For initial condition 1.ii:

$$f := piecewise\left(x > \frac{L}{2}, M, x > \frac{L}{2}, 0\right)$$

$$f := \begin{cases} M & \frac{L}{2} < x \\ 0 & \frac{L}{2} < x \end{cases} \tag{1}$$

(a) Calculating the solution u(x,t):

We know the family of solutions is as follows:

$$u := bn \cdot \sin\left(\frac{n \cdot \text{Pi} \cdot x}{L}\right) \cdot \exp\left(-\left(\frac{n \cdot \text{Pi}}{L}\right)^2 \cdot \text{D} \cdot t\right)$$

$$u := -\frac{2M\left(\cos\left(\frac{n\pi}{2}\right) - 1\right)\sin\left(\frac{n\pi x}{L}\right) e^{-\frac{n^2\pi^2 \text{D}t}{L^2}}}{n\pi}$$
(2)

Calculating the coefficients bn for t=0:

$$bn := \frac{int\left(M \cdot \sin\left(\frac{n \cdot \text{Pi} \cdot x}{L}\right), x = 0 ... \frac{L}{2}\right)}{int\left(\sin^2\left(\frac{n \cdot \text{Pi} \cdot x}{L}\right), x = 0 ...L\right)} \text{assuming}(L > 0, n, integer)$$

$$bn := -\frac{2M\left(\cos\left(\frac{n\pi}{2}\right) - 1\right)}{n\pi}$$
(3)

Then, the family of solutions u(x,t) is:

$$u := bn \cdot \sin\left(\frac{n \cdot \text{Pi} \cdot x}{L}\right) \cdot \exp\left(-\left(\frac{n \cdot \text{Pi}}{L}\right)^2 \cdot \text{D} \cdot t\right)$$

$$u := -\frac{2M\left(\cos\left(\frac{n\pi}{2}\right) - 1\right)\sin\left(\frac{n\pi x}{L}\right)}{n\pi} e^{-\frac{n^2\pi^2 \text{D}t}{L^2}}$$
(4)

(b) Average temperature at time t=0:

$$avg_t\theta := simplify \left(\left(\frac{1}{L} \right) \cdot int(u, x = 0 ..L) \operatorname{assuming}(L > 0, n, integer) \right) :$$
 $avg_t\theta := simplify(subs(M = 100, t = 0, L = 10, D = 1, avg_t\theta)) :$
 $avg_t\theta := evalf(sum(avg_t\theta, n = 1 ..900))$

$$avg_t\theta := 49.97748417$$
(5)

(c) Average temperature expression:

$$avg_temp := \left(\frac{1}{L}\right) \cdot int(u, x = 0..L) \operatorname{assuming}(L > 0, D = 1, n, integer) :$$

 $avg_temp := subs(L = 10, M = 100, avg_temp)$

$$avg_temp := \frac{200 \left(\cos\left(\frac{n\pi}{2}\right) - 1\right) e^{-\frac{n^2\pi^2t}{100}} \left(-1 + (-1)^n\right)}{n^2\pi^2}$$
(6)

(d) Estimating how long it takes for the average temperature to decrease to 10% of its initial value (for the slowest decaying term n=1):

 $final_value := 0.1.50;$

$$final_value := 5.0$$
 (7)

 $equ := subs(n = 1, avg_temp - final_value)$

$$equ := -\frac{400\left(\cos\left(\frac{\pi}{2}\right) - 1\right)e^{-\frac{t\pi^2}{100}}}{\pi^2} - 5.0$$
(8)

equ := solve(equ, t)

$$equ := 21.20213514$$
 (9)

It takes 21.20213514 times units (approximately) to go from the average temperature at t=0 of 50 to the average temperature of 5.

(e)Animation, partial sums, and plots u := subs(M=100, L=10, D=1, u)

$$u := -\frac{200 \left(\cos\left(\frac{n\pi}{2}\right) - 1\right) \sin\left(\frac{n\pi x}{10}\right) e^{-\frac{n^2\pi^2 t}{100}}}{n\pi}$$
 (10)

psum := sum(u, n = 1..300) :with(plots): animate(psum, x = 0..10, t = 0..21.5)

 $curves := [seq(subs(t=2\cdot m, psum), m=0..11)]: plot(curves, x=0..10)$

We can see that the average temperature amplitud is lower as t increases.