Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Вариант 22

Выполнил студент группы КС-36: Золотухин А.А.

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Принял: Лебедев Данила Александрович

Дата сдачи: 11.04.2025

Москва 2025

Оглавление

писание задачи	. 1
ыполнение задачи	. 2
Задание 1	. 2
Задание 2	. 2
Задание 3	. 3
Задание 4	. 5
Задание 5	. 5
Задание 6	. 5
Задание 7	. 6
Задание 8	. 8
Задание 9	. 8

Описание задачи

Вариант	Уравнение	Интервалы переменных	Начальные и граничные условия
22	$\frac{\partial u}{\partial t} - 2\frac{\partial u}{\partial x} = x$	$x \in [0, 1]$ $t \in [0, 1]$	u(t = 0, x) = 0 $u(t, x = 0) = t^{2}$ $u(t, x = 1) = t^{2} + t$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. определить порядок аппроксимации разностной схемы;
- 3. доказать абсолютную устойчивость разностной схемы (с помощью метода гармоник);
- 4. вывести рекуррентное соотношение;
- 5. выбор граничного условия зависит от того, с какой конечной разностью вы будете работать (левой или правой). Выбор конечной разности зависит от устойчивости системы. Вы должны выбрать ту конечную разность, при которой схема будет устойчива;
- 6. составить алгоритм (блок-схему) расчёта;
- 7. построить программу на любом удобном языке программирования;
- 8. провести численный расчёт с использованием значений $\Delta t = 0.1, h = 0.1;$
- 9. сравнить результаты расчётов с истинными значениями функции *и* в соответствующих точках разностной сетки (*истинное решение уравнения будет выдано преподавателем после выполнения расчётов по разностной схеме*);
- 10. в случае существенного расхождения результатов расчётов по разностной схеме и истинных значений функции u в соответствующих точках разностной сетки выполнить расчёт с меньшими значениями Δt и/или h (выбор осуществить самостоятельно) с целью получения более точных результатов.

Выполнение задачи

Задание 1

Записать неявную разностную схему:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - 2\frac{u_{j+1}^{n+1} - u_j^{n+1}}{h} = (j-1)h.$$
 (1)

В записанной разностной схеме (1) аппроксимация производной функции u(t, x) по координате рассматривается на n+1-м шаге по времени. Такая разностная схема называется **неявной**.

Задание 2

Определить порядок аппроксимации разностной схемы (1):

Для этого запишу разложение значений $u_j^{n+1},\ u_{j+1}^{n+1},\ u_{j-1}^{n+1}$ в ряд Тейлора относительно точки $(t^n,\ x_j)$ на разностной сетке:

$$u_j^{n+1} = u_j^n + \frac{\partial u}{\partial t} \Big|_{i}^{n} \Delta t + \frac{1}{2!} \frac{\partial^2 u}{\partial t^2} \Big|_{i}^{n} (\Delta t)^2 + \frac{1}{3!} \frac{\partial^3 u}{\partial t^3} \Big|_{i}^{n} (\Delta t)^3 + \dots, \tag{2}$$

$$u_{j+1}^{n+1} = u_j^n + \frac{\partial u}{\partial x}\Big|_j^n h + \frac{\partial u}{\partial t}\Big|_j^n \Delta t + \frac{1}{2!} \frac{\partial^2 u}{\partial x^2}\Big|_j^n h^2 + \frac{1}{2!} \frac{\partial^2 u}{\partial t^2}\Big|_j^n (\Delta t)^2 + \dots,$$
 (3)

$$u_j^{n+1} = u_j^n + \frac{\partial u}{\partial t} \Big|_{i}^{n} \Delta t + \frac{1}{2!} \frac{\partial^2 u}{\partial t^2} \Big|_{i}^{n} (\Delta t)^2 + \dots, \tag{4}$$

Подставляя зависимости (2)-(4) в разностную схему (1), получаю:

$$\frac{\partial u}{\partial t}\Big|_{j}^{n} + \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}}\Big|_{j}^{n} \Delta t + \frac{1}{6} \frac{\partial^{3} u}{\partial t^{3}}\Big|_{j}^{n} (\Delta t)^{2} = \frac{\partial u}{\partial x}\Big|_{j}^{n} + \frac{1}{2!} \frac{\partial^{2} u}{\partial x^{2}}\Big|_{j}^{n} h + \frac{1}{3!} \frac{\partial^{3} u}{\partial x^{3}}\Big|_{j}^{n} h^{2}$$

$$\Rightarrow \frac{\partial u}{\partial t}\Big|_{j}^{n} + O(\Delta t) = \frac{\partial u}{\partial x}\Big|_{j}^{n} + O(h).$$

Таким образом, неявная разностная схема (1) аппроксимирует исходное дифференциальное уравнение с первым порядком по времени и с первым порядком по координате, что записывается в следующем виде:

$$O(\Delta t) + O(h)$$
 или $O(\Delta t, h)$.

Задание 3

Доказать абсолютную устойчивость разностной схемы (1) (с помощью метода гармоник):

Для этого отбрасываю член $f(t^n, x_j)$, т.е. x в моём случае, наличие которого не оказывает влияния на устойчивость разностной схемы.

Представлю решение разностной схемы в виде гармоники:

$$u_j^n = \lambda^n e^{i\alpha j}. (5)$$

Подставляя (5) в разностную схему (1), получаю:

$$\frac{\lambda^{n+1}e^{i\alpha j}-\lambda^n e^{i\alpha j}}{\Delta t}-\frac{\lambda^{n+1}e^{i\alpha (j+1)}-\lambda^{n+1}e^{i\alpha j}}{h}=0.$$

Упрощаю полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j}$, и выражаю величину, обратную λ :

$$\frac{\lambda - 1}{\Delta t} - 2\frac{\lambda e^{i\alpha} - \lambda}{h} = 0 \Rightarrow \frac{1}{\lambda} = 1 + 2\frac{\Delta t}{h} - 2\frac{\Delta t}{h}e^{i\alpha}.$$

Необходимое условие устойчивости разностных схем:

$$|\lambda| \le 1. \tag{6}$$

При этом необходимое условие устойчивости разностных схем (6) также преобразую к виду:

$$\left|\frac{1}{\lambda}\right| \ge 1. \tag{7}$$

Неравенство (7) в применении к комплексным числам означает, что для устойчивости разностной схемы (1) требуется, чтобы величины, обратные собственным числам оператора перехода, были расположены вне или на границе круга радиусом 1, центр которого находится в начале координат комплексной плоскости (рис. 1).

Введу следующее обозначение:

$$r = 2\frac{\Delta t}{h} > 0 \Rightarrow \frac{1}{\lambda} = 1 + r - re^{i\alpha}.$$

Полученное выражение свидетельствует о том, что собственные числа оператора расположены на комплексной плоскости на окружности с центром в точке (1-r,0) и радиусом:

$$|re^{i\alpha}| = |r\cos\alpha + ir\sin\alpha| = \sqrt{r^2\cos^2\alpha + r^2\sin^2\alpha} = r.$$
 (8)

Данная окружность находится вне круга, соответствующего условию (7) при любом значение r (рис. 2). Таким образом, разностная схема (1) будет **абсолютно устойчива**.

Рис. 1: Графическая интерпретация условия устойчивости (6)

Рис. 2: Исследование устойчивости разностной схемы (1)

Задание 4

Вывести рекуррентное соотношение:

Выражая u_i^{n+1} из разностной схемы (1), получаю **рекуррентное соотношение**

$$u_j^{n+1} = \frac{u_j^n + 2\frac{\Delta t}{h}u_{j+1}^{n+1} + \Delta t((j-1)h)}{1 + 2\frac{\Delta t}{h}},$$
(9)

Задание 5

Выбор граничного условия зависит от того, с какой конечной разностью вы будете работать (левой или правой). Выбор конечной разности зависит от устойчивости системы. Вы должны выбрать ту конечную разность, при которой схема будет устойчива:

Рекуррентное соотношение (9) позволяет последовательно рассчитать все значения функции u(t, x) на n+1-м шаге по времени $u_j^{n+1}, \ j=N-1,\ldots,1,$ если известна величина $u_N^{n+1},$ которую можно определить из *правого граничного условия*:

$$u_N^{n+1} = ((n+1)\Delta t)^2 + (n+1)\Delta t.$$

Задание 6

Составить алгоритм (блок-схему) расчёта:

Задание 7

Построить программу на любом удобном языке программирования:

```
1 #include <iostream>
 2 #include <cmath>
 3 #include <fstream>
 4 #include <iomanip>
5
6 #include "../include/Constants.h"
7
8 int main() {
9
    int N_x = 1 + (Constants::x_end - Constants::x_start) / Constants::h;
10
    int N_t[Constants::amount_of_delta_t] = {0};
11
    for (int i = 0; i < Constants::amount_of_delta_t; i++) {</pre>
12
       N_t[i] = 1 + (Constants::t_end - Constants::t_start) / Constants::delta_t[i];
13
14
```

```
15
     for (int i = 0; i < Constants::amount_of_delta_t; i++) {</pre>
16
       double** u = new double*[N_t[i]];
17
       for (int n = 0; n < N_t[i]; n++) {</pre>
18
            u[n] = new double[N_x] \{0.0\};
19
20
21
       for (int j = 0; j \le N_x - 1; j++) {
22
         u[0][j] = 0.0;
23
24
25
       int n = 0;
26
       while (!(n == (N_t[i] - 1))) {
27
         u[n + 1][N_x - 1] = std::pow((n + 1) * Constants::delta_t[i], 2) + (n + 1) *
      Constants::delta_t[i];
28
         for (int j = N_x - 2; j >= 0; j--)
29
            u[n + 1][j] = (u[n][j] + 2 * (Constants::delta_t[i]) / Constants::h * u[n + 1][j]
      1][j + 1] + Constants::delta_t[i] * (j * Constants::h)) / (1 + 2 * Constants::h)
      delta_t[i] / Constants::h);
30
         n++;
31
32
33
       std::ofstream csvFile(Constants::csvPath[i]);
34
       csvFile << std::fixed << std::setprecision(4);</pre>
35
36
       csvFile << "t\\x,";</pre>
37
       for (int j = 0; j <= N_x - 1; j++) {</pre>
38
         csvFile << j * Constants::h;</pre>
39
         if (j != (N_x - 1)) csvFile << ",";</pre>
40
       }
       csvFile << "\n";</pre>
41
42
       for (int n = 0; n < N_t[i]; n++) {</pre>
43
         double t = n * Constants::delta_t[i];
44
         csvFile << t << ",";
45
         for (int j = 0; j < N_x; j++) {
            csvFile << u[n][j];
46
47
            if (j != (N_x - 1)) csvFile << ",";</pre>
48
         }
49
         csvFile << "\n";
50
51
       csvFile.close();
52
53
       std::ofstream plotPath (Constants::plotPath[i]);
54
       for (int n = 0; n <= N_t[i] - 1; n++) {</pre>
55
         double t = n * Constants::delta_t[i];
56
         for (int j = 0; j \le N_x - 1; j++) {
57
            double x = j * Constants::h;
58
            plotPath << t << " " << x << " " << u[n][j] << "\n";
59
         }
60
         plotPath << "\n";</pre>
61
62
       plotPath.close();
63
64
       for (int n = 0; n < N_t[i]; n++) {</pre>
65
            delete[] u[n];
66
       }
67
       delete[] u;
68
69
70 return 0;
```

Задание 8

Провести численный расчёт с использованием значений $\Delta t = 0.1, \, h = 0.1$:

Таблица 1: Результаты для $\Delta t = 0.1$

$t \backslash x$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1000	0.0198	0.0297	0.0396	0.0494	0.0591	0.0687	0.0780	0.0870	0.0956	0.1033	0.1100
0.2000	0.0591	0.0787	0.0982	0.1175	0.1365	0.1552	0.1734	0.1911	0.2081	0.2244	0.2400
0.3000	0.1173	0.1464	0.1752	0.2037	0.2318	0.2595	0.2866	0.3132	0.3393	0.3648	0.3900
0.4000	0.1940	0.2324	0.2705	0.3081	0.3453	0.3821	0.4183	0.4542	0.4897	0.5249	0.5600
0.5000	0.2893	0.3369	0.3841	0.4310	0.4774	0.5235	0.5692	0.6147	0.6599	0.7050	0.7500
0.6000	0.4031	0.4600	0.5166	0.5728	0.6287	0.6843	0.7396	0.7949	0.8500	0.9050	0.9600
0.7000	0.5357	0.6020	0.6681	0.7338	0.7993	0.8647	0.9298	0.9949	1.0600	1.1250	1.1900
0.8000	0.6874	0.7633	0.8389	0.9144	0.9897	1.0648	1.1399	1.2150	1.2900	1.3650	1.4400
0.9000	0.8585	0.9441	1.0294	1.1147	1.1998	1.2849	1.3700	1.4550	1.5400	1.6250	1.7100
1.0000	1.0492	1.1445	1.2397	1.3348	1.4299	1.5250	1.6200	1.7150	1.8100	1.9050	2.0000

Задание 9

Составить отчёт о проделанной работе. График функции $u(t,\,x)$

