

(V) Preliminary Specifications() Final Specifications

Module	11.6"(11.58 ") 16:9 Color TFT-LCD with LED Backlight design
Model Name	B116HAN03.1(H/W:0A)
Note (♠)	LED Backlight without driving circuit design

Customer	Date
Checked & Approved by	Date
Note: This Specification without notice.	is subject to change

Approved by	Date		
Kevin KH Shen	<u>12/14/2012</u>		
Prepared by	Date		
Erica YT Lin	<u>12/14/2012</u>		
DMPBU Marketing Division AU Optronics corporation			

Contents

1. Handling Precautions	4
2. General Description	5
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	8
4. Absolute Maximum Ratings	9
4.1 Absolute Ratings of TFT LCD Module	9
4.2 Absolute Ratings of Environment	9
5. Electrical Characteristics	10
5.1 TFT LCD Module	10
6. Signal Interface Characteristic	16
6.1 Pixel Format Image	16
6.2 Integration Interface Requirement	17
6.3 Interface Timing	19
7. Panel Reliability Test	20
7.1 Vibration Test	20
7.2 Shock Test	20
7.3 Reliability Test	20
8. Mechanical Characteristics	21
8.1 LCM Outline Dimension	21
9. Shipping and Package	23
9.1 Shipping Label Format	233
9.2 Carton Label Forma	23
9.3 Carton Package	23
9.4 Shipping Package of Palletizing Sequence	23
10. Appendix	24
10.1 FDID Description	24

Record of Revision

Ver	sion and Date	Page	Old description	New Description	Remark
0.1	2012/12/14	All	First Edition for Customer		

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B116HAN03 V1 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit. The screen format is intended to support the 16:9, 1920(H) x1080(V) screen and 262k colors (RGB 6-bits data driver) without LED backlight driving circuit. All input signals are eDP interface compatible.

B116HAN03 V1 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $\,^\circ\mathrm{C}\,$ condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	294.09 (1	1.58W")				
Active Area	[mm]	256.32(H)	x 144.18	3(V)			
Pixels H x V		1920 x 3(RGB) x 1080					
Pixel Pitch	[mm]	0.1335 X	0.1335 X 0.1335				
Pixel Format		R.G.B. Ve	rtical Str	ipe			
Display Mode		AHVA, Normally Black					
Response Time	[ms]	25 typ					
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption(VDD line)	[Watt]	1.0 W(max.)					
Cell weight	[Grams]	75 max.					
Physical Size	[mm]	Length Width Thickness	Min.	Typ. 0.81 (cell side) 1.80 (PCBA side)	Max. 268.46 173.26		
Electrical Interface		2 lane eD	P				
Glass Thickness	[mm]	0.25+0.25					
Surface Treatment		Anti-Glare	, Hardne	ess 3H			
Support Color		262K colors (RGB 6-bit)					
Temperature Range Operating Storage (Non-Operating) RoHS Compliance	[°C]	-20 to +60 -20 to +70 RoHS Cor)				

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Cross talk(60Hz)	%				4		2
Response Time	T _{RT}	Rising + Falling		25	35	msec	3
Flicker			-		-30	dB	

Note 1: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 2: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 3: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

3. Functional Block Diagram

The following diagram shows the functional block of the 11.6 inches wide Color TFT/LCD 30 Pin one channel Module

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

	<u> </u>				
Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	-20	+60	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-30	+70	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	-	1	[Watt]	Note 1
IDD	IDD Current	-	ı	333	[mA]	Note 1
IRush	Inrush Current	-	•	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: Withe Pattern at 3.0V driving voltage. (Pmax=V3.0X lwhite)

Note 2: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Display port main link							
		Min	Тур	Max	unit		
VCM	RX input DC Common Mode Voltage		0		V		
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	100		1320	mV		

Fallow as VESA display port standard V1.1a.

AU OPTRONICS CORPORATION

Display Port AUX_CH signal:

	Display port AUX_CH							
		Min	Тур	Max	unit			
VCM	AUX DC Common Mode Voltage		0		V			
VDiff _{P-P}	AUX Peak-to-peak Voltage at a receiving Device	0.4	0.6	0.8	V			

Fallow as VESA display port standard V1.1a.

Display Port VHPD signal:

	Display port VHPD				
		Min	Тур	Max	unit
VHPD	HPD Voltage	2.25		3.6	V

Fallow as VESA display port standard V1.1a.

AU OPTRONICS CORPORATION

Display Port panel power sequence:

Display port interface power up/down sequence, normal system operation

Display Port AUX_CH transaction only:

Display port interface power up/down sequence, AUX_CH transaction only

AU OPTRONICS CORPORATION

Display Port panel power sequence timing parameter:

Timing	Description	David Inc	Dougle by Limits			Neder
parameter	Description	Reqd. by	Min.	Тур.	Max.	Notes
T1	power rail rise time, 10% to 90%	source	0.5ms		10ms	
Т2	delay from LCDVDD to black video generation	sink	0ms		200ms	prevents display noise until valid video data is received from the source
Т3	delay from LCDVDD to HPD high	sink	0ms		200ms	sink AUX_CH must be operational upon HPD high.
Т4	delay from HPD high to link training initialization	source				allows for source to read link capability and initialize.
Т5	link training duration	source				dependant on source link to read training protocol.
Т6	link idle	source				Min accounts for required BS-Idle pattern. Max allows for source frame synchronization.
T7	delay from valid video data from source to video on display	sink	0ms		50ms	max allows sink validate video data and timing.
Т8	delay from valid video data from source to backlight enable	source				source must assure display video is stable.
Т9	delay from backlight disable to end of valid video data	source				source must assure backlight is no longer illuminated.
T10	delay from end of valid video data from source to power off	source	0ms		500ms	
T11	power rail fall time, 905 to 10%	source			10ms	
T12	power off time	source	500ms			

- 1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:
- -upon LCDVDD power on (with in T2 max)-when the "Novideostream_Flag" (VB-ID Bit 3) is received from the source (at the end of T9).
- -when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.
- Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.

Note 3: The sink must support AUX_CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX_CH transaction with the time specified within T3 max.

AU OPTRONICS CORPORATION

Display Port panel B/L power sequence timing parameter:

Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below.

VLED (Backlight power supply) (Hot Plug)	90% VLED LOW	10%
	T19	120

	Min (ms)	Max (ms)
T13	0.5	10
T14	10	-
T15	10	-
T16	10	-
T17	10	-
T18	0.5	10
T19	1*	-
T20	1*	-

Seamless change: T19/T20 = $5xT_{PWM}^*$

^{*}T_{PW/M}= 1/PWM Frequency

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1									19	920)
1st Line	R	G		R	G	В		R	G	В	R	G	В
		•											\neg
		•			•		•						
		•			•		'		•			•	
							•						
							•						
							*						
							*						
							•						
		•			•		•		•			•	
		•			•		'		•			•	
		•			•		•					•	
		•			'		•		'			'	
1080th Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or Compatible
Type / Part Number	I-PEX 20455-030E-12 or Compatible
Mating Housing/Part Number	I-PEX 20453-030T-11 or Compatible

6.2.2 Pin Assignment

eDP lane is a differential signal technology for LCD interface and high speed data transfer device.

PIN#	Signal Name	Description
1	NC	NC
2	GND	Ground
3	Lane1_N	Complement signal link lane1
4	Lane1_P	True signal link lane1
5	GND	Ground
6	Lane0_N	Complement signal link lane0
7	Lane0_P	True signal link lane0
8	GND	Ground
9	AUX_CH_P	True signal Auxiliary Channel
10	AUX_CH_N	Complement signal Auxiliary Channel
11	GND	Ground
12	LCD_VCC	Logic power
13	LCD_VCC	Logic power
14	LCD_Self_Test	LCD Panel Self Test Enable
15	GND	Ground
16	GND	Ground
17	HPD_IN	HPD Signal in
18	Reserved	For AUO Internal Test
19	Reserved	For AUO Internal Test
20	NC	NC
21	NC	NC

22	LED_FB1	LED Cathode
23	LED_FB2	LED Cathode
24	LED_FB3	LED Cathode
25	LED_FB4	LED Cathode
26	NC	NC
27	V_LED	LED Anode
28	V_LED	LED Anode
29	V_LED	LED Anode
30	NC	NC

Note1:Input signals shall be low or High-impedance state when VDD is off.

AU OPTRONICS CORPORATION

6.3.1 Timing Characteristics

Basically, interface timings should match the 1920x1080 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate				60		Hz
Clock from	equency	1/ T _{Clock}		138.5		MHz
	Period	T _V	1084	1111	3080	
Vertical	Active	T _{VD}		1080		T_Line
Section	Blanking	T _{VB}	4	31	2000	
	Period	T _H	2000	2080	2320	
Horizontal	Active	T _{HD}		1920		T_{Clock}
Section	Blanking	T HB	80	160	400	

Note: DE mode only

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

X,Y,Z .one time for each side Pulse:

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 240h	
High Temperature Operation	Ta= 60℃, Dry, 240h	
Low Temperature Operation	Ta= -20℃, 240h	
High Temperature Storage	Ta= 70℃,240h	
Low Temperature Storage	Ta= -20℃, 240h	
Thermal Shock Test	Ta=-30°C(30min) ~70°C(30min), 20cycles condition	
ESD	Contact : ±8 KV	Note 1
235	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable. No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

- 8. Mechanical Characteristics
- **8.1 LCM Outline Dimension**
- 8.1.1 Standard Front View

B116HAN03.1 Document Version :0.1

AU OPTRONICS CORPORATION

8.1.2 Standard Rear View

B116HAN03.1 <u>Document Version :0.1</u> 22 of 28

- 9. Shipping and Package
- 9.1 Shipping Label Format

TBD

9.2 Carton Label Format

TBD

9.3 Carton Package

9.4 Shipping Package of Palletizing Sequence

TBD

10. Appendix

10.1 EDID Description

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
80	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	5D	01011101	93	
0B	hex, LSB first	30	00110000	48	
0C	32-bit ser #	00	00000000	0	Color Engine Setting
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	00	00000000	0	
11	Year of manufacture	16	00010110	22	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	95	10010101	149	
15	Max H image size (rounded to cm)	1A	00011010	26	
16	Max V image size (rounded to cm)	0E	00001110	14	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	02	00000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	A4	10100100	164	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	15	00010101	21	
1B	Red x (Upper 8 bits)	9E	10011110	158	
1C	Red y/ highER 8 bits	55	01010101	85	
1D	Green x	4E	01001110	78	
1E	Green y	9B	10011011	155	
1F	Blue x	26	00100110	38	
20	Blue y	0F	00001111	15	
21	White x	50	01010000	80	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	

25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27		01	00000001	1	
28	Standard timing #2	01	00000001	1	
29		01	00000001	1	
2A	Standard timing #3	01	00000001	1	
2B		01	0000001	1	
2C	Standard timing #4	01	00000001	1	
2D		01	0000001	1	
2E	Standard timing #5	01	00000001	1	
2F		01	00000001	1	
30	Standard timing #6	01	00000001	1	
31		01	00000001	1	
32	Standard timing #7	01	0000001	1	
33		01	0000001	1	
34	Standard timing #8	01	00000001	1	
35		01	00000001	1	
36	Pixel Clock/10000 LSB	1D	00011101	29	
37	Pixel Clock/10000 USB	36	00110110	54	
38	Horz active Lower 8bits	80	10000000	128	
39	Horz blanking Lower 8bits	A0	10100000	160	
3A	HorzAct:HorzBlnk Upper 4:4 bits	70	01110000	112	
3B	Vertical Active Lower 8bits	38	00111000	56	
3C	Vertical Blanking Lower 8bits	1E	00011110	30	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	40	01000000	64	
3E	HorzSync. Offset	30	00110000	48	
3F	HorzSync.Width	20	00100000	32	
40	VertSync.Offset : VertSync.Width	8E	10001110	142	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	00	00000000	0	
43	Vertical Image Size Lower 8bits	90	10010000	144	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	10	00010000	16	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	

4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	
53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	00000000	0	
57		00	00000000	0	
58		00	00000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C		00	00000000	0	
5D	-	FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	А
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	31	00110001	49	1
74	Manufacture P/N	36	00110110	54	6
75	Manufacture P/N	48	01001000	72	Н
76	Manufacture P/N	41	01000001	65	А
77	Manufacture P/N	4E	01001110	78	N
78	Manufacture P/N	30	00110000	48	0

79	Manufacture P/N	33	00110011	51	3
7A	Manufacture P/N	2E	00101110	46	
7B	Manufacture P/N	30	00110000	48	1
7C		20	00100000	32	
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	
7 F	Checksum	0F	00001111	15	