

Vivado Debug Tools

Course Agenda 2023

Agenda

- Integrated Logic Analyzer (ILA)
- Virtual Input/Output(VIO)
- ▶ Integrated Bit Error Ratio Tester (IBERT)

Integrated Logic Analyzer

Course Agenda 2023

Integrated Logic Analyzer

- Several ways to add ILA
- ILA debugging
- ILA IP Setting

Integrated Logic Analyzer

Several ways to add ILA

1 Add ILA core through HDL code

Add debug mark in the netlist

Add ILA core through HDL code

Add ILA core through HDL code

(* mark_debug = "true" *) reg / wire

```
(* mark_debug = "true" *) reg counter_flag;
```



```
Trigger Setup - hw_ila_1 × Capture Setup - hw_ila_1
C://ivadolab/artix7/time_counter/timmer3/timmer3.runs/impl_1/test.tsm
 3 # For info on creating trigger state machines:
        1) In the main Vivado menu bar, select
           Window > Language Templates
        2) In the Templates window, select
           Debug > Trigger State Machine
       3) Refer to the entry 'Info' for an overview
           of the trigger state machine language.
10 : #
11 ! # More information can be found in this document:
12
        Vivado Design Suite User Guide: Programming
        and Debugging (UG908)
15 #
     *******************
17 state my state0:
18 ! trigger;
19
```


Virtual Input/Output

Course Agenda 2023

Virtual Input/Output

Add VIO IP Core

Add VIO IP Core


```
vio_0 vio(
    .clk(sys_clk),
    .probe_out0(vbtn),
    .probe_in0(counter),
    .probe_in1(counter_flag),
    .probe_in2(led_out)
);
```


Integrated Bit Error Ratio Tester

Course Agenda 2023

IBERT

Name	TX	RX	Status	Bits	Errors	BER
% Link 12	MGT_X0Y12/TX	MGT_X0Y12/RX	15.625 Gbps	6.592E12	1.78E2	2.7E-11
% Link 13	MGT_X0Y13/TX	MGT_X0Y13/RX	15.599 Gbps	6.592E12	2.595E4	3.936E-9
% Link 14	MGT_X0Y14/TX	MGT_X0Y14/RX	15.625 Gbps	6.592E12	3.717E3	5.638E-10
% Link 15	MGT_X0Y15/TX	MGT_X0Y15/RX	15.625 Gbps	6.592E12	3E4	4.551E-9
% Link 16	MGT_X0Y16/TX	MGT_X0Y16/RX	15.646 Gbps	6.592E12	1.595E6	2.42E-7
% Link 17	MGT_X0Y17/TX	MGT_X0Y17/RX	15.633 Gbps	3.681E12	3.007E11	8.168E-2
% Link 18	MGT_X0Y18/TX	MGT_X0Y18/RX	15.625 Gbps	6.593E12	6.4E1	9.708E-12
% Link 19	MGT_X0Y19/TX	MGT_X0Y19/RX	15.643 Gbps	6.593E12	9.191E3	1.394E-9

IBERT Example Design

IBERT Example Design

Port Descriptions

The core ports are shown in Table 2-1.

Table 2-1: Core Ports

Signal Name	1/0	Description				
SYSCLOCK_I		Clock that clocks all communication logic. This port is present only when external clock is selected in the generator.				
TXN_O[7:0]	_	Transmit differential pairs for each of the n GTP transceivers used.				
TXP_O[7:0]	0					
RXN_O[7:0]		Receive differential pairs for each of the n GTP transceivers used.				
RXN_O[7:0]	1					
GTREFCLK0_I[1:0]		GTP transceiver reference clocks used.				
GTREFCLK1_I[1:0]	I	The number of MGTREFCLK ports can be equal to or less than the number of transmit and receive ports because some GTP transceivers can share clock in				
RXOUTCLK_O	0	Quad based RX output clock.				

HARDWARE MANAGER - localhost/xilinx_tcf/Digilent/210276723988B

TX Pattern	RX Pattern	TX Pre-Cursor		TX Post-Cursor	TX Diff Swing	Inject Error	TX Reset	RX Reset
PRBS 7-bit	PRBS 7-bit 💙	0.00 dB (00000)	v	0.00 dB (00000) 💙	959 mV (1100) 💙	Inject	Reset	Reset
PRBS 7-bit	PRBS 7-bit 💙	0.00 dB (00000)	v	0.00 dB (00000) 💙	959 mV (1100) 💙	Inject	Reset	Reset
PRBS 15-bit	PRBS 7-bit 🗸	0.00 dB (00000)	v	0.00 dB (00000) 🗸	959 mV (1100) 🗸	Inject	Reset	Reset
PRBS 23-bit								
PRBS 31-bit								
Fast Clk								
Slow Clk								

Horizantal incremental (1)

Horizantal incremental (16)

Vertical incremental (1)

Vertical incremental (16)

Thank you very much for your attention!

Course Agenda 2023