Queen's Power Group

Kingston, Ontario, Canada www.queenspowergroup.com

High Performance Digital Control Algorithms for DC-DC Converters Based on the Principle of Capacitor Charge Balance

Guang Feng Eric Meyer* Yan-Fei Liu

Queen's University
Department of Electrical and Computer Engineering
Kingston, Ontario, Canada

*Presenting Author

Presentation Outline

- Introduction
- Concept of Capacitor Charge Balance
- Load Current Transient
- Input Voltage Transient
- Experimental Results
- Conclusion

1. Introduction

- VRMs must adhere to increasingly stringent dynamic performance criteria
- Alter topology (increase size of output capacitor)
 - Disadvantages:
 - Increased cost
 - Increased real-estate
- Increase switching speed
 - Disadvantages:
 - Decrease efficiency

Controller Improvement

- Improve control method
 - -Advantages:
 - Significantly less expensive than topology modification
 - Typically no effect on efficiency

Steady State vs. Transient

- Conventional controllers
 - Designed using frequencydomain small-signal model
 - Zero-steady state error
 - Widest bandwidth with sufficient phase margin
 - Model insufficient for largesignal time-domain transients
- Alternative controller
 - Separate control methods for steady and transient states
 - Well suited for digital implementation

Digital Controllers

Advantages:

- Re-programmability
 - No hardware modification needed for altered topology
- Reliability
 - Tolerance and non-idealities of analog control components
- System Integration
 - Higher integration with digital circuits
- Simplicity
 - For controls requiring complicated arithmetic

Analog to Digital: New Implementation, Old Problems

Majority of research:

- Conventional analog designs copied
- Still suffers from slow compensation networks

Novel methods:

- Digital control simplifies complicated arithmetic
- Can be used to develop new non-linear control strategies

Digital Current Mode Controller

2. Capacitor Charge Balance

 Used extensively in steadystate analysis of DC-DC converters

$$v_c(T_s) - v_c(0) = \frac{1}{C} \cdot i_{cavg} = 0 \rightarrow \frac{1}{T_s} \int_0^{T_s} i_c(t) dt = 0$$

Capacitor Charge Balance

 Extend principle to transient

$$v_c(t_b) - v_c(t_a) = \frac{1}{C} \cdot i_{cavg} = 0$$
$$\frac{1}{t_b - t_a} \int_{t_a}^{t_b} i_c(t) dt = 0$$

- Voltage recovers to original value when net charge balanced
- Goal: Balance charges when inductor current reaches steady state value in <u>shortest</u> <u>possible time</u>

3. Load Current Transient

- Point 0: Load current step
- Point 1: Controller slowly increases duty
- Point 2: Inductor current equal load current
- Point 3: Output voltage recovered
 - Inductor current > Load current
- Point 4: Converter "recovered"

How can we improve this response?

Conventional Control Method

Load Current Transient Optimized

Minimize Transient Time

minimize re-charge time by maximizing i_{Lpeak}

Load Current Transient Algorithm

- Six key steps after sensing large signal transient condition:
 - 1. Estimate the new load current i_{o2}
 - 2. Calculate the inductor current rising and falling slew rates
 - 3. Calculate the capacitor discharge portion A_o
 - 4. Calculate t_1 and the capacitor discharge portion A_1
 - 5. Calculate t_4 and the capacitor discharge portion A_3
 - 6. Calculate the capacitor charge portion A_2 and the time periods t_2 and t_3

Estimate New Load Current & Estimate A₀

i_{o2} and A_o can be estimated by observing the output voltage response and knowing C and ESR

$$i_{o2} = \frac{1}{2}(i_{L1} + i_{La}) - \frac{C \cdot (v_{0a} - v_{o1}) - C \cdot (i_{La} - i_{L1}) \cdot ESR}{t_{1a}}$$

$$A_0 = C \cdot (V_{ref} - v_{o1} + (i_{L1} - i_{o2}) \cdot ESR)$$

Calculate A₁, A₃, t₁, t₃

 A₁, A₃, t₁, t₃ can be simply calculated geometrically by knowing the slew rates of the inductor current

$$t_{1} = (i_{o2} - i_{L1}) / \left(\frac{v_{in} - v_{o}'}{L}\right)$$

$$A_{1} = \frac{1}{2} * t_{1} * (i_{o2} - i_{L1})$$

$$t_{4} = (i_{o2} - i_{L_{end}}) / \left(\frac{L}{v_{o}}\right)$$

$$A_{3} = \frac{1}{2} * t_{4} * (i_{o2} - i_{L_{end}})$$

load current reference voltage v_{c1} t_{1a} Point 3 Point 5 Point 0

Balance the Charges

$$A_{\text{discharge}} = A_{\text{charge}}$$
$$A_0 + A_1 + A_3 = A_2$$

- Can now calculate A_2 , t_2 , t_3
- The optimal path is calculated

$$t_{2} = \sqrt{\frac{A_{0} + A_{1} + A_{3}}{\frac{1}{2} \frac{v_{in}}{v_{o}} \frac{v_{in} - v_{o}}{L}}}$$

$$t_{3} = \frac{v_{in} - v_{o}}{v_{o}} t_{2}$$

Other Considerations

- The aforementioned derived equations are designed for a positive load current step
 - For a negative load current step, the derivation is similar
- Before completion, algorithm calculates the new steady state duty cycle d and inductor current i_L to be passed to the PID current-mode controller
 - Allows for a smooth transition

4. Input Voltage Transient

Digital Current-mode PID controller: Poor Audiosusceptibility

- Point 0: Input voltage change
- Point 1: Controller <u>slowly</u> decreases duty
- Point 2: Inductor current equal load current
- Point 3: Output voltage recovered
 - Inductor current < Load current
- Point 4: Converter "recovered"

How can we improve this response?

Input Voltage Transient **Optimized**

- Directly detect input voltage transient
- Calculate two duty cycles that will balance charges when inductor current reaches steady state value
- Minimizes voltage overshoot and settling time

Why 2 cycles?

- Not enough degrees of freedom in one cycle to:
 - Balance charges AND
 - Ensure inductor current = steady state value

Input Voltage Transient Algorithm

- Charge Portion A₀ (Yellow T₀)
 - Net charge before algorithm activates
- Charge Portion A₁ (Pink T₁)
- Charge Portion A₂ (Cyan T₂)

Goal of Algorithm:

Ensure inductor current at steady-state value at Point 3

$$A_0 + A_1 + A_2 = 0$$
 at Point 3

Input Voltage Transient Algorithm

-i_L_end known
Relationship between
i_{L1}, i_{L_end}, d₁ and d₂

$$i_{L_end} - i_{L1} = (d_1 v_{in1} - v_o') \frac{T_s}{L} + (d_2 v_{in1} - v_o') \frac{T_s}{L}$$

$$k = d_1 + d_2 = \frac{(i_{L_end} - i_{L1}) \cdot \frac{L}{T_s} + 2 \cdot v_o'}{v_{in1}}$$

Charge Area A₀

As before, A₀ is estimated by observing the variation of output voltage from *Point 0* to *Point 1*

A_1 and A_2

$$\begin{split} A_1 &= \frac{1}{2} d_1 T_s \cdot \left[(i_{L1} - i_{L2}) + (i_{peak1} - i_{L2}) \right] + \frac{1}{2} (1 - d_1) T_s \cdot (i_{peak1} - i_{L2}) - (i_o - i_{L2}) T_S \\ A_2 &= \frac{1}{2} d_2 T_s \cdot (i_{peak2} - i_{L2}) + \frac{1}{2} (1 - d_2) T_s \cdot \left[(i_{peak2} - i_{L2}) + (i_{L_end} - i_{L2}) \right] - (i_o - i_{L2}) T_S \end{split}$$

Duty Cycles

$$d_{1} = \frac{1}{2} \left[(1+k) - \sqrt{(1+k)^{2} + \frac{4L}{v_{in1} \cdot T_{s}}} (i_{L1} - 2i_{o} + i_{L_end} - \frac{1}{2} k^{2} v_{in1} \frac{T_{s}}{L} + \frac{A_{charge0}}{T_{s}}) \right]$$

$$d_{2} = k - d_{1}$$

Positive ΔV_{in}

Negative ΔV_{in}

Other Considerations

- The aforementioned derived equations are designed for a positive load current step
 - For a negative load current step, the derivation is similar
- Before completion, algorithm calculates the new steady state duty cycle d to be passed to the PID current-mode controller
 - Allows for a smooth transition
- "Slow" input voltage variations

5. Experimental Results

Prototype:

- L = 1uH
- C = 235uF
- ESR = $1m\Omega$
- $-R_L = 2m\Omega$
- $f_s = 400kHz$
- Current-mode PID controller:
 - $f_o = 70 \text{ kHz}$
 - Phase margin: 50°

Load Current Step Response

• $V_{in} = 5V, V_{out} = 2.5V$

Load Current: 5A → 10A

X-axis: 40us/div

Y-axis: 50mV/div

Undershoot: 35% reduction

Settling Time: 89% reduction

Load Current Step Response

• $V_{in} = 5V, V_{out} = 2.5V$

Load Current: 10A → 5A

X-axis: 40us/div

Y-axis: 50mV/div

Overshoot: 54% reduction

Settling time: 91% reduction

Input Voltage Step Response

- Load Current = 5A
- Input Voltage: 5V → 7.5V
- X-axis: 40us/div
- Y-axis: 50mV/div
- Overshoot: 75% reduction
- Settling time: 83% reduction

Input Voltage Step Response

Load Current = 5A

Input Voltage: 7.5V → 5V

X-axis: 40us/div

Y-axis: 50mV/div

Undershoot: 68% reduction

Settling time: 83% reduction

Tolerance Sensitivity

9/3/2006

32

6. Conclusion

- By focusing on balancing capacitor charges during transient periods, dynamic response can be optimized
- Experimental results show substantial improvement over conventional methods
- Low sensitivity to parameter tolerance

Thank you for Attending For more information, visit: www.QueensPowerGroup.com