PDECO - Input Options

A summary of all possible input options for PDECO. The options are called 'opts'. This has two substructures 'optsPhys' and 'optsNum'. These are detailed in the following.

1 optsPhys

There are three sub-structures in this structure. They are 'ProbSpecs', 'DataIn' and 'Params'.

1.1 optsPhys.ProbSpecs

The structure 'ProbSpecs' contains all problem specifications that are needed to specify a given problem to solve. The input options are summarized in the table below.

Input Name	'BCFunStr'		
Description	Determines boundary conditions		
Options	'ComputeDirichletBCs', 'ComputeNeumannBCs', 'ComputeMixedBCs'		
	takes inputs: 'rho', 'rhoflux', 'bound', 'normal', 'this'.		
	parameter 'eps' for Dirichlet Contribution in MixedBCs (See 'Params')		
Input Name	'PDERHSStr'		
Description	Determines which PDE is solved,		
	all can include interaction term, switched on with 'gamma' (see 'Params')		
Options 1D	'D_Force': Diffusion, Force Control		
	AD_Force: Advection Diffusion, Force Control (inc. Vext, Force)		
	AD_Forcefl: Advection Diffusion, Force Control (inc. Vext, Force, wFlow)		
	AD_Flow: Advection Diffusion, Flow Control (only Flow term)		
	AD_Flowf: Advection Diffusion, Flow Control (Flow term and Force)		
	AD_FlowfVext: Advection Diffusion, Flow Control (Flow term, Force, Vext)		
Options 2D	These remain the same for 1D and 2D		
Note:	To include a new PDE see separate table below.		
Input Name	'SolverFlag'		
Description	Choosing the solver for Optimization		
Options	'fsolve': Inbuilt MatLab solver and with Multiple Shooting.		
	'Picard': Picard update and Multiple Shooting		
	'FixPt': Picard update/ Fixed Point iteration, no shooting		
Input Name	'AdaSolverStr'		
Description	Option to make Picard or Fixed Point Algorithm adaptive.		
Options	Input is a function name, Function input 'Err' and 'lambda'.		
	'Adaptive': will change 'lambda' (see 'Params') to be adaptive		
	'[]', or exclusion of this option will leave 'lambda' static.		

Input Name	'ComputeNorm'
Description	Specifies in which norm errors are computed within the solver.
	Takes function name as input. Needs to have syntax ComputeNorm(fNew,fOld,SInt,TInt).
	(SInt: Space Integration TInt: Time Integration)
Options	'ComputeRelL2LinfNorm': Relative Norm, L2 space, Linf time.
	'ComputeRelPWNorm': Relative Norm, Pointwise errors.
	'ComputeL1Norm': Absolute Norm, L1 space and time.

	Adding new PDEs into PDECO:	
1D FW (& rho Opt)	Naming convention of the function: 'ComputeFW'&'PDERHSStr':	
Input arguments:	(rho, Dy, DDy, D0, gamma, ConvV2FW, Flow, wFlow,	
	Force, wForce, gradVext, this, otheropts)	
1D Adjoint Equation	Naming convention of the function: 'ComputeOptp'& 'PDERHSStr'.	
Input arguments:	(p, Dy, DDy, D0, gamma, ConvV2BW1, ConvV2BW2, rhoLater, rhoHat, FlowBv	
	wFlowLater, gradVextBw, this, otheropts);	
2D FW (& rho Opt)	Naming convention of the function: 'ComputeFW2D'&'PDERHSStr'	
Input arguments:	(rho, rho2, Div, Grad, Lap, D0, gamma, ConvV2FW, Flow, wFlow, Force,	
	wForce, gradVext, this, otheropts)	
2D Adjoint Equation Naming convention of the function: 'ComputeOptp2D'& 'PDERHS'		
Input arguments: (p, p2, gradp, rhoLater, rhoHat, Div, Grad, Lap, D0, gamma, Conv		
	ConvV2BW22D, wFlowLater, gradVextBw, FlowBw, this, otheropts)	

1.2 optsPhys.DataIn

This structure includes all the input data to the solver. It can take the input as matrices or as function name. For each variable, the code checks whether the variable name exists as input. If it does, this will be used in the code, and interpolated where necessary. If it does not exist, then the field is created and filled by the given function. If all variables are specified by the function, then the only input in 'DataIn' is the function name! The below table illustrates the options.

One special case is the initial guess for rho to the optimization problem. This can be specified to be the forward solution.

Input Name	Input Description	Options
testFun	Function Name of input function	e.g. 'AD_Flow_Neumann_Exact'.
		Needs all the below variables in output structure.
		Set variable to zero if not needed.
Optional:		
rhoIC	Initial Condition for rho	Input vector $(1 \times N)$ or not existent.
pIC	Final Time Condition for p	Input vector $(1 \times N)$ or not existent.
OptirhoIG	Initial guess for Optimization	Input Matrix $(n \times N)$, not existent,
		or 'rhoFW' to call forward result as IG
OptipIG	Initial guess for Optimization	Input Matrix $(n \times N)$ or not existent.
wFlow	Flow Control term	Input Matrix $(n \times N)$ or not existent.
wForce	Force Control term	Input Matrix $(n \times N)$ or not existent.
Force	Additional Force term	Input Matrix $(n \times N)$ or not existent.
Flow	Additional Flow term	Input Matrix $(n \times N)$ or not existent.
Vext	External Potential term	Input Matrix $(n \times N)$ or not existent.

1.3 optsPhys.Params

Here, any relevant parameters are specified.

Input Name	Description	
beta	Regularization parameter in optimization	
gamma	Magnitude of particle interaction term.	
lambda	Mixing rate of old and new solution in 'Picard' and 'FixPt' solvers.	
D0	Diffusion Coefficient.	
eps	Contribution of Dirichlet term to Mixed BCs.	
other	Additional input structure to 'testFun'.	
other.scalerho	scaling parameter for rho.	
other.scalep	scaling parameter for p.	
other.deg	degree if t is 'polynomial': t^{deg} .	

$1.4 \quad optsPhys.V2Num/optsNum.V2Num$

'V2Num' is part of both 'optsPhys' and 'optsNum'. It contains the Kernel function for the particle interaction term and takes additional parameters.

Input Name	Description	
'V2'	Takes a function name, e.g. 'ComputeGaussian'.	
	This function takes the inputs 'V2Num' and 'y', the points.	
'alpha'	A parameter for the function.	

2 optsNum

This structure has four (five) substructures: 'PhysArea', 'PlotArea'. 'TimeArea' and 'Tols' (and 'V2Num' - see above).

2.1 optsNum.PhysArea

Specifies the physical spacial domain on which computations should be carried out.

Dimension	Shape	Number of space points	Boundary
1D	'SpectralLine'	'N'	'yMin', 'yMax'
2D	'Box'	'N' (input as e.g. [50, 50])	'y1Min', 'y1Max', 'y2Min', 'y2Max'

2.2 optsNum.PlotArea

Specifies plotting points and area.

Dimension	Number of plotting points	Boundary
1D	'N'	'yMin', 'yMax'
2D	'N1', 'N2'	'y1Min', 'y1Max', 'y2Min', 'y2Max'

2.3 optsNum.TimeArea

Specifies the time domain on which computations should be carried out.

Boundary left	Boundary right	Number of time points
't0'	'TMax'	'n'

2.4 optsNum.Tols

Solver tolerances etc.

Location of usage	Input Name	Description
ODE solver	'AbsTol'	Absolute Tolerance
ODE solver	'RelTol'	Relative Tolerance
fsolve	'FunTol'	Function Tolerance
fsolve	'OptiTol'	Optimality Tolerance
fsolve	'StepTol'	Stepsize Tolerance
Picard, FixPt	'ConsTol'	Consistency Tolerance
		Consistency condition for convergence.