1

Assignment 14

Priya Bhatia

Abstract—This document demonstrates the proof of linearity and approach to find the minimal polynomial for P, where P is the operator on \mathbb{R}^2 .

Download latex-tikz from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ Assignment14

1 Problem

Let P be the operator on R^2 which projects each vector onto the x-axis, parallel to the y-axis: P(x,y)=(x,0). Show that P is linear. What is the minimal polynomial for P?

2 Solution

Given	P be the operator on R^2 , $P: R^2 \to R^2$ which projects each vector onto the x-axis, parallel to the y-axis: $P(x,y)=(x,0)$
To Prove	P is linear For P to be linear, it should satisfy the properties mentioned in the Given section Consider two vectors (x_1, y_1) and (x_2, y_2)
To find	Minimal Polynomial for P
Matrix	For the projection $P(x, y) = (x, 0)$, the matrix of linear transform is, $P(x, y) = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x, 0)$ So, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Proof	Consider two vectors (x_1, y_1) and (x_2, y_2) , then $P((x_1, y_1) + (x_2, y_2)) = P(x_1 + x_2, y_1 + y_2)$ $P((x_1, y_1) + (x_2, y_2)) = P(x_1 + x_2, 0)$ $P((x_1, y_1) + (x_2, y_2)) = P((x_1, 0), (x_2, 0))$ Thus, P satisfied the property of linearity.
	Now, consider some scalar k , then $P(k(x_1, y_1)) = P((kx_1, ky_1))$ $P(k(x_1, y_1)) = P((kx_1, 0))$ $P(k(x_1, y_1)) = kP(x_1, 0)$
	Thus, using above observations we can conclude that P is linear.
Minimal Polynomial	$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
	Characteristic Polynomial of <i>A</i> is $\det(xI - A) = \begin{vmatrix} (x - 1) & 0 \\ 0 & (x - 0) \end{vmatrix}$
	$\det(xI - A) = x(x - 1)$
	Characteristic polynomial is a product of distinct linear terms $m(x) = x(x-1)$
	$\implies m(\mathbf{A}) = \mathbf{A}(\mathbf{A} - \mathbf{I}) = 0$ $\implies x(x - 1) \text{ is the minimal polynomial}$
	Thus, minimal polynomial is equal to $m(x) = x(x-1)$

TABLE 0: Illustration of Proof and finding of minimal polynomial