CSE8803/CX4803

Machine Learning in Computational Biology

Lecture 14a: Network basics

Yunan Luo

Learning from network data Learning from sequence data Learning from high-dim data

1/12/2022 1/17/2022 1/19/2022 1/24/2022 1/26/2022	Learning fror sequence da			
1/31/2022 2/2/2022 2/7/2022	Learning from			
2/9/2022 2/14/2022 2/16/2022	high-dim data			
2/21/2022 2/23/2022	Phase 1 presentations			
2/28/2022 3/2/2022	Learning from structure data			
3/7/2022	Phase 2 presentations			
3/9/2022 3/14/2022	Learning from network data			
3/16/2022	Phase 3 presentations			
3/21/2022 3/23/2022	Spring break			
3/28/2022 3/30/2022	Learning from network data			
4/4/2022 4/6/2022				
4/11/2022 4/13/2022	Phase 4 presentations			
4/18/2022 4/20/2022 4/25/2022				

Date

1/10/2022

4/42/2022

Topic

Introduction

Course intro & how to present papers

Dynamic programming & sequence alignment I No class (MLK Day)

Sequence alignment II
HMM & gene/motif finding
HMM & Profile HMM
Deep learning for DNA/protein sequence
Learn from high-dim data: PCA, autoencoder & VAE
Learn from high-dim data: MDS, tSNE, UMAP

Clustering I

Clustering III
Student presentation 1-3
Student presentation 4-6

RNA structure prediction

Deep learning for structures (protein structure prediction)

Student presentation 7-9

Network basics & traditinal ML for graphs

Network embeddings

Student presentation 10-12

No class (Spring Break)

No class (Spring Break)

Graphical Models

Deep learning for networks (graph neural networks)

Student presentation 13-15

Student presentation 15-18

Student presentation 18-21

Student presentation 22-24

Student presentation 25-27

Student presentation 28-30

Student presentation 31-33

Network (graph) basics

Networks (graphs)

Protein-protein interaction networks

Image credit: Missoula Current News

Internet

Disease pathways

Citation networks

Gene regulatory networks

Underground networks

Image credit: MDPI

Molecules

Network is a general data representation

Different types of ML tasks on graphs

Classic graph ML tasks

- Node classification: predict a property of a node
 - Example: Protein function prediction
- Link prediction: Predict whether a link exists between two nodes
 - Example: Recommendation (user <-> item), drug-target interaction prediction
- Graph classification: categorize different graphs
 - Example: Molecular property prediction
- Clustering: detect if nodes form a community
 - Example: Social circle detection, disease pathway detection
- Graph generation: generate new graphs
 - Example: drug design

These graph ML tasks lead to high-impact applications in real world

Example 1: node-level ML tasks

Protein structure prediction

- Nodes: amino acids in a protein sequence
- Edges: proximity (distance) between amino acids (residues)

Example 2: Edge-level ML tasks

Recommender Systems

- Nodes: uses and items
- Edges: user-item interactions
- Goal: Recommend items users might like

Example 3: Edge-level ML tasks

Drug-target interaction

- Nodes: drugs and proteins (targets)
- Edges: drug-target interactions
- Goal: Predict unknown interactions between drugs and targets

Example 4: Subgraph-level ML tasks

Traffic prediction

- Nodes: road segments
- Edges: connectivity between road segments
- Goal: predict time of arrival (ETA)

Example 5: Graph-level ML tasks

Antibiotics discovery

Nodes: atoms

• Edges: bonds

 Goal: Predict novel antibiotics with a desired property

Stokes et al., Cell, 2020

What is a network (graph)?

Graph: G = (V, E)

Objects: nodes, vertices V

Interactions: links, edges *E*

System: network, graph **G(V, E)**

Node degree

Node degree, k_i : the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree:
$$\overline{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$ In directed networks we define an **in-degree** and **out-degree**. The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2$$
 $k_C^{out} = 1$ $k_C = 3$

$$\overline{k} = \frac{E}{N}$$

$$\overline{k^{in}} = \overline{k^{out}}$$

Directed vs. Undirected Graphs

Undirected graphs

• **Links**: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed graphs

• **Links**: directed (arcs)

- Examples:
 - Paper citation
 - Flights between airports

Heterogeneous graphs

Heterogeneous graph: G = (V, E, T, R)

- Nodes with node types $v_i \in V$
- Edges with relation types $(v_i, r, v_j) \in V$
- Node type T(v_i)
- Relation type $r \in \mathbb{R}$

Many graphs are heterogeneous graphs

Biomedical Knowledge Graphs

Example node: Migraine

Example edge: (fulvestrant, Treats, Breast Neoplasms)

Example node type: Protein

Example edge type (relation): Causes

Academic Graphs

Example node: ICML

Example edge: (GraphSAGE, NeurIPS)

Example node type: Author

Example edge type (relation): pubYear

Representing graphs: adjacency matrix

 $A_{ii} = 1$ if there is a link from node i to node j $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Weighted adjacency matrix

Unweighted

Weighted

Adjacency matrices are sparse

Most real-world networks are sparse

			Number of edges Average degree			
NETWORK	NODES	LINKS	DIRECTED/ UNDIRECTED	N	E	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
www	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email Addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

Consequence: Adjacency matrix is filled with zeros (Density of the matrix [E/N²]: WWW=1.51x10⁻⁵)

Representing graphs: edge list

Represent graph as a list of edges:

Representing graphs: adjacency list

- Represent graph as a list of (key: value) pairs:
 - (Node: its neighboring nodes)

Traditional machine learning for graphs

(for simplicity, we focus on undirected graphs in the lecture)

Machine learning tasks on graphs

- Node-level prediction
- Link-level prediction
- Graph-level prediction

Rink-level Graph-level G

Design features for nodes / links / graphs

Traditional machine learning pipeline

Train an ML model:

- Obtain features of training data (node/edge/graph)
- Train a ML model (SVM, NN, etc)

Apply the model:

 Given a new node/edge/graph, obtain its features and make a prediction

Traditional ML focuses on (manually) designing effective features over graphs