Függvénysorok

1. Határozza meg a következő függvénysorok konvergenciatartományát és összegfüggvényét:

a)
$$\sum_{k=1}^{\infty} \left(\frac{x}{x-1} \right)^k \quad x \neq 1$$
 b) $\sum_{k=0}^{\infty} e^{-kx}$ **c)** $\sum_{k=0}^{\infty} \operatorname{tg}^k x$ **d)** $\sum_{k=2}^{\infty} \frac{e^{-x}}{k^2 - 1}$

2. Igazoljuk, hogy a

$$\mathbf{a)} \ \sum_{k=0}^{\infty} x^k$$

b)
$$\sum_{k=0}^{\infty} \frac{1}{(1+x)^k}$$

függvénysor nem egyenletesen konvergens a konvergencia-tartományán! Igaz-e, hogy abszolút konvergens?

3. Határozza meg a következő függvénysorok összegfüggvényét!

a)
$$\sum_{k=0}^{\infty} (-1)^k \cdot x^k$$
 b) $\sum_{k=0}^{\infty} x^{2k}$

c) $\sum_{k=0}^{\infty} x^{2k+1}$ **d)** $\sum_{k=0}^{\infty} (-1)^k \cdot x^{2k}$

e)
$$\sum_{k=1}^{\infty} kx^{k-1}$$

e)
$$\sum_{k=1}^{\infty} kx^{k-1}$$
 f) $\sum_{k=1}^{\infty} (-1)^k \cdot kx^{k-1}$ g) $\sum_{k=1}^{\infty} 2kx^{2k-1}$ h) $\sum_{k=1}^{\infty} \frac{x^k}{k}$

$$g) \quad \sum_{k=1}^{\infty} 2kx^{2k-1}$$

$$h) \quad \sum_{k=1}^{\infty} \frac{x^k}{k}$$

Hatványsorok

1. Határozza meg a következő hatványsorok konvergenciatartományát: **a)** $\sum_{k=0}^{\infty} k! x^k$ **b)** $\sum_{k=1}^{\infty} \frac{2^{k-1}}{2k-1} x^k$ **c)** $\sum_{k=1}^{\infty} \frac{1}{k^k} x^k$ **d)** $\sum_{k=1}^{\infty} \frac{k^k}{5^k k!} x^k$

a)
$$\sum_{k=0}^{\infty} k! x^k$$

b)
$$\sum_{k=1}^{\infty} \frac{2^{k-1}}{2k-1} x^k$$

$$\sum_{k=1}^{\infty} \frac{1}{k^k} x^k$$

$$\mathbf{d)} \quad \sum_{k=1}^{\infty} \frac{k^k}{5^k k!} x^k$$

e)
$$\sum_{k=1}^{\infty} \frac{k+2}{k} x^k$$
 f) $\sum_{k=1}^{\infty} \frac{k!}{k^k} (x-1)^k$

f)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k} (x-1)^k$$

2. Írja fel az alábbi függvények x_0 -körüli harmadrendű Taylor-polinomját:

a)
$$f(x) = 2^x$$
 $x_0 = 1$

a)
$$f(x) = 2^x$$
 $x_0 = 1$ **b)** $f(x) = \frac{\ln x}{x^2}$ $x_0 = e$

c)
$$f(x) = \frac{1}{\sin x}$$
 $x_0 = \frac{\pi}{2}$

c)
$$f(x) = \frac{1}{\sin x}$$
 $x_0 = \frac{\pi}{2}$ **d)** $f(x) = x^7 - x^2$ $x_0 = 1$

3. Írja fel az alábbi függvények Maclaurin-sorát és határozza meg, hogy az melyik tartományban állítja elő a függvényt:

a)
$$f(x) = \frac{1}{2}\sin 3x$$
 b) $f(x) = \frac{2}{e^x}$ **c)** $f(x) = x^3 e^{2x}$ **d)** $f(x) = \ln(2-x)$

$$f(x) = \frac{2}{e^x}$$

$$f(x) = x^3 e^{2x}$$

$$\mathbf{d)} \quad f(x) = \ln(2 - x)$$

4. Az $x_0 = 0$ körüli harmadrendű Taylor-polinom alkalmazásával adja meg az alábbi függvények közelítő értékét a megadott x_1 helyen és adjon felső becslést a közelítő érték hibájára:

a)
$$f(x) = e^x$$
 $x_1 = -0, 1$

a)
$$f(x) = e^x$$
 $x_1 = -0, 1$ **b)** $f(x) = \sqrt[3]{1+x}$ $x_1 = 0, 1$
c) $f(x) = \cos x$ $x_1 = 0, 2$ **d)** $f(x) = \operatorname{arctg} 2x$ $x = 0, 1$

c)
$$f(x) = \cos x$$
 $x_1 = 0, 2$

$$f(x) = \operatorname{arctg} 2x \quad x = 0, 1$$

5. Az integrandus $x_0=0$ körüli negyedfokú Taylor-polinomjának alkalmazásával adja meg az alábbi integrálok közelítő értékét és adjon felső becslést a közelítő érték hibájára:

a)
$$\int_{0}^{0.2} \frac{\sin 2x}{x} dx$$
 b) $\int_{0}^{0.3} e^{-x^2} dx$

6. Az integrandus $x_0=0$ körüli Taylor-polinomjának alkalmazásával számítsa ki az alábbi integrálok közelítő értékét úgy, hogy a pontos értéktől való eltérés legfeljebb 10^{-6} legyen:

a)
$$\int_{0.1}^{0.2} \frac{e^x - 1}{x} dx$$
 b) $\int_{0.4}^{0.6} \sqrt{1 + x^2} dx$ c) $\int_{0}^{0.5} \frac{\sin x}{x} dx$

Fourier-sorok

Fejtse Fourier-sorba a következő függvényeket:

$$\mathbf{1.} \ f \colon \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ll} 1 & \text{ha} & -\frac{\pi}{2} < x \leqq \frac{\pi}{2} \\ 0 & \text{ha} & \frac{\pi}{2} < x \leqq \frac{3\pi}{2} \end{array} \right. \ \text{\'es } \forall x \in \mathbb{R} \text{ eset\'en } f(x+2\pi) = f(x)$$

2.
$$f \colon \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ll} 6 & \text{ha} & 0 < x < \pi \\ 0 & \text{ha} & -\pi < x < 0 \end{array} \right.$$
 és $\forall x \in \mathbb{R}$ esetén $f(x + 2\pi) = f(x)$

3.
$$f : \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ll} x & \text{ha} & 0 < x < \pi \\ 0 & \text{ha} & -\pi < x < 0 \end{array} \right. \ \text{\'es } \forall x \in \mathbb{R} \ \text{eset\'en} \ f(x + 2\pi) = f(x)$$

$$\textbf{4.} \ \ f \colon \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ll} \pi & \text{ha} & 0 \leqq x < \pi \\ x + \pi & \text{ha} & -\pi \leqq x < 0 \end{array} \right. \ \text{\'es } \forall x \in \mathbb{R} \text{ eset\'en } f(x + 2\pi) = f(x)$$