# **Current status of GEMS VOCs** and their scientific applications

Rokjin J. Park<sup>1)</sup>, Gitaek Lee<sup>1)</sup>, Eunjo S. Ha<sup>1)</sup> Sieun D. Lee<sup>1)</sup>, Hyeong-Ahn Kwon<sup>2)</sup>, Christophe Lerot<sup>3)</sup>, Corinne Vigouroux<sup>3)</sup>, Francois Hendrick<sup>3)</sup>, Isabelle De Smedt<sup>3)</sup>, Michel Van Roozendael<sup>3)</sup>, and Pucai Wang<sup>4)</sup>

- <sup>1)</sup>School of Earth and Environmental Sciences, Seoul National University, Korea
- <sup>2)</sup>Department of Environmental & Energy Engineering, University of Suwon, Korea
- <sup>3)</sup>Belgian Institute for Space Aeronomy, Brussels, Belgium
- <sup>4)</sup>Chinese Academy of Sciences, Beijing, China



# Updates of GEMS HCHO retrieval algorithm (v1.2.0)

#### [Major updates of GEMS HCHO v1.2.0]

#### Polarization correction

 Polarization sensitivity vectors are included as a pseudoabsorber in the spectral fitting.

#### Updated absorption cross-sections

- $O_3$  (Serdyuchenko *et al.*, 2014)
- O<sub>4</sub> (Finekenzeller and Volkamer, 2022)
- Updated Fitting window
  - 328.5-356.5 nm  $\rightarrow$  329.3-358.6 nm
- The use of three days mean radiance references
  - Mean radiance references from the previous two days' observations are used.
  - Sufficiently fill missing latitudinal points of the reference spectra.

#### A priori profile

- WRF-Chem + CAM-Chem 28 x 28 km → GEOS-Chem 0.5 x 0.625 deg.
- Considers recent emission inventories and meteorological fields.

| Fitting window (calibration window) | 329.3-358.6 nm<br>(326.3-361.0 nm)                                                     |  |
|-------------------------------------|----------------------------------------------------------------------------------------|--|
| Fitting method                      | Direct fitting [González Aba<br>d <i>et al.,</i> 2015]                                 |  |
| Absorption cross-sections           | HCHO, $O_3$ , $NO_2$ , $BrO$ , $O_4$ , $Ri$ ng effect, polarization sensitivity        |  |
| Polynomials                         | Third order                                                                            |  |
| Reference spectrum                  | 120°E ~ 150°E zonal mean r<br>adiances<br>[Filtering option]<br>✓ cloud fraction < 0.4 |  |

#### Poster by Gitaek Lee

Evaluation of GEMS HCHO vertical column densities



## **HCHO VCDs comparison: GEMS vs. TROPOMI**





### Seasonal variation of HCHO VCDs: GEMS vs. TROPOMI

#### \* Preliminary results



Month

### **HCHO VCDs comparison:**

### **GEMS vs. ground-based observations (MAX-DOAS, FTIR)**

Large marker: monthly mean



# HCHO VCDs comparison: GEMS vs. MAX-DOAS applied with GEMS AK







Small marker: daily mean Large marker: monthly mean

# Updates of GEMS CHOCHO retrieval algorithm (v1.2.0)

### [Major updates of GEMS CHOCHO v1.2.0]

- Polarization correction
  - Polarization sensitivity vectors are included as a pseudoabsorber in the spectral fitting.
- Updated absorption cross-sections
  - O<sub>3</sub>: Serdyuchenko et al., 2014
  - O<sub>4</sub>: Finkenzeller and Volkamer, 2022
  - H<sub>2</sub>O (vapor) : HITRAN 2020
  - H<sub>2</sub>O (liquid): Mason et al., 2016
- Updated Fitting window
  - 433-458 nm → 433-461.5 nm
- The use of three days mean radiance references
  - Mean radiance references from the previous two days' observations are used.
  - Sufficiently fill missing latitudinal points of the reference spectra.
- A priori profile
  - Monthly mean GEOS-Chem 2 x 2.5 deg. → Monthly mean hourly GEOS-Chem 0.25 x 0.3125 deg.

| Fitting window (calibration window) | 433-461.5 nm<br>(431-463.5 nm)                                                                           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------|
| Fitting method                      | Direct fitting [González Abad et al., 2015]                                                              |
| Absorption cross-sections           | CHOCHO, $O_3$ , $NO_2$ , $O_4$ , $H_2O$ (vapor), $H_2O$ (liquid), Ring ef fect, polarization sensitivity |
| Polynomials                         | Third order                                                                                              |
| Reference spectrum                  | 120°E ~ 150°E zonal mean ra<br>diances<br>[Filtering option]<br>✓ cloud fraction < 0.4                   |

#### Poster by Eunjo Ha

Evaluation of GEMS glyoxal vertical column densities



# CHOCHO VCDs comparison: GEMS vs. TROPOMI

09:45-15:45 KST (00:45-06:45 UTC), August-October 2020



### Seasonal variation of CHOCHO VCDs: GEMS vs. TROPOMI



Date (yy/mm)



\* NCP: North China Plain, YRD: Yangtze River Delta



9

### Seasonal variation of CHOCHO: GEMS vs. MAX-DOAS





### Diurnal variation of CHOCHO VCDs: GEMS vs. MAX-DOAS



# Change in a priori profile data

#### Poster by Sieun Lee

Sensitivity test of GEMS VCDs to a prior profiles

|                                           | WRF-Chem+CAM-Chem [WC] | GEOS-Chem [GC]             |
|-------------------------------------------|------------------------|----------------------------|
| Resolution                                | 28km x 28km, 69 layers | 0.25° x 0.3125°, 47 layers |
| Target year                               | 2016                   | 2020                       |
| Anthropogenic emission                    | EDGAR-HTAP (2010)      | KORUSv5 (2016)             |
| Meteorological data GFS 6 hourly 1 degree |                        | GEOSFP 0.25° x 0.3125°     |

### **Compare with in-situ observation**







# of observation: China - 1600 South Korea - 549

# NO<sub>2</sub> VCDs change caused by a priori profile replacement



### HCHO VCDs change caused by a priori profile replacement



124°E

#### \* Preliminary results

### Formaldehyde to Nitrogen dioxide Ratio (FNR)

- Used to distinguish surface ozone formation mechanism
- $FNR = \frac{HCHO}{NO_2}$ 
  - ✓ 0~1 (VOCs-limited)
  - √ 1~2 (Mixed)
  - √ 2~ (NOx-limited)
- → Simultaneous reductions of VOCs, NOx are necessary to mitigate the surface ozone production. [Oak et al., 2019]





# Uljin wildfire case study

#### GEMS HCHO, 2022.03.05.

#### GEMS CHOCHO, 2022.03.05.





The wildfire has been well captured by GEMS with hourly daytime observations.

# **Top-down estimates of AVOC emissions**

S: total HCHO net production rate [kmol/h]

$$S = \frac{1}{\tau_{\text{HCHO}}} \oiint (\text{VCD} - \text{VCD}_0) dA$$

E: total AVOC emissions [kmol/h]

$$E = \frac{S}{\sum_{i} f_i Y_i}$$

f<sub>i</sub>: emission fraction for species i

Y<sub>i</sub>: HCHO yields for species i







# Comparison with airborne measurement





### Airborne measurement vs. Satellites





■ Zhu et al. (2020) showed negative biases ( $-45 \sim -22\%$ ) of OMI HCHO under high-HCHO conditions compared to observations from 12 aircraft campaigns

# Correction of GEMS VCDs by comparison with FTIR VCDs

NMB = -29.34 % slope = 0.55 y intercept = 1.6×10<sup>15</sup>

### [Correction by NMB]

$$corrected\ VCD = \frac{1}{1 + NMB} \times \ VCD$$

### [Correction by slope]

$$corrected\ VCD = \frac{VCD - y\ intercept}{slope}$$







### Top-down estimates of AVOC emissions: GEMS vs. Geo-TASO



- Bottom-up emission: KORUS V5 inventory
- $VCD_0 = 6.3 \times 10^{15}$ : Average HCHO VCD over the background area from GeoTASO and GEOS-Chem (Kwon et al, 2021)



# Thank you for your attention



### Correlations of NO<sub>2</sub> with HCHO and CHOCHO in GEMS observation



\* Preliminary results



## Bias dependency on HCHO concentration

- Bias of TROPOMI HCHO w.r.t. FTIR (Vigouroux et al., 2020)
- ✓ Negative biases (-30.8%±1.4%) under high-HCHO conditions (>8.0×10<sup>15</sup> molec/cm<sup>2</sup>)
- ✓ High biases (26%±5%) under low-HCHO conditions (<2.5×10<sup>15</sup> molec/cm<sup>2</sup>)
  - The biases can be used, e.g., to correct TROPOMI data near emission sources.





### Comparison of HCHO and CHOCHO VCDs: GEMS vs. GEOS-Chem

Period: 2021.05.01 ~ 2021.06.30



#### **GEMS vs. GEOS-Chem scatter**



#### **HCHO vs. CHOCHO scatter**

