Class 07: Machine Learning 1

Katelyn Wei (A16682595)

Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know what the answer should be.

```
x <- rnorm(10000, mean = 3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean = 3), rnorm(30, -3))
x <- cbind(x = tmp, y = rev(tmp))
head(x)</pre>
```

```
x y
[1,] 4.024023 -1.487550
[2,] 1.456603 -3.645609
[3,] 1.785925 -2.623390
[4,] 2.143946 -2.584958
[5,] 4.562344 -1.430950
[6,] 3.437492 -3.978403
```

We can pass this to the base R plot() function for a quick look.

```
plot(x)
```



```
k <- kmeans(x, centers = 2, nstart = 20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
      X
1 -3.097592 2.909996
2 2.909996 -3.097592
Clustering vector:
Within cluster sum of squares by cluster:
[1] 45.44809 45.44809
(between_SS / total_SS = 92.3 %)
Available components:
[1] "cluster"
            "centers"
                     "totss"
                               "withinss"
                                        "tot.withinss"
[6] "betweenss"
            "size"
                     "iter"
                               "ifault"
   Q1. How many points are in each cluster?
 k$size
[1] 30 30
  Q2. Cluster membership?
 k$cluster
Q3. Cluster centers?
```

k\$centers

x y 1 -3.097592 2.909996 2 2.909996 -3.097592

Q4. Plot my clustering results

Q5. Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers = 4, nstart = 20)
plot(x, col = k4$cluster, pch = 16)</pre>
```


Kmeans is very popular mostly because it's fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

Hierarchical Clustering

The main function is hclust(). You have to pass it in a "distance matrix", not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like. abline() adds a line to a plot and cutree() cuts

```
plot(hc)
abline(h=8, col = "red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30

Q6. Plot the hclust results</pre>
```

plot(x, col = grps)

Lab 7

First we will read the provided UK_foods.csv input file:

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh fruit	1102	1137	957	674

13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

dim(x)

[1] 17 5

Checking the data:

```
## Preview the first 6 rows
head(x)
```

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

The row names were not set properly. One way to fix this is to set rownames() to the 1st column, then remove the 1st column with -1. THIS IS DANGEROUS. Re-running the code would delete data.

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Instead, we can re-read the data and use the row.names argument to set it to the 1st column:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

The second one because it prevents an accidental error from happening.

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
# Setting beside to False
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

The pairs() function makes a matrix of scatterplots that compare pairs of categories at a time(countries in this case). If a point lies on the diagonal, it means that variable doesn't differ much between the two countries.

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

The main differences are fresh potatoes, cheese and alcohol consumption.

Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first transpose our input x so the columns are the food types and the rows are the countries.

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_	and_	oils	Sugars
England	105		245		685	147			193	156
Wales	103		227		803	160			235	175
Scotland	103		242		750	122			184	147
N.Ireland	66		267		586	93			209	139
	Fresh_p	potatoes	Fresl	n_Veg	Other	_Veg	Proce	ssec	l_potat	toes
England		720		253		488				198
Wales		874		265		570				203

Scotland	566	171	418	3	220
N.Ireland	1033	143	35!	5	187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confection	nery		
England	3	75	54		
Wales	4	75	64		
Scotland	4	.58	62		
N.Ireland	1	35	41		

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        3.176e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# plotting PC1 compared to PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
# adding color
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange", "red", "blue", "darkgreen"))
```


The "loading scores" in this plot tell us how much the original variables (in our case the foods) contribute to the new variables i.e. the PCs:

head(pca\$rotation)

```
PC1
                                     PC2
                                                 PC3
                                                               PC4
Cheese
               -0.056955380
                             0.01601285
                                          0.02394295 -0.694538519
Carcass_meat
                0.047927628
                             0.01391582
                                          0.06367111
                                                      0.489884628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                      0.279023718
Fish
               -0.084414983 -0.05075495
                                          0.03906481 -0.008483145
Fats_and_oils
               -0.005193623 -0.09538866 -0.12522257
                                                      0.076097502
Sugars
               -0.037620983 -0.04302170 -0.03605745
                                                      0.034101334
```

```
## Let's focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

Fresh potatoes and soft drinks are the most prominent. PC2 mainly tells us that fresh potatoes and soft drinks are what's driving the differences between the countries.

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

