Computer Science 181, Homework 3

Michael Wu UID: 404751542

April 23rd, 2018

Postponed Problem 5

The set of finite state languages is closed under homomorphisms on a language's alphabet Σ . Therefore, if L_{five} is a finite state language, every homomorphism on $\Sigma = \{a, b, c\}$ results in a finite state language when applied to L_{five} . But the homomorphism

$$h(a) = a$$
 $h(b) = b$ $h(c) = \epsilon$

yields $h(L_{\text{five}}) = L_{\text{NFS}}$, which is not a finite state language. Therefore L_{five} cannot be a finite state language.

Problem 0

The first DFA can be made as shown below.

The second DFA can be made as shown below.

Their intersection should be as shown below.

Here I have simplified a bit by grouping all blocking states into a single one, as in an intersection if any DFA blocks then their intersection will block. I also include the useless state 1, S to illustrate the cartesian product of the two DFAs.

Problem 1

a) A DFA for L_{one} is shown below.

The corresponding NFA for L_{one}^* is shown below.

b) No they are not the same, as L_{one} does not contain the empty string ϵ , while L_{one}^* does.

Problem 2

a) A DFA for L_{two} is shown below.

The corresponding NFA for $L_{\text{two}} \cdot L_{\text{two}}$ is shown below.

b) $L_{\text{two}} \cdot L_{\text{two}}$ does not equal L_{two} , since 1 is in L_{two} but not in $L_{\text{two}} \cdot L_{\text{two}}$.

Problem 3

 $1000^* \cup 0100^* \cup 000^* \\ 10^* \cup 000^*$

Problem 4

a)

Current State		Next State
$q_{ m start}$	$w_1 = ab$ $w_2 = \epsilon$ $w_3 = ab$ $w_4 = aa$ $w_5 = ba$	q_2
q_2	$w_2 = \epsilon$	q_1
q_1	$w_3 = ab$	q_1
q_1	$w_4 = aa$	q_2
q_2	$w_5 = ba$	$q_{ m accept}$

b) This is false, as the string abab will be accepted. First ab will cause a move from q_{start} to q_2 , then ab will cause a move into q_{accept} . This string has more than one b and an even number of a's, proving this statement is false.

Problem 5

Assume for contradiction that this language

$$L = \{0^{i}1^{j}0^{k}|i, j, k \ge 0 \land k = |i - j|\}$$

is finite state. Then by the pumping lemma if a language is finite state then there exists some p such that for any string s in L with |s| > p, s can be split into three strings x, y, and z where s = xyz, $|y| \ge 1$, $|xy| \le p$, and $xy^*z \subseteq L$. Take the string $0^p1^p \in L$, and note that xy must be a string made entirely of 0's, since $|xy| \le p$. Additionally, y must be in 0^+ , since $|y| \ge 1$. Let $x = 0^a$ and $y = 0^b$ for some constants $a \ge 0$ and b > 0. Then z must be $0^{p-a-b}1^p$. By the pumping lemma $xy^*z \subseteq L$, so

$$\{0^a(0^b)^*0^{p-a-b}1^p|a\ge 0 \land b>0\}\subseteq L$$

This can be stated equivalently as

$$\{0^{p-b}0^{xb}1^p | \forall x \in \{0, 1, 2, \ldots\} \land b > 0\} \subseteq L$$

When x=2, this means that the string $0^{p+b}1^p \in L$ for some constant b>0. But in the definition of L, this string has the parameters i=p+b, j=p, and k=0. Thus $k \neq |i-j|$ and $0^{p+b}1^p \notin L$. This is a contradiction, so L cannot be finite state.