生命科学基础 I

第三章 物质代谢 生物氧化

孔宇 教授 西安交通大学生命科学与技术学院 2021年10月4日

内容简介-生物氧化

1.生物氧化特点

2. 生物氧化过程

3. 其他

生命科学基础1

生物氧化的定义及特点

❖糖类、脂肪、蛋白质等有机物在细胞中氧化分解生成CO₂和H₂O并释放出能量的过程称为生物氧化(biological oxidation),由一系列氧化还原反应组成。又称细胞呼吸(cellular respiration);

脱氢

❖脱下的氢由相应的氢载体(NAD+、NADP+、FAD、FMN等)所接受,再通过一系列递氢体或递电子体传递给氧而生成H₂0。

生命科学基础1

(一) 电子传递链概念

- ❖生物氧化过程中,代谢物脱下的氢经过一 系列电子传递体,最终交给氧分子生成水。 此电子传递体系又称为<u>电子传递链</u> (electron transfer chain)。
- ❖由于电子传递过程与细胞呼吸有关,又称 <u>呼吸链</u> (respiratory chain)。

13 A 4 T 18

电子呼吸链

呼吸链的组成

人线粒体呼吸链复合体(complex)

复合体	酶名称	多肽链数	辅基
复合体Ⅰ	NADH-泛醌还原酶	39	FMN, Fe-S
复合体Ⅱ	琥珀酸-泛醌还原酶	4	FAD, Fe-S
复合体Ⅲ	泛醌-细胞色素C还原	酶 10	铁卟啉, Fe-S
复合体Ⅳ	细胞色素c氧化酶	13	铁卟啉,Cu

^{*} 泛醌 和 Cyt c 均不包含在上述四种复合体中。

>> 电子传递链和氧化呼吸链

- 按照ΔE从 <mark>负→正</mark>依次 排列
- 电子按上述 顺序流动

复合体 I (NADH-泛醌还原酶)

NADH \rightarrow FMN; Fe-S_{N-1a/b}; Fe-S_{N-2}; Fe-S_{N-3}; Fe-S_{N-4}

2. 复合体Ⅱ (琥珀酸-泛醌还原酶)

琥珀酸→ FAD;Fe-S₁; b₅₆₀; Fe-S₂; Fe-S₃

3. 复合体Ⅲ (泛醌-细胞色素c还原酶)

※ 总结-4质子

A STATE OF THE STA

4. 复合体Ⅳ(细胞色素c氧化酶)

两条电子传递链的关系

1、NADH氧化呼吸链

NADH →复合体 $I \to Q \to g$ 合体 $I \to Cyt c \to g$ 合体 $IV \to O_2$

2、琥珀酸氧化呼吸链

琥珀酸 \rightarrow 复合体 \coprod \rightarrow Q \rightarrow 复合体 \coprod \rightarrow Cyt c \rightarrow 复合体 $IV \rightarrow O_2$

18

NADH/FADH₂ 的电子传递对应的质子泵出数

NADH: 10个质子 FADH₂: 6个质子

氧化磷酸化

❖线粒体中,底物分子脱下的氢原子经递氢体系传 递给氧:过程中释放能量使ADP磷酸化生成ATP, 这种能量的生成方式称为氧化磷酸化(oxidative

phosphorylation)

- ❖化学渗透假说-1978年Nobel
- 存在于线粒体内膜上的ATP合酶利用,生成高能磷 酸基团,并与ADP结合而合成ATP。

• 跨膜pH梯度和跨膜电位差:这种形式的"势能"被

Peter D. Mitchell

1.3 质子梯度的形成

🧼 偶联的实现 - ATP合酶

❖嵌于线粒体内膜, 头部呈颗粒状, 突出于线粒体内 膜的基质侧。

23

Bovine mitochondrial ATP synthase. The FO, F1, axle, and stator regions are color coded magenta, green, orange, and cyan respectively.

当H+顺浓度递度经 F_0 中a亚基和c亚基之间回流时, γ 亚基发生旋转,3个 β 亚基的构象发生改变。

ATP合酶的工作机制

ADP and P_i (pink) shown being combined into ATP (red), and the rotating γ (gamma) subunit in black causing conformation

1对电子传递所能产生的ATP数目

- ▶形成1个分子的ATP需要4个质子回流
 - □每合成1个ATP需要3个质子通过ATP合酶。
 - □ATP、ADP和无机磷酸通过线粒体内膜的转运是由ATP-ADP载体和磷酸转位 酶催化的。把一个ATP分子从线粒体基质转运到胞液需要消耗1个质子。
- ▶一对电子通过NADH电子传递链可泵出10个质子,则可形成2.5 个ATP分子;
- ▶如果一对电子通过FADH₂电子传递链有6个质子泵出,则可形成1.5个ATP分子。

胞浆中NADH的利用-苹果酸穿梭系统

- ❖主要存在于肝和心肌中。
- ❖胞液中NADH+H+的一对氢原子经此穿梭系统 带入一对氢原子,由于经NADH氧化呼吸链进 行氧化磷酸化,故可生成2.5 分子ATP。

27

胞浆中NADH的利用-磷酸甘油穿梭系统

自学

- ◆主要存在于脑和骨骼肌中。
- ❖NADH通过此穿梭系统带一对氢原子进入线 粒体,由于经琥珀酸氧化呼吸链进行氧化磷 酸化,故只能产生1.5 分子ATP。

29

磷酸甘油穿梭系统

自学

能量统计

葡萄糖有氧氧化生成的ATP

	反 应	辅 酶	ATP
	葡萄糖 → 6-磷酸葡萄糖		-1
第	6-磷酸果糖 → 1,6-双磷酸果糖		-1
一 阶	2×3-磷酸甘油醛→2×1,3-二磷酸甘油	酸 NAD ⁺	2×2.5 或 2×1.5*
段	2×1,3-二磷酸甘油酸→ 2×3-磷酸甘油	酸	2×1
+2	2 ×磷酸烯醇式丙酮酸→2×丙酮	酸	2×1
第二阶段	2 ×丙酮酸→2×乙酰CoA	NAD^+	2 × 2.5
₇₄ (· 2×异柠檬酸 → 2 × α酮戊二酸	NAD+	2 × 2.5
第 三 阶 段	2×α酮戊二酸→2×琥珀酰CoA	NAD+	2 × 2.5
	2 imes琥珀酰CoA → $2 imes$ 琥珀酸		2×1
	2×琥珀酸 → 2 × 延胡索酸	FAD	2 × 1.5
(・2×苹果酸 → 2 × 草酰乙酸	NAD+	2 × 2.5

※ 小结

- ❖熟悉化学渗透学说
- ❖熟悉电子呼吸链
- ❖掌握能量(ATP)的计算:

❖胞浆中甘油彻底有氧氧化产生多少ATP?