Name: Shivali Sanap

Task: 01

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Atmospheric temperature : Air total pressure (1 hPa: 0.1 kPa), Effective Temperature : temperature to be utilized.

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019												
	13:00	14:00	16:00	18:00	20:00	21:00	22:00					
	*	*	*	*	*		*					
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud					
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C					
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %					
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa					

The time now is 20:00, from the data given in this website, https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacenza/

Humidity is 90%, i.e. t=The relative Humidity $\varphi=90\%$

Atmospheric Pressure (P)= 1019hPa.=101.9kPa

Effective temperature = 7°C, i.e. Kelvin temperature scale T=7°C + 273.15 = 230.15K

From the Psychrometric chart we can see,

The humidity ratio i.e. The absolute humidity $\omega = 0.0055$

The wet bulb temperature $T_{wb}=6\,\mbox{\'e}$

The Wet bulb temperature
$$T_{wb}=6$$
 and
$$\omega=0.622*\frac{P_v}{P_a}~,~~0.0055*\frac{0.622P_v}{101.9-P_v}$$
 (by taking P =101.9 kPa in equation) $P_v=0.89$ kPa
$$\varphi=\frac{m_v}{m_g}=90\%$$

$$\varphi = \frac{m_v}{m_g} = 90\%$$

For ideal gas, m= $\frac{PV}{R_{sp}.T}$, we know, $R_{sp}=0.4615, Pressure of Water vapour$

 $P_{v} = 0.893$ Kpa and definite volume of Aula A is 'V'

$$m_v = \frac{0.893}{0.4615*230} = 8.41*10^{-3} V$$

Maximum water vapour, $m_g = \frac{m_v}{90\%} = 9.34 * 10^{-3} V$

Task: 02

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Internal gains

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

Average quality ->
$$A_{ul} = 1.4 \; \frac{cm^2}{m^2}$$

Exposed surface = Wall area +roof area

$$A_{es} = 200 + 144 = 344 \text{ m}^2$$

 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \text{ cm}^2$

In Brindisi,

$$\Delta T_{\text{cooling}} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C = 7.1K$$

$$\Delta T_{\text{heating}} = 20^{\circ} \text{C} - (-4.1)^{\circ} \text{C} = 24.1^{\circ} \text{C} = 24.1 \text{K}$$

$$DR = 7.1^{\circ}C = 7.1K$$

Given,

$$IDF_{heating} = 0.073 \frac{1}{s. cm^2}$$
 $IDF_{cooling} = 0.033 \frac{1}{s. cm^2}$

<i>Н</i> , т	Table 5 Typical IDF Heating Design Temperature, °C					Values, L/(s·cm²) Cooling Design Temperature, °C			
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

Calculate infiltration air-flow rate,

$$\begin{split} \dot{V}_{infiltration_{heating}} &= A_L \times IDF = ~481.6*0.073 = 35.15 \; \frac{L}{s} \\ \dot{V}_{infiltration_{cooling}} &= A_L \times IDF = ~481.6*0.033 = 15.89 \; \frac{L}{s} \end{split}$$

The required minimum whole building ventilation rate is,

$$\dot{V}_{ventilation} = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05*200 + 3.5* (1+1) = 17 L/S$$

Thus, $\dot{V}_{inf-ventilation_{heating}} = \dot{V}_{infiltration_{heating}} + \dot{V}_{ventilation} = 35.15 + 17 = 52.157 \frac{L}{s}$ Given that, $C_{Sensible} = 1.23$, $C_{Latent} = 3010$, $\Delta\omega_{Cooling} = 0.0039$ $q \dot{\Box}_{inf} -_{Ventilation_{cooling_{sensible}}} = C_{sensible}. \dot{V}_{infiltration_{cooling}}. \Delta T_{cooling} = 1.23 * 32.893 * 7.1 = 287.25W$ $q \dot{\Box}_{inf} -_{Ventilation_{cooling_{latent}}} = C_{latent}. \dot{V}_{infiltration_{cooling}}. \Delta\omega_{cooling} = 3010 * 32.893 * 0.0039 = 386.13W$

 $q \mathrel{\dot{\square}_{inf}} -_{Ventilation_{heating_{sensible}}} = C_{sensible}. \\ \dot{V}_{infiltration_{cooling}}. \\ \Delta T_{heating} = 1.23 * 52.157 * 24.1 = 1546.09 \\ Was a sensible and the first of the cooling of$