Link Layer

Reference

- Chapter 05, Computer Networking: A Top Down
 Approach, 6/E, Jim Kurose, Keith Ross, Addison-Wesley
- Adapted from part of the slides provided by the authors

CS3700 - Instructor: Dr. Zhu

Link layer services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, dest
- reliable delivery between adjacent nodes
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors
 - o signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card;
 Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

CS3700 - Instructor: Dr. Zhu

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, flow control, reliable data transmission, etc.
- receiving side
 - looks for errors, flow control, reliable data transmission, etc
 - extracts datagram, passes to upper layer at receiving side

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

CS3700 - Instructor: Dr. Zhu

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces": TDMA (time division multiple access), FDMA (frequency division multiple access), CDMA (code division multiple access).
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
 - Examples: slotted ALOHA, ALOHA, CSMA, CSMA/CD used in Ethernet, CSMA/CA used in 802.11
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns
 - Examples: bluetooth, FDDI, token ring

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

CS190C - Instructor: Dr. Zhu

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob.
 p until success

Slotted ALOHA

Maximum efficiency = 0.37
at best: channel used for useful transmissions 37% of time!

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- · collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

CS190C - Instructor: Dr. Zhu

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0$ -1, t_0 +1]

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

 if channel sensed idle: transmit entire frame

- if channel sensed busy, defer transmission
- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CS3700 - Instructor: Dr. Zhu

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

CSMA/CD (collision detection)

CS3700 - Instructor: Dr. Zhu

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters *binary* (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}.
 NIC waits K[.]512 bit times, returns to Step 2
 - longer backoff interval with more collisions