CS 7545: Machine Learning Theory

Fall 2021

Lecture 1: Any Single Gaussian

Instructor: Santosh Vempala Lecture date: 08/25/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Introduction

Given set of points $x^1, x^2, \dots, x^m \in \mathbb{R}^d$, how to summarize data? For one-dimensional data,

• Mean $\mu = \frac{1}{m} \sum_{i=1}^{m} x^i$

• Variance $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x - \mu)^2$.

In higher dimensions (d > 1), the mean is still $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{i}$. The variance along any unit vector $v \in \mathbb{R}^{d}$, σ_{v}^{2} is the variance of points $\langle x^{1}, v \rangle$, $\langle x^{2}, v \rangle$, ... $\langle x^{m}, v \rangle$.

$$\sigma_v^2 = \frac{1}{m} \sum_{i=1}^m (\langle x^i, v \rangle - \langle \mu, v \rangle)^2$$

$$= \frac{1}{m} \sum_{i=1}^m \langle (x^i - \mu), v \rangle^2$$

$$= v^\top \left(\frac{1}{m} \sum_{i=1}^m (x^i - \mu)(x^i - \mu)^\top \right) v$$

The matrix $\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^i - \mu)(x^i - \mu)^{\top}$ is called the *covariance matrix* of the data and $\sigma_v^2 = v^{\top} \Sigma v$.

$$\Sigma_{ii} = \frac{1}{m} \sum_{l=1}^{m} (x_i^l - \mu_i)^2$$

$$\Sigma_{ij} = \frac{1}{m} \sum_{l=1}^{m} (x_i^l - \mu_i)(x_j^l - \mu_j)$$

Probability Distribution

- For discrete random variable X, its probability distribution is p(x) = Pr(X = x).
- For a continuous random variable X, p(X = x) is called probability density function (pdf).

Example 1.1. Uniform density in [a,b], $p(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$.

In general, we can have a probability density function $p(x) \propto f(x)$, where $f(x) \geq 0$ and $\int f(x)dx < \infty$.

1.2 Gaussian Distribution

 $\mathcal{N}(\mu, \sigma^2)$ denotes a Gaussian distribution with mean μ and variance σ^2 .

Standard Gaussian Distribution

- The pdf of 1-dimensional standard Gaussian distribution, $\mathcal{N}(0,1)$ is $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.
- The pdf of the standard (spherical) Gaussian distribution in \mathbb{R}^d , $\mathcal{N}(0, I_d)$ is

$$p(x) = \frac{1}{(\sqrt{2\pi})^d} e^{-\frac{-\|x\|^2}{2}} = \prod_{i=1}^d \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}}\right).$$

It is the product of one-dimensional Gaussian along each coordinates.

Fact. For any unit vector $v \in \mathbb{R}^d$, and $x \sim \mathcal{N}(0, I_d)$, $\langle x, v \rangle \sim \mathcal{N}(0, 1)$.

Proof. Let $\{v_1, v_2, \dots, v_d\}$ be an orthonormal basis of \mathbb{R}^d with $v_1 = v$. Then $\|x\|^2 = \sum_{i=1}^d \langle x, v_i \rangle^2$.

$$\Pr(\langle x, v \rangle = t) = \int_{\langle x, v \rangle = t} p(x) dx = \int_{\langle x, v \rangle = t} \frac{1}{(\sqrt{2\pi})^d} e^{-\frac{\|x\|^2}{2}} dx = \int_{\langle x, v \rangle = t} \frac{1}{(\sqrt{2\pi})^d} e^{-\frac{\sum_{i=1}^d \langle x, v_i \rangle^2}{2}} dx$$

Let $y_i = \langle x, v_i \rangle$ for $i \in [d]$ and $V = (v_1 \cdots v_d)$. Then x = Vy and $dx = |\det(V)|dy = dy$. So,

$$\Pr(y_1 = t) = \int_{y_1 = t} \frac{1}{(\sqrt{2\pi})^d} e^{-\frac{\sum_{i=1}^d y_i^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \cdot \int_{\mathbb{R}^{d-1}} \frac{1}{(\sqrt{2\pi})^{d-1}} e^{-\frac{\sum_{i=2}^d y_i^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}.$$

Fact. $\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1.$

Proof. Let $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ and $p(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$. Then,

$$\left(\int_{\mathbb{R}}p(x)dx\right)^2=\int_{\mathbb{R}^2}p(x,y)dxdy=\int_{\mathbb{R}^2}\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}dxdy.$$

For the change of variables for $x = r \cos \theta$, $y = r \sin \theta$, we get $dxdy = 2\pi r dr$, and

$$\left(\int_{\mathbb{R}} p(x)dx\right)^2 = \int_{\mathbb{R}} \frac{2\pi r}{2\pi} e^{-\frac{r^2}{2}} dr = 1.$$

General Gaussian Distribution

- The pdf of one-dimesional Gaussian $\mathcal{N}(\mu, \sigma^2)$ is $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- The pdf of Gaussian $\mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^d is

$$p(x) = \frac{1}{(\sqrt{2\pi})^d \sqrt{\det \Sigma}} e^{-\frac{(x-\mu)^\top \Sigma^{-1}(x-\mu)}{2}}$$

Let Y = AX + b, where $X \sim \mathcal{N}(0, I_d)$, then $Y \sim \mathcal{N}(b, AA^{\top})$.

$$\mathbb{E}(Y) = \mathbb{E}(AX + b) = b \text{ and } \mathrm{Var}(y) = \mathbb{E}((AX)(AX)^\top) = A\mathbb{E}(XX^\top)A^\top = AA^\top.$$

Fact. If $X \sim \mathcal{N}(\mu, \Sigma)$ and $Y = \Sigma^{-1/2}(X - \mu)$, then $Y \sim \mathcal{N}(0, I_d)$.

1.2.1 Best fit Gaussian

Problem 1. Given random i.i.d. samples x^1, x^2, \ldots, x^m , estimate the parameters (μ, Σ) of a Gaussian that maximizes the likelihood of generating the observed samples.

A natural choice for (μ, Σ) would be the empirical mean, $\tilde{\mu} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and the empirical covariance matrix, $\tilde{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (x^i - \tilde{\mu})(x^i - \tilde{\mu})^{\top}$.

Theorem 1.2. Given random i.i.d. samples x^1, x^2, \ldots, x^m , the emprical mean and covariance, $(\tilde{\mu}, \tilde{\Sigma})$, are the maximum likelihood estimators.

Proof. Consider the case when $\Sigma = \sigma^2 I_d$. The probability of observing x^1, x^2, \ldots, x^m is

$$p(x^1, x^2, \dots, x^m) = \prod_{i=1}^m \left(\frac{1}{(\sqrt{2\pi}\sigma)^d} e^{-\frac{\|x-\mu\|^2}{2\sigma^2}} \right).$$

Taking log, we get the log-likelihood function,

$$L(\mu, \sigma) = \log p(x^1, x^2, \dots, x^m; \mu, \sigma) = -md \log \sqrt{2\pi}\sigma - \sum_{i=1}^m \frac{\|x^i - \mu\|^2}{2\sigma^2}.$$

Taking partial derivatives of $L(\mu, \sigma)$, we get

$$\frac{\partial L(\mu, \sigma)}{\partial \mu_j} = -\frac{1}{\sigma^2} \sum_{i=1}^m (x_j^i - \mu_j), \quad \frac{\partial L(\mu, \sigma)}{\partial \sigma} = -\frac{md}{\sigma} + \frac{\sum_{i=1}^m \left\| x^i - \mu \right\|^2}{\sigma^3}.$$

$$\frac{\partial L(\mu, \sigma)}{\partial \mu_j} = 0 \Rightarrow \mu_j = \frac{1}{m} \sum_{i=1}^m x_j^i$$
, and

$$\frac{\partial L(\mu, \sigma)}{\partial \sigma} = 0 \Rightarrow \sigma^2 = \frac{1}{md} \sum_{i=1}^{m} \|x - \mu\|^2$$

Therefore, $\mu = \frac{1}{m} \sum_{i=1}^{m} x^i$ and $\sigma^2 = \frac{1}{md} \sum_{i=1}^{m} \|x - \mu\|^2$ maximize $L(\mu, \sigma)$.

Theorem 1.3 (Central Limit Theorem). Let X_1, X_2, \ldots, X_n be i.i.d. random variables drawn from some distribution with bounded variance, $\operatorname{Var}(X_i) \leq \infty$, then $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then,

$$Y_n \xrightarrow{converges \ in \ distribution} \mathcal{N}\left(\mathbb{E}(X_1), \frac{1}{n} \mathrm{Var}(X_1)\right).$$

Theorem 1.4 (Berry-Esseen theorem). Let X_1, X_2, \ldots, X_n be independent random variables. Let $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $Z_n \sim \mathcal{N}(\mathbb{E}(Y_n), \text{Var}(Y_n))$. Then, for all $t \in \mathbb{R}$,

$$|\Pr(Y_n \le t) - \Pr(Z_n \le t)| \le \frac{c \cdot \sum_{i=1}^n \mathbb{E}(|X_i|^3)}{\operatorname{Var}(Y_n)^{3/2}},$$

where c is an absolute constant in [0,1].

Example 1.5. Let $X_i = \begin{cases} -1 & w.p. \ 1/2 \\ 1 & w.p. \ 1/2 \end{cases}$ and $Y_n = \sum_{i=1}^n X_i$.

Then $\mathbb{E}(X_i) = 0$, $\mathbb{E}(X_i^2) = \mathbb{E}(|X_i^3|) = 1$, $\mathbb{E}(Y_n) = 0$, and $\operatorname{Var}(Y_n) = n$. So, for $Z_n \sim \mathcal{N}(0, n)$ and for any $t \in \mathbb{R}$,

$$|\Pr(Y_n \le t) - \Pr(Z_n \le t)| \le \frac{cn}{n^{3/2}} = cn^{-1/2}.$$