(NATURAL SCIENCE)

Vol. 62 No. 12 JUCHE105 (2016).

주체105(2016)년 제62권 제12호

모르덴비석의 이온교환전처리조건

박세옥, 박창훈, 리성호

비석의 활성화방법에는 수열처리법[1], 산처리법[2], 금속이온교환법[3], 충간삽입법[4], 초림계수처리법[5], 초음파처리법[6] 등이 있다.

산처리법으로 H형비석을 제조하기 위하여 비석을 산처리할 때 알루미니움용출현상이 나타나는데 그 정도는 산의 종류, 처리시간 및 비석의 합성방법에 관계된다.

SiO₂/Al₂O₃이 클수록 비석의 열안정성이 커지므로 산처리에 의한 비석의 탈알루미니움화는 비석의 열안정성을 높인다. 산으로 비석을 전처리하는것은 이온교환용량을 크게하면서도 모르덴비석의 열안정성을 높이자는데 목적이 있으므로 탈알루미니움화과정을 적당히 조절하는것이 중요하다.

우리는 증기속의 암모니아를 산화시키는데 리용되는 Cu^{2+} 교환모르덴비석의 전처리조 건에 미치는 몇가지 인자들의 영향을 평가하였다.

실 험 방 법

지료 그지구 비석을 암모니아산화제의 기질체로 선정하였다. 화학분석법으로 분석한 비석의 화학조성은 표 1과 같다. 표 1. 비석의 화학조성

표 1에서 보는바와 같이 ㄱ지구 -비석의 SiO₂/Al₂O₃은 7.76이다.

비석의 상분석결과(표 2)로부터 비석에서 기본성분은 모르덴비석이 ⁻

성분	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	SiO ₂ /Al ₂ O ₃
함량/%	66.54	8.57	5.45	2.45	3.77	7.76

표 2. 비석의 상분석결과

며 여기에 석영과 나트리움장석이 포함되여있다.

성분	함량/%
모르덴비석	57.0
석영	24.4
나트리움장석	18.6

전처리방법 적당한 크기로 분쇄한 비석을 일정한 농도의 류산용액이 들어있는 플라스크에 넣고 온도를 보장하면서 일정한 시간동안 교반하는 방법으로 전처리하였다. 전처리가 끝나면 증류수로 려액의 pH가 7이고 려액에서

SO²⁻ 이 검출되지 않을 때까지 려과세척하고 120℃에서 2h동안 건조시켰다. SiO₂/Al₂O₃은 일정한 조건에서 전처리한 모르덴비석의 조성을 화학부석법으로 결정하여 계산하였다.

실험결과 및 해석

류산농도의 영향 류산농도에 따르는 모르덴비석에서 SiO_2/Al_2O_3 변화는 그림 1과 같다. 이때 모르덴비석의 평균립자크기 3mm, 교반속도 300r/min, 고액비 1:5, 전처리온도 353K, 전처리시간 2h이다.

그림 1. 류산농도에 따르는 SiO₂/Al₂O₃변화 경우 일부 회절선이 점차 약해진다.

류산농도가 증가할 때 SiO₂/Al₂O₃은 급격히 커지지만 XRD세기의 변화가 거 의 없는것은 산처리과정에 우선 비석의 불순물들이 풀려나가고 점차적으로 탈알 루미니움화가 일어난다는것을 보여준다.

모르덴비석에서 류산농도가 짙을 때 나트리움장석의 회절선세기가 감소 하는것은 탈알루미니움화와 관련된다.

SiO₂/Al₂O₃이 13~14정도 되는 류산 농도 10%를 최적조건으로 선정하였다.

고액비의 영향 류산농도 10%, 비석의 평균립자크기 3mm, 교반속도 300r/min, 전처리온도 353K, 전처리시간 2h의 조 건에서 고액비에 따르는 모르덴비석의 SiO₂/Al₂O₃변화는 그림 3과 같다.

그림 3. 고액비에 따르는 SiO₂/Al₂O₃변화

교반속도의 영향 교반속도에 따르는 SiO₂/Al₂O₃변화는 그림 4와 같다. 이때 류산농도 10%, 고액비 1:5, 전처리온 도 353K, 전처리시간 2h, 모르덴비석의 평균립자크기 3mm이다.

그림 1에서 보는바와 같이 류산농도가 짙어짐 에 따라 SiO₂/Al₂O₃은 커지며 30%에서 약 23이다. 이때 Al₂O₃의 함량은 4.8%로서 처음의 56%이다.

각이한 농도의 류산용액으로 처리한 모르덴비 석의 XRD도형은 그림 2와 같다.

그림 2에서 보는바와 같이 모르덴비석의 특징 적인 회절선들이 21.83, 27.78, 25.63, 26.26°에서 명 백히 나타난다. 그것은 SiO₂/Al₂O₃이 큰 비석이 이 온교환과정에 결정구조를 그대로 유지하기때문이 다. 류산농도가 10%인 경우 불순물인 석영에 특징적인 회절선들이 거의 사라지며 20%인

그림 2. 류산농도에 따르는 모르덴비석의 XRD도형 1-4는 류산농도가 각각 0, 5, 10, 20%인 경우

그림 3에서 보는바와 같이 고액비가 커질수록 SiO₂/Al₂O₃이 커지다가 고액비 1:5이상에서는 거 의 변하지 않는다. 따라서 고액비를 1:5로 하였다.

모르덴비석의 평균립자크기의 영향 류산농도 10%, 교반속도를 300r/min, 전처리온도 353K, 전처리시 간 2h, 고액비 1:5의 조건에서 모르덴비석의 평균 립자크기에 따르는 SiO₂/Al₂O₃변화는 표 3과 같다.

표 3에서 보는바와 같이 모르덴비석의 립자크 기에 따라 SiO₂/Al₂O₃이 거의 변하지 않는다.

표 3. 평균립자크기에 따르는 SiO₂/Al₂O₃변화

평균립자크기/mm	1.0	2.0	3.0	4.0	5.0
SiO ₂ /Al ₂ O ₃	13.76	13.76	13.75	13.74	13.72

-80 -

그림 4에서 보는바와 같이 교반속도에 따라 SiO_2/Al_2O_3 은 거의 변하지 않는다. 따라서 류산용 액에 모르덴비석을 방치시키는 방법으로 전처리 할수 있다.

전처리시간의 영향 전처리시간에 따르는 모르덴비석의 SiO_2/Al_2O_3 변화는 그림 5와 같다. 이때 류산농도 10%, 고액비 1:5, 산처리온도 353K, 모르덴비석의 평균립자크기 3mm이다.

그림 5에서 보는바와 같이 전처리시간이 길 그림 4. 교반속도에 따르는 SiO₂/Al₂O₃변화

그림 5. 전처리시간에 따르는 SiO₂/Al₂O₃변화

어짐에 따라 SiO_2/Al_2O_3 은 커지다가 3h후에는 변화가 거의 없다. 즉 3h후에는 탈알루미니움화과정이 평형에 이른다는것을 보여준다. 따라서 전처리시간을 3h로 하는것이 합리적이다.

맺 는 말

모르덴비석의 이온교환전처리최적조건은 류산 농도 10%, 고액비 1:5, 평균립자크기 3mm, 전처 리시간 3h이다. 최적조건에서 산처리한 모르덴비석 의 SiO₂/Al₂O₃은 13.7이다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 51, 9, 112, 주체94(2005).
- [2] U. Flessner; J. of Molecular Catal., A 168, 247, 2001.
- [3] F. Gonzalez et al.; Appl. Catal., 69, 1, 97, 1991.
- [4] Du Yiting; 化工新型材料, 36, 9, 39, 2008.
- [5] 生島豊 等; 触媒, 42, 4, 253, 2000.
- [6] 刘炯天 等; 化工矿物与加工, 37, 7, 7, 2008.

주체105(2016)년 8월 5일 원고접수

Pretreatment Condition of Ion Exchange in Mordenite

Pak Se Ok, Pak Chang Hun and Ri Song Ho

In mordenite, the optimum condition of the ion exchange pretreatment is as follows: the concentration of sulphuric acid is 10%, the ratio of solid and liquid is 1:5, the grain size is 3mm and the time of pretreatment is 3h. Under the optimum condition, the molar ratio of SiO_2 and Al_2O_3 of mordenite is 13.7.

Key words: mordenite, pretreatment, ion exchange