verwachtingswaarde

De verwachtingswaarde van een discrete toevalsvariabele met kansmassafunctie px is gedefinieerd als

$$E[X] = \sum_{x \in X(S)} p_X(x)x,$$

als deze som bestaat, dit is als S een eindige verzameling is

momenten en variantie

moment: het moment van de k-de orde van een toevalsveranderlijke μ k(X) is de verwachtingswaarde van de toevalsveranderlijke X^k μ k(X) = E[X^k]

de verwachtingswaarde is dus het moment van de eerste orde.

variantie de variantie wordt gedefinieerd als

$$var(X) = E[(X - E[X]^2)]$$

de *standaardafwijking* van een toevalsveranderlijke X wordt gedefinieerd als σx

$$\sigma_X = \sqrt{\operatorname{var}(X)}$$
.

var (X) = E[
$$X^2$$
] - E[X] 2

bewijs

var (X) = E[(X - E[X])
2
] = E[X 2 -2 E[X] X + E[X] 2]

=E[
$$X^2$$
] -2E[X] E[X] +E[X] = E[X^2] - E[X] 2