ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ТЕСТ ПО МАТЕМАТИКА – 08 юли 2013 г. ВАРИАНТ ВТОРИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

- 1. Изразът $(3+\sqrt{5})(\sqrt{10}-\sqrt{2})\sqrt{3-\sqrt{5}}$ е равен на: а) $\sqrt{3}-\sqrt{5}$, б) $3\sqrt{2}$, в) 5, г) 8, д) 10.
- 2. Ако $\frac{a}{b} = \frac{7}{5}$, то изразът $\frac{a^2 + b^2}{a^2 b^2}$ е равен на: а) 1, б) $\frac{3}{2}$, в) $\frac{7}{3}$, г) 3, д) $\frac{37}{12}$.
- 3. Най-малката цяла положителна стойност на параметъра a, за която квадратното уравнение $x^2-(a+1)x+1=0$ има два различни реални корена, е равна на:
- а) 1, б) 2, в) 3, г) 4, д) 5.
- 4. Ако x_1 и x_2 са корените на квадратното уравнение $x^2-20x+13=0$, то стойността на израза $x_1(2+x_2)+2x_2$ е равна е:
 - а) 40, б) 50, в) 53, г) 58, д) 63.
- 5. Кое от посочените числа е корен на уравнението $\sqrt{4-(x-2)^2} + \sqrt{1-(x-2)^2} = 3 + \sqrt{2x-x^2}:$ a) $1+\sqrt{2}$, б) 2, в) $2-\sqrt{2}$, г) $4-\sqrt{2}$, д) $3-\sqrt{5}$.
- 6. Изразът lg 392-3lg 2-2lg 7 е равен на: a) 0, б) lg 2, в) lg 3, г) 1, д) 7.

Γ) X	Γ) $x \in (2;4)$,		$) x \in (4;5) \cup (5;\infty).$							
a) <i>x</i>	\in $(-1;0),$	б	оито съществува $\log_x (x)$ $x \in (0;1),$ $x \in (2;\infty).$							
от : разл	цифрите 2, пични помех	3 и 5, кду си, е ј	-	ифрено	число цифрите са					
a) 2	,	6) 3,	в) 5,	г) б,	д) 30.					
11. Модата на данните 11, 2, 8, 3, 10, 2, 7, 5, 2, 3 е равна на:										
a)	1,	$6) \frac{3}{2}$,	в) 2,	г) 3,	д) 11.					
12. В една кутия има 50 еднакви номерирани топки. От тях 10% са червени, 20% са зелени, а останалите топки са бели. По случаен начин от кутията се изважда една топка. Вероятността извадената топка да е бяла, е равна										
на: a)	$\frac{3}{10}$,	6) $\frac{3}{5}$,	B) $\frac{7}{10}$,	Γ) $\frac{4}{5}$,						
13. Частното на геометрична прогресия с общ член $a_n = (-1)^n 3^{n+1}$ е равно на:										
a)	-3,	$6) \frac{1}{3}$,	в) 3,	г) 9,	д) -9.					
14. Сто	ойността на	производ	ната на функцията $f($	$(x) = x\sqrt{x}$	$\frac{1}{x} - x^3$ при $x = 4$ e:					
			в) 5,							
15. Hai	á-голямата (стойност	на функцията $f(x) = 3$	$-\sqrt{x-5}$	е равна на:					
		б) 2,	в) 3,		д) 5.					

7. Ако xy = -6 и x + y = 1, то изразът $(x - y)^2$ е равен на:

в) 20,

a) $x \in (-\infty; -1)$, 6) $x \in [-1; 1]$, B) $x \in (1; 2)$,

г) 24,

д) 25.

б) 12,

8. Решенията на неравенството $\frac{x^2 - x + 2}{x + 1} < 0$ са:

a) -8,

16. Ако $\sin \frac{\alpha}{2} = \frac{3}{5}$, то изразът $\operatorname{tg} \frac{\alpha}{2} \cdot \sin \alpha$ е равен на:
a) $\frac{1}{12}$, б) $\frac{4}{25}$, B) $\frac{18}{25}$, Γ) $\frac{25}{12}$, Д) 3 .
17. Около една окръжност са описани квадрат и правилен шестоъгълник. Периметърът на шестоъгълника е равен на 48 <i>ст</i> . Дължината на страната

- Периметърът на шестоъгълника е равен на 48 *ст*. Дължината на страната на квадрата е:
 - а) $2\sqrt{3}$ cm, б) 7 cm, в) 8 cm, г) $8\sqrt{3}$ cm, д) $9\sqrt{5}$ cm.
- 18. Правоъгълен трапец ABCD ($AB \perp AD$) е описан около окръжност и BC = 7 cm. Ако средната отсечка на трапеца е 6 cm, то височината на трапеца има дължина:
 - а) 5 cm, б) 6 cm, в) 7 cm, Γ) $5\sqrt{2}$ cm, д) 10 cm.
- 19. Ъглополовящата CL на $\angle BCA$ на ΔABC разделя страната AB на отсечки AL=3 и BL=5. Тогава, за периметърът P на ΔABC е вярно, че: а) P<4, б) 4< P<10, в) 10< P<16,
 - a) P < 4, b) 4 < P < 10, b) 10 < P < 7 d) 16 < P < 40, d) 40 < P < 64.
- 20. Височината на прав кръгов конус е $18\ cm$, а лицето на триъгълник със страни диаметър на основата и две образуващи на конуса е $108\ cm^2$. Обемът на конуса е равен на:
 - а) 600 cm^3 , б) 648 cm^3 , в) $108\pi \text{ cm}^3$, г) 110 cm^3 , д) $216\pi \text{ cm}^3$.

ВТОРА ЧАСТ

Следващите 10 задачи са без избираем отговор. Върху талона за отговорите от теста (последната страница) в празното поле за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован верен отговор получавате по 2 точки. За грешен отговор или за непопълнен отговор точки не се дават и не се отнемат.

21. Да се намери множеството от стойности на функцията

$$f(x) = 2 + \frac{x}{x^2 + 2} \sqrt{1 + \frac{x^4 + 4}{4x^2}}$$

при $x \in (-\infty; 0)$.

22. Да се реши неравенството

$$\left(x^2 - 4x + 3\right)\sqrt{x - 2} \le 0.$$

23. Да се намерят всички числа $\alpha \in [5\pi; 9\pi]$, за които $\cos 2\alpha + 5 = 6\cos \alpha$.

- 24. За аритметичната прогресия с общ член a_n е известно, че $a_1+a_5=10\,$ и $a_3.a_8=100\,$. Да се намери $a_{10}\,$.
- 25. Да се намери най-голямата стойност на функцията $f(x) = \frac{x}{x^2 + 1}$ в затворения интервал [-1;1].
- 26. В една ваза има 8 червени и 2 бели рози. Да се намери броят на различните начини, по които от тях може да се състави букет от три рози, в който поне една роза да е бяла.
- 27. Даден е квадрат ABCD. Точка M е среда на страната CD, а точка N лежи на страната BC и BN:NC=1:2. Да се намери големината в градуси на $\angle MAN$.
- 28. Вписаната в правоъгълен триъгълник окръжност се допира до хипотенузата му в точка, която я разделя на отсечки с дължини 5 *ст* и 12 *ст*. Да се намери периметърът на този правоъгълен триъгълник.
- 29. Сфера е вписана в прав кръгов цилиндър така, че сферата се допира до двете основи на цилиндъра и всяка образуваща на цилиндъра е допирателна към сферата. Да се намери отношението на лицето на сферата към лицето на пълната повърхнина на цилиндъра.
- 30. Да се намерят стойностите на реалния параметър a, за всяка от които уравнението

$$\frac{ax}{x-1} + \frac{x}{x+1} = \frac{1}{x^2 - 1}$$

има единствено решение.

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

Драги кандидат-студенти, попълвайте внимателно отговорите на задачите от теста <u>само върху талона за отговор (последната страница)!</u>

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ВТОРИ на ТЕСТ ПО МАТЕМАТИКА – 08 юли 2013 г. за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ПЪРВА ЧАСТ

1 г	2 д	3 б	4 в	5 б	6 a	7д	8 a	9 б	10 г
11 в	12 в	13 a	14 a	15 в	16 в	17 г	18 a	19 г	20 д

ВТОРА ЧАСТ

21.
$$f(x) = \left\{ \frac{3}{2} \right\}$$

22.
$$x \in [2;3]$$

23.
$$6\pi; 8\pi$$

24.
$$a_{10} = 26$$

25.
$$f_{\text{max}} = f(1) = \frac{1}{2}$$

29.
$$\frac{2}{3}$$

30.
$$a = -1$$
; $a = \frac{1}{2}$