

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 2

Variable Compleja - MAT2705 Fecha de Entrega: 2019-09-06

Índice

Problema 1	1
Problema 2	1
Problema 3	1
Problema 4	2
Problema 5	3
Problema 6	3
Problema 7	4
Problema 8	4
Problema 9	4

Problema 1:

Integrando la función $\exp(\frac{-x^2}{2})$ sobre el rectángulo de vértices $\pm R$, $it \pm R$ y tomando límite, demuestre que

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(\frac{-x^2}{2}\right) \exp(-itx) \, \mathrm{d}x = \exp\left(\frac{-t^2}{2}\right), -\infty < t < \infty$$

Solución problema 1:

Problema 2:

Calcule las siguientes integrales

(a) $\int_{|z|=2} \frac{z^n}{z-1} dz \text{ con } n > 0.$

(b) $\int_{|z-1-i|=\frac{5}{4}} \frac{\log(z)}{(z-1)^2} dz$, donde log es la rama principal de logaritmo.

(c) $\int_{|z|=1} \frac{1}{z^2(z^2-4)\exp(z)} dz$.

Solución problema 2: Notemos que por teorema visto en clase dado una función analítica f, si a está dentro del disco de radio r centrado en z_0 , entonces $f(a) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{z-a} \, \mathrm{d}z$. Más aún, $f'(a) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-a)^2} \, \mathrm{d}z$. Usando lo anterior se calculan las siguientes integrales:

(a) $\int_{|z|=2} \frac{z^n}{z-1} dz = 2\pi i \cdot 1^n = 2\pi i$

(b) $\int_{|z-1-i|=\frac{5}{2}} \frac{\log(z)}{(z-1)^2} dz = 2\pi i \cdot \frac{1}{1} = 2\pi i$

(c) $\int_{|z|=1} \frac{1}{z^2(z^2-4)\exp(z)} dz = 2\pi i \cdot \frac{-\exp(-1)\cdot(1^2-4)-\exp(-1)\cdot(2)}{(1^2-4)^2} = \frac{2\pi i}{9e}$

Problema 3:

Sea $h:[a,b]\to\mathbb{R}$ continua. Se define la función

$$H(z) = \int_{a}^{b} h(t) \exp(-itz) dt.$$

Demuestre que H es analítica.

Solución problema 3: Sea $g(t) = \frac{\exp(-itz) - \exp(-itz_0)}{z - z_0} - (-it \exp(-itz_0)), \text{ con } z, z_0 \in \mathbb{C}$ distintos entre sí, se nota que para $z \to z_0$ se tiene que $g \to 0$ uniformemente con $t \in [a, b]$,

más aún como g es continua en [a,b] esta alcanza su máximo y su mínimo por teorema de valor extremo. Usando lo anterior se ven las siguientes expresiones:

$$\left| \frac{H(z) - H(z_0)}{z - z_0} - \int_a^b h(t)(-itz_0 \exp(-itz_0) dt) \right| = \left| \int_a^b h(t) \cdot g(t) dt \right|$$

$$\leq \int_a^b |h(t)| |g(t)| dt$$

$$\leq \int_a^b |h(t)| |g(\gamma)| dt$$

$$\leq c_h \cdot |g(\gamma)|$$

Donde γ es el valor que maximiza |g| y c_h es una constante que depende de la función h, como $g \to 0$ con $z \to z_0$, se tiene que H es analítica y se tiene su derivada.

Problema 4:

Encuentre los radios de convergencia de las expansiones asociadas a las funciones.

- (a) $\frac{1}{\cos z}$ en torno a $z_0 = 0$.
- (b) $\frac{1}{\cosh z}$ en torno a $z_0 = 0$.
- (c) $z^{\frac{3}{2}}$ en torno a $z_0 = 3$.

Solución problema 4:

- (a) Se nota que $\cos z = \frac{\exp(iz) + \exp(-iz)}{2}$, por lo que $\cos z = 0$ ssi $\exp(2iz) = -1$, y esto ultimo solo pasa cuando $2iz = \pi i + 2\pi i k$, por lo que $z = \frac{\pi}{2} + \pi k$, y con esto se ve que el z más cercano al 0 es $\frac{\pi}{2}$, por lo que el radio de convergencia de la expansión asociada a $\frac{1}{\cos z}$ en torno a 0 es $\frac{\pi}{2}$.
- (b) Similarmente al anterior se recuerda que $\cosh z = \frac{\exp(z) + \exp(-z)}{2}$, por lo que $\cosh z = 0$ ssi $\exp(2z) = -1$, con lo que $z = \frac{\pi i}{2} + \pi i k$, y se tiene que el radio de convergencia en torno al 0 es $\frac{\pi}{2}$.
- (c) Se nota que $z^{\frac{3}{2}}$ no es analítica en el 0, más aún es el punto más cercano donde no es analítica, por ende el radio de convergencia es 3.

Problema 5:

Calcule la expansión en serie de potencias en torno a z_0 de las siguientes funciones

- (a) $\frac{1}{2i}\log\left(\frac{1+iz}{1-iz}\right)$ en torno a $z_0=0.$
- (b) $\frac{1}{z^2+1}$ en torno a ∞ .
- (c) $z \sinh(\frac{1}{z})$ en torno a ∞ .
- (d) $\cosh z$ en torno a $z_0 = 0$
- (e) $\frac{1}{\cosh z}$ en torno a $z_0 = 0$ (calcule solo los 3 primeros términos utilizando la parte anterior).

Solución problema 5:

Problema 6:

Demuestre que si f, g son analíticas, $f(z_0) = g(z_0) = 0, g'(z_0) \neq 0$ y g no es idénticamente 0, entonces

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}$$

¿Qué se puede decir si $g'(z_0) = 0$?

Solución problema 6: Se nota que ya que $g'(z_0) \neq 0$ entonces el límite $\lim_{z \to z_0} \frac{f'(z)}{g'(z)}$ existe, más aún por continuidad y por álgebra de límites se tienen las siguientes igualdades:

$$\lim_{z \to z_0} \frac{f'(z)}{g'(z)} = \frac{\lim_{z \to z_0} f'(z)}{\lim_{z \to z_0} g'(z)}$$

$$= \frac{\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}}{\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}}$$

$$= \lim_{z \to z_0} \frac{\frac{f(z) - f(z_0)}{z - z_0}}{\frac{g(z) - g(z_0)}{z - z_0}}$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)}$$

$$= \lim_{z \to z_0} \frac{f(z)}{g(z)}$$

$$= \lim_{z \to z_0} \frac{f(z)}{g(z)}$$

Con lo que se tiene lo pedido. Ahora, en el caso donde $g'(z_0) = 0$, se puede repetir el análisis con $g''(z_0)$ y con $f''(z_0)$ y así sucesivamente hasta que alguno, $g^n(z_0)$ o $f^n(z_0)$, no sea 0. En caso de que ninguno sea cero se tiene que límite existe y su valor es la división de los valores.

En caso de que $f^n(z_0) = 0$, el límite existe y es 0. En caso de que $g^n(z_0) = 0$ el límite no existe.

Problema 7:

Encuentre todas las posibles expansiones de serie de Laurent en torno a cero para las siguientes funciones

- (a) $\frac{1}{z^2-z}$
- (b) $\frac{z-1}{z+1}$
- (c) $\frac{1}{(z^2-1)(z^2-4)}$.

Solución problema 7:

Problema 8:

Encuentre las singularidades aisladas de las siguientes funciones, determine que tipo de singularidades son, calcule los residous asociadas y, si son polos, su orden.

(a)
$$\frac{z}{(z^2-1)^2}$$

$$(e) \frac{\log z}{(z-1)^3}$$

(b)
$$\tan z$$

(f)
$$\frac{\exp(2z)-1}{z}$$

(c)
$$\frac{z \exp(z)}{z^2-1}$$

(d)
$$\log(1 - \frac{1}{z})$$

(g)
$$\exp(\frac{1}{z})$$

Solución problema 8:

Problema 9:

Demuestre que z_0 es una singularidad de f(z) no removible, entonces es singularidad esencial de $\exp(f(z))$.

Solución problema 9: Usando la contrapositiva, si z_0 es singularidad removible de $\exp(f(z))$, entonces $|\exp(f(z))| < K$ en una vecindad de z_0 sin z_0 , que ahora se llamará $\dot{D}_{\varepsilon}(z_0)$. Ahora como $|\exp(f(z))| = \exp(\Re(f(z)))$, se tiene que $\Re(f(z)) < K' = \log K$. Ahora, si z_0 fuera un polo de f, entonces $f(\dot{D}_{\varepsilon}(z_0))$ contiene el complemento de algún disco centrado

en 0, entonces especificamente contiene a $\{z: \Im z > k\}$, ahora como la función $\exp(z)$ tiene periodo $2\pi i$ entonces la imagén de este conjunto es todo el plano sin el 0, lo que es una contradicción, por lo que z_0 no puede ser un polo de f. Si z_0 es una singularidad esencial, se tiene que $f(\dot{D}_{\varepsilon}(z_0))$ es denso en \mathbb{C} por Casorati-Weierstrass, de nuevo una contradicción. En el caso de que z_0 fuera un polo de $\exp(f(z))$ entonces es una singularidad removible de $\exp(-f(z))$ y se sigue el analisis anterior, por ende z_0 tiene que ser singularidad removible de f, más aún si z_0 es singularidad no removible de f se tiene que es singularidad esencial de $\exp(f(z))$.