Graphs: Recap

Graphs: Basics

- Directed vs. undirected graph
 - e.g. edges have a direction associated with them
- (Non-uniformly) Weighted graph
 - e.g. edges have a weight associated with them
- Properties

 - $m \le n (n-1)/2$
- Representation
 - Edge list structure,
 - Adjacency list structure, or
 - Adjacency matrix structure

Graphs: Traversals

- Depth-first Search
 - Traverse deeply first
 - O(n+m)
- Breadth-first Search
 - Traverse broadly first ("breadth")
 - O(n+m)

Graphs: Terminology

- Path
- Connected
- Subgraph
- Spanning
- Biconnected
 - e.g., separation edges or vertices
- What are these and how do you find them?
 - Connected component
 - Spanning Subgraph
 - Maximally-connected Subgraph
 - Spanning Tree
 - Spanning Forest
 - Biconnected Components

Graphs: DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	1	1
Shortest paths (for uniformly weighted graphs)		٧
Biconnected components	V	

Directed Graphs: Terminology

- Reachability
 - Is a vertex u "reachable" from v
 - e.g., can you get to MIA from HNL?
- Strongly-Connected Components
 - Can you get to any city from any city
- Transitive Closure
 - If I can get to MIA from HNL and to JFK from MIA, then I can get to JFK from HNL
 - The transitive closure graph of a graph G extracts this information
 - Algorithms:
 - Naïve: O(n(n+m)) to O(n³)
 - Floyd-Warshall Algorithm: O(n³) but low-cost

Graphs

6

Directed Graphs: Terminology

- Directed Acyclic Graph or DAG
 - A directed graph with no cycles
 - Permits a topological sorting
 - e.g., a sorting of the nodes from beginning to end
 - A topological sorting can be done using a modified DFS traversal

Graphs: Shortest Path

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v
 - BFS gives us shortest paths for a uniformly weighted graph – this is the concept generalized to weighted graphs
- Note: related to Traveling Salesman problem which is finding the shortest path that visits all vertices (an NP-complete problem)

Graphs: Shortest Path

- Algorithms for finding shortest paths from a start vertex
 - Dijkstra's
 - Naively grow a "cloud of connected vertices"
 - Assumes non-negative weights
 - O(m log n)
 - Bellman-Ford's
 - Extend's Dijsktra's by carrying along the total weight so far during the expansion
 - Supports negative weights
 - O(nm)
 - DAG-based
 - Assumes a DAG
 - Uses topological sorting
 - O(n+m)

Graphs: Shortest Path

- All shortest path pairs
 - Dijkstra's
 - O(nmlogn)
 - Bellman Ford's
 - O(n²m)
 - Modified Floyd-Warshall
 - O(n³)

Graphs: Minimum Spanning Tree

- A spanning tree of a weighted graph with minimum total edge weight
 - e.g. the lowest cost network uniting all clients

Graphs: Minimum Spanning Tree

Algorithms

- Prim-Jarnik's
 - Similar to Dijkstra's: grows a cloud of connected vertices
 - O(mlogn)
- Kruskal's
 - Maintains a forest of growing clouds of vertices
 - O((n+m)logn)
- Baruvka's
 - Similar to Kruskal's but at each iteration halves the number of connected components
 - O(mlogn)

Fun Fact: Fastest MST Algorithm

- $O(m\alpha)$
 - α is function of (m, n) but in practice is ≤ 4
- Based on B. Chazelle's "Soft Heap"
 - Amortized cost of operations is O(1) except insert, which is O(log 1/e), for e ∈[0,1/2]
 - At expense of e*n of keys being "corrupted", faster heap is obtained