Insurance analytics

Tree-based machine learning methods - putting it all together

Katrien Antonio LRisk - KU Leuven and ASE - University of Amsterdam

May 26, 2019

Acknowledgement

- Some of the figures in this presentation are taken from *An Introduction* to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
- ➤ Some of the figures in this presentation are from *Boosting insights in insurance tariff plans with tree-based machine learning* (available on arxiv, April 2019), written by Roel Henckaerts, Marie-Pier Côté, Katrien Antonio and Roel Verbelen.

The R universe

What is out there?

Model	Poisson	Gamma
Generalized linear model	✓	✓
	stats	stats
Generalized additive model	✓	✓
	mgcv	mgcv
Regression tree	✓	X
	rpart	-
Random forest	X	Х
	-	-
Gradient boosting machine	✓	✓
	gbm	harrysouthworth/gbm

The R universe

Filling the gaps

Model	Poisson	Gamma
Generalized linear model	✓	✓
	stats	stats
Generalized additive model	✓	✓
	mgcv	mgcv
Regression tree	✓	✓
	rpart	rpart*
Random forest	✓	✓
	rpart*	rpart*
Gradient boosting machine	√	✓
	gbm	harrysouthworth/gbm

- Classical statistical methods are highly interpretable:
 - coefficients in a GLM
 - · splines in a GAM.
- Not the case for machine learning methods:
 - + regression trees
 - bagged trees/random forests
 - boosted trees
- ► There is a need for interpretation tools!

- Variable importance plots to select relevant variables.
- ▶ Partial dependence plots to interpret the effect of a variable on the outcome.
- ▶ Individual conditional expectation plots to detect interaction effects.

Variable importance

▶ Measure the importance of feature x_{ℓ} in a tree t:

$$\mathcal{I}_\ell(t) = \sum_{j=1}^{J-1} \mathbb{I}\{v(j) = \ell\}(\Delta \mathcal{L})_j,$$

where

- sum is over J-1 internal nodes
- only consider nodes where splitting variable is x_ℓ
- $(\Delta \mathcal{L})_j$ is difference in loss before and after the split.

Variable importance

- ▶ Important variables appear often and high in the tree t, and the $\mathcal{I}_{\ell}(t)$ grows largest for these.
- ▶ When using an ensemble of trees:

$$\mathcal{I}_\ell = rac{1}{T} \sum_{t=1}^T \mathcal{I}_\ell(t),$$

with the sum over all trees in the RF or GBM.

Partial dependence plots

- ▶ Partial dependence plots (PDPs) show the marginal effect of a variable on the predictions obtained from a model.
- Evaluate the prediction function in specific values of x_{ℓ} , while averaging over a range of values of the other variables x^* :

$$\bar{f}_{\ell}(x_{\ell}) = \frac{1}{n} \sum_{i=1}^{n} f_{\mathsf{model}}(x_{\ell}, \boldsymbol{x}_{i}^{\star}).$$

▶ Interaction effects between x_{ℓ} and other variables in \mathbf{x}^{\star} can distort the effect.

Individual conditional expectation plots

► Individual conditional expectations (ICEs) show the effect of a variable on the predictions, but on an individual level:

$$\tilde{f}_{\ell,i}(x_\ell) = f_{\mathsf{model}}(x_\ell, \boldsymbol{x}_i^{\star}).$$

- ► Effect for each observation *i*, allows to detect interaction effects when some observations show different behavior compared to others.
- ▶ ICEs also picture the uncertainty of the effect of variable x_{ℓ} on the prediction outcome.

More interpretation tools

- ▶ More on interpretable machine learning:
 - https://christophm.github.io/interpretable-ml-book/
 - Boosting insights in insurance tariff plans with tree-based machine learning (available on arxiv).

Comparison of pricing models

Set-up

Comparison of pricing models

Variable importance plots

Comparison of pricing models PDPs

Comparison of pricing models PDPs

Comparison of pricing models ICEs

Comparison of pricing models

Out-of-sample

More comparison tools in our paper.