1 Алгоритмы планирования траекторий

Цель работы. Исследование алгоритма планирования траекторий с заданной гладкостью.

Задание

- 1. Сформируйте бинарную карту размером 10 на 10 ячеек. На карте не менее трети ячеек должны быть недоступными к посещению. Выберите начальную и конечную точки так, чтобы траектория между ними содержала не менее 10 ячеек и не менее трех поворотов. Примените алгоритм A^* для нахождения пути от начальной точки к конечной.
- 2. Сгенерируйте C^0 -гладкую траекторию через полученные точки. Декартовы координаты точек принять равными номеру ячейки карты по горизонтали и вертикали соответственно.
- 3. Сгенерировать C^1 -гладкую траекторию для тех же точек.
- 4. Сгенерировать C^2 -гладкую траекторию для тех же точек.
- 5. Осуществить сглаживание траектории, полученной в пункте 2 при помощи В-сплайна.

Содержание отчета

- 1. Титульный лист.
- 2. Описание алгоритма планирования траектории для каждого пункта задания.
- 3. Вычислите кривизну полученных траекторий.
- 4. Результаты моделирования полученных алгоритмов в соответствии с вариантом. Они должны включать результирующий график траектории, график функции кривизны и любые другие иллюстративные графики по вашему выбору.
- 5. Выводы.

Figure 1: ТФорма траектории для задания 2

2 Алгоритмы слежения за траекторией

Цель работы. Исследование алгоритмов отслеживания траектории плоского движения колесных мобильных роботов с ограниченной мобильностью.

Задание

Рассматривается колесный мобильный робот с ограниченной подвижностью. Для решения задачи слежения за точкой необходимо разработать следящий закон управления на основе линеаризации обратной связи.

- 1. Вывести динамическую позиционную модель четырехколесного мобильного робота заданного типа (see Table 1). Выбирайте разумные геометрические параметры и конфигурацию приводов.
- 2. Описание траектории (see Fig. 1). Движение начинается с начальной позиции ξ_0 . Сначала мобильный робот должен пройти по окружности радиусом R_1 расстояние, эквивалентное изменению азимута точки слежения на δ радиан в заданном направлении (положительном или отрицательном). Затем, мобильный робот должен развернуться на α радиан и идти по прямой в течение t секунд. После этого мобильный робот должен совершить круговое движение радиусом R_2 в заданном направлении (по часовой стрелке или против часовой стрелки). Все параметры траектории приведены в таблице 1.
- 3. Спроектируйте регулятор для решения задачи слежения за точкой с использованием линеаризации статической обратной связью по состоянию. Основания для выбора места расположения точки можно найти в материале лекции.
- 4. Спроектируйте регулятор для решения задачи слежения за точкой с помощью линеаризации динамической обратной связью по состоянию. Используйте координаты точки из предыдущей части задания.

Содержание отчета

- 1. Титульный лист.
- 2. Вывод законов управления для каждой части задания.
- 3. Результаты моделирования полученных алгоритмов в соответствии с вариантом. Они должны включать результирующий график траектории, график кривизны и любые другие иллюстративные графики по вашему выбору.
- 4. Выводы.

Table 1: Данные для задания 2

Variant	Robot type	$\xi_0^T = \begin{bmatrix} x_0 & y_0 & \vartheta_0 \end{bmatrix}^T$	R_1	δ	Direction 1	α	t	R_2	Direction 3
1	(1,1)	$\begin{bmatrix} 2 & 0 & \frac{\pi}{3} \end{bmatrix}^T$	6	2π	positive	$\frac{\pi}{4}$	5	10	clockwise
2	(1, 2)	$\begin{bmatrix} 5 & 3 & -\frac{\pi}{6} \end{bmatrix}^T$	7	3π	$_{ m negative}$	$\frac{\pi}{3}$	6	12	counterclock-wise
3	(2,1)	$\begin{bmatrix} -2 & 3 & \frac{\pi}{2} \end{bmatrix}^T$	5	$\frac{5\pi}{2}$	positive	$\frac{\pi}{4}$	4	11	clockwise
4	(1,1)	$\begin{bmatrix} 1 & 1 & -\frac{\pi}{4} \end{bmatrix}^T$	6	$\frac{8\pi}{3}$	$_{ m negative}$	$\frac{5\pi}{6}$	7	10	counterclock-wise
5	(1, 2)	$\begin{bmatrix} 0 & 3 & \frac{2\pi}{3} \end{bmatrix}^T$	7	2π	positive	$\frac{\pi}{3}$	6	12	clockwise
6	(2,1)	$\begin{bmatrix} -1 & -1 & \frac{5\pi}{6} \end{bmatrix}^T$	5	$\frac{5\pi}{2}$	positive	$\frac{\pi}{4}$	4	11	counterclock-wise
7	(1,1)	$\begin{bmatrix} 6 & 7 & -\frac{2\pi}{3} \end{bmatrix}^T$	6	3π	$_{ m negative}$	$\frac{\pi}{3}$	5	10	clockwise
8	(1, 2)	$\begin{bmatrix} 1 & -5 & -\frac{\pi}{2} \end{bmatrix}^T$	7	$\frac{8\pi}{3}$	positive	$\frac{5\pi}{6}$	6	12	clockwise
9	(2,1)	$\begin{bmatrix} 2 & 6 & \frac{3\pi}{2} \end{bmatrix}^T$	5	$\frac{5\pi}{2}$	positive	$\frac{5\pi}{6}$	7	11	counterclock-wise
10	(1, 1)	$\begin{bmatrix} -2 & 5 & \frac{2\pi}{3} \end{bmatrix}^T$	6	2π	$_{ m negative}$	$\frac{\pi}{4}$	5	10	clockwise

3 Алгоритмы стабилизации траекторий движения динамических систем

Цель работы. Исследование алгоритмов стабилизации плоских и пространственных траекторий движения динамических систем.

3.1 Задание

- 1. Рассматривается модель движения материальной точки на плоскости (см. презентацию лекции). Параметры модели объекта управления содержатся в таблице 1. Требуется синтезировать методом согласованного управления алгоритм стабилизации траектории движения для данной математической модели. Траектория состоит из трех частей. Сначала движение происходит относительно траектории $\varphi_1(x,y)$, затем по траектории $\varphi_2(x,y)$ и далее по траектории $\varphi_3(x,y)$ (траектории согласно номеру варианта из таблицы 2). Осуществить моделирование при заданной касательной скорости $\dot{s}^*=1$, $\dot{s}^*=3$ и $\dot{s}^*=5$. Время симуляции подобрать исходя из того, чтобы все три части траектории были отработаны.
- 2. Рассматривается модель движения материальной точки в пространстве (см. презентацию лекции). Требуется синтезировать методом согласованного управления алгоритм стабилизации траектории движения для данной математической модели. Траектория описывается как пересечение двух пространственных кривых $\varphi_1\left(x,y,z\right)$ и $\varphi_2\left(x,y,z\right)$ (см. таблицу 2).
- 3. Рассматривается модель движения материальной точки в пространстве (см. презентацию лекции). Требуется синтезировать методом пассификации алгоритм стабилизации траектории движения для данной математической модели. Траектория движения соответствует предыдущему пункту.

3.2 Содержание отчета

- 1. Титульный лист.
- 2. Вывод алгоритмов управления для каждого из пунктов задания.
- 3. Результаты моделирования выведенных алгоритмов в соответствии с вариантом задания.
- 4. Выводы.

	m	$\begin{array}{c} \text{Initial} \\ \text{position} \\ \left(x_0 y_0\right) \end{array}$	Initial orientation α_0	Desired velocity \dot{s}^*	$arphi_{i}\left(x,y ight)$
1	1.2	(0 1.5)	$\frac{\pi}{3}$	1	$\varphi_1(x,y) = (x-2)^2 + (y-3)^2 - 16 = 0$ $\varphi_2(x,y) = -\sin\frac{3\pi}{2}x + \cos\frac{3\pi}{2}y + 6 = 0$ $\varphi_3(x,y) = -1.7\sin(1.05x + 0.33) + y + 5 = 0$
2	2.3		$\frac{\pi}{4}$	2	$\varphi_1(x,y) = (x+7)^2 + (y+5)^2 - 6.25 = 0$ $\varphi_2(x,y) = -\sin\frac{\pi}{3}x + \cos\frac{\pi}{3}y + 1.4 = 0$ $\varphi_3(x,y) = (x-10)^2 + (y-10)^2 - 36 = 0$
3	4.5		$\frac{2\pi}{3}$	1.8	$\varphi_1(x,y) = -\sin\frac{\pi}{6}x + \cos\frac{\pi}{6}y - 3 = 0$ $\varphi_2(x,y) = -1.1\sin(3x + 0.2) + y - 6 = 0$ $\varphi_3(x,y) = (x-4)^2 + (y-6)^2 - 25 = 0$
4	1.6	(-7 0)	$\frac{4\pi}{3}$	3	$\varphi_1(x,y) = -3\sin(2x - 0.5) + y - 3 = 0$ $\varphi_2(x,y) = -\sin\frac{7\pi}{4}x + \cos\frac{7\pi}{4}y = 0$ $\varphi_3(x,y) = (x - 13)^2 + (y + 3)^2 - 49 = 0$
5	2.8	(-7 4)	$\frac{3\pi}{4}$	2.5	$\varphi_1(x,y) = (x+3)^2 + (y-2)^2 - 9 = 0$ $\varphi_2(x,y) = -2\cos(0.5x + 0.3) + y - 2 = 0$ $\varphi_3(x,y) = (x-12)^2 + (y-2)^2 - 25 = 0$
6	3.6	$\begin{pmatrix} -11 & -9 \end{pmatrix}$	$rac{\pi}{2}$	1.5	$\varphi_1(x,y) = -2.5\cos(1.7x) + y + 4 = 0$ $\varphi_2(x,y) = -\sin\frac{\pi}{4}x + \cos\frac{\pi}{4}y = 0$ $\varphi_3(x,y) = -1.8\sin(2.2x + 0.7) + y - 6 = 0$
7	4.1	(0 -2)	$\frac{3\pi}{2}$	2.1	$\varphi_1(x,y) = -1.3\sin(3x+0.9) + y + 2 = 0$ $\varphi_2(x,y) = (x-10)^2 + (y-3)^2 - 36 = 0$ $\varphi_3(x,y) = -2.5\cos(1.2x-0.3) + y - 7 = 0$
8	1.1	(21 5)	$\frac{\pi}{3}$	1.7	$\varphi_1(x,y) = -2.5\cos(1.2x - 0.3) + y - 7 = 0$ $\varphi_2(x,y) = (x - 10)^2 + (y - 3)^2 - 36 = 0$ $\varphi_1(x,y) = -1.3\sin(3x + 0.9) + y + 2 = 0$
9	2.6	(16 14)	$\frac{\pi}{6}$	3.1	$\varphi_1(x,y) = -1.8\sin(2.2x + 0.7) + y - 6 = 0$ $\varphi_2(x,y) = -\sin\frac{\pi}{4}x + \cos\frac{\pi}{4}y = 0$ $\varphi_3(x,y) = -2.5\cos(1.7x) + y + 4 = 0$
10	3.8	(18 -4)	$\frac{5\pi}{6}$	2.2	$\varphi_1(x,y) = (x-12)^2 + (y-2)^2 - 25 = 0$ $\varphi_2(x,y) = -2\cos(0.5x + 0.3) + y - 2 = 0$ $\varphi_3(x,y) = (x+3)^2 + (y-2)^2 - 9 = 0$
11	3.2	$\begin{pmatrix} 21 & -1 \end{pmatrix}$	$\frac{2\pi}{3}$	1.9	$\varphi_1(x,y) = (x-13)^2 + (y+3)^2 - 49 = 0$ $\varphi_2(x,y) = -\sin\frac{7\pi}{4}x + \cos\frac{7\pi}{4}y = 0$ $\varphi_3(x,y) = -3\sin(2x - 0.5) + y - 3 = 0$
12	2.9	(10 2)	$\frac{\pi}{2}$	1	$\varphi_1(x,y) = (x-4)^2 + (y-6)^2 - 25 = 0$ $\varphi_2(x,y) = -1.1\sin(3x + 0.2) + y - 6 = 0$ $\varphi_3(x,y) = -\sin\frac{\pi}{6}x + \cos\frac{\pi}{6}y - 3 = 0$ $\varphi_1(x,y) = (x-10)^2 + (y-10)^2 - 36 = 0$
13	4.3	(13 12)	$\frac{5\pi}{6}$	3	$\varphi_1(x,y) = (x-10)^2 + (y-10)^2 - 36 = 0$ $\varphi_2(x,y) = -\sin\frac{\pi}{3}x + \cos\frac{\pi}{3}y + 1.4 = 0$ $\varphi_3(x,y) = (x+7)^2 + (y+5)^2 - 6.25 = 0$ $\varphi_1(x,y) = -1.7\sin(1.05x + 0.33) + y + 5 = 0$
14	5.1	$\begin{pmatrix} 11 & -3 \end{pmatrix}$	$\frac{4\pi}{3}$	2	$\varphi_1(x,y) = -1.7\sin(1.05x + 0.33) + y + 5 = 0$ $\varphi_2(x,y) = -\sin\frac{3\pi}{2}x + \cos\frac{3\pi}{2}y + 6 = 0$ $\varphi_3(x,y) = (x-2)^2 + (y-3)^2 - 16 = 0$ $\varphi_1(x,y) = (x+3)^2 + (y-2)^2 - 25 = 0$
15	3.7	(-7 5)	$\frac{\pi}{3}$	1.5	$\varphi_1(x,y) = (x+3)^2 + (y-2)^2 - 25 = 0$ $\varphi_2(x,y) = -2\cos(0.5x+0.3) + y - 2 = 0$ $\varphi_3(x,y) = (x-12)^2 + (y-2)^2 - 9 = 0$

			Initial	Т,	nitic	. 1		Desired		
		т		Initial					((
	$m \mid J \mid \text{position}$		orientation		orientation			$\varphi_{i}\left(x,y,z\right)$		
			$\begin{pmatrix} x_0 & y_0 & z_0 \end{pmatrix}$		n			n_d		
1	1.2	2	$(0 \ 1.5 \ 10)$	(1	0	O)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x, y, z) = 0.4x^2 + 0.8y^2 - 225 = 0$
	1 1.2		(0 1.0 10)	(1	U	0)	(1/ / 0	1/ // 9	1/ (\dagger)	$\varphi_2(x, y, z) = z + 0.25y^2 - 3 = 0$
2	2.3	1.7	(-10 -4 10)	(0	1	0)	$(1/\sqrt{3})$	1 / /2	1 / (2)	$\varphi_1(x, y, z) = x^2 + y^2 - 400 = 0$
4	∠.3	1.1	(-10 -4 10)	(0	1	U)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + y - 10 = 0$
		2.0	(10 0 10)	(0		٠,١	(+) [5	. / /5	1 / (5)	$\varphi_1(x, y, z) = 1.1x^2 + 0.8y^2 - 225 = 0$
3	4.5	2.3	$ \left \begin{array}{ccc} (-10 & -3 & 10) \end{array} \right $	(0	U	1)	$\left(1/\sqrt{3}\right)$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + 0.25y^2 - 3 = 0$
			, ,	,						$\varphi_1(x, y, z) = x^2 + y^2 - 225 = 0$
4	1.6	5	$(-7 \ 0 \ 10)$	(1	0	1)	$\left(1/\sqrt{3}\right)$	$1/\sqrt{3}$	$1/\sqrt{3}$	
-										$\varphi_2(x,y,z) = z + y - 1 = 0$
5	2.8	3	$(-7 \ 4 \ 10)$	(1	1	0)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x,y,z) = 0.4x^2 + 0.8y^2 - 225 = 0$
			,	\			(/ • -	, • -	, • -)	$\varphi_2(x,y,z) = z + 0.25y^2 - 3 = 0$
6	3.6	1	(-11 -9 10)	(0	1	1)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x, y, z) = x^2 + y^2 - 256 = 0$
	0.0	-	(11 0 10)	(0	•	1)	(1/ 0	1/ V 0	1/ (0)	$\varphi_2(x, y, z) = z + y - 5 = 0$
7	4.1	$\frac{1}{2}$	(0 -2 10)	(1	1	1)	$(1/\sqrt{3})$	1 / . /9	1 /. /2)	$\varphi_1(x, y, z) = 0.2x^2 + 0.6y^2 - 225 = 0$
'	(4.1		(0 -2 10)	(1	1	1)	(1/ \(\) 3	1/ \(\mathcal{O} \)	1/ (\dagger)	$\varphi_2(x, y, z) = z + 0.35y^2 - 3 = 0$
	1 1	0.5	(01 5 10)	/1	1	0)	(1 / /0	1 / /0	1 / (2)	$\varphi_1(x, y, z) = x^2 + y^2 - 169 = 0$
8	1.1	3.5	(21 5 10)	(1	1	0)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + y + 5 = 0$
			()	(.			/		. \frown	$\varphi_1(x,y,z) = 0.44x^2 + 0.38y^2 - 225 = 0$
9	2.6	2.7	$(16 \ 1 \ 104)$	(1	0	1)	$\left(1/\sqrt{3}\right)$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + 0.6y^2 - 3 = 0$
-										$\varphi_1(x, y, z) = x^2 + y^2 - 196 = 0$
10	3.8	3.3	(18 -4 10)	(0	1	0)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$,
-			, ,	,			`			$\varphi_2(x,y,z) = z + y + 2 = 0$
11	3.2	2.5	(21 -1 10)	(0	0	1)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x,y,z) = 0.14x^2 + 0.48y^2 - 225 = 0$
			/	'			(/ ·	, ,	, • ,	$\varphi_2(x, y, z) = z + 0.33y^2 - 3 = 0$
12	2.9	1.7	(10 2 10)	(0	1	1)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x, y, z) = x^2 + y^2 - 225 = 0$
12	12 2.5		(10 2 10)	0)	1	1)	(1/ // 3	1/ V 0	1/ (3)	$\varphi_2(x, y, z) = z + y - 6 = 0$
19	4.9	2.2	(12 12 10)	/1	1	0)	(1 / /2	1 / /2	1 / /2)	$\varphi_1(x, y, z) = 0.6x^2 + 0.9y^2 - 225 = 0$
13	13 4.3	.5 2.2	(13 12 10)	(1	1	0)	$(1/\sqrt{3})$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + 0.45y^2 - 3 = 0$
—			(11 0 1-)	(0		- 1	(., ,	. , /=	(5)	$\varphi_1(x,y,z) = x^2 + y^2 - 256 = 0$
14	5.1	1.4	(11 -3 10)	(0	U	1)	$\left(1/\sqrt{3}\right)$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_2(x, y, z) = z + y - 9 = 0$
			, .	<u> </u>			, _			$\varphi_1(x,y,z) = 1.4x^2 + 1.8y^2 - 144 = 0$
15	3.7	2	$(-7 \ 5 \ 10)$	(1	0	1)	$\left(1/\sqrt{3}\right)$	$1/\sqrt{3}$	$1/\sqrt{3}$	$\varphi_1(x, y, z) = 1.4x + 1.6y - 144 = 0$ $\varphi_2(x, y, z) = z + 0.75y^2 + 7 = 0$
	L									$\varphi_2(x,y,z) - z + 0.10y + 1 = 0$