# Sprawozdanie MNUM Projekt 03

Autor: TOMASZ SACHANOWSKI

Grupa: czwartek 8-10

Nr. Indexu: 276467

Nr. Zadania: 3.55

# Spis treści

| Treść zadań          | 2  |
|----------------------|----|
| Zadanie 1            | 3  |
| Cel:                 | 3  |
| Teoria:              | 3  |
| Wynik:               | 8  |
| Podsumowanie:        | g  |
| Zadanie 2            | 10 |
| Cel:                 | 10 |
| Teoria:              | 10 |
| Wynik                | 14 |
| Podsumowanie:        | 17 |
| Dodatek do zadania 1 | 18 |
| Func                 | 18 |
| bisection            | 18 |
| secant               | 19 |
| compose_task_1       | 19 |
| Dodatek do zadania 2 | 19 |
| newton               | 20 |
| mm1                  | 20 |
| mm2                  | 21 |

# Treść zadań

#### MNUM-PROJEKT, zadanie 3.55

I Proszę znaleźć wszystkie zera funkcji

$$f(x) = 0.5 *x *cos(x) - ln(x)$$

w przedziale [2, 11], używając dla każdego zera programu z implementacją:

- a) metody bisekcji,
- b) metody siecznych.

IIaUżywając metody Newton'a, proszę znaleźć wszystkie pierwiastki rzeczywiste wielomia-

$$f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$
, [a<sub>4</sub> a<sub>3</sub> a<sub>2</sub> a<sub>1</sub> a<sub>0</sub>] = [2 5 -2 3 7]

IIbProszę znaleźć wszystkie pierwiastki (rzeczywiste i zespolone) wielomianu używając do tego celu metod Müllera MM1 i MM2. Proszę porównać efektywność szukania pierwiastków przez metody MM1, MM2 i Newtona.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów,
- przybliżony wykres funkcji z p. I z zaznaczonymi zerami i punktami (lub przedziałami) startowymi,
- porównanie wyników otrzymanych przy użyciu poszczególnych metod, zawierające tablicę ze wszystkimi punktami, otrzymanymi w kolejnych iteracjach (argument i wartość funkcji) dla wszystkich metod dla wybranego punktu (lub przedziału) startowego,
- komentarz do otrzymanych wyników i wnioski,
- wydruk dobrze skomentowanych programów z implementacją metod.

#### Uwagi

- Podczas testów należy wybierać szerokie przedziały startowe (lub punkty startowe znacznie oddalone od zer funkcji), dopiero w razie potrzeby należy te przedziały odpowiednio modyfikować;
- We wnioskach dotyczących p. I powinna znaleźć się odpowiedź na pytanie: czy i kiedy każda z metod może zawieść i dlaczego?

Sprawozdanie powinno być wysłane na adres prowadzącego: a.krzemienowski@elka.pw.edu.pl.

# Zadanie 1

# Cel:

Celem zadania jest znalezienie wszystkich pierwiastków funkcji w zadanym przedziale przy pomocy wskazanych metod.

### Teoria:

Pierwiastek jest argument x dla którego funkcja przyjmuje wartość zero, czyli  $f(x_0) = 0$ . Aby wyznaczyć takie miejsca zerowe, trzeba najpierw oszacować przedziały w którym znajdują się nasze rozwiązania (pierwiastki zerowe). Jest to tak zwane **przedziały izolacji pierwiastka**. Przedział taki możemy odczytać w najprostszy sposób z uproszczonego wykresu funkcji (np. narysowanego w programie graficznym). Podstawową metodą wyznaczenia tego przedziału jest badanie iloczynu wartości funkcji na końcach przedziału – jeśli ten iloczyn jest ujemny (a funkcja ta jest ciągła) wówczas w przedziale tym znajduje się co najmniej jeden pierwiastek. Warto zaznaczyć, że taki przedział nie powinien być zbytnio szeroki i pochodna powinny być w nim monotoniczna (nie zmieniać się).

Po wyznaczeniu przedziału izolacji pierwiastka, kolejnym krokiem jest znalezienie naszego miejsca zerowego. Mamy do dyspozycji wiele metod iteracyjnych:

- Bisekcji
- Siecznych

Szybkość zbieżności metody określamy za pomocą rzędu (wykładnika zbieżności). Jest to największa liczba  $p \ge 1$  taka, że:

$$\lim_{n\to\infty} \frac{|x_{n+1}-\alpha|}{|x_n-\alpha|^p} = k < \infty,$$

k- współczynnik lub iloraz zbieżności.

p=1 metoda jest zbieżna liniowo p=2 metoda jest zbieżna kwadratowo

Im większy jest rząd metody, tym metoda jest szybsza.

Metody iteracyjne dla problemów nieliniowych są "na ogół, zbieżne tylko lokalnie.

Kulą zbieżności metody iteracyjnej nazywamy otoczenie rozwiązanie  $\alpha$  o takim promieniu  $\delta$ , że dla każdego punktu początkowego x0 spełniającego:

$$||x_0 - \alpha|| \leq \delta$$

### Metoda bisekcji

Dość naturalna metoda obliczeniowa zer skalarnych funkcji ciągłych określonych na danym przedziale [a, b] i zmieniających znak (tzn. funkcja przyjmuje na końcu przedziałów wartości przeciwnego znaku). Na mocy twierdzenia *Darboux* wiemy, że jest przynajmniej jedno zero funkcji.

# Algorytm:

1. Aktualny przedział zawierający zero funkcji  $[a_i, b_i]$  jest dzielony na dwie połowy:

$$c_i = \frac{a_i + b_i}{2}$$

- 2. Liczymy wartość funkcji w punkcie  $c_i$ .
- 3. Liczymy iloczyny  $f(a_i) * f(c_i) i f(c_i) * f(b_i)$
- 4. Nowym przedziałem będzie ten podprzedział, gdzie odpowiada ujemna wartość funkcji na jego końcach.
- 5. Procedura jest postarzana tak długo, aż zostanie osiągnięta zakładana dokładność.



Jeśli przez  $\varepsilon_n$  oznaczymy długość przedziału w n-tym kroku, to:

$$\varepsilon_{n+1} = \frac{1}{2}\varepsilon_n.$$

Dokładność rozwiązania zależy jedynie od ilości wykonanych iteracji, jest ona zbieżna liniowo). Jest to metoda zbieżna globalnie, co oznacza, że zawsze znajdziemy pierwiastek w danym przedziale, jeżeli ten tylko istnieje. Metoda bisekcji jest zbieżna globalnie( znajdzie się miejsce zerowe funkcji, choćby początkowa długość przedziału była bardzo duża).

### Metoda siecznych

Metoda siecznych różni się tym od metody bisekcji, że aktualny przedział izolacji pierwiastka dzielony jest nie na dwa równe, ale na dwa najczęściej nierówne podprzedziały, prostą (sieczną) łączącą na płaszczyźnie dwa punkty (f( $a_n$ ) ,  $a_n$ ) i (f( $b_n$ ),  $b_n$ ), przecinającą oś rzędnych w punkcie oznaczonym jako  $c_n$ , gdzie  $a_n$ i  $b_n$  to dwa ostatnio wyznaczone punkty. Nowy punkt określony jest wzorem:

$$X_{n+1} = X_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Metoda ta jest szybsza od metody bisekcji, gdyż Rząd zbieżności metody siecznych p = $(1 + \sqrt{5})/2 \approx 1.618$ . Jednakże, jest ona zbieżna tylko lokalnie, stąd w praktyce może być niezbieżna (przedział izolacji nie dostatecznie mały). Dlatego też algorytm wymaga użycia określonej ilości iteracji, gdyż rozwiązanie może nie zostać znalezione albo gdy sieczna jest równoległa do osi OX.



# Wynik:

Wykres funkcji 0.5 \* x \* cos(x) - log(x) na przedziale <2, 11>



Na postawie wykresu określone są przedziały izolacji:

Duże przedziały:

<4, 6>

<6, 8>

| EPS             | Bisekcja    |                   |             |                   |             | Sieczne           |             |                   |  |
|-----------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|--|
|                 | Przedzial_1 |                   | Przedzial_2 |                   | Przedzial_1 |                   | Przedzial_2 |                   |  |
|                 | iter        | wynik             | iter        | wynik             | iter        | er wynik          |             | wynik             |  |
| 0.0010          | 11          | 5.3876953125      | 9           | 7.27734375        | 5           | 5.387894529147541 | 7           | 7.276905962745723 |  |
| 0.00010         | 11          | 5.3876953125      | 15          | 7.27703857421875  | 6           | 5.387698378950402 | 8           | 7.276999699969140 |  |
| 0.000010        | 17          | 5.387741088867188 | 17          | 7.277023315429688 | 8           | 5.387735529347010 | 10          | 7.277023303042951 |  |
| 0.000010        | 21          | 5.387738227844238 | 21          | 7.277024269104004 | 10          | 5.387737921754509 | 11          | 7.277024151067826 |  |
| 0.0000010       | 24          | 5.387738108634949 | 24          | 7.277024388313293 | 11          | 5.387738128220748 | 13          | 7.277024364577876 |  |
| 0.00000010      | 28          | 5.387738086283207 | 27          | 7.277024373412132 | 13          | 5.387738089121902 | 14          | 7.277024372248815 |  |
| 0.0000000010    | 28          | 5.387738086283207 | 31          | 7.277024374343455 | 15          | 5.387738086603932 | 16          | 7.277024374180153 |  |
| 0.00000000010   | 34          | 5.387738086399622 | 35          | 7.277024374285247 | 16          | 5.387738086386628 | 17          | 7.277024374249542 |  |
| 0.000000000010  | 36          | 5.387738086428726 | 37          | 7.277024374270695 | 18          | 5.387738086427780 | 19          | 7.277024374267013 |  |
| 0.0000000000010 | 40          | 5.387738086430545 | 41          | 7.277024374267967 | 20          | 5.387738086430430 | 20          | 7.277024374267638 |  |

### Małe przedziały

<5, 5.5>

<7, 7.5>

| EPS             | Bisekcja |                   |            |                   |      | Sieczne           |      |                   |  |
|-----------------|----------|-------------------|------------|-------------------|------|-------------------|------|-------------------|--|
|                 |          | Przedzial_1       |            | Przedzial_2       |      | Przedzial_1       |      | Przedzial_2       |  |
|                 | iter     | wynik             | iter wynik |                   | iter | wynik             | iter | wynik             |  |
| 0.0010          | 9        | 5.3876953125      | 7          | 7.27734375        | 2    | 5.387594617550044 | 3    | 7.276760254516209 |  |
| 0.00010         | 9        | 5.3876953125      | 13         | 7.27703857421875  | 3    | 5.387741727294921 | 4    | 7.277000277488797 |  |
| 0.000010        | 15       | 5.387741088867188 | 15         | 7.277023315429688 | 3    | 5.387741727294921 | 5    | 7.277022176193655 |  |
| 0.000010        | 19       | 5.387738227844238 | 19         | 7.277024269104004 | 4    | 5.387737994017899 | 6    | 7.277024173765735 |  |
| 0.0000010       | 22       | 5.387738108634949 | 22         | 7.277024388313293 | 5    | 5.387738088776229 | 7    | 7.277024355978603 |  |
| 0.00000010      | 26       | 5.387738086283207 | 25         | 7.277024373412132 | 5    | 5.387738088776229 | 8    | 7.277024372599518 |  |
| 0.000000010     | 26       | 5.387738086283207 | 29         | 7.277024374343455 | 6    | 5.387738086371076 | 9    | 7.277024374115628 |  |
| 0.00000000010   | 32       | 5.387738086399622 | 33         | 7.277024374285247 | 7    | 5.387738086432124 | 10   | 7.277024374253924 |  |
| 0.000000000010  | 34       | 5.387738086428726 | 35         | 7.277024374270695 | 7    | 5.387738086432124 | 11   | 7.277024374266539 |  |
| 0.0000000000010 | 38       | 5.387738086430545 | 39         | 7.277024374267967 | 8    | 5.387738086430575 | 12   | 7.277024374267690 |  |

# Podsumowanie:

Obje metody wykazały możliwość znalezienia miejsca zerowego. Z powyższych tabel wynika, że metoda bisekcji jest wolniejsza i potrzebuje znacznie więcej iteracji niż metoda siecznych. Jest to ponad dwa razy więcej iteracji a przy większej dokładności nawet 4 razy więcej. Szerokość przedziału izolacji wpływa w obu metodach na szybkość algorytmu. Mniejszy przedział pozwala wykonać algorytmy w mniejszej ilości iteracji.

Ponadto dla przedziału <3,7> metoda bisekcji znalazła poprawny pierwiastek 5.38 natomiast metoda siecznych już nie. Wynik dla niej był drugim pierwiastkiem 7.27

#### Metoda bisekcji:

Wadą metody jest to, iż zbieżność ta nie jest imponująca. Ma ona parę zalet jest: ona w pewien sposób uniwersalna, ma ona zbieżność globalną, wystarczy dla niej jedynie ciągłość funkcji.

### Metoda siecznych:

Metoda siecznych może zawieść. Jeśli jest ona jedynie lokalnie, stąd w praktyce może być niezbieżna – jeśli początkowy przedział izolacji pierwiastka nie jest dostatecznie mały. Ponadto, gdy żądanie przez użytkownik dokładności są bardzo wielkie, a sama funkcja "złośliwa", metoda siecznych może cierpieć z powodu redukcji cyfr przy odejmowaniu.

# Zadanie 2

# Cel:

Celem jest znalezienie wszystkich pierwiastków rzeczywistych wielomianu przy pomocy metody Newtona oraz znalezienie pierwiastków rzeczywistych i zespolonych przez metody MM1 MM2.

### Teoria:

Wielomian stopnia n podsiada dokładnie n pierwiastków:

- pierwiastki mogą być zarówno rzeczywiste oraz zespolone
- pierwiastki mogą być pojedyncze lub wielokrotne

Do poszukiwania pierwiastków rzeczywistych możemy korzystać z metod wyznaczania przeszukiwania zer funkcji nieliniowej (np. Newton).

Jednak istnieją metody bardziej złożone, które są opracowane specjalnie dla wielomianów (wykorzystują właściwość – wielokrotna różniczkowalność).

Do metod tych należą:

 metoda Müllera (aproksymacja wielomianu funkcją kwadratową w otoczeniu rozwiązania – uogólniona metoda siecznych – MM1, wykorzystanie informacji o wielomianie jedynie w jednym punkcie, tzn. wykorzystująca do wyznaczenia funkcji kwadratowej wartości wielomianu i jego pierwszej i drugiej pochodnej w danym punkcie – MM2)

• metoda Laguerre'a.

#### **Metoda Newtona**

Metoda Newtona, zwana też metodą stycznych zakłada aproksymację funkcji jej liniowym przybliżeniem wynikającym z uciętego rozwinięcia w szereg Taylora w aktualnym punkcie  $x_i$  (aktualnym przybliżeniu pierwiastka), a następnie przyrównania do zera sformułowanej lokalnej aproksymacji funkcji f(x), co prowadzi do zależności iteracyjnej:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$



Metoda Newtona jest zbieżna lokalnie (jeśli zaczniemy ją stosować w punkcie zbytnio oddalonym od rozwiązania, to może być ona rozbieżna). Jej zbieżność jest kwadratowa.

Metoda stycznych jest szczególnie efektywna w przypadku, gdy krzywa jest bardzo stroma w otoczeniu danego pierwiastka (nie zaleca się stosowania, gdy krzywa jest w otoczeniu pierwiastka pozioma – innymi słowy pochodna w tym punkcie ma bardzo małą wartość).

Metoda Newtona znajduje tylko pierwiastki rzeczywiste.

#### Metoda Müllera

Metoda polega na aproksymacji wielomianu w otoczeniu rozwiązania funkcją kwadratową. Może być traktowana jako uogólnienie metody siecznych - zamiast interpolacji w dwóch punktach funkcją liniową (tzn. sieczną) wykonujemy interpolację w trzech punktach funkcją kwadratową. Istnieje również efektywna realizacja oparta na wykorzystaniu informacji o wielomianie jedynie w jednym punkcie, tzn. wykorzystująca do wyznaczenia funkcji kwadratowej wartości wielomianu i jego pierwszej i drugiej pochodnej w aktualnym punkcie.

#### MM1

Rozważmy trzy punkty  $x_0$ ,  $x_1$ ,  $x_2$ wraz z wartościami wielomianu w tych punktach  $f(x_0)$ ,  $f(x_1)$ ,  $f(x_2)$ . Skonstruujemy funkcję kwadratową przechodzącą przez te punkty, a następnie wyznaczymy pierwiastki tej funkcji i potraktujemy jeden z nich jako kolejne, poprawione przybliżenie rozwiązania (pierwiastka wielomianu).

Wprowadzamy zmienną przyrostową  $z = x - x_2$  i różnice:

$$z_0 = x_0 - x_2$$
  
 $z_1 = x_1 - x_2$ 

oznaczając poszukiwaną parabolę przez:

$$y(z) = az^2 + bz + c$$

Biorąc pod uwagę trzy dane punkty, mamy:

$$y(z_0) = f(x_0) = az_0^2 + bz_0 + c$$
  

$$y(z_1) = f(x_1) = az_1^2 + bz_1 + c$$
  

$$y(0) = f(x_2) = c$$

Stąd, do wyznaczenia a i b należy rozwiązać układ równań liniowych:

$$f(x_0) - f(x_2) = az_0^2 + bz_0$$
  
$$f(x_1) - f(x_2) = az_1^2 + bz_1$$

Ponieważ interesuje nas pierwiastek paraboli o najmniejszym module (tzn. położony jak najbliżej  $x_2$ ), więc do numerycznego wyznaczenia tego pierwiastka najlepiej wykorzystać wzory:

$$z_{+} = \frac{-2c}{b + \sqrt{b^{2} - 4ac}}$$
$$z_{-} = \frac{-2c}{b - \sqrt{b^{2} - 4ac}}$$

Do kolejnego przybliżenia rozwiązania bierzemy pierwiastek położony jak najbliżej  $x_2$ , tj. o mniejszym module:

 $z_{min}=z_{+} \text{ jeśli } |b+\sqrt{b^2-4ac}| \geq |b-\sqrt{b^2-4ac}|, \text{ w przeciwnym razie } z_{min}=z_{-}.$  Przed przejściem do następnej iteracji odrzucamy spośród  $x_0, x_1, x_2$  punkt położony najdalej od ostatnio wyznaczonego przybliżenia rozwiązania, tj. punktu  $x_3$ . Algorytm działa prawidłowo również w przypadku, gdy  $\sqrt{b^2-4ac} < 0$ , prowadzi to do wyznaczenia zera zespolonego.

#### MM2

Ta wersja metody wykorzystuje informację o wartości wielomianu i jego pochodnych, pierwszego i drugiego w aktualnym punkcie (przybliżeniu zera). Wersja nieco efektywniejsza obliczeniowo z powodu, iż obliczenie wartości wielomianu w k+1 punktach jest kosztowniejsze niż obliczanie wartości wielomianów i jego k kolejnych pochodnych w jednym punkcie. Wiemy, iż:

$$y(0) = c = f(x_k)$$
  
 $y'(0) = b = f'(x_k)$   
 $y''(0) = 2a = f''(x_k)$ 

co prowadzi do wzoru na pierwiastki:

$$Z = \frac{-2f(x_k)}{f'(x_k) \pm \sqrt{(f'(x_k))^2 - 2f(x_k)f''(x_k)}}$$

Do przybliżenia zera  $\alpha$  bierzemy pierwiastek paraboli o mniejszym module:

$$x_{|k+1} = x_k + z_{min}$$

Gdzie  $z_{min}$  jest wybierany spośród  $\{z+, z-\}$  w taki sam sposób jak w wersji MM1.

Podobnie jak MM1, MM2 znajduje zespolone pierwiastki wielomianu. Metoda Müllera jest zbieżna lokalnie, z rzędem zbieżności 1.84. Jest więc (lokalnie) bardziej efektywna niż metoda siecznych, jest niewiele wolniejsza od metody Newtona. Z konstrukcji metody wynika, że może ona być stosowana do poszukiwania zer rzeczywistych i zespolonych nie tylko wielomianów, ale i innych funkcji nieliniowych (analitycznych).

# Wynik



Pierwiastki wielomianu wyliczone za pomocą funkcji roots():

### **Newton**

| Iteracja | Punkt startowy    |                   |                    |                     |  |  |  |  |  |  |
|----------|-------------------|-------------------|--------------------|---------------------|--|--|--|--|--|--|
|          | •                 | 4                 | 1                  |                     |  |  |  |  |  |  |
|          | Х                 | у                 | Х                  | у                   |  |  |  |  |  |  |
| 1        | -4.0581395348837  | 170.1540580308711 | 0.3181818181818    | 7.933628167474899   |  |  |  |  |  |  |
| 2        | -3.4241628096059  | 47.4841874695916  | -1.946260167752689 | -14.579304169415323 |  |  |  |  |  |  |
| 3        | - 3.0549620725214 | 10.8149402214608  | -0.256026234945652 | 6.025504012886236   |  |  |  |  |  |  |
| 4        | - 2.9065660079964 | 1.3505357750028   | -1.492512156700246 | -8.631929231036642  |  |  |  |  |  |  |
| 5        | - 2.8820518766141 | 0. 0332518257881  | -0.945712191777129 | -0.255169129479358  |  |  |  |  |  |  |
| 6        | - 2.8814171807482 | 0.0000219275005   | -0.926714912232297 | -0.001985380334572  |  |  |  |  |  |  |
| 7        | - 2.8814167616533 | 0.0000000000096   | -0.926564754456485 | -0.000000126163282  |  |  |  |  |  |  |
| 8        | -2.8814167616531  | 0.0000000000000   | -0.926564744913323 | -0.000000000000000  |  |  |  |  |  |  |
| 9        | -2.8814167616531  | 0.0000000000000   | -0.926564744913323 | -0.000000000000000  |  |  |  |  |  |  |

Przy dalszych liczbach np. zamiast 1 wybrać 10 potrzeba 15 iteracji.

| Iteracja | Punkt startowy    |                   |  |  |  |
|----------|-------------------|-------------------|--|--|--|
|          | 1                 | 0                 |  |  |  |
|          | Х                 | у у               |  |  |  |
| 1        | 7.375356652224    | 7844.104359982050 |  |  |  |
| 2        | 5.413815325157    | 2476.082381276474 |  |  |  |
| 3        | 0.003949016682629 | 0781.968263365834 |  |  |  |
| 4        | 2.853509732667    | 0248.050454548380 |  |  |  |
| 5        | 2.025575824497    | 80.093588627872   |  |  |  |
| 6        | 1.374031648209    | 27.445581717420   |  |  |  |
| 7        | 0.784770788198    | 11.297726902040   |  |  |  |
| 8        | -0.086604407580   | 6.722050834808    |  |  |  |
| 9        | 2.032922919376    | -15.212722844532  |  |  |  |
| 10       | 0.540962524213    | 9.000421126069    |  |  |  |
| 11       | -0.845377666505   | 1.035225367226    |  |  |  |
| 12       | -0.929760643411   | -0.042307755407   |  |  |  |
| 13       | -0.926569044876   | -0.000056846818   |  |  |  |
| 14       | -0.926564744921   | -0.00000000103    |  |  |  |
| 15       | -0.926564744913   | -0.00000000000    |  |  |  |

# MM1

| Iteracja | Punkty startowe x0, x1, x2 |                      |                     |                      |             |         |                                   |                                           |  |
|----------|----------------------------|----------------------|---------------------|----------------------|-------------|---------|-----------------------------------|-------------------------------------------|--|
|          | {-10, 0, 10}               |                      | {-2,2,3             |                      | {2, -       | 2, -3}  | {-50, -49,                        | -48}                                      |  |
|          | X                          | y                    | X                   | у                    | X           | y       | X                                 | у                                         |  |
| 1        | -0.0140 +<br>0.0000i       | 6.9576 +<br>0.0000i  | 1.5195 +<br>0.0000i | 35.1465 +<br>0.0000i | -<br>2.7571 | -5.6993 | -32.877105816 +<br>11.382766213i  | 0.573901646632334 -<br>2.669456182012985i |  |
| 2        | -0.0172 +<br>0.2166i       | 7.0580 +<br>0.6164i  | 1.0109 +<br>0.0000i | 15.2417 +<br>0.0000i | -<br>2.8774 | -0.2106 | - 26.376510579 +<br>13.363875118i | -481365.906018125 —<br>1329287.732593518i |  |
| 3        | -1.1766 -<br>0.1715i       | -3.5194 -<br>2.6712i | 0.8619 +<br>0.5404i | 6.7809 +<br>6.6696i  | 2.8814      | -0.0011 | -20.090785714 +<br>14.453855359i  | -576802.628071662 –<br>378751.076674116i  |  |
| 4        | -0.9096 +<br>0.0030i       | 0.2221 +<br>0.0389i  | 0.6555 +<br>0.7599i | 3.0516 +<br>2.4015i  | 2.8814      | -0.0000 | -13.953173900 +<br>14.725133625i  | -304929.457805091 +<br>64293.605359580i   |  |
| 5        | -0.9267 -<br>0.0004i       | -0.0024 -<br>0.0048i | 0.6271 +<br>0.9171i | 0.8542 -<br>0.0556i  | 2.8814      | 0.0000  | -9.412341374 +<br>13.899543734i   | -91746.421939821 +<br>115090.725117909i   |  |
| 6        | -0.9266 +<br>0.0000i       | -0.0000 +<br>0.0000i | 0.6528 +<br>0.9406i | 0.0071 -<br>0.0344i  | 2.8814      | 0.0000  | -5.756425277 +<br>12.581348731i   | 2319.682676483 +<br>69136.187982402i      |  |
| 7        | -0.9266 +<br>0.0000i       | -0.0000 +<br>0.0000i | 0.6540 +<br>0.9398i | -0.0001 +<br>0.0001i |             |         | -2.922617144 +<br>10.972147036i   | 22167.486243304 +<br>236553.73517508i     |  |
| 8        | -0.9266 +<br>0.0000i       | -0.0000 +<br>0.0000i | 0.6540 +<br>0.9398i | -0.0000 -<br>0.0000i |             |         | -0.875252590 +<br>9.248045403i    | 15137.857253547 +<br>1700.285620649i      |  |
| 9        | -0.9266 +<br>0.0000i       | -0.0000 +<br>0.0000i | 0.6540 +<br>0.9398i | -0.0000 -<br>0.0000i |             |         | 5.52998290 +<br>7.546738994i      | 5928.909825376 –<br>3999.762855613i       |  |
| 10       | -0.9266 +<br>0.0000i       | -0.0000 +<br>0.0000i | 0.6540 +<br>0.9398i | -0.0000 -<br>0.0000i |             |         | 1.476775210 +<br>5.956743366i     | 907.106999747 –<br>3222.858823751i        |  |
| 11       |                            |                      |                     |                      |             |         | 2.001784147 +<br>4.535455841i     | -642.168305974 –<br>1419.596620488i       |  |
| 12       |                            |                      |                     |                      |             |         | 2.226829567<br>+ 3.312172665i     | 648.444990719 –<br>309.604600075i         |  |
| 13       |                            |                      |                     |                      |             |         | 2.232151177 +<br>2.296249462i     | 12.736439055 +<br>68.107562466i           |  |
| 14       |                            |                      |                     |                      |             |         | 2.082227405 +<br>1.481118292i     | 28.307112780 +<br>20.004763623i           |  |
| 15       |                            |                      |                     |                      |             |         | 1.826912307 +<br>0.846125108i     | 19.249731391 –<br>1.096745719i            |  |
| 16       |                            |                      |                     |                      |             |         | 1.505904453<br>+ 0.356281304i     | 9.645464288 –<br>5.101285504i             |  |
| 17       |                            |                      |                     |                      |             |         | 1.162390716 -<br>0.035192098i     | 4.583989924 –<br>2.798619853i             |  |
| 18       |                            |                      |                     |                      |             |         | 0.852495346 –<br>0.368527709i     | 1.664727370 +<br>0.063581096i             |  |
| 19       |                            |                      |                     |                      |             |         | 0. 649874972 - 0.<br>943757030i   | 0. 005556893 + 0.<br>144133549i           |  |
| 20       |                            |                      |                     |                      |             |         | 0. 654042975 - 0.<br>939796609i   | -0. 000674451 - 0.<br>001198952i          |  |
| 21       |                            |                      |                     |                      |             |         | 0. 653990758 - 0.<br>939811850i   | -0. 000000265 + 0.<br>00000085i           |  |
| 22       |                            |                      |                     |                      |             |         | 0. 653990753 - 0.<br>939811841i   | 0                                         |  |
| 23       |                            |                      |                     |                      |             |         | 0. 653990753 - 0.<br>939811841i   | 0                                         |  |

#### MM2

| Iteracja |                                |                            |                                                  |                                                   | Punkty startowe                                   | x0                                                              |                                      |                                                    |
|----------|--------------------------------|----------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|----------------------------------------------------|
|          | -2 -8                          |                            |                                                  | 2                                                 |                                                   | 8                                                               |                                      |                                                    |
|          | х                              | у                          | X                                                | Y                                                 | X                                                 | у                                                               | х                                    | у                                                  |
| 1        | 1.226101<br>2391082<br>13      | -<br>4.38112324<br>1495223 | 5.599845201<br>238 +<br>1.653198412<br>628i      | 237.6848496<br>04767 –<br>322.9976847<br>76859i   | 1.2171052631578<br>95 +<br>0.6326402814884<br>40i | 7.7914891103026<br>38<br>+18.26888030092<br>6476i               | 5.163092550790<br>1.994471231320i    | 537.6295101664<br>68 +<br>2591.010183082<br>371i   |
| 2        | -<br>0.934466<br>3403730<br>82 | -<br>0.10480951<br>4192177 | -<br>4.470758055<br>054 +<br>0.015075876<br>042i | 305.7877108<br>56789 –<br>5.942539107<br>302i     | 0.7428413108806<br>78 +<br>0.9097838900950<br>00i | -<br>0.8946436407917<br>58 +<br>2.2996957896487<br>31i          | 3.759075115397 - 0.<br>000525716811i | 654.9569626253<br>70 - 0.<br>328503951709i         |
| 3        | -<br>0.926564<br>8367066<br>02 | -<br>0.00000121<br>3532979 | -<br>3.322010510<br>607 -<br>0.668071940<br>422i | -<br>0.340767034<br>154 +<br>68.03172439<br>8398i | 0.6543802867912<br>91 +<br>0.9399703778800<br>37i | -<br>0.0098478248109<br>22 +<br>0.0040277262707<br>36i          | 2.363870878929 - 0.<br>989414778669i | 34.93057019087<br>7 -<br>157.9379838153<br>70i     |
| 4        | -<br>0.926564<br>7449133<br>23 | 0.00000000<br>000000       | -<br>3.002006805<br>545 -<br>0.039022708<br>619i | 7.039636281<br>266 +<br>2.583931684<br>862i       | 0.6539907532518<br>56 +<br>0.9398118406596<br>30i | 0.0000000002083<br>82 -<br>0.0000000009213<br>91i               | 1.253583319196 -<br>1.301337210448i  | -<br>32.24938139075<br>7 -<br>154.4266886956<br>0i |
| 5        |                                |                            | -<br>2.881416761<br>517 -<br>0.000000000<br>035i | -<br>0.000000007<br>115 +<br>0.000000001<br>850i  | 0.6539907532832<br>28 +<br>0.9398118406393<br>511 | 0.000000000000<br>03 +<br>0.00000000000000000000000000000000000 | 0.577010487981 -<br>1.128839411265i  | -<br>1.076666950734<br>+<br>5.678750271861i        |
| 6        |                                |                            | 2.881416761<br>653 -<br>0.000000000<br>000i      | 0.000000000<br>  000 +<br>0.000000000<br>  000i   |                                                   |                                                                 | 0. 655765188385 -<br>0.943608978952i | -<br>0.099644120266<br>+<br>0.037543463304i        |
| 7        |                                |                            |                                                  |                                                   |                                                   |                                                                 | 0.653990756897 -<br>0.939811803782i  | 0.000000586538<br>-<br>0.000000730094i             |
| 8        |                                |                            |                                                  |                                                   |                                                   |                                                                 | 0.653990753283 -<br>0.939811840639i  | 0.000000000000<br>-<br>0.00000000000000000000      |

# Podsumowanie:

Metoda Newtona poradziła sobie dobrze, znalazła rozwiązanie w dość szybkim czasie bo poniżej 10 iteracji. Niestety potrafi ona znaleźć tylko rzeczywiste pierwiastki to co jest dużym minusem. Ważny jest tu też punkt startowy, zbyt odległy przyczynia się do znacznego zwiększenia czasu znalezienia rozwiązania.

Podobnie mają się metody MM1 i MM2 dla dobrze dobranych punktów ilość iteracji jest niewielka będąca mniejsza niż przy

metodzie Newtona. Dużą korzyścią w tych metodach jest możliwość znalezienia pierwiastków zespolonych. Niestety problemem na jaki się natknąłem przy metodzie MM1 było znalezienie 3 punktów startowych dla jednego pierwiastka. Bez problemu znalazłem 3 punkty lasowe dla 3 różnych pierwiastków. Dlatego też jeden pierwiastek ma tak odległe punkty {-50, -49, -48}. Zalazłem to w sposób "brutal force". Przez 3 pętle iteracyjne od 50 do -50 dla każdej iteracji wstawiłem punkty do zaimplementowanej metody mm1 a następnie porównywałem czy otrzymany pierwiastek był tym którego szukam. Z przeprowadzonych testów metoda MM2 okazała się mniej zawodniejsza przy szukaniu punktów startowych i szybka.

# Dodatek do zadania 1

### Func

```
function [y] = func(x)

y = 0.5 * x * cos(x) - log(x);

end
```

# bisection

```
function [c, iter] = bisection(a, b, eps, iter max)
   iter = 0; % ilosc iteracji
   c = (a + b)/2; % sordek przedzialu
   value_c = func(c); % wartosc dla srodka (rozwiazanie)
   tmp_a = a;
   tmp b= b;
   while((abs(value c) > eps)&& iter <= iter max)</pre>
       % koniec gdy osiagniemy dobra dokladnosc albo ilosc iteracji
       value a = func(tmp a); % wartosci na koncach przedzialu
       value_b = func(tmp_b);
        %sprawdzamy obszar izolacji
       if(value a*value b>0)
           error('Brak obszaru izolacji');
       c = (tmp_a + tmp_b)/2; % nowy srodek przedzialu
        value c = func(c);
       if (value_a*value_c < 0) % sprawdzenie zmiany znaku</pre>
          tmp_b = c;
       if (value b*value c < 0)</pre>
          tmp_a = c;
       end
       iter = iter + 1;
   end
```

#### secant

```
function [c, iter] = secant(a, b, eps, iter_max)
    iter = 0; % ilosc iteracji
    c = (a + b)/2; % sordek przedzialu
    value c = func(c); % wartosc dla srodka (rozwiazanie)
    tmp a = a;
    tmp b= b;
    value_a = func(tmp_a); % wartosci na koncach przedzialu
    value_b = func(tmp_b);
    %sprawdzamy obszar izolacji
    if(value a*value b>0)
        error('Brak obszaru izolacji');
    end
    while((abs(value_c) > eps)&& iter <= iter_max)</pre>
        % koniec gdy osiagniemy dobra dokladnosc albo limit iteracji
        value_a = func(tmp_a); % wartosci na koncach przedzialu
        value_b = func(tmp_b);
        c = (tmp \ a*value \ b - tmp \ b*value \ a) / (value \ b - value \ a); % nowa wartosc
        % dla metody siecznych
        value_c = func(c); % wartosc dla siecnych (rozwiazanie)
        tmp_a = b;
        tmp^-b = c;
        iter = iter + 1;
    end
    if iter > iter max
       disp("Przekorczono limit iteracji");
    end
end
```

# compose\_task\_1

```
function [results] = compose_task_1()
    format long;
    results = zeros(9,10);
    eps = 0.001;
    iter max = 100;
    X = \overline{2}:0.1:11; % Nasza dziedzina
    Y = arrayfun(@(x) func(x), X); %Wartosc funkcji w dziedzinie
    % rysuje wykres funkcji
    plot(X,Y);
    % os OX
    line([2,11],[0,0],'Color','b')
    % dla 10 coraz to mniejszych eps
    for i=1:10
        [x0, iter] = bisection(3, 7, eps, iter_max);
        results(1, i) = eps;
        results(2, i) = x0;
        results(3, i) = iter;
        [x0, iter] = bisection(7, 7.5, eps, iter max);
        results(4, i) = x0;
        results(5, i) = iter;
        [x0, iter] = secant(3, 7, eps, iter max);
        results(6, i) = x0;
        results(7, i) = iter;
[x0, iter] = secant(7, 7.5, eps, iter_max);
        results(8, i) = x0;
        results(9, i) = iter;
        eps = eps/10; % zminejszam eps
    end
end
```

# Dodatek do zadania 2

### newton

```
function [iter results] = newton(x0, iter max)%(x0, eps, iter max)
    iter = 0; % ilosc iteracji
    % mamy tu tylko dwa pierwiastki
    % y to wartosc wielomianu w punkcie x0
    \% y_2 to wartosc pochodnej wielomianu w punkcjie x0
    [y, y_2] = wielomian(x0);
    % zapiansie naszych wynikow w danej iteracji
    iter_results = zeros(iter_max, 2);
    for \overline{i}=0:iter_max
    %while abs(y) > eps && iter <= iter_max x0 = x0 - y/y_2;
        [y, y_2] = wielomian(x0);
        iter = iter + 1;
        iter results(iter, 1) = x0;
        iter_results(iter, 2) = y;
    end
end
```

### mm1

```
function [iter results] = mm1( x0, x1, x2, iter max)
    iter = 0; \frac{1}{8} ilosc iteracji
    % zapiansie naszych wynikow w danej iteracji
    iter_results = zeros(iter_max, 2);
    %while abs(y) > eps && iter <= iter max
    for i = 1:iter max
        % zmienne przyrostowe
        z0 = x0 - x2;
        z1 = x1 - x2;
        [c, \sim] = wielomian(x2);
        %tworzymy układ równań do obliczenia a,b i rozwiązujemy go
        A = [z_0^2, z_0; z_1^2, z_1];
        [f_x0, \sim] = wielomian(x0);
        [f x1, \sim] = wielomian(x1);
        B = [f_x0 - c; f_x1 - c];
        [w] = linsolve(A, B);
        a = w(1);
        b = w(2);
        %wybieramy zmin jako ten o najmniejszym module
        if(abs(b + sqrt(b^2 - 4*a*c))) >= abs(b - sqrt(b^2 - 4*a*c)))
            zmin = (-2*c)/(b + sqrt(b^2 - 4*a*c));
        else
            zmin = (-2*c)/(b - sqrt(b^2 - 4*a*c));
        end
        %obliczamy kolejne przybliżenie miejsca zerowego
        x3 = x2 + zmin;
        % zapisujemy wyniki
        iter_results(i, 1) = x3;
        [iter_results(i, 2), ~] = wielomian(x3);
        % polozenie punktow
        d0 = abs(x3-x0);
        d1 = abs(x3-x1);
        d2 = abs(x3-x2);
        %Odrzucamy spośród x0,x1,x3 to przybliżenie które jest najbardziej
        %oddalone of x3
        if(d1 < d0)
            u = x1;
            x1 = x0;
            x0 = u;
        end
        if (d2<d1)
            u = x2;
            x2 = x1;
            x1 = u;
        %Przygotowujemy się do kolejnej iteracji
        x2 = x3;
iter =iter + 1;
    end
end
```

# mm2

```
function [iter_results] = mm2(x,iter_max)
   iter = 0;% ilosc iteracji
% zapiansie naszych wynikow w danej iteracji
iter_results = zeros(iter_max, 2);
for i = 1:iter_max
   [y, der1] = wielomian(x);
% wspolcynik dla 2 pochodnej wielomianu
   der2 = polyval([24 30 -4], x);
% Wybiermay pierwiastek o mniejszym module
   z1 = -2*y/(der1+sqrt(der1^2-2*y*der2));
   z2 = -2*y/(der1-sqrt(der1^2-2*y*der2));
   if abs(z1) > abs(z2)
        z_min = z2;
   else
        z_min = z1;
   end
   %obliczmy kolejne przybliżenie miejsca zerowego
   x = x + z_min;
   iter = iter + 1;
   %zapisujemy wyniki
   iter_results(iter, 1) = x;
   [iter_results(iter, 2), ~] = wielomian(x);
end
end
```