

Explainability for Transparent Conversational Information-Seeking

Weronika Łajewska¹, Damiano Spina², Johanne Trippas², Krisztian Balog¹

¹University of Stavanger, Norway

²RMIT University, Melbourne, Australia

Where to find me: weronika.lajewska@uis.no, https://werlaj.github.io/

Our Motivation

"A true teacher would never tell you what to do. But he would give you the knowledge with which you could decide what would be best for you to do."

— Christopher Pike, Sati

- Conversational search is a less transparent setting than a SERP-based interface
- Users are mostly not aware of the working mechanism of the system, its capabilities, and limitations
- Detecting hallucinations, factual errors, and/or biases is extremely difficult for users without knowledge about the topic
- Recently proposed RAG systems are claimed to produce more factually correct content, but do not solve issues around transparency

What was the US reaction to the Black Lives Matter movement?

This Study

The U.S. reaction to the Black Lives Matter movement has been mixed. On one hand, there has been support for the movement's goals of addressing police brutality and racial injustice. However, there has also been criticism and pushback, leading to initiatives like the "Blue Lives Matter" movement which is a response to perceived anti-police rhetoric associated with Black Lives Matter.

- Problem setting: Conversational response generation
- Goal: Examining various ways of explaining the generated response
- Main contributions:
 - User study exploring explanations of source, confidence, and limitations in the Conversational Information Seeking (CIS) domain
 - o Manually curated dataset of responses and explanations, with noise incorporated in a controlled manner
 - Analysis of the impact of noise and the presentation mode of the explanations on response usefulness

Explainable Response

We attempt to increase the transparency of a CIS system by explaining:

- 1) The origin of presented information
- 2) The system's confidence
- Potential limitations of the generated response

Explanations presentation mode:

1) Textual explanation

2) Visual explanation

What was the US reaction to the Black Lives Matter movement?

The U.S. reaction to the Black Lives Matter movement has been mixed. On one hand, there has been support for the movement's goals of addressing police bry has also been criticism and pushback, leading to initiative Limitations + system confidence in NL which is a response to perceived anti-police rhetoric associated with Black Lives Matter. It's crucial to acknowledge that this is a controversial topic with multiple viewpoints possible, and only some of them were discussed; the system confidence in the provided response is 80%.

V Sources

Blue Lives Matter is a pro-police movement in the United States. It was started after the killings of NYPD officers Rafael Ramos and Wenjian Liu in Brooklyn, New York, on December 20, 2014, after they were ambushed in their patrol car. Blue Lives Matter was formed in reaction to the Black Lives Matter movement, which seeks to end police brutality against the African American community.

https://en.wikipedia.org/wiki/Blue_Lives_Matter#:::text=History.:

4%20g0lf%20cart&text=On%20December%2020%2C%202014%2C%20in.and%20retired%20law%20enforcement %20officers

Experimental Conditions

The selected experimental conditions vary along three main dimensions:

- **Response quality:** ground-truth response or imperfect response with biases or factual errors
- Quality of the explanations: accurate or noisy explanation 2)
- 3) **Presentation mode:** additional UI component or in natural language explanation

	EC1	EC2	EC3	EC4	EC5	EC6	EC7	EC8	EC9	EC10
Response			•	•			•	•		•
Source					•	•	•	•	0	0
Confidence					•	•	•	•	0	0
Limitation					•	•	•	•	0	0

Noise in response Noise in source Noise in confidence score Noise in limitation information → Irrelevant limitation

- → Incomplete, biased or factually incorrect response
- → Source related to the topic but not supporting the provided response
- → Reverted confidence score

Experimental Design

- In each human intelligence task, crowd workers are asked to assess responses for 10 queries
- Responses differ in their quality and may be enhanced with explanations
- Explanations differ in terms of quality and presentation mode
- Each HIT contains the same response variant for all ten queries, employing a between-subject design

Response Assessment Questionnaire

- Workers are asked to evaluate different dimensions of the response variant presented for a given query
- The question about each response dimension is answered by workers on a four-point Likert scale
- Questions use operational definitions of the response dimensions instead of explicit names of the dimensions

Response Dimension	Operational definition used in the user study
Usefulness	was useful for completing my task
Relevance	is about the subject of the question
Correctness	contains an accurate response to the question
Completeness	covers every aspect of the question
Comprehensiveness	contains detailed information
Conciseness	does not contain redundant information
Serendipity	contains some unexpected but positively surprising information
Coherence	does not contain inconsistent statement
Factuality	is based on things that are known to be true
Fairness	is free of any kind of bias
Readability	is fluently written
Satisfaction	is satisfying in terms of completing my information need

Variable	Question used in the user study Conversational
Source Explanation	To what extent were the provided responses supported?
Limitation Explanation	To what extent did the assistant help you realize the potential limitations of the responses?
Confidence Explanation	To what extent are you aware of the assistant's confidence in the provided responses?

Research Questions

- 1. Can users detect noise in the responses and explanations?
- 2. How does the quality of responses and explanations impact user experience?
- 3. What are effective ways to provide explanations to users?

Research Questions

- 1. Can users detect noise in the responses and explanations?
- 2. How does the quality of responses and explanations impact user experience?
- 3. What are effective ways to provide explanations to users?

ResultsUser's Perception of Response

	Usefulness					Othe	r Dimensions	1				
		Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.
Response Quality	0.156 (S)	0.176 (S) 0.003 (S	0.745 (-	0.846 (-)	0.374 (S)	0.093 (S)	0.217 (S)	0.265 (S)	0.924 (-)	0.881 (-)	0.638 (S)

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Results User's Perception of Response

	Usefulness					Othe	r Dimensions	1				
		Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.
Response Quality	0.156 (S)	0.176 (S)	0.003 (S)	0.745 (-)	0.846 (-)	0.374 (S)	0.093 (S)	0.217 (S)	0.265 (S)	0.924 (-)	0.881 (-) 0.638(S)

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

- A statistically significant effect observed only on user-reported correctness of the response
- Insensitivity of user-reported response dimensions to the quality of provided information

→ Users are not able to identify bias towards one specific point of view or factual errors without expert knowledge about the topic

Experiments including two conditions where explanations are not provided

												_
Usefulness					Othe	er Dimensions						
	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.	
All conditions	(EC1–EC	(210)										
0.0 (S)	0.0	(S) 0.508 (S)	0.003 (S) 0.0 (S)	0.001 (S)	0.09 (S)	0.002 (S)	0.713 (-)	0.0 (S)	0.032 (S	0.0	(S)
0.019 (S)	0.0	(S) 0.234 (S)	0.347 (S)	0.658 (-)	0.001 (S)	0.149 (S)	0.09 (S)	0.842 (-)	0.001 (S)	0.651 (-)	0.0	(S)
Only condition	is with ex	eplanations (EC1–EC8)									
0.0 (S)	0.006 ((S) 0.256 (S)	0.002 (S) 0.0 (S)	0.122 (S)	0.319(S)	0.003 (S)	0.504 (S)	0.0 (S)	0.014 (S	0.007	7 (S)
0.872 (-)	0.686 (–) 0.096 (S)	0.895 (-)	0.38 (S)	0.399 (S)	0.86 (-)	0.377 (S)	0.739 (-)	0.78 (-)	0.771 (-)	0.071	l (S)
	0.0 (S) 0.019 (S) Only condition 0.0 (S)	Rel. All conditions (EC1–EC 0.0 (S) 0.0 (0.019 (S) 0.0 (Only conditions with ex 0.0 (S) 0.006 (Rel. Correct.	Rel. Correct. Compl.	Rel. Correct. Compl. Comprehen. All conditions (EC1-EC10) 0.0 (S) 0.0 (S) 0.508 (S) 0.003 (S) 0.0 (S) 0.019 (S) 0.0 (S) 0.234 (S) 0.347 (S) 0.658 (-) Only conditions with explanations (EC1-EC8) 0.0 (S) 0.006 (S) 0.256 (S) 0.002 (S) 0.0 (S)	Correct. Compl. Comprehen. Conciseness	Company Company Company Company Company Company Conciseness Concisenes	Rel. Correct. Compl. Comprehen. Conciseness Serendipity Coherence	Concisence Con	Concisence Con	Concisence Con	Concisence Con

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Experiments only including the conditions where explanations are provided

	Usefulness					Othe	r Dimensions					
	Cocramess	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.
	All conditions	s (EC1–E	EC10)									
Explanation Quality Presentation Mode	0.0 (S) 0.019 (S)	0.0	(S) 0.508 (S) (S) 0.234 (S)		/	0.001 (S) 0.001 (S)	0.09 (S) 0.149 (S)	0.002 (S) 0.09 (S)	0.713 (-) 0.842 (-)	0.0 (S 0.001 (S	,	,
	Only conditio	ns with	explanations (EC1–EC8)								
Explanation Quality Presentation Mode	0.0 (S) 0.872 (-)	0.006				0.122 (S) 0.399 (S)	0.319 (S) 0.86 (-)	0.003 (S) 0.377 (S)	0.504 (S) 0.739 (-)	0.0 (S 0.78 (-	0.014 (3 0.771 (-	6) 0.007 (5-) 0.071 (5

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Introducing noise in explanations has a statistically significant effect on almost all user-reported response dimensions **> Noisy explanations have a strong impact on user experience in general**

	Usefulness					Othe	r Dimensions	8					_
	Cocramess	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.	
	All conditions	s (EC1–E	C10)										
Explanation Quality Presentation Mode	0.0 (S) 0.019 (S)		(S) 0.508 (S) (S) 0.234 (S)		,	0.001 (S) 0.001 (S)	0.09 (S) 0.149 (S)	0.002 (S) 0.09 (S)	0.713 (-) 0.842 (-)	0.0 (S) 0.001 (S)	0.032 (S	,	(S) (S)
	Only condition	ns with e	explanations (EC1–EC8)									
Explanation Quality Presentation Mode	0.0 (S) 0.872 (-)	0.006 0.686	`			0.122 (S) 0.399 (S)	0.319 (S) 0.86 (-)	0.003 (S) 0.377 (S)	0.504 (S) 0.739 (-)	0.0 (S) 0.78 (-)			

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Introducing noise in explanations has a statistically significant effect on almost all user-reported response dimensions **> Noisy explanations have a strong impact on user experience in general**

Response dimensions are insensitive to the way explanations are presented

Research Questions

- 1. Can users detect noise in the responses and explanations?
- 2. How does the quality of responses and explanations impact user experience?
- 3. What are effective ways to provide explanations to users?

Results **Effect of the Explanation Quality**

3.64

3.5

Accurate

Noisy

Confidence

Mean scores for response usefulness and explanation ratings for different quality of the explanations. All differences between the ratings within a given plot are statistically significant.

Results Effect of the Explanation Quality

Mean scores for response usefulness and explanation ratings for different quality of the explanations. All differences between the ratings within a given plot are statistically significant.

High-quality source, system confidence score, and information about the response limitations make the response more useful from the user's perspective

The explanations either pollute the response or make the user more critical about it, in both cases resulting in reduced usefulness **> Not providing explanations is more useful than providing noisy ones**

Results **Effect of the Explanation Quality**

3.64

3.5

Accurate

Noisy

Confidence

Mean scores for response usefulness and explanation ratings for different quality of the explanations. All differences between the ratinas within a given plot are statistically significant.

High-quality source, system confidence score, and information about the response limitations make the response more useful from the user's perspective

The explanations either pollute the response or make the user more critical about it, in both cases resulting in reduced usefulness -> Not providing explanations is more useful than providing noisy ones

Users perceive noisy explanations as less useful in understanding system confidence and attributed

Research Questions

- 1. Can users detect noise in the responses and explanations?
- 2. How does the quality of responses and explanations impact user experience?
- 3. What are effective ways to provide explanations to users?

Results Effect of the Presentation Mode

Mean scores for response usefulness and explanation ratings for presentation modes. All differences between the ratings within a given plot are statistically significant.

Results Effect of the Presentation Mode

Mean scores for response usefulness and explanation ratings for presentation modes. All differences between the ratings within a given plot are statistically significant.

The critical decision lies not in the method of presenting information but rather in determining whether the explanations are necessary **> Trade-off between effort and gain**

ResultsEffect of the Presentation Mode

Mean scores for response usefulness and explanation ratings for presentation modes. All differences between the ratings within a given plot are statistically significant.

The critical decision lies not in the method of presenting information but rather in determining whether the explanations are necessary **> Trade-off between effort and gain**

The preferred presentation mode depends on explanations quality and the explained aspect of the response

Summary

- Manually curated dataset of responses and explanations, with noise incorporated in a controlled manner
- Analysis of the effect of noise and different presentation modes of the explanations on users' assessments of responses and explanations:

Low-quality explanations decrease the user-perceived usefulness of the response

Users are not able to detect factual errors or biases in the provided information

The format of explanations is not a critical factor in this setting

User gain and effort trade-off (no explanations are better than noisy ones)

Future work:

- Investigating the impact of response specificity and interactivity on user experience over time
- Analyzing users' assessment when provided with a broader context or previous interactions

Paper: https://doi.org/10.1145/3626772.3657768

Resources: https://github.com/iai-group/sigir2024-transparentCIS

Explainability for Transparent Conversational Information-Seeking

Resources: https://github.com/iai-group/sigir2024-transparentCIS

Where to find me: weronika.lajewska@uis.no, https://werlaj.github.io/

	Usefulness					Othe	er Dimensions							Expla	nation
	Cocramess	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.	Source	Conf.	Limitation
	All conditions	(EC1-E	C10)												
Explanation Quality	0.0 (S)	0.0	(S) 0.508 (S)	0.003 (S) 0.0 (S)	0.001 (S)	0.09 (S)	0.002 (S)	0.713 (-)	0.0 (S)	0.032 (S) 0.0	(S) 0.0 (S) 0.0	(S) 0.173 (S)
Presentation Mode	0.019 (S)	0.0	(S) 0.234 (S)	0.347 (S	0.658 (-)	0.001 (S)	0.149 (S)	0.09 (S)	0.842 (-)	0.001 (S)	0.651 (-	-) 0.0	(S) 0.0 (S) 0.0	(S) 0.0 (S)
	Only condition	ns with e	xplanations (EC1–EC8)											
Explanation Quality	0.0 (S)	0.006	(S) 0.256 (S)	0.002 (S) 0.0 (S)	0.122 (S)	0.319 (S)	0.003 (S)	0.504 (S)	0.0 (S)	0.014(S) 0.007	7 (S) 0.097 (S) 0.0	(S) 0.088 (S)
Presentation Mode	0.872 (-)	0.686	(-) 0.096 (S)	0.895 (-	0.38 (S)	0.399 (S)	0.86 (-)	0.377 (S)	0.739 (-)	0.78 (-)	0.771 (-	-) 0.071	(S) 0.0 (S) 0.653	(-) 0.0 (S)

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Introducing noise in explanations has a statistically significant effect on almost all user-reported response dimensions **> Noisy explanations have a strong impact on user experience in general**

• The impact of noise on explanations is only related to the confidence

	Usefulness					Othe	r Dimensions	2						Expla	nation
	Caciumess	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read.	Sat.	Source	Conf.	Limitation
	All conditions	(EC1–E	C10)												
Explanation Quality Presentation Mode	0.0 (S) 0.019 (S)		(S) 0.508 (S) (S) 0.234 (S)		,	0.001 (S) 0.001 (S)	0.09 (S) 0.149 (S)	0.002 (S) 0.09 (S)	0.713 (-) 0.842 (-)		0.032 (3 0.651 (-	,	` '		(S) 0.173 (S) (S) 0.0 (S)
	Only condition	ns with e	explanations (EC1–EC8)											
Explanation Quality Presentation Mode	0.0 (S) 0.872 (-)	0.006 0.686	(S) 0.256 (S) (-) 0.096 (S)		,	0.122 (S) 0.399 (S)	0.319 (S) 0.86 (-)	0.003 (S) 0.377 (S)	0.504 (S) 0.739 (-)				(S) 0.097 ((S) 0.088 (S) (-) 0.0 (S)

Results of one-way ANOVA. Self-reported response dimensions (dependent variables) are in columns, independent variables in rows. Boldface indicate statistically significant effects (p < 0.05). Effect size: L=Large, M=Medium, S=Small.

Introducing noise in explanations has a statistically significant effect on almost all user-reported response dimensions **> Noisy explanations have a strong impact on user experience in general**

- The impact of noise on explanations is only related to the confidence
- Response dimensions are insensitive to the way explanations are presented

• The impact of the presentation mode is only related to the limitations

ResultsQualitative Analysis

Comments stating that ...

- ... explanations enhance the understanding of the constraints of the system and the response > 11%
- ... responses restricted to three sentences and a single source are insufficient in certain situations -> 3%
- ... interpreting explanations related to limitations and confidence scores is challenging -> 2%
- ... there is a mismatch between the source and the response → <1%

General conclusions:

- Overall, workers consistently emphasized that explanations enhance their understanding and encourage information verification and critical thinking
- Workers are unlikely to identify flaws in the provided explanations (positive comments also for noisy explanations)

Results Pilot Study

- Ran on MTurk with 15 crowd workers and 3 HITs corresponding to EC3, EC4, and EC7 (US\$3 per HIT)
- Feedback: crowd workers expressed concerns about the length of the task and the payment which was accordingly increased in the large-scale data collection
- Results of power analysis:
 - 16 workers are required to observe a statistically significant effect of explanation quality on the perceived usefulness of system responses
 - 56 workers are required for a statistically significant effect of the explanation presentation
 - → We recruited 16 unique workers per HIT in our main study.

ResultsExperiments sensitivity

- One- and two-way ANOVA to test statistical significance for the user-reported dimensions
- Response quality, quality of explanations, and their presentation mode are treated as three separate independent variables to simplify the interpretation of the results
- Each user-reported response dimension score and user rating for explanation is treated as a dependent variable

Results Effect of Query, Topic Familiarity, Familiarity with Conv. Agents

	Usefulness						Othe	r Dimensi	ons						S 10	Expl	Explanation		
	oscialites :	Rel.	Correct.	Compl.	C	omprehen.	Conciseness	Serendip	ity	Coherence	Factuality	Fairness	Read.	Sat.	Source	e Conf	. Li	mitati	ion
Query	0.341 (S)	0.911 (-) 0.939 (-)	0.84 (-	-)	0.733 (-)	0.449 (S)	0.66	(-)	0.543 (-)	0.724 (-)	0.098 (S)	0.125	(S) 0.254	(S) 1.0	(-) 1.0	(-)	1.0	(-)
Topic Familiarity Interest In Topic Similar Search Prob.	0.017 (S) 0.0 (S) 0.0 (S)	0.007	(S) 0.285 (S) (S) 0.0 (S) (S) 0.001 (S)	0.0	S) S) M)	0.0 (S) 0.0 (S) 0.0 (S)	0.0 (S) 0.053 (S) 0.0 (S)	0.0 0.0 0.0	, ,	0.0 (S) 0.115 (S) 0.002 (S)	0.0 (S) 0.0 (S) 0.0 (S)	` '	0.0	(S) 0.0	(S) 0.0 (S) 0.0 (S) 0.0	(M)0.0 (M)0.0 (M)0.0	(S) (S) (S)	0.0	(S) (S) (S)
Conv. Agent Familiarity Search with Agent Freq.	0.079 (S) 0.0 (S)		(S) 0.077 (S) (S) 0.351 (S)	,	,	0.0 (S) 0.0 (S)	0.093 (S) 0.0 (S)		(S) (M)	0.003 (S) 0.0 (S)	0.0 (S) 0.533 (-)	0.079 (S) 0.426 (S)		(S) 0.004 (S) 0.0	(S) 0.0 (S) 0.0	(S) 0.0 (M)0.0	(S) (S)		(S) (M)

- No statistically significant effect of the query on the user-reported response dimensions
- A significant effect of familiarity with the topic on response assessment indicates the need for the user's background knowledge to complement the system's errors

Results One-way ANOVA

-	Usefulness _					Oth	er Dimensions						Explai	nation
	Osciumess	Rel.	Correct.	Compl.	Comprehen.	Conciseness	Serendipity	Coherence	Factuality	Fairness	Read. S	at. Source	e Conf.	Limitation
	All conditions	(EC1–EC1	0)											
Response Quality	0.156 (S)	0.176 (S	0.003 (S)	0.745 (-)	0.846 (-)	0.374 (S)	0.093 (S)	0.217 (S)	0.265 (S)	0.924 (-)	0.881 (-) 0	.638 (S) 0.69	7 (-) 0.456 (S) 0.445 (S)
Explanation Quality	0.0 (S)	0.0 (S	0.508 (S)	0.003 (S) 0.0 (S)	0.001 (S)	0.09 (S)	0.002 (S)	0.713 (-)	0.0 (S)	0.032 (S) 0	.0 (S) 0.0	(S) 0.0	S) 0.173 (S)
Presentation Mode	0.019 (S)	0.0 (S	0.234 (S)	0.347 (S)	0.658 (-)	0.001 (S)	0.149 (S)	0.09 (S)	0.842 (-)	0.001 (S)	0.651 (-) 0	.0 (S) 0.0	(S) 0.0	S) 0.0 (S)
Query	0.341 (S)	0.911 (-	0.939 (-)	0.84 (-)	0.733 (-)	0.449 (S)	0.66 (-)	0.543 (-)	0.724 (-)	0.098 (S)	0.125 (S) 0	.254 (S) 1.0	(-) 1.0 (-) 1.0 (-)
Topic Familiarity	0.017 (S)	0.0 (S	0.285 (S)	0.0 (S) 0.0 (S)	0.0 (S)	0.0 (M)	0.0 (S)	0.0 (S)	0.0 (S)	0.002 (S) 0	.0 (S) 0.0	(M)0.0	S) 0.0 (S)
Interest In Topic	0.0 (S)	0.007 (S	0.0 (S)	0.0 (S) 0.0 (S)	0.053(S)	0.0 (M)	0.115(S)	0.0 (S)	0.0 (S)	0.0 (S) 0	.0 (S) 0.0	(M)0.0	S) 0.0 (S)
Similar Search Prob.	0.0 (S)	0.0 (S	0.001 (S)	0.0 (N	1) 0.0 (S)	0.0 (S)	0.0 (M)	0.002 (S)	0.0 (S)	0.0 (S)	0.0 (S) 0	.0 (S) 0.0	(M)0.0	S) 0.0 (S)
Conv. Agent Familiarity	0.079 (S)	0.0 (S	0.077 (S)	0.001 (S) 0.0 (S)	0.093 (S)	0.0 (S)	0.003 (S)	0.0 (S)	0.079 (S)	0.005 (S) 0	.004 (S) 0.0	(S) 0.0	S) 0.0 (S)
Search with Agent Freq.	0.0 (S)	0.002 (S	0.351 (S)	0.0 (S) 0.0 (S)	0.0 (S)	0.0 (M)	0.0 (S)	0.533 (-)	0.426 (S)	0.0 (S) 0	.0 (S) 0.0	(M)0.0	S) 0.0 (M)
	Only condition	is with exp	lanations (EC1–EC8)										
Explanation Quality	0.0 (S)	0.006 (S	0.256 (S)	0.002 (S) 0.0 (S)	0.122 (S)	0.319 (S)	0.003 (S)	0.504 (S)	0.0 (S)	0.014(S) 0	. 007 (S) 0.09	7 (S) 0.0 (S) 0.088 (S)
Presentation Mode	0.872 (-)	0.686 (-	0.096 (S)	0.895 (-)	0.38 (S)	0.399 (S)	0.86 (-)	0.377 (S)	0.739 (-)	0.78 (-)	0.771 (-) 0	.071 (S) 0.0	(S) 0.653 (–) 0.0 (S)

Results Two-way ANOVA

	Usefulness	Catiafaati	Explanation							
	Oseruiness	Satisfaction	Source	Confiden	ce Limitatio	n				
	Interactions w	ith Query								
Response Quality	0.069 (S)	0.296 (S)	1.0 (-)) 1.0 (-) 1.0 ((-)				
Explanation Quality	0.767 (-)	0.993 (-)	1.0 (-)) 1.0 (-) 1.0 ((-)				
Presentation Mode	0.94 (-)	0.981 (-)	1.0 (-)) 1.0 (-) 1.0 ((-)				
Conv. Agent Familiarity	0.995 (-)	0.887 (-)	1.0 (-)) 1.0 (-) 1.0 ((-)				
Search with Agent Freq.	0.632 (-)	0.215 (S)	1.0 (-)) 1.0 (-) 1.0 ((-)				
Topic Familiarity	0.697 (-)	0.489 (S)	0.002 (S) 0.71 (-) 0.001 ((S)				
Interest in Topic	0.087 (S)	0.542 (-)	0.063 (S)	0.698 (-) 0.234 ((S)				
Similar Search Prob.	0.014 (S)	0.019 (S)	0.449 (S)	0.922 (-) 0.082 ((S)				
	Interactions w	vith Topic Famili	arity							
Response Quality	0.848 (-)	0.42 (S)	0.24 (S)	0.005 ((S) 0.0 ((S)				
Explanation Quality	0.155 (S)	0.671 (-)	0.0 (S) 0.0 ((S) 0.0 ((S)				
Presentation Mode	0.663 (-)	0.752(-)	0.0 (S	0.0 ((S) 0.0	(S)				

Experimental Conditions

The selected conditions vary along three main dimensions:

- 1) Response quality: ground-truth response or imperfect response with biases or factual errors
- 2) Quality of the explanations: accurate or noisy explanation
- 3) Presentation mode: additional UI component or in natural language explanation

We have defined ten experimental conditions using different variants of the response and explanations:

	EC1	EC2	EC3	EC4	EC5	EC6	EC7	EC8	EC9	EC10
Response	+, T	+, T	~, T	~, T	+, T	+, T	~, T	~, T	+, T	~, T
Source	+, T	+, T	+, T	+, T	~, T	~, T	~, T	~, T	 3	_
Confidence	+, V	+, T	+, V	+, T	~, V	~, T	~, V	~, T	-	_
Limitations	+, V	+, T	+, V	+, T	~, V	~, T	~, V	~, T	-	-

- + component without noise
- component with noise
- component not provided
- **V** component presented visually
- **T** component provided in text

We use ten queries selected from the TREC CAsT 2020 and 2022 datasets and two manually created responses for each query