Adatbányászat: Osztályozás További módszerek

5. fejezet

Tan, Steinbach, Kumar
Bevezetés az adatbányászatba
előadás-fóliák
fordította
Ispány Márton

Osztályozási szabályok

- "Ha…akkor…" szabályok összességével osztályozzuk a rekordokat
- Szabály: (Feltétel) → y
 - ahol
 - Feltétel attributumok konjunkciója
 - ♦ y osztály címke
 - Baloldal: a szabály feltétele, előzménye
 - Jobboldal: a szabály következménye
 - Példák oszályozási szabályokra:
 - ◆ (Vértípus=Meleg) ∧ (Tojásrakás=Igen) → Madarak
 - ◆ (Adózott jövedelem < 50K) ∧ (Visszatérítés=Igen) →
 Adóelkerülés=Nem

Példa osztályozási szabályra

N a m e	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	y e s	n o	n o	m am m als
python	c o ld	n o	n o	n o	re p tile s
salm on	c o ld	n o	n o	y e s	fishes
whale	warm	y e s	n o	y e s	m a m m a ls
frog	c o ld	n o	n o	som etim es	amphibians
k o m o d o	c o ld	n o	n o	n o	re p tile s
bat	warm	y e s	y e s	n o	m a m m a ls
pigeon	warm	n o	y e s	n o	birds
cat	warm	y e s	n o	n o	m a m m a ls
leopard shark	c o ld	y e s	n o	y e s	fishes
turtle	c o ld	n o	n o	som etim es	re p tile s
penguin	warm	n o	n o	som etim es	birds
porcupine	warm	y e s	n o	n o	m a m m a ls
e e l	c o ld	n o	n o	y e s	fishes
salam ander	c o ld	n o	n o	som etim es	amphibians
gila monster	c o ld	n o	n o	n o	re p tile s
platypus	warm	n o	n o	n o	m a m m a ls
o w I	warm	n o	y e s	n o	birds
dolphin	warm	y e s	n o	y e s	m am m als
e a g le	warm	n o	y e s	n o	birds

R1: (Élveszülő = nem) ∧ (Tud repülni = igen) → Madár

R2: (Élveszülő = nem) ∧ (Vízben él = igen) → Hal

R3: (Élveszülő = igen) ∧ (Vér = meleg) → Emlős

R4: (Élveszülő = nem) ∧ (Tud repülni = nem) → Hüllő

R5: (Vízben él = néha) → Kétéltű

Osztályozási szabályok alkalmazása

 Az r szabály lefedi az x esetet ha az eset attributumai kielégítik a szabály feltételeit.

R1: (Élveszülő = nem) ∧ (Tud repülni = igen) → Madár

R2: (Élveszülő = nem) ∧ (Vízben él = igen) → Hal

R3: (Élveszülő = igen) ∧ (Vér = meleg) → Emlős

R4: (Élveszülő = nem) ∧ (Tud repülni = nem) → Hüllő

R5: (Vízben él = néha) → Kétéltű

N a m e	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	n o	y e s	n o	?
grizzly bear	warm	y e s	n o	n o	?

Az R1 szabály lefedi a sólyom => madár szabályt

Az R3 szabály lefedi a grizzly => emlős szabályt

Lefedettség és pontosság

- Egy szabály lefedettsége:
 - Azon rekordok aránya, amelyek kielégítik a szabály feltételét.
- Egy szabály pontossága:
 - Azon rekordok aránya, amelyek egyaránt kielégítik a szabály feltételét és következményét. (Álla

Tid	Vissza- térités	Családi állapot	Jöve- delem	Osztály
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Ygen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

(Állapot=Nőtlen) → Nem

Lefedettség = 40%, Pontosság = 50%

Hogy működnek az osztályozási szabályok?

R1: (Élveszülő = nem) ∧ (Tud repülni = igen) → Madár

R2: (Élveszülő = nem) ∧ (Vízben él = igen) → Hal

R3: (Élveszülő = igen) ∧ (Vér = meleg) → Emlős

R4: (Élveszülő = nem) ∧ (Tud repülni = nem) → Hüllő

R5: (Vízben él = néha) → Kétéltű

N a m e	Blood Type	Give Birth	Can Fly	Live in Water	Class
le m u r	warm	y e s	n o	n o	?
turtle	cold	n o	n o	som etim es	?
dogfish shark	cold	y e s	n o	y e s	?

A lemur kiváltja az R3 szabályt, így emlősnek osztályozzuk.

A teknős egyaránt kiváltja az R4 és R5 szabályokat.

A kutyahal cápa egyik szabályt sem váltja ki.

Osztályozási szabályok jellemzése

- Teljesen kizáró szabályok
 - Egy osztályozó teljesen kizáró szabályokból áll, ha a szabályok függetlenek egymástól (a feltételek metszete üres).
 - Minden rekordot legfeljebb egy szabály fed le.
- Kimerítő szabályok
 - Egy osztályozó kimerítő lefedés, ha az attributum értékek minden lehetséges kombinációját tartalmazza a feltételekben.
 - Minden rekordot lefed legalább egy szabály.

Döntési fáktól a szabályokig

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

A szabályok teljesen kizáróak és kimerítőek.

A szabály halmaz pontosan annyi információt tartalmaz mint a a fa.

Szabályok egyszerűsítése

Tid	Vissza- térítés	Családi állapot	Jöve- delem	Csalás
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Igen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

Kezdeti szabály: (Visszatérítés=Nem) ∧ (Állapot=Házas) → Nem

Egyszerűsített szabály: (Állapot=Házas) → Nem

Az egyszerűsítés hatása

- A szabályok már nem lesznek teljesen kizáróak.
 - Egy rekord egynél több szabályt is kiválthat.
 - Megoldás?
 - Szabályok rendezése
 - Rendezetlen szabályok használjunk szavazási sémákat
- A szabályok már nem lesznek kimerítőek.
 - Egy rekord egyetlen szabályt sem vált ki.
 - Megoldás?
 - Használjunk egy alapértelmezett osztályt.

Rendezett szabály halmazok

- A szabályokat prioritásuk szerint sorba rendezzük.
 - Egy rendezett szabályhalmazt döntési listának nevezünk.
- Egy teszt rekordot inputként kap az osztályozó.
 - A legelső osztályhoz rendeljük, amelyet kivált.
 - Ha egyetlen szabályt sem vált ki, akkor az alapértelmezett osztályba kerül.

```
R1: (Élveszülő = nem) \wedge (Tud repülni = igen) \rightarrow Madár
```

R3: (Élveszülő = igen)
$$\land$$
 (Vér = meleg) \rightarrow Emlős

R5: (Vízben él = sometimes) → Kétéltű

N a m e	Blood Type	Give Birth	Can Fly	Live in Water	Class
turtle	cold	n o	n o	som etim es	?

Szabály rendező sémák

- Szabály alapú rendezés
 - Az egyedi szabályokat minőségük alapján rendezzük.
- Osztály alapú rendezés
 - Az egy osztályhoz tartozó szabályok együtt fordulnak elő.

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

Osztályozási szabályok építése

- Közvetlen módszerek:
 - Szabály kinyerés közvetlenül az adatokból.
 - Példák: RIPPER, CN2, Holte 1R módszere.

- Közvetett módszerek:
 - Szabály kinyerés más osztályozási módszerekből (pl. döntési fák, neurális hálók stb.).
 - Példa: C4.5 szabályok.

Közvetlen módszer: Szekvenciális lefedés

- 1. Induljunk ki az üres szabályból.
- Hozzunk létre egy szabályt a Learn-One-Rule függvény segítségével.
- Távolítsuk el azokat a tanító rekordokat, amelyeket lefed a szabály.
- Ismételjük a (2) és (3) lépést ameddig a megállási kritérium nem teljesül.

Példa szekvenciális lefedésre

(i) Original Data

(ii) Step 1

Példa szekvenciális lefedésre

A szekvenciális lefedés szempontjai

Szabály építés

Eset kizárás

- Szabály kiértékelés
- Leállási kritérium

Szabály tisztítás

Szabály építés

Két általános stratégia

Példák szabály építésre

CN2 algoritmus:

- Induljunk ki az üres szabályból: {}.
- Bővítsük úgy, hogy közben az entrópiát minimalizáljuk: {A}, {A,B}, ...
- Határozzuk meg a szabály következményét a szabály által lefedett esetek többségi osztályát véve.

RIPPER algoritmus:

- Induljunk ki az üres szabályból : {} => osztály.
- Bővítsük úgy, hogy a FOIL-féle információ nyereséget maximalizáljuk:
 - ◆ R0: {} => osztály (kezdeti szabály)
 - ◆ R1: {A} => osztály (szabály a bővítés után)
 - Nyereség(R0, R1) = t [log(p1/(p1+n1)) log(p0/(p0 + n0))],
 - ahol t: R0 és R1 által lefedett pozitív esetek száma,
 - p0: R0 által lefedett pozitív esetek száma,
 - n0: R0 által lefedett negatív esetek száma,
 - p1: R1 által lefedett pozitív esetek száma,
 - n1: R1 által lefedett negatív esetek száma.

Eset kizárás

- Miért van szükség eset kizárásra?
 - Különben a következő szabály megegyezik az előzővel.
- Miért töröljünk pozitív eseteket?
 - Biztosítsuk a következő szabály különbözőségét.
- Miért töröljünk negatív eseteket?
 - Megelőzzük a szabály pontosságának alulbecslését.
 - Hasonlítsuk össze az R2 és R3 szabályokat az ábrán.

Szabály kiértékelés

• Mérőszámok:

- Pontosság =
$$\frac{n_c}{n}$$

- Laplace =
$$\frac{n_c + 1}{n + k}$$

- M-becslés =
$$\frac{n_c + kp}{n + k}$$

n : a szabály által lefedett esetek száma

n_c: a szabály által lefedett pozitív esetek száma

k: osztályok száma

p : a pozitív eset apriori valószínűsége

Leállási feltétel és szabály tisztítás

- Leállási feltétel
 - Számoljuk ki a nyereséget.
 - Ha a nyereség nem szignifikáns, akkor dobjuk el az új szabályt.
- Szabály tisztítás
 - Hasonló döntési fák utó-tisztításához.
 - Hiba csökkentés tisztítással:
 - Hagyjunk el a szabályból egy kifejezést.
 - Hasonlítsuk össze a tisztítás előtti és utáni hibát az ellenőrző adatállományon.
 - Ha a hiba javul, akkor tisztítsunk a kifejezés elhagyásával.

A közvetlen módszer vázlata

• Építsünk egy egyszerű szabályt.

Távolítsunk el eseteket a szabály alapján.

Egyszerűsítsük a szabályt (ha szükséges).

 Adjuk hozzá a szabályt az aktuális szabály halmazhoz.

Ismételjük a fenti lépéseket.

23

- Bináris feladat esetén válasszuk pozitív osztálynak az egyik és negatív osztálynak a másik osztályt.
 - Tanítsunk szabályokat a pozitív osztályra.
 - Legyen a negatív osztály az alapértelmezett osztály.
- Több osztályos feladat esetén:
 - Rendezzük az osztályokat növekvő osztály–gyakoriság szerint (azoknak az eseteknek az aránya, melyek egy osztályhoz tartoznak).
 - Először tanítsunk egy szabály halmazt a legkisebb osztályra, kezeljük a maradékot negatív osztályként.
 - Ismételjük meg a következő legkisebb osztállyal mint pozitív osztály.

Szabály építés:

- Induljunk ki az üres szabályból.
- Bővítsük addig míg a FOIL információ nyereség javul.
- Álljunk meg amikor a szabály tovább már nem fedi le a negatív eseteket.
- Közvetlenül tisztítsuk a szabályt járulékos hiba tisztítással.
- A tisztítás mérőszáma: v = (p-n)/(p+n)
 - p: a szabály által lefedett pozitív esetek száma az ellenőrző adatállományban,
 - n: a szabály által lefedett negatív esetek száma az ellenőrző adatállományban.
- Tisztítási módszer: töröljük a feltételek olyan véges sorozatát, amely maximalizálja v-t.

- Szabály halmaz építése:
 - Használjunk szekvenciálisan lefedő algoritmust.
 - Keressük meg azt a legjobb szabályt, amely lefedi a pozitív esetek aktuális halmazát.
 - Elimináljuk a szabály által lefedett pozitív és negatív eseteket.
 - Mindig mikor egy szabállyal bővítjük a szabály halmazt számoljuk ki az új leíró hosszt.
 - Álljunk le az új szabály hozzáadásával, ha annak leíró hossza d bittel nagyobb mint az eddig kapott legkisebb leíró hossz.

- Optimalizáljuk a szabályhalmazt:
 - Az R szabályhalmaz minden r szabályára
 - Tekintsünk 2 alternatív szabályt:
 - Helyettesítő szabály (r*): építsünk új szabályt elölről.
 - Módosított szabály (r'): bővítsünk az r kiterjesztésével.
 - Hasonlítsuk össze az r szabályhalmazt az r* és r' szabályhalmazokkal.
 - Válasszuk azt a a szabályhalmazt, amely minimális lesz az MDL elv alapján.
 - Ismételjük a szabály generálást és optimalizálást a fennmaradó pozitív esetekre.

Közvetett módszerek

Rule Set

r1: (P=No,Q=No) ==> -

r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -

r5: (P=Yes,R=Yes,Q=Yes) ==> +

Közvetett módszerek: C4.5 szabályok

- Nyerjünk ki szabályokat egy tisztítatlan (teljes) döntési fából.
- Minden r: A → y szabályra
 - Tekintsünk egy r': A' → y alternatív szabályt, ahol A'-t úgy kapjuk, hogy A-ból törlünk egy kifejezést.
 - Hasonlítsuk össze az r és az összes r' pesszimista hiba rátáját.
 - Tisztítsunk amennyiben egy r'-nek kisebb a pesszimista hiba rátája.
 - Ismételjük amíg már nem tudjuk javítani az általánosítási hibát.

Közvetett módszer: C4.5 szabályok

- A szabályok rendezése helyett rendezzük szabályok részhalmazait (osztály rendezés).
 - Minden részhalmaz szabályoknak egy olyan összessége, melynek következménye ugyanaz (osztály).
 - Számoljuk ki minden részhalmaz leíró hosszát.
 - ◆ Leíró hossz = L(error) + g L(model),
 - ◆ g egy olyan paraméter, amely figyelembe veszi a szabályhalmazban lévő redundáns attributumokat (alapérték = 0.5).

Példa

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

Összevetés: C4.5, C4.5 szabályok, RIPPER

Összevetés: C4.5, C4.5 szabályok, RIPPER

C4.5 és C4.5 szabályok:

			Jósolt os	ztály		
		Kétéltű	Hal	Hüllő	Madár	Emlős
Valódi	Kétéltű	2	0	0	0	0
osztály	Hal	0	2	0	0	1
	Hüllő	1	0	3	0	0
	Madár	1	0	0	3	0
	Emlős	0	0	1	0	6

RIPPER:

			Jósolt os	ztály		
		Kétéltű	Hal	Hüllő	Madár	Emlős
Valódi	Kétéltű	0	0	0	0	2
osztály	Hal	0	3	0	0	0
	Hüllő	0	0	3	0	1
	Madár	0	0	1	2	1
	Emlős	0	2	1	0	4

Osztályozási szabályok előnyei

- Legalább annyira kifejezőek mint a döntési fák.
- Könnyen interpretálhatóak.
- Könnyen generálhatóak.
- Gyorsan osztályozhatóak általuk az új esetek.
- Hatékonyságuk összevethető a döntési fákéval.

Eset alapú osztályozók

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Letároljuk a tanító rekordokat
- A tanító rekordokat használjuk az új esetek osztályainak előrejelzésére

Unseen Case

Atr1	 AtrN

Eset alapú osztályozók

Példák:

- Rote tanuló algoritmusa
 - ◆ A teljes tanító adatállományt memorizálja, és csak akkor hajtja végre az osztályozást, ha az új rekord attributum értékei pontosan illeszkednek egy tanító esetre.

- Legközelebbi szomszéd
 - ◆ Használjuk a k ,,legközelebbi" pontot (legközelebbi szomszédok) az osztályozás végrehajtására.

• Alapgondolat:

 Ha valami úgy totyog mint egy kacsa, úgy hápog mint egy kacsa, akkor az valószínűleg egy kacsa.

- Három dolog szükséges
 - Rekordok egy halmaza
 - A rekordok közötti távolság számolására szolgáló metrika
 - A k szám, a meghatározandó legközelebbi szomszédok száma
- Egy új rekord osztályozása:
 - Számoljuk ki a távolságot a többi tanító rekordtól.
 - Határozzuk meg a k legközelebbi szomszédot.
 - Hsználjuk a legközelebbi szomszédok osztálycimkéit az új rekord besorolására (pl. többségi szavazást véve).

A legközelebbi szomszéd definíciója

Az x rekord k legközelebbi szomszédja azok a rekordok, melyek távolsága x-től a k legkisebb távolság.

1 legközelebbi szomszéd

Voronoi diagram

- Számoljuk ki két pont távolságát:
 - Euklideszi távolság

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- A legközelebbi szomszédok alapján határozzuk meg az osztályt:
 - Vegyük a többségi osztályt a k szomszéd közül.
 - Súlyozzuk a szavazatokat a távolságnak megfelelően.
 - súly: $w = 1/d^2$

- A k érték megválasztása:
 - Ha k túl kicsi, akkor a módszer érzékeny a hibás rekordokra.

Ha k túl nagy, akkor a szomszédság más osztálybeli

pontokat is tartalmazhat.

- Skálázási szempontok
 - Az attributumokat átskálázhatjuk így előzve meg azt, hogy egy attributum dominálja a távolságot.
 - Példa:
 - Egy személy magassága 1.5m és 1.8m között van.
 - Egy személy súlya 90lb és 300lb között van.
 - Egy személy bevétele \$10K és \$1M között van.

- Problémák az euklideszi távolsággal:
 - Sok dimenziós adatok
 - dimenzió probléma
 - A természetes szemlélettel ellenkező eredményt is adhat.

vagy

100000000000

011111111111

d = 1.4142

 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$

d = 1.4142

Fordító: Ispány Márton

Megoldás: Normalizáljuk a vektorokat!

- A legközelebbi szomszéd osztályozók lusta tanuló algoritmusok.
 - Nem építenek explicit modelleket.
 - Mások mint a mohó tanító algoritmusok, ld. döntési fák és osztályozási szabályok.
 - Az új rekordok osztályozása viszonylag költséges.

Példa: PEBLS

- PEBLS: Párhuzamos példa alapú tanuló rendszer (Parallel Examplar-Based Learning System, Cost & Salzberg)
 - Egyaránt működik folytonos és kategórikus változókkal.
 - Kategórikus változóknál két érték távolságát a módosított értékek differenciája metrikával (MVDM) számoljuk.
 - Minden rekordhoz egy súlyt rendel.
 - A legközelebbi szomszédok száma: k = 1.

Példa: PEBLS

Tid	Vissza- térítés	Családi állapot	Jöve- delem	Csalás
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Igen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

Két kategórikus érték távolsága:

d(Nőtlen, Házas)

$$= |2/4 - 0/4| + |2/4 - 4/4| = 1$$

d(Nőtlen, Elvált)

$$= |2/4 - 1/2| + |2/4 - 1/2| = 0$$

d(Házas, Elvált)

$$= |0/4 - 1/2| + |4/4 - 1/2| = 1$$

d(Visszatérítés=Igen, Visszatérítés=Nem)

$$= |0/3 - 3/7| + |3/3 - 4/7| = 6/7$$

Osz-	Cs	Családi állapot		
tály	Nőtlen	Házas	Elvált	
Igen	2	0	1	
Nem	2	4	1	

Osz-	Visszatérítés	
tály	Igen	Nem
Igen	0	3
Nem	3	4

$$d(V_{1}, V_{2}) = \sum_{i} \left| \frac{n_{1i}}{n_{1}} - \frac{n_{2i}}{n_{2}} \right|$$

Példa: PEBLS

Tid	Vissza- térítés		Jöve- delem	Csalás
Х	Igen	Nőtlen	125K	Nem
Υ	Nem	Házas	100K	Nem

Az X és Y rekordok közötti távolság:

$$\Delta (X, Y) = w_X w_Y \sum_{i=1}^{a} d(X_i, Y_i)^2$$

ahol:
$$w_X = \frac{\text{Azon esetek száma, ahol } X - t \text{ használjuk}}{\text{Azon esetek száma, ahol } X \text{ helyesen prediktál}}$$

 $W_X \cong 1$ ha X az esetek többségében pontos előrejelzést ad

 $w_X > 1$ ha X nem ad megbízható előrejelzést

Bayes osztályozó

- Egy valószínűségszámítási módszer osztályozási problémák megoldására.
- Feltételes valószínűség:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes tétel:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Példa a Bayes tételre

Adottak:

- Az orvosok tudják, hogy az agyhártyagyulladás az esetek
 50%-ban nyakfájást okoz.
- Annak valószínűsége, hogy egy páciensnek agyhártyagyulladása van 1/50000.
- Annak valószínűsége, hogy egy páciensnek nyakfájása van 1/20.
- Ha egy páciensnek nyakfájása van, akkor mi annak a valószínűsége, hogy agyhártyagyulladásban szenved?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayes osztályozók

- Tekintsük valószínűségi változónak az összes attributumot és a cél (osztály) változót.
- Legyen adott egy rekord az (A₁, A₂,...,A_n) attributumértékekkel
 - A cél a C osztályozó változó előrejelzése.
 - Azt az értékét keressük C-nek, amely maximalizálja P(C| A₁, A₂,...,A_n)-t.
- Tudjuk-e közvetlenül becsülni P(C| A₁, A₂,...,A_n)-t az adatokból?

Bayes osztályozók

- Megközelítés:
 - Számoljuk ki a P(C | A₁, A₂, ..., A_n) poszteriori valószínűséget minden C értékre a Bayes tétellel.

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

- Válasszuk azt a C értéket, amely maximalizálja
 P(C | A₁, A₂, ..., A_n)-t.
- Ekvivalens annak a C értéknek megtalálásával, mely maximalizálja P(A₁, A₂, ..., A_n|C) P(C)-t.
- Hogyan becsüljük P(A₁, A₂, ..., A_n | C)-t?

Bayes osztályozók

- Tételezzünk fel függetlenséget az A_i attributumok között ha az osztály adott:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j)$
 - Az $P(A_i|C_j)$ valószínűséget becsülhetjük minden A_i és C_j esetén.
 - Egy új rekord a C_j osztályba kerül ha a P(C_j) Π P(A_i|
 C_i) maximális.

Hogyan becsüljünk valószínűséget?

Tid	Vissza- térítés	Családi állapot	Adóköteles jövedelem	Csalás
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Igen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

- Osztály: $P(C) = N_c/N$
 - PI. P(Nem) = 7/10P(Igen) = 3/10
- Diszkrét attributumokra:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c_k}$$

- ahol |A_{ik}| azon esetek száma, ahol az A_i attributumérték fordult elő és a C_k osztályba tartoznak.
- Példák:

P(Állapot=Házas|Nem) = 4/7 P(Visszatérítés=Igen|Igen)=0

Hogyan becsüljünk valószínűséget?

- Folytonos attributumokra:
 - Diszkretizáljunk résztartományokra osztva:
 - egy sorrendi attributum értéket rendelünk részenként,
 - megsérti a függetlenségi feltételezést.
 - Bináris vágás: (A < v) vagy (A > v)
 - válasszuk a két ág egyikét mint új attributumot.
 - Valószínűségi sűrűségbecslés:
 - Tegyük fel, hogy az attributum normális eloszlású.
 - Használjuk az adatokat az eloszlás paramétereinek becslésére (pl. átlag és szórás).
 - Ha ismert a valószínűségi eloszlás, akkor használhatjuk a P(A_i|c) feltételes valószínűség becslésére.

Hogyan becsüljünk valószínűséget?

Tid	Vissza- térítés	Családi állapot	Adóköteles jövedelem	Csalás
1	Igen	Nőtlen	125K	Nem
2	Nem	Házas	100K	Nem
3	Nem	Nőtlen	70K	Nem
4	Igen	Házas	120K	Nem
5	Nem	Elvált	95K	Igen
6	Nem	Házas	60K	Nem
7	Igen	Elvált	220K	Nem
8	Nem	Nőtlen	85K	Igen
9	Nem	Házas	75K	Nem
10	Nem	Nőtlen	90K	Igen

Normális eloszlás:

$$P(A_{i} | c_{j}) = \frac{1}{\sqrt{2 \pi \sigma_{ij}^{2}}} e^{-\frac{(A_{i} - \mu_{ij})}{2 \sigma_{ij}^{2}}}$$

- minden (A_i, c_i) párra
- (Jövedelem, Osztály=Nem):
 - Ha Osztály=Nem
 - minta átlag = 110
 - minta variancia = 2975

$$P(J\"{o}vedelem = 120 \mid Nem) = \frac{1}{\sqrt{2\pi (54.54)}} e^{-\frac{(120 - 110)^2}{2(2975)}} = 0.0072$$

Példa naív Bayes osztályozóra

Adott az alábbi teszt rekord:

X = (Visszatérí tés = Nem, Házas, Jövedelem = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

P(X|Osztály=Nem) = P(Vtér=Nem| Osztály=Nem)
 × P(Házas| Osztály=Nem)

× P(Jöv=120K| Osztály=Nem)

 $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(X|Osztály=Igen) = P(Vtér=Nem| Osztály=Igen)

× P(Házas| Osztály=Igen)

Fordító: Ispány Márton

× P(Jöv=120K| Osztály=Igen)

 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Mivel P(X|Nem)P(Nem) > P(X|Igen)P(Igen)

ezért P(Nem|X) > P(Igen|X)

=> Osztály = Nem

Bayes osztályozó

- Ha a feltételes valószínűségek egyike 0, akkor az egész kifejezés 0.
- Valószínűségi becslés:

Eredeti :
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace :
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: osztályok száma

p: prior valószínűség

m: paraméter

Példa naív Bayes osztályozóra

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributumok

M: emlősök

N: nem emlősök

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N) P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

=> emlős

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Összegzés: Naív Bayes

- Robusztus izolált hibás pontokra.
- Kezeli a hiányzó értékeket a valószínűségek becslésénél ezen esetek figyelmen kívül hagyásával.
- Robusztus az irreleváns attributumokra.
- A függetlenségi feltétel nem teljesül egyes attributumokra.
 - Használjunk más módszereket, Bayes hálók (Bayesian Belief Networks, BBN).

Mesterséges neurális hálók (ANN)

X ₁	X_2	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Az Y output 1 ha a három input közül legalább kettő 1.

Mesterséges neurális hálók (ANN)

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3 X_1 + 0.3 X_2 + 0.3 X_3 - 0.4 > 0)$$

ahol $I(z) = \begin{cases} 1 & \text{ha } z \text{ igaz} \\ 0 & \text{egyébként} \end{cases}$

Mesterséges neurális hálók (MNH)

- A modell egymással összekötött csúcsok és súlyozott élek együttese.
- Az output csúcs összegzi az hozzátartozó input értékeket az éleken lévő súlyok szerint.
- Vessük össze az output csúcsban kapott értéket egy t küszöb számmal.

Perceptron modell

$$Y = I\left(\sum_{i} w_{i} X_{i} - t\right) \quad \text{vagy}$$

$$Y = sign\left(\sum_{i} w_{i} X_{i} - t\right)$$

A MNH általános szerkezete

Algoritmus MNH tanítására

Inicializáljuk a (w₀, w₁, ..., w_k) súlyokat.

- Módosítsuk úgy a súlyokat, hogy az MNH outputja minél jobban egyezzen meg a tanító esetek osztály címkéivel.
 - Célfüggvény: $E = \sum_{i} [Y_{i} f(w_{i}, X_{i})]^{2}$
 - Határozzuk meg azon w_i súlyokat, amelyek minimalizálják a fenti célfüggvényt.
 - Pl. hiba visszacsatolás algoritmusa.

 Keressünk olyan hipersíkot (döntési határ), amely elválasztja az adatokat.

Egy lehetséges megoldás.

Egy másik lehetséges megoldás.

További lehetséges megoldások.

- Melyik a jobb? B1 vagy B2?
- Hogyan definiálhatjuk a jobb fogalmát?

Keressük azt a hipersíkot, mely maximalizálja a margót
 B1 jobb mint B2.

Támasz vektorgépek (SVM)

Maximalizálni akarjuk:

Margin
$$=\frac{2}{\|\vec{w}\|}$$

- Ez ekvivalens minimalizálni: $L(w) = \frac{\|w\|^2}{2}$

$$L(w) = \frac{\|\vec{w}\|^2}{2}$$

Fordító: Ispány Márton

– De eleget kell tenni a következő kényszereknek:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- Ez kényszerfeltétel melletti optimalizációs feladat.
 - Numerikus módszerek (pl. kvadratikus programozás).

73

Támasz vektorgépek (SVM)

Mi van ha a feladat nem lineárisan szeparálható?

Támasz vektorgépek (SVM)

- Mi van ha a feladat nem lineárisan szeparálható?
 - Vezessünk be lötyögő változókat
 - Minimalizálni kell: $L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$
 - Kényszerfeltételek:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nemlineáris támasz vektorgépek

• Mi van ha a döntési határ nem lineáris?

Nemlineáris támasz vektorgépek

 Transzformáljuk az adatokat egy magasabb dimenziójú térbe (kernel trükk).

Osztályozás regresszió útján

- Ahelyett hogy egy rekord osztályát jeleznénk előre próbáljuk meg előrejelezni az osztály valószínűségét amely már egy folytonos mennyiség
- Egy folytonos mennyiség előrejelzését regressziós feladatnak nevezzük
- Általános megközelítés: találjunk egy olyan folytonos függvényt, amely jól modellezi (illeszkedik) a folytonos pontfelhőre.

Példa: Lineáris regresszió

- Egy adott adatállomány, i.e., $\{(x_1, y_1), \dots, (x_n, y_n)\}$, esetén találjunk egy olyan lineáris függvényt, amely adott x_i vektor esetén az y_i értéket úgy jelzi előre mint $y_i' = w^T x_i$
 - Találjunk egy olyan w súlyvektort, amely minimalizálja a négyzetösszeg hibát:

$$\sum_{i} (y_i' - y_i)^2$$

 A probléma megoldására számos módszer ismert.

Osztályozás regresszió útján

Feltételezzük a lineáris szeparálhatóságot w · x > 0

Pozitív osztály esetén minél nagyobb $w \cdot x$, a pont annál távolabb van az osztályozási határtól és annál biztosabb a pozitív osztályba való tartozás

 Definiáljuk P(C₊|x)-t mint növekvő függvényét w · x-nek

Negatív osztály esetén minél kisebb $w \cdot x$, a pont annál távolabb van az osztályozási határtól és annál biztosabb a negatív osztályba való tartozás

 Definiáljuk P(C₋|x)-t mint csökkenő füddvényét w · x-nek

Logisztikus regresszió

A logisztikus függvény

$$f(t) = \frac{1}{1 + e^{-t}}$$

$$P(C_+|x) = \frac{1}{1 + e^{-w \cdot x}}$$

$$P(C_{-}|x) = \frac{e^{-w \cdot x}}{1 + e^{-w \cdot x}}$$

$$\log \frac{P(C_+|x)}{P(C_-|x)} = w \cdot x$$

Logisztikus Regresszió: Találjunk egy olyan w vektort amely maximalizálja a megfigyelt adatok valószínűségét.

Fordító: Ispány Márton

Lineáris regresszió a log-odds hánydoson

Logisztikus regresszió

- Előállítja az osztályhoz való tartozás valószínűségének becslését amely gyakran hasznos és egy pontosabb leírását adja a döntés megbízhatóságának.
- A súlyok hasznosak lehetnek a jellemzők fontosságának megértésében.
- Viszonylag nagy méretű adatállományokon is működik.
- Gyors az alkalmazásokon mivel az osztályok becslése csak a súlyvektortól függ.

Együttes módszerek

 Osztályozók egy halmazát hozzuk létre a tanító állományon.

 Egy új rekord osztályát úgy jelezzük előre, hogy a sok osztályozó által kapott előrejelzéseket összesítjük.

Általános ötlet

Miért működhet?

- Tegyük fel, hogy adott 25 egyszerű osztályozónk.
 - Minden osztályozó hibája ε = 0.35.
 - Tegyük fel, hogy az osztályozók függetlenek.
 - Annak valószínűsége, hogy az együttes osztályozó hibás döntést hoz:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Példák együttes módszerekre

- Hogyan hozhatjuk létre osztályozók együttesét?
 - Bagging (bootstrap aggregating)

Boosting (gyorsítás)

Bagging

Visszatevéses mintavétel

O riginal Data	1	2	3	4	5	6	7	8	9	1 0
Bagging (Round 1)	7	8	1 0	8	2	5	1 0	1 0	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	1 0	5	5	9	6	3	7

 Minden bootstrap mintán építsünk fel egy osztályozót.

 Minden egyes rekordot (1 – 1/n)ⁿ valószínűséggel választunk ki.

Boosting (gyorsítás)

- Egy olyan iteratív eljárás, amely a tanító rekordok eloszlását adaptívan változtatva a korábban tévesen osztályozott rekordokra fókuszál.
 - Kezdetben mind az összes N rekord egyenlő súlyt kap.
 - A bagging-gel szemben a súlyok változhatnak egy iterációs ciklus befejeztével.

Boosting (gyorsítás)

- A rosszul osztályozott rekordoknak nőni fog a súlya.
- A helyesen osztályozott rekordoknak csökkenni fog a súlya.

O riginal Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	1 0	4	5	4	6	3	4

- A 4. rekordot nehét osztályozni
- A súlya nő, ezért nagyobb eséllyel választjuk ki ismét a következő körökben.

Példa: AdaBoost

- Alap osztályozók: C₁, C₂, ..., C_T
- Hiba ráta:

$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta\left(C_{i}(x_{j}) \neq y_{j}\right)$$

Az osztályozó fontossága:

$$\alpha_{i} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{i}}{\varepsilon_{i}} \right)$$

Példa: AdaBoost

A súlyok frissítése:

$$w_{i}^{(j+1)} = \frac{w_{i}^{(j)}}{Z_{j}} \begin{cases} \exp^{-\alpha_{j}} & \text{ha } C_{j}(x_{i}) = y_{i}, \\ \exp^{\alpha_{j}} & \text{ha } C_{j}(x_{i}) \neq y_{i}, \end{cases}$$

$$\text{ahol } Z_{i} \text{ egy normalizál} \quad \text{\'o t\'enyez \"ot}$$

- Ha bármelyik közbenső körben a hiba 50% fölé megy, akkor a súlyok visszaállnak 1/n-re, és a mintavételi folyamat megismétlődik.
- Osztályozás:

$$C * (x) = \underset{y}{\operatorname{arg}} \max \sum_{j=1}^{T} \alpha_{j} \delta \left(C_{j}(x) = y\right)$$

Az AdaBoost szemléltetése

Az AdaBoost szemléltetése

