

Maths for Computer Science Calculus

Prof. Magnus Bordewich

Series

Series vs Sequences

A **sequence** is an ordered countably infinite set of numbers $\{a_n\}$.

E.g.
$$a_0 = 1$$
, $a_1 = \frac{1}{2}$, $a_2 = \frac{1}{4}$, $a_3 = \frac{1}{8}$, ...

A **series** is the sum of members of a sequence:

E.g.
$$\sum_{n=0}^{2} a_n = a_0 + a_1 + a_2 = 1 + \frac{1}{2} + \frac{1}{4} = 1\%$$
.

This is a finite series.

E.g.
$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \cdots = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

This in an infinite series.

Series value

Any finite series has a well defined value:

E.g.
$$\sum_{n=1}^{5} n^2 = 1 + 4 + 9 + 16 + 25 = 55$$
.

But an **infinite series** may not:

E.g.
$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$
. This is "convergent"

But $\sum_{n=0}^{\infty} n^2 \to \infty$ is "divergent"

And $\sum_{n=0}^{\infty} (-1)^n \to \infty$ is "divergent"

Series value

For any infinite series $\sum_{n=0}^{\infty} a_n$, we define the partial sum

$$S_n = \sum_{r=0}^n a_r = a_0 + a_1 + \dots + a_n$$

And the remainder

$$R_n = \sum_{r=n+1}^{\infty} a_r = a_{r+1} + a_{r+2} + \cdots$$

A series $\sum_{n=0}^{\infty} a_n$ is convergent to a finite value S if

$$\lim_{n\to\infty} S_n = S$$

Equivalently: if

$$\lim_{n\to\infty} R_n = 0 \quad \left(= \lim_{n\to\infty} (S - S_n)\right).$$

Example
$$\sum_{n=0}^{\infty} \frac{1}{3^n}$$

 $\sum_{n=0}^{\infty} \frac{1}{3^n} = 1 + \frac{1}{3} + \frac{1}{9} + \cdots$ is a geometric series with initial value 1 and ratio 1/3.

Hence
$$S_n = \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right).$$

So
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) = \frac{3}{2}$$
.

So this series is convergent to 3/2.

Also
$$R_n = \frac{3}{2} - S_n = \frac{3}{2} \left(\frac{1}{3}\right)^n = \frac{1}{2} \left(\frac{1}{3}\right)^{n-1}$$
. Clearly $\lim_{n \to \infty} R_n = 0$.

Given $\epsilon = 0.01$ there is some N_{ϵ} such that $R_n < \epsilon$ for all $n > N_{\epsilon}$.

Here we can take $N_{\epsilon} = 5$ since

$$R_5 = \frac{1}{2} \left(\frac{1}{3}\right)^4 = \frac{1}{162} < 0.01.$$

Note: if we are using a series to approximate some complex function, analysis of R_n can tell us how far we need to go to get sufficient accuracy.

Sum and difference of convergent series

If the series $\sum_{n=0}^{\infty} a_n$ and the series $\sum_{n=0}^{\infty} b_n$ are convergent, with respective sums α and β , then

$$\sum_{n=0}^{\infty} (a_n + b_n) = \alpha + \beta$$

And

$$\sum_{n=0}^{\infty} (a_n - b_n) = \alpha - \beta$$

First test for divergence

Suppose $\sum_{n=0}^{\infty} a_n$ converges. Then given arbitrary $\epsilon > 0$ there exists some N_{ϵ} such that $S_n < \epsilon$ for all $n > N_{\epsilon}$.

$$\text{l.e. } |S - S_n| < \epsilon.$$

But also $|S - S_{n+1}| < \epsilon$, so combining these*:

$$2\epsilon > |S - S_n| + |S - S_{n+1}| = |S_n - S| + |S - S_{n+1}| \ge |S_n - S_{n+1}| = |a_{n+1}|$$

But ϵ was arbitrary, so we have shown for any $\epsilon' > 0$ there exists an $N_{\epsilon'}$ such that $|a_n| < \epsilon'$ for all $n > N_{\epsilon}$.

I.e.
$$\lim_{n\to\infty} |a_n| = 0$$
, and so $\lim_{n\to\infty} a_n = 0$.

The contrapositive:

If $\lim_{n\to\infty} a_n \neq 0$ then the series $\sum_{n=0}^{\infty} a_n$ diverges.

Example

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2+1}{4n+2}$$
 diverges.

Since
$$\lim_{n \to \infty} \frac{2n^2 + 1}{4n + 2} = \lim_{n \to \infty} \frac{2n + \frac{1}{n}}{4 + \frac{2}{n}} \to \infty$$
.

Equally, $\lim_{n\to\infty} |a_n| = 0$ is a necessary condition for convergence, but not a sufficient condition:

E.g. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n} = 0$.

Note: $\lim_{n\to\infty} |a_n| = 0$ does not imply convergence, but $\lim_{n\to\infty} R_n = 0$ does.

Absolute convergence implies convergence

If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges.

Proof:

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n |a_r|$.

For each r we have $0 \le a_r + |a_r| < 2|a_r|$, so $0 \le S_n + T_n \le 2T_n$.

But we know $\lim_{n\to\infty} T_n = T$ exists, so

$$0 \le \lim_{n \to \infty} (S_n + T_n) \le 2T$$

And so the series $\sum_{n=1}^{\infty} a_n + |a_n|$ converges too, and taking the difference $\sum_{n=1}^{\infty} a_n + |a_n| - \sum_{n=1}^{\infty} |a_n|$ converges and is equal to $\sum_{n=1}^{\infty} a_n$.

Comparison test

Convergence:

Let $\sum_{n=1}^{\infty} b_n$ be a convergent series of positive terms.

Let $\sum_{n=1}^{\infty} a_n$ be a series and N be an integer such that $|a_n| \le b_n$ for all n > N

then $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series.

Divergence:

Let $\sum_{n=1}^{\infty} b_n$ be a divergent series of positive terms.

Let $\sum_{n=1}^{\infty} a_n$ be a series and N be an integer such that $0 \le b_n \le a_n$ for all n > N

then $\sum_{n=1}^{\infty} a_n$ is a divergent series.

Examples

$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n}?$$

Converges: $a_n \le \frac{3}{2^n}$, and as $\sum_{n=1}^{\infty} \frac{3}{2^n} = 3 \sum_{n=1}^{\infty} \frac{1}{2^n} = 3$ converges, we can apply the comparison test with $b_n = \frac{3}{2^n}$.

$$\sum_{n=1}^{\infty} \frac{n+1}{n^2}?$$

Diverges: $a_n = \frac{n+1}{n^2} = \frac{1}{n} \frac{n+1}{n} > \frac{1}{n}$, and as $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we can apply the comparison test with $b_n = \frac{1}{n}$.

 $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the harmonic series and we shall prove later that it diverges.

The Ratio test

Convergence:

Let $\sum_{n=1}^{\infty} a_n$ be a series where $a_n \neq 0$ and such that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$ then

- a) If L < 1, $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series.
- b) If L > 1, $\sum_{n=1}^{\infty} a_n$ is a divergent series.
- c) If L = 1, the test fails.

Example:

$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n} ?$$

Then
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)!n^n}{n!(n+1)^{n+1}} = \left(\frac{n}{n+1} \right)^n = \left(1 + \frac{1}{n} \right)^{-n}$$
,

so
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}1/\left(1+\frac{1}{n}\right)^n=\frac{1}{e}$$
. As $\frac{1}{e}<1$, the series absolutely converges.

The Ratio test

Convergence:

Let $\sum_{n=1}^{\infty} a_n$ be a series where $a_n \neq 0$ and such that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$ then

- a) If L < 1, $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series.
- b) If L > 1, $\sum_{n=1}^{\infty} a_n$ is a divergent series.
- c) If L = 1, the test fails.

Proof a):

If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then we can pick r: L < r < 1 and N_r such that for all $n > N_r$

$$\left| \frac{a_{n+1}}{a_n} \right| < r$$
 i.e. $|a_{n+1}| < r|a_n|$.

Then $|a_{n+2}| < r|a_{n+1}| < r^2|a_n|$, $|a_{n+3}| < r|a_{n+2}| < r^3|a_n|$, etc.

So
$$R_{n+m} = a_{n+m} + a_{n+m+1} + \dots < |a_n| r^{m-1} (1 + r + r^2 + r^3 + \dots) = a_n \frac{r^{m-1}}{1-r} \to 0$$

Durham as $m \to \infty$. Hence the series converges.

The n^{th} root test

Consider the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\frac{nk}{3n+1}\right)^n$, where k is a constant.

First observe that $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \left(\frac{nk}{3n+1}\right) = \frac{k}{3}$.

If k < 3, then there is an r: $\frac{k}{3} < r < 1$ and N_r so that for all $n > N_r$, $\sqrt[n]{a_n} < r$.

Thus $R_n = a_n + a_{n+1} + \dots < r^n + r^{n+1} + \dots = r^n \frac{1}{1-r} \to 0$ as $n \to \infty$.

So the series is convergent.

If k > 3, then there is an r: $1 < r < \frac{k}{3}$ and N_r so that for all $n > N_r$, $\sqrt[n]{a_n} > r$.

Thus
$$R_n = a_n + a_{n+1} + \dots > r^n + r^{n+1} + \dots = r^n \frac{1}{1-r} \to \infty$$
 as $n \to \infty$.

So the series is divergent.

The n^{th} root test

Consider the series $\sum_{n=1}^{\infty} a_n$ such that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$.

- a) If L < 1, $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series.
- b) If L > 1, $\sum_{n=1}^{\infty} a_n$ is a divergent series.
- c) If L = 1, the test fails.

Alternating series test

The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges if

- $a_n > 0$,
- $a_{n+1} \le a_n$ for all n, and
- $\lim_{n\to\infty}a_n=0.$

Proof:

Consider the partial sum

$$S_{2r} = a_1 - a_2 + a_3 - a_4 + a_5 \dots - a_{2r-2} + a_{2r-1} - a_{2r}$$

First note that

$$S_{2r} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2r-1} - a_{2r}) \ge 0$$

Also

$$S_{2r} = a_1 - (a_2 - a_3) - (a_4 - a_5) \dots - (a_{2r-2} - a_{2r-1}) - a_{2r} < a_1$$

So $\{S_{2r}\}$ is bounded and monotonically increasing, hence converges to S.

But
$$S_{2r+1} = S_{2r} + a_{2r+1}$$
, and so $\lim_{r \to \infty} S_{2r+1} = \lim_{r \to \infty} S_{2r} + \lim_{r \to \infty} a_{2r+1} = S + 0 = S$.

And as $\{S_{2r}\}$ and $\{S_{2r+1}\}$ both tend to S, $\{S_n\}$ does also.

Grouping and rearrangement of series

For any finite sum we can group and rearrange terms as much as we like.

$$1 + 3 - 5 - 6 = (1 - 5) - (6 - 3)$$

For an infinite sum we need to be careful!

Consider
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

By the alternating series test is is convergent, to some value *S*.

So

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

Rearranging

$$S = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{12} \dots + \left(\frac{1}{2k+1} - \frac{1}{4k+2}\right) - \frac{1}{4k+4} + \dots$$

$$S = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \right) = \frac{1}{2} S$$

So as $S = \frac{1}{2}S$ we must have S = 0, but actually $S > \frac{1}{2}$. (Exercise).

Grouping and rearrangement of series

If $\sum_{n=1}^{\infty} a_n$ converges, then we can insert brackets/groupings without altering the sum.

Proof:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + \cdots$$

Consider bracketing $(a_1 + a_2) + (a_3 + a_4 + a_5) + (a_6 + \cdots$ etc.

Define b_n to be the n^{th} bracketed term.

Now
$$\sum_{n=1}^{\infty} b_n = (a_1 + a_2) + (a_3 + a_4 + a_5) + (a_6 + \cdots \text{ etc.})$$

But the partial sums T_n of this series are a subsequence of the partial sums S_n of $\sum_{n=1}^{\infty} a_n$.

Since $\lim_{n\to\infty} S_n = S$, it follows that $\lim_{n\to\infty} T_n = S$ and so $\sum_{n=1}^{\infty} b_n$ converges.

Grouping and rearrangement of series

If $\sum_{n=1}^{\infty} a_n$ absolutely converges, then we can reorder the terms without altering the sum.

Proof:

Let $\sum_{n=1}^{\infty} b_n$ be a reordering of $\sum_{n=1}^{\infty} a_n$.

Since $\sum_{n=1}^{\infty} |a_n|$ converges, say to S, and the partial sums $T_n = \sum_{r=1}^n |b_r|$ are monotonic increasing and bounded above by S, $\sum_{r=1}^n |b_r|$ also converges.

Since $\sum_{r=1}^{n} |b_r|$ converges, $\sum_{r=1}^{n} b_r$ also converges.

Let
$$\sum_{r=1}^n a_r = S_n'$$
 and $\sum_{n=1}^\infty a_n = S'$. Let $\sum_{r=1}^n b_r = T_n'$ and $\sum_{n=1}^\infty b_n = T'$

Then given $\epsilon > 0$, $\exists N: |S'_n - S'| < \epsilon$.

Then for large enough m, $T'_m = S'_n + a_{i_1} + a_{i_2} + \cdots + a_{i_k}$ for some a_{i_j} .

Then
$$|T'_m - S'| \le |S'_n - S'| + |a_{i_1}| + |a_{i_2}| + \dots + |a_{i_k}| < 2\epsilon$$
. So $T'_m \to S'$ as $n \to \infty$.

