MA 205: Complex Analysis Extra questions

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-205

Autumn Semester 2020-21

Contents

0	Notations	2
1	Topology	3
2	Cauchy Riemann Equations	4
3	Series	5
4	Properties of holomorphic functions	8
5	Picard, Rouché, Cauchy's estimates, Liouville, MMT	9

 \S **0** Notations

§0. Notations

- 1. $\mathbb{N} = \{1, 2, 3, \ldots\}$, the set of positive integers.
- 2. \mathbb{Z} is the set of integers.
- 3. \mathbb{Q} is the set of rational numbers.
- 4. \mathbb{R} is the set of real numbers.
- 5. $A \subset B$ is read as "A is a subset of B." In particular, note that $A \subset A$ is true for any set A.
- 6. $A \subsetneq B$ is read "A is a proper subset of B."
- 7. \supset and \supseteq are defined similarly.
- 8. Given a function $f: X \to Y, A \subset X, B \subset Y$, we define

$$f(A) = \{y \in Y \mid y = f(a) \text{ for some } a \in A\} \subset Y,$$

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$$

(Note that this f^{-1} is different from the inverse of a function. In particular, this is always defined, even if f is not bijective. However, the f and f^{-1} above need not be "inverses.")

9. A *domain*, as a subset of $\mathbb C$ will always refer to a set which is open and path connected.

(Note that this is different from domain of a function.)

 $\S 1$ Topology 3

§1. Topology

1. Is the interval (0,1) open as a subset of \mathbb{C} ?

HIDDEN: No

2. Is the interval (0,1) closed as a subset of \mathbb{C} ?

HIDDEN: No

- 3. Consider the following four properties that a subset of $\mathbb C$ can have:
 - (a) Open
 - (b) Closed
 - (c) Bounded
 - (d) Path connected

Thus, we can classify all the subsets of \mathbb{C} into 2^4 classes on the basis of what properties they have (and what they don't).

Give an example of each or a proof that some certain class cannot have anything. You may assume that \varnothing and $\mathbb C$ are the only subsets of $\mathbb C$ which are both open and closed.

- 4. Let $U \subset \mathbb{C}$ be open and nonempty. Show that U is not countable.
- 5. Let $U\subset \mathbb{C}$ be open and K be countably open. Give examples to show that $U\setminus K$ may or not be open.

§2. Cauchy Riemann Equations

1. Consider the function $f:\mathbb{C}\to\mathbb{C}$ defined as

$$f(z) = \bar{z}$$
.

Show that f is continuous at each point.

Show that f is differentiable at no point.

(This has given us a very easy example of a function which is continuous everywhere but differentiable nowhere. On the contrary, one has to put a lot more effort to construct an example in the case of real analysis.)

2. Show that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$f(x,y) = (x, -y)$$

is differentiable in the sense that you saw in MA 105. (That is, its total derivative exists at every point.)

Compare this with the previous question.

3. Let Ω be open (and not necessarily path-connected).

Let $f: \Omega \to \mathbb{C}$ be holomorphic such that f'(z) = 0 for all $z \in \Omega$.

Show that it is *not* necessary that f is constant.

Show that if Ω is also assumed to be path-connected (that is, Ω is a domain), then it is necessary that f is constant.

4. Let Ω be a domain and $f:\Omega\to\mathbb{C}$ be holomorphic.

Suppose

$$f(z) \in \mathbb{R}$$
 for all $z \in \Omega$.

Show that f is constant. (That is, if a complex differentiable function takes only real values, then it must be constant on path-connected sets.)

5. Let Ω be a domain and $f:\Omega\to\mathbb{C}$ be holomorphic.

Suppose that |f| is constant. Show that f is constant.

§3. Series

 (Cauchy criterion for series.) "Recall" Cauchy criterion for convergence from MA 105. (Prove or assume that the analogous thing holds for complex sequences as well.)

Let (a_n) be a sequence of complex numbers. Show that $\sum_{n=1}^{\infty} a_n$ converges iff for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\left| \sum_{k=n}^{m} a_n \right| < \epsilon, \quad \text{ for all } m \ge n \ge N.$$

- 2. Let (a_n) be a sequence of complex numbers such that $\sum |a_n|$ converges. Use the above Cauchy criteria to show that $\sum a_n$ converges.
- 3. Let (a_n) and (b_n) be complex sequences such that $|a_n| \leq |b_n|$ for all $n \in \mathbb{N}$. Show that if $\sum |b_n|$ converges, then so does $\sum |a_n|$ and hence, so does $\sum a_n$. Show that you can weaken the "for all $n \in \mathbb{N}$ " condition to "for all n sufficiently large." (Formulating what we mean by "sufficiently large" is part of the exercise.)
- 4. Use the above to show that

$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

converges for all $z \in \mathbb{C}$ satisfying |z| = 1.

5. Show that

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverges.

HIDDEN: Compare it with the sequence 1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, ...

- 6. Let (a_n) be a sequence of real numbers and (b_n) a sequence of complex numbers satisfying
 - (a) (a_n) is monotonic,
 - (b) $\lim_{n\to\infty} a_n = 0$,
 - (c) there exists $M \ge 0$ such that

$$\left| \sum_{n=1}^{N} b_n \right| \le M$$

for every $N \in \mathbb{N}$.

§3 Series 6

Show that $\sum_{n=1}^{\infty} a_n b_n$ converges.

Here's an outline of what you can do:

(a) Define the partial sums $S_n = \sum_{k=1}^n a_k b_k$ and $B_n = \sum_{k=1}^n b_k$.

Show that

$$S_n = a_n B_n + \sum_{k=1}^{n-1} B_k (a_k - a_{k+1}).$$

(This is called summation by parts.)

- (b) Note that B_n is bounded by M and $a_n \to 0$. Conclude that the first term $\to 0$ as $n \to \infty$.
- (c) Note that give any k, we have $|B_k(a_k a_{k+1})| \leq M|a_k a_{k+1}|$.
- (d) Using (a_n) is monotonic, conclude that

$$\sum_{k=1}^{n-1} |a_k - a_{k+1}| = \sum_{k=1}^{n-1} |a_1 - a_n|.$$

(e) Conclude that $\lim_{n\to\infty} S_n$ exists.

The above is called **Dirichlet's test**.

7. Let $z \in \mathbb{C}$ be such that |z| = 1 and $z \neq 1$. Define the sequences (a_n) and (b_n) as

$$a_n := \frac{1}{n}, \quad b_n := z^n.$$

Show that (a_n) and (b_n) satisfy the hypothesis of Dirichlet's test. Conclude that

$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$

converges.

8. Compute the radius of convergence for the following power series:

$$\sum_{n=1}^{\infty} \frac{z^n}{n}, \quad \sum_{n=1}^{\infty} \frac{z^n}{n^2}.$$

These should come out to be 1. By the previous questions, conclude that the first converges everywhere on the boundary of the disc except at 1. However,

§3 Series 7

the second one converges everywhere on the boundary. Do the same for the power series

$$\sum_{n=1}^{\infty} z^n.$$

HIDDEN: You should get that it converges nowhere on the boundary.

(Note that these series are (more or less) derivatives and anti-derivatives of each other on the *open* disc. However, they show very different behaviour on the boundary of the disc.)

9. Let (a_n) and (b_n) be sequences of complex numbers such that the power series

$$\sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad \sum_{n=0}^{\infty} b_n z^n$$

have radii of convergence R_1 and R_2 respectively. Show that if $R_1 < R_2$, then the radius of convergence of

$$\sum_{n=0}^{\infty} (a_n + b_n) z^n$$

is R_1 .

Show that if $R_1 = R_2$, then all that we can conclude is that the radius of convergence of the sum is at least R_1 .

(The possibilities of radii being 0 or ∞ should not be excluded.)

At this point, I'll remark that you should recall that the radius of convergence being R not only says that it converges for all |z| < R but also that it *diverges* for all |z| > R.

§4. Properties of holomorphic functions

1. Let $\mathbb{H} = \{z \in \mathbb{C} : \Re z > 0\}$ be the open half right plane. Construct a non-constant holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that

$$f\left(\frac{1}{n}\right) = 0, \quad \text{ for all } n \in \mathbb{N}.$$

(Does this contradict what we saw in slides? Why not?)

2. Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function such that

$$f\left(\frac{1}{n}\right) = 0, \quad \text{ for all } n \in \mathbb{N}.$$

Show that f is constant (and that the constant is 0). Compare this with the previous question.

3. Suppose that the domain in the previous question was replaced by an arbitrary domain Ω such that $\{n^{-1}:n\in\mathbb{N}\}\subset\Omega$. Characterise Ω precisely such that the above f(1/n)=0 condition ensures that f is constant. (That is, come up with a rule such that if Ω follows that rule, then f has to be constant and that if Ω does not follow the rule, then f may be non-constant.)

HIDDEN: The rule should be (equivalent to): $0 \in \Omega$

4. Let $f,g:\mathbb{C}\to\mathbb{C}$ be holomorphic functions which are nonzero everywhere. Suppose that f and g satisfy

$$\left(\frac{f'}{f}\right)\left(\frac{1}{n}\right) = \left(\frac{g'}{g}\right)\left(\frac{1}{n}\right), \quad \text{ for all } n \in \mathbb{N}.$$

(The LHS is the function f'/f is evaluated at 1/n and similarly for the RHS.) Find a simpler relation between f and g. (Yes, "simpler" is subjective.)

5. Consider the principal branch $\log: \mathbb{C}\setminus (-\infty,0]\to \mathbb{C}$. Choose the point $z_0=-3+4\iota$ in the domain and expand \log as a power series around this point. Show that the radius of convergence of this power series is 5 and not 4.

§5. Picard, Rouché, Cauchy's estimates, Liouville, MMT

- 1. Show that $\exp(z) = z$ has a solution in \mathbb{C} .
- 2. Let f,g be entire functions such that $\exp f + \exp g = 1$. Show that f and g are constant.
- 3. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that there exists an entire function g such that $f = \exp \circ g$.
- 4. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that there exists an entire function g such that $f=g^2$. (That is, $f(z)=(g(z))^2$ for all $z\in\mathbb{C}$.)
- 5. Minimum Modulus Theorem.

Let Ω be open and connected and $f:\Omega\to\mathbb{C}$ be non-constant and non-vanishing. Show that |f| attains no minimum.

6. Without using Little Picard, show that there is no entire non-constant function such that the image is contained in the upper half plane.

HIDDEN: Consider
$$z \mapsto \frac{z-b}{z+t}$$

7. Let P(z) and Q(z) be polynomials with real coefficients such that $\deg Q(z) \geq \deg P(z) + 2$.

Moreover, assume that Q has no real root.

(a) Show that there exist constants C,R>0 such that

$$\left|\frac{P(z)}{Q(z)}\right| \le \frac{C}{|z|^2}$$

for all $z \in \mathbb{C}$ with |z| > R.

(b) Conclude the improper integrals

$$\int_{-\infty}^{-R} \frac{P(x)}{Q(x)} dx \quad \text{and} \quad \int_{R}^{\infty} \frac{P(x)}{Q(x)} dx$$

exist.

(c) Argue that the integral

$$\int_{-R}^{R} \frac{P(x)}{Q(x)} \mathrm{d}x$$

also exists.

(d) Conclude that the integral

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \mathrm{d}x$$

exists.

(e) Let γ_r denote the semicircle (without the diameter) in the upper half plane with ends -r and r. Show that

$$\lim_{r \to \infty} \int_{\gamma_r} \frac{P(z)}{Q(z)} dz = 0.$$

- (f) Use Cauchy residue theorem to conclude that $\frac{1}{2\pi\iota}\int_{-\infty}^{\infty}\frac{P(x)}{Q(x)}\mathrm{d}x$ is equal to the sum of the residues of p(x)/q(x) at the poles in the upper half plane.
- 8. Let $f: \mathbb{C}^{\times} \to \mathbb{C}$ be a holomorphic function such that

$$|f(z)| \le \sqrt{|z|} + \frac{1}{\sqrt{|z|}}$$

for all $z \in \mathbb{C}^{\times}$.

- (a) Show that 0 is a removable singularity of f. Conclude that f can be made entire.
- (b) Show that ∞ is a removable singularity of f. Conclude that f is bounded.
- (c) Conclude that f is constant.
- 9. Let $U = \{z \in \mathbb{C} : |z| < 1\}$. For $\alpha \in U$, define

$$\varphi_{\alpha}(U) = \frac{z - \alpha}{1 - \bar{\alpha}z}.$$

This function is defined and holomorphic on $\mathbb{C} \setminus \{\bar{\alpha}^{-1}\}$. In particular, it is holomorphic on U.

- (a) If $\alpha \in U$, show that $-\alpha \in U$. Show that $\varphi_{-\alpha}(\varphi_{\alpha}(z)) = z$ for all z in the domain. Conclude that φ_{α} is one-one.
- (b) Show that if |z|=1, then $|\varphi_{\alpha}(z)|=1$.
- (c) Show that φ_{α} is nonconstant. Conclude that if $z \in U$, then $\varphi_{\alpha}(z) \in U$. **HIDDEN:** Use MMT.

- (d) The above shows that $\varphi_{\alpha}(U) \subset U$. By considering $\varphi_{-\alpha}$, show that the equality $\varphi_{\alpha}(U) = U$ is true. Conclude that $\varphi_{\alpha}|_{U}$ is a bijection from U onto itself.
- 10. Suppose f,g are entire functions and $|f(z)| \leq |g(z)|$ for every $z \in \mathbb{C}$. What conclusion can you draw about f and g?

HIDDEN: If g is not identically zero, then its zeroes are isolated. Show that all zeroes of g are actually removable singularities of f/g. Thus, conclude that f/g is entire. Finish it from that.

11. Suppose f is an entire function and there exist constants A,B>0 and $k\in\mathbb{N}$ such that

$$|f(z)| \le A + B|z|^k$$

for all $z \in \mathbb{C}$. Show that f is a polynomial of degree at most k.

12. Fractional Residue Theorem.

Let f have a simple pole at z_0 . Let $\delta > 0$ be such that f is holomorphic on the punctured neighbourhood $B_{\delta}(z_0) \setminus \{z_0\}$.

Fix $\alpha \in (0, 2\pi]$ and $\alpha_0 \in [0, 2\pi)$.

For $0 < r < \delta$, define $\gamma_r(\theta) := z_0 + re^{\iota(\theta + \alpha_0)}$ for $\theta \in [0, \alpha]$. (Draw a picture to see that this is an arc centered at z_0 subtending angle α and having radius r.)

Let $l := \operatorname{Res}(f; z_0)$.

- (a) Show that $g(z):=f(z)-\frac{l}{z-z_0}$ is holomorphic on $B_\delta(z_0)$. (More correctly: show that z_0 is a removable singularity of g.)
- (b) Conclude that there exists M such that $|g(z)| \leq M$ for $z \in B_{\delta}(z_0)$.
- (c) Conclude that

$$\lim_{r \to 0} \int_{\gamma_r} g(z) \mathrm{d}z = 0.$$

(d) Conclude that

$$\lim_{r\to 0} \int_{\gamma_r} f(z) \mathrm{d}z = \lim_{r\to 0} \int_{\gamma_r} \frac{l}{z-z_0} \mathrm{d}z.$$

- (e) Show that the RHS is $\alpha \iota \operatorname{Res}(f; z_0)$ and conclude the fractional residue theorem.
- 13. Let $f:\Omega\to\mathbb{C}$ be holomorphic. Recall that a fixed point of f is a point $z_0\in\Omega$ such that $f(z_0)=z_0$. Suppose that Ω contains the closed unit disc. Moreover, assume that |f(z)|<1 for |z|=1. Show that f has exactly one fixed point in the open unit disc.

14. Suppose $f:\Omega\to\mathbb{C}$ is holomorphic and Ω contains the closed unit disc. Suppose that f(0)=1 and |f(z)|>2 if |z|=1. Then, show that f has at least one zero in the open unit disc.

HIDDEN: Minimum modulus theorem.