

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number: WO 90/00196
C12N 9/92, 15/00	A1	(43) International Publication Date: 11 January 1990 (11.01.90)
(21) International Application Number: PCT/GE (22) International Filing Date: 4 July 1989		patent), CH (European patent), DE (European patent)
(30) Priority data: 8815902.5 4 July 1988 (04.07.88) (71)(72) Applicants and Inventors: BLOW, David, Merrold, GB]; 6 Lulworth Avenue, Hounslow, Middle OTZ (GB). HARTLEY, Brian, Selby [GB/GB] cess Gate Mews, London SW7 2AZ (GB). H. Kim [AU/GB]; 24 Grosvenor Road, Hounslow sex TW3 3ER (GB).	ryn [G] sex T\ ; 79 Pr ENRIC	claims and to be republished in the event of the receipt of amendments.
(74) Agent: BROCK, Peter, William; Urquhart-Dykes 91 Wimpole Street, London WIM 8AH (GB).	& Lo	d,
·		
(54) Title: XYLOSE ISOMERASE MUTANTS		· · · · · · · · · · · · · · · · · · ·
(57) Abstract The invention relates to xylose isomerase muta creased thermal stability. Additionally, the affinity for	ints wh	ich express improved activity under acid pH conditions and/or in- ions may also be increased.
		•

* (Referred to in PCT Gazette No. 04/1990, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑÜ	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Cabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	T	Italy	RO	Romania
BR	Brazil	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	Ц	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DΕ	Germany, Federal Republic of	W	Luxembourg	us	United States of America
DK	Denmark	MC	Manage		

1

XYLOSE ISOMERASE MUTANTS

This invention relates to mutants of the enzyme xylose isomerase which is an industrial enzyme used in the industrial conversion of glucose syrups obtained from corn or other starches or by hydrolysis of cellulose to sweeter sugars. Its effect is to convert glucose to high fructose syrups or xylose to xylulose, depending on the source material. This use has resulted in it being commonly called "glucose Herein the correct nomenclature "xylose isomerase" will be used and, for the avoidance of doubt this term means those enzymes classed in Enzyme Classification EC 5.3.1.5, that is D-xylose ketol-isomerase. A review of the industrial uses of xylose isomerase appears in the reference Wen-Pin Chen, "Process Biochemistry" August/September 1980, pages 36 to 41 and C. Burke in Microbial Enzymes and Biotechnology, edit. W.M. Fogarty, Applied Science Publishers, pages 93 to 129, 1983.

More specifically the invention relates to xylose isomerase mutants which have improved activity under acidic pH conditions and/or increased thermal stability (with resulting increase in the enzyme life times when used at current processing temperatures of from 60 to 65°C) and/or affinity for metal ions.

Xylose isomerase occurs in numerous bacterial species but, although the enzyme action is similar throughout, there are variations in the composition of the protein and the complex molecular structure of the various forms of the enzyme. For example, in some variants the protein chains are longer than in others, some have dimeric protein chains and others are tetrameric. All known structures have the same general spatial conformation which includes a so-called "barrel" region formed by twisting of eight peptide chains in space about a longitudinal axis forming a cylinder of parallel beta-sheet (see K. Henrick et. al., Protein Engineering, 6, pages 467 to 469, 1987). The sites responsible for the enzyme action of the molecule are located at the carboxyl terminal end of the beta-strands' which form the barrel. There is a high degree of conservation of the amino acid sequences for these sites amongst the enzymes from widely different bacterial sources, as would be expected from the near identity of their enzyme action. Most of the variations of the amino acid sequence that do occur, as a generalisation, are observed in regions of the molecule which do not participate in the enzyme action and which are remote from the enzymically active sites. As will be reported hereinafter, sequence and structure data confirm that high degree of conservation in the active regions with variations occurring elsewhere in themolecule.

One major industrial use of xylose isomerase is in the food industry for conversion of glucose to the sweeter fructose in the form of "high-fructose-containing-syrups", which has a market for caloric sweeteners used in solution, principally carbonated beverages.

Generally the enzyme is derived from the bacterial species of Streptomyces, Bacillus, Lactobacillus, Ampullariella and or Arthrobacter. However, the conversion of glucose to fructose is generally only one step of a multi-stage process from a raw material to the final sugar-containing product and other enzymes which have guite different functions are often used in sequential fashion. It is often the case that the process conditions, for example pH and temperature, under which optimum enzyme action is obtained, differ amongst the various enzymes used. These specific requirements of the naturally occurring enzymes are disadvantageous to the optimisation of the industrial processes which use them by requiring alteration of process parameters between the stages of the process.

A further problem in the industrial use of natural xylose isomerases is the fact that this enzyme is dependent on the presence of magnesium ion (and also cobalt(II) ion in some species) as an activator. All the natural xylose isomera ses are inhibited by calcium ion which is present in starch feedstocks.

Calcium ions are required for the enzymic activity of alpha- amylase, which is used at about 100°C, pH 6 to 7, to convert starch to dextrose syrups in a batch process. The second step, also in batch, converts the resulting soluble dextrins to glucose, catalysed by the enzyme glucoamylase at 60°C and pH 5.5. The final glucose isomerisation is generally carried out at 60°C and pH 7 to 8 on columns of immobilised enzyme because the xylose isomerase is relatively costly and can thereby be used continuously for extended periods. Adjustments of pH and temperature and of the Ca²⁺/Mg²⁺ balance are therfore necessary for the current technology. Ideally deionisation steps should

be left until all the enzyme steps have been completed, however, in the current industrial environment, calcium ion is necessarily removed upstream of the xylose isomerase step.

A further disadvantage of the conventional xylose isomerase step is the pH and temperature at which it is performed. If catalysed to equilibrium a glucose syrup would yield a mixture of 46.5% glucose and 53.5% fructose at 60°C but 41.4% glucose and 58.6% fructose at 80°C (Y. Takasaki, Agric. Biol. Chem., 31, page 309, 1980). Since fructose is much sweeter than glucose, the latter product would be more desirable. However, the constraints for an 80°C process of the xylose isomerases in current use are that undesirable "browning" reactions occur when sugars are heated at alkaline pH. Finally, the operational pH for xylose isomerase is incompatible with other enzymes used in the industrial processes, such as glucoamylase.

An object of the present invention is to obviate or mitigate the aforesaid disadvantages.

According to the present invention there is provided a xylose isomerase mutant in which at least one of the following mutations (Table I) in the naturally occurring protein sequence of the xylose isomerase, using the residue numbering system hereinafter defined, has been made:

(TABLE I)

Residue Number	Substituent	
43	Cys	
61	Arg, Lys, Gln or As	sn
81	Cys	
140	Arg, Lys, Gln or As	5n
146	Cys	

(TABLE I continued)

Residue Number	Substituent
171	Arg
180	Asp, Gln or Asn
189	Arg, Lys, Gln or Asn
199	Cys
200	Cys
203	Asp
204	Arg
216	Asp or Gln
220	
	Arg, Lys, Gln or Asn
223	Cys
244	Asn or Glu
253	Cys
254	Asn
256	Asn
263	Arg, Lys, Gln or Asn
292	Asn or Glu
355	Glu
380	Lys
370	Arg, Lys, Gln or Asn
-	
382	Cys

Preferably the xylose isomerase is that derived from <u>Arthobacter</u> or from <u>Streptomyces</u>, <u>Bacillus</u>, <u>Lactobacillus</u>, <u>Ampullariella</u> and or <u>Arthrobacter</u>.

Therefore, according to the invention there is provided an <u>Arthrobacter</u> B3728 xylose isomerase, having one or more of the following (Table II) mutations:

(TABLE II)

<u>Residue</u> Number	<u>Natural</u> Residue	Substituent	<u>Function</u>
43	Ala	Cys	(b ₁)
61	Asp	Arg, Lys, Gln or Asn	(a)
81	Thr	Cys	(b ₁)
140	Glu	Arg, Lys, Gln or Asn	(a)
146	Gly	Cys	(b ₁)
171	Lys	Arg	(b ₂)
180	Glu	Asp, Gln or Asn	(c)
189	Asp	Arg, Lys, Gln or Asn	(a)
199	Leu	Cys	(b ₁)
200	Ala	Cys	(b ₁)
203	Glu	Asp	(b_2)
204	Gln	Arg	(\mathfrak{b}_{2}^{2})
216	Glu	Asp or Gln	(c)

(TABLE II continued)

<u>Residue</u> Number	<u>Natural</u> <u>Residue</u>	Substituent	Function
220	Glu	Arg, Lys, Gln or Asn	(a)
223 244	Ala Asp	Cys Asn or Glu	(b ₁) (c)
253 254	Tyr Asp	Cys Asn	(b ₁)
256	Asp	Asn	(c)
263 292	Asp Asp	Arg, Lys, Gln or Asn Asn or Glu	(a)
355	Ala	Glu	(c) (b ₂)
370 380	Glu Ile	Arg, Lys, Gln or Asn Lys	(a)
382	Leu	Cys	(b ₂) (b ₁)

The functions of the mutations, indicated in Table II above, are as follows:

(a) Shifts the optimum pH of the enzyme activity towards a more acidic pH.

Figure 1 shows the structure of the active site bound Mg^{2+} and the inhibitor sorbitol (sorbitol is an acyclic analogue of the open chain structure of glucose which is the chemical configuration upon which the enzyme acts). It is probable that protonation of His219 is responsible for the reduction of activity at lower pH. It has been demonstrated in the case of the protease subtilisin that elimination of a negative charge lying 15 Angstroms away from the catalytic site reduces the pKa of the active site histidine in this enzyme by 0.6 pH units. The mutations of this invention which have this effect lie relatively close to the active site but in regions that appear to be unconnected with activity or stability. combination of these mutations will increase the activity at acid pH to the levels necessary for the target process. Those mutations where a non-essential negative charge is replaced by a positive charge (

residues 220,140,189,61,263 and 370 to be mutated to Lys or Arg) will have a greater effect than replacement of a negative charge by a neutral one (as in the subtilisin studies where Asp was changed to Ser), although mutations of the residues 220,140,189,263 and 370 in addition to Asn and Gln are also part of this invention.

(b) Improves the thermal stability of the enzyme
We have discovered that the pathway of
denaturation of the protein by high temperature or by
action of urea is to depolymerise to identical monomeric
chains. In tetrameric configuration this reaction
proceeds first to a dimeric structure (Figure 2) and
then to four identical monomers. The first step occurs
between 4M and 7M urea at 22°C with complete retention
of activity in the dimers.

Figure 3 shows the specific activity of enzyme (0.7 mg/ml) incubated for one hour at 30°C in 10mM MgCl₂ - 50mM tris Cl, pH8 containing zero to 8M urea. Glucose isomerase assays were conducted on 20 microlitre samples at 30°C and pH8 in the presence (o) or absence (o) of urea at the relevant concentration. The bars show % of monomer (inactive) or dimer-tetramer equilibrium mixture (fully active) calculated from Fig. 2b below.

Figure: 4 shows the elution profiles of the above samples separated at 22°C on DHEAE-Sephacel columns (9.5 cm x 0.7 cm diameter) equilibrated with urea-buffers of the same composition as the samples and a gradient from zero to 0.5M sodium chloride. So as to compensate for variability in column packing, the profiles are presented as absorbance versus increase in

effluent conductivity. The shift in peak position reflects rapid reversible equilibrium between tetramer at zero urea and predominantly dimer at 8M urea. A peak of inactive monomer is seen in the 5M and 8M urea incubations. The broken lines indicate the profiles of 8M urea samples after three days and then a further seven days incubation at 22°C showing the irreversible conversion of dimer to monomer.

Figure 5 shows tracings of "gradient-urea-" run (top to bottom) at 40 mV for 14 hours at pH8.5. The top gel is stained for total protein and the bottom gel for both protein and xylose isomerase activity. The change in mobility between 2M and 5M is consistent with a rapid reversibly equilibrium between tetramers and dimers that retain activity.

Hence it is clear that dissociation into active dimers is the first step in the pathway of inactivation. So the residues in contact at the subunit interface must be reponsible for stability. In Table II the function represented by (b₁) indicates those mutations which allow introduction of disulphide bonds at the various subunit interfaces.

In Table II, the function indicated by (b₂) is the introduction of salt bridges at the subunit interface surfaces (residues 203, 204, 171, 355 and 380) which results in increased thermal stability.

It is desirable to select more than one of the proposed mutations and the following are examples of particularly preferred selections.

- (1) Ala43 to Cys43 and Thr81 to Cys81 to form a disulphide bridge between subunits (in A chain in Arthrobacter).
- (2) Leu199 to Cys199 and Ala200 to Cys200 to form interchain disulphide bonds (between A and A' chains in Arthrobacter).
- (3) Gly146 to Cys146 and Leu382 to Cys382 to form interchain disulphide bonds (between A and A' chains in Arthrobacter).
- (4) Glu203 to Asp203 and Gln204 to Arg 204 to form a salt bridge at a subunit interface (between the A and A' chains in Arthrobacter).
- (5) Tyr253 to Cys253 and Ala223 to Cys223 to form two disulphide bridges (between the A and B' and between the A and A' chains in <u>Arthrobacter</u>)
- (6) Leu199 to Cys199, Ala200 to Cys200, Glu203 to Asp203 and Gln204 to Arg204 to introduce both disulphide and salt bridges within a short section of the peptide sequence.

(c) Reduces Calcium Ion Inhibition

X-ray diffraction data show that the sugar binds in the open chain form for the isomerisation step (Figure 6). Computer modelling and energy minimisation experiments indicate that neither a pyranose nor furanose ring can be bound to the enzyme at the isomerisation site., hence ring opening must precede isomerisation. The rate of ring opening which occurs in the absence of the enzyme is slow and the life-time and concentration of the open chain form in free solution is too low to supply the enzyme with a substrate in a form for the isomerisation to take place.

X-ray crystallographic studies of the binding of Mq^{2+} , Ca^{2+} , Co^{2+} , Mn^{2+} and Pb^{2+} ions reveal two cation binding sites. One is the "isomerisation site" shown in Figure 1 which approximates to an octahedral arrangement of the protein side chains of Glu180, Glu216, Asp242 and Asp292. The second is close to it but is not involved in the isomerisation mechanism. For this site the coordinating groups of the protein, His219, Asp254, Asp256 and Glu216, give rise to an irregular arrangement of donor groups. is possible to model pyranose and furanose rings at this "ring opening site" to provide a plausible mechanism for catalysis of ring opening by the bound Mg2+ (Figure 6). We have shown that calcium ions bind to this site with stronger affinity than magnesium ions. The greater versatility of Ca²⁺ over Mq²⁺ makes it. ideally suited to be complexed by irregularly shaped protein cavities, together with the marked favouritism of complex ligand systems containing carboxylates for Ca²⁺ over Mg²⁺ would explain why Ca²⁺ inhibits the enzyme.

Mutations which reduce the binding affinity of Ca²⁺ at the "ring-opening site" are indicated by (c) in the "Function" column of Table II.

The amino acid residue numbering sequence used herein is based on the sequence of xylose isomerase derived from <u>Arthrobacter</u> strain B3728 and is shown in Fig. 7 herewith. The complete amino acid sequence of this particular enzyme is shown along with complete or partial sequences of xylose isomerases from other bacterial sources. The sequences of the various enzymes have been aligned with the <u>Arthrobacter</u> B3728

enzyme sequence by aligning the highly conserved regions of the sequences in which the desired mutations are most likely to be made. This diagram may be used to identify the locations in the sequences of enzymes from sources other than the Arthrobacter species for which at least a partial sequence, which includes some of the conserved regions, corresponding to the rim of the barrel region of the enzyme structure, is known. By aligning the conserved sequences and thereafter referring to the numbering of the Arthrobacter sequence, the appropriate locations for making the mutations defined above may be identified. The residues identified in Table III below are known to be conserved . thoughout the xylose isomerase group of enzymes. residue numbering refers to that of the xylose isomerase of Arthrobacter B3728.

TABLE III

Residue Number	Amino Acid
15	Trp
23	Asp
25	Phe
26	Gly
30	Arg
43	. Ala
52	Phe
53	His
56	Asp
59	Pro
89	Thr
91	Asn
93	Phe
96	Pro
. 101	Gly
104	Thr
114	Ala
129	Gly
134	Val

TABLE III continued

Resid	due Numbe	I Amino Acid
136	Trp	
137	Gly	•
138	Gly	
139	Arg	
140	Glu	
141	Gly	
143	Glu	
149	Asp	_
180	Glu	•
181	Pro	
182	Lys	
183	Pro	
185	Glu	
186	Pro	
201	Phe	
214	Asn	
216	Glu	
219	His	
227	Phe ·	
244	Asp	
246	Asn	
247	${ t Gly}$	
254	Asp	
256	Asp	
259	Phe	
287	Gly	
291	Phe	
292	Asp	
294	Lys	
297	Arg	
302	Asp	
318	Leu	
319	Lys	

Referring now to Figure 7, the conserved residues are shown enclosed within boxes drawn in broken lines and it is these conserved residues which provide a key to the determination of the location of residues of species other than Arthrobacter which require to be mutated in accordance with this invention. The full or partial sequences of the xylose isomerases from the following sources are quoted.

Bs = Bacillus subtilis

Ec = <u>Escherichia coli</u>

Sg = <u>Streptomyces griseofuscus</u>

Sa = <u>Streptomyces albus</u>

Svr = <u>Streptomyces violaceusruber</u>

Svn = <u>Streptomyces violaceoniger</u>

Amp = Ampullariella sp Strain 3876

A = Arthrobacter Strain 3728 .

(The N-terminal methionine is not included in the numbering of the residues).

Further according to the present invention there is provided the nucleotide sequence of the XylA gene of Arthrobacter strain B3728, shown in Figure 8 herewith.

The invention also provides the nucleotide sequence shown in Figure 8 having one or more mutations at locations necessary to achieve one or more of the mutations listed in Table I above in the peptide expressed by the gene.

In addition, the invention provides an oligonucleotide comprising a fragment of the sequence shown in Figure 8 and containing at least one mutation.

The present invention also provides a host/vector expression system containing one of the mutant genes of this invention. The host may be <u>E. coli</u> or, more preferably, a yeast, preferably <u>Saccharomyces cerevisiae</u>.

Cloning, Site-directed Mutagenesis and Expression of Mutant Enzymes

The conventional strategy for cloning xylose isomerase from <u>Arthrobacter</u> would be to determine a partial amino acid sequence of the purified enzyme, construction of redundant oligo probes and the use of

radioactiovely labelled probes to screen a gene library consisting of a partial <u>Sau 3A</u> digest of <u>Arthrobacter</u> ligated into the <u>Bam Hl</u> site of pBR322. However, this conventional strategy failed to yield the gene of interest: instead it gave a gene which showed some sequence homology to the xylose isomerase gene but was much smaller.

Hence a different strategy was used. By selecting mutants of Arthrobacter which were unable to grow on xylose/minimal medium (after muatgenesis with N-methyl-N'-nitro-N- nitrosoguanidine and mutant enrichment on glucose/minimal medium containing 20 micrograms/ml of ampicillin). One such mutant, strain PCl, contained a lesion in its gene for xylose isomerase but not in its xylulokinase (Xyl B) gene or in its inducibility by xylose as shown by the enzyme activities in crude extracts shown in Table IV below.

TABLE IV

XI (XI) Xylulokinase (XK)

Levels in B3724 and PC1

	•	Specific Activity		
Strain	Induced	XI (10 ⁻³)	XK (10 ¹⁻)	
B3724	: _	2.0	N.D.	
	+	128.0	7	
PCl	-	0.2	N.D.	
	+	0.6	` 22	

Cells were grown overnight at 30°C in 40ml M9 medium with 0.2% casein hydrolysate. Enzymes were induced by the inclusion of 0.2% of D-xylose. Cell-free extracts were prepared according to Smith Protein concentration in the extracts was determined by the Bio-Rad (Trade Mark) assay kit. Levels of xylose isomerase and xylulokinase were determined as described by Smith (q.v.) and Briggs (1983) respectively. Specific Activity of xylose isomerase and xylulokinase are defined as micromoles of D-xylose isomerised per milligram of protein per minute at 20°C and as micromoles of D-xylulose phosphorylated per milligram of protein per minute at 20°C. not detected)

We have developed novel vectors that allow transformation of Arthrobacter strains B3724 and PCl at high frequencies, adequate for screening of gene banks by complementation [P-C Shaw et.al, J. Gen. Microbiol. 134, 903-911 (1988)]. Gene banks of B3728 DNA were constructed by ligating 5-10 Kb fragments cleaved to completion with Clal, Sall or Bam Hl sites in pCG2100. The ligation mixture was transformed to protoplasts of strain PC1 and regenerated in agar in the presence of kanamycin and sodium succinate as osmotic stabiliser. Clones containing a functional Xyl A gene in the regenerated colonies were detected by their ability to grow on minimal agar plates with xylose as the carbon Eight such colonies from a Sall gene bank contained identical 4.8 kilobase inserts. Deletions in this insert followed by subclonings and retransformations located the Xyl A gene in a 1.9 kilobase SalI-BSSHII fragment, whose sequence is shown in Figure 8. It encodes the amino acid sequence also shown in Figure 8. The plasmid is named pAXI1.

Site directed mutagenesis can be carried out on this fragment by standard methods in M13 phage (Zoller, M. J. and Smith M. Methods Enzymol. 100, 468 - 500, 1983) or by ligating it into the Sma I site in plasmid pTZ19U (D.A. Mead, E. Szczensna-Skopura and B. Kemper, Protein Engineering, 1, 67 -74, 1986). This allows hybridisation with oligonucleotide primers to be carried out directly on the single strand form of the plasmid, according to the method of these authors. The primers are designed to produce codon changes resulting in the amino acid replacements shown in Table I. As example, the following mutant genes have been constructed via the synthetic oligonucleotides listed, and the expected codon changes have been confirmed by DNA sequencing of the plasmid:-

1) Residues 203 and 204, Glu - Asp and Gln - Arg Oligonucleotide: GCC.TTC.ATC.GAC.CGT.CTG.GAG.CAC.

(GAG) (CAG)

Mutagenesis technique: pTZ19U

2) Residue 140, Glu - Lys
Oligonucleotide: C.GGG.CGC.AAG.GGC.AGC.G
(GAA)

Mutagenesis technique: M13

3) Residue 136, Trp = Glu
Oligonucleotide: TTC.GTC.ATG.GAA.GGC.CCC.C
(TGG)

Mutagenesis technique: M13

4) Residue 189, Asp - Lys

Oligonucleotide: A.CGC.GGC.AAG.ATC.TTC.C

(GAC)

Mutagenesis technique: Ml3

Expression of wild-type or mutant XylA genes can conveniently be studied directly in the E.coli host JA221 since it contains a mutation in the E.coli XylA gene. Hence growth on xylose depends on the expression of the foreign gene. Somewhat surprisingly E.coli appears to recognise the Arthrobacter XylA promoter, and since the plasmid is multicopy, levels of Arthrobacter xylose isomerase are similar to that in the original Arthrobacter B3728 (Table V).

TABLE V

			Medium		
Host	Plasmid	Glucose	Xylose minimal	G +X minimal	LB rich
<u>Ar</u> . B3724	a)pAXI1	0.258	1.464	0.440	0.050
(XI inducible)	b)none	0.008	1.1000	0.019	0.025
	a)-b)	0.250	0.364	0.421	0.025
Ar. B3728	a)pAX1	1.470	1.300	_	0.720
(XI constitutive)	b)none	1.030	1.000	1.090	0.650
	a)-b)	0.440	0.400	-	0.70
Ar. PCi	a)pAXII	0.050	0.560	0.390	0.040
(XI ⁻ , XK	b)none	0.002	N.G.	0.020	0.0044
inducible)	a)-b)	0.048	(0.560)	0.370	0.036
EC JA221	a)pAXI1	0.150	0.380	0.200	0.076
(XI ⁻ , XK	b)none	0.000	N.G.	0.000	0.000
inducible)	a)-b)	0.150	(0.380)	0.200	0.076
EC JM101	a)pAXI2	1.000		_	0.190
(XI inducible)	b)none	0.090	-	-	0.060
(IPTG induced) :	a)-b)	0,910	-	-	0.130

All activities are in micromoles fructose per minute per microgram of protein in cell extractsa, determined by the cysteine-carbazole assay of Z. Dische and E. Borenfreund (J. Biol. Chem., 192, 583-587, 1951). Strains of <u>Arthrobacter</u> are derived from strain

B3724 as described above. E. coli strain JA221 is recal leuB6 trp \triangle E5 hsdM⁺ hsdR⁻ lacY xyl C600 (Briggs et.al. EMBO J., 3, 6ll-6l6, 1984) and E.coli strain JM101 is \triangle lacpro supE thiF' tra D36 pro AB lacI^Q Z \triangle M15 (Messing et.al., Proc. Natl. Acad. Sci. USA, 74, 3642-3646, 1977). pAXI2 contains the sequence shown in Fig 8 ligated into site pTZ19U. N.G. indicates no growth.

However, it is not particularly envisaged that the enzyme for industrial use would be produced in <u>E.coli</u>, since this would be doubtfully food-compatible. It is preferable that the mutant enzyme be substituted in <u>Arthrobacter Strain B3728</u> for the natural <u>Xvl A</u> and used in an immobilised enzyme process. This is achieved by a technique of 'gene disruption' using the shuttle vector pCG2100 which has been constructed for this purpose.

However, the properties of the improved enzyme of this invention are such that it is admirably suited to a system in which it is expressed in yeast. Yeast is of course food compatible and there exist many vectors for Saccharomyces cerevisiae that allow high expression of foreign proteins. Since the yeast can be produced inexpensively and since its functions will be destroyed by the high-temperature (80°C) of the target progress, the cells will have xylose isomerase activity as their sole enzymic function. Hence the use of an S.cerevisiae expressing one or other of the improved xylose isomerases listed in Table 1 in a batch process or in a continuous immobilised cell process is an important embodiment of this invention.

-20 -

CLAIMS

1. A Xylose isomerase mutant with improved activity having at least one of the following mutations in the naturally occuring protein sequence of the xylose isomerase:-

<u>Residue</u>	<u>Natural</u>	<u>Substituent</u>
Number	Residue	
43·	Ala	Cys
61	Asp	Arg, Lys, Gln or Asn
81	Thr	Cys ·
140	Glu	Arg, Lys, Gln or Asn
146	Gly	Cys
171	Lys	Arg
180	Glu	Asp, Gln or Asn
189	Asp	Arg, Lys, Gln or Asn
199	Leu	Cys .
200	Ala	Cys
203	Glu	Asp
204	Gln	Arg
216	Glu	Asp or Gln
220	Glu	Arg, Lys, Gln or Asn
223	Ala	Cys
244	Asp	Asn or Glu
253	Tyr	Cys
.254	Asp	Asn
256	Asp	Asn
263	Asp	Arg, Lys, Gln or Asn
292	Asp	Asn or Glu
355	Ala	Glu
370	Glu	Arg, Lys, Gln or Asn
380	Ile	Lys
382	Leu	Cys
		-

- 2. A mutant according to Claim 1 characterised in that the isomerase is preferably derived from <u>Arthobacter</u>, <u>Streptomyces</u>, <u>Bacillus</u>, <u>Lactobacillus</u>, <u>Ampullariella</u>, or <u>Arthrobacter</u>,
- 3. A mutant according to any of claims 1 or claims 2 characterised in that it is derived from Arthobacter
 B3728 xylose isomerase having at least one of the following mutations:-

Residue Number	<u>Natural</u> Residue	Substituent
43	'Ala	Cys
61	Asp	Arg, Lys, Gln or Asn
81	Thr	Cys
140	Glu	
146	Gly	Arg, Lys, Gln or Asn
		Cys
171	Lys	Arg
180	Glu	Asp, Gln or Asn
189	Asp	Arg, Lys, Gln or Asn
199	Leu	Cys .
200	Ala	Cys
203	Glu	Asp
204	Gln	Arg
216	Glu	Asp or Gln
220	Glu	Arg, Lys, Gln or Asn
223	λla	Cys
244	Asp	Asn or Glu
253	Tyr	Cys
254	Asp	Asn
256	Asp	Asn ·
263	Asp	— —
292	Asp	Arg, Lys, Gln or Asn
355	Ala	Asn or Glu Glu
370	Glu	
380	Ile	Arg, Lys, Gln or Asn
382		Lys
302	Leu	Cys

4. A mutant according to any of the preceding claims characterised in that it displays an enzyme activity towards a more acid pH having residues 220 Å 140, 189, 263, and 370 mutated to lysin or arginin.

- 22 -

- 5. A mutant according to claims 1 to 3 characterised in that it displays an enzyme activity towards a more acid pH having residues 220, 140, 189, 263, and 370 mutated to Asn and Gln.
- 6. A mutant according to any of the preceding claims characterised in that it displays improved thermal stability of the enzyme by introduction of salt bridges at residues 203, 204, 171, 355 and 380.
- 7. A mutant according to any of the preceding claims characterised in that the thermal stability of the enzyme is achieved by mutations:-
 - (1) Ala43 to Cys43 and Thr81 to Cys81 to form a disulphide bridge between subunits (in A chain in Arthrobacter).
 - (2) Leul99 to Cys199 and Ala200 to Cys200 to form interchain disulphide bonds (between A and A' chains in <u>Arthrobacter</u>).
 - (3) Gly146 to Cys146 and Leu382 to Cys382 to form interchain disulphide bonds (between A and A chains in Arthrobacter).
 - (4) Glu203 to Asp203 and Gln204 to Arg 204 to form a salt bridge at a subunit interface (between the A and A' chains in <u>Arthrobacter</u>).
 - (5) Tyr253 to Cys253 and Ala223 to Cys223 to form two disulphide bridges (between the A and B' and between the A and A' chains in <u>Arthrobacter</u>)
 - (6) Leu199 to Cys199, Ala200 to Cys200, Glu203 to Asp203 and Gln204 to Arg204 to introduce both disulphide and salt bridges within a short section of the peptide sequence.

- 8. A mutant according to any of the preceding claims characterised in that it shows reduced calcium ion inhibition if residue 180 is mutated to Asp, Gln, or Asn, 216 to Asp or Gln, 244 to Asn or Glu, 254 to Asn, 256 to Asn and 292 to Asn or Glu.
- A mutant according to any of the preceding claims 1 8 characterised in that it is contained in a host.
- 10. A mutant according to claim 9 characterised in that the host is E. coli or S. cerevisiae.
- 11. A mutant according to any of the preceding claims characterised in that conservative residues in xylose isomerases of different origin are mutated in accordance with the mutations described.
- 12. A xylose isomerase characterised by the nucleotide sequence of the $\underline{\text{XylA}}$ gene of Arthrobacter strain $\underline{\text{B3728}}$ and mutations thereof.
- 13. An oligonucleotide for a xylose isomerase sequence fragment having at least one mutation therein.
- 14. A vector characterised in that it allows strains

 Arthrobacter and PC1 to be transformed at high frequencies.

2/13

FIG. 3

FIG.4

SUBSTITUTE SHEET

Вз	Ec	Sg	Sa	JVE	Svn	4mp	_			38	<u>ت</u>	Svn	Amp	<	
65 B	58 E	m	4	12 Svr	24 8	24 Amp	24 1			129 E	123 I	72 Svn	72 Amp	72 1	
WHIFTADGTÖV	WHIFCWNGADM			_ :	WIVG WOGRDP	MIVG WOARDA	wrve wreapp	րիի		ETNONLDIIVG 1	EYINNFAQMVD	DTERESHIK	AATRDGIVA	EAEREKILG	հ հհհհհհհհ
1 MAQSHSSSVNYFGSVNKVVFEGKASTNPLAFKYYNPQEVIGGKTMKEHLRFSIAYMHTFTADGTÖV	LDRVRYEGSKSSNPLAFRHYNPDELVLGKRMEEHLRFAACYWHTFCWNGADM	QQSM	MNYQP	MNYQPIPEDRFIF	MSFQPTPEDKETFGLWTVG WGGRDP	MSLQATPDDKFSFGLWTVG WQARDA	MSVQPTPADHFTEGLWTVG WTGADP	ниниадада		66 FGAATMORPWDHYKGMDLARARV EAAFEMFEKLDAPFFAFINNROLAPEGSTLKETNONLDIIVG 129 BS	GEALALARRRADVAFEFFHKLHVPFYGFHDVDVSPEGASLKEYINNFAOMVD 123	GAYGVIEHDDDLYPEGSS	GAYGVTFHODOLVPFGAD	GAYGITEHDNDLIPFDAT	рррр нинин
MAQSHSSSVNYFGSVNKVVFEGKAST	MQAYFDQLDRVRYEGSKSS								i	FGAATMORPWDHYKGMDLARARV F	59 FGVGAFNRPWQQP GEALALRKRAI	25 FGDAT RPALDPVETVORLAEL	25 ЕСРАТ КРУГОРІЕЛУНКІРГІ	25 FGVAT RKNLDPVEAVHKLAEL	hhhhhhhhhhhhh
-	-	Н	-	-	 1		• ~			99	59	25	25	25	

7/13

Svn GESKALDETGLIVPMVTINILFIHFVFKDGGFIBNDRSVRRYAIRKVLROMDLGAEJGAKTLVIMGG1138 130 MIKDYMRDSNVKLLWNTAÑMETNĤRFVHGRAMJSCNADVFAYAJAAQVKKGLETAKELĴGRENYŴEMĞG1195 DENQALKDTGLKVPMVT1MIJIFSHEVFKDGGFFTSNDRSIRRFALAKVLHNIDLAAEMGAETFV MGG 124 VLAGKQEESGVKLLWGTANGFTNPRYGAGAANPDPEVFSWAATQVVTAMEATHKLGGENYVHWGG rergaldatgmivpmatinumihpvekdg' ethndrdvrryalrktirnidlaaelgak.. qqqqq hhhhhhhhh 73 73 73

. 9 1

196 REGYEFILINTDLKFELDNIARFWHHAVDYAKEIETTGGFLIEPRPMEPTHQYDTDAATTIAFIKO 261 BS 190 REGYEFILINTDLROEREGLGREWONVVEHKHKIGFOGTLLIEPRPMEPTHQYDTDAATTIAFIKO 255 EC 138 1		8 13	
196 'REGYETILNTDIKFELDNIARFEMHMAVDYAKEIEYTGGELHEPKPKEPTTHQYDTDAATTIAFILKQ 261 190 'REGYETILNTDIRGEREGIGREMQMYVEHKHKIGFGGTLLIEPKPGEPTKHQYDVDAATTYGFILKQ 255 138 'l' DVRDALDRWKEAFDLIGEXVTAGGYDLRFAIFPKPGEPTKHQYDDYAATVYGFILKQ 255 139 'REGAEFADSAKDVGAALDRYREAINLLAQYSEDGGYGLPFAIEPKPREPKBPRGDILLETAGHALAFILER 203 139 'REGAEFADSAKDVGAALDRYREAINLLAQYSEDGGYGLPFAIEPKPREPKBPRGDILLETAGHALAFILER 204 139 'REGAEFADSAKDVGAALDRYREAINLLAGYSEDGGYGLPFAIEPKPREPKPREPKPREPKPGGGOLFATARA 226 256 YGLDNHFKIÑJØANFALLAGHSFHHEIATAIALGLEGSVÜNNÖGHPLLGWÖPFÖB GPRYVEHCANFAFW 268 205 LERPELYGYWEYGHEOWAGINFPHGIAQALWAGKLFHIDJAN GAGGIKYDDDURFGAGDLRAAFW 268 205 LERPELYGYWEYGHEOWAGINFPHGIAQALWAGKLFHIDJAN GAGGIKYDDDURFGAGDLRAAFW 268 205 LERPELYGYWEYGHEOWAGINFPHGIAQALWAGKLFHIDJAN GAGGIKYDDDURFGAGDLRAAFR 269 205 LERPELYGYWEYGHEOWAGINFPHGIAQALWAGKLFHIDJAN GAGGIKYDDDURFGAGDLRAAFR 269 205 LERPELYGYWEYGHEOWAGINFTHGIAQALWAGKLFHIDJAN GAGGIKYDDDURFGAGDLRAAFRAFRADFEDD 386 327 MYEILGNGGL GSGGLNFDARWRYSSFEPDÖLVYAHIIAGMDAFARGLAARRAFRADFEDD 386 328 MYEILKAGGF TGGLNFDARWRYSSFEPDÖLVYANIRAMALAGKARRANFRANFRANFEND 269 LVDLLESAGY 270 LVDLLESAGY 270 LVDLLESAGY 270 LVDLLEN G PDGGPAYDGPRHEDYKPSKRED PJGVWDSARNIRMYLLLLAGERALAFRADFEND 332 270 TVDLLEN G PDGGPAYDGPRHED PJGVWDSARNIRMYLLLLAGERALAFRADFEND 332 270 TVDLLEN GFDGGPRYTGPRHED PJGVWDSARNIRMYLLLLAGERALAFRADFEND 332 270 TVDLLEN GFDGGPRYTGPRHED PJGVWDSARNIRMYLLLAGERARARAFRADFEND 332 270 TVDLLEN GFDGGPRYTGPRHED PJGVWDSARNIRMYLLLLAGERAGERAPPPD AND AND AND AND AND AND AND AND AND AN	Bs Ec Svn Amp	Bs Ec Svn Amp	
196 REGYETLINTDLKFELDNIARFEHHAAVDYAKEIEYTGGFLIFERFRPREPTHQYDTDAATTIAJALKO 190 REGYETLINTDLKGEREQLGRFWGWYVEHKHKIGFGGTLLTERFRPGEPTKHQYDYDAATVYGFLKO 138I.IDVRDALDRMKEAFDLLGEYVTAGGYDLRFAIFERFRPREPTHQYDYDAATVYGFLKO 139 REGAERDSAKDVGAALDRYREAINLLAQYSEDGGYGLPFAIEPRRPREPKGDILLFTVGHALAJAFVQE 139 REGAERDSAKDVGAALDRYREAINLLAQYSEDGGYGLPFAIEPRRPREPKGDILLFTAGHALAJAFVQE 139 REGAERDSKDLAAALDRMREGYDTAAGYIKDKGYNLRIALFPRPRPREPKGDILLFTAGHALAJAFVQE 139 REGAERTIKAJATLAGHTFEHELATAIGLEGSVÖRNÖGHPLLGWÖTHÖF HEPDLYSTTLA 262 YGLDNHFKIKNIFANFALLAGHTFEHELATAIALGLEGSVÖRNÖGHPLLGWÖTHÖF HEPDLYSTTLA 265 FGLEKEIKLAJAFLAGHTFEHELATAIALGLEGSVÖRNÖGHPLLGWÖTHÖF FPRSVEENALV 206 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAARFN 206 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 207 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 208 LEHGDIVGLNYFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 209 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 201 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 201 LERPELFGINPFFGGAGALWFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFR 202 LEHGDIVGLNYFFHGIAQALWAGKLFHIDJUN GASGIKYDDOLRGGAGDLAAFRAAFRANFEND 21 MYEILKAGGF TTGGINFDAWWFRGSTDKYDLFYGHIAAGNATALALKIABARHIEDRAFAR 203 LYDLLESAGY GASGANDGRPKYTGFRANFARADFRANFANDFUN 210 LYDLLESAGY GASGANDGPRYTGFRÜFTGFRANFARADFRANFANDFUN 211 LYDLLEN GFPUGGPRYTGFREPTFT FPGVWBSAKANWSMYLLLKGERALAFRADFENQ 212 LYDLLEN GFPUGGPRYTGFREPTFT FPGVWBSAKANWSMYLLLKGERALAFRADFENG 213 LYDLLEN GFPUGGPRYTGFREPTFT FFLANFTAG THANHANHANHANHANHANHANHANHANHANHANHANHANH	261 255 203 204 204	326 320 268 269 269	386 380 324 331 332
196 REGYETLINTDIKEELDNIJAREN 190 REGYETLINTDIRGEREGIGREN 139 REGAENDSAKDVGAALDRMKEAE 139 REGAENDSAKDVGAALDRMKEAL 139 REGAENDSAKDVGAALDRMREGV 204 LERPELYGVNWEVGHEOMAGINE 205 LEHGDIVGLNPETGHEOMAGINE 206 LVDLLESAGY 270 LVDLLESAGY 270 LVDLLEN G PDGGPAYDGFRHF 270 TVDLLEN G PDGGPAYDGFRHF 270 TVDLLEN GFPNGGPKYTGPRHF 270 TVDLLEN G PDGGPAYDGFRHF 270 TVDLLEN GFPNGGPKYTGPRHF 270 TVDLLEN GFPNGGPKYTGPRHF 270 TVDLLEN GFPNGGPKYTGPRHF	HMAVDYAKEIEYTGQFLIEPKPKEPTTHQYDTDAATTIAFLKQ QMVVEHKHKIGFQGTLLIEPKPQEPTKHQYDYDAATVYGFLKQ DLLGEYVTAQGYDLRFAIEPKPNEPRGDILLPTVGHALAFIER NLLAQYSEDQGYGLPFAIEPKPNEPRGDILLPTAGHAIAFVQE DTAAGYIKDKGYNLRIALEPKPNEPRGDIFLPTVGHGLAFIEQ Nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	EHELRMARVHGLLGSVÖNNOGHPLLGWÖYÖE FEPTDLYSTTLA HHELATALALGLEGSVÖNNREÞAQLGWÖYÖE FENSVEENALV PHGIAQALWAGKLFHIDUN GOSGIKYDDOLREGAGDLRAAFW TQGIAQALWHKKLFHIDUN GOHGPKFDDÞLVFGHGDLLNAFS FHGIAQALWAEKLFHIÐLN GORGIKYÞÓÐLVFGHGDLTSAFF hhhhhhhh bbbbbbb	EPDÖLVYAHIAGMDAFARGTWAHKLIEDRVFED DKYDLFYGHIGAMDTMALALKIAARMIEDGELDK FDGVWASAEGCMRNYLILKERAAAFRANPEVQ FDGVWESAKDNIRMYLLLKERAKAFRADPEVQ YDGVWDSAKANMSMYLLLKERALAFRADFEVQ hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 1 3 3 6 1 1 3 3 6 1 1 1 3 6 1 1 1 3 6 1 1 1 1	F REGYETLLNTDLREERDNLAREMI REGYETLLNTDLRGEREOLGRFMC I	YGLDNHFKIÑUÐANĤATLAGHTHE FELEKEIKLYLHEANHATLAGHSH LERPELYGVNPENGHEOMAGINH GLERPELFGINPENGHEOMSNINH GLEHGDIVGLNPENGHEOMAGINH SLEHGDIVGLNPENGHEOMAGINH DDDDDDDNHHHHHHHH	MYEILQNGGL MYEILKAGGF LVDLLESAGY LVDLLEN G PDGGPA TVDLLEN GFPNGGPK
	196 196 138 139	262 256 204 205 205	327 321 265 270 270

Amp Svn 439 439 386 393 394 EALRAARLNQLAQPTAAD GLEALLADRTAFE DFDVEAAARAAWPFERLDQLAMDHLLGARG EAMKISGVFELGEITLNAGESAADLMNDSASFAGFDAEAAAERN FAFIRLNQLAIEHLLGSR AALAESKVDELRTPTLNPGETYADLLADRSAFEDYDADAVGAKG YGFVKLNQLAIDHLLGAR RIAQRYSGWNSELGQQILKGQMSLADLAKYAQ EHHLSPVHQSGRQEQLENLVNHYLFDK **НИННИНИНИНИН** NNKTIKNESGROERLKPILNO **ስ**ከከከከከ 387 VIQHRYRSFTEGIGLEITEGRANFHTLEQYAL ከትስት ньньн ньнь 325 332 381

FIG.7 (continued)

9/13

10 | 13

FIGURE 8 Sequence of the Xyl A gene from Arthrobacter B3728

48	96	144	192	240	288	336	384	432		480		528			576	
ပ	ט	H	U	H	A	v	Ħ	ပ	*	v	L I	v	n		U	ď
AGC	GTG	TCT	၁၅၁	GTT	GGA	TTC	TGT	၁၅၅	G1y	ACC	Thr	CTC	Leu		GAC	Λsp
ACT	'I'IG	TCA	TTG	90 9	AAT	TAG	GGA	TTT	Phe	၁၁၅	Ala	GAG	Glu		TLL	Phe
ATC	၁၁၅	TGG	GCT	990	TTG	ATA	CAA	ACC	Thr	GIC	Val	၁၁၅	Ala		CCT	Pro
TCG	GAG	၁၅၁	TTG	GCT	TTC	၁၁၁	ATC	TTC	Phe	GGT	G1y	CTG	ren		ATT	lle
ALT	ACC	AAC	AGG	909	AAT	TCA	ACG	CAC	His	TTC	Phe	AAG	Lys		CTG	Leu
၅၁၁	GAG	GAT	GAC	GTT	GGA	TCA	SSS	GAC	Asp	CCA	Pro	CAC	His		GAC	Λsp
ACG	CILA	CGT	CTG	GAT	TGT	GCA	ACC	GCA	Λla	GAC	Asp	GIC	Val		J.VV	λsn
TGC	AGA	ഉാള	ACC	GAG	CCIL	AGC	CCA	CCT	Pro	၁၁၅	۸1а	၁၁၅	Ala		GAC	٧sb
SSS	ACC	TCG	AGC	၁၁၅	TCL	TCT	CAG	ACC	Thr	၁၅၅	Gly	GAA	Glu		CAC	His
TCG	GIG	ATA	GAC	999	CCIL	GAC	CAT	500	Pro	ACC	Thr	GTA	Val		T'IC	Phe
SCG	TCG	gce	ACC	၁၁၁	ATG	ATT	TGG	CAG	Gln	TGG	Trp	900	Pro		ACC	Thr
TCC	AGG	\mathbf{TGG}	ATC	TLG	၁၅၁	GCT	AAA	GTT	Val	GGA	$_{\rm G1y}$	GAC	Λsp		ATC	Ile
CGT	AGC	AGT	GCA	ACG	'l'GG	CIC	ACT	AGC	Ser	GTA	Val	CTG	Leu		299	Gly
ഉാ	၁၁၅	C'I'G	909	၅၁၁	GGT	999	TAA	ATG	MET/Ser	ACC	Thr	AAC	Asn	•		Tyr
CGA	909	TGG	GCT	TCC	GCT	GTA	ACA	TCA		\mathbf{TGG}	Trp	Ŋ	Lys		GGC GCC TAC	Ala
CGT	SCG	AGC	ວວວ	ACG TCC	GTC GCT	TIC	AGG	ATC		CIC TGG	Leu	၁၅၁	Arg		ეეე	Gly Al
٦	49	9.7	145	193	241	289	337	385		433		481			529	

11 113

Figure 8 (continued)

12] 13

Figure 8 (continued)

961 ATC Ile	ATC TTC Ile Phe	C'IG (CCT	ACC Thr	ACC GTC GGC CAC Thr Val Gly His	GGC Gly	CAC His	GGC Gly		GCC	TTC Phe	ATC Ile	GAG	CAG	CIG	1008
GAG Glu	GAG CAC Glu His	GGC (GAC	ATC Ile	GTC Val	GGC Gly	CTG	AAC Asn		GAA	CCA GAA ACC Pro Glu Thr	GGC Gly	CAC	GAG Glu	CAG Gln	1056
ATG	AIG GCC MET Ala	GGC (CrG	AAC Asn	TTC	ACC Thr	CAC His	GGC Gly	ATC Ile	GCT	CAG Gln	GCA	CTG	TGG	GCC Ala	1104
GA G1	GAG AAG Glu Lys	CTG :	TTC	CAC	ATT Ile	GAC Asp	CTC Leu	AAC Asn	GGC G1y	CAG Gln	CGC Arg	GGC Gly	ATC Ile	AAG Lys	TAC Tyr	1152
GAC	GAC CAG ASP Gln	 GAC CTG (Asp Leu	CTG G	Grc rrc Val Phe		GGC (CAC	GGC	GAT Asp	CTG	CTG ACC Leu Thr	AGC Ser	GCG	TTC	TTC	1200
AC	ACC GTA Thr Val	GAC (CTG	C'rG Leu	GAA	AAC	GGC Gly		CCT	AAC	GGC G1y	GGA Gly	CCA	AAG Lys	тас Туг	1248
AC	ACC GGC Thr Gly	CCA (CGC	CAC	TTC Phe	GAC Asp	TAC Tyr			TCG Ser	CGC	ACC Thr	GAC	GGC Gly	TAC	1296
GAC	GAC GGC Asp Gly	GrG 7 Val 7	TGG	GAC	TCG	GCC Ala	aag Lys	GCC Ala	AAC	ATG TCC MET. Ser	TCC Ser	ATG	TAC Tyr	CTG	CTG	1344

13 113

Figure 8 (continued)

1392	1440	1488	1536	1584	1632 1680 1728 1776 1824 1872
,I	-	-	T .	7	
GAA Glu	AAC	GCA Ala	CGC Arg	CTG	s ccg g ccg s gcA rcg ggc
CAG Bln	CTG	TTC	ATC Ile	ACC	TAG TATG TATG CGA TI GCG GG
GTA Val	ACC	AGC Ser	TTC	TAA ACC *	C GTC CGG AAG CGG
GAG	ACC Thr	GCG Ala	GCG Ala	CGC	A TCC
CCA	GAA Glu	TCC	TTC Phe	TCC	
GAT Asp	GGC Gly	GAT	AAC	GGC G1y	CGA TCGA TCGA TCGA TCGA TCGA TCGA TCGA T
GCG Ala	CTG	AAT Asn	CGC	CFC GGC Leu Gly	AGC CAC ATT CTT GCA AAG CCT CAC GTG SGT TCG ATG C ATG TGG CTG C TAG ATT GGC C
CGT Arg	GAA Glu	ATG	GAG Glu	CTG	E . E . M
TTC Phe	TTC	CTG	GCA Ala	CAC	
GCC Ala	GTC Val	GAT	GCC	GAG	AGC AGT GCT ICT ATG ATG
CTG GCC TTC Leu Ala Phe	GGC Gly	GCG	GCC Ala	ATC Ile	
GCC Ala	TCG	GCA Ala	GAG Glu	GCC	
CGT	ACC Thr	AGC Ser	GCC	CTG	ACC CCT TGC ACC (GAG GCA 3
GAA Glu	AAG Lys	GAA Glu	GAC Asp	CAG Gln	CCC ACT GAG TAG I
AAG Lys	atg Met	GGG G1y	TTT Phe	AAC Asn	GAA TCG CCG AAG AGC
CTC AAG Leu Lys	GCC ATG Ala MET	GCC GGG Ala Gly	GGC	CTG AAC Leu Asn	TCT GAA GCA TCG ATA CCG CGG AAG CCC AGG AGC AGC
1345	1393	1441	1489	1537	1585 1633 1681 1729 1777 1825

ý

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 89/00

According to International Patent Classification (IPC) or to both National Classification and IPC IPC 5: C 12 N 9/92, C 12 N 15/00 II. FIELDS SEARCHED Minimum Documentation Searched 7 Classification System Classification Symbols IPC 5 C 12 N Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 9 III. DOCUMENTS CONSIDERED TO BE RELEVANT? Category Citation of Documents 11 with indication, where appropriate of the selection of the searched of the sear
IPC 5: C 12 N 9/92, C 12 N 15/00 II. FIELDS SEARCHED Minimum Documentation Searched 7 Classification System Classification Symbols IPC 5 C 12 N Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched 9 III. DOCUMENTS CONSIDERED TO BE RELEVANT?
II. FIELDS SEARCHED Minimum Documentation Searched 7 Classification System Classification Symbols IPC 5 C 12 N Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 8 III. DOCUMENTS CONSIDERED TO BE RELEVANT?
Classification System Classification Symbols IPC 5
Classification System IPC 5 C 12 N Documentation Seerched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT?
IPC 5 C 12 N Documentation Seerched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 5 III. DOCUMENTS CONSIDERED TO BE RELEVANT?
Documentation Seerched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT?
to the Extent that such Documents are Included in the Fields Searched * III. DOCUMENTS CONSIDERED TO BE RELEVANT*
Category • Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 13
X Protein Engineering, volume 1, no. 3, 1-5,9-11 April 1987,
PC. Shaw et al.: "Protein engineering
of Arthrobacter glucose isomerase",
see abstract no 154
P,Y WO, A, 89/01520 (CETUS COPPORATION)
P,Y WO, A, 89/01520 (CETUS CORPORATION) 1-5,9-11 23 February 1989
see claims
A US. A. 4410627 (ITOVD of all)
A US, A, 4410627 (LLOYD et al.) 18 October 1983
see column 3, lines 11-65; claims
1,5,6
• Special categories of cited documents: 10 "A" document defining the general state of the art which is not confined with the application but
Considered to be of particular relevance
Cannot be considered novel of cannot be considered to
Citation of the to establish the publication date of another document of naticular relevances the object of the citation of th
"O" document referring to an oral disclosure, use, exhibition or other means "B" decument the considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
"P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family
V. CERTIFICATION
ate of the Actual Completion of the International Search Date of Melling of this International Search Report
22nd September 1989 13.11.89
ternational Searching Authority Signature of Authorized Officer
EUROPEAN PATENT OFFICE T.K. WILLIS

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

GB 8900748 SA 29852

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 31/10/89

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date		nt family nber(s)	Publication date
₩0-A- 8901520	23-02-89	AU-A-	2421588	09-03-89
US-A- 4410627	18-10-83	AU-B- AU-A- BE-A- CA-A- DE-A- FR-A,B GB-A,B JP-A- NL-A- SE-A-	558696 1645383 897165 1200521 3323617 2529572 2123001 59025696 8302334 8303725	05-02-87 05-01-84 29-12-83 11-02-86 19-01-84 06-01-84 25-01-84 09-02-84 16-01-84 31-12-83
)E-W-	8303725	31-12-83

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82