

Andrzej Małota promotor: dr inż. Włodzimierz Funika

Plan prezentacji

- 1. Przedstawienie problemu zarządzania zasobami chmury obliczeniowej
- 2. Cel pracy
- 3. Rozwiązanie problemu
 - a. Środowisko symulacyjne
 - b. Agent DQN vs agent PPO
 - c. Graficzna reprezentacja wpływu cech
- 4. Wyniki
 - a. Agenci reaktywni vs proaktywni
 - b. Podsumowanie polityki agenta
 - c. Śledzenie postępów w treningu
 - d. Selekcja cech
- 5. Podsumowanie

Przedstawienie problemu zarządzania zasobami chmury obliczeniowej

- celem zarządzania zasobami chmury obliczeniowej jest minimalizacja kosztu infrastruktury dla aplikacji użytkownika przy zachowaniu wysokiej jakości usług,
- rozwiązanie poprzez użycie agentów głębokiego uczenia ze wzmocnieniem,
 - > lepsze rezultaty niż standardowe rozwiązania,
 - > użycie w produkcji jest uznawane za ryzykowne z powodu braku przejrzystości zasad podejmowania decyzji: nie wiadomo, dlaczego konkretna akcja została wykonana.

Cel pracy

- implementacje algorytmu dokonującego lokalnej oraz globalnej interpretacji post hoc agenta, poprzez wyliczenie wpływu poszczególnych wejściowych metryk infrastruktury chmurowej na decyzje agenta oraz przedstawienie ich w formie graficznej,
- przeprowadzenie procesu trenowania agentów oraz ich analiza pod kątem interpretowalności.

Rozwiązanie problemu (1)

- środowisko symulacyjne

- liczba maszyn wirtualnych w użyciu,
- średnie oraz 90 percentyl użycia pamięci RAM,
- średnie oraz 90 percentyl obciążenia CPU,
- całkowity oraz niedawny czas oczekiwania zadań w kolejce.

Funkcja nagrody = - (koszt działania infrastruktury + kara za opóźnienie wykonania zadań)

Dostępne akcje agenta:

- brak akcji,
- dodanie/usunięcie małej/średniej/dużej maszyny wirtualnej.

Rozwiązanie problemu (2)

- do interpretacji sieci neuronowej został użyty algorytm Integrated Gradients (IG),
- podejście do interpretacji agenta oraz jej graficzna reprezentacja zależy od użytego algorytmu uczenia (DQN/PPO) który definiuje architekturę sieci neuronowej oraz typu pierwszej warstwy sieci (w pełni połączona/konwolucyjna).

Rozwiązanie problemu (3)

- agent DQN
- aby zinterpretować agenta Deep Q-Network (DQN) trzeba policzyć wpływ metryk wejściowych na wyjście z ostatniej warstwy którymi są Q-values,
- wartość Q-value dla akcji informuje nas o oczekiwanym zwrocie (suma przyszłych nagród uzyskanych przy użyciu optymalnej polityki) z wykonania danej akcji w aktualnym stanie,
- przy deterministycznym działaniu agenta i przy użyciu chciwej polityki, agent zawsze wykonuje akcje powiązaną z największą wartością Q-value.

Rys. 1 Schemat sieci neuronowej agenta DQN.

Rozwiązanie problemu (4)

- agent PPO

- agent trenowany algorytmem Proximal Policy Optimization (PPO) posiada architekturę Aktor-Krytyk, główna sieć neuronowa rozgałęzia się na dwie podsieci: sieć Aktora oraz Krytyka,
- Krytyk estymuje funkcję wartościującą natomiast Aktor optymalizuje politykę oraz zwraca predykcje akcji,
- ponieważ w tej pracy interesuje nas interpretacja akcji agenta, trzeba policzyć wpływ metryk wejściowych na wyjście z ostatniej warstwy sieci Aktora.

Rys. 2 Schemat sieci neuronowej agenta PPO.

Rozwiązanie problemu (5)

- warstwa w pełni połączona

- dla w pełni połączonej warstwy wejściowej wpływ metryk przedstawiony jest na wykresie słupkowym (przykład poniżej),
- dodatnia wartość (na zielono) oznacza pozytywny wpływ cechy na akcje, pozytywny wpływ oznacza że dana cecha przyczyniła się do predykcji danej akcji, ujemna wartość (na czerwono)

Rys. 3 Graficzna reprezentacja wpływu metryk wejściowych na decyzje agenta z pierwszą warstwą w pełni połączoną w postaci dwóch wykresów słupkowych: metryk środowiska (górny), atrybucje metryk (dolny). Wspólna oś x - metryki środowiska, Oś y dla górnego wykresu - wartość metryk, dla dolnego wykresu - wartość wpływu.

Rozwiązanie problemu (6)

warstwa konwolucyjna

dla konwolucyjnej warstwy wejściowej wpływ metryk przedstawiony jest jako dwuwymiarowa mapa istotności.

Rys. 4 Graficzna reprezentacja wpływu metryk wejściowych na decyzje agenta z pierwszą warstwą konwolucyjną w postaci trzech map cieplnych przedstawiających: wartość metryk środowiska (górna), atrybucje dodatnie (środkowa) oraz atrybucje ujemne (dolna). Wspólna oś x - kroki czasowe (0 - aktualny krok czasowy, -14 - czternasty krok w przeszłości), Oś y - metryki środowiska. Im bardziej intensywny kolor tym większa wartość.

Wyniki analizy (1)

- dzięki analizie reakcji agentów na gwałtowne skoki obciążenia infrastruktury można wyróżnić dwa typy agentów: reaktywnych i proaktywnych,
- agenci reaktywni z opóźnieniem reagują na zmiany obciążenia,
- agenci proaktywni są w stanie przewidzieć zmiany obciążeniu wywołane przez aplikację kliencką i zapewnić niezbędne zasoby obliczeniowe na czas.

Rys. 5 Przykładowy przebieg z działania reaktywnego agenta DQN z architekturą MLP.

Rys. 6 Przykładowy przebieg z działania proaktywnego agenta PPO z architekturą CNN-LSTM.

Wyniki analizy (2)

- średnia absolutna atrybucja cech (ważność/istotność cech),
- średnia atrybucja cech.

Rys. 7 Ważność cech agenta PPO z architekturą MLP.

Rys. 8 Średnia atrybucja cech agenta PPO z architekturą MLP.

Wyniki analizy (3)

- podsumowanie polityki agenta

Rys. 9 Ważność cech agenta PPO z architekturą CNN-LSTM.

Rys. 10 Ważność cech agenta DQN z architekturą CNN.

www.agh.edu.pl

Wyniki analizy (3)

- śledzenie zostało zrobione na dwa sposoby:
 - przy użyciu interpretacji globalnej
 - śledzenie zmian ważności cech aby zaobserwować zmiany w generalnym działaniu agenta,
 - przy użyciu interpretacji lokalnej
 - śledzenie zmian ważności cech dla konkretnej obserwacji wejściowej w celu analizy jak kolejne iteracje agentów sobie z nią radzą.

Wyniki analizy (4)

Rys. 11 Grupa wykresów przedstawiających zmiany ważności cech agenta DQN z architekturą MLP podczas jego treningu. Wykresy ułożone są od góry do dołu względem długości treningu agentów, od agenta z losowymi parametrami do agenta po treningu.

Wyniki analizy (5)

- śledzenie postępów w treningu

Rys. 12 Grupa wykresów przedstawiających zmiany ważności cech agenta DQN z architekturą CNN podczas jego treningu.

Timesteps

Wyniki analizy (6)

- śledzenie postępów w treningu

Rys. 13 Grupa wykresów przedstawiających zmiany pozytywnych atrybucji cech agenta DQN z architekturą CNN dla tej samej obserwacji podczas jego treningu.

0 -1 -2 -3 4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14

Wyniki analizy (7)

- śledzenie postępów w treningu

Rys. 14 Grupa wykresów przedstawiających zmiany negatywnych atrybucji cech agenta DQN z architekturą CNN dla tej samej obserwacji podczas jego treningu.

0 -1 -2 -3 4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14

Wyniki analizy (8)

- selekcja cech

ze środowiska została usunięta cecha "waitingJobsRatioRecent" która miała prawie zerowy wpływ na decyzje agenta - jej brak nie spowodował spadku wydajności agenta.

Rys. 15 Ważność cech oryginalnego agenta PPO z architekturą rekurencyjną.

Rys. 16 Ważność cech agenta PPO z architekturą rekurencyjną po usunięciu metryki "waitingJobsRatioRecent".

Absolute mean attributions - Feature Importance

Podsumowanie (1)

- wnioski

- w zależności od ustawień środowiska symulacyjnego oraz typu pierwszej warstwy sieci neuronowej otrzymujemy dwie graficzne reprezentacje wpływu metryk wejściowych na decyzje:
 - dla w pełni połączonej warstwy otrzymujemy jednowymiarowy wektor wpływów bieżącej wartości metryk -> prostsze do interpretacji, mniej informacji,
 - dla konwolucyjnej warstwy otrzymujemy dwuwymiarową mapę istotności wpływu metryk z kilkunastu ostatnich kroków czasowych -> bardziej skomplikowane w interpretacji ale dostarcza więcej informacji,
- globalna interpretacja agenta może być użyta do znalezienia generalnych wzorców jego zachowań,
- lokalna interpretacja agenta może być użyta do debuggowania niepoprawnych decyzji,
- różne architektury sieci neuronowej oraz typy agenta osiągają podobną wydajność w zarządzaniu zasobami używając różnych wzorców zachowań.

Podsumowanie (2)

- dalsze prace

- dodanie znacznie większej liczby metryk opisujących stan chmury obliczeniowej i dokonanie selekcji cech przy użyciu analizy istotności cech,
- analiza porównawcza różnych technik interpretacji agenta,
 - inne algorytmy interpretujące sieć neuronową agenta,
 - > użycie architektur sieci neuronowej które są samowyjaśnialne, np. mechanizm uwagi

www.agh.edu.pl

Dziękuje za uwagę!

www.agh.edu.pl