

ECUE21.2 Science des données | 02 Juin 2025 ■■

■ STATISTIQUE DESCRIPTIVE

■ Statistique descriptive

© Caractériser une population en déterminant un certain nombre de grandeurs qui la décrivent, de manière purement **descriptive**

On ne tire pas de conclusions à partir des données

La statistique descriptive peut aider à formuler des hypothèses :

- Telle variable semble suivre une distribution uniforme sur un intervalle
- Telle variable semble dépendre de telle autre
- Telle variable semble prendre une valeur plus élevée dans un segment de la population que dans un autre

STATISTIQUE DESCRIPTIVE UNIDIMENSIONELLE

■ Statistique descriptive unidimensionelle

Mettre en évidence les principales caractéristiques d'une unique variable statistique x observée sur n individus via la série statistique $(x_1, x_2, ..., x_n)$

- Avec quelle fréquence nos données prennent-t-elles une valeur dans une plage donnée?
- Observe-t-on une tendance centrale pour nos données? Notions de moyenne, médiane, etc.
- A quel point les valeurs prises par nos données s'écartent-elles de cette tendance centrale? Notions d'écart-type, de variance, de quantile.

■ Série statistique

Rappel une série statistique est un ensemble $\{x_1, x_2, \dots, x_n\}$ d'observations d'une variable aléatoire X

Date	01/01	02/01	03/01		30/01	31/01
T _{min} (°C)	7.6	5.6	4.1	•••	0.5	-1

Températures minimales journalières relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019

■ Représentation graphique

Températures moyennes journalières relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019 en degrés Celsius (gauche) et en Kelvin (droite)

Attention au choix des axes en ordonnée

■ Table de fréquences

Tranche d'âge (ans)	0 – 19	20 – 39	40 - 59	> 60
Effectif	14	36	62	86
Fréquence	7%	18%	31%	43%

Appartenance de membres d'une population à une classe d'âge donnée.

- variable **quantitative** : fréquence d'appartenance à un intervalle donné
- variable **qualitative** : fréquence d'apparition d'une valeur donnée

■ Diagramme en bâtons

Figure – Diagramme en bâtons de la fréquence des tranches d'âges dans les données de remboursement.

■ Classes pour une variable continue

Règle de Sturges

Découpage des valeurs observées en $k = \lfloor 1 + \log_2(n) \rfloor$ intervalles de même taille $\frac{\max(x_i) - \min(x_i)}{k}$.

Présuppose que la variable observée suit une distribution gaussienne.

Bonne pratique si les valeurs s'étalent sur plusieurs ordres de grandeur, appliquer une transformation logarithmique.

■ Remarques

- L'utilisation de fréquences permet la comparaison de populations de tailles distinctes
- La distribution des fréquences d'une série statistique de la v.a. X peut s'interpréter comme une approximation de la distribution de la loi de probabilité de X

Distribution des fréquences obtenues pour N=1000 réalisation d'une loi gaussienne de moyenne $\mu=0$ et d'écart-type $\sigma=0.1$, et loi de distribution de cette même loi

■ Fréquences cumulées

T min (°C)	< -0,16	< 2,08	< 4,32	< 6,56	< 8,80
Fréquence	0,19	0,38	0,67	0,77	1,0
T min (°C)	> -2,40	> -0,16	> 2,08	> 4,32	> 6,56
Fréquence	1,0	0,81	0,62	0,33	0,23

Table des fréquences cumulées pour les températures minimales relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019

■ Courbe des fréquences cumulées

Courbes des fréquences cumulées pour les températures minimales relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019.

■ Indicateurs de tendance centrale

moyenne arithmétique

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

- **A** sensible à la présence de valeurs aberrantes
- médiane valeur qui correspond à une fréquence cumulée de 50%,
- mode valeur la plus fréquente dans la série statistique pour une variable continue, on utilise la classe modale

■ Indicateurs de dispersion

Variance de la série statistique

estimation biaisée

$$var(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

■ Variance d'échantillonnage

$$var^*(x_1, x_2, ..., x_n) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Ecart-type

$$\sigma = \sqrt{\operatorname{var}(x_1, x_2, \dots, x_n)}$$

> plus simple à interpréter que la variance

Quantiles

Les q-quantiles divisent les valeurs prises par la variable en q intervalles de mêmes fréquences : le p-ème q-quantile de $(x_1, x_2, ..., x_n)$ est défini comme la valeur Q_p^q telle que

$$\operatorname{Freq}(x \le Q_p^q) = \frac{p}{q}.$$

Lorsque q = 4, on parle de **quartiles** Lorsque q = 10, on parle de **déciles**

■ Boîte à moustaches

Boîte à moustaches des températures minimales relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019..

STATISTIQUE DESCRIPTIVE BIDIMENSIONELLE

■ Motivation

Mettre en évidence une éventuelle **liaison**, i.e une **variabilité simultanée**, entre deux variables statistiques x et y via les séries statistiques $(x_1, x_2, ..., x_n)$ et $(y_1, y_2, ..., y_n)$

- Une variable peut-elle dépendre d'une autre?
- Une variable peut-elle permettre d'en prédire une autre?
- Une variable peut-elle en suppléer une autre dans l'analyse d'un problème?

■ Liaison ≠ causalité

■ Nuage de points

Températures maximales vs minimales. relevées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019

■ Nuage de points

Bonne pratique lorsque *x* et *y* sont des grandeurs physiques distinctes, on préfère centrer et réduire les variables au préalable

$$x_i \leftarrow \frac{x_i - \bar{x}}{\sigma_x}$$
 avec $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ et $\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$

Vent vs températures minimales. Données mesurées à la station du Parc Montsouris (Paris) au cours du mois de Janvier 2019

T min (std)

Covariance

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

■ Coefficient de corrélation de Pearson

$$r(x,y) = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \sigma_y}$$

A

La covariance et le coefficient de corrélation de Pearson mesurent des liaisons **linéaires** entre deux variables

■ Coefficient de corrélation de Pearson

Une corrélation de Pearson proche de 1 ou de -1 indique une relation linéaire; une corrélation de Pearson proche de 0 indique une absence de corrélation.

Nuages de points entre deux variables simulées et leur corrélation de Pearson.

■ Indicateurs de liaison quali-quanti

Montants remboursés par acte, par tranche d'âge, pour les données de remboursement.

■ Variance expliquée

■ variance expliquée par x de y

$$\sigma_E^2 = \frac{1}{n} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2,$$

où \bar{y}_k est la moyenne de y dans la sous-population k et \bar{y} la moyenne de y dans la population totale

■ variance résiduelle

$$\sigma_R^2 = \frac{1}{n} \sum_{k=1}^K n_k \sigma_k^2$$

où n_k est le nombre d'individus dans la sous-population k et σ_k^2 est la variance de y dans cette sous-population

Remarque On peut montrer que $\sigma_y^2 = \sigma_R^2 + \sigma_E^2$