Scalable Search Engine Solution A Case Study of BBS

Yifu Huang

School of Computer Science, Fudan University huangyifu@fudan.edu.cn

COMP620028 Information Retrieval Project, 2013

Outline

- Motivation
- 2 Architecture
- Implementation
- Demo
- Discussion

Motivation

- Current BBS donot support the full text search, but we need it indeed
- Get familiar with the implementation details behind search engine
- Build a scalable search engine solution that can be easily reused

Motivation

- Current BBS donot support the full text search, but we need it indeed
- Get familiar with the implementation details behind search engine
- Build a scalable search engine solution that can be easily reused

Motivation

- Current BBS donot support the full text search, but we need it indeed
- Get familiar with the implementation details behind search engine
- Build a scalable search engine solution that can be easily reused

Architecture

Architecture (cont.)

- Cluster
 - Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz
 - 4GB RAM
 - Hadoop 1.2.1
 - Namenode/Jobtracker: 1, datanode/tasktracker: 24
 - HBase 0.90.4
 - Master: 1, zookeeper: 3, regionserver: 24
- Data
 - Http://bbs.fudan.edu.cn/bbs/all
 - Board: 376
 - Post: 3111945

Architecture (cont.)

- Cluster
 - Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz
 - 4GB RAM
 - Hadoop 1.2.1
 - Namenode/Jobtracker: 1, datanode/tasktracker: 24
 - HBase 0.90.4
 - Master: 1, zookeeper: 3, regionserver: 24
- Data
 - Http://bbs.fudan.edu.cn/bbs/all
 - Board: 376
 - Post: 3111945

Hadoop

- Common
 - Configuration, serialization, compression, RPC, ...
- HDFS
 - Hdfs://namenode:9000/
 - Replication: 3

Hadoop (cont.)

- MapReduce
 - Map (k1, v1) -> (k2, v2)
 - Reduce (k2, v2) -> (k3, v3)

HBase

- Model
 - (row, column, time) -> cell

HBase (cont.)

Storage

Nutch Inject

- Key idea
 - The number of URL is large, so we map them to different nodes and inject them into HBase webpage table
- Map (offset, line, reversedUrl, page)
 - Normalize
 - Regex, ...
 - Filter
 - Regex, prefix, suffix, ,domain, automaton, ...
 - ReversedUrl
 - E.g. "http://bar.foo.com:8983/to/index.html?a=b" becomes "com.foo.bar:8983:http/to/index.html?a=b"
 - Page
 - FetchTime, fetchInterval, metadata, score, marker, ...
- Reduce default

Nutch Inject

- Key idea
 - The number of URL is large, so we map them to different nodes and inject them into HBase webpage table
- Map (offset, line, reversedUrl, page)
 - Normalize
 - Regex, ...
 - Filter
 - Regex, prefix, suffix, ,domain, automaton, ...
 - ReversedUrl
 - E.g. "http://bar.foo.com:8983/to/index.html?a=b" becomes "com.foo.bar:8983:http/to/index.html?a=b"
 - Page
 - FetchTime, fetchInterval, metadata, score, marker, ...
- Reduce default

Nutch Inject

- Key idea
 - The number of URL is large, so we map them to different nodes and inject them into HBase webpage table
- Map (offset, line, reversedUrl, page)
 - Normalize
 - Regex, ...
 - Filter
 - Regex, prefix, suffix, ,domain, automaton, ...
 - ReversedUrl
 - E.g. "http://bar.foo.com:8983/to/index.html?a=b" becomes "com.foo.bar:8983:http/to/index.html?a=b"
 - Page
 - FetchTime, fetchInterval, metadata, score, marker, ...
- Reduce default

Nutch Generate

- Key idea
 - We select some URL from HBase webpage table, map them to different nodes, and prepare to fech
- Map (reversedUrl, page, (url, scorce), page)
 - Check
 - Mark, distance, fetch schedule, score, ...
- Reduce ((url, scorce), page, reversedUrl, page)
 - Record
 - Host Count, domain Count, ...
 - Set
 - Batchld, marker, ...

Nutch Generate

- Key idea
 - We select some URL from HBase webpage table, map them to different nodes, and prepare to fech
- Map (reversedUrl, page, (url, scorce), page)
 - Check
 - Mark, distance, fetch schedule, score, ...
- Reduce ((url, scorce), page, reversedUrl, page)
 - Record
 - Host Count, domain Count, ...
 - Set
 - Batchld, marker, ...

Nutch Generate

- Key idea
 - We select some URL from HBase webpage table, map them to different nodes, and prepare to fech
- Map (reversedUrl, page, (url, scorce), page)
 - Check
 - Mark, distance, fetch schedule, score, ...
- Reduce ((url, scorce), page, reversedUrl, page)
 - Record
 - HostCount, domainCount, ...
 - Set
 - Batchld, marker, ...

Nutch Fetch

- Key idea
 - We map URL with random id to different nodes and fetch them with multi-threads in each node
- Map (reversedUrl, page, random_id, (conf, reversedUrl, page))
 - Check
 - Batchld, marker, resume, ...
- Reduce (random_id, (conf, reversedUrl, page), reversedUrl, page)
 - One producer to multiple consumers

Nutch Fetch

- Key idea
 - We map URL with random id to different nodes and fetch them with multi-threads in each node
- Map (reversedUrl, page, random_id, (conf, reversedUrl, page))
 - Check
 - Batchld, marker, resume, ...
- Reduce (random_id, (conf, reversedUrl, page), reversedUrl, page)
 - One producer to multiple consumers

Nutch Fetch

- Key idea
 - We map URL with random id to different nodes and fetch them with multi-threads in each node
- Map (reversedUrl, page, random_id, (conf, reversedUrl, page))
 - Check
 - Batchld, marker, resume, ...
- Reduce (random id, (conf, reversedUrl, page), reversedUrl, page)
 - One producer to multiple consumers

Nutch Fetch (cont.)

- QueueFeeder
 - Feed the queues with input items, and re-fills them as items are consumed by FetcherThread-s
- FetcherThread
 - Pick items from queues and fetches the pages
 - Check robot rules
 - Check crawl delay schedule
 - Get page content
 - Check status code

Nutch Fetch (cont.)

- QueueFeeder
 - Feed the queues with input items, and re-fills them as items are consumed by FetcherThread-s
- FetcherThread
 - Pick items from queues and fetches the pages
 - Check robot rules
 - Check crawl delay schedule
 - Get page content
 - Check status code

Nutch Parse

- Key idea
 - We map URL to different nodes, extract field from them and save into HBase webpage table
- Map (reversedUrl, page, reversedUrl, page)
 - Set
 - Text, title, signature, outlinks, ...
- Reduce default

Nutch Parse

- Key idea
 - We map URL to different nodes, extract field from them and save into HBase webpage table
- Map (reversedUrl, page, reversedUrl, page)
 - Set
 - Text, title, signature, outlinks, ...
- Reduce default

Nutch Parse

- Key idea
 - We map URL to different nodes, extract field from them and save into HBase webpage table
- Map (reversedUrl, page, reversedUrl, page)
 - Set
 - Text, title, signature, outlinks, ...
- Reduce default

Nutch Updatedb

- Key idea
 - We map URL to different nodes, extract their outlinks, and prepare to fetch these outlinks
- Map (reversedUrl, page, (reversedOut, score), pageOut)
 - Check outlink depth ...
- Reduce ((reversedOut, score), pageOut, reversedOut, pageOut)
 - Set inlinks ...

Nutch Updatedb

- Key idea
 - We map URL to different nodes, extract their outlinks, and prepare to fetch these outlinks
- Map (reversedUrl, page, (reversedOut, score), pageOut)
 - Check outlink depth ...
- Reduce ((reversedOut, score), pageOut, reversedOut, pageOut)
 - Set inlinks ...

Nutch Updatedb

- Key idea
 - We map URL to different nodes, extract their outlinks, and prepare to fetch these outlinks
- Map (reversedUrl, page, (reversedOut, score), pageOut)
 - Check outlink depth ...
- Reduce ((reversedOut, score), pageOut, reversedOut, pageOut)
 - Set inlinks ...

Nutch Solrindex

- Key idea
 - We map URL to different nodes, generate document and build index to solr server
- Map (reversedUrl, page, reversedUrl, doc)
 - Set
 - Id, digest, batchld, boost, ...
- Reduce default

Nutch Solrindex

- Key idea
 - We map URL to different nodes, generate document and build index to solr server
- Map (reversedUrl, page, reversedUrl, doc)
 - Set
 - Id, digest, batchld, boost, ...
- Reduce default

Nutch Solrindex

- Key idea
 - We map URL to different nodes, generate document and build index to solr server
- Map (reversedUrl, page, reversedUrl, doc)
 - Set
 - Id, digest, batchld, boost, ...
- Reduce default

Solr

Demo

10.171.5.222:3000

© If

Discussion

- Result
 - BBS search engine demo
 - A scalable search engine solution that can be easily reused
- Future Work
 - Incremental crawler
 - Field search
 - Personalized recommendation
 - ...

Discussion

- Result
 - BBS search engine demo
 - A scalable search engine solution that can be easily reused
- Future Work
 - Incremental crawler
 - Field search
 - Personalized recommendation
 - •

References I

- [1] The Google File System. SOSP2003.
- [2] MapReduce: Simplified Data Processing on Large Clusters. OS DI2004.
- [3] Bigtable: A Distributed Storage System for Structured Data. OSDI2006.
- [4] Hadoop: The Definitive Guide. 2012.
- [5] Data-Intensive Text Processing with MapReduce. 2010.
- [6] The Hadoop Distributed File System. MSST2010.
- [7] Apache Hadoop YARN: Yet Another Resource Negotiator. SOCC2013.
- [8] HBase: The Definitive Guide. 2011.

