

Aula 3: Introdução aos Espaços Vetoriais

Melissa Weber Mendonça

Introdução aos espaços vetoriais

A Álgebra Linear é o estudo dos espaços vetoriais sobre corpos arbitrários e das transformações lineares entre esses espaços.

Definição

Um conjunto não-vazio $\mathbb K$ é um corpo se em $\mathbb K$ pudermos definir duas operações, denotadas por + (soma) e \cdot (multiplicação), satisfazendo:

- (i) a + b = b + a, $\forall a, b \in \mathbb{K}$ (comutativa)
- (ii) a + (b + c) = (a + b) + c, $\forall a, b, c \in \mathbb{K}$ (associativa)
- (iii) Existe um elemento em \mathbb{K} , denotado por 0 e chamado de *elemento neutro da* soma, que satisfaz 0 + a = a + 0 = a, $\forall a \in \mathbb{K}$.
- (iv) Para cada $a \in \mathbb{K}$, existe um elemento em \mathbb{K} denotado por -a e chamado de oposto de a (ou inverso aditivo de a) tal que a + (-a) = (-a) + a = 0.
- (v) $a \cdot b = b \cdot a, \forall a, b \in \mathbb{K}$ (comutativa)
- (vi) $a \cdot (b \cdot c) = (a \cdot b) \cdot c, \forall a, b, c \in \mathbb{K}$
- (vii) Existe um elemento em \mathbb{K} denotado por 1 e chamado de *elemento neutro da multiplicação*, tal que $1 \cdot a = a \cdot 1 = a$, $\forall a \in \mathbb{K}$.
- (viii) Para cada elemento não-nulo $a \in \mathbb{K}$, existe um elemento em \mathbb{K} , denotado por a^{-1} e chamado de *inverso multiplicativo de a*, tal que $a \cdot a^{-1} = a^{-1} \cdot a = 1$.
- (ix) $(a+b) \cdot c = a \cdot c + b \cdot c$, $\forall a, b, c \in \mathbb{K}$ (distributiva).

Exemplos de corpos

São corpos:

- ullet \mathbb{R}
- C

Definição

Um conjunto não vazio E é um espaço vetorial sobre um corpo $\mathbb K$ se em seus elementos, denominados *vetores*, estiverem definidas duas operações:

- soma: A cada $u, v \in E$, associa $u + v \in E$
- multiplicação por um escalar: a cada escalar $\alpha \in \mathbb{K}$ e a cada vetor $v \in E$, associa $\alpha v \in E$.

Estas operações devem satisfazer as condições abaixo:

- (i) Comutatividade: u + v = v + u, $\forall u, v \in E$
- (ii) Associatividade: $(u + v) + w = u + (v + w) e(\alpha \beta)v = \alpha(\beta v), \forall u, v, w \in E$ $e \alpha, \beta \in \mathbb{K}$
- (iii) Existência do vetor nulo: existe um vetor $0 \in E$, chamado vetor nulo, tal que v + 0 = 0 + v = v para todo $v \in E$.
- (iv) Existência do inverso aditivo: para cada vetor $v \in E$ existe um vetor $-v \in E$ chamado inverso aditivo tal que $-v + v = v + (-v) = 0 \in E$.
- (v) Distributividade: $(\alpha + \beta)v = \alpha v + \beta v \in \alpha(u + v) = \alpha u + \alpha v, \forall u, v \in E \in \forall \alpha, \beta \in \mathbb{K}$
- (vi) Multiplicação por 1: $1 \cdot v = v$, em que 1 é o elemento neutro da multiplicação em \mathbb{K} .

• Todo corpo é um espaço vetorial sobre si mesmo.

• Todo corpo é um espaço vetorial sobre si mesmo.

De fato, se $\mathbb K$ é um corpo, então as duas operações internas em $\mathbb K$ podem ser vistas como a soma de vetores e a multiplicação por escalares.

• Para todo número natural n, o conjunto \mathbb{K}^n , definido como $\mathbb{K}^n = \mathbb{K} \times \cdots \times \mathbb{K} = \{(u_1, \dots, u_n) : u_i \in \mathbb{K}, \forall i = 1, \dots, n\}$ é um espaço vetorial sobre \mathbb{K} .

• Os elementos do espaço vetorial \mathbb{R}^{∞} são as sequências infinitas de números reais do tipo

$$u = (\alpha_1, \ldots, \alpha_n, \ldots).$$

- O elemento zero é a sequência formada por infinitos zeros
 0 = (0,...,0,...);
- O inverso aditivo da sequência $u \in -u = (-\alpha_1, \dots, -\alpha_n, \dots);$
- As operações de adição e multiplicação por escalar são definidas por

$$u + v = (\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n, \dots)$$
$$\rho u = (\rho \alpha_1, \dots, \rho \alpha_n, \dots).$$

• O conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$ de todas as matrizes $m \times n$ com elementos em \mathbb{K} é um espaço vetorial?

• O conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$ de todas as matrizes $m \times n$ com elementos em \mathbb{K} é um espaço vetorial?

Sim, se

• A soma entre duas matrizes $A = [a_{ij}] e B = [b_{ij}]$ é dada por

$$[A+B]_{ij}=a_{ij}+b_{ij}$$

• O produto de uma matriz A pelo escalar $\rho \in \mathbb{K}$ como

$$[\rho A]_{ij} = \rho a_{ij}$$

- A matriz nula $0 \in \mathcal{M}_{m \times n}$ é aquela formada por zeros;
- O inverso aditivo da matriz $A = [a_{ij}]$ é a matriz $-A = [-a_{ij}]$.

O conjunto de polinômios

$$\mathscr{P}(\mathbb{K}) = \{p(x) = a_n x^n + \ldots + a_1 x + a_0 : a_i \in \mathbb{K} \text{ e } n \ge 0\}$$

é um espaço vetorial com as operações usuais de soma de polinômios e multiplicação por escalar.

• Seja X um conjunto não-vazio qualquer. O símbolo $\mathscr{F}(X;\mathbb{R})$ representa o conjunto de todas as funções reais $f:X\to\mathbb{R}$. Esse conjunto é um espaço vetorial.

Variando o conjunto X, obtemos:

- Se $X = \{1, ..., n\}$, então $\mathscr{F}(X; \mathbb{R}) = \mathbb{R}^n$, pois a cada número em X associamos um número real α , gerando assim uma lista de n valores reais para cada elemento do conjunto.
- Se $X = \mathbb{N}$, então $\mathscr{F}(X; \mathbb{R}) = \mathbb{R}^{\infty}$.
- Se X é o produto cartesiano dos conjuntos $\{1, ..., m\}$ e $\{1, ..., n\}$ então $\mathscr{F}(X; \mathbb{R}) = \mathscr{M}_{m \times n}$.

Propriedades

Como consequência dos axiomas, valem num espaço vetorial as regras operacionais habitualmente usadas nas manipulações numéricas:

- 1. Para todos $u, v, w \in E$, temos que $w + u = w + v \Rightarrow u = v$. Em particular, $w + u = w \Rightarrow u = 0$ e $w + u = 0 \Rightarrow u = -w$.
- 2. Dados $0 \in \mathbb{K}$ e $v \in E$, temos que $0v = 0 \in E$. Analogamente, dados $\alpha \in \mathbb{K}$ e $0 \in E$, temos que $\alpha 0 = 0$.
- 3. Se $\alpha \neq 0$ e $v \neq 0$ então $\alpha v \neq 0$.
- 4. (-1)v = -v.

Observação

Um espaço vetorial sobre um corpo \mathbb{K} é um conjunto E de vetores. com uma operação de soma que é uma função $+ : E \rightarrow E$ e uma operação de produto por escalar, que é uma função $\cdot : \mathbb{K} \times E : E$, satisfazendo os axiomas listados acima. Note que os axiomas não involvem a propriedade de inverso multiplicativo do corpo, e podemos definir uma estrutura semelhante à de espaço vetorial sobre um anel, que chamamos de *módulo* sobre \mathbb{K} . No entanto, a maioria dos teoremas provados para espaços vetoriais não seria válida nos módulos; por exemplo, não podemos falar da dimensão de um módulo.

Subespaços vetoriais

Definição

Um subespaço vetorial do espaço vetorial E é um subconjunto $F \subset E$ que, relativamente às operações de E, é ainda um espaço vetorial, ou seja, satisfaz

- (i) Para todo $u, v \in F, u + v \in F$
- (ii) Para todo $u \in F \in \alpha \in \mathbb{K}$, $\alpha u \in F$.

Note que no caso de um subespaço, não é necessário verificar as seis propriedades listadas anteriormente pois elas já são satisfeitas para E, e F ⊂ E. No entanto, um subespaço deve ser fechado para a adição e a multiplicação por escalar. Mais geralmente, dados v₁,..., v_m ∈ F e α₁,..., α_m ∈ K,
 v = α₁v₁ + ... + α_mv_m

deve pertencer a F.

• O vetor nulo pertence a *todos* os subespaços.

• O espaço inteiro E é um exemplo trivial de subespaço de E.

• Todo subespaço é, em si mesmo, um espaço vetorial.

• O conjunto vazio não pode ser um subespaço vetorial.

Seja v ∈ E um vetor não-nulo. O conjunto F = {αv : α ∈ K}
de todos os múltiplos de v é um subespaço vetorial de E,
chamado de reta que passa pela origem e contém v.

• Seja $E = \mathscr{F}(\mathbb{R}; \mathbb{R})$ o espaço vetorial das funções reais de uma variável real $f : \mathbb{R} \to \mathbb{R}$. Para cada $k \in \mathbb{N}$, o conjunto $\mathscr{C}^k(\mathbb{R})$ das funções k vezes continuamente diferenciáveis é um subespaço vetorial de E.

• Sejam a_1, \ldots, a_n números reais. O conjunto \mathcal{H} de todos os vetores $v = (x_1, \ldots, x_n) \in \mathbb{R}^n$ tais que

$$a_1x_1 + \ldots + a_nx_n = 0$$

é um subespaço vetorial de \mathbb{R}^n . No caso trivial em que $a_1 = \ldots = a_n = 0$, o subespaço \mathscr{H} é todo o \mathbb{R}^n . Se, ao contrário, pelo menos um dos $a_i \neq 0$, \mathscr{H} chama-se hiperplano de \mathbb{R}^n que passa pela origem.

• Seja E o espaço das matrizes 3×3 : $E = \{A \in \mathbb{R}^{3 \times 3}\}$. O conjunto das matrizes triangulares inferiores de dimensão 3 é um subespaço de E, assim como o conjunto das matrizes simétricas.

• Dentro do espaço \mathbb{R}^3 , os subespaços possíveis são: o subespaço nulo, o espaço inteiro, as retas que passam pela origem, e os planos que passam pela origem. Qualquer reta que não passe pela origem não pode ser um subespaço (pois não contem o vetor nulo).

Dados um espaço vetorial E e subespaços F_1 , $F_2 \subset E$, a interseção $F_1 \cap F_2$ ainda é um subespaço de E.

E a união?

A união de dois subespaços vetoriais *não* é (em geral) um subespaço vetorial.

E a união?

A união de dois subespaços vetoriais *não* é (em geral) um subespaço vetorial.

Contra-exemplo:

```
E = \mathbb{R}^{n \times n}
F_1 = \{ \text{ matrizes triangulares superiores } \}
F_2 = \{ \text{ matrizes triangulares inferiores } \}
```

- O que é $F_1 \cap F_2$?
- O que é $F_1 \cup F_2$?

 $E = \mathbb{R}^3$, F_1 , F_2 dois planos em \mathbb{R}^3 passando pela origem.

- $F_1 \cap F_2$ é a reta de interseção de F_1 e F_2 passando pela origem;
- $F_1 \cup F_2$ é a união dos dois planos.

 $E = \mathbb{R}^3$, F_1 e F_2 duas retas que passam pela origem. Ambos F_1 e F_2 são subespaços, mas sua união, representada pelo feixe das duas retas, não o é.

Será que existe alternativa?

Como vimos no último exemplo, a união de dois subespaços vetoriais não é necessariamente um subespaço vetorial. No entanto, podemos construir um conjunto S que contém F_1 e F_2 e que é subespaço de E, como veremos no Teorema a seguir.

Sejam F_1 e F_2 subespaços de um espaço vetorial E. Então o conjunto

$$S = F_1 + F_2 = \{ w \in E : w = w_1 + w_2, w_1 \in F_1, w_2 \in F_2 \}$$

é um subespaço de E.

Demonstração. Vamos verificar as condições para que *S* seja um subespaço de *E*.

Sejam F_1 e F_2 subespaços de um espaço vetorial E. Então o conjunto

$$S = F_1 + F_2 = \{ w \in E : w = w_1 + w_2, w_1 \in F_1, w_2 \in F_2 \}$$

é um subespaço de E.

Demonstração. Vamos verificar as condições para que S seja um subespaço de *E*.

Primeiramente, note que $0 \in S$ pois $0 \in F_1$ e $0 \in F_2$.

Sejam F_1 e F_2 subespaços de um espaço vetorial E. Então o conjunto

$$S = F_1 + F_2 = \{ w \in E : w = w_1 + w_2, w_1 \in F_1, w_2 \in F_2 \}$$

é um subespaço de E.

Demonstração. Vamos verificar as condições para que S seja um subespaço de E.

(i) Sejam $v, w \in S$. Então $v = v_1 + v_2, v_1 \in F_1, v_2 \in F_2$ e $w = w_1 + w_2, w_1 \in F_1, w_2 \in F_2$. Assim $v + w = (v_1 + v_2) + (w_1 + w_2)$ $= (v_1 + w_1) + (v_2 + w_2) \in S$, pois $v_1 + w_1 \in F_1$ e $v_2 + w_2 \in F_2$ já que ambos são subespaços de $E \in V_1, w_1 \in F_1$ e $v_2, w_2 \in F_2$, e a última igualdade segue das propriedades da soma no espaco vetorial E.

Sejam F_1 e F_2 subespaços de um espaço vetorial E. Então o conjunto

$$S = F_1 + F_2 = \{ w \in E : w = w_1 + w_2, w_1 \in F_1, w_2 \in F_2 \}$$

é um subespaço de E.

Demonstração. Vamos verificar as condições para que S seja um subespaço de E.

(ii) Sejam $\alpha \in \mathbb{K}$ e $w \in S$. Então,

$$\alpha w = \alpha(w_1 + w_2) = \alpha w_1 + \alpha w_2 \in S$$

já que $\alpha w_1 \in F_1$ e $\alpha w_2 \in F_2$ pois ambos são subespaços de E.

No Exemplo da união dos subespaços, $S = F_1 + F_2$ é o plano que contém as duas retas.

Subespaços de uma matriz

Considere agora uma matriz $A \in \mathbb{R}^{m \times n}$. Chegamos então ao caso interessante de subespaços ligados à matriz A em um sistema linear Ax = b, com $x \in \mathbb{R}^n$ e $b \in \mathbb{R}^m$. Para relacionarmos o conceito de subespaços vetoriais à resolução de sistemas de equações lineares, precisamos do conceito de combinação linear.

Combinação Linear

Definição

Seja E um espaço vetorial, e sejam $u_1, u_2, \ldots, u_n \in E$ vetores neste espaço. Então uma combinação linear destes vetores é um vetor u no espaço E dado por

$$u = \alpha_1 u_1 + \ldots + \alpha_n u_n$$

para $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$.

Espaço Gerado: span

Definição

Uma vez fixados os vetores $\{v_1, \ldots, v_n\}$ em V, o conjunto $W \subset V$ que contém todas as combinações lineares destes vetores é chamado de *espaço gerado* pelos vetores v_1, \ldots, v_n . Denotamos isto por

$$W = \text{span}\{v_1, \dots, v_n\}$$

= $\{v \in V : v = a_1v_1 + a_2v_2 + \dots + a_nv_n, a_i \in \mathbb{K}, 1 \le i \le n\}.$

Espaço Gerado: span

Uma outra caracterização de subespaço gerado é a seguinte: W é o menor subespaço de V que contém o conjunto de vetores $\{v_1,\ldots,v_n\}$ no sentido que qualquer outro subespaço W' de V que contenha estes vetores satisfará $W'\supset W$, já que como $v_1,\ldots,v_n\in W'$ e W' é um subespaço vetorial, então qualquer combinação linear destes vetores também está incluida em W'; logo $W\subset W'$.

Independência Linear

Definição

Seja $X = \{v_1, v_2, \dots, v_n\} \subset E$ um conjunto de vetores. Se nenhum dos vetores v_i puder ser escrito como combinação linear dos outros vetores, dizemos que este conjunto é linearmente independente (l.i.). Formalmente, o conjunto X é l.i. se e somente se a única combinação linear nula dos vetores de X for aquela cujos coeficientes são todos nulos, ou seja,

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

Independência Linear

Definição

Seja $X = \{v_1, v_2, \dots, v_n\} \subset E$ um conjunto de vetores. Se nenhum dos vetores v_i puder ser escrito como combinação linear dos outros vetores, dizemos que este conjunto é linearmente independente (l.i.). Formalmente, o conjunto X é l.i. se e somente se a única combinação linear nula dos vetores de X for aquela cujos coeficientes são todos nulos, ou seja,

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

Evidentemente, todo subconjunto de um conjunto l.i. é também l.i.

 $\bullet \ \mbox{Em} \ \mathbb{R}^2$, quaisquer dois vetores que não sejam colineares são l.i.

• Em \mathbb{R}^n , chamamos de vetores canônicos os vetores definidos como, para todos i, j = 1, ..., n

$$(e_i)_j = \begin{cases} 1, & \text{se } j = i \\ 0, & \text{caso contrário.} \end{cases}$$

em que o subíndice *j* denota a coordenada *j* do i-ésimo vetor canônico. Estes vetores são l.i.

• Em $\mathbb{R}^{2\times 2}$, as matrizes

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} e B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

são l.i.

• O conjunto $\mathscr{P}(\mathbb{R})$ dos polinômios

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

é um subespaço de $\mathscr{F}(\mathbb{R}; \mathbb{R})$, assim como o conjunto \mathscr{P}_n dos polinômios de grau $\leq n$.