Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(0, -1):-!.

f(I,Y):-J is I-1, \underline{f(J,V)}, V>0, !, K is J, Y is K+V.

f(I,Y):-J is I-1, \underline{f(J,V)}, Y is V+I.
```

Rewrite the definition in order to avoid the recursive call $\underline{\mathbf{f(J,V)}}$ in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list of permutations of the set 1..N, having the property that the absolute value of the difference between 2 consecutive values from the permutation is >=2. Write the mathematical models and flow models for the predicates used. For example, for N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (not necessarily in this order).

- **C.** An n-ary tree is represented in Lisp as (node subtree1 subtree2 ...). Write a Lisp function to return the list of nodes on the given level \mathbf{k} . The root level is assumed zero. **A MAP function shall be used.** *Example* for the tree (a (b (g)) (c (d (e)) (f)))
- **a)** k=2 => (g d) **b)** k=5 => ()