PROCESADOR PDUA

Versión 0.0 Arquitectura básica Revisión 0.1 Microprograma y

Memoria RAM doble Puerto

Revisión 0.2 ALU Bit-Slice

Mauricio Guerrero H. Mauricio Guerrero H.

Diego Méndez Ch.

Mauricio Guerrero H.

04/2007

11/2007

03/2008

ARQUITECTURA BASICA

Características Generales

- Procesador de 8 bits
- •Espacio de direccionamiento de 256 Bytes (8 bits de dirección)
- Memoria y Periféricos separados
- Control microprogramado
- •Manejo de interrupción externa
- Manejo de STACK

Unidades:

- Unidad de control
- Unidad operativa
- •Banco de registros
- •Interfaz con memoria

ARQUITECTURA BASICA

- BUS DE DIRECCIONES: 8 Bits (Espacio de memoria 256 Bytes, I/O de 256)
- BUS DE DATOS: 8 Bits
- BUS DE CONTROL: CLK, RST, INT, IO/M, R/W

FORMATO DE INSTRUCCION

1 posición de memoria

OPCODE (8 bits)

2 posiciones de memoria

OPCODE (8 bits)

Inmediato (8 bits)

2 posiciones de memoria

OPCODE (8 bits)

Directo (8 bits)

CONJUNTO DE INSTRUCCIONES

OPCODE	NEMONICO	Bytes	BANDERAS
00000000	RESERVADO		
00001xxx	MOV ACC, A	1	SI
00010xxx	MOV A, ACC	1	SI
00011xxx	MOV ACC, CTE	2	NO
00100xxx	MOV ACC, [DPTR]	1	NO
00101xxx	MOV DPTR, ACC	1	SI
00110xxx	MOV [DPTR], ACC	1	SI
00111xxx	INV ACC	1	SI
01000xxx	AND ACC, A	1	SI
01001xxx	ADD ACC, A	1	SI
01010xxx	JMP CTE	2	NO
01011xxx	JZ CTE	2	NO
01100xxx	JN CTE	2	NO
01101xxx	JC CTE	2	NO
01110xxx	CALL DIR	2	NO
01111xxx	RET	2	NO
1xxxx	DISPONIBLE	1	??

ENTIDAD

Entidad de la arquitectura completa:

```
entity PDUA is
  Port (clk
                               std_logic;
                       : in
                               std_logic;
                       : in
      rst n
                               std_logic;
      int
                       : in
                                             -- IO=0,M=1
                               std_logic;
      iom
                       : out
                               std_logic;
                                             -- R=0,W=1
                       : out
      rw
                               std_logic_vector(7 downto 0);
      bus_dir
                       : out
      bus_data_in
                               std_logic_vector(7 downto 0);
                       : in
      bus_data_out
                               std_logic_vector(7 downto 0));
                       : out
end PDUA;
```

BANCO DE REGISTROS

Program Counter
Stack Pointer
Data Pointer
Registro A
Vector Interrupción
Temporal (uso interno)
Constante -1
Acumulador

UNIDAD OPERATIVA

SELOP			
В	0	0	0
Not B	0	0	1
A and B	0	1	0
A or B	0	1	1
A xor B	1	0	0
A add B	1	0	1
B + 1	1	1	0
Not B + 1	1	1	1

DESP		
No desplaza	0	0
Desplaza 1 bit a la derecha	0	1
Desplaza 1 bit a la izquierda	1	0
NU	1	1

```
Entity
         ALU
               is
Port (
          HF
                    :IN
                               STD LOGIC;
                                                             -- Hab. banderas
                               STD_LOGIC(7 downto 0);
                                                             -- Operandos
          A,B
                    :IN
                                                             -- Selección operación
          SELOP
                               STD_LOGIC(2 downto 0);
                     :IN
          DESP
                               STD_LOGIC_VECTOR (1 downto 0); -- Desplazamiento
                     :IN
                               STD_LOGIC_VECTOR(7 downto 0); -- Resultado
          S
                     :OUT
          C, N, Z, P
                                                             -- Banderas
                    :OUT
                               STD LOGIC
End ALU;
```

MICROINSTRUCCIONES

FORMATO DE LA MICROINSTRUCCION

H		BUSB	SI	ELC	P	DE	SP		BUSC	H R	M A R	M B R	R W	IOM	HRI	RU PC	С	ON	D	micr	OFFSET o salto (B bits)
								- 1														

HF: Habilitador de almacenamiento de banderas
BUSB: Selector registro Origen (operando B de la ALU)

SELOP: Selección de operación en la ALU

DESP: Desplazamiento

BUSC: Selector registro DESTINO
HR: Habilitador de registro destino
MAR: Habilitador de registro de dirección

MBR: Selector de Datos (ALU o MEMORIA) (depende de RW)

RW: 0 = Lectura, 1= Escritura (de memoria)

IOM: 0 = Acceso a IO

HRI: Habilitador de carga del registro de Instrucción

RUPC: Reinicio microPC (Nuevo ciclo de fetch)

COND: Condición de salto

Offset: Microsalto de decodificación a nivel microprograma

CONDICION	Α	В	С
No salta	0	0	0
Salto incondicional	0	0	1
Salto si cero	0	1	0
Salto si negativo	0	1	1
Salto si carry	1	0	0
Salto si paridad	1	0	1
Salto si interrupción	1	1	0
Disponible	1	1	1

FETCH

•INT : Revisar si hay interrupciones

•MANEJO : Manejo de interrupciones •LEER : Leer instrucción de memoria

•DECODIFICAR : Que instrucción es?

•EJECUTAR : Realizar el microprograma que ejecuta la instrucción)

UNIDAD DE CONTROL

PC	SELOP			
SP	В	0	0	0
DPTR	Not B	0	0	1
	A and R	П	1	n
Д	AurB	a	1	1
3	A xor B	1	0	0
Temp	A add B	1	0	1
Cte 1	B+1	1	1	0
ACC	Nat Fi + 1	1	1	1

BUSB (3)
SELOP (3)
DESP (2)
BUSC (3)
HR
MAR
MAR
MBR
RW
IOM
IOM
HRI
HRI
RUPC
COND (3)

