

توصیه گر

محمد دهقاني

معرفي

- ۱. مدیر دیتاهاب
- ۲. لیسانس نرم افزار از دانشگاه اصفهان و ارشدIT تربیت مدرس
 - ۳. کارشناس سابق پردازش متن شرکت لایف وب
 - ۴. سابقه همکاری با شرکت های داده پردازی آرون و توانمند
- ۵. سابقه تدریس در مرکز علوم شناختی(IPM) و دانشگاه های شریف، اصفهان، امیرکبیر،
 - شهرکرد، علوم پزشکی تهران و کنفرانس وب پژوهی
 - ۶. دارای بیش از ۳ مقاله ژورنالی
 - ۷. مترجم کتاب یادگیری ماشین
 - ۸. نویسنده کتاب تحلیل عواطف با استفاده از تکنیک های یادگیری ماشین

Award-winning Movies

TV Sci-Fi & Horror

Docuseries >

35% of the purchases on Amazon are the result of their recommender system, according to McKinsey.

Recommendations are responsible for 70% of the time people spend watching videos on YouTube.

75% of what people are watching on Netflix comes from recommendations, according to McKinsey.

Recommendation Engine – Examples

Facebook—"People You May Know"

YouTube-"Recommended Videos"

Netflix—"Other Movies You May Enjoy"

Amazon—"Customer who bought this item also bought ..."

LinkedIn-"Jobs You May Be Interested In"

Pinterest-"Recommended Images"

Plan for Today

1. Collaborative Filtering

2. Content-Based

3. In Production

Category

Recommender systems

Content based methods

Define a model for user-item interactions where users and/or items representations are given (explicit features).

Collaborative filtering methods

Model based

Define a model for user-item interactions where users and items representations have to be learned from interactions matrix.

Memory based

Define no model for user-item interactions and rely on similarities between users or items in terms of observed interactions.

Hybrid methods

Mix content based and collaborative filtering approaches.

Most popular items

- This is a blazing fast and dirty approach.
- The things is, there is no personalization involved with this approach.
- Surprisingly, such approach still works in places like news portals.

Fig.1: Popularity Filtering Model

1. Collaborative Filtering – Similarity Function

Real function that quantify the similarity between two objects.

 $sim(a,b) = \dots$

1. Collaborative Filtering – **Similarity Function**

1. Collaborative Filtering

1. Collaborative Filtering

https://en.wikipedia.org/wiki/Collaborative_filtering

1. Collaborative Filtering – Rating Matrix

Rating data:

$$D_{(8)} = 4 \in \{ \emptyset, 1, 2, 3, 4, 5 \}$$

	C Po			CRAZY RICH ASIANS		Constitution
8	2		2	4	5	
8	5		4			1
8			5		2	
8		1		5		4
8			4			2
8	4	5		1		

	0	1	2	3	4	5
0	1.000000	0.396780	0.530558	0.440867	0.255551	0.264520
1	0.396780	1.000000	0.573068	0.095238	0.621059	0.476190
2	0.530558	0.573068	1.000000	0.000000	0.830455	0.000000
3	0.440867	0.095238	0.000000	1.000000	0.276026	0.238095
4	0.255551	0.621059	0.830455	0.276026	1.000000	0.000000
5	0.264520	0.476190	0.000000	0.238095	0.000000	1.000000

Rating prediction: $\hat{y}_{u,i} = \sum sim(u',u)r_{u',i}$

5 0.264520 0.476190 0.000000 0.238095 0.000000 1.000000

$$0.264520*2 + 0.476190*4 + 0*5 + 0.238095*0 + 0*4 + 1*0$$

 $2.43 \approx 2.5$

1. Collaborative Filtering – User-User **Benefits**

- "People who bought that also bought that"
- Good when #items >> #users

1. Collaborative Filtering – User-User **Challenges**

- Sparsity
- Don't scale Nearest Neighbors requires computation that grows with the number of users and items
- Model Too Simplistic Accuracy of recommendation may be poor

River I Li			CRAZY RICH ASIANS		Che Unio
2		2	4	5	
5		4			1
		5		2	
2.6	1	2.15	5		4
		4			2
4	5		1		

$$0.58*1 + 0.28*5 + 0.16*4$$

 $2.62 \approx 2.6$
 $0*1 + 0.16*5 + 0.34*4$
 $2.16 \approx 2.15$

What about mean? 2.62/5

1. Collaborative Filtering – Item-Item **Benefits**

- "If you like this you might also like that"
- Good when #users >> #items
- Very fast after the item-item table has been pre-computed

1. Collaborative Filtering – Item-Item **Challenges**

- Bottleneck similarity computation
- Space complexity dense item-item similarity matrix
- Model Too Simplistic Accuracy of recommendation may be poor

we'll feed our model with the vector [1.2, 0.8].[1.2,0.6] and force its output to equal 4.5

1. Collaborative Filtering – Matrix Factorization

- SGD Stochastic Gradient Descent
- SVD Truncated Singular Value Decomposition
- ALS Alternating Least Square

1. Collaborative Filtering – User-Item **Benefits**

- Fast after U and I are pre-computed
- Can learn more about users with U
- Can learn more about items with I

1. Collaborative Filtering – User-Item **Challenges**

- Sparsity
- Need to re-learn everything every time a new user or new item or new rating enter the game

1. Collaborative Filtering – Sparsity Example, the Netflix Prize

- 17,770 Movies
- 480,189 Users
- 100,480,507 Ratings How

dense is our Matrix?

$$\frac{Ratings}{Movies \times Users} = \frac{100, 480, 507}{17,770 \times 480,189} \times 100 = 1.18\%$$

1. Collaborative Filtering – Sparsity Example, the Netflix Prize

- 17,770 Movies
- 480,189 Users
- 100,480,507 Ratings

How dense is our Matrix?

movies

users

$$\frac{Ratings}{Movies \times Users} = \frac{100,480,507}{17,770 \times 480,189} \times 100 = 1.18\%$$

2. Content based filtering(Content Extraction)

Based on "what does the user like about an item":

- Meta-data extraction
- Clustering
- Similarity/distance between objects

2. Content based filtering—Item-Item Similarity

- Allow to compute similarities between items
- Does not require rating dataset
- The previous item-item recommendation algorithm still works
- No item cold start
- User attributes mitigate user cold start

4. In Production – Current Problematics

Data quality –implicit feedback; etc.

Sparsity – increase in size with items / users

Cold start problem – user cold start; item cold start

Recommendation speed – O(#items) algorithms not possible

4. In Production – Solutions

Data quality

Unbiased consumer app where the users enter their tastes(transfer learning)

Sparsity

User interaction: Ask each user to rate the most informative items

Cold start problem

Hybrid models with deep content extraction to recommend new items without ratings

Recommendation speed

Use GPU & TPU ©

Use ligther method

4. In Production – Tools

LightFM

- © open source: https://github.com/lyst/lightfm
- (i) hybrid: matrix factorization + context

Deep Learning?

- way less tools than Computer Vision or NLP
- in o pre-trained model available you need large dataset and GPUs
- TensorFlow and PyTorch support for sparse data is limited

#DONTFORGETUS

آموزش های رایگان بیشتر

> www.data-hub.ir www.youtube.com/channel/datahub1 www.linkedin.com/company/data-hub-ir www.t.me/data hub ir www.github.com/datahub-ir