Natural Language Processing CSE 325/425

Sihong Xie

Lecture 23:

- Statistical machine translation
- Alignment models (IBM model-1 and HMM)

Statistical MT framework

- Goals of MT
 - Fluency and faithfulness

best-translation $\hat{T} = \operatorname{argmax}_T P(T) \underbrace{P(S|T)}_{\text{h-sign}} \underbrace{+ \text{aitheliness}}_{\text{h-sign}}$

- · More formally,
 - $E=(e_1, ..., e_l)$: English (the target language).
 - $F=(f_1, ..., f_J)$: a foreign language (Spanish/French/...).
 - Language model P(E)
 - Translation model: P(F|E)
 - Using the Bayes theorem, decoding is defined as

Alignment

- Word alignment: mapping words in *E* to words in *F*.
 - Multiple target words can be mapped to one source word.

Example:

Two representation of an alignment A

- \circ Recording the mapping A directly: $a_1=2$, $a_2=3$, ..., $a_7=6$.
- Use an alignment matrix

E		2	3	4	5	6	7	
1	0	0	ð	O	O	O	0	
2	1	0	O	O	O	()	a	
ζ	0	ı	D	O	0	Ü	O O	
4	O	O		O	U	J	0	
5	6	O	•	1	G	0	O O	
6	0	U	Ō	0	1	V	Ĭ	

Alignment

6

Alignment Matrix

farget

Source One source word mapped to multiple target words.

[(Target) E (Source) reste₂ balance₂ Many-to-many mapping (Phase - based appartenait₃ was₃ the₄ aux₄ The₁ poor₂ don't3 have₄ any₅ territory₅ autochtones₅ of_6 the₇ aboriginal₈ people9 Les₁ pauvres₂ sont₃ demunis₄

Allow spurious word NULL for words that can't be mapped.

Alignment (IBM model 1)

Attention model in Kenral Network

- Published in Brown, etc. 1993.
- Translation model $P(F|E) = \sum_{A} P(F,A|E)$
- Generative story
 - generate length of the source/foreign language *J*;
 - 2. generate an alignment A;
 - 3. generate words $E=(e_1, ..., e_l)$ in the target language.

P(F, AIE)?

Alignment (IBM model 1) Still Ith

- Probability of generating a length J: a small positive number ϵ
- Probability of an alignment between I and J words: $P(A(I,J)) = \frac{1}{(I+1)^J}$
- Probability of the foreign word f_i $\int e^{\{1,\dots,j\}}$ given the aligned target word e_{a_j} $P(f_j|e_{a_j})$ $P(n_0|n_0t)$
 - Probability of the foreign sentence and an alignment A:

nd an alignment
$$A$$
:
$$P(F,A|E) = \frac{\epsilon}{(I+1)^J} \prod_{j=1}^J P(f_j|e_{a_j})$$
 Ste Space each English space of the state of the

Probability of *F* given *E*:

$$P(F|E) = \sum_{A} P(F, A|E) = \sum_{A} \frac{\epsilon}{(I+1)^{J}} \prod_{j=1}^{J} P(f_{j}|e_{a_{j}})$$

- IBM Model 1 makes several strong assumptions
 - two foreign words are mapped independently;
 - all alignments have the same probability.
- Both are not true
 - the last three French words are mapped jointly to the last English word.
 - need to use some joint probability to model such linguistic phenomena;
 - Docality: two consecutive French words are likely mapped to consecutive English words.

 And the program has been implemented
 - some alignments are unlikely.
 - can you give one?

+ Pr (fs | A, E) --- Pr (f) (AE)

- HMM alignment model
 - generates an alignment and the observed foreign sentence
 - ભું ૯ ^{ ૦, --- ⊥ } alignment ⇔ POS-tags.
 - transition probabilities: align the next foreign word, given previous alignments.
 - foreign sentence ⇔ observed words in a sentence.
 - emission probabilities: emit a word given the up-to-date alignments. $Q_{i} = Q_{i}$

$$P(f_1^J, a_1^J | e_1^I) = P(J | e_1^I) \times \prod_{j=1}^J P(f_j, a_j | f_1^{j-1}, a_1^{j-1}, e_1^I)$$

$$= P(J | e_1^I) \times \prod_{j=1}^J P(a_j | f_1^{j-1}, a_1^{j-1}, e_1^I) \times P(f_j | f_1^{j-1}, a_1^j, e_1^I)$$

$$= P(J | e_1^I) \times \prod_{j=1}^J P(a_j | f_1^{j-1}, a_1^{j-1}, e_1^I) \times P(f_j | f_1^{j-1}, a_1^j, e_1^I)$$

HMM

Make some Markov assumptions to simplify the above joint probability.

$$P(a_{j}|f_{1}^{j-1},a_{1}^{j-1},e_{1}^{I})=P(a_{j}|a_{j-1},I)$$
 $P(f_{j}|f_{1}^{j-1},a_{1}^{j},e_{1}^{I})=P(f_{j}|e_{a_{j}})$

The final joint distribution

The translation model

$$P(F|E) = P(J|I) \times \sum_{A} \prod_{j=1}^{J} P(a_{j}|a_{j-1}, I) P(f_{j}|e_{a_{j}})$$

$$= \underbrace{P_{f}(F, A|E)}_{A} \qquad \underbrace{P_{roduct-Sum}}_{(forward, Alg.)}$$

- The transition probability should encourage alignment locality.
 - "the English words that generate neighboring Spanish words are likely to be nearby" -- SLP
 - $P(a_j|a_{j-1},I)$ should be large if a_j is close to a_{j-1}
 - Locality is a relative concept and absolute positions are not relevant.

- Model "jumps" of the alignment pointers
 - $lacksquare P(a_j|a_{j-1},I)$ is a decreasing function of the jump $|a_j-a_{j-1}|$

I = 8 T = 8