Veröffentlichungsnummer:

0 302 424

A1

© EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 88112409.3

(5) Int. Cl.4: C08F 10/00 , C08F 4/60

2 Anmeldetag: 30.07.88

(2) Priorität: 06.08.87 DE 3726067

Veröffentlichungstag der Anmeldung: 08.02.89 Patentblatt 89/06

Benannte Vertragsstaaten:

AT BE DE ES FR GB IT NL SE

7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)

@ Erfinder: Winter, Andreas, Dr. Gundelhardtstrasse 2 D-6233 Keikheim (Taunus)(DE) Erfinder: Spaleck, Walter, Dr. Sulzbacher Strasse 63 D-6237 Liederbach(DE)

(S) Verfahren zur Herstellung von 1-Olefinpolymeren.

@ Bei Ziegler-Katalysatoren auf Basis eines Metallocens als Übergangsmetallkomponente und eines Aluminoxans als Aktivator führt eine Voraktivierung des Metallocens mit dem Aluminoxan zu einer beachtlichen Steigerung der Aktivität des Katalysatorsystems. Weiterhin erhält man mit einem solchen Katalysatorsystem 1-Olefinpolymere hoher Isotaktizität mit kompakten kugelförmigen Teilchen, sehr enger Korngrößenverteilung und hoher Schüttdichte.

EP 0 302 424 A1

Verfahren zur Herstellung von 1-Olefinpolymeren

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von1-Olefinpolymeren mit hoher Isotaktizität und vorteilhafter Korngrößenverteilung.

Für die Herstellung von Polyolefin mit hoher Isotaktizität werden in neuerer Zeit Trägerkatalysatoren eingesetzt, bei welchen Übergangsmetallverbindungen zusammen mit geeigneten Elektronendonatoren auf Trägern, beispielsweise Magnesiumchlorid, aufgebracht sind. Als Aktivatoren werden in der Polymerisationsreaktion Aluminiumalkyle und als Stereoregulatoren Donatoren wie Benzoesäureethylester oder Ph₂ Si-(OR)₂ zur Vergiftung nicht stereospezifischer Zentren verwendet.

Da diese Katalysatoren überwiegend aus MgCl₂ bestehen, werden in den damit hergestellten Polymeren relativ hohe Chlorgehalte von 30 - 300 ppm gefunden, sofern diese Rückstände nicht durch eine spezielle Nachbehandlung entfernt werden.

Bekannt sind auch lösliche Ziegler-Katalysatoren auf Basis von Bis(cyclopentadienyl)zirkon-alkyl bzw. -halogenid in Kombination mit oligomeren Aluminoxanen. Mit diesen Katalysatoren können Ethylen und Propylen mit mäßiger Aktivität polymerisiert werden, man erhält jedoch kein isotaktisches Polypropylen.

Weiterhin ist von dem Katalysatorsystem Bls(cyclopentadienyl)titandiphenyl/Methylaluminoxan bekannt, daß es Propylen in Stereoblockpolymere, d.h. Polypropylen mit relativ langen isotaktischen Sequenzen, umzuwandeln vermag (vgl. US-PS 4 522 982). Wesentliche Nachteile dieses Katalysatorsystems sind die großtechnisch irrelevanten Temperaturen für die Polymerisation (0° bis -60°C) und die unbefriedigende Katalysatoraktivität.

Schließlich gelingt es mit Hilfe einer stereorigiden und chiralen Zirkonverbindung zusammen mit einem Aluminoxan, in einer Suspensionspolymerisation isotaktisches Polypropylen herzustellen (vgl. EP-A 185918 = US Ser. No 801,683). Das Polymer besitzt eine enge Molmassenverteilung, was für bestimmte Anwendungsgebiete, beispielsweise für den Hochleistungsspritzguß, von Vorteil ist. Gleichzeitig besitzt das Katalysatorsystem eine Reihe von Mängeln. Wegen der geringen Aktivität ist eine aufwendige Reinigung des Polymers erforderlich, um die großen Restmengen an Katalysator zu entfernen. Die Schüttdichte des Polymers ist zu gering, die Kornmorphologie und die Korngrößenverteilung unbefriedigend. Außerdem wird die Polymerisation in Toluol durchgeführt, welches sehr aufwendig gereinigt und von Feuchtigkeit und Sauerstoff befreit werden muß.

Es bestand die Aufgabe, einen Katalysator zu finden, welcher die Nachteile der bekannten Katalysatoren nicht besitzt.

Es wurde gefunden, daß eine Voraktivierung des Metallocens mit einem Aluminoxan eine beachtliche Steigerung der Aktivität des Katalysatorsystems und eine Verbesserung der Kommorphologie des Polymeren bewirkt.

Die Erfindung betrifft somit ein Verfahren zur Herstellung eines 1-Olefinpolymers durch Polymerisation eines 1-Olefins der Formel R-CH=CH₂, worin R eine Alkylgruppe mit 1 bis 28 C-Atomen ist oder Copolymerisation dieser Olefine mit Ethylen bei einer Temperatur von -60 bis 200°C, bei einem Druck von 0,5 bis 60 bar, in Lösung, in Suspension oder in der Gasphase, in Gegenwart eines Katalysators, welcher aus einem Metallocen als Übergangsmetallverbindung und einem Aluminoxan als Aktivator besteht, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart eines Katalysators durchgeführt wird, dessen Übergangsmetallkomponente vor der Polymerisation mit einem Aluminoxan der Formel IV

für den linearen Typ und/oder der Formel V

30

40

$$-\begin{bmatrix} R^{17} \\ A_{1} - O \end{bmatrix} - V$$
 (V)

für den cyclischen Typ ist, wobei in den Formeln IV und V R¹⁷ eine C₁-C₆-Alkylgruppe bedeutet und p eine ganze Zahl von 2 bis 50 ist, bei einer Temperatur von -78 bis 100° C 5 Minuten bis 60 Stunden voraktiviert wurde, und wobei der Aktivator ebenfalls ein Aluminoxan der Formeln IV und/oder V ist.

Für das erfindungsgemäße Verfahren können verschiedene Metallocen-Katalysatoren eingesetzt werden.

Zur Herstellung von hochisotaktischen Poly-1-olefinen werden stereorigide, chirale Metallocene verwendet. Diese Metallocene sind solche der Formel I

In dieser Formel ist

10

15

Me¹ ein Metall der Gruppe IV b oder V b des Periodensystems der Elemente, also Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, vorzugsweise Titan, Zirkon, insbesondere Zirkon. R¹ und R² sind gleich oder verschieden und bedeuten eine C_1 - C_{10} -, vorzugsweise C_1 - C_3 -Alkylgruppe, eine C_6 - C_{10} -, vorzugsweise C_6 - C_8 -Arylgruppe, eine C_2 - C_{10} -, vorzugsweise C_2 - C_4 -Alkenylgruppe, eine C_7 - C_{10} -, vorzugsweise C_7 - C_{10} -Aralkylgruppe, eine C_8 - C_{10} -, vorzugsweise C_8 - C_{12} -Arylalkenylgruppe oder ein Halogenatom, vorzugsweise Chlor.

R³ ist ein linearer C₁-C₄- vorzugsweise C₁-C₃-Kohlenwasserstoffrest oder ein cyclischer C₄-C₆-Kohlenwasserstoffrest; diese Kohlenwasserstoffreste können mindestens ein Heteroatom als Brückeneinheit in der Kette enthalten. Die Brücke R³ kann auch nur aus Heteroatomen aufgebaut sein.

Beispiele für eingliedrige Brückeneinheiten sind - CR_2^6 -, -O-, -S-, -SO-, -Se-, -SeO-, -NR⁶-, -AsR⁶-, -BR⁶-, -AlR⁶-, -SiR⁶₂ -, -GeR⁶₂ -, wobei R⁶ ein Wasserstoffatom, eine C₆-C₁₀-, vorzugsweise C₆-C₈-Arylgruppe, eine C₁-C₁₀-, vorzugsweise C₁-C₄-Alkylgruppe, eine C₂-C₁₀-, vorzugsweise C₂-C₄-Alkenylgruppe, eine C₇-C₄₀-, vorzugsweise C₇-C₁₀-Aralkylgruppe, eine C₈-C₄₀-, vorzugsweise C₈-C₁₂-Arylalkenylgruppe oder ein Halogenatom, vorzugsweise Chlor ist. Bevorzugt sind -CR⁶₂ - und Silizium und Schwefel enthaltende Brückeneinheiten.

Beispiele für zweigliedrige Brückeneinheiten sind -(CR₂⁶)₂-, -SS-, -SeSe-, -SiR₂⁶ SiR₂⁶ - und -SiR₂⁶ CF₂⁶ -. Beispiele für mehrgliedrige Brückeneinheiten sind -(CR₂⁶)₃-, -(CR₂⁶)₄-, -SiR₂⁶ OSiR₂⁶ -, -SiR₂⁶ (CR₂⁶)_nSsiR₂⁶ -, -SiR₂⁶ (CR₂⁶)_nS-, -S(CR₂⁶)_n, -NR⁶(CR₂⁶)_nNR-, -NR⁶(CR₂⁶) n-, -PR⁶(CR₂⁶)_nPR⁶-, -PR⁶(CR₂⁶)_n- mit n = 1 oder 2, -AIR⁶OAIR⁶-, wobei R⁶ dle vorstehend genannte Bedeutung hat. Bevorzugt sind -(CR₂⁶)₂-, -(CR₂⁶)₃- und Silizium und Schwefel enthaltende Brückeneinheiten.

R⁴ und R⁵ gleich oder verschieden, vorzugsweise gleich. Sie sind ein- oder mehrkemige Kohlenwasserstoffreste, welche zusammen mit dem Zentralatom eine Sandwichstruktur bilden können. Beispiele für derartige Reste sind die Indenyl-, Tetrahydroindenyl oder Cyclopentadienylgruppe und Heteroaromatenliganden. Besonders bevorzugte Metallocene sind Bisindenylzirkondichloride.

Die optisch aktiven Metallocene werden als Racemat eingesetzt. Verwendet werden kann aber auch die reine D-oder L-Form. Mit diesen reinen stereolsomeren Formen ist optisch aktives Polymeres herstellbar. Abgetrennt werden muß jedoch die meso-Form der Metallocene, da das polymerisationsaktive Zentrum (das Metallatom) in diesen Verbindungen wegen Spiegelsymmetrie am Zentralmetall nicht mehr chiral ist.

Die Trennung der Stereoisomeren ist im Prinzip bekannt (H.H. Brintzinger et al. Journal of Organometallic Chemistry, 232 (1982) 233 und 328 (1987)87).

Die vorstehend beschriebenen stereorigiden, chiralen Metallocene können nach folgendem Reaktionsschema hergestellt werden:

 $LiR^4 - R^3 - R^5 Li - \frac{Me^1Cl_4}{R^5}$

10

15

20

25

40

Zur erfindungsgemäßen Polymerisation von 1-Olefin zu Stereoblockpolymeren wird ein Metallocen der 30 Formel II eingesetzt:

In dieser Formel hat Me¹ die obengenannte Bedeutung.

R⁷ und R⁸ sind gleich oder verschieden und bedeuten ein Halogenatom, C₁- bis C₁₀-Alkyl, C₆- bis C₁₀-Aryl, C₂- bis C₁₀-Alkenyl, C₇- bis C₄₀-Arylalkyl, C₇- bis C₄₀-Alkylaryl oder C₈- bis C₄₀-Alkenylaryl.

R⁹ und R¹⁰ sind gleich oder verschieden und bedeuten einen substituierten Cyclopentadienylrest, wobei dieser Rest ein oder mehrere Chiralitätszentren enthält und durch Urnsetzung von Alkalicyclopentadienid mit einem Sulfonsäureester eines chiralen Alkohols entstanden ist.

In Formel II ist Me¹ vorzugsweise Zirkon und R³ und R³ bedeuten vorzugsweise ein Halogenatom oder eine Alkylgruppe, vorzugsweise Methyl, insbesondere ein Chloratom. R³ und R¹o sind durch Umsetzung eines Alkalicyclopentadienids, vorzugsweise Natriumcyclopentadienids, und einem Sulfonsäureester beispielsweise eines der folgenden chiralen Alkohole entstanden:

Thujylalkohol; Neothujylalkohol; cis-, trans-Sabinol; 2,5-Dimethyl-4-vinyl-2,5-hexadien-1-ol; Lavandulol; Isopulegol; Neoisopulegol; cls-, trans-Pulegol; Isomenthol; Neomenthol; Neoisomenthol; Menthol; cis-, trans- $\Delta^1(7)$ -p-Menthenol-(2); cls-, trans- $\Delta^1(7)$ -p-Menthadienol-(2); Dihydrocarveol; Neodihydrocarveol; Isodihydrocarveol; Neoisodihydrocarveol; Carvomenthol; Neoisocaryomenthol; Isocarvomenthol; Neocarvomenthol; Perilla-Alkohol; Phellandrol; Butanol-(2); Cycloisolongifolol; Isolongifolol; 2-Methylbutanol; Octanol-(2); Pentanol-(2); Phenylethanol; Hydroxycitronellal; Hydroxycitronellol; cis-, trans-Myrtenol; 2,6-Dimethylocten-(3)-diol-(2,8); 2,6-Dimethylocten-(1)-diol-(3,8); Dihydrocitronellol; Citronellol; 2,6-Dimethyloctadien-(2,7)-ol-(4); 2,6-Dimethyloctadien-(1,7)-ol(3); $\Delta^{1,0}$ -p-Menthadienol-(9); cis-, trans-Sobrerol; cis-m-Menthanol-(5), Δ^{410} -Carenol-(5); Δ^3 -Carenol-(2); Caranol-(3); Isocaranol-(3); Neoisocaranol-(3); α,β -Fenchol; Borneol; Isoborneol; cis-, trans-Myrtanol; Neoverbanol; Neoisoverbanol; cis-, trans-Chry-

santhenol; cis-, trans-Verbenol; Isoverbanol; cis-, trans-Pinocarveol; Pinocampheol; Neopinocampheol; Isopinocampheol; Methylnopinol.

Von diesen chiralen Alkoholen werden die cyclischen bevorzugt eingesetzt. Besonders bevorzugt ist Neomenthol. Somit ist die besonders bevorzugt verwendete Metallocenverbindung Bis-neomenthylcyclopentadienylzirkoniumdichlorid.

Die Herstellung dieser Verbindungen kann beispielsweise auf folgende Weise erfolgen.

Ferner sind für die Herstellung von Stereoblockpolymeren Metallocene der Formel III

geelgnet. In dieser Formel ist Me² ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystes, beispielsweise Titan, Zirkon, Hafnium, Vanadium, Chrom, Molybdän, Wolfram, vorzugsweise Titan und Zirkon.

 R^{11} und R^{12} sind gleich oder verschieden und bedeuten C_1 -bis C_{10} -Alkyl, C_6 - bis C_{10} -Aryl, C_2 - bis C_{10} -Aryl, C_7 - bis C_{10} -Aralkyl, vorzugsweise Phenyl, Ethyl, Methyl, insbesondere Methyl.

R¹³ und R¹⁴ sind gleich oder verschieden und bedeuten ein Wasserstoffatom oder eine Methylgruppe, vorzugsweise ein Wasserstoffatom.

R¹⁵ und R¹⁶ sind ebenfalls gleich oder verschieden und bedeuten ein Halogenatom wie Chlor, Brom oder Jod, C₁- bis C₁₀-Alkyl, C₆- bis C₁₀-Aryl, C₂- bis C₁₀-Alkenyl, C₇- bis C₄₀-Arylalkyl oder C₈- bis C₄₀-Arylalkenyl, vorzugsweise Methyl oder Chlor, insbesondere Chlor.

m ist eine ganze Zahl von 1 bis 4, vorzugsweise 2.

bevorzugt eingesetzte Metallocenverbindung ist Tetramethylethylen-bisbesonders (cyclopentadienyl)-titandichlorid. Dieser Typ Verbindung kann beispielsweise hergestellt werden durch 6,6-Dimethylfulven mit Natriumamalgam, Natriumanthracenid Kupplung reduktive von Reduktionsmittel mit nachfolgender Umsetzung der Magnesiumetall/CCI4 als Tetramethyldicyclopentadienylethan-Verbindung mit TiCl oder ZrCl.

Vor dem Einsatz in der Polymerisationsreaktion wird das Metallocen mit einem Aluminoxan voraktiviert. Dieses Aluminoxan ist eine Verbindung der Formel IV

55

20

25

30

für den linearen Typ und/oder der Formel V

5

10

15

50

55

$$-\begin{bmatrix} R^{17} \\ A_1 - O \end{bmatrix}_{p+2}$$
 (V)

für den cyclischen Typ. In diesen Formeln bedeuten R¹⁷ eine C₁-C₆-Alkylgruppe, vorzugsweise Methyl, Ethyl oder Isobutyl, insbesondere Methyl, und p eine ganze Zahl von 2 bis 50, bevorzugt 15 bis 30.

Das Aluminoxan kann auf verschiedene Art und Weise hergestellt werden.

Bei einem der Verfahren wird fein gepulvertes Kupfersulfatpentahydrat in Toluol aufgeschlämmt und in einem Glaskolben unter Inertgas bei etwa -20° C mit soviel Aluminiumtrialkyl versetzt, daß fur je 4 Al-Atome etwa 1 mol CuSo4•5H2O zur Verfügung steht. Nach langsamer Hydrolyse unter Alkan-Abspaltung wird die Reaktionsmischung 24 bls 48 Stunden bei Zimmertemperatur belassen, wobei gegebenenfalls gekühlt werden muß, damit die Temperatur nicht über 30° C ansteigt. Anschließend wird das im Toluol gelöste Aluminoxan von dem Kupfersulfat abfiltriert und das Toluol unter Vakuum abdestilliert. Es wird angenommen, daß bei diesem Herstellungsverfahren die niedermolekularen Aluminoxane unter Abspaltung von Aluminiumtrialkyl zu höheren Oligomeren kondensieren.

Weiterhin erhält man Aluminoxane, wenn man bei einer Temperatur von -20 bis 100°C in einem inerten aliphatischen oder aromatischen Lösemittel, vorzugsweise Heptan oder Toluol, gelöstes Aluminiumtrialkyl, vorzugsweise Aluminiumtrimethyl, mit kristallwasserhaltigen Aluminiumsalzen, vorzugsweise Aluminiumsulfat, zur Reaktion bringt. Dabei beträgt das Volumenverhältnis zwischen Lösemittel und dem verwendeten Aluminiumalkyl 1:1 bis 50:1 - vorzugsweise 5:1 - und die Reaktionszeit, die durch Abspaltung des Alkans kontrolliert werden kann, 1 bis 200 Stunden - vorzugsweise 10 bis 40 Stunden.

Von den kristallwasserhaltigen Aluminiumsalzen werden insbesondere jene verwendet, die einen hohen Gehalt an Kristallwasser aufweisen. Besonders bevorzugt ist Aluminiumsulfat-Hydrat, vor allem die Verbindungen Al₂(SO₄)₃•18H₂O und Al₂(SO₄)₃•16H₂O mit dem besonders hohen Kristallwassergehalt von 16 bzw. 18 mol H₂O/mol Al₂(SO₄)₃.

Die Voraktivierung wird in Lösung vorgenommen. Bevorzugt wird dabei das Metallocen in einer Lösung des Aluminoxans in einem inerten Kohlenwasserstoff aufgelöst. Als inerter Kohlenwasserstoff eignet sich ein allphatischer oder aromatischer Kohlenwasserstoff.

Bevorzugt wird Toluol verwendet.

Die Konzentration des Aluminoxans in der Lösung liegt im Bereich von ca 1 Gew.-% bis zur Sättigungsgrenze, vorzugsweise von 5 bis 30 Gew.-%, jeweils bezogen auf die Gesamtlösung. Das Metallocen kann in der gleichen Konzentration eingesetzt werden, vorzugsweise wird es jedoch in einer Menge von 10⁻⁴ - 1 mol pro mol Aluminoxan eingesetzt. Die Voraktivierungszeit beträgt 5 Minuten bis 100 Stunden, vorzugsweise 5 bis 60, insbesondere 10 bis 20 Minuten.

Eine deutlich längere Voraktivierung ist möglich, sie wirkt sich normalerweise jedoch weder aktivitätssteigernd noch aktivitätsmindernd aus, kann jedoch zu Lagerzwecken durchaus sinnvoll sein.

Die Voraktivierung wird bei einer Temperatur von -78 bis 100° C, vorzugsweise 0 bis 70° C durchge-führt.

Die Voraktivierung kann sowohl unter Ausschluß von Licht, als auch bei Lichteinstrahlung erfolgen, da die in der Regel lichtempfindlichen Metallocene durch das Aluminoxan stabilisiert werden. Bevorzugt ist trotzdem, besonders bei längeren Voraktivierungszeiten und bei besonders empfindlichen heteroatomsubstituierten Metallocenen direkte Lichteinstrahlung auszuschließen.

Die zweite Komponente des erfindungsgemäß zu verwendenden Katalysators ist ein Aluminoxan der Formeln IV und/oder V. Vorzugsweise wird das gleiche Aluminoxan zur Voraktivierung und zur Polymerisation verwendet.

Der erfindungsgemäß zu verwendende Katalysator wird zur Polymerisation von 1-Olefinen der Formel

R-CH = CH₂, in der R einen Alkylrest mit 1 bis 28 C-Atomen, vorzugsweise 1 bis 10 C-Atomen, insbesondere einem C-Atom bedeutet, eingesetzt, beispielsweise Propylen, Buten-(1), Hexen-(1), 4-Methylpenten-(1), Octen-(1). Besonders bevorzugt ist Propylen. Ferner wird der Katalysator auch zur Copolymerisation dieser Olefine untereinander und mit Ethylen eingesetzt, wobei mehr als 50 Gew.-% Ethylen einpolymerisiert werden können.

Die Polymerisation wird in bekannter Weise in Lösung, in Suspension oder In der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig bei elner Temperatur von -60 bis 200, vorzugsweise - 20 bis 120, insbesondere -20 bis 80°C, durchgeführt. Der Druck beträgt 0,5 bis 60 bar. Bevorzugt ist die Polymerisation in dem technisch besonders interessanten Druckbereich von 5 bis 60 bar.

Dabei wird die Metallocenverbindung in einer Konzentration, bezogen auf das Übergangsmetall, von 10⁻³ bis 10⁻⁷, vorzugsweise 10⁻⁴ bis 10⁻⁶ mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet. Das Aluminoxan wird in einer Konzentration von 10⁻⁴ bis 10⁻¹ mol, vorzugsweise 10⁻³ bis 10⁻² mol pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen verwendet. Prinzipiell sind aber auch höhere Konzentrationen möglich.

Es ist vortellhaft, das Aluminoxan vor Zugabe des Metallocens in das Polymerisationssystem erst einige Minuten zusammen mit der Polymerisationsflüssigphase zu rühren. Die Rührzeit beträgt vorzugsweise 10 bis 30 Minuten. Es kann jedoch ohne größere Einbußen auch kürzere Zeit gerührt werden, eine längere Rührzeit hat auf das Ergebnis der Polymerisation keine nennenswerte Wirkung.

Die Polymerisation wird in einem für das Ziegler-Niederdruckverfahren gebräuchlichen inerten Lösemittel durchgeführt, beispielsweise in einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff; als solcher sei beispielsweise Butan, Pentan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan genannt. Weiterhin kann eine Benzin- bzw. hydrierte Dieselölfraktion, die sorgfältig von Sauerstoff, Schwefelverbindungen und Feuchtigkeit befreit worden ist, benutzt werden. Brauchbar ist auch Toluol. Bevorzugt wird das zu polymerisierende Monomere als Lösemittel oder Suspensionsmittel eingesetzt. Die Molmasse des Polymerisats kann in bekannter Weise geregelt werden; vorzugsweise wird dazu Wasserstoff verwendet. Die Dauer der Polymerisation ist beliebig, da das erfindungsgemäß zu verwendende Katalysatorsystem einen nur geringen zeltabhängigen Abfall der Polymerisationsaktivität zelgt.

Mittels des erfindungsgemäßen Verfahrens können Polymerpulver hergestellt werden, die aus kompakten kugelförmigen Teilchen mit einer sehr engen Korngrößenverteilung und einer hohen Schüttdichte bestehen. Das Polymerpulver zeichnet sich durch eine sehr gute Rieselfähigkeit aus.

Durch die erfindungsgemäße Voraktivierung des Metallocens durch das stark lewisacide Aluminoxan wird das Metallocen nicht reduziert und dadurch irreveslbel desaktiviert, sondern im Gegenteil stabilisiert. Auch die bekannte Lichtempfindlichkeit der Metallocene wird beseitigt.

Gleichzeitig wird durch das bevorzugte Lösen des Metallocens in der Aluminoxanlösung und die bevorzugte Polymerisation im flüssigen Monomeren der Bedarf an (nicht polymerisierenden) Löse- bzw. Suspensionsmittel verringert.

Die nachfolgenden Beispiele sollen die Erfindung erläutern. Es bedeuten

VZ = Viskositätszahl in cm3/g.

Mw = Molmassengewichtsmittel,

40 M_w/M_n = Molmassenverteilung, ermittelt durch Gelpermeationschromatographie,

SD = Schüttdichte in g/dm3 und

II = Isotaktischer Index, bestimmt durch ¹³C-NMR-Spektroskopie

M_{iso} = Länge der isotaktischen Sequenzen bestimmt durch ¹³C-NMR Spektroskopie.

Beispiel 1

Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 50 cm³ toluolische Methylaluminoxanlösung (entsprechend 40 mmol Al, mittlerer Oligomerisierungsgrad des Methylaluminoxans ist n = 20) zugegeben und der Ansatz bei 30 °C 15 Minuten gerührt. Parallel dazu wurden 9 mg (0,02 mmol) Bisindenyldimethylsilyl-zirkondichlorid in 25 cm³ toluolischer Methylaluminoxanlösung (20 mmol Al) gelöst und durch 15-minütiges Stehenlassen voraktiviert. Die orangerote Lösung wurde dann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70 °C gebracht und dann durch entsprechende Kühlung 1 h bei dieser Temperatur gehalten.

Es wurden 2,0 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug somit 100 kgPP/mmol Zr•h. VZ = 45 cm³/g, M_w = 35000, M_w/M_n = 2,1, SD = 520 g/dm³, II = 96,5 %. CI- und Zr-Gehalte im Polymeren lagen unter 1 ppm.

Korngrößenverteilung im Polymeren

Siebboden	Anteil	Summe	
[µm]	in %	in %	•
<100	1,9	1,9	
100-200	11,8	13,7	
200-300	29,7	43,4	
300-400	17,0	60,4	
400-500	17,2	77,6	
500-630	18,3	95,9	
630-800	3,3	99,2	
>800	0,8	100,0	

EP 0 302 424 A1

 $d_{50} = 340 \ \mu m, \ s = 1n \frac{30}{d_{16}} = 0.48$

Beispiel 2

25

30

45

50

55

Es wurde analog zu Beispiel 1 verfahren, jedoch statt 9 mg Bisindenyldimethylsilylzirkondichlorid wurden nur 4,5 mg (0,01 mmol) eingesetzt und die Polymerisationszeit betrug 2 h.

Es wurden 1,95 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug somit 97,5 kg PP/mmol Zreh.

 $VZ = 48 \text{ cm}^3/\text{g}$, $M_w = 39000$, $M_w/M_n = 2.2$, SD = 500 g/dm³, II = 97 %. Cl- und Zr-Gehalte im Polymeren lagen unter 0,5 ppm. In der zweiten Polymerisationsstunde war folglich kein Abfall der Polymerisationsaktivität eingetreten.

EP 0 302 424 A1

Korngrößenverteilung im Polymeren

	Siebboden	Anteil	Summe	
5	[hw]	in %	in %	
	<100	2,0	2,0	
	100-200	3,1	5,1	
10	200-300	5,4	10,5	
	300-400	6,1	16,6	
	400-500	7,9	24,5	
15	500-630	14,0	38,5	
10	630-800	13,9	52,4	
	800-1000	17,6	70,0	
	1000-1250	21,5	91,5	
20	1250-2000	8,3	99,8	
	>2000	0,2	100,0	
		a		
25	$d_{50} = 760 \mu m, s$	$= \ln \frac{\alpha_{50}}{d} = 0.67$		

d16

Beispiel 3

30

Es wurde analog zu Beispiel 1 verfahren, jedoch wurden 20 mg (0,045 mmol) Bisindenyldimethylsilylzirkondichlorid eingesetzt und die Polymerisationstemperatur betrug 50°C.

Es wurden 1,0 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug somit 22,2 kg PP/mmol Zreh.

 $VZ = 60 \text{ cm}^3/\text{g}$, $M_w = 55000$, $M_w/M_n = 2.0$, $SD = 300 \text{ g/dm}^3$, II = 97.3 %, 4.1 ppm CI und 4 ppm Zr im Polymeren.

Beispiel 4

Verfahren wurde analog zu Beispiel 1, jedoch wurden 20 mg (0,045 mmol) Bisindenyldimethylsilylzirkondichlorid eingesetzt, die Polymerisationstemperatur betrug 50°C und die Polymerisationszeit 2 h.

Es wurden 1,91 kg Polypropylen erhalten. Die Aktivität des Metallocene betrug 21,2 kg PP/mmol Zreh. $VZ = 62 \text{ cm}^3/\text{g}$, $M_w = 57000$, $M_w/M_n = 2.2$, SD = 310 g/dm³, II = 97.0 %, 2,5 ppm Cl und 2 ppm Zr im Polymeren. In der zweiten Polymerisationsstunde ist folglich kein Abfall der Polymerisationsaktivität eingetreten.

Beispiel 5

50

Ein trockener 16-dm3-Kessel wurde mit Stickstoff gespült und mit 10 dm3 flüssigem Propylen befüllt. Dann wurden 100 cm3 toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und bei 30°C 15 Minuten gerührt. Parallel dazu wurden 7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid in 50 cm3 toluolischer Methylaluminoxanlösung (40 mmol Al-Gehalt) gelöst und durch 15-minütiges Stehenlassen voraktiviert. Die orangerote Lösung wurde dann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70°C gebracht und dann durch entsprechende Kühlung 1 h bei dieser Temperatur gehalten. Erhalten wurden 2,94 kg Polypropylen. Die Aktivität des Metallocens betrug somit 172, 9 kg PP/mmol Zr•h.

VZ = 47 cm³/g, $M_w = 40000$, $M_w M_n = 1.9$, SD = 530 g/dm³, II = 97.1 %. Cl- und Zr-Gehalte im Polymeren lagen unter 0,5 ppm.

Korngrößenverteilung im Polymeren:

216	ebboden	Anteil	Summe	
Lim	1]	in %	in %	
<1	100	2,5	2,5	
10	00-200	4,6	7,1	
20	00-300	7,4	14,5	
30	00-400	35,9	50,4	
40	00-500	40,0	90,4	•
50	00-630	7,8	98,2	
Sic	ebboden	Anteil	Summe	
•	-1	im %	4 94	
Įμπ	11 1	in %	in %	
	30-800	1,1	99,3	
63				

Vergleichsbeispiel A

35

50

Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt.

Dann wurden 150 cm³ toluolische Methylaluminoxanlösung (entsprechend 120 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und 15 Minuten gerührt. Dazu wurden 7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid, gelöst in 50 cm³ über Na/K-Legierung getrocknetem, destillierten und mit Argon gesättigten Toluol, zugegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70° C gebracht und durch weitere Wärmezufuhr 10 h bei dieser Temperatur gehalten.

Es wurden 0,21 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug somit 1,24 kgPP/mmol Zr•h. VZ = 40 cm³/g, M_w = 26400, M_w/M_n = 1,9, SD = 80 g/dm³, II = 90,1 %. 100 % des Polymeren wies eine Komgröße von <50 μm auf.

Vergleichsbeispiel B

Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid, das in 50 cm³ über Na/K-Legierung getrocknetem, destillierten und mit Argon gesättigten Toluol gelöst und mit 150 cm³ toluolischer Methylaluminoxanlösung (entsprechend 120 mmol Al, mittlerer Oligomerisierungsgrad n = 20) versetzt wurde, gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70°C gebracht und durch

EP 0 302 424 A1

weitere Wärmezufuhr 10 h bei dieser Temperatur gehalten. 1,06 kg Polypropylen wurden erhalten. Die Aktivität des Metallocens betrug 6,2 kgPP/mmol Zreh. VZ = 43 cm³/g, M_w = 32700, M_w'M_n = 2,2, SD = 100 g/dm³, II = 95,6 %. 100 % des Polymeren wies eines Korngröße von <50 µm auf.

5

Vergleichsbeispiel C

Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt.

Dann wurden 100 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und bei 30°C 15 Minuten gerührt. Parallel dazu werden 7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid in 50 cm³ Toluol gelöst (0,34 mmol/dm³). Das Toluol wurde zuvor über Na/K-Legierung getrocknet, destilliert und mit Argon gesättigt. Zu dieser Lösung gab man 50 cm³ toluolische Methylaluminoxanlösung (40 mmol Al) und ließ 15 Minuten zur Voraktivierung stehen. Die Lösung wurde dann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70°C gebracht und dann 1 h bei dieser Temperatur gehalten.

Erhalten wurden 0,61 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kgPP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kg PP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kg PP/mmol Zr = 1.0 kg Polypropylen. Die Aktivität des Metallocens betrug 35,9 kg PP/mmol Zr = 1.0 kg PP/mmol Zr = 1.0

20

Komgrößenv	erteilung:	
Siebboden (µm)	Anteil in %	Summe in %
<100	33,6	33,6
100-200	65,4	99,0
>200	1,0	100,0
dso = 115 u	m.	

30

25

Beispiel 6

Verfahren wurde analog zu Beispiel 5, jedoch wurden 20 mg (0,045 mmol) Bisindenyldimethylsilylzir-kondichlorid eingesetzt. Die Polymerisationstemperatur betrug 50 °C.

Es wurden 1,82 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 40,4 kg PP/mmol Zr \bullet h. VZ = 58 cm³/g, M_w = 53000, M_w/M_n = 2,0, SD = 320 g/dm³. Il = 98 %, 2,1 ppm Cl- und 3 ppm Zr im Polymeren.

40

35

Beispiel 7

Es wurde analog zu Beispiel 5 verfahren, jedoch wurden 20 mg (0,045 mmol) Bisindenyldimethylsilylzirkondichlorid eingesetzt und die Polymerisationstemperatur betrug 35°C.

Es wurden 0,95 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 21,1 kg PP/mmol Zreh. VZ = 74 cm³/g, M_w = 72000, M_w/M_n = 2,2, SD = 160 g/dm³, II = 98,3 %, 4,4 ppm Cl und 5 ppm Zr im Polymeren.

Beispiel 8

Es wurde analog zu Beispiel 5 verfahren, jedoch wurden 40 mg (0,09 mmol) Bisindenyldimethylsilyízir-kondichlorid eingesetzt und die Polymerisationstemperatur betrug 20°C.

1,05 kg Polypropylen wurden erhalten. Die Aktivität des Metallocens betrug 11,7 kg PP/mmol Zreh.

VZ = 90 cm³/g, M_w = 92000, M_w/M_n = 2,0, SD = 150 g/dm³, II = 98,5 %, 5,8 ppm Cl und 7 ppm Zr im Polymeren.

Vergleichsbeispiel D

Es wurde analog zu Vergleichsbeispiel C verfahren, jedoch wurden 40 mg (0,09 mmol) Bisindenyldimethylsilylzirkondichlorid eingesetzt und die Polymerisationstemperatur betrug 20 °C.

Es wurden 0,16 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 1,78 kg PP/mmol Zreh. VZ = 91 cm³/g, M_w = 91500, M_wM_n = 2,0, SD = 85 g/dm³, II = 98 %. 100 % des Polymeren wiesen eine Korngröße von <50 µm auf.

o Beispiel 9

Es wurde analog zu Beispiel 5 verfahren, jedoch wurden 100 mg (0,223 mmol) Bisindenyldimethylsilylzirkondichlorid eingesetzt. Die Polymensationstemperatur betrug 0°C.

Es wurden 1,47 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 6,6 kg PP/mmol Zr•h.

VZ = 114 cm³/g, M_w = 115000, M_w/M_n = 1,9, SD = 140 g 'dm³, II = 99,3 %, 12 ppm Cl und 11 ppm Zr im Polymeren.

Beispiel 10

20

30

Verfahren wurde analog zu Beispiel 5, jedoch wurden 25 mg (0,056 mmol) Bisindenyldimethylsilylzir-kondichlorid eingesetzt, die Polymerisationstemperatur betrug 0 °C und die Polymerisationszeit 5 h.

Erhalten wurden 1,62 kg Polypropylen. Die Aktivität des Metallocens betrug 5,8 kg PP/mmol Zreh. VZ = 110 cm³/g, M_w = 112000, M_w/M_n = 2,0, SD = 145 g/dm³, II = 99,5 %, 2,6 ppm Cl und 4 ppm Zr im Polymeren.

Beispiel 11

7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid wurden in 50 cm³ toluolischer Methylaluminoxanlösung (40 mmol Al, mittlerer Oligomerisierungsgrad n = 20) gelöst und unter Lichtausschluß 100 h stehengelassen (Katalysatorkomponente (a)). Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 100 ml toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al) zugegeben und bei 30°C 15 Minuten gerührt. Die orangerote Lösung der Katalysatorkomponente (a) wurde dann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70°C gebracht und dann durch entsprechende Kühlung 1 h bei dieser Temperatur gehalten. 2,79 kg Polypropylen wurden erhalten. Die Aktivität des Metallocens betrug 164,1 kg PP/mmol Zr•h.

VZ = 50 cm³/g, $M_w = 42000$, $M_w/M_n = 2.0$, SD = 520 g/dm³, II = 97.5 %, Cl- und Zr-Gehalte im Polymeren lagen unter 0.5 ppm.

Vergleichsbeispiel E

7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid wurden in 50 cm³ über Na/K-Legierung getrocknetem, destillierten und mit Argon gesättigtem Toluol gelöst und 100 h bei Tageslicht stehengelassen. Dann wurden 50 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben. Die Mischung ließ man 15 Min. zur Voraktivierung stehen (Katalysatorkomponente (a)). Parallel dazu wurde ein trockener 16-dm³-Kessel mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 100 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und der Ansatz bei 30°C 15 Minuten gerührt. Daraufhin wurde die Lösung der Katalysatorkomponente (a) in den Kessel gegeben. Der Kesselinhalt wurde auf 70°C gebracht und 1 h bei dieser Temperatur gehalten.

Es wurden 0,13 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 7,6 kg PP/mmol Zr•h.

55 VZ = 45 cm³/g, M_w = 34600, M_w/M_n = 2,0, SD = 120 g/dm³, II = 95,1 %.

100 % des Polymeren wiesen eine Korngröße von <50 μm auf.

Beispiel 12

10

Es wurde analog zu Beispiel 11 verfahren, die toluolische Methylaluminoxan/Metallocenlösung wurde jedoch 100 h dem Tageslicht ausgesetzt.

Erhalten wurden 2,85 kg Polypropylen. Die Aktivität des Metallocens betrug 167,6 kg PP/mmol Zreh. VZ = 48 cm³/g, M_w = 39000, M_w/M_n = 2,1, SD = 525 g/dm³, II = 97,4 %.

Vergleichsbeispiel F

7,5 mg (0,017 mmol) Bisindenyldimethylsilylzirkondichlorid wurden in 50 cm³ über Na/K-Legierung getrocknetem, destillierten und mit Argon gesättigten Toluol gelöst und 1 h bei Tageslicht stehengelassen. Dann wurden 50 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben. Die Mischung ließ man 15 Min. zur Voraktivierung stehen. Parallel dazu wurde ein trockener 16-dm³-Kessel mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 100 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und der Ansatz bei 30 °C 15 Minuten gerührt. Die Lösung der Katalysatorkomponente (a) wurde sodann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70 °C gebracht und dann 1 h bei dieser Temperatur gehalten.

Es wurden 0,41 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 24,1 kg PP/mmol Zreh. VZ = 41 cm³/g, M_w = 31000, M_w/M_n = 2,0, SD = 210 g/dm³, II = 94,5 %. 100 % des Polymeren wiesen eine Korngröße von <100 μm auf.

25 Vergleichsbeispiel G

Es wurde wie in Vergleichsbeispiel F verfahren, die toluolische Lösung des Metallocens wurde jedoch vor Zugabe des Methylaluminoxans 100 h bei Tageslicht stehengelassen.

Aus der Polymerisation wurde dein Polypropylen erhalten, das Katalysatorsystem war somit völlig inaktiv!

Beispiel 13

30

Ein trockener 16-dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt. Dann wurden 100 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und das Gemisch bei 30 °C 15 Minuten gerührt. Parallel dazu wurden 6 mg (0,014 mmol) Ethylenbisindenylzirkondichlorid in 50 cm³ toluolischer Methylaluminoxanlösung (40 mmol Al) gelöst und durch 15-minütiges Stehenlassen voraktiviert. Die gelbe Lösung wurde sodann in den Kessel gegeben. Das Polymerisationssystem wurde auf eine Temperatur von 70 °C gebracht und durch entsprechende Kühlung 1 h bei dieser Temperatur gehalten.

Erhalten wurden 3,05 kg Polypropylen. Die Aktivität des Metallocens betrug 217,9 kg PP/mmol Zr∙h. VZ = 32 cm³/g, M_w = 20500, M_w/M_n = 2,0, SD = 540 g/dm³, II = 96,4 %.

50

45

EP 0 302 424 A1

Korngrößenverteilung im Polymer:

Siebboden	Anteil	Summe	
[µm]	in %	in %	
<100	2,5	2,5	
100-200	3,5	6,0	
200-300	7,1	13,1	
300-400	16,1	29,2	
400-500	27,3	56,5	
500-630	34,0	90,5	
630-800	8,8	99,3	
>800	0,7	100,0	

d₁₆

Beispiel 14

25

35

Es wurde analog zu Beispiel 13 verfahren, jedoch wurden 10 mg (0,024 mmol) Ethylenbisindenylzirkondichlorid eingesetzt. Die Polymerisationstemperatur betrug 50°C.

Erhalten wurden 2,83 kg Polypropylen. Die Aktivität des Metallocens betrug 117,9 kg PP/mmol Zreh. $VZ = 45 \text{ cm}^3/\text{g}$, $M_w = 37400$, $M_w/M_n = 1.9$, $SD = 410 \text{ g/dm}^3$, II = 97.0 %, CI und Zr-Gehalte im Polymeren lagen unter 1 ppm.

Korngrößenverteilung

	Siebboden	Anteil	Summe	
	[µm]	in %	in %	
40	<100	3,7	3,7	
	100-200	21,4	25,1	
	200-300	54,3	79,4	
45	300-400	18,4	97,8	
	>400	2,2	100	
		d		

 $d_{50} = 250 \ \mu m, \ s = ln \frac{d_{50}}{d_{16}} = 0.45.$

Beispiel 26

Es wurde analog zu Beispiel 13 verfahren, jedoch wurden 15 mg (0,036 mmol) Ethylenbisindenylzirkondichlorid eingesetzt und die Polymerisationstemperatur betrug 35°C.

Erhalten wurden 1,81 kg Polypropylen. Die Aktivität des Metallocens betrug 50,3 kg PP/mmol Zr∙h. VZ = 54 cm³/g, M_w = 46500, M_w/M_n = 2,2, SD = 330 g/dm³, II = 97,0 %, 1,8 ppm Cl und 2 ppm Zr im Polymeren.

o Beispiel 16

Es wurde analog zu Beispiel 13 verfahren, jedoch wurden 20 mg (0,045 mmol) Ethylenbisindenylzirkondichlorid eingesetzt. Die Polymerisationstemperatur betrug 20°C.

Es wurden 1,05 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 23,3 kg PP/mmol Zreh.

15 VZ = 66 cm³/g, M_w = 62400, M_w/M_n = 2,0, SD = 260 g/dm³, II = 97,0 %, 3,6 ppm Cl und 4 ppm Zr im Polymeren.

Beispiel 17

20

Verfahren wurde analog zu Beispiel 13, jedoch wurden 40 mg (0,096 mmol) Ethylenbisindenylzirkondichlorid eingesetzt. Die Polymerisationstemperatur betrug 0°C.

Erhalten wurden 1,14 kg Polypropylen. Die Aktivität des Metallocens betrug 11,9 kg PP/mmol Zreh. VZ = 76 cm³/g, M_w = 74000, M_w/M_n = 2,1, SD = 200 g/dm³, II = 98,1 %, 6,3 ppm Cl und 7 ppm Zr im Polymeren.

Beispiel 18

Es wurde analog zu Beispiel 13 verfahren, jedoch wurden 15 mg (0,036 mmol) Ethylenbisindenylzirkondichlorid eingesetzt und die Polymerisationstemperatur betrug 0°C und die Polymerisation dauerte 5 h.

Es wurden 1,96 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 10,9 kg PP/mmol Zreh. $VZ=81~cm^3/g$, $M_w=80200$, $M_w/M_n=2,0$, SD=210 g/dm 3 II=97,6 %, 1,5 ppm CI und 2 ppm Zr im Polymeren.

35

Beispiel 19

Ein trockener 16 dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen befüllt.

Dann wurden 100 cm³ toluolische Methylaluminoxanlösung (entsprechend 80 mmol Al, mittlerer Oligomerisierungsgrad n = 20) zugegeben und das Gemisch bei 30° C 15 Minuten gerührt. Parallel dazu wurden 331 mg (1,0 mmol) Tetramethylethylenbiscyclopentadienyltitandichlorid in 50 cm³ toluolischer Methylaluminoxanlösung (40 mmol) gelöst und durch 15 minütiges Stehenlassen voraktiviert. Die Lösung wurde sodann in den Kessel gegeben.

Das Polymerisationssystem wurde durch entsprechende Kühlung 10 h bei 4°C gehlaten. Erhalten wurden 0,17 kg Polypropylen. Die Aktivität des Metallocens betrug 17 kg PP/mol T x h.

Mw = 119500, Mw/Mn = 2,4, II = 71 %,

Länge der isotaktischen Sequenzen niso = 4,6.

50

Beispiel 20

Es wurde analog zu Beispiel 19 verfahren, jedoch wurden 160 mg (0,281 mmol) Bis-(-)-neomenthylcyclopentadienylzirkondichlorid eingesetzt, die Polymerisationstemperatur betrug 6 °C und die Polymerisationszeit betrug 8 h. Erhalten wurden 1,50 kg Polypropylen. Die Aktivität des Metallocens betrug 0,67 kg PP/mmol Zr x h.

```
M_w = 25800, M_w/M_n = 2.7, II = 71 \%,
Länge der isotaktischen Sequenzen n_{iso} = 3.5.
```

Beispiel 21

Es wurde analog zu Beispiel 19 verfahren, jedoch wurden 215 mg (0,379 mmol) Bis-(+)-neomenthylcyclopentadienylzirkondichlorid eingesetzt, die Polymerisationstemperatur betrug 4 °C und die Polymerisationszeit betrug 8 h. Erhalten wruden 1,67 kg Polypropylen. Die Aktivität des Metallocens betrug 0,55 kg PP/mmol Zr x h.

 M_w = 47800, M_w/M_n = 2.3, II = 74 %, Länge der isotaktischen Sequenzen $n_{\rm iso}$ = 4.2.

Belpsiel 22

10

20

30

45

Es wurde analog zu Beispiel 19 verfahren, jedoch wurden 200 mg (0.352 mmol) Bisneoisomenthylcyclopentadienylzirkondichlorid eingesetzt, die Polymerisationstemperatur betrug 4 °C und die Polymerisationszeit betrug 6 h. Erhalten wurden 1,45 kg Polypropylen. die Aktivität des Metalloces betrug 0,69 kg PP/mmol Zr x h.

 M_w = 24400, M_w/M_n = 2,8, II = 70 %, Länge der isotaktischen Sequenzen n_{iso} = 3,8.

Vergleichsbeispiel H

Ein trockener 16 dm³-Kessel wurde mit Stickstoff gespült und mit 10 dm³ flüssigem Propylen sowie mit 150 ml toluolischer Methylaluminoxanlösung (entsprechend 120 mmol Al, mittlerer Oligomerisierungsgrad n = 20) befüllt. Dazu wurden 200 mg (0,352 mmol) Bisneoisomenthylcyclopentadienylzirkondichlorid gelöst in 50 cm³ Toluol gegeben. Das Polymerisationssystem wurde 6 h bei 4°C gehalten. Es wurden 0,12 kg Polypropylen erhalten. Die Aktivität des Metallocens betrug 0,06 kg PP/mmol Zr x h.

 $M_w = 14400$, $M_w/M_n = 2.7$, II = 71 %, Länge der isotaktischen Sequenzen $n_{iso} = 3.5$.

Ansprüche

Verfahren zur Herstellung eines 1-Olefinpolymers durch Polymerisation eines 1-Olefins der Formel R CH = CH₂, worin R eine Alkylgruppe mit 1 bis 28 C-Atomen ist, oder Copolymerisation dieser Olefine mit Ethylen bei einer Temperatur von -60 bis 200°C, bei einem Druck von 0,5 bis 60 bar, in Lösung, in Suspension oder in der Gasphase, in Gegenwart eines Katalysators, welcher aus einem Metallocen als Übergangsmetallverbindung und einem Aluminoxan als Aktivator besteht, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart eines Katalysators durchgeführt wird, dessen Übergangsmetallkomponente vor der Polymerisation mit

einem Aluminoxan der Formel IV

für den linearen Typ und/oder der Formel V

$$-\begin{bmatrix} R^{17} \\ A_{1} - O \end{bmatrix} - V$$
 (V)

EP 0 302 424 A1

für den cyclischen Typ ist, wobei in den Formeln IV und V R¹⁷ eine C₁-C₅-Alkylgruppe bedeutet und p eine ganze Zahl von 2 bis 50 ist, bei einer Temperatur von -78 bis 100 °C 5 Minuten bis 60 Stunden voraktiviert wurde, und wobei der Aktivator ebenfalls ein Aluminoxan der Formeln IV oder V ist.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Herstellung eines hochisotaktischen 1-Olefinpolymers ein stereorigides chirales Metallocen verwendet wird.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für die Herstellung eines Stereoblockpolymers ein Metallocen verwendet wird, welches in der Ligandsphäre mindestens einen chiralen Rest enthält.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 88 11 2409

	EINSCHLÄGIG	E DOKUMEN	TE			
Kategorie	Kennzeichnung des Dokume der maßgeblic		t erforderlich,	Betrifft Anspruch	KLASSIFIKA ANMELDUN	MON DER G (Int. Cl.4)
A	EP-A-0 206 794 (EX * Ansprüche 1-11; S *	XON) eite 17, Beis	piel 1	1	C 08 F C 08 F	
A	EP-A-0 226 463 (EX * Ansprüche *	XON)		1	-	
- A	EP-A-0 127 530 (AT	OCHEM)		1		
A	FR-A-2 539 133 (CO RAFFINAGE) * Ansprüche *	MPAGNIE FRANC	AISE DE	1		
		¥-				
					RECHERC SACHGEBII	HIERTE ETE (Int. CL4)
			:		C 08 F	
			,			
Der vo	ortiegende Recherchenbericht wurd	de für alle Patentansp	rüche erstellt			
'	Recherchenort		m der Recherche		Profer	
Di	EN HAAG	21-09-		DE	ROECK R.G	•
KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verhindung mit einer anderen Veröffentlichung derselben Kategorie		tet e mit einer	D : in der Anmeldun L : aus andern Grün	kument, das jed Idedatum veröff ig angeführtes i iden angeführte	loch erst am oder entlicht worden ist Dokument s Dokument	
O: nic P: Zw	hnologischer Hintergrund httschriftliche Offenbarung ischenliteratur		& : Mitglied der gle Dokument	ichen Patentfar	nuie, Obereinstimn	entes

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verhindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- T: der Erfindung zregrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmededatum verüffentlicht worden ist D: in der Anmeddung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument