UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG ENGENHARIA DE COMPUTAÇÃO

BRUNO MACHADO LÖBELL 124846

Autovalores e Autovetores Interpolação Polinomial

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

 O sistema de equações diferenciais abaixo constitui o modelo dinâmico do sistema com três massas, conectadas entre si por molas e amortecedores. Reduza esse sistema à primeira ordem, atuando da seguinte forma:

i) ii) iii)
$$\dot{y}_1 = y_4$$
 $\dot{y}_2 = y_5$ $\dot{y}_3 = y_6$

$$m_1 \ddot{x}_1 + c_1 (\dot{x}_1 - \dot{x}_2) + k_1 (x_1 - x_2) = 0$$

$$m_1 \dot{y}_4 + c_1 (y_4 - y_5) + k_1 (y_1 - y_2) = 0$$

$$\dot{y}_4 = -\frac{c_1 (y_4 - y_5) + k_1 (y_1 - y_2)}{m_1}$$

$$\begin{split} m_2 \ddot{x}_2 + c_1 (\dot{x}_2 - \dot{x}_1) + c_2 (\dot{x}_2 - \dot{x}_3) + k_1 (x_2 - x_1) + k_2 (x_2 - x_3) &= 0 \\ m_2 \dot{y}_5 + c_1 (y_4 - y_5) + c_2 (y_5 - y_6) + k_1 (y_1 - y_2) + k_2 (y_2 - y_3) &= 0 \\ \dot{y}_5 &= -\frac{c_1 (y_4 - y_5) + c_2 (y_5 - y_6) + k_1 (y_1 - y_2) + k_2 (y_2 - y_3)}{m_2} \end{split}$$

$$m_3 \ddot{x}_3 + c_2 (\dot{x}_3 - \dot{x}_2) + k_2 (x_3 - x_2) = u(t)$$

$$m_3 \dot{y}_6 + c_2 (y_6 - y_5) + k_2 (y_3 - y_2) = u(t)$$

$$\dot{y}_6 = -\frac{c_2 (y_6 - y_5) + k_2 (y_3 - y_2) - u(t)}{m_3}$$

iv)

0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1
$-\frac{k_1}{m_1}$	$\frac{k_1}{m_1}$	0	$-rac{c_1}{m_1}$	$\frac{c_1}{m_1}$	0
$\frac{k_1}{m_2}$	$\frac{-k_1 - k_2}{m_2}$	$\frac{k_2}{m_2}$	$\frac{c_1}{m_2}$	$\frac{-c_1-c_2}{m_2}$	$\frac{c_2}{m_2}$
0	$\frac{k_2}{m_3}$	$-\frac{k_2}{m_3}$	0	$\frac{c_2}{m_3}$	$-\frac{c_2}{m_3}$

a) Autovalores de A:

$$-1.4579 * 10^{-1} + 2.8045i$$

 $-1.4579 * 10^{-1} - 2.8045i$
 $-3.7540 * 10^{-2} + 1.4532i$

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

$$-3.7540 * 10^{-2} - 1.4532i$$

 $3.8514 * 10^{-17} + 2.9611 * 10^{-8}i$
 $3.8514 * 10^{-17} - 2.9611 * 10^{-8}i$

b) Matriz com os autovetores:

$-4.121 * 10^{-2}$	$-4.121 * 10^{-2}$	$1.367 * 10^{-2} + 5.033$	$1.367 * 10^{-2} - 5.033$	$3.656 * 10^{-1} - 3.251$	$3.656 * 10^{-1} + 3.251$
$-9.724*10^{-1}i$	$+9.724*10^{-1}i$	* 10 ⁻¹ i	$*10^{-1}i$	* 10 ⁷ i	* 10 ⁷ i
$5.970 * 10^{-2} + 1.328i$	$5.970 * 10^{-2} - 1.328i$	$4.091 * 10^{-3} + 1.843$	$4.091 * 10^{-3} - 1.843$	$3.026 * 10^{-1} - 3.251$	$3.026 * 10^{-1} + 3.251$
		$*10^{-1}i$	* 10 ⁻¹ i	* 10 ⁷ i	* 10 ⁷ i
$-1.848 * 10^{-2}$	$-1.848 * 10^{-2}$	$-1.776 * 10^{-2}$	$-1.776 * 10^{-2}$	$3.035 * 10^{-1} - 3.251$	$3.035 * 10^{-1} + 3.251$
$-3.556 * 10^{-1}i$	$-3.556 * 10^{-1}i$	$-6.877 * 10^{-1}i$	$+6.877*10^{-1}i$	* 10 ⁷ i	* 10 ⁷ i
$2.733 + 2.618 * 10^{-2}i$	$2.733 - 2.618 * 10^{-2}i$	$-7.320 * 10^{-1}$	$-7.320 * 10^{-1}$	$9.625 * 10^{-1} + 1.653$	$9.625 * 10^{-1} - 1.653$
		$+9.733*10^{-4}i$	$-9.733*10^{-4}i$	$*10^{-8}i$	* 10 ⁻⁸ i
-3.733 - 2.618	-3.733 + 2.618	$-2.268 * 10^{-1}$	$-2.268 * 10^{-1}$	9.625 * 10 ⁻¹ +	9.625 * 10 ⁻¹ -
* 10 ⁻² i	* 10 ⁻² i	$-9.733*10^{-4}i$	$+9.733*10^{-4}i$	$3.030 * 10^{-9}i$	$3.030 * 10^{-9}i$
1	1	1	1	1	1

c) Multiplique por 5 os coeficientes de atrito:

$$-7.2897 * 10^{-1} + 2.7119i$$

$$-7.2896 * 10^{-1} - 2.7119i$$

$$-1.8769 * 10^{-1} + 1.4415i$$

$$-1.8769 * 10^{-1} - 1.4415i$$

$$1.1019 * 10^{-16} + 1.248 * 10^{-8}i$$

$$1.1019 * 10^{-16} - 1.248 * 10^{-8}i$$

d) Multiplique por 5 as coeficientes elásticas:

$$-1.4579 * 10^{-1} + 6.2779i$$

$$-1.4579 * 10^{-1} - 6.2779i$$

$$-3.754 * 10^{-2} + 3.2503i$$

$$-3.754 * 10^{-2} - 3.2503i$$

$$-1.7252 * 10^{-8}$$

$$1.7252 * 10^{-8}$$

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

2. Um motor elétrico (figura abaixo) possui o seguinte modelo dinâmico:

$$\ddot{\theta} + \frac{c}{I}\dot{\theta} = \frac{1}{I}T_m$$

 a) A exemplo do que foi feito na questão 1, escreva o modelo dinâmico no seguinte formato matricial:

$$\dot{\vec{y}} = A\vec{y} + BT_m$$

$$I. \quad y_1 = \theta; \ y_2 = \dot{\theta}$$

II.
$$\dot{y_1} = y_2$$

$$\dot{y_2} + \frac{c}{I}\dot{y_1} = \frac{1}{I}T_m$$

$$\dot{y_2} = \frac{1}{I}T_m - \frac{c}{I}\dot{y_1}$$

$$\dot{y_2} = \frac{1}{I}T_m - \frac{c}{I}y_2$$

III.
$$\begin{bmatrix} 0 & 1 \\ 0 & -\frac{c}{i} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{i} \end{bmatrix} T_m$$

 b) Determine os autovalores de A a partir das raízes do seu polinômio característico;

$$\begin{vmatrix} 0 - \lambda & 1 \\ 0 & -\frac{c}{I} - \lambda \end{vmatrix} = -\lambda * \left(-\left(\frac{C}{I} + \lambda\right) \right) - 0 = \frac{C}{I}\lambda + \lambda^2$$

Autovalores: $0, -\frac{C}{I}$

c) Obtenha os autovalores de A a partir do algoritmo de Souriau.

$$c_1 = -\left(-\frac{c}{I}\right) = \frac{c}{I}$$

$$A_2 = \left(\begin{bmatrix}0 & 1\\ 0 & -\frac{c}{I}\end{bmatrix} + \frac{C}{I}\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}\right)\begin{bmatrix}0 & 1\\ 0 & -\frac{c}{I}\end{bmatrix}$$

$$A2 = \left(\begin{bmatrix} \frac{C}{I} & 1 \\ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} 0 & 1 \\ 0 & -\frac{c}{I} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$c_2 = -\frac{1}{2}(0) = 0$$

$$f(x) = x^2 + \frac{C}{I}x$$

Autovalores:

$$0, -\frac{C}{I}$$

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

3. Em um determinado experimento físico, foram determinados três pontos, conforme mostrados na tabela abaixo. Determine, utilizando os três métodos vistos em teoria, o polinômio que interpola estes pontos, mostrando os coeficientes na forma de frações.

х	1	3	5
f(x)	6	-1	2

Mostre graficamente os pontos e o polinômio interpolador.

ightharpoonup Lagrange: $p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$

$$L_0(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} = \frac{x^2 - 8x + 15}{8}$$

$$L_1(x) = \frac{(x-1)(x-5)}{(3-1)(3-5)} = \frac{x^2 - 6x + 5}{-4}$$

$$L_2(x) = \frac{(x-1)(x-3)}{(5-1)(5-3)} = \frac{x^2-4x+3}{8}$$

$$p_2(x) = \frac{6(x^2 - 8x + 15)}{8} + \frac{x^2 - 6x + 5}{4} + \frac{2(x^2 - 4x + 3)}{8}$$
$$= \frac{5}{4}x^2 - \frac{17}{2}x + \frac{53}{4}$$

Newton: $p_2(x) = f(x_0) + (x - x_0)F[x_0, x_1] + (x - x_0)(x - x_1)F[x_0, x_1, x_2]$

Х	Ordem			
	0	1	2	
1	6			
3	-1	$\begin{vmatrix} -1-6\\3-1 = -\frac{7}{2}\\ \frac{2+1}{5-3} = \frac{3}{2} \end{vmatrix}$	$\frac{\frac{3}{2} + \frac{7}{2}}{5 - 1} = \frac{5}{4}$	
5	2			

$$p_2(x) = 6 - \frac{7}{2}(x - 1) + \frac{5}{4}(x - 1)(x - 3) = \frac{5}{4}x^2 - \frac{17}{2}x + \frac{53}{4}$$

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

Figura 1 Gráfico Função Exercício 3

4. Utilizando os métodos de Lagrange e de Newton, determine o polinômio (coeficientes na forma de frações) que interpola os pontos:

Х	0	2	4	6
f(x)	-3	2	8	5

Mostre graficamente os pontos e o polinômio interpolador.

Lagrange:
$$p_3(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x) + y_3 L_3(x)$$

$$L_0(x) = \frac{(x-2)(x-4)(x-6)}{(0-2)(0-4)(0-6)} = \frac{x^3 - 12x^2 + 44x - 48}{-48}$$

$$L_1(x) = \frac{(x-0)(x-4)(x-6)}{(2-0)(2-4)(2-6)} = \frac{x^3 - 10x^2 + 24x}{16}$$

$$L_2(x) = \frac{(x-0)(x-2)(x-6)}{(4-0)(4-2)(4-6)} = \frac{x^3 - 8x^2 + 12x}{-16}$$

$$L_3(x) = \frac{(x-0)(x-2)(x-4)}{(6-0)(6-2)(6-4)} = \frac{x^3 - 6x^2 + 8x}{48}$$

$$p_3(x) = -3\left(\frac{x^3 - 12x^2 + 44x - 48}{-48}\right) + 2\left(\frac{x^3 - 10x^2 + 24x}{16}\right)$$

$$+ 8\left(\frac{x^3 - 8x^2 + 12x}{-16}\right) + 5\left(\frac{x^3 - 6x^2 + 8x}{48}\right)$$

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

$$p_3(x) = -\frac{5}{24}x^3 + \frac{11}{8}x^2 + \frac{7}{12}x - 3$$

Newton: $p_3(x) = f(x_0) + (x - x_0)F[x_0, x_1] + (x - x_0)(x - x_0)F[x_0, x_1]$

$$(x_1)F[x_0,x_1,x_2] + (x-x_0)(x-x_1)(x-x_2)F[x_0,x_1,x_2,x_3]$$

Х	Ordem			
	0	1	2	3
0	-3			
			$\frac{3-\frac{5}{2}}{4-0}$	
2	2	$\frac{2+3}{2-0} = \frac{5}{2}$ $\frac{8-2}{4-2} = 3$	$=\left(\frac{1}{8}\right)$	$\frac{-\frac{9}{8} - \frac{1}{8}}{6 - 0}$
4	8	$\frac{4-2}{4-2} = 3$ $\frac{5-8}{6-4} = -\frac{3}{2}$	$\frac{-\frac{3}{2}-3}{6-2}$	$= \left(-\frac{10}{48}\right)$
6	5		$=\left(-\frac{9}{8}\right)$	

$$p_3(x) = -3 + \frac{5}{2}(x - 0) + \frac{1}{8}(x - 0)(x - 2) - \frac{10}{48}(x - 0)(x - 2)(x - 4)$$
$$= -\frac{5}{24}x^3 + \frac{11}{8}x^2 + \frac{7}{12}x - 3$$

Figura 2 Gráfico Função Exercício 4