MODERN CRYPTOGRAPHY

Bachelor Computer Science, University of Amsterdam, 2020/21 TEACHER: Christian Schaffner, TA: Jana Sotáková, Aron van Baarsen

Problem Set 6

Problem 1: El Gamal encryption

As in Example 11.17 in [KL], let \mathbb{G} be the subgroup of \mathbb{Z}_{167}^* generated by g=4. We have that the order $q=|\mathbb{G}|=83$ is prime. Let the secret key be $x=23\in\mathbb{Z}_{83}$ and so the public key is $pk=\langle p,q,g,h\rangle=\langle p,q,g,g^x\rangle$

- (a) Compute the *h* component in the public key.
- (b) Compute the encryption of message $m=19\in \mathbb{G}$ with randomness y=44.
- (c) Decrypt the ciphertext $\langle c_1, c_2 \rangle = \langle 132, 44 \rangle$.
- (d) You happen to have overheard another ciphertext $\langle c_1, c_2 \rangle = \langle 28, 149 \rangle$, and you know that it was encrypted with the private key corresponding to a different public key $\langle p, q, g, h \rangle = \langle 167, 83, 4, 6 \rangle$. What was the message?

Problem 2: RSA

- (a) **RSA encryption** As in Example 11.27 in [KL], say GenRSA outputs (N, e, d) = (1005973, 89, d). Note that $1005973 = 997 \cdot 1009$.
 - 1. Encrypt the message $m = 1234 \in \mathbb{Z}_{1005973}^*$
 - 2. Compute the private key (N,d) corresponding to the public key (N,e)=(1005973,89).
 - 3. Decrypt the ciphertext c = 530339.
- (b) Attacks on Plain RSA 1. For the RSA public key (N,e)=(10000799791,3), decrypt the ciphertext c=1000000. Can you do it without factoring N?

Figure 1: Adi Shamir, Ron Rivest, and Len Adleman as MIT-students and in 2003

Image credit: http://www.ams.org/samplings/feature-column/
fcarc-internet, http://www.usc.edu/dept/molecular-science/
RSA-2003.htm

2. Suppose we would like to use plain RSA with public exponent e=3 as public-key encryption in a hybrid scheme together with AES-256 in CBC mode. We choose N to have roughly 2048 bits. Use the previous subexercise to argue the insecurity of this hybrid scheme.

Problem 3: CCA security of multiple encryptions

Claim 11.7 in [KL] states that if $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ is a CPA-secure public-key encryption scheme for fixed-length messages, then the new encryption scheme $\Pi'=(\mathsf{Gen},\mathsf{Enc}',\mathsf{Dec}')$ with $\mathsf{Enc}'_{pk}(m_1\|m_2\|...\|m_\ell)=\mathsf{Enc}_{pk}(m_1)\|\mathsf{Enc}_{pk}(m_2)\|...\|\mathsf{Enc}_{pk}(m_\ell)$ is CPA secure for arbitrary-length messages.

Show that Claim 11.7 does not hold in the setting of CCA-security: Exhibit a concrete attack on a scheme $\Pi'=(\mathsf{Gen},\mathsf{Enc}',\mathsf{Dec}')$ constructed from a fixed-length CCA secure encryption scheme $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ by defining

$$\mathsf{Enc}_{pk}'(m_1\|m_2\|...\|m_\ell) = \mathsf{Enc}_{pk}(m_1)\|\mathsf{Enc}_{pk}(m_2)\|...\|\mathsf{Enc}_{pk}(m_\ell)$$

Make sure you specify the whole CCA attacker \mathcal{A} explicitly: what are the challenge messages, what are the encryption/decryption oracle queries, how is the guess bit b' computed? Then compute $\Pr[\mathsf{PubK}^{\mathsf{cca}}_{\mathcal{A}.\Pi'}(n)=1]!$

Problem 4: RSA Signatures

- (a) **Plain RSA Signatures** Say the public key is $\langle N, e \rangle = \langle 91, 11 \rangle$.
 - 1. Verify that (43, 36) is a valid message-signature pair.
 - 2. Compute $\phi(N)$.
 - 3. Calculate the private key d.
 - 4. Sign the message m=28.
- (b) Insecurity of plain RSA Signatures In Section 12.4.1 we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a *single* signing query.

Hint: Use the no-query and the two-query attacks.

Problem 5: One-time-secure signature scheme?

A signature scheme is one-time-secure if no PPT adversary making a *single* query can output a valid forgery.

Let f be a one-way permutation (it is hard to calculate the inverse of f). Consider the following signature scheme for messages in the set $\{1, \ldots, n\}$:

- To generate keys, choose uniform $x \in \{0,1\}^n$ and set $y := f^{(n)}(x)$ (where $f^{(i)}(.)$ refers to *i*-fold iteration of f, and $f^{(0)}(x) = x$). The public key is y and the private key is x.
- To sign message $i \in \{1, ..., n\}$, output $f^{(n-i)}(x)$.
- To verify signature σ on message i with respect to public key y, check whether $y=f^{(i)}(\sigma)$.
- (a) Show that the verification procedure will output 1 for every legal message-signature pair.
- (b) Show that the above is not a one-time-secure signature scheme. Given a signature on a message i, for what messages j can an adversary output a forgery?

(c) Prove that no PPT adversary given a signature on i can output a forgery on any message j > i except with negligible probability.

Problem 6: El-Gamal variant

Consider the following public-key encryption scheme. The public key is (G,q,g,h) and the private key is x, generated exactly as in the El-Gamal encryption scheme. In order to encrypt a bit b, the sender does the following:

- 1. If b = 0 then choose independent random $y, z \leftarrow \mathbb{Z}_q$, compute $c_1 = g^y$ and $c_2 = g^z$, and set the ciphertext equal to (c_1, c_2) .
- 2. If b=1 then choose a random $y \leftarrow \mathbb{Z}_q$ and compute $c_1=g^y$ and $c_2=h^y$. The ciphertext is (c_1,c_2) .
- (a) Show that it is possible to decrypt efficiently given knowledge of *x*.
- (b) Prove that this encryption scheme is CPA-secure if the decisional Diffie-Hellman problem is hard relative to \mathcal{G} .

★ Problem 7: Perfectly secure public-key encryption?

Assume a public-key encryption scheme for single-bit messages with no decryption error. Show that, given pk and a ciphertext c computed via $c = \mathsf{Enc}_{pk}(m)$, it is possible for an unbounded adversary to determine m with probability 1.

★ Problem 8: Another one-time secure signature scheme

Let f be a permutation and $f^{(i)}(x)$ the i-fold iteration of f, and $f^{(0)}(x) := x$. Let us consider the following signature scheme $\Pi = (\mathsf{Gen}, \mathsf{Sign}, \mathsf{Vrfy})$ for messages $m \in \{1, \dots, p\}$ with p = p(n) polynomial in n.

 $\begin{array}{ll} \mathsf{Gen}(1^n) &: & \mathsf{Choose}\, \mathsf{sk}_1, \mathsf{sk}_2 \in_R \{0,1\}^n, \mathsf{pk}_1 := f^p(\mathsf{sk}_1) \text{ and } \mathsf{pk}_2 := f^p(\mathsf{sk}_2). \\ & \mathsf{Set}\, \mathsf{sk} := (\mathsf{sk}_1, \mathsf{sk}_2) \text{ and } \mathsf{pk} := (\mathsf{pk}_1, \mathsf{pk}_2). \end{array}$

Sign_{sk}(m): Compute $\sigma_1 := f^{(p-m)}(\mathsf{sk}_1)$ and $\sigma_2 := f^{(m-1)}(\mathsf{sk}_2)$. Return $\sigma := (\sigma_1, \sigma_2)$.

 $\mathsf{Vrfy}_{\mathsf{pk}}(m,\sigma) \quad : \quad \text{If } \mathsf{pk}_1 = f^{(m)}(\sigma_1) \text{ and } \mathsf{pk}_2 = f^{(p-m+1)}(\sigma_2) \text{ return } 1, \text{ else return } 0.$

- (a) Show that Π is correct.
- (b) Prove that Π is a one-time-secure signature scheme, if f is a one-way permutation.

★ Problem 9: Hash-based signatures

Read Section 12.6 in [KL] to learn about hash-based signatures, one of the prime candidates for a signature scheme which remains secure against quantum attackers.