CIRCUITOS DIGITAIS

MÁQUINAS DE ESTADO

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Exemplo - Máquina de Moore

Projete uma máquina de estados de Moore com uma entrada E e uma saída S, onde S será 1 somente se a entrada E for igual a 1 nas últimas DUAS bordas de clock. Utilize FFs tipo T.

Esta Atı		Entrada		ximo ado	Saída	Equaç Entrada	
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_{1}	\mathbf{Q}_0	S	T ₁	T ₀
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

	tado tual	Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF T)
\mathbf{Q}_{1}	\mathbf{Q}_0	E	\mathbf{Q}_{1}	\mathbf{Q}_0	S	T ₁	T_0
9	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	0		
0	1	1 /	1	0	0		
1	0	0 /	0	0	1		
1	0	1 /	1	0	1		

O valor de Q₁ deve se MANTER em 0 no próximo estado.

Qual o valor de T para que isso aconteça?

Esta Atı		Entrada		ximo tado	Saída		ões de a (FF T)
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	T ₁	T ₀
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

CLK	Т	Q _{t+1}
≠↑	X	Qt
↑	0	Q _t
↑	1	$\overline{\mathbf{Q}_{t}}$

Esta Atı	ado ual	Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	\mathbf{Q}_0	E	Q_1	\mathbf{Q}_0	S	T ₁	T_0
0	0	0	0	0	0	0	0
0	0	1	0	,1	0	0	
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0 /	0	1		
1	0	1	1/	0	1		

O valor de Q₀ deve mudar de 0 para 1 no próximo estado, ou seja, INVERTER seu valor.

Qual o valor de T para que isso aconteça?

Esta Atı		Entrada		ximo tado	Saída		ões de a (FF T)
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	T ₁	T ₀
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

CLK	Т	Q _{t+1}
≠↑	X	Qt
↑	0	Q _t
↑	1	$\overline{\mathbf{Q}_{t}}$

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	T ₁	T ₀
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	1
0	1	1	1	0	0	1	1
1	0	0	0	0	1	1	0
1	0	1	1	0	1	0	0

Para o FF tipo T:

Se o valor do próximo estado for igual ao estado atual $\rightarrow 0$ Se o valor do próximo estado for diferente ao estado atual $\rightarrow 1$

Esta Atı		Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	\mathbf{Q}_0	E	Q_1	Q_0	S	T ₁	T ₀
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	1
0	1	1	1	0	0	1	1
1	0	0	0	0	1	1	0
1	0	1	1	0	1	0	0
1	1	0	0	0	0	1	1
1	1	1	0	0	0	1	1

TABELA COM ESTADO NÃO UTILIZADO

Estado Atual		Entrada	no E	Saída		de Entrada T)
\mathbf{Q}_{1}	\mathbf{Q}_0	Ш		S	T ₁	T ₀
0	0	0		0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	1 0	0	1	1
1	0	0	9	1	1	0
1	0	1		1	0	0
1	1	0		0	1	1
1	1	1		0	1	1

DEPOIS DE PREENCHER A PARTE DA TABELA DE EQUAÇÕES DE ENTRADA, VOCÊ PODE DESCARTAR A PARTE DE PRÓXIMO ESTADO

Esta Atı		Entrada	Saída	Equações (FF	de Entrada T)
Q_1	\mathbf{Q}_0	E	S	T ₁	T ₀
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	1	1
1	1	1	0	1	1

$$T_1 = \mathbf{Q_0E} + \mathbf{Q_1}\overline{E}$$

Esta Atı		Entrada Saída Equaçõ			de Entrada F T)	
Q ₁	Q_0	E	S	T ₁	T ₀	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	1	0	1	1	
1	0	0	1	1	0	
1	0	1	1	0	0	
1	1	0	0	1	1	
1	1	1	0	1	1	

$$T_0 = \overline{Q_1}E + Q_0$$

Esta Atı		Entrada	Saída	Equações (FF	de Entrada T)
Q_1	\mathbf{Q}_0	Е	S	T ₁	T ₀
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	1	1
1	1	1	0	1	1

Equações de Saída:

$$S = Q_1 \overline{Q_0}$$

MÁQUINA DE MOORE → SAÍDA DEPENDE SÓ DO ESTADO ATUAL

Circuito – Flip flop tipo T

Análise de Circuitos Sequenciais

COMO OBTER A TABELA DE TRANSIÇÃO DE ESTADOS A PARTIR DO CIRCUITO DE UMA MÁQUINA DE ESTADOS?

Análise de Circuitos Sequenciais

Estado Atual		Entrada	Próximo Estado		Saída	Saída Entrada (F	
Q_1	Q_0	Ш	Q ₁	Q_0	S	D ₁	D_0

O CIRCUITO POSSUI DOIS FLIP-FLOPS COM ENTRADAS D_1 E D_0 E SAÍDAS Q_1 E Q_0

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

1º PASSO: PREENCHER O ESTADO ATUAL E A ENTRADA COM TODOS VALORES POSSÍVEIS

Esta Atı		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0			0		
0	0	1			0		
0	1	0			0		
0	1	1			0		
1	0	0			1		
1	0	1			1		
1	1	0			0		
1	1	1			0		

2º PASSO: PREENCHER A SAÍDA DE ACORDO COM SUA EQUAÇÃO BOOLEANA:

$$S = Q_1 \overline{Q_0}$$

Esta Atı		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0			0	0	1
0	0	1			0	0	1
0	1	0			0	0	0
0	1	1			0	1	1
1	0	0			1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1			0	0	0

3º PASSO: PREENCHER AS EQUAÇÕES DE ENTRADA DE ACORDO COM SUAS EQUAÇÕES BOOLEANAS:

$$\mathbf{D_1} = \mathbf{Q_1} \, \mathbf{Q_0} \overline{\mathbf{E}} + \, \overline{\mathbf{Q_1}} \mathbf{Q_0} \mathbf{E}$$

$$\mathbf{D_0} = \overline{\mathbf{Q_1}} \mathbf{Q_0} \mathbf{E} + \overline{\mathbf{Q_0}}$$

Esta Atı		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0			0	0	1
0	0	1			0	0	1
0	1	0			0	0	0
0	1	1			0	1	1
1	0	0			1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1			0	0	0

4º PASSO: DESCOBRIR O VALOR DO PRÓXIMO ESTADO BASEADO NO ESTADO ATUAL E EQUAÇÕES DE ENTRADA

Estado Atual		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	Q_0	Е	Q_1	\mathbf{Q}_{0}	S	D_1	D_0
0	0	0			0	0	1
0	0	1			0	0	1
0	1	0			0	0	0
0	1	1			0/	1	1
1	0	0			/1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1			0	0	0

Se a entrada de um flip-flop D é 0. Qual será o próximo estado?

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0	0		0	0	1
0	0	1	/		0	0	1
0	1	0			0	0	0
0	1	1			0	1	1
1	0	0			1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1/			0	0	0

Será 0!

CLK	D	Q _{t+1}
≠↑	Х	Q _t
1	0	0
1	1	1

Esta Atı		Entrada	Próximo Estado				Saída		ões de a (FF D)
Q_1	Q_0	E	Q_1	\mathbf{Q}_{0}	S	D_1	D_0		
0	0	0	0		0	0	1		
0	0	1	0		0	0	1		
0	1	0	0	0	0	0	0		
0	1	1			0	1	1		
1	0	0	0		1	0	1		
1	0	1	0		1	0	1		
1	1	0		0	0	1	0		
1	1	1	0	0	0	0	0		

Esta Atı		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q_1	Q_0	S	D_1	D_0
0	0	0	0		0	0	1
0	0	1	0		0	0	1
0	1	0	0	0	0	0	0
0	1	1			0	1	1
1	0	0	0		1	0	1
1	0	1	0			0	1
1	1	0		0	0	1	0
1	1	1	0	9	0	0	0

Se a entrada de um flip-flop D é 1. Qual será o próximo estado?

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF D)	
Q_1	Q_0	Е	Q ₁	Q_0	S	D_1	D_0
0	0	0	0	,1	0	0	1
0	0	1	0		0	0	1
0	1	0	0 /	0	0	0	0
0	1	1			0	1	1
1	0	0	0		1	0	1
1	0	1	0		1	0	1
1	1	0		0	0	1	0
1	1	1	0	0	0	0	0

Será 1!

CLK	D	Q _{t+1}
≠↑	Х	Qt
↑	0	0
<u></u>	1	1

Estado Atual		Entrada	Próximo Estado		Saída		ões de a (FF D)
Q_1	Q_0	Е	Q_1	Q_0	S	D ₁	D_0
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	1	0
1	1	1	0	0	0	0	0

Estado Atual		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	Q_0	Е	Q_1	Q_0	S	D_1	D_0
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	1	0
1	1	1	0	0	0	0	0

Para o FF tipo D, a tabela das equações de entrada é igual a tabela do próximo estado!

Diagrama de Estados

Esta At	ado ual	Entrada	Próximo Estado		Saída
Q_1	Q_0	E	Q_1	\mathbf{Q}_0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	0	0

Diagrama de Estados

Esta At		Entrada	Próximo Estado		Saída
Q ₁	Q_0	E	Q_1	Q_0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	0	0

O RESET FAZ COM QUE O CIRCUITO INICIE NO ESTADO 00, DESSA FORMA PODEMOS PRESUMIR QUE ESTE É O ESTADO INICIAL DA MÁQUINA DE ESTADOS

Análise de Circuitos Sequenciais

Estado Atual		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	E	Q ₁	Q_0	S	T ₁	T ₀

O CIRCUITO POSSUI DOIS FLIP-FLOPS COM ENTRADAS T_1 E T_0 E SAÍDAS Q_1 E Q_0

Estado Atual		Entrada	Próximo Estado				Saída		ões de a (FF T)
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T_0		
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

1º PASSO: PREENCHER O ESTADO ATUAL E A ENTRADA COM TODOS VALORES POSSÍVEIS

Estado Atual		Entrada	Próximo Estado		Saída		ões de a (FF T)
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀
0	0	0			0		
0	0	1			0		
0	1	0			0		
0	1	1			0		
1	0	0			1		
1	0	1			1		
1	1	0			0		
1	1	1			0		

2º PASSO: PREENCHER A SAÍDA DE ACORDO COM SUA EQUAÇÃO BOOLEANA:

$$S = Q_1 \overline{Q_0}$$

Esta Atı		Entrada	Próximo Estado				Saída		ões de a (FF T)
Q_1	Q_0	E	Q_1	\mathbf{Q}_{0}	S	T ₁	T_0		
0	0	0			0	0	1		
0	0	1			0	0	1		
0	1	0			0	0	0		
0	1	1			0	1	1		
1	0	0			1	0	1		
1	0	1			1	0	1		
1	1	0			0	1	0		
1	1	1			0	0	0		

3º PASSO: PREENCHER AS EQUAÇÕES DE ENTRADA DE ACORDO COM SUAS EQUAÇÕES BOOLEANAS:

$$\mathbf{T_1} = \mathbf{Q_1} \, \mathbf{Q_0} \overline{\mathbf{E}} + \overline{\mathbf{Q_1}} \mathbf{Q_0} \mathbf{E}$$

$$\mathbf{T_0} = \overline{\mathbf{Q_1}}\mathbf{Q_0}\mathbf{E} + \overline{\mathbf{Q_0}}$$

	Estado Atual		Próximo Estado		Saída		ões de a (FF T)
Q_1	Q_0	E	Q_1	\mathbf{Q}_{0}	S	T ₁	T_0
0	0	0			0	0	1
0	0	1			0	0	1
0	1	0			0	0	0
0	1	1			0	1	1
1	0	0			1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1			0	0	0

4º PASSO: DESCOBRIR O VALOR DO PRÓXIMO ESTADO BASEADO NO ESTADO ATUAL E EQUAÇÕES DE ENTRADA

Esta Atı		Entrada		Próximo Estado Saída		Equaç Entrada	ões de a (FF T)
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T_0
0	0	0			0	0	1
0	0	1			0	0	1
0	1	0			0 /	0	0
0	1	1			0	1	1
1	9	0			1	0	1
1	0	1			1	0	1
1	1	0			0	1	0
1	1	1			0	0	0
		1	,			_	
Se a	entra	<mark>da de um fli</mark>	p-flop	Té0			$Q \vdash 0$
e o estado atual é 0. Qual será o							
próx	próximo estado?			CL	к—>		

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	Е	Q_1	\mathbf{Q}_0	S	T ₁	T ₀
0	0	0	0		0	0	1
0	0	1	/		0	0	1
0	1	0			0	0	0
0	1	1			0	1	1
1	0	0			1	0	1
1	0	1 /			1	0	1
1	1	0			0	1	0
1	1	1/			0	0	0

Será 0!

CLK	Т	Q _{t+1}
≠↑	Х	Q _t
↑	0	Q _t
↑	1	$\overline{\mathbf{Q}_{\mathbf{t}}}$

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	Equações de Intrada (FF T)	
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀	
0	0	0	0		0	0	1	
0	0	1	0		0	0	1	
0	1	0	0		0	0	0	
0	1	1			0	1	1	
1	0	0			1	0	1	
1	0	1			1	0	1	
1	1	0			0	1	0	
1	1	1			0	0	0	

Esta Atı		Entrada		ximo ado	Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	E	Q_1	Q_0	S	T ₁	T_0
0	0	0	0		0	0	1
0	0	1	0		0	0	1
0	1,	0	0		0	0	0
0	1	1			0	1 /	1
1	0	0			1	0	1
1	0	1			1/	0	1
1	1	0			0	1	0
1	1	1			0	0	0
		1	_			•	
Se a	entra	<mark>da de um fli</mark>	p-flop	Té0		V-T	Q-1
eoe	e o estado atual é 1. Qual será o						
próx	próximo estado?			CL	к—>		

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ões de ı (FF T)	
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀	
0	0	0	0		0	0	1	
0	0	1	0		0	0	1	
0	1	0	0	1	0	0	0	
0	1	1			0	1	1	
1	0	0			1	0	1	
1	0	1			1	0	1	
1	1	0			0	1	0	
1	1	1			0	0	0	

Será 1!

CLK	Т	Q _{t+1}
≠↑	Х	Q _t
1	0	Qt
1	1	$\overline{\mathbf{Q}_{t}}$

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ações de ada (FF T)	
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀	
0	0	0	0		0	0	1	
0	0	1	0		0	0	1	
0	1	0	0	1	0	0	0	
0	1	1			0	1	1	
1	0	0	1		1	0	1	
1	0	1	1		1	0	1	
1	1	0		1	0	1	0	
1	1	1	1	1	0	0	0	

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀
0	0	0	0		0	0	1
0	0	1	0		0	0	1
0	1	0	0	1	0	0	0
0	1	1			0	1	1
1	0	0	1		1 /	0	1
1	0	1	1			0	1
1	1	0		1	0	1	0
1	1	1	1	1/	0	0	0
		1					
Se a	entra	da de um fli	p-flop	Té1		1— T	$Q \vdash 0$
	e o estado atual é 0. Qual será o						
próx	próximo estado?			CL	к—>		

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	ões de a (FF T)
Q_1	Q_0	E	Q ₁	Q_0	S	T ₁	T ₀
0	0	0	0	1	0	0	1
0	0	1	0		0	0	1
0	1	0	0	1	0	0	0
0	1	1			0	1	1
1	0	0	/		1	0	1
1	0	1	1		1	0	1
1	1	0		1	0	1	0
1	1	1	1	1	0	0	0

Será 1!

CLK	Т	Q _{t+1}
≠↑	Х	Q _t
↑	0	Q t
<u></u>	1	$\overline{\mathbf{Q}_{t}}$

Esta Atı		Entrada		ximo tado	Saída	Equaç Entrada	Equações de Entrada (FF T)	
\mathbf{Q}_{1}	Q_0	E	\mathbf{Q}_{1}	Q_0	S	T ₁	T ₀	
0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1		0	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0		1	0	1	0	
1	1	1	1	1	0	0	0	

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	Q_0	E	Q_1	Q_0	S	T ₁	T ₀
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1		0	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0		1	0	1	0
1	1	1	1	1 /	0	0	0
		1				. [
Se a	Se a entrada de um flip-flop T é 1					1— T	Q-1
eoe	e o estado atual é 1. Qual será o						
próximo estado?					CL	к—>	

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T ₀
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1	0	0	1	1
1	0	0	1 /	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0		1	0	1	0
1	1	1	1	1	0	0	0

Será 0!

CLK	Т	Q _{t+1}
≠↑	Х	Q _t
1	0	Qt
1	1	$\overline{\mathbf{Q}_{t}}$

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	Q_0	Е	Q_1	Q_0	S	T ₁	T_0
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1	0	0	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	0	1	0	1	0
1	1	1	1	1	0	0	0

Estado Atual		Entrada	Próximo Estado		Saída	Equações de Entrada (FF T)	
Q_1	Q_0	E	\mathbf{Q}_{1}	\mathbf{Q}_{0}	S	T ₁	T_0
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1	0	0	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	0	1	0	1	0
1	1	1	1	1	0	0	0

Na análise do FF tipo T:

Se o valor do estado atual for igual a eq. de entrada $\rightarrow 0$ Se o valor do estado atual for diferente a eq. de entrada $\rightarrow 1$

Estado Atual		Entrada	Próximo Estado		Saída
Q ₁	Q_0	E	Q_1	Q_0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	1	1	0

Estado Atual		Entrada	Próximo Estado		Saída
Q ₁	Q_0	E	Q_1	Q_0	S
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	1	1	0

O RESET FAZ COM QUE O CIRCUITO INICIE NO ESTADO 00, DESSA FORMA PODEMOS PRESUMIR QUE ESTE É O ESTADO INICIAL DA MÁQUINA DE ESTADOS

