチャートを模したものであり、3本の白線の長さは10mmとし、その線幅と間隔は、0. 15mm、0. 5mm、1. 0mm、1. 5mm、2. 0mmの5段階とした。サンプルを取り付けている冷却装置の冷却水温度を5℃に下げ、これを温度25℃、相対湿度80%RHの恒温恒湿槽内に置き、曇りと透視歪みの発生状態を、上記透視歪み判定用テストチャートを用いて調べ、表7に示

した基準で 6 段階評価を行った。

[表 7]

曇り評価	曇り状態
5	ほぼ全面が曇らない
4	80 %以上の面積が曇らない
3	60 %以上の面積が曇らない
2	60 %以上の面積が曇る
1	80 %以上の面積が曇る
0	ほぼ全面が曇る
透視歪み評価	透視歪み状態
5	全く歪まない
4	0. 15 mm間隔の白線を分離して認め難い
3	0. 5 mm以下の間隔の白線を分離して認め難い
2	1. 0 mm以下の間隔の白線を分離して認め難い
1	1. 5 mm以下の間隔の白線を分離して認め難い
0	2. 0 mm以下の間隔の白線を分離して認め難い

[実施例 5]

実施例 2 で得られた厚み 120 nm のシリカ凹凸膜が、各表面に形成された自動車ウィンドシールド用ガラス板 2 枚を、その間に厚みが約 0.5 mm のポリビニルブチラール膜を挟んで、オートクレーブ中で約 140 ~ 150 °C で真空圧着して合わせガラス板を得た。この合わせガラス板の車内側表面に、実施例 4 で用いたオルガノシラン塗布液に、粘性調整剤を適量添加した液を用いてグラビアコーティングした後、120 °C で 30 分間乾燥・熱処理し、室温まで冷やした後純水で軽く洗浄して、ポリエチレンオキシド基を分子内に含む、厚みが約 8 nm のオルガノシラン防曇層を内側に被覆した。

次に、このガラス板の車外側表面に、実施例 3 で調製した撥水膜形成用組成物

1. 0m²を付着させた綿布で10回塗りのばし、乾布で余剰の塗布液を拭き取った後、100℃で10分間熱処理して車外側表面に低反射撥水性を付与した。

これにより、車外側からみて、撥水性被膜—シリカ凹凸膜—ガラス板—シリカ凹凸膜—ポリビニルブチラール膜—シリカ凹凸膜—ガラス板—シリカ凹凸膜—防曇膜の順に積層された自動車ウィンドシールド用ガラス板が得られた。

このガラス板の車内側表面の防曇性能、および車外側表面の撥水性能を測定したところ、実施例4の測定結果と同等の良好な防曇性能、および実施例3の測定結果と同等の良好な撥水性能を有することがわかった。そしてこのガラス板について、その防曇膜面から光を入射させて可視光反射率を測定し、また撥水膜面を車外側にして視認性を測定したところ、可視光反射率および視認性のいずれも実施例1と全く同等の結果が得られた。

なお上記ポリビニルブチラール膜の屈折率はガラス板のそれにはほぼ等しいので、ガラス板の内側のシリカ凹凸膜（ポリビニルブチラール膜に接してしている側の）は、設けても設けていなくても反射防止性能は殆ど変わらなかった。

[実施例6、7]

実施例1におけるコーティング液の調製に用いたエチルシリケートの加水分解縮重合液、鎖状シリカコロイド（商品名：スノーテックスOUP）、および2-プロパノールの配合比を表8に示すように変更した以外は実施例1と同様にしてコーティング液を調製した。このコーティング液中には、鎖状シリカ微粒子およびエチルシリケートが、それぞれシリカ換算で、表8に示す重量比で含有されていた。

次にこのコーティング液を用いて、実施例1と同じガラス板に、実施例1と同じ条件で塗布、乾燥、熱処理して、シリカ凹凸膜が両表面に形成されたガラス板を得た。得られたシリカ凹凸膜の厚み、膜の屈折率、膜空隙率および膜表面粗度、ならびにシリカ凹凸膜付きガラス板の可視光反射率、および視認性を実施例1と同様に測定した結果を表9に示す。

[表 8]

	エチルシリケート 加水分解 縮重合液 (重量部)	鎖状シリカ コロイド (重量部)	2-フロ バノール (重量部)	鎖状微粒子： エチルシリケート (シリカ換算重量比)
実施例 1	3.0	13.3	74.9	100:15
実施例 6	1.4	13.3	74.9	100:7
実施例 7	5.0	13.3	74.9	100:25

[表 9]

	膜厚 (nm)	屈折率	空隙率 (体積%)	表面粗度 (nm)		可視光 反射率(%)		視認性
				Ra	Sm	入射角 12度	入射角 60度	
実施例 6	115	1.28	70	10	22	0.7	1.9	5
実施例 7	160	1.38	55	7	20	2.2	3.2	5

産業上の利用可能性

本発明によれば、ガラス板に表面凹凸と低屈折率を有する層が被覆されているので、ガラス板の可視光反射率、特に60度の高入射角での可視光反射率（ガラス板の両面に被覆した場合）は4.0%以下と小さくなり、しかも表面凹凸により防眩効果が得られるので、優れた視認性を有する自動車用窓に適したガラス板が得られる。

請 求 の 範 囲

1. 鎖状シリカ微粒子およびその鎖状シリカ微粒子の重量に対して5～30重量%の前記鎖状シリカ微粒子以外のシリカからなり、110～250nmの厚みを有する膜がガラス基板表面の少なくとも一方に被覆されており、その膜表面に凹凸が形成されている、可視光反射防止ガラス板。
2. 鎖状シリカ微粒子および前記鎖状シリカ微粒子以外のシリカからなり、110～250nmの厚みを有する膜がガラス基板表面の少なくとも一方に被覆されており、膜内で互いに隣接する鎖状シリカ微粒子の間に空隙が生じていてその膜が1.25～1.40の屈折率を有しており、その膜表面に凹凸が形成されている、反射防止ガラス板。
3. 前記鎖状シリカ微粒子は、10～20nmの平均直径と60～200nmの平均長さを有する請求の範囲1または2記載の反射防止ガラス板。
4. 前記膜表面の凹凸は、5～50nmの算術平均粗さ（Ra）および10～300nmの凹凸の平均間隔（Sm）を有する請求の範囲1～3のいずれか1項に記載の反射防止ガラス板。
5. 前記膜の表面および／または前記膜が被覆されていない前記ガラス基板の表面に、更に撥水性被膜が被覆されている請求の範囲1～4のいずれか1項に記載の反射防止ガラス板。
6. 前記膜の表面および／または前記膜が被覆されていない前記ガラス基板の表面に、更に防曇性被膜が被覆されている請求の範囲1～4のいずれか1項に記載の反射防止ガラス板。
7. 前記ガラス基板の両方の表面に前記膜が被覆され、一方の前記膜表面に

防曇性被膜が被覆され、他方の前記膜表面に撥水性被膜が被覆されている請求の範囲 1～4 のいずれか 1 項に記載の反射防止ガラス板。

8. 前記ガラス基板の一方表面のみに前記膜が被覆され、前記膜の表面に防曇性被膜が被覆され、前記ガラス基板の他方表面に撥水性被膜が被覆されている請求の範囲 1～4 のいずれか 1 項に記載の反射防止ガラス板。

9. (1) 鎮状シリカ微粒子と、

(2) 加水分解・縮重合可能な有機珪素化合物、クロロシリル基含有珪素化合物およびそれらの加水分解物からなる群より選ばれた少なくとも 1 種の珪素化合物、を含む液を、ガラス基板表面に塗布・乾燥して、ガラス基板表面にシリカ凹凸膜を形成することを特徴とする反射防止ガラス板の製造方法。

10. 前記液は前記鎮状シリカ微粒子と前記珪素化合物とを、それぞれ SiO₂ 換算で、前記鎮状シリカ微粒子 100 重量部に対して前記珪素化合物を 5～30 重量部含有する請求の範囲 9 に記載の反射防止ガラス板の製造方法。

11. 前記液は下記の配合からなる請求の範囲 9 または 10 に記載の反射防止ガラス板の製造方法。

前記鎮状シリカ微粒子以外の珪素化合物	100 重量部
鎮状シリカ微粒子	100～800 重量部
水	4～150 重量部
酸触媒	0.00001～5 重量部
分散助剤	0.001～10 重量部
溶媒	500～10000 重量部

12. 前記塗布・乾燥後に、400～750℃で 5 秒～5 時間加熱する請求の範囲 9～12 のいずれか 1 項に記載の反射防止ガラス板の製造方法。

1 3. 下記の配合からなる反射防止膜用被覆組成物。

前記鎖状シリカ微粒子以外の珪素化合物	1 0 0 重量部
鎖状シリカ微粒子	1 0 0 ~ 8 0 0 重量部
水	4 ~ 1 5 0 重量部
酸触媒	0. 0 0 0 0 1 ~ 5 重量部
分散助剤	0. 0 0 1 ~ 1 0 重量部
溶媒	5 0 0 ~ 1 0 0 0 0 重量部

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05557

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ C03C17/25, G02B1/11 // C01B33/148

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ C03C17/25, G02B1/11, C01B33/148

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 8-122501, A (Nissan Chemical Industries, Ltd.), 17 May, 1996 (17. 05. 96) (Family: none)	1-13
Y	JP, 1-317115, A (Nissan Chemical Industries, Ltd.), 21 December, 1989 (21. 12. 89) & US, 5221497, A & EP, 335195, A	1-13
A	JP, 7-118008, A (Nissan Chemical Industries, Ltd.), 9 May, 1995 (09. 05. 95) & US, 5597512, A	1-13

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
4 January, 1999 (04. 01. 99)Date of mailing of the international search report
19 January, 1999 (19. 01. 99)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

国際調査報告

国際出願番号 PCT/JP98/05557

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C1° C03C17/25, G02B1/11//C01B33/148

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1° C03C17/25, G02B1/11, C01B33/148

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 8-122501, A (日産化学工業株式会社) 17.5月. 1996 (17.05.96) (フ アミリーなし)	1-13
Y	JP, 1-317115, A (日産化学工業株式会社) 21.12月. 1989 (21.12.89) & US, 5221497, A & EP, 335195, A	1-13
A	JP, 7-118008, A (日産化学工業株式会社) 9.5月. 1995 (09.05.95) & U S, 5597512, A	1-13

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

04.01.99

国際調査報告の発送日

19.01.99

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

平 田 和 男 印

4G 7823

電話番号 03-3581-1101 内線 6401