McCRACKEN

Investigation of an Ore-Handling Train

Civil Engineering

B. S. 1908

INVESTIGATION OF AN ORE-HANDLING CRANE

BY

ROBERT WEIR McCRACKEN

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

PRESENTED, JUNE, 1908

PARTY WILLIAM STATES

PHENITT

HAVE TOO A

EDUCATION OF SECTION AS NO SECURIOR

DESCRIPTION OF THE PROPERTY.

HINTERSONY OF BUILDING

AND STREET, AND STREET,

UNIVERSITY OF ILLINOIS

June 1, 1908

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

ROBERT WEIR MCCRACKEN
ENTITLED INVESTIGATION OF AN ORE-HANDLING CRANE
IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE
DEGREE OF Bachelor of Science in Civil Engineering
J.O. Dufour
Instructor in Charge.

APPROVED: Iral. Baker.

HEAD OF DEPARTMENT OF Civil Engineering

114894

art. 1. Description of Bridge	page 1
art. 2. Dead Loads	4
a. Loading	4
b. Positions of Truss	4
C. Reactions	4
d. Stresses.	6
art. 3. Live Load	10
a. Loading	10
b. Reactions	10
o Stresses	14
art. A., Maximum and Minimum Stresses	19
art.5. Wind Stresses	21
a. Loading	21
b. Reactions	22
c. Stresses	23
art. 6. Investigation	25
a. Tinsile Stresses	25
b. Compressiviltresses	26
c. alternate Stresses	26
art. 7. Conclusions.	32

,

Article 1 Description of Bridge.

The Ore Handling Crane, which will be investigated in the following pages is situated at the ore docks of the Illinois Steel Company as South Chicago, Illinois. It is a structure 518 feet, 6 z inches overall and consists of a dock cantilever arm, 149 feet, "I unches long; a furnace cantilever arm, 187 feet, 12 inches long; and a center span of 181 feet, 6 inches. The trusses are through riveted, of the Gratt type, and are spaced 25 feet center to center. They have curved lower chords and sloping upper chords on the cantilever arms! The general dimensions are given on the truss diagram on Plate I. The members are all rigid and those in the center span are designed for alternate tensile and compressive stresses. The wound bracing is norther

plane of the upper chord. The diagonal members are designed to take tension only. The crane is supported on two masonry walls, 188 feet center to center. The space between these walle serves as a storage yard for ore, while that outside the walls is used for coke, limestone, etc. used in the blast furnaces! (See Fig 1.) The crane may be moved along the wall and may also be swing - around the fixed tower through an angle of about 30 degrees These conditions admit of great efficiency and speed in the manner of handling the ore and Charging materials General. Elevation of Storage Yard.

3

The following invistigation consists of the calculation of the stresses in the members of the trusses forall positions of the crane; the stresses in the wind bracing; and the efficiencies of these members. No attemptively be made to calculate the efficiencies of connections on account of the lack of data.

Article 2. Dead Loads.

a. Loading. The loads used in computing the dead load stresses are those assumed by the designers. They are given on the truss diagram on Plate I, and on Fig. 2.

b. Positions of Trust It is possible to swing the crane 15 degrees of the wall wall nearest the docks. This condition varies the lengths of the cantileur arms and the center span Fig. Z. shows the position of the supports for the normal and extreme positions of the truss

c. Reactions. The reactions for all positions of the crane are computed by ordinary methods. The trusses are considered as simple branswith overhanging ands

6

Fig 2 shows the centers of gravity of the loads on the triss. The reactions are given in Table I.

TABLE I DEAD LOAD REACTION FOR CRANE.

POSITION of BRIDGE	R,	R_2 .
Normal	280100#	209900#
Swung Right	278100#	211900#
Swung Left	261200#	228800#

A. Stresses. The dead load stresses were computed by graphic statics, the stress diagrams bringshown on Plate I, Fig. 1, 2 and 3.
The stresses are given in Table II

TABLE II	DEAD LOAD STRESSES
----------	--------------------

150101	Swung Right Swung Left.										K-17/-172800	-154900	-137800	-124,900	-118300	-123800	- 136000	-152200										
0.6	Swung Riam										-193000	-179300	-155600	- 133900	-118800	-114300	-118000	-126700										
NOITIS OA I	Normal		- 10200	1	- 26200	- 52100	<u>'</u>	-118 300	-148000	-175600	-193000	-199200	-175500	-153000	- 136800	- 13/600	-133900	-140500	-128500	-110900	- 85300	- 56800	- 29800	- 9700	-11700			
MENAREDIC	Diagin Truss.	Top chords	X-1 L24[123	x-2 U23U22	X-4 U22U21	x-6 UZIU20	x-8 17201119	817617 01-X	X-12 418117	X-14 [117116	X-16 [1161115	X-19 U15U14	X-21 114113	X-23 LIBLIP	X-25 LIIZLIO	82-X	87 67 0E-X	X-32 UBUT	x-36 U7U6	x-38 16115	x-40 U5U4	x-42 U4113	x-44 LI3U2	x-46 U2U.1	x-47 U110			
BRIDGE											Y-16/+192700	+175000	+155400	+138000	+124600	+123400	+135700	+152900	1169000	+149000								
I OF	rung Righ										+202600	+207000	+180800	+155800	+133300	+114200	+118000	+127300	+138800	+135900								
NOITION	Normal		+8000	+26000	+52000	+85100	+118600	+149700	+179100	+204400	+ 220600	+ 225200	+200800	+175800	+153000	+131300	+134000	+141500	+150500	+140900	+152800	+133000	+112100	+ 85000	+ 56300	+ 29700	t 9900	
MEMBED	Diagm. Truss.	Bottom Chords	124123	727627	127227	121 120	617027	817617	11811	917177	517917	115114	114113	713612	7	017117	67017	8767	92787	172/19	17066	707	1574	1413	7767	1727	0717	
AAF	Diagn	Botte	1-1	7-3	7-5	1/1	6-1	1-1	1-13	Y-15	1-17	7-18	V-20	1-22	Y-24	K-27	1-29	1-31	1-33	1-34	K-35	1-37	1-39	1-41	1-43	1-45	1-47	1

n't)
lcon
I
N.
ABL
7

1.
Z
SSES
5
17
M
11
Z
5
1
_
r /
2
77
170
1007
1007
1007
1007 A
1D 1010
TAP LOAD
EAD LOAD
DEAD LOAD

Wertical Pasts Vertical Pasts 1-2 L23U23 + 5700 3-4 L22U22 + 17300 5-6 L21U21 + 27100 7-8 L20U20 + 41300 9-10 L19U19 + 41300
+ 617617 + 027027 + 127127 + 227227 + 227227
+ 617617 + 027027 + 127127 + 227227
+ 617617 + 027027 + 127127
+ 617617
+ 617617
1 18111811
1,011,01
13-14 617017 +
+
40500 17-18 415 415 4 110100
36500 19-20 LIALIA + A4800
28000 21-22 413413 + 42100
12500 23-24 LIZ LIZ + 30000
10000 25-26 [11 []11
27.28
34500 29-30 69119 +
25000 31-32 L8U8 + 12700
02000 36-37 66 46 + 28000
32000 38-39 L5US + 31000
40-41 64 614 + 30300
42-43 (30) + 26000
44-45 LZUZ + 16900
+ 1717 600
Down Left.
DOWN RIGHT.

article 3. Live Loads.

a Loading. The live load on this crane consists of the weight of the ore car and its load. This weight is assumed as 75 tons, making the load on one truss 15,000 pounds. The car runs on 4 axles spaced 7 feet center to center, and one-fourth of the load is considered on each asle. The leveload is, therefore, a 4-wheeled load of 18750 pounds with wheels spaced 7-foot centers The extreme position of the car is 6 feet from the end. V. Reactions. The reactions under live load are computed, considering the trussessas simple branswith overhanging ende. Positions of the load for which the reactions are computed are those which will give maximum stresses in the various members. The car at the end of the canti-

//

lever arm gives maximum lension in the upper chord members and maximum compression in the lower chord members. The position of the car is shown in Fig. 3 and 4. The reactions are given in Table III.

Fig.3.
Extreme Position of Car on Furnace Cantilever.

Extreme Position of Car on Dock Cantilever.

For maximum stresses in the violical posts the car is placed so as to give the maximum floor bram reaction. (See Fig. 5,6 and 7). These positions also give maximum stresses in the diagonals in the cantileirs arms. The computation of reactions is unnecessary for the determination of these stresses.

Max F.BR: 49700# Fig 5
Furnace Cantilever.

Max FBR=50460# Fig 6

Pock Cantilever

Max FBR=51850# Fig. 7.

Center Span.

Positions of Car for Maximum Floor Beam Reactions.

TABLE III

LIVE LOAD REACTIONS

CAR AT ENDS OF CANTILEVERS

POSITION OF BRIDGE	LOCATION OF CAR	R,	R_2
Normal	Right End Left End	-53,200.# +140,800.	+128,200.# -65,800.
Right	Right End. Left End.	-52800. +134500.	+127800.
Left	Right End. Left End.	- 50,100 +136,900	+ 125,100

TABLE IV.

LIVE LOAD REACTIONS

MAXIMUM BENDING MOMENTS IN CENTER SPAN

Posi	TION	REA	CTION	RI.	BENDING MOMENT					
OF CAR. POSITION OF BRID				RIDGE.	POSITION OF BRIDGE.					
Point	Wheel.	Normal.	Right.	Left.	Normal.	Right.	Left.			
0	1	68400	67300	64600	444,000	657,000#1	1,054,000			
1					1724,000					
2					2,609,000					
3	2	48300	43600	41000	3,130,000	3264,000	3,339,000			
4					3,254,000		3,339,000			

TABLE V.

LIVE LOAD REACTIONS MAXIMUM SHEAR IN CENTER SPAN.

Pos	SITION	RE	ACTION	I RI.	SHEAR							
OF	CAR	POSI	TION OF	BRIDGE								
Point	Wheel	Normal.	Right	Left.	Normal	Right	Left.					
0	1	68400	67300	64600	21400	31700	51200					
1	/	59100	58400	55800	59100	58400	55800					
2	/	50000	49600	47200	5000	49600	47200					
3	/	41000	4/100	38400	41000	4/100	38400					
4	/	32000	32300	29700	32000	32300	29700					
5	/	23000	23500	20900	23000	23500	20900					
6	/	13900	14800	12200	13900	14800						
7	1	4900	6000	3400	4900	6000	3400					

19

For the center span, the carine the spon gives maximum compression six the upper chord members and maximum tension in the lowers chord members. The position of the car, the reactions, the binding moments, and the shears for all positions of the trust are given in Tables IV and V. C. Stresses. The stresses for the various loadings given above are computed by graphic statics and ordinary algebraic methods. The diagrams for stresses with the car at the ends of the truss are shown on Plate I, Fig4, 5,6,7,8 and 9.

The stresses are given in Table D.

		ON OF BRIDGE	Swung Bight Bwung Left	13000- 21100 41300- 45300 63900- 68000 76900- 78600 76900- 78600 1300- 45300
		CAR ON POSITI	Normal.	- 37500 - 73600 - 73600 - 73600 - 37500 *- 8500
N	STRESSES.	OF BRIDGE	Swung Right Swung Left	9900 + 17000 100000+ 17600 35600 + 17600 64000 + 105000 146000 + 161000 169000 + 185100 185000 + 120000 185000 + 194000
TABLET	1E LOAD 57	CAR AT POSITION	oft Normal. Swull	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
	TIME	PEND. BRIDGE	th Swing Lot	+ 220500 + 212500 + 201500 + 154700 + 58000 + 58000 + 25000 + 1800
		V OF	Swung Righ	+ 22000 + 86000 + 144600 + 190000 +217000 +235000 +235000 +235000 +235000 +235000 +236000 +236000 +236000 +236000 +236000 +174600 +176
		CAR A POSITION	Normal-	+ 22000 + 144600 + 144600 + 190000 + 235000 + 235000 + 233000 + 235000 + 235000 + 235000 + 205000 + 205000 + 20000 + 30000 + 4000 0 0 0
		IBER.	Truss	124123 123122 123122 122 120 120 130 130 130 130 130 1312 130 1313 131 1313 1313 131 1313 131 1313 1313 131 1313 131 131
		MEN.	Diagim	ロイントントントントントントントントントントントラーファーラットのこののにあるにはいるがあれるのである。

LIVE LOAD STRESSES.

											,	16												
TAR ON CENTER SPAN.	wung Bigh								8700 1 12900 + 20700	+ 41100 +	63600 +	+ 76900 +	79800 1	76900 t	63600 +	3730+ 41100 + 45000								
BIGHT END OF BRIDGE	ing Right Swung Left							Au	+	35300 -45000 t	64000 - 75000 F	+	+	10000191	-185000 t			7						
ND. CAR AT RE. POSITION	Normal.	0	0	0	0 0	00	0	0		-20000 - 33800-	182000 - 63500-	154700 - 93900-	-122000-	-150000-	-174800-	1	- 198500	-202500	001161-	1 56900	- 97500	- 27000	- 32400	
40	wung Right.	27800	21800	86000	145200	217000	229500	232100	220000-220000-208000	224800-217000-20	-199000-	-170700-	39600-137500-12	04300-104600-9	- 69500-	29900 - 34600 - 2				2		_		
MEMBER. POSIT	Diagim Truss. Norma.	(c. 42)	١	126 1/21 -	UZI UZO -	x-10 1/19 1/18 -217	1111	- 111 UIG -	4115	1114	1113	1- 2117	11/2 1/10 -1	1	x-30 49 48 - 67	1871	U7 U6	x-38 1615 0	X-40 US UA 0	×-42 1/41/3 0		x-46 U2 U, 0	0 07117 Lb-x	

	1
L	1
3	1
7	

LIVE LOAD STRESSES

	T - 1			Vien.										17	7								,				
R SPAN	Swungleft									- 55300	- 56200	- 50000	- 42600	1	4 23500	+ 13600	+ 3700	0	+ 58400	+16600							
N CENTE	Swing Bigh								***	34000	1	,	5- 45500	0-36800	0+ 26500	00091 +0	1 6300	0	37600 + 16600	37600 + 58400							
CAR O	T. Normal.								P.R.*	- 23/00-3	00895 - 0	- 53000-	00054-0	0- 36400	+	+ 15200 + c	+		+	+					,		
BRIDGE	Swung Right Swung Lef									25500-45200	000009 + 0	00099 +c	1 64000	000009 +0	1	0- 50500	0-32100	2 + 4000	+	0-35000		,					
AT RIG	Swung Righ									1	00185 +0	t 61500 t	ot 60000	t 57000 t	0- 57000	00184 - 4	00016 -	0+ 2000	00021 -6	00861 + 1	0	^	0	0	0		
CAR	Normal		0	0	0	0	0	0		1 /0000	+000019 +		+ 63500 t	000009 +	000009 -	- 52000	- 33600	+ 10001 +	- 000001 + 1	- 6300	+ 20700	+ 7800	- 22000	- 51000	- 86500	00016 -	
T END.	: Swung Left								00	24000	+ 000081 -	+00268 -1	0- 58000	- 67500 +	005/9 + 0	+	10800 + 10800	t 65000	1	00091 -						m Left.	in Right.
ON OF	Swung Right			0					10		00021 -	- 40000	000009 -	1	4 70000		+ 12000 t	+ 70300 +	- 17800	- 45200						* DL-Down Left.	D.R. DOWN
CAR	Normal.		1	- 89000	1	- 43000	- 23300	- 5000	- 20500	-33500	19000	- 43000	- 64000	- 75000	+ 75000 t	+ 78500+	+ 78800 +	+ 73700	- 33000	- 33000	0	0	0	0	0	0	
MEMBER.	Truss.	Piagonals.	22/182	1217227	1211120	6117027	8117617	1118117	117 116	9117517	UISLIA	1119 113	113 612	117217	01/7017	6/10/7	9/767	11187	17977	17077	9711	57917	U514	1/4/3	1375	172/7	The second secon
ME	Diagm.	Piage	6-3	4-5	1-9	8-9	11-01	67-21	14-15	16-17	61-81	20-21			26-27	62-82	30-31	32-33	33.34	34.35	3536	37-38	39.40	24-12	4-3-44	45.46	

TABLE VI	LIVE LOAD STRESSES	POSITION OF BRIDGE POSITI	Normal Swung Right Swung Left Normal Swung Right Swung Left Normal Swung Right		23 1/23 + 15500	+	20U20 + 52000 19L19 + 32200	+	+ 4000	+ 48000+ 75700+ 16200 - 38000 - 28500 - 14500 + 51000+ 6000+	+ 38000+ 35500+ 35000 - 57300 - 55000 - 58500 + 47000+	+ 56900+ 53000+ 51200 - 56000 - 53000 - 56100 + 40200 + 40000+	+ 66000+ 62000+ 59500 - 53100 - 50200 - 52800 + 32000+ 32300 +		1 - 66000 - 62000 - 59500 + 53100 + 50200 + 52800 - 23000 -	- 69000 - 65000 - 62000+ 45500+ 42500+ 44500 13/10 - 14/00 -	0 - 6100 - 61000 - 61000 - 6100		+	37/3 0 + 56700	7/2	1.11 0 + 15000		
		MEMBER	FUSS	1 Posts	123 1123	121 1/21	02/102	811181		16016			12112	111/111	101110	6/767	9/797	5175	4 114	1343	2/127	1/1/17		
		MEN	Diag'm	Vertical Posts	3-4		7 01-6	7 31-11	7	15.16 1	7	7	13-84 [7 92-57	7		36-37	38-39 [40-41. 6	42-43 1	44-45 1	46.47 6		

Maximum and Minimum Stresses.

The maximum and minimum stresses for all members of the trues are given in Table III. These stresses are combined from the results in Tables II and II.

MAXIMUM AND MINIMUM STRESSES

													2	? 0	>												
55	MINIMUM	+ 5700	+79300 +17300	+27100	+37500		+43100	+45700	+50900	+20900	-26400	-31300	-41800	0	+61800	-65300	-56700	+21900	13/000	+ 30300	+26000	+16900	+5500				
Stress in Lbs	Maximum	123UB3 + 21200	+ 79300	+ 926a	120 Uzu +103000	713/119 +1068cc	LIBUIS + 108600	LITUIT + 111200	+207700	115U15 +212900	+ 91300	+99000	12012 + 36000	0	100110 - 76000	+67500	+74600	+87700	+ 96800	+90800	+ 91800	+75600	+20500				
Vertical Posts	Member	627627	122 122	121 UZI	rsolled	617617	811817	11/11/17	917917	115015	LIAUM	EID E17	7/12/18	11/11/11	01/10/17	6067	8087	90 97	5057	4047	1303	1202	1/1/1				
55	Member Maximum Minimum Member Maximum Minimum Member Maximum Minimum	-26000	-39100	-52300	-55000	- 54 800	-55100	-41400	0	0	+15500		+36000	+47500	- 70000	173600	+61800	+63700	-37200	-11500	-15200	-27000				1	
Stress	Maximum	123422-116000	122 UZI -128100	121120-126300	120019-124000	119 118 -122800	001811-118100	LITUIG-100400	LIGUIS - 106600	U16615 -111300	UISLIA-109000	UIALIS -103500	U13L12-111700	VIZLI1-109000 +47500	111 U10 +86200	- 76500	-77100	-81800 +63700	+160400-37200	+139000 -11500	-94900 -15200	-95800	-111500	-120500		-124600	
Diag-	Member	123022	122221	121120	120019	87617	110 817	711/16	116U15	V16615	UISLIA	UIALIS	U13612	VIZLII	DIN 117	6/1017	8767	1871	10917	17007	0776	1665	U514	U413	U322	1720	
255 .b5.	Minimum	00201-	- 8000	-26200	- 52100		1	-148000	1	-172800	-109900	- 70000	-46300	- 39000	-37400	- 54400	-85300	-128500	006011-	-85300	- 56800	- 23800	- 9700	-11700			
Stress in Lbs	Maximum	- 38000	- 29800	-112200	-197300	-276500	-335300	-377500	-407700	-413000	-424000	-380500	-328000	-276400	-281600	-321000	-352200	-327000	-313400	-276400	-213700	-127300	-36700	-44100			
Upper	Member	124023	123422	UzzUzi	UziUzo	6iDozD	NI9UB	UIBU17	21711	UIGUIS	UISUIA	UIAUIS	UISUIZ	UIZUIO	eloil	8060	1801	1716	1615	U5U4	U4U3	U3U2	UZUI	071/1			
		+ 8000	+ 26000	+ 52000	4 85100	+118600	+ 149700	+179100	+204400	009661+	+154100	4110100	+ 70000	+ 46000	+ 37300	+54100	+86000	+125800		+152800	+133000	4112100	+ 85000	+ 56300	+29700	1 9900	
2	Mombel Maximum Minimum	124/23 + 30000 +	+112000+	22/21 +196600 +	121/20 +275100+	120/19 +335600 +118600	001641400218848760	118117 +415600 +179100	LI7L16 +437400 +204400	LI6LIS +453600+199600	L15L14 +46200 +154100	L14/13 +427300 + 110100	+3808co + 70000	LIZLII +327600 + 46000	+283300 + 37300	+296700 +54100	+353400 +86000	+375000 +125800	176/70 +343000	+353800 +152800	+338600 +133000	+316700 +112100	+276000 + 85000	+212300 + 56300	+126700	+ 36900 +	
Bottom	Mombe	124123	227627	12227	121/20	617027	817617	11811	917117	217917	115/14	114113	713715	117217	111710	67017	8767	92787	1767	17016	5797	1514	1413	7757	1727	07/7	

Article 5. Wind Bracing.

a. Loading. The fixed loading for the wind stresses as given by the designers is 20 pounds per square foot of exposed surface of both trusses and also a moving load of 6000 pounds on the car. For this invistigation a dead wind load of 300 pounds perlinear foot of trust is used. This is the figure recommended and used by valious railroads and consulting engineers. The moving load of 6000 pounde is used in this investigation. The dead panel load for the dock cantilever-arm is 20.79×300= 6240 pounds; for the central span 22.69 × 300 = 6800 pounde; for the furnace arm 21.42 x 300 = 6400 pounds. For the live load it is sufficiently accurate to consider the 6000 founds concentrated at a panel point. The total cound load is

considered is concentrated in the plane of the upper chood. This condition obtains on account of the construction (see Fig. 8), there bring no lateral bracing in the plane of the lower chord or of the floor system.

Fig. 8.
Section at UIILII
Showing Floor Bms.
Stringers, etc.

b. Reactions. The reactions for all loadings are computed by considering the bracing as fartially continuous in the panel over the roller tower, i.e. no shear is transferred through this panel.

The live load reactions are computed with the car at the ends for the maximum stresses in the cantilever members, and with the center at each successive point in the center span These reactions together with those for the dead load are given in Table III.

c. Stresses. The stresses in the wind bracing were computed by the ordinary VX see & method These stresses are given in Table IX.

TABLETTI.

REACTIONS FOR WIND BRACING.

Reaction for	R,	RZ	R3
Pead Load.	-53000	+34650	+67900
Car at Right End.	+6000	+4800	-4800
Car at Left End.	0	-4250	+10250
Car on Center Span.			
Point 1	0	+5300	+ 700
2	0	+4500	+ 1500
. 3	0	+3800	+2200
4.	0	+3000	+3000

TABLE IX.

STRESSES IN WIND BRACING.

	OOLO			CACTIVO.
Panel	Member	Max. Shear	Sec o	Stress.
23	Strut	15400	1.0	+ 15400
	Diagonal	1	1.305	- 20100
22	5	21600	1.0	+21600
	D.		1.305	-2.8 200
21	5	27800	1.0	+27800
	D		1.305	- 36300
20	5	34100	1.0	+ 34100
	D		1.305	- 44500
19	5	40300	1.0	+40300
	D		1.305	-52600
18	5	46500	1.0	+46500
	P		1.305	-60700
17	5	52800	1.0	+52800
	D		1.305	-69900
16	5	0	1.0	+59000
	D		1.305	0
15	5	33500	1.0	+33500
	D		1.35	-45200
14	5	26100	1.0	+26100
	D		1.35	-35200
13	5	19300	1.0	+19300
	D		1.35	-26000
12	5	12500	1.0	+12500
	D		1.35	- 16900
11	5	5700	1.0	+ 5700
	D		1.35	-7700
10	5	10200	1.0	+10200
	D		1.35	-13800
9	5	17500	1.0	+17500
	D		1.35	-23500
8	3	24800	1.0	+24800
	D		1.35	-33500
7	5	47800	1.0	+47800
	D		1.32	-63000
6	5	41400	1.0	+41.400
	D		1.32	-54600
5	5	34900	1.0	+34 900
	D		1.32	-46000
4	9	28500	1.0	+28500
	D		1.32	-37600
3	5	22100	1.0	+22100
	D		1.32	-29200
2	5	15700	1.0	+15700
	D		1.32	-20700

Article 6. Invistigation.

a Tension Members. The allowable stress for tension members is taken at 16000 pounds per square inch. Table X shows the results of the investigation of the tension members.

The maximum stresses in Table X. do not include the wind stresses in the upper chord members. Hence the tabular efficiencies are high. To show that the members are really efficient a typical computation is here shown,

The maximum wind stress in any member occurs in U16 U15 and its value is 200,400 pounds The area of the member is 44.74 square niched. Therefore, the unit stress due to wind loads is 200,400 = 44.70 pounds. The maximum unit stress due to dead and live loads is 9,450 founds. The total unit stress is, then, 9,450 +44.70=13920 pounds which gives an efficiency of 1148 per cent, using 16000 pounds as the allowable unit stress.

De Compression members The allowable unit load for compression members is calculated from the formula

P=16000-70 t, in which,

P= allowable unit load in pound,

l= length of member, in inches,

and r= least radius of gyration in inches,

The results of the invistigation of

the compression members are shown in

Table XI.

The box girders under the fixed and roller towers are not investigated.

c. alternate Stresses! Wimbers which are subject to an alternation of stress are investigated in this section. The stress used is the sum of the actual stress and 50 per cent of the smaller of the two stresses. The allowable unit-loads given in sections a and b of this article are used here.

The results of the investigation of these members are given in Table XII.

TABLE X.

INVESTIGATION OF TENSION MEMBERS

	Maximum			1/nit s		
Member.	Stress.	Section.	Sa.In.	Unit S Actual	Allowable	90
Topchords						
L24 U23		25 12"x 202#	11.56	3290	16000	486.0
U23 U22	-29800	21312" x 202#	11.56	2580	do	620.0
U22 U21	-112200	25 12"×25#	14.20	7910	do	202.0
U21 U20	-197300	2512"x25#	20.58	9600	do	166.8
1/20//10	-276 600	25 ide 1.9"x 1" 25 15"x 40#	2870	9650	-1	1660
020019	-276500	1Cov.Pl. 19"x 78"	28.70	9650	do	166.0
U19418	-335300	2[3 15"x 40#	34.40	9750	do	164.1
		1Cov. Pl. 19"x 8"				
UIB UIT	-377500	25 15"x 50",	37.98	9930	do	161.0
		1 Cov. Pl. 19x2"				
017 016	-407700	25 15" X50# 5	43.29	9430	do	169.8
		25 ide P1.12× 76				
U16 U15	-413000	1Cov. Pl. 19"x 16 215 15"x 50#	44.74	9200		174.0
U15 U14.	-424000	25ide Pls12xt	1	9200	do	
	72400	1Cov Pl. 19"x 8"	1	31,00	40	169.1
UIAUI3	-380500	215 15" x 45#	3924	9680	do	165.1
		25ide Pl. 12x16				
		1COV Pl. 19x8		2.00		
013012	-328000	25 15" x 45#	35.04	9380	do	170.8
UIZUII	-276100	1 Cov Pl. 19x2 2 5 15" x 40#_	3-06	0000	-/	1700
011010	-276400	100 Pl 19x76	30.95	8920	do	119.2
Uio Ug	-281600	25 15"x40#	32.08	8750	do	182.8
		1 Cov. Pl. 19x2"			ao	
U9U8	-321000	2 [s 15x 50*	35.74	8700	do	184.0
		100 V.Pl. 19X 3"				
UBUT	-352200	2[s 15" x 50"	37.98	9280	do	172.4
U7U6	-327000	1 COV. Pl. 19"x2" 2 [5 15" x 40#	34.40	9500	1	1683
0,00	2 7000	1 Cov. Pl. 19"x 8	24.40	9500	do	168.3
U6 U5	-313400	2 Es 15" × 40#	32.08	9760	do	163.9
		1 Cov. Pl. 19"x ="		,,,,,,	40	,
U5 U4.	-276400	25 15" x 33#	28.36	9730	do	164.5
11-11		1 Cov. Pl. 19X 2"				
U4U3	-2/3700	25 15" x 33#	25.98	8200	do	195.0
U3 U2	-127300	1 COV.Pl. 19" x 76" 2 [5 12" x 25#	1020	000		1700
U2 U1	- 36 700	25/2 x201#	14.20	8970	do	178.2 509.5
VILO	-44100	2 [5 2" x 202"	11.56.	3/80 3820	do	419.6
				0020		117.0
	<u> </u>					

TABLE X. INVESTIGATION OF TENSION MEMBERS.

_	11/201105	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Member	Maximum	Section		Unit S		
MEMBER	Stress	06011011	Sq.In	Allowable	Actual.	%
Diagonals						
- 1	-116000	4155×32×16	12.62	16000	9180	174.2
L22 L/21	-128100	4155 x 35 x 16	15.88	do	8080	198.1
121 1/20	-126300	ALS 5"x 32"x 2"	1A.25	do	8850	180.8
L20 L/19	-124000	465"x 31"x 1"	do	do	8700	184.3
119 118	- 122800	465 5 x 3 2 x 2"	do	do	8610	185.9
L18 U17	-118100	4155×31×1	do	do	8280	193.2
L17U16	-100400	A 65 5 x 3 2 x 16"	12.62	do	7950	201.4
L16U15	-106600	2 [5 12" x 25"	14.20	do	7500	213.4
U16L15	-111300	215 12" × 30#	16.01	do	6950	230.0
U7 16	- 94900	165 × 35 × 8	10.89	do .	8720	1835
116 15	- 95800	ALS 5"x 3 7" x 3"	do	do	8800	
U5 LA	-111500	ALS 5 x 3 2 x 8711	12.62	do	8800	181.6
U4 L3	-128500	ALSS" x 3 1" x 16 111	14.25	do	9000	_
U3 LZ	-125 900	165×32×16	15.88	do	7920	202.0
UZLI	-124600	485" 31×2"	14.25	do	8730	183.1
	15 in Wir	4	1.20		0,50	100.1
Diagona Uz3Uzzi	- 20100	16 3x25"x 5"	1.37	16000	14690	109.0
U22U21'	- 28200	16 3"x 3"x 3"x		do	15640	102.1
(121 (120'	-36300	1 L A" × 3" × 16"	1.80	do	14180	
1120 119'	- 44500	263"x 22" 5/16"				102.9
U19 418'	-52600	215 A"X 3" X 5"	2.79	do	15950	100.2
U18 U17'	-60700	215 A"X 3" X 3"	3.73			113.6
V17 U16'	-69900	2654×3"×2"	4.33	do	12130	114.1
U16 U15'	0	264×3"× 2"	5.62	do	12430	128.7
U15 U14'	-45200	264×3× 3"	5.62 5.62	do	9050	
U14U13'	- 35200	11 1'4 3" I"		do	8050	198.8
U13 U12'	- 26000	1/ 4×3" × 8"	2.68	do	13150	114.0
U12 U11	-16900	16 3"x3"x 76"	2.17	do	12000	133.3
U12 -11	-7700	11 3×3"× 16"	2.47	do	11480	139.4
U10 U9'	- 13800	165"	1.47	do	5240	305.0
49481	- 23500	16 3" ×3" × 16"	1.47	do	9400	170.2
	- 33000	1/2 3 x0 x 76	1.47	do	16000	100.0
UBUT!		264×3×167"	5.12	do	6450	228.2
4706	-63000	215 4× 3" × 163"	5.12	do	12300	130.0
116 45	-54600	215 3"X 3" X B"	3.60	do	15150	105.7
U5 U4'	-46000	163"x3"x5" 167"	2.94	do	15640	102.2
U4U3'	-37600		2.68	do	14020	114.0
U3UZ'	- 29200	16 3x3"x 8"	1.80	do	16200	98.8
UzUi'	-20700	16 3"x 22 x 76"	1.37	do	15/00	105.9

TABLE XI. * INVESTIGATION OF COMPRESSION MEMBERS.

Member	Maximum Stress	Section	Area	Unit L	oad.	Effy
		000,707	Ja In	Allowale	Actual	10
	chords.	11 1-4				
L24L23	+ 30000	2[512" x 202#	12.06	12300	2480	495.0
	+112000	25 12"X 25#	15.70	12000	7130	168.1
LZZ LZ1	+196600	2[s 12"x 25#	23.70	11400	8300	137.3
121 120	+275100	25, de Pl 9x2" 25 15 "x33"	30.49	13100	9010	145.1
L20 L19	+335600	1 COVPI 19"x 76 2 ES 15" X 45# 1 COVPI. 19"x 76	37.17	13000	9020	144.0
119/18	+38/200	2515"XAO#	42.90	12900	8870	1153
		100 V. Pl. 19" x 8" 28 ide Pl. 12" x 8				
L18 L17	+415600	2[5 15" × 45# 1Cov. 19" × 5"	45.85	12900	9070	142.1
L17L16	+437400	25/de P1.12x/6" 2[5/5"x45# 1Cov.P1.19"x8"	48.86	12700	8950	1420
LI5LI4	+ 463200	25 15"x 50#		12700	8950	142.0
L14L13	+427300	1 Cov. Pl. 19"x 8" 251 de Pl 12"x 7" 2 [5] 5"x 50# 1 Cov. Pl 19"x 16	17(1	12700		
LIBLIZ	+380800	251dePl. 12x3' 25 15"x50# 1Cov. 19"x 5"!		12700	9230	137.4
L12L11	+377600	2[5]5"X40"5" 1 Cov. Pl. 19"X	35,40	12700	9230	137.4
L11 L10	+283300			12700	9280	136.9
	+296700	160 X Pl 19" 5"		12700	8390	151.2
1918	+353400	1000 P/19X16		12700	8800	144.2
	+375800	2[515"x50#5" 1Cov. Pl. 19"x 8"	41.30	12700	9080	139,9
1710179	+343000	Box Girde				
17916	+353800	21515×50# 1COUP! 19×2"		12700	9080	139.9
L6 L5	+ 338 600	1 COV. Pl. 19 x 5 1 1 COV. Pl. 19 x 16	37.80	12700	8960	141.7

INVESTIGATION OF COMPRESSION MEMBERS.

			200	,,,,,		2,00.
Member	Maximum	Section	Area	Unit	Load	Efficy
MEMINE	Stress	Jechon	Sq. In.	Allowale	Actual	%
Bottom	chords.					
1514	+316700	2515"×45"	35 98	12800	8790	14.57
2024		1COVP1 19x2"	0.50	2000	0,00	140.
L4 L3	+ 276000	25 15" x 40#	31 83	12900	8670	1188
2420	+276000		, , , ,	12900	00 70	148.8
12/2	1010305	1COV P1 19"x 8"	2000	11300	0150	1300
L3L2	+212300	2 [5 12 x 25#	24.02	11300	8650	130.8
1 1	11-6-2	251deP19"x16	1070			
1261	+126700	25-12" x 25#	14.70	12000	8610	139.40
L160	+36900	2512" x 202"	1206	12400	3060	406.0
Vertical	Posts.					
123423	+ 21200	25 12" X 202#	12.06	12400	1760	704.0
122 U22	+ 79300	do	do	12100	6580	184.0
L21 U21	+ 92600	do	do	11800	7680	1468
L20 U20	+103000	do	do	11300	8550	132.0
L19 L19	+106800	do	do	10500	8850	118.6
L18 118	+108600	do	do	9600	9000	106.6
L17 U17	+111200	do	do	12600	9220	136.5
L16U16	+207700	2 [5 15" x 40#	23.52	12600	9200	137.0
L15U15	+212900	do	do	12600	9150	/37.9
L6 U6	+87700	2 13 12 1 × 202#	1206	12600	7280	173.0
15 45	+96800	do	do	12600		_
LAUA	+96800	do			8030	156.9
L3 U3	+91806		do	1/200	8030	139.3
LZLIZ		do	do	11800	7600	1550
L, U,	+ 75600	do	do	12300	6280	196.0
	+ 20 500	do	do	12600	1700	740,0
Wind B	racing	4156" x 4" x 8"	1		266-	
Tower Struts	+52800	426 84 8	14.44	9500	3660	260.0
All other		16-11-111.511				
STRUTS	+41400	46 31x221x 511	6.48	7000	6370	110.0
	·					
					:	
						and the state of t
					-	
						Í

TABLE XII.

INVESTIGATION OF MEMBERS SUBJECT TO ALTERNATE STRESS.

SOUSECT TO ALTERIATE OTRESS.						
Member	Stress	Section	Area	Unit	Load.	Efficy.
1110111001	Used.		Jq.In.	Allowalle	Actual	1/0.
Diagone	1/5					
U15 L14	-116800	2[312" × 30#	16.83	16000	6920	231.0
	+23300		17.64	5870	1320	445.0
UIALI3	-117800	do	16.83	16000	7000	229.0
	+42000		17.64	6360	2380	267.4
U13 L12	-129700	do	16.83	16000	7700	207.6
	+54000		17.64	6550	3060	214.0
UIZ LII	-132800	do	1683	16000	7880	203.2
	+91300		17.64	6550	4050	161.9
L11 U10	+121200	do	17.64	6550	6860	95.5
211 010	-105000	0,0	16.83	16000	6230	256.7
LIOU9	-113300	do	16.83	16000	6730	238.0
2.003	+110400	0.0	17.64	6360	6250	102.0
L9 U8	-109500	do	16.83	16000	6500	246.0
25 30	+97200		17.64	6360	5510	115.4
L8 U7	-113700	do	16.83	16000	6750	237.0
200,	+95600	40	17.64	5870	5430	108.1
LTbUT	+179000	21315 * x 40 *	23.52	13220	7610	1738
2,00,	-55800	7,7,0	23.02	16000	2420	660.0
L70 U7	+144800	215 15" X 33#	19.80	13310	7310	182.0
2,000	-17300	2- , ,,,,	19.30	16000	896	1782.0
Posts.			, , , ,	, , , , ,	0,70	1 102,0
L14U14	+104500	2[s/2"x25#	14.70	12580	7/00	1770
	-39600	22 / 2 / 20	14.20	16000	2785	575.0
L13U13	+114700	do	14.70	12580	7800	161.1
	-47000		14.20	16000	3310	484.0
LIZUIZ	+116900	do	14.70	12580	7950	1583
- 0, -	-62700	· ·	14.20	16000	4410	3630
L11 U11	0	2 [512" x 20]#	12.06			0
	0					×
L10010	-106 900	2512"x25#	14.20	16000	1530	212.7
	+92700		14.70	12580	6300	200.0
L9U9	+100200	do	14.70	12580	6810	1845
	-98000		14.20	16000	6900	232.0
L8 U8	+103000	do	1470	12580	7000	1794
	- 85100	,	14.20	16000	6000	267.0
					•	

article 7. Conclusion.

The investigation given in the preced ing pages shows that this crane was, in the main, designed in accordance with the bish specifications for such structures. In only a very few members did therefficiency fall below 100 per cent, indeed, for a large majorety of the members the efficiency is very high, so high, in fact, as to cause doubt as to the economy of construction. However, the caane when built was the first of it kind, and that may have led the designers to be particular ly careful. on the whole, then, it may be said

that this caone shows careful and safe design,

although somewhat une conomical.

