Folha 2B - Primitivas imediatas

1. Calcule:

(a) $P(5k^2x^6)$, com $k \in \mathbb{R}$;

(e) $P(\sqrt{2x+3});$

(b) $P(\sqrt[3]{x^2} + 7x + 8);$

(f) $P\left(\frac{2}{3x-5}\right)$;

(c) $P\left(\frac{1}{x^5} + \frac{2}{\sqrt{x}}\right)$;

(g) $P\left(\frac{\ln^2 x}{x}\right)$.

(d) $P\left(\frac{x^3 + 3\sqrt{x} + 4}{x^2}\right)$;

2. Calcule a primitiva das funções definidas por:

(a) $a(x) = \sin 2x \ e^{\cos^2 x}$;

(f) $f(x) = \frac{\cos 7x}{\sin^3 7x};$

(b) $b(x) = \frac{2a}{(a-x)^2}$, com $a \in \mathbb{R}$;

(g) $g(x) = x\sqrt{4 - x^2}$.

(c) $c(x) = \frac{e^x}{\sqrt{1 - e^{2x}}}$;

(h) $h(x) = \frac{x^2 + 1}{\sqrt{x^3 + 3x - 4}}$.

(d) $d(x) = \frac{x-1}{x^2+1}$;

(i) $i(x) = x^2 (x^3 + e)^4$.

(e) $e(x) = \frac{x}{\sqrt{x^4 - 4}};$

3. Um motorista trava o seu carro que se movimenta a 72Km/h, numa estrada sem inclinação, e os travões causam uma desaceleração de 5m/s.

• Quanto tempo demora o carro a parar?

• Quantos metros anda o carro desde que o motorista começa a travar até que pára?