

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

MULTICAST

Lecture B

IMPLEMENTING MULTICAST ORDERING 1

MULTICAST ORDERING

- How do we implement each of the ordering schemes we've seen
 - 1. FIFO ordering (this lecture)
 - 2. Causal ordering (next lecture)
 - 3. Total ordering (this lecture)

FIFO MULTICAST: DATA STRUCTURES

- Each receiver maintains a per-sender sequence number (integers)
 - Processes P1 through PN
 - Pi maintains a vector of sequence numbers Pi[1...N] (initially all zeroes)
 - Pi[j] is the latest sequence number
 Pi has received from Pj

FIFO MULTICAST: UPDATING RULES

- Send multicast at process **P***j*:
 - $\operatorname{Set} P_j[j] = P_j[j] + 1$
 - Include new Pj[j] in multicast message as its sequence number
- Receive multicast: If Pi receives a multicast from Pj with sequence number S in message
 - if (S == Pi[j] + 1) then
 - deliver message to application
 - Set Pi[j] = Pi[j] + 1
 - else buffer this multicast until above condition is true

FIFO Ordering: Example

TOTAL ORDERING

- Ensures all receivers receive all multicasts in the same order
- Formally
 - If a correct process P delivers message m before m' (independent of the senders), then any other correct process P' that delivers m' would already have delivered m.

SEQUENCER-BASED APPROACH

- Special process elected as leader or sequencer
- Send multicast at process Pi:
 - Send multicast message M to group and sequencer
- Sequencer:
 - Maintains a global sequence number S (initially 0)
 - When it receives a multicast message M, it sets S = S + 1, and multicasts $\langle M, S \rangle$
- Receive multicast at process Pi:
 - Pi maintains a local received global sequence number Si (initially 0)
 - If Pi receives a multicast M from Pj, it buffers it until it both
 - 1. Pi receives $\langle M, S(M) \rangle$ from sequencer, and
 - 2. Si + 1 = S(M)
 - Then deliver it message to application and set Si = Si + 1

NEXT

• Implementing causal ordering