Fonctions Numériques Limites de fonctions MPSI 2

1 Dfinitions

Définition 1.0.1

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I. Soit $l \in \mathbb{R}$

• f(x) tend vers l quand x tend vers x_0 :

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Définition 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I.

• f(x) tend vers $+\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$$

• f(x) tend vers $-\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow f(x) < K$$

Propriété 1.0.1

Si $x_0 \in I$, alors la seule limite ventuelle de f(x) en x_0 est $f(x_0)$

On suppose qu'il existe l dans \mathbb{R} , tel que $f(x) \underset{x \to x_0}{\longrightarrow} l$

$$\boxed{\text{HA}} \ l \neq f(x_0)$$

① $l \in \mathbb{R}$

Alors $\forall \varepsilon \in \mathbb{R}^{+*}$, $\exists \alpha \in \mathbb{R}^{+*}$, $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$ Supposons $l > f(x_0)$

Posons $\varepsilon = \frac{l - f(x_0)}{2}$

Alors $f(x_0) \notin]\hat{l} - \varepsilon, l + \varepsilon[.$

Soit α vrifiant les conditions de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$

En particulier, avec $x = x_0$, on a $f(x_0) \in]l - \varepsilon, l + varepsilon[$

On a donc une contradiction.

(2) $l = +\infty$

Alors $\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$

Soit K un rel strictement suprieur à $f(x_0)$

Soit α un rel vrifiant les condition de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) > K$

En particulier, avec $x = x_0$, on a $f(x_0) > K$

On a donc une contradiction.

(3) $l=-\infty$

On procde de même.

Conclusion: $l = f(x_0)$

Définition 1.0.3

Soit $f \in \mathcal{F}(I, \mathbb{R})$

• f(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers $+\infty$:

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow |f(x) - l| < \varepsilon$$

• f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$:

$$\forall K \in \mathbb{R}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) > K$$

Propriété 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit $x_0 \in \mathbb{R}$ tel que x_0 soit un lment de I ou une extrmit de I.

Soit $(l, l') \in \overline{\mathbb{R}} \times \overline{\mathbb{R}}$.

Si f admet l et l' comme limite en x_0 , alors l = l'

Notations:
$$\lim_{\substack{x \to x_0 \\ x \in I}} f(x) = l \text{ et } f(x) \underset{x \in I}{\longrightarrow} l$$

Cas où $x_0 \in \mathbb{R}$ et $l \in \mathbb{R}$ et $l' \in \mathbb{R}$

- ①: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_1 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_1 \Rightarrow |f(x) l)| < \varepsilon$
- ②: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_2 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_2 \Rightarrow |f(x) l'| < \varepsilon$

Supposons $l \neq l'$, et l > l'

Posons
$$\varepsilon = \frac{l-l'}{2}$$

On a donc $]l - \varepsilon, l + \varepsilon[\cap]l' - \varepsilon, l' + \varepsilon[=\varnothing]$

Soit α_1 et α_2 vrifiant ① et ②.

Soit $\alpha = \min(\{\alpha_1, \alpha_2\})$

Alors $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow (|f(x) - l| < \varepsilon \text{ et } |f(x) - l'| < \varepsilon)$

Autrement dit: $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) \in]l - \varepsilon, l + \varepsilon \cap [l' - \varepsilon, l' + \varepsilon]$

On a donc une contradiction.

Conclusion: l = l'

Remarques:

- Soit $l \in \mathbb{R}$. Alors $f(x) \underset{x \in I}{\longrightarrow} l \iff f(x) l \underset{x \in I}{\longrightarrow} 0$
- Soit $l \in \mathbb{R}^{+*}$. Alors $f(x) \underset{x \to x_0}{\overset{x \in I}{\longrightarrow}} l \iff \frac{f(x)}{l} \underset{x \to x_0}{\overset{x \in I}{\longrightarrow}} 1$ Soit $x_0 \in I$. Alors $f(x) \underset{x \to I}{\overset{x \to I}{\longrightarrow}} l \iff f(x_0 + h) \underset{h \to 0}{\overset{x \in I}{\longrightarrow}} l$

Propriété 1.0.3

On suppose que f(x) tend vers $l \in \mathbb{R}$ quand x tend vers $x_0 \in I$.

- $Si\ f(x) \in [a,b]$ au voisinage de x_0 , alors $l \in [a,b]$.
- Au voisinage de x_0 : l 1 < f(x) < l + 1
- Si $l \neq 0$ alors au voisinage de x_0 : $\frac{|l|}{2} < |f(x)| < \frac{3|l|}{2}$

 1^{er} point dans le cas où $x_0 = +\infty$

 $\overline{\text{Donc}}$ (1): $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow |f(x) - l| < \varepsilon$

On suppose $\exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) \in [a, b]$

Montrer que $l \in [a, b]$

 $|HA| l \notin [a, b]$. Donc l < a ou l > b.

• Si l < a

Soit $\varepsilon = a - l \text{ (car } l < a)$

Donc ②: $\exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) \in]2l - a, a[$

Soit k_1 et k_2 deux rels vrifiant (1) et (2).

On pose $k = \min\{k_1, k_2\}$

D'après (1) et (2): $\forall x \in I, \ x > k \Rightarrow f(x) \in]2l - a, a[\cap [a, b]]$

Or, $|2l - a, a| \cap [a, b] = \emptyset$

On a donc une contradiction.

• Si l > b, on procède de même.

On conclut que $l \in [a, b]$

 $2^{\rm \grave{e}me}$ point: On revient aux dfinitions avec $\varepsilon=1$

 $3^{\text{ème}}$ point: On revient aux dfinitions et on prend $\varepsilon = \frac{|l|}{2}$

Propriété 1.0.4

Soit $x_0 \in \mathbb{R}$.

- $Si\ f(x) \underset{x \to x_0}{\longrightarrow} l$, $avec\ l \in \mathbb{R}$,
 - Alors f est borne au voisinage de x_0 .
- $Si\ f(x) \xrightarrow[x \to x_0]{} l$, $avec\ l \in \mathbb{R}^*$,
 - Alors |f(x)| est minor par un nombre strictement positif au voisinage de x_0
- Si f(x) est de signe constant au voisinage de $+\infty$, et si $f(x) \underset{x \to x_0}{\longrightarrow} l$, Alors l est du même signe.

Propriété 1.0.5

Utilisation des proprits predentes.

Définition 1.0.4

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit $x_0 \in I$.

On note $I^+ = I \cap [x_0, +\infty[$ et $I^- = I \cap] - \infty, x_0[$

- On appelle <u>limite</u> à droite de f(x) en x_0 la limite finie, si elle existe, de f(x) lorsque x tend vers x_0 sur I^+
- On appelle <u>limite</u> à gauche de f(x) en x_0 la limite finie, si elle existe, de f(x) lorsque x tend vers x_0 sur I^-

Notations:
$$\lim_{\substack{x\to x_0\\x\in I^+}}f(x)=f(x_0^+)$$
 et $\lim_{\substack{x\to x_0\\x\in I^-}}f(x)=f(x_0^-)$

Propriété 1.0.6

Soit $x_0 \in I$

- $Si\ f(x) \xrightarrow[x \to x_0]{} l$, $alors\ f(x_0^+) = f(x_0^-) = l$.
- Si f(x) admet une limite à droite et à gauche en x_0 , et si $f(x_0^+) = f(x_0^-) = f(x_0)$, Alors $f(x) \underset{x \to x_0}{\longrightarrow} f(x_0)$.

$$\frac{1^{\text{er}} \text{ point: On suppose } \forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}{\text{Alors: } \forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I^+, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}$$
 Et: $\forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I^-, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}$ Donc $f(x)$ admet une limite à droite et à gauche en x_0 , et $f(x_0^+) = f(x_0^-) = l$

```
\frac{2^{\text{ème}} \text{ point: On suppose que } f(x_0^+) = f(x_0^-) = f(x_0).}{\text{Soit } \varepsilon \in \mathbb{R}^{+*} \text{ fix.}}

On a: \exists \alpha_1 \in \mathbb{R}^{+*}, \forall x \in I^+, |x - x_0| < \alpha_1 \Rightarrow |f(x) - f(x_0)| < \varepsilon
Et: \exists \alpha_2 \in \mathbb{R}^{+*}, \forall x \in I^-, |x - x_0| < \alpha_2 \Rightarrow |f(x) - f(x_0)| < \varepsilon
Soit \alpha_1 et \alpha_2 deux tels rels.

Soit \alpha = \min(\{\alpha_1, \alpha_2\})
D'où: \forall x \in I \setminus \{x_0\}, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon
Par ailleurs, pour x = x_0: |x - x_0| < \alpha et |f(x) - f(x_0)| < \varepsilon
Donc: \forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon
Ce raisonnement tant valable pour tout \varepsilon \in \mathbb{R}^{+*}, on conclut que f(x) \xrightarrow[x \to x_0]{} f(x_0)
```

2 Limites et continuit

```
Définition 2.0.5
Soit I un intervalle non vide.
Soit f une fonction numrique dfinie sur I.
Soit x_0 un lment de I.
On dit que \underline{f} est continue en x_0 si:
\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon
```

Remarque: on peut prolonger certaines fonctions par continuit.

3 Limite de fonction et convergence de suites

```
Propriété 3.0.7 
Caractrisation squentielle de la limite 
Soit f \in \mathcal{F}(I,\mathbb{R}).
Soit x_0 et l deux lments de \overline{\mathbb{R}}
```