Signalabtastung und -rekonstruktion

Zusammenhang zwischen diskreten und kontinuierlichen Signalen und Systemen

- Verbindung zwischen den beiden "Welten" kontinuierlich und diskret bildet die systemtheoretische Grundlage der digitalen Signalverarbeitung.
- Große praktische Bedeutung, z.B.
 - Multimediabereich, digitale Verarbeitung und Speicherung von Audiound Videosignalen (CD, DVD, Foto),
 - Nachrichtenübertragung (ISDN, DSL, digitaler Mobilfunk),
 - Regelungs- und Automatisierungtechnik.

Signalabtastung und -rekonstruktion

Unter welchen Bedingungen lassen sich kontinuierliche Signale durch diskrete Abtastwerte eindeutig darstellen und wieder rekonstruieren?

Ideale Abtastung

• x(t) kontinuierliches Signal

$$x_n = x(t)|_{t=nT}, n \in \mathbb{Z}$$

 x_n Abtastwert, Sample

T Abtastintervall

 $f_a = 1/T$ Abtastrate, Abtastfrequenz

 $\omega_{\rm a}=2\pi/T$ Abtastkreisfrequenz

Ideale Abtastung: Systemtheoretische Beschreibung – Zeitbereich

(vgl. Kapitel z-Transformation)

Multiplikation des Signals x(t) mit einem Dirac-Kamm:x(t)

$$x_{a}(t) = x(t) \cdot \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x_{n}\delta(t - nT)$$

 $x_{\rm a}(t)$ ideal abgetastetes Signal, kontinuierliche Darstellung, für alle Zeiten t definiert, Null außer für t=nT $x_{\rm a}(t)$ darstellbar durch Folge x_n

Ideale Abtastung: Systemtheoretische Beschreibung — Frequenzbereich

$$x_{\mathsf{a}}(t) = x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$= \sum_{n=-\infty}^{\infty} \underline{c}_n \cdot e^{jn\omega_a t} \quad \text{mit } \omega_a = \frac{2\pi}{T}$$

mit
$$\underline{c}_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) \cdot e^{-jn\omega_a t} dt = \frac{1}{T}$$

Ideale Abtastung: Systemtheoretische Beschreibung – Frequenzbereich

$$x_{a}(t) = x(t) \cdot \sum_{n = -\infty}^{\infty} \frac{1}{T} \cdot e^{jn\frac{2\pi}{T}t}$$

$$X_{a}(j\omega) = \frac{1}{2\pi}X(j\omega) * \sum_{n = -\infty}^{\infty} \frac{1}{T} \cdot 2\pi\delta\left(\omega - \frac{2\pi n}{T}\right)$$

$$= \frac{1}{T} \sum_{n = -\infty}^{\infty} X\left(j\left(\omega - \frac{2\pi n}{T}\right)\right)$$

Skalierte periodische Fortsetzung des ursprünglichen Spektrums im Abstand $\omega = \omega_{\rm a} = 2\pi/T$

Ideale Abtastung: Veranschaulichung im Zeitund Frequenzbereich

Ideale Rekonstruktion: Systemtheoretische Beschreibung — Frequenzbereich

■ Man erhält $X(j\omega)$ aus $X_a(j\omega)$ und damit x(t) aus $x_a(t)$, indem man die periodischen Fortsetzungen des Spektrums mit Hilfe eines Tiefpasses wegfiltert.

Idealer Tiefpass mit Grenzkreisfrequenz gleich der halben Kreisfrequenz der periodischen Fortsetzung:

$$H_{\mathsf{TP}}(j\omega) = T \cdot r_{\frac{\pi}{T}}(\omega) = T \cdot r_{\frac{\omega_{\mathsf{a}}}{2}}(\omega)$$

• $\tilde{X}(j\omega) = X_{\mathsf{a}}(j\omega) \cdot H_{\mathsf{TP}}(j\omega)$ und $\tilde{X}(j\omega) = X(j\omega)$ unter gewissen Bedingungen, siehe Abtasttheorem

Ideale Rekonstruktion: Systemtheoretische Beschreibung – Zeitbereich

$$H_{\mathsf{TP}}(j\omega) = T \cdot r_{\overline{T}}(\omega) \quad \bullet \quad h_{\mathsf{TP}}(t) = \frac{\sin\left(\frac{\pi}{T}t\right)}{\frac{\pi}{T}t} = \sin\left(\pi\frac{t}{T}\right)$$

$$\tilde{X}(j\omega) = X_{\mathsf{A}}(j\omega) \cdot H_{\mathsf{TP}}(j\omega)$$

$$\tilde{x}(t) = x_{\mathsf{A}}(t) * h_{\mathsf{TP}}(t)$$

$$= \left[\sum_{n=-\infty}^{\infty} x_n \delta(t-nT)\right] * \sin\left(\pi\frac{t}{T}\right) \quad \text{für } t = kT \text{ ist nur } \text{der } k\text{-te Summand ungleich Null}$$

und $\tilde{x}(t) = x(t)$ unter gewissen Bedingungen, siehe Abtasttheorem.

Ideale Rekonstruktion: Systemtheoretische Beschreibung — Zeitbereich

• Stetiger Signalverlauf $\tilde{x}(t)$ wird aus dem abgetasteten Signal $x_a(t)$ rekonstruiert, Interpolation der Abtastwerte.

Ideale Rekonstruktion: Veranschaulichung im Frequenz- und Zeitbereich

Vorgang der Abtastung und Rekonstruktion

Systemtheoretische Darstellung

ideale technische Realisierung

Abtasttheorem

- Unter welchen Bedingungen können wir ein kontinuierliches Signal aus seinen Abtastwerten wieder fehlerfrei rekonstruieren, d.h. $\tilde{x}(t) = x(t)$?
- Abtasten eines Signal x(t)mit Abtastkreisfrequenz $\omega_{a} = 2\pi/T$

Periodische Fortsetzung des Spektrums $X(j\omega)$ mit $\omega_{\rm a}=2\pi/T$

- Bedingungen, damit sich die periodischen Fortsetzungen nicht überlappen:
 - Signal x(t) muss bandbegrenzt sein, Grenzkreisfrequenz ω_g .
 - Abtastkreisfrequenz muss größer als die doppelte Grenzkreisfrequenz ω_g des Signals sein, d.h. $\omega_{\rm a}>2\omega_g$

Spektren bei Abtastung

Überabtastung, periodische Fortsetzungen überlappen sich nicht, kein Aliasing.

Fehlerfreie Rekonstruktion von $X(j\omega)$ mittels Tiefpass möglich.

Unterabtastung, periodische Fortsetzungen überlappen sich, Aliasing (Spektrale Überfaltung).

Fehlerfreie Rekonstruktion von $X(j\omega)$ nicht möglich.

Abtasttheorem

Jedes bandbegrenzte Signal x(t) lässt sich eindeutig mit Hilfe von Abtastwerten $x_n = x(nT)$ darstellen.

Die Abtastkreisfrequenz $\omega_a=2\pi/T$ muss dazu größer als die doppelte Grenzkreisfrequenz ω_g (maximale Kreisfrequenz) des Signals gewählt werden:

$$\omega_{\mathsf{a}} > 2\omega_g$$

Die doppelte Grenzfrequenz $2\omega_g/2\pi=2f_g$ (= minimale Abtastrate) bezeichnet man auch als Nyquistrate.

Beachte: Die Abtastkreisfrequenz $\omega_a = 2\omega_g$ (statt $\omega_a > 2\omega_g$) ist ausreichend, wenn bei $\omega = \pi/T$ kein Dirac-Impuls vorliegt.

Praktische Aspekte bei der Abtastung

Der Abtastung wird i.d.R. ein Anti-Aliasing-Tiefpass vorgeschaltet.
 Beispiel: Digitalisierung verschiedener Signale:

·	Grenzfrequenz $f_{g, \mathrm{alias}}$ des Tiefpasses	Abtastrate f_a
Telefonsignal	3,4 kHz	8 kHz
Audiosignal	20 kHz	48 kHz
S/W Bildsignal	5 MHz	13,5 MHz

■ Bei Abtastrate > Nyquistrate (Überabtastung) ist eine fehlerfreie Rekonstruktion mit einem nichtidealen Tiefpassfilter möglich.

Nichtideale Abtastung

- Dirac-Abtaster technisch nicht realisierbar.
- Abtastung wird i.d.R. mit Hilfe eines Abtasthaltegliedes (Sample-and-Hold-Glied) realisiert: elektronischer Schalter, der periodisch für kurze, endliche Zeitdauer ΔT schließt und während dieser Zeitspanne einen Kondensator auf die Signalspannung auflädt (Kurzzeitintegration).

Nichtideale Rekonstruktion

- Dirac-Impulsgenerator technisch nicht realisierbar.
- Bei realen Digital-Analog-Wandlern versucht man nicht, $x_a(t)$ mit hohen, schmalen Impulsen anzunähern, sondern erzeugt aus den Abtastwerten x_n mit Hilfe eines Haltegliedes ein treppenförmiges Ausgangssignal $x_{tr}(t)$.

