

These are the slides of the lecture

Pattern Recognition

Winter term 2020/21 Friedrich-Alexander University of Erlangen-Nuremberg.

These slides are are release under Creative Commons License Attribution CC BY 4.0.

Please feel free to reuse any of the figures and slides, as long as you keep a reference to the source of these slides at https://lme.tf.fau.de/teaching/acknowledging the authors Niemann, Hornegger, Hahn, Steidl, Nöth, Seitz, Rodriguez, and Maier.

Erlangen, October 28, 2020 Prof. Dr.-Ing. Andreas Maier

Pattern Recognition (PR)

Prof. Dr.-Ing. Andreas Maier
Pattern Recognition Lab (CS 5), Friedrich-Alexander-Universität Erlangen-Nürnberg
Winter Term 2020/21

Model Assessment

No Free Lunch

- In the past lectures, we have come across many learning algorithms and classification techniques.
- They have properties such as
 - low computational complexity
 - · incorporation of prior knowledge
 - linearity / non-linearity
 - · optimality with respect to certain cost functions, etc.
- Some compute smooth decision boundaries, some compute rather non-smooth decision boundaries.

No Free Lunch

- In the past lectures, we have come across many learning algorithms and classification techniques.
- They have properties such as
 - low computational complexity
 - incorporation of prior knowledge
 - linearity / non-linearity
 - optimality with respect to certain cost functions, etc.
- Some compute smooth decision boundaries, some compute rather non-smooth decision boundaries.

We really have to ask:

Are there any reasons to favor one algorithm over another?

Theorem

Given a cost function $f \in \mathcal{F}$, an algorithm A and costs c_m for a specific sample that is iterated on m times.

The performance of an algorithm is the conditional probability $P(c_m|f, m, A)$.

Theorem

Given a cost function $f \in \mathscr{F}$, an algorithm A and costs c_m for a specific sample that is iterated on m times.

The performance of an algorithm is the conditional probability $P(c_m|f, m, A)$.

The No Free Lunch Theorem states that for any two algorithms A_1 and A_2 :

$$\sum_{f} P(c_{m}|f, m, A_{1}) = \sum_{f} P(c_{m}|f, m, A_{2})$$

Consequences for classification methods:

 If no prior assumptions about the problem are made, there is NO overall superior or inferior classification method!

Consequences for classification methods:

- If no prior assumptions about the problem are made, there is NO overall superior or inferior classification method!
- We should be skeptical regarding studies that demonstrate the overall superiority of a particular method.

Consequences for classification methods:

- If no prior assumptions about the problem are made, there is NO overall superior or inferior classification method!
- We should be skeptical regarding studies that demonstrate the overall superiority of a particular method.
- We have to focus on the aspects that matter most for the classification problem:
 - prior information
 - data distribution
 - · amount of training data
 - · cost functions

Off-Training Set Error

Off-training set error:

- Specifies the error on samples that are not contained within the training set.
- For large training data sets, the off-training set is necessarily small.
- Used to compare general classification performance of algorithms.

• Consider a two-class problem with training data set \mathscr{D} consisting of patterns \mathbf{x}_i and labels $y_i = \pm 1$.

- Consider a two-class problem with training data set \mathcal{D} consisting of patterns \mathbf{x}_i and labels $y_i = \pm 1$.
- y_i is generated by an unknown target function: $F(\mathbf{x}_i) = y_i$.

- Consider a two-class problem with training data set \mathcal{D} consisting of patterns \mathbf{x}_i and labels $y_i = \pm 1$.
- y_i is generated by an unknown target function: $F(\mathbf{x}_i) = y_i$.
- The expected off-training set classification error for the k-th learning algorithm is:

$$E_k\{e|F,n\} = \sum_{\boldsymbol{x} \notin \mathscr{D}} p(\boldsymbol{x}) \left[1 - \delta(F(\boldsymbol{x}),h(\boldsymbol{x}))\right] p_k(h(\boldsymbol{x})|\mathscr{D})$$

where e is the error and h(x) the hypothesis on the data.

possible learning systems

impossible learning systems

problem space (not feature space)

Fig.: Each square represents all possible classification problems. +/- indicates better/worse generalization than the average (adapted from Duda, Hart).

• The No Free Lunch Theorem states that there is no general best classifier.

- The No Free Lunch Theorem states that there is no general best classifier.
- But we have to assess the quality of a learning algorithm in terms of the alignment to the classification problem.

- The No Free Lunch Theorem states that there is no general best classifier.
- But we have to assess the quality of a learning algorithm in terms of the alignment to the classification problem.
- This can be achieved using the bias-variance relation.

- The No Free Lunch Theorem states that there is no general best classifier.
- But we have to assess the quality of a learning algorithm in terms of the alignment to the classification problem.
- This can be achieved using the bias-variance relation.

Bias:

 The bias measures the accuracy or quality of the match: high bias means poor match.

- The No Free Lunch Theorem states that there is no general best classifier.
- But we have to assess the quality of a learning algorithm in terms of the alignment to the classification problem.
- This can be achieved using the bias-variance relation.

Bias:

 The bias measures the accuracy or quality of the match: high bias means poor match.

Variance:

 The variance measures the precision of specificity for the match: high variance implies a weak match.

Bias and Variance for Regression

The bias-variance relation is very demonstrative in the context of regression:

• Let $g(\mathbf{x}; \mathcal{D})$ be the regression function.

Bias and Variance for Regression

The bias-variance relation is very demonstrative in the context of regression:

- Let $g(\mathbf{x}; \mathcal{D})$ be the regression function.
- The mean-square deviation from the true function F(x) is:

$$E_{\mathscr{D}}\left\{\left(g(\boldsymbol{x};\mathscr{D}) - F(\boldsymbol{x})\right)^{2}\right\}$$

$$= \underbrace{E_{\mathscr{D}}\left\{g(\boldsymbol{x};\mathscr{D}) - F(\boldsymbol{x})\right\}^{2}}_{\text{(bias)}^{2}} + \underbrace{E_{\mathscr{D}}\left\{\left(g(\boldsymbol{x};\mathscr{D}) - E_{\mathscr{D}}\left\{g(\boldsymbol{x};\mathscr{D})\right\}\right)^{2}\right\}}_{\text{variance}}$$

- Methods with high flexibility to adapt to the training data
 - generally have low bias
 - but yield high variance.

- Methods with high flexibility to adapt to the training data
 - · generally have low bias
 - but yield high variance.
- Methods with few parameters and less degrees of freedom
 - tend to have a high bias, as they may not fit the data well.
 - However, this does not change a lot between different data sets, so these methods generally have low variance.

- Methods with high flexibility to adapt to the training data
 - · generally have low bias
 - · but yield high variance.
- Methods with few parameters and less degrees of freedom
 - tend to have a high bias, as they may not fit the data well.
 - · However, this does not change a lot between different data sets, so these methods generally have low variance.
- Unfortunately, we can virtually never get both zero bias and zero variance!

- Methods with high flexibility to adapt to the training data
 - · generally have low bias
 - · but yield high variance.
- Methods with few parameters and less degrees of freedom
 - tend to have a high bias, as they may not fit the data well.
 - · However, this does not change a lot between different data sets, so these methods generally have low variance.
- Unfortunately, we can virtually never get both zero bias and zero variance!
- We need to have as much prior information about the problem as possible to reduce both values.

Bias and Variance for Classification

Assuming a two-class classification problem:

In a two-class problem, the target function changes to:

$$F(x) = p(y = 1|x) = 1 - p(y = -1|x)$$

Bias and Variance for Classification

Assuming a two-class classification problem:

• In a two-class problem, the target function changes to:

$$F(x) = p(y = 1|x) = 1 - p(y = -1|x)$$

• We cannot compare $g(\mathbf{x}; \mathcal{D})$ and $F(\mathbf{x})$ based on the mean-square error as in regression.

Bias and Variance for Classification

Assuming a two-class classification problem:

In a two-class problem, the target function changes to:

$$F(x) = p(y = 1|x) = 1 - p(y = -1|x)$$

- We cannot compare $g(\mathbf{x}; \mathcal{D})$ and $F(\mathbf{x})$ based on the mean-square error as in regression.
- For simplicity, let us assume identical priors: $p_1 = p_2 = 0.5$
 - The Bayes discriminant y_B has the threshold 0.5.
 - The Bayes decision boundary is the set of points for which F(x) = 0.5.

Boundary error

- $p(g(\mathbf{x}; \mathcal{D}))$ is the pdf of obtaining a particular estimate of the discriminant given \mathcal{D} .
- Because of random variations in the training set, the boundary error will depend upon $p(g(\mathbf{x}; \mathcal{D}))$.

$$p(g(\mathbf{x}; \mathcal{D}) \neq y_B) = \begin{cases} \int_{0.5}^{\infty} p(g(\mathbf{x}; \mathcal{D})) dg & \text{if } F(\mathbf{x}) < 0.5 \\ \int_{-\infty}^{0.5} p(g(\mathbf{x}; \mathcal{D})) dg & \text{if } F(\mathbf{x}) \leq 0.5 \end{cases}$$

14

15

Bias and Variance for Classification (cont.)

• Convenient assumption that $p(g(\mathbf{x}; \mathcal{D}))$ is a Gaussian:

$$p(g(\mathbf{x}; \mathcal{D}) \neq y_B) = \Phi\left[\underbrace{\operatorname{sgn}\left(F(\mathbf{x}) - \frac{1}{2}\right) \cdot \left(E_{\mathcal{D}}\{g(\mathbf{x}; \mathcal{D})\} - \frac{1}{2}\right)}_{\text{boundary bias}} \cdot \underbrace{\operatorname{var}\left(g(\mathbf{x}; \mathcal{D})\right)^{-1/2}}_{\text{variance}}\right]$$

where Φ is a nonlinear function:

• Convenient assumption that $p(g(\mathbf{x}; \mathcal{D}))$ is a Gaussian:

$$p(g(\mathbf{x}; \mathcal{D}) \neq y_B) = \Phi\left[\underbrace{\operatorname{sgn}\left(F(\mathbf{x}) - \frac{1}{2}\right) \cdot \left(E_{\mathcal{D}}\{g(\mathbf{x}; \mathcal{D})\} - \frac{1}{2}\right)}_{\text{boundary bias}} \cdot \underbrace{\operatorname{var}\left(g(\mathbf{x}; \mathcal{D})\right)^{-1/2}}_{\text{variance}}\right]$$

where Φ is a nonlinear function:

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_t^\infty e^{-\frac{1}{2}u^2} du$$

• $p(g(\mathbf{x}; \mathcal{D}) \neq y_B)$ represents the incorrect estimation of the Bayes boundary.

Conclusions:

• In regression the bias-variance relation is additive in (bias)² and variance.

Conclusions:

- In regression the bias-variance relation is additive in (bias)² and variance.
- For classification the relation is multiplicative and nonlinear.

Conclusions:

- In regression the bias-variance relation is additive in (bias)² and variance.
- · For classification the relation is multiplicative and nonlinear.
- In classification the sign of the boundary bias affects the role of the variance in the error.

16

Bias and Variance for Classification (cont.)

Conclusions:

- In regression the bias-variance relation is additive in (bias)² and variance.
- For classification the relation is multiplicative and nonlinear.
- In classification the sign of the boundary bias affects the role of the variance in the error.
- Therefore, low variance is generally important for accurate classification.

16

Bias and Variance for Classification (cont.)

Conclusions:

- In regression the bias-variance relation is additive in (bias)² and variance.
- For classification the relation is multiplicative and nonlinear.
- In classification the sign of the boundary bias affects the role of the variance in the error.
- Therefore, low variance is generally important for accurate classification.

Variance generally dominates bias in classification!

Bias and Variance for Classification (cont.)

Adapted from Duda, Hart

Next Time in Pattern Recognition

Resampling for Estimating Statistics

Problem:

 Determine the bias and variance for some learning algorithm applied to a new problem with unknown distributions.

Resampling for Estimating Statistics

Problem:

 Determine the bias and variance for some learning algorithm applied to a new problem with unknown distributions.

From what we have seen so far, bias and variance change with varying samples.

Resampling for Estimating Statistics

Problem:

 Determine the bias and variance for some learning algorithm applied to a new problem with unknown distributions.

From what we have seen so far, bias and variance change with varying samples.

Resampling techniques can be used to yield more informative estimates of a general statistics.

Resampling for Estimating Statistics (cont.)

Formally:

- Suppose we want to estimate a parameter θ that depends on a random sample set $X = (x_1, \dots, x_n)$.
- Assume we have an estimator $\phi_n(X)$ of θ but do not know its distribution.

Resampling for Estimating Statistics (cont.)

Formally:

- Suppose we want to estimate a parameter θ that depends on a random sample set $X = (x_1, \dots, x_n)$.
- Assume we have an estimator $\phi_n(X)$ of θ but do not know its distribution.

 Resampling methods try to estimate the bias and variance of φ_n(X) using subsamples from X.

Jackknife

Let $PS_i(X)$ be the *i*-th pseudovalue of $\phi_n(X)$:

$$PS_{i}(X) = n\phi_{n}(X) - (n-1)\phi_{n-1}(X_{(i)})$$

$$= \phi_{n}(X) - \underbrace{(n-1)(\phi_{n-1}(X_{(i)}) - \phi_{n}(X))}_{\text{bias}_{jack}}$$

where $X_{(i)} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ is the set without the *i*-th element.

Jackknife

Let $PS_i(X)$ be the *i*-th pseudovalue of $\phi_n(X)$:

$$PS_{i}(X) = n\phi_{n}(X) - (n-1)\phi_{n-1}(X_{(i)})$$

$$= \phi_{n}(X) - \underbrace{(n-1)(\phi_{n-1}(X_{(i)}) - \phi_{n}(X))}_{\text{bias}_{jack}}$$

where $X_{(i)} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ is the set without the *i*-th element.

Notes:

• $PS_i(X)$ can be interpreted as a bias-corrected version of $\phi_n(X)$:

21

Jackknife

Let $PS_i(X)$ be the *i*-th pseudovalue of $\phi_n(X)$:

$$PS_{i}(X) = n\phi_{n}(X) - (n-1)\phi_{n-1}(X_{(i)})$$

$$= \phi_{n}(X) - \underbrace{(n-1)(\phi_{n-1}(X_{(i)}) - \phi_{n}(X))}_{\text{bias}_{jack}}$$

where $X_{(i)} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ is the set without the *i*-th element.

Notes:

- $PS_i(X)$ can be interpreted as a bias-corrected version of $\phi_n(X)$:
- The bias trend is assumed to be in the estimators from $\phi_{n-1}(X_{(i)})$ to $\phi_n(X)$.

21

Jackknife Principle:

• The pseudovalues ${\rm PS}_i(X)$ are treated as independent random variables with mean θ .

Jackknife Principle:

- The pseudovalues $PS_i(X)$ are treated as independent random variables with mean θ.
- Using the central limit theorem, the ML estimators for the mean μ_{PS} and variance $\sigma_{\rm PS}^2$ of the pseudovalues are:

$$\mu_{PS} = \frac{1}{n} \sum_{i=1}^{n} PS_i(X)$$

$$\sigma_{PS}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (PS_i(X) - \mu_{PS})^2$$

Example

Estimator for the sample mean: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n x_i = \overline{X}$

Example

Estimator for the sample mean: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n x_i = \overline{X}$

Pseudovalues of $\phi_n(X)$:

$$PS_i(X) = n\overline{X} - (n-1)\overline{X_{(i)}} = x_i$$

Example

Estimator for the sample mean: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n x_i = \overline{X}$

Pseudovalues of $\phi_n(X)$:

$$PS_i(X) = n\overline{X} - (n-1)\overline{X_{(i)}} = x_i$$

Jackknife estimates:

$$\mu_{PS} = \frac{1}{n} \sum_{i=1}^{n} PS_i(X) = \overline{X}$$

$$\sigma_{PS}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

Example

Estimator for sample variance: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$

Example

Estimator for sample variance: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$

Pseudovalues of $\phi_n(X)$:

$$PS_i(X) = \frac{n}{n-1}(x_i - \overline{X})^2$$

Example

Estimator for sample variance: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$

Pseudovalues of $\phi_n(X)$:

$$PS_i(X) = \frac{n}{n-1}(x_i - \overline{X})^2$$

Which implies that:

$$\mu_{PS} = \frac{1}{n} \sum_{i=1}^{n} PS_i(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

Example

Estimator for sample variance: $\phi_n(X) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$

Pseudovalues of $\phi_n(X)$:

$$PS_i(X) = \frac{n}{n-1}(x_i - \overline{X})^2$$

Which implies that:

$$\mu_{PS} = \frac{1}{n} \sum_{i=1}^{n} PS_i(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

Interestingly:

- $E\{\phi_n(X)\} = \frac{n-1}{n}\sigma^2$ whereas $E\{\mu_{PS}\} = \sigma^2$
- μ_{PS} is a bias-corrected version of $\phi_n(X)$

Literary Sidenote:

The term bootstrap comes from the story: The adventures of Baron Münchhausen.

Lecture Pattern Recognition

Literary Sidenote:

The term bootstrap comes from the story: *The adventures of Baron Münchhausen*.

• A *bootstrap* data set is created by randomly selecting *n* points from the sample set with replacement.

Literary Sidenote:

The term bootstrap comes from the story: The adventures of Baron Münchhausen.

- A bootstrap data set is created by randomly selecting n points from the sample set with replacement.
- In bootstrap estimation this selection process is independently repeated B times.

Literary Sidenote:

The term bootstrap comes from the story: The adventures of Baron Münchhausen.

- A bootstrap data set is created by randomly selecting n points from the sample set with replacement.
- In bootstrap estimation this selection process is independently repeated B times.
- The *B* bootstrap data sets are treated as independent sets.

The bootstrap estimate of a statistic θ and its variance are the mean of the B estimates $\hat{\theta}^B$ and its variance:

$$\mu_{\text{BS}} = \frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_i^B$$

$$\sigma_{\text{BS}}^2 = \frac{1}{B-1} \sum_{i=1}^{B} \left(\hat{\theta}_i^B - \mu_{\text{BS}} \right)^2$$

The bootstrap estimate of a statistic θ and its variance are the mean of the B estimates $\hat{\theta}^B$ and its variance:

$$\mu_{\text{BS}} = \frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_{i}^{B}$$

$$\sigma_{\text{BS}}^{2} = \frac{1}{B-1} \sum_{i=1}^{B} \left(\hat{\theta}_{i}^{B} - \mu_{\text{BS}} \right)^{2}$$

The bias is the difference between the bootstrap estimate and the estimator $\phi_n(X)$:

$$\mathsf{bias}_\mathsf{BS} = \mu_\mathsf{BS} - \phi_n(X)$$

Properties of the bootstrap estimate:

• Bootstrapping does not change the prior of the data (choose with replacement).

Properties of the bootstrap estimate:

- Bootstrapping does not change the prior of the data (choose with replacement).
- The larger the number B, the more will the bootstrap estimate tend towards the true statistic θ .

27

Properties of the bootstrap estimate:

- Bootstrapping does not change the prior of the data (choose with replacement).
- The larger the number B, the more will the bootstrap estimate tend towards the true statistic θ .
- In contrast, the jackknife estimator requires exactly *n* repetitions:
 - less than *n* repetitions yield poorer estimates
 - more than n repetitions merely duplicate information already provided

28

Estimating and Comparing Classifiers

Two reasons why we want to know the generalization rate of a classifier on a given problem:

- 1. to see if the classifier performs well enough to be useful
- 2. to compare its performance with a competing design

Cross-Validation

- In cross-validation, the training samples are split into two disjoint parts:
 - The first set is the training set used for the traditional training.
 - The second set is the test set used to estimate the classification error.
 - In a second step, both sets are swapped.
 - By that, the classification error can be estimated on the complete data set.
 - Yet training and test set are always disjoint.

29

Cross-Validation

- In cross-validation, the training samples are split into two disjoint parts:
 - The first set is the training set used for the traditional training.
 - The second set is the test set used to estimate the classification error.
 - In a second step, both sets are swapped.
 - By that, the classification error can be estimated on the complete data set.
 - Yet training and test set are always disjoint.
- An *m*-fold cross-validation splits the data into *m* disjoint sets of size n/m:
 - 1 set is used as test set.
 - The other *m* − 1 sets are used for training.
 - Each set is used once for testing.

Cross-Validation

- In cross-validation, the training samples are split into two disjoint parts:
 - The first set is the training set used for the traditional training.
 - The second set is the test set used to estimate the classification error.
 - In a second step, both sets are swapped.
 - By that, the classification error can be estimated on the complete data set.
 - Yet training and test set are always disjoint.
- An *m*-fold cross-validation splits the data into *m* disjoint sets of size n/m:
 - 1 set is used as test set.
 - The other *m* − 1 sets are used for training.
 - · Each set is used once for testing.
- In the extreme case of m = n, we have a jackknife estimate of the classification accuracy.

Cross-Validation (cont.)

The classifier is trained until a minimum validation error is reached (good generalization vs. overfitting):

Fig.: The validation error plotted against the amount of training data (adapted from Duda, Hart).

Lessons Learned

- There is no such thing as a free lunch!
- Bias-variance trade-off
- Jackknife
- Bootstrap
- Cross-Validation

Next Time in Pattern Recognition

Further Readings

Examples and various content have been taken from:

- Richard O. Duda, Peter E. Hart, David G. Stork: Pattern Classification, 2nd Edition, John Wiley & Sons, New York, 2000.
- S. Sawyer: Resampling Data: Using a Statistical Jackknife, Washington University, 2005.

Further reading:

• T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, 2nd Edition, Springer, 2009.

Comprehensive Questions

- What is the meaning of the terms bias and variance?
- What is the difference in bias-variance trade-off between regression and classification?
- How do you estimate the bias and variance of a method?
- · What is cross-validation and how can it be used to train a classifier?