_,

1. 0, 2.
$$\alpha$$
, 3. N (0,1) ,4. $\left[\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$,

5、
$$X = \ln b_1 - \ln(\frac{1}{Y} - b_0)$$
 或 $\ln(\frac{1}{Y} - b_0) = \ln b_1 - X$.

解:设 $X_1, X_2 \cdots, X_n$ 为总体X的一个样本, $x_1, x_2 \cdots, x_n$ 为一组样本观测值。

$$1, \Leftrightarrow EX = \overline{X}$$

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} \theta x^{\theta} dx = \frac{\theta}{\theta + 1},$$

即:
$$\frac{\theta}{\theta+1} = \overline{X}$$
,解得: $\hat{\theta} = \frac{\overline{X}}{1-\overline{X}}$,为 θ 的矩估计量。

$$2 \cdot \Leftrightarrow L(\theta) = \prod_{i=1}^{n} f(x_i) = \theta^n \prod_{i=1}^{n} x_i^{\theta-1}$$

$$\ln L(\theta) = n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i$$

$$\frac{\mathrm{d}\ln L(\theta)}{d\theta} = 0, \quad \text{即:} \quad \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0, \quad \text{解得:} \quad \hat{\theta} = -\frac{\sum_{i=1}^{n} \ln x_i}{n} \quad \text{为} \, \theta \text{ 的极大似然估计值,}$$

则:
$$\hat{\theta} = -\frac{\sum_{i=1}^{n} \ln X_i}{n}$$
 为 θ 的极大似然估计量.

二、

1、证明:

$$E \hat{\mu}_{1} = E(\frac{1}{5}X_{1} + \frac{3}{10}X_{2} + \frac{1}{2}X_{3}) = \frac{1}{5}E(X_{1}) + \frac{3}{10}E(X_{2}) + \frac{1}{2}E(X_{3})$$
$$= \frac{1}{5}E(X) + \frac{3}{10}E(X) + \frac{1}{2}E(X) = E(X) = \mu$$

$$\hat{\mu}_2$$
、 $\hat{\mu}_3$ 略

2

$$\hat{D\mu_1} = D(\frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3) = \frac{1}{25}D(X_1) + \frac{9}{100}D(X_2) + \frac{1}{4}D(X_3) = \frac{1}{25}D(X) + \frac{9}{100}D(X) + \frac{1}{4}D(X) = \frac{19}{50}D(X)$$

$$\hat{\mu}_2$$
、 $\hat{\mu}_3$ 略

比较可知 $\hat{\mu}_2$ 最有效。

解:设 X_1 、 X_2 分别第一、第二台机床所加工轴的椭圆度, μ_1 、 μ_2 分别第一、第二台机床所加工轴的椭圆度总体的期望,则:

$$\frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

$$P\left\{ \frac{\left| \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \right| \le Z_{\frac{\alpha}{2}} \right\} = 1 - \alpha$$

$$\text{ET:} \quad P\left\{(\overline{X_1} - \overline{X_2}) - Z_{\frac{\alpha}{2}}\sqrt{\frac{S_1^{\ 2}}{n_1} + \frac{S_2^{\ 2}}{n_2}} \leq \mu_1 - \mu_2 \leq (\overline{X_1} - \overline{X_2}) \right. \\ \left. + Z_{\frac{\alpha}{2}}\sqrt{\frac{S_1^{\ 2}}{n_1} + \frac{S_2^{\ 2}}{n_2}} \right\} = 1 - \alpha$$

则: $\mu_1 - \mu_2$ 的置信度为 $1-\alpha$ 的置信区间为

$$\left\lceil (\overline{X_1} - \overline{X_2}) \right. - Z_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} , (\overline{X_1} - \overline{X_2}) + Z_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right]$$

这里:

$$\alpha = 0.05$$
, $n_1 = 200$, $n_2 = 150$, $\overline{x_1} = 0.081$, $\overline{x_2} = 0.062$, $s_1 = 0.025$, $s_2 = 0.062$, $Z_{\frac{\alpha}{2}} = 1.96$

可得置信区间为: [0.0080, 0.0300]

五、(关于改变的问题,原假设为没有变化,双侧)

解:
$$H_0: \sigma^2 = 3$$
, $H_1: \sigma^2 \neq 9$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{4S^2}{3} \sim \chi^2(4)$$

$$P\left\{\frac{4S^2}{3} \le \chi^2_{0.95}(4) \, \text{DZ} \, \frac{4S^2}{3} \ge \chi^2_{0.05}(4)\right\} = 0.1$$

计算得:
$$\frac{4s^2}{3}$$
 = 11.067 > $\chi^2_{0.05}(4)$,

则拒绝 H_0 ,认为标准差发生改变。

六、

解: H_0 : 骰子均匀 (样本来自均匀分布总体),

 H_1 : 骰子不均匀(样本来自非均匀分布总体)

则: $Q = \sum_{i=1}^{k} \frac{(0_i - E_i)^2}{E_i} \sim \chi^2(k-1)$, 其中: 0_i 为观测频数, E_i 为理论频数,

点刻	数	1	2	3	4	5	6
观测线	频数	23	26	21	20	15	15
理论	频数	20	20	20	20	20	20

这里 K=6,则:
$$P\left\{\sum_{i=1}^{6} \frac{(0_i - E_i)^2}{E_i} > \chi^2_{0.05}(5)\right\} = 0.05,$$

计算得: $Q = 4.8 < \chi^2_{0.05}(5)$,则接受原假设 H_0 ,认为骰子均匀。

七、

(1)

来源	离差平方和	自由度	均方离差	F值
因子 A	146246	4	36561.5	1. 325629
因子 B	1623896	4	405974	14. 7196
误差	441284	16	27580. 25	
总和	2211426	24		

(2) H_{01} :因子 A(灯泡规格)影响不显著, H_{02} :因子 B(灯泡品牌)影响不显著,则:

$$P\{F_A > F_{0.05}(4, 16)\} = 0.05,$$
 $P\{F_B > F_{0.05}(4, 16)\} = 0.05,$

$$\pm F_A = 1.33, F_B = 14.72, F_{0.05}(4,16) = 3.01,$$

可知:

因子 A (灯泡规格) 影响不显著,即:不同规格灯泡之间的寿命差异不显著;因子 B (灯泡品牌) 影响显著,即:不同品牌灯泡之间的寿命差异显著。

1、1.2, 2、在一次试验中是不会发生的, 3、同分布, 4、650,

 $5 \ln y = \ln a + b \ln x$

_,

解:
$$L(\theta) = \prod_{i=1}^{8} P(x_i) = \theta^2 \left[2\theta (1-\theta) \right]^2 \theta^2 (1-2\theta)^4 = 4\theta^6 (1-\theta)^2 (1-2\theta)^4$$
,

 $\ln L(\theta) \Rightarrow \ln \theta + \theta \ln 2 + \theta \ln \theta +$

三、略

四、略

五、(对于合格的问题,原假设为合格,从问题可分析出,为单侧检验)

解: $H_0: \sigma^2 \le 0.005^2$, $H_1: \sigma^2 > 0.005^2$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{8S^2}{0.005^2} \sim \chi^2(8)$$

$$P\left\{\frac{8S^2}{0.005^2} \ge \chi^2(8)\right\} = 0.05$$

计算得: $\frac{8S^2}{0.005^2} = 13.92 < \chi^2_{0.05}(8)$,则接受 H_0 ,认为电阻标准差不超过 0.005Ω 。

六、略 七、略 八、

解: (1)

(2)
$$Y_i = \alpha + \beta X_i + \varepsilon_i$$
, $\varepsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$
 $Y_i = \stackrel{\hat{\alpha}}{\alpha} + \stackrel{\hat{\beta}}{\beta} X_i + e_i$, $\sum_{i=1}^n e_i = 0$
 $\stackrel{\hat{\gamma}}{Y}_i = \stackrel{\hat{\alpha}}{\alpha} + \stackrel{\hat{\beta}}{\beta} X_i$

由最小二乘法计算得:

$$\hat{\beta} = \frac{l_{xy}}{l_{xx}} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} X_i^2 - n \overline{X}^2},$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X}$$

序号	X	у	x^2	y^2	ху
1	5	6	25	36	30
2	10	10	100	100	100
3	15	10	225	100	150
4	20	13	400	169	260
5	30	16	900	256	480
6	40	17	1600	289	680
7	50	19	2500	361	950
8	60	23	3600	529	1380
9	70	25	4900	625	1750
10	90	29	8100	841	2610
求和	390	168	22350	3306	8390

计算得:
$$\hat{\beta} = \frac{\sum_{i=1}^{10} x_i y_i - n \overline{x} \overline{y}}{\sum_{i=1}^{10} x_i^2 - n \overline{x}^2} = 0.2574$$
, $\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x} = 6.7605$

估计的回归方程为: $\hat{Y} = 6.7605 + 0.2574X$