

PRE-PROCESSING

Luísa Coheur

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

LEARNING OBJECTIVES

LEARNING OBJECTIVES

- After this class, students should be able to:
 - Identify some pre-processing techniques
 - Be aware that they don't work in certain scenarios nowadays

TOPICS

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

TOKENIZATION

- Tokenization is the process of breaking down a stream of text into smaller, manageable units called tokens
- The goal is to create tokens that retain meaningful linguistic information while making the text more accessible for computational models

TOKENIZATION

- Consider the word "cats". Which is the best input to a machine?
 - C + Q + † + S
 - cats
 - cat + s
 - •

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

TOKENIZATION: CHARACTER-LEVEL

- Character-level tokenization tokenizes text by splitting it into individual characters
- Example:
 - Input: hello
 - Output: ['h', 'e', 'l', 'l', 'o']
- + Can manage out-of-vocabulary (OOV) elements
- Each token (character) carries very little context

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

TOKENIZATION: WORD-LEVEL

- Word-level tokenization splits text into individual words based, for instance, on spaces and punctuation
- Example:
 - Mr. Smith finished his Ph.D on the 28th April.
 - ['Mr.', 'Smith', 'finished', 'his', 'Ph.D', 'on', 'the', '28th', 'April', '.']
- + It is intuitive, as it as words are natural linguistic units
- Requires language-specific rules (ex: Ph.D)
- Struggles with unknown words, typos, or words not present in the training vocabulary

EXERCISE

- Can you think of tokens you wouldn't want to split based on punctuation?
 - Examples:
 - Sr.
 - 55.5 or 55,5
 - www.google.com
 - FT-34-56
 - •
 - Rock 'n' roll
 - Toys'r us
 - U.S.A

ABOUT WORD-LEVEL TOKENIZATION

- It is possible that we also want to find sequences of words (compounds), that is, sequences of words that have some unified linguistic meaning
- Example:
 - Ice cream

ABOUT WORD-LEVEL TOKENIZATION

- Other scenarios:
 - Chinese:
 - don't have a white space between words
 - EN:
 - Nowherefast???? (best music ever! ©)
 - Agglutinative languages:
 - Words are sequences of morphemes (such as Turkish)
 (we will talk about this in a next class)

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

TOKENIZATION: SUBWORD-LEVEL

- Subword-level tokenization splits words into smaller meaningful units, such as prefixes, suffixes, or frequent subword patterns
 - Example:
 - Input: unhappiness
 - Output: ['un', 'happi', 'ness']
- + Combines the benefits of character- and word-level tokenization by breaking down OOV words into known subwords
- + It is widely used nowadays
- Requires more sophisticated algorithms to split text into subwords
- May break down words in a way that loses meaningful context

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

- We call normalization to the preprocessing step that transforms raw text into "standardized" format to reduce noise and linguistic variability (and, thus, data sparseness)
- There are many manipulations we can do to "normalize" text

- Remove stop words
 - Stop words (mainly functional words)
 - Examples:
 - a, de, para, ...
 - the, a, before, thus,
 - Problem: authorship identification!

There are lists of stopwords available. Check them before you use them!!!!!!

- Remove punctuation
 - This can be ok, but it can also be a problem:
 - Os assassinos de D. Carlos, Afonso Costa e Buiça, foram...
 - Os assassinos de D. Carlos, Afonso Costa e Buiça foram...
 - The assassins of D. Carlos, Afonso Costa and Buiça, were...
 - The assassins of D. Carlos, Afonso Costa and Buiça were...

- Lowercasing
 - Avoid data sparseness
 - The dog is nice vs. I like the dog
 - Problem:
 - Us vs. us, Windows vs. windows, Figo vs. figo

- Normalization of dates, numbers, names, ...
 - Examples:
 - 8th-Feb
 - 8-Feb-2013
 - 02/08/13
 - February 8th, 2013
 - Feb 8th
 - ...

- Lemmatization: the process of reducing a word to its base or dictionary form (lemma) based on its meaning and context
- Example:
 - running → run
 - studies → study
 - went → go

- Stemming: the process of reducing a word to its root form by removing suffixes or prefixes, often without considering meaning
- Example:
 - running → run
 - studies → stud
 - went → went

- Learning objectives
- Topics
 - Tokenization
 - Concept
 - Character-level
 - Word-level
 - Subword-level
 - Sentence/word manipulation
 - Tips
- Key takeaways
- Suggested readings

TIP

• If you pre-process the training set, pre-process in the exact same manner the test set

 Pre-processing in probably not a good idea if you are using LLMs

Pre-processing does not guarantee better results (so,

sorry)

KEY TAKEWAYS

KEY TAKEWAYS

 Understand that corpora probably needs some preprocessing, although traditional operations, such as lemmatization or stop words removal make no sense nowadays in most cases

SUGGESTED READINGS

READINGS

- Sebenta: chapter 4 (4.1 and 4.2)
- Jurafsky: 2.5, 2.6, ...