

Argomenti della lezione

Lista, pila e coda

Classificazione strutture dati

Posso classificare le strutture dati in:

- Statiche, se il numero dei loro elementi è costante durante l'esecuzione del programma
- Dinamiche, se il numero dei loro elementi <u>varia</u> durante l'esecuzione del programma

Principali strutture dati **statiche**: variabili, vettori, matrici, tabelle.

Classificazione strutture dati

Strutture dati statiche sono inefficienti per gestire grandi quantità di dati con elevato numero di inserimenti e cancellazioni:

- devo conoscere a priori il numero di elementi (scarsa flessibilità)
- inserimento di un elemento ordinato richiede lo spostamento in avanti di tutti gli elementi che lo seguono
- eliminazione richiede lo spostamento indietro di tutti gli elementi che seguono quello cancellato

Classificazione strutture dati

Strutture dati dinamiche occupano solo la memoria che di volta in volta è necessaria.

Possibile strutture dati dinamiche:

- Lista
- Pila
- Coda

Lista

Per LISTA si intende un insieme di elementi:

- collegati tra loro da un rapporto di sequenzialità
- cui si può accedere solo in maniera sequenziale (partendo dal primo fino all'ultimo)

Lista

Ogni elemento della LISTA è composto da due parti:

- una con il dato (o i dati)
- una con l'indicazione (link) dell'elemento successivo

Lista

Il primo elemento NON ha predecessori

L'ultimo elemento non ha successori

Inserimento in una lista

Possibile inserire un nuovo elemento in qualunque posizione all'interno della lista, modificando in modo opportuno i collegamenti (link)

Inserimento in una lista

Esempio

Inserisco DATO5 tra DATO1 e DATO 2

Eliminazione da una lista

Possibile eliminare un elemento da una lista, assegnando al link dell'elemento che lo precede l'indirizzo di quello che lo segue.

Eliminazione da una lista

Esempio Elimino DATO3.

Pila e Coda

Esistono due tipi di liste: la pila e la coda

Pila

La pila (stack) è una lista gestita con il metodo LIFO (Last In First Out)

Sia l'estrazione che l'inserimento degli elementi avvengono solo da un lato
→ Importante gestire la testa della pila

Coda

La coda è una lista gestita con il metodo FIFO (First In First Out)

Si estrae sempre l'elemento in testa alla coda, si inserisce sempre un elemento alla fine della coda

Esempi di pila e di coda

Esempio di pila: le lettere inserite in una cestello e prese una per volta a partire da quella più in alto

Esempio di coda: le persone in coda ad un ufficio postale

Argomenti della lezione

Gestione di una pila

Gestione di una PILA

Esistono linguaggi (es. C, C#, Java...) che contengono "primitive" adatte a gestire e definire strutture dati dinamiche tramite l'uso di puntatori

Un elemento della pila è un record o un oggetto formato dai dati (uno o più campi) e un campo puntatore all'elemento successivo

Inserimento (PUSH) in una PILA

L'operazione di inserimento di un nuovo elemento in una pila si definisce PUSH

Inserimento (PUSH) in una PILA

Cancellazione (POP) da una PILA

L'operazione di cancellazione di un elemento dalla pila si definisce POP:

- Salvo in P il valore di TESTA -> ora P punta al primo elemento
- Salvo in TESTA il valore del puntatore dell'elemento puntato da P -> ora TESTA punta al secondo elemento
- Cancello l'elemento puntato da P

Visualizzare elementi della PILA

Gestione di una PILA in java

Creo la classe XXXXXX e aggiungo come attributo un puntatore ad un oggetto della stessa classe

Creo la classe *Pila*, contenente due attributi:

- un puntatore ad un oggetto della classe XXXXX
- un contatore degli elementi della pila

Gestione di una PILA in java

```
public class Vettura {
   private String targa;
   private int cilindrata;
   private Vettura next;
```

```
public class Pila{
  private Vettura first;
  private int nnodi;
```


Gestione di una CODA

Una coda è gestita con il metodo FIFO, per cui:

- gli inserimenti avvengono <u>al fondo</u> della struttura
- le estrazioni avvengono sul primo elemento

Oltre al puntatore TESTA al primo elemento della coda, occorre un puntatore CODA all'ultimo elemento della coda.

Inserimento (PUSH) in una CODA

L'operazione di inserimento di un nuovo elemento in una coda si definisce PUSH

Inserimento (PUSH) in una CODA

Cancellazione (POP) da una CODA

L'operazione di cancellazione (POP) di un elemento dalla CODA è uguale a quello di una pila:

- Salvo in P il valore di TESTA -> ora P punta al primo elemento
- Salvo in TESTA il valore del puntatore dell'elemento puntato da P → ora TESTA punta al secondo elemento
- Cancello l'elemento puntato da P

Gestione di una CODA in java

Creo la classe XXXXXX e aggiungo come attributo un puntatore ad un oggetto della stessa classe

Creo la classe **Coda**, contenente tre attributi:

- un **puntatore** al primo elemento, un oggetto della classe **XXXXX**
- un puntatore all'ultimo elemento, un oggetto della classe XXXXXX
- un contatore degli elementi della pila

Gestione di una CODA in java

```
public class Paziente {
   private String nome;
   private int num;
   private Paziente next;
```

```
public class Coda{
  private Paziente first;
  private Paziente last;
  private int numprog;
```