FELIPE CUNHA

Nomes: são usados para designar recursos de um sistema distribuído

 Recursos: máquinas, impressoras, portas (lógicas ou físicas) etc

Dois tipos de nomes:

- Textuais: strings. São indicados para leitura e memorização por humanos.
- Identificadores de sistema: São seqüências de bits. São usados por questões de eficiência.

Binding: associação entre um nome e o recurso que o mesmo denotará.

Sistema de Nomes: banco de dados que armazena mapeamento entre nomes textuais e atributos dos recursos que estes nomes denotam.

Principal serviço:

 Resolução: pesquisar atributos associados a um determinado nome

Outros serviços:

- Inserir nomes e seus atributos
- Remover nomes
- Listar nomes

Exemplos de Serviços de Nomes:

- DNS (Domain Name System)
- WINS (Windows Internet Naming Service)
- · X.500

Estudo de Caso: DNS

DNS: Domain Name System

Sistema de nomes padrão da Internet

Resolução de nomes de *hosts* para endereço IP na Internet até 1987: via arquivo /etc/hosts

- Base de dados centralizada em uma única máquina (localizada no SRI-NIC)
- Deveria ser periodicamente baixado para toda máquina cliente
- Solução viável apenas para redes pequenas

Problemas de uma Solução Centralizada (/etc/hosts):

Escalabilidade

- Arquivo /etc/hosts cada vez maior
- Tráfego crescente no SRI-NIC

Não permite administração local de nomes

 Comunicação ao SRI-NIC a cada novo servidor acrescentado à rede local

Requer nomes de computadores únicos em toda a rede

DNS: Introdução

DNS: banco de dados hierárquico e distribuído de nomes de domínios Internet

- Utiliza UDP
- Padronização: RFC 1034 e RFC 1035

Cliente/servidor

- Clientes: resolvers
- Servidores: name servers

Nomes DNS:

- host: servero1.pucmg.br
- domínio: ibm.com

Domínios DNS

Domínio DNS: conjunto de hosts

 Domínios são hierarquizados e separados por pontos

Exemplo: dcc.pucmg.br

- 10 domínio: br
- 20 domínio: pucmg
- 30 domínio: dcc

Objetivo: descentralizar manutenções de nomes

DNS: Funcionamento

Domínios formam uma árvore

Níveis da árvore:

- Root-level domain
- Top-level domain
- Second-level domain

Espaço de Nomes

Root-level domain:

- Treze servidores:
 - a.root-servers.net até m.root-servers.net.
- Referenciado por um ponto (".")

Top-level domain

- Domínios que terminam com: .com, .edu, .gov, .mil, .net, .org
- Domínios que terminam com duas letras representando um país (.br, .uk, .fr etc)
- gTLD: domínios genéricos comerciais

Second-level domain:

Subdomínios dos top-level domain

Resolução de Nomes DNS

Princípio básico de funcionamento:

- Os servidores de cada domínio conhecem os servidores dos domínios que encontram-se abaixo dele ("seus descendentes na árvore")
- Todos os servidores conhecem os endereços IP dos servidores raiz

Exemplo: resolução do nome www.pucminas.br

- 1a consulta: servidor root
- 2a consulta: servidor .br
- 3a consulta: servidor pucminas.br

Tipos de Consultas

Consulta Recursiva

- Servidor de nomes deve responder o end. IP solicitado ou falhar.
- Clientes (resolvers) realizam consultas recursivas

Consulta Iterativa

 Servidor de nomes devolve a "melhor resposta possível", isto é, ou o endereço IP procurado ou um outro servidor de nomes "mais próximo" deste endereço IP

Cache DNS

Servidores DNS possuem um cache

Exemplo:

 Caso o IP de www.pucminas.br esteja no cache de algum servidor de nomes, dispensa-se o acesso aos demais servidores.

Respostas obtidas do cache de um servidor são chamadas de "non-authoritative"

Cada entrada do cache possui um TTL (Time to Live).

Quando o TTL expira a entrada é removida do cache

Tipos de Servidores DNS

Servidor Primário:

 Fornece respostas consultando sua tabela local de endereços IP

Servidor Secundário:

- Obtém sua tabela de end. IP a partir de um outro servidor (chamado de servidor master)
- Consulta servidor master periodicamente: novas informações são então carregadas
- Este carregamento é chamado de "zone transfer"

Tipos de Servidores DNS

Servidor Secundário (cont.)

 Vantagens: redundância, balanceamento de carga, redução de tráfego de rede (principalmente para localizações remotas)

Servidor Cache:

- Possui apenas um cache
- Entradas não presentes no cache, são resolvidas através de consultas a outros servidores

Estrutura do DNS

Outras Funções do DNS

Função principal: mapear nomes de máquinas para endereços IP

Outras funções:

- Resolução reversa: mapear endereços IP para nomes de máquinas
 - Exemplo: comando traceroute
- Especificar máquinas receptoras de mail
 - Mensagem para: felipe@pucminas.br
 - Consulta DNS: pucminas.br, type=MX
 - Resposta DNS: smtp.pucminas.br

Implementação de DNS: Conceito geral

DNS funciona como um Banco de Dados

Cada servidor mantém disponível parte deste banco para clientes chamados de resolvers.

Cada domínio pode ser sub-dividido em subdomínios

Cenário:

- Domínio: sd.pucminas.br
- Máquina:
 - servidor.sd.pucminas.br (7) => DNS Primário
 - backup.sd.pucminas.br (12) => DNS Secundário
 - lab.sd.pucminas.br (10)

Implementação de DNS: Cenário

```
servidor.sd.pucminas.br => IP 192.168.2.7
```

```
backup.sd.pucminas.br => IP 192.168.2.12
```

```
lab.sd.pucminas.br => IP 192.168.2.10
```

Arquivos de configuração do BIND (Berkeley Internet Name Domain):

- named.conf => arq. de boot do BIND
- db.sd => arq. de configuração de sd.pucminas.br
- 2.168.192.db=> arq. de configuração map. IP para nomes
- db.cache => onde consultar se não conseguir resolver
- db.local => Configuração do loop local

O arquivo named.conf (named.boot)

O arquivo named.conf pode ser gerado a partir de um arquivo named.boot com sintaxe simplificada.

```
directory /etc/name
primary sd.pucminas.br db.sd
primary 2.168.192.in-addr.arpa 2.168.192.db
primary 0.0.127.in-addr.arpa db.local
cache db.cache
```

O arquivo db.sd`

sd.pucminas.br IN SOA servidor.sd.pucminas.br (

19980824001 ; numero de serie da versao

; tempo de refresh em seg – 3h

3600 ; tempo de retry em seg - 1h

604800 ; tempo de expiramento seg – 1sem

259200) ; TTL minimo – 3 dias

; define servidores de nome no dominio

sd.pucminas.br. IN NS servidor.sd.pucminas.br.; serv. primario

sd.pucminas.br. IN NS backup.sd.pucminas.br.; serv. secundario

; define enderecos para os nomes

localhost.sd.pucminas.br. IN A 127.0.0.1

servidor.sd.pucminas.br. IN A 192.168.2.7

backup.sd.pucminas.br. IN A 192.168.2.12

lab.sd.pucminas.br. IN A 192.168.2.1021` x

O arquivo 2.168.192.db

@ IN SOA servidor.sd.pucminas.br (

```
19980824001 ; numero de serie da versao
```

; tempo de refresh em seg – 3h

3600 ; tempo de retry em seg - 1h

; tempo de expiramento seg – 1sem

259200) ; TTL minimo – 3 dias

; define servidores de nome no dominio

IN NS servidor.sd.pucminas.br.; serv. primario

IN NS backup.sd.pucminas.br. ; serv. secundario

; define enderecos para os nomes

192.168.2.7 IN PTR servidor.sd.pucminas.br.

192.168.2.12 IN PTR backup.sd.pucminas.br.

192.168.2.10 IN PTR lab.sd.pucminas.br.

O arquivo named.boot no serv. secundário

```
directory /etc/name
secondary sd.pucminas.br
                                 192.168.2.7
     db.sd
secondary 2.168.192.in-addr.arpa 192.168.2.7
     2.168.192.db
                              db.local
secondary 0.0.127.in-addr.arpa
cache
     db.cache
```

Tipos de Registro no banco de dados DNS

Nome do registro	Tipo do reg.	Função
Start of Authority	SOA	Marca começo de zona
Name Server	NS	Identifica um servidor de nome
Address	Α	Mapeia host para endereço
Pointer	PTR	Mapeia endereço para nome
Mail Exchanger	MX	Identifica servidor de nomes para domínio de e-mail
Canonical name	CNAME	Define Alias para um host name.

Estudo de Caso: WINS

WINS (Windows Internet Name Service)

Resolução de nomes NetBIOS

NetBIOS: API para acesso aos serviços de um protocolo de transporte

- Protocolo de sessão
- Usado por aplicações Microsoft
- Equivalente a Windows Socket (no caso de aplicações TCP/IP)

Exemplo de Aplicação NetBIOS

Compartilhamento de arquivos entre máquinas Windows

net use R: \\servero1\public
 (compartilha o diretório \public de servero1 como o disco local R)

WINS: usado para resolver nome NetBIOS "servero1" para seu endereço IP

Resolução de Nomes NetBIOS

Formas de resolução de nomes NetBIOS

- Broadcast
- Arquivo LMHOSTS (equivalente ao /etc/hosts)
- Servidor WINS

Funcionamento de um Servidor WINS

Durante boot, cliente registra seu nome e end. IP no servidor WINS (mensagem "Name Registration)

Servidor retorna um TTL para o cliente

Antes do término do TTL, cliente renova sua entrada no servidor WINS (mensagem "Name Renewal")

Durante shutdown, cliente libera sua entrada no servidor WINS (mensagem "Name Release")

Comparação WINS x DNS

Nomes NetBIOS são flat

"www" e não "www.pucminas.br"

Resolução via WINS é centralizada

- Base de nomes centralizada no servidor
- Não existe uma hierarquia de servidores

Atualização da base de nomes no WINS ocorre dinamicamente

Durante boot, clientes registram seus endereços

Pensar não garante que não cometeremos erros. Mas não pensar é garantia de que vamos.

Leslie Lamport