MarshalkoMV 23122024-171519

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 146 МГц, частота ПЧ 33 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 292 MΓ_{II}
- 2) 471 МГц
- 3) 33 МГц
- 4) 179 MΓ_{II}.

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 23 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 135 МГц?

Варианты ОТВЕТА:

1) $21.7 \text{ } \pi\Phi$ 2) $25.6 \text{ } \pi\Phi$ 3) $35.6 \text{ } \pi\Phi$ 4) $15.6 \text{ } \pi\Phi$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 3640 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 7 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 559 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 0 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 7830 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 4148 МГц до 4198 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -75 дБм 2) -78 дБм 3) -81 дБм 4) -84 дБм 5) -87 дБм 6) -90 дБм 7) -93 дБм 8) -96 дБм 9) -99 дБм

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 2.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 18 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 15.7 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- $1)\;8.2\;\mathrm{дE}\quad2)\;8.8\;\mathrm{дE}\quad3)\;9.4\;\mathrm{дE}\quad4)\;10\;\mathrm{дE}\quad5)\;10.6\;\mathrm{дE}\quad6)\;11.2\;\mathrm{дE}\quad7)\;11.8\;\mathrm{дE}\quad8)\;12.4\;\mathrm{дE}$
- 9) 13 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.34113 + 0.24694i, \ s_{31} = 0.24725 + 0.34156i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -64 дБн 2) -66 дБн 3) -68 дБн 4) -70 дБн 5) -72 дБн 6) -74 дБн 7) -76 дБн 8) -78 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 1? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{10; -10\} \quad 2) \ \{10; -3\} \quad 3) \ \{13; -38\} \quad 4) \ \{16; -59\} \quad 5) \ \{16; -17\} \quad 6) \ \{10; -24\} \quad 7) \ \{4; 4\}$$

8) {10; -3} 9) {16; -31}