Lecture #10: Bias and Variance Decomposition

Bias and Variance Analysis: Why?

- In this lecture, we will look into some theoretical analysis of learning
- Such analysis will help us build stronger intuition and develop rules of thumb about how to best apply learning algorithms in different settings

Intuition

 We want the learned classifier to have good generalization performance

• Problem:

- Models with too few parameters can perform poorly (under-fitting)
- Models with too many parameters can perform poorly (over-fitting)

• Solution:

Need to optimize the complexity of the model to achieve the best performance

Intuition (contd.)

- One way to get insight into this tradeoff is the decomposition of generalization error into squared bias and variance
 - A model which is too simple (inflexible) will have large bias
 - ▲ A model which is too complex (flexible) will have high variance

Intuition (contd.)

- Bias
 - Measures the accuracy or quality of the algorithm
 - High bias means a poor match
- Variance
 - Measures the precision or specificity of the match
 - High variance means a weak match
- We would like to minimize each of these
- Unfortunately, we can't do this independently, there is a trade-off

Classical Statistical Analysis

- Suppose we are given a training sample S drawn from some population of possible training samples according to the distribution P(S) to learn a classifier h
- Compute $E_P[y! = h(x)]$
- Decompose this into
 - Bias
 - Variance
 - Noise

Bias, Variance, and Noise

- Variance
 - describes how much h(x) varies from one training set to another
- Bias
 - describes the average error of h(x)
- Noise
 - describes the average noise in the labels

Squared Bias

- Low bias
 - Linear regression applied to linear data
 - ^ 2nd degree polynomial applied to quadratic data
 - Neural network with many hidden units trained to completion
- High bias
 - Constant function
 - Linear regression applied to non-linear data
 - Neural network with few hidden units applied to non-linear data

Variance

- Low variance
 - Constant function
 - Model independent of training data
- High variance
 - High degree polynomial
 - Neural network with many hidden units trained to completion

Bias / Variance Tradeoff

- (Squared bias + variance) is what counts for prediction
- Often
 - ▲ Low bias => high variance
 - Low variance => high bias
- Tradeoff
 - Squared bias vs. Variance

Bias / Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Reduce Variance without Increasing Bias

Averaging reduces variance

- Average models to reduce model variance
 - Bagging does exactly this!

When will Bagging improve Accuracy

- Depends on the stability of the base classifier
- A learner is unstable if a small change to the training set D causes a large change in the output hypothesis h
- Bagging helps unstable learners, but could hurt the performance of stable procedures
- Neural networks and decision trees are unstable
- K-NN and Naïve Bayes are stable

Reduce squared bias and decrease variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
 - ◆ Yes, Boosting!

Summary

- Expected error can be decomposed into three components: squared bias, variance, and noise
- Complex models lead to lower bias but higher variance
- Simple models lead to high bias but low variance
- Model selection is needed to trade-off the bias and variance