

# ETC3580: Advanced Statistical Modelling

Week 8: Mixed Effect Models for non-Gaussian Responses

## **Outline**

1 Hierarchical Linear Models

- 2 Longitudinal data
- 3 Generalized Linear Mixed Models

#### **Nested effects**

Levels of one factor vary only within levels of another factor

- Workers within job locations
- Units within campus

Be careful: nested levels with the same labels are not the same thing.

#### **Crossed effects**

- Any non-nested effects are "crossed".
- That is, every level of one factor can potentially interact with every level of another factor.
- Incomplete crossing occurs when not all combinations of factors exist in the data.

#### Multilevel models

- Models with nested (hierarchical) structure.
- Commonly used in psychology, education, and other social sciences where survey data is naturally clustered hierarchically.

### **Junior School Project (1988)**

Variables: student, class, school, gender,

social, raven, math, english, year

**Nesting**: school:class:student

Other variables crossed.

## **Outline**

- 1 Hierarchical Linear Models
- 2 Longitudinal data
- 3 Generalized Linear Mixed Models

- Repeated measurements on each unit taken over time.
- Called "panel data" in econometrics. Called "longitudinal data" in every other discipline.
- Individuals treated as random effects
- Additional complexity of autocorrelation to address
- Differs from time series in having many units (e.g., people) but often not many observations per person.
- i.e., Longitudinal data has large N, small T; Time series data has small N, large T.

For unit (individual) i,  $y_i$  is a T-vector such that

$$\mathbf{y}_i | \gamma_i \sim N(\mathbf{X}_i \boldsymbol{\beta} + \gamma_i, \sigma^2 \boldsymbol{\Lambda}_i)$$

- $\gamma_i \sim N(0, \sigma^2 D)$  is effect of ith unit
- X<sub>i</sub> contains predictors for fixed effects
- $\blacksquare$   $\Lambda_i$  handles autocorrelations within units
- $\mathbf{y}_i \sim N(\mathbf{X}_i \boldsymbol{\beta}, \boldsymbol{\Sigma}_i)$  where  $\boldsymbol{\Sigma}_i = \sigma^2(\boldsymbol{\Lambda}_i + \mathbf{D})$
- Assume individuals are independent, and random effects and errors are uncorrelated.

Combining individuals (assuming independence):

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_N \end{bmatrix}$$

$$\mathbf{\Sigma} = \operatorname{diag}(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2, \dots, \mathbf{\Sigma}_N),$$

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma})$$

Combining individuals (assuming independence):

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix}$$
  $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_N \end{bmatrix}$   
 $\mathbf{\Sigma} = \operatorname{diag}(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2, \dots, \mathbf{\Sigma}_N),$   
 $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma})$ 

- Only additional complication is choosing correlation structure
- Other random effects can be added; then  $\gamma_i$  becomes a vector.

## **Outline**

- 1 Hierarchical Linear Models
- 2 Longitudinal data
- 3 Generalized Linear Mixed Models

#### **Generalized Linear Mixed Models**

- Combine GLMs with random effects
- $\blacksquare$   $y_i$  from exponential family distribution  $f(y_i, \theta_i, \phi)$
- $\blacksquare$  E( $y_i$ ) =  $\mu_i$
- Link function  $g: g(\mu_i) = \mathbf{x}_i'\beta + \mathbf{z}_i'\gamma$
- lacksquare eta are fixed effects;  $\gamma$  are random effects.
- lacksquare  $\gamma \sim \textit{N}(\mathbf{0}, \mathbf{D})$  with density  $\textit{h}(\gamma | \mathbf{D})$

#### **Generalized Linear Mixed Models**

- Combine GLMs with random effects
- $\blacksquare$  y<sub>i</sub> from exponential family distribution  $f(y_i, \theta_i, \phi)$
- $\blacksquare$   $E(y_i) = \mu_i$
- Link function  $g: g(\mu_i) = \mathbf{x}_i'\beta + \mathbf{z}_i'\gamma$
- lacksquare eta are fixed effects;  $\gamma$  are random effects.
- lacksquare  $\gamma \sim N(\mathbf{0}, \mathbf{D})$  with density  $h(\gamma | \mathbf{D})$

#### **Likelihood**

$$L(\boldsymbol{\beta}, \phi, \mathbf{D}) = \prod_{i=1}^{n} \int f(\mathbf{y}_{i}|\boldsymbol{\beta}, \phi, \boldsymbol{\gamma}) h(\boldsymbol{\gamma}|\mathbf{D})$$

Can only solve integrals if f and h both normal

# **Numerical integration of likelihood**

#### Likelihood

$$L(\boldsymbol{\beta}, \phi, \mathbf{D}) = \prod_{i=1}^{n} \int f(\mathbf{y}_{i}|\boldsymbol{\beta}, \phi, \boldsymbol{\gamma}) h(\boldsymbol{\gamma}|\mathbf{D})$$

- Use numerical integration to approximate integrals
- More accurate than PQL
- Can be slow or impossible for complex models
- Inference will be problematic, as for MLE with LMMs

## **Penalized Quasi Likelihood**

Transform fitted values:

$$\eta_i = g(\mu_i) = \mathbf{x}_i'\beta + \mathbf{z}_i'\gamma$$

Create pseudo-responses:

$$\tilde{\mathbf{y}}_{i}^{j} = \hat{\eta}_{i}^{j} + (\mathbf{y}_{i} - \hat{\mu}_{i}^{j}) \left. \frac{d\eta}{d\mu} \right|_{\hat{\eta}_{i}^{j}}$$

where *j* is iteration in optimization algorithm

- Find  $Var(\tilde{y}_i|\gamma)$
- Use weighted linear mixed effects models

## **Penalized Quasi Likelihood**

Transform fitted values:

$$\eta_i = g(\mu_i) = \mathbf{x}_i'\beta + \mathbf{z}_i'\gamma$$

Create pseudo-responses:

$$\tilde{\mathbf{y}}_{i}^{j} = \hat{\eta}_{i}^{j} + (\mathbf{y}_{i} - \hat{\mu}_{i}^{j}) \left. \frac{d\eta}{d\mu} \right|_{\hat{\eta}_{i}^{j}}$$

where *j* is iteration in optimization algorithm

- Find  $Var(\tilde{y}_i|\gamma)$
- Use weighted linear mixed effects models
  - fast
  - approximate inference
  - biased estimates, esp. for binary data or low counts
  - even worse inference than regular LMM

# **Bayesian methods**

- Much more accurate inference
- Allow for prior information and flexibility
- Usually take more computation
- Inferential form different
- Require additional software (either INLA or STAN).