

USN	1	М	S				

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) BANGALORE – 560 054

SEMESTER END EXAMINATIONS - JANUARY 2015

Course & Branch

B.E: Information Science and

: Engineering Mathematics-III

Semester : III

Engineering

Max. Marks : 100

Subject Code

Subject

: ISMAT301

Duration :

: 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

1. a) (i) Write Lagrange's Interpolation formula for the set of values $(x_0,y_0),(x_1,y_1)$ and (x_2,y_2) . (02)

(ii) If y(2) = -4, y(4) = 26, y(6) = 501, y(8) = 1021, then find $\nabla^2 y_2$. (03)

b) Find y'(1.2) and y''(1.8) form the following table.

(80)

 x
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0

 f(x)
 2.72
 3.32
 4.06
 4.96
 6.05
 7.39

- c) Use Simpson's $3/8^{th}$ rule to obtain approximate value of $\int_{0}^{1} e^{x^{2}} dx$, by considering (07) six equal intervals.
- 2. a) (i) Define interpolation and extrapolation.

(02)

ii)Construct the divided difference table for the following numerical (03) observations

 x
 -1
 3
 5

 y
 20
 16
 10

f(x)

b) Find the radius of curvature at x = 2 from the following numerical data

10

4 5 6 96 196 350

 A survey conducted in a slum locality reveals the following information as classified below:

(07)

(80)

Income per day(Rs)	Under 10	10 - 20	20 - 30	30 - 40	40 - 50
No. of persons	20	45	115	210	115

Estimate the probable number of persons in the income group 18 to 23.

UNIT - II

- 3. a) (i) State Raabe's test for the series of positive terms. (02)
 - (ii) Find the Fourier coefficient b_n for the function f(x) = 3x in $(-\pi, \pi)$. (03)
 - b) Find the Fourier series of the function $f(x) = \begin{cases} -\pi & in \pi < x < 0 \\ x & in & 0 < x < \pi \end{cases}$, hence deduce (08)

that
$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$
.

c) For the following values of x and y, find the Fourier series up to first harmonics (07) in (0,24).

x:	0	4	8	12	16	20
<u>y</u> : _	9.0	18.2	24.4	27.8	27.5	22

- 4. a) (i) State p-series test for the positive term series. (02)
 - (ii) Find the Fourier coefficient a_0 for the function $f(x) = 2x x^2$ defined in (0.3).
 - b) Discuss the nature of the series $\frac{5}{2} \frac{x^3}{3} + \frac{5.7}{2.4} \frac{x^5}{5} + \frac{5.7.9}{2.4.6} \frac{x^7}{7} + \dots (x > 1)$ (08)
 - c) Obtain the half-range Fourier sine series for the function (07) $\int_{0}^{1} \frac{1}{4} x, \text{ in } 0 < x < \frac{1}{2}$

$$f(x) = \begin{cases} \frac{1}{4} - x, & \text{in } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{in } \frac{1}{2} < x < 1 \end{cases}$$

UNIT - III

- 5. a) (i) Write the Parsevals identities for Fourier transforms. (02)
 - (ii) Find the inverse Z transform of $\frac{z}{(z-a)^2}$ (03)
 - b) Find the complex Fourier transform of $f(x) = e^{-a^2x^2}$ where a is a positive constant. (08)

Hence deduce that $e^{\frac{-x}{2}}$ is self reciprocal in respect of complex Fourier transform.

- Solve the difference equations by using Z-transforms $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ (07) given that $u_0 = 0$; $u_1 = 1$.
- 6. a) (i) Find the Z transform of ne^{3n} . (02)
 - (ii) Find f(x), given that $\int_{0}^{\infty} f(x) Cos(\alpha x) dx = e^{-\alpha}$. (03)

b) Find the Inverse Z-Transform of $\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$

- (80)
- Employing Parseval's identity to the function $f(x) =\begin{cases} 1-x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ Show that $\int_{0}^{\infty} \frac{(\sin x x \cos x)^2}{x^6} dx = \frac{\pi}{15}$

UNIT - IV

- 7. a) (i) Form a PDE by eliminating arbitrary constants, from $z = a log \left\{ \frac{b(y-1)}{1-x} \right\}$. (02)
 - (ii) Form a partial differential equation by eliminating the arbitrary functions, given $Log z = f(x^2 + yz)$.
 - b) Solve $32u_t = u_{xx}$ subject to the conditions u(0,t) = 0 = u(1,t) and (08) $u(x,0) = \begin{cases} 3x, \ 0 \le x \le 1/2 \\ 1-x^2, \ 1/2 < x \le 1 \end{cases}$. Compute the values of u for two time levels
 - Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ given that $u(0, y) = 2e^{5y}$ by the method of separation of variables.
- 8. a) (i) Write the explicit scheme to solve one-dimensional wave equation. (02)
 - (ii) Classify the PDE, $x^2u_{xx} + (1 y^2)u_{yy} = 0$, $-\infty < x < \infty$, -1 < y < 1. (03)
 - b) Find the general solution of the PDE $(x^2 yz)p + (y^2 xz)q = z^2 xy$. (08)
 - Solve the PDE $\nabla^2 u \approx -10(x^2 + y^2 + 10)$ over the square with sides $x \approx 0 \approx y$, (07) x = 3 = y with u = 0 on the boundary and mesh length =1. Perform three iterations of Gauss-Siedel method.

UNIT - V

- 9. a) (i) Define Basis and Dimension.
 - (ii) Prove that the transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (x y, 3x) is (03)
 - b) Define kernel and range of a linear transformation. Verify Rank-nullity theorem (08) for the transformation matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \\ 1 & 1 & 4 \end{bmatrix}$.
 - c) Find the coordinate vectors of $\mathbf{u} = 5x^2 + x 3$ relative to the bases B and B of P₂, a) B = $\{x^2, x, 1\}$ b) B = $\{x^2 x + 5, 3x^2 1, 2x^2 + 4x 2\}$

(02)

- 10 a) (i) Define coordinate vector of a vector **u** relative to the given basis B. (02)
 - (ii) Define Reflection about x-axis and hence find its standard matrix. (03)
 - b) Show that the transformation T: $P_2 \rightarrow P_1$ defined as $T(ax^2 + bx + c) = (a+b)x$ (08) + c is linear. Find the image of $3x^2 x + 2$. Find another element of P_2 that has the same image.
 - c) State Rank and Nullity theorem and use it to find the dimension of the kernel and range of the inear transformations defined by the matrix $\begin{bmatrix} 1 & 8 & 2 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{bmatrix}$.
