Προγραμματισμός Σημασιολογικού Ιστού

Ενότητα 4: Από το μοντέλο ΕΑV στους γράφους

Μ.Στεφανιδάκης

6-3-2018

Από την τελευταία μας άσκηση...

- Καταλήξαμε σε μια λίστα τριάδων (s, p, o)
 - Η πληροφορία του ωρολογίου προγράμματος

```
[[0, 'Ημέρα', 'Δευτέρα'],
[0, 'Έναρξη', '18:00'],
[0, 'Λήξη', '21:00'],
[0, 'Μάθημα', 'Εξόρυξη δεδομένων και διαχείριση γνώσης'],
# ..κλπ..
[1, 'Ημέρα', 'Τρίτη'],
[1, 'Έναρξη', '15:00'],
[1, 'Λήξη', '18:00'],
[1, 'Μάθημα', 'Προγραμματισμός Σημασιολογικού Ιστού'],
# ..κλπ..
```

- Το πρώτο μέρος (id διάλεξης) είναι κοινό ανά ομάδες τριάδων!
 - Πώς εκφράζεται σχηματικά;

Το μοντέλο ΕΑV σχηματικά

Τα δεδομένα έχουν τη μορφή μεμονωμένων "νιφάδων" (ή "αστέρα") με το id της διάλεξης στο κέντρο

Είναι όμως πράγματι έτσι;

Οι τιμές (values) στο μοντέλο EAV

- Σημασιολογικά, όλες οι τιμές (V) δεν είναι ίδιες
 - Στο παράδειγμα του ωρολογίου προγράμματος
- Υπάρχουν τιμές που θα μπορούσαν να είναι επίσης "οντότητες" (entities);
 - Με τις δικές τους ιδιότητες και τιμές;
 - Τα Μαθήματα, οι Αίθουσες, οι Διδάσκοντες...
- Σε αντίθεση με
 - Τις Ημέρες, τις Ώρες (και ίσως το Εξάμηνο)...
 - Τα τελευταία είναι απλές τιμές (literals)

Ο μετασχηματισμός σε γράφο

- Θεωρώντας έναν κόμβο ανά οντότητα (και literal)
- Ο γράφος περιγράφει τις σχέσεις μεταξύ οντοτήτων

Η ιδέα είναι παλιά: βλ. "semantic networks" της Τεχνητής Νοημοσύνης (δεκαετίες 50-60)

Πώς αναγνωρίζουμε τους κόμβους;

- Έμμεσα παραδεχόμαστε ότι το ίδιο "όνομα"
 (αλφαριθμητικό αναγνωριστικό) αναφέρεται στην ίδια οντότητα
 - Διαφορετικές εμφανίσεις του ίδιου ονόματος συγχωνεύονται σε έναν μοναδικό κόμβο
- Η μέθοδος εφαρμόζεται όσο θεωρούμε ότι τα δεδομένα μας είναι μοναδικά στον κόσμο
 - Μη ρεαλιστική υπόθεση, θα ασχοληθούμε αργότερα με το θέμα αυτό...
- Προσοχή: για τις απλές τιμές (literals), το ίδιο αλφαριθμητικό δεν σημαίνει απολύτως τίποτα
 - Π.χ. δύο εμφανίσεις του literal "Πέμπτη" δεν συγχωνεύονται σε μοναδικό κόμβο στον γράφο!

Οι τριάδες ξανά –με άλλο όνομα

- Ισοδύναμο με ΕΑV μοντέλο για την περιγραφή της οργάνωσης των δεδομένων
 - Χρήση τριάδων για την περιγραφή γράφων δεδομένων
 - Κάθε τριάδα αποτελεί μια "δήλωση" (statement)
 πληροφορίας
 - Subject Predicate Object ή απλά (s,p,o)
 - πολύ κοντά στην απλή φυσική μορφή "υποκείμενο ρήμα – αντικείμενο"

Σχετικά με τη φορά των ακμών ρ

- Ο γράφος που παράγουν οι τριάδες (s,p,o) είναι κατευθυνόμενος
 - Πώς διαλέγουμε τη φορά;
- Εξαρτάται από τις ανάγκες της εφαρμογής μας!
 - Λειτουργικά, η τριάδα (ΔιδάσκωνΧ, διδάσκει, ΜάθημαΥ) είναι ισοδύναμη με την (ΜάθημαΥ, διδάσκεται από, ΔιδάσκωνΧ)
 - Αφήνοντας κατά μέρος δικαιολογίες όπως "το διδάσκει φαίνεται στην εφαρμογή μου καλύτερα από το διδάσκεται από"...
- Προσοχή: για τις απλές τιμές (literals), δεν έχουμε επιλογές
 - ► Εμφανίζονται πάντα στη θέση ο (object) (ως στόχος της ακμής p)!

Ανώνυμοι κόμβοι (blank nodes)

- Κάθε οντότητα χαρακτηρίζεται από ένα μοναδικό αναγνωριστικό
 - Θα χρησιμοποιηθεί και στα ερωτήματα
 - "Τί ξέρω για την οντότητα X;"
- Υπάρχουν όμως οντότητες "εσωτερικές" σε κάθε μοντέλο οργάνωσης δεδομένων
 - Βρίσκονται εκεί απλά και μόνο για να διασυνδέουν άλλες οντότητες
 - Δεν υπάρχει περίπτωση να είναι ο (κύριος) στόχος μιας ερώτησης
 - Το αναγνωριστικό τους δεν θα μεταδοθεί ποτέ "προς τα έξω"
 - το αναγνωριστικό αυτό έχει τοπική (local) μόνο σημασία
- Οι κόμβοι των εσωτερικών αυτών οντοτήτων ονομάζονται ανώνυμοι (blank nodes)

Παράδειγμα ανώνυμων κόμβων

- Η κομβική οντότητα Διάλεξη στο παράδειγμα του ωρολογίου προγράμματος
 - Υπάρχει για να διασυνδέει Μαθήματα, Αίθουσες, Διδάσκοντες, Ημέρες, Ώρες και Εξάμηνο
 - Δεν θα υπάρξει ερώτηση ειδικά για μία συγκεκριμένη διάλεξη
 - Παρά μόνο στα πλαίσια μιας ερώτησης σχετικής με τις άλλες οντότητες
 - Το (τεχνητό) αναγνωριστικό των διαλέξεων (0, 1, 2, 3...) δεν έχει ιδιαίτερο νόημα εκτός της εφαρμογής μας
- Συνεπώς, οι κόμβοι των διαλέξεων είναι ένα τυπικό παράδειγμα ανώνυμων κόμβων!

Η θέση των ανώνυμων κόμβων στις τριάδες

- Οι ανώνυμοι κόμβοι αναγνωρίζουν οντότητες
 - Έστω και με "αδύναμο" τρόπο
 - Με τοπική μόνο σημασία
- Συνεπώς μπορούν να εμφανιστούν σε θέση υποκειμένου (subject) ή αντικειμένου (object)

Το τελευταίο κομμάτι στο παζλ: το κατηγόρημα

- Το κατηγόρημα (predicate) (δεύτερο μέρος τριάδων)
 - Είναι κι αυτό ένα αναγνωριστικό όνομα (id)
 - Το id αντιπροσωπεύει μονοσήμαντα το κατηγόρημα
 - Το είδος της σχέσης μεταξύ υποκειμένου και αντικειμένου

