END TERM EXAMINATION

THIRD SEMESTER [B. TECH] JANUARY 2024

Subject: Computational Methods Maximum Marks: 75 Paper Code: ES-201

Time: 3 Hours Note: Attempt five questions in all including Q.No.1 which is compulsory. Select ne question from each unit. Assume missing data if any. Scientific calculator is allowed.

Q1	Attempt	all	questions:
----	---------	-----	------------

- The height of an observation tower was estimated to be 47m, whereas its actual height was 45m. Calculate the percentage a) relative error in the measurement.
- Derive the formula for evaluating √12 by Newton's Raphson b) method.
- Differentiate between partial and complete pivoting in solving c) linear system of algebraic equations.
- (1.5)Estimate the missing term in the following table: d)

x: 0	1	2	3	4
f(x): 1	3	9		81

- Define cubic spline function and state the conditions required for e) cubic spline interpolation.
- (2.5)Find $\int \sqrt{\cos \theta} d\theta$ using Simpson's $1/3^{rd}$ rule for n=6. f)
- Solve the IVP $\frac{dy}{dx} = xe^y$, y(0) = 0 using Picard's method and estimate g) (3)
- y(0.2). Determine which of the following equations are elliptic, parabolic, h) and hyperbolic.
 - (i) $f_{xx} + 6f_{xy} + 9f_{yy} = 0$
 - (ii) $f_{xx} 2f_{xy} + 2f_{yy} = 2x + 5y$

UNIT-I

- Find the root of the equation $x = e^{-x}$, correct to three decimal places a) by Secant method by performing six iterations. 02
 - Use Newton—Rapshon method to obtain a root of $\sin x = 1-x$ to b) three decimal places.
- Perform four iterations of Golden section search method to minimize $f(x) = x^4 - 14x^3 + 60x^2 - 70x$, $x \in (0,2)$ with $\varepsilon = 10^{-3}$. a) (7.5)03 on
 - Use steepest descent method iterations for b) $f(x_1, x_2, x_3) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4$ with point initial (7.5) $x^{(0)} = [4, 2, -1]^T$

UNIT-II

- a) Prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{(1+\delta^2/4)}$. (7)
 - The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth's surface: P.T.O.

x = height:	100	150	200	250	300	350	1
y = distance:	10.63	13.03	15.04	16.81	18.42	19.00	140

y when x = 410 using Newton's backward Find the value of interpolation formula.

- Evaluate the integral $\int_{0}^{6} \frac{e^{x}}{1+x} dx$ using Simpson's $1/3^{rd}$ and Simpson's 05 3/8th rule respectively. Compare it with the exact value.
 - Evaluate the integral $\int_{0}^{0.5} \left(\frac{x}{\sin x}\right) dx$ using Romberg's method, $\cot \frac{17}{\cot \cos x}$ b) to three decimal places. (8)

UNIT-III

Investigate the values of λ and μ so that the system of equations [7] a) Q6 2x+3y+5z=97x + 3y - 2z = 8 $2x+3y+\lambda z=\mu$

have (i) no solution, (ii) unique solution, (iii) an infinite number of solutions.

Solve the system of equations b)

(8)

$$\begin{cases} x_1 + 10x_2 - x_3 = 3\\ 2x_1 + 3x_2 + 20x_3 = 7\\ 10x_1 - x_2 + 2x_3 = 4 \end{cases}$$

Using the Gauss elimination with partial pivoting.

Solve the system of equations using Dolittle factorisation 07 method (9)

$$\begin{cases} 3x+2y+7z=4\\ 2x+3y+z=5\\ 3x+4y+z=7 \end{cases}$$

b) Determine the numerically dominant eigenvalue and eigenvector of

the matrix $A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$ using Power method. Take the initial

vector $X^{(0)} = [1, 1, 1]^T$. (6)

UNIT-IV

Q8 al Employ Taylor's method to obtain the approximate value of yat x = 0.2 for the differential equation $dy/dx = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with the exact solution. (7)

- Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with b) y(0) = 1 at x = 0.2, 0.4.
- Solve the initial value problem $y \frac{dy}{dx} = x$, y(0) = 1, using Euler's a) method in $0 \le x \le 0.8$, with h = 0.2. Compare the results with the Q9 exact solution at x = 0.8. (7)
 - Solve the partial differential equation b) $u_{xx} + u_{yy} = x + y + 1, \ 0 \le x \le 1, \ 0 \le y \le 1,$

u = 0 on the boundary

Numerically up to three iterations with h=1/3. Obtain the results correct to three decimal places.
