Fourier transformations, Trotter expansion and algorithm

Settings

System:

A single particle of position x in one dimension, in a potential V(x).

Hamiltonian:

$$H = H^{\text{free}} + V(x)$$
 with $H^{\text{free}} = -\frac{1}{2} \frac{\partial^2}{\partial x^2}$ (1)

Schrödinger evolution of the wave function $\Psi(x,t)$:

$$i\frac{\partial}{\partial t}\Psi(x,t) = H\Psi(x,t)$$
 (with $\hbar = 1$) (2)

Operator of evolution

$$\Psi(t) = e^{-iH}\Psi(0) \tag{3}$$

Fourier transformations

Relations between the position-space representation $\Psi(x,t)$ and momentum-space representation $\hat{\Psi}(p,t)$:

$$\hat{\Psi}(p,t) = \int_{-\infty}^{\infty} dx \, e^{-ipx} \Psi(x,t) \tag{4}$$

$$\Psi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \, e^{ipx} \hat{\Psi}(p,t) \tag{5}$$

Representation of the differentiation $\frac{\partial}{\partial x}$ in momentum space:

$$\frac{\partial}{\partial x}\Psi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \, e^{ipx} \times \underbrace{\left\{ip\hat{\Psi}(p,t)\right\}}_{\text{one writes: } \frac{\partial}{\partial x} \mapsto ip}$$
 (6)

Using thus $\frac{\partial^2}{\partial x^2} \mapsto -p^2$, one has¹:

$$e^{-iH^{\text{free}}} \mapsto e^{-ip^2/2}$$
 (7)

Application to the Trotter expansion

Trotter expansion for the operator of evolution e^{-iH} of (3) with the Hamiltonian (1):

$$\exp\left[-i\,\Delta t\,H^{\text{free}}\right] \simeq \exp\left[-iV(x)\,\Delta t/2\right] \,\exp\left[-i\,\Delta tH^{\text{free}}\right] \underbrace{\exp\left[-iV(x)\,\Delta t\,/2\right]}_{\text{Step 1: multiply }\Psi(x,t)} \tag{8}$$

Step 2: transform to momentum space using (4) and multiply by $e^{-ip^2/2}$

Step 3: transform back to position space using (5) and multiply by $e^{-iV(x)}$ $\Delta t/2$

Following these three steps allows you to obtain the evolution of the wave function along one time-step Δt

$$\Psi(t + \Delta t) = \exp\left[-i \, \Delta t \, H^{\text{free}}\right] \Psi(t) \tag{9}$$

which, in details, means: $e^{-iH^{\text{free}}}\Psi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \, e^{ipx} \times e^{-ip^2/2} \hat{\Psi}(p,t)$