50X1-HUM

The metals and their alloys are worked into semi-products as:

- a) castings by casting into moulds,
 b) forgings or pressings by forging or pressing by means of power hammers or presses,

c) rollings — by rolling in rolling mills.

The greatest part of the total production of metals is represented by semi-products, worked up by rolling. In the year 1949 the world production of pig iron was estimated at some 155,000,000 tons a year, while the yearly production of steel rolling stock was estimated at some 108,000,000 tons; up to 1953 the world output of pig iron rose to some 250,000,000 tons a year followed by a proportional increase in the production of steel rolling stock. For the rest of the metals, the ratio of the rolling stock to the total production is similar. From this comparison it is clear, how

important rolling mills are in production both from the economical and technical viewpoint.

The Czechoslovak works, especially the world-known Škoda-Works and Vitkovice-Iron-Works, have a long-years tradition, in planning of complete rolling mills and in production of their equipment.

PRINCIPLES OF ROLLING.

Rolling is the cold or not shaping of metals during which the metal is drawn and deformed between two rolls turning in opposite directions so that it changes its shape and decreases its cross section while rapidly increasing its length. The drop in the area of the cross section, which occurs during one pass between the rolls is called reduction and is

refer up in the area of the cross section, which is a part of the cross section before it passes through the rolls.

The purpose of rolling is to produce the final rolling stock out of the largest possible prime material by using a minimum number of passes (stitches), but keeping the desired quality and accuracy of the rolling stocks.

KINDS OF ROLLING STOCKS.

According to the shape of the cross section of the rolling stock there are:

- 1. Thick plates and thin sheets,
 2. Sections shaped (of simple geometrical forms, such as circular, square, flat and even in various combinations such as angles, I profiles, [profiles, rails, etc.),
- 3. Special sorts (tyres, railway wheels, etc.),

LAY-OUT OF A ROLLING MILL.

The kind of rolling stock, its material and the output required, i. e. the quantity of rolling stocks produced in tons for a given time-interval, affects the lay-out of a rolling mill.

ACCORDING TO THE ROLLED MATERIAL THERE ARE:

1. steel rolling mills,

2. rolling mills for non-ferrous metals and their alloys

ACCORDING TO THE KIND OF ROLLING STOCKS

1. rolling mills for billets,

2 mills for sheets and strips.

4, wire rolling plants,

5. rolling mills for tubes,

6. special rolling mills. Modern rolling mills are the fruit of development of the last twenty years and are far more efficient, especially as rough troung time are the first of construction and production of rolling equipment, with respect to the maximum pay an increased attention to the construction and production of rolling equipment, with respect to the maximum accuracy and quality of the surface of the rolling stock.

THE MAIN KINDS OF ROLLING STANDS ACCORDING TO THEIR CONSTRUC-TION ARE:

1. two-roll stands — two-high rolling mill

1. two-foil stands — two-nigh rolling initi a) with constant direction of rozation of rolls os called continuous, i. e. with several passes in one stand. The rolling stock is rolled in one direction only and is fed back over the upper roll, running idle. This working cycle is stock is roised in one direction only and is see back over the upper rois, running roise, this working eyes in terrated until the final cross section is reached. This stand is now used only for rolling of this nebect, generally of non-ferrous metals. With one pass in each stand for the continuous rolling of slabs, flats, wire and thin sheets.

Continuous two-high rolling mill with one pass in each stand for the continuous rolling of slabs, wire and thin

b) with variable direction of rolls' rotation, or so-called reversing. In these mills the working pass moves in both directions and the reduction of height of the rolling stock occurs during propulsion both forwards and backwards. When the direction of the pass changes the direction of the rolls' rotation changes, too. Reversing stands are used for rolling of billets and sheets.

2. Three-rolled mills — three-high rolling mill. In these, the rolling stock passes in one direction between the lower and centre roll, in the second pass, reversed, between the centre and upper roll. Such stands are used as bloomings for the rolling of sheets and sections and as finishing, or as egalising for sheet-rolling.

3. Four-rolled mills — four-high rolling mill.

These have two working and two supporting rolls. The diameter of the working rolls is smaller than that of the inese nave two working and two supporting loss. The same are the two-high rolling mills. They are used as continuous reversing. These stands are used both for the cogging of plates, sheets, strips and folls in a hot or cold state and for the rolling of final products, sheets, strips and foils.

- 4. When rolling strips rolling mills with even more rolls are used, namely with 6, 12 up to 20 rolls.
- S. Universal stands. --

All the above described types of rolling mills have their rolls mounted horizontally. Universal stands have, in addition to horizontal rolls, one or two pairs of vertically mounted working rolls. They can be two-, three- and four-high rolling mills. The vertical rolls are mounted either form one or both sides, sometimes between the pins of the horizontal rolls.

In these mills the stock is pressed in the vertical direction (in the horizontally mounted rolls) and in the horizontal direction (in the vertically mounted rolls), too. They are used for the rolling of slab blooms, flats and some large

sections ([profiles, I girders, rails, etc.).

6. Vertical rolling mills have two vertically mounted rolls. They are used in connection with stands with horizontal rolls in continuous trains for the rolling of flats, slabs and wire.

I. STEEL ROLLING MILLS

REVIEW OF MODERN TRAINS:

A. COGGING TRAINS.

These are the basic service in metallurgical works and represent a connecting factor between the steelworks and inese are the obasic service in metalurgical works and represent a connecting factor between the steenworks and the rest of the rolling mill trains. On the cogging trains ingost of considerable weight can be rolled, By rolling on a cog-ging and slabbing train we can get blooms of small dimensions out of large ingots by only one heating, a factor which

ging and statuting train in Consequence of finishing rolling mill trains.

1. Bloomings — cogging trains for blooms and slab blooms roll from ingots from 2 to 15 tons of

square blooms from 🔲 140 up to 400 mm,

— square uncount from [] induptor to not min,
— slab blooms of thickness 70 up to 250 and 600 up to 1600 mm width.

To-day they are built as reversing two-high rolling mills with a roll diameter of 700 — 900 — 1150 mm, the length of the working part of the rolls being 2000 — 3000 mm. The yearly capacity ranges from 250,000 to 2,000,000 tons

 Slabbings — cogging trains for slab blooms roll from 7 up to 25 ton ingots slab blooms of 250 up to A Stabolings — Cogging trains for stab proving the Month of the Control of the Co 2,500,000 slab blooms a year can be attained.

Owing to the limited special production programme and high investment costs they are not frequently used.

3. Trains for slabs and flats.

Slabs and flats are blooms for rolling of sectioned steel, tubes thin sheets, steel strips and blooms for welded tubes. Square and round slabs are rolled from 50 mm to 130 mm.

Slabs larger than arnothing 130 mm are rolled on slabbings. The rolling of circular slabs of a smaller diameter with only one

Slabs and flats are rolled on opened trains with three-high rolling mills of a roll diameter of 600—850 mm or twohig rolling mills of a roll diameter of 700—900 mm, with an output of 550 to 650 tons/8 hours. For large capacities of slabs of 1,000,000 tons and more yearly continuous slabbings are built, comprising from six to twelve horizontal and vertical rolling stands with rolls of 400 to 1000 mm diameter.

B. FINISHING ROLLING MILLS.

1. Mills for heavy sections for rails and girders.
The characteristic sorts of rolling stock being rolled in these mills are

rails for railways from 30 to 60 kg/m

I sections, height from 180 to 600 mm

[sections, height from 180 to 400 mm

angles from 150×150 mm to 230×230 mm circular and square section steel from 80 to 300 mm

The rolling mills are either two-high of 700 to 950 mm roll diameter or three-high with rolls \varnothing 700 to 850 mm. The The forms and extreme through the first of Stands, sometimes as cross country arrangement with 4 to 8 stands. The yearly output reaches 1,000,000 tons of products. 2. Mills for coarse sections:

The characteristic sorts of rolling stock are: circular and square sections 60 to 200 mm

I and [sections 100 to 300 mm

angles 75 × 75 mm up to 200 × 200 mm

mine rails up to 24 kg/m in weight

On three-high rolling mills with rolls \varnothing 350 to 700 mm or two-high with rolls \varnothing 450 to 700 mm in open or cross country arrangement.

The open train has 3 to 5 stands, a cross country train 8 to 10 stands. The yearly output of these trains is from 120,000 to 800,000 tons of products.

3. Mills for medium sections:

The characteristic sorts of rolling stock are: round steel \varnothing 30 to 90 mm

strips from 50 × 25 — 35 to 120 × 8 — 50 mm

I sections 20 to 100 mm [sections 60 to 120 mm

angles 40×40 to 90×90 mm

mine rails to 11 kg/m

There are two-and three-high rolling mills, with rolls of a arnothing 450 to 600 mm in the case of the cogging track, and \$\tilde{G}\$ 350 to 500 mm in the case of the finishing one.

The arrangement of these trains is open with 5 to 7 stands with a capacity up to 100,000 tons of products per year,

mi-continuous with 10 to 12 rolling mills and cross country with 10—12 two-high rolling mills for an output reaching 550,000 tons of products a year.

4 Mills for fine sections:

The characteristic sorts of rolling stock are:

round steel Ø 6 to 50 mm

squares to 40 mm strips to 120 mm I sections to 60 mm

U sections to 60 mm

angles from 20×20 to 50×50 mm

wire ∅ 5 to 10 mm Two-, three-, twin-two-high or alternating-two-high rolling mills of a roll-diameter of 400 to 500 mm in the cogging

track, and of a roll-diameter of 240 to 300 mm in the finishing track, are used. The usual arrangement of the trains is as follows: a) open, comprising 7 to 10 stands, capacity up to 120,000 tons/year,

b) semi-continuous, comprising 4 to 18 stands, capacity up to 200,000 tons/year, c) continuous, with 18 stands, capacity up to 250,000 tons/year and

d) cross country, comprising 13 to 15 stands up to 250,000 tons/year 5. Wire rolling plants, \varnothing 5 to 12 mm.

Two-, three-, alternating-two-high rolling mills and vertical rolling mills with rolls of Ø 240—300 mm, are used. In an open arrangement for yearly outputs to 120,000 tons, semi-continuous and continuous for as much as 300,000 tons of wire a year.

6. Strip mills and mills of semi-products for welded tubes.

For strip widths ranging between 30 and 305 thicknesses from 0.8 to 15 mm with two-, three-, four-high and vertical rolling mills in

a) open arrangement, similar to plants for fine sections, with capacity approx. 40,000 tons of products yearly

b) semi-continuous with 7 to 15 stands for outputs approx. 60,000 tons/year, c) continuous with 10 to 15 stands for yearly capacities up to 150,000 tons.

int

H

C. ROLLING MILLS FOR THICK AND THIN SHEETS AND STRIPS OF STEEL.

1. Mills for thick sheets

thickness 4 to 60 mm width 600 to 3000 mm

with two-high stands, Ø of rolls 800 to 1250 mm

length of working part of rolls 2000 to 3500 mm three-high \varnothing of outer rolls 750 to 1150 mm

Ø of inner rolls 550 to 850 mm

four-high Ø of working rolls up to

965 mm Ø of supporting rolls up to

5200 mm working length of rolls up to

a) The uncontinuous arrangement has 1 to 2 stands. The first stand is a reversing two-or three-high, the other two-or four-high rolling stand.

b) The semi-continuous arrangement has a continuous two-high rolling mill as a scale-breaker, continuous four-high mill, reversing four-high mill with vertical rolls and four tandem four;high stands. The capacity of such trains varies mm, reversing our-night mill with vertical rolls and rour tanuel rour/migh stands. The capacity of such trains varies with respect to the large scale of weights of input materials, ingots or slab blooms from 2 to 70 tons and with respect to different widths and thicknesses of the output stock. The semi-continuous train attains, when rolling rolling sheet 4—16 mm thick, and 510 to 2285 mm in width, an average yearly output of 600,000 tons.

c) Mills for very wide sheets and armoured plates up to 5,000 mm wide and 450 mm thick serve for special purposes.

2. Rolling mills for thin sheets and strips 0.1—4 mm thick.

Thin sheets can be rolled hot or cold and either in plates uncontinuously or in strips semi-continuously or continuously. The input material for the production of thin sheet in plates is a flat, a bloom from plants for thick sheet or a hot-rolled strip. Rolling mills for thin sheets and strips use two-, three-, and four-high rolling mills in various combinations.

The characteristic dimensions of thin sheet and strip is its width, according to which the rolling stands are specified and which is for two-high stands and three-high stands 700—1800 mm, for four-high rolling mills up to 2200 mm for producing sheets and plates and 900-2500 mm for the production of strips.

II. ROLLING MILLS FOR NONFERROUS METALS

- 1. Rolling mills for billets (flats), sheets and strips.
- 2. Rolling mills for sheets and strips.
- 3. Rolling mills for foils.
- 4. Rolling mills for lead.
- 5. Wire and round stock rolling plants. Rolling mills for billets (sheets and strips) roll
- a) billets of copper and its alloys 500—1000 mm in width and 4—6 mm in thickness from cast plates up to 125 mm

b) billets of aluminium and its alloys up to 2500 mm in width and 3—6 mm in thickness from cast plates up to 300 mm

The following stands are used for the rolling trains:

Continuous two-high stands (dia. of rolls 500 to 1000 mm. length of rolls 630 to 2500 mm),

Three-high stands with the inner roll of a smaller diameter (dia. of the inner roll 400—700 mm, dia. of the upper and lower roll 630—900 mm, length of rolls 630 to 2000 mm),
Three-high stands with rolls of the same diameter (dia. of rolls 500 to 900 mm, length of rolls 630 to 2000 mm),

Reversing two-high stands (dia. of the roll 560 to 1000 mm, length of the roll 630 to 2800 mm),

Reversing and continuous four-high stands (dia. of working rolls 400 to 900 mm, dia. of supporting rolls up to 1350 mm, length of rolls up to 2800 mm)

for rolling of copper, aluminium and their alloys.

As a rule one of the above stands in the cogging trains meets the requirements of the normal production schedule. For cogging of aluminium strips and its alloys in larger quantities exceeding 50,000 tons a year, more stands are used, such as the reversing two-high and four-high stands, or the reversing two-high with three or more continuous tandem four-high stands.

2. Rolling mills for sheets and strips of copper, aluminium and their alloys

roll sheets and strips 500 to 2500 mm in width and 0.1 to 3 mm in thickness.

For rolling of sheets and strips the following stands are used:

Continuous or reversing two-high stands (dia. of rolls 250 to 1000 mm, length of rolls 250 to 2500 mm),

Three-high stands (dia. of rolls 375 to 900 mm, length of rolls up to 2500 mm),

Continuous or reversing four-high stands (dia. of working rolls 80—500 mm, dia. of supporting rolls 200—1350 mm, length of rolls up to 2800 mm). colling mills for foils

roll foils of 0.009 up to 0.005 mm final thickness and 500 mm in width from cogged strips 0.7 up to 0.45 mm thick in a cold state. For a completed technological process 3 up to 5 stands are used,

two-high stands (dia. of rolls 250 to 330 mm), or four-high cogging with 2 up to 3 finishing stands (dia. of rolls of the two-high stand 250 to 330 mm, length of rolls

up to 800 mm).

The output of the rolling amounts to 5000 tons of aluminium foils a year. 4. Rolling mills for lead roll strips up to maximum width of 4000 mm and minimum thickness of 0.5 mm from cast blocks up to 150 mm

n thickness and from 5 to 12 tons in weight. In general a single rolling stand is used, namely the reversing two-high stand with rolls of 800 mm in dia. and 3000

up to 4500 mm in length. 5. Wire and round stock rolling plants. On these trains copper or aluminium wire of 6 up to 12 mm in dia. and round stock up to 25 mm in dia. is rolled

From cast blocks of about 80—100 mm squared cross section.

For open trains two three-high rolling stands with rolls of about 450 mm in dia. and

3 up to 7 alternating two-high stands with rolls of 280 to 330 mm in dia. are generally used.

For trains with continuous arrangement continuous two-high stands of 250 to 350 in dia. are used.

The output of these trains varies between 12 and 150 tons per 8 hrs. of copper wire, 6 mm in dia., and from 4 to 80 tons per 8 hours of aluminium wire, 6 mm in diameter.

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-

THE ELECTRICAL EQUIPMENT OF ROLLING PLANTS

Feeding sets, drives and various regulating, metering and other auxiliary devices are a very important component of the equipment of a rolling plant. Just on them depends the efficiency and accuracy of production to a major extent. The basic condition for electrical equipment to function well is perfect feeding equipment for the alternating and direct current part. We build even the largest transformer- and switch rooms, where the latest discoveries of modern technics are used in the constructions of reliable and powerful switches, protecting devices and transformers.

D. C., drives require high-power sets of the type Ward-Leonard or ligner. These units can be built up to 5000 kW with synchronous motors, so that they serve for compensation of the $\cos \varphi$ of other equipments. Smaller units, rated up to 250 kW are delivered also with regulable Schrage motors. For controlling these sets the latest methods are used, besides others also amplidynes, sometimes with magnetic amplifiers in cascade, if rapid and accurate control is required.

For drives and other D. C. consumers, such as D. C. motors of smaller power, where the regulation is only limited or occasional, or for excitation-mains, powerful mercury rectifiers can be used to advantage, which are characterized by simple foundations, high efficiency and small demands on attendance.

For the needs of rolling plants we use a standardized row of A. C. and D. C. motors of special workmanship, rated up to 5000 kW, in single cases even larger units (individual ones). In many places where there are heavy trains, high power is needed, so that twin tandem motors have to be used. This is in many ways better than to use one large unit. Troubles, which used to be met in the completely synchronous run, of such tandem units are nowadays almost completely eliminated.

It is very advantageous in order to facilitate operation and to raise the capacity and the quality of the products, to eliminate the human factor as much as possible, in regard to different controls. Automatically controlled drives o collers according to tension, automatic shears, cutting pre-set lengths without respect to ambient conditions with the highest accuracy, are therefore being built. Apparatuses, using photo-tubes, electronic and magnetic amplifiers, sepecially designed for tasks in rolling plants, measure the thickness, the pressure between the rolls, the temperature of the rolls and the material, detect the quality of the product's surface, the thickness and quality of the plating, while a device called a pin-hole detector measures the quality of sheets or foils to ascertain any small holes. All these or similar special devices can be connected to a servomechanism, which then keeps the measured magnitude within acceptable or wanted tolerances. That the devices are really far more accurate and faster than a man is proved e. g. by a device for measuring, without contacting them, the thickness of hot strips. There are two versions, one using an X-ray tube, the other a synthetical radiactive isotope. The source of radiation is under the strip, above which the detecting head is situated. The radiation is absorbed proportionally to the thickness of the material. The device ntains an X-ray tube, the version for medium steel sheets, reaches an accuracy better than 1%, even for long runs. The automatic flying shear, electromechanically controlled, reaches a cutting accuracy also under 1%. Another device automatically sets the rolls of a blooming, according to the pre-set programme, so that attendance is limited to switching on the simple control-knob seeing that the machinery and rolled stock are in good condition.

Not less important is the possibility of supervising the particular divisions of the processing. Special signalizing devices or meter-racks give a good survey over practically any part of the process. E. g. special advising boards show striking deviations from the permitted tolerances, which occur on a continuous mill for strips. Large well-readable ciphers emerge and a loud horn simultaneously attracts the attention of the employees to the message transmitted. orkshop which takes over the material from another shop for further processing, can quickly and effectively advertise its crew the faults, which it was not securely possible to detect there.

The electrical equipment of rolling mills approaches both the economical and at the same time the functional optimum to the utmost limits. The largest driving units can be controlled quite reliably and safely by electronic devices. The workmanship of all the equipment takes into account especially the thermal and mechanical conditions to which it will be exposed especially in the rolling mill.

BLOOMING \varnothing 1120 \times 2900 mm

It treats ingots of 6—18 tons of weight to blooms for finishing trains, to blocks 180—240 mm, slab blooms 100 up to 165 mm in height and 900—1600 in width.

The ingot heated to the rolling temperature is conveyed from the soaking pits by means of a tong crane into the tilter of the ingot car "A". The tilter of the car is tilted to a horizontal position and the rollers of the ingot car shift the ingot to the conveyor, which brings it further into the turntable "B" where the ingot is turned by 180° and weighed on the built-in weighing machine. From the turntable the ingot is conveyed by further conveyors to the working conveyor, by means of which it is brought to the grooves of the rolls of the stand "D". On the working conveyors there are shifters and edgers "C", which shift the rolled ingot into the corresponding grooves and turn it by 90°.

After the rolling of the profile desired is finished, the cogged material is brought by the roller-conveyors to the block-shears "H", where it is cut to the required lengths, as set by means of a shear-gage. The pushers "K" and "M" bring the blooms to the trailer cooling-bed "L" or to a grate for slab blooms "N".

The working rolls of the rolling mill are driven by two independent electric motors "E", rated 2,600 kW with regulable revolutions 0 - 40 - 80.

The output of this rolling mill is up to 1,500,000 tons of blooms yearly.

The total weight of the machinery is approx. 3,500 tons.

Capitized Capy Approved for Delegan 2010/08/19 - CIA DDD01 010/20000700220010 E

BLOOMING \emptyset 900 \times 2200 Roller conveyor with pushers of slabs and slab blooms Explanation of the characters in the scheme Technological description. Technological description. The blooming \varnothing 900 x 2200 mm is intended for rolling high-alloyed steel from ingots up to 3.5 tons in weight into blooms \boxplus 120 to 250 mm. The lingot heated to the rolling temperature in the soaking pits is brought by means of a tong crane from the soaking pit into the tilter of the ingot car "D", tilted on the input roller-conveyor "F", weighed on the weighing machine "E" and conveyed to the working reversing two-high rolling mill "A", which has rolls of 900 mm and a working-part-length of 2200 mm. The drive of the rolls is derived from an electric D. C. moctor "C" rated 3700 kW, with variable revolutions in limits of \pm 0 — 40 — 80 r.p.m., over a transmission stand "B" and articulated spindles. The working lift of the upper roll is 600 mm. The finished bloom is cleaned and deprived of surface defects on the machine for flame cleaning "I". On block shears with a stop" "I" the ends are cut away and the blooms are then divided into the required lengths. The cut material is then brought either to the cooling-bed or for further rolling on the train. The output of this rolling plant reaches 1,000,000 tons of blooms yearly.

The second rolling sequence of the continuous slabbing 3 two-high rolling mills \varnothing 650×1420 mm 2 vertical rolling mills \varnothing 650× 950 mm.

The first sequence "B" has one horizontal stand with rolls \varnothing 650×1420 mm and one vertical stand with rolls \varnothing 650×750 mm. The second sequence "C" has 3 horizontal and 2 vertical rolling stands with rolls of identical dimensions to those of the first sequence, the third sequence "D" has 3 horizontal rolling stands with rolls \varnothing 480×1000 mm and 2 vertical stands with rolls \varnothing 480×800 mm. Each rolling stand has an individual drive derived from a D. C. motor, rated 1000 kW each, with variable revolutions 0 — 300 — 600 r. p. m., regulated by two Leonard converters, rated 6200 kW each. For getting the material out of each sequence the trailers "H" are used, For dividing the blooms the saw "E", the flying shears "F" and slab shears "I" are used, for dividing round stock into short lengths for blooms and tubes, this train is equipped with four sets of special double saws.

The capacity of the train is 1,200,000 tons yearly.

The weight of the machinery of the rolling train is approx. 6000 tons.

Rotor of the rolling mill D. C. twin motor — 3,000 kW, ± 1200 V, ± 80 — 160 r. p. m., 2,700/12,000 A, max. mo-ment 160 tm used for rail trains 3200

COARSE ROLLING TRAIN FOR SECTIONS 630,550.

From blooms \pm 120 to \pm 180 mm square sections of \pm 60 to \pm 100 mm are rolled on this train,

 round stocks
 © 60 to
 100 mm

 [profiles
 80 to
 100 mm

 I profiles
 100 to
 200 mm

angles 70 x 70 x 8 mm to 120 x 120 x 12 mm rails and other profiles from commercial steel to 80 kg m in weight.

The output rolling speed is 3 to 6 m sec, behind the last stand. The train is rated for up to 700,000 tons of products wastly. It by interconstitutions to the continuous behalf colling to the continuous to

yearly. It has nine continuous two-high folling mills arranged in three sequences.

The first four rolling stands have rolls 630 mm and are individually driven over a transmission stand and a gear box, by motors rated (100 kW each, 750 r.p. m., asynchronous, with flywheels. The other five rolling stands have rolls 630 mm over a transmission stand and a gear box, without flywheels, by D. C. motors, rated 1000 kW each, with continuous regulation of revolutions 0 — 300 — 600 r.p. m.

The total weight of the mechanical part is 9000 tons.

The cold blooms are stored on charging grates "A", which transport them to the roller-conveyor "B".

Warm-up furnaces are charged by pushers "D" by which the blooms are shifted through the furnace on to the roller-conveyor situated in front of these furnaces. On the shears "P" the ends of the blooms are cut away. In front of each rolling stand there are edgers, which turn the bloom sif necessiry and insert them into the groove. The bloom runs out of each stand on to a roller-conveyor and is conveyed by means of this to the next stand. Transversally, from one sequence to the next the bloom is shifted by trailers "G", these being situated behind the fourth, fifth and eight rolling stands.

The finished roiling stock is cut by five mobile saws "j" into the required lengths and Tramported on a roiler-conveyor to the bilateral chain-cooler "K". After cooling the rolling stock is straightened on roller-straightening machines,

CONTINUOUS STRIP-ROLLING MILL

This train is destinated for rolling strips 50 to 250 mm wide and 0.8 to 6 mm thick in a hot state. The input material are blooms 55 to 90 mm or small slab blooms 70 x 90 to 270 mm.

The blooms are 9 m in length for the roll to be as heavy as possible.

The blooms are 9 m in length for the roll to be as heavy as possible.

The blooms are 9 m in length for the roll to be as heavy as possible.

The model of the rolling the rolling strips of the rolling the rolling in the rolling sequences, the cogging one, marked "C", consisting of 4 two-high rolling mills or 400 x 550 mm and two vertical stands. The first vertical serves as a scale-breaker.

The medium sequence, marked "D", constain 3 two-high rolling mills or 400 x 550 mm and two vertical rolling mills. The first vertical serves as a scale-breaker.

The medium sequence "C" has 4 four-high rolling stands 2 200 x 550 mm.

In four-high and vertical rolling stands the rolls are set by means of motors.

In four-high and vertical rolling stands the rolls are set by means of motors.

The coggings, designed for rolling on this rolling train are stored on grates, which transport them to a conveyor and this conveys them into the warm-up furnace.

The warm-up furnace "B" has a side in-and-out movement. The heated blooms are shifted by means of a pusher out of the furnace, gripped by the feeder-rolls of the extractor-stand and fed into the propper rolling train.

Behind the stale-breaker, the second horizontal stand, the vertical and the last two-high stand is installed the device, which places the origing train and shifted down from the coller, bound in a binding machine and shifted on to

axis.

After colling the roll is automatically pulled down from the coller, bound in a binding machine and shifted on to a chain-conveyor, which transports it to a loading cross, from which by means of a crane or by a special electric car it is transported ready for dispatch.

SEMI-CONTINUOUS WIRE TRAIN 375/250

1. Input material:

 $55 \times 55 \times 7000/3500$ of approx. 160 kg in weight, divided behind the third stand into 2×80 kg. $75\times75\times7000$, 300 kg in weight, divided behind the third stand into 2×150 kg, for medium cross sections.

2. Average capacity of the rolling train: 100 tons/8 hrs. for \varnothing 5.5 mm wire, final rolling speed 15.5 m/sec Rolling programme: \$\times 5.5 - 12 mm wire in rolls round stock 10 - 25 mm in bars.

Trains and number of stands:

Cogging mill.

1st sequence 3 two-high mills Ø 375 × 900 mm 2nd sequence 5 two-high mills Ø 350 × 900 mm with common drive for both sequences.

THE OPEN TRAIN

3 three-high stands — Ø 290 × 800 mm Ø 300 × 800 mm Ø 310 × 800 mm

FINISHING CONTINUOUS TRAIN

2 two-high mills Ø 280×500 mm 6 two-high mills Ø 250×500 mm Total weight: 2500 tons

TWO-HIGH BLOOMING FOR THE ROLLING OF NON-FERROUS METALS

- A. Push-out heating furnace

 8. Skip

 C. Brushing machine
 D. Conveyor

 E. Turntable

 H. Transmission gear stand
 J. Vertical rammer-mill ∅ 400 mm

Technical data for rolling copper and its alloys: Input material block 120 x 600 x 900 mm Product strip 4.5 x 1000 — 1200 mm Output rolling speed 3 m/sec. Output of the train 60 tons/8 hrs.

for rolling aluminium and its alloys: Input material block 150 x 700 x 1000 mm Product strip 4.5x 1000 — 1200 mm Output rolling speed 3 m/sec, Output of the train 30 tons/8 hrs.

K. Drive of the rammer L. Coiler M. Trailer N. Dividing shears O. Trimming shears

C

TRAIN FOR ROLLING LEAD.

Legend:

- Legend:
 A. Melting furnace
 B. Ingot moulds
 C. Reversing two-high mill
 Ø 700-x250 mm
 D. Gear box and transmission stand
 E. Main motor
 F. Conveyor

Technical data:

Input material block 150×1800×2500 mm Product sheet 1—0,5×3000 mm Final rolling speed 0,3—0,75 m/sec. Output of train 10 tons/8 hrs.

Outstanding Features

High power main motor and wide range of spindle speeds permit carbide tipped tools to be fully utilized for boring as well as for milling.

Wide range of milling as well as boring feeds permits suitable feed to be selected for variety of operations.

Spindle head and column are easy to set by means of push buttons from operator's post according to scales with verniers.

Safety clutches disengaging feed motor prevent overload of feed drive and thereby also damage to tool.

Metric and Whitworth threads of current sizes can be cut on the machine-

Central lubrication of spindle head, in which most drives are centralized, with light signal indica-ting failures of lubricating system and pressure lubrication of guideways simplify operations and improve safety of operation.

High grade material of all gears and hardened and, wherever necessary, ground teeth, precision manufacture of splines of sliding gears and spline shafts running in anti-friction bearings and high grade workmanship of all other parts ensure lasting accuracy and high efficiency of machine.

Easy and convenient control of machine by portable push button panel controlling all motors reduces idle times to minimum.

Description

THE SPINDLE HEAD is box shaped and contains the main spindle and the high speed spindle. All the drives, drilling and milling feed assemblies, screw cutting equipment as well as the rapid traverse of the spindles, spindle head and column are centralized in it.

The main drive of the spindle head is powered by a reversible squirrel cage induction motor.

A special brake reduces the stopping time of the machine to a minimum when the push button is depressed.

There are two kinds of feeds: boring feeds (in mm per revolution) acting upon the main as well as the high speed spindle, and milling feeds (in mm per min.) moving the spindle head vertically

on the column and the column across the bed. Both kinds of feed are variable within $\boldsymbol{\alpha}$ wide range and arranged in fine steps.

a wide range and arranged in fine steps.

The main spindle is carried in a slewes with an adjustable tapered bush by which the spindle can be firmly gripped. The front end of this sleeve forms a flange to which milling cutters can be fitted and its carried in a longered bush with an expending wedge for accurate adjustment of the boaring play. The threat is forme by the rear bush provided with threads by which the spindle sleeve with the flange can be moved outward longitudinally by means of a worn gear.

The multi-plate clutches are operated by a push button controlled electric motor

To the right-hand side of the spindle head an arm is fitted with a guide for the driver bearing of the main spindle.

All parts inside the spindle head are splash lubricated. The oil is circulated by a gear type oil pump driven by its own electric motor.

THE HIGH SPEED SPINDLE has a particularly high speed (720 r. p. m. maximum) which permits sintered carbide tipped tools to be fully utilized at smaller boring diameters. It runs in an accurate, finely adjustable bearing.

diameters. It runs in an accurate, linely adjustable bearing.

THE SCREWCUTTING EQUIPMENT. For screwcutting the spindle has a feeding movement operated by a lead screw driven oil the spindle through a gear box with change gears arranged in a gear quadrant. A set of 17 change gears allows the cutting of 22 sizes of metric threads with a pitch from 0.5 to 12 mm or 32 Whitworth threads with 28 to 1 thread per inch.

THE COLUMN is well reinforced with ribs and rests on a large seating area on the base which moves along the hed. It encloses the counterweight of the spindle head. THE BED is of ample width and reinforced with ribs. The large guiding surfaces allow perfect guiding and a firm base for the column oven with the heaviest loads.

COOLING. The machine is provided with a cooling system consisting of a tank arranged, as a rule, separate from the machine, an electric motor driven pump and piping.

THE CONTROLS of the machine are simple and conveniently laid but. The control THE CONTROLS of the machine are simple and conveniently lead out. The control of all the motors is centralized, on the one hand, on the spindle head cover, on the other hand on a portable push button panel. This arrangement permits the operator to control most of the movements of the machine directly from his post.

To facilitate changes of tools, adjustments, etc., a special inching push button is provided on the spindle head by means of which the machine is started and only kept running as long as the push button is being held depressed.

THE BACK REST, which is only supuled to order as special equipment, consists of a short bed and a column with the boring bar support. The column of the support moves crosswise on its bed (perpendicularly to the centre line of the main spindle).

MAIN DIMENSIONS

Specification

Diameter of main spindle	200 71/4"
Diameter of high speed spindle	80 35/82"
Taper in main spindle	Metric 120 No. 5 Morse
Maximum torque: on main spindle	
on high speed spindle	n 15000 1080 ft. lbs
WORKING RANGES	
Maximum diameter of boring with main spindle	170: 5'7"
Maximum depth of boring with main spindle	1800 5'11"
Maximum depth of boring with high speed spindle	596 1'7" 100 3'5 m"
Longitudinal sliding movement of main spindle	3000 9'10"
Cross movement of column on bed	4000 13'1"
SPEEDS	24
Number of main spindle speeds	24
Main spindle speeds	m. 0.9 to 180
High speed spindle speeds	m. 3.6 to 720
FEEDS	
32 boring feeds of main spindle	rev. 0.065 to 4.5
	0.0026" to 0.18" per rev.
32 boring feeds of high speed spindle	rev. 0.016 to 1.12 0.00064" to 0.045" per rev.
16 milling feeds of spindle head and column	
16 milling feeds of spindle nead and column	"16" to 17" per rev.
RAPID TRAVERSE	2020 610
Rapid traverse of main and high speed spindle approx	6'8".3' per min.
Rapid traverse of spindle head and column approx	
SCREWCUTTING	0.5 to 12
22 metric threads with pitches of	
32 Willworth threads with	
DRIVE	
Main motor: output	2.5 m 960
Motor for spindle head and column feed and for rapid traverse: output kW	15
speed r. p.	m, 140°)
WEIGHT OF MACHINE	
with standard equipment, approx	69000 152000 lbs
The standard of the standard o	
STANDARD EQUIPMENT	
Complete electrical equipment of machine, high speed spindle with drive, screwcutting equipment, cooling equipment with electric motor driven pump, set of spanners for	
attendance, set of indicating plates and tables on machine, operator's instruction booklet.	
SPECIAL EQUIPMENT BACK REST with BED	
Movement of back rest on hed	1800 5'11"
Visiting may oment of having har support on column mm	3450 11'4"
Motor for movement of column on bed: output	5.5 m 1420
speed	1.8
speed r.p.	m, 2800
Weight of back rest	8500 18700 lbs
WHEN ORDERING, PLEASE, STATE THE VOLTAGE AVAILABLE FOR THE ELECTRIC	
MOTORS	

PRAHA-CZECHOSLOVAKIA

Printed in Czechoslovakia

TION		
Working Range Height of centers Maximum using over bed.		63" 124 102" ," 900 217000 ftRis
Headstock	n 710	-19
Diameter of spindle in front hearing	n 710	24
Number of speeds Range of speeds Taper in spindle Diameter of taper in spindle Diameter of face plate In the spindle	m 250	0.35 to 71 1 : 10 92 124
Carriages Longitudinal feeds: Range I, for all quindle speeds: number of feeds range, per revolution m	0.105	18
Range II, for 12 lower spindle speed ranging from 0.35 to 4.5 r. p. m.;	1110012740	
number of feeds range, per recodution m Cross feeds and feeds of cross slides equal 0.4 times longitudinal feeds.	m 1 to 48	1 0.04" to 1' ,
Rapid traverse of carriages on bed, per minute m • Screwcutting by means of Pinion and Rack	m 3000	9.10.
Only metric threads, coarse, on entire turning length. Leads of threads indentical with longitudinal feeds. • Tailstock		
Diameter of tailstock sleeve m Diameter of taper in tailstock sleeve m Taper in tailstock sleeve m	m 220	170 et 80 et 10 7.6
Rapid traverse of tailstock on bed, per minute m Rapid traverse of tailstock sleeve, per minute m • Steady Rost	m 2300	2.71
Clear diagraeter		591
Roller Support	11.5	
Maximum clear diameter without base m Minimum clear diameter without base m Maximum clear diameter with base m	m 2000 m 2000 m 1500	1021 781 781 39
Boring Equipment		
Maximum diameter of boring bar us Boring freels: Range L for all spindle speeds:	m 5000 m 700	16.47 27. 1
range, per revolution m Range II, for 12 lower spindle speeds ranging from 0.33	m 0.125 to	60.000 200.24 18
Rapid traverse of boring bar bearings on bed, per minute Rapid cross traverse of boring bar bearings, per minute Unantity of coolant per minute lit	m 3000 m 1200	\$ 0.04 to 1', 9 t0 3 11 66 Imp. Galls. 170 psi.
• Drive Main Motor: output k		110 970
Motor for rapid traverse of carriage: output, 5 minute rating k		1410
Motor for rapid traverse of tailstock: output, 5 minute rating	W	1440
Motor for rapid traverse of tailstock slieve: output, 5 minute rating	W	1.4
Weights and Dimensions Floor space required by machine with length		nerr . tesa
Net weight of machine with length of 15000 mm (492°) between centers and standard equipment, approx. kg		

STANDARD EQUIPMENT

face plate with complete front		on	spindle

for all the cold of policy and on equallicomplete from carriage
1 complete for carriage
1 contacter filters of carriage
1 complete for carriage
1 contacter filters of the carriage

OPTIONAL EQUIPMENT

Additional front carriage with electrical equipmen					l-o	8300	DR Stell Day
Additional rear carriage with electrical equipmen							19460 ths
Additional rest, 1500 mm 59 dia							8500 lbs
Roller support without base							6610 lbs
Roller support with base					ke	4280	94440 lie
Attachment for turning of slender tapers					kg	14	31 lbs
Tailstock sleeve with live center on request							
Boring equipment comprising:							
Complete front guide bearing for 700 mm 27° dia boring bar					ke	5350	11790 lbs
boring bearing for 700 mm 270 dia.							
boring bar					kg	2040	+500 lbs
centrifugal pump for hydrol with electric							
driving motor and electrical equipment							

STROJEXPORT

STROJEXPORT

Cen

S 3150·D4

LUBRICATION. The headstock and carriage are entrally labricated. An oil strainer accessible from outside and a labrication grant with a light signal equipment are fitted late the heatstack outside the heatstack of the heatstock. When the headstock labrication does not operate a red light borns and the main motor estate he started. When the hubrication falls is the course of operation have all an instruct steps automatically.

CONFEGI. The machine is remote-controlled by punk-buttons and can be controlled from the headstock as well as from the individual carriages. The clearly laid out land whereis for the changing of spindle speeds and levers, arranged directly on the individual carriages, for the changing of rates of feed contribute to the easy, convenient and simple operation of the machine.

ELECTRICAL EQUIPMENT

STANDARD EQUIPMENT

- STANDARD EQUIPMENT

 I from plate 1500 cam (527) diameter with
 4 saws, presend on to spindise
 (for Type 51000 DS)

 I fined intently 500 cmm (627) diameter
 (for Type 51000 mm (627) diameter
 (for Type 5100 mm (627) diameter
 (for Type

A set of variety remains separating plate and collections of the collection of the c

Specification

								500 D3			100 103
ура					2			one in			
FORKING RANG										2000	
taximum swing o	ver bed .	34.00	ort.		e ita	mm.	1500	2 11.	mm	1700	P 400
Seight of centers						mm				1000	20
Matance, center to			- 0		4	metres	6, 5	10, 12	19 8 . 3	6-3-, 22	3. 35.4.
faximum weight											
(without stead	. (m)					kg		28000		11700 Ibs 50000 ft.	
faximum torque (e face plate	100				cmkg	-5-57	tuu.			
RADSTOCK										0.45 to	
pindle speeds an						E.p. m	0.7	to 160	to 100	0.46 to	
Caper in front en	1 of apindle					mm		115	12006	A 15	
Diameter of spino	is in irone c	searing .		17:1		mm	1550	F 2*	mm	2000	6.6.
ARRIAGE	Marke .									100	
ANNIAGE S longitudinal fe											
2 longitudinal fe at range — 16 fe	son arranges	indle me	aged:	٠.٠٠.	- 3.	mm re	or rev.	0.18 to 5.5	0.007	to 0.112	per rev.
red renice - 16 f	eeds at lowe	r spindle	speeds			mm pe	IF FEY.	1.4 to 45	0.055		
G eroen feeds .				100		mm p	er rev.	0.07 to 18	0.003	to 0.72*	per rev.
Rapid traverse				4		mm p	er min.	3000		to per n	ME.
CREWCUTTING	BY MEANS	OF CHA	NGE C	EAR							
Pitch of leadscre-		1 1				t.p.f.					
5 metric threads						mm		24 1			
5 Whitworth the	sads		- 1			t, p. t.			n pormal		
Steep threads, pl	sala							2			
TAILSTOCK	s genra .	Y 1									
						reces		500	77/4*		
Diameter of talls	tock steeve					men			do 100		
Paper in tailatori	i steeve .	0.11	100			mon n	er min.	2000	\$1.2"	per mir	
Rapid movement							er min.	1480	4 10	per mis	
FIXED STEADY											
Meximum clear d						mm.	800	2.76*	mm	1000	3' 5"
DRIVE											
Main motor:											
output						vw					
speed		1.50	1 1	- 1	: :	E. D. E	n.		•		
Motor for rapid		arriage.				100					
certout .	Amount of (1)					NW.		2	5		
	3.141	100		100	100	E.P.	0.	145			
Motor for rapid	nonement of			di.							
output .	arevenient or					kW.		1	6		
apped .	198		0.00			E. P. E	0.	140			
Motor for rapid	maxement of		caleer								
output"		· ·				kW		. 0			
anced .				40		F. p. 1		277	10		
WEIGHTS AND	DIMENSION	98					1000				
Weight of machi			corrie	er an	d stat	dard ex	ulomes				
for 6000 mm	(16c Se) bets	mann rent	***	nrow.		her :	44500	SHIDO Ibe	ke	48500	100000 Ites
for 8000 mm	(39'3") bets	ween cent	res. no	ores.	. 1 .	kg.	48500	100000 lbs		58000	116900 Ibu
for 10000 mm	(32'9") bets	wren cent	re6, 60	erox.	10.0	kg	52500	115900 (24		57500	126900 Ibs
for 12000 mm	(39' 4") bets	ween cent	ries, as	proc.	- 1	kg	56500	124900 Pt	ı kg	62000	136700 Ite
Distance, centre		maminin			·	mm		coto	5 7 6 6 A	9-8-	
Overall length of	machine							23548		11900	20/ 9-
for 6000 mm	(19' 8") bet	ween cent	res, a	opeox.		mm.	13400	27: 5* 44	mm	13900	45.4
for 3000 mm	(30, 2.) per	ween cea	Cree, at	prox.		mm	15400	70' 5"	- HONE	16900	tar the
				max.			17400	571.31	veries.	12000	100 A.
for 12000 min										20300	72:8*

Modific is Test

STROJEXPORT. PRAHA-CZECHOSLOVAKIA

COIC 53640 a - 6409

are application distincted for veryy heavy tearting whole, Both are dissipated on the same based lines. They are applicated to the based required agents and forcid according to the arranged in fine dates and can therefore be, used to see the control of the cont

DESCRIPTION:

THE DRIVE. The machine is driven by a three-phase squirred cage motor through a starting clutch set for the shortest starting priori, forward and reverse, and equipped with an automatic, adjustable, electromagnetically controlled brake for quick atoping at the driver. The motor is controlled by push-buttons arranged on the headstock and on the individual carriages. The inching of the spindle is controlled by a push-button on the headstock. When it is operated the brake is simultaneously released.

THE RED is wide and relationed with ribs. It has large passages for the object which are guided not basters in a channel under the machine. Due to this arrangement the work on the machine need not be atopped to remove the chips. The bed has 3 flar guideways permitting the ear-riages to move freely paint the stendies and tailstock over their entire length of travel.

THE HEADSTOCK. The power is transmitted from the electric motor through the starting clutch and siding gors effectly to the starting clutch and siding gors effectly to the starting clutch and siding gors effectly to the starting clutch and side of sides and sides an

THE SPINDLE. The two radial bearings of the spindle have divided explindrical bearing shells. The thrust in either direction is taken up by anti-friction bearings. No gears are keyed to the spindle so that its movement is absolutely smooth.

THE CAERIAGES are provided with their own feed bease and motors for rapid traverse. The longitudinal and cross feeds are engaged by multi-plain clutches which, at the same time, act as articly clutches so that the feeds may be changed at will, even while the tool in the cut Ware the power feed escapaged, which is done by a single lever, the various movements can immediately be operated by hand.

The rapid traverse may be engaged in either direction even while the working feed is engage. Each carriage can be equipped for screw-cutting on the entire turning length. The carriage guided on the front guideway and on one half of the centre guideway and clears the steat as well as the tailstock.

THE TAILSTOCK is provided with a motor for the rapid movement on the bod and a motor for the movement of the Italiatics elseve. The fine movement of the sleve is operated by hand. The hand and power movement of the taliatics sleeve are mutually independent. The standard sleeve can be replaced by a sleeve with a live center which is available as special equipment.

center which is available as special equipment.

THE STEADIES are of the two-part type, enclosed. The
steady for the maximum diameter has five jaws, the one for
smaller diameters 4 jaws. The jaws are either fitted with
salding shose or with rollers. The rollers run in large natifriction bearings and their surface has a glass-like hardness.

SCEEWCUTTO. Meric and Whitesh threads with cur-rent pitches can be cat on the machine on the entire turning length. The screewcitting is done by a lead scree with an independent drive. The pitch of the thread is as thy means of change gears. For very concer threads up to a pitch of 400 mm or 10° the machine is provided with a speed raising our vide as 6.1 mm.

THE TAPER TURNING ATTACHMENT is supplied for the machine as special equipment and permits layers to be turned on the entire length between centers. The layer is set by massis of change genus the ratio of which links the rate of the longitudinal carries good with the rate of the longitudinal feed of the servicide top slide. The top slide is accurately set by massa of a template.

STROJEXPORT

WAAGERECHT-BOHR-UND FRÄSWERK IN PLATTENAUSFÜHRUNG MODELL WD 250

WAAGERECHT-BOHR- UND FRÄSWERK MODELL WD 250

Die Maschine ist für das Bohren, Aushohren und Fräsen an

Die Maschine ist für das Bohren, Ausbohren und Frasen an großen und erhaveren Wertskriften bestimmt. Ihre Konstrüktion wurde gegenüber den bestehenden Aus-führungen auf gändlich neuen Grundlugen gebot. Die Maschine hat zwei Spindeln die Hamptspindel und die über ihr angeordnete Schnellaufspindel. Ihre hohen Derhabhen er-weitern bedeutend den Arbeitsbereich und die Ausnützung der

weitern bedeutend den Arbeitsberecht und die Ausbutzung der Maschine hei der Schnellbearbeitung. Die Maschine seird im Rechtsausführung bergestellt, d. h. der Ständer mit Spindelstock an der rechten Seite, die Aufspanu-platte mit dem Werkstück an der linken Seite, von der Bedienung-stelle au- gesehen.

HAUPTVORZÜGE:

Hauptantrich durch Gleichstrommotor mit stutenlos regelbarer

Dietzkan. Spindelstock mit heiden Spindeln in waagerechter Richtung ver-schiebhar. Stufenlose Schaltung der Vorschübe durch Kommutatormotoren.

stuienhoe Schaltung der Vorschüle durch unabhängig von den Spindelderbanhlen, selb-standige Vorschulerinheiten, Fernsteuerung der Maschite, zelbetätige Spanneinheiten, Scheihen-Fernmeßgerate,

Scheihen-Fernmelzerate.

Genaue- Einstellen der Male mittels Tippvorrichtung.

Selb-ttatige periodischs Schmierung der Führung-flächen.

Minimals Abnutzung der Führung-flächen.

Geschdesschneideinrichtung.

BESCHREIBUNG DER MASCHINE:

SPINDELSTOCK:

Im Spindelstock sind die Motoren für den Antrich der Spindel und des Vorschubmechanismus, die Übersetzungen und Getriebe für die Spindeln, die Gewindeschneideinrichtung, die Scheibenmeßeinrichtungen für die Fernmessungen sowie die Spanneinheiten für das Sichern der Lagen angeordnet. Der Spindelstock ist mit einer Hamptspindel und einer über ihr angeordneten Schnellaufspindel ausgestattet. Die Schnellaufspindel vergrößert den Arbeitsbereich und dadurch die Ausnützung der Maschine.

Beide Spindeln sind in zweireihigen Rollenlagern mit möglicher Feineinstellung des Spieles versehen.

Spieles versehen.

Der Spindektork ist im rückwärtigen Schlitten, mit dem er in senkrechter Richtung am Ständer führt, wasgerecht verschiebbar. Diese Konstruktion erhölt erheblich die Starrheit und dadurch auch die Arbeitzgenauigkeit nicht nur beim Früsen, sondern auch beim Ausbohren mit weit herausgeschobenem Werkzeug. Ein weiterer Vorteil dieser Konstruktion der Spindelstockes besteht in der gleichzeitigen Verschichung der Hauptspindel und der Schmellaufspindel und im Erzielen des nachträglichen Hube: ohne Verstellung des Führungslagers.

VORSCHÜBE:

Die Waschine ist mit maschinellen Quervorschüben des Ständers am Bett, mit maschinellen Sentrechtvorschüben des Spindelstockes um Ständer und mit maschinellen Vorschüben beider Spindeln und des Spindelstockes in waagerechter Richtung ausgestutet. Die angeführten Vorschüben hein bei eigenen selbstündigen, mit Kommutatormotoren ausgestuteten Vorschubericheiten. Außer den Arbeitvorschüben ist die Maschine auch mit Eligiangen in allen Richtungen versehen. Die Vorschubeinisch sind studenlos, unabhänigs von der Derhahl der Arbeitsspindeln regelhar. Die Vorschubeinkeiten sind unmittellar bei den Tronsportschrauben, zegebenenfalls beim Ritzel angewehnt, so daß hange Wellen mit den zusehörigen Chertragunzunchanismen entfallen. Das Schalten der Vorgelege erfolzt pneumatisch mittels elektromagnetisch gesteuerter Vertile.

ANTRIEB:

Den Hauptantrieb besorgt ein Gleichstrommotor mit stufenloser Regelung der Drebzahlen. Der Motor wird von einem Ward-Leonard Aggregat mit einem Regelbereich von 1:10 gespeist. Dieser Bereich wird mit Hilfe eines dreistufgem verzahnten Vorgeleges auf 1:200 erhöht.

Das Schalten der Vorgelege erfolgt pneumatisch durch elektromagnetisch gesteuerte Verteilerventilt. Nach dem Ausschalten wird der Auslauf der Maschine selbsttätig durch Gegenstrom abgebremst.

FERNSTEUERUNG DER MASCHINE:

Kein einzigen Bedienungselement der Maschine wird handbetätigt. Die ganze Bedienung ist in einem Steuerpendel mit Druckknöpfen konzentziert, deren Umstellung in die verlagte Lage in waagerechter um eshercherte Richtung ebenfälle leiktrisch erfolgt. Das Schaltpult dieses Kastens enthält die Hebel, Druckknöpfe, Drehaahlmesser und Kontollampen. Diese Bedienungselemente steuern die elektromagnetischen Ventilt der pneumatischen Servorylinder für das Verschieben der Zahnredvorgelege, zum Spannen der beweglichen Teil der Maschlen mit Hilfe benoderer Spannenineiten für die Vorwahl, das Ingangsetzen oder Stilletzen der Vorschilbe und Eligänge und für das Einstellen der verlangten Drehaablgrößen oder Vorschilbe mit Hilfe der Servomotoren gemiß Drehaablgrößen.

SCHEIBEN-FERNMESSGERÄTE:

Die bisherigen unübersichtlichen und ungenauen Mußstalte mit Nonien wurden durch Scheibenmeßgeräte ersetzt, die ein Ablesen des zurückgelegten Weges beider Spindeln und des Spindelschlittens in wangerechter Richtung, des Spindelsockes am Ständer in senkrechter Richtung und
des Ständers quer am Bett mit einer Genauigkeit von 0,02 mm ermöglichen.

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-5

EINSTELLEN DES WERKZEUGES

Die genaue Werkzeugeinstellung zum Schnitt wird durch die Tippvorrichtung ermöglicht. Die Vorschub-Kommutatometeren sind nur während des Niederdrückens der entsprechenden Druckknöpfe in Tätigkeit und ermöglichen das Einstellen der gewünschten Werkzeuglage nit einer Gennigkeit von 0,02 mm.

SELBSTTÄTIGE SPANNEINHEITEN:

Alle verschiebbaren Teile der Maschine sind mit Spanneinheiten versehen, die ihre genaue Lage siehern. Außer Tätigkeit werden nur jene Einheiten gesetzt, die zu dem Teil der Maschine gehören, deren Vorschub gerade eingeschaltet ist.

SCHMIERUNG:

Die Übersetzungsgetriebe im Spindelstock und in den Vorschulseinheiten werden mittels eigener Schmierpungen, deren Tätigkeit durch Lichtsignalisation kontrolliert wird, umlaufgeschmiert. Die Führung des Spindelstockes und aller Vorschulseinheiten mittels wird Druckpunpen geschmiert, die einehneitig beim Ingangestzen des entsprechenden Vorschulses eingeschaltet werden. Die Hauptführungsbahnen werden periodisch selbstüttig durch Pumpen in Intervallen geschmiert, die nach Bedarf durch ein Zeitrelais eingestellt werden können.

MINIMALE ABNÜTZUNG DER FÜHRUNGSFLÄCHEN:

Um eine Abnützung oder ein Verreiben der Führungsflächen zu vermeiden, ist die Führung des Ständeruntersatzes mit Gleitleisten aus speziellem Kunststoff verschen. Die Führung am Bett ist außerdem noch durch bewegliche einschiebbare

am Bett ist außerdem noch durch bewegliche einschiebbare Abderkungen geschützt. Der Schlitten des Spindelstockes wird am Ständer auf angeschraubten gehärteten und geschliftenen Stahleiten verschaben.

GEWINDESCHNEIDEINRICHTUNG:

Zum Schneiden von Gewinden ist die Hauptspindel mit einer Einrichtung ausgestattet, die aus der zwangsläufig von der Spindel über einen Getriebekasten mit Wechselrädern und Schere angetriebenen Transportschraube besteht.

STÄNDER:

Der Ständer ist von Kastenform und reichlich verrippt. Im Hohlraum des Stünders bewegt sich ein Gegengewicht zum Entlasten des Spindelstockes. Die Kästen mit den elektrischen Apparaten sind an der Rückwand und am der Seitenwand des Stünders angebracht. Der Vorsehub des Ständers am Bett erfolgt mit Hilfe eines Ritzels und einer

BETT:

Das Bett ist ausreichend breit und mit hreiten Führungsflächen versehen, die eine einwandfreie Führung und sichere Stütze des Ständers auch bei größten Belastungen gewährleisten.

KÜHLUNG:

Die Kühlung erfolgt durch eine Umlaufkühleinrichtung. Den Umlauf der Kühlflüssigkeit besorgt eine elektrische Zentrifugalpumpe mit Rohrleitung, mittels der die Kühlflüssigkeit aus dem außerhalb der Maschine angebrachten Behälter an die Arbeitsstelle gebracht wird.

SETZSTOCK DER BOHRSTANGE:

Der Setzstock besteht aus dem auf die Aufspansplatte aufgestellten Beit und dem Ständer mit dem Stütunger für die Behartange. Die Ellverstellung des Ständers auf dem Bett und de lagers am Ständer erfolgt meachinell und beide Vorrichungen sind mit einem eigenem Motor ausgestattet. Die Feineinstellung erfolgt von Hand. Die eingestellten Entferungen werden von Scheiben-Fernmeßgerätetu mit einer Genauigkeit von 0,02 mm angezeigt.

NORMALZUBEHÖR:

Betriebsanleitung, Maschinenschilder, Satz Schlüssel, Schmierpresse. Keile, Austreibkeile, Werkzeugkasten, Gewindeschneidvorrichtung.

11. a) Setzstock der Bohrstange
b) Kühlung
c) Drehtisch
d) Aufspannplatte

SONDERZUBEHÖR:

- 1. Elektroausrüstung: a) Maschine b) Setzstücke c) Kühlung d) Drehtisch c) Planscheibe

 - a) Planscheibe
 b) Bohren und Frisen von schrägen Flächen
 in drei Ausführungen (Größen)

 7) Flächenschleifen
 d) Innenschleifen
 d) Innenschleifen
 fly terlängerungen für Greiste
 fly Verlängerungen für Greiste
 g) Optische Vorrichtung für das Einstellen
 des Setzstockes
- IV. Werkzeuge:

 a) Bohrstangen mit Büchsen für den Setzstock
 b) Stablihalter
 c) Ausbohrköpfe
 d) Fräsköpfe
 e) Fräsköpfe
 f) Universalfräsköpfe

 - V. a) Satz Ersatzteile für den mechanischen Teil der Maschine b) Satz Ersatzteile für die Elektroausrüstung der Maschine.

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-5

TECHNISCHE HAUPTANGABEN:

WD 250

Durchmesser der Hauptspindel Durchmesser der Schnellaufspindel mm 250 Kegel in der Hauptspindel metr. 140 Kegel in der Schnellaufspindel Größtes Drehmoment an der Achse der Hauptspindel metr. 80 kgcm 300 000 Größtes Drehmoment an der Achse der Schnellaufspindel Größte Aushohrtiefe mit Hauptspindel kgem 45 000 Größte Ausbohrtiefe mit Schnellaufspindel mm 630 Vorschub des Spindelstockschlittens Senkrechter Vorschub des Spindelstockes am Ständer mm 500 Vorschub des Ständers am Bett mm 5000 Drehzahlen der Hauptspindel Drehzahlen der Schnellaufspindel U/min 6,25 - 1250 Bohrvorschübe (Hauptspindel, Schnellaufspindel, Schlitten) stufenlos Fräsvorschübe (Spindelstock senkrecht, Ständer waagerecht) stufenlos mm/min 0,8 - 780 mm/min 0,8 - 780 Eilgänge mm/min 1200

Gewindeschneiden mit Bohrspindel

21 metrische Gewinde, Steigung im Bereich von mm 0,75 – 12 Gaugell' 28.—1 S. Whitworth-Gewinde, Steigung im Bereich von Gaugell' 28.—1 Leistung des Hauptmotors kw75 Leistung des Rommutatormotors für die Frâsvorschübe (bei größter Drehabl kW/U max. 8/3150 Leistung des Kommutatormotors für die Bahrvorschübe (bei größter Drehabl kW/U max. 8/3150 Leistung des Kommutatormotors für die Bahrvorschübe (bei größter Drehabl kW/U max. 8/3160 Leistung des Kommutatormotors für die Bahrvorschübe (bei größter Drehabl kW/U max. 8/3160 mm 12500 \times 6000 mm 12500 \times 6000 mm 9300 Leischie Gewicht der Macshine kg 1000 mm 9300 kg 1000 kg 100

Bei Bestellung hitten wir, die Betrichsspannung für die Elektromotoren anzugeben. Die Maschlinen werden ständig verbessert. Die Angaben im Prospekt sind daher in Einzelheiten unverhindlich.

PRAHA - TSCHECHOSLOWAKEI

TECHNOEXPORT

REKUPERATOREN TYPE RS 60 UND RS 120

ČOK 521270n - 5601

Gedruckt in der Tschechoslowakei

REKUPERATO TYPE

Die Rekuperatoren sind Teile der Anlagen zur Reinigung des Wasserstoffs von Kohlenmonoxyd und dienen dazu, die regenerierte (reine) Kupferammoniaklösung bei hohem Druck in den Gaswäscher zu pumpen, wobel sie zu ihrem Antrieb die Druckenergie der verunreinigten Lösung verwerten, die noch mit hohem Druck aus dem Gaswäscher abgeführt wird.

Durch Verwertung der Energie der abgeführten Lösung werden ungefähr 80% der in der geför-

derten Frischlösung enthaltenen Energie eingespart. Ohne Verwendung der Rekuperatoren wäre dieser Energieanteil von 80% verloren.

Der Rekuperator ist eine vertikale Hochdruck-Kolbenpumpe; sie besitzt zwei Zylinder mit Differentialkolben, deren Wechselbewegung durch einen Regelmechanismus und eine Steuervorrichtung betätigt wird. Einen unerlässlichen Bestandteil des Rekuperators bildet eine Kreiselpumpe mit elektromotorischem Antrieb zur Füllung der Zylinder mit Frischlösung, weiters ein Windkessel zum Ausgleich plötzlicher Geschwindigkeitsänderungen in der Füll-Leitung und eine Hochdruck-Kolbenpumpe mit elektromotorischem Antrieb zur Ergänzung des Mengenunterschiedes der benötigten verunreinigten und der geförderten reinen Lösung.

Die Nennleistung des Rekuperators kann verringert und den Arbeitsverhältnissen angepasst werden, die von der Aufrechterhaltung eines konstanten Flüssigkeltsstandes im Gaswäscher abhängig sind; hiebei ist keine besondere Vorrichtung am Rekuperator selbst erforderlich.

Die Hochdruckzylinder bestehen aus Schmiedestahl und sind für einen Betriebsdruck von 340 atü dimensioniert. Sie sind an beiden Enden verstärkt und mit Stiftschrauben mit kugelförmigen Unterlagen und Muttern versehen, die zur Befestigung der geschmiedeten Deckel dienen. Die Derkelschrauben weisen Öffnungen auf, in die Messstäbchen zur Bestimmung der Montagevorspannung der Schrauben eingeschoben sind. Die Abdichtung der Deckel wird durch Einschleifen der Auflageflächen erreicht. Die Kolben sind aus Schmiedestahl angefertigt und besitzen zwei mit Lagermetall ausgegossene Führungsringe und weiters einen Ring mit Nuten für die gusseisernen Kolbenringe. Der Kolben wird in heissem Zustand auf die Kolbenstange aufgezogen, deren Ver-

längerung durch eine im oberen Deckel befindliche Öffnung hindurchgeht, die durch eine Stopfbüchse abgedichtet ist. Die Dichtung in jeder Stopfbüchse besteht aus einer Spezialmanschette aus künstlichem Kautschuk. Allfällige Undichtigkeiten können mittels Schaugläsern in der Abflussleitung von der Stopfbüchse kontrolliert werden. Zur Vermeidung von Stössen wird die Kolbenbewegung in den Endlagen durch Drosselung der Förderflüssigkeit gedämpft. Die Drosselung erfolgt durch auf der Kolbenstange befindliche kegelförmige Flächen, die in den Endlagen in entsprechende Aussparungen im oberen oder unteren Zylinderdeckel einfallen.

Der Anschluss der Rohrleitungen und Armaturen wird mittels Flanschen und Stiftschrauben durchgeführt, die Verbindungsstellen werden mit Metall-Linsen abgedichtet.

Der Regelmechanismus besteht aus einem drehbar auf das Ende der Kolbenstangen gelagerten Bügel, in dem die Enden der Gliederketten festgehalten sind, die über Rollen geführt werden und am unteren Ende Gewichte tragen. Die Gewichte werden in einer geschweissten Eisenkonstruktion geführt und stossen auf Anschläge, die an den Bewegungszugstangen verstellbar befestigt sind. Die durch Gegengewichte ausgelateten Bewegungszugstangen sind mit Mitnehmern ver-sehen, die mittels eines Umschaltkastens den Vorsteuerschieber wechselweise umschalten. Der Vorsteuerschieber betätigt mit Hilfe von 4 Rückschlag-, 4 Drossel- und 2 Differentialventilen

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-5

zwei Hauptsteuerschieber, die den Zu- oder Abfluss der Lösung unter den Kolben des Rekuperators regeln. Die Steuervorrichtung regelt den Gang der Kolben derart, dass die Förderung der reinen Lösung nicht unterbrochen wird, d. h. dass, wenn sich ein Kolben der oberen Endlage nähert, auch der zweite Kolben sich bereits in der Richtung nach oben zu bewegen beginnt. Das Füllen der Zylinder mit der regenerierten Lösung erfolgt durch die Niederdruck-Kreistelpumpe wechselweise über Rückschlagventile. Der Windkessel und die Füll-Leitung (Niederdruck-leitung) sind mit Sicherheitsventilen ausgestattet. Der Rekuperator ist mit 1 Niederdruck- und 9 Hochdruckmanometern mit Dämpfern und Absperrventilen versehen, die es ermöglichen, während des Betriebes den Druck in den verschiedenen Teilen der Maschine und in den Steuerschiebern zu kontrollieren.

Um eine Beschädigung der Steuerschieber, gegebenenfalls sogar der Zylinder selbst, durch zufällige Verunreinigungen zu verhüten, wird die unreine Lösung vom Gaswäscher der Maschine
über einen Abscheider zugeführt. Der Vorsteuerschieber und die übrige Steuerarmatur sind
gleicherweise vor dem Eindringen von Verunreinigungen durch zwei Abscheider geschützt, die
derart parallel geschaltet sind, dass sie abwechselnd auch während des Betriebes gereinigt werden
können.

Alle Bestandteile, die mit der geförderten Lösung in Berührung kommen, sind aus Stahl und keinesfalls aus Kupfer oder Kupferlegierungen. Mit Rücksicht auf die Betriebsverhältnisse und den Zweck, dem der Rekuperator dient, ist das Konstruktionsmaterial der Bestandteile, d. h. Art, mechanische Kennziffern, Verarbeitungsweise und chemische Zusammensetzung derart gewählt, dass Sicherheit und verlässliches Arbeiten bei einem Betriebsdruck von 340 atü gewährleistet sind.

Die dem hohen Betriebsdruck von 340 atü ausgesetzten Bestandteile sind hinsichtlich ihrer Festigkeit so dimensioniert, dass sie einem Prüfdruck von 425 atü entsprechen.

Die Werkstoffe der Hauptbestandteile, die der Beanspruchung durch den Druck der Förderflüssigkeit unterliegen, werden auf ihre mechanischen Eigenschaften durch Zerreissprobe oder Härtebestimmung nach Brinell, und hinsichtlich ihrer Zusammensetzung durch chemische Analyse geprüft. Von den Prüfungsergebnissen werden schriftliche Aufzeichnungen geführt.

Die Überprüfung der einzelnen Maschinen wird durch den Übernahmskommissär des zentralen technischen Kontrolldienstes der Tschechoslowakischen Republik mittels Wasserdruckprobe bei 425 sat uvereenommen.

Das Pumpen der regenerierten Lösung unter hohem Druck aus dem Rekuperator in die Förderleitung zum Gaswäscher erfolgt durch den Flächenunterschied auf beiden Seiten des Kolbens. Da der Rekuperator nach dem Prinzip der Differentialpumpe arbeitet, muss ein gewisser Flüssig-

keitsunterschied mittels der als Hilfsgerät arbeitenden Kolbendruckpumpe ergänzt werden. Beide Kolben bewegen sich wechselweise gegenläufig mit einem kleinen Phasenvorsprung, d. h. ihr Richtungswechsel wird durch den Steuernechanismus derart geregelt, dass, wenn ein Kolben seinen Arbeitszyklus (Förderhub) beendet, sich der zweite Kolben bereits in der Anfangsphase seines Arbeitszyklus befindet; hiedurch wird erreicht, dass keine Unterbrechung in der Förderung der Flüsstigkeit eintritt.

Der Arbeitsverlauf und die Anordnung der einzelnen Vorrichtungen sind im Schema veranschaulicht. Das Schema stellt die Phase der Umsteuerung dar, in der zum Zwecke der Aufrechterhaltung
einer kontinuierlichen Scrömung der geförderten Flüssigkeit, der Kolben P! noch fördert und
der Kolben P2 bereits fördert. Vorher war die relative Bewegung beider Kolben gegenläufig.
Sowohl der Vorsteuerschieber P5 als auch die beiden Steuerschieber 51 und 52 waren in der
linken Endläge.

Aus der Druckleitung der gebrauchten Waschflüssigkeit LP strömte die Lösung durch den Steuerschieber TRZ unter den Kolben P2 und drückte ihn in der Richtung nach oben, um die im Zylinderraum V2 über dem Kolben P2 behnfülcher regenerierte Lösung über das Rückschlagventil Z2,
das Absperrventil UV1 und das Rückschlagventil Z3 in die Förderleitung VP zu pumpen. Der
Druck der geförderten Lösung sperrte die Rückschlagventile Z1 und K2 ab, während die Kreiselpumpe OČ die regenerierte Lösung durch die Füll-leitung PP über das Absperrventil UV2 und
das Rückschlagventil K1 in den Zylinder V1 drückte und die Lösung aus dem Raume unter dem
Kolben P1 durch den Steuerschieber TR1 und die Rohrleitung LN in das Reinigungsgefäss für die
Arbeitslauge zum Zwecke neuerlicher Regenerierung entweichen konnte.

Die beiden Kolben P1 und P2 übertragen ihre Bewegung mittels der Ketten R1, bzw. R2, auf die

0 0 6 Förderleitung der reinen Lösung. 0 Gallerie. **3** 0 Förderleitung der reinen Lösung. 0 0 Abfluss der Arbeitslösung. 0 Zuleitung der Arbeitslösung-0 Zuleitung der reinen Lösung. 0 Õ Zuleitung der reinen Lösung. 0 Ŏ Kreiselpumpe mit Elektromotor. Windkessel.

Gewichte G1. bzw. G2 und betätigen so den Regelmechanismus des Rekuperators, der die gegenläufigen Bewegungen und die Arbeitsfolge der Kolben regelt, damit zur Zeit der Umsteuerungsphase keine Unterbrechungen im Zuströmen der Lösung in die Förderleitung eintreten.

Der Kolben P1 bewegte sich schneller abwärts als der Kolben P2 aufwärts und deshalb erreichte der Kolben P1 seine untere Lage noch bevor der Kolben P2 in die gestrichelt angedeutete Lage P2' aufsteigen konnte. Die Nase am Gewichte G1 verschob den Anschlag b1 und damit auch die Zugstange T1 in der Richtung abwärts und gleichzeitig drehte der Mitnehmer c1 den drehbare Hebel U1 in derselben Richtung. Der drehbare Hebel U1 überträgt seine Bewegung auf den Mechanismus des Umschaltkastens PS, der derart angeordnet ist, dass die Verschiebung des Vorsteuerschiebers PS durch die Umschaltstange H erst dann erfolgt, wenn auch der zweite drehbare Hebel U2 in entgegengesetzter Richtung gedreht wurde. Bei entgegengesetzter Kolben-bewegung findet dieser Vorgang in umgekehrter Reihenfolge, vom Hebel U2 ausgehend, statt. Als der Kolben P2 die gestrichelt angedeutete Lage P2'erreichte, verschob die Nase am Gewichte G2 den Anschlag a2 und damit auch die Zugstange T2 in der Richtung aufwärts. Der Mitnehmer c2 drehte den Hebel U2, und die Umschaltstange H des Umschaltkastens PS verschob den Vorsteuerschieber PS aus der linken in die rechte Endlage. Der Druck in der Rohrleitung VP1 kann nun über das Rückschlagventil ZV1 auf die linke Seite des Schiebers 51 einwirken, der sich aus der linken in die rechte Endlage bewegt. Die Lösung im Raume auf der rechten Seite des Schiebers 51 wird über das Drosselventil RV2, den Vorsteuerschleber TP und die Rohrleitung N in das Sauggefäss gedrückt. Gleichzeitig wirkt der Druck in der Rohrleitung VP1 über das Rückschlagventil ZV3 auf die linke Seite des Schiebers \$2 ein. Dieser kann sich aber nicht in der Richtung nach rechts bewegen, da sowohl das Rückschlagventil ZV4 als auch das Differentialventil DV2 geschlossen sind und die Lösung aus dem Raume auf der rechten Seite des Schiebers \$2 nicht entweichen kann. Erst wenn der Schieber Š1 seine rechte Endlage erreicht hat, sinkt der in der Rohrleitung herrschende Druck, der auf das Differentialventil DV2 einwirkt, der Ventilkolben des Differentialventils DV2 wird angehoben und die Lösung kann über das Drosselventil RV4, durch das Differentialventil DV2, den Vorsteuerschieber TP und die Rohrleitung N in das Sauggefäss entweichen. Wie zu ersehen ist, erreicht der Schieber Š2 seine rechte Endlage mit einer entsprechenden Verzögerung gegenüber dem Schieber S1. Diese Verzögerung bewirkt, dass der Druck der ge-brauchten Waschflüssigkeit vorübergehend auf beide Kolben P1 und P2 in der Umsteuerungs-phase gleichzeitig einwirkt, wenn einer der Kolben den Förderhub beendet und der andere Kolben mit der Förderung bereits beginnt. Dieser Arbeitsvorgang wiederholt sich in ständigem Wechsel. Das Füllen der Zylinder mit der regenerierten Lösung, die durch den Rekuperator in den Gas-wäscher gefördert wird, erfolgt mittels der Niederdruck-Kreiselpumpe OC von entsprechender Leistung, über das Ventil UV2 und abwechselnd über die Rückschlagventile K1 und K2.

Wenn sich die Kolben der einen oder anderen Endlage nähern, tritt der Kegel KZ1, tzw. KZ2, in das Ausflussprofil ein, verkleinert es allmählich, übt so die Funktion eines Stossdämpfers aus und verhütet eine Beschädigung sowohl der Maschine als auch der Rohrleitung. Zum Ausgleisel Violetzlicher Geschwindigkeitsänderungen in der Füll-Leitung PP ist an diese der Windkessel VT angeschlossen. Der Windkessel und die Füll-Leitung sind mit Sicherheitsventilen PV1 und PV2

Um eine Beschädigung der Steuerschieber, oder sogar der Zylinder selbst, durch allfällige Verunreinigungen zu verhüten, wird die gebrauchte Wasschlauge vom Gaswäscher der Maschine über den Abscheider F1 zugeführt. Der Vorsteuerschieber P5 ist gegen das Eindringen von Verunreinigungen durch die beiden Abscheider F2 und F3 geschützt, die so angeordnet sind, dass sie auch während des Betriebes abwechselnd gereinigt werden können.

Type	1			Abn	essungen	in mm (n	ur inform	ativ)			
	A	В	С	D	E	F	G	н	J	K	L
RS 60 mm	4225	2850	4800	7250	1250	780	1050	4885	3425	1875	9000
RS 120 mm	4730	3300	5335	8135	1300	960	1280	5345	3480	1885	10000

Erforderliche Höhe des Kranhakens über dem Fundament für die Montage der Kolbenstange

	Type RS 60	Type RS 120
Zylinderbohrung	□ 500 mm	√ 650 mm
Durchmesser der Kolbenstangen	⊙ 120 mm	.∜ 155 mm
Kolbenhub	2450 mm	2800 mm
Menge der geförderten Frischlösung	60 m²/h	120 m³/h
Betriebsdruck	340 atü	340 atü
Doppelhubanzahl je Stunde bei Förderung der nennwertmässigen Menge Frischlösung	68	70
Erforderliche Leistung der als Hilfsgerät arbeitenden Hochdruckpumpe	15 m³/h	25 m³/h
Leistung der zum Füllen der Zylinder dienenden Niederdruck-Kreiselpumpe	75 m ³ /h	150 m²/h
Druck in der Förderleitung der Kreiselpumpe		i er entsprechend den rhältnissen
Gesamtinhalt des Windkessels	2 m³	2 m ¹¹
Gewicht des Rekuperators mit Rohrleitung, Armaturen und Windkessel, jedoch ohne Hochdruck-Kolbenpumpe, Niederdruck-Kreiselpumpe und ohne Ersatz- teile	ungefähr 55 Tonnen	ungefähr 77 Tonnen
Gewicht der schwersten Montage-Einheit (1 Zylinder mit unterem Deckel und Schrauben)	ungefähr 12,6 Tonnen	ungefähr 20,4 Tonnen

- Anschlag b — Anschlag c — Mitnehmer
- DV Differentialventil F — Abscheider
- G Gewicht
 H Umschaltstange
- K Rückschlagventil KŽ — Kegel LN — Rohrleitung in das Ge-fäss
- LP Rohrleitung vom Gas-wäscher (Hochdruck-leitung) MS — Schüssel

- N Rohrleitung zum Ge- $$\operatorname{TR}$$ Gehäuse des Steuersäss
- OČ— Kreiselpumpe P Kolben
- PS Umschaltkasten PŠ — Vorsteuerschieber
- PP Füll-Leitung (Niederdruckleitung)
- ${\sf PV} {\sf Sicherheits ventil}$ R - Kette
- RV Drosselventil Š — Steuerschieber
- T Zugstange TP — Gehäuse des Vorsteuer-schiebers
- - U drehbarer Hebel
 UC Manschette
 - UV Absperrventil V Zylinder VP — Förderleitung (Hoch-
 - druckleitung) VT Windkessel
 - Z Rückschlagventil
 ZV Rückschlagventil
 ZK Rückschlagklappe
 M Manometer
 - UŠ Absperrschieber
 - $\mathsf{O}\breve{\mathsf{S}} = \mathsf{Entl}\breve{\mathsf{u}} \mathsf{ftungs} \mathsf{schraube}$

- Abfluss in das Gefäss mit reiner Lösung.
- Abfluss in das Gefäss.
- In das Gefäss.
- A Regenerierte Lösung.
- In das Gefäss.
- 6 Vom Gaswäscher.
- Zuleitung des Stickstoffes.
- 8 Zum Gaswäscher.

ŠKODA SR1000

Sanitized Conv Approved for Release 2010/08/18 · CIA-RDP81-01043R000700220010-5

Dehdurchmesser über dem Support	Bauart	SR 1000	SR 1250
Denduchmenser über dem Bett	Adeitabassisk		
Drehdurchmesser über dem Support			
Spitzenhöhe über dem Betet mm 500 3000-1200 5000-1200 6000-1200	Orehdurchmesser über dem Bett		1250
Spitzenweite nach Bestellung	initzenhöhe über dem Rett mm		630
2-10 13-	Spitzenweite nach Bestellung		
	Brößtes Werkstückgewicht zwischen den Spitzen (Setzstöcke) t	9-10	1314
umdrehungen in der Minute mkg 2500 31 Spindelstock Spindelstock 1,4-8-90 1,4-8-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,4-6-90 1,0-10-90	dauptmotorleistung kW	34	34
Spindeldrehzohlen in 36 Stufens Reihe U/min Reihe U/	orolytes Drehmoment auf der Aufspannplatte bei 11,2 Spindel- umdrehungen in der Minute	2500	3150
Spindeldrehzohlen in 36 Stufens Reihe U/min Reihe U/	spindelstock		
Kepel des vorderes Spindelle III. III. Reihe U/min 8-400 6,3-2 Spindelder/menses im Norderleinger mm 0.00 6,3-2 Spindelder/menses im Norderleinger mm 0.00 12 Durchmesser der Aufspannplatte mm 1000 12 Beigen - 18 Vorschübe bei ollen Spindeldrehzohlen mm/U 0.125-6 1-48 I. Reihe - 18 Vorschübe bei niedrigerer Spindeldrehzohlrein mm/U 0.4 de Längsvorschübe zugenschültenvorschübe entsprechen 0.4 de Längsvorschübe zugenschüben mit Leitspindel: Stelle vorschübe bei niedrigerer Spindeldrehzohlrein mm 48-48 48-48 Stelle vorschübe bei niedrigerer Spindeldrehzohlrein mm 3600 40-4 de Längsvorschübe mit Leitspindel: Stelle vorschübe bei niedrigerer Spindeldrehzohlrein mm/min. 3600 3600 Sewinderscheiden mit Leitspindel: Gönge Zull 2 2 Stelligereing der Leitspindel: Gönge Zull 2 2 Stelligereing der Leitspindel: Modul 2-5 2 2-1 2 2 2 2 2 2 2 2	•	1.8-90	1,4-7
Spindeldurchmesser im Vorderlager mm 200 2 Support Längsvorschübe in 36 Stufen il Reihe – 18 Vorschübe bei niedirgerer Spindeldrehzohlen mm/U Li Reihe – 18 Vorschübe bei niedirgerer Spindeldrehzohlen mm/U Li Reihe – 18 Vorschübe bei niedirgerer Spindeldrehzohlen mm/U Li Reihe – 18 Vorschübe bei niedirgerer Spindeldrehzohlen mm/U Li Reihe – 18 Vorschübe bei niedirgerer Spindeldrehzohlen mm/U Stall gester mehr mit der Verlenden mit eine mehr mit eine	II. Reihe U/min		6,3-31
Durchmesser der Aufspannplatte mm 1000 12	Kegel des vorderen Spindelendes		metrisch 8
Support Löngsvorschübe in 36 Stufen: Reihe – 18 Vorschübe bei allen Spindeldrehzahlen mm/U II. Reihe – 18 Vorschübe bei niedrigerer Spindeldrehzahlen mm/U II. Reihe – 18 Vorschübe bei niedrigerer Spindeldrehzahlen mm/U II. Reihe – 18 Vorschübe bei niedrigerer Spindeldrehzahlen mm/U Underschenden mm/D Zehrendescheiden mm/D Zehrendescheiden mm/D Zehrendescheiden mit Leitspindel: Steilagung der Leitspindel dänge/Zoll 29 metrische Gewinde, Steigung mm/min. Zehrendeschneiden mit Leitspindel: Steilagung der Leitspindel dänge/Zoll 20 metrische Gewinde, Steigung mm/min. Zehrendeschneiden mit Leitspindel: Zehrendeschneiden mit Leitspindel: Zehrendeschneiden mm/D Zehrendeschneiden mit Leitspindel: Zehrendeschneiden mm/D Zehrendeschneiden mit Leitspindel: Zehrendeschneiden mit Leitspin	opindeldurchmesser im Vorderlager		24I 125I
Löngworschübe in 36 Stufen:			
Reihe - 18 Vorschübe bei ollen Spindeldrehzohlen mm/U 0.123-6			
	. Reihe — 18 Vorschübe bei allen Spindeldrehzahlen mm/U		
Stahlquerschnitt für normalen Stahlhalter mm 70×70 intalinquerschnitt für normalen Stahlhalter mm mm 48–48 allahquerschnitt für vierdichstahhalter mm mm 36–80 mm/mln. 3600	I. Reihe – 18 Vorschübe bei niedrigerer Spindeldrehzahlreihe mm/U		1-48
Stahlquerschnitt für Vierdenstahlholter	Quervorschübe und Oberschlittenvorschübe entsprechen		
Eligang, longs	stahlquerschnitt für normalen Stahlhalter		
Dewindeschneiden mit Leitspindel:	ilgana, länas		
Steigung der Leitspindel Gönger/Zoll 2 2 2 2 2 2 2 2 2			3000
19 metrische Gewindes Steigung	Stoigung day Laitenindal Giinas/7-III		2
23 Diametral Pitch D. P. 1-10	preigung der Leitspinder		
23 Diametral Pitch D. P. 1-10	33 Whitworthaewinde, Steigung		
23 Diametral Pitch D. P. 1-10	I1 Modulgewinde		2-5
Stellgewinde sind Smal größer	21 Diametral Pitch		
Gewindescheriden mittels Ritzel und Zohnstange: 20 metrische Gewinde, Steigung mm 1-50 26 Modulgewinde 2-20 28 Modulgewinde mm 140 28 Modulgewinde mm 140 29 Mortische Gewinde, Steigung mm 140 34 Mortische mm 500 4 Mortische mm 500 5 Mortische mm 500 6 Mortische mm 140 7 Mortische mm 500 8 Mortische mm 140 9 Mortische mm 140 140 Mortische mm 140 141 Motor zur Schnellverstellung des Supportschittens:		8mc	2-1/ ₃
29 metrische Gewinde, Steigung mm 1–50 24 Modulgewinde 2–20 Reitstock Durchmesser der Pinole mm 140 Keegel in der Pinole Morse 6 metrisch Fester Setzstock Durchgangsdurchmesser mm 500 Antrieb LW 34 Houptmotor: Leistung LW 34 Motor zur Scheinen U/min 1440 Derhacht U/min 2800 Schmierpumpenhotor: LW 0.185 Drehzohl U/min 2800 Gewichte und Abmessungen Spitzenweite (kleinste) mm 300	§	-	. 9.00,0
26 Modulgewinde 2–20 Relistock mm 140 Kegel in der Pinole Morse 6 metrisch Kegel in der Pinole mm 500 Potenschaftenderser mm 500 Antrieb kW 34 Houptmotor: Leistung kW 34 Motor zur Schnellverstellung des Supportschittens: Leistung kW 1.3 Schmierpumpenmetor: U/min 2800 Schmierpumpenmetor: W 0.185 Eleistung kW 0.185 Drehzohl U/min 2800 Gewichte und Abmessungen Spitzenweite (kleinste) mm 3000			1-50
Durchmesser der Pinole	26 Modulgewinde		
Kegel in der Pinole Morse 6 metrisch Fester Settstock Durchgongsdurchmesser 500 Antrieb LW 34 Houptmotor: Leistung LW 34 Motor zur Schnellverstellung des Supportschittens: LW 1.3 Leistung kW 1.3 Schmierpumpenmeter U/min 2800 Schmierpumpenmeter kW 0.185 Drehzahl U/min 2800 Gewichte und Abmessungen Spitzenweite (kleinste) mm 3000	Reitstock		
Kegel in der Pinole Morse 6 metrisch Fester Settstock 500 Durchgangsdurchmesser 500 Antrieb W 34 Houptmotor: Leistung LW 34 Motor zur Schnellverstellung des Supportschittens: LW 1.3 Leistung kW 1.3 Schmierpumpenmetor: U/min 2800 Schmierpumpenmetor: W 0.185 Drehzohl U/min 2800 Gewichte und Abmessungen Spitzenweite (kleinste) mm 3000	Durchmesser der Pinole		. 16
Durchgangsdurchmesser mm 500 Antrieb kW 34 Houptmotor: Leistung kW 34 Drehzahl U/min 1440 Molor zur Schnellverstellung des Supportschlittens: kW 1.3 Drehzahl U/min 2800 Schmierpumpenmotor: kW 0.185 Istitute kW 0.185 Drehzahl U/min 2800 Gewichte und Abmessungen Spitzenweite (kleinste) mm 3000	Kegel in der Pinole	Morse 6	metrisch 8
Antrieb Antrieb Houptmotor: Leistung Deshrahl Motor zur Schnellverstellung des Supportschittens: Leistung Deshrahl U/min 2800 Schmierpumpelment Leistung Leistung Drehrahl U/min MW 1.3 Leistung Leistu	Fester Setzstock		
Houptmoter: Leistung	Durchgangsdurchmesser	500	63
Motor zur Scheitung Motor zur Motor	Antrieb		
Molor zur Schnellverstellung des Supportschiltens:	Houptmotor: Leistung		
Drehzohl U/min 2800	Motor zur Schnellverstellung des Supportschlittens:		
Schmierpunpenmotor: kW 0.185 Leistung kW 0.2800 Gewichte und Abmessungen mm 3000 Spitzenweite (kleinste) mm 3000	Drehzahl		
Drehzohl	Schmierpumpenmotor:		
Gewichte und Abmessungen Spitzenweite (kleinste)	Lerstung		
Spitzenweite (kleinste)	Gewichte und Ahmessungen		
Gesamtlänge der Maschine etwa mm 4500	Spitzenweite (kleinste)		3000
	O	6500	670
Maschinengewicht mit Normalzubehör kg 13335 14	Desamtiange der Maschine etwa mm		
Durch Vergrößerung der Spitzenweite um 1000 erhöht sich das Maschinengewicht um etwa kg 635	Maschinengewicht mit Normalzubehör kg	13335	1496

STROJEXPORT

The Skoda Works have set about building their first steam turbine already in the year 1904. The first turbines were built according to the design of the French Professor Rateau as multi-stage impulse-type turbines. The Works have soon gone in for the production of steam turbines of their own impulse type, incorporating improvements from time to time to keep pace with the progress and increasing de-

mands as to efficiency and service reliability of the steem turbines. To obtain a reliable basis for calculation, choice of materials and other data necessary for building up-to-date turbines, the Skoda Works largely utilized new knowledge gained in their own Research Establishment inderials, especially high-temperature steels, were developed by the Establishment in close oc-operation with their own Metallurgical Works. Particularly great care was taken in the testing of special experimental turbines made to ascertain the highest possible efficiency of blading. In addition to ascertaining the influence of the blade-length, important work was done by the Research department in determining the influence of the choice of partial admission on the efficiency of the turbine impulse stage. The knowledge gained made it possible to construct impulse turbines for small and medium outputs (up to 15,000 kW) with less stages than was common practice for impulse turbines of the same efficiency. Consequently, the individual parts of turbines could be more amply dimensioned without increasing the weight or price of the turbine, thus allowing the characteristic features of the impulse type of turbines, or, i.e. the service reliability and long service life, to be applied to a greater extent.

Other reasons for which the Works are adhering to the impulse principle of work in their turbines are: (1) It is possible to choose, in contrast to other systems, proper clearances between the casing and the runner blades without decreasing the efficiency or steam leaking at the runner blades, as the steam expansion takes place in guide blades only so that the pressure behind and in front of each runner wheel is equal. (2) Only a small axial thrust is exerted on the rotor in this case and, for the taking and fixing of the rotor in position a relatively small thrust bearing is sufficient and, therefore, a balancing piston, likely to be the cause of leakage of no-working steam and a

foible for the service reliability, can be dispensed with. (3) Also the impulse type blades working in the range of wet steam suffer less from erosion.

The Skoda Works have reached the high standard not only in the development of the steam turbines, but also in other accessories, such as condensing plants, heaters, ejectors, evaporators, etc. They have already supplied a great number of turbines of large output for high and highest conditions of inlet steam, and also special turbines with great quantities of low-pressure bled steam for district heating.

TECHNOEXPORT

PRAHA - CZECHOSLOVAKIA

TECHNICAL DESCRIPTION

BLEEDER STEAM TURBINE

The turbine is of the impulse type with a Curtis wheel acting as a regulating stage, and a set of one-row impulse wheels.

ROTOR

The individual runner discs are separately forged and hydraulically seated on the shaft by means of supporting rings ensuring the central location of the wheels on the shaft and preventing their becoming loose. The torque is transmitted from the wheel to the shaft by two opposite

RUNNER BLADES

The runner blades are made of rolled square bars or drawn sections. The blades and, if necessary, the bladed wheels too, are tested for vibrations by means of a special machine. Shorter runner blades are fixed to the runner disc by a simple T-root,

fixed to the runner disc by a simple Troot, and those of a greater length are attached to the disc by means of cylindrical pins. The design of the blades as well as the method of their lixing have proved very satisfactory in our turbines for a long time of service even under unfavourable working conditions. The material used is stainless steel.

GUIDE BLADES

Inlet nozzles and guide blades of the two or three following stages are milled each from the solid, and accurately machined all over. They are inserted into the nozzle chambers or into the diaphragms, and welded onto them. In that case the diaphragms are of cast-steel. The guide blades of the remaining

BEARINGS The turbine rotor is carried by two bearings. The axial thrust exerted on the rotor, which is small with the impulse type of turbines, is taken up by a thrust bearing of our own design enabling a very accurate manu-

facture and ensuring thereby the utmost reliability of the bearing. Its support ing segments are flexible and are made integral with the supporting ring mounted in the front bearing pedestal. The bearings are lubricated with pressure oil supplied to them in a sufficient quantity, and passed through them very efficiently so that the run of the bearings is quite safe.

GLANDS The glands are of the labyrinth type. The various labyrinths are formed by tightening fins arranged on the rotor and by slotted bushes seated elastically in the bodies of the glands. The labyrinth bushes sealing against the shaft in the space between the runner wheels are elastically arranged in the diaphragms.

POSITIONING

The turbine is so positioned that the centre of the exhaust branch is dead, while the front bearing pedestal is axially movable on the bed plate by which it is guided

COUPLING

The shafts of the generator and turbine are interconnected by a toothed coupling safely dimensioned for a maximum output. The teeth of the coupling are made very precisely and are oil-lubricated.

GOVERNING GEAR

The governing gear of the live steam is of the group type, consisting of several nozzle regulating valves, the successive operation of which is actuated by the main servemeter. The centrifugal speed governor is carefully designed, precisely manufactured, and very sensitive. The governor is keyed on a vertical spindle driven The governing is stable in its whole range. For switching the sets in parallel it is possible to change the

middle speed during the operation by hand or by means of a small electric motor operated from the switch room. An emergency governor is arranged on the turbine shaft and is set to operate at 10-12 per cent above

the rated speed thereby shutting-off immediately the steam supply to the turbine. In addition to the described speed control the turbine is also equipped with a pressure control keeping the bled steam pressure at a practically constant level. The pressure governing is effect-

TURBINE CASING

The turbine casing is parted horizontally. The front end (the high-pressure end) is made of cast-steel, the exhaust end being of high-grade cast iron.

The connection of the casing to the bearing pedestal is such as to allow a free expansion of the casing keeping, at the same time, the rotor and the turbine casing aligned and preventing the bearing pedestal to become hot from the casing. The rear bearing of the turbine and front bearing of the generator are arranged in the exhaust end of the casing where the temperatures are low.

OIL SYSTEM

Oil for the regulation and lubrication of bearings is supplied by a geared pump driven from the turbine main shaft through a spur gearing. The pump draws oil from the oil tank and delivers it to the governing system and through a cooler to the bearings of the turbine and generator. The cooler is of the vertical type with oil cooled by water streaming in tubes. The tube nest can

SAFETY GEAR

To protect the turbine against inadmissible service conditions it is equipped with safety devices shutting it down if an inadmissible axial displacement of the rotor, a drop in oil pressure, or a drop of the vacuum in

After the turbine has been tripped out by means of the emergency governor it is prevented from running away by automatic closure of the non-return valves built into the controlled and uncontrolled bled steam pipings of higher pressure. To prevent any rise of pressure in the controlled extraction point the turbine is protected by safety valves.

į

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-

CONDENSING PLANT

SURFACE CONDENSER

The outstanding features of the surface condenser are cooling tubes conveniently divided into two groups so that a space narrowing downwards is formed in the centre of the condenser, enabling the steam to come in contact with the surface level of the condensate, thus preventing its sub-cooling. Passages for steam are formed in either cooling rube group by omitting a definite number of tubes so that the entering steam come in contact with a large cooling surface. Between every two steam passages there are free ducts for outlet of air or non-condensable gases. These ducts join outside the tube groups and air is led through them with a minimum resistance still into a separated system of tubes cooled by the coldest water. The air-steam mixture becomes thus somewhat sub-cooled, and before entering the ejector it is freed from all residues of steam.

By a suitable design and the above mentioned arrangement of the condenser tubes a high factor of heat transfer from the steam into the cooling water is obtained and, consequently, also the best obtainable vacuum and economy of the condenser, characterized by a small condenser resistance and small demand of cooling water. The cooling tubes are seamless of high-quality brass, and are rolled in both tubeplates.

The shell of the condenser is welded from sheet steel. By the tubeplates welded into the shell and the covers screwed to the shell flange, water headers are formed.

To prevent any vibration of the cooling tubes, there are supporting walls arranged inside the shell. It cleaning is required during service because of the tubes having grown soiled at a fast rate by cooling water of bad quality, the condenser is provided with a separated two-flow cooling water circulation. The water headers are divided by baffles so that the cooling water is passed through the condenser in two streams, each of which can be shut off separately. After shutting off the water supply to one of the condenser halves, discharging the remaining cooling water and opening the respective condenser cover, it is possible to clean the tubes during service at a reduced output of the turbine. It sea-water is used for cooling purposes, the tubes and the tube-plates are made of special brass. The water headers and their covers are made of cast-iron to which nickel had been added. All necessary service measuring devices and fittings are furnished together with the condenser.

STEAM JET AIR EJECTOR

For extraction of air and non-condensable gases from the condenser a two-stage steam jet air ejector with two steam ejectors connected in series and two separated after-condensers is provided. The two ejectors are connected to the after-condensers froming a single horizontal unit. Gases from the turbine condenser are drawn in by the first-stage ejector and delivered partially compressed into the first after-condenser from which they are drawn in by the second-stage ejector and delivered under a barometric pressure into the second after-condenser. Thus the Working steam of both ejectors is condensed and will emit its heat to the condensate of the steam turbine which will pass first into the first stage ejector will be passed over a syphon, that from the second-stage ejector over an automatic drain valve through a joint pipeline into the main condenser.

The steam jet air ejector is remarkable not only for its great readiness and safety in operation, but also for its small steam demand at the best obtainable vacuum, while fully utilizing the heat of the ejector working steam for the purpose of heating of the turbine condensate. The steam jet air ejector is furnished with all necessary service devices and fittings.

STARTING EJECTOR

A simple single-stage exhaust-operating steam jet starting ejector is used for a making a vacuum quickly while starting the turbine. The starting ejector can also be used for rapid deserating of the cooling pump before its starting.

The starting ejector is provided with necessary service measuring devices and fittings.

CONDENSING PLANT PUMPS

One or two centrifugal pumps are provided for the pumping of cooling water and one or two centrifugal pumps for delivering of the condensate. The drive of the pumps is either by electric motors alone or by electric motors in combination with a steam turbine, according to the service conditions prevailing.

DIAGRAM OF CONDENSATE RE-HEATING

The re-healing of the condensate is effected in three stages according to diagram 5-2, viz.: in low-pressure heater -2- with steam from the uncontrolled extraction point of the lowest pressure, in deserator D with reduced steam from the controlled extraction point, and finally in high-pressure heater -3- with steam likewise from the controlled extraction point. The heating steam condensate of low-pressure heater -2- is passed into drain cooler -1- where it cools down, and after emitting its heat to the condensate to be heated it flows through a syphon into condensar K. The heating steam condensate of high-pressure heater -3- is passed into feed water deserator D. Low-pressure heater -2- is vented to drain cooler -1- which in turn is vented to

desentor D. Low-pressure heater -2- is vented to drain cooler -1- which in turn is vented to condenser K. The pressure in the steam space of the drain cooler can be controlled by a deserating valve arranged on drain cooler -1-, so obtaining a continuous outlet of condensate even at reduced load of the turbine. High-pressure heater -3- is vented to the deserator. Drain cooler -1- and low-pressure heater -2- have a common by-pass for the condensate to be heated, while high-pressure heater -3- has a separate by-pass for fleed water.

If small turbine -t- driving the feed water pump is in service, its exhaust steam is passed into the pipeline of the controlled extraction.

J pump, Pa - condens-

The meanings of the various letters used in the diagram:

A - boiler, T - turbine, G - generator, P - cooling pump, P^k - condensate pump, t - small turbine driving the feed water pump.

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220010-

		I							
N _M w	n/min.	A	В	С	D	E	F	G	Q _{max}
2.5	3000	5400	4330	4500	5000	11 500	6500	13 000	8.5 t
4	3000	6050	4773	6000	5500	15 000	7500	14 500	12.0 f
6	3000	6050	5173	6000	5500	15 000	7500	15 500	15.5 1

DRAIN COOLER

The drain cooler of the condensate from the low-pressure heater consists of a steel shell to which tubeplates are welded. The water headers welded from sheet steel, too, are connected to the tubeplates through a flange by screws and a packing. The brass tubes through which the heated condensate passes are rolled in the steel tubeplates on both sides.

The drain cooler is furnished with necessary measuring, closing, deaerating, and discharging fittings.

LOW-PRESSURE HEATER

The low-pressure surface heater consists of a shell forming the steam space, a heating tube-nest through which the heated condensate is passed, and water headers with inlet and outlet branches for the heated condensate. The shell of the heater is welded from sheet steel, on one side it is closed with a dished welded-on end plate, and on the other side it is equipped with a welded-on steel flange.

A heating brass tube-nest is inserted into the shell. The tubes are rolled on one side in the tube-plate screwed together with the flange of the heater shell, and on the other side in the tube-plate connected with the water-header which is free to move in the shell. Free heat expansion of the heating tubes is thereby provided for.

The front water header closed with a dished steel end plate is screwed to the front tube-plate.

The heater is equipped with necessary measuring, safety, closing, deaerating, and discharging fittings.

HIGH-PRESSURE HEATER

The high-pressure surface heater consists of a shell farming the steam space, a heating tube-nest through which the feed water is passed, and a water header with inlet and outlet feed water branches. The heater shell welded from sheet steel is closed on one side with a dished welded-on end-plate, and on the other side it is provided with a welded-on steel flange. Into the shell is inserted a nest of heating U-shaped brass tubes, and their ends are rolled in the tube-plate connecting the nest to the flange of the shell. The front water header made of cest steel is screwed to the tube-plate inlets and outlets of the heated condensate into and out of the heater tubes are separated by means of reinforcing ribs placed inside the water header, the arrangement of which is decisive for the number of the water flows. All necessary measuring, safety, closing, descring, and discharging fittings are furnished with the heater.

TECHNOEXPORT

PRAHA - CZECHOSLOVAKIA

TEX 56001-a - Zčt. 01

Printed in Czechoslovakia

UNIVERSAL ELECTRIC LOCOMOTIVE

SERIES

£ 7:99.0

In 1949 the Škoda Works in Plzeň were given the task of manufacturing for the Czechoslovak railways an electric locomotive for a 3000 Volt railway system.

According to the requirements of the scheme the locomotive was to be capable of hauling the following train

240 tons at a maximum speed of 120 km per hour Long distance express train: 720 tons at a maximum speed of 120 km per hour Passenger train: 480 tons at a maximum speed of 90 km per hour Goods train: 1440 tons at a maximum speed of 60 to 90 km per hour

The maximum gradient of the line is 15 % in longer sections, the goods train is assumed to be hauled by two engines. To satisfy these requirements if is customary to use two types of locomotives, one for trains of a speed up to 190 km per hour. From the operating point of view it is preferable to use a single, universal type of locomotive. The development of such a locomotive presents a number of difficulties. At a permissible axle load of 80 tons a weight of 80 tons results for a four-axle, rev-begie locomotive. The latest knowledge acquired in the building of electric locomotives makes it possible to build bogie type locomotives without carrying sales for high speeds as well.

The specified requirements could be fulfilled only by a modern locomotive body and bogies of light-weight welded design in conjunction with motors and switchgear fully utilized from the thermal and the insulation points of view.

wetced cession in conjunction with motors that symmetric that principles in the interest of a protect of the summittee of the symmetric properties of a protect properties. The assumptions on which the design was such as been expected by their reliability in operation, to be the most efficient motors built hitherto for 5000 Volts d.c. The locomotive with its output of 3800 HP and its weight of 80 nors is classed among locomotives with the lowest specific weight. The specific weight of 25 kg per HP is the lowest specific weight of 100 Volt system.

MAIN TECHNICAL DATA

Arrangement of axles Bo'Bo' 3000 Volts + 600 Volts - 1000 " Overhead line voltage Diameter of driving wheels, new Service weight of locomotive Axle load 1250 mm 80 ± 3 % 20 ± 3 % Axle gear ratio 1:2.27 Maximum permissible speed One-hour tractive effort One-hour rating 1:2,27 120 km per hour 13,5 tons 2344 kW (3200 HP) Continuous tractive effort 11,2 tons Continuous rating
Maximum tractive effort on circumference of wheels
Length of locomotive over buffers
Height of locomotive with pantographs retracted 2032 kW (2770 HP) 26 tons 15800 mm 4640 mm

MECHANICAL PART OF LOCOMOTIVE

Great savings in weight of the mechanical part of the electric locomotive have been achieved by electric wel-

ding, which replaced rivetting and enabled the use of light sections made of steel plates instead of heavy rolled sections.

The self-supporting locomotive body is formed by a frame, a roof and side walls. The side walls are, in view of the weight of the starting resistors fitted to the roof structure, reinforced by six hollow sheet metal pillars in the engine room which are anchored in the frame of the locomotive.

The roof is divided into four removable parts to facilitate the lowering of the electrical equipment into the engine room.

The locomotive frame is formed of longitudinal box girders made of steel plates which are joined at their ends by cross beams carrying the coupler and buffer gear. The cross ties inside the frame are also box girders made of steel plates. The longitudinal box girders transmit all the tensional and pressure forces produced by the couplers and buffers.

BOGIE

The frame of the bogies is welded of straight steel girders of rectangular cross section, the dimensions of which correspond to the forces transmitted. The plan of the bogie frame is a rectangle. The corners of the rectangle are rounded and formed by hollow, cast elbows. The rectangle of the frame is joined across the centre by a hollow girder in which the pivot is mounted.

The bearings of the axles are grease lubricated SKF roller bearings. They are housed in axle boxes which carry the bogie frame on two helical springs. The cylindrical axle box guides are arranged inside these springs. The guides are pressed into the bogie frame. The protruding parts of the pins are guided in bronze bushes secured in the axle box. On to the guide bushes is pressed a rubber damper which damps the horizontal shocks produced by the rails. The pair of wheels and axle has practically no axial play.

The tractive force is transmitted from the bogic to the frame of the locomotive body by means of a rocking beam, which is mounted spherically with a lateral play of £ 30 mm on a cylindrical pivot, which is rigidly secured in the center cross girder of the bogic. The locomotive body is erected astride the ends of the rocking girder, being rigidly attached to its ends. The rocking beam reats at both ends on spherical bearing surfaces on the sleeves of the plate springs. The horizontal transverse forces from the pivot are transmitted by a connecting cross girder which connects the plate spring sleeves. The plate springs rest with their ends on rockers suspended from the bogic frame. The connecting cross girder rosts of the plate spring of the pivot.

Therefore the rocking girder transmits the pull and shocks parallel to the centre line of the rails, the connecting cross girder rosts making the girder or the closers percendicular to the rails.

cross girder transmits the forces perpendicular to the rails. The arrangement of the rocking girder underneath the bogie frame permits a deep, four-point mounting of the

The arrangement of the rocking girder underneath the bogie frame permits a deep, four-point mounting of the locomotive body on the bogies which affords soft springing and eavy assembling and dismanling. The soft springing and low position of the rocking girder have the advantage that disturbing movements of the bogies are transmitted to the locomotive body greatly damped.

To damp the turning forces occurring when the locomotive travels into or out of a curve the traction motors are mounted low, as near as possible to the centre of gravity of the bogie. Apart from that a cross ite is arranged between the bogies which ensures a tagential position of the bogie in the curve resulting in a substantial reduction of lateral guiding forces and consequently also of the wear of tyres.

To attain the required tractive efforts it is necessary to utilise fully the adhesive weight of the locomotive. Therefore the lightening of the pressure on the respective axies (caused by the draw bar pull) is automatically adjusted by a special electroprenumatic mechanism which produces between the bogies and the frame of the locomotive additional forces proportionate to the tractive effort.

The service brake of the locomotive is a compressed air brake. Two mutually independent compressors supply all the pneumatic equipment with compressed air.

The train brake is controlled by a Skoda type N-O brake valve for goods and express trains. Each locomotive axle has its own brake cylinder. The two cylinders of each bogie are connected to the train brake line through a simple triple valve. In addition to that the locomotive can be braked independently of the train by the additional locomotive brake. The connection of the line between the bogies and the frame is made by means of rubber hoses. The piping of any bogie can be disconnected by a special valve at the driver's post in order that the braking of the entire locomotive may not be impaired in case a hose burts.

The hand brake is operated from any driver's nost and brakes only the adjecent bogie.

The torsional moment of the traction motor is transmitted to the driving axle by a Séchéron system joint to a torsional shaft passing though the hollow rotor of the traction motor. From the other end of the torsional haft another joint transmits the torsional moment to a pinion,

other end of the torsional shaft another joint transmits the torsional moment to a pinion, which engages a toothed wheel pressed on to the driving sake. Both the pinion and the toothed wheel are protected by a case which is suported on one side by roller bearings mounted on the lengthered hub of the toothed wheel and held on the other side by means of a link elastically suspended on the frame of the bogic. The motor is firmly suspended in the bogic frame to that the unsprung weight of the locomotive is very small.

ELECTRICAL PART OF LOCOMOTIVE

To ensure a reliable and safe working of this locomotive a minimum number of H. T. installations was used in its design, which, though, guarantee the fulfillment of the requirements to which this locomotive must

The traction motors are series wound six-pole, non-compensated motors with commutating poles designed for heavy weakening of the main magnetic field. The one-hour rating of one motor is 566 kW at 600 r. p. m. and at 300 v. p. m. The two motors of each bogic are connected personnently in series. The groups are connected for starting in series through starting resistors which are cut out by a controller with 25 stops with 25+1 series steps and 8+1 series spatiallel steps. After the economical series steps there follow 4 and after the series parallel steps o economical shunting steps. The main controller consists of 39 cam contactors fitted on either side of the camabaft which is rotated by a pneumatic motor,

a pneumatic motor.

The pneumatic motor is controlled by electro-pneumatic valves which receive impulses from the main controller. This arrangement ensures a highly reliable working of the locomotive.

In view of the high utilisation of the adhesive weight of the locomotive it is necessary to face increased possibilities of wheel slip during difficult starting. Each group of motors is provided with a wheel slip protection which checks the difference of voltage of both motors and thus also the difference of their revolutions. When the difference is small an accountie signal is sounded. When it is greater the main circuit braker is tipped automatically. The motors are cooled by a current of cooling air from fans. In order to ensure perfect utilization of the motors without the permissible temperature being exceeded, the temperature of he traction motor winding is measured at each operator's post by means of an electric thermometer.

The starting resistances are cooled by a current of air from the fans for the motors. An automatic device increases the quantity of cooling air for the resistors during the starting period. The temperature of the resistor increases the quantity of cooling air for the resistors during the starting period. The temperature of the resistor without a each driver's post by an electric thermometer. The electric prover consumed in text of a breakdown, as disconnecting switches for the groups of motors. The electric power consumed in the circuit of the hocoronive motors is measured by a wathflour-meler. The roller bearings of the motors and axies are protected from the corrosive effects of the main current by earthing rings on the driving axies.

of the motors and axies are protected from the control extended the protection of the diving axies.

The fans for the artificial cooling of the motors and starting resistors are driven by \$^{300}_{-00}\$ Volt motors connected permanently in series. These motors also drive two battery charging dynamos. The locomotive has two compressors driven by series wound motors which are fed from the overhead line through a series resistance. These motors are protected by H. T. fuses and controlled by electro-magnetic contactors. The circuits of the auxiliary drives have their own current differential protection against partial soft circuits. The fan sets and compressor sets are mounted on rubber dampers to reduce the noise in the engine room.

The driver's posts are heated by heater elements which are connected in series and fed from the overhead line. The heating can be controlled in three steps by electro-magnetic contactors. The heating system is also protected by H. T. fuest. The heating system is fed from the overhead line through the main locomotive circuit breaker. It is switched on by a 300 Amp electro-magnetic contactor, protection against overload

being ensured by an overcurrent relay acting upon the main circuit breaker of the locomotive. The main circuit breaker of the locomotive are compared to the comotive opens when the protective equipment connected to the main circuit breaker operates. In this manner the locomotive is reliably safeguarded against overloads which may arise from incorrect attendance or sudden defacts.

The controlling equipment of the locomotive is electropneumatic, designed for a voltage of 48 Volts and a pressure of 3,5 atm. The main controller is controlled by a wheel in the control desk with a position indicator. The reversing switches are controlled by a reversing leaver.

The following instruments are fitted in the control desk: a voltmeter for the overhead line voltage, two ammeters for the groups of motors, a thermometer for the resistors, a thermometer for the resistors, a thermometer for the motors and an electric speed indicator. An ammeter or the auxiliary drives is fitted separately.

All controls are so arranged that the driver can sit condictably while driving. The operating wheel of the main controller and the seversing lever as well as the above mentioned measuring instruments are fitted at his right hand, the controls of the auxiliary drives, heating, pantographs and main circuit breakers, as well as the control switches of the lighting of the locomotive, i. e. the signal lights, head light, lighting of driver's posts, measuring instruments, engine room, corridors and hogies at the left hand.

lights, head light, lighting of driver's posts, measuring instruments, engine room, corridors and bogies at the left hand.

The time table is lighted separately and so is the guard's post. At one post a wash basin is fitted with an automatically heated hot water tank for washing. An electric cooker for the heating of tood is also fitted there.

The frost windows of the driver's post are double with a built-in defeoster. They are cleaned from outside by a pneumatic window wiper.

DRIVER'S POST

- »Škoda N-O« brake valve of automatic brake. Cock of locomotive brake.
- Master controller.

 Reversing drum for Forwards and sReverses travel.

 Lock-up cabines, with switches for operating current, panlographs, fans, compressors and main circuit

 beaker.
- lock-up cabinet, with switches for operating current, pantographs, fans, compressors and main circuit beaker.

 Measuring instruments: voltmeter, ammeter of metor group I and II, thermometer of traction motors and starting resistors, electric speed indicator, pressure gauges of main air tank, brake piping and brake cylinder, ammeter of auxiliary drives.
 Cock for sindow wipers.
 Cock for swhitele.
 Signal light of dead man equipment.
 Time table with light.
 Dead man button. Pedal under master controller.
 lighting of measuring instruments.
 Luminous sign: alocomotive eartheds.
 Signal of main circuit breaker.
 Signal afteraction or resistance positionse.
 Trip push-button of main circuit breaker.
 Switches in top row: lighting of bogies, driver's post and instruments,
 Switches in tone tree: the enter or: he setting of train, heating of driver's post, white and red signal lamps,
 Switches in bottom row: window defrosters, headlight, control and lighting.
 Hand brake wheel.

The pantographs are controlled from the driver's posts electro-pneumatically. They are operated by a compressed air cylinder and springs. To facilitate the raising of the pantographs when the locomotive is being put into operation a motor-compressor set is fitted in the engine room fed from the battery. It charges an auxil

into operation a motor-compressor set is titled in the engine room red from the patiety. It charges an authority reservoir for the pantographs with compressed air.

Two corridors, one at each side of the engine room, connect both driver's cabins, and are interconnected by two short corridors at both ends of the engine room. The corridors are separated from the engine room proper by wire netting. The engine room proper is accessible through doors which are electrically interlocked with the pantographs. Both disconnecting switches, the earthing switch, all H. T. fuses and all cocks of the pneumatic equipment are operated from the corridor.

All 48 Volt equipment is fed from a nickel-iron battery which is kept charged by dynamos driven by the fan

An 40 voli equipment is fed from a nickel-iron battery which is kept charged by dynamos driven by the fan motors. In case of a breakdown of the battery all 48 Voli equipment can be fed directly from the dynamos through a regulator. In this case the fan motors are started by a very simple auxiliary operation. The parallel operation of the two charging dynamos is controlled by a Křížík-ERA regulator. The main battery switch, by which all the 48 Voli equipment is disconnected, is fitted in the regulator. The condition of the battery is checked by an ammeter and a voltmeter. A sufficient number of sockets for extension lights is arranged at various points in the locomotive. The cables are laid in cable during a location of the cables are laid in cable during a location. locomotive. The cables are laid in cable ducts or in conduits

OPERATING RESULTS

During trials abroad on the lines in the vicinity of Warsaw with suburban traffic the locomotive hauled trains with a load of 300 tons to a schedule prepared for motor coach trains with a line rate of starting scooleration, with a ratio in the locomotive reached an acceleration, of over 0.3 m/sec* up to 60 km per hour and the acceleration up to the maximum permissible speed of 90 km per hour trail tracked 0.14 m/sec*. The average distance between stops was 3 to 5 km. The prototype locomotive covered 90,000 km in this exacting operation without a serious operating defect. Two further locomotives covered 90,000 km in the same operation during the winter season.

between stops was 3 to 3 km. are prototype sociations overed 50,000 and 25,000 km in the same operation during the winter season. This with a dynamometer car confirmed the desired properties and haulage performance. The maximum speeds were tested up to 150 km per hour, at these speeds the movement of the locomotive was always steady. Reliable starts with goods trains up to 850 tons, which reach a travelling speed of as much as 50 km per hour, each carried out on a 15 kg, gradient in Csechoslovakia. Express trains of a load of 450 tons are hauled over the same gradient at a speed of 80 km per hour.

The locomotive has very good riding qualities, requires only little maintenance and its operation is easy in the agreable surrounding of the driver's post with an unobstructed view of the track.

STEX/591989 a - 5608 - F - 033306 - Zčf. 01

MESSWANDLER FÜR HÖCHSTSPANNUNG

Apparate, mit denen in Höchstspannungsnetzen elektrische Größen gemessen werden und durch die die Betriebssicherheit erhalten wird, werden an den Höchstspannungskreis über Meßwandler angeschlossen, welche

- den Höchstspannungskreis (das Netz) von dem Niederspannungskreis (den angeschlossenen Apparaten) trennen, was für die Sicherheit der Bedienung notwendig ist,
- die Werte der zu messenden Größen (Spannung und Strom) in Werte umwandeln, die für die Speisung der angeschlossenen Apparate vom Standpunkte deren wirtschaftlicher und zweckmäßiger Konstruktion geeignet sind.

Die Verwendung von Meßwandlern ermöglicht außerdem

- einheidliche Ausführung der Systeme der Meß- und Schutzapparate (auf Grund normalisierter Werte des Sekundärstromes und der Sekundärspannung);
- z. übersichtliche Zentralisierung der Meß- und Schutzapparate in der Schaltwarte, getrennt von der Schaltanlage,
- Schutz der Stromsysteme der angeschlossenen Apparate vor schädlichen Wirkungen der Uberströme bei Kurzschlüssen im Netz bzw. vor ihrer Beschädigung oder Vernichtung, durch geeignete Wahl der Überstromcharabtaristik der Stromwandlich.

Die in diesem Kataloge beschriebenen Stromwandler und Spannungswandler für 60, 110 und 220 kV sind Einphasenölwandler in Kaskadenausführung. Die Gesamispannung zwischen der Primär und Sekundärzeit der Kaskadenausführung durch mehrera Isolierscheiden (das ist durch Schichten eines geeigneten Dielektrikums) in eine Reihe von Teilspannungen geteilt. Die Elektroden an den Teilspannungen werden entweder aus den Funktionselementen eines Wandlers, z. B. aus der Primärwichkung, dem magnetischen Kreis und der Sekundärzeit der Wandlers für 60 und 10 kV sind in Kaskade, bestehend aus einem Wandler mit zwei Isolierscheiden, gebaut (der magnetische Kreis hat gegen die Erde die Hälte der Phasenspannung des Netzes), bei den Wandlern für 20 kV wird die Kaskade von zwei Wandlern, von denen jeder einen magnetischen Kreis mit zwei Isolierscheiden hat, also im Ganzen von vier Isolierscheiden gebildet (der magnetische Kreis mit zwei Isolierscheiden hat, also im Ganzen von vier Isolierscheiden gebildet (der magnetische Kreis and gesen die Erde ¾ der Phasenspannung des Netzes), Beim Stromwandler für 220 kV sind beide Wandler durch eine Kopplungswicklung miteinander verbunden, welche das Sckundär des oberen und das Primär des unteren Wandlers bließe. Beim Spannungswandler für 220 kV befindet sich auf jedem Kern je ½ der in Serie geschalteten Primärwicklung. Außerden verbindet noch die Kopplungswicklung elektrisch den unferen Kern des oberen Wandlers mit dem oberen Kern des unteren Wandlers hat, den werden der unteren Wandlers hat, het, bet wirt den unteren Kern des oberen Wandlers mit dem oberen Kern des unteren Wandlers hat, het, bet wirt den unteren Kern des oberen Wandlers unter den den unteren Kern des oberen Wandlers hat, der het, für seitlut als auch für Innenraummontage geeignet.

Die in diesem Kataloge angeführten Meßwandler sind für die Nennfrequenz 50 Hz gebaut. Sie können jedoch in einem Bereich von 15 bis 60 Hz verwendet werden, wobei wir uns die Anderung der Werte der Nennbelastung (Nennleistung) und Genauigkeit sowie der übrigen garantierten Werte, vorbehalten.

Meßwandler 2 JO 110 und COF 110 in einer Schaltanlage, rechts ein Reguliertransformator 16 MVA, 100 kV.

GENAUIGKEIT DER MESSWANDLER UND DIE GRÖSSEN DER BELASTUNG

$$s_1 = \frac{I_2 k_1 - I_1}{I}$$
 100 [%], $s_1 = \frac{U_2 k_1 - U_1}{U}$ 100 [%]

DIE GROSSEN DEK BELASTUNG

Die Genauigkeit der Meßwerdler wird durch die Genauigkeitsklasse charakterisert, welche die äußerst zulässigen Fehlerwerte der zu mestenden Größen (Strom und Spannung) bei Nennbürde und bei von der betreffenden Klasse festgesetzten Primärwerten, ausdrückt.

Der Größenfehler (des Stromes 21 oder der Spannung 21) ist durch den algebraischen Unterschied der, gemäß der Nennübersetzung auf des Primär umgerechneten Sekundärgröße und der Primärgröße gegeben; er wird in Prozenten der Primärgröße angegeben

Unter Winkelfehler versteht man die Phasenverschiebung zwischen dem um 180 verdrehten Vektor der Sekundärgröße und dem Vektor der Primärgröße, er wird gewöhnlich in Winkelminuten ausgedrückt. Aus den bekannten Werten des Stromfehlers zu und des zugehörigen Winkelfehlers zi, des Stromwandlers und den des Spannungsfehlers zu und des zugehörigen Winkelfehlers zi, des Stromwandlers und den Meßwandler selbst veursachte Fehler beim Messen

der Wirkleistung z. e. zi. + zu - 0,0891 (± å, ± å) 1 g > [%1]

der Wirkleistung
$$\epsilon_{\rm p} = \epsilon_1 + \epsilon_0 - 0.0291 \ (\pm \delta_0 \mp \delta_1) \ \text{tg } \phi \ [\%]$$

und der Bündleistung $\epsilon_0 = \epsilon_1 + \epsilon_1 + 0.6991 \left(\frac{1}{2}, \delta_1 \mp \delta_1 \right) \cos p \left(\frac{9}{8} \right)$ berechnen, worin p die Phasenverschiebung im Primärkreise bedeutet und die Winkelfehler δ_1 und δ_1 in Winkelminuten ausgedrück; sind. (Das obere Zeichen gilt für den induktiven und das untere für den kapasitiven Leistungsfaktor $\cos p$).

Abb. 2 Fehlergrenzen der Snannungswandler.

Die Fehlergrenzen der Meßwandler nach der tschechoslowakischen Norm CSN ESC 64-1951 sind in den Abb. 1 und 2 dargesteilt und die Fläche zwischen ihnen wird als zulässiges Fehlerfeld der zugehörigen Genauigkeitsklasse bezeichnet. Der wirkliche Fehler des Meßwandlers muß innerhalb dieses Feldes liegen, und zwar bei Belastung mit einer Bürde, die bei einem Leitungsfaktor von cos g = 0,82 5b is 100 %, der Nannbürde gleichkommt. Ist die Nennbelastung des Meßwandlers größer als 60 VA, dann muß der wirkliche Fehler schon bei einer Belastung von 15 VA an im zulässigen Fehlerfeld liegen (dies gilt nicht bei Stromwandlern der Genauigkeitsklasse 3, die nur für einen Bürdenbereich von 50 bis 100 %, der Nennbürde geeicht werden). Mit zunehmender sekundärer Belastung des Meßwandlers (d. i.: beim Stromwandlern mit zunehmendem Werte Zifvabraungebandlers mit zunehmendem Werte Zifvabraungebandlers mit zunehmendem Werte Zifvabraungebandlers (1) und Y die Admittanz – Scheinleitwert – des Spannungswandlers (1/2) bedeutet, wächst auch die Größe Fehlers, und zwar in kleinem Belastungsbereich annähend proportional. Ein Wandlert, welcher daher z. B. für eine bestimmte Belastung in der Genauigkeitsklasse 0,2 vorgeschlagen wird, kann für die doppelte Belastung in der Genauigkeitsklasse 0,5 oder für eine vier- bis fünffache Belastung in der Genauigkeitsklasse 1 geeicht werden.

werden. Ist die Sekundärbelastung konstant und ändert sich nur der Leistungsfaktor der Bürde, dann wird mit sinkendem Leistungsfaktor der Fehler der gemessenen Größe wachsen und der Fhasenfehler kleiner werden, bei steigendem Leistungsfaktor sind die Verhältnisse ungekehrt. Wenn also der wirkliche Leistungsfaktor der Bürde von dem durch die Norm vorgeschriebenen Nennwert cos $\beta = 0.8$ abweicht, ist nicht verbürgt, daß die zum Nennwert der Bürde gehörigen Eichkurven in den zulässigen Fehlerfeldern liegen werden.

GRÖSSTER BETRIEBSSTROM UND HÖCHSTE BETRIEBSSPANNUNG

Bei Stromwandlern beträgt der größte Betriebsstrom, der durch sie dauernd hindurchgehen kann, 120 % des auf dem Schilde angegebenen Nennstromes. Dabei werden noch bei weitem nicht die von der Norm für die Isolation der Klasse A zugelassenen Worte für die Erwärmung erreicht. Die höchste Betriebsspannung, d. i. die höchste Spannung, an welche unsere Meßwandler dauernd angeschlossen werden können, ist um 10 % höher als die auf dem Schilde angeführte Nennspannung.

STROMWANDLER DES TYPS 2 JO

ZWECK UND WIRKUNGSWEISE:

Stromwandler sind für die Speisung der Amperemeter und der Stromspulen der Meß-, Registrier- und Schutzapparate bestimmt. Ihre Primärwicklung ist im Höchstspannungskreis (in der Leitung), dessen Strom gemessen werden soll, in Serie geschaltet, daher unterscheiden sich ihre Betriebswerden solf, in Serienstromwandler sowol von Leistungstransformatoren eigenschaften als Serienstromwandler sowol von Leistungstransformatoren als auch von Spannungswandlern. Eine kurze Erläuterung ist aus Abb. 3 ersichtlich. Fließt durch die Primärwicklung der Strom I₁, dann geht durch die Sekundarwicklung der entsprechende Strom I; Solange die Bürde (Z) ausgeschaltet ist (Kontakt in Lage (al), ist der Wandler kurzgeschlossen. Wenn der Strom I; konstant bleist und die Bürde (Z) sich vergrößent (Kontakt in Lage bodere), wächst die Spannung U; und damit auch die Spannung U1. Die Belastung an den Sekundärklemmen ist durch den Wert U2I2 oder den Wert ZI2- gegeben.

Abb. 3 Wirkungsweise des Stromwandlers.

Bei konstanter Bürde (Z) ändert sich die Belastung proportional mit der zweiten Potens des Stromes I₂ und die Klemmenspannung U₂=ZI₂ proportional mit dem Strom. Wenn der Sekundärkreis unterbrochen wird (d. h. wenn die Bürde ins Grenzenlese wächst), kann die Spannung an den geöffneten Sekundärklemmen, auch bei Primärnennstrom, Höchstwerte in der Größenordnung mehrerer Kliovolet reriechen. Eine solche Spannung kann die Sicherheit der Bedienung und die innere Isolation des Wandlers bedrohen. Deshalb darf der Stromwandler niemals auf diese Weise betrieben werden, da die Unterbrechung seines Sekundärkrosies an und für sich einen ersten Störungszustand bedeutet. Bei einem bestimmten Primär und Sekundärstrom sich die Größe der Belastung nur der die Größe der Bürde ung der Größe der Bürde und Belastung bewirkt nur eine Anderung der Größe der Judyktion im magnetischen Kreis die Größe der Bärde gegeben. Die Anderung der Größe der Burde und Belastung Dewirkt nur eine Anderus, der Größe der Induktion im magnetischen Kreis. Da die Erwärmung der Wicklung nur durch den Strom bedingt ist, hat darauf die Erhöhung der Bürde keinen Einfüß, denn bei Anderung der Bürde inder isch der Strom nicht.

Da unsere Stromwandler hohe Kurzschlußsicherheit haben (thermüscher Nennstrom Ir.s. = 110 Is.), ist deren Strombelatung bei normalen Bertinb so klein, daß die Erwärmung der Wicklung nur einen kloinen Bruchteil der von der Norm zugelassenen Wette erreicht.

Abb. 4 Schema der Stromwandler 2 JO 60 und 2 JO 110.

Meßwandler 2 JO 60, 2 JO 110 und 2 JO 220.

BESCHREIBUNG

Das Gesamt-Dispositionsschema der Stromwandler 2 JO 60 und 2 JO 110 ist aus der Abb. 4 zu ersehen. Der Höchst-Das Gesamt-Dispositionsschema der Stromwandier 2 J O 80 und 2 J O 110 ist aus der Abb. 4 zu ersehen. Der flochst-spannungskreis ist von dem Ausgangskreis eutre dieurh einen Solicierwandier (1) getrennt, welcher in das Innere eines einteiligen mit Transformatorät gefüllten braunfarbigen Mantelisolator (2) eingebaut ist. Auf seinem Kopf ist der Konservator (3) mit dem Luftverntil, dem Olstandanzeiger (3) und der Beweichung des zulässigen infeisten Olstanda bei 20 -C angebracht. Durch seine Wande gehen die ais Boilzen 20 No mm ausgeführen Primatziemmen K, L. Isolierwandler (1) hat zwei Isolierscheiden, von denen die erste (4) die Höchstspannungsprimärwicklung (3) trennt. Beide Isolierscheiden werden aus Hartpapierisolierhülsen und Winkelringe aus ehpappe gebildet. Die Primärwicklung des Isolierwandlers (5) wird gegen Überspannung durch einen spannungsabhängigen Uberbrückungswiderstand geschützt; sie ist umschaltbar im Verhältnisse 1:2 oder 1:2:4 durch Umschalten der Klemmen im Inneren des Konservators (gezeichnet 1:2 in der Schaltung auf größeren Primärnennstrom - beide Hälfen der Wicklung parallel -).

Das Klemmenbrett für das Umschalten des

Montage der Meβwandler 2 30 110.

Primärnennstromes im Verhältnisse 1:2 ist in Abb. 6 und für das Umschalten im Verhältnisse 1:2:4 in Abb. 7 dargestellt. Der magnetische Kreis des Isolierwandlers und die mit ihm einpolig verbundene Ausgleichwicklung (9) haben daher gegen die Erde die halbe Spannung als die Primärwicklung. Die Sekundärwicklung mit dem Ausgangsgerät (10) haben das Erdpotential und sind miteinander durch zwei Durchführungen im Boden des Olraumes verbunden.

In dem Ausgangsgerät wird die Gesamtleistung des Isolierwandlers auf zwei gegeneinander isolierte Ausgänge verteilt, von denen der eine ks, 1, die Meßapparate, der andere ks, 1s die Schutzapparate speist. Dem ent-sprechen auch ihre Überstromcharakteristiken (Abb. 11): der Ausgang für das Messen (ks, 1s) ist über einen Spar-Stromwandler mit Übersetzungsverhältnis 1:1, dessen magnetischer Kreis (11) aus Permalloy (Mu-Metall) open-schildweinder im Oberstrangsverlagings 117, dessen magnetische Keis (117) aus Feinmany (nachseiself) hergestellt ist, an den Isolierwandler engeschlossen, dedurch wird eine niedzige Nennüberstromiffer n. e5 garantiert. Der Ausgang für die Schulzapparate (k_{lij} l_a) wird von dem Stromwandler (12) mit Übersetzung 1:1 gespeist, dessen magnetischer Kreis aus Transformatorblechen TN 13 gebildet wird, die Nennüberstromsiffer dieses Ausganges ist n. > 15.

Das Schema der Anord-nung des Stromwandlers 2 JO 220 ist in Abb. 5 dar-2 JO 200 ist in Abb. 5 dar-gestelll. In cinem zweitei-ligen braunfabrigen Man-telisolator (1, 2) sind über-einsneter zwei Clileder der John 200 in 190 in 190 in 190 in bracht, von denen jedes einen Isolierscheiden (7, 8, 9, 10) umfaßt. Ihre Aus-führung ist die gleiche wie bei Typ 2 JO 110. Beide Glieder der Kaukade sind miteinander mit der Kop-plungswicklung (11) verplungswicklung (11) ver-bunden, welche das Sekundär des oberen und das Primär des unteren Gliedes bildet. Das obere Ein-

angsglied reicht etwa bis in zwei Drittel der Höhe des oberen Mantelisolatorteiles, das untere Ausgangslied gangsjined reient erwa Dis in zwei Drittel der Nona des Goeren zeinwissionstonenes, das untere Ausgebieten ist symmetrisch zur Ebene verlegt, welche die Höhe des unteren Mantelischatorteiles halbiert. Auf dem Kopf des oberen Isolatorteiles ist der Konservator [15] angebracht, unter dessen Deckel sich das Klemenbreit zum Umschalten des Primärmennstromes im Verhältnisse 1:2 oder 1:2:4 befindet (gezeichnet 1:2 in Parallelschaft) – auf größeren Strom). Die Primärklemmen K, I bilden zwei Bolzen № 30×60 mm, die wasgerecht durch die - auf groberen singen. Der Irindarkennen K. J. Der deweilige Olstand und der zulässige fiefste Olstand sind an dem an der Wand angebrachten Olstandzeiger ersichtlich. Auf dem Konservator ist ein Schirmring (14) befestigt, der zur günstigen Verteilung des elektrischen Feldes auf der Oberfläche des Isolators beiträgt.

günstigen Verteilung des elektrischen Feldes auf der Oberfläche des Isolators beitzägt. Was die Konstruktion des Meßwandlers anbelangt, ist dieser aus zwei selbständigen mit Ol gefüllten Bauteilen zusammengesetzt, von welchen der obere Teil das obere Glied der Isolaterkakade mit dem Mantelisolator, dem Konservator und dem Verbindungsstück (12) und der untere oben mit einem Deckel verschlossene und unten mit einem kompletten Fahrgestell verschene Teil das untere Glied er Isolierkakade mit dem Mantelisolator enhält. Bei Montage wird der obere Teil auf den unteren Teil gesetzt, die Austührungen der Kopplungswicklung werden im Verbindungsstück zusammengeschaltet und beide Olräume im oberen und unteren Teil durch Rohre verbunden. Das Verbindungsstück und der Deckel des unteren Teiles werden dann miteinander verschraubt. miteinander verschraubt.

musenanues verkenraus:
Die gesamte leistung der leolierkaskade wird in dem Ausgangsgerät [15] auf zwei gegenseitig isolierte Ausgänge verteilt. Das aus mehreren Transformationselementen und Korrekturgliedern bestehende Ausgangsgerät ist in einem besonderen plombierten Kasten untergebracht, welcher im Ganzen mit drei Paar Klemmen und Erdschraube versehen ist. Die Nennüberstromziffer des Ausganges für Meßgeräte k., l. ist n. << 5, die für den Ausgang für Schutzgeräte kb, lb ist no > 10.

Ausgangswandler für den Stromwandler 2 JO 60 und 2 JO 110.

zgerate k., h. ist n. > 10.
Das Ausgangsgerät kann bei allen Stromwandlern im Kasten des Fahrgestells oder in der Schaltwarte in der N\u00e4h\u00e9 der angeschlossenen Me\u00dfb und Schutzappsarte untergebracht werden. Im zweiten Fall gen\u00fcgen f\u00fcr die Verbindung des in der Freiluftschaltanlage stehenden Me\u00dfbwandlers mit den Ger\u00e4ten in der

Schaltwarte nur zwei Adern des Zuleitungskabels.

onaiveme nur zwei Austinus Jerustinussansen.

Die Wicklungen der Stromwandler bestehen aus papierisolierten Kupferprofilleitern, nur die Sekundärwicklungen für 1 A sind aus baumwollisolierten Kupfer-Runddraht hergestellt. Der magnetische Kreis der
Isolierwandler ist aus papierisolierten Transformatorblechen TN 13 von 0,5 mm Dicke zusammengesetzt. Die geforderte Genauigkeit der Meßwandler wird durch Vormagnetisierung des magneti-schen Kreises nach tschechoslowaktichem Patent Nr. 80518 erreicht. Beim Wandler z JO 220 ist die Vormagnetisierung nur am oberen Glied der Kaskade.

ur am oberen Glied der Kaskade.

Das Fahrgestell des Meßwandlers wird von einem geschweißten Kasten mit vier Hebeösen gebildet. Die Typen 2 JO 60 und 2 JO 110 haben vier Fahrrollen ohne Spurkränze für eine Fahrtrichtung (nicht verstell-bar), Typ 2 JO 220 hat vier für beide Fahrtrich-tungen verstellbare Fahrrollen mit Spurkränzen in einem besonderen Rahmen, welcher von dem Fahrgestellkasten losgelöst werden kann. Der Kasten des Fahrgestells ist durch eine wasserdichte Tür geschlossen und durch eine Offnung gelüftet, welche zum Schutz gegen das Eindringen von kleinen Tieren mit einem Netz ver-deckt ist. Hinter der Tür befindet sich das Klemmenbrett für den Kabelanschluß mit Hilfe eines wasserdichten Kabelendverschlusses, welcher mit dem Meßwandler geliefert wird. An der Wand des Fahrgestells ist der Olauslaß angebracht (Abb. 18). Der Mantelisolator wird auf dem Fahrgestellkasten mit gußeisernen Pratzen festgehalten und die Fuge ist mit ölbaständigem Gummi abgedichtet. Auf gleiche Weise wird beim Typ 2 IO 220 der Deckel des unteren Teiles auf dessen Isolator und der obere Isolatorteil auf dem Verbindungsstück befestigt.

Bei Ausführung für ungünstige klimatische Verhältnisse (tropische Ge-biete) wird der Konservator mit Olverschluß versehen, welcher die di-

rekte Berührung des Oles im eigentlichen Wandler mit der Außenluft verhindert. Die Höhe des Konservators sowie die Gesamthöhe des Meßwandlers ist dann um etwa 100 mm größer, als in den Maßkizzen angegeben ist. Diese Einrichtung liefern wir nur auf besondere Bestellung und gegen Zuzahlung. Die Ausführung der Meßwandler entspricht der tschechoslowakischen Norm ČSN ESC 64-1951 und ESC 306-1950; sie können sowohl für Freiluft als auch Innensaummontage verwendet werden

Maßkizzen sind in den Abb. 8, 9, 10.

TECHNISCHE ANGABEN DER STROMWANDLER

Typ:		2 JO 60	2 JO 110	2 JO 220
Ausführung – Kaskade		einfach	einfach	doppelt
Isolationsspannung nach ČSN-ESČ 64-1951	kV	60	110	220
Höchste Betriebsspannung	kV	66	121	242
Prüfspannung 50 Hz	kV	140	230	455
(Maximal für Export)	kV	152	242	460
Stoßhaltespannung 1/50	kV	350	550	1050
(Maximal für Export)	kV	-	625	-
Uberschlagspannung unter Regen	kV	> 168	> 264	> 455
Dielektrische Verluste, tg δ		$<3\%$ bei $U_1 = 60 \ kV$	$<$ 3 % bei $U_1 = 110 kV$	$<$ 3 % bei U_1 = 220 kV
Primärnennstrom (Mit Umschaltung im Verh. 1:2) (Mit Umschaltung im Verh. 1:2:4)	A A	50,100 75,150 75,150,300 100,200,400 150,300,600	50/100 75/150 75/150/300 100/200/400 150/300/600	50/100 75/150 75/150/300 100/200/400 150/300/600
Größter Betriebsstrom	жIn	1,2	1,2	1,2
Sekundärnennstrom	A	5 /5 1, 1	5/5 1/1	5/5 1/1
Uberstromklasse (nach IEC)		110	110	110
Dynamischer Strom (für I ₁₀ ≥ 150 A)	kA mex.	35	35	35
Ausgang für Meßgeräte: Nennbelastung (Nennleistung) Genauigkeitsklasse Nennüberstromziffer	VA	30 0,2 << 5	30 0,2 << 5	30 0,2 << 5
Ausgang für Schutzgeräte: Nennbelastung (Nennleistung) Genauigkeitsklasse Nennüberstromziffer	VA	60 1 > 15	60 > 15	60 1 > 10
Gewicht: ohne Ol der Olfüllung Gesamtgewicht	kg kg kg	355 65 420	570 165 735	1490 350 1840
Grundrißfläche	mm	670×790	680×830	1760×1800
Höhe	mm	1400	1950	3850
Fahrtrichtung		eine	eine	beiden
Fahrrollen		glatt	glaii	mii Spurkränze
Durchmesser und Breite der Räder	mm	<i>⊗</i> 125 × 48	€ 125×48	≈ 165 mit Spurkränze
Spurweite	mm	600	750	1435

ÜBERSTROM-CHARAKTERISTIKEN

Das Verhalten der Stromwandler im Über-strombereich, d. i. beim größerem Strom als Primärnennstrom, ist charakterisiert durch:

1. die Nennüberstromziffer n_n, die ein Mehrfaches des Primärnennstromes darstellt, bei welchem der Stromfehler bei Nennbürde und Nennleistungsfaktor 10% erreicht;

die Überstromcharakteristik, d. i. die Abhängigkeit des Sekundärstromes von dem Primärstrom im Überstrombereich bei den angegebenen Werten der Bürde. Die Überstromcharakteristik wird gewöhnlich graphisch dargestellt (siehe Abb. 11 und 12).

Abb. 12 Überstromcharakteristik des Stromwandlers 2 10 220.

Bei dem Ausgang für Meßapparate wird eine niedrige Nennüberstromsiffer und eine solche Überstromeharakteristik verlangt, die über ihr möglichst langsam ansteigt, damit die angeschlossenen Meßapparate vor Beschädigung durch dynamische und thermische Wirkung der Überströme geschützt sind. Beim Ausgang für Schutzapparate soll im Gegenteil die Nennüberstromsiffer möglichst groß sein und die Überstromeharakteristik soll auch über ihr möglichst rach steigen, damit die Schutzapparate auch bei Kurzschützen im zu schützenden Netz verläßlich funktionieren. Die Überstromcharakteristik und die Nennüberstromsiffer hängen von den Werten der angeschlossenen Bürde ab. Bei konstanter Bürde ist die Überstromziffer am größten bei einem Leistungsfaktor der Bürde os § = 1 und wird mit sinkendem Leistungsfaktor der Bürde os § = 1 und wird mit sinkendem Leistungsfaktor der Bürde bei die Überstromziffer und im Gegenteil: bei Überlastung des Sekundärausganges sinkt die Überstromziffer.

Infolge des Einflusses der Kompensationselemente, durch welche eine künstliche Erhöhung der Uberstromziffer intoige des Lintiusses der Kompensationselemente, durch weiche eine Kunstliche Einhöung der Überströmziffer erreicht wird, ist beim Typ 2 JO 220 der Verlauf der Überströmcharakteristik im Ausgang für Schutzgeräte stark vom Werte der angeschlossenen Bürde abhängig. Im Interesse der Erhaltung einer konstanten Überströmscharakteristik empfiehlt es sich, die Bürde immer auf ihren Nennwert auszugleichen, was am besten durch eine, in die erwähnte Kompensationseinrichtung eingebaute Hillsausgleichsbürde erreicht wird.

in die erwannte Kompensationsentrichtung eingebaute innsategreichtsburde erfeten die. Die Überstromcharakteristiken der Typen 2 JO 60 und 2 JO 110 sind in Abb. 11 und die Überstromcharakteristik des Typs 2 JO 220 ist in Abb. 12 dargestellt.

KURZSCHLUSSICHERHEIT UND ÜBERSTROMKLASSE

Die Kurzschlußsicherheit der Stromwandler ist durch seinen dynamischen und fhermischen Kurzschlußstrom egogeben. Der dynamische Nennstrom ist der Höchstwert der größten – in der Regel ersten – Amplitude des primären Kurzschlußstromes, welche der Wandler bei kurzgeschlossener Sekundärwicklung verträgt, ohne daß durch die entstandenen dynamischen Kräfte irgendeiner seiner Teile beschädigt oder deformiert wird. Untermischem Nennstrom versteht man den effektiven Wert des Primärstromes, den der Wandler bei kurzgeschlossener Sekundärwicklung auf die Dauer von einer Sekunde aushält, ohne daß irgendeiner seiner Teile durch die entstandene Wärme beschädigt wird. Bei einem länger als eine Sekunde dauernden Kurzschluß ist der größte zulüssiege thermische Strom durch die Beziehung der größte zulässige thermische Strom durch die Beziehung

$$I_{Tr} I_{Tn} = \sqrt{1.t}$$

bestimmt, worin I_{Ti} den thermischen Strom für die gegebene Zeit, I_{Ti} den thermischen Nennstrom und $\cdot t$ die Zeit

in Sekunden bedeuten.

Alle Stromwandler, bei denen das Verhältnis des thesmischen Nennstromes zum Primärnennstrom den gleichen Wert hat, bilden eine bestimmte, durch dieses Verhältnis gekennzeichnete Überstromklasse (z. B. bei der Überstromklasse 100 ist der thermische Nennstrom das Hunderflache des Primärnennstromes).

EICHUNG DER STROMWANDLER

Eichstelle für Stromwandler.

Meßwandler 110 kV auf dem Prüfstand; im Vorder-grunde Meßwandler 2 JO 110, vorbereitet zum Eichan worbereitete geprüfte Wandler 2 JO 110 und COF 110.

Stromwandler des Typs 2 JO werden in der Fabrik im Bereich der Primärströme von 10 % bis 120 % $I_{1\alpha}$ nach folgender Tafel geeicht:

Eichung des Ausganges	für Meßapparate	Eichung des Ausganges für Schutzapparate				
Belastung des zu eichenden Ausganges für Meßapparate	Gleichzeitige Belastung des Ausganges für Schutzapparate	Belastung des zu e Ausganges für Schu				
30 VA 7,5 VA	60 VA 0 VA	60 VA 15 VA	30 VA 0 VA			

Die in der Tafel angegebenen Werte werden auf Nennstrom bezogen. Bei Nullbelastung sind die Klemmen des zugehörigen Ausganges kurzgeschlossen.

Der Nationsaktung sind die Kleinmert des Zugentrigen Ausganges kinzgeschiossen. Wichtig: Die Genauigkeit eines Ausganges in den angeführten Grenzen (25 bis 100 % der Nennbürde) ist im Betriebe gerantiert, wenn die Bürde des zweiten Ausganges nicht ihren Nennwert überschreitet. Ist ein Ausgang güberlastet, kann der Fehler des zweiten Ausganges außerhalb des zulässigen Fehlerfeldes liegen.

UMSCHALTEN DES PRIMÄR-NENNSTROMES

Die Stromwandler des Typs 2 JO werden mit Umschaltmöglichkeit des Primärnennstromes auf dem Klemmenbreit im Konservetor reliefert und zwar im Verhältnisse 1 - 9 oder 1 - 9 - 4 (siehe Tafel der technischen Angaben). Ab Werk werden sie in der Regel mit Schaltung auf den größeren (bei drei Bereichen auf den größten) Primärnennstrom versandt. Soll der Wandler auf einen anderen Bereich umgeschaltet werden, wird auf folgende Weise vorgegangen:

Geöffneter Konservator eines Stromwandlers, vorne der Ölstandzeiger, innen das Klemmenbrett zum Umschal-ten des Primärnennstromes im Verhältnisse 1:2.

- Der Konservator wird durch Lösen von 4 Schrauben M 6 / 20
 mit Selbshaniköpnen unter dem Deckoltend mit Hille
 eines Auftrekschlässels geöffnet, worauf der Konservatordeckel abgenommen werden kann.
 Auf dem Klemmenbrett im Kopi des Konservators werden die Verbildungslamellen gelöst und nach dem
 Schema in Abb. 6 oder 7 auf den gewünschien Primärstrombersich umgeschaltet.
- 3 Nach Umschalten und Festziehen der Schrauben der Verbindungslamellen wird der Konservatordeckel wieder aufgesetzt und angeschraubt.

Der Primärstrombereich kann im Freien bei jedem Weiter ohne Demontage der Zuleitung umgeschaltet wer-den, vorautgestett, daß der Wardler spennungslos ist. Es ist nur notwendig, das Innere des Konservators durch eine Notbedachung vor dem Eindringen, von Feuchtigkeit und kleiner Fremdkörper zu schützen (vergl. auch die Abschnitte Olic und Instandhaltung).

ANGABEN FÜR DIE BESTELLUNG BEI BESTELLUNG EINES STROMWANDLERS geben Sie gefälligst an:

- Vorschriften, oder Normen, denen er entsprechen soll.
- 2 Nennfrequenz.
- Nennspannung.
- 4 Primärnennstrom und Sekundärnennstrom (Umschalten des Primärnennstromes).
- Anzahl der Ausgänge für Meßapparate, deren Nennbelastungen (Nennleistungen), Ge-nauigkeitsklassen, Leistungsfaktoren der Bürden, Überstromziffern der einzelnen Aus-gänge.
- Höchste Umgebungstemperatur.
- Höhe des Bestimmungsortes über dem Meeresspiegel.
- Bestimmungsort (trocken, feucht, Binnenland, Küstengebiet, Tropen usw.).
- Ubernahmsbedingungen im Werk.
- Ubernahmsbedingungen am Bestimmungsort.
- 11 Verpackung und Transport.
- Wenn eine Ausführung verlangt wird, die sich von der in diesem Kataloge angeführten unterscheidet, jene Angaben, in welchen die Bestellung abweicht.
- 13 Besondere Bedingungen.

Die mit vertikalem Strich bezeichneten Angaben sind für die Ausarbeitung des Angebotes unbedingt notwendig.

SPANNUNGSWANDLER TYP COF

ZWECK UND WIRKUNGSWEISE:

ZWECK UND WIRKUNGSWEISE:

Die Spannungswandler sind für die Speisung der Voltmeter und der Spannungsspulen der Maß-, Registrier- und Schutzgeräte bestimmt. Ihre Primärwicklung wird zwischen den Phasenleiter und die Erde geschaltet, so daß der Spannungswandler wie ein normaler Leistungstransformator funktioniert, mit dem Unterschied, daß seine Kurzschlußepsannung klein ist und die Transformierung mit kleinem vorzus definierten Spannungstehler erfolgt. Die Belastung des Spannungswandlers ist bei gegebener Sekundärspannung durch den Strom (d. 1. durch die Leitfähigkeit des angeschlossenen Sekundärkreises) bestimmt, seine Sekundärsen Klemmen dürfen deshalb nie kurzgeschlossen werden, da der Wandler durch Kurzschluß vernichtet werden könnte. Die Erwärmung der Wicklung ist proportional zur zweiten Potenz der Leitfähigkeit des Sekundärstromes) und beträgt bei unseren Wandlern im Betriebe nur einen Bruchteil der von der Norm zugelassenen Werte, da sie so konstruktiert sind, daß sie dauemden Erdschluß im Nezr mit istoliertem Nullpunkt vertragen, wobei die Spannung an ihren Klemmen auf das 1,75-leche und die sokundäre Belastung bei gegebener Leitfähig-

sekundäre Belastung bei gegebener Leitfähig-keit der Bürde auf das 3-fache steigt.

Vorbereitung von Papier für die Wicklung der Meßwandler COF 110.

BESCHREIBUNG

Das Dispositionsschema der Meßwandler COF 60 und COF 110 ist aus Abb. 13 ersicht-lich. Der magnetische Kreis ist einphasig in Kernbauweise

5

Herstellung der Wicklung für Spannungswandler

und besteht aus papierisolierten Transformatorblechen TN 13 von 0,5 mm Dicke. Die Primärwicklung aus emailliertem seidenumsponnenem Kupfer-draht von rundem Querschnitt (2) ist gleichmäßig auf beide Kerne verteilt. Ein draht von rundem Querschnitt (8) ist gleichmabg auf beite Nerne verteilt. Ein Ende der Wicklung ist durch den Konservordeckel (3) geführt und mit der als Bolzen © 30×60 mm ausgeführten Primarklemme abgeschiossen, das zweite Ende ist an die Erdklemme _ sur den Klemmenbrett im Fahrgestell-kssten (4) angeschlossen. Für bessere Anfangsverteilung der Stoßspannung bei atmosphärischen Überspannungen ist die Eingangswindung der Primär-

Abb. 13 Schema der Spannungswandler COF 60 und COF 110.

Spannungswandler COF 110.

wicklung als Schirm ausgeführt, welche die Wicklung des oberen Kernes umschließt. Unter der Primärwicklung ist auf beiden Kernen die Ausgleichwicklung (5) angebracht, welche gleich große Induktion in beiden Kernen und dadurch auch die Verteilung der Primärspannung mit gleichen Tei-len auf beide Hälften der Primärwicklung verbürgt. Die Ausgleichwicklung ist mit dem magnetischen Kreis und dem Halbierungspunkt der Primärwicklung einpolig verbunden, wodurch ihr Potenzial gegen die Erde durch den halben Wert der primären Phasenspannung fest gegeben ist. Auf dem unteren Kern ist auf der primären Wicklung noch die Sekundärwicklung (6) angebracht, deren Enden auf das Klemmenbrett im Fahrgestell (4) ausgeführt und mit (m) und (o) bezeichnet sind. Die Ausgleichwicklung und die Sekundärwicklung sind aus papierisoliertem Kupferprofil-leiter hergestellt. Auf Wunsch des Bestellers kann der Wandler mit einer zweiten Sekundärwicklung (z. B. von einer Nennspannung 100/3 V) für die Anzeige des Erd-schlusses versehen werden. Die Induktion im Kerne ist so

gewählt, daß sie beim Erdschluß im Netz mit isoliertem Nullpunkt, wobei sich die Spannung an den Klemmen des Meßwandlers auf das 1,75-fache erhöht, nicht den Wert 1,5 Wb/m² (15 KG) übersteigt. Der ganze Wandler ist in das Innere des mit Transformatoröl gefüllten braunfarbigen Mantelisolator (7) eingebaut. Auf dem Kopfe des Isolators befindet sich der Konservator (3) mit Luftventil auf dem Deckel und Ol-

standzeiger an der rechten Seite. Der zulässige liefste Olstand bei 20 C ist mit Pfeil bezeichnet. Sich Die Disposition des Spannungswandlers COF 200 ist aus der schematischen Skitze in Abb. 14 ersichtlich. In einem zweiteiligen braunfarbigen Mantelischarer (I, 2) sind zwei Meßwandler COF 110 übereinander angebracht, von denen einer das obere Glied (3) und der zweite das untero Glied (4) der Isolierkaskade bildel. Sie

sind miteinander einerseits durch die in Serie geschaltete auf alle vier Kerne (5, 6, 7, 8) symmetrisch verteilte Primärwick-lung, anderseits durch eine besondere Kopplungswicklung elektrisch verbun-den. Jedes Glied der Kaskade hat außer-dem noch seine Ausgleichwicklung (10, 11). Das obere Eingangsglied reicht etwa bis in zwei Drittel der Höhe des oberen Mantelisolatorteiles, das untere Ausgangs-glied ist symmetrisch zur Ebene verlegt, welche die Höhe des unteren Isolator-teiles halbiert. Auf dem Kopf des oberen Isolatorteiles befindet sich der Konserva tor (12), welcher eine durch den Deckel geführte Primärklemme in Form eines Bolzens @ 30×60 mm hat. Außer der Pri-

Spannungswandler COF 220 – ältere Aus führung, nicht teilbar für den Transport

märklemme befindet sich auf dem Deckel

das Luftventil. Der Olstandzeiger an der

Abb. 14 Schema des Spannungswandlers COF 220.

Wand gibt den jeweiligen Olstand und den zu-lässigen tiefsten Stand bei 20°C an. Der auf dem Konservator befestigte Schirmring (13) frägt zur günstigen Verteilung des elektrischen Feldes auf der Oberfläche des Isolators bei. Jedes Glied der Isolatekaskade bildet, was die Konstruktion anbe-langt, einen sebiständigen Bauteil, beatos wie beim McBwandler 2 JO 220, die Verbindung (14) der bei-den Glieder is halbich neißen Die Sekundären. den Glieder ist ähnlich gelöst. Die Sekundärwick

lung ist glaich wie beim Typ COF 110.
Die Sekundkrausführungen der Wicklung der Meßwandler des Typs COF sind mit dem Klemmenbert im Fahrgestellkasten durch zwei Durchführungen im Boden des Olraumes verbunden. Der Fahrgestellkasten ist geschweißt und hat vier Hebosen. Er ist durch eine wasserdiehte Tür verschlossen und durch eine Offnung gelütiet, die um Sehuts gegen das Eindrügen kleiner Tiese mit einem Netz verdeckt ist. Das Fahrgestell der Meßwandler COF 60 und COF 110 hat vier Fahrfollen ohne Spurkfänze für eine Fahrtrichtung (nicht verseilbar), das Fahrgestell des Meßwandlers COF 220 hat vier für beide Fahrtrichtungen verstellbar) das Fahrgestell des Meßwandlers COF 220 hat vier für beide Fahrtrichtungen verstellbar har bein-ben mit Spurkfänzen in einem besohnen lung ist gleich wie beim Typ COF 110. 220 har Vielt int Deade Failmeningen vesienen beson-deren Rahmen, der von dem Kasten losgelöst wer-den kann. Die mit (O) bezeichnete Erdklemme be-findet sich an der Vorderwand des Kastens links von der Tür, ihre Schraube ist mit dem Zeichen

Prototyp eines Spannungswandlers COF 220 auf dem Höchstspannungsprüfstand.

versehen. Hinter der mit Schraube verschließ-baren Tür ist das Klemmenbrett angebracht. Der Öl-auslaß befindet sich an der Wand des Fahrgestell-kastens (Abb. 18). Der Mantelisolator ist mit gußeisernen Pratzen auf dem Fahrgestell befestigt und die Fuge ist mit ölbeständigen Gummi abgedichtet. Bei dem Typ COF 220 sind beide Teile des Mantelisolator leichfalls mit gußeisernen Pratzen und Gummidich-

gleichtalls mit gußeisernen Pratzen und Gummidichtung verbunden. Zum Schutze gegen Korona sind die Pratzen ähnlich wie beim Typ 2 JO 220 mit abgedrundsten Blechverschalungen verdeckt. Bei Ausführung für ungünzige klimatische Verhältnisse (Tropengebiete) ist der Konservator mit Olverschluß versehen und dessen Höhe, sowie die Gesamthöhe des Meßwandlers ist eiwa um 100 mm größer, als in den Maßkätzen angegeben ist. Diese Ausführung liefern wir nur auf besondere Bestellung und gegen Zuzahlung. Die Ausführung der Meßwandler entspricht der Erchechoslowarkischen Norm (SN-RSC 64-1951 und ESC 306-1950.

Maßskizzen befinden sich in den Abb. 15, 16 und 17.

Prüfung eines Meßwandlers COF 220 mit indu zierter Spannung von 440 kV unter Regen.

Contract Constitution of the Delivery Contraction City Department of the Delivery City Del

EICHUNG DER SPANNUNGSWANDLER

Die Spannungswandler Typ COF werden im Belastungsbereiche von 15 VA bis zur Nennbelastung und im Spannungsbereiche von 85 % bis 115 % der Nennspannung nach der Norm CSN-ESC 64-1951 geeicht.

ÖFFNEN DES KONSERVATORS

Der Konservator wird nach Demontage der Primärzuleitung durch Lösen der Mutter M 48 auf dem Bolzen der Primärklemme M und Abheben des Deckels geöffnet. Nach Auffüllung oder Aufbereitung des Olss wird der Konservator wieder in gleicher Weise geschlossen. Vor neuerlicher Montage der Primärleitung muß die Mutter ordentlich festgesogen werden.

TECHNISCHE ANGABEN DER SPANNUNGSWANDLER

Typ:		COF 60	COF 110	COF 220
Ausführung – Kaskade		einfach	einfach	doppelt
Isolationsspannung nach ČSN-ESČ 64-1951	kV	60	100	220
Primärnennspannung	kV	60/√ 3	100/√ 3 110/√ 3	220/√ 3
Höchste Betriebsspannung	kV	66	110 121	242
Prüfspannung der Höchstspannungs- wicklung 100 Hz (Windungsprüfung)	kV	120	200	440
Stoßhaltespannung der Höchst- spannungswicklung Welle 1,50, (Maximal für den Export)	kV	350	550 625	1050
Wicklungsprüfspannung 50 Hz	kV	2	2	2
Uberschlagspannung unter Regen	kV	> 168	> 264	> 455
Sekundärnennspannung oder	v	100/√3 110/√3	100/√3 110/√3	100/√ 3 110/√ 3
Nennbelastung (Nennleistung) in der Klasse 0,2 oder in der Klasse 0,5 oder in der Klasse 1,0	VA VA VA	120 300 600	120 300 600	120 300 600
Höchstbelastung	VA	1500	2000	2000
Fahrtrichtung		eine	eine	beide
Fahrrollen Durchmesser und Breite der Fahrrollen		glaii ≈ 125×48	glait ∂ 125×48	mit Spurkränzen Ø 165
Spurweite	mm	600	750	1435
Gewicht: ohne Ol des Oles im Ganzen	kg kg kg	310 65 375	560 165 725	1480 350 1830
Grundrißfläche		670×790	680×830	1800 × 1800
Höhe		1440	2080	3850

ANGABEN FÜR DIE BESTELLUNG

BEI BESTELLUNG EINES SPANNUNGSWANDLERS geben Sie gefälligst an:

- Vorschriften oder Normen, denen er entsprechen soll.
- 2 Nennfrequenz.
- Primär- und Sekundärnennspannung.
- 4 Nennbelastung (Nennleistung), Genauigkeitsklasse und den Nennleistungsfaktor der Bürde,
- Höchste Umgebungstemperatur.
- Die Höhe des Bestimmungsortes über dem Meeresspiegel.
- 7 Bestimmungsort (trocken, feucht, Küstengebiet, Tropen usw.).
 - 8 Ubernahmsbedingungen im Werk.
 - 9 Ubernahmsbedingungen am Bestimmungsort.
 - 10 Verpackung und Transport.
 - 11 Wenn eine Ausführung verlangt wird, die sich von der in diesem Kataloge angeführten unterscheidet, jene Angaben, in welchen die Bestellung abweicht.
 - 12 Besondere Bedingungen.

Die mit vertikalem Strich bezeichneten Angaben sind für die Ausarbeitung des Angebotes unbedingt notwendig.

KONSTRUKTION, MONTAGE UND BETRIEB

Einheitliche äußere Ausführung

Die äußere Ausführung unserer Strom- und Spannungswandler auf gleiche Isolationsspannung ist praktisch einheitlich und unterscheidet sich nur in Einzelheiten und in der Anordnung der Primärklemmen. Die mechanischen Teile, d. i. das Fahrgestell, dessen Kasten, der Olauslaß, die Befestigung des Isolators und die Fahreinrichtung, sowie die Mantelisolatoren sind gleich. Der Konservator unterscheidet sich nur durch die Anordeinrichtung, sowie die Mantelisolatoren sind gteich. Der Konservator unterscheidet sich nur durch die Anord-nung der Klemmen (beim Stromwandler sind beide Bolzen wagsrecht in der Wand, beim Spannungswandler ein Bolzen veritkal im Deckel) und durch die Art der Offinung des Deckels (beim Stromwandler durch Lösen von vier Schrauben unter dem Deckel, beim Spannungswandler durch Lösen der Mutter am Bolzen). Die Grund-rißfläche ist die gleiche. Höhe und Gewicht weichen nur unbedeutend ab. Die Fundamente für Strom- und Spannungswandler können einheitlich ausgeführt werden, ebenso die Transporteinrichtungen, die Verpackung

Zubehör und Ersatzteile

Mit jedem Meßwandler für Höchstspannung wird ein wasserdichter Kabelendverschluß für den Kabelanschluß an die Sekundärklemmen mitgeliefert. Ersatzteile sind nicht Gegenstand der Lieferung, bei deren Bestellung ist immer die Nummer des Wandlers anzugeben, für welchen sie bestimmt sind.

Transport und Lagerung

Meßwandler für Höchstspannung werden ab Weik mit Ol gefüllt geliefert und auf Plattformwagen oder mit Lastkraftwagen in stehender Kiste oder unverpackt und nur verankert befördert. Meßwandler für 220 kW werden für den Transport in zwei Teile geteilt und sowohl der obere als auch der untere Bauteil worden, mit Ol gefüllt, selbständig befördert. Der Deckel des unteren Teiles mit den Durchführungen für die Kopplungswicklung wird für den Transport noch mit einem besonderen Transportdeckel ver-deckt. Nach Einlangen am Bestimmungsort muß vor allem die Verpsekung und die Bestung (Verankerung) auf dem Wagen überprüft werden, ob sie während des Transportes nicht beschädigt wurden. Hiebei soll der Ol-stand nach dem Olstandzeiger am Konservator kontrolliert werden. Wandler für 220 kV werden am Bestimmungsorte nach einer besonderen der Lieferung beigegebenen Anleitung montiert. Für die Montage ist nur ein Flaschenzug von etwa 800 kg Tragkraft und 5 m Hakenhöhe über dem Boden notwendig.

Bei Kranbeförderung wird der Wandler mit den Haken 38¢ an den Hebeösen des Fahrgestells ergriffen und gegen Umstürzen durch Verbinden und Verflechten der Tragseile zwischen den zwei höchsten Rippen des Porzellanmantels mit Hilfe eines besonderen Seiles gesichert.

Die Befürderung auf eigenem Fahrgestell ist nur ausnahmsweise auf kurze Entfernungen gestattet. Dabei darf nicht am Porzellanmantel oder Konservator gedrückt oder gezogen werden, sondern nur am Fahrgestellkasten, das Gelände, auf welchem der Wandler befördert wird, muß eben sein, damit es nicht zu schädlichen Erschütterungen kommt.

Da die Wandler für Freiluftaufstellung bestimmt sind, können sie im Freien gelagert werden, soweit sie vo Beschädigungen geschützt sind. Bei länger dauernder Lagerung ist von Zeit zu Zeit der Olstand nach dem Ol standanzeiger zu kontrolieren, ob er nich unter angegebenen tiefsten Stand gesunken ist und ob es nicht notwendig ist. Ol nachzufüllen.

MONTAGE

Meßwandler für Höchstspannung werden in der Regel in Freiluftschaltanlagen montiert. Fundamente einschließ-lich Verankerung sind nicht Gegenstand unserer Lieferung. Die Primärklemmen werden an die Leiter ange-schlossen, welche so geführt werden müssen, dass jede Zugkraft auf die Bolzen ausgeschlossen ist. An die Sekundärklemmen im Fahrgestell werden die zugehörigen Kabeladern des Kabels aus der Schaltwarte mit Hilfe schließen (siehe Abschnitt »Erdungs).

INBETRIEBSETZUNG

Vor der Inbetriebsetzung ist der Olstand am Olstandanzeiger zu kontrollieren, worauf ein Olmuster entnommen wird, welches der Prüfung unterworfen wird. Seine elektrische Festigkeit soll wonigstens 150 kV/cm (41 kV/3 mm) betragen. Das Muster wird durch Lockerung des Olauslasses am Fahrgestell des Wandlers auf folgende Weise betragen: Das Matser with durch checketing des vonanteses an integesent est with des entrommen (Abb. 18): Die Verschlußmutter (I) mit der Dichtung (2) wird abgenommen, unter den Ausfühlstutzen stellt man ein geeignetes Gefäß und nach Abnahme der Verschlußmutter (3) mit der Dichtung (4) wird die Schraube (5) gelockert. Zuerst läßt man 0,5 bis 1 l Ol und dann in ein weiteres vorbereitetes sauberes Gefäß die für die be 1) guicken. Lieft i an linit vol. 21 To dink her her her better. Festigkeit und 10 cm³ für die Ermittlung der Prüfung notwendige Menge ab (500 cm³ für die Prüfung der elektr. Festigkeit und 10 cm³ für die Ermittlung der Neutralisationszahl des Oles). Nach Entrahme des Musters zieht man die Schraube (5) wieder fest, setzt die bei-den Dichtungen an und schraubt beide Verschlußmuttern auf.

Bei den Stromwandlern müssen die Anschlüsse der Sekundärkreise untersucht werden (ob nicht einer der Aus

gänge unterbrochen ist) und sofern an irgendwel chen Sekundärausgang keine Apparate angeschlos-sen sind, sind dessen Klemmen kurzzu-schließen. In keinen Falle darf der Meßwandler mit irgendeinem unterbrochenen Ausgang betrieben werden. Über die von die-sem Störungszustande drohende Gefahr für die Bedienung und den Meßwandler selbst belehrt der Abschnitt *Stromwandler - Zweck und Wirkungs

Abb. 18 Ölauslaß

McGwandler 2 JO 110 und COF 110 in einer Schaltanlage

ÖL UND SEINE AUFBEREITUNG IM BETRIEB

Die Meßwandler für Höchstspannung werden nach Trocknung im Vakuum mit Transformatoröl Gattung B nach CSN-ESC 8-1950 von nachfolgenden Eigenschaften gefüllt: elektrische Festigkeit 55 kV.3 mm (200 kV.cm.), Dichte 0,895, Viskosität bei 20°C höchstens 6°E (45 cSt), Stockpunkt 4-0°C, Flammpunkt in verschlossenem Tiegel wenigstens 130°C, dielektrische Konstante 2,1 bis 24, Neutralisationszahl höchstens 108 ma KCH1; av Verschlustionszahl verschlustenszahler verschlustenszu lisationszahl höchstens 0,08 mg KOH-1 g, Versei-fungszahl höchstens 0,15 mg KOH-1 g, Aschenge-halt höchstens 0,01 %, Oxydationszahl höchstens 0,15 %. Sie dürfen im Betriebe nur mit Ol gleicher o, 15 /₀, 35e durieft im Beitrebe nur mit Of giercher Herkunff mit elektrischer Festigkeit von wenig-stens 41 kV 3 mm (150 kV/cm) nachgefüllt werden, und zwar nur durch Eingießen von oben auf solche Weise, daß dabei keine Luftblasen gebildet und mit dem Olstrom in den Wandler hineingerissen werden. Es muß dabei auch auf ge-eignete Weise dafür gesorgt werden, daß weder Feuchtigkeit noch Verunreinigungen in das Ol gelangen und daß keine Fromdkörper hineinfal-Jone (Schutzbedachung u. ä.). Die elektrischen steinen Freine Freiher in der Steine Freiher in der Schutzbedachung u. ä.). Die elektrische Freiher it igkeit und der Säuregehalt des Oles ist nach dem ersten Betriebsjahre und dann wenigstens einmal alle zwei Jahre zu überprüfen. Wenn im Betriebe die elek-

trische Festigkeit des Oles unter 35 kV/3 mm (130 kV/cm) sinkt, muß das Ol aufbereitet werden. Bei der Aufberei-Insche Feitigkeit des Ures unter 55 kV/3 mm (130 kV/cm) sinkt, mub das OI autberoitet Werden. Bei der Alberbeitung des OIes darf keine Luift in die Wicklungen geraften. Es wird daher folgender Vorgang empfolien of Meßwandler wird an einen OIseparator (OIsentrifuge), dessen Trommel schon mit Transformatoröl gleicher Gattung wie im Meßwandler und guter elektrischer Eigenschaften (olektrische Festigkeit wenigstens 55 kV/3 mm - 200 kV cm) gefüllt ist, so angeschlossen, daß der Saugsschlauch mit dem OIauslaß am Fahrgestell verschraubt (Abb. 18) und der Druckschlauch so tief in den Konservator versenkt wird, daß seine Mündung schlaubn (ADD. 16) und der Drückschlauch so het in den Konservator versenkt wird, aas seine Mundung unter dem Oltspiegel zu liegen komnt. Beim Verfahren muß der Olspiegel über der Mündung des Drückschlauches erhalten werden, damit der Olstrom keine Luft in die Wicklung mitreißt. Damit das warme Ol keine Feuchtigkeit aus der Luft ansaugt, ist der Konservator zuzudecken und der Drückschlauch abzudichten. Das Ol muß so lange aufbereitet werden, bis seine elektrische Festigkeit wieder über 41 kV 3 mm (150 kV/cm)

Alle für die elektrische Festigkeit angegebenen Werte verstehen sich in effektiven kV.

ZUR BEACHTUNG WICHTIG!

Damit in der Wicklung keine Luft zurückbleibt, welche ein behächtliches Sinken des Isolationsniveaus verur Damin in der Mraching Reite Zuh zu untwickelber und der Berick im Vakuum mit Ol ge-sacht, werden die Meßwandler für Höchstspannung bei der Herstellung in der Fabrik im Vakuum mit Ol ge-füllt. Daher empfehlen wir, daß die Aufbereitung des Oles nur in notwendigen Fällen und unter Aufsicht eines Fachmannes nach den oben angeführten Richtlinien vorgenommen wird. Vor neuerlicher Inbetriebsetzung belasse man den Wandler, bei welchem das OI aufbereitet wurde, wenigstens 24 Stunden in Ruhe da mit sich das aufgewirbelte Ol beruhigt und von Luft befreit.

INSTANDHALTUNG

Die Instandhaltung des Meßwandlers für Höchstspannung im Betriebe beschränkt sich auf die zeitweise Kontrolle des Olstandes im Konservator und die Überprüfung der elektrischen Festigkeit des Oles. Sinkt das Ol im Konservator unter den angegebenen Stand, muß es nachgefüllt werden. Kontrolle und Aufbereitung des Ols werden im Abschnitt »Ola eingehend behandelt. Wenn Ol durch die undichte Fuge zwischen dem Mantelisolator und dem Fahrgestellkasten entweicht, müssen die Schrauben der Befestigungspratzen vorsichtig nachgezogen werden.

BESEITIGUNG VON STÖRUNGEN

Kleine Störungen auf dem Primärklemmenbrett der Stromwandler (im Konservator) und dem Sekundärklemmenbrett im Fahrgestell können an Ort und Stelle beseitigt werden. Zeigt sich jedoch eine Störung an ins Öl versenkten Teilen im Innern des Wandlers, ist der beschädigte Wandler zur Reparatur ins Werk zu senden (siehe auch Abschnitt »Öl«).

ERDUNG

Meßwandler für Höchstspannung müssen im Betriebe verläßlich geerdet sein. Die Erdklemme befindet sich am Fahrgestellkasten links von der Tür und seine Schraube M 8 ist mit = bezeichnet. Der kupferne Erdungsleiter muß einen Mindestquerschnitt von 50 mm² haben. Bei Spannungs- und Stromwandlern müssen die mit = bezeichneten Klemmen des Klemmenbrettes mit dem geerdeten Fahrgestellkasten verbunden werden.