- **1.** Let \mathcal{P} be the plane passing through the points A(1,1,1), B(2,0,0) and C(1,6,3). Let ℓ be the line through the point D(4,5,16) and perpendicular to the plane \mathcal{P} .
 - (a) Find an equation of the plane \mathcal{P} in standard form.

Solution: The vectors

$$\overrightarrow{AB} = (2-1)\vec{i} + (0-1)\vec{j} + (0-1)\vec{k} = \vec{i} - \vec{j} - \vec{k}$$

and

$$\overrightarrow{AC} = (1-1)\vec{i} + (6-1)\vec{j} + (3-1)\vec{k} = 5\vec{j} + 2\vec{k}$$

lie in the plane \mathcal{P} . Their cross-product is a normal vector for \mathcal{P} :

$$\vec{n} = (\vec{i} - \vec{j} - \vec{k}) \times (5\vec{j} + 2\vec{k}) = 3\vec{i} - 2\vec{j} + 5\vec{k}$$
.

A point-normal equation of the plane \mathcal{P} can now be found using any of the points in \mathcal{P} , say the point A(1,1,1):

$$3(x-1) - 2(y-1) + 5(z-1) = 0$$
.

By simplifying, we get the equation of the plane \mathcal{P} in standard form:

$$3x - 2y + 5z = 6.$$

(b) Find parametric equations of the line ℓ in vector and scalar forms.

Solution: Since ℓ is perpendicular to \mathcal{P} , it must be parallel to the normal vector $\vec{n} = 3\vec{i} - 2\vec{j} + 5\vec{k}$. Therefore the vector parametric equation of the line ℓ is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 16 \end{bmatrix} + t \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} .$$

Hence the scalar parametric equations are:

$$x = 4 + 3t$$
, $y = 5 - 2t$, $z = 16 + 5t$.

(c) Find the point of intersection of the plane $\mathcal P$ and the line ℓ .

Solution: Since the point of intersection belongs to the line ℓ , it must be of the form (x,y,z)=(4+3t,5-2t,16+5t) for some value of the parameter t. Since this point also belongs to the plane \mathcal{P} , it must satisfy the equation 3x-2y+5z=6, that is:

$$3(4+3t) - 2(5-2t) + 5(16+5t) = 6$$
.

Hence t = -2. The point of intersection is (4 + 3t, 5 - 2t, 16 + 5t) = (-2, 9, 6).

(d) Find the distance from the point D to the plane \mathcal{P} .

Solution: The distance, d, between the point D and the plane \mathcal{P} is measured along the straight line through D perpendicular to \mathcal{P} . This is exactly the distance between D(4,5,16) and the intersection point (-2,9,6) from part (c):

$$d = \sqrt{(4 - (-2))^2 + (5 - 9)^2 + (16 - 6)^2} = \sqrt{152} = 2\sqrt{38}$$
.

NOTE: This result can be verified using the formula for the distance between a point (x_0, y_0, z_0) and a plane Ax + By + Cz = D: $d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}$.

2. Find all points of intersection of the planes \mathcal{P}_1 : 7x + 3y - 4z = 2 and \mathcal{P}_2 : 2x + y - 3z = -3. Explain the geometrical significance of your answer.

Solution 1: Consider the equations of the two planes as a system of two equations in three unknowns. One way to solve the system is to express y from the second equation:

$$y = -2x + 3z - 3$$

then substitute the result into the first equation:

$$7x + 3(-2x + 3z - 3) - 4z = 2$$

and then solve for x: x = 11 - 5z. Hence y = -2x + 3z - 3 = -2(11 - 5z) + 3z - 3 = 13z - 25. By setting z = t, where t is an arbitrary real number (a parameter), we find the solution of the system in the form:

$$x = 11 - 5t$$
, $y = 13t - 25$, $z = t$.

These parametric equations describe a line in \mathbb{E}^3 .

Solution 2: The normal vectors of \mathcal{P}_1 and \mathcal{P}_2 are $\vec{n_1} = 7\vec{i} + 3\vec{j} - 4\vec{k}$ and $\vec{n_2} = 2\vec{i} + \vec{j} - 3\vec{k}$, respectively. If the two planes intersect in a line ℓ , then ℓ is perpendicular to both $\vec{n_1}$ and $\vec{n_2}$. Hence the cross-product of the normal vectors

$$\vec{n_1} \times \vec{n_2} = (7\vec{i} + 3\vec{j} - 4\vec{k}) \times (2\vec{i} + \vec{j} - 3\vec{k}) = -5\vec{i} + 13\vec{j} + \vec{k}$$

must be parallel to ℓ . In order to get the equations of the line ℓ , we only need to find one point belonging to ℓ . For example, if we set z=0 in the two equations for \mathcal{P}_1 and \mathcal{P}_2 , solving for x and y results in the point (x,y,z)=(11,-25,0). Hence the parametric equations of the intersection line are: x=11-5t, y=-25+13t, z=t.

NOTE: If the two planes were parallel, the normal vectors $\vec{n_1}$ and $\vec{n_2}$ would be parallel, and then their cross-product would have to be equal to the zero vector. Since $\vec{n_1} \times \vec{n_2} = -5\vec{i} + 13\vec{j} + \vec{k}$ is not the zero vector, this tells us that the two planes are not parallel, so they must intersect in a straight line.

3. Given the matrices

$$A = \begin{pmatrix} 2 & 5 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 2 \\ 0 & -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -5 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 2 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 3 & 4 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \text{and} \quad H = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{pmatrix},$$

- (a) identify the matrices of each of the following types: square, diagonal, identity, zero, column, row, upper triangular, lower triangular; Solution: square matrices: A, D, E, H; diagonal matrices: D and H; identity matrix: D; zero matrix: G; column matrix: G; row matrix: C; upper triangular matrices: A, D, H; lower triangular matrices: D, E, H.
- (b) evaluate or declare as undefined: $B^T F$, C + G, 3E + 2H. Solution:

$$B^{T} - F = \begin{pmatrix} -2 & -4 \\ 2 & 0 \\ 2 & 1 \end{pmatrix}, \quad C + G \text{ is undefined}, \quad 3E + 2H = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 6 & -8 \end{pmatrix}.$$