Permit Number 90163

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Rates
			lbs/hour	TPY (4)
1	TDU Dryer (32 MMBtu/hr)	PM ₁₀	0.24	1.04
	(32 WIWIBIU/III)	PM _{2.5}	0.24	1.04
		SO ₂	0.02	0.08
		NO _x	3.14	13.74
		со	2.64	11.54
		voc	0.17	0.76
		НАР	0.06	0.32
7	TDU Steam Boiler (8 MMBtu/hr	PM ₁₀	0.06	0.26
	Natural Gas fired)	PM _{2.5}	0.06	0.26
		SO ₂	0.01	0.02
		NO _x	0.78	3.44
		со	0.66	2.89
		voc	0.04	0.19
		НАР	0.01	0.06
8A	TDU Conveyor	PM ₁₀	0.02	0.03
		PM _{2.5}	0.01	0.01
8B	TDU Transfer Points (Desorbed Solids Bin)	PM	0.15	0.29
	(Described Solids Bill)	PM _{2.5}	0.02	0.04
BH/Venturi	TDU Baghouse/Venturi	PM ₁₀	0.09	0.38
	Scrubber Scrubber	PM _{2.5}	0.09	0.38
		voc	0.20	0.37
		H ₂ SO ₄	0.01	0.01
		NH ₃	0.01	0.03
		HNO ₃	0.01	0.01
Draigat Number: 256746				

		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.03
		HAP	0.20	0.37 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
СТ	TDU Cooling Tower	РМ	0.62	2.72
		PM ₁₀	0.62	2.72
		PM _{2.5}	0.62	2.72
BOX-1	TDU Centrifuge Cake Rolloff	VOC	4.23	1.76
	Rolloli	HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BOX-1B TDU (TDU Centrifuge Cake Rolloff	voc	4.23	1.76
	Kolioli	HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BOX-2	TDU Gas Treatment	voc	0.13	0.42
	Cake Box	HAP	0.13	0.01 (8)

		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
SHAKER	TDU Shaker Box	VOC	0.17	0.14
		HAP	0.17	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
	HNO ₃	0.01	0.01	
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BIN-FUG	Feed Bin Fugitives (5)	voc	10.18	18.64
		HAP	10.18	0.45 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.18	0.35
		HNO ₃	0.01	0.03
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.02
CARBFLT1	Carbon Canister Set 1	voc	0.01	0.01
	5011	HAP	0.01	0.013 (8)
		H ₂ S	0.01	
		HF	0.01	

		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
CARBFLT2	Carbon Canister Set 2	voc	0.01	0.01
	Set 2	НАР	0.01	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
	HNO₃	0.01	0.01	
	H ₃ PO ₄	0.01	0.01	
		H ₂ O ₂	0.01	0.01
CARBFLT3	Carbon Canister Set 3	VOC	0.15	0.01
	Jet 3	НАР	0.15	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
FUG-TDU	TDU Piping Fugitives (5)	VOC	0.16	0.18
		НАР	0.03	0.02 (8)
		H₂S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.024	0.10

		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.04
PROD-LOAD	TDU Product Loading	VOC	0.36	0.01
		НАР	0.36	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.05	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.02	0.01
FUG-2	CKD Pile	РМ	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
BH5	Stabilization Building 2 Bins	PM ₁₀	0.01	0.01
	Dust Collector	PM _{2.5}	0.01	0.01
ВН6	Stabilization Building 2 Bins	PM ₁₀	0.01	0.01
	Dust Collector	PM _{2.5}	0.01	0.01
FUG-1 Stabilization Building	Stabilization Building 2 Process Fugitives (5)	PM ₁₀	0.02	0.02
	Frocess rugilives (3)	PM _{2.5}	0.01	0.01
		VOC	15.08	(6)
		НАР	15.08	(7) (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.42	
		NH ₃	0.36	2.90
		HNO ₃	0.12	1.11
		H ₃ PO ₄	0.03	0.42

		H ₂ O ₂	0.02	0.15
BH1	Stabilization Building 2 Pans Baghouse	PM ₁₀	2.14	3.43
	rans baynouse	PM _{2.5}	2.14	3.43
		voc	135.76	(6)
		НАР	135.76	(7) (8)
		H ₂ S	0.01	
		HF	0.11	
		HCI	3.77	
		NH ₃	3.25	2.61
		HNO ₃	1.09	1.00
		H ₃ PO ₄	0.24	0.38
		H ₂ O ₂	0.16	0.13
SH2	Stabilization Building 3 Pans Baghouse	PM ₁₀	2.14	3.43
	rans baynouse	PM _{2.5}	2.14	3.43
		voc	122.74	(6)
		НАР	122.74	(7) (8)
		H ₂ S	0.01	
		HF	0.02	
		HCI	2.11	
		NH ₃	2.38	2.18
		HNO ₃	0.60	0.84
		H ₃ PO ₄	0.13	0.21
		H ₂ O ₂	0.14	0.11
ВН7	Stabilization Building 3 Pans Baghouse	PM ₁₀	2.14	3.43
	Falls Dayllouse	PM _{2.5}	2.14	3.43
		voc	122.74	(6)
		HAP	122.74	(7) (8)
		H ₂ S	0.01	
		HF	0.18	

		HCI	2.11	
		NH ₃	2.38	2.18
		HNO ₃	0.60	0.84
		H ₃ PO ₄	0.13	0.21
		H ₂ O ₂	0.14	0.11
-UG-3	Stabilization Building 3	PM ₁₀	0.01	0.01
	Process Fugitives (5)	PM _{2.5}	0.01	0.01
		voc	27.28	(6)
		НАР	27.28	(7) (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.47	
		NH ₃	0.53	0.49
		HNO ₃	0.13	0.19
		H ₃ PO ₄	0.03	0.05
		H ₂ O ₂	0.03	0.02
	Stabilization Buildings Annual Emission Caps for	voc		22.23
	EPNs FUG1, BH1, BH2, BH7 and FUG-3	НАР		4.38 (8)
3H3	Stabilization Building 3	PM ₁₀	0.01	0.01
	CKD Bin Baghouse	PM _{2.5}	0.01	0.01
3H8	Stabilization Building 3 CKD Bin Baghouse	PM ₁₀	0.01	0.01
	CND bill bayllouse	PM _{2.5}	0.01	0.01
3H4	Catalyst Building Baghouse	PM ₁₀	1.71	5.49
	Daynouse	PM _{2.5}	1.71	5.49
		НАР	0.17	0.55
CAT-FUG1	Drum Loading Fugitives 1 (from	PM ₁₀	0.01	0.01
	Catalyst Building) (5)	PM _{2.5}	0.01	0.01
		НАР	0.01	0.01

CAT-FUG2	Drum Loading Fugitives 2 (from	PM ₁₀	0.01	0.01
	outside) (5)	PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
то	Thermal Oxidizer (15 MMBtu/hr)	PM ₁₀	0.12	0.51
	iviiviBtu/iii)	PM _{2.5}	0.12	0.51
		SO ₂	54.80	26.27
		NO _x	25.43	28.53
		СО	1.24	5.41
		VOC	6.10	1.56
		НАР	120.8	9.11 (8)
		H ₂ S	0.01	
		Total As (9)	10.70	
		HF	40.40	
		HCI	107.00	
		H ₂ SO ₄	0.01	0.03
		Total Bromine	98.60	98.64
		Total Iodine	44.30	14.77
		NH ₃	0.17	0.12
		HNO₃	17.5	8.99
		H ₃ PO ₄	2.40	4.76
		H ₂ O ₂	0.06	0.11

Maintenance, Start	tup, and Shutdown (MSS)			
TANK-MSS	Tank Opening MSS	voc	3.25	0.07
		НАР	0.13	0.004
EQUIP-MSS	Equipment Purging and Opening	voc	17.36	0.04
	and Opening	НАР	3.49	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
TPAINT-MSS	TDX Sitewide Painting	PM ₁₀	0.49	0.05
		PM _{2.5}	0.49	0.05
		VOC	16.65	1.66
		НАР	0.40	0.04
UPAINT-MSS USET Sitev Painting	USET Sitewide	PM ₁₀	0.01	0.01
	T diffully	PM _{2.5}	0.01	0.01
		voc	18.77	0.19
		НАР	0.80	0.01
TBLAST-MSS	TDX Sitewide Abrasive Blasting	PM ₁₀	0.17	0.01
	Diasting	PM _{2.5}	0.03	0.01
UBLAST-MSS	USET Sitewide Abrasive Blasting	PM ₁₀	0.34	0.01
	Abidaive bidating	PM _{2.5}	0.05	0.01

TO-SRTMSS	Thermal Oxidizer Startup	PM ₁₀	0.06	0.01
	Startup	PM _{2.5}	0.06	0.01
		SO ₂	0.01	0.01
		NO _x	0.45	0.01
		СО	3.09	0.06
		voc	0.04	0.01
		HAP	0.01	0.01
TO-VNTMSS	Thermal Oxidizer MSS Venting	voc	8.55	0.03
	venting	HAP	8.21	0.03
		H ₂ S	0.01	
		NH ₃	0.18	0.01
		HNO ₃	5.49	0.01
		H ₃ PO ₄	0.22	0.01
		H ₂ O ₂	0.01	0.01
DWELL-MSS	Deepwell Maintenance	voc	2.85	0.04
		НАР	2.85	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
FLTCHG-MSS	Baghouse Filter Changes	PM ₁₀	0.08	0.01
	Changes	PM _{2.5}	0.01	0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

- volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1 (3) VOC

 NO_x - total oxides of nitrogen

- sulfur dioxide SO_2

- total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

HF

Emission Sources - Maximum Allowable Emission Rates

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of Federal

Regulations Part 63, Subpart C

H₂S - hydrogen sulfide (delisted HAP)

- hydrogen fluoride (HAP)

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) The annual VOC emissions from this source are included in the Stabilization Buildings Annual VOC Emission Cap of 22.23 tpy.
- (7) The annual H₂S, HF, and HCl emissions from this source are included in the Stabilization Buildings Annual HAP cap of 4.38 tpy.
- (8) Emission limit applies to the sum of total HAP emissions (including but not limited to HF and HCl) and H2S emissions.
- (9) Total Arsenic includes elemental arsenic and arsenic compounds.

Date:	December 29, 2016	