In the claims:

## 1. (currently amended): A polymer comprising a repeating unit of the formula

x and y are independently of each other 0 or 1,

X<sup>1</sup> and X<sup>2</sup> are independently of each other a divalent linking group,

 $Ar^{1}$ ,  $Ar^{2}$ ,  $Ar^{3}$ ,  $Ar^{4}$ ,  $Ar^{5}$ ,  $Ar^{6}$ ,  $Ar^{7}$  and  $Ar^{8}$  are independently of each other an aryl group, or a heteroaryl group, which can optionally be substituted.  $\frac{1}{2}$  especially a  $C_{6}$   $C_{30}$  aryl group, or a  $C_{2}$   $C_{26}$  heteroaryl group, which can optionally be substituted.

#### 2. (currently amended): A polymer according to claim 1, comprising a repeating unit of the formula

wherein Ar<sup>2</sup> is as defined in claim 1,

 $R^1$  and  $R^2$  are independently of each other H, halogen,  $SO_3$ ,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_1$ - $C_{18}$ perfluoroalkyl,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D,  $C_7$ - $C_{25}$ aralkyl, or - $C_9$ - $C_{28}$ .

or two substituents R<sup>1</sup> and R<sup>2</sup>, which are adjacent to each other, are a group , or

D is -CO-; -COO-; -S-; -SO-; -SO<sub>2</sub>-; -O-; -NR<sup>25</sup>-; -SiR<sup>30</sup>R<sup>31</sup>-; -POR<sup>32</sup>-; -CR<sup>23</sup>=CR<sup>24</sup>-; or -C≡C-; and E is -OR<sup>29</sup>; -SR<sup>29</sup>; -NR<sup>25</sup>R<sup>26</sup>; -COR<sup>28</sup>; -COOR<sup>27</sup>; -CONR<sup>25</sup>R<sup>26</sup>; -CN; -OCOOR<sup>27</sup>; or halogen; G is E, or C<sub>1</sub>-C<sub>18</sub>alkyl, wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{26}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkoxy;  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-; or

 $\ensuremath{\mathsf{R}^{25}}$  and  $\ensuremath{\mathsf{R}^{26}}$  together form a five or six membered ring, in particular

 $R^{27}$  and  $R^{28}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkoxy;  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{29}$  is H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{30}$  and  $R^{31}$  are independently of each other  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, and

 $R^{32}$  is  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl.

#### 3. (currently amended): A polymer according to claim 1, comprising a repeating unit of the formula

wherein Ar⁴ is as defined in claim 1.

 $R^1$  and  $R^2$  are independently of each other H, halogen,  $SO_3$ ,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_1$ - $C_{18}$ perfluoroalkyl,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D,  $C_7$ - $C_{25}$ aralkyl, or - $C_9$ - $C_{25}$ 

or two substituents  $R^1$  and  $R^2$ , which are adjacent to each other, are a group , or D is -CO-; -COO-; -S-; -SO-; -SO<sub>2</sub>-; -O-; -NR<sup>25</sup>-; -SiR<sup>30</sup>R<sup>31</sup>-; -POR<sup>32</sup>-; -CR<sup>23</sup>=CR<sup>24</sup>-; or -C $\equiv$ C-; and E is -OR<sup>29</sup>; -SR<sup>29</sup>; -NR<sup>25</sup>R<sup>26</sup>; -COR<sup>28</sup>; -COOR<sup>27</sup>; -CONR<sup>25</sup>R<sup>26</sup>; -CN; -OCOOR<sup>27</sup>; or halogen; G is E, or C<sub>1</sub>-C<sub>18</sub>alkyl, wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{26}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-; or

R<sup>25</sup> and R<sup>26</sup> together form a five or six membered ring, in particular

 $R^{27}$  and  $R^{28}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by  $-O_7$ .

 $R^{29}$  is H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{30}$  and  $R^{31}$  are independently of each other  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, and

 $R^{32}$  is  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl.

## 4. (currently amended): A polymer according to claim 3, wherein Ar<sup>4</sup> is a group of formula

$$\mathbb{R}^8$$
  $\mathbb{R}^3$   $\mathbb{R}^4$   $\mathbb{R}^5$  , or  $\mathbb{R}^4$   $\mathbb{R}^{16}$   $\mathbb{R}^{15}$  ,  $\mathbb{R}^4$   $\mathbb{R}^{16}$  , wherein

p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3,

r is an integer of 0 to 10, in particular 0, 1, 2 or 3,

 $R^3$  to  $R^8$  are independently of each other H, halogen,  $SO_3^-$ ,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ -

 $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D,  $C_7$ - $C_{25}$ aralkyl, or -CO- $R^{28}$ , or

two substituents  $R^3$  to  $R^8$ , which are adjacent to each other, are a group , or , and  $R^{14'}$  and  $R^{15'}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl, or  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,

 $R^{16}$  is  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl, which optionally can be substituted, wherein

D is -CO-; -COO-; -S-; -SO-; -SO<sub>2</sub>-; -O-; -NR<sup>25</sup>-; -SiR<sup>30</sup>R<sup>31</sup>-; -POR<sup>32</sup>-; -CR<sup>23</sup>=CR<sup>24</sup>-; or -C $\equiv$ C-; and E is -OR<sup>29</sup>; -SR<sup>29</sup>; -NR<sup>25</sup>R<sup>26</sup>; -COR<sup>28</sup>; -COR<sup>27</sup>; -CONR<sup>25</sup>R<sup>26</sup>; -CN; -OCOOR<sup>27</sup>; or halogen; G is E, or C<sub>1</sub>-C<sub>18</sub>alkyl, wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{26}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-; or



R<sup>25</sup> and R<sup>26</sup> together form a five or six membered ring, in particular-



 $R^{27}$  and  $R^{28}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by  $-O_7$ .

 $R^{29}$  is H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{30}$  and  $R^{31}$  are independently of each other  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, and

 $R^{32}$  is  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl.

**5.** (currently amended): A polymer according to any of claims 1 to 4 claim 1, comprising an additional repeating unit T which is selected from the group consisting of

$$\begin{array}{c} R^{16} \\ R^{17} \\ R^{18} \\ R^{18} \\ R^{17} \\ R^{18} \\ R^{18$$

p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3,

s is an integer from 1 to 10, especially 1, 2 or 3,

 $R^{14}$  and  $R^{15}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G, or  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,

 $R^{16}$  and  $R^{17}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl, or  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D,  $C_7$ - $C_{25}$ aralkyl, or -CO- $R^{28}$ ,

 $R^{18}$  is H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl, or  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-;

 $R^{19}$  and  $R^{20}$  are independently of each other  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl

which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{25}$ aralkyl, or

R<sup>19</sup> and R<sup>20</sup> together form a group of formula =CR<sup>100</sup>R<sup>101</sup>, wherein

 $R^{100}$  and  $R^{101}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl, or  $C_2$ - $C_{20}$ heteroaryl which is substituted by G, or

R<sup>19</sup> and R<sup>20</sup> form a ring, especially a five- or six-membered ring, which can optionally be substituted, and

D, E and G are as defined in claim 2.

**6.** (currently amended): A polymer according to claim 5, wherein T is selected from the group consisting of

R<sup>18</sup> is C<sub>1</sub>-C<sub>18</sub>alkyl, and

 $R^{19}$  and  $R^{20}$  are independently of each other  $C_1$ - $C_{18}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, which can be interrupted by one or two oxygen atoms, or

 $R^{19}$  and  $R^{20}$  form a five or six membered carbocyclic ring, which optionally can be substituted by  $C_1$ - $C_4$ alkyl.

7. (currently amended): A polymer according to any of claims 1 to 6 claim 1, comprising a repeating unit of the formula

$$A^{1} \longrightarrow A^{1} \longrightarrow A^{5} \longrightarrow A^{5$$

to 99.5 mol%, especially in an amount of 40 to 80 mol%, wherein the sum of the repeating unit(s) and the co-monomer is 100 mol%, wherein

A<sup>1</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl,

A<sup>2</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl,

A<sup>3</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkoxy, or C<sub>1</sub>-C<sub>18</sub>alkyl,

A<sup>4</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl,

A<sup>5</sup> is hydrogen, C<sub>1</sub>-C<sub>18</sub>alkyl, di(C<sub>1</sub>-C<sub>18</sub>alkyl)amino, or C<sub>1</sub>-C<sub>18</sub>alkoxy,

A<sup>6</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl,

A<sup>7</sup> is hydrogen, C<sub>1</sub>-C<sub>18</sub>alkyl or C<sub>1</sub>-C<sub>18</sub>alkoxy, and

T is a group of formula 
$$R^{16}$$
, 
$$R^{16}$$
, 
$$R^{17}$$
, 
$$R^{17}$$
, 
$$R^{17}$$
, 
$$R^{17}$$
, 
$$R^{19}$$
, wherein s is one or two, er 
$$R^{19}$$
, wherein s is one or

two.

 $R^{16}$  and  $R^{17}$  are independently of each other  $C_1$ - $C_{18}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, especially hexyl, heptyl, 2-ethylhexyl, and octyl, which can be interrupted by one or two oxygen atoms,  $C_1$ - $C_{18}$ alkoxy, especially  $C_4$ - $C_{12}$ alkoxy, especially hexyloxy, heptyloxy, 2-ethylhexyloxy, and octyloxy, which can be interrupted by one or two oxygen atoms and  $R^{19}$  and  $R^{20}$  are independently of each other  $C_1$ - $C_{18}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, especially hexyl,

and  $R^{19}$  and  $R^{20}$  are independently of each other  $C_1$ - $C_{18}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, especially hexyl, heptyl, 2-ethylhexyl, and octyl, which can be interrupted by one or two oxygen atoms.

### 8. (currently amended): A polymer according to claim 1, comprising a repeating unit of the formula

 $Ar^7$ ,  $Ar^2$ ,  $Ar^8$  and  $Ar^8$  are independently of each other a  $C_6$ - $C_{30}$ aryl group, or a  $C_2$ - $C_{26}$ heteroaryl group, which can optionally be substituted,

X<sup>1</sup> and X<sup>2</sup> are independently of each other a group of the formula

wherein the dotted line represent the bond to the benzotriazole unit,

 $R^{56}$  and  $R^{57}$  are independently of each other H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{25}$ aralkyl,

 $R^{58}$  is H,  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl, or  $C_7$ - $C_{25}$ aralkyl,

 $R^{59}$  and  $R^{60}$  are independently of each other H,  $C_1$ - $C_{18}$  alkyl,  $C_1$ - $C_{18}$ alkyl which is substituted by E and/or interrupted by D,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryl which is substituted by G,  $C_2$ - $C_{20}$ heteroaryl,  $C_2$ - $C_{20}$ heteroaryl which is substituted by G,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkynyl,  $C_1$ - $C_{18}$ alkoxy,  $C_1$ - $C_{18}$ alkoxy which is substituted by E and/or interrupted by D, or  $C_7$ - $C_{25}$ aralkyl, or

 $R^{59}$  and  $R^{60}$  form a ring, especially a five- or six-membered ring, which can optionally be substituted,  $R^{71}$  is H, C<sub>1</sub>-C<sub>18</sub>alkyl, -C=N, -CONR<sup>25</sup>R<sup>26</sup> or -COOR<sup>27</sup>,

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO<sub>2</sub>-; -O-; -NR<sup>25</sup>-; -SiR<sup>30</sup>R<sup>31</sup>-; -POR<sup>32</sup>-; -CR<sup>23</sup>=CR<sup>24</sup>-; or -C $\equiv$ C-; and

E is  $-OR^{29}$ ;  $-SR^{29}$ ;  $-NR^{25}R^{26}$ ;  $-COR^{28}$ ;  $-COR^{27}$ ;  $-CONR^{25}R^{26}$ ; -CN;  $-OCOOR^{27}$ ; or halogen; G is E, or  $C_1$ - $C_{18}$ alkyl, wherein

 $R^{23}$ ,  $R^{24}$ ,  $R^{25}$  and  $R^{26}$  are independently of each other H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-; or

R<sup>25</sup> and R<sup>26</sup> together form a five or six membered ring, in particular-

 $\mathsf{R}^{27}$  and  $\mathsf{R}^{28}$  are independently of each other H;  $\mathsf{C}_6\text{-}\mathsf{C}_{18}$ aryl;  $\mathsf{C}_6\text{-}\mathsf{C}_{18}$ aryl which is substituted by  $\mathsf{C}_1\text{-}$ 

C<sub>18</sub>alkyl, or <sub>1</sub>-C<sub>18</sub>alkoxy; C<sub>1</sub>-C<sub>18</sub>alkyl; or C<sub>1</sub>-C<sub>18</sub>alkyl which is interrupted by -O-, and

 $R^{29}$  is H;  $C_6$ - $C_{18}$ aryl;  $C_6$ - $C_{18}$ aryl which is substituted by  $C_1$ - $C_{18}$ alkyl,  $C_1$ - $C_{18}$ alkyl; or  $C_1$ - $C_{18}$ alkyl which is interrupted by -O-,

 $R^{30}$  and  $R^{31}$  are independently of each other  $C_1$ - $C_{18}$ alkyl,  $C_6$ - $C_{18}$ aryl, or  $C_6$ - $C_{18}$ aryl, which is substituted by  $C_1$ - $C_{18}$ alkyl, and

R<sup>32</sup> is C<sub>1</sub>-C<sub>18</sub>alkyl, C<sub>6</sub>-C<sub>18</sub>aryl, or C<sub>6</sub>-C<sub>18</sub>aryl, which is substituted by C<sub>1</sub>-C<sub>18</sub>alkyl.

# 9. (currently amended): A polymer according to claim 8, comprising a repeating unit of the formula



(IVa), and/or (IVb), and a repeating unit T in an amount of 0 to 99.5 mol%,

especially in an amount of 40 to 80 mol%, wherein the sum of the repeating unit(s) and the comonomer is 100 mol%, wherein

$$Ar^7$$
 is  $Ar^7$  or  $A^{41}$ 

$$A^{42} O A^{41} O A^{41} O A^{41} O A^{41} O A^{41}$$

$$A^{7'} \text{ is}$$

wherein the dotted line is the bond to the nitrogen atom of the benzotriazole unit,

$$Ar^{8}$$
 is  $A^{42}$  or  $A^{41}$  or  $A^{42}$  or  $A^{41}$  or  $A^{42}$  or  $A^{41}$ 

wherein the dotted lines are the bonds to the nitrogen atoms of the benzotriazole unit,

A<sup>41</sup> is hydrogen, C<sub>1</sub>-C<sub>18</sub>alkoxy, or C<sub>1</sub>-C<sub>18</sub>alkyl, <del>such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, 2-methylbutyl, n-pentyl, isopentyl, n-hexyl, 2-ethylhexyl, or n-heptyl,</del>

A<sup>42</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, 2-methylbutyl, n-pentyl, isopentyl, n-hexyl, 2-ethylhexyl, or n-heptyl,

A<sup>43</sup> is hydrogen, or C<sub>1</sub>-C<sub>18</sub>alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, 2-methylbutyl, n-pentyl, isopentyl, n-hexyl, 2-ethylhexyl, or n-heptyl,

$$\mathbb{R}^{59}$$
 , or

 $\boldsymbol{X}^1$  and  $\boldsymbol{X}^2$  are independently of each other a group of the formula

, wherein the dotted line represent the bond to the benzotriazole unit,

R<sup>71</sup> is H, C<sub>1</sub>-C<sub>18</sub>alkyl, -C≡N, or -COOR<sup>27</sup>, wherein

 $R^{27}$  is H; or  $C_1$ - $C_{18}$ alkyl, which can be interrupted by one or more oxygen atoms, especially  $C_4$ - $C_{12}$ alkyl, which can be interrupted by one or two oxygen atoms, and

T is a group of formula  $R^{60}$ , or  $R^{60}$ , wherein  $R^{60}$  are independently of each other  $C_1$ - $C_{18}$ alkyl, especially  $C_4$ - $C_{12}$ alkyl, which can be interrupted by one or two oxygen atoms.

- **10.** (currently amended): An optical device or a component therefore, comprising a substrate and a polymer according to any of claims 1 to 9 claim 1.
- **11. (original):** An optical device according to claim 10, wherein the optical device comprises an electroluminescent device.
- **12.** (currently amended): An optical device according to claim 11, wherein the electroluminescent device comprises
- (a) a reflective or transmissive anode
- (b) a reflective or transmissive cathode
- (c) an emissive layer comprising a polymer according to any of claims 1 to 9 claim1 located between the electrodes, and optionally
- (d) a charge injecting layer for injecting positive charge carriers, and
- (e) a charge injecting layer for injecting negative charge carriers.
- 13. (currently amended): A monomer of the formula

$$X^{11} \underbrace{\left( Ar^3 \right)}_{N._N._N} X^{11}$$

$$X^{11} \underbrace{\left( Ar^1 \right)}_{N._N._N} X^{11} \underbrace{\left( Ar^4 \right)}_{N._N} X^{11} \underbrace{\left( Ar^4 \right$$

$$X^{11} = \begin{bmatrix} X^{1} & X^{11} &$$

x and y are 0 or 1,

Ar<sup>1</sup>, Ar<sup>2</sup>, Ar<sup>3</sup>, Ar<sup>4</sup>, Ar<sup>5</sup>, Ar<sup>6</sup>, Ar<sup>7</sup> and Ar<sup>8</sup> are independently of each other an aryl group, or a heteroaryl group, which optionally can be substituted, especially a  $C_6$ - $C_{30}$ aryl group, or a  $C_2$ - $C_{26}$ heteroaryl group, which can optionally be substituted, and

 $X^{11}$  is independently in each occurrence a halogen atom, or  $-B(OH)_2$ ,  $-B(OY^1)_2$  or  $X^{11}$  is independently in each occurrence a  $C_1$ - $C_{10}$ alkyl group and  $Y^2$  is independently in each occurrence a  $C_2$ - $C_{10}$ alkylene group, such as  $-CY^3Y^4$ - $-CY^5Y^6$ - $-CY^7Y^8$ - $-CY^9Y^{10}$ - $-CY^{11}Y^{12}$ --, wherein  $Y^3$ - $-Y^4$ ,  $Y^5$ ,  $Y^6$ ,  $Y^7$ ,  $Y^8$ ,  $Y^9$ ,  $Y^{10}$ ,  $Y^{11}$ -and  $Y^{12}$  are independently of each other hydrogen, or a which may be substituted by one or more  $C_1$ - $C_{10}$ alkyl groups. -, especially  $-C(CH_3)_2C(CH_3)_2$ -, or  $-C(CH_3)_2C(CH_3)_2$ -.

- **14.** (new): A polymer according to claim 1, wherein  $Ar^1$ ,  $Ar^2$ ,  $Ar^3$ ,  $Ar^4$ ,  $Ar^5$ ,  $Ar^6$ ,  $Ar^7$  and  $Ar^8$  are independently of each other a  $C_6$ - $C_{30}$ aryl group which can optionally be substituted, or a  $C_2$ - $C_{26}$ heteroaryl group, which can optionally be substituted.
- 15. (new): A polymer according to claim 3, comprising a repeating unit of the formula

$$\begin{array}{c|c}
R^1 \\
\hline
N, N
\end{array}$$

$$\begin{array}{c}
R^2 \\
\hline
Ar^4
\end{array}$$

15. (new): A polymer according to claim 4, wherein p is 1, 2 or 3, q is 1, 2 or 3 and r is 0, 1, 2 or 3.

17. (new): A polymer according to claim 8, wherein the a repeating unit of the formula IV is selcted from formula IVa, Ivb and IVc



wherein

 $Ar^7$ ,  $Ar^8$  and are independently of each other a  $C_6$ - $C_{30}$ aryl group, or a  $C_2$ - $C_{26}$ heteroaryl group, which can optionally be substituted.

**18.** (new): A monomer according to claim 13, wherein  $Ar^1$ ,  $Ar^2$ ,  $Ar^3$ ,  $Ar^4$ ,  $Ar^5$ ,  $Ar^6$ ,  $Ar^7$  and  $Ar^8$  are independently of each other a  $C_6$ - $C_{30}$ aryl group which can optionally be substituted, or a  $C_2$ - $C_{26}$ heteroaryl group, which can optionally be substituted.