实分析

1 测度论

为了建立积分的严格理论, 我们需要首先考察所谓的"长度"将其推广 到欧式空间上的一般集合, 就是所谓的"测度".

1.1 预备知识

矩体是最简单的图形了,矩体的"长度"可以很直观地得到.因此,矩体将成为我们定义测度的基础.

定义 1. 对 $a_i, b_i \in \mathbb{R}, a_i \leq b_i$, 集合 $R = [a_1, b_1] \times \cdots [a_n, b_n]$ 称为 \mathbb{R}^n 中的 (闭) 矩体, $|R| = (b_1 - a_1) \cdots (b_n - a_n)$ 称为 R 的体积.

如果 $b_i - a_i$ 相同,则称这样的矩体为**方体**.

将 $[a_i, b_i]$ 改为 (a_i, b_i) , 得到的集合就叫做开矩体和开方体.

定义 2. 对于两个闭矩体 R_1, R_2 , 如果他们的内部 (即对应的开矩体) 不交, 则称 R_1 和 R_2 **几乎不交**.

关于矩体的并的体积的性质, 我们有如下引理:

引理 1. 设 $R_k(1 \le k \le N)$, R 为矩体, 那么有:

- 1. 若 $R = \bigcup_{k=1}^{N} R_k$, 且 R_k 互相不交, 则 $|R| = \sum_{k=1}^{N} |R_k|$.
- 2. 若 $R \subset \bigcup_{k=1}^{N} R_k$, 则 $|R| \leq \sum_{k=1}^{N} |R_k|$.

Cantor 集是在实分析中常常出现的一个特殊集合, 它常常用于各种反例的构造.

例 1. 从区间 [0,1] 出发, 首先挖去中间 $\frac{1}{3}$ 的开区间, 得到

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$$

然后再在 C_1 的两个闭区间中挖去 $\frac{1}{3}$ 的开区间, 得到

$$\mathcal{C}_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$$

..... 如此继续下去, 得到 C_k , 这是一个递减集合列. 我们定义

$$\mathcal{C} = \bigcap_{k=1}^{\infty} \mathcal{C}_k$$

为 Cantor 集.

Cantor 集具有的性质包括: 有界闭集、完全不联通、无孤立点 (完全集)、不可数 (与 [0,1] 等势).

1.2 外测度

外测度,是从集合的外侧逼近集合得到的测度.外测度的性质并不好,但它可以定义在任意集合上,是测度的基础.

定义 3 (外测度). 设 $E \subset \mathbb{R}^n$, 则其外测度定义为

$$m_*(E) = \inf_{E \subset \bigcup_{j=1}^{\infty} Q_j} \sum_{i=1}^{\infty} |Q_j|,$$

其中 Q_i 是 R^n 中的方体.

例 2. 一些简单集合的外测度:

- 1. 单点集的外测度为 0.
- 2. 闭方体的外测度等于其体积.
- 3. 开方体的外测度等于其体积.
- 4. 矩体的外测度等于其体积.
- 5. Cantor 集的外测度为 0.

定理 1. 关于外测度, 我们有如下性质:

- 1. (单调性) 若 $E_1 \subset E_2$, 则 $m_*(E_1) \leq m_*(E_2)$.
- 2. (可数次可加性) 若 $E \subset \bigcup_{i=1}^{\infty} E_j$, 则 $m_*(E) \leq \sum_{i=1}^{\infty} m_*(E_j)$.
- 3. $m_*(E) = \inf_{O \supset E} m_*(O)$, 其中 O 是开集.
- 4. (距离外测度性质) 若 $E = E_1 \cup E_2$, 且 $d(E_1, E_2) > 0$, 则 $m_*(E) = m_*(E_1) + m_*(E_2)$.
- 5. 若 $E = \bigcup_{j=1}^{\infty} Q_j$, 且方体 Q_j 几乎不交, 那么 $m_*(E) = \sum_{j=1}^{\infty} |Q_j|$.

证明. 1 是显然的.4,5 的证明略.

2的证明: 根据外测度定义, 对任意的 $\varepsilon>0,$ 我们可以取 $E_j\subset\bigcup_{k=1}^\infty Q_{kj},$ 使得

$$\sum_{k=1}^{\infty} |Q_{kj}| \le m_*(E_j) + \frac{\varepsilon}{2^j}.$$

这时, 我们就有

$$m_*(E) \le \sum_{k,j} |Q_{kj}| \le \sum_{j=1}^{\infty} m_*(E_j) + \varepsilon,$$

由 ε 的任意性即得.

3 的证明: 只需证明 $\inf_{O\supset E} m_*(O) \leq m_*(E)$. 对任意 $\varepsilon > 0$, 有 $E\subset \bigcup_{i=1}^{\infty} Q_i$ 且有

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \varepsilon$$

将每个 Q_j 适当放大为包含它的开方体 O_j , 使得 $|O_j| < |Q_j| + \frac{1}{2^j}$. 再令开集 $O = \bigcup_{i=1}^{\infty} O_j$, 此时就有

$$m_*(O) \le \sum_{j=1}^{\infty} |O_j| \le \sum_{j=1}^{\infty} |Q_j| + \varepsilon \le m_*(E) + 2\varepsilon.$$

由 ε 的任意性即得.

1.3 测度

测度是"长度"的推广. 对于测度, 我们希望它像外测度一样能够反映长度的性质; 但又希望它具有一些比较好的性质 (比如可数可加性). 我们的做法是, 将外测度限制在一些"性质比较好"的集合上, 得到测度.

定义 4. 设 $E \subset \mathbb{R}^n$. 如果对任意的 $\varepsilon > 0$, 总存在开集 $O \supset E$, 使得 $m_*(O - E) < \varepsilon$, 则称 E 为 (Lebesgue) 可测集,E 的测度 $m(E) = m_*(E)$.

定理 2. 关于可测性, 我们有如下性质:

- 1. 开集可测.
- 2. 若 $m_*(E) = 0$, 则 E 可测. 特别地, 零测集的子集可测.
- 3. 可测集的可数并可测.
- 4. 可测集的补可测.
- 5. 可测集的可数交可测.

定理 3 (测度的可数可加性). 设 E_j 可测且两两不交, $E = \bigcup_{j=1}^{\infty} E_j$, 则

$$m(E) = \sum_{j=1}^{\infty} m(E_j).$$

证明. 不妨设 E_j 有界 (否则考虑将 E_j 划分为可数个有界可测集之并). 此时 E_j^c 可测, 从而存在闭集 $F_j \subset E_j$ 使得 $m_*(F_j - E_j) < \frac{\varepsilon}{2^j}$.

此时 F_i 紧, 且两两不交, 根据距离外测度性质, 对任意的 N, 有

$$m\left(\bigcup_{j=1}^{N} F_j\right) = \sum_{j=1}^{N} m(F_j),$$

从而有

$$m(E) \ge m\left(\bigcup_{j=1}^{N} F_j\right) \ge \sum_{j=1}^{N} m(E_j) - \varepsilon.$$

先令 $N \to \infty$, 再利用 ε 的任意性即得 $m(E) \ge \sum_{k=1}^{\infty} m(E_j)$, 得证. \square

定理 4 (测度的单调性). 设 E_k 可测:

- 1. 若 $E_k \nearrow E$, 则 $m(E) = \lim_{k \to \infty} m(E_k)$.
- 2. 若 $E_k \setminus E$ 且 $m(E_1) < +\infty$, 则 $m(E) = \lim_{k \to \infty} m(E_k)$.

定理 5. 关于可测集的逼近, 我们有如下结论:

设 E 是可测集, 对任意的 $\varepsilon > 0$, 有

1. 存在开集 $O \supset E$, 使得 $m(O - E) < \varepsilon$;

- 2. 存在闭集 $F \subset E$, 使得 $m(E F) < \varepsilon$;
- 3. 若 $m(E) < +\infty$, 存在紧集 $K \subset E$, 使得 $m(E K) < \varepsilon$;
- 4. 若 $m(E)<+\infty$, 存在若干闭方体 Q_j 的并 $F=\bigcup_{j=1}^N Q_j$, 使得 $m(E\triangle F)<\varepsilon$.

设 E 是可测集, 则有

- 5. 存在 G_δ 集 (即可数个开集的交) $G \subset E$, 使得 m(G E) = 0;
- 6. 存在 F_{δ} 集 (即可数个闭集的并) $F \subset E$, 使得 m(E F) = 0.

定理 6. 设 E 可测, 那么:

- 1. 对 $h \in \mathbb{R}^n$, 有 m(E+h) = m(E).
- 2. 对 $\delta \in \mathbb{R}$, 有 $m(\delta E) = |\delta|^n m(E)$.

例 3 (不可测集)・在 [0,1] 上定义关系 $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$,容易验证 \sim 是 等价关系,从而把 [0,1] 划分为若干等价类. 每个等价类选取一个代表元 x_{α} ,并令 $\mathcal{N} = x_{\alpha}$,那么 \mathcal{N} 是不可测集.

否则, 设 r_k 是 [-1,1] 内全体有理数, 定义 $\mathcal{N}_k = \mathcal{N} + r_k$, 那么有

$$[0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1,2].$$

由于 \mathcal{N}_k 互不相交, $m(\mathcal{N}_k) = m(\mathcal{N})$, 所以有

$$1 \le \sum_{k=1}^{\infty} m(\mathcal{N}) \le 3,$$

矛盾.

引理 2 (Borel-Cantelli 引理). 若 E_k 可测, 且 $\sum_{k=1}^{\infty} m(E_k) < +\infty$. 令

$$E = \overline{\lim}_{k \to \infty} E_k = \{x \mid x \in \mathbb{R} \text{ $x \in \mathbb{R}$ and E_k } \Rightarrow \mathbb{R} \text{ $x \in \mathbb{R}$ } \},$$

那么 m(E) = 0.

1.4 可测函数

可测函数的地位和 Riemann 可积函数类似, 是定义积分的前提.

定义 5 (几种特殊的函数).

1. 设 E 为集合, 定义

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

那么 χ_E 称为 E 的**特征函数**.

- 2. 若 R_k 为矩体, $a_k \in \mathbb{R}$, 则 $f(x) = \sum_{k=1}^N a_k \chi_{R_k}$ 称为**阶梯函数**.
- 3. 若 E_k 可测且测度有限, $a_k \in \mathbb{R}$, 则 $f(x) = \sum_{k=1}^N a_k \chi_{E_k}$ 称为**简单函数**.

注. 通过允许 $f(x) = \pm \infty$, 得到扩展实值函数. 此时的运算满足 $\infty + \infty = \infty$ 等合理的结果 (但 $\infty - \infty$ 这类并无定义). 下面的讨论中, 很多结论对于扩展实值函数也成立, 但不会特意指出.

定义 6. 设 E 为可测集, 定义在 E 上的函数 f 满足对任意 $a \in \mathbb{R}$, 集合 $\{x \in E \mid f(x) < a\}$ 可测, 则称 f 为 E 上的**可测函数**.

定义 7. 对于关于 x 的命题 P(x), 如果集合 $\{x \mid P(x)$ 不成立 $\}$ 是零测集, 则称 P(x) 几乎处处 (a.e.) 成立.

如果 E 是集合, $\{x \in E \mid P(x)$ 不成立 $\}$ 是零测集, 则称 P(x) 在 E 上几乎处处 (a.e.) 成立.

定理 7. 对于可测函数, 有如下性质:

1. 设 $\{f_n\}$ 为可测函数列,则 $\sup_{n\geq 1} f_n, \inf_{n\geq 1} f_n, \overline{\lim}_{n\to\infty} f_n, \underline{\lim}_{n\to\infty} f_n$ 均为可测函数.

特别地, 若 $\lim_{n\to\infty} f_n(x) = f(x)$, 则 f 为可测函数.

- 2. 若 f 可测,k 为正整数,则 f^k 可测; 若 f,g 可测,则 f + g,fg 可测.
- 3. 若 f 可测, f = g a.e., 则 g 可测.

定理 8. 关于可测函数的逼近, 有如下结论:

1. 设 f 在 \mathbb{R}^n 上非负可测,则存在非负、单调递增的简单函数列 $\{\varphi_k\}$,使得对任意 $x \in \mathbb{R}^n$, $\lim_{k \to \infty} \varphi_k(x) = f(x)$.

2. 设 f 在 \mathbb{R}^n 上可测,则存在简单函数列 $\{\varphi_k\}$,满足 $|\phi_k(x)| \leq |\phi_{k+1}(x)|$,且 $\lim_{k\to\infty} \varphi_k(x) = f(x)$.

3. 设 f 在 \mathbb{R}^n 上可测,则存在阶梯函数列 $\{\psi_k\}$ 使得 $\lim_{k\to\infty}\psi_k(x)=f(x)$.

关于可测集、可测函数的逼近关系, 我们可以总结出三条结论, 即 Littlewood 三原理:

- 1. 可测集大约等于有限个方体的并;
- 2. 可测函数大约是连续函数;
- 3. 收敛的可测函数列大约是一致收敛的.

第 1 条正是前面的**定理 5**(4); 而第 2、3 条则是下面的 Lusin 定理和 Egorov 定理.

定理 9 (Egorov 定理). 设 f_k 是可测集 E 上的可测函数列, $m(E) < +\infty$, 且 $f_k \to f(k \to \infty)$ 在 E 上 a.e. 成立.

那么, 对任意的 $\varepsilon > 0$, 存在闭集 $A_{\varepsilon} \subset E$, 使得 $m(E - A_{\varepsilon}) < \varepsilon$, 且 $f_k \to f(k \to \infty)$ 在 A_{ε} 上一致.

注. 这里 $m(E) < +\infty$ 和 $\varepsilon > 0$ 都是必要的.

证明. 不妨设 $f_k \to f$ 在 E 上处处成立. 令

$$E_k^n = \left\{ x \in E \mid \forall j > k, |f_j(x) - f(x)| < \frac{1}{n} \right\},$$

易知此时 $E_k^n \subset E_{k+1}^n$, 且 $E_k^n \nearrow E(k \to \infty)$.

因此, 存在 k_n 使得 $m(E-E^n_{k_n})<\frac{1}{2^n}$. 再取 N 使得 $\sum_{n=N}^\infty\frac{1}{2^n}<\frac{\varepsilon}{2}$, 并令 $\widetilde{A}_\varepsilon=\bigcap_{n=N}^\infty E^n_{k_n}$. 此时就有

$$m(E - \widetilde{A}_{\varepsilon}) \le \sum_{n=N}^{\infty} m(E - E_{k_n}^n) < \frac{\varepsilon}{2}.$$

由 E_k^n 的定义可知, 对任意的 n, 当 $j > k_n$ 时 $|f_j(x) - f(x)| \leq \frac{1}{n}$ 在 $\widetilde{A}_{\varepsilon}$ 上处处成立, 从而根据定义 $f_k \to f$ 在 $\widetilde{A}_{\varepsilon}$ 上一致.

最后, 取闭集
$$A_{\varepsilon} \subset \widetilde{A}_{\varepsilon}$$
 使得 $m(\widetilde{A}_{\varepsilon} - A_{\varepsilon}) < \frac{\varepsilon}{2}$ 即得.

定理 10 (Lusin 定理). 设 f 是可测集 E 上可测函数, $m(E) < +\infty$. 那么对任意的 $\varepsilon > 0$, 存在闭集 $F_{\varepsilon} \subset E$, 使得 $m(E - F_{\varepsilon}) < \varepsilon$, 且 $f|_{F_{\varepsilon}}$ 是连续函数.

注. 这里 $\varepsilon > 0$ 是必要的, 但 $m(E) < +\infty$ 并不是必要的.

证明. 一方面, 根据**定理 8**(3), 存在阶梯函数列 $f_n \to f$ a.e.

对任意的 n, 利用阶梯函数的性质, 我们可以找到 $E_n \subset E$, 使得 $m(E_n) < \frac{1}{2n}$, 并且 f_n 在 $E - E_n$ 上连续.

另一方面, 根据 Egorov 定理, 存在闭集 $A_{\varepsilon} \subset E$, 使得 $m(E - A_{\varepsilon}) < \frac{\varepsilon}{3}$, 且 $f_n \to f$ 在 A_{ε} 上一致.

取 N 使得 $\sum_{n=N}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{3}$, 再令 $F' = A_{\varepsilon} - \bigcup_{n=N}^{\infty} E_n$, 那么就有 $m(E - F') < \frac{2\varepsilon}{3}, f_n|_{F'}$ 连续, 且 $f_n|_{F'} \to f|_{F'}$ 一致.

利用一致收敛性的性质可知 $f|_{F'}$ 连续. 最后取闭集 $F_\varepsilon \subset F'$ 使得 $m(F'-F_\varepsilon)<\frac{\varepsilon}{3}$ 即得.

2 积分论

Lebesgue 积分是实分析中最核心的内容. 不同于 Riemann 积分,Lebesgue 积分是通过逼近的思想逐步建立起来的.

2.1 Lebesgue 积分的建立

本节中, 所有函数均默认为可测函数.

2.1.1 简单函数的 Lebesgue 积分

定义 8. 设 $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ 为简单函数. 如果 a_k 互不相同、非零, 且 E_k 互不相交, 那么就称这样的表示为 φ 的正则表示.

定义 9. 设 $\varphi = \sum_{k=1}^{M} c_k \chi_{E_k}$ 为简单函数的正则表示, 则定义其 (在 \mathbb{R}^n 上的)Lebesgue 积分为

$$\int \varphi(x) \, \mathrm{d}x = \sum_{k=1}^{M} c_k m(F_k).$$

设 $E \in \mathbb{R}^n$ 的可测子集, 则定义 φ 在 E 上的积分为

$$\int_{E} \varphi(x) \, \mathrm{d}x = \int \varphi(x) \chi_{E}(x) \, \mathrm{d}x.$$

推论 1. 简单函数的积分有如下性质:

1. (积分与表示无关) 设 $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ 是任一表示, 那么有

$$\int \varphi = \sum_{k=1}^{N} a_k m(E_k).$$

2. (线性性) 设 φ 和 ψ 是简单函数, $a,b \in \mathbb{R}$, 那么有

$$\int (a\varphi + b\psi) = a \int \varphi + b \int \psi.$$

3. (可加性) 设 $E, F \in \mathbb{R}^n$ 中的不交子集, 则

$$\int_{E \sqcup E} \varphi = \int_{E} \varphi + \int_{E} \varphi.$$

4. (单调性) 设 $\varphi \leq \psi$, 且均为简单函数, 则

$$\int \varphi \le \int \psi.$$

2.1.2 有限测度集支撑的有界函数的 Lebesgue 积分

定义 10. 设 f 是可测函数,则其支撑集定义为 $supp(f) = \{x | f(x) \neq 0\}$. 如 果 $m(supp(f)) < +\infty$,则称 f 是有限测度集支撑的.

引理 3. 设 f 是有限测度集支撑的有界函数, $\{\varphi_n\}$ 是一列有界 M 的简单函数列,且满足对 a.e. 的 $x,\varphi_n(x)\to f(x)(n\to\infty)$. 那么有:

- 1. 极限 $\lim_{n\to\infty} \int \varphi_n$ 存在.
- 2. 若 f=0 a.e., 则极限 $\lim_{n\to\infty} \int \varphi_n = 0$.

定义 11. 设 f 是有限测度集支撑的有界函数, 取一列有界 M 的简单函数列 $\{\varphi_n\}$, 则 f 在 \mathbb{R}^n 上的积分定义为

$$\int f(x) dx = \lim_{n \to \infty} \int \varphi_n(x) dx.$$

推论 2. 有限测度集支撑的有界函数的 Lebesgue 积分满足线性性、可加性、单调性.

定理 11 (有界收敛定理,BCT). 设 $\{f_n\}$ 是一列有界 M 的可测函数, 被有限 测度集 E 支撑, 且 $f_n(x) \to f(x)(n \to \infty)$ a.e.

则 f 可测, 有界, a.e. 被 E 支撑, 且有

$$\int |f_n - f| \to 0 \ (n \to \infty).$$

证明. f 可测, 有界, a.e. 被 E 支撑显然.

对任意的 $\varepsilon > 0$, 由 Egorov 定理, 存在集合 $A_{\varepsilon} \subset E$ 使得 $m(E-A_{\varepsilon}) < \varepsilon$, 且 $f_n \to f$ 在 A_{ε} 上一致. 那么此时对充分大的 n 以及任意的 $x \in A_{\varepsilon}$, 就有 $|f_n(x) - f(x)| < \varepsilon$, 从而有

$$\int |f_n(x) - f(x)| dx = \int_{A_{\varepsilon}} |f_n(x) - f(x)| dx + \int_{E - A_{\varepsilon}} |f_n(x) - f(x)| dx$$

$$< \varepsilon m(E) + 2Mm(E - \varepsilon)$$

$$< (2M + m(E))\varepsilon.$$

由 ε 任意性即得.

2.1.3 非负函数的 Lebesgue 积分

定义 12. 设 f 非负,则它在 \mathbb{R}^n 上的积分为

$$\int f(x) dx = \sup \left\{ \int g(x) dx \middle| g$$
是有限测度集支撑的有界函数, 且 $0 \le g \le f \right\}.$

推论 3. 非负函数的 Lebesgue 积分满足线性性、可加性、单调性.

引理 4 (Fatou 引理). 设 $\{f_n\}$ 是非负函数列, $f_n(x) \to f(x)$ a.e.

那么就有

$$\int f \le \underline{\lim}_{n \to \infty} \int f_n.$$

证明. 设 $0 \le g \le f$, 且 g 为有限测度集支撑的有界函数. 令 $g_n(x) = \min\{g(x), f_n(x)\}$, 那么由有界收敛定理,

$$\int g_n \to \int g \ (n \to \infty).$$

此时又有 $g_n \leq f_n$, 从而 $\int g_n \leq \int f_n$, 于是有

$$\int g \le \underline{\lim}_{n \to \infty} \int f_n.$$

不等号左侧对 g 取上确界即得.

推论 4 (单调收敛定理,MCT). 设 $\{f_n\}$ 是非负函数列, $f_n(x) \nearrow f(x)$. 那么就有

$$\lim_{n \to \infty} \int f_n = \int f.$$

2.1.4 一般情况的 Lebesgue 积分

定义 13. 设 f 是可测函数. 定义 $f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\},$ 则其 Lebesgue 积分为

$$\int f(x) dx = \int f^{+}(x) dx - \int f^{-}(x) dx.$$

如果 f^+ 和 f^- 的积分均有限, 则称 f **可积**.

推论 5. Lebesgue 积分满足线性性、可加性、单调性.

推论 6. 设 f 是可测函数, 对任意的 $\varepsilon > 0$:

1. 存在球 B, 使得

$$\int_{B^c} |f| < \varepsilon.$$

2. (积分的绝对连续性) 存在 $\delta > 0$, 使得对任意可测集 E, 只要 $m(E) < \delta$, 就有

$$\int_{E} |f| < \varepsilon.$$

定理 12 (Lebesgue 控制收敛定理,DCT). 设 $\{f_n\}$ 是可测函数列, $f_n(x) \rightarrow f(x)$ a.e., 且有可积函数 g 使得 $|f_n(x)| \leq g(x)$, 那么有

$$\int |f_n - f| \to 0 \ (n \to \infty).$$

证明. 设 $E_N = \{x \mid |x| \le N, g(x) < N\}$. 对任意 $\varepsilon > 0$, 根据**推论 6**, 存在 N 使得 $\int_{E_{\infty}^c} g < \varepsilon$.

对 $f_n\chi_{E_N}$ 使用有界收敛定理, 可知对充分大的 n, 有

$$\int_{E_N} |f_n - f| < \varepsilon.$$

因此就有

$$\int |f_n - f| = \int_{E_N} |f_n - f| + \int_{E_N^c} |f_n - f|$$

$$\leq \int_{E_N} |f_n - f| + 2 \int_{E_N^c} g$$

$$< 3\varepsilon$$

由 ε 任意性即得.

2.2 Fubini 定理

Fubini 定理反映了高维空间中的重积分换序问题.

定义 14. 设 $E \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ 的子集, $x \in \mathbb{R}^{d_1}, y \in \mathbb{R}^{d_2}$,则称其切片

$$E_x = \{ y \in \mathbb{R}^{d_2} \mid (x, y) \in E \}, E^y = \{ x \in \mathbb{R}^{d_1} \mid (x, y) \in E \}.$$

设 $f \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ 上函数, $x \in \mathbb{R}^{d_1}, y \in \mathbb{R}^{d_2}$,则称其切片函数

$$f_x(y) = f^y(x) = f(x, y).$$

定理 13 (Tonelli 定理). 设 f(x,y) 在 $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ 上非负可测, 则有:

- 1. 对于 a.e. 的 $y \in \mathbb{R}^{d_2}, f^y$ 在 \mathbb{R}^{d_2} 上可测;
- 2. $\int_{\mathbb{R}^{d_1}} f^y$ 在 \mathbb{R}^{d_2} 上可测;

3.

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y \right) = \int_{\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}} f.$$

定理 14 (Fubini 定理). 设 f(x,y) 在 $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ 上可积, 则有:

- 1. 对于 a.e. 的 $y \in \mathbb{R}^{d_2}, f^y$ 在 \mathbb{R}^{d_2} 上可积;
- 2. $\int_{\mathbb{R}^{d_1}} f^y$ 在 \mathbb{R}^{d_2} 上可积;

3.

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y \right) = \int_{\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}} f.$$

推论 7. 设 $E \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ 的可测子集, 则:

- 1. 对 a.e. 的 $y \in \mathbb{R}^{d_2}, E^y$ 是 \mathbb{R}^{d_1} 的可测子集;
- $2. m(E^y)$ 是关于 y 的可测函数;

3.

$$m(E) = \int_{\mathbb{R}^{d_2}} m(E^y) \, \mathrm{d}y.$$

2.3 依测度收敛性

定义 15. 设 $\{f_n\}$ 为 E 上可测函数列, f 为 E 上可测函数, 且对任意的 $\varepsilon > 0$,

$$m\Big(\Big\{x\in E\ \Big|\ |f_n(x)-f(x)|>\varepsilon\Big\}\Big)\to 0\ (n\to\infty),$$

则称 f_n **依测度收敛**到 f, 记作 $f_n \xrightarrow{m} f$.

推论 8 (依测度收敛的唯一性). 若 $f_k \xrightarrow{m} f, f_k \xrightarrow{m} g$, 那么 f = g a.e.

定理 15. 设 f_k 和 f 在 E 上可测, $m(E) < +\infty$, 且 $f_k \to f$ $(k \to \infty)$ a.e., 则 $f_k \xrightarrow{m} f$.

证明. 对任意的 $\varepsilon > 0$, 令

$$E_k = \left\{ x \in E \mid |f_n(x) - f(x)| > \varepsilon \right\}.$$

由于 $\overline{\lim}_{k\to\infty} E_k = \{x \mid$ 存在无限多个k, 使得 $|f_k(x) - f(x)| > \varepsilon\}$ 不可能包含任何收敛点, 所以

$$m\left(\overline{\lim_{k\to\infty}}E_k\right) = \lim_{k\to\infty}m\left(\bigcup_{j\geq k}E_j\right) = 0.$$

因此由 $m(E_k) \leq m(\bigcup_{j>k} E_j)$ 即知 $m(E_k) \to 0$, 也即 $f_k \xrightarrow{m} f$.

定理 16. 设 f_k 和 f 在 E 上可测,且对任意 $\delta > 0$,存在可测集 $A_\delta \subset E$ 使 得 $m(E - A_\delta) < \delta$,且 $f_k \to f$ 在 A_δ 上一致 (近一致收敛). 那么 $f_k \xrightarrow{m} f$.

证明. 对任意 $\varepsilon > 0$, 当 k 充分大时在 A_{δ} 上有 $|f_k(x) - f(x)| < \varepsilon$. 所以此时

$$m\Big(\Big\{x\in E\ \Big|\ |f_n(x)-f(x)|>\varepsilon\Big\}\Big)\leq m(E-A_\delta)<\delta,$$

定义 16. $\{f_n\}$ 为 E 上可测函数列, 对任意的 $\varepsilon > 0$, 若有

$$\lim_{j,k\to\infty} m\Big(\Big\{x\in E\ \Big|\ |f_j(x)-f_k(x)|>\varepsilon\Big\}\Big)=0,$$

则称 $\{f_n\}$ 为**依测度 Cauchy 列**.

定理 17. 若 $\{f_k\}$ 为依测度 Cauchy 列, 则存在 f 使得 $f_k \stackrel{m}{\to} f$.

证明. 由依测度 Cauchy 列定义, 对任意的 i, 我们可以取 k_i , 使得对任意的 $l,j \geq k_i$,

$$m\left(\left\{x \in E \middle| |f_l(x) - f_j(x)| > \frac{1}{2^i}\right\}\right) < \frac{1}{2^i}.$$

不妨设 $k_i \leq k_{i+1}$. 令

$$E_i = \left\{ x \in E \middle| |f_{k_i}(x) - f_{k_{i+1}}(x)| > \frac{1}{2^i} \right\},$$

那么由上述可知 $m(E_i) < \frac{1}{2^i}$.

令 $S = \overline{\lim}_{i \to \infty} E_i$, 则 m(S) = 0. 而对任意的 $x \notin S$, 存在 j 使得 $x \notin \bigcup_{i \ge j} E_i$, 从而对任意 $i \ge j, |f_{k_{i+1}}(x) - f_{k_i}(x)| < \frac{1}{2^i}$. 于是级数

$$f_{k_1}(x) + \sum_{i=1}^{\infty} \left[f_{k_{i+1}}(x) - f_{k_i}(x) \right]$$

在 E-S 上绝对收敛, 设该级数的值为 f(x).

此时, $f_{k_i} \to f$ $(i \to \infty)$ 在每个 $E - \bigcup_{i \ge j} E_i$ 上一致, 也即 f_{k_i} 近一致 收敛到 f. 于是根据**定理 16**, $f_{k_i} \stackrel{m}{\to} f$. 最后利用依测度 Cauchy 列性质即知 $f_k \stackrel{m}{\to} f$.

定理 18 (Riesz-Fisher 定理). 若 $f_k \stackrel{m}{\longrightarrow} f$, 则存在 $\{f_k\}$ 的子列 $\{f_{k_i}\}$ a.e. 收敛于 f.

证明. 由 f_k 依测度收敛可知 f_k 是依测度 Cauchy 列. 从而根据**定理 17**的 证明过程可知存在子列 $f_{k_i} \to f$ $(i \to \infty)$ a.e.

2.4 L^p 空间

定义 17. 设 f 是 E 上可测函数,0 . 记

$$||f||_p = \left(\int_E |f(x)|^p dx\right)^{\frac{1}{p}},$$

并称 $L^p(E) = \{f \mid ||f||_p < +\infty\}$ 为 E 上的 L^p **空间**.

定义 18. 设 f 是 E 上可测函数. 称

$$||f||_{\infty} = \sup \{ M \mid |f(x)| \le M \text{ a.e.} \}$$

为 f 的本性上确界, 并称 $L^{\infty}(E) = \{f \mid ||f||_{\infty} < +\infty\}$ 为 E 上的 L^{∞} 空间.

注. 以下一般省略 E.

推论 9. L^p $(1 \le p \le +\infty)$ 是线性空间.

定义 19. 对 $1 < p, q < +\infty$, 如果 $\frac{1}{p} + \frac{1}{q} = 1$, 则称 p,q 为一对**共轭指标**. 特别地,1 和 $+\infty$ 是一对共轭指标.

定理 19 (Holder 不等式). 设 p,q 是一对共轭指标, $f \in L^p, g \in L^q$, 那么

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$
.

证明. p=1 或 q=1 时显然. 若 $1 < p,q < +\infty$, 不妨设 $\|f\|_p = \|g\|_q = 1$. 利用不等式 $a^{\frac{1}{p}}b^{\frac{1}{q}} \leq \frac{a}{p} + \frac{b}{q}$ (a,b>0), 我们有

$$||fg||_1 = \int |f(x)g(x)| \, \mathrm{d}x \le \int \frac{|f(x)|^p}{p} + \frac{|g(x)|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

定理 20 (Minkowski 不等式). 设 $1 \le p \le +\infty, f, g \in L^p$, 则有

$$||f + g||_p \le ||f||_p + ||g||_p.$$

证明. p=1 或 $p=+\infty$ 时显然. 若 1 , 则有

$$\int |f(x) + g(x)|^p dx$$

$$\leq \int |f(x) + g(x)|^{p-1} |f(x)| dx + \int |f(x) + g(x)|^{p-1} |g(x)| dx$$

$$\leq \|f + g\|_p^{p-1} \cdot (\|f\|_p + \|g\|_p).$$

其中第二个不等号利用了 Holder 不等式. 两边除以 $||f+g||_p^{p-1}$ 即得. \square

定义 20. 在 L^p 空间中可以定义度量 $d(f,g) = \|f - g\|_p$.

此时若 $||f_n - f||_p \to 0 \ (n \to \infty)$, 则称 $f_n L^p$ **收敛**于 f, 记作 $f_n \xrightarrow{L^p} f$. 同理可以定义 L^p Cauchy **列**.

定理 21 (L^p 空间的完备性). 设 { f_k } 是 L^p Cauchy 列, 则存在 $f \in L^p$ 使 得 $f_k \xrightarrow{L^p} f$.

证明. 对任意 $\varepsilon > 0$, 令 $E_{k,l} = \left\{ x \in E \mid |f_k(x) - f_l(x)| > \varepsilon \right\}$, 则

$$\int |f_k(x) - f_l(x)|^p \ge \varepsilon^p m(E_{k,l}),$$

 $\Leftrightarrow k, l \to \infty$ 即知 $m(E_{k,l}) \to 0$, 所以 $\{f_k\}$ 是依测度 Cauchy 列.

由 Riesz-Fisher 定理可知, 存在 f 和子列 $f_{k_i} \to f$ a.e., 再由 Fatou 引 理得

$$\int |f_k - f|^p \le \lim_{i \to \infty} \int |f_k - f_{k_i}|^p \to 0,$$

所以 $||f_k - f||_p \to 0$.

最后由 $||f|| \le ||f - f_k||_p + ||f_k||_p$ 即知 $f \in L^p$.

定义 21. 设 $\mathcal{G} \subset L^p$, 如果对任意的 $f \in L^p$ 以及 $\varepsilon > 0$, 都存在 $g \in \mathcal{G}$ 使得 $\|f - g\|_p < \varepsilon$, 则称 \mathcal{G} 是 L^p 空间中稠密集.

若 L^p 空间存在可数稠密子集,则称 L^p 空间是可分的.

推论 10.

- 1. L^p 中有紧支撑的连续函数集、有紧支撑的阶梯函数集均为 L^p 空间中稠密集.
- 2. L^p 空间是可分空间.

定理 22 (L^p 空间中的范数公式).

1. 若 $f \in L^p, 1 \le p < +\infty$, 且 q 是 p 的共轭指标, 则存在 $g \in L^q$ 使得

$$||f||_p = \int fg.$$

2. 若 $f \in L^{\infty}$, 则

$$||f||_{\infty} = \sup_{g \in L^1, ||g||_1 = 1} \left| \int fg \right|.$$

证明. 1. 若 p = 1, 令

$$g(x) = \operatorname{sgn} f(x)$$

即得.

若 1 , 令

$$g(x) = \frac{|f(x)|^{p-1} \operatorname{sgn} f(x)}{\|f\|_p^{p-1}}$$

即得.

3 微分论 17

2. 左式 ≥ 右式显然. 故只需证明左式 ≤ 右式.

设 $||f||_{\infty} = M$, 则对任意的 $\varepsilon > 0$, 总是存在 $A \subset E$, 使得 m(A) = a > 0, 且在 $A \perp |f(x)| > M - \varepsilon$. 此时令

$$g(x) = \frac{1}{a}\chi_A(x)\mathrm{sgn}f(x)$$

即得 $\|g\|_1 = \frac{1}{a} \cdot a = 1$, 且 $\int fg = \frac{1}{a} \int_A |f| > M - \varepsilon$, 得证.

3 微分论

微分论讨论对 Lebesgue 积分, 微积分基本定理何时成立的问题. 这又分为微分的积分和积分的微分两种情况.

3.1 微分的积分

定义 22. 若 f 可积, 定义其 Hardy-Littlewood 极大函数为

$$f^*(x) = \sup_{\mathfrak{X} \in \mathfrak{X}_{B \ni x}} \frac{1}{m(B)} \int_B |f(y)| \, \mathrm{d}y$$

引理 5 (Vitali 覆盖引理). 设 $\mathcal{B} = \{B_1, \dots, B_N\}$ 为一组开球, 则可以选出其中互不相交的若干球 B_{i_1}, \dots, B_{i_k} , 使得

$$m\left(\bigcup_{l=1}^{N} B_l\right) \le 3^d \sum_{j=1}^{k} m(B_{i_j}).$$

推论 11. 若 f 可积,则其极大函数 f^* 有性质:

- 1. f* 可测.
- 2. $f^* < +\infty$ a.e.
- 3. 对任意的 $\alpha > 0$, 有

$$m(\{x \mid f^*(x) > \alpha\}) \le \frac{A}{\alpha} ||f||_1,$$

其中 $A=3^d$.

3 微分论 18

证明. 设 $E_{\alpha} = \{x \mid f^*(x) > \alpha\}$, 容易证明 E_{α} 是开集, 所以性质 1 成立. 而性质 2 是性质 3 的推论, 故只需证 3.

根据极大函数的定义, 对任意 $x \in E_{\alpha}$, 存在 $B_x \ni x$, 使得

$$m(B_x) < \frac{1}{\alpha} \int_{B_x} |f(y)| \, \mathrm{d}y.$$

任取 E_{α} 的紧子集 K, 由有限覆盖定理可知存在 B_1, \cdots, B_N 使得 $K \subset \bigcup_{l=1}^N B_l$. 此时应用 Vitali 覆盖定理, 得到不交的球 B_{i_1}, \cdots, B_{i_k} , 使得

$$m\left(\bigcup_{l=1}^{N} B_l\right) \le 3^d \sum_{j=1}^{k} m(B_{i_j}).$$

进一步,就有

$$m(K) \le 3^d \sum_{i=1}^k m(B_{i_j}) \le \frac{3^d}{\alpha} \int |f(y)| \, \mathrm{d}y = \frac{A}{\alpha} ||f||_1,$$

利用 K 逼近 E_{α} 即得证.

定理 23 (Lebesgue 微分定理). 若 f 可积,则对于 a.e. 的 x,有

$$\lim_{B\ni x,\ m(B)\to 0}\frac{1}{m(B)}\int_B f(y)\,\mathrm{d}y=f(x).$$

证明. 对任意的 $\alpha > 0$, 令

$$E_{\alpha} = \left\{ x \left| \overline{\lim}_{B \ni x, \ m(B) \to 0} \left| \frac{1}{m(B)} \int_{B} f(y) \, \mathrm{d}y - f(x) \right| > 2\alpha \right\},\,$$

则只需证 $m(E_{\alpha}) = 0$.

固定 α , 对任意的 $\varepsilon > 0$, 由**推论**可知, 存在有紧支撑集的连续函数 g 满足 $\|f-g\|_1 < \varepsilon$.

由连续性,可知

$$\lim_{B\ni x,\ m(B)\to 0} \frac{1}{m(B)} \int_B g(y) \,\mathrm{d}y = g(x)$$

对任意的 x 成立. 此时又有

$$\frac{1}{m(B)} \int_{B} f(y) \, dy - f(x)
= \frac{1}{m(B)} \int_{B} [f(y) - g(y)] \, dy + \left[\frac{1}{m(B)} \int_{B} g(y) \, dy - g(x) \right] + [g(x) - f(x)],$$

3 微分论 19

从而

$$\overline{\lim}_{B\ni x, \ m(B)\to 0} \left| \frac{1}{m(B)} \int_{B} f(y) \, \mathrm{d}y - f(x) \right| \le (f-g)^{*}(x) + |f(x) - g(x)|.$$

令 $F_{\alpha}=\{x\mid (f-g)^*(x)>\alpha\}, G_{\alpha}=\{x\mid |f(x)-g(x)|>\alpha\},$ 则 $E_{\alpha}\subset F_{\alpha}\cup G_{\alpha},$ 且由极大函数的性质可知

$$m(E_{\alpha}) \le \frac{A+1}{\alpha} ||f-g||_1 = \frac{A+1}{\alpha} \varepsilon.$$

3.2 微分的积分

定义 23. 设 f(x) 为区间 [a,b] 上的函数, 若存在 M > 0, 使得对于 [a,b] 上的任意分划 $a = t_0 < \cdots < t_N = b$, 都有 $\sum_{j=1}^{N} |f(t_j) - f(t_{j-1})| \le M$, 则称 f 为 [a,b] 上的**有界变差函数**.

推论 12. f 是有界变差函数当且仅当 f 可以写成两个单调递增且有界的函数之差.

定理 24 (有界变差函数的可微性). 若 f 是 [a,b] 上的有界变差函数,则 f a.e. 可微.

定理 25. 若 f 是 [a,b] 上单调递增的连续函数, 则 f a.e. 可微, 且满足

$$\int_{a}^{b} f'(x) \, \mathrm{d}x \le f(b) - f(a).$$

注. 上述等号不一定能成立. 考虑 Cantor 函数, 它在 Cantor 集的余集上为常数, 且从 0 单调递增到 1. 该函数连续, 但微分 a.e. 为 0.

定义 24. 设 f(x) 为区间 [a,b] 上的函数, 若对任意的 $\varepsilon > 0$, 总存在 $\delta > 0$, 使得对任意的一组不交区间 $(a_k,b_k) \subset [a,b]$, 只要 $\sum_{k=1}^{N} |f(b_k) - f(a_k)| < \varepsilon$, 则称 f 为 [a,b] 上的**绝对连续函数**.

定理 26 (绝对连续函数的可微性). 设 f 为 [a,b] 上的绝对连续函数. 那么

- 1. f a.e. 可微;
- 2. 若 f' = 0 a.e., 则 f 为常值函数.

3. f' 在 [a,b] 上可积, 且有

$$f(b) - f(a) = \int_a^b f'(x) \, \mathrm{d}x.$$

推论 13. 若 f 可积,则函数

$$F(x) = \int_{a}^{x} f(y) \, \mathrm{d}y$$

是绝对连续函数, 且 F' = f a.e.

4 抽象测度论

抽象测度论将 \mathbb{R}^n 上的 Lebesgue 测度推广到一般的空间当中去.

4.1 抽象测度的构造

从代数上的预测度出发,可以构造出整个子集族上的外测度;将外测度限制在 Caratheodory 可测集上,就得到了测度.

定义 25. 设 X 为非空集合, $A \subset \mathcal{P}(X)$ 是 X 的一个子集族.

- 1. 若 A 对集合的有限并和补封闭,则称 A 为 X 上的**代数**.
- 2. 进一步, 若 A 还对集合的可数并封闭, 则称 A 为 X 上的 σ -代数.

定义 26. 设 A 是代数, $\mu_0: A \to [0, +\infty]$ 满足:

- 1. $\mu_0(\emptyset) = 0$;
- 2. 若 $A_j \in \mathcal{A}$ 不交, 且 $\bigcup_{i=1}^{\infty} \in \mathcal{A}$, 则

$$\mu_0\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu_0(A_j).$$

则称 μ_0 为 A 上的**预测度**.

定义 27. 设 X 为非空集合, $\mu_*: \mathcal{P}(X) \to [0, +\infty]$ 满足:

- 1. $\mu_*(\emptyset) = 0$;
- 2. 若 $E \subset F$, 则 $\mu_*(E) \leq \mu_*(F)$;

3. 对任意一族 E_i , 有

$$\mu_* \left(\bigcup_{j=1}^{\infty} E_j \right) \le \sum_{j=1}^{\infty} \mu_*(E_j).$$

则称 μ_* 为 $\mathcal{P}(X)$ 上的外测度.

定义 28. 若 μ_* 为 $\mathcal{P}(X)$ 上的外测度, $A \subset X$. 如果对于任意的 $E \subset X$, 有

$$\mu_*(E) = \mu_*(E \cap A) + \mu_*(E \cap A^c),$$

则称 A 是关于 μ_* 的 Caratheodory 可测集, 简称 μ_* -可测集.

定理 27 (从预测度构造外测度). 设 μ_0 是代数 A 上的预测度, 对任意 $E \subset X$, 定义

$$\mu_*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(E_j) \middle| E_j \in \mathcal{A}, E \subset \bigcup_{j=1}^{\infty} E_j \right\},$$

那么就有:

- 1. $μ_*$ 是 $\mathcal{P}(X)$ 上外测度;
- 2. $\mu_*|_{\mathcal{A}} = \mu_0$;
- 3. A 中任一集合均为 μ_* -可测集.

证明. 1. $\mu_*(\emptyset) = 0$ 和 $E \subset F \Rightarrow \mu_*(E) \leq \mu_*(F)$ 显然. 故只需证明 $\mu_*\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} \mu_*(E_j)$.

根据定义, 对任意的 $\varepsilon > 0$, 存在 E_{jk} 使得 $E_j \subset \bigcup_{k=1}^{\infty} E_{jk}$, 且

$$\sum_{k=1}^{\infty} \mu_0(E_{jk}) < \mu_*(E_j) + \frac{\varepsilon}{2^j}.$$

于是就有

$$\mu_* \left(\bigcup_{j=1}^{\infty} E_j \right) \le \sum_{j,k=1}^{\infty} \mu_0(E_{jk}) \le \sum_{j=1}^{\infty} \mu_*(E_j) + \varepsilon.$$

2. 对于任意 $E \subset A, \mu_*(E) \leq \mu_0(E)$ 显然,故只需证明 $\mu_*(E) \geq \mu_0(E)$. 若 $E \subset \bigcup_{j=1}^{\infty} E_j, E_j \in \mathcal{A}$. 取 $\widetilde{E}_j = E_j - \bigcup_{k=1}^{j-1} E_k$, 则 $\widetilde{E}_j \in \mathcal{A}$ 互不相交,且 $\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} \widetilde{E}_j$. 此时有

$$\mu_0(E) \le \mu_0\left(\bigcup_{j=1}^{\infty} \widetilde{E}_j\right) = \sum_{j=1}^{\infty} \mu_0\left(\widetilde{E}_j\right) \le \sum_{j=1}^{\infty} \mu_0(E_j).$$

取下确界即得 $\mu_0(E) \leq \mu_*(E)$.

3. 只需证明对任意 $A \in \mathcal{A}$ 和 $E \subset X$, 都有 $\mu_*(E) \ge \mu_*(E \cap A) + \mu_*(E \cap A^c)$.

不妨设 $\mu_*(E) < +\infty$. 那么根据定义, 对任意的 $\varepsilon > 0$, 存在 E_j 使得 $E \subset \bigcup_{i=1}^{\infty} E_j$, 且.

$$\sum_{j=1}^{\infty} \mu_0(E_j) \le \mu_*(E) + \varepsilon.$$

此时 $E \cap A = \bigcup_{j=1}^{\infty} (E_j \cap A), E \cap A^c = \bigcup_{j=1}^{\infty} (E_j \cap A^c),$ 从而有

$$\mu_*(E \cap A) + \mu_*(E \cap A^c)$$

$$\leq \sum_{j=1}^{\infty} \left[\mu_0(E_j \cap A) + \mu_0(E_j \cap A^c) \right]$$

$$= \sum_{j=1}^{\infty} \mu_0(E_j)$$

$$\leq \mu_*(E) + \varepsilon.$$

定义 29. 设 \mathcal{M} 为 X 上的 σ -代数, $\mu: \mathcal{M} \to [0, +\infty]$ 满足:

- 1. $\mu(\emptyset) = 0;$
- 2. 若 $E_i \in \mathcal{M}$ 不交, 则

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j).$$

则称 μ 为 \mathcal{M} 上的**测度**, (X,\mathcal{M},μ) 称为测度空间.

定义 30. 设 μ 为 \mathcal{M} 上的测度. 若 $\mu(X) < +\infty$, 则称 μ 为**有限测度**; 若 $X = \bigcup_{i=1}^{\infty} E_i$ 且满足 $\mu(E_i) < +\infty$, 则称 μ 为 σ -有限测度.

定义 31. 设 μ 为 M 上的测度. 若零测集的子集均可测, 即对任意 $\mu(E) = 0$, 如果 $F \subset E$, 那么 $F \in M$, 则称 μ 是**完备测度**.

推论 14. 设 μ 为 \mathcal{M} 上的测度, 则它满足:

- 1. (单调性) 若 $E, F \in \mathcal{M}, E \subset F, 则 \mu_*(E) \leq \mu_*(F)$.
- 2. (可数次可加性) 若 $E_i \in \mathcal{M}$, 则

$$\mu_* \left(\bigcup_{j=1}^{\infty} E_j \right) \le \sum_{j=1}^{\infty} \mu_*(E_j).$$

3. 若 $E_j \in \mathcal{M}$ 且 $E_j \subset E_{j+1}$,则

$$\mu_* \left(\bigcup_{j=1}^{\infty} E_j \right) = \lim_{j \to \infty} \mu_*(E_j).$$

4. 若 $E_i \in \mathcal{M}$ 且 $E_i \supset E_{i+1}, \mu(E_1) < +\infty$,则

$$\mu_* \left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu_*(E_j).$$

定理 28 (从外测度构造测度). 设 μ_* 是 $\mathcal{P}(X)$ 上的外测度. 令 \mathcal{M} 为全体 μ_* 可测集构成的集族, 则 \mathcal{M} 为 σ -代数, 且 $\mu = \mu_*|_{\mathcal{M}}$ 为 \mathcal{M} 上的完备测度.

证明. 1. 首先证明 $M \in \sigma$ -代数. 显然 M 对集合的补封闭.

若 $A_1, A_2 \in \mathcal{M}$, 对任意的 $E \subset X$, 有

$$\begin{split} \mu_*(E) &= \mu_*(E \cap A_1) + \mu_*(E \cap A_1^c) \\ &= \mu_*(E \cap A_1 \cap A_2) + \mu_*(E \cap A_1 \cap A_2^c) + \mu_*(E \cap A_1^c \cap A_2) + \mu_*(E \cap A_1^c \cap A_2^c) \\ &\geq \mu_*(E \cap (A_1 \cup A_2)) + \mu_*(E \cap (A_1 \cup A_2)^c), \end{split}$$

所以 $A_1 \cup A_2 \in \mathcal{M}$, 从而 \mathcal{M} 对有限并和有限交封闭.

此时只需证 \mathcal{M} 对可数不交并封闭. 设 $A_j \in \mathcal{M}$ 不交, 并记 $G_n = \bigcup_{i=1}^n A_j, G = \bigcup_{i=1}^\infty A_j$. 那么 $G_n \in \mathcal{M}$, 并且

$$\mu_*(E) = \mu_*(E \cap G_n) + \mu_*(E \cap G_n^c)$$

$$= \sum_{j=1}^n \mu_*(E \cap A_j) + \mu_*(E \cap G_n^c)$$

$$\geq \sum_{j=1}^n \mu_*(E \cap A_j) + \mu_*(E \cap G^c).$$

令 $n \to \infty$, 并利用外测度的可数次可加性即得

$$\mu_*(E) \ge \sum_{j=1}^{(c)} E \cap A_j) + \mu_*(E \cap G^c) \ge \mu_*(E \cap G) + \mu_*(E \cap G^c),$$

所以 $G \in \mathcal{M}$, 从而 \mathcal{M} 为 σ -代数.

2. 再证明 μ 是 M 上的完备测度. $\mu(\emptyset) = \mu_*(\emptyset) = 0$ 显然; 又由上面的证明可以立知 μ 满足可数可加性, 所以 μ 是测度.

设
$$\mu(A) = 0, B \subset A$$
. 对任意的 $E \subset X$, 我们有

$$\mu_*(E \cap B) + \mu_*(E \cap B^c) \le \mu(A) + \mu_*(E) = \mu_*(E),$$

从而 $B \in \mathcal{M}.\mu$ 的完备性得证.

4.2 抽象测度上的积分

可测函数、积分、 L^p 空间的概念都可以很容易地推广到抽象测度空间上.

定义 32. 设 f 是定义在 X 上的函数, 且对任意 $a \in \mathbb{R}$, 集合 $\{x \in E \mid f(x) < a\} \in \mathcal{M}$, 则称 f 为 X 上的**可测函数**.

定义 33. 在抽象测度空间中,可以类似 Lebesgue 测度一样依次定义简单函数、有紧支撑集的有界函数、非负函数、一般函数的**积分**. 此时设 f 为 X 上的可测函数,其积分记为 $\int f(x) \mathrm{d}\mu$.

若 f 满足 $\int |f(x)| d\mu < +\infty$, 则称 f 可积.

注. Fatou 引理、单调收敛定理、控制收敛定理对抽象测度上的积分均成立.

定义 34. 设 f 在 X 上可测, $p \ge 1$. 则定义其 L^p -范数

$$||f||_p = \left(\int |f(x)|^p d\mu\right)^{\frac{1}{p}}.$$

所有 $||f||_p < +\infty$ 的函数构成空间 $L^p(X,\mu)$.

注. 1. $L^p(X,\mu)$ 按照 L^p -范数构成 Banach 空间 (完备的线性赋范空间).

2. $L^{2}(X,\mu)$ 关于内积

$$\langle f, g \rangle = \int f(x)g(x)d\mu$$

构成 Hilbert 空间 (完备的内积空间).

4.3 测度的绝对连续性

这里我们将微分的概念推广到抽象测度上.

定义 35. 设 \mathcal{M} 为 X 上的 σ -代数, $\nu: \mathcal{M} \to [-\infty, +\infty]$ 满足:

- 1. $\nu(\emptyset) = 0;$
- 2. 要么 $-\infty < \nu \le +\infty$, 要么 $-\infty \le \nu < +\infty$;
- 3. 若 $E_i \in \mathcal{M}$ 不交, 则

$$\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \nu(E_j),$$

且如果等号左侧是有限值,那么等号右侧的级数绝对收敛.

则称 ν 是 M 上的**带号测度**.

注. 每个测度都是带号测度. 在本节中, 测度也叫做正测度, 以作区分.

定义 36. 设 μ,ν 是 \mathcal{M} 上的两个带号测度. 若存在 $E,F\in\mathcal{M}$ 使得 $E\cap F=\emptyset, E\cup F=X$, 且 μ 在 F 的子集上取值为 $0,\nu$ 在 E 的子集上取值为 0, 则称 μ 和 ν **互相奇异**, 记作 $\mu\perp\nu$.

定理 29 (Jordan 分解). 若 ν 为带号测度, 则存在唯一的正测度 ν^+, ν^- , 使 得 $\nu = \nu^+ - \nu^-$, 并且 $\nu^+ \perp \nu^-$.

定义 37. 设 μ 和 ν 分别为 M 上的正测度和带号测度. 若对任意 $E \in \mathcal{M}$, 只要 $\mu(E) = 0$, 那么就有 $\nu(E) = 0$, 则称 ν 关于 μ **绝对连续**, 记作 $\nu \ll \mu$.

推论 15. 1. 若正测度 μ 和带号测度 ν 满足 $\nu \perp \mu$ 且 $\nu \ll \mu$, 则 $\nu = 0$.

2. $\nu \ll \mu$ 等价于对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意 $E \in \mathcal{M}$, 只要 $\mu(E) < \delta$, 就有 $|\nu(E)| < \varepsilon$.

定理 30 (Lebesgue-Radon-Nikodym 定理). 设 μ 和 ν 分别是 \mathcal{M} 上的 σ -有限 正测度和 σ -有限带号测度. 则存在唯一的带号测度 λ, ρ , 使得 $\lambda \perp \mu, \rho \ll \mu$, 且 $\nu = \lambda + \rho$.

此时存在 μ -可积函数 f, 使得 $\mathrm{d}\rho=f\,\mathrm{d}\mu$, 且 f 在 μ -a.e. 相等意义下唯一

证明. 1. 首先考虑 µ 和 v 均为有限正测度的情形.

设 $\phi = \mu + \nu$, 考虑 $L^2(X, \phi)$ 上的线性泛函

$$\ell(\psi) = \int_X \psi \, \mathrm{d}\nu,$$

根据 Cauchy-Schwarz 不等式有

$$|\ell(\psi)| \le \int_X |\psi| \, d\nu \le \int_X |\psi| \, d\phi \le \phi(X)^{\frac{1}{2}} \left(\int_X |\psi|^2 \, d\phi \right)^{\frac{1}{2}},$$

所以 ℓ 有界, 从而由 Riesz 表示定理可知存在 $g \in L^2(X, \phi)$ 使得

$$\int_X \psi \, \mathrm{d}\nu = \int_X \psi g \, \mathrm{d}\phi$$

对任意 $\psi \in L^2(X, \phi)$ 成立.

对任意 $E \in \mathcal{M}$ 且 $\rho(E) > 0$, 取 $\psi = \chi_E$, 并利用 $\nu \le \phi$ 得到

$$0 \le \frac{1}{\phi(E)} \int_{E} g(x) \, \mathrm{d}\phi \le 1,$$

因此 $0 \le g(x) \le 1$ a.e. 不妨就假设此式处处成立, 此时对任意 ψ , 成立

$$\int \psi(1-g) \, \mathrm{d}\nu = \int \psi g \, \mathrm{d}\mu.$$

考虑 $A=\{x\mid 0\leq g(x)<1\}$ 和 $B=\{x\mid g(x)=1\},$ 并在 \mathcal{M} 上定义 测度

$$\rho(E) = \nu(A \cap E), \lambda(E) = \nu(B \cap E),$$

则 $\rho \ll \mu$ 和 $\nu = \rho + \mu$ 显然. 与此同时, 取 $\psi = \chi_B$ 就得到 $\mu(B) = 0$, 所以 $\lambda \perp \mu$.

最后, 取 $\psi = \chi_E(1 + g + \cdots + g^n)$, 则得到

$$\int_{E} (1 - g^{n+1}) d\nu = \int_{E} g(1 + \dots + g^{n}) d\mu,$$

$$\rho(E) = \int_{E} f \, \mathrm{d}\mu, \, \sharp \, \mathrm{rh} f = \frac{g}{1 - g}.$$

2. 若 μ 和 ν 为 σ -有限正测度, 那么我们可以找到 $X=\bigcup_{j=1}^{\infty}E_j$, 使得 $\mu_{\ell}E_i$) $<+\infty, \nu(E_i)<+\infty$.

在 \mathcal{M} 上定义有限正测度 $\mu_j(E) = \mu(E \cap E_j), \nu_j(E) = \nu(E \cap E_j)$, 那么对每个 $\nu_j = \lambda_j + \rho_j$ 使得 $\lambda_j \perp \mu_j$ 且 $\rho_j \ll \mu_j$, 此时还有 $\mathrm{d}\rho_j = f_j \, \mathrm{d}\mu_j$. 此时令 $f = \sum_{j=1}^{\infty} f_j, \lambda = \sum_{j=1}^{\infty} \lambda_j, \rho = \sum_{j=1}^{\infty} \rho_j$, 容易验证 f, λ, ρ 满足要求.

- 3. 若 ν 为 σ -有限带号测度,考虑其 Jordan 分解 $\nu = \nu^+ \nu^-$,得到对应 的 $f^+, f^-, \lambda^+, \lambda^-, \rho^+, \rho^-$ 病令 $f = f^+ f^-, \lambda = \lambda^+ \lambda^-, \rho = \rho^+ \rho^-$ 即得.
- 4. 唯一性显然.

定义 38. 若 $\nu \ll \mu$, 由 Lebesgue-Radon-Nikodym 定理存在唯一的函数 f 使得 $d\nu = f d\mu$. 此时称 f 为 ν 相对于 μ 的 Radon-Nikodym 导数, 并记作 $f = \frac{d\nu}{d\mu}$.

定理 31 (链式法则). 设 ν 是 σ -有限带号测度, μ , λ 为 σ -有限正测度, 且 $\nu \ll \mu$, $\mu \ll \lambda$. 此时

1. 若 g 为 ν -可积函数, 则 $g\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ 为 μ -可积函数, 且有

$$\int g \, \mathrm{d}\nu = \int g \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \, \mathrm{d}\mu.$$

2. $\nu \ll \lambda$, 且 $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} \lambda$ -a.e. 成立.