به نام خدا

سیگنال ها و سیستم ها

تمرین کامپیوتری ششم

مهلت تحویل: یکشنبه ۱۳ خرداد ساعت ۱۷:۰۰

مقدمه:

جهت تاکید، مقدمه ای که در تمرین کامیپوتری قبل بیان شد را مجدد تکرار می کنیم. در این تمرین کامپیوتری از مفاهیم این مقدمه برای پیاده سازی ها استفاده می کنیم.

از آنجایی که شبیه سازی ها در محیط متلب و با کامپیوتر انجام می شود، همه ی سیگنال هایی که در شبیه سازی ها با آن ها سر و کار داریم سیگنال های گسسته است. لذا همه ی نتایج باید با عناوین مطرح شده در کلاس در حوزه ی گسسته تطابق داشته باشد. اما همان گونه که چندین بار سر کلاس مطرح شد و در ادامه درس نیز خواهیم دید، دو حوزه ی گسسته و پیوسته، روابط بسیار نزدیکی دارند و مفاهیم آنها با یکدیگر در تطابق است.

فرض کنید در MATLAB، در حوزه ی زمان، یک سیگنال (بردار) x به طول N سمپل و معادل T ثانیه داریم فرض کنید در واقع f_s و می خواهیم آن را به حوزه ی فوریه ببریم (به شکل زیر نگاه کنید). در واقع f_s فرکانس نمونه برداری و $t_s = \frac{1}{f_s} = \frac{T}{N}$) و می خواهیم آن را به حوزه ی فوریه ببریم دهد. این دو پارامتر به ما می گویند که از سیگنال پیوسته برداری و نمونه برداری شده است و سیگنال گسسته ی فعلی تولید شده است. برای رسم دقیق سیگنال اصلی به چه صورت نمونه برداری شده است و سیگنال گسسته ی فعلی تولید شده است. برای رسم دقیق سیگنال در حوزه ی زمان اگر بازه ی زمانی مربوط به سیگنال معلوم باشد $t = t_{start} : t_s : t_{end} - t_s$ به طوری که $t_s : t_{start} : t_s : t_{end} = t_s$ به راحتی آن را با دستور $t_s : t_{start} : t_s : t_{end} : t_{start} : t_{start}$

برای بردن سیگنال به حوزه ی فوریه از دستور y = fftshift(fft(x)) استفاده می کنیم. fft دستور اصلی است و fftshift فقط بازه ی متقارن حول فرکانس صفر را ایجاد می کند (مشابه آنچه که در درس در بخش سری فوریه گسسته مطرح شد). خروجی این دستور یعنی y یک بردار با y سمیل است که هر درایه ی آن یک عدد مختلط گسسته مطرح شد).

است لذا هر درایه یک اندازه و یک فاز دارد. نکته ی مهم در این جا این است که هر یک از این N عدد به دست آمده متعلق به چه فرکانسی می باشد؟

فرکانس ها به صورت $\frac{f}{N}: rac{fs}{N}: rac{fs}{N}: rac{fs}{N}: rac{fs}{N} = rac{fs}{N}$ خواهند بود. بنابراین برای رسم اندازه می توان از دستور plot $(f, \mathrm{angle}(y))$ و برای رسم فاز می توان از دستور

راجع به بازه ی فرکانس های در نظر گرفته شده (هایلایت سبز)، سه نکته ی زیر حائز اهمیت هستند:

نکته ی اول:

 $f=rac{\omega}{2\pi}$ در کلاس برای تطابق با کتاب اپنهایم، کلمه ی فرکانس به ω اطلاق شد ولی در این تمرین کامپیوتری به عنوان فرکانس می دهیم. دلیل این امر این است که از دست عدد π راحت شویم.

نکته ی دوم:

اگر خاطرتان باشد در کلاس گفتیم بیشترین فرکانس (از منظر تغییرات سریع زمانی) در حوزه ی گسسته فرکانس $\frac{1}{2}$ است که در این جا می بینید جای آن عدد $\frac{s}{2}$ نشسته است. در واقع در سرتاسر درس سیگنال، نرخ نمونه برداری برابر $f_s=1$ هرتز در نظر گرفته می شود (یک سمپل در هر ثانیه). از این نکته می توان نتیجه گرفت هر چه از سیگنال پیوسته در حوزه ی زمان با نرخ بالاتری نمونه برداری کنیم $f_s=1$)، در سیگنال گسسته به دست آمده، می توان فرکانس های بالاتر را نیز (در صورت وجود) مشاهده کرد چون بازه ی فرکانسی قابل مشاهده افزایش پیدا می کند. در حالت حدی، اگر نرخ نمونه برداری به سمت بی نهایت برود (یا به عبارت دیگر $f_s=1$) برود، عملا سیگنال گسسته به دست آمده با سیگنال پیوسته اصلی یکی خواهد بود و هر مولفه ی فرکانسی که در سیگنال اصلی بوده است، در سیگنال گسسته نیز مشاهده می شود. در این قسمت کاملا باید درک کرده باشید سیگنال اصلی بوده است، در سیگنال گسسته نیز مشاهده می شود. در این قسمت کاملا باید درک کرده باشید که در sampling (نمونه برداری) که یک سیگنال پیوسته را به یک سیگنال گسسته تبدیل می کند چه چیزی از بین می رود.

نکته ی سوم:

نکته ی آخر راجع به رزولوشن فرکانسی است که ایجاد شده است یعنی $\frac{\delta_f}{N} = \frac{f_S}{N}$ (هایلات سبز را نگاه کنید). اگر از رابطه ای که با هایلایت زرد رنگ مشخص شده است استفاده کنید می توان دید که رزولوشن فرکانسی برابر است با است با $\frac{1}{T} = \frac{1}{T}$ ، یعنی رزولوشن فرکانسی برابر با عکس طول زمانی سیگنال است و هیچ ربطی هم به نرخ نمونه برداری f_S ندارد. هرچه می خواهید نرخ نمونه برداری را افزایش دهید اما رزولوشن فرکانسی مادامی که طول زمانی سیگنال f_S ثانیه) تغییری نکند هیچ تغییری نمی کند. حال ببینیم مفهوم رزولوشن چیست؟ رزولوشن فرکانسی گام های فرکانسی است که می توان در نظر گرفت تا سیگنال گسسته را در فضای فوریه توصیف کرد. این مفهوم گلم های فرکانسی است که می توان در نظر گرفت تا سیگنال گسسته را در فضای فوریه توصیف کرد. این مفهوم

 $f_s=0$ را با یک مثال توضیح می دهیم. فرض کنید طول زمانی یک سیگنال T=1 ثانیه است و نرخ نمونه برداری T=1 ثانیه است. بنابراین رزولوشن فرکانسی برابر T=1 می شود و بازه ی فرکانسی که در حوزه ی فوریه ی T=1 است. بنابراین رزولوشن فرکانسی برابر T=1 برابر T=1 می شود و بازه ی فرکانسی که در حوزه ی فوریه ی سیگنال نمونه برداری شده می توان مشاهده کرد به صورت T=1 هر تز خواهد بود (هایلات سبز). اگر سیگنال اصلی حاوی دو سیگنال تک تُن (تک فرکانس) به صورت

$$x_1(t) = \exp(1j * 2\pi * 5 * t) + \exp(1j * 2\pi * 8 * t)$$

باشد، طبیعتا قله هایی در اندازه ی سیگنال در حوزه ی فوریه، در فرکانس های 5 و 8 هرتز مشاهده خواهید کرد.

حال فرض کنید سیگنال اصلی حاوی دو سیگنال تک تن به صورت

$$x_2(t) = \exp(1j * 2\pi * 5 * t) + exp(1j * 2\pi * 5.1 * t)$$

باشد. در این حالت فقط یک قله در اندازه ی سیگنال در حوزه ی فوریه، در فرکانس 5 هرتز مشاهده خواهید کرد و دیگر توانایی تفکیک این دو سیگنال را در حوزه ی فوریه نخواهید داشت زیرا اختلاف فرکانس دو سیگنال تک تُن کمتر از $\delta_f = 1$ می باشد. بنابراین رزولوشن فرکانسی قدرت تفکیک پذیری فرکانسی را در حوزه ی فوریه نشان می دهد. حال به سراغ تمارین می رویم.

بخش اول:

می خواهیم توسط یک رادار، فاصله و سرعت یک جسم را بیابیم.

ستگنال ارسالی رادار به صورت $x(t) = \cos{(2\pi f_c\,t)}$ است.

این سیگنال به سمت جسم ساطع می شود و به آن برخورد می کند. به علت متحرک بودن جسم و پدیده ی داپلر، فرکانس آن عوض شده و سپس با یک تاخیری در گیرنده دریافت می شود. به عبارت دیگر سیگنال دریافتی به صورت زیر خواهد بود (مقدار $\alpha < 1$) اهمیتی ندارد):

$$y(t) = \alpha \cos(2\pi (f_c + f_d) (t - t_d))$$

در رابطه ی بالا f_d همان فرکانس داپلر است که تغییر فرکانس را به وجود آورده است. فرض کنید رابطه ی فرکانس داپلر با سرعت جسم به صورت $f_d=eta$ می باشد که eta عددی معلوم است.

همچنین در رابطه بالا t_d همان تاخیر است که طبق آنچه در تمرین کامپیوتری قبل بیان شد، رابطه ی آن با فاصله ی رادار از جسم به صورت $t_d=\rho$ می باشد که ρ عددی معلوم است ρ و ρ سرعت نور است).

 $t_{end}=1$ تا $t_{start}=0$ ، بازه ی زمانی $f_c=5$ Hz میگنال ارسالی رادار را با در نظر گرفتن $f_s=100$ Hz شیکنال ارسالی برداری $f_s=100$ Hz رسم کنید.

 $f_s=$ ، $t_{end}=1$ ، $t_{start}=0$) سیگنال دریافتی را با در نظر گرفتن فرضیات قسمت قبل (۲-۱) سیگنال دریافتی را با در نظر گرفتن فرضیات قسمت قبل دریافتی $\alpha=0.5$ و $\beta=0.3$ ، R=250~Km ، $V=180~\frac{Km}{h}$ و $\alpha=0.5$ و $\beta=0.3$ ، $\alpha=0.5$ و $\beta=0.5$ ، $\alpha=0.5$ ، $\alpha=0.5$ و $\beta=0.5$ ، $\alpha=0.5$ و $\beta=0.5$ ، $\alpha=0.5$ ،

تمرین (-7) حال به صورت برعکس به مساله نگاه کنید. یعنی فرض کنید سیگنال دریافتی را داریم و می خواهیم از روی آن سرعت و فاصله را محاسبه کنیم. به عبارت دیگر می بایست f_a و f_a را تخمین زده و سپس از روی آنها سرعت و فاصله را بیابیم. روشی پیشنهاد دهید که این کار را برای ما به صورت اتوماتیک انجام دهد. روشتان را توضیح داده و پیاده سازی کرده و نتایج آن را گزارش کنید.

راهنمایی: به سیگنال دریافتی دقت کنید. سیگنال دریافتی را می توان به صورت زیر بیان کرد:

$$y(t) = \alpha \cos(2\pi (f_c + f_d) (t - t_d))$$

$$y(t) = \alpha \cos(2\pi (f_c + f_d) t - 2\pi (f_c + f_d) t_d))$$

$$y(t) = \alpha \cos(2\pi f_{new} t + \varphi_{new})$$

سیگنال دریافتی یک سیگنال با فرکانس f_{new} و فاز ϕ_{new} است. پس با بردن سیگنال به حوزه ی فوریه و استخراج فرکانس غالب و فاز متناظر با آن، پارامترهای مساله استخراج می شوند.

تمرین (-7) حال به سیگنال دریافتی کمی نویز اضافه کنید و تمرین (-7) را تکرار کنید. قدرت نویز را کم کم و طی چندین مرحله افزایش دهید و ببینید تا کجا همچنان می توانید سرعت و فاصله را به درستی تشخیص دهید. کدام پارامتر حساسیت بیشتری به حضور نویز دارد؟

تمرین ۱-۵) حالت ایده آل بدون نویز را در نظر بگیرید. فرض کنید به جای یک جسم، دو جسم مختلف با پارامترهای زیر داریم:

$$R_1 = 250 \ Km$$
, $V_1 = 180 \ \frac{Km}{h}$, $\alpha_1 = 0.5$
 $R_2 = 200 \ Km$, $V_2 = 216 \ \frac{Km}{h}$, $\alpha_2 = 0.6$

سیگنال دریافتی در رادار حاصل جمع اکو های برگشتی از این دو جسم است. رابطه ی سیگنال دریافتی را نوشته و با همان فرضیات قسمت های قبل آن را رسم کنید.

تمرین ۱-۴) حال به صورت برعکس به مساله نگاه کنید. یعنی فرض کنید سیگنال دریافتی را داریم و می خواهیم از روی آن سرعت و فاصله ی دو جسم را محاسبه کنیم. روشتان را شرح داده و پیاده سازی کنید.

 $\frac{\mathbf{V} - \mathbf{V}}{\mathbf{V} - \mathbf{V}}$ اگر سرعت دو جسم داده شده برابر باشد ولی فاصله ها متفاوت باشد، با ذکر دلیل بیان کنید آیا باز هم قادر خواهید بود سرعت و فواصل آنها را استخراج کنید؟ حداقل اختلاف سرعت دو جسم چه قدر باید باشد تا بتوانید پارامترهای دو جسم را درست تخمین بزنید؟

تمرین $(-\Lambda)$ اگر فاصله ی دو جسم داده شده برابر باشد ولی سرعت ها متفاوت باشد، آیا قادر خواهید بود سرعت ها و فاصله ی آنها را استخراج کنید؟

تمرین ۱-۹) اگر تعداد اجسام را ندانیم، راهی پیشنهاد دهید که بتوان هم تعداد آنها را فهمید و هم پارامترهای آنها را استخراج کرد.

بخش دوم:

مطابق شکل زیر ۱۲ کلید متناظر با ۱۲ نُت مختلف از یک ابزار موسیقی (مثل پیانو و ...) را در نظر می گیریم.

C C# D D# E F F# G G# A A# B

# 554.37 Hz # 622.25 Hz			F # 739.99 Hz G # 830.61 Hz A # 932.33 Hz			
523.25 Hz	587.33 Hz	659.25 Hz	698.46 Hz	783.99 Hz	880 Hz	987.77 Hz
ပ	Q	Ш	ű	9	۷	B

فرضیات زیر را در نظر می گیریم:

- با فشردن هر یک از کلیدها، یک سیگنال تک تُن به صورت $\sin(2\pi f_c t)$ با فرکانسی که در شکل مشخص شده است تولید می شود.
 - \checkmark مدت زمان استاندارد نگه داشتن هر کلید یعنی پارامتر T و پارامترهای زمانی به صورت زیر می باشند.

$$t = t_{start} : t_s : t_{end} - t_s$$

$$t_{start} = 0, \qquad f_s = 8 \; KHz, \qquad t_{end} = T = 0.5 \; sec$$

- ک گاهی اوقات، هر کلید نیمی از زمان استاندارد، یعنی $\frac{T}{2}=0.25~sec$ نگه داشته می شود.
 - ستراحت بین دو کلید متوالی au = 25~msec است (استراحت بین دو کلید).

تمرین ۲-۱) موسیقی زیر را تولید کرده و با دستور sound گوش کنید.

تمرین ۲-۲) بخش کوتاهی از نُت یک موسیقی ساده را در اینترنت پیدا کرده و مشابه تمرین ۲-۱ آن را تولید کنید. با دستور audiowrite موسیقی ای که ساخته اید را با اسم mysong.wav ذخیره کنید و فایل آن را به همراه گزارشتان آپلود کنید. هر سمپل از داده ای که ساختید با چند بیت ذخیره شده است؟

تمرین ۲-۳) اگر یک فایل موسیقی در اختیار شما قرار بگیرد که آن فایل طبق فرضیاتی که در ابتدای بخش چهارم مطرح شد تولید شده باشد، روشی پیشنهاد دهید که نوت های آن و زمان نگه داشتن هر کلید را استخراج کند. روش پیشنهادی خود را روی موسیقی تمرین ۲-۱ پیاده کرده تا از صحت آن اطمینان یابید.

نكات كلى:

- درصورت وجود هرگونه پرسش و ابهام به آقای آرمان مجیدی و استاد ایمیل بزنید.
- فایل نهایی شما باید به صورت یک فایل زیپ شامل گزارشکار به فرمت PDF و کد های متلب و سایر فایل های خواسته شده باشد.