Lecture Notes: Theory of Computation — Introduction (Course: MIT 18.404J)

Thobias K. Høivik

March 29, 2025

Computability Theory vs. Complexity Theory

Computability theory (prominent 1930s-1950s) is concerned with what is computable and not. Complexity theory (prominent 1960s-today) is concerned with what is computable in practice, and how hard is it to compute a particular problem. The first half of this course focuses on Computability theory. That means Finite automata, Turing machines and more.

The Role of Theory in Computer Science

- 1. Applications
- 2. Basic Research
- 3. Connections to other fields
- 4. What is the nature of computation?

Finite Automata

A **Finite Automaton** takes a finite string as input and outputs **accept** or **reject**. The computational process goes as follows:

- 1. Begin at start state
- 2. Read input symbols
- 3. Follow corresponding transitions

4. Accept if end with accept state, Reject if not

Consider the figure above. Then q_2 is an accepting state.

Examples:

$$01101 \rightarrow Accept$$

$$00101 \rightarrow Reject$$

After some thought we conclude that the strings w which the automaton M_1 , seen above, accepts are in A where $A = \{w | w \text{ contains substring } 11\}$. We say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$ (these are three equivalent statements).

Formal Definition

Definition 1. A *finite automaton* M *is a 5-tuple* $(Q, \Sigma, \delta, q_0, F)$.

- Q finite set of states
- \bullet Σ finite set of alphabet symbols
- δ transition function $\delta: Q \times \Sigma \to Q$
- $q_0 \in Q$ starting state
- $F \subseteq Q$ set of accepting states

Applying this definition to the automaton M_1 we can formalize as such:

$$M_{1} = (Q, \Sigma, \delta, q_{0}, F)$$

$$Q = \{q_{0}, q_{1}, q_{2}\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_{3}\}$$

$$\delta = \frac{\delta \mid 0 \mid 1}{q_{0} \mid q_{0} \mid q_{1}}$$

$$q_{1} \mid q_{0} \mid q_{2}$$

$$q_{2} \mid q_{2} \mid q_{2}$$

String and Languages

- A string is a (usually) finite sequence of symbols in Σ .
- A language is a set of strings (finite or infinite).
- The **empty string** ϵ is the string of length 0.
- The **empty language** \emptyset is the set with no strings (i.e the empty set)

Sidenote: $\{\epsilon\} \neq \emptyset$.

Definition 2. M accepts string $w = w_1 w_2 \dots 2_n, w_i \in \Sigma$ if there is a sequence of states $r_0, r_1, r_2, \dots, r_n \in Q$ where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i) \text{ for } 1 \le i \le n$
- $r_n \in F$

The language $L(M) = \{w | M \text{ accepts } w\}$ is the set of all strings accepted by M. We may also write L(M) is the language of M or M recognizes L(M).

Definition 3 (Regular Language). A language is regular if some finite automaton recognizes it.

Recall M_1 :

 $L(M_1) = \{w | w \text{ contains substring } 11\} = A.$ Therefore A is regular.

Regular Expressions

Let A, B be languages:

Union:

$$A \cup B = \{w | w \in A \lor w \in B\}$$

Concatenation:

$$A \circ B = \{xy | x \in A \land y \in B\} = AB$$

Star:

$$A^* = \{x_1 \dots x_k | \forall x_i \in A, k \ge 0\}$$

 A^* is like the powerset for a language so naturally $\epsilon \in A^*$ for all possible strings A. Another nice way to write it is

$$A^* = \bigcup_{n=0}^{\infty} A^n$$

where A^n is the strings of length n over the language A.

Regular expressions are built from Σ , members $\Sigma, \emptyset, \epsilon$ [Atomic], and by using $\cup, \circ, *$ [Composite].

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- $\Sigma^*\{1\} = \Sigma^*1$ gives all strings that end in 1.
- $\Sigma^* 11 \Sigma^*$ gives all strings that contain $11 = L(M_1)$

Closure Properties for Regular Languages

Theorem 1. If A_1, A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup).

Proof. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 and let $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . To show $A_1 \cup A_2$ to be regular we must construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing $A_1 \cup A_2$. M should accept input w if either M_1 or M_2 accept w.

We construct M as follows:

- The states of M will be the union of the states of M_1 and M_2 , plus a new initial state:

$$Q = Q_1 \cup Q_2 \cup \{q_0\}$$

where q_0 is the new initial state.

- The alphabet Σ remains the same as for M_1 and M_2 .
- The transition function δ is defined as follows: For each $q \in Q_1$, the transitions of M_1 are copied to M:

$$\delta(q, a) = \delta_1(q, a)$$
 for all $q \in Q_1, a \in \Sigma$.

- Similarly, for each $q \in Q_2$, the transitions of M_2 are copied to M:

$$\delta(q, a) = \delta_2(q, a)$$
 for all $q \in Q_2, a \in \Sigma$.

- Additionally, from the new initial state q_0 , we add transitions to the initial states of M_1 and M_2 on ϵ -moves:

$$\delta(q_0, \epsilon) = \{q_1, q_2\}$$

- The initial state q_0 is the newly created initial state.
- The accepting states F of M are the union of the accepting states of M_1 and M_2 :

$$F = F_1 \cup F_2$$

This ensures that M accepts a string if either M_1 or M_2 accepts it.

Since we have constructed a finite automaton M that recognizes $A_1 \cup A_2$, we conclude that $A_1 \cup A_2$ is a regular language.

Theorem 2. If A_1, A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 and let $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . To show that A_1A_2 is regular, we need to construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ recognizing A_1A_2 , the concatenation of A_1 and A_2 . We construct M as follows:

- States: The set of states Q in M will be the union of the states of M_1 and M_2 , along with a new initial state q_0 :

$$Q = Q_1 \cup Q_2 \cup \{q_0\}.$$

- Alphabet: The alphabet Σ remains the same as for M_1 and M_2 .
- Transition function δ : The transition function for states in M_1 and M_2 will be copied directly from the respective machines:

$$\delta(q, a) = \delta_1(q, a)$$
 for all $q \in Q_1, a \in \Sigma$

and

$$\delta(q, a) = \delta_2(q, a)$$
 for all $q \in Q_2, a \in \Sigma$.

- Additionally, we modify the transitions of M to connect the final states of M_1 to the initial states of M_2 :

$$\delta(f_1, \epsilon) = q_2$$
 for each $f_1 \in F_1$.

This ensures that after reaching an accepting state of M_1 , the automaton can move to the initial state of M_2 without consuming any additional input (via an ϵ -transition).

- Initial state: The initial state of M will be the new state q_0 , which transitions to the initial state q_1 of M_1 via an ϵ -transition:

$$\delta(q_0, \epsilon) = q_1.$$

- Accepting states: The accepting states of M will be the accepting states of M_2 , because the machine will accept if it reaches an accepting state in M_2 after processing a string in A_1 followed by a string in A_2 :

$$F = F_2$$
.

Since we have constructed a finite automaton M that recognizes A_1A_2 , we conclude that the concatenation of A_1 and A_2 is a regular language.