ECE 451 Signal Integrity

Fall 2004

Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
jose@emlab.uiuc.edu

Signal Integrity

Signal Integrity

- Attenuation & Loss (skin effect, on-chip loss)
- Crosstalk (interconnect proximity, coupling)
- Dispersion (frequency dependence of parameters)
- Reflection (unmatched loads, reactive loads, ISI)
- Distortion (nonlinear loads)
- Interference & Radiation (EMI/EMC)
- Rise time degradation
- Clock skew (different electrical path lengths)

The Interconnect Bottleneck

Technology Generation	MOSFET Intrinsic Switching Delay	Response Time
1.0 um	~ 10 ps	~ 1 ps
0.01 um	~ 1 ps	~ 100 ps

Chip-Level Interconnect Delay

Pulse Characteristics:

rise time: 100 ps fall time: 100 ps pulse width: 4ns

Near End Response Board 0.725 **VLSI** Submicron [₹] 0.45 Deep Submicron Logic threshold 0.175 -0.10.4 0.8 1.2 1.6 Time (ns)

Line Characteristics

length: 3 mm

near end termination: 50 Ω far end termination 65 Ω

Interconnect Bottleneck

Signal Integrity

Crosstalk Dispersion Attenuation

Reflection Distortion Loss

Delta I Noise Ground Bounce Radiation

Reflection in Transmission Lines

Metallic Conductors

Resistance: R

$$R = \frac{Length}{\sigma Area}$$

Package level: W=3 mils R=0.0045 Ω/mm Submicron level: W=0.25 microns

Metallic Conductors

Conductivity
$\sigma \left(\Omega^{-1} \text{ m}^{-1} \times 10^{-7}\right)$
6.1
5.8
3.5
1.8
1.8
1.5
0.7
0.5
0.1

Loss in Transmission Lines

Skin Effect in Transmission Lines

Skin Effect in Microstrip

Skin Effect

The electric field in a material medium propagates as

where $\gamma = \alpha + j\beta$. We also have

Skin effect and internal inductance

Current density varies as

$$J = J_0 e^{-y/\delta} e^{-jy/\delta}$$

Note that the phase of the current density varies as a function of y. The total current is given by:

$$I = \int_{0}^{\infty} J_{o} w e^{-y/\delta} e^{-jy/\delta} dy = \frac{J_{o} w \delta}{1+j}$$

$$\sigma E_o = J_o \Rightarrow E_o = \frac{J_o}{\sigma}$$

The voltage measured over a section of the conductor of length L is:

$$V = E_o D = \frac{J_o D}{\sigma}$$

Skin effect and internal inductance

The "skin effect" impedance is therefore

$$Z_{skin} = \frac{V}{I} = \frac{J_o D}{\sigma} \frac{(1+j)}{J_o w \delta} = \frac{D}{w} (1+j) \sqrt{\pi f \mu \rho}$$

where $\rho = \frac{1}{\sigma}$ is the bulk resistivity of the conductor

$$Z_{skin} = R_{skin} + jX_{skin}$$

with

$$R_{skin} = X_{skin} = \frac{D}{w} \sqrt{\pi f \,\mu \rho}$$

Lossy Transmission Line

Telegraphers Equation

$$-\frac{\partial V}{\partial z} = (R + j\omega L)I = ZI$$
$$-\frac{\partial I}{\partial z} = (G + j\omega C)V = YV$$

Lossy Transmission Line

Coupled Lines and Crosstalk

Crosstalk noise depends on termination

Crosstalk depends on signal rise time

Crosstalk depends on signal rise time

$$t_r = 7 \text{ ns}$$

7-Line Coupled-Microstrip System

$$L_s = 312 \text{ nH/m}; \quad C_s = 100 \text{ pF/m};$$

$$L_{\rm m} = 85 \text{ nH/m}; \quad C_{\rm m} = 12 \text{ pF/m}.$$

Drive Line 3

Sense Line

Multiconductor Simulation

Intersymbol Interference (ISI)

- Signal launched on a transmission line can be affected by previous signals as result of reflections
- ISI can be a major concern especially if the signal delay is smaller than twice the time of flight
- ISI can have devastating effects
- Noise must be allowed to settled before next signal is sent

Intersymbol Interference

Intersymbol Interference and Signal Integrity

Minimizing ISI

- Minimize reflections on the bus by avoiding impedance discontinuities
- Minimize stub lengths and large parasitics from package sockets or connectors
- Keep interconnects as short as possible (minimize delay)
- Minimize crosstalk effects

Ringback and Rise Time Control

- Violation into threshold region
- Detrimental even if threshold is not crossed
- Can exacerbate ISI
- Can be aggravated by nonlinear (time varying) terminations
- Can increase skew between signals

Voltage Reference Uncertainty

Major Contributors

- Power supply effects (SSN, ground bounce, rail collapse)
- Noise from IC
- Receiver transistor mismatches
- Return path discontinuities
- Coupling to reference voltage circuitry

Jitter Definition

Jitter is difference in time of when something was ideally to occur and when it actually did occur.

Some devices specify the amount of marginal jitter and total jitter that it can take to operate correctly. If the cable adds more jitter than the receiver's allowed marginal jitter and total jitter the signal will not be received correctly. In this case the jitter is measured as in the below diagram

Eye Diagrams

• Eye diagrams are a time domain display of digital data triggered on a particular cycle of the clock. Each period is repeated and superimposed. Each possible bit sequence should be generated so that a complete eye diagram can be made

Eye Diagram

Eye Pattern Analysis

Jitter

- Jitter is a signal timing deviation referenced to a recovered clock from the recovered bit stream
- Measured in Unit Intervals and captured visually with eye diagrams
- Two types of jitter
 - Deterministic (non Gaussian)
 - Random
- The total jitter (TJ) is the sum of the random (RJ) and deterministic jitter(DJ)

Causes of Deterministic Jitter

- Crosstalk
 - Noisy neighboring signals
- Interference
- Reflections
 - Imperfect terminations
 - Discontinuities (e.g. multidrop buses, stubs)
- Simultaneous switching noise (SSN)
 - Noisy reference plane or power rail
 - Shift in threshold voltages

Eye Diagram - ADS Simulation

Eye Diagram - ADS Simulation Ideal Matched Line

Eye Diagram of 10 GHz Data Transmission over an Ideal 50 ohm, matched Line

Bit Rate = 10 GHz Rise time = 0.1 psec Fall time = 0.1 psec

EqnEyeOfVout=eye(Vout,5e9)

Eye Diagram - ADS Simulation 5 GHz Data Transmission

Eye Diagram - ADS Simulation 5 GHz Data Transmission

Eye Diagram of 5 GHz Data Transmission over a Microstrip Line

Source and Load Termination = 50 ohm
Bit Rate = 5 GHz
Rise time = 0.1 nsec
Fall time = 0.1 nsec

Eye Diagram - ADS Simulation 10 GHz Data Transmission

Eye Diagram - ADS Simulation

Eye Diagram of 10 GHz Data Transmition over an Ideal 50 ohm, mismatched Line with via

Source termination = 30 ohm Load termination = 90 ohm Bit Rate = 10 GHz Rise time = 0.1 psec Fall time = 0.1 psec

Bit-Error Rate

- The Bit-error rate (BER) quantifies the likelihood of a bit being interpreted at the receiver incorrectly due to jitter- or amplitude-induce degradation on the received signal
- No higer than a 10-16 BER is tolerable => no more than 1 error out of 1016 bits.
- BER can be measured directly or quantified with statistical calculations
- Deterministic jitter(DJ) can be easily measured via Sparameters obtained in the frequency domain