NUMERICALIMETHODS

$$(\lambda + \mu)\nabla(\nabla \cdot u) + \mu\nabla^{2}u = \alpha(3\lambda + 2\mu)\nabla T - \rho b$$
Lecture 7

 $\rho \left(\frac{\partial u}{\partial t} + V \cdot \nabla u \right) =$ $- \frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x$

$$\nabla^2 u = f$$

Approximate the function by a parabola

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{2} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{2} f(x_{2})$$

$$= \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + f(x_{2})]$$

NM

$$L(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

$$let \quad x_0 = a, x_2 = b, x_1 = \frac{a + b}{2}$$

$$h = \frac{b-a}{2}, \xi = \frac{x-x_1}{h}, d\xi = \frac{dx}{h}$$

$$\begin{cases} x = x_0 \Rightarrow \xi = -1 \\ x = x_1 \Rightarrow \xi = 0 \\ x = x_2 \Rightarrow \xi = 1 \end{cases}$$

$$L(\xi) = \frac{\xi(\xi - 1)}{\text{Dr PV Ramana}2} f(x_{\theta}) + (1 - \xi^2) f(x_1) + \frac{\xi(\xi + 1)}{2} f(x_2)$$

$$L(\xi) = \frac{\xi(\xi - 1)}{2} f(x_0) + (1 - \xi^2) f(x_1) + \frac{\xi(\xi + 1)}{2} f(x_2)$$

$$\int_{a}^{b} f(x)dx \approx h \int_{-1}^{1} L(\xi)d\xi = f(x_{0}) \frac{h}{2} \int_{-1}^{1} \xi(\xi - 1)d\xi
+ f(x_{1})h \int_{0}^{1} (1 - \xi^{2})d\xi + f(x_{2}) \frac{h}{2} \int_{-1}^{1} \xi(\xi + 1)d\xi
= f(x_{0}) \frac{h}{2} (\frac{\xi^{3}}{3} - \frac{\xi^{2}}{2}) \Big|_{-1}^{1} + f(x_{1})h(\xi - \frac{\xi^{3}}{3}) \Big|_{-1}^{1}
+ f(x_{2}) \frac{h}{2} (\frac{\xi^{3}}{3} + \frac{\xi^{2}}{2}) \Big|_{-1}^{1}$$

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Piecewise Quadratic approximations

Composite Simpson's 1/3 Rule

Applicable only if the number of segments is even

Composite Simpson's 1/3 Rule

Applicable only if the number of segments is even

$$I = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \Lambda + \int_{x_{n-2}}^{x_n} f(x) dx$$

Substitute Simpson's 1/3 rule for each integral

$$I = 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} + \Lambda + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

For uniform spacing (equal segments)

$$I = \frac{(b-a)}{3n} \left\{ f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n) \right\}$$

Simpson's 1/3 Rule - Error

> Truncation error (single application)

$$E_{t} = -\frac{1}{90}h^{5}f^{(4)}(\xi) = -\frac{(b-a)^{5}}{2880}f^{(4)}(\xi); \quad h = \frac{b-a}{2}$$

- Exact up to cubic polynomial $(f^{(4)}=0)$
- Approximate error for (n/2) multiple applications

$$E_a = -\frac{(b-a)^5}{180n^4} \overline{f}^{(4)}$$

Composite Simpson's 1/3 Rule

Evaluate the integral

$$I = \int_0^4 x e^{2x} dx$$

• n = 2, h = 2

$$I = \frac{h}{3} [f(0) + 4f(2) + f(4)]$$

$$= \frac{2}{3} [0 + 4(2e^{4}) + 4e^{8}] = 8240.411 \implies \varepsilon = -57.96\%$$

• n = 4, h = 1

$$I = \frac{h}{3} [f(0) + 4f(1) + 2f(2) + 4f(3) + f(4)]$$

$$= \frac{1}{3} [0 + 4(e^{2}) + 2(2e^{4}) + 4(3e^{6}) + 4e^{8}]$$
The para 5 (70,075) are also 2.70 f(

Simpson's 3/8-Rule

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} \left(a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} \right) dx$$

Approximate by a cubic polynomial

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{3} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{2} f(x_{2}) + c_{3} f(x_{3})$$

$$= \frac{3h}{8} [f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + f(x_{3})]$$

Simpson's 3/8-Rule

$$\begin{split} L(x) &= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} f(x_0) + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} f(x_1) \\ &+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} f(x_2) + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} f(x_3) \end{split}$$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} L(x)dx \; ; \quad h = \frac{b-a}{3}$$
$$= \frac{3h}{8} [f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + f(x_{3})]$$

Truncation error

$$E_{t} = -\frac{3}{80}h^{5}f^{(4)}(\xi) = -\frac{(b-a)^{5}}{6480}f^{(4)}(\xi); h = \frac{b-a}{3}$$

Example: Simpson's Rules

- Evaluate the integral $\int_0^4 xe^{2x} dx$
- Simpson's 1/3-Rule

$$I = \int_0^4 xe^{2x} dx \approx \frac{h}{3} [f(0) + 4f(2) + f(4)]$$

$$= \frac{2}{3} [0 + 4(2e^4) + 4e^8] = 8240.411$$

$$\varepsilon = \frac{5216.926 - 8240.411}{5216.926} = -57.96\%$$

Simpson's 3/8-Rule

$$I = \int_0^4 xe^{2x} dx \approx \frac{3h}{8} \left[f(0) + 3f(\frac{4}{3}) + 3f(\frac{8}{3}) + f(4) \right]$$

$$= \frac{3(4/3)}{8} \left[0 + 3(19.18922) + 3(552.33933) + 11923.832 \right] = 6819.209$$
Dr P\$ Ramana $\frac{5216.926 - 6819.209}{5216.926} = -30.71\%$

Matlab: Simpson's Rules

```
function I = Simp(f, a, b, n)
% integral of f using composite Simpson rule
% n must be even
h = (b - a)/n;
S = feval(f,a);
for i = 1 : 2 : n-1
   x(i) = a + h*i;
    S = S + 4*feval(f, x(i));
end
for i = 2 : 2 : n-2
    x(i) = a + h*i;
    S = S + 2*feval(f, x(i));
end
S = S + feval(f, b); I = h*S/3;
```


Composite Simpson's 1/3 Rule


```
x=0:0.04:4; y=example(x);
x_1=0:2:4; y_1=example(x_1);
» c=Lagrange_coef(x1,y1); p1=Lagrange_eval(x,x1,c);
» H=plot(x, y, x1, y1, 'r*', x, p1, 'r');
\Rightarrow xlabel('x'); ylabel('y'); title('f(x) = x*exp(2x)');
» set(H,'LineWidth',3,'MarkerSize',12);
x2=0:1:4; y2=example(x2);
\rightarrow c=Lagrange coef(x2,y2); p2=Lagrange eval(x,x2,c);
\rightarrow H=plot(x, y, x2, y2, 'r*', x, p2, 'r');
\Rightarrow xlabel('x'); ylabel('y'); title('f(x) = x*exp(2x)');
» set(H, 'LineWidth', 3, 'MarkerSize', 12);
>>
» I=Simp('example', 0, 4, 2)
I =
  8.2404e+003
» I=Simp('example', 0, 4, 4)
  5.6710e+003
» I=Simp('example', 0, 4, 8)
  5.2568e+003
» I=Simp('example', 0, 4, 16)
  5.2197e+003
» Q=Quad8('example',0,4)
                                                MATLAB fun
Q \equiv
```

63 2169 PM 00 Br PV Ramana

Multiple applications of Simpson's rule with odd number of intervals

Hybrid Simpson's 1/3 & 3/8 rules

Newton-Cotes Closed Integration Formulae

n Name Formula TruncationError 1 Trapezoid&rule
$$(b-a)\frac{f(x_0)+f(x_1)}{2}$$
 $-\frac{1}{12}h^3f''(\xi)$ 2 Simpson's 1/3rule $(b-a)\frac{f(x_0)+4f(x_1)+f(x_2)}{6}$ $-\frac{1}{90}h^5f^{(4)}(\xi)$ 3 Simpson's 3/8rule $(b-a)\frac{f(x_0)+3f(x_1)+3f(x_2)+f(x_3)}{8}$ $-\frac{3}{80}h^5f^{(4)}(\xi)$ 4 Boole's rule $(b-a)\frac{7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)}{90}$ $-\frac{8}{945}h^7f^{(6)}(\xi)$ 5 $(b-a)\frac{19f(x_0)+75f(x_1)+50f(x_2)+50f(x_3)+75f(x_4)+19f(x_5)}{288}$ $-\frac{275}{12096}h^7f^{(6)}(\xi)$

$$h = \frac{b-a}{n}$$

Estimate based on one interval:

$$h = \frac{b - a}{2^0}$$

$$R(0,0) = \frac{b-a}{2} (f(a) + f(b))$$

$$h = \frac{b-a}{2^0}; R(0,0) = \frac{b-a}{2} (f(a) + f(b))$$

Estimate based on 2 intervals:

$$h = \frac{b - a}{2^1}$$

$$R(1,0) = \frac{b-a}{2} \left[f(a+h) + \frac{1}{2} (f(a) + f(b)) \right]$$

$$R(1,0) = \frac{1}{2}R(0,0) + h[f(a+h)]$$

Based on previous estimate

Based on new point

$$h = \frac{b-a}{2^{1}}; R(1,0) = \frac{b-a}{2} \left[f(a+h) + \frac{1}{2} (f(a) + f(b)) \right]$$

$$h = \frac{b - a}{2^2}$$

$$R(2,0) = \frac{b-a}{4} [f(a+h) + f(a+2h) + f(a+3h)]$$

$$+\frac{1}{2}(f(a)+f(b))$$

$$R(2,0) = \frac{1}{2}R(1,0) + h[f(a+h) + f(a+3h)]$$

Based on previous estimate

Based on new points

Recursive Trapezoid Method Formulas

$$R(0,0) = \frac{b-a}{2} [f(a) + f(b)]$$

$$h = \frac{b-a}{2^1}; R(1,0) = \frac{b-a}{2} \left[f(a+h) + \frac{1}{2} (f(a) + f(b)) \right] = \frac{1}{2} R(0,0) + h[f(a+h)]^{a+2h}$$

$$R(n,0) = \frac{1}{2}R(n-1,0) + h \left[\sum_{k=1}^{2^{(n-1)}} f(a + (2k-1)h) \right]$$

$$h = \frac{D}{2^n}$$

$$h = b - a,$$

$$R(0,0) = \frac{b-a}{2} [f(a) + f(b)]$$

$$h=\frac{b-a}{2},$$

$$R(1,0) = \frac{1}{2}R(0,0) + h\left[\sum_{k=1}^{1} f(a + (2k-1)h)\right]$$

$$h=\frac{b-a}{2^2},$$

$$R(2,0) = \frac{1}{2}R(1,0) + h\left[\sum_{k=1}^{2} f(a + (2k-1)h)\right]$$

$$h=\frac{b-a}{2^3},$$

$$R(3,0) = \frac{1}{2}R(2,0) + h\left[\sum_{k=1}^{2^2} f(a + (2k-1)h)\right]$$

$$h = \frac{b - a}{2^n},$$

$$R(n,0) = \frac{1}{2}R(n-1,0) + h \left| \sum_{k=1}^{2^{(n-1)}} f(a + (2k-1)h) \right|$$

Example on Recursive Trapezoid

Use Recursive Trapezoid method to estimate:

 $\pi / 2$

 $\int_{0}^{\infty} \sin(x) dx$ by computing R(3,0) then estimate the error

$$h = \frac{b-a}{2^1}; R(1,0) = \frac{b-a}{2} \left[f(a+h) + \frac{1}{2} (f(a) + f(b)) \right] = \frac{1}{2} R(1,0) + h[f(a+h)]$$

n	h	R(n,0)
0	$(b-a)=\pi/2$	$(\pi/4)[\sin(0) + \sin(\pi/2)] = 0.785398$
1	$(b-a)/2 = \pi/4$	$R(0,0)/2 + (\pi/4)\sin(\pi/4) = 0.785398/2 + (\pi/4) \times 1.42 = 0.948059$
2	$(b-a)/4=\pi/8$	$R(1,0)/2 + (\pi/8)[\sin(\pi/8) + \sin(3\pi/8)] = 0.948059/2 + (\pi/8) \times 1.42 = 0.987116$
3	$(b-a)/8=\pi/16$	$R(2,0)/2 + (\pi/16)[\sin(\pi/16) + \sin(3\pi/16) + \sin(5\pi/16) + \sin(7\pi/16)] = 0.996785$

Estimated Error = |R(3,0) - R(2,0)| = 0.009669

Advantages of Recursive Trapezoid

Recursive Trapezoid:

- Gives the same answer as the standard Trapezoid method.
- Makes use of the available information to reduce the computation time.
- Useful if the number of iterations is not known in advance.

Romberg Method

- Motivation
- ☐ Derivation of Romberg Method
- □ Romberg Method
- Example
- When to stop?

Romberg Integration

- More efficient methods to achieve better accuracy have been developed
- Romberg integration uses Richardson extrapolation
- ➤ Idea behind Richardson extrapolation improve the estimate by eliminating the leading term of truncation error at coarser grid levels

Romberg Integration

Motivation

- Trapezoid formula with a sub-interval h gives an error of the order $O(h^2)$.
- One can combine two Trapezoid estimates with intervals h and h/2 to get a better estimate.

$$|Error| \le \frac{b-a}{12} h^2 \max_{x \in [a,b]} |f''(x)|$$

Romberg Method

$$h = b - a, \qquad R (0,0) = \frac{b - a}{2} [f(a) + f(b)]$$

$$h = \frac{b - a}{2}, \qquad R (1,0) = \frac{1}{2} R (0,0) + h \left[\sum_{k=1}^{1} f(a + (2k - 1)h) \right]$$

$$h = \frac{b - a}{2^{2}}, \qquad R (2,0) = \frac{1}{2} R (1,0) + h \left[\sum_{k=1}^{2} f(a + (2k - 1)h) \right]$$

$$h = \frac{b - a}{2^{3}}, \qquad R (3,0) = \frac{1}{2} R (2,0) + h \left[\sum_{k=1}^{2^{2}} f(a + (2k - 1)h) \right]$$

$$\dots$$

$$h = \frac{b - a}{2^{n}}, \qquad R (n,0) = \frac{1}{2} R (n - 1,0) + h \left[\sum_{k=1}^{2^{(n-1)}} f(a + (2k - 1)h) \right]$$

Estimates using Trapezoid method intervals of size h, h/2, h/4, h/8 ...

are combined to improve the approximation of

 $\int_{a}^{b} f(x) dx$

First column is obtained using Trapezoid Method

The other elements are obtained using the Romberg Method

R(0,0)			
R(1,0)	R(1,1)		
R(2,0)	R(2,1)	R(2,2)	
R(3,0)	R(3,1)	R(3,2)	R(3,3)

First Column Recursive Trapezoid Method

$$R(0,0) = \frac{b-a}{2} [f(a) + f(b)]$$

$$R(n,0) = \frac{1}{2}R(n-1,0) + h\left[\sum_{k=1}^{2^{(n-1)}} f(a + (2k-1)h)\right]$$

$$h = \frac{b - a}{2^n}$$

Derivation of Romberg Method

Method 1

$$\int_{a}^{b} f(x)dx = R(n-1,0) + O(h^{2}) \text{ Trapezoid method with } h = \frac{b-a}{2^{n-1}}$$

$$\int_{a}^{b} f(x)dx = R(n-1,0) + a_{2}h^{2} + a_{4}h^{4} + a_{6}h^{6} + \dots$$
 (eq 1)

More accurate estimate is obtained by R(n,0)
$$\int_{a}^{b} f(x)dx = R(n,0) + \frac{1}{4}a_{2}h^{2} + \frac{1}{16}a_{4}h^{4} + \frac{1}{64}a_{6}h^{6} + \dots$$
 (eq 2)
$$eq 1 - 4 * eq 2 \qquad gives$$

$$\int_{a}^{b} f(x)dx = \frac{1}{3}[4 \times R(n,0) - R(n-1,0)] + b_{4}h^{4} + b_{6}h^{6} + \dots$$

Romberg Method

Method 1

$$R(0,0) = \frac{b-a}{2} [f(a) + f(b)]$$

$$h = \frac{b - a}{2^n},$$

R(0,0)			
R(1,0)	R(1,1)		
R(2,0)	R(2,1)	R(2,2)	
R(3,0)	R(3,1)	R(3,2)	R(3,3)

$$R(n,0) = \frac{1}{2}R(n-1,0) + h \left[\sum_{k=1}^{2^{(n-1)}} f(a + (2k-1)h) \right]$$

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad n \ge 1, \quad m \ge 1$$

Romberg Integration

Property

Theorem

$$\int_{a}^{b} f(x)dx = R(n,m) + O(h^{2m+2})$$

R(0,0)			
R(1,0)	R(1,1)		
R(2,0)	R(2,1)	R(2,2)	
R(3,0)	R(3,1)	R(3,2)	R(3,3)

Error Level

$$O(h^2)$$
 $O(h^4)$ $O(h^6)$ $O(h^8)$

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad n \ge 1, \quad m \ge 1$$

Example 1

0.5	
3/8	1/3

Method 1

Compute $\int_{0}^{1} x^{2} dx$

$$h = 1$$
, $R(0,0) = \frac{b-a}{2} [f(a) + f(b)] = \frac{1}{2} [0+1] = 0.5$

$$h = \frac{1}{2}, R(1,0) = \frac{1}{2}R(0,0) + h(f(a+h)) = \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{4}\right) = \frac{3}{8}$$

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad \text{for} \quad n \ge 1, \quad m \ge 1$$

$$R(1,1) = \frac{1}{4^{1} - 1} \left[4 \times R(1,0) - R(0,0) \right] = \frac{1}{3} \left[4 \times \frac{3}{8} - \frac{1}{2} \right] = \frac{1}{3}$$

 x^2

0

Example 1

	1000	w	4500	1000	W	W	4500	800	100	100	370	010	*	77	200	**	Fig.	and a	110	70	***	**	***	200	No.	100	1000	100	100	1000	Ģ
и								B				aн	8	ю	at the					æ											
ю												88		88																	
100			100	200				100	600	600				24	ю.																
в		×	La.	10	200							æ	×	8						æ											
		80	œ	185					:83	:80		88		80																	
н		ø	63	108	88			L.		×				×	80																
в		æ	m	豑	80			B				aн	8	ю	at the					æ											
ю		毲	-	7	88	r		×	189	и		88		88																	
100						٠.		М.		100				24	ю.																
в												æ	×	8						æ											
												88		80																	
н														×	80																
и								B				aн	8	ю	at the																
ю												88		88																	
1														23	ж.																
i,												φĀ	æ	A.	83					85											
												88		88	832																
100	800	œ	K	800	98	œ	K	88	198	198	Ke.	89	8	24	ю.	œ	ю	×	ж	93	w	80	*	œ	ĸ	×	80	ĸ	ĸ	800	8
99	8000	200	300	6000	800	200	300	600	100	100	120	9.9	*	200	200	555	100	888	88	88	800	881	**	***	100	6500	1000	100	100	1000	ķ
в												ж			88																
в														æ	×																
8			100	-			30		99	100				28	68								•	:::	16	100					
ю		恕	486	ĸ	m			п	14		22	×		a				-				80	и	×	and the	in.	10				
ж				ж.	œ	æ	-8	8	ю	ю	я			æ	×				в			×	æ			10.	,88				
ю			ж	ж.		×	28		1		88			8	60				в			•			ж						
я				80	8	7		ĸ.	68	i in	ж	88		æ	m			æ	в	×	m	п				i i i	100				
н		×	88	и,	æ	v.		2	×	49	я	88		88	22				в	×	88	44		48	ш	100	48				
и		æ	le su	-86	æ	и					188			88	83					r	87			×		-4					
10					ĸ.	œ								83	ж.						ш										
н												88		88	22																
10																															
- 8														8																	
														2	88																
1														8	8																
8												88		98																	
-8														2	122																
		340	***	-																											

Method 1

$$h = \frac{1}{4}, \ R(2,0) = \frac{1}{2}R(1,0) + h(f(a+h) + f(a+3h)) = \frac{1}{2}\left(\frac{3}{8}\right) + \frac{1}{4}\left(\frac{1}{16} + \frac{9}{16}\right) = \frac{11}{32}$$

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right]$$

$$R(2,1) = \frac{1}{3} \left[4 \times R(2,0) - R(1,0) \right] = \frac{1}{3} \left[4 \times \frac{11}{32} - \frac{3}{8} \right] = \frac{1}{3}$$

$$R(2,2) = \frac{1}{4^2 - 1} \left[4^2 \times R(2,1) - R(1,1) \right] = \frac{1}{15} \left[\frac{16}{3} - \frac{1}{3} \right] = \frac{1}{3}$$

0.5

0.75

Romberg Integration

When do stop?

STOP if
$$|R(n,n) - R(n,n-1)| \le \varepsilon$$

or

After a given number of steps,

for example, STOP at R(4,4)

Numerical Integration

- Tabulated data the accuracy of the integral is limited by the number of data points
- Continuous function can generate as many f(x) as required to attain the required accuracy
- Richardson extrapolation and Romberg integration
- Gauss Quadratures

- Round-off errors may limit the precision of lower-order Newton-Cotes composite integration formula
- Use Romberg Integration for efficient integration

Romberg Integration

Method 2

> The exact integral can be represented as

$$I = I(h) + E(h)$$

▶This is true for any h = (b-a)/n

$$I = I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

>Use trapezoidal rule as an example

$$E = -\frac{(b-a)}{12}h^2f''(\xi) \implies \frac{E(h_1)}{E(h_2)} \cong \frac{h_1^2}{h_2^2}$$

> Truncation error for trapezoidal rule

$$\frac{E(h_1)}{E(h_2)} \cong \frac{{h_1}^2}{{h_2}^2}$$

$$E(h_1) \cong E(h_2) \left(\frac{h_1}{h_2}\right)^2$$

Substitute into the exact integral

$$I = I(h_1) + E(h_1)$$

$$I = I(h_1) + E(h_2) \left(\frac{h_1}{h_2}\right)^2 \cong I(h_2) + E(h_2)$$

Which leads to

$$E(h_2) \cong \frac{I(h_1) - I(h_2)}{1 - (h_1/h_2)^2}$$

 \triangleright Plugging back into I = I(h) + E(h)

$$I \cong I(h_2) + \frac{1}{(h_1/h_2)^2 - 1} [I(h_2) - I(h_1)]$$

> If $h_2 = h_1/2$, then

$$I \cong I(h_2) + \frac{1}{2^2 - 1} [I(h_2) - I(h_1)]$$
$$I \cong \frac{4}{3} I(h_2) - \frac{1}{3} I(h_1)$$

Method 2

- \triangleright Combine two $O(h^2)$ estimates to get an $O(h^4)$ estimate
- Can also combine two $O(h^4)$ estimates to get an $O(h^6)$ estimate

$$I \cong \frac{16}{15}I(h_2) - \frac{1}{15}I(h_1) = \frac{16}{15}I_m - \frac{1}{15}I_l$$

 \triangleright Combine two O(h^6) estimates to get an O(h^8) estimate

$$I \cong \frac{64}{63}I(h_2) - \frac{1}{63}I(h_1) = \frac{64}{63}I_m - \frac{1}{63}I_l$$

 \succ I_m and I_l are more and less accurate estimates, respectively

Romberg Integration

Metnod 2

General form is called Romberg Integration

$$I_{j,k} \cong \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$

- j: level of accuracy j+1 is more accurate (more segments)
- ightharpoonup k: level of integration k=1 is the original trapezoidal rule estimate $(O(h^2))$, k=2 is improved $(O(h^4))$, k=3 corresp's to $O(h^6)$, etc.

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad n \ge 1, \quad m \ge 1$$

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad n \ge 1, \quad m \ge 1$$

• Accelerated Trapezoidal Rule Romberg Integration

$$I_{j,k} = \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}; \quad k = 2, 3, \Lambda$$

Trapezoid Simpson's Boole's
$$k = 1 \qquad k = 2 \qquad k = 3 \qquad k = 4 \qquad k = 5$$

$$O(h^{2}) \qquad O(h^{4}) \qquad O(h^{6}) \qquad O(h^{8}) \qquad O(h^{10})$$

$$h \qquad I_{1,1} \qquad I_{1,2} \qquad I_{1,3} \qquad I_{1,4} \qquad I_{1,5}$$

$$h/2 \qquad I_{2,1} \qquad I_{2,2} \qquad I_{2,3} \qquad I_{2,3} \qquad I_{2,4}$$

$$h/4 \qquad I_{3,1} \qquad I_{3,2} \qquad I_{3,3} \qquad I_{3,3}$$

$$h/8 \qquad I_{4,1} \qquad I_{4,2} \qquad I_{4,2}$$

$$h/16 \qquad I_{5,1} \qquad \frac{4I_{j+1,1} - I_{j,1}}{3} \qquad \frac{16I_{j+1,2} - I_{j,2}}{15} \qquad \frac{64I_{j+1,3} - I_{j,3}}{63} \qquad \frac{256I_{j+1,4} - I_{j,4}}{255}$$

Romberg Integration

➤ Accelerated Trapezoid Rule

$$I = \int_0^4 xe^{2x} dx = 5216.926477$$

	Trapezoid	Simpson's	Boole's		
	k = 1	k = 2	k = 3	k = 4	k = 5
	$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	$O(h^{10})$
h=4	23847.7	8240.41	<i>5499.68</i>	5224.84	5216.95
h = 2	12142.2	5670.98	5229.14	5217.01	
h = 1	7288.79	5256.75	5217.20		
h = 0.5	5764.76	5219.68			
h = 0.25	5355.95				
arepsilon =	-2.66%	-0.0527%	-0.0053%	-0.00168%	-0.00050%

$$R(n,m) = \frac{1}{4^m - 1} \left[4^m \times R(n,m-1) - R(n-1,m-1) \right] \quad n \ge 1, \quad m \ge 1$$

Romberg Integration

```
function intg = romberg(func, a, b, es, maxit)
% romberg(func, a, b, es, maxit):
    Romberg integration.
% input:
    func = name of function to be integrated
% a, b = integration limits
% es = (optional) stop criterion (%); default = 0.00001
% maxit = (optional) max allow iterations; default = 30
% output:
    intg = integral estimate
% if necessary, assign default values
if nargin < 5, maxit = 30; end % if maxit blank set to 30</pre>
if nargin < 4, es=0.00001; end % if es blank set to 0.00001</pre>
n = 1;
I(1,1) = trap(func, a, b, n);
iter = 0:
while iter < maxit</pre>
iter = iter + 1:
n = 2^iter;
I(iter+1,1) = trap(func, a, b, n);
for k = 2: iter+1
   j = 2 + iter - k
   I(j,k) = (4^{(k-1)}) I(j+1,k-1) - I(j,k-1) / (4^{(k-1)}) - I(j,k-1)
end
ea = abs((I(1,iter+1)-I(2,iter))/I(1,iter+1))*100;
if ea <= es, break; end
end
intg = I(1,iter+1); Accelerated trapezoidal Rule
```

```
» intg = romberg('example1', 0, pi, 0.00001, 2)
I =
    0.0000
            0.0000
                      -5.5122
    0.0000 -5.1677
                                                 \int_{0}^{\infty} x^{2} \sin(2x) dx
   -3.8758
» intg = Romberg('example1', 0, pi, 0.00001, 3)
I =
    0.0000
            0.0000
                       -5.5122
                                  -4.9221
    0.0000 -5.1677 -4.9313
   -3.8758 \quad -4.9461
   -4.6785
» intg = romberg('example1', 0, pi, 0.00001, 4)
I =
    0.0000 0.0000
                       -5.5122
                                  -4.9221
                                             -4.9349
    0.0000
            -5.1677 -4.9313
                                  -4.9348
   -3.8758 \quad -4.9461 \quad -4.9348
   -4.6785 -4.9355
   -4.8712
» intg = romberg('example1', 0, pi, 0.00001, 6)
I =
    0.0000
             0.0000
                       -5.5122
                                  -4.9221
                                             -4.9349
                                                       -4.9348
                                                                  -4.9348
    0.0000 \quad -5.1677 \quad -4.9313 \quad -4.9348 \quad -4.9348
                                                        -4.9348
   -3.8758
                      -4.9348 -4.9348 -4.9348
            -4.9461
   -4.6785 \quad -4.9355 \quad -4.9348
                                 -4.9348
   -4.8712 \quad -4.9348
                      -4.9348
   -4.9189 -4.9348
   -4.9308
      NM Dr PV Ramana
94
```

Gauss Quadrature

- Motivation
- ☐ General integration formula

Method 1: Based on Natural Coordinates

Method 2: Based on Polynomial functions

Method 3: Based on Isoperimetric element

Motivation

Trapezoid

Method

$$\int_{a}^{b} f(x) dx \approx h \left[\sum_{i=1}^{n-1} f(x_{i}) + \frac{1}{2} (f(x_{0}) + f(x_{n})) \right]$$

It can be expressed as:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i})$$

where
$$c_i = \begin{cases} h & i = 1, 2, ..., n-1 \\ 0.5 & h & i = 0 \text{ and } n \end{cases}$$

NM Dr PV Ramana

General Integration Formula

```
\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i})
```

 c_i : Weights

 $x_i : Nodes$

Problem:

How do select c_i and x_i so that the formula gives a good approximat ion of the integral?

Lagrange Interpolation

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx$$
where $P_{n}(x)$ is a polynomial that interpolat es $f(x)$
at the nodes $: x_{0}, x_{1}, ..., x_{n}$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx = \int_{a}^{b} \left(\sum_{i=0}^{n} \lambda_{i}(x)f(x_{i})\right)dx$$

 $\Rightarrow \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{b} c_{i} f(x_{i}) \quad \text{where} \quad c_{i} = \int_{a}^{b} \lambda_{i}(x) dx$

NM Dr PV Ramana

Example

Determine the Gauss Quadrature Formula of

If the nodes are given as (-1, 0, 1)

$$\int_{-2}^{2} f(x)dx$$

- Solution: First need to find $l_0(x)$, $l_1(x)$, $l_2(x)$
- Then compute:

$$c_0 = \int_{-2}^{2} l_0(x)dx, \quad c_1 = \int_{-2}^{2} l_1(x)dx, \quad c_2 = \int_{-2}^{2} l_2(x)dx$$

NM Dr PV Ramana

Solution

$$l_0(x) = \frac{(x-x1)(x-x2)}{(x0-x1)(x0-x2)} = \frac{x(x-1)}{2}$$

$$l_1(x) = \frac{(x-x0)(x-x2)}{(x1-x0)(x1-x2)} = -(x+1)(x-1)$$

$$l_2(x) = \frac{(x-x0)(x-x1)}{(x2-x0)(x2-x1)} = \frac{x(x+1)}{2}$$

$$L_{i}(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$c_0 = \int_{-2}^{2} \frac{x(x-1)}{2} dx = \frac{8}{3}, \quad c_1 = \int_{-2}^{2} -(x+1)(x-1)dx = -\frac{4}{3}, \quad c_2 = \int_{-2}^{2} \frac{x(x+1)}{2} dx = \frac{8}{3}$$

The Gauss Quadrature Formula for
$$\int f(x)dx = \frac{8}{3}f(-1) - \frac{4}{3}f(0) + \frac{8}{3}f(1)$$

Using the Gauss Quadrature Formula

Case 1: Let
$$f(x) = x^2$$

The exact value e for
$$\int f(x)dx = \int x^2 dx = \frac{16}{3}$$

The Gauss Quadrature Formula
$$=\frac{8}{3}f(-1) - \frac{4}{3}f(0) + \frac{8}{3}f(1)$$

$$=\frac{8}{3}(-1)^2 - \frac{4}{3}(0)^2 + \frac{8}{3}(1)^2 = \frac{16}{3}$$
, which is the same exact answer

Using the Gauss Quadrature Formula

Case 2: Let
$$f(x) = x^3$$

The exact value e for
$$\int_{-2}^{2} f(x)dx = \int_{-2}^{2} x^{3}dx = 0$$

The Gauss Quadrature Formula $=\frac{8}{3}f(-1)-\frac{4}{3}f(0)+\frac{8}{3}f(1)$

$$=\frac{8}{3}(-1)^3 - \frac{4}{3}(0)^3 + \frac{8}{3}(1)^3 = 0$$
, which is the same exact answer

Improper Integrals

$$\int_0^\infty rac{dx}{(x+1)\sqrt{x}} = \lim_{s o 0} \int_s^1 rac{dx}{(x+1)\sqrt{x}} + \lim_{t o \infty} \int_1^t rac{dx}{(x+1)\sqrt{x}} \ = \lim_{s o 0} \left(rac{\pi}{2} - 2\arctan\sqrt{s}
ight) + \lim_{t o \infty} \left(2\arctan\sqrt{t} - rac{\pi}{2}
ight) \ = rac{\pi}{2} + \left(\pi - rac{\pi}{2}
ight) \ = \pi.$$

Methods discussed earlier cannot be used directly approximat e improper integrals (one of the limits is ∞ or $-\infty$) Use a transform ation like the following

$$\int_{a}^{b} f(x) dx = \int_{\frac{1}{b}}^{\frac{1}{a}} \frac{1}{t^{2}} f\left(\frac{1}{t}\right) dt, \quad \text{(assuming)} \quad ab > 0$$

and apply the method on the new function.

Example:
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \int_{0}^{1} \frac{1}{t^{2}} \left[\frac{1}{\left(\frac{1}{t}\right)^{2}} \right] dt$$

MM Dr PV Ramana

Gauss Quadrature - Example

Find the integral of:

$$f(x) = 0.2 + 25 x - 200 x^2 + 675 x^3 - 900 x^4 + 400 x^5$$

Between the limits 0 to 0.8 using:

- 2 points integration points
- 3 points integration points

- (ans. 1.822578)
- (ans. 1.640533)

Improper Integral

 Improper integrals can be evaluated by making a change of variable that transforms the infinite range to one that is finite,

$$\int_{a}^{b} f(x)dx = \int_{1/b}^{1/a} \frac{1}{t^2} f\left(\frac{1}{t}\right) dt \qquad ab > 0$$

$$\int_{-\infty}^{b} f(x) dx = \int_{-\infty}^{-A} f(x) dx + \int_{-A}^{b} f(x) dx$$

$$\int_{-\infty}^{-A} f(x)dx = \int_{-1/A}^{0} \frac{1}{t^2} f\left(\frac{1}{t}\right) dt$$

Can be evaluated by Newton-Cotes closed formula

Improper Integral - Examples

$$\int_{2}^{\infty} \frac{dx}{x(x+2)} = \int_{0}^{0.5} \frac{1}{t^{2}}(t) \frac{1}{1/t+2} dt = \int_{0}^{0.5} \frac{1}{1+2t} dt$$

$$\int_0^\infty e^{-y} \sin^2 y \, dy = \int_0^2 e^{-y} \sin^2 y \, dy + \int_2^\infty e^{-y} \sin^2 y \, dy$$

$$\int_{2}^{\infty} e^{-y} \sin^{2} y \, dy = \int_{0}^{1/2} \frac{1}{t^{2}} e^{-1/t} \sin^{2} (1/t) \, dt$$

$$\int_{-2}^{\infty} ye^{-y} dy = \int_{-2}^{2} ye^{-y} dy + \int_{2}^{\infty} ye^{-y} dy$$

$$\int_{2}^{\infty} ye^{-y} dy = \int_{0}^{1/2} \frac{1}{t^{3}} e^{-1/t} dt$$

Gauss Quadrature

Method 1: Based on Natural Coordinates

$$I = \int_{a}^{b} f(x) dx$$

> Assume

$$I \cong c_0 f(a) + c_1 f(b)$$

- > a and b are limits of integration
- > Trapezoidal rule should give exact results for constant and

linear functions

