Introduction

Libraries Needed:

DATA

read csv and clean

DATA: application data

DATA: credit data

Combine two datasets

How we combine?

Observe - graphs

Compare numbers of ID

Combine and add our y

Remove duplicated rows & turn logistics to factors

START HERE!

Split Data

Correlation Matrix

KNN

Recipe

Logistic Regression Model

Decision Tree Model

SVM

Random Forest Model

Conclusion

FINAL PROJECT

Code **▼**

Zhimei_Chen

2022-12-11

Introduction

Background

Credit card is issued to the cardholder by the bank or credit card company. The cardholder does not need to pay cash for the consumption of the credit card. The payment will be made on the billing day. Unlike debit cards, general credit cards do not deduct money directly from the user's account. Therefore, people would like to choose to apply credit card. However, not every one got approved by the bank while applying credit card. Therefore, in this project, I am going to talk about what may affects the result of the application.

GOAL:

My goal is to predict whether the applicants can be approved with credit card under the proper background? And what conditions may be important?

Reading Suggestion

"START HERE" is the place where starting to split data and make models. Where if you understand the data already, or read the data before, it saves lots of time if you start reading there. <I explain how to connect two datasets from "Combine two datasets">

Libraries Needed:

DATA

Credit Card Approval Prediction

https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction?select=application_record.csv (https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction?select=application_record.csv) application_record.csv contains appliers personal information, which I use as features for predicting. credit_record.csv records users' behaviors of credit card.

read csv and clean

#	id code_gender	flag_own_ca	ar flag_own_1	realty cnt_childr	en amt_incom	e_total
#	<dbl> <chr></chr></dbl>	<chr></chr>	<chr></chr>	<db< td=""><td>1></td><td><db1></db1></td></db<>	1>	<db1></db1>
# 1	5008804 M	Y	Y		0	427500
# 2	5008805 M	Y	Y		0	427500
# 3	5008806 M	Y	Y		0	112500
# 4	5008808 F	N	Y		0	270000
# 5	5008809 F	N	Y		0	270000
# 6	5008810 F	N	Y		0	270000
#	name_income_type	name_educa	ation_type	name_fam	ily_status	
#	<chr></chr>	<chr></chr>		<chr></chr>		
# 1	Working	Higher edu	ıcation	Civil ma	rriage	
# 2	Working	Higher edu	ıcation	Civil ma	rriage	
# 3	Working	Secondary	/ secondary	special Married		
# 4	Commercial associate	e Secondary	/ secondary	special Single /	not married	
# 5	Commercial associate	e Secondary	/ secondary	special Single /	not married	
# 6	Commercial associate	e Secondary	/ secondary	special Single /	not married	
#	name_housing_type da	ays_birth da	ays_employed	<pre>flag_mobil flag_</pre>	work_phone	
#	<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	
# 1	Rented apartment	-12005	-4542	1	1	
# 2	Rented apartment	-12005	-4542	1	1	
# 3	House / apartment	-21474	-1134	1	0	
# 4	House / apartment	-19110	-3051	1	0	
# 5	House / apartment	-19110	-3051	1	0	
# 6	House / apartment	-19110	-3051	1	0	
#	flag_phone flag_ema	il occupatio	on_type cnt_t	fam_members		
#	<db1> <db1< td=""><td>l> <chr></chr></td><td></td><td><db1></db1></td><td></td><td></td></db1<></db1>	l> <chr></chr>		<db1></db1>		
# 1	0	0 <na></na>		2		
# 2	0	0 <na></na>		2		
# 3	0	O Security	staff	2		
# 4	1	1 Sales sta	aff	1		
# 5	1	1 Sales sta	aff	1		
# 6	1	1 Sales sta	aff	1		

DATA: application_data

Observations

Code

```
## Observation number in application: 438557
```

turn to characters and factors and see if there are NAs

```
##
        id
                       code gender flag own car flag own realty cnt children
##
   Length: 438557
                       F:294440
                                   N:275459
                                               N:134483
                                                                Min. : 0.0000
##
   Class :character
                      M:144117
                                   Y:163098
                                                Y:304074
                                                                1st Qu.: 0.0000
    Mode :character
##
                                                                Median: 0.0000
                                                                Mean : 0.4274
##
##
                                                                3rd Qu.: 1.0000
##
                                                                Max.
                                                                      :19.0000
##
##
   amt_income_total
                                 name_income_type
##
   Min.
          : 26100
                     Commercial associate:100757
   1st Qu.: 121500
                                         : 75493
##
                     Pensioner
   Median : 160780
                      State servant
                                          : 36186
##
    Mean : 187524
                      Student
##
                                               17
    3rd Qu.: 225000
##
                      Working
                                          :226104
          :6750000
    Max.
##
##
                       name_education_type
                                                     name_family_status
   Academic degree
                                                             : 36532
##
                                :
                                   312
                                          Civil marriage
   Higher education
                                 :117522
                                           Married
                                                               :299828
##
   Incomplete higher
                                           Separated
                                 : 14851
                                                               : 27251
   Lower secondary
                                 : 4051
                                          Single / not married: 55271
   Secondary / secondary special:301821
                                           Widow
                                                               : 19675
##
##
##
##
                                   days_birth
             name_housing_type
                                                  days_employed
                                                                   flag_mobil
                      : 1539
                                Min. :-25201
                                                  Min. :-17531
                                                                   1:438557
##
   Co-op apartment
                                1st Qu.:-19483
                                                  1st Qu.: -3103
##
   House / apartment :393831
   Municipal apartment: 14214 Median:-15630
##
                                                  Median : -1467
##
   Office apartment
                     : 3922 Mean :-15998
                                                  Mean : 60564
    Rented apartment
                      : 5974
                                3rd Qu.:-12514
                                                  3rd Qu.: −371
##
##
    With parents
                      : 19077
                                Max.
                                      : -7489
                                                  Max.
                                                         :365243
##
##
   flag_work_phone flag_phone flag_email
                                                               cnt fam members
                                             occupation_type
                   0:312353
                               0:391102
##
   0:348156
                                        Laborers
                                                     : 78240
                                                              Min. : 1.000
##
    1: 90401
                    1:126204
                               1: 47455
                                         Core staff: 43007
                                                              1st Qu.: 2.000
##
                                          Sales staff: 41098
                                                              Median : 2.000
                                                                     : 2.194
##
                                                    : 35487
                                          Managers
                                                               Mean
##
                                          Drivers
                                                    : 26090
                                                               3rd Qu.: 3.000
##
                                          (Other)
                                                     : 80432
                                                               Max.
                                                                      :20.000
##
                                          NA's
                                                     :134203
```

The only variable with missingness is occupation_type, which is missing 134203 observations.

Trans NA to "Dont wanna tell"

Code

turn to characters and factors

# #	A tibble	e: 6 × 18					
#	id	code_gender	flag_own_ca	r flag_own_1	ealty c	nt_children am	t_income_total
#	<chr></chr>	<fct></fct>	<fct></fct>	<fct></fct>		<db1></db1>	<db1></db1>
# 1	5008804	M	Y	Y		0	427500
# 2	5008805	M	Y	Y		0	427500
# 3	5008806	M	Y	Y		0	112500
# 4	5008808	F	N	Y		0	270000
# 5	5008809	F	N	Y		0	270000
# 6	5008810	F	N	Y		0	270000
#	name_in	come_type	name_educa	tion_type		name_family_st	tatus
#	<fct></fct>		<fct></fct>			<fct></fct>	
# 1	Working		Higher edu	cation		Civil marriage	9
# 2	Working		Higher edu	cation		Civil marriage	9
# 3	Working		Secondary	/ secondary	special	Married	
# 4	Commerc	ial associat	e Secondary	/ secondary	special	Single / not m	married
# 5	Commerc	ial associat	e Secondary	/ secondary	special	Single / not m	married
# 6	Commerc	ial associat	e Secondary	/ secondary	special	Single / not m	married
#	name_ho	using_type d	ays_birth da	ys_employed	flag_mo	bil flag_work_p	ohone
#	<fct></fct>		<db1></db1>	<db1></db1>	<fct></fct>	<fct></fct>	
# 1	Rented a	apartment	-12005	-4542	1	1	
# 2	Rented	apartment	-12005	-4542	1	1	
# 3	House /	apartment	-21474	-1134	1	0	
# 4	House /	apartment	-19110	-3051	1	0	
# 5	House /	apartment	-19110	-3051	1	0	
# 6	House /	apartment	-19110	-3051	1	0	
#	flag_pho	one flag_ema	il occupation	n_type cnt	fam_mem	bers	
#	<fct></fct>	<fct></fct>	<fct></fct>		<	db1>	
# 1	0	0	Don't wan	na tell		2	
# 2	0	0	Don't wan	na tell		2	
# 3	0	0	Security	staff		2	
# 4	1	1	Sales sta	ff		1	
# 5	1	1	Sales sta	ff		1	
# 6	1	1	Sales sta	c c		1	

Variables

id: Client number

code_gender: Gender [M,F]
flag_own_car: Is there a car [N,Y]

flag_own_realty: Is there a property [N,Y]

cnt_children: Number of children
amt_income_total: Annual income

name_income_type: Income category [Commercial associate, Pensioner, State servant, Student,

Working]

name_education_type: Education level [Academic degree, Higher education, Incomplete higher, Lower secondary, Secondary / secondary special]

name_family_status: Marital status [Civil marriage, Married, Separated, Single / not married, Widow]
name_housing_type: Way of living [Co-op apartment, House / apartment, Municipal apartment, Office
apartment, Rented apartment, With parents]

days_birth: Birthday Count backwards from current day (0), -1 means yesterday

days_employed: Start date of employment Count backwards from current day(0). If positive, it means the person currently unemployed.

flag_mobile: Is there a mobile phone [0,1] **flag_work_phone**: Is there a work phone [0,1]

flag_phone: Is there a phone [0,1] **flag_email**: Is there an email [0,1]

occupation_type: Occupation [Laborers, Core staff, Sales staff, Managers, Drivers, (Other), NA's]

cnt_fam_members: Family size

trans inappropriate days of employees to 0 days

```
Code

## numeric(0)

Code

## [1] 365243 365243 365243 365243 365243

Code
```

DATA: credit_data

```
Code
## # A tibble: 6 \times 3
##
          id months_balance status
       <db1>
                       <dbl> <chr>
## 1 5001711
                           0 X
## 2 5001711
                          -1 0
## 3 5001711
                          -2 0
## 4 5001711
                          -3 0
## 5 5001712
                           0 C
## 6 5001712
                          -1 C
```

```
id
                      months_balance
                                          status
                             :-60.00
##
   Min.
           :5001711
                      Min.
                                      Length:1048575
   1st Qu.:5023644
                      1st Qu.:-29.00
                                       Class :character
   Median :5062104
                      Median :-17.00
                                       Mode :character
          :5068286
                      Mean
                             :-19.14
   Mean
   3rd Qu.:5113856
                      3rd Qu.: -7.00
   Max.
          :5150487
                           : 0.00
                      Max.
```

There is no missing data in credit.

Variables

id: Client number

months_balance: Record month The month of the extracted data is the starting point, backwards, 0 is the current month, -1 is the previous month, and so on

status: Status (more in "transfer status")

Observations

Observation number in credit: 1048575

transfer status

```
0: 1-29 days past due -> 1
```

- 1: 30-59 days past due -> 2
- 2: 60-89 days overdue -> 3
- 3: 90-119 days overdue -> 4
- 4: 120-149 days overdue -> 5
- 5: Overdue or bad debts, write-offs for more than 150 days -> 6
- C: paid off that month -> 0
- X: No loan for the month -> 0

```
## # A tibble: 6 \times 3
##
    id
         months balance status
    <chr>
              <db1> <chr>
## 1 5001711
                       0 0
                       -1 1
## 2 5001711
## 3 5001711
                       -2 1
## 4 5001711
                       -3 1
## 5 5001712
                       0 0
## 6 5001712
                       -1 0
```

turn to factors

Code ## # A tibble: 6×3 months_balance status ## id <dbl> <fct> ## <chr> ## 1 5001711 0 0 ## 2 5001711 $-1 \ 1$ ## 3 5001711 -2 1-3 1## 4 5001711 ## 5 5001712 0 0 ## 6 5001712 -1 0

first year credit

Code ## # A tibble: 6×4 ## # Groups: id [2] id months balance status month <dbl> <fct> <int> <chr> ## 1 5001711 -3 11 ## 2 5001711 -2 12 ## 3 5001711 -1 13 ## 4 5001711 0 0 4 ## 5 5001712 -18 11 ## 6 5001712 2 -17 1

Combine two datasets

How we combine?

Example

An example here who, with ID: 5008805, applied credit card and had been approved.

Code

```
## # A tibble: 12 	imes 4
## # Groups: id [1]
              months_balance status month
##
     id
                       <dbl> <fct> <int>
##
      <chr>
   1 5008805
##
                          -14 0
                                         1
   2 5008805
                          -13 1
                                         2
##
##
   3 5008805
                          -12 2
                                         3
   4 5008805
                          -11 0
                                         4
##
   5 5008805
                          -10 0
                                         5
   6 5008805
                          -9 0
                                         6
##
                                         7
##
   7 5008805
                           -8 \ 0
  8 5008805
                           -7 0
                                         8
                                         9
## 9 5008805
                           -6 0
## 10 5008805
                           -5 0
                                        10
## 11 5008805
                           -4 0
                                        11
## 12 5008805
                           -3 \ 0
                                        12
```

Code

```
## # A tibble: 15 \times 3
##
           id months_balance status
##
        <db1>
                       <dbl> <chr>
                           0 C
   1 5008805
##
   2 5008805
                          -1 C
                          -2 C
##
   3 5008805
   4 5008805
                          -3 C
                          -4 C
   5 5008805
##
                          -5 C
   6 5008805
   7 5008805
                          -6 C
                          -7 C
   8 5008805
## 9 5008805
                          -8 C
## 10 5008805
                          -9 C
## 11 5008805
                         -10 C
## 12 5008805
                         -11 C
## 13 5008805
                         -12 1
## 14 5008805
                         -13 0
## 15 5008805
                         -14 X
```

```
## # A tibble: 1 \times 18
             code_gender flag_own_car flag_own_realty cnt_children amt_income_total
##
     <chr>
             <fct>
                          <fct>
                                      <fct>
                                                               <db1>
                                                                                <db1>
## 1 5008805 M
                          Y
                                                                                427500
     name\_income\_type \ name\_education\_type \ name\_family\_status \ name\_housing\_type
                      <fct>
                                           <fct>
##
     <fct>
                                                               <fct>
## 1 Working
                      Higher education Civil marriage
                                                               Rented apartment
     days_birth days_employed flag_mobil flag_work_phone flag_phone flag_email
##
          <db1>
                        <dbl> <fct>
                                        <fct>
                                                          <fct>
                                                                      <fct>
##
## 1
         -12005
                        -4542 1
##
     occupation_type cnt_fam_members
##
     <fct>
                                 <db1>
## 1 Don't wanna tell
                                     2
```

Therefore, we can combine application data with first year, first month credit data

```
## Unique ID in first year credit: 45985 and in credit: 45985

Code

## Unique ID in application: 438510

Code

## 36457 people has credit card with Info here.
```

Observe - graphs

those had been approved's information (numbers)

those had been approved's information (factors - YES/NO)

those had been approved's information (factors - REST)

Name Education Type

Occupation Type

Compare numbers of ID

45985 45985 438510 36457

My understanding to this data is according to the 45985 people who have credit cards, 36457 people from those 45985 people are applied with recording the backgrounds. The bank issued credit cards to those 36457 people from 438510 applicants.

Combine and add our y

```
## Mode FALSE TRUE ## logical 402100 36457
```

There are 402053 people who do not have credit card, while the other 36457 people have.

```
Code ## 438510 is less than 438557
```

Finding out there are duplicated rows in mydata, since when unique id should be 43510, where we have 438557 rows of mydata, so I remove them:

Remove duplicated rows & turn logistics to factors

Code

START HERE!

Split Data

```
Code

## [1] 306957 19

Code

## [1] 131553 19

Code
```

Correlation Matrix

Using the training data set, I create a correlation matrix of all continuous variables.

```
## Warning: Use of bare predicate functions was deprecated in tidyselect 1.1.0.
## | Please use wrap predicates in `where()` instead.
## # Was:
## | data %>% select(is.numeric)
##
## # Now:
## | # Now:
## | data %>% select(where(is.numeric))
```


KNN

Code

In Train

```
## true
## predicted FALSE TRUE
## FALSE 280279 6284
## TRUE 1145 19249
```

Code

[1] 0.02420209

In Test

Code

```
## true
## predicted FALSE TRUE
## FALSE 118640 4685
## TRUE 1989 6239
```

Code

[1] 0.0507324

Conclusion

Both error rates in train and test are low, it's nice. However, we can only use numeric variables for predictors in KNN model, so I use other predictors in the following models.

Recipe

Code

Logistic Regression Model

Code

Accuracy

Generate predictions using logistic regression model and training data

```
Code
## # A tibble: 1 \times 3
    .metric .estimator .estimate
             <chr>
                             <db1>
    <chr>
## 1 accuracy binary
                             0.917
```

Fit the model to the testing data

Code

```
## # A tibble: 1 	imes 3
     .metric .estimator .estimate
     <chr>
              <chr>
                             <db1>
## 1 accuracy binary
                             0.917
```

Heatmap

ROC Curve

Decision Tree Model

Code

####tune & autoplot

Code

Best-performing pruned decision tree

Code

Rpart-Plot

It is overfitting.

SVM

Plot

SVM works too slow so I take less train data and test data to fit this model.

Split Data2

! Fold2: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...

! Fold3: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...

! Fold4: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...

! Fold5: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...

Code

Select the Best

Code

maximum number of iterations reached -0.0008357573 -0.0008383165

Fit to test

```
## Truth
## Prediction FALSE TRUE
## FALSE 1226 90
## TRUE 0 0
```

It predicts everything FALSE, so that this model is not good.

Random Forest Model

Code

grid

Code

tune

Code

```
\mbox{\tt \#\#} Warning: The `...` are not used in this function but one or more objects were \mbox{\tt \#\#} passed: 'gird', 'metric'
```

i Creating pre-processing data to finalize unknown parameter: mtry

```
## Warning: Column(s) have zero variance so scaling cannot be used:
## `name_income_type_Student`. Consider using `step_zv()` to remove those columns
## before normalizing
```

```
## ! Fold1: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...
```

```
\#\# ! Fold2: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...
```

```
## ! Fold3: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na
me_income_typ...
```

```
\#\# ! Fold4: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...
```

```
\#\# ! Fold5: preprocessor 1/1: Column(s) have zero variance so scaling cannot be used: `na me_income_typ...
```


The main limitation of random forest is that a large number of trees can make the algorithm too slow and ineffective for real-time predictions. It takes almost an hour to do 6/10 of this step. Therefore, as SVM model, I choose 1 percent of the whole data to fit.

select best random forest

```
## Warning: Column(s) have zero variance so scaling cannot be used:
## `name_income_type_Student`. Consider using `step_zv()` to remove those columns
## before normalizing
```


Variable amt income total (amount of year income) is the most useful.

Conclusion

Approach GOAL?

Recall: My goal is to predict whether the applicants can be approved with credit card under the proper background? And what conditions may be important?

I think my models are not that good to predict whether the applicants can be approved under the background, though some of the models did better than others. And the numeric conditions are more important because the KNN model uses only numeric variables and it works the best.

Models

KNN

KNN works good because both mean squared errors for train data and test data are small.

Logistic Regression

Though the accuracy is about 0.91, I think this model is not good enough. The number looks good just because of there are many people got rejected from the application. ROC curve shows that it is not good enough.

Decision Tree

Decision Tree is not good enough because it is too much overriding. A good decision tree should between underiding and overriding. The situation of a small change in the data can cause a large change in the structure of the decision tree causing instability happens in my model.

SVM

It takes too long, so I take 1 percent of the original data to do. The model directly predict everything FALSE, which why I think it is not good.

Random Forest Tree

I finished the code for random Forest Tree, but it is too big, where I take 1 percent of the original data to do as SVM. I got that variable amt_income_total (amount of year income) is the most useful.

Possible Reasons & May Improved in the future:

Why some models are not good?

TOO MANY useless predictors. There are too many predictors which make the model not accurate enough. Therefore, I will try to make fewer predictors to make the models fit better.