Assignment-3

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

Problem 3.1. (UAG 5.1) A rgular function on \mathbb{P}^1 is constant. Deduce that there are no non-constant morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ for $m \geq 1$.

Solution. Suppose $f \in k(\mathbb{P}^1)$ be a rational function, which is regular everywhere. If we restrict it to the affine piece $\mathbb{A}_{(0)}$, we get $f(x,1) = p(x) \in k[x]$ (as for the case of affine variety dom f = V iff $f \in k[V]$). Similarly, we can restrict f to another affine piece \mathbb{A}_{∞} . We get, $f(1,y) = f(1/y,1) = p(1/y) \in k[y]$. It is possible iff p is constant.

Any morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ can be given by (f_1, \dots, f_m) where f_i are regular on \mathbb{P}^1 . Thus the function f is constant by the previous part.

Problem 3.2. (UAG 5.7) Let $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ be an isomorphism; identify graph of φ as subvariety of $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$. Now do the same if $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ is given by map $(X,Y) \mapsto (X^2,Y^2)$.

Solution. Consider the identity map $\mathrm{Id}:\mathbb{P}^1\to\mathbb{P}^1$ and the given isomorphism, it will give us a map $\mathrm{Id}\times\varphi:\mathbb{P}^1\times\mathbb{P}^1\to\mathbb{P}^1\times\mathbb{P}^1$ by $(x,y)\mapsto(x,\varphi(x))$. Under the identification of $\mathbb{P}^1\times\mathbb{P}^1=\mathbb{P}^3$ we can say, $\mathrm{Id}\times\varphi$ is also a morphism of variety. In the variety $\mathbb{P}^1\times\mathbb{P}^1$, the diagonal $\Delta=\{(x,x):x\in\mathbb{P}^1\}$ is closed (simply because it is given by the vanishing of x_0-x_2 and x_1-x_3 where $[x_0:x_1]$ and $[x_2:x_3]$ are co-ordinates of two copies of \mathbb{P}^1). It's not hard to see the graph of φ is given by the inverse image of Δ under $\mathrm{Id}\times\varphi$.

$$\Gamma(\varphi) = (\operatorname{Id} \times \varphi)^{-1}(\Delta)$$

Since the graph is closed it's inverse image will also be closed. Thus the graph is a closed set and under zariski topology any closed set is given by vanishing of some set of polynomials. This will help us to identify $\Gamma(\varphi)$ as a subvariety of $\mathbb{P}^1 \times \mathbb{P}^1$. If φ is given by $[x:y] \to [f(x,y):g(x,y)]$ then the graph can be given by the image of following vanishing set under segre embedding

$$\{[x_0: x_1: x_2: x_3]: x_2 = f(x_0, x_1), x_3 = g(x_0, x_1)\}$$

If, φ given by $[x,y]\mapsto [x^2:y^2]$ the image of $([x:y],[x^2,y^2])$ is $[x^3:xy^2:yx^2:y^3]$ (image under segre embedding). Which is rational curve $\mathbb{P}^1\to\mathbb{P}^3$, a sub-variety of \mathbb{P}^3 .

$$\Gamma(\varphi) \simeq \text{Rational curve in } \mathbb{P}^3$$

Problem 3.3. (UAG 5.13) Study the embedding $\varphi: \mathbb{P}^2 \to \mathbb{P}^5$ given by $[x:y:z] \mapsto [x^2:xy:yz:y^2:yz:z^2]$ and prove that φ is an isomorphism. Prove that the lines of \mathbb{P}^2 go over the conics of \mathbb{P}^5 and the conics go over the twisted quartics of \mathbb{P}^5 .

For any line $\ell \subset \mathbb{P}^2$, write $\pi(\ell) \subseteq \mathbb{P}^5$ for the projective plane spanned by the conics $\varphi(\ell)$. Prove that union of $\pi(\ell)$ taken over all $\ell \mathbb{P}^2$ is a cubic hypersurface $\Sigma \subseteq \mathbb{P}^5$.

Solution.