NASA CR-112195

DEVELOPMENT OF SIMULATION TECHNIQUES SUITABLE FOR THE ANALYSIS OF AIR TRAFFIC CONTROL SITUATIONS AND INSTRUMENTATION

FOR U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS ONLY

Prepared Under Contract No. NAS1-10847

Ъу

Research Triangle Institute Research Triangle Park North Carolina 27709

RTI No. 43U-718

for

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23365

CSC1 172

N73-14699

G3/21 Unclas 51193

December 1972

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

Preceding page^Sblank

ACKNOWLEDGEMENT

This report was prepared by the Research Triangle Institute, Research Triangle Park, North Carolina, under Contract NAS1-10847. The work is being administered by the Flight Instrumentation Division, Langley Research Center. Mr. Leonard Credeur is the Langley Technical Representative for the contract.

For the studies described in this report, work has been closely coordinated with personnel at Langley Research Center. Messrs. T. Walsh, L. Credeur, D. Cannon, and W. Capron have contributed heavily to the modeling and computer simulation work described herein.

RTI staff members participating in the study were as follows:

- C. L. Britt, Project Leader
- E. G. Baxa, Systems Engineer
- J. Modi, Operations Analyst
- R. C. Haws, Systems Analyst
- C. M. Davis, Systems Analyst
- J. L. Gatz, Research Assistant.

PRECEDING PAGESBLANK NOT FILMED

Preceding page blank

TABLE OF CONTENTS

		•]	Page
	ACKN	OWLEDGEMENT	•	•		•	111
ı.	SUMM	ARY	•		•	•	1
'II.	INTR	ODUCTION	•	•		•	3
III.	GENE	RAL DESCRIPTION OF THE SIMULATION MODEL					7
	Α.	Overall Organization					7
	В.	Traffic Generation					7
	С.	Terminal Area Simulation					9
	D.	Data Analysis					11
	Ε.	Detailed Procedures				•	12
IV.	APPL	ICATION OF THE MODEL TO THE ATLANTA TERMINAL ARE	A				13
	Α.	General Procedure					13
	в.	Aircraft Performance Data					15
	С.	Atlanta Navigational Aids					15
	D.	Atlanta Route Structure					15
	Ε.	Simulated Controller Actions					23
	F.	Final Approach Sequencing		•			33
	G.	Communications					36
	н.	Navigation and Surveillance Errors					37
	I.	Miscellaneous Inputs			•		37
٧.	INIT	IAL RESULTS FROM TEST RUNS					39
	Α.	General Discussion		•			39
	в.	Model Output Data		•			39
	C.	Comparison of Model-Generated Data with Actual Radar Tracking Data					49
	D.	Test Runs to Determine Sensitivity to Random Air	· cr	• af	t	•	49
		Heading Errors	•	•	•	•	55
VI.	CONC	LUSIONS	•	•	•	•	59
VII.	APPE	ENDICES		•	•		61
	Α.	Terminal Area Simulation Model Logic Flow Charts		•	•		63
	В.	Input Data for the Current Atlanta Terminal Area Route Structure					123

TABLE OF CONTENTS, Continued

			<u>P</u>	age
	c.	Input Data for the Traffic Sample Generation Program.		159
	D.	Subroutine Descriptions	•	165
	Ε.	Definitions of Variables for the Terminal Area Simulation Model		169
Ų.	F.	Description of Packed Computer Words		245
	G.	Computer Core Storage Requirements for the Terminal Area Simulation		281
	н.	Detailed Logic Flow Charts		285
VIII.	REFE	ERENCES		409

LIST OF ILLUSTRATIONS

Figure No.	<u>Title</u>	Page
1	Overall organization of the terminal area simulation model	8
2	Functional flow chartoverall organization of simulation program for initial model	10
3	Sketch of arrival routes defined for initial simulations. In the final approach sequencing area, the longest and shortest paths are shown as dashed lines. Asterisks indicate where ETA checkpoints are specified	14
4	Chart showing general arrival and departure routes for runways 9L and 9R at Atlanta. This data is given in the Atlanta Tower Orders for each runway	16
5	Correlation of flight schedule data and route definition on map	22
6	Diagram of relationship between input data arrays as defined by pointers in the arrays	27
7	Sketch of Route No. 7 of the Atlanta Terminal Area route structure illustrating the use of controller action points and checkpoints	28
8	Entries in input data sheets illustrating the correlation of the input data with the route structure of Fig. 7	30
9	Sketch of Atlanta arrival routes represented by the data given in Appendix B, showing the conflict checkpoints and the controller action points along the various routes	31
10	Sketch of Atlanta departure routes represented by the data given in Appendix B, showing the conflict checkpoints and the controller action points along the various routes	32
11	Typical north and south arrival final sequencing paths illustrating approach paths and use of control points in sequencing technique	34
12	The real-time CRT display. This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 10 n mi apart. This particular plot was made at scan 372 of a test run. Controller messages are shown in the upper and lower lefthand corners	41

LIST OF ILLUSTRATIONS, Continued

Figure No.	<u>Title</u>	Page
13	The real-time CRT display, This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 5 n mi apart. This particular plot was made at scan 399 of a test run. Controller messages are indicated here in the upper and lower left-hand corners	42
14	The real-time CRT display. This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 2 n mi apart. This particular plot was made at scan 403 of a test run. Controller messages are indicated here in the upper and lower left-hand corners	43
15	The aircraft-relative real-time CRT display. Positions of the aircraft shown are relative to the aircraft in the center of the display. The plot is updated every four seconds in the real-time mode. The dashed range circles are 2 n mi apart. Scale on the plot is variable. Controller messages are indicated in the upper and lower left-hand corners	44
16	Example of output data obtained on strip chart recordingcommunications channel information	45
17	Example of output data obtained on strip chart recordingtime histories of various queues	46
18	Sample printout of the scan-by-scan data	47
19	Comparison of a model-generated aircraft track with an actual radar track of a B727 from the Atlanta radar data	52
20	Histograms showing the percentage of flying time that a randomly selected aircraft found another aircraft within the range bins specified on the horizontal axis for model-generated data and Atlanta radar data	53
21	Histograms showing the percentage of flying time that a randomly selected aircraft found another aircraft within a time to closest approach specified on the horizontal axis for model-generated data and Atlanta radar data	54

LIST OF ILLUSTRATIONS, Continued

No.	<u>Title</u>	Page
A-1	Flow chart for the overall organization of the simulation model	65
A-2	Logical flow charts for the Simulation Model	66
A-3	Logical flow charts for the Traffic Generation Program.	106
A-4	Logical flow charts for the Analysis Program	110

Preceding page blank

LIST OF TABLES

No.	<u>Title</u>	Page
1	Presently simulated flight modes (in ISKED array)	20
2	Presently simulated flight leg objectives (in ISKED array)	20
3	Altitude and speed pointers (in ISKED array)	21
4	Controller actions	24
5	Input data arrays associated with controller actions .	26
6	Current outputs of the statistical analysis program	48
7	Statistics developed for comparison of sample runs with and without random heading errors. Each run represents approximately 90 simulated minutes at approximately 70 operations/hr	56
B-1	Definition of miscellaneous input parameters and numerical values used for Atlanta simulation	153
E-1	Definitions of variables	170

PRECEDING PAGE BLANK NOT FILMEN

SUMMARY

This report describes a terminal area simulation which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links.

The simulation model will be used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements. These results will assist in establishing future requirements for (1) basic sensor/instrumentation accuracies for airborne and ground systems; (2) permissible system delays in airborne and ground information handling systems; (3) required data rates for air-ground information exchange; (4) requirements for signal and data processing for both airborne and ground computers; and (5) aircraft performance and operating characteristics.

The initial model has been programmed for the CDC 6600 computer and run in both real-time and fast-time on the computer complex at Langley Research Center. The initial test runs indicate that the model and associated program are within the capabilities of the computer facilities available. The test runs also indicate good correlation with actual radar traffic data obtained by the FAA at the Atlanta airport.

Preceding page blank

II. INTRODUCTION

The development of air traffic control systems is a continuous evolutionary process, with new developments being constantly spurred by rapidly changing aviation technology and the demands of the public at large. However, changes in any part of the air traffic control system are bound to have complex effects in several aspects of system operation. Computer simulation has proved to be an effective means of evaluating the impact of proposed improvements on overall system performance.

This report describes the development of, and initial experiments with a computer simulation model of a terminal area. The primary objective under this contract has been to develop a preliminary mathematical model of the Atlanta terminal area, to program the model for the Langley Research Center digital computer complex, and to demonstrate the operation of the preliminary model on the LRC computers. The computer model is intended to be flexible and extendable to other terminal areas and to terminal area configurations using advanced concepts.

The basic concepts for the simulation model were defined and described in detail under Contract NAS1-7537. The final report developed under this contract, "Definition of a Terminal Area Air Traffic Model for Studies of Advanced Instrumentation and Control Techniques" [Ref. 1], contains discussions of the model parameters considered and sources of data that provide inputs to the model.

The initial work described in Ref. 1 indicated that the model and associated program were within the capabilities of the computer facilities available; however, for efficient use of these facilities it was highly desirable to reduce the computer storage requirements. This reduction in storage was advisable in order to incorporate more detail and flexibility in certain areas of the program. For this reason, a large part of the effort in this study was devoted to providing more efficient use of the computer memory by densely packing the input data into the 60-bit words of the CDC-6600 computer.

A significant number of modifications have been made to the initial model defined in Ref. 1. These new features are intended to increase the realism and flexibility of the basic model, its adaptability to different and advanced terminal areas, and its versatility in the

investigation of different types of problems. The major new features introduced into the model include:

Conflict Detection and Resolution

A fully dynamic technique of conflict detection and resolution has been incorporated whereby certain aircraft are rechecked for clearances depending on the action of an aircraft ahead.

Route Structure

More flexible route structure design is permitted providing choices of controller conflict resolution options as designated by input data.

Sequencing

Previously, all aircraft entered the sequencing area via a single feeder route in each sector (North and South). Final sequencing logic has now been modified to allow for multiple merging feeder paths into each sector sequencing area. Final sequencing is accomplished for each aircraft on its respective feeder path at designated points such that as the aircraft merges into the dump area no loss of separation is encountered. Additionally, the new logic permits more realistic interception of the localizer course.

Control Positions

Provision has been made to provide any number of simulated control positions.

Altitude Conflict Checks

Additional logic has been provided to check for conflicts between departing aircraft and arriving aircraft at places where their future paths may cross.

Cockpit and Runway Display

Coding has been provided such that a general-purpose cockpit simulator can be used in conjunction with the air traffic model. A graphic runway display (on an oscilloscope) indicates in real time the runway in perspective as it would appear to a pilot in a cockpit simulator.

Pop-Ups

A capability has been incorporated to simulate pop-up traffic, e.g., a sudden appearance of unknown traffic anywhere on the simulated radar screen. Pop-ups are simulated by entering the simulated pop-up

aircraft's position and velocity data on the computer console at the time of desired entry.

Navigation and Surveillance Errors

More realistic representation of these errors has been incorporated.

Speed Control

Algorithms have been developed to provide a speed control feature for resolving conflicts. Input data define the type and range of speed control to be used.

Missed Approaches

Algorithms have been developed to reintroduce missed approaches and wave-offs into the traffic pattern for another attempt at landing. These algorithms, however, have not yet been incorporated in the computer program.

The following sections of the report discuss the above model features in more detail and provide documentation of the application of the model to the Atlanta terminal area.

Preceding page blank

III. GENERAL DESCRIPTION OF THE SIMULATION MODEL

A. Overall Organization

The overall simulation model consists of three distinct parts:

(1) a traffic generation computer program, (2) the terminal area simulation model program; and (3) the data analysis program. In addition, provision is currently being made for the incorporation of a general-purpose aircraft cockpit simulator and associated computer program. The overall model organization is indicated in Fig. 1.

For operation in the real-time mode, the traffic sample is generated in a batch mode prior to the real-time runs, and data analysis is accomplished by storing simulation program outputs on tape for later non-real-time analysis.

B. Traffic Generation

A Monte Carlo program is used for generating data for the traffic sample. Arrivals are introduced into the problem at a 40 n mi radius from the airport and departures are introduced at the runway apron. From a probability distribution of time-between-operations, an offer time is selected for the next aircraft to be provided in the traffic sample. For the aircraft to be entered, a type is selected from a histogram of aircraft types. Next, the program decides whether the aircraft is an arrival or departure and what route the aircraft will be introduced on. After this information has been calculated, an altitude, speed, and bearing from the terminal area are calculated using normally distributed deviations about the nominal route assignments. After calculation of the x and y coordinates, a heading is calculated such that the aircraft will be headed toward the assigned (from the known route) inner fix.

Using this technique, a traffic sample is generated which has statistics corresponding to those statistics that provide the inputs to the program. The traffic sample may be as lengthy as required. For real-time simulations, a one-hour traffic sample is usually generated.

Major inputs to the traffic sample generation program include the desired number of operations per hour, the number of aircraft types, the desired sample length (min), probabilities of aircraft type and route usage,

Fig. 1. Overall organization of the terminal area simulation model.

route entry coordinates, and standard deviations of initial errors in altitude, speed, and position.

Output of the traffic generation program is a list of aircraft with the initial conditions (i.e., offer time and position) for each aircraft, as well as type and class identification.

C. Terminal Area Simulation

A functional flow chart indicating the overall organization of the simulation model is shown in Fig. 2. Inputs to the simulation include arrays defining aircraft performance, the route structure, the traffic sample, intended flight plans, separation standards, navigation errors, communication message times, and control procedures and options.

From the offer times in the traffic sample, an active list of N aircraft is generated for further processing. Each aircraft entering the problem has associated with it a nominal route or intended flight path (IFP) which represents the path the pilot would fly if no conflicts existed with other traffic. Various legs along the flight paths are defined by flight modes and objectives. The modes are generally defined by the navigation technique in use. For example, algorithms have been developed for flying a VOR radial, a DME radius, a vector, an ADF beacon, an ILS system, a holding pattern, and a standard turn. Objectives are also, in most cases, defined by the navaids. Examples of objectives are a VOR radial intersection, a particular fix or geographic point, a DME radius, a new altitude, etc.

For each of the N aircraft on the active list, the current flight mode and next objective are determined from the intended flight path file. Each aircraft is then incremented one step along its path using a set of aircraft dynamic equations which contain the dynamic constraints on the path. As each of the active aircraft progresses along its flight path, a test is made to see if the aircraft's current objective has been reached. If so, the next flight mode is selected and the process continues.

At certain regions along the nominal flight paths, a test is made for potential conflicts at other regions along the intended paths. If a conflict is detected, it is resolved by appropriate action such as a speed, altitude or path change, or by a holding maneuver. The conflict resolution or other control action is associated with a control message generated

Fig. 2. Functional flow chart--overall organization of simulation program for the initial model.

on the applicable communications channel to initiate a change in the flight mode (e.g., a new vector or a speed change) at the appropriate time, or to give clearance on a desired path. The messages have associated with them an earliest and latest possible transmission time and are issued within this time frame as communications channel loading permits. For the initial model, ten controller positions and associated communications channels are modeled. Provision is also made to handle "pop-ups," or aircraft that are inserted (by the computer console operator) at randomly selected positions and times. These pop-ups are integrated into the normal flow patterns in a conflict-free manner.

After all aircraft needing control action have been dealt with, the information on the present position of all aircraft is displayed on a computer console display and x-y plotters as required. The time histories of the takeoff queues, arrival queues, and communications channel queues are recorded on strip chart recorders. The basic data generated and stored on tape for further analysis include the position and velocity of each aircraft at selected time increments throughout the period of interest, the messages sent over each communication channel, and the estimated and actual times of arrival of the aircraft over certain specified points along the routes assigned to the aircraft.

D. Data Analysis

Techniques have been developed that permit the generation of statistics such as "the average percentage of flying time in the terminal area that a randomly selected aircraft is within a range R of another aircraft." A statistic such as this when plotted versus various values of range provides a good measure of the efficiency of the separation procedures used. Under reasonable assumptions, the percent of flying time statistic also provides an unbiased estimate of the probability that a randomly selected aircraft will be within a range R of another aircraft at any particular instant of time under conditions existing during the data period.

While the parameter "range to closest aircraft" is discussed in the above paragraph as an example, other parameters can be investigated in a similar way. For example, a parameter indicating the safety level of the system during a period of operation would be "time to closest approach," or relative range divided by closing velocity. In this case, a distribution

plot is formed of the average percentage of flying time in the terminal area that a randomly selected aircraft is within a time to closest approach of τ seconds of another aircraft.

In addition to the development of statistics as discussed in the examples above, the conventional output measures can also be developed. These measures include statistics such as the distribution of control-related delays, deviations from original ETA's, average mileage flown, aircraft movement rates, etc.

E. Detailed Procedures

Additional discussions of model philosophy and operation are given in Refs. 1 and 2. Specific computer algorithms are given in general flow chart form in Appendix A and in detailed (computer coding) flow chart form in Appendix H. Appendices B and C contain the input data specifying the parameters of the Atlanta simulation. The major subroutines and model variables are defined in Appendices D and E, respectively. Appendix F provides a description of the packed computer words and Appendix G specifies the computer storage requirements for the model as it exists to date.

The detailed procedures for the use of the model are best illustrated by an example of the application of the model to the simulation of the Atlanta terminal area. The application to the current Atlanta terminal procedures is presented in the following section of this report.

IV. APPLICATION OF THE MODEL TO THE ATLANTA TERMINAL AREA

A. General Procedure

For the application of the simulation model to a specific terminal area, the general procedure consists of several steps which may be generally outlined as follows.

- 1. Data sheets defining the performance characteristics of each aircraft type to be simulated are filled out.
- 2. On a large sheet of graph paper (scale approximately 5 n mi/in), the position of the terminal area navigation aids and the airport runways are plotted. These aids include the VOR/DME locations, ILS locations, non-directional beacon coordinates, and important navigational fixes. The data sheet associated with the navigation aids is filled out.
- 3. Using the navigation aids and simulated controller vectors, the nominal arrival and departure routes are defined. The altitude and speed profiles along the routes are defined. Associated data sheets are filled out.
- 4. Again using the navigational aids and simulated controller vectors, alternate routes (if desired) are developed that will be used to resolve conflicts where applicable. The nominal and alternate routes are generally plotted in straight-line (or curved) segments on the large sheet of graph paper, with arrival and departure routes plotted separately.
- 5. Points along the nominal and alternate routes at which conflict checks will be made are specified. These points are designated as Conflict Checkpoints. In addition, regions of airspace where routes (e.g., arrivals and departures) may intersect are noted on the plots.
- 6. Points along the nominal and alternate routes at which a specified control action will take place are defined. These points are designated as Control Action Points.
- 7. For each Control Action Point and associated Conflict Checkpoint, the options that will be used to resolve a conflict are selected from the list of available options. The associated input data sheets are filled out.
- 8. Miscellaneous terminal area procedures such as separation standards, controller responsibility areas, aircraft dynamic parameters, glide slope angles, and other miscellaneous data are specified and listed

Fig. 3. Sketch of arrival routes defined for initial simulations. In the final approach sequencing area, the longest and shortest paths are shown as dashed lines. Asterisks indicate where ETA checkpoints are specified.

on the appropriate input data sheets.

9. The traffic sample generation program inputs are defined by developing probabilities associated with the route usage, the aircraft type utilization, and the number of operations desired per hour.

The above general outline indicates in simplified form the procedures followed. The specific procedures are best illustrated by use of the example of an application to the Atlanta terminal area as presented in the following sections.

B. Aircraft Performance Data

The data sheets specifying the aircraft performance parameters required for the simulation are given in Appendix B, page 124. These parameters include, for each aircraft type, data on climb/descent rates, acceleration and deceleration characteristics, speed characteristics, and runway occupancy information.

C. Atlanta Navigational Aids

The navigational aids available in the Atlanta area are listed on the data sheet given in Appendix B, page 126. For each type of navigational aid, the x-y coordinates, the rms instrument error, and a "make-good radius" which defines a circle within which an aircraft will be considered to have reached the navigational site, are listed. The coordinates are referenced to the location of the Atlanta surveillance radar, which is located between the two parallel east-west runways at Atlanta.

D. Atlanta Route Structure

The term "route structure" as used here refers not only to the layout of the flight paths in terms of their segments, orientations, altitudes, etc., but also to the system of conflict check points and controller action points by which the air traffic control function is simulated. The basic schema of the route structure is similar to that described in Ref. 1, in that the same "four-poster" pattern is used for arrivals, and that departures are routes in the same general directions. However, there are important differences in the detailed layouts of the paths, particularly vector paths, and in the actual mechanics of simulating the control function.

The physical layout of the flight paths used in the current Atlanta terminal area simulation is shown in Fig. 3. It is designed to approximate

Fig. 4. Chart showing general arrival and departure routes for runways 9L and 9R at Atlanta. These data are given in the Atlanta Tower Orders for each runway.

patterns and procedures represented in Fig. 4, which is part of the Letter of Agreement between Atlanta Towers and Atlanta Center that went into effect November 11, 1971. Referring, first, to Fig. 4, arrivals enter the terminal area at the four initial approach fixes (IAFs) DALLAS, NORCROSS, HAMPTON, and TYRONE. There is one initial approach course (shown by a short, heavy arrow) for each IAF, which corresponds roughly to the published standard terminal arrival routes (STARs) for Atlanta. Jet aircraft are assigned altitudes 10,000 or 11,000 ft, and propeller aircraft are assigned 6,000 ft in the terminal area. At all four IAFs, the STARs require aircraft to be at their assigned altitudes about 10 n mi before they reach the IAF, and (for jets) to begin speed reduction to 250 kts when they reach assigned altitude.

At some point before they reach the IAFs, aircraft are handed over by the Center to Atlanta Approach Control. Beyond the IAFs, two basic patterns are followed. Aircraft over NORCROSS and HAMPTON are given one vector to leave the IAFs (220° and 320°, respectively), and speed is not changed unless necessary; when necessary, a typical speed is 200 kts. Aircraft over DALLAS and TYRONE may get two or three vectors in addition to the above speed control in an effort to merge them with aircraft over NORCROSS and HAMPTON respectively. The vectoring area is shown cross-hatched in Fig. 4.

Figure 4 also shows an area known as the dump area. Its northern and southern boundaries are defined by the Fulton County VOR 90°-270° radials and the Atlanta VOR 90°-270° radials, respectively. The dump area contains the downwind legs, where all aircraft are descended and merged in preparation for their sequencing for final approach. Typically, aircraft coming from DALLAS and TYRONE are turned heading 180° and 360° respectively, and slowed to 170 kts as they enter the dump area; similarly, aircraft coming from NORCROSS and HAMPTON are turned heading 270° and slowed to 170 kts as they enter the dump area at its eastern edge. Soon after entering the dump area, the aircraft are under the jurisdiction of the final controller, who turns aircraft onto the base leg and then onto the final approach course in proper sequence. Once established on the final approach course they are asked to monitor the tower frequency on which the local controller clears them to land.

Departure procedures are somewhat simpler because much greater freedom for vectoring is available. Figure 4 shows what are essentially nominal departure paths in four major compass directions, but a large airspace is available for departures, allowing great freedom in headings, altitudes and speeds. The main points to note are that: (1) westbound departures must turn right only, and (2) all but eastbound departures cross arrival routes. Ordinarily, jets are capable of climbing above the arrival routes and are so cleared, but prop aircraft might need to climb through some arrival altitudes. This is permitted if proper coordination can be effected in advance; if not, the climb is restricted to one of the interleaved departure altitudes until the aircraft is past the arrival transition area.

The route structure used in the simulation model corresponds to the above patterns and procedures. Aircraft approach the same four IAFs on two initial approach courses each, as shown in Fig. 3, with one of the courses at each fix corresponding to the published STAR procedures. Vectoring of arrivals coming over DALLAS and TYRONE is simulated by three paths of four segments each in each of the vectoring areas; these are the paths 7, 9, and 10 out of DALLAS and paths 17, 19, and 20 out of TYRONE. Altitude and speed control procedures are as described except that the simulator permits jets at only one altitude (10,000 ft) from the IAFs to the dump areas. Departure procedures are also as described above, except that departure vectoring is restricted to the nominal headings shown in Fig. 4.

Flight Schedule (ISKED) Input Data

Data input to provide the route structure definition is listed in Appendix B, pages 127 to 131. This particular data array is called the Flight Schedule (ISKED) array or intended flight path (IFP) array, and defines the flight modes and flight objectives for each segment of flight in terms of the navigation aids and controller vectors. Each segment may be a straight and level path, an accelerating straight climbing path, a curved climbing path, etc.

The design of the IFP array is intended to accommodate the requirements of the aircraft dynamics or TRACK algorithms (see Fig. 2). In the TRACK algorithms, flight paths are computed in different ways, depending on which "mode" the flight is in. Therefore, the first field in the IFP record consists of the flight mode. Flight modes are designed to require at most two parameters to describe flight; these are supplied as INFO1 and INFO2. The codes for the flight mode and the information to be inserted

in the two fields for various flight modes are indicated in Table 1.

Termination of a particular leg is indicated by information on the objective of the flight leg. Objectives also require at most two parameters, INFO3 and INFO4, to describe the termination of the leg; the codes for the leg objectives and the information to be inserted in the two fields are indicated in Table 2.

In addition to the Flight Modes and Flight Leg Objectives, information is also provided in the Flight Schedule array to specify the desired altitude and speed of the aircraft. The information is in the form of special codes and pointers as shown in Table 3.

The above concepts are illustrated by correlating the instructions given in the Atlanta flight schedule array (Appendix B, page 127) with a sketch of a portion of the routes given in Fig. 3. This correlation is shown in Fig. 5, where a segment of the route is re-sketched along with the corresponding items in the Atlanta flight schedule array.

Referring to Fig. 5, the first line in the flight schedule array specifies that the first leg will be flown using a VOR mode (Code 1) and that the VOR used will be OCR (Code 3 in the INFO1 field identifies the OCR VOR as specified on the Navigational Aid data sheet) with a 12° (INFO2) radial from this VOR. The next data item is an altitude pointer which indicates to the program where to find the altitude data for this leg. The value 31 (see Table 3) is a special code indicating that the desired altitude for this leg will be found in the altitude option array (Appendix B, page 144). Physically, this represents the fact that the controller rather than the pilot will choose the altitude.

Following the altitude pointer is a speed pointer which indicates the type of speed desired on this leg. The pointer points to the corresponding column of the speed performance array (IPERFS) which is given in Appendix B, page 124. The special code 0 indicates that on this leg the aircraft should continue at its initial descent speed (e.g., no speed change is indicated on this leg unless dictated by controller action).

The next three fields of data indicate the objective of this flight leg. The mode 3 code (see Table 2) indicates that the objective for the first leg is a specific distance from the initial leg point of 9 n mi (INFO3).

The remaining lines in the schedule array define the other legs shown in Fig. 5. Physically, the meaning of each line shown in Fig. 5

Table 1. Presently simulated flight modes (in ISKED array).

Flight <u>Mode</u>	Code	INFO1	INFO2
VOR radial	1	VOR identification	Desired ra- + toward dial (deg) - away
To non-directional beacon	2	NDB identification	~
VECTOR	3	Heading (deg)	-
Turn to new heading	4	Final heading (deg)	Direction 1 left 2 right
DME radius	5	DME identification	<pre>+ Desired distance (n.mi.)</pre>
Runway ILS	6	ILS identification	Orientation (deg)
Wait	7	-	-
Standard hold	8	-	-
Standard turn	9	Direction $\frac{1}{2}$ left $\frac{1}{2}$ right	-

Table 2. Presently simulated flight leg objectives (in ISKED array).

Leg Objec- tive Mode	Code	INFO3	INFO4
VOR radial inter- cept	1	VOR identification	Degrees
Time	2	1 2	Time of day elapsed (sec)
Distance from initial leg point	3	Distance (n.mi.)	-
Altitude	4	Desired altitude (ft)	-
Fix	5	FIX identification	-
Speed	6	Desired speed (kts)	-
DME radius inter- cept	7	DME identification	Distance + toward - away
Continue until clear- ance received	8	-	- .
Proceed immediately to new control point	9	-	-
Runway touchdown 20	10	Runway Fix identification	Distance (n.mi.)

TABLE 3
Altitude and Speed Pointers (in ISKED array)

Altitude Code	<u>Definition</u>
1-9	Points to desired altitude values for this
	leg listed in the "Scheduled Altitude" data
	input array (ALTSKD)
31	Indicates that desired altitude value will
	be found in associated "Altitude Option"
	data input array (ALTOPT)
0	Maintain altitude indicated by previous segment
Speed Code	<u>Definition</u>
0	Continue at initial speed
1-8	Points to desired speed value for this leg
	in associated aircraft speed performance
	data input array (IPERFS)

Flight Schedule Array (ISKED)

No.	Mode	INFO1	INFO2	Point	ters Spd.	Objec- tive <u>Mode</u>	INFO3	INFO4	Length of Segment (ISDST)
1	1	3	12	31	0	3	9	-	9.0
2	1	3	12	31	0	5	3		8.2
3	3	220	-	31	0	1	8	103	16.4
4	3	270	_	7	7	2	2	600	27.7

Fig. 5. Correlation of flight schedule data and route definition on map.

can be interpreted as follows:

- Line 1 Fly toward OCR VOR on 12° radial until 9 n mi from present fix. Descend to controller-specified altitude. Maintain speed unless otherwise instructed.
- <u>Line 2</u> Fly toward OCR VOR on 12° radial until OCR is reached.

 Continue descent to controller-specified altitude. Maintain speed unless otherwise instructed.
- <u>Line 3</u> Fly 220° vector to intercept FTY 103° radial at controllerspecified altitude. Maintain speed unless otherwise instructed.
- Line 4 Fly 270° vector for 10 min (600 sec) at 6000 ft (6000 ft is specified as item #7 in the Altitude Schedule array, Appendix B, page 144). Slow to approach speed (speed code 7 identifies the approach speed in the Aircraft Performance Tables, Appendix B, page 124. Aircraft will receive sequencing or base leg vector instructions while on this leg).

Proceeding as described above, the entire set of nominal and alternate routes is defined in the Flight Schedule data input array, with each leg of flight corresponding to a line in the array. Simultaneously, the Scheduled Altitude data input array is filled out (Appendix B, page 151).

It should be noted that the scheduled flight plan may be overridden at any time by simulated controller action which may introduce a speed change, a standard hold, an emergency 360° turn or other path changes. These controller actions are discussed in the following section.

E. Simulated Controller Actions

The controller function is modeled in the simulator through the use of a series of conflict checkpoints (CHKPT) and controller action points (CNTRA) located at strategic points along the routes shown in Fig. 3. Detailed documentation of the tables and arrays of data used in conjunction with these points and the program logic used to implement the above procedures are given in the appendices. Here, an overall description is provided of how the system of CHKPTs and CNTRAs are utilized to simulate controller action at the Atlanta terminal.

CHKPTs are points on the routes where ETA information is maintained and at which conflict detection and resolution are effected. In essence, they demarcate portions of the flight path for which clearance needs to be obtained. Hence they are generally located at intersections of paths and at critical points such as the ILS gate and the runway. CNTRAs are points on the routes at which the controller decision process of conflict detection and resolution is initiated. Each CNTRA has a particular CHKPT associated with it at which conflict detection and resolution are effected. Of course, a CNTRA is placed several minutes' flying time ahead of its associated CHKPT to allow time to resolve potential conflicts.

In the exercise of his routine functions, the human controller is faced with a wide variety of traffic situations. The various situations call for different types of controller decisions or actions, and the decisions have to be taken under differing sets of options open to him. To model this aspect of the ATC function, several different types of controller actions are provided for in the simulator, as listed in Table 4.

Table 4. Controller actions.

Code	Type Action
1	Arrival clearance - action to be taken on an arriving aircraft being "offered" at the terminal perimeter
2	Departure clearance - action to be taken on a departing aircraft being "offered" at a runway apron
3	General clearance - action to be taken on any airborne aircraft approaching its clearance limit
4	Sequencing - action to be taken on arrivals to sequence them for final approach
5	No conflict check necessary
6	Pop-up - action to be taken on any aircraft suddenly appearing at a random point in terminal airspace
7	Re-check aircraft for clearance
8	Hand-off to another controller (not yet programmed)
9	Register aircraft in "possible altitude conflict" array
10	Remove aircraft from "possible altitude conflict" array
11	Re-check pop-up aircraft for clearance

Each CNTRA point is assigned one of the preceding type numbers, depending on what sort of controller action needs to be initiated at the point.

Controller Action Input Data

To provide the input data necessary to specify the relatively complex controller actions that take place, several data input sheets are used. The input data arrays associated with the control function are listed in Table 5. The associated data sheets are given in Appendix B, pages 132-157.

These data arrays are nested and related by a system of pointers that indicate to the program where the appropriate input data will be found. A pointer in a given column of a data array indicates which item of a different array is referenced. The pointer system relating the input data arrays is diagrammed in Fig. 6.

The use of CNTRAs and CHKPTs and associated data may be illustrated by a specific example applied to Route No. 7 of the Atlanta route structure. A sketch of this route is shown in Fig. 7. Figure 8 shows some of the corresponding data entries in the input data sheets. Referring to Fig. 7, note that CNTRA 9 is at the perimeter on Route 7, and this indicates that some controller action is immediately called for. In Fig. 8, it may be seen that CNTRA 9 is specified as the starting control action for Route No. 7. Also, it may be seen from Fig. 8 that CNTRA 9 is a type 1 point, that is, one that checks for initial arrival clearance. Further, it must check for conflict up to CHKPT 5, which is the DALLAS intersection. Thus, CNTRA 9 has the function of insuring separation from previous arrivals approaching DALLAS on Routes 7 and 8. The CHKPT 5 data also indicate that the separation to be maintained at CHKPT 5 is 5 n mi and that this separation should be maintained for 14 mi behind the CHKPT. The associated ETA array is No. 5, and its coordinates are provided in the ETA array data sheet.

Control action 9 also references Option 10, which indicates the options to be used to resolve conflicts that are noted at CHKPT 5. Referring to line 10 in the Option Array of Fig. 8, we see that no altitude options are specified; if the aircraft is a jet it descends to 11,000 ft, and if it is a prop it descends to 6000 ft (at the rates of descent specified in the Aircraft Performance Array). The desired speed pointer points to the terminal speed, which is specified in the associated Aircraft Performance Array as the terminal speed for the aircraft entering. The nominal path

- Table 5. Input data arrays associated with controller actions.
- 1. Controller Action Array (ICNTRA) Identifies type of action to take place, associated checkpoint data array, option data array, the next controller action to take place, and the responsible controller.
- 2. Conflict Checkpoint Array (ICHKPT) Specifies separation desired at the point and distances ahead and behind that separation should be maintained. Identifies associated ETA checkpoints and airspace conflict regions.
- 3. ETA Checkpoint Coordinate Array (IETCOOR) Identifies the ETA files and specifies their x-y coordinates.
- 4. Controller Option Array (IOPTN) Specifies options available to resolve conflicts. Identifies associated altitude option data array, desired speed, path number array and divergent route array.
- 5. Altitude Option Array (ALTOPT) Specifies nominal and optional altitudes for both prop and jet.
- 6. Path Number Array (NNPATH) Specifies number of segments in a given path, identifies the path, points to optional path, and associates the path with flight legs in the flight schedule array.
- 7. Divergent Route Array (IDROUTE) Identifies checkpoints, options, and control actions for a possible divergent route.
- 8. Limit A/C Array (LIMAC) Provides for changing separation standards at a specified ETA checkpoint as a function of the number of aircraft in a specified ETA array or queue.
- 9. Starting Route Array (ISTARTA) Specifies the initial controller action that occurs on each route.
- 10. Speed Deviations (SPDSTD) Specifies allowable deviations on each speed type for use in the speed control option logic.
- 11. Several miscellaneous inputs such as arrival/departure separation standards are provided as shown and defined in Appendix B, page 153.

Fig. 6. Diagram of relationships between input data arrays as defined by pointers in the arrays.

Fig. 7. Sketch of Route #7 of the Atlanta Terminal Area route structure illustrating the use of control action points and checkpoints.

pointer (6) references two segments (11 and 12 in the Flight Schedule Array) which indicates, as discussed previously, how the aircraft flies path 6. Control Option 10 indicates that the only option available for resolving a conflict at CHKPT 5 is a speed change. If the conflict cannot be resolved by a speed change, the aircraft is held in the enroute queue and is, in effect, not accepted at this time. If no conflict exists, or if the conflict has been resolved by a speed change, the aircraft will proceed along path 6 in accordance with the aircraft dynamics and the algorithms defining the flight mode.

As the aircraft passes CNTRA 10, further control action is triggered. Referring to Fig. 8, the data sheet indicates that CNTRA 10 is a type 3 (general clearance) point, and the associated checkpoint is CHKPT 6. Referring to Fig. 7, we see that two divergent routes are available (path 10 and path 9). The nominal path is path 7. Options specified as available to resolve a conflict at CHKPT 6 are specified in Controller Option 5 and include the divergent routes, a possible standard hold at DALLAS, and a possible emergency hold at any point along the path.

When the aircraft is finally cleared to CHKPT 6 by resolution of any conflicts, the aircraft will next encounter either CNTRA 11, 12 or 6. Each of these Control Action points is identified (see Appendix B) as a type 4 (sequencing) checkpoint. Passing one of these Control Action points triggers the sequencing logic, which determines the time to turn off the downwind leg and properly sequences the aircraft in a conflict-free manner to the runway touchdown point.

This general procedure is followed on all routes desired in the terminal area. For the route structure defined by the data sheets in Appendix B, the Control Action points, conflict checkpoints and associated data are indicated on the maps given in Fig. 9 (arrivals) and Fig. 10 (departures).

Note that on these maps, regions where arrival routes and departure routes intersect are designated as airspace conflict regions (ASPACE). These regions are defined by the special Control Action points types 9 and 10, which are placed on both arrival routes. Arrivals passing a type 9 point are registered in a special file against which departure aircraft wishing to climb through are checked for possible conflict at the arrival altitudes in use. The type 9 action point registers the arrivals in a specified file, and the type 10 action point removes them from the file.

Fig. 8. Entries in the input data sheets illustrating the correlation of the input data with the route structure of Fig. 7.

LEGEND

Fig. 9. Sketch of Atlanta arrival routes represented by the data given in Appendix B, showing the conflict checkpoints and the controller action points along the various routes.

Fig. 10. Sketch of Atlanta departure routes represented by the data given in Appendix B, showing the conflict checkpoints and the controller action points along the various routes.

It should also be recalled that, as in reality, the aircraft do not follow the specified routes exactly. Deviations occur because of specified random navigation and surveillance errors and because, while the routes are approximated by straight-line segments in most cases, the actual paths are determined from aircraft dynamic equations and have differing turn radii for different aircraft types and speeds.

F. Final Approach Sequencing

Final approach sequencing (FAS) is the procedure used by the tower controllers to direct arrival aircraft within the FAS dump area to the runway touchdown point. The FAS dump area at Atlanta is a rectangular area extending some 30 n mi on the approach side of the runways. For runway 9L the north boundary is the FTY 90/270 radial and for runway 9R the south boundary is the ATL 90/270 radial. Altitudes in this controlled area are generally restricted to 6,000 ft MSL. Specifically, the FAS controllers have the task of maintaining separation between aircraft within the dump area while directing them along the downwind leg, the base leg, and onto a localizer intercept course. Normally, VFR aircraft will be controlled and directed along the localizer course, past the ILS gate, and their progress monitored until touchdown. IFR aircraft are directed onto a localizer intercept course and then monitored as they proceed along the localizer course down the glide slope to touchdown.

The FAS controller must insure aircraft safety while maintaining as high a landing rate as possible so that efficient and expeditious movement through the dump area is afforded. The terminal area simulation model employs an algorithm to simulate the control provided by a human controller within certain well-defined constraints. Continuous separation of aircraft is the primary goal.

Generally, all aircraft are directed into the dump area by passing over an inner fix point. A sequencing queue containing at most three aircraft is established to provide for calculation of the necessary control times to move an aircraft from an inner fix to touchdown. As each aircraft crosses an inner fix it is inserted into this sequencing queue. Of all the previously sequenced aircraft in the dump area which have not reached the ILS gate, the sequencing queue contains up to two aircraft with the latest scheduled ILS gate times.

Upon entry into the sequencing queue, a time to turn off the

Typical north and south arrival final sequencing paths illustrating approach paths and use of control points in sequencing technique. Fig. 11.

downwind leg onto the base leg vector is calculated (TOFF) along with a time to turn onto the localizer intercept vector (TONN). These times are based on providing proper longitudinal separation at the ILS gate using an estimated time of arrival at the gate. The basic structure of the approach paths along with refinements to the algorithm assure separation between aircraft throughout the dump area. Typical paths and the associated control points are illustrated in Fig. 11.

The parallel runways are fed arrival aircraft by partitioning the dump area into north and south sections such that all arrivals into the north portion of the terminal area are sequenced in the north portion of the dump area, while southern arrivals use the south portion of the dump area. Since the two runways 9L and 9R do not have enough lateral separation to provide for independent operation, it is necessary for the algorithm to treat the runways as dependent.

With the Atlanta route structure arrival aircraft using runways 9L and 9R, two inner fixes (IFIX) are defined. The north inner fix for runway 9L is defined on the downwind leg west of the ILS gate and is chosen as the earliest possible turn-off point (EPTP). No aircraft is allowed to turn off the downwind leg before reaching the inner fix; thus, the time of crossing the inner fix is the time at which each aircraft enters the sequencing queue. It can be noted in Fig. 9 that there are four paths which feed into the dump area from the north arrival sector. One is for NORCROSS arrivals while the other three represent the nominal and alternate routes for DALLAS arrivals. A point on the downwind leg termed the final turn-off point (FTP) is within the dump area and is the end of the downwind leg for sequencing purposes. Two of the feeder paths are such that an aircraft arriving over DALLAS might not actually fly over IFIX. For this reason, a pseudo-inner fix is defined on each of these two paths. These pseudo-inner fix points are defined such that the time required to move from the pseudo-inner fix (IFX1 or IFX2) to the FTP is the same as if the aircraft actually passed over IFIX. The time the aircraft reaches the pseudo-inner fix then becomes the time when the aircraft enters the sequencing queue. For these aircraft, the earliest possible turn-off point located on the downwind leg does not correspond to the sequencing point. For this reason, a special provision is made to determine the EPTP for these aircraft.

The south arrival situation is much the same as in the north. For

aircraft arriving over HAMPTON, the south IFIX is the sequencing point. For TYRONE arrivals, two of the three alternate feeder routes have pseudo-inner fixes as sequencing points. Again, the FTP on the downwind leg south is used to determine the time of entry into the sequencing queue. As each aircraft is entered into the sequencing queue, calculations of TOFF and TONN are made to provide for proper separation at the ILS gate. An aircraft entering the queue, termed the current aircraft, is first checked to see if it can be allowed to pass the aircraft already in the queue and scheduled to immediately precede the current aircraft at the ILS gate. The current aircraft may pass only one preceding aircraft and then only if certain criteria are met. It should be noted that one FAS queue handles both north and south arrivals for this dependent parallel runway situation.

To establish the inner fixes and pseudo-inner fixes, sequencing type controller action points (e.g., CNTRA's 11, 12 and 6 in Figs. 7 and 11) are used and are located such that they are equidistant from the ETA checkpoint (CHKPT 6 in Figs. 7 and 11). At the time an aircraft reaches one of these sequencing type controller action points it is entered into the sequencing queue. The use of the pseudo-inner fix points enables the sequencing algorithm to be used for general feeder path structures.

Input data required for specifying the information associated with the sequencing logic is defined and given in Appendix B, page 153.

G. Communications

Basic information required concerning the communications logic in the program includes specification of the particular controller having jurisdiction over particular segments of the path and the durations of the messages transmitted.

The controller responsibility areas, i.e., which controller is responsible for which action, are specified in the Controller Action Array. For example, in the Controller Action Array data listed in Fig. 8, Controller No. 1 is responsible for Control Action No. 9. Each controller action has the associated controller specified.

For each controller specified (representing each communications channel), messages are handled by setting up two message files in the computer. One of these files consists of future messages that are to be

sent at a calculated time and the other consists of current messages which are to be sent as soon as channel occupancy permits. For each message to be transmitted, an earliest transmit time (ETT) and a latest transmit time (LTT) are calculated. The message, when initially generated, is automatically placed in the future message file, and it is then transferred from the future message file to the current message file when the clock time equals the ETT. If the communication channel loading is such that a message cannot be transmitted by the latest transmit time, the indicated maneuver is carried out by the aircraft and a typewritten error message is generated to note that this situation existed. Each schedule change has associated with it the appropriate message phraseology.

For each class of message transmitted, the time required to transmit the message and to receive the pilot's acknowledgement is listed in the Controller Message Length Array. For the present Atlanta simulation, this array is given in Appendix B, page 151.

H. Navigation and Surveillance Errors

Errors associated with the navigation aids were previously discussed in Section IV.C. and appropriate data listed for each type of navigational aid in the Navigational Aid Array, Appendix B, page 126. Errors that reflect aircraft or pilot-dependent heading errors are provided as input to the program in the "Aircraft Type-Dependent Random Heading Error Array" (IACFPER), as shown in Appendix B, page 152. Each aircraft type has an associated type-dependent heading error specified.

Surveillance errors are specified separately as range, bearing and altitude standard deviations and are provided as input in the miscellaneous data input data sheet given in Appendix B, page 153.

I. Miscellaneous Inputs

Various miscellaneous inputs are required to define runway coordinates, runway separation information, glide slope angles, scale factors, etc. These miscellaneous input parameters are defined in Appendix B, page 153. This appendix also lists the values currently being used for the Atlanta simulation.

Preceding page blank

V. INITIAL RESULTS FROM TEST RUNS

A. General Discussion

During the course of the development of the model, several versions of the model have been used for test runs. To distinguish these versions of the model, a nomenclature has been developed to distinguish between the various versions. This nomenclature is as follows:

Atlanta 1

This version of the model is essentially the one described in Ref. 1. The route structure represented is that described in Atlanta Tower Orders dated 5/15/69.

Atlanta 2

A version of the model using the Atlanta route structure which went into effect 11 November 1971. Model algorithms were essentially those used in the Atlanta 1 version.

Atlanta 3

Minor modifications were made to the Atlanta 2 version to improve the realism.

Atlanta 4

This is the current version of the model, containing significant changes and representing the current Atlanta route structure that went into effect 11 November 1971.

An initial set of test runs was conducted using the old Atlanta route structure (Atlanta 1 version of the model) in order to compare the model output data with actual radar traffic data taken at Atlanta in 1967. The Atlanta 1 version represented the route structure in effect at that time.

In this section, the model output data are discussed and the test runs comparing the model output data to the Atlanta radar traffic data are presented.

B. Model Output Data

Operating in the real-time mode at the computer complex at LRC, several types of output data are obtained. The simulation console CRT permits the observation of the traffic flow in the terminal area with $PRECEDING\ PAGE\ BLANK\ NOT\ FILMED$

various types of CRT displays. Also, strip chart recordings are used to record messages sent over communications channels and various parameters of interest, such as time histories of the model queues. In addition, data printouts are obtained which contain the scan-by-scan outputs giving the position of each aircraft, messages sent, sequencing data, and other information.

In the batch mode of operation, the primary data output is a data tape containing scan-by-scan tracking information to be used as input to the statistical analysis program, which at present provides statistical data on the traffic flow. The batch mode of operation will also print this scan-by-scan tracking data if desired.

Examples of the data output are shown in Figs. 12 through 18. Fig. 12 is a plot of the CRT display taken from a test run at LRC on 18 August 1972. Provision has been made for changing the scale on this plot, as is shown in Figs. 13 and 14. In Fig. 12, the range circles are 10 mi apart, in Fig. 13 they are 5 mi apart, and in Fig. 14 they are $2\frac{1}{2}$ mi apart.

The console operator may also select an aircraft relative display which displays the traffic in the terminal area relative to a selected aircraft. An example of this type of display is shown in Fig. 15, where the traffic display is relative to the aircraft in the center of the plot. Various scales may also be selected for the relative CRT display.

Examples of the strip chart recording outputs are shown in Figs. 16 and 17. The data shown on Fig. 16 provide a time history of the messages transmitted by the various simulated controllers and the number of future messages in each controller's message queue. In this particular example, 8 controller channels are being simulated. The strip chart shown in Fig. 17 is an example of the type of time history data obtained on the number of aircraft awaiting entry into the problem area and the number of departures awaiting departure clearance as well as information on aircraft in two selected ETA files and the total number of aircraft in the problem area.

Figure 18 shows a sample printout of the scan-by-scan data giving the position of each aircraft at four-second intervals as well as other supplementary information on the individual aircraft.

Current outputs of the statistical analysis program are listed in Table 6.

Fig. 12. The real-time CRT display. This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 10 n mi apart. This particular plot was made at scan 372 of a test run. Controller messages are shown in the upper and lower left-hand corners.

Fig. 13. The real-time CRT display. This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 5 n mi apart. This particular plot was made at scan 399 of a test run. Controller messages are indicated here in the upper and lower left-hand corners.

Fig. 14. The real-time CRT display. This plot is updated every four seconds in the real-time mode. The lines on the plot represent the nominal route structure. The dashed range circles are 2½ n mi apart. This particular plot was made at scan 403 of a test run. Controller messages are indicated here in the upper and lower left-hand corners.

Fig. 15. The aircraft-relative real-time CRT display. Positions of the aircraft shown are relative to the aircraft in the center of the display. The plot is updated every four seconds in the real-time mode. The dashed range circles are 2 n mi apart. Scale on the plot is variable. Controller messages are indicated in the upper and lower left-hand corners.

output data obtained on strip chart recording--time histories of various queues Example of 17,

50%

23

4/C:

္ခံ

517

Fig. 18. - Sample printout of the scan-by-scan data.

Table 6. Current outputs of the statistical analysis program.

- 1. List of arrival and departure aircraft, giving:
 - a. aircraft identification
 - b. scheduled entry time
 - c. actual entry time
 - d. scan deleted
 - e. time in queue
 - f. time in air
 - g. total time in area
- 2. Histogram of time between entries in take-off queue--departures
- 3. Histogram of actual time between departures
- 4. Histogram of imposed delay in take-off queue--departures
- 5. Histogram of time between successive departures from terminal area
- 6. Histogram of actual flight time in terminal area--departures
- 7. Histogram of total time in terminal area--departures
- 8. Histogram of time between entries in enroute queue--arrivals
- 9. Histogram of actual time between arrivals
- 10. Histogram of imposed delay in enroute queue--arrivals
- 11. Histogram of time between successive touchdowns--arrivals
- 12. Histogram of actual flight time in terminal area--arrivals
- 13. Histogram of total time in terminal area--arrivals
- 14. Histogram of range to closest aircraft for the five closest aircraft.

Note: with all histograms except Range to Closest Aircraft, the sample mean, variance, and standard deviation are also calculated.

C. Comparison of Model-Generated Data with Actual Radar Tracking Data

Model validation by comparison with real-world data has been an important consideration from the beginning of the program. Ultimately, the simulation model will be used in what will essentially be experimental investigations. The main aim of these investigations will be to draw inferences about the behavior of some particular ATC environment based on the observed behavior of the model. Consequently, proper usage of the model will require use of all the rules of physical experimentation, plus others arising out of the special nature of computer simulation. Further, in order to draw inferences about the real environment, it is necessary to assure that there is a measure of agreement between the behavior of the model and that of the real system. However, it is important to recognize at the outset that as in most simulation applications, our model will be constantly transformed into a variety of different "versions," as it gets used in the analysis of different procedures, regulations, traffic patterns, instrumentation, etc. Many of these versions will model environments which are not in existence, so that true validation in the above sense is not possible. Hence, when we speak of validation we speak of demonstrating that for at least one version of the model, the behavior of the model is similar to the behavior of a real system. As Conway, Johnson and Maxwell point out [Ref. 3],

the establishment of validity for one variation and one set of conditions does little to establish the virtue of other variations of the model. So this test, which is widely and quite reasonably applied, is essentially a null test: a model which failed to pass would be exceedingly suspect, but no strong statement can be made for a model which passed.

Given this caveat, we now proceed to explore validation procedure.

"Behavior" of the simulation model has to be defined in terms of specific variables of interest generated as a result of simulation. These variables consitute output of the simulation, and all simulation outputs are time-series. Examples are: "operations" per hour, time in terminal airspace, time in hold, range to closest aircraft, time-to-closest approach, etc. Corresponding variables in the real environment are also time-series. The essential problem of validation, then, is to show that the simulation time-series are, to a degree of approximation, the same as the corresponding real environment time-series with regard to statistical characteristics.

Statistical procedures involving estimation and confidence levels require the assumption that the data come from stationary distributions*, and this has a major impact on validation procedure. Consider for a moment the simulated time-span. Any problem-solving run of the simulator will involve its operation over a period of simulated time T, which we call the simulated time-span. The simulated time-span T consists of two portions:

- 1. There is a run-in time during which the output variables have not reached "steady state" and are still reflecting the transients of the start-up conditions. The length of this time can vary, depending on the extent of artificiality in the start-up conditions. If, as usual, the simulator is started "empty" (no planes in the air or on the ground, controllers idle, etc.), run-in time would be longer than if it were started with a load resembling steady-state operations. Statistical considerations require that output data from the run-in phase be ignored for statistical inferences. Thus, since start-up conditions cannot with confidence be conjured up to be in steady state, there should always be some run-in time during which output variables are merely monitored for stability.
- 2. After run-in is completed, a measurement period begins. This period corresponds to sample size in more conventional experiments, and statistical considerations require that this period be long enough (i.e., there be enough "observations" taken) for means and other parameters to be estimated with a high level of confidence.

The general concept of a run-in period and a measurement period is mentioned in the context of a problem-solving run, but it also applies for validation runs.

In previous studies, analyses had been conducted with actual radar tracking data obtained from the ARTS system at the Atlanta terminal. These data were taken by FAA (NAFEC) personnel over a time span of five days during the summer of 1967. The radar data consisted of x, y, z, position and velocity data on every aircraft under track at Atlanta over twelve one-hour peak traffic periods. The data were taken at four-second intervals throughout each of the (approximately) one-hour sample periods. A more

^{*}Some of the more common procedures require, in addition, that the data come from normal (Gaussian) distributions. However, "distribution-free" methods are also available which do not have this additional requirement. In any case, even the simpler procedures are not much affected by moderate departure from normality.

detailed description of this data base is given in Ref. 4.

To provide a comparison of the radar data with the model-generated data, the model was configured to represent the route structure in use at the time the radar data were taken (i.e., Atlanta 1 Route Structure), and a traffic sample was generated using as input parameters the same average operations per hour, average route loadings, and approximate aircraft type distribution as existed during one of the most dense hours of the available sample periods. Simulation runs were then made to generate a one-hour data sample in the same format as the Atlanta radar data.

Figure 19 shows a comparison of a simulated (model-generated) track and an actual radar track of a B727. The initial starting position of the aircraft is slightly different; however, both aircraft pass over the OCR VOR site. As may be seen in this particular example, the tracks compare favorably in appearance and in that the total flying time of both paths is approximately the same. Simulated path deviations appear realistic, and in most cases investigated, similar good comparison of individual tracks was noted.

To investigate the relationships among the individual aircraft tracks to determine if realistic relative separations were being maintained and if the overall control scheme was operating realistically, statistics were generated to determine the average percentage of flying time that an aircraft found another aircraft within a range interval ΔR . This statistic provides an estimate of the probability that a randomly selected aircraft from the aircraft population will have another aircraft within a range interval ΔR . Calculations required to develop an unbiased estimate of this statistic are given in Ref. 4.

Figure 20 indicates the statistical results of comparing the model-generated and real-world data on this basis. As may be seen, the results compare favorably in all range bins with the possible exception of the 2 to 3 mile range where the model data indicate a slightly higher percentage of flying time took place than occurred in reality.

A parameter that has been proposed as a warning criterion in collision avoidance systems by several investigators and is recommended as a warning criterion in the ATA Specifications for a Collision Avoidance System is a useful parameter to use to estimate the overall safety level of the system. This parameter is the τ parameter, or the approximate time to closest approach of a pair of aircraft. Thus, statistics have been generated on

Fig. 19. Comparison of a model-generated aircraft track with an actual radar track of a B727 from the Atlanta radar data.

DISTRIBUTION OF RANGE TO CLOSEST AIRCRAFT

Fig. 20. Histograms showing the percentage of flying time that a randomly selected aircraft found another aircraft within the range bins specified on the horizontal axis for model-generated data and Atlanta radar data.

DISTRIBUTION OF TIME-TO-CLOSEST APPROACH (R/R)

Fig. 21. Histograms showing the percentage of flying time that a randomly selected aircraft found another aircraft within a time-to-closest approach specified on the horizontal axis for model-generated data and Atlanta radar data.

the τ parameter which indicate the probability that a randomly selected aircraft will find another aircraft within a time-to-closest approach of τ seconds. A histogram showing the distribution of the τ parameter for model data and Atlanta radar data is shown in Fig. 21. The comparison indicates that the distribution of times-to-closest approach is similar in shape with variations in individual histogram bins on the order of a few percent.

The comparison of the model-generated statistics with real-world statistics indicates, to a high degree of approximation, that the model as configured does in fact provide a good representation of the real-life environment. It would be highly desirable to have additional real-world data for further comparisons; however, to date attempts to obtain additional real-world data have been unsuccessful.

D. Test Runs to Determine Sensitivity to Random Aircraft Heading Errors

To illustrate the type of sensitivity studies to be conducted with the model, two test runs were made under identical conditions except that in one case, random heading errors of approximately 3° rms were introduced for all aircraft. A traffic sample representing approximately 70 operations per hour was used and the model was configured to represent Atlanta using a single runway.

Table 7 illustrates the effect of the random heading errors on the aircraft flow parameters. The most sensitive parameter under the conditions simulated was the actual rate of departures achieved. Note from the table that while 20 departures per hour were scheduled, a rate of only 14.3 per hour was achieved in the no-error case, whereas 16.7 departures were achieved in the case with heading errors. The above results are somewhat surprising, however, a study of the remaining data in the table indicates that the main effect of the heading errors was to slightly decrease the rate of arrivals, hence permitting more departures to be cleared. The rms deviation of the total flight time for arrivals increased slightly in the case with errors. For the case in which heading errors were introduced, the relative range distributions (i.e., as in Fig. 20) indicated a slightly higher probability of finding an aircraft within a two-mile range.

The above results should not be **generalized**, since they are based on sample runs of approximately 90 simulated minutes under a particular set of convenient conditions. Rather, the data are presented to demonstrate the type

Table 7. Statistics developed for comparison of sample runs with and without random heading errors. Each run represents approximately 90 simulated minutes at approximately 70 operations/hr.

		Scheduled	Sample Run with 3° rms random head- ing errors	Sample Run with no heading error
1.	Average time between departures	2.9 mi n.	3.6 min.	4.2 min.
2.	Average departure rate	20/hr	16.7/hr.	14.3/hr.
3.	Average waiting time for departures	-	4.8 min.	7.6 min.
4.	Average time between arrival touchdowns	1.28 min.	1.33 min.	1.30 min.
5.	Average rate of touchdowns	47/hr	45.1/hr.	46.2/hr.
6.	RMS variation of time between touchdowns	-	.4 min.	.5 min.
7.	Average flying time in the terminal area for arrivals	-	21.4 min.	21.2 min.
8.	RMS variation of total flying time for arrivals	-	3.5 min.	3.0 min.
9.	Average enroute holding time for arrivals	-	26.4 sec.	26.4 sec.
10.	Average percentage of flying time that a randomly selected aircraft had another aircraft within 2 n.mi.	-	4.3%	3.6%
11.	Average percentage of flying time that a randomly selected aircraft had another aircraft within 4 n.mi.	_	41.9%	46.4%

of answers that will be obtained using longer runs that permit the development of more statistically significant data under carefully selected conditions.

Preceding page blank

VI. CONCLUSIONS

A terminal area simulation model has been defined that contains the major features of the air traffic control situation in the terminal area. Algorithms have been developed which permit the simultaneous generation of the tracks of many different aircraft from entry into the problem area to touchdown on the runway (for arrivals) and from the engine run-up point on the runway to exit from the problem area (for departures). The paths are defined by controller-generated radar vectors and by navigation aids that are currently used by pilots in the terminal area.

In addition, techniques have been developed for conflict detection, conflict resolution, sequencing, and for the generation of the associated pilot-controller messages. These messages incorporate realistic delays and are constrained by the channel loadings of the controller-pilot communication links. Associated display techniques have been developed which permit real-time observation of the traffic flow with a simulated radar CRT display.

The initial model has been programmed for the CDC-6600 computer and run in both real-time and fast-time on the computer complex at Langley Research Center. The initial test runs indicate that the model and associated program are within the capabilities of the computer facilities available. The test runs also indicate good correlation with actual radar traffic data obtained by the FAA at the Atlanta airport.

As the initial model development progressed, certain areas of improvement were noted but were not implemented because of time limitations. These improvements are now being made, and include the incorporation of more detail in certain areas of the program (e.g., additional flight modes and more flexible route design). Additional logic is being developed to handle unusual situations such as missed approaches and emergency situations.

The model as finally developed is intended to be general and flexible, such that changes in instrumentation, terminal area configuration, and aircraft performance characteristics can be incorporated and the effects of these changes on the overall system evaluated by analysis of the output data.

The principal uses of the terminal area model and associated simulation facility will be to determine the effects of new aircraft types, improved

avionics and ground instrumentation, and automated sequencing, spacing and flow control on congestion, operational capacity and safety. The facility will also be used to provide a realistic multiple-aircraft environment for the evaluation of pilot displays, terminal optimized vehicle configurations, collision-hazard warning system techniques, and advanced landing guidance systems.

VII. APPENDICES

Preceding page blank

APPENDIX A

Terminal Area Simulation Model Logic Flow Charts

This appendix contains flow charts in which the logic of the model is described with sentences or phrases in English for the decision and process boxes. The detailed coding and specific algorithms used are included in Appendix H.

Statement numbers are included outside particular flow charting symbols for easy reference back to the corresponding statement numbers in the programs themselves. Relative statement numbers, noted by a + or -, indicate the number of FORTRAN statements (excluding comments) below or above the given statement number; e.g., 3675+8 points to the statement which is eight FORTRAN statements below the statement numbered 3675.

The flow charts are grouped in four categories. Figure A-1 is the diagram of the overall organization of the model, and Figs. A-2, A-3, and A-4 contain flow charts for the Simulation Model, the Traffic Generation Program, and the Analysis Program, respectively. The programs and routines included in this appendix are as follows.

Figure No.	Program or Routine Title	Page
A-1	Flow chart for the overall organization of the simulation model	. 65
A-2	Logical flow charts for the Simulation Model	. 66
A-2.1	TAATM - main overlay	. 67
A-2.2	PAKSPL - pack/unpack special	. 68
A-2.3	PAKUNI - pack uniform	. 70
A-2.4	UPKUNI - unpack uniform	. 71
A-2.5	TATINT - initial read	. 72
A-2.6	INIT - initialize	. 73
A-2.7	TATPRNT - print (and tape write)	. 74
A-2.8	TATREAD - read additional traffic	. 75
A-2.9	TATMAIN - main program of overlay 4	. 76
A-2.10	TATREST - reset	. 78
A-2.11	TATHOLD - hold	. 79

Figure No.	Program or Routine Title	Page
A-2.12	MAKTAPE - make Calcomp plotter tape	81
A-2.13	DASHCIR - dashed circle	82
A-2.14	TATOPER - operate	83
A-2.15	TRACKAC - track aircraft	86
A-2.16	RANDU - random number generator	88
A-2.17	COMMUN - communications	89
A-2.18	CNTRLAC - control aircraft	90
A-2.19	ETACOMP - compute ETA	95
A-2.20	CONCHK - conflict check	97
A-2.21	SPDCNTR - speed control	99
A-2.22	COMETA - compute time to fly a distance	101
A-2.23	CRTDSPL - CRT display	102
A-2.24	XFORM - coordinate transformation	105
A-3	Logical flow charts for Traffic Generation Program	106
A-3.1	TRAFGEN - traffic generator	107
A-3.2	GAUSS - Gaussian	109
A-4	Logical flow charts for the Analysis Program	110
A-4.1	ANALYS - main program for analysis	111
A-4.2	RTAPE - read tape	113
A-4.3	ST4RR - statistics of relationships between aircraft	114
A-4.4	OUTST4 - output of ST4RR	115
A-4.5	FILT4R - filtering of statistical relationships	116
A-4.6	ORD4UP - array ordering	118
A-4.7	OUTPT1 - output of various duration statistics for aircraft in queues or in the terminal area	119
A-4.8	HISTGRM - histogram	121
A-4.9	PRINTH - print histogram	122

Fig. A-1. Flow chart for the overall organization of the simulation model.

Fig. A-2. Logical flow charts for the Simulation Model.

P. 1

Fig. A-2.1. TAATM - main overlay.

Fig. A-2.2. PAKSPL - pack/unpack special.

Fig. A-2.2. Concluded.

Fig. A-2.3. PAKUNI - pack uniform.

Fig. A-2.4. UPKUNI - unpack uniform.

Fig. A-2.5. TATINT - initial read.

SET UP COMPUTER INSTRUCTIONS FOR DISPLAYING ON CRT ALPHANUMERICS FOR AIRCRAFT TAGS

RETURN TO CALLING PROGRAM

Fig. A-2.6. INIT - initialize.

Fig. A-2.7. TATPRNT - print (and tape write).

Fig. A-2.8. TATREAD - read additional traffic.

Fig. A-2.9. TATMAIN - main program of overlay 4.

Fig. A-2.9. Concluded.

Fig. A-2.10. TATREST - reset.

Fig. A-2.11. TATHOLD - hold.

Fig. A-2.11. Concluded.

Fig. A-2.12. MAKTAPE - make Calcomp plotter tape.

Fig. A-2.13. DASHCIR - dashed circle.

Fig. A-2.14. TATOPER - operate.

Fig. A-2.14. Continued.

Fig. A-2.14. Concluded.

Fig. A-2.15. TRACKAC - track aircraft.

Fig. A-2.15. Concluded.

Fig. A-2.16. RANDU - random number generator.

Fig. A-2.18. CNTRLAC - control aircraft.

Fig. A-2.18. Continued.

Fig. A-2.18. Continued.

Fig. A-2.18. Continued.

Fig. A-2.18. Concluded.

Fig. A-2.19. ETACOMP - compute ETA.

Fig. A-2.19. Concluded.

Fig. A-2.20. CONCHK - conflict check.

Fig. A-2.20. Concluded.

Fig. A-2.21. SPDCNTR - speed control.

Fig. A-2.21. Concluded.

Fig. A-2.22. COMETA - compute time to fly a distance.

Fig. A-2.23. CRTDSPL - CRT display.

Fig. A-2.23. Continued.

60100

CALL SYSTEM'S ROUTINE("SEND") THAT DELIVERS INSTRUCTIONS TO THE CRT

Fig. A-2.23. Concluded.

Fig. A-2.24. XFORM - coordinate transformation.

Fig. A-3. Logical flow charts for Traffic Generation Program.

Fig. A-3.1. TRAFGEN - traffic generator.

Fig. A-3.1. Concluded.

P. 1

Fig. A-3.2. GAUSS - Gaussian.

Fig. A-4. Logical flow charts for the Analysis Program.

Fig. A-4.1. ANALYS - main program for analysis.

Fig. A-4.1. Concluded.

Fig. A-4.2. RTAPE - read tape.

Fig. A-4.3. ST4RR - statistics of relationships between aircraft.

Fig. A-4.4. OUTST4 - output of ST4RR.

Fig. A-4.5. FILT4R - filtering of statistical relationships.

Fig. A-4.5. Concluded.

Fig. A-4.6. ORD4UP - array ordering.

Fig. A-4.7. OUTPT1 - output of various duration statistics for aircraft in queues or in the terminal area.

Fig. A-4.7. Concluded.

Fig. A-4.8. HISTGRM - histogram.

Fig. A-4.9. PRINTH - print histogram.

APPENDIX B

Input Data for the Current Atlanta Terminal Area Route Structure

This appendix contains filled-out data sheets giving the set of numerical values used to define the current Atlanta route structure and procedures. In addition, data sheets which define and list the aircraft performance parameters currently in use in the simulation are documented in this appendix. Table B-1 defines and gives current numerical values for miscellaneous input parameters that are not included in the filled-out data sheets.

of

C.

CO

ğ

I

 $\overline{\mathcal{L}}$

Maximum

I sqyI D\A

(IPERFTR(I))		Standard Rate of Turn	3	3	۱. ح									
	(•	Runway Occupancy Time (arr												
(IPERFT(I))	o	Seconds to Lift-off (dep.)	32	Эć	L									
		Final	125	120	50									
2		Урргоасћ	(je) (e)	CM.	50									
Array)	<u>~</u>	Terminal	coe	<i>300</i>	<i>6</i>									
Packed	s (Kts)	Transi- tion	25C	ેડ્ડ (૧	3		 				 			
1	Speeds	gaisiuro	584	250	90		 <u></u>							
(IPERFS		Climb to	256	000	60									
		Climb to	250	240	90		 							
		Take-off	501	//5	35				,					
	uoŢ	Decelerat (Kts/min	60	60	و م					ļ				
		Accelerat (Kts/min)	09	50	23									
Array)		Climb to	3000	3000	500									
Packed An	. Rate: .0-2)	Climb to	3000	3000	700	-	j				-			
ı	escent oin x l	Terminal Descent	1500	1500	000/									
(IPERFR	Climb/Descent Rates (ft/min x 10 ⁻²)	Enroute Descent	००००	2500	000/									
	5	Maximum Jescent	5000	5000	1000									
	I	A/C Type	5-	ુ	<u></u>									

Date 8/8/72

NAVIGATIONAL AIDS

True True (n ml) (n ml) (veg time)	X Coord.	Coord	Instrument Error	Make Good		X Coord.	Y Coord.	Instrument Error	Make Good
FIX ID 5	(n mi) (n mi) (deg rms-n m	(deg rms	-n'mirms DME)	radius (n mi)		(n m1)	(n m1)	(deg rms=n mi rms for DME)	(n mi)
90.00					X	•	,	•	
94. 1383548 .5 94. 13435 .5 DNE ID DNE ID A14	5.96	C	2.0	5	ŀ	.34	. 25	/,	?
DNE ID	18.80		9.0	۲,		٠,	- 1	. 5	۲,
DME ID A17, 1 - 8.05 - 3.42 A26, 2 - 3.42 A26, 2 - 3.42 A26, 3 - 3.42 A27, 18.51 ILS ID A27, 2 - 34 A28, 18.51 A39, 1.40 S. 94 S. 9					Ļ.,	.34		٠, ۶	۶.
DME ID A11, 7 - 8.05 - 5.42 A12, 7 - 8.05 A12, 7 - 8.05 A13, 8.57 A13, 8.50 A14, 7 - 8.05 A15, 10 A15, 10 A16, 11 A17, 12 A18, 12 A18, 12 A18, 134 A19, 140 A19,									
DWE ID									
6712 1 -8.65 -5.42 5.0 655-2 .30 8.45 2.0 0cR 3 18.51 15.30 5.0 0cR 3 18.51 15.30 5.0 1LS 10 10 10 10 9k 38 .84 .5 1.40 .5 9k 34 1.40 .5 .5					DME ID	X			
A 18.51	-3.42 (.3	7.3		1,	AT6 /		-3.43	3.0	
11S ID 94 1.405	8.45 1.3	7.3	,	•)	l	00.	8.45	0 6	
11.S ID	15,30	7.3		/,			15.30	o. c	
1 <u>ILS ID</u> 9μ / 3ε . εγ . 5 9μ / . 4ο . 5	-34.09	8.7		/.					
11S 1D 9μ /38 .84 .5 9μ / γο .5	6 / OS 8C-			1.					
1 <u>ILS ID</u>	87 48	8							
1 <u>ILS ID</u>	E / . Or ./	ε'.		, ,					
1 <u>I.S. ID</u>	5.1 26.4-	1.3							
1 <u>ILS ID</u>									
11S 1D									
9k, 138 .845					ILS ID				
3. Ch.1 ye, & 76	5. 5. 43	۲,		. 5	91%	٠.	184	٠.	٠,
5.	5. 54.8 OC	No.		. \$, 34	1.40	٠ د	5
\$	75.30	٧٠.		٠ ک					
	5. 56.25	γ ,		٠ ۶					
\frac{1}{2}		1,0		1 /1					
		','		٠,					

Flight Schedule Array (ISKED - Packed Array)

Length of Seg. (ISDST) (n m1)	9.0	∩s %å	7.9/	7.76	0.0	0.0	0.0	် ()	7.4	60	9.0	7.4	7.7	6.7	39	7.07	3.0	6.3	H. I
INF04			103	009	60	271	338	۶.	·			264	262	253	245	600		325	hse
INF03	9.0	3.0	% O:&	2.0	2.0	7.0	0.7	7.0	7.4	3.0	9.0	3.0	м. О	3.0	3.0	0,7	/3.0	1.0	3,0
CP MODE	Э	γ.	,	CK	æ	_		0/	ღ	٨	m	,	1	/	/	Ċζ	က	/	,
ters SPD	0	٥	٥	7	0	٥	0	(Ç)C	O.	0	0	. 0	0	e:		1.	0	0	.9
Pointers ALT	3/	31	3,	ه	8	т	B	_	3.1	31	3/	5/	0	0	. ك	ل م:	3/	3/	0
INF02	7.2				,		269	2,69	54	54	325	: 32 E					1,50	264	
INFOL	3	3	020	270	180	611	C	જ	Ŋ	ю		,	130	/30	<i>∴87</i>	27.0	8	3	C3/
MODE	1	_	3	3	0/	3	9	e	,			1	Ŋ	m	m	11)	,	`	m
No.	/	C	3	h	ک	e	7	∞	4	0/	//	(%)	13	14	15	, ø	1,1	~	

Page 2 of 5

Flight Schedule Array (ISKED - Packed Array)

Length of Seg. (ISDST) (n m1)	3.8	5.6	13.0	დ. რ	18.1	8.6	7.7	15,3	31.2	0.0	0,0	0.0	0.0	11.9	6.9	9.3	9.7	1.9	5.0
INF04	848	009	Lhe	رم الم	909		178	7.8	009	09	267	336	Ś		11.7		232		661
INF03	3,0	2.0	3.0	3.0	a,0	8,6	3.0	7.0	2.0	2.0	6.0	1.0	0.0	11.4	0.1	7. 5	1.0	7.9	0.4
CP MODE	_	rs	-	_	r	3	/	_	O	رم	_	-	0/	لان		m	/	3	/
ers SPD	٢	۲	ę	7,	7	0	0	0	7	0	0	၁	0ю	0	0	0	c	9	Ç
Pointers ALT	٧,	5	٥	٧	√ 5	31	31	3.	۷	7	J	76	o.	31	31	3/	3 (٥	. 0
INF02						117	711			8		261	267	78	178	81 -	8/ 1		
INFOI	180	270	011	180	270	,	, /	320	270	· 0	59		,	3	8	٩'n	۶,	40	۲,
MODE	3	З	3	3	3	,	,	3	6	0/	ω	9	e	,	_		_	3	3
No.	00	10	22	23	ne	38	می زه	2.7	æ0	96	30	3,	· 6	33	34	\. 6	36	37	38

Flight Schedule Array (ISKED - Packed Array)

Length of See.	(ISDST) (n mt)	5,6	15.2	8.7	4.9	3.8	5.6	2.5	9.4	5.4	Oct.	0	0	0	0	0	3,83	47	\(\frac{1}{2}\)	4.2
,000	TNF04	150	600		18	150	953	009	9,5/	946	009	/30	09)		0	213	200	00%	000
COLINA	LRFU3	2.0	2.0	8.7	5,0	0.7	0,0	0,	5	9.0	2.0	· c	مي		S.	_	m	3	80	8
100%	CF MODE	`	n	3	,	_	/ ::	CR		_	a	ત	a	8	70	و.	,	/	/	1
ters	SPD	7	7	0	٥	و	7	L	و.	7	7	0	0	3	0	,	٠,٥	5	5	\ ₂
Pointers	ALT	5	h	37	3/	0	5	ک	0	5	ک	0	O	0	c	,	7	7	37	3.
COGNI	TINEOZ			232	232							2.0	2.0							
TNEO1	TUEOT	360	270	,		∞	360	270	09	360	270				Ce	6⁄. ⊗	07- 130	6.9	0/	300
MODE	77001	3	3	,	,	3			3	ю	6.2	5	7	'n	5	3	80	3	60	m
N.O.Y		39	oh	16	42	43	66	45	96	47	2.5	₩- 3	5,0	2.1	Ç	53) V)	55	ن	57

Flight Schedule Array (ISKED - Packed Array)

Length of Seg.	(ISDST) (n m1)	0	20.2	0.66	0.//	30.3	6.9/	27.6	93.0	نځ. /	4.5	e, %	66	0.'0	90.9	0	\$ 7	۶:۶	C.P	6. 6.
INF04	,	0 8	0	0	99/	0	017	0	0	0,9	08	. 00/	/50	0	0	0	43	87	00/	181
INF03	٥	0	0	0	3	0	3	0	0	/	/	/	/	Ø	0	/		,	/	8
CP MODE	_	-	œ	∞	,	8	,	වත	Od	/	1	1	/	∞	مح	٠.	į,		,	
ters	SKD	- :	<i>b</i>	h	>	4	5	4	ħ	\$	٧	5	7	<i>-</i>	5		e	V r.	ħ	7
Pointers	ALI	7	3/	37	31	31	3/	31	3/	31	31	31	15	1.0	<u>(6)</u>	6	7	7	3/	3/
INF02																			1	
INFOI	326		360	326	68	68	09	70	%	31/	193	193	193	88/	/50	851	(x)	8/1	861	270
MODE	23	2 .		3	3	3	3	3	3	8	3	3	m	m	Υ)	ارد	.)	٠,	7)	,
No.	ارا درا	00	57	9	/9	62	63	h9	59	6'6	67	89	64	70	77:	72		7	2/5	9

DATE:

7

... -..

O

0

 α

Page S of S

Length of Seg. (ISDST)(n m1) 00.61 т 6 6 INF04 203 237 0 O 9 INF03 ۵ œ 0 0 a 3 Flight Schedule Array (ISKED - Packed Array) CP MODE ∞ တ a do a SPD ン 7 T 5 0 0 V Pointers ALT 31 3 3 3 31 3 $\tilde{\alpha}$ INF02 INF01 01€ 010 040 320 വ 010 MODE 3 $^{\circ}$ ∞ 9 m \sim . .. No. 77 78 80 79 83 C) (X) 00

Controller Action Array (ICNTRA - Packed Array)

Page / of 5

	Ti .	, 				-,	 _											
Distance to specified check- point from pre- ceding check- point (n.mi.)	/7.3	7.9/		7.76	0	0	6.3/	16.4	16.4	03.0			/6.3	18.3	0	31.2	0	0
Controller No.	_		_			5		,	,	,	٠,	5	ત્ય	B	^(G	Ce	ڼ
Next Controller Action (ICNTRA)	CR	3	4	5	9	0	νo	m	0,	//	c	0	61	15	1.5	۱۲	8 /	0
Controller op- tion (10PTN) or Airspace pointer if type 9 or 10 (ASPACE)	,	U	`	٣	,	h	6	Ç	0,	5	7	h	11	<i>C1</i>	B	6/	8	(00)
Checkpoint No. (ICHKPT)*	/	C	C	<i>6</i>)	۲	h	,	ئ	5	9	h	Ь	7	00	7	6	7	0/
y East (n m1)	18.9	17.0	14.7	11.2	4.0	-9.0	7.80	21.8	.00 .00	-23.1	-12.3	-17.9	31.2	23.6	13.9	6.11	3.0	-8.0.
x North (n mi)	35.3	26.5	17.8	13.6	6.0	0.0	0.80	23.0	28.4	2/.2	9.6	14.3	1.50-	-21.3	-14.6	-13.8	-6.0	000
Type	,	3	6	57	0/	4	\	8	`	6)	7	5		8	6	3	0/	7
No.	`	2	~	5	5	9	Ü	ο.	6	0/	11	ť	:0	<i>j.</i> (75/	5./	6	2

*Note: For type 9, use number of array following Airspace check.

Controller Action Array (ICNTRA - Packed Array)

Page 2 of 5

	τ.																	
Distance to specified check- point from pre- ceding check- point (n.mi.)		0,80	18,3	/5.3	/8.9	7.70	0	0	0	0	0	18,6	27.7	0	0	0		3.8
Controller No.	/	_	e.	B	هی	Co	وي	C	CR	.0	9	م	æ	C	æ	78		3
Next Controller Action (ICNTRA)	20	11	CIE	/3	۶e	50	G.	29	34	0	33	3/	25	38	O	8/		37
Controller op- tion (IOPTN) or Airspace pointer if type 9 or 10 (ASPACE)	<i>h1</i>	ک	SI	81	91	۲/	8	Ю	B	ÛΟ	۵۵	00	17	೮	8	۳)		0.0
Checkpoint No. (ICHKPT)*	5	9	7	ØQ	11	(s)	లం	00	80	0/	0/	//	12	00	œ	(Vo		۱4
y East (n mi)	-37.9	-28.0	17.3	6.9/	-19.6	-16.3	-13.2	-13.2	-13.2	-9.2	-11.9	- 28.4	-20.1	- 9.2	-11.9	- 8.6		28.
x North (n mi)	13.0	0.4.0	-36.1	- 28.6	-34.8	2.4.6-	-16.2	C.9/-	-16.2	- 7.5	E'0/-	, 00 00 00	8.10-	- 7.8	-7.4	-7.9		.34
Туре	,	3	,	3		8	6	6	6	7	4		3	2/	0/	0/		a
No.	61	00	10	20	23	he	50	(e) (6)	27	80	60	30	3,	35	33	34	ارد ارد ارد	8

*Note: For type 9, use number of array following Airspace check.

Controller Action Array (ICNTRA - Packed Array)

Distance to specified check- point from pre- ceding check- point (n.m1.)		9.4	/3,0	00.00	3.8	5,2	0.//	20.3	21.6	3,8	9.6	g.8	9.9	0 / 0	4.5	3,5	4.2	6.6
Controller No.	7	7	4	L	3	6	7	7	2	m	می	œ	3	8	7	∞	00	Ø
Next Controller Action (ICNTRA)	38	39	40	0	42	43	44	0	0	47	84	44	50	0	50	53	24	50
Controller op- tior (IOPTN) or Airspace pointer if type 9 or 10 (ASPACE)	15	<i>6</i>	he	25	27	S,	86	60	31	33	34	35	36	37	39	Ch	77	42
Checkpoint No. (ICHKPI)*	/۶	16	17	90/	7.	15	90	ьe	60	۶۱	25	90	27	28	30	3 (32	27
y East (n mi)	3.0	7.0	7.8	8.9	2,25	3.0	2.0	15.0	14.7	- 25	8. 0	7.6	6.7	5.3	13	1.5	2.9	4.6.
x North (n mi)	۶.	۶,	8,3	14.1	.34	۶.	Ŋ	9.	3.9	.34	7.	-3.9	-7.9	-/3.9	17.	-2.0	1.4-	-6.9
Type	۶	3	3	3	8	6	3	8	3	Cs	8	3	3	3	ه	٣	3	3
No.	37	38	39	40	14	ch.	43	55	45	46	7.5	8/5	6'1	50	15	Se	53	54

*Note: For type 9, use number of array following Airspace check.

Controller Action Array (ICNTRA - Packed Array)

*Note: For type 9, use number of array following Airspace check.

Page 5 of 5

Controller Action Array (ICNTRA - Packed Array)

										_					
Distance to specified check- point from pre- ceding check- point (n.m1.)	5.0	/5.3	`	0	0.9	. C./E		9,0	7.76				•		
Controller No.	Co	U	ای	٦.	C.	هي	æ	~	78						
Next Controller Action (ICNTRA)	74	15	76	1.1	7.8	77	58	18	25						
Controller op- tion (IOPTN) or Airspace pointer if type 9 or 10 (ASPACE)	hS	6/	53	Ċ	54	ريع.	53	75	1.1						
Checkpoint No. (ICHKPT)*	7	ò	39	7	39	٥	//	11	اع						
y East (n mi)		50		50		SO			50						
x North (n mi)		50		So		20			80						
Type	11	3	e	6	11	8	و	"	3						
No.	73	74	75	76	77	78	7.3	<i>⊙</i> %	18						

*Note: For type 9, use number of array following Airspace check.

Conflict Checkpoint Array (ICHKPT - Packed Array)

Page / of 3

or 7E)																			
Subscript for Airspace Con- flict (ASPACE)	1	0	0	٥	٥	0	0	0	0	0	0	0		0	0	,	0	0	0
Maintain Sep- aration Behind (n.mi.)	61	0	9/	5.8	74	9/	14.	. 0	8/	5.0	.61	8/		3	0	ک	\$	5	8
Maintain Separation Ahead (n.mi.)	0	٥	0	0	0	0	0	0	0	0	0	0		8	0	ک	0	0	0
Separation (n.mi.)	8	k	ю	3	. 5	3	S	ന	8	87	٤	છ		3	m	60	ന	B	E)
No. of Beginning ETA Point	0	/	2	m	0	\	0	૭	6	00	0	0/		0	12	/3	61	/5	15
No. of ending ETA Point	/	G,	3	h	8	B	9	2	O	6	0/	00	·	/2	/3	14	15	16	17
No.	\	4	B	b	S	0	•	တ	6	9	"	Ü	13	14	15	9/	17	8/	61

Conflict Checkpoint Array (ICHKPT - Packed Array)

Page 2 of 3

19 19 19 19 19 19 19 19 19 19 19 19 19 1	No.	No. of ending ETA Point	No. of Beginning ETA Point	Separation (n.mi.)	Maintain Separation Ahead (n.mi.)	Maintain Sep- aration Behind (n.mi.)	Subscript for Airspace Con- flict (ASPACE)
20 19 33 33 33 33 33 33 33 33 33 33 33 33 33	90	8/	6	m	γ,	מ	0
20 19 33 21 16 33 22 24 23 25 24 23 26 25 33 27 25 24 33 28 26 25 3 29 29 29 3 20 36 36 3 21 30 31 3	70	6/	23	9	γ,	ν,	0
27	22	000	61	B	٥	B	0
24 23 33 33 34 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	23	7	61		0	۶	0
29	50	િ	8/	n	٥	\$	0
36 36 36 36 3 3 3 3 3 3 3 3 3 3 3 3 3 3	25	23	12	m	0	0	r
26 25 3 27 25 3 28 25 3 29 28 3 30 36 3 31 32 3 32 32 3	90	ЬC	23	ო	0	3	0
36 35 37 35 38 0 39 3 34 36 35 3 34 3 35 3 34 3 35 3 36 3 37 3 37 3 34 3 35 3 36 3 37 3 38 3 39 3 30	22	35	40	ო	0	3	0
36 0 3 24 29 3 24 29 3 30 36 3 31 30 3 32 31 30 3 33 32 31 3	90	9,0	25	m	0	8	0
24 0 3 24 28 3 30 36 3 31 30 3 32 31 3 34 32 3	60	27	25	т	0	ک	0
30 96 3 34 36 3 35 36 3 36 3 37 36 3 38 32 3	8	රු	0	т	т	က	o
30 36 3 31 30 3 32 31 3 33 32 3	3/	60	නිල	n	0	0	rs
30 36 3 31 30 3 32 31 3 34 32 3	32	24	6e	Ø	0	0	0
34 32 3 34 32 3	33	30	36	3	8	F)	က
32 31 3 34 32 3	34	31	8	က	m	0	ĸ
33 32 3	35	32	3/	က	B	eo.	0
34 32 3	36	33	32	E	0	_E	0
	37	34	R	B	0	ĺ	0
) (4)	38	ന്ദ	0	m	0	0	0

Conflict Checkpoint Array (ICHKPT - Packed Array)

DATE: 8/8/72

Page 3 of 3

Subscript for Airspace Con- flict (ASPACE)	0	0									
Maintain Sep- aration Behind (n.mi.)	0	0									
Maintain Separation Ahead (n.mi.)	0	0									
Separation (n.mi.)	ന	n									
No. of Beginning ETA Point	0	96				•					
No. of ending ETA Point	7	36									
No.	39	%									

/ jo Page

Coord. East (n mi) X Coord. North (n mi) Date ETA Checkpoint Coordinates (IETCOOR - Packed Array) ETA No. Y Coord. East (n mi) 4.00 -31.60 39.60 1.10 -11.80 7.00 14.40 3 -5.60 -38.80 -40.00 6.30 6 9 9 37.90 40.00 3.00 -9.60 -9.60 -37.30 -9.60 -6.00 -9.60 13.00 6.60 -3.10 -9.60 -6.40 X Coord. North (n mi) 1.20 -19.20 -40.00 -9:60 6.6 ETA No. 9 87 G G 33 74 27 a ષ્ટ્ર 80 3 33 34 35 38 8 10 3 Y Coord. East (n mi) 15.30 4.70 -23.00 /6.60 -24.40 3.50 -/8.70 6.80 3.3 19.70 8.30 -13.70 -12.40 17.60 0 0 0 0 X Coord. 6.00 6.00 18.50 North (n mi) 15.00 -6.00 -/7.80 -6.00 0.70 0.50 -/6.80 19.80 01.0 5.60 38.00 9.10 ٥ 40.0 0 ETA No. 18 9 7 X 3 Q 3 7 C 0 7 15 9 1 5 00

Controller Option Array (IOPTN - Packed Array)

No.		a	6	7	8	و	0	00	6	9	"	Ü	13	14	15	9	Ę	81	61
Pointer to Desired Al- titude Array (ALTOPT)	7	,	rs	3	a	n	a	9	7	4	7		æ	ic	6	7	6	æ	C
Desired Speed Pointer (IPERFS)	e	7	7	90	7	7	7	80	9	9	,	7	. 4	9	ف	و	7	7	7
Nominal Path Pointer (NNPATH)	<u> </u>	0	m	h	7	6	0/	<i>h</i> /	S	9	"	73	13	~	15	9/	17	61	30
Computed Vector Option (0=no,l=yes)	0	o	0		0	0	0	_	0	0	0	0	0	0	0	0	0	0	0
Divergent Path Pointer (IDROUTE)		0	0	0		0	0	0	0	0	0	0	0	0	٥	0	W	0	0
Altitude Option (O=no, 1=yes)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Speed Change Option (O=no,1=yes)	, ,	0	0	0	0	0	0	0	/	, ,	/	0	0	/	/	/	0	0	0
Standard Hold Option (O=no, l=yes)		/	0	0	1	1	1	0	0	0	0	/	0	0	0	0	/	,	1
Emergency Hold Option (O=no,1=yes)	0	1	,	O	,	/	, ,	0	0	0	0	/	/	0	0	O	/	_	/

age 2 of 3

Controller Option Array (IOPTN - Packed Array)

	2012404	Dog trood	Nomine 1	1	4			,	
,	Desired AI-	Speed	Path	Vector	Llvergent Path	Altitude	Speed	Standard Hold Ontion	Emergency Hold
	titude Array (ALTOPT)	щ О	Pointer (NNPATH)	Option (0=no,1=yes)	Pc (II		Option (O=no.l=ves)		Option (O=no.l=ves)
S	7	9	&¢/	o	11				0
23	7	9	49	0	٥	0	o	0	0
23	٧,	V 0	26	٥	٥	S	0	0	٥
1	5	7	27	٥	٥	0	/	0	0
Se	6	h	80	0	و	0	/	0	_
9	2	ή	60	٥	0	0	/	0	/
22	7	e	ba	0	0	0	0	0	0
00	8	>	3	0	7	0	O	0	0
29	8	5	6	0	0	0	, /	0	,
	S	S	32	0	0	0	/	0	0
	8	h	33	0	% >	0	/	0	
	ک	<i>h</i>	34	0	0	0	/	0	/
	7	9	48	0	0	0	0	0	0
	۲,	2	35	0	0	Ŋ	0	0	0
	ک	4	36	0	0	S	0	0	0
	5	h	37	0	0	S	/	0	0
	5	4	38	٥	0	0	/	0	1
	ς,	4	39	0	0	Ø	/	0	/

Controller Option Array (IOPTN - Packed Array)

Emergency Hold Option (0=no,1=yes)	ð	0	0	0	0	0	Ø	0	0	0	0	0	0	,	/	O		
Standard Hold Option (0=no, 1=yes)		o	0	0	0	0	0	0	0	0	0	0	0	0	O	Ø		
Speed Change Option (0=no,1=yes)	0	٥	0	0	0	0	O	'	0	/	0	0	0	0	1	0		
Altitude Option (O=no, 1=yes)	0	h	8	જ	0	7	73	5	b	'	0	0	O	0	0	0		
Divergent Path Pointer (IDROUTE)	O	0	0	0	0	0	0	0	0	٥	0/	٥	0	0	0	0		
Computed Vector Option (0=no,1=yes)	Ø	0	٥	ø	0	0	0	0	0	0	0	0	0	0	0	٥		
Nominal Path Pointer (NNPATH)	40	lh	42	37	9	/4	66	43	44	45	9,6	47	25	25	86	22		
Desired Speed Pointer (IPERFS)	9	\$	3	5	e	5	8	h	h	h	<i>h</i>	ħ	. 5	8	9	و		
Pointer to Desired Al- titude Array (ALTOPT)	-	*	3	V 2	5	þ	₩	8	5	ک	S	S	h	7	1			
No.	39	40	1/5	5	43	hh	48	20	47	48	66	50	21	52	53	54		

8/8/12									
DATE:									
		7	00011	0	0				
iy (ALTOPT)	Array (J)	9	1015	0	0				
Altitude Option Array (ALTOPT)	Pointer From Option Array (J)	ى	00056	5000	0				
Altítude	Pointer	A	4000	00	0				
		'n	1024	0	0				
1		ď	0009		0				
Page / of /		<i>\</i> ;	00001	00011	0				
Pa			`	М	w	I) .oV n	otiqu		
•						 	<u>-</u>	 	

DATE: 8/6/72

Divergent Path Array (IDROUTE - Packed Array)

Page / of _

Distance to specified check- point from pre- ceding checkpoint (n.mi.)	. 6.41	35.6	23.6	34.7		0.00	, is	0.00	90.9	/3.6					
Pointer to Another Divergent Route (IDROUTE)	Č	0	h	ં		0	O	0	0	0					
Pointer to Controller Action Array (ICNTRA)	/2	Ġ	93	1.6		0	54	0	0	0					
Pointer to Option Array (IOPIN)	9	7	89/	61		98	30	ce	88	50					
Pointer to Checkpoint Array (ICHKPT)	9	,	12	/3		6/	21.	23	60	37					
No.	/	. 0	3	7	ς	9	4	တ	6	Ś					

Page / of '

DATE: 3/4/7.2

Path Number Array (NNPATH) Qual Co

No.	No. of	Pointer to Next Option-	Path No.	Subscripts	ţ	Schedule Array (IS)	(ISKED)
	segments	al Vector		1st Segment	2nd Segment	3rd Segment 4th Segment	4th Segment
	Co	0	/	,	2	0	0
· .	`	0	٥	3	0	0	0
m	_	0 ,	. 3	, <i>h</i>	0	0	0
4	4	O	4	ک	9	4	000
γ,	G	0	S	6	0/	0	0
9	a	0	9	//	13	0	9
٠ ،	8	0	7 .	/3	14	· 51	9/
O	n	O	00	17	8/	. 0	. 0
か	7,	O	6	/3	6/	OC.	10
0	<i>h</i>	0	0/	/3	ĠĊ	8 <i>c</i>	p.e
1	CA.	ဝ	, //	ي ج	26	0	0
10	/	0	Çı	60	0	0	0
13	_	0	/3	8 C	0	0 .	
7.1	4	٥	14	56	30	3/	32
Ś	٥٦	Ü	1,5	33	34	0	0
-3	2	٥	9/	35	36	0	0
	<i>`</i> >-	Ø	19	3.9	88	39	%i.
, 6	C	Q	13	41	Ch	0	0
67	4	O .	61	37	43	hh	45

Path Number Array (NNPATH) Ceremon 0,

No.	No. of-	Pointer to Next Option-	Path No.	Subscr	ipts to Sched	Subscripts to Schedule Array (ISKED)	KED)
- 1	segments	al Vector	1	1st Segment	2nd Segment	3rd Segment	4th Segment
90	7	0	00	37	9/,	47.	3/5
16	C	٥	10	49	50	0	0
22	,	0	22	5/	0	0	0
. 23	,	0	r) (*	52	Ó	0	· 0
				·			
•		·	·				
				·			
,			·				
					·		
						/	•
		·	-				
						·	
							-
	·	·					

Page 2 of 7

Page Yof Y

Path Number Array (NNPATH) department

_		_							ı	-	1	,	1	· · · ·		,		т—	1:	
(48731)	NEU)	4th Segment	0	0	0	0	o	0	0					•				,		
1 / 100000	rray	3rd Segment	0	O	0.	0	0	0	0											
	ខ្ល	2nd Segment	٥	0	0	0	. 0	000 00												
		1st Segment	76	77	78	46	80	18.	£. &											
	Path No.		43	. 44	45	46	47	8 h .	67						,		-			
Pointer to	Next Option-	al Vector	0	0	0	0	0	0	0										•	
No of		0	,	,	,	/	- 1	رة	,											
	No.		43	**	45	46	47	87	6h .											

Page / of /

Date 8/8/72

Limit A/C Array (LIMAC - Packed Array)

sible Limit A/C Array Pointer to Next Pos-(LIMAC) ? 7 0 0 Indicating Whether Additional Separation was Previously Applied (SWITCH) Pointer to Switch 3 CP be Added tion to Separa-5.0 0.0 0.0 S 0 tional Separaof No. of A/C Before Addition Removed Lower Limit 7 7 **~** 7 ation Applied of No. of A/C tional Separ-Before Addi-Upper Limit ∞ 7 Ç 7 or Number in Queue(IQUEUE) Subscript of Number in ETA array (NETA) ∞ œ 3 or Waiting Queue (2) Indicator ETA Array(1) script Subfrom IOPIN 6 7 3

Controller Message Length Array in Number of Scans for Ith Type of Message MSG(I) Array

I	Type of Message	Length of Time (in 4 sec scans) to Transmit
1	Arrival clearance to first check point	1.
2	Hold at check point 1	1.
3	Vectoring	1.
4	Speed control	1.
5	Normal flight to next check point (pseudo message)	1.
6	Sequencing	1.
7	Departure clearance	3.
8	Change altitude	1.
9	360° emergency hold	1.

Route	Controller Action
No. I	Subscript (ICNTRA)
1	36
2	4/
3	57
+	55
5	/
1.4	7
7	9
8	19
Ĵ.	13
7.2	21
17	23
12	30

Scheduled Altitudes (ALTSKD(I))

Altitude Type I	Altitude (ft)
/	1024
2	2500
3"	3500
4	4522
5	6000
6	1015
7	4000
8	25000
9	986

Variation on Desired Speed (SPDSTD(I,J))

Type Speed	Prop Variation $J = 1$	Jet Variation J = 2
I	(kts)	(kts)
0	0	0

Aircraft Type Dependent Random Heading Errors IACFPER(I) (packed array)

Type A/C	Aircraft Error	Type A/C	Aircraft Error
I	(deg rms)	I	(deg rms)
/	. 5	12	1.0
2	٠5	13	1.0
3	. \$	14	1.0
4	. 6	15	.5
5	. 5	16	. 5
6	. 5	17	1.0
7	2.0	18	1.0
8	1.0	19	.5
9	1.0	20	,5
10	2.0	21	. 5
11	.5		

Table B-1. Definition of miscellaneous input parameters and numerical values used for Atlanta simulation.

Variable Name	Value	Definition
		<u> </u>
AK	.9	constant that limits change of path error
ALPHK	1	pilot gain constant for VOR or ILS mode
ARRMNA	6000.	minimum arrival altitude in terminal area
ARRMXA	11000.	maximum arrival altitude in terminal area
BETA	75.	angle of view in degrees desired for the cockpit display of the runway
BOUND	40.1	radius in n mi which defines the circular boundary around the airspace being considered by the model
CGLIDE	.0125	scale factor for DAC output of the error off the glide slope for the pseudo-cockpit
CILS	.05	scale factor for DAC output of the error off the ILS for the pseudo-cockpit
CKRC	5.81	scale factor for the ADC input of the rate of climb for the pseudo-cockpit
CKROLL	-750.	scale factor for the ADC input of the roll angle for the pseudo-cockpit
CRC	.04	scale factor for DAC output of the rate of climb for the pseudo-cockpit
CROLL	.02	scale factor for the DAC output of the roll angle for the pseudo-cockpit
DELALT	50	"make good" limit on altitude in ft
DELSPD	9	"make good" limit on speed in kts
DELT	4	time increment in sec
DKCON	45	correction constant when flying DME mode
EHOLDD	120.	time in sec required for completion of one emergency hold
ENROTA(1)	6500.	altitude above which prop-type aircraft use enroute descent rate
ENROTA(2)	11500.	altitude above which jet uses its enroute descent rate
GLIDE(1)	2.88	glide slope angle for runway 9L
GLIDE(2)	2.60	glide slope angle for runway 9R
HDCON	.0025	scale factor for the DAC output of the heading for the pseudo-cockpit
IARG	7	small odd integer used as a seed for the random number generator associated with the radar errors

Table B-1. Continued.

Variable Name	Value	<u>Definition</u>
IARRN	4	subscript of ETA array for touchdown times for arrivals from the north
IARRS	9	subscript of ETA array for touchdown times for arrivals from the south
IDEPN	11	subscript of ETA array for take-off times for departures to the north
IDEPS	35	subscript of ETA array for take-off times for departures to the south
IHPATHE	23	pointer to NNPATH for emergency hold path description
IHPATHS	21	pointer to MNPATH for standard hold path description
IPOPPA	22	pointer to NNPATH for initial popup path description
ITANG(1,1)	109	angle (heading) for intersecting the final leg from base leg when distance from north ILS gate to intersection is ≤ 2 n mi
ITANG(1,2)	119	angle (heading) for intersecting the final leg from base leg when distance from north ILS gate to intersection is > 2 n mi
ITANG(2,1)	69	angle (heading) for intersecting the final leg from base leg when distance from south ILS gate to intersection is ≤ 2 n mi
ITANG(2,2)	59	angle (heading) for intersecting the final leg from base leg when distance from south YLS gate to intersection is > 2 n mi
J	36	temporary variable for number ETA point coordinates
JJ	7	temporary variable indicating the number of altitude regions
NADF	2	number of ADFs
NALTOP	3	maximum number of altitude options available to a controller in a particular region
NALTSKD	9	number of fixed altitudes to be used by the flight schedule
NARR	8	number of arrival routes
NCACT	81	number of controller action points
NCHK	40	number of checkpoints
NCP	6	number of estimated times of arrival at checkpoints to be output for an aircraft
NDEPR	4	number of departure routes
NDME	3	number of DMEs

Table B-1. Continued.

Variable Name	<u>Value</u>	Definition
NDRTE	10	number of divergent routes
NFIX	9	number of FIXs
NILS	2	number of ILSs
NLIM	4	number of air traffic flow control descriptors
NOPT	54	number of option descriptors
NPTH	49	number of legs that describe this route structure
NSKED	83	number of segments that describe this route structure
NSPDSTD	9	number of speeds which can be varied for conflict $$ resolution
NSTART	12	number of initial controller action points
NTRAF	101	total number of aircraft in traffic sample
NTYPE	21	number of performance types of aircraft
NUMSC	2500	number of scans desired for run
NVOR	8	number of VORs
PASEP	40	time in sec added to gate time of next arrival on "other" runway which reserves the runway for the arrival and prohibits a departure
PDSEP	60	time separation in sec between departure on "other" runway and the departure requiring clearance
PHIK	1	constant to convert desired heading correction to bank angle
PPMX(1) (2) (3) PPMY(1) (2) (3)	-4. 0 -4. -4. 0 4.	aircraft past position markers; pairs of x, y coordinates which are rotated and translated to be behind aircraft symbols on CRT
RAD(1)	0.	north-south coordinate for the location of the radar
RAD(2)	0.	east-west coordinate for the location of the radar
RAD(3)	1024.	altitude above sea level for the location of the radar
RCON	.5	radius in n mi around VOR within which "away from VOR" equations cannot be used
RCP(1)	14	maximum length in n mi for downwind leg of the approach pattern for arrivals from the north
RCP(2)	16.4	maximum length in n mi for downwind leg of the approach pattern for arrivals from the south

Table B-1. Continued.

Variable Name	Value	Definition
RWYX(1,1) (2,1) (3,1) (4,1)	.365 .315 .315 .365	north-south coordinates in n mi for corners of runway 9L which are used for the cockpit display of the runway
RWYX(1,2) (2,2) (3,2) (4,2)	355 405 405 355	north-south coordinates in n mi for corners of runway 9R which are used for the cockpit display of the runway
RWYY(1,1) (2,1) (3,1) (4,1)	1.4 1.4 25 25	east-west coordinates in n mi for corners of runway 9L which are used for the cockpit display of the runway
RWYY(1,2) (2,2) (3,2) (4,2)	.84 .84 48 48	east-west coordinates in n mi for corners of runway 9R which are used for the cockpit display of the runway
RWYZ(1)	1024.	altitude in ft of runway 9L
RWYZ(2)	1015.	altitude in ft of runway 9R which are used for the cockpit display of the runway
SASEP	40	time in sec added to gate time of next arrival on "same" runway which reserves the runway for the arrival and prohibits a departure
SEPP(1)	3	required separation in n mi between aircraft arriving on the same runway
SEPP(2)	2.911	required separation in n mi between aircraft arriving on different runways
SHOLDD	240	time in sec required for completion of one standard hold pattern
SIG(1)	380.	standard deviation in ft for range from the radar used to simulate radar errors
SIG(2)	.25	standard deviation in deg for bearing from the radar used to simulate radar errors
SIG(3)	81.	standard deviation in ft for altitude above the radar used to simulate radar errors
SQX(1) (2) (3) (4) (5) (6) SQY(1) (2) (3) (4) (5) (6) 156	0 4 0 0 -4 0 4 0 -4 4 0 -4	six sets of x, y coordinates needed to draw symbol on CRT for pop-up aircraft

Table B-1. Concluded.

Variable Name	Value	<u>Definition</u>
TRIX(1) (2) (3) (4) (5) TRIY(1) (2) (3) (4) (5)	0 -4 8 -4 0 0 4 0 -4	five sets of x, y coordinates needed to draw aircraft symbols on CRT
VECERR	3.	amount of heading error permissible without recal-culating vector heading
VECSD	2	standard deviation for vectors
XA(1)	6.0	north-south coordinate of sequencing point on northern downwind segment
XA(2)	-6.0	north-south coordinate of sequencing point on southern downwind segment
XC(1)	6.0	north-south coordinate of final point for turnoff from northern downwind segment
XC(2)	-6.0	north-south coordinate of final point for turnoff from southern downwind segment
XDILS(1)	5.20	distance between the ILS gate and the runway 9L touchdown point
XDILS(2)	4.97	distance between the ILS gate and the runway 9R touchdown point
XDIST(1)	3.55	east-west distance in n mi between ILS gate and sequencing fix for arrivals from the north
XDIST(2)	2.55	east-west distance in n mi between ILS gate and sequencing fix for arrivals from the south
XFINAL(1)	.79	north-south coordinates of base leg intersection with 2° north of the ILS for runway 9L
XFINAL(2)	-1.67	north-south coordinates of base leg intersection with 2° south of the ILS for runway 9R
YA(1)	-9.0	east-west coordinate of sequencing point on northern downwind segment
YA(2)	-9.0	east-west coordinate of sequencing point on southern downwind segment
YC(1)	-23.0	east-west coordinate of final point for turnoff from northern downwind segment
YC(2)	-24.4	east-west coordinate of final point for turnoff from southern downwind segment
ZCON	.0001	scale factor for the DAC output of the altitude for the pseudo-cockpit

Preceding page blank

APPENDIX C

Input Data for the Traffic Sample Generation Program

This appendix contains data sheets used to define inputs to the traffic sample generation program. The data sheets are filled out with information currently being used to generate traffic samples with varying hourly operation rates.

A master traffic sample data sheet is also shown on page which is used if it is desired to use scheduled traffic for the traffic sample. Data on this sheet is output from the traffic sample generation program.

PRECEDING PAGE BLANK NOT FILMED

Page of

TRAFFIC GENERATOR--AIRCRAFT INITIAL CONDITIONS

Date

(n mi) (MAXLAT(I)) Deviation Max. Lat. ń ä Ż i i 7 i $\dot{\aleph}$ \dot{a} Ä ď. r Ä તં Ñ ij r Heading Deviation (deg rms) (HDG(I)) h 5. 6 ιō Ġ 10 io là io h 6 lio 5 6 50 10 4 in ارة h Lateral Deviation (n m1) (SPS(I)) < < Altitude Deviation (ft rms) (SZ(I)) 100. 100. 100 100. 100. 100. 100. 100. .00/ 1001 100. 100 100. 1001 100. 1001 100. 100. 100. .00/ (Kts, rms) (SV(I)) Deviation ia ko h in là Speed h là i h 10 là 14 lo 10 10 hi ¥ 250. 120, 250. 200. 250. is 10 200. 250. 250. 250. 250. 200. 250. 200 250. 250. 250. 165 140. *.* (VO(I)) Initial Speed (Kts) (ITYPE(I)) A/C Type Y 4 4 A 4 4 9 4 A/C No. 4 70 1.0 19 9 3 ju 4 3 = 6 7

4ge / of /

TRAFFIC GENERATION -- ROUTE STARTING CONDITIONS

Date

000 ft	down, L))	jet L=2	41	1,0	-		-:	٤	-	-	:							
No. of 1000 ft	Levels (LDN(J,	prop L=1	h	h	-	÷					;		·	-				
of 1000	t levels up (LUP(J,L))	jet L=2	87	ે છે	-	-	-:			=	- -	£		:				
No. of	ft levels (LUP(J,	prop L=1	7	7	-	Ξ	τ	-		;	1	·	÷	:				
	Nominal Alt. (ft)	J)) Jet	250K.	•		:	1.	:	-	:	ŧ	,	÷.	2				
	Nom Alt.	(Z(Prop	/αςί.	ī	ī.	-	3	-	i.		,,,		,,,	Ē			i	
Arr., Dep.,	or Pop-Up (1=Dep,2=Arr,	3=Pop-Up) (KAD(J))	. /	/	/		:1	Ç	2	2	7	7	7	2				
	N or S (1=N,2=S)	(NORS(J))	/	_	7	2	/	/	/	/	: 1	7	N	7				
T - 4 - 4 - 1	Heading (degrees)	(PSI(J))	89.C	87.0	0.861	148.0	192.0	234.0	145.0	54.0	297.0	358.C	15.0	52.C		·		
Initial Point	Y East	(n mi) (YO(J))	-0.25	-0.25	-0.13	-0.13	18.90	28.50	-28.20	- 37.90	31.20	17.30	-17.60	-28.40				
Initi	X North	(n mi) (XO(J))	6.24	0.24	0.71	0.7/	35.30	18.10	28.40	13,00	-25.10	-36.10	-34.50	-28.20				
	No.		`	<i>C1</i>	\sim	ų'	New	9	7	100	3	Ĵ		1/2				

Page / of /

TRAFFIC GENERATION -- MISC. CONSTANTS AND ROUTE, TYPE PROBABILITIES

		L	
No. of Routes (JM)	<u>-</u>	<u> </u>	Route
(TM)	(ָר
No. of Types (117)	20	·	
Total Sample Time	30.	1	2
			3
Average Operations	7		4
	2	<u> </u>	5
Maximum Allowed	•	<u>i</u>	9
ations (secs) (KTM)	270	<u> </u>	7
Manhor Manhor			æ
Constant (small	4		6
odd integer)(KARG)	Ì		10
Radius of Arrival			11
Sircle (n mi)(RAD)	7.0.0		12

	Pro	000	_				_																			
	Type	o H	-	2	٣	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20				
																						<u> </u>	<u> </u>	·	'	
	Cumulative	Frobability (B(J))	00000000	00005/0	6.20 6000	C.3000cc	0.373962	203/340	6.572171		- 3 7-	0.827268	C. 914634	/. ((000)												
	Probability	ot Occurrence	80.	0/-	so.	0/-	204390.	. 093903	085366	998390	598390	9985300	.085366	998380.												
-	E C																									_

13 14

h		,	1.	10		Γ.												3				 _
Cumulative Probability (C(I))	8400.	0965	07	(\frac{1}{2}	6039			6427	6389	7056	7153	10201	7247	4787	3768	04/3	36.85	927	9556	/.0/		
Cur	0	9	0	0	Ò	o.	V	C	o .	0	o o	0	Ò	0	0	C	Ö	0	0			
Probability of Occurrence	8 100.	7160.	0111	3480	6860.	6,000	0290	6,600.	E850.	1600.	1600.	8,600.	.0098	0580°	2160.	7610	5410.	4610.	.0580	1410.		
Type No. I	1	2	3	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20		
																					 	 •

MASTER TRAFFIC SAMPLE

		Desired Altitude	(tt.)													
Date		North(1)	south(2)													-
		Dep. (1)	Arr.(2)													
	ced Array		(286.)													
37.	2 - Packed	Route No.														
MASIEK IKAFFIC SAMPLE	(ITRAF	Jet(1) or	(2) (0) 1													
ASIEK IKA		Perfor- mance	6655													
E		Initial Heading	, 0													
		Initial Speed														
	ray)	z Alt. (ft)														
-	- Packed Array)	Initial Coordinates x North y East z Al (n mi) (n mi) (ft)														
	(ITRAFI - P															
		A/C ID					\int									

Preceding page blank

APPENDIX D

Subroutine Descriptions

This appendix contains a brief description of the function of each of the subroutines developed for the program. In addition to the subroutines described herein, numerous system-supplied subroutines are used. These subroutines are defined in documentation of the Langley Research Center computer complex.

PRECEDING PAGE BLANK NOT FILMED

SUBROUTINE DESCRIPTIONS

OVERLAY	NAME .	FUNCTION
0,0	TAATM	Overlay 0,0 that sets up common resident core storage needed by all other overlayscalls a system routine that loads in the next overlay.
	PAKSPL (Special Pack)	Packs one or several variables into one computer core word based on a table of the variables' attributes.
	UPKSPL (Special Unpack)	Unpacks from one computer core word one or several variables based on a table of the variables' attributes.
	ISHFTE	COMPASS routine that performs right shift with sign extension.
	PAKUNI (Uniform Pack)	Packs one or more variables, of uniform attributes, into one or more contiguous computer core words.
	UPKUNI (Uniform Unpack)	Unpacks one variable from a linear array of contiguous computer core words which contains several variables with uniform attributes.
	LSHFT	COMPASS routine that performs left circular shift.
1,0	TATINT	Reads in data in non-real-time.
	INIT	Initializes variables and sets constants.
2,0	TATPRNT	Writes various arrays, e.g. active traffic, on tape and on printer.
3,0	TATREAD	Reads in additional traffic data.
4,0	TATMAIN	Jumping off and return to point. Main program of overlay Number 4.
4,1	TATREST	Reset Section - Performs initialization of simulation and reset after simulation has been started.
4,2	TATHOLD	Hold Section - Develops CRT static display of routes, range markers (rings), runways, and controller message headers.
	MAKTAPE	Rewinds the CRT file and copies to a tape for later batch processing with a program to plot the CRT display on the CALCOMP plotter.
	DASHCIR	Plots a circular range marker of a desired radius on the CRT screen.

OVERLAY	NAME	FUNCTION
4,3	TATOPER	Operate Section - Updates scan and frame counters. Calls routines for tracking, communications, controller actions, and CRT displays.
	TRACKAC	Track Aircraft - Solves aircraft dynamics - in- troduces path errors - deletes aircraft which have left the terminal area or which have landed - checks whether controller action point has been passed. Updates active schedule upon meeting objectives for a particular schedule segment, e.g. has "made good" a range from a Nav. site objective. Updates aircraft position.
	RANDU	Computes uniformly distributed random real numbers between 0 and 1.0.
	COMMUN	Communication Channels Simulation - Adds aircraft to controller action arrays from departure and arrival queues. Delivers messages. Modifies schedules according to message contents. Adds clearances for conflict-free segments.
	CNTRLAC	Control Aircraft - Deals with specific controller actions needed, e.g. arrival, departure, hand-off, airspace conflict, general conflict, sequencing actions. Uses options available for the particular controller action point to resolve traffic conflicts.
	ETACOMP	Estimated Time of Arrival Computation - ETA at a point or, based on a switch, the ETA at a separation distance from the point. Takes into consideration altitude and speed changes. Also returns earliest and latest ETAs based on when speed change occurs.
	CONCHK	Conflict Check. Does the actual checking for any conflicts based on arrival times calculated for a particular option. Returns binary switch set for conflict/no conflict.
	SPDCNTR	Speed Control - Computes whether a change of speed, and when to apply the change, will yield a conflict-free ETA envelope at a checkpoint, i.e, a slot in the ETA. Passing another aircraft may be allowed under some conditions.
	COMETA	Compute Estimated Time of Arrival based on speed and distance.
	CRTDSPL	CRT Display - Drives display routines to display for each aircraft in active traffic an aircraft symbol, legend box associated with the aircraft, two past position markers, hand-off or hold information, and controller messages. Static display of routes, etc., is background information.

7/17/72 Page 3

OVERLAY NAME FUNCTION

4,3 XFORM Performs relative coordinate transformation.

APPENDIX E

Definitions of Variables for the Terminal Area Simulation Model

This appendix contains a complete list of variables used in the model. For each variable, a definition, its dimension(s), aliases assigned for programming convenience by FORTRAN-equivalence statements, and a list of routines in which each variable is used are included when applicable.

Table E-1. Definitions of Variables.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
A			CNTRLAC	distance between time of turnoff of downwind leg to time of initiating turn onto localizer course
AALT	RESTOR(4)			see RESTOR
ACCEL			COMETA	acceleration rate for particular aircraft under consideration
ACCRT			TRACKAC	computed acceleration rate needed by aircraft to obtain a desired speed on the next scan
ACERR			TRACKAC	aircraft type-dependent flight path error for particular aircraft under consideration
ACLS(I)		(50)	CRTDSPL, INIT	array of machine instructions for displaying on the CRT the alphanumerics for the type of aircraft
ADC(I)		(32)	TATINT, TATREST, TATOPER	variable referencing the analog-to-digital converters
AK	TABLE(1)			see TABLE
ALPHA			TATOPER, TRACKAC	temporary used for an angle
ALPHK	TABLE(2)			see TABLE
ALT			TRACKAC	present altitude for aircraft under consideration
ALTF			TRACKAC	present altitude goal for aircraft under consideration
ALTLIM			CNTRLAC	altitude limit above which the departure under consideration cannot fly
ALTOPT(I,J,K)		(3,6,2)	CNTRLAC, TATINT	see input data
ALTSKD(I)		(6)	CNTRLAC, TATINT	see input data

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
ANG(I)	SEQUE(1,14) SEQUE(3,14)	·		see SEQUE
ANGLE			CNTRLAC	temporary used for the angle of intersection of the base leg with the final leg of the sequencing pattern for an aircraft under consideration
ANG2		•	CNTRLAC	temporary
ARDIF			TRACKAC	degrees off a radial that an aircraft is trying to intersect
ARRMNA			CNTRLAC, TATINT	see input data
ARRMXA			CNTRLAC, TATINT	see input data
AR1X			татногр	part of route definition for background display of terminal area on CRT
AR1Y			TATHOLD	same as ARIX
AR2X			TATHOLD	same as AR1X
AR2Y			TATHOLD	same as AR1X
AR3X		•	TATHOLD	same as AR1X
AR3Y			ТАТНОГД	same as AR1X
AR4X			TATHOLD	same as AR1X
AR4Y		•	TATHOLD	same as ARIX
AR5X			TATHOLD	same as AR1X
AR5Y			ТАТНОГД	same as AR1X
AR6X			ТАТНОГД	same as ARIX
AR6Y			ТАТНОГД	same as ARIX

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
AR7X			TATHOLD	same as AR1X
AR7Y			TATHOLD	same as ARIX
AR8X			TATHOLD	same as ARIX
AR8Y			TATHOLD	same as ARIX
ASKSPD(I,J)		(35,11)	CNTRLAC, COMMUN, TRACKAC	scheduled speeds for each segment assigned each aircraft in active traffic
ASPACE1(I,J)		(4,5)	CNTRLAC	Jaircraft ID numbers in a particular I airspace and under the control of a particular controller; another controller can use this airspace only if the airspace is empty at the altitude level he desires to use
ASPACE2(I,J)	·	(4,5)	CNTRLAC	altitudes at beginning of path for J aircraft in a particular I airspace and under the control of a particular controller; another controller can use this airspace only if the airspace is empty at the altitude level he desires to use
ASPACE3(I,J)		(4,5)	CNTRLAC	altitudes at the terminal end of a path for J alrcraft in a particular I alrspace and under the control of a particular controller; another controller can use this airspace only if the airspace is empty at the altitude level he desires to use
ATRAF(I,J) for I th air-	IATRAF(I,J)	(35,26)	CNTRLAC, CRTDSPL, TATREST, TRACKAC	tracking information for each I aircraft in active traffic
craft J = 1	<pre>IATRAF1(I) IATRAF(I,1)</pre>	(35)	CNTRLAC, COMMUN, CRIDSPL, TRACKAC	aircraft ID number
2	ATRAF2(I)	(35)	CNTRLAC, CRTDSPL, TRACKAC	x - north-south coordinate (n mi)
3	ATRAF3(I)	(35)	CNTRLAC, CRTDSPL, TRACKAC	y - east-west coordinate (n mi)

Table E-1. Continued.

Definition	, z - altitude (ft)	speed (n mi/sec)	cheading (deg)	S performance class	<pre>prop(1) or jet(2)</pre>	route number	scheduled time of entry in scans	departure(1) or arrival(2)	north(1) or south(2) region	VX - velocity in x (n mi/sec)	VY - velocity in y (n mi/sec)	VZ - velocity in z (ft/sec)	current flight mode times 10 plus control point mode	current flight leg	radar x (n mi)	radar y (n mi)	radar z (ft)
Routines in Which Variable is Used	CNTRLAC, COMMUN, CRIDSPL, TRACKAC	CNTRLAC, COMMUN, CRTDSPL, TRACKAC	CNTRLAC, CRTDSPL, TRACKAC	CNTRLAC, CRTDSPL, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC	TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC				CNTRLAC, CRTDSPL, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC
Dimensions	(35)	(35)	(35)	(35)	(35)	(35)	(35)	(35)	(35)				(35)	(35)	(35)	(32)	(35)
Aliases	ATRAF4(I)	ATRAF5(I)	ATRAF6(I)	<pre>IATRAF7(I) IATRAF(I,7)</pre>	<pre>IATRAF8(I) IATRAF(I,8)</pre>	IATRAF9(I) IATRAF(I,9)	IATRF10(I) IATRAF(I,10)	<pre>IATRF11(I) IATRAF(I,11)</pre>	<pre>IATRF12(I) IATRAF(I,12)</pre>				<pre>IATRF16(I) IATRAF(I,16)</pre>	IATRF17(I) IATRAF(I,17)	ATRF18(I)	ATRF19(I)	ATRF20(I)
Name	4	ī.	9	7		6	10	11	12	13	14	15	16	17	18	19	20

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
21	<pre>IATRF21(I) IATRAF(I,21)</pre>	(35)	CNTRLAC, COMMUN, TRACKAC	current path; packed word
22	IATRF22(I) IATRAF(I,22)	(35)	CNTRLAC, COMMUN, TRACKAC	current flight clearances remaining
23	IATRF23(I) IATRAF(I,23)	(35)	CNTRLAC, COMMUN, TRACKAC	future path; packed word
24	IATRF24(I) IATRAF(I,24)	(35)	CNTRLAC, COMMUN, TRACKAC	future path clearances received
25	IATRF25(I) IATRAF(I,25)	(35)	TRACKAC	next controller action subscript (ICNTRA)
26	ATRF26(I)	(35)	CNTRLAC	altitude limit for departures (ft)
ATRAF2(I)	ATRAF(I,2)			see ATRAF
ATRAF3(I)	ATRAF(I,3)			see ATRAF
ATRAF4(I)	ATRAF(I,4)			see ATRAF
ATRAF5(I)	ATRAF(I,5)			see ATRAF
ATRAF6(I)	ATRAF(I,6)			see ATRAF
ATRF18(I)	ATRAF(I,18)			see ATRAF
ATRF19(I)	ATRAF(I,19)			see ATRAF
ATRF20(I)	ATRAF(I,20)			see ATRAF
ATRF26(I)	ATRAF(1,26)			see ATRAF
A1X, A1Y to A8X, A8Y			ТАТНОГД	part of route definition for background display of terminal area on CRT
В	·		CNTRLAC	distance flown from time of turn-off base leg to intersection with localizer course plus distance on localizer course from a line that is the perpendicular bisector of the localizer course from the earliest turn-off point to the ILS gate

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
BETA	TABLE(26)			see TABLE
BOUND			TATINT, TRACKAC	see input data
BUFF(I)		(17)	MAKTAPE	storage buffer for copying CRT file to tape
U			ТАТНОГД	scaling factor for CRT used to scale n mi to CRT units
CETA			CNTRLAC, ETACOMP, TATREST	difference between actual time of arrival and estimated time of arrival at a particular previously-passed ETA point; used as a correction factor for estimating the time of arrival at a new ETA point
CCLIDE			TATINT, TATOPER	see input data
СНЕАD			TRACKAC	temporary for the new corrected heading for a given aircraft on a given scan
CILS			TATINT, TATOPER	see input data
CKRC	TABLE(54)			see TABLE
CKROLL	TABLE(53)			see TABLE
00			XFORM	used when displaying the terminal area relative to a given aircraft and defined as the cosine of the heading of this aircraft
COAR			CRTDSPL, XFORM	used when displaying the terminal area relative to the location of a given aircraft and defined as the cosine of the angle between the ith aircraft and the aircraft to which the terminal area is relative
CONFLCT			CNTRLAC, CONCHK, SPDCNTR, TATREST	yes(1) or no(2) indicator as to whether or not the particular aircraft under considera- tion has a conflict that needs to be resolved with another aircraft

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
CPCOORD(I)		(2)	TRACKAC	temporary name for coordinates of a particular controller action point under consideration
I = 1	XCP		TRACKAC	north-south coordinate (n mi)
2	YCP		TRACKAC	east-west coordinate (n mi)
CPX	SITE(1)			see SITE
CPY	SITE(2)			see SITE
CRA20			CNTRLAC, INIT	constant used in equation to determine the distance in a turn when an aircraft is turning from its downwind to its base leg when the intercept angle with the final leg will be 20°
CRA30			CNTRLAC, INIT	constant used in equation to determine the distance in a turn when an aircraft is turning from its downwind to its base leg when the intercept angle with the final will be 30°
CRB20			CNTRLAC, INIT	constant used in equation to determine the distance in a turn when an aircraft is turning from its base to its final leg with a 20° intercept angle
CRB30			CNTRLAC, INIT	constant used in equation to determine the distance in a turn when an aircraft is turning from its base to its final leg with a 30° intercept angle
CRC	TABLE (56)			see TABLE
CROLL	TABLE (55)			see TABLE
CRTINIT	LOGIC(1)			see LOGIC
CRTSCAL	TABLE(13)			see TABLE
CRITPE			ТАТНОГД	system name for CRT in use

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
Q			COMETA, ETACOMP, TRACKAC	in COMETA and ETACOMP, a temporary for a distance for which an estimated time to fly will be calculated; in TRACKAC, a temporary for a distance
DA			COMETA	temporary for calculated distance (n mi) covered during a change of speed
DAC(I)		(64)	COMMUN, TATINT, TATOPER, TATREST	variable referencing the digital-to-analog converters
DALT			CNTRLAC, TRACKAC	in TRACKAC, temporary for difference between actual altitude and altitude goal; in CNTRLAC, the desired altitude at the end of a path
DECCOR			CNTRLAC	correction for deceleration of airspeed in sequencing area algorithm
DELALT	TABLE(14)			see TABLE
DELAYT			CNTRLAC	delay time (sec) used in a standard or emergency hold; always some multiple of standard or emergency hold time
DELETA			ETACOMP	temporary for the elapsed time in flight calculation for some portion of a path
регн(г)		(35)	CNTRLAC, TATREST, TRACKAC	amount of flight path error to be applied to the heading of an aircraft in the I position of active traffic
DELSP			TRACKAC	temporary for change of speed rate for a given aircraft under consideration
DELSPD	TABLE(15)			see TABLE
DELT	TABLE(16)			see TABLE
DELX1	TABLE(31)			see TABLE
DELX2	TABLE (32)			see TABLE
DELX3	TABLE(33)			see TABLE

Table E-1. Continued.

in Which Definition is Used	see TABLE	see TABLE	temporary for climb rate for a particular aircraft under consideration	derived constant from the scan increment in sec times gravity constant times a conversion factor from radians to degrees	temporary for a distance	distance in a turn which is calculated in the "compute vector to an ETA point" type controller action	distance on straight path to an ETA point which is calculated in the "compute vector to an ETA point" type controller action	amount of heading correction desired on a given scan for a particular aircraft under consideration when the aircraft is flying a DME mode	see TABLE	see SEQUE	PER temporary	part of the route definition for the background display of the terminal area on the CRT	see RESTOR
Routines Variable			TRACKAC	TATINT	TRACKAC	CNTRLAC	CNTRLAC	TRACKAC			TATREST, TATOPER	татногр	
Dimensions			I	I	T	O	S	H		to to	Ţ	Ţ	
Aliases	TABLE (34)	TABLE (35)							TABLE(19)	<pre>ISEQUE(1,15) ISEQUE(3,15) SEQUE(1,15) SEQUE(3,15)</pre>			RESTOR(7)
Name	DELY1	DELY2	DELZ	DGRID	DIST	DISTI	DIST2	DK	DKCON	DL(I)	DPRIM	DR1X to DR6Y	DSPD

Table E-1. Continued.

Definition	temporary array into which a message is unpacked for J controller	same as element 1 of ICMSG2(J,1)	same as element 2 of ICMSG2(J,1)	same as element 3 of $ICMSG2(J,1)$	same as element 4 of ICMSG2(J,1)	same as element 5 of $ICMSG2(J,1)$	same as element 1 of ICMSG3(J,1)	same as element 2 of ICMSG3(J,1)	same as element 3 of ICMSG3(J,1)	see RESTOR	see RESTOR	see RESTOR	constant to convert from degrees to radians, (DTR = $.017453$)	incremental change of x and y coordinates for backward projected position of aircraft for I and 2 scans before current one. Used to portray velocity	part of the route definition for the back- ground display of the terminal area on the CRT
Routines in Which Variable is Used	CRTDSPL												INIT, TATINT, TATREST, TATOPER, TRACKAC, CNTRLAC, CRTDSPL	CRTDSPL	ТАТНОГД
Dimensions	(8)														
Aliases	IDSPMSG(I)	IDSPMSG(1) IDSPM1			IDSPMSG(4) IDSPM4		IDSPMSG(6) IDSPM6	IDSPMSG(7) IDSPM7	IDSPMSG(8) IDSPM8	RESTOR(11)	RESTOR(12)	RESTOR(13)			
Name	DSPMSG(I)	H H	2	ဗ	7 .	2	9	7	∞	DST1	DST2	DST3	DTR	DX1 DX2 DY1 DY2	DlX to D6Y

Table -1. Continued.

			system routine						s for logic	mi		$[t/sec^2]$		S	g
Definition	see input data	see input data	initialization parameter to system NAMECRT	temporary	temporary	see RESTOR	see SEQUE	see TABLE	real-time console function switches for logic flow control in the model	conversion constant from feet to n mi	see RESTOR	gravitational constant ($G = 32.16 \text{ ft/sec}^2$)	see input data	north and south ILS gate coordinates scaled and translated to CRT units for background display	north and south ILS gate coordinates in n mi for CRT display use
Routines in Which Variable is Used	CNTRLAC, TATINT	CNTRLAC, TATINT	ТАТНОГД	ETACOMP, COMETA	ETACOMP, COMETA				CNTRLAC, CRTDSPL, TATHOLD, TATOPER, TRACKAC	TRACKAC, INIT		TATINT, INIT	TATINT, TATOPER	татногр	татногр
Dimensions		(2)							(16)	•			(2)	2 	2 2 2 2 2
Aliases						RESTOR(5)	ISEQUE(1,16)- ISEQUE(3,16) SEQUE(1,16)- SEQUE(3,16)	TABLE (20)	LDISI(33)- LDISI(48)		RESTOR(6)				
Name	ЕНОГОО	ENROTA(I)	ERR	ETAPT1	ETAPT2	ETASEP	FETA(I)	FREQ	FSS(I)	FTNM	FVEL	ڻ ن	GLIDE(I)	GNX (I) GNY (I) GSX (I) GSY (I)	GTNX(I) GTNY(I) GTSX(I) GTSY(I)

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
Н	TABLE(21)			see TABLE
HDBEG(I)		(35)	TATREST, TRACKAC	initial heading (deg) when aircraft begins a segment with true turn or turn to a heading modes
HDCON	TABLE (59)			see TABLE
HDCOR			TRACKAC	calculated desired heading before applying aircraft bank angle limitations
HDG			CNTRLAC	amount of turn remaining (deg) when aircraft is in 360 hold. Used in calculating initial heading for a standard hold schedule
HDOT			TRACKAC	aircraft turn rate (deg/sec) from aircraft performance tables
HDOWN			TATOPER, TRACKAC, CRTDSPL	heading in deg of cockpit aircraft
HDOWNR			TATOPER	HDOWN in radians
HEADN			TRACKAC	heading (deg) from active traffic array for aircraft being updated this tracking frame
HERR			TRACKAC	error in heading (deg), i.e. difference between desired heading and actual heading
ногр	LDISI(18)		TATMAIN	console switch to load HOLD overlay
ногртем			CNTRLAC	temporary variable used when resolving conflicts needing holding patterns. Specifically, how much hold time was resolved using standard holds
ноготим			CNTRLAC	total amount of time to lose with holding patterns to resolve a conflict
HT.1			CNTRLAC	portion of total time to lose with holding patterns to resolve conflict on next path attributable to beginning end of path ETA conflict

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
HT2			CNTRLAC	portion of total time to lose with holding patterns to resolve conflict on next path attributable to terminal end of path ETA conflict
н			CNTRLAC, COMMUN, CRTDSPL, TATINT, TATPRNT, TATREAD, TATREST, TATHOLD, TATOPER, TRACKAC	temporary
IA(I)	IQUEUE(3)- IQUEUE(4)			see IQUEUE
IAALT			CNTRLAC	actual altitude assigned at terminal end of path, to nearest 1000 ft
IAC			CNTRLAC, TRACKAC	subscript or ID of aircraft in active traffic which is under consideration
IACCEPT(I,J)		(8,2)	CNTRLAC, TATREST	the estimated time on each arrival route when the last aircraft (jet or prop) which has been entered will have flown separation distance in from the perimeter
IACFPER(I)		(3)	TATINT, TRACKAC	see input data and packed array description
IACTN1(I)		(35)	CNTRLAC, COMMUN, TRACKAC	controller action queue: pointer to ITRAF1 array if aircraft is in an arrival or departure queue or to active traffic if aircraft is already in active traffic
LACTN2(I)		(35)	CNTRLAC, COMMUN, TRACKAC	controller action queue: type controller action required
IACTN3(I)		(35)	CNTRLAC, COMMUN, TRACKAC	controller action queue: pointer to which controller action point to use

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
IACTPT			CNTRLAC	stored in packed IETAl array; it denotes which controller dealt with this aircraft on its last controller action
IADF(I)	INAV(1,2) INAV(10,2)			see INAV packed array
IALT			CRTDSPL	altitude, in nearest hundreds of feet, for CRI display
IALTOP	RESTOR(29) IOPTION(6) OPTION(6)			see RESTOR
IANG			CNTRLAC	subscript of ITANG for determining the angle of intersection with final leg (from base leg) in final sequencing area
IARG			TATINT, TRACKAC	see input data
IARRAY		(variable dimensions)	PAKUNI, UPKUNI)	the array to pack into or unpack from dummy variable used as subroutine call list argument
IARRN			CNTRLAC, TATINT	see input data
IARRS			CNTRLAC, TATINT	see input data
IASKED(I,J)		(35,11)	CNTRLAC, COMMUN, TRACKAC	see packed array description
IASPCON	RESTOR(23)			see RESTOR
IAT			CNTRLAC	temporary
IATAS(I,J)		(35,2)	CNTRLAC, TRACKAC	see packed array description
IATRAF(I,J)	ATRAF(I,J)			see ATRAF
IATRAF1(I)	IATRAF(I,1)			see ATRAF
IATRAF7(I)	IATRAF(I,7)			see ATRAF
IATRAF8(I)	IATRAF(I,8)			see ATRAF

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
IATRAF9(I)	IATRAF(1,9)			see ATRAF
IATRF10(I)	IATRAF(I,10)			see ATRAF
IATRF11(I)	IATRAF(I,11)			see ATRAF
IATRF12(I)	IATRAF(I,12)			see ATRAF
IATRF16(I)	IATRAF(I,16)			see ATRAF
IATRF17(I)	IATRAF(I,17)			see ATRAF
IATRF21(I)	IATRAF(I,21)			see ATRAF
IATRF22(I)	IATRAF(I,22)			see ATRAF
IATRF23(I)	IATRAF(I,23)			see ATRAF
IATRF24(I)	IATRAF(I,24)			see ATRAF
IATRF25(I)	IATRAF(I,25)			see ATRAF
IATSPL	INTEG(71)- INTEG(74)			see INTEG
IBEG	INTEG(70)			see INTEG
IBF(I)		(110)	CRTDSPL, INIT, TATHOLD	buffer for controller messages for display on CRI, also used for aircraft tags on CRI
IBY			CNTRLAC, COMMUN, TRACKAC	parameter (=0) input to system routine WRT218
ICA			CNTRLAC, COMMUN, TATREST, TATOPER, TRACKAC	counter for controller action queue for number of controller actions required this scan
ICACT			CNTRLAC, TATREST, TRACKAC	<pre>subscript of next controller action point (from active traffic)</pre>
ICACT2	RESTOR(16)			see RESTOR
ICHKPT(I) ICLASS		(40)	CNTRLAC, TATINT, TRACKAC CNTRLAC, COMETA, CRIDSPL,	see input data and packed array description aircraft performance class; used as subscript
			ETACOMP, TRACKAC	

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
ICLEAR			СОМИЛИ	number of segment clearances being issued by controller with this message
ICLP1			CNTRLAC	temporary pointer (in sequencing logic) to which active schedule
ICMSG1(I,J)		(8,5)	CNTRLAC, COMMUN	see packed array description
ICMSG2(I,J)		(8,5)	CNTRLAC, COMMUN, CRIDSPL	see packed array description
ICMSG3(I,J)		(8,5)	CNTRLAC, COMMUN, CRIDSPL	see packed array description
ICNGO			CNTRLAC, TATOPER	used as an ASSIGNED GO TO vector when iterations to resolve a conflict may exceed realtime frame time. It allows interruption of logic to update frame counter
ICNT			CNTRLAC	used as counter for number of aircraft needing 360° holds
ICNTF	INTEG(18)			see INTEG
ICNTRA1(I)		(85)	CNTRLAC, TATINT, TRACKAC	see input data and packed array description, controller action point
ICNTRA2(I)		(85)	CNTRLAC, TATINT, TRACKAC	see input data and packed array description, controller action point
ICOMM(I)		(10)	CNTRLAC, COMMUN, CRIDSPL, TATREST	if not zero, counter of how many 4-sec scans needed to deliver message controller is now delivering
ICONTR			CNTRLAC	pointer to which controller is responsible during this controller time frame. Used in final sequencing logic
ICONȚRL			CNTRLAC	controller responsible for this action during this controller frame
ICP			CNTRLAC, TRACKAC	current flight leg counter

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
OI .	IQUEUE(1)- IQUEUE(2)	(2)		see IQUEUE
IDALT	RESTOR(24) IOPTION(1) OPTION(1)	,		see RESTOR
IDD(1)			TRACKAC	temporary, used for finding aircraft in active traffic array if one is to be deleted
IDELET	INTEG(66)			see INTEG
IDELT			CNTRLAC, TATINT, TATOPER	integer form of DELT (time in sec between scans)
IDENT			CNTRLAC, COMMUN, CRIDSPL, TRACKAC	aircraft identification number
IDEPN			CNTRLAC, TATINT	see input data
IDEPS			CNTRLAC, TATINT	see input data
IDEST			CNTRLAC	indicator whether departure $(=1)$ or arrival $(=2)$
IDIAG	INTEG(68)			see INTEG
IDM			COMMUN	temporary for aircraft ID number when searching message queue
IDME(I)	INAV(1,4)- INAV(10,4)			1
IDOTH		J	CONCHK, SPDCNTR	temporary, ID of other aircraft when checking for "same route conflict"
IDREL	INTEG(25)			see INTEG
IDROUTE(I)		(10)	CNTRLAC, TATINT	see input data and packed array description

Table E-1. Continued.

(I) DSPMSG(I) DSPMSG(I) DSPMSG(I) DSPMSG(4) DSPMSG(4) DSPMSG(4) DSPMSG(6) DSPMSG(6) DSPMSG(6) DSPMSG(7) DSPMSG(7) DSPMSG(8) CNTRLAC CNTRLAC CNTRLAC RESTOR (28) IOPTION (5) OPTION (5) OPTION (9) CNTRLAC, COMETA, COMMUN, INIT, TATINT, TRACKAC	Name IDSPD	Aliases RESTOR(25)	Dimensions	Routines in Which Variable is Used	Definition see RESTOR
(I) DSPMSG(I) DS		IOPTION(2) OPTION(2)			
DEPMSC(1) DEPMSC(4) DEPMSC(4) DEPMSC(4) DEPMSC(5) DEPMSC(6) DEPMSC(6) DEPMSC(7) DEPMSC(7) DEPMSC(7) DEPMSC(7) DEPMSC(7) DEPMSC(7) DEPMSC(8) DEPMSC(7) DEPMSC(8) DEPMSC(7) DEPMSC(8) DEPMSC(7) DEPMSC(8) DEPMSC(7) DEPMSC(8) DEPMSC(8) DEPMSC(9) DEPMSC(1) DEPMSC	(I)	DSPMSG(I)			see DSPMSG
DSPMSG(4) DSPMSG(4) DSPMSG(6) DSPMSG(6) DSPMSG(7) DSPMSG(7) DSPMSG(7) DSPMSG(7) DSPMSG(7) DSPMSG(8) CNTRLAC Subscript (pointer) to divergent route being tried to resolve conflict see RESTOR CNTRLAC CNTRLAC CNTRLAC Subscript (pointer) to divergent route being tried to resolve conflict see RESTOR CNTRLAC CNTRLA		DSPMSG(1) IDSPMSG(1)			
DSPMSG(6) DSPMSG(7) DSPMSG(7) DSPMSG(7) DSPMSG(7) DSPMSG(8) CNTRLAC CNTRLAC RESTOR(28) CNTRLAC RESTOR(28) OPTION(5) OPTION(5) OPTION(9) CNTRLAC,COMETA,COMMUN, symbolic name for the constant 8 INIT,TAINIT, TRACKAC		DSPMSG(4) IDSPMSG(4)			see DSPMSG
DSPMSG(7) DSPMSG(8) DSPMSG(8) CNTRLAC RESTOR(28) CNTRLAC RESTOR(28) CNTRLAC RESTOR(28) CNTRLAC RESTOR(28) CNTRLAC RESTOR(28) CNTRLAC See BSFMSG temporary; used for deleting an aircraf from departure queue subscript (pointer) to divergent route being tried to resolve conflict see RESTOR See RESTOR RESTOR(32) DPKUNI In uniform unpack routine, denotes how many elements are packed in each packed see RESTOR See RESTOR NOTION(9) OPTION(9) CNTRLAC, COMETA, COMMUN, symbolic name for the constant 8 INIT, TATINT, TRACKAC		DSPMSG(6) IDSPMSG(6)			see DSPMSG
DSPMSG(8) USPMSG(8) CNTRLAC temporary; used for deleting an aircraf from departure queue CNTRLAC subscript (pointer) to divergent route being tried to resolve conflict see RESTOR OPTION(5) OPTION(5) UPKUNI In uniform unpack routine, denotes how many elements are packed in each packed RESTOR(32) IOPTION(9) CNTRLAC, COMETA, COMMUN, symbolic name for the constant 8 INIT, TATINT, TRACKAC		DSPMSG(7) IDSPMSG(7)			see DSPMSG
CNTRLAC from departure queue CNTRLAC subscript (pointer) to divergent route being tried to resolve conflict see RESTOR IOPTION(5) OPTION(5) UPKUNI in uniform unpack routine, denotes how many elements are packed in each packed see RESTOR IOPTION(9) CNTRLAC,COMETA,COMMUN, symbolic name for the constant 8 INIT,TATINT, TRACKAC		DSPMSG(8) IDSPMSG(8)			see DSPMSG
RESTOR(28) See RESTOR OPTION(5) OPTION(5) UPKUNI RESTOR(32) IOPTION(9) OPTION(9) CNTRLAC,COMETA,COMMUN, symbolic name for the constant 8 INIT,TATINT, TRACKAC			O	NTRLAC	temporary; used for deleting an aircraft from departure queue
RESTOR(28) IOPTION(5) OPTION(5) UPKUNI In uniform unpack routine, denotes how many elements are packed in each packed see RESTOR IOPTION(9) OPTION(9) CNTRLAC,COMETA,COMMUN, symbolic name for the constant 8 INIT,TATINT, TRACKAC			5	NTRLAC	subscript (pointer) to divergent route being tried to resolve conflict
UPKUNI in uniform unpack routine, denotes how many elements are packed in each packed see RESTOR see RESTOR CNTRLAC,COMETA,COMMUN, symbolic name for the constant 8 INIT,TATINT, TRACKAC	IDVERG2	RESTOR(28) IOPTION(5) OPTION(5)			see RESTOR
see RESTOR CNTRLAC, COMETA, COMMUN, symbolic name for the constant INIT, TATINT, TRACKAC			n	PKUNI	T
symbolic name for the constant		RESTOR(32) IOPTION(9) OPTION(9)			see RESTOR
			OH	NTRLAC, COMETA, COMMUN, NIT, TATINT, TRACKAC	

Table E-1. Continued.

TUN TEAC THE, TRACKAC THE, TRACKAC THEACKAC THEACKAC THEACKAC THEACKAC THEACKAC THEACKAC THEACKAC THEACKAC	Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
T(1, J)	IEND				last element to operate on when packing one or more elements into a packed word
MAKTAPE (1,J) (35,2) (NTRLAC, TRACKAC (1,J) (36,10) (NTRLAC, SPDCNTR, TRACKAC (36,10) (NTRLAC, SPDCNTR, TRACKAC (36,10) (NTRLAC (NTRLAC, COMMUN (8,25) (NTRLAC, COMMUN (1),3)- (NTRLAC, COMMUN (1),3)- (NTRLAC, COMMUN, NTT, TATINT, TATINT	IENROT(I,J)		(2,20)	CNTRLAC, COMMUN	arrival queue, i.e., arrival aircraft which is awaiting initial controller action
MAKTAPE	IENTER			COMMUN	temporary, used for offer time of aircraft from traffic sample
(1, J) (35, 2) CNTRLAC, TRACKAC (1, J) (36, 10) CNTRLAC, SPDCNTR, TRACKAC (1, J) (36) CNTRLAC, SPDCNTR, TRACKAC (1, J) (36) CNTRLAC (NTRLAC (N	IERR			MAKTAPE	error switch
(1, J) (36,10) CNTRLAC, SPDCNTR, TRACKAC (1, J) (36,10) CNTRLAC, SPDCNTR, TRACKAC OR(I) (36) CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC, COMMUN (8, 25) CNTRLAC,	IETAS(I,J)		(35,2)	CNTRLAC, TRACKAC	see packed array description
(I,J) (36,10) CNTRLAC, SPDCNTR, TRACKAC (36) CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC CNTRLAC, TATREST (1) (60) CNTRLAC, TATREST (1) (8,25) CNTRLAC, COMMUN (1) (1) (2) (36,25) CNTRLAC, COMMUN (3) (4) (5) (6) (6) (7) (7) (7) (8) (8) (8) (9) (9) (9) (1) (1) (2) (3) (4) (5) (4) (5) (6) (6) (7) (7) (7) (8) (8) (8) (9) (8) (9) (9) (1) (1) (1) (1) (2) (3) (4) (5) (4) (5) (6) (6) (7) (7) (7) (8) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1	IETA1(I,J)		(36,10)	CNTRLAC, SPDCNTR, TRACKAC	see packed array description
OR(I) (36) CNTRLAC CNTRLAC CNTRLAC CNTRLAC, TATREST (1) (60) CNTRLAC, TATREST (1) (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (1) (1) (1) (2) (36) (37) (4) (5) (6) (6) (7) (7) (7) (7) (9) (9) (9) (9	IETA2(I,J)		(36,10)	CNTRLAC, SPDCNTR, TRACKAC	see packed array description
CUTRLAC CNTRLAC CNTRLAC GNTRLAC, TATREST G1(1,J) G8,25) CNTRLAC, COMMUN G8,25) CNTRLAC, COMMUN TNAV(1,3)- INAV(1,3)- INAV(10,3) CNTRLAC, COMMUN, INIT, FATINT, TATREAD, TRACKAC TATINT, TATREAD, TRACKAC	IETCOOR(I)		(36)	CNTRLAC, TATINT, TRACKAC	see input data and packed array description
(I) (60) CNTRLAC, TATREST 31(I,J) (8,25) CNTRLAC, COMMUN 32(I,J) (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (1,3)- INAV(1,3)- INAV(1,3)- INAV(10,3) CNTRLAC, COMMUN, INIT, FATIREAD, TRACKAC TATINT, TATREAD, TRACKAC	IETT			CNTRLAC	earliest transmit time for a message
(I) (60) CNTRLAC, TATREST pattern on a pat 51(I,J) (8,25) CNTRLAC, COMMUN see pack CNTRLAC, COMMUN, CRIDSPL, symbolic init, TATINT, TRACKAC see INAV (1,3)— (I) INAV(1,3)— (IETT2			CNTRLAC	temporary for earliest transmit time for a message developed in the sequencing logic section
G1(I,J) (8,25) CNTRLAC, COMMUN 32(I,J) (8,25) CNTRLAC, COMMUN (1,3)- (1) INAV(1,3)- (2) INAV(1,3)- (3) CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC (1) TATINT, TATREAD, TRACKAC	IE360(I)		(09)	CNTRLAC, TATREST	counter of number of 120-sec holding pattern increments to allow for delayed holds on a path
32(I,J) (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (8,25) CNTRLAC, COMMUN (9,25) CNTRLAC, COMMUN (1,3)- (1) INAV(1,3)- (2) INAV(1,3)- (3) CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC (4,25) CNTRLAC, COMMUN, INIT, TATREAD, TRACKAC	IFCMSG1(I,J)		(8,25)	CNTRLAC, COMMUN	packed
(8,25) CNTRLAC, COMMUN, CRIDSPL, CNTRLAC, COMMUN, CRIDSPL, INAV(1,3)- INAV(10,3) CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC	IFCMSG2(I,J)		(8,25)	CNTRLAC, COMMUN	
CNTRLAC, COMMUN, CRTDSPL, INIT, TATINT, TRACKAC INAV(10,3) CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC	IFCMSG3(I,J)		(8,25)	CNTRLAC, COMMUN	see packed array description
I) INAV(1,3)- INAV(10,3) CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC	IFIVE			CNTRLAC, COMMUN, CRTDSPL, INIT, TATINT, TRACKAC	symbolic name for the constant 5
CNTRLAC, COMMUN, INIT, TATINE TATREAD, TRACKAC	IFIX(I)	INAV(1,3)- INAV(10,3)			see INAV
	IFOUR			CNTRLAC, COMMUN, INIT, TATINT, TATREAD, TRACKAC	symbolic name for the constant 4

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
160			CNTRLAC	assigned GO TO vector used in controlling logic flow in the sequencing section
IH			CNTRLAC	temporary
ІНЕМ			CNTRLAC, COMMUN, TATOPER, TRACKAC	hemisphere of aircraft under consideration
IHISIDE			CNTRLAC	temporary, used in final sequencing logic as hemisphere indicator
IHOMN			TATREST, TATOPER, TRACKAC	hemisphere of cockpit
IHPATHE			COMMUN, TATINT	see input data
IHPATHS			CNTRLAC, TATINT	see input data
II			COMMUN, TATPRNT	temporary
IIP1			TATPRNT	temporary
IJKBUFF(I)		(5)	TAATM, TATINT, TATPRNT, TATREAD, TATMAIN	used with system routines, a program control buffer
IK			TATOPER, TRACKAC	temporary
ILEG			CNTRLAC	current flight leg
ILEGMI			CNTRLAC	current flight leg minus one, i.e., previous flight leg
ILIMOP	RESTOR(33) IOPTION(10) OPTION(10)			see RESTOR
ILLIM	•		CNTRLAC	lower limit of number of aircraft, in an array where a flow-control limit has been applied, before additional separation is removed
ILOC			TRACKAC	temporary
ILTT		J	СОММИИ	latest desirable transmit time for a controller message
IMHERE			CNTRLAC	temporary, used for diagnostic on which logic flow path was taken

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
INAV(I,J)		(10,5)	TATINT, TATOPER, TRACKAC	contains the x,y coordinates, "make good" radii, and standard deviations for the ground-based navigational aid site. See packed array description and input data for details
J = 1	IVOR(I)	(10)	TRACKAC	VORs
2	IADF(I)	(10)	TRACKAC	ADFs
ന	IFIX(I)	(10)	CRIDSPL, IRACKAC	FIXes
7	IDME(I)	(10)	TRACKAC	DMEs
5	IXILS(I)	(10)	TATOPER, TRACKAC	ILSs
INC	INTEG(8)			see INTEG
INCC	INTEG(9)			see INTEG
INCP			TATPRNT	temporary
IND			CNTRLAC, TATHOLD	temporaryused as switch in sequencing logic
INDEX			TATINT	temporary
INDR			CNTRLAC	indicator of whether or not aircraft will fly over the inner fix in the sequencing area
INDSPD	RESTOR (36)			see RESTOR
INDI			CONCHK	logic control switch
INEXT			CNTRLAC	pointer to traffic sample for next aircraft waiting for departure or arrival clearance
INFO4			TRACKAC	temporary
ININE			CNTRLAC, INIT, TATINT, TATREAD, TRACKAC	symbolic name for the constant 9
INITRD	LOGIC(8)			see LOGIC

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
INTEG(I)		(80)		array of integer variables that can be called up on the digital display on the console fairly easily
I = 1	ISCAL		INIT, TATHOLD	scaling factor for CRT display
2	IPL		TAATM, TATINT, TATMAIN	denotes primary overlay
က	ISL		TAATM, TATINT, TATMAIN	denotes secondary overlay
4	Z		COMMUN, MAKTAPE, TATOPER PAKUNI, TRACKAC, RANDU	temporary in COMMUN,MAKTAPE,PAKUNI,RANDU. in TRACKAC, used as pointer to active traffic aircraft being trackedinitialized in operate
īŪ				not used at present
9	NFMSGD		CNTRLAC, TATOPER	counter of messages developed this frame to update frame counter if necessary to maintain real-time synchronization
7	KRET		INIT, CNTRLAC	used with NFMSGD as the threshold count of messages developed this frame whereby any more would possibly cause time synchronization loss
∞	INC		CNTRLAC, TATOPER, TATREST, COMMUN	frame counter for real-time frames for each scan
ο	INCC		TATOPER, CRTDSPL, INIT	number of aircraft for which display calculations are going to be done this frame
10	INUM		COMMUN, TATREST	pointer to traffic sample array for next aircraft to be considered for entry into arrival or departure queues
11	IO		INIT, TATOPER	temporary

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
INTEG(I)				
= 25	IDREL		TATREST, TRACKAC	ID of aircraft that is selected as the aircraft to put the relative coordinate system on for relative display
7				not used at present
27	KKK		TATOPER, CRTDSPL, CNTRLAC	temporary
28	K		CRIDSPL	temporary
29	К2		CRIDSPL	temporary
30	MAXAC		INIT, TATREST, CNTRLAC	maximum number of aircraft accepted into active traffic; value is set to agree with storage dimensions reserved
31				not used at present
32				not used at present
33	NCOM		CNTRLAC, COMMUN, INIT, TATOPER	denotes which operate frames are to be used for channel communications
34	NCONTRL		INIT, TATOPER	denotes when all controller action frames have been completed in current scan
35	MAXQUE		COMMUN, INIT	upper limit set on how many aircraft can be waiting in arrival or departure queues
36	NFRAM		INIT, TATINT, TATOPER	number of time frame before update of scan counter. Usage is to override this to run in fast time when desirable
37	NTRAF		TATINT, TATREAD	see input data
38	NTRAK		COMMUN, INIT, TATOPER	denotes which operate frames are to be used for aircraft position updating (tracking)
39				not used at present
40	II .		CNTRLAC, COMMUN, CRTDSPL, TATINT, TATPRNT, TATREST, TATOPER	scan counter

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
INTEG(I)				
I = 41	NSCAN		CNTRLAC, COMMUN, CONCHK, CRTDSPL, TATINT, TATPRNT, TATREST, TATOPER, SPDCNTR, TRACKAC	number of alrcraft in active traffic
42				not used at present
43				not used at present
77				not used at present
45	ISTK		CRIDSPL, INIT, TATOPER, TRACKAC	switch to indicate if stick (cockpit) condition is on (ISTK #0)
46 to 54	MSG(I)	(6)	CNTRLAC, TATINT	see input data
55 to 65				not used at present
99	IDELET		TRACKAC	aircraft number (input from real-time console) to be deleted from active traffic
29	ISTOP		TATOPER	variable set from real-time consoleused to permit stopping on any frame
89	IDIAG		TATPRNT	when switch is set, i.e., IDIAG#0, schedule will be printed with active traffic
69				not used at present
70	IBEG		COMMUN, TATREST, TATHOLD, TATOPER, TRACKAC, PAKSPL	temporary
71 to 74	IATSPL(I,J)	(4,1)	TATREST, TATHOLD, TATOPER	special attribute table for unpacking from core storage
INUM	INTEG(10)			see INTEG
INUMI			COMMUN	position in traffic sample of first aircraft in takeoff queue 1 (ITOQUE(1,1))

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
INUM2			СОММИИ	position in traffic sample of first aircraft in takeoff queue 2 (ITOQUE(2,1))
10	INTEG(11)			see INTEG
IOBETA			CONCHK, SPDCNTR	subscript of ETA at beginning end of path for "other aircraft"
IOEETA			CONCHK, SPDCNTR	subscript of ETA at terminal end of path for "other aircraft"
IONE			CNTRLAC, COMMUN, CONCHK, CRTDSPL, INIT, TATINT, TATREAD, TATOPER, SPDCNTR, TRACKAC	symbolic name for constant l
IOPATH			CONCHK, SPDCNTR	subscript of NNPATH for "other aircraft"
IOPT	INTEG(13)			see INTEG
IOPTION(I)	OPTION(I) RESTOR(24) RESTOR(33)			see RESTOR
IOPIN(I)		(55)	CNTRLAC, TATINT	see input data and packed array description
IOTHID			SPDCNTR, CONCHK	temporary used in searching ETA array for ID of "other aircraft"
IOUT	INTEG(12)			see INTEG
IPA			CNTRLAC	for runway conflict check for departure clearance, it is the subscript of ETA array where arrivals are registered for other runway
IPACK			TATINT	temporary for loop index
IPAPATH			CNTRLAC, COMMUN, TATINT	see input dataattribute table for packed words IATRF21 and IATRF23

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
IPASKED(I,J)		(4,7)	CNTRLAC, COMMUN, TATINT, TRACKAC	input dataattribute table for packed array IASKED
IPASSAC			CONCHK, TATREST, SPDCNTR	counter for number of aircraft that can be passed in conflict check ETA array
IPCHKPT(I,J)		(4,6)	CNTRLAC, TATINT, TRACKAC	input dataattribute table for packed array ICHKPT
IPCNTR1(I,J)		(4,6)	CNTRLAC, TATINT, TRACKAC	input dataattribute table for packed array ICNTRA1
IPCNTR2(I,J)		(4,2)	CNTRLAG, TATINT, TRACKAC	input dataattribute table for packed array ICNTRA2
IPD			CNTRLAC	for runway conflict check for departure clearance, it is the subscript of ETA array where departures are registered for other runway
IPDRT(I,J)		(4,5)	CNTRLAC, TATINT	input dataattribute table for packed array IDROUTE
IPERFR(I,J)		(3,7)	TATINI	see input data and packed array description
IPERFR2(I)	IPERFR(I,2)	(3)	CNTRLAC, TRACKAC	see input data and packed array description, IPERFR
IPERFR3(I)	IPERFR(I,3)		CNTRLAC, TRACKAC	see input data and packed array description, IPERFR
IPERFR4(I)	IPERFR(I,4)		CNTRLAC, TRACKAC	see input data and packed array description, IPERFR
IPERFR5(I)	IPERFR(I,5)	(3)	CNTRLAC, TRACKAC	see input data and packed array description, IPERFR
IPERFR6(I)	IPERFR(I,6)	(3)	COMETA, TRACKAC	see input data and packed array description, IPERFR
IPERFR7(I)	IPERFR(I,7)	(3)	CNTRLAC, TRACKAC	see input data and packed array description, IPERFR
IPERFS(I,J)		(4,8)	CNTRLAC, TATINT, TRACKAC	see input data and packed array description
IPERFS1(I)	IPERFS(I,1)	(4)	CNTRLAC, TRACKAC	see input data and packed array description, IPERFS
IPERFS2(I)	IPERFS(I,2)	(4)	CNTRLAC, ETACOMP, TRACKAC	see input data and packed array description, IPERFS

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
IPERFS3(I)	IPERFS(I,3)	(7)	CNTRLAC, ETACOMP, TRACKAC	see input data and packed array description, IPERFS
IPERFS4(I)	IPERFS(I,4)	(4)	TATINT	see input data and packed array description, IPERFS
IPERFT(I)		(3)	TATINT, TRACKAC	see input data and packed array description
IPETA1(I,J)		(4,4)	CNTRLAC, CONCHK, TATINT SPDCNTR, TRACKAC	input dataattribute table for packed array IETAl
IPETA2(I,J)		(4,6)	CNTRLAC, CONCHK, TATINT, SPDCNTR	input dataattribute table for packed array IETA2
IPETC(I,J)		(4,4)	CNTRLAC, TATINT, TRACKAC	input dataattribute table for packed array IETCOOR
IPFTR(I)		(3)	CNTRLAC, TATINT, TRACKAC	see input data and packed array description
IPL	INTEG(2)			see INTEG
IPLACE			UPKUNI	temporary
IPLIMAC(I,J)		(4,7)	TATINT, CNTRLAC	input dataattribute table for packed array LIMAC
IPMSG2(I,J)		(4,6)	CNTRLAC, COMMUN, CRIDSPL, TATINI	input dataattribute table for packed arrays ICMSG2 and IFCMSG2
IPMSG3(I,J)		(4,3)	CNTRLAC, COMMUN, CRIDSPL, TATINI	input data-attribute table for packed arrays ICMSG3 and IFCMSG3
IPNPATH(I,J)		(4,7)	CNTRLAC, COMMUN, TATINT TRACKAC	input dataattribute table for packed array NNPATH
IPNSITE(I,J)		(4,4)	TATINT, TATOPER, TRACKAC	input dataattribute table for packed array INAV
IPOPPA			TATINT	see input data
IPOPTN(I,J)		(4,10)	CNTRLAC, TATINT	input dataattribute table for packed array IOPIN
IPOPUP(I)	POPUP(I) TABLE(60)- TABLE(72)			see TABLE
IPSKED		(4,8)	CNTRLAC, COMMUN, TATINT, TRACKAC	input dataattribute table for packed array ISKED

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
IPTAS(I,J)		(4,5)	TATINT, TRACKAC	input dataattribute table for packed arrays IETAS and IATAS
IPTRAF1(I,J)		(4,4)	CNTRLAC, TATINT, TATREAD, TRACKAC	input dataattribute table for packed array ITRAFI
IPTRAF2(1,J)		(4,9)	CNTRLAC, COMMUN, TATINT, TATREAD, TATREST	input dataattribute table for packed array ITRAF2
IQUEUE(I)		(4)	CNTRLAC	variable name for total set of departure and arrival queues; this name optionally used by flow control option when checking count of aircraft in departure or arrival queues
. I .	ID(I)	(2)	CNTRLAC, COMMUN, TATREST, TATOPER, TRACKAC	departure queue counter, contains count of aircraft in departure queue who are waiting for controller action
m	IA(I)	(2)	CNTRLAC, COMMUN, TATREST, TATOPER	arrival queue counter, contains count of aircraft in arrival queue whose offer time is now or has passed
IR	INTEG(17)			see INTEG
IRCLR			CNTRLAC	segment clearances being removed when a message is being deleted for an aircraft
IROUTE			CNTRLAC	arrival route number used as subscript to IACCEPT array
IRSEP			CNTRLAC	subscript to separation array SEPP for final sequencing logic
IRUN	INTEG(19)			see INTEG
IS			CNTRLAC	temporary, used as subscript to ETA array to check for other aircraft needing 360s
ISA			CNTRLAC	for runway conflict check for departure clearances, it is the subscript of ETA array where arrivals are registered for same runway
ISAC(I)	ISEQUE(1,16)- ISEQUE(3,16), SEQUE(1,16)-			see SEQUE

Table E-1. Continued.

Table E-1. Continued.

Definition	see SEQUE	indicator whether element wanted in packed word is signed (=1)from row 2 of attribute tables	symbolic name for the constant 6	see input data and packed array description	see INTEG	aircraft speed in terms of knots for tags on CRT display	see RESTOR	indicator set if a speed change message is to be generated	see input data	see INTEG	see INTEG	temporary, used as ETA array subscriptin COMMUN is specifically subscript of conflict checkpoint ETA for this message	see RESTOR	see RESTOR
Routines in Which Variable is Used		PAKSPL and UPKSPL	CNTRLAC, COMMUN, CONCHK, ETACOMP, INIT, TATINT, TATREST, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, TATINT, TRACKAC		CRIDSPL		CNTRLAC	COMMUN, TATINT			COMMUN, TRACKAC		
Dimensions				(85)					(21)					
Aliases	ISEQUE(1,2)- ISEQUE(3,2), SEQUE(1,2)- SEQUE(3,2)				INTEG(3)		RESTOR(30) IOPTION(7) OPTION(7)			INTEG (45)	INTEG(67)		RESTOR(14)	RESTOR(18)
Мате	ISIDE(I)	ISIGN	ISIX	ISKED(I)	ISI	ISPD	ISPDOP	ISPMSG	ISTARTA(I)	ISTK	ISTOP	ISUB	ISUBCK	ISUBN

Table E-1. Continued.

Definition	see RESTOR	see RESTOR	location of element in IETCOOR packed word for a switch which is turned on if an air-craft is scheduled for standard holding pattern over the conflict checkpoint	subscript to SWITCH array which contains on-off switches for flow-control limits logic	see INTEG	see INTEG	switch used with cockpit aircraft	see INTEG	see input data	dummy variable in subroutine argument list tape unit number	temporary scalar integer	temporary integer mode array	temporary	temporary	temporary	temporary scalar integer	temporary scalar integer	symbolic name for the constant 10
Routines in Which Variable is Used			CNTRLAC, TRACKAC	CNTRLAC			TATOPER, TRACKAC		CNTRLAC, TATINT	MAKTAPE	CNTRLAC, COMMUN, TATINT, TATREAD, TRACKAC	CNTRLAC, TRACKAC	COMMUN	COMMUN	COMMUN	CNTRLAC, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC, INIT, TATINT, TRACKAC
Dimensions									(4)			(10)						
Aliases	RESTOR(19)	RESTOR(15)			INTEG(21)	INTEG(22)		INTEG(40)				TEMPA(I)						
Name	ISUBO	ISUBOP	ISWHOLD	ISWITCH	ISW2	ISM3	ISW4	II	ITANG(I)	ITAPE	ITEMP	ITEMPA(I)	ITEMPA1	ITEMPA2	ITEMPA3	ITEMPS	ITEMP 2	ITEN

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Head	Definitior.
ITEST				temporary for logic control
ITHREE			CNTRLAC, COMMUN, CONCHK, CRTDSPL, INIT, TATREST, SPDCNTR	symbolic name for the constant 3
ITIME			TRACKAC	temporary, for type time in CP mode for time
ITL			TATPRNT, TATREST	switch used in print routine to determine if data for a new scan has been encountered
ITOQUE(I,J)		(2,20)	CNTRLAC, COMMUN, TRACKAC	takeoff queue containing ID number of air- craft which are awaiting controller action for departure clearances
ITRAF1(I)		(102)	CNTRLAC, TATINT, TATREAD, TRACKAC	see input data and packed array description
ITRAF2(I)		(102)	CNTRLAC, COMMUN, TATINT, TATREST, TATREAD, TRACKAC	see input data and packed array description
ITRIB(I,J)		(4,1)	PAKSPL and UPKSPL	attribute table, variable dimensions, dummy variable in subroutine call argument list
ITRY			CNTRLAC, CONCHK, ETACOMP, TATREST, SPDCNTR	temporary indicator and switch for logic flow control
ITRYDVG			CNTRLAC	switch to indicate whether divergent route option was tried to resolve conflict
ITRYEH			CNTRLAC	switch to indicate whether 360 (emergency hold) option was tried to resolve conflict
ITRYSH			CNTRLAC	switch to indicate whether standard hold pattern option was tried to resolve conflict
ITRYSPD		_	CNTRLAC	switch to indicate whether speed control option was tried to resolve conflict
ITRYVEC			CNTRLAC	switch to indicate whether alternate vector option was tried to resolve conflict

Table E-1. Continued.

		ant 2			rcraft desired in low control; if ements are increased		variation has			t possible f zero		ray used for	TA or queue) ies
Definition	temporary for time in turn	symbolic name for the constant 2	type of controller action	aircraft type (prop or jet)	upper limit of number of aircraft desired in an array being limited by flow control; if exceeded, separation requirements are increased	buffer to system routine	switch to indicate if speed variation has been used	see RESTOR	see RESTOR	subscript to NNPATH for next possible alternate vectorno more if zero	see INAV	subscript of arrival ETA array used for touchdown CP mode	subscript to which array (ETA or queue) the flow-control limit applies
Routines in Which Variable is Used	CNTRLAC	CNTRLAC, COMMUN, CONCHK, INIT, TATINT, TATOPER, SPDCNTR, TRACKAC	CNTRLAC, TRACKAC	CNTRLAC	CNTRLAC	TATINT	CNTRLAC			CNTRLAC		TRACKAC	CNTRLAC
Dimensions	5	5 [3	•	•	(5)	J			J			J
Aliases								RESTOR(27) IOPTION(4) OPTION(4)	RESTOR(26) IOPTION(3) OPTION(3)		INAV(1,1)- INAV(10,1)		
Name	ITI	IIWO	ITYPCL	ITYPE	IULIM	IVARBUFF(I)	IVARSPD	IVECOP	IVECT	IVECT2	IVOR(I)	IWARR	IWARRAY

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
ІМСНАО			CNTRLAC	used with IDALT as subscripts to the altitude option array ALTOPT for altitude being considered
IWETA			CNTRLAC	temporary for ETA array subscript
IWH			TRACKAC	temporary used as subscript for unpacking IETAS and IATAS arrays
ІМНСН			CNTRLAC, UPKUNI	temporary used to point to which packed word or element on which to operate
Т МНСНМ1			CONCHK, SPDCNTR	pointer used while checking aircraft behind and ahead during conflict check
IWHCHP1			CONCHK	pointer used while checking aircraft behind and ahead during conflict check
IWHCNTR			CNTRLAC	subscript for controller who generated path and message, if any
ІМНІСН			CNTRLAC, CONCHK, TATREST, SPDCNTR	temporary subscript of aircraft position in conflict checkpoint array (ETA)
IWHP1			CNTRLAC, SPDCNTR	temporary subscript of conflict checkpoint array (ETA), specifically, IWHICH+1
IWHSPD			CNTRLAC	counter (subscript) of which alternate speed variation now being tried to resolve conflict
IWID		J	CNTRLAC	temporary for aircraft ID in message arrays
IWORD		2	TATINT, PAKSPL, UPKSPL, UPKUNI	temporary, used for packing and unpacking elements
IWORK		-	PAKUNI	temporary, used for packing elements into a packed word
IWPATH		•	COMMUN	switch to indicate whether message applies to present path (1) or future path (2)
IXCESS		-	PAKUNI	count of excess bits when elements do not fill a packed wordused to position elements uniformly

Table E-1. Continued.

Definition	argument list variable to system routine	see INAV	temporary scalar integer	"update of kernel" variable for the calls to random number generator routine	input data in TATINT, but used as temporary elsewhere	assigned go to switch for accepting aircraft into active traffic	input data in TATINT, but used as temporary elsewhere	temporary	temporary	temporary	
sions Routines in Which Variable is Used	CNTRLAC, COMMUN, TRACKAC		UPKUNI	RANDU, TRACKAC	CNTRLAC, COMMUN, CRTDSPL TATINT, TATREST, TATOPER, TRACKAC	CNTRLAC	CNTRLAC, COMMUN, CRIDSPL, TATINT, TRACKAC	CNTRLAC, COMMUN, TRACKAC	CNTRLAC	CNTRLAC	
Aliases Dimensions		INAV(1,5)- INAV(10,5)									
Name	IXI	IXILS(I)	IXRET	IX	רי	JGO	JJ	JJJ	JJM1	JJP1	

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
			CNTRLAC, CONCHK, SPDCNTR	temporary
JLP1			CONCHK, SPDCNTR	temporary
JOE			CNTRLAC, CONCHK	temporaryused as subscript
JP1			CNTRLAC	temporary
JS			CNTRLAC	temporary
JTEMP			CNTRLAC, CONCHK, SPDCNTR, TRACKAC	temporary
JTEMPA(I)		(10)	CNTRLAC	temporary integer mode array
JWORK			PAKUNI	temporary
JX			COMMUN	temporary
JXX			COMMUN	temporary
,			CNTRLAC, COMMUN, TATINT, TATREST, PAKSPL/UPKSPL, PAKUNI, TRACKAC	temporary
KADF			TRACKAC	temporary, used as subscript to ADF site
KALTOP			CNTRLAC	temporary (for IWCHAO)subscript of optional altitude being considered if option is available
KDATA			PAKUNI	temporary
KDME			TRACKAC	temporarysubscript of DME site

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
KGO			CNTRLAC	assigned GO TO variable used when developing messages
KILS			TATOPER, TRACKAC	temporaryused as subscript of ILS site
KK			CNTRLAC, COMMUN, PAKUNI, TRACKAC	temporary
KKK	INTEG(27)			see INTEG
KPACK			TATINT	temporaryused as count of individual type navaid sites while packing
KP3		-	CNTRLAC	temporaryused when transferring schedule from NNPATH to active schedule
KRET	INTEG(7)			see INTEG
KTEMP		-	CNTRLAC, CONCHK, SPDCNTR	temporary
KTYPE		-	TATINT	temporaryused in argument list to system routine
KVOR		-	TRACKAC	temporaryused as subscript to VOR site
KWORD			PAKSPL, UPKUNI	temporary
K1	INTEG(28)			see INTEG
К2	INTEG(29)			see INTEG
K3		_	CNTRLAC	temporary

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
T			PER,	used as temporary except in TRACKAC, where it is a counter for aircraft being tracked this scan
LDISI(I)		(108)	TAATM, TATINT, TATMAIN, PAKSPL	array of LOGICAL discrete inputs (switches) allowing interaction with the real-time simulation from the console
LDISO(I)		(196)	CRIDSPL, TATINI, TATPRNI,	array of LOGICAL discrete outputs (lights or logical switches) to set and test switches in the real-time simulation
LEMG(I)		(5)	CNTRLAC, TATREST	array of pointers to positions in an ETA array for all aircraft behind aircraft under consideration requiring emergency 360s to solve a conflict
LENGTH			TATINT, PAKSPL, PAKUNI, UPKUNI	temporary for how many bits each element requires in the packed wordappears in argument list for uniform pack routines PAKUNI/UPKUNI and as row 1 of attribute table for PAKSPL/UPKSPL
LIMAC(I)		(10)	CNTRLAC, TATINT	see input data and packed array description
LIMGO			CNTRLAC	assigned GO TO variable to control logic in flow control section of routine
LIND			CNTRLAC	indication of whether an attempt to resolve conflict with holding pattern has already been tried
LL			CNTRLAC, TRACKAC	temporary
LLL			CNTRLAC, COMMUN, TRACKAC	temporaryused as subscript when assigning active schedule or determining which is most recently assigned schedule
LLLM1			CNTRLAC	temporaryused with LLL as pointer to active schedule

Table E-1. Continued.

Name	Aliases	Dimensions	in	Definition
			Variable is Used	
LLLP1			CNTRLAC	temporaryused with LLL as pointer to active schedule
LLLP2			CNTRLAC	temporaryused with LLL as pointer to active schedule
LLLP3			CNTRLAC	temporaryused with LLL as pointer to active schedule
LOGIC(I)		(20)	TATINT, INIT	an array of logical typed variables used for console interaction with the real-time simulation system
I = 1	CRTINIT		TATHOLD, INIT, TATOPER	logical variable which when turned off prohibits multiple passes through the CRT initialization logic
2 to 6				not currently being used
7	WRTTPE		INIT, TATPRNT, TATMAIN	logical variable used as a switch for additionally writing BCD tape of outputs normally printed
∞	INITRD		INIT, TATREST, TATOPER	logical variable used as switch to bypass the initialization logic except for the first time through when in reset mode
6	MSGTYP		COMMUN, INIT	logical variable used as switch to output controller messages on the on-line typewriter
10				not currently being used
11	PLOTSW		INIT, TATHOLD, TATOPER	logical variable used as a switch to prevent multiple passes through program logic when writing tape images for CALCOMP plotter
12 to 20				not currently being used

Table E-1. Continued.

Dimensions Routines in Which Definition Variable is Used	TATINT	CNTRLAC, TRACKAC temporary	TATINT, TATHOLD, TATOPER, temporary PAKSPL	TATINT, TATREAD temporary	TATINT, TATREAD temporary	CNTRLAC temporary	PAKSPL/UPKSPL,UPKUNI field of bits generated and used for packing and unpacking elements into or from packed words	see INTEG	see INTEG	CNTRLAC,TAATM,TATPRNT, I/O unit assigned for day-file output	CNTRLAC	CNTRLAC	TRACKAC temporary for element number 1 in ISKED or IASKEDsee ISKED packed data description	TRACKAC temporary for element 5 in IASKED and element 6 in ISKED. See ISKED packed data description
Dimensions	TA	CN	TA PA	TA	TA	CN	PA			CN	CN	CN	TR	TR
Aliases								INTEG(30)	INTEG(35)					
Name	LPACK	LTEMP	LWORD	LWORD1	LWORD2	Ħ	MASK	MAXAC	MAXQUE II	MF	MM	MMM	MODE	MODECP

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
NASPACE(I)		(4)	CNTRLAC, TATREST	number of aircraft in the airspace conflict arrays ASPACE1, ASPACE2, ASPACE3
NCACT			TATINT	see input data
NCHK			TATINT	see input data
NCLRD			CNTRLAC	number of aircraft which have priority because they have been cleared through this point and the next one
NCMSG(I)		(10)	CNTRLAC, COMMUN, TATREST	number of current messages in Ith controller's message queue
NCMSGT			CNTRLAC, COMMUN	temporary, number of current messages in the queue for this controller
NCOM	INTEG(33)			see INTEG
NCONTRL	INTEG(34)			see INTEG
NCP			TATINT, TATPRNT, TRACKAC	see input data
NDAC			TATINT	number of digital-to-analog converters for set-up request
NDEPR			CNTRLAC, TATINT, TRACKAC	see input data
NDME	NNAV(4)			see NNAV
NDRTE			TATINT	see input data
NDR1 through NDR6			ТАТНОГД	switches used for plotting departure Victor airways displays on CRT
NEMG			CNTRLAC, TATREST	number of aircraft requiring emergency (immediate) 360 holding patterns
NETA(I)		(36)	CNTRLAC, CONCHK, TATREST, TATOPER, SPDCNTR, TRACKAC	array of counts of aircraft in each ETA array

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
NFIX	NNAV(3)			see NNAV
NFMSG(I)		(10)	CNTRLAC, COMMUN, TATREST	number of future messages in Ith controller's message queue
NFMSGD	INTEG(6)			see INTEG
NFMSGT			CNTRLAC, COMMUN	temporarynumber of future messages in the queue for this controller
NFRAM	INTEG(36)			see INTEG
NFRAMD			TATOPER	number of calls to display CRT each frame
NFRAMF			TATHOLD, TATOPER	frequency with which CRT is updated for all aircraft
NGO			TRACKAC	for deleting an aircraft from active traffic; assigned GO TO switch used in deleting an aircraft from one or two ETA arrays
NHOLD			TATMAIN	assigned GO TO mode control "HOLD" return to top of HOLD logic
NHOLDP(I)		(35)	CNTRLAC, COMMUN, CONCHK, CRIDSPL, SPDCNTR, TRACKAC	number of segments remaining until the Ith aircraft in active traffic completes a standard holding pattern if non-zero
NILS	NNAV(5)			see NNAV
NINTEG			TATINT	number of integer tables requested in set-up request
NLDISI			TATINT '	number of LDISIs (logical discrete inputs) for set-up request
NLDISO			TATINT	number of LDISOs (logical discrete outputs) for set-up request
NLIM			TATINT	number of flow-control optional limits arrays to read in
NLOGIC			TATINT	size of LOGIC variable table in set-up request

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
NNA(I)		(35)	CNTRLAC, COMMUN, TRACKAC	number of segments currently in active schedule of Ith aircraft
NNAT			TRACKAC	temporary
NNAV(I)		(5)	TATINT	number of navigational aids per type of aid
I = 1	NVOR		TATINT	see input data
7	NADF		TATINT	see input data
က	NFIX		TRACKAC, TATINT	see input data
4	NDME		TATINT	see input data
7	NILS		TATINT	see input data
NNPATH(I)		(20)	CNTRLAC, COMMUN, TATINT, TRACKAC	see input data and packed array description
NOM			CNTRLAC	temporary switch used to save nominal path when trying another option
NOPER			TATMAIN	assigned GO TO variable to return control of program to top of operate section logic
NOPT			TATINT	see input data
NOUT(I)		(20)	CNTRLAC, TATINT, TATPRNT, TATOPER, TRACKAC	temporary array used to output schedules and sequencing queues
NPRINT			TATMAIN	assigned GO TO variable to return control to top of print section of logic
NPTH			TATINT	see input data
NREAD			TATMAIN	assigned GO TO variable to return control to top of read section of logic
NRESET			TATMAIN	assigned GO TO variable to return control to top of reset section of logic
NS			DASHCIR	temporary for controlling dashed lines in drawing a circle

in Which is Used	see INTEG	see RESTOR	see input data	see input data	temporary for number of packed words for each row in speed performance arrays	see input data	number of locations in TABLE array needed on set-up request	NC temporary	assigned GO TO variable to return control to top of terminate section of logic	see INTEG	see INTEG	see INTEG	see input data	see RESTOR	see INTEG	see NNAV	temporarynumber of consecutive computer words needed to pack this array	integer number of 360s being considered
Dimensions			TATINT	TATINT	CNTRLAC, TATINT	TATINT	TATINT	CNTRLAC, TRACKAC	TATMAIN				TATINI				PAKUNI	CNTRLAC
Aliases	INTEG(41)	RESTOR(10)								INTEG(37)	INTEG(38)	INTEG(23)		RESTOR(2)	INTEG(39)	NNAV(1)		
Name	NSCAN	NSEGM	NSKED	NSPDSTD	NSPDW	NSTART	NTABLE	NTEMP	NTERM	NTRAF	NTRAK	NTWO	NTYPE	NUMPATH	NUMSC	NVOR	NWORDS	N360

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
OALT	RESTOR(3)			see RESTOR
OLDR(I)		(35)	CNTRLAC, TRACKAC	old range of aircraft from navaid sites on previous scan
OLFN			TAATM, TATINT	actial file name where overlays reside
ONOFF			CNTRLAC	temporary for SWITCH(I)
OPER	LDISI(17)		TATMAIN	console switch to take real-time simulation to operate mode
OPTION(I)	IOPTION(I) RESTOR(24)- RESTOR(33)			see RESTOR
OSCAR			TATINT	literal argument to NM218 system routine
OSPD	RESTOR(34)			see RESTOR
OTHAA			CONCHK, SPDCNTR	altitude of "other aircraft" at terminal end of path being considered
OTHETA			CONCHK, SPDCNTR	ETA of "other aircraft" at conflict point being considered
отноа			CONCHK, SPDCNTR	altitude of "other aircraft" at beginning of path being considered
OTHSETA			CONCHK, SPDCNTR	ETA of "other aircraft" at separation distance from conflict point being considered
ОТНУЕГ			CONCHK	velocity for "other aircraft" at conflict checkpoint being considered
OUT(I)	:	(26)	CNTRLAC, COMMUN, TATINT, TATPRNT, TRACKAC	temporary array used to output message, active traffic ETA information, etc.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
PABS			TATOPER	three-dimensional range from runway in n mi
PASEP	TABLE(23)			see TABLE
PDSEP	TABLE(24)			see TABLE
PERSPLT	LOGIC(10)			see LOGIC
PHI			TRACKAC	bank angle needed to correct aircraft heading (maximum value permitted is 30°)
PHIK	TABLE (25)			see TABLE
PI			INIT	the constant π , where 2π radians - 360°
PID2			INIT	one half PI, i.e., π/2
PITCH			TATHOLD, TATOPER	cockpit aircraft pitch angle, in degrees, used for runway display
PITCHC			TATOPER	temporary used as cosine of PITCH angle
PITCHS			TATOPER	temporary used as sine of PITCH angle
P120			INIT	$20 \text{ times PI, i.e., } 20\pi$
PLOTSW	LOGIC(11)			see LOGIC
POPUP	IPOPUP(I) TABLE(60)- TABLE(72)			see TABLE
PPMX(I)			CRTDSPL, TATINT	see input data
PPMY(I)		(3)	CRTDSPL, TATINT	see input data
PPX1		-	CRIDSPL	used in drawing line segments on the CRT
PPX2		-	CRIDSPL	same as PPX1
PPY1		-	CRIDSPL	same as PPX1
PPY2			CRTDSPL	same as PPX1
PSI			XFORM	used as dummy variable in subroutine argument list for aircraft heading

Table E-1. Continued.

Definition	temporary: radius of circle wanted in DASHCIR. Range in the case of other routines	see input data	see TABLE	temporary used in navigation calculations	calculated radius of turn to place popup aircraft on heading to first ETA point	radius of a range marker on CRT display	same as RAD1	same as RAD1	same as RAD1	temporary: distance, in n mi, between two points	temporary: used for aircraft performance rate	see SEQUE	see SEQUE	see SEQUE	see SEQUE
Routines in Which Variable is Used	CRTDSPL, DASHCIR, TRACKAC	TATINT, TRACKAC		TRACKAC	CNTRLAC	TATHOLD	TATHOLD	TATHOLD	TATHOLD	CNTRLAC, TATOPER, TRACKAC	CNTRLAC				
Dimensions		(3)													
Aliases			TABLE(39)									ISEQUE(1,6)- ISEQUE(3,6) SEQUE(1,6)- SEQUE(3,6)	ISEQUE(1,7)- ISEQUE(3,7) SEQUE(1,7)- SEQUE(3,7)	ISEQUE(1,8)- ISEQUE(3,8) SEQUE(1,8)- SEQUE(3,8)	ISEQUE(1,9)- ISEQUE(3,9) SEQUE(1,9)- SEQUE(3,9)
Name	R	RAD(I)	RADCP	RADDIF	RADIUS	RAD1	RAD2	RAD3	RAD4	RANGE	RATE	RA20(I)	RA30(I)	RB20(I)	RB30(I)

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
RC			ľ	temporary: radius of curvature for aircraft turns in final sequencing area
RCFNM(I)		(2)	CNTRLAC	rate of climb (below 10000 ft and above 10000 ft) for aircraft being considered, in ft/n mi
RCLIMB			TRACKAC	rate of climb to reach desired altitude, in $\mathrm{ft}/\mathrm{scan}$ (in sec)
RCON	TABLE (37)			see TABLE
RCP(I)		(2)	CNTRLAC, TATINT	see input data
RDESC			CNTRLAC	rate of descent (in ft/n mi) for aircraft being considered
RESET	LDISI(19)		TATMAIN	logical switch operated from real-time console to put simulation into RESET mode
RESTOR(I)		(36)	CNTRLAC	contains the current information pertinent to the resolution of conflicts along a path for a particular aircraft, using a particular combination of options available to the controller
T " T	TETA		CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	estimated time of arrival at the end of a path along which a controller is attempting to resolve any possible conflicts
2	NUMPATH		CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	number of path being considered
ന	OALT		CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	altitude at the beginning of the path
4	AALT		CNTRLAC, CONCHK, SPDCNTR	for arrivalsassigned altitude at end of path; for departuresactual and assigned altitude at end of path
ហ	ETASEP		CNTRLAC, COMMUN, CONCHK,	estimated time of arrival at a separation distance from the end of a path along which the controller is attempting to resolve any possible conflicts

Table E-1. Continued.

th	speed at the end	HK, desired speed at the end of the path CKAC	HK, elapsed time in sec along the path before CKAC speed indicated by desired speed should be applied	HK, total length (n mi) of path being considered CKAC	HK, number of segments that make up path being CKAC considered	HK, distance (n mi) climbing up to 10,000 ft CKAC on path	HK, distance (n mi) climbing above 10,000 ft CKAC on path	'HK, distance (n mi) along the path before speed CKAC indicated by desired speed should be applied	HK, subscript pointer to conflict check CKAC descriptive array (ICHKPT)	HK, subscript pointer to controller options (CKAC available (IOPTN)	HK, pointer to next controller action (ICNTRA). CKAC after the completion of the controller action being dealt with	HK, time(sec) at beginning of path determined CKAC by a previously estimated time of arrival (ETA) at that point plus a correction factor for errors at an ETA point already passed
Routines in Which	Variable is Used CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC
Dimensions		0 11	O H	0.1	9 1	0 H	0 1	O H	J	O H	O H	ОШ
Aliases	FVEL	DSPD	TX	TOTD	NSEGM	DST2	DST2	DST3	ISUBCK	ISUBOP	ICACT2	STEMP
зте	9 = 3	7	ω	6	10	11	12	13	14	15	16	17

Table E-1. Continued.

iases Dimensions Routines in Which Variable is Used	CNTRLAC, COMMUN, CONCHK, subscript of ETA array at end of path ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, subscript of ETA array at beginning of path ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, separation (n mi) required between aircraft ETACOMP,SPDCNTR,TRACKAC at end of path	CNTRLAC, COMMUN, CONCHK, common path length (n mi) ahead of ETA at ETACOMP, SPDCNTR, TRACKAÇ end of path	CNTRLAC, COMMUN, CONCHK, common path length (n mi) behind ETA at end ETACOMP, SPDCNTR, TRACKAC of path	ON CNTRLAC, COMMUN, CONCHK, if greater than 0, pointer to an airspace ETACOMP, SPDCNTR, TRACKAC array through which this aircraft wishes to fly and with which an altitude conflict check must be done	CNTRLAC, COMMUN, CONCHK, subscript (ALTOPT) of desired altitude at STACOMP, SPDCNTR, TRACKAC end of path N(1)	CNTRLAC,COMMUN,CONCHK, subscript (IPERFS) of desired speed at end STACOMP,SPDCNTR,TRACKAC of path	CNTRLAC, COMMUN, CONCHK, pointer to path (NNPATH) being considered by ETACOMP, SPDCNTR, TRACKAC the controller	CNTRLAC,COMMUN,CONCHK, yes (1) or no(0) indicator that a compute ON(4) ETACOMP,SPDCNTR,TRACKAC vector option is available N(4)	CNTRLAC, COMMUN, CONCHK, pointer to next divergent path available as DN(5) ETACOMP, SPDCNTR, TRACKAC an option for conflict resolution (5)
Aliases Dimen	ISUBN	ISUBO	SEP	XLA	XLB	IASPCON	IDALT IOPTION(1) OPTION(1)	IDSPD IOPTION(2) OPTION(2)	IVECT IOPTION(3) OPTION(3)	IVECOP IOPTION(4) OPTION(4)	IDVERG2 IOPTION(5)
Name	I = 18	19	20	21	22	23	24	25	26	27	28

Table E-1. Continued.

ı	ì											•
	Definition	pointer to additional altitudes available as options for conflict resolution	yes (1) or no (0) indicator that a speed option is available	yes(1) or no (0) indicator that a standard hold option is available	yes (1) or no (0) indicator that an emergency hold option is available	if greater than 0, pointer to limit aircraft array (LIMAC) that increases required separation due to specified traffic load criteria	speed at the beginning of the path	elapsed time along a path required to delay the desired speed change until the latest possible moment	an indicator which is set to 1 if the time to apply the desired speed change is dictated by the schedule	temporary: used when a range to a DME is CP mode objective	random number returned from RANDU	an additional separation distance added for common path calculation for aircraft of different speeds
	Routines in Which Variable is Used	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC	CUTRLAC, COMMUN, CONCHK, ETACOMP, SPDCNTR, TRACKAC	CNTRLAC, ETACOMP	CNTRLAC	TRACKAC	TRACKAC	ETACOMP
	Dimensions											
	Aliases	IALTOP IOPTION(6) OPTION(6)	ISPDOP IOPTION(7) OPTION(7)	ISHOP IOPTION(8) OPTION(8)	IEHOP IOPTION(9) OPTION(9)	ILIMOP IOPTION(10) OPTION(10)	OSPD	TX3	INDSPD			
	Name	I = 29	30	31	32	33	34	35	36	RLIMIT		
										RLI	RN	RO

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
OLL			TATOPER, TRACKAC	bank angle in degrees of cockpit aircraft
ROLLC			TATOPER	cosine of ROLLDR
ROLLDR			TATOPER	same as ROLL, except in radians
ROLLS			TATOPER	sine of ROLLDR
ROUND			PAKSPL	round-off factor to convert reals to integers for packing
RTCL			TATOPER	cockpit rate of climb in ft/sec
RTD			CNTRLAC, CRTDSPL, INIT, TATINT, TATOPER, TRACKAC	conversion factor, radians to degrees (57.2958)
RTHETA			TRACKAC	temporary: angle used in calculating random aircraft position errors
RWYX(I,J)		(4,2)	TATINT, TATOPER	see input data
RWYY(I,J)		(4,2)	TATINT, TATOPER	see input data
RWYZ(I)		(2)	TATINT, TATOPER	see input data
RW15X(I)			TATHOLD	part of runway definition for background display of terminal area on CRI, units are
RW15Y(I)			TATHOLD	same as RW15X
RW21X(I)			TATHOLD	same as RW15X
RW21Y(I)			TATHOLD	same as RW15X
RW9LX(I)			TATHOLD	same as RW15X
RW9LY(I)			ТАТНОГД	same as RW15X
RW9RX(I)			TATHOLD	same as RW15X
RW9RY(I)			ТАТНОГД	same as RW15X
		O	CNTRLAC, TATOPER, TRACAKC	temporary: used as x component of range

Definition	temporary: used as y component of range	temporary: used as z component of range	temporary: partial distance used in sequencing logic	same as RW15X, except in CRT units	same as R15X						
Routines in Which Variable is Used	CNTRLAC, TATOPER, TRACKAC temporary:	TRACKAC	CNTRLAC	CRIDSPL, TATHOLD	CRTDSPL, TATHOLD	CRIDSPL, TATHOLD					
Dimensions				(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Aliases											
Name	RY	RZ	R1	R15X(I)	R15Y(I)	R21X(I)	R21Y(I)	R9LX(I)	R9LY(I)	R9RX(I)	R9RY(I)

Table E-1. Continued.

Definition	see SITE	see TABLE	temporary array to hold old RESTOR values for nominal path for original or divergent path while trying additional options	temporary array to hold old SAVE values for the original nominal path while trying a divergent path and its options to resolve a conflict	see TABLE	scaling factor for packing and unpacking uniform type packed words	see TABLE	see TABLE	see TABLE	seconds until touchdown for aircraft under consideration on glide slope	see RESTOR	separation correction to maintain separation from ILS gate to touchdown when an aircraft is being overtaken by a faster one	see TABLE	temporary to be used in sequencing area for modifying SEPP(I) for the particular situation under consideration	contains variables used in the final controller sequencing logic. Three aircraft are normally in the sequencing queue
Routines in Which Variable is Used			CNTRLAC	CNTRLAC		TATINT, PAKUNI, UPKUNI				TRACKAC		CNTRLAC		CNTRLAC	CNTRLAC
Dimensions			(36)	(36)											(3,16)
Aliases	SITE(3)	TABLE (38)			TABLE (13)		TABLE (40)	TABLE (41)	TABLE (42)		RESTOR(20)		TABLE(43)- TABLE(44)		ISEQUE(I,J)
Name	S	SASEP	SAVE(I)	SAVE2(I)	SCAL	SCALE	SCLA	SCLE	SCLN	SECID	SEP	SEPCOR	SEPP(I)	SEPPP	SEQUE(I,J)

Definition	ID number of aircraft in sequencing queue	hemisphere (north-1, south=2) of aircraft in sequencing queue	aircraft performance classes in sequencing queues	time of arrival at sequencing point for aircraft in sequencing queue	velocity in sequencing area of aircraft in sequencing queue	for 20° angle of intersection with final leg-distance between time of turn off of downwind leg to time of initiating turn onto localizer course	for 30° angle of intersection with final leg-distance between time of turn off of downwind leg to time of initiating turn onto localizer course	for 20° angle of intersection with final legdistance flown from time of turn-off base leg to intersection with localizer course plus distance on localizer course from a line that is the perpendicular bisector of the localizer course from the earliest turn point to the ILS gate	for 30° angle of intersection with final legdistance flown from time of turn-off base leg to intersection with localizer course plus distance on localizer course from a line that is the perpendicular bisector of the localizer course from the earliest turn point to the ILS gate
Routines in Which Variable is Used	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC
Dimensions	(3)	(3)	(3) ((3)	(3)	(3)	(3)	(3)	(3)
Aliases	ISAC(I)	ISIDE(I)	ISCLAS(I)	TARR(I)	SVEL(I)	RA20(I)	RA30(I)	RB20(I)	RB30(I)
Name	J = 1	2	ന	4	'n	9	7	∞	Q

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
J = 10	TCP(I)	(3)		estimated time of arrival at farthest point on downwind leg of aircraft in sequencing queue
11	TOFF(I)	(3)	CNTRLAC	time to turn-off downwind leg onto base leg for aircraft in sequencing queue
12	TONN(I)	(3)	CNTRLAC	time to turn from base leg to final leg for aircraft in sequencing queue
13	TGATE(I)	(3)	CNTRLAC	estimated time at ILS gate for aircraft in sequencing queue
14	ANG(I)	(3)	CNTRLAC	the angle of intersection of the base leg with the final leg of the sequencing pattern for an aircraft in the sequencing queue
15	DL(I)	(3)	CNTRLAC	distance between sequencing point and earliest turn-off point
16	FETA(I)	(3)	CNTRLAC	subscript (ISUBN) of ETA at terminal end of sequencing area path
SHOLDD			CNTRLAC, TATINT	see input data
SI			XFORM	sine of PSIREL
SIAR			CRIDSPL, XFORM	sine of (PSIREL - PSI)
SIG(I)			TATINT, TRACKAC	see input data
SITE(I)		(3)	TRACKAC	temporary for particular navaid site under consideration
I = 1	CPX		TRACKAC	north-south coordinate of navaid site
2	CPY	<u>.</u>	TRACKAC	east-west coordinate of navaid site
m	w		TRACKAC	standard deviation associated with a navaid site used to apply flight path errors to an aircraft using the navaid
SPD		F-	TRACKAC	aircraft speed used to update position. It is either from last scan or new value computed this scan

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
SPDF			TRACKAC	future speed of aircraft being position updated
SPDSAV			CNTRLAC	when trying speed deviations to resolve a conflict, SPDSAV is the original speed used
SPDSTD(I,J)		(6,2)	TATINT, CNTRLAC	input datathe speed deviation to use on either side of the optimal speed
SPEED			CNTRLAC	temporary used for speed from performance table
SQSCALE	TABLE(46)			see TABLE
SQX(I)		(9)	TATINT, CRTDSPL, TATHOLD	see input data
SQY(I)		(9)	TATINT, CRIDSPL, TATHOLD	see input data
STEMP	RESTOR(17)			see RESTOR
SVEL	<pre>ISEQUE(1,5)- ISEQUE(3,5) SEQUE(1,5)- SEQUE(3,5)</pre>			see SEQUE
SWITCH(I)		(10)	CNTRLAC, TATREST	an array of on-off switches used for flow control; one is assigned for each traffic situation desired

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
T(I)		(35)	CNTRLAC, COMMUN, TRACKAC	for each aircraft in active traffic, $T(I)$ is time aircraft has been on present path segment
IA			COMETA	time to accelerate/decelerate from initial speed (VI) to final speed (VF)
TAATMFL			TATMAIN	literal argument, i.e. "TAATMFL," in call list to a system routine
TABLE(I)		(75)	TATINT	a table of real variables in core storage that are easily displayed individually on the real-time console. Used to look up or display variables
I = 1	AK		TATINT, TRACKAC	see input data
2	ALPHK		TATINT, TRACKAC	see input data
က				
thru 6				not currently used
7	XREL		TATINT, TRACKAC, XFORM	x,y,z coordinates in terminal area of aircraft
80	YREL		TATINT, TRACKAC, XFORM	being used as coordinate origin for the relative nosition of all other aircraft
6	ZREL		TATINT, TRACKAC	
10	PSIREL		CRTDSPL, TATINT, TRACKAC, XFORM	heading used in relative display as reference to which all other terminal display is relative
11	TEMPS		CNTRLAC, COMMUN, TATREST, TATHOLD, TATOPER, TRACKAC	temporary
12	VECERR		TATINT, CNTRLAC	see input data
13	CRTSCAL, SCAL		CRTDSPL, INIT, XFORM	scale factor for CRT display which converts n mi to CRT units
14	DELALT		TATINT, TRACKAC	see input data

Definition		see input data	see input data	not currently used	not currently used	see input data	desired CRT update time (frequency)	the time interval in real-time seconds/cycle	not currently used	see input data	see input data	see input data	see input data	not currently used	not currently used	scaling factor for u coordinate for perspective plot of runway	scaling factor for v coordinate for perspective plot of runway	increments in x and y for beginning points of various components for the tag	not currently used
Routines in Which Variable is Used		TATINT, TRACKAC	CNTRLAC, TATINT, TATREAD, TRACKAC			TATINT, TRACKAC	INIT, TATHOLD	INIT		CNTRLAC, TATINT	CNTRLAC, TATINT	TATINT, TRACKAC	TATINT, TATREST			INIT, TATOPER	INIT, TATOPER	INIT, CRTDSPL	
Dimensions																			
Aliases		DELSPD	DELT			DKCON	FREQ	Н		PASEP	PDSEP	PHIK	BETA			UPERSC	VPERSC	DELX1 DELX2 DELX3 DELX1 DELY2	
Name	TABLE(I)	I = 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 32 33 34 35 35	36

Table E-1. Continued.

Definition		see input data	see input data	radius in n mi for "making good" an objective	not currently used	not currently used	not currently used	see input data	see input data	not currently used	scale factor for soze of box symbol for popup aircraft	scaling factor for cockpit displays	see input data		not currently used	see input data	see input data	see input data	see input data	time between real-time frames. Used for updating cockpit aircraft position each frame	see input data
Dimensions Routines in Which Variable is Used		TATINT, TRACKAC	CNTRLAC, TATINT	INIT, TRACKAC				TATINT, CNTRLAC	TATINT, CNTRLAC		INIT, TATHOLD	INIT, TATOPER	TATINT, TRACKAC			TATINT, TATOPER	TATINT, TATOPER				
Aliases		RCON	SASEP	RADCP				SEPP(1)	SEPP(2)		SQSCALE	VELCON	VECSD			CKROLL	CKRC	CROLL	CRC	FDELT	ZCON
Мате	TABLE(I)	I = 37	38	. 39	70	41	42	43	77	45	97	47	48	67	thru 52	53	54	55	56	57	28

Table E-1. Continued.

Definition		see input data	an array of data, input from the real-time console, describing initial conditions of a popup aircraft	scaling factors for cockpit displays of x , y , position, and velocity	time of arrival at sequencing point for aircraft under consideration	change in current heading to obtain desired heading for popup aircraft	see SEQUE	<pre>literal, i.e., "TATHOLD," used in call list to system routine</pre>	literal, i.e., "TATOPER," used in call list to system routine	literal, i.e., "TATREST," used in call list to system routine	temporary array into which the ICMSG2 of interest is placed	temporary array into which the ICMSG3 of interest is placed	see SEQUE
Routines in Which Variable is Used		TATINT, TATOPER	TRACKAC	INIT, TATOPER	CNTRLAC	CNTRLAC	CNTRLAC	TATMAIN	TATMAIN	TATMAIN	СОММИ	СОММИИ	
Dimensions			(13) (13)				(3)				(9)	(3)	
Aliases		HDCON	IPOPUP(I) POPUP(I)	XSTP YSTP VSTP			ISEQUE(1,4)- ISEQUE(3,4) SEQUE(1,4)- SEQUE(3,4)				OUT(3)-OUT(8)	OUT(9)-OUT(11)	ISEQUE(1,10)- ISEQUE(3,10) SEQUE(1,10)- SEQUE(3,10)
Name	TABLE(I)	I = 59	60 thru 72	73 74 75	TAFIX	TANG	TARR(I)	TATHOLD	TATOPER	TATREST	TCMSG(I)	TCMSG2(I)	TCP(I)

Table E-1. Continued.

Table E-1. Continued.

Definition	temporary ETA time at beginning ETA point on path being considered	temporary for the latest ETA time at the beginning of a path of those ETA times for aircraft that need priority over an aircraft that is checking for conflicts along the path and needs a 360° hold	see SEQUE	used to break circumference of circle into segments for dashed lines	temporary used for difference between aircraft heading and desired heading	time, in seconds, from start of simulation	an array of literals used for labeling the display on the CRT, e.g., date, run number, etc.	temporary array for elements to pack controller message	same as element 1 of IFCMSG2	same as element 2 of IFCMSG2	same as element 3 of IFCMSG2	same as element 4 of IFCMSG2	same as element 5 of IFCMSG2	same as element 6 of IFCMSG2
Routines in Which Variable is Used	CNTRLAC, ETACOMP	CNTRLAC		DASHCIR	CNTRLAC	CNTRLAC, COMMUN, TATOPER	ТАТНОГД	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC	CNTRLAC
Dimensions							(40)	(9)						
Aliases			ISEQUE(1,13)- ISEQUE(3,13) SEQUE(1,13)- SEQUE(3,13)						XDENT	XMSGL	XLTT	XCLEAR	XITYPE	XETA
Name	TETAO	TETAOM	TGATE(I)	ТН	THETA	TIME	TLE(I)	TMSGA(I)	I = 1	2	က	4	5	9

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
TMSGA2(I)		(3)	CNTRLAC	temporary array for elements to pack controller message
I = 1	XMINF01		CNTRLAC	same as element 1 of IFCMSG3
2	XMINF02		CNTRLAC	same as element 2 of IFCMSG3
ຕ	XMINF03		CNTRLAC	same as element 3 of IFCMSG3
TOFF(I)	ISEQUE(1,11)- ISEQUE(3,11) SEQUE(1,11)- SEQUE(3,11)			see SEQUE
TONN(I)	ISEQUE(1,12)- ISEQUE(3,12) SEQUE(1,12)- SEQUE(3,12)			see SEQUE
TOTD	RESTOR(9)			see RESTOR
TOTD2			ETACOMP	temporary used as the distance along a path up to the separation distance from the point at terminal end of the path
TR			CNTRLAC	temporary used as turn rate
TRIX(I)		(5)	CRTDSPL, TATINT	see input data
TRIY(I)		(5)	CRIDSPL, TATIN	see input data
TRYETA			SPDCNTR	a temporary ETA used while developing time to change speed to resolve a conflict
TSKED(I)		(2)	TRACKAC	a temporary array used when packing/unpacking active schedule
	XMODE		TRACKAC	flight mode (see IASKED packed word description for more complete definitions of these 7 variables)
2	XINFO1		TRACKAC	INFO 1

TSKED(I)			variable is used	
e ×				
*	XINF02	ŗ.	TRACKAC	INFO 2
t	XFALT	T.	TRACKAC	altitude scheduled
Ŋ	XMODECP	Ľ	TRACKAC	MODECPmode to obtain objective
9	XINF03	[TRACKAC	INFO 3
7	XINFO4	[TRACKAC	INFO 4
		0	CNTRLAC	temporary used as time to begin hold
		9	CNTRLAC	temporary for type of turnleft or right
		J	COMETA, ETACOMP	computed actual speed after flying a distance
	RESTOR(8)			see RESTOR
		0	CNTRLAC	temporary XAcoordinate of inner fix
		•	CNTRLAC	temporary XCcoordinate of final sequencing point
		•	CNTRLAC	temporary aircraft $\mathbf x$ coordinate while being sequenced
		H	ETACOMP	time in seconds that aircraft will not be climbing or changing speed on path being considered
	RESTOR(35)			see RESTOR
		5	CNTRLAC	temporary YA coordinate of inner fix
TYBUF(I)		(16)	CNTRLAC, COMMUN, TRACKAC	buffer used for typewritten messages
)	CNTRLAC	temporary YCcoordinate of final sequencing point
	`	J	CNTRLAC	temporary aircraft y coordinate while being sequenced

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
UPERS(I)		(4)		u coordinates for perspective runway display on CRT
UPERSC	TABLE(29)			see TABLE
Λ			CRTDSPL, TATOPER	temporary used for aircraft speed
VARCHNG			TATINT	logical variable used as a flag in system routine call list
VC			TRACKAC	temporaryclosing velocity
VECERR	TABLE(12)			see TABLE
VECSD	TABLE(48)			see TABLE
VEL			TATOPER	velocity scaled for cockpit aircraft
VELCON	TABLE(47)			see TABLE
VELFT			TATOPER	velocity in ft/sec
VF			COMETA, ETACOMP	final velocity on path being considered
VFT			TRACKAC	velocity in ft/sec
NI			COMETA, ETACOMP	initial velocity on path being considered
VPERS(I)		(4)	TATOPER	v coordinates for perspective runway display on CRT
VPERSC	TABLE (30)			see TABLE
VSTP	TABLE (75)			see TABLE
VX			TRACKAC	x component of velocity

Definition	y component of velocity	TR temporary for velocity of first of two alrcraft being considered on a path			see LOGIC					
Routines in Which Variable is Used	TRACKAC	CONCHK, ETACOMP, SPDCNTR	CONCHK, ETACOMP, SPDCNTR					-		
Dimensions							•			
Aliases					LOGIC(7)					
Name	ΛΛ	Vl	٧2		WRTTPE					

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
×		dimensions vary according to routine in which used; max. = 15	DASHCIR, TATHOLD, XFORM	temporary for north-south coordinates
XA(I)		(2)	CNTRLAC, TATINT	see input data
XB			CNTRLAC	temporary for x coordinate of earliest turn- off point on downwind leg for an aircraft
XBOX	TABLE(49)			see TABLE
XC(I)		(2)	CNTRLAC, TATINT	see input data
XCLEAR	TMSGA(4)			see TMSGA
XCLR2		-	CNTRLAC	temporarynumber of path segments for which to issue controller clearances
XCP	CPCOORD(1)			see CPCOORD
XDENT	TMSGA(1)			see TMSGA
XDITS(I)			CNTRLAC, TATINT, TATOPER	see input data
XDIST(I)		(2)	CNTRLAC, TATINT	see input data
XETA	TMSGA(6)			see TMSGA
XFINAL(I)		(2)	CNTRLAC, TATINT	see input data
XI			CNTRLAC, CRIDSPL	temporarynorth-south coordinate
XINFOL	TSKED(2)			see TSKED
XINF02	TSKED(3)			see TSKED
XINF03	TSKED(6)			see TSKED
XINF04	TSKED(7)			see TSKED

Definition	in PAKSPL/UPKSPL it is the array or scalar unpacked word(s). In other routines it is the floating version of IT (scan counter)	see TMSGA	temporary used for an angle	temporary used for an angle	conversion factor, knots to ft/sec	see RESTOR	see RESTOR	computed length of base leg in sequencing area for aircraft under consideration	unpacked elements of LIMACsee packed word description for LIMAC	see TMSGA	a temporary for latest transmit time	see TMSGA2	see TMSGA2	see TMSGA2	see TMSGA	temporary used for message length	used as test for whether a tag can be displayed on the CRI for an aircraft without overwriting another aircraft	coordinate of aircraft being considered	same as the integer NFRAM but in floating point form
Routines in Which Variable is Used	CNTRLAC, TATREST, PAKSPL		TRACKAC	TRACKAC	INIT			CNTRLAC	CNTRLAC		CNTRLAC					CNTRLAC	CRIDSPL	TRACKAC	TATINT
Dimensions			٠						(7)										
Aliases		TMSGA(5)				RESTOR(21)	RESTOR(22)			TMSGA(3)		TMSGA2(1)	TMSGA2(2)	TMSGA2(3)	TMSGA(2)				
Name	XIT	XITYPE	XKALP	XKALPT	XKNFS	XLA	XLB	XLID	XLIND(I)	XLTT	XLTT2	XMINF01	XMINF02	XMINF03	XMSGL	XMSGL2	XMTAG	XX	XNFRAM

Table E-1. Continued.

Name	Aliases	Dimensions	Routines in Which Variable is Used	Definition
XNREF(I)		(4)	TATINT, CRTDSPL	x coordinates for true north arrow on CRT for relative display
XOWN			CRIDSPL, TATOPER, TRACKAC	part of x,y,z coordinates of cockpit aircraft
XPL(I)		(35)	CNTRLAC, TRACKAC	x coordinate at beginning of path segment Ith aircraft is currently flying
XPTAG			CRIDSPL	same as XMTAG
XREL	TABLE(7)			see TABLE
XRET			TRACKAC, UPKUNI	temporary used for returning packed variable from UPKUNI through call list
XSTP	TABLE(73)			see TABLE
XT1			CRTDSPL	temporaryone of the coordinates used for developing the CRT tag on an aircraft
XT2			CRIDSPL	same as XT1
XT3			CRIDSPL	same as XT1
XWORK (I)		(150) (25)	TATINT TATREAD	temporary arrays used for working space while reading and packing data
XX			CRTDSPL, XFORM	temporary for x coordinate in relative CRT display

Definition	east-west coordinates		heading of cockpit aircraft	sine of heading of cockpit aircraft	for y coordinate of earliest turn- on downwind leg for an aircraft		*		generated by the routine I list to calling program	est coordinate		XNREF except y coordinates		XPL(I) but y coordinate			coordinate used for writing messages on CRT			
Ď	temporary for eas	see input data	cosine of heading	sine of heading of	temporary for y coordinate of off point on downwind leg for	see TABLE	see input data	see CPCOORD	the random number generated passed through call list to	temporaryeast-west coordinate	same as XN	same as XNREF exce	same as XOWN	same as XPL(I) but	same as XMTAG	see TABLE	starting y coordinat controller messages	see TABLE	same as XII	•
Routines in Which Variable is Used	DASHCIR, XFORM, TATHOLD	CNTRLAC, TATINT	TATOPER	TATOPER	CNTRLAC		CNTRLAC, TATINT		RANDU	CNTRLAC, CRTDSPL	TRACKAC	TATINT, CRIDSPL	CRIDSPL, TATOPER, TRACKAC	CNTRLAC, TRACKAC	CRIDSPL		CRTDSPL, TATHOLD		CRIDSPL	
Dimensions	dimensions vary according to routine in which used; max. = 15	(2) C	H	H			(2) C		M.	Ö	H	(4) T	Ö	(32) C	Ö		Ö		Ð	
Aliases						TABLE (50)		CPCOORD(2)						•		TABLE(8)		TABLE (74)		
Мате	×	YA(I)	YAWC	YAWS	YB	YBOX	XC(I)	YCP	YFL	IX	XN	YNREF(I)	YOWN	YPL(I)	YPTAG	YREL	YS	YSTP	YTI	

Table E-1. Continued.

Definition		temporary working array used in reading in and packing data	coordinate	between 0 and 1	variable used for summoning Yl values to obtain normalized distribution of random numbers				
	same as XT1	temporary working and packing data	same as XX but y coordinate	a random number between 0 and 1	variable used fo obtain normalize numbers	see TABLE	same as XN	same as XOWN	see TABLE
Routines in Which Variable is Used	CRIDSPL	TATINT, TATREAD	CRIDSPL, XFORM	TRACKAC	TRACKAC		TRACKAC	TATINT, TATOPER, TRACKAC	
Dimensions		(10)							
Aliases						TABLE (58)			TABLE (9)
Name	YT2	YWORK(I)	YY	Y1	Y2	ZCON	ZN	ZOWN	ZREL

APPENDIX F Description of Packed Computer Words

In order to minimize core storage requirements where feasible, several elements of data are packed into each computer word. This appendix defines these packed words and the data elements contained in each packed word. Because only integers may be effectively packed, attribute tables define scaling factors, number of bits required, the element position in the packed word, and the algebraic sign of the element. The packed computer words are:

Packed Array	Attribute Table	Page No.
IACFPER - aircraft error	-	247
IASKED - active schedule of all current and future path segments for each aircraft in active traffic	IPASKED	248
IATAS - actual time of arrival	IPTAS	249
IATRAF21 - current or future path information	IPAPATH	250
IATRAF23 - current or future path information	IPAPATH	250
ICHKPT - conflict check descriptive array	IPCHKPT	251
ICMSG1 - current controller message	-	252
ICMGS2 - current controller message	IPMSG2	252
ICMSG3 - current controller message	IPMSG3	253
ICNTRA1 - controller action point	IPCNTR1	255
ICNTRA2 - controller action point	IPCNTR2	256
IDROUTE - divergent path (route) description	IPDRT	257
IETAl - estimated time of arrival array	IPETA1	258
IETA2 - estimated time of arrival array	IPETA2	259
IETAS - estimated time of arrival	IPTAS	260
IETCOOR - ETA location coordinates	IPETC	261
IFCMSG1 - future controller message	-	262
IFCMSG2 - future controller message	IPMSG2	262
IFCMSG3 - future controller message	IPMSG3	263
INAV - navigational aids (ground-based)	IPNSITE	264

Packed Array	Attribute <u>Table</u>	Page No.
IOPTN - controller options available	IPOPTN	265
IPERFR - aircraft performance rates	-	267
IPERFS - aircraft performance speeds (kts)	-	268
<pre>IPERFT - aircraft performance, seconds to lift-off</pre>	-	269
IPFTR - aircraft performance, turn rate	_	270
ISDST - length (distance) in n mi of path segments	~~	271
ISKED - schedule of all path segments used for the various paths making up the scheduled routes	IPSKED	272
ITRAF1 - traffic sample description	IPTRAF1	275
ITRAF2 - traffic sample description	IPTRAF2	276
LIMAC - air traffic flow control descriptor	IPLIMAC	277
NNPATH - flight path (leg) description	IPNPATH	279

Aircraft Error. IACFPER

Each aircraft performance class has associated with it a standard deviation of heading error parameter.

Dimension: 3

Packed words for each entry: 1/10

Aliases: none

IACFPER

(packed 10 elements in each computer word)

Characteristics of Each Element

Description: performance parameter, standard deviation of heading error

Form: X.X

Max. Value: 63

Scale Factor: 10⁻¹

Binary Bits: 6

Packed Computer Word Diagram

Element 1 2 3 4 5 6 7 8 9 10 Bits 6 6 6 6 6 6 6 6 6

Uniform Pack/Unpack routines used; no attribute tables required.

Active Schedule of all Current and Future Path Segments for Each Aircraft in Active Traffic. IASKED

Describes the four-dimensional flight plan using both aircraft and ground-based navigational techniques.

Dimension: 35 by 11

Packed words for each entry: 1

Aliases: none

IASKED

Element Number	Description*	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Flight navigational mode (same as ISKED element)	XX	15	100	4
2.	Information No. 1	XXX	511	100	9
3.	Information No. 2	xxx	511	100	10
4.	Altitude in hundreds of feet	xxx	511	10 ⁻²	9
5.	Control point mode, i.e., type of make good conditions (same as ISKED element 6)	XX	15	10 ⁰	4
6.	Information No. 3	xxx	511	100	9
7.	Information No. 4	xxxx.	<u>+</u> 16383	100	15
*See tal	bles associated with ISKED tails.		Bits Used excess)		60

Packed Computer Word Diagram

Attribute table IPASKED (dimensioned 4 by 7) describes the packed word IASKED.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7
Length	4	9	10	9	4	9	15
Sign	0	0	1	0	0	0	1
Scale	0	0	0	-2	0	0	0
First Shift	56	47	37	28	24	15	0

Actual Time of Arrival. IATAS

Describes actual time of arrival information for an aircraft at each ${\sf ETA}$ point on its route.

Dimension: 35 by 2

Packed words for each entry: 1/4

Aliases: none

IATAS

(packed 4 elements in each computer word)

Characteristics of Each Element

Description: Actual time of arrival at each ETA for an aircraft to be

used for post-processing by comparing with estimated time of arrival. Also used as correction factor to keep

ETA errors from growing along the route

Form: XXXX (4-sec scans)

Max. Value: 32767 Scale Factor: 10° Binary Bits: 15

Packed Computer Word Diagram

Element	1	2] 3	4 1
Bits	15	15	15	15

Attribute table IPTAS (dimensioned 4 by 4) describes the packed word IATAS.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4
Length	15	15	15	15
Sign	0	0	0	0
Scale	0	0	0	0
First Shift	45	30	15	0

Current (IATRF21) or Future (IATRF23) Path Information.

IATRF21 describes current path in active traffic array. IATRF23 describes future path in active traffic array. Both have the same element descriptions.

Dimension: 35

Packed words for each entry: 1

Aliases: none

IATRF21 IATRF23

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Altitude (thousands of ft) at beginning end of the path	XX	63	10 ³	6
2.	Altitude (thousands of ft) at terminal end of the path	XX	63	10 ³	6
3.	Path number NNPATH	xxx	127	10°	7
4.	Subscript of ETA array at beinning end of the path	xxx	127	10°	7
5.	Subscript of ETA array at terminal end of the path	XXX	127	10°	7
			Bits Used excess)		33

Packed Computer Word Diagram

Attribute table IPAPATH (dimensioned 4 by 5) describes the packed words IATRF21 and IATRF23.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5
Length	6	6	7	7	7
Sign	0	0	0	0	0
Scale	-3	-3	0	0	0
First Shift	27	21	14	7	0

Conflict Check Descriptive Array. ICHKPT

Describes details of the path where conflict checking is to be done.

Dimension: 40

Packed words for each entry: 1

Aliases: none

ICHKPT

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Subscript of ETA array (IETA) at terminal end of path	xxx.	127	10°	7
2.	Subscript of ETA array (IETA) at beginning end of path	xxx.	127	10°	7
3.	Separation (n mi)	XX.X	127	10°	7
4.	Common path length (XLA in n mi) ahead of ETA	XX.X	511	10 ⁻¹	9
5.	Common path length (XLB in n mi) behind ETA	XX.X	511	10 ⁻¹	9
6.	Pointer to airspace conflict array (ASPACE)	xx	63	10°	6
		Total Bits Used (15 excess)			45

Packed Computer Word Diagram

Attribute table IPCHKPT (dimensioned 4 by 6) describes the packed word ICHKPT.

Attribute Table for Pack/Unpack Routines

_Element	1	2	3	4	5	6
Length	7	7	7	9	9	6
Sign	0	0	0	0	0	0
Scale	0	0	1	1	1	0
First Shift	38	31	24	15	6	0

Current Controller Messages. ICMSG1, ICMSG2, ICMSG3

Messages ready to be transmitted immediately are in this array for each controller.

Dimensions: 8 by 5 per variable

Packed words for each message: 2 (also 1 non-packed word)

Aliases: none

ICMSG1

Non-packed, latest transmit time in 4-second scans.

ICMSG2

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Aircraft ID	XXX	1023	100	10
2.	Total transmit time in 4-second scans, i.e., message length	xx	15	100	4
3.	Earliest transmit time in 4-second scans	xxxx	32767	100	15
4.	Number of segment clearances being issued	XX	15	100	4
5.	Message type	XX	31	100	5
6.	Subscript of ETA array associated with terminal end of path to which message applies	XXX	127	10 ⁰	7
			Bits Used excess)		45

Packed Computer Word Diagram

Element	Excess	1	12	3	4	5 1	6 1
Bits	15	10	4	15	4	5	 -

Attribute table IPMSG2 (dimensioned 4 by 6) describes the packed word ICMSG2.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6
Length	10	4	15	4	5	7
Sign	0	0	0	0	0	0
Scale	0	0	0	0	0	0
First Shift	35	31	16	12	7	0

ICMSG3

Element Number	Description	Form	Max. <u>Value</u>	Scale <u>Factor</u>	Binary Bits
1,	Information No. 1 (altitude in hundreds of feet, or speed in knots, or <u>+</u> heading in degrees, or intersection ID, i.e., outer fix) (altitude must be scaled in calling routine)	<u>+</u> xxx	<u>+</u> 511	10 ⁰	13
2.	Information No. 2 (altitude in hundreds of feet, or speed in knots) (altitude must be scaled in calling routine)	xxx	511	100	9
3.	Information No. 3 (altitude in hundreds of feet)	XXX	511	102	9
		Total Bits Used (29 excess)			31

Packed Computer Word Diagram

Attribute table IPMSG3 (dimensioned 4 by 3) describes the packed word ICMSG3.

Attribute Table for Pack/Unpack Routines

Element	1	2	3
Length	13	9	9
Sign	1	0	0
Scale	0	0	-2
First Shift	18	9	0

Controller Action Points. ICNTRA1, ICNTRA2

Describes each place where controller action is desired. Types of controller action included in the program are:

- 1. Arrival
- 2. Departure
- 3. General Conflict
- 4. Sequencing
- 5. No-conflict-check, but compute ETA
- 6. Pop-up
- 7. Re-check action on present path
- 8. Hand-off to another controller
- Register aircraft in airspace conflict array (ASPACE)
- 10. Remove aircraft from airspace conflict array (ASPACE)
- 11. Compute new vector to checkpoint.

Dimensions: 85 by 2 per controller action point

Packed words for each entry: 2

Aliases: none

ICNTRA1(1)

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Type of controller action to be done	XX.	31	10°	5
2.	x coordinate (n mi North)	<u>+</u> xx.xx	<u>+</u> 8191	10-2	14
3.	y coordinate (n mi East)	<u>+</u> xx.xx	<u>+</u> 8191	10 ⁻²	14
4.	Pointer to ICHKPT (conflict check) array	xxx.	127	10°	7
5.	Pointer to IOPTN (option) array or to ASPACE (air- space) array if controller action is type 9 or 10	xxx.	127	10°	7
6.	Pointer to next controller action subscript	xxx.	127	10°	7
7.	Nominal heading	XX.	63	10°	6
			its Used xcess)		60

Packed Computer Word Diagram

The attribute table IPCNTR1 (dimensioned 4 by 7) describes the packed word ICNTRA1.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7
Length	5	14	14	7	7	7	6
Sign	0	1	1	0	0	0	0
Scale	0	2	2	0	0	0	0
First Shift	55 [.]	41	27	20	13	} 6	0

ICNTRA2(1)

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Controller number responsible for this action	xx	15	10°	4
2.	Distance (n mi) to ending checkpoint from beginning checkpoint	XX . X	511	10 ⁻¹	9
			oits used excess)		13

Packed Computer Word Diagram

Attribute table IPCNTR2 (dimensioned 4 by 2) describes the packed word ICNTRA2.

Attribute Table for Pack/Unpack Routines

Element	1	2
Length	4	9
Sign	0	0
Scale	0	1
First Shift	9	0

Divergent Path Description. IDROUTE(i)

Describes which divergent path to use if option is available. (Value of "i" is from 5th element of IOPTN.)

Dimension: 0

Packed words for each entry: 1

Aliases: none

IDROUTE

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Subscript for ICHKPT array	XXX	127	10°	7
2.	Subscript for IOPTN array	XXX	127	10°	7
3.	Subscript for ICNTRA array	XXX	127	10°	7
4.	Subscript for another divergent path in this array if available	XXX	127	10°	7
5.	Distance (n mi) between ends of this path, i.e., path length	XXX	511	10 ⁻¹	9
			Bits Used excess)		37

Packed Computer Word Diagram

Element Excess 1 1 2 3 4 5 Bits 23 7 7 7 7 9

Attribute table IPDRT (dimensioned 4 by 5) describes the packed word $\ensuremath{\mathsf{IDROUTE}}$.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5
Length	7	7	7	7	9
Sign	0	0	0	0	0
Scale	0	0	0	0	1
First Shift	30	23	16	9	0

Estimated Time of Arrival Array. IETA1, IETA2

Describes information associated with all aircraft scheduled to arrive at a point or points associated with this array.

Dimensions: 36 by 2 per variable Packed Words for Each Entry: 2

Aliases: none

IETA1

Element Number	Description	Form	Max. Value	Scale <u>Factor</u>	Binary Bits
1.	Aircraft ID number	xxxx	1023	10°	10
2.	Time (in sec) estimated for arrival over a point associate with this ETA array	d XXXXXX.XX	41943.04	10 ⁻²	22
3.	Speed (in n mi/sec) over the point associated with this ETA array	.xxxxxxx	.2097152	10 ⁻⁷	21
4.	Controller action number which placed aircraft in this array	XXX	127	10°	7
		Total Bit (no exc			60

Packed Computer Word Diagram

Element	1	2	3	4
Bits	10	22	21	7

Attribute table IPETAl (dimensioned 4 by 4) describes the packed word $\mbox{IETAl.}$

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4
Length	10	22	21	7
Sign	0	0	0	0
Scale	0	2	7	0
First Shift	50	28	7	0

IETA2

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Subscript of ETA array at beginning end of path	n- XXX	127	100	7
2.	Subscript of ETA array at terminal end of path	xxx	127	10 ⁰	7
3.	Path number	XXX	127	100	7
4.	Assigned altitude (integer thousands of feet) at beginning end of path	XX	63	10 ³	6
5.	Assigned altitude (integer thousands of feet) at terminal end of path	xx	63	10 ³	6
6.	ETA (in sec) at separation distance from ETA location	xxxxxx.xx	167772.15	10 ⁻²	24
		Total Bits Used (3 excess)			57
D 1 1 0					

Packed Computer Word Diagram

Excess
Element 1 2 3 4 5 6
Bits 3 7 7 7 6 6 24

Attribute table IPETA2 (dimensioned 4 by 6) describes the packed word IETA2.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6
Length	7	7	7	6	6	24
Sign	0	0	0	0	0	0
Scale	0	0	0	-3	-3	2
First Shift	50	43	36	30	24	0

Estimated Time of Arrival. IETAS

Describes estimated time of arrival information for an aircraft at each ETA point on its route.

Dimensions: 35 by 2

Packed words for each entry: 1/4

Aliases: none

IETAS

(packed 4 elements in each computer word)

Characteristics of Each Element

Description: Estimated time of arrival at each ETA for an aircraft

to be used for post-processing by comparing with actual

time of arrival

Form: XXXX (scans)
Max. Value: 32767
Scale Factor: 10°
Binary Bits: 15

Packed Computer Word Diagram

Element	1	2	3	4 1
Bits	15	15	15	15

Attribute table IPTAS (dimensioned 4 by 4) describes the packed word ${\tt IETAS}$.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4
Length	15	15	15	15
Sign	0	0	0	0
Scale	0	0	0	0
First Shift	45	30	15	Ō

ETA Location Coordinates. IETCOOR

Describes location of ETA and stores information on whether any aircraft are in a standard holding pattern at the location.

Dimensions: 36

Packed words for each entry: 1

Aliases: none

IETCOOR

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	x coord. (n mi north)	<u>+</u> XX.XX	<u>+</u> 8191	10-2	14
2.	y coord. (n mi east)	<u>+</u> XX.XX	<u>+</u> 8191	10-2	14
3.	Binary switch (l=yes) to indicate there is a propeller aircraft in a standard hold pattern on path ending with this ETA point	X	1	10°	1
4.	Same as 3 except indicates jet aircraft	X	1	10°	1
			Bits Used excess)		30

Packed Computer Word Diagram

Element	Excess	1	2 3 4
Bits	30	14	14 11

Attribute table IPETC (dimensioned 4 by 4) describes the packed word IETCOOR.

Attribute Table for Pack/Unpack Routines

Element	1	2	_3	4
Length	14	14	1	1
Sign	1	1	0	0
Scale	2	2	0	0
First Shift	16	2	1	0

Future Controller Messages. IFCMSG1, IFCMSG2, IFCMSG3

Messages to be transmitted later are in this array for each controller.

Dimensions: 8 by 25 per variable

Packed words for each message: 2

(also 1 non-packed word)

Aliases: none

IFCMSG1

Non-packed, earliest transmit time in 4-second scans.

IFCMSG2

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Aircraft ID	XXX	1023	10°	10
2.	Total transmit time in 4-second scans, i.e. message length	xx	15	10°	4
3.	Latest transmit time in 4-second scans	xxxx	32767	10°	15
4.	Number of segment clearances being issued	xx	15	10°	4
5.	Message type	XX	31	10°	5
6.	Subscript of ETA array associated with terminal end of path to which message applies	xxx	127	10°	7
Deeler I G			Bits Used excess)		45

Packed Computer Word Diagram

Element	Excess	1	1 2 1	3	1 41	5	1 6 I
Bits	15	10	4	15	4	5	7

Attribute table IPMSG2 (dimensioned 4 by 6) describes the packed word IFCMSG2.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6
Length	10	4	15	4	5	7
Sign	0	0	0	0	0	0
Scale	0	0	0	0	0	0
First Shift	35	31	16	12	7	0

IFCMSG3

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Information No. 1 (altitude in hundreds of feet, or speed in knots, or <u>+</u> heading in degrees, or intersection ID, i.e. outer fix) (altitude must be scaled in calling routine)	<u>+</u> xxx	<u>+</u> 511	10°	13
2.	Information No. 2 (altitude in hundreds of feet, or speed in knots) (altitude must be scaled in calling routine)	xxx	511	10°	9
3.	Information No. 3 (altitude in hundreds of feet)	xxx	511	102	9
Packed Co	omputer Word Diagram		Bits Used excess)		31
Element [Excess	1	2 1	3	
Bits	29	13	9	9	

Attribute table IPMSG3 (dimensioned 4 by 3) describes the packed word IFCMSG3.

Attribute Table for Pack/Unpack Routines

Element	1	2	3
Length	13	9	9
Sign	1	0	0
Scale	0	0	-2
First Shift	18	9	0

Navigational Aids (Ground-Based). INAV

Describes each navigational aid site.

Dimensions: 10 by 5

Packed words for each entry: 1

Aliases: INAV(i,1) or IADF(i)

INAV(1,1) or IADF(1)
INAV(1,2) or IVOR(1)
INAV(1,3) or IFIX(1)
INAV(1,4) or IDME(1)
INAV(1,5) or IXILS(1)

INAV

Element Number	Description	Form	Max. Value	Scale <u>Factor</u>	Binary Bits
1.	x coord. (n mi north)	<u>+</u> xx.xx	<u>+</u> 8191	10-2	14
2.	y coord. (n mi east)	<u>+</u> xx.xx	<u>+</u> 8191	10 ⁻²	14
3.	Standard deviation (error)	x.x	127	10 ⁻¹	7
4.	"Make good limit" (n mi)	X.X	63	10 ⁻¹	6
			Bits Use	ed.	41

Packed Computer Word Diagram

Element	Excess	1	2	1 3 1	4 1
Bits	19	14	14	7	6

Attribute table IPNSITE (dimensioned 4 by 4) describes the packed word INAV.

Attribute Table for Pack/Unpack Routines

Element	_1	2	_3	4
Length	14	14	7	6
Sign	1	1	0	0
Scale	2	2	1	1
First Shift	27	13	6	0

Controller Options Available. IOPTN

Describes which options are available for controller action points.

Dimension: 55

Packed words for each entry: 1

Aliases: none

IOPTN

Element Number	Description	Form	Max. <u>Value</u>	Scale <u>Factor</u>	Binary Bits
1.	Subscript of desired altitude (ALTOPT)	xxx	127	10°	7
2.	Subscript of desired speed (IPERFS)	xxx	127	10°	7
3.	Subscript of nominal path (NNPATH)	xxx	127	10°	7
4.	Computed vector option (not currently used in model)	xx	15	10°	4
5.	Subscript of divergent path (IDROUTE)	ХХ	63	10°	6
6.	Altitude option availability (yes-no)	xx	63	10°	6
7.	Speed change availability (yes-no)	XX	63	10°	6
8.	Standard hold option availability (yes-no)	х	. 1	10°	1
9.	Emergency hold option avail- ability (yes-no)	Х	1	10°	1
10.	Limit aircraft option (if non- zero, pointer to LIMAC)	xx	15	10°	4
			bits used excess)		49

Packed Computer Word Diagram

IOPTN - Continued

Attribute table IPOPTN (dimensioned 4 by 10) describes the packed word IOPTN.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7	8	9	10
Length	7	7	7	4	6	6	6	1	1	4
Sign	0	0	0	0	0	0	0	0	0	0
Scale	0	0	0	0	0	0	0	0	0	0
First Shift	42	35	28	24	18	12	6	5	4	0

Aircraft Performance Rates. IPERFR

Each aircraft performance class has associated with it a rate of performance for various operational categories.

Operational categories used in the Terminal Area Air Traffic Control Model include:

- 1. (IPERFR1) maximum descent rate (hundreds of ft/min)
- 2. (IPERFR2) enroute descent rate (hundreds of ft/min)
- 3. (IPERFR3) terminal descent rate (hundreds of ft/min)
- 4. (IPERFR4) climb rate to 10,000 ft (hundreds of ft/min)
- 5. (IPERFR5) climb rate to 20,000 ft (hundreds of ft/min)
- 6. (IPERFR6) acceleration rate (kts/min)
- 7. (IPERFR7) deceleration rate (unsigned) (kts/min).

Dimension: 3 by 7

Packed words for each entry: 1/8

Aliases: IPERFR(i,1) or IPERFR1(i)

IPERFR(i,2) or IPERFR2(i)

IPERFR(i,3) or IPERFR3(i)

IPERFR(i,4) or IPERFR4(i)
IPERFR(i,5) or IPERFR5(i)

IPERFR(i,6) or IPERFR6(i)

IPERFR(1,7) or IPERFR7(1)

IPERFR

(packed 8 elements in each computer word)

Characteristics of Each Element

Description: Climb, descent, acceleration, or deceleration rates by

aircraft performance class (see list above)

Form: XXX

Max. Value: 127

Scale Factor: 10² (except IPERFR6 and IPERFR7 are 10°)

Binary Bits: 7

Packed Computer Word Diagram

Performance Speeds (Kts). IPERFS

Each aircraft performance class has associated with it a speed for various operational categories.

Operational categories used in the Terminal Area Air Traffic Control Model include:

- 1. (IPERFS1) Takeoff
- 2. (IPERFS2) Climb to 10,000 ft
- 3. (IPERFS3) Climb to 20,000 ft
- 4. (IPERFS4) Cruising
- 5. (IPERFS5) Transition
- 6. (IPERFS6) Terminal
- 7. (IPERFS7) Approach
- 8. (IPERFS8) Final.

Dimension: 4 by 8

Packed words for each entry: 1/6

Aliases: IPERFS(1,1) or IPERFS1(1)
IPERFS(1,2) or IPERFS2(1)
IPERFS(1,3) or IPERFS3(1)
IPERFS(1,4) or IPERFS4(1)
IPERFS(1,5) or IPERFS5(1)
IPERFS(1,6) or IPERFS6(1)
IPERFS(1,7) or IPERFS7(1)
IPERFS(1,8) or IPERFS8(1)

IPERFS

(packed 6 elements in each computer word)

Characteristics of Each Element

Description: Airspeed associated with a performance class--

operational category

Form: XXX.

Max. Value: 1023 Scale Factor: 10° Binary Bits: 10

Packed Computer Word Diagram

Aircraft Performance, Seconds to Lift-Off. IPERFT

Each aircraft performance class has associated with it a performance parameter "seconds to lift-off."

Dimension: 3

Packed word for each entry: 1/10

Aliases: none

IPERFT

(packed 10 elements in each computer word)

Characteristics of Each Element

Description: seconds from start of take-off roll to lift-off

Form: XX.

Max. Value: 63

Scale Factor: 10°

Binary Bits: 6

Packed Computer Word Diagram

Aircraft Performance, Turn Rate. IPFTR

Each aircraft performance class has associated with it a performance parameter, "turn rate."

Dimension: 3

Packed words for each entry: 1/10

Aliases: none

IPFTR

(packed 10 elements in each computer word)

Characteristics of Each Element

Description: Turn rate (deg/sec)

Form: X.X

Max. Value: 63

Scale Factor: 10⁻¹

Binary Bits: 6

Packed Computer Word Diagram

Element 1 2 3 4 5 6 7 8 9 10 Bits 6 6 6 6 6 6 6 6 6

Length (distance) in n mi of path segments. ISDST

Each flight path segment has an associated distance.

Dimension: 17

Packed words for each entry: 1/6

Aliases: none

ISDST

(packed 6 elements in each computer word)

Characteristics of each element:

Description: distance associated with a segment

Form: XX.X

Max. Value: 1023Scale Factor: 10^{-1}

Binary Bits: 10

Packed Computer Word Diagram

Element 1 2 3 4 5 6 Bits 10 10 10 10 10 10

Schedule of all path segments used for the various paths making up the scheduled routes. ISKED.

Describes the four-dimensional flight plan using both aircraft and ground-based navigational techniques.

Dimension: 85

Packed Words for each entry: 1

Aliases: none

ISKED

Element Number	<u>Description</u> [†]	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Flight navigational mode	ХХ	31	10°	5
2.	Information No. 1	xxx.	511	10°	9
3.	Information No. 2	xxx.	<u>+</u> 511	10°	10
4.	Subscript for altitude array (ALTSKD). If value is zero, continue at present altitude; if value is 31, use altitude subscript from IOPTN altitude pointer	xx	31	10°	5
5.	Subscript to speed type (IPERFS)	ХХ	15	10°	4
6. 7.	Control point mode, i.e., type of make good conditions Information No. 3	XX	31	10°	5
		XXX.	511	10°	9
8.	Information No. 4	XXXX.	<u>+</u> 4095	10°	13
		_	Bits Used excess)		60

Packed Computer Word Diagram

Attribute table IPSKED (dimensioned 4 by 8) describes the packed word ISKED.

 $^{^{\}dagger}$ See table on following page for detail.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7	8
Length	5	9	10	5	4	5	9	13
Sign	0	0	1	0	0	0	0	1
Scale	0	0	0	0	0	0	0	0
First Shift	55	46	36	31	27	22	13	0

NAV	FLIGHT IGATIONAL MODE ement 1)	INFO. 1 (element 2)	INFO. 2 (element 3)
1	(VOR)	VOR ID	$radial (deg) \begin{cases} +toward \\ -away \end{cases}$
2	(ADF)	ADF ID	, .
3	(VECTOR)	heading (deg)	
4	(STD TURN)	final heading (deg)	$egin{array}{ll} ext{direction} egin{cases} 1 & ext{left} \ 2 & ext{right} \end{cases} \ ext{(rate supplied by program)} \end{cases}$
5	(DME)	DME ID	distance (n mi) ${ + toward \atop -away }$ (further scale by 10^1 before packing and 10^{-1} after unpacking)
6	(ILS)	ILS ID	radial (deg)
7	(no longer used)		
8	(no longer used)		
9	(TRUE TURN)	$direction \begin{cases} 1 & left \\ 2 & right \end{cases}$	<u>.</u>
10	(VECTOR ON BASE LEG)	heading (deg)	

PO MO	TROL INT DE ement 6)	INFO. 3 (element 7)	INFO. 4 (element 8)
1	(RADIAL)	VOR ID	degrees
2	(TIME)	1 2	time of day - scans elapsed time - sec
3	(DIST)	distance (n mi) (further scale by 10 ¹ before packing and 10 ⁻¹ after unpacking)	
4	(ALT)	hundreds of ft	
5	(FIX)	FIX ID	
6	(SPD)	kts	
7	(DME)	DME ID	distance (n mi) $\begin{cases} +\text{toward} \\ -\text{away} \end{cases}$ (further scale by 10^1 before packing and 10^{-1} after unpacking)
8	(CONTINUE UNTIL CLEARANCE RE- CEIVED)		
9	(PROCEED IMMEDI- ATELY TO NEW FLIGHT MODE)		
10	(TOUCHDOWN)	RUNWAY ID	distance (n mi) (further scale by 10 ¹ before packing and 10 ⁻¹ after unpacking)

Traffic Sample Description. ITRAF1, ITRAF2

Describes the offer time values of the variables associated with each aircraft in the traffic sample.

Dimensions: 102 by 2 per aircraft

Packed words for each entry: 2

Aliases: none

ITRAF1

Element Number		Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.		ID (generally its position in this array)	XXX	1023	10°	. 10
2.	x coord.	(n mi north)	<u>+</u> xx.xx	<u>+</u> 8191	10^-2	14
3.	y coord.	(n mi east)	<u>+</u> xx.xx	<u>+</u> 8191	10^2	14
4.	z coord. level)	(ft above mean sea	xxxxx.	65435	10°	16
			Total B	its Used cess)		54

Packed Computer Word Diagram

Attribute table IPTRAF1 (dimensioned 4 by 4) describes the packed word ITRAF1.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4
Length	10	14	14	16
Sign	0	1	1	0
Scale	0	2	2	0
First Shift	44	30	16	0

ITRAF2

Element Number	Description	Form	Max. Value	Scale Factor	Binary Bits
1.	Speed (kts)	XXX.	511	10°	9
2.	Heading (deg)	xxx.	511	10°	9
3.	Aircraft performance class	XX	31	10°	5
4.	Propeller (=1) or Jet (=2)	X	3	10°	2
5.	Route number	XX	63	10°	6
6.	T (4-sec scans), i.e., offer time	XXXX	16383	10°	14
7.	Departure (=1) or arrival (=2)	X	3	` 10°	2
8.	Hemisphere relative to terminal, north=1, south=2	XX	15	10°	4
9.	Desired altitude (hundreds of ft) (departures only)	XXX	511	10 ²	9
			Bits Use	d	60

Packed Computer Word Diagram

Attribute table IPTRAF2 (dimensioned 4 by 9) describes the packed word ITRAF2. $\,$

Attribute Table for Pack/Unpack Routines

Element	1	_2	3	4	5	6	7	8	9
Length	9	9	5	2	6	14	2	4	9
Sign	0	0	0	0	0	0	0	0	0
Scale	0	0	0	0	0	0	0	0	-2
First Shift	51	42	37	35	29	15	13	9	0

Air Traffic Flow Control Descriptor. LIMAC

Describes parameters used to change separation standards for traffic flow control.

Dimension:

Packed words for each entry: 1

Aliases: none

LIMAC

Element Number	Description	Form	Max. <u>Value</u>	Scale Factor	Binary Bits
1.	Indicator whether limit is on an ETA array or a waiting queue	X	7	10°	3
2.	Subscript pointing to which ETA or waiting queue array	XXX	63	10°	6
3.	Upper limit of number of aircraft in array before additional separation applied	XX	63	10°	6
4.	Lower limit of number of aircraft in array before additional separation removed	XX	63	10°	6
5.	Separation (n mi) to be added	XX.X	511	10 ¹	9
6.	Pointer to switch indicating whether additional separation was previously applied	XX	63	10°	6
7.	Pointer to next possible flow control descriptor. If sign is negative, both conditions must be met to apply additional separation. If positive, either condition being met will use the				
	additional separation	<u>+</u> XX	<u>+</u> 31	10°	6
			Bits Used excess)		42

Packed Computer Word Diagram

LIMAC - Continued

The attribute table IPLIMAC (dimensioned 4 by 7) describes the packed word LIMAC.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7
Length	3	6	6	6	9	6	6
Sign	0	0	0	0	0	0	1
Scale	0	0	0	0	1	0	0
First Shift	39	33	27	21	12	6	0

Flight Path (Leg) Description. NNPATH(i)

Describes which segments from ISKED are used for each path.

Dimension: 50

Packed words for each entry: 1

Aliases: none

NNPATH

Element Number	Description	<u>Form</u>	Max. Value	Scale Factor	Binary Bits
1.	Number of segments for this path	Х	7	100	3
2.	Pointer to next optional vector in NNPATH	xxx	127	10 ⁰	7
3.	Path number for this path (not necessarily equal to "i" and not necessarily unique)	XXX	127	100	7
4.	Pointer to ISKED for first segment this path	xxx	127	100	7
5.	Pointer to ISKED for second segment this path	XXX	127	100	7
6.	Pointer to ISKED for third segment this path	XXX	127	100	7
7.	Pointer to ISKED for fourth segment this path	XXX	127	100	7
Dealer I Co			Bits Used excess)	i	45

Packed Computer Word Diagram

Element	Excess	1 1	2	3	4	5	6	7
Bits	15	3	7	7	7	7	7	7

Attribute table IPNPATH (dimensioned 4 by 7) describes the packed word NNPATH.

Attribute Table for Pack/Unpack Routines

Element	1	2	3	4	5	6	7
Length	3	7	7	7	7	7	7
Sign	0	0	0	0	0	0	0
Scale	0	0	0	0	0	0	0
First Shift	42	35	28	21	14	7	0

Preceding page blank

APPENDIX G

Computer Core Storage Requirements for the Terminal Area Simulation

This appendix describes how core storage is allocated to the various overlays, subroutines and data arrays. The data storage requirements are variable and are a function of the particular data set with which the program is dealing.

PRECEDING PAGE BLANK NOT FILMED

STORAGE REQUIREMENTS

	<u>Octal</u>	Decimal
System reserved storage	1008	64
Common data storage	14672 ₈	6586
Overlay 0,0 - resident overlay		
TAATM PAKSPL and UPKSPL ISHFTE PAKUNI UPKUNI LSHFT System Supplied Routines	512 ₈ 266 ₈ 3 ₈ 111 ₈ 76 ₈ 3 ₈ 16751 ₈ 20166 ₈	330 182 3 73 62 3 7657
Overlay 1,0 - shared core		0310
TATINT INIT System Supplied Routines	2600 ₈ 1344 ₈ 4401 ₈	1408 740 2305
	(10545 ₈)	(4453)
Overlay 2,0 - shared core TATPRNT	EEC.	
TATIMI	556 ₈ (556 ₈)	366 (366)
Overlay 3,0 - shared cord	. 07	(300)
TATREAD System Supplied Subroutines	200 ₈ 1155 ₈ (1355 ₈)	128 621 (749)
Overlay 4,0 - shared core		,
TATMAIN System Supplied Routines	171 ₈ 3440 ₈	121 1824
Over 1 /- 1	3631 ₈	1945
Overlay 4,1 - shared core TATREST System supplied routines	241 ₈ 100 ₈ ————————————————————————————————————	161 64 ——— (225)
Overlay 4,2 - shared core	νο,	(223)
TATHOLD MAKTAPE DASHCIR System Supplied Routines	7142 ₈ 100 ₈ 124 ₈ 6437 ₈ (16025 ₈)	3682 64 84 3359 (7189)

3000000 3700 STORAGE REQUIREMENTS, Continued

			<u>Octal</u>	1 of 65 a	Decimal O
Overlay 4,3 - shared	i core				
TATOPER		1056 ₈		558	
TRACKAC		4267 ₈		2231	
RANDU		408		32	•
COMMUN		16668		950	
CNTRLAC		7544 ₈		3940	
ETACOMP		334 ₈	THE PERSON AND THE PERSON OF T	220	man parantapan panas a
CONCHK	when the same was a substitute of the same same and same	3638	خ د است. بیشر شدید مهمد در 1.1.1 د ۱.4.1 درون در در دست	243	
COMETA		3738	8.000 Z	251 251 78	mair
CRTDSPL		116 ₈ 15 33 ₈		78 859	·
XFORM		1068		70	
System supplied	l routines	256 ₈		174	
			226068		9606
System Tables			102028		4226
Loader			34508		1832
TOTAL CORE REQUIREME	NTS FFE AND THE	And the second of the second o	774718	Č.	32569
·	Same	1			
· _ •	and the same of th	المستعمر فرم	1.	and the second to the	Marie Control
	The same of district on a second of the seco	P de la companya de l		hed hed	igen (f. 1905) George (f. 1905) George (f. 1905)
		The second second	200 alkan D	heat heat	or the second of
			200 11 Marie 200	held held	est of the second of the secon
			200 11 Marie 200	hed.	OF THE STATE OF TH
			200 minus 200 	her her	
				hed hed	
				held	
				her?	

TRIP SER MEXICAGE CONTRACTORS

CORE STORAGE

2K₈ Per Vertical Division

APPENDIX H
Detailed Logic Flow Charts

This appendix contains the detailed logical flow charts for the simulation model, broken down into overlays and subroutines as follows:

Subroutine	Page	Subroutine	Page
Overlay 0,0	286	Overlay 4,3	317
TAATM PAKSPL and UPKSF ISHFTE PAKUNI UPKUNI LSHFT	286 287 289 290 290 291	TATOPER TRACKAC RANDU COMMUN CNTRLAC ETACOMP	317 321 337 338 346 376
Overlay 1,0 TATINT INIT	292 292 296	CONCHK SPDCNTR COMETA CRTDSPL XFORM	379 382 385 386 392
Overlay 2,0	298		77-
TATPRNT	298	Program TRAFGEN	393
Overlay 3,0 TATREAD	300 300	Program ANALYS	396
Overlay 4,0	301		
TATMAIN	301		
Overlay 4,1 TATREST	303 303		
Overlay 4,2 TATHOLD MAKTAPE DASHCIR	305 305 316 316		

IDENT ISHFTE

CHARLE UPKUNITI IMPONTERENT I HARRAY SCRIE, KRET)

CHARLES UNIFORM PACKED ARRAYS WHICH ARE PACKED HORD.

CHARLES IN KRETCIN FLOATING FORM, DIVIDED BY SCRIE) THE IN

CHARLESTON TARRAY(2)

CHARLESTON TARRAY(2)

CHARLESTON TARRAY(1,000)

CHARLESTON TARRAY

IDENT LISHET

PAGE 2

ENTRY LSHFT
DRTR 0

SRI BI
SR2 B2
SR3 X2
LEG SHFT

4

.

298

LD[\$0(61)=L0]\$0(63)=L0]\$0(64)=L0[\$0(81)=L0[\$0(82)=L0]\$0(83)=.F. L0[\$0(62)=.TRUE.

CHENN PRINT CONTROL

PAGE

302

90014 4 CODE USED TO PRINT WHILE IN RESET OR HOLD HODE.

B2 PG 16

CONTINUE

CONTINUE

10 NMI DISPLAY

X(1) = -2.00 \$ Y(1) = X(2) = -6.00 \$ Y(2) = X(3) = -10.00 \$ Y(3) =

DO 102 [=1.15]

CALL VECTORS (NARS .ASX .ASY)

IF(NARB.GT.O)

CALL VECTORS(NAR6, A6X, A6Y)

PAGE

BOC:

TOP OF NEXT PAGE

BOTTOM OF PRECEDING PAGE

CHARA ORDER CMSG ON LATEST TRANSHIT TIME

IF(NCMSGT.LT.I

339

TOP OF NEXT PRGE

PG - 5

347

352

355

379

5

PG - 16

PG - 15

PG - 15

PG - 15

399

VIII. REFERENCES

- [1] Britt, C. L. Definition of a Terminal Area Air Traffic Model for Studies of Advanced Instrumentation and Control Techniques. NASA CR-111979, Research Triangle Institute, Research Triangle Park, North Carolina, December 1971.
- [2] Britt, C. L., T. M. Walsh, J. A. Modi and E. G. Baxa. An Investigation of Vehicle Dependent Aspects of Terminal Area ATC Operation.

 Presented at the 1972 Joint Automatic Control Conference, Palo Alto, California, August 16-18, 1972.
- [3] Conway, Johnson and Maxwell. Some Problems of Digital Systems Simulation. Management Science, Vol. 5, 1959, page 92.
- [4] Britt, C. L. Statistical Evaluation of Aircraft Collision-Hazard Warning System Techniques in the Terminal Area--Phase II.

 NASA CR-1470, Research Triangle Institute, Research Triangle Park, North Carolina, December 1969.