Математичко клатно са препреком

Семинарски рад у оквиру курса Основе математичког моделирања

Исидора Дукић 146/2020 Немања Ршумовић 91/2020 Владимир Кнежевић 206/2017

Математички факултет Универзитет у Београду 26. мај 2024.

Садржај

1	Увод			
2	Прва фаза			
	$2.\overline{1}$	Извођење математичког модела	4	
	2.2	Решавање диференцијалне једначине	5	
	2.3	Период осциловања	6	
3	Друга фаза			
	3.1	Извођење математичког модела	7	
	3.2	Решавање диференцијалне једначине	7	
	3.3	Период осциловања	7	
4	Укупни период осциловања клатна			
5	Одређивање почетног угла $ heta_0$			
Лı	итер	атура	11	
Δ	Лог	Vener	19	

1 Увод

Формулација проблема:

Математичко клатно дужине l се креће поред вертикалне равни дубине $\frac{l}{2}$ (као на слици). Када клатно дође у вертикални положај, у наредној фази кретања се због препреке креће као клатно дужине $\frac{l}{2}$.

Слика 1: Формулација

- За мале углове θ_0 извести математички модел и решити га. Колики је период клатна?
- Колики треба да је почетни угао θ_0 да би у другој фази кретања клатно било у стању мировања као у трећем случају приказаном на слици (тј. да од тог положаја наставља да се креће надоле)? Дозвољено је користити нумеричку интеграцију. Узети l=2, m=1.
- Направити анимацију кретања клатна са препреком.

Како бисмо једноставније посматрали задати проблем и извели математички модел поделићемо кретања клатна по фазама.

Слика 2: Подела кретања клатна по фазама

Иницијално посматрамо кретање математичког клатна дужине l од тренутка t_0 када се оно пушта до тренутка t_1 када удара о препреку дужине $\frac{l}{2}$. Потом се разматра кретање клатна, које је сада дужине $\frac{l}{2}$, од трнутка t_1 до тренутка t_2 (поновног доласка у вертикални положај), након чега поново постаје дужине l као у првом случају и разматрамо кретање од тренутка t_2 до тренутка t_3 .

Да ће се клатно у тећој фази вратити у почетни положај из кога је пуштено у првој, као и аналогност ових фаза, доказујемо коришћењем закона очувања енергије који каже да у изолованом систему укупна количина енергије остаје константна током времена.

$$E = E_k + E_p = const (1)$$

Изједначимо енергије у почетној тачки прве фазе (временски тренутак t_0) и крајњој тачки треће фазе (временски тренутак t_3)

$$E_1 = E_3 \tag{2}$$

$$E_{k1} + E_{p1} = E_{k3} + E_{p3} (3)$$

и како је клатно у стању мировања у тим тачкама, брзине су једнаке 0, па следи да је кинетичка енергија једнака 0 и важи

$$0 - mgh_1 = 0 - mgh_3 \tag{4}$$

$$mgh_1 = mgh_3 \tag{5}$$

$$h_1 = h_3 \tag{6}$$

Дакле, овај проблем можемо упростити на посматрање клатна дужине l и другог клатна дужине $\frac{l}{2}$. Уколико њихове периоде осциловања означимо редом са T_1 и T_2 , временске тренутке t_0 , t_1 , t_2 и t_3 можемо представити на следећи начин:

$$t_0 = 0$$

$$t_1 = \frac{T_1}{4}$$

$$t_2 = t_1 + \frac{T_2}{2}$$

$$t_3 = t_2 + \frac{T_1}{4}$$

2 Прва фаза

2.1 Извођење математичког модела

Сила гравитације делује на тег вертикално наниже и једнака је mg где је m маса тега, а g убрзање земљине теже ($\approx 9.81\frac{m}{s^2}$). Гравитациону силу можемо разложити на две компоненте, радијалну и тангенцијалну. Радијална компонента F_r делује у правцу канапа, док тангенцијална F_t делује као сила дуж трајекторије тега.

θ - угао отклона

s - дужина кружног лука од почетног до равнотежног положаја

Слика 3: Приказ сила које делују на клатно

$$F_g = mg (7)$$

$$F_g = F_t + F_r \tag{8}$$

Како је канап клатна нерастегљив сила F_r нема утицај

$$F_q = F_t + 0 (9)$$

$$F_g = F_t = -mg\sin\theta \tag{10}$$

$$mg = -mg\sin\theta\tag{11}$$

и пошто је g убрзање, то је други извод пређеног пута s

$$\frac{d^2}{dt^2}s = -g\sin\theta\tag{12}$$

Дужина кружног лука је директно пропорционална углу отклона, односно важи:

$$s = l\theta \implies s(t) = l\theta(t)$$
 (13)

одакле се изводи:

$$\frac{d^2}{dt^2}s = \frac{d^2}{dt^2}l\theta = l\frac{d^2}{dt^2}\theta. \tag{14}$$

Из (12) и (14) следи:

$$\frac{d^2}{dt^2}\theta = -\frac{g}{l}\sin\theta\tag{15}$$

За мале углове θ можемо да апроксимирамо $\sin \theta = \theta$, чиме добијамо модел клатна без отпора средине представљен диференцијалном једначином другог реда:

$$\frac{d^2}{dt^2}\theta = -\frac{g}{l}\theta\tag{16}$$

2.2 Решавање диференцијалне једначине

Диференцијална једначина (16) представља хомогену линеарну диференцијалну једначину 2. реда са константним коефицијентима. Прво ћемо извести опште решење, а потом убацити почетне услове како бисмо добили њено решење.

$$y'' + py' + qy = 0 \qquad p, q - const \tag{17}$$

Карактеристична једначина:

$$\lambda^2 + p\lambda + q = 0 \qquad \lambda_{1,2} = \alpha \pm i\beta \tag{18}$$

Опште решење:

$$y = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x)) \tag{19}$$

Као што је речено, за решавање ове диференцијалне једначине користимо почетне услове $\theta(0)=\theta_0, \frac{d}{dt}\theta(0)=0.$

$$\theta'' + \frac{g}{l}\theta = 0 \tag{20}$$

$$\lambda^2 + \frac{g}{l} = 0 \tag{21}$$

$$\lambda_{1,2} = \pm \sqrt{-\frac{g}{l}} = \pm i\sqrt{\frac{g}{l}} = \alpha \pm i\beta \tag{22}$$

$$\alpha = 0 \quad \land \quad \beta = \sqrt{\frac{g}{l}} \tag{23}$$

Заменом ових вредности у (19) и применом почетног услова $\theta(0)=\theta_0$ добијамо следеће

$$\theta(t) = e^{0*t} \left(C_1 \cos\left(\sqrt{\frac{g}{l}}t\right) + C_2 \sin\left(\sqrt{\frac{g}{l}}t\right) \right) \tag{24}$$

$$\theta(0) = \theta_0 = C_1 \cos(0) + C_2 \sin(0) \tag{25}$$

$$\theta(0) = \theta_0 = C_1 * 1 + C_2 * 0 \implies C_1 = 0$$
 (26)

Сада, користећи први извод од (24) и почетни услов $\frac{d}{dt}\theta(0)=0$ добијамо

$$\theta(t)' = C_1(-\sin\left(\sqrt{\frac{g}{l}}t\right)\sqrt{\frac{g}{l}}) + C_2(\cos\left(\sqrt{\frac{g}{l}}t\right)\sqrt{\frac{g}{l}})$$
 (27)

$$\theta(0)' = 0 = C_1(-\sin\left(\sqrt{\frac{g}{l}} * 0\right)\sqrt{\frac{g}{l}}) + C_2(\cos\left(\sqrt{\frac{g}{l}} * 0\right)\sqrt{\frac{g}{l}})$$
 (28)

$$\theta(0)' = 0 = C_1(-\sin(0)\sqrt{\frac{g}{l}}) + C_2(\cos(0)\sqrt{\frac{g}{l}})$$
(29)

$$\theta(0)' = 0 = C_1 * 0 + C_2 * \sqrt{\frac{g}{l}} \implies C_2 = 0$$
 (30)

Коначно, заменом C_1 и C_2 у (24) се добија решење ове диференцијалне једначине

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}}t\right) \tag{31}$$

2.3 Период осциловања

Решење диференцијалне једначине (31) описује периодично хармонијско кретање. Стога, период осциловања клатна у првој фази кретања износи

$$T_1 = 2\pi \sqrt{\frac{l}{g}}, \qquad \theta_0 << 1 \tag{32}$$

а то је познато као Хајгенсов закон, па период осциловања не зависи од масе m, а ни од угла $\theta_0.$

Слика 4: Период осциловања код прве фазе

3 Друга фаза

3.1 Извођење математичког модела

У овој фази кретања дужина канапа се полови. На аналоган начин као у првој фази се долази до извођења модела

$$\frac{d^2}{dt^2}\theta = -\frac{2g}{l}\sin\theta. \tag{33}$$

Односно, апроксимацијом $\sin \theta = \theta$ за мале углове θ важи

$$\frac{d^2}{dt^2}\theta = -\frac{2g}{l}\theta. {34}$$

3.2 Решавање диференцијалне једначине

Као што је претходно напоменуто, у овој фази је дужина канапа преполовљена, па се решавање диференцијалне једначине изводи на исти начин као у првој фази и оно је облика

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{2g}{l}}t\right) \tag{35}$$

3.3 Период осциловања

До периода осциловања клатна у другој фази се долази на исти начин као и у првој и оно износи

$$T_2 = 2\pi \sqrt{\frac{l}{2g}}, \qquad \theta_0 << 1 \tag{36}$$

Слика 5: Период осциловања код друге фазе

4 Укупни период осциловања клатна

Укупан период осциловања клатна можемо добити као збир периода осциловања клатна у засебним фазама. Позивајући се на слику 2 и претходно изведене периоде, можемо уочити следеће:

- ullet прва фаза (од трнутка t_0 до t_1) има период једнак $rac{T_1}{4}$
- ullet друга фаза (од трнутка t_1 до t_2) има период једнак $rac{T_2}{2}$
- \bullet трећа фаза (од трнутка t_2 до t_3), попут прве, има период једнак $\frac{T_1}{4}$

Одавде добијамо да је укупан период

$$T = \frac{T_1}{4} + \frac{T_2}{2} + \frac{T_1}{4} \tag{37}$$

$$T = \frac{T_1}{2} + \frac{T_2}{2} \tag{38}$$

$$T = \frac{2\pi\sqrt{\frac{l}{g}}}{2} + \frac{2\pi\sqrt{\frac{l}{2g}}}{2} \tag{39}$$

$$T = \pi \sqrt{\frac{l}{g}} + \pi \sqrt{\frac{l}{2g}} \tag{40}$$

$$T = \pi \sqrt{\frac{l}{g}} (1 + \sqrt{\frac{1}{2}}) \tag{41}$$

$$T = \pi \sqrt{\frac{l}{g}} \left(1 + \frac{\sqrt{2}}{2}\right) \tag{42}$$

$$T = \frac{\pi}{2} \sqrt{\frac{l}{g}} (2 + \sqrt{2}) \tag{43}$$

5 Одређивање почетног угла θ_0

Потребно је одредити почетни угао θ_0 тако да у другој фази кретања клатно буде у стању мировања као у трећем случају на слици формулације проблема који решавамо, при чему узимамо да је l=2 и m=1.

Поново, користећи закон очувања енергије

$$E = E_k + E_p = const (44)$$

у почетној тачки прве фазе и задатој тачки друге фазе важи

$$E_1 = E_2 \tag{45}$$

$$E_{k1} + E_{p1} = E_{k2} + E_{p2} \tag{46}$$

Како је клатно у стању мировања, за кинетичку енергију важи да је она једнака 0 у тим тачкама

$$0 - mgh_1 = 0 - mgh_2 (47)$$

$$mgh_1 = mgh_2 (48)$$

$$h_1 = h_2 \tag{49}$$

Слика 6: Извођење висина

На основу слике 6 можемо извести чему су једнаке висине h_1 и h_2 .

$$h_1 = l - x, h_2 = \frac{l}{2} \tag{50}$$

 Непознату x можемо изразити преко косинуса оштрог угла θ_0 правоуглог троугла

$$\cos \theta_0 = \frac{x}{l} \implies x = l \cos \theta_0. \tag{51}$$

одакле следи

$$h_1 = l - l\cos\theta_0 \tag{52}$$

$$h_1 = l(1 - \cos \theta_0) \tag{53}$$

Из (49) добијамо

$$l(1 - \cos \theta_0) = \frac{l}{2} \tag{54}$$

$$1 - \cos \theta_0 = \frac{1}{2} \tag{55}$$

$$\cos \theta_0 = \frac{1}{2} \tag{56}$$

Углови који задовољавају ову једнакост су $\theta_{01}=\frac{\pi}{3}+2k\pi$ и $\theta_{02}=\frac{5\pi}{3}+2k\pi$, па на основу полазних претпоставки добијамо да је тражени угао $\theta_0=\frac{\pi}{3}$.

Литература

- [1] М. Дражић. $\it Mame матичко моделирање$. Математички факултет, Универзитет у Београду, 2017.
- $[2] \ \mathtt{https://fizikalac.wixsite.com/fizikalac/energija}$

А Додатак

Анимација математичког клатна са препреком одрађена је у програмском језику MATLAB и додатно је приложена уз рад.

Изјава о ауторству

Потписани (име, презиме, број индекса)				
<u>Исидора Дукић 146/2020</u>				
Немања Ршумовић 91/2020				
Владимир Кнежевић 206/2017				
Изјављујемо				
да је семинарски рад из предмета <i>Основе математичког моделирања</i> под насловом				
Математичко клатно са препреком				
 резултат сопственог истраживачког рада, да предложен рад у целини ни у деловима није био предложен за добијање било које оцене/испуњење испитне обавезе, према студијским програмима других (високо)школских установа, да су резултати коректно наведени и да нисам кршио/ла ауторска права и користио интелектуалну својину других лица. 				
У Београду, <u>26. маја 2024.</u>	Потписи студената Кидора Гукит Нечана Румовит Вкнедиевант			