

# **Wave Generation from Explosions in Cavities in Rock**

**Cangli Liu  
Thomas J. Ahrens**

**California Institute of Technology  
Seismological Laboratory 252-21  
1200 E. California Blvd  
Pasadena, CA 91125**

**30 June 1998**

**Final Report**

**APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS  
UNLIMITED.**



**20021008 020**

**AIR FORCE RESEARCH LABORATORY  
Space Vehicles Directorate  
29 Randolph Rd  
AIR FORCE MATERIEL COMMAND  
Hanscom AFB, MA 01731-3010**

---

SPONSORED BY  
Air Force Technical Applications Center  
Directorate of Nuclear Treaty Monitoring  
Project Authorization T/5101

MONITORED BY  
Air Force Research Laboratory  
CONTRACT No. F19628-95-C-0115

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either express or implied, of the Air Force or U.S. Government.

This technical report has been reviewed and is approved for publication.



JAMES C. BATTIS  
Contract Manager



CHARLES P. PIKE (acting)  
CHARLES P. PIKE, Deputy Director  
Integration and Operations Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/VSOS-IM, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of the report unless contractual obligations or notices on a specific document requires that it be returned.

## REPORT DOCUMENTATION PAGE

Form Approved  
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

**PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                     |                                                                                                             |                           |                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|--|
| 1. REPORT DATE /DD-MM-YYYY/<br>30 June 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                     | 2. REPORT TYPE<br>Scientific, Final                                                                         |                           | 3. DATES COVERED (From - To)<br>16 Jun 95-30 Sep 97                                                              |  |
| 4. TITLE AND SUBTITLE<br>Wave Generation from Explosions in Cavities in Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                     | 5a. CONTRACT NUMBER<br>F19628-95-C-0115<br><br>5b. GRANT NUMBER<br><br>5c. PROGRAM ELEMENT NUMBER<br>35999F |                           |                                                                                                                  |  |
| 6. AUTHOR(S)<br>Cangli Liu<br>Thomas J. Ahrens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                     | 5d. PROJECT NUMBER<br>5101<br><br>5e. TASK NUMBER<br>GM<br><br>5f. WORK UNIT NUMBER<br>AH                   |                           |                                                                                                                  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br>California Institute of Technology<br>Seismological Laboratory 252-21<br>1200 E. California Blvd<br>Pasadena, CA 91125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                     |                                                                                                             |                           | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                      |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>Air Force Research Laboratory/VSBI<br>29 Randolph Road<br>Hanscom AFB, MA 01731-3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                     |                                                                                                             |                           | 10. SPONSOR/MONITOR'S ACRONYM(S)<br><br>11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)<br>AFRL-VS-HA-TR-98-0078       |  |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT<br>Approved for Public Release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                     |                                                                                                             |                           |                                                                                                                  |  |
| 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                     |                                                                                                             |                           |                                                                                                                  |  |
| <b>14. ABSTRACT</b><br><p>We have developed a measurement method to monitor P- and S-waves generated from laboratory-scale explosions in meter-sized rock media at a series of stations, and invented a unique device to drill spherical cavities with diameters of up to 10 cm in rock. We have also conducted laboratory experiments in which spherical/cylindrical charges of 0.2 to 1.9 g mass were detonated at the center of spherical/cylindrical cavities with radii from 0.6 to 1.5 cm in Bedford limestone and the waves generated by the explosions were recorded in the near field within 250 mm. The records and post-explosion studies clearly demonstrate the P-waves generated from both explosions in cavities and crack propagation in rock. The peak particle displacement induced by P-waves ranges from 9 to 15 um at 150 to 210 mm from the source for the spherical cavity experiment with 1.9 g explosives, and 8 to 4 um at 150 to 220 mm from the source with 0.8 g explosives, 35 to 10 um at 150 to 240 mm for the tamped cylindrical cavity experiment with 1.2 g explosives and 7 to 2 um at 150 to 190 mm from the source for the decoupled cylindrical cavity experiment with 0.24 g explosives.</p> |                    |                     |                                                                                                             |                           |                                                                                                                  |  |
| 15. SUBJECT TERMS<br>Confined explosions    Limestone    Discrimination    Shear waves    Pressure waves    Cylindrical cavity    Spherical cavity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                                                                                                             |                           |                                                                                                                  |  |
| 16. SECURITY CLASSIFICATION OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                     | 17. LIMITATION OF<br>ABSTRACT<br>UNL                                                                        | 18. NUMBER<br>OF<br>PAGES | 19a. NAME OF RESPONSIBLE PERSON<br>James Battis<br><br>19b. TELEPHONE NUMBER (Include area code)<br>781 377-4669 |  |
| a. REPORT<br>UNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b. ABSTRACT<br>UNC | c. THIS PAGE<br>UNC |                                                                                                             |                           |                                                                                                                  |  |

# Contents

|                                                                                                                           |           |
|---------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Abstract</b>                                                                                                           | 1         |
| <b>1 Introduction</b>                                                                                                     | <b>3</b>  |
| <b>2 Measurement Method</b>                                                                                               | <b>6</b>  |
| 2.1 Introduction . . . . .                                                                                                | 6         |
| 2.2 Sensors . . . . .                                                                                                     | 6         |
| 2.3 Data Reduction Method . . . . .                                                                                       | 7         |
| 2.3.1 P-wave reflection at free surfaces . . . . .                                                                        | 7         |
| 2.3.2 SV-wave reflection at free surfaces . . . . .                                                                       | 8         |
| 2.3.3 Strains induced by incident P-waves . . . . .                                                                       | 9         |
| 2.3.4 Strains induced by incident S-waves . . . . .                                                                       | 11        |
| 2.3.5 Amplitudes of incident P- and S-waves . . . . .                                                                     | 12        |
| 2.4 Characteristics of the Strains along the Two Directions . . . . .                                                     | 12        |
| 2.4.1 Strains induced by incident P-waves . . . . .                                                                       | 12        |
| 2.4.2 Strains induced by incident S-waves . . . . .                                                                       | 14        |
| 2.5 Conclusions . . . . .                                                                                                 | 15        |
| <b>3 Wave Generation From Explosions in Spherical Cavities in Rock</b>                                                    | <b>16</b> |
| 3.1 Introduction . . . . .                                                                                                | 16        |
| 3.2 Experiments and Results . . . . .                                                                                     | 16        |
| 3.2.1 Spherical cavity drill . . . . .                                                                                    | 16        |
| 3.2.2 Experimental details . . . . .                                                                                      | 19        |
| 3.2.3 Experimental records . . . . .                                                                                      | 21        |
| 3.2.4 Crack pattern from the recovered samples . . . . .                                                                  | 21        |
| 3.3 Analysis of the P-waves Induced by Explosions and Cracking . . . . .                                                  | 25        |
| 3.3.1 P-wave velocity . . . . .                                                                                           | 25        |
| 3.3.2 Particle displacement induced by P-waves . . . . .                                                                  | 25        |
| 3.3.3 Comparison between experimental data and theoretical predictions . . . . .                                          | 26        |
| 3.3.4 Comparison between the observation and theoretical predictions of displacement history induced by P-waves . . . . . | 38        |
| 3.3.5 P-wave decay . . . . .                                                                                              | 41        |

|                     |                                                                          |           |
|---------------------|--------------------------------------------------------------------------|-----------|
| 3.4                 | Analysis of the S-waves Generated from Explosions and Cracking . . . . . | 42        |
| 3.4.1               | S-wave arrival . . . . .                                                 | 42        |
| 3.4.2               | S-wave amplitudes . . . . .                                              | 44        |
| 3.4.3               | S-wave profiles generated from cracking . . . . .                        | 45        |
| 3.5                 | Conclusions . . . . .                                                    | 47        |
| <b>4</b>            | <b>Wave Generation From Explosions in Cylindrical Cavities in Rock</b>   | <b>50</b> |
| 4.1                 | Introduction . . . . .                                                   | 50        |
| 4.2                 | Experiments and Results . . . . .                                        | 50        |
| 4.2.1               | Experimental Details . . . . .                                           | 50        |
| 4.2.2               | Experimental Results . . . . .                                           | 50        |
| 4.3                 | P-waves Generated from Explosions . . . . .                              | 53        |
| 4.3.1               | P-waves generated from the decoupled experiment . . . . .                | 53        |
| 4.3.2               | P-waves generated from the tamped experiment . . . . .                   | 54        |
| 4.4                 | S-waves Generated from Explosion . . . . .                               | 54        |
| 4.4.1               | S-waves generated from the decoupled experiment . . . . .                | 54        |
| 4.4.2               | S-waves generated from the tamped experiment . . . . .                   | 55        |
| 4.5                 | Conclusions . . . . .                                                    | 55        |
| <b>5</b>            | <b>Summary</b>                                                           | <b>59</b> |
| <b>Bibliography</b> |                                                                          | <b>62</b> |

## List of Figures

|      |                                                                                     |    |
|------|-------------------------------------------------------------------------------------|----|
| 2.1  | Sample and strain gauge layout for spherical cavity experiments . . . . .           | 13 |
| 2.2  | H and G versus incident angle . . . . .                                             | 15 |
| 3.1  | Schematic of spherical cavity drill . . . . .                                       | 17 |
| 3.2  | Assembly drawing of spherical cavity drill . . . . .                                | 18 |
| 3.3  | Mechanical configuration of the test chamber. . . . .                               | 20 |
| 3.4  | Spherical explosive source arrangement. . . . .                                     | 21 |
| 3.5  | Strain signals from all the gauges in SW4. . . . .                                  | 22 |
| 3.6  | Strain signals from all the gauges in SW9. . . . .                                  | 22 |
| 3.7  | Strain signals at the same location from the gauges in SW4 and SW9. . . . .         | 23 |
| 3.8  | Strain signals at the same location from the gauges in SW4 and SW9. . . . .         | 24 |
| 3.9  | Schematic of the large cracks in relation to the spherical cavity. . . . .          | 25 |
| 3.10 | P-wave arrival versus radius. . . . .                                               | 26 |
| 3.11 | P-wave particle displacement versus time for SW4. . . . .                           | 27 |
| 3.12 | P-wave particle displacement versus time for SW9. . . . .                           | 27 |
| 3.13 | Scaled maximum P-wave particle displacement versus propagation distance . . . . .   | 28 |
| 3.14 | Typical displacement history from the spherical model without cracking . . . . .    | 30 |
| 3.15 | Pressure history . . . . .                                                          | 39 |
| 3.16 | Comparison between the experimental data and the results from the equivalent models | 40 |
| 3.17 | Peak P-wave induced particle displacement versus propagation distance . . . . .     | 43 |
| 3.18 | Maximum shear wave strain versus propagation distance . . . . .                     | 45 |
| 3.19 | Maximum shear wave displacement versus propagation distance . . . . .               | 46 |
| 3.20 | Shear strain history . . . . .                                                      | 48 |
| 4.1  | Sample and strain gauge layout for cylindrical cavity experiments . . . . .         | 51 |
| 4.2  | Experimental results of the decoupled explosion, Shot SW1 . . . . .                 | 52 |
| 4.3  | Experimental results of the tamped explosion, Shot SW2 . . . . .                    | 53 |
| 4.4  | P-wave amplitudes from decoupled experiment . . . . .                               | 53 |
| 4.5  | P-wave generated from the tamped experiment . . . . .                               | 54 |
| 4.6  | P-wave amplitude versus propagation distance for SW1 and SW2 . . . . .              | 55 |
| 4.7  | Strain signals at different location for SW1 . . . . .                              | 56 |
| 4.8  | Strain signals at the different location for SW2. . . . .                           | 57 |

|     |                                                                              |    |
|-----|------------------------------------------------------------------------------|----|
| 4.9 | S-wave amplitude versus propagation distance for SW1 and SW2 . . . . .       | 58 |
| 5.1 | Possible damage difference between chemical and nuclear explosions . . . . . | 61 |

## List of Tables

|                                                       |    |
|-------------------------------------------------------|----|
| 3.1 Data for spherical cavity experiments . . . . .   | 20 |
| 4.1 Data for cylindrical cavity experiments . . . . . | 52 |

## Abstract

We have developed a measurement method to monitor P- and S-waves generated from small laboratory-scale explosions in meter-sized rock media at a series of stations as well as invented a unique device to drill spherical cavities with the diameter up to 10 centimeters in rock.

We have also conducted laboratory experiments in which spherical/cylindrical charges in 0.2 to 1.9 gram mass range were detonated at the center of spherical/cylindrical cavities with the radius from 0.6 to 1.5 cm in Bedford limestone and the waves generated by explosions were recorded in the near field within 250 mm. The records and post-explosion studies clearly demonstrate the P-waves generated from both explosions in cavities and crack propagation in rock. The peak particle displacement induced by P-waves ranges from 9 to 5  $\mu\text{m}$  at 150 to 210 mm from source for the spherical cavity experiment with 1.9 gram explosives, and 8 to 4  $\mu\text{m}$  at 150 to 220 mm from source for spherical experiment with 0.8 gram explosives, 35 to 10  $\mu\text{m}$  at 150 to 240 mm from source for the tamped cylindrical cavity experiment with 1.2 gram explosives and 7 to 2  $\mu\text{m}$  at 150 to 190 mm from source for the decoupled cylindrical cavity experiment with 0.24 gram explosives. The step-like pressure model can be used to explain the experimental results on the peak P-wave induced particle displacement versus propagation distance from the explosions in spherical cavities but not in cylindrical cavities. This results demonstrates the cavity geometrical effects on wave pattern. The experimental results from both spherical and cylindrical cavities show that P-wave profiles are similar with each other. The experimental results verify that S-waves are generated from both shock wave-to-S conversion at cavity walls and crack propagation in rocks. The amplitude of S-waves from shock wave-to-S conversion is from 10 to 27  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 1.9 gram explosives, 8 to 21  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 0.8 gram explosives. The amplitude of S-waves generated by crack propagation is from 9 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical ex-

periment with 1.9 gram explosives, 8 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 0.8 gram explosives. Based on the experimental data, the ratio of S-wave to P-wave amplitude is approximately about 2.

We have analyzed P and S-waves generated by explosions and crack propagation in rock. A theoretical model is proposed to explain the differences of P-wave induced displacement history between the observed waveforms and that predicted by a step pressure source. The predictions of this model fit the observation qualitatively. The present results demonstrate the important role of rock cracking in P and S-wave generations from overdriven cavities.

The results from this work have demonstrated that the seismic source for underground explosions in cavities is much more complex than seismic theoretical models used to describe underground explosions. The rich phenomena associated with waves generated from explosive product driven crack extending from cavities suggest that this research direction may lead to development of the criteria that can be used to discriminate underground explosions from earthquakes and possible discriminate chemical from nuclear explosion sources.

# Chapter 1 Introduction

In the past 30 years, extensive research has been conducted on the discrimination of underground explosions from earthquakes. As a result, Murphy (1996) recently concluded that the seismology of earthquakes and underground explosions is at a state that it is possible to identify tamped explosions with a yield over 1 kiloton ( $m_b \geq 4$ ) on a world-wide basis. These explosions can be distinguished from earthquakes by the global seismic stations using the initial P-wave motion and the  $M_s$  to  $m_b$  ratio. In fact, the discrimination of the tamped explosions from earthquakes depends mainly on the collection of seismic data from previous underground nuclear explosions. However, many basic problems related to tamped explosions still remain unsolved (Massee, 1981; Murphy, 1996), e.g., the generation of long-period Rayleigh waves ( $\geq 5$  seconds), SH-waves and Love-waves etc. But now, the most difficult problems are to distinguish earthquakes from decoupled explosions with complex geometries and chemical explosions from small nuclear explosions.

The characteristics for decoupled explosions (Murphy, 1996) are: (1)  $m_b$  is too low to use the global monitoring system (in general,  $m_b \leq 3$ ); (2) the amplitudes of surface waves generated from such explosions are much lower than from tamped explosions; (3) the excitation of direct SV-waves and possibly SH-waves makes the problem more difficult. Although there are many published papers related to decoupled explosions (Glenn et al., 1985, 1993, 1994, 1996; Murphy et al. 1996; Murphy, 1996; Sykes, 1996; Langston, 1983 etc.), it still is unclear what really controls the generation of S-waves from decoupled explosions (Murphy, 1996). We conclude that the mechanisms of S-wave generation from explosions, especially from decoupled explosions in cavity is potentially an important discrimination criterion.

The suggested possible sources for S-waves from explosions include:

1. dynamic fracture of rocks near explosions;
2. the asymmetric plastic deformation near the explosion due to the asymmetric

- geometry and anisotropy of the rocks;
3. tectonic release of shear energy triggered by shock waves from the explosions;
  4. the conversion of P-waves to S-waves at the free surface of the Earth;

These mechanisms must be studied separately using different methods.

The objective of this work is to investigate P- and S-wave generations from explosions in cavities, dynamic fracture in rock and the conversion of shock induced P- and S-waves at the surfaces of the cavities experimentally. If the shock wave pressure in cavity is not too high, the rocks near explosions will fail via brittle fracture mechanisms. Radial fractures may be initiated from the inner surface of the cavity because the tangential(hoop) stresses always achieve the maximum value at the surface. Radial fractures generally can be further driven by the high-pressure explosive products (Coursen, 1985). The propagation of radial cracks may result in P- and S-wave generations. The reflection of the shock waves at cavity surfaces will also induce S-waves.

In order to investigate the details of the P- and S-wave generations from explosions in cavities in rock, a measurement method that has the capability to measure P- and S-waves generated from explosions in meter-size samples and a device that can form spherical cavities in rock have to be developed.

For small-scale laboratory experiments, the wave profiles have much higher frequencies than the usual seismic waves. Therefore, conventional seismic recording systems can not be used to measure those wave profiles. One candidate method developed for super-high strain rate experiments we considered (Kim and Clifton, 1977) is difficult to employ for the present experiments because it requires special treatment of sample surfaces. Magnetic velocity gauges have long been used to study shock wave decays in rocks, but this method requires embedding the gauges in the rock and thus contains considerable machining of rocks. This also adds some artificial internal interfaces which will generate S-waves and make the S-wave train more complicated. Based on the analysis of the interaction between P- and S-waves and free-surfaces, we have developed a method to measure P- and S-wave profiles on the free surfaces of rocks. The main idea of the method is to use the different characteristics of the

interactions between P- and S-waves and the free surface. In order to make a spherical cavity in rock, a special drilling tool has been developed and used in the experiments successfully.

In this report, the details of the method including measuremental method and spherical cavity drilling method are described. Experimental data on spherical and cylindrical cavities and the analysis on P- and S-wave profile and amplitudes are presented.

## Chapter 2 Measurement Method

### 2.1 Introduction

When P- and S-waves arrive at a free surface, the interactions between the P- and S-waves and the free surface are very different. The characteristics of these interactions provide the opportunity to measure the incident P- and S-wave amplitudes from the strain measurements on the free surfaces of rocks. The method developed is to use two strain gauges to measure the strains along two perpendicular directions at one point on the free surface of rock. The incident amplitude of P- and S-waves can be obtained from these strain measurements.

The basic assumptions made for the method are:

1. The waves in the rocks can be approximately treated locally as plane waves because the dimensions of strain gauges used in experiments are only 3x3 mm and gauges are located at least 150 mm away from the explosive sources.
2. The deformation of the rocks near the free surface is elastic.

The following is the details of the derivation of the relations between the signals from strain gauges and P- and S-waves in rock.

### 2.2 Sensors

A group of strain gauges are employed to monitor the wave profiles at different locations along two directions on the free-surface of rock samples. The directions of the gauges are shown in figure 2.1. The gauges and amplifiers are powered by batteries in order to achieve a high signal to noise ratio. A mercury relay is used to calibrate the system. The relation between strains,  $\epsilon$ , and the voltage change,  $\Delta V$ , is

$$\epsilon = \frac{\Delta V}{fgV_0}, \quad (2.1)$$

where  $V_0$  is the initial voltage supplied on the gauges.  $f$  and  $g$  are the gauge factor and gain of the amplifiers, respectively.

## 2.3 Data Reduction Method

Strain gauges give the elongation along the gauge directions. When they are attached on a free surface, they measure the elongation of the free-surface after wave reflections. The strains recorded by the gauges include the contributions from incident P- and S-waves and the reflected P- and S-waves. In order to get the relation between the strains given by the gauges and the incident P- and S-wave amplitudes, we first applied the well-known formulas describing the interactions between the incident P- and S-waves and the free surface.

### 2.3.1 P-wave reflection at free surfaces

The displacement reflection coefficients for incident P-waves at free surfaces (Aki and Richards, 1980) are

$$PP = \frac{B - A}{B + A}, \quad (2.2)$$

$$PS = \frac{2\beta \sin(2\theta) \cos(2j)}{A + B}, \quad (2.3)$$

where  $PP$  and  $PS$  are the reflection coefficients for P- and SV-wave displacements due to the incident P-waves, respectively.  $\alpha$  and  $\beta$  are P- and S-wave velocities, respectively.  $A$  and  $B$  are

$$A = \cos^2(2j), \quad (2.4)$$

$$B = \left(\frac{\beta}{\alpha}\right)^2 \sin(2j) \sin(2\theta), \quad (2.5)$$

where  $\theta$  and  $j$  (see 2.1) are the P-wave incident angle and S-wave reflection angle, respectively.

$$\sin j = \frac{\beta}{\alpha} \sin \theta, \quad (2.6)$$

$$\cos j = \left(1 - \left(\frac{\beta}{\alpha}\right)^2 \sin^2 \theta\right)^{\frac{1}{2}}. \quad (2.7)$$

The resultant displacements of the particles on the free surfaces after the reflection are

$$u_{par}^p = u_p^I[(1 + PP) \sin \theta + PS \cos j] = H_{par} u_p^I, \quad (2.8)$$

$$u_{per}^p = u_p^I[(1 - PP) \cos \theta + PS \sin j] = H_{per} u_p^I, \quad (2.9)$$

where  $u_p^I$  is the particle displacement of the incident P-wave,  $u_{par}^p$  and  $u_{per}^p$  indicate the resultant particle displacements along direction 2 and the direction that is perpendicular to the free surface after reflection as shown in figure 2.1, respectively. The  $H_{par}$  and  $H_{per}$  are

$$H_{par} = (1 + PP) \sin \theta + PS \cos j, \quad (2.10)$$

$$H_{per} = (1 - PP) \cos \theta + PS \sin j. \quad (2.11)$$

Substituting  $PP$  with Eq.(2.2) and  $PS$  with Eq.(2.3), Eqs.(2.10) and (2.11) can be rewritten as

$$H_{par} = \frac{2 \cos \theta \sin(2j)}{A + B}, \quad (2.12)$$

$$H_{per} = \frac{2 \cos \theta \cos(2j)}{A + B}. \quad (2.13)$$

### 2.3.2 SV-wave reflection at free surfaces

For incident SV-waves, the displacement reflection coefficients for P- and SV-waves (Aki and Richards, 1980) are

$$SP = \frac{\frac{\beta}{\alpha} \sin(4\theta)}{A_s + B_s}, \quad (2.14)$$

$$SS = \frac{A_s - B_s}{A_s + B_s}, \quad (2.15)$$

where  $SS$  and  $SP$  are the reflection coefficients of SV- and P-wave displacements due to the incident SV-waves.

$$A_s = \cos^2(2\theta), \quad (2.16)$$

$$B_s = \left(\frac{\beta}{\alpha}\right)^2 \sin(2\theta) \sin(2j), \quad (2.17)$$

where  $\theta$  and  $j$  are the SV-wave incident angle and P-wave reflected angle, respectively, and

$$\cos j = \left(1 - \left(\frac{\alpha}{\beta}\right)^2 \sin^2 \theta\right)^{\frac{1}{2}}. \quad (2.18)$$

The resultant displacements of the particles on the free surfaces after the reflection are

$$u_{par}^{sv} = u_{sv}^I [(1 + SS) \cos \theta + SP \sin j] = G_{par} u_{sv}^I, \quad (2.19)$$

$$u_{per}^{sv} = u_{sv}^I [(SS - 1) \sin \theta - SP \cos j] = G_{per} u_{sv}^I, \quad (2.20)$$

where  $u_{par}^{sv}$  and  $u_{per}^{sv}$  are the resultant particle displacements on the free surface after reflection along direction 2 as shown in figure 2.1 and the direction that is perpendicular to the free surface, respectively.  $u_{sv}^I$  is the particle displacement of the incident SV-wave. The  $G_{per}$  and  $G_{par}$  are

$$G_{par} = (1 + SS) \cos \theta + SP \sin j, \quad (2.21)$$

$$G_{per} = (SS - 1) \sin \theta - SP \cos j. \quad (2.22)$$

Substituting  $SP$  with Eq.(2.19) and  $SS$  with Eq.(2.15), Eqs.(2.21) and (2.22) are rewritten as

$$G_{par} = \frac{2 \cos(2\theta) \cos \theta}{A_s + B_s}, \quad (2.23)$$

$$G_{per} = -2 \frac{\frac{\beta}{\alpha} \cos j \sin(2\theta)}{A_s + B_s}. \quad (2.24)$$

### 2.3.3 Strains induced by incident P-waves

#### 1. Strains measured along 1 direction

Because  $u_{per}^p$  is perpendicular to the free surface and along the symmetrical axis direction of the waves, the strain due to  $u_{per}^p$  along the 1 direction is

$$\varepsilon_1^{per} = \frac{H_{per}}{r_0} u_p^I, \quad (2.25)$$

where  $\varepsilon_1^{per}$  is the strain along direction 1 induced by  $u_{per}^p$ , and  $r_0$  is the distance from the center of the cavity to the free surface at  $\theta = 0$ .

Because  $u_{par}^p$  does not result in any strains in the gauges along direction 1 at any time, the total strain induced by the incident P-waves is

$$\varepsilon_1^p = H_1 \frac{u_p^I}{r_0}, \quad (2.26)$$

where  $H_1 = H_{per}$ .

## 2. Strains measured along 2 direction

Because  $u_{per}^p$  and  $u_{par}^p$  all have contributions to the strain measured by gauges along the 2 direction, we need to consider the resultant displacements.

The length of the gauge after the reflection,  $l_s^r$ , is

$$l_s^r = (r_n^2 + (\frac{\partial r_n}{\partial \theta})^2)^{\frac{1}{2}} \delta\theta, \quad (2.27)$$

where

$$\delta\theta = \frac{l_s}{r_n}, \quad (2.28)$$

and  $l_s$  is the initial length of strain gauges.  $r_n$  is the distance from the center of the cavity to the position of the gauge after reflections

$$r_n = r + u \cos(\eta - \theta), \quad (2.29)$$

where  $r$  is the distance from the center of the cavity to the gauge before P-wave reflection,  $u$  is the resultant displacement of the point at  $\theta$  on the free surface and  $\eta$  is the angle between  $u$  and  $u_{per}^p$ , they are

$$u = u_p^I \frac{2 \cos(\theta)}{A + B}, \quad (2.30)$$

$$\eta = 2j. \quad (2.31)$$

To a first-order approximation,  $l_s^r$ , is

$$l_s^r \approx ((\frac{r}{\cos \theta})^2 + 2ru_p^I(W(\theta) + \tan(\theta) \frac{dW}{d\theta}))^{\frac{1}{2}} \frac{l_s \cos \theta}{r}, \quad (2.32)$$

where

$$W = \frac{2 \cos(\theta) \cos(\eta - \theta)}{A + B}. \quad (2.33)$$

If  $x \ll 1$ , we have

$$(1 + x)^{\frac{1}{2}} \simeq 1 + \frac{x}{2}. \quad (2.34)$$

Because  $u_p^I/r \ll 1$ , after using the approximation above,  $l_s^r$  is

$$l_s^r \approx \left( r \left( 1 + \frac{\tan^2 \theta}{2} \right) + u_p^I \left( W(\theta) \left( 1 - \frac{\tan^2 \theta}{2} \right) + \tan \theta \frac{dW}{d\theta} \right) \right) \delta\theta. \quad (2.35)$$

Then the strain is

$$\varepsilon_2^p = \frac{l_s^r - l_s}{l_s}, \quad (2.36)$$

and therefore

$$\varepsilon_2^p = H_2 \frac{u_p^I}{r_0}, \quad (2.37)$$

where

$$H_2 = \frac{\left( \cos \theta \left( W \left( 1 - \frac{\tan^2 \theta}{2} \right) + \tan \theta \frac{dW}{d\theta} \right) \right)}{\left( 1 + \frac{\tan^2 \theta}{2} \right)}, \quad (2.38)$$

and  $r_0 = r \cos \theta$ .

#### 2.3.4 Strains induced by incident S-waves

Using the same method, all the strains induced by incident SV-waves can be obtained.

The final expressions are listed as following:

1. Strains measured by gauges along 1 direction are

$$\varepsilon_1^{sv} = G_1 \frac{u_{sv}^I}{r_0}, \quad (2.39)$$

where

$$G_1 = G_{per}. \quad (2.40)$$

2. The strains given by the gauges along direction 2 can be found using the same method as for the incident P-wave. The resultant strains induced by the incident

SV-waves along direction 2 are

$$\varepsilon_2^{sv} = G_2 \frac{u_{sv}^I}{r_0}, \quad (2.41)$$

where

$$G_2 = \frac{(\cos \theta (W_s (1 - \frac{\tan^2 \theta}{2}) + \tan \theta \frac{dW_s}{d\theta})}{(1 + \frac{\tan^2 \theta}{2})}, \quad (2.42)$$

$$W_s = \frac{2 \cos(\eta - \theta) \cos \theta}{A_s + B_s} (\cos^2(2\theta) + 4(\frac{\beta}{\alpha})^2 \cos^2 j \sin^2 \theta)^{\frac{1}{2}}, \quad (2.43)$$

$$\tan \eta = -\frac{\alpha \cos \theta}{\beta \cos j \tan(2\theta)}. \quad (2.44)$$

### 2.3.5 Amplitudes of incident P- and S-waves

From the expressions given above, the displacements of incident P- and SV-waves can be obtained through the strains given by the gauges along the two directions.

1. The displacement of the incident P-waves is

$$u_p^I = r_0 \frac{\varepsilon_1^p}{H_1} = r_0 \frac{\varepsilon_2^p}{H_2}. \quad (2.45)$$

2. The displacement of the incident SV-waves is

$$u_{sv}^I = r_0 \frac{\varepsilon_{sv}^1}{G_1} = r_0 \frac{\varepsilon_{sv}^2}{G_2}. \quad (2.46)$$

## 2.4 Characteristics of the Strains along the Two Directions

### 2.4.1 Strains induced by incident P-waves

1. The non-dimensional constant,  $H_1$  in Eq.(2.45) is not sensitive to the variation in  $\theta$ , e.g., the value of  $H_1$  is about 2.0 for Bedford limestone. The non-dimensional constant,  $H_2$ , in Eq.(2.45) changes rapidly with  $\theta$ , it varies from about 2 to about -0.8 when incident angle changes from 0 to 55° for Bedford limestone as shown in figure 2.2.



(A) Layout of rock sample, strain gauges and explosive charge



(B) Sketch of polarization directions of strain gauges

Figure 2.1: Sample and strain gauge layout for spherical cavity experiments

2. From figure 2.2, the strains induced by P-waves along direction 1 are always positive, but the strains along direction 2 are positive when  $\theta$  is less than  $47^\circ$  and negative when  $\theta$  is larger than  $47^\circ$  ( for Bedford limestone). This polarity change is controlled by the ratio of the projection of P-wave displacement along direction 1 to that along the direction that is perpendicular to the free surface.
3. The characteristics of the strain induced by incident P-waves have been verified by the experimental results as shown in figures 3.5, 3.6, 4.7 and 4.8. From the experimental results, it is seen that all the strains along direction 1 (labeled with even gauge number) are positive at all the stations and the strains along direction 2 (labeled with odd gauge number) are positive when the incident angle is smaller than the critical angle and negative when the incident angle is larger than the critical angle.

#### 2.4.2 Strains induced by incident S-waves

1. The relation between  $G_1$  ( $G_2$ ) and the SV-wave incident angle for Bedford limestone is given in figure 2.2. From the calculated results, the gauges along direction 1 are not sensitive to incident SV-wave; however, the gauges along direction 2 are very sensitive to incident SV-wave.
2. The measurement of SV-waves are limited by the Rayleigh surface wave generation. For Bedford limestone, the Rayleigh wave is generated when  $\theta$  is larger than about  $35^\circ$  ( determined from Snell's law).
3. The polarities of the strains along direction 2 are negative, and the polarities of the strains along direction 1 are determined by the direction of the particle motion ( the calculation is made assuming that the motion direction is toward the increasing direction of the SV-wave incident angle).
4. The characteristics of the strain induced by incident S-waves have been verified by the experimental results as shown in figures 3.5, 3.6, 4.7 and 4.8. From the experimental results, it is seen that all the strains along direction 1 (labeled with even gauge number) are generally very small compared to the correspond strain



Figure 2.2: H and G versus incident angle

amplitudes along direction 2 at all the stations and the strains along direction 2 (labeled with odd gauge number) are always negative at all the stations.

## 2.5 Conclusions

A measurement method that can be used to monitor P- and S-waves generated from explosions has been developed. The relations between incident P and S-wave particle displacement and the strains recorded along the two directions have been derived as given in Eqs.(2.45) and (2.46) and the experimental set-up is shown in figures 2.1 and 3.3. Experimental results have verified the P- and S-wave characteristics predicted from the derived relations as shown in figure 2.2.

# **Chapter 3 Wave Generation From Explosions in Spherical Cavities in Rock**

## **3.1 Introduction**

Nearly all the seismic models for underground explosions assumed that the source is spherical (Murphy, 1996). Therefore, experimental study on the P and S-waves generated from the explosions in spherical cavities has direct applications to the understand of the waves from underground explosions. The objectives of this part is to study the P and S-waves generated from explosions in spherical cavities and also from crack propagation driven by shock waves and the explosive products.

## **3.2 Experiments and Results**

### **3.2.1 Spherical cavity drill**

In order to drill spherical cavities in rock, a special tool has been developed. The device is schematically shown in figure 3.1. Figure 3.2 is the assembly drawing of the drill. The principal of the drill is to use one of the two shanks, Shank A, to transfer the force from the machine to the other shank, Shank B, that rotates the blade and at same time push the blade to cut rock. During drilling process, the positioning plate is used to keep the drill from vibration induced by the asymmetrical force acting on the shank from blade. Pressurized air is used to cool the blade and also blow out the rock dust. Principally, the device can be used to drill spherical cavities with the diameter up to 10 centimeters in rocks like limestone. The procedures to form a spherical cavity inside rock are

1. We make a cylindrical hole with 1 cm diameter using a drill. The depth of the hole will be the deepest point of the spherical cavity.
2. After drilling, a small size blade with 1.5 cm diameter is put into the cylindrical



Figure 3.1: Schematic of spherical cavity drill

hole, the position plate is screwed to the shank to fix the depth of the spherical cavity and the center line in the rock target.

3. During drilling, pressurized air is used to blow out rock dust and also cool the blade. The air flow rate is roughly about 2 l/min. The rotation speed is about 240 r.p.m. and the feed rate is about 1 mm/min.
4. Then, a large blade is used to enlarge the cavity.

The device and procedure have been used to make spherical cavities in limestone successfully.



Figure 3.2: Assembly drawing of spherical cavity drill

Blade material: heat treated tool steel

Shank material: steel

Dimension unit: in

### 3.2.2 Experimental details

The rock sample (Bedford limestone) is assembled using two blocks as shown in figure 2.1. The rock sample with strain gauges is placed inside a tank pressurized to 10 bar. The type of strain gauge used in this work is CEA-00-062UT-120 from Measurements Group. The dimensions of the gauges are 3x3 mm. The initial resistance of gauges is  $120 \Omega \pm 0.4\%$  and the gauge factor is  $2.090 \pm 0.5\%$ . The procedure to attach the gauges on the surface is: (1) The surface is polished with #240 sandpaper ; (2) the surface is cleaned using acetone; (3) the gauges are attached on the surface using 910 adhesive (Permabond International); (4) after the adhesive is dried, a thin layer of the epoxy ( 5-minute epoxy, ITWDevcon) is applied on the gauge surface in order to protect them. The voltage on the gauge is typical 6 V ( before each experiment, the voltage on each gauge is measured). The amplifiers used in this work are specially designed to satisfy the requirements of high gain, wide bandwidth and low noise.

The explosives used in this work are Deta sheet PETN (DuPont) and Pellet pressed PETN (Reynolds Industries System Incorporated), the initial density is  $1.5 \text{ gram/cm}^3$  for Deta sheet PETN and  $1.4 \text{ gram/cm}^3$  for Pellet pressed PETN. The size of the detonator(Reynolds Industries System Incorporated) is  $\phi 2 \times 8 \text{ mm}$ .

We have fired several decoupled explosion tests in spherical cavities. Due to inherent difficulty to properly detonate small charge, we put much effort in completing a very few, highly successful experiments. The experimental setup is sketched in figures 2.1 and 3.3. Figure 3.4 schematically shows the spherical explosive source. Table 3.1 lists the parameters for 6 shots and the equilibrium pressure,  $p$ , in cavities estimated using the expression(Murphrey, 1961)

$$p = \frac{(\gamma - 1)E}{V}, \quad (3.1)$$

where  $\gamma$  is the ratio of specific heats of explosive products in air,  $E$  is the total energy of explosives used,  $V$  is cavity volume. In the calculation,  $\gamma$  is 1.4 (Baker, 1973) and the energy released from PETN is 1255 J/g (Dobratz, 1974).

Table 3.1: Data for spherical cavity experiments

| Shot number | Explosive mass (gram.) | p (bar) |
|-------------|------------------------|---------|
| SW4         | 1.9                    | 675     |
| SW5*        | 0.4                    | 142     |
| SW6*        | 0.6                    | 213     |
| SW7*        | 0.7                    | 248     |
| SW8 *       | 0.8                    | 284     |
| SW9         | 0.8                    | 284     |

\* – indicates that the explosives did not properly detonate.



Figure 3.3: Mechanical configuration of the test chamber.



Figure 3.4: Spherical explosive source arrangement.

### 3.2.3 Experimental records

Using the experimental system given above and the measurement method described in Chapter 2, the waves generated from the explosions in spherical cavity were recorded. Experimental records along the two directions are shown in figure 3.5 for SW4 and figure 3.6 for SW9. The comparisons between the records at different locations are shown in figures 3.7 and 3.8.

### 3.2.4 Crack pattern from the recovered samples

#### (a) SW4

The recovered experimental sample shows that there are four large cracks ( $\sim 10$  cm) and many small cracks ( $\sim 5$  mm) induced by the explosion (Fig. 3.11). The length of the cracks with the explosion product trace ranges from 50 mm to 80 mm.

#### (b) Shot SW9

From the recovered sample, cracks were not seen from the free surfaces. After the sample was cut along the axis, many small cracks near the cavity existed and also two very long cracks are formed. The longest cracks are about 50 mm in length.



Figure 3.5: Strain signals from all the gauges in SW4.



Figure 3.6: Strain signals from all the gauges in SW9.



Figure 3.7: Strain signals at the same location from the gauges in SW4 and SW9.

- Ts1 and  $\Delta Ts_1$ : the arrival and duration of the shear waves induced by microcracking (Eqs.(3.83) and (3.84))
- Ts2 and  $\Delta Ts_2$ : the arrival and duration of the shear waves induced by shock wave-to-S conversion at the cavity wall (Eq.(3.82))
- Ts3<sub>e</sub> and Ts3<sub>i</sub>: the possible earliest and last arrival of the shear waves induced by macrocracking (Eqs.(3.86) and (3.87))



Figure 3.8: Strain signals at the same location from the gauges in SW4 and SW9.  
**Ts<sub>1</sub> and  $\Delta Ts_1$ :** the arrival and duration of the shear waves induced by microcracking (Eqs.(3.83) and (3.84))  
**Ts<sub>2</sub> and  $\Delta Ts_2$ :** the arrival and duration of the shear waves induced by shock wave-to-S conversion at the cavity wall (Eq.(3.82))  
**Ts<sub>3e</sub> and Ts<sub>3l</sub>:** the possible earliest and last arrival of the shear waves induced by macrocracking (Eqs.(3.86) and (3.87))



Figure 3.9: Schematic of the large cracks in relation to the spherical cavity.

### 3.3 Analysis of the P-waves Induced by Explosions and Cracking

#### 3.3.1 P-wave velocity

From the experimental records, the P-wave velocity is determined to be 4.22 km/s under the experimental conditions as shown in figure 3.10 (the data from SW9 was not used because of the noise at the beginning of the signals). The P-wave velocity determined here is somewhat lower than 4.9 km/s measured ultrasonically by Rubin and Ahrens (1991) on a different sample. However, this velocity is still much higher than the bulk velocity (3.68 km/s). This means that the deformation induced by the P-wave is still in the elastic deformation regime over most of its propagation path. The lower P-wave velocity could also be the result of the nonlinear elastic behavior of the rock because elastic wave velocity decreases with amplitude in rocks.

#### 3.3.2 Particle displacement induced by P-waves

Using the relations between strains and displacements given in Chapter 2, the P-wave particle displacements are calculated and shown in figure 3.11 for SW4 and figure 3.12



Figure 3.10: P-wave arrival versus radius.

for SW9. From figures 3.11 and 3.12, the maximum P-wave particle displacements,  $u_{max}$ , at different distances from the cavity center can be obtained and are shown in figure 3.13 in which Cowboy data (Murphrey, 1961) are plotted. The experimental data is fit by

$$u_{max} = 1.32 \times 10^4 r^{-1.46}, \quad \text{for SW4} \quad (3.2)$$

$$u_{max} = 1.93 \times 10^4 r^{-1.56}, \quad \text{for SW9} \quad (3.3)$$

where  $u_{max}$  is in  $\mu\text{m}$ ,  $r$  in mm is the distance from the cavity center. In Murphrey's(1961) paper, he found that the field results have a dependence of the peak P-wave particle displacement on the distance from the cavity center that is proportional to  $r^{-1.5}$ . Thus, the previous study is very comparable with the results from this work.

### 3.3.3 Comparison between experimental data and theoretical predictions

#### Displacement induced by pulse-spherical waves

The analytic solution for a pulsed spherical wave generated from an explosion in a spherical cavity (Timoshenk and Goodier, 1970) is obtained by solving

$$\frac{\partial \sigma}{\partial r} + \frac{2}{r}(\sigma_r - \sigma_\theta) = \rho \left( \frac{\partial V}{\partial t} + V \frac{\partial V}{\partial r} \right), \quad (3.4)$$



Figure 3.11: P-wave particle displacement versus time for SW4.



Figure 3.12: P-wave particle displacement versus time for SW9.



Figure 3.13: Scaled maximum P-wave particle displacement versus propagation distance

$u$  — peak P-wave particle displacement in mm

$w$  — mass of explosives in gram

$r$  — distance from the center of cavity in mm

For Cowboy experiments,

$u/w^{1/3} = 0.55 (r/w^{1/3})^{-1.29}$  for 9.15 meter cavities in which the mass of the explosives detonated ranged from 200 to 1000 lbs,

$u/w^{1/3} = 7.7 (r/w^{1/3})^{-1.59}$  for 3.66 meter cavities in which the mass of the explosives detonated was from 20 to 900 lbs.

For present data,

$$u/w^{1/3} = 7.8 (r/w^{1/3})^{-1.46} \text{ for SW4}$$

$$u/w^{1/3} = 23.4 (r/w^{1/3})^{-1.56} \text{ for SW9}$$

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial(\rho r^2 V)}{\partial r} = 0, \quad (3.5)$$

where  $\rho$  is density,  $V$  is particle velocity,  $r$  is the distance from center of the source.

After using Hooke's law, the wave equation is

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} - \frac{2u}{r^2} = \frac{1}{C_e^2} \frac{\partial^2 u}{\partial t^2}, \quad (3.6)$$

where  $u$  is particle displacement and  $C_e$  is P-wave velocity.

If pressure at the cavity boundary,  $r=a$ , is  $p(t)$ , the displacement (Timoshenk and Goodier, 1970) can be calculated using

$$u = \frac{f'}{C_e r} + \frac{f}{r^2}, \quad (3.7)$$

where  $f$  is the solution of

$$f''(t) + 2\gamma f'(t) + \frac{2\gamma C_e}{a} f(t) = \frac{ap(t)}{\rho}, \quad (3.8)$$

where  $\gamma$  is

$$\gamma = \frac{1-2\nu}{1-\nu} \frac{C_e}{a}, \quad (3.9)$$

where  $\nu$  is Possion's ratio.

The particular solution of Eq.(3.8) for an outgoing wave from a spherical source (Timoshenk and Goodier, 1970) is

$$f(t) = \frac{1}{\alpha - \beta} \frac{a}{\rho} \int_0^t p(\tau) (e^{\alpha_0(t-\tau)} - e^{\beta_0(t-\tau)}) d\tau, \quad (3.10)$$

where

$$\alpha_0 = \gamma(-1 + is), \quad (3.11)$$

$$\beta_0 = \gamma(-1 - is), \quad (3.12)$$

and  $s=(1-2\nu)^{-0.5}$ .

If a step-like pressure history, i.e.,  $p(t)=p_0 H(t)$ , is assumed, the particular solution



Figure 3.14: Typical displacement history from the spherical model without cracking

(Timoshenkov and Goodier, 1970) is

$$f(\tau) = \frac{p_0 a^2}{2\rho\gamma C_e} \left( 1 - e^{-\gamma\tau} \left( \cos(\gamma s\tau) + \frac{\sin(\gamma s\tau)}{s} \right) \right), \quad (3.13)$$

where  $\tau = t - (r - a)/C_e$ .

The displacement history at  $r$  (Timoshenkov and Goodier, 1970) is

$$u(t, r) = \frac{A}{r^2} + \frac{A}{C_e} \frac{e^{-\gamma\tau}}{r} \left( \left( \gamma s + \frac{\gamma}{s} - \frac{C_e}{rs} \right) \sin(\gamma s\tau) - \frac{C_e \cos(\gamma s\tau)}{r} \right), \quad (3.14)$$

where  $A = p_0 a^2 / (2\rho\gamma C_e)$ .

The first term in the solution corresponds to the static solution, the second is dynamic term. The typical displacement history from Eq.(3.14) is shown in figure 3.14 in which the experimental data from Shot SW1 also is shown (see Chapter 4). From this figure, we can see that the solution from only pure pulse spherical wave propagation can explain the P-wave profile from the experiments without cracking but not explain the observed results as shown in figures 3.11 and 3.12.

The reasons for the difference may include:

1. The pressure history in cavity is not a single-step-like function. Because of the large mismatch of impedances between gas in cavity and rocks, shock waves generated by explosions in cavity generally reverberate several times before the pressure in cavity reaches its final value. This means that the pressure history in

- cavity may have a multi-step history. This also can be seen from the experimental data as shown in figure 3.11 and 3.12;
2. The cracking processes may play a very important role in the P-wave induced displacement history because radial cracking generated by the pressure in cavity and P-wave propagation changes the boundary conditions for the field. When pressure in cavities is larger than some critical value, radial cracks are generated from inner surfaces. The radial cracks will make the tangential stress be either zero if the explosion products do not penetrate into cracks or the same pressure as in the cavity if the explosion products do penetrate into cracks. Whenever the explosion products penetrate into cracks or not, the tangential stress in rocks has a large jump during cracking because the tangential stress is tensional before cracking and compressional after cracking. These rapid changes give rise to shear waves. Radial cracking also generates P-waves because cracking is equivalent to increase cavity radius (a crack opening does not apparently change the pressure in cavity).

#### **Displacement induced by the P-waves generated from explosions and cracking**

Basing on the analysis above, we construct a model considering the reverberation of shock waves in cavity and the P-waves generated from radial cracking process.

##### **1. Pressure history**

In this model, we assume that the pressure history is divided into three time periods, i.e. reverberation dominated period, cracking dominated period and steady period. The pressure history acted on the cavity wall can be given by

$$p(t) = p_I(t)(H(t) - H(t - t_0)) + p_{II}(t)(H(t - t_0) - H(t - t_{00})) + p_{III}H(t - t_{00}), \quad (3.15)$$

where  $p_I(t)$ ,  $p_{II}(t)$  and  $p_{III}(t)$  are the pressure histories that correspond to the three periods, respectively.  $H(t)$  is step function.  $t_0$  and  $t_{00}$  are the start and stop time of crack propagation. The pressure history for each period in cavities is estimated approximately as

(I) Reverberation dominated period:

Shock waves induced by detonation of an explosive reverberate in a cavity, the pressure acted on cavity wall is multi-step and radial cracks have not yet propagated in rock.

During this period, it is assumed that the pressure acted on the wall of cavity between two adjacent reverberations is constant, we have

$$p_I(t) = \sum_{i=1}^N p_i H(t - t_i), \quad (3.16)$$

where  $p_i$  is pressure increment after each reflection,  $t_i$  is the reflection time for  $i$ th step and  $N$  is reverberation times.

(II) Cracking dominated period:

In general, there are two kinds of cracks induced by the explosions in cavity. The first is the nucleation of new cracks and growth of existing cracks (micro-cracks) related to P-wave propagation, the second type of cracks is the macro-cracks that start from the cavity wall and propagate into rock. Micro-cracks appears just after P-wave if stress related with P-wave is higher than the local tensional strength. Macro-crack propagation is controlled by fracture dynamics. In this part, only the P-wave generated from macro-cracking is considered because P-waves generated from micro-cracks can not be separated from the initial P-waves and also have small amplitude.

When pressure in cavities is larger than some critical value, radial cracks are generated from inner surfaces. The tangential stress in rocks has a large change during cracking because the tangential stress is tensional before cracking and compressional after cracking. Radial cracking generates P-waves because cracking is equivalent to increase pressure in a cavity.

There are two ways to approximately estimate the effect of cracking on displacements.

(a) The first is to solve the differential equation with moving boundary as

$$f''(t) + 2\gamma(t)f'(t) + \frac{2\gamma(t)C_e}{a(t)}f(t) = \frac{a^r(t)p(t)}{\rho}, \quad (3.17)$$

where

$$\gamma(t) = \frac{1-2\nu}{1-\nu} \frac{C_e}{a^r(t)}, \quad (3.18)$$

and

$$a^r(t) = a + \int_{t_0}^t C^c(\tau)d\tau, \quad (3.19)$$

where  $a^r(t)$  is radius of the crack tip to the center of the cavity,  $t_0$  is the time at which cracks start to propagate,  $C^c$  is crack propagation velocity. Numerical solution may be applicable to Eq.(3.17) but the moving boundary with fracture is also very difficult to deal with.

(b) To obtain an approximate pressure profile, we assume that the pressure in a cavity changes basing on that the total force acted on the spherical surface with radius  $a^r(t)$  is equal to the force acted on the surface with radius  $a$ ,

$$p(t)a^2 = p_0(a + \int_{t_0}^t C^c d\tau)^2, \quad (3.20)$$

where  $p_0$  is the pressure in cavity just before cracks start to propagate and we assume that the radial stress at the spherical surface with radius  $a^r(t)$  is equal to  $p_0$ . This gives the equivalent pressure in cavity as

$$p(t) = p_0(1 + \int_{t_0}^t \frac{C^c}{a} d\tau)^2, \quad t \geq t_0, \quad (3.21)$$

(III) Steady period:

After cracking stops, the pressure in cavity is assumed to be constant

$$p_{III} = p_{II}(t_{00}). \quad (3.22)$$

## 2. Solutions for the three periods

(a) Solution for period I

From Eq.(3.14), the displacement induced by  $i$ th reverberation at  $r$  is

$$u_i(\tau_i, r) = \frac{A_i}{r^2} + A_i \frac{e^{-\gamma\tau_i}}{rC_e} \left( (\gamma s + \frac{\gamma}{s} - \frac{C_e}{rs}) \sin(\gamma s \tau_i) - \frac{C_e \cos(\gamma s \tau_i)}{r} \right), \quad (3.23)$$

where  $A_i = p_i a^2 / (2\rho\gamma C_e)$ ,  $\tau_i = t - t_i - (r - a)/C_e$  and  $t_i$  is the  $i$ th reverberation time.

the resultant solution is just the superposition of the solutions for all  $N$  reverberations. The displacement field induced by reverberations at  $r$  is

$$u^I = \sum_{i=1}^N u_i H(t - t_i). \quad (3.24)$$

### (b) Solution for period II

In order to obtain an analytic expression, the crack velocity is assumed to be the two simplest cases as:

- (1) Case a: crack velocity remains constant during crack propagation.
- (2) Case b: crack velocity decreases linearly with time, i.e.,

$$C^c(t) = C_0^c \left( 1 - \frac{t - t_0}{t_d} \right), \quad (3.25)$$

where  $t_d$  is the total cracking duration,  $C_0^c$  is the initial crack propagation velocity and  $t_0$  is the time for cracks to start to propagate.

For Case (a), the pressure history in period II is

$$p(t) = p_0 \left( 1 + \frac{C_0^c}{a} (t - t_0) \right)^2. \quad (3.26)$$

Substituting Eq.(3.26) into Eq.(3.10), the solution is found to be

$$f(\tau) = X_0 + X_1 \tau + X_2 \tau^2 + X_5 K_1(\tau) + X_6 K_2(\tau), \quad (3.27)$$

where

$$X_0 = A_0 \left( \frac{p_0}{\gamma^2} + \frac{2p_1}{\gamma^3(1+s^2)} + \frac{p_2(3-s^2)}{\gamma^4(1+s^2)^2} \right), \quad (3.28)$$

$$X_1 = A_0 \left( \frac{p_1}{\gamma^2} + \frac{4p_2}{\gamma^2(1+s^2)} \right), \quad (3.29)$$

$$X_2 = \frac{A_0 p_2}{\gamma^2}, \quad (3.30)$$

$$X_5 = A_0 \left( \frac{p_0}{\gamma^2} - \frac{2p_1}{\gamma^3(1+s^2)} + \frac{2p_2(s^2-3)}{\gamma^4(1+s^2)^2} \right), \quad (3.31)$$

$$X_6 = A_0 \left( -\frac{p_0}{\gamma^2 s} + \frac{p_1(s^1-1)}{\gamma^3 s(1+s^2)} + \frac{2p_2(3s-s^{-1})}{\gamma^4(1+s^2)^2} \right), \quad (3.32)$$

$$A_0 = \frac{a}{\rho(1+s^2)}, \quad (3.33)$$

$$K_1 = e^{-\gamma\tau} \cos(\gamma s\tau), \quad (3.34)$$

$$K_2 = e^{-\gamma\tau} \sin(\gamma s\tau), \quad (3.35)$$

$$p_1 = 2p_0 \frac{C_0^c}{a}, \quad (3.36)$$

$$p_2 = p_0 \left( \frac{C_0^c}{a} \right)^2 \quad (3.37)$$

and

$$\tau = t - \frac{r-a}{C_e} - t_0. \quad (3.38)$$

Substituting Eq.(3.27) into Eq.(3.7), the displacement history in period II is

$$\begin{aligned} u^{II}(\tau) = & \left( \frac{X_1}{C_e r} + \frac{X_0}{r^2} \right) + \left( \frac{2X_2}{C_e r} + \frac{X_1}{r^2} \right) \tau + \frac{X_2}{r^2} \tau^2 + \\ & + \left( \frac{\gamma s X_6 - \gamma X_5}{C_e r} + \frac{X_5}{r^2} \right) K_1 + \left( \frac{X_6}{r^2} - \frac{\gamma X_6 + \gamma s X_5}{C_e r} \right) K_2. \end{aligned} \quad (3.39)$$

For Case b, the pressure history is

$$p = p_0 \left( 1 + \frac{C_0^c}{a} \left( (t-t_0) - \frac{(t-t_0)^2}{2t_d} \right) \right)^2. \quad (3.40)$$

Substituting Eq.(3.40) into Eq.(3.10), the solution is

$$f(\tau) = a_0 + a_1 \tau + a_2 \tau^2 + a_3 \tau^3 + a_4 \tau^4 + a_5 K_1 + a_6 K_2, \quad (3.41)$$

where

$$\begin{aligned} a_0 &= A_0(b_1 p_0 + 2p_1 b_2 + p_2 b_3(3 - s^2) + 24p_3 b_4(1 - s^2) + \\ &\quad + 24p_4 b_5(1 - 6s^2 + s^4 + 4s - 4s^3)s^{-1}), \end{aligned} \quad (3.42)$$

$$a_1 = A_0(p_1 b_1 + 4p_2 b_2 + 6b_3(3 - s^2) + 96p_4 b_4(1 - s^2)), \quad (3.43)$$

$$a_2 = A_0(p_2 b_1 + 6p_3 b_2 + 12p_4 b_3(3 - s^2)), \quad (3.44)$$

$$a_3 = A_0(p_3 b_1 + 8p_4 b_2), \quad (3.45)$$

$$a_4 = A_0 p_4 b_1, \quad (3.46)$$

$$\begin{aligned} a_5 &= A_0(-b_1 p_0 + -2p_1 b_2 + 2(s^2 - 3)p_2 b_3 - \\ &\quad 24p_3(1 - s^2)b_4 - 24p_4(1 - 6s^2 - 4s^3 + s^4 + 4s)b_5 s^{-1}), \end{aligned} \quad (3.47)$$

and

$$\begin{aligned} a_6 &= A_0(-b_1 p_0 s^{-1} b_2 p_1(s^2 - 1)s^{-1} + 2b_3 p_2(3s - s^{-1}) - 6b_4 p_3(s^{-1} - 6s + s^3) - \\ &\quad - 24b_5 s^{-1} p_4((1 + s^2)^5 - (1 + 4s - 6s^2 - 4s^3 + s^4)^2)^{0.5}), \end{aligned} \quad (3.48)$$

where

$$b_1 = \frac{1}{\gamma^2}, \quad (3.49)$$

$$b_2 = \frac{1}{\gamma^3(1 + s^2)}, \quad (3.50)$$

$$b_3 = \frac{1}{\gamma^4(1+s^2)^2}, \quad (3.51)$$

$$b_4 = \frac{1}{\gamma^5(1+s^2)^3}, \quad (3.52)$$

$$b_5 = \frac{1}{\gamma^6(1+s^2)^4}. \quad (3.53)$$

$$p_1 = \frac{2c_0^c p_0}{a}, \quad (3.54)$$

$$p_2 = p_0 \left( \left( \frac{C_0^c}{a} \right)^2 - \frac{C_0^c}{at_d} \right), \quad (3.55)$$

$$p_3 = - \frac{C_0^2 p_0}{a^2 t_d}, \quad (3.56)$$

$$p_4 = \frac{p_0}{4} \left( \frac{C_0^c}{at_d} \right)^2, \quad (3.57)$$

Substituting Eq.(3.41) into Eq.(3.7), the displacement history in period II for Case b is

$$\begin{aligned} u^{II}(\tau) = & \left( \frac{a_1}{C_e r} + \frac{a_0}{r^2} \right) + \left( \frac{2a_2}{C_e r} + \frac{a_1}{r^2} \right) \tau + \left( \frac{a_2}{r^2} + \frac{3a_3}{C_e r} \right) \tau^2 + \left( \frac{4a_4}{C_e r} + \frac{a_3}{r^2} \right) \tau^3 + \\ & + \frac{a_4}{r^2} \tau^4 + \left( \frac{\gamma s a_6 - \gamma a_5}{C_e r} + \frac{a_5}{r^2} \right) K_1 + \left( \frac{a_6}{r^2} - \frac{\gamma a_6 + \gamma s a_5}{C_e r} \right) K_2. \end{aligned} \quad (3.58)$$

### (c) Solution for period III

Substituting Eq.(3.22) into Eq.(3.10), the solution is

$$f(t) = \frac{p_1 a^2}{2\rho\gamma C_e} \left( 1 - e^{-\gamma t} \left( \cos(\gamma s t) - \frac{\sin(\gamma s t)}{s} \right) \right), \quad (3.59)$$

then, substituting Eq.(3.59) into Eq.(3.7), the displacement is

$$u^{III}(\tau) = \frac{p_1 a^2}{2\rho\gamma C_e r} \left( \frac{C_e}{r} + e^{-\gamma\tau'} \left( \left( \frac{\gamma}{s} + \gamma s - \frac{C_e}{rs} \right) \sin(\gamma s \tau') - \frac{C_e \cos(\gamma s \tau')}{r} \right) \right). \quad (3.60)$$

where

$$\tau' = \tau + t_{III}. \quad (3.61)$$

### 3. Displacement history induced by P-waves

Then the displacement history induced by P-waves is

$$u = u^I(H(\tau) - H(\tau - t_0)) + u^{II}(H(\tau - t_0) - H(\tau - t_{00})) + u^{III}H(\tau - t_{00}), \quad (3.62)$$

#### 3.3.4 Comparison between the observation and theoretical predictions of displacement history induced by P-waves

##### Parameters estimation

Because the ratio of cavity radius to explosive radius is about 3, there is no separation between shock wave in air in the cavity and the adiabatic release wave of explosion products. The shock wave velocity in air can be estimated using CJ theory. The particle velocity after the CJ detonation is

$$V_p = \frac{D}{\gamma + 1}, \quad (3.63)$$

where D is CJ wave velocity.

For PETN, the typical CJ wave velocity is 8 km/s (Dobratz, 1974). The particle velocity then is about 3.3 km/s. The vibration period in the cavity is

$$t_v \approx a/(2 * 3.3) \approx 2.3\mu s. \quad (3.64)$$

From experimental data, the rise-time of the particle displacement induced by P-wave is  $\sim 10 \mu s$ , about three time vibrations. This also can be verified from the profiles of the displacement rise-front from the experiments. Then, we have N=3,  $t_1=0.0$ ,  $t_2=4.6\mu s$ ,  $t_3=9.2 \mu s$ ,  $p_1=p_2=p_3=p_0/3$ . Also,  $t_0=10.0\mu s$ .

It theoretically is found that the maximum velocity of a mode-I crack is Rayleigh



Figure 3.15: Pressure history

wave velocity(Freund and Clifton, 1972). Compared to the crack velocity in rocks from seismology (Hiroo Kanomori, 1993), the fault propagation velocity is  $\sim 70\%$  of the theoretical maximum velocity of a mode-II crack, i.e., shear wave velocity. Crack propagation velocity,  $C^c$ , is assumed to be 70% of Rayleigh wave velocity,  $C_R$ , because the cracks generated in the experiments are mode-I. Then,  $t_{00}$  is

$$t_{00} = \frac{L_c}{0.7C_R} + t_0, \quad \text{for Case a} \quad (3.65)$$

$$t_{00} = \frac{2 * L_c}{0.7C_R} + t_0, \quad \text{for Case b} \quad (3.66)$$

where  $L_c$  is crack length.

For shot SW4, the crack length with the explosion product trace on it is roughly about 50 mm, so  $t_{00} \approx 38 \mu s$  for Case a and  $65 \mu s$  for Case b.

#### Pressure history in cavity

Based on the parameters estimated above, the pressure profiles normalized by  $p_0$  for Shot SW4 are schematically shown in figure 3.14.

#### Displacement history

Figure 3.15 shows the calculated results of displacement time history based on the pressure history Case a and Case b. From this figure, it seems that the displacement



Figure 3.16: Comparison between the experimental data and the results from the equivalent models

- A: Shot SW4, Gauge 2,
- B: Constant crack velocity model (Eqs.(3.24) and (3.39)),
- C: Constant deceleration model (Eqs.(3.24) and (3.58)),
- D: Constant step pressure model (Eq.(3.14)),
- E: Shot SW9, Gauge 4

history recorded from experiments is between the two extreme conditions, that may reflect the real situation that cracks propagate neither at constant velocity nor at constant deceleration. From the comparison between the theoretical estimation based on Cases a and b and the experimental data, cracking process has very large effect on the history of displacement or strain. First, cracking processes increase the amplitude of low frequency component because cracking is equivalent to increase the pressure duration in a cavity. Second, cracking processes increases the complexity of the directional dependence of displacement history because of nonuniform distribution of cracks.

### 3.3.5 P-wave decay

From the solutions from the model we constructed for Period I as given in Eq.(3.24), the peak displacement at  $r$  induced by P-wave is

$$u_{max} = \frac{A_1}{r^2} + \frac{B_1}{r}, \quad (3.67)$$

where

$$A_1 = \frac{a^2}{2\rho\gamma C_e} \sum_i^N p_i (1 - \exp(-\gamma\tau_i)) \left( \frac{\sin(\gamma s\tau_i)}{s} + \cos(\gamma s\tau_i) \right), \quad (3.68)$$

and

$$B_1 = \frac{a^2}{2\rho\gamma C_e^2} \sum_i^N p_i (\gamma s + \frac{\gamma}{s}) \sin(\gamma s\tau_i) \exp(-\gamma\tau_i). \quad (3.69)$$

$A_1$  and  $B_1$  can be determined experimentally using the measured maximum data at different distance from the source. The best fit to the measured data is shown in figure 3.16. The best fit expressions are

$$u_{max} = 1.005 \times 10^5 r^{-2} + 676.6 r^{-1}, \quad \text{for SW4}, \quad (3.70)$$

$$u_{max} = 0.953 \times 10^5 r^{-2} + 530.1 r^{-1}, \quad \text{for SW9}, \quad (3.71)$$

where  $u_{max}$  is in  $\mu m$  and  $r$  is in mm.

Based on the relation between maximum P-wave particle displacement and the

propagation distance, the maximum radial strain,  $\varepsilon_r$ , and tangential strain,  $\varepsilon_t$ , for SW4 are

$$\varepsilon_r = \frac{\partial u_{max}}{\partial r} = -201r^{-3} - 0.677r^{-2}, \quad (3.72)$$

$$\varepsilon_t = \frac{u_{max}}{r} = 100.5r^{-3} + 0.677r^{-2}. \quad (3.73)$$

and for SW9

$$\varepsilon_r = \frac{\partial u_{max}}{\partial r} = -190.6r^{-3} - 0.53r^{-2}, \quad (3.74)$$

$$\varepsilon_t = \frac{u_{max}}{r} = 95.3r^{-3} + 0.53r^{-2}. \quad (3.75)$$

From Hooke's law, we have

$$\sigma_r = \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)\varepsilon_r + 2\nu\varepsilon_t) \quad (3.76)$$

$$\sigma_t = \frac{E}{(1+\nu)(1-2\nu)}(\varepsilon_t + \nu\varepsilon_r), \quad (3.77)$$

where  $\sigma_r$  and  $\sigma_t$  are radial and tangential stresses, respectively. Here,  $\nu$  is Poisson's ratio. Based on the experimental data,  $\nu$  is 0.258 for the limestone and  $E$  is 47.7 GPa. We have the maximum stresses,

for SW4:

$$\sigma_r = -1.19 \times 10^4(636r^{-3} + r^{-2}), \quad (3.78)$$

$$\sigma_t = 3.92 \times 10^4(96.8r^{-3} + r^{-2}), \quad (3.79)$$

for SW9:

$$\sigma_r = -0.94 \times 10^4(768r^{-3} + r^{-2}), \quad (3.80)$$

$$\sigma_t = 3.06 \times 10^4(117r^{-3} + r^{-2}), \quad (3.81)$$

## 3.4 Analysis of the S-waves Generated from Explosions and Cracking

### 3.4.1 S-wave arrival

Basically, S-waves are generated from at least three different sources:



Figure 3.17: Peak P-wave induced particle displacement versus propagation distance

1. Micro-cracking.
2. shock wave-to-S conversion at cavity wall.
3. Macro-cracking.

In the case of each of these three sources, the arrival time of the S-wave from the second source can be estimated with relatively high accuracy because we know the P-wave arrival time at the cavity wall. The arrival time at radial distance,  $r$ , of the S-wave from the second source,  $T_{s2}$ , is

$$T_{s2} = \frac{C_e - C_s}{C_e C_s} (r - a) + \frac{r - a}{C_e}, \quad (3.82)$$

where,  $C_s$  is S-wave velocity.

The duration of the S-wave,  $\Delta T_{s2}$ , should approximately equate to the rise time of P-waves.

The arrival time at radial distance,  $r$ , of the S-wave from the first source is

$$T_{s1} = \frac{C_e - C_s}{C_e C_s} (r - R_c) + \frac{r - a}{C_e}, \quad (3.83)$$

where  $R_c$  is the radius beyond which there is no micro-cracks induced by P-waves. The duration of this S-wave,  $\Delta Ts1$ , is

$$\Delta Ts1 = \frac{C_e - C_s}{C_e C_s} (R_c - a). \quad (3.84)$$

The accuracy of this arrival time is dependent on how to determine  $R_c$  (in the following estimation,  $R_c$  is chosen to be 50 mm based on the experimental data).

The arrival time,  $Ts3$ , of the S-wave from the third source is

$$Ts3 = \frac{C_e - C_s}{C_e C_s} (r - a) + t_0 + \frac{(a^2 + r^2 - 2ar \cos(\theta_c))^{1/2} - (r - a)}{C_s}, \quad (3.85)$$

where  $\theta_c$  is the angle between the two radial lines one of which points to the nearest macro-crack generated and the other points to the gauge location. The last term on the right hand side in Eq. (3.85) is from the fact that the S-wave from the cracks that is not along the line connecting the gauge with the center of the cavity arrives later. The earliest and last arrival times,  $Ts3_e$  and  $Ts3_l$ , are correspond to  $\theta_c = 0$  and  $\theta_c = 90^\circ$ , respectively. Then, we have,

$$Ts3_e = \frac{C_e - C_s}{C_e C_s} (r - a) + t_0, \quad (3.86)$$

$$Ts3_l = \frac{C_e - C_s}{C_e C_s} (r - a) + t_0 + \frac{(a^2 + r^2)^{1/2} - (r - a)}{C_s}. \quad (3.87)$$

Using the expressions above, the three S-wave arrivals are marked on the records shown in figures 3.7 and 3.8. From these figures, the predictions are in very good agreements with the experiment data for  $Ts2$  and  $Ts3$ . The data clearly demonstrates the S-wave generated from shock wave-to-S conversion on cavity wall and cracking.

### 3.4.2 S-wave amplitudes

Figure 3.18 shows the maximum strains from the gauges along direction 2 (Fig. 2.1) for shear waves generated from shock wave-to-S conversion and macro-cracking at different locations for Shot SW4 and SW9. Due to the difficulty to determine the S-wave incident angle at each gauges directly, the two gauges at the same location is used to determine the incident angle approximately and then the peak displacement



Figure 3.18: Maximum shear wave strain versus propagation distance

of the S-waves are determined. The procedure to determine S-wave incident angle using the two gauges at the same location is: (1) to find out the ratio of the strain from the gauge along direction 2 to the strain from the gauge along direction 1; (2) to calculate the incident angle using the ratio and Eqs.(2.42) and (2.40). We must mention that this method is not very precise because P-waves interfere with S-waves but at least it gives the first-order estimate of S-wave amplitudes induced by shock wave-to-S conversion at cavity wall and crack propagation in rock. Figure 3.19 shows the maximum displacement of S-waves at different distance from source. From this figure, it seems that the shear wave generated from shock wave-to-S conversion has higher regularity than the shear wave generated from macro-cracking regarding the amplitude decay with distance, this just clearly shows the complexity of shear waves due to crack propagation. The increase of the S-wave amplitude generated by shock wave-to-S conversion at cavity wall is believed to be from the source.

### 3.4.3 S-wave profiles generated from cracking

The S-wave amplitudes and profiles recorded by different gauges are dependent on the relative orientation of the gauges with respect to specific cracks (similar, in some respects, to the directivity of wave profile in seismology ). It is not surprised to



Figure 3.19: Maximum shear wave displacement versus propagation distance

see that the S-wave profiles generated from cracking vary so much from gauge to gauge. In order to calculate S-wave profiles generated by cracking, we assume that the shear strain decays with radial distance following the same rule as P-waves does( this assumption results in lower estimation of S-wave amplitude because P-wave generally decays much faster than S-wave does(Lay and Wallace, 1995) but does not have effects on the wave profiles, and we only consider the wave profile here), then

$$\varepsilon_s = \sum_i \varepsilon_{s,i}^0 \left( \frac{a_{ci}(t)}{r} \right)^{2.5}, \quad (3.88)$$

where  $\varepsilon_{s,i}^0$  is the shear strain increase generated from the  $i$ th crack extending to radius  $a_{ci}(t)$ ,  $\varepsilon_s$  is the shear strain observed at  $r$ .

In order to obtain an order-of-magnitude estimate of shear waves profiles generated from cracks, we assume that resultant shear strain from multi-cracks is equivalent to that from a single crack that propagates toward to gauges. Then, the shear strain profile is estimated assuming an equivalent crack propagation velocity. We still only consider the two extreme cases, i.e., crack propagation at constant velocity and at constant deceleration.

For constant velocity model, the shear strain profile will be

$$\varepsilon_s = \varepsilon_{si}^0 ((a + C_0^c(t - t_0))/r)^{2.5}. \quad (3.89)$$

where  $C_0^c$  is crack propagation velocity,  $a$  is the initial cavity radius and  $t_0$  is the initiation time of cracks.

For constant deceleration model, the shear strain history is

$$\varepsilon_s = \varepsilon_{si}^0 ((a + C_0^c(t - t_0) \frac{t_d + t_0 - t}{t_d})/r)^{2.5}. \quad (3.90)$$

where  $t_d$  is time duration of crack propagation.

Based on the two equations above, the shear strain history is calculated as shown in figure 3.20 assuming that crack propagation time is same for both model in order to compare them together. In this figure, it shows that experimental results from gauge 3 for SW4 and SW9 and also the results from the model with the first half part at constant velocity and the second half part at constant deceleration. It seems that a constant deceleration or a constant velocity followed by a constant deceleration fits the data better than the constant velocity.

### 3.5 Conclusions

Basing the experimental results and the analysis above, we concluded

1. A device is developed to drill spherical cavity with the diameter up to 10 centimeters in rocks.
2. The records from the experiments clearly demonstrate the P-waves generated from both explosions and crack propagation. The peak particle displacement induced by P-waves ranges from 9 to 5  $\mu\text{m}$  at 150 to 210 mm from source for the spherical cavity experiment with 1.9 gram explosives, and 8 to 4  $\mu\text{m}$  at 150 to 220 mm from source for spherical experiment with 0.8 gram explosives. The step-like pressure model can be used to explain the experimental results on the peak P-wave induced particle displacement versus propagation distance from the explosions in spherical cavities.



Figure 3.20: Shear strain history

3. More important, the experimental results from the explosions in spherical cavities verify the S-waves generated from both shock wave-to-S conversion at cavity wall and crack propagation in rocks. The amplitude of S-waves from shock wave-to-S conversion is from 10 to 27  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 1.9 gram explosives, 8 to 21  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 0.8 gram explosives. The amplitude of S-waves generated by crack propagation is from 9 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 1.9 gram explosives, 8 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 0.8 gram explosives. The ratio of S-wave to P-wave amplitudes is about 2.
4. A theoretical model including multi-reverberation and crack propagation is proposed to explain the differences on P-wave induced displacement history between the observed and the step-like pressure model. The predicated profiles from this model fits the experimental data qualitatively as shown in Fig. 3.16.
5. A simple dynamical tensional strength model is used to estimate the S-wave profile generated from crack propagation in rock. The S-wave profile predicted from this model fits the experimental data quantitatively.

# **Chapter 4 Wave Generation From Explosions in Cylindrical Cavities in Rock**

## **4.1 Introduction**

Initially to test the apparatus constructed and developed in Chapter 1, we conducted two experiments using a simple cylindrical charge detonated in a cylindrical hole centered in the rock sample depicted in figures 3.3 and 4.1. At same time, the cavity geometrical effects on P- and S-waves generated from explosions can be investigated from the experimental data on spherical and cylindrical cavities.

## **4.2 Experiments and Results**

### **4.2.1 Experimental Details**

Two cylindrical test experiments were conducted on Bedford limestone. One was a decoupled explosion, SW1, and the other a tamped explosion, SW2. The parameters used in the experiments and the equilibrium pressure calculated using Eq.(3.1) are listed in Table 4.1.

The rock sample is assembled using two blocks as shown in figure 4.1. The rock sample with strain gauges is placed inside a tank pressurized to 10 bar as shown in figure 3.3. To prevent the sample from becoming invaded by water, a plastic film [ 0.21 mm thickness (Vinyl film sheet No. 8562K5, Warp Bros.)] is wrapped on the surface of the rocks. The gauges and explosives used in experiments are identical to that used in spherical experiments.

### **4.2.2 Experimental Results**

The recorded strains for the two experiments are shown in figures 4.2 for Shot SW1 and figure 4.3 for Shot SW2. From the recovered rock sample, there is minimal damage



(A) Layout of rock sample, strain gauges and explosive charge



(B) Sketch of polarization directions of strain gauges

Figure 4.1: Sample and strain gauge layout for cylindrical cavity experiments

Table 4.1: Data for cylindrical cavity experiments

| Shot # |           | Dimensions of explosives | Mass of explosives | Type of explosives  | Dimensions of cavities | p (bar) |
|--------|-----------|--------------------------|--------------------|---------------------|------------------------|---------|
| SW1    | decoupled | $\phi 5 \times 6$ mm     | 0.24 g             | Pellet pressed PETN | $\phi 30 \times 30$ mm | 55      |
| SW2    | tamped    | $\phi 10 \times 10$ mm   | 1.2 g              | Data sheet PETN     | $\phi 12 \times 12$ mm | 4420    |



Figure 4.2: Experimental results of the decoupled explosion, Shot SW1  
The signals of gauge 7 and 8 are very noisy and are not shown here.

near the cavity wall in the target used for the decoupled experiment, and there are many of the cracks with varying length up to 122 mm and different orientations in the target used for the tamped experiment.

From figure 4.2, it can be seen that the wave profiles from the decoupled experiment, SW1, is very similar to the results from the analytic solution shown in figure 3.13 although the cavity is not spherical. From figure 4.3, the wave profiles from the tamped experiment, SW2, have the typical characteristics of the wave profiles from the spherical experiments. The difference between the decoupled and tamped experiments once again demonstrates the role of cracking in the generation of P- and S-waves because there is minimal damage in the decoupled experiment and the rock sample is heavily cracked in the tamped experiment.



Figure 4.3: Experimental results of the tamped explosion, Shot SW2



Figure 4.4: P-wave amplitudes from decoupled experiment

### 4.3 P-waves Generated from Explosions

#### 4.3.1 P-waves generated from the decoupled experiment

Figure 4.4 gives experimental results on the P-wave profiles generated from the decoupled experiment. The peak particle displacements from P-wave are shown in figure 4.6. As mentioned above, although the P-wave profile shape can be explained quantitatively using the analytic solution based on spherical source assumptions as shown in figure 3.13, experimental results show the direction-dependent of the wave shape.



Figure 4.6: P-wave amplitude versus propagation distance for SW1 and SW2

#### 4.4.2 S-waves generated from the tamped experiment

Figure 4.8 gives the arrivals of the three S-waves from the three different source as discussed in section 3.4. As the same as in the spherical experiments, we assume that the macro-cracks start to propagate when P-wave reaches the peak value. The micro-crack radius is chosen to be 122 mm based on the cracks in the recovered target. Although the source is cylindrical, there still is a good agreement between the predicted arrivals of the S-waves and the experimental results. We can see the S-waves from the shock wave-to-S conversion and macrocracks on all the records. Figure 3.9 gives the maximum strain related with the shear waves generated from shock wave-to-S conversion and macrocracking along direction 2.

### 4.5 Conclusions

From the experimental results of the tamped and decoupled explosions in cylindrical cavities, we concluded

1. The records verified that the characteristics of the signals from the gauges at different locations predicted in Chapter 1. It means that method developed in Chapter 1 can be used to monitor P and S-wave generations from explosions in cavities in rock.



Figure 4.6: P-wave amplitude versus propagation distance for SW1 and SW2

#### 4.4.2 S-waves generated from the tamped experiment

Figure 4.8 gives the arrivals of the three S-waves from the three different source as discussed in section 3.4. As the same as in the spherical experiments, we assume that the macro-cracks start to propagate when P-wave reaches the peak value. The micro-crack radius is chosen to be 122 mm based on the cracks in the recovered target. Although the source is cylindrical, there still is a good agreement between the predicted arrivals of the S-waves and the experimental results. We can see the S-waves from the shock wave-to-S conversion and macrocracks on all the records. Figure 3.9 gives the maximum strain related with the shear waves generated from shock wave-to-S conversion and macrocracking along direction 2.

### 4.5 Conclusions

From the experimental results of the tamped and decoupled explosions in cylindrical cavities, we concluded

1. The records verified that the characteristics of the signals from the gauges at different locations predicted in Chapter 1. It means that method developed in Chapter 1 can be used to monitor P and S-wave generations from explosions in cavities in rock.



Figure 4.7: Strain signals at different location for SW1



Figure 4.8: Strain signals at the different location for SW2.

- Ts1: the arrival and duration of the shear waves induced by microcracking (Eq.(3.83) )
- Ts2: the arrival and duration of the shear waves induced by shock wave-to-S conversion at the cavity wall (Eq.(3.82))
- Ts3: the arrival of the shear waves induced by macocracking (Eq.(3.86))



Figure 4.9: S-wave amplitude versus propagation distance for SW1 and SW2

2. The peak particle displacement induced by P-waves ranges from 35 to 10  $\mu\text{m}$  at 150 to 240 mm from source for the tamped cylindrical cavity experiment with 1.2 gram explosives and 7 to 2  $\mu\text{m}$  at 150 to 190 mm from source for the decoupled cylindrical cavity experiment with 0.24 gram explosives. The step-like pressure model can not be used to explain the experimental results on the peak P-wave induced particle displacement versus propagation distance from the explosions in cylindrical cavities. This results demonstrates the cavity geometrical effects on wave pattern.
3. The shear waves generated from shock wave-to-S conversions at cavity wall were observed to be between 50 and 400  $\mu\epsilon$  along direction 2 at 150 to 250 mm from source for tamped explosions. The shear waves induced by crack propagation were recorded to be between 100 and 250  $\mu\epsilon$  along direction 2 at 150 to 250 mm from source for the tamped experiment.

## Chapter 5 Summary

Basing on the methods developed and the experimental results and analysis given above, we briefly conclude:

1. A new measuremental method to monitor the P- and S-waves with very high frequency has been developed. The experimental results verify the predicted strain characteristics of P- and S- waves generated from explosions and cracking.
2. A device is developed to drill spherical cavity with the diameter up to 10 centimeters in rocks like limestone.
3. The records from the experiments clearly demonstrate the P-waves generated from both explosions and crack propagation. The peak particle displacement induced by P-waves ranges from 9 to 5  $\mu\text{m}$  at 150 to 210 mm from source for the spherical cavity experiment with 1.9 gram explosives, and 8 to 4  $\mu\text{m}$  at 150 to 220 mm from source for spherical experiment with 0.8 gram explosives, 35 to 10  $\mu\text{m}$  at 150 to 240 mm from source for the tamped cylindrical cavity experiment with 1.2 gram explosives and 7 to 2  $\mu\text{m}$  at 150 to 190 mm from source for the decoupled cylindrical cavity experiment with 0.24 gram explosives. The step-like pressure model can be used to explain the experimental results on the peak P-wave induced particle displacement versus propagation distance from the explosions in spherical cavities but not in cylindrical cavities. This results demonstrates the cavity geometrical effects on wave pattern. The experimental results from both spherical and cylindrical cavities show that P-wave profiles are similar with each other.
4. More important, the experimental results in both spherical and cylindrical cavities verify the S-waves generated from both shock wave-to-S conversion at cavity wall and crack propagation in rocks. The amplitude of S-waves from shock wave-to-S conversion is from 10 to 27  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 1.9 gram explosives, 8 to 21  $\mu\text{m}$  at 150 to 180 mm

from source for the spherical experiment with 0.8 gram explosives. The amplitude of S-waves generated by crack propagation is from 9 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 1.9 gram explosives, 8 to 19  $\mu\text{m}$  at 150 to 180 mm from source for the spherical experiment with 0.8 gram explosives.

5. A theoretical model (Section 3.3.4) including multi-reverberation and crack propagation is proposed to explain the differences on P-wave induced displacement history between the observed and the step-like pressure model. The P-wave profiles predicted from this model fits the observation qualitatively as shown in Fig. 3.16.

From the results presented above, we believe that the further study of the characteristics of P- and S-wave profiles generated from explosions, shock wave-to-S conversion and crack propagation driven by explosive products may lead to the development of a criterion to discriminate underground chemical explosions from underground nuclear explosions because

1. cracks generated in chemical explosions may be much longer than that in nuclear explosions as shown in Fig. 5.1. Longer crack length will result in both P- and S-waves with more lower frequency components.
2. the conversion of shock wave-to-S wave at cavity wall may only happen in chemical explosions.
3. P-wave profiles contain the informations about cavity size.



Figure 5.1: Possible damage difference between chemical and nuclear explosions

#### Acknowledgments

We thank Dr. R. Blandford, AFTAC, for his critical and helpful comments, Dr. Lane Johnson, LBNL, for his help on calculation and Jeff Batten, E. Gelle, M. Long, and V. Nenow for their technical support. We also thank Prof. G. Ravichandran for his advice on crack theory. The project was sponsored by The Air Force Material Command.

## Bibliography

- [1] Aki, K. and Richards, P., *Quantitative Seismology Theory and Methods*, W. H. Freeman and Company, 151, 1980.
- [2] Baker, W. E., *Explosion in air*, published by University of Texas Press, Austin, 1973.
- [3] Coursen L., A gas penetration model of fragmentation, *Fragmentation by Blasting*, edited by Fourney W., Boade R. and Costin L., Society for Experimental Mechanics, Connecticut, 1-10, 1985.
- [4] Denny M. and Goodman D., A case study of the seismic source function: Salmon and Sterling reevaluated, *J. Geophys. Res.*, 95, 19,705-19,723, 1990.
- [5] Denny M. and Johnson L., The explosion seismic function: models and scaling laws reviewed, *Explosion Source Phenomenology*, edited by Taylor S., Patterson H. and Richards P., American Geophysical Union, 1-24, 1991.
- [6] Dobratz, B. M., Lawrence Livermore National Laboratory Report, UCRL-51319, 1974.
- [7] Florence A., Miller S. and Keller C., Decoupling of underground explosions by rubble-filled cavities, *J. Geophys. Res.*, 98, 14,197-14,209, 1993.
- [8] Freund, L. B., *Dynamic Fracture Mechanics*, Cambridge University Press, 336-340, 1990.
- [9] Glenn L., Energy-density effects on seismic decoupling, *J. Geophys. Res.*, 98, 1933-1942, 1993.
- [10] Glenn L. and Goldstein P., Seismic decoupling with chemical and nuclear explosions in salt, *J. Geophys. Res.*, 99, 11,732 - 11,730, 1994.
- [11] Glenn L. and Goldstein P., Reply, *J. Geophys. Res.*, 101, 851-854, 1996.

- [12] Glenn L., Ladd A., Moran B., and Wilson K., Elastic radiation from explosively loaded ellipsoidal cavities in an unbounded medium, *Geophys. J. R. astr. Soc.*, 81, 231- 241, 1985.
- [13] Jaeger J. C. and Cook N. G. W., *Fundamentals of Rock Mechanics*, published by Chapman and Hall, London, p 146, 1979.
- [14] Kim S., Clifton R. and Kumar P., A combined normal and transverse displacement interferometer, *J. Appl. Phys.*, 48, 4132-4139, 1977.
- [15] Kanamori H., Mechanic of earthquakes, *Annu. Rev. Earth Planet. Sci.*, 22, 207-237, 1994.
- [16] Klopp, R. W., A. L. Florence and J. K. Gran, Spherical wave interaction with cylindrical holes in large limestone specimens, in *International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading*, edited by Harding J., Les Editions de Physique, Les Ulis, 735-740, 1994.
- [17] Langston C., Kinematic analysis of strong motion P and SV waves from the Sterling event, *J. Geophys. Res.*, 88, 2486-3497, 1983.
- [18] Lay T. and T. C. Wallace, *Modern Global Seismology*, published by Academic Press, San Diego, 109, 1995.
- [19] Liu, C. and T. J. Ahrens, Shear wave generation from confined explosions in rocks, in *Proc. of Topical Conference on Shock compression of Condensed Matter*, in press, edited by S. C. Schmidt, American Institute of Physics, 1997.
- [20] Masse R., Reviews of seismic source models for underground nuclear explosions, *Bull. Seism. Soc. Am.*, 71, 1249-1268, 1981.
- [21] Murphey B., Particle motions near explosions in Halite, *J. Geophys. Res.*, 66, 947-957, 1961.
- [22] Murphy J. , Types of seismic events and their source descriptions, *Monitoring a Comprehensive Test Ban Treaty*, edited by Husebye and Dainty, Kluwer Academic Publishers, the Netherlands, 247-293, 1996.

- [23] Murphy J., Rimer N. and Stevens J., Comment on " Seismic decoupling with chemical and nuclear explosions in salt" by L. Glenn and P. Goldstein, *J. Geophys. Res.*, 101, 845-850, 1996.
- [24] Rubin, A. M. and T. J. Ahrens, Dynamic tensile-fracture-induced velocity deficits in rock, *Geophysical Research Letters*, 18, 219-222, 1991.
- [25] Sykes L., Dealing with decoupled nuclear explosions under a comprehensive test ban treaty, *Monitoring a Comprehensive Test Ban Treaty*, edited by Husebye and Dainty, Kluwer Academic Publishers, the Netherlands, 225-245, 1996.
- [26] Timoshenko, S. P. and J. N. Goodier, Theory of Elasticity, pp510-513, published by McGraw-Hill Book Company, 1970.
- [27] Walter W., Mayeda K. and Patton H., Phase and spectral ratio discrimination between NTS earthquakes and explosions. Part I: empirical observation, *Bull. Seism. Soc. Am.*, 85, 1050-1067, 1995.

**DISTRIBUTION**

THOMAS AHRENS  
SEISMOLOGICAL LABORATORY 252-21  
CALIFORNIA INST. OF TECHNOLOGY  
PASADENA, CA 91125

AIR FORCE RESEARCH LABORATORY  
ATTN: VSOT  
29 RANDOLPH ROAD  
HANSOM AFB, MA 01731-3010 (2 COPIES)

AIR FORCE RESEARCH LABORATORY  
ATTN: RESEARCH LIBRARY/TL  
5 WRIGHT STREET  
HANSOM AFB, MA 01731-3004

AIR FORCE RESEARCH LABORATORY  
ATTN: AFRL/SUL  
3550 ABERDEEN AVE SE  
KIRTLAND AFB, NM 87117-5776 (2 COPIES)

RALPH ALEWINE  
NTPO  
1901 N. MOORE STREET, SUITE 609  
ARLINGTON, VA 22209

DOUGLAS BAUMGARDT  
ENSCO INC.  
5400 PORT ROYAL ROAD  
SPRINGFIELD, VA 22151

MUAWIA BARAZANGI  
INSTOC  
3126 SNEE HALL  
CORNELL UNIVERSITY  
ITHACA, NY 14853

WILLIAM BENSON  
NAS/COS  
ROOM HA372  
2001 WISCONSIN AVE. NW  
WASHINGTON DC 20007

THERON J. BENNETT  
MAXWELL TECHNOLOGIES  
11800 SUNRISE VALLEY  
SUITE 1212  
RESTON, VA 22091

ROBERT BLANDFORD  
AFTAC  
1300 N. 17TH STREET  
SUITE 1450  
ARLINGTON, VA 22209-2308

JONATHAN BERGER  
UNIV. OF CALIFORNIA, SAN DIEGO  
SCRIPPS INST. OF OCEANOGRAPHY IGPP, 0225  
9500 GILMAN DRIVE  
LA JOLLA, CA 92093-0225

CENTER FOR MONITORING RESEARCH  
ATTN: LIBRARIAN  
1300 N. 17th STREET, SUITE 1450  
ARLINGTON, VA 22209

LESLIE A. CASEY  
DEPT. OF ENERGY/NN-20  
1000 INDEPENDENCE AVE. SW  
WASHINGTON DC 20585-0420

ANTON DAINTY  
DTRA/OST  
45045 AVIATION DRIVE  
DULLES, VA 20166-7517

FRANCESCA CHAVEZ  
LOS ALAMOS NATIONAL LAB  
P.O. BOX 1663, MS-D460  
LOS ALAMOS, NM 87545 (5 COPIES)

DIANE DOSER  
DEPT. OF GEOLOGICAL SCIENCES  
THE UNIVERSITY OF TEXAS AT EL PASO  
EL PASO, TX 79968

CATHERINE DE GROOT-HEDLIN  
UNIV. OF CALIFORNIA, SAN DIEGO  
IGPP  
8604 LA JOLLA SHORES DRIVE  
SAN DIEGO, CA 92093

MARK D. FISK  
MISSION RESEARCH CORPORATION  
735 STATE STREET  
P.O. DRAWER 719  
SANTA BARBARA, CA 93102-0719

DTIC  
8725 JOHN J. KINGMAN ROAD  
FT BELVOIR, VA 22060-6218 (2 COPIES)

HENRY GRAY  
SMU STATISTICS DEPARTMENT  
P.O. BOX 750302  
DALLAS, TX 75275-0302

I. N. GUPTA  
MULTIMAX, INC.  
1441 MCCORMICK DRIVE  
LARGO, MD 20774

DAVID HARKRIDER  
BOSTON COLLEGE  
24 MARTHA'S PT. RD.  
CONCORD, MA 01742

THOMAS HEARN  
NEW MEXICO STATE UNIVERSITY  
DEPARTMENT OF PHYSICS  
LAS CRUCES, NM 88003

MICHAEL HEDLIN  
UNIVERSITY OF CALIFORNIA, SAN DIEGO  
SCRIPPS INST. OF OCEANOGRAPHY  
9500 GILMAN DRIVE  
LA JOLLA, CA 92093-0225

DONALD HELMBERGER  
CALIFORNIA INST. OF TECHNOLOGY  
DIV. OF GEOL. & PLANETARY SCIENCES  
SEISMOLOGICAL LABORATORY  
PASADENA, CA 91125

EUGENE HERRIN  
SOUTHERN METHODIST UNIVERSITY  
DEPT. OF GEOLOGICAL SCIENCES  
DALLAS, TX 75275-0395

ROBERT HERRMANN  
ST. LOUIS UNIVERSITY  
DEPT. OF EARTH & ATMOS. SCIENCES  
3507 LACLEDE AVENUE  
ST. LOUIS, MO 63103

VINDELL HSU  
HQ/AFTAC/TTR  
1030 S. HIGHWAY A1A  
PATRICK AFB, FL 32925-3002

RONG-SONG JIH  
DTRA/PMA  
45045 AVIATION DRIVE  
DULLES, VA 20166-7517

THOMAS JORDAN  
MASS. INST. OF TECHNOLOGY  
BLDG 54-918  
CAMBRIDGE, MA 02139

LAWRENCE LIVERMORE NAT'L LAB  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 808, MS L-208  
LIVERMORE, CA 94551

LAWRENCE LIVERMORE NAT'L LAB  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 808, MS L-205  
LIVERMORE, CA 94551

LAWRENCE LIVERMORE NAT'L LAB  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 808, MS L-200  
LIVERMORE, CA 94551

THORNE LAY  
UNIV. OF CALIFORNIA, SANTA CRUZ  
EARTH SCIENCES DEPARTMENT  
EARTH & MARINE SCIENCE BUILDING  
SANTA CRUZ, CA 95064

ANATOLI L. LEVSHIN  
DEPARTMENT OF PHYSICS  
UNIVERSITY OF COLORADO  
CAMPUS BOX 390  
BOULDER, CO 80309-0309

JAMES LEWKOWICZ  
WESTON GEOPHYSICAL CORP.  
325 WEST MAIN STREET  
NORTHBORO, MA 01532

LOS ALAMOS NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 1663, MS D460  
LOS ALAMOS, NM 87545

LOS ALAMOS NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 1663, MS F665  
LOS ALAMOS, NM 87545

LOS ALAMOS NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 1663, MS C335  
LOS ALAMOS, NM 87545

GARY MCCARTOR  
SOUTHERN METHODIST UNIVERSITY  
DEPARTMENT OF PHYSICS  
DALLAS, TX 75275-0395

KEITH MC LAUGHLIN  
CENTER FOR MONITORING RESEARCH  
SAIC  
1300 N. 17TH STREET, SUITE 1450  
ARLINGTON, VA 22209

RICHARD MORROW  
USACDA/IVI  
320 21ST STREET, N.W.  
WASHINGTON DC 20451

JAMES NI  
NEW MEXICO STATE UNIVERSITY  
DEPARTMENT OF PHYSICS  
LAS CRUCES, NM 88003

OFFICE OF THE SECRETARY OF DEFENSE  
DDR&E  
WASHINGTON DC 20330

PACIFIC NORTHWEST NAT'L LAB  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
PO BOX 999, MS K5-12  
RICHLAND, WA 99352

KEITH PRIESTLEY  
DEPARTMENT OF EARTH SCIENCES  
UNIVERSITY OF CAMBRIDGE  
MADINGLEY RISE, MADINGLEY ROAD  
CAMBRIDGE, CB3 0EZ UK

DELAINE REITER  
WESTON GEOPHYSICAL CORP.  
73 STANDISH ROAD  
WATERTOWN, MA 0472

MICHAEL RITZWOLLER  
DEPARTMENT OF PHYSICS  
UNIVERSITY OF COLORADO  
CAMPUS BOX 390  
BOULDER, CO 80309-0309

CHANDAN SAIKIA  
WOODWARD-CLYDE FED. SERVICES  
566 EL DORADO ST., SUITE 100  
PASADENA, CA 91101-2560

BRIAN MITCHELL  
DEPARTMENT OF EARTH & ATMOSPHERIC SCIENCES  
ST. LOUIS UNIVERSITY  
3507 LACLEDE AVENUE  
ST. LOUIS, MO 63103

JOHN MURPHY  
MAXWELL TECHNOLOGIES  
11800 SUNRISE VALLEY DRIVE  
SUITE 1212  
RESTON, VA 22091

ROBERT NORTH  
CENTER FOR MONITORING RESEARCH  
1300 N. 17th STREET, SUITE 1450  
ARLINGTON, VA 22209

JOHN ORCUTT  
INST. OF GEOPH. & PLANETARY PHYSICS  
UNIV. OF CALIFORNIA, SAN DIEGO  
LA JOLLA, CA 92093

DAVID RUSSELL  
HQ AFTAC/TT  
1030 S. HIGHWAY A1A  
PATRICK AFB, FL 32925-3002

JAY PULLI  
BBN SYSTEMS AND TECHNOLOGIES, INC.  
1300 NORTH 17TH STREET  
ROSSLYN, VA 22209

PAUL RICHARDS  
COLUMBIA UNIVERSITY  
LAMONT-DOHERTY EARTH OBSERV.  
PALISADES, NY 10964

RICK SCHULT  
HQ AFTAC/TTR  
1030 SOUTH HIGHWAY A1A  
PATRICK AFB, FL 32925-3002

SANDIA NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
DEPT. 5704  
MS 0979, PO BOX 5800  
ALBUQUERQUE, NM 87185-0979

SANDIA NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
DEPT. 9311  
MS 1159, PO BOX 5800  
ALBUQUERQUE, NM 87185-1159

SANDIA NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
DEPT. 5736  
MS 0655, PO BOX 5800  
ALBUQUERQUE, NM 87185-0655

AVI SHAPIRA  
SEISMOLOGY DIVISION  
IPRG  
P.O.B. 2286 NOLON 58122 ISRAEL

MATTHEW SIBOL  
ENSCO, INC.  
445 PINEDA CT.  
MELBOURNE, FL 32940

JEFFRY STEVENS  
MAXWELL TECHNOLOGIES  
8888 BALBOA AVE.  
SAN DIEGO, CA 92123-1506

TACTEC  
BATTELLE MEMORIAL INSTITUTE  
505 KING AVENUE  
COLUMBUS, OH 43201 (FINAL REPORT)

LAWRENCE TURNBULL  
ACIS  
DCI/ACIS  
WASHINGTON DC 20505

FRANK VERNON  
UNIV. OF CALIFORNIA, SAN DIEGO  
SCRIPPS INST. OF OCEANOGRAPHY  
9500 GILMAN DRIVE  
LA JOLLA, CA 92093-0225

RU SHAN WU  
UNIV. OF CALIFORNIA, SANTA CRUZ  
EARTH SCIENCES DEPT.  
1156 HIGH STREET  
SANTA CRUZ, CA 95064

JAMES E. ZOLLWEG  
BOISE STATE UNIVERSITY  
GEOSCIENCES DEPT.  
1910 UNIVERSITY DRIVE  
BOISE, ID 83725

SANDIA NATIONAL LABORATORY  
ATTN: TECHNICAL STAFF (PLS ROUTE)  
DEPT. 5704  
MS 0655, PO BOX 5800  
ALBUQUERQUE, NM 87185-0655

THOMAS SERENO JR.  
SAIC  
10260 CAMPUS POINT DRIVE  
SAN DIEGO, CA 92121

ROBERT SHUMWAY  
410 MRAK HALL  
DIVISION OF STATISTICS  
UNIVERSITY OF CALIFORNIA  
DAVIS, CA 95616-8671

DAVID SIMPSON  
IRIS  
1200 NEW YORK AVE., NW  
SUITE 800  
WASHINGTON DC 20005

BRIAN SULLIVAN  
BOSTON COLLEGE  
INSTITUTE FOR SPACE RESEARCH  
140 COMMONWEALTH AVENUE  
CHESTNUT HILL, MA 02167

NAFI TOKSOZ  
EARTH RESOURCES LABORATORY  
M.I.T.  
42 CARLTON STREET, E34-440  
CAMBRIDGE, MA 02142

GREG VAN DER VINK  
IRIS  
1200 NEW YORK AVE., NW  
SUITE 800  
WASHINGTON DC 20005

TERRY WALLACE  
UNIVERSITY OF ARIZONA  
DEPARTMENT OF GEOSCIENCES  
BUILDING #77  
TUCSON, AZ 85721

JIAKANG XIE  
COLUMBIA UNIVERSITY  
LAMONT DOHERTY EARTH OBSERV.  
ROUTE 9W  
PALISADES, NY 10964