Problem Sheet 12

13 May

Throughout this problem sheet, representations and characters are taken to be over the field \mathbf{C} of complex numbers.

- **1.** Let G be a finite group, let H be a subgroup of G, and let N be a normal subgroup of G with $N \cap H = \{1\}$ and #N = (G : H). Show that G is isomorphic to the semi-direct product $N \rtimes H$, where H acts on N by conjugation (inside G).
- **2.** Let G be the dihedral group D_n with $n \geq 3$ odd, let $H \subset G$ be a subgroup of order 2, and let $\rho: H \to \operatorname{Aut}_{\mathbf{C}} V$ be the unique non-trivial irreducible representation of H. Show that there is a unique representation $\tilde{\rho}: G \to \operatorname{Aut}_{\mathbf{C}} V$ satisfying $\tilde{\rho}|_{H} = \rho$.
- **3.** Give an example of a finite group G, a subgroup H of G and an irreducible representation $\rho: H \to \operatorname{Aut}_{\mathbf{C}} V$ such that there is no representation $\tilde{\rho}: G \to \operatorname{Aut}_{\mathbf{C}} V$ satisfying $\tilde{\rho}|_{H} = \rho$.
- **4.** Let $\phi: R \to S$ be a ring homomorphism. For every left S-module N, let ϕ^*N be the Abelian group N viewed as a left R-module via $(r,n) \mapsto \phi(r)n$; see Exercise 12 of problem sheet 1. We recall that for every left R-module M, the Abelian group RHom(S,M) has a canonical left S-module structure through the right action of S on itself. Show that for every left R-module M and every left S-module N, there is a canonical group isomorphism

$$_R \operatorname{Hom}(\phi^*N, M) \xrightarrow{\sim} {_S \operatorname{Hom}(N, {_R \operatorname{Hom}(S, M)})}.$$

- **5.** Let G be a finite group, and let H be a subgroup of G. For any representation V of H, let $\operatorname{Ind}_H^G V$ be the induced representation of V from H to G; see Exercise 8 of problem sheet 9.
 - (a) Let $\alpha: V \to V'$ be a homomorphism of representations of H. Show that there is a canonical "induced" homomorphism

$$\alpha_* = \operatorname{Ind}_H^G \alpha : \operatorname{Ind}_H^G V \longrightarrow \operatorname{Ind}_H^G V'.$$

(b) Show that sending every $\mathbf{C}[H]$ -module V to $\mathrm{Ind}_H^G V$ and every $\mathbf{C}[H]$ -linear map $\alpha: V \to V'$ to $\mathrm{Ind}_H^G \alpha$ defines an exact functor

$$\operatorname{Ind}_H^G : {}_{\mathbf{C}[H]}\mathbf{Mod} \longrightarrow {}_{\mathbf{C}[G]}\mathbf{Mod}.$$

6. Let G be a finite group, let $H \subset G$ be a subgroup, and let V be the trivial representation of H (i.e. $V = \mathbf{C}$ with trivial H-action). Let $\mathbf{C}\langle G/H \rangle$ be the space of formal linear combinations $\sum_{x \in G/H} c_x x$ with $c_x \in \mathbf{C}$, made into a left $\mathbf{C}[G]$ -module by putting $g(\sum_{x \in G/H} c_x x) = \sum_{x \in G/H} c_x gx$. Show that there is a canonical isomorphism

$$\operatorname{Ind}_H^G V \stackrel{\sim}{\longrightarrow} \mathbf{C} \langle G/H \rangle$$

of left $\mathbf{C}[G]$ -modules.

Theorem (Frobenius reciprocity). Let G be a finite group, and H be a subgroup of G. For every finite-dimensional representation V of H and every finite-dimensional representation W of G, there are canonical isomorphisms of \mathbb{C} -vector spaces

$$_{\mathbf{C}[G]}\mathrm{Hom}(\mathrm{Ind}_{H}^{G}V,W)\overset{\sim}{\longrightarrow}_{\mathbf{C}[H]}\mathrm{Hom}(V,\mathrm{Res}_{H}^{G}W),$$
 $_{\mathbf{C}[H]}\mathrm{Hom}(\mathrm{Res}_{H}^{G}W,V)\overset{\sim}{\longrightarrow}_{\mathbf{C}[G]}\mathrm{Hom}(W,\mathrm{Ind}_{H}^{G}V).$

7. Let G be a finite group, let H be a subgroup of G, let V be a finite-dimensional representation of H, and let $W = \operatorname{Ind}_H^G V$ be the induced representation. Let $\chi_V \colon H \to \mathbb{C}$ and $\chi_W \colon G \to \mathbb{C}$ be the characters of V and W, respectively. Show that for every class function $f \colon H \to \mathbb{C}$ we have

$$\langle f, \chi_W \rangle_G = \langle f|_H, \chi_V \rangle_H.$$

(*Hint*: reduce to the case where f is an irreducible character of H, and use Frobenius reciprocity.)

In the following exercises, S_n denotes the symmetric group on n elements. Hint for these exercises: use Exercise 7.

- 8. Let V be a non-trivial irreducible representation of the alternating group $A_3 \subset S_3$. Prove that $\operatorname{Ind}_{A_3}^{S_3} V$ is isomorphic to the unique two-dimensional irreducible representation of S_3 .
- **9.** Let H be the subgroup of S_3 generated by (12). For every irreducible representation V of H, determine the decomposition of the representation $\operatorname{Ind}_H^{S_3}V$ as a direct sum of irreducible representations of S_3 .
- 10. Let H be the subgroup of S_4 generated by (1234). For every irreducible representation V of H, determine the decomposition of $\operatorname{Ind}_H^{S_4} V$ as a direct sum of irreducible representations of S_4 .
- 11. Consider S_3 as a subgroup of S_4 by $S_3 = \langle (1\,2), (2\,3) \rangle \subset S_4$, and let V be the unique two-dimensional irreducible representation of S_3 . Determine the decomposition of $\operatorname{Ind}_{S_3}^{S_4} V$ as a direct sum of irreducible representations of S_4 .