UNSUPERVISED
METHODS TO GROUP
USERS' CONSUMPTION
BEHAVIOUR TO
ENHANCE
PERSONALIZE SERVICE
DEGRADATION
POLICIES

PROJECT MODULE 1

ROBERTO CASALUCE – MACIEJ ZUZIAK

OVERVIEW

ONE DATASET
CONTAINING 1249
STATISTICAL UNITS

114 DIFFERENT
FEATURES (ONLINE
PLATFORMS AND
MOBILE APPLICATIONS)

TIME EXPRESSED IN SECOND, DATA CONSUMPTION IN BYTES

TASK IS TO IDENTIFY THE EXISTENCE OF CONSUMER GROUPS

TOTAL TIME OCCUPATION PER PLATFORM (LOG TRANSFORMATION)

Ranked Cross-Correlations

20 most relevant

WE HAVE...

01

DELETED FEATURES RELATED TO DATA USAGE 02

DELETED FEATURES
THAT CONTAINED
LESS THAN TWO
USERS' ENTRIES

03

DELETED
DUPLICATED
ENTRIES

04

PERFORMED LOG TRANSFORMATION DESCRIBED BEFORE

PCA

Log transformed data

Scaled data

PCA

PCA

Robust PCA

Flags the outliers

First Two components

Robust PCA

(Chen et al., 2020)

Variances Robust and Classic PCA

Clustering method selection

From a previous work (Rojas et al., 2020): 3/4 clusters - **Low**, **Medium**, **High and Very High**

Hartigan Index

Agglomerative Hierarchical clustering method

Kmeans clustering method

Evaluating Clustering methods (Brock et al., 2008)

Cluster **stability** measure:

- The average proportion of non-overlap (APN)
- The average distance (AD)
- The average distance between means (ADM)
- The figure of merit (FOM)

APN	0.009	kmeans	3
AD	10.2	kmeans	4
ADM	0.095	kmeans	3
FOM	0.93	kmeans	4

Connectivity	139.75	hierarchical	3
Dunn	0.26	hierarchical	3
Silhouette	0.20	kmeans	3

Internal measures for cluster validation

Evaluating a Clustering Solution

Silhouette widths kmeans

Evaluating a Clustering Solution

Hubert index kmeans

According to the majority rule, the best number of clusters is 3

- * 11 proposed 3 as the best number of clusters
- * 1 proposed 4 as the best number of clusters
- * 9 proposed 2 as the best number of clusters

Kmeans 3 clusters

Size Clusters				
1	2	3		
266	343	364		

Reference

Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling. Theory and Applications. Springer.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Brock, G., Pihur, V., Datta, S. and Datta, S. (2008) clValid: An R Package for Cluster Validation Journal of Statistical Software 25(4)

Charrad M., Ghazzali N., Boiteau V., Niknafs A. (2014). "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set.", "Journal of Statistical Software, 61(6), 1-36.", "URL http://www.jstatsoft.org/v61/i06/".

Chen, X., Zhang, B., Wang, T., Bonni, A., & Zhao, G. (2020). Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. *BMC bioinformatics*, *21*(1), 1-20.

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 21, 768–769.

Reference

Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. doi: 10.2307/2346830.

Lloyd, S. P. (1957, 1982). Least squares quantization in PCM. Technical Note, Bell Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28, 128–137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M. Le Cam & J. Neyman, 1, pp. 281–297. Berkeley, CA: University of California Press.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. Academic Press.

Metcalf, L., & Casey, W. (2016). Cybersecurity and applied mathematics. Syngress.

Rojas, J. S., Pekar, A., Rendón, Á., & Corrales, J. C. (2020). Smart user consumption profiling: Incremental learning-based OTT service degradation. IEEE access, 8, 207426-207442.