Esercizi prob 2

December 27, 2024

1 Esercizio 2.1

2 Esercizio 2.2

$2.1 \Rightarrow$

Sia $A_j := \{\omega | X_j(\omega) \le x_j\}$ Abbiamo che $A_j \in \sigma(X_j)$ (infatti: $X_j(A_j) = (-\infty, x_j] \in \mathcal{B}(\mathbb{R})$) Quindi $\mathbb{P}\left(\bigcap_{j=1}^n A_j\right) = \prod_{j=1}^n \mathbb{P}(A_j)$

$2.2 \Leftarrow$

Osserviamo che, fissato j, si ha che $\Pi_j := \{\{X_j \leq x_j\}, x_j \in \mathbb{R}\}$ è un π -sistema (infatti $\{X_j \leq x_j\} \cap \{X_j \leq y_j\} = \{X_j \leq \min\{x_j, y_j\}\}$). Per l'esercizio 2.1 si ha la tesi.

3 Esercizio 2.3

4 Esercizio 2.4

4.1 (1)

Definiamo $I_j^n := \left[\frac{j-1}{2^n}, \frac{j}{2^n}\right)$

$$\mathbb{P}\left(I_j^n\right) = \frac{1}{2^n}$$

Riscriviamo A_{n+1} e B in funzione degli I_j^n :

$$B = \bigcap_{k \in K} I_k^n$$

(per qualche insieme K)

$$A_{n+1} = \bigcap_{j=1}^{2^{n-1}} I_{2j}^{n+1}$$

Quindi:

$$\mathbb{P}(A_{n+1}) = \frac{1}{2}$$

$$\mathbb{P}(B) = \frac{|K|}{2^n}$$

$$\mathbb{P}(B \cap A_{n+1}) = \frac{|K|}{2^{n+1}}$$

4.2(2)

Premessa: Non so cosa significhi "sequenza B(1/2)". Io lo interpreterei come "Variabile di Bernoulli con $p=\frac{1}{2}$ "

Che $(\mathbbm{1}_{A_n})_n$ siano identicamente distribuite lo abbiamo già visto (hanno tutte $\mathbb{P}(X=1)=\mathbb{P}(X=0)=\frac{1}{2}$).

Inoltre $\mathbb{P}\left(I_{j}^{n} \cap A_{m}\right) = \frac{1}{2} \text{ con } n < m.$

Quindi dimostrato.

5 Esercizio 2.5

5.1 (1)

X è variabile aleatoria perché è misurabile (è limite di funzioni semplici misurabili) ed è sempre finita ($\left|\frac{X_n(\omega)}{2^n}\right| \leq \frac{1}{2^n}$, che converge in somma).

$$\mathbb{P}\left(X \in \left\{0,1\right\}\right) \leq \mathbb{P}\left(X = 0\right) + \mathbb{P}\left(X = 1\right) = \mathbb{P}\left(X_n = 0, \forall n\right) + \mathbb{P}\left(X_n = 1, \forall n\right) \leq \frac{1}{2n} + \frac{1}{2n} \quad \forall n \in \left\{0,1\right\}$$

Siccome $0 \le X \le 1$:

$$\mathbb{P}(X \in (0,1)) = 1 - \mathbb{P}(X \in \{0,1\}) = 1$$

5.2(2)

$$2F_X(x) = 2\mathbb{P}\left(\sum_n \frac{X_n}{2^n} \in [0, X]\right) = 2\mathbb{P}\left\{\omega | 2\sum_x \frac{X_n(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'($$

$$2\left[\mathbb{P}\left(X_{0}'=0\right)\mathbb{P}\left(X\in[0,2x]\right)+\mathbb{P}\left(X_{0}'=1\right)\mathbb{P}\left(X\in[0,2x-1]\right)\right]$$

Se $x \leq \frac{1}{2}$:

$$2F_X(x) = 2\left[\frac{1}{2} \cdot F_X(2x) + \frac{1}{2} \cdot 0\right] = F_X(2x)$$

Se $x \ge \frac{1}{2}$:

$$2F_X(x) = 2\left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot F_X(2x - 1)\right] = 1 + F_X(2x - 1)$$

5.3 (3)

Sappiamo dalla formula che $F_{X}\left(0\right)=0$ e che $F_{X}(1)=1.$

Quindi, imponendo $x = \frac{m}{2^n}$, si ha che con la formula si può ricavare il valore di $F_X(x)$ in funzione dei valori $\left\{F_X(\frac{m}{2^{n-1}})\right\}_{m\in\mathbb{N}}$, quindi tutti i valori diadici sono fissati.

In particolare, si può dimostrare per induzione che $F_X(x) = x$.

5.4(4)

$$X_1 := \sum_{n \in \mathbb{N}} \frac{X_{2n}}{2^n}$$

$$X_2 := \sum_{n \in \mathbb{N}} \frac{X_{2n+1}}{2^n}$$

Con i termini nella sommatoria IID $\mathrm{B}(1/2)$.

5.5 (5)

Analogamente a prima ma spartisci i vari X_j in infinite classi.