《近世代数》第五次习题课 (初稿)

刘助教 2023.4.22

问题 1: 部分矩阵群的有限子群的结构.

 $Case1:SO_2(\mathbb{R})$ 的有限 (离散) 子群为循环群.

由于 $SO_2(\mathbb{R})$ 同构于 S^1 , 从而考虑 S^1 的离散子群 H. 不妨设 e^{ia_1} 与 e^{ia_2} 所夹的弧度最小,从而 $e^{i(a_1-a_2)} \in H$,下证其生成了 H. 若不然存在点 e^{ib_1}, e^{ib_2} 所夹弧度不为 a_1-a_2 的倍数,则由欧几里得除法知存在两个点其所夹弧度小于 $|a_1-a_2|$,矛盾.

 $Case2:O_2(\mathbb{R})$ 的有限子群为循环群或二面体群.

假设 G 为 $O_2(\mathbb{R})$ 的有限子群, 若 $G \subset SO_2(\mathbb{R})$, 则由Case1知其为循环群. 若不然令 $H = G \cap SO_2(\mathbb{R})$, 则 H 为 G 的指数为 2 的循环子群, 从而正规. 取 H 的生成元 A 以及 $B \in G - H$. 由于 B 为反射, 从而 $B^2 = I$. 若 A = I, 则 G 为 2 阶循环群. 若不然, 则由 $A^n = I$, $B^2 = I$, $BA = A^{-1}B$ 知其同构于 D_n .

$Case3:GL_2(\mathbb{Z})$ 的有限子群.

对于 \mathbb{R}^2 上的任意内积 $<,>_i$,考虑 $GL_2(\mathbb{R})$ 在其上的作用: $g < w,v >_i = < gw, gv >_i$,其中 w,v 为任意向量. 若 G 为 $GL_2(\mathbb{R})$ 的有限子群,定义 $< w,v >_G = \sum_{g \in G} \frac{g < w,v >_i}{|G|}$,其中 <,> 为标准内积.

- (1) 说明 $<,>_G$ 为 \mathbb{R}^2 上的内积且存在 $h \in GL_2(\mathbb{R})$ 使得 $< w,v>_G = h < w,v>$.(提示: 欧式空间中的任意内积都有到标准内积的保距同构)
- (2) 令 S, S_G 分别为 $< ,>,< ,>_G$ 的稳定子群, 说明存在 $h \in GL_2(\mathbb{R})$ 使得 $S_G = hSh^{-1}$.
- (3) 证明 $\forall g \in G$ 都有 $g < w, v >_G = < w, v >_G$, 从而 g 是关于内积 $< ,>_G$ 的正交矩阵.
- (4) 利用 (2), (3) 说明存在 $h \in GL_2(\mathbb{R})$ 使得 $hGh^{-1} \subseteq O_2(\mathbb{R})$.
- (5) 证明 $SL_2(\mathbb{Z})$ 的有限子群为循环群.(提示: 利用 (5) 以及第三次作业选做题 8)
- (6) 说明哪些 D_n 可以作为 $GL_2(\mathbb{Z})$ 的子群.

证明:(1) 取 < ,>_G 的正交基 { E_1 , E_2 }, 对于 $v = v_1 E_1 + v_2 E_2$, 定义线性映射 $h(v) = v_1 e_1 + v_2 e_2$, 其中 { e_1 , e_2 } 为 \mathbb{R}^2 的标准基. 此时 < v, w >_G=< $v_1 E_1 + v_2 E_2$, $w_1 E_1 + w_2 E_2$ >_G= $v_1 w_1 + v_2 w_2 = < v_1 e_1 + v_2 e_2$, $w_1 e_1 + w_2 e_2 > = h < v$, w >.

- (2) 由 (1) 易知,(3) 显然.
- (4) 由 (3) 知 $G \subset S_G$, 从而由 (2) 知 $hGh^{-1} \subseteq O_2(\mathbb{R})$.
- (5) 由 (4) 知 $SL_2(\mathbb{Z})$ 的有限子群 G 可以共轭到 $SO_2(\mathbb{R})$ 的有限子群, 从而由Case1知是循环群.

(6) 由第二次习题课问题 4 知 $SL_2(\mathbb{Z})$ 的有限子群为 1, 2, 3, 4, 6 阶循环群. 从而由 (4) 以及Case2知可能的二面体群为 D_1, D_2, D_3, D_4, D_6 .

 $Case4:SO_3(\mathbb{R})$ 的有限子群为循环群, 二面体群以及正多面体对称群. 证明参考 M.A.Armstrong 的 Groups and Symmetry. 第一次习题课讲义证明了 $SU(2)/\mathbb{Z}_2 \cong SO(3)$, 而 Mckay Correspondence 给出了 SU(2) 有限子群与代数几何, 导出范畴, 李代数等等论题的联系, 参见 Joris van Opdam 的 Platonic solids, binary polyhedral groups, Klein singularities and Lie algebras of type A, D, E.

问题 2: 求 D_n 的共轭类, 正规子群以及中心.

当 n 为奇数时, 共轭类为 $\{e\}$, $\{a^i,a^{n-i}\}_{1\leq i\leq \frac{n-1}{2}}$, $\{b,ba,\cdots,ba^{n-1}\}$. 相应的非平凡正规子群为 $<a^k>(k|2n)$, 中心为 $\{e\}$.

当 n 为偶数时, 共轭类为 $\{e\}$, $\{a^{\frac{n}{2}}\}$, $\{a^i,a^{n-i}\}_{1\leq i<\frac{n}{2}}$, $\{b,ba^2,\cdots,ba^{n-2}\}$, $\{ba,ba^3,\cdots,ba^{n-1}\}$. 非平凡正规子群为 $<a^k>(k|2n)$, $\{e,a^2,\cdots,a^{n-2},b,ba^2,\cdots,ba^{n-2}\}$, $\{e,a^2,\cdots,a^{n-2},b,ba^3,\cdots,ba^{n-1}\}$ 中心为 $\{e,a^{\frac{n}{2}}\}$.

问题 3: 令 G 为 S_{999} 的阶为 1111 的子群, 证明存在 $i \in \{1, \dots, 999\}$ 使得对任意 $\sigma \in G$ 都有 $\sigma(i) = i$.

由于 $1111 = 11 \times 101$, 从而为循环群且生成元 σ 的型为 $1^x11^y101^z$ 其中 x + 11y + 101z = 999. 若 x > 0, 则显然成立. 若不然, 则有 11y + 101z = 999, 两边模 11 便得 $z \equiv 10 \pmod{11}$. 由于 11 不整除 999, 从而 $z \ge 10$, 故 $11y + 101z \ge 1010 > 999$,矛盾.

问题 4:polya 计数 to be continued.