What is claimed is:

1	 A structure for providing resilient interconnections in a wafer level
2	package, comprising a conductive pad that overlays an air space, wherein at
3	least a portion of the air space extends laterally beyond the conductive pad.

1

1

2

3

1

The structure as claimed in claim 1, wherein the air space 2. comprises a geometric structure having a plurality of perimeter interconnect support structures for the conductive pad.

1

1

2

3

The structure as claimed in claim 2, wherein at least one perimeter 3. interconnect support structure also supports a conductive line electrically connected to the conductive pad.

1

1

2

The structure as claimed in claim 3, wherein the conductive line is 4. a metal wire.

1

1

2

The structure as claimed in claim 1, wherein a major axis of the air 5. space is radial to a center of the wafer level package.

1

1

The structure as claimed in claim 1, wherein a major axis of the air 6. space is not radial to a center of the wafer level package.

1

2

1	7.	The st	ructure as claimed in claim 2, wherein at least one perimeter
2	interconnect	suppor	t structure also supports a conductive line electrically
3	connected to	the co	inductive pad.
1		/	\
1	8.	The st	tructure as claimed in claim 7, wherein the at least one
2	perimeter int	erconn	ect support structure is positioned relative to a center of the
3	conductive p	ad less	than or equal to about 60 degrees of the major axis.
1			
1	9.	A met	hod for making a structure for providing resilient
2	interconnecti	ions in	a wafer level package, comprising the steps of:
3		A.	forming a cavity having a first area on a semiconductor
4	subs	trate;	
5		B.	filling the cavity with a removable material;
6		C.	forming a conductive layer over the removable material;
7		D.	patterning the conductive layer to form a conductive pad;
8		E.	removing the removable material to form an air space below
9	the c	onduct	tive pad; and
10		F.	forming an interconnection material on the conductive pad,
11	whereby at I	east a	portion of the air space extends laterally beyond the
12	conductive p	oad.	\B
1			
1	10.	The n	nethod as claimed in claim $rac{1}{2}$ wherein the removable material
2	is planarized	d before	e forming the conductive layer

1	11. The method as claimed in claim 10, wherein the planarization	is
2	carried out by either an etch-back process or a CMP process.	
1		
1	12. The method as claimed in claim 9, wherein the removable materials	terial
2	is material selected from the group consisting of a monomeric material, a	
3	polymeric material, and an elastomeric material.	
1		
1	13. The method as claimed in claim 9, wherein the removable ma	terial
2	is a B-stage-able material. \	
1		
1	14. The method as claimed in claim 9, wherein the cavity is forme	d by
2	depositing a dielectric layer and thereafter patterning the dielectric layer.	
1		
1	15. The method as claimed in claim 14, wherein the patterning of	the
2	dielectric layer is carried out using a photolithographic process.	
1		
1	16. The method as claimed in claim 9, wherein after forming the	
2	conductive layer, a dielectric layer is deposited over the conductive layer.	
1	13	
1	17. The method as claimed in claim 9, wherein after forming the a	air
2	space, a protective layer is deposited on a top and bottom surface of the	
3	conductive pad.	
1		
	I	

1	18. The method as claimed in claim 17, wherein the protective layer is
2	carried out by an electroless plating method.
1	
1	19. The method as claimed in claim 18, wherein the protective layer is
2	formed using a metal.
1	
1	20. The method as claimed in claim 19, wherein the metal is selected
2	from the group consisting of gold and nickel.