Model-Based Diagnosis with Multiple Observations

Alexey Ignatiev¹, Antonio Morgado¹, Georg Weissenbacher², Joao Marques-Silva¹

August 14, 2019 | **IJCAI**

¹University of Lisbon, Portugal ²TU Wien, Vienna, Austria Motivation

```
void foo(bool b)
                                                      b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                      b = false:
          X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
           if (b)
                X++;
           else
                X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                       b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}\}
           int x = 0;
 4
                                                       b = false:
          X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
           if (b)
                X++;
           else
                 X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                      b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                      b = false:
           X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
           if (b)
                X++;
           else
                X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                      b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                      b = false:
           X++;
           if (b)
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
                X++;
           else
                X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                      b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                      b = false:
          X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
          if (b)
                 X++;
           else
                X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                       b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                       b = false:
          X++;
                                                       \Delta = \{ \{3\}, \{5\}, \{6\}, \{9\} \}
           if (b)
                X++;
           else
                 X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                       b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                       b = false:
           X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}\}
           if (b)
                X++;
           else
                 X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                       b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                       b = false:
           X++;
           if (b)
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}\}
                 X++;
           else
                 X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                       b = true:
     {
 2
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}
           int x = 0;
 4
                                                       b = false:
           X++;
                                                       \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}\}
           if (b)
                 X++;
           else
                  X++;
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                           b = true:
     {
 2
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}\}
            int x = 0;
 4
                                                           b = false:
            X++;
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
            if (b)
                  X++;
            else
                                                           both traces:
                  X++;
                                                            \Delta = \{ \{3\}, \{5\}, \{7, 9\} \}
10
            assert(x != 2);
11
12
```

```
void foo(bool b)
                                                          b = true:
     {
 2
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}\}
           int x = 0;
 4
                                                          b = false:
            X++;
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
           if (b)
                  X++;
           else
                                                          both traces:
                  X++;
                                                           \Delta = \{\{3\}, \{5\}, \{7, 9\}\}
10
           assert(x != 2);
11
12
```

```
void foo(bool b)
                                                          b = true:
     {
 2
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{7\}\}\}
           int x = 0;
 4
                                                          b = false:
           X++;
                                                           \Delta = \{\{3\}, \{5\}, \{6\}, \{9\}\}
           if (b)
                   X++;
           else
                                                          both traces:
                   X++;
 9
                                                           \Delta = \{\{3\}, \{5\}, \{7, 9\}\}
10
           assert(x != 2);
11
12
```

Meanwhile in real life...

continuous integration (lots of traces!)

Comps
$$\triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$$

SD $\triangleq \bigwedge_{c \in Comps} (Ab(c) \vee F_c)$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \\ \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ & \mathsf{F}_{\mathsf{Z}_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \\ \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \\ \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \\ \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ & \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ & \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ & \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ & \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ & \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$Obs = \{\langle i_1, i_2, i_3, i_4, i_5 \rangle = \langle 1, 0, 1, 1, 1 \rangle, \quad \langle o_1, o_2 \rangle = \langle 0, 1 \rangle \}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \neg(\mathsf{i}_3 \wedge \mathsf{i}_4)) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$Obs = \{\langle i_1, i_2, i_3, i_4, i_5 \rangle = \langle 1, 0, 1, 1, 1 \rangle, \quad \langle o_1, o_2 \rangle = \langle 0, 1 \rangle \}$$

$$\mathsf{SD} \land \mathsf{Obs} \land \textstyle \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot$$

$$\begin{array}{ccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \mathsf{Obs} & \triangleq & \{i_1, \neg i_2, i_3, i_4, i_5, \neg o_1, o_2\} \\ \\ \mathsf{SD} \wedge \mathsf{Obs} \wedge \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot \end{array}$$

$$\begin{array}{ccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{Obs} & \triangleq & \{i_1, \neg i_2, i_3, i_4, i_5, \neg o_1, o_2\} \\ & \mathsf{SD} \wedge \mathsf{Obs} \wedge \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot \end{array}$$

 $\mathsf{find}\,\Delta\subseteq\mathsf{Comps}\,\mathsf{s.t.}$ $\mathsf{SD}\,\wedge\,\mathsf{Obs}\,\wedge\,\bigwedge_{\mathsf{c}\in\Delta}\mathsf{Ab}(\mathsf{c})\,\wedge\,\bigwedge_{\mathsf{c}\in\mathsf{Comps}\setminus\Delta}\neg\mathsf{Ab}(\mathsf{c})\not\vdash\bot$

$$\begin{array}{ccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{Obs} & \triangleq & \{i_1, \neg i_2, i_3, i_4, i_5, \neg o_1, o_2\} \\ & \mathsf{SD} \wedge \mathsf{Obs} \wedge \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot \end{array}$$

find $\Delta \subseteq Comps$ s.t.

$$SD \land Obs \land \bigwedge_{c \in \Delta} Ab(c) \land \bigwedge_{c \in Comps \setminus \Delta} \neg Ab(c) \not\models \bot$$

$$\Delta = \{z_2, o_1\}$$

$$\begin{array}{ccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{Obs} & \triangleq & \{i_1, \neg i_2, i_3, i_4, i_5, \neg o_1, o_2\} \\ & \mathsf{SD} \wedge \mathsf{Obs} \wedge \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot \end{array}$$

find $\Delta \subseteq Comps s.t.$

$$SD \land Obs \land \bigwedge_{c \in \Delta} Ab(c) \land \bigwedge_{c \in Comps \setminus \Delta} \neg Ab(c) \nvDash \bot$$

 $\Delta = \{z_2, o_1\}$ — minimize Δ , e.g. with MaxSAT

Multiple observations?

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3)) \\ & \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow 0) \\ & \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2)) \\ & \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge i_5)) \\ & \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ & \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(\underline{z_2} \leftrightarrow \mathbf{0}) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge i_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

Observation	$\langle i_1,i_2,i_3,i_4,i_5,o_1,o_2\rangle$	Diagnoses
Obs ₁	$\langle 0, 1, 1, 0, 1, \frac{1}{1}, \frac{1}{1} \rangle$	$D_1 = \{\{z_2\}, \{z_3\}, \{z_1, z_4\}, \{z_1, o_2\}, \{z_4, o_1\}, \{o_1, o_2\}\}\}$
Obs_2	$\langle \mathtt{1}, \mathtt{1}, \mathtt{1}, \mathtt{0}, \mathtt{1}, \mathtt{1}, \textcolor{red}{\mathtt{1}} \rangle$	$D_2 = \{\{z_2\}, \{z_3\}, \{z_4\}, \{o_2\}\}$
Obs_3	$\langle 1,0,0,0,1,0,1 \rangle$	$D_3 = \{\{z_2\}, \{z_4\}, \{o_2\}, \{z_3, o_1\}\}$

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(\mathsf{i}_1 \wedge \mathsf{i}_3)) \\ \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \mathsf{0}) \\ \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(\mathsf{i}_2 \wedge z_2)) \\ \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge \mathsf{i}_5)) \\ \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

Observation	$\langle i_1, i_2, i_3, i_4, i_5, o_1, o_2 \rangle$	Diagnoses
Obs ₁	$\langle 0, 1, 1, 0, 1, \frac{1}{1}, \frac{1}{1} \rangle$	$D_1 = \{\{z_2\}, \{z_3\}, \{z_1, z_4\}, \{z_1, o_2\}, \{z_4, o_1\}, \{o_1, o_2\}\}\}$
Obs_2	$\langle \mathtt{1}, \mathtt{1}, \mathtt{1}, \mathtt{0}, \mathtt{1}, \mathtt{1}, \textcolor{red}{\mathtt{1}} \rangle$	$D_2 = \{\{z_2\}, \{z_3\}, \{z_4\}, \{o_2\}\}$
Obs ₃	$\langle \texttt{1,0,0,0,1,0,1} \rangle$	$D_3 = \{\{z_2\}, \{z_4\}, \{o_2\}, \{z_3, o_1\}\}$

state-of-the-art approaches enumerate 96 aggregated diagnoses while

$$\begin{array}{cccc} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}} (\mathsf{Ab}(c) \vee \mathsf{F}_c) \\ & \mathsf{F}_{z_1} & \triangleq & \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3)) \\ & \mathsf{F}_{z_2} & \triangleq & \mathsf{CNF}(z_2 \leftrightarrow \mathbf{0}) \\ & \mathsf{F}_{z_3} & \triangleq & \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2)) \\ & \mathsf{F}_{z_4} & \triangleq & \mathsf{CNF}(z_4 \leftrightarrow \neg(z_2 \wedge i_5)) \\ & \mathsf{F}_{o_1} & \triangleq & \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \wedge z_3)) \\ & \mathsf{F}_{o_2} & \triangleq & \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \wedge z_4)) \end{array}$$

Observation	$\langle i_1, i_2, i_3, i_4, i_5, o_1, o_2 \rangle$	Diagnoses
Obs ₁	$\langle 0,1,1,0,1,\frac{1}{1},\frac{1}{1} \rangle$	$D_1 = \{\{z_2\}, \{z_3\}, \{z_1, z_4\}, \{z_1, o_2\}, \{z_4, o_1\}, \{o_1, o_2\}\}$
Obs_2	$\langle \mathtt{1}, \mathtt{1}, \mathtt{1}, \mathtt{0}, \mathtt{1}, \mathtt{1}, \textcolor{red}{\mathtt{1}} \rangle$	$D_2 = \{\{z_2\}, \{z_3\}, \{z_4\}, \{o_2\}\}$
Obs ₃	$\langle \texttt{1,0,0,0,1,0,1} \rangle$	$D_3 = \{\{z_2\}, \{z_4\}, \{o_2\}, \{z_3, o_1\}\}$

state-of-the-art approaches enumerate 96 aggregated diagnoses while

$$\mathbb{D} = \{\{z_2\}, \{z_1, z_4\}, \{z_1, o_2\}, \{z_3, o_1\}, \{z_3, o_2\}, \{z_4, o_1\}, \{z_3, z_4\}, \{o_1, o_2\}\}, \text{ i.e. } |\mathbb{D}| = 8$$

DiagCombine¹:

¹S. Lamraoui and S. Nakajima. A formula-based approach for automatic fault localization of imperative programs. In ICFEM, pp. 251–266, 2014.

DiagCombine¹:

1. enumerate all diagnoses for each observation

¹S. Lamraoui and S. Nakajima. *A formula-based approach for automatic fault localization of imperative programs.* In ICFEM, pp. 251–266, 2014.

DiagCombine¹:

1. enumerate all diagnoses for each observation

2. compute all "combinations"

¹S. Lamraoui and S. Nakajima. *A formula-based approach for automatic fault localization of imperative programs.* In ICFEM, pp. 251–266, 2014.

DiagCombine¹:

1. enumerate all diagnoses for each observation

2. compute all "combinations"

(exponentially) many redundant diagnoses

¹S. Lamraoui and S. Nakajima. *A formula-based approach for automatic fault localization of imperative programs*. In ICFEM, pp. 251–266, 2014.

```
D_1 { {0}, {2} } 
 D_2 { {0}, {1,2} }
```

 \mathbb{D} {

$$D_1$$
 { $\{0\}, \{2\}\}$ } D_2 { $\{0\}, \{1,2\}\}$

$$\mathbb{D} \quad \{ \{ \mathbf{0} \},$$

$$D_1$$
 { $\{0\}$, $\{2\}$ } D_2 { $\{0\}$, $\{1,2\}$ }

$$\mathbb{D} \{\{0\}, \{0, 1, 2\}, \}$$

$$D_1$$
 { {0}, {2} } D_2 { {0}, {1,2} }

$$\mathbb{D} \quad \{ \{0\}, \{0, 1, 2\}, \{0, 2\}, \}$$

$$\begin{array}{ll} D_1 & \{ \{0\}, \{2\} \} \\ D_2 & \{ \{0\}, \{1,2\} \} \end{array}$$

$$\mathbb{D}$$
 { {0}, {0,1,2}, {0,2}, {1,2} }

$$D_1$$
 { {0}, {2} } D_2

redundant diagnoses!

$$\mathbb{D} \quad \{ \{0\}, \{0,1,2\}, \{0,2\}, \{1,2\} \}$$

(a)
$$\exists_{\Delta} \forall_{D_i}$$
 $\Delta \in D_i \Rightarrow \Delta \in \mathbb{D}$

(a) $\exists_{\Delta} \forall_{D_i}$ $\Delta \in D_i \Rightarrow \Delta \in \mathbb{D}$

(b) $\exists_{\Delta} \forall_{D_i} \exists_{\Delta_i \in D_i} \Delta_i \subseteq \Delta \Rightarrow \Delta \in \mathbb{D}$

(a)
$$\exists_{\Delta} \forall_{D_i}$$
 $\Delta \in D_i \Rightarrow \Delta \in \mathbb{D}$
(b) $\exists_{\Delta} \forall_{D_i} \exists_{\Delta_i \in D_i} \Delta_i \subseteq \Delta \Rightarrow \Delta \in \mathbb{D}$
 D_1 $\{\{0\}, \{2\}\}\}$
 D_2 $\{\{0\}, \{1,2\}\}$

(a)
$$\exists_{\Delta} \forall_{D_i}$$
 $\Delta \in D_i \Rightarrow \Delta \in \mathbb{D}$
(b) $\exists_{\Delta} \forall_{D_i} \exists_{\Delta_i \in D_i} \Delta_i \subseteq \Delta \Rightarrow \Delta \in \mathbb{D}$
 D_1 $\{\{0\}, \{2\}\}\}$
 D_2 $\{\{0\}, \{1,2\}\}$

$$\begin{array}{lll} \textbf{(a)} & \exists_{\Delta} \, \forall_{D_i} & \Delta \in D_i \ \Rightarrow \ \Delta \in \mathbb{D} \\ \textbf{(b)} & \exists_{\Delta} \, \forall_{D_i} \, \exists_{\Delta_i \in D_i} \ \Delta_i \subseteq \Delta \ \Rightarrow \ \Delta \in \mathbb{D} \end{array}$$

```
D_1 { \{2\}\} } D_2 { \{1,2\}\}
```

$$\begin{array}{lll} \textbf{(a)} & \exists_{\Delta} \, \forall_{D_i} & \Delta \in D_i \ \Rightarrow \ \Delta \in \mathbb{D} \\ \textbf{(b)} & \exists_{\Delta} \, \forall_{D_i} \, \exists_{\Delta_i \in D_i} \ \Delta_i \subseteq \Delta \ \Rightarrow \ \Delta \in \mathbb{D} \end{array}$$

```
D_1 \qquad \{ \qquad \{2\} \} 
D_2 \qquad \{ \qquad \}
```

$$\mathbb{D} \quad \{ \{0\}, \{0,1,2\}, \{0,2\}, \{1,2\} \}$$

Improved DiagCombine - problem..

(a) and (b) not always apply!

no silver bullet

```
input
                      : SD, Obs<sub>1</sub>, ..., Obs<sub>m</sub>
     output : \mathbb{D} = \{\Delta_1, \Delta_2 ...\}, \mathbb{U} = \{\mathcal{U}_1, \mathcal{U}_2 ...\}
     (\mathcal{H}_1, \dots, \mathcal{H}_m, \mathcal{S}) \leftarrow \mathsf{Encode}(\mathsf{SD}, \mathsf{Obs}_1, \dots, \mathsf{Obs}_m)
 _{2} (\mathbb{D},\mathbb{U}) \leftarrow (\emptyset,\emptyset)
    while true:
              (st, \Delta) \leftarrow MinHS(\mathbb{U}, \mathbb{D})
                                                                                                                                                                                               # find a min HS of \mathbb{U} s.t. \mathbb{D}
              if not st:
                       break
 6
              foreach i \in \{1, ..., m\}:
 7
                       (st, \kappa) \leftarrow SAT(\mathcal{H}_i \cup (S \setminus \Delta))
 8
                       if not st:
 9
                                \mathcal{U} \leftarrow \text{Reduce}(\kappa)
                                                                                                                                                                                         # \mathcal{U} is MUS of \mathcal{H}_i \cup (\mathcal{S} \setminus \Delta)
10
                                \mathbb{U} \leftarrow \mathbb{U} \cup \{\mathcal{U}\}\
11
                                ReportExpl(\mathcal{U})
                                                                                                                                                                                                  # report min explanation
12
                                break
13
              else:
                                                                                                                                                                                              # if the loop was not broken
14
                       \mathbb{D} \leftarrow \mathbb{D} \cup \{\Delta\}
                                                                                                                                                                                                           # block diagnosis \Delta
15
                       ReportDiag(\Delta)
                                                                                                                                                                                                       # report min diagnosis
16
              foreach i \in \{1, ..., m\}:
17
                       if not SAT(\mathcal{H}_i \cup \mathbb{D}):
                                                                                                                                                                                                  # no more diagnoses exist
18
                                return
19
20 return
```

```
input
                         : SD, Obs<sub>1</sub>, ..., Obs<sub>m</sub>
                     : \mathbb{D} = {\Delta_1, \Delta_2 ...}, \mathbb{U} = {\mathcal{U}_1, \mathcal{U}_2 ...}
      output
      (\mathcal{H}_1, \dots, \mathcal{H}_m, \mathcal{S}) \leftarrow \mathsf{Encode}(\mathsf{SD}, \mathsf{Obs}_1, \dots, \mathsf{Obs}_m)
      (\mathbb{D}, \mathbb{U}) \leftarrow (\emptyset, \emptyset)
3 while true:
 5
 6
 7
 8
 9
10
11
12
                                  break
13
14
15
16
               foreach i \in \{1, ..., m\}:
17
                        if not SAT(\mathcal{H}_i \cup \mathbb{D}):
18
19
20 return
```

20 return

```
1 (\mathcal{H}_1, ..., \mathcal{H}_m, \mathcal{S}) \leftarrow \text{Encode}(SD, Obs_1, ..., Obs_m)
 (\mathbb{D},\mathbb{U}) \leftarrow (\emptyset,\emptyset)
     while true:
               (st, \Delta) \leftarrow MinHS(\mathbb{U}, \mathbb{D})
                                                                                                                                                                                                         # find a min HS of \mathbb{U} s.t. \mathbb{D}
 5
 6
               foreach i \in \{1, ..., m\}:
 7
                         (st, \kappa) \leftarrow SAT(\mathcal{H}_i \cup (S \setminus \Delta))
 8
                        if not st:
 9
                                 \mathcal{U} \leftarrow \text{Reduce}(\kappa)
                                                                                                                                                                                                   # \mathcal{U} is MUS of \mathcal{H}_i \cup (\mathcal{S} \setminus \Delta)
10
                                 \mathbb{U} \leftarrow \mathbb{U} \cup \{\mathcal{U}\}\
11
12
                                 break
13
                                                                                                                                                                                                        # if the loop was not broken
               else:
14
                        \mathbb{D} \leftarrow \mathbb{D} \cup \{\Delta\}
                                                                                                                                                                                                                      # block diagnosis \Delta
15
16
               foreach i \in \{1, ..., m\}:
17
                        if not SAT(\mathcal{H}_i \cup \mathbb{D}):
18
19
```

MinHS

11/14

HSD – example

MinHS

HSD - example

MinHS

HSD - example

11/14

HSD - example

11/14

• ISCAS85 circuits + single stuck-at faults

²https://github.com/alexeyignatiev/mbd-mobs

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations

²https://github.com/alexeyignatiev/mbd-mobs

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations
 - at most 100 aggregated diagnoses

²https://github.com/alexeyignatiev/mbd-mobs

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations
 - at most 100 aggregated diagnoses
 - 144 benchmarks in total

²https://github.com/alexeyignatiev/mbd-mobs

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations
 - at most 100 aggregated diagnoses
 - 144 benchmarks in total
- · approaches tested:
 - 1. DC (DiagCombine)

 $^{^2 \}verb|https://github.com/alexeyignatiev/mbd-mobs|$

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations
 - at most 100 aggregated diagnoses
 - 144 benchmarks in total
- approaches tested:
 - 1. DC (DiagCombine)
 - 2. **DC*** (DiagCombine *improved*)

 $^{^2 \}verb|https://github.com/alexeyignatiev/mbd-mobs|$

- ISCAS85 circuits + single stuck-at faults
 - 100 unique observations
 - at most 100 aggregated diagnoses
 - 144 benchmarks in total

· approaches tested:

- 1. **DC** (DiagCombine)
- 2. **DC*** (DiagCombine *improved*)
- 3. **HSD** (implicit hitting set dualization)

 $^{^2 \}verb|https://github.com/alexeyignatiev/mbd-mobs|$

ISCAS85 circuits + single stuck-at faults

- 100 unique observations
- at most 100 aggregated diagnoses
- 144 benchmarks in total

approaches tested:

- 1. **DC** (DiagCombine)
- 2. **DC*** (DiagCombine *improved*)
- 3. HSD (implicit hitting set dualization)

machine configuration:

Intel Xeon E5-2630 2.60GHz with 64GByte RAM

²https://github.com/alexeyignatiev/mbd-mobs

ISCAS85 circuits + single stuck-at faults

- 100 unique observations
- at most 100 aggregated diagnoses
- 144 benchmarks in total

· approaches tested:

- 1. **DC** (DiagCombine)
- 2. **DC*** (DiagCombine *improved*)
- 3. HSD (implicit hitting set dualization)

machine configuration:

- Intel Xeon E5-2630 2.60GHz with 64GByte RAM
- running Ubuntu Linux

²https://github.com/alexeyignatiev/mbd-mobs

ISCAS85 circuits + single stuck-at faults

- 100 unique observations
- at most 100 aggregated diagnoses
- 144 benchmarks in total

· approaches tested:

- 1. **DC** (DiagCombine)
- 2. **DC*** (DiagCombine *improved*)
- 3. HSD (implicit hitting set dualization)

machine configuration:

- Intel Xeon E5-2630 2.60GHz with 64GByte RAM
- running Ubuntu Linux
- · 1800s timeout

²https://github.com/alexeyignatiev/mbd-mobs

ISCAS85 circuits + single stuck-at faults

- 100 unique observations
- at most 100 aggregated diagnoses
- 144 benchmarks in total

· approaches tested:

- 1. **DC** (DiagCombine)
- 2. **DC*** (DiagCombine *improved*)
- 3. HSD (implicit hitting set dualization)

machine configuration:

- Intel Xeon E5-2630 2.60GHz with 64GByte RAM
- running Ubuntu Linux
- · 1800s timeout
- 10GByte memout

²https://github.com/alexeyignatiev/mbd-mobs

HSD — 2–4 orders of magnitude performance improvement

HSD — 2–4 orders of magnitude performance improvement $DC + DC^* - up \text{ to } 10^5 \text{ of individual diagnoses}$

$$\mathbf{DC} + \mathbf{DC}^{\star}$$
 — up to 10^5 of individual diagnoses

MBD with multiple observations

- MBD with multiple observations
 - optimized DiagCombine

- MBD with multiple observations
 - optimized DiagCombine
 - implicit hitting set dualization

MBD with multiple observations

- · optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses

MBD with multiple observations

- · optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses
- orders of magnitude performance improvements

MBD with multiple observations

- optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses
- orders of magnitude performance improvements

further improvements

- MBD with multiple observations
 - · optimized DiagCombine
 - · implicit hitting set dualization
 - no redundant diagnoses
 - orders of magnitude performance improvements

- further improvements
- practical deployment

- MBD with multiple observations
 - optimized DiagCombine
 - implicit hitting set dualization
 - no redundant diagnoses
 - orders of magnitude performance improvements

- further improvements
- practical deployment
 - · software fault localization

MBD with multiple observations

- optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses
- orders of magnitude performance improvements

further improvements

- practical deployment
 - · software fault localization
 - design debugging

MBD with multiple observations

- optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses
- orders of magnitude performance improvements

further improvements

practical deployment

- · software fault localization
- design debugging
- · spreadsheet debugging

MBD with multiple observations

- · optimized DiagCombine
- implicit hitting set dualization
- no redundant diagnoses
- orders of magnitude performance improvements

further improvements

practical deployment

- · software fault localization
- · design debugging
- · spreadsheet debugging
- machine learning models?
- etc...

