Computer Networks COL 334/672

Link Layer

Tarun Mangla

Slides adapted from KR

Sem 1, 2024-25

Quiz on Moodle

Password: wattlebird

Link Layer: Services

- Framing
- Error detection
- Reliability
- Link access

Error detection

EDC: error detection and correction bits (e.g., redundancy)

D: data protected by error checking, may include header fields

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- larger EDC field yields better detection and correction

Goal: maximize probability of detecting errors using only a small number of redundant bits

Cyclic Redundancy Check

M(x): 1x23+0-22+1-24+1.261011 n+1-bits message as a polynomial of degree no C(x); divisor polynomial of degree k P(x); Løgree m+1+k P(X) E(a) | P(a) is exactly divides Perenter = How do you generate this? C(n) P (x)

Cyclic Redundancy Check (CRC)

- Based on finite fields
- A message of n+1-bits can be represented as polynomial of degree n
- Consider:
 - M(x), a n+1 bits message to be sent
 - C(x), a divisor polynomial of degree k that is known to both sender and receiver
- Key Idea: Send P(x), n+1+k bits such that C(x) divides P(x)
 - At the receiver, if P'(x) is exactly divisible by C(x) then less likelihood of error, otherwise there is error
- How do you construct P(x) using M(x)?

Some facts [for this course!]

- Any polynomial B(x) can be divided by a divisor polynomial C(x) if B(x) is of higher degree than C(x)
- Any polynomial B(x) can be divided once by a divisor polynomial C(x) if B(x) is of the same degree as C(x)
- The remainder obtained when B(x) is divided by C(x) is obtained by performing the exclusive OR (XOR) operation on each pair of matching coefficients

$$x^{3}+1$$
 by $x^{3}+x^{2}+1$ [100]

1001

1001

0100

Algorithm to Obtain CRC Bits

- 1. Multiply M(x) by x^k ; that is, add k zeros at the end of the message. Call this zero-extended message T(x).
- 2. Divide T(x) by C(x) and find the remainder.
- 3. Subtract the remainder from T(x).

Cyclic Redundancy Check (CRC): Example

- -M(x) = 101110
- C(x) = 1001
- What is P(x)?

Cyclic Redundancy Check (CRC)

P(x) + E(x) = P/(x)

- How to pick C(x)?
 - Transmitted message: P(x) + E(x)
 - For errors to go undetected, E(x) should be divisible by C(x)
 - Pick C(x) such that above is unlikely to happen for common errors
- Claure : Example, all single-bit errors, as long as the x^k and x^0 terms in C(x) have nonzero coefficients

Cyclic Redundancy Check (CRC)

- How to pick C(x)?
 - Transmitted message: P(x) + E(x)
 - For errors to go undetected, E(x) should be divisible by C(x)
 - Pick C(x) such that above is unlikely to happen for common errors
 - Example, all single-bit errors, as long as the x^k and x^0 terms in C(x) have nonzero coefficients
- Ethernet protocol
 - Uses a 32-bit error check

Where is CRC implemented? Hardware

Link Layer: Services

- Framing
- Error detection
- Reliability
- Link access

Reliability

- Error correction codes
- Acknowledgements and timeouts or Automatic Repeat request (ARQ)

Error correction code

Also known as Forward Error Correction

Using 2D parity

Can detect *and* correct errors (without retransmission!)

detect and correct single bit errors

- Always useful?
 - When cost of retransmissions are high
 - When there are frequent bit errors


```
no errors: 10101 1 detected 10101 1 and 10110 0 correctable single-bit 10101 0 error: 10101 0
```

ARQ Protocol: Stop and Wait

- Transmit one frame, wait for an acknowledgement
 - If no ack and timer expires, resend

Stop and Wait

- Transmit one frame, wait for an acknowledgement
 - If no ack and timer expires, resend
- How to handle duplicate frames?
 - Sequence numbers for duplicate frames
- Any limitation?
 - Under-utilization of link if using using only 1 bit for Sequence
 - Example, 4 Mbps link, RTT 10ms, Frame size 1 KB
 - How to achieve full-link utilization?
 - Bandwidth delay product))))

Sliding Window Protocol

Link Layer: Services

- Framing
- Error detection
- Reliability
- Next class: link access

Attendance

