Определение определителя n-го порядка

Определитель матрицы A порядка n — это число, связанное с квадратной матрицей $A=(a_{ij})$, вычисляемое по формуле:

$$\det(A) = \sum_{\sigma \in S_n} arepsilon_\sigma \prod_{i=1}^n a_{i\sigma(i)}$$

где:

- S_n множество всех перестановок множества $1, 2, \ldots, n$;
- ε_{σ} знак перестановки σ (+1 для чётных перестановок, -1 для нечётных); на лекция писали $\mathrm{sgn}(f)$ или
- $\prod_{i=1}^n a_{i\sigma(i)}$ произведение элементов матрицы A, выбранных из каждой строки и каждого столбца в соответствии с перестановкой σ .

Основные свойства определителя

Свойство 1. Линейность по строкам (или столбцам)

Если одну строку (или столбец) матрицы представить как линейную комбинацию, то определитель разлагается на сумму определителей:

$$\det(A) = \alpha \det(A_1) + \beta \det(A_2),$$

где A_1 и A_2 — матрицы, полученные заменой строки (или столбца) на соответствующие компоненты линейной комбинации.

Свойство 2. Определитель транспонированной матрицы

Определитель не изменяется при транспонировании матрицы:

$$\det(A^T) = \det(A).$$

Свойство 3. Определитель верхнетреугольной (или нижнетреугольной) матрицы

Если матрица A имеет треугольный вид, то её определитель равен произведению диагональных элементов:

$$\det(A) = a_{11}a_{22}\dots a_{nn}.$$

Свойство 4. Нулевой определитель при пропорциональных строках (или столбцах)

Если две строки (или столбца) матрицы пропорциональны, то её определитель равен нулю:

$$\det(A) = 0.$$

Свойство 5. Смена строк (или столбцов) местами

При перестановке двух строк (или столбцов) определитель меняет знак:

$$\det(A') = -\det(A).$$

Свойство 6. Добавление строки, умноженной на число, к другой строке

Определитель матрицы не изменяется при добавлении к одной строке (или столбцу) другой строки (или столбца), умноженной на константу:

$$\det(A') = \det(A)$$
.

Свойство 7. Определитель единичной матрицы

Определитель единичной матрицы равен 1:

$$\det(I_n)=1.$$

Свойство 8. Определитель произведения матриц

Определитель произведения двух матриц равен произведению их определителей:

$$\det(AB) = \det(A)\det(B).$$

Элементарные преобразования и их влияние на определитель

1. Умножение строки (или столбца) на число c: Если строка (или столбец) матрицы умножается на число c, то определитель также умножается на c:

$$\det(A') = c \det(A).$$

2. Смена местами двух строк (или столбцов): Если поменять две строки (или столбца) местами, определитель меняет знак:

$$\det(A') = -\det(A).$$

3. Добавление к одной строке (или столбцу) другой строки (или столбца), умноженной на число: Определитель не изменяется:

$$\det(A') = \det(A)$$
.

Доказательства некоторых свойств

Свойство: $det(A^T) = det(A)$

- 1. Определитель матрицы A определяется как сумма произведений a_{ij} , выбранных из каждой строки и каждого столбца.
- 2. Транспонирование меняет местами строки и столбцы, но множество всех произведений и их знаков остаётся неизменным.
- 3. Следовательно, $det(A^T) = det(A)$.

Свойство: Определитель верхнетреугольной матрицы

- 1. В верхнетреугольной матрице все элементы ниже главной диагонали равны нулю.
- 2. При вычислении определителя каждое произведение $a_{i\sigma(i)}$ с $\sigma(i) \neq i$ будет содержать нулевой элемент.
- Остаётся только одно произведение, соответствующее главной диагонали: $\det(A) = a_{11}a_{22}\dots a_{nn}$

Пример вычисления определителя

Рассмотрим матрицу A:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix}$$

Вычислим определитель с помощью разложения по первой строке:

1.
$$\frac{5}{8}$$
 $\frac{6}{10}$ = $5 \cdot 10 - 6 \cdot 8 = 50 - 48 = 2$
2. $\frac{4}{7}$ $\frac{6}{10}$ = $4 \cdot 10 - 6 \cdot 7 = 40 - 42 = -2$.

2.
$$\frac{4}{7}$$
 $\frac{6}{10}$ = $4 \cdot 10 - 6 \cdot 7 = 40 - 42 = -2$.

3.
$$\frac{4}{7}$$
 $\frac{5}{8}$ = $4 \cdot 8 - 5 \cdot 7 = 32 - 35 = -3$.

Подставляем:

$$\det(A) = 1 \cdot 2 - 2 \cdot (-2) + 3 \cdot (-3) = 2 + 4 - 9 = -3$$