Sec 4.1

Let X be a RV. The commutative distribution function (coff) at X is $F(X) = P(X \le x)$

Relationship between cot and the density function of X

i) The OF is calcipted from the density fourtion
by integraling:

Fix) - (rud+

 $F(x) = \int_{x}^{x} f(x) dt$

2) The density function is calcolated from the cotton of differentiating; f(x) = F(x)

Consequence, a donsity function and cot are equivalent descriptions of the distribution of a continues BV.

colf gives a way to talk about a distribition without warrying about whether it is discrete or not.

飞!

were
$$\Phi(x) = \int_{-\infty}^{\infty} \Phi(x) dx$$

$$= P(Z(x))$$

$$\frac{1}{2} \left(\frac{1}{2} \right) SD(z) = 1$$

Mormal (M, 02)

Fact (sec 4.4)
$$f(x) = \frac{1}{6} \Phi(x-x) = \frac{1}{12\pi \cdot 6} e^{\frac{1}{2}(x-x)^2}$$

Central Lint theorem (CLT)

Kij ... Kn lid, mean M, SD an, Sn=xi+ ... + Xn Then for large n, the dist of Sn is approx (nm, (The)?) If XI are normal themselves, Sn is exactly normal, (Shrilar to average 'Sh)

Sec 4.2 Exponential and Gamma Distribution

Exponential dist Let G~ Geom (P) _ outcomes 173...

How can me make this a continuous RV so it is the time only the lex socceti

let P be very small then PG has valued P (1,7,3, ... Pletine = (b 26 36 · ···)

P(PG=B)=B(Q=1).

The height of bar at time t= KP is 9 = (1-P)

=> 1-Px ep for small &

As P>0 we get f(t) = e which to density of exponential (1=1)

Here the vator of Success (death) is P Per unit time which is P 50 >= P(Success) = P = 1

Fix Paranete >>0 (> is instantaneous)

T has exponential (x) density

$$f(t) = \begin{cases} \sqrt{e} & \text{for } t \geq 0 \end{cases}$$

It 6 ~ Geom (P), PG dist exponential (1)

LEGISOR 21st like gult 2 knows 1977 T where I is rate of success per unit time

ex T = time till lightfulb borns out

CDF and Survival function

F(s) = P(T(s) = She at Aber wefore

Are at Ame s. = 7 = /2

$$P(T>S) = P("survive beyond s)$$

$$= 1 - F(s) = e^{-\lambda S}$$

b/cfare

Next mean and Verrience.

$$E(x) = y \int f \int \frac{df}{dx} df$$

use tables method for integration by parts

works when your fourtion is a

prod of two expressions.

where one expressions, where one expressions, has some with devivable equal to zero, expressions of 31m (x) expressions.

$$\frac{d}{dt}$$

$$\frac{d}{dt}$$

$$\frac{e^{-\lambda t}}{2}$$

$$E(\tau^2) = \lambda \left(\frac{1}{2} e^{\lambda t} - 2t \left(\frac{1}{2} e^{\lambda t} \right) \right)$$

$$= \frac{2}{\lambda^2}$$

$$= \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = (\frac{1}{\lambda^2})^2$$

$$= \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = (\frac{1}{\lambda^2})^2$$