Resultados dos Problemas de Otimização - Método Gradiente Espelhado Otimizado (Norma-p (passo fixo))

Análise Computacional

16 de setembro de 2025

1 Problemas de Otimização

A tabela 1 apresenta os problemas de otimização não-linear resolvidos usando o método Gradiente Espelhado Otimizado (Norma-p (passo fixo)) e o número de variáveis de cada problema.

Tabela 1: Problemas de otimização e número de variáveis

Problema	Número de Variáveis
ROSENBROCK	100
PENALTY	100
TRIGONOMETRIC	100
EXTENDED ROSENBROCK	100
EXTENDED POWELL	100
QOR	50
GOR	50
PSP	50
TRIDIAGONAL	100
ENGGVAL1	100
LINEAR MINIMUM SURFACE	36
SQUARE ROOT 1	36
SQUARE ROOT 2	36
FREUDENTHAL ROTH	100
SPARSE MATRIX SQRT	16
ULTS0	64

2 Resultados de Convergência

A tabela 2 apresenta os resultados de convergência para cada problema, incluindo o número de iterações necessárias, o valor mínimo da função objetivo encontrado e a precisão da solução (norma do gradiente).

3 Soluções Encontradas (Primeiras 5 Variáveis)

A tabela 3 apresenta as primeiras 5 variáveis da solução encontrada para cada problema. Para problemas com menos de 5 variáveis, apenas as variáveis disponíveis são mostradas.

Tabela 2: Resultados de convergência dos problemas de otimização

Problema	Iterações	Valor Mínimo	Precisão ($ \nabla f(x^*) $)	Tempo (s)
ROSENBROCK	39	1.297e + 80	0.000e+00	0.017s
PENALTY	277	7.381e + 00	9.698e-03	2.347s
TRIGONOMETRIC	36	2.387e-05	9.675 e - 03	0.000s
EXTENDED ROSENBROCK	39	6.662e + 81	0.000e+00	0.231s
EXTENDED POWELL	1	0.000e+00	0.000e+00	0.000s
QOR	474	1.175e + 03	9.736e-03	2.770s
GOR	500	1.381e + 03	4.245 e - 01	4.563s
PSP	500	2.030e + 02	1.340e + 01	$3.427\mathrm{s}$
TRIDIAGONAL	395	3.077e-05	9.782 e-03	2.894s
ENGGVAL1	93	1.091e + 02	9.178e-03	1.283s
LINEAR MINIMUM SURFACE	500	1.649e + 01	9.463 e - 01	1.201s
SQUARE ROOT 1	500	3.257e-02	9.107e-02	0.550s
SQUARE ROOT 2	500	3.314e-02	8.365 e-02	0.496s
FREUDENTHAL ROTH	4	1.567e + 112	0.000e+00	0.136s
SPARSE MATRIX SQRT	500	1.583 e-03	2.747e-02	0.630s
ULTS0	4	1.100e + 29	0.000e+00	0.051s

Tabela 3: Primeiras 5 variáveis das soluções encontradas

Problema	x1	x2	x3	x4	x 5
ROSENBROCK	3.374401e+19	1.275445e + 04	0.000000e+00	0.000000e+00	0.000000e+00
PENALTY	8.687953e-01	8.687953e-01	8.687953 e-01	8.687953e-01	8.687953e-01
TRIGONOMETRIC	4.909502e-03				
EXTENDED ROSENBROCK	3.439272e + 19	1.280708e + 04	3.439272e + 19	1.280708e + 04	3.439272e + 19
EXTENDED POWELL	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
QOR	5.924010e-01	-7.110108e-01	6.283535 e-02	-2.651305e+00	1.583921e+00
GOR	-1.758101e+00	-3.722284e-01	-3.006531e+00	-9.619996e-02	7.535326e+00
PSP	4.999665e+00	4.943251e+00	5.002957e + 00	2.903136e+00	4.995767e+00
TRIDIAGONAL	1.004064e+00	5.027260 e-01	2.518504 e-01	1.262818e-01	6.341639e-02
ENGGVAL1	9.001882e-01	5.467747e-01	6.506329 e-01	6.245341 e-01	6.313226e-01
LINEAR MINIMUM SURFACE	8.027898e-01	1.836026e+00	3.193644e+00	4.812423e+00	7.008919e+00
SQUARE ROOT 1	5.035099e-01	-4.535902e -01	-3.895292e-01	4.898633e-01	-5.879180e-01
SQUARE ROOT 2	1.638545e-01	-7.905464e-01	-5.497040e-01	3.584425 e-01	-7.701273e-01
FREUDENTHAL ROTH	-8.150392e+00	-4.169420e+17	-4.092674e+17	-4.092674e+17	-4.092674e+17
SPARSE MATRIX SQRT	8.144777e-01	-6.865589e-01	3.909375e-01	-2.120778e-01	-1.307948e-01
ULTS0	-1.769279e+10	2.817771e+10	-2.424505e+10	-8.518241e+09	-5.897484e+09

4 Observações

- O método L-BFGS-B foi configurado com tolerância de convergência de 10^{-6} .
- Para problemas que falharam, verifique a mensagem de erro específica.
- \bullet A precisão é medida pela norma do gradiente (|| $\nabla f(x^*)$ ||) calculada numericamente.
- Valores de precisão menores indicam soluções mais próximas de pontos estacionários.
- Para problemas irrestritos, $||\nabla f(x^*)|| \approx 0$ indica convergência para um mínimo local.
- Problemas que falharam são marcados com --"nas colunas de resultados.
- A terceira tabela mostra as primeiras 5 variáveis da solução encontrada.
- Para problemas com menos de 5 variáveis, as colunas extras são marcadas como ---".
- A terceira tabela é apresentada em formato paisagem para melhor visualização.