Criticalité, identification et jeux de suppression de sommets dans les graphes

Soutenance de thèse d'Antoine Dailly

Sous la direction de Éric Duchêne, Hamamache Kheddouci et Aline Parreau.

27 septembre 2018

Cadre de la thèse

Graphes

Graphe G(V, E):

► Sommets *V*

Graphes

Graphe G(V, E):

- ► Sommets *V*
- ► Arêtes *E*

Graphes

Graphe G(V, E):

- ► Sommets *V*
- ► Arêtes *E*

Modèle puissant (réseaux, automates...) et objet mathématique.

Jeux

Jeux

- Deux joueurs;
- ► Information parfaite;
- ▶ Pas de hasard.

Cadre de la thèse

Cadre de la thèse

Définition

Définition

Définition

Définition

Définition

Un graphe est D2C s'il a diamètre 2 et si supprimer toute arête augmente son diamètre.

Définition

Un graphe est D2C s'il a diamètre 2 et si supprimer toute arête augmente son diamètre.

Définition

Un graphe est D2C s'il a diamètre 2 et si supprimer toute arête augmente son diamètre.

Graphes bipartis complets

Graphe de Clebsch

Graphe de Chvàtal

Exemple : $K_{k,\ell}$

Exemple : $K_{k,\ell}$

Exemple : $K_{k,\ell}$

Exemple : $K_{k,\ell}$

Exemple : graphes D2C sans triangles Au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes; égalité $\Leftrightarrow G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$ (Mantel, 1907).

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

•
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

- ► $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975) ► $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta et Häggkvist, 1979)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

- $M < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

▶ $n \le 24$, n = 26 (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ► $n \le 24$, n = 26 (Fan, 1987)
- $ightharpoonup n \ge 2^{2^{\cdot \cdot \cdot^2}}$ taille 10¹⁴ (Füredi, 1992)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- $ightharpoonup m < rac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ► $n \le 24$, n = 26 (Fan, 1987)
- $n \ge 2^{2^{\cdot \cdot \cdot^2}}$ taille 10¹⁴ (Füredi, 1992)
- $ightharpoonup \Delta \geq 0.6756n$ (Jabalameli *et al.*, 2016)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ► $n \le 24$, n = 26 (Fan, 1987)
- $n \ge 2^{2^{\cdot \cdot \cdot ^2}}$ taille 10¹⁴ (Füredi, 1992)
- $ightharpoonup \Delta \geq 0.6756n$ (Jabalameli *et al.*, 2016)
- ► Avec une arête dominante (Hanson et Wang, 2003, Haynes *et al.*, 2011, Wang 2012)

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Théorème (Balbuena et al., 2015)

Si G est D2C non-biparti sans triangles, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes, avec égalité ssi G est une inflation de C_5 .

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Théorème (Balbuena et al., 2015)

Si G est D2C non-biparti sans triangles, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes, avec égalité ssi G est une inflation de C_5 .

Conjecture : renforcement linéaire (Balbuena et al., 2015)

Si G est D2C non-biparti et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes. Si $n \geq 10$, il y a égalité ssi G est une inflation de C_5 .

$$H_5 = 0$$

Conjecture : renforcement linéaire (Balbuena et al., 2015)

Si G est D2C non-biparti et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes. Si $n \geq 10$, il y a égalité ssi G est une inflation de C_5 .

$$H_5 =$$

→ Difficile! Renforcement constant?

Notre résultat principal

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left| \frac{n^2}{4} \right| - 2$ arêtes.

Principe de la preuve

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left| \frac{n^2}{4} \right| - 2$ arêtes.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

Plan

1. Partitionner les sommets en deux ensembles A et B.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Définition

Une arête e est critique pour les sommets x et y si

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

 \rightarrow Soit e = xy et $N(x) \cap N(y) = \emptyset$;

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

$$\rightarrow$$
 Soit $e = xy$ et $N(x) \cap N(y) = \emptyset$;

$$\rightarrow$$
 Soit $xy \notin E$, $N(x) \cap N(y) = \{z\}$ et $e \in \{xz, yz\}$.

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

$$\rightarrow$$
 Soit $e = xy$ et $N(x) \cap N(y) = \emptyset$;

$$\rightarrow$$
 Soit $xy \notin E$, $N(x) \cap N(y) = \{z\}$ et $e \in \{xz, yz\}$.

⇒ Toute arête est critique pour une paire de sommets

La fonction fSoit xy une arête dans A.

La fonction f

Soit xy une arête dans A.

ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ► Critique pour y et z avec $z \in B \cap N(x)$

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

Lemme

f est injective.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

Lemme

f est injective. \Rightarrow Borne de Murty-Simon démontrée

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Définir une orientation des arêtes internes

La f-orientation Si $f(xy) = \overline{yz}$,

Définir une orientation des arêtes internes

La *f*-orientation

Si $f(xy) = \overline{yz}$, on oriente xy de $x \ge y$.

Définir une orientation des arêtes internes

La f-orientation

Si $f(xy) = \overline{yz}$, on oriente xy de $x \ge y$.

Prochaine étape

Trouver 2 non-arêtes libres en utilisant les propriétés de l'orientation.

Lemme

Lemme

Lemme

Lemme

Lemme

Pas de cycle orienté ⇒ Au moins une source et un puits

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Fin de la preuve

► Au moins une source et un puits à distance au moins 3 dans une composante ⇒ Preuve terminée

Pas de cycle orienté
⇒ Au moins une
source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Fin de la preuve

- ► Au moins une source et un puits à distance au moins 3 dans une composante ⇒ Preuve terminée
- ► Sinon ⇒ Raffinement des propriétés pour terminer la preuve

Conclusion

- ► Montrer l'intérêt de renforcer la borne de Murty-Simon
- ► Méthode de la *f*-orientation potentiellement réutilisable

Conclusion

- ► Montrer l'intérêt de renforcer la borne de Murty-Simon
- ► Méthode de la *f*-orientation potentiellement réutilisable

Perspectives

- ► Améliorer la borne pour cette famille
- ► Étudier d'autres familles de graphes D2C

Jeu octal

► Sur une pile de jetons

Exemple:

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ► Un ensemble de partition : P

Exemple:

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ► Un ensemble de partition : *P*

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- lackbox Un ensemble de soustraction : S
- ► Un ensemble de partition : *P*

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ightharpoonup Un ensemble de partition : P

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ightharpoonup Un ensemble de partition : P

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ightharpoonup Un ensemble de partition : P

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ► Un ensemble de partition : *P*

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ightharpoonup Un ensemble de partition : P

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Jeu octal

- ► Sur une pile de jetons
- ightharpoonup Un ensemble de vidage : V
- ightharpoonup Un ensemble de soustraction : S
- ightharpoonup Un ensemble de partition : P

Définissent un code octal

$$V = S = \{2, 3\}$$

 $P = \{3\}$

Si
$$P = \emptyset$$
 et $V = S \Rightarrow$ Jeux de soustraction

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(ext)$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(\mathsf{ext})$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

п	0	1	2	3	4	5	6	7	8
Issue									

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(ext)$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

п	0	1	2	3	4	5	6	7	8
Issue	\mathcal{P}	\mathcal{P}							

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(ext)$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

n	0	1	2	3	4	5	6	7	8
Issue	\mathcal{P}	\mathcal{P}							

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(ext)$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

n	0	1	2	3	4	5	6	7	8
Issue	\mathcal{P}	\mathcal{P}	N	\mathcal{N}					

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(\mathsf{ext})$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

п	0	1	2	3	4	5	6	7	8
Issue	\mathcal{P}	\mathcal{P}	N	N	N	N	\mathcal{P}	N	

Jeu fini \Rightarrow Toujours un gagnant! Problème de décision : qui gagne?

Issue

- ▶ Premier joueur a une stratégie gagnante $\rightarrow \mathcal{N}(ext)$
- **Deuxième** joueur a une stratégie gagnante $\rightarrow \mathcal{P}(\text{revious})$

Séquence des issues

Séquence des issues sur une seule pile de taille $n=0,1,2,3,4,\ldots$

Exemple : **0.037** (
$$V = S = \{2, 3\}, P = \{3\}$$
)

Deux piles de tailles 2 et 3

п	0	1	2	3	4	5	6	7	8
Issue	\mathcal{P}	\mathcal{P}	N	\mathcal{N}	N	N	\mathcal{P}	N	

Somme de jeux

Somme de jeux

Somme de jeux

Somme

Dans $J_1 + J_2$, jouer soit sur J_1 , soit sur J_2 .

Somme de jeux

Somme

Dans $J_1 + J_2$, jouer soit sur J_1 , soit sur J_2 .

+	\mathcal{P}	\mathcal{N}
\mathcal{P}	\mathcal{P}	\mathcal{N}
\mathcal{N}	\mathcal{N}	

Somme de jeux

Somme

Dans $J_1 + J_2$, jouer soit sur J_1 , soit sur J_2 .

+	\mathcal{P}	\mathcal{N}
\mathcal{P}	\mathcal{P}	\mathcal{N}
\mathcal{N}	\mathcal{N}	?

$$\mathcal{N} + \mathcal{N} = \mathcal{P}$$

$$\mathcal{N} + \mathcal{N} = \mathcal{N}$$

$$\mathcal{N} + \mathcal{N} = \mathcal{P}$$

$$\mathcal{N} + \mathcal{N} = \mathcal{N}$$

Valeur de Grundy

Classe d'équivalence de J, notée $\mathcal{G}(J)$. Raffinement de l'issue. \rightarrow Valeur entière positive

25/37

$$\mathcal{N} + \mathcal{N} = \mathcal{P}$$

$$\mathcal{N} + \mathcal{N} = \mathcal{N}$$

Valeur de Grundy

Classe d'équivalence de J, notée $\mathcal{G}(J)$. Raffinement de l'issue. \rightarrow Valeur entière positive

Théorème de Sprague-Grundy (1935, 1939)

$$G(J_1 + J_2) = G(J_1) \oplus G(J_2)$$

$$\mathcal{N} + \mathcal{N} = \mathcal{P}$$

$$\mathcal{N} + \mathcal{N} = \mathcal{N}$$

Valeur de Grundy

Classe d'équivalence de J, notée $\mathcal{G}(J)$. Raffinement de l'issue.

 $\rightarrow \, \mathsf{Valeur} \,\, \mathsf{enti\`{e}re} \,\, \mathsf{positive}$

Théorème de Sprague-Grundy (1935, 1939)

$$G(J_1 + J_2) = G(J_1) \oplus G(J_2)$$

Séquence de Grundy

Séquence des $\mathcal{G}(n)$ pour $n = 0, 1, 2, 3, 4, \dots$

Théorème (Berlekamp, Conway, Guy (Winning Ways, 1982))

La séquence de Grundy d'un jeu de soustraction ($P = \emptyset$) est ultimement périodique.

Théorème (Berlekamp, Conway, Guy (Winning Ways, 1982))

La séquence de Grundy d'un jeu de soustraction ($P=\emptyset$) est ultimement périodique.

Et pour les jeux octaux?

- ▶ **0.7** ($V = S = P = \{1\}$) : période 2
- ▶ **0.07** ($V = S = P = \{2\}$) : période 34, prépériode 68

Théorème (Berlekamp, Conway, Guy (Winning Ways, 1982))

La séquence de Grundy d'un jeu de soustraction ($P=\emptyset$) est ultimement périodique.

Et pour les jeux octaux?

- ▶ **0.7** ($V = S = P = \{1\}$) : période 2
- ▶ **0.07** ($V = S = P = \{2\}$) : période 34, prépériode 68
- ▶ **0.007** ($V = S = P = \{3\}$) : pas de régularité sur 2^{28} valeurs...

Théorème (Berlekamp, Conway, Guy (Winning Ways, 1982))

La séquence de Grundy d'un jeu de soustraction ($P=\emptyset$) est ultimement périodique.

Et pour les jeux octaux?

- ▶ **0.7** ($V = S = P = \{1\}$) : période 2
- ▶ **0.07** ($V = S = P = \{2\}$) : période 34, prépériode 68
- ▶ **0.007** ($V = S = P = \{3\}$) : pas de régularité sur 2^{28} valeurs...

Conjecture (Guy, 1982)

La séquence de Grundy d'un jeu octal est ultimement périodique.

Observation

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

▶ Retirer des jetons → Supprimer un sous-graphe connexe

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

► Retirer des jetons → Supprimer un sous-graphe connexe

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

- ▶ Retirer des jetons → Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

- ightharpoonup Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe
- ⇒ Généricité du support de jeu

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

- ightharpoonup Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lacktriangledown Diviser une pile ightarrow Déconnecter un graphe
- ⇒ Généricité du support de jeu

Inclut des jeux de la littérature (ARC-KAYLES, GRIM...)

Observation

Jeu octal sur les graphes (BCDGMPS, 2018)

- ightharpoonup Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lacktriangledown Diviser une pile ightarrow Déconnecter un graphe
- ⇒ Généricité du support de jeu

Inclut des jeux de la littérature (ARC-KAYLES, GRIM...)

Question

Comment étendre les questions de régularité aux graphes?

- ightharpoonup Jeux octaux ightarrow séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} P_k =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} \stackrel{\bullet}{P_k} =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux!

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} P_k =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux ! \Rightarrow Nous étudions les jeux de soustraction connexes (CSG(S), $P = \emptyset$, V = S)

Jeu Graphe et sommet <i>u</i>	Régularité	Référence
-------------------------------	------------	-----------

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES $V = S = \{2\}$ $P = \{2\}$	0		Huggan et Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES $V = S = \{2\}$ $P = \{2\}$	k	Ultime périodicité conjecturée	Huggan et Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES $V = S = \{2\}$ $P = \{2\}$		Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES $V = S = \{2\}$ $P = \{2\}$		Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
$CSG(S),$ $S = \{1,, N\}$	Étoile $K_{1,n},\ u$ sommet central	Période N + 1	D., Moncel,
$S = \{1,, N\}$	° k ° ℓ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Période N + 1 Prépériode 0 ou N + 1	Parreau (2018+)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
	°	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
$CSG(S), S = \{1,, N\}$	Étoile $K_{1,n}$, u sommet central	Période N + 1	D., Moncel, Parreau (2018+)
	°	Période N + 1 Prépériode 0 ou N + 1	
$CSG(S)$ $S = \{1, 2, 3\}$	Toute étoile subdivisée, <i>u</i> sommet central ou feuille	Période $N+1=4$	D., Moncel, Parreau (2018+)
$CSG(S) \\ S = \{1, 2\}$		Période $N+1=3$	BDGMPS (2018)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES $V = S = \{2\}$ $P = \{2\}$	0	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
CSG(S),	Étoile $K_{1,n}$, u sommet central	Période N + 1	D., Moncel, Parreau (2018+)
$S = \{1,, N\}$	0	Période $\frac{N+1}{N+1}$ Prépériode $\frac{N+1}{N+1}$	
$S = \{1, 2, 3\}$	Toute étoile subdivisée, <i>u</i> sommet central ou feuille	Période $N+1=4$	D., Moncel, Parreau (2018+)
$CSG(S)$ $S = \{1, 2\}$		Période	Beaudou, D., Gravier,
	Toute biétoile subdivisée, <i>u</i> sommet central ou feuille	N + 1 = 3	Moncel, Parreau, Sopena (2018)

$CSG(\{1,2\})$ sur les biétoiles subdivisées

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

$CSG(\{1,2\})$ sur les biétoiles subdivisées

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Chemins

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

30/37

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

$CSG(\{1,2\})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

$CSG({1,2})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

Question ouverte

Quelle période pour les arbres?

Jouer sur le graphe

... sauf en jouant sur le départ de l'isthme !

- ... sauf en jouant sur le départ de l'isthme !
 - ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

 \Rightarrow L'isthme est atteignable à la toute fin

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

- \Rightarrow L'isthme est atteignable à la toute fin
- \Rightarrow Deux pseudo-sommes et raffinements des valeurs de Grundy

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

	0	1	1*	2	2*	2□	3	3□
0	\oplus							
1	\oplus							
1*	\oplus	\oplus	2	\oplus	0	\oplus	\oplus	\oplus
2	\oplus							
2*	\oplus	\oplus	0	\oplus	1	1	\oplus	0
2^{\square}	\oplus	\oplus	\oplus	\oplus	1	\oplus	\oplus	\oplus
3	\oplus							
3	\oplus	\oplus	\oplus	\oplus	0	\oplus	\oplus	\oplus

où \oplus est la nim-somme.

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 2 :

	0	0*	1	1*	$\mid 1^{\square}$	2	2*	2□	3	3□
0	\oplus	\oplus_1	\oplus	2	\oplus_1	\oplus	0	\oplus_1	\oplus	\oplus_1
0*	\oplus_1	\oplus_1	\oplus_1	2	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	\oplus_1
1	\oplus	\oplus_1	\oplus	3	\oplus_1	\oplus	1	\oplus_1	\oplus	\oplus_1
1*	2	2	3	0	3	0	1	1	1	0
1^{\square}	\oplus_1	\oplus_1	\oplus_1	3	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	\oplus_1
2	\oplus	\oplus_1	\oplus	0	\oplus_1	\oplus	2	\oplus_1	\oplus	\oplus_1
2*	0	0	1	1	1	2	2	2	3	3
2^{\square}	\oplus_1	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	2	0	\oplus_1	1
3	\oplus	\oplus_1	\oplus	1	\oplus_1	\oplus	3	\oplus_1	\oplus	\oplus_1
3□	\oplus_1	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	3	1	\oplus_1	0

où \oplus est la nim-somme et $x \oplus_1 y$ signifie $x \oplus y \oplus 1$.

Conclusion

- ► Résultats de régularité
- ► Pseudo-somme pour les biétoiles

Conclusion

- ► Résultats de régularité
- ► Pseudo-somme pour les biétoiles
- ► Résultats pour CSG({2}), ARC-KAYLES sans déconnexion

Conclusion

- ► Résultats de régularité
- ► Pseudo-somme pour les biétoiles
- ► Résultats pour CSG({2}), ARC-KAYLES sans déconnexion

Perspectives

- ► CSG : même période sur les graphes que sur les piles ?
- ► Explorer d'autres familles de jeux octaux sur des graphes
- ► Complexité

Conclusion : à l'intersection des graphes et des jeux

Conclusion: 3 publications

Conclusion: 3 soumissions

Conclusion : présentations nationales et internationales

Merci!

- Bousquet, D., Duchêne, Kheddouci, Parreau : A Vizing-like theorem for union vertex-distinguishing edge coloring (Discrete Applied Mathematics, 2017)
- ▶ Beaudou, Coupechoux, D., Gravier, Moncel, Parreau, Sopena: Octal Games on Graphs: The game 0.33 on subdivided stars and bistars (Theoretical Computer Science, 2018)
- ▶ D., Gledel, Heinrich: A generalization of Arc-Kayles (International Journal of Game Theory, 2018+)

