Practice Problem Set 2

(MA6.102) Probability and Random Processes, Monsoon 2024

Problem 1. Consider a probabilistic model with sample space Ω and probability law P. Let $\{C_1, C_2, \dots, C_n\}$ be a partition of Ω . For two events A and B, suppose we know that

- A and B are conditionally independent given C_i , i.e., $P(A \cap B|C_i) = P(A|C_i)P(B|C_i)$, for all $i \in \{1, 2, ..., n\}$;
- B is independent of C_i , i.e., $P(B \cap C_i) = P(B)P(C_i)$, for all $i \in \{1, 2, ..., n\}$.

Are A and B independent events?

Problem 2. Consider a positive integer-valued random variable Y whose CDF at integer values is given by

$$F_Y(k) = 1 - \frac{2}{(k+1)(k+2)}$$
, for integer values $k \ge 0$.

- (a) Compute $\mathbb{E}[Y]$ without finding the PMF P_Y .
- (b) Let X be another integer-valued random variable with the conditional PDF given by

$$P_{X|Y}(x|y) = \frac{1}{y}$$
, for $x \in \{1, 2, \dots, y\}$.

Find $\mathbb{E}[X]$.

Problem 3. Suppose that $M_X(s) < \infty$, for some s > 0. Show that $M_X(t) < \infty$, for all $t \in [0, s]$.

Problem 4. Let X be a random variable with mean μ and variance σ^2 . Then prove that, for c > 0,

$$P(X - \mu \ge c) \le \frac{\sigma^2}{\sigma^2 + c^2}.$$

Problem 5. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent and identically distributed (i.i.d.) random variables with $X_i \sim \text{Exponential}(\lambda)$, and let $N \sim \text{Geometric}(\beta)$ be an independent geometric random variable. Define $T = X_1 + X_2 + \cdots + X_N$, the sum of a random number N of i.i.d. exponential random variables. Show that $T \sim \text{Exponential}(\lambda\beta)$.

Hint: Use moment generating functions.

Problem 6. Let X_1,Y_1,X_2,Y_2,\ldots be independent random variables, uniformly distributed in the unit interval [0,1], and let $W=\frac{\sum_{i=1}^{16}X_i-\sum_{i=1}^{16}Y_i}{16}$. Find a numerical approximation to the quantity $P(|W-\mathbb{E}[W]|<0.001)$.

Problem 7. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables such that $X_n \sim \text{Geometric}(\frac{\lambda}{n}), n \in \mathbb{N}$, where $\lambda > 0$ is a constant. Define a new sequence Y_n as $Y_n = \frac{X_n}{n}$, $n \in \mathbb{N}$. Show that Y_n converges in distribution to Exponential (λ) .

Problem 8. Let $(N_t, t \in [0, \infty))$ be a Poisson process with rate λ . Find the probability that there are exactly two arrivals in (0, 2] and exactly three arrivals in (1, 4] (Note that the intervals (0, 2] and (1, 4] are not disjoint, so the number of arrivals in each interval are not independent).

Problem 9. Let $X_t = A\cos{(\omega_c t + \Theta)}$, where ω_c is a non-zero constant, A and Θ are independent random variables with P(A > 0) = 1 and $\mathbb{E}[A^2] < \infty$. If Θ is uniformly distributed over $[0, 2\pi]$, show that X_t is wide-sense stationary (WSS). Is X_t strict-sense stationary also?

Problem 10. Consider a WSS process X_t with autocorrelation $R_X(\tau) = e^{-a|\tau|}$, where a > 0, for all $\tau \in \mathbb{R}$. Find the power spectral density of X_t .

All the best for end-semester examinations