1. In the diagram below,  $\overline{FAD} \parallel \overline{EHC}$ , and  $\overline{ABH}$  and  $\overline{BC}$  are drawn.



If  $m \angle FAB = 48^{\circ}$  and  $m \angle ECB = 18^{\circ}$ , what is  $m \angle ABC$ ?

(a)  $18^{\circ}$ 

(c)  $66^{\circ}$ 

(b) 48°

- (d) 114°
- 2. A cone has a volume of  $108\pi$  and a base diameter of 12. What is the height of the cone?
- 3. The endpoints of directed line segment PQ have coordinates of P(-7, -5) and Q(5,3). What are the coordinates of point A, on  $\overline{PQ}$ , that divide  $\overline{PQ}$  into a ratio of 1:3?
- 4. Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is
  - (a) twice the volume of cone B
  - (b) four times the volume of cone B
  - (c) equal to the volume of cone B
  - (d) equal to half the volume of cone B

5. Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.



If  $\triangle ABC \sim \triangle DEF$ , with right angles B and E, BC = 15 cm, and AC = 17 cm, what is the measure of  $\angle F$ , to the nearest degree?

- 6. A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?
  - (a)  $45^{\circ}$

(c) 120°

(b) 90°

- (d) 135°
- 7. In triangle MAH below,  $\overline{MT}$  is the perpendicular bisector of  $\overline{AH}$ .



Which statement is *not* always true?

- (a)  $\triangle MAH$  is isosceles.
- (b)  $\triangle MAT$  is isosceles.
- (c)  $\overline{MT}$  bisects  $\angle AMH$ .
- (d)  $\angle A$  and  $\angle TMH$  are complementary.

8. In circle B below, diameter  $\overline{RT}$ , radius  $\overline{BE}$ , and chord  $\overline{RE}$  are drawn.



It  $m\angle TRE = 15^{\circ}$  and BE = 9, then the area of sector EBR is what in terms of  $\pi$ ?

- 9. Lou has a solid clay brick in the shape of a rectangular prism with a length of 8 inches, a width of 3.5 inches, and a height of 2.25 inches. If the clay weighs 1.055 oz/in<sup>3</sup>, how much does Lou's brick weigh, to the nearest ounce?
- 10. For the acute angles in a right triangle,  $\sin(4x)^{\circ} = \cos(3x+13)^{\circ}$ . What is the number of degrees in the measure of the smaller angle?
- 11. A rectangular tabletop will be made of maple wood that weighs 43 pounds per cubic foot. The tabletop will have a length of eight feet, a width of three feet, and a thickness of one inch. Determine and state the weight of the tabletop, in pounds.
- 12. Determine and state an equation of the line perpendicular to the line 5x 4y = 10 and passing through the point (5, 12).

- 13. After a dilation with center (0,0), the image of  $\overline{DB}$  is  $\overline{D'B'}$ . If DB=4.5 and D'B'=18, then what is the scale factor of this dilation?
- 14. In the diagram below of circle O, points K, A, T, I, and E are on the circle,  $\triangle KAE$  and  $\triangle ITE$  are drawn,  $\widehat{KE} \cong \widehat{EI}$ , and  $\angle EKA \cong \angle EIT$ .



Which statement about  $\triangle KAE$  and  $\triangle ITE$  is always true?

- (a) They are neither congruent nor similar.
- (b) They are similar but not congruent.
- (c) They are right triangles.
- (d) They are congruent.
- 15. From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is  $11.87^{\circ}$ . To the nearest foot, what is the height of the monument? (1 mile = 5280 feet)
- 16. The area of a sector of a circle with a radius measuring 15 cm is  $75\pi$  cm<sup>2</sup>. What is the measure of the central angle that forms the sector?

- 17. Point M divides  $\overline{AB}$  so that AM : MB = 1 : 2. If A has coordinates (-1, -3) and B has coordinates (8, 9), what are the coordinates of M?
- 18. What is an equation of the image of the line  $y = \frac{3}{2}x 4$  after a dilation of a scale factor of  $\frac{3}{4}$  centered at the origin?
- 19. Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
  - (a) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
  - (b) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
  - (c) a cylinder with a radius of 5 inches and a height of 6 inches
  - (d) a cylinder with a radius of 6 inches and a height of 5 inches
- 20. In the diagram below of triangle ABC,  $\overline{AC}$  is extended through point C to point D, and  $\overline{BE}$  is drawn to  $\overline{AC}$ .



Which equation is always true?

- (a)  $\angle 1 = m \angle 3 + m \angle 2$
- (c)  $\angle 6 = m \angle 3 m \angle 2$
- (b)  $\angle 5 = m \angle 3 m \angle 2$
- (d)  $\angle 7 = m \angle 3 + m \angle 2$

- 21. In right triangle ABC,  $m \angle C = 90^{\circ}$  and  $AC \neq BC$ . Which trigonometric ratio is equivalent to  $\sin B$ ?
  - (a)  $\cos A$

(c)  $\tan A$ 

(b)  $\cos B$ 

- (d)  $\tan B$
- 22. In the diagram below of right triangle ABC, AC = 8, and AB = 17.



- Which equation would determine the value of angle A?
- (a)  $\sin A = \frac{8}{17}$

(b)  $\tan A = \frac{8}{15}$ 

- (c)  $\cos A = \frac{15}{17}$ (d)  $\tan A = \frac{15}{8}$
- 23. Which equation represents a line that is perpendicular to the line represented by

$$y = \frac{2}{3}x + 1?$$

(a) 3x + 2y = 12

(c)  $y = \frac{3}{2}x + 2$ 

(b) 3x - 2y = 12

(d)  $y = -\frac{2}{3}x + 4$ 

24. In diagram of quadrilateral NAVY,  $m\angle YNA=30^\circ$ ,  $m\angle YAN=38^\circ$ ,  $m\angle AVY=94^\circ$ , and  $m\angle VAY=46^\circ$ .



Which segment has the shortest length?

(a)  $\overline{AY}$ 

(c)  $\overline{VA}$ 

(b)  $\overline{NY}$ 

- (d)  $\overline{VY}$
- 25. In the diagram below,  $\triangle ABC$ , altitude  $\overline{CG}$ , and median  $\overline{CM}$  are drawn.



Which expression represents the area of  $\triangle ABC$ ?

(a)  $\frac{(BC)(AC)}{2}$ 

(c)  $\frac{(CM)(AB)}{2}$ 

(b)  $\frac{(GC)(BC)}{2}$ 

(d)  $\frac{(GC)(AB)}{2}$ 

26. As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm.



How many cubic centimeters are in the volume of the cone? Express your answer in terms of  $\pi$ .

27. In the diagram below,  $\overline{AEFB} \parallel \overline{CGD}$ , and  $\overline{GE}$  and  $\overline{GF}$  are drawn.



If  $m \angle EFG = 32^{\circ}$  and  $m \angle AEG = 137^{\circ}$ , what is  $m \angle EGF$ ?

(a) 11°

(c)  $75^{\circ}$ 

(b) 43°

(d) 105°

- 28. An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a
  - (a) cylinder with a diameter of 6
  - (b) cylinder with a diameter of 12
  - (c) cone with a diameter of 6
  - (d) cone with a diameter of 12
- 29. The coordinates of the endpoints of directed line segment ABC are A(-8,7) and C(7,-13). If AB:BC=3:2, what are the coordinates of B?
- 30. A circle with a diameter of 10 cm and a central angle of 30° is drawn below.



What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

31. A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the *nearest cubic foot*?