Max. Marks: 100

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN					

Second Semester B.E Degree Examination

Mathematics-II for ELECTRICAL & ELECTRONICS ENGINEERING Stream-BMATE201 **TIME: 03 Hours**

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each module.
- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	С
Q.01	a	Find the angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y^2 + 2z = 1$ at the point $(1, -2, 1)$	7	L3	CO1
	b	Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at (1,2,3), if $\vec{F} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + 5xyz^3\hat{k}$	7	L2	CO1
	С	Show that $\vec{A} = (y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational	6	L2	CO1
		OR			•
Q.02	a	Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{\imath} + (2xz - y)\hat{\jmath} + z\hat{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$	7	L2	C01
	b	Using Green's theorem evaluate $\oint (xy + y^2)dx + x^2dy$ over the region bounded by the curves $y = x$ and $y = x^2$	7	L3	CO1
	С	Using modern mathematical tools, write the code to find the gradient of $\phi = x^2y + 2xz - 4$	6	L3	CO5
		Module-2		1	
Q. 03	a	Define a subspace. Show that the intersection of two subspaces of a vector space V is also a subspace of V.	7	L2	CO2
	b	Define a basis for a vector space. Determine whether or not the vectors: $(1, 1, 2), (1, 2, 5), (5, 3, 4)$ form a basis of \mathbb{R}^3 .	7	L2	CO2
	С	Prove that $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(a,b,c) = (3a,a-b,2a+b+c)$ is a linear transformation.	6	L2	CO2
	1	OR		•	
Q.04	a	Define linearly independent set of vectors and linearly dependent set of vectors. Are the vectors $V_1 = (2, 5, 3)$, $V_2 = (1, 1, 1)$, and $V_3 = (4, -2, 0)$ linearly independent? Justify your answer.	7	L2	C02

	b	State the rank-Nullity theorem and verify the theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (x+2y-z, y+z, x+y-2z)$.	7	L2	CO2
	С	Using the modern mathematical tool, write the code to represent the reflection transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and to find the image of vector (10, 0) when it is reflected about the y-axis.	6	L3	CO5
		Module-3		L	
Q. 05	a	Find the Laplace transform of (i) $e^{-3t}(2\cos 5t - 3\sin 5t)$ (ii) $\frac{\cos at - \cos bt}{t}$	7	L2	CO3
	b	Find the Laplace transform of the triangular wave function $f(t) = \begin{cases} t & \text{if } 0 \le t \le a \\ 2a - t & \text{if } a \le t \le 2a \end{cases}$	7	L2	CO3
	С	Express the following function in terms of unit step function and hence find its Laplace transform of $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 4t, & 2 < t < 4 \\ 8, & t > 4 \end{cases}$	6	L3	CO3
		OR			
Q. 06	a	Find the inverse Laplace transform of (i) $\frac{s}{s^2+2s+3}$ (ii) $\frac{1}{(s+2)^2}$	7	L2	CO3
	b	Using the convolution theorem, find the inverse Laplace transform of $\frac{s}{(s^2 + a^2)^2}$	7	L3	CO3
	С	Solve the differential equation by using the Laplace transform method $\frac{d^2y}{dt^2} + y = \sin 2t$, $y(0) = 0$, $y'(0) = 0$	6	L3	CO3
		Module-4		1	
Q. 07	a	By Newton-Raphson method, find the root of $x \tan x + 1 = 0$ which is near to $x = \pi$	7	L2	CO4
	b	Using Lagrange's interpolation formula, fit a polynomial which passes through the points $(-1, 0)$, $(1, 2)$, $(2, 9)$ and $(3, 8)$ and hence estimate the value of y when $x = 2.2$	7	L2	CO4
	С	Evaluate $\int_0^6 \frac{e^x}{1+x} dx$ using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking 7 ordinates	6	L3	CO4
		OR			
Q. 08	a	Find a real root of the equation $x^3 - 4x - 9 = 0$ correct to three decimal places by the method of false position in (2, 3)	7	L2	C04
	1			1	

	b	Construct Nev	vton's forwar	d interpolation	n polynomial	for the data	7	L2	CO4
		X	4	6	8	10			
		f(x)	1	3	8	16			
	С	Evaluate $\int_0^3 \frac{1}{c}$ intervals. (x in	.03 x	g Simpson's ($\left(\frac{3}{8}\right)^{th}$ rule, by t	aking 6 equal	6	L2	CO4
	1			Modul				I	L
Q. 09	a	Use Taylor seri	es method to fi	nd $y(0.1)$ from	$\frac{dy}{dx} = e^x - y^2,$	$with \ y(0) = 1$	7	L2	CO4
	b	Using the Runge-Kutta method of order 4, find y at x = 0.6, given that $\frac{dy}{dx} = \sqrt{x + y}$, $y(0.4) = 0.41$ taking $h = 0.2$						L2	CO4
	С	Applying Milne's Predictor-Corrector method, find y(0.8), from $\frac{dy}{dx} = x^3 + y$, given that $y(0) = 2$, $y(0.2) = 2.073$, $y(0.4) = 2.452$, $y(0.6) = 3.023$							CO4
				OR				I	I
Q. 10	a	Solve by Usin at $x = 0.2$ and	_	ıler's method,	$y' = \log_{10}(x$	+ y), y(0) = 2	7	L3	CO4
	b	Using the Runge-Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = 3e^x + 2y, y(0) = 0, \text{ taking } h = 0.1$						L3	CO4
	С					nd the solution Kutta 4 th order	6	L3	CO5

	Lower-order thinking skills								
Bloom's	Remembering	Understanding	Applying						
Taxonomy	(knowledge): L ₁	(Comprehension): L ₂	(Application): L ₃						
Levels		Higher-order thinking skills							
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆						

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN					

Second Semester B.E Degree Examination Mathematics-II for Electrical & Electronics Engineering-BMATE201

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	C
Q.01	a	Find the directional derivatives of $\emptyset = x^2yz + 4xz^2$ at $(1, 2, -1)$ along $2i - j - 2k$.	7	L2	CO1
	b	Evaluate $Curl(Curl\vec{F})$ and $Div(Curl\vec{F})$, if $\vec{F} = x^2y\hat{\imath} + y^2z\hat{\jmath} + z^2x\hat{k}$.	7	L2	CO1
	С	Show that the vector $\vec{F} = \frac{x\hat{\imath} + y\hat{\jmath}}{x^2 + y^2}$ is both solenoidal and irrotational.	6	L3	CO1
	1	OR	I	ı	1
Q.02	a	Find the total work done by the force $F = 3xy\mathbf{I} - y\mathbf{J} + 2zx\mathbf{K}$ in moving a particle around the circle $x^2 + y^2 = 4$.	7	L3	CO1
	b	Verify Stoke's theorem for the vector field $\mathbf{F} = (2x - y)\mathbf{I} - yz^2\mathbf{J} - y^2z\mathbf{K}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy - plane.	7	L2	CO1
	С	Using modern mathematical tools, write a code to find the divergence and curl of the vector $2x^2i - 3yzj + xz^2k$	6	L3	CO5
		Module-2	I		1
Q. 03	a	Prove that in $V_3(R)$, the vectors $\{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ are linearly independent.	7	L2	CO2
	b	If W is the set of all points in R ³ satisfying the equation	7	L2	CO2
		$lx + my + nz = 0$, then prove that W is a subspace of \mathbb{R}^3 .			
	С	Define an Inner product space. Consider $f(t) = 3t - 5$ and $g(t) = t^2$,	6	L2	CO2
		the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find $\langle f, g \rangle$.			
		OR			
Q.04	a	Express the vector $(3, 5, 2)$ as a linear combination of the vectors $(1, 1, 0), (2, 3, 0), (0, 0, 1)$ of $V_3(R)$.	7	L2	CO2
	b	Find the dimension and basis of the subspace spanned by the vectors	7	L2	CO2
		$(2, 4, 2), (1, -1, 0), (1, 2, 1),$ and $(0, 3, 1)$ in $V_3(R)$.			
	С	Let $T: V \to W$ be a linear transformation defined by $T(x, y, z) = (x + y, x - y, 2x + z)$. Find the range, null space, rank, nullity and hence verify the rank-nullity theorem.	6	L2	CO2
	1			1	1

		Module-3			
Q. 05	a	Find the Laplace transform of (i) $te^{-t}sin4t$ (ii) $\frac{1-cosat}{t}$	7	L2	CO3
	b	Find the Laplace transform of the square wave function of period 2a, defined by $f(t) = \begin{cases} k, & 0 < t < a \\ -k, & a < t < 2a \end{cases}$	7	L3	C03
	С	Express $f(t) = \begin{cases} cost, & 0 < t < \pi \\ cos2t, & \pi < t < 2\pi \\ cos3t, & t > 2\pi \end{cases}$ in terms of the Heaviside unit	6	L3	CO3
		step function and hence find $L\{f(t)\}$.			
Q. 06		OR	7	L2	C03
Q. 06	a	Find $L^{-1}\left\{\frac{2s^2-6s+5}{s^3-6s^2+11s-6}\right\}$,	LZ	LUS
	b	Find $L^{-1}\left\{\frac{1}{s^3(s^2+1)}\right\}$ Using the convolution theorem.	7	L2	CO3
	С	Solve by Laplace transform method: $y'' + 4y' + 3y = e^{-t}$, given $y(0) = y'(0) = 1$.	6	L3	CO3
		Module-4			
Q. 07	a	Find the real root of the equation $x \log_{10} x = 1.2$ by the Regula-Falsi	7	L2	CO4
	b	method between 2 and 3 (Three iterations). Using Newton's forward difference formula, find $f(38)$	7	L3	CO4
		x 40 50 60 70 80 90			
		y 184 204 226 250 276 304			
	С	The following table gives the values of x and y	6	L2	CO4
		x: 2.8 4.1 4.9 6.2			
		y: 9.8 13.4 15.5 19.6 Find y when x = 8 using Lagrange's interpolation formula.			
		OR			
Q. 08	a	Using Newton-Raphson Method find the real root of $tanx = x$ near x = 4.5 correct to four decimal places.	7	L3	C04
	b	Find the interpolating polynomial using Newton's divided difference	7	L2	CO4
		formula for the following data			
		x 0 1 2 5			
		y 2 3 12 147			

	С	Evaluate $\int_{4}^{5.2} \log x dx$ using Simpson's $\left(\frac{3}{8}\right)^{th}$ rule, taking h = 0.2	6	L3	CO4
	<u> </u>	Module-5		<u>I</u>	1
Q. 09	a	Use Taylor series method to find $y(0.2)$ by considering the terms up to 4^{th} degree, given $\frac{dy}{dx} - 2y = 3e^x$ & $y(0) = 0$.	7	L3	CO4
	b	Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$. Compute $y(0.2)$ by taking $h = 0.2$ using Runge-Kutta method of fourth order.	7	L2	CO4
	С	Apply Milne's method to find $y(0.8)$ given $\frac{dy}{dx} + xy^2 = 0$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	L2	CO4
	l .	OR		I	1
Q. 10	a	Using Modified Euler's method to find y at $x = 0.2$ given $\frac{dy}{dx} = x - y^2 \& y(0) = 1$ by taking step size $h = 0.1$	7	L3	CO4
	b	Find $y(2)$ by using Milne's Predictor and Corrector method, given $\frac{dy}{dx} = \frac{x+y}{2} \text{ and}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L2	CO4
	С	Using modern mathematical tools, write a code to find $y(0.1)$, given $\frac{dy}{dx} = x - y, y(0) = 1 \text{ by Taylor's Series.}$	6	L3	CO5

	Lower-order thinking skills								
Bloom's	Remembering	Understanding	Applying						
Taxonom	(knowledge): L_1	(Comprehension): L_2	(Application): L_3						
y Levels		Higher-order thinking skills							
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆						