

Лабораторная работа № 1

на тему

«Сравнительный анализ решений нелинейных алгебраических уравнений пятью методами»

Автор: Склярова Юлия Андреевна

 $\Gamma pynna:$ 422

Москва 2024 - 2025 год Исходное уравнение M 8: $(1 + \sin x) \sin x = \alpha + 3x - 5$

Функция $f(x) = (1 + \sin x)\sin x - \alpha - 3x + 5$

 $I_1 = [1.6, 2.0]$ Выбранные интервалы в зависимости от α $I_2 = [1.5, 2.0]$ нижний индекс - значение α $I_3 = [1.0, 2.0]$

Первая производная $f'(x) = 2\cos x \sin x + \cos x - 3$

Вторая производная $f''(x) = -2\sin x \sin x - \sin x + 2\cos x \cos x$

Эквивалентная функция $\varphi(x) = \frac{((1+\sin x)\sin x - \alpha + 5)}{3}$

Ссылка на desmos с графиками $f(x), \varphi(x), \varphi'(x)$, где можно динамически менять α , а сами графики интерактивны: https://www.desmos.com/Calculator/dnhasfub5c

Отрезки подобраны так, что на каждом из них эквивалентная функция одна и та же.

Утв. 1. $\varphi(x)$ является на отрезках I_1, I_2, I_3 сжимающим отображением.

Доказательство. Как известно, для того, чтобы функция $\varphi(x)$ являлась сжимающим отображением отрезка [a,b], надо, чтобы она обладала следующими свойствами:

- для функции $\varphi(x)$ выполнено условие: $\forall x \in [a,b] \Rightarrow \varphi(x) \in [a,b]$
- $\exists q: |\varphi'(x)| \leq q < 1$ при $x \in [a,b]$

Докажем первое свойство для трех отрезков: I_1, I_2, I_3 . Второе свойство доказано численно - см. таблицу ниже и программу.

Рассмотрим производную нашей функции: $\varphi'(x) = \frac{2\cos x \sin x + \cos x}{3}$.

1. $I_1 = [1.6, 2.0]$

 $\forall x \in I_1 \Rightarrow x \in (\frac{\pi}{2}, \pi) \Rightarrow \cos x < 0, \sin x > 0 \Rightarrow \varphi'(x) < 0 \Rightarrow$ функция $\varphi(x)$ на [1.6, 2.0] убывает. Значит, достаточно проверить ее значения на концах отрезка I_1 :

$$\varphi(1.6) = 1.999574, \ \varphi(2.0) = 1.912040.$$

Как видно, $\forall x \in [1.6, 2.0] \ \varphi(x) \in [1.6, 2.0].$

2. $I_2 = [1.5, 2.0]$

Рассмотрим корни производной:

$$\varphi'(x) = \frac{2\cos x \sin x + \cos x}{3} = 0 \Rightarrow \begin{bmatrix} x_0 = \frac{\pi}{2} + \pi k \\ x_1 = \frac{7\pi}{6} + 2\pi k \\ x_2 = \frac{11\pi}{6} + 2\pi k \end{bmatrix}$$

Легко заметить, что только $x_0 = \frac{\pi}{2}$ лежит в отрезке I_2 . То есть $x_0 = \frac{\pi}{2}$ - точка локального экстремума функции $\varphi(x)$ на нашем отрезке. Причем при переходе через нее $\varphi'(x)$ меняет знак c + на -, а значит, это точка локального максимума.

Тогда для доказательства первого свойства достаточно посчитать значения функции $\varphi(x)$ в 3 точках: на концах отрезка I_2 и в точке локального максимума.

$$\varphi(1.5) = 1.664164, \ \varphi(2.0) = 1.578706, \ \varphi(\frac{\pi}{2}) = 1.666667 \Rightarrow \forall x \in [1.5, 2.0] \ \varphi(x) \in [1.5, 2.0]$$

3. $I_3 = [1.0, 2.0]$

Аналогично получаем, что для доказательства первого свойства достаточно посчитать значение $\varphi(x)$ в 3 точках: на концах отрезка I_3 и в точке локального максимума $x_0 = \frac{\pi}{2}$.

$$\varphi(1.0) = 1.183181, \ \varphi(2.0) = 1.245373, \ \varphi(\frac{\pi}{2}) = 1.3333333 \Rightarrow \forall x \in [1.0, 2.0] \ \varphi(x) \in [1.0, 2.0]$$

Метод	Корень	Невязка	Отрезок	$\mathbf{x_0^{(r)}}$	Число итераций $N+1$	$\mathbf{M}^{lpha}_{\mathbf{r}}$	$\mathbf{m}^{lpha}_{\mathbf{r}}$	$\mathbf{q}^{\alpha}_{\mathbf{r}}$
	$\xi^*_{\mathbf{r}}$	$\mathbf{f}_{lpha}(\mathbf{\xi_{r}^{*}})$	$[\mathbf{a}^lpha_\mathbf{r},\mathbf{b}^lpha_\mathbf{r}]$					
Метод хорд	1.935644	-0.000064			4			
Метод Ньютона	1.935628	-0.000000			3			
Простая итерация	1.935591	0.000146	[1.60, 2.00]	2.00	7	4.17	3.12	0.39
Метод деления пополам	1.935620	0.000031			13			
Метод Эткена	1.935627	0.000005			4			
Метод хорд	1.662485	-0.000038			4			
Метод Ньютона	1.662473	-0.000000			4			
Простая итерация	1.662470	0.000011	[1.50, 2.00]	2.00	5	4.17	2.79	0.39
Метод деления пополам	1.662476	-0.000008			11			
Метод Эткена	1.662478	-0.000015			6			
Метод хорд	1.296380	0.000011			7			
Метод Ньютона	1.296385	0.000000			5			
Простая итерация	1.296365	0.000043	[1.00, 2.00]	2.00	7	4.17	1.55	0.48
Метод деления пополам	1.296387	-0.000004			10			
Метод Эткена	1.296367	0.000040			5			