פתרון מרצה+ פתרון סטודנט 26 | ציון

יש לענות על כל חמש השאלות. בהצלחה!

תאריך הבחינה: <u>23.1.2018</u>

שם המרצים: דייר שירלי ליכטמן-שדות,

דייר דוד לגזיאל, מר ליעד גרינפלד.

שם הקורס: <u>סטטיסטיקה לכלכלנים אי.</u>

מספר הקורס: 142-1-0211

שנה: <u>2018</u> סמסטר: איַ מועד: איַ

משך הבחינה: שלוש שעות

חומר עזר: מחשבון

שאלה 1 (20 נקודות)

במפעל תעשייתי מחצית מהמוצרים הם מסוג אי ומחצית מסוג בי. מבקר איכות דוגם מוצרים בזה אחר זה. המבקר עוצר את הדגימה אם הוא מאתר מוצר מסוג בי, ובכל מקרה אינו דוגם יותר משלושה מוצרים. נגדיר את המשתנים הבאים: X שווה ל-1 אם המוצר הראשון שנדגם הוא מסוג בי, אחרת הוא שווה ל-0; Y שווה למספר המוצרים שנדגמו; Z שווה ל-1 אם המוצר הראשון שנדגם הוא מסוג אי, אחרת הוא שווה ל-0.

- א. בנו את פונקציית ההסתברות המשותפת של X ו-Y (8 נקודות).
 - ב. חשבו את מקדם המתאם בין X ו- Y (8 נקודות).
- Xי. חשבו את השונות המשותפת ואת מקדם המתאם בין X ו-X (4 נקודות).

פתרון שאלה

א. X מספר המוצרים מסוג בי בין המוצר הראשון שנדגם.

-Y מספר המוצרים שנדגמו.

Y ושל X ושל אונקציית הסתברות משותפת של

Y X	1	2	3	$P(X=x_i)$
0	0	0.25	0.25	0.5
1	0.5	0	0	0.5
$P(Y=y_i)$	0.5	0.25	0.25	1

ב.

$$E[X] = \sum x_i \Pr(X = x_i) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$E[Y] = \sum y_i \Pr(Y = y_i) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} = \frac{7}{4}$$

$$V(X) = E[X^2] - (E[X])^2 = \left[0^2 \cdot \frac{1}{2} + 1^2 \cdot \frac{1}{2}\right] - \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$V(Y) = E[Y^2] - (E[Y])^2 = \left[1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{4} + 3^2 \cdot \frac{1}{4}\right] - \left(\frac{7}{4}\right)^2 = \frac{11}{16}$$

$$E(XY) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$COV(X,Y) = E(XY) - E[X] \cdot E[Y] = 0.5 - \frac{7}{8} = -\frac{3}{8}$$

$$\rho(X,Y) = \frac{COV(X,Y)}{\sqrt{VX * VY}} = \frac{-\frac{3}{8}}{\sqrt{\frac{11}{16} \cdot \frac{1}{4}}} = -0.90453$$

ג. לפי הגדרה לכן בין מספר המוצרים מתאם לינארי $\rho(X,Z)=-1$, לכן לפי הגדרה לפי המוצרים מחוג בי $\rho(X,Z)=-1$, לכל מוצר שהוא לא מחוג אי למספר המוצרים מחוג בי $\rho(X,Z)=-1$

$$\rho(X,Z) = -1 = \frac{COV(X,Z)}{\sqrt{V(X) \cdot V(Z)}} = \frac{COV(X,Z)}{\sqrt{V(X) \cdot V(1-X)}} = \frac{COV(X,Z)}{\sqrt{V(X) \cdot V(X)}}$$
$$COV(X,Z) = -V(X) = -0.25.$$

שאלה 2 (20 נקודות)

המחיר בדולרים של יחידת מוצר הוא משתנה מקרי רציף X, בעל פונקציית ההתפלגות המצטברת הבאה:

$$F(X) = \begin{cases} 0, & x \le 0, \\ \frac{x^2}{8}, & 0 < x \le 2, \\ \frac{1}{2}, & 2 < x \le 3, \\ \frac{x}{2} - 1, & 3 < x \le 4, \\ 1, & x > 4. \end{cases}$$

- א. חשבו את פונקציית הצפיפות ושרטטו אותה (7 נקודות).
- ב. כל אריזה מכילה 3 יחידות מן המוצר. חשבו את תוחלת מחיר האריזה בש״ח, לפי שער חליפין של 1 דולר = 4 ש״ח (7 נקודות).
- ג. בודקים באופן בלתי תלוי את מחיריהם של 4 מוצרים שנבחרו באקראי. ההסתברות שהמחיר בודקים באופן בלתי תלוי את מחיריהם של 4 מוצרים יהיה נמוך מ-a דולר היא 0.9984. חשבו את 6 (6 נקודות).

פתרון שאלה

f(X)=F'(X) א. פונקציית הצפיפות מתקבלת עייי גזירת פונקציית ההתפלגות המצטברת

$$\left(\frac{x^2}{8}\right)' = \frac{2x}{8} = \frac{x}{4}, \qquad \left(\frac{x}{2} - 1\right)' = \frac{1}{2},$$

$$f(X) = \begin{cases} \frac{x}{4}, & 0 < x \le 2, \\ \frac{1}{2}, & 3 < x \le 4, \\ 0, & \text{where} \end{cases}$$

_

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{0}^{2} x \cdot \frac{x}{4} dx + \int_{3}^{4} x \cdot \frac{1}{2} dx = \frac{x^{3}}{12} \Big|_{0}^{2} + \frac{x^{2}}{4} \Big|_{3}^{4} = \frac{8 - 0}{12} + \frac{16 - 9}{4} = \frac{29}{12}$$

 E [מחיר האריזה בשקלים] = $\mathrm{E}\left[3_{\mathrm{nirin}}\cdot4_{\mathrm{ririn}}\cdot X\right]=12$ ב [מחיר האריזה בשקלים] = 12 ב

ג.

 $\Pr(-$ בולר) מ-ם מוך מארבעה מוצר אחד מארבעה נמוך מ-0.9984

 $\Pr($ המחיר של כל אחד מארבעה גבוה מ-0.0016

$$[Pr(X > a)]^4 = 0.0016 \rightarrow P(X > a) = \sqrt[4]{0.0016} = 0.2$$

נציב בפונקציית ההתפלגות המצטברת בתחום המתאים (התחום הרביעי 0.8>0.5)

$$Pr(X < a) = F(a) = 1 - 0.2 = 0.8$$

$$\frac{a}{2} - 1 = 0.8$$

$$\frac{a}{2} = 1.8$$

$$a = 3.6$$

שאלה 3 (20 נקודות)

אורך חיי רכיב אלקטרוני מתפלג נורמלית עם תוחלת של 3000 שעות וסטיית תקן של 200 שעות. רכיב נחשב פגום אם אורך חייו נמוך מ-2600 שעות.

- א. מה אחוז הרכיבים הפגומים (5 נקודות)!
- ב. מה אחוז הרכיבים שאורך חייהם מעל 3300 שעות, מבין הרכיבים שאורך חייהם מעל 3200 שעות (5 נקודות)!
- . בוחרים באקראי ובאופן בלתי תלוי 3 רכיבים. מה ההסתברות שאורך החיים של לפחות אחד מהם גבוה מהחציון או נמוך מהעשירון התחתון (5 נקודות):
- ד. הנהלת המפעל מעוניינת להקטין את אחוז הרכיבים הפגומים ל-1%, באמצעות הגדלת התוחלת בתהליך הייצור (סטיית התקן נשמרת על 200 שעות). חשבו את התוחלת הנדרשת לשם כך (5 נקודות).

פתרון שאלה:

. $x \sim N(\mu = 3000, \sigma = 200)$ אורך חיי רכיב מתפלג לפי

$$Pr(z < 2600) = Pr(z < 2600) = Pr(z < \frac{2600 - 300}{200}) = Pr(z < -2) = 0.0228$$
 א.

.2.28% מהרכיבים המיוצרים הם פגומים.

ב. נחשב ישירות

$$Pr(x > 3300 | x > 3200) = \frac{Pr(x > 3300)}{Pr(x > 3200)} = \frac{1 - Pr(z < \frac{3300 - 3000}{200})}{1 - Pr(z < \frac{3200 - 3000}{200})} = \frac{1 - Pr(z < \frac{3200 - 3000}{200})}{1 - Pr(z < 1.5)} = \frac{1 - 0.9332}{1 - 0.8413} = \frac{0.0668}{0.1587} = 0.4209$$

.42.09% מהרכיבים שאורך חייהם מעל 3200 שעות, הם בעלי אורך חיים של מעל 3300 שעות.

 $\Pr(x > 1$ או חציון x < 1עשירון תחתון או x < 1ב. נסמן את המאורע המבוקש ב-A. ב-0.6 או חציון x < 1

$$Pr(A)=1 - (1 - 0.6)^3 = 1 - 0.4^3 = 0.936$$

٦.

$$\Pr(z < 2600) = \Pr(z < 2600 - \mu_1) = 0.01$$

$$\Pr(z < \frac{2600 - \mu_1}{200}) = 0.01 \rightarrow \frac{2600 - \mu_1}{200} = -2.33$$

$$\mu_1 = 3066$$

שאלה 4 (24 נקודות)

ברשת חנויות מזון קיימים שלושה סוגי מוצרים שונים:

- 50% מהמוצרים הם מסוג אי, ונמכרים במחיר 5 ₪ למוצר.
- 30% מהמוצרים הם מסוג בי, ונמכרים במחיר 10 ₪ למוצר.
- 20% מהמוצרים הם מסוג ג׳, ונמכרים במחיר 15 ₪ למוצר.

מבין המוצרים הנ״ל, שיעור מוצרי החלב הוא כדלקמן:

- 8% מבין המוצרים סוג אי שבחנות הם מוצרי חלב.
- 10% מבין המוצרים סוג בי שבחנות הם מוצרי חלב.
- 25% מבין המוצרים סוג גי שבחנות הם מוצרי חלב.
- א. אדם בוחר באקראי 2 ממוצרי החנות. נגדיר את X להיות הסכום הכולל אשר שילם עבור צמד א. המוצרים. בנו את פונקציית ההסתברות וחשבו את התוחלת והשונות של X (δ נקודות).
 - ב. אדם בוחר באקראי 5 מוצרי חלב. מה ההסתברות שבדיוק 3 הם מוצרים מסוג אי! (6 נקודות)
- ג. אדם בוחר באקראי ממוצרי החנות בזה אחר זה עד שמתקבל המוצר השלישי מסוג אי. מה הסיכוי שהוא הוציא בדיוק 3 מוצרים, אם ידוע שהוא הוציא לכל היותר 5 מוצרים? (6 נקודות)
- ד. כדי לבדוק את טיב השירות בחנויות הרשת, לקחה ההנהלה מדגם של 50 תצפיות ובדקה את מספר הלקוחות הממתינים בתור לקופה. התקבלו הנתונים הבאים:

סהייכ	5	4	3	2	1	0	אורך התור (מסי לקוחות) - ${ m X}$
50	8	12	5	6	15	4	שכיחות - f(x)

חשבו את הממוצע, השכיח והחציון של מספר הלקוחות בתור (6 נקודות).

<u>פתרון לשאלה:</u>

א. 0.5 סוג אי 5 \square , 0.3 סוג בי 10 \square , 0.2 סוג גי 15 \square - הסכום הכולל של 2 מוצרים שנבחרו \square א. באקראי. פונקציית ההסתברות של \square :

Xi	10	15	20	25	30	סהייכ
Pr(X=xi)	0.25	0.3	0.29	0.12	0.04	1

Pr(X=10)=0.5*0.5=0.25

Pr(X=15)=0.5*0.3+0.3*0.5=0.3

Pr(X=20)=0.3*0.3+0.5*0.2+0.2*0.5=0.29

Pr(X=25)=0.3*0.2+0.2*0.3=0.12

Pr(X=30)=0.2*0.2=0.04

$$\sum XiPr(Xi)=10*0.25+15*0.3+20*0.29+25*0.12+30*0.04=17$$
 התוחלת:

$$V(X) = EX^2 - (EX)^2 = [10^2 * 0.25 + 15^2 * 0.3 + 20^2 * 0.29 + 25^2 * 0.12 + 30^2 * 0.04] - 17^2 = 30.5$$

ב.

Pr(מוצר חלב)=0.5*0.08+0.3*0.1+0.2*0.25=0.12 $\Pr(\alpha | \beta) = \frac{0.5*0.08}{0.12} = \frac{1}{3}$

מספר החלב מסוג אי מבין מוצרי החלב -X~B $\left(n=5,P=\frac{1}{2}\right)$

$$P(X = 3) = {5 \choose 3} * (\frac{1}{3})^3 * (\frac{2}{3})^2 = 0.1646$$

ג. X - מספר המוצרים הנבחרים עד שמתקבל המוצר השלישי מסוג א $^{\prime}$. המוצר האחרון שנבחר הוא תמיד השלישי מסוג א׳, וצריך לבחור לפחות 3 מוצרים כדי לקבל 3 סוג א׳.

$$Pr(x = 3 | x \le 5) = \frac{Pr(x = 3)}{Pr(x = 3) + Pr(x = 4) + Pr(x = 5)} = \frac{0.5^3}{0.5^3 + {3 \choose 2} \cdot 0.5^3 \cdot 0.5 + {4 \choose 2} \cdot 0.5^3 \cdot 0.5^2} = 0.25$$

٦.

$$\overline{X} = \frac{\sum Xf}{n} = \frac{0*4+1*15+2*6+3*5+4*12+5*8}{50} = 2.6$$

השכיח הוא 1. (בעל שכיחות מקסימלית – 15)

החציון הוא שני שני שני האיברים (n=50), החציון שמספר התצפיות שמספר התצפיות הוא אוגי

 $\frac{2+3}{2}=2.5$ האיבר ה-25 הוא 3, האיבר ה-26 הוא 3, האיבר ה-25 הוא 3, האיבר ה-25 הוא 3, האיבר ה-25 הוא 3, האיבר ה-26 ה

שאלה 5 (16 נקודות סה״כ, 4 נקודות לכל סעיף) - נכון /לא נכון : נכון פירושו נכון בהכרח תמיד. : יש להסביר את התשובה ב-3 משפטים לכל היותר.

- א. נתון משתנה מקרי X בעל התפלגות נורמלית עם תוחלת בעל X בעל המשתנה אי. נתון משתנה בעל התפלגות בעל החלת 0 ושונות בעל הוא בעל תוחלת $Z=\frac{X-\mu}{\sigma}$
- ב. A ו-B שני מאורעות המוגדרים על אותו מרחב הסתברות A. אם B ו-B ב. מאורעות בלתי תלויים. B מאורעות בלתי תלויים.
- ג. מספר התקלות ברשת מחשבים מתפלג פואסונית עם ממוצע של λ תקלות ביחידת זמן. נתון כי ההסתברות שתקרינה 3 תקלות ביחידת זמן גדולה פי 1.5 מההסתברות שתקרה תקלה אחת ביחידת זמן. מסקנה: $\lambda=3$.
 - ד. נתונה סדרת תצפיות. מוסיפים לסדרה שתי תצפיות שוות לממוצע. לכן, כתוצאה מההוספה, הטווח, השונות, והחציון לא ישתנו.

פתרון השאלה

, לכן, $Z=\frac{X-\mu}{\sigma}=\frac{1}{\sigma}X-\frac{\mu}{\sigma}:X$ א. א. לניארית של ליניארית של א ליניארית ארנספורמציה איניארית של

$$E(Z) = E\left(\frac{1}{\sigma}X - \frac{\mu}{\sigma}\right) = \frac{1}{\sigma}E(X) - \frac{\mu}{\sigma} = \frac{\mu}{\sigma} - \frac{\mu}{\sigma} = 0$$
$$V(Z) = V\left(\frac{1}{\sigma}X - \frac{\mu}{\sigma}\right) = \frac{1}{\sigma^2}V(X) = \frac{\sigma^2}{\sigma^2} = 1$$

. אם אם מתפלג נורמאלית, אז הם Z מתפלג נורמאלית. הטענה נכונה אם X אם אם א

ב. הטענה נכונה.

$$P(B|\overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{P(B) - P(A) * P(B)}{1 - P(A)} = \frac{P(B)[1 - P(A)]}{1 - P(A)} = P(B)$$

לכו, B ו- \overline{A} בלתי תלויים.

$$X \sim P.[1.5P(X=1)=P(X=3)] \rightarrow 1.5 \frac{e^{-\lambda}*\lambda}{1!} = \frac{e^{-\lambda}*\lambda^3}{3!}$$
: ג. הטענה נכונה. נתון $9\lambda=\lambda^3$
$$\lambda(\lambda^2-9)=0$$
 . $\lambda=0,\,\lambda=3,\,\lambda=-3$

 $\lambda=3$ לא רלוונטי, ולכן בהכרח מתקיים $\lambda=3$

ר. הטענה נכונה רק לגבי הטווח, לכן איננה נכונה באופן כללי. השפעה על R=Xmax-Xmin הוספה של שתי תצפיות אשר שוות לממוצע לא משנה את הטווח, כיוון שהממוצע לא גדול מ- $X_{
m min}$ או קטן מ- $X_{
m min}$. לכן, ערכי המינימום והמקסימום לא משתנים והטווח לא משתנה.

השפעה על $\frac{\sum (xi-\overline{x})^2}{n}$. המונה של השונות לא משתנה, המכנה (מספר התצפיות n) גדל, ולכן השונות קטנה. החציון לא משתנה רק אם ההתפלגות סימטרית והחציון שווה לממוצע. אחרת, מוסיפים 2 תצפיות שגדולות מהחציון, או 2 תצפיות שקטנות מהחציון והחציון גדל או קטן בהתאמה.

	Modall E
(\$ (10 m cm pes) 0 100 msp msp 0 2 (10 m cm pes) 0 2 (10 m c	SV C- y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$P(x_{i}=x) = 0.7 = 0.7 = 1$	
$D = \frac{12\Gamma}{138} = \frac{12\Gamma}{138$	
$(OV(x,y)) = (xy) - (x \cdot (y) + 3 \cdot 0.5 - [1.77 \cdot 0.25] = 1$ $(x) = (x^2) - (x^2)^2 = 0.5 - 0.5^2 = 1$ $(y) = [0.5 + 2^2 \cdot 0.25 + 3^2 \cdot 0.25] - (1.75^2) = 9.687$ $(x) = (x^2) - (x^2)^2 = 2$ $(x) = (x^2) - (x^2)^2 = 1$ $(x) = (x^2) - (x^2) = 1$ $(x) = ($	76 mc
הערות הבודק	

$\mathcal{Z}_{\mathcal{L}}}}}}}}}}$
EW = 3 Ex = 3. 29 = 7.25 : 731N 7.00/ [0]
2 7(180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{8}{12} - 0 + \frac{4^2}{4} - \frac{9}{4} = \frac{29}{4} = 246$
$\frac{0}{12} - 0 + \frac{4^2}{4} - \frac{9}{4} = \frac{29}{12} = 2.416$
t= 40 R 29 P/RED 131N 7.NN / MIN
1000 male 1000
0.9984 K.J. 2913 O-4 JINIU. D. POSEN 1 VIDOL G
Q-2 p-2127 p(12 16, e-16)
0.04 (621 E.y a.n 6 you bloom - 1200000 - 1200000 - 1200000 - 12000000 - 12000000
1425 -0.09 (-2)
1-P(x <a)=0.04 3.92="a</td"></a)=0.04>
$\frac{x}{2} = 1.96$ $P(x > 3.92)$ $n = 2$
X=3.92 1- F(3.92) 1-0-96= 204
הערות הבודק

$\frac{(5)}{(3)} \cdot \frac{(3)^{2}}{(3)^{2}} \cdot \frac{(2)^{2}}{(3)^{2}} + \frac{40}{243} = 0.164$ $\frac{1}{3} = \frac{4}{12} + \frac{1}{2} + \frac{1}$	
$\frac{1}{2} \left(\frac{1}{2}\right) \cdot \frac{3}{120} = \frac{1}{2} \left(\frac{1}{2}\right) \cdot \frac{3}{10} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{2}{3} = \frac{2}{3}$	4 4 4
E 31N -1:31 2:0 100ED SE 5 F31N P31ED E 2 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 2 E 7 E 3 E 7 E 3 E 7 E 3 E 7 E 4 2 E 5 E 7 E 6 E 7 E 7 E 7 E 7 E 8 E 7	
266 = 130 = 58+4.12+3. 4.5.6+1.6.4 (31m) 3 131mm = 50 = 50 = 50 : 1130	
2.6 131NN :PITO (2.5 : 113NN) 2.5 (23) 2.6 131NN :PITO (2.5 : 113NN) 2.7 (13N)	
הערות הבודק	

(4,8, 20, 22.4, 22.5) 30, 50	(1) SE (A) SO (COLUM B) SE
$E_2 = E\left(\frac{x}{\sqrt{2}}\right)$	$\frac{1}{2} = \frac{1}{2} \left[(x + \xi)^{2} \right] = \frac{1}{2} \cdot (x + \xi)^{2} = \frac{1}{2} \cdot (x +$
	הערות הבודק