

CMS89F22X

用户手册

增强型闪存 8 位 CMOS 单片机 V1.2

请注意以下有关CMS知识产权政策

*中微半导体公司已申请了专利,享有绝对的合法权益。与中微半导体公司MCU或其他产品有关的专利权并未被同意授权使用,任何经由不当手段侵害中微半导体公司专利权的公司、组织或个人,中微半导体公司将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨中微半导体公司因侵权行为所受的损失、或侵权者所得的不法利益。

*中微的名称和标识都是中微半导体公司的注册商标。

*中微半导体公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而中微半导体公司对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,中微半导体公司不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。中微半导体公司产品不授权适用于救生、维生器件或系统中作为关键器件。中微半导体公司拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网站http://www.mcu.com.cn

WWW.MCU.COM.CN -1- V1.2

目录

1. 产品概述	8
1.1 功能特性	8
1.2 系统结构框图	9
1.3 管脚分布	10
1.3.1 CMS89F226/2265 引脚图	10
1.3.2 CMS89F228/2285 引脚图	11
1.4 系统配置寄存器	12
1.5 在线串行编程	13
2. 中央处理器(CPU)	14
2.1 内存	14
2.1.1 程序内存	14
2.1.2 数据存储器	20
2.2 寻址方式	25
2.2.1 直接寻址	25
2.2.2 立即寻址	25
2.2.3 间接寻址	25
2.3 堆栈	26
2.4 工作寄存器(ACC)	27
2.4.1 概述	27
2.4.2 ACC 应用	27
2.5 程序状态寄存器(STATUS)	28
2.6 预分频器(OPTION_REG)	29
2.7 程序计数器 (PC)	31
2.8 看门狗计数器(WDT)	32
2.8.1 WDT 周期	32
2.8.2 看门狗定时器控制寄存器 WDTCON	32
3. 系统时钟	33
3.1 概述	
3.2 系统振荡器	
3.2.1 内部 RC 振荡	
3.2.2 外部 XT 振荡	34
3.3 起振时间	
3.4 振荡器控制寄存器	
4. 复位	36
4.1 上电复位	36
4.2 掉电复位	37
4.2.1 掉电复位概述	37
4.2.2 掉电复位的改进办法	38
4.3 看门狗复位	38

5.	休眠	模式	39
5.	1 j	进入休眠模式	39
5.2	2 <i>)</i>	从休眠状态唤醒	39
5.3	3 1	吏用中断唤醒	39
5.4	4 1	木眠模式应用举例	40
5.	5 f	木眠模式唤醒时间	40
6.	I/O 対	端口	41
6.	1 F	PORTA	45
	6.1.1	PORTA 数据及方向控制	45
	6.1.2	PORTA 模拟选择控制	46
	6.1.3	PORTA 上拉电阻	46
6.2	2 F	PORTB	47
	6.2.1	PORTB 数据及方向	47
	6.2.2	PORTB 模拟选择	48
	6.2.3	PORTB 上拉电阻	48
	6.2.4	PORTB 电平变化中断	49
6.3	3 F	PORTC	50
	6.3.1	PORTC 数据及方向	50
	6.3.2	PORTC 上拉电阻	50
6.4	4 F	PORTE	51
	6.4.1	PORTE 数据及方向	51
	6.4.2	PORTE 上拉电阻	51
6.	5 I.	/O 使用	52
	6.5.1	写 I/O 口	52
	6.5.2	读 I/O 口	52
6.6	6 I.	/O 口使用注意事项	53
7.	中断		54
7.	1 =	中断概述	54
7.5	2 =	中断控制寄存器	55
	7.2.1	中断控制寄存器	55
	7.2.2	外设中断允许寄存器	56
	7.2.3	外设中断请求寄存器	58
7.3	3 -	中断现场的保护方法	60
7.4	4 -	中断的优先级,及多中断嵌套	60
8.	定时	计数器 TIMER0	61
8.	1 5	定时计数器 TIMER0 概述	61
8.2	2 1	「IMERO 的工作原理	62
	8.2.1	8 位定时器模式	62
	8.2.2	8 位计数器模式	62
	8.2.3	软件可编程预分频器	62
	8.2.4	在 TIMER0 和 WDT 模块间切换预分频器	62

8.2	2.5 TIMER0 中断	63
8.3	与 TIMER0 相关寄存器	64
9. 定	时计数器 TIMER1	65
9.1	TIMER1 的工作原理	66
9.2	时钟源选择	66
9.2	2.1 内部时钟源	66
9.2	2.2 外部时钟源	66
9.3	TIMER1 预分频器	67
9.4	TIMER1 振荡器	67
9.5	在异步计数器模式下的 TIMER1 工作原理	67
9.5	5.1 异步计数器模式下对 TIMER1 的读写操作	67
9.6	TIMER1 门控	67
9.7	TIMER1 中断	68
9.8	休眠期间的 TIMER1 工作原理	68
9.9	ECCP 捕捉/比较时基	68
9.10	ECCP 特殊事件触发器	68
9.11	TIMER1 控制寄存器	68
40 =	art 注 粉 兜 TIMEDO	70
IU. 疋	E时计数器 TIMER2	
10.1	TIMER2 概述	70
10.2	TIMER2 的工作原理	71
10.3	TIMER2 相关的寄存器	72
11 坩	b数转换(ADC)	79
11. 1天	(ADC)	
11.1	ADC 概述	73
11.2	ADC 配置	74
11	1.2.1 端口配置	74
11	1.2.2 通道选择	74
11	1.2.3 ADC 参考电压	74
11	1.2.4 转换时钟	74
11	1.2.5 ADC 中断	75
11	1.2.6 结果格式化	75
11.3	ADC 工作原理	76
11	1.3.1 启动转换	76
11	1.3.2 完成转换	76
11	1.3.3 终止转换	76
11	1.3.4 ADC 在休眠模式下的工作原理	76
11	1.3.5 A/D 转换步骤	76
11.4	ADC 相关 RAM	78
12. LC	CD/LED 驱动模块	81
12.1	LCD/LED 功能使能	81
12.2	LCD/LED 功能管脚设置	81

12.3 L	.ED 功能 COM 口设置	81
12.4 L	.ED 功能的 SEG 口设置	82
12.5 L	.ED 功能的数据设置	82
12.6 L	.ED 相关寄存器	83
12.7 L	.CD 相关设置	85
13. 捕捉	/比较/PWM 模块(CCP1 和 CCP2)	87
13.1 扌	甫捉模式	87
13.1.1	CCP 引脚配置	88
13.1.2	! TIMER1 模式选择	88
13.1.3	3 软件中断	88
13.1.4	CCP 预分频器	89
13.2 b	七较模式	90
13.2.1	CCP 引脚配置	90
13.2.2	! TIMER1 模式选择	90
13.2.3	软件中断模式	90
13.2.4	特殊事件触发信号	91
13.3 F	PWM 模式	92
13.3.1	PWM 周期	93
13.3.2	! PWM 占空比	93
13.3.3	3 PWM 分辨率	94
13.3.4	休眠模式下的操作	94
13.3.5	5 系统时钟频率的改变	94
13.3.6	5 复位的影响	94
13.3.7	'设置 PWM 操作	94
14. 主控	同步串行端口(MSSP)模块	95
14.1	主控 SSP(MSSP)模块概述	95
14.2 S	SPI 模式	96
14.2.1	SPI 相关寄存器	96
14.2.2	・ SPI 工作原理	97
14.2.3	: 使能 SPII/O	98
14.2.4	主控模式	99
14.2.5	· 从动模式	100
14.2.6	5 从动选择同步	100
14.2.7	,休眠操作	102
14.2.8	5 复位的影响	102
14.3 I ²	² C 模块	103
	相关寄存器说明	
14.3.2	! 主控模式	107
	3 I ² C 主控模式支持	
	- 波特率发生器	
	i I ² C 主控模式发送	
	5 I ² C 主控模式接收	

14.3.8 PC 中控舰式正复后动条件时序 14.3.0 应答序列时子 14.3.10 时钟校 14.3.11 时钟校 14.3.12 多主机级式 14.3.15 SSP 原磁音 存器 14.3.16 体配模式下的操作 14.3.15 SSP 原磁音 存器 14.3.16 体配模式下的操作 15.3 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器控制 15.2 相关音存器 15.2 相关音存器 15.3 设置器 EEPROM 希腊· 15.3 该是 EEPROM 存储器 15.3 设置器 EEPROM 作储器 15.4 可数据 EEPROM 价储器 15.5 该风存程序存储器 15.15 该风存程序存储器 15.6 运闪存程序存储器 15.7 EEPROM 保持性战争项 15.7 EEPROM 保持性战争项 15.7 EEPROM 保持性战争项 15.7 CEPROM 保持性战争项 15.7 CEPROM 设备 16.1 应算放大器 16.1 应算放大器 16.1 应算放大器 17.1 CPAO 偿施 16.1 DPAO 偿施 16.1 DPAO 偿施 16.1 DPAO 增加 计算量 EEPROM 操作 16.1 应算放大器 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 内部 RC 报语地压持性 17.2 内部 RC 报语地压持性 17.3 内部 RC 报语通过特性 17.3 内部 RC 报语通过转性	14.3.7 I ² C 主控模式启动条件时序	114
14.3.10 停止条件序列 14.3.11 时件中最 14.3.12 多主机模式 14.3.15 多于则语言、总技冲实与总技仲裁 14.3.15 SSP 屏蔽寄存器 14.3.15 SSP 屏蔽寄存器 14.3.16 体联模式下的操作 14.3.17 互似的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 放影 EEPROM 和闪存程序存储器模迹 15.2 相关帝存器 15.2.1 EEADR 和巨在DOR1 奇存器 15.3 读数据 EEPROM 存储器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读内存程序存储器 15.6 写风存程序存储器 15.7 EEPROM 操作注意中项 15.7 EEPROM 操作注意中项 15.7 EEPROM 操作注意中项 15.7.3 代码保护下的数据 EEPROM 操作 15.7.2 更变误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16.1. 垃圾从入器 OPAO 16.1.1 OPAO 使能 16.1.1 OPAO 使能 16.1.2 OPAO 项目过连择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的资存证器 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 内心器 医医尿病精性 17.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性	14.3.8 I ² C 主控模式重复启动条件时序	114
14.3.10 停止条件序列 14.3.11 时件中最 14.3.12 多主机模式 14.3.15 多于则语言、总技冲实与总技仲裁 14.3.15 SSP 屏蔽寄存器 14.3.15 SSP 屏蔽寄存器 14.3.16 体联模式下的操作 14.3.17 互似的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 放影 EEPROM 和闪存程序存储器模迹 15.2 相关帝存器 15.2.1 EEADR 和巨在DOR1 奇存器 15.3 读数据 EEPROM 存储器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读内存程序存储器 15.6 写风存程序存储器 15.7 EEPROM 操作注意中项 15.7 EEPROM 操作注意中项 15.7 EEPROM 操作注意中项 15.7.3 代码保护下的数据 EEPROM 操作 15.7.2 更变误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16.1. 垃圾从入器 OPAO 16.1.1 OPAO 使能 16.1.1 OPAO 使能 16.1.2 OPAO 项目过连择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的资存证器 17.1 电气参数 17.1 电气参数 17.1 电气参数 17.1 内心器 医医尿病精性 17.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.3 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性 17.3.2 内部 RC 振荡电压转性 17.3.1 内部 RC 振荡电压转性		
14.3.11 时钟中坡 14.3.12 多丰根模式 14.3.13 多丰机模式 14.3.13 多丰机模式 14.3.15 SSP 屏蔽存存器 14.3.16 休眠模式 的操作 14.3.17 总位的影响 15. 数据 EEPROM 和闪存程序存储器控制 15. 数据 EEPROM 和闪存程序存储器控制 15. 1 数据 EEPROM 和闪存程序存储器控制 15.2 相关亦存器 15.2 相关亦存器 15.2 1 医EADR 和 EECON2 寄存器 15.2 1 医EORN 有 是ECON2 寄存器 15.3 1 波跋 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 流内存程序存储器 15.6 写闪存程序存储器 15.7 EEPROM 操作注意事项 15.7 EEPROM 操作注意事项 15.7.1 可校验 15.7.2 建定设写的保护 15.7.3 代码保护下的数据 EEPROM 操作 15.7.3 代码保护下的数据 EEPROM 操作 16.1 公界放大器 16.1 公界放大器 OPAO 16.1.1 OPAO 使能 16.1.2 OPAO 增口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的客存器 17.1 电气参数 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡特件 17.3.1 内部 RC 振荡特件 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡自使特性 17.3.2 内部 RC 振荡自使特性 17.3.1 内部 RC 振荡自使特性 17.3.2 内部 RC 振荡自使特性 17.3.1 内部 RC 振荡自使特性 17.3.1 内部 RC 振荡自使特性		
14.3.12 多主机域式 14.3.13 多工机场信、总线冲突与总线仲裁 14.3.14 从对模式 14.3.16 体配模式下的操作 14.3.17 复价的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器控制 15.2 相关寄存器 15.2.1 EEADR 和 EEADRH 夸存器 15.3 读数据 EEPROM 存储器 15.4 与数据 EEPROM 存储器 15.5 读内存程序存储器 15.6 写例化程序存储器 15.6 写例化程序存储器 15.6 写例化程序存储器 15.7 EEPROM 操作注意事项 15.7 互积效验 15.7.2 逐免项写的保护 15.7.3 代码操护下的数据 EEPROM 操作 16.1 运算放大器 16.1 记算放大器 16.1 记算放大器 17.1 可效验 16.1 记算放大器 11.1 OPAO 依储 16.1.1 OPAO 依储 16.1.1 OPAO 依储 16.1.2 OPAO 端口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的夸存器 17. 电气参数 18. 指令 18. 指令 18. 指令		
14.3.13 5 s p + 和		
14.3.14 从功模式 14.3.15 SSP 屏藏容存器 14.3.16 体联模下的操作 14.3.17 复位的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器模地 15.2 相关寄存器 15.2.1 EEADR 和 EEADRH 寄存器 15.2.2 EECON1 和 EECON2 容存器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读闪存起序存储器 15.6 写闪存型序存储器 15.7 写现存型序存储器 15.7 EEPROM 操作注意事项 16.7.1 写设验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 15.7.3 代码保护下的数据 EEPROM 操作 16.1.3 (内容型序存储器 16.1.4 和 OPAO 传统 16.1.4 和 OPAO 传统 16.1.4 和 OPAO 相关的寄存器 17. 电气参数 18. 指令 18. 指令		
14.3.15 SSP 屏蔽寄存器 14.3.16 体眼程式下的操作 14.3.17 复位的影响		
14.3.16 休眠模式下的操作 14.3.17 复位的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器概述 15.2 相关寄存器 15.2.1 EEADR 和EEADRH 寄存器 15.2.2 ECCOM1和 EECON2 寄存器 15.3 读数据 EEPROM 存储器 15.4 写数银 EEPROM 存储器 15.5 读内存程序存储器 15.6 写内存程序存储器 15.7 建印度中存储器 15.7 三PROM 操作注意事项 15.7.1 写校验 15.7.1 写校验 15.7.2 避免说写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16.1 运算放大器 16.1 运算放大器 16.1 公算放大器 17.1 POA0 健能 16.1.2 OPA0 健能 16.1.3 OPA0 工作模式 16.1.4 和 OPA0 相关的寄存器 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 18.1 指令一宽表 18.1 指令一宽表		
14.3.17 复位的影响 15. 数据 EEPROM 和闪存程序存储器控制 15.1 数据 EEPROM 和闪存程序存储器概述 15.2 相关寄存器 15.2.1 EEADR 和 EEADRH 弯存器 15.3.1 读数器 EEPROM 存储器 15.4 与数器 EEPROM 存储器 15.5 读风存程序存储器 15.6 写闪存程序存储器 15.7 EEPROM 操作注意事项 15.7.1 写校验 15.7.2 避免误写的保护 15.7.2 避免误写的保护 15.7.2 避免误写的保护 16.1 运算放大器 16.1 运算放大器 16.1 L 经算放大器 17.1 POO 使能 16.1.1 OPAO 使能 16.1.1 OPAO 使能 16.1.2 OPAO 端口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的寄存器 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 报荡电压转性 17.3.1 内部 RC 报荡电压转性 17.3.1 内部 RC 报荡电压转性 17.3.2 内部 RC 报荡电压转性 17.3.2 内部 RC 报荡电压转性 17.3.2 内部 RC 报荡温度特性 18.1 指令一览表 18.1 指令一览表		
15.1 数据 EEPROM 和内存程序存储器概述 15.2 相关寄存器 15.2.1 EEADR 和 EEADRH 寄存器 15.2.2 EECON1 和 EECON2 寄存器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读内存程序存储器 15.6 写内存程序存储器 15.7 EEPROM 操作注意事项 15.7.1 写校验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16.1.2 可免以资格的保护 16.1 必算放大器 16.1 心算放大器 16.1.4 和 OPAO 使能 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的寄存器 17. 电气参数 17. 电气参数 17. 电气参数 17. 1 DC 特性 17. 2 AC 特性 17. 3 内部 RC 摄荡特性 17. 3 内部 RC 摄荡特性 17. 3 内部 RC 摄荡错电压特性 17. 3 内部 RC 振荡温度特性 17. 3 内部 RC 振荡温度特性 17. 3 内部 RC 振荡温度特性 18. 指令一览表 18. 1 指令一览表		
15.2 相关寄存器 1 15.2.1 EEADR 和 EEADRH 寄存器 1 15.2.2 EECON1 和 EECON2 寄存器 1 15.3 读数据 EEPROM 存储器 1 15.4 写数据 EEPROM 存储器 1 15.5 读内存程序存储器 1 15.6 写内存程序存储器 1 15.7 EEPROM 操作注意事项 1 15.7.1 写校验 1 15.7.2 避免误写的保护 1 15.7.3 代码保护下的数据 EEPROM 操作 1 16.1 运算放大器 1 16.1 运算放大器 1 16.1 运算放大器 1 16.1 OPAO 使能 1 16.1.1 OPAO 使能 1 16.1.2 OPAO 端口选择 1 16.1.3 OPAO 工作模式 1 16.1.4 和 OPAO 相关的寄存器 1 17.1 电气参数 1 17.1 DC 特性 1 17.2 AC 特性 1 17.3 内部 RC 振荡神性 1 17.3.1 内部 RC 振荡神性 1 17.3.2 内部 RC 振荡温度特性 1 18.1 指令一览表 1 18.2 指令说明 1 15.3 持令说明 1 15.4 指令一览表 1 15.5 读相 1 15.5 读相 1 15.5 读相 1 15.6 等存器 1 15.6 等存程序 1 15.7 等存程序 1 15.7 等存程序 1 15.8 指令 1 15.9 第一位表 1 15.9 第一	15. 数据 EEPROM 和闪存程序存储器控制	121
15.2.1 EEADR 和 EEADRH 寄存器 15.2.2 EECON1 和 EECON2 寄存器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读内存程序存储器 15.6 写内存程序存储器 15.7 EEPROM 操作注意事項 15.7.1 写校验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16. 运算放大器 16.1 运算放大器 16.1 运算放大器 16.1 OPAO 健能 16.1.1 OPAO 健能 16.1.2 OPAO 端口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的寄存器 17. 电气参数 17. 电气参数 17. 电气参数 17. 电气参数 18.1 力 内部 RC 振荡神性 17.3 内部 RC 振荡神性 17.3 内部 RC 振荡神性 17.3.2 内部 RC 振荡神性 17.3.2 内部 RC 振荡神性 17.3.2 内部 RC 振荡温度特性 18. 指令 18. 指令	15.1 数据 EEPROM 和闪存程序存储器概述	121
15.2.2 EECON1 和 EECON2 寄存器 15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读风存程序存储器 15.6 写闪存程序存储器 15.7 EEPROM 操作注意事项 15.7.1 写校验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16. 运算放大器 16.1 运算放大器 16.1 运算放大器 16.1 OPAO 使能 16.1.1 OPAO 使能 16.1.2 OPAO 端口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的寄存器 17. 电气参数 17. 电气参数 17. 电气参数 17. 电气参数 17. 电气参数 18. 指令	15.2 相关寄存器	122
15.3 读数据 EEPROM 存储器 15.4 写数据 EEPROM 存储器 15.5 读风存程序存储器 15.6 写风存程序存储器 15.6 写风存程序存储器 15.7 EEPROM 操作注意事項 15.7.1 写校验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16.7.3 代码保护下的数据 EEPROM 操作 16.1 运算放大器 16.1 运算放大器 16.1 心PAO 使能 16.1.1 OPAO 使能 16.1.2 OPAO 端口选择 16.1.3 OPAO 工作模式 16.1.4 和 OPAO 相关的寄存器 17.1 电气参数 17.1 电气参数 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.1 持令一览表 18.1 指令一览表 18.1 指令一览表 18.2 指令说明 15.2 指令说明 15.3 情况 1	15.2.1 EEADR 和 EEADRH 寄存器	122
15.4 写数据 EEPROM 存储器	15.2.2 EECON1 和 EECON2 寄存器	122
15.5 读内存程序存储器	15.3 读数据 EEPROM 存储器	125
15.6 写内存程序存储器	15.4 写数据 EEPROM 存储器	126
15.7 EEPROM操作注意事項	15.5 读闪存程序存储器	127
15.7.1 写校验 15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16. 运算放大器 11 16.1 运算放大器 OPA0 16.1.1 OPA0 使能 16.1.2 OPA0 端口选择 16.1.3 OPA0 工作模式 16.1.4 和 OPA0 相关的寄存器 11 17. 电气参数 11 17.1 电气参数 11 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡温度特性 11 18.1 指令一览表 11 18.1 指令一览表	15.6 写闪存程序存储器	128
15.7.2 避免误写的保护 15.7.3 代码保护下的数据 EEPROM 操作 16. 运算放大器	15.7 EEPROM 操作注意事项	129
15.7.3 代码保护下的数据 EEPROM 操作 16. 运算放大器 16.1 运算放大器 OPA0 16.1.1 OPA0 使能 16.1.2 OPA0 端口选择 16.1.3 OPA0 工作模式 16.1.4 和 OPA0 相关的寄存器 17. 电气参数 17. 电气参数 17. 电气参数 18.1 力容 RC 振荡电压特性 17.3 内部 RC 振荡电压特性 17.3.1 内部 RC 振荡温度特性 17.3.2 内部 RC 振荡温度特性 18.1 指令一览表 18.2 指令说明	15.7.1 写校验	129
16. 运算放大器 OPA0 1 16.1.1 OPA0 使能 1 16.1.2 OPA0端口选择 1 16.1.3 OPA0 工作模式 1 16.1.4 和 OPA0 相关的寄存器 1 17. 电气参数 1 17.1 DC 特性 1 17.2 AC 特性 1 17.3 内部 RC 振荡特性 1 17.3.1 内部 RC 振荡电压特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	15.7.2 避免误写的保护	129
16.1 运算放大器 OPA0	15.7.3 代码保护下的数据 EEPROM 操作	129
16.1.1 OPA0 使能	16. 运算放大器	130
16.1.2 OPA0 端口选择 16.1.3 OPA0 工作模式 16.1.4 和 OPA0 相关的寄存器 17. 电气参数 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡温度特性 17.3.2 内部 RC 振荡温度特性 18. 指令 18. 指令	16.1 运算放大器 OPA0	
16.1.3 OPA0 工作模式 16.1.4 和 OPA0 相关的寄存器 17. 电气参数 17.1 DC 特性 17.2 AC 特性 17.3 内部 RC 振荡特性 17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡温度特性 17.3.2 内部 RC 振荡温度特性 17.3.2 内部 RC 振荡温度特性 18.1 指令一览表 18.1 指令一览表 18.2 指令说明 18.1 指令一览表 18.2 指令说明 18.1	16.1.1 OPA0 使能	130
16.1.4 和 OPA0 相关的寄存器 1 17. 电气参数 1 17.1 DC 特性 1 17.2 AC 特性 1 17.3 内部 RC 振荡特性 1 17.3.1 内部 RC 振荡电压特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	16.1.2 OPA0 端口选择	130
17. 电气参数 1 17.1 DC 特性 1 17.2 AC 特性 1 17.3 内部 RC 振荡特性 1 17.3.1 内部 RC 振荡电压特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	16.1.3 OPA0 工作模式	131
17.1 DC 特性 1 17.2 AC 特性 1 17.3 内部 RC 振荡特性 1 17.3.1 内部 RC 振荡电压特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	16.1.4 和 OPA0 相关的寄存器	132
17.2 AC 特性 1 17.3 内部 RC 振荡特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	17. 电气参数	133
17.3 内部 RC 振荡特性 1 17.3.1 内部 RC 振荡电压特性 1 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	17.1 DC 特性	133
17.3.1 内部 RC 振荡电压特性 17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	17.2 AC 特性	133
17.3.2 内部 RC 振荡温度特性 1 18. 指令 1 18.1 指令一览表 1 18.2 指令说明 1	17.3 内部 RC 振荡特性	134
18. 指令 18.1 指令一览表 18.2 指令说明 18.2 指令记录	17.3.1 内部 RC 振荡电压特性	134
18.1 指令一览表	17.3.2 内部 RC 振荡温度特性	134
18.2 指令说明	18. 指令	135
	18.1 指令一览表	135
19. 封装	18.2 指令说明	137
	19. 封装	148

CMS89F22X

20. 版2	本修订说明:	 50
19.3	SOP28	149
19.2	SOP20	148
19.1	DIP20	148

1. 产品概述

1.1功能特性

◆ 内存 FLASH: 4K×16Bit 通用 RAM: 344×8Bit

◆ 8级堆栈缓存器

◆ 简洁实用的指令系统(68 条指令)

◆ 高精度 12 位 ADC

◆ 内置低压侦测电路

◆ 中断源
3 个定时中断
RB 口电平变化中断
其它外设中断

◆ 捕捉、比较和 PWM 模块(CCP)

◆ 查表功能

◆ 内置 64 字节 EEPROM

◆ 工作电压范围: 3.0V—5.5V@8MHz 2.5V—5.5V@4MHz

工作温度范围: -40℃—85℃

多种振荡方式 内部 RC 振荡:设计频率 8MHz 外部 XT 振荡:最高 8MHz

◆ 指令周期(单指令或双指令)

◆ 内置 WDT 定时器

◆ 内置 LCD/LED 驱动模块

◆ 定时器:

8 位定时器 TIMER0, TIMER2 16 位定时器 TIMER1

◆ MSSP 通信模块 (SPI/I²C)

◆ 内置运放模块

型号说明

工 7 0077										
PRODUCT	FLASH	RAM	EEPROM	I/O	LED	LCD	ADC	COMP	OPA	PACKAGE
CMS89F226	4K×16	344		18		1/2Bias×4	12Bit×11		1	DIP20/SOP20
CMS89F2265	4K×16	344	64	18		1/2Bias×4	12Bit×11		1	DIP20/SOP20
CMS89F228	4K×16	344		26	11×7	1/2Bias×4	12Bit×13		1	SOP28
CMS89F2285	4K×16	344	64	26	11×7	1/2Bias×4	12Bit×13		1	SOP28

1.2系统结构框图

1.3管脚分布

1.3.1 CMS89F226/2265 引脚图

CMS89F226/2265

CMS89F226/2265 引脚说明:

管脚名称	IO 类型	管脚说明
VDD,GND	Р	电源电压输入脚,接地脚
RA0-RA5	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
RB1-RB7	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能、电平变化中断功能
RC0-RC3	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
RE0	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
ICSPCLK	I	编程时钟输入脚
ICSPDAT	I/O	编程数据输入/输出脚
AN0-AN13	I	12 位 ADC 输入脚
COM0-COM3	0	1/2 Bias LCD 驱动公共端
T0CKI	I	TIMERO 外部时钟输入脚
CCP1	I/O	捕捉/比较/PWM1
CCP2	I/O	捕捉/比较/PWM2
OPA0+	I	运放 OPA0 的正端输入
OPA0-	1	运放 OPA0 的负端输入
OPA0O	0	运放 OPA0 的输出

<u>WWW.MCU.COM.CN</u> -10- V1.2

1.3.2 CMS89F228/2285 引脚图

			1
RE3/SDO	1	28	RB7/ICSPDAT
RA0/AN0/SEG0	2	27	RB6/ICSPCLK
RA1/AN1/SEG1	3	26	RB5/AN13/OPA0O
RA2/AN2/SEG2	4	25	RB4/AN11/OPA0-
RA3/AN3/SEG3	5	24	RB3/AN9/OPA0+
RA4/T0CKI/SEG4	6	23	RB2/AN8/SDI/SDA
RA5/AN4/SEG5/SS	7	22	RB1/AN10/SCK/SCL
RE0/AN5/SEG8	8	21	VDD VDD
RE1/AN6/SEG9	9	20	GND GND
RE2/AN7/SEG10	10	19	RC6/COM6
RA7/OSCIN/SEG7	11	18	RC5/COM5
RA6/OSCOUT/SEG6/T1CKI	12	17	RC4/COM4
RC0/COM0	13	16	RC3/COM3
RC1/COM1/CCP2	14	15	RC2/COM2/CCP1

CMS89F228/2285

CMS89F228/2285 引脚说明:

管脚名称	IO 类型	管脚说明
VDD,GND	Р	电源电压输入脚,接地脚
OSCIN/OSCOUT	Р	晶振输入/输出引脚
RA0-RA7	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
RB1-RB7	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能、电平变化中断功能
RC0-RC6	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
RE0-RE3	I/O	可编程为输入脚,推挽输出脚,带上拉电阻功能
ICSPCLK/ICSPDAT	1	编程时钟输入脚
AN0-AN13	1	12 位 ADC 输入脚
SEG0-SEG10	0	LED 驱动段输出
COM0-COM6	0	LED 驱动公共端,其中 COM0-COM3 又可作为 1/2 Bias LCD 驱动公共端
T0CKI	1	TIMERO 外部时钟输入脚
T1CKI	1	TIMER1 外部时钟输入脚
CCP1	I/O	捕捉/比较/PWM1
CCP2	I/O	捕捉/比较/PWM2
OPA0+	1	运放 OPAO 的正端输入
OPA0-	1	运放 OPAO 的负端输入
OPA0O	0	运放 OPAO 的输出
SCK	I/O	SPI时钟
SDI	1	SPI 数据输入
SDO	0	SPI 数据输出
SS	1	SPI 从动选择
SCL	I/O	I ² C 时钟
SDA	I/O	I ² C 数据输入/输出

WWW.MCU.COM.CN -11- V1.2

1.4系统配置寄存器

系统配置寄存器(CONFIG)是 MCU 初始条件的 FLASH 选项。它只能被 CMS 烧写器烧写,用户不能访问及操作。它包含了以下内容:

- 1、OSC(振荡方式选择)
 - ◆INTRC 内部 RC 振荡
 - ◆XT 外部晶体振荡
- 2、WDT(看门狗选择)
 - ◆ENABLE 打开看门口定时器 ◆DISABLE 关闭看门狗定时器
- 3、PROTECT(加密)
 - ◆DISABLE FLASH 代码不加密
 - ◆ENABLE FLASH 代码加密,加密后读出来的值将不确定
- 4、LVR_SEL(低压侦测电压选择)
 - ◆1.8V(不建议使用)
 - **♦**2.5V
 - **♦**3.5V

WWW.MCU.COM.CN -12- V1.2

1.5在线串行编程

可在最终应用电路中对单片机进行串行编程。编程可以简单地通过以下 4 根线完成:

- •电源线
- •接地线
- •数据线
- •时钟线

这使用户可使用未编程的器件制造电路板,而仅在产品交付前才对单片机进行编程。从而可以将最新版本的固件或者定制固件烧写到单片机中。

图 1-1:典型的在线串行编程连接方

上图中, R1、R2 为电气隔离器件,常以电阻代替,其阻值如下: R1≥4.7K, R2≥4.7K。

<u>WWW.MCU.COM.CN</u> -13- V1.2

2. 中央处理器(CPU)

2.1内存

2.1.1 程序内存

图 2-1: CMS89F226/2265/228/2285 程序存储器空间

FLASH:4K

0000H		程序开始,跳转至用户程序
0001H	复位向量	
0002H	友 世巴里	
0003H		
0004H	中断向量	中断入口,用户中断程序
		用户程序区
0FFDH		
0FFEH		
0FFFH	跳转至复位向量0000H	程序结束

WWW.MCU.COM.CN -14- V1.2

2.1.1.1

复位向量(0000H)

单片机具有一个字长的系统复位向量(0000H)。具有以下三种复位方式:

- ◆上电复位
- ◆看门狗复位
- ◆低压复位(LVR)

发生上述任一种复位后,程序将从 0000H 处重新开始执行,系统寄存器也都将恢复为默认值。根据 STATUS 寄存器中的 PD 和 TO 标志位的内容可以判断系统复位方式。下面一段程序演示了如何定义 FLASH 中的复位向量。

例: 定义复位向量

	ORG	0000H	;系统复位向量
	JP	START	
	ORG	0010H	;用户程序起始
START:			
	•••		;用户程序
	•••		
	END		;程序结束

WWW.MCU.COM.CN -15- V1.2

2.1.1.2 中断向量

中断向量地址为0004H。一旦有中断响应,程序计数器 PC 的当前值就会存入堆栈缓存器并跳转到0004H 开始执行中断服务程序。所有中断都会进入0004H 这个中断向量,具体执行哪个中断将由用户根据中断请求标志位寄存器的位决定。下面的示例程序说明了如何编写中断服务程序。

例: 定义中断向量,中断程序放在用户程序之后

	ORG	0000H	;系统复位向量
	JP	START	
		_	
	ORG	0004H	;用户程序起始
INT_START:			
	CALL	PUSH	;保存 ACC 跟 STATUS
			·
	•••		;用户中断程序
	•••		
INT_BACK:			
	CALL	POP	;返回 ACC 跟 STATUS
		_	,
	RETI		;中断返回
START:			
	•••		;用户程序
	•••		1/ 10/ 1-mi/ 4
	•••		
	END		;程序结束

注:由于单片机并未提供专门的出栈、压栈指令,故用户需自己保护中断现场。

例:中断入口保护现场

PUSH:			
	LD SWAPA LD RET	ACC_BAK,A STATUS STATUS_BAK,A	;保存 ACC 至自定义寄存器 ACC_BAK ;状态寄存器 STATUS 高低半字节互换 ;保存至自定义寄存器 STATUS_BAK ;返回

例:中断出口恢复现场

POP:			
	SWAPA	STATUS_BAK	;将保存至 STATUS_BAK 的数据高低半字节互换给 ACC
	LD	STATUS,A	;将 ACC 的值给状态寄存器 STATUS
	SWAPR	ACC_BAK	;将保存至 ACC_BAK 的数据高低半字节互换
	SWAPA	ACC_BAK	;将保存至 ACC_BAK 的数据高低半字节互换给 ACC
	RET		;返回

WWW.MCU.COM.CN -16- V1.2

2.1.1.3 查表

芯片具有查表功能,FLASH 空间的任何地址都可做为查表使用。相关指令:

- ·TABLE [R]把表格内容的低字节送给寄存器 R, 高字节送到寄存器 TABLE_DATAH。
- ·TABLEA 把表格内容的低字节送给累加器 ACC,高字节送到寄存器 TABLE_DATAH。相关寄存器:
 - ·TABLE_SPH(110H)可擦写寄存器,用来指明表格高 4 位地址。
 - ·TABLE_SPL(111H)可擦写寄存器,用来指明表格低8位地址。
 - ·TABLE_DATAH(112H)只读寄存器,存放表格高字节内容。

注:在查表之前要先把表格地址写入 TABLE_SPH 和 TABLE_SPL 中。如果主程序和中断服务程序都用到查表指令,主程序中的 TABLE_SPH 的值可能会因为中断中执行的查表指令而发生变化,产生错误。也就是说要避免在主程序和中断服务程序中都使用查表指令。但如果必须这样做的话,我们可以在查表指令前先将中断禁止,在查表结束后再开放中断,以避免发生错误。

图 2-2: 表格调用的流程图:

表格调用流程图

WWW.MCU.COM.CN -17- V1.2

下面例子给出了如何在程序中调用表格。

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	刊任任厅中则用衣俗。	
		;上接用户程序
LDIA	A 02H	;表格低位地址
LD	TABLE_SPL	.,А
LDIA	A 06H	;表格高位地址
LD	TABLE_SPH	H,A
TAB	SLE R01	;表格指令,将表格低8位(56H)给自定义寄存器R01
LD	A,TABLE_D	ATAH ;将查表结果的高 8 位(34H)给累加器 ACC
LD	R02,A	;将 ACC 值(34H)给自定义寄存器 R02
		;用户程序
ORG	G 0600H	;表格起始地址
DW	1234H	;0600H 地址表格内容
DW	2345H	;0601H 地址表格内容
DW	3456H	;0602H 地址表格内容
DW	0000H	;0603H 地址表格内容

WWW.MCU.COM.CN -18- V1.2

2.1.1.4 跳转表

跳转表能够实现多地址跳转功能。由于 PCL 和 ACC 的值相加即可得到新的 PCL,因此,可以通过对 PCL 加上不同的 ACC 值来实现多地址跳转。ACC 值若为 n,PCL+ACC 即表示当前地址加 n,执行完当前 指令后 PCL 值还会自加 1,可参考以下范例。如果 PCL+ACC 后发生溢出,PC 不会自动进位,故编写程序 时应注意。这样,用户就可以通过修改 ACC 的值轻松实现多地址的跳转。

PCLATH 为 PC 高位缓冲寄存器,对 PCL 操作时,必须先对 PCLATH 进行赋值。

例: 正确的多地址跳转程序示例

FLASH 地址			
	LDIA	01H	
	LD	PCLATH,A	;必须对 PCLATH 进行赋值
0110H:	ADDR	PCL	;ACC+PCL
0111H:	JP	LOOP1	;ACC=0,跳转至 LOOP1
0112H:	JP	LOOP2	;ACC=1,跳转至 LOOP2
0113H:	JP	LOOP3	;ACC=2,跳转至 LOOP3
0114H:	JP	LOOP4	;ACC=3,跳转至 LOOP4
0115H:	JP	LOOP5	;ACC=4,跳转至 LOOP5
0116H:	JP	LOOP6	;ACC=5,跳转至 LOOP6

例:错误的多地址跳转程序示例

 N1. 10 (VII) N	16年1月71日	/ 1		
FLASH 地址				
	CLR	PCLATH		
00FCH:	ADDR	PCL	;ACC+PCL	
00FDH:	JP	LOOP1	;ACC=0,跳转至 LOOP1	
00FEH:	JP	LOOP2	;ACC=1,跳转至 LOOP2	
00FFH:	JP	LOOP3	;ACC=2,跳转至 LOOP3	
0100H:	JP	LOOP4	;ACC=3,跳转至 0000H 地址	
0101H:	JP	LOOP5	;ACC=4,跳转至 0001H 地址	
0102H:	JP	LOOP6	;ACC=5,跳转至 0002H 地址	

注:由于 PCL 溢出不会自动向高位进位,故在利用 PCL 作多地址跳转时,一定要注意该段程序一定不能放在 FLASH 空间的分页处。

WWW.MCU.COM.CN -19- V1.2

2.1.2 数据存储器

图 2-3: CMS89F226/2265/228/2285 数据存储器列表

	地址		地址		地址		地址
INDF	00H	INDF	80H	INDF	100H	INDF	180H
TMR0	01H	OPTION REG	81H	TMR0	101H	OPTION REG	181H
PCL	02H	PCL	82H	PCL	102H	PCL	182H
STATUS	03H	STATUS	83H	STATUS	103H	STATUS	183H
FSR	04H	FSR	84H	FSR	104H	FSR	184H
PORTA	05H	TRISA	85H	WDTCON	105H		185H
PORTB	06H	TRISB	86H	PORTB	106H	TRISB	186H
PORTC	07H	TRISC	87H		107H		187H
	08H		88H		108H	ANSEL	188H
PORTE	09H	TRISE	89H		109H	ANSELH	189H
PCLATH	0AH	PCLATH	8AH	PCLATH	10AH	PCLATH	18AH
INTCON	0BH	INTCON	8BH	INTCON	10BH	INTCON	18BH
PIR1	0CH	PIE1	8CH	EEDATA	10CH	EECON1	18CH
PIR2	0DH	PIE2	8DH	EEADR	10DH	EECON2	18DH
TMR1L	0EH		8EH	EEDATH	10EH	WPUA	18EH
TMR1H	0FH	OSCCON	8FH	EEADRH	10FH	WPUC	18FH
T1CON	10H	OSCTUNE	90H	TABLE_SPH	110H	LEDCON0	190H
TMR2	11H	SSPCON2	91H	TABLE_SPL	111H	LEDCON1	191H
T2CON	12H	PR2	92H	TABLE_DATAH	112H	LEDADD	192H
SSPBUF	13H	SSPADD	93H		113H	LEDDATA	193H
SSPCON	14H	SSPSTAT	94H		114H	SEGEN2	194H
CCPR1L	15H	WPUB	95H		115H	SEGEN1	195H
CCPR1H	16H	IOCB	96H		116H	SEGEN0	196H
CCP1CON	17H		97H		117H	COMEN	197H
	18H		98H		118H		198H
	19H		99H		119H		199H
	1AH		9AH	WPUE	11AH		19AH
CCPR2L	1BH		9BH		11BH	通用寄存器	19BH
CCPR2H	1CH		9CH	OPA0CON	11CH	8 字节	19CH
CCP2CON	1DH		9DH	OPA0ADJ	11DH		19DH
ADRESH	1EH	ADRESL	9EH		11EH		19EH
ADCON0	1FH	ADCON1	9FH		11FH		19FH
	20H		A0H		120H		1A0H
		通用寄存器		通用寄存器		通用寄存器	
,		80 字节		80 字节		80 字节	
通用寄存器		00 1 12		00 1 1		00 1 13	
96 字节							
	6FH		EFH		16FH		1EFH
	70H	快速存储区	F0H	快速存储区	170H	快速存储区	1F0H
	 	70H-7FH		70H-7FH		70H-7FH	
DANUG	7FH	-	FFH		17FH	_	1FFH
BANK0		BANK1		BANK2		BANK3	

数据存储器由 512×8 位组成,分为两个功能区间:特殊功能寄存器和通用数据存储器。数据存储器单元大多数是可读/写的,但有些只读的。特殊功能寄存器地址为从 00H-1FH,80-9FH,100-11FH,180-197H。

WWW.MCU.COM.CN -20- V1.2

表 2-1 CMS89F22X 特殊功能寄存器汇总 Bank0

	1/2 T OIVIO	001 ZZ/()(1 // 10/2 11/2 11/2 1	1 1111111111111111111111111111111111111	Janko		1		1	1		
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值		
00H	INDF	寻址该单元会	会使用 FSR 的内容	亨寻址数据存储	:器(不是物理寄	存器)				xxxxxxx		
01H	TMR0	TIMER0数据	TIMER0数据寄存器									
02H	PCL	程序计数器值	程序计数器低字节									
03H	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	00011xxx		
04H	FSR	间接数据存储	间接数据存储器地址指针									
05H	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxxxxx		
06H	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxxxxx		
07H	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxxxxx		
09H	PORTE					RE3	RE2	RE1	RE0	xxxx		
0AH	PCLATH				程序计数器高:	5位的写缓冲器				00000		
0BH	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	00000000		
0CH	PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0000000		
0DH	PIR2		C2IF	C1IF	EEIF	BCLIF			CCP2IF	-00000		
0EH	TMR1L	16位TIMER1	1寄存器低字节的	J数据寄存器						xxxxxxx		
0FH	TMR1H	16位TIMER1	1寄存器高字节的	J数据寄存器						xxxxxxx		
10H	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T0OSCEN	T1SYNC	TMR1CS	TMR10N	00000000		
11H	TMR2	TIMER2模块	寄存器							00000000		
12H	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-0000000		
13H	SSPBUF	同步串行端口	□接收缓冲器/发	送寄存						xxxxxxx		
14H	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	00000000		
15H	CCPR1L	捕捉/比较/P\	NM寄存器1的低	字节						xxxxxxx		
16H	CCPR1H	捕捉/比较/P\	NM寄存器1的高	字节						xxxxxxx		
17H	CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00000000		
1BH	CCPR2L	捕捉/比较/P\	NM寄存器2的低	字节						xxxxxxx		
1CH	CCPR2H	捕捉/比较/P\	NM寄存器2的高	字节						xxxxxxx		
1DH	CCP2CON	CCP2IN1	CCP2IN0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00000000		
1EH	ADRESH	A/D结果寄存	器的高字节							xxxxxxx		
1FH	ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00000000		

表2-2 CMS89F22X特殊功能寄存器汇总Bank1

衣	2-2 CMS89F2	22X 符殊以] 能奇仔器/	_尽Bank1						
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
80H	INDF	寻址该地址单	单元会使用FSR的]内容寻址数据	存储器(不是物	理寄存器)				xxxxxxx
81H	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	11111111
82H	PCL	程序计数器	(PC) 的低字节							00000000
83H	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	00011xxx
84H	FSR	间接数据存储	者器地址指针							xxxxxxx
85H	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11111111
86H	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111
87H	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111
89H	TRISE					TRISE3	TRISE2	TRISE1	TRISE0	1111
8AH	PCLATH				程序计数器高5	i位的写缓冲器				00000
8BH	INTCON	GIE	PEIE	T01E	INTE	RBIE	TOIF	INTF	RBIF	00000000
8CH	PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0000000
8DH	PIE2		C2IE	C1IE	EEIE	BCLIE			CCP2IE	-00000
8FH	OSCCON		IRCF2	IRCF1	IRCF0				SCS	-1100
90H	OSCTUNE				TUN4	TUN3	TUN2	TUN1	TUN0	00000
91H	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000
92H	PR2	TIMER2周期	寄存器							11111111
93H	SSPADD	同步串行端口	口(I ² C模式)地址等	存器						00000000
93H	SSPMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	11111111
94H	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	00000000
95H	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
96H	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	00000000
9EH	ADRESL	A/D结果寄存	器的低字节							xxxxxxx
9FH	ADCON1	ADFM								0

表2-3 CMS89F22X特殊功能寄存器汇总Bank2

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值	
							DILZ	DILI	DILU		
100H	INDF	寻址该地址 早	单元会使用FSR的]内谷寻址	子储器(个是物	埋奇仔 裔)				XXXXXXX	
101H	TMR0	TIMER0模块	MERO模块寄存器								
102H	PCL	程序计数器	(PC) 的低字节							00000000	
103H	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	00011xxx	
104H	FSR	间接数据存储	者器地址指针							xxxxxxx	
105H	WDTCON								SWDTEN	0	
106H	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxxxxx	
10AH	PCLATH				程序计数器高	55位的写缓冲器	ų.			00000	
10BH	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	00000000	
10CH	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	xxxxxxx	
10DH	EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	00000000	
10EH	EEDATH	EEDATH7	EEDATH6	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	xxxxxxx	
10FH	EEADRH				EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	00000	
110H	TABLE_SPH	表格高位指针	†							xxxxx	
111H	TABLE_SPL	表格低位指针	†							xxxxxxx	
112H	TABLE_DATAH	表格高位数据	3			•			•	XXXXXXXX	
11AH	WPUE					WPUE3	WPUE2	WPUE1	WPUE0	0000	
11CH	OPA0CON	OPA0EN	OPA0O	OPA0P2	OPA0P1	OPA0P0	OPA0N		OPA0FT	000000-0	
11DH	OPA0ADJ	OPA0OUT	OPA0COFM	OPA0CRS			OPA0ADJ[4:0]			00010000	

表2-4 CMS89F22X特殊功能寄存器汇总Bank3

122	-4 CIVISO9F	22 八1 寸7小岁	1月15日 1丁旬67	L心Dalik	,					
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
180H	INDF	寻址该地址单	单元会使用 FSR 的	勺内容寻址数据	存储器(不是物	理寄存器)				xxxxxxx
181H	OPTION_RE	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	11111111
	G									
182H	PCL	程序计(PC)的低字节							00000000
183H	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	00011xxx
184H	FSR	间接数据存储	者器地址指针							xxxxxxx
186H	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB73	TRISB2	TRISB1	TRISB0	11111111
188H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	00000000
189H	ANSELH			ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	000000
18AH	PCLATH				程序计数器高级	5位的写缓冲器				00000
18BH	INTCON	GIE	PEIE	T01E	INTE	RBIE	T01F	INTF	RBIF	00000000
18CH	EECON1	EEPGD				WRERR	WREN	WR	RD	0x000
18DH	EECON2	EEPROM控制	制寄存器2(不是	是物理寄存器)						
18EH	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00000000
18FH	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	00000000
190H	LEDCON0	LCDEN	LEDEN	COMSEL1	COMSEL0	LEDCLK3	LEDCLK2	LEDCLK1	LEDCLK0	00000000
191H	LEDCON1		LEDF	SEGOUT1	SEGOUT0			LCD_IS	SLE[1:0]	-00000
192H	LEDADD	LEDCS	B2RES	COMSEL2		ı	_EDADD[4:0]			00000000
193H	LEDDATA	LED数据寄存	字器							00000000
194H	SEGEN2	SEG口驱动印	电流控制寄存器				SEG18EN	SEG17EN	SEG16EN	0000-000
195H	SEGEN1	SEG口控制智	寄存器1	·				·		00000000
196H	SEGEN0	SEG口控制智	寄存器0						•	00000000
197H	COMEN	COM口控制	寄存器							00000000

2.2寻址方式

2.2.1 直接寻址

通过工作寄存器(ACC)来对 RAM 进行操作。

例: ACC 的值送给 30H 寄存器

LD 30H,A

例: 30H 寄存器的值送给 ACC

LD A,30H

2.2.2 立即寻址

把立即数传给工作寄存器 (ACC)

例: 立即数 12H 送给 ACC

LDIA 12H

2.2.3 间接寻址

数据存储器能被直接或间接寻址。通过 INDF 寄存器可间接寻址,INDF 不是物理寄存器。当对 INDF 进行存取时,它会根据 FSR 寄存器内的值(低 8 位)和 STATUS 寄存器的 IRP 位(第 9 位)作为地址,并指向该地址的寄存器,因此在设置了 FSR 寄存器和 STATUS 寄存器的 IRP 位后,就可把 INDF 寄存器当作目的寄存器来存取。间接读取 INDF (FSR=0)将产生 00H。间接写入 INDF 寄存器,将导致一个空操作。以下例子说明了程序中间接寻址的用法。

例: FSR 及 INDF 的应用

LDIA	30H	
LD	FSR,A	;间接寻址指针指向 30H
CLRB	STATUS,IRP	;指针第9位清零
CLR	INDF	;清零 INDF 实际是清零 FSR 指向的 30H 地址 RAM

例: 间接寻址清 RAM(20H-7FH)举例:

	LDIA	1FH	
	LD	FSR,A	;间接寻址指针指向 1FH
	CLRB	STATUS,IRP	
LOOP:			
	INCR	FSR	;地址加 1,初始地址为 30H
	CLR	INDF	;清零 FSR 所指向的地址
	LDIA	7FH	
	SUBA	FSR	
	SNZB	STATUS,C	;一直清零至 FSR 地址为 7FH
,	JP	LOOP	

WWW.MCU.COM.CN -25- V1.2

2.3堆栈

芯片的堆栈缓存器共8层,堆栈缓存器既不是数据存储器的一部分,也不是程序内存的一部分,且既不能被读出,也不能被写入。对它的操作通过堆栈指针(SP)来实现,堆栈指针(SP)也不能读出或写入,当系统复位后堆栈指针会指向堆栈顶部。当发生子程序调用及中断时的程序计数器(PC)值被压入堆栈缓存器,当从中断或子程序返回时将数值返回给程序计数器(PC),下图说明其工作原理。

RET	CALL A	•	SP7				
RETI	中断		SP6				
			SP5				
SP+1		P-1	SP4				
	SP-1		SP3				
			SP2				
							SP1
	,		SP0				

堆栈缓存器的使用将遵循一个原则"先进后出"。

注: 堆栈缓存器只有 8 层,如果堆栈已满,并且发生不可屏蔽的中断,那么只有中断标志位会被记录下来,而中断响应则会被抑制,直到堆栈指针发生递减,中断才会被响应,这个功能可以防止中断使堆栈溢出,同样如果堆栈已满,并且发生子程序调用,那么堆栈将会发生溢出,首先进入堆栈的内容将会丢失,只有最后8个返回地址被保留,故用户在写程序时应注意此点,以免发生程序走飞。

WWW.MCU.COM.CN -26- V1.2

2.4工作寄存器(ACC)

2.4.1 概述

ALU 是 8Bit 宽的算术逻辑单元,MCU 所有的数学、逻辑运算均通过它来完成。它可以对数据进行加、减、移位及逻辑运算,ALU 也控制状态位(STATUS 状态寄存器中),用来表示运算结果的状态。

ACC 寄存器是一个 8Bit 的寄存器,ALU 的运算结果可以存放在此,它并不属于数据存储器的一部分而是位于 CPU 中供 ALU 在运算中使用,因此不能被寻址,只能通过所提供的指令来使用。

2.4.2 ACC 应用

例:用 ACC 做数据传送

LD	A,R01	;将寄存器 R01 的值赋给 ACC
LD	R02,A	;将 ACC 的值赋给寄存器 R02

例:用 ACC 做立即寻址目标操作数

74 74 - 12 124 7 - 1714	# 1: 11 > > *	
LDIA	30H	;给 ACC 赋值 30H
ANDIA	30H	;将当前 ACC 的值跟立即数 30H 进行"与"操作, ;结果放入 ACC
XORIA	30H	;将当前 ACC 的值跟立即数 30H 进行"异或"操作, ;结果放入 ACC

例:用 ACC 做双操作数指令的第一操作数

HSUBA	R01	;ACC-R01,结果放入 ACC
HSUBR	R01	;ACC-R01,结果放入 R01

例:用 ACC 做双操作数指令的第二操作数

SUBA	R01	;R01-ACC,结果放入 ACC
SUBR	R01	;R01-ACC,结果放入 R01

WWW.MCU.COM.CN -27- V1.2

2.5程序状态寄存器(STATUS)

STATUS 寄存器如下表所示,包含:

- •ALU 的算术状态
- •复位状态
- •数据存储器(GPR和SFR)的存储区选择位

与其他寄存器一样,STATUS 寄存器可以是任何指令的目标寄存器。如果一条影响 Z、DC 或 C 位的指令以 STATUS 寄存器作为目标寄存器,则不能写这 3 个状态位。这些位根据器件逻辑被置 1 或清零。而且也不能写 TO 和 PD 位。因此将 STATUS 作为目标寄存器的指令可能无法得到预期的结果。

例如, CLR STATUS 会清零高 3 位, 并将 Z 位置 1。这样 STATUS 的值将为 000uu1uu(其中 u=不变)。 因此, 建议仅使用 CLRB、SETB、SWAPA、SWAPR 指令来改变 STATUS 寄存器, 因为这些指令不会影响任何状态位。

程序状态寄存器 STATUS (03H)

03H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С
读写	R/W							
复位值	0	0	0	1	1	Х	Х	Х

Bit7 IRP: 寄存器存储区选择位(用于间接寻址)

1=Bank2和Bank3(100h-1FFh)

0=Bank0和Bank1 (00h-FFh)

Bit6-5 **RP[1:0]**: 存储区选择位

0 0 选择Bank 0

0 1 选择Bank 1

10 选择Bank 2

11 选择Bank 3

Bit4 **TO**: 超时位

1=上电或是执行了CLRWDT指令或STOP指令

0=发生了WDT超时

Bit3 PD: 掉电位

1=上电或执行了CLRWDT指令

0=执行了STOP指令

Z: 结果为零位

1=算术或逻辑运算的结果为零

0=算术或逻辑运算的结果不为零

Bit1 DC: 半进位/借位位(ADDWF、ADDLW、SUBLW或SUBWF指令)

1=发生了结果的第4低位向高位进位

0=结果的第4低位没有向高位进位

BitO C: 进位/借位位(ADDWF、ADDLW、SUBLW或SUBWF指令)

1=结果的最高位发生了进位 0=结果的最高位没有发生进位

TO 和 PD 标志位可反映出芯片复位的原因,下面列出影响 TO、PD 的事件及各种复位后 TO、PD 的状

态。

,0,0		
事件	TO	PD
电源上电	1	1
WDT 溢出	0	Χ
STOP 指令	1	0
CLRWDT 指令	1	1
休眠	1	0

影响 PD、TO 的事件表

TO	PD	复位原因
0	0	WDT 溢出唤醒休眠 MCU
0	1	WDT 溢出非休眠态
1	0	按键唤醒休眠 MCU
1	1	电源上电

复位后 TO/PD 的状态

2.6预分频器(OPTION_REG)

OPTION_REG 寄存器是可读写的寄存器,包括各种控制位用于配置:

- •TIMERO/WDT 预分频器
- •TIMER0
- •PORTB 上拉电阻控制

预分频器控制寄存器 OPTION_REG (81H)

81H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
读写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Bit7 RBPU: PORTB上拉使能位

1=禁止PORTB上拉

0=由端口的各个锁存值使能 PORTB 上拉

Bit6 INTEDG: 触发中断的边沿选择位

1=INT引脚上升沿触发中断 0=INT引脚下降沿触发中断

Bit5 **TOCS:** TIMER0时钟源选择位

1=T0CKI引脚上的跳变沿

0=内部指令周期时钟(Fosc/4)

Bit4 TOSE: TIMERO时钟源边沿选择位

1=在TOCKI引脚信号从高电平跳变到低电平时递增 0=在 TOCKI 引脚信号从低电平跳变到高电平时递增

Bit3 PSA: 预分频器分配位

1=预分频器分配给 WDT

0=预分频器分配给 TIMERO 模块

Bit2-0 **PS2~PS0:** 预分配参数配置位

PS2-PS1-PS0	TIMER0 分频比	WDT 分频比
000	1: 2	1: 1
001	1: 4	1: 2
010	1: 8	1: 4
011	1: 16	1: 8
100	1: 32	1: 16
101	1: 64	1: 32
110	1: 128	1: 64
111	1: 256	1: 128

预分频寄存器实际上是一个 8 位的计数器,用于监视寄存器 WDT 时,是作为一个后分频器;用于定时器/计数器时,作为一个预分频器,通常统称作预分频器。在片内只有一个物理的分频器,只能用于 WDT/TIMER0 两者之一,不能同时使用。也就是说,若用于 TIMER0,WDT 就不能使用预分频器,反之亦然。

当用于 WDT 时, CLRWDT 指令将同时对预分频器和 WDT 定时器清零。

当用于 TIMER0 时,有关写入 TIMER0 的所有指令(如: CLR TMR0,SETB TMR0,1 等)都会对预分频器清零。

由 TIMERO 还是 WDT 使用预分频器,完全由软件控制,可以动态改变。为了避免出现不该有的芯片复位,当从 TIMERO 换为 WDT 使用时,应该执行以下指令。

 	7 14 4 1 7 2 14 114 2 1 1	*** *
CLR	TMR0	;TMR0 清零
CLRWDT		;WDT 清零
LDIA	B'00xx1111'	
LD	OPTION_REG,A	
LDIA	B'00xx1xxx'	;设置新的预分频器
LD	OPTION_REG,A	

将预分频器从分配给 WDT 切换为分配给 TIMERO 模块,应该执行以下指令

CLRWDT		;WDT 清零
LDIA	B'00xx0xxx'	;设置新的预分频器
LD	OPTION_REG,A	

注:要使 TIMERO 获取 1:1 的预分频比配置,可通过将选项寄存器的 PSA 位置 1 将预分频器分配给 WDT。

WWW.MCU.COM.CN -30- V1.2

2.7程序计数器 (PC)

程序计数器(PC)控制程序内存 FLASH 中的指令执行顺序,它可以寻址整个 FLASH 的范围,取得指令码后,程序计数器(PC)会自动加一,指向下一个指令码的地址。但如果执行跳转、条件跳转、向 PCL 赋值、子程序调用、初始化复位、中断、中断返回、子程序返回等操作时,PC 会加载与指令相关的地址而不是下一条指令的地址。

当遇到条件跳转指令且符合跳转条件时,当前指令执行过程中读取的下一条指令将会被丢弃,且会插入一个空指令操作周期,随后才能取得正确的指令。反之,就会顺序执行下一条指令。

程序计数器(PC)是 12Bit 宽度,低 8 位通过 PCL(02H)寄存器用户可以访问,高 4 位用户不能访问。可容纳 4Kx16 位程序地址。对 PCL 赋值将会产生一个短跳转动作,跳转范围为当前页的 256 个地址。

注: 当程序员在利用 PCL 作短跳转时,要先对 PC 高位缓冲寄存器 PCLATH 进行赋值。

下面给出几种特殊情况的 PC 值

复位时	PC=0000;
中断时	PC=0004(原来的 PC+1 会被自动压入堆栈);
CALL 时	PC=程序指定地址(原来的 PC+1 会被自动压入堆栈);
RET、RETI、RETi时	PC=堆栈出来的值;
操作 PCL 时	PC[11:8]不变,PC[7:0]=用户指定的值;
JP时	PC=程序指定的值;
其它指令	PC=PC+1;

WWW.MCU.COM.CN -31- V1.2

2.8看门狗计数器(WDT)

看门狗定时器(Watch Dog Timer)是一个片内自振式的 RC 振荡定时器,无需任何外围组件,即使芯片的主时钟停止工作,WDT 也能保持计时。WDT 计时溢出将产生复位。

2.8.1 WDT 周期

WDT 与 TIMER0 共用 8 位预分频器。在所有复位后,WDT 溢出周期 18ms,假如你需要改变的 WDT 周期,可以设置 OPTION REG 寄存器。WDT 的溢出周期将受到环境温度,电源电压等参数影响。

"CLRWDT"和"STOP"指令将清除 WDT 定时器以及预分频器里的计数值(当预分频器分配给 WDT 时)。WDT 一般用来防止系统失控,或者可以说是用来防止单片机程序失控。在正常情况下,WDT 应该在其溢出前被"CLRWDT"指令清零,以防止产生复位。如果程序由于某种干扰而失控,那么不能在 WDT 溢出前执行"CLRWDT"指令,就会使 WDT 溢出而产生复位。使系统重启而不至于失去控制。若是 WDT 溢出产生的复位,则状态寄存器(STATUS)的"TO"位会被清零,用户可根据此位来判断复位是否是 WDT 溢出所造成的。

- 注: 1.若使用 WDT 功能,一定要在程序的某些地方放置 "CLRWDT" 指令,以保证在 WDT 溢出前能被清零。否者会使芯片不停的复位,造成系统无法正常工作。
- 2.不能在中断程序中对 WDT 进行清零,否则无法侦测到主程序"跑飞"的情况。
- 3.程序中应在主程序中有一次清 WDT 的操作,尽量不要在多个分支中清零 WDT,这种架构能最大限度发挥看门狗计数器的保护功能。
- 4.看门狗计数器不同芯片的溢出时间有一定差异,所以设置清 WDT 时间时,应与 WDT 的溢出时间有较大的 冗余,以避免出现不必要的 WDT 复位。

2.8.2 看门狗定时器控制寄存器 WDTCON

看门狗定时器控制寄存器 WDTCON(105H)

105H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WDTCON								SWDTEN
R/W								R/W
复位值								0

Bit7-1 未用,读为0

Bit0 SWDTEN: 软件使能或禁止看门狗定时器位

1=使能 WDT

0=禁止 WDT (复位值)

注 1: 如果 CONFIG 中 WDT 配置位=1,则 WDT 始终被使能,而与 SWDTEN 控制位的状态无关。如果 CONFIG 中 WDT 配置位=0,则可以使用 SWDTEN 控制位使能或禁止 WDT。

WWW.MCU.COM.CN -32- V1.2

3. 系统时钟

3.1概述

时钟信号从 OSCIN 引脚输入后(或者由内部振荡产生),在片内产生 4 个非重叠正交时钟信号,分别称作 Q1、Q2、Q3、Q4。在 IC 内部每个 Q1 使程序计数器(PC)增量加一,Q4 从程序存储单元中取出该指令,并将其锁存在指令寄存器中。在下一个 Q1 到 Q4 之间对取出的指令进行译码和执行,也就是说 4 个时钟周期才会执行一条指令。下图表示时钟与指令周期执行时序图。

一个指令周期含有 4 个 Q 周期,指令的执行和获取是采用流水线结构,取指占用一个指令周期,而译码和执行占用另一个指令周期,但是由于流水线结构,从宏观上看,每条指令的有效执行时间是一个指令周期。如果一条指令引起程序计数器地址发生改变(例如 JP)那么预取的指令操作码就无效,就需要两个指令周期来完成该条指令,这就是对 PC 操作指令都占用两个时钟周期的原因。

时钟与指令周期时序图

下面列出振荡频率与指令速度的关系

频率	双指令周期	单指令周期
1MHz	8µs	4µs
2MHz	4µs	2µs
4MHz	2µs	1µs
8MHz	1µs	500ns

WWW.MCU.COM.CN -33- V1.2

3.2系统振荡器

芯片有 2 种振荡方式,内部 RC 振荡和外部 XT 振荡。

3.2.1 内部 RC 振荡

芯片默认的振荡方式为内部RC振荡,其振荡频率为8MHz可通过OSCCON寄存器设置芯片工作频率。振荡频率在出厂时校正,其误差在±3%以内。

当选择内部 RC 作为芯片的振荡器时,芯片的 OSCIN 和 OSCOUT 可以作为普通的 I/O 口。

3.2.2 外部 XT 振荡

在烧录时将 CONFIG 选项中的 OSC 选择成 XT, 芯片工作在外部 XT 振荡模式下, 此时内部 RC 振荡停止工作, OSCIN 和 OSCOUT 作为振荡口。

典型的 XT 振荡方式如下图所示:

建议参数:

类型	频率	建议值 RF	建议值 C1~C2
XT	455kHz	1M	100PF∼470PF
XT	2MHz	1M	10PF~47PF
XT	4MHz	1M	10PF~47PF
XT	8MHz	1M	10PF∼47PF

3.3起振时间

起振时间(Reset Time)是指从芯片复位到芯片振荡稳定这段时间,其设计值为 18ms。

注:无论芯片是电源上电复位,还是其它原因引起的复位,都会存在这个起振时间。

WWW.MCU.COM.CN -34- V1.2

3.4振荡器控制寄存器

振荡器控制(OSCCON)寄存器控制系统时钟和频率选择,振荡器调节寄存器 OSCTUNE 可以用软件调节内部振荡频率。

振荡器控制寄存器 OSCCON(8FH)

			, ,					
8FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCCON		IRCF2	IRCF1	IRCF0				SCS
R/W		R/W	R/W	R/W				R/W
复位值		1	1	0				0

Bit7 未用,读为**0**

Bit6-4 **IRCF<2:0>**: 内部振荡器频率选择位

111=8MHz

110=4MHz (默认)

101=2MHz 100=1MHz 011=500kHz 010=250kHz 001=125kHz

000=31kHz (LFINTOSC)

Bit3-Bit1 未用

Bit0 SCS: 系统时钟选择位

1=内部振荡器用作系统时钟 0=时钟源由CONFIG定义

振荡器调节寄存器 OSCTUNE(90H)

90H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCTUNE				TUN4	TUN3	TUN2	TUN1	TUN0
R/W				R/W	R/W	R/W	R/W	R/W
复位值				0	0	0	0	0

Bit7-5 未用

Bit4-0 **TUN<6:0>:** 频率调节位

01111=最高频率

01110=

•

•

00001=

00000=振荡器模块以厂家校准后的频率运行

11111=

•

•

10000=最低频率

4. 复位

芯片可用如下3种复位方式:

- ◆上电复位
- ◆LVR 复位
- ◆正常工作下的看门狗溢出复位

上述任意一种复位发生时,所有的系统寄存器将恢复默认状态,程序停止运行,同时程序计数器 PC 清零,复位结束后程序从复位向量 0000H 开始运行。STATUS 的 TO 和 PD 标志位能够给出系统复位状态的信息,(详见 STATUS 的说明),用户可根据 PD 和 TO 的状态,控制程序运行路径。

任何一种复位情况都需要一定的响应时间,系统提供完善的复位流程以保证复位动作的顺利进行。

4.1上电复位

上电复位与 LVR 操作密切相关。系统上电的过程呈逐渐上升的曲线形式,需要一定时间才能达到正常电平值。下面给出上电复位的正常时序:

- ◆ 上电:系统检测到电源电压上升并等待其稳定;
- ◆ 系统初始化: 所有的系统寄存器被置为初始值:
- ◆ 振荡器开始工作:振荡器开始提供系统时钟;
- ◆ 执行程序:上电结束,程序开始运行。

<u>WWW.MCU.COM.CN</u> -36- V1.2

4.2掉电复位

4.2.1 掉电复位概述

掉电复位针对外部因素引起的系统电压跌落情形(例如,干扰或外部负载的变化)。电压跌落可能会进入系统死区,系统死区意味着电源不能满足系统的最小工作电压要求。

上图是一个典型的掉电复位示意图。图中,VDD 受到严重的干扰,电压值降的非常低。虚线以上区域系统正常工作,在虚线以下的区域内,系统进入未知的工作状态,这个区域称作死区。当 VDD 跌至 V1 时,系统仍处于正常状态,当 VDD 跌至 V2 和 V3 时,系统进入死区,则容易导致出错。

以下情况系统可能进入死区:

DC 运用中:

DC 运用中一般都采用电池供电,当电池电压过低或单片机驱动负载时,系统电压可能跌落并进入死区。 这时,电源不会进一步下降到 LVD 检测电压,因此系统维持在死区。

AC 运用中:

系统采用 AC 供电时,DC 电压值受 AC 电源中的噪声影响。当外部负载过高,如驱动马达时,负载动作产生的干扰也影响到 DC 电源。VDD 若由于受到干扰而跌落至最低工作电压以下时,则系统将有可能进入不稳定工作状态。

在 AC 运用中,系统上、下电时间都较长。其中,上电时序保护使得系统正常上电,但下电过程却和 DC 运用中情形类似,AC 电源关断后,VDD 电压在缓慢下降的过程中易进入死区。

如上图所示,系统正常工作电压区域一般高于系统复位电压,同时复位电压由低电压检测(LVR)电平决定。当系统执行速度提高时,系统最低工作电压也相应提高,但由于系统复位电压是固定的,因此在系统最低工作电压与系统复位电压之间就会出现一个电压区域,系统不能正常工作,也不会复位,这个区域即为死区。

WWW.MCU.COM.CN -37- V1.2

4.2.2 掉电复位的改进办法

如何改进系统掉电复位性能,以下给出几点建议 选择较高的 LVR 电压,有助于复位更可靠 开启看门狗定时器 降低系统的工作频率 增大电压下降斜率

看门狗定时器

看门狗定时器用于保证程序正常运行,当系统进入工作死区或者程序运行出错时,看门狗定时器会溢出,系统复位。

降低系统的工作速度

系统工作频率越快,系统最低工作电压越高。从而增大了工作死区的范围,降低系统工作速度就可以降低最低工作电压,从而有效的减小系统工作在死区电压的机率。

增大电压下降斜率

此方法可用于系统工作在 AC 供电的环境,一般 AC 供电系统,系统电压在掉电过程中下降很缓慢,这就会造成芯片较长时间工作在死区电压,此时若系统重新上电,芯片工作状态可能出错,建议在芯片电源与地线间加一个放电电阻,以便让 MCU 快速通过死区,进入复位区,避免芯片上电出错可能性。

4.3看门狗复位

看门狗复位是系统的一种保护设置。在正常状态下,由程序将看门狗定时器清零。若出错,系统处于未 知状态,看门狗定时器溢出,此时系统复位。看门狗复位后,系统重启进入正常状态。

看门狗复位的时序如下:

看门狗定时器状态:系统检测看门狗定时器是否溢出,若溢出,则系统复位;

初始化: 所有的系统寄存器被置为默认状态:

振荡器开始工作:振荡器开始提供系统时钟;

程序:复位结束,程序开始运行。

关于看门狗定时器的应用问题请参看 2.8 WDT 应用章节。

WWW.MCU.COM.CN -38- V1.2

5. 休眠模式

5.1进入休眠模式

执行 STOP 指令可进入掉电模式。如果 WDT 使能,那么:

- •WDT 将被清零并继续运行。
- •STATUS 寄存器中的 PD 位被清零。
- •TO 位被置 1。
- •关闭振荡器驱动器。
- •I/O 端口保持执行 STOP 指令之前的状态(驱动为高电平、低电平或高阻态)。

在休眠模式下,为了尽量降低电流消耗,所有 I/O 引脚都应该保持为 VDD 或 GND,没有外部电路从 I/O 引脚消耗电流。为了避免输入引脚悬空而引入开关电流,应在外部将高阻输入的 I/O 引脚拉为高电平或低电平。为了将电流消耗降至最低,还应考虑芯片内部上拉电阻的影响。

5.2从休眠状态唤醒

可以通过下列任一事件将器件从休眠状态唤醒:

- 1、看门狗定时器唤醒(WDT强制使能)
- 2、PORTB 电平变化中断或外设中断。

上述两种事件被认为是程序执行的延续, STATUS 寄存器中的 TO 和 PD 位用于确定器件复位的原因。 PD 位在上电时被置 1, 而在执行 STOP 指令时被清零。 TO 位在发生 WDT 唤醒时被清零。

当执行 STOP 指令时,下一条指令(PC+1)被预先取出。如果希望通过中断事件唤醒器件,则必须将相应的中断允许位置 1 (允许)。唤醒与 GIE 位的状态无关。如果 GIE 位被清零 (禁止),器件将继续执行 STOP 指令之后的指令。如果 GIE 位被置 1(允许),器件执行 STOP 指令之后的指令,然后跳转到中断地址(0004h)处执行代码。如果不想执行 STOP 指令之后的指令,用户应该在 STOP 指令后面放置一条 NOP 指令。器件从休眠状态唤醒时,WDT 都将被清零,而与唤醒的原因无关。

5.3使用中断唤醒

当禁止全局中断(GIE 被清零)时,并且有任一中断源将其中断允许位和中断标志位置 1,将会发生下列事件之一:

•如果在执行 STOP 指令之前产生了中断,那么 STOP 指令将被作为一条 NOP 指令执行。因此,WDT 及其预分频器和后分频器(如果使能)将不会被清零,并且 TO 位将不会被置 1,同时 PD 也不会被清零。

•如果在执行 STOP 指令期间或之后产生了中断,那么器件将被立即从休眠模式唤醒。STOP 指令将在唤醒之前执行完毕。因此,WDT 及其预分频器和后分频器(如果使能)将被清零,并且 TO 位将被置 1,同时 PD 也将被清零。即使在执行 STOP 指令之前检查到标志位为 0,它也可能在 STOP 指令执行完毕之前被置 1。要确定是否执行了 STOP 指令,可以测试 PD 位。如果 PD 位置 1,则说明 STOP 指令被作为一条 NOP 指令执行了。在执行 STOP 指令之前,必须先执行一条 CLRWDT 指令,来确保将 WDT 清零。

WWW.MCU.COM.CN -39- V1.2

5.4休眠模式应用举例

系统在进入休眠模式之前,若用户需要获得较小的休眠电流,请先确认所有 I/O 的状态,若用户方案中存在悬空的 I/O 口,把所有悬空口都设置为输出口,确保每一个输入口都有一个固定的状态,以避免 I/O 为输入状态时,口线电平处于不定态而增大休眠电流,关断 AD 等其它外设模块,根据实际方案的功能需求可禁止 WDT 功能来减小休眠电流。

例: 进入休眠的处理程序

SLEEP_MODE:		
CLR	INTCON	;关断中断使能;
LDIA	B'00000000'	
LD	TRISA,A	
LD	TRISB,A	;所有 I/O 设置为输出口;
LD	TRISC,A	
LD	TRISE,A	
•••		;关闭其它功能;
LDIA	0A5H	
LD	SP_FLAG,A	;置休眠状态记忆寄存器(用户自定义);
CLRWDT		;清零 WDT;
STOP		;执行 STOP 指令。

5.5休眠模式唤醒时间

当 MCU 从休眠态被唤醒时,需要等待一个振荡稳定时间(Reset Time),这个时间标称值为 18ms。

<u>WWW.MCU.COM.CN</u> -40- V1.2

6. I/O 端口

芯片有五个 I/O 端口: PORTA、PORTB、PORTC、PORTE(最多 26 个 I/O)。可读写端口数据寄存器可直接存取这些端口。

端口	位	管脚描述	I/O
	0	施密特触发输入,推挽式输出,ANO, LCD/LED 驱动 SEG 口	I/O
	1	施密特触发输入,推挽式输出,AN1, LCD/LED 驱动 SEG 口	I/O
	2	施密特触发输入,推挽式输出,AN2, LCD/LED 驱动 SEG 口	I/O
PROTA	3	施密特触发输入,推挽式输出,AN3, LCD/LED 驱动 SEG 口	I/O
FROIA	4	施密特触发输入,推挽式输出, TMR0 时钟输入,LCD/LED 驱动 SEG 口	I/O
	5	施密特触发输入,推挽式输出,AN4, LCD/LED 驱动 SEG 口	I/O
	6	施密特触发输入,推挽式输出, OSCOUT,LCD/LED 驱动 SEG 口	I/O
	7	施密特触发输入,推挽式输出, OSCIN,LCD/LED 驱动 SEG 口	I/O
	1	施密特触发输入,推挽式输出,AN10	I/O
	2	施密特触发输入,推挽式输出,AN8	I/O
	3	施密特触发输入,推挽式输出,AN9, OPA0 正端输入	I/O
PORTB	4	施密特触发输入,推挽式输出,AN11, OPA0 负端输入	I/O
	5	施密特触发输入,推挽式输出,AN13, OPA0 输出	I/O
	6	施密特触发输入,推挽式输出,编程时钟输入	I/O
	7	施密特触发输入,推挽式输出,编程数据输入/输出	I/O
	0	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口	I/O
	1	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口,CCP2	I/O
	2	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口,CCP1,P1A	I/O
PORTC	3	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口	I/O
	4	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口	I/O
	5	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口	I/O
	6	施密特触发输入,推挽式输出,LCD/LED 驱动 COM 口	I/O
PORTE	0	施密特触发输入,推挽式输出,AN5, LCD/LED 驱动 SEG 口	I/O
	1	施密特触发输入,推挽式输出,AN6,LCD/LED 驱动 SEG 口	I/O
	2	施密特触发输入,推挽式输出,AN7,LCD/LED 驱动 SEG 口	I/O
	3	施密特触发输入,推挽式输出	I/O

<表 6-1 端口配置总概>

WWW.MCU.COM.CN -41- V1.2

◆ I/O 口结构图

6.1PORTA

6.1.1 PORTA 数据及方向控制

PORTA 是 8 位宽的双向端口。它所对应的数据方向寄存器是 TRISA。将 TRISA 的一个位置 1 (=1) 可 以将相应的引脚配置为输入。清零 TRISA 的一个位(=0) 可将相应的 PORTA 引脚配置为输出。

读 PORTA 寄存器读的是引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写 操作。因此,写一个端口就意味着先读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据 锁存器。即使在 PORTA 引脚用作模拟输入时, TRISA 寄存器仍然控制 PORTA 引脚的方向。当将 PORTA 引脚用作模拟输入时,用户必须确保 TRISA 寄存器中的位保持为置 1 状态。配置为模拟输入的 I/O 引脚总是 读为0。

注:必须初始化 ANSEL 寄存器以将模拟通道配置为数字输入。配置为模拟输入的引脚将读为 0。

与 PORTA 口相关寄存器有 PORTA、TRISA、WPUA、ANSEL 等。

PORTA 数据寄存器 PORTA(05H)

05H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	Х	Х	Х	Х	Х	Х	Х	Х

Bit7-0 PORTA<7:0>: PORTAI/O 引脚位

> 1=端口引脚电平>VIH 0=端口引脚电平<VIL

PORTA 方向寄存器 TRISA(85H)

	2		-7					
85H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

TRISA<7:0>: PORTA 三态控制位

Bit7-0 1=PORTA 引脚被配置为输入(三态)

0=PORTA 引脚被配置为输出

例: PORTA 口处理程序

CLR ANSEL :设置所有PORTA口为数字I/O口

LDIA B'11110000' ;设置PORTA<3:0>为输出口,PORTA<7:4>为输入口 TRISA,A LD

LDIA 03H :PORTA<1:0>输出高电平,PORTA<3:2>输出低电平

LD PORTA.A ;由于PORTA<7:4>为输入口,所以赋0或1都没影响

WWW.MCU.COM.CN -45-V1.2

6.1.2 PORTA 模拟选择控制

ANSEL 寄存器用于将 I/O 引脚的输入模式配置为模拟模式。将 ANSEL 中适当的位置 1 将导致对相应引脚的所有数字读操作返回 0,并使引脚的模拟功能正常工作。ANSEL 位的状态对数字输出功能没有影响。 TRIS 清零且 ANSEL 置 1 的引脚仍作为数字输出,但输入模式将成为模拟模式。这会导致在受影响的端口上执行读一修改一写操作时产生不可预计的结果。

PORTA 模拟选择寄存器 ANSEL(188H)

188H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7-0 ANS<7:0>: 模拟选择位,分别选择引脚 AN<7:0>的模拟或数字功能。

1=模拟输入。引脚被分配为模拟输入。 0=数字 I/O。引脚被分配给端口或特殊功能。

6.1.3 PORTA 上拉电阻

每个 PORTA 引脚都有可单独配置的内部弱上拉。控制位 WPUA<7:0>使能或禁止每个弱上拉。当将端口引脚配置为输出时,其弱上拉会自动切断。

PORTA 上拉电阻寄存器 WPUA(18EH)

18EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7-0 **WPUA<7:0>**: 弱上拉寄存器位

1=使能上拉 0=禁止上拉

注 1: 如果引脚被配置为输出或者模拟输入,将自动禁止弱上拉。

WWW.MCU.COM.CN -46- V1.2

6.2PORTB

6.2.1 PORTB 数据及方向

PORTB 是一个 7 位宽的双向端口。对应的数据方向寄存器为 PORTB。将 TRISB 中的某个位置 1(=1)可以使对应的 PORTB 引脚作为输入引脚。将 TRISB 中的某个位清零(=0)将使对应的 PORTB 引脚作为输出引脚。

读 PORTB 寄存器读的是引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写操作。因此,写一个端口就意味着先读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据锁存器。即使在 PORTB 引脚用作模拟输入时,TRISB 寄存器仍然控制 PORTB 引脚的方向。当将 PORTB 引脚用作模拟输入时,用户必须确保 TRISB 寄存器中的位保持为置 1 状态。配置为模拟输入的 I/O 引脚总是读为 0。

与 PORTB 口相关寄存器有 PORTB、TRISB、ANSELH、WPUB、IOCB 等。

PORTB 数据寄存器 PORTB(06H)

_				,					
	06H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	复位值	Х	Х	Х	Х	Х	Х	Х	

Bit7-0 PORTB<7:1>: PORTBI/O 引脚位

1=端口引脚电平>V_{IH} 0=端口引脚电平<V_{IL}

PORTB 方向寄存器 TRISB(86H)

86H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	1	1	1	1	1	1	1	

Bit7-0 TRISB<7:1>: PORTB 三态控制位

1=PORTB 引脚被配置为输入(三态)

0=PORTB 引脚被配置为输出

例: PORTB 口处理程序

CLR PORTB ;清数据寄存器

LDIA B'00110000' ;设置 PORTB<5:4>为输入口,其余为输出口

LD TRISB,A

WWW.MCU.COM.CN -47- V1.2

6.2.2 PORTB 模拟选择

ANSELH 寄存器用于将 I/O 引脚的输入模式配置为模拟模式。将 ANSELH 中适当的位置 1 将导致对相应引脚的所有数字读操作返回 0,并使引脚的模拟功能正常工作。ANSELH 位的状态对数字输出功能没有影响。方向寄存器清零且 ANSELH 置 1 的引脚仍作为数字输出,但输入模式将成为模拟模式。这会导致在受影响的端口上执行读一修改一写操作时产生不可预计的结果。

PORTB 模拟选择寄存器 ANSELH(189H)

189H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ANSELH			ANS13	ANS12	ANS11	ANS10	ANS9	
R/W			R/W	R/W	R/W	R/W	R/W	
复位值			0	0	0	0	0	

Bit7-0 **ANS<13:9>:** 模拟选择位,分别选择引脚 AN<13:9>的模拟或数字功能。

1=模拟输入。引脚被分配为模拟输入。 0=数字 I/O。引脚被分配给端口或特殊功能。

6.2.3 PORTB 上拉电阻

每个 PORTB 引脚都有可单独配置的内部弱上拉。控制位 WPUB<7:0>使能或禁止每个弱上拉。当将端口引脚配置为输出时,其弱上拉会自动切断。在上电复位时,弱上拉由 OPTION_REG 寄存器的 RBPU 位禁止。

PORTB 上拉电阻寄存器 WPUB(95H)

95H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	

Bit7-0 **WPUB<7:1>:** 弱上拉寄存器位

1=使能上拉 0=禁止上拉

注 1: 要单独使能任一个上拉, OPTION REG 寄存器的全局 RBPU 位必须清零。

2: 如果引脚被配置为输出或者模拟输入,将自动禁止弱上拉。

WWW.MCU.COM.CN -48- V1.2

6.2.4 PORTB 电平变化中断

所有的 PORTB 引脚都可以被单独配置为电平变化中断引脚。控制位 IOCB<7:1>允许或禁止每个引脚的该中断功能。上电复位时禁止引脚的电平变化中断功能。

对于已允许电平变化中断的引脚,则将该引脚上的值与上次读 PORTB 时锁存的旧值进行比较。将与上次读操作"不匹配"的输出一起进行逻辑或运算,以将 INTCON 寄存器中的 PORTB 电平变化中断标志位(RBIF)置 1。

该中断可将器件从休眠中唤醒。用户可在中断服务程序中通过以下方式清除中断:

a)对 PORTB 进行读或写操作。这将结束引脚电平的不匹配状态。

b)将标志位 RBIF 清零。

不匹配状态会不断将 RBIF 标志位置 1。而读或写 PORTB 将结束不匹配状态,并且允许将 RBIF 标志位 清零。锁存器将保持最后一次读取的值不受欠压复位的影响。在复位之后,如果不匹配仍然存在,RBIF 标志位将继续置 1。

注:如果在执行读取操作时(Q2周期的开始)I/O引脚的电平发生变化,则RBIF中断标志位不会被置1。此外,由于对端口的读或写影响到该端口的所有位,所以在电平变化中断模式下使用多个引脚的时候必须特别小心。在处理一个引脚电平变化的时候可能不会注意到另一个引脚上的电平变化。

PORTB 电平变化中断寄存器 IOCB(96H)

96H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	

Bit7-0 **IOCB<7:1>:** PORTB 的电平变化中断控制位

1=允许电平变化中断 0=禁止电平变化中断

WWW.MCU.COM.CN -49- V1.2

6.3PORTC

6.3.1 PORTC 数据及方向

PORTC 是一个 7 位宽的双向端口。对应的数据方向寄存器为 TRISC。将 TRISC 中的某个位置 1 (=1) 可以使对应的 PORTC 引脚作为输入引脚。将 TRISC 中的某个位清零 (=0) 将使对应的 PORTC 引脚作为输出引脚。

读 PORTC 寄存器读的是引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写操作。因此,写一个端口就意味着先读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据锁存器。

PORTC 数据寄存器 PORTC(07H)

07H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORTC		RC6	RC5	RC4	RC3	RC2	RC1	RC0
R/W		R/W						
复位值		Х	Х	Х	Х	Х	Х	Х

Bit7-0 PORTC<6:0>: PORTCI/O 引脚位

1=端口引脚电平>V_{IH} 0=端口引脚电平<V_{IL}

PORTC 方向寄存器 TRISC(87H)

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TRISC		TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
R/W		R/W						
复位值		1	1	1	1	1	1	1

Bit7-0 TRISC<6:0>: PORTC 三态控制位

1=PORTC 引脚被配置为输入(三态)

0=PORTC 引脚被配置为输出

例: PORTC 口处理程序

CLR PORTC ;清数据寄存器

LDIA B'01110000' ;设置 PORTC<3:0>为输出口, PORTC<6:4>为输入口

LD TRISC,A

6.3.2 PORTC 上拉电阻

每个 PORTC 引脚都有可单独配置的内部弱上拉。控制位 WPUC<6:0>使能或禁止每个弱上拉。当将端口引脚配置为输出时,其弱上拉会自动切断。

PORTC 上拉电阻寄存器 WPUC(18FH)

			,					
18FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WPUC		WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
R/W		R/W						
复位值		0	0	0	0	0	0	0

Bit7-0 **WPUC<6:0>**: 弱上拉寄存器位

1=使能上拉 0=禁止上拉

注 1: 如果引脚被配置为输出,将自动禁止弱上拉。

6.4PORTE

6.4.1 PORTE 数据及方向

PORTE 是一个 4 位宽的双向端口。对应的数据方向寄存器为 TRISE。将 TRISE 中的某个位置 1 (=1) 可以使对应的 PORTE 引脚作为输入引脚。将 TRISE 中的某个位清零 (=0) 将使对应的 PORTE 引脚作为输出引脚。

读 PORTE 寄存器读的是引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写操作。因此,写一个端口就意味着先读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据锁存器。

PORTE 数据寄存器 PORTE(09H)

09H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORTE					RE3	RE2	RE1	RE0
R/W					R/W	R/W	R/W	R/W
复位值					Х	Х	Х	Х

Bit3-0 PORTE(3:0): PORTEI/O 引脚位

1=端口引脚为高电平 0=端口引脚为低电平

PORTE 方向寄存器 TRISE(89H)

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TRISE					TRISE3	TRISE2	TRISE1	TRISE0
R/W					R/W	R/W	R/W	R/W
复位值					1	1	1	1

Bit3-0 TRISE<3:0>: PORTE 三态控制位

1=PORTE 引脚被配置为输入(三态) 0=PORTE 引脚被配置为输出

6.4.2 PORTE 上拉电阻

每个 PORTE 引脚都有可单独配置的内部弱上拉。控制位 WPUE<3:0>使能或禁止每个弱上拉。当将端口引脚配置为输出时,其弱上拉会自动切断。

PORTE 上拉电阻寄存器 WPUE(11AH)

11AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WPUD					WPUE3	WPUE2	WPUE1	WPUE0
R/W					R/W	R/W	R/W	R/W
复位值					0	0	0	0

Bit3-0 **WPUE<3:0>:** 弱上拉寄存器位

1=使能上拉 0=禁止上拉

注1: 如果引脚被配置为输出,将自动禁止弱上拉。

6.5I/O 使用

6.5.1 写 1/0 口

芯片的 I/O 口寄存器,和一般通用寄存器一样,可以通过数据传输指令,位操作指令等进行写操作。

例:写I/O口程序

LD	PORTA,A	;ACC 值赋给 PORTA 口
CLRB	PORTB,1	;PORTB.1 口置零
CLR	PORTC	;PORTC 口清零
SET	PORTA	;PORTA 所有输出口置 1
SETB	PORTB,1	;PORTB.1 口置 1

6.5.2 读 I/O □

例:读 I/O 口程序

7 - 7		
LD	A,PORTA	;PORTA 的值赋给 ACC
SNZB	PORTA,1	;判断 PORTA,1 口是否为 1,为 1 跳过下一条语句
SZB	PORTA,1	;判断 PORTA,1 口是否为 0,为 0 跳过下一条语句

注: 当用户读一个 I/O 口状态时,若此 I/O 口为输入口,则用户读回的数据将是此口线外部电平的状态,若此 I/O 口为输出口那么读出的值将会是此口线内部输出寄存器的数据。

WWW.MCU.COM.CN -52- V1.2

6.6I/O 口使用注意事项

在操作 I/O 口时,应注意以下几个方面:

当 I/O 从输出转换为输入时,要等待几个指令周期的时间,以便 I/O 口状态稳定。

若使用内部上拉电阻,那么当 I/O 从输出转换为输入时,内部电平的稳定时间,与接在 I/O 口上的电容有关,用户应根据实际情况,设置等待时间,以防止 I/O 口误扫描电平。

当 I/O 口为输入口时,其输入电平应在 "VDD+0.7V"与"GND-0.7V"之间。若输入口电压不在此范围内可采用如下图所示方法。

若在 I/O 口在线串入较长的连接线,请在靠近芯片 I/O 的地方加上限流电阻以增强 MCU 抗 EMC 能力。

WWW.MCU.COM.CN -53- V1.2

7. 中断

7.1中断概述

芯片具有以下多种中断源:

- •TIMER0 溢出中断
- •TIMER1溢出中断
- •TIMER2 匹配中断
- •INT 中断
- •PORTB 电平变化中断
- •A/D 中断
- •CCP1/CCP2 中断
- •MSSP 中断
- •EEPROM 写操作中断

中断控制寄存器(INTCON)和外设中断请求寄存器(PIR1、PIR2)在各自的标志位中记录各种中断请求。INTCON 寄存器还包括各个中断允许位和全局中断允许位。

全局中断允许位 GIE(INTCON<7>)在置 1 时允许所有未屏蔽的中断,而在清零时,禁止所有中断。可以通过 INTCON、PIE1、PIE2 寄存器中相应的允许位来禁止各个中断。复位时 GIE 被清零。

执行"从中断返回"指令 RETI 将退出中断服务程序并将 GIE 位置 1,从而重新允许未屏蔽的中断。中断执行示意图如下:

7.2中断控制寄存器

7.2.1 中断控制寄存器

中断控制寄存器 INTCON 是可读写的寄存器,包含 TMR0 寄存器溢出、PORTB 端口电平变化中断等的允许和标志位。

当有中断条件产生时,无论对应的中断允许位或(INTCON 寄存器中的)全局允许位 GIE 的状态如何,中断标志位都将置 1。用户软件应在允许一个中断之前,确保先将相应的中断标志位清零。

中断控制寄存器 INTCON (0BH)

0BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7 GIE: 全局中断允许位

1=允许所有未被屏蔽的中断

0=禁止所有中断

Bit6 PEIE: 外设中断允许位

1=允许所有未被屏蔽的外设中断

0=禁止所有外设中断

Bit5 TOIE: TIMERO溢出中断允许位

1=允许TIMER0中断 0=禁止TIMER0中断

Bit4 INTE: INT外部中断允许位

1=允许INT外部中断 0=禁止INT外部中断

Bit3 RBIE: PORTB电平变化中断允许位(1)

1=允许PORTB电平变化中断

0=禁止PORTB电平变化中断

Bit2 **TOIF**: TIMERO溢出中断标志位(2)

1=TMR0寄存器已经溢出(必须由软件清零)

0=TMR0寄存器未发生溢出

Bit1 INTF: INT外部中断标志位

1=发生INT外部中断(必须由软件清零)

0=未发生INT外部中断

Bit0 RBIF: PORTB电平变化中断标志位

1=PORTB端口中至少有一个引脚的电平状态发生了改变(必须由软件清零)

0=没有一个PORTB通用I/O引脚的状态发生了改变

注:

1、IOCB 寄存器也必须使能,相应的口线需设置为输入态。

2、TOIF 位在 TMR0 计满归 0 时置 1。复位不会使 TMR0 发生改变,应在将 TOIF 位清零前对其进行 初始化。

WWW.MCU.COM.CN -55- V1.2

7.2.2 外设中断允许寄存器

外设中断允许寄存器有 PIE1 和 PIE2,在允许任何外设中断前,必须先将 INTCON 寄存器的 PEIE 位置 1。

外设中断允许寄存器 PIE1(8CH)

8CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PIE1		ADIE			SSPIE	CCP1IE	TMR2IE	TMR1IE
R/W		R/W			R/W	R/W	R/W	R/W
复位值		0			0	0	0	0

Bit7 未用,读为0

ADIE: A/D转换器(ADC)中断允许位 Bit6

> 1=允许ADC中断 0=禁止ADC中断

未用,读为0 Bit5-4

SSPIE: 主同步串行端口(MSSP)中断允许位 Bit3

1=允许MSSP中断 0=禁止MSSP中断

Bit2 CCP1IE: CCP1中断允许位

1=允许CCP1中断 0=禁止CCP1中断

TMR2IE: TIMER2与PR2匹配中断允许位 Bit1

> 1=允许TMR2与PR2匹配中断 0=禁止TMR2与PR2匹配中断

TMR1IE: TIMER1溢出中断允许位 Bit0

1=允许TIMER1溢出中断 0=禁止TIMER1溢出中断

外设中断允许寄存器 PIE2(8DH)

8DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PIE2				EEIE	BCLIE			CCP2IE
R/W				R/W	R/W			R/W
复位值				0	0			0

Bit7-5 未用

Bit4 **EEIE**: EEPROM写操作中断允许位

1=允许EEPROM写操作中断 0=禁止EEPROM写操作中断

Bit3 BCLIE: 总线冲突中断允许位

1=允许总线冲突中断 0=禁止总线冲突中断

Bit2-Bit1 未用

Bit0 **CCP2IE**: CCP2中断允许位

1=允许CCP2中断 0=禁止CCP2中断

7.2.3 外设中断请求寄存器

外设中断请求寄存器为 PIR1 和 PIR2。当有中断条件产生时,无论对应的中断允许位或全局允许位 GIE 的状态如何,中断标志位都将置 1。用户软件应在允许一个中断之前,确保先将相应的中断标志位清零。

外设中断请求寄存器 PIR1(0CH)

0CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PIR1		ADIF			SSPIF	CCP1IF	TMR2IF	TMR1IF
R/W		R/W			R/W	R/W	R/W	R/W
复位值		0			0	0	0	0

Bit7 未用,读为**0**

Bit6 ADIF: A/D转换器中断标志位

1=A/D转换完成(必须由软件清零)

0=A/D转换未完成或尚未启动

Bit5-4 未用,读为**0**

Bit3 SSPIF: 主同步串行端口(MSSP)中断标志位

1=产生了MSSP中断条件,在从中断服务程序返回前必须由软件清零。使该位置1的条件有:

SPI

发生发送/接收

I2C从动/主控

发生发送/接收

I²C主控

发生的启动条件由MSSP模块完成

发生的停止条件由MSSP模块完成

发生的重新启动条件由MSSP模块完成

发生的应答条件由MSSP模块完成

当MSSP模块空闲时发生启动条件(多主机系统)

当MSSP模块空闲时发生停止条件(多主机系统)

0=没有产生MSSP中断条件

Bit2 CCP1IF: CCP1中断标志位

捕捉模式:

1=发生了TMR1寄存器的捕捉(必须由软件清零)

0=没有发生TMR1寄存器的捕捉

比较模式

1=发生了TMR1寄存器的比较匹配(必须由软件清零)

0=没有发生TMR1寄存器的比较匹配

PWM模式:

在此模式下未用

Bit1 TMR2IF: TIMER2与PR2匹配中断标志位

1=发生了TIMER2与PR2匹配(必须由软件清零)

0=TIMER2与PR2不匹配

BitO TMR1IF: TIMER1溢出中断标志位

1=TMR1寄存器溢出(必须由软件清零)

0=TMR1寄存器未溢出

外设中断请求寄存器 PIR2(0DH)

0DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PIR2				EEIF	BCLIF			CCP2IF
R/W				R/W	R/W			R/W
复位值				0	0			0

Bit7-5 未用

Bit4 **EEIF**: EE写操作中断标志位

1=写操作完成(必须由软件清零)

0=写操作未完成或尚未启动

Bit3 BCLIF: 总线冲突中断标志位

1=当配置为l²C主控模式时,MSSP中发生了总线冲突

0=未发生总线冲突

Bit2-Bit1 未用

Bit0 CCP2IF: CCP2中断标志位

捕捉模式:

1=发生了TMR1寄存器的捕捉(必须由软件清零)

0=未发生TMR1寄存器的捕捉

比较模式:

1=发生了TMR1寄存器的比较匹配(必须由软件清零)

0=未发生TMR1寄存器的比较匹配

PWM模式: 在此模式下未用

7.3中断现场的保护方法

有中断请求发生并被响应后,程序转至 0004H 执行中断子程序。响应中断之前,必须保存 ACC、STATUS 的内容。芯片没有提供专用的入栈保存和出栈恢复指令,用户需自己保护 ACC 和 STATUS 的内容,以避免中断结束后可能的程序运行错误。

例:对 ACC 与 STATUS 进行入栈保护

	ORG JP ORG JP	0000H START 0004H INT_SERVICE	;用户程序起始地址 ;中断服务程序
	ORG	0008H) 1 -91/MC/3 (11/4)
START:	ONO	000011	
	•••		
	•••		
INT_SERVICE:			
PUSH:			;中断服务程序入口,保存 ACC 及 STATUS
	LD SWAPA	ACC_BAK,A STATUS	;保存 ACC 的值,(ACC_BAK 需自定义)
	LD	STATUS_BAK,A	;保存 STATUS 的值,(STATUS_BAK 需自定义)
	•••		
	•••		
POP:			;中断服务程序出口,还原 ACC 及 STATUS
	SWAPA	STATUS_BAK	
	LD	STATUS,A	;还原 STATUS 的值
	SWAPR	ACC_BAK	;还原 ACC 的值
	SWAPA RETI	ACC_BAK	

7.4中断的优先级,及多中断嵌套

芯片的各个中断的优先级是平等的,当一个中断正在进行的时候,不会响应另外一个中断,只有执行"RETI"指令后,才能响应下一个中断。

多个中断同时发生时,MCU 没有预置的中断优先级。首先,必须预先设定好各中断的优先权;其次,利用中断使能位和中断控制位,控制系统是否响应该中断。在程序中,必须对中断控制位和中断请求标志进行检测。

WWW.MCU.COM.CN -60- V1.2

8. 定时计数器 TIMERO

8.1定时计数器 TIMERO 概述

TIMER0 由如下功能组成:

- •8 位定时器/计数器寄存器(TMR0)
- •8 位预分频器(与看门狗定时器共用)
- •可编程内部或外部时钟源
- •可编程外部时钟边沿选择
- •溢出中断

图 8-1 TIMERO/WDT 结构图

WWW.MCU.COM.CN -61- V1.2

8.2TIMER0 的工作原理

TIMERO 模块既可用作 8 位定时器也可用作 8 位计数器。

8.2.1 8 位定时器模式

用作定时器时,TIMERO模块将在每个指令周期递增(不带预分频器)。通过将 OPTION_REG 寄存器的 TOCS 位清 0 可选择定时器模式。如果对 TMR0 寄存器执行写操作,则在接下来的两个指令周期将禁止递增。可调整写入 TMR0 寄存器的值,使得在写入 TMR0 时计入两个指令周期的延时。

8.2.2 8 位计数器模式

用作计数器时,TIMERO模块将在 TOCKI 引脚的每个上升沿或下降沿递增。递增的边沿取决于 OPTION_REG 寄存器的 TOSE 位。通过将 OPTION_REG 寄存器的 TOCS 位置 1 可选择计数器模式。

8.2.3 软件可编程预分频器

TIMER0 和看门狗定时器(WDT)共用一个软件可编程预分频器,但不能同时使用。预分频器的分配由 OPTION REG 寄存器的 PSA 位控制。要将预分频器分配给 TIMER0, PSA 位必须清 0。

TIMER0 模块具有 8 种预分频比选择,范围为 1:2 至 1:256。可通过 OPTION_REG 寄存器的 PS<2:0> 位选择预分频比。要使 TIMER0 模块具有 1:1 的预分频比,必须将预分频器分配给 WDT 模块。

预分频器不可读写。当预分频器分配给 TIMERO 模块时,所有写入 TMRO 寄存器的指令都将使预分频器 清零。当预分频器分配给 WDT 时,CLRWDT 指令将同时清零预分频器和 WDT。

8.2.4 在 TIMERO 和 WDT 模块间切换预分频器

将预分频器分配给 TIMERO 或 WDT 后,在切换预分频比时可能会产生无意的器件复位。要将预分频器 从分配给 TIMERO 改为分配给 WDT 模块时,必须执行如例 8-1 所示的指令序列。

例 8-1 更改预分频器 (TMR0-WDT)

CLRWDT CLR	TMR0	
CLK	TWKU	
SETB CLRWDT	OPTION_REG,PSA	;选择WDT
CLIVVDT		
LDIA	B'11111000'	
ANDA	OPTION_REG	;低3位置0
ORIA	B'00000101'	;低 3位置成 101,其余位不变
LD	OPTION_REG,A	

要将预分频器从分配给 WDT 改为分配给 TIMERO 模块,必须执行以下指令序列(见例 8-2)。例 8-2 更改预分频器(WDT-TMRO)

CLRWDT		
LDIA ANDA ORIA LD	B'11110000' OPTION_REG B'00000101' OPTION_REG,A	; 低 4 位置 0 ; 低 4 位置成 0101,其余位不变

WWW.MCU.COM.CN -62- V1.2

8.2.5 TIMER0 中断

当 TMR0 寄存器从 FFh 溢出至 00h 时,产生 TIMER0 中断。每次 TMR0 寄存器溢出时,不论是否允许 TIMER0 中断,INTCON 寄存器的 TOIF 中断标志位都会置 1。TOIF 位必须在软件中清零。TIMER0 中断允许位是 INTCON 寄存器的 TOIE 位。

注:由于在休眠状态下定时器是关闭的,所以TIMER0中断无法唤醒处理器。

WWW.MCU.COM.CN -63- V1.2

8.3与 TIMERO 相关寄存器

有两个寄存器与 TMR0 相关, 8 位定时器 / 计数器 (TMR0), 8 位可编程控制寄存器 (OPTION_REG)。 TMR0 为一个 8 位可读写的定时/计数器, OPTION_REG 为一个 8 位只写寄存器, 用户可改变 OPTION_REG 的值,来改变 TMR0 的工作模式等。请参看 2.6 关于预分频寄存器 (OPTION_REG) 的应用。

8 位定时器/计数器 TMR0 (01H)

01H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMR0								
R/W								
复位值	Х	Х	Х	Х	Х	Х	X	Χ

OPTION REG 寄存器 (81H)

Bit5

81H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
读写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Bit7 RBPU: PORTB 上拉使能位

1=禁止 PORTB 上拉

0=由端口的各个锁存值使能 PORTB 上拉

Bit6 INTEDG: 中断边沿选择位

1=INT引脚的上升沿触发中断 0=INT 引脚的下降沿触发中断

TOCS: TIMERO 时钟源选择位

1=T0CKI 引脚上的跳变沿

0=内部指令周期时钟(Fosc/4)

Bit4 TOSE: TIMERO 时钟源边沿选择位

1=在 TOCKI 引脚信号从高电平跳变到低电平时递增

0=在 T0CKI 引脚信号从低电平跳变到高电平时递增

Bit3 PSA: 预分频器分配位

1=预分频器分配给 WDT

0=预分频器分配给 TIMERO 模块

Bit2-0 **PS2~PS0:** 预分配参数配置位

PS2-PS1-PS0	TMR0 分频比	WDT 分频比
000	1: 2	1: 1
001	1: 4	1: 2
010	1: 8	1: 4
011	1: 16	1: 8
100	1: 32	1: 16
101	1: 64	1: 32
110	1: 128	1: 64
111	1: 256	1: 128

WWW.MCU.COM.CN -64- V1.2

9. 定时计数器 TIMER1

TIMER1 模块是一个 16 位定时器/计数器,具有以下特性:

- •16 位定时器/计数器寄存器(TMR1H:TMR1L)
- •可编程内部或外部时钟源
- •3 位预分频器
- •可选 LP 振荡器
- •同步或异步操作
- •通过 T1G 引脚门控 TIMER1(使能计数)(仅限于 CMS89F2385)
- •溢出中断
- •溢出时唤醒(仅外部时钟异步模式)
- •捕捉/比较功能的时基
- •特殊事件触发功能(带有 ECCP)
- •比较器输出与 TIMER1 时钟同步(仅限于 CMS89F2385)

图 9-1 为 TIMER1 模块的框图。

图9-1 TIMER1结构图

- 注 1: ST缓冲器在使用LP振荡器时处于低功耗模式,而在使用T1CKI时处于高速模式。
 - 2: Timer1寄存器在上升沿递增。
 - 3: 休眠时不进行同步。
 - 4: 当CM2CON1寄存器的C2SYNC位置1时,SYNCC2OUT同步。

WWW.MCU.COM.CN -65- V1.2

9.1TIMER1 的工作原理

TIMER1 模块是一个通过一对寄存器 TMR1H:TMR1L 访问的 16 位递增计数器。写入 TMR1H 或 TMR1L 可直接更新该计数器。

当与内部时钟源一同使用时,此模块用作计数器。当与外部时钟源一同使用时,此模块可用作定时器或 计数器。

9.2时钟源选择

T1CON 寄存器的 TMR1CS 位用于选择时钟源。当 TMR1CS=0 时,时钟源的频率为 Fosc。当 TMR1CS=1 时,时钟源由外部提供。

时钟源	TMR1CS
Fosc	0
T1CKI 引脚	1

9.2.1 内部时钟源

选择内部时钟源后,TMR1H:TMR1L 寄存器将以 Fosc 的倍数为频率递增,具体倍数由 TIMER1 预分频器决定。

9.2.2 外部时钟源

选择外部时钟源后,TIMER1模块可作为定时器或计数器。

计数时,TIMER1 在外部时钟输入 T1CKI 的上升沿递增。此外,计数器模式下的时钟可与单片机系统时钟同步或异步。

如需一个外部时钟振荡器(且单片机正在使用不带 CLKOUT 的 INTOSC),TIMER1 可使用 LP 振荡器作为时钟源。

在计数器模式下,在出现以下一个或多个条件时,必须先经过一个下降沿,计数器才可以在随后的上升沿进行第一次递增计数(见图 9-2):

- •在 POR 或 BOR 复位后使能 TIMER1
- •对 TMR1H 或 TMR1L 执行了写操作
- •禁止 TIMER1 时,T1CKI 为高电平; 当重新使能 TIMER1 时,T1CKI 为低电平。

图 9-2: TIMER1 的递增边沿

WWW.MCU.COM.CN -66- V1.2

9.3TIMER1 预分频器

TIMER1 具有四种预分频比选择,允许对时钟输入进行 1、2、4 或 8 分频。T1CON 寄存器的 T1CKPS 位控制预分频计数器。不能直接对预分频计数器进行读或写操作;但是,通过写入 TMR1H 或 TMR1L 可清零预分频计数器。

9.4TIMER1 振荡器

在 T1OSI(输入)引脚和 T1OSO(放大器输出)引脚之间连接有一个内置的低功耗 32.768kHz 振荡器。将 T1CON 寄存器的 T1OSCEN 控制位置 1 可使能该振荡器。此振荡器将在休眠模式下继续运行,但是必须使 TIMER1 选择为异步计数模式。

TIMER1 振荡器与 LP 振荡器完全相同。用户必须提供软件延时,以保证振荡器正常振荡。

使能 TIMER1 振荡器时 TRISA6 和 TRISA7 位被置 1。

RA6 和 RA7 位读为 0 且 TRISA6 和 TRISA7 位读为 1。

注:振荡器需要经过一段起振和稳定时间后才能使用。

因此,在使能 TIMER1 前应将 T1OSCEN 置 1 并经过适当的延时。

9.5在异步计数器模式下的 TIMER1 工作原理

如果 T1CON 寄存器中的控制位 T1SYNC 被置 1,外部时钟输入就不同步。定时器继续进行与内部相位时钟异步的递增计数。在休眠状态下定时器仍将继续运行,并在溢出时产生中断,从而唤醒处理器。但是,再用软件对定时器进行读/写操作时应该特别小心(见第 9.5.1 节"异步计数器模式下对 TIMER1 的读写操作")。

注: 当从同步操作切换到异步操作时,有可能漏过一个递增。

当从异步操作切换到同步操作时,有可能产生一个误递增。

9.5.1 异步计数器模式下对 TIMER1 的读写操作

当定时器采用外部异步时钟工作时,对 TMR1H 或 TMR1L 的读操作将确保有效(由硬件负责)。但用户应牢记,用读两个 8 位值来读一个 16 位定时器本身就存在问题,这是因为在两次读操作之间定时器可能会溢出。

对于写操作,建议用户停止定时器后再写入所需数值。当寄存器正在递增计数时,向定时器的寄存器写入数据可能会产生写争用。从而会在 TMR1H:TTMR1L 这对寄存器中产生不可预测的值。

9.6TIMER1 门控

可用软件将 TIMER1 门控信号源配置为 T1G 引脚。这让器件可以直接使用 T1G 为外部事件定时。有关如何选择 TIMER1 门控信号源的信息,请参见 2.1.2 数据存储器(表 2-1)。此功能部件可以仅仅是 \triangle - Σ A/D 转换器的软件,也可以是很多其他应用。

注:必须将 T1CON 寄存器的 TMR1GE 位置 1 以使用 TIMER1 的门控信号。

可使用 T1CON 寄存器的 T1GINV 位来设置 TIMER1 门控信号的极性,门控信号可以来自 T1G 引脚。该位可将 TIMER1 配置为对事件之间的高电平时间或低电平时间进行计时。

WWW.MCU.COM.CN -67- V1.2

9.7TIMER1 中断

一对 TIMER1 寄存器(TMR1H:TMR1L)递增计数到 FFFFH 后,将溢出返回 0000H。当 TIMER1 溢出时,PIR1 寄存器的 TIMER1 中断标志位被置 1。要允许该溢出中断,用户应将以下位置 1:

- •PIE1 寄存器中的 TIMER1 中断允许位
- •INTCON 寄存器中的 PEIE 位
- •INTCON 寄存器中的 GIE 位

在中断服务程序中将 TMR1IF 位清零可以清除该中断。

注:再次允许该中断前,应将TMR1H:TMR1L这对寄存器以及TMR1IF位清零。

9.8休眠期间的 TIMER1 工作原理

只有设置为异步计数器模式时,TIMER1 才可在休眠模式下工作。在该模式下,可使用外部晶振或时钟源使计数器进行递增计数。通过如下设置使定时器能够唤醒器件:

- •T1CON 寄存器中的 TMR1ON 位必须置 1
- •PIE1 寄存器中的 TMR1IE 位必须置 1
- •INTCON 寄存器中的 PEIE 位必须置 1

器件将在溢出时被唤醒并执行下一条指令。如果 INTCON 寄存器中的 GIE 位置 1,器器件将调用中断服 务程序(0004h)。

9.9ECCP 捕捉/比较时基

ECCP 模块使用 TMR1H:TMR1L 这对寄存器作为其工作在捕捉或比较模式下的时基。

在捕捉模式下,TMR1H:TMR1L 这对寄存器的值在配置事件发生时被复制到 CCPRxH:CCPRxL 这对寄存器中。

在比较模式下,当 CCPRxH:CCPRxL 这对寄存器中的值与 TMR1H:TMR1L 这对寄存器中的值匹配时将 触发一个事件。此事件可用来触发特殊事件。

更多信息请参见第 13.0 节"捕捉/比较/PWM 模块(CCP1 和 CCP2)"。

9.10 ECCP 特殊事件触发器

如果将 ECCP 配置为触发一个特殊事件,触发器将清零 MR1H:TMR1L 这对寄存器。此特殊事件不会导致 TIMER1 中断。可仍将 ECCP 模块配置为产生一个 ECCP 中断。

在此工作模式下,CCPRxH:CCPRxL 这对寄存器实际上成为了 TIMER1 的周期寄存器。

要使用特殊事件触发器应使 TIMER1 与 Fosc 同步。TIMER1 在异步模式下工作可导致丢失特殊事件触发信号。

当写入 TMR1H 或 TMR1L 的操作与来自 ECCP 的特殊事件触发信号同时发生时,写操作具有优先权。 更多信息,请参见第 13.0 节"捕捉/比较/PWM 模块(CCP1 和 CCP2)"。

9.11 TIMER1 控制寄存器

TIMER1 控制寄存器 TICON(10H)

10H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N

CMS89F22X

| R/W |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 复位值 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Bit7 T1GINV: TIMER1门控信号极性位(1)

1=TIMER1门控信号高电平有效(当门控信号为高电平时TIMER1计数) 0=TIMER1 门控信号低电平有效(当门控信号为低电平时 TIMER1 计数)

Bit6 TMR1GE: TIMER1门控使能位(2)

如果TMR1ON=0: 此位被忽略。 如果TMR1ON=1:

1=TIMER1计数由TIMER1门控功能控制

0=TIMER1 始终计数

Bit5-4 **T1CKPS<1:0>**: TIMER1输入时钟预分频比选择位

11=1:8预分频比 10=1:4预分频比 01=1:2预分频比 00=1:1 预分频比

Bit3 T1OSCEN:LP 振荡器使能控制位

1=使能 LP 振荡器作为 TIMER1 的时钟源

0=LP 振荡器关闭

Bit2 T1SYNC:TIMER1 外部时钟输入同步控制位

TMR1CS=1:

1=不与外部时钟输入同步 0=与外部时钟输入同步

TMR1CS=0:

忽略此位。TIMER1 使用内部时钟。

Bit1 TMR1CS: TIMER1时钟源选择位

1=来自T1CKI引脚的外部时钟源(上升沿触发)

0=内部时钟源Fosc

Bit0 TMR1ON: TIMER1使能位

1=使能TIMER1 0=禁止TIMER1

10. 定时计数器 TIMER2

10.1 TIMER2 概述

TIMER2 模块是一个 8 位定时器/计数器,具有以下特性:

- •8 位定时器寄存器(TMR2)
- •8 位周期寄存器 (PR2)
- •TMR2 与 PR2 匹配时中断
- •软件可编程预分频比(1:1、1:4 和 1:16)
- •软件可编程后分频比(1:1至1:16)

TIMER2 的框图请参见图 10-1。

图 10-1 TIMER2 框图

<u>WWW.MCU.COM.CN</u> -70- V1.2

10.2 TIMER2 的工作原理

TIMER2 模块的时钟输入是系统指令时钟(F_{OSC}/4)。时钟被输入到 TIMER2 预分频器,有如下几种分频比可供选择: 1:1、1:4 或 1:16。预分频器的输出随后用于使 TMR2 寄存器递增。

持续将 TMR2 和 PR2 的值做比较以确定它们何时匹配。TMR2 将从 00h 开始递增直至与 PR2 中的值匹配。匹配发生时,会发生以下两个事件:

- •TMR2 在下一递增周期被复位为 00h
- •TIMER2 后分频器递增

TIMER2 与 PR2 比较器的匹配输出随后输入给 TIMER2 的后分频器。后分频器具有 1:1 至 1:16 的预分 频比可供选择。TIMER2 后分频器的输出用于使 PIR1 寄存器的 TMR2IF 中断标志位置 1。

TMR2和PR2寄存器均可读写。任何复位时,TMR2寄存器均被设置为00h且PR2寄存器被设置为FFh。通过将T2CON寄存器的TMR2ON位置1使能TIMER2。

通过将 TMR2ON 位清零禁止 TIMER2。

TIMER2 预分频器由 T2CON 寄存器的 T2CKPS 位控制。

TIMER2 后分频器由 T2CON 寄存器的 TOUTPS 位控制。

预分步器和后分步器计数器在以下情况下被清零:

- •对 TMR2 寄存器执行写操作
- •对 T2CON 寄存器执行写操作
- •发生任何器件复位(上电复位、看门狗定时器复位或欠压复位)。

注:写 T2CON 不会将 TMR2 清零。

WWW.MCU.COM.CN -71- V1.2

10.3 TIMER2 相关的寄存器

有 2 个寄存器与 TIMER2 相关,分别是数据存储器 TMR2,控制寄存器 T2CON。

TIMER2 数据寄存器 TMR2(11H)

11H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMR2								
R/W								
复位值	0	0	0	0	0	0	0	0

TIMER2 控制寄存器 T2CON(12H)

12H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
读写		R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值		0	0	0	0	0	0	0

Bit7 未用,读为**0**

Bit6-3 TOUTPS<3:0>: TIMER2输出后分频比选择位

0000=1:1后分频比

0001=1:2后分频比

0010=1:3后分频比

0011=1:4后分频比

0100=1:5后分频比

0101=1:6后分频比

0110=1:7后分频比

0111=1:8后分频比

1000=1:9后分频比

1001=1:10后分频比

1010=1:11后分频比

1011=1:12后分频比

1100=1:13后分频比

1101=1:14后分频比

1110=1:15后分频比

1111=1:16 后分频比

Bit2 TMR2ON: TIMER2使能位

1=使能TIMER2

0=禁止 TIMER2

Bit1-0 T2CKPS<1:0>: TIMER2时钟预分频比选择位

00=预分频值为1 01=预分频值为4 1x=预分频值为16

11. 模数转换 (ADC)

11.1 ADC 概述

模数转换器(ADC)可以将模拟输入信号转换为表示该信号的一个 12 位二进制数。器件使用的模拟输入通道共用一个采样保持电路。采样保持电路的输出与模数转换器的输入相连。模数转换器采用逐次逼近法产生一个 12 位二进制结果,并将该结果保存在 ADC 结果寄存器(ADRESL 和 ADRESH)中。

ADC 参考电压始终为内部产生。

ADC 在转换完成之后可以产生一个中断。

图 11-1 所示为 ADC 的框图。

图 11-1ADC 框图

WWW.MCU.COM.CN -73- V1.2

11.2 ADC 配置

配置和使用 ADC 时,必须考虑如下因素:

- •端口配置
- •通道选择
- •ADC 转换时钟源
- •中断控制
- •结果的存储格式

11.2.1 端口配置

ADC 既可以转换模拟信号,又可以转换数字信号。当转换模拟信号时,应该通过将相应的 TRIS 和 ANSEL 位置 1,将 I/O 引脚配置为模拟输入引脚。更多信息请参见相应的端口章节。

注:对定义为数字输入的引脚施加模拟电压可能导致输入缓冲器出现过电流。

11.2.2 通道选择

由 ADCON0 寄存器的 CHS 位决定将哪个通道连接到采样保持电路。

如果更改了通道,在下一次转换开始前需要一定的延迟。更多信息请参见第 11.3 节 "ADC 工作原理"。

11.2.3 ADC 参考电压

ADC 的参考电压始终是由芯片的 VDD 和 GND 提供。

11.2.4 转换时钟

可以通过软件设置 ADCON0 寄存器的 ADCS 位来选择转换的时钟源。有以下 4 种可能的时钟频率可供选择:

- •Fosc/8
- •Fosc/16
- •Fosc/32
- •FRC(专用内部振荡器)

完成一位转换的时间定义为 TAD。一个完整的 12 位转换需要 49 个 TAD 周期。

必须符合相应的 TAD 规范,才能获得正确的转换结果。

表 11-1 给出了正确选择 ADC 时钟的示例。

注:除非使用 FRC,否则系统时钟频率的任何改变都会改变 ADC 时钟的频率,从而对 ADC 转换结果产生负面影响。

表 11-1: ADC 时钟周期(TAD)与器件工作频率的关系(VDD 5.0V)

ADC 时	 	器件频率				
ADC 时钟源	ADCS<1:0>	8MHz	4MHz	1MHz		
Fosc/8	00	49.0µs	98.0µs	392.0µs		
Fosc/16	01	98.0µs	196.0µs	784.0µs		
Fosc/32	10	196.0µs	392.0µs	1.5ms		
Frc	11	1-3ms	1-3ms	1-3ms		

图注:建议不要使用阴影单元内的值。

WWW.MCU.COM.CN -74- V1.2

11.2.5 ADC 中断

ADC 模块允许在完成模数转换后产生一个中断。ADC 中断标志位是 PIR1 寄存器中的 ADIF 位。ADC 中断允许位是 PIE1 寄存器中的 ADIE 位。ADIF 位必须用软件清零。每次转换结束后 ADIF 位都会被置 1,与是否允许 ADC 中断无关。

不管器件处于工作模式还是休眠模式都可以产生中断。如果器件处于休眠模式,该中断可将器件唤醒。 当将器件从休眠状态唤醒后,总是执行 STOP 指令后的下一条指令。如果用户尝试使器件从休眠模式唤醒并 按顺序恢复代码执行,则必须禁止全局中断。如果允许全局中断,程序将跳转到中断服务程序处执行。

11.2.6 结果格式化

12 位 A/D 转换的结果可采用两种格式: 左对齐或右对齐。由 ADCON0 寄存器的 ADFM 位控制输出格式。

当 ADFM=0 时, AD 转换结果左对齐, AD 转换结果为 12Bit; 当 ADFM=1 时, AD 转换结果右对齐, AD 转换结果为 10Bit。

<u>WWW.MCU.COM.CN</u> -75- V1.2

11.3 ADC 工作原理

11.3.1 启动转换

要使能 ADC 模块,必须将 ADCON0 寄存器的 ADON 位置 1,将 ADCON0 寄存器的 GO/DONE 位置 1 开始模数转换。

注:不能用开启 A/D 模块的同一指令将 GO/DONE 位置 1

11.3.2 完成转换

当转换完成时,ADC 模块将:

- •清零 GO/DONE 位
- •将 ADIF 标志位置 1
- •用转换的新结果更新 ADRESH:ADRESL 寄存器

11.3.3 终止转换

如果必须要在转换完成前终止转换,则可用软件清零 GO/DONE 位。不会用尚未完成的模数转换结果更新 ADRESH:ADRESL 寄存器。因此,ADRESH:ADRESL 寄存器将保持上次转换所得到的值。此外,在 A/D 转换终止以后,必须经过 2 个 TAD 的延时才能开始下一次采集。延时过后,将自动开始对选定通道的输入信号进行采集。

注:器件复位将强制所有寄存器进入复位状态。因此,复位会关闭ADC模块并且终止任何待处理的转换。

11.3.4 ADC 在休眠模式下的工作原理

ADC 模块可以工作在休眠模式下。此操作需要将 ADC 时钟源设置为 FRC 选项。如果选择了 FRC 时钟源, ADC 在开始转换之前要多等待一个指令周期。从而允许执行 STOP 指令,以降低转换中的系统噪声。如果允许 ADC 中断,当转换结束时,将使器件从休眠模式唤醒。如果禁止 ADC 中断,即使 ADON 位保持置 1,则转换结束后也还是会关闭 ADC 模块。如果 ADC 时钟源不是 FRC,即使 ADON 位仍保持置 1,执行 STOP 指令还是会中止当前的转换并关闭 A/D 模块。

11.3.5 A/D 转换步骤

如下步骤给出了使用 ADC 进行模数转换的示例:

- 1、口配置:
 - •禁止引脚输出驱动器(见 TRIS 寄存器)
 - •将引脚配置为模拟输入引脚
- 2、置 ADC 模块:
 - •选择 ADC 转换时钟
 - •选择 ADC 输入通道
 - •选择结果的格式
 - •启动 ADC 模块
- 3、置 ADC 中断 (可选):
 - •清零 ADC 中断标志位
 - •允许 ADC 中断

WWW.MCU.COM.CN -76- V1.2

- •允许外设中断
- •允许全局中断
- 4、待所需的采集时间。
- 5、GO/DONE 置 1 启动转换。
- 6、如下方法之一等待 ADC 转换结束:
 - •查询 GO/DONE 位
 - •等待 ADC 中断(允许中断)
- 7、ADC 结果
- 8、ADC 中断标志位清零(如果允许中断的话,需要进行此操作)。

注: 如果用户尝试在使器件从休眠模式唤醒后恢复顺序代码执行,则必须禁止全局中断。

例 11-1AD 转换

LDIA LD SETB	B'10000000' ADCON1,A TRISA,0	; 设置 PORTA.0 为输入口
SETB LDIA LD	ANSEL,0 B'11000001' ADCON0,A	;设置 PORTA.0 为模拟口
CALL SETB	DELAY ADCON0,GO	; 延时一段时间
SZB JP	ADCON0,GO \$-1	;等待 AD 转换结束
LD LD	A,ADRESH RESULTH,A	;保存 AD 转换结果高位
LD LD	A,ADRESL RESULTL,A	;保存 AD 转换结果低位

WWW.MCU.COM.CN -77- V1.2

11.4 ADC 相关 RAM

主要有 4 个 RAM 与 AD 转换相关,分别是控制寄存器 ADCON0 和 ADCON1,数据寄存器 ADRESH 和 ADRESL。

AD 控制寄存器 ADCON0(1FH)

1FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
读写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7-6 **ADCS<1:0>**: A/D转换时钟选择位

00=Fosc/8 01=Fosc/16 10=Fosc/32

11=FRC(由专用的内部振荡器产生频率最高为 32kHz 的时钟)

Bit5-2 **CHS<3:0>:** 模拟通道选择位

0000=AN0 0001=AN1 0010=AN2 0011=AN3 0100=AN4 0101=AN5 0110=AN6 0111=AN7 1000=AN8 1001=AN9 1010=AN10 1011=AN11 1100=AN12 1101=AN13 1110=CVREF

1111=固定参考电压(0.6V固定参考电压)

Bit1 GO/DONE: A/D转换状态位

1=A/D转换正在进行。将该位置1启动A/D转换。当A/D转换完成以后,该位由硬件自动清零。

0=A/D 转换完成/或不在进行中

Bit0 ADON: ADC使能位

1=使能ADC

0=禁止ADC,不消耗工作电流

AD 控制寄存器 ADCON1(9FH)

9FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCON1	ADFM							
读写	R/W							
复位值	0							

Bit7 ADFM: A/D转换结果格式选择位

1=右对齐

0=左对齐

Bit6-0 未用,读为**0**

AD 数据寄存器高位 ADRESH(1EH), ADFM=0

1EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADRESH	ADRES11	ADRES10	ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4
读写	R	R	R	R	R	R	R	R
复位值	х	Х	Х	Х	Х	х	х	Х

Bit7-0 ADRES<9:2>: ADC结果寄存器位

12 位转换结果的高 8 位

AD 数据寄存器低位 ADRESL(9EH), ADFM=0

9EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADRESL	ADRES3	ADRES2	ADRES1	ADRES0				
读写	R	R	R	R				
复位值	Х	Х	Х	Х				

Bit7-6 **ADRES<1:0>**: ADC结果寄存器位

12 位转换结果的低 4 位

Bit5-0 未用

AD 数据寄存器高位 ADRESH(1EH), ADFM=1

1EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADRESH							ADRES11	ADRES10
读写							R	R
复位值							Х	х

Bit7-2 未用

Bit1-0 ADRES<1:0>: ADC结果寄存器位

12 位转换结果的高 2 位

AD 数据寄存器低位 ADRESL(9EH), ADFM=1

9EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADRESL	ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2
读写	R	R	R	R	R	R	R	R
复位值	Х	х	х	х	Х	х	х	х

Bit7-0 ADRES<0:0>: ADC结果寄存器位

12 位转换结果的第 2-9 位

注:在ADFM=1的情况下,AD转换结果只保存12位结果的高10位,其中ADRESH保存高2位,ADRESL保存第2位至第9位。

12. LCD/LED 驱动模块

芯片内置 LCD/LED 驱动模块,它们共用控制寄存器。具体的 SEG 和 COM 如下表所示:

	CMS89F226/2265	CMS89F228/2285
LCD	4COMfor1/2Bias	4COMfor1/2Bias
LED		11SEG×7COM

CMS89F226/2265/228/2285 只能驱动 1/2Bias 的 LCD,并且必须由软件来实现驱动。1/2BiasLCD 驱动请参照 12.7 章节。

12.1 LCD/LED 功能使能

将 LCDCON0(190H)的第7位 LCDEN 置1,第6位 LEDEN 置0,允许 LCD 驱动功能;

将 LCDCON0(190H)的第 6 位 LEDEN 置 1,第 7 位 LCDEN 置 0,允许 LED 驱动功能;

将 LCDEN 和 LEDEN 都置 0, 关闭 LCD/LED 模块。

注:请不要将 LCDEN 和 LEDEN 同时置 1。

12.2 LCD/LED 功能管脚设置

若使能 LCD 驱动功能,必须设置相应的 SEG 口和 COM 口为输入态,即将相应的 TRIS 位置"1";若使能 LED 驱动功能,必须设置相应的 SEG 口和 COM 口为输出态,并输出"0",即将相应的 TRIS 位和 PORT 位置"0";

12.3 LED 功能 COM 口设置

LED 的 COM 口设置方式如下:

设置 I/O 口方向和数据寄存器, LED 功能设置相应管脚为输出态并输出低电平。

设置 COMSEL[2:0],选择 LED 功能的 COM 口个数:

COMSEL[2:0]	COM 口个数(包括 LCD/LED)
000	4
001	5
010	6
011	8
100	2
101	3
110	3
111	4

设置 COM_EN 寄存器,将相应管脚设置为 LED 功能的 COM 口。

如果用户在使用过程中,COM 口不按照顺序排列。例如将 COM3-COM6 作为 LED 功能的 COM 口,COM0-COM2 作为普通 I/O 口,可以做以下设置:

- 1、将 COM 口个数设置成 8 个 COM, COMSEL="011";
- 2、将 COM EN 寄存器的 COM3-COM6 置 1, COM0-COM2、COM7 置 0。

此时, COM3-COM6 为 LED 功能的 COM 口, 其输出占空比为 1/8。而 COM0-COM2、COM7 可作为

WWW.MCU.COM.CN -81- V1.2

普通 I/O 口。

12.4 LED 功能的 **SEG** 口设置

使能 LED 功能的 SEG 口必须满足以下条件:

- 1、设置相应管脚状态, LED 功能设置相应管脚为输出态并输出"0";
- 2、设置 SEGEN0、SEGEN1 寄存器中相应管脚为 LED 驱动功能,
 - 3、设置 SEGEN2 寄存器中 SEG 口输出电流。

12.5 LED 功能的数据设置

设置 LED 显示数据需以下步骤:

- 1、设置 LEDCON1 寄存器的 SEGOUT[1:0]位为"1x";
- 2、设置 LEDADD 寄存器的第7位 LEDCS=1,允许读写数据;
- 3、设置 LEDADD 的 0-4 位数据地址:
- 4、设置 LEDDATA 数据(没有当做 LED 功能用的管脚,其相应的 LEDDATA 位需设置为"0");
- 5、重复第3-4步设置其它地址数据;
- 6、设置完成后关闭数据读写位 LEDCS=0。

LED 地址和数据对应关系如下表:

	エイロタス 1/日 / /	1/デンインルン	H 1/C+						_
LEDADD				LEDI	DATA				
00H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SEG0
01H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SEG1
					-				
	-								
09H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SEG9
0AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SEG10
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0	

WWW.MCU.COM.CN -82- V1.2

12.6 LED 相关寄存器

LED 驱动功能相关寄存器有:控制寄存器 LEDCON0, LEDCON1; 地址寄存器 LEDADD; 数据寄存器 LEDDATA; 口线设置寄存器 COMEN, SEGEN0, SEGEN1, SEGEN2。

LED 控制寄存器 LEDCON0(190H)

190H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LEDCON0	LCDEN	LEDEN	COMS	SEL[1:0]	LEDCLK[3:0]				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	

Bit7 LCDEN: LCD 模块使能

0: 禁止 LCD 模块

1: 使能 LCD 模块

Bit6 **LEDEN: LED** 模块使能

0: 禁止 LED 模块 1: 使能 LED 模块

Bit5-Bit4 COMSEL[1:0]: LED 模块 COM 口个数选择(COMSEL[2]在 LEDADD 寄存器第 5 位)

000: 4COM 001: 5COM 010: 6COM 011: 8COM 100: 2COM 101: 3COM 110: 3COM

111: 4COM

Bit3-Bit0 LEDCLK[3:0]: LED 频率选择(根据 LEDCON1 第 6 位 LEDF 选择时钟源)

0000: Fosc/64||未用 0001: Fosc/128||未用 0010: Fosc/256||未用 0011: Fosc/512||F32K/2 0100: Fosc/1024||F32K/4 0101: Fosc/2048||F32K/8 0110: Fosc/4096||F32K/16 0111: Fosc/8192||F32K/32 1x00: Fosc/16384||F32K/64 1x01: Fosc/32768||F32K/128

1x10: Fosc/65536||F32K/256 1x11: Fosc/131072||F32K/512

WWW.MCU.COM.CN -83- V1.2

LED 控制寄存器 LEDCON1(191H)

191H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LEDCON1		LEDF	SEGOUT[1:0]				LCD_IS	SLE[1:0]
R/W		R/W	R/W	R/W			R/W	R/W
复位值		0	0	0			0	0

Bit7 未用

Bit6 **LEDF: LED** 时钟源选择

0: 内部时钟 1: 外部 32K 时钟

Bit5-Bit4 SEG 口输出模式选择

00: SEG 口输出全为 0 01: SEG 口输出全为 1

1x: SEG 口输出为 LEDDATA 中的数据

Bit3-2 未用

Bit1-0 LCD 输出电流选择位

LED 地址寄存器 LEDADD(192H)

192H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LEDADD	LEDCS		COMSEL[2]	LEDADD[4:0]				
R/W	R/W		R/W	R/W	R/W	R/W	R/W	R/W
复位值	0		0	0	0	0	0	0

Bit7 LEDCS: LED 数据读写使能

0: 禁止读写 LED 数据 1: 允许读写 LED 数据

Bit6 未用

Bit5 COMSEL[2]: COM 选择最高位,COMSEL[2:0]设置 COM 口数量

Bit4-Bit0 **LEDADD[4:0]: LED** 地址选择

LED 地址范围 00H-0AH

LED 数据寄存器 LEDDATA(193H)

193H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
LEDDATA		LEDDATA[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		

Bit7-Bit0 LEDDATA[7:0]: LED数据设置,写入LEDADD对应地址的数据

LED 功能 COM 口控制寄存器 COMEN(197H)

197H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
COMEN		COM6EN	COM5EN	COM4EN	COM3EN	COM2EN	COM1EN	COM0EN
R/W		R/W						
复位值		0	0	0	0	0	0	0

Bit6-Bit0 COMxEN: COM 口功能设置

0: 对应 COMx 口为普通 I/O 口(x=0-6)

1: 对应 COMx 口为 LED 功能的 COM 口(x=0-6)

LED 功能 SEG 口控制寄存器 SEGEN0(196H)

196H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

CMS89F22X

SEGEN0	SEG7EN	SEG6EN	SEG5EN	SEG4EN	SEG3EN	SEG2EN	SEG1EN	SEG0EN
R/W								
复位值	0	0	0	0	0	0	0	0

Bit7-Bit0

SEGxEN: SEG 口功能设置

0: 对应 SEGx 口为普通 I/O 口(x=0-7)

1: 对应 SEGx 口为 LCD/LED 功能的 SEG 口(x=0-7)

LED 功能 SEG 口控制寄存器 SEGEN1(195H)

74140		4 14 1111	(/					
195H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEGEN1						SEG10EN	SEG9EN	SEG8EN
R/W						R/W	R/W	R/W
复位值						0	0	0

Bit2-Bit0

SEGxEN: SEG 口功能设置

0: 对应 SEGx □为普通 I/O □(x=8-10)

1: 对应 SEGx 口为 LED 功能的 SEG 口(x=8-10)

LED 功能 SEG 口控制寄存器 SEGEN2(194H)

194H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEGEN2		SEGD	RI[3:0]					
R/W	R/W		R/W	R/W				
复位值	0		0	0				

Bit7-Bit4

SEGDRI[3:0]: SEG 口驱动电流设置

0000: SEG 口驱动电流为 0 0001: SEG 口驱动电流为 2mA 0010: SEG 口驱动电流为 4mA 0011: SEG 口驱动电流为 6mA

• • •

1110: SEG 口驱动电流为 28mA 1111: SEG 口驱动电流为 30mA

Bit3-0 未用

12.7 LCD 相关设置

CMS89F226/2265/228/2285 由 4 个 I/O 口内置上下拉电阻,可用来做 1/2Bias 的 LCD 驱动,其控制流程为:

- 1、将 LEDCON0.7 位 LCDEN 置 1;
- 2、设置 LEDCON1[1:0]位选择 COM 口输出电流;
- 3、设置相应的 COMEN 位为"1", 允许该管脚为 1/2Bias 的 COM 口;
- 4、当其中一个 COM 口需要点亮做输出的时候,需要把该管脚的 TRIS 位置 "0",并将相应的 COMEN 位置 "0",其它未点亮 COM 口需要把管脚 TRIS 位置 "1",并将相应的 COMEN 位置 "1"。

相关寄存器如下

LED 控制寄存器 LEDCON0(190H)

		,	,							
190H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
LEDCON0	LCDEN	LEDEN	COMS	SEL[1:0]	LEDCLK[3:0]					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		

Bit7 LCD 模块使能

0: 禁止 LCD 模块 1: 使能 LCD 模块

Bit6 LEDEN: LED 模块使能

0: 禁止 LED 模块 1: 使能 LED 模块

Bit5-Bit4 COMSEL[1:0]: LED 模块 COM 口个数选择(COMSEL[2]在 LEDADD 寄存器第 5 位)

Bit3-Bit0 LEDCLK[3:0]: LED 频率选择(根据 LEDCON1 第 6 位 LEDF 选择时钟源)

LED 控制寄存器 LEDCON1(191H)

191H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LEDCON1		LEDF	SEGOUT[1:0]				LCD_IS	SLE[1:0]
R/W		R/W	R/W	R/W			R/W	R/W
复位值		0	0	0			0	0

Bit7 未用

Bit6 **LEDF: LED** 时钟源选择

Bit5-Bit4 SEG 口输出模式选择

Bit3-2 未用

Bit1-0 **LCD** 输出电流选择位

00=25uA@5V 01=50uA@5V 10=100uA@5V 11=200uA@5V

LCD 功能 COM 口控制寄存器 COMEN(197H)

197H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
COMEN	COM7EN	COM6EN	COM5EN	COM4EN	COM3EN	COM2EN	COM1EN	COM0EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7-Bit4 COMxEN: COM 口功能设置

0: 对应 COMx 口为普通 I/O 口

1: 对应 COMx 口为 LED 功能的 COM 口

Bit3-Bit0 COMxEN: COM 口功能设置

0: 对应 COMx 口为普通 I/O 口

1: 对应 COMx 口为 LED/LCD 功能的 COM 口

13. 捕捉/比较/PWM 模块(CCP1 和 CCP2)

芯片包含 2 个捕捉/比较/PWM(CCP1)和(CCP2)。CCP1和 CCP2模块的操作基本相同。

注:本文档中的 CCPRx 和 CCPx 分别指 CCPR1 或 CCPR2 和 CCP1 或 CCP2

捕捉/比较/PWM 模块是允许用户定时和控制不同事件的外设。在捕捉模式下,该外设能对事件的持续时间计时。捕捉模式允许用户在预先确定的定时时间结束后触发一个外部事件。PWM 模式可产生频率和占空比都可变化的脉宽调制信号。

当CCP用在捕捉/比较模式下,需要用到定时器TIMER1;当其用在PWM模式下则需要用定时器TIMER2。 CCPx 控制寄存器 CCPxCON

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CCPxCON			DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
读写			R/W	R/W	R/W	R/W	R/W	R/W
复位值			0	0	0	0	0	0

Bit7-6 未用

Bit5-4 **DCxB<1:0>**: PWM占空比的低两位

捕捉模式: 未使用。 比较模式: 未使用。 PWM模式:

这两位是 10 位 PWM 占空比的低 2 位。占空比的高 8 位在 CCPRxL 中。

Bit3-0 CCPxM<3:0>: CCPx模式选择位

0000=捕捉/比较/PWM关闭(复位CCPx模块)

0001=未使用(保留) 0010=未使用(保留) 0011=未使用(保留)

0100=捕捉模式,在每个下降沿发生捕捉 0101=捕捉模式,在每个上升沿发生捕捉 0110=捕捉模式,每4个上升沿发生捕捉 0111=捕捉模式,每16个上升沿发生捕捉

1000=比较模式,比较匹配时输出高电平(CCPxIF置1) 1001=比较模式,比较匹配时输出低电平(CCPxIF置1)

1010=比较模式,比较匹配时产生软件中断(CCPxIF位置1,CCPx引脚不受影响)

1011=比较模式,触发特殊事件(CCPxIF位置1,TMR1复位,如果使能ADC模块还将启动A/D转换。

CCPx引脚不受影响) 11xx=PWM 模式

13.1 捕捉模式

在捕捉模式下,当对应的 CCPx 引脚发生事件时,CCPRxH:CCPRxL 这对寄存器捕捉 TMR1 寄存器的 16 位值。触发捕捉的事件可被定义为以下四者之一,并且由 CCP1CON 寄存器中的 CCP1M<3:0>位配置:

- •每个下降沿
- •每个上升沿
- •每4个上升沿
- •每 16 个上升沿

通过模式选择位 CCPxM3:CCPxM0 (CCPxCON<3:0>) 选择事件类型。当一个捕捉发生时,中断请求

标志位 PIRx 寄存器中的 CCPxIF 置 1;它必须用软件清零。如果在 CCPRxH 和 CCPRxL 这对寄存器中的值被读取之前发生另一次捕捉,那么之前捕捉的值将被新捕捉的值覆盖(见图 13-1)。

图 13-1 捕捉模式工作框图

13.1.1 CCP 引脚配置

在捕捉模式下,应通过将对应的 TRIS 控制位置 1 来将相应的 CCPx 引脚配置为输入。

注:如果 CCPx 引脚被配置为输出,对该端口的写操作可能引发一个捕捉事件。

13.1.2 TIMER1 模式选择

TIMER1 必须运行在定时器模式或同步计数器模式下 CCP 模块才能使用捕捉功能。在异步计数器模式下无法进行捕捉操作。

13.1.3 软件中断

当捕捉模式改变时,可能会产生错误的捕捉中断。用户应该保持 PIEx 寄存器中的 CCPxIE 中断允许位清零以避免产生误中断。在操作模式发生任何改变之后也应清零 PIRx 寄存器中的中断标志位 CCPxIF。

WWW.MCU.COM.CN -88- V1.2

13.1.4 CCP 预分频器

CCPxCON 寄存器中的 CCPxM<3:0>位指定了 4 种预分频器设置。每当关闭 CCP 模块或禁止捕捉模式时,就会清零预分频器计数器。这意味着任何复位都将清零预分频计数器。

从一种捕捉预分频比切换到另一种捕捉预分频比不会将预分频计数器清零,但可能会产生误中断。要避免出现这种不期望的操作,应在改变预分频比前通过将 CCPxCON 寄存器清零关闭该模块(见例 13-1)。

例 13-1 改变捕捉预分频比

CLR LDIA	CCP1CON B'00000101'	;关闭 CCP1
LD	CCP1CON,A	; 给 CCP1 赋新值

WWW.MCU.COM.CN -89- V1.2

13.2 比较模式

在比较模式下,16 位 CCPRx 寄存器的值将不断与一对 TMR1 寄存器的值相比较。当两者匹配时,CCPx 模块可能会出现以下几种情况:

- •CCPx 的输出电平翻转
- •CCPx 输出高电平
- •CCPx 输出低电平
- •产生特殊事件触发信号
- •产生软件中断

引脚的动作取决于 CCPx1CON 寄存器中 CCPxM<3:0>控制位的值。

所有捕捉模式都会产生中断。

图 13-2 比较模式工作框图

13.2.1 CCP 引脚配置

用户必须通过将相应的 TRIS 位清零来将 CCPx 引脚配置为输出。

注: 清零CCP1CON寄存器会将CCPx比较输出锁存器强制为默认的低电平。这不是端口I/O数据锁存器。

13.2.2 TIMER1 模式选择

在比较模式下,TIMER1 必须运行在定时器模式或同步计数器模式。在异步计数器模式下,可能无法进行比较操作。

13.2.3 软件中断模式

当选择了产生软件中断模式时(CCPxM<3:0>=1010), CCPx 模块不会控制 CCPx 引脚(见 CCP1CON 寄存器)。

WWW.MCU.COM.CN -90- V1.2

13.2.4 特殊事件触发信号

当选择了特殊事件触发模式(CCPxM<3:0>=1011)时,CCPx模块将完成以下操作:

- •复位 TIMER1
- •如果使能了 ADC 还将启动 ADC 转换

在该模式下, CCPx 模块不控制 CCPx 引脚(见 CCPx-CON 寄存器)。

当 TMR1H/TMR1L 寄存器对和 CCPRxH/CCPRxL 寄存器对匹配时 CCP 会立即产生特殊事件触发输出。 TMR1H/TMR1L 寄存器对不会复位直到 TIMER1 时钟的下一个上升沿才复位。从而 CCPRxH/CCPRxL 寄存器对实际上成为了 TIMER1 的 16 位可编程周期寄存器。

注:

- 1、来自CCP模块的特殊事件触发信号不会使PIR1寄存器中的TMRxIF中断标志位置1。
- 2、在产生特殊事件触发信号的边沿和导致 TIMER1 复位的时钟边沿之间改变 CCPRxH 和 CCPRxL 寄存器对的内容可清除匹配条件,从而阻值复位发生

WWW.MCU.COM.CN -91- V1.2

13.3 PWM 模式

PWM 模式在 CCPx 引脚上产生脉宽调制信号。由以下寄存器确定占空比、周期和分辨率:

- •PR2
- •T2CON
- •CCPRxL
- •CCPxCON

在脉宽调制(PWM)模式下,CCP 模块可在 CCPx 引脚上输出分辨率高达 10 位的 PWM 信号。由于 CCPx 引脚与端口数据锁存器复用,必须清零相应的 TRIS 位才能使能 CCPx 引脚的输出驱动器。

注: 清零 CCPxCON 寄存器将放弃 CCPx 对 CCPx 引脚的控制权。

图 13-3 给出了 PWM 操作的简化框图。

图 13-4 给出了 PWM 信号的典型波形。

图 13-3: PWM 简化框图

WWW.MCU.COM.CN -92- V1.2

图13-4: CCPPWM输出

13.3.1 PWM 周期

PWM 周期是通过写 TIMER2 的 PR2 寄存器来指定的。可以使用公式 13-1 计算 PWM 周期:

公式 13-1PWM 周期

PWM周期=[(*PR2*)+1]*4*T_{OSC}*(*TMR2*预分频值) 注: T_{OSC}=1/F_{OSC}

当 TMR2 等于 PR2 时,在下一个递增计数周期中会发生以下 3 个事件:

- •TMR2 被清零
- •CCPx 引脚被置 1 (例外情况:如果 PWM 占空比=0%, CCPx 引脚将不被置 1)
- •PWM 占空比从 CCPRxL 被锁存到 CCPRxH

注:在确定 PWM 频率时不使用 TIMER2 后分频比(见第 10.2 节 "TIMER2 的工作原理")。

13.3.2 PWM 占空比

可通过将一个 10 位值写入以下多个寄存器来指定 PWM 占空比: CCPRxL 寄存器和 CCPxCON 寄存器的 DCxB<1:0>位。CCPRxL 保存占空比的高 8 位,而 CCPxCON 寄存器的 DCxB<1:0>位保存占空比的低 2 位。可以在任何时候写入 CCPRxL 和 CCPxCON 寄存器的 DCxB<1:0>位,但直到 PR2 和 TMR2 中的值匹配(即周期结束)时,占空比的值才被锁存到 CCPRxH 中。在 PWM 模式下,CCPRxH 是只读寄存器。

公式 13-2 用于计算 PWM 脉冲的宽度:公式 13-3 用于计算 PWM 占空比。

公式 13-2 脉冲宽度

脉冲宽度=(CCPRxL:CCPxCON<5:4>)*TOSC*(TMR2预分频值)

公式13-3占空比

占空比=(CCPRxL:CCPxCON<5:4>)
4(PR2+1)

CCPRxH 寄存器和一个 2 位的内部锁存器用于为 PWM 占空比提供双重缓冲。这种双重缓冲结构极其重要,可以避免在 PWM 操作过程中产生毛刺。

8 位定时器 TMR2 寄存器的值与一个 2 位的内部系统时钟(F_{OSC})或预分频器的 2 位相结合,产生 10 位时基。当 TIMER2 预分频比为 1:1 时使用系统时钟。

当 10 位时基与 CCPRxH 和 2 位锁存器相结合的值匹配时, CCPx 引脚被清零(见图 13-3)。

WWW.MCU.COM.CN -93- V1.2

13.3.3 PWM 分辨率

分辨率决定在给定周期内的占空比数。例如,10 位分辨率将产生 1024 个离散的占空比,而 8 位分辨率 将产生 256 个离散的占空比。

当 PR2 为 255 时, PWM 的最大分辨率为 10 位。如公式 13-4 所示,分辨率是 PR2 寄存器值的函数。公式 13-4PWM 分辨率

分辨率
$$= \frac{\log \left[4(PR2+1)\right]}{\log (2)}$$

注:如果脉冲宽度大于周期值,指定的PWM引脚将保持不变。

下列表格给出了在 Fosc=8M 的情况下, PWM 的频率和分辨率的值。

表 13-1PWM 频率和分辨率示例(Fosc=8MHz)

PWM 频率	1.22kHz	4.90kHz	19.61kHz	76.92kHz	153.85kHz	200.0kHz
定时器预分频值(1、4或16)	16	4	1	1	1	1
PR2 值	0x65	0x65	0x65	0x19	0x0C	0x09
最高分辨率(位)	8	8	8	6	5	5

13.3.4 休眠模式下的操作

在休眠模式下,TMR2 寄存器将不会递增并且模块的状态将保持不变。如果 CCPx 引脚有输出,将继续保持该输出值不变。当器件被唤醒时,TMR2 将从原先的状态继续工作。

13.3.5 系统时钟频率的改变

PWM 频率是由系统时钟频率产生的。系统时钟频率发生任何改变都会使 PWM 频率发生变化。

13.3.6 复位的影响

任何复位都会将所有端口强制为输入模式,并强制 CCP 寄存器进入其复位状态。

13.3.7 设置 PWM 操作

在将 CCP 模块配置为 PWM 操作模式时应该执行以下步骤:

- 1、通过将相应的 TRIS 位置 1,禁止 PWM 引脚(CCPx)的输出驱动器,使之成为输入引脚。
- 2、通过装载 PR2 寄存器设置 PWM 周期。
- 3、通过用适当的值装载 CCPxCON 寄存器配置 CCP 模块的 PWM 模式。
- 4、通过装载 CCPRxL 寄存器和 CCPxCON 寄存器中的 DCxB<1:0>位设置 PWM 占空比。
- 5、配置并启动 TIMER2:
- •清零 PIR1 寄存器中的 TMR2IF 中断标志位。
- •通过装载 T2CON 寄存器的 T2CKPS 位来设置 TIMER2 预分频比。
- •通过将 T2CON 寄存器中的 TMR2ON 位置 1 来使能 TIMER2。
- 6、在新的 PWM 周期开始后,使能 PWM 输出:
- •等待 TIMER2 溢出(PIR1 寄存器中的 TMR2IF 位置 1)。
- •通过将相应的 TRIS 位清零,使能 CCPx 引脚输出驱动器。

WWW.MCU.COM.CN -94- V1.2

14. 主控同步串行端口(MSSP)模块

14.1 主控 SSP(MSSP)模块概述

主控同步串行端口(Master Synchronous Serial Port,MSSP)模块是用于同其他外设或单片机进行通信的串行接口。这些外设器件可以是串行 EEPROM、移位寄存器、显示驱动器或 A/D 转换器等。MSSP 模块有下列两种工作模式:

- •串行外设接口(SPI)
- •I²C
- -全主控模式
- -从动模式(支持广播地址呼叫)
- I²C接口在硬件上支持下列模式:
- •主控模式
- •多主机模式
- •从动模式

<u>WWW.MCU.COM.CN</u> -95- V1.2

14.2 SPI 模式

SPI 模式允许同时同步发送和接收 8 位数据。支持 SPI 的所有 4 种模式。

通常使用以下三个引脚来完成通信:

•串行数据输出(SDO)——RE3/SDO

•串行数据输入(SDI)——RB2/SDI/SDA

•串行时钟(SCK)——RB1/SCK/SCL

此外,在任意一种从动工作模式下均可使用第4个引脚:

•从动选择(SS)——RA5/SS/AN4

14.2.1 SPI 相关寄存器

SSPSTAT:SSP 状态寄存器 (94H)

94H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPSTAT	SMP	CKE						
读写	R/W	R/W						
复位值	0	0						

Bit7 SMP: 采样位

SPI主控模式:

1=在数据输出时间的末尾采样输入数据 0=在数据输出时间的中间采样输入数据

SPI从动模式:

当使用SPI的从动模式时,必须将SMP清零。

Bit6 CKE: SPI时钟边沿选择位

CKP=0:

1=在SCK引脚的上升沿发送数据 0=在SCK引脚的下降沿发送数据

CKP=1:

1=在SCK引脚的下降沿发送数据 0=在SCK引脚的上升沿发送数据

Bit5-Bit0 **SPI**模式下未用

SSPCON:SSP控制寄存器(14H)

14H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPCON		SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
读写		R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值		0	0	0	0	0	0	0

Bit7 未用

Bit6 SSPOV:接收溢出指示位

1=SSPBUF仍保持前一数据时,又收到一个新的字节。出现溢出时,SSPSR中的数据会丢失。溢出只会在从动模式下发

生。在从动模式中,即使仅发送数据,用户也必须读SSPBUF以避免溢出。在主控模式中,溢出位不被置1,因为每

次接收或发送新数据,都要通过写SSPBUF寄存器来启动(该位必须由软件清零)。

0=没有溢出

Bit5 SSPEN: 同步串行端口使能位

1=使能串行端口并将SCK、SDO、SDI和SS配置为串行端口引脚

0=禁止串行端口并将这些引脚配置为I/O端口引脚

Bit4 CKP: 时钟极性选择位

1=时钟空闲状态为高电平 0=时钟空闲状态为低电平

Bit3-0 **SSPM<3:0>**: 同步串行端口模式选择位

0000=SPI主控模式,时钟=F_{OSC}/4 0001=SPI主控模式,时钟=F_{OSC}/16 0010=SPI主控模式,时钟=F_{OSC}/64 0011=SPI主控模式,时钟=TMR2输出/2

0100=SPI从动模式,时钟=SCK引脚,使能SS引脚控制

0101=SPI从动模式,时钟=SCK引脚,禁止SS引脚控制,SS可用作I/O引脚

0110=I²C从动模式,7位地址 0111=I²C从动模式,10位地址

1000=I²C主控模式,时钟= F_{OSC} /(4*(SSPADD+1))

1001=禁止装载功能

1010=保留 1011=保留 1100=保留 1101=保留

1110=l²C从动模式,7位地址,并允许起始位和停止位中断 1111=l²C从动模式,10位地址,并允许起始位和停止位中断

14.2.2 SPI 工作原理

当初始化 SPI 时,需要指定几个选项。可以通过对相应的控制位(SSPCON<5:0>和 SSPSTAT<7:6>)编程来指定。这些控制位用于指定以下选项:

- •主控模式(SCK作为时钟输出)
- •从动模式(SCK作为时钟输入)
- •时钟极性(SCK的空闲状态)
- •输入数据的采样相位(数据输出时间的中间或末尾)
- •时钟边沿(在 SCK 的上升沿/下降沿输出数据)
- •时钟速率(仅限主控模式)
- •从动选择模式(仅限于从动模式)

图 14-1 显示了在 SPI 模式下 MSSP 模块的框图。

WWW.MCU.COM.CN -97- V1.2

图 14-1

MSSP 模块由一个发送/接收移位寄存器(SSPSR)和一个缓冲寄存器(SSPBUF)组成。SSPSR 将数据移入和移出器件,最高有效位在前。SSPBUF 保存上次写入 SSPSR 的数据直到新接收到的数据就绪为止。一旦 8 位数据接收完毕,该字节就被移入 SSPBUF 寄存器。然后,PIR1 寄存器的中断标志位 SSPIF 被置 1。这种双重缓冲数据接收方式(SSPBUF)允许在读取刚接收的数据之前,就开始接收下一个字节。在数据发送/接收期间,任何试图写 SSPBUF 寄存器的操作都会被忽略,并将 SPCON 寄存器的写冲突检测位 WCOL置 1。此时用户必须用软件将 WCOL 位清零,否则无法判别下一次对 SSPBUF 的写操作是否成功完成。

当应用软件等待接收有效数据时,应在下一个要传输的数据字节写入 SSPBUF 之前,将 SSPBUF 中的前一个数据读出。缓冲器满标志位 BF(SSPSTAT 寄存器)用于表示何时 SSPBUF 已经载入了接收到的数据(发送完成)。如果 SPI 仅仅作为发送器,则不必理会接收的数据。通常可用 MSSP 中断来判断发送或接收何时完成。如果不使用中断来处理数据的收发,用软件查询方法同样可确保不会发生写冲突。

14.2.3 使能 SPII/O

要使能串行端口,SSPCON 寄存器的 MSSP 使能位 SSPEN 必须置 1。要复位或重新配置 SPI 模式,要先将 SSPEN 位清零,重新初始化 SSPCON 寄存器,然后将 SSPEN 位置 1。这将把 SDI、SDO、SCK 和 SS 引脚配置为串行端口引脚。要将这些引脚用作串行端口,还必须将其数据方向位(在 TRIS 寄存器中)正确编程,方法如下:

- •SDI 由 SPI 模块自动控制
- •必须将 SDO 的 TRISC<5>清零
- •必须将 SCK(主控模式)的 TRISC<3>位清零
- •必须将 SCK(从动模式)的 TRISC<3>位清零

•必须将 SS 的 TRISA<5>置 1

对于任何不想要的串行端口功能,可通过将对应的数据方向(TRIS)寄存器设置为相反值来跳过。

14.2.4 主控模式

主器件控制 SCK, 因此可以随时启动数据传输。主器件根据软件协议确定从器件应在何时广播数据。

在主控模式下,数据一旦写入 SSPBUF 寄存器就开始发送或接收。如果 SPI 仅作为接收器,则可以禁止 SDO 输出(将其编程设定为输入)。SSPSR 寄存器按设置的时钟速率对 SDI 引脚上的信号进行连续移位输入。每个字节接收完后,都会被当作普通的接收字节装入 SSPBUF 寄存器(相应的中断和状态位置 1)。这可以在接收器应用中作为"线路活动监控(Line Activity Monitor)"模式,是很有用的。

可通过对 SSPCON 寄存器的 CKP 位进行相应的编程来选择时钟极性。图 14-2、图 14-4 和图 14-5 给 出了 SPI 通信的波形图,其中 MSb 被首先发送。在主控模式下,SPI 时钟速率(比特率)可由用户编程设定为下列速率之一:

- Fosc /4 (或 TCY)
- Fosc /16 (或 4•TCY)
- Fosc /64 (或 16•TCY)
- •TIMER2输出/2

图 14-2 给出了主控模式的波形图。当 SSPSTAT 寄存器的 CKE 位置 1 时,SDO 数据在 SCK 上出现时钟边沿前就有效。图中所示输入采样的变化由 SSPSTAT 寄存器的 SMP 位的状态决定。图中指出了将接收到的数据装入 SSPBUF 的时间。

WWW.MCU.COM.CN -99- V1.2

图 14-2

14.2.5 从动模式

在从动模式下,当 SCK 引脚上出现外部时钟脉冲时,发送和接收数据。当最后一位数据被锁存后,PIR1 寄存器的 SSPIF 中断标志位置 1。

在从动模式下,时钟由 SCK 引脚上的外部时钟源提供。外部时钟必须满足电气规范中规定的高电平和低电平的最短时间要求。

在休眠状态下,从器件仍可发送/接收数据。当收到一个字节时,器件从休眠状态被唤醒。

14.2.6 从动选择同步

SS 引脚允许器件工作在同步从动模式。SPI 必须工作在从动模式下,并使能 SS 引脚控制 SSPxCON1<3:0>=04h)。要使 SS 引脚用作输入引脚,不能将该引脚驱动为低电平。当 SS 引脚为低电平 时,使能数据的发送和接收,同时 SDO 引脚被驱动。当 SS 引脚为高电平时,即使是在数据的发送过程中, SDO 引脚也不再被驱动,而是变成悬空输出。根据应用的需要,可外接上拉/下拉电阻。

当 SPI 模块复位后,位计数器被强制归 0。这可以通过强制将 SS 引脚拉为高电平或将 SSPEN 位清零来实现。将 SDO 引脚和 SDI 引脚相连可以仿真双线制通信。当 SPI 需要作为接收器工作时,SDO 引脚可以被配置为输入。这样就禁止了从 SDO 发送数据。因为 SDI 不会引起总线冲突,因而总是可以将其保留为输

入(SDI功能)。

注 **1**: 当 SPI 工作在从动模式下,并且 SS 引脚控制使能(SSPxCON1<3:0>=0100)时,如果 SS 引脚置为 VDD 电平,SPI 模块将被复位。

2: 如果在 CKE 置 1 (SSPSTAT 寄存器)的从动模式下使用 SPI,则必须使能 SS 引脚控制。

图 14-3

图 14-4

图 14-5

14.2.7 休眠操作

在主控模式下,如果选择了休眠模式,所有模块的时钟都将停止,并且在器件被唤醒前,发送/接收将保持此停滞状态。当器件返回到运行模式后,该模块将恢复发送和接收数据。

在从动模式下,SPI 发送/接收移位寄存器与器件异步工作。这可以使器件处于休眠模式下,而且数据仍可被移入SPI 发送/接收移位寄存器。当 8 位数据全部接收到后,MSSP 中断标志位将置 1,并且如果允许中断的话,将唤醒器件。

14.2.8 复位的影响

复位会禁止 MSSP 模块并终止当前的传输。

WWW.MCU.COM.CN -102- V1.2

14.3 I²C 模块

MSSP 模块工作在 I^2 C 模式时,可以实现所有的主控和从动功能(包括广播呼叫支持),并且用硬件提供起始位和停止位的中断来判断总线何时空闲(多主机功能)。MSSP 模块实现了标准模式规范,以及 7 位和 10 位寻址。

有两个引脚用于数据传输。它们是时钟引脚(SCL)——RB1/SCK/SCL 引脚,和数据引脚(SDA)——RB2/SDI/SDA 引脚。用户必须通过 TRISC<4:3>位将这些引脚配置为输入或输出引脚。通过将 SSPCON 寄存器的 MSSP 使能位 SSPEN 置 1,使能 MSSP 模块的功能。

图 14-6

MSSP 模块具有 7 个用于 I^2 C 操作的寄存器。它们是:

- •MSSP 控制寄存器 1 (SSPCON)
- •MSSP 控制寄存器 2 (SSPCON2)
- •MSSP 状态寄存器 (SSPSTAT)
- •串行接收/发送缓冲寄存器(SSPBUF)
- •MSSP 移位寄存器 (SSPSR): 不能直接访问
- •MSSP 地址寄存器(SSPADD)
- •MSSP 屏蔽寄存器 (SSPMSK)

可使用 SSPCON 寄存器控制 I^2 C 的操作。可使用 SSPM<3:0>模式选择位(SSPCON 寄存器)选择以下 I^2 C 模式之一:

- •I²C 主控模式, 时钟=OSC/4(SSPADD+1)
- •I2C 从动模式 (7 位地址)

WWW.MCU.COM.CN -103- V1.2

- •I²C 从动模式(10 位地址)
- •I²C 从动模式, 7 位地址, 允许起始位和停止位中断
- •I²C 从动模式, 10 位地址, 允许起始位和停止位中断
- •I²C 固件控制的主控操作,从器件空闲

如果已将 SCL 和 SDA 引脚编程为输入引脚(将相应的 TRISC 位置 1),选择任何 I^2 C 模式且 SSPEN 位置 1 将强制 SCL 和 SDA 引脚为漏极开路。

14.3.1 相关寄存器说明

SSPSTAT:SSP 状态寄存器 (94H)

94H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPSTAT	SMP		D/A	Р	S	R/W	UA	BF
读写	R/W		R	R	R	R	R	R
复位值	0		0	0	0	0	0	0

Bit7 SMP:

1=禁止变化率控制,标准速度模式(100kHz和1MHz)

0=使能变化率控制,高速模式(400kH)

Bit6 未用

D/A: 数据/地址位

1=表示最后接收或发送的字节是数据 0=表示最后接收或发送的字节是地址

Bit4 P: 停止位

(禁止MSSP模块(SSPEN清零)时此位被清零。)

1=表示最后检测到了停止位(复位时该位为0)。

0=表示最后未检测到停止位

Bit3 **S**: 起始位

(禁止MSSP模块(SSPEN清零)时此位被清零。)

1=表示最后检测到了起始位(复位时该位为0)。

0=最后未检测到起始位

Bit2 R/W: 读/写位信息

该位用来保存在最后一次地址匹配后的R/W位信息。该位仅在从地址匹配开始到下一个

起始位、停止位或非ACK位时

有效。

在I²C从动模式下:

1=读

0=写

在I²C主控模式下:

1=正在发送

0=不在进行发送

此位与SEN、RSEN、PEN、RCEN或ACKEN做逻辑或运算的结果将指示MSSP是否在

空闲模式下。

Bit1 UA: 更新地址位(仅限10位I²C模式)

1=表示用户需要更新SSPADD寄存器中的地址

0=不需要更新地址

Bit0 BF:缓冲器满状态位

接收

1=接收完成,SSPBUF满

0=接收未完成,SSPBUF空

发送

1=数据正在发送(不包括ACK和停止位),SSPBUF满

0=数据发送完成(不包括 ACK 和停止位), SSPBUF 空

SSPCON:SSP控制寄存器(14H)

14H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
读写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7 WCOL: 写冲突检测位

主控模式:

1=在I²C不满足开始发送数据的条件下,试图对SSPBUF寄存器进行写操作

0=未发生冲突

从动模式:

1=正在发送前一个字时,又对SSPBUF寄存器进行写操作(必须由软件清零)

0=未发生冲突

Bit6 SSPOV:接收溢出指示位

1=SSPBUF寄存器仍保持前一数据时,又接收到一个新的字节。在发送模式下SSPOV位可为任意值(该

位必须由软件

清零)。

0=没有溢出

Bit5 SSPEN: 同步串行端口使能位

(必须正确配置这些引脚为输入或输出引脚)

1=使能串行端口并将SDA和SCL引脚配置为串行端口引脚

0=禁止串行端口并将这些引脚配置为I/O端口引脚

Bit4 CKP: 时钟极性选择位

 $在I^2C$ 从动模式下:

SCK释放控制

1=使能时钟

0=保持时钟线为低电平(时钟延长)。(用于确保数据建立时间。)

在 I^2 C主控模式下:

在此模式下未使用

Bit3-0 SSPM<3:0>: 同步串行端口模式选择位

0000=SPI主控模式,时钟=Fosc/4

0001=SPI主控模式,时钟=F_{OSC}/16

0010=SPI主控模式, 时钟=Fosc/64

0011=SPI主控模式,时钟=TMR2输出/2

0100=SPI从动模式,时钟=SCK引脚,使能SS引脚控制

0101=SPI从动模式,时钟=SCK引脚,禁止SS引脚控制,SS可用作I/O引脚

0110=I²C从动模式,7位地址

0111=I²C从动模式,10位地址

1000=I²C主控模式,时钟=F_{OSC}/(4*(SSPADD+1))

1001=禁止装载功能

1010=保留

1011=保留

1100=保留

1101=保留

1110=I²C从动模式,7位地址,并允许起始位和停止位中断

1111=I²C从动模式,10位地址,并允许起始位和停止位中断

SSPCON2:SSP控制寄存器2 (91H)

91H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPCON2	GCEM	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
读写	R/W	R/W	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0

Bit7 GCEN: 广播呼叫使能位(仅限I²C从动模式)

1=允许在SSPSR中接收到广播呼叫地址(0000h)时产生中断

0=禁止广播呼叫地址

Bit6 ACKSTAT: 应答状态位(仅限于I²C主控模式)

在主控发送模式下:

1=未接收到来自从动器件的应答 0=已接收到来自从动器件的应答

Bit5 ACKDT: 应答数据位(仅限于I²C主控模式)

在主控接收模式下:

用户在接收完成后发送的应答序列的值

1=不应答 0=应答

Bit4 ACKEN: 应答序列使能位(仅限I²C主控模式)

在主控接收模式下:

1=在SDA和SCL引脚启动应答序列,发送ACKDT数据位。由硬件自动清零。

0=应答序列空闲

Bit3 RCEN:接收使能位(仅限I²C主控模式)

1=使能I²C接收模式

0=接收空闲

Bit2 PEN: 停止条件使能位(仅限于I²C主控模式)

SCK释放控制:

1=在SDA和SCL引脚启动停止条件。由硬件自动清零。

0=停止条件空闲

Bit1 RCEN: 重复启动条件使能位(仅限I²C主控模式)

1=在SDA和SCL引脚启动重复启动条件。由硬件自动清零。

0=重复启动条件空闲

BitO SEN: 启动条件使能位(仅限I²C主控模式)

在主控模式下:

1=在SDA和SCL引脚启动启动条件。由硬件自动清零。

0=启动条件空闲 在从动模式下:

1=从发送和接收都会使能时钟延长(使能时钟延长)

0=禁止时钟延长

14.3.2 主控模式

主控模式通过在检测到启动和停止条件时产生中断来工作。停止(P)位和起始(S)位在复位时或禁止 MSSP 模块时清零。当 P 位置 1 时,可以取得 I^2C 总线的控制权;否则总线处于空闲状态,且 P 位和 S 位 都为零。

在主控模式中, SCL 线由 MSSP 硬件操纵, SDA 引脚必须被配置为输入(TRISB<2> 置 1)。下列 事件会使 MSSP 中断标志位 SSPIF 置 1 (如果允许 MSSP 中断,则产生中断):

- •启动条件
- •停止条件
- •数据传输字节已发送/已接收
- •应答发送
- •重复启动条件

14.3.3 I²C 主控模式支持

通过将 SSPCON 中相应的 SSPM 位置 1 或清零并将 SSPEN 位置 1 可使能主控模式。一旦使能主控模 式,用户即可选择以下6项操作:

- 1、在 SDA 和 SCL 上发出一个启动条件。
- 2、在 SDA 和 SCL 上发出一个重复启动条件。
- 3、写入 SSPBUF 寄存器,开始数据/地址的发送。
- 4、在 SDA 和 SCL 上产生停止条件。
- 5、将 I²C 端口配置为接收数据。
- 6、在接收到数据字节后产生应答条件。

图 14-7

MSSP框图 (I²C™ 主控模式)

注:当配置为 I²C 主控模式时,MSSP 模块不允许事件排队。例如,在启动条件结束前,不允许用户发 出另一个启动条件并立即写 SSPBUF 寄存器以发起传输。这种情况下,将不会写入 SSPBUF,WCOL 位将 被置 1,这表明没有发生对 SSPBUF 的写操作。

14.3.3.1 I²C 主控模式操作

所有串行时钟脉冲和启动/停止条件均由主器件产生。停止条件或重复启动条件能结束传输。因为重复启动条件也是下一次串行传输的开始,因此不会释放 I²C 总线。在主控发送器模式下,串行数据通过 SDA 输出,而串行时钟由 SCL 输出。发送的第一个字节包括接收器件的地址(7 位)和读/写(R/W)位。在这种情况下,R/W 位将是逻辑 0。串行数据每次发送 8 位。每发送一个字节,会收到一个应答位。启动和停止条件的输出表明串行传输的开始和结束。

在主控接收模式下,发送的第一个字节包括发送器件的地址(7位)和 R/W 位。在这种情况下,R/W 位 将是逻辑 1。因此,发送的第一个字节是一个 7位从器件地址,后面跟 1表示接收。串行数据通过 SDA 接收,而串行时钟由 SCL 输出。每次接收 8 位串行数据。每接收到一个字节,都会发送一个应答位。启动和停止条件分别表明发送的开始和结束。

在 I²C 模式下,在 SPI 模式中使用的波特率发生器被用于将 SCL 时钟频率设置为 100kHz、400kHz 或 1MHz。波特率发生器的重载值位于 SSPADD 寄存器的低 7 位。当发生对 SSPBUF 的写操作时,波特率发生器将自动开始计数。如果指定操作完成(即,发送的最后一个数据位后面跟着 ACK),内部时钟将自动停止计数,SCL 引脚将保持在其最后的状态。

下面是一个典型的发送事件序列:

- a)用户通过将启动使能位 SEN (SSPCON2 寄存器) 置 1 产生启动条件。
- b)SSPIF 位置 1。在进行任何其他操作前,MSSP 模块将等待所需的启动时间。
- c)用户将从器件地址装入 SSPBUF 进行发送。
- d)地址从 SDA 引脚移出,直到发送完所有 8 位为止。
- e)MSSP 模块移入来自从器件的 ACK 位,并将它的值写入 SSPCON2 寄存器的 ACKSTAT 位。
- f)MSSP 模块在第 9 个时钟周期的末尾将 SSPIF 位置 1,产生一个中断。
- g)用户将 8 位数据装入 SSPBUF。
- h)数据从 SDA 引脚移出,直到发送完所有 8 位为止。
- i)MSSP模块移入来自从器件的 ACK 位,并将它的值写入 SSPCON2 寄存器的 ACKSTAT 位。
- i)MSSP 模块在第 9 个时钟的末尾将 SSPIF 位置 1,产生一个中断。
- k)用户通过将停止使能位(PEN)位(SSPCON2寄存器)置1产生停止条件。
- I)一旦停止条件完成,将产生一个中断。

14.3.4 波特率发生器

在 I^2 C 主控模式下,波特率发生器的重载值位于 SSPADD 寄存器的低 7 位(图 14-8)。当装载了该值后,波特率发生器将自动开始计数并递减至 0,然后停止直到下次重载为止。BRG 会在每个指令周期(TCY)中的 Q2 和 Q4 时钟周期上进行两次减计数。在 I^2 C 主控模式下,会自动重载 BRG。例如,在发生时钟仲裁时,BRG 将在 SCL 引脚采样到高电平时重载(图 14-9)。

WWW.MCU.COM.CN -108- V1.2

图 14-8

波特率发生器框图

图 14-9

14.3.5 I²C 主控模式发送

发送一个数据字节、一个 7 位地址或一个 10 位地址的另一半,都可以直接通过写一个值到 SSPBUF 寄存器来实现。该操作将使缓冲器满标志位 BF 置 1,并且波特率发生器开始计数,同时启动下一次发送。在 SCL 的下降沿有效后,地址/数据的每一位将被移出至 SDA 引脚。在一个波特率发生器计满返回计数周期(TBRG)内,SCL 保持低电平。数据应该在 SCL 释放为高电平前保持有效。当 SCL 引脚被释放为高电平时,它将在整个 TBRG 中保持高电平状态。在此期间以及下一个 SCL 下降沿之后的一段时间内,SDA 引脚上的数据必须保持稳定。在第 8 位被移出(第 8 个时钟周期的下降沿)之后,BF 标志位清零,同时主器件释放 SDA。

此时如果发生地址匹配或是数据被正确接收,被寻址的从器件将在第 9 位的时间以一个 ACK 位响应。 ACK 的状态在第 9 个时钟周期的下降沿写入 ACKDT 位。主器件接收到应答之后,应答状态位 ACKSTAT 会被清零;如果未收到应答,则该位被置 1。第 9 个时钟之后,SSPIF 位会置 1,主控时钟(波特率发生器)暂停,直到下一个数据字节装入 SSPBUF 为止,SCL 引脚保持低电平,SDA 保持不变(图 14-11)。

在写 SSPBUF 之后,地址的每一位在 SCL 的下降沿被移出,直至地址的所有 7 位和 R/W 位都被移出为止。在第 8 个时钟的下降沿,主器件将 SDA 引脚拉为高电平,以允许从器件发出应答响应。在第 9 个时钟的下降沿,主器件通过采样 SDA 引脚来判断地址是否被从器件识别。ACK 位的状态被装入 ACKSTAT 状态位(SSPCON2 寄存器)。在发送地址的第 9 个时钟下降沿之后,SSPIF 置 1,BF 标志位清零,波特率发生器关闭直到下一次写 SSPBUF,且 SCL 引脚保持低电平,允许 SDA 引脚悬空。

WWW.MCU.COM.CN -109- V1.2

14.3.5.1 BF 状态标志

在发送模式下,BF位(SSPSTAT寄存器)在CPU写SSPBUF时置1,在所有8位数据移出后清零。

14.3.5.2 WCOL 状态标志位

如果用户在发送过程中(即,SSPSR 仍在移出数据字节时)写 SSPBUF,则 WCOL 置 1 且缓冲器的内容保持不变(未发生写操作)。WCOL 必须由软件清零。

14.3.5.3 ACKSTAT 状态标志

在发送模式下,当从器件发送应答响应(ACK=0)时,ACKSTAT 位(SSPCON2 寄存器)清零;当从器件没有应答(ACK=1)时,该位置 1。从器件在识别出其地址(包括广播呼叫地址)或正确接收数据后,会发送一个应答。

WWW.MCU.COM.CN -110- V1.2

14.3.6 I2C 主控模式接收

通过编程接收使能位 RCEN(SSPCON2 寄存器)使能主控模式接收。波特率发生器开始计数,每次计满返回时,SCL 引脚的状态都发生改变(由高变低或由低变高),且数据被移入 SSPSR。第 8 个时钟的下降沿之后,接收使能标志位自动清零,SSPSR 的内容装入 SSPBUF,BF 标志位置 1,SSPIF 标志位置 1,波特率发生器暂停计数,SCL 保持为低电平。此时 MSSP 处于空闲状态,等待下一条命令。当 CPU 读缓冲器时,BF 标志位将自动清零。通过将应答序列使能位 ACKEN(SSPCON2 寄存器)置 1,用户可以在接收结束后发送应答位。

14.3.6.1 BF 状态标志

接收时,当将地址或数据字节从 SSPSR 装入 SSPBUF 时,BF 位置 1;在读 SSPBUF 寄存器时 BF 位清零。

14.3.6.2 SSPOV 状态标志

接收时,当 SSPSR 接收到 8 位数据时,SSPOV 位置 1,BF 标志位已经在上一次接收时置 1。

14.3.6.3 WCOL 状态标志

如果用户在接收过程中(即,SSPSR 仍在移入数据字节时)写 SSPBUF,则 WCOL 位置 1,缓冲器内容不变(未发生写操作)。

WWW.MCU.COM.CN -111- V1.2

14.3.7 I²C 主控模式启动条件时序

要发起启动条件,用户应将 SSPCON2 寄存器的启动条件使能位 SEN 置 1。当 SDA 和 SCL 引脚都采样为高电平时,波特率发生器重新装入 SSPADD<6:0>的内容并开始计数。当波特率发生器发生超时(TBRG)时,如果 SCL 和 SDA 都采样为高电平,则 SDA 引脚被驱动为低电平。当 SCL 为高电平时,将 SDA 驱动为低电平就是启动条件,将使 S 位(SSPSTAT 寄存器)置 1。随后波特率发生器重新装入 SSPADD<6:0>的内容并恢复计数。当波特率发生器超时(TBRG)时,SSPCON2 寄存器的 SEN 位将自动被硬件清零。波特率发生器暂停工作,SDA 线保持低电平,启动条件结束。

图 14-10

14.3.7.1 WCOL 状态标志

当启动序列进行时,如果用户写 SSPBUF,则 WCOL 被置 1,同时缓冲器内容不变(未发生写操作)。

注:由于不允许事件排队,在启动条件结束之前,不能对 SSPCON2 的低 5 位进行写操作。

14.3.8 I²C 主控模式重复启动条件时序

将 RSEN 位(SSPCON2 寄存器)编程为高电平,并且 I²C 逻辑模块处于空闲状态时,就会产生重复启动条件。当 RSEN 位置 1 时,SCL 引脚被拉为低电平。当 SCL 引脚采样为低电平时,波特率发生器装入 SSPADD<6:0>的内容,并开始计数。在一个波特率发生器计数周期(TBRG)内 SDA 引脚被释放(其引脚电平被拉高)。当波特率发生器超时时,如果 SDA 采样为高电平,SCL 引脚将被拉高。当 SCL 引脚采样为高电平时,波特率发生器将被重新装入 SSPADD<6:0>的内容并开始计数。SDA 和 SCL 必须在一个计数周期 TBRG 内采样为高电平。随后将 SDA 引脚拉为低电平(SDA=0)并保持一个计数周期 TBRG,同时 SCL 为高电平。然后 RSEN 位(SSPCON2 寄存器)将自动清零,波特率发生器不会重载,SDA 引脚保持低电平。一旦在 SDA 和 SCL 引脚上检测到启动条件,S 位(SSPSTAT 寄存器)将被置 1。直到波特率发生器超时后,SSPIF 位才会置 1。

一旦 SSPIF 位被置 1,用户便可以在 7 位地址模式下将 7 位地址写入 SSPBUF,或者在 10 位地址模式下写入默认的第一个地址字节。当发送完第一个 8 位并接收到一个 ACK 后,用户可以发送另外 8 位地址(10 位地址模式下)或 8 位数据(7 位地址模式下)。

WWW.MCU.COM.CN -114- V1.2

图14-11

14.3.8.1 WCOL 状态标志

当重复启动序列进行时,如果用户写 SSPBUF,则 WCOL 被置 1,同时缓冲器内容不变(未发生写操作)。 注:由于不允许事件排队,在重复启动条件结束之前,不能对 SSPCON2 的低 5 位进行写操作。

14.3.9 应答序列时序

将应答序列使能位 ACKEN(SSPCON2 寄存器)置 1 即可使能应答序列。当该位被置 1 时,SCL 引脚被拉低,应答数据位的内容出现在 SDA 引脚上。如果用户希望产生一个应答,则应该将 ACKDT 位清零;否则,用户应该在应答序列开始前将 ACKDT 位置 1。然后波特率发生器进行一个计满返回周期(TBRG)的计数,随后 SCL 引脚电平被拉高。当 SCL 引脚采样为高电平时(时钟仲裁),波特率发生器再进行一个TBRG 周期的计数。然后 SCL 引脚被拉低。在这之后,ACKEN 位自动清零,波特率发生器关闭,MSSP 模块进入空闲模式(图 14-12)。

图 14-12

14.3.9.1

WCOL 状态标志位

如果用户在应答序列正在进行时写 SSPBUF, WCOL 将被置 1 且缓冲器的内容保持不变(未发生写操作)。

14.3.10 停止条件序列

在接收/发送结束时,通过置停止序列的使能位,PEN(SSPCON2 寄存器),SDA 引脚将产生一个停止位。在接收/发送结束时,SCL 引脚在第 9 个时钟的下降沿后保持低电平。当 PEN 位置 1 时,主控器件将 SDA 置为低电平。当 SDA 线采样为低电平时,波特率发生器被重新装入值并递减计数至 0。波特率发生器发生超时时,SCL 引脚被拉到高电平,且一个 TBRG(波特率发生器计满回零)后,SDA 引脚被重新拉到高电平。当 SDA 引脚采样为高电平且 SCL 也是高电平时,P位(SSPSTAT 寄存器)置 1。一个 TBRG 周期后,PEN 位清零且 SSPIF 位置 1(图 14-13)。

14.3.10.1 WCOL 状态标志

如果用户在停止序列进行过程中试图写 SSPBUF,则 WCOL 位将置 1,缓冲器的内容不会改变(未发生写操作)。

图 14-13

停止条件接收或发送模式

14.3.11 时钟仲裁

如果在任何接收、发送或重复启动/停止条件期间,主器件拉高了 SCL 引脚(允许 SCL 引脚悬空为高电平),就会发生时钟仲裁。如果允许 SCL 引脚悬空为高电平,波特率发生器(BRG)将暂停计数,直到实际采样到 SCL 引脚为高电平为止。当 SCL 引脚采样为高电平时,波特率发生器中将被重新装入 SSPADD<6:0>的内容并开始计数。这可以保证当外部器件将时钟拉低时,SCL 始终保持至少一个 BRG 计满返回周期的高电平(图 14-14)。

WWW.MCU.COM.CN -116- V1.2

图 14-14

14.3.12 多主机模式

在多主机模式下,通过在检测到启动和停止条件时产生中断可以确定总线何时空闲。停止(P)位和启动(S)位在复位时或禁止 MSSP 模块时清零。当 P 位置 1 时,可以取得 I²C 总线的控制权;否则总线处于空闲状态,且 P 位和 S 位清零。当总线忙时,如果出现停止条件,则将产生中断(若允许 MSSP 中断)。

在多主机模式下工作时,必须监视 SDA 线来进行仲裁,查看信号电平是否为期望的输出电平。此检查由硬件完成,其结果放在 BCLF 位。

在以下状态下仲裁可能失败:

- •地址传输
- •数据传输
- •启动条件
- •重复启动条件
- •应答条件

14.3.13 多主机通信、总线冲突与总线仲裁

多主机模式是通过总线仲裁来支持的。当主器件将地址/数据位输出到 SDA 引脚时,如果一个主器件通过将 SDA 引脚悬空为高电平以在 SDA 上输出 1,而另一个主器件输出 0,就会发生总线仲裁。如果 SDA 引脚上期望的数据是 1,而实际在 SDA 引脚上采样到的数据是 0,则发生了总线冲突。主器件将把总线冲突中断标志位 BCL1F 置 1,并将 I²C 端口复位到空闲状态(图 14-14)。

如果在发送过程中发生总线冲突,则发送停止,BF 标志位清零,SDA 和 SCL 线被拉高,并且允许对 SSPBUF 进行写操作。当执行完总线冲突中断服务程序后,如果 I²C 总线空闲,用户可通过发出启动条件恢 复通信。如果在启动、重复启动、停止或应答条件的进行过程中发生总线冲突,则该条件被中止,SDA 和 SCL 线被拉高,SSPCON2 寄存器中的对应控制位清零。当执行完总线冲突中断服务程序后,如果 I²C 总线 空闲,用户可通过发出启动条件恢复通信。主器件将继续监视 SDA 和 SCL 引脚。如果出现停止条件,SSPIF 位将被置 1。无论发生总线冲突时发送的进度如何,写 SSPBUF 都会从第一个数据位开始发送数据。

在多主机模式下,通过在检测到启动和停止条件时产生中断可以确定总线何时空闲。P 位置 1 时,可以获取 I^2C 总线的控制权,否则总线空闲且 S 和 P 位清零。

14.3.14 从动模式

在从动模式下,SCL 引脚和 SDA 引脚必须被配置为输入(TRISC<4:3>置 1)。需要时(如从发送器) MSSP 模块将用输出数据改写输入状态。

当地址匹配时或在地址匹配后传输的数据被接收时,硬件会自动产生一个应答(ACK)脉冲,并把当时 SSPSR 寄存器中接收到的数据装入 SSPBUF 寄存器。

只要满足下列条件之一,MSSP 模块就不会产生此 ACK 脉冲:

- a)缓冲器满标志位 BF(SSPCON 寄存器)在接收到传输的数据前置 1。
- b)在接收到传输的数据之前,溢出标志位 SSPOV(SSPCON 寄存器)已被置 1。

在这种情况下, SSPSR 寄存器的值不会载入 SSPBUF, 但是 PIR1 寄存器的 SSPIF 位会置 1。BF 位是通过读取 SSPBUF 寄存器清零的, 而 SSPOV 位是通过软件清零的。

为确保正常工作, SCL 时钟输入必须满足最小高电平时间和最小低电平时间要求。

14.3.14.1 寻址

一旦使能了 MSSP 模块,它就会等待启动条件产生。在启动条件出现后,8位数据被移入 SSPSR 寄存器。在时钟(SCL)线的上升沿采样所有的输入位。寄存器 SSPSR<7:1>的值会和 SSPADD 寄存器的值比较,该比较是在第8个时钟脉冲(SCL)的下降沿进行的。如果地址匹配,并且BF 位和 SSPOV 位为零,会发生下列事件:

- a)SSPSR 寄存器的值被装入 SSPBUF 寄存器。
- b)缓冲器满标志位 BF 置 1。
- c)产生 ACK 脉冲。

d)在第 9 个 SCL 脉冲的下降沿,PIR1 寄存器的 MSSP 中断标志位 SSPIF 置 1 (如果允许中断则产生中断)。在 10 位地址模式下,从器件需要接收两个地址字节。第一个地址字节的高 5 位指定这是否为 10 位地址。R/W(SSPSTAT 寄存器)必须指定写操作,这样从器件才能接收到第二个地址字节。对于 10 位地址,第一个字节应该是 11110A9A80,其中 A9 和 A8 是该地址的两个最高有效位。

- 10 位地址的工作时序如下,其中 7-9 步是针对从动发送器而言的:
- 1、接收地址的第一(高)字节(PIR1寄存器的 SSPIF 位和 SSPSTAT寄存器的 BF 和 UA 位置 1)。
- 2、用地址的第二个(低)字节更新 SSPADD 寄存器(UA 位清零并释放 SCL 线)。
- 3、读 SSPBUF 寄存器(BF 位清零)并将标志位 SSPIF 清零。
- 4、接收地址的第二个(低)字节(SSPIF位、BF位和UA位置1)。
- 5、用地址的第一(高)字节更新 SSPADD 寄存器。如果匹配,释放 SCL 线,并将 UA 位清零。
- 6、读 SSPBUF 寄存器 (BF 位清零) 并将标志位 SSPIF 清零。
- 7、接收重复启动条件。
- 8、接收地址的第一个(高)字节(SSPIF 位和 BF 位置 1)。
- 9、读 SSPBUF 寄存器(BF 位清零)并将标志位 SSPIF 清零。

14.3.14.2 接收

当地址字节的 R/W 位清零并发生地址匹配时,SSPSTAT 寄存器的 R/W 位清零。接收到的地址被装入 SSPBUF 寄存器。

当存在地址字节溢出条件时,则不会产生应答脉冲(ACK)。溢出条件是指 BF 位(SSPSTAT 寄存器)置 1,或者 SSPOV 位(SSPCON 寄存器)置 1。每个数据传输字节都会产生一个 MSSP 中断。必须用软件将 PIR1 寄存器的中断标志位 SSPIF 清零。SSPSTAT 寄存器用于确定该字节的状态。

WWW.MCU.COM.CN -118- V1.2

14.3.14.3 发送

当接收的地址字节的 R/W 位置 1 并发生地址匹配时,SSPSTAT 寄存器的 R/W 位置 1。接收到的地址被装入 SSPBUF 寄存器。ACK 脉冲在第 9 位上发送,同时 RB1/SCK/SCL 引脚保持低电平。传输的数据必须装入 SSPBUF 寄存器,同时也被装入 SSPSR 寄存器。随后应通过将 CKP 位(SSPCON 寄存器)置 1 使能 RB2/SCK/SCL 引脚。在发送另一个时钟脉冲前,主控器件必须监视 SCL 引脚。从动器件可以通过延长时钟,

暂停与主控器件的数据传输。8个数据位在 SCL 输入的下降沿移出。这可确保在 SCL 为高电平期间 SDA 信号是有效的(见图 14-16)。

每个数据传输字节都会产生一个 MSSP 中断。SSPIF 标志位必须由软件清零,SSPSTAT 寄存器用于确定字节的状态。SSPIF 位在第 9 个时钟脉冲的下降沿被置 1。来自主接收器的 ACK 脉冲将在 SCL 输入第 9 个脉冲的上升沿锁存。如果 SDA 线为高电平(无 ACK),那么表示数据传输已完成。在这种情况下,如果从器件锁存了 ACK,将复位从动逻辑(复位 SSPSTAT 寄存器),同时从器件监视下一个起始位的出现。如果 SDA 线为低电平(ACK),则必须将接下去要发送的数据装入 SSPBUF 寄存器,这也将装载 SSPSR 寄存器。应将 CKP 置 1 使能 RB1/SCK/SCL。

图 14-15

I²C™ 从动模式接收时序 (7位地址)

图 14-16

I²C™ 从动模式发送时序 (7 位地址)

WWW.MCU.COM.CN -119- V1.2

14.3.15 SSP 屏蔽寄存器

在 I²C 从动模式下,SSP 屏蔽(SSPMSK)寄存器用于在地址比较操作下屏蔽 SSPSR 寄存器中的值。 SSPMSK 寄存器中某位为 0 会使 SSPSR 寄存器中相应的位成为"无关位"。

此寄存器在任何复位条件发生时均复位为全 1,因此,在写入屏蔽值前,它对标准 SSP 操作没有影响。必须在通过设置 SSPM<3:0>位以选择 I²C 从动模式(7 位或 10 位地址)之前对此寄存器进行初始化。只有通过 SSPCON 的 SSPM<3:0>位选择了适当的模式后才可访问此寄存器。

SSP 屏蔽寄存器在以下情况下有效:

- •7 位地址模式: 与 A<7:1>进行地址比较。
- •10 位地址模式: 仅与 A<7:0>进行地址比较。

SSP 屏蔽在接收到地址的第一个(高)字节期间无效。

SSPMSK:SSP 屏蔽寄存器(93H)⁽¹⁾

93H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0 ⁽²⁾
读写	R/W							
复位值	1	1	1	1	1	1	1	1

Bit7-1 MSK<7:1>: 屏蔽位

1=接收到的地址的Bitn与SSPADD<n>比较以检测I²C的地址匹配情况

0=接收到的地址的 Bitn 不用于检测 I^2 C 的地址匹配情况

I²C从动模式, 10位地址(SSPM<3:0>=0111):

1=接收到的地址的Bit0与SSPADD<0>比较以检测I²C的地址匹配情况

0=接收到的地址的Bit0不用于检测I²C的地址匹配情况

注

- **1**: 当 SSPCON 位 SSPM<3:0>=1001 时,任何对 SSPADDSFR 地址的读或写操作都通过 SSPMSK 寄存进行。
- 2: 在所有其他 SSP 模式下,此位无效。

14.3.16 休眠模式下的操作

在休眠模式下,I²C 模块能够接收地址或数据。并且在地址匹配或字节传输完成后,将唤醒处理器(如果允许了 MSSP 中断)。

14.3.17 复位的影响

复位会禁止 MSSP 模块并终止当前的传输。

WWW.MCU.COM.CN -120- V1.2

15. 数据 EEPROM 和闪存程序存储器控制

15.1 数据 EEPROM 和闪存程序存储器概述

数据 EEPROM 和闪存程序存储器在正常工作状态下(整个 VDD 范围内)是可读写的。这些存储器并不直接映射到寄存器文件空间,而是通过特殊功能寄存器(SFR)对其进行间接寻址。共有 6 个 SFR 寄存器用于访问这些存储器:

- •EECON1
- •EECON2
- •EEDAT
- •EEDATH
- •EEADR
- •EEADRH

当与数据存储器模块接口时,EEDAT 寄存器存放 8 位读写的数据,而 EEADR 寄存器存放被访问的 EEDAT 单元的地址。该系列中的器件具有 64 字节的数据 EEPROM,地址范围为 0h 到 03Fh。

访问器件的程序存储器时,EEDAT和EEDATH寄存器形成一个双字节字用于保存要读/写的16位数据, EEADR和EEADRH寄存器组成一个双字节字用于保存待读取的13位 EEPROM单元地址。

对于 CMS89F2265/2285,器件具有 4K 字的程序 EEPROM,地址范围从 0000h 到 0FFFh,在所有地址范围内都是可以读的,但是只有在 0800-0FFF 地址范围内是可以写的。

对于 CMS89F226/228,器件无法对程序 EEPROM 进行读写操作。

程序存储器允许以字为单位读取。EEPROM 数据存储器允许字节读写。字节写操作可自动擦除目标单元并写入新数据(在写入前擦除)。

写入时间由片上定时器控制。写入和擦除电压是由片上电荷泵产生的,此电荷泵额定工作在器件的电压 范围内,用于进行字节或字操作。

当器件受代码保护时,CPU 仍可继续读写数据 EEPROM 和闪存程序存储器。代码保护时,器件编程器将不再能访问数据或程序存储器。

WWW.MCU.COM.CN -121- V1.2

15.2 相关寄存器

15.2.1 EEADR 和 EEADRH 寄存器

EEADR 和 EEADRH 寄存器能寻址最大 64 字节的数据 EEPROM 或最大 4K 字的程序 EEPROM。

当选择程序地址值时,地址的高字节被写入 EEADRH 寄存器而低字节被写入 EEADR 寄存器。当选择数据地址值时,只将地址的低字节写入 EEADR 寄存器。

15.2.2 EECON1 和 EECON2 寄存器

EECON1 是访问 EE 存储器的控制寄存器。

控制位 EEPGD 决定访问的是程序存储器还是数据存储器。该位被清零时,和复位时一样,任何后续操作都将针对数据存储器进行。该位置 1 时,任何后续操作都将针对程序存储器进行。程序存储器是只读的。

控制位 RD 和 WR 分别启动读和写。用软件只能将这些位置 1 而无法清零。在读或写操作完成后,由硬件将它们清零。由于无法用软件将 WR 位清零,从而可避免意外地过早终止写操作。

当 WREN 置 1 时,允许对数据 EEPROM 执行写操作。上电时,WREN 位被清零。当正常的写入操作被 LVR 复位或 WDT 超时复位中断时,WRERR 位会置 1。在这些情况下,复位后用户可以检查 WRERR 位并重写相应的单元。

当写操作完成时 PIR2 寄存器中的中断标志位 EEIF 被置 1。此标志位必须用软件清零。

EECON2 不是物理寄存器。读 EECON2 得到的是全 0。

EECON2 寄存器仅在执行数据 EEPROM 写序列时使用。

WWW.MCU.COM.CN -122- V1.2

EEPROM数据寄存器EEDAT(10CH)

10CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0
读写	R/W							
复位值	Х	Х	Х	Х	Х	Х	х	Х

Bit7-0 **EEDAT<7:0>**: 要从数据EEPROM中读取或向数据EEPROM写入的地址的低8位,或者要从程序存储器中读取的地址的低8位

EEPROM 地址寄存器 EEADR(10DH)

10DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
读写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit7-0 **EEADR<7:0>**: 指定EEPROM读/写操作的地址的低8位,或程序存储器读操作的地址的低8位

EEPROM数据寄存器EEDATH(10EH)

10EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EEDATH	EEDATH7	EEDATH6	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0
读写	R/W							
复位值	х	Х	х	Х	Х	х	Х	х

Bit7-0 **EEDATH<7:0>**: 从程序存储器读出的数据的高8位

EEPROM地址寄存器EEADRH(10FH)

_	,	•	\ - /					
10FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EEADRH	_	_		_	EEADRH3	EEADRH2	EEADRH1	EEADRH0
读写	_	_	_	_	R/W	R/W	R/W	R/W
复位值	_	_	_	_	0	0	0	0

Bit7-4 未用,读为**0**

Bit3-0 **EEADRH<3:0>**: 指定程序存储器读操作的高4位地址。

<u>WWW.MCU.COM.CN</u> -123- V1.2

EEPROM控制寄存器EECON1(18CH)

	1 1 1 1 1		()					
18CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD
读写	R/W	_	_	_	R/W	R/W	R/W	R/W
复位值	0	_		_	х	0	0	0

Bit7-6 **EEPGD**: 程序/数据EEPROM选择位

1=访问程序存储器 0=访问数据存储器

Bit6-4 未用

Bit3 WRERR: EEPROM错误标志位

1=写操作过早终止(正常工作期间的任何WDT复位或欠压复位)

0=写操作完成

Bit2 WREN: EEPROM写使能位

1=允许写周期

0=禁止写入数据EEPROM

Bit1 WR: 写控制位

1=启动写周期(写操作一旦完成,由硬件清零该位。用软件只能将WR位置1,但不能清零。)

0=数据EEPROM写周期完成

Bit0 RD: 读控制位

1=启动存储器读操作(由硬件清零RD。用软件只能将RD位置1,但不能清零。)

0=不启动存储器读操作

15.3 读数据 EEPROM 存储器

要读取数据存储器单元,用户必须将地址写入 EEADR 寄存器,清零 EECON1 寄存器的 EEPGD 控制位,然后将控制位 RD 置 1。一旦设置好读控制位,数据存储器控制器将使用第二个指令周期来读数据。这会导致紧随"SETBEECON1,RD"指令的第二条指令被忽略(1)。在紧接着的下一个周期 EEDAT 寄存器中就有数据了。EEDAT 将保存此值直至下一次用户向该单元读取或写入数据时为止。

注 1:程序存储器读操作后的两条指令必须为 NOP。这可阻止用户在 RD 位置 1 后的下一条指令执行双周期指令。

例 15-1 读数据 EEPROM

LD	A,EE_ADD	;将要读取的地址放入 EEADR 寄存器
LD	EEADR,A	
CLRB	EECON1,EEPGD	;选择数据 EEPROM
SETB	EECON1,RD	; 使能读信号
NOP		;这里读取数据,必须加 NOP 指令
NOP		
LD	A,EEDATA	;读取数据到 ACC

WWW.MCU.COM.CN -125- V1.2

15.4 写数据 **EEPROM** 存储器

要写 EEPROM 数据存储单元,用户应首先将该单元的地址写入 EEADR 寄存器并将数据写入 EEDATA 寄存器。然后用户必须按特定顺序开始写入每个字节。

如果没有完全按照下面的指令顺序(即首先将 55h 写入 EECON2,随后将 AAh 写入 EECON2,最后将 WR 位置 1)写每个字节,将不会启动写操作。在该代码段中应禁止中断。

此外,必须将 EECON1 中的 WREN 位置 1 以使能写操作。这种机制可防止由于代码执行错误(异常)(即程序跑飞)导致误写 EEPROM。在不更新 EEPROM 时,用户应该始终保持 WREN 位清零。WREN 位不能被硬件清零。

一个写过程启动后,将 WREN 位清零将不会影响此写周期。除非 WREN 位置 1,否则 WR 位将无法置 1。写周期完成时,WR 位由硬件清零并且 EE 写完成中断标志位(EEIF)置 1。用户可以允许此中断或查询此位。EEIF 必须用软件清零。

例 15-2 写数据 EEPROM

VI TO Z ¬ X M LEI TOW		
LD	A,EE_ADD	;将要写入的地址放入 EEADR 寄存器
LD	EEADR,A	,们女司八凹地址从/\ LLADI\ 可作的
LD	A,EE_DATA	;将要写入的数据放入 EEDAT 寄存器
LD	EEDATA,A	, 113 17 (1138) (1138)
CLRB	EECON1,EEPGD	
SETB	EECON1,WREN	; 允许写操作
CLRB	INTCON,GIE	; 关闭所有中断
SZB	INTCON,GIE	
JP	\$-2	
LDIA	055H	;给 EECON2 写 55H
LD	EECON2,A	
LDIA	0AAH	;给 EECON2 写 0AAH
LD	EECON2,A	
SETB	EECON1,WR	; 使能写信号
SETB	INTCON,GIE	
SZB	EECON1,WR	; 判断写操作是否完成,
JP	\$-1	
CLRB	EECON1,WREN	; 写结束,关闭写使能位

WWW.MCU.COM.CN -126- V1.2

15.5 读闪存程序存储器

要读取程序存储器单元,用户必须将地址的高位和低位分别写入 EEADR 和 EEADRH 寄存器,将 EECON1 寄存器的 EEPGD 位置 1,然后将控制位 RD 置 1。一旦设置好读控制位,闪存程序存储器控制器 将使用第二个指令周期来读数据。这会导致紧随 "CLRBEECON1,RD"指令的第二条指令被忽略。在紧接着的下一个周期 EEDAT 和 EEDATH 寄存器中就有数据了,因此在随后的指令中将该数据读作两个字节。

EEDATL 和 EEDATH 寄存器将保存此值直至下一次用户向该单元读取或写入数据时为止。

注1:程序存储器读操作后的两条指令必须为NOP。这可阻止用户在RD位置1后的下一条指令执行双周期指令。

2: 当EEPGD=1时如果WR位置1,它会立即复位为0,而不执行任何操作。

例 15-3 读闪存程序存储器

LDIA EE_ADDL LD EEADR,A	;将要读取的地址放入 EEADR 寄存器
LDIA EE_ADDH LD EEADRH,A	;将要读取的地址高位放入 EEADRH 寄存器
SETB EECON1,EEPGD	; 选择操作程序存储器
SETB EECON1,RD NOP NOP	; 允许读操作
LD A,EEDAT LD EE_DATL,A LD A,EEDATH	; 保存读取的数据
LD EE_DATH,A	

WWW.MCU.COM.CN -127- V1.2

15.6 写闪存程序存储器

闪存程序存储器只能以每个字为单位写入。

要对程序存储器写入数据,必须首先将数据载入缓冲寄存器。这是通过将目标地址写入 EEADR 和 EEADRH 寄存器,再将数据写入 EEDATA 和 EEDATH 寄存器完成的。然后,执行如下事件序列:

- 1、将 EECON1 寄存器的 EEPGD 控制位置 1。
- 2、先后将 55h 和 AAh 写入 EECON2(闪存编程序列)。
- 3.、将 EECON1 寄存器的 WR 控制位置 1,开始写操作。

执行了 SETBEECON1,WR 指令之后,处理器需要 2 个指令周期以设置擦除/写操作。用户必须在将 WR 位置 1 的指令后放置两条 NOP 指令。执行完写操作指令后,处理器会使内部操作暂停 2.5ms(典型值)时间。因为时钟和外设仍继续工作,所以这并不是休眠模式。写周期结束后,处理器将从 EECON1 写指令后的第三条指令恢复工作。

例 15-4 写闪存程序存储器

<u> </u>	王/1 1 1 1 1 1		
	LD LD LD	A,ADDRL EEADR,A A,ADDRH	;写地址
	LD LD LD	EEADRH,A A,DATAL EEDAT,A A,DATAH	; 写数据
	LD SETB SETB CLRB SZB JP	EEDATH,A EECON1,EEPGD EECON1,WREN INTCON,GIE INTCON,GIE \$-2	; 选择程序存储器 ; 使能写信号 ; 关闭中断 ; 确认中断关闭
	LDIA LD LDIA LD SETB NOP NOP	055H EECON2,A 0AAH EECON2,A EECON1,WR	; 给 EECON2 寄存器写 55H 跟 0AAH ; 开始写程序存储器 ; 写缓冲需要延时
	CLRB SETB SZB JP CLRB	EECON1,WREN INTCON,GIE EECON1,WR \$-1 EECON1,WREN	; 打开中断 ; 判断写操作是否完成,写过程中 WREN 位必须保持 1 ; 写结束,关闭写使能位

WWW.MCU.COM.CN -128- V1.2

15.7 EEPROM操作注意事项

15.7.1 写校验

根据具体的应用,好的编程习惯一般要求将写入数据 EEPROM 的值对照期望值进行校验。

15.7.2 避免误写的保护

有些情况下,用户可能不希望向数据 EEPROM 存储器写入数据。为防止误写 EEPROM,芯片内嵌了各种保护机制。上电时清零 WREN 位。而且,上电延时定时器(延迟时间为 18ms)会防止对 EEPROM 执行写操作。

写操作的启动序列以及 WREN 位将共同防止在以下情况下发生误写操作:

- •欠压
- •电源毛刺
- •软件故障

15.7.3 代码保护下的数据 EEPROM 操作

通过烧录将配置字寄存器中的 E2 PROTECT 位设置 ENABLE,可以将数据存储器代码保护。

当数据存储器被代码保护时,只有 CPU 可以对数据 EEPROM 执行读/写操作。对数据存储器进行代码保护的同时,建议用户也对程序存储器进行代码保护。这将防止有人通过在已有代码上写入零(这将作为 NOP 执行),来访问一个在未使用的程序存储器中编写的额外程序,以达到输出数据存储器内容的目的。将程序存储器中未使用的地址单元编程为 0 有助于防止数据存储器的代码保护受到破坏。

WWW.MCU.COM.CN -129- V1.2

16. 运算放大器

芯片内置 1 组运算放大器 OPA0。

16.1 运算放大器 OPA0

OPA0 具有以下功能:

- 1、内部集成调零电路;
- 2、正端可以接至 I/O 口或者接内部电压;
- 3、负端可以接至 I/O 口或者接内部电压;
- 4、内置滤波电路。

16.1.1 OPA0 使能

将寄存器 OPA0CON 的第7位 OPA0EN 置1,使能运算放大器。将 OPA0EN 置0,禁止运算放大器。

16.1.2 OPA0 端口选择

16.1.2.1 OPA0 正端输入

通过设置 OPA0CON 寄存器的第 5-3 位,运放的正端输入可以有以下几种连接方式:

- 1、正端输入接至 I/O 口(芯片的 OPA0+管脚)
- 2、正端内部接到地线
- 3、正端内部接电阻分压,可以选择 1/10、5/10、7/10 电压。

16.1.2.2 OPA0 负端输入

通过设置 OPA0CON 寄存器的第2位,运放的负端可以有以下几种连接方式:

- 1、运放负端输入接至 I/O 口(芯片的 OPA0-管脚)
- 2、运放负端内部接到地线

16.1.2.3 OPA0 输出

运放的输出可以从 OPAOO 引脚输出,这是通过设置 OPAOCON 的第 6 位 OPAOOEN 来实现的。

16.1.2.4 OPA0 使用时端口方向设置

OPAO 使用相关的 I/O 口必须设置为输入态,包括运放输入和运放输出。

WWW.MCU.COM.CN -130- V1.2

16.1.3 OPA0 工作模式

芯片的内置运放具有2种工作模式,正常模式和调节模式。

寄存器 OPA0ADJ 的第6位 OPA0COFM 置0, 运放进入正常工作模式。

寄存器 OPA0ADJ 的第 6 位 OPA0COFM 置 1,运放进入调节模式。在调节模式下,运放的正负端内部 短路在一起,并连接至运放的正端或者负端(通过 OPA0ADJ 的第 5 位 OPA0CRS 来选择)。调节模式的作用是将运放的失调电压调至最小。

调节模式工作流程:

- 1、使能运放功能;
- 2、设置运放进入调节模式;
- 3、设置运放调节模式从正端输入或者负端输入,输入端不能悬空;
- 4、将调节位 OPA0ADJ<4:0>设置成初始值,最大(1FH)或最小(00H);
- 5、延时一段时间,该时间和外部电容参数有关。
- 6、读取运放输出;
- 7、将调节位自减 1(初始值设置成最大 1FH)或者自加 1(初始值设置成 00H);
- 8、延时
- 9、读取运放输出,是否发生改变,如果没有改变,则继续执行7;
- 10、读取值发生改变,调零结束,将 OPA0COFM 清零,进入正常工作模式。

WWW.MCU.COM.CN -131- V1.2

16.1.4 和 OPA0 相关的寄存器

有 2 个寄存器和 OPA0 相关,分别是控制寄存器 OPA0CON(11CH)和失调电压调节寄存器 OPA0ADJ(11DH)。

OPA0 控制寄存器 OPA0CON (11CH)

11CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OPA0CON	OPA0EN	OPA0O	OPA0P[2:0]			OPA0N		OPA0FT
读写	R/W	R/W	R/W	R/W	R/W	R/W		R/W
复位值	0	0	0	0	0	0		0

Bit7 OPA0EN: OPA0使能位

1=使能OPA0 0=禁止OPA0

Bit6 **OPA0O**: 运放输出选择

1=OPA0输出接至I/O口(OPA0O管脚)

0=OPA0 输出不接至 I/O 口

Bit5-Bit3 **OPA0P[2:0]:** 运放正端输入选择

000: 运放正端接地,RB3为普通I/O口001: 运放正端接1/10VDD,RB3为普通I/O口010: 运放正端接5/10VDD,RB3为普通I/O口011: 运放正端接7/10VDD,RB3为普通I/O口

111: 运放正端接OPA00,RB3为运放输入端

其它未用

Bit2 OPAON: 运放负端输入选择

1=运放负端接OPA-管脚(RB4)

0=运放负端内部接地, RB4 为普通 I/O 口

Bit1 未用

Bit0 OPA0FT: 运放输出内部滤波选择

1=运放输出内部接滤波电路 0=运放输出内部不接滤波电路

OPA0 失调电压调节寄存器 OPA0ADJ (11DH)

11DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OPA0ADJ	OPA0OUT	OPA0COFM	OPA0CRS	OPA0ADJ[4:0]				
读写	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit7 OPA0OUT: OPA0输出结果

1=运放输出为高,正端电压高于负端电压 0=运放输出为低,正端电压低于负端电压

Bit6 **OPA0COFM:** OPA0工作模式选择位

1=OPA0工作在调节模式 0=OPA0工作在正常模式

Bit5 OPA0CRS: OPA0调节模式输入端选择位

1=OPAO调节模式正端输入 0=OPAO调节模式负端输入

Bit4-Bit0 OPA0ADJ[4:0]: OPA0失调电压调节位

17. 电气参数

17.1 DC 特性

か 口	会 粉	测试条件		最小	####	目.上	光	
符号	符号 参数	VDD	条件	取小	典型	最大	单位	
VDD	工作电压	-	8MHz	3.0	-	5.5	V	
VDD	工厂电压	-	4MHz	2.5	-	5.5	V	
ldd	工作电流	5V	ADC 使能	-	3	-	mA	
idu	工作电视	3V	ADC 使能	-	2	-	mA	
Istb	静态电流	5V		-	0.1	10	μА	
1510	押心电机	3V		-	0.1	5	μА	
Vil	低电平输入电压	-		-	-	0.3VDD	V	
Vih	高电平输入电压	-		0.7VDD	-	-	V	
Voh	高电平输出电压	-	不带负载	0.9VDD	-	-	V	
VoL	低电平输出电压	-	不带负载	-	-	0.1VDD	V	
VADI	AD 口输入电压	-		0	-	VDD	V	
VAD	AD 模块工作电压	-		2.7	-	5.5	V	
VEEPROM	EEPROM 模块工作电压	-		3.0	-	5.5	V	
EAD	AD 转换误差	-		-	±2	-	-	
Dob	上拉电阻阻值	L	5V		-	35	-	K
Rph		3V		-	65	-	K	
loL	loL 输入口灌电流	5V	Vol=0.3VDD	-	60	-	mA	
IUL	- 111/1/11/11/11/11	3V	Vol=0.3VDD	-	25	-	mA	
IoH	输入口拉电流	5V	Voh=0.7VDD	-	15	-	mA	
ЮП	和八口 拉电流	3V	Voh=0.7VDD	-	10	-	mA	

17.2 AC 特性

符号	参数	测试条件		最小	典型	最大	单位
何亏	多 数	VDD	条件	取小	典望	取入	中位
T MDT 复层叶间		5V		-	18	-	ms
Twdt	WDT 复位时间	3V		-	36	-	ms
T. 5	AD 株块叶间	5V		-	49	-	CLK
TAD AE	AD 转换时间	3V		-	49	-	CLK
TEEPROM	EEPROM 写入时间	5V		-	2.5	-	ms
IEEPROM	EEFKOW 与八时间	3V		-	2.5	-	ms

WWW.MCU.COM.CN -133-V1.2

17.3 内部 RC 振荡特性

17.3.1 内部 RC 振荡电压特性

测试条件	振荡频率(典型值)(Hz)
2.5V	8.0M
2.6V	8.1M
2.8V	8.2M
3.0V	8.3M
3.2V	8.3M
3.4V	8.2M
3.6V	8.2M
3.8V	8.2M
4.0V	8.1M
4.2V	8.1M
4.4V	8.1M
4.6V	8.0M
4.8V	8.0M
5.0V	8.0M
5.2V	8.0M
5.4V	7.9M
5.5V	7.8M

17.3.2 内部 RC 振荡温度特性

测试条件	-20 ℃	25 ℃	40℃	60℃	85 ℃
振荡频率(典型值)(Hz)	7.9M	8.0M	8.0M	8.1M	8.1M

<u>WWW.MCU.COM.CN</u> -134- V1.2

18. 指令

18.1 指令一览表

助记符		操作	指令周期	标志		
	控制类-4					
NOP		空操作	1	None		
STOP		进入休眠模式	1	TO,PD		
CLRWDT	_	清零看门狗计数器	1	TO,PD		
	数据传送-4					
LD	[R],A	将 ACC 内容传送到 R	1	NONE		
LD	A,[R]	将 R 内容传送到 ACC	1	Z		
TESTZ	R	将数据存储器内容传给数据存储器	1	Z		
LDIA	i	立即数 i 送给 ACC	1	NONE		
逻辑运算	-16		<u>, </u>			
CLR A		清零 ACC	1	Z		
SET	[R]	置位数据存储器R	1	NONE		
CLR	[R]	清零数据存储器R	1	Z		
ORA	[R]	R与ACC内容做"或"运算,结果存入ACC	1	Z		
ORR	[R]	R与ACC内容做"或"运算,结果存入R	1	Z		
ANDA	[R]	R 与 ACC 内容做"与"运算,结果存入 ACC	1	Z		
ANDR	[R]	R与ACC内容做"与"运算,结果存入R	1	Z		
XORA	[R]	R与ACC内容做"异或"运算,结果存入ACC	1	Z		
XORR	[R]	R与ACC内容做"异或"运算,结果存入R	1	Z		
SWAPA	[R]	R 寄存器内容的高低半字节转换,结果存入 ACC	1	NONE		
SWAPR	[R]	R寄存器内容的高低半字节转换,结果存入R	1	NONE		
COMA	[R]	R 寄存器内容取反,结果存入 ACC	1	Z		
COMR	[R]	R寄存器内容取反,结果存入R	1	Z		
XORIA	i	ACC 与立即数 i 做"异或"运算,结果存入 ACC	1	Z		
ANDIA	i	ACC 与立即数 i 做"与"运算,结果存入 ACC	1	Z		
ORIA	i	ACC 与立即数 i 做"或"运算,结果存入 ACC	1	Z		
	移位操作,8					
RRCA	[R]	数据存储器带进位循环右移一位,结果存入 ACC	1	С		
RRCR	[R]	数据存储器带进位循环右移一位,结果存入 R	1	С		
RLCA	[R]	数据存储器带进位循环左移一位,结果存入 ACC	1	С		
RLCR	[R]	数据存储器带进位循环左移一位,结果存入 R	1	С		
RLA	[R]	数据存储器不带进位循环左移一位,结果存入 ACC	1	NONE		
RLR	[R]	数据存储器不带进位循环左移一位,结果存入 R	1	NONE		
RRA	[R]	数据存储器不带进位循环右移一位,结果存入 ACC	1	NONE		
RRR	[R]	数据存储器不带进位循环右移一位,结果存入 R	1	NONE		
递增递减	, 4					
INCA	[R]	递增数据存储器 R,结果放入 ACC	1	Z		
INCR	[R]	递增数据存储器 R,结果放入 R	1	Z		
DECA	[R]	递减数据存储器 R,结果放入 ACC	1	Z		
DECR	[R]	递减数据存储器 R,结果放入 R	1	Z		
位操作,	2					
CLRB	[R],b	将数据存储器 R 中某位清零	1	NONE		
SETB	[R],b	将数据存储器 R 中某位置一	1	NONE		
查表,2						
TABLE	[R]	读取 FLASH 内容结果放入 TABLE_DATAH 与 R	2	NONE		
TABLEA		读取 FLASH 内容结果放入 TABLE_DATAH 与 ACC	2	NONE		
	数学运算,16					
ADDA	[R]	ACC+[R]→ACC	1	Z,C,DC,OV		
ADDR	[R]	ACC+[R]→R	1	Z,C,DC,OV		
ADDCA	[R]	ACC+[R]+C→ACC	1	Z,C,DC,OV Z,C,DC,OV		
ADDCR	[R]	$ACC+[R]+C\rightarrow R$	I	۷,۵,۵,۵,۵		

CMS89F22X

ADDIA i	ACC+i→ACC	1	Z,C,DC,OV
SUBA [R]	[R]-ACC→ACC	1	Z,C,DC,OV
SUBR [R]	[R]-ACC→R	1	Z,C,DC,OV
SUBCA [R]	[R]-ACC-C→ACC	1	Z,C,DC,OV
SUBCR [R]	[R]-ACC-C→R	1	Z,C,DC,OV
SUBIA i	i-ACC→ACC	1	Z,C,DC,OV
HSUBA [R]	ACC-[R]→ACC	1	Z,C,DC,OV
HSUBR [R]	ACC-[R]→R	1	Z,C,DC,OV
HSUBCA [R]	$ACC-[R]-\overline{C} \rightarrow ACC$	1	Z,C,DC,OV
HSUBCR [R]	$ACC-[R]-\overline{C} \rightarrow R$	1	Z,C,DC,OV
HSUBIA i	ACC-i→ACC	1	Z,C,DC,OV
无条件转移,5			
RET	从子程序返回	2	NONE
RET i	从子程序返回,并将立即数 I 存入 ACC	2	NONE
RETI	从中断返回	2	NONE
CALL ADD	子程序调用	2	NONE
JP ADD	无条件跳转	2	NONE
条件转移,8			
SZB [R],b	如果数据存储器 R 的 b 位为"0",则跳过下一条指令	1or2	NONE
SNZB [R],b	如果数据存储器 R 的 b 位为"1",则跳过下一条指令	1or2	NONE
SZA [R]	数据存储器 R 送至 ACC, 若内容为"0",则跳过下一条指令	1or2	NONE
SZR [R]	数据存储器 R 内容为"0",则跳过下一条指令	1or2	NONE
SZINCA [R]	数据存储器 R 加"1",结果放入 ACC,若结果为"0",则跳过下一条指令	1or2	NONE
SZINCR [R]	数据存储器 R 加"1",结果放入 R,若结果为"0",则跳过下一条指令	1or2	NONE
SZDECA [R]	数据存储器 R 减"1",结果放入 ACC,若结果为"0",则跳过下一条指令	1or2	NONE
SZDECR [R]	数据存储器 R 减"1",结果放入 R,若结果为"0",则跳过下一条指令	1or2	NONE

18.2 指令说明

ADDA [R]

操作: 将R加ACC,结果放入ACC

周期:

影响标志位: C, DC, Z, OV

举例:

LDIA 09H ;给 ACC 赋值 09H

LD R01,A ;将 ACC 的值(09H) 赋给自定义寄存器 R01

LDIA 077H ;给 ACC 赋值 77H

ADDA R01 ;执行结果: ACC=09H+77H=80H

ADDR [R]

操作: 将R加ACC,结果放入R

周期: 1

影响标志位: C, DC, Z, OV

举例:

LDIA 09H ;给 ACC 赋值 09H

LD R01,A ;将 ACC 的值(09H) 赋给自定义寄存器 R01

LDIA 077H ;给 ACC 赋值 77H

ADDR R01 ;执行结果: R01=09H+77H=80H

ADDCA [F

操作: 将R加ACC加C位,结果放入ACC

周期: 1

影响标志位: C, DC, Z, OV

举例:

LD R01,A ;将 ACC 的值(09H) 赋给自定义寄存器 R01

ADDCA R01 ;执行结果: ACC=09H+77H+C=80H(C=0)

ACC=09H+77H+C=81H(C=1)

ADDCR [R]

操作: 将R加ACC加C位,结果放入R

周期: 1

影响标志位: C, DC, Z, OV

举例:

LDIA 09H ;给 ACC 赋值 09H

LD R01,A ;将 ACC 的值(09H) 赋给自定义寄存器 R01

ADDCR R01 ;执行结果: R01=09H+77H+C=80H(C=0)

R01=09H+77H+C=81H(C=1)

ADDIA i

操作: 将立即数 i 加 ACC, 结果放入 ACC

周期: 1

影响标志位: C, DC, Z, OV

举例:

LDIA 09H ;给 ACC 赋值 09H

ADDIA 077H ;执行结果: ACC=ACC(09H)+i(77H)=80H

ANDA [R]

操作: 寄存器 R 跟 ACC 进行逻辑与运算,结果放入 ACC

周期:1影响标志位:Z

举例:

LDIA OFH ;给 ACC 赋值 0FH

LD R01,A ;将 ACC 的值(0FH)赋给寄存器 R01

LDIA 77H :给 ACC 赋值 77H

ANDA R01 ;执行结果: ACC=(0FHand77H)=07H

ANDR [R]

操作: 寄存器 R 跟 ACC 进行逻辑与运算,结果放入 R

周期: 1 影响标志位: Z

举例:

LDIA 0FH ;给 ACC 赋值 0FH

LD R01,A ;将 ACC 的值(0FH)赋给寄存器 R01

LDIA 77H ;给 ACC 赋值 77H

ANDR R01 ;执行结果: R01=(0FHand77H)=07H

ANDIA

操作: 将立即数 i 与 ACC 进行逻辑与运算,结果放入 ACC

周期: 1 影响标志位: Z

举例:

LDIA OFH ;给 ACC 赋值 0FH

ANDIA 77H ;执行结果: ACC=(0FHand77H)=07H

CALL ADD

操作: 调用子程序

周期: **2** 影响标志位: 无

举例:

CALL LOOP ;调用名称定义为"LOOP"的子程序地址

CLRA

操作: ACC 清零

周期: 1 影响标志位: Z

举例:

CLR A ;执行结果: ACC=0

CLR [R]

操作: 寄存器 R 清零

周期: 1 影响标志位: Z

举例:

CLR R01 ;执行结果: R01=0

CLRB [R],b

操作: 寄存器 R 的第 b 位清零

周期: **1** 影响标志位: 无

举例:

CLRB R01,3 ;执行结果: R01 的第 3 位为零

CLRWDT

操作: 清零看门狗计数器

周期: 1

影响标志位: TO, PD

举例:

CLRWDT ;看门狗计数器清零

COMA [R]

操作: 寄存器 R 取反,结果放入 ACC

周期: 1 影响标志位: Z

举例:

LDIA 0AH ;ACC 赋值 0AH

LD R01,A ;将 ACC 的值(0AH)赋给寄存器 R01

COMA R01 ;执行结果: ACC=0F5H

COMR [R]

操作: 寄存器 R 取反,结果放入 R

周期: 1 影响标志位: Z

举例:

LDIA 0AH ;ACC 赋值 0AH

LD R01,A ;将 ACC 的值(0AH)赋给寄存器 R01

COMR R01 ;执行结果: R01=0F5H

DECA [R]

操作: 寄存器 R 自减 1, 结果放入 ACC

周期:1影响标志位:Z

举例:

LDIA OAH ;ACC 赋值 OAH

LD R01,A ;将 ACC 的值(0AH)赋给寄存器 R01 DECA R01 ;执行结果: ACC=(0AH-1)=09H

DECR [R]

操作: 寄存器 R 自减 1,结果放入 R

周期: 1 影响标志位: Z

举例:

LDIA OAH :ACC 赋值 OAH

LD R01,A ;将 ACC 的值(0AH)赋给寄存器 R01 DECR R01 ;执行结果: R01=(0AH-1)=09H

HSUBA [R]

操作: ACC 减 R, 结果放入 ACC

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 077H ;ACC 赋值 077H

LD R01,A ;将 ACC 的值(077H)赋给寄存器 R01

LDIA 080H ;ACC 赋值 080H

HSUBA R01 ;执行结果: ACC=(80H-77H)=09H

HSUBR [R]

操作: ACC 减 R, 结果放入 R

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 077H ;ACC 赋值 077H

LD R01,A ;将 ACC 的值(077H)赋给寄存器 R01

LDIA 080H ;ACC 赋值 080H

HSUBR R01 ;执行结果: R01=(80H-77H)=09H

HSUBCA [R]

操作: ACC 减 R 减 \overline{C} ,结果放入 ACC

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 077H ;ACC 赋值 077H

LD R01,A ;将 ACC 的值(077H)赋给寄存器 R01

LDIA 080H ;ACC 赋值 080H

HSUBCA R01 ;执行结果: ACC=(80H-77H- \overline{C})=09H(C=0)

 $ACC = (80H-77H-\overline{C}) = 08H(C=1)$

HSUBCR [R]

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 077H ;ACC 赋值 077H

LD R01,A ;将 ACC 的值(077H)赋给寄存器 R01

LDIA 080H ;ACC 赋值 080H

HSUBCR R01 ;执行结果: R01=(80H-77H- \overline{C})=09H(C=0)

R01=(80H-77H- \overline{C})=08H(C=1)

INCA [R]

操作: 寄存器 R 自加 1, 结果放入 ACC

周期: 1 影响标志位: Z

举例:

LDIA OAH ;ACC 赋值 OAH

 LD
 R01,A
 ;将 ACC 的值(0AH)赋给寄存器 R01

 INCA
 R01
 ;执行结果: ACC=(0AH+1)=0BH

INCR [R]

操作: 寄存器 R 自加 1,结果放入 R

周期: 1 影响标志位: Z

举例:

LDIA 0AH ;ACC 赋值 0AH

LD R01,A ;将 ACC 的值(0AH)赋给寄存器 R01 INCR R01 ;执行结果: R01=(0AH+1)=0BH

JP ADD

操作: 跳转到 add 地址

周期: **2** 影响标志位: 无

举例:

JP LOOP ;跳转至名称定义为"LOOP"的子程序地址

LD A, [R]

操作: 将R的值赋给 ACC

周期: 1 影响标志位: **Z**

举例:

LD A,R01 ;将寄存器 R0 的值赋给 ACC

LD R02,A ;将 ACC 的值赋给寄存器 R02,实现了数据从 R01→R02 的移动

LD [R], A

操作: 将 ACC 的值赋给 R

周期: **1** 影响标志位: 无 举例:

. LDIA 09H ;给 ACC 赋值 09H

LD R01,A :执行结果: R01=09H

LDIA

立即数 i 赋给 ACC 操作:

周期: 1 影响标志位: 无

举例:

LDIA 0AH ;ACC 赋值 0AH

NOP

操作: 空指令 周期: 影响标志位: 无 举例:

NOP

ORIA

操作: 立即数与 ACC 进行逻辑或操作,结果赋给 ACC

周期: Ζ 影响标志位:

举例:

LDIA 0AH :ACC 赋值 0AH

ORIA 030H ;执行结果: ACC=(0AHor30H)=3AH

ORA [R]

操作: 寄存器 R 跟 ACC 进行逻辑或运算,结果放入 ACC

周期: 1 影响标志位: Ζ

举例:

LDIA 0AH ;给 ACC 赋值 0AH

LD R01,A ;将 ACC(0AH)赋给寄存器 R01

LDIA 30H ;给 ACC 赋值 30H

ORA R01 ;执行结果: ACC=(0AHor30H)=3AH

ORR [R]

操作: 寄存器 R 跟 ACC 进行逻辑或运算,结果放入 R

周期: 1 影响标志位: Ζ 举例:

> LDIA 0AH ;给 ACC 赋值 0AH

LD R01.A ;将 ACC(0AH)赋给寄存器 R01

LDIA 30H ;给 ACC 赋值 30H

ORR R01 ;执行结果: R01=(0AHor30H)=3AH

RET

操作: 从子程序返回

...

周期: 影响标志位: 无

举例:

LOOP CALL ;调用子程序 LOOP

NOP ;RET 指令返回后将执行这条语句

;其它程序

LOOP:

;子程序 **RET** :子程序返回

RET

操作: 从子程序带参数返回,参数放入 ACC

周期: 影响标志位: 无

举例:

CALL LOOP ;调用子程序 LOOP

NOP ;RET 指令返回后将执行这条语句

;其它程序

LOOP:

: ;子程序

RET 35H ;子程序返回,ACC=35H

RETI

操作: 中断返回

周期:2影响标志位:无

举例:

INT_START ;中断程序入口

 ...
 ;中断处理程序

 RETI
 ;中断返回

RLCA [R]

操作: 寄存器 R 带 C 循环左移一位,结果放入 ACC

周期: 1 影响标志位: C

举例:

LDIA 03H ;ACC 赋值 03H

 LD
 R01,A
 ;ACC 值赋给 R01,R01=03H

 RLCA
 R01
 ;操作结果: ACC=06H(C=0);

ACC=07H(C=1)

C=0

RLCR [R]

操作: 寄存器 R 带 C 循环左移一位,结果放入 R

周期: 1 影响标志位: C

举例:

LDIA 03H ;ACC 赋值 03H

 LD
 R01,A
 ;ACC 值赋给 R01,R01=03H

 RLCR
 R01
 ;操作结果: R01=06H(C=0);

R01=07H(C=1);

C=0

RLA [R]

操作: 寄存器 R 不带 C 循环左移一位,结果放入 ACC

周期:1影响标志位:无

举例:

LDIA 03H ;ACC 赋值 03H

LD R01,A ;ACC 值赋给 R01,R01=03H RLA R01 ;操作结果: ACC=06H

RLR [R]

操作: 寄存器 R 不带 C 循环左移一位,结果放入 R

周期:1影响标志位:无

举例:

LDIA 03H ;ACC 赋值 03H

LD R01,A ;ACC 值赋给 R01,R01=03H RLR R01 ;操作结果: R01=06H

RRCA [R]

操作: 寄存器 R 带 C 循环右移一位,结果放入 ACC

周期: 1 影响标志位: C 举例:

LDIA 03H :ACC 赋值 03H

LD R01,A ;ACC 值赋给 R01,R01=03H **RRCA** R01 ;操作结果: ACC=01H(C=0);

ACC=081H(C=1);

C=1

RRCR [R]

操作: 寄存器R带C循环右移一位,结果放入R

周期: С 影响标志位:

举例:

LDIA 03H ;ACC 赋值 03H

LD R01,A ;ACC 值赋给 R01,R01=03H **RRCR** R01 ;操作结果: R01=01H(C=0);

R01=81H(C=1);

C=1

RRA [R]

操作: 寄存器 R 不带 C 循环右移一位,结果放入 ACC

1 周期: 影响标志位: 无

举例:

LDIA 03H :ACC 赋值 03H

LD R01.A ;ACC 值赋给 R01,R01=03H RRA R01 ;操作结果: ACC=81H

RRR [R]

寄存器 R 不带 C 循环右移一位,结果放入 R 操作:

周期: 1 影响标志位: 无

举例:

LDIA 03H ;ACC 赋值 03H

R01.A LD ;ACC 值赋给 R01,R01=03H RRR R01 ;操作结果: R01=81H

SET [R]

操作: 寄存器 R 所有位置 1

1 周期: 影响标志位: 无

举例:

R01 SET ;操作结果: R01=0FFH

SETB [R],b

寄存器 R 的第 b 位置 1 操作:

1 周期: 影响标志位: 无

举例:

CLR R01 ;R01=0

SETB R01,3 ;操作结果: R01=08H

STOP

操作: 进入休眠状态

周期: 影响标志位: TO, PD

举例:

STOP ;芯片进入省电模式, CPU、振荡器停止工作, IO 口保持原来状态。

SUBIA

立即数 i 减 ACC, 结果放入 ACC 操作:

周期:

影响标志位: C,DC,Z,OV

举例:

LDIA 077H ;ACC 赋值 77H

SUBIA 80H ;操作结果: ACC=80H-77H=09H

SUBA [R]

操作: 寄存器 R 减 ACC, 结果放入 ACC

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 080H ;ACC 赋值 80H

LD R01,A ;ACC 的值赋给 R01, R01=80H

LDIA 77H ;ACC 赋值 77H

SUBA R01 ;操作结果: ACC=80H-77H=09H

SUBR [R]

操作: 寄存器 R 减 ACC, 结果放入 R

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 080H ;ACC 赋值 80H

LD R01,A ;ACC 的值赋给 R01, R01=80H

LDIA 77H ;ACC 赋值 77H

SUBR R01 ;操作结果: R01=80H-77H=09H

SUBCA [R]

操作: 寄存器 R 减 ACC 减 C, 结果放入 ACC

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 080H ;ACC 赋值 80H

LD R01,A ;ACC 的值赋给 R01, R01=80H

LDIA 77H :ACC 赋值 77H

SUBCA R01 ;操作结果: ACC=80H-77H-C=09H(C=0);

ACC=80H-77H-C=08H(C=1);

SUBCR [R]

操作: 寄存器 R 减 ACC 减 C, 结果放入 R

周期: 1

影响标志位: C,DC,Z,OV

举例:

LDIA 080H ;ACC 赋值 80H

LD R01,A ;ACC 的值赋给 R01, R01=80H

LDIA 77H ;ACC 赋值 77H

SUBCR R01 ;操作结果: R01=80H-77H-C=09H(C=0)

R01=80H-77H-C=08H(C=1)

SWAPA [R]

操作: 寄存器 R 高低半字节交换,结果放入 ACC

周期:1影响标志位:无

举例:

举例:

LDIA 035H ;ACC 赋值 35H

LD R01,A ;ACC 的值赋给 R01, R01=35H

SWAPA R01 ;操作结果: ACC=53H

SWAPR [R]

操作: 寄存器 R 高低半字节交换,结果放入 R

周期:1影响标志位:无

LDIA 035H ;ACC 赋值 35H

LD R01,A ;ACC 的值赋给 R01, R01=35H

SWAPR R01 ;操作结果: R01=53H

SZB [R],b

操作: 判断寄存器 R 的第 b 位,为 0 间跳,否则顺序执行

周期:1or2影响标志位:无

举例:

SZB R01,3 ;判断寄存器 R01 的第 3 位

JP LOOP ;R01 的第 3 位为 1 才执行这条语句, 跳转至 LOOP

JP LOOP1 ;R01 的第 3 位为 0 时间跳,执行这条语句,跳转至 LOOP1

SNZB [R],b

操作: 判断寄存器 R 的第 b 位, 为 1 间跳, 否则顺序执行

周期:1or2影响标志位:无

举例:

SNZB R01,3 ;判断寄存器 R01 的第 3 位

JP LOOP ;R01 的第 3 位为 0 才执行这条语句, 跳转至 LOOP

JP LOOP1 ;R01 的第 3 位为 1 时间跳,执行这条语句,跳转至 LOOP1

SZA [R]

操作: 将寄存器 R 的值赋给 ACC, 若 R 为 0 则间跳, 否则顺序执行

周期:1or2影响标志位:无

举例:

SZA R01 ;R01→ACC

 JP
 LOOP
 ;R01 不为 0 时执行这条语句,跳转至 LOOP

 JP
 LOOP1
 ;R01 为 0 时间跳,执行这条语句,跳转至 LOOP1

SZR [R]

操作: 将寄存器 R 的值赋给 R, 若 R 为 0 则间跳, 否则顺序执行

周期:1or2影响标志位:无

举例:

SZR R01 ;R01→R01

 JP
 LOOP
 ;R01 不为 0 时执行这条语句,跳转至 LOOP

 JP
 LOOP1
 ;R01 为 0 时间跳执行这条语句,跳转至 LOOP1

SZINCA [R]

操作: 将寄存器 R 自加 1,结果放入 ACC,若结果为 0,则跳过下一条语句,否则顺序执行

周期:1or2影响标志位:无

举例:

SZINCA R01 ;R01+1→ACC

JPLOOP;ACC 不为 0 时执行这条语句,跳转至 LOOPJPLOOP1;ACC 为 0 时执行这条语句,跳转至 LOOP1

SZINCR [R]

操作: 将寄存器 R 自加 1,结果放入 R,若结果为 0,则跳过下一条语句,否则顺序执行

周期:1or2影响标志位:无

举例:

SZINCR R01 ;R01+1→R01

 JP
 LOOP
 ;R01 不为 0 时执行这条语句,跳转至 LOOP

 JP
 LOOP1
 ;R01 为 0 时执行这条语句,跳转至 LOOP1

SZDECA [R]

操作: 将寄存器 R 自减 1,结果放入 ACC,若结果为 0,则跳过下一条语句,否则顺序执行

周期: 1or2 影响标志位: 无

举例:

SZDECA R01 ;R01-1→ACC

JPLOOP;ACC 不为 0 时执行这条语句,跳转至 LOOPJPLOOP1;ACC 为 0 时执行这条语句,跳转至 LOOP1

SZDECR [R]

操作: 将寄存器 R 自减 1,结果放入 R,若结果为 0,则跳过下一条语句,否则顺序执行

周期:1or2影响标志位:无

举例:

SZDECR R01 :R01-1→R01

 JP
 LOOP
 ;R01 不为 0 时执行这条语句,跳转至 LOOP

 JP
 LOOP1
 ;R01 为 0 时执行这条语句,跳转至 LOOP1

TABLE [R]

操作: 查表,查表结果低 8 位放入 R,高位放入专用寄存器 TABLE_SPH

周期: **2** 影响标志位: 无

举例:

LDIA 01H ;ACC 赋值 01H

LD TABLE_SPH,A ;ACC 值赋给表格高位地址,TABLE_SPH=1

LDIA 015H ;ACC 赋值 15H

LD TABLE_SPL,A ;ACC 值赋给表格地位地址,TABLE_SPL=15H

TABLE R01 ;查表 0115H 地址,操作结果: TABLE_DATAH=12H,R01=34H

• • • •

ORG 0115H DW 1234H

TABLEA

操作: 查表,查表结果低 8 位放入 ACC,高位放入专用寄存器 TABLE_SPH

周期: **2** 影响标志位: 无

举例:

LDIA 01H ;ACC 赋值 01H

LD TABLE_SPH,A ;ACC 值赋给表格高位地址,TABLE_SPH=1

LDIA 015H ;ACC 赋值 15H

LD TABLE_SPL,A ;ACC 值赋给表格地位地址,TABLE_SPL=15H

TABLEA ;查表 0115H 地址,操作结果: TABLE_DATAH=12H,ACC=34H

...

ORG 0115H DW 1234H

TESTZ [R]

操作: 将 R 的值赋给 R,用以影响 Z 标志位

周期: 1 影响标志位: **Z**

举例:

TESTZ R0 ;将寄存器 R0 的值赋给 R0,用于影响 Z 标志位

SZB STATUS,Z ;判断 Z 标志位,为 0 间跳

 JP
 Add1
 ;当寄存器 R0 为 0 的时候跳转至地址 Add1

 JP
 Add2
 ;当寄存器 R0 不为 0 的时候跳转至地址 Add1

XORIA i

操作: 立即数与 ACC 进行逻辑异或运算,结果放入 ACC

周期:1影响标志位:Z

举例:

LDIA 0AH ;ACC 赋值 0AH

XORIA 0FH ;执行结果: ACC=05H

XORA [R]

操作: 寄存器 R 与 ACC 进行逻辑异或运算,结果放入 ACC

周期: 1 影响标志位: Z

举例:

LDIA OAH ;ACC 赋值 OAH

LD R01,A ;ACC 值赋给 R01,R01=0AH

LDIA 0FH ;ACC 赋值 0FH XORA R01 ;执行结果: ACC=05H

XORR [R]

操作: 寄存器 R 与 ACC 进行逻辑异或运算,结果放入 R

周期: 1 影响标志位: Z

举例:

LDIA 0AH ;ACC 赋值 0AH

LD R01,A ;ACC 值赋给 R01,R01=0AH

LDIA 0FH ;ACC 赋值 0FH XORR R01 ;执行结果: R01=05H

WWW.MCU.COM.CN -147- V1.2

19. 封装

19.1 DIP20

SYMBOL	MILLIMETER				
3 I MIDUL	MIN	NOM	MAX		
A	3.60	3.80	4.00		
A1	0.51	_	_		
A2	3.20	3.30	3.40		
A3	1.47	1.52	1.57		
b	0.44	_	0.52		
b1	0.43	0.46	0.49		
B1	1.52REF		7		
с	0.25	_	0.29		
c1	0.24	0.25	0.26		
D	25.80	25.90	26.00		
E1	6.45	6.55	6.65		
e	2.54BSC				
eA	7.62REF				
eB	7.62	<u> </u>	9.30		
eC	0	_	0.84		
L	3.00	_			

19.2 SOP20

19.3 SOP28

SYMBOL	MILLIMETER				
SIMDUL	MIN	NOM	MAX		
Α	_	_	2.65		
A1	0.10	-	0.30		
A2	2.25	2.30	2.35		
A3	0.97	1.02	1.07		
b	0.39	_	0.47		
b1	0.38	0.41	0.44		
С	0.25	_	0.29		
c1	0.24	0.25	0.26		
D	17.90	18.00	18.10		
Е	10.10	10.30	10.50		
E1	7.40	7.50	7.60		
e		1.27BSC			
L	0.70	-	1.00		
LI		1.40REF			
θ	0	_	8°		

20. 版本修订说明:

版本号	时间	修改内容
V1.0	2016年12月	初始版本

WWW.MCU.COM.CN -150-V1.2