

Fig. 1

Fig. 2

Fig. 3

T
gq 4

SPD Preset feed speed which is used as a reference

Δs : Distance movable per unit time T
given by the preset feed speed SPD which is
used as reference. $\Delta s = SPD * T$

P_s : Reference discharge pulse number

P_x : Discharge pulse number per unit time T

Δx : Distance movable with discharge pulse number
 P_x per unit time T

$$\Delta x = \Delta s * \Delta x / P_s \\ = SPD * T * (P_x / P_s)$$

Fig. 5A

Fig. 5B

Fig. 5C

Fig. 6A

Fig. 6B

Fig. 7A

Fig. 7B

Fig. 8

Fig. 9

Fig. 10

Δ_s : Distance movable with discharge pulse number P_s

Δ_x : Distance movable with discharge pulse number per unit time T

Δ_x : Distance movable with discharge pulse number per unit time T

g : Machining groove width (mm)

t : Plate thickness (mm)

w : Amount of machining per discharge pulse

Q_s : Amount of machining to be removed by reference discharge pulse number $P_s \propto$ amount of sludge to be discharged by preset amount of liquid FRs

Q_x : Amount of machining to be removed by discharge pulse number P_x per unit time $T \propto$ amount of sludge to be discharged by amount of liquid FRx

Fig. 12

Fig. 13

Fig. 14

Machining elapsed time (10 seconds/div)

Fig. 15

Fig. 16

Machining elapsed time (2 minutes/div)

Fig. 17

Machining start

Fig. 18

Fig. 19

