Geometria e Algebra - MIS-Z

Primo Appello - Giugno - Soluzioni

13/06/2023

Nome e Cognome:	
Corso di Laurea:	
Matricola:	

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Sia x il punteggio ottenuto nell'Esercizio 1 e sia y il punteggio totale ottenuto. Il compito è ritenuto sufficiente se $x \geq 4$ e $y \geq 18$. In tal caso il voto del primo appello sarà dato da y.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio

TOTALE	

ESERCIZIO 1 [8 punti]. Esercizio Scoglio.

(a) Si determini se i vettori (1,1,1), (0,3,1) e (3,-1,-1) costituiscono una base di \mathbb{R}^3 .

Giustificazione

I vettori (1,1,1), (0,3,1) e (3,-1,-1) costituiscono una base di \mathbb{R}^3 se e solo se la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 3 & -1 & -1 \end{pmatrix}$$

ha determinante diverso da zero. Si calcola facilmente che $\det(A)=-8\neq 0$, quindi i vettori $(1,1,1),\ (0,3,1)$ e (3,-1,-1) costituiscono una base di \mathbb{R}^3 .

(b) Si determini nello spazio euclideo \mathbb{E}^3 il piano ortogonale al vettore (2,1,-1) e passante per il punto (1,-2,3).

Giustificazione

Un piano ortogonale al vettore (2,1,-1) ha equazione cartesiana della forma 2X+Y-Z+d=0. Imponendo il passaggio per il punto (1,-2,3) si ottiene

$$2 - 2 - 3 + d = 0 \Rightarrow d = 3.$$

Quindi il piano cercato è descritto dall'equazione cartesiana 2X + Y - Z + 3 = 0.

(c) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed esauriente la risposta:

Per ogni $k \in \mathbb{R}$ l'applicazione $f_k : \mathbb{R}^2 \to \mathbb{R}^2$ tale che f(x,y) = (x+k,ky) è un'applicazione lineare.

\square VERO

FALSO

Giustificazione

Per k = 1 l'applicazione

$$f_1: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+1,y)$

non è un'applicazione lineare poiché $f_1(0,0) = (1,0) \neq (0,0)$.

(d) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed esauriente la risposta:

Sia V uno spazio vettoriale su un campo K e siano $v_1, v_2 \in V$ due vettori linearmente indipendenti. Allora i vettori v_1 e $v_1 + v_2$ sono linearmente indipendenti.

VERO

 \Box FALSO

Giustificazione

Siano $\lambda, \mu \in \mathbb{R}$ tali che

$$\lambda v_1 + \mu(v_1 + v_2) = \underline{0} \Rightarrow (\lambda + \mu)v_1 + \mu v_2 = \underline{0}.$$
 (1)

Poiché v_1 e v_2 sono linearmente indipendenti, da (1) si ottiene

$$\left\{ \begin{array}{l} \lambda + \mu = 0 \\ \mu = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \lambda = 0 \\ \mu = 0 \end{array} \right. ,$$

quindi v_1 e $v_1 + v_2$ sono linearmente indipendenti.

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X - Y + Z = -1 \\ X + kZ = 2 \\ X + kY + Z = 5 \\ kX + 2Y + Z = 8 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
k = 1	SI	∞^1	$\{(2-t,3,t):t\in\mathbb{R}\}$
k = -7	SI	1	$\left\{ \left(-\frac{3}{2}, -1, -\frac{1}{2} \right) \right\}$
$k \in \mathbb{R} \setminus \{1, -7\}$	NO	0	-

Svolgimento

Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & k & 2 \\ 1 & k & 1 & 5 \\ k & 2 & 1 & 8 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 R_1$,
- 2. $R_3 \leftarrow R_3 R_1$,
- 3. $R_4 \leftarrow R_4 kR_1$, 4. $R_3 \leftarrow R_3 (k+1)R_2$,
- 5. $R_4 \leftarrow R_4 (2+k)R_2$,

si ottiene la matrice:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & k-1 & 3 \\ 0 & 0 & 1-k^2 & 3-3k \\ 0 & 0 & -k^2-2k+3 & 2-2k \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & k-1 & 3 \\ 0 & 0 & (1-k)(1+k) & 3(1-k) \\ 0 & 0 & (k+3)(1-k) & 2(1-k) \end{pmatrix}.$$

A questo punto, se k = 1 otteniamo la matrice a scalini

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi in tal caso il sistema è compatibile e ammette ∞^1 soluzioni. Scegliendo Z come variabile libera, otteniamo l'insieme di soluzioni:

$$S_1 = \{(2-t, 3, t) : t \in \mathbb{R}\}.$$

Se $k \neq 1$, effettuando le ulteriori operazioni (definite per $k \neq 1$)

6.
$$R_3 \leftarrow \frac{1}{1-k} R_3$$
,

6.
$$R_3 \leftarrow \frac{1}{1-k}R_3$$
,
7. $R_4 \leftarrow \frac{1}{1-k}R_4$,

si ottiene la matrice:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & k-1 & 3 \\ 0 & 0 & 1+k & 3 \\ 0 & 0 & k+3 & 2 \end{pmatrix}.$$

A questo punto consideriamo i casi:

- k = -1, $k \neq -1$ (e $k \neq 1$).

Per k=-1 si vede facilmente che il sistema è incompatibile poiché la terza riga della matrice corrisponde all'equazione 0 = 3.

Per $k \neq \pm 1$, possiamo effettuare l'ulteriore operazione $R_4 \leftarrow R_4 - \frac{k+3}{1+k}R_3$, ottenendo la matrice a scalini

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & k-1 & 3 \\ 0 & 0 & 1+k & 3 \\ 0 & 0 & 0 & \frac{-k-7}{1+k} \end{pmatrix}.$$

Notiamo allora che il sistema corrispondente è compatibile se e solo se k=-7 (in tal caso infatti il rango della matrice orlata e della matrice dei coefficienti sono entrambi uguali a 3) e per tale valore di k il sistema possiede l'unica soluzione $\left(-\frac{3}{2},-1,-\frac{1}{2}\right)$.

ESERCIZIO 3 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e le equazione cartesiane della retta r_1 passante per i punti A(2,0,-1) e B(-1,1,1) di \mathbb{E}^3 .

Svolgimento

Per scrivere le equazioni parametriche di r_1 abbiamo bisogno di un punto della retta e di un vettore direttore. Scegliamo:

• Punto: A(2,0,-1);

• Vettore directore: $\overrightarrow{AB} = (-3, 1, 2)$.

Quindi le equazioni parametriche di r_1 sono

$$r_1: \left\{ \begin{array}{l} x=-3t+2 \\ y=t \\ z=2t-1 \end{array} \right., \qquad t \in \mathbb{R}.$$

Sostituendo y=t nella prima e nella terza equazione, troviamo le corrispondenti equazioni cartesiane:

$$r_1: \left\{ \begin{array}{l} X+3Y-2=0 \\ -2Y+Z+1=0 \end{array} \right. .$$

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_1 e del piano π_h , dove π_h è definito dall'equazione cartesiana:

$$\pi_h: X - hY + hZ = 1.$$

Per i valori di h per cui r_1 e π_h sono incidenti se ne determini il punto di intersezione e per i valori di h per cui r_1 e π_h sono paralleli se ne determini la distanza.

Svolgimento

Per determinare la posizione reciproca del piano π_h e della retta r_1 , studiamo il numero di soluzioni del sistema

$$\begin{cases} X + 3Y = 2 \\ -2Y + Z = -1 \\ X - hY + hZ = 1 \end{cases},$$

al variare di h.

Consideriamo allora la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & -2 & 1 & -1 \\ 1 & -h & h & 1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

1.
$$R_3 \leftarrow R_3 - R_1$$
,
2. $R_3 \leftarrow R_3 - \frac{h+3}{2}R_2$,

otteniamo la matrice a scalini:

$$\begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & \frac{h-3}{2} & \frac{h+1}{2} \end{pmatrix}$$

Per $h \neq 3$ il sistema è compatibile ed ammette l'unica soluzione $\left(-\frac{h+3}{h-3}, \frac{h-1}{h-3}, \frac{h+1}{h-3}\right)$. In termini geometrici questo significa che per $h \neq 3$ il piano π_h e la retta r_1 sono incidenti e il loro punto di intersezione è $\left(-\frac{h+3}{h-3}, \frac{h-1}{h-3}, \frac{h+1}{h-3}\right)$.

Notiamo che per h=3 il sistema è incompatibile in quanto l'ultima riga della matrice corrisponde all'equazione 0=2. Geometricamente questo si traduce nel fatto che π_3 e r_1 sono paralleli disgiunti. In tal caso la distanza tra π_3 e r_1 è data da

$$d(\pi_3, r_1) = d(\pi_3, (2, 0, -1)) = \frac{|2 - 3 \cdot 0 + 3 \cdot (-1) - 1|}{\sqrt{1 + 9 + 9}} = \frac{2}{\sqrt{19}}.$$

(c) Per h=3 si determini una retta r_2 perpendicolare al piano π_3 e incidente la retta r_1 . Siano P e Q i punti di intersezione di r_2 rispettivamente con r_1 e π_3 . Si verifichi che la distanza tra P e Q coincide con la distanza tra r_1 e π_3 calcolata al punto (b).

Svolgimento

Consideriamo il piano

$$\pi_3: X - 3Y + 3Z = 1.$$

Abbiamo visto nel punto (b) che il piano π_3 e la retta r_1 sono paralleli disgiunti. La retta r_2 cercata ha vettore di direzione parallelo al vettore normale di π_3 e passa per un qualsiasi punto di r_1 .

Scegliamo:

• Punto: P = A(2, 0, -1);

• Vettore directore: (1, -3, 3).

Quindi le equazioni parametriche di r_2 sono

$$r_2: \left\{ \begin{array}{l} x=t+2\\ y=-3t\\ z=3t-1 \end{array} \right., \qquad t\in\mathbb{R}.$$

Calcoliamo il punto di intersezione di π_3 e r_2 . Sostituendo le equazioni parametriche di r_2 nell'equazione cartesiana di π_3 otteniamo

$$t + 2 + 9t + 9t - 3 = 1 \Rightarrow t = \frac{2}{19}$$

Quindi $\pi_3 \cap r_2 = \{Q\}$, dove $Q = (\frac{40}{19}, \frac{-6}{19}, \frac{-13}{19})$. Calcoliamo

$$\|\overrightarrow{PQ}\| = \left\| \left(\frac{2}{19}, \frac{-6}{19}, \frac{6}{19}\right) \right\| = \sqrt{\frac{4}{19^2} + \frac{36}{19^2} + \frac{36}{19^2}} = \sqrt{\frac{76}{19^2}} = \sqrt{\frac{4 \cdot 19}{19^2}} = \frac{2}{\sqrt{19}},$$

verificando quanto trovato nel punto (b).

ESERCIZIO 4 [10 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

(a) Siano V e W due spazi vettoriali su un campo K e sia $f:V\to W$ un'applicazione lineare. Si dimostri che se $\ker(f)=\{0_V\}$ allora f è iniettiva.

Svolgimento

Supponiamo che $\ker(f) = \{0_V\}.$

Ricordiamo che la funzione $f: V \to W$ è iniettiva se per ogni $v_1, v_2 \in V$

$$f(v_1) = f(v_2) \Rightarrow v_1 = v_2.$$

Siano dunque v_1, v_2 tali che $f(v_1) = f(v_2)$. Allora abbiamo

$$f(v_1) - f(v_2) = 0_W \Rightarrow f(v_1 - v_2) = 0_W \Rightarrow v_1 - v_2 \in \ker(f) = \{0_V\} \Rightarrow v_1 - v_2 = 0_V \Rightarrow v_1 = v_2.$$

Quindi f è iniettiva.

(b) Per $k \in \mathbb{R}$, si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (kx + y + 3z, x + ky + 3z, -x - y).$

(b1) Si determinio i valori di k per cui f_k <u>non</u> è iniettiva e per tali valori si determini una base di $\ker(f_k)$.

Svolgimento

Poiché f_k è un endormorfismo, f_k non è iniettiva se e solo se f_k non è suriettiva. Consideriamo quindi la matrice A_k associata a f_k rispetto alla base canonica:

$$A_k = \begin{pmatrix} k & 1 & 3 \\ 1 & k & 3 \\ -1 & -1 & 0 \end{pmatrix}$$

e determiniamo i valori di k per cui il rango di A_k non è massimo. Abbiamo

$$\det(A_k) = 6k - 6.$$

Quindi A_k non ha rango massimo se e solo se k=1. Quindi k=1 è l'unico valore per cui f_k non è iniettiva.

(b2) Si determinino i valori di k per cui $f(1,1,1) \in Span\{(1,1,1), (-1,0,1)\}.$

Svolgimento

Abbiamo

$$f(1,1,1) \in Span\{(1,1,1),(-1,0,1)\} \Leftrightarrow (k+4,k+4,-2) \in Span\{(1,1,1),(-1,0,1).$$

Poiché i vettori (1,1,1) e (-1,0,1) sono linearmente indipendenti, questo è equivalente a determinare i valori di k per cui (k+4,k+4,-2),(1,1,1) e (-1,0,1) sono linearmente dipendenti. A tale scopo basta determinare i valori per cui la matrice

$$M = \begin{pmatrix} k+4 & k+4 & -2\\ 1 & 1 & 1\\ -1 & 0 & 1 \end{pmatrix}$$

ha determinante nullo. Si calcola che $det(M) = -k - 6 = 0 \Leftrightarrow k = -6$. Quindi $f(1,1,1) \in Span\{(1,1,1), (-1,0,1)\}$ se e solo se k = -6.

(b3) Per k = 4, si determini se l'operatore f_4 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

Svolgimento

Per k=4 abbiamo

$$f_4: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (4x + y + 3z, x + 4y + 3z, -x - y).$$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 . La matrice associata a f_4 rispetto a \mathcal{B} è

$$A = \begin{pmatrix} 4 & 1 & 3 \\ 1 & 4 & 3 \\ -1 & -1 & 0 \end{pmatrix}.$$

Per determinare se f_4 è diagonalizzabile, cominciamo con il determinare gli autovalori di f_4 , trovando le radici del polinomio caratteristico:

$$\begin{vmatrix} 4 - T & 1 & 3 \\ 1 & 4 - T & 3 \\ -1 & -1 & -T \end{vmatrix} = -T^3 + 8T^2 - 21T + 18 = -(T - 3)^2(T - 2).$$

Pertanto gli autovalori di f_4 sono 3 e 2 con molteplicità algebrica rispettivamente 2 e 1. Per ognuno di essi determiniamo l'autospazio corrispondente:

•
$$V_3(f_4) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(-1, 1, 0), (-3, 0, 1)\}.$$

•
$$V_2(f_4) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(1, 1, -1)\}.$$

Poiché dim $(V_3(f_4)) = 2$, la moltiplicità algebrica e geometrica di 3 coincidono. Ne segue che l'operatore f_4 è diagonalizzabile e l'unione delle basi dei due autospazi $V_3(f_4)$ e $V_2(f_4)$

$$\mathcal{B}' = \{(-1, 1, 0), (-3, 0, 1), (1, 1, -1)\}$$

è una base di \mathbb{R}^3 diagonalizzante per f_4 .

(b4) Sia A la matrice associata all'operatore f_4 rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 e sia D la matrice diagonale associata a f_4 rispetto alla base diagonalizzante \mathcal{B}' trovata al punto (b3). Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che $D = P^{-1}AP$ e se ne determini la sua inversa P^{-1} .

Svolgimento

Sia $\mathcal{B}'=\{(-1,1,0),(-3,0,1),(1,1,-1)\}$. Poiché (-1,1,0),(-3,0,1),(1,1,-1) sono autovettori di f_4 rispettivamente agli autovalori 3, 3 e 2, la matrice D è

$$D = M_{\mathcal{B}'}(f_4) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Allora la matrice P cercata è la matrice del cambiamento di base dalla base \mathcal{B}' alla base \mathcal{B} , ossia

$$P = M_{\mathcal{BB}'}(id_{\mathbb{R}^3}) = \begin{pmatrix} -1 & -3 & 1\\ 1 & 0 & 1\\ 0 & 1 & -1 \end{pmatrix}.$$

Si può calcolare l'inversa di P con uno dei metodi visti in classe (sistema lineare, algoritmo di Gauss–Jordan o la matrice cofattore) e si ottiene

$$P^{-1} = M_{\mathcal{B}'\mathcal{B}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -1 & -2 \\ -1 & -1 & -3 \end{pmatrix}.$$

ESERCIZIO 5 [3 punti]. Un po' di teoria...

(a) Sia V uno spazio vettoriale reale. Si definisca quando una funzione

$$\langle \,, \, \rangle : V \times V \to \mathbb{R}$$
 $(v, w) \mapsto \langle v, w \rangle$

è detta un prodotto scalare su V.

Definizione

Sia V uno spazio vettoriale reale. Una funzione

$$\begin{array}{cccc} \langle\,,\,\rangle: & V\times V & \to & \mathbb{R} \\ & (v,w) & \mapsto & \langle v,w\rangle \end{array}$$

è detta un prodotto scalare su V se verifica le seguenti tre proprietà:

- $\langle \, , \, \rangle$ è bilineare, ovvero per ogni $u,v,w\in V$, per ogni $\lambda,\mu\in\mathbb{R}$ valgono le seguenti identità:
 - $\star \ \langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle;$
 - $\star \langle u, \lambda v + \mu w \rangle = \lambda \langle u, v \rangle + \mu \langle u, w \rangle.$
- \langle , \rangle è simmetrica, ovvero per ogni $v, w \in V$ si ha $\langle v, w \rangle = \langle w, v \rangle$.
- $\langle \, , \, \rangle$ è definita positiva, ovvero per ogni $v \in V$ si ha $\langle v, v \rangle \geq 0$ e $\langle v, v \rangle = 0$ se e solo se $v = 0_V$.

(b) Sia V uno spazio euclideo munito del prodotto scalare $\langle \, , \, \rangle$ e sia $\| \cdot \|$ la norma euclidea corrispondente. Si dimostri il *Teorema di Pitagora*, ovvero che per ogni $v,w \in V$ si ha

$$||v + w||^2 = ||v||^2 + ||w||^2 \iff \langle v, w \rangle = 0.$$

Dimostrazione

Ricordiamo che, per definizione, per ogni $v \in V$ si ha $||v||^2 = \langle v, v \rangle$. Allora, utilizzando le proprietà del prodotto scalare, abbiamo

$$\|v+w\|^2 = \langle v+w,v+w\rangle = \langle v,v\rangle + \langle v,w\rangle + \langle w,v\rangle + \langle w,w\rangle = \|v\|^2 + 2\langle v,w\rangle + \|w\|^2.$$

Quindi per ogni $v, w \in V$ si ha $||v + w||^2 = ||v||^2 + 2\langle v, w \rangle + ||w||^2$. Ne segue che $||v + w||^2 = ||v||^2 + ||w||^2 \Leftrightarrow \langle v, w \rangle = 0$.