(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 6 décembre 2001 (06.12.2001)

PCT

(10) Numéro de publication internationale WO 01/92533 A1

(51) Classification internationale des brevets7:

C12N 15/31, C07K 14/335, A23L 3/3463, 3/3571

(21) Numéro de la demande internationale :

PCT/FR01/01642

(22) Date de dépôt international: 28 mai 2001 (28.05.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 29 mai 2000 (29.05.2000) 00/06859 FR 19 octobre 2000 (19.10.2000) 00/13407

(71) Déposant (pour tous les États désignés sauf US) : RIIO-DIA CHIMIE [FR/FR]; 26 Quai Alphonse le Gallo, F-92512 Boulogne Billancourt (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) BERJEAUD, Jean-Marc [FR/FR]; 83, Impaise de la Touche, F-86800 Savigny l'Evescault (FR). FRE-MAUX, Christophe [FR/FR]; 19, rue des Jones, F-86600 Poitiers (FR). CENATIEMPO, Yves [FR/FR]; 26, rue de Beaulieu, F-86800 Saint Julien l'Ars (FR). SIMON, Laurence [FR/FR]; 10, rue Laurent Brisson, F-86370 Vivonne (FR).

- (74) Mandataires: JACOBSON, Claude etc.; Cabinet Lavoix, 2, place d'Estienne d'Orves, P-75441 Paris Cedex
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SB, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: ANTI-LISTERIA BACTERIOCIN

(54) Titre: BACTERIOCINE ANTI-LISTERIA

(57) Abstract: The invention concerns an isolated polypeptide which is a bacteriocin called Sakacine G derived from Lactobacillus saket 2512. The invention also concerns a nucleic acid coding for said bacteriocin and the use of said polypeptide as active agent against pathogenic and undesirable flora in the preparation of food products.

🔘 (57) Abrégé: La présente invention a pour objet un polypeptide isolé qui est une bactériocine dénommée Sakacine G issue de Luctobactillussukei) 2512. Elle a également pour objet un acide nucléique codant pour ladite bactériocine et vise l'utilisation dudit polypeptide comme agent actif contre des flores pathogènes ou indésirables dans la préparation de produits alimentaires.

BACTERIOCINE ANTI-LISTERIA

La présente invention concerne une bactériocine de Lactobacillus sakei et plus particulièrement de Lactobacillus sakei 2512, une séquence nucléotidique codant pour cette bactériocine, et l'utilisation industrielle de cette bactériocine comme agent actif contre des flores pathogènes ou indésirables dans la préparation de produits alimentaires.

Les bactéries lactiques sont utilisées intensivement dans les fermentations alimentaires afin, non seulement d'améliorer la saveur et la texture des aliments mais surtout pour allonger leur durée de conservation. De nombreuses bactéries lactiques ont en effet la faculté d'inhiber la croissance de certaines bactéries à Gram positif, dont des souches pathogènes comme Listeria monocytogenes, grâce à l'excrétion de molécules antagonistes, parmi lesquelles des composés peptidiques. Ces composés peptidiques, appelés bactériocines, présentent donc un potentiel intéressant pour la préservation qualitative et sanitaire de produits alimentaires fermentés.

10

15

20

25

A titre représentatif de ces bactériocines, on peut notamment citer celles formant la sous-classe de polypeptides dénommés bactériocines anti-Listeria, bactériocines de classe IIa (Ennahar S. et al., 2000, FEMS Microbiol. Rev., 24:85-106) et cystibiotiques (Jack R. et al., 1995, Microbiol. Rev., 59(2):171-200). Il a été fait récemment état de l'utilisation potentielle d'unc de ces bactériocines de classe IIa, la divercine V41, pour empêcher la croissance de Listeria monocytogenes dans du saumon firmé (Duffes F. et al., 1999, J. Food Prot., 62(12):1394-1403).

Les séquences de ces polypeptides présentent de fortes similitudes dans leur partie N-terminale, avec en particulier la présence d'un pont disulfure. La partie C-terminale hydrophobe est beaucoup plus variable, toutefois certaines de ces bactériocines, dites de type pédiocine (pédiocine PA-1, entérocine A et divercine V41), se caractérisent par une taille supérieure à 40 résidus et la présence d'un deuxième pont disulfure du coté C-terminal.

Les auteurs de la présente invention ont mis en évidence une nouvelle bactériocine de classe II a produite à partir d'une souche spécifique de Lactobacillus

15

20

25

30

sakei, qui s'avère particulièrement efficaco pour inhiber la croissance de Listeriu, plus particulièrement de Listeria monocytogenes.

En accord avec Tagg J.R. et al., Bacteriol. Rev., 40; 722-756 (1976), lo terme "Bactériocine" au sens de l'invention fait référence à un polypeptide produit, par synthèse ribosomique, à partir de microorganismes, capable d'inhiber spécifiquement la croissance d'autres bactéries.

La présente invention a donc pour premier objet un polypeptide issu de la souche *Lactobacillus sakei* 2512, doté d'une activité bactériocine.

La souche *Lactobacillus sakei* 2512 a été déposée le 25 mai 2000 auprès de la Collection Nationale des Cultures de Microorganismes où elle est enregistrée sous le numéro de dépôt I - 2479.

La bactériocine objet de la présente invention a été dénommée Sakacine G. Il s'agit d'un polypeptide possédant une masse moléculaire de l'ordre de 3700 à 3900 et préférentiellement d'environ 3834 Da déterminée par spectrométrie de masse. Elle possède un spectre d'inhibition bactérienne très apparenté à celui des bactériocines de classe IIa. C'est ainsi qu'elle s'avère particulièrement efficace contre les souches de Lactobacillus sakei autres que le Lactobacillus sakei 2512, Pediococcus cerevisiae, l'ensemble des souches Listeria et contre les Enterococcus faecalis et durans. En revanche, elle s'avère inactive contre les autres espèces de Lactobacillus comme par exemple le Lactobacillus debrueckii, le Lactobacillus plantarum, le Lactobacillus brevis, le Lactobacillus casei, et une souche d'Enterococcus faecium.

A l'image des bactériocines anti-Listeria de type pédiocine, la Sakacine G possède dans sa structure peptidique avantageusement deux ponts disulfures.

Une analyse des déterminants génétiques de plusieurs bactériocines de classe II a a montré que les gènes impliqués dans leurs production, transport et immunité, sont organisés en une ou plusieurs structures de type opéron. Ces opérons ont une localisation souvent plasmidique et possèdent généralement au moins deux gènes codant pour des protéines, homologues à un ABC-transporteur et une protéine accessoire, probablement impliquée dans l'export des bactériocines.

15

20

25

30

Le clonage du fragment nucléotidique contenant le gène de la Sakacine G a révélé l'existence de trois cadres ouverts de lecture complets skgAI (SEQ ID N°1), skgA2 (SEQ ID N°3) et skgDc (SEQ ID N°13) (incluant le cadre de lecture tronqué skgD (SEQ ID N°7)) et d'un cadre tronqué skgI (SEQ ID N°5) dont une représentation schématique est présentée en figure 1. Le fragment nucléotidique est un double brin dont le monobrin 5'-3' est représenté en séquence ID N°15.

Les produits des gènes skgA1 et skgA2, appelés pré-bactériocines, peuvent subir une maturation au cours de laquelle leurs peptides leaders respectifs sont clivés entre les résidus 18 et 19, libérant ainsi la Sakacine G active (résidus 19-55).

Le fragment nucléotidique monobrin 5'-3' comprenant skgA1, skgA2, skgD et skgI figure en SEQ ID N°9.

La présente invention a donc également pour objet un polypeptide isolé correspondant à une bactériocine, caractérisé en ce qu'il comprend la séquence ID N°2 et/ou la séquence ID N°4. La séquence de la bactériocine mature correspond à la séquence ID N°12 et est comprise dans les séquences ID N°2 et ID N°4.

Le cadre de lecture appelé skgI code une protéine de 52 résidus. La comparaison de cette séquence avec celle des banques de données montre de fortes similitudes de SkgI avec des protéines dites d'immunité. Elle code vraisemblablement la protéine d'immunité protégeant la bactérie productrice de la Sakacine G.

La présente invention s'étend également à un polypeptide isolé comprenant la séquence ID N°6 correspondant au cadre de lecture skgI.

En ce qui concerne le dernier gène skgDc, il code une protéine qui présente une homologie avec des protéines de la famille des ABC-transporteurs, et plus particulièrement du transporteur de la pédiocine PA-1. Le gène skgDc code vraisemblablement l'ABC-transporteur spécifique de la Sakacine G.

La présente invention s'étend également au polypeptide isolé comprenant la séquence ID N°8 correspondant au gène dit *skgD* et au polypeptide isolé comprenant la séquence ID N°14 correspondant au gène dit *skgDc*.

Il est entendu que sont également comprises les séquences homologues, définies comme

10

15

20

25

30

- i) les séquences similaires à au moins 70% de la séquence SEQ ID N° 2, N° 4, N°6, N°8, N°12, ou N°14; ou
- ii) les séquences codées par une séquence d'acide nucléique homologue telle que définie ci-après c'est-à-dire une séquence d'acide nucléique hybridant avec la séquence SEQ ID N° 1, N° 3, N° 5, N° 7, N° 9, N° 13 ou N° 15 ou sa séquence complémentaire, dans des conditions stringentes d'hybridation.

Là encore, le terme "similaires" se réfère à la ressemblance parfaite ou identité entre les acides aminés des séquences homologues comparées mais aussi à la ressemblance non parfaite que l'on qualifie de similitude. Cette recherche de similitudes dans une séquence polypeptidique prend en compte les substitutions conservatives qui sont des substitutions d'acides aminés de même classe, telles que des substitutions d'acides aminés aux chaînes latérales non chargées (tels que l'asparagine, la glutamine, la serine, la thréonine, et la tyrosine), d'acides aminés aux chaînes latérales basiques (tels que la lysine, l'arginine, et l'histidine), d'acides aminés aux chaînes latérales acides (tels que l'acide aspartique et l'acide glutamique); d'acides aminés aux chaînes latérales apolaires (tels que la glycine, l'alanine, la valine, la leucine, l'isoleucine, la proline, la phénylalanine, la méthionine, le tryptophane, et la cystéine).

Plus généralement, par "séquence d'acides aminés homologue", on entend donc toute séquence d'acides aminés qui diffère de la séquence SEQ ID N°2, N°4, N°6, N°8, N°12 ou N°14 par substitution, délétion et/ou insertion d'un acide aminé ou d'un nombre réduit d'acides aminés, notamment par substitution d'acides aminés naturels par des acides aminés non naturels ou pseudo-acides aminés à des positions telles que ces modifications ne portent pas significativement atteinte à l'activité biologique du polypeptide isolé et de préférence de la Sakacine G.

De préférence, une telle séquence d'acides aminés homologue est similaire à au moins 85 % de la séquence SEQ ID N°2, N°4, N°6, N°8, N°12 ou N°14, de préférence au moins 95 %.

L'homologie est généralement déterminée en utilisant un logiciel d'analyse de séquence (par exemple, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University

10

15

20

25

30

Avenue, Madison, WI 53705). Des séquences d'acides aminés similaires sont alignées pour obtenir le maximum de degré d'homologie (i.e. identité ou similitude, comme défini plus haut). A cette fin, il peut être nécessaire d'introduire de manière artificielle des espaces (" gaps ") dans la séquence. Une fois l'alignement optimal réalisé, le degré d'homologie est établi par enregistrement de toutes les positions pour lesquelles les acides aminés des deux séquences comparées sont identiques, par rapport au nombre total de positions.

L'activité biologique du polypeptide isolé et notamment de la Sakacine G se réfère à sa capacité à inhiber la croissance de souches bactériemes indésirables et/ou pathogènes, de préférence de bactéries *Listeria* et plus particulièrement de bactéries *Listeria monocytogenes*.

La présente invention a également pour objet un acide nucléique isolé, codant pour un polypeptide tel que défini précédemment.

Plus précisément, la présente invention a pour objet un acide nucléique isolé comprenant la séquence ID N°1 et/ou la séquence ID N°3.

La séquence nucléotidique complète de la région impliquée dans l'expression de la Sakacine G (3055 pb) a été déterminée. Il s'agit d'un ADN double brin dont le brin 5'-3' est représenté en séquence ID N°15. Le brin 3'-5' est présenté en figure 2. La présente invention vise également un acide nucléique comprenant une telle séquence.

Comme décrit précédemment, cette séquence possède trois cadres ouverts de lecture complets skgA1, skgA2 et skgDc et un tronqué, skgI. Les gènes supposés skgA1 (SEQ ID N°1), skgA2 (SEQ ID N°3) et skgI (SEQ ID N°5) y sont orientés en sens inverse par rapport à skgDc (SEQ ID N°13).

Sont également revendiqués dans le cadre de la présente invention, l'acide nucléique comprenant la séquence ID N°5, l'acide nucléique comprenant la séquence ID N°13 et l'acide nucléique comprenant la séquence ID N°7.

Il est entendu que sont également comprises les séquences homologues, définies comme :

10

15

20

25

30

- i) des séquences similaires à au moins 70 % de la séquence SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15 ; ou
- ii) des séquences hybridant avec la séquence SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15 ou leur séquence complémentaire, dans des conditions stringentes d'hybridation, ou
- iii) des séquences codant pour le polypeptide dénommé Sakacine
 G. tel que défini précédemment.

De préférence, une séquence nucléotidique homologue selon l'invention est similaire à au moins 75 % des séquences SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15, de préférence encore au moins 85 %, ou au moins 90 %.

De manière préférentielle, une telle séquence nucléotidique homologue hybride spécifiquement aux séquences complémentaires de la séquence SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15 dans des conditions stringentes. Les paramètres définissant les conditions de stringence dépendent de la température à laquelle 50% des brins appariés se séparent (Tm).

Pour les séquences comprenant plus de 30 bases, Tm est définie par la relation (Sambrook et al., 1989,NY: Cold Spring Harbor Laboratory):

Tm = 81,5 + 0,41(%G+C) + 16,6 Log(concentration en cations) - 0,63(%formamide) - (600/nombre de bases)

Pour les séquences de longueur inférieure à 30 bases, Tm est définie par la relation :

$$Tm = 4(G+C) + 2(A+T).$$

Dans des conditions de stringence appropriées, auxquelles les séquences aspécifiques n'hybrident pas, la température d'hybridation peut être de préférence de 5 à 10°C en dessous de Tm, et les tampons d'hybridation utilisés sont de préférence des solutions de force ionique élevée telle qu'une solution 6xSSC par exemple.

Le terme "séquences similaires" employé plus haut se réfère à la ressemblance parfaite ou identité entre les nucléotides comparés mais aussi à la ressemblance non parfaite que l'on qualifie de similitude. Cette recherche de similitudes dans les séquences nucléiques distingue par exemple les purines et les pyrimidines.

Une séquence nucléotidique homologue aux cadres ouverts de lecture représentés en SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15 inclut donc toute séquence nucléotidique qui diffère de la séquence SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 ou N°15 par mutation, insertion, délétion ou substitution d'une ou plusieurs bases, ou par la dégénérescence du code génétique, pour autant qu'elle code un polypeptide présentant l'activité biologique de la Sakacine G, comme définie ciaprès.

Parmi de telles séquences homologues, sont comprises les séquences des gènes de bactéries autres que *Lactobacillus*, codant pour la Sakacine G.

10

15

20

25

30

Les polypeptides de la présente invention peuvent être synthétisés par toutes les méthodes bien connues de l'homme du métier. Les polypeptides de l'invention peuvent par exemple être synthétisés par les techniques de la chimie de synthèse, telles que la synthèse de type Merrifield qui est avantageuse pour des raisons de pureté, de spécificité antigénique, d'absence de produits secondaires non désirés et pour sa facilité de production.

La présente invention a également pour objet un procédé de production d'un polypeptide recombinant dans lequel un vecteur comprenant un acide nucléique conforme à la présente invention est transféré dans une cellule hôte qui est mise en culture dans des conditions permettant l'expression d'un polypeptide conforme à la présente invention ou d'un polypeptide codé par une séquence d'acide nucléique conforme à la présente invention.

La bactériocine recombinante peut également être produite par un procédé, dans lequel un vecteur contenant un acide nucléique comprenant une séquence nucléotidique conforme à l'invention et de préférence les séquences SEQ ID N°1 et/ou N°3 où une séquence homologue est transférée dans une cellule hôte qui est mise en culture dans des conditions permettant l'expression du polypeptide correspondant. La protéine produite peut ensuite être récupérée et purifiée. Les procédés de purification utilisés sont connus de l'homme du métier. Le polypeptide recombinant obtenu peut être purifié à partir de lysats et extraits cellulaires, du surnageant du milieu de culture, par des méthodes utilisées individuellement ou en combinaison, telles que le fractionnement, les méthodes de chromatographie, les

10

15

20

25

30

techniques d'immunoaffinité à l'aide d'anticorps mono- ou polyclonaux spécifiques, etc.

La séquence d'acide nucléique d'intérêt, codant pour la Sakacine G, peut être insérée dans un vecteur d'expression, dans lequel elle est liée de manière opérante à des éléments permettant la régulation de son expression, tels que notamment des promoteurs, activateurs et/ou terminateurs de transcription. Les signaux contrôlant l'expression des séquences nucléotidiques (promoteurs, activateurs, séquences de terminaison...) sont choisis en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences nucléotidiques selon l'invention peuvent être insérées dans des vecteurs à réplication autonome au sein de l'hôte choisi, ou des vecteurs intégratifs de l'hôte choisi. De tels vecteurs seront préparés selon les méthodes couramment utilisées par l'homme du métier, et les clones en résultant peuvent être introduits dans un hôte approprié par des méthodes standard, telles que par exemple l'électroporation ou la précipitation au phosphate de calcium.

Les vecteurs de clonage et/ou d'expression tels que décrits ci-dessus, contenant une séquence nucléotidique définie selon l'invention font également partie de la présente invention.

L'invention vise en outre les cellules hôtes transformées, de manière transitoire ou stable, par ces vecteurs d'expression. Ces cellules peuvent être obtenues par l'introduction dans des cellules hôtes, de préférence procaryotes, d'une séquence nucléotidique insérée dans un vecteur tel que défini ci-dessus, puis la mise en culture desdites cellules dans des conditions permettant la réplication et/ou l'expression de la séquence nucléotidique transférée.

Des exemples de cellules hôtes incluent notamment des bactéries telles que Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, Pediococcus, Escherichia et les levures.

Les séquences nucléotidiques de l'invention peuvent être d'origine artificielle ou non. Il peut s'agir de séquences d'ADN ou d'ARN, obtenues par criblage de banques de séquences au moyen de sondes élaborées sur la base des séquences SEQ ID N°1, N°3, N°5, N°7, N°9, N°13 et/ou N°15. De telles banques

peuvent être préparées par des techniques classiques de biologie moléculaire, connues de l'homme de l'art.

Les séquences nucléotidiques selon l'invention peuvent également être préparées par synthèse chimique, ou encore par des méthodes mixtes incluant la modification chimique ou enzymatique de séquences obtenues par criblage des banques.

La présente invention se rapporte également à un procédé pour inhiber la croissance de *Listeria*, plus particulièrement de *Listeria monocytogenes* dans un environnement qui peut être alimentaire ou non et qui est susceptible d'être contaminé avec les *Listeria monocytogenes*.

10

15

20

25

30

Les Listeria monocytogenes sont des microorganismes pathogènes qui sont à l'origine de sévères maladies chez les êtres humains et animaux et qui peuvent notamment être facilement transmissibles par des aliments contaminés, plus spécialement au moyen de viandes, de produits carnés, de produits marins, de lait et de produits dérivés. La présente invention propose donc un procédé pour inhiber la croissance de Listeria monocytogenes dans un aliment susceptible de contenir des Listeria monocytogenes à titre de contaminant, ledit procédé comprenant l'addition d'un polypeptide conforme à l'invention dans ledit aliment en une quantité suffisante pour inhiber la croissance de Listeria monocytogenes.

Les bactériocines conformes à l'invention sont de préférence utilisées dans tout système alimentaire en une quantité comprise entre 1 et 100000 unités arbitraires (AU) de bactériocines par gramme d'aliment.

Une AU de bactériocines est définie comme 5 µl de la dilution la plus élevée du surnageant de culture conduisant à une zone définie d'inhibition de croissance par rapport à une souche témoin d'une bactérie à Gram positif sur un milieu agar.

Bien que les aliments soient les plus concernés par une contamination par Listeria monocytogenes, les produits vétérinaires et médicaux peuvent également être contaminés avec ce type de bactéries, de même que les produits cosmétiques ou produits apparentés.

15

20

25

Les bactériocines conformes à la présente invention, et notamment la Sakacine G, sont donc également utiles pour inhiber la croissance de ce type de pathogènes dans ces produits.

La présente invention a ainsi pour objet l'utilisation d'une bactériocine conforme à la présente invention comme agent actif contre des flores pathogènes ou indésirables notamment dans la préparation de produits alimentaires et plus précisément pour inhiber la croissance et la propagation de *Listeria*, plus particulièrement de *Listeria monocytogenes*, dans les produits alimentaires.

Le polypeptide peut être incorporé tel quel dans le produit alimentaire considéré ou encore y être produit à partir de la souche *Lactobacillus Sakei* 2512.

La présente invention a ainsi également pour objet l'utilisation de la souche Lactobacillus Sakei 2512 dans un produit alimentaire pour y générer un polypeptide bactériocine conforme à l'invention.

L'invention concerne encore une composition bactériocine, caractérisée en ce qu'elle comprend au moins un polypeptide conforme à la présente invention, c'est-à-dire issue de la souche *Lactobacillus Sakei* 2512 ou comprenant la séquence SEQ ID N°2, ou N°12, ou N°14 ou la souche *Lactobacillus Sakei* 2512.

L'invention s'étend également à l'utilisation de la souche Lactobacillus sakei 2512 destinée à produire un polypeptide tel que défini plus haut, pour inhiber la croissance et la propagation de Listeria, plus particulièrement de Listeria monocytogenes, dans des produits alimentaires ainsi que les compositions comportant de telle souche.

Les exemples et la figure ci-après sont présentés à titre illustratif et non limitatif de l'objet de la présente invention.

10

15

20

25

30

FIGURE:

Figure 1 : Représentation schématique du locus génétique impliqué dans la production de la sakacine G.

Figure 2 : Brin complémentaire 3'-5' correspondant à la séquence nucléotidique complète de la région impliquée dans l'expression de la Sakacine G et dont le brin 5'-3' est présenté en SEQ ID N°15.

MATERIELS ET METHODES

- Souches bactériennes et milieux de culture. Lactobacillus sakei 2512 est cultivée à 30°C en milieu MRS (DIFCO Laboratories) stérilisé 12 min à 110°C. Les souches indicatrices sont cultivées en milieu BHI ("brain-heart infusion"; DIFCO Laboratories) à 37°C.
- Test d'activité. Du milieu BHI, gélosé à 10g/l, est ensemencé à 1% par une préculture de souche indicatrice en phase stationnaire avant d'être coulé en boite de Petri. Cinquante microlitres de solution de sakacine G sont déposés dans des puits creusés dans la gélose refroidie à l'emporte pièce. L'activité bactériocine se traduit par l'apparition de zones d'inhibition autour des puits après incubation une nuit à 37°C.
 - Analyse protéique. La sakacine G est analysée en spectrométrie de masse sur un appareil Perkin-Elmer Sciex API 165 équipé d'une source d'ionisation par Ionspray. Après lyophilisation, la fraction HPLC active est reprise avec une solution acétonitrile / eau (1:1) contenant 0,1% d'acide formique puis injectée par infusion à un débit de 5 μl/min.

La concentration protéique est déterminée par la méthode à l'acide bicinchoninique au moyen du kit BCA (Sigma) selon les instructions du fabriquant.

Les comparaisons de séquences protéiques sont réalisées grâce au programme BLAST (1), accessible à partir du serveur ExPASy du "Swiss Institute of Bioinformatics".

10

15

20

25

30

 Clonage moléculaire et transformation. Les plasmides sont extraits et purifiés à partir de souches d'Escherichia. coli et de Lactobacillus sakei 2512 selon les méthodes décrites précédemment par Sambrook et al., 1989, NY: Cold Spring Harbor Laboratory et Muriana et Klaenhammer, 1987, Appl. Environ. Microbiol., 53:553-560 respectivement.

Les enzymes de restriction et de modification de l'ADN sont utilisées selon les indications du fournisseur (Gibco-BRL). Les électrophorèses en gel d'agarose, analytique et préparative, sont conduites en tampon Tris/borate/EDTA (pH 8,3) selon les méthodes décrites par Sambrook et al., 1989, NY: Cold Spring Harbor Laboratory. Les fragments d'ADN digérés sont purifiés à partir des gels d'agarose en utilisant le kit "Prep-a-Gene" (Bio-Rad). Les clonages dans les plasmides pGEM-T (Promega) et pZERO2 (Invitrogen) sont réalisés selon les recommandations des fournisseurs. Le transfert de type Southern est réalisé sur membrane de nylon (Hybond-N+, Amersham) selon Sambrook et al., 1989, NY: Cold Spring Harbor Laboratory. Le transfert est suivi d'une hybridation avec une sonde radioactive obtenue par marquage au ³²P à l'aide du kit "random primers DNA labelling system" (Gibco-BRL). Les bactéries E. coli sont rendues compétentes et transformées selon la méthode de Hanahan, 1983. J. Mol. Biol. 166:557-80.

La Taq polymérase (Gibco-BRL) est utilisée selon les recommandations du fournisseur. L'amplification du fragment d'ADN codant la Sakacine G a été réalisée à l'aide d'un appareil "Geneamp 9700®" (Perkin-Elmer) selon les conditions suivantes : 35 cycles de dénaturation à 94°C pendant 30 s, hybridation à 45°C pendant 30 s et élongation à 72°C pendant 1 min suivis d'un cycle supplémentaire d'élongation à 72°C pendant 5 min.

Le fragment d'ADN portant le locus sakacine G est séquencé à l'aide d'un séquenceur automatique ABI Prism 310® (Perkin-Elmer) en utilisant le kit de séquençage "Big-dye terminator®" (Perkin-Elmer) et les amorces nucléotidiques appropriées.

EXEMPLE 1:

Isolement et purification de la Sakacine G.

10

15

20

25

30

Une culture de 16 h de Lactobacillus. sukei 2512 (100 ml) est centrifugéo à 6000g pendant 15 min. Le surnageant de culture est ensuite chauffé à 70°C pendant 20 min. Le surnageant refroidi est ensuite dilué avec 1 volume d'eau (le pH de la solution diluée doit être inférieur à 6, par addition d'HCl 1M si nécessaire) avant d'être passé sur une colonne (2.5 x 18 cm) contenant une résine échangeuse de cations (carboxy-methyl cellulose; Cellufine C-200, Amicon) équilibrée avec de l'eau. Après des lavages successifs avec de l'eau (100 ml) puis une solution de NaCl 0,1M (150 ml), la Sakacine G est éluée avec une solution de NaCl 0,5M (200 ml). Le pH de toutes les solutions doit être inférieur à 6. La fraction active est ensuite déposée sur cartouche d'extraction en phase solide (Sep-pak plus C18, Waters) équilibrée dans l'eau. Après lavages successifs avec 5 ml de solutions d'acétate d'ammonium 20 mM contenant 0, 10, 20 et 30% d'acétonitrile, la Sakacine G est éluée avec 10 ml d'acétate d'ammonium 20 mM contenant 80% d'acétonitrile. Après lyophilisation, l'extrait est solubilisé dans 1 ml de solution aqueuse d'acétonitrile à 40% puis injecté sur une colonne HPLC analytique de phase inverse en C8 (Kromasil, 5µm, 100 Å, 4.6 x 250 mm, A.I.T.). L'HPLC a été réalisée sur un appareillage comprenant une pompe Perkin-Elmer series 200 LC connectée à un détecteur Perkin-Elmer 785A. Le chromatogramme en absorption est enregistré à 220 nm. La séparation est réalisée, à un débit de 0,8 ml/min selon le gradient suivant : Solvant A = eau/acide trifluoroacétique 0,1%; solvant B = acétonitrile/eau/ acide trifluoroacétique 0,07%. Après un lavage de 5 min avec 20% de solvant B, l'élution est réalisée par un gradient de 20 de 40% de solvant B en 10 min puis de 40 à 55% de solvant B en 20 min.

La fraction correspondant au pic à 23 min s'étant révélée active contre Listeria ivanovii BUG 496 a été analysée en spectrométrie de masse en ionisation "ionspray". La molécule apparaît pure à au moins 95% et possède une masse moléculaire de 3834,32 ± 0,31 Da. La quantité de Sakacine G ainsi purifiée a été estimée à 120 µg à partir de 100 ml de culture. Le rendement de purification a été estimé à 55% d'activité retrouvée. Une partie de la séquence primaire de la Sakacine G a été déterminée par microséquençage et deux oligonacléotides dégénérés ont été établis à partir de cette séquence.

EXEMPLE 2:

5

10

15

20

25

30

Clonage du locus génétique impliqué dans la production de la sakacine G

Par génétique inverse, deux oligonucléotides dégénérés SakG01 (5' AARTATTATGGNAAYGGNGT 3') (SEQ ID N°10) et SakG02S ACATGATGNCCNCCRTTNGC 3') (SEQ ID N°11) ont été choisis afin d'amplifier le fragment d'ADN correspondant au gène de structure de la sakacine G mature (SEQ ID N°15) par réaction de polymérisation en chaîne (PCR). L'amplifiat ainsi obtenu, d'une taille approximative de 100 pb a été cloné dans le plasmide pGEM-T pour former le plasmide pJMBYC01. Le fragment de restriction PvuII de 560 pb issu de pJMBYC01, incluant le fragment inséré, a servi de sonde d'hybridation, lors d'un transfert de type Southern, pour localiser le gène de structure sur le génome de Lactobacillus sakei 2512. A partir d'un extrait plasmidique de Lb. sakei 2512 digéré par les enzymes de restriction HindIII et EcoRI, la sonde a révélé des fragments de tailles respectives d'environ 2,1 et 9 kpb. Le fragment HindIII de 2,1 kpb a été purifié puis inséré dans le vecteur pZERO2 pour donner le plasmide pJMBYC02. La présence du gène de structure de la sakacine G dans pJMBYC02 a été démontrée par amplification PCR avec les amorces SakG01 et SakG02 puis par séquençage nucléotidique du fragment inséré dans pJMBYC02. Une stratégie voisine a été utilisée afin de déterminer la séquence complète du gène skgD. L'extrait plasmidique de Lb. sakei 2512 a été digéré par Xbal. Le produit de digestion a été inséré dans le plasmide pBluescript SK+. Les clones porteurs de la séquence d'intérêt ont été révélés au moyen d'une sonde radioactive préparée par PCR réalisée sur le plasmide pIMBYC02 à l'aide des oligonucléotides SakG03 (5' CCTTGGTCAGGCTATCG 3') (SEO ID Nº16) et SakG04 (5' ATCACCTTTTTGAATTACCC 3') (SEQ ID N°17).

L'analyse de la séquence nucléotidique complète de la région (3051 pb) a révélé l'existence de trois cadres ouverts de lecture complets skgA1 et skgA2 et skgDc et d'un tronqué, skgI. Les gènes supposés skgAl skgA2 et skgI sont orientés en sens inverse par rapport à skgD.

15

20

25

30

Chacun des cadres ouverts de lecture est précédé d'un site potentiel de fixation des ribosomes. Les gènes skgA1 et skgA2 codent tous les deux des protéines de 55 résidus d'acides aminés dont les séquences 19-55 sont totalement identiques. La séquence 19-52 correspond à la séquence de la sakacine G obtenue par microséquençage. La présence de 4 résidus cystèine en positions 9, 14 et 24 et C-terminale est à noter. De plus, la masse moléculaire calculée de ce peptide, de 3838,2 Da qui diffère de la masse moléculaire mesurée (3834,32 Da) de 4 Da montre la présence de deux ponts disulfures sur la sakacine G, comme cela a déjà été démontré pour d'autres bactériocines anti-Listeria.

Les séquences 1-18 des protéines SkgA1 et SkgA2 ne diffèrent que de 3 résidue et présentent de fortes homologies avec les peptides "leader" des bactériocines de classe II, qui sont impliquées dans le transport de ces peptides par des ABC-transporteurs spécifiques. En particulier le motif GG terminal est caractéristique de ces séquences leader et constitue le site de maturation de ces bactériocines. La comparaison des séquences nucléotidiques des gènes skgA1 et skgA2 montre également une identité de séquence de plus de 95% pour la partie des gènes codant la bactériocine mature.

Le cadre de lecture ouvert incomplet appelé skgI code une protéine de 52 résidus. La comparaison de cette séquence avec celles des banques de données montre de fortes homologies de SkgI avec les protéines dites d'immunité LccI et MesI. L'implication de MesI dans la protection vis à vis de la mésentéricine Y105 a été démontrée. On peut supposer que skgI code la protéine d'immunité à la sakacine G.

Le dernier gène skgDc code une protéine de 727 acides aminés. D'après les banques de données, SkgDc est très homologue de protéines de la famille des ABC-transporteurs et plus particulièrement des transporteurs de la pédiocine PA-1: PedD ou PapD (Marugg et al., 1992; Appl Environ Microbiol 58, 2360-7; Motlagh et al., 1994, Lett Appl Microbiol 18, 305-12), de la sakacine P: SppT (Huhne et al., 1996, Microbiology 142, 1437-48), de la sakacine A: SapT (Axelsson and Holck, 1995, J Bacteriol 177, 2125-37) et de la mésentéricine Y105: MesD (Fremaux et al., 1995, Microbiology 141, 1637-45).

EXEMPLE 3:

Spectre d'inhibition.

La sensibilité à la Sakacine G de 17 souches bactériennes a été testée par la méthode de test en puits (cf Matériels et Méthodes). Les résultats sont présentés dans le tableau 1 ci-après :

TABLEAU 1

	Rayon des halos d'inhibition (mm)
Le. lactis ATCC11454	0
Ln. Paramesenteroides DSM 20288	0
Ln. Mosenteroides DSM 20484	0
Ln. Mesenteroides DSM 20240	0
Lb. Delbrueckii DSM 20081	0
Lb. Plantarum DSM 20174	0
Lb brevis DSM 20054	0
Lb. casei DSM 20011	0
Lb. sakei 2515 -	1
P. acidilactici ENSAIA 583	0
P. cerevisiae IP 5492	1
E. faecium ENSAIA 631	. 0
E. faecalis IP 5430	2
E. faecalis ENSAIA 636	1
E. durans ENSAIA 630	2
L. inocua 8811	3
L. ivanovi BUG 496	6

Le spectre d'inhibition de cette bactériocine apparaît comme assez étroit et limité aux souches de Lactobacillus sakei et Pediococcus cerevisiae pour les bactéries lactiques. Ce peptide apparaît, comme les autres bactériocines de classe IIa, actif contre toutes les souches de Listeria testées, ainsi que contre les Enterococcus faecalis et durans mais pas contre Enterococcus faecium.

10

15

30

REVENDICATIONS

- 1. Polypeptide isolé, caractérisé en ce qu'il s'agit d'une bactériocine, dénommée Sakacine G, issue de Lactobacillus sakei 2512.
- Polypeptide isolé selon la revendication 1, caractérisé en ce qu'il s'agit d'une bactériocine de classe IIa.
 - 3. Polypeptide isolé, caractérisé en ce qu'il comprend la séquence ID N° 2 et/ou la séquence ID N° 4.
 - 4. Polypeptide isolé, caractérisé en ce qu'il comprend la séquence ID N°12.
 - 5. Acide nucléique comprenant une séquence nucléotidique codant un polypeptide selon l'une des revendications 1 à 4.
 - 6. Acide nucléique selon la revendication 5, comprenant la séquence ID N°1 et/ou la séquence ID N°3.
- 7. Acide nucléique selon la revendication 5 ou 6, comprenant la séquence 20 d'acide nucléique SEQ ID N°15.
 - 8. Acide nucléique selon la revendication 5 ou 6, comprenant la séquence d'acide nucléique SEQ ID N°9.
- 9. Polypeptide isolé, caractérisé en ce qu'il comprend la séquence ID N°6.
 - 10. Polypeptide isolé, caractérisé en ce qu'il comprend la séquence ID N°8.
 - 11. Polypeptide isolé, caractérisé en ce qu'il comprend la séquence ID N°14.
 - 12. Acide nucléique comprenant la séquence ID Nº5.

WO 01/92533

- 13. Acide nucléique comprenant la séquence ID N°7.
- 14. Acide nucléique comprenant la séquence ID N°13.

5

- 15. Vecteur de clonage et/ou d'expression comprenant un acide nucléique selon l'une des revendications 5 à 8, 12 ou 14.
 - 16. Cellule hôte transformée par un vecteur selon la revendication 15.

10

17. Cellule hôte selon la revendication 16, caractérisée en ce qu'il s'agit d'un microorganisme choisi parmi les Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, Pediococcus, Escherichia ou d'une levure.

15

18. Procédé de production d'un polypeptide recombinant dans lequel un vecteur comprenant un acide nucléique selon l'une des revendications 5 à 8 et 12 ou 14 est transféré dans une cellule hôte qui est mise en culture des conditions permettant l'expression d'un polypeptide selon l'une des revendications 1 à 4 et 9 à 11 ou d'un polypeptide codé par une séquence d'acide nucléique telle que définie dans l'une des revendications 5 à 8 et 12 ou 14.

20

19. Utilisation d'un polypeptide selon l'une quelconque des revendications 1 à 4 comme agent actif contre des flores pathogènes ou indésirables dans la préparation de produits alimentaires.

25

20. Utilisation sclon la revendication 19, caractérisée en ce que ledit polypeptide est mis en œuvre pour inhiber la croissance et la propagation de *Listeria*, plus particulièrement de *Listeria monocytogenes*, dans les produits alimentaires.

- 21. Utilisation selon la revendication 19 ou 20, caractérisée en ce que ledit polypeptide est produit dans le produit alimentaire à partir de la souche *Lactobacillus* Sakei 2512.
- 22. Utilisation de la souche *Lactobacillus Sukei* 2512 dans des produits alimentaires pour y produire un polypeptide bactériocine selon l'une des revendications 1 à 4.
- 23. Composition bactériocine caractérisée en ce qu'elle comprend au moins 10 un polypeptide selon l'une quelconque des revendications 1 à 4 ou la souche de Lactobacillus Sakei 2512.

-[C.]

altaaalacgcaaatittiatgtaaattaccggaadtggtatttagttacctttacgtcgtaataacttaagacgttattagcatttgcattgaccgtatctttgacatttagtaaattgaagtcftcttaaaaggatgttagtgactatctaag aaccaaagatagttoggoctagttotataataalttaccalttaaltagclattgtaactegcagtacgggactctgttagctaatgcatacatggtccattacaagcgtccattuaaaatcttttagaataatacgtctta tttotttaaatagataactatticacttciccgtacatcctatcggctttaactattictatatcttttaaaaggataccccatactatgtctataaaggcttgtaccctcaagitagagtcatcagtttfgttctgaaagataacgttctagtga ccttaaigcctttagaggttttcctaaaacttttac:tacctgcccattaaagtaltgtaaaagtttcctttcttgaaacaaagtctcttcgtctctttattgtcaaatgagttcaaatgagataaaagtctgtcgttttagggaltataagacct atogaaagoggogtiafgataactactattaatcataacgtccagtgaaaaatottgttgaacatctatatatatatggtgtttttatacctatgtaaccctaatagagctaaacgaattaacctcggatagaaaatgtocggcat otttaaaagaattgtcaaggaatgccalatgctatcgactggftcgtcgtcgaaattttcacccaaacttcgattaagaatatcagaaatagaatacccgacctcgttaggttcaatactcccccttagagtgtcagccttctcaataa cgactytctcagattacaaaatgacaaactacttagttggtcalcaaacctgtgataatgactcgtcgcttattaacttttggataacttacattttgtaattataagcaacgtg;agclaacagtcaacgattcgactttgactttata acttgtcggcactctcaatgtcgattgcggtatcataaatggtggacattatctaaagtaaagaacttaacaatccgaaaaacgcaaaaactattcttgtagaggtttaatataaaaaaactcaagaacttcaagacaac aatgglatcataaatggtggacadtacataaagaacxtagcaattcgatgcacalaagaagtaaaacttatggaggacaattattaaaaastgtgctagtcacatcaagattacactttaacacagttcaaatcgtttatatat aaaatcogtaccittiigaacgaasattaagcigaactgatattgccatattatgaccataagatataaaceaatogaagtgittitttaatcctotgaatataacaaattagacaactctatgittittaatataacaagtgitcacctac gtttgaatttaccctatagcataaagttctacatottaaatcaalaccaatgcctagcttgcetaacgtgttgtagttatatttttatgttttcttatcatcatgtgctaacaaaccatactcgccaagacctttaggtgtaatcgttttaattacc attgogicitaaaaaccticttactcagaacaatcittaaaoggctaaatttattaattgtttggggtactggcggtaatcgatctactaaatçgggtgttcaggtacgaggggtaacgggggtaacttgttggtactclcaatgtogattgtggt ttotactaacacottagogtogaaacttatactaaaaecaaaggottataagtgatagttttaacgotaagaatogtttttggbagttgttocotgatgataaaacotgaotatttocgaogtotocdtgatttaaatottogot acgtaatgttcgactatacccgtagaaatttctacttttaaattacgatggttagtaacgtgtacaaaatttcgttccttttcaagacgtaatgatgataacaaaaatacaaaattaaaattaaaacaacaagagtctgggttgttat ccgaaaattacgaaatcattgtatgaaaaatttegggaatctcttataataataatgattggtttcgatgtttgacgttctcagcgattataaatctgatttacttcataataatcacctaagaattatcccccccgcgctgtcgagtt togaagcoctaagaatogatafagttaaaacgatalttgaacctttottgcagttattatagctcattaagtgacctaaaatgtoctgcgaaagatcattoacgttototgaagotacaacaacaacaatotaagtoaaattafaacag atagcaatacotagtyccaccttaacaactffgt.caagcgtactatttaattataaccttitacctataatatticttaatacatgacacttoigctictttttcttaaaatctattifgtftttg 5'

FIG.

supported that yet and

LISTE DE SEQUENCES

```
<110> RHODIA CHIMIE
<120> BACTERIOCINE ANTI-LISTERIA
<130>
<140>
<141>
<160> 17
<170> PatentIn Ver. 2.1
<210> 1
<211> 196
<212> ADN
<213> Lactobacillus sake
. <220>
<221> CDS
<222> (20)..(187)
 <400> 1
ttaacaggag gtattcaaa atg aag aat aca cgt agc tta acg atc caa gaa 52
                      Met. Lys Asn Thr Arg Ser Leu Thr Ile Cln Clu
ata aaa too ato aca ggt ggt aaa tac tat ggt aat ggt gtt agc tgt
 Ile Lys Ser Ile Thr Gly Gly Lys Tyr Tyr Gly Asn Gly Val Ser Cys
              15
                                  20
 aac tot cat ggt tgt toa gta aat tgg ggg caa gca tgg act tgt ggg
Asn Ser His Gly Cys Ser Val Asn Trp Gly Gln Ala Trp Thr Cys Gly
         30
                              35
gta aat cat cta gct aat ggc ggt cat ggg gtt tgt taa ttatttaaa
                                                                    196
 Val Asn His Leu Ala Asn Gly Gly His Gly Val Cys
                                             . 55
                          50
 <210> 2
<211> 55
 <212> PRT
 <2135 Lactobacillus sake
 <400> 2
Met Lys Asn Thr Arg Ser Leu Thr Ile Gln Glu Ile Lys Ser Ile Thr
 Gly Gly Lys Tyr Tyr Gly Asn Gly Val Ser Cys Asn Ser His Gly Cys
                                  25
 Ser Val Asn Trp Gly Gln Ala Trp Thr Cys Gly Val Asn His Leu Ala
 Asn Gly Gly His Gly Val Cys
      50
```

1

```
<210> 3
<211> 196
<212> ADN
<213> Lactobacillus sake
<220>
<221> CDS
<222> (20)..(187)
<400> 3
taatttggag atgttcttt atg aaa aac gca aaa agc cta aca att caa gaa 52
                     Met Lys Asn Ala Lys Ser Leu Thr Ile Gln Glu
atg aaa tot att aca ggt ggt aaa tac tat ggt aat ggc gtt agc tgt
                                                                   100
Met Lys Ser Ile Thr Gly Gly Lys Tyr Tyr Gly Asn Gly Val Ser Cys
            15
                                 20
aac tot cac ggc tgt tca gta aat tgg ggg caa gca tgg act tgt gga
                                                                   148
Asn Ser His Gly Cys Ser Val Asn Trp Gly Gln Ala Trp Thr Cys Gly
        30
                             35
gta aac cat cta gct aat ggc ggt cat gga gtt tgt taa ttaccagat
                                                                   196
Val Asn His Leu Ala Asn Gly Gly His Gly Val Cys
<210> 4
<211> 55
<212> PRT
<213> Lactobacillus sake
<400> 4
Met Lys Asn Ala Lys Ser Leu Thr Ile Gln Glu Met Lys Ser Ile Thr
Gly Gly Lys Tyr Tyr Gly Asn Gly Val Ser Cys Asn Ser His Gly Cys
                                 25
Ser Val Asn Trp Gly Gln Ala Trp Thr Cys Gly Val Asn His Leu Ala
Asn Gly Gly His Gly Val Cys
    50
<210> 5
<211> 181
<212> ADN
<213> Lactobacillus sake
<220>
<221> CDS
<222> (24)..(179)
<400> 5
ttaaaaaaagg agacgtgatt aaa atg gca aac aaa gac aat att aaa act gaa 53
                          Met Ala Asn Lys Asp Asn Ile Lys Thr Glu
```

					gaa Glu											101
					tta Leu											149
tat Tyr	agc Ser	aaa Lys 45	att Ile	gat Asp	ata Ile	gct Ala	aag Lys 50	aat Asn	ccc Pro	ga						181
<212	.> 57 !> PI	T.	oaci:	llus	sake	e _										
<400 Met 1		Asn	Ъуs	Asp 5	Asn	Ile	Lys	Thr	Glu 10	Ser	Lys	Asn	Asn	Ile 15	Glu	
Ala	Leu	Leu	His 20	Leu	Leu	Glu	Lys	Arg 25	Pro	Val	Lys	Ser	Ser 30	Glu	Leu	
Leu	Asp	Ile 35	Ilc	Asp	Val	Lou	6er . 40	Cln	Val	Tyr	Scr	Lys 45	Ilo	λοр	Ilo	
Ala	Lys 50	Asn	Pro													
<21 <21	2 > A	· .		llus	sak	e										
	1> C		. (12	01)							•					
	0> 7 ttag	gag	actt	atat	Lc				u Lc					s Lc	a tat u Tyr O	52
					gaa Glu									Asn	atg Met	100
			Asn		ggt Gly			Tyr					Leu		ttc Phe	148
		Гуз			caa Gln		Gly					Gly			Lys	196
	~~~	~~~	<i>-</i>	at-		++=	таз	aca	22+	~~	<b>++-</b>	<b>~</b> 27	~~+	mat-	ata	244

Ala 60	Ala	Glu	Glu	Leu	Asn 65	Leu	Glu	Ala	Asn	Ala 70	Leu	Gln	Ala	Авр	Met 75	
				gat Asp 80												292
tta Leu	aag Lys	caa Gln	gga Gly 95	aaa Lys	gtt Val	ctg Leu	cat His	tac Tyr 100	tac Tyr	gtt Val	gta Val	ttt Phe	gat Asp 105	gtt Val	tcg Ser	340
				att Ile			_		_						_	388
gaa Glu	atc Ile 125	tcc Ser	aaa Lys	aag Lys	gat Asp	ttt Phe 130	gaa Glu	aat Asn	gaa Glu	tgg Trp	acg Thr 135	ggt Gly	aat Asn	ttc Phe	ata Ile	436
				gga Gly												484
agt Ser	tta Leu	ctc Leu	aag Lys	ttt Phe 160	att Ile	cct Pro	att Ile	ttg Leu	aga Arg 165	cag Gln	caa Gln	aaa Lys	tcc Ser	cta Leu 170	ata Ile	532
ttc Phe	tgg Trp	ata Ile	gct Ala 175	ttc Phe	gcc Ala	gca Ala	ata Ile	cta Leu 180	ttg Leu	atg Met	ata Ile	att Ile	agt Ser 185	att Ile	gca Ala	580
				tta Leu												628
aat Asn	atg Met 205	gat Asp	aca Thr	ttg Leu	gly aaa	att Ile 210	atc Ile	tcg Ser	att Ile	tgc Cys	tta Leu 215	att Ile	gga Gly	gcc Ala	tat Tyr	676
ctt Leu 220	tta Leu	cag Gln	gcc Ala	gta Val	atg Met 225	acg Thr	tat Tyr	ttt Phe	cag Gln	aat Asn 230	ttt Phe	tta Leu	cta Leu	act Thr	ata Ile 235	724
ttt Phe	gga Gly	caa Gln	aat Asn	ctt Leu 240	tct Ser	aga Arg	aaa Lys	att Ile	att Ile 245	tta Leu	aat Asn	tat Tyr	att Ile	aat Asn 250	cac His	772
ctt Leu	ttt Phe	gaa Glu	tta Leu 255	ccc Pro	atg Met	tct Ser	ttc Phe	ttc Phe 260	tca Ser	aca Thr	cgt Arg	aga Arg	gtt Val 265	gly ggc	gaa Glu	820
ata Ile	gtc Val	tct Sor 270	yra	ttt Pho	aca Thr	gat Map	gca Ala 275	agc Ser	aag Lya	att Ilc	ata Ilo	gat Asp 280	gct Ala	ttg Leu	gca Ala	868
agt ser	acg Thr 285	att Ile	ttg Leu	act Thr	ctc Leu	ttt Phe 290	tta Leu	gat Asp	gtt Val	tgg Trp	atg Met 295	ttg Leu	gtt Val	aca Thr	atc 11e	916
tca Ser	atc Ile	gtt Val	ctc Leu	gta Val	ttt Phe	tta Leu	aat Asn	aca Thr	aag Lys	tta Leu	ttt Phe	atg Met	att Ile	tct Ser	ctg Leu	964

300 305 310 gta tot ata cog gtg tac toa gtt ata att tat gog ttt aaa aat aca 1012 Val Ser Ile Pro Val Tyr Ser Val Ile Ile Tyr Ala Phe Lys Asn Thr 320 325 ttt aat ggc ctg aac cat aaa tca atg gaa aat gca gca tta ttg aat 1060 Phe Asn Gly Leu Asn His Lys Ser Met Glu Asn Ala Ala Leu Leu Asn 340 tot goa ata ato gaa aac gta act ggc ata gaa act gta aaa toa tta 1108 Ser Ala Ile Ile Glu Asn Val Thr Gly Ile Glu Thr Val Lys Ser Leu 355 act toa gaa gaa ttt too tac aat caa atc act gat aga tto gaa aat 1156 Thr Ser Glu Glu Phe Ser Tyr Asn Gln Ile Thr Asp Arg Phe Glu Asn 370 375 tht cht aac agt tec tha egg tat acg ata get gac caa gga cag ca 1203 Phe Leu Asn Ser Ser Leu Arg Tyr Thr Ile Ala Asp Gln Gly Gln <210> 8 <211> 394 <212> PRT <213> Lactobacillus sake <400> 8 Leu Phe Asn Leu Leu Arg Tyr Lys Lys Leu Tyr Cys Ser Gln Val Asp 10 Glu Asp Asp Cys Gly Ile Ala Ala Leu Asn Met Ile Phe Lys Asn Phe Gly Ser Glu Tyr Ser Leu Ser Lys Leu Arg Phe Leu Ala Lys Thr Ser Gin Gln Gly Thr Thr Ile Phe Gly Leu Ile Lys Ala Aia Glu Glu Leu Asn Leu Glu Ala Asn Ala Leu Gln Ala Asp Met Gly Ile Phe Lys Asp Glu Asn Leu Met Leu Pro Ile Ile Ala His Val Leu Lys Gln Gly Lys Val Leu His Tyr Tyr Val Val Phe Asp Val Ser Lys Asp Phe Leu Ile 105 Ile Gly Asp Pro Asp Pro Thr Ile Gly Ile Thr Glu Ile Ser Lys Lys Asp Phe Glu Asn Glu Trp Thr Gly Asn Phe Ile Thr Phe Ser Lys Gly Lys Asn Phe Val Ser Glu Lys Gln Arg Asn Asn Ser Leu Leu Lys Phe 150 Ile Pro Ile Leu Arg Gln Gln Lys Ser Leu Ile Phe Trp Ile Ala Phe 165 170

Ala Ala Ile Leu Leu Met Ile Ile Ser Ile Ala Gly Ser Leu Phe Leu Glu Gln Leu Val Asp Ile Tyr Ile Pro His Lys Asn Met Asp Thr Leu 200 Gly Ile Ile Ser Ile Cys Leu Ile Gly Ala Tyr Leu Leu Gln Ala Val Met Thr Tyr Phe Gln Asn Phe Leu Leu Thr Ile Phe Gly Gln Asn Leu 235 Ser Arg Lys Ile Ile Leu Asn Tyr Ile Asn His Leu Phe Glu Leu Pro Met Ser Phe Phe Ser Thr Arg Arg Val Gly Glu Ile Val Ser Arg Phe Thr Asp Ala Ser Lys Ile Ile Asp Ala Leu Ala Ser Thr Ile Leu Thr Leu Phe Leu Asp Val Trp Met Leu Val Thr Ilc Scr Ilc Val Lcu Val Phe Leu Asn Thr Lys Leu Phe Met Ile Ser Leu Val Ser Ile Pro Val Tyr Ser Val Ile Ile Tyr Ala Phe Lys Asn Thr Phe Asn Gly Leu Asn 330 His Lys Ser Met Glu Asn Ala Ala Leu Leu Asn Ser Ala Ile Ile Glu Asn Val Thr Gly Ile Glu Thr Val Lys Ser Leu Thr Ser Glu Glu Phe Ser Tyr Asn Gln Ile Thr Asp Arg Phe Glu Asn Phe Jen Asn Ser Ser 375 380 Leu Arg Tyr Thr Ile Ala Asp Gln Gly Gln <210> 9 <211> 2042 <212> ADN <213> Lactobacillus sake <400> 9 agetteggga ttettageta tateaatttt getatáaaet tgggaaagaa egteaataat 60 atcgagtaat teactggatt ttacaggacg cttttctagt aagtgcaaga gagettcgat 120 gttgttttta gattcagttt taatattgtc tttgtttgcc attttaatca cgtctccttt 180 tttatagtaa taaaaaaaac acaattaaat tagtgctttt ttatctggta attaacaaac 240 tocatgacog ccattageta gatggtttac tecacaagte catgettgec eccaatttac 300 tgaacagoog tgagagttac agctaacgcc attaccatag tatttaccac ctgtaataga 360

tttcatttct tgaattgtta ggctttttgc gtttttcata aagaacatct ccaaattata 420 ttttttagtg attcttgaag ttctgttgta acgcagaatt ttggaagaat gagtacttgt 480 tagaaatttg ccgatttaaa taattaacaa accccatgac cgccattagc tagatgattt 540 accocaaag tccatgottg cccccaattt actgaacaac catgagagtt acagctaaca 600

```
ccattaccat agratttacc acctgtgatg gattttattt cttggatcgt taagctacgt 660
gtattcttca ttttgaatac ctcctgttaa ataattttta cacgatcagt gtagttctaa 720
tgtgaaattg tgtcaagttt agcaaatata tattttaggc atggaaaaac ttgcttttaa 780
ttcgacttga ctataacggt ataatactgg tattactata tttgtttagc ttcacaaaaa 840
aattaggaga cttatatatt gtttaatctg ttgagataca aaaaattata ttgttcacaa 900
gtggatgaag atgattgtgg aatcgcagct ttgaatatga tttttaaaaa ttttggttcc 960
gaatattcac tatcaaaatt gcgattctta gcaaaaacca gtcaacaagg gactactatt 1020
tttgqactga taaaggctgc agaggaacta aatttagaag cgaatgcatt acaagctgat 1.080
atgggcatct ttaaagatga aaatttaatg ctaccaatca ttgcacatgt tttaaagcaa 1140
ggaaaagttc tgcattacta cgttgtattt gatgtttcga aagacttttt aattattggt 1200
gacccagacc caacaatagg aattacggaa atctccaaaa aggattttga aaatgaatgg 1260
acgggtaatt teataacatt tteaaaagga aagaactttg ttteagagaa goagagaaat 1320
aacagtttac tcaagtttat tcctattttg agacagcaaa aatccctaat attctggata 1380
getttegeeg caatactatt gatgataatt agtattgeag qateactttt tttaqaacaa 1420
cttgtagata tatatatacc acacaaaaat atggatacat tggggattat ctcgatttgc 1500
ttaattggag cotatotttt acaggoogta atgacglatt ticagaattt tttactaact 1560
atatttggac aaaatctttc tagaaaaatt attttaaatt atattaatca cctttttgaa 1620
ttacccatgt ctttcttctc aacacgtaga gttggcgaaa tagtctctcg gtttacagat 1680
gcaagcaaga ttatagatgc tttggcaagt acgattttga ctctctttt agatgtttgg 1740
atgttggtta caatctcaat cgttctcgta tttttaaata caaagttatt tatgatttct 1800
ctggtatcta taccggtgta ctcagttata atttatgcgt ttaaaaaatac atttaatggc 1860
ctgaaccata aatcaatgga aaatgcagca ttattgaatt ctgcaataat cgaaaacgta 1920
actggcatag aaactgtaaa atcattaact tcagaagaat tttcctacaa tcaaatcact 1980
gatagattcg aaaattttct taacagttcc ttacggtata cgatagctga ccaaggacag 2040
<210> 10
<211> 20
<212> ADN
<213> Lactobacillus sake
<400> 10
aartattatg gnaayggngt
                                                                   20
<210> 11
<211> 20
<212> ADN
<213> Lactobacillus sake
<400> 11
acatgatgne encertinge
                                                                   20
<210> 12
<211> 37
<212> PRT
<213> Lactobacillus sake
<400> 12
Lys Tyr Tyr Gly Asn Gly Val Ser Cys Asn Ser His Gly Cys Ser Val
Asn Trp Gly Gln Ala Trp Thr Cys Gly Val Asn His Leu Ala Asn Gly
Gly His Gly Val Cys
```

<210> 13 <211> 2214 <212> ADN <213> lactobacillus sake <221> CDS <222> (20) .. (2200) <400> 13 aaattaggag acttatata ttg ttt aat ctg ttg aga tac aaa aaa tta tat Leu Phe Asn Leu Leu Arg Tyr Lys Lys Leu Tyr tgt tea caa gtg gat gaa gat gat tgt gga ate gea get ttg aat atg Cys Ser Gln Val Asp Glu Asp Asp Cys Gly Ile Ala Ala Leu Asn Met att tit and not tit ggt too god tat too cta too and titg oga tito 148 Ile Phe Lys Asn Phe Gly Ser Glu Tyr Ser Leu Ser Lys Leu Arg Phe 35 tha goa aaa acc agt caa cax ggg act act att tit gga cig ata aag 196 Leu Ala Lys Thr Ser Gln Gln Gly Thr Thr Ile Phe Gly Leu Ile Lys 50 gct gca gag gaa cta aat tta gaa gcg aat gca tta caa gct gat atg Ala Ala Glu Glu Leu Asn Leu Glu Ala Asn Ala Leu Gln Ala Asp Met ggc atc ttt aaa gat gaa aat tta atg cta cca atc att gca cat gtt 292 Gly Ile Phe Lys Asp Glu Asn Leu Met Leu Pro Ile Ile Ala His Val tta aag caa gga aaa gtt ctg cat tac tac gtt gta ttt gat gtt tcg 340 Leu Lys Gln Gly Lys Val Leu His Tyr Tyr Val Val Phe Asp Val Ser 100 388 aaa gac ttt tta att att ggt gac cca gac cca aca ata gga att acg Lys Asp Phe Leu Ile Ile Gly Asp Pro Asp Pro Thr Ile Gly Ile Thr 110 115 gaa atc tcc aaa aag gat ttt gaa aat gaa tgg acg ggt aat ttc ata 436 Glu Ile Ser Lys Lys Asp Phe Glu Asn Glu Trp Thr Gly Asn Phe Ile 125 130 aca ttt tca aaa gga aag aac ttt gtt tca gag aag cag aga aat aac Thr Phe Ser Lys Gly Lys Asn Phe Val Ser Glu Lys Gln Arg Asn Asn 140 agt tta ctc aag ttt att cct att ttg aga cag caa aaa tcc cta ata Ser Leu Leu Lys Phe Ile Pro Ile Leu Arg Gln Gln Lys Ser Leu Ile ttc tgg ata gct ttc gcc gca ata cta ttg atg ata att agt att gca 580 Phe Trp Ile Ala Phe Ala Ala Ile Leu Leu Met Ile Ile Ser Ile Ala 180 gga toa ott ttt tta gaa caa ott gta gat ata tat ata coa cac aaa Gly Ser Leu Phe Leu Glu Gln Leu Val Asp Ile Tyr Ile Pro His Lys 195

aat Asn	atg Met 205	Asp	aca Thr	ttg Leu	G1A aaa	att Ile 210	atc Ile	tcg Ser	att Ile	tgc Cys	tta Leu 215	att Ile	gga Gly	gcc Ala	tat Tyr	676
ctt Leu 220	Leu	cag Gln	gcc Ala	gta Val	atg Met 225	acg Thr	tat Tyr	ttt Phe	cag Gln	aat Asn 230	ttt Phe	tta Leu	cta Leu	act Thr	ata Ile 235	724
ttt Phe	gga Gly	caa Gln	aat Asn	ctt Leu 240	tct Ser	aga Arg	aaa Lys	att Ile	att Ile 245	tta Leu	aat Asn	tat Tyr	att Ile	aat Asn 250	cac Ris	772
ctt Leu	ttt Phe	gaa Glu	tta Leu 255	ccc Pro	atg Met	tct Ser	ttc Phe	ttc Phe 260	tca Ser	aca Thr	cgt Arg	aga Arg	gtt Val 265	ggc Gly	gaa Glu	820
ata Ile	gtc Val	tct Ser 270	cgg Arg	ttt Phe	aca Thr	gat Asp	gca Ala 275	agc Ser	aag Lys	att Ile	ata Ile	gat Asp 280	gct Ala	ttg Leu	gca Ala	868
agt Ser	acg Thr 285	att Ile	ttg Leu	act Thr	ctc Leu	ttt Phe 290	tta Leu	gat Asp	gtt Val	tgg Trp	atg Met 295	ttg Leu	gtt Val	aca Thr	atc Ile	916
tca Ser 300	atc Ile	gtt Val	ctc Ten	gta Val	ttt Phe 305	tta Leu	aat Asn	aca Thr	aag Lyc	tta Lou 310	ttt Phc	atg Met	att Ile	tct Ger	ctg Leu 315	964
gta Val	tct Ser	ata Ile	ccg Pro	gtg Val 320	tac Tyr	tca Ser	gtt Val	ata Ile	att Ilė 325	tat Tyr	gcg Ala	ttt Phe	aaa Lys	aat Asn 330	aca Thr	1012
ttt Phe	aat Asn	ggc	ctg Leu 335	aac Asn	cat His	aaa Lys	tca Ser	atg Met 340	gaa Glu	aat Asn	gca Ala	gca Ala	tta Leu 345	ttg Leu	aat Asn	1060
tct Ser	gca Ala	ata Ile 350	atc Ile	gaa Glu	aac Asn	gta Val	act Thr 355	gly	ata Ile	gaa Glu	act Thr	gta Val 360	aaa Lys	tca Ser	tta Leu	1108
act Thr	tca Ser 365	gaa Glu	gaa Glu	ttt Phe	tcc Ser	tac Tyr 370	aat Asn	caa Gln	atc Ile	act Thr	gat Asp 375	aga Arg	ttc Phe	gaa Glu	aat Asn	1156
ttt Phe 380	ctt Leu	aac Asn	agt Ser	Ser	tta Leu 385	Arg	tat Tyr	aog Thr	Ile	gct Ala 390	gac Asp	caa Gln	gga Gly	cag Gln	caa Gln 395	1204
got Ala	tta Leu	Lys	gtg Val	ggt Gly 400	ttg Leu	aag Lys	cta Leu	ati Ile	ctt Leu 405	ata Ile	gtc Val	ttt Phe	atc Ile	tta Leu 410	tgg Trp	1252
gct Ala	gga Gly	gca Ala	atc Ile 415	caa Gln	gtt Val	atg Met	agg Arg	999 Gly 420	aat Asn	Leu Ctc	aca Thr	gtc Val	gga Gly 425	aga Arg	tta Leu	1300
ttg Leu	gct Ala	ttt Phe 430	aat Asn	gct Ala	tta Leu	gta Val	aca Thr 435	tac Tyr	ttt Phe	tta Leu	aat Asn	ccc Pro 440	tta Leu	gag Glu	aat Asn	1348

														aat Asn		1396
aga Arg 460	cta Leu	aat Asn	gaa Glu	gta Val	tta Leu 465	tta Leu	gtg Val	gat Asp	tct Ser	gag Glu 470	ttt Phe	aat Asn	agg Arg	gjà aaa	gga Gly 475	1444
														gat Asp 490		1492
														aat Asn		1540
aaa Lys	ata Ile	caa Gln 510	aag Lys	aat Asn	agt Ser	agt Ser	aca Thr 515	acg Thr	att Ile	gtt Val	ggt Gly	atg Met 520	agc Ser	ggt Gly	tct Ser	1588
														gcc Ala		1636
														gat Asp		1684
cat His	gcc Ala	ctg Leu	aga Arg	caa Gln 560	tcg Ser	att Ile	acg Thr	tat Tyr	gta Val 565	cca Pro	cag Gln	gaa Glu	ccg	gta Val 570	atg Met	1732
ttc Phe	gca Ala	ggt Gly	aca Thr 575	att Ile	tta Leu	gaa Glu	aat Asn	ctt Leu 580	att Ile	atg Met	cag Gln	aat Asn	aaa Lys 585	aga Arg	aat Asn	1780
														att Ile		1828
aaa Lys	gat Asp 605	ata Ile	gaa Glu	aat Asn	ttt Phe	cct Pro 610	atg Met	gly ggg	tat Tyr	gat Asp	aca Thr 615	gat Asp	att Ile	tcc Ser	gaa Glu	1876
cat His 620	ejà aaa	agt Ser	tca Ser	atc Ile	tca Ser 625	gta Val	ggt Gly	caa Gln	aaa Lys	caa Gln 630	aga Arg	ctt Leu	tct Ser	att Ile	gca Ala 635	1924
aga Arg	tca Ser	ctg Leu	ctg Leu	aca Thr 640	gag Glu	tct Ser	aat Asn	gtt Val	tta Leu 645	ctg Leu	ttt Phe	gat Asp	gaa Glu	tca Ser 650	acc Thr	1972
agt Ser	agt Ser	ttg Leu	gac Asp 655	act Thr	att Ile	act. Thr	gag Glu	cag Gln 660	cga Arg	ata Ile	att Ile	gaa Glu	aac Asn 665	cta Leu	ttg Leu	2020
aat Asn	tta Leu	aat Asn 670	Asp Asp	гуз Года	aca Thr	tta Leu	ata Ile 675	ttc Phe	gtt Val	gca Ala	cat His	cga Arg 680	ttg Leu	tca Ser	gtt Val	2068

710

gaa tta tgt act gtg aag acg aag aaa aaa gaa ttt tagataaaac aaaa 2214 Glu Leu Cys Thr Val Lys Thr Lys Lys Lys Glu Phe
720 725

<210> 14 <211> 727 <212> PRT <213> lactobacillus sake

705

<400> 14
Leu Fhe Asn Leu Leu Arg Tyr Lys Lys Leu Tyr Cys Ser Gln Val Asp
1 5 10 15

Glu Asp Asp Cys Gly Ile Ala Ala Leu Asn Met Ile Phe Lys Asn Phe 20 25 30

Gly Ser Glu Tyr Ser Leu Ser Lys Leu Arg Phe Leu Ala Lys Thr Ser 35 40 45

Gln Gln Gly Thr Thr Ile Phe Gly Leu Ile Lys Ala Ala Glu Glu Leu 50 55 60

Asn Leu Glu Ala Asn Ala Leu Gln Ala Asp Met Gly Ile Phe Lys Asp 65 70 75 80

Glu Asn Leu Met Leu Pro Ile Ile Ala His Val Leu Lys Gln Gly Lys 85 90 95

Val Leu His Tyr Tyr Val Val Phe Asp Val Ser Lys Asp Phe Leu Ile 100 105 110

Ile Gly Asp Pro Asp Pro Thr Ile Gly Ile Thr Glu Ile Ser Lys Lys . 115 120 125

Asp Phe Glu Asn Glu Trp Thr Gly Asn Phe Ile Thr Phe Ser Lys Gly 130 135

Lys Asn Phe Val Ser Glu Lys Gln Arg Asn Asn Ser Leu Leu Lys Phe 145 150 155 160

Ile Pro Ile Leu Arg Gln Gln Lyo Ser Leu Ile Phe Trp Ile Ala Phe
165 170 175

Ala Ala Ile Leu Leu Met Ile Ile Ser Ile Ala Gly Ser Leu Phe Leu

Glu Gln Leu Val Asp Ile Tyr Ile Pro His Lys Asn Met Asp Thr Leu 195 200 205

Gly Ile Ile Ser Ile Cys Leu Ile Gly Ala Tyr Leu Leu Gln Ala Val 210 215 220

Met Thr Tyr Phe Gln Asn Phe Leu Leu Thr Ile Phe Gly Gln Asn Leu 225 230 235 240

- Ser Arg Lys Ile Ilc Lcu Aon Tyr Ile Asn His Leu Phe Glu Leu Pró 245 250 255
- Met Ser Phe Phe Ser Thr Arg Arg Val Gly Glu Ile Val Ser Arg Phe 260 265 270
- Thr Asp Ala Ser Lys Ile Ile Asp Ala Leu Ala Ser Thr Ile Leu Thr 275 280 285
- Leu Phe Leu Asp Val Trp Met Leu Val Thr Ile Ser Ile Val Leu Val 290 295 300
- Phe Leu Asn Thr Lys Leu Phe Met Ile Ser Leu Val Ser Ile Pro Val 305 310 315 320
- Tyr Ser Val Ile Ile Tyr Ala Phe Lys Asn Thr Pho Asn Gly Leu Asn 325 330 335
- His Lys Ser Met Glu Asn Ala Ala Leu Leu Asn Ser Ala Ile Ile Glu 340 345 350
- Asn Val Thr Gly Ile Glu Thr Val Lys Ser Leu Thr Ser Glu Glu Phe 355 360 365
- Ser Tyr Asn Gln Ile Thr Asp Arg Phe Glu Asn Phe Leu Asn Ser Ser 370 375 380
- Leu Arg Tyr Thr Ile Ala Asp Gln Gly Gln Gln Ala Leu Lys Val Gly 385 390 395 400
- Leu Lys Leu Ile Leu Ile Val Phe Ile Leu Trp Ala Gly Ala Ile Gln
  405 410 415
- Val Met Arg Gly Asn Leu Thr Val Gly Arg Leu Leu Ala Phe Asn Ala 420 425 430
- Leu Val Thr Tyr Phe Leu Asn Pro Leu Glu Asn Ile Ile Asn Leu Gln
  435 440 445
- Pro Lys Leu Gln Thr Ala Arg Val Ala Asn Ile Arg Leu Asn Glu Val 450 455 460
- Leu Leu Val Asp Ser Glu Phe Asn Arg Gly Gly Arg Asp Ser Ser Thr 465 470 475 480
- Asn Leu Asn Gly Asp Ile Val Phe Gln Asp Val Glu Phe Ser Tyr Gly
  485 490 495
- Tyr Gly Ser Asn Val Leu His Asn Ile Asn Ile Lys Ile Gln Lys Asn 500 505 . 510
- Ser Ser Thr Thr Ile Val Gly Met Ser Gly Ser Gly Lys Ser Thr Leu 515 520 525
- Ala Lys Leu Met Val Gly Phe Tyr Gln Ala Gly Ser Gly Gln Ile Leu 530 540

Leu Asu Gly Lys Leu Ile Asp Asn Ile Asp Arg His Ala Leu Arg Gln 550 Ser Ile Thr Tyr Val Pro Gln Glu Pro Val Met Phe Ala Gly Thr Ile 565 Leu Glu Asn Leu Ile Met Gln Asn Lys Arg Asn Leu Ser Ile Asp Lys Val Lys Glu Ala Cys Arg Ile Ala Glu Ile Asp Lys Asp Ile Glu Asn Phe Pro Met Gly Tyr Asp Thr Asp Ile Ser Glu His Gly Ser Ser Ile Sor Val Gly Gln Lys Gln Arg Leu Ser Ile Ala Arg ser Leu Leu Thr 630 635 Glu Ser Asn Val Leu Leu Phe Asp Glu Ser Thr Ser Ser Leu Asp Thr 650 Ile Thr Glu Gln Arg Ile Ile Glu Asn Leu Leu Asn Leu Asn Asp Lys 665 Thr Leu Ile Phe Val Ala His Arg Leu Ser Val Ala Lys Gln Thr Glu Asn Ile Ile Val Met Asp His Gly Gly Ile Val Glu Thr Gly Ser His 695 Asp Lys Leu Ile Leu Glu Asn Gly Tyr Tyr Lys Glu Leu Cys Thr Val 71.0 715 Lys Thr Lys Lys Glu Phe 725 <210> 15 <211> 3055 <212> ADN <213> lactobacillus sake <400> 15

agcttcggga ttcttagcta tatcaatttt gctataaact tgggaaagaa cgtcaataat 60 atcgagtaat tcactggatt ttacaggacg cttttctagt sagtgcaaga gagcttcgat 120 gttgttttta gattcagttt taatattgtc tttgtttgcc attttaatca cgtctccttt 180 tttatagtaa taaaaaaaac acaattaaat tagtgctttt ttatctggta attaacaaac 240 tccatgaccg ccattagcta gatggtttac tccacaagtc catgcttgcc cccaatttac 300 tgaacageeg tgagagttae agetaaogoo attaccatag tatttaccac etgtaataga 360 tttcatttct tgaattgtta ggctttttgc gtttttcata aagaacatct ccaaattata 420 ttttttagtg attcttgaag ttctgttgta acgcagaatt ttggaagaat gagtacttgt 480 tagaaatttg ccgatttaaa taattaacaa accccatgac cgccattagc tagatgattt 540 accecacaag tecatgettg cocceaattt actgaacaac catgagagtt acagetaaca 600 ccattaccat agtatttacc acctgtgatg gattttattt cttggatcgt taagctacgt 660 gtattettea ttttgaatae eteetgttaa ataattttta caegateagt gtagttetaa 720 tgtgaaattg tgtcaagttt agcaaatata tattttaggc atggaaaaac ttgcttttaa 780 ttcgacttga ctataacggt ataatactgg tattactata tttgtttagc ttcacaaaaa 840 aattaggaga cttatatatt gtttaatctg ttgagataca aaaaattata ttgttcacaa 900 gtggatgaag atgattgtgg aatcgcagct ttgaatatga tttttaaaaa ttttggttcc 960 gaatattcac tatcaaaatt gcgattctta gcaaaaacca gtcaacaagg gactactatt 1020

```
tittggactga taaaggctgc agaggaacta aatttagaag cgaatgcatt acaagctgat 1080
atgggcatct ttaaagatga aaatttaatg ctaccaatca ttgcacatgt tttaaagcaa 1140
ggaaaagtto tgcattacta cgttgtattt gatgtttcga aagacttttt aattattggt 1200
gacccagacc caacaatagg aattacggaa atctccaaaa aggattttga aaatgaatgg 1260
acgggtaatt tcataacatt ttcaaaagga aagaactttg tttcagagaa gcagagaaat 1320
aacagtttac tcaagtttat tcctattttg agacagcaaa aatccctaat attctggata 1380
getttegeeg caatactatt gatgataatt agtattgeag gateaetttt tttagaacaa 1440 ettgtagata tatatatace acacaaaaat atggatacat tggggattat etegatttge 1500
ttaattggag cctatctttt acaggccgta atgacgtatt ttcagaattt tttactaact 1560
atatttggac aaaatctttc tagaaaaatt attttaaatt atattaatca cctttttgaa 1620
ttacccatgt ctttcttctc aacacgtaga gttggcgaaa tagtctctcg gtttacagat 1680
gcaagcaaga ttatagatgc tttggcaagt acgattttga ctctcttttt agatgtttgg 1740
atgttggtta caatctcaat cgttctcgta tttttaaata caaagttatt tatgatttct 1800
ctggtatcta taccggtgta ctcagttata atttatgcgt ttaaaaatac atttaatggc 1860
ctgaaccata aatcaatgga aaatgcagca ttattgaatt ctgcaataat cgaaaacgta 1920
actggcatag aaactgtaaa atcattaact tcagaagaat tttcctacaa tcaaatcact 1980
gatagattog aaaattttot taacagttoo ttacggtata cgatagotga ccaaggacag 2040
caagctttaa aagtgggttt gaagctaatt cttatagtct ttatcttatg ggctggagca 2100
atccaagtta tgaggggaa tctcacagtc ggaagattat tggcttttaa tgctttagta 2160
acatactttt taaatccctt agagaatatt attaatttac aaccaaagct acaaactgca 2220
agagtegeta atattagaet aaatgaagta ttattagtgg attetgagtt taataggggg 2280
ggacgcgaca gctcaacaaa cttaaatggg gatatcgtat ttcaagatgt agaatttagt 2340
tatggttacg gatcgaacgt attgcacaac atcaetataa aaatacaaaa gaatagtagt 2400
acaacgattg ttggtatgag cggttctggg aaatccacat tagcaaaatt aatggttggt 2460
ttctatcaag ccggatcagg acaaatatta ttaaatggta aattaatcga taacattgat 2520
cgtcatgccc tgagacaatc gattacgtat gtaccacagg aaccggtaat gttcgcaggt 2580
acaattttag aaaatcttat tatgcagaat aaaagaaatt tatctattga taaagtgaaa 2640
gaggcatgta ggatagccga aattgataaa gatatagaaa attttcctat ggggtatgat 2700
acagatattt eegaacatgg gagtteaate teagtaggte aaaaacaaag aetttetatt 2760
gcaagatcac tgctgacaga gtctaatgtt ttactgtttg atgaatcaac cagtagtttg 2820
gacactatta ctgagcagcg aataattgaa aacctattga atttaaatga caaaacatta 2880
atattegttq cacategatt gtcagttgct aagcaaactq aaaatattat cqttatqgat 2940
cacggtggaa ttgttgaaac aggttcgcat gataaattaa tattggaaaa tggatattat 3000
aaagaattat gtactgtgaa gacgaagaaa aaagaatttt agataaaaca aaaac
<210> 16
<23.1> 3.7
<212> ADN
<213> lactobacillus sake
<400> 16
ccttggtcag gctatcg
                                                                    17
<210> 17
<211> 20
<212> ADN
<213> lactobacillus sake
<400> 17
atcacctttt tgaattaccc
                                                                    20
```

# INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 01/01642

A. CLASSIF IPC 7	C12N15/31 C07K14/335 A23L3/34	163 A23L3/3571	
According to	International Patent Classification (IPC) or to both national classification	ation and IPC	
B. FIELDS	SEARCHED		
IPC 7	cumentallon searched (dassification system tollowed by classification C12N C07K A23L		
	ion searched other than minimum documentation to the extent that s eta base consulted during the international search (name of data ba		
ł	ternal, WPI Data, PAJ, BIOSIS, CHEM		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Casegory *	Citation of document, with indication, where appropriate, of the rel	tevant passages	Relevant to claim No.
A	HUGAS M ET AL: "Application of the bacteriocinogenic Lactobacillus of CTC494 to prevent growth of Listers fresh and cooked meat products padifferent atmospheres" FOOD MICROBIOL., vol. 15, 1998, pages 639-650, XPG ISSN: 0021-8847 page 640, column 1, paragraph 3 paragraph 3	cakei eria in acked with 000982835	1-12
X Furt	her documents are listed in the continuation of box C.	Patent family members are listed	in ennex
'A' document consk 'E' earlier filing i' 'L' document which citatio 'O' document other 'P' document tater i	stegories of cited documents:  ent defining the general state of the an which is not letted to be of particular relevance document but published on or after the international date and which may throw doubts on priority claim(s) or is cited to establish the rubblishing date of another no or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed ectual completion of the international search  1 July 2001  mailling address of the ISA	"I later document published after the interest priority rate and not in conflict with cited to understand the principle or the invention."  "X" document of particular relevance; the connot be considered novel or cannot be considered novel or cannot be considered to the sent the document of particular relevance; the connot be considered to involve an inventive step when the document is combined with one or moments, such combined with one or moments, such combined with one or moments, such combined to be an.  "&" document member of the same patent."  Date of mailing of the international sea.	taimed invention be considered to comment is taken alone latined threather threather entire steps when the re other such docutes to a person skilled family
Traine and	European Petent Office, P.B. 5818 Patentham 2 Nt. – 2290 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fex: (+31–70) 340–3018	Mata Vicente, T.	

# INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 01/01642

/Pauliu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/FR 01/01642
ategory °	Citation of document, with Indication, where appropriate, of the relevant passages	Retevent to claim No.
A	AXELSSON L ET AL: "THE GENES INVOLVED IN PRODUCTION OF AND IMMUNITY TO SAKACIN A, A BACTERIOCIN FROM LACTOBACILLUS SAKE LB706" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, vol. 177, no. 8, 1 April 1995 (1995-04-01), pages 2125-2137, XP000673873 ISSN: 0021-9193 abstract page 2125, column 1, paragraph 1 page 2125, column 2, paragraph 2 page 2136, column 2, paragraph 2	1-12
A	HUEHNE KATHRIN ET AL: "Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains." MICROBIOLOGY (READING), vol. 142, no. 6, 1996, pages 1437-1448, XP000982832 ISSN: 1350-0872 page 1437, column 1 -column 2, paragraph 1 page 1438. column 2. paragraph 1 page 1445, column 2, paragraph 2 page 1447, column 1, paragraph 3	1-12

# RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR 01/01642

		101,711 02,	
CIB 7	C12N15/31 C07K14/335 A23L3/346	3 A23L3/3571	
Ecion la clasci	fication internationale doe bravete (CIB) ou à la feie celon la classifica	tion nationale at in QIB	
B. DOMAINES	S SUR LESQUELS LA RECHERCHE A PORTE		
Documentation CIB 7	n mhrimale consultée (système de classification eutri des symboles de C12N C07K A23L	o dassement)	
Documentation	n consultée autre que la documentation minimale dans la mesure cù e	ces documents relèvent des domaines si	ur lasquels a porté la recherche
Base de donné	ées électronique consullée au cours de la recherche internationale (n	om de la base de données, et si réalisab	le, termes de recherche utilisés)
EPO-Inte	ernal, WPI Data, PAJ, BIOSIS, CHEM A	BS Data, EMBASE	
C. DOCUMEN	ITS CONSIDERES COMME PERTINENTS	·	
Categorie •	identification des documents cités, avec, le cas echéant, l'indication d	es passages pertinents	no. des revendications visées
A	HUGAS M ET AL: "Application of the bacteriocinogenic Lactobacillus said CTC494 to prevent growth of Lister fresh and cooked meat products pack different atmospheres" FOOD MICROBIOL., vol. 15, 1998, pages 639-650, XPOO ISSN: 0021-8847 page 640, colonne 1, alinéa 3 -colalinéa 3	kei ia in ked with 0982835 onne 2,	1-12
χ Voir la	suite du cadre C pour la fin de la liste des documents	Les documents de familles de br	evets sont Indiqués en annexe
'A' document considér 'E' document ou après 'L' document priorité a autre chi 'O' document une exp 'P' document postèries  Date à laquett	Il définissant l'etat géneral de la technique, non ré comme particulièrement pertinent à antériaur, mais publié à la date de dépôt international s cette date la cette date la pouvant jeter un doute sur une revendication de ou cité pour déterminer la date de publication d'une lation ou pour une raison spéciale (lefle qu'indiquée) it se référant à une divulgation orate, à un usage, à sostition ou tous autres moyens it publié avant la date de dépôt international, mais unement à la date da priorité revendiquée "& lie la recherche internationale a été effectivement achevée juillet 2001 se postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5618 Patentiaan 2	document ultérieur publié après la dat date de priorité et n'exparanement préchique perfinent, mais cité pour ce ou la théorie constituent la base de l'i document particultarement periment; l'étre considérée comme nouvelle ou linventive par rapport au document coucument particultarement periment; l'etre considérée comment periment; l'et peut être considérée comment periment; l'en peut être considérée comment periment; l'en peut être considérée comment produment le document est essocié à un documents de même nature, cette co pour une personne du métier document qui fait partie de la même te document qui fait partie de la même te Date d'expédition du présent rapport 07/08/2001	as à fòici de la  mipprendre le principe  invention revendiquée ne peut  comme impliquant une activité  onsidéré isolément  inven non revenuquee  quant une activité inventive  ou plusieurs autres  ombinaison étant évidente  umille de brevets
	NL – 2280 HV Rijsvijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3018	Mata Vicente, T.	

# RAPPORT DE RECHERCHE INTERNATIONALE

Demando Internationale No
PCT/FR 01/01642

C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	PCT/FR 01	
atégorie '		ertinents	no, des revendications visées
4	AXELSSON L ET AL: "THE GENES INVOLVED IN PRODUCTION OF AND IMMUNITY TO SAKACIN A, A BACTERIOCIN FROM LACTOBACILLUS SAKE LB706" JOURNAL OF BACTERIOLOGY.US.WASHINGTON, DC, vol. 177, no. 8, 1 avril 1995 (1995-04-01), pages 2125-2137, XP000673873 ISSN: 0021-9193 abrégé page 2125, colonne 1, alinéa 1 page 2125, colonne 2, alinéa 2 page 2136, colonne 2, alinéa 2		1-12
A	HUEHNE KATHRIN ET AL: "Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains." MICROBIOLOGY (READING), vol. 142, no. 6, 1996, pages 1437-1448, XP000982832 ISSN: 1350-0872 page 1437, colonne 1 -colonne 2, alinéa 1 page 1438, colonne 2, alinéa 1 page 1445, colonne 2, alinéa 2 page 1447, colonne 1, alinéa 3		1-12