IMAGING MATERIAL, COLOR FILTER FORMING MATERIAL, IMAGING METHOD, AND COLOR FILTER FORMING METHOD

JP2002219878 Patent number:

2002-08-06 Publication date:

SUZUKI TAMOTSU; IMAMURA NAOYA; SATO MORIMASA Inventor:

FUJI PHOTO FILM COLTD Applicant:

Classification:

B41M5/40; B41J2/32; B41M5/26; G02B5/20 - international:

Application number: JP20010018731 20010126 - european:

Priority number(s):

Abstract of **JP2002219878**

layer and an imaging layer, and an image receiving sheet, formed on a support, the imaging material includes at least receiving sheet with such advantages that the heat resistance is sufficient, the dimensional stability during heating is polyolefin layer. The color filter forming material includes the image receiving sheet. The imaging method comprises the image receiving sheet, out of the support and the image receiving sheet, which contains an amorphous ring-like SOLUTION: In the imaging material comprising a thermal transfer sheet having at least a photothermal conversion PROBLEM TO BE SOLVED: To provide an imaging material and a color filter forming material including an image high, the shape of a transferred image is ameliorated and the sensitivity and positional precision are upgraded, an imaging method using the imaging material and a color filter forming method using the color filter forming material. he steps to irradiate the thermal transfer sheet and the image receiving sheet superposed over each other with a aser beam, in an image fashion, from the thermal transfer sheet side and form an image on the image receiving sheet. The color filter forming method uses the image receiving sheet.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-219878 (P2002-219878A)

(43)公開日 平成14年8月6日(2002.8.6)

5/40	酸別記号	FI.				
5/40					テーマコート*(参考)	
-		G 0 2 B	5/20	101	2 C 0 6 5	
2/32		B41M	5/26	I	H 2H048	
5/26		B41J	3/20	1097	A 2H111	
5/20	101	B41M	5/26]	7	
	•			(Q	
		審查請求	未請求	請求項の数10	OL (全26頁)	
	特願2001-18731(P2001-18731)	(71) 出願人	顧人 000005201			
			富士写真	マイルム株式会	社	
	平成13年1月26日(2001.1.26)	1.26) 神奈川県南足柄市中沼210番地				
		(72)発明者	鈴木	*		
			静岡県智	3士宫市大中里2	00番地 富士写真	
			フイルム	体式会社内		
		(72)発明者	今村 直	也		
			静岡県富	3士宫市大中里2	00番地 富士写真	
			フイルム	、株式会社内		
		(74)代理人	1001056	47		
			弁理士	小栗 昌平	(外4名)	
					最終頁に続く	
	5/20	5/20 1 0 1 特顧2001-18731(P2001-18731)	5/20 101 B41M 審查請求 特願2001-18731(P2001-18731) (71)出願人 平成13年1月26日(2001.1.26) (72)発明者	5/20 101 B41M 5/26 審査請求 未請求 特願2001-18731(P2001-18731) (71)出願人 0000052 富士写J 平成13年1月26日(2001.1.26) (72)発明者 鈴木 保 静岡県富 フイルノ (72)発明者 ウ村 正 静岡県富 フイルノ (74)代理人 1001056	5/20 B 4 1 M 5/26 特願2001-18731(P2001-18731) (71) 出願人 000005201 富士写真フイルム株式会平成13年1月26日(2001.1.26) 富士写真フイルム株式会 2001.1.26) (72)発明者 鈴木 保 静岡県富士宮市大中里20フイルム株式会社内(72)発明者 今村 直也 静岡県富士宮市大中里20フイルム株式会社内(74)代理人 100105647	

(54)【発明の名称】 画像形成材料、カラーフィルター形成材料、画像形成方法並びにカラーフィルター形成方法

(57)【要約】

【課題】耐熱性が十分で、加熱時の寸法安定性に優れ、 転写画像の形状が良化し、感度や位置精度が向上した受 像シートを含む画像形成材料及びカラーフィルター形成 材料並びにそれを用いた画像形成方法及びカラーフィル ター形成方法を提供すること。

【解決手段】支持体上に少なくとも光熱変換層、画像形成層を有する熱転写シートと受像シートとからなる画像形成材料において、該支持体及び受像シートのうち少なくとも受像シートは非晶性環状ポリオレフィン層を含む画像形成材料またはそれを用いるカラーフィルター形成材料。前記熱転写シートを前記受像シートと重ねあわせ熱転写シート側からレーザー光を像様に照射して受像シートに画像を形成させる画像形成方法またはそれを用いるカラーフィルター形成方法。

【特許請求の範囲】

【請求項1】 支持体上に少なくとも光熱変換層、画像 形成層を有する熱転写シートと受像シートとからなる画 像形成材料において、該支持体及び受像シートのうち少 なくとも受像シートは非晶性環状ポリオレフィン層を含 むことを特徴とする画像形成材料。

【請求項2】 前記非晶性環状ポリオレフィンの熱変形 温度が100℃以上である請求項1記載の画像形成材 料。

【請求項3】 前記支持体と光熱変換層の間にクッショ ン機能を有する層を有する請求項1または2に記載の画 像形成材料。

【請求項4】 前記受像シートは支持体上に少なくとも 受像層を有してなり、該支持体が非晶性環状ポリオレフ ィン層である請求項1~3のいずれかに記載の画像形成 材料。

【請求項5】 前記支持体は放電処理が施されている請 求項1~4のいずれかに記載の画像形成材料。

【請求項6】 請求項1~5のいずれかに記載の画像形 成材料を用いることを特徴とするカラーフィルター形成 20 材料。

【請求項7】 請求項1~6のいずれかに記載の熱転写 シートを同記載の受像シートと重ねあわせ熱転写シート 側からレーザー光を像様に照射して受像シートに画像を 形成させることを特徴とする画像形成方法。

【請求項8】 前記レーザー光は半導体レーザーである 請求項7記載の画像形成方法。

【請求項9】 前記光熱変換層の吸収波長が700~1500n mである請求項7または8記載の画像形成方法。

【請求項10】 請求項7~9のいずれかに記載の画像 30 形成方法を用いることを特徴とするカラーフィルター形 成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像形成材料、カ ラーフィルター形成材料、画像形成方法並びにカラーフ ィルター形成方法に関する。本発明は、特にレーザー光 を用いた高解像度のカラー画像及びカラーフィルター形 成に関する。更に、本発明はデジタル画像信号からレー ザー記録により、印刷分野におけるカラーブルーフ(D DCP:ダイレクト・ディジタル・カラープルーフ)、 あるいはマスク画像を作製するのに有用な多色画像形成 及びカラーフィルター形成に関する。

[0002]

【従来の技術】グラフィックアート分野では、カラー原 稿からリスフィルムを用いて作製された一組の色分解フ ィルムを使用して印刷版の焼付けが行われるが、一般 に、本印刷 (実際の印刷作業) の前に色分解工程での誤 りや色補正の必要性等をチェックするために、色分解フ ィルムからカラープルーフを作製している。カラープル 50

ーフには、中間調画像の高再現性を可能とする高解像力 の実現や、高い工程安定性等の性能が望まれている。ま た、実際の印刷物に近似したカラーブルーフを得るため に、カラーブルーフに使用される材料としては、実際の 印刷物に使用される材料、例えば基材としては印刷本紙 を、色材としては顔料を用いることが好ましい。また、 カラープルーフの作製方法としては、現像液を用いない 乾式の方法の要望が高い。

2

【0003】乾式のカラープルーフ作製法として、最近 の印刷前工程(プリプレス分野)における電子化システ ムの普及に伴い、デジタル信号から直接カラープルーフ を作製する記録システムが開発されている。このような 電子化システムは、特に高画質のカラープルーフを作製 するのが目的であり、一般的には、150線/インチ以 上の網点画像を再現する。デジタル信号から高画質のプ ルーフを記録するためには、デジタル信号により変調可 能で、かつ記録光を細く絞り込むことが可能なレーザー 光を記録ヘッドとして用いる。このため、レーザー光に 対して高い記録感度を示し、かつ、高精細な網点を再現 可能にする高解像力を示す記録材料の開発が必要とな

【0004】レーザー光を利用した転写画像形成方法に 用いられる記録材料としては、支持体上に、レーザー光 を吸収して熱を発生する光熱変換層、及び顔料が熱溶融 性のワックス、バインダー等の成分中に分散された画像 形成層をこの順に有する熱溶融転写シート (特開平5-58045号公報)が知られている。これらの記録材料 を用いる画像形成方法では、光熱変換層のレーザー光照 射領域で発生した熱によりその領域に対応する画像形成 層が溶融し、転写シート上に積層配置された受像シート 上に転写され、受像シート上に転写画像が形成される。

【0005】また、特開平6-219052号公報に は、支持体上に、光熱変換物質を含む光熱変換層、非常 に薄層 (0.03~0.3μm) の熱剥離層、色材を含 む画像形成層がこの順に設けられた熱転写シートが開示 されている。この熱転写シートでは、レーザー光を照射 されることによって、前記熱剥離層の介在により結合さ れている画像形成層と光熱変換層との間の結合力が、低 滅され、熱転写シート上に積層配置した受像シート上 に、高精細な画像が形成される。前記熱転写シートを用 いた画像形成方法は、所謂「アブレーション」を利用し ており、具体的には、レーザー光の照射を受けた領域 で、熱剥離層が一部分解し、気化するため、その領域で の画像形成層と光熱変換層との間の接合力が弱まり、そ の領域の画像形成層が上に積層した受像シートに転写さ れる現象を利用している。

【0006】これらの画像形成方法は、受像シート材料 として受像層(接着層)を付設した印刷本紙を用いるこ とができること、色の異なる画像を次々と受像シート上 に転写することによって多色画像が容易に得られること

等の利点を有し、特にアプレーションを利用する画像形 成方法は、高精細な画像が容易に得られるという利点を 有し、カラーブルーフ(DDCP:ダイレクト・ディジ タル・カラープルーフ)、あるいは高精細なマスク画像 を作製するのに有用である。ところで、感光性転写材料 を用いて液晶表示体等に使用するカラーフイルターを作 成することが行われている。カラーフイルターの作成原 理は、感光性転写材料の多色画像形成に基づくものであ る。この感光性転写材料を用いた画像形成方法について 説明する。感光性樹脂層を加圧、加温下で基体上に貼り 合わせ、その後仮支持体を剥がし、所定のマスク等 (場 合により、熱可塑性樹脂層、中間層)を介して露光し、 次いで現像する。現像は公知の方法で溶剤もしくは水性 の現像液、特にアルカリ水溶液に浸漬するか、スプレー からの現像液の噴霧を与えること、さらにブラシでのこ すりまたは超音波を照射しつつ処理することで行なわれ る。異なる色に着色した感光性樹脂層を有する感光性転 写材料を用い、この工程を複数回繰り返せば多色画像を 形成することができる。また、近年〇A化の進展に伴 い、電子写真方式、インクジェット方式、上記感熱転写 20 記録方式等の各種記録方式を利用した複写機やプリンタ 等がそれぞれの用途に応じて用いられている。これらの うち、感熱転写記録方式は操作や保守が容易であるこ と、装置の小型化、低コスト化が可能であること等の利 点を有していることから、カラーフィルター形成材料へ の応用がなされてきつつある。感光性転写材料を用いて カラーフィルターを作製する方法は、溶剤を使用する現 像方式を用いるため作業が煩雑で、かつ廃棄物が発生 し、経費が高い等の問題がある。また、レーザー熱転写 等の感熱転写記録方式を用いる方法は、従来知られてい 30 る受像支持体では耐熱性が不十分で、加熱時や経時保存 においてに寸法変化などが生じ、転写画像の形状が悪化 する等、感度や位置精度が低下するという問題があっ

【0007】また、レーザー光で画像記録をする際に、記録時間を短縮するために、複数のレーザービームを用いた、マルチビームからなるレーザー光が近年使用されている。従来の熱転写シートを用いてマルチビームであるレーザー光で記録すると、上記問題は更に顕著となった。

[0008]

【発明が解決しようとする課題】本発明は、耐熱性が十分で、加熱時の寸法安定性に優れ、転写画像の形状が良化し、感度や位置精度が向上した受像シートを含む画像形成材料及びカラーフィルター形成材料並びにそれを用いた画像形成方法及びカラーフィルター形成方法を提供することを目的とする。

[0009]

【課題を解決するための手段】即ち、前記課題を解決するための手段は、以下の通りである。

- (1) 支持体上に少なくとも光熱変換層、画像形成層を 有する熱転写シートと受像シートとからなる画像形成材 料において、該支持体及び受像シートのうち少なくとも 受像シートは非晶性環状ポリオレフィン層を含むことを 特徴とする画像形成材料。
- (2) 前記非晶性環状ポリオレフィンの熱変形温度が1 00℃以上である上記(1)記載の画像形成材料。
- (3)前記支持体と光熱変換層の間にクッション機能を 有する層を有する上記(1)または(2)に記載の画像 形成材料。
- (4)前記受像シートは支持体上に少なくとも受像層を 有してなり、該支持体が非晶性環状ポリオレフィン層で ある上記(1)~(3)のいずれかに記載の画像形成材 料
- (5)前記支持体は放電処理が施されている上記(1) ~(4)のいずれかに記載の画像形成材料。
- (6)上記(1)~(5)のいずれかに記載の画像形成 材料を用いることを特徴とするカラーフィルター形成材料。
- (7)上記(1)~(6)のいずれかに記載の熱転写シートを同記載の受像シートと重ねあわせ熱転写シート側からレーザー光を像様に照射して受像シートに画像を形成させることを特徴とする画像形成方法。
 - (8) 前記レーザー光は半導体レーザーである上記
 - (7)記載の画像形成方法。
- (9) 前記光熱変換層の吸収波長が700~1500nmである 上記(7)または(8)記載の画像形成方法。
- (10)上記(7)~(9)のいずれかに記載の画像形成方法を用いることを特徴とするカラーフィルター形成方法。

[0010]

【発明の実施の形態】本発明の画像形成材料及びカラー フィルター形成材料は、支持体上に少なくとも光熱変換 層、画像形成層を有する熱転写シートと受像シートとか らなり、熱転写シートの支持体及び受像シートのうち少 なくとも受像シートは非晶性環状ポリオレフィン層を含 むことを特徴とする。本発明においては、熱転写シート の支持体も非晶性環状ポリオレフィン層を含んでもよ く、非晶性環状ポリオレフィン層からのみ構成されても よい。受像シートは、非晶性環状ポリオレフィン層のみ から構成されてもよいが、好ましくは非晶性環状ポリオ レフィン層を支持体とし、その上に少なくとも受像層を 設けた構成が挙げられる。非晶性環状ポリオレフィン層 は、カラーフィルターの受像シートとして用いる場合 は、非晶性環状ポリオレフィンのみから構成されている ことが、好ましいが、公知の添加剤、例えば、マット 剤、強化繊維、他のポリマー等が添加されたものでもよ 6.1

【0011】本発明において、非晶性環状ポリオレフィンとは、環状オレフィンの単独重合体またはこのモノマ

ーと他の共重合性モノマーとの共重合体である非晶性ポリマーを意味する。ここで、環状オレフィンとは、炭素ー炭素二重結合を脂環式環、好ましくは5~12員の脂環式環中に少なくとも1個有するモノマーを意味する。上記環状オレフィンとしては、ノルボルネン、ジシクロペンタンジエン、テトラシクロドデセン等またはそれらの誘導体が好ましい。上記共重合性モノマーとしては、エチレン、プロピレン等が挙げられる。共重合性モノマーは、非晶性環状ポリオレフィン中、通常、50質量部以下が好ましい。本発明に用いられる非晶性環状ポリオレフィンの数平均分子量は、目的に応じて適宜選定される。非晶性環状ポリオレフィンは、公知の触媒を用いて上記モノマーを開環重合、水素添加、付加重合、付加共重合などにより製造される。非晶性環状ポリオレフィンのモノマー単位としては、下記一般式(1)または

(2) で表されるものが好ましい。

[0012]

【化1】

$$\begin{bmatrix}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

[0 0 1 3]
[1½ 2]

[1½ 2]

[2)

【0014】式(1)および式(2)中、R¹及びR²は 同一でも異なってもよく各々、水素原子又はベンゼン環 に置換可能な置換基を表し、その置換基としては、ハロ ゲン原子、アルキル基、アリール基、ヘテロ環基、シア ノ基、ヒドロキシ基、ニトロ基、アミノ基(置換アミノ 基を含む)、アルコキシ基、アリールオキシ基、アシル アミノ基、アミノカルポニルアミノ基、スルファモイル アミノ基、アルキルチオ基、アリールチオ基、アルコキ 40 シカルポニルアミノ基、スルホニルアミノ基、カルバモ イル基、スルファモイル基、スルホニル基、アルコキシ カルボニル基、ヘテロ環オキシ基、アゾ基、アシルオキ シ基、カルバモイルオキシ基、シリルオキシ基、アリー ルオキシカルボニル基、イミド基、ヘテロ環チオ基、ス ルフィニル基、ホスホリル基、アシル基、カルボン酸基 (その塩も含む)、スルホン酸基(その塩も含む)、等 を表す。上記モノマー単位(1)を含む非晶性環状ポリ オレフィンとしては、日本ゼオン社製ZEONEX等が 挙げられる。

【0015】本発明においては、非晶性環状ポリオレフィンは、その熱変形温度が100℃以上が好ましく、更に150~250℃が好ましい。

【0016】このような物性を有する非晶性環状ポリオレフィンは、例えば、「エレクトロニクス用樹脂、東レリサーチセンター発行(1999.9.1発行)、P143~152」、「高分子、45巻、9月号(1996年発行)、P652~656(日本ゼオン(株)松尾正人報告)」に記載のものから適宜選定することができる。

【0017】ところで、CTP(Computer To Plate)時代ではフイルムレスとなり校正刷りやカラーアートから代わるコントラクトブルーフが必要となる。本出願人は、顧客の承認を得るためには印刷物やカラーアートと一致した色再現性が要求され、印刷インクと同じ顔料系色材を使用し、本紙への転写性が可能であり、モワレ等のないDDCPシステムを開発した。この目標としては本紙転写が可能、印刷インクと同じ顔料系色材を使用し、印刷物近似性の高い大サイズ(A2/B2)デジタルダイレクトカラーブルーフシステムである。本発明はレーザー薄膜熱転写方式を用い、顔料色材を使用し、実網点記録を行って本紙転写できる方式に好適である。また、このDDCPシステムは、カラーフィルター形成に好適に応用される。

【0018】本発明は、シャープな網点による熱転写画像を実現し、かつ本紙転写及びECサイス・記録(515mm×728mm、ただし、ECサイス・は543mm×765mm)が可能であるシステムに有効かつ好適である。この熱転写画像は2400~2540dpiの解像度で印刷線数に応じた網点画像とすることができる。1つ1つの網点はにじみ・欠けがほとんどなく形状が非常にシャープであるため、ハイライトからシャドーまでの高範囲の網点をクリアーに形成することができる。その結果、イメージセッターやCIPセッターと同じ解像度で高品位な網点出力が可能であり、印刷物近似性の良い網点と階調を再現することができると共に該網点をカラーフィルターの画素、例えば、レッド(R)、グリーン(G)、ブルー

(B)、ブラック(K)(マトリックス)の構成要素に対応させることによりカラーフィルターの形成が可能である。

【0019】また、この熱転写画像は、網点形状がシャープであるためレーザービームに対応した網点、ひいては画素を忠実に再現でき、また記録特性の環境温湿度依存性が非常に小さいため、幅広い温湿度環境下で色相・濃度とも安定した繰り返し再現性を得ることができる。この熱転写画像は、印刷インクに使用されている着色顔料を用いて形成されており、また繰り返し再現性が良好なため高精度のCMS(カラーマネージメントシステム)を実現できる。また、この熱転写画像は、Japanカラー、SWDカラーなどの色相、即ち、印刷物の色相とほぼ一致

6

させることができ、蛍光灯や白熱灯など光源が変わった ときの色の見え方についても印刷物と同様の変化を示す ことができる。

【0020】また、この熱転写画像は、ドット形状がシ ャープなので、微細文字乃至ブラックマトリックス及び 画素がきれよく再現できる。レーザー光により発生した 熱が、面方向に拡散ぜずに転写界面まで伝えられ、加熱 部/非加熱部の界面で画像形成層がシャープに破断す る。このために、熱転写シートにおける光熱変換層の薄 膜化と画像形成層の力学特性を制御する。ところで、シ ミュレーションでは、光熱変換層は瞬間的に約700℃に 達すると推定され、膜が薄いと変形や破壊がおこりやす い。変形・破壊が起こると光熱変換層が転写層とともに 受像シートに転写したり、転写像が不均一になるという 実害を生じる。一方、所定の温度を得るには膜中に光熱 変換物質を高濃度に存在させねばならず、色素の析出や 隣接層への移行といった問題も発生する。このため、光 熱変換特性の優れた赤外吸収色素及びポリイミド系など の耐熱性バインダーを選定することにより、光熱変換層 を約0.5μm以下に薄膜化することが好ましい。

【0021】また、一般的には、光熱変換層の変形が起こったり、または画像形成層そのものが高熱により変形すると、受像層に転写した画像形成層はレーザー光の副走査パターンに対応した厚みムラを生じ、そのため画像が不均一になり見かけの転写濃度が低下する。この傾像的成層の厚みが薄いほど顕著である。一方、の画像形成層の厚みが厚いとドットのシャープさが損なわれかつ感度も低下する。この相反する性能を両立させるために、ワックス等の低融点物質を画像形成層に添加することより転写ムラを改良することが好ましい。また、バ厚を適正に上げることで、加熱部/非加熱部の界面で画像形成層がシャープに破断するようにし、ドットのシャープさ・感度を保ちつつ転写ムラを改良することができる。

【0022】また、一般にワックス等の低融点物質は、画像形成層表面に滲み出たり、結晶化する傾向があり、画質や熱転写シートの経時安定性に問題を生じる場合がある。この問題に対処するためには、画像形成層のポリマーとのSp値差が小さい低融点物質を使用することが好ましく、ポリマーとの相溶性を上げ、低融点物質の画像形成層からの分離を防止することができる。また、構造の異なる数種類の低融点物質を混合することで共融化させ結晶化を防止することも好ましい。その結果、ドット形状がシャープでかつむらの少ない画像が得られる。また、一般に、熱転写シートの塗布層が吸湿することで層の力学物性と熱物性が変化し、記録環境の湿度依存性が生じる。この温湿度依存性を少なくするためは、光熱変換層の色素/パインダー系、および画像形成層のパインダー系を有機溶剤系にすることが好ましい。また、受像50

層のバインダーとしてポリビニルブチラ―ルを選択すると共にその吸水性を小さくするためにポリマー疎水化技術を導入することが好ましい。ポリマー疎水化技術としては、特開平8-238858号公報に記載のようにヒドロキシル基を疎水基と反応させたり、2つ以上のヒドロキシル基を硬膜剤で架橋するなどが挙げられる。

【0023】また、通常、レーザー露光による印画時に 画像形成層にも約500℃以上の熱がかかり、従来使用し ていた顔料では熱分解してしまうものがあったが、耐熱 性の高い顔料を画像形成層に採用することによりこれを 防止することができる。そして、印画時の高熱により、 赤外吸収色素が光熱変換層から画像形成層に移行する と、色相が変化してしまうのを防止するために、前述し たように保持力の強い赤外吸収色素/バインダーの組み 合わせで光熱変換層を設計することが好ましい。一般 に、高速印画ではエネルギー不足となり特にレーザー副 走査の間隔に対応する隙間が発生する。前述したように 光熱変換層の色素高濃度化および光熱変換層・画像形成 層の薄膜化は、熱の発生/伝達の効率を上げることがで きる。さらに、加熱時に画像形成層がわずかに流動し隙 間を埋める効果と受像層との接着性をあげる目的で、画 像形成層へ低融点物質を添加することが好ましい。ま た、受像層と画像形成層との接着性を上げ、転写した画 像の強度を十分持たせるために、受像層のバインダーと して例えば、画像形成層と同じポリビニルブチラールを 採用することが好ましい。

【0024】受像シートと熱転写シートは、真空密着によりドラム上に保持されることが好ましい。この真空密着は両シートの接着力制御により画像を形成しているため受像シートの受像層面と転写シートの画像形成層面のクリアランスに画像転写挙動が非常に敏感なので重要である。ゴミ等異物のきっかけで材料間のクリアランスが広がってしまうと画像欠陥や画像転写ムラが生じてしまう。このような画像欠陥や画像転写ムラを防止するには、熱転写シートに均一な凹凸をつけることで、エアーのとおりをよくし均一なクリアランスを得ることが好ましい。

【0025】熱転写シートに凹凸をつける方法としては、一般にエンボス処理等の後処理、塗布層へのマット削添加があるが、製造工程簡略化、材料の経時安定化のためにマット削添加が好ましい。マット削は塗布層厚みより大きいものが必要であり、マット剤を画像形成層に添加するとマット剤の存在する部分の画像が欠落するという問題が発生するので、最適な粒径のマット剤を光熱変換層に添加することが好ましく、これにより画像形成層そのものはほぼ均一な厚みとなり、欠陥のない画像を受像シート上に得ることができる。

【0026】これまで述べたようなシャープなドットを 確実に再現するため、記録装置側も高精度な設計が要求 される。従来のレーザー熱転写用記録装置と基本的構成 は同様である。この構成はハイパワーの複数のレーザーを備えた記録ヘッドが、ドラム上に固定された熱転写シートと受像シートにレーザーを照射して記録する、いわゆるヒートモードのアウタードラム記録システムである。その中で、以下の態様が好ましい構成である。受像シート及び熱転写シートの記録ドラムへの直をは真空吸着とする。記録ドラム上には多数の真空吸着れを形成し、ドラム内部をブロアや減圧ポンプなどにより減圧にすることによりシートがドラムに吸着される。受像シートが吸着されている上から熱転写シートが改シートの関のエアーは、受像シートの外の熱転写シートだけのエリアから吸引される。

【0027】本装置では、B2サイズという大面積のシートを何枚も排出台上に重ねて集積できるものとする。そのためにエアーを両シートの間に噴出して後から排出されるシートを浮き上がらせる方法を採用するものとする。本装置の構成例を図2に示す。以上のような本装置でのシーケンスを説明する。

- 1) 記録装置1の記録ヘッド2の副走査軸が副走査レール3により、また記録ドラム4の主走査回転軸並びに熱転写シートローディングユニット5が原点に復帰する。
- 2) 受像シートロール6が搬送ローラ7によってほどかれて記録ドラム4上に受像シート先端が記録ドラムに設けられた吸引孔を介して真空吸引されて固定される。
- 3) 記録ドラム4上にスクイーズローラー8が降りてきて、受像シートを抑えつけながら、ドラムの回転により受像シートがさらに規定量搬送されたところで停止しカッター9によって規定長に切断される。
- 4) 更に記録ドラム 4 が 1 周して受像シートのローディングが終了する。
- 5) 次に受像シートと同様のシーケンスで、1色目―黒 ―の熱転写シートKが熱転写シートロール10Kから繰 り出され、切断されてローディングされる。
- 6)次に記録ドラム4が高速回転を始め、副走査レール3上の記録ヘッド2が動き始め、記録開始位置に到達したところで記録画像信号に従って記録ヘッド2により記録レーザーが記録ドラム4上に照射される。記録終了位置で照射を終了し、副走査レール動作、ドラム回転が停止する。副走査レール上の記録ヘッドを原点に戻す。
- 7) 記録ドラム上に受像シートを残したまま、熱転写シート K だけを剥がしとる。そのため、熱転写シート K の 先端を爪でひっかけて排出方向に引っ張り出して、廃棄 口32から廃棄箱35へ廃棄する。
- 8) 5) ~ 7) を残りの3色分繰り返す。記録順序は黒の次は、シアン、マゼンタ、イエローの順序である。即ち、2色目―シアン―の熱転写シートCが熱転写シートロール10Cから、3色目―マゼンタ―の熱転写シート 50

Mが熱転写シートロール10Mから、4色目―イエロー ―の熱転写シートYが熱転写シートロール10Yから順 次繰り出される。一般の印刷順序とは逆であるが、これは後の工程の本紙転写によって本紙上の色順序が逆になるからである。

9) 4 色が完了すると、最後に記録済みの受像シートを 排出台31まで排出する。ドラムから剥がしとる方法は 7) の熱転写シートと同じであるが、熱転写シートと違い廃棄しないので、廃棄口32まで進んだところでスイッチバックによって排出台に戻す。排出台に排出される際には、排出口33の下からエアー34を噴出して複数 枚の集積を可能にしている。

【0028】上記熱転写シートロール及び受像シートロールの供給部位又は搬送部位の何れかの搬送ローラ7に、表面に粘着材料が配設された粘着ロールを用いることが好ましい。

【0029】粘着ロールを設けることにより、熱転写シート及び受像シートの表面をクリーニングすることができる。

【0030】粘着ロールの表面に配設される粘着材料としては、エチレン一酢酸ビニル共重合体、エチレンーエチルアクリレート共重合体、ポリオレフィン樹脂、ポリブタジエン樹脂、スチレンープタジエン共重合体(SBR)、スチレンーエチレンーブテンースチレン共重合体(SEBS)、アクリロニトリループタジエン共重合体(NBR)、ポリイソプレン樹脂(IR)、スチレンーイソプレン共重合体(SIS)、アクリル酸エステル共重合体、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ブチルゴム、ポリノルボルネン等が挙げられる。

【0031】粘着ロールは熱転写シート及び受像シートの表面と接触することにより、その表面をクリーニングすることができ、接触圧は接触していれば格別限定されない。

【0032】熱転写シートの画像形成層表面の表面粗さ Rとその裏面層表面の表面粗さRとの差の絶対値が3.0以 下であり、受像シートの受像層表面の表面粗さRとその 裏面層表面の表面粗さRとの差の絶対値が3.0以下である ことが好ましい。このような構成により、上記のクリーニング手段と相俟って画像欠陥を防止でき、搬送ジャム をなくし、更にドットゲイン安定性を向上させることが できる。

【0033】本明細費で、表面粗さ応というのは、JISの応(最大高さ)に相当する十点平均面粗さのことをいい、粗さの曲面から基準面積分だけ抜き取った部分の平均面を基準面として、最高から5番目までの山の標高の平均値と最深から5番目までの谷底の深さの平均値との距離を入力換算したものである。測定には東京精密

(株) 製の触針式の3次元粗さ計 (サーフコム570A-3DF) を用いる。測定方向は縦方向とし、カットオフ値は0.08mm

測定面積は0.6mmx0.4mm、送りピッチは0.005mm、測定スピードは0.12mm/sである。

【0034】上記の熱転写シートの画像形成層表面の表面粗さ配とその裏面層表面の表面粗さ配の差の絶対値は1.0以下であり、また受像シートの受像層表面の表面粗さ配とその裏面層表面の表面粗さ配の差の絶対値が1.0以下であることが上記の効果をさらに向上させる観点から好ましい。

【0035】更に、別の態様としては、熱転写シートの画像形成層表面とその裏面層表面の表面粗さ及び又は受像シートの表裏面の表面粗さ及が2~30μmであることが好ましい。このような構成によって、上記のクリーニング手段と相俟って画像欠陥を防止でき、搬送ジャムをなくし、更にドットゲイン安定性を向上させる。

【0036】また熱転写シートの画像形成層の光沢度は 80~99であることも好ましい。

【0037】光沢度は、画像形成層表面の平滑性に大きく依存し、画像形成層膜厚の均一性を左右し得る。光沢度が高い方が画像形成層として均一で高精細画像への用途により適しているが、平滑性が高いと搬送時の抵抗は20より大きくなり、両者がトレード・オフの関係である。光沢度が80~99の範囲であると、両者の両立が可能でバランスが取れる。

【0038】粘着ロールに使用する粘着性を有する素材のビッカース硬さHvは50kg/mm²(≒490MPa)以下であることが、異物であるゴミを十分に取り除き、画像欠陥を抑制可能であることから好ましい。

【0039】ビッカース硬さというのは、対面角が136度の正四角錐形のダイヤモンド圧子に静荷重をかけて硬さを測定した硬さであり、ビッカース硬さHvは以下の30式で求められる。

【0040】硬さHv≈1.854P/d² (kg/mm²) ⇒1 8.1692MPa

ここでP: 荷重の大きさ(Kg)、d: くぼみの正方形の対 角線長さ (nm)

【0041】また本発明においては、上記の粘着ロールに使用する粘着性を有する素材の20℃における弾性率が200kg/cm²(≒19.6M²a)以下であることが、上記と同様に異物であるゴミを十分に取り除き、画像欠陥を抑制可能であることから好ましい。次に、レーザーを用いた薄膜熱転写による多色画像形成の機構の概略を図1を用いて説明する。熱転写シート10のブラック(K)、シアン(C)、マゼンタ(M)またはイエロー(Y)の顔料を含む画像形成層16の表面に、受像シート20を積層した画像形成用積層体30を用意する。熱転写シート10は、支持体12と、その上に、光熱変換層14、及び更にその上に、画像形成層16を有し、受像シート20は、支持体22と、その上に、受像層24を有し、熱転写シート10の画像形成層16の表面には、受像層24が接触するように積層される(図1(a)。その積層 50

体30の熱転写シート10の支持体12側から、レーザー光を画像様に時系列的に照射すると、熱転写シート10の光熱変換層14のレーザー光被照射領域が発熱し、画像形成層16との密着力が低下する(図1(b))。その後、受像シート20と熱転写シート10とを剥離すると、画像形成層16のレーザー光被照射領域16,が、受像シート20の受像層24上に転写される(図1(c))。上記受像層上にカラーフィルターの画素を形成する場合は、熱転写シート10としてシアン(C)、マゼンタ(M)またはイエロー(Y)の代わりに例えば、レッド、グリーン、ブルーの顔料を含む画像形成層を有するものを用い、ブラック(K)の熱転写シートはブラックマトリックス用に用いる。

【0042】多色画像形成においては、光照射に用いられるレーザー光は、マルチビーム光であることが好ましく、特にマルチビーム2次元配列であることが好ましい。マルチビーム2次元配列とは、レーザー照射によって記録する際に、複数個のレーザービームを使用し、これらのレーザービームのスポット配列が、主走査方向に沿って複数列、副走査方向に沿って複数行からなる2次元平面配列をしていることをいう。マルチビーム2次元配列であるレーザー光を使用することにより、レーザー記録に要する時間を短縮することができる。

【0043】使用されるレーザー光は、マルチビームであれば特に制限なく使用することができ、アルゴンイオンレーザ光、ヘリウムカドミウムレーザ光等のガスレーザ光、YAGレーザー光等の固体レーザー光、半導体レーザー光、色素レーザー光、エキシマレーザ光等の直接的なレーザー光が利用される。あるいは、これらのレーザー光を二次高調波素子を通して、半分の波長に変換した光等も用いることができる。多色画像形成方法においては、出力パワーや変調のし易さ等を考慮すると、半導体レーザー光を用いることが好ましい。多色画像形成方法では、レーザー光は、光熱変換層上でのビーム径が5~50μm(特に6~30μm)の範囲となるような条件で照射することが好ましく、また走査速度は1m/秒以上(特に3m/秒以上)とすることが好ましい。

【0044】また、多色画像形成は、ブラックの熱転写シートにおける画像形成層の層厚が、各色の熱転写シートにおける画像形成層の層厚より大きく、かつ、0.5~ 0.7μ mであることが好ましい。このようにすることにより、ブラックの熱転写シートをレーザー照射した際に、転写ムラによる濃度の低下を抑えることができる。前記ブラックの熱転写シートにおける画像形成層の層厚が 0.5μ m未満であると、高エネルギーで記録した際に、転写ムラにより画像濃度が大きく低下し、印刷のブルーフとして必要な画像濃度を達成することが困難な場合がある。この傾向は、高湿条件下でより顕著となるため、環境による濃度変化が大きくなってしまう場合

がある。一方、前記層厚が 0.7μ mを超えると、レーザー記録時に転写感度が低下し、小点の付きが悪化したり、細線が細くなってしまう場合がある。この傾向は、低湿条件下でより顕著である。また、解像力が悪化することがある。前記ブラックの熱転写シートにおける画像形成層の層厚は、より好ましくは $0.55\sim0.65\mu$ mであり、特に好ましくは 0.60μ mである。

【0045】更に、前記ブラックの熱転写シートにおける画像形成層の層厚が、 $0.5\sim0.7\mu$ mであり、前記イエロー、マゼンタ、及びシアンまたはレッド、グリーン、ブルーの各熱転写シートにおける画像形成層の層厚が、 0.2μ m以上 0.5μ m未満であることが好ましい。前記各色の熱転写シートにおける画像形成層の層厚が 0.2μ m未満であると、レーザー記録時に転写ムラによる濃度低下が生じることがあり、一方、 0.5μ m以上では、転写感度の低下又は解像力の悪化を生じることがある。より好ましくは、 $0.3\sim0.45\mu$ mである。

【0046】前記ブラックの熱転写シートにおける画像 形成層は、カーボンブラックを含有することが好ましく、該カーボンブラックは、着色力の異なる少なくとも 2種類のカーボンブラックからなることが、P/B (グメント/バインダー) 比を一定の範囲にしつつ、反射 濃度を調節することができるため好ましい。カーボンブラックの着色力は、種々の方法によって表されるが、例えば、特開平10-140033号公報に記載のPVC 黒度等が挙げられる。PVC黒度とは、カーボンブラックにより分散、シート化し、三菱化学(株)カーボンブラック「#40」、「#45」の黒度を各々1点、10点と基準値を定め、は料の黒度を視感判定により評価したものである。PVC黒度の異なる2種以上のカーボンブラックを、目的に

14

【0047】以下に、具体的なサンブル作製方法を述べる。

応じて適宜選択して使用することができる。

<サンプル作製方法>

250ccバンバリーミキサーにてLDPE (低密度ポリエチレン) 樹脂に試料カーポンプラックを40質量%配合し、115℃、4分混練りする。

配合条件 LDPE樹脂

ステアリン酸カルシウム イルガノックス 1 0 1 0

試料カーボンブラック

101.89g

1.39g

0.87g 69.43g

次に、120℃で、2本ロールミルにてカーボンブラック濃度が1質量%になるように希釈する。

【0048】希釈コンパウンド作製条件

LDPE樹脂

58.3g

ステアリン酸カルシウム

0.2g

カーボンブラック 4 0 質量%配合樹脂 1.5 g スリット幅 0.3 mmでシート化し、このシートをチップに切断、2 4 0 ℃のホットプレート上で 6 5 ± 3 μ m のフィルムに成形する。

【0049】多色画像を形成する方法としては、前述し たように前記熱転写シートを用いて、同一の受像シート 上に多数の画像層(画像が形成された画像形成層)を繰 返し重ね合せて多色画像を形成してもよく、複数の受像 シートの受像層上に一旦画像を形成した後、印刷本紙等 へ再転写することにより、多色画像を形成してもよい。 後者については、例えば、相互に異なる色相を有する色 剤を含む画像形成層を有する熱転写シートを用意し、こ れと、受像シートとを組み合わせた画像形成用積層体を 独立に四種(四色、シアン、マゼンタ、イエロー、ブラ ック)製造する。各々の積層体に、例えば、色分解フィ ルタを介して、画像に基づくデジタル信号に従うレーザ 一光照射を行い、それに続いて、熱転写シートと受像シ ートとを剥離し、各受像シートに各色の色分解画像を独 立に形成する。次に、形成された各々の色分解画像を、 別に用意した印刷本紙等の実際の支持体、もしくはそれ 50

に近似した支持体上に順次積層させることにより、多色の画像を形成することができる。上記多色画像としてカラーフィルターを形成する場合にはブラック、レッド、グリーン、ブルーの熱転写シートを用いて上記と同様に30 受像シート上にブラックマトリックス及び画素を形成することができる。また、形成したカラーフィルター上に更に透明保護層を施しても良い。また、ブラック、レッド、グリーン、ブルーの転写順序は任意である。

【0050】レーザー光照射を用いる熱転写記録は、レーザービームを熱に変換しその熱エネルギーを利用して顔料を含む画像形成層を受像シートに転写し、受像シート上に画像を形成し得るものであれば、転写時の顔料、色素乃至画像形成層の状態変化は、特に問わず、固体状態、軟化状態、液体状態、気体状態のいずれの状態をも包含するが、好ましくは固体乃至軟化状態である。レーザー光照射を用いる熱転写記録は、例えば、従来から知られる溶融型転写、アブレーションによる転写、昇華型転写等も包含される。中でも前述の薄膜転写型、溶融・アブレーション型は印刷に類似した色相の画像を作成するという点で好ましい。

【0051】また、記録装置で画像を印刷された受像シートを、印刷用紙 (「本紙」と呼ぶ) に転写する工程を行うためには、通常、熱ラミネーターを使用する。受像シートと本紙を重ねて熱と圧力をかけると両者が接着し、その後本紙から受像シートを引き剥がすと、画像を

含んだ受像層だけが本紙上に残る。以上の装置を、製版 システム上に接続することによって、カラープルーフと しての機能を発揮できるシステムが構築されることにな る。システムとしては、ある製版データから出力される 印刷物と限りなく近い画質のプリント物が、上記記録装 置から出力される必要がある。そこで、色や網点を印刷 物と近づけるためのソフトウェアが必要である。具体的 接続例を以下に挙げる。製版システム(例えば、富士写 真フィルム社製Celebra) からの印刷物のプルーフをと る場合、システム接続としては以下のようになる。製版 システムにCIP (Computer To Plate) システムを接続す る。これで出力した印刷版を印刷機にかけることによっ て最終印刷物が得られる。製版システムにカラープルー フとして上記記録装置を接続するが、その間に色や網点 を印刷物に近づけるためのプルーフドライブソフトウェ アとしてPDシステム(登録商標)を接続する。製版シス テムでラスターデータに変換されたコントーン (連続 調)データは、網点用の2値データに変換されてCTPシ ステムに出力され、最終的に印刷される。一方、同じコ ントーンデータはPDシステムにも出力される。PDシステ ムは受け取ったデータを4次元 (黒、シアン、マゼン タ、イエロー)のテーブルによって前記印刷物に色が一 致するように変換する。そして最後に前記印刷物の網点 と一致するように網点用の2値データに変換し、記録装 置に出力する。前記4次元テーブルは予め実験的に作成 しておき、システム内に保存しておく。作成のための実 験とは次のようなものである。重要色データを、CIPシ ステム経由で印刷した画像と、PDシステム経由で記録装 置で出力した画像を用意し、その測色値を比較してその 差が最小になるようにテーブルを作成する。カラーフィ ルターを上記システムを適用して形成する場合には、印 刷物をカラーフィルターの画素画像乃至ブラックマトリ ·ックス像に置き換えると共にPDシステムにおいて、シア ン、マゼンタ、イエローをレッド、グリーン、ブルーに 置き換えることにより、上記システムが適用できる。カ ラーフィルターの画素及びブラックマトリックスとして は、例えば、図3に示すような画素及びブラックマトリ ックスの配置が挙げられるが、これに限定されることは なく任意である。尚、レッドフィルターの画素(R)、 グリーンフィルターの画素 (G)、ブルーフィルターの 40 画素 (B) のサイズは、例えば、図中、 a が 1 0 0 ~ 3 00μm、bが300μm程度、cのブラックマトリッ クスの線幅が10~20 μ m程度が挙げられるが、適宜 変更可能である。

【0052】以下に、上記システムの記録装置に好適に 用いられる熱転写シート及び受像シートについて説明する。

[熱転写シート] 熱転写シートは、支持体上に、少なくとも光熱変換層及び画像形成層を有し、更に必要に応じて、その他の層を有してなる。

【0053】 (支持体) 熱転写シートの支持体の材料に は特に限定はなく、各種の支持体材料を目的に応じて用 いることができる。支持体は剛性を有し、寸法安定性が 良く、画像形成の際の熱に耐えるものが好ましい。支持 体材料の好ましい例としては、ポリエチレンテレフタレ ート、ポリエチレンー2, 6ーナフタレート、ポリカー ボネート、ポリメチルメタクリレート、ポリエチレン、 ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデ ン、ポリスチレン、スチレンーアクリロニトリル共重合 体、ポリアミド (芳香族または脂肪族)、ポリイミド、 ポリアミドイミド、ポリスルホン、非晶性環状ポリオレ フィン等の合成樹脂材料を挙げることができる。中で も、二軸延伸ポリエチレンテレフタレートや非晶性環状 ポリオレフィンが、機械的強度や熱に対する寸法安定性 を考慮すると好ましい。尚、レーザー記録を利用したカ ラープルーフの作製に用いる場合には、熱転写シートの 支持体はレーザー光を透過させる透明な合成樹脂材料か ら形成するのが好ましい。支持体の厚みは25~130 μmであることが好ましく、50~120μmであるこ とが特に好ましい。画像形成層側の支持体の中心線平均 表面粗さRa(表面粗さ測定機(Surfcom、東京 精機(株)製)等を用いてJIS B0601に基づき 測定) は 0. 1 μ m 未満であることが好ましい。支持体 の長手方向のヤング率は200~1200Kg/mm² (⇒2~12GPa) が好ましく、幅方向のヤング率は $250 \sim 1600 \,\mathrm{Kg/mm^2}$ ($\rightleftharpoons 2.5 \sim 16 \,\mathrm{GP}$ a) であることが好ましい。支持体の長手方向のF-5 値は、好ましくは5~50 Kg/mm² (≒49~49 0MPa)、支持体幅方向のF-5値は、好ましくは3 $\sim 30 \, \text{Kg/mm}^2 \ (\rightleftharpoons 29.4 \sim 294 \, \text{MPa}) \ \text{cb}$ り、支持体長手方向のF-5値が支持体幅方向のF-5 値より高いのが一般的であるが、特に幅方向の強度を高 くする必要があるときはその限りではない。また、支持 体の長手方向および幅方向の100℃30分での熱収縮 率は好ましくは3%以下、さらに好ましくは1.5%以 下、80℃30分での熱収縮率は好ましくは1%以下、 さらに好ましくは0.5%以下である。破断強度は両方 向とも5~100Kg/mm² (≒49~980MP a)、弾性率は100~2000Kg/mm² (≒0. 98~19.6GPa) が好ましい。

【0054】熱転写シートの支持体には、その上に設けられる光熱変換層との密着性を向上させるために、表面活性化処理及び/又は一層又は二層以上の下塗層の付設を行ってもよい。表面活性化処理の例としては、グロー放電処理、コロナ放電処理等を挙げることができる。下塗層の材料としては、支持体と光熱変換層の両表面に高い接着性を示し、かつ熱伝導性が小さく、また耐熱性に優れたものであることが好ましい。そのような下塗層の材料の例としては、スチレン、スチレンーブタジエン共重合体、ゼラチン等を挙げることができる。下塗層全体

の厚さは通常 0. 0 1~2 μ mである。また、熱転写シートの光熱変換層付設側とは反対側の表面には、必要に応じて、反射防止層や帯電防止層等の各種の機能層の付設、あるいは表面処理を行うこともできる。 (バック層)

【0055】熱転写シートの光熱変換層、画像形成層の 反対面にバック層を設けることができる。バック層に使 用される帯電防止剤としては、ポリオキシエチレンアル キルアミン、グリセリン脂肪酸エステル等の非イオン系 界面活性剤、第4級アンモニウム塩等のカチオン系界面 活性剤、アルキルホスフェート等のアニオン系界面活性 剤、両性界面活性剤、導電性樹脂等の化合物が使用でき る。

【0056】また、導電性微粒子を帯電防止剤として用 いることもできる。このような導電性微粒子としては、 例えば、ZnO、TiO2、SnO2、Al2O3、I n2O3, MgO, BaO, CoO, CuO, Cu2O, CaO、SrO、BaO2、PbO、PbO2、MnO3 , M o O₃ , S i O₂ , Z r O₂ , A g₂ O , Y₂ O₃ , Bi2O3、Ti2O3、Sb2O3、Sb2O5、K2Ti 6 O13、NaCaP2O18、MgB2O5等の酸化物;Cu S、ZnS等の硫化物;SiC、TiC、ZrC、V C、NbC、MoC、WC等の炭化物; Si3N4、Ti N、ZrN、VN、NbN、Cr2N等の窒化物; Ti B₂ 、 Z r B₂ 、 N b B₂ 、 T a B₂ 、 C r B 、 M o B、WB、LaBs 等の硼化物; TiSi2、ZrSi 2 NbSi2 TaSi2 CrSi2 MoSi 2、WSi2 等の珪化物;BaCO3、CaCO3、S r C O3 、Ba S O4 、Ca S O4 等の金属塩; SiN 4 - SiC、9 A 1 2 O 3 - 2 B 2 O 3 等の複合体が挙げ 30 られ、これら1種を単独で又は2種以上を併用してもよ い。これらのうち、SnO2、ZnO、Al2O3、T i O2、I n2 O3 、MgO、BaO及びMoO3が好ま しく、SnO2、ZnO、In2O3及びTiO2 がさら に好ましく、SnOzが特に好ましい。

【0057】なお、本発明の熱転写材料をレーザー熱転写記録方式に用いる場合、バック層に用いる帯電防止剤はレーザー光を透過できるように実質的に透明であることが好ましい。

【0058】 導電性金属酸化物を帯電防止剤として使用 40 する場合には、その粒子径は光散乱をできるだけ小さく するために小さい程好ましいが、粒子とバインダーの屈 折率の比をパラメータとして使用して決定されるべきも のであり、s-(Mie) の理論を用いて求めることが できる。一般に平均粒子径が $0.001-0.5\mu$ mの 範囲であり、 $0.003-0.2\mu$ mの範囲が好ましい。ここでいう、平均粒子径とは、導電性金属酸化物の一次粒子径だけでなく高次構造の粒子径も含んだ値である。

【0059】バック層には帯電防止剤の他に、界面活性 50

剤、滑り剤及びマット剤等の各種添加剤やバインダーを 添加することができる。

【0060】バック層の形成に使用されるバインダーとしては、例えば、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等のアクリル酸エステル、メタクリル酸エステル、メタクリル酸エステルをアクリル酸エステル、メタクリル酸エステルをアクリル酸エステルをアクリル酸エステルをアクリルでは、エチルセルロース、セルロースで、オリエチレン、ボリブロピレン、ポリスチレン、塩化ビニル系共重合体、ポリビニルアメチレン、塩化ビニルでは、ボリビニルブチラール、ポリビニルアルコールのようなビニル系ポリマー及びビニル化合物の共重合体、ポリエステル、ポリウレタン、ポリアミドのようなおけて、ボリエステル、ポリウレタン、ポリアミドのようなおいて、オリエステル、ポリウレタン、ポリアミドのようなおのようなゴム系熱可塑性ポリマー、エボキシ化合物のような光重合性若しくは熱重合性化合物を重合、架橋させたポリマー、メラミン化合物等を挙げることができる。

【0061】 (光熱変換層) 光熱変換層は、光熱変換物 質、バインダー、及び必要に応じてマット剤を含有し、 更に必要に応じて、その他の成分を含有する。光熱変換 物質は、照射される光エネルギーを熱エネルギーに変換 する機能を有する物質である。一般的には、レーザー光 を吸収することのできる色素(顔料を含む。以下、同様 である。)である。赤外線レーザーにより画像記録を行 う場合は、光熱変換物質としては、赤外線吸収色素を用 いるのが好ましい。前記色素の例としては、カーボンブ ラック等の黒色顔料、フタロシアニン、ナフタロシアニ ン等の可視から近赤外域に吸収を有する大環状化合物の 顔料、光ディスク等の高密度レーザー記録のレーザー吸 収材料として使用される有機染料(インドレニン染料等 のシアニン染料、アントラキノン系染料、アズレン系色 素、フタロシアニン系染料)、及びジチオールニッケル 錯体等の有機金属化合物色素を挙げることができる。中 でも、シアニン系色素は、赤外線領域の光に対して、高 い吸光係数を示すので、光熱変換物質として使用する と、光熱変換層を薄層化することができ、その結果、熱 転写シートの記録感度をより向上させることができるの で好ましい。光熱変換物質としては、色素以外にも、黒 化銀等の粒子状の金属材料等、無機材料を用いることも できる。

【0062】光熱変換層に含有されるバインダーとしては、支持体上に層を形成し得る強度を少なくとも有し、高い熱伝導率を有する樹脂が好ましい。更に、画像記録の際に、光熱変換物質から生じる熱によっても分解しない、耐熱性を有する樹脂であると、高エネルギーの光照射を行っても、光照射後の光熱変換層の表面の平滑性を維持できるので好ましい。具体的には、熱分解温度(TGA法(熱質量分析法)で10℃/分の昇温速度で、空気気流中で5%質量減少する温度)が400℃以上の樹脂が好ましく、前記熱分解温度が500℃以上の樹脂が

より好ましい。また、バインダーは、200~400℃のガラス転移温度を有するのが好ましく、250~350℃のガラス転移温度を有するのがより好ましい。ガラス転移温度が200℃より低いと、形成される画像にカブリが発生する場合があり、400℃より高いと、樹脂の溶解性が低下し、生産効率が低下する場合がある。尚、光熱変換層のバインダーの耐熱性(例えば、熱変形温度や熱分解温度)は、光熱変換層上に設けられる他の層に使用される材料と比較して、より高いのが好ましい。

【0063】具体的には、ポリメタクリル酸メチル等のアクリル酸系樹脂、ポリカーボネート、ポリスチレン、塩化ビニル/酢酸ビニル共重合体、ポリビニルアルコール等のビニル系樹脂、ポリビニルブチラール、ポリエス

テル、ポリ塩化ビニル、ポリアミド、ポリイミド、ポリ エーテルイミド、ポリスルホン、非晶性環状ポリオレフ ィン、アラミド、ポリウレタン、エポキシ樹脂、尿素/ メラミン樹脂等が挙げられる。これらの中でも、ポリイ ミド樹脂が好ましい。

【0·0 6 4】特に、下記一般式(I)~(MI)で表されるポリイミド樹脂は、有機溶媒に可溶であり、これらのポリイミド樹脂を使用すると、熱転写シートの生産性が向上するので好ましい。また、光熱変換層用塗布液の粘度安定性、長期保存性、耐湿性が向上する点でも好ましい。

【0065】 【化3】

$$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c}$$

$$\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)_{n} \qquad (11)$$

【0066】前記一般式(I)及び(II)中、Ar¹は、下記構造式(1)~(3)で表される芳香族基を示し、nは、10~100の整数を示す。

【0067】 【化4】

[0068]

【化5】

21

$$\begin{pmatrix}
0 & F_3C & CF_3 & 0 \\
V & A^2 & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & \\$$

【0069】前記一般式 (III) 及び (IV) 中、Ar²は、下記構造式 (4) ~ (7) で表される芳香族基を示し、nは、10~100の整数を示す。

【0070】 【化6】

[0071]

【化7】

【0072】前記一般式 (V) ~ (MI) 中、n及びm は10~100の整数を示す。式 (M) において、n: mの比は6:4~9:1である。

【0073】尚、樹脂が有機溶媒に可溶であるか否かを 判断する目安としては、25℃において、樹脂がNーメ チルピロリドン100質量部に対して、10質量部以上 溶解することを基準とし、10質量部以上溶解する場合 は、光熱変換層用の樹脂として好ましく用いられる。よ り好ましくは、Nーメチルピロリドン100質量部に対 して、100質量部以上溶解する樹脂である。

【0074】光熱変換層に含有されるマット剤としては、無機微粒子や有機微粒子を挙げることができる。この無機微粒子としては、シリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、硫酸バリウム、硫酸マグネシウム、水酸化アルミニウム、水酸化マルミニウム、水酸化マルミニウム、水酸化マグネシウム、窒化ホウ素等の金属塩、カオリン、クレー、タルク、亜鉛華、鉛白、ジークライト、石英、ケイソウ土、バーライト、ベントナイト、雲母、合成雲母子が挙げられる。有機微粒子としては、フッ素樹脂粒子、グアナミン樹脂粒子、アクリル共重合体樹脂粒子、シリコーン樹脂粒子、メラミン樹脂粒子、エポキシ樹脂粒子等の樹脂粒子を挙げることができる。

【0075】マット剤の粒径は、通常、 $0.3 \sim 30 \mu$ 40 mであり、好ましくは $0.5 \sim 20 \mu$ mであり、添加量は $0.1 \sim 100 m$ g $/ m^2$ が好ましい。

【0076】光熱変換層には、更に必要に応じて、界面 活性剤、増粘剤、帯電防止剤等が添加されてもよい。

【0077】光熱変換層は、光熱変換物質とバインダーとを溶解し、これに必要に応じてマット剤及びその他の成分を添加した塗布液を調製し、これを支持体上に塗布し、乾燥することにより設けることができる。ポリイミド樹脂を溶解するための有機溶媒としては、例えば、nーヘキサン、シクロヘキサン、ジグライム、キシレン、

トルエン、酢酸エチル、テトラヒドロフラン、メチルエチルケトン、アセトン、シクロヘキサノン、1,4ージオキサン、1,3ージオキサン、ジメチルアセテート、Nーメチルー2ーピロリドン、ジメチルスルホオキサイド、ジメチルホルムアミド、ジメチルアセトアミド、ァーブチロラクトン、エタノール、メタノール等が挙げられる。塗布、乾燥は、通常の塗布、乾燥方法を利用して行うことができる。乾燥は、通常、300℃以下の温度で行い、200℃以下の温度で行うのが好ましい。支持体として、ポリエチレンテレフタレートを使用する場合は、80~150℃の温度で乾燥するのが好ましい。

【0078】光熱変換層におけるバインダーの量が少な

すぎると、光熱変換層の凝集力が低下し、形成画像が受 像シートに転写される際に、光熱変換層が一緒に転写さ れやすくなり、画像の混色の原因となる。またポリイミ ド樹脂が多すぎると、一定の光吸収率を達成するために 光熱変換層の層厚が大きくなって、感度低下を招きやす い。光熱変換層における光熱変換物質とバインダーとの 固形分質量比は、1:20~2:1であるのが好まし く、特に、1:10~2:1であるのがより好ましい。 また、光熱変換層を薄層化すると、前記した様に、熱転 写シートを高感度化できるので好ましい。光熱変換層 は、 $0.03\sim1.0\mu m$ であるのが好ましく、0.05~0. 5μmであるのがより好ましい。また、光熱変 換層では、レーザー光の吸収波長が700~1500nmの範 囲、特に50~1000nmが好ましい。また、波長830nm の光に対して、0. 7~1. 1の光学濃度を有している と、画像形成層の転写感度が向上するので好ましく、前 記波長の光に対して0.8~1.0の光学濃度を有して いるとより好ましい。波長830nmにおける光学濃度 が 0. 7未満であると、照射された光を熱に変換するこ とが不充分となり、転写感度が低下することがある。一 方、1. 1を超えると、記録時に光熱変換層の機能に影 50 響を与え、かぶりが発生することがある。

【0079】 (画像形成層) 画像形成層は、受像シート に転写されて画像を形成するための顔料を少なくとも含 有し、更に、層を形成するためのバインダー、及び所望 により、その他の成分を含有する。顔料は一般に有機顔 料と無機顔料とに大別され、前者は特に塗膜の透明性に 優れ、後者は一般に隠蔽性に優れる等の特性を有してい るので、用途に応じて、適宜選択すればよい。前記熱転 写シートを印刷色校正用に用いる場合には、印刷インキ に一般に使用されるイエロー、マゼンタ、シアン、及び ブラックと一致するか、あるいは色調が近い有機顔料が 好適に使用される。またその他にも、金属粉、蛍光顔料 等も用いる場合がある。好適に使用される顔料の例とし ては、アゾ系顔料、フタロシアニン系顔料、アントラキ ノン系顔料、ジオキサジン系顔料、キナクリドン系顔 料、イソインドリノン系顔料、ニトロ系顔料を挙げるこ とができる。画像形成層に用いられる顔料を、色相別に 分けて、以下に列挙するが、これらに限定されるもので はない。

【0080】1) イエロー顔料

Pigment Yellow (ピグメントイエロー) 12 (C. I. No. 21090)

例) Permanent Yellow (パーマネントイエロー) DHG (クラリアントジャパン (株)

製)、Lionol Yellow (リオノールイエロー) 1212B (東洋インキ製造 (株) 製)、Irgalite Yellow (イルガライトイエロー) LCT (チバ・スペシャルティー・ケミカルズ (株) 製)、Symuler Fast Yellow (シムラーファーストイエロー) GTF 219 (大日本インキ化学工業 (株) 製)

Pigment Yellow (ピグメントイエロー) 13 (C. I. No. 21100)

例) Permanent Yellow (パーマネントイエロー) GR (クラリアントジャパン (株) 製)、
 Lionol Yellow (リオノールイエロー)
 1313 (東洋インキ製造 (株) 製)

Pigment Yellow (ピグメントイエロー) 14 (C. I. No. 21095)

例)Permanent Yellow (パーマネントイエロー) G (クラリアントジャパン (株) 製)、Lionol Yellow (リオノールイエロー) 1401-G (東洋インキ製造 (株) 製)、Seika Fast Yellow (セイカファーストイエロー) 2270 (大日精化工業 (株) 製)、Symuler Fast Yellow (シムラーファーストイエロ

Fast Yellow (シムラーファーストイエロー) 4400 (大日本インキ化学工業 (株) 製)

Pigment Yellow (ピグメントイエロー) 17 (C. I. No. 21105)

例) Permanent Yellow (パーマネント イエロー) GG02 (クラリアントジャパン (株) 製)、Symuler Fast Yellow (シムラーファーストイエロー) 8GF (大日本インキ化学工業 (株) 製)

Pigment Yellow (ピグメントイエロー) 155

例) Graphtol Yellow (グラフトールイ エロー) 3GP (クラリアントジャパン (株) 製) Pigment Yellow (ピグメントイエロー) 180 (C. I. No. 21290)

例) Novoperm Yellow (ノボバームイエロー) P-HG (クラリアントジャパン (株) 製)、PV Fast Yellow (ファーストイエロー) HG (クラリアントジャパン (株) 製)

Pigment Yellow (ピグメントイエロー) 139 (C. I. No. 56298)

例) Novoperm Yellow (ノボパームイエロー) M2R 70 (クラリアントジャパン (株)製)

【0081】2) マゼンタ顔料

Pigment Red (ピグメントレッド) 57: 1 (C. I. No. 15850:1)

例) Graphtol Rubine (グラフトールルビン) L6B (クラリアントジャパン (株) 製)、Lionol Red (リオノールレッド) 6B-4290G (東洋インキ製造 (株) 製)、Irgalite Rubine (イルガライトルビン) 4BL (チバ・スペシャルティー・ケミカルズ (株) 製)、Symuler Brilliant Carmine (シムラーブリリアントカーミン) 6B-229 (大日本インキ化学工業 (株) 製)

Pigment Red (ピグメントレッド) 122 (C. I. No. 73915)

例)Hosterperm Pink (ホスターパーム ピンク) E (クラリアントジャパン (株) 製)、Li onogen Magenta (リオノゲンマゼンタ) 5790 (東洋インキ製造 (株) 製)、Fastog en Super Magenta (ファストゲンスー パーマゼンタ) RH (大日本インキ化学工業 (株) 製)

Pigment Red (ピグメントレッド) 53: 1 (C. I. No. 15585:1)

例) Permanent Lake Red (パーマネントレイクレッド) LCY (クラリアントジャパン

(株) 製)、Symuler Lake Red (シムラーレイクレッド) C conc (大日本インキ化学工業 (株) 製)

Pigment Red (ピグメントレッド) 48: 1 (C. I. No. 15865:1)

例) Lionol Red (リオノールレッド) 2B 3300 (東洋インキ製造(株)製)、Symule r Red (シムラーレッド) NRY (大日本インキ 化学工業 (株) 製)

Pigment Red (ピグメントレッド) 48: 2 (C. I. No. 15865:2)

例) Permanent Red (パーマネントレッド) W2T (クラリアントジャパン (株) 製)、Lionol Red (リオノールレッド) LX235 (東洋インキ製造 (株) 製)、Symuler Red (シムラーレッド) 3012 (大日本インキ化学工業 (株) 製)

Pigment Red (ピグメントレッド) 48: 3 (C. I. No. 15865:3)

例)Permanent Red (パーマネントレッド) 3 RL (クラリアントジャパン (株) 製)、Symuler Red (シムラーレッド) 2 BS (大日本インキ化学工業 (株) 製)

Pigment Red (ピグメントレッド) 177 (C. I. No. 65300)

例) Cromophtal Red (クロモフタルレッド) A2B (チバ・スペシャルティー・ケミカルズ (株) 製)

【0082】3) シアン顔料

Pigment Blue (ピグメントブルー) 15 (C. I. No. 74160)

例) Lionol Blue (リオノールブルー) 7027 (東洋インキ製造(株)製)、Fastogen Blue (ファストゲンブルー) BB (大日本インキ化学工業(株)製)

Pigment Blue (ピグメントブルー) 1 5:1 (C. I. No. 74160)

例)Hosterperm Blue (ホスターパーム ブルー) A2R (クラリアントジャパン (株) 製)、 Fastogen Blue (ファストゲンブルー) 5050 (大日本インキ化学工業 (株) 製)

Pigment Blue (ピグメントブルー) 1 5:2 (C. I. No. 74160)

例)Hosterperm Blue (ホスターパーム ブルー) AFL (クラリアントジャパン (株) 製)、 Irgalite Blue (イルガライトブルー) BSP (チバ・スペシャルティー・ケミカルズ (株) 製)、Fastogen Blue (ファストゲンブルー) GP (大日本インキ化学工業 (株) 製)

Pigment Blue (ピグメントブルー) : 5:3 (C. I. No. 74160)

例)Hosterperm Blue (ホスターパームブルー) B2G (クラリアントジャパン (株) 製)、Lionol Blue (リオノールブルー) FG7330 (東洋インキ製造 (株) 製)、Cromophtal Blue (クロモフタルブルー) 4GNP (チバ

ogen Blue (ファストゲンブルー) FGF (大日本インキ化学工業(株)製)

28

Pigment Blue (ピグメントブルー) 1 5:4 (C. I. No. 74160)

例)Hosterperm Blue (ホスターバームブルー) BFL (クラリアントジャパン (株) 製)、Cyanine Blue (シアニンブルー) 700ー10FG (東洋インキ製造 (株) 製)、Irgalite Blue (イルガライトブルー) GLNF (チバ・スペシャルティー・ケミカルズ (株) 製)、Fastogen Blue (ファストゲンブルー) FGS (大日本インキ化学工業 (株) 製)

Pigment Blue (ピグメントブルー) 1 5:6 (C. I. No. 74160)

例) Lionol Blue (リオノールブルー) E S (東洋インキ製造 (株) 製)

Pigment Blue (ピグメントブルー) 60 (C. I. No. 69800)

例) Hosterperm Blue (ホスターパーム ブルー) RL01 (クラリアントジャパン (株)

製)、Lionogen Blue (リオノゲンブルー) 6501 (東洋インキ製造 (株) 製)

【0083】4) レッド顔料

C. I. ピグメント・レッド 9 7、C. I. ピグメント・レッド 1 2 2、C. I. ピグメント・レッド 1 4 9、C. I. ピグメント・レッド 1 6 8、C. I. ピグメント・レッド 1 7 7、C. I. ピグメント・レッド 1 8 0、C. I. ピグメント・レッド 1 9 2、C. I. ピグメント・レッド 2 1 5、CI. Nb. 12085、CI. Nb. 12120、

CI. No. 12140、CI. No. 12315等の有機顔料

5) グリーン顔料

C. I. ピグメント・グリーン7、C. I. ピグメント・グリーン36、CI.No. 42053、CI.No. 42085、CI.No. 42095等の有機顔料

6) ブルー顔料

C. I. ピグメント・ブルー15:1、C. I. ピグメント・ブルー15:4、C. I. ピグメント・ブルー15:6、C. I. ピグメント・ブルー22、C. I. ピグメント・ブルー60、C. I. ピグメント・ブルー64、CI. No. 42090等の有機顔料

7) ブラック顔料

Pigment Black (ピグメントブラック) 7 (カーポンプラックC. I. No. 77266) 例) 三菱カーポンプラック MA100 (三菱化学

(株) 製)、三菱カーボンブラック #5 (三菱化学

(株) 製)、Black Pearls (ブラックパールズ) 430 (Cabot Co. (キャボット社) 製)

l Blue (クロモフタルブルー) 4GNP (チバ また、本発明で用いることのできる顔料としては、「顔・スペシャルティー・ケミカルズ(株)製)、Fast 50 料便覧、日本顔料技術協会編、誠文堂新光社、198

9」、「COLOUR INDEX、THE SOCIETY OF DMES & COLOURIST、THIRD EDITION 1987」などを参照して適宜商品を選択できる。

【0084】前記顔料の平均粒径としては、 $0.03\sim1\mu$ mが好ましく、 $0.05\sim0.5\mu$ mがより好ましい。前記粒径が 0.03μ m未満であると、分散コストが上がったり、分散液がゲル化等を起こすことがあり、一方、 1μ mを超えると、顔料中の粗大粒子が、画像形成層と受像層との密着性を阻害することがあり、また、画像形成層の透明性を阻害する場合がある。

【0085】画像形成層のバインダーとしては、軟化点 が40~150℃の非晶質有機高分子重合体が好まし い。前記非晶質有機高分子重合体としては、例えば、ブ チラール樹脂、ポリアミド樹脂、ポリエチレンイミン樹 脂、スルホンアミド樹脂、ポリエステルポリオール樹 脂、石油樹脂、スチレン、ビニルトルエン、αーメチル スチレン、2-メチルスチレン、クロルスチレン、ビニ ル安息香酸、ピニルベンゼンスルホン酸ソーダ、アミノ スチレン等のスチレン及びその誘導体、置換体の単独重 合体や共重合体、メチルメタクリレート、エチルメタク リレート、ブチルメタクリレート、ヒドロキシエチルメ タクリレート等のメタクリル酸エステル類及びメタクリ ル酸、メチルアクリレート、エチルアクリレート、ブチ ルアクリレート、α-エチルヘキシルアクリレート等の アクリル酸エステル及びアクリル酸、プタジエン、イソ プレン等のジエン類、アクリロニトリル、ビニルエーテ ル類、マレイン酸及びマレイン酸エステル類、無水マレ イン酸、ケイ皮酸、塩化ビニル、酢酸ビニル等のビニル 系単量体の単独あるいは他の単量体等との共重合体を用 いることができる。これらの樹脂は2種以上混合して用 30 いることもできる。

【0086】画像形成層は、顔料を30~70質量%含有しているのが好ましく、30~50質量%含有しているのがより好ましい。また、画像形成層は、樹脂を70~30質量%含有しているのが好ましく、70~40質量%含有しているのがより好ましい。

【0087】前記画像形成層は、以下の①~③の成分を前記その他の成分として含有することができる。

①ワックス類

ワックス類としては、鉱物系のワックス類、天然ワック 40 ス類、合成ワックス類等が挙げられる。前記鉱物系のワックスの例としては、パラフィンワックス、マイクロクリスタリンワックス、エステルワックス、酸化ワックス等の石油ロウ、モンタンロウ、オゾケライト、セレシン等が挙げられる。なかでも、パラフィンワックスが好ましい。該パラフィンワックスは、石油から分離されるものであり、その融点によって各種のものが市販されている。前記天然ワックスの例としては、カルナバロウ、木ロウ、オウリキュリーロウ、エスバルロウ等の植物ロウ、密ロウ、昆虫ロウ、セラックロウ、鯨ロウ等の動物 50

ロウが挙げられる。

【0088】前記合成ワックスは、一般に滑剤として用いられ、通常は高級脂肪酸系の化合物からなる。このような合成ワックスの例としては、下記のものが挙げられる。

1) 脂肪酸系ワックス

下記一般式で表される直鎖の飽和脂肪酸: CH3 (CH2) a COOH前記式中、nは6~28の整数を示す。 具体例としては、ステアリン酸、ベヘン酸、パルミチン酸、12-ヒドロキシステアリン酸、アゼライン酸等が挙げられる。また、上記脂肪酸等の金属塩(例えば、K、Ca、Zn、Mgなど)が挙げられる。

2) 脂肪酸エステル系ワックス

前記脂肪酸のエステルの具体例としては、ステアリン酸 エチル、ステアリン酸ラウリル、ベヘン酸エチル、ベヘ ン酸ヘキシル、ミリスチン酸ベヘニル等が挙げられる。

3) 脂肪酸アミド系ワックス

前記脂肪酸のアミドの具体例としては、ステアリン酸ア ミド、ラウリン酸アミド等が挙げられる。

4) 脂肪族アルコール系ワックス 下記一般式で表される直鎖飽和脂肪族アルコール: CH₃ (CH₂)_nOH

前記式中、nは6~28の整数を表す。具体例としては、ステアリルアルコール等が挙げられる。

【0089】前記1)~4)の合成ワックスのなかでも、特にステアリン酸アミド、ラウリン酸アミド等の高級脂肪酸アミドが好適である。尚、前記ワックス系化合物は、所望により単独もしくは適宜組み合わせて使用することができる。

【0090】②可塑剤

前記可塑剤としては、エステル化合物が好ましく、フタル酸ジブチル、フタル酸ジーnーオクチル、フタル酸ジ (2ーエチルへキシル)、フタル酸ジノニル、フタル酸ジラウリル、フタル酸ブチルラウリル、フタル酸ブチルラウリル、フタル酸ブチルラウリル、フタル酸ブチルステル類、アジピン酸ジ (2ーエチルへキシル)等の脂肪族二塩基酸エステル、リン酸トリクレジル、リン酸トリ (2ーエチルへキシル)等のりン酸トリクレジル、リン酸トリ (2ーエチルへキシル)等のりと酸トリクレン酸トリステル類、ボリエチレングリコールエステル等のポリオールボリエステル類、エポキシ脂肪酸エステル等のポコオールボリエステル類、エポキシ脂肪酸エステル等のポコオールボリエステル類、エポキシ脂肪酸エステルのポリオールボリエステル類、エポキシ脂肪酸エステルをのポールでもピニルモノマーのエステル、特に、アクリル酸のエステルが、添加による転写感度の向上や転写ムラの改良効果、及び破断伸びの調節効果が大きい点で好ましい。

【0091】前記アクリル酸又はメタクリル酸のエステル化合物としては、ポリエチレングリコールジメタクリレート、1,2,4ープタントリオールトリメタクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールアクリレート、ペンタエリスリトールテ

トラアクリレート、ジベンタエリスリトールーポリアクリレート等が挙げられる。

【0092】また、前記可塑剤は高分子であってもよく、なかでもポリエステルは、添加効果が大きい点、及び保存条件下で拡散し難い点等で好ましい。該ポリエステルとしては、例えば、セバシン酸系ポリエステル、アジピン酸系ポリエステル等が挙げられる。尚、画像形成層中に含有させる前記添加剤は、これらに限定されるものではない。また、可塑剤は、1種単独で用いてもよく、2種以上を併用してもよい。

【0093】画像形成層中の前記添加剤の含有量が多すぎると、転写画像の解像度が低下したり、画像形成層自身の膜強度が低下したり、光熱変換層と画像形成層との密着力の低下による未露光部の受像シートへの転写が起きる場合がある。上記観点から、前記ワックス類の含有量としては、画像形成層中の全固形分の0.1~30質量%が好ましく、1~20質量%がより好ましい。また、前記可塑剤の含有量としては、画像形成層中の全固形分の0.1~20質量%が好ましく、0.1~10質量%がより好ましい。

【0094】③その他

画像形成層は、更に、上記の成分の他に、界面活性剤、 無機あるいは有機微粒子(金属粉、シリカゲル等)、オイル類(アマニ油、鉱油等)、増粘剤、帯電防止剤等を 含有してもよい。黒色の画像を得る場合を除き、画像記 録に用いる光源の波長を吸収する物質を含有すること で、転写に必要なエネルギーを少なくできる。光源の波 長を吸収する物質としては、顔料、染料のいずれでも構 わないが、カラー画像を得る場合には、画像記録に半導 体レーザー等の赤外線の光源を使用して、可視部に吸収 の少ない、光源の波長の吸収の大きな染料を使用するこ とが、色再現上好ましい。近赤外線染料の例としては、 特開平3-103476号公報に記載の化合物を挙げる ことができる。

【0095】画像形成層は、顔料と前記バインダー等とを溶解又は分散した塗布液を調製し、これを光熱変換層上(光熱変換層上に下記感熱剥離層が設けられている場合は、該層上)に塗布し、乾燥することにより設けることができる。塗布液の調製に使用される溶媒としては、ロープロビルアルコール、メチルエチルケトン、プロピ 40レングリコールモノメチルエーテル (MFG)、メタノール、水等が挙げられる。塗布、乾燥は、通常の塗布、乾燥方法を利用して行うことができる。

(クッション層) 支持体と光熱変換層との間に、クッション機能を有するクッション層を設けることが、特に受像シートにカラーフィルターを形成する場合に好ましい。クッション層を設けると、レーザー熱転写時に画像形成層と、受像層の密着性を向上させ、画質を向上させることができる。また、記録時、熱転写シートと受像シートの間に異物が混入しても、クッション層の変形作用 50

により、受像層と画像形成層の空隙が小さくなり、結果 として白ヌケ等の画像欠陥サイズを小さくすることもで きる。

【0096】クッション層は、界面に応力が加えられた際に変形し易い構成であり、前記効果を達成するには、低弾性率を有する材料、ゴム弾性を有する材料あるいは加熱により容易に軟化する熱可塑性樹脂からなるのが好ましい。クッション層の弾性率としては、室温で好ましくは0.5MPa~1.0GPa、特に好ましくは1MPa~0.5GPa、より好ましくは10~100MPaである。また、ゴミ等の異物をめり込ませるためには、JIS K2530で定められた針入度(25℃、100g、5秒)が10以上であることが好ましい。また、クッション層のガラス転移温度は80℃以下、好ましくは25℃以下、軟化点は50~200℃が好ましい。これらの物性、例えば、Tgを調節するために可塑剤をバインダー中に添加することも好適に行うことができる。

【0097】 クッション層のバインダーとして用いられる具体的な材料としては、ウレタンゴム、ブタジエンゴム、エトリルゴム、アクリルゴム、天然ゴム等のゴム類の他に、ポリエチレン、ポリプロピレン、ポリエステル、スチレンーブタジエン共重合体、エチレン一酢酸ビニル共重合体、塩化ビニリデン樹脂、可塑剤入り塩化ビニル樹脂、ポリアミド樹脂、フェノール樹脂等が挙げられる。尚、クッション層の厚みは使用する樹脂その他の条件により異なるが、通常 $3\sim100~\mu\,\mathrm{m}$ 、好ましくは $10\sim52~\mu\,\mathrm{m}$ である。

【0098】前記熱転写シートの光熱変換層の上には、 光熱変換層で発生した熱の作用により気体を発生する か、付着水等を放出し、これにより光熱変換層と画像形 成層との間の接合強度を弱める感熱材料を含む感熱剥離 層を設けることができる。そのような感熱材料として は、それ自身が熱により分解若しくは変質して気体を発 生する化合物(ポリマー又は低分子化合物)、水分等の 易気化性気体を相当量吸収若しくは吸着している化合物 (ポリマー又は低分子化合物)等を用いることができ る。これらは併用してもよい。

【0099】熱により分解若しくは変質して気体を発生するポリマーの例としては、ニトロセルロースのような自己酸化性ポリマー、塩素化ポリオレフィン、塩素化ゴム、ポリ塩化ゴム、ポリ塩化ビニル、ポリ塩化ビニリデンのようなハロゲン含有ポリマー、水分等の揮発性化合物が吸着されているポリイソブチルメタクリレート等のアクリル系ポリマー、水分等の揮発性化合物が吸着されているエチルセルロース等のセルロースエステル、水分等の揮発性化合物が吸着されているゼラチン等の天然高分子化合物等を挙げることができる。熱により分解若しくは変質して気体を発生する低分子化合物の例として

は、ジアゾ化合物やアジド化のような発熱分解して気体を発生する化合物を挙げることができる。尚、上記のような、熱による感熱材料の分解や変質等は280℃以下で発生することが好ましく、特に230℃以下で発生することが好ましい。

【0100】感熱剥離層の感熱材料として低分子化合物を用いる場合には、バインダーと組み合わせることが望ましい。バインダーとしては、上記のそれ自身が熱により分解若しくは変質して気体を発生するボリマーを用いることもできるが、そのような性質を持たない通常のバインダーを使用することもできる。感熱性の低分子化合物とバインダーとを併用する場合には、前者と後者の質量比は $0.02:1\sim3:1$ であることが好ましく、 $0.05:1\sim2:1$ であることが更に好ましい。感熱剥離層は、光熱変換層を、そのほぼ全面にわたって被覆していることが望ましく、その厚さは一般に $0.03\sim1$ μ mであり、 $0.05\sim0.5$ μ mの範囲にあることが好ましい。

【0101】支持体の上に、光熱変換層、感熱剥離層、 画像形成層がこの順に積層された構成の熱転写シートの 20 場合には、感熱剥離層は、光熱変換層から伝えられる熱 により分解、変質し、気体を発生する。そして、この分 解あるいは気体発生により、感熱剥離層が一部消失する か、あるいは感熱剥離層内で凝集破壊が発生し、光熱変 換層と画像形成層との間の結合力が低下する。このた め、感熱剥離層の挙動によっては、その一部が画像形成 層に付着して、最終的に形成される画像の表面に現わ れ、画像の混色の原因となることがある。従って、その ような感熱剥離層の転写が発生しても、形成された画像 に目視的な混色が現われないように、感熱剥離層はほと んど着色していないこと、即ち、可視光に対して高い透 過性を示すことが望ましい。具体的には、感熱剥離層の 光吸収率が、可視光に対し、50%以下、好ましくは1 0%以下である。尚、前記熱転写シートには、独立した 感熱剥離層を設ける代わりに、前記の感熱材料を光熱変 換層塗布液に添加して光熱変換層を形成し、光熱変換層 と感熱剥離層とを兼ねるような構成とすることもでき る。熱転写シートの画像形成層が塗設されている側の最 表層の静摩擦係数を0.35以下、好ましくは0.20 以下にすることは好ましい。最表層の静摩擦係数を0. 35以下とすることで熱転写シートを搬送する際のロー ル汚れをなくし、形成される画像を高画質化し得る。静 摩擦係数の測定法は特願2000-85759の段落

(0011) に記載の方法に従う。画像形成層表面のスムースター値が23 $^{\circ}$ 、55% Hで0.5 $^{\circ}$ 50mmHg ($\stackrel{\circ}{=}$ 0.0665 $^{\circ}$ 6.65k Pa) が好ましく、かつRaが 0.05 $^{\circ}$ 0.4 $^{\mu}$ mであることが好ましく、このことにより接触面に受像層と画像形成層とが接触し得ない多数のミクロな空隙を少なく出来、転写、更には画質の点で好ましい。前記Ra値は、表面粗さ測定機(Surfcom,東京精機

(株)製)等を用いてJIS B0601に基づき測定することができる。画像形成層の表面硬さがサファイヤ針で10g以上であることが好ましい。米国連邦政府試験基準4046により熱転写シートに帯電させた後、熱転写シートを接地後1秒後の画像形成層の帯電電位が-100~100Vであることが好ましい。画像形成層の表面抵抗が23℃、559RHで10°Ω以下であることが好ましい。

【0102】次に前記熱転写シートと組み合わされて使用される受像シートについて説明する。

[受像シート]

(層構成) 受像シートは、好ましくは、非晶性環状ポリオレフィン支持体と、その上に、1以上の受像層が設けられ、所望により、支持体と受像層との間にクッション層、剥離層、及び中間層のいずれか1層又は2層以上を設けた構成である。また、支持体の受像層とは反対側の面に、バック層を有すると、搬送性の点で好ましい。

【0103】(支持体)ポリエーテルスルホン支持体には、所望により微小な空隙(ボイド)を入れてもよく、また、公知の添加剤を入れてもよい。

【0104】受像シートの支持体の厚さは、通常10~400μmであり、25~200μmであるのが好ましい。また、支持体の表面は、受像層(あるいはクッション層)との密着性、又は熱転写シートの画像形成層との密着性を高めるために、コロナ放電処理、グロー放電処理等の表面処理が施されていてもよい。

【0105】(受像層)受像シートの表面には、画像形 成層を転写し、これを固定するために、支持体上に、受 像層を1以上設けることが好ましい。 受像層は有機重合 体バインダーを主体として形成される層であるのが好ま しい。前記バインダーは、熱可塑性樹脂であることが好 ましく、その例としては、アクリル酸、メタクリル酸、 アクリル酸エステル、メタクリル酸エステル等のアクリ ル系モノマーの単独重合体及びその共重合体、メチルセ ルロース、エチルセルロース、セルロースアセテートの ようなセルロース系ポリマー、ポリスチレン、ポリビニ ルピロリドン、ポリビニルブチラール、ポリビニルアル コール、ポリ塩化ビニル等のようなビニル系モノマーの 単独重合体及びその共重合体、ポリエステル、ポリアミ ド等のような縮合系ポリマー、プタジエンースチレン共 重合体のようなゴム系ポリマーを挙げることができる。 受像層のバインダーは、画像形成層との間の適度な接着 力を得るために、ガラス転移温度(Tg)が90℃より 低いポリマーであることが好ましい。このために、受像 層に可塑剤を添加することも可能である。また、バイン ダーポリマーは、シート間のブロッキングを防ぐため に、そのTgが30℃以上であることが好ましい。受像 層のバインダーポリマーとしては、レーザー記録時の画 像形成層との密着性を向上させ、感度や画像強度を向上 させる点で、画像形成層のバインダーポリマーと同一、 若しくは類似のポリマーを用いることが特に好ましい。

受像層表面のスムースター値が23℃、55%Hで0.5~50mm地(≒0.0665~6.65kPa)が好ましく、かつRaが0.05~0.4μmであることが好ましく、このことにより接触面に受像層と画像形成層とが接触し得ない多数のミクロな空隙を少なく出来、転写、更には画質の点で好ましい。前記Ra値は、表面粗さ測定機(Surfcom,東京精機(株)製)等を用いてJIS B0601に基づき測定することができる。米国連邦政府試験基準4046により受像シートに帯電させた後、受像シートを接地後1秒後の受像層の帯電電位が-100~100Vであることが好ましい。受像層表面の静止摩擦係数が0.2以下であることが好ましい。受像層表面の静止摩擦係数が0.2以下であることが好ましい。受像層表面の表面エネルギーが23~35mg/㎡であることが好ましい。

【0106】受像層上に一旦画像を形成した後、印刷本紙等へ再転写する場合には、受像層の少なくとも一層を光硬化性材料から形成することも好ましい。このような光硬化性材料の組成としては、例えば、a)付加重合によって光重合体を形成しうる多官能ビニル又はビニリデン化合物の少なくとも一種からなる光重合性モノマー、b)有機ポリマー、c)光重合開始剤、及び必要に応じて熱重合禁止剤等の添加剤からなる組み合わせを挙げることができる。上記の多官能ビニルモノマーとしては、ポリオールの不飽和エステル、特にアクリル酸もしくはメタクリル酸のエステル(例えば、エチレングリコールジアクリレート、ペンタエリスリトールテトラアクリレート)が用いられる。

【0107】前記有機ポリマーとしては前記受像層形成用ポリマーが挙げられる。また、光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン等の通常の光ラジカル重合開始剤が、層中の0.1~20質量%の割合で用いられる。

【0108】受像層の厚みは $0.3\sim7\mu$ m、好ましくは $0.7\sim4\mu$ mである。 0.3μ m未満の場合、印刷本紙への再転写の際に膜強度が不足し破れ易い。厚すぎると、本紙再転写後の画像の光沢が増し、印刷物への近似性が低下する。

【0109】(その他の層)支持体と受像層との間に、クッション層を設けてもよい。クッション層を設けると、レーザー熱転写時に画像形成層と、受像層の密着性を向上させ、画質を向上させることができる。また、記録時、熱転写シートと受像シートの間に異物が混入しても、クッション層の変形作用により、受像層と画像形成層の空隙が小さくなり、結果として白ヌケ等の画像欠陥サイズを小さくすることもできる。更に、画像を転写形成した後、これを別に用意した印刷本紙等に転写する場合、紙凹凸表面に応じて受像表面が変形するため、受像層の転写性を向上することができ、また被転写物の光沢を低下させることによって、印刷物との近似性も向上さ

せることができる。

【0110】クッション層は、受像層に応力が加えられた際に変形し易い構成であり、前記効果を達成するには、低弾性率を有する材料、ゴム弾性を有する材料あるいは加熱により容易に軟化する熱可塑性樹脂からなるのが好ましい。クッション層の弾性率としては、室温で好ましくは0.5 MPa~1.0 GPa、特に好ましくは10~100 MPaである。また、ゴミ等の異物をめり込ませるためには、JIS K2530で定められた針入度(25 $\mathbb C$ 、100g、5秒)が10以上であることが好ましい。また、クッション層のガラス転移温度は80 $\mathbb C$ 以下、好ましくは25 $\mathbb C$ 以下、軟化点は50~200 $\mathbb C$ が好ましい。これらの物性、例えば、Tgを調節するために可塑剤をバインダー中に添加することも好適に行うことができる。

【0111】クッション層のバインダーとして用いられる具体的な材料としては、ウレタンゴム、ブタジエンゴム、ニトリルゴム、アクリルゴム、天然ゴム等のゴム類の他に、ポリエチレン、ポリプロピレン、ポリエステル、スチレンーブタジエン共重合体、エチレン一酢酸ビニル共重合体、塩化ビニリデン樹脂、可塑剤入り塩化ビニル樹脂、ポリアミド樹脂、フェノール樹脂等が挙げられる。尚、クッション層の厚みは使用する樹脂その他の条件により異なるが、通常 $3\sim100\mu$ m、好ましくは $10\sim52\mu$ mである。

【0112】受像層とクッション層はレーザー記録の段 階までは接着している必要があるが、カラーブルーフ等 の画像を印刷本紙に転写するためには、剥離可能に設け られていることが好ましい。ただし、カラーフィルター の形成の場合は、特にその必要はないが、所望によりガ ラス板などの他の支持体に転写する場合は、受像層とク ッション層は剥離可能に設けられていることが好まし い。剥離を容易にするためには、クッション層と受像層 の間に剥離層を厚み 0. 1~2 μ m程度で設けることも 好ましい。膜厚が大きすぎるとクッション層の性能が現 われ難くなるため、剥離層の種類により調整することが 必要である。剥離層のバインダーとしては、具体的にポ リオレフィン、ポリエステル、ポリビニルアセタール、 ポリピニルホルマール、ポリパラバン酸、ポリメタクリ ル酸メチル、ポリカーボネート、エチルセルロース、ニ トロセルロース、メチルセルロース、カルボキシメチル セルロース、ヒドロキシプロピルセルロース、ポリビニ ルアルコール、ポリ塩化ピニル、ウレタン樹脂、フッ素 系樹脂、ポリスチレン、アクリロニトリルスチレン等の スチレン類及びこれら樹脂を架橋したもの、ポリアミ ド、ポリイミド、ポリエーテルイミド、ポリスルホン、 非晶性環状ポリオレフィン、アラミド等のTgが65℃ 以上の熱硬化性樹脂及びそれら樹脂の硬化物が挙げられ

る。硬化剤としてはイソシアナート、メラミン等の一般 的硬化剤を使用することができる。上記物性に合わせて 剥離層のバインダーを選ぶとポリカーボネート、アセタ ール、エチルセルロースが保存性の点で好ましく、更に 受像層にアクリル系樹脂を用いるとレーザー熱転写後の 画像を再転写する際に剥離性良好となり特に好ましい。 又、別に、冷却時に受像層との接着性が極めて低くなる 層を剥離層として利用することができる。具体的には、 ワックス類、バインダー等の熱溶融性化合物や熱可塑性 樹脂を主成分とする層とすることができる。熱溶融性化 10 合物としては、特開昭63-193886号に記載の物 質等がある。特にマイクロクリスタリンワックス、パラ フィンワックス、カルナバワックスなどが好ましく用い られる。熱可塑性樹脂としては、エチレンー酢酸ビニル 系樹脂等のエチレン系共重合体、セルロース系樹脂等が 好ましく用いられる。このような剥離層には添加剤とし て、高級脂肪酸、高級アルコール、高級脂肪酸エステ ル、アミド類、高級アミン等を必要に応じて加えること ができる。剥離層の別の構成は、加熱時に溶融又は軟化 することによって、それ自体が凝集破壊することで剥離 20 性を持つ層である。このような剥離層には過冷却物質を 含有させることが好ましい。過冷却物質としては、ポリ -ε-カプロラクトン、ポリオキシエチレン、ベンゾト リアゾール、トリベンジルアミン、バニリン等が挙げら れる。更に、別の構成の剥離性層では、受像層との接着 性を低下させるような化合物を含ませる。このような化 合物としては、シリコーンオイルなどのシリコーン系樹 脂;テフロン、弗素含有アクリル樹脂等の弗素系樹脂; ポリシロキサン樹脂;ポリビニルブチラール、ポリビニ ルアセタール、ポリビニルホルマール等のアセタール系 樹脂;ポリエチレンワックス、アミドワックス等の固形 ワックス類;弗素系、燐酸エステル系の界面活性剤等を 挙げることができる。剥離層の形成方法としては、前記 素材を溶媒に溶解又はラテックス状に分散したものをブ レードコーター、ロールコーター、バーコーター、カー テンコーター、グラビアコーター、等の塗布法、ホット メルトによる押出しラミネーション法などが適用でき、 クッション層上に塗布し形成することができる。又は、 仮ベース上に前記素材を溶媒に溶解又はラテックス状に 分散したものを、上記の方法で塗布したものとクッショ ン層とを貼り合わせた後に仮ベースを剥離して形成する 方法がある。

【0113】前記熱転写シートと組み合わされる受像シートは、受像層がクッション層を兼ねた構成であってもよく、その場合は、受像シートは、支持体/クッション性受像層、あるいは支持体/下塗り層/クッション性受像層の構成であってもよい。この場合も、印刷本紙への再転写が可能なようにクッション性受像層が剥離可能に設けられていることが好ましい。この場合、印刷本紙へ再転写後の画像は光沢に優れた画像となる。尚、クッシ 50

ョン性受像層の厚みは $5\sim100\,\mu$ m、好ましくは $10\sim40\,\mu$ mである。

【0114】また、受像シートには、支持体の受像層が 設けられている面とは反対側の面に、バック層を設ける と、受像シートの搬送性が良化するので好ましい。前記 バック層には、界面活性剤や酸化錫微粒子等による帯電 防止剤、酸化珪素、PMMA粒子等によるマット剤を添 加すると、記録装置内での搬送性を良化させる点で好ま しい。前記添加剤はバック層のみならず、必要によって 受像層その他の層に添加することもできる。添加剤の種 類についてはその目的により一概には規定できないが、 例えば、マット剤の場合、平均粒径0.5~10μmの 粒子を層中、0.5~80%程度添加することができ る。帯電防止剤としては、層の表面抵抗が23℃、50 % R H の条件で 1 0 12 Ω以下、より好ましくは 1 09 Ω 以下となるように、各種界面活性剤、導電剤の中から適 宜選択して用いることができる。尚、受像シートにカラ ーフィルターを形成する場合は、その透明性が確保され る範囲で上記添加剤が用いられることが好ましい。

【0115】バック層に用いられるバインダーとして は、ゼラチン、ポリビニルアルコール、メチルセルロー ス、ニトロセルロース、アセチルセルロース、芳香族ポ リアミド樹脂、シリコーン樹脂、エポキシ樹脂、アルキ ド樹脂、フェノール樹脂、メラミン樹脂、弗素樹脂、ポ リイミド樹脂、ウレタン樹脂、アクリル樹脂、ウレタン 変性シリコーン樹脂、ポリエチレン樹脂、ポリプロピレ ン樹脂、ポリエステル樹脂、テフロン樹脂、ポリビニル プチラール樹脂、塩化ビニル系樹脂、ポリビニルアセテ ート、ポリカーボネート、有機硼素化合物、芳香族エス テル類、弗化ポリウレタン、非晶性環状ポリオレフィン など汎用ポリマーを使用することができる。バック層の バインダーとして架橋可能な水溶性バインダーを用い、 架橋させることは、マット剤の粉落ち防止やバックコー トの耐傷性の向上に効果がある。又、保存時のブロッキ ングにも効果が大きい。この架橋手段は、用いる架橋剤 の特性に応じて、熱、活性光線、圧力の何れか一つ又は 組み合わせなどを特に限定なく採ることができる。場合 によっては、支持体への接着性を付与するため、支持体 のバック層を設ける側に任意の接着層を設けてもよい。 【0116】バック層に好ましく添加されるマット剤と しては、有機又は無機の微粒子が使用できる。有機系マ ット剤としては、ポリメチルメタクリレート (PMM A)、ポリスチレン、ポリエチレン、ポリプロピレン、 その他のラジカル重合系ポリマーの微粒子、ポリエステ ル、ポリカーボネートなど縮合ポリマーの微粒子などが 挙げられる。バック層は 0. 5~5 g/m 程度の付量で 設けられることが好ましい。0.5g/mf未満では塗布 性が不安定で、マット剤の粉落ち等の問題が生じ易い。 又、5g/mを大きく超えて塗布されると好適なマット

剤の粒径が非常に大きくなり、保存時にバックコートに

速度で、一定の荷重を掛けながら昇温し、対象物の位相

を観測することにより求める。本発明においては、測定

対象物の位相が変化し始める温度を以てTMA軟化点と

よる受像層面のエンボス化が生じ、特に薄膜の画像形成 層を転写する熱転写では記録画像の抜けやムラが生じ易 くなる。マット剤は、その数平均粒径が、バック層のバ インダーのみの膜厚よりも2. 5~20μm大きいもの が好ましい。マット剤の中でも、8μm以上の粒径の粒 子が5mg/m以上が必要で、好ましくは $6\sim600m$ g/mである。これによって特に異物故障が改善され る。又、粒径分布の標準偏差を数平均粒径で割った値 σ /rn(=粒径分布の変動係数)が0.3以下となるよ うな、粒径分布の狭いものを用いることで、異常に大き い粒径を有する粒子により発生する欠陥を改善できる 上、より少ない添加量で所望の性能が得られる。この変 動係数は0.15以下であることが更に好ましい。

【0117】バック層には、搬送ロールとの摩擦帯電に よる異物の付着を防止するため、帯電防止剤を添加する ことが好ましい。帯電防止剤としては、カチオン系界面 活性剤、アニオン系界面活性剤、非イオン系界面活性 剤、高分子帯電防止剤、導電性微粒子の他、「1129 0の化学商品」化学工業日報社、875~876頁等に 記載の化合物などが広く用いられる。バック層に併用で きる帯電防止剤としては、上記の物質の中でも、カーボ ンブラック、酸化亜鉛、酸化チタン、酸化錫などの金属 酸化物、有機半導体などの導電性微粒子が好ましく用い られる。特に、導電性微粒子を用いることは、帯電防止 剤のバック層からの解離がなく、環境によらず安定した 帯電防止効果が得られるために好ましい。又、バック層 には、塗布性や離型性を付与するために、各種活性剤、 シリコーンオイル、弗素系樹脂等の離型剤などを添加す ることも可能である。バック層は、クッション層及び受 像層のTMA (Thermomechanical Analysis) により測 定した軟化点が70℃以下である場合に特に好ましい。 【0118】 TMA軟化点は、測定対象物を一定の昇温

実施例1

-1. 熱転写シートの作成

1-1. クッション層の作製

クッション層形成用塗布液の組成

塩化ビニルー酢酸ビニル共重合体

(日信化学(株)製、MPR-TSL)

可塑剤 6官能アクリレート系モノマー

(日本化薬(株)製、DPCA-120、分子量1947)

界面活性剤

0.4部

10部

200部

(メガファックF-177、大日本インキ化学工業(株)製)

メチルエチルケトン

75部

25部

12部

これを厚み100μmの2軸延伸PETベースに塗布、乾燥膜 厚が約20μmとなるように塗布量を調節した。

【0122】1-2. 光熱変換層の作製

下記の各成分をスターラーで攪拌しながら混合して光熱 変換層形成用塗布液を調製した。

1) 光熱変換層形成用塗布液の調製

塗布液組成

赤外線吸収色素(NK-2014、日本感光色素(株)製) バインダー (リカコートSN-20、新日本理化(株)製)

N-メチル-2-ピロリドン 2000部

定義する。TMAによる軟化点の測定は、理学電気社製 Thermoflexなどの装置を用いて行うことがで 【0119】前記熱転写シートと前記受像シートは、熱 転写シートの画像形成層と受像シート又はその受像層と を重ね合わせた積層体として、画像形成に利用され得

る。熱転写シートと受像シートとの積層体は、各種の方 法によって形成することができる。例えば、熱転写シー トの画像形成層と受像シート又はその受像層とを重ね て、加圧加熱ローラに通すことによって容易に得ること ができる。この場合の加熱温度は160℃以下、もしく は130℃以下が好ましい。

【0120】積層体を得る別の方法として、前述した真 空密着法も好適に用いられる。真空密着法は、真空引き 用のサクション孔が設けられたドラムの上に、先ず受像 シートを巻き付け、次いでその受像シートよりややサイ ズの大きな熱転写シートを、スクイーズローラーで空気 を均一に押し出しながら受像シートに真空密着させる方 法である。また別の方法としては、金属ドラムの上に受 像シートを引っ張りつつ機械的に貼り付け、更にその上 に熱転写シートを同様に機械的に引っ張りつつ貼り付 け、密着させる方法もある。これらの方法の中で、ヒー トローラー等の温度制御が不要で、迅速・均一に積層し やすい点で、真空密着法が特に好ましい。

[0121]

【実施例】以下に、本発明の実施例を説明するが、本発 明はこれらの実施例に何ら限定されるものではない。 尚、文中で特に断りのない限り「部」は「質量部」を意 味する。

界面活性剤

1部

(メガファックF-177、大日本インキ化学工業(株)製)

2) 支持体表面への光熱変換層の形成

上記クッション層塗布表面上に、上記の塗布液を回転塗布機(ホワイラー)を用いて塗布した後、塗布物を100℃のオープン中で2分間乾燥して、該支持体上に光熱変換層を形成した。得られた光熱変換層は、波長700~1000nmの範囲では830nm付近に吸収極大があり、その吸光度(光学密度:OD)をマクベス濃度計で測定したところ、OD=1.0であった。膜厚は、走10

査型電子顕微鏡により、光熱変換層の断面を観察したところ、平均で 0.3μ mであった。

42

【0123】1-3. 画像形成層の作製

3) 画像形成層形成用塗布液の調製

下記の各成分をペイントシェーカー(東洋精機(株) 製)で2時間分散処理した後、ガラスビーズを除去し、 レッド顔料分散母液を調製した。

顔料分散母液組成

ポリビニルブチラール(電気化学工業(株)製、デンカブチラール#2000-L、ビカット軟化点57℃)の20質量%n-プロピルアルコール溶液

12.6部

色材

イルガジン・レッドBPT(赤色)

24部0.8部

分散助剤 (ソルスパースS-20000、ICI (株) 製)

nープロピルアルコール

110部

ガラスビーズ

100部

下記の各成分をスターラーで攪拌しながら混合して、レ 20 ッド画像形成層形成用塗布液を調製した。

塗布液組成

上記顔料分散母液

20部

nープロピルアルコール

60部

界面活性剤

0.05部

(メガファックF-176 PF、大日本インキ化学工業 (株) 製)

以下同様にしてグリーン色で銅フタロシアニン(緑色)顔料、ブルー色でスーダンブルー(青色)を使用して画像形成塗布液を調製した。

4) 光熱変換層表面へのレッド画像形成層の形成前記の光熱変換層の表面に、上記塗布液を塗布した後、塗布物を100℃のオーブン中で2分間乾燥して、光熱変換層の上にレッド画像形成層(顔料64.2重量%、ポリビニルブチラール33.7重量%)を形成した。得られた画像形成層の吸光度(光学密度:OD)をマクベス濃度計TD504(B)で測定したところ、OD=0.7であった。膜厚は、前記と同様にして測定したと

ころ、平均で0.4 µ mであった。以上の工程により、支持体の上に、クッション層、光熱変換層、及びレッド画像形成層がこの順に設けられた熱転写シートを作成した。同様にしてグリーン画像形成層、ブルー画像形成層 を有する転写しートを作製した。

5) ブラック画像形成層用塗布液の調製

下記の各成分を、ニーダーのミルに入れ、少量の溶剤を 添加しつつ剪断力を加え、分散前処理を行った。その分 散物に、更に溶剤を加えて、最終的に下記組成となるよ うに調製し、サンドミル分散を2時間行い、顔料分散母 液を得た。

[ブラック顔料分散母液組成]

組成1

・ポリビニルプチラール

12.6部

(「エスレックB BL-SH」、積水化学工業(株)製)

・Pigment Black (ピグメントブラック) 7 (カーボンブラック C. I. No. 77266) 4.5

部

(「三菱カーボンブラック MA100」、三菱化学(株)製、PVC黒度:1)

・分散助剤

0.8部

(「ソルスパースS-20000」、ICI(株)製)

· nープロピルアルコール

79.4部

組成2

・ポリビニルブチラール

12.6部

```
(「エスレックB BL-SH」、積水化学工業(株)製)
           ・Pigment Black (ピグメントブラック) 7 (カーボンブラック
           C. I. No. 77266)
          部
           (「三菱カーボンブラック #5」、三菱化学(株)製、PVC黒度:10)
           ・分散助剤
                                              0.8部
           (「ソルスパースS-20000」、ICI(株)製)
           ・nープロピルアルコール
                                             79.4部
【0124】次に、下記の成分をスターラーで攪拌しな
                               た。
がら混合して、ブラック画像形成層用塗布液を調製し
           [ブラック画像形成層用塗布液組成]
          ・上記プラック顔料分散母液
                                            185.7部
            組成1:組成2=70:30 (部)
           ・ポリビニルブチラール
                                             11.9部
           (「エスレックB BL-SH」、積水化学工業(株)製)
          ・ワックス系化合物
           (ステアリン酸アミド「ニュートロン2」、日本精化(株)製)
                                              1. 7部
           (ベヘン酸アミド「ダイヤミッドBM」、日本化成 (株) 製)
                                              1. 7部
           (ラウリル酸アミド「ダイヤミッドY」、日本化成(株)製)
                                              1. 7部
           (パルミチン酸アミド「ダイヤミッド K P」、日本化成 (株) 製)
                                              1. 7部
           (エルカ酸アミド「ダイヤミッドL-200」、日本化成(株) 製)
                                              1. 7部
           (オレイン酸アミド「ダイヤミッド〇-200」、日本化成(株)製)1. 7部
          ・ロジン
                                             11.4部
           (「KE-311」、荒川化学(株)製)
            (成分:樹脂酸80~97%;樹脂酸成分:アピエチン酸30~40%、ネオアピエチ
          ン酸10~20%、ジヒドロアビエチン酸14%、テトラヒドロアビエチン酸14%)
          ・界面活性剤
                                              2. 1部
           (「メガファックF-176PF」、固形分20%、大日本インキ化学工業社製
          ・無機顔料
                                              7. 1部
           (「MEK-ST」、30%メチルエチルケトン溶液、日産化学 (株) 社製)
          ・nープロピルアルコール
                                             1050部
          ・メチルエチルケトン
                                              295部
上記レッド画像形成層を有する熱転写シートの形成と同
                                【0125】-2. 受像シートの作成
```

様にして前記光熱変換層の表面に、上記ブラック画像形 成層用塗布液を塗布し、ブラック画像形成層を有する熱 転写シートを作製した。

受像シート支持体として厚み188 μ mの日本ゼオン社 製非晶性環状ポリオレフィンであるZEONEXを使用 しその上に下記組成物層(厚み1μm)を設けた。

ポリビニルブチラール (電気化学工業 (株) 製、デンカ

16部

0.5部

プチラール#2000-L)

界面活性剤 (メガファックF-177、大日本インキ化学工業(株)製)

n-プロピルアルコール

100部

【0126】-3. 画像の形成

直径1mmの真空吸着用のサクション穴(3cm×3c mのエリアに1個の面密度) が設けられた直径25cm の回転ドラムに、上記受像シート(25cm×35c m)を巻き付け、吸着させた。次いで30cm×40c mの熱転写シートを受像シートから均等にはみ出すよう に重ね、スクイズローラーでスクイーズさせつつ、サク ション孔に空気が吸われるようにして熱転写シートを密 50 に移動させながら(副走査)、積層体へのレーザー画像

着させ、受像シートと熱転写シートとを積層した。サク ション孔が塞がれた状態での減圧度は1気圧に対して一 150mmHg (≒81.13kPa) であった。つい で、上記のドラムを回転させ、ドラム上の積層体の表面 に外側から波長830nmの半導体レーザー光を、光熱 変換層の表面で 7 μ mのスポットとなるように集光し、 回転ドラムの回転方向(主走査方向)に対して直角方向 記録を行った。レーザー記録は、図3に示すカラーフィルター画像に相当する画像をレーザー光により像様に熱転写シート側から照射することで行った。レーザー照射条件は以下のとおりである。

レーザパワー: 110mW

主走査速度: 4 m/秒

副走査ピッチ(1回転当たりの副走査量): 6.35μ

温度、湿度: 25℃、50%RH

上記のレーザ画像記録を行った積層体をドラムから取り 外し、受像シートと熱転写シートとを手で引きはがした ところ、画像(画線)形成層のレーザ照射部のみが転写 シートから受像シートに転写されているのが確認され た。

実施例2

実施例1において、受像シートの支持体として同厚みの JSR社製Artonを用いた以外は実施例1と同様に 受像シート上に画像を形成した。

比較例

実施例1において、受像シートの支持体として同厚みの ₂₀ PETを用いた以外は実施例1と同様に受像シート上に画像を形成した。

【0127】-4.画像の評価方法

できた画像を250℃、1時間の条件下に放置し、画像の寸法変化、支持体との密着性、転写画像の形状、感度及び画素の位置精度を観察し、下記により評価した。 画像の寸法変化

○:500mm長に対して20µm以内

Δ:500mm長に対して20μmを越え100μm以内

×:500mm長に対して100 μ mを越える

支持体との密着性

〇:強固に付着(目視判定)

△:付着しているが傷つき易い

×:付着せず

転写画像の形状

〇:本来の形状を維持(目視判定)

△:エッジ部にゆがみを生じる

×:形状が完全に変形する

感度

〇: 実用上十分な感度を有する

△:やや劣る

×:実用に耐えない

画素の位置精度

○:本来あるべき位置からのずれが20 μ m以内

Δ:本来あるべき位置からのずれが20μmを越え10

0 µ m以内

×:本来あるべき位置からのずれが100μmを越える

[0 1 2 8]

【表1】

評価項目	実施例1	実施例2	比較例
画像の寸法変化	0	0	△~×
支持体との密着性	0	0	△~ ×
転写画像の形状	0	0	△~ ×
感度	0	0	Δ~×
画素の位置精度	0	0	Δ~×

46

【0129】上表より、本発明で得られた画像形成品は上記条件に付された後でも初期のレベルを維持し、良好であったが、比較品は実施例に比べてどの項目も劣っていた。

[0130]

【発明の効果】本発明によれば、CTP時代のフイルム レスに対応し校正刷りやカラーアートから代わるコント ラクトプルーフを提供でき、このプルーフは顧客の承認 を得るための印刷物やカラーアートと一致した色再現性 を再現できる。印刷インクと同じ顔料系色材を使用し、 本紙への転写が可能であり、モワレ等のないDDCPシ ステムを提供できる。また本発明によれば本紙転写が可 能であり、印刷インクと同じ顔料系色材を使用し、印刷 物近似性の高い大サイズ (A 2 / B 2) デジタルダイレ クトカラープルーフシステムを提供できる。また、本発 明は上記画像形成材料を用いることにより種々の表示装 置に用いられるカラーフィルターを可撓性フィルム上に 作製できる。本発明はレーザー薄膜熱転写方式を用い、 顔料色材を使用し、実網点記録を行って本紙転写できる 方式である。異なる温湿度条件下において、マルチビー ム2次元配列であるレーザー光により、高エネルギーで レーザー記録した場合も、画質が良好であり、安定した 転写濃度の画像を受像シート上に形成し得る、多色画像 30 形成方法及びそれを用いたカラーフィルター形成方法を 提供することができる。

【図面の簡単な説明】

【図1】レーザーを用いた薄膜熱転写による多色画像形成の機構の概略を説明する図である。

【図2】レーザー熱転写用記録装置の構成例を示す図で ある。

【図3】カラーフィルターの画素の形成例を示す。

【符号の説明】

- 1 記録装置
- 2 記録ヘッド
 - 3 副走査レール
 - 4 記録ドラム
 - 5 熱転写シートローディングユニット
 - 6 受像シートロール
 - 7 搬送ローラ7
 - 8 スクイーズローラー
 - 9 カッター
 - 10 熱転写シート

10K、10C、10M、10Y 熱転写シートロール

io 12 支持体

- 14 光熱変換層
- 16 画像形成層
- 20 受像シート
- 22 受像シート用支持体
- 2 4 受像層
- 30 積層体
- 3 1 排出台
- 32 廃棄口

【図1】

【図3】

- 3 3 排出口
- 34 エアー
- 35 廃棄箱
- 41 カラーフィルター
- 42 レッドフィルターの画素
- 43. グリーンフィルターの画素
- 4 4 ブルーフィルターの画素
- 44 ブラックマトリックス

【図2】

フロントページの続き

(72)発明者 佐藤 守正

静岡県富士宮市大中里200番地 富士写真 フイルム株式会社内 Fターム(参考) 2C065 AC01 CA03 CA08

2H048 BA64 BB02 BB15 BB42

2H111 AA01 AA11 AA12 AA26 AA35

BA07 CA03 CA12 CA25 CA41

CA42 CA45