

учебный центр общей физики фтф

Группа Р3110	К работе допущен	Студент <u>Данилов Павел Юрьеви</u>
Работа выполне	ена	
Преподаватель	Коробков Максим	Петрович
Отчет принят		

Рабочий протокол и отчет по лабораторной работе №3.01

Изучение электростатического поля методом моделирования

1. Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля.

- 2. Задачи, решаемые при выполнении работы.
- оПровести моделирование поля в модели плоский конденсатор
- оПровести моделирование поля в модели с наличием проводящего тела
- о Исследовать и сравнить полученные результаты
- 3. Объект исследования.

Электростатическое поле

4. Метод экспериментального исследования.

Многократное прямое измерение напряженности в различных точках поля.

5. Рабочие формулы и исходные данные.

$$\langle E_{12}
angle \approxeq rac{arphi_1 - arphi_2}{\ell_{12}}, \qquad$$
 В/м - средняя напряженность между точками 1 и 2.
$$\sigma' \approxeq - arepsilon_0 rac{\Delta arphi}{\Delta \ell_n}, \qquad rac{(\Phi*\mathrm{B})}{\mathrm{M}} - \mathrm{поверхностная} \ \mathrm{плотность} \ \mathrm{зарядa}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Вольтметр	-	0-20 B	0.1 B
2	Масштабная сетка (длина)	-	0-30 см	1 mm
3	Масштабная сетка (высота)	-	0-18 см	0.5 мм

7. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

См приложение 1 и 2.

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Для первой модели: расчет напряженности в центре ванны и в окрестности электрода; расчет поверхностной плотности заряда на электродах.

1) Центр ванны

Nº	φ, Β	Δl , M	<e>, B/M</e>	Δ<Ε>, Β/м
1	2,0	0,049	40,82	3,39
2	2,0	0,048	41,67	2,54
3	2,0	0,044	45,45	1,25
4	2,0	0,042	47,62	3,42
5	2,0	0,044	45,45	1,25

<<E>> = 44,20 B/m.

 $<\Delta < E>> = 2,37 \text{ B/m}.$

 $<<E>> = (44,20\pm2,37) B/m.$

2) Окрестность электрода

Nº	φ, B	Δl , M	<e>, B/M</e>	Δ<Ε>, Β/м
1	2,0	0,051	39,22	4,99
2	2,0	0,049	40,82	3,39
3	2,0	0,046	43,48	0,72
4	2,0	0,050	40,00	4,20
5	2,0	0,051	39,22	4,99

<<E>> = 40,55B/m.

 $<\Delta < E>> = 3,66B/M.$

 $<<E>> = (40,55\pm3,66) B/m.$

3) Расчет поверхностной плотности заряда на электродах.

 $\Delta \phi$ = 2,0 B

 Δl = 0,046 M

$$\sigma$$
 = ε*Δφ/Δ l =3,85 * 10⁻¹⁰ $\frac{(\Phi*B)}{M}$

Для второй модели:

4) Нахождение Етах и Етіп

Emax = 1/0,0045 = 222 B/м — максимально близко к кольцу, на "линии" ϕ =10B Emin = 1/0,025 = 40 B/м — на максимальном удалении от внешней поверхности кольца ΔE = Emax — Emin = 182 B/м

9. Расчет погрешностей измерений (для прямых и косвенных измерений). См пункт 9.

Трафики

См приложение 3.

11. Окончательные результаты.

Напряженность в центре ванной (для плоского конденсатора):

$$<> = (44,20\pm2,37) \text{ B/m}.$$

Напряженность в окрестности электрода (для плоского конденсатора):

$$<> = (40,55\pm3,66) B/m.$$

£=9.0%

Поверхностная плотность заряда (для плоского конденсатора):

$$\sigma$$
 = 3,85 * $10^{-10} \frac{(\Phi * B)}{M}$

Напряженности для конфигурации с проводящим телом:

$$Emax = 222 B/M$$

Emin =
$$40 \text{ B/M}$$

 $\Delta E = Emax - Emin = 182 B/M$

12. **Выводы.**

- Анализируя графики, можно заметить, что в конфигурации плоский конденсатор
 потенциал возрастает линейно, а в случае наличия проводящего тела потенциал
 возрастает нелинейно, причем на поверхности проводящего тела потенциал константа.
 Также можно заметить, что в случае наличия проводящего тела потенциал возрастает
 быстрее при приближении к поверхности тела.
- Для конфигурации плоский конденсатор можно заметить, что напряженность примерно одинакова для любых 2 соседних точек(в которых мы измеряли потенциал), лежащих на одной силовой линии. В частности, напряженности в центре ванны и в окрестности электрода практически одинаковы(см пункт 9).
- Для конфигурации наличия проводящего тела напряженность максимальна вблизи проводящего тела и минимальна на максимальном удалении от него. Также можно заметить, что напряженность возрастает по мере приближения к заряженному телу. Максимальное и минимальное значения напряжения значительно различаются – максимальное значение примерно в 6 раз больше минимального(см пункт 9.

