LC09 – Caractérisations par spectroscopie en synthèse organique

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Spectroscopie UV-visible

1. Transformation : mise en présence des réactifs. L'équation bilan de la synthèse de l'indigo est :

$2 C_7 H_5 NO_{3(s)}$	$+ 2 C_3 H_6 O_{(l)}$	$+ 2HO_{(aq)}^{-}$	$\rightarrow C_{16}H_{10}N_2O_{2(s)}$	$+ 2 C H_3 C O_{2(aq)}^- + 4 H_2 O_{(l)}$
2-nitrobenzaldéhyde	Acétone	lons hydroxydes	Indigo	Ions éthanoates
$0.5 \text{ g} = 3.3 \ 10^{-3} \text{ mol}$	$5 \text{ mL} = 68 \ 10^{-3} \text{ mol}$	$2,5 \; 10^{-3} \; \mathrm{mol}$	0 mol	0 mol Excès

I. Spectroscopie UV-visible

1. Transformation : mise en présence des réactifs. L'équation bilan de la synthèse de l'indigo est :

$$2 C_7 H_5 N O_{3(s)} + 2 C_3 H_6 O_{(l)} + 2 H O_{(aq)}^- \rightarrow C_{16} H_{10} N_2 O_{2(s)} + 2 C H_3 C O_{2(aq)}^- + 4 H_2 O_{(l)}$$

2. Traitement : Essorage sur verre fritté

Entonnoir en verre fritté

I. Spectroscopie UV-visible

3. Identification:

Spectroscopie UV-visible

1. Description du spectre

1. Description du spectre

2. Bandes associées aux groupes caractéristiques

SPECTRE IR DU PENTANE

2. Bandes associées des groupes caractéristiques

SPECTRE IR DU PENTANE

SPECTRE IR DU PETAN-2-OL

2. Bandes associées des groupes caractéristiques

SPECTRE IR DU PENTANE

SPECTRE IR DU PENTANAL

2. Bandes associées des groupes caractéristiques

SPECTRE IR DU PENTANE

SPECTRE IR DU PENT-1-ENE

2. Bandes associées des groupes caractéristiques

SPECTRE IR DU PENTANE

SPECTRE IR DU MÉTHOXYMÉTHANE

2. Bandes associées des groupes caractéristiques

Type de liaison		Nombre d'onde σ (en cm^{-1})	Largeur de la bande	Intensité d'absorption
O-H	En phase gazeuse	3600-3700	Fine	Moyenne
0 – H	En phase condensée	2500-3400	Large	Forte
N-H	En phase gazeuse	3300-3500	Fine	Faible
N-H	En phase condensée	3100-3300	Large	Forte
C-H		2900-3100	Large	Moyenne à forte
C = 0		1650-1750	Fine	Forte
C = C		1600-1700	Variable	Moyenne

II.2) Bandes associées aux groupes caractéristiques

3. Caractérisation de la molécule et de son état

SPECTRE IR DU BUTAN-1-OL LIQUIDE

SPECTRE IR DU BUTAN-1-OL GAZEUX

3. Caractérisation de la molécule et de son état

SPECTRE IR DU BUTAN-2-OL

III. Spectroscopie RMN

1. Description du spectre, table des déplacements chimiques

SPECTRE RMN DE L'ÉTHANE

SPECTRE RMN DU MÉTHOXYMÉTHANE

III. Spectroscopie RMN

1. Description du spectre, table des déplacements chimiques

Type de proton	Exemple	δ (ppm)
Proton d'un alcane ou de chaîne carbonée éloignée d'atomes électronégatifs.	$CH_3 - CH_2 - CH_2 - CH_3$	0,8 - 2,5
Proton sur un atome de carbone lié à un atome électronégatif	$CH_3 - OH$ $CH_3 - CH_2 - O - CH_3$ $CH_3 - CH_2 - CI$	3,1 - 5,0
Proton lié à un atome de carbone d'une double liaison ${\it C}={\it C}$ d'un alcène ou d'un cycle.	$CH_3 - C\mathbf{H} = C\mathbf{H_2}$	4,5-6,0 pour l'alcène $6,5-8,2$ pour le cycle
Proton lié à l'atome de carbone d'un groupe carbonyle	$CH_3 - C\mathbf{H} = O$	9,5 - 11
Proton lié à l'atome d'oxygène d'un groupe carboxyle	$CH_3 - CO_2H$	10,5 - 12
Proton directement lié à un atome d'oxygène ou d'azote.	$CH_3 - OH$ $CH_3 - NH$	0,5 – 5

Spectre IR du réactif : para-aminophénol

