Monotónnost a extrémy

U následujících funkcí určete definiční obor, maximální intervaly, na kterých je rostoucí / klesající a všechna lokální minima / maxima. Všimněte si, že pokud derivujete podíl, vyjde vám ve jmenovateli druhá mocnina, což je vždy nezáporný výraz. Že máte dobře zderivováno si můžete ověřit např. ve WolframuAlpha.

1.
$$x^3 - 6x^2 + 12x - 4$$

$$2. \ \ 3 + 36x - 3x^2 - 2x^3$$

3.
$$\frac{1}{x} + \frac{1}{x+1}$$

4.
$$\frac{x+1}{x^2+1}$$

5.
$$e^{-x^2}$$

6.
$$x \cdot e^x$$

7.
$$x + \sin x$$

8.
$$\frac{\ln x}{x}$$

Výsledky

- 1. Def. obor \mathbb{R} , je rostoucí na celém \mathbb{R} a nemá lokální extrémy.
- 2. Def. obor \mathbb{R} , rostoucí na $\langle -3; 2 \rangle$, klesající na $(-\infty; -3)$ a $\langle 2; \infty \rangle$, lok. minimum v -3 a lok. maximum v 2.
- 3. Def. obor $\mathbb{R} \setminus \{0; -1\}$, na invervalech $(-\infty; -1)$, (-1; 0) a $(0; \infty)$ je klesající, nemá lokální extrémy.
- 4. Def. obor \mathbb{R} (jmenovatel není nula pro žádné $x \in \mathbb{R}$), klesající na $(-\infty; -1 \sqrt{2})$ a $\langle -1 + \sqrt{2}; \infty \rangle$, rostoucí na $\langle -1 \sqrt{2}; -1 + \sqrt{2} \rangle$, v $-1 \sqrt{2}$ je lok. minimum a v $-1 + \sqrt{2}$ je lok. maximum.
- 5. Def. obor \mathbb{R} , rostoucí na $(-\infty; 0)$, klesající na $(0; \infty)$, lok. maximum v 0.
- 6. Def. obor \mathbb{R} , klesající na $(-\infty; -1)$, rostoucí na $(-1; \infty)$, lok. minimum v -1.
- 7. Def. obor \mathbb{R} , je rostoucí na celém \mathbb{R} a nemá lokální extrémy.
- 8. Def. obor $(0, \infty)$, rostoucí na (0, e), klesající na (e, ∞) , lok. maximum v e.