- вероятности гипотез (составляющих полную группу).

Ю.В. Шапарь ТВ и МС Лекции № 3-4

 $P(A/H_1) = 0.97; P(A/H_2) = 0.01$

- условные вероятности гипотез.

$$P(H_1/A) = \frac{0,02 \cdot 0,97}{0,02 \cdot 0,97 + 0,98 \cdot 0,01} \approx 0,664.$$

Повторные независимые испытания. Схема Бернулли

Ю.В. Шапарь

Кафедра прикладной математики и механики

Конспект лекций по теории вероятностей и математической статистике

Постановка залачи.

Проводятся *п* независимых испытаний, в каждом из которых может наступить или не наступить событие *A*.

P(A) = p — вероятность успеха в одном испытании:

 $P(\overline{A})=1-p=q$ — вероятность неуспеха в одном испытании.

Задача 1

Вычислить $P_n(m)$ — вероятность того, что в серии из n испытаний будет ровно m успехов.

Задача 2

Вычислить $P_n(m_1 \le m \le m_2)$ — вероятность того, что в серии из n испытаний число успехов не менее m_1 и не более, чем m_2 .

IO. B. Illanapa

TB a MC Jexmes No.

В серии независимых испытаний Бернулли

$$P_n(m) = C_n^m p^m q^{n-m}.$$

Доказательство.

Пронумеруем испытания 1, ..., n;

обозначим через A_i наступление события A в i-м испытанни. A_i независимы в совокупности.

$$P(A_i) = p; \ P(\overline{A_i}) = q.$$

Рассмотрим случай n = 3; m = 1.

•
$$P_3(1) = P(A_1 \overline{A}_2 \overline{A}_3 + \overline{A}_1 A_2 \overline{A}_3 + \overline{A}_1 \overline{A}_2 A_3) =$$

= $pq^2 + pq^2 + pq^2 = 3pq^2 = C_3^1 p^1 q^{3-1}$.

Ю.В. Шапарь ТВ и МС Лекции №4

Пример (пирамидка Берштейна)

$$\Omega = \{\omega_i\}_{i=1}^4, \ \omega_1 = \{\kappa\}, \ \omega_2 = \{6\}, \ \omega_3 = \{c\}, \ \omega_4 = \{M = \widehat{\kappa 6c}\}$$

Рассмотрим события

 $A = \{\kappa, \mathbf{m}\}$ – пирамидка упала на грань, содержащую красный цвет

 $B = \{6, \mathbf{m}\}$ – пирамидка упала на грань, содержащую белый пвет

 $C = \{c, m\}$ – ппрамидка упала на грань, содержащую синий цвет

IO.B. Illamaps

TH a MC Jerum No L4

Пример (ширамидка Берштейна)

$$\Omega = \{\omega_i\}_{i=1}^4, \ \omega_1 = \{\kappa\}, \ \omega_2 = \{6\}, \ \omega_3 = \{c\}, \ \omega_4 = \{M = \widehat{\kappa 6c}\}$$

Рассмотрим события

 $A = \{ \kappa, \mathbf{m} \}$ — пирамидка упала на грань, содержащую красный цвет

 $B = \{ 6.м \}$ — пирамидка упала на грань, содержащую белый ивет

 $C = \{c, m\}$ — ширамидка упала на грань, содержащую синий цвет

$$P(A) = P(B) = P(C) = 2/4 = 1/2$$

$$P(A \cdot B) = P(M) = 1/4$$

$$P(A \cdot C) = P(M) = 1/4$$

 $T.о. \ A. B. C$ попарно независимы.

Однако $P(A \cdot B \cdot C) = P(M) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$, т.е. независимости в совокупности нет!

- 1^{0} Если события A и B независимы, то независимы следующие пары событий: A и \overline{B} ; \overline{A} и \overline{B} ; \overline{A} и B.
- 20 Вероятность наступления хотя бы одного из независимых событий A_1, A_2, \dots, A_n есть

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - P(\overline{A_1})P(\overline{A_2}) \cdots P(\overline{A_n}).$$

 3^0 Если события A_1, A_2, \dots, A_n независимы и равновероятны $(P(A_i) = p)$, то

$$P(A_1 \cup A_2 \cup ... \cup A_n) = 1 - (1-p)^n$$
.

Ю.В. Шапарь ТВ и МС Лекции № 3-4

• Задача про сессию. Надежность цепи.

Формула полной вероятности

Теорема (ФПВ)

Пусть H_1, H_2, \dots, H_n – полная группа событий (гипотез) в рамках данного Э. Тогда для любого события A справедлива формула

$$P(A) = \sum_{i=1}^{n} P(H_i)P(A/H_i).$$

Формула Байеса

Теорема (ФБ)

Для любого события A и полной группы гипотез H_1, H_2, \ldots, H_n справедлива формула

$$P(H_i/A) = \frac{P(H_i)P(A/H_i)}{\sum\limits_{i=1}^{n} P(H_i)P(A/H_i)}, \quad i \in \overline{1, n}.$$

- ФПВ и ФБ справедливы и для счетной ПГГ
- $oldsymbol{\Theta}$ Вероятности гипотез $P(H_i)$ называют априорными.
- lacktriangle Вероятности гипотез $P(H_i/A)$ называют апостериорными.
- ФБ служит для «переоценки» (обновления) априорных
- ФБ играет большую роль в планировании процедур гарантийного контроля качества выпускаемой продукции (выборочный метод в МС такой гарантии не

больных тест дает положительный результат в 97 случаях; среди здоровых людей положительный результат теста

Найти вероятность того, что человек, получивший положительный результат теста, действительно болен.

Решение

Ю.В. Шапарь ТВ и МС Лекпии № 3-4