Общий вид линейного отображения

Оказывается, что любое линейное отображение можно представить в виде *матрицы* – таблицы, заполненной числами. Это мы и будем формулировать и доказывать.

Цели на этот и следующий урок

На этом уроке мы докажем первые три утверждения из списка. А на следующем уроке мы докажем четвёртое утверждение.

- 1. любое линейное отображение $f:\mathbb{R} o \mathbb{R}$ задаётся одним числом,
- 2. любое линейное отображение $f:\mathbb{R} o \mathbb{R}^m$ задаётся столбцом высоты m, состоящим из чисел,
- 3. любое линейное отображение $f:\mathbb{R}^n o\mathbb{R}$ задаётся строкой длины n, состоящей из чисел,
- 4. любое линейное отображение $f:\mathbb{R}^n o\mathbb{R}^m$ задаётся таблицей с m строками и n столбцами, заполненной числами.

Утверждения 1-3 это частные случаи утверждения 4. Действительно, число можно воспринимать как таблицу размера 1 на 1. Столбец – как таблицу ширины 1. А строку – как таблицу высоты 1. Поэтому можно было бы сразу доказать утверждение 4, и из него бы следовали утверждения 1-3.

Но мы сначала докажем утверждения 1 - 3 отдельно, чтобы лучше понять утверждение 4, которое мы будем доказывать на следующем уроке.

Дано линейное отображение $f:\mathbb{R} o\mathbb{R}$. Пусть мы знаем, чему равно f(1). Докажем, что тогда мы можем узнать, чему равно f(x) для любого $x\in\mathbb{R}$.

Действительно, так как x это число, мы можем воспользоваться вторым условием линейности: $f(x)=f(x\cdot 1)=x\cdot f(1)$. Например, если $f(1)=-\frac{1}{2}$, то $f(42)=f(42\cdot 1)=42f(1)=42\cdot (-\frac{1}{2})=-21$.

Тем самым, по значению f в единице мы можем восстановить всё линейное отображение. То есть линейное отображение из f: $\mathbb{R} \to \mathbb{R}$ можно воспринимать как число f(1), раз уж f им задаётся.

Геометрически можно представлять отображение f, как растягивание прямой в f(1) раз (воспринимая множество $\mathbb R$ как прямую).

Задача. Линейные отображения 4.

Линейное отображение $f: \mathbb{R} o \mathbb{R}^m$

Обозначение. Когда мы будем оперировать векторами в вычислениях с матрицами, нам будет удобно представлять некоторые векторы не как строку $\vec{y}=(y_1,\ldots,y_m)$, а как столбец. Вот так:

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Докажите, что любое линейное отображение $f:\mathbb{R} o \mathbb{R}^m$ задаётся столбцом высоты m.

Подсказка. Доказательство аналогично доказательству с последнего шага с теорией.

Как можно геометрически представить отображение $f: \mathbb{R} o \mathbb{R}^m$?

Пусть дано линейное отображение $f:\mathbb{R} o\mathbb{R}^3,$ и известно, что $f(1)=egin{pmatrix}6\\-2\\0.5\end{pmatrix}$. Чему равно f(4)?

Выберите один вариант из списка

 $\begin{pmatrix} 6 \\ -2 \\ 0.5 \end{pmatrix}$ $\begin{pmatrix} 24 \\ -8 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 12 \\ -4 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 2 \\ 4.5 \end{pmatrix}$

На ближайших шагах мы будем понимать линейные отображения $\mathbb{R}^n o \mathbb{R}$.

Применяем первое условие линейности

Для начала, пусть n=2. То есть мы работаем с некоторым отображением $f:\mathbb{R}^2 \to \mathbb{R}$. Пусть известно, что f(1,0)=10 и f(0,1)=-7. Попробуем исходя из этих данных понять, чему равно f(1,1).

Так как (1,1)=(1,0)+(0,1), по первому условию линейности выполнено f(1,1)=f(1,0)+f(0,1). Значит,

$$f(1,1) = f(1,0) + f(0,1) = 10 - 7 = 3.$$

Мы нашли f(1,1)=3. По сути, мы воспользовались тем, что линейные отображения согласованы с операцией сложения векторов.

Применяем второе условие линейности

Дано линейное отображение $f:\mathbb{R}^3 o\mathbb{R}$. Известно, что f(1,0,0)=8, f(0,1,0)=6 и f(0,0,1)=3.

Попробуем исходя из этих данных понять, чему равно f(5,0,0). Так как $(5,0,0)=5\cdot(1,0,0)$, по второму условию линейности $f(5,0,0)=5\cdot f(1,0,0)$. Значит,

$$f(5,0,0) = 5 \cdot f(1,0,0) = 5 \cdot 8 = 40.$$

Мы нашли f(5,0,0)=40. По сути, мы воспользовались тем, что линейные отображения согласованы с операцией умножения вектора на число.

Применяем оба условия линейности

Дано линейное отображение $f:\mathbb{R}^3
ightarrow \mathbb{R}.$

Известно, что f(1,0,0)=3, f(0,1,0)=5 и f(0,0,1)=7. Попробуем исходя из этих данных понять, чему равно f(2,3,4). Применяя сначала первое, а потом второе условие линейности, получаем

$$f(2,3,4) = f(2,0,0) + f(0,3,0) + f(0,0,4) = 2f(1,0,0) + 3f(0,1,0) + 4f(0,0,1).$$

Теперь нам осталось только подставить значения $f(1,0,0), f(0,1,0), \ f(0,0,1)$ и сделать арифметические вычисления:

$$2f(1,0,0) + 3f(0,1,0) + 4f(0,0,1) = 2 \cdot 3 + 3 \cdot 5 + 4 \cdot 7 = 6 + 15 + 28 = 49.$$

Мы нашли f(2,3,4) = 49.

Как мы увидели на предыдущих шагах, линейное отображение $f: \mathbb{R}^3 \to \mathbb{R}$ определяется своими значениями на векторах (1,0,0), (0,1,0) и (0,0,1). То есть зная f(1,0,0), f(0,1,0) и f(0,0,1) мы можем найти значение f на любом векторе.

Обобщим этот результат. Сначала введём имена для векторов из \mathbb{R}^n , являющихся аналогами векторов (1,0,0), (0,1,0), (0,0,1) в \mathbb{R}^3

Обозначение. Для удобства введём следующие обозначения векторов:

- $\vec{e}_1 := (1, 0, 0, \dots, 0)$
- $\vec{e}_2 := (0, 1, 0, \dots, 0)$
- .:
- $\vec{e}_n := (0, 0, 0, \dots, 1)$

Комментарий. Знак «:=» здесь и далее в курсе означает «по определению равно».

Другими словами, у вектора $\vec{e_i}$ равна единице i-ая координата, а все остальные координаты равны нулю. Также про $\vec{e_i}$ можно думать, как про единичный вектор, направленный вдоль i-ой координатной оси. Например, в \mathbb{R}^3 вектор $\vec{e_1}$ направлен вдоль OX, $\vec{e_2}$ вдоль OY, и $\vec{e_3}$ вдоль OZ.

Пусть дано линейное отображение $f:\mathbb{R}^n \to \mathbb{R}$. И для каждого i известно значение f на векторе \vec{e}_i . То есть $f(\vec{e}_i)=a_i$ для некоторого числа $a_i\in\mathbb{R}$. Мы хотим доказать, что f определяется набором чисел a_1,\ldots,a_n .

Пример. На прошлом шаге было $a_1=3$, $a_2=5$, $a_3=7$, и по этим числам мы могли вычислить $f(\vec{x})$ для любого $\vec{x}\in\mathbb{R}^3$.

Рассмотрим любой вектор $\vec{x}=(x_1,\ldots,x_n)$. По определению векторного пространства \mathbb{R}^n , выполнено:

$$(x_1,\ldots,x_n)=(x_1,0,\ldots,0)+(0,x_2,\ldots,0)+\cdots+(0,0,\ldots,x_n)=x_1\vec{e}_1+x_2\vec{e}_2+\cdots+x_n\vec{e}_n$$

Обозначение. В таких случаях говорят, что вектор \vec{x} выражается через векторы $\vec{e}_1, \dots, \vec{e}_n$. То есть представляется в виде суммы векторов $\vec{e}_1, \dots, \vec{e}_n$ с некоторыми коэффициентами.

Применив сначала первое, а затем второе условие линейности, получаем

$$f(\vec{x}) = f(x_1\vec{e}_1 + \dots + x_n\vec{e}_n) = f(x_1\vec{e}_1) + \dots + f(x_n\vec{e}_n) = x_1f(\vec{e}_1) + \dots + x_nf(\vec{e}_n) = x_1a_1 + \dots + x_na_n.$$

Нам будет удобнее поменять порядок множителей: вместо x_i a_i будем писать $a_i x_i$. Итак, мы получили, что $f(\vec{x}) = a_1 x_1 + \cdots + a_n x_n$.

Строка на столбец

Итак, $f(\vec{x})=a_1x_1+\cdots+a_nx_n$, где $a_i=f(\vec{e}_i)$. Объединим a_1,\ldots,a_n в вектор (a_1,\ldots,a_n) . Этот вектор нам удобнее будет записывать как строку. А вычисление значения функции f мы будем записывать как действие строки (a_1,\ldots,a_n) на столбец \vec{x} . Вот так:

$$f(ec{x})=(a_1,\ldots,a_n)egin{pmatrix} x_1\x_2\ dots\x_n \end{pmatrix}:=a_1x_1+\cdots+a_nx_n=\sum\limits_{i=1}^na_ix_i.$$

 $f(ec x)=(a_1,\dots,a_n)egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}:=a_1x_1+\dots+a_nx_n=\sum\limits_{i=1}^na_ix_i.$ Можно говорить, что мы *умножа*ем строку (a_1,\dots,a_n) на столбец $\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$.

Заметьте, что здесь мы используем слово "умножаем" в новом смысле, не имеющем отношения к умножению чисел. По сути, мы придумали операцию между строкой и столбцом, и дали ей такое же название, как и для операции умножения чисел.

Мы поняли, что любое линейное отображение $f:\mathbb{R}^n o\mathbb{R}$ задаётся строкой из n чисел.

Комментарии

Комментарий 1. Порядок в нашей операции важен: строка должна быть записана слева от столбца. Почему – узнаем, когда будем учиться умножать матрицы друг на друга. Почему мы хотим записывать (a_1, \ldots, a_n) как строку? Это мы тоже узнаем в следующем уроке, когда будем составлять из нескольких строк матрицу.

Комментарий 2. Выражение $\sum_{i=1}^n a_i x_i$ также называют *скалярным произведением* векторов (a_1,\ldots,a_n) и (x_1,\ldots,x_n) . У скалярного произведения есть много полезных свойств, о них мы поговорим в более поздних уроках.

Комментарий 3. Мы написали, что умножение строки на столбец не имеет отношения к умножению чисел. Это не совсем так. Пусть даны числа p и q. Тогда результат умножения p и q как чисел равен числу pq. Теперь будем смотреть на p как на строку длины 1, а на q как на столбец высоты 1. Результат умножения p на q как строки на столбец тоже равен числу pq (легко видеть из формулы для умножения строки на столбец). Так что в каком-то смысле умножение чисел — частный случай умножения строки на столбец.

Пусть линейное отображение $f:\mathbb{R}^4 o\mathbb{R}$ задано строкой $(-7,4,\ 2,10)$. Найдите значение f от следующих столбцов:

Заполните пропуски

$$1. f \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \boxed{ }$$

$$2. f \begin{pmatrix} 3 \\ 0 \\ 5 \\ 1 \end{pmatrix} = \boxed{ }$$

$$3. f \begin{pmatrix} 8 \\ 2 \\ 2 \end{pmatrix} = \boxed{ }$$

Что мы прошли на этом уроке

- Мы узнали, что линейное отображение это функция из одного векторного пространства в другое, которая уважает операции сложения и умножения на число. А ещё линейные отображения это основные компоненты нейронной сети.
- Мы поняли, как:
- 1. одним числом задать линейное отображение $f:\mathbb{R} o\mathbb{R}$
- 2. столбцом из m чисел задать $f:\mathbb{R} o \mathbb{R}^m$
- 3. строкой из n чисел задать $f:\mathbb{R}^n o \mathbb{R}$. В частности, мы научились умножать строку на столбец.

Что нас ждёт на следующем уроке

На следующем уроке мы

- ullet научимся по матрице строить линейное отображение из \mathbb{R}^n в \mathbb{R}^m
- поймём, как перемножать матрицу и вектор

