Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Musterlösung zu Übungsblatt 12

12.07.21

Aufgabe 1 (Signatur)

Wir betrachten die Bilinearform

$$\beta \colon \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$$

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \mapsto -x_1(y_1 + y_2 + y_4) - y_1(x_1 + x_2 + x_4) + 2(x_2y_3 + x_3y_3 + x_3y_2)$$

- a) Bestimmen Sie die Signatur und den Rang von β . Ist β entartet?
- b) Bestimmen Sie jeweils eine Zerlegung $\mathbb{R}^4 = U_+ \oplus U_- \oplus U_0$ in Untervektorräume $U_+, U_-, U_0 \subseteq \mathbb{R}^4$, sodass $\beta|_{U_+ \times U_+}$ positiv definit ist, $\beta|_{U_- \times U_-}$ negativ definit ist, $\beta|_{U_0 \times U_0} = 0$ gilt, und außerdem
 - i) $\dim(U_+) = 1$, $\dim(U_-) = 1$, $\dim(U_0) = 2$ gilt.
 - ii) $\dim(U_+) = 2$, $\dim(U_-) = 0$, $\dim(U_0) = 2$ gilt.

Hinweis: Wie muss die Fundamentalmatrix $FM_B(\beta)$ bezüglich einer Basis B eines der Unterräume aussehen? Können die Unterräume orthogonal zueinander sein?

Lösung zu Aufgabe 1

a) Wir lesen die Fundametalmatrix bezüglich der Standardbasis abd:

$$FM_{\mathsf{E}}(\beta) = \begin{pmatrix} -2 & -1 & 0 & -1 \\ -1 & 0 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

Wir führen simultane Zeilen-und Spaltenoperationen durch, um einen Basiswechsel zu einer

Diagonalform auzuführen:

An den Diagonaleinträgen liest man nun ab: Die symmetrische Bilinearform β hat Rang 4 und Signatur 2, und ist nicht entartet.

- b) i) Nach einem Blick auf das Vorzeichen der Diagonaleinträge von $FM_{\mathsf{E}}(\beta)$ wählen wir $U_+ := \mathrm{LH}(e_3), \ U_- := \mathrm{LH}(e_1), U_0 := \mathrm{LH}(e_2, e_4)$. Damit gilt $\mathbb{R}^4 = U_+ \oplus U_- \oplus U_0$. Wegen $\beta(e_3, e_3) > 0$, $\beta(e_1, e_1) < 0$ und $\beta(e_2, e_2) = \beta(e_2, e_4) = \beta(e_4, e_4) = 0$ sind die Bedingungen der Aufgabenstellung damit erfüllt.
 - ii) Wir können weiterhin $U_0 := LH(e_2, e_4)$ wählen (dies entspricht dem Block aus Nullen unten rechts in der folgenden Rechnung) und versuchen durch Basiswechsel in der Fundamentalmatrix einen positiv definiten 2×2 -Block oben links zu erzeugen:

$$\begin{pmatrix}
-2 & -1 & 0 & -1 \\
-1 & 0 & 2 & 0 \\
0 & 2 & 2 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}
\leftarrow
\begin{pmatrix}
-2 & 0 & -1 & -1 \\
0 & 2 & 2 & 0 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}
\leftarrow
\begin{pmatrix}
-2 & 0 & -1 & -1 \\
0 & 2 & 2 & 0 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}
\leftarrow
\begin{pmatrix}
2 & 0 & -1 & -1 \\
0 & 2 & 2 & 0 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}$$

$$e_1 \quad e_2 \quad e_3 \quad e_4$$

$$e_1 \quad e_3 \quad e_2 \quad e_4$$

Für die Basis $\mathsf{B} \coloneqq (e_1 - 2e_4, e_3)$ des Unterraums $U_+ \coloneqq \mathrm{LH}(e_1 - 2e_4, e_3)$ gilt somit $\mathrm{FM}_{\mathsf{B}}(\beta|_{U_+ \times U_+}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ und $\beta|_{U_+ \times U_+}$ ist damit positiv definit.

Weiterhin wählen wir $U_- := \{0\}$. Damit gilt $\mathbb{R}^4 = U_+ \oplus U_0 = U_+ \oplus U_- \oplus U_0$ und die Bedingungen der Aufgabenstellung sind erfüllt.

Es sei V ein \mathbb{R} -Vektorraum, $\beta \colon V \times V$ eine Bilinearform, $q = q_{\beta}$ die zugehörige quadratische Form, $\varphi \colon V \to \mathbb{R}$ eine Linearform, $c \in \mathbb{R}$ eine Konstante und

$$M := \{x \in V \mid q(x) + 2\varphi(x) + c = 0\}$$

die zugehörige Quadrik.

Wir sagen

• M ist punktsymmetrisch am Punkt $p \in V$, wenn

$$\forall x \in V : (p + x \in M \iff p - x \in M)$$

gilt.

• M ist verschiebungssymetrisch in Richtung $v \in V$, wenn

$$\forall x \in V : (x \in M \iff x + v \in M)$$

gilt.

• M hat volle Dimension, wenn es keinen affinen Unterraum $A \subsetneq V$ gibt, der $M \subseteq A$ erfüllt. Hinweis: Daraus folgt insbesondere LH(M) = V.

Beweisen Sie die folgenden Aussagen:

- a) Es gibt Quadriken, die an keinem Punkt punktsymmetrisch sind. (Geben Sie ein Beispiel an und begründen Sie).
- b) Falls $\ker(\varphi) \setminus \text{Null}(\beta) \neq \emptyset$ gilt oder q indefinit ist, ist M nicht leer. Hinweis: Wählen Sie ein geeignetes $v \in V$ und zeigen Sie dann, dass es ein $\alpha \in \mathbb{R}$ mit $\alpha v \in M$ gibt.
- c) Falls $v \in \text{Null}(\beta) \cap \ker(\varphi)$ gilt, ist M verschiebungssymetrisch in Richtung $v \in V$.
- d) Falls M volle Dimension hat und verschiebungssymetrisch in Richtung $v \in V$ ist, gilt $v \in \text{Null}(\beta) \cap \ker(\varphi)$.
- e) Falls $\varphi = 0$ gilt und M volle Dimension hat, ist M punktsymmetrisch am Punkt p genau dann, wenn $p \in \text{Null}(\beta)$ gilt.

Lösung zu Aufgabe 2

Zur Erinnerung: Für eine symmetrische Bilinearform β und die zugehörige quadratische Form $q = q_{\beta}$ gilt die binomische Formel $q(x + y) = q(x) + 2\beta(x, y) + q(y)$.

- a) Wir setzen $V = \mathbb{R}^2$, $q \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2$, $\varphi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -x_2$. Dann ist $M = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_2 = x_1^2 \right\}$ eine nach oben geöffnete Parabel. Nach einer Punktspiegelung erhielte man eine nach unten geöffnete Parabel, daher ist M nicht punktsymmetrisch.
- b) Es gilt

$$\alpha v \in M \iff q(\alpha v) + 2\varphi(\alpha v) + c = 0$$

$$\iff \alpha^2 q(v) + 2\alpha \varphi(v) + c = 0$$

- Angenommen, es gibt ein $v \in \text{Null}(\beta) \setminus \ker(\varphi)$. Dann ist q(v) = 0, $\varphi(v) \neq 0$ und mit $\alpha = -\frac{c}{2\varphi(v)}$ gilt $\alpha v \in M$, also $M \neq \emptyset$.
- Angenommen, q ist indefinit und $c \leq 0$. Dann wählen wir ein $v \in V$ mit q(v) > 0. Damit ist die Diskriminante der quadratischen Gleichung $\alpha^2 q(v) + 2\alpha \varphi(v) + c = 0$ durch $4\varphi(v)^2 4q(v)c > 0$ gegeben und die Gleichung hat deshalb zwei Lösungen α . Für diese Werte gilt $\alpha v \in M$, also $M \neq \emptyset$.
- Angenommen, q ist indefinit und $c \ge 0$. Dann wählen wir ein $v \in V$ mit q(v) < 0 und argumentieren analog zum letzten Fall.
- c) Aus $v \in \text{Null}(\beta) \cap \text{ker}(\varphi)$ folgt

$$q(x+v) + 2\varphi(x+v) + c = q(x) + \underbrace{2\beta(x,v) + q(v)}_{=0 \text{ da } v \in \text{Null}(\beta)} + 2\varphi(x) + \underbrace{2\varphi(v)}_{=0 \text{ da } v \in \text{ker}(\varphi)} + c$$
$$= q(x) + 2\varphi(x) + c$$

und damit $x + v \in M \iff x \in M$.

d) Aus $x + v \in M$ für alle $x \in M$ folgt

$$q(x+v) + 2\varphi(x+v) + c = q(x) + 2\varphi(x) + c$$

$$\implies q(x) + 2\beta(v, x) + q(v) + 2\varphi(x) + 2\varphi(v) + c = q(x) + 2\varphi(x) + c$$

$$\implies 2\beta(v, x) = -q(v) - 2\varphi(v)$$

für alle $x \in M$. Da der Ausdruck $2\beta(v,x)$ linear in x und die rechte Seite konstant ist, muss dies auch für alle $x \in \mathrm{LH}(M) = V$ gelten. Setzt man x = 0, so folgt daraus $-q(v) - 2\varphi(v) = 0$ und daher $\beta(v,x) = 0$ für alle $x \in V$, also $v \in \mathrm{Null}(\beta)$. Daraus folgt auch q(v) = 0 und damit $\varphi(v) = 0$, also $v \in \ker(\varphi)$.

e) Angenommen, es gilt $\varphi = 0$. Dann gelten für $p, x \in V$ die Äquivalenzen

$$\begin{array}{lll} p+x\in M & \iff q(p+x)+c=0 & \iff q(p)+2\beta(x,p)+q(x)+c=0, \\ p-x\in M & \iff q(p-x)+c=0 & \iff q(p)-2\beta(x,p)+q(x)+c=0. \end{array}$$

- Für $p \in \text{Null}(\beta)$ gilt $2\beta(x,p) = -2\beta(x,p) \implies \beta(x,p) = 0$, also $p + x \in M \iff p x \in M$. Daher ist M punktsymmetrisch an p.
- Es sei nun M punktsymmetrisch an p. Für alle $x \in M p$ gilt $p + x \in M \implies p x \in M \implies \beta(x,p) = 0$. Da der Ausdruck $\beta(x,p)$ linear in x ist, gilt $\beta(x,p) = 0$ sogar für alle $x \in LH(M-p)$.

Wäre nun $\mathrm{LH}(M-p)\neq V$, so wäre M im affinen Unterraum $\mathrm{LH}(M-p)+p\subsetneq V$ enthalten, im Widerspruch zur vollen Dimension. Damit gilt $\beta(x,p)=0$ für alle $x\in\mathrm{LH}(M-p)=V$ und somit $p\in\mathrm{Null}(\beta)$.