

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 6

Aufgabe 1 (Rechenregeln auf Ringen)

Sei $(R, +, \cdot)$ ein Ring und seien $a, b, c \in R$. Zeigen Sie, dass folgende Rechenregeln gelten:

- (i) $(-a) \cdot (-b) = a \cdot b$
- (ii) Falls ein Einselement $1 \in R$ existiert, dann gilt:

$$-a = (-1) \cdot a = 1 \cdot (-a)$$

(iii) Falls R nullteilerfrei ist, also falls $\forall a, b \in R : a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$, dann gilt:

$$(c \neq 0 \land a \cdot c = b \cdot c) \Rightarrow a = b \quad \text{und} \quad (c \neq 0 \land c \cdot a = c \cdot b) \Rightarrow a = b$$

Lösung Let 0 be the neutral element of the (commutative) group (R, +) and let -a denote the inverse of any $a \in R$ such that a + 0 = a (definition of neutral element) and a + (-a) = 0 (definition of inverse element). In the lecture, we have proven the following identities (Satz 3.2.2)

- 1) $0 \cdot a = a \cdot 0 = 0$
- 2) $-(a \cdot b) = (-a) \cdot b = a \cdot (-b)$
- (i) We have, $\forall a, b \in R$,

- (ii) Put a=1 and $b=-a \Rightarrow -b=a$ in (i) to get $(-1) \cdot a=1 \cdot (-a)=-a$ (1 is the neutral element of (R,\cdot)). Similarly, setting b=a and a=-1 in (ii) implies $-a=(-1) \cdot a$.
- (iii) Assume $c \neq 0 \land a \cdot c = b \cdot c$.

$$\Rightarrow a \cdot c + -(b \cdot c) = 0 \overset{\text{Satz } 3.2.2 \ 2)}{\Rightarrow} a \cdot c + (-b) \cdot c = 0 \overset{\text{Def. } 3.2.1 \ 3)}{\Rightarrow} (a + (-b)) \cdot c = 0$$
$$\overset{\text{Def. } 3.2.3}{\Rightarrow} a + (-b) = 0 \Rightarrow a + (-b) + b = 0 + b \Rightarrow a + 0 = b \Rightarrow a = b.$$

The other identity follows analogously.

Aufgabe 2 (Komplexe Zahlen)

Betrachten Sie die komplexe Zahlenebene.

- (i) Seien $z_1, z_2, z \in \mathbb{C}$. Veranschaulichen Sie sich anhand einer Skizze die Addition bzw. Subtraktion zweier komplexer Zahlen $(z_1, z_2) \to z_1 \pm z_2$ sowie die komplexe Konjugation $z \to \bar{z}$.
- (ii) Betrachten Sie nun die Funktion

$$f(z) = \frac{1}{z}, \quad z \in \mathbb{C} \setminus \{0\}.$$

Auf welche Kurven bildet f Kreise mit Mittelpunkt im Ursprung, auf welche Geraden durch den Ursprung ab? Wie verändert sich der Winkel zwischen zwei Ursprungsgeraden, wie der Winkel zwischen zwei beliebigen Geraden?

Hinweis: Nutzen Sie die Polardarstellung komplexer Zahlen.

Lösing

Abbildung 1: Geometric depiction of complex conjugation of a complex number $z = x + iy = re^{i\theta}$.

(i)

(ii) First, note that the set of points $(x,y) \in \mathbb{R}^2$ forming a circle centred at (0,0) with radius r > 0, i.e., the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2\} \subset \mathbb{R}^2$ is in a one to one correspondence with the set of complex numbers $S(r) := \{z \in \mathbb{C} : |z| := \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = r\} \subset \mathbb{C}$ with the usual identification $x = \operatorname{Re} z$ and $y = \operatorname{Im} z$. Now, using the polar decomposition of a complex number (Bemerkung 3.3.6), $S(r) = \{z \in \mathbb{C} : z := r e^{i\phi} \lor \phi \in [0, 2\pi)\}$. Noting that

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} \overset{\text{Satz}}{=} \overset{3.3.2.}{=} \frac{\bar{z}}{|z|^2} = \frac{r e^{i\phi}}{r^2} = \frac{r e^{-i\phi}}{r^2} = \frac{1}{r} e^{-i\phi},$$

we have $f(S(r)):=\{z^{-1}:z\in S(r)\}=\{r^{-1}e^{-i\phi}:\phi\in[0,2\pi)\}=S(r^{-1}),$ which denotes a concentric circle of radius r^{-1} and center (0,0).

The set of points $(x, y) \in \mathbb{R}^2$ denoting a straightline passing through the origin (0, 0) and inclined at an angle $\theta \neq \frac{\pi}{2}$ is given by $\{(x, y) \in \mathbb{R}^2 : y = x \tan \theta\}$. In the complex plane it can be identified with the set $L_{\theta} := \{z \in \mathbb{C} : \text{Im } z = \text{Re } z \tan \theta\} = \{z = r e^{i\theta} : r > 0\} \subset \mathbb{C}$. Consider next the image of this set under f, i.e., $f(L_{\theta}) = \{f(r e^{i\theta}) : r > 0\} = \{r^{-1} e^{-i\theta} : r > 0\} = L_{-\theta}$. This set

Abbildung 2: Geometric depiction of the addition and subtraction of two complex numbers z_1 and z_2 .

again denotes a straight line in the complex plane subtending an angle $-\theta$ (or, equivalently $\pi - \theta$ with the real axis. [A more comprehensive solution for this problem will be posted shortly!]

Aufgabe 3 (Quaternionen)

Der Schiefkörper der Quaternionen \mathbb{H} wird wie folgt konstruiert. Quaternionen, d.h. Elemente von \mathbb{H} , sind Ausdrücke der Form

$$h = h_0 + ih_1 + jh_2 + kh_3$$

mit $h_0, h_1, h_2, h_3 \in \mathbb{R}$ und den drei imaginären Einheiten i, j und k. Die Addition auf \mathbb{H} ist komponentenweise definiert, d.h. für $h, h' \in \mathbb{H}$ ist

$$h + h' := (h_0 + h'_0) + i(h_1 + h'_1) + j(h_2 + h'_2) + k(h_3 + h'_3).$$

Für die Multiplikation auf H gilt Folgendes:

- Für reelle Zahlen r und r' (mit r = r + i0 + j0 + k0) ist die Multiplikation auf \mathbb{H} die übliche Multiplikation auf \mathbb{R} .
- $i^2 = j^2 = k^2 = -1$ und ij = k, jk = i, ki = j.
- Die imaginären Einheiten vertauschen mit jeder reellen Zahl r, d.h. ir = ri, jr = rj, kr = rk.
- Für i, j, k und jede reelle Zahl r gilt das Assoziativgesetz, d.h. i(ik) = (ii)k, j(ki) = (jk)i, r(jk) = (rj)k, usw.

Weiter gelten die Distributivgesetze (h + h')g = hg + h'g und h(g + g') = hg + hg'. Man kann nun zeigen, dass \mathbb{H} mit dieser Addition und Mulptiplikation ein Schiefkörper ist, d.h. dass alle Körperaxiome mit Ausnahme der Kommutativität der Multiplikation erfüllt sind.

- (i) Zeigen Sie, dass die Multiplikation auf \mathbb{H} nicht kommutativ ist und dass insbesondere gilt: ij = -ji, kj = -jk und ik = -ki.
- (ii) Geben Sie die allgemeine Formel für die Multiplikation zweier Quaternionen h und h' an. Begründen Sie, dass das Assoziativgesetz der Multiplikation für Quaternionen gilt.
- (ii) Geben Sie das neutrale Element der Multiplikation und das inverse Element der Multiplikation zu einer Quaternion $h \in \mathbb{H}$ an.

Hinweis: Definieren Sie sich die konjugierte Quaternion als $\bar{h} := h_0 - ih_1 - jh_2 - kh_3$

Lösung

- (i) $j = ki \Rightarrow ji = kii = ki^2 = -k \neq k = ij$. Similarly for kj = -jk and ik = -ki
- (ii) Let $h, g \in \mathbb{H}$ with $h = h_0 + ih_1 + jh_2 + kh_3$ and $g = g_0 + ig_1 + jg_2 + kg_3$. We have

$$\begin{aligned} h \cdot g &= (h_0 + \mathrm{i} h_1 + \mathrm{j} h_2 + \mathrm{k} h_3) \cdot (g_0 + \mathrm{i} g_1 + \mathrm{j} g_2 + \mathrm{k} g_3) \\ &= (h_0 g_0 + \mathrm{i}^2 h_1 g_1 + \mathrm{j}^2 h_2 g_2 + \mathrm{k}^2 h_3 g_3) + \mathrm{i} (h_0 g_1 + h_1 g_0) + \mathrm{j} (h_0 g_2 + h_2 g_0) + \mathrm{k} (h_3 g_0 + h_0 g_3) \\ &+ (\mathrm{i} \mathrm{j} h_1 g_2 + \mathrm{j} \mathrm{i} h_2 g_1) + (\mathrm{i} \mathrm{k} h_1 g_3 + \mathrm{k} \mathrm{i} h_3 g_1) + (\mathrm{k} \mathrm{j} h_3 g_2 + \mathrm{j} \mathrm{k} h_2 g_3) \\ &= (h_0 g_0 - h_1 g_1 - h_2 g_2 - h_3 g_3) + \mathrm{i} (h_0 g_1 + h_1 g_0) + \mathrm{j} (h_0 g_2 + h_2 g_0) + \mathrm{k} (h_3 g_0 + h_0 g_3) \\ &+ \mathrm{k} (h_1 g_2 - h_2 g_1) + \mathrm{j} (-h_1 g_3 + h_3 g_1) + \mathrm{i} (-h_3 g_2 + h_2 g_3) \\ &= (h_0 g_0 - h_1 g_1 - h_2 g_2 - h_3 g_3) + \mathrm{i} (h_0 g_1 + h_1 g_0 + h_2 g_3 - h_3 g_2) \\ &+ \mathrm{j} (h_0 g_2 + h_2 g_0 + h_3 g_1 - h_1 g_3) + \mathrm{k} (h_3 g_0 + h_0 g_3 + h_1 g_2 - h_2 g_1) \end{aligned}$$

(iii) The neutral element of multiplication $e \in \mathbb{H}$ is given by $e = 1 + \mathrm{i}0 + \mathrm{j}0 + \mathrm{k}0$. Using the result from (ii) it is easily verified that $\forall h \in \mathbb{H} : e \cdot h = h \cdot e = h$. For the inverse element, we note that $\forall h \in \mathbb{H}$, the product of h and \bar{h} , where $h = h_0 + \mathrm{i}h_1 + \mathrm{j}h_2 + \mathrm{k}h_3$ and $\bar{h} = h_0 - \mathrm{i}h_1 - \mathrm{j}h_2 - \mathrm{k}h_3$, is

$$h \cdot \bar{h} = (h_0 + ih_1 + jh_2 + kh_3) \cdot (h_0 - ih_1 - jh_2 - kh_3) \stackrel{\text{(ii)}}{=} (h_0^2 + h_1^2 + h_2^2 + h_3^2) + i0 + j0 + k0.$$

The same result expression is obtained from the product $\bar{h} \cdot h$. So, $\forall h \in \mathbb{H} : \bar{h} \cdot h = h \cdot \bar{h} = e$. This suggests that the inverse element of $h \in \mathbb{H}$,

$$h^{-1} = \frac{\bar{h}}{h \cdot \bar{h}} = \frac{h_0}{h \cdot \bar{h}} - i \frac{h_1}{h \cdot \bar{h}} - j \frac{h_2}{h \cdot \bar{h}} - k \frac{h_3}{h \cdot \bar{h}},$$

(analogous to the inverse element in \mathbb{C}). We need to check if this fulfils the property $h^{-1} \cdot h = h \cdot h^{-1} = e$. Since $h \cdot \bar{h}$ is real, by the properties of scalar multiplication, we have

$$h^{-1} \cdot h = \frac{\bar{h}}{h \cdot \bar{h}} \cdot h = \frac{1}{h \cdot \bar{h}} (\bar{h} \cdot h) = e, \tag{1}$$

and similarly for $h \cdot h^{-1}$.

Aufgabe 4 (Fixpunktfreie Permutationen) In dieser Aufgabe soll die Anzahl der fixpunktfreien Permutationen einer endlichen Menge bestimmt werden. Eine Permutation $\sigma: \{1, ..., n\} \to \{1, ..., n\}$ heißt fixpunktfrei, wenn für alle $k \in \{1, ..., n\}$ gilt, dass $\sigma(k) \neq k$. Die Anzahl der fixpunktfreien Permutationen in S_n wird im folgenden mit d_n bezeichnet

- (i) Zeigen Sie, dass es in S_1 keine und in S_2 genau eine fixpunktfreie Permutation gibt.
- (ii) Sei $j \neq 1$ beliebig, aber fest. Finden Sie eine Bijektion zwischen folgenden Mengen:
 - (a) $\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) = 1\}$ und $\{\sigma \in S_{n-2} : \sigma \text{ hat keinen Fixpunkt}\}$
 - (b) $\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) \neq 1\}$ und $\{\sigma \in S_{n-1} : \sigma \text{ hat keinen Fixpunkt}\}$
- (iii) Folgern Sie, dass $d_n = (n-1)(d_{n-1} + d_{n-2})$ und daher $d_n n \cdot d_{n-1} = (-1)^n$.
- (iv) Beweisen Sie mit Induktion unter Verwendung von (iii), dass $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$

Lösung In dieser Aufgabe soll die Anzahl der fixpunktfreien Permutationen einer endlichen Menge bestimmt werden. Eine Permutation $\sigma:\{1,...,n\} \to \{1,...,n\}$ heißt fixpunktfrei, wenn für alle $k \in \{1,...,n\}$ gilt, dass $\sigma(k) \neq k$. Die Anzahl der fixpunktfreien Permutationen in S_n wird im folgenden mit d_n bezeichnet

i) Zeigen Sie, dass es in S_1 keine und in S_2 genau eine fixpunktfreie Permutation gibt. Lösung: Jede Abbildung σ in S_1 ist eine Funktion $\{1\} \to \{1\}$. Insbesondere ist $\sigma(1) = 1$ ein Fixpunkt. Sei nun $\mu: \{1,2\} \to \{1,2\}$ eine fixpunktfreie Permutation. Da $\mu(1) \neq 1$, ist die Abbildung eindeutig bestimmt: $1 \mapsto 2$ und $2 \mapsto 1$. ii) Sei $j \neq 1$ beliebig aber fest. Finden Sie (ohne Beweis) eine Bijektion zwischen folgenden Mengen:

$$\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) = 1 \land \sigma \text{ hat keinen Fixpunkt }\}$$
 und $\{\sigma \in S_{n-2} : \sigma \text{ hat keinen Fixpunkt }\}$

Wir sehen, dass jede Permutation aus einer Vertauschung von 1 und j, sowie einem weiteren fixpunktfreien Teil besteht. Also definieren wir folgende Abbildung:

$$\tau: \{1, ..., n-2\} \to \{2, ..., j-1, j+1, ..., n\}$$

$$k \mapsto \begin{cases} k+1 \text{ wenn } k < j-1 \\ k+2 \text{ wenn } k \geq j-1 \end{cases}$$

$$f: \{\sigma \in S_n : \sigma(1) = j \land \sigma(j) = 1 \land \sigma \text{ hat keinen Fixpunkt }\} \to \{\sigma \in S_{n-2} : \sigma \text{ hat keinen Fixpunkt }\}$$

$$\sigma \mapsto \tau^{-1} \circ \sigma \circ \tau$$

Analog geht man im zweiten Fall vor: Anstatt j darf jetzt 1 nicht mehr an der j-ten Stelle getroffen werden. (Achtung: Die Bedingung, dass j nicht getroffen wird, ist nicht mehr notwendig, da die Permutationen bijektiv sind und 1 schon auf j abgebildet wurde). Die Abbildung σ entspricht also auf $\{2,...,n\}$ genau einer fixpunktfreien Permutation aus S_{n-1} mit der Umbenennung $1 \leftrightarrow j$:

$$\tau: \{1, ..., n-1\} \to \{1, ..., j-1, j+1, ..., n\}$$

$$k \mapsto \begin{cases} k+1 \text{ wenn } k \neq j-1 \\ 1 \text{ wenn } k = j-1 \end{cases}$$

$$g: \{\sigma \in S_n: \sigma(1) = j \land \sigma(j) \neq 1 \land \sigma \text{ hat keinen Fixpunkt } \} \to \{\sigma \in S_{n-1}: \sigma \text{ hat keinen Fixpunkt } \}$$

$$\sigma \mapsto \tau^{-1} \circ \sigma \circ \tau$$

iii) Folgern Sie, dass $d_n = (n-1)(d_{n-1} + d_{n-2})$ und daher $d_n - n \cdot d_{n-1} = (-1)^n$. Die Mengen aus ii haben die gleiche Kardinalität. Da j genau n-1 Werte annehmen kann, folgt, dass

$$d_n = \sum_{j=2}^n |\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) = 1 \land \sigma \text{ hat keinen Fixpunkt }\}|$$

$$+ |\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) \neq 1 \land \sigma \text{ hat keinen Fixpunkt }\}|$$

$$= \sum_{j=2}^n d_{n-1} + d_{n-2} = (n-1)(d_{n-1} + d_{n-2})$$

Weitere Umformungen liefern

$$d_n = (n-1)(d_{n-1} + d_{n-2}) = n \cdot d_{n-1} - d_{n-1} + (n-1)d_{n-2}$$

$$d_n - n \cdot d_{n-1} = -(d_{n-1} - (n-1)d_{n-2})$$

Da wir nach i wissen, dass $d_2 - 2 * d_1 = 1 - 0 = 1 = (-1)^2$ gilt, folgt $d_n - n \cdot d_{n-1} = (-1)^n$.

iv) Beweisen Sie mit Induktion (unter Verwendung von iii), dass $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$ Induktionsanfang: Es gilt $d_1 = 0 = 1 - 1 = 1! \sum_{k=0}^1 \frac{(-1)^k}{k!}$ Induktionshypothese: $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$ gelte für ein festes $n \in \mathbb{N}$ Induktionsschritt $(n \to n+1)$: Wir wissen $d_{n+1} - (n+1) \cdot d_n = (-1)^{n+1}$. Daher ist auch

$$d_{n+1} = (-1)^{n+1} + (n+1) \cdot d_n \stackrel{\text{(IH)}}{=} (-1)^{n+1} + (n+1) \cdot n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$
$$= \frac{(n+1)!}{(n+1)!} (-1)^{n+1} + (n+1)! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = (n+1)! \sum_{k=0}^{n+1} \frac{(-1)^k}{k!}$$