

Past Papers Higher Chemistry

2023 Marking Scheme

Grade	Mark R	equired	9/ di data a salai ina a salai
Awarded	(/120)	%	% candidates achieving grade
Α	+	%	%
В	+	%	%
С	+	%	%
D	+	%	%
No award	<	٠%	%

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	/25	/95	No Assignment in 2023

	2023 Higher Chemistry Marking Scheme				
M <i>C</i> Qu	Answer	Reasoning			
1	Α	 ☑A Electronegativies Na = 0.9 & I = 2.7 ∴ difference = 1.8 (least ionic character) ☑B Electronegativies Na = 0.9 & F = 4.0 ∴ difference = 3.1 ☑C Electronegativies K = 0.8 & I = 2.7 ∴ difference = 1.9 ☑D Electronegativies K = 0.8 & F = 4.0 ∴ difference = 3.2 (greatest ionic character) 			
2	D	 ☑A N-H bond in structure ∴ hydrogen bonding would occur between molecules ☑B O-H bond in structure ∴ hydrogen bonding would occur between molecules ☑C N-H bond in structure ∴ hydrogen bonding would occur between molecules ☑D No N-H, O-H or H-F bonds in structure ∴ no hydrogen bonding between molecules 			
3	С	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
4	A	☑A Activation of reverse reaction = 200 - 50 = +150kJ mol ⁻¹ ☑B Enthalpy change for reverse reaction = 50 - 150 = -100kJ mol ⁻¹ ☑C Activation of forward reaction = 200 - 150 = 150kJ mol ⁻¹ ☑D Enthalpy change for forward reaction = 150 - 50 = +100kJ mol ⁻¹			
5	C	time = 10s : rate = $\frac{1}{\text{time}}$ = $\frac{1}{10s}$ 0.1 s ⁻¹ Extrapolate from graph: when rate = 0.1s ⁻¹ then concentration = 0.25 mol l ⁻¹			
6	В	 ☑A catalyst speeds up reaction so dotted line would be steeper initially ☑B dotted line is steeper at start and meets full line at horizontal end of line ☑C catalyst does not change final concentrations so dotted line would meet full line at end ☑D catalyst speeds up reaction so dotted line would be steeper initially 			
7	В	1 mol $CH_3OH = -726 \text{ kJ mol}^{-1} = 32g$ $-145.2 \text{ kJmol}^{-1} = 32g \times \frac{-145.2}{-726}$ = 6.4g			
8	A	✓ A Sodium Na atom (covalent radius = 160pm) is larger than sodium Na ⁺ ion (ionic radius = 102pm) ■ B Chloride Cl ⁻ ion (ionic radius = 181pm) is larger than chlorine Cl atom (covalent radius = 100pm) ■ C Magnesium Mg ²⁺ ion (ionic radius = 72pm) is smaller than magnesium Mg atom (covalent radius = 140pm) ■ D Oxygen O atom (covalent radius = 64pm) is smaller than oxide O ²⁻ ion (ionic radius = 140pm)			
9	EA Covalent molecular is found in both elements e.g. O_2 and compounds e.g. H_2O EB Covalent network is found in both elements e.g. C (diamond) and compounds e.g. SiO_2 C Monoatomic structures are only found in elements D Ionic structures are only found in compounds containing metals and non-metal element				
10	В	$\blacksquare A$ 2-methylbutanal $C_5H_{10}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$ $\blacksquare B$ 3-methylpentan-2-one $C_6H_{12}O$ is an isomer of hexanal $C_6H_{12}O$ (same formula different structure) $\blacksquare C$ 2,2-dimethylbutan-1-ol $C_6H_{14}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$ $\blacksquare D$ 3,3-dimethylpentanal $C_7H_{14}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$			

		Q + H O H			
11	C	-C-OH $H-N-$ condensation $-C-N-$			
		carboxyl group amine water removed at join peptide link			
		☑A Formation of carbon monoxide indicated incomplete combustion not complete combustion			
12	D	☑B Formation of carbon monoxide indicated incomplete combustion not complete combustion ☑C enthalpy of combustion is the complete combustion of 1 mole of a substance			
		☑D The energy change for the complete combustion of 1 mol of a substance			
		 ☒ A ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium ☒ B ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium 			
13	N	EC ethanol and ethanoic acid react to form ethyl ethanoate and water in A and form an equilibrium ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium			
13		☑D Flask A is the reactants at 100% and Flask B is the products at 100%. They will reach the same			
		equilibrium eventually with ethyl ethanoate, water, ethanol and ethanoic acid present in both flasks at the same cocentrations.			
		Write Down main species $IO_3^ \longrightarrow$ I_2			
		Balance all atoms other than oxygen and hydrogen $2IO_3^ \longrightarrow$ I_2			
14	C	Balance O by adding H_2O to other side $2IO_3^ \longrightarrow$ I_2 + $6H_2O$			
		Balance H by adding H^+ ions to other side $2IO_3^- + 12H^+ \longrightarrow I_2 + 6H_2O$			
		Balance charge by adding $2IO_3^- + 12H^+ + 10e^- \longrightarrow I_2 + 6H_2O$			
		 ☑A Condensation: 2 molecules join together with small molecule e.g. water removed at join ☑B Hydration: Addition reaction where H₂O is added across a C=C double bond 			
15	D	☑C Reduction: decrease in oxygen: hydrogen ratio			
		☑D Oxidation: increase in oxygen: hydrogen ratio ($C_6H_7ON \rightarrow C_6H_5O_2N$) O:H ratio 1:7 \rightarrow 2:5 ☑A 3x -OH group makes A the 2 nd most polar molecule and A is the 3 rd peak left to right			
16	В	☑B no -OH groups makes B the least polar molecule and B is the 1 st peak left to right (Z)			
		$\boxtimes C$ 2x -OH group makes C the 3 rd most polar molecule and C is the 2 nd peak left to right $\boxtimes D$ 6x -OH group makes D the most polar molecule and D is the 4 th peak left to right			
		☑A Draft shield would reduce heat loss to the surroundings			
17	C	oxtimes B the thermometer in the diagram is too close to the flame and might give inaccurate temp $oxtimes C$ glass beaker would reduce the heat transfer to the water compared to a copper can			
		 ID Stirring the water would mix the water better and give a more accurate temp ID A head of soap in ionic and therefore polar 			
18	В	☑B ionic head dissolves in polar water and non-polar tail dissolves in non-polar oil			
10	D	 EC head of soap in ionic and therefore polar ED ionic head is polar and dissolves in polar water rather than non-polar head 			
		🗷 A unreacted nickel oxide must be removed by filtration before evaporation takes place			
19		☑B the filtration of nickel oxide must be followed by evaporation of water to form salt ☑C the unreacted nickel oxide is filtered to remove it and the evaporation that follows			
		removes the water from the nickel sulfate solution to leave nickel sulphate salt			
		 ID the unreacted nickel oxide must be filtered before evaporation takes place IEA ethanal CH₃CHO is an aldehyde and does not react with alkalis 			
20	В	☑B ethanoic acid CH₃COOH is a carboxylic acid and is neutralised by alkalis.			
20	D	 ☑C propanone CH₃COCH₃ is a ketone and does not react with alkalis ☑D ethan-1-ol CH₃CH₂OH is a primary alcohol and does not react with alkalis 			

21	D	 ☒A Secondary alcohol: 2 carbons directly attached to the carbon with -OH group ☒B Secondary alcohol: 2 carbons directly attached to the carbon with -OH group ☒C Tertiary alcohol: 3 carbons directly attached to the carbon with -OH group ☒D Primary alcohol: 1 carbon directly attached to the carbon with -OH group 4-methylpentan-2-one is a ketone which reduces to form the secondary alcohol 4-methylpentan-2-ol. 			
22	A	gfm 4-methylpentan-2-one $C_6H_{12}O = (6\times12)+(12\times1)+(1\times16) = 72+12+16 = 100g$ gfm 4-methylpentan-2-ol $C_6H_{14}O = (6\times12)+(14\times1)+(1\times16) = 72+14+16 = 102g$ 4-methylpentan-2-one $C_6H_{14}O = (6\times12)+(14\times1)+(1\times16) = 72+14+16 = 102g$ $C_6H_{12}O $			
23	D	gfm O_2 = 32g ∴ no. of mol = mass/gfm = $^{16}/_{32}$ = 0.5mol (same no. of mol = same volume) ⊠ A gfm CO = 28g ∴ no. of mol = mass/gfm = $^{21}/_{28}$ = 0.75mol ⊠ B gfm CO_2 = 44g ∴ no. of mol = mass/gfm = $^{44}/_{44}$ = 1.0mol ⊠ C gfm NO_2 = 46g ∴ no. of mol = mass/gfm = $^{46}/_{46}$ = 1.0mol ☑ D gfm N_2O_4 = 92g ∴ no. of mol = mass/gfm = $^{46}/_{92}$ = 0.5mol			
24	A	Ionic formula aluminium sulfate = $(Al^{3+})_2(SO_4^{2-})_3$ 1 mol of $Al_2(SO_4)_3$ contains 2 mol of positive Al^{3+} ions 0.25mol 0.5 mol			
25	В	C ₂ in C=C double bond has no hydrogens directly attached to it ∴ Cl of H-Cl attaches to C ₂ (major product) 2-methylpent-2-ene H CH ₃ H H H C ¹ C ² C ³ C ⁴ C ⁵ H H H H H H + Cl − H	C ₃ in C=C double bond has 1 hydrogen directly attached to it ∴ H of H-Cl attaches to C ₃ (major product) 2-chloro-2-methylpentane H CH ₃ H H H		

20	2023 Higher Chemistry Marking Scheme					
Long Qu	Answer	Reasoning				
1 a(i)	Greater no. of protons/ nuclear charge holds electrons more tightly	Across a period, the same electron shell is filling up but there is a greater nuclear charge due to the increase atomic number. The outer shell is held more tightly by the nucleus and an electron is harder to remove from the outer shell.				
1a(ii)	b or j	Elements c and k are group 0 elements as they have the highest 1 st ionisation energy in their periods. Group 7 elements have the next highest 1 st ionisation energy and elements b and j correspond to the 2 nd highest ionisation energies.				
1a(iii)A	Answer to include:	1 st mark: 2 nd electron removed from an electron shell closer to nucleus 2 nd mark: 2 nd electron is less screened/shielded (than 1 st electron removed) or 2 nd electron is more strongly attracted to the nucleus				
1a(iii)B	11472	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
1b(i)	Attraction atom/nucleus has for electrons within a bond	add $Na^{+}_{(g)} \rightarrow Na^{3+}_{(g)} + 2e^{-} \Delta H = 11472 kJ mol^{-1}$ Electronegativity is a measure of the attraction an atom involved in a bond has for the electrons of the bond (shared pair of electrons)				
1b(ii)	Answer to include:	1 st mark: Increased screening/shielding effect (due to more shells) 2 nd mark: Attraction of nucleus/protons for outer electrons decreases				
1b(iii)	Strontium (or Barium or Radium)	Strongest reducing agents are found on the top right hand corner of the electrochemical series. First four in top right corner are group 1 elements and Strontium is the first group 2 element.				
2a(i)	Answer to Include:	1 st mark: (intermolecular) forces increase going down a group 2 nd mark: London dispersion forces are forces broken between molecules 3 rd mark: The more electrons the stronger the LDFs				
2a(ii)	Hydrogen bonding	Hydrogen bonding occurs between molecules containing one of the following bonds: N - H bond O - H bond H - F bond				
2b(i)	34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2b(ii)	40%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

		Att LT CO L LL L			
		1st mark: In SiO ₂ covalent bonds are broken London dispersion forces			
2b(iii)		2 nd mark: In SiH ₄ Van der Waals' forces are broken			
	Answer to include:	Intermolecular forced J			
		3 rd mark: Covalent are stronger than Van der Waals' forces			
		bonds need more energy to break Intermolecular forced			
		H H H 1 2 2 4			
		$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ propane-1,2,3-triol			
3a(i)A	propane-1,2,3-triol	он он он			
		Olycerol Single bonds Functional groups 3 hydroxyl			
		2 , Schwedi ed Sons on our Sons 2,5,5 Originates			
3a(i)B	condensation	A condensation reaction occurs when two molecules join together with a small molecule removed where they join. The small molecule is usually water.			
2 4					
3a(ii)A	carbonyl	$\begin{vmatrix} -\ddot{c} - \end{vmatrix} - \ddot{c} - OH \begin{vmatrix} -\ddot{c} - H \end{vmatrix} C - \ddot{c} - C \begin{vmatrix} -\ddot{c} - C \end{vmatrix}$			
		carbonyl group carboxyl group aldehyde group ketone group			
_		Seven carbons in main chain. (hept)			
3a(ii)B	heptan-2-one	Carbonyl functional group between 2 carbons = Ketone (heptanone)			
		Functional group in C_2 (heptan-2-one)			
		Primary Secondary Carboxylic Alcohol Alcohol Acid			
	reduction	Oxidation Oxidation reduction			
3a(ii)C		Aldehyde Ketone Aldehyde Ketone			
Ju(II)C		Oxidation reduction reduction			
		Oxidation			
		Carboxylic Primary Secondary			
		Acid Alcohol Alcohol			
		0 0			
		$C_8H_{16}O_2 \longrightarrow C_8H_{14}O_3 \longrightarrow C_7H_{14}O \longrightarrow C_7H_{16}O$			
2 6		O:H O:H O:H O:H			
3a(ii)D	Reaction 1	2:16 3:14 1:16			
		1:8 → 1:4.67 → 1:14 → 1:16			
		Increase Decrease Decrease			
		in O:H in O:H in O:H			
30(:::)	Structure drawn of				
3a(iii)	5-hydroxyoctanoic acid	Г. Г. Г. Г. ОН Н. Н. Н. ОН. Н. Н. ОН			
3a(iv)A	12-13 minutes	Problem Solving: Interpreting multiple graphs			
	Dilute the sample				
3a(iv)B	or use less sample	When the concentration of the sample is too large the top of the peak is cut off and this prevent the area under the peak from being calculated.			
3b(i)	essential	Essential amino acids are amino acids which must be obtained through the diet as			
35(1)		the body cannot make these amino acids themselves			
		There are 2 amino acids that appear twice in the portion of protein Sidegroup is attached to basic structure of an amino acid to form			
	н-'n-ċ-ё-он	glutamic acid glutamic acid glutamic acid			
3h/	l CH₂	• leucine CH ₂			
3b(ii)		l			
	CH₂ I	Only one of those sidegroups CH_2 H-N- ζ - C - C - C			
	соон	have a carboxyl group to M-N-C-C-OH make the sidegroup an acid			
	•	n en			

3b(iii)	denaturing	When a protein changes shape by a change like heating, the protein changes shape as hydrogen bonds are broken to alter the shape of the protein e.g. spirals of protein unravel.				
3c	To prevent non-polar and polar liquids separating (into layers)	Emulsifiers had hydrophilic polar. Heads and hydrophobic non-polar tails. The hydrophobic tails stick into non-polar oil/grease droplets and hydrophilic heads stay outside the oil/grease droplets in the polar water. The oil/grease droplets cannot join together are form an oil/grease layer which spoils the appearance of the food.				
3d	Calcium propanoate	$Ca^{2+}(CH_3CH_2COO^-)_2$ is the salt formed by the neutralisation of propanoic acid (CH_3CH_2COOH) with a calcium-containing base e.g. calcium hydroxide				
4	Open Question Answer to Include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the understood.				
5a(i)A	494	0.05 litres glucose solution contains 5.79g glucose 16 litres glucose solution contains 5.79g glucose \times 16/0.05 = 1852.8g glucose gfm $C_6H_{12}O_6 = 180g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{1852.8}{180} = 10.3 \text{mol}$ $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$ $1 \text{mol} \qquad 2 \text{mol}$ 10.3mol Volume = no. of mol \times Molar Volume = 20.6 mol \times 24 litres mol ⁻¹ = 494 litres				
5a(i)B	51.1	atom economy = $\frac{\text{Mass of useful produce}}{\text{Mass of reactants}} \times 100 = \frac{2x46}{1x180} \times 100 = \frac{92}{180} \times 100 = 51.1\%$				
5 α(ii)	12.2	% alcohol by volume = $\frac{\text{Change in specific gravity}}{0.7362} \times 100 = \frac{1.075 - 0.985}{0.7362} \times 100 = 12.2\%$				
5b(i)	Answer to include one from:	Acidified dichromate would turn orange to green with methanol and no colour change with propan-2-one. The oxidising agents Fehling's solution and Tollen's reagent would not react with methanol or propan-2-one				
5b(ii) <i>A</i>	terpenes	Terpenes are formed when isoprene C_5H_8 units join together. The terpenes formed have a carbon number with is a multiple of 5, depending in how many isoprenes joined together.				
5b(ii)B	C₅H8 unit circled as shown opposite:	Circled area should resemble a five carbon isoprene unit shown below H_2C CH_2 H_2C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_2 GH_2 GH_2 GH_3 GH_4 GH_2 GH_4 GH_4 GH_5 GH_6 GH_7 GH_7 GH_8 GH_7 GH_8 G				

1				
5b(ii) <i>C</i>	ethanoic acid	O CH ₃ CH ₃ C CH ₂ C CH ₂ C O CH CH ₂ CH CH ₃ C CH ₂ C CH ₃ C CH ₂ C CH ₂ C CH ₂ C CH ₃ C		
5c	2100mg or 2.1g (1 mark for mass and 1 mark for unit)	For 8 hours: 1kg body weight = 10.0mg quinine 70kg body weight = 10.0mg quinine \times 70/1 = 700mg quinine For 24 hours: = 700mg \times 24/8 = 2100mg (=2.1g)		
6a(i)A	Curve finishes below reactants	path of reaction Exothermic		
6a(i)B	Activated Complex	H—H CI—CI reactants cold bond breaking new bond forming H CI CI CI CI CI CI CI CI CI		
6 a (ii)	Calculation showing:	no. of mol HNO3 = volume × concentration = 1316 itres × 9.5mol 1 ³ = 12502mol no. of mol NH3 = \frac{mass}{gfm} = \frac{220000}{17} = 12941mol (available) HNO3 + NH3 \rightarrow NH4NO3 1mol		
6a(iii)	100% atom economy	As there is only one product then all reactants end up in the useful product.		
6b(i) <i>A</i>	Total number of particles/molecules	The area under the curve is the total number of particles in the sample.		

7

6b(i)B	Graph moves to right	kinetic energy			
6b(ii)	Line to the left of dotted line diagram	So of particles Kinetic energy			
	_	At equilibrium:			
6c(i)	reaction equals rate of reverse reaction	rate of forward reaction = rate of reverse reaction (and concentration of reactants and products are <i>constant</i>)			
6c(ii)A	Answer to include:	1st mark: equilibrium shifts to right hand side or increases yield of ammonia			
6c(ii)B	One answer from:	recycling of unused air is a low cost or free uses a catalyst gases/reactants resource (to reduce energy costs)			
4 d ()	4NH3+3O2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
6d(i)	V 2N₂+6H₂O	add $30_2 + 6H_2O + 12e^{-}$ $120H^-$ 6 $4NH_3 + 120H^ 2N_2 + 12H_2O + 12e^{-}$			
		$3O_2$ + $4NH_3$ \rightarrow $2N_2$ + $6H_2O$ Reducing Agent: reduced something else and is oxidised itself.			
6d(ii)	ammonia or NH₃	NH_3 is oxidised and loses electrons: $2NH_3 + 6OH^- \rightarrow N_2 + 6H_2O + 6e^-$			
7a(i)	hard water	Hard water contains large quantities of (usually) calcium Ca^{2+} ions. These ions react with soap to form an insoluble precipitate known as scum.			
7a(ii)	hydrophilic	hydrophilic The ionic head of a detergent molecule is hydrophilic as it is polar and dissolved in water hydrophobic The hydrocarbon tail of a detergent molecule is hydrophobic as it is non-polar and will not mix with water. The hydrocarbon tail will stick into non-polar oil/grease instead			
		no. of mol EDTA = volume × concentration = 0.0093 litres × 0.0045 mol 1-1 = 4.185×10-5 mol			
7a(iii)	8.37×10 ⁻⁴ or 0.000837	$Ca^{2+} + C_{10}H_{12}N_2O_8^{4-} \longrightarrow [Ca(C_{10}H_{12}N_2O_4)]^{2-}$ $1mol $			

7b	4.4 to 5.4	Draw a best fit straight line on graph ignoring the rogue point at $4mg l^{-1}$. Draw a line horizontally from Absorbance = 0.08 to the best fit straight line and then vertically go down to x -axis to read the concentration.			
7c(i)	Answer to include:	1st Mark: Trichloromethane is polar. and Tetrachloromethane is non-polar. Trichloromethane has a permanent dipole. 2nd Mark: and Tetrachloromethane has no permanent dipole.			
7c(ii)	-14	Bond Breaking Steps (endothermic) Bond Forming Steps (exothermic) 1xC-H bond			
8	Open Question Answer to Include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
9a(i)	1 mark each:	1 st Mark: Longer the carbon chain the higher the boiling point 2 nd Mark: Further Down group 7 the halogen is the higher the boiling point			
9a(ii)	Permanent dipole to permanent dipole attractions.	The carbon - halogen C-X bond is a polar bond due to the difference in			
9b(i)	One answer from:	2 carbons attached to the carbon with the halogen attached. 1 hydrogen attached to the carbon with the halogen attached.			
9b(ii)	H Br H H-C-C-C-H H CH ₃ H	To be an isomer of 2-bromobutane then must have formula C_4H_9Br . To be a tertiary haloalkane, structure must have three carbons/no hydrogens attached to the carbon with the bromine attached.			
9c(i)	Ultraviolet light or u.v.	Ultraviolet light is required to provide the energy required to split the covalent bond in halogen in the initiation step.			
9c(ii)	One answer from:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
9d	H H H H 	Tollen's Reagent and Fehling's solution will react with aldehydes only. • R C_4H_8O must be an ketone if it does not react with Tollens and Fehling's. • Q C_4H_9OH must be a secondary alcohol if it is oxidised into ketone R Haloalkane P \rightarrow Alcohol Q \rightarrow Ketone R C_4H_9Br \rightarrow C_4H_9OH \rightarrow C_4H_8O H H H H H H H H H H H H H H H H H H H			
9e	Answer shown:	2-bromo-3-chloro-1,1,1-trifluoropentane			

			4 T	T
10a	Answer to include:	Mark Version 1st Tare the balance wit the crucible 2nd Transfer 1-5 Mark (into the crucib	Tare a weighing boat, transfer the 1.5 g onto the weighing boat. Record mass. Transfer into the crucible. g Reweigh the weighing boat and	Version 3 Weigh mixture and weighing boat, record the mass. Transfer mixture into the crucible. Reweigh the weighing boat and record the mass/calculate the difference
10b(i)	to allow gas/CO2 to escape	The gas formed in the reaction will build up in the crucible under the lid. Lifting the lid will prevent. Pressure building up that could dislodge the lid.		
10b(ii)	reactants/products are not flammable		should be replaced with non-flaming mantles when the reactants or	
10c	0.582	mass of crucible before heating = 1.598g mass of crucible after heating = 1.294g mass of CO_2 released = 1.598g - 1.294g = 0.304g gfm CO_2 = 44g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.304}{44}$ = 0.00691mol MgCO ₃ \longrightarrow MgO + CO ₂ 1mol 0.00691mol 0.00691mol 0.00691mol gfm MgCO ₃ = 84.3g mass = no. of mol × gfm = 0.00691 × 84.3 = 0.582g		
10d(i)	conical flask excess acid magnesium carbonate & magnesium oxide			
10d(ii)	carbon dioxide has low solubility in water	Only gases that are insoluble or have low solubility in water should be collect over water this water. There is some loss of gas during the process. The best way to collect ${\it CO}_2$ in a gas syringe so there is no loss of any gas by dissolving in water.		