

DFA Minimization

Consider the accept states c and g. They are both sinks meaning that any string which ever reaches them is guaranteed to be accepted later.

A: No, they can be unified as illustrated below.

Q: Can any other states be unified because any subsequent string suffixes produce identical results?

- A: Yes, b and f. Notice that if you're in b or f then:
 - if string ends, reject in both cases
 - if next character is 0, forever accept in both cases
 - if next character is 1, forever reject in both cases

Intuitively two states are equivalent if all subsequent behavior from those states is the same.

Q: Come up with a formal characterization of state equivalence.

DFA Minimization: Algorithm Idea

Equate & collapse states having same behavior. Build equivalence relation on states:

$$p = q \leftrightarrow (\forall z \in \Sigma^*, \ \hat{\delta}(p,z) \in F \leftrightarrow \hat{\delta}(q,z) \in F)$$

I.e., iff for every string z, one of the following is true:

DFA Minimization: Algorithm

Build table to compare each unordered pair of distinct states p,q.

Each table entry has

- a "mark" as to whether p & q are known to be not equivalent, and
- a list of entries, recording dependences: "If this entry is later marked, also mark these."

DFA Minimization: Algorithm

- Initialize all entries as unmarked & with no dependences.
- Mark all pairs of a final & nonfinal state.
- 3. For each unmarked pair p,q & input symbol a:
 - Let $r=\delta(p,a)$, $s=\delta(q,a)$.
 - If (r,s) unmarked, add (p,q) to (r,s)'s dependences,
 - Otherwise mark (p,q), and recursively mark all dependences of newly-marked entries.
- Coalesce unmarked pairs of states.
- Delete inaccessible states.

1. Initialize table entries: Unmarked, empty list

2. Mark pairs of final & nonfinal states

4. Coalesce unmarked pairs of states.

5. Delete unreachable states.

None. None.

DFA Minimization: Notes

Order of selecting state pairs was arbitrary.

- All orders give same ultimate result.
- But, may record more or fewer dependences.
- Choosing states by working backwards from known non-equivalent states produces fewest dependences.

Can delete unreachable states initially, instead.

This algorithm: O(n²) time; Huffman (1954), Moore (1956).

- Constant work per entry: initial mark test & possibly later chasing of its dependences.
- More efficient algorithms exist, e.g., Hopcroft (1971).

What About NFA Minimization?

This algorithm doesn't find a unique minimal <u>NFA</u>.

Is there a (not necessarily unique) minimal NFA?

Of course.

NFA Minimization

In general, minimal NFA not unique!

Example NFAs for **0**+:

Both minimal, but not isomorphic.

Minimizing DFA's

By Partitioning

Minimizing DFA's

- Lots of methods
- All involve finding equivalent states:
 - States that go to equivalent states under all inputs (sounds recursive)
- We will learn the *Partitioning Method*

Minimizing DFA's by Partitioning

Consider the following dfa

- Accepting states are yellow
- Non-accepting states are blue
- Are any states really the same?

- S₂ and S₇ are really the same:
 Both Final states
 Both go to S6 under input b
 Both go to S3 under an a
- So and S5 really the same. Why?
- We say each pair is equivalent

Are there any other equivalent states? We can merge equivalent states into 1 state

First

Divide the set of states into

Final and Non-final states

Partition I

Partition II

	а	b
S_0	S_1	S_4
S ₀ S ₁ S ₃ S ₄ S ₅ S ₆ *S ₂	S ₅	S_2
S_3	S_3	S ₃ S ₄ S ₄ S ₇
S ₄	\mathbf{S}_{1}	S_4
S ₅	S_1	S_4
S ₆	S_3	S ₇
*S ₂	S_3	S ₆
*S ₇	S_3	S_6

- Now
 - See if states in each partition each go to the same partition
- S₁ & S₆ are different from the rest of the states in Partition I (but like each other)
- We will move them to their own partition

	а	b
S_0	S_1	S_4 I
S_1	S_5 1	S_2 II
S_3	S_3	S_3
S_{4}	S_1	S_4
S_5	S_1	S_4
S_6	S_3 1	S_7 II
S ₅ S ₆ *S ₂	S ₃	S ₆
*S ₇	S ₃ I	S ₆ 29

	а	b
S_0	S_1	S ₄
S_5	S_1	S_4
S_3	S_3	S_3
S_4	S_1	S ₄
S_1	S ₅	S ₂
S_6	S_3	S ₇
S ₆ *S ₂	S_3	S_6
*S ₇	S_3	S ₆

- Now again
 - See if states in each partition each go to the same partition
 - In Partition I, S₃ goes to a different partition from S₀, S₅ and S₄
 - We'll move S3 to its own partition

	а	b
S_0	$S_1 \parallel \parallel$	S ₄ I
S_5	$S_1 \parallel \parallel$	S ₄ I
S ₀ S ₅ S ₃ S ₄	S ₃ I	S ₃ I
S_4	S ₁ III	S ₄ I
S_1	S_5	S ₂ II
S_6	S ₃ I	S ₇ II
S ₆ *S ₂	S_3	S ₆ III
*S ₇	S ₃ I	S ₆ III

Note changes in S_{6} , S_{2} and S_{7}

	а	b
S_0		S ₄ I
S ₀ S ₅		S ₄ I
S_4	$S_1 III$	S ₄ I
S_3	S ₃ IV	S ₃ IV
S_1	S ₅ I	S ₂ II
S_6	S ₃ IV	S ₇ II
*S ₂	S ₃ IV	S ₆ III
*S ₇	S ₃ IV	S ₆ III

- Now S₆ goes to a different partition on an a from S₁
- S₆ gets its own partition.
- We now have 5 partitions
- Note changes in
 S₂ and S₇

	а	b
S_0	S ₁ III	S ₄ I
S_5	S ₁ III	S ₄ I
S ₄	S ₁ III	S ₄ I
S_3	S ₃ IV	S ₃ IV
S_1	S ₅ I	$S_2 \parallel$
S_6	S ₃ IV	$S_7 \parallel$
*S ₂	S ₃ IV	S_6V
*S ₇	S ₃ IV	S_6V

- All states within each of the 5 partitions are identical.
- We might as well call the states I, II III, IV and V.

	а	b
S_0		S ₄ I
S_5	S ₁ III	S ₄ I
S ₅ S ₄	S ₁ III	S ₄ I
S_3	S ₃ IV	S ₃ IV
$\overline{\mathbf{S}_1}$	S ₅ I	S ₂ II
S_6	S ₃ IV	S ₇ II
*S ₂	S ₃ IV	S ₆ V
*S ₇	S ₃ IV	S ₆ V

Here they are:

	а	b
I	Ш	I
*II	IV	V
III	I	II
IV	IV	IV
V	IV	II

