ECKHARD

MEINRENKEN, BA 6112

Mein @

Math. toronto. edu

www.math.toronto.edu/

wein/teachig/Mar240/

MAT 240, html

Office Hours:

1.30-2.30 Tue

DR BY APPOINTMENT

APTER THE FIRST WEEK

TUTORIALS START

MAT240 ALGEBRA I

GRADING: H/W 20% 3 ASSIGNMENTS TERM TEST 30% | MID-OCTOBER FINAL EXAM 50%

FRIEDBER - INSEL - SPENCE 4TH EDITION

MAT 240:

, ALGEBRA . ANALYSIS . GEOMETRY

, LOGIC , SET THEORY . TOROLOGY

COURSE STRUCTURE:

O. FIELDS, COMPLEX NUMBERS

1. VECTOR SPACES

2. LINEAR MAPS

3. LINEAR SYSTEMS OF EQUATIONS

4. DETERMINANTS

5. EIGENVALUES AND EIGENVECTORS

13082016 PATH: MAT 240:

MAT 240 247 347

I. SET NOTATION

NOTION A SET IS A COLLECTION OF ELEMENTS! $N = \{1, 2, 3, \dots \}$ $Z = \{0, \pm 1, \pm 2, \pm 3, \dots \}$ $R = \{\frac{1}{4} \mid p \in Z, q \in Z, q \neq 0\}$ R; a set of DECIMAL EXPENSIONS; $R = \{0, \pm 1, \pm 2, \pm 3, \dots \}$

NOTE

WHEN LISTING ELEMENTS OF SETS, ORDERING OR REPETITIONS DON'T MATTER.

? WHAT ARE DIVER MATHEMATICAL DATA STRUCTURES, e.g. a SEQUENCE?

2. FIELDS

NOTION A FIELD IS A SET WITH

ADDITION, SUBTRACTION,

MULTIPLICATION AND DIVISION

DEFINED ON ITS ELEMENTS.

NOT A FIELD: No, Z (NO MULTIPLICATIVE INVERSE)

A FIELD: Q, R, C

DEFINITION A FIELD IS A SET F WITH TWO BINARY OPERATIONS:

 $+: F \times F \longrightarrow F \mid (a,b) \mapsto a+b$

 $o: F \times F \longrightarrow F \mid (a,b) \longmapsto a \cdot b$

AND AT LEAST TWO DISTINCT ELEMENTS. 0,1 EF (0 ±1)

SUCH THAT THE FOLLOWING PROPERTIES ARE SATISFIED FOR ALL a, b, C & F

	+	
COMMUTATIVITY	a+b=b+a	a.b=b.a
ASSOCIATIVITY	(a + b) + c = a + (b + c)	(a.b)c=a.(b.c)
EXISTENCE OF THE NEUTRAL ELEMENT	a+0=a	a.1=a.
EXISTENCE OF THE INVERSE ELEMENT	Ya∃b: a+ b= 0	∀a: a≠0 ∃b: a.b=1
DISTRIBUTIVITY	∀ a,b,c: a.(b	+c)=a.b+a.c

		1		•	0	1	2
0	0	1	2	0	0	0	0
1	1	2	0	1	0	1	2
2	2	0	1	2	0	2	1

+	0	1	2	3	4
0	0	ŧ	2	3	4
4		1	2	3	4
2	2	2	4	1	3
3	3	3	1	4	2
4	4	4	3	2	1