

Investigación de Operaciones. Clase 5: Método Simplex y Ejemplos de Modelación

Profesor Wladimir Soto

Método Simplex

- El método del simplex fue creado en 1947 por el matemático George Dantzig.
- El método del simplex se utiliza, sobre todo, para resolver problemas de programación lineal en los que intervienen tres o más variables.

Análisis Gráfico Ejemplo de Wyndor Glass Co.

Método Simplex

- Paso Inicial: Inicio en una solución factible en un vértice.
- Paso Iterativo: traslado a una mejor solución factible en un vértice adyacente (repítase este paso las veces que sea necesario)
- Prueba de optimalidad: la solución factible es un vértice es óptima cuando ninguna de las soluciones en vértices adyacentes a ella es mejor.

Método Simplex

 Una propiedad general del método simplex es que resuelve la programación lineal en iteraciones, donde cada iteración desplaza la solución a un nuevo punto esquina que tienen potencial de mejorar el valor de la función objetivo. El proceso termina cuando ya no se puede obtener mejoras.

Método Simplex

Formular el Problema como PL

Colocar en forma estándar

Colocar en formato tabular

Ejecutar el Método Simplex

Método Simplex

> La función objetivo debe ser de maximización.

$$\min z = \sum_{j=1}^{n} c_j x_j$$

$$\max -z = \sum_{j=1}^{n} -c_j x_j$$

Las restricciones de desigualdad deben ser convertidas en restricciones de igualdad agregando las variables de holgura.

Método Simplex

- Todos los recursos deben ser positivos
- Todas las variables de decisión deben ser no negativas.

Se debe obtener una matriz inicial de identidad de M x M, siendo M el numero de restricciones.

Método Simplex

Formulación Inicial

F.O. de Maximización

$$\longrightarrow$$
 Maximizar $z = 3x_1 + 5x_2$

Sujeto a:

Convertir las restricciones de desigualdad en restricciones de igualdad agregando las variables de holgura

$$x_1 \leq 4$$
 Todas los RHS deben ser positivos
$$2x_2 \leq 12 \qquad \longleftarrow \qquad 3x_1 + 2x_2 \leq 18 \qquad \longleftarrow$$

Todas las variables deben ser no negativas

$$x_1, x_2 \ge 0$$

Método Simplex

Forma Estándar

El problema de maximización con las variables de holgura

Maximizar
$$z = 3x_1 + 5x_2$$

Sujeto a:

Forma mas conveniente para la representación algebraica

$$x_1$$
 + S_1 = 4
 $2x_2$ + S_2 = 12
 $3x_1 + 2x_2$ + S_3 = 18
 $x_1, x_2 \ge 0$

Método Simplex

Forma Equivalente

Antes de comenzar el Método Simplex se deben dejar solo parámetros al lado derecho (RHS)

Maximizar z

Sujeto a:

(0)
$$z - 3x_1 - 5x_2 = 0$$

(1) $x_1 + S_1 = 4$
(2) $2x_2 + S_2 = 12$
(3) $3x_1 + 2x_2 + S_3 \ge 0$

Método Simplex

Método Simplex

Tableau Inicial

Columna Pivote

Variable Básica	Básica Nº Ecuacion			Coef	icient	Lada Darasha		
variable basica	IN ECUACION	Z	x1	x2	<u>_</u> \$1	s2	s3	Lado Derecho
Z	0	1	-3	-5	0	0	0	0
S1	1	0	1	0	1	0	0	4
S2	2	0	0	2	0	1	0	12
S 3	3	0	3	2	0	0	1	16

- Variable básica entrante: elección de la variable con el coeficiente mas negativo
- Si X2 crece la función objetivo aumenta.

Método Simplex

Método Simplex

	Numer Pivote	0		Coof	eficientes de				Fila Pivote		e
Variable Básica	N° Ecuación	Z	x1	x2	s1			Lado Derecho		Ra	zon
Z	0	1	-3	-5	0	0	0	0			
S1	1	0	1	0	1	0	0	4			\downarrow
S2	2	0	0	2	0	1	0	12		12/2	2=6
S3	3	0	3	2	0	0	1	18		18/2	2=9

- Variable básica que sale: elección de la variable con la razón mínima
- > ¿Cuánto crece X2? Hasta que S2 sea igual a 0.

Método Simplex

Confección Nuevo Tableau.

Nueva Fila Pivote = Fila Pivote / Elemento Pivote

0	2	0	1	0	12
2	2	2	2	2	2
0	1	0	0.5	0	6

Método Simplex

Confección Nuevo Tableau.

Nuevas Filas = Fila Anterior – Coeficiente de la columna Pivote x Fila pivote

Método Simplex

Confección Nuevo Tableau.

Nuevas Filas = Fila Anterior – Coeficiente de la columna Pivote x Fila pivote

Fila de Z

	-3	-5	0	0	0	0	
	-5	-5	-5	-5	-5	-5	
	0	1	0	0.5	0	6	
_	-3	0	0	2.5	0	30	-

Método Simplex

Método Simplex

2° Tableau

Columna Pivote

Variable Básica	NO Faucaión	Z		Coefi	icien	Lado Derecho		
variable basica	N ECUACION		x1	<u> x2</u>	s1	s2	s3	Lado Derecho
Z	0	1	-3	0	0	2.5	0	30
S1	1	0	1	0	1	0	0	4
X2	2	0	0	1	0	0.5	0	6
S 3	3	0	3	0	0	-1	1	4

Variable básica entrante: elección de la variable con el coeficiente mas negativo

Método Simplex

Método Simplex

Numero Pivote Fila pivote

2° Tableau

Veriable Básico	Variable Básica Nº Ecuación			Coef	icient	es de	Lada Dayaah	Doman	
variable Basica	N° Ecuacion	Z	x1	x2	s1	s2	s3	Lado Derecho	Razon
Z	0	1	-3	0	0	2.5	0	30	
S1	1	0	1	0	1	0	0	4	4/1=4
X2	2	0	0	1	0	0.5	0	6 ,	
S3	3	0	3	0	0	-1	1	6	6/3=2

- Variable básica que sale: elección de la variable con la razón mínima
- ¿Cuánto crece X1? Hasta que S3 sea igual a 0

Método Simplex

Confección Nuevo Tableau.

Nueva Fila Pivote = Fila Pivote / Elemento Pivote

3	0	0	-1	1	6	
3	3	3	3	3	3	
1	0	0	-0.33	0.33	2	

Método Simplex

Confección Nuevo Tableau.

Nuevas Filas = Fila Anterior – Coeficiente de la columna Pivote x Fila pivote

Fila de S1	1	0	1	0	0	4	
	1	1	1	1	1	1	
	1	0	0	-0.33	0.33	2	
_	0	0	1	0.33	-0.33	2	-

Fila de X2	0	1	0	0.5	0	6
na de X2	0	0	0	0	0	0
	1	0	0	-0.33	0.33	2
	0	1	0	0.5	0	6

Método Simplex

Confección Nuevo Tableau.

Nuevas Filas = Fila Anterior – Coeficiente de la columna Pivote x Fila pivote

Fila de Z

-3	0	0	2.5	0	30	
-3	-3	-3	-3	-3	-3	
1	0	0	-0.33	0.33	2	
0	0	0	1.5	1	36	_

Método Simplex

Método Simplex

3° Tableau

Tableau Optimo

Variable Básico	Nº Egyppión	7		Coefi	cien	tes de	9	Lada Darasha
Variable Básica	N ECUACION	Z	x1	x2	s1	s2	s3	Lado Derecho
Z	0	1	0	0	0	1.5	1	36
S1	1	0	0	0	1	0.3	-0.3	2
X2	2	0	0	1	0	0.5	0	6
X1	3	0	1	0	0	-0.3	0.3	2

- Variable básica entrante: elección de la variable con el coeficiente mas negativo
- No existe una variable que haga crecer la función objetivo.

Método Simplex

Respuesta:

Solución Optima: X1=2 puertas por minuto, X2=6 ventanas por minuto, S1=2 (existe capacidad ociosa en la planta 1)

Valor Optimo es Z= \$36 por minuto

Método Simplex

Método Simplex

- Solución básica factible: es una solución factible en un vértice
- Variables básicas: variables están en la base y que son mayores o iguales a cero
- Variables no básicas: variables que no están en la base y que son iguales a cero
- Soluciones adyacentes: si todas menos una de sus variables no básicas son las mismas (variables básicas)

Método Simplex

Propiedades de las soluciones factibles en un vértice

Propiedad 1:

- Si el problema tiene exactamente una solución optima, entonces esa debe ser una solución factible en un vértice.
- Si el problema tiene múltiples soluciones optimas, entonces, al menos dos soluciones deber ser soluciones factibles en vértices adyacentes.

Método Simplex

Propiedad 2:

> Existe un numero finito de soluciones en los vértices. Además

$$(m + n)!/(m! n!)$$

es la cota superior para el numero de soluciones factibles en los vértices, donde m corresponde al numero de restricciones y n, al numero de variables.

Método Simplex

Propiedad 3:

Si una solución factible en un vértice no tienen soluciones factibles en vértices adyacentes que sean mejores en relación al valor de la función objetivo, entonces la solución es optima.

Desarrollo Ejemplos en Clases

Ejercicio Método Simplex

$$Max Z = 2000X_1 + 1000X_2$$

s.a.

$$3X_1 + X_2 \le 300$$

$$X_1 + X_2 \leq 140$$

$$1X_1 + 3X_2 \le 300$$

$$X_1, X_2 \ge 0$$

Desarrollo Ejemplos en Clases

En una fabrica se elaboran tres tipos de herramientas A, B y C. En la fabrica trabajan 3 obreros durante 8 horas diarias y un revisor, para comprobar las herramientas una vez construidas, que trabaja 1 hora diaria. Para la construcción de A se emplean 3 horas diarias de mano de obra y precisa de 6 minutos de revisión, para la construcción de B se emplean igualmente 3 horas de mano de obra y 4 minutos para su revisión, y para C es necesaria 1 hora diaria de mano de obra y 3 minutos de revisión. Por problemas de producción en la fabrica no se pueden fabricar más de 12 herramientas diarias y el precio de cada herramienta A, B y C es de 4.000, 3.000 y 2.000 unidades monetarias respectivamente.

Encontrar cuantas unidades se deben elaborar cada día de cada una de ellas para obtener un beneficio maximo

Investigación de Operaciones. Clase 5: Método Simplex y Ejemplos de Modelación

Profesor Wladimir Soto