

A Spark Framework for < \$100, < 1 Hour, Accurate Personalized DNA Analysis at Scale

Zaid Al-Ars
Delft University of Technology
The Netherlands

DNA SEQUENCING COSTS 10⁵ LESS THAN 15 YEARS AGO!

HUGE DATA SETS REQUIRE INTENSE COMPUTING CAPACITY

STATE-OF-THE-ART DNA VARIANT DISCOVERY IS GATK USES A PIPELINE OF DIFFERENT TOOLS

IDEA

- We use input data segmentation to group data of the same chromosome for parallelization.
- Data of the same chromosome can further be divided to create more segments.

COMPARISON OF BIG DATA TECHNIQUES

GATK Queue

- Slow scheduling
- Hard to setup
- Disk intensive
- Poorly documented

Halvade

- Disk intensive
- Limited memory use
- Static load balancing

Our Tool

- ✓ In-memory compute
- ✓ Dynamic load balancing
- ✓ Effective use of disk
- ✓ Easy to setup

IMPLEMENTATION

- Input is preprocessed into chunks
- Spark framework divided into 3 stages
 - Mapping & static load balancing
 - 2. Sorting & dynamic load balancing
 - 3. Picard & GATK
- Challenges in memory capacity, processor utilization and network bandwidth

PREPROCESSING INPUT

- Two input files are merged
- Divided into chunks
- No. of chunks depends on cluster size

- Performed once before data is processed
- Not included into pipeline timing calculation

1. MAPPING & STATIC LOAD BALANCING

- Chunks mapped w/ BWA => easily scalable to all cores
- Output divided into chromosomal regions

Feduces memory needs
for dynamic
load balancing

2. SORTING & DYNAMIC LOAD BALANCING

- Files of chromosomal regions are combined
- Files subdivided depending on # reads to ensure optimal load balancing

3. PICARD DEDUPLICATION & GATK VARIANT CALLING

- Many mini GATK pipelines run on region files
- # Spark containers depends on efficient core utilization
- Output VCF files combined into one output VCF file

EXPERIMENT SETUP

POWER8 Cluster

- 20 POWER8 S822LC nodes, bare metal
- 2x SCM 10-core, SMT8; 160 HW threads per node
- 512 GB of RAM per node
- Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
- IBM General Parallel File System (GPFS)

- Red Hat EL 7.2
- Spark 1.5.1, openJDK 1.8
- IBM LSF for resource management
- Configured as 1 master + 19 slaves

Data Used:

- Raw reads: G15512.HCC1954 (whole human genome, 400GB uncompressed)
- Reference: human g1k v37

CPU UTILIZATION ON SMALLER CLUSTER

RUNTIME SCALABILITY ON 20-NODE POWER8 CLUSTER

UNIFORM CPU UTILIZATION AND IO AMONG SIX NODES

SCALABILITY ANALYSIS FOR LARGER CLUSTERS

- 90 min runtime on 20node cluster
- Stage 1 & 3 are scalable
- Runtime scales down to 1 hour for 35 node cluster

ACCURACY

Concordance = 4,112,429 (99.1%)

COST ESTIMATE

- GATK Spark allows efficient (i.e., cheap) CPU utilization
- 60 minute runs on 35nodes cluster
- POWER nodes cost <\$100 a day (\$30-\$70 in SoftLayer)

CONCLUSIONS

- GATK pipeline runs on Apache Spark framework
- Solution shows good scalability without sacrificing accuracy
- 400GB WGS data scales to under 1 hour for 35 nodes
- Price point is below \$100 for POWER8 cluster
- Future work
 - We are accelerating our solution further using FPGAs through the IBM POWER8's CAPI interface
 - Examples: compression & math-heavy kernels like pairHMM

ACKNOWLEDGEMENTS

- Hamid Mushtaq (TUDelft)
- Carlos Costa (IBM)
- Neil Graham (IBM)
- Peter Hofstee (IBM)
- ▶ Raj Krishnamurthy (IBM)

- Frank Liu (IBM)
- Gang Liu (IBM)
- Rei Odaira (IBM)
- Indrajit Poddar (IBM)

THANK YOU.

Zaid Al-Ars

z.al-ars@tudelft.nl

Delft University of Technology

The Netherlands

http://ce.ewi.tudelft.nl/zaid

