A Figura 5 mostra os gráficos do integrando no Exemplo 7 o de sua integral indefinida (com C = 0). Qual é qual?

Isso sugere que façamos a substituição u = x + 1. Então du = dx e x = u - 1, de modo que

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx = \int \frac{u - 1}{\sqrt{4 - u^2}} \, du$$

Agora substituímos u = 2 sen θ , obtendo $du = 2 \cos \theta \ d\theta \ e^{\sqrt{4 - u^2}} = 2 \cos \theta$, de forma que

FIGURA 5

Exercícios 7.3

1-3 Calcule a integral usando a substituição trigonométrica indicada. Esboce e coloque legendas no triângulo retângulo associado.

1.
$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$
; $x = 3 \sec \theta$

$$2. \quad \int x^3 \sqrt{9 - x^2} dx; \quad x = 3 \sin \theta$$

3.
$$\int \frac{x^3}{\sqrt{x^2+9}} dx$$
; $x = 3 \text{ tg } \theta$

4-30 Calcule a integral.

5.
$$\int_{\sqrt{2}}^{2} \frac{1}{t^3 \sqrt{t^2 - 1}} dt$$
 6. $\int_{0}^{3} \frac{x}{\sqrt{36 - x^2}} dx$

6.
$$\int_0^3 \frac{x}{\sqrt{36 - x^2}} \ dx$$

7.
$$\int_0^a \frac{dx}{(a^2 + x^2)^{3/2}}; \quad a > 0$$
 8. $\int \frac{dt}{t^2 \sqrt{t^2 - 16}}$

$$8. \quad \int \frac{dt}{t^2 \sqrt{t^2 - 16t}}$$

$$9. \quad \int \frac{dx}{\sqrt{x^2 + 16}}$$

10.
$$\int \frac{t^5}{\sqrt{t^2+2}} dt$$

11.
$$\int \sqrt{1-4x^2} \, dx$$

$$12. \int \frac{du}{u\sqrt{5-u^2}}$$

13.
$$\int \frac{\sqrt{x^2 - 9}}{x^3} dx$$

14.
$$\int_0^1 \frac{dx}{(x^2+1)^2}$$

15.
$$\int_0^a x^2 \sqrt{a^2 - x^2} \ dx$$

16.
$$\int_{\sqrt{2}/3}^{2/3} \frac{dx}{x^5 \sqrt{9x^2 - 1}}$$

$$17. \int \frac{x}{\sqrt{x^2 - 7}} dx$$

18.
$$\int \frac{dx}{[(ax)^2 - b^2]^{3/2}}$$

19.
$$\int \frac{\sqrt{1+x^2}}{x} dx$$

$$20. \int \frac{x}{\sqrt{1+x^2}} \ dx$$

21.
$$\int_0^{0.6} \frac{x^2}{\sqrt{9-25x^2}} dx$$

22.
$$\int_0^1 \sqrt{x^2+1} \ dx$$

23.
$$\int \sqrt{5+4x-x^2} \, dx$$

24.
$$\int \frac{dt}{\sqrt{t^2-6t+13}}$$

25.
$$\int \frac{x}{\sqrt{x^2 + x + 1}} dx$$

26.
$$\int \frac{x^2}{(3+4x-4x^2)^{3/2}} \ dx$$

$$27. \quad \int \sqrt{x^2 + 2x} \, dx$$

28.
$$\int \frac{x^2+1}{(x^2-2x+2)^2} dx$$

$$29. \quad \int x \sqrt{1 - x^4} \ dx$$

30.
$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} dt$$

31. (a) Use substituição trigonométrica para mostrar que

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C.$$

(b) Use a substituição hiperbólica $x = a \operatorname{senh} t$ para mostrar que

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{senh}^{-1} \left(\frac{x}{a}\right) + C.$$

Essas fórmulas estão interligadas pela Fórmula 3.11.3.

32. Calcule

$$\int \frac{x^2}{(x^2 + a^2)^{3/2}} \, dx$$

- (a) por substituição trigonométrica.
- (b) por substituição hiperbólica $x = a \operatorname{senh} t$.
- **33.** Encontre o valor médio de $f(x) = \sqrt{x^2 1}/x$, $1 \le x \le 7$.
- **34.** Encontre a área da região delimitada pela hipérbole $9x^2 4y^2 = 36$ e a reta x = 3.
- **35.** Demonstre a fórmula $A = \frac{1}{2}r^2\theta$ para a área de um setor circular com raio r e ângulo central θ . [Dica: Suponha que $0 < \theta < \pi/2$ e coloque o centro do círculo na origem, assim ele terá a equação $x^2 + y^2 = r^2$. Então A é a soma da área do triângulo POQ e a área da região PQR na figura.]

36. Calcule a integral

$$\int \frac{dx}{x^4 \sqrt{x^2 - 2}}$$

Coloque em um gráfico o integrando e a integral indefinida e verifique se sua resposta é razoável.

- **37.** Encontre o volume do sólido obtido pela rotação em torno do eixo x da região delimitada pelas curvas $y = 9/(x^2 + 9)$, y = 0, x = 0 e x = 3.
- **38.** Encontre o volume do sólido obtido pela rotação em torno da reta x = 1 da região sob a curva $y = x \sqrt{1 x^2}$, $0 \le x \le 1$.
- 39. (a) Use substituição trigonométrica para verificar que

$$\int_0^x \sqrt{a^2 - t^2} dt = \frac{1}{2} a^2 \operatorname{sen}^{-1}(x/a) + \frac{1}{2} x \sqrt{a^2 - x^2}.$$

(b) Use a figura para dar interpretações geométricas de ambos os termos no lado direito da equação na parte (a).

- **40.** A parábola $y = \frac{1}{2}x^2$ divide o disco $x^2 + y^2 \le 8$ em duas partes. Encontre as áreas de ambas as partes.
- **41.** Um toro é gerado pela rotação do círculo $x^2 + (y R)^2 = r^2$ ao redor do eixo x. Ache o volume delimitado pelo toro.
- **42.** Uma barra carregada de comprimento L produz um campo elétrico no ponto P(a, b) dado por

$$E(P) = \int_{-a}^{L-a} \frac{\lambda b}{4\pi \varepsilon_0 (x^2 + b^2)^{3/2}} dx$$

em que λ é a densidade de carga por unidade de comprimento da barra e ε_0 , a permissividade do vácuo (veja a figura). Calcule a integral para determinar uma expressão para o campo elétrico E(P).

43. Encontre a área da região em forma de *lua crescente* delimitada pelos arcos dos círculos de raios $r \in R$. (Veja a figura.)

44. Um tanque de armazenamento de água tem a forma de um cilindro com diâmetro de 10 m. Ele está montado de forma que as secções transversais circulares são verticais. Se a profundidade da água é 7 m, qual a porcentagem da capacidade total usada?