

NATURAL SELECTION: Fundamentals

Natural selection

- "This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection."
 - --Darwin (1859)
- Presented simultaneously with A. R. Wallace
- Emphases differed, though both correct—
 - Darwin: emphasized competition within species
 - Wallace: emphasized environmental pressures

Is evolution by natural selection "just a theory"?

• Let's imagine that you're working with a population of squirrels.

Type A: run randomly Type B: fear asphalt

Average: 1 offspring 2 offspring

Start: A: 100 B: 100 50% B

Gen 1:

Gen 2:

Gen 3:

Requirements for evolution by natural selection

Variation in traits

Heritability of traits

 Trait variants affect survival/ reproduction

Quantitative Traits vs. Single Locus

- Already discussed selection in the context of heritability:
 Heritability = Response/Selection
 - Genetic component of variation dictates selection's response
 - Response often from change in allele frequencies at multiple loci
- Can also be studied at single locus/ gene
 - We'll come back to phenotypes shortly

What does selection do to alleles at individual loci?

Affects abundance of particular genotypes
 e.g., AA: good, Aa: good, aa: "less good" (dead?)

Affects frequency of alleles in population
 In example above, fewer "a" alleles remain in population

 DOMINANCE OF ALLELES MATTERS FOR SELECTION

Strong selection in humans: Single loci

- Spontaneous bad mutations are common
- Half of pregnancies never detected because spontaneously abort very early
- Half of spontaneous abortions result from genetic problems

~25% of all human fertilizations immediately eliminated by natural

selection!

Weak(er) selection in humans: Single loci

- Historically, all humans adult lactose intolerant
- Estimate ~5% fewer kids if lactose intolerant
- New mutation arose— now most people "lactase persistent" (lactose tolerant) as adults
 - What is effect of 5% more kids???

Can simulate with AlleleA1

- Fitness of "AA" (intolerant) is 0.95
- Fitness of "Aa" and "aa" (tolerant) is 1.00
- Time: 5000 years
- All were "AA" and then new mutation
 (a) arose in Africa ~5000 years ago

http://faculty.washington.edu/ herronjc/SoftwareFolder/AlleleA1.html

Can simulate with AlleleA1

- Fitness of "AA" (intolerant) is 0.95
- Fitness of "Aa" and "aa" (tolerant) is 1.00
- Time: 5000 years
- All were "AA" and then new mutation
 (a) arose in Africa ~5000 years ago

Selection uses

"relative fitness" of genotypes

- In lactase example:
 - AA: 0.95 Aa: 1.00 aa: 1.00
 - AA has "5% fewer kids" successfully on average than Aa or aa
- Because something is "selected against", doesn't mean it's "bad" by itself, just not as good as the alternative...
 - Humans survived for a long time as AA (lactose intolerant)...

Analogy...

"I love rock & roll"

Forgotten original is by the Arrows, 1975

- A new mutation is like a released cover of a previously released song
 - Original song was popular/ successful
 - Cover may be more successful
 - Spreads (sells), and everyone forgets the original
 - Cover may be less successful
 - Around briefly but then dies off

Joan Jett vs Britney Spears

1982

What is relative fitness? Example.

- BB genotypes produces on average 3.2 surviving offspring
- Bb genotypes produce on average 3.0 offspring
- bb genotypes produce on average 2.4 offspring

What is relative fitness? Example.

- BB genotypes produces on average 3.2 surviving offspring
- Bb genotypes produce on average 3.0 offspring
- bb genotypes produce on average 2.4 offspring

- Most fit genotype: BB
 - Call it "100% of maximum", fitness = w (BB) = 1.00
 - Others are percentage of maximum
 - w (Bb) = 3.0 / 3.2 = 0.94 (~6% less fit than BB)
 - w (bb) = 2.4 / 3.2 = 0.75 (~25% less fit than BB)

- Assume all "aa" individuals die at age 10
- At age 8:
 - AA: 490 Aa: 420 aa: 90
 - Is this 8-year-old population at HW?

- Assume all "aa" individuals die at age 10
- At age 8:
 - AA: 490 Aa: 420 aa: 90

- Assume all "aa" individuals die at age 10
- At age 8:

- AA: 490 Aa: 420 aa: 90

p(A) = 0.70

AA: 490 Aa: 420 aa: --dead--

- Assume all "aa" individuals die at age 10
- At age 8:

- AA: 490 Aa: 420 aa: 90

p(A) = 0.70

At age 25:

- AA: 490 Aa: 420 aa: 0 $p(A) = 490/910 + \frac{1}{2}(420/910) = 0.769$

- Assume all "aa" individuals die at age 10
- At age 8:

- AA: 490 Aa: 420 aa: 90

p(A) = 0.70

- AA: 490 Aa: 420 aa: 0

p(A) = 0.77

- Deviation from Hardy-Weinberg
 - Selection altered genotype frequencies
- Selection also altered allele frequencies

- Assume all "aa" individuals die at age 10
- At age 8:

- AA: 490 Aa: 420 aa: 90

p(A) = 0.70

- AA: 490 Aa: 420 aa: 0

p(A) = 0.77

- Deviation from Hardy-Weinberg
 - Selection altered genotype frequencies
- Selection also altered allele frequencies
- Are aa's gone for good? What happens next?

What happens next?

AA: 490 Aa: 420 aa: 0

Total number of survivors: 910

freq(AA) =
$$490 / 910 = 0.538$$

freq(Aa) = $420 / 910 = 0.462$
p(A) = $0.538 + \frac{1}{2} 0.462 = 0.769$ (was 0.70)
q(a) = $0.000 + \frac{1}{2} 0.462 = 0.231$ (was 0.30)

Babies in next generation (assuming random mating):

AA: 0.591 Aa: 0.355 aa: 0.054 They' re back!

Image Credits, Unit 12-1

- Peacock, © 2009 Jebulon, CC by-SA 3.0, en.wikipedia.org
- Animated venus flytrap, © 2009 Mnolf, CC by-SA 3.0, en.wikipedia.org
- Beetle group, © 2011 Bugboy52.40, CC by-SA 3.0, en.wikipedia.org
- Lion, © 2004 yaaaay, CC by 2.0, en.wikipedia.org
- Squirrel on road, © Tomo Jesenicnik, <u>www.photoxpress.com</u>
- Mouse and peppers, © 2007 Pearson Education Inc., all rights reserved, Figure 3.4, Evolutionary Analysis 4/e by Freeman & Herron
- Human embryo, © 2009 lunar caustic, CC by 2.0, en.wikipedia.org
- Britney Spears, © 2011 Romina060693, CC by-SA 3.0, en.wikipedia.org
- Joan Jett, © 2010 David Shankbone, CC by 2.0, en.wikipedia.org
- Staircase, © 2005 BenFrantzDale, CC by-SA 3.0, en.wikipedia.org