INGENIERÍA ECONÓMICA. USM

Profesor Dr. Jaime Marchant García
DEPTO. INDUSTRIAS

EJERCICIOS

CAPÍTULO 6.- FLUJOS DE FONDOS

Marchant García, Jaime Alfonso Introducción a la Ingeniería Económica. 1era Edición ISBN: 978-956 - 393 - 003 - 0 Registro de propiedad intelectual: A-279.871 Derechos reservados. Es propiedad del autor © 2017 E-mail: marchant11@gmail.com Formato: 23x17 cm. Páginas: 374.

C.- SITUACIÓN O EJEMPLO

Un negocio genera como resultado neto tres flujos de fondos anuales, iguales y vencidos de UF 1.200 c/u. La tas de interés anual vencida es un 8%. ¿Cuál es el valor actual de estos tres flujos?

DESARROLLO MATEMÁTICO.EXPRESIÓN ABREVIADA

$$Va_T = 1.200 \frac{1}{(1+i)^1} + 1.200 \frac{1}{(1+i)^2} + 1.200 \frac{1}{(1+i)^3}$$

$$Va_{T} = 1.200 \left(\begin{array}{c} 1 - (1 + 0.08)^{-3} \\ \hline 0.08 \end{array} \right)$$

DESARROLLO CON PLANILLA EXCEL

Tasa	8%	<u> 1</u>	= 0,08
Nper	3	1	= 3
Pago	1200	<u>1</u>	= 1200
Vf		1	= número
Tipo		Ť	= número

C.- SITUACIÓN O EJEMPLO

Un negocio genera como resultado neto seis flujos de fondos anuales variables, vencidos que son:

Flujos de fondos variables:

- 2 flujos de UF 100 cada uno
- 4 flujos de UF 300 cada uno

Tasa de descuento:

- 2% para los 2 primeros años
- 3% para los 2 siguientes
- 4% para los 2 últimos años

Se pide: ¿Cuál es el valor actual de estos 6 flujos anuales?

↑ É DESARROLLO MATEMÁTICO: RESUMEN

$$Va_{1+2} = 100 \left(\frac{1 - (1 + 0.02)}{0.02} \right) = UF 194,16$$

$$Va_{3+4} = 300 \left(\frac{1 - (1 + 0.03)^{-2}}{0.03} \right) = UF 574.04 \frac{1}{(1 + 0.02)^{2}} = UF 551.75$$

$$Va_{5+6} = 300 \left(\frac{1 - (1 + 0.04)^{-2}}{0.04} \right) = UF 565.83 \frac{1}{(1 + 0.03)^{2}} \times \frac{1}{(1 + 0.02)^{2}} UF512.64$$

Va_{T =} UF 1.258,55

FLUJOS VARIABLES ANTICIPADOS

DESARROLLO MATEMÁTICO

$$Va_{1+2} = 1.200 \left(\frac{(1+0.08)^2 -1}{(1+0.08)^{2-1} \times 8\%} \right) = UF 2.311,11$$

$$Va_{3+4} = 1.300 \left(\frac{(1+0.08)^2 - 1}{(1+0.08)^{2-1} \times 8\%} \right) = UF 2.503,70 \times \frac{1}{(1+0.08)^2} = UF 2.146,52$$

Va_T UF 4.457,63

FLUJOS DIFERIDOS VENCIDOS

SITUACIÓN O EJEMPLO

Una persona solicita un financiamiento por la suma de UF 5.000 a un plazo de 5 años en cuotas iguales. Adicionalmente solicita dos periodos diferidos para pagar capital e interés, lo que fue aceptado por la institución crediticia.

Esto significa que durante los dos primeros años (años de gracia o periodo diferido), no hay ningún pago y luego se deben cancelar 3 cuotas iguales. La tasa de interés del préstamo es 6% anual vencido.

Se pide: El valor de cada dividendo o cuota de capital e interés?

DESARROLLO MATEMÁTICO

Respuesta: El valor de cada dividendo es de UF 2.101,75

SITUACIÓN O EJEMPLO

Un negocio genera como resultado neto tres flujos de fondos anuales, iguales y vencidos de UF 1.200 c/u. La tasa de interés anual vencida es un 8%. ¿Cuál es el valor futuro de estos tres flujos?

DESARROLLO POR CALCULADORA FINANCIERA

<u>HP 17 B II</u>	<u>HP 12 C</u>	<u>BF 100</u>	<u>BF 200</u>
f(caja 0) = 0	1200 PMT	SHIF (AC) EXE	SHIF (AC) EXE
f (caja 1) =1.200	3 n	1200 PMT	1200 PMT
N°veces = 3	8 i%	3 n	3 n
8 i%		8 i%	8 i%
VF	VF	Comp FV	Comp FV
FV = \$ 3.895,68			

VALOR FUTURO FLUJOS VARIABLES VENCIDOS

SITUACIÓN O EJEMPLO

Un negocio genera como resultado neto seis flujos de fondos anuales variables, vencidos que son:

Flujos de fondos variables:	Tasa de descuento:
2 flujos de UF 200 cada uno	2% para los 2 primeros años
2 flujos de UF 300 cada uno	3% para los dos siguientes
2 fluios de UF 400 cada uno	4% para los 2 últimos años

Se pide: ¿Cuál es el valor futuro de estos 6 flujos anuales ?

CUADRO RESUMEN

$$Vf_{300} = UF 658,69$$

$$Vf_{400} = UF 816,00$$

$$Vf_T = UF 1.938,26$$

Respta: El valor futuro de los 6 flujos de fondos es de UF 1.938,26

SITUACIÓN O EJEMPLO

Un ahorro que consiste en invertir cuatro flujos anuales (varial...), anticipados que son:

Flujos de fondos anticipados (variables):

2 flujos de UF 1.200 cada uno

2 flujos de UF 1.300 cada uno

Tasa de descuento:

8% para todos los años

Se pide: ¿Cuál es el valor futuro de estos 4 flujos anuales ?

DESARROLLO MATEMÁTICO

$$Vf_{1+2} = 1.200 \left(\frac{(1+0.08)^2 -1}{1-(1+0.08)^{-1}} \right) = UF 3.144,44 \qquad Vf_{1+2}$$

$$Vf_{3+4} = 1.300 \left(\frac{(1+0.08)^2 - 1}{(1+0.08)^{2-1} \times 8\%} \right) \times (1+8\%)^2 = UF 2.920,32$$

$$Va_T = UF 6.064,56$$

Respta: El valor futuro de estos 4 flujos anuales es de UF 6.064,56

SITUACIÓN O EJEMPLO

Equipo precio mercado = UF 150.000 Vida útil = 5 años Valor residual = UF 15.000 Tasa CCPP = 8% anual Tasa leasing = 8% anual Cuota arriendo = ? CÁLCULO DE LA CUOTA DE UN CONTRATO DE LE ASING POR FÓRMULA "A"

Inversión = Cuota x
$$\left(\begin{array}{c} + 1 \\ n-1 \end{array} \right) + V.residual \left(1 + i\%CCPP \right)^{-n}$$

$$150.000 = Cuota \times \left(\begin{array}{c} + 1 \\ 5-1 \end{array} \right) + 15.000 \left(1 + 8\% \right)^{-5}$$

Cuota = UF 32.418

Rpta: Valor cuota anual del leasing es \$ 32.418

SITUACIÓN O EJEMPLO

Los apoderados de un colegio deciden donar un laboratorio de física cuya inversión inicial es de M\$ 150.000. Adicionalmente deben contemplar los gastos anuales de mantención los que se han calculado en M\$ 3.000 en forma perpetua.

<u>Se pide:</u> Indique cuál es la inversión total o costo capitalizado, considerando una tasa de interés del 6% anual efectiva.

DESARROLLO MATEMÁTICO

Costo Capitalizado (K) = C +
$$\frac{W}{i\%}$$
 $\times \left(\frac{i\%}{(1+i\%)^k - 1}\right)$

Costo Capzado (K) = 150.000 +
$$\frac{3.000}{6\%}$$
 * $\left(\frac{6\%}{(1+6\%)^1 - 1}\right)$

Costo Capzado (K) = 150.000 + 50.000 * 1

Costo Capzado (K) = M\$ 200.000

C.- SITUACIÓN O EJEMPLO

Una empresa opera una maquinaria "A" que genera 2 flujos anuales (ingresos netos) de \$ 4.000 cada uno. Vida útil 2 años.

Se estudia su reemplazo por una maquina "N" que cuesta \$ 15.000 la cual genera 3 flujos anuales (ingresos netos) de \$ 8.000 cada uno. Vida útil 3 años.

Se pide: Decida si reemplaza la máquina A. Tasa interés 6% anual.

Diagrama 0 2 3 200.000 CC = 53.000 53.000 53.000 n = 1n = 1 n = 1-150.000 i%= 6% -3.000 i%= 6% _ 3.000 i%= 6% -3.000 50.000 50.000 50.000 50.000

Con los M\$ 200.000 se paga de inmediato la inversión inicial de M\$ 150.000 y, el saldo de M\$ 50.000 se invierte al 6% anual, lo cual permite pagar en forma perpetua, anualmente la mantención de M\$ 3000

Alcance al problema

Se debe observar que no se ha mencionado vida util y por lo tanto, se asume que las mantenciones perpetuas tienen <u>una frecuencias</u> igual a la capitalización "k" de los intereses, que en este ejercicio es anual. (k=1).

SITUACIÓN O EJEMPLO

Una empresa debe realizar una nueva <u>inversión en una</u> <u>maquinaria por MM\$ 400</u> cuya vida útil es de 25 años y su costo de capital ya ajustado por inflación es de un 7% anual. Se pide: ¿Cuál deberían ser los ingresos operacionales anuales <u>para cubrir dicha inversión?</u> Considere que los actuales costos de materias primas y de mantención no se incrementan.

Va = FF (PMT)
$$\frac{1 - (1+i)^{-n}}{i}$$

400 = FF (PMT) $\frac{1 - (1+0.07)^{-25}}{0.07}$
400 = FF (PMT) x 1.6536
PMT = MM\$ 34,3 miliones

La empresa deberá generar un flujo de ingresos, anual uniforme (PMT) durante la vida económica del activo. (Brealey).

SITUACIÓN O EJEMPLO

Una empresa opera una maquinaria "A" que genera 2 flujos anuales (ingresos netos) de \$4,000 cada uno. Vida útil 2 años.

Se estudia su reemplazo por una maquina "N" que cuesta \$ 15.000 la cual genera 3 flujos anuales (ingresos netos) de \$ 8.000 cada uno. Vida útil 3 años.

Se pide: Decida si reemplaza la máquina . Tasa interés 6% anual.

Solución:

Para resolver este ejercicio el proceso es el siguiente:

- 1.- Confeccionar un diagrama de flujo para cada máquina, con el objeto de identificar los flujos de ingresos y egresos.
- 2.- Calcular el valor presente de cada flujo y el valor presente del total de cada máquina.
- 3.- Calcular el CAUE de cada máquina a partir del valor actual total.
- 4.- Tomar la decisión en función de cada CAUE.

Si son ingresos el mayor, sin son costos el menor CAUE.

ANEXO

CUADRO DE GRADIENTES

Aritmética

Periodo	FF	fact. Act. 2%	VA. Flujo	Grad.	Crec.lineal	fact. Act. 2%	VA. Grad	VA Total
1	2.000	0,980	1.960,00	0	0	0,980	0,00	1.960,00
2	2.000	0,961	1.922,00	100	100	0,961	96,10	2.018,10
3	2.000	0,942	1.884,00	100	200	0,942	188,40	2.072,40
4	2.000	0,924	1.848,00	100	300	0,924	277,20	2.125,20
5	2.000	0,906	1.812,00	200	400	0,906	362,40	2.174,40
6	2.000	0,888	1.776,00	100	500	0,888	444,00	2.220,00
7	2.000	0,871	1.742,00	100	600	0,871	522,60	2.264,60
8	2.000	0,853	1.706,00	100	200	0,853	597,10	2.303,10
9	2.000	0,837	1.674,00	100	800	0,837	669,60	2.343,60
10	2.000	0,820	1.640,00	100	900	0,820	738,00	2.378,00
11	2.000	0,804	1.608,00	100	1.000	0,804	804,00	2.412,00
12	2.000	0,788	1.576,00	100	1.100	0,788	866,80	2.442,80
			21.148,00				5566,20	26.714,20

Geométrica

	1	2	3	4	3*4	Grad. 3-1
		Factor		Fact. 1/(1+		
Periodo	FF	(1+10%)	FF Crec	6%)	VA FF	Grad.
1	10.000	1,000	10.000,00	0,94340	9.434,00	-
2	10.000	1,100	11.000,00	0,89000	9.790,00	1.000,00
3	10.000	1,210	12,100,00	0,83962	10.159,40	2.100,00
4	10.000	1,331	13.310.00	0,79209	10.542,72	3.310,00
5	10.000	1,464	14.640,00	0,74726	10.939,89	4.640,00
				VA.		
					50.866,01	
		Factor Crec.		Fact Actualz.		

FIN