	•	
K	M	
1 1	꾸	
U	Ш	

King Mongkut's University of Technology

Machine Learning

Suthep Madarasmi, Ph.D.

Take Home Quiz 5 Due Sun Mar 3, 2024

Name:	
I.D. Number:	

Score: / 95

1	~ 1	TT.	41 T		41	1. 1	1 4	1
1) hrc	I cino	the R	AGTACCION	On the	diahetec	data	evamnle
1.	4 ms.	OSIIIE	uic r	Regression	on the	urabetes	uata	CAambic

- 1.1. 5 points. Is age highly correlated with total cholesterol / HDL?
- 1.2. 5 points. Is blood pressure highly correlated with total cholesterol / HDL?
- 1.3. *Is points (5 each)*. Linear fit results for y = ax + b where x is the blood sugar level:
 - i. Report the linear fit coefficients and intercept of the training data.
 - ii. What is the R² for the training data? What is the R² for the prediction of y based on blood sugar level for the test data?
 - iii. Show a scatter plot of the training set (x, y) as blue circles and the predicted (x, y) for x values in the training set as green circles. Also show the best fit line in red.
- 2. 1.5 hrs. Use the data provided in the shared file gasoline use.txt with 80% training data:
 - 2.1. *10 points*. Show the equation found by fitting the training data:

$$y = f(x_1, x_2, x_3, x_4) = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$$

- 2.2. 5 points. What is the R^2 for the prediction of y for the training data?
- 2.3. *5 points.* What would happen to gasoline consumption if taxes are increased by \$3.00? Use the training data.
- 3. 2.5 hours. Modify "Logistic Regression Gradient Descent.ipynb" for Iris classification to use the cost function and Jacobian function and the "BFGS" optimization method in SciPy library to:
 - 3.1. *20 points*. Report the total classification accuracy (score) for the Test data by finding the highest probability class as the output.
 - 3.2. *5 points*. Print the confusion matrix for the test data of the 3 classes found by this your own implementation of the logistic regressor.
 - 3.3. 5 points. Print the confusion matrix for the test data found by sklearn's logistic regressor.
- 4. 20 points. 3 hours. Use the Kaggle open source dataset to predict Employee Attrition using Logistic Regression. Make sure you show the confusion matrix. FYI: Here, the confusion matrix shows false positives and false negatives. The data is available in: