Probability and Statistics

Solve every problem.

Problem 1. Let $\{X_n\}$ be a sequence of Gaussian random variables. Suppose that X is a random variable such that X_n converges to X in distribution as $n \to \infty$. Show that X is also a (possibly degenerate, *i.e.*, variance zero) Gaussian random variable.

Problem 2. For two probability measures μ and ν on the real line **R**, the total variation distance $\|\mu - \nu\|_{TV}$ is defined as

$$\|\mu - \nu\|_{TV} = \sup \{\mu(C) - \nu(C) : C \in \mathcal{B}(\mathbf{R})\},\$$

where $\mathcal{B}(\mathbf{R})$ is the σ -algebra of Borel sets on \mathbf{R} . Let $\mathcal{C}(\mu, \nu)$ be the space of couplings of the probability measures μ and ν , *i.e.*, the space of \mathbf{R}^2 valued random variables (X,Y) defined on some (not necessarily same) probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that the marginal distributions of X and Y are μ and ν , respectively. Show that

$$\|\mu - \nu\|_{TV} = \inf\{\mathbb{P}(X \neq Y) : (X, Y) \in \mathcal{C}(\mu, \nu)\}.$$

For simplicity you may assume that μ and ν are absolutely continuous with respect to the Lebesgue measure on \mathbf{R} .

Problem 3. We throw a fair die repeatedly and independently. Let τ_{11} be the first time the pattern 11 (two consecutive 1's) appears and τ_{12} the first time the pattern 12 (1 followed by 2) appears.

- (a) Calculate the expected value $\mathbb{E}\tau_{11}$.
- **(b)** Which is larger, $\mathbb{E}\tau_{11}$ or $\mathbb{E}\tau_{12}$? It is sufficient to give an intuitive argument to justify your answer. You can also calculate $\mathbb{E}\tau_{12}$ if you wish.

Problem 4. Let $\{X_n\}$ be a Markov chain on a discrete state space S with transition function p(x, y), $x, y \in S$. Suppose that there is a state $y_0 \in S$ and a positive number θ such that $p(x, y_0) \ge \theta$ for all $x \in S$.

(a) Show that is a positive constant $\lambda < 1$ such that for any two initial distribution μ and ν ,

$$\sum_{\nu \in S} \left| \mathbb{P}_{\mu} \left\{ X_1 = y \right\} - \mathbb{P}_{\nu} \left\{ X_1 = y \right\} \right| \le \lambda \sum_{\nu \in S} \left| \mu(y) - \nu(y) \right|.$$

(b) Show that the Markov chain has a unique stationary distribution π and

$$\sum_{y \in S} |\mathbb{P}_{\mu} \{ X_n = y \} - \pi(y) | \le 2\lambda^n.$$

Problem 5. Consider a linear regression model with *p* predictors and *n* observations:

$$\mathbf{Y} = X\beta + \mathbf{e},$$

where $X_{n \times p}$ is the design matrix, β is the unknown coefficient vector, and the random error vector \mathbf{e} has a multivariate normal distribution with mean zero and $\operatorname{Var}(\mathbf{e}) = \sigma^2 I_n$ ($\sigma^2 > 0$ unknown and I_n is the identity matrix).

Here $\operatorname{rank}(X) = k \le p$, p may or may not be greater than n, but we assume n - k > 1. Let $\mathbf{x}_1 = (x_{1,1}, \dots, x_{1,p})$ be the first row of X and define

 $\gamma = \frac{\mathbf{x}_1 \boldsymbol{\beta}}{\sigma}.$

Find the uniformly minimum variance unbiased estimator (UMVUE) of γ or prove it does not exist.

Problem 6. Let X_1, \ldots, X_{2022} be independent random variables with $X_i \sim N(\theta_i, i^2)$, $1 \le i \le 2022$. For estimating the unknown mean vector $\theta \in R^{2022}$, consider the loss function $L(\theta, \mathbf{d}) = \sum_{i=1}^{2022} (d_i - \theta_i)^2 / i^2$. Prove that $\mathbf{X} = (X_1, \ldots, X_{2022})$ is a minimax estimator of θ .

Recall: If $Y|\mu \sim N(\mu, \sigma^2)$ and $\mu \sim N(\mu_0, \sigma_0^2)$ then $\mu|Y = y \sim N\left(\frac{\mu_0/\sigma_0^2 + y/\sigma^2}{1/\sigma_0^2 + 1/\sigma^2}, \frac{1}{1/\sigma_0^2 + 1/\sigma^2}\right)$.