Find the x-intercept and y-intercept of each line. Then graph the equation.

7.
$$3x + y = -21$$

8.
$$4x - 5y = 20$$

9.
$$3x + 2y = 12$$

10.
$$3x - 2y = 12$$

11.
$$5x + 8y = 20$$

11.
$$5x + 8y = 20$$
 12. $3x + 4y = -18$

Find the slope and y-intercept of each line. Plot the y-intercept. Then, using the slope, plot one more point. Finally, graph the line.

13.
$$y = 2x - 3$$

14.
$$y = 2x + 3$$

15.
$$y = -4x$$

16.
$$y = \frac{3}{4}x + 1$$

17.
$$y = -\frac{2}{3}x - 4$$
 18. $y = \frac{5}{3}x - 2$

18.
$$y = \frac{5}{3}x - 2$$

Find the slope and y-intercept of each line.

$$x + 3y = -6$$

Solution

Write the equation in slope-intercept form.

$$3y = -x - 6$$

$$y = -\frac{1}{3}x - 2$$

The slope is $-\frac{1}{2}$. The y-intercept is -2.

19.
$$4x + y = 10$$
 20. $2x - y = 5$ **21.** $5x - 2y = 10$

20.
$$2x - y = 5$$

21.
$$5x - 2y = 10$$

22.
$$3x + 4y = 12$$

23.
$$x - 4y = 6$$

23.
$$x - 4y = 6$$
 24. $4x + 3y = 8$

Solve each pair of equations algebraically. Then draw the graphs of the equations and label their intersection point.

25.
$$x + y = 3$$
 $x - y = -1$

26.
$$2x + y = 7$$

 $3x + y = 9$

$$27. x + 2y = 10$$
$$3x - 2y = 6$$

28.
$$3x + 2y = -30$$
 29. $4x + 5y = -7$ **30.** $3x + 2y = 8$ $-x + 3y =$

29.
$$4x + 5y = -7$$

 $2x - 3y = 13$

$$30. \ 3x + 2y = 8$$
$$-x + 3y = 12$$

- 31. a. Find the slopes of the lines 6x + 3y = 10 and y = -2x + 5.
 - **b.** Do the lines intersect?
 - c. What happens when you solve these equations algebraically?
- 32. Give a geometric reason and an algebraic reason why the lines y = 3x - 5 and y = 3x + 5 do not intersect.
- 33. a. Find the slopes of the lines 2x y = 7 and x + 2y = 4.
 - b. What can you conclude about the lines? State the theorem that supports your answer.
- 34. a. On the same axes, graph

$$y = -2$$
, $x = -3$, and $2x + 3y = 6$.

- **b.** Find the coordinates of the three points where the lines intersect.
- c. Find the area of the triangle determined by the three lines.