4COSC007C Mathematics for Computing

Tutorial 5

- 1. For each of the following graphs represented in the diagrams below do the following:
 - form set V of all its nodes and set E of all its edges
 - determine if it is a directed or undirected graph
 - determine if it is a cyclic or acyclic graph, for a cyclic graph give an example of a cyclic path in it
 - determine a pattern a graph can represent

- 2. For each of the following graphs defined by the given set of nodes, V, and set of edges, E, do the following:
 - draw its representation corresponding to the definition of V and E
 - determine if it is a directed or undirected graph
 - determine if it is a cyclic or acyclic graph, for a cyclic graph give an example of a
 - cyclic path in it.

```
a. V = {d,e,f,g}; E = {(d,e), (e,f), (f,g),(g,d)}
b. V = {a,b,c,d,e}; E = {(a,b), (a,c), (a,d), (a,e), (b,c), (c,d), (d,e)}
c. V = {a,b,c}; E = {(a,a), (a,b), (b,b), (b,a), (b, c), (c,c), (c,b), (a,c),(c,a)}
```

3. We analyze the database for the National Express for the journeys from London between 8 am and 9 am on Friday 28th October 2016 to the following destinations: **Manchester, Birmingham. Bristol, Southampton, Glasgow, Edinburgh**. Consider a graph, G, with the following definition of sets of nodes, V, and edges, E:

 $V = \{Manchester, Birmingham. Bristol, Southampton, Glasgow, Edinburgh\}; E is a set of all pairs <math>(x,y)$, such that $x \in V$, $y \in V$ and the price for journey from London to x is less than the price for a journey from London to y

Manchester, at 9	£15.00	Southampton at 8 am	£7.20
Birmingham, at 8 am	£15.70	Glasgow at 8 am	£23.00
Bristol, at 8.30 am	£15.70	Edinburgh at 9 am	£30.00

Your task is

- a. To list all pairs $(x, y) \in E$
- b. To draw the representation of this graph showing its nodes and edges.

- 4. In the figures below you will see attempts to draw rooted trees. Justify if graphs drawn are trees. For those cases where you established trees identify
 - All leaves of a tree
 - Depth of a tree
 - If a tree is a binary tree
 - a.) In a graph below we attempt to have a tree with root nodes 1 and 2

b.) In a graph below we attempt to have a tree with root node 1 and a subtree with the root

c.) In a graph below we attempt to have a tree with root node 1 and a subtree with the root node 2

d.) In a graph below we attempt to have a tree with root node 1 and a subtree with the root node 7

e.) In a graph below we attempt to have a tree with root node 1 and a subtree with the root node 7

f.) In a graph below we attempt to have a tree with root node 1

g.) In a graph below we attempt to have a tree with root node 1

h.) In a graph below we attempt to have a tree with root node 1

