Trabajo Práctico 2 Administración de Stocks

8 de octubre de 2012

Ejercicio 3 Los datos proporcionados en el ejercicio son los mismos que los del Ejercicio 1; es decir: Demanda anual = D = 12000u, un lead time $LT = 0.5479a\tilde{n}o$, un costo de adquisición $b = \$40u^{-1}$, un costo de emisión de orden de compra k = \$4000, un costo de almacenamiento anual $C_1 = \$540$ y ademas un costo de agotamiento $C_2 = \$2100u^{-1}a\tilde{n}o^{-1}$

3.a El modelo elegido para la resolución de este problema, es el **Modelo básico con agotamiento**. A continuación se enuncian las hipótesis de dicho modelo:

- Se administra un único item o producto.
- La demanda del producto es independiente.
- La demanda es conocida y constante.
- La reposición es instantanea.
- El plazo de entrega es conocido y constante.
- No hay stock de protección.
- \blacksquare Tanto b
 como k
 como C_1 son independientes de la cantidad a pedir.
- No hay restricciones que limiten la cantidad del lote a pedir.
- El producto se mide en unidades continuas.
- El horizonte de planeamiento es a largo plazo.
- **3.b** Para determinar el tamaño del lote optimo de compra se calcula q_o :

$$q_o = \sqrt{\frac{2 \cdot K \cdot D}{T \cdot C_1}} \cdot \sqrt{\frac{C_1 + C_2}{C_2}}$$

$$q_o = \sqrt{\frac{2 \cdot \$4000 \cdot 12000 u a \tilde{n}o^{-1}}{1a \tilde{n}o \cdot \$540 u^{-1} a \tilde{n}o^{-1}}} \cdot \sqrt{\frac{\$540 u^{-1} a \tilde{n}o^{-1} + \$2100 u^{-1} a \tilde{n}o^{-1}}{\$2100 u^{-1} a \tilde{n}o^{-1}}}$$

$$q_o = 421,637u \cdot 1,121$$

$$q_o = 472,\!66u$$

 ${\bf 3.c}~$ Para calcular el tiempo de reaprovisionamiento entre dos intervalos sucesivos se calcula $t_i.$ Utilizando que: $\frac{D}{q_o}=\frac{T}{t_i}$

$$t_i = \frac{q_o}{D}$$

$$t_i = \frac{472,66u}{12000ua\tilde{n}o^{-1}}$$

$$t_i = 0,03938a\tilde{n}o$$

3.d Para calcular el costo total esperado óptimo anual, se utiliza que:

$$CTE_o = b \cdot D + \sqrt{2 \cdot K \ cdot D \cdot T \cdot C_1} \cdot \sqrt{\frac{C_2}{C_1 + C_2}}$$

$$CTE_o = \$40u^{-1} \cdot 12000ua\tilde{n}o^{-1} + \sqrt{2 \cdot \$4000 \cdot 12000ua\tilde{n}o^{-1} \cdot 1a\tilde{n}o \cdot \$540u^{-1}a\tilde{n}o^{-1}} \cdot \sqrt{\frac{\$2100u^{-1}a\tilde{n}o^{-1}}{\$540u^{-1}a\tilde{n}o^{-1}} \cdot \$2100u^{-1}a\tilde{n}o^{-1}}$$

$$CTE_o = \$480000 + 227683,99 \cdot 0,89188$$

$$CTE_o = \$683066,78$$

 ${\bf 3.e}~$ Para calcular el número de pedidos que habrá que realizar en un año se calcula:

$$n = \frac{D}{q_o}$$

$$n = \frac{12000u\tilde{a}no^{-1}}{472,66u}$$

$$n = 25,388 ordenes \tilde{a} \tilde{n} o^{-1}$$

3.f La cantidad máxima de unidades a mantener en stock se calcula como:

$$S_o = \sqrt{\frac{2 \cdot K \cdot D}{T \cdot C_1}} \cdot \sqrt{\frac{C_2}{C_1 + C_2}}$$

$$S_o = \sqrt{\frac{2 \cdot \$4000 \cdot 12000ua\tilde{n}o^{-1}}{1a\tilde{n}o \cdot \$540u^{-1}a\tilde{n}o^{-1}}} \cdot \sqrt{\frac{\$2100u^{-1}a\tilde{n}o^{-1}}{\$540u^{-1}a\tilde{n}o^{-1} + \$2100u^{-1}a\tilde{n}o^{-1}}}$$

$$S_o = 376,05u$$

3.g Para calcular la cantidad máxima de unidades agotadas se utiliza que:

$$S_a = q_o - S_o$$

$$S_a = 472,66u - 376,05u$$

$$S_a = 96,61u$$

3.h El stock de reorden, considerando 20 dias laborales por mes, se calcula como:

$$S_r = LT \cdot d - (q_o - S_o)$$

$$S_r = \frac{2dias \cdot 12000ua\tilde{n}o^{-1}}{\frac{a\tilde{n}o}{240dias}} - (472,66u - 376,05u)$$

$$S_r = 3,39u$$

3.i Para calcular lo pedido, se calculan t_1 y t_2 siendo t_1 el tiempo durante el cual se satisface la demanda y t_2 el tiempo durante el cual hay déficit de producción.

$$t_1 = \frac{S_o \cdot t_i}{q_o}$$

$$t_1 = \frac{376,05u \cdot 0,03938a\tilde{n}o}{472,66u}$$

$$t_1 = 0,0313a\tilde{n}o$$

$$t_2 = \frac{(q_o - S_0) \cdot t_i}{q_o}$$

$$t_2 = \frac{(472,66u - 376,05)u \cdot 0,03938a\tilde{n}o}{472,66u}$$

$$t_2 = 0,0080a\tilde{n}o$$

Ejercicio 4 Los datos proporcionados son la demanda anual D=20000u, el costo de setup K=\$6000, el costo de almacenamiento $C_1=\$20~u^{-1}~a\tilde{n}o^{-1}$ y la tasa de producción $p=5000u~mes^{-1}=60000u~a\tilde{n}o^{-1}$.

4.a El modelo elegido para este problema es el Modelo de Reposición no Instantánea. Se asumen las siguientes hipótesis:

- Se administra un solo producto.
- La demanda es conocida y constante.
- No hay descuentos por cantidad.
- No hay inflación.
- La producción se efectúa a tasa conocida y constante.
- No se admite agotamiento.
- No hay stock de protección.
- Costo de setup independiente del tamaño del lote.
- Costo unitario de almacenimiento independiente del stock.
- Se supone continuidad permanente de operación.

4.b.

$$q_o = \sqrt{\frac{2KD}{TC_1 \left(1 - \frac{d}{p}\right)}}$$

$$q_o = \sqrt{\frac{2 \cdot \$6000 \cdot 20000u \ a\tilde{n}o^{-1}}{\$20u^{-1} \ a\tilde{n}o^{-1} \left(1 - \frac{20000u \ a\tilde{n}o^{-1}}{60000u \ a\tilde{n}o^{-1}}\right)}}$$

$$q_o = \sqrt{\frac{2 \cdot 6 \cdot 10^6 \ u^2}{1 - \frac{2}{6}}} = \sqrt{\frac{2 \cdot 6 \cdot 10^6}{\frac{2}{3}}} \ u = \sqrt{3 \cdot 6 \cdot 10^6} \ u$$

$$q_o = 3 \cdot 10^3 \sqrt{2} \ u \simeq 4242,64 \ u$$

4.c. Como se indica en el item h, se consideran 20 días por mes.

$$\begin{split} \frac{T}{t_i} &= \frac{D}{q} \Rightarrow t_i = \frac{Tq}{D} \\ t_i &= \frac{3 \cdot 10^3 \sqrt{2} \ u}{20000u \ a\tilde{n}o^{-1}} = \frac{3\sqrt{2} \ a\tilde{n}o}{20} \frac{240 dias}{a\tilde{n}o} \\ \hline t_i &= 36\sqrt{2} dias \simeq 50,91 \ dias \end{split}$$

4.d.

$$CTE_o = bD + \sqrt{2KDTC_1 \left(1 - \frac{d}{p}\right)} = \sqrt{2KDTC_1 \left(1 - \frac{d}{p}\right)}$$

$$CTE_o = \sqrt{2 \cdot \$6000 \cdot 20000u \ a\tilde{n}o^{-1} \cdot \$20u^{-1}a\tilde{n}o^{-1} \cdot \frac{2}{3}} = \$2\sqrt{\frac{24 \cdot 10^8}{3}} = \$2 \cdot 10^4 \sqrt{8}$$

$$CTE_o = \$4 \cdot 10^4 \sqrt{2} \simeq \$56568,54$$

4.e.

$$n = \frac{D}{q} = \frac{20000u}{3 \cdot 10^3 \sqrt{2} u}$$
$$n = \frac{20}{3\sqrt{2}} \simeq 4,714$$

4.f.

$$S_o = q_o \left(1 - \frac{d}{p} \right) = 3 \cdot 10^3 \sqrt{2} \ u \cdot \frac{2}{3}$$
$$S_o = 2 \cdot 10^3 \sqrt{2} \ u \simeq 2828,43u$$

4.g. Lo que se pide es el tiempo de producción de una orden t_{ip} y el tiempo de demanda únicamente de una orden t_{id} . Como se indica en el item h, se consideran 20 días por mes.

$$t_{ip} = \frac{q}{p} = \frac{3 \cdot 10^{3} \sqrt{2} \ u}{60000u \ a\tilde{n}o^{-1}} = \frac{3\sqrt{2} \ a\tilde{n}o}{60} = \frac{\sqrt{2} \ a\tilde{n}o}{20} \cdot \frac{240 dias}{a\tilde{n}o}$$

$$t_{ip} = 12\sqrt{2} \ dias \simeq 16,97 \ dias$$

$$t_{id} = \frac{S}{d} = \frac{2 \cdot 10^{3} \sqrt{2} \ u}{20000u \ a\tilde{n}o^{-1}} = \frac{\sqrt{2} \ a\tilde{n}o}{10} \cdot \frac{240 \ dias}{a\tilde{n}o}$$

$$t_{id} = 24\sqrt{2} \ dias \simeq 33,94 \ dias$$

4.h.

$$LT = 2 \ dias \le 33,94 \ dias = t_{id} \Rightarrow S_R = LT \cdot d$$

$$S_R = \frac{2 \ dias \cdot 20000u}{a\tilde{n}o} \cdot \frac{a\tilde{n}o}{240 \ dias} = \frac{2 \cdot 20000u}{240} = \frac{2000u}{12}$$

$$S_R = 166.\overline{6}u$$

Ejercicio 7 Se trata de un caso de modelo básico (ver ejercicio 1) de un solo ítem, demanda constante, agotamiento no admitido, donde el costo de almacenamiento C_1 crece mediante la siguiente ley:

Se sabe que para este modelo:

$$CTE_{i} = bD + \frac{1}{2}qC_{1i}T + K\frac{D}{q}$$

$$q_{oi} = \sqrt{\frac{2KD}{TC_{1i}}}$$

$$CTE_{oi} = bD + \sqrt{2KDC_{1i}T}$$
(1)

Con lo cual, se deduce la siguiente relacion entre variables:

$$C_{11} < C_{12} < C_{13}$$

 $q_{o1} > q_{o2} > q_{o3}$
 $CTE_{o1} < CTE_{o2} < CTE_{o3}$

El procedimiento a seguir para la búsqueda del costo total esperado mínimo es el siguiente:

1. si
$$q_{o1} < Q_1 \Rightarrow CTE_o = CTE_{o1}$$

2. sino, si $q_{o2} < Q_1 \Rightarrow CTE_o = min(CTE(Q_1,C_{12}),CTE(Q_1,C_{11})$ Se entiende por $CTE(Q_i,C_{1i})$ el costo total esperado (1) evaluado en Q_i y C_{1i}

3. sino, si $Q_1 < q_{o2} < Q_2 \Rightarrow CTE_o = min(CTE_{o2}, CTE(Q_1, C_{11}))$

4. sino, si $q_{o3} < Q_1 \Rightarrow CTE_o = min(CTE(Q_2, C_{12}), CTE(Q_2, C_{13}), CTE(Q_1, C_{11}))$

5. sino, $q_{o3} > Q_2 \Rightarrow CTE_o = min(CTE_{o3}, CTE(Q_2, C_{12}), CTE(Q_1, C_{11}))$

Para cada uno de estos casos, el costo total esperado en función de q
 está dado por la curva naranja, donde cada CTE_i es válido de
ntro de su rango.

Ejercicio 8 Se trata de un caso de modelo básico (ver ejercicio 1) de un solo ítem, demanda constante, agotamiento no admitido y con K creciente mediante la siguiente ley:

Se sabe que para este modelo:

$$CTE_{i} = bD + \frac{1}{2}qC_{1}T + K_{i}\frac{D}{q}$$

$$q_{oi} = \sqrt{\frac{2K_{i}D}{TC_{1}}}$$

$$CTE_{oi} = bD + \sqrt{2K_{i}DC_{1}T}$$
(2)

Con lo cual, se deduce la siguiente relacion entre variables:

$$k_1 < k_2 < k_3$$

$$q_{o1} < q_{o2} < q_{o3}$$

$$CTE_{o1} < CTE_{o2} < CTE_{o3}$$

El procedimiento a seguir para la búsqueda del costo total esperado mínimo es el siguiente:

1. si
$$q_{o1} < Q_1 \Rightarrow CTE_o = CTE_{o1}$$

2. sino, si $q_{o2} < Q_2 \Rightarrow CTE_o = min(CTE_{o2}, CTE(Q_1, k_1))$ Se entiende por $CTE(Q_i, k_i)$ el costo total esperado (2) evaluado en Q_i y k_i

3. sino, $q_{o3}>Q_2\Rightarrow CTE_o=min(CTE_{o3},CTE(Q_2,k_2),CTE(Q_1,k_1))$

Dado que cada curva es válida únicamente en un intervalo determinado por k, para cada caso el CTE en función de q está dado por la curva naranja.

