Not SQL

NO SQL

Uma Breve Introdução

Andréa Bordin

O que significa?

- □ NoSQL é um termo genérico que define bancos de dados *não-relacionais*.
- ☐ A tecnologia NoSQL foi iniciada por companhias líderes da Internet incluindo Google, Facebook, Amazon e LinkedIn para superar as limitações (45 anos de uso da tecnologia) de banco de dados relacional para aplicações web modernas.
 - 2009

Banco de Dados Relacional

- ☐ Dados são estruturados de acordo com o modelo relacional
- □ Padrão para a grande maioria dos SGBDs SQL Server, Oracle, PostgreSQL, MySQL, DB2, etc.
- ☐ Elementos básicos
 - Relações (tabelas) e registros (tuplas)
- ☐ Características fundamentais

Restrições de integridade (PK, FK, UK, CK, NN)

Normalização

Linguagem SQL (Structured Query Language)

Edgar F. Codd

*August 23, 1923 +April 18, 2003

Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM 13 (6): 377–387. doi:10.1145/362384.362685.

Por que NoSQL?

□ Hoje as empresas estão adotando NoSQL para um número crescente de casos de uso.
 □ A escolha que é impulsionada por quatro megatendências inter-relacionadas :
 □ Big Users
 □ Big Data
 □ Internet das coisas
 □ Cloud Computing

Big Users

Billion Global Online Population

35
Billion Hrs./Mo.
Spent Online

Billion Smartphone Users

O crescente uso de aplicativos online resultou em um número crescente de operações de banco de dados e uma necessidade de uma maneira mais fácil de **escalar** bancos de dados para atender a essas demandas.

NoSQL é a solução.

Big Data

É necessário uma solução altamente flexível, que acomode facilmente qualquer novo tipo de dado (não-estruturado e semi-estruturado) e que não seja corrompida por mudanças na estrutura de conteúdo.

NoSQL fornece um modelo de dados **sem esquema** muito mais flexível que mapeia melhor a organização de dados de uma aplicação e simplifica a interação entre a aplicação e o banco de dados, resultando em menos código para escrever, depurar e manter.

A Internet das Coisas

32 bilhões de coisas vão estar conectadas a internet

10% de todos os dados serão gerados por sistemas embarcados (vs 2% hoje)

21% dos mais valiosos dados serão gerados por sistemas embarcados (vs 8% hoje)

Dados de telemetria - semi- estruturados e contínuos - representam um desafio para bancos de dados relacionais, que exigem um esquema fixo e dados estruturados.

Empresas inovadoras estão utilizando tecnologia NoSQL para dimensionar o acesso simultâneo de dados para milhões de dispositivos e sistemas conectados, armazenar bilhões de pontos de dados e atender aos requisitos de infra-estrutura e operações de missão crítica de performance.

Cloud Computing

Atualmente a maioria dos novas aplicações são executados em um sistema em nuvem privado, público ou híbrido, suportam um grande número de usuários e usam uma arquitetura de internet de três camadas.

Na camada de banco de dados, bancos de dados relacionais são originalmente a escolha popular.

Seu uso é cada vez mais problemático porque eles são uma tecnologia centralizada, cuja escabilidade é vertifical ou invés de horizontal.

Isso não os torna adequado para aplicações que requerem escalabilidade fácil e dinâmica.

Bancos de dados NoSQL são construídos a partir do zero para serem distribuídos, escaláveis dinâmicamente e são, portanto, mais adequados a natureza altamente distribuída da arquitetura três camadas da internet.

Características NoSQL

- ☐ Sistemas NoSQL possuem várias características em comum
 - -Livres de esquema
 - -Alta disponibilidade (Confiabilidade, recuperabilidade, detecção rápida de erros e operações contínuas)
 - -Escalabilidade
- ☐ Mesmo assim, possuem diversas características únicas quanto ao

Modo de armazenamento dos dados

Modelo de dados

Modelo de dados mais flexível

Modo de Armazenamento de Dados

- ☐ Temos os sistemas que...
 - -mantêm suas informações em memória realizando persistências ocasionais

Scalaris, Redis

-mantêm suas informações em disco

CouchDB, MongoDB, Riak, Voldemort

-são configuráveis

BigTable, Cassandra, Hbase, HyperTable

- ☐ Existem quatro categorias:
 - -Sistemas baseados em armazenamento chave-valor
 - -Sistemas orientados a documentos
 - -Sistemas orientados à coluna
 - -Sistemas baseados em grafos

KEY VALUE

GRAPH

DOCUMENT

☐ Coleção de chaves únicas associada a um valor, que pode ser de qualquer tipo (binário, string)

Exemplo:

Key: 1234 Value: "Fernando"

Key: 2343 Value: "Name=Fernando, age=29"

Key	Value
123435	Joao da Silva
334545	Name=Fernando, age=29

KEY VALUE COLUMN GRAPH DOCUMENT

- ☐ Famílias de colunas (um repositório para colunas,
- ☐ análogo a uma tabela do Modelo Relacional) e super-colunas (compostas por arrays de colunas)
- □ o benefício de armazenar dados em colunas, é a busca /acesso rápido e a agregação de dados.

Exemplo:

Column family, Key, Column name e value Pessoas ; 4564 ; nome : Ana ; idade : 30

KEY VALUE COLUMN GRAPH

Name: Alice Age: 18 Name: Bob

Type: Group

Exemplo:

- Vértice: Chave->Valor representa entidade. Nome: Alice
- Aresta: relacionamentos

Ex: Vertice "Alice" conhece o vertice "Bob" desde 2001

KEY VALUE COLUMN GRAPH **DOCUMENT**

```
    □ Os documentos são as unidades básicas de armazenamento e estes não utilizam necessariamente qualquer tipo de estruturação pré-definida
    □ São baseados em JSON (JavaScript Object Notation)
```

```
Collection ("Things")

{"_id" : "13434",
    "value1:" "sfsd"
    "value2: "sfsd"
    "ltems" : [{"_id" : "3fef2",
    "t2value" : "abcd", ...}]}
```

Classificação NOSQL

Key - Value

Key	Value
123435	Joao da Silva
334545	Name=Fernando, age=29

Graph

Column

Document

DB Ranking

283 systems in ranking, October 2015								
Rank					Score			
Oct 2015	Sep 2015	Oct 2014	DBMS	Database Model	Oct 2015	Sep 2015	Oct 2014	
1.	1.	1.	Oracle	Relational DBMS	1466.95	+3.58	-4.95	
2.	2.	2.	MySQL	Relational DBMS	1278.96	+1.21	+15.99	
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1123.23	+25.40	-96.37	
4.	4.	↑ 5.	MongoDB 🗄	Document store	293.27	-7.30	+52.86	
5.	5.	4 .	PostgreSQL	Relational DBMS	282.13	-4.05	+24.41	
6.	6.	6.	DB2	Relational DBMS	206.81	-2.33	-0.86	
7.	7.	7.	Microsoft Access	Relational DBMS	141.83	-4.17	+0.19	
8.	8.	1 0.	Cassandra 🗄	Wide column store	129.01	+1.41	+43.30	
9.	9.	4 8.	SQLite	Relational DBMS	102.67	-4.99	+7.71	
10.	10.	1 2.	Redis 🗄	Key-value store	98.80	-1.86	+19.42	

Classificação de SGBDs NoSQL

150 tipos de banco de dados NOSQL

- ☐ Fonte: http://nosql-database.org/
- □ Dados compilados manualmente

Classificação de SGBD NOSQL e Produtos

KEY VALUE

COLUMN

GRAPH

DOCUMENT

Amazon DynamoDB (Beta)

Amazon

DynamoDB (Key-value)

Desenvolvido em: Java

Quem Usa?

-Washingtonpost.com

-Elsevier (Editora)

BigTable(column) Google

Desenvolvido em: C++

Quem Usa:

Gmail

Google Maps,

YouTube

Cassandra (column)

Desenvolvido em: Java

Quem Usa?

Twitter

NetFlix

Facebook

Neo4j (graph)

Desenvolvido em: Java

Quem Usa?

- -WalMart
- -National Geographic
- -Ebay

MongoDB (Document)

Desenvolvido em: C

Quem Usa:

- -Globo.com
- Apontador
- -Forbes
- -New York Times

Quando e qual utilizar?

Fonte: Martin Fowler

Fonte: http://www.martinfowler.com/bliki/PolyglotPersistence.html

Amazon DynamoDB— Key-Value

SQL Query

AWS Query

MongoDB - Document

SQL Query

Operation Find

Neo4j- Graph

SQL Query

```
SELECT _id, name, address — projection
FROM users — table
WHERE age > 18 — select criteria
LIMIT 5 — cursor modifier
```

Cyber query

```
MATCH a
WHERE a.age>18
RETURN a.id, a.name. a.address
LIMIT 5
```

Cassandra - Column

```
SQL Query
           SELECT _id, name, address ← projection
           FROM
                                              table
                 users

    select criteria

           WHERE age > 18
           LIMIT
                                              cursor modifier
                                        Comandos CRUD
CQL – Cassandra Query Language
                                 (Create, Read, Update, Delete)
                                           são iguais
             SELECT _id, na
             FROM
                     users
             WHERE age > 18
                                                select criteria
             LIMIT
                     5
                                                cursor modifier
```

Quais linguagens suportam NoSQL?

	Amazon Dynamo	Neo4j	Cassandra	MongoDB
С				X
C#				X
C++			X	X
Go			X	X
Java	X	X	X	X
Javascript	X			X
Node.js	X	X	X	X
Perl			X	X
PHP	X	X	X	X
Python		X	X	X
Ruby	X	X	X	X
Scala		X	X	X

Os banco de dados relacionais irão morrer?

Posição NoSQL – Gartner Magic Quadrant

Fonte:

Cases

SGBD:

sistema de processamento de faturas mensais

NOSQL:

Sistema focado em recomendações de melhores filmes.

Cases

SGBD:

Sistemas de processamento de ordem de venda

NOSQL:

Sistema de pesquisa, recomendações e adaptações de preços em tempo real

Cases

Plataforma para inteligência operacional

SGBD:

Dados de clientes, produtos e RH

NOSQL:

Explorar, analisar e virtualização de dados

Oportunidades no mercado

Profissionais no mercado

https://blogs.the451group.com/information_management/?s=NoSQL+LinkedIn+Skills

Perguntas

Referências

```
http://nosql-database.org/
http://www.couchbase.com/nosql-resources/what-is-no-sql
http://neo4j.com/customers/
http://aws.amazon.com/dynamodb/
http://www.nosqlfordummies.com/
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en US/NoSQL/Home%20Page
http://blog.parityresearch.com/21-nosql-innovators-to-look-for-in-2020/
https://blogs.the451group.com/information management/?s=NoSQL+LinkedIn+Skills
http://www.gartner.com/technology/reprints.do?id=1-1M9YEHW&ct=131028&st=sb
http://www.tomsitpro.com/articles/rdbms-sql-cassandra-dba-developer,2-547-2.html
http://www.slideshare.net/kevinweil/nosql-at-twitter-nosql-eu-2010
http://www.slideshare.net/thobe/nosql-for-dummies
```

Referências

http://www.mongodb.com/events/ http://docs.mongodb.org/manual/core/read-operations-introduction/ http://data.ime.usp.br/sbbd2012/artigos/pdfs/sbbd_min_01.pdf https://cassandra.apache.org/doc/cql/CQL.html http://www.indeed.com/jobtrends?q=nosql+developer&l= http://blog.nahurst.com/visual-guide-to-nosql-systems http://www.martinfowler.com/bliki/PolyglotPersistence.html http://www.infoq.com/br/news/2014/06/oracle-nosql-database-3.0 http://www.infoq.com/br/news/2014/06/splunk-hunk-6.1 http://docs.neo4j.org/chunked/stable/query-predicates.html http://http://www.splunk.com/

http://pt.slideshare.net/FernandoCunha15/nosql-uma-breve-introduo-44513664