

1

-Informatik

Hochschule für angewandte Wissenschaften Hamburg

Breitensuche

Gegeben sei ein Graph G mit zwei ausgezeichneten Ecken s und t.

Schritt 1: Man kennzeichne die Ecke s mit 0 und setze i = 0.

Schritt 2: Man ermittle alle nichtgekennzeichneten Ecken in G, die zu den mit i gekennzeichneten Ecken benachbart sind:

Falls es derartige Ecken nicht gibt, ist t nicht mit s über einen Weg verbunden.

Falls es derartige Ecken gibt, sind sie mit i+1 zu kennzeichnen.

Schritt 3: Wenn t gekennzeichnet wurde, folgt Schritt 4, wenn nicht, erhöhe man i um eins und gehe zu Schritt 2.

Schritt 4: Die Länge des kürzesten Weges von s nach t ist i + 1. Der Algorithmus wird beendet.

2

-Informatik

Hochschule für angewandte Wissenschaften Hamburg

Tiefensuche

Gegeben sei ein Graph G mit zwei ausgezeichneten Ecken s und t.

Schritt 1: Man kennzeichne die Ecke s mit 0 und setze i = 0.

Schritt 2: Man ermittle alle nichtgekennzeichneten Ecken in G, die zu der mit i gekennzeichneten Ecke benachbart sind:

Falls es derartige Ecken nicht gibt, wende das Backtracking an.

Falls es derartige Ecken gibt, kennzeichne eine (beliebige) mit i+1.

Schritt 3: Wenn t gekennzeichnet wurde, folgt Schritt 4, wenn nicht, erhöhe man i um eins und gehe zu Schritt 2.

Schritt 4: Die Länge eines Weges von s nach t ist i + 1. Der Algorithmus wird beendet.

Backtracking: ermittle eine Ecke, die Vorgänger von der aktuellen Ecke ist (also mit einem kleineren i gekennzeichnet wurde) und die noch nicht markierte adjazente Ecken besitzt.

Falls es keine solche Vorgänger Ecke gibt, ist t von s aus nicht erreichbar Falls es eine derartige Ecke gibt, kennzeichne eine (beliebige) zu ihr adjazente (unmarkierte) Ecke mit i+1 und weiter mit Schritt 3.

3

3

-Informatik

Hochschule für angewandte Wissenschaften Hamburg

Verwendung der Kennzeichnung

Gegeben sei ein Graph G mit zwei ausgezeichneten Ecken s und t. Der Graph sei vom BFS gekennzeichnet worden.

Schritt 1: Man setze $i = \lambda(t)$ und ordne $v_i = t$ zu.

Schritt 2: Man ermittle eine Ecke u, der zu v_i benachbart ist und mit $\lambda(u)=i-1$ gekennzeichnet ist. Man ordne $v_{i-1}=u$ zu.

Schritt 3: Wenn i = 1 ist, ist der Algorithmus beendet. Wenn nicht, erniedrige man i um eins und gehe zu Schritt 2.

4

-Informatik

Hochschule für angewandte Wissenschaften Hamburg

Algorithmus von Dijkstra

Vorbereitung *I_{ij}*: Länge der Kante *v_iv_j*. *I_{ij}*:=∞, falls es eine solche Kante nicht gibt. Für jede Ecke *v_i*∈V werden drei Variable angelegt:

- 1. Entf_i: die bisher kürzeste Entfernung von v_1 nach v_i an. Startwert 0 für i=1 und ∞ sonst.
- 2. **Vorg**_i Vorgänger von v_i auf dem bisher kürzesten Weg von v_1 nach v_i an. Startwert v_1 für i=1 und undefiniert sonst.
- 3. OK_i = true, falls die kürzeste Entfernung von v_1 nach v_i bekannt ist. Startwert false.

Iteration Wiederhole (i,j seien dabei die Laufvariablen, h ein fester Wert)

Suche unter den Ecken v_i mit OK_i = false eine Ecke v_h mit dem kleinsten Wert von Ent f_i . Setze OK_h := true.

Für alle Ecken v_i mit OK_i =false, für die die Kante v_hv_i existiert:

Falls gilt $Entf_i > Entf_h + I_{hi}$ dann

Setze $Entf_i := Entf_h + I_{hi}$

Setze $Vorg_i := h$

solange es noch Ecken v, mit OK,=false gibt.

5

5

-Informatik

Hochschule für angewandte Wissenschaften Hamburg

Aufgaben

1. Führen Sie den Algorithmus von Dijkstra mit nachfolgendem Graphen durch (bis zum Abbruch!). Wählen Sie als Ausgangspunkt die Ecke v₁. Fertigen Sie eine Dokumentation an, aus der der Ablauf deutlich wird.

6

Aufgaben

Bill of Silver Silve

2. Führen Sie den Algorithmus von Dijkstra mit nachfolgendem Graphen bis zum Abbruch durch!. Wählen Sie als Ausgangspunkt die Ecke v₁. Fertigen Sie eine Dokumentation an, aus der der Ablauf deutlich wird. Zeigen Sie, dass der Algorithmus nicht den kürzesten Weg von v₁ nach v₉ findet und begründen Sie in allgemeiner Form, woran dies liegt!

/