# Gaussian Filtering and Edges

#### Pablo Mesejo

pmesejo@go.ugr.es

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial







**DaSCI** 

Instituto Andaluz de Investigación en

Data Science and Computational Intelligence

## Smoothing with box filter



Source: D. Forsyth

#### Gaussian kernel





An isotropic (circularly symmetric) filter

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

- The coefficients are a 2D Gaussian.
- Gives more weight at the central pixels and less weight to the neighbors.
- The farther away the neighbors, the smaller the weight.

#### Gaussian filters



#### Smoothing with a Gaussian

Parameter  $\sigma$  is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



for sigma in np.arange(1, 10, 3):

kernel=cv2.getGaussianKernel(ksize, sigma)
outim=cv2.filter2D(im,-1,kernel) #correlation
rv2.imshow(outim)

When ddepth=-1, the output image will have the same depth as the source

## Mean vs. Gaussian filtering



The box filter provides

edgy artifacts!

Gaussian is a better lowpass filter → it does not create high-frequency artifacts.

#### Gaussian filter

- What parameters matter here?
  - Size of kernel or mask
  - Variance of Gaussian determines extent of smoothing





#### Gaussian discretization

We want to discretize a Gaussian.

We know that almost all values are within 3 standard deviations of the mean  $\rightarrow$  It makes sense to use, by default,  $3\sigma$ .



#### Gaussian discretization

$$f(x,\sigma) = c \cdot e^{-\frac{x^2}{2\sigma^2}}$$

We ignore this normalizing constant  $(^1/_{\sigma\sqrt{2\pi}})!$  The shape of the filter is the same! We later normalize the kernel, making the sum of the coefficients equal to 1

#### Gaussian discrete mask 1D:

$$[f(-k), f(-k+1), \cdots, f(0), \cdots, f(k-1), f(k)],$$
 k an integer

According to the Gaussian properties,  $\min(k) \ge 3\sigma$  provides samples covering more than 99% of the area under the curve

If 
$$\sigma = 1 \rightarrow \text{kernel size is 7}$$
 (ie,  $k = 3$ )

We enforce  $\sum_{i=-k}^{k} f(i) = 1$ 

The mask must add up to 1 → you must divide your mask by the sum of its coefficients



#### Gaussian discretization

We can go from  $\sigma$  to mask size (T), or viceversa, in order to get the Gaussian mask

If T is the mask size,  $T = 2 \cdot k + 1 \rightarrow k = (T-1)/2 \rightarrow (T-1)/2 = 3 \cdot \sigma \rightarrow 2 \cdot [3 \cdot \sigma] + 1 = T$ 

Let's see an example. We have T=5:

- We'd have 5 positions: [f(-2), f(-1), f(0), f(1), f(2)]
- We compute the suitable sigma:  $(T-1)/2 = 3 \cdot \sigma \rightarrow (5-1)/2 = 3 \cdot \sigma \rightarrow 2 = 3 \cdot \sigma \rightarrow \sigma = 2/3 = 0.67$
- We compute the values of the mask substituting  $x = \{-2, -1, 0, 1, 2\}$  on  $f(x) = e^{-\frac{x^2}{2 \cdot 0.67^2}}$

Once we have  $\sigma$  and k we can discretize the mask by applying the Gaussian function (or its derivatives)

#### Gaussian discretization: finite approximation

Convolving a box filter with itself yields an approximation to a Gaussian kernel (easy way to construct a Gaussian kernel):

$$\frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$\frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

#### These are the odd rows of the binomial (Pascal's) triangle:

(2k+1)th row approximates Gaussian with  $\sigma^2$ =k/2

Check Stan Birchfield's notes for more information regarding the binomial and trinomial triangle to generate Gaussian approximations

#### **Gaussian Properties**

- Remove "high-frequency" components from the image (*low-pass filter*). All values are positive and sum up to 1.
  - Images become smoother.

• Completely described by 1<sup>st</sup> (mean) and 2<sup>nd</sup> (variance) order statistics (moments).

The Fourier Transform of a Gaussian function is also a Gaussian

$$f(x) = e^{-\frac{x^2}{2\sigma^2}} \longrightarrow \mathcal{F}[f(x)] = \sqrt{2\pi}\sigma e^{-2\pi^2\sigma^2\omega^2}$$

#### **Gaussian Properties**

• Closed under convolution (convolution of two Gaussians is another Gaussian)



- When you convolve a Gaussian function  $(G_1)$  with another Gaussian function  $(G_2)$ , the result is still a Gaussian function (G)
- Convolving twice with Gaussian kernel of width  $\sigma$  is the same as convolving once with kernel of width  $\sqrt{\sigma^2+\sigma^2}=\sqrt{2\sigma^2}=\sigma\sqrt{2}$
- In general, n repeated convolutions with  $\sigma$  Gaussian approximates single convolution with  $\sigma\sqrt{n}$  Gaussian

$$G(x,y|\sigma) = G\left(x,y\left|\sqrt{\sigma_1^2+\sigma_2^2}
ight) = G_1(x,y|\sigma_1)*G_2(x,y|\sigma_2)$$

#### **Gaussian Properties**

- Separable (efficient)
  - Factors into product of two 1D Gaussians
  - Example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$\begin{array}{l} \text{import scipy.signal as sp} \\ \text{import numpy as np} \\ \text{np.outer(np.array([1,2,1]), np.array([1,2,1]))} \\ \text{sp.convolve2d(np.array([[0,1,0],[0,2,0], [0,1,0]]), mode='same')} \\ \text{np.array([[0,0,0],[1,2,1], [0,0,0]]), mode='same')} \end{array}$$

#### **Outer product:**

$$\mathbf{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_m \end{bmatrix}, \quad \mathbf{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix} \mathbf{u} \otimes \mathbf{v} = \mathbf{A} = egin{bmatrix} u_1v_1 & u_1v_2 & \dots & u_1v_n \ u_2v_1 & u_2v_2 & \dots & u_2v_n \ dots & dots & dots & dots \ u_mv_1 & u_mv_2 & \dots & u_mv_n \end{bmatrix}$$

### Separability of the Gaussian

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y* 

In this case, the two functions are the (identical) 1D Gaussian

## Separability example

2D filtering (center location only)

| 1 | 2 | 1 |   |
|---|---|---|---|
| 2 | 4 | 2 |   |
| 1 | 2 | 1 | 1 |

$$=2 + 6 + 3 = 11$$
  
 $= 6 + 20 + 10 = 36$   
 $= 4 + 8 + 6 = 18$ 

65

The filter factors into a product of 1D filters:



\* 1 2 1

Perform filtering along rows:



|   | 11 |  |
|---|----|--|
| = | 18 |  |
|   | 18 |  |

Followed by filtering along the remaining column:

#### Separability example

(kernel Y - Coefficients for filtering each column)

We combine information from different rows. We combine information from different columns (kernel X - Coefficients for filtering each row)





```
60,
      90, 120,
     200, 240,
180, 210, 240,
       Θ,
```





```
210, 360, 330,
     800, 680,
     840, 690,
```

### Separability example (technical note)

It is not necessary to always go through all the rows and columns (4 for-loops)!!!

For each 1D convolution, we only need to traverse the rows once!!!

```
[ 0, 10, 20, 30,
                                                       60,
[2. 2. 2. 2. 2.]
                                                             90, 120,
                    0, 40, 50, 60,
                                                   0, 160, 200, 240,
                    0, 70, 80, 90,
                                                      180, 210, 240,
                                                         60 160 180
                210, 360, 330,
                                                            200 210
                     800, 680,
                                  0]
                                                        120 240 240
             0, 570, 840, 690,
                                  0]
```

## Why is separability useful in practice?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an  $n \times n$  image with an

 $m \times m$  kernel?

 $- O(n^2 m^2)$ 

We move the  $m\times m$  filter through the whole image. So, we do  $m\cdot m$  operations for each of the  $n\cdot n$  pixels in the image:  $m^2\cdot n^2$  operations

- What if the kernel is separable?
  - $O(n^2 m)$

We move the  $1 \times m$  filter through the whole image. So, we do m operations for each of the  $n \cdot n$  pixels in the image (one per rows and another per columns):  $m \cdot n \cdot n + m \cdot n \cdot n = 2 \cdot (m \cdot n^2)$ 

Example: 512x512 image, 11x11 filter

- 1 convolution 2D: 512\*512\*11\*11 ~32M multiplications

- 2 convolutions 1D: 512\*512\*11 + 512\*512\*11 ~6M multiplications

### More ideas about separability

- Allowed because convolution is associative  $(f * (g_1 * g_2) = (f * g_1) * g_2)$
- Some 2D kernels can be directly decomposed into 1D kernels:

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} 
= \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

- A 2D kernel is separable iff all rows / columns are linearly dependent
  - This filter  $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$  is not separable:

$$\alpha \cdot [0, 1, 0] + \beta \cdot [1, -4, 1] = [0, 0, 0] \leftrightarrow \alpha = 0 \land \beta = 0$$

$$\Rightarrow \text{ Linearly independent vectors!!}$$

**Note:** any 2D-mask admits a SVD decomposition (*low-rank approximations*): sum of several separable kernels. <a href="https://bartwronski.com/2020/02/03/separate-your-filters-svd-and-low-rank-approximation-of-image-filters/">https://bartwronski.com/2020/02/03/separate-your-filters-svd-and-low-rank-approximation-of-image-filters/</a>

Computing derivatives: high-frequency features (high-pass filters)

## Edges

|    | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 24 | 15 | 20 | 23 | 15 | 22 | 16 | 14 | 17 | 13 | 20 | 14 | 14 |
| 25 | 21 | 13 | 14 | 15 | 18 | 14 | 17 | 23 | 21 | 17 | 67 | 61 |
| 26 | 25 | 12 | 16 | 19 | 22 | 22 | 20 | 14 | 25 | 64 | 69 | 63 |
| 27 | 24 | 19 | 15 | 26 | 27 | 25 | 15 | 55 | 59 | 52 | 61 | 58 |
| 28 | 13 | 21 | 27 | 20 | 18 | 28 | 54 | 62 | 66 | 56 | 53 | 65 |
| 29 | 13 | 14 | 24 | 20 | 23 | 68 | 56 | 69 | 61 | 57 | 69 | 62 |
| 30 | 14 | 28 | 18 | 28 | 63 | 67 | 68 | 57 | 67 | 67 | 69 | 66 |
| 31 | 24 | 18 | 22 | 59 | 55 | 66 | 59 | 55 | 68 | 54 | 56 | 56 |
| 32 | 26 | 23 | 23 | 58 | 55 | 57 | 64 | 63 | 57 | 58 | 54 | 56 |
| 33 | 19 | 22 | 68 | 61 | 56 | 64 | 69 | 56 | 55 | 68 | 53 | 57 |
| 34 | 22 | 55 | 62 | 57 | 62 | 59 | 59 | 64 | 55 | 68 | 67 | 57 |
| 35 | 19 | 54 | 60 | 60 | 57 | 55 | 61 | 56 | 57 | 61 | 55 | 60 |



## Edges



# Edges and High Frequencies

- Frequency in 2D images:
  - rate of change of gray levels in spatial terms
    - If it "involves" many pixels to make a change
       → low frequency
    - If it "involves" few pixels to make a change (i.e., the change is abrupt)
      - → high frequency



We'll come back to this later!

### Edge detection





- Convert a 2D image into a set of curves
  - Extracts salient features of the scene
  - More compact than pixels

### Importance of intensity edges



from Walther et al., Simple line drawings suffice for functional MRI decoding of natural scene categories, PNAS 2011

#### → Much information is retained by the edges

#### Importance of intensity edges













from Walther et al., Simple line drawings suffice for functional MRI decoding of natural scene categories, PNAS 2011

#### → Much information is retained by the edges

#### Origin of edges



Edges are caused by a variety of factors

## Images as functions...





• Edges look like steep cliffs

#### Remembering the concept of derivative

The derivative shows the sensitivity of change of a function's output with respect to the input



Let's pay attention to the **blue** line (first derivative of the **red** one). This will help us to better understand the next slides.

### Characterizing edges

An edge is a place of rapid change in the image intensity function



For a 2D function, f(x, y), the partial derivative is

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate the derivative using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

We compute derivatives through the difference between intensities of adjacent pixels.

- How can we differentiate a digital image F[x,y]?
  - Take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

$$\frac{\partial f}{\partial x}$$
:  $\frac{1}{1}$   $\frac{-1}{1}$   $H_x$ 

$$\frac{\partial f}{\partial y}$$
:

Odd length avoids undesirable shifting of signal

$$\begin{bmatrix} 1 & \underline{-1} \end{bmatrix}$$

$$-7$$

 $\begin{bmatrix} 4 & 7 & 8 & 1 & 3 \end{bmatrix} * \begin{bmatrix} 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & -7 & 2 & 0 \end{bmatrix}$  (Don't forget to flip kernel before convolving)

Forward difference

The position to be replaced appears underlined.

In this example, we reflect the boundary. So, the value outside the image would be 3: -1\*3+1\*3=0

$$\begin{bmatrix} \underline{1} & -1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 7 & 8 & 1 & 3 \end{bmatrix} * \begin{bmatrix} \underline{1} & -1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 1 & -7 & 2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$1 -7 :$$

Backward difference

To avoid undesirable shift, use central difference kernel

$$\frac{1}{2}\begin{bmatrix}1 & \underline{0} & -1\end{bmatrix}$$

Central difference

Example:

$$\begin{bmatrix} 4 & 7 & 8 & 1 & 3 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 & \underline{0} & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & 4 & -6 & -5 & 2 \end{bmatrix}$$

Forward  $f'(x) \approx \frac{f(x+h) - f(x)}{h}$  $\text{Backward} \qquad f'(x) \approx \frac{f(x) - f(x - h)}{h}$  $f'(x) \approx \frac{f(x+0.5h) - f(x-0.5h)}{h}$ 

We don't really care about this factor. We just want to detect differences!

Another perspective to get central differences:

$$f_F'(x) \approx \frac{1}{h}(f(x+h) - f(x))$$
 (forward)  $f_B'(x) \approx \frac{1}{h}(f(x) - f(x-h))$  (backward)

– First order central (average):

$$f_{C}'(x) \approx \frac{1}{2}(f_{F}' + f_{B}') = \frac{1}{2h}(f(x+h) - f(x-h)) \longrightarrow \frac{1}{2} \boxed{1 \qquad 0 \qquad -1}$$

– Second order central:

$$f_{c}''(x) \approx \frac{f'(x+0.5h)-f'(x-0.5h)}{h} = \frac{\frac{f(x+h)-f(x)}{h} - \frac{f(x)-f(x-h)}{h}}{h}$$

$$= \frac{1}{h^{2}} (f(x+h) - 2f(x) + f(x-h))$$
mask:  $h=1$ 

$$1 - 2 1$$

In derivative masks, weight normalization is to 0

### Image gradient

• The gradient of an image:  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ 

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$



The *edge strength* is given by the **gradient magnitude**:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The **gradient direction** is given by:

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

#### Decomposing the Sobel filter

### Image gradient



#### Horizontal derivative

#### **Gradient magnitude**

$$egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \ \end{bmatrix}$$

$$\mathbf{G_y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}$$

$$\mathbf{G} = \sqrt{{\mathbf{G_x}}^2 + {\mathbf{G_y}}^2}$$















Visual examples taken from <a href="https://stackoverflow.com/questions/19815732/what-is-the-gradient-orientation-and-gradient-magnitude">https://stackoverflow.com/questions/19815732/what-is-the-gradient-orientation-and-gradient-magnitude</a> and <a href="https://en.wikipedia.org/wiki/Sobel\_operator">https://en.wikipedia.org/wiki/Sobel\_operator</a>

**Note:** These filters give negative values, because derivatives can be negative. Then, at coding level, you have to "transfer" those values to [0,255] or [0,1].

### Image gradient

Is there any difference if we apply cross-correlation or convolution with this kernel??



#### **Horizontal derivative**

$$ightarrow \mathbf{G_x} = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix}$$

#### **Vertical derivative**

$$\mathbf{G_x} = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} \qquad \qquad \mathbf{G_y} = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix}$$

#### **Gradient magnitude**

$$\mathbf{G} = \sqrt{{\mathbf{G_x}}^2 + {\mathbf{G_y}}^2}$$

#### **Gradient orientation**

$$\mathbf{\Theta} = \mathrm{atan2}(\mathbf{G}_y, \mathbf{G}_x)$$









# Image gradient











Which one represents the gradient magnitude?

Which one shows changes with respect to x?

Which one shows changes with respect to y?

#### Effects of noise



**Noisy input image** 





Derivatives amplify noise (high-frequency components)!

Where is the edge?

#### Solution: smooth first



How many convolutions do we have here??

To find edges, look for peaks  $\frac{d}{dx}(f*h)$ 

## Associative property of convolution

Differentiation is convolution, and convolution is associative:

$$\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$$

• This saves us one operation:

Computing derivatives implies smoothing (in one direction) and differentiating (in the other)

#### Examples:





#### The 1D Gaussian and its derivatives

$$g_{\sigma}(x) = rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}igg(-rac{x^2}{2\sigma^2}igg)$$

$$g_\sigma'(x) = rac{\partial g_\sigma(x)}{\partial x} = -rac{x}{\sigma^2}rac{1}{\sqrt{2\pi}\sigma}\mathrm{exp}igg(-rac{x^2}{2\sigma^2}igg) = -rac{x}{\sigma^2}g_\sigma(x)$$

$$g_\sigma''(x) = rac{\partial^2 g_\sigma(x)}{\partial x^2} = \left(rac{x^2}{\sigma^4} - rac{1}{\sigma^2}
ight)rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}igg(-rac{x^2}{2\sigma^2}igg) = \left(rac{x^2}{\sigma^4} - rac{1}{\sigma^2}
ight)g_\sigma(x)$$



#### The 1D Gaussian and its derivatives



Main advantage of second derivatives? They allow you to locate the edge more precisely!

# 2D edge detection filters



#### Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$



derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

### Derivative of Gaussian filter



#### Derivative of Gaussian filter

Is the sign really important??





Prewitt

Sobel

$$Prewitt_{x} = \frac{1}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \star \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 0 & -1\\1 & 0 & -1\\1 & 0 & -1 \end{bmatrix}$$

$$Prewitt_y = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$Sobel_x = \frac{1}{4} \begin{bmatrix} 1\\2\\1 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 0 & -1\\2 & 0 & -2\\1 & 0 & -1 \end{bmatrix}$$

$$Sobel_y = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \star \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$Scharr_{x} = \frac{1}{16} \begin{bmatrix} 3\\10\\3 \end{bmatrix} \star \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = \frac{1}{32} \begin{bmatrix} 3 & 0 & -3\\10 & 0 & -10\\3 & 0 & -3 \end{bmatrix}$$

$$Scharr_y = \frac{1}{16} \begin{bmatrix} 3 & 10 & 3 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{32} \begin{bmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{bmatrix}$$

# The standard definition of the Sobel operator omits the 1/8 term

 doesn't make a difference for edge detection

If we want a 5x5 Sobel kernel:

and the binomial!



If we want a 5x5 Sobel kernel:

and the binomial!



If we want a 5x5 Sobel kernel:

and the binomial!



#### If we want a 5x5 Sobel kernel:

and the binomial!



0

-1

If we want a 7x7 Sobel kernel:



### Separability

#### First derivative of 2D Gaussian is separable:

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x^2+y^2)}{2\sigma^2}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right)$$

$$= G_h(x) \cdot G_v(y)$$

$$\frac{\partial G(x,y)}{\partial x} = -\frac{x}{\sigma^2} \cdot \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

$$= G_h'(x) \cdot G_v(y)$$
smc

horizontal 1D Gaussian vertical 1D Gaussian derivative kernel kernel

smooth in one direction, differentiate in the other

This allows us to know which 1D kernels to apply, and in what order, to calculate the derivatives of an image. In the previous example, the first derivative on X.

- How many 2<sup>nd</sup> derivative filters do we have? There are four 2<sup>nd</sup> partial derivative filters.
- In practice, it's handy to define a single 2<sup>nd</sup> derivative filter—the Laplacian
  - Instead of using  $\frac{\partial^2 (G_{\sigma}(x,y))}{\partial x^2} = \left(\frac{x^2}{\sigma^4} \frac{1}{\sigma^2}\right) G_{\sigma}(x,y)$  and  $\frac{\partial^2 (G_{\sigma}(x,y))}{\partial y^2} = \left(\frac{y^2}{\sigma^4} \frac{1}{\sigma^2}\right) G_{\sigma}(x,y)$
  - We employ the Laplacian of Gaussian (LoG) filter









Marr, D., & Hildreth, E. (1980). Theory of edge detection. Procs. of the Royal Society of London, 207,

187-217.

**Zero-crossings of bottom graph** Where is the edge?

Slide credit: Steve Seitz

• Example of 3x3 Laplacian kernel:

0 1 0 1 -4 1 0 1 0



## "inverted Mexican hat"



- This kernel is not separable, but...
  - we can calculate LoG as the sum of 2D convolutions that are separable
    - Because the Gaussian and its derivatives are!!!
    - In practice, we need 4 1D convolutions (and that is still less computationally expensive than doing a single 2D convolution; unless the kernel is very small)

if the kernel is 7×7 we need 49 multiplications and additions <u>per pixel</u> for the 2D kernel, or 4·7=28 multiplications and additions <u>per pixel</u> for the four 1D kernels; this difference grows as the kernel gets larger

The Laplacian operator is the divergence of the gradient, and is given by the sum of the second order derivatives (i.e. the trace of the Hessian matrix):

**Laplacian of Gaussian** 

Associative property

**Distributive property** 

$$\frac{\partial^2 (I\circledast G)}{\partial x^2} + \frac{\partial^2 (I\circledast G)}{\partial y^2} = I\circledast \left(\frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}\right) = I\circledast \frac{\partial^2 G}{\partial x^2} + I\circledast \frac{\partial^2 G}{\partial y^2}$$

Laplacian of an image smoothed with a Gaussian kernel

Image convolved with the Laplacian of a Gaussian

How do we compute 
$$I\circledast \frac{\partial^2 G}{\partial x^2}+I\circledast \frac{\partial^2 G}{\partial y^2}$$
 ?

We know that the 1st derivative of a 2D Gaussian is separable:

$$\frac{\partial G(x,y)}{\partial x} = -\frac{x}{\sigma^2} \cdot \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{y^2}{2\sigma^2}\right)$$
$$= G'_h(x) \cdot G_v(y)$$

Then:

$$\frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} = G_h''(x) \cdot G_v(y) + G_h(x) \cdot G_v''(y)$$

convolution in one direction with the 2nd derivative of the Gaussian, and then in the other direction, convolution with the Gaussian.

convolution in one direction with the Gaussian and then in the other, convolution with the 2nd derivative of the Gaussian.

$$L = \sigma^2 \Big( G_{_{\!\mathit{X\!Y}}}(x,y,\sigma) + G_{_{\!\mathit{Y\!Y}}}(x,y,\sigma) \Big) \quad \frac{\partial^2 G}{\partial x^2} \, + \, \frac{\partial^2 G}{\partial y^2} = G_h''(x) \cdot G_v(y) \, + \, G_h(x) \cdot G_v''(y)$$

Why do we multiply by  $\sigma^2$ ?



Intuition: the Gaussian is a probability function, so it has area 1. If we squeeze it in the horizontal direction then we must expand it in the vertical direction to preserve area.

To keep response the same (scale-invariant), must multiply Gaussian derivative by  $\sigma$ **Laplacian** is the second Gaussian derivative, so it must be multiplied by  $\sigma^2$ 



- The response of a derivative of Gaussian filter to a perfect step edge decreases as  $\sigma$  increases
- ullet To keep response the same (scale-invariant), must multiply Gaussian derivative by  $\sigma$
- Laplacian is the second Gaussian derivative, so it must be multiplied by  $\sigma^2$



# Laplacian of Gaussian approximation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \big( G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \big)$$

(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)



**Advantage:** we don't even need to implement the second derivative.

### Laplacian of Gaussian approximation

LoG and DoG are band-pass filters!



The Gaussian filters involved are "killing" different high-frequencies. Their subtraction give us a range/band of (high) frequencies whose pass is allowed!

Note: We'll understand better this slide once we review the Frequency Domain!

### Effect of $\sigma$ on derivatives (scales)



The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

# Summary: Two types of convolution kernels

#### **Smoothing**

$$\sum g_i = 1$$

(Smoothing a constant function should not change it)

Example: (1/4) \* [1 2 1]

Low-pass filter (Gaussian)

#### **Differentiating**

$$\sum g_i = 0$$

(Differentiating a constant function should return 0)

Example: [-1 0 1]

**High-pass filter (derivative of Gaussian)** 

... also bandpass filters (Laplacian of Gaussian)

### Summary: Two types of convolution kernels

#### Two closely related problems:





blur (to remove noise)

differentiate (to highlight details)

### Summary: Two types of convolution kernels

#### Two closely related problems:





blur (to remove noise)

differentiate (to highlight details)

Underlying math is the same!

Sometimes we need to accurately locate the boundary....



- Canny, J., "<u>A Computational Approach To Edge Detection</u>", IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986 (~43K citations in Google Scholar)
- Still popular because
  - easy to implement
  - small number of intuitive parameters
  - computationally efficient
  - good results

Python:

https://docs.opencv.org/4.8.0/da/d22/tutorial\_py\_canny.html

**Original Image** 



**Sobel Magnitude** 



**Canny Edge Detector** 



1) Filter image with derivative of Gaussian and compute the gradient (magnitude and orientation) at each pixel



theta = atan2(gy, gx)

360

**Gradient orientation angle** 

#### 2) Non-maximum suppression



For each point on the edge, we keep the highest (maximum) intensity point.

This makes the edges thinner (1 pixel wide).

A full scan of the image is done to remove any unwanted pixels which may not constitute the edge.



- We check if every pixel is local maximum in its neighborhood along gradient direction
  - Point A is on the edge. Gradient direction is normal to the edge. Point B and C are in gradient directions.
  - Point A is checked with point B and C to see if it forms a local maximum.
  - If so, it is considered for next stage, otherwise, it is suppressed (put to zero).

# Before Non-max Suppression



# After Non-max Suppression



- 3) Linking and thresholding edges (hysteresis)
- We only want strong edges
- 2 thresholds (high, low), 3 cases (R: response):
  - R > high: strong edge!
  - R < low: no edge
  - R < high but R > low: weak edge
    - Weak edges are edges iff they connect to strong ones
    - Look in some neighborhood (usually 8 closest)







- 3) Linking and thresholding edges (hysteresis)
- We only want strong edges
- 2 thresholds (high, low), 3 cases (R: response):
  - R > high: strong edge!
  - R < low: no edge
  - R < high but R > low: weak edge
    - Weak edges are edges iff they connect to strong ones
    - Look in some neighborhood (usually 8 closest)











1. Filter image with derivative of Gaussian and find magnitude and orientation of gradient



2. Non-maximum suppression



- 3. Linking and thresholding (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



#### Parameters to tune:

high threshold low threshold

 $\sigma$ : width of the Gaussian blur

- The choice of  $\sigma$  depends on desired behavior
  - Large  $\sigma$  detects "large-scale" edges
  - Small  $\sigma$  detects fine edges



original image



high threshold (strong edges)



low threshold (weak edges)



hysteresis threshold

# Gaussian Filtering and Edges

#### Pablo Mesejo

pmesejo@go.ugr.es

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial







**DaSCI** 

Instituto Andaluz de Investigación en

Data Science and Computational Intelligence