SAARBRÜCKEN

6TH SUMMER SCHOOL ON COMPUTATIONAL INTERACTION

INFERENCE, OPTIMIZATION AND MODELING FOR THE ENGINEERING OF INTERACTIVE SYSTEMS | 13 - 18 JUNE 2022

Deep Learning for Human–Computer Interaction Session 2: Supervised learning

Luis Leiva & Bereket Yilma
University of Luxembourg

Learning outcomes

After this lecture you will be able to:

- Understand classification and regression tasks with DL
- Recognize popular network architectures

Classification

What is classification?

Predict a **discrete** value associated with a feature vector

Examples:

```
f(image) = cat
```

f(email) = spam

. . .

https://cloud.google.com/products/ai/ml-comic-1/

Confusion matrix

https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

Types of error

ROC and AUC

https://towardsdatascience.com/68b2303cc9c5

Convolutional Neural Net (CNN)

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Convolution operation

		0	0	4	4	4
·	50	0	0	×1	×0	×1
4		0	1	1,0	1,	0,0
		1	1	1,	0,0	0 _{×1}
		0	1	1	0	0
	60	0	0	1	1	0
Convolved	- 23	Imago				
Feature		Image				

Demo at https://setosa.io/ev/image-kernels/

Convolution operation: filters

Convolution operation: stride

Convolution operation: padding

Dimension: 6 x 6 https://indoml.com

Pooling operation

Avg Pooling

https://indoml.com

Classic CNN architectures

LeNet (1998)

AlexNet (2012)

VGGNet (2015)

ResNet (2015)

Classic CNN: LeNet

https://engmrk.com/lenet-5-a-classic-cnn-architecture/

Classic CNN: AlexNet

https://www.learnopencv.com/understanding-alexnet/

Classic CNN: VGGNet

https://medium.com/coinmonks/d02355543a11

Classic CNN: ResNet

Recurrent Neural Net (RNN)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Net (RNN)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Challenges in RNNs

Vanishing gradients

Exploding gradients (solved with *clipping*)

Coping with context (solved with *attention*)

Vanilla RNN cell

https://towardsdatascience.com/44e9eb85bf21

LSTM cell

GRU cell

Classic RNN architectures

Bidirectional RNN (1997)

Sketch-RNN (2017)

https://aclanthology.org/2020.acl-main.43.pdf

Classic RNN: Bidirectional RNN

http://colah.github.io/posts/2015-09-NN-Types-FP/

Classic RNN: Sketch-RNN

https://magenta.tensorflow.org/sketch-rnn-demo

Transfer learning

Very popular with CNNs
Very scarce with RNNs

TRAINING FROM SCRATCH

TRANSFER LEARNING

Transfer learning

http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D2L5-transfer.pdf

Regression

What is regression?

Predict a **continuous** value associated with a feature vector

Examples:

```
f(room) = temperature
```

f(trajectory) = time

. . .

https://cloud.google.com/products/ai/ml-comic-1/

Residuals

Non-linear regression

Test Score vs. District Income and a Linear OLS Regression Function

Evaluation metrics

$$MAE = \underbrace{\frac{1}{n}}_{\text{Sum}} \underbrace{\frac{1}{y} - \frac{y}{y}}_{\text{The absolute value of the residual}}$$

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and predicted

$$MPE = \frac{100\%}{n} \sum \left(\frac{y-\widehat{y}}{y}\right)$$

RMSE =
$$\sqrt{MSE}$$

Evaluation metrics

CASE 1: Evenly distributed errors

ID	Error	Error	Error^2
1	2	2	4
2	2	2	4
3	2	2	4
4	2	2	4
5	2	2	4
6	2	2	4
7	2	2	4
8	2	2	4
9	2	2	4
10	2	2	4

CASE 2: Small variance in errors

ID	Error	Error	Error^2
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1
6	3	3	9
7	3	3	9
8	3	3	9
9	3	3	9
10	3	3	9

CASE 3: Large error outlier

ID	Error	Error	Error^2
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	20	20	400

MAE	RMSE
2.000	2.000

MAE	RMSE
2.000	2.236

MAE	RMSE
2.000	6.325

Evaluation metrics

Acronym	Name	Residual Operation	Robust To Outliers
MAE	Mean Absolute Error	Abs. diff	yes
MSE	Mean Squared Error	Squared diff	no
RMSE	Root Mean Squared Error	Squared diff	no
MAPE	Mean Absolute Percentage Error	Abs. diff	yes
MPE	Mean Percentage Error	Raw diff	yes

https://towardsdatascience.com/cdc5703d242d

A simple regression model architecture

https://towardsdatascience.com/68881590760e

There is more to regression!

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/object localization and detection.html

Practical use cases

https://engineering.matterport.com/7c761e238b46

Evaluation metric: Intersection over Union

Classic architectures

FCN (2014)

DeconvNet (2015)

U-Net (2015)

Mask R-CNN (2017)

YOLO (2016)

Classic architecture: FCN

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/image_segmentation

Classic architecture: **DeconvNet**

https://towardsdatascience.com/55cf8a6e380e

Classic architecture: U-Net

Classic architecture: Mask R-CNN

https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html

Classic architecture: YOLO

https://dzone.com/articles/understanding-object-detection-using-yolo