MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION

LECTURE 26

Topics

6.2 TYPES OF RANDOM VARIABLES

Now we state the following theorem without providing its proof. This theorem states that properties (i) - (iv) described in Theorem 1.2 characterize distribution functions.

Theorem 1.3

Let $G: \mathbb{R}^p \to \mathbb{R}$ be a function such that

- (i) $\lim_{\substack{x_i \to \infty \\ i=1,\dots,p}} G(x_1,\dots,x_p) = 1;$
- (ii) for each fixed $i \in \{1, ..., p\}$ and each fixed $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_p) \in \mathbb{R}^{p-1}, \lim_{y \to -\infty} G(x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_p) = 0;$
- (iii) $G(x_1,...,x_p)$ is right continuous in each argument when other arguments are kept fixed;
- (iv) for each rectangle $(\underline{a}, \underline{b}] \subseteq \mathbb{R}^p$

$$\sum_{k=0}^{p} (-1)^k \sum_{\underline{z} \in \Delta_{k,p}((\underline{a},\underline{b}])} G(\underline{z}) \ge 0.$$

Then there exists a probability space (Ω, \mathcal{F}, P) and a random vector $\underline{X} = (X_1, ..., X_p)$ defined on (Ω, \mathcal{F}, P) such that G is the distribution function of \underline{X} (i.e., $F_{\underline{X}}(\underline{x}) = G(\underline{x})$, $\forall \underline{x} \in \mathbb{R}^p$).

Remark 1.5

(i) As in the one dimensional case it can be shown that the probability measure $P_{\underline{X}}(\cdot)$, induced by a random vector \underline{X} , is completely determined by its distribution function $F_{\underline{X}}(\cdot)$. Thus, to study the induced probability measure $P_{\underline{X}}(\cdot)$, it is enough to study the distribution function $F_{\underline{X}}$.

(ii) The properties (i)-(iv) given in Theorem 1.3 are key properties of a distribution function. Let $\underline{a} = (a_1, a_2, ..., a_p)$ and $\underline{b} = (a_1 + h, b_2, ..., b_p)$, where h > 0. If $G: \mathbb{R}^p \to \mathbb{R}$ is any function which satisfies properties (ii) and (iv) of Theorem 1.3, then

$$\sum_{k=0}^{p} (-1)^k \sum_{\underline{z} \in \Delta_{k,p}((\underline{a},\underline{b}])} G(\underline{z}) \ge 0 \qquad \text{(using property (iv))}$$

$$\Rightarrow \lim_{\substack{a_i \to -\infty \\ i=2,\dots,p}} (-1)^k \sum_{k=0}^{p} \sum_{\underline{z} \in \Delta_{k,p}((\underline{a},\underline{b}])} G(\underline{z}) \ge 0$$

$$\Rightarrow G(a_1 + h, b_2, \dots, b_p) - G(a_1, b_2, \dots, b_p) \ge 0, \qquad \text{(using property (ii))}$$

i.e., $G(\cdot)$ is non-decreasing in each argument when other arguments are kept fixed. It follows that if $G: \mathbb{R}^p \to \mathbb{R}$ is a distribution function then the property that it is non-decreasing in each argument (when other arguments are kept fixed) is not one of its key characteristics and it is a consequence of properties (ii)-(iv) given in Theorem 1.3.

Example 1.3

Consider the function $G: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$G(x,y) = \begin{cases} xy^2, & \text{if } 0 \le x < 1, 0 \le y < 1 \\ x, & \text{if } 0 \le x < 1, y \ge 1 \\ y^2, & \text{if } x \ge 1, 0 \le y < 1 \\ 1, & \text{if } x \ge 1, y \ge 1 \\ 0, & \text{otherwise} \end{cases}$$

- (i) Show that G is a distribution function of some two-dimensional random vector, say (X,Y).
- (ii) Find marginal distribution functions of *X* and *Y*.

Solution. (i) Note that, for $x \ge 1$, $y \ge 1$, G(x,y) = 1. Therefore $\lim_{y \to \infty}^{x \to \infty} G(x,y) = 1$. Also, for x < 0 or y < 0, G(x,y) = 0. Therefore, for each fixed $x \in \mathbb{R}$, $\lim_{y \to -\infty} G(x,y) = 0$ and, for each fixed $y \in \mathbb{R}$, $\lim_{x \to -\infty} G(x,y) = 0$.

Note that,
$$G(x, y) = 0, \forall x \in \mathbb{R} \text{ if } y < 0,$$
 (1.8)

$$G(x,y) = \begin{cases} 0, & \text{if } x < 0 \\ xy^2, & \text{if } 0 \le x < 1 \text{ , if } y \in [0,1) \\ y^2, & \text{if } x \ge 1 \end{cases}$$
 (1.9)

and

$$G(x,y) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } 0 \le x < 1, & \text{if } y \in [1,\infty) . \\ 1, & \text{if } x \ge 1 \end{cases}$$
 (1.10)

From (1.8) - (1.10) it is evident that, for each fixed value of $y \in \mathbb{R}$, G(x, y) is a continuous (and hence right continuous) function of x. Similarly, for each fixed value of $x \in \mathbb{R}$, G(x, y) is a continuous function of y.

From (1.8) - (1.10) it is also clear that, for each fixed value of $y \in \mathbb{R}$, G(x, y) is a non-decreasing function of $x \in \mathbb{R}$. Similarly, for each fixed value of $x \in \mathbb{R}$, G(x, y) is a non-decreasing function of $y \in \mathbb{R}$.

Now let

$$-\infty < a_1 < b_1 < \infty$$
, $-\infty < a_2 < b_2 < \infty$, $\underline{a} = (a_1, a_2), \underline{b} = (b_1, b_2)$ and $(\underline{a}, \underline{b}] = (a_1, b_1) \times (a_2, b_2)$. Then

$$\Delta = \sum_{k=0}^{2} (-1)^k \sum_{\underline{z} \in \Delta_{k,2} ((\underline{a},\underline{b}])} G(z_1, z_2)$$

$$= G(b_1, b_2) - G(b_1, a_2) - G(a_1, b_2) + G(a_1, a_2).$$

The following cases arise:

Case I. $a_1 < 0$

In this case

$$\Delta = G(b_1, b_2) - G(b_1, a_2) \ge 0,$$

since, for a fixed $b_1 \in \mathbb{R}$, $G(b_1, y)$ is a non-decreasing function of y;

Case II. $a_2 < 0$

$$\Delta = G(b_1, b_2) - G(a_1, b_2) \ge 0,$$

since, for a fixed $b_2 \in \mathbb{R}$, $G(x, b_2)$ is a non-decreasing function of x;

Case III.
$$0 \le a_1 < 1, 0 \le a_2 < 1, 0 \le b_1 < 1, 0 \le b_2 < 1$$

$$\Delta = b_1 b_2^2 - b_1 a_2^2 - a_1 b_2^2 + a_1 a_2^2$$

$$=(b_1-a_1)(b_2^2-a_2^2) \ge 0;$$

Case IV. $0 \le a_1 < 1$, $0 \le a_2 < 1$, $0 \le b_1 < 1$, $b_2 \ge 1$

$$\Delta = b_1 - b_1 a_2^2 - a_1 + a_1 a_2^2$$
$$= (b_1 - a_1)(1 - a_2^2) \ge 0;$$

Case V. $0 \le a_1 < 1, 0 \le a_2 < 1, b_1 \ge 1, 0 \le b_2 < 1$

$$\Delta = b_2^2 - a_2^2 - a_1 b_2^2 + a_1 a_2^2$$
$$= (1 - a_1)(b_2^2 - a_2^2) > 0$$
:

Case VI. $0 \le a_1 < 1, 0 \le a_2 < 1, b_1 \ge 1, b_2 \ge 1$

$$\Delta = 1 - a_2^2 - a_1 + a_1 a_2^2$$
$$= (1 - a_1)(1 - a_2^2) \ge 0;$$

Case VII. $0 \le a_1 < 1, a_2 \ge 1, 0 \le b_1 < 1, b_2 \ge 1$

$$\Delta = b_1 - b_1 - a_1 + a_1 = 0;$$

Case VIII. $0 \le a_1 < 1$, $a_2 \ge 1$, $b_1 \ge 1$, $b_2 \ge 1$

$$\Delta = 1 - 1 - a_1 + a_1 = 0;$$

Case IX. $a_1 \ge 1$, $0 \le a_2 < 1$, $b_1 \ge 1$, $0 \le b_2 < 1$

$$\Delta = b_2^2 - a_2^2 - b_2^2 + a_2^2 = 0;$$

Case X. $a_1 \ge 1$, $0 \le a_2 < 1$, $b_1 \ge 1$, $b_2 \ge 1$

$$\Delta = 1 - a_2^2 - 1 + a_2^2 = 0;$$

Case XI. $a_1 \ge 1$, $a_2 \ge 1$, $b_1 \ge 1$, $b_2 \ge 1$

$$\Delta = 1 - 1 - 1 + 1 = 0.$$

Combining Case I- Case XI it follows that

$$\sum_{k=0}^{2} (-1)^k \sum_{\underline{z} \in \Delta_{k,2} \left((\underline{a},\underline{b}] \right)} G(z_1, z_2) \ge 0, \ \forall \ \left(\underline{a}, \underline{b} \right] \subseteq \mathbb{R}^2.$$

Now using Theorem 1.3 it follows that $G(x_1, x_2)$ is a distribution function of some two-dimensional random vector $(X, Y) \in \mathbb{R}^2$.

(ii) Using Lemma 1.2, we have

$$F_X(x) = \lim_{y \to \infty} G(x, y) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } 0 \le x < 1. \\ 1, & \text{if } x > 1 \end{cases}$$

Also using Lemma 1.2 and Remark 1.3 we have

$$F_{Y}(y) = \lim_{x \to \infty} G(x, y) = \begin{cases} 0, & \text{if } y < 0 \\ y^{2}, & \text{if } 0 \le y < 1. \\ 1, & \text{if } x \ge 1 \end{cases}$$

Example 1.4

Let $G: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$G(x,y) = \begin{cases} x, & \text{if } 0 \le x < 1, \ y \ge 1 \\ y^2, & \text{if } x \ge 1, \ 0 \le y < 1 \\ 1, & \text{if } x \ge 1, \ y \ge 1 \end{cases}.$$

Show that G is not a distribution function of any random vector (X, Y).

Solution. Note that G(x, y) is non-decreasing in each argument when the other argument is kept—fixed. Let $a_1 \in [0, 1)$, $a_2 \in [0, 1)$, $b_1 \in [1, \infty)$, $b_2 \in [1, \infty)$ $a_2^2 + a_1 > 1$, $\underline{a} = (a_1, a_2)$, $\underline{b} = (b_1, b_2)$ and $(\underline{a}, \underline{b}] = (a_1, b_1] \times (a_2, b_2]$. Then

$$\sum_{k=0}^{2} (-1)^k \sum_{\underline{z} \in \Delta_{k,2} ((\underline{a},\underline{b}])} G(z_1, z_2) = G(b_1, b_2) - G(b_1, a_2) - G(a_1, b_2) + G(a_1, a_2)$$
$$= 1 - a_2^2 - a_1 < 0.$$

Thus G is not a distribution function of any random vector.

6.2 TYPES OF RANDOM VECTORS

Let (Ω, \mathcal{F}, P) be a probability space and let $\underline{X} = (X_1, \dots, X_p) : \Omega \to \mathbb{R}^p$ be a random vector with distribution function $F_{\underline{X}}(x_1, \dots, x_p)$.

Definition 2.1

(i) \underline{X} is said to a random vector of discrete type if there exists a non-empty countable set $S_{\underline{X}} \subseteq \mathbb{R}^p$ such that $P(\{\underline{X} = \underline{x}\}) > 0$, $\forall \underline{x} \in S_{\underline{X}}$ and $P(\{\underline{X} \in S_{\underline{X}}\}) = \sum_{\underline{x} \in S_{\underline{X}}} P(\{\underline{X} = \underline{x}\}) = 1$. The set $S_{\underline{X}}$ is called the support of the discrete type

random vector \underline{X} (or simply the support of the probability distribution of \underline{X}) and the function

$$f_{\underline{X}}(\underline{x}) = P(\{\underline{X} = \underline{x}\}), \ \underline{x} \in \mathbb{R}^p,$$

which is such that $f_{\underline{X}}(\underline{x}) > 0$, $\forall \underline{x} \in S_{\underline{X}}$, $f_{\underline{X}}(\underline{x}) = 0$, $\forall \underline{x} \in S_{\underline{X}}^c$ (see Remark 2.1 (i) later) and $\sum_{\underline{x} \in S_{\underline{X}}} f_{\underline{X}}(\underline{x}) = 1$, is called the *joint probability mass function* (p.m.f.) of \underline{X} .

- (ii) \underline{X} is said to be a *random vector of continuous type* if $F_{\underline{X}}(\underline{x})$ is continuous at every $\underline{x} \in \mathbb{R}^p$;
- (iii) \underline{X} is said to be a *random vector of absolutely continuous type* if there exists a non-negative function $f_X : \mathbb{R}^p \to \mathbb{R}$ such that

$$F_{\underline{X}}(\underline{x}) = \int_{(-\infty,x]} f_{\underline{X}}(\underline{y}) d\underline{y}, \quad \underline{x} = (x_1, \dots, x_p) \in \mathbb{R}^p,$$

where
$$(-\underline{\infty}, \underline{x}] = (-\infty, x_1] \times \cdots \times (-\infty, x_p], \underline{y} = (y_1, \dots, y_p)$$
 and $d\underline{y} = dy_1 \cdots dy_p$.

The function $f_X(\cdot)$, which is non-negative and is such that

$$\int_{\mathbb{R}^p} f_{\underline{X}}(x_1, \dots, x_p) d\underline{x} = \lim_{\substack{y_i \to \infty \\ i=1, \dots, p}} F_{\underline{X}}(y_1, \dots, y_p) = 1,$$

is called the *joint probability density function* (p.d.f.) of \underline{X} . The set $S_{\underline{X}} = \{\underline{x} \in \mathbb{R}^p : f_{\underline{X}}(\underline{x}) > 0\}$ is called a support of the p.d.f. $f_{\underline{X}}$.

Remark 2.1

- (i) If \underline{X} is of discrete type with support $S_{\underline{X}}$ then $P(\{\underline{X} \in S_{\underline{X}}\}) = 1$ and, therefore, $P(\{\underline{X} \in S_{\underline{X}}\}) = 0$. In particular $f_{\underline{X}}(\underline{x}) = P(\{\underline{X} = \underline{x}\}) = 0$, $\forall \underline{x} \in S_{\underline{X}}^c$.
- (ii) Let \underline{X} be a random vector of discrete type with support $S_{\underline{X}}$ and p.m.f. $f_{\underline{X}}(\cdot)$. Then we know that $S_{\underline{X}}$ is countable, $f_{\underline{X}}(\underline{x}) \geq 0$, $\forall \underline{x} \in \mathbb{R}^p$, $f_{\underline{X}}(\underline{x}) > 0$, $\forall \underline{x} \in S_{\underline{X}}$ and $\sum_{\underline{x} \in S_{\underline{X}}} f_{\underline{X}}(\underline{x}) = 1$. As in the one-dimensional case (p = 1) it can be shown that if $g: \mathbb{R}^p \to \mathbb{R}$ is any function such that $g(\underline{x}) \geq 0$, $\forall \underline{x} \in \mathbb{R}^p$, $g(\underline{x}) > 0$, $\forall \underline{x} \in D$ and $\sum_{\underline{x} \in D} g(\underline{x}) = 1$, for some non-empty countable set $D \subseteq \mathbb{R}^p$, then $g(\cdot)$ is a joint p.m.f. of a random vector of discrete type.

(iii) Let \underline{X} be a random vector of absolutely continuous type with joint and p.d.f. $f_{\underline{X}}(\cdot)$. Then $f_X(\underline{x}) \ge 0$, $\forall \underline{x} \in \mathbb{R}^p$ and

$$\int_{\mathbb{R}^p} f_{\underline{X}}(\underline{x}) \, d\underline{x} = 1,$$

where $\underline{x} = (x_1, ..., x_p)$ and $d\underline{x} = dx_1 \cdots dx_p$. Conversely if $h: \mathbb{R}^p \to \mathbb{R}$ is any function such that $h(\underline{x}) \ge 0$, $\forall \underline{x} \in \mathbb{R}^p$, and

$$\int_{\mathbb{R}^p} h(\underline{x}) d\underline{x} = 1,$$

then it can be shown that $h(\cdot)$ is a joint p.d.f. of some random vector of absolutely continuous type.

(iv) Let $(\underline{a}, \underline{b}) \subseteq \mathbb{R}^p$ and let $\Psi: (\underline{a}, \underline{b}) \to \mathbb{R}$ be a non-negative function. Let $D = D_1 \times \cdots \times D_p$, where each D_i , i = 1, ..., p, is countable. Then, provided the integral (or sum)

$$\int_{(a,b]} \Psi(\underline{x}) d\underline{x} \quad \left(\text{or } \sum_{\underline{x} \in D} \Psi(\underline{x}) \right)$$

is finite, we know that the order in which (section wise) integral (or sum) is carried out is immaterial. In particular if $h: \mathbb{R}^p \to \mathbb{R}$ is a joint p.d.f. (or joint p.m.f.), then

$$\int_{(\underline{a},\underline{b}]} h(\underline{x}) dx_1 \cdots dx_p = \int_{a_{\beta_p}}^{b_{\beta_p}} \cdots \int_{a_{\beta_1}}^{b_{\beta_1}} h(\underline{x}) dx_{\beta_1} \cdots bx_{\beta_p}$$

$$\operatorname{or}\left(\sum_{\underline{x}\in D}h(\underline{x})=\sum_{x_{\beta_1}\in D_{\beta_1}}\cdots\sum_{x_{\beta_p}\in D_{\beta_p}}h(\underline{x})\right).$$

(v) Let \underline{X} be a p-dimensional random vector with distribution function $F_{\underline{X}}$. For $\underline{a} = (a_1, ..., a_p) \in \mathbb{R}^p$, define $\underline{a}_n = (a_1 - \frac{1}{n}, ..., a_p - \frac{1}{n})$, n = 1, 2, ... Then

$$\{\underline{X} = \underline{a}\} = \underline{X}^{-1}(\{\underline{a}\})$$

$$= \underline{X}^{-1} \left(\bigcap_{n=1}^{\infty} (\underline{a}_{n}, \underline{a}] \right)$$

$$= \bigcap_{n=1}^{\infty} \underline{X}^{-1} \left((\underline{a}_{n}, \underline{a}] \right)$$

$$\Rightarrow P\left(\{ \underline{X} = \underline{a} \} \right) = P\left(\bigcap_{n=1}^{\infty} \underline{X}^{-1} \left((\underline{a}_{n}, \underline{a}] \right) \right)$$

$$= \lim_{n \to \infty} P\left(\underline{X}^{-1} \left((\underline{a}_{n}, \underline{a}] \right) \right)$$

$$= \lim_{n \to \infty} \sum_{k=0}^{p} (-1)^{k} \sum_{\underline{z}_{n} \in \Delta_{k, p} \left((\underline{a}_{n}, \underline{a}] \right)} F_{\underline{X}} \left(\underline{z}_{n} \right).$$

(vi) Let \underline{X} be a p-dimensional random vector with distribution function $F_{\underline{X}}$ that is continuous at $\underline{a} \in \mathbb{R}^p$. Let \underline{a}_n , $n = 1, 2 \dots$ be as defined in (v) above. Then, for $\underline{z}_n \in \Delta_{k,p}\left(\left(\underline{a}_n,\underline{a}\right)\right)$, $n = 1, 2, \dots$ (so that, as $n \to \infty$, $\underline{z}_n \to \underline{a}$), $F_{\underline{X}}\left(\underline{z}_n\right) \to F_{\underline{X}}(\underline{a})$ as $n \to \infty$. Therefore

$$P(\{\underline{X} = \underline{a}\}) = \lim_{n \to \infty} \sum_{k=0}^{p} (-1)^k \sum_{\underline{z}_n \in \Delta_{k,p} \left((\underline{a}_n, \underline{a}]\right)} F_{\underline{X}} \left(\underline{z}_n\right)$$
$$= \sum_{k=0}^{p} (-1)^k \binom{p}{k} F_{\underline{X}} (\underline{a})$$
$$= (1-1)^p F_{\underline{X}} (\underline{a})$$
$$= 0.$$

It follows that if the distribution functions $F_{\underline{X}}$ of a p-dimensional random vector \underline{X} is continuous at $\underline{a} \in \mathbb{R}^p$ then

$$P(\{\underline{X}=\underline{a}\})=0.$$

(vii) Let \underline{X} be a p-dimensional random vector of continuous type so that its distribution function $F_X(\cdot)$ is continuous at every $\underline{x} \in \mathbb{R}^p$. Then, by (vi),

$$P(\{X=a\})=0, \forall a \in \mathbb{R}^p.$$

Consequently, for any countable set $S \subseteq \mathbb{R}^p$,

$$P(\{\underline{X} \in S\}) = P\left(\left\{\bigcup_{\underline{a} \in S} \{\underline{X} = \underline{a}\}\right\}\right)$$
$$= \sum_{\underline{a} \in S} P(\{\underline{X} = \underline{a}\})$$
$$= 0.$$

(viii) Suppose that \underline{X} is a p-dimensional random vector of absolutely continuous type with p.d.f. $F_X(\cdot)$. Then it can be shown that its distribution function

$$F_{\underline{X}}(\underline{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_p} f_{\underline{X}}(\underline{y}) dy_p \cdots dy_1, \ \underline{x} \in \mathbb{R}^p,$$

is continuous at every $\underline{x} \in \mathbb{R}^p$. Thus a random vector of absolutely continuous type is also continuous. Moreover if \underline{X} is of absolutely continuous type then

$$P(\lbrace \underline{X} = \underline{a} \rbrace) = 0, \forall \underline{a} \in \mathbb{R}^p \text{ and } P(\lbrace \underline{X} \in S \rbrace) = 0,$$

for any countable set S.

(ix) Let \underline{X} be a p-dimensional random vector of discrete type with joint p.m.f. $f_{\underline{X}}(\cdot)$ and support S_X . Then, for any $A \in \mathcal{B}_p$,

$$P(\{\underline{X} \in A\}) = P(\{\underline{X} \in A \cap S_{\underline{X}}\}) \qquad \text{(since } P(\{\underline{X} \in S_{\underline{X}}\}) = 1)$$

$$= P\left(\bigcup_{\underline{x} \in A \cap S_{\underline{X}}} \{\underline{X} = \underline{x}\}\right)$$

$$= \sum_{\underline{x} \in A \cap S_{\underline{X}}} P(\{\underline{X} = \underline{x}\}) \qquad (A \cap S_{\underline{X}} \subseteq S_{\underline{X}} \text{ is countable})$$

$$= \sum_{\underline{x} \in A \cap S_{\underline{X}}} f_{\underline{X}}(\underline{x})$$

$$= \sum_{\underline{x} \in S_{\underline{X}}} f_{\underline{X}}(\underline{x}) I_{A}(\underline{x}).$$

(x) Let \underline{X} be a p-dimensional random vector of absolutely continuous type with joint p.d.f. $f_{\underline{X}}(\cdot)$ and let $\underline{a}, \underline{b} \in \mathbb{R}^p$, $a_i < b_i$, i = 1, ..., p. Then, using the idea of the proof of Lemma 1.3, it can be shown that

$$\int_{(\underline{a},\underline{b}]} f_{\underline{X}}(\underline{x}) d\underline{x} = \int_{a_1}^{b_1} \cdots \int_{a_p}^{b_p} f_{\underline{X}}(\underline{x}) dx_p \cdots dx_1$$

$$= \sum_{k=0}^{p} (-1)^k \sum_{\underline{z} \in \Delta_{k,p} \left((\underline{a},\underline{b}] \right)^{-\infty}} \int_{-\infty}^{z_1} \cdots \int_{-\infty}^{z_p} f_{\underline{X}}(\underline{x}) dx_p \cdots dx_1$$

$$= \sum_{k=0}^{p} (-1)^k \sum_{\underline{z} \in \Delta_{k,p} \left((\underline{a},\underline{b}] \right)} F_{\underline{X}}(\underline{z})$$

$$= P(\{a_i < X_i \le b_i, i = 1, \dots, p\})$$

$$= P(\{\underline{X} \in (\underline{a},\underline{b}]\}).$$

It follows that

$$P(\{\underline{X} \in (\underline{a}, \underline{b}]\}) = P(\{a_i < X_i \le b_i, i = 1, ..., p\})$$

$$= \int_{a_1}^{b_1} \cdots \int_{a_p}^{b_p} f_{\underline{X}}(\underline{x}) dx_p \cdots dx_1$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) I_{((\underline{a},\underline{b}])}(\underline{x}) dx_p \cdots dx_1$$

$$= \int_{\mathbb{R}^p} f_{\underline{X}}(\underline{x}) I_{((\underline{a},\underline{b}])}(\underline{x}) d\underline{x}.$$

In general, for any set $A \in \mathcal{B}_p$, if can be shown that

$$P(\{\underline{X} \in A\}) = \int_{\mathbb{R}^p} f_{\underline{X}}(\underline{x}) I_A(\underline{x}) d\underline{x}.$$

Consequently if A comprises of a countable number of curves then

$$P(\{\underline{X} \in A\}) = \int_{\mathbb{R}^p} f_{\underline{X}}(\underline{x}) I_A(\underline{x}) d\underline{x} = 0.$$

In particular $P({X_i = X_j}) = 0, \forall i \neq j$.

(xi) Let \underline{X} be a p-dimensional random vector of discrete type with joint distribution function $F_{\underline{X}}(\cdot)$, joint p.m.f. $f_{\underline{X}}(\cdot)$ and support $S_{\underline{X}}$. Then, using (ix),

$$F_{\underline{X}}(\underline{x}) = P(\{\underline{X} \in (-\underline{\infty}, \underline{x}]\})$$

$$= \sum_{\underline{x} \in ((-\underline{\infty}, \underline{x}]) \cap S_X} f_{\underline{X}}(\underline{x}), \ \underline{x} \in \mathbb{R}^p$$
(2.1)

Also, using (v),

$$f_{\underline{X}}(\underline{x}) = P(\{\underline{X} = \underline{x}\}) = \lim_{n \to \infty} \sum_{k=0}^{p} (-1)^k \sum_{\underline{z}_n \in \Delta_{k,p}((\underline{x}_n, \underline{x}])} F_{\underline{X}}(\underline{z}_n), \tag{2.2}$$

where
$$\underline{x}_n = \left(x_1 - \frac{1}{n}, \dots, x_p - \frac{1}{n}\right), n = 1, 2, \dots$$

Using (2.1) and (2.2) we conclude that the joint distribution function of a discrete type random vector is determined by its joint p.m.f. and vice-versa. Thus to study the probability measure $P_{\underline{X}}(\cdot)$ induced by a discrete type random vector \underline{X} it is enough to study its p.m.f. (also see Remark 1.5 (i)).

- (xii) If \underline{X} is a random vector of absolutely continuous type then its joint p.d.f. is not unique and there are different versions of joint p.d.f. . In fact if the values of the joint p.d.f. $f_{\underline{X}}(\cdot)$ of a random vector \underline{X} of absolutely continuous type are changed at a countable number of curves with other non-negative values then the resulting function is again a p.d.f. of \underline{X} .
- (xiii) As in the one-dimensional case it can be shown that if \underline{X} is a p-dimensional random vector with distribution function $F_X(\cdot)$ such that

$$\frac{\partial^p}{\partial x_1 \cdots \partial x_p} F_{\underline{X}}(x_1, \dots, x_p),$$

exists everywhere except (possibly) on a set C comprising of countable number of curves and

$$\int_{\mathbb{R}^p} \frac{\partial^p}{\partial x_1 \cdots \partial x_p} F_{\underline{X}}(x_1, \dots, x_p) I_{C^c}(\underline{x}) d\underline{x} = 1.$$

Then *X* is of absolutely continuous type with a p.d.f.

$$f_{\underline{X}}(\underline{x}) = \begin{cases} \frac{\partial^p}{\partial x_1 \cdots \partial x_p} F_{\underline{X}}(x_1, \dots, x_p), & \text{if } \underline{x} \notin C \\ a_x, & \text{if } \underline{x} \in C \end{cases},$$

here $a_{\underline{x}}$, $\underline{x} \in C$, are arbitrary non-negative constants.

(xiv) Let \underline{X} be a p-dimensional random vector of absolutely continuous type with joint distribution function $F_X(\cdot)$ and joint p.d.f. $f_X(\cdot)$. Then

$$F_{\underline{X}}(\underline{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_p} f_{\underline{X}}(\underline{y}) dy_p \cdots dy_1, \ \underline{x} \in \mathbb{R}^p.$$

Clearly the joint distribution function of an absolutely continuous type random vector \underline{X} is determined by its joint p.d.f. $f_{\underline{X}}(\cdot)$. Thus to study the probability measure $P_{\underline{X}}(\cdot)$ induced by an absolutely continuous type random vector \underline{X} it is enough to study its joint p.d.f. $f_{X}(\cdot)$.

Using Remark 1.2 (ii) and using (v) above it follows that if $f_{\underline{X}}(\underline{x})$, $\underline{x} \in \mathbb{R}^p$, is the p.m.f. (a p.d.f.) of p-dimensional random vector $\underline{X} = (X_1, ..., X_p)$ then, for any permutation $(\beta_1, ..., \beta_p)$ of (1, ..., p) with inverse permutation $(\gamma_1, ..., \gamma_p)$ the joint p.m.f. (joint p.d.f.) of $(X_{\beta_1}, ..., X_{\beta_p})$ is $f_{X_{\beta_1}, ..., X_{\beta_p}}(x_1, ..., x_p) = f_{X_1, ..., X_p}(x_{\gamma_1}, ..., x_{\gamma_p})$, $\underline{x} \in \mathbb{R}^p$.