Exam in TSKS04 Digital Communication Continuation Course

Exam Code: TEN1

Date & Time: 14:00 - 18:00, 3 June, 2013

Place: U11, Hus C

Teacher: Mikael Olofsson, tel: 281343

Exam Visit: 14:45 and 17:00

Department: ISY

Allowed aids: Olofsson: Tables and Formulas for Signal Theory

U. Madhow: Fundamentals of Digital Communication

Grade Translation: Grades 3,4, and 5, are translated to ECTS C,B, and A

Solutions: Next day after the exam on the course web page

Grading: Maximum points: 100, Pass: > 40,

Grade 3: 41 - 57, Grade 4: 58 - 74, Grade 5: 75 - 100

Important Instructions: All answers must be given in English

Please write legibly since partial points will be awarded for each

question even if the final answer is incorrect

1) Complex baseband representation for down conversion with a phase offset (20 points)

Let the transmitted passband signal be given by $x_p(t) = \text{Re}(x(t)e^{j2\pi f_c t})$ where f_c is the carrier frequency and x(t) is the complex baseband representation of the transmitted signal. Further, x(t) has its Fourier transform band-limited to [-W, W] (assume that $f_c > W$).

Consider an ideal channel where the transmitted signal is received as it is, i.e., the received passband signal is given by $y_p(t) = x_p(t)$. However, the local oscillator at the receiver has a phase offset of θ radians with respect to the phase of the local oscillator used for up conversion in the transmitter.

The output of the I branch $(z^{I}(t))$ in the receiver is given by

$$y_p^I(t) = y_p(t)\cos(2\pi f_c t + \theta)$$

$$z^I(t) = g(t) \star y_p^I(t)$$
(1)

where \star denotes convolution and g(t) = 2W sinc(2Wt). Similarly the Q branch output is given by

$$y_p^Q(t) = -y_p(t)\sin(2\pi f_c t + \theta)$$

$$z^Q(t) = g(t) \star y_p^Q(t).$$
(2)

Show that

$$z(t) \stackrel{\Delta}{=} z^{I}(t) + jz^{Q}(t) = \frac{1}{2}x(t)e^{-j\theta}$$
(3)

which corresponds to a rotation by $-\theta$ radians.

$$(j \stackrel{\Delta}{=} \sqrt{-1} \text{ and } sinc(x) \stackrel{\Delta}{=} \frac{\sin(\pi x)}{\pi x})$$

Solution:

Using the complex baseband representation for $x_p(t)$ we have

$$y_{p}^{I}(t) + jy_{p}^{Q}(t) = x_{p}(t) \left(\cos(2\pi f_{c}t + \theta) - j\sin(2\pi f_{c}t + \theta)\right)$$

$$= x_{p}(t)e^{-j(2\pi f_{c}t + \theta)}$$

$$= \operatorname{Re}\left(x(t)e^{j2\pi f_{c}t}\right)e^{-j(2\pi f_{c}t + \theta)}$$

$$= \frac{1}{2}\left(x(t)e^{j2\pi f_{c}t} + x^{*}(t)e^{-j2\pi f_{c}t}\right)e^{-j(2\pi f_{c}t + \theta)}$$

$$= \frac{1}{2}\left(x(t)e^{-j\theta} + x^{*}(t)e^{-j(4\pi f_{c}t + \theta)}\right). \tag{4}$$

Finally

$$z(t) \stackrel{\Delta}{=} z^{I}(t) + jz^{Q}(t) = \left(y_{p}^{I}(t) + jy_{p}^{Q}(t)\right) \star 2W sinc(2Wt)$$

$$= \frac{1}{2} \left(\left(x(t)e^{-j\theta}\right) \star 2W sinc(2Wt) + \left(x^{*}(t)e^{-j(4\pi f_{c}t + \theta)}\right) \star 2W sinc(2Wt)\right). \tag{5}$$

Since x(t) is bandlimited to [-W, W], $\left(x^*(t)e^{-j(4\pi f_c t + \theta)}\right)$ is bandlimited to $[-2f_c - W, -2f_c + W]$, and hence $\left(x^*(t)e^{-j(4\pi f_c t + \theta)}\right) \star sinc(2Wt) = 0$ as sinc(2Wt) is bandlimited to [-W, W] which does not overlap with the range $[-2f_c - W, -2f_c + W]$ (since $f_c > W$). g(t) = 2Wsinc(2Wt) is the impulse response of an ideal low pass filter with Fourier transform G(f) = 1 for $|f| \leq W$ and G(f) = 0 for |f| > W. Since x(t) is bandlimited to [-W, W], it is

clear that $(x(t)e^{-j\theta}) \star 2W sinc(2Wt) = x(t)e^{-j\theta}$. Using the above facts in (5) we have

$$z(t) = \frac{1}{2}x(t)e^{-j\theta}. (6)$$

2) (Modulation) (20 points)

a) (Tone spacing in Multicarrier communication) (10 points)

Consider two real-valued passband waveforms

$$s_0(t) = \cos(2\pi f_0 t), \ 0 \le t \le T$$

 $s_1(t) = \cos(2\pi f_1 t), \ 0 \le t \le T$ (7)

where $f_1 > f_0 \gg 1/T$ (lets assume $f_0, f_1 > 10^9$ Hz and T = 10 milli second.) The pulses will be said to be orthogonal if $\int_0^T s_0(t) s_1(t) dt = 0$.

Show that the minimum frequency separation such that the pulses are orthogonal is $f_1-f_0=\frac{1}{2T}$.

b) (**Spectral efficiency of modulation schemes**) (10 points)

Consider the following two transmission schemes.

Scheme-I: The complex baseband signal is given by

$$x(t) = \sum_{k=0}^{M-1} x[k] \operatorname{sinc}\left(\frac{t}{T} - k\right) \quad 0 \le t \le MT$$
(8)

where $x[k] \in +1$, -1 are the information carrying BPSK symbols, and M is an integer. Assume that the information symbols are independent of each other.

Scheme-II: Consider M mutually orthogonal complex baseband waveforms $\{\phi_1(t), \cdots, \phi_M(t)\}$, i.e., $\int \phi_i(t)\phi_k^*(t) dt = 0$ if $i \neq k$. Also assume that these waveforms are approximately time limited to [0, MT] and bandlimited to [-1/2T, 1/2T]. There are totally M possible messages that can be communicated, and to communicate the m-th message the transmitter sends the waveform $\phi_m(t)$.

Which scheme is more spectral efficient (bandwidth efficient) and why?

Solution:

a) The inner product between $s_0(t)$ and $s_1(t)$ is given by

$$\int_{0}^{T} s_{0}(t)s_{1}(t) dt = \int_{0}^{T} \cos(2\pi f_{0}t) \cos(2\pi f_{1}t) dt$$

$$= \frac{1}{4\pi(f_{0} + f_{1})} \sin(2\pi(f_{0} + f_{1})T) + \frac{1}{4\pi(f_{0} - f_{1})} \sin(2\pi(f_{0} - f_{1})T)$$

$$= \frac{T}{2} \left(\operatorname{sinc}(2(f_{0} + f_{1})T) + \operatorname{sinc}(2(f_{1} - f_{0})T) \right) \tag{9}$$

Since $2(f_0 + f_1)T \gg 1$, $sinc(2(f_0 + f_1)T) \approx 0$ (for the numerical values given in the question, $2(f_0 + f_1)T > 4 \cdot 10^7$). Therefore, for the inner product to be 0 it suffices to choose $(f_1 - f_0)$ such that the second term in the above equation is 0. This can happen if and only if $2(f_1 - f_0)T$ is an integer, which then implies that the smallest possible spacing between f_1 and f_0 is 1/(2T).

b) The bit rate of scheme-I is 1 bit every T seconds (since $x[k] \in \{+1, , -1\}$). The bandwidth used is 1/T Hz (essentially the bandwidth of the sinc pulse), and therefore the spectral efficiency of the first scheme is $\eta_1 = \text{bit-rate/bandwidth used} = 1 \text{ bps/Hz}$.

In the second scheme, since there are only M possible messages, the number of information bits communicated in time MT is $\log_2(M)$. Hence the bit-rate of scheme-II is $\log_2(M)/(MT)$ bits per second. The bandwidth used is the same as scheme-I, i.e., 1/T Hz, since the waveforms $\{\phi_m(t)\,,\,m=1,2,\cdots,M\}$ are bandlimited to $[-1/2T\,,\,1/2T]$. Hence the spectral efficiency of the second scheme is given by $\eta_2=\log_2(M)/M$.

Clearly since $\log_2(M)/M \le 1$ for all M > 0, scheme-I is more spectrally efficient than scheme-II.

3) (**Detection in ISI channels**) (20 points)

Consider an ISI channel with additive noise. The complex baseband discrete-time input and output are related by

$$Y[n] = \sum_{k=0}^{1} h[k]X[n-k] + W[n]$$
(10)

where Y[n] and X[k] are the *n*-th discrete time output sample and the *k*-th information symbol respectively. h[k], k = 0, 1 is the impulse response of the channel filter. Let h[0] = 2 and h[1] = -j.

We will assume that the sequence of random variables $\{W[n]\}$ are independent and identically distributed (i.i.d.). Assume $W[n] = W^I[n] + W^Q[n]$ to be complex valued with independent and identically distributed real and imaginary components. Let the real component i.e., $W^I[n]$ have a continuous probability density function (p.d.f.) given by $f_W(w) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-w^2/(2\sigma^2)}$.

Let the input information symbols belong to the BPSK alphabet $\mathcal{A} = \{+1, -1\}$, i.e., $X[k] \in \mathcal{A}$. Also, let the input be time limited, i.e., X[k] = 0 for k < 0 and k > 2. Further, the input information symbols $\{x[k]\}$ are independent of additive noise.

Derive an expression for the maximum likelihood detector (MLD) of the three input BPSK symbols given the received discrete-time samples y[n], n = 0, 1, 2, 3.

What is the output of the MLD if y[0] = j, y[1] = 1 - j, y[2] = 2 + j, y[3] = 1 ?

Solution: In the presence of AWGN, the maximum likelihood detector for (x[0], x[1], x[2]) is given by

$$(\widehat{x}[0], \widehat{x}[1], \widehat{x}[2]) = \underset{(x[0], x[1], x[2]) \in \mathcal{A}^3}{\arg \min} \sum_{i=0}^{3} |y[i] - \sum_{k=0}^{1} h[k]x[i-k]|^2$$
(11)

Since there are only 3 symbols, there are only eight possibilities and therefore only eight likelihood values to be evaluated (one each for a possible assignment of BPSK values of x[0], x[1] and x[2]). Since there are only a handful of possibilities we can compute and find the maximum among all the eight possible likelihoods (or equivalently minimum Euclidean distance from the received vector (j, 1-j, 2+j, 1)).

Defining the distance function $d(x[0], x[1], x[2]) \stackrel{\Delta}{=} \sum_{i=0}^{3} |y[i] - \sum_{k=0}^{1} h[k]x[i-k]|^2$, we have

$$d(x[0], x[1], x[2]) = |y[0] - h[0]x[0]|^{2} + |y[1] - h[0]x[1] - h[1]x[0]|^{2} + |y[2] - h[0]x[2] - h[1]x[1]|^{2} + |y[3] - h[1]x[2]|^{2}$$
(12)

where we have also used the fact that the input is time limited.

Evaluating d(x[0], x[1], x[2]) for all the eight possible values of (x[0], x[1], x[2]), we find that the minimum is attained when x[0] = 1, x[1] = 1, x[2] = 1. This is then the maximum likelihood estimate of the BPSK information symbols.

4) (Noncoherent Communication) (25 points)

Consider a bandlimited passband information bearing transmit signal given by

$$X_p(t) = \text{Re}\left(X(t)e^{j(2\pi f_c t + \theta)}\right), \ t \in [0, T_0]$$
 (13)

where f_c is the carrier frequency and θ is the phase of the local oscillator (LO) in the transmitter. X(t) is the complex baseband information bearing signal which is bandlimited to [-W, W]. Assume that $f_c \gg W$ and also that $f_c T_0 \gg 1$.

Let the received signal be given by

$$Y_p(t) = AX_p(t - \Gamma) + N_p(t) \tag{14}$$

where A > 0 models the magnitude of the random channel gain/loss and Γ models the delay of the single path from the transmitter to the receiver. $N_p(t)$ is the AWGN.

The receiver is equipped with a local oscillator whose phase at time t is $2\pi f_c t + \phi$. Further the receiver does not know the exact value of A, Γ, θ (The receiver of course has perfect knowledge of its own LO's phase offset ϕ).

Assume the channel parameters, i.e., A, Γ, θ change so rapidly that estimation of these unknown parameters using training is not feasible.

Formulate a generalized likelihood detector for detecting the transmitted information signal non-coherently (i.e., without explicitly estimating the channel parameters).

Given a received passband waveform $y_p(t)$, show that the generalized likelihood detector is given by

$$\left(\widehat{X}(t), \widehat{\Gamma}\right) = \arg\max_{x(t) \in \mathcal{X}, \tau \ge 0} \frac{\left| \int_{\tau}^{\tau + T_0} y_p(t) e^{j(2\pi f_c t + \phi)} x(t - \tau) dt \right|^2}{\int_0^{T_0} |x(t)|^2 dt} - \frac{1}{2} \int_{\tau}^{\tau + T_0} y_p^2(t) dt \quad (15)$$

where \mathcal{X} is the set of all complex baseband information bearing transmit signals.

Solution:

In the presence of additive white Gaussian noise (AWGN), the generalized likelihood detector (for the received passband waveform $y_p(t)$) is given by

$$\left(\widehat{X}(t), \widehat{\Gamma}, \widehat{A}, \widehat{\theta}\right) = \underset{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0, \theta \in [-\pi, \pi)}{\min} \int_{\tau}^{\tau + T_0} \left(y_p(t) - Ax_p(t - \tau)\right)^2 dt$$

$$= \underset{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0, \theta \in [-\pi, \pi)}{\min} \int_{\tau}^{\tau + T_0} \left(y_p(t) - A\operatorname{Re}\left(x(t - \tau)e^{j(2\pi f_c(t - \tau) + \theta)}\right)\right)^2 dt$$

$$= \underset{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0, \theta \in [-\pi, \pi)}{\min} \int_{\tau}^{\tau + T_0} \left(y_p(t) - A\operatorname{Re}\left(x(t - \tau)e^{j(2\pi f_c(t - \tau) + \phi + (\theta - \phi))}\right)\right)^2 dt$$
(16)

The receiver however only has the knowledge of its own LO's phase offset ϕ , and this is the reason for adding and subtracting ϕ in the last line above. Substituting $\Delta = \theta - \phi$, the generalized likelihood detector above can be equivalently stated as

$$\left(\widehat{X}(t), \widehat{\Gamma}, \widehat{A}, \widehat{\Delta}\right) = \underset{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0, \Delta \in [-\pi, \pi)}{\min} \int_{\tau}^{\tau + T_0} \left(y_p(t) - A \operatorname{Re}\left(x(t - \tau)e^{j2\pi f_c(t - \tau) + \phi + \Delta}\right)\right)^2 dt$$
(17)

Keeping x(t), τ , A fixed and optimizing only over Δ , we are able to reduce the above minimization problem to the following

$$\left(\widehat{X}(t), \widehat{\Gamma}, \widehat{A}\right) = \arg\min_{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0} \int_{\tau}^{\tau + T_0} y_p^2(t) dt + \frac{A^2}{2} \int_{0}^{T_0} |x(t)|^2 dt
-2A \left| \int_{\tau}^{\tau + T_0} y_p(t) e^{j2\pi f_c(t - \tau) + \phi} x(t - \tau) dt \right|
= \arg\min_{x(t) \in \mathcal{X}, \tau \geq 0, A \geq 0} \int_{\tau}^{\tau + T_0} y_p^2(t) dt + \frac{A^2}{2} \int_{0}^{T_0} |x(t)|^2 dt
-2A \left| \int_{\tau}^{\tau + T_0} y_p(t) e^{j2\pi f_c t + \phi} x(t - \tau) dt \right|$$
(18)

We next keep x(t), τ fixed, and optimize only over A, resulting in the generalized likelihood detector given in (15).

Fig. 1. Rate-1/2 binary convolutional encoder.

5) (15 points) Consider a rate R=1/2 binary convolutional encoder with generator matrix

$$G(D) = \begin{bmatrix} 1+D & 1+D+D^2 \end{bmatrix}$$
 (19)

as shown in Fig. 1.

Draw the state diagram for the binary convolutional encoder with generator matrix given in (19).

Fig. 2. State Diagram.

Solution:

The state diagram is drawn in Fig. 2.