MA571 Problem Set 4

Carlos Salinas

September 14, 2015

Problem 4.1 (Munkres §20, Ex. #4(a))

Proof.

 $MA571\ Problem\ Set\ 4$

Problem 4.2 (Munkres §20, Ex. #4(b))

Problem 4.3 (Munkres §20, Ex. #6)

CARLOS SALINAS PROBLEM 4.4(A)

Problem 4.4 (A)

Prove Theorem Q.2 from the notes on Quotient Spaces.

CARLOS SALINAS PROBLEM 4.5(B)

Problem 4.5 (B)

Prove Proposition Q.5 from the notes on Quotient Spaces.

CARLOS SALINAS PROBLEM 4.6(C)

Problem 4.6 (C)

Prove Proposition Q.5 from the notes on Quotient Spaces.

CARLOS SALINAS PROBLEM 4.7(D)

Problem 4.7 (D)

(Do not use Problem E to do this problem). Let \sim be the equivalence relation on the interval [-1,1] defined by $x \sim y$ if and only if x = y or x = -y with $y \in (-1,1)$ (you do not have to prove that this is an equivalence relation). Prove that $[-1,1]/\sim$ is not Hausdorff.

CARLOS SALINAS PROBLEM 4.8(E)

Problem 4.8 (E)

Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff.

Prove that the set

$$S = \{ x \times y \in X \times X \mid x \sim y \}$$

is a closed subset of $X \times X$.

CARLOS SALINAS PROBLEM 4.9(F)

Problem 4.9 (F)

For problem F you need the following definition: if Y is a topological space and S is a subset of Y, we write Y/S for the quotient space Y/\sim , where \sim is defined by $x\sim y$ if and only if x=y or $\{x,y\}\subset S$. (Intuitively, Y/S is obtained from Y by collapsing S to a point.)

Let X be a topological space. Let U be an open set in X, and let A be a subset of U. Give U the subspace topology. Let $\iota \colon U/A \to X/A$ be the map which takes [x] to [x] (you do not have to prove that this is well-defined).

- (i) Prove that ι is continuous.
- (ii) Prove that ι is an open map.

CARLOS SALINAS PROBLEM 4.10(G)

Problem 4.10 (G)

Let X be a topological space satisfying the first countability axiom (see the bottom of page 130 and the top of page 131). Let $A \subset X$ and let $x \in \overline{A}$. Prove that there is a sequence in A which converges to x (see the top of page 131 for a hint).