### Aprendizagem Automática

João Paulo Pordeus Gomes

### Aula Anterior

### Regressão Linear





### Regressão Linear Multivariada

- Em diversos problemas é necessário utilizar mais de uma variável x para tentar explicar a variável de saída y
  - Exemplo
    - Concessão de crédito

| Salário (R\$) | Dívida (R\$) | Crédito (R\$) |
|---------------|--------------|---------------|
| 1500          | 0            | 16500         |
| 2000          | 4000         | 12000         |
| 3000          | 2000         | 28000         |
| •••           |              | •••           |
| 5500          | 1700         | 52000         |



#### Gradiente Descendente Estocástico

- Regressão Linear Multivariada
  - $\overline{y_i} = w^T x_i$
- Regra de Aprendizado
  - $\mathbf{w} = \mathbf{w} + \alpha e_i \mathbf{x}_i$

### Regressão Linear (em lote - batch)

- Modelo
  - $\overline{Y} = Xw$
- Regra de Aprendizado

#### Gradiente Descendente Estocástico

- Define α pequeno
- Utiliza todo o conjunto de dados e atualiza os pesos
  - $w_0 = w_0 + \alpha e_i$
  - $w_1 = w_1 + \alpha e_i x_i$
- Faz permutação nos dados
- Repete o procedimento diversas vezes (épocas)



### Criando Modelos Não Lineares

- É possível criar regressões não lineares através da formulação linear do problema.
  - Relação entre as variáveis é reconhecidamente não linear (quadrática, cúbica ...)



- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos



- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos

| Salário (R\$) | Crédito (R\$) |
|---------------|---------------|
| 1500          | 16500         |
| 2000          | 18000         |
| 3000          | 28000         |
| •••           | •••           |
| 5500          | 52000         |



- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos

| Salário (R\$) | Salário <sup>2</sup> (R\$ <sup>2</sup> ) | Crédito (R\$) |
|---------------|------------------------------------------|---------------|
| 1500          | 1500 <sup>2</sup>                        | 16500         |
| 2000          | 2000 <sup>2</sup>                        | 18000         |
| 3000          | 3000 <sup>2</sup>                        | 28000         |
| •••           |                                          | •••           |
| 5500          | 5500 <sup>2</sup>                        | 52000         |



- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos

$$x_1 = [1 \ 1500 \ 1500^2] T, x_2 = [1 \ 2000 \ 2000^2]^T, \dots$$

$$\mathbf{w}^T = [w_0 \ w_1 \ w_2]$$

| Salário (R\$) | Salário <sup>2</sup> (R\$ <sup>2</sup> ) | Crédito (R\$) |
|---------------|------------------------------------------|---------------|
| 1500          | 1500 <sup>2</sup>                        | 16500         |
| 2000          | 2000 <sup>2</sup>                        | 18000         |
| 3000          | 3000 <sup>2</sup>                        | 28000         |
| •••           |                                          | •••           |
| 5500          | 5500 <sup>2</sup>                        | 52000         |



Regressão Linear

Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros



### Exemplo





### Exemplo

▶ Erro = 6.54





### Exemplo

▶ Erro = 2.24





### Exemplo

▶ Erro = 27.77





### Exemplo

▶ Erro = 15.18





 Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros





Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros





## Evitar Overfitting



### Evitar Overfitting

Conjuntos de treino e teste



### Evitar Overfitting

- Conjuntos de treino e teste
- Regularização



#### Tamanho do Modelo

- Como ajustar o tamanho do modelo ?
  - Exemplo
    - Diversas Variáveis
      - □ Concessão de crédito com muitas variáveis de entrada

$$\Box \ \overline{y} = w_1 x_1 + w_0$$

Modelo de grau maior

$$\Box \ \overline{y} = w_1 x_1 + w_0$$

Diminuir o valor dos coeficientes do modelo associados a variáveis que menos influenciam no resultado.



- Diminuir o valor dos coeficientes do modelo associados a variáveis que menos influenciam no resultado.
- Modelo com muitos parâmetros ficará semelhante a um modelo com menos parâmetros

  - $\bar{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_0$



- Diminuir o valor dos coeficientes do modelo associados a variáveis que menos influenciam no resultado.
- Modelo com muitos parâmetros ficará semelhante a um modelo com menos parâmetros

$$\Box \ \bar{y} = w_1 x_1 + w_0$$

$$\Box \ \bar{y} = w_1 x_1 + w_1 x_1^2 + w_0$$



- Regressão Linear
  - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \overline{y_i})^2$$



- Regressão Linear
  - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \overline{y}_i)^2$$

- Regressão Linear com regularização
  - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[ \sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$



$$min_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{2n} \left[ \sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$



- $min_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{2n} \left[ \sum_{i=1}^{n} (y_i \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$
- Utilizando o método dos mínimos quadrados

$$\frac{\partial J}{\partial w_0} = \frac{1}{2n} 2 \left[ \sum_{i=1}^n e_i(-1) \right] = -\frac{1}{n} \sum_{i=1}^n e_i$$



- $min_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{2n} \left[ \sum_{i=1}^{n} (y_i \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$
- Utilizando o método dos mínimos quadrados

$$\frac{\partial J}{\partial w_0} = \frac{1}{2n} 2 \left[ \sum_{i=1}^n e_i(-1) \right] = -\frac{1}{n} \sum_{i=1}^n e_i$$

$$\frac{\partial J}{\partial w_{i}} = \frac{1}{2n} 2 \left[ \sum_{i=1}^{n} e_{i} \left( -x_{ij} \right) + \frac{\lambda}{n} w_{j} \right] = -\frac{1}{n} \sum_{i=1}^{n} e_{i} x_{ij} - \frac{\lambda}{n} w_{j}$$



As equações de atualização dos pesos serão:

$$w_0 = w_0 + \alpha \frac{1}{n} \sum_{i=1}^n e_i$$

$$w_j = w_j + \alpha \left[ \frac{1}{n} \sum_{i=1}^n e_i \, x_{ij} - \frac{\lambda}{n} w_j \right]$$

#### Efeito do λ

Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[ \sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

Atualização

$$w_0 = w_0 + \alpha \frac{1}{n} \sum_{i=1}^n e_i$$

$$w_j = w_j + \alpha \left[ \frac{1}{n} \sum_{i=1}^n e_i \, x_{ij} - \frac{\lambda}{n} w_j \right]$$

### Regressão Linear

- Gradiente Descendente
- Mínimos Quadrados (batch)



### Mínimos Quadrados

- Modelo
  - $\overline{Y} = Xw$
- Função de custo
  - $J(\mathbf{w}) = \frac{1}{2} (Y \overline{Y})^T (Y \overline{Y})$
  - $J(\mathbf{w}) = \frac{1}{2} (Y \mathbf{X}\mathbf{w})^{T} (Y \mathbf{X}\mathbf{w})$

- Modelo
  - $ightharpoonup \overline{Y} = Xw$
- Função de custo
  - $J(w) = \frac{1}{2} [(Y \overline{Y})^T (Y \overline{Y}) + \lambda w^T w]$
  - $J(w) = \frac{1}{2} \left[ (Y Xw)^T (Y Xw) + \lambda w^T w \right]$

- Modelo
  - $ightharpoonup \overline{Y} = Xw$
- Função de custo

$$J(w) = \frac{1}{2} [(Y - \overline{Y})^T (Y - \overline{Y}) + \lambda w^T w]$$

$$J(w) = \frac{1}{2} \left[ (Y - Xw)^T (Y - Xw) + \lambda w^T w \right]$$

Derivando em relação a w

### Modelo

$$\overline{Y} = Xw$$

Função de custo

$$J(w) = \frac{1}{2} [(Y - \overline{Y})^T (Y - \overline{Y}) + \lambda w^T w]$$

$$J(w) = \frac{1}{2} \left[ (Y - Xw)^T (Y - Xw) + \lambda w^T w \right]$$

Derivando em relação a w

#### Modelo

$$\overline{Y} = Xw$$

### Função de custo

$$J(w) = \frac{1}{2} [(Y - \overline{Y})^T (Y - \overline{Y}) + \lambda w^T w]$$

$$J(w) = \frac{1}{2} [(Y - Xw)^{T} (Y - Xw) + \lambda w^{T} w]$$

### Derivando em relação a w

$$-X^T(Y-Xw)+\lambda w=0$$

$$X^TXw + \lambda w = X^TY$$

$$(X^TX + \lambda I)w = X^TY$$

- Modelo
  - $ightharpoonup \overline{Y} = Xw$
- Regra de ajuste dos pesos

- Modelo
  - $\overline{Y} = Xw$
- Regra de ajuste dos pesos
- ▶ Não utilizar regularização no termo w<sub>0</sub>



- Modelo
  - $\overline{Y} = Xw$
- Regra de ajuste dos pesos
  - $w = (X^T X + \lambda I)^{-1} X^T Y$
- Não utilizar regularização no termo w₀
  - Fazer o primeiro termo de  $\lambda I$  igual a zero



- Modelo
  - $\overline{Y} = Xw$
- Regra de ajuste dos pesos

- Não utilizar regularização no termo w<sub>0</sub>
  - Fazer o primeiro termo de  $\lambda I$  igual a zero
  - Exemplo

$$\lambda I = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$



- Modelo
  - $\overline{Y} = Xw$
- Regra de ajuste dos pesos

- Não utilizar regularização no termo w<sub>0</sub>
  - Fazer o primeiro termo de  $\lambda I$  igual a zero
  - Exemplo

$$\lambda I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$



Dúvidas?