Sistemas de Numeración

CONJUNTO DE SÍMBOLOS Y REGLAS QUE PERMITEN REPRESENTAR LAS CANTIDADES.

Sistemas de Numeración

Sistema Romano

<u>Símbolos</u>

ı	V	X	L	С	D	M
1	5	10	50	100	500	1000

- No posicional
- No incluye el cero
- No permite realizar operaciones aritméticas

Reglas

Ш

IV

VI

▶ Sistema decimal

- Inventado por los hindúes, transmitido a Europa por los árabes (aprox. Siglo VIII)
- Incluye el concepto del cero
- Tiene10 símbolos -> Base 10
- Posicional

<u>Símbolos</u>

► Sistema decimal

 Centena	Decena	Unidad	Décima	Centésima
100	10	1	1/10	1/100
10 ²	10 ¹	100	10-1	10 ⁻²

Sistema de numeración Posicional

TEOREMA FUNDAMENTAL
DE LA NUMERACIÓN

base
$$\sum_{i=-n}^{M} a_i B^{i} \longrightarrow posición$$
símbolo
$$0 <= a_i < B$$

```
Ejemplo: 52.18 => 5 \times 10^{1} + 2 \times 10^{0} + 1 \times 10^{-1} + 8 \times 10^{-2}

Ejemplo: 52.18 => 5 \times 10 + 2 \times 1 + 1 \times 0.1 + 8 \times 0.01

Ejemplo: 52.18 => 50 + 2 + 0.1 + 0.08
```

Sistemas de Numeración Posicionales

Sistema posicional

 Cada símbolo tendrá un valor absoluto (valor del símbolo en sí) y un valor relativo (que también denominamos peso y es valor que toma el símbolo por estar en una posición u otra)

Símbolo más significativo (el de mayor peso)

Pesa 1.000

Símbolo menos significativo (el de menor peso)

Pesa 1

Sistemas de Numeración Posicionales

BASE: Cantidad de símbolos distintos que forman parte del sistema de numeración (incluyendo el 0)

- Por ejemplo:
 - •Base 10 (decimal):
 - •símbolos del 0 al 9
 - •Base 2 (binario):
 - •símbolos del 0 al 1
 - •Base 8 (octal):
 - •símbolos del 0 al 7
 - •Base 4:
 - •símbolos del 0 al 3

Sistemas de Numeración Posicionales

Como se escribe el 16 decimal en las otras bases...

La base escrita en su base se escribe como ...

A partir de ahora cuando tenga un número por ejemplo: 123 tendré que aclarar cual es su base ¿En que base podría estar?

Decimal Base 10	Binario Base 2	Base 4	Octal Base 8	Hexadecimal Base 16
00	000	00	00	00
01	001	01	01	01
02	010	02	02	02
03	011	03	03	03
04	100	10	04	04
05	101	11	05	05
06	110	12	06	06
07	111	13	07	07
08	1000	20	10	08
09	1001	21	11	09
10	1010	22	12	0A
11	1011	23	13	OB
12	1100	30	14	0C
13	1101	31	15	0D
14	1110	32	16	OE
15	1111	33	17	OF
16	10000	100	20	10

Sistemas de Numeración Posicionales

TEOREMA FUNDAMENTAL DE LA NUMERACIÓN PERMITE PASAR UN NÚMERO DE UNA BASE A BASE 10.

Ejemplos:

$$1001_{2} = 1 \cdot 2^{0} + 0 \cdot 2^{1} + 0 \cdot 2^{2} + 1 \cdot 2^{3}$$

$$1 + 0 + 0 + 8 = 9_{10}$$

$$15_{8} = 5 \cdot 8^{0} + 1 \cdot 8^{1}$$

$$5 + 8 = 13_{10}$$

$$724_{8} = ?_{10}$$

$$724_{8} = 4 \cdot 8^{0} + 2 \cdot 8^{1} + 7 \cdot 8^{2}$$

$$4 + 16 + 448 = 468_{10}$$

Ejemplos

$$11011,101_{2} = 1 \cdot 2^{0} + 1 \cdot 2^{1} + 0 \cdot 2^{2} + 1 \cdot 2^{3} + 1 \cdot 2^{4} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

$$1 + 2 + 0 + 8 + 16 + 0,5 + 0 + 0,125 = 27,625_{10}$$

El caso del 10

$$10_{16} = 0 \cdot 16^{0} + 1 \cdot 16^{1} = 16_{10}$$

 $10_{2} = 0 \cdot 2^{0} + 1 \cdot 2^{1} = 2_{10}$

$$10_B = 0 \cdot B^0 + 1 \cdot B^1 = B_{10}$$

Sistema binario

- ▶ Base: 2
- ► Símbolos: 0 y 1
- A cada símbolo se lo llama bit (binary digit)
- ► Ejemplos números binarios:

,11001011 palabra de 8 bits = 1 byte

Bit más significativo (el de mayor peso)

Bit menos significativo (el de menor peso)

1100 1011 palabra de 8 bits = 2 nibbles

Sistemas de Numeración Posicionales

 Puedo pasar de cualquier base a base 10 usando el teorema fundamental de la numeración

101011 = 175+9+35

Conversión entre base 2 y 10 mediante los pesos

- 1) Partiendo del binario pongo pesos y sumo
- 2) Partiendo del decimal me fijo con cual no me paso y voy restando

$$37_{10} = ?_2$$

Sistemas de numeración posicionales

▶ Pasaje de base 10 a otra base

- ▶ Parte entera: Divisiones sucesivas por la base
- ▶ Parte fraccionaria : Multiplicaciones sucesivas por la base

Conversión entre base 10 a otra base

PARTE ENTERA
DIVISIONES SUCESIVAS POR LA BASE DESTINO

178
$$\begin{bmatrix} 2 \\ 18 & 89 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 09 \end{bmatrix} \begin{bmatrix} 44 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 02 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 2 \end{bmatrix}$$

178
$$\frac{8}{18}$$
18 22 $\frac{8}{2}$
2/ 6/ 2

178₁₀ = 262₈

$$178_{16} = B2_{16}$$

Conversión entre base 10 a otra base

PARTE FRACCIONARIA
MULTIPLICACIONES SUCESIVAS POR LA BASE DESTINO

$$0.4_{10}$$
 -> Base 8

Pueden quedar dígitos hasta el 7

$$0.3_{10} = 0.01001_2$$

$$0.4_{10} = 0.3146_8$$

$$0.4_{10}$$
 -> Base 16

Pueden quedar dígitos hasta 15

$$0.4_{10} = 0.6_{16}$$

Conversión entre base 10 a otra base

PARTE FRACCIONARIA

CASO 1: Termina en 0 0.25₁₀ -> Base 2

$$0.25 \quad 0.5 \quad 0.5$$
 $\times 2 \quad \times 2$
 $0.5 \quad 1.0$
 $0.25_{10} = 0.01_{2}$

CASO 2: Periódico 0.3₁₀ -> Base 2

$$0.3_{10} = 0.01001_2$$

"Caso 3": truncamiento

Entonces...

$$0.3_{10} = 0.01001_2$$

178.3₁₀

$$178_{10} = 10110010_2$$

 $0.3_{10} = 0.01001_2$

Pasaje Directo

$$\frac{0}{4}$$
 $\frac{1}{2}$ $\frac{0}{1}$

Se puede usar cuando las bases origen y destino están relacionadas por una potencia entera y positiva

Pasaje Directo

$$2^{4} = 16$$

- ► ABC.B₁₆ → BASE 8
- 8? = 16 No hay pasaje directo
- \blacktriangleright ABC.B₁₆ \Longrightarrow BASE 2 \Longrightarrow BASE 8

$$101010111100.101100_{2} \longrightarrow 5274.54_{8}$$

Sistemas de Numeración

FIN ... AHORA ESTAMOS LISTOS PARA VER LEER Y VER LOS EJERCICIOS

PROPUESTOS SIGUIENDO EL ORIENTADOR

PROXIMAMENTE
OPERACIONES ARITMÉTICAS
EN BINARIO