

Цель работы:

Вычислительная часть лабораторной работы:

Линейная аппроксимация

линеиная аппроксимация											
X_i	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
Y_i	-0,2857	-0,3200	-0,3449	-0,3535	-0,3411	-0,3077	-0,2579	-0,1979	-0,1330	- 0,0667	0,0000
$\sum x_i$	-11										
$\sum y_i$	-2.6084										
$\sum x_i^2$	15.4										
$\sum x_i y_i$	3.3028										
$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$											

Решив систему получим: a=0.1578; b=-0.0793;

Искомое уравнение линейной регрессии имеет вид:

y=0.1578x-0.0793

- 0	′										
	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0 x_i
	-0,2857	-0,3200	-0,3449	-0,3535	-0,3411	-0,3077	-0,2579	-0,1979	-0,1330	-0,0667	0,0000 y_i
	-0,3949	-0,36334	-0,33178	-0,30022	-0,26866	-0,2371	-0,20554	-0,17398	-0,14242	-0,11086	-0,0793 phi_i
	0,1092	0,0433	-0,0132	-0,0533	-0,0724	-0,0706	-0,0523	-0,0239	0,0094	0,0442	0,0793 epsilon

$$\sigma = 0.0593$$

Квадратичная аппроксимация

X_i	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
Y_i				-	-	-	-	-	-	-	
	-0,2857	-0,320	-0,3449	0,3535	0,3411	0,3077	0,2579	0,1979	0,1330	0,0667	0,0000
$\sum x_i$	-11										
$\sum y_i$	-2.6084										
$\sum x_i^2$	15.4	$\sum x_i^3$	-24.2	$\sum x_i^4$	40.533						
$\sum x_i y_i$	3.3028	$\sum x^2_i y_i$	-4.8145								

$$\begin{cases} a_0n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

Решив систему получим: a0=0.1646; a1=0.487; a2=0.0194 Искомое уравнение квадратичной регрессии имеет вид: $y=0.1646x^2+0.487x+0.0194$

$$\sigma = 0.0117$$

Листинг программы:

```
def linear_least_squares(x, y):
    n = len(x)
    sum_x = sum(x)
    sum_y = sum(y)
    sum_xx = sum(xi ** 2 for xi in x)
    sum_xy = sum(xi * yi for xi, yi in zip(x, y))

a = (n * sum_xy - sum_x * sum_y) / (n * sum_xx - sum_x ** 2)
    b = (sum_y - a * sum_x) / n

    return a, b

def polynomial_least_squares(x, y, degree):
    n = len(x)
    X = [[xi ** j for j in range(degree, -1, -1)] for xi in x]
    XT = [[row[i] for row in X] for i in range(degree + 1)]
```

```
range(degree + 1) | for i in range(degree + 1) |
    B = [sum(yi * XT[i][k] for k, yi in enumerate(y)) for i in
range(degree + 1)]
    for i in range(degree + 1):
        for j in range(i + 1, degree + 1):
            B[j] -= mult * B[i]
    coeffs = [0] * (degree + 1)
    for i in range(degree, -1, -1):
        coeffs[i] = B[i]
        for j in range(i + 1, degree + 1):
            coeffs[i] -= A[i][j] * coeffs[j]
    return coeffs
def exponential least squares(x, y):
    y log = [math.log(yi) for yi in y]
    a, b = linear least squares(x, y log)
    A = math.exp(b)
def logarithmic least squares(x, y):
    x log = [math.log(xi) for xi in x]
    a, b = linear least squares(x log, y)
def power least squares(x, y):
    x \log = [math.log(xi) \text{ for } xi \text{ in } x]
    y log = [math.log(yi) for yi in y]
```

```
a, b = linear_least_squares(x_log, y_log)
A = math.exp(b)
B = a
return A, B
```

Пример и результаты работы программы:

```
Хотите ли вы ввести данные из файла? (у/п):
Введите имя файла:

Коэффициенты линейной аппроксимации: а = 1.011818181818182, b = 1.183636363636362

Коэффициенты полиномиальной аппроксимации (2-й степени): [0.016200466200464, 0.8174125874126146, 1.604848484848423]

Коэффициенты полиномиальной аппроксимации: а = 2.506834990426823, b = 0.15777355944606403

Коэффициенты логарифмической аппроксимации: а = 2.508384990426823, b = 0.15777355944606403

Коэффициенты отарифмической аппроксимации: а = 2.084861745666, b = 0.534717947046

Коэффициенты степенной аппроксимации: а = 2.084861749909551234, b = 0.7106409248221797

Среднекваратичное отклонение (плинейная): 0.19351041571898797

Среднекваратичное отклонение (полиномиальная 2-й степени): 94.56135219258299

Среднекварратичное отклонение (полиномиальная): 0.6756845236484322

Среднекваратичное отклонение (столиномиальная): 0.6756845236484322

Среднекваратичное отклонение (столиномиальная): 0.6756845236484322

Среднекваратичное отклонение (степенная): 0.9999156923364204

Коэффициент детерминации (пинейная): 0.99999999999999999

Коэффициент детерминации (пинейная): 0.9999999999999999

Коэффициент детерминации (пинейная): 0.9999999999999999

Коэффициент детерминации (пинейная): 0.9547368353321967

Коэффициент детерминации (олспарифмическая): 0.9921408081373027

Наилучшая аппроксимирующая функция: Linear

Наилучшая аппроксимирующая функция: Linear
```


Вывод:

В результате выполнения данной лабораторной работы были изучены методы для нахождения аппроксимирующих функций, приближающим функцию, заданную множеством её точек.