Spatial Databases

Dr Claire Ellul c.ellul@ucl.ac.uk *±UCL*

LUCI

Assignment Progress

- By now you should have:
 - Created your system specification
 - Created your conceptual and logical diagrams and written the documentation
 - Written the DDL, DML and the non-spatial queries
 - Made good progress on your 500 word assignment
- You will refine the above in the next 2 weeks to add spatial information (this and next week) and 3D (next week) after which you can complete the assignment

Assignment Project Examillelp

• What is spatial data https://powcodefinesing - Georeferencing

hat

- Modelling spatial data in a database
- Storing spatial data in PostgreSQL (PostGL)
 - DDL adding a spatia
 - DML inserting data
- · Visualising the Data

• In this case *spatial* refers to any data that can be located somewhere on the earth's 3 (Co) (Co

** See Week 1 slides for more detail **

<u>+UCL</u>

Spatial Data

- The ability to create "maps" using spatial data can be found in:
 - Geographical Information Systems (GIS)
 - E.g. QGIS, ArcMap
 - Building Information Modelling (BIM)
 - E.g. Revit, Bentley Architecture, ArchiCAD
- In both cases, the maps can be 2D or 3D

UCL

Spatial Data

- We will be using GIS for mapping during this module as GIS software currently works best with databases -
 - GIS are also extensively used in Asset Management
- ... BIM software is slowly becoming better at working with databases but isn't quite there yet ..

Assignment Project Exam Halphd Lines

- How do we model the world using spatial data?

 Output

 Description:
 - Using four types of geometric representation
 - Point
 - Line
 - Polygon
 - Polyhedron (3D)
 - (Also other types of representations e.g. for continuous surfaces - not part of this module)
- - s a could note are used for single point objects such as a well or a street light or traffic lights or - depending on the scale
 - a city or even a country.
 - Properties of a point include its location and its centroid (geometric centre)

ines (also called polylides, arcs, edges) are used for interlinked objects such as fiver (, vater p pes or roads or for objects that appear linear from the air e.g. walls, fences, hedges.

Properties of a line include location, length, centroid and end-points.

Add WeCha

Spatial Data - Polygons and Polyhedra

- Spatial Types:
 - Polygons are used for objects having an actual area e.g. buildings, parks, gardens. Polygons are also used for administrative boundaries (counties, city boundaries, school catchment areas, country boundaries).
 - Polygons have associated area, perimeter and centroid measures and are two-dimensional.
 - Polyhedra (or volumes) are three dimensional objects and provide the most realistic representation of real-world objects (e.g. buildings, geological rock strata).
 - They have associated measures of surface area and volume (the measure of the total enclosed space). Polyhedra are three-dimensional.

UCL

UCL

Grouping Spatial Data

- · Spatial data is grouped into themes (often known as layers)
 - A layer in a GIS is a way of collecting all the information relating to a particular object type type into one group.
 - E.g. Rivers, Countries, Buildings, roads, rubbish bins, noise
 - A layer can have any name you like
 - Layers are 'stacked' in the map to show all the data in one place
 - Maps are usually 2D but 3D is emerging (see later on in this

+UCL

Grouping Spatial Data

- For the purposes of this module:
 - a layer is a table in the database that has a spatial column
 - So the entities in your ERD become layers of spatial data if they are entities that can be mapped
 - see later on in this lecture for more information about making entities mappable using spatial columns

±UCL

Grouping Spatial Data

- In theory, in GIS you can name your entities anything you like and structure them how you like
- However, if you want to share data, you probably want to use a standard
 - Standards tell you exactly what to model
 - (For your assignment you should NOT use any standards it needs to be your own work)

IIC

Grouping Spatial Data - BIM

- In BIM objects are always represented in 3D
 - Or at least that is the aim of Level 2 and Level 3 BIM
- In BIM information is grouped by construction object type
 - E.g. concrete slab, window, door, wall, duct
- (For information only, not required for your assignment)

Grouping Spatial Data - BIM In BIM the entity names are defined through a standard called Industry Foundation Classes (For information only, not required for your assignment)

#UCL

Spatial Data

- Most important thing for this module:
 - You can store spatial data in the database just like any other type of data
 - When you map the data, you don't only get the points/lines/polygons/polyhedral
 - YOU ALSO GET THE OTHER INFORMATION (attributes/columns) FOR THAT DATA

±UCI

Overview

- What is spatial data
 - Georeferencing
- Modelling spatial data in a database
- Storing spatial data in PostgreSQL/PostGIS
 - DDL adding a spatial column
 - DML inserting data
- Visualising the Data

Assignment Project Exame Helps

- Spatial data includes anything that can be WCO modelled using some form of location information!
 - i.e. where something is, referenced to a shared framework (codd be a coordinate system, a map of Lordon barraghs, counties of the world, UK counties and many more)
- This referencing is called geo-referencing

Tempe direction

e.g. a map that shows a building or another object, x/y coordinates, GPS coordinates

- Or indirect
- For example, a Post Code or a Street Address is an indirect geoeigen entran cambo deem of ink non-spatial data to a position on the map A DD feet cotaining the specification of a water pipe can be linked to the location of that pipe.
- See later on in the module for more details about georeferencing

HCL

Direct - Coordinate Systems

- Direct referencing works by mapping objects using their real coordinates (e.g. the coordinates that a GPS captures)
- Depending on where you are in the world, and what system you are using these coordinates may be referenced to different 'origin' points ...

#UCL

UCL

Direct - Local Coordinate Systems

- Used in CAD/BIM
- Have a local reference point as the 0,0 point
 - Usually the edge of a construction site
- All distances and angles measured from this local reference point
- Also Cartesian (flat surface)

UCL Coordinate Reference Systems -Coordinate Reference Systems -Standard Codes Standard Codes · Local coordinate reference systems are not set by any authority but are just defined by whoever is working on a epsg.io · However, national and international systems are public and are assigned a code by the European Petroleum Standards Group - This is called an EPSG code In the UK - EPSG 27700 - British National Grid - EPSG 4326 - the WGS84 system used by GPS

UCL

uci

Coordinate Reference Systems - Linking Local and National Data

- If you have a locally referenced dataset, you can transform the data to a national reference system
- At a very basic level, if you know the real world x/y of one point (e.g. a corner of the building) in national units, then you can use this to shift all the coordinates
 - Tools such as Revit (for BIM) allow you to do this
 - Might also need to change the units from mm to m
- More sophisticated methods also exist (the geospatial students might learn some of these over the coming year)

±UCI

Overview

- · What is spatial data
 - Georeferencing
- · Modelling spatial data in a database
- Storing spatial data in PostgreSQL/PostGIS
 - DDL adding a spatial column
 - DML inserting data
- · Visualising the Data

±UCI

Spatial Data - Basic Representation

 Polygons are also represented as a series of x, y points – but the first and last point must be the same to close the loop

ID	X1	Y1	X2	Y2	Х3	Y3	x4	Y4	X5	Y5	Attribute
1	125	150	300	150	300	450	125	450	125	150	House 1
2	225	50	450	50	450	200	225	200	225	50	House 2

How do you model polygons with more than 4 nodes (coordinate pairs)?

±UCL

Exercise

 Draw the table that you would need to store these polygons in a database

Modelling more complex objects

- Option 1
 - Keep adding columns
 - But you could have 1000s of nodes!
 - Also could have lots of empty space
- Option 2
 - Use an 'object relational' approach i.e. create a primitive type to store all the required information - this is called a 'geometry' data type

Overview

UCL

- · What is spatial data
 - Georeferencing
- Modelling spatial data in a database
- Storing spatial data in PostgreSQL/PostGIS
 - DDL adding a spatial column
 - DML inserting data

Adding a Geometry (Spatial) Column

Create some test tables first

create table assetsclass.london_poi(id serial);

create table assetsclass.london_highway(id serial);

create table assetsclass.london_counties(id serial);

Adding a Geometry (Spatial) Column

Generic column can take any geometry

select

AddGeometryColumn(<<schema>>,<<tablename>>,<<column name>>,SRID, <<type of geometry>>,<<number of dimensions>>);

alter table assetsclass.building drop column if exists location;

select AddGeometryColumn('assetsclass', 'buildings', 'location', 0,

Adding a SS in a trumpation Project Adding a 100 on the 10 patial)

• Column for a specific geometry type

- This is a form of contra n DS:// alter table assetsclass.rooms drop column location

select AddGeometryColumn('assetsclass', 'rooms', 'location', 0, 'polygon', 2);

(2 dimensions, polygons)

alter table assetsclass.buildings drop colum

 $select\ Add Geometry Column (`assets class', `buildings', `location', 0, `polyhedral surface', 3);$

(3 dimensions, polyhedral surfaces)

constraints local reference systems

alter table assetsclass.buildings drop column if exists location;

s le: (A) de yn try (o) in 'sse sclass', 'buildings', 'location', 0, 'potyhedralsurface', 3),

Adding a Geometry (Spatial) Column

 Coordinate reference systems and constraints - British National Grid

alter table assetsclass.London_counties drop column if exists location;

select AddGeometryColumn ('assetsclass', 'london_counties', 'location', 27700, 'polygon', 2); --British National Grid

UCL

Adding a Geometry (Spatial) Column

 Coordinate reference systems and constraints - WGS84 (world wide)

alter table assetsclass.london_highway drop column if exists location;

select AddGeometryColumn

('assetsclass', 'london_highway', 'location', 4326, 'linestring', 2);

alter table assetsclass.london_highway drop column if exists

Select addGeometryColumn

('assetsclass', 'london poi', 'location', 4326, 'point', 2);

±UCL

Overview

- What is spatial data
 - Georeferencing
- Modelling spatial data in a database
- Storing spatial data in PostgreSQL/PostGIS
 - DDL adding a spatial column
 - DML inserting data
- · Visualising the Data

±UCL

Storing Spatial Data - PostGIS

- Well-Known Text
 - WKT is a human-readable format for representing geometry, and is therefore often used when populating databases using SQL.
 - Used by PostGIS for spatial data creation
 - Readable to the human eye
 - Not very compact

Storing Salannentia 1 Data - PostGIS

- Well-Known Text https://powcodelknown Text - POINT(0 0)

 - LINESTRING(0 0,1 1,1 2)
 - POLYGON((0 0,4 0,4 4,0 4,0 0), (1 1, 2 1 2 2, 1 2,1 1))

O Cto in Satian Data

- MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))
- MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), (1-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

 GOWFIRY (O LECTION (POINT(2
 3), LINESTRING(2 3,3 4))

UCL

Storing Spatial Data - Storing Spatial Data - PostGIS

- Well-Known Binary
 - "The Well-known Binary Representation for Geometry (WKBGeometry) provides a portable representation of a geometric object as a contiguous stream of bytes.
 - It permits geometric object to be exchanged between an SQL/CLI client and an SQLimplementation in binary form" (OGC Simple Features Specification, 2006).

UCL

UCL

Storing Spatial Data - Storing Spatial Data - PostGIS

- Well-Known Binary
 - Unlike WKT, WKB is not readable to the human eye, and is a more compact format for storing geometry objects.
 - It is therefore used in particular for data exchange and transferring data between one platform and another. It makes use of Binary Large Objects inside the database to store the geometry as a stream of bytes.

+UCL

Storing Spatial Data

- · WKT and WKB
 - The WKT and WKB formats handle many of the items on the list of information required to be stored in a database to fully represent spatial data.
 - In particular, information describing how to use the coordinates (do they represent a point or set of points, a line, multiple disjoint lines, a simple polygon, a polygon with holes or multiple disjoint polygons, with or without holes) is present, as is information describing which coordinates in the list correspond to these individual object parts.

#UCL

Storing Spatial Data

- · WKT or WKB on their own are not enough
- You also need additional metadata to describe your spatial objects
- In PostGIS, the remaining information is stored separately from the main data, a metadata table (view) called geometry_column. This contains the following information about each spatial dataset:
 - schema_name which user owns the dataset
 - table_name the name of the spatially enabled table

UCL

Inserting Spatial Data

- Geometry is treated the same as the other columns
 - Use ST_GEOMFROMTEXT and WKT
 - Note the quotation marks

insert into assetsclass.rooms (floor, room_number, building_id, location, last_repainted, room_use) values

(1, '1.01', (select building_id from assetsclass.buildings where building_name = 'Chadwick'),

st_geomfromtext('POLYGON((3 2, 8 2, 8 12, 3 12, 3 2))', 0),'12-Jan-1950','classroom');

≜UCL

Inserting Spatial Data

• (note the quotation marks)

st_geomfromtext('POLYGON((3 2, 8 2, 8 12, 3 12, 3 2))', 0)

Inserting Spatial Data - National **CRS**

insert into assetsclass.london_counties (location)

(st_geomfromtext('POLYGON((328103 186492, 328108 186492, 328108 186502, 328103 186502, 328103 186492))', 27700));

Inserting Spatial Data - Global CRS

insert into assetsclass.london_poi (location) values

(st_geomfromtext('POINT(-5.4233444 50.1876552)',4326));

insert into assetsclass.london_highway (location)

(st_geomfromtext('LINESTRING((-4.1997314 50.4060347,-4.1998784 50.4061017, -4.1999345 50.406374, -4.2000396 50.4066819, -4.2002497 50.406987, -4.2004388 50.4071015, -4.2006227 50.4070739))', 4326);

Violating a constrain https://powco

insert into assetsclass.london_poi (location)

(st_geomfromtext('MULTIPOINT) 5.42 3444 50 1876552)'.4326)):

-- Geometry type (MultiPoint) does not match column type (Point)

UCL

Inserting is an inserting and **UPDATE** statement

assetsclass buildings set location =
mafrensext(POLK) EDRALSURFACE(((480501.5 131048.4 0,480501.5 175767.7 0,543813.3 175767.7 0,543813.3 131048.4 0,480501.5 131048.4 0)))', 0)) where building_id =(select building_id from assetsclass.buildings

UCL

Overview

- · What is spatial data
 - Georeferencing
- Modelling spatial data in a database
- Storing spatial data in PostgreSQL/PostGIS
 - DDL adding a spatial column
 - DML inserting data
- Visualising the Data

UCL

Visualising the Data

- As WKT (well known text) is a standard, then most GIS software packages can easily connect onto a database that uses this standard and visualise the data
 - As a reminder GIS = geographical information system - the software that stores, edits, analyses and visualises spatial data
 - Map creation and the spatial SQL we will see next week - is just a very small part of what a GIS can do

Visualising the Data • For this module, we will be using two GIS software packages to visualise the data - QGIS (NB: Version 2.18) - FME

Map Styling

≜UCI

- http://proceedings.esri.com/library/userconf/fed16/papers/fed_86.pdf
- ColorBrewer provides some help on colour choices http://colorbrewer2.org/#type=sequential&scheme=BuG n&n=3
- Production maps also need a legend, scale bar and north arrow
- (Geospatial students you will learn about this in more detail)
- For your assignment screenshots are sufficient, professional maps not required

-UCL

Connecting via ArcMap

- For the MSc Geospatial Science, MSc Spatio-Temporal Analytics, MSc Civil Engineering with GIS ..
 - You can also connect to PostGIS from R (apparently)
 - ArcMap use ArcCatalog Database Connections
- (not required for your assignment)

