NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lee Yung Hei

MA3205 Set Theory AY 2007/2008 Sem 1

Question 1

- (i) \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$
- (ii) $\{a, \{a, d\}\}, \{a, \{a, e\}\}, \{b, \{b, d\}\}, \{b, \{b, e\}\}, f$
- (iii) a
- (iv) a, b, c, d

Question 2

Any example will do, below are 2 possible solutions.

$$A = \{\alpha | \alpha < \omega + 1\} \text{ and } B = \{\alpha | \alpha = \omega + \beta (\beta \in \omega)\}.$$

$$|A| = |B| = \omega, \ A \cap B = \omega$$

A =set of all even numbers, B =set of all prime numbers. $|A|=|B|=\omega,\,A\cap B=2$

Question 3

For anyway $y \in \mathcal{P}(x)$, if $y = \emptyset$, then y is transitive.

If $y \neq \emptyset$, then $y \subseteq x$.

Since x is transitive, $\forall x \in x, z$ is transitive.

So, $\forall z \in y$, z is transitive.

 $\therefore y$ is transitive.

Question 4

(i) True.

Given $B \subseteq A$, $|B| \leq |A|$.

If both |A| and |B| are finite, then by simple addition, the statement is trivially true.

Page: 1 of 6

If at least |A| is not finite:

Since |A - B|, |B| are cardinals, $|A - B| + |B| = \max\{|A - B|, |B|\}$.

If |B| < |A|, then $|A - B| + |B| = \max\{|A - B|, |B|\} = |A|$.

If |B| = |A|, then $|A - B| \le |A| = |B|$, so $|A - B| \le |B|$.

 $|A - B| + |B| = \max\{|A - B|, |B|\} = |B|.$

(ii) False, and this can be shown by a counter example.

$$A = \omega = \{0, 1, 2, 3, \dots\}$$

$$B = \omega - \{\emptyset\} = \{1, 2, 3, \dots\}.$$

$$A \cap B = \{1, 2, 3, \dots\}, \text{ so } |A \cap B| = \omega = |A|.$$
However, $\emptyset \in A$, so, $A \nsubseteq B$.

Question 5

	partially ordered	linearly ordered	well ordered
$(\mathbb{N}^*, <_{KB})$	Y	Y	N
(V_{ω}, \in)	Y	Y	Y

Question 6

True.

By the definition of ordinals, an ordinal is transitive and well-ordered.

Since all ordinals are well-ordered and transitive, the intersection of these ordinals has to be the minimum of the set.

Therefore, the intersection is the minimum ordinal.

Question 7

- (i) ω is a cardinal
- (ii) ω^{ω} is NOT a cardinal
- (iii) 5 is a cardinal
- (iv) $|\omega_1 + 5| = \omega_1$, ω_1 is a cardinal, so $\omega_1 + 5$ is NOT a cardinal.

Question 8

False.

 ω and $\omega + 1$ are countable and well-ordered, but they are not order isomorphic.

Page: 2 of 6

Question 9

- (i) $\omega^6 + \omega^2 + \omega$
- (ii) ω^{59}
- (iii) $\omega^{\omega} \cdot 2 + 11$
- (iv) $\omega \cdot 2 + 2$

Question 10

- (i) Countable.
- (ii) Countable.
- (iii) Countable.
- (iv) $\omega_3 > \omega_0$

Question 11

- (i) ℵ₃₀
- (ii) \aleph_1

Question 12

- (i) $\omega^{\omega} + 1$
- (ii) $\omega^{17} + \omega^2 + 5$

Question 13

(i)
$$f := \begin{cases} 1 & \text{if } |\alpha| = \alpha \\ 0 & \text{else} \end{cases}$$

(ii)

$$\begin{split} g(\alpha) &= \sup\{\rho(\{\beta,\delta\})|\beta,\delta \in \alpha\} \\ &= \sup\{S(\max\{\beta,\delta\})|\beta,\delta \in \alpha\} \\ &= \sup\{S(\beta)|\beta \in \alpha\} \text{ (since max is a closed function)} \\ &= \alpha \text{ (by definition of ordinals)} \end{split}$$

Page: 3 of 6

Question 14

Let X be a set of sets.

 \exists choice function C such that $\forall x \in X$, where $x \neq \emptyset$, $C(x) \in x$.

Question 15

(i) Yes, Axiom of Choice is required. let g(y) be some $x \in X$ such that f(x) = yChoice is used since it is possible that $f(x_1) = f(x_2) = y$. Thus, choice would be used to pick a particular pre-image of y.

(ii) No, Axiom of choice is NOT needed. If $f := \mathbb{N} \to \mathbb{N}$ is surjective, we can explicitly define $g(y) = \min(\{x | f(x) = y\})$. Since we can explicitly define g, we need not use Axiom of Choice to define g and so Axiom of Choice is not needed.

Page: 4 of 6

Question 16

(i)
$$2^{\aleph_0} = \aleph_1$$

(ii)
$$2^{\aleph_{\alpha}} = \aleph_{S(\alpha)}$$

- (iii) No.
- (iv) Yes.

Question 17

	Infinity	Power Set
(V_{12}, \in)	N	N
(V_{ω}, \in)	N	Y
$(V_{\omega+1},\in)$	Y	N

Question 18

- (i) Yes. $2^{\aleph_1} > \aleph_1$
- (ii) Maybe. $\aleph_5 = 2^{\aleph_4}$ or $\aleph_5 < 2^{\aleph_4}$
- (iii) No. $2^{\aleph_1} < \aleph_{\omega}$

Section B

All questions are done. In this solution set.

Question 19

(i) We proof by induction.

Let P(a) be the proposition that $f(m) \subset f(m+a)$.

 $P(1): f(m) \subset f(m+1)$ is true $\forall m \in \mathbb{N}$ since $f(m) \subset f(S(m))$

Now, suppose that P(b) is true for some $b \in \mathbb{N}$.

Then consider P(b+1).

Pick any $m \in \mathbb{N}$, $f(m) \subset f(m+b)$ by the induction hypothesis and $f(m+b) \subset f(S(m+b)) =$ f(m+b+1).

So, P(b+1) is true.

By mathematical induction, P(k) is true for all k.

If m < n, then since $m, n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that m + k = n.

So, we are done.

(ii) Since there might be elements that are found in both F and A, we define $G = F\Delta A$.

We find the bijection in 2 steps.

Firstly, since A is countable, $|A| = \omega$, so there exists $f: \mathbb{N} \to A$ where f is bijective.

Page: 5 of 6

Since F is finite, G is also finite. $(|G| \leq |F|)$

Let k = |G|, so there exists $g: k \to G$ where g is bijective.

Now, we have 2 bijective functions f and g.

Define $h := \mathbb{N} \to (A \cup F)$. Note that $A \cup F = A \cup G$.

$$h(n) = \begin{cases} g(n) & n < k \\ f(n-k) & n \ge k \end{cases}$$

 $h(n) = \begin{cases} g(n) & n < k \\ f(n-k) & n \ge k \end{cases}$ It is simple to check that $f^{-1} \circ h$ is a bijective map from A to $F \cup A$.

Question 20

(i) Suppose that $A \not\subseteq \alpha$, then there exists $\beta \in A$ where $\beta \not\in \alpha$.

By comparability theorem, $\beta = \alpha$ or $\beta \ni \alpha$.

It is impossible for $\beta = \alpha$, since α is not in A by definition.

So, $\alpha \in \beta$ and $\beta \in A$.

However, A is transitive, so $\beta \in A$ is transitive, thus $\forall \kappa \in \beta, \kappa \in A$.

Since $\alpha \in \beta$, $\alpha \in A$. $\Rightarrow \Leftarrow$

So, $A \subseteq \alpha$.

(ii) Given $\alpha \in X$, $\alpha \in V_{card}$

Since all cardinals are ordinals, $V_{card} \subseteq V_{ord}$.

So, the supremum of ordinals is an ordinal, it is clear that $\sup(X) \in V_{ord}$.

Let $\sup(X) = \kappa$ for some ordinal κ .

If κ is a cardinal, we are done.

So, assume towards contradiction that κ is not a cardinal.

Then, $|\kappa| = \eta < \kappa$. (by definition, η is the least ordinal with the same cardinality as κ)

Page: 6 of 6

Since $\forall x \in X, x < \kappa$ and η is the same cardinality as $\kappa, x \leq \kappa$.

So, η is an upper bound of X.

This contradicts the definition that κ is the least upper bound.