

THE SPLIT DECOMPOSITION OF A k -DISSIMILARITY MAP

SVEN HERRMANN AND VINCENT MOULTON

ABSTRACT. A k -dissimilarity map on a finite set X is a function $D : \binom{X}{k} \rightarrow \mathbb{R}$ assigning a real value to each subset of X with cardinality k , $k \geq 2$. Such functions, also sometimes known as k -way dissimilarities, k -way distances, or k -semimetrics, are of interest in many areas of mathematics, computer science and classification theory, especially 2-dissimilarity maps (or *distances*) which are a generalisation of metrics. In this paper, we show how regular subdivisions of the k th hypersimplex can be used to obtain a canonical decomposition of a k -dissimilarity map into the sum of simpler k -dissimilarity maps arising from bipartitions or *splits* of X . In the special case $k = 2$, this is nothing other than the well-known *split decomposition* of a distance due to Bandelt and Dress [Adv. Math. **92** (1992), 47–105], a decomposition that is commonly used to construct phylogenetic trees and networks. Furthermore, we characterise those sets of splits that may occur in the resulting decompositions of k -dissimilarity maps. As a corollary, we also give a new proof of a theorem of Pachter and Speyer [Appl. Math. Lett. **17** (2004), 615–621] for recovering k -dissimilarity maps from trees.

1. INTRODUCTION

Throughout this paper we assume $X = \{1, \dots, n\}$, $n \geq 1$ a natural number. For $1 < k < n$, a k -dissimilarity map on X is a function $D : \binom{X}{k} \rightarrow \mathbb{R}$ assigning a real value to each subset of X with cardinality k (or, alternatively stated, a totally symmetric function $D : X^k \rightarrow \mathbb{R}$). Such maps are of interest in many areas of mathematics, computer science and classification theory, especially 2-dissimilarity maps (or *distances*), which are a generalisation of metrics (cf. Deza and Laurent [6]). Note that 3-dissimilarities have been investigated, for example, in [9], [17] and [10], and arbitrary k -dissimilarities in [5] and [23], under names such as k -way dissimilarities, k -way distances and k -semimetrics.

Here we are interested in how to decompose k -dissimilarity maps into a sum of simpler k -dissimilarity maps. Note, that various ways have been proposed to decompose distances (cf. Deza and Laurent [6]) although to our best knowledge not much is known for $k \geq 3$. More specifically, we shall introduce a generalisation of the *split decomposition* for distances that was originally introduced by Bandelt and

Date: 8th June 2012.

2010 Mathematics Subject Classification. 51K05, 05C05, 52B11, 92D15.

Key words and phrases. dissimilarity map, polytope, split decomposition, metric space, distance.

Dress [1]. The split decomposition is of importance in phylogenetics, where it is used to construct phylogenetic trees and networks (see e.g. Huson and Bryant [14]). Note that k -dissimilarity maps arise naturally from such trees (see e.g. Figure 1.1 and, [18, 20]); we shall discuss this connection further in Section 7.

FIGURE 1.1. A weighted tree, labelled by the set $X = \{1, 2, \dots, 6\}$. A k -dissimilarity map can be defined on X by assigning the length of the subtree spanned by a k -subset to that subset. For example, if $k = 3$, the subset $\{1, 2, 6\}$ would be assigned the value 13.

We now explain the basic ideas underlying our results (see Section 2 for full definitions of the terminology that we use). Decompositions of k -dissimilarity maps arise in the context of polyhedral decompositions [4] as follows. Let $\Delta(k, n)$ denote the k th hypersimplex $\Delta(k, n) \subset \mathbb{R}^n$, that is, the convex hull of all 0/1-vectors in \mathbb{R}^n having exactly k ones. Clearly, k -dissimilarity maps on the set X are in bijection with real-valued maps from the vertices of $\Delta(k, n)$ since we can identify the vertices of $\Delta(k, n)$ with subsets of X of cardinality k . In particular, it follows that each k -dissimilarity map D gives rise to a (regular) subdivision of $\Delta(k, n)$ into smaller polytopes or *faces*. We shall call a decomposition $D = D_1 + D_2$ of D *coherent*, if the subdivisions of $\Delta(k, n)$ corresponding to D_1 and D_2 have a common refinement, which is essentially a subdivision of $\Delta(k, n)$ which contains both subdivisions.

The simplest possible regular subdivision of the polytope $\Delta(k, n)$ is a *split subdivision* (or *split* of $\Delta(k, n)$) [13], that is, a subdivision having exactly two maximal faces. As we shall show, using the polyhedral Split Decomposition Theorem [13, Theorem 3.10], it follows that a k -dissimilarity map D can always be coherently decomposed as follows. To each bipartition or *split* $S = \{A, B\}$ of X associate the *split k -dissimilarity*, defined by

$$\delta_S^k(K) := \begin{cases} 1, & \text{if } A \cap K, B \cap K \neq \emptyset, \\ 0, & \text{else,} \end{cases} \quad \text{for all } K \in \binom{X}{k}.$$

In addition, define the *split index* α_S^D of D with respect to S in case S is non-trivial (i.e., $|A|, |B| > 1$) to be the maximal $\lambda \in \mathbb{R}_{\geq 0}$ such that $D = (D - \lambda \delta_S^k) + \lambda \delta_S^k$ is a coherent decomposition of D . If $\alpha_S^D = 0$ for all splits S of X , we call D *split-prime*. We prove the following:

Theorem 1.1 (Split Decomposition Theorem of a k -Dissimilarity Map).
Each k -dissimilarity map D on X has a coherent decomposition

$$(1.1) \quad D = D_0 + \sum_{S \text{ split of } X} \alpha_S^D \delta_S^k,$$

where D_0 is split-prime. Moreover, this is unique among all coherent decompositions of D into a sum of split k -dissimilarities and a split-prime k -dissimilarity map.

In case D is a distance (i.e., $k = 2$) the decomposition in this theorem is precisely the split decomposition of Bandelt and Dress [1] mentioned above. For such maps, it was shown in [1, Theorem 3] that the set \mathcal{S}_D of splits S with $\alpha_S^D > 0$, enjoys a special property in that it is *weakly compatible*, that is, there do not exist (pairwise distinct) $i_0, i_1, i_2, i_3 \in X$ and $S_1, S_2, S_3 \in \mathcal{S}_D$ with $S_l(i_0) = S_l(i_m)$ if and only if $m = l$, where $S(i)$ denotes the element in the split S that contains i .

In this paper we shall show that for a general k -dissimilarity D , the set \mathcal{S}_D of splits with positive split index α_S^D can be characterised in a similar manner. In particular, calling any such set of splits k -*weakly compatible*, we prove the following (see Figure 1.2):

Theorem 1.2. *Let \mathcal{S} be a set of splits of X . Then \mathcal{S} is k -weakly compatible if and only if none of the following conditions hold:*

- (a) *There exist (pairwise distinct) $i_0, i_1, i_2, i_3 \in X$ and $S_1, S_2, S_3 \in \mathcal{S}$ with $S_l(i_0) = S_l(i_m) \iff m = l$ and $|X \setminus (S_1(i_0) \cup S_2(i_0) \cup S_3(i_0))| \geq k - 2$.*
- (b) *For some $1 \leq v < k$ there exist (pairwise distinct) $i_1, \dots, i_{2v+1} \in X$ and $S_1, \dots, S_{2v+1} \in \mathcal{S}$ with $S_l(i_l) = S_l(i_m) \iff m \in \{l, l+1\}$ (taken modulo $2v+1$) and $|X \setminus \bigcup_{l=1}^{2v+1} S_l(i_l)| \geq k - v$.*
- (c) *For some $7 \leq v < 3k$ with $v \not\equiv 0 \pmod{3}$ there exist (pairwise distinct) $i_1, \dots, i_v \in X$ and $S_1, \dots, S_v \in \mathcal{M}$ with $S_l(i_l) = S_l(i_m) \iff m \in \{l, l+1, l+2\}$ (taken modulo v) and $|X \setminus \bigcup_{l=1}^v S_l(i_l)| \geq k - \lfloor v/3 \rfloor$.*

The proof of this characterisation will occupy a significant part of this paper (Section 5). Note that it immediately follows from this theorem that any k -weakly compatible set of splits is weakly compatible, since the situation pictured in Figure 1.2 (a) is the configuration that is excluded for weakly compatible sets of splits in case $k = 2$ (not including the cardinality constraint in Theorem 1.2 (a) which is always satisfied for $k = 2$). Also, in the special case where D is a k -dissimilarity map arising from a tree (as in [11]), we will further show that Theorem 1.1 can be used to recover the tree from D (see Theorem 7.2). This gives a new proof of the main theorem of Pachter and Speyer in [19].

This rest of this paper is organised as follows. We begin by presenting some definitions concerning subdivisions and splits of convex polytopes (Section 2), as well as a short discussion on splits of hypersimplices (Section 3). In Section 4, we prove Theorem 1.1, while Section 5 is devoted to the rather technical proof of

FIGURE 1.2. An illustration of the forbidden situations (a)–(c) in Theorem 1.2. The dots denote the elements $i_l \in X$ and each of the ellipses corresponds to one of the splits S_l . For example, the dots in (a) represent the elements i_0, i_1, i_2, i_3 , the central dot represents the element i_0 , the ellipses correspond to the splits S_1, S_2, S_3 , and the dots inside the bold ellipse form the set $S_1(i_1)$. The situations in (b) and (c) correspond to the cases $v = 1$ and $v = 7$, respectively.

Theorem 1.2. This is followed by some corollaries of our main theorems related to k -weak compatibility (Section 6) and tree reconstruction (Section 7), respectively. In the last section, we present some remarks on the connection of our results with tight-spans and tropical geometry as well as some open problems.

Acknowledgements: The first author thanks the German Academic Exchange Service (DAAD) for its support through a fellowship within the Postdoc-Programme and the UEA School of Computing Sciences for hosting him during the writing of this paper.

2. SUBDIVISIONS AND SPLITS OF CONVEX POLYTOPES

We refer the reader to Ziegler [24] and De Loera, Rambau, and Santos [4] for further details concerning polytopes and subdivisions of polytopes, respectively. Let $n \geq 1$ and $P \subset \mathbb{R}^n$ be a convex polytope. For technical reasons, we assume that P has dimension $n - 1$ and the origin is not an interior point of P . For any hyperplane H for which P is entirely contained in one of the two halfspaces defined by H , the intersection $P \cap H$ is called a *face* of P . A *subdivision* of P is a collection Σ of polytopes (the *faces* of Σ) such that

- ▷ $\bigcup_{F \in \Sigma} F = P$,
- ▷ for all $F \in \Sigma$ all faces of F are in Σ ,
- ▷ for all $F_1, F_2 \in \Sigma$ the intersection $F_1 \cap F_2$ is a face of F_1 and F_2 ,
- ▷ for all $F \in \Sigma$ all vertices of F are vertices of P .

Consider a weight function $w : \text{Vert } P \rightarrow \mathbb{R}$ assigning a weight to each vertex of P . This gives rise to the *lifted polytope* $\mathcal{L}_w(P) := \text{conv}\{(v, w(v)) \in \mathbb{R}^{n+1} \mid v \in \text{Vert } P\}$. By projecting back to the affine hull of P , the complex of lower faces of $\mathcal{L}_w(P)$ (with respect to the last coordinate) induces a polytopal subdivision $\Sigma_w(P)$ of P . Such

a subdivision of P is called a *regular subdivision*. For two subdivisions Σ_1, Σ_2 of a polytope P , we can form the collection of polytopes

$$(2.1) \quad \Sigma := \{F_1 \cap F_2 \mid F_1 \in \Sigma_1, F_2 \in \Sigma_2\}.$$

Clearly, Σ satisfies all but the last condition for a subdivision. If this last condition is also satisfied, the subdivision Σ is called the *common refinement* of Σ_1 and Σ_2 .

A *split* S of P is a subdivision of P which has exactly two maximal faces denoted by S_+ and S_- (see [13] for details on splits of polytopes). By our assumptions, the linear span of $S_+ \cap S_-$ is a linear hyperplane H_S , the *split hyperplane* of S with respect to P . Conversely, it is easily seen that a (possibly affine) hyperplane defines a split of P if and only if its intersection with the (relative) interior of P is nontrivial and it does not separate any edge of P . A set \mathcal{T} of splits of P is called *compatible* if for all $S_1, S_2 \in \mathcal{T}$ the intersection of $H_{S_1} \cap H_{S_2}$ with the relative interior of P is empty. It is called *weakly compatible* if \mathcal{T} has a common refinement.

Lemma 2.1. *Let P be a polytope and \mathcal{T} a set of splits of P . Then \mathcal{T} is weakly compatible if and only if there does not exist a set $\mathcal{H} \subset \{H_S \mid S \in \mathcal{T}\}$ of splitting hyperplanes and a face F of P such that $F \cap \bigcap_{H \in \mathcal{H}} H = \{x\}$ and x is not a vertex of P .*

Proof. Obviously, if there is a set of hyperplanes $\mathcal{H} \subset \{H_S \mid S \in \mathcal{T}\}$ with this property, the set \mathcal{T} cannot have a common refinement and hence is not compatible. Conversely, we can iteratively compute the collections (2.1) for elements of \mathcal{T} and it has to happen at some stage that there occurs an additional vertex v . At this stage take F to be the minimal face of P containing v and $\mathcal{H} = \{H_S \mid v \in H_S, S \in \mathcal{T}\}$. \square

For a split S , it is easy to explicitly define a weight function w_S such that $S = \Sigma_{w_S}(P)$, hence all splits of P are regular subdivisions of P ; see [13, Lemma 3.5]. Finally, as mentioned in the introduction, a sum $w = w_1 + w_2$ of two weight functions for P is called *coherent* if $\Sigma_w(P)$ is the common refinement of $\Sigma_{w_1}(P)$ and $\Sigma_{w_2}(P)$. So a sum $\sum_{S \in \mathcal{T}} \lambda_S w_S$ with $\lambda_S \in \mathbb{R}_{>0}$ is coherent if and only if the set \mathcal{T} of splits is weakly compatible.

3. SPLITS OF HYPERSIMPLICES

Let $n > k > 0$. As mentioned above, the k th hypersimplex $\Delta(k, n) \subset \mathbb{R}^n$ is defined as the convex hull of all 0/1-vectors in \mathbb{R}^n having exactly k ones, or, equivalently, $\Delta(k, n) = [0, 1]^n \cap \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = k\}$. The polytope $\Delta(k, n)$ is $(n - 1)$ -dimensional and has $2n$ facets defined by $x_i = 1, x_i = 0$ for $1 \leq i \leq n$. Each face of $\Delta(k, n)$ is isomorphic to $\Delta(k', n')$ for some $k' \leq k, n' < n$. This polytope first appeared in the work of Gabriélov, Gel'fand and Losik [8, Section 1.6].

For a split $\{A, B\}$ of X , and $\mu \in \mathbb{N}$ the (A, B, μ) -hyperplane is defined by the equation

$$(3.1) \quad \mu \sum_{i \in A} x_i = (k - \mu) \sum_{i \in B} x_i.$$

The splits of $\Delta(k, n)$ can then be characterised as follows:

Proposition 3.1 (Lemma 5.1 and Proposition 5.2 in [13]). *The splits of $\Delta(k, n)$ are given by the (A, B, μ) -hyperplanes with $k - \mu + 1 \leq |A| \leq n - \mu - 1$ and $1 \leq \mu \leq k - 1$.*

We will be interested in the special class of splits of $\Delta(k, n)$ defined by subsets of X . For $A \subsetneq X$ define the hyperplane $H_A \subset \mathbb{R}^n$ by

$$(3.2) \quad \sum_{i \in A} x_i = 1.$$

Corollary 3.2. *For $A \subset X$ the hyperplane H_A defines a split of $\Delta(k, n)$ if and only if $2 \leq |A| \leq n - k$. Otherwise, H_A defines the trivial subdivision of $\Delta(k, n)$.*

Proof. Since $\sum_{i=1}^n x_i = k$ for all $x \in \Delta(k, n)$, the hyperplane H_A defines the same split as the $(X \setminus A, A, 1)$ -hyperplane. Thus, by Proposition 3.1, H_A defines a split if and only if $k \leq n - |A| \leq n - 2$, which is equivalent to $2 \leq |A| \leq n - k$. Obviously, if $|A| \leq 1$ or $|A| > k$, the hyperplane H_A does not meet the interior of $\Delta(k, n)$ hence defines the trivial subdivision. \square

The split of $\Delta(k, n)$ defined by H_A for some $A \subset X$ will be called S_A . We now characterise when such splits of $\Delta(k, n)$ are compatible.

Lemma 3.3. *Let $A, B \subset X$. The two splits S_A and S_B of $\Delta(k, n)$ are compatible if and only if either $A \subset B$, $B \subset A$, $|A \cup B| \geq n - k + 2$, or $k = 2$ and $A \cap B = \emptyset$.*

Proof. By [13, Proposition 5.4], two splits of $\Delta(k, n)$ defined by $(A, B; \mu)$ - and $(C, D; \nu)$ -hyperplanes are compatible if and only if one of the following holds:

$$\begin{aligned} |A \cap C| &\leq k - \mu - \nu, & |A \cap D| &\leq \nu - \mu, \\ |B \cap C| &\leq \mu - \nu, & \text{or} & \quad |B \cap D| \leq \mu + \nu - k. \end{aligned}$$

That is, the two splits S_A (defined by the $(X \setminus A, A, 1)$ -hyperplane) and S_B (defined by the $(X \setminus B, B, 1)$ -hyperplane) are compatible if and only if

$$\begin{aligned} |(X \setminus A) \cap (X \setminus B)| &\leq k - 2, & |(X \setminus A) \cap B| &\leq 0, \\ |A \cap (X \setminus B)| &\leq 0, & \text{or} & \quad |A \cap B| \leq 2 - k. \end{aligned}$$

The first condition can be rewritten as $|A \cup B| \geq n - k + 2$, the second condition is equivalent to $B \subset A$, the third condition is equivalent to $A \subset B$, and the last condition can only be true if $k = 2$ and $A \cap B = \emptyset$. \square

For a weight function w and a split S_A of $\Delta(k, n)$, we define the *split index* $\alpha_{S_A}^w$ of w with respect to S_A as

$$\alpha_{S_A}^w = \max \left\{ \lambda \in \mathbb{R}_{\geq 0} \mid (w - \lambda w_{S_A}) + \lambda w_{S_A} \text{ is coherent} \right\},$$

where w_{S_A} is a weight function inducing the split S_A on $\Delta(k, n)$. Note, that this is the coherency index of the weight function w with respect to w_{S_A} as defined in [13, Section 2].

4. THE SPLIT DECOMPOSITION OF A k -DISSIMILARITY MAP

In this section, we shall prove Theorem 1.1. We begin with some preliminaries concerning the relationship between splits of X and splits of $\Delta(k, n)$.

As mentioned in the introduction, we can identify vertices of $\Delta(k, n)$ with subsets of X of cardinality k . With this identification in mind, for a k -dissimilarity map D , define the weight function $w_D : \text{Vert } \Delta(k, n) \rightarrow \mathbb{R}; K \mapsto -D(K)$ on the vertices of $\Delta(k, n)$. In addition, for $D = \delta_S^k$, we put $w_S^k := w^{\delta_S^k}$. This allows us to relate splits of X with splits of $\Delta(k, n)$.

Lemma 4.1. *Let $S = \{A, B\}$ be a non-trivial split of X .*

- (a) *The subdivision $\Sigma_{w_S^k}(\Delta(k, n))$ is the common refinement of the subdivisions induced on $\Delta(k, n)$ by H_A and H_B .*
- (b)
 - (i) *If $\min(|A|, |B|) \geq k$ then the subdivision $\Sigma_{w_S^k}(\Delta(k, n))$ is the common refinement of the splits S_A and S_B .*
 - (ii) *If $|A| < k \leq |B|$ then the subdivision $\Sigma_{w_S^k}(\Delta(k, n))$ is the split S_B .*
 - (iii) *If $\max(|A|, |B|) < k$ then the subdivision $\Sigma_{w_S^k}(\Delta(k, n))$ is trivial.*

Proof. (a) By [13, Lemma 3.5], a weight function for the split S_B defined by the $(A, B, 1)$ -hyperplane is given by

$$w_1(v) = \begin{cases} |\sum_{i=1}^n a_i v_i|, & \text{if } |\sum_{i=1}^n a_i v_i| > 0, \\ 0, & \text{else,} \end{cases}$$

where a is the normal vector of the $(A, B, 1)$ -hyperplane. Since $\sum_{i=1}^n x_i = k$ for all $x \in \Delta(k, n)$, we have $|\sum_{i=1}^n a_i x_i| = |A \cap K| - (k-1)|B \cap K| = k(1 - |B \cap K|)$, hence (again identifying vertices of $\Delta(k, n)$ with k -subsets of X)

$$w_1(K) = \begin{cases} k, & \text{if } B \cap K = \emptyset, \\ 0, & \text{else.} \end{cases}$$

Similarly, a weight function for the split S_A is given by

$$w_2(K) = \begin{cases} k, & \text{if } A \cap K = \emptyset, \\ 0, & \text{else.} \end{cases}$$

Obviously, $\tilde{w} := \frac{w_1 + w_2}{k} + 1$ defines the same subdivision as $w_1 + w_2$, and we have $\tilde{w} = -\delta_S^k$.

(b) Follows from (a) using Corollary 3.2 and Lemma 3.3. □

In particular, it follows from Lemma 4.1 that if $|X| \geq 2k - 1$ the subdivision $\Sigma_{w_S^k}(\Delta(k, n))$ of $\Delta(k, n)$ is not trivial for any split S , which implies in this case that the split S of X can be recovered from the subdivision $\Sigma_{w_S^k}(\Delta(k, n))$.

Furthermore, Lemma 4.1 implies that the split index α_S^D of a k -dissimilarity map D on X with respect to a non-trivial split $S = \{A, B\}$ of X can be written in terms of split indices for splits of the hypersimplex $\Delta(k, n)$ as

$$\alpha_S^D = \min(\alpha_{S_B}^{w_D}, \alpha_{S_A}^{w_D}).$$

If $\alpha_S^D = 0$ for all non-trivial splits of X , we call D *free of non-trivial splits*. This enables us to deduce our split decomposition theorem for k -dissimilarities by using the polyhedral split decomposition theorem for weight functions. However, since our correspondence only works for non-trivial splits, we have to deal with the trivial splits as a special case before we can give our proof.

4.1. The Trivial Splits. Each $a \in A$ defines a trivial split $S_a := \{\{a\}, X \setminus \{a\}\}$ separating a from the rest of X . The corresponding k -dissimilarity map $\delta_{S_a}^k$ on X is given by

$$\delta_{S_a}^k(K) := \begin{cases} 1, & \text{if } a \in K, \\ 0, & \text{else.} \end{cases}$$

Hence the extension of the weight function $w_{S_a}^k = -\delta_{S_a}^k : \text{Vert } \Delta(k, n) \rightarrow \mathbb{R}$ to \mathbb{R}^n is linear and thus induces the trivial subdivision into $\Delta(k, n)$. In fact, $\{w_{S_a}^k \mid a \in X\}$ is a basis for the space of all functions from \mathbb{R}^n to \mathbb{R} . This implies that $\alpha_{S_a}^{w_{S_a}^k} = 0$ for all $a \in X$ and all non-trivial splits S of X , so adding or subtracting k -dissimilarities corresponding to trivial splits does not interfere with split indices for non-trivial splits.

For some $a \in X$ and a k -dissimilarity map D that is free of non-trivial splits, we define the *split index* of the trivial split S_a as

$$\alpha_{S_a}^D := \frac{1}{2} \min \left\{ \min_{b, c \in X \setminus (L \cup \{a\})} (D(L, a, b) + D(L, a, c) - D(L, b, c)) \mid L \in \binom{X \setminus \{a\}}{k-2} \right\}.$$

For an arbitrary k -dissimilarity map D we then set $\alpha_{S_a}^D := \alpha_{S_a}^{D_0}$ where D_0 is defined as

$$D_0 := D - \sum_{S \text{ non-trivial split of } X} \alpha_S^D \delta_S^k.$$

The following lemma shows that we can iteratively compute all the trivial split indices.

Lemma 4.2. *Let D be a k -dissimilarity map on X , $a, a' \in X$ distinct, and $\lambda \in \mathbb{R}_{\geq 0}$. Then*

$$\alpha_{S_a}^D = \alpha_{S_a}^{D + \lambda \delta_{S_{a'}}^k}.$$

Proof. For all $L \in \binom{X \setminus \{a\}}{k-2}$ and $b, c \in X \setminus (L \cup \{a\})$, we see that

$$\begin{aligned} \delta_{S_{a'}}^k(L, a, b) + \delta_{S_{a'}}^k(L, a, c) - \delta_{S_{a'}}^k(L, b, c) &= \begin{cases} 1 - 1, & \text{if } a' \in L \cup \{b, c\}, \\ 0, & \text{else,} \end{cases} \\ &= 0, \end{aligned}$$

and hence $(D + \lambda \delta_{S_{a'}}^k)(L, a, b) + (D + \lambda \delta_{S_{a'}}^k)(L, a, c) - (D + \lambda \delta_{S_{a'}}^k)(L, b, c) = D(L, a, b) + D(L, a, c) - D(L, b, c)$. \square

4.2. Proof of the Split Decomposition Theorem 1.1. Recall that a k -dissimilarity map D on X is called *split-prime* if for all (trivial and non-trivial) splits S of X we have $\alpha_S^D = 0$.

Proof. Using the Split Decomposition Theorem for polytopes [13, Theorem 3.10], we obtain the decomposition

$$w_D = w_0 + \sum_{\Sigma \text{ split of } \Delta(k, n)} \alpha_\Sigma^{w_D} w_\Sigma,$$

of w_D , where w_Σ is a weight function defining the split Σ of $\Delta(k, n)$. Setting

$$D_0 := - \left(w_0 + \sum_{\Sigma \text{ split of } \Delta(k, n)} \alpha_\Sigma^{w_D} w_\Sigma + \sum_{A \subset X, |A| \geq 2} (\alpha_{S_A}^{w_D} - \alpha_{\{A, X \setminus A\}}^D) w_{S_A} \right),$$

where the first sum ranges over all splits Σ of $\Delta(k, n)$ that are not of the form S_A for some $A \subset X$, we can rewrite the above decomposition of D as

$$D = D_0 + \sum_{S \text{ non-trivial split of } X} \alpha_S^D D_S^k.$$

This decomposition is unique because of the uniqueness of the decomposition of w_D .

Now for all $a \in X$ we compute the split indices $\alpha_{S_a}^D = \alpha_{S_a}^{D_0}$ to derive the final split decomposition, which is again unique by Lemma 4.2. \square

For a k -dissimilarity map D on X , we define $\mathcal{S}_D := \{S \text{ split of } X \mid \alpha_S^D \neq 0\}$, that is the set of all splits of X that appear in the Split Decomposition (1.1) and recall from the introduction that such a set is by definition k -weakly compatible.

Proposition 4.3. *A set \mathcal{S} of splits of X is k -weakly compatible if and only if the set $\mathcal{T} = \{S_A \text{ split of } \Delta(k, n) \mid A \in S, S \in \mathcal{S}\}$ of splits of $\Delta(k, n)$ is weakly compatible.*

Proof. It follows from the Split Decomposition Theorem for polytopes [13, Theorem 3.10] that a set of splits of $\Delta(k, n)$ is weakly compatible if and only if it occurs in the split decomposition of some weight function of $\Delta(k, n)$. This implies that a set \mathcal{S} of non-trivial splits is k -weakly compatible if and only if \mathcal{T} is a weakly compatible set of splits of $\Delta(k, n)$. By definition, adding trivial splits does not change the k -weakly compatibility of a set, so the claim follows. \square

5. WEAK COMPATIBILITY OF $\Delta(k, n)$ -SPLITS

In this section, we prove a theorem from which Theorem 1.2 immediately follows by Proposition 4.3. For a family \mathcal{M} of subsets of X , we denote by $\mathcal{T}(\mathcal{M}) := \{S_A \text{ split of } \Delta(k, n) \mid A \in \mathcal{M}\}$ the corresponding set of splits of $\Delta(k, n)$.

Theorem 5.1. *Let \mathcal{M} be a collection of subsets of a set X . Then the set $\mathcal{T}(\mathcal{M})$ of splits of $\Delta(k, n)$ is weakly compatible if and only if none of the following conditions hold:*

- (a) *There exist (pairwise distinct) $i_0, i_1, i_2, i_3 \in X$ and $A_1, A_2, A_3 \in \mathcal{M}$ with $i_m \in A_l \iff m \in \{0, l\}$ and $|X \setminus (A_1 \cup A_2 \cup A_3)| \geq k - 2$.*
- (b) *For some $1 \leq v < k$ there exist (pairwise distinct) $i_1, \dots, i_{2v+1} \in X$ and $A_1, \dots, A_{2v+1} \in \mathcal{M}$ with $i_m \in A_l \iff (m \in \{l, l+1\}$ (taken modulo $2v+1$) $\text{and } |X \setminus \bigcup_{i=1}^{2v+1} A_i| \geq k - v$.*
- (c) *For some $7 \leq v < 3k$ with $v \bmod 3 \neq 0$ there exist (pairwise distinct) $i_1, \dots, i_v \in X$ and $A_1, \dots, A_v \in \mathcal{M}$ with $i_m \in A_l \iff m \in \{l, l+1, l+2\}$ (taken modulo v) and $|X \setminus \bigcup_{i=1}^v A_i| \geq k - \lfloor v/3 \rfloor$.*

5.1. Sufficiency of Conditions (a)–(c). (a): Suppose (a) holds. Choose a subset B of $X \setminus (A_1 \cup A_2 \cup A_3)$ with $|B| = k - 2$ and consider the face F of $\Delta(k, n)$ defined by the facets $x_i = 1$ for $i \in B$ and $x_i = 0$ for $i \in X \setminus (B \cup \{i_0, i_1, i_2, i_3\})$. Looking at the intersection $I := F \cap H_{A_1} \cap H_{A_2} \cap H_{A_3}$ we have

$$x_{i_0} + x_{i_1} = x_{i_0} + x_{i_2} = x_{i_0} + x_{i_3} = 1 \text{ and } x_{i_0} + x_{i_1} + x_{i_2} + x_{i_3} = 2 \text{ for all } x \in I.$$

This yields $x_{i_k} = 1 - x_{i_0}$ for $k \in \{1, 2, 3\}$ and eventually $x_{i_k} = 1/2$ for all $k \in \{0, 1, 2, 3\}$. Hence we have $I = \{x\}$ where $x \in \mathbb{R}^n$ is defined via

$$x_i = \begin{cases} 1, & \text{if } i \in B, \\ \frac{1}{2}, & \text{if } i \in \{i_0, i_1, i_2, i_3\}, \\ 0, & \text{else.} \end{cases}$$

By Lemma 2.1, $\mathcal{T}(\mathcal{M})$ is not weakly compatible.

(b): Suppose (b) holds. Choose a subset B of $X \setminus \bigcup_{i=1}^{2v+1} A_i$ with $|B| = k - v$ together with some $m \in B$ and consider the face F of $\Delta(k, n)$ defined by the facets $x_i = 1$ for $i \in B \setminus \{m\}$ and $x_i = 0$ for $i \in X \setminus (B \cup \{i_1, \dots, i_{2v+1}\})$. We consider the intersection $I := F \cap \bigcap_{i=1}^{2v+1} H_{A_i}$ and get $x_{i_l} + x_{i_{l+1}} = 1$ for all $x \in I$ and $1 \leq l \leq 2v$. So $x_{i_l} = x_{i_{l+2}}$ for all $1 \leq l \leq 2v - 1$ which implies $x_{i_1} = x_{i_{2v+1}}$ and, since $x_{i_{2v+1}} + x_{i_1} = 1$, we have $x_{i_l} = 1/2$ for all $1 \leq l \leq 2v + 1$. Since $\sum_{i=1}^{2v+1} x_i + x_m = v$ we also get $x_m = 1/2$. Hence, we have $I = \{x\}$ where $x \in \mathbb{R}^n$ is defined via

$$x_i = \begin{cases} 1, & \text{if } i \in B \setminus \{m\}, \\ \frac{1}{2}, & \text{if } i \in \{i_1, \dots, i_{2v+1}, m\}, \\ 0, & \text{else.} \end{cases}$$

By Lemma 2.1, $\mathcal{T}(\mathcal{M})$ is not weakly compatible.

(c): Suppose (c) holds. Choose a subset B of $X \setminus \bigcup_{i=1}^v A_i$ with $|B| = k - \lfloor v/3 \rfloor$ together with some $m \in B$ and consider the face F of $\Delta(k, n)$ defined by the facets $x_i = 1$ for $i \in B \setminus \{m\}$ and $x_i = 0$ for $i \in X \setminus (B \cup \{i_1, \dots, i_v\})$. We consider the intersection $I := F \cap \bigcap_{i=1}^v H_{A_i}$ and get $x_{i_l} + x_{i_{l+1}} + x_{i_{l+2}} = 1$ for all $x \in I$ and $1 \leq l \leq v$. As in Case (b) we obtain $x_{i_l} = 1/3$ for all $1 \leq l \leq v$ and, since $\sum_{i=1}^v x_i + x_m = \lfloor v/3 \rfloor$, we get $x_m = \bar{v}/2$, where $\bar{v} = v \bmod 3$. Hence, we have $I = \{x\}$ where $x \in \mathbb{R}^n$ is defined via

$$x_i = \begin{cases} 1, & \text{if } i \in B \setminus \{m\}, \\ \frac{1}{3}, & \text{if } i \in \{i_1, \dots, i_v, m\}, \\ \frac{\bar{v}}{3}, & \text{if } i = m, \\ 0, & \text{else.} \end{cases}$$

By Lemma 2.1, $\mathcal{T}(\mathcal{M})$ is not weakly compatible. \square

5.2. Necessity of Conditions (a)–(c). Suppose $\mathcal{T}(\mathcal{M})$ is not weakly compatible and that none of (a) – (c) hold. Then, by Lemma 2.1, there exists some subset $\mathcal{M}' \subset \mathcal{M}$ and some face F of $\Delta(k, n)$ such that $I := F \cap \bigcap_{A \in \mathcal{M}'} H_A = \{x\}$, x not a vertex of $\Delta(k, n)$. We assume that \mathcal{M}' is minimal with this property and denote by $X' \subset X$ the set of coordinates not fixed to 0 or 1 in F , that is, $0 < x_i < 1$ if and only if $i \in X'$. For any $i \in X'$ we denote by $\mathcal{M}(i) := \{A \in \mathcal{M}' \mid i \in A\}$ the set of all $A \in \mathcal{M}'$ containing i .

We first state some simple facts for later use:

- (F1) For all distinct $i, j \in X'$, we have $\mathcal{M}(i) \neq \mathcal{M}(j)$.
- (F2) For all distinct $A, B \in \mathcal{M}'$, we have $A \not\subset B$.
- (F3) For all $A \in \mathcal{M}'$, we have $|A \cap X'| \geq 2$.
- (F4) For all $A \in \mathcal{M}'$, there exists some $i \in A$ with $|\mathcal{M}(i)| \geq 2$.

Proof. (F1) Suppose there exist distinct $i, j \in X'$, with $\mathcal{M}(i) = \mathcal{M}(j)$. Then choose some $0 < \epsilon < \min(x_i, 1 - x_j)$ and consider $x' \in \mathbb{R}^n$ defined by

$$x'_l = \begin{cases} x_l - \epsilon, & \text{if } l = i, \\ x_l + \epsilon, & \text{if } l = j, \\ x_l, & \text{else.} \end{cases}$$

So $x \neq x'$ and $x' \in I$, a contradiction.

- (F2) Follows from the minimality of \mathcal{M}' .
- (F3) Suppose $|A \cap X'| = \{j\}$ for some $A \in \mathcal{M}'$ and $j \in X'$. Then $0 < x_j < 1$ but $x_i \in \{0, 1\}$ for all $i \in A \setminus \{j\}$ which obviously contradicts $\sum_{i \in A} x_i = 1$.
- (F4) Let $A \in \mathcal{M}'$. By F3 there exist distinct $i, j \in A$ and by F1 $\mathcal{M}(i) \neq \mathcal{M}(j)$. However, $A \in \mathcal{M}(i) \cap \mathcal{M}(j)$ so either $\mathcal{M}(i)$ or $\mathcal{M}(j)$ has to contain another $B \in \mathcal{M}'$.

\square

As the next step, we will show that none of the following conditions may be satisfied:

- (i) There exists (pairwise distinct) $i_0, i_1, i_2, i_3 \in X'$ and $A_1, A_2, A_3 \in \mathcal{M}'$ with $i_m \in A_l \iff m \in \{0, l\}$.
- (ii) For some $v \in \mathbb{N}$, there exist (pairwise distinct) $i_1, \dots, i_{2v+1} \in X'$ and $A_1, \dots, A_{2v+1} \in \mathcal{M}'$ with $i_m \in A_l \iff m \in \{l, l+1\}$ (taken modulo $2v+1$).
- (iii) For some $v \in \mathbb{N}$, there exist (pairwise distinct) $i_0, i_1, \dots, i_{2v+1} \in X'$ and $A_1, \dots, A_{2v+1} \in \mathcal{M}'$ with $\mathcal{M}(i_0) = \{A_1\}, \mathcal{M}(i_{2v+1}) = \{A_{2v+1}\}$ and $\mathcal{M}(i_l) = \{A_l, A_{l+1}\}$ for $1 \leq l \leq 2v$.
- (iv) For some $v \in \mathbb{N}$, there exist (pairwise distinct) $i_1, \dots, i_{2v} \in X'$ and $A_1, \dots, A_{2v} \in \mathcal{M}'$ with $\mathcal{M}(i_l) = \{A_l, A_{l+1}\}$ (taken modulo $2v$).
- (v) There exists some $i \in X'$ with $|\mathcal{M}(i)| = 3$.
- (vi) For some $A \in \mathcal{M}'$, there exist distinct $i, j \in A$ such that $|\mathcal{M}(i)|, |\mathcal{M}(j)| \geq 4$.

Proof. (i): Suppose this were true. Then we have $\sum_{i \in A_l \setminus \{i_0\}} x_i = 1 - x_{i_0}$ for $l \in \{1, 2, 3\}$, hence $\sum_{i \in A_1 \cup A_2 \cup A_3} x_i \leq x_{i_0} + \sum_{l=1}^3 \sum_{i \in A_l \setminus \{i_0\}} x_i \leq 3 - 2x_{i_0} < 3$. Since $\sum_{i \in X} x_i = k$, this implies $\sum_{i \in X \setminus (A_1 \cup A_2 \cup A_3)} x_i > k - 3$ and, because $x_i \in \{0, 1\}$ for all $i \in X \setminus (A_1 \cup A_2 \cup A_3)$, we get $|X \setminus (A_1 \cup A_2 \cup A_3)| \geq k - 2$. So we are in situation (a) of the theorem, a contradiction.

(ii): For the purpose of this proof, a collection of i_l and A_l satisfying this condition will be called a *cycle*. We set $T = \bigcup_{i=1}^{2v+1} A_i$, $T_1 := \{i_l \mid 1 \leq l \leq 2v+1\}$, $T_2 := T \setminus T_1$, $t := |T|$, $t_1 := |T_1|$, and $t_2 := |T_2|$. Cycles are partially ordered by the lexicographic ordering of the pair (v, t) . We assume without loss of generality that our cycle is minimal in the set of all cycles occurring in \mathcal{M}' .

As base case we consider $v = 1$ and $t \leq 5$. Each decreasing chain of cycles will eventually reach this case since $v \geq 1$ and $t \geq 2v+1$. Then (after a possible exchange of A_3 with A_1 or A_2) we can assume that $T \subset A_1 \cup A_2$, hence $\sum_{i \in T} x_i < 2$. This implies that $\sum_{i \in X \setminus T} x_i > k - 2$ and hence $n - t \geq k - 1$ since $x_i \in \{0, 1\}$ for all $i \in X \setminus T$. So we are in situation (b) of the theorem, a contradiction.

We say that a set $A \in \mathcal{M}'$ is of *a-type* (with respect to some cycle Z) if for some $1 \leq l \leq 2v+1$ we have $i_l \in A$, $A \subset A_l \cup A_{l+1}$, and $|A \cap T_2| \geq 2$. The set is of *b-type* (with respect to some cycle Z) if there exists some $i \in A \cap T_2$ and some $j \in A \cap (X \setminus T)$. We will show that for the cycle Z each set A (distinct from all A_l) with $A \cap T \neq \emptyset$ is either of a-type or of b-type with respect to Z .

First consider some set A (distinct from all A_l) with $i_l \in A$ for some $1 \leq l \leq 2v+1$ and some $j \in A \setminus \{i_l\}$. Then $j \in T$ because otherwise i_l, i_{l-1}, i_{l+1}, j and A_l, A_{l+1}, A would satisfy Condition (i) for some $j \in A \setminus T$. Furthermore, if there exists some $m \notin \{l, l+1\}$ with $j \in A_m$, then we could form a smaller cycle. We get $j \in A_l \cup A_{l+1}$ and (using F2) $|A \cap T_2| \geq 2$, so A is of a-type.

Now fix a minimal cycle Z and consider an arbitrary set B (distinct from all A_l) with $B \cap T \neq \emptyset$. Suppose that $B \subset T_2$. This implies that there either exists a smaller cycle, or we have the situation that there exists some $1 \leq l \leq 2v+1$ such that $B \subset A_{l+1} \cup A_{l-1}$ and $B \cap A_{l+1}, B \cap A_{l-1} \neq \emptyset$. By the minimality of our cycle this implies $A_l \subset T_1$. However, this implies $B \cup A_l \subsetneq A_{l+1} \cup A_{l-1}$, a contradiction

to $\sum_{i \in A} x_i = 1$ for all $B \in \mathcal{M}'$ and $x_i > 0$ for all $i \in X'$. So B either contains some element of T_1 implying B is of a-type or some element from $X \setminus T$ implying B is of b-type.

Now each $i \in T_1$ cannot be contained in some set of b-type by definition and can be contained in at most one set of a-type by F2. Furthermore, each $i \in T_2$ can be contained in at most two sets of a-type or in at most one set of b-type but not both. To see this assume that $i \in A_l$ is contained in two sets A, B either A of a-type and B of b-type or both of b-type. Then there exist $i_1 \in A \setminus (B \cup A_l)$, $i_2 \in B \setminus (A \cup A_l)$, and $i_3 \in A_l \setminus (B \cup A)$ such that A, B, A_l and i, i_1, i_2, i_3 satisfy Condition (i). For the same reason, each $i \in X' \setminus T$ can be in at most two sets of b-type.

We denote the number of sets of a-type (b-type) with respect to Z by a (by b). In order to uniquely define all t coordinates of x_i with $i \in T$, it is necessary to have at least t equations involving some x_i with $i \in T$, that is, t sets in \mathcal{M}' which contain elements of T . By our considerations above, all such sets have to be either of a-type or of b-type or be equal to some A_l for $1 \leq l \leq 2v + 1$. Hence we get $a + b + 2v + 1 \geq t$, or, equivalently (since $t = t_1 + t_2 = t_2 + 2v + 2$),

$$(5.1) \quad a + b \geq t_2.$$

Furthermore, by the fact that some $j \in T_2$ can only be in one set of b-type and this holds only if it is not in some set of a-type, we have $b \leq t_2 - a'$, where a' is the number of elements of T_2 contained in some set of a-type. Together with Inequality (5.1) we obtain

$$(5.2) \quad t_2 - a \leq b \leq t_2 - a';$$

in particular $a' \leq a$. However, since each set of a-type contains at least two elements of T_2 and each element of T_2 is contained in at most two sets of a-type, which implies $a' \geq a$, we have $a' = a$ and each element of T_2 is contained in either one set of b-type or each element of T_2 is contained in exactly two sets of a-type. In view of the definition of the sets of a-type the former implies that there are no sets of a-type at all and the latter implies that the sets of a-type with respect to Z form themselves a cycle Z' together with the elements $j_1, \dots, j_{2v+1} \in T_2$ contained in sets of a-type with respect to Z .

We first consider the latter case. Suppose without loss of generality that $j_l \in A_l$ and call the set of a-type containing j_l and j_{l+1} B_l . Then the sets A_l are sets of a-type with respect to Z' . Hence $\bigcup_{l=1}^{2v+1} (A_l \cup B_l) = \{i_l, j_l \mid 1 \leq l \leq 2v + 1\}$. If now $2v + 1$ is not divisible by 3, then we are in the situation (c) of the theorem, a contradiction, since $v \geq 6$ by our base case and $v < 3k$ obviously holds. If $2v + 1$ is divisible by 3, then choose some $0 < \epsilon < \min\{x_{i_l}, x_{j_l} \mid 1 \leq l \leq 2v + 1\}$ and consider $x' \in \mathbb{R}^n$ defined by

$$x'_l = \begin{cases} x_l + \epsilon, & \text{if } l = i_m \text{ and } m \equiv 1 \pmod{3} \text{ or } l = j_m \text{ and } m \equiv 2 \pmod{3}, \\ x_l - \epsilon, & \text{if } l = j_m \text{ and } m \equiv 1 \pmod{3} \text{ or } l = i_m \text{ and } m \equiv 3 \pmod{3}, \\ x_l, & \text{else.} \end{cases}$$

Then $x \neq x'$ and $x \in I$, a contradiction.

The case remaining is $a = 0$. Then Inequality (5.2) implies $b = t_2$. So $\sum_{i \in T} x_i = 2\nu + 1 - \sum_{i \in T_1} x_i$, since each element of T_2 is in exactly one of the $2\nu + 1$ sets A_l and each element of T_1 in exactly two. This is equivalent to $\sum_{i \in T_1} x_i = \nu - \frac{1}{2}(\sum_{i \in T_2} x_i - 1)$. Define T_3 to be the set of all elements of X' that are one set of b-type but not in T . There cannot be any elements of X' that are in more than two sets of b-type but not in T because this would satisfy Condition (i). For some $t \in T_3$ which is in exactly one set of b-type, we get $x_t \leq 1 - x_j \leq 1 - 1/2x_j$ for some $j \in T_2$, and for some $t \in T_3$ which is in exactly two sets of b-type, we get $x_t \leq 1 - \max(x_j, x_l) \leq 1 - 1/2(x_j + x_l)$ for some $j, l \in T_2$. Since each $j \in T_2$ is contained in exactly one set of b-type, each $j \in T_2$ occurs exactly once, hence we get $\sum_{i \in T_3} x_i \leq |T_3| - \frac{1}{2} \sum_{i \in T_2} x_i$. So

$$\begin{aligned} \sum_{i \in T \cup T_3} x_i &\leq \nu - \frac{1}{2} \left(\sum_{i \in T_2} x_i - 1 \right) + \sum_{i \in T_2} x_i + |T_3| - \frac{1}{2} \sum_{i \in T_2} x_i \\ &= \nu + |T_3| + \frac{1}{2}, \end{aligned}$$

and $|X \setminus (T \cup T_3)| \geq k - \nu - |T_3| - 1/2$. Hence $|X \setminus T| \geq k - \nu$ (as it has to be an integer). So we are in the situation (b) of the theorem, a contradiction

(iii),(iv): Choose some $0 < \epsilon < \min\{x_{i_l} \mid l \text{ odd}\} \cup \{1 - x_{i_l} \mid l \text{ even}\}$ and define the point $x' \in \mathbb{R}^n$ by

$$x'_l = \begin{cases} x_l - \epsilon, & \text{if } l = i_j \text{ for some odd } j, \\ x_l + \epsilon, & \text{if } l = i_j \text{ for some even } j, \\ x_l, & \text{else.} \end{cases}$$

Obviously, $x \neq x'$ and it is easily checked that $x' \in I$, a contradiction.

(v): Suppose there exists some $i \in X'$ with $M(i) \geq 3$. Since Condition (i) cannot hold, there has to exist some $B \in M(i)$ such that, for each $j \in B$, there exists some $B \neq C$ with $j \in C \in M(i)$. By F2, there exist distinct $j_1, j_2 \in B$ and $C_1, C_2 \in M(i)$ with $j_1 \in C_1$, $j_2 \in C_2$ and $l_1 \in C_1 \setminus B$, $l_2 \in C_2 \setminus B$. Furthermore, we have $C_1 \cap C_2 = \emptyset$ because otherwise B, C_1, C_2 and j_1, j_2, j_3 for some $j_3 \in C_1 \cap C_2$ would satisfy Condition (ii). So for each $i \in X'$ with $|M(i)| \geq 3$ we have the situation depicted in the left of Figure 5.1.

If there now exists some other point $i' \in C_1$ with $|M(i')| \geq 3$, then we have to be in the same situation for this point again if $i' \notin B$. In particular this implies also that $|M(j)| \geq 3$ for some $j \in A$, so we can assume that $i' \in B$. We now repeat this process until we either get an element that we had before – implying that Condition (ii) holds – or we arrive at some set A that has exactly one $i \in A$ with $|M(i')| \geq 3$.

Repeating the same process for C_2 instead of C_1 , we finally arrive at the following situation: For some $\nu \in \mathbb{N}$ there exist i_1, \dots, i_ν and A_1, \dots, A_ν such that $M(i_1) =$

FIGURE 5.1. Situations for $i \in X'$ with $M(i) = 3$ and $M(i) \geq 4$, respectively.

$\{A_1, A_2\}$, $M(i_l) = \{A_{l-1}, A_l, A_{l+1}\}$ for $1 < l < v$, $M(i_v) = \{A_{v-1}, A_v\}$, and $A_l = \{i_{l-1}, i_l, i_{l+1}\}$ for $1 < l < v$.

We now consider two cases: First suppose $v \equiv 2 \pmod{3}$. Then choose $0 < \epsilon < \min\{x_{i_l}, 1 - x_{i_l} \mid 1 \leq l \leq v\}$ and consider $x' \in \mathbb{R}^n$ defined by

$$x'_l = \begin{cases} x_l + \epsilon, & \text{if } l = i_m \text{ and } m \equiv 1 \pmod{3}, \\ x_l - \epsilon, & \text{if } l = j_m, l = i_m \text{ and } m \equiv 1 \pmod{3}, \\ x_l, & \text{else.} \end{cases}$$

Then $x \neq x'$ and $x \in I$, a contradiction. So suppose $v \not\equiv 2 \pmod{3}$. Then it is easily seen that the values of x_{i_l} for $1 \leq l \leq v$ are determined by the values $\sum_{i \in A_1 \setminus \{i_1, i_2\}} x_i$ and $\sum_{i \in A_v \setminus \{i_{v-1}, i_v\}} x_i$. This implies that $M'' := M' \setminus \{A_l \mid 1 \leq l \leq v\}$ with

$$F' := F \cap \left\{ x \in \mathbb{R}^n \mid x_{i_l} = \begin{cases} 1, & \text{if } l \equiv 1 \pmod{3} \\ 0, & \text{else,} \end{cases} \quad \text{for all } 1 \leq l \leq v \right\}$$

if $v \equiv 0 \pmod{3}$ and

$$F' := F \cap \left\{ x \in \mathbb{R}^n \mid x_{i_l} = \begin{cases} 1, & \text{if } l \equiv 1 \pmod{3} \\ 0, & \text{else,} \end{cases} \quad \text{for all } 1 \leq l < v \right\}$$

if $v \equiv 2 \pmod{3}$ would also have been a valid choice at the beginning, but $M'' \subsetneq M'$ contradicts the minimality of M' .

(vi): Suppose there exists some $i \in X'$ with $M(i) \geq 4$. As in the proof of (v), we have to be in the situation depicted in the left of Figure 5.1 and there exists some $A \in M(i) \setminus \{B, C_1, C_2\}$. Since Condition (i) cannot hold, every $j \in A$ has to be in some $C' \in M(i)$ and, again by F2, there exist distinct $j'_1, j'_2 \in A$ and $C'_1, C'_2 \in M(i)$ with $j'_1 \in C_1$, $j'_2 \in C'_2$ and $j'_1 \in C'_1 \setminus A$, $j'_2 \in C'_2 \setminus A$. Since Condition (i) cannot hold, we get $C'_1, C'_2 \in \{A, C_1, C_2\}$. However, if, for example, $C'_1 = C_1$ and $C'_2 = A$, then i, j'_1, j'_2 and A, B, C_1 would satisfy Condition (ii). Hence we have $C'_1 = C_1$ and $C'_2 = C_2$, or vice-versa. So we are in the situation depicted in the right of Figure 5.1. To obtain in addition some j with $M(j) \leq 3$, there has to exist some $D \in M'$ with $D \cap U \neq \emptyset$, where $U := A \cup B \cup C_1 \cup C_2$. Because Condition (i) cannot hold, we

get $|D \cap U| \geq 2$ and so F2 implies that either Condition (i) or Condition (ii) has to be satisfied, a contradiction. \square

We will now show that under our assumptions at the beginning of the proof one of the Conditions (i) to (vi) has to be satisfied, which leads to a contradiction.

For each $A \in \mathcal{M}'$ we define $\tilde{A} := \{i \in A \cap X' \mid \mathcal{M}(i) \leq 2\}$. We have $|\tilde{A}| \geq 2$ for all $A \in \mathcal{M}'$, because otherwise we would have a situation satisfying one of Conditions (v) or (vi). Given some pair $(A, \delta) \in \mathcal{M}' \times X'$ with $\delta \in \tilde{A}$, we now give a way to construct a finite sequence $F(A, \delta) = (A_j, \alpha_j)_{1 \leq j \leq L(A, \delta)} \subset \mathcal{M}' \times X'$:

$$\text{I } (A_1, \alpha_1) := (A, \delta).$$

II If there exists some $\gamma \in \tilde{A}_j$ such that $A_l \in \mathcal{M}(\gamma)$ for some $l < k$, then $L(A, \delta) = j$ and (A_j, α_j) is the last element of the sequence;

III else, if there exists some $\gamma \in \tilde{A}_j$ such that $\mathcal{M}(\gamma) = \{A_j, C\}$ for some $C \neq A_j$, then we set $A_{j+1} := C$ and $\alpha_{j+1} := \gamma$;

IV else, there exist a (unique) $\gamma \in \tilde{A}_j$ with $\mathcal{M}(\gamma) = \{A_j\}$; then $L(A, \delta) = j$ and (A_j, α_j) is the last element of the sequence.

The existence of the $\gamma \in \tilde{A}_j$ in Case IV follows from the fact that $|\tilde{A}_j| \geq 2$ and its uniqueness from F1. Obviously, $F(A, \delta)$ ends in either Case II or in Case IV. Suppose there exist some pair (A, δ) ending up in Case II. Then $\alpha_1, \dots, \alpha_{L(A, \delta)}$ and $A_1, \dots, A_{L(A, \delta)}$ obviously satisfy Condition (ii) if $L(A, \delta)$ is odd and Condition (iv) if μ_A is even – a contradiction. Hence for each starting pair $(A, \delta) \in \mathcal{M}' \times X'$ with $\delta \in \tilde{A}$ we end up in Case IV. The unique element γ occurring there will be denoted $f(A, \delta)$.

Now choose some $B \in \mathcal{M}'$. By F4 and $|\tilde{B}| \geq 2$ there exists some $\delta \in B$ with $|\mathcal{M}(\delta)| = 2$, say $\mathcal{M}(\delta) = \{B, C\}$ for some $C \neq B$. We now construct the sequences $F(B, \delta) = (B_j, \alpha_j)_{1 \leq j \leq L(B, \delta)}$ and $F(C, \delta) = (C_j, \gamma_j)_{1 \leq j \leq L(C, \delta)}$. Define

$$\begin{aligned} i_0 &:= f(B, \delta), & i_1 &:= \beta_{L(B, \delta)} & A_1 &:= B_{L(B, \delta)} \\ &\cdots &&\cdots &&\cdots \\ i_{L(B, \delta)} &:= \beta_1 = \delta = \gamma_1, & & A_{L(B, \delta)} &:= B_1, & A_{L(B, \delta)} &:= B_1, \\ &\cdots &&\cdots &&\cdots \\ i_{L(B, \delta)+L(C, \delta)-1} &:= \gamma_{L(C, \delta)}, & i_{L(B, \delta)+L(C, \delta)} &:= f(B, \delta) & A_{L(B, \delta)+L(C, \delta)} &:= C_{L(C, \delta)}. \end{aligned}$$

Now if $e := L(B, \delta) + L(C, \delta)$ is odd, then these i_0, \dots, i_e and A_1, \dots, A_e satisfy Condition (iii). So e must be even.

Suppose there exists some $1 < j < e$ and some $\alpha \in A_j$ with $\alpha \neq i_{j-1}, i_j$. Then we distinguish two cases: First, assume that $\mathcal{M}(\alpha) = \{A_j\}$. Then either j is odd and $i_0, \dots, i_{j-1}, \alpha$ and A_1, \dots, A_j satisfy Condition (iii), or j is even, hence $e - j + 1$ is odd and α, i_j, \dots, i_e and A_j, \dots, A_e satisfy Condition (iii). So assume that $D \in \mathcal{M}(\alpha)$ for some $D \neq A_j$. Now we construct the sequence $F(D, \alpha) = (D_j, \delta_j)_{1 \leq j \leq L(D, \alpha)}$. Then either $j + L(D, \alpha)$ is odd and $i_0, \dots, i_{j-1}, \alpha = \delta_1, \dots, \delta_{L(D, \alpha)}, f(D, \alpha)$ and $A_1, \dots, A_j, D_1, \dots, D_{L(D, \alpha)}$ satisfy Condition (iii) or $j + L(D, \alpha)$ is even, hence $e - j + L(D, \alpha) + 1$ is

odd and, similarly, $i_e, \dots, i_j, \alpha = \delta_1, \dots, \delta_{L(D,\alpha)}, f(D, \alpha)$ and $A_e, \dots, A_j, D_1, \dots, D_{L(D,\alpha)}$ satisfy Condition (iii).

This shows that for each $\alpha \in A_j$ with $1 < j < e$ we have $\mathcal{M}(\alpha) = \{A_{j-1}, A_j\}$ or $\mathcal{M}(\alpha) = \{A_j, A_{j+1}\}$. By F1, this implies $\alpha = i_j$ or $\alpha = i_{j-1}$, respectively. Furthermore, it follows from this fact and the construction of $F(B, \delta)$ and $F(C, \delta)$ that $\alpha \in A_1 \setminus A_2$ implies $\alpha = i_0$ and $\alpha \in A_e \setminus A_{e-1}$ implies $\alpha = i_e$. Thus, each A_j , $1 \leq j \leq e$, has exactly two elements. Hence x has to satisfy the equations

$$x_{i_l} + x_{i_{l-1}} = 1, \quad \text{for all } 1 \leq l \leq e.$$

This implies that $x_{i_l} = x_{i_0}$ if l is odd and $x_{i_l} = 1 - x_{i_0}$ if l is even. In particular, $\sum_{l=0}^e x_{i_l} = x_0 + \sum_{l=1}^{e/2} (x_{i_l} + x_{i_{l-1}}) = e/2 + x_0$ is not an integer, hence there exists some $\gamma \in X' \setminus \{i_0, \dots, i_e\}$. We distinguish two cases: If $\mathcal{M}(\gamma) = \emptyset$, then choose some $0 < \epsilon < \min\{x_{i_0}, 1 - x_{i_0}, x_\gamma\}$ and define the point $x' \in \mathbb{R}^n$ via

$$x'_i = \begin{cases} x_i - \epsilon, & \text{if } i = i_l \text{ for some even } l, \\ x_i + \epsilon, & \text{if } i = \gamma, \text{ or } i = i_l \text{ for some odd } l \\ x_i, & \text{else.} \end{cases}$$

It is easily checked that $x' \in I$, a contradiction.

In the case $\mathcal{M}(\gamma) \neq \emptyset$ there exist some $B^* \in \mathcal{M}'$ with $\gamma \in B^*$. We can now argue as before: By F4 and $|\tilde{B}^*| \geq 2$ there exists some $\delta^* \in B^*$ with $|\mathcal{M}(\delta^*)| = 2$, say $\mathcal{M}(\delta^*) = \{B^*, C^*\}$ for some $C^* \neq B^*$. This leads us to $i_0^*, \dots, i_{e^*}^*$ and $A_1^*, \dots, A_{e^*}^*$ having the same properties as i_0, \dots, i_e and A_1, \dots, A_e . Choose some $0 < \epsilon < \min\{x_{i_0}, 1 - x_{i_0}, x_{i_0^*}, 1 - x_{i_0^*}\}$ and define the point $x' \in \mathbb{R}^n$ via

$$x'_i = \begin{cases} x_i - \epsilon, & \text{if } i = i_l \text{ for some even } l \text{ or } i = i_l^* \text{ for some odd } l, \\ x_i + \epsilon, & \text{if } i = i_l \text{ for some odd } l \text{ or } i = i_l^* \text{ for some even } l, \\ x_i, & \text{else.} \end{cases}$$

It is easily checked that $x' \in I$, our final contradiction. \square

6. COMPATIBILITY AND k -WEAK COMPATIBILITY OF SPLITS OF X

In this section, we present some corollaries of Theorem 1.2. Recall that two splits $\{A, B\}$ and $\{C, D\}$ are called *compatible* if one of the four intersections $A \cap C$, $A \cap D$, $B \cap C$, or $B \cap D$ is empty; a set \mathcal{S} of splits is called *compatible* if each pair of elements of \mathcal{S} is compatible (see e.g., [20]).

We first consider the case $k = 2$. In this case, for a split $\{A, B\}$ of X , the splits S_A and S_B of $\Delta(2, n)$ are clearly equal.

Corollary 6.1 (Corollary 6.3 and Proposition 6.4 in [13]). *Let \mathcal{S} be a set of splits of X .*

- (a) *\mathcal{S} is compatible if and only if $\mathcal{T} := \{S_A \text{ split of } \Delta(2, n) \mid A \in S, S \in \mathcal{S}\}$ is a compatible set of splits of $\Delta(2, n)$*
- (b) *\mathcal{S} is weakly compatible if and only if it is 2-weakly compatible.*

Proof. (a) Follows from Lemma 3.3.

(b) Condition (a) of Theorem 1.2 reduces exactly to the usual definition of weak compatibility of splits of X , since the condition on the cardinality is redundant for $k = 2$. Condition (c) can never occur if $k = 2$, and Condition (b) can only occur in the case $\nu = 1$. In this case, however, $i_0, i_3, i_1, i_2 \in X$ and the splits S_1, S_2, S_3 also fulfil Condition (a) for some $i_0 \in X \setminus (S_1(i_1) \cup S_2(i_2) \cup S_3(i_3))$.

□

Note that this last proof follows directly from the definition of weak compatibility for splits of sets and splits of polytopes, whereas the proof of [13, Proposition 6.4] uses the uniqueness of the split decomposition for metrics [1, Theorem 2] and weight functions for polytopes [13, Theorem 3.10].

We now consider the case $k \geq 3$.

Proposition 6.2. *Let $\{A, B\}, \{C, D\}$ be two distinct splits of X and $\mathcal{T} := \{S_F \text{ split of } \Delta(k, n) \mid F \in \{A, B, C, D\}\}$ be the set of corresponding splits of $\Delta(k, n)$. Then we have:*

- (a) *If \mathcal{T} is compatible, then $\{A, B\}$ and $\{C, D\}$ are compatible.*
- (b) *If $\{A, B\}$ and $\{C, D\}$ are compatible, then there exists at most one non-compatible pair of splits in \mathcal{T} .*
- (c) *If $\{A, B\}$ and $\{C, D\}$ are compatible and $A \cap C = \emptyset$, then \mathcal{T} is compatible if and only if $k = 2$ or $|A \cup C| \geq n - k + 2$.*

Proof. (a) By Lemma 3.3, if $\{A, B\}$ and $\{C, D\}$ are not compatible, the only possibility for S_A and S_C or S_A and S_D to be compatible is that $|A \cup C| \geq n - k + 1$ or $|A \cup D| \geq n - k + 1$, respectively. However, since $D = X \setminus C$, these two conditions cannot be true at the same time.

(b),(c) We assume without loss of generality (for (b)) that $A \cap C = \emptyset$. By Lemma 3.3, it follows that S_A and S_B , S_B and S_D , S_B and S_D , S_B and S_C , and S_A and S_D are compatible, so it only remains to consider the pair S_A and S_C . For this pair of splits Lemma 3.3 implies that it is compatible if and only if $|A \cup C| \geq n - k + 2$ or $k = 2$.

□

Corollary 6.3. *Let \mathcal{S} be a compatible set of splits of X . Then \mathcal{S} is k -weakly compatible for all $k \geq 2$.*

Proof. This follows directly from Theorem 1.2: If either of the properties (a), (b), or (c) would hold, then, for example, the pair of splits $\{A_1, X \setminus A_1\}$ and $\{A_2, X \setminus A_2\}$ would not be compatible. □

We conclude by remarking that each of the three conditions in Theorem 1.2 become weaker as k increases:

Corollary 6.4. *Let \mathcal{S} be a set of splits of X and $k \geq 3$. If \mathcal{S} is k -weakly compatible, then it is l -weakly compatible for all $2 \leq l \leq k$. In particular, a k -weakly compatible set of splits is weakly compatible.*

7. k -DISSIMILARITY MAPS FROM TREES

Let $T = (V, E, l)$ be a weighted tree consisting of a vertex set V , an edge set E and a function $l : E \rightarrow \mathbb{R}_{>0}$ assigning a weight to each edge. We assume that T does not have any vertices of degree two and that its leaves are labelled by the set X . Such trees are also called *phylogenetic trees*; see Figure 1.1 for an example and Semple and Steel [20] for more details. As explained in Figure 1.1, we can define a k -dissimilarity map D_T^k by assigning to each k -subset $K \subset X$ the total length of the induced subtree. Each edge $e \in E$ defines a split $S_e = \{A, B\}$ of X by taking as A the set of all leaves on one side of e and as B the set of leaves on the other. It is easily seen that

$$(7.1) \quad D_T^k = \sum_{e \in E} l(e) \delta_{S_e}^k.$$

We now show how this decomposition of D_T^k is related to its split decomposition.

Proposition 7.1. *Let D be a k -dissimilarity map on X with $|X| \geq 2k - 1$. Then $D = D_T^k$ for some tree T if and only if \mathcal{S}_D is compatible and $D_0 = 0$ in the split decomposition of D . Moreover, if this holds, then the tree T is unique.*

Proof. Suppose the split decomposition of D is given by

$$D = \sum_{S \in \mathcal{S}} \alpha_S^D \delta_S^k$$

for some compatible set \mathcal{S} of splits of X . Then Equation (7.1) shows that for the tree T whose edges correspond to the splits in $S \in \mathcal{S}$ with weights α_S^D we have $D_T^k = D$.

Conversely, if $D = D_T^k$ for some weighted tree, Equation (7.1) is a decomposition of D_T^k . By Corollary 6.3, this decomposition is coherent and the uniqueness part of Theorem 1.1 completes the proof. \square

This gives us a new proof of the following Theorem by Pachter and Speyer:

Theorem 7.2 ([19]). *Let T be a weighted tree with leaves labelled by X and no vertices of degree two, and $k \geq 2$. If $|X| \geq 2k - 1$, then T can be recovered from D_T^k .*

Proof. Compute the split decomposition of D . The proof of Proposition 7.1 now shows how to construct a tree T' with $D = D_{T'}^k$ and the uniqueness part of this proposition shows that $T = T'$. \square

8. REMARKS AND OPEN QUESTIONS

8.1. Tight-Spans. It was shown in [13, Proposition 2.3] that the set of inner faces of a regular subdivision $\Sigma_w(P)$ of a polytope P is anti-isomorphic to a certain realisable polytopal complex, the *tight-span* $\mathcal{T}_w(P)$ of w with respect to P . If $P = \Delta(2, n)$ and $w_d := -d$ for a metric d on X then $\mathcal{T}_{w_d}(\Delta(2, n))$ is the tight-span T_d of the metric space (X, d) ; see Isbell [16] and Dress [7]. In particular, if d is a tree metric, then T_d is isomorphic to that tree. For a k -dissimilarity map D one can similarly consider the tight-span $\mathcal{T}_{w_D}(\Delta(k, n))$. However, Proposition 6.2 shows that $\mathcal{T}_{w_D}(\Delta(k, n))$ is not necessarily a tree for $k \geq 3$. As an example, we depict in Figure 8.1 the tight-span $\mathcal{T}_{w_{D_T^3}}(\Delta(3, 6))$ where T is the tree from Figure 1.1. Even though it is not a tree, note that the non-trivial splits corresponding to the edges of T can be easily recovered from $\mathcal{T}_{w_{D_T^3}}(\Delta(3, 6))$. It would be interesting to understand better the relationship between the structure of $\mathcal{T}_{w_D}(\Delta(k, n))$ and the split decomposition of D in case D has no split-prime component.

FIGURE 8.1. The tight-span of the subdivision of $\Delta(3, 6)$ induced by the 3-dissimilarity map D_T^3 coming from the tree T in Figure 1.1. Note, that the three non-trivial splits $\{16, 2345\}$, $\{34, 1256\}$, (corresponding to the splits S_{2345} , S_{1256} of $\Delta(3, 6)$, respectively) and $\{156, 234\}$ (corresponding to the two splits S_{156} , S_{234} of $\Delta(3, 6)$) can be recovered from the tight-span, as indicated in the figure.

8.2. Matroid Subdivisions, Tropical Geometry, and Valuated Matroids. A subdivision Σ of $\Delta(k, n)$ is called a *matroid subdivision* if all 1-dimensional cells $E \in \Sigma$ are edges of $\Delta(k, n)$, or, equivalently, if all elements of Σ are matroid polytopes. The space of all weight functions w inducing matroid subdivisions is called the *Dressian*. The elements of the Dressian correspond to (uniform) valuated matroids (see [12, Remark 2.4]) and to tropical Plücker vectors (see Speyer [21, Proposition 2.2]). The corresponding weight function w then defines a so called *matroid subdivision* of $\Delta(k, n)$. The *tropical Grassmannian* (see [22]) is a subset of the Dressian. It was shown by Iriarte [15] with methods developed by Bocci and Cools [2], and Cools [3] that for a weighted tree T , the weight function $w_{D_T^k}$ is a point in the tropical Grassmannian and hence in the Dressian. Corollary 6.3 now implies that $w_{D_T^k}$ is indeed in the interior of the cone of the Dressian spanned by

the split weights $w_{S_e}^k$ for all splits S_e corresponding to edges e of T . In the language of matroid subdivisions this implies that starting from a compatible set \mathcal{S} of splits of X the set $\{S_A \text{ split of } \Delta(k, n) \mid A \in S, S \in \mathcal{S}\}$ of splits of $\Delta(k, n)$ induces a matroid subdivision. Establishing that other sets of splits satisfying the requirements of Theorem 5.1 also have this property could lead to a further understanding of the Dressian.

8.3. Computation of the Split Decomposition and Tree Testing. In [19], Speyer and Pachter raise the question how to test whether a given k -dissimilarity map D on X comes from a tree. Our results suggest the following simple algorithm: Compute the split indices a_S^D for all splits of X , test whether $D_0 = 0$ in the split decomposition (1.1), and whether the split system \mathcal{S}_D is compatible. Equation (2) in [13] gives an explicit formula for the indices $a_{w_{S_A}}^{WD}$ and hence for the split indices a_S^D , however this involves the computation of the tight-span $\mathcal{T}_{w_D}(\Delta(k, n))$ whose number of vertices can be in general exponential in n . It would be interesting to derive a simpler formula for the split indices similar to the one existing in the case $k = 2$ given by Bandelt and Dress [1, Page 50]. This might yield a polynomial algorithm to test whether a given k -dissimilarity map D on X comes from a tree.

REFERENCES

- [1] H.-J. Bandelt A. W. M. Dress, A canonical decomposition theory for metrics on a finite set, *Adv. Math.* 92 (1992), 47–105.
- [2] C. Bocci F. Cools, A tropical interpretation of m -dissimilarity maps, *Appl. Math. Comput.* 212 (2009), 349–356.
- [3] F. Cools, On the relation between weighted trees and tropical Grassmannians, *J. Symbolic Comput.* 44 (2009), 1079–1086.
- [4] J. A. De Loera, J. Rambau, F. Santos, *Triangulations: Structures for algorithms and applications*, Springer, 2010.
- [5] M. M. Deza I. G. Rosenberg, n -semimetrics, *European J. Combin.* 21 (2000), 797–806.
- [6] M. M. Deza M. Laurent, *Geometry of cuts and metrics*, Springer-Verlag, Berlin, 1997.
- [7] A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, *Adv. in Math.* 53 (1984), 321–402.
- [8] A. M. Gabrièlov, I. M. Gel'fand, M. V. Losik, Combinatorial computation of characteristic classes, *Functional Anal. Appl.* 9 (1975), 48–49.
- [9] C. Hayashi, Two dimensional quatification based on the measure of dissimilarity among three elements, 24 (1972), 251–257.
- [10] W. J. Heiser M. Bennani, Triadic distance models: axiomatization and least squares representation, *J. Math. Psych.* 41 (1997), 189–206.
- [11] S. Herrmann, K. T. Huber, V. Moulton, A. Spillner, Recognizing treelike k -dissimilarities, 2011, submitted.
- [12] S. Herrmann, A. Jensen, M. Joswig, B. Sturmfels, How to draw tropical planes, *Electron. J. Combin.* 16 (2009), Research Paper 6, 26 p.
- [13] S. Herrmann M. Joswig, Splitting polytopes, *Münster J. Math.* 1 (2008), 109–141.
- [14] D. H. Huson D. Bryant, Application of phylogenetic networks in evolutionary studies., *Mol. Biol. Evol.* 23 (2006), 254–267.

- [15] B. Iriarte Giraldo, Dissimilarity vectors of trees are contained in the tropical Grassmannian, Electron. J. Combin. 17 (2010), Note 6, 7 p.
- [16] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76.
- [17] S. Joly G. Le Calvé, Three-way distances, J. Classification 12 (1995), 191–205.
- [18] D. Levy, R. Yoshida, L. Pachter, Beyond pairwise distances: Neighbor-joining with phylogenetic diversity estimates, Mol. Biol. Evol. 23 (2006), 491–498.
- [19] L. Pachter D. E. Speyer, Reconstructing trees from subtree weights, Appl. Math. Lett. 17 (2004), 615–621.
- [20] C. Semple M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.
- [21] D. E. Speyer, Tropical linear spaces, SIAM J. Discrete Math. 22 (2008), 1527–1558.
- [22] D. E. Speyer B. Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), 389–411.
- [23] M. J. Warrens, n -way metrics, J. Classification 27 (2010), 173–190.
- [24] G. M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.

SCHOOL OF COMPUTING SCIENCES, UNIVERSITY OF EAST ANGLIA, NORWICH, NR4 7TJ,
UK

E-mail address: s.herrmann@uea.ac.uk, vincent.moulton@cmp.uea.ac.uk