

Dynamics of Lens Movement

Presentation towards a technical interview with Flanders Make

Bikas Adhikari1

CRAN, University of Lorraine

April 21, 2022

¹ CRAN, University of Lorraine

Problem

Goal: Realize an actuation system for the following application:

Figure: 1

Realize an actuation system for the following application.

A lens needs to be moved up and down between positions A and B (Fig. 1). The (vertical) distance between A and B is 1m. The lens needs to be standing still in point A for 0.2 seconds, has 0.2 seconds to move up to point B, should be standing still in point B for 0.2 seconds and has 0.2 seconds to move down again to point A. The trajectory followed for the up and down motion is free, only the stationary position in A and B for 0.2 seconds is critical. This motion has to be continuously repeated.

System Dynamics

a x_1 position above point A and x_2 is the velocity of the lens when at height x_1 .

Figure: Free body diagram

The dynamics of the lens is

$$m\ddot{x}_1 = -mg + u, \tag{1}$$

where u is the control input, and g is the acceleration due to gravity.

State-Space Representation

The system dynamics in state space form is given as

$$\dot{x}(t) = Ax(t) + Bu(t) + Wg \tag{2}$$

where

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \qquad W = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 (3)

■ Controllability: Yes , i.e.,

$$rank(B|AB) = 2 (4)$$

Control Objective

- Let the point *A* be the initial condition such that $x_0 = (0,0)^{\top}$ and the reference point *B* as $x_f = (1,0)^{\top}$.
- **Goal:** Design a minimum energy control gain to drive the lens from point *A* to point *B*.
- **Approach:** Use L_2 -control (*minimum norm control*) to drive the lens from point A to point B.
- The minimum norm control can be understood as the finding a control that take minimum energy to drive the system from initial point to the final point.

Minimum Norm Control

Consider the system dynamics

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{5}$$

- Let x_0 be the initial condition and x_f be the final state.
- The goal is to drive the system from state $x(t_0) = x_0$ to the state x_f in time T. i.e. $x(T) = x_f$ while minimizing the performance index of the form,

$$J = \frac{1}{2} \int_{t_0}^{T} \|u(t)\|^2 dt.$$
 (6)

■ The minimum energy control for the desired control objective is¹

$$u_{AB}^{*}(t) = (e^{A(T-t)}B)^{*} \left(\int_{t_{0}}^{T} (e^{A(T-s)}B)(e^{A(T-s)}B)^{*} ds \right)^{-1} (x(T) - e^{A(T-t_{0})}x_{0}).$$
(7)

¹ Chapter 8. minimum norm control. In Leigh, J., editor, Functional Analysis and Linear Control Theory, volume 156 of Mathematics in Science and Engineering, pages 79–102. Elsevier.

Minimum Energy Control

For the dynamics of the lens movement:

$$\dot{x}(t) = Ax(t) + Bu(t) + Wg, \tag{8}$$

the minimal energy control to drive the state from $x_0 = x(0)$ to $x_f = x(T)$ while minimizing the performance index,

$$J = \frac{1}{2} \int_0^T \|u(t)\|^2 dt.$$
 (9)

is

$$u_{AB}^{*}(t) = (e^{A(T-t)}B)^{*} \left(\int_{t_{0}}^{T} (e^{A(T-s)}B)(e^{A(T-s)}B)^{*} ds \right)^{-1} \times (x(T) - e^{A(T-t_{0})}x_{0} - \int_{t_{0}}^{T} e^{A(T-s)}Wg ds).$$
(10)

Switching Mechanism

Let σ_k , $k \in \mathbb{N}$ denote the switching instance for $t \in [t_k, t_{k+1})$, $k \in \mathbb{N}$. The switching patter in each switching instance is defined as follows,

$$u^{\sigma_{k}}(t) = \begin{cases} mg & \forall t \in [t_{k}, 0.2), \\ u_{AB}^{*}(t) & \forall t \in [t_{k} + 0.2, 0.4), \\ mg & \forall t \in [t_{k} + 0.4, 0.6), \\ u_{BA}^{*}(t) & \forall t \in [t_{k} + 0.6, 0.8). \end{cases}$$
(11)

Simulation Results

Position vs Time

Figure: Plot showing the change of position with time.

Velocity vs Time and Control vs Time

Figure: Control and Velocity vs Time.

Velocity vs Time and Control vs Time

Figure: Power required at each instant. Power available form the electric source is P = V * I = 3680 W.

Simulation for T = 1

Figure: Plot showing the change of position with time. (T = 1 sec).

Figure: Control and Velocity vs Time (T = 1 sec).

Conclusion

- A minimum energy control approach to drive a system between two points is proposed
- The proposed model is validated by the simulation results.

Thank You!