TENSORS FOR SIGNAL AND FREQUENCY ESTIMATION IN SUBSPACE-BASED METHODS: WHEN THEY ARE USEFUL?

N.A. KHROMOV¹, N.E. GOLYANDINA²

¹University ... ²Institute ... City, STATE

e-mail: 1ivanov@yandex.ru, 2petrov@google.com

Abstract text.

Keywords: comma, separated, keywords, minimum 3, maximum 5

1 Introduction

Intro text...

2 Алгоритмы

2.1 Тензоры вложения

 $X = (x_1, x_2, \dots, x_N)$ — (одноканальный) временной ряд длины $N, x_n \in \mathbb{C}$.

Definition 1 (Оператор вложения временного ряда в тензор). Оператором вложения временного ряда в тензор с длинами окна I и L: 1 < I, L < N, I + L < N + 1 будем называть отображение $\mathcal{T}_{I,L}$, переводящее ряд X в тензор $\mathcal{X} \in \mathbb{C}^{I \times L \times J}$ (J = N - I - L + 2) по правилу $\mathcal{X}_{ilj} = x_{i+l+j-2}$, где $i \in \overline{1:I}$, $l \in \overline{1:L}$, $j \in \overline{1:J}$.

 $\mathsf{X} = (\mathsf{X}^{(1)}, \mathsf{X}^{(2)}, \dots, \mathsf{X}^{(P)}) - P$ -канальный временной ряд, состоящий из P одноканальных временных рядов, также называемых каналами.

Definition 2 (Оператор вложения многоканального ряда в тензор). Оператором вложения многоканального ряда в тензор с длиной окна L: 1 < L < N будем называть отображение \mathcal{T}_L , переводящее P-канальный ряд X в тензор $\mathcal{X} \in \mathbb{C}^{L \times K \times P}$ (K = N - L + 1) по правилу $x_{l+k-1}^{(p)}$, где $l \in \overline{1:L}$, $k \in \overline{1:K}$, $p \in \overline{1:P}$.

Визуализации применения вложения к одноканальному и многоканальному рядам представлены на картинках 1а, 1b.

2.2 Методы для выделения сигнала из временных рядов

В алгоритме 1 представлен метод HO-SSA для выделения сигнала из одноканального временного ряда.

- (а) Результат применения оператора вложения к одноканальному временному ряду.
- (b) Результат применения оператора вложения к многоканальному временному ряду.

Figure 1: Визуализации результатов применения операторов вложения рядов в тензоры.

Data: X, $I, \underline{L:1} < I, L < N, I+L < N+1, R_1 \in \overline{1:I}, R_2 \in \overline{1:L}, R_3 \in \overline{1:J}.$

Result: \widetilde{X} — оценка сигнала X.

- 1. **Вложение:** построение $\mathcal{X} = \mathcal{T}_{I,L}(\mathsf{X})$;
- 2. Разложение: применение HOSVD или HOOI к ${\mathcal X}$

$$\widehat{\mathcal{X}} = \sum_{i=1}^{R_1} \sum_{l=1}^{R_2} \sum_{j=1}^{R_3} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)};$$

3. Восстановление: усреднение тензора $\widehat{\mathcal{X}}$ вдоль плоскостей $i+l+j=\mathrm{const},$ в результате чего получается оценка сигнала $\widehat{\mathsf{X}}.$

Algorithm 1: HO-SSA for signal extraction.

Remark 1. Применение алгоритма 1 с такими параметрами длин окна, что размер одного любого направления тензора вложения равен 1, сводит алгоритм к базовому методу SSA, так как применение HOSVD или HOOI к тензору с двумя направлениями (матрице) совпадает с применением SVD.

В алгоритме 2 представлен метод НО-MSSA для выделения сигнала из многоканального временного ряда. (Возможно можно сократить запись, если написать, что шаг 1 такой же как и в одномерном алгоритме, но оператор вложения другой, шаг 2 полностью совпадает, шаг 3 обратный шагу 1?.)

 $Remark\ 2.$ Применение алгоритма 2 к одноканальному ряду также даёт базовый алгоритм SSA.

Remark 3. Если в алгоритме 2 слои третьего направления траекторного тензора

Data:
$$X = (X^{(1)}, ..., X^{(P)})^{T}, L: 1 < L < N, R_1 \in \overline{1:L}, R_2 \in \overline{1:K}, R_3 \in \overline{1:P} (K = N - L + 1).$$

Result: $\widetilde{\mathsf{X}} = (\widetilde{\mathsf{X}}^{(1)}, \widetilde{\mathsf{X}}^{(2)}, \dots, \widetilde{\mathsf{X}}^{(Q)})$ — оценка сигнала X .

- 1. Вложение: построение $\mathcal{X} = \mathcal{T}_L(\mathsf{X})$;
- 2. Разложение: применение HOSVD или HOOI к $\mathcal X$

$$\widehat{\mathcal{X}} = \sum_{l=1}^{R_1} \sum_{k=1}^{R_2} \sum_{p=1}^{R_3} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)};$$

3. Восстановление: сечения $\mathring{\mathcal{X}}_{\cdot p}$ усредняются вдоль побочных диагоналей $l+k=\mathrm{const}$ для получения оценок $\widetilde{\mathsf{X}}^{(p)}$.

Algorithm 2: HO-MSSA for signal extraction.

соединить в матрицу по столбцам (получится матрица, состоящая из P блоковматриц $L \times K$), применить к ней SVD, построить приближение этой матрицы по первым R компонентам разложения, и затем применить антидиагональное усреднение к каждму блоку-матрице, то получится метод MSSA.

2.3 Методы для оценки параметров сигнала.

Пусть P-канальный временной ряд (возможно P=1) имеет вид

$$\mathbf{X} = (\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(P)}),$$

$$\mathbf{X}^{(p)} = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)}), \quad p = \overline{1 : P},$$

$$x_n^{(p)} = \sum_{r=1}^R a_r^{(p)} e^{\alpha_r n} e^{\mathrm{i} \left(2\pi\omega_r n + \varphi_r^{(p)}\right)},$$

где параметрами модели являются амплитуды $a_j^{(p)} \in \mathbb{C} \setminus \{0\}$, фазы $\varphi_j^{(p)} \in [0,2\pi)$, частоты $\omega_j \in [0,1/2]$ и степени затухания $\alpha_j \in \mathbb{R}$. Алгоритм HO-ESPRIT, оценивающий частоты и степени затухания ряда, определяется следующим образом. После шага 2 алгоритма 2 (или шага 2 алгоритма 1 при P=1) строится матрица $\mathbf{U} = \mathbf{U}_d = \left[U_1^{(d)} : U_2^{(d)} : \ldots : U_{R_d}^{(d)} \right]$ для некоторого $d \in \{1,2,3\}$, и решается уравнение

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\downarrow} \mathbf{Z}$$

относительно матрицы ${\bf Z}$, где запись ${\bf U}^{\uparrow}$ означает матрицу ${\bf U}$ без первой строки, а ${\bf U}_{\downarrow}$ — без последней. R наибольших собственных чисел матрицы ${\bf Z}$ считаются оценками $\lambda_r = e^{\alpha_r + 2\pi \mathrm{i}\omega_r}$, из которых можно получить параметры α_r и ω_r . Базовые алгоритмы ESPRIT, использующие траекторную матрицу и SVD можно получить из HO-ESPRIT аналогично тому, как из HO-SSA и HO-MSSA можно получить базовые SSA и MSSA.

2.4 Dstack модификация ESPRIT

При большой длине ряда N вычисление HOSVD (SVD) траекторного тензора (матрицы) может быть довольно трудоёмкой задачей. Одним из способов бороться с этой проблемой является модификация алгоритма EPSRIT: HTLSDstack (HTLS— другое название ESPRIT). Метод HTLSDstack разработан для одноканальных временных рядов. (Возможно здесь вставить фразу, что он обобщается на многоканальные ряды, но такой случай мы рассматривать в работе не будем.)

Метод заключается в том, чтобы по одноканальному временнмоу ряду $X = (x_1, x_2, \ldots, x_N)$ построить многоканальный ряд $X_D = (X^{(1)}, X^{(2)}, \ldots, X^{(D)})$, где D - некоторый параметр (предполагается, что N делится на D нацело), а элементы рядов $X_D^{(d)}$ получаются из оригинального ряда by decimating the time series by factor D. Другими словами, $x_m^{(d)} = x_{(m-1)D+d}$, где $m \in \overline{1:(N/D)}$. Затем к полученному многоканальному ряду применяется многоканальный вариант метода HO-ESPRIT или ESPRIT. По Nyquist-Shannon sampling theorem, можно увеличивать sampling time interval Δt в D раз с сохранением всех частот в сигнале, пока сохраняется равенство $\max_x |\omega_r| < 1/(2D\Delta t)$.

3 Сравнение тензорных методов с матричными

Сравнение для одномерных методов в таблицах 1, 2.

Table 1: Сравнение результатов для одномерных методов выделения сигнала.

Метод	Результат сравнения точности
SSA	Обычно наиболее точный, ошибка с увеличением шума
	растёт медленно.
HO-SSA	В большинстве случаев значительно менее точный, чем SSA,
	однако можно подобрать примеры, когда он слегка точнее
	SSA.
SSADstack	Точность ниже, чем у базового SSA.
HO-SSADstack	Слегка точнее, чем SSADstack, но всё ещё менее точен, чем
$(R_3 = \max)$	SSA.
HO-SSADstack	При малом шуме точность сильно ниже, чем у SSA за счёт
$(R_3=1)$	большого сдвига, с увеличением шума становится точнее,
	чем SSADstack и HO-SSADstack, но всё ещё менее точный,
	чем базовый SSA.

Сравнение результатов для многомерных методов:

- 1. Выделение сигнала: HO-MSSA точнее базового MSSA при выборе одинаковых длин окна. Чем сильнее ряды похожи друг на друга, тем больше преимущество.
- 2. Оценка параметров: аналогично выделению сигнала.

Table 2: Сравнение результатов для одномерных методов оценки параметров.

HTLS	При малом уровне шума точнее, чем Dstack варианты. С
	увеличением шума в случае, когда частоты сигнала близки,
	перестаёт идентифицировать одну из компонент быстрее,
	чем Dstack методы.
HO-HTLS	При выборе оптимальных параметров оказывается точнее,
	чем HTLS, однако различие точности невелико.
HTLSDstack	Точность ниже, чем у базового HTLS.
HO-HTLSDstack	Немного точнее HTLS, но заметно менее точен, чем при $R_3 =$
$(R_3 = \max)$	1.
HO-HTLSDstack	При малом шуме немного менее точный, чем HTLS, но
$(R_3=1)$	точнее остальных методов. Более устойчив к большому
	шуму при близких частотах.

References

- [1] Papy J.M., De Lathauwer L., Van Huffel S. (2005). Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. *Linear Algebra with Applications*. Vol. **12**, Num. **8**, pp. 809-826.
- [2] Papy J.M., De Lathauwer L., Van Huffel S. (2009). Exponential data fitting using multilinear algebra: the decimative case. *Journal of Chemometrics*. Vol. **23**, Num. **7-8**, pp. 341-351s.
- [3] Jacobs P.A., Lewis P.A.W. (1983). Stationary Discrete Autoregressive-Moving Average Time Series Generated by Mixtures. *Journal of Time Series Analysis*. Vol. 4, Num. 1, pp. 19-36.
- [4] Johnson N.L., Kotz S., Balakrishnan N. (1997). Discrete Multivariate Distributions. Wiley: New York.
- [5] Worldometers.info [Electronic resource] Mode of access: https://www.worldometers.info/coronavirus. Date of access: 27.02.2022.