西南交通大学 2015-2016 学年第(一)学期考试试卷

课程代码	6011310	课程名称	高等数学 I (A 卷)	老试时间	120 分钟
	0011310		间分数十八八亿)	''与 [사다]] [-]	I ZU JJ VT

一. 选择题(每小题 4 分, 共 20 <i>5</i>	分)	分)
-------------------------------	----	----

1、关于函数
$$f(x) = \frac{e^x - 1}{x^2 - 4x}$$
 的间断点,以下说法正确的是: () .

- (A) x=0, x=4都是第一类间断点;
- (B) x=0, x=4 都是第二类间断点;
- (C) x=0 是第一类间断点, x=4 是第二类间断点;
- (D) x=0 是第二类间断点,x=4 是第一类间断点.

2、设函数
$$f(x) = \begin{cases} \frac{1}{x} \ln(1-x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 , 则 $f'(0) = ($) .

- (A) 0; (B) -1; (C) 1;

3、若函数
$$y = f(x)$$
 满足 $f'(x_0) = 2$,则当 $\Delta x \to 0$ 时, $dy|_{x=x_0}$ 是() .

- (A) 与 Δx 等价的无穷小; (B) 比 Δx 高阶的无穷小;
- (C) 比 Δx 低阶的无穷小; (D) 与 Δx 同阶的无穷小.

4、设函数
$$y = f(x)$$
 满足方程 $y'' + y' - e^{\sin x} = 0$,且 $f'(x_0) = 0$,则 $f(x)$ 在 x_0 点: ()

- (A) 取得极小值; (B) 取得极大值; (C) 某邻域内单调递增; (D) 某邻域内单调递减.
- 5、方程 $y'' 6y' + 9y = x^2 e^{3x}$ 的特解形式为: () (a,b,c 为常数).
- (A) ax^2e^{3x} ; (B) $x^2(ax^2+bx+c)e^{3x}$; (C) $x(ax^2+bx+c)e^{3x}$; (D) ax^4e^{3x} .

6、已知
$$y = f(e^{2x})$$
, $f'(x) = \arcsin(x - 0.5)$, 则 $y'|_{x=0} = ...$

7、若
$$\int f(x)dx = x^2 + C$$
,则 $\int x f(1-x^2)dx =$.

8、曲线 $y = (x-1)\sqrt[3]{x^5}$ 的拐点是

9、由
$$y=x^2$$
与 $y=x^3$ 在第 I 象限所围图形绕 x 轴旋转所成旋转体体积 =

三. 计算题(每小题8分,共32分)

10、计算

11、计算广义积分 $\int_0^{+\infty} \frac{\mathrm{d}x}{\sqrt{x(1+x)}}$.

12、已知 f(x) 为可导函数, $f(2)=\frac{1}{2}$, f'(2)=0, $\int_0^2 f(x) dx = 1$, 求 $I = \int_0^1 x^2 f''(2x) dx$.

13、求微分方程 $x^2y' + xy = y^2$ 满足初值条件 的特解.

四. 解答题(每小题9分, 共27分)

14、一辆公共汽车能容纳 60 人. 每次租用该辆车乘客人数x和每位乘客需支付的费用p (元) 之间的关系为: $p = [3 - (x/40)]^2$. 写出汽车公司每次租车得到的总收入r(x)的表达式. 使边际收入dr/dx等于零的每次旅行的人数是多少? 相应的费用p是多少?

15、设连续函数 f(x) 满足: $f(x) = e^x + \int_0^x (t-x)f(t)dt$, 求 f(x).

16、设直线 y = ax (0 < a < 1) 与抛物线 $y = x^2$ 所围成图形的面积为 S_1 ,它们与直线 x = 1 所 围成图形的面积为 S_2 ,试确定 a 的值,使 $S_1 + S_2$ 达到最小,并求出最小值.

五. 证明题(第17题5分,共5分)

17、设 在[0,1] 上连续且单调递增,证明: 对于任意 $x \in (0,1)$,有: $\frac{1}{x} \int_0^x f(t) dt < \int_0^1 f(t) dt$.