COMP-273 – Machine Structures

Caches, Part I

Assignment Project Exam Help

hke eem Stedengi

Add WeChat powcoder

Outline

- ° Memory Hierarchy
- ° Direct-Mangned Gasche Exam Help
- ° Types of CachepMissesom
- °A (long) detailed example

Memory Hierarchy (1/4)

° Processor

- executes programs
- runs on order of nanoseconds to picosecoigdsent Project Exam Help
- needs to accessocode and data for programs: where are these?

 Add WeChat powcoder

° Disk

- HUGE capacity (virtually limitless)
- VERY slow: runs on order of milliseconds
- so how do we account for this gap?

Memory Hierarchy (2/4)

- ° Memory (DRAM)
 - smaller than disk (not limitless capacity)
 - contains <u>subset</u> of data on disk: basically portions <u>of programest that alleleurrently</u> being run https://powcoder.com
 - much faster than disk: memory accesses don't slow down processor quite as much
 - Problem: memory is still too slow (hundreds of nanoseconds)
 - Solution: add more layers (caches)

Memory Hierarchy (3/4)

Size of memory at each level As we move to deeper levels the latency goes up and price per bit goes down.

Memory Hierarchy (4/4)

- ° If level is closer to Processor, it must...
 - Be smaller
 - Be faster
 - Assignment Project Exam Help
 Contain a subset (most recently used data)
 of lower levels beneathertcom
 - · Contain all the data in higher levels above it
- Lowest Level (usually disk) contains all available data
- ° Is there another level lower than disk?

Memory Hierarchy

° Purpose:

 Faster access to large memory from processor

Memory Hierarchy Analogy: Library (1/2)

- You're writing a term paper (processor) at a table in Schulich
- °Schulich Library is equivalent to disk
 - · essentially limitless capacity
 - · very slowhtoretneveder sook
- ° Table is Medd WeChat powcoder memory
 - smaller capacity: means you must return book when table fills up
 - easier and faster to find a book there once you've already retrieved it

Memory Hierarchy Analogy: Library (2/2)

- °Open books on table are cache
 - smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book Exam Help
 - much, much faster to retrieve data https://powcoder.com
- °Illusion created: whole library open on the tabletop
 - Keep as many recently used books open on table as possible since likely to use again
 - Also keep as many books on table as possible, since faster than going to library

Memory Hierarchy Basis

- ° Disk contains everything.
- °When Processor needs something, bring it into all lower levels of memory.

Assignment Project Exam Help

- °Cache contains copies of data in memory that are being used.
- ° Memory contains copies of data on disk that are being used.
- Entire idea is based on <u>Temporal</u> <u>Locality</u>: if we use it now, we'll want to use it again soon

Cache Design

- ° How do we organize cache?
- Where does each memory address map to? (Remember that cache is subset of memory) so multiple memory addresses map to the same cache location.)
- Objective of the control of the c
- Our Property of the Propert

Direct-Mapped Cache (1/2)

- old a direct-mapped cache, each memory address is associated with one possible block within the cache
 - Therefore, we only need to look in a single location in the cache for the data if it exists inthe pacheler.com
 - Block is the unit of transfer between cache and memory

Direct-Mapped Cache (2/2)

308-273 (13)

Issues with Direct-Mapped

- 1 Since multiple memory addresses map to same cache index, how do we tell which one is in there?
- 2 What if Awee have Parjotockus izep> 1 byte?
- °Solution: divide merrory address into three fields WeChat powcoder

Direct-Mapped Cache Terminology

- ° All fields are read as unsigned integers.
- "Index: specifies the cache index (which "row" of the cache we should look in)
- Offset: Assignment Project Exam Help
 Offset: once we've found correct block, specifies which/bytedwithin the block we want

Add WeChat powcoder

Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

Direct-Mapped Cache Example (1/3)

- °Suppose we have a 16KB direct-mapped cache with 4 word blocks.
- ° Determine the size of the tag, index and offset fields if we're using a 2-bit architecture.

https://powcoder.com

° Offset

Add WeChat powcoder

- need to specify correct byte within a block
- block contains 4 words = 16 bytes =
 2⁴ bytes
- need 4 bits to specify correct byte

Direct-Mapped Cache Example (2/3)

° Index

- need to specify correct row in cache
- cache contains 16 KB = 2⁴ 2¹⁰ = 2¹⁴ bytes block contains 24 bytes (41 Words)
- *# rows/catche:#pov#cblocks/cache (since there's one block/row)

 Add WeClbytes/cache

 bytes/row

 = 2¹⁴ bytes/cache

 2⁴ bytes/row

 = 2¹⁰ rows/cache
- need <u>10 bits</u> to specify this many rows

Direct-Mapped Cache Example (3/3)

° Tag

- used remaining bits as tag
- tag length = mem addr length Assignment Exercise Exam Help

https://powcoder.com

Add Wellst powcoder

 so tag is leftmost <u>18 bits</u> of memory address

Accessing data in a direct mapped cache

Example: 16KB, direct-mapped, 4 word blocks Memory
Address (hex) Value of Word

° Read 4 addresses

00000010 a 00000014 b 00000118 p c

Assignment Project Character and Character a

Ox000001 Chttps://powcoder.com

0x00000034, 0x00008014

8014 Add WeCha

0000020	•
00000034	e
00000034	Ī
00000038	g
000003C	ĥ

° Memory values on right:

 only cache/memory level of hierarchy

•••	•••
00008010	i
00008014	j
00008018 0000801C	k
0000801C	

Accessing data in a direct mapped cache

- °4 Addresses:
 - 0x0000014, 0x0000001C, 0x00000034, 0x00008014
- °4 Addresses divided (for convenience) into Tag, Index, Byte Offset fields

https://powcoder.com

0000000000000000 000000001 1100

0000000000000000 000000011 0100

00000000000000010 0000000001 0100

Tag Index Offset

Accessing data in a direct mapped cache

- °So lets go through accessing some data in this cache
 - 16KB, direct-mapped, 4 word blocks
- ° Will see 3 types of events: Assignment Project Exam Help
- °cache miss: nothing in cache in appropriate block, so fetch from memory
- °cache hit: cache block is valid and contains proper address, so read desired word
- °cache miss, block replacement: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory

16 KB Direct Mapped Cache, 16B blocks

 Valid bit: determines whether anything is stored in that row (when computer initially turned on, all entries are invalid)

<u>V</u> Index	ali v		0 x 0-3	0x4-7	Examp 0x8-b	le Block 0xc-f
0	0	149		nt Project Ex		
ĺ	0			,		
1 2 3 4 5 6	0		https:/	/powcoder.c	om	
3	0					
4	0		Add V	VeChat pow	coder	
5	0					
6	0					
/	0					
•••				•••		
1022						
1023	0					

Read 0x00000014 = 0...00 0..001 0100

0000000000000000 000000001 0100 Index field Offset Tag field Valid 0x4-70x8-b0xc-f 0x0-3Index Tag 01234567 Assignment Project Exam Help https://powcoder.com WeChat powcoder **1022**0 **1023**₀

So we read block 1 (000000001)

0000000000000000 000000001 0100 Tag field — Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3**Tag** Index **1**23456 Assignment Project Exam Help https://powcoder.com Add WeChat powcoder **1022**0 10230

No valid data

So load that data into cache, setting tag, valid

Read from cache at offset, return word

0000000000000000 000000001 Index field Offset Tag field Valid 0x4 - 70x8-b0xc-f 0x0-3Tag Index **1**23456 Assignment Project Exam Help d https://powcoder.com Add WeChat powcoder **1022**0 **1023**0

Read 0x000001C = 0...00 0..001 1100

° 00000000000000000 000000001 1100
Tag field Index field Offset

Valid		J	ray nelu	maex neid Onset		
Inde		u Tag	0 x 0-3	0x4-7	0x8-b	0xc-f
	0					
1	1	0	Asagnme	nt Project Ex	am H © n	d
2	0				ľ	
3	0		https:/	/powcoder.c	om	
4	0			T		
5	0		Add V	VeChat power	coder	
01234567	0			1		
7	0					
•••			-	•••	_	_
1022	0					
1023	0					

Data valid, tag OK, so read offset return word d

Read 0x00000034 = 0...00 0..011 0100

0000000000000000 000000011 0100 Index field Offset Tag field Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 d Assignment Project Exam Help https://powcoder.com Add WeChat powcoder 10220 10230

So read block 3

No valid data

Load that cache block, return word

Read 0x00008014 = 0...10 0..001 0100

0000000000000010 000000001 0100 Index field Offset Tag field Valid 0x0-30x4-7 0x8-b0xc-f Tag Index 123456 Assignment Project Exam Help d ehttps://powcoder.com h Add WeChat powcoder 10220 10230

So read Cache Block 1, Data is Valid

0000000000000010 000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3**Tag** (Index **1**23456 Assignment Project Exam Help d h ehttps://powcoder.com Add WeChat powcoder 10220 10230

Cache Block 1 Tag does not match (0 != 2)

Miss, so replace block 1 with new data & tag

0000000000000010 000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 Assignment Project Exam Help ehttps://powcoder.com Add WeChat powcoder 10220 10230

And return word

Do an example yourself. What happens?

° Chose from: Cache:Hit, Miss, Miss w. replace Values returned: a ,b, c, d, e, ..., k, I

Inde	alid _{Ta}	ag		//powcoder.c		0xc-f
0	0		Add V	VeChat power	coder	
1	1 2	2	i	İ	k	
2	0			-		
3	1 (е	f	g	h
4	0					
5	0					
6	0					
7						

Answers

°0x00000030 a hit

Index = 3, Tag matches, Offset = 0, value = e

Memory **Address Value of Word**

00000010 °0x000001c,a.miss 00000014 Assignment Projectory 000001g Index = 1, Tag mismatch, \$000001c

replace from memory.c

Offset = 0xc, yalue = chat p

Therefore, returned values are:

- $\cdot 0x00000030 = e$
- $\cdot 0x000001c = d$

6000000000000000000000000000000000000	е
00000034	f
0000038	g
00000034 00000038 0000003c	ň
•••	•••

00008010

00008014

00008018

0000801c

"And in Conclusion..."

- °We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible.
- So we create a memory hierarchy:
 Assignment Project Exam Help
 • each successively higher level contains

"most used is data from mext lower level

- · exploits temporal locality and spatial locality
- do the common case fast, worry less about the exceptions (design principle of MIPS)
- Locality of reference is a Big Idea