HOMEWORK 6 ALGEBRAIC TOPOLOGY

JACKSON VAN DYKE

Exercise 1 (Hatcher, §1.3, 7). Let Y be the quasi-circle show in fig. 1, a closed subspace of \mathbb{R}^2 consisting of a portion of the graph of $y = \sin(1/x)$, the segment [-1,1] in the y-axis, and an arc connecting these two pieces. Collapsing the segment of Y in the y-axis to a point gives the quotient map $f: Y \to S^1$. Show that f does not lift to the covering space $\mathbb{R} \to S^1$, even though $\pi_1(Y) = 0$. Thus local path-connectedness of Y is a necessary hypothesis in the lifting criterion.

Exercise 2 (Hatcher, §1.3, 9). Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic. [Use the covering space $\mathbb{R} \to S^1$.]

Exercise 3 (Hatcher, §1.3, 10). Find all the connected 2-sheeted and 3-sheeted covering spaces of $S^1 \vee S^1$, up to isomorphism of covering spaces without basepoints.

Exercise 4 (Hatcher, §1.3, 20). Construct nonnormal covering spaces of the Klein bottle by a Klein bottle and by a torus.

Exercise 5 (Hatcher, §1.A, 5). Construct a connected graph X and maps $f,g:X\to X$ such that fg=1 but f and g do not induce isomorphisms on π_1 . [Note that $f_*g_*=1$ implies that f_* is surjective and g_* is injective.]

Exercise 6. Show that a connected, locally path-connected space is path-connected.

Exercise 7. Prove the \Leftarrow direction of the following theorem.

Theorem 1. Let (\tilde{X}_i, p_i) be covering spaces of X with the X_i connected and lpc. Then $(\tilde{X}_1, p_1) \cong (\tilde{X}_2, p_2)$ iff for all $\tilde{x}_i \in \tilde{X}_i$ such that $p_1(\tilde{x}_1) = p_2(\tilde{x}_2)$ (= $x_0 \in X$, say)

$$p_{1*}\left(\pi_1\left(\tilde{X}_1,\tilde{x}_1\right)\right)$$
 and $p_{2*}\left(\pi_1\left(\tilde{X}_2,\tilde{x}_2\right)\right)$

are conjugate.

FIGURE 1. The quasi-circle.