PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-167937

(43) Date of publication of application: 22.06.1999

(51) Int. Cl.

H01M 14/00 H01L 31/04

(21) Application number: 10-241839 (71) Applicant: FUJI PHOTO FILM CO

LTD

(22) Date of filing : 27.08.1998 (72) Inventor : KOBAYASHI KATSU

HIOKI TAKANORI

YAMASHITA KATSUHIRO

WATANABE TETSUYA

KATO TAKASHI

(30) Priority

Priority

09267455 Priority

30.09.1997 Priority

JP

number :

09281187 date:

30. 09. 1997 country:

JP

(54) PHOTOELECTRIC TRANSFER ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an element having high transfer efficiency by adsorbing organic pigment such that the pigment coloring groups exist in a plurality in the vertical direction to surfaces of semiconductor particulates and forming a metallic polynuclear complex part as a single coloring group.

SOLUTION: Semicondcutor particulatessensitized by simultaneously using at least one kind of methine pigment of formula I and at least one kind of methine pigment of formula IIare preferably used. In formulas I and IIZ1 and Z2 represent an atomic group required to form a nitrogencontaining heterocycleand R1 and R2 represent an alkyl group or an aryl groupand Q1 and Q2 represent a methine group or a polymethine group required to form methine pigment by a compound respectively expressed by formulas I and IIand L1 to L4 represent a methine groupand p1 and p2 represent 0 or 1. HereZ1R1 and Q1 have a substitutional group becoming

cation pigment by methine pigment expressed by formula Iand Z2R2 and Q2 have a substitutional group becoming anion pigment by methine pigment of the formula II. M1 and M2 represent respectively electric charge balanced anion and cation. Symbols m1 and m2 represent the number 0 to 10 required to neutralize electric charge of a molecule.

CLAIMS

[Claim(s)]

[Claim 1]An optoelectric transducerwherein organic coloring matter is adsorbing so that it may be an optoelectric transducer using a semiconductor particulate by which sensitization was carried out and two or more coloring matter chromophoric groups may exist perpendicularly to the semiconductor particulate surface with organic coloring matter. Howeverlet a metal polynuclear complex portion be one chromophoric group. Howeverlet a metal polynuclear complex portion be one chromophoric group. [Claim 2]The optoelectric transducer according to claim 1 using a semiconductor particulate by which sensitization was carried out in cation coloring matter by using a kind for a kind and anion coloring matter simultaneously at least.

[Claim 3] Claim 1 using a semiconductor particulate by which sensitization was carried out by using a kind simultaneously at least among methine coloring matter expressed with a kind and following general formula (II) at least among methine coloring matter expressed with following general formula (I) or an optoelectric transducer given in two.

General formula (I)
[Formula 1]

 Z_1 expresses an atomic group required to form nitrogen-containing heterocycle among a formula. R_1 is an alkyl group or an aryl group. Q_1 expresses a methine group required for the compound expressed with general formula (I) to form methine coloring matteror a poly methine group. L_1 and L_2 express a methine group. p_1 expresses 0 or 1. However Z_1R_1 and Q_1 shall have a substituent from which the methine coloring matter expressed with general formula (I) turns into cation coloring matter as a whole. M_1 expresses the negative ion for electric charge balanceand m_1 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule.

General formula (II)
[Formula 2]

Z₂ expresses an atomic group required to form nitrogen-containing heterocycle among a formula. R_2 is an alkyl group or an aryl group. Q_2 expresses a methine group required for the compound expressed with general formula (II) to form methine coloring matteror a poly methine group. L_3 and L_4 express a methine group. p_2 expresses 0 or 1. However Z_2R_2 and Q_2 shall have a substituent from which the methine coloring matter which is general formula (II) and is expressed turns into anion coloring matter as a whole. M2 expresses the positive ion for electric charge balanceand m2 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule. [Claim 4] The optoelectric transducer according to claim 1 using a semiconductor particulate of a compound with two or more coloring matter portions connected by a covalent bond by a divalent connecting group in which sensitization was carried out by kind at least. [Claim 5] The optoelectric transducer according to claim 1 or 4 using a semiconductor particulate of a compound expressed with following general formula (III) in which sensitization was carried out by kind at least. General formula (III) [Formula 3]

D expresses among a formula the sensitizing dye portion which sticks to a semiconductor particulate. L expresses a divalent connecting group or single bond. A expresses the luminescent coloring matter portion connected with D by the connecting group L. n may be one or more integers and two or more L and A in which the case of two or more is included may be different connecting groups and luminescent coloring matter portionsrespectively.

[Claim 6]A photogalvanic cell using an optoelectric transducer of claim 1234or 5.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the optoelectric transducer using the semiconductor particulate by which sensitization

was carried out with coloring matter in detail about an optoelectric transducer.

[0002]

[Description of the Prior Art] The optoelectric transducer is used for various kinds of photosensorsthe copying machineand the optical power plant. Various methodssuch as what used metala thing using a semiconductora thing using an organic color or coloring matteror a thing that combined these are put in practical use by the optoelectric transducer. On a U.S. Pat. No. 4927721 itemNo. 4684537No. 5084365No. 5350644No. 5463057No. 5525440and JP7-249790A specifications. The material and production technology for creating the optoelectric transducer (it abbreviates to a dye sensitizing optoelectric transducer henceforth) using the semiconductor particulate by which sensitization was carried out with coloring matteror this are indicated. Since the first advantage of this method can be used without refining cheap oxide semiconductors such as a titanium dioxideto a high gradeit is at the point that a comparatively cheap optoelectric transducer can be provided. Since broadcloth [the second advantage / absorption of the coloring matter used lit is that the light of almost all the wavelength areas of visible light is convertible for the electrical and electric equipment. Since these features are advantageous when they apply solar energy to the optoelectric transducer (what is called a photogalvanic cell) aiming at changing into the electrical and electric equipmentthe application to this direction is considered actively.

[0003]Using the ruthenium complex coloring matter of the point that improvement of a dye sensitizing optoelectric transducer is called for expensive [one]as sensitizing dye is mentioned. Although development of the optoelectric transducer by which sensitization is carried out with cheap organic coloring matter was desiredsince the adsorptivity of organic coloring matter to the titanium dioxide was low and the amount of adsorption was smallhigh sensitization efficiency was not able to be obtained.

[0004]

[Problem(s) to be Solved by the Invention] The purpose of this invention is to provide the dye sensitizing optoelectric transducer which has high conversion efficiency.

[0005]

[Means for Solving the Problem] In order to obtain high sensitization efficiency it is required to raise a light absorption rate per unit surface area. It is required to raise adsorption density of sensitizing dye for that purpose. We developed a method of raising adsorption

density of sensitizing dye as a result of research. That is the purpose of this invention was attained by (1) to (6) shown below.

(1) An optoelectric transducerwherein organic coloring matter is adsorbing so that it may be an optoelectric transducer using a semiconductor particulate by which sensitization was carried out and two or more coloring matter chromophoric groups may exist perpendicularly to the semiconductor particulate surface with organic coloring matter. Howeverlet a metal polynuclear complex portion be one chromophoric group. [0006](2) An optoelectric transducer given in (1) characterized by using a semiconductor particulate by which sensitization was carried out in cation coloring matter by using a kind for a kind and anion coloring matter simultaneously at least.

[0007](3) An optoelectric transducer (1) using a semiconductor particulate by which sensitization was carried out by using a kind simultaneously at least among methine coloring matter expressed with a kind and following general formula (II) at least among methine coloring matter expressed with following general formula (I) or given in (2). General formula (I)

[8000]

[Formula 4]

[0009] Z_1 expresses an atomic group required to form nitrogen-containing heterocycle among a formula. R_1 is an alkyl group or an aryl group. Q_1 expresses a methine group required for the compound expressed with general formula (I) to form methine coloring matteror a poly methine group. L_1 and L_2 express a methine group. p_1 expresses 0 or 1. However Z_1R_1 and Q_1 shall have a substituent from which the methine coloring matter expressed with general formula (I) turns into cation coloring matter as a whole. M_1 expresses the negative ion for electric charge balanceand m_1 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule.

General formula (II)

[0010]

[Formula 5]

 $[0011]Z_2$ expresses an atomic group required to form nitrogen-containing heterocycle among a formula. R_2 is an alkyl group or an aryl group. Q_2 expresses a methine group required for the compound expressed with general formula (II) to form methine coloring matteror a poly methine

group. L_3 and L_4 express a methine group. p_2 expresses 0 or 1. However Z_2R_2 and Q_2 shall have a substituent from which the methine coloring matter which is general formula (II) and is expressed turns into anion coloring matter as a whole. M_2 expresses the positive ion for electric charge balanceand m2 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule. [0012](4) divalent -- a connecting group -- a covalent bond -- having connected -- two -- a ** -- more than -- coloring matter -- a portion -having -- a compound -- at least -- a kind -- sensitization -- carrying out -- having had -- a semiconductor particulate -- using -- things -the feature -- carrying out -- (-- one --) -- a statement -- an optoelectric transducer. [0013](5) An optoelectric transducer (1) or given in (4) using a semiconductor particulate of a compound expressed with following general formula (III) in which sensitization was carried out by kind at least. General formula (III) [0014] [Formula 6]

[0015]D expresses among a formula the sensitizing dye portion which sticks to a semiconductor particulate. L expresses a divalent connecting group or single bond. A expresses the luminescent coloring matter portion connected with D by the connecting group L. n may be one or more integers and two or more L and A in which the case of two or more is included may be different connecting groups and luminescent coloring matter portions respectively.

[0016] The photogalvanic cell using the optoelectric transducer of (6)(1)(2)(3)(4)or (5).
[0017]

[Embodiment of the Invention] This invention is an optoelectric transducer using the semiconductor particulate by which sensitization was carried out with organic coloring matterand is an optoelectric transducerwherein organic coloring matter is adsorbing so that two or more coloring matter chromophoric groups may exist perpendicularly to the semiconductor particulate surface. organic coloring matter is adsorbing so that two or more coloring matter chromophoric groups may exist perpendicularly to the semiconductor particulate surface — that isit means that the coloring matter chromophoric group has covered the semiconductor particulate surface top to the multilayer. Such an adsorbed state may be formed by what kind of method. With the chromophoric group who stated herea silicification study dictionary (the

fourth editionIwanami Shoten1987) and all the atom groups to whom it is shown [985-986-page] by explanation of the chromophoric group of a statement are included.

[0018] This invention showed two methods of having realized still such a coloring matter adsorbed state. One is the method of using together cation coloring matter and anion coloring matter. As long as the coloring matter used for this method is the organic coloring matter which just carried out electrificationand the organic coloring matter which carried out electrification to negativewhat kind of thing may be sufficient as it. As organic coloring mattera spiro compoundmetallocenefluorenonefulgideImidazoleperylenephenazinephenothiaz

compoundmetallocenefluorenonefulgideImidazoleperylenephenazinephenothiazinpolyeneAn azo compounda disazo

compoundquinoneindigodiphenylmethaneTriphenylmethanepoly methinean acridineAKURIJINONcarbo styrylA coumarindiphenylamineQuinacridonekino FUTARONphenoxazinephtalo

peryleneporphinchlorophyllphthalocyanineSUKUARIUMUdiazobenzenea bipyridine metal complex (example of a metal polynuclear complex)etc. are mentioned. Preferablyan azo

compounddiphenylmethanetriphenylmethanepoly

methineporphinphthalocyanineSUKUARIUMUa bipyridine metal complexetc. are mentioned. It is a time of being poly methine coloring matter which can express with said general formula (I) still more preferably as cation coloring matter. It is a time of general formula (I) being preferably expressed with following general formula (IV).

General formula (IV)

[0019]

[Formula 7]

[0020] $L_5L_6L_7L_8L_9L_{10}$ and L_{11} express a methine group among general formula (IV). p_3 and p_4 express 0 or 1. n_1 expresses 012or 3. Z_3 and Z_4 express an atomic group required in order to form the nitrogen-containing heterocycle of 5 or 6 members. R_3 and R_4 express an alkyl group or an aryl group. At least one side expresses the alkyl group replaced by the aryl groupthe aryl groupor the heterocycle group among R_3 and R_4 . However R_3 and R_4 do not have an anionic substituent either. $Z_3Z_4L_3L_4$ and L_5 may be replaced and those substituents do not have an anionic substituent. M_3 expresses the negative ion for electric charge balance m_3 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule.

[0021] It is a time of being poly methine coloring matter which can

express with said general formula (II) still more preferably as anion coloring matter. It is a time of general formula (II) being preferably expressed with following general formula (V).

General formula (V)

[0022]

[Formula 8]

 $[0023]L_{12}L_{13}L_{14}L_{15}L_{16}L_{17}$ and L_{18} express a methine group among general formula (V). p_5 and p_6 express 0 or 1. n_2 expresses 012or 3. Z_5 and Z_6 express an atomic group required in order to form the nitrogen-containing heterocycle of 5 or 6 members. R_5 and R_6 express an alkyl group or an aryl group. At least one side expresses the alkyl group replaced by the aryl groupthe aryl groupor the heterocycle group among R_5 and R_6 . However R_5 and R_6 have an anionic substituent. M_4 expresses the negative ion for electric charge balanceand m4 expresses or more 0 ten or less number required to neutralize the electric charge of a molecule. [0024] Another method of having realized an adsorbed state that a coloring matter chromophoric group had covered a semiconductor particulate surface top to a multilayer is a method of using a pigment compound with two or more coloring matter chromophoric group portions connected by a covalent bond by a divalent connecting group. As a coloring matter chromophoric group who can usewhat kind of thing may be used. As a coloring matter chromophoric groupa spiro compound metallocenefluoren one fulgide Imidazole per ylene phenazine phenothiazinpolyeneAn azo compounda disazo

compound quino ne indigo diphenyl methane Triphenyl methane poly methine an acridine AKURI JINON carbo styryl A coumarindiphenylamine Quinacridone kino FUTARON phenoxazine phtalo

peryleneporphinchlorophyllphthalocyanineSUKUARIUMUdiazobenzenea bipyridine metal complexetc. are mentioned. Preferablyan azo compounddiphenylmethanetriphenylmethanepoly

methineporphinphthalocyanineSUKUARIUMUa bipyridine metal complexetc. are mentioned.

[0025]It is a time of being poly methine coloring matter expressed with said general formula (III) as desirable connection coloring matter. In said general formula (III) it is a time of being methine coloring matter by which D and A are independently expressed with following general formula (VI)(VII)or (VIII)respectively still more preferably. General formula (VI)

[0026]

[Formula 9]

[0027] $L_{19}L_{20}L_{21}L_{22}L_{23}L_{24}$ and L_{25} express a methine group among formula (VI). p_7 and p_8 express 0 or 1. n_3 expresses 012or 3. Z_7 and Z_8 express an atomic group required in order to form the nitrogen-containing heterocycle of 5 or 6 members. M_5 expresses an electric charge equilibrium counter ionand m_5 expresses or more 0 four or less number required to neutralize the electric charge of a molecule. R_7 and R_8 express an alkyl group. General formula (VII) [0028] [Formula 10]

[0029] $L_{26}L_{27}L_{28}$ and L_{29} express a methine group among formula (VII). p_9 expresses 0 or 1. n_4 expresses 012or 3. Z_9 and Z_{10} express an atomic group required in order to form nitrogen-containing heterocycle of 5 or 6 members. M_6 expresses an electric charge equilibrium counter ionand m_6 expresses or more 0 four or less number required to neutralize an electric charge of a molecule. R_9 and R_{10} express an alkyl groupan aryl groupor a heterocycle group. General formula (VIII) [0030] [Formula 11]

[0031] Formula (VIII) NakaL $_{30}$ L $_{31}$ L $_{32}$ L $_{33}$ L $_{34}$ L $_{35}$ L $_{36}$ L $_{37}$ and L $_{38}$ express a methine group. p_{10} and p_{11} express 0 or 1. n_5 and n_6 express 012or 3. $Z_{11}Z_{12}$ and Z_{13} express an atomic group required in order to form the nitrogencontaining heterocycle of 5 or 6 members. M_7 expresses an electric charge equilibrium counter ionand m_7 expresses or more 0 four or less number required to neutralize the electric charge of a molecule. R_{11} and R_{13} express an alkyl group. R_{12} expresses an alkyl groupan aryl groupor a heterocycle group.

[0032]Hereaftera methine compound expressed with general formula (I) and (II) is described in detail. Q_1 and Q_2 express a methine group required to form methine coloring matter or a poly methine group among general formula (I) and (II). the number of methine in a poly methine group — desirable — 0 to 9 — further — desirable — 1 to 7 — it is 3 to 7 especially preferably. When a methine group is included in heterocyclea methine group may be seemingly set to 0. For examplesimple merocyanine (zero methine merocyanine) is mentioned. If methine coloring matter is formed Q_1 and Q_2 Although what kind of thing may be usedit is a

substitution methine group required to form methine coloring matter preferably or a poly methine groupand an aromatic groupa heterocycle groupan amino groupa cyano groupan alkoxycarbonyl groupan alkyl sulfonyl groupan acyl groupetc. are mentioned as such a substituent. Specifically as an aromatic groupan aromatic group (for example4dimethylaminophenyl4-methoxyphenyphenyl4-dimethylamino naphthyl) etc. which is not replaced [substitution or] are mentioned. A basic core publicly known as heterocycle of a heterocycle groupwhen forming coloring matterand an acidic nucleus are mentionedSpecifically A thiazoline corea thiazole corea benzothiazole corean oxazoline coreAn oxazol corea benzooxazol corea selena ZORIN corea selenazole coreBenzoselenazole nucleusa 33-dialkyl INDO renin core (for example33dimethyl INDO renin) An imidazoline nucleusan imidazole nucleusa benzimidazole core2-pyridine core4-pyridine core2-quinoline core4quinoline corel-isoquinoline core3-isoquinoline coreimidazo [45-b] A quinoxaline corean oxadiazole corea thiadiazole corea tetrazole corea pyrimidine baseetc. can be mentioned. As an amino groupan amino group (for exampleamino ** dimethylamino) which is not replaced [substitution or] is mentioned. As an alkoxycarbonyl groupan alkoxycarbonyl group (for exampleethoxycarbonyl) which is not replaced [substitution or] is mentioned. As an alkyl sulfonyl groupan alkyl sulfonyl group (for examplemethanesulfonyl) which is not replaced [substitution or] is mentioned. As an acyl groupan acyl group (for exampleacetyl) which is not replaced [substitution or] is mentioned. By Q_1 and Q_2 although it is also possible to form what kind of methine coloring mattera compound which are general formula (I) and (II) and is expressedCyanine dyemerocyanine dyerhoda cyanine dye3 core merocyanine dyeAROPORA coloring mattera hemicyanine dyea styryl pigmentetc. are mentioned preferably. Under the present circumstancesa substituent on a methine chain which forms coloring matter also contains in cyanine dye a thing in which a SUKUARIUMU ring and a crocodile NIUMU ring were formed. About details of these coloring matter. F.M Harmer (F. M. Harmer) work "heterocyclic party UNZU Cyanine Dyes and Related Compounds (Heterocyclic Compounds-Cyanine Dyes.) and Related Compounds John Willie and Suns (John Wiley & Sons)-New YorkLondon1964 annual publicationsDay em Sturmer (D. M. Sturmer). Work "heterocyclic Compounds-Special topics in heterocyclic chemistry (Heterocyclic Compounds-Special topics in heterocyclic chemistry)"It is indicated to Chapter 18Section 14and the 482nd to 515 pages etc. As for a general formula of cyanine dyemerocyanine dyeand rhoda cyanine dyewhat is shown in U.S. Pat. No. 5340694 21st22-page (XI)(XII)and (XIII) is preferred.

 $[0033]Z_1Z_2Z_3Z_4Z_5$ and Z_6 express an atomic group required to form nitrogencontaining heterocycle among general formula (I)general formula (II) general formula (IV) and general formula (V). $Z_1Z_2Z_3Z_4Z_5As$ nitrogencontaining heterocycle formed of Z₆ and a thiazoline coreA thiazole corea benzothiazole corean oxazoline corean oxazol coreA benzooxazol corea selena ZORIN corea selenazole corebenzoselenazole nucleusA 33-dialkyl INDO renin core (for example 33-dimethyl INDO renin) an imidazoline nucleusan imidazole nucleusa benzimidazole core2-pyridine core4-pyridine core2-quinoline core4-quinoline core1-isoquinoline core3-isoquinoline coreimidazo [45-b] Although a quinoxaline corean oxadiazole corea thiadiazole corea tetrazole corea pyrimidine baseetc. can be mentionedPreferably A benzothiazole corea benzooxazol corea 33-dialkyl INDO renin core (for example33-dimethyl INDO renin) A benzimidazole core2-pyridine core4-pyridine core2-quinoline coreIt is 4-quinoline corel-isoquinoline coreand 3-isoquinoline coreand they are a benzothiazole corea benzooxazol corea 33-dialkyl INDO renin core (for example33-dimethyl INDO renin) and a benzimidazole core still more preferably.

[0034]If a substituent on $Z_1Z_2Z_3Z_4Z_5$ and Z_6 is set to VAlthough there is no restriction in particular as a substituent shown by Vfor example A halogen atom(For examplechlorinebromineiodine and fluoride)a sulfhydryl groupa cyano groupa carboxyl groupa phosphate groupa sulfonic groupa hydroxy groupand the carbon numbers 1-10 -- desirable -- the carbon numbers 2-8 -- further -- desirable -- a carbamoyl group (for examplemethylcarbamoyl.) of the carbon numbers 2-5 ethylcarbamoylmol HORINOKAROBONIRUand the carbon numbers 0-10 -- desirable -- the carbon numbers 2-8 -- further -- desirable -- a sulfamoyl group (for examplemethyl sulfamoyl.) of the carbon numbers 2-5 ethyl sulfamoylpiperidino sulfonyla nitro groupand the carbon numbers 1-20 -desirable -- the carbon numbers 1-10 -- further -- desirable -- an alkoxy group (for examplemethoxy.) of the carbon numbers 1-8 ethoxy **2methoxyethoxy2-phenylethoxyand the carbon numbers 6-20 -- desirable -the carbon numbers 6-12 -- further -- desirable -- an aryloxy group (for examplephenoxyp-methylphenoxyp-chlorophenoxynaphthoxy) of the carbon numbers 6-10[0035]the carbon numbers 1-20 -- desirable -- the carbon numbers 2-12 -- further -- desirable -- an acyl group (for exampleacetyl.) of the carbon numbers 2-8 benzoyltrichloroacetyland the carbon numbers 1-20 -- desirable -- the carbon numbers 2-12 -- further -- desirable -- an acyloxy group (for exampleacetyloxy.) of the carbon numbers 2-8 benzoyloxy one and the carbon numbers 1-20 -- desirable -the carbon numbers 2-12 -- further -- desirable -- the acylamino group

(for exampleacetylamino) of the carbon numbers 2-8. the carbon numbers 1-20 -- desirable -- the carbon numbers 1-10 -- further -- desirable -a sulfonyl group (for examplemethanesulfonyl.) of the carbon numbers 1-8 ethanesulfonylbenzenesulphonyland the carbon numbers 1-20 -- desirable -- the carbon numbers 1-10 -- further -- desirable -- a sulfinyl group (for examplemethanesulfinyl.) of the carbon numbers 1-8 ethanesulfinylbenzenesulfinyland the carbon numbers 1-20 -- desirable -the carbon numbers 1-10 -- further -- desirable -- a sulfonylamino group (for examplemethanesulfonylaminoethane sulfonylaminobenzenesulphonyl amino) of the carbon numbers 1-8[0036]an amino group and the carbon numbers 1-20 -- desirable -- the carbon numbers 1-12 -- further -desirable -- a substituted amino group (for examplemethylamino.) of the carbon numbers 1-8 Dimethylaminobenzylaminoanilinodiphenylaminothe carbon numbers 0-15 -- desirable -- the carbon numbers 3-10 -- further -- desirable -- ammonium (for example trimethylammonium.) of the carbon numbers 3-6 triethyl ammonium and the carbon numbers 0-15 -- desirable -- the carbon numbers 1-10 -- further -- desirable -- a hydrazino group (for exampletrimethyl hydrazino group) of the carbon numbers 1-6. the carbon numbers 1-15 -- desirable -- the carbon numbers 1-10 -- further -- desirable -- an ureido group (for examplean ureido group.) of the carbon numbers 1-6 a NN-dimethyl ureido group and the carbon numbers 1-15 -- desirable -- the carbon numbers 1-10 -- further -- desirable -- an imido group (for examplesuccinimide group) of the carbon numbers 1-6. the carbon numbers 1-20 -- desirable -- the carbon numbers 1-12 -further -- desirable -- an alkylthio group (for examplea methylthio.) of the carbon numbers 1-8 ethylthiopropylthioand the carbon numbers 6-20 -desirable -- the carbon numbers 6-12 -- further -- desirable -- an arylthio group (for examplep-chloro phenylthio phenylthiop-methyl phenylthio) of the carbon numbers 6-10 2-pyridylthionaphthyl thioand the carbon numbers 2-20 -- desirable -- the carbon numbers 2-12 -- further -- desirable -- an alkoxycarbonyl group (for examplecarbomethoxy.) of the carbon numbers 2-8 ethoxycarbonyl2-benzyloxycarbonyland the carbon numbers 6-20 -- desirable -- the carbon numbers 6-12 -- further -desirable -- an aryloxy carbonyl group (for examplephenoxycarbonyl) of the carbon numbers 6-10[0037]the carbon numbers 1-18 -- desirable -- the carbon numbers 1-10 -- further -- desirable -- a non-substituted alkyl group (for examplemethyl.) of the carbon numbers 1-5 ethylpropylbutyland the carbon numbers 1-18 -- desirable -- the carbon numbers 1-10 -further -- desirable -- a substituted alkyl group of the carbon numbers 1-5 -- {-- for examplehydroxymethyl.

Trifluoromethylbenzylcarboxyethylethoxy carbonylmethylacetyl aminomethyl

```
and here -- the carbon numbers 2-18 -- desirable -- the carbon numbers
3-10 -- further -- desirable -- an unsaturated hydrocarbon group (for
examplea vinyl group.) of the carbon numbers 3-5 An ethynyl group 1-
cyclohexenyl groupa benzylidyne groupand a benzyliene group will also be
contained in a substituted alkyl group} the carbon numbers 6-20 --
desirable -- the carbon numbers 6-15 -- further -- desirable -- an aryl
group (for examplephenyl.) which is not replaced [ substitution of the
carbon numbers 6-10or ] Naphthylp-carboxyphenylp-nitrophenyl35-
dichlorophenylp-cyanophenylm-fluorophenylp-tolyl[0038]the carbon numbers
1-20 -- desirable -- the carbon numbers 2-10 -- a heterocycle group (for
examplepyridyl5-methyl pyridylthienyla
furilmorpholinotetrahydrofurfuryl) which is not replaced [ substitution
of the carbon numbers 4-6 or ] is mentioned still more preferably.
Structure which the benzene ring and a naphthalene ring condensed can
also be taken. V may replace further on these substituents. Things
desirable as a substituent are an above-mentioned alkyl groupan aryl
groupan alkoxy groupa halogen atomand benzene ring condensationand are a
methyl groupa phenyl groupa methoxy group chlorine atoma bromine
atomiodine atomand benzene ring condensation still more preferably.
[0039]Although a halogen atoman alkyl groupan aryl groupa heterocycle
groupa carboxyl groupa phosphate groupetc. are mentioned preferably as
the substituent V on Z_1Z_2Z_3Z_4Z_5 and Z_6A phenyl groups naphthyl groups
biphenyl groupa thienyl groupa furil groupa carboxyl groupand a
phosphate group are still more preferred also in an aryl groupa
heterocycle groupa carboxyl groupand a phosphate groupand even if these
are replaced furtherthey are more preferably preferred. Especiallyit is
phenyl preferably and a carboxyl group and a phosphate group may replace.
[0040] General formula (I) and R_1 in general formula (IV) R_3A substituent
etc. which expressed an aryl group which is not replaced [ an alkyl
group which is not replaced / substitution or /substitutionor ] and were
shown by explanation of the substituent V etc. as a substituent are
mentioned and R_4 expresses an alkyl group preferably replaced by an aryl
groupan aryl groupor a heterocycle group which is not replaced
[ substitution or ]. And coloring matter in general formula (I) and
general formula (IV) must turn into cation coloring matter. therefore --
as the alkyl group expressed with R_1R_3 and R_4 -- for example the carbon
numbers 1-18 -- desirable -- 1 to 7 -- as for 1 to 4a non-substituted
alkyl group preferably especially. for
examplemethylethylpropylisopropylbutyland isobutyl.
Hexyloctyldodecyloctadecylan unsaturated hydrocarbon group. (for
exampleallyl and a clo chill) and a hydroxyalkyl group (for example2-
```

hydroxyethyl.) 3-hydroxypropyl and an alkoxyalkyl group (for example2-methoxy ethyl.) 2-(2-methoxyethoxy) ethylan alkoxycarbonyl-alkyl group. (For exampleethoxycarbonylethyl2-benzyloxy carbonylethyl)An acyloxy alkyl group (for example2-acetyloxy ethyl)an acyl alkyl group (2-acetylethyl)As a carbamoyl alkyl group (for example2-morpholino carbonylethyl)a sulfamoyl alkyl group (for exampleNN-dimethyl sulfamoyl methyl)and an alkyl group that an aryl group replacedAn aralkyl group (for examplebenzyl2-phenylethylnaphthyl methyl2-(4-biphenyl) ethyl)an aryloxy alkyl group (for example2-phenoxyethyl and 2-(1-naphthoxy) ethyl.) 2-(4-BIFENIROKISHI) ethyl2-(omp-halo phenoxy) ethyl2-(omp-methoxy phenoxy) ethylan aryloxy carbonyl alkyl group (3-phenoxycarbonyl propyl2-(1-naphthoxy carbonyl) ethyl)etc. are mentioned. For example2-(pyrrolidine 2-***- 1-yl) ethyl2-(2-pyridyl) ethyl2-(4-pyridyl) ethyl2-(2-furil) ethyl2-(2-thienyl) ethyland 2-(2-pyridyl methoxy) ethyl are mentioned as a heterocyclic substituted alkyl group.

Phenylnaphthylbiphenyletc. are mentioned as an aryl group expressed with R_1R_3 and R_4 .

[0041]Although it is the alkyl group replaced by an aryl groupan aryl groupor a heterocycle group which is not replaced [above-mentioned substitution desirable as a substituent expressed with R₁ R₃ and R_4 or]What is replaced with an ammonio group which has cation electric chargessuch as a trialkyl ammonio groupfurther has these more preferred. As a desirable ammonio groupan unreplaced trialkyl ammonio group of the carbon numbers 1-7. for examplea trimethylammonio groupa triethylammonio groupand a TORIPURO pill ammonio group. What is expressed with the above-mentioned V as a tributylammonio groupa dimethylethyl ammonio groupa dibutylethylammonio groupand a substitution trialkyl ammonio group {substituent of the carbon numbers 1-7 is mentioned. For examplea trichloromethyl ammonio groupa Tori (2 - methoxy) ethylammonio groupA Tori (33-dichloropropyl) ammonio groupa dibutyl (2-hydroxyethyl) ammonio groupThe 4th class of nitrogen-containing heterocyclic nitrogen salt (for example1-pyridinio groupa 1-methyl-4-pyridinio group1-kino RINIO groupand 3-thia ZORINIO group may be mentioned and these may be replaced by the further above-mentioned substituent V etc.) of the carbon numbers 1-18etc. are mentioned. A desirable ammonio group an unreplaced trialkyl ammonio group of the carbon numbers 1-4. It is (for examplea trimethylammonio groupa triethylammonio groupa TORIPURO pill ammonio groupand a tributylammonio group) and 1-pyridinio groupand they are a trimethylammonio groupa triethylammonio groupand 1-pyridinio group especially preferably.

[0042]A substituent etc. which R_2R_5 and R_6 expressed an alkyl group or an

aryl groupand were shown by explanation of the substituent V etc. as a substituent are mentioned among general formula (II) and general formula (V). An alkyl group preferably replaced by an aryl groupan aryl groupor a heterocycle group which is not replaced [substitution or] is expressed. And coloring matter in general formula (II) and general formula (V) must turn into anion coloring matter. therefore -- as the alkyl group expressed with R_2R_5 and R_6 -- for example the carbon numbers 1-15 -- desirable -- the carbon numbers 1-10 -- especially -- desirable -an alkyl group of the carbon numbers 1-5 -- a sulfonic group. what a phosphate group and/or a carboxyl group replaced (for examplesulfomethyl.) Sulfoethyl22-difluoro-2-carboxyethyla 2-phospho ethyl groupAn unsaturated hydrocarbon group which a sulfonic groupa phosphate groupand/or a carboxyl group replaced. (For example3-sulfo- 2-propenyl)a sulfonic groupa phosphate groupAnd/oran alkoxyalkyl group which a carboxyl group replaced. An alkoxycarbonyl-alkyl group which (for example2-sulfo- methoxy ethyl)a sulfonic groupa phosphate groupand/or a carboxyl group replaced. (For examplesulfo-ethoxycarbonylethyl2-sulfobenzyloxy carbonylethyl) An acyloxy alkyl group (for example2-phospho acetyloxy ethyl) and an acyl alkyl group (2-sulfo-acetylethyl) which a sulfonic groupa phosphate groupand/or a carboxyl group replaced are mentioned. An aryl group as a replaced alkyl group A sulfonic groupa phosphate groupand/oran aralkyl group (for example2-sulfobenzyl.) which a carboxyl group replaced 4-sulfobenzyl4-sulfophenethyl3-phenyl-3sulfopropy13-pheny1-2-sulfopropy144-dipheny1-3-sulfo-buty12-(4'-sulfo-4-biphenyl) ethyl4-phospho benzylA sulfonic groupa phosphate groupand/or an aryloxy carbonyl alkyl group that a carboxyl group replaced (3-sulfophenoxycarbonyl propyl)An aryloxy alkyl group (for example2-(4-sulfophenoxy) ethyl2-(2-phospho phenoxy) ethyl44-diphenoxy-3-sulfo-butyl) etc. which a sulfonic groupa phosphate groupand/or a carboxyl group replaced are mentioned. As an alkyl group replaced by a heterocycle group3-(2pyridyl)-3-sulfopropyl3-(2-furil)-3-sulfopropyl2-(2-thienyl)-2sulfopropyletc. are mentioned.

 $[0043]R_2R_5$ and an above-mentioned sulfonic group desirable as a substituent expressed with R_6 An aralkyl groupa sulfonic group which a phosphate group and/or a carboxyl group replacedAn unsaturated hydrocarbon groupa sulfonic group which a phosphate group and/or a carboxyl group replacedIt is the aryloxy alkyl group which a phosphate group and/or a carboxyl group replacedMore preferably 2-sulfobenzyl4-sulfobenzyl4-sulfophenethyl3-phenyl-3-sulfopropyl3-phenyl-2-sulfopropylThey are 44-diphenyl-3-sulfo-butyl2-(4'-sulfo-4-biphenyl) ethyl4-phospho benzyl3-sulfo-2-propenyl2-(4-sulfo-phenoxy) ethyletc.

 $[0044]L_1L_2L_3L_4L_5L_6L_7L_8L_9L_{10}L_{11}L_{12}L_{13}L_{14}L_{15}L_{16}L_{17}$ and L_{18} express a methine group independentlyrespectively. A methine group expressed with L_1 - L_{18} may have a substituentas a substituent -- for examplethe carbon numbers 1-15 which are not replaced [substitution or] -- desirable -- the carbon numbers 1-10 -- especially -- desirable -- an alkyl group of the carbon numbers 1-5. the carbon numbers 6-20 which are not replaced [(for examplemethylethyl and 2-carboxyethyl)substitutionor] -- desirable -the carbon numbers 6-15 -- further -- desirable -- an aryl group (for examplephenyl.) of the carbon numbers 6-10 the carbon numbers 3-20 which are not replaced [o-carboxyphenylsubstitutionor] -- desirable -- the carbon numbers 4-15 -- further -- desirable -- a heterocycle group (for exampleNN-dimethylbarbituric acid group) of the carbon numbers 6-10. a halogen atom (for examplechlorinebromineiodinefluoride) and the carbon numbers 1-15 -- desirable -- the carbon numbers 1-10 -- further -desirable -- an alkoxy group (for examplemethoxy.) of the carbon numbers 1-5 ethoxy and the carbon numbers 0-15 -- desirable -- the carbon numbers 2-10 -- further -- desirable -- an amino group (for examplemethylaminoNN-dimethylaminoN-methyl-N-phenylaminoN-methyl piperazino) of the carbon numbers 4-10and the carbon numbers 1-15 -desirable -- the carbon numbers 1-10. furthermore -- desirable -- an alkylthio group (for examplea methylthioethylthio) of the carbon numbers 1-5and the carbon numbers 6-20 -- desirable -- the carbon numbers 6-12 -- an arylthio group (for examplephenylthiop-methyl phenylthio) of the carbon numbers 6-10etc. are mentioned still more preferably. Other methine groups and rings may be formed or an auxochrome ring can also be formed.

 $[0045]p_1p_2p_3p_4p_5$ and p_6 express 012or 3 independentlyrespectively. It is 01and 2 preferably and is 0 and 1 still more preferably. When $p_1p_2p_3p_4p_5$ and p_6 are two or moreit does not need to be the same although a methine group is repeated.

 $[0046]n_1$ and n_2 express 0 or 1 independentlyrespectively. It is 0 preferably.

[0047]When required in order to make ionic charge of a molecule into neutrality $M_1M_2M_3$ and M_4 are contained in a formulain order to show existence of a positive ion or negative ion. as a typical positive ion — a hydrogen ion (H⁺) and alkali metal ion (sodium ion.) Inorganic ionsuch as potassium iona lithium ionand alkaline earth metal ion (for example calcium ion) Organic ionsuch as ammonium ion (for example ammonium iontetra alkylammonium ionpyridinium ionethylpyridinium ion) is mentioned. negative ion may be any of inorganic anions or organic negative ion — halogen negative ion (for example a fluorine ion.) a chloride iona

bromine ioniodine ionand substitution aryl sulfone acid ion (for examplep-toluenesulfonic-acid ion.) p-chlorobenzenesulfonic acid ion and aryl disulfon acid ion (for example13-benzenedisulfonic acid ion.) 15naphthalene disulfon acid ion26-naphthalene disulfon acid ionAlkylsulfuric-acid ion (for examplemethylsulfuric acid ion)sulfate ionthiocyanic acid iona perchlorate iontetrafluoroboric acid ionpicric acid ionacetate ionand trifluoromethanesulfonic acid ion are mentioned. Furthermoreionicity polymer or a molecule and a molecule that has reverse charge may be used. m₁m₂m₃and m₄ are Owhen a number required to balance an electric charge is expressed and it forms a salt by intramolecular. [0048] the number of methine groups in Q_1 or Q_2 — desirable — 0 to 7 further -- desirable -- 0 to 5 -- it is 3 especially preferably. It is preferred that a substituent (a heterocycle groupan aliphatic groupor an aromatic group) required to form methine coloring matter in a methine group replacesa heterocycle group or an aromatic group is mentioned as a desirable substituentand it is a heterocycle group especially preferably. What was mentioned as an example of the above-mentioned $\mathrm{Z_4}$ and $\mathrm{Z_6}$ as a heterocycle group is preferred. As an aromatic groupan aromatic group (for example4-dimethylaminophenyl group4-methoxypheny groupa phenyl group4-dimethylamino naphthyl group) etc. which is not replaced [substitution or] are mentioned. As an aliphatic groupan alkoxycarbonyl group (for exampleethoxycarbonyl group) and an acyl group (for exampleacetyl group) are preferred. They are mentioned by substituent etc. which were shown by the above-mentioned Vand In additionfor examplean amino group which is not replaced [substitution or]. An acyl group (for exampleacetyl group) which is not replaced [an alkyl sulfonyl group (for examplemethylsulfonyl group) which is not replaced / (for examplean amino group and a dimethylamino group)a cyano groupan alkoxycarbonyl group (for example ethoxycarbonyl)substitutionor /substitutionor] is preferred.

[0049] Although an example of a compound expressed with which contains general formula (IV) of a general formula (I) (subordinate concept of this invention in below is shownthis invention is not limited to these. [0050]

[Formula 12]

[0051] [Formula 13]

```
[0052]
[Formula 14]
[0053]
[Formula 15]
[0054]
[Formula 16]
[0055]
[Formula 17]
[0056]
[Formula 18]
[0057]
[Formula 19]
[0058]
[Formula 20]
[0059]
[Formula 21]
[0060]
[Formula 22]
[0061]
[Formula 23]
[0062]
```

[Formula 24] [0063] [Formula 25] [0064] [Formula 26] [0065] [Formula 27] [0066] [Formula 28] [0067] [Formula 29] [0068] [Formula 30] [0069] [Formula 31] [0070] [Formula 32] [0071] [Formula 33] [0072] [Formula 34]

```
[0073]
[Formula 35]
[0074]
[Formula 36]
[0075]
[Formula 37]
[0076]
[Formula 38]
[0077]
[Formula 39]
[0078]
[Formula 40]
[0079]
[Formula 41]
[0080]
[Formula 42]
[0081] Although the example of a compound expressed with which contains
general formula (V) of the general formula (II) {subordinate concept of
this invention in below is shownthis invention is not limited to these.
[0082]
```

[Formula 43]

```
[0083]
[Formula 44]
[0084]
[Formula 45]
[0085]
[Formula 46]
[0086]
[Formula 47]
[0087]
[Formula 48]
[0088]
[Formula 49]
[0089]
[Formula 50]
[0090]
[Formula 51]
[0091]
[Formula 52]
[0092]
[Formula 53]
[0093]
```

[0094] [Formula 55] [0095] [Formula 56] [0096] [Formula 57] [0097] [Formula 58] [0098] [Formula 59] [0099] [Formula 60] [0100] [Formula 61] [0101] [Formula 62] [0102] [Formula 63] [0103] [Formula 64]

[Formula 54]

[0104] [Formula 65] [0105] [Formula 66] [0106] [Formula 67] [0107] [Formula 68] [0108] [Formula 69] [0109] [Formula 70] [0110] [Formula 71] [0111] [Formula 72] [0112] [Formula 73]

[0113]Nextthe compound expressed with general formula (III) is described in detail. D expresses a sensitizing dye portion with the adsorptivity to semiconductor particulates such as a titanium dioxideamong general

formula (III). As coloring matter of Dcyanine dyemerocyanine dyeoxonol dyeJolo Pau Ra cyanine dyea hemicyanine dyestyryl system coloring matterhemi oxonol dyea xanthene dye and doria -- metal chelate compound of reel methane series coloring mattera thiazine pigmentan acridine dyean oxazine pigmentaminonaphthalene system coloring matterphthalocyanine system coloring matterporphyrin system coloring matterand othersetc. are contained. Cyanine dyemerocyanine dyerhoda cyanine dye3 core merocyanine dyeAROPORA coloring mattera hemicyanine dyea styryl pigmentetc. are mentioned preferably. Under the present circumstances the substituent on the methine chain which forms coloring matter also contains in cyanine dye the thing in which the SUKUARIUMU ring and the crocodile NIUMU ring were formed. About the details of these coloring matter. F. M Harmer (F. M. Harmer) work "heterocyclic party UNZU Cyanine Dyes and Related Compounds (Heterocyclic Compounds-Cyanine Dyes.) and Related Compounds" John Willie and Suns (John Wiley & Sons)-New YorkLondon1964 annual publicationsDay em Sturmer (D. M. Sturmer) work "heterocyclic Compounds-Special topics in heterocyclic chemistry (Heterocyclic Compounds-Special.) It is indicated to topics in heterocyclic chemistry"Chapter 18Section 14and the 482nd to 515 pages etc. As for the general formula of cyanine dyemerocyanine dyeand rhoda cyanine dyewhat is shown in U.S. Pat. No. 5340694 21st22-page (XI)(XII)and (XIII) is preferred. As for Dit is preferred to have an adsorbent high substituent to semiconductor particulatessuch as a titanium dioxide. You may make it adsorb by any of physical adsorption or chemical absorption. Although a carboxyl groupa phosphate groupa sulfonic groupa sulfinic acid grouphydroxylan amino groupor a sulfhydryl group is mentioned as a typical adsorptivity substituentthey are a carboxyl group and a phosphate group more preferably. [0114] As an example of representation of luminescent coloring matter shown by Acyanine dyemerocyanine dye0xonol dyeJolo Pau Ra cyanine dyea hemicyanine dyestyryl system coloring matterhemi oxonol dyea xanthene dyeand doria -- metal chelate compound of reel methane series coloring mattera thiazine pigmentan acridine dyean oxazine pigmentaminonaphthalene system coloring matterphthalocyanine system coloring matterporphyrin system coloring matterand othersetc. are contained. A thing with skeletal structure of coloring matter used for dye laser as a kind of these luminescent coloring matter is preferred. These are arranged in for exampleMitsuo Maedalaser researchthe 8th volume694 pages803 pages958 pages (1980) and the 9th volume85 pages (1981) and F. Sehaefer workDye Lasersand Springer (1973). Cyanine dyemerocyanine dyerhoda cyanine dye3 core merocyanine dyeAROPORA

coloring mattera hemicyanine dyea styryl pigmentetc. are mentioned more preferably.

[0115]L expresses a divalent connecting group or a single bond. This connecting group consists of an atom or an atom group who contains at least one sort in a carbon atoma nitrogen atoma sulfur atomand an oxygen atom preferably. desirable -- an alkylene group (for examplemethyleneethylenepropylenebutylenepentylene)an allylene group (for examplephenylenenaphthylene) and an alkenylene group (for example) -- for exampleethenylenepropenyleneand alkynylene group (for exampleethynylene.) Propynylenean amide groupan ester groupa sulfo amide groupa sulfonic ester groupAn ureido groupa sulfonyl groupa sulfinyl groupa thioether groupan ether groupthe Alvo Nils group and -N(Ra)- (Ra -- an alkyl group which is not replaced [a hydrogen atomsubstitutionor].) an aryl group which is not replaced [substitution or] is expressed -- a heterocyclic divalent group (for examplea 6-chloro-135-triazine 24-diyl group.) A with an or more 1 carbon number [or less 20] constituted combining a pyrimidine 24-diyl group and a quinoxaline 23-diyl group one or more than it divalent connecting group is expressed. furthermore -- desirable -- a with a carbon number of four or less alkylene group (for examplemethylene and ethylene.) propylenebutylenea with an or more 6 carbon number [or less 10] allylene group (for examplephenylenenaphthylene) and a with a carbon number of four or less alkenylene group (for example) -- for exampleIt is a divalent connecting group or a single bond with an or more 1 carbon number [or less 10] constituted combining ethenylenepropenylenewith a carbon number of four or less alkynylene group (for exampleethynylenepropynylene) an amide groupan ester groupa sulfo amide groupand a sulfonic ester group one or more than it. [0116]n may be one or more integers and two or more L and A in which a case of two or more is included may be different connecting groups and luminescent coloring matter portionsrespectively. $[0117]Z_7Z_8Z_9Z_{10}Z_{11}Z_{12}$ and Z_{13} express an atomic group required to form nitrogen-containing heterocycle among general formula (VI)general formula (VII) and general formula (VIII). As nitrogen-containing heterocycle formed of $Z_7Z_8Z_9Z_{11}$ and Z_{13} a thiazoline coreA thiazole corea benzothiazole corean oxazoline corean oxazol coreA benzooxazol corea selena ZORIN corea selenazole corebenzoselenazole nucleusA 33-dialkyl INDO renin core (for example 33-dimethyl INDO renin) an imidazoline nucleusan imidazole nucleusa benzimidazole core2-pyridine core4-pyridine core2-quinoline core4-quinoline core1-isoquinoline core3-isoquinoline coreimidazo [45-b] Although a quinoxaline corean oxadiazole corea

thiadiazole corea tetrazole corea pyrimidine baseetc. can be mentionedPreferably A benzothiazole corea benzooxazol corea 33-dialkyl INDO renin core (for example33-dimethyl INDO renin)A benzimidazole core2-pyridine core4-pyridine core2-quinoline coreIt is 4-quinoline core1-isoquinoline coreand 3-isoquinoline coreand they are a benzothiazole corea benzooxazol corea 33-dialkyl INDO renin core (for example33-dimethyl INDO renin) and a benzimidazole core still more preferably.

[0118] The same example as a case on said Z_1 - Z_6 is given. V may replace further on these substituents. Things desirable as a substituent are an above-mentioned alkyl groupan aryl groupan alkoxy groupa halogen atomand benzene ring condensationand are a methyl groupa phenyl groupa methoxy group chlorine atoma bromine atomiodine atomand benzene ring condensation still more preferably.

[0119]When methine coloring matter expressed with general formula (VI) (VII) or (VIII) expresses an adsorptivity sensitizing dye portion expressed with D in general formula (I)Preferably as the substituent V on $Z_7Z_8Z_9Z_{11}$ and Z_{13} A halogen atomAlthough an alkyl groupan aryl groupa heterocycle groupa carboxyl groupa phosphate grouphydroxylan amino groupa sulfonic groupor a sulfhydryl group is mentionedMore preferably An aryl groupa heterocycle groupa carboxyl groupa phosphate groupIt is especially preferred a phenyl groupa naphthyl groupa biphenyl groupa thienyl groupa furil group**and also that it is desirable and these are further replaced by a carboxyl groupa phosphate grouphydroxylan amino groupa sulfonic groupor sulfhydryl group. It is preferably by carboxyl groupa phosphate grouphydroxylan amino groupsulfonic groupor a sulfhydryl groupand they are a carboxyl group and a phosphate group especially preferably.

[0120] When methine coloring matter expressed with general formula (VI) (VII) or (VIII) expresses a luminescent coloring matter portion expressed with A in general formula (I)Although a halogen atoman alkyl groupan aryl groupa heterocycle groupetc. are mentioned preferably as the substituent V on $Z_7Z_8Z_9Z_{11}$ and Z_{13} more — desirable — an aryl groupa heterocycle groupand inside — a phenyl groupa naphthyl groupa biphenyl groupa thienyl groupa furil groupand ** — they are chlorobromomethylethylphenylthienyland a furil desirable especially preferably.

[0121]General formula (VI)general formula (VII) and general formula (VIII) Inner R_7A substituent etc. which $R_8R_9R_{11}$ and R_{13} expressed an aryl group which is not replaced [an alkyl group which is not replaced / substitution or /substitution or] and were shown by explanation of the

substituent V etc. as a substituent are mentioned. as an alkyl group -for example the carbon numbers 1-18 -- desirable -- 1 to 7 -- as for 1 to 4a non-substituted alkyl group preferably especially. for examplemethylethylpropylisopropylbutyland isobutyl. Hexyloctyldodecyloctadecylan aralkyl group. (For examplebenzyl2phenylethylnaphthyl methyl2-(4-biphenyl) ethyl)An unsaturated hydrocarbon group (for exampleallyla clo chill)a hydroxyalkyl group. (For example2-hydroxyethyl and 3-hydroxypropyl)an alkoxyalkyl group. (For example2-methoxy ethyl2-(2-methoxyethoxy) ethyl)an aryloxy alkyl group (for example2-phenoxyethyl and 2-(1-naphthoxy) ethyl.) 2-(4-BIFENIROKISHI) ethyl2-(omp-halo phenoxy) ethyl2-(omp-methoxy phenoxy) ethylan alkoxycarbonyl-alkyl group. (For exampleethoxycarbonylethyl and 2-benzyloxy carbonylethyl) an aryloxy carbonyl alkyl group (3phenoxycarbonyl propyl2-(1-naphthoxy carbonyl) ethyl)an acyloxy alkyl group (for example) 2-acetyloxy ethylan acyl alkyl group (2acetylethyl) A carbamoyl alkyl group (for example2-morpholino carbonylethyl)a sulfamoyl alkyl group (for exampleNN-dimethyl sulfamoyl methyl)a heterocyclic substituted alkyl group (for example2-(pyrrolidine 2-***- 1-yl) ethyl)etc. are mentioned. Phenylnaphthylbiphenyla furilthienyletc. are mentioned as an aryl group expressed with R₁R₃ and R₄. [0122] When methine coloring matter expressed with general formula (VI)(VII)or (VIII) expresses an adsorptivity sensitizing dye portion expressed with D in general formula (I) as the substituent expressed with $R_7R_8R_9R_{11}$ and R_{13} -- desirable -- a substituted alkyl group (as a substituent -- a carboxyl group.) Although an aralkyl groupan aryloxy alkyl groupa carboxy alkyl groupa sulfoalkyl groupetc. with which a phosphate grouphydroxylan amino groupa sulfonic groupor a sulfhydryl group is mentioned are mentionedIt is preferred that these are further replaced by a carboxyl groupa phosphate grouphydroxylan amino groupa sulfonic groupor sulfhydryl group. They are a carboxyl groupa phosphate groupand the alkyl group replaced as be alike preferably. [0123] When methine coloring matter expressed with general formula (VI) (VII) or (VIII) expresses a luminescent coloring matter portion expressed with A in general formula (I) $R_7R_8R_9R_{11}$ and an above-mentioned non-substituted alkyl group desirable as a substituent expressed with R₁₃It is an aralkyl groupan aryloxy alkyl groupa carboxy alkyl groupand a sulfoalkyl groupand they are a non-substituted alkyl groupan aralkyl groupand a sulfoalkyl group still more preferably. $\lfloor 0124 \rfloor$ Although Z_{10} expresses an atomic group required to form an acidic nucleusa form of an acidic nucleus of what kind of common merocyanine dye can also be taken. With an acidic nucleus said herefor example The

4th edition of James (James) editing "the theory OBU the photographic process" (The Theory of the Photographic Process) 198 pages will define in the Macmillan publishing company and 1977. Specificallywhat is indicated to U.S. Pat. No. 3567719No. 3575869No. 3804634No. 3837862No. 4002480No. 4925777JP3-167546Aetc. is mentioned. When an acidic nucleus forms a nitrogen-containing heterocyclic compound of 5 members or six membered-rings which consists of carbonnitrogenand a chalcogen (typically oxygensulfurselenium and tellurium) atomit is preferred and the following core is mentioned. 2-pyrazolone 5-onepyrazolidine 35dioneimidazoline 5-oneHydantoin2 or 4-thiohydantoin2-imino oxazolidine 4-one2-oxazoline 5-one2-thiooxazolin-24-dioneIsooxazoline 5-one2thiazoline 4-onethiazolidine 4-oneThiazolidine 24dionerhodaninethiazolidine 24-dithioneIsorhodanineIndang 13dionethiophene 3-onethiophene 3-****- 11-dioxideindoline 2-oneindoline 3-one2-oxo inda ZORIUMU3-oxo inda ZORIUMUthe 57-dioxo 67-dihydroCHIAZORO [32-a] Pyrimidinecyclohexane-13-dione34-dihydroisoquinoline 4-one13dioxane-46-dionebarbituric acid2-thio BARUNI tool acidcoumarin 24dioneindazoline-2-onpyrid [12-a] Pyrimidine 13-dionepyrazolo [15-b] Chinae-cortex ZORONPIROZORO [15-a] Benzimidazolepyrazolo pyridone1234tetrahydroquinoline 24-dionethe 3-oxo 23-JIHIDOROBENZO [d]Thiophene 11dioxide3-dicyano methine 23-JIHIDOROBENZO [d]A core of the thiophene 1 and 1-dioxide.

[0125] Preferably as Z₁₀ Hydantoin2or 4-thiohydantoin2-oxazoline 5-one2thiooxazolin-24-dioneThiazolidine 24-dionerhodaninethiazolidine 24dithioneIt is barbituric acid and 2-thio BARUNI tool acidand they are hydantoin2 or 4-thiohydantoin2-oxazoline 5-onerhodaninebarbituric acidand 2-thio BARUNI tool acid still more preferably. It is 4thiohydantoin and 2-oxazoline 5-one especially preferably. [0126] Nitrogen-containing heterocycle of 5 members or 6 members formed of Z_{12} removes an oxo group or a thio oxo group from heterocycle expressed by Z_{10} . Preferably Hydantoin2 or 4-thiohydantoin2-oxazoline 5one2-thiooxazolin-24-dionethiazolidine 24-dioneFrom rhodaninethiazolidine 24-dithionebarbituric acidand 2-thio BARUNI tool acid to an oxo group. Or except for a thio oxo groupan oxo group or a thio oxo group is removed from hydantoin2 or 4-thiohydantoin2-oxazoline 5-onerhodaninebarbituric acidand 2-thio BARUNI tool acid still more preferably. An oxo group or a thio oxo group is especially removed from 4-thiohydantoin2-oxazoline 5-oneand rhodanine preferably. [0127] As an alkyl group expressed as R_{10} and R_{12} a non-substituted alkyl group quoted as examples such as above-mentioned R_i or a substituted alkyl group is mentioned and same thing is preferred. the carbon numbers 2-20 - - desirable -- the carbon numbers 6-10 -- further -- desirable -- an unreplaced aryl group (for examplea phenyl group.) of the carbon numbers 6-8 1-naphthyl group and the carbon numbers 2-20 -- desirable -- the carbon numbers 6-10 -- further -- desirable -- a substitution aryl group (for examplean aryl group which V quoted as substituents such as the above-mentioned Z₁replaced is mentioned.) of the carbon numbers 6-8 specificallyp-methoxypheny groupp-methylphenyl groupp-chlorophenyl groupetc. are mentioned. the carbon numbers 1-20 -- desirable -- the carbon numbers 3-10 -- further -- desirable -- an unreplaced heterocycle group (for example2-furil group.) of the carbon numbers 4-8 A 2-thienyl group 2-pyridyl group3-pyrazolyl groupisoxazolyl 3-isothiazolyl2imidazolyl2-oxazolyl2-thiazolyl2-pyridazyl2-pyrimidyl3-pyrazyl2- (135triazoryl)5-tetra ZORIRU and the carbon numbers 1-20 -- desirable -- the carbon numbers 3-10 -- further -- desirable -- a substitution heterocycle group (for examplean aryl group which V quoted as substituents such as the above-mentioned Z₁replaced is mentioned.) of the carbon numbers 4-8 Specificallya 5-methyl-2-thienyl groupa 4-methoxy-2pyridyl groupetc. are mentioned. It is mentioned. A desirable thing as R_{10} and R_{12} MethylethylIt is 2-sulfoethyl3-sulfopropyl3-sulfobutyl4sulfobutylcarboxymethylphenyl2-pyridyland 2-thiazolyland they are ethyl2-sulfoethylcarboxymethylphenyland 2-pyridyl still more preferably. $[0128]L_{19}L_{20}L_{21}L_{22}L_{23}L_{24}L_{25}L_{26}L_{27}L_{28}L_{29}L_{30}L_{31}L_{32}L_{33}L_{34}L_{35}L_{36}L_{37}$ and L_{38} express a methine group independently respectively. A methine group expressed with L_{19} - L_{38} may have a substituentas a substituent -- for example the carbon numbers 1-15 which are not replaced [substitution or] -- desirable -- the carbon numbers 1-10 -- especially -- desirable -- an alkyl group of the carbon numbers 1-5. the carbon numbers 6-20 which are not replaced [(for examplemethylethyl and 2-carboxyethyl)substitutionor] -desirable -- the carbon numbers 6-15 -- further -- desirable -- an aryl group (for examplephenyl.) of the carbon numbers 6-10 the carbon numbers 3-20 which are not replaced [o-carboxyphenylsubstitutionor]-desirable -- the carbon numbers 4-15 -- further -- desirable -- a heterocycle group (for exampleNN-dimethylbarbituric acid group) of the carbon numbers 6-10. a halogen atom (for examplechlorinebromineiodinefluoride) and the carbon numbers 1-15 -desirable -- the carbon numbers 1-10 -- further -- desirable -- an alkoxy group (for examplemethoxy.) of the carbon numbers 1-5 ethoxy and the carbon numbers 0-15 -- desirable -- the carbon numbers 2-10 -further -- desirable -- an amino group (for examplemethylaminoNNdimethylaminoN-methyl-N-phenylaminoN-methyl piperazino) of the carbon numbers 4-10and the carbon numbers 1-15 -- desirable -- the carbon

numbers 1-10. furthermore — desirable — an alkylthio group (for examplea methylthioethylthio) of the carbon numbers 1-5and the carbon numbers 6-20 — desirable — the carbon numbers 6-12 — an arylthio group (for examplephenylthiop-methyl phenylthio) of the carbon numbers 6-10etc. are mentioned still more preferably. Other methine groups and rings may be formed or an auxochrome ring can also be formed. [0129] $n_3n_4n_5$ and n_6 express 012or 3 independentlyrespectively. It is 01and 2 preferably and is 0 and 1 still more preferably. When $n_3n_4n_5$ and n_6 are two or moreit does not need to be the same although a methine group is repeated.

[0130]p₇p₈p₉p₁₀and p₁₁ express 0 or 1 independentlyrespectively. It is 0 preferably.

[0131] When required in order to make ionic charge of a molecule into neutralityM₅M₆and M₇ are contained in a formulain order to show existence of a positive ion or negative ion. as a typical positive ion -- a hydrogen ion (H^{*}) and alkali metal ion (sodium ion.) Inorganic ionsuch as potassium iona lithium ionand alkaline earth metal ion (for examplecalcium ion)Organic ionsuch as ammonium ion (for exampleammonium iontetra alkylammonium ionpyridinium ionethylpyridinium ion) is mentioned. negative ion may be any of inorganic anions or organic negative ion -halogen negative ion (for examplea fluorine ion.) a chloride iona bromine ioniodine ionand substitution aryl sulfone acid ion (for examplep-toluenesulfonic-acid ion.) p-chlorobenzenesulfonic acid ion and aryl disulfon acid ion (for example13-benzenedisulfonic acid ion.) 15naphthalene disulfon acid ion26-naphthalene disulfon acid ionAlkylsulfuric-acid ion (for examplemethylsulfuric acid ion) sulfate ionthiocyanic acid iona perchlorate iontetrafluoroboric acid ionpicric acid ionacetate ionand trifluoromethanesulfonic acid ion are mentioned. Furthermoreionicity polymer or a molecule and a molecule that has reverse charge may be used. m₅m₆and m₇ are Owhen a number required to balance an electric charge is expressed and it forms a salt by intramolecular. [0132]It is general formula (III) of this invention below. Although an example of a compound expressed with [general formula (VI) of a subordinate concept(VII) and (VIII) are included] is shownthis invention is not limited to these.

[0133]

[Formula 74]

[0134] [Formula 75] [0135]

[Formula 76]

[0136]

[Formula 77]

[0137]

[Formula 78]

[0138]

[Formula 79]

[0139]

[Formula 80]

[0140]

[Formula 81]

[0141]

[Formula 82]

[0142]

[Formula 83]

[0143]

[Formula 84]

[0144]

[Formula 85]

[0145] [Formula 86] [0146] [Formula 87] [0147] [Formula 88] [0148] [Formula 89] [0149] [Formula 90] [0150] [Formula 91] [0151] [Formula 92] [0152] [Formula 93] [0153] [Formula 94]

[0154]

[Formula 95]

[0155] [Formula 96]

[0156]

[Formula 97]

[0157]

[Formula 98]

[0158]

[Formula 99]

[0159]

[Formula 100]

[0160]

[Formula 101]

[0161]

[Formula 102]

[0162]

[Formula 103]

[0163]Organic coloring matter of this inventionF. M Harmer (F. M. Harmer) work "heterocyclic party *****- Cyanine Dyes and Related Compounds (Heterocyclic Compounds-Cyanine Dyes.) and Related Compounds"John Willie and Suns (John Wiley & Sons)-New YorkLondon1964 annual publicationsDay em Sturmer (D. M. Sturmer) work "heterocyclic Compounds-Special topics in heterocyclic chemistry (Heterocyclic Compounds-Special.) topics in heterocyclic chemistry "Chapter 18Section 14the 482nd to 515 paragraphJohn Willie and Suns (John Wiley & Sons)-New YorkLondon1977 annual publicationsROZZU chemistry OBU carbon party UNZU (Rodd's

Chemistry of Carbon Compounds)2nd. Ed. vol. IVpartB1977 **Chapter 15the 369th to 422 paragraphERUSEBIA science public company ink (Elsevier Science Publishing Company Inc.) company **Based on a method of a statementit is compoundable to New Yorkthe British patent No. 1077611etc. [0164]A synthetic example is shown below. [0165]Synthetic example 1. (composition of the compound I-1) A compound (I-1) is compoundable according to the scheme 1 shown below. [0166] [Formula 104]

[0167] (A-1) Heat 10 g and 26.4 g of phenethyl PARATORU ene sulfonates at 160 ** for 5 hours. 25 ml of triethyl alt.propionate25 ml of pyridineand 10 ml of acetic acid are added to the obtained quality of a brown candystate objectand it agitates at 150 ** for 1 hour. After radiational coolingethyl acetate: If hexane =1:3 solution is added and it agitates at a room temperaturea ***** oily matter will dissociate. The decantation washed 3 times by hexane except for the solvent. the obtained quality of a brown candy-state object -- methanol -- warming -it dissolved and if the methanol solution of the sodium bromide 3.0g is added and is settled overnightthe crystal has deposited. a ** exception carries out a crystal by suction filtration -- methanol -recrystallizing (I-1) -- 1.4g was obtained. (lambdamax = 507 nm (epsilon= 1.62x10 ⁵)) (inside of methanol) [0168] Synthetic example 2. (composition of the compound I-17) A compound (I-17) is compoundable according to the scheme 2 shown below. [0169][Formula 105]

[0170] (A-2) Heat 10.8 g and 26.4 g of phenethyl PARATORU ene sulfonates at 160 ** for 5 hours. 40 ml of triethyl alt.propionate50 ml of pyridineand 25 ml of acetic acid are added to the obtained quality of a brown candy-state objectand it agitates at 135 ** for 0.5 hour. After radiational coolingethyl acetate: If hexane =1:4 solution is added and it agitates at a room temperaturea ****** oily matter will dissociate. The decantation washed 3 times by hexane except for the solvent. the obtained quality of a brown candy-state object -- methanol -- warming -- it dissolvedand if the methanol solution of the sodium bromide 3.0g is added and is settled overnightthe crystal has deposited. a ** exception carries out a crystal by suction filtration -- methanol --

recrystallizing (I-17) -- 1.30g was obtained. (lambdamax = 565 nm (epsilon= 1.26x10 5)) (inside of methanol) [0171]Synthetic example 3. (composition of compound II-1) A compound (II-1) is compoundable according to the scheme 3 shown below. [0172][Formula 106]

[0173](A-1) Heat 10 g and 12-benzopropane Salton 12.2g at 160 ** for 5 hours. Ethyl acetate was added in the place cooled to 70 **it agitated at the room temperature for 1 hourand the crystal was obtained. 20 ml of triethyl alt.propionate20 ml of pyridineand 8 ml of acetic acid are added to this and it agitates at 150 ** for 1.5 hours. After radiational coolingif ethyl acetate is added and it agitates at a room temperaturea ***** oily matter will dissociate. the quality of a brown candy-state object obtained except for the solvent by the decantation -- methanol -warming -- it dissolved and if triethylamine is added and it settles for 1 hourthe crystal has deposited. a ** exception carries out a crystal by suction filtration -- methanol:chloroform =1:1 solvent -- warming -until it dissolves and solution volume becomes half -- ordinary pressure -- warming -- it condensed the crystal which deposited by settling overnight was taken out and (II-1) was obtained by drying. [of 5.8g] $(lambdamax = 504 nm (epsilon= 1.46x10^5)) (inside of methanol)$ [0174] Synthetic example 4. (composition of compound III-54) A compound (III-54) is compoundable according to the schemes 4-6 shown below. [0175]

[Formula 107]

[0176] Composition of a compound (A): Dissolve 20 g of 56-dichloro-2methylbenzimidazoland 25.4 g of N-(2-bromoethyl) phthalimides in acetonitrile at a room temperature. It agitated at the room temperature for two days after dropping the solution of 4.4 g of sodium hydroxide at this. Dichloromethane extractedit driedand after carrying out decompression solvent distilling offa 44g crystal was obtained. 8 g of ethyl CHIRUPARA toluene sulfonates are added to the obtained crystal 10gand it agitates at 150 ** for 5 hours. After radiational coolingif acetone is added and it agitates at a room temperaturea crystal deposits. The ** exception carried out the crystal by suction filtrationand 13.0g (melting point of 289 **) of compounds (1A) were obtained. 40 g of ethyl

CHIRUPARA toluene sulfonates were mixed with 30 g of 5-phenyl-2methylbenzothiazoleand it agitated at 150 ** for 5 hours. Crystallization was carried out with acetone after radiational coolingreduced pressure drying of the crystal was separated and carried outand 45g of white crystals were obtained. 3.8g picking and 4 g of NN'diphenyl form amidines were addedthis was dissolved in ethanoland the heating rotary flow was carried out at 100 ** for 1 hour. When it cooled radiationally and reduced pressure drying of the precipitated crystal was separated and carried out2.69g of compounds (2A) were obtained. 2.5 ml of acetic anhydrides and DMF4ml were added to 1 g of compounds (2A) obtained as mentioned aboveand it agitated for 10 minutes at 100 **. 1 g of compounds (1A) and 1.2 ml of triethylamine were added to this one by oneand it agitated for 30 minutes at 100 more **. HARUTSU obtained by adding water after a reaction was taken out by the decantationit recrystallized with the methanol chloroform solventand the compound (3A) was obtained. 230 ml of 31% of hydrobromic acid acetic acid solutions100 ml of 49% of hydrobromic acid solutionand 70 ml of trifluoroacetic acid were added to 7.0 g of obtained compounds (3A) and it returned for round three days at 130 **. After carrying out vacuum concentration of the reaction mixtureacetone was added and the crystal 4.9g (lambdamax = 528 nm (epsilon= $5.68x10^4$)) of the compound (A) was obtained by separating a crystal and drying (inside of methanol). [0177]

[Formula 108]

[0178]Composition of a compound (B): 11 g of 2-bromopropionamide was mixed with 20 g of 5-chloro-N-ethyl-2-methylbenzimidazoland it agitated at 160 ** for 6 hours. Crystallization was carried out with ethyl acetatethe crystal was separated100 ml of 49% of hydrobromic acid solution and 100 ml of water were added to thisand the overheating rotary flow was carried out at 140 ** for 8 hours. After carrying out vacuum concentration of the reaction mixtureacetone was added and the crystal 12g of the compound (1B) was obtained by separating a crystal and drying. 15 g of butane SARUTON was mixed with 20 g of 5-chloro-N-ethyl-2-methylbenzimidazoland it agitated at 160 ** for 6 hours. Crystallization was carried out with acetonethe crystal was separated and it driedand the acetic anhydride was added in addition to thisand the heating rotary flow of 20 g of the NN'-diphenyl form amidines was carried out at 150 ** for 6 hours. When it cooled radiationally and reduced pressure drying of the precipitated crystal was separated and

carried out7.3g of compounds (2B) were obtained. 2.2 g of compounds (1B) and compound (2B) 3g are melted at a room temperature in dimethyl sulfoxideand it is 1 and 8-diazabicyclo. 5[40] 3.1 ml of-7-undecene was added and it agitated at the room temperature for 1 hour. When the crystal deposited when ethyl acetate was addedthis was taken out and it recrystallized [methanol]0.9 g (lambdamax = 507 nm (epsilon= 6.97x10 4)) of compounds (B) were obtained (inside of methanol). [0179]

[Formula 109]

[0180] Composition of a compound (III-54): 100 mg of compounds (A) and 115 mg of compounds (B) were dissolved in 5 ml of dimethyl sulfoxide at the room temperature30 mg of dimethylamino pyridine and 100 mg of 2-chloro-1-methylpyridinium iodide were added to thisand it agitated for 20 minutes at the room temperature. 0.08 ml of triethylamine was added to thisand it agitated at the room temperature further for 7 hours. Ethyl acetate was addedthe crystal was depositedsilica gel column chromatography refined the obtained crystaland 20 mg (lambdamax = 507.7 nm (epsilon= 1.39×10^{-5})) of compounds (I-54) were obtained (inside of methanol).

[0181] Nextthe dye sensitizing optoelectric transducer adapting the poly methine coloring matter of this invention and a photogalvanic cell are explained in detail. In this inventiona dye sensitizing optoelectric transducer is an electrode which consists of a layer (photosensitive layer) of the semiconductor particulate to which the poly methine coloring matter painted on a conductive substrate and a conductive substrate stuck. A photosensitive layer may be designed according to the purpose and monolayer composition or multilayered constitution may be sufficient as it. One kind or various mixing may be sufficient as the coloring matter in much more photosensitive layer. The light which entered into the photosensitive layer excites coloring matter. It has an energy-rich electronthis electron is passed to the conducting zone of a semiconductor particulate from coloring matterand excitation coloring matter reaches a conductive substrate by diffusion further. Although the dye molecule serves as an oxidant at this timewhile the electron on an electrode works in an external circuita photogalvanic cell returns to color-acid embodimentand a dye sensitizing optoelectric transducer works as a negative electrode of this cell.

[0182] A conductive substrate and a photosensitive layer are explained in detail below. A conductive substrate is a base material of glass or a

plastic which the base material itself will not have conductivity like metalor has a conducting agent layer on the surface. In the case of the latteras a desirable conducting agentmetalcarbon (for exampleplatinumgoldsilvercopperaluminumrhodiumindiumetc.) or conductive metallic oxides (what doped fluoride to an indium tin multiple oxide and tin oxide) are mentioned. A conductive substrate is so good that surface resistance is low. As a range of desirable surface resistanceit is below 50 ohm/cm² and is below 10 ohm/cm² still more preferably. Substantially transparent thing of a conductive substrate is preferred. That it is transparent means substantially that transmissivity of light is not less than 10% it is preferred that it is not less than 50% and especially not less than 80% is preferred. What painted a conductive metallic oxide on glass or a plastic as a transparent conductive base material is preferred. As for lightwhen using a transparent conductive base materialit is preferred to make it enter from the base material side. [0183] Semiconductor particulates are metaled chalcogenides (for examplean oxidea sulfidea selenideetc.) or particles of perovskite. Preferably as metal being chalcogenide TitaniumtinzinctungstenAn oxide of a zirconiumhafniumstrontiumindiumceriumyttriuma lanternvanadiumniobiumor tantaluma cadmium sulfidecadmium selenideetc. are mentioned. Strontium titanatetitanic acid calciumetc. are mentioned preferably as perovskite. Titanium oxidea zinc oxidetin oxideand especially tungstic oxide are [among these] preferred. [0184]As a method of painting a semiconductor particulate on a conductive substratea method of applying dispersion liquid or a colloidal solution of a semiconductor particulate on a conductive substratea method of applying a precursor of a semiconductor particulate on a conductive substrateand moisture in the air hydrolyzingand obtaining a semiconductor corpuscle filmetc. are mentioned. When compounding a method of distributing while grinding using a method and a mill which are mashed with a mortar as a method of creating dispersion liquid of a semiconductor particulateor a semiconductora method of depositing as particles and using it as it is in a solventetc. are mentioned. As carrier fluidwater or various kinds of organic solvents (for examplemethanolethanoldichloromethaneacetoneacetonitrileethyl acetateetc.) are mentioned. In the case of distributionpolymera surfaceactive agentacidor a chelating agent may be used as a distributed auxiliary agent if needed.

[0185]As for a semiconductor particulatewhat has large surface area is preferred so that much coloring matter can be adsorbed. For exampleit is preferred that the surface area is 10 or more times to a project area

where a semiconductor particulate is painted on a base materialand it is more preferred that they are 100 or more times. Since quantity of coloring matter which can be supported per unit area generally increases so that thickness of a layer of a semiconductor particulate is largeabsorption-of-light efficiency becomes highbut since the generated diffusion length of electron increasesa loss by electric charge recombination also becomes large. Although desirable thickness of a semiconductor particle layer changes with uses of an elementthey are 0.1 micron thru/or 100 microns typically. When using as a photogalvanic cellit is preferred that it is 1 thru/or 50 micronsand it is more preferred that it is 3 thru/or 30 microns. A semiconductor particulate may be calcinated in order to stick particles after applying to a base material.

[0186] A method of immersing a semiconductor particulate often in a coloring matter solution dried to make coloring matter stick to a semiconductor particulate for a long time is common. A coloring matter solution may be heated at 50 ** thru/or 100 ** if needed. Adsorption of coloring matter may be performed before spreading of a semiconductor particulateor it may carry out after spreading. A semiconductor particulate and coloring matter may be applied simultaneously and may be made to adsorb. Washing removes unadsorbed coloring matter. When calcinating a coating filmit is preferred to perform adsorption of coloring matter after calcination. After calcinationbefore water sticks to the coating film surfaceit is preferred especially to make coloring matter adsorb quickly. The number of coloring matter to which it sticks may be oneand several sorts may be mixed and it may be used. When mixingmay mix the poly methine coloring matter of this inventionand A U.S. Pat. No. 4927721 itemA complex pigment of a statement and coloring matter of this invention may be mixed on No. 4684537No. 5084365No. 5350644No. 5463057No. 5525440and JP7-249790A specifications. When a use is a photogalvanic cellcoloring matter mixed so that a wavelength band of photoelectric conversion may be made large as much as possible is chosen. Coadsorption of the colorless compound may be carried out for the purpose of reducing an interaction of coloring mattersuch as a meeting. A steroid compound (for examplecholic acid) etc. which have a carboxyl group as a hydrophobic compound which carries out coadsorption are mentioned.

[0187] as for the coloring matter amount of adsorption to a semiconductor particle layer in this inventionit is preferred that they are the **** hit 0.01 of a coating film - 100mmol as a total amount of coloring matter -- more -- desirable -- a **** hit -- they are the **** hit 0.5 -

20mmol still more preferably 0.1 to 50 mmol.

[0188] After adsorbing coloring matteramines may be used and the surface of a semiconductor particulate may be processed. As desirable aminespyridine4-tert-butylpyridinepolyvinyl pyridineetc. are mentioned. In the case of a fluidit may use as it isand these may dissolve and use it for an organic solvent.

[0189] Thusa created dye sensitizing optoelectric transducer is applicable to various kinds of sensors and photogalvanic cells. When applying to a photogalvanic cella charge transfer layer and a counterelectrode are required. Hereaftera charge transfer layer and a counterelectrode are explained in detail. A charge transfer layer is a layer which has the function to supplement an oxidant of coloring matter with an electron. What is called a gel electrolyte with which a polymer matrix was impregnated in a fluid which dissolved a redox couple in an organic solvent as a typical exampleand a fluid which dissolved a redox couple in an organic solventfused salt containing a redox coupleetc. are mentioned. as a redox couple -- for exampleiodine and an iodide (for examplea lithium iodide and iodination tetrabutylammonium.) Combinationsuch as iodination tetrapropylammoniumalkyl viologen (for examplemethyl viologen chloridehexyl viologen bromidebenzyl viologen tetrafluoroborate) and its reduced form should put together. Polyhydroxy benzenses (for examplehydroquinonenaphthohydroquinoneetc.) and an oxidant of those should put together. Combination of a divalent and trivalent iron complex (for examplered prussiate of potash and yellow prussiate of potash)etc. are mentioned. Combination of iodine and an iodide is [among these] preferred. As an organic solvent which melts theseaprotic polar solvents (for exampleacetonitrilepropylene carbonateethylene carbonatedimethylformamidedimethyl sulfoxidesulfolane13-dimethyl imidazolinone3-methyl oxazolidinoneetc.) are preferred. Polyacrylonitrilea polyvinylidenefluorideetc. are mentioned as polymer used for a matrix of a gel electrolyte. By mixing polyethylene oxide with a lithium iodide as fused salt to at least one kind of other lithium salt (for examplelithium acetatelithium perchlorateetc.) what gave mobility in a room temperature is mentioned. Concentration of a grade which becomes an electronic career is required for a redox couple. As desirable concentrationin totalit is 0.01 mol/1. or more is 0.1 mol/1, more preferably and is 0.3 mol/1, or more especially preferably.

[0190]A counterelectrode works as an anode of a photogalvanic cell. Although a counterelectrode is usually synonymous with the abovementioned conductive substratewith composition that intensity is fully

maintaineda base material is not necessarily required. Howeverit is more advantageous to have a base material in respect of sealing nature. In order for light to reach a photosensitive layerat least the abovementioned conductive substrate and one side of a counterelectrode must be substantially transparent. In a photogalvanic cell of this inventiona conductive substrate is transparent and it is preferred to enter sunlight from the base material side. In this caseas for a counterelectrodeit is still more preferred to have the character to reflect light. Glass which vapor-deposited metal or a conductive oxide as a counterelectrode of a photogalvanic cellor a plastic is preferredand especially glass that vapor-deposited platinum is preferred. [0191]In order to prevent evapotranspiration of a structure in a photogalvanic cellit is preferred to seal the side of a cell with polymeradhesivesetc.

[0192]

[Example] Although an example explains concretely the dye sensitizing optoelectric transducer of this inventionand the preparation method of a photogalvanic cell belowthis invention is not limited to these. [0193] The preparation inside of example 1 titanium-dioxide dispersion liquid to the bessel made from stainless steel with a content volume of 200 ml which carried out Teflon coating 15 g of titanium dioxides (Japanese Aerosil Degussa P-25) The water 45gl g of dispersing agents (the Aldrich makeTriton X-100) and 30 g of zirconia beads (made by Nikkato Corp.) 0.5 mm in diameter were put inand it distributed at 1500 rpm for 2 hours using the Sand grinder mill (made by eye MEKKUSU). Zirconia beads were filtered and removed from the dispersed matter. [0194] The glass rod was used and the above-mentioned dispersion liquid were applied to the electric conduction side side of the electrically conductive glass (what carried out cut processing of the Asahi Glass TCO glass to the size of 20 mm x 20 mm) which coated the tin oxide which doped the creation fluoride of the optoelectric transducer. Under the present circumstancesadhesive tape was stretched to the part (from an end to 3 mm) by the side of an electric conduction sideand it was considered as the spacerand glass was put in order and it applied eight sheets at a time at once so that adhesive tape might come to both ends. Air-drying and adhesive tape were removed for one day at the room temperature after spreading. (The portion with adhesive tape being used in the case of photoelectric conversion measurementin order to take a measuring instrument and electric contact) next this glass were put into the electric furnace (Yamato Scientific muffle furnace FP-32 type) and it calcinated for 30 minutes at 450 **. The ethanol solution $\{6 \mathrm{x} 10^{-4} \mathrm{mol} / 10^{-4$

taking out glass and cooling [Each 3x10 ⁻⁴ mol/liter coloring matter expressed with general formula (I) and general formula (II)] It was immersed in} for 3 hours. After the glass which coloring matter dyed was immersed in the 10% ethanol solution of 4-tert-butylpyridine for 30 minutesnatural seasoning was washed and carried out by ethanol. [0195]The optoelectric transducer of the creation above of the photogalvanic cell was piled up with the platinum vacuum evaporation glass of the same size as this (it has shifted so that the non-application portion of an optoelectric transducer may not be contacted on platinum vacuum evaporation glass). Nextthe electrolysis solution (0.05 mol/l of iodinethe solution of 0.5 mol/l of lithium iodides which used the mixture of the volume ratio 90 to 10 of acetonitrile and N-methyl-2-oxazolidinone as the solvent) was infiltrated into the crevice between both glass using capillarity.

[0196] The imitation sunlight which does not include ultraviolet rays was generated by letting AM1.5G filter (made by Oriel) and a sharp cut filter (KenkoL-42) pass for the light of the xenon lamp (made by USHIO) of the measurement 500W of photoelectric conversion efficiency. This luminous intensity was 50 mW/cm². The optoelectric transducer of this invention was irradiated with this lightand the generated electrical and electric equipment was measured with the current potential measuring device (case rhe 238 type). The open circuit voltage of the photogalvanic cell called for by thisa short-circuit currenta form factorand conversion efficiency were summarized in Table 1.

[0197] [Table 1]

[0198] The optoelectric transducer produced by the way having used the ethanol solution $\{3x10^{-4} \text{ mol/liter}\}$ of the coloring matter of this invention shown in the following table 2 instead of the coloring matter of Table 1 in the example 2 above-mentioned example 1 at the time of creation of an optoelectric transducer only differAnd the open circuit voltagethe short-circuit currentthe form factorand conversion efficiency which measured the photogalvanic cell like Example 1 were summarized in Table 2.

[0199]

[Table 2]

[0200] The photoelectric transfer characteristic in which any coloring matter of this invention is more expensive than conventional coloring matter is accepted as shown in Example 1 and Example 2.
[0201]

[Effect of the Invention] It became clear that the dye sensitizing optoelectric transducer using the organic coloring matter which has a high photoelectric transfer characteristic by this invention is provided.