Chapitre 1: Produit scalaire et orthogonalité

1 Produit scalaire dans le plan

1.1 Le plan vectoriel

Pour mémoire le plan vectoriel est l'ensemble des vecteurs du plan. Un vecteur \vec{u} correspond à une translation et est caractérisé par une direction, un sens, une longueur qu'on note $||\vec{u}||$ (norme de \vec{u})

$$\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD}$$

$$\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow (ABCD) \text{ parrall\'elogramme}$$

C'est l'exemple le plus simple et quelque part le plus fondamental d'ev (on peut "voir") qu'on note $\overrightarrow{\widehat{O}}$

- $\vec{0} \in \overrightarrow{\widehat{O}}$
- Multiplication par scalaire

• Somme $\vec{u} \neq \vec{v}$:

Remarque 1: $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$ (Inégalité triangulaire)

Remarque 2: Si \vec{u} et \vec{v} sont non nuls et orthogonaux (i.e. directions perpendiculaire);

Alors $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$ et reciproquement.

1.2 Produit scalaire

Définition: Pour tous vecteurs \vec{u} , \vec{v} on définit leur produit scalaire par:

$$\vec{u}.\vec{v} = \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) \in \mathbb{R}$$

Ce produit défini une application $\overrightarrow{O}x\overrightarrow{O}=\overrightarrow{O}^2\to\mathbb{R}$ (Qu'on appelle aussi <u>forme</u> car à valeur dans \mathbb{R}) notée $<\overrightarrow{u}|\overrightarrow{v}>$ où plus $f(\overrightarrow{u},\overrightarrow{v})$ comme une fonction.

Remarque:

- $\forall (\vec{u}, \vec{v}) \in \overrightarrow{\hat{O}}$ $\vec{u}, \vec{v}orthogonaux \Leftrightarrow \vec{u}.\vec{v} = 0$
- $\vec{v}.\vec{0} = \vec{0}.\vec{v} = 0$ (Tt vecteur est orthogonal au vecteur $\vec{0}$)

$$\bullet \ \, \vec{u}.\vec{v} = 0 \Leftrightarrow ||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 \qquad \qquad | \qquad \qquad \vec{u}.\vec{u} = \vec{u}^2 = ||\vec{u}||^2$$

1.3 Repère et base orthonormé

Dans le plan, si on se donne un repère orthonormé (O, I, J) a une base orthonormé du plan vectoriel = $\{\vec{i} = \overrightarrow{OI}, \vec{j} = \overrightarrow{OJ}\}$

$$||\vec{i}|| = ||\vec{j}|| = 1$$
 et $\vec{i}.\vec{j} = 0$

Et tout vecteur \vec{u} s'indetifie à un couple de réels $\left(\begin{array}{c} x_1\\x_2 \end{array}\right)$ de $\mathbb{R}\times\mathbb{R}=\mathbb{R}^2$

et $||\vec{u}|| = \sqrt{x^2 + y^2}$

Remarque: Il y a ambiguité matriciellement entre

$$\left(\begin{array}{c} x_1, x_2 \end{array}\right) \in M_{1,2}(\mathbb{R}) \text{ et } \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \in M_{2,1}(\mathbb{R})$$

On adopte pour \mathbb{R}^2 , \mathbb{R}^n et leurs vecteurs la notation verticale.

 $\mathbb{R}^n = M_{n,1}(\mathbb{R})$

$$\vec{x} = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

et

$$\vec{x}^T = \left(x_1, \dots, x_n \right)$$

Proprieté: Si

$$\vec{u} = \begin{pmatrix} y \\ x \end{pmatrix} = x\vec{i} + y\vec{j}$$
 et $\vec{v} = \begin{pmatrix} y' \\ x' \end{pmatrix}$, alors $\vec{u}.\vec{v} = xx' + yy'$

Remarque:

$$\vec{u}.\vec{v} = \left(x,y\right) \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} x' \\ y' \end{pmatrix}$$

au sens des matrices!

Preuve:

$$\vec{u} + \vec{v} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$
 donc

$$\begin{split} ||\vec{u}||^2 &= x^2 + y^2 \text{ et } ||\vec{v}||^2 = x'^2 + y'^2 \\ ||\vec{u} + \vec{v}||^2 &= (x + x')^2 + (y + y')^2 = x^2 + 2xx' + x'^2 + y^2 + 2yy' + y'^2 \\ \text{d'où } \vec{u}.\vec{v} &= \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) \\ &= \frac{1}{2}(2xx' + 2yy') = xx' + yy' \end{split}$$

1.4 Proprietés algébriques

$$\phi: \overrightarrow{\widehat{O}} \times \overrightarrow{\widehat{O}} \to \mathbb{R} \text{ est une } \underline{\text{forme}} \\ (\vec{u}, \vec{v}) \longmapsto \vec{u}.\vec{v}$$

• Symétrique (S):
$$\forall (\vec{u},\vec{v}) \in \overrightarrow{\widehat{O}}^2 \qquad \vec{u}.\vec{v} = \vec{v}.\vec{u}$$

• Bilinéaire (B): $\forall (\lambda,\mu) \in \mathbb{R}^2 \qquad \forall (\vec{u},\vec{v},\vec{w}) \in \overrightarrow{\hat{O}}^3$ $(\lambda \vec{u} + \mu \vec{v}).\vec{w} = \lambda(\vec{u}.\vec{w}) + \mu(\vec{v}.\vec{w})$ $\vec{u}.(\lambda \vec{v} + \mu \vec{w}) = \lambda(\vec{u}.\vec{v}) + \mu(\vec{u}.\vec{w})$

• Definie positif (P): $\forall \vec{x} \in \overrightarrow{O} \setminus \{\vec{0}\} \qquad \vec{x}.\vec{x} > 0$

où encore
$$\left\{ \begin{array}{ll} \forall \vec{x} \in \overrightarrow{\hat{O}} & \vec{x}.\vec{x} \geq 0 \\ \vec{x}.\vec{x} = \vec{0} \Leftrightarrow \vec{x} = \vec{0} \end{array} \right.$$

Remarque: La symétrie simplifie la bilinéarité. Si $\vec{x} = \vec{0}$ $\vec{x} \cdot \vec{x} = \vec{0}$ aussi d'après la bilinéarité

1.5 Angle et produits scalaire

Soient \vec{u}, \vec{v} deux vecteurs non nuls et $\theta = \widehat{(\vec{u}, \vec{v})}$ Alors $\vec{u}.\vec{v} = ||\vec{u}||.||\vec{v}||.cos(\theta)$

Preuve: On regarde les coordonnées dans la base orthonormé $\{\vec{i},\vec{j}\}$ formé de $\vec{i}=\frac{\vec{u}}{||\vec{u}||}$ et \vec{j} de norme 1 tq $\widehat{(\vec{i},\vec{j})}=\frac{\pi}{2}$

$$\vec{u} = \begin{pmatrix} ||\vec{u}|| \\ 0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} ||\vec{v}|| * \cos(\theta) \\ ||\vec{v}|| * \sin(\theta) \end{pmatrix}$$

On en déduit ici une inégalité importante.

Inégalité de Cauchy-Schwarz

 $\forall (\vec{u}, \vec{v}) \in \hat{\vec{O}} | \vec{u}.\vec{v} | \leq ||\vec{u}||.||\vec{v}||$ On a égalité si et seulement si \vec{u} et \vec{v} sont colinéaires.

2 Produit scalaire dans un Rev

Soit E un Rev quelconque (pas forcément de dimension finie)

2.1 Définition

Un produit scalaire sur E est une application $f: ExE \to \mathbb{R}$ qui vérifie les Proprieté (S), (B), (P)

C'est a dire une forme bilinéaire, défini positif et symétrique

Si $(x,y) \in E^2$, ce produit scalaire peut s'écrire comme une fonction f(x,y) (ou g(x,y) ou autre) ou comme un produit x.y ou encore $\langle x|y \rangle$

Un espace E muni d'un produit scalaire est appelé un espace <u>prehilbertien</u>. Si E est de dimension finie, on appelle cette espace un espace euclidien.

Exemple fondamental:

Sur
$$\mathbb{R}^n$$
 on définit pour tous $a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ et $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$

$$< a|b> = a^{T}.b = a_{1}b_{1} + \dots + a_{n}b_{n} = \sum_{i=1}^{n} a_{i}b_{i}$$

C'est un produit scalaire sur \mathbb{R}^n qu'on appellera le produit scalaire usuel sur \mathbb{R}^n

Preuve à connaitre

Autres exemples (voir exercices)

Dans
$$\mathbb{R}^2$$
 $\langle \begin{pmatrix} x \\ y \end{pmatrix} | \begin{pmatrix} x' \\ y' \end{pmatrix} \rangle = xx' + \frac{1}{2}xy' + \frac{1}{2}x'y + yy'$

Dans
$$C^0([0,1],\mathbb{R})$$
 $< f|g> = \int_0^1 f(t)g(t)dt$
Dans $\mathbb{R}_2[X]$ $< P|Q> = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$

2.2 Norme associée

Dans un espace prehilbertien (E, < | >) on définit la norme euclidienne associée: $\forall x \in E$ $||x|| = \sqrt{\langle x|x \rangle}$ C'est une application de E dans $\mathbb{R}^+(\vec{x} \longmapsto ||x||)$ qui vérifie

•
$$\forall \lambda \in \mathbb{R}$$
 $\forall x \in E$ $||\lambda x|| = |\lambda|.||x||$

•
$$\forall x \in E$$
 $||x|| = 0 \Leftrightarrow x = 0_E$

•
$$\forall (x,y) \in E^2$$
 $||x+y|| \le ||x|| + ||y||$

Ces 3 proprietés définissent ce qu'on appelle une norme.

Le point 3 le plus délicat à montrer et se base sur l'inégalité de Cauchy-Schwarz:

Théorème: Soit (E, < | >) un espace prehilbertien $\forall (x,y) \in E^2$ $| < x|y > | \le ||x||.||y||$ et on a égalité ssi x et y sont colinéaires

Preuve à connaitre !:

- Si y = 0 alors c'est évident (on a même égalité car $\langle x|0_E \rangle = 0$)
- Sinon on regarde, pour $t \in \mathbb{R}$

$$0 \leq ||x+ty||^2$$

$$= < x+ty|x+ty> = < x|x>+t < x, y>+t < y|x>+t^2 < y|y>$$

$$= ||x||^2+2t < x|y>+t^2||y||^2=P(t) \text{ p un polynôme du second degré toujours positif donc}$$

– Si x et y sont colinéaires alors
$$\exists t_0 \in \mathbb{R}$$
 tq $x=t_0*y$ et $P(-t_0)=0$ d'où $\triangle=0$ et donc $|< x|y>|=||x||.||y||$

– Si
$$|< x|y>=||x||.||y||$$
 alors $\triangle=0$ et $\exists \alpha$ tq $P(\alpha)=0$ donc $0=||x+\alpha y||^2$ d'où $x+\alpha y=0$ CQFD

Grâce à cette inégalité on retrouve l'inégalité triangulaire

$$\begin{split} \forall (x,y) \in E^2 ||x+y||^2 &= ||x||^2 + 2 < x|y> + ||y||^2 \\ &\leq ||x||^2 + 2||x||.||y|| + ||y||^2 = (||x|| + ||y||)^2 \\ \text{Donc } \forall (x,y) \in E^2 ||x+y|| \leq ||x|| + ||y|| \end{split}$$

2.3 Orthogonalité des vecteurs

Comme dans le plan, dans (E, < | >), deux vecteurs x et y sont <u>orthogonaux</u> ssi < x|y> = 0 $x \perp y$ On a de nouveau l'égalité de Pythagore:

$$x \perp y$$

 $Leftrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$