PUBLICACIONES DE 4º CURSO

Curso: 4º

Grado: Economía

Asignatura: ECONOMETRÍA III

PARTE 3: MODELOS DE SERIES TEMPORALES

SOLUCIÓN EJERCICIO EMPÍRICO 1

Profesores: Antonio Aznar y Ma Isabel Ayuda

Departamento de ANÁLISIS ECONÓMICO

Curso Académico 2015/16

PARTE 3: MODELOS DE SERIES TEMPORALES

SOLUCIÓN EJERCICIO EMPÍRICO 1

El archivo de datos **USMacro_Quaterly.xls** contiene los datos trimestrales de dos series macroeconómicas de los Estados Unidos, desde 1947: 1 hasta 2004:4. Una de ellas es el RealGDP (PIB real ajustado estacionalmente) y la otra TbillRate, el tipo de interés de las letras del tesoro, al que llamaremos R. Los datos se describen en el fichero **USMacro_Quaterly_description.pdf**. Calcular $y_t = \ln(\text{Re}\,alGDP_t)$, el logaritmo del PIB real y Δy_t , la tasa de crecimiento trimestral del PIB y ΔR_t incremento del tipo de interés. Para los siguientes apartados utilice los datos desde 1955:1 hasta 2003:4.

a. Calcula la media y la desviación típica de y_i e Δy_i .

En primer lugar: AÑADIR_DEFINIR NUEVA VARIABLE : y = ln(Real DGP)

AÑADIR_PRIMERAS DEFERENCIAS DE LAS VARIABLES SELECCIONDAS

(SELECCIONAR y)

Marcar estas dos variables y VARIABLE ESTADÍSTICOS PRINCIPALES

b. Obtener el gráfico y los 15 primeros valores de la función de autocorrelación de y_t e Δy_t .

Marcar la variable y GRAFICO DE SERIES TEMPORALES

Gráficos de las dos series

La serie original tiene una tendencia determinista y la serie diferenciada gira alrededor de una constante próxima a cero.

Marcar la variable CORRELOGRAMA

Correlogramas de la serie y_t

El correlograma de la serie original es característico de una serie no estacionaria, la FAC empieza en un valor próximo a uno y disminuye muy lentamente y la FACP tiene un pico próximo a uno, en el primer coeficiente, y prácticamente cero el resto.

-💹 gretl: gráfico FAC de d_y 0.3 +- 1.96/T^0.5 0.2 0.1 0 -0.1 -0.2 -0.3 0 2 6 8 10 12 14 16 retardo FACP de d_y 0.3 +- 1.96/T^0.5 0.2 0.1 0 -0.1 -0.2 -0.3 0 2 8 10 12 14 4 6 16 retardo Pulsar con el botón derecho del ratón en el gráfico para ver un menú Z

Correlogramas de la serie Δy_t .

El correlograma de la serie diferenciada una vez ya es característico de una serie estacionaria. El primer coeficiente de la FAC es menor de 0.3 y tiene un comportamiento amortiguado hacia cero.

c. Aplique el contraste de Dickey-Fuller e indique el orden de integración de la variable y_t e Δy_t .

Dado el gráfico de la serie y_t que tiene claramente una tendencia lineal, utilizaremos para el contraste de Dickey- Fuller el modelo con tendencia lineal y utilizando como máximo 14 retardos y el criterio AIC modificado para elegir el número de retardos de la regresión de D-F:

Marcar la variable: VARIABLE_CONTRASTES DE RAIZ UNITARIA_CONTRASTE AUMENTADO DE DICKEY-FULLER.

🌉 gretl: ADF test

k = 14: MAIC = 3206.06k = 13: MAIC = 2787.59k = 12: MAIC = 3008.15k = 11: MAIC = 3935.77k = 10: MAIC = 4095.60k = 09: MAIC = 3788.05k = 08: MAIC = 3060.48k = 07: MAIC = 3350.21k = 06: MAIC = 3399.98k = 05: MAIC = 3108.78k = 04: MAIC = 3862.37k = 03: MAIC = 4043.48k = 02: MAIC = 4262.05k = 01: MAIC = 3356.21

Contraste aumentado de Dickey-Fuller para y incluyendo 13 retardos de (1-L) y (el máximo fue 14, el criterio AIC modificado) tamaño muestral 196 hipótesis nula de raíz unitaria: a = 1

con constante y tendencia modelo: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + eCoef. de autocorrelación de primer orden de e: -0.006 diferencias retardadas: F(13, 180) = 2.576 [0.0027]valor estimado de (a - 1): -0.037022 Estadístico de contraste: tau ct(1) = -1.82566 valor p asintótico 0.6924

Regresión aumentada de Dickey-Fuller MCO, usando las observaciones 1955:1-2003:4 (T = 196) Variable dependiente: d y

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	0.282192	0.149407	1.889	0.0605 *
y_1	-0.0370220	0.0202787	-1.826	0.6924
d_y_1	0.268050	0.0741041	3.617	0.0004 ***
d_y_2	0.133216	0.0760033	1.753	0.0813 *
d_y_3	-0.0108108	0.0766209	-0.1411	0.8880
d_y_4	0.00115077	0.0766324	0.01502	0.9880
d_y_5	-0.109452	0.0759512	-1.441	0.1513
d_y_6	0.0541819	0.0758756	0.7141	0.4761
d_y_7	-0.0210921	0.0758634	-0.2780	0.7813
d_y_8	-0.0896113	0.0758307	-1.182	0.2389
d_y_9	0.0819533	0.0741331	1.105	0.2704
d_y_10	0.0484905	0.0740233	0.6551	0.5133
	0.0182828	0.0736634	0.2482	0.8043
	-0.119798	0.0734375	-1.631	0.1046
d_y_13	-0.0365765	0.0716456	-0.5105	0.6103
time	0.000295772	0.000166898	1.772	0.0781 *

AIC: -1284.45 BIC: -1232 HQC: -1263.22

El contraste de D-F = -1.82 p-valor = 0.6924 por lo que, para un nivel de significación del 5%, no se rechaza la hipótesis nula de que al menos la serie es I(1).

Para la serie Δy_t cuyas observaciones giran en torno a una constante, planteamos el contrastre de D-F en un modelo con constante:

```
🌉 gretl: ADF test
k = 14: MAIC = -5.36444
  k = 13: MAIC = -5.58016
  k = 12: MAIC = -5.10331
  k = 11: MAIC = -5.57002
  k = 10: MAIC = -6.60569
  k = 09: MAIC = -6.86519
  k = 08: MAIC = -6.81273
  k = 07: MAIC = -6.32644
  k = 06: MAIC = -6.71452
  k = 05: MAIC = -6.89577
  k = 04: MAIC = -6.82750
  k = 03: MAIC = -7.42170
  k = 02: MAIC = -7.63800
  k = 01: MAIC = -7.85099
Contraste aumentado de Dickey-Fuller para d y
incluyendo un retardo de (1-L)d y
(el máximo fue 14, el criterio AIC modificado)
tamaño muestral 196
hipótesis nula de raíz unitaria: a = 1
  contraste con constante
  modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  Coef. de autocorrelación de primer orden de e: -0.007
  valor estimado de (a - 1): -0.632835
  Estadístico de contraste: tau c(1) = -7.49232
  valor p asintótico 1.445e-011
Regresión aumentada de Dickey-Fuller
MCO, usando las observaciones 1955:1-2003:4 (T = 196)
Variable dependiente: d d y
            Coeficiente Desv. Típica Estadístico t Valor p
  ______
            0.00519506 0.000942469
                                          5.512 1.13e-07 ***
  const
  d_y_1 -0.632835 0.0844645
d_d_y_1 -0.0953527 0.0715763
                                         -7.492
-1.332
                                                     1.44e-011 ***
                                                     0.1844
  AIC: -1293.09 BIC: -1283.25 HQC: -1289.11
```

Como D-F = -7.49232 y el p-valor = 0.000 se rechaza que la serie en incrementos sea I(1) frente a la alternativa de que es I (0), por lo que y_t es I(1) y Δy_t es I(0).

d. Explique si podría identificar un AR(1) para la serie Δy_t y estime el modelo. Sí que se podría identificar según el correlograma de la serie Δy_t un AR(1). Su estimación por MCO es :

e. Contraste la existencia de un cambio estructural en el modelo utilizando el contraste QLR.

En el modelo ir a: CONTRASTES CONTRASTE DE RV DE QUANDT (QLR)

El QLR hace el contraste de Chow de permanencia estructural de todos los parámetros del modelo, para cada uno de los periodos y calcula el valor máximo de este test de Chow.

El valor máximo es para la observación 1966:2 y QLR = $1.33 < F_{2,192}$ se mantiene la hipótesis de permanencia estructural.

f. Estime un modelo ARD(1,4) para Δy_t utilizando retardos de ΔR_t , como predictores adicionales. Compare el \overline{R}^2 del AR(1) y el del ARD (1,4). Antes de estimar el modelo hemos de añadir la primera diferencia de la variable R_t y en la estimación indicar 4 retardos de la exógena y 1 de la endógena.

El \overline{R}^2 del AR(1) es 0.086 y el del ARD (1,4) es 0.195.

g. ¿Es significativo el estadístico F de causalidad de Granger?

Para ello hemos de contrastar la hipótesis nula de si los coeficientes de los retardos de ΔR , son 0.

CONTRASTES RESTRICCIONES LINEALES:

b2 = 0

b3 = 0

b4 = 0

b5 = 0

Se rechaza la hipótesis nula por lo que R_i si que causa según Granger a y_i .

h. Hay ruptura estructural en el ARD(1,4) utilizando el QLR.

En el modelo ir a: CONTRASTES_CONTRASTE DE RV DE QUANDT (QLR)

El máximo test de Chow es para el periodo 1971:2 pero como el p-valor es 0.1451 para un nivel de significación del 5% no se rechaza la hipótesis nula de permanencia estructural.

 Realice predicciones dinámicas pseudo fuera de la muestra para la variable y_t, utilizando el modelo AR(1) comenzando la predicción en 2004:1 y yendo hasta el final de la muestra, 2004:4.

En el modelo AR(1) estimado: ANALISIS_PREDICCIONES

j. Realice predicciones dinámicas fuera de la muestra, para la variable y_t , utilizando el modelo ARD(1,4) comenzando la predicción en 2004:1 y yendo hasta el final de la muestra, 2004:4.

En el modelo ARD(1,4) estimado:

ANALISIS_PREDICCIONES

k. ¿Qué modelo tiene la menor raíz del error cuadrático medio de predicción?

El ARD(1,4) tiene una RECMP = 0.001 y el ARI(1,1) tiene un RECMP= 0.002

l. Analice el orden de integración, según Dickey-Fuller, de la variable R_i .

En primer lugar hacemos el gráfico de la variable en niveles y en primeras diferencias. La serie R gira entorno a una constante. La serie diferenciada, d_R, parece estacionaria en torno a cero.

Marcar la variable: **VARIABLE_CONTRASTES DE RAIZ UNITARIA_CONTRASTE AUMENTADO DE DICKEY-FULLER**.

D-F = -1.86614 p-valor = 0.3487 no rechazamos la hipótesis de que la serie R es al menos integrada de orden 1 l(1).

Pasamos a contrastar si R es I(2) frente a la alternativa de si es I(1). O lo que es equivalente si d_R es I(1) frente a I(0).Para ello hacemos lo mismo que para la variable R solo que ahora como la serie d_R gira en torno a cero no ponemos constante en le regresión de D-F.

D-F = -5.02962 y el p-valor = 0.000 por lo que rechazamos que d_R sea I(1), es decir, es I(0), por lo que la variables R concluiremos que es I(1).

m. ¿Están las variable y la variable R, cointegradas?

Relación de cointegración:

Como una de las series tiene tendencia determinista y la otra no, planteamos le relación de cointegración con tendencia:

Para ello tenemos que añadir la variable tendencia:

AÑADIR_ TENDENCIA TEMPORAL y luego hacer la regresión de cointegración.

Según el contraste CRDW = 0.069 que es muy pequeño, parece que no hay cointegración, pero vamos a ver los residuos de la regresión de cointegración:

GRAFICOS_GRAFICO DE RESIDUOS

Hacemos el contraste de Dickey-Fuller de los residuos de la relación de cointegración, para **ello** *GUARDAR_ RESIDUOS* y después hacer el contraste:

El valor del eswtad'sitidico de D-F de los residuos que es el contraste de ENGLE y GRANGER es:

EG = -2.2 > Punto crítico (0.05)= -3.8 por lo que no se rechaza la hipótesis nula de NO COINTEGRACION

n. Estime un modelo VAR(4) para las variables y_i y R_i .

Como las variables son I(1) y no están cointegradas vamos a estimar un modelo VAR:

MODELO_SERIES TEMPORALES_AUTORREGRESSION VECTORIAL (VAR)

🙎 gretl: autorregresión vectorial

Archivo Editar Contrastes Guardar Gráficos Análisis

Sistema $V_{\Lambda}^{T}R$, orden del retardo 4

estimaciones de MCO, observaciones 1955:1-2003:4 (T = 196)

Log-verosimilitud = 467.33132

Determinante de la matriz de covarianzas = 2.9109644e-005

AIC = -4.5850

BIC = -4.2840

HQC = -4.4631

Contraste Portmanteau: LB(48) = 193.236, gl = 176 [0.1773]

Ecuación 1: d_y

	Coeficiente	Desv. Típica	Estadístico t	Valor p	
const	0.00461808	0.00112488	4.105	6.03e-05	***
d y 1	0.233922	0.0727887	3.214	0.0015	***
dy2	0.135186	0.0759932	1.779	0.0769	*
d y 3	0.0107496	0.0755539	0.1423	0.8870	
dy4	0.0585259	0.0738176	0.7928	0.4289	
d R 1	0.00144639	0.000914444	1.582	0.1154	
d R 2	-0.00418394	0.000902944	-4.634	6.72e-06	***
d R 3	0.000303864	0.000936303	0.3245	0.7459	
d_R_4	-0.00298138	0.000939248	-3.174	0.0018	***

Media de la vble. dep.	0.008232	D.T. de la vble. dep.	0.009297
Suma de cuad. residuos	0.013232	D.T. de la regresión	0.008412
R-cuadrado	0.214856	R-cuadrado corregido	0.181267
F(8, 187)	6.396602	Valor p (de F)	2.44e-07
rho	-0.046050	Durbin-Watson	2.070066

Contrastes F de restricciones cero:

Todos	los	retardos de d	[_У	F (4,	187)	=	4.8736	[0.0009]
Todos	los	retardos de d	l_R	F(4,	187)	=	6.5286	[0.0001]
Todas	las	variables, re	tardo 4	F(2,	187)	=	5.1086	[0.0069]

Ecuación 2: d_R

	Coeficiente	Desv. T	ípica	Estadístico t	Valor p	
const	-0.241054	0.09209	 996	-2.617	0.0096	***
d_y_1	18.0970	5.9595	7	3.037	0.0027	***
d_y_2	12.5279	6.22193	3	2.014	0.0455	**
d_y_3	-5.73949	6.1859	7	-0.9278	0.3547	
d_y_4	4.26318	6.04383	1	0.7054	0.4815	
d_R_1	0.267533	0.0748	700	3.573	0.0004	***
dR2	-0.417212	0.07392	284	-5.643	6.10e-08	***
d_R_3	0.299625	0.07669	597	3.909	0.0001	***
d_R_4	-0.0689661	0.07690	008	-0.8968	0.3710	
Media de la	vble. dep	0.000527	D.T. de	e la vble. dep.	0.779072	2
Suma de cuad	d. residuos	88.70216	D.T. de	e la regresión	0.68872	6
R-cuadrado		0.250547	R-cuada	rado corregido	0.21848	5
F(8, 187)		7.814410	Valor y	p (de F)	4.89e-09	∍
rho		0.012891	Durbin-	-Watson	1.973809	9

Contrastes F de restricciones cero:

Para el sistema en conjunto:

```
Hipótesis nula: el retardo más largo es 3
Hipótesis alternativa: el retardo más largo es 4
Contraste de razón de verosimilitudes: Chi-cuadrado(4) = 10.738 [0.0297]

Comparación de criterios de información:
Orden de retardos 4: AIC = -4.58501, BIC = -4.28396, HQC = -4.46313
Orden de retardos 3: AIC = -4.57104, BIC = -4.33689, HQC = -4.47625
```

n.1. ¿La variable R_t causa en el sentido de Granger a la variable y_t ? ¿La variable y_t causa en el sentido de Granger a la variable R_t ?

```
Dados los contrastes F de restricciones cero en la primera ecuación: Todos los retardos de d_R F(4, 187) = 6.5286 [0.0001] Se rechaza la hipótesis nula por lo que se puede decir que R_t causa en el sentido de Granger a \gamma_t.
```

Dados los contrastes F de restricciones cero en la segunda ecuación:

```
Todos los retardos de d_y F(4, 187) = 4.4037 [0.0020] Se rechaza la hipótesis nula por lo que se puede decir que y_t causa en el sentido de Granger a R_t.
```

n.2. ¿Debería incluir el VAR más de cuatro retardos?

MODELO_SERIES TEMPORALES_SELECCIÓN DEL ORDEN DEL VAR e indicamos

las dos variables para las que queremos estimar el VAR

Sistema VAR, máximo orden de retardos 8

Los asteriscos de abajo indican los mejores (es decir, los mínimos) valores de cada criterio de información, AIC = criterio de Akaike, BIC = criterio bayesiano de Schwarz y HQC = criterio de Hannan-Quinn.

retardos	log.veros	p(RV)	AIC	BIC	HQC
1	436.19510		-4.389746	-4.289395	-4.349119
2	453.15053	0.00000	-4.521944	-4.354693*	-4.454233
3	461.96232	0.00146	-4.571044	-4.336893	-4.476249
4	467.33132	0.02967	-4.585013	-4.283962	-4.463133
5	481.42601	0.00001	-4.688021*	-4.320069	-4.539056*
6	482.24870	0.80062	-4.655599	-4.220747	-4.479550
7	486.33491	0.08546	-4.656479	-4.154726	-4.453345
8	488.68084	0.32040	-4.639600	-4.070948	-4.409383

Depende del criterio que se utilice. El AIC indica 5 retardos, el BIC 2 y el HQC 5.

n.3. Calcule predicciones dinámicas para y_t , un periodo hacia adelante, fuera de la muestra, desde 2004:1 hasta 2004:4.

Con el modelo VAR sólo permite Gretl hacerlo para Δy_t y ΔR_t :

Como predice los valores de Δy_t habría que obtener las predicciones de y_t .

$$\begin{split} \widehat{\Delta y}_t &= \hat{y}_t - \hat{y}_{t-1} = \widehat{\Delta y}_{2004:1} = \hat{y}_{2004:1} - \hat{y}_{2003:4} \\ \hat{y}_{2004:1} &= \widehat{\Delta y}_{2004:1} + \hat{y}_{2003:4} = 0.0107 + 9.2668 = 9.2775 \\ \hat{y}_{2004:2} &= \widehat{\Delta y}_{2004:2} + \hat{y}_{2004:1} = 0.0099 + 9.2775 = 9.2874 \\ \hat{y}_{2004:3} &= \widehat{\Delta y}_{2004:3} + \hat{y}_{2004:2} = 0.0093 + 9.2874 = 9.2967 \\ \hat{y}_{2004:4} &= \widehat{\Delta y}_{2004:4} + \hat{y}_{2004:3} = 0.0088 + 9.2967 = 9.3055 \end{split}$$

n.4 Compare la raíz del error cuadrático medio de predicción de los modelos analizados es este ejercicio.

El del VAR(4) es el menor porque es:

$$\mathsf{RECMP} = \sqrt{\left(\left(9.2777 - 9.2775 \right)^2 + \left(\left(9.2859 - 9.2874 \right)^2 + \left(9.2957 - 9.2767 \right)^2 + \left(9.3051 - 9.3055 \right)^2 \right) / \, 4} = 0.0009$$

Este es el de menor RECMP.