

CS-E4540 Answer Set Programming

Lecture 2: Negation and Non-Monotonicity

Aalto University School of Science Department of Computer Science

Autumn 2016

Lecture 2: Negation and Non-Monotonicity

Negative Conditions

Stable Model Semantics

Variables and Domains

Programming Tips

Problem Solving

Foundational paper:

M. Gelfond and V. Lifschitz:

"The Stable Model Semantics for Logic Programming",

In Proc. of ICLP-88, 1070-1080.

1. NEGATIVE CONDITIONS

 The semantics based on least models provides a logical foundation for rule-based reasoning:

$$P \models a \text{ iff } a \in LM(P)$$

for any atom a appearing in P.

- In particular, atoms $a \in Hb(P)$ that are not logical consequences of P, i.e., $P \not\models a$ holds, are false in LM(P) by default.
- In many applications, it is convenient/necessary to refer to complements of certain relations using negative conditions.
- The notion of answer sets based on stable models provides a declarative semantics for programs involving negative conditions.

Example

Consider the following definition of a conscript:

 $Conscript(x) \leftarrow Person(x), \sim Female(x).$

Example

Consider the following set of rules involving negative conditions.

```
\begin{aligned} &\mathsf{Conscript}(x) \leftarrow \mathsf{Person}(x), \sim &\mathsf{Female}(x). \\ &\mathsf{Female}(x) \leftarrow \mathsf{Person}(x), \sim &\mathsf{Volunteer}(x), \sim &\mathsf{Conscript}(x). \\ &\mathsf{Person}(\mathsf{joe}). \end{aligned}
```

What would be the right answer for the query Conscript(joe)?

• The meaning of the rules depends on the order of application:

```
\begin{array}{ll} \mathsf{Person}(\mathsf{joe}), \sim & \mathsf{Female}(\mathsf{joe}) \implies \mathsf{Conscript}(\mathsf{joe}) \\ \mathsf{Person}(\mathsf{joe}), \sim & \mathsf{Volunteer}(\mathsf{joe}), \sim & \mathsf{Conscript}(\mathsf{joe}) \implies & \mathsf{Female}(\mathsf{joe}) \end{array}
```

 Thus it seems non-trivial to combine recursive definitions with negation and, in particular, to obtain a declarative semantics.

2. STABLE MODEL SEMANTICS

- In 1988, Gelfond and Lifschitz proposed stable models in order to provide a declarative semantics for negative conditions in rules.
- The rules of normal logic programs are of the form

$$a \leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m$$
.

where \sim denotes negation by default.

- Stable models are based on the following two ideas:
 - 1. $M \models \neg c$ holds for a negative condition $\neg c \iff c \notin M$, and
 - a model M is stable iff it is the least Herbrand model for the rules having their all negative conditions satisfied by M.

Example

Given the program $P=\{b\leftarrow \sim c.\ a\leftarrow b, \sim d.\ \}, M=\{a,b\}$ satisfies these requirements.

Example

Reconsider the program from the preceding example after grounding:

```
\begin{aligned} & \mathsf{Conscript}(\mathsf{joe}) \leftarrow \mathsf{Person}(\mathsf{joe}), \sim & \mathsf{Female}(\mathsf{joe}). \\ & \mathsf{Female}(\mathsf{joe}) \leftarrow \mathsf{Person}(\mathsf{joe}), \sim & \mathsf{Volunteer}(\mathsf{joe}), \sim & \mathsf{Conscript}(\mathsf{joe}). \\ & \mathsf{Person}(\mathsf{joe}). \end{aligned}
```

- The model $M = \{ Person(joe), Conscript(joe) \}$ is stable.
- The negative conditions of the first and the last rule are true in M which is the least Herbrand model of the respective positive rules:

$$Conscript(joe) \leftarrow Person(joe). \quad Person(joe).$$

 But N = {Person(joe), Female(joe)} is also stable (which suggests us to specify Joe's gender; or to revise the given rules).

Definition of Stability

Definition

Let P be a normal logic program without variables and $M\subseteq \operatorname{Hb}(P)$ an interpretation. The Gelfond-Lifschitz reduct of P with respect to M, denoted by P^M , is:

$$\{a \leftarrow b_1, \dots, b_n \mid a \leftarrow b_1, \dots, b_n, \sim c_1, \dots, \sim c_m \in P$$

and $M \models \sim c_1, \dots, \sim c_m\}.$

Remark

In the definition of P^M , $M \models \sim c_1, \dots, \sim c_m$ iff $M \cap \{c_1, \dots, c_m\} = \emptyset$.

Definition

Let P be a normal logic program without variables.

An interpretation $M \subseteq Hb(P)$ is a stable model of P iff $M = LM(P^M)$.

Example

Consider a normal logic program *P* having the rules listed below:

$$a \leftarrow c, \sim b$$
.
 $b \leftarrow \sim a$.
 $c \leftarrow \sim d$.
 $d \leftarrow \sim a$.

- 1. The interpretation $M_1 = \{a, c\}$ is a stable model of P because $P^{M_1} = \{a \leftarrow c. \ c. \ \}$ and M_1 is the least model of P^{M_1} .
- 2. But $M_2 = \{a, d\}$ is not stable because $P^{M_2} = \{a \leftarrow c.\}$ for which the least model is \emptyset . Note that $M_2 \models P$ in the classical sense.
- 3. Finally, $M_3 = \{b,d\}$ is also a stable model of P.

The Γ_P Operator

Definition

Given a normal logic program P, define an operator $\Gamma_P: \mathbf{2}^{\operatorname{Hb}(P)} \to \mathbf{2}^{\operatorname{Hb}(P)}$ by setting

$$\Gamma_P(M) = \{ a \mid a \in Hb(P) \text{ and } P^M \models a \}.$$

Proposition

An interpretation $M \subseteq \mathrm{Hb}(P)$ is a stable model of a normal program P iff $M = \Gamma_P(M)$.

Proof

It is easy to see that for any $M \subseteq Hb(P)$, $\Gamma_P(M) = LM(P^M)$.

Properties of the Γ_P Operator

The operator Γ_P is not monotonic but antimonotonic:

Proposition

For any normal program P and interpretations $M\subseteq N\subseteq \mathrm{Hb}(P),$ $\Gamma_P(N)\subseteq \Gamma_P(M).$

Proof

It is sufficient to note that $M\subseteq N$ implies $P^N\subseteq P^M$ and $\mathrm{LM}(P^N)\subseteq \mathrm{LM}(P^M)$ by the monotonicity of $\mathrm{LM}(\cdot)$.

Properties of Stable Models

- Unlike the least model of a positive program, stable models are not necessarily unique as demonstrated by programs below:
 - 1. $P_0 = \{a \leftarrow \sim a. \}$ has no stable models.
 - 2. $P_1 = \{a \leftarrow \sim b. \}$ has one stable model $\{a\}$.
 - 3. $P_2 = \{a \leftarrow \sim b. \ b \leftarrow \sim a. \ \}$ has two stable models $\{a\}$ and $\{b\}$.
 - We write SM(P) for the set of stable models of P.
- Stable models are minimal in the sense that if $M \in SM(P)$ then there is no other $N \in SM(P)$ such that $N \subset M$.
 - For normal programs, the set $\mathrm{SM}(P)$ forms an antichain.
- A stable model $M \in SM(P)$ is strongly grounded in the rules of P:

$$a \in M \text{ iff } P^M \models a.$$

Answer Set Programming

- A traditional PROLOG system answers a query Q either "yes" (with an answer substitution θ for the variables of Q) or "no".
- Stable models, or answer sets, are based on a novel interpretation of logic programs as sets of constraints on models.
- Typically, answer sets—computed using a special search engine—capture solutions to the problem being solved.

Remark

Rule-based languages are highly expressive:

Many problems involving constraints can be reformulated as problems of finding a stable model for the respective set of rules.

3. VARIABLES AND DOMAINS

- Let *P* be a normal logic program—potentially involving variables.
- The respective ground program Gnd(P) is defined in the same way as for positive programs.

Definition

A Herbrand interpretation $M\subseteq \mathrm{Hb}(P)$ is a stable model of P iff $M=\Gamma_{\mathrm{Gnd}(P)}(M)=\mathrm{LM}(\mathrm{Gnd}(P)^M).$

Example

Let us consider $P = \{A(c,d).\ B(x) \leftarrow A(x,y), \sim B(y).\ \}$. The ground program $\mathrm{Gnd}(P)$ contains the following rules:

$$\begin{array}{ll} A(c,d). & B(c) \leftarrow A(c,c), \sim B(c). & B(c) \leftarrow A(c,d), \sim B(d). \\ & B(d) \leftarrow A(d,c), \sim B(c). & B(d) \leftarrow A(d,d), \sim B(d). \end{array}$$

The interpretation $M = \{A(c,d), B(c)\}$ is the only stable model of P.

Domain Predicates

- Ground programs $\operatorname{Gnd}(P)$ can become very large and they may contain many useless or redundant rules.
- A way to prune unnecessary rules is to introduce domain predicates, which are relation symbols with a fixed interpretation.
- Even recursive definitions for domain predicates (see $G(\cdot,\cdot)$ below) can be tolerated if recursion does not involve negation.

Example

Consider the following example:

$$\begin{array}{ll} D(a). & E(b). & F(x) \leftarrow D(x). & F(x) \leftarrow E(x). \\ G(x,y) \leftarrow D(x), E(y). & G(y,x) \leftarrow G(x,y), F(x), F(y). \\ R(y,x) \leftarrow G(x,y), \sim S(y,x). & S(y,x) \leftarrow G(x,y), \sim R(y,x). \end{array}$$

Here D, E, F, and G are domain predicates but R and S are not.

Example—Cont'd

Some observations about the preceding program, say P, follow:

- 1. The Herbrand universe $\operatorname{Hu}(P) = \{a,b\}$ is finite and thus the ground program $\operatorname{Gnd}(P)$ remains also finite.
 - The least Herbrand model for the uppermost six rules (say P') is $LM(Gnd(P')) = \{D(a), E(b), F(a), F(b), G(a,b), G(b,a)\}.$
 - ▶ The model LM(Gnd(P')) can be represented as a set of facts.
- 2. Only two ground instances of the last two rules each are needed:

$$R(b,a) \leftarrow G(a,b), \sim S(b,a).$$
 $R(a,b) \leftarrow G(b,a), \sim S(a,b).$ $S(b,a) \leftarrow G(a,b), \sim R(b,a).$ $S(a,b) \leftarrow G(b,a), \sim R(a,b).$

3. An intelligent grounder can simplify these further by dropping conditions G(a,b) and G(b,a) as they are satisfied for sure.

Restricting Domains of Variables

 The idea is to control the size of the resulting ground program by using positive body literals to restrict the domains of variables.

Definition

A normal program *P* is safe iff for each rule

$$R(\vec{t}) \leftarrow R_1(\vec{t_1}), \ldots, R_n(\vec{t_n}), \sim S_1(\vec{u_1}), \ldots, \sim S_m(\vec{u_m})$$

of P and for each variable x appearing in the rule, x appears in some of the positive conditions $R_i(\vec{t_i})$.

Example

The rule $R(x,y) \leftarrow D(x), D(y), \sim S(y,x)$ is safe, but the rules $F(x,y) \leftarrow D(x), E(x)$ and $E(x) \leftarrow \sim D(x)$ are not.

4. PROGRAMMING TIPS

The logical connectives of propositional logic are available.

- 1. The conjunction of conditions $c_1, ..., c_n$ is captured by a single (positive) rule $c \leftarrow c_1, ..., c_n$.
- 2. Expressing the disjunction of conditions d_1, \ldots, d_n requires the introduction of n rules $d \leftarrow d_1, \ldots, d \leftarrow d_n$.
- 3. A rule $f \leftarrow b_1, \ldots, b_n, \sim f$ expresses a constraint $\leftarrow b_1, \ldots, b_n, \sim f$ that formalizes the negation $\neg (b_1 \land \ldots \land b_n \land \neg f)$. If all program rules with head f are "self-defeating", the negation of the body simplifies to $\neg (b_1 \land \ldots \land b_n)$.

Example

One is supposed to have one or two delicacies out of three:

 $Some \leftarrow Cake. \quad Some \leftarrow Bun. \quad Some \leftarrow Cookie.$

 $AII \leftarrow Cake, Bun, Cookie. F \leftarrow AII, \sim F. F \leftarrow \sim Some, \sim F.$

Making Choices

- A choice between two atoms a and b can be expressed in terms of two normal rules $a \leftarrow \sim b$ and $b \leftarrow \sim a$.
- Such a choice can be generalized for any number of atoms and conditionalized by adding literals in rule bodies.
- A typical approach in ASP is to express a number of choices and then exclude certain combinations using other rules/constraints.

Example

One is supposed to have coffee or tea—but not both—and also one of three delicacies in case tea is selected:

Rules with Exceptions

- Normal programs enable context-dependent reasoning in which the applicability of rules depends dynamically on the context.
- In common-sense reasoning, it is typical to formalize the normal state of affairs including any exceptions to that.

Example

Birds do normally fly—unless we have an exceptional bird.

```
\begin{aligned} \mathsf{Flies}(x) \leftarrow \mathsf{Bird}(x), \sim & \mathsf{Abnormal}(x). \\ & \mathsf{Abnormal}(x) \leftarrow & \mathsf{Penguin}(x). \quad \mathsf{Abnormal}(x) \leftarrow & \mathsf{Oily}(x). \quad \dots \end{aligned}
```

The stable models of this program, say P, behave as follows:

```
\begin{split} &\text{1. } SM(P \cup \{\mathsf{Bird}(\mathsf{tw}).\ \}) = \{\{\mathsf{Bird}(\mathsf{tw}),\mathsf{Flies}(\mathsf{tw})\}\}. \\ &\text{2. } SM(P \cup \{\mathsf{Bird}(\mathsf{tw}).\ \mathsf{Oily}(\mathsf{tw}).\ \}) = \{\{\mathsf{Bird}(\mathsf{tw}),\mathsf{Oily}(\mathsf{tw}),\mathsf{Abnormal}(\mathsf{tw})\}\}. \end{split}
```

5. PROBLEM SOLVING

To illustrate the use of normal rules in a practical setting, we will formalize the following problems:

- 1. Satisfiability checking
 - The canonical NP-complete problem established by Cook [1971].
- Graph 3-coloring
- 3. Hamiltonian cycles in graphs

Satisfiability Checking

A set of clauses S is translated into a normal program P_S as follows:

- 1. For each atom $a \in Hb(S)$, we introduce a new atom \overline{a} and two rules $\overline{a} \leftarrow \sim a$ and $a \leftarrow \sim \overline{a}$.
- 2. Each clause $a_1 \lor \ldots \lor a_n \lor \neg b_1 \lor \ldots \lor \neg b_m$ from S is translated into $f \leftarrow \overline{a}_1, \ldots, \overline{a}_n, b_1, \ldots, b_m, \sim f$

where $f \not\in Hb(S)$ is a new atom.

$$\implies \operatorname{Hb}(P_S) = \operatorname{Hb}(S) \cup \{\overline{a} \mid a \in \operatorname{Hb}(S)\} \cup \{f\}.$$

Proposition

A set of clauses S has a model M, i.e., S is satisfiable, iff the program P_S has a stable model N such that $M = N \cap Hb(S)$.

Example

Consider the translation of $S = \{a \lor b, \ a \lor \neg b, \ \neg a \lor \neg b\}$ into a normal program. The translation P_S consists of the following rules:

$$\begin{array}{ll} a \leftarrow \sim \overline{a}. & \overline{a} \leftarrow \sim a. & b \leftarrow \sim \overline{b}. & \overline{b} \leftarrow \sim b. \\ f \leftarrow \overline{a}, \overline{b}, \sim f. & f \leftarrow \overline{a}, b, \sim f. & f \leftarrow a, b, \sim f. \end{array}$$

A number of observations can be made:

- 1. Now, the set of clauses S has a model M iff the program P_S has a stable model N such that $M = N \cap \{a, b\}$.
- 2. Because $N_1 = \{a, \overline{b}\}$ is a stable model of P_S , we know that $M_1 = \{a\}$ is a model of S.
- 3. On the other hand, $N_2 = \{\overline{a}, \overline{b}\}$ is not a stable model of P_S .

Graph 3-Coloring

A graph G can be represented by facts of the form "Edge(x,y)." where x and y stand for nodes. The following normal program P_G^{3c} is a uniform encoding for the problem of coloring the nodes of G with three colors so that the endpoints of each edge have different colors.

```
\begin{split} \operatorname{Node}(x) &\leftarrow \operatorname{Edge}(x,y). \quad \operatorname{Node}(y) \leftarrow \operatorname{Edge}(x,y). \quad \text{(projection)} \\ \operatorname{Black}(x) &\leftarrow \operatorname{Node}(x), \sim \operatorname{White}(x), \sim \operatorname{Grey}(x). \quad \quad \text{(choices)} \\ \operatorname{White}(x) &\leftarrow \operatorname{Node}(x), \sim \operatorname{Black}(x), \sim \operatorname{Grey}(x). \\ \operatorname{Grey}(x) &\leftarrow \operatorname{Node}(x), \sim \operatorname{White}(x), \sim \operatorname{Black}(x). \\ \operatorname{F} &\leftarrow \operatorname{Edge}(x,y), \operatorname{Black}(x), \operatorname{Black}(y), \sim \operatorname{F}. \\ \operatorname{F} &\leftarrow \operatorname{Edge}(x,y), \operatorname{White}(x), \operatorname{White}(y), \sim \operatorname{F}. \\ \operatorname{F} &\leftarrow \operatorname{Edge}(x,y), \operatorname{Grey}(x), \operatorname{Grey}(y), \sim \operatorname{F}. \\ \end{split}
```

Proposition

The graph G has a 3-coloring iff P_G^{3c} has a stable model.

Hamiltonian Cycles in Graphs

The problem is to check whether a given graph has a Hamiltonian cycle that visits all nodes of the graph exactly once. In addition to the edge relation, the following rules are introduced in program $P_G^{\rm H}$.

1. The nodes of the graph are extracted from the edge relation:

$$\mathsf{Node}(x) \leftarrow \mathsf{Edge}(x,y). \ \ \mathsf{Node}(y) \leftarrow \mathsf{Edge}(x,y).$$
 $\mathsf{Same}(x,x) \leftarrow \mathsf{Node}(x).$

2. Any cycle starts from a particular node chosen here.

```
\begin{aligned} & \mathsf{Start}(x) \leftarrow \mathsf{Node}(x), \sim \! \mathsf{Other}(x). \\ & \mathsf{Other}(x) \leftarrow \mathsf{Node}(x), \sim \! \mathsf{Start}(x). \\ & \mathsf{F} \leftarrow \mathsf{Start}(x), \mathsf{Start}(y), \sim \! \mathsf{Same}(x,y), \mathsf{Node}(x), \mathsf{Node}(y), \sim \! \mathsf{F}. \\ & \mathsf{HasStart} \leftarrow \mathsf{Start}(x), \mathsf{Node}(x). \\ & \mathsf{F} \leftarrow \sim \! \mathsf{HasStart}, \sim \! \mathsf{F}. \end{aligned}
```

Hamiltonian Cycles—Cont'd

3. Next the edges which are on the cycle are chosen.

$$\begin{aligned} & \ln(x1, x2) \leftarrow \mathsf{Edge}(x1, x2), \sim \mathsf{Out}(x1, x2). \\ & \mathsf{Out}(x1, x3) \leftarrow \mathsf{In}(x1, x2), \sim \mathsf{Same}(x2, x3), \, \mathsf{Edge}(x1, x2), \, \mathsf{Edge}(x1, x3). \\ & \mathsf{Out}(x3, x2) \leftarrow \mathsf{In}(x1, x2), \sim \mathsf{Same}(x1, x3), \, \mathsf{Edge}(x1, x2), \, \mathsf{Edge}(x3, x2). \end{aligned}$$

4. All nodes of the graph must be reachable via the cycle.

Reached(
$$x$$
) \leftarrow In(y , x), Start(y), Edge(y , x).
Reached(x) \leftarrow In(y , x), Reached(y), Edge(y , x).
F \leftarrow Node(x), \sim Reached(x), \sim F.

Proposition

The program $P_G^{\rm H}$ —together with facts that describe the edge relation—has a stable model $\iff G$ has a Hamiltonian cycle.

OBJECTIVES

- You know what kind of problems arise when negative conditions are incorporated into recursive definitions.
- You are able to reproduce the definition of stable models and to prove simple properties about them.
- You can calculate stable models for simple normal logic programs (at least by exhaustive generation of model candidates).
- You are able to formalize simple constraint programming problems by describing their solutions in terms of rules.

TIME TO PONDER

As demonstrated above, a normal logic program can have several stable models, a unique stable model, or no stable models at all.

Problem

Design a propositional normal program P_n that has exactly $n \ge 0$ stable models.

How does the length of P_n , measured in the number of atoms and connectives, change as the function of n?