Module 3: Day 2

Imperial College London

Introduction to data processing and cleaning

Valentina Giunchiglia and Dragos Gruia

Schedule of today

Morning

• PRESENTATION: What is data cleaning and processing?

 GUIDED WORKSHOP: COVID and Cognition

Afternoon

- INDIVIDUAL WORKSHOP: Dementia and Cognition
- PRESENTATION: How to write a report?

Why is it important?

Machine learning algorithm predicts the marking rather than the melanoma

Why is it important?

How do data scientists spend their time?

Data cleaning and processing

DATA CLEANING

Process of fixing and removing incorrect, corrupted, incomplete, duplicated, and incorrectly formatted data from a dataset

DATA PROCESSING

VS

Process of data conversion from a given form to a more easy-to-use one based on the aims of the analysis

Data cleaning and processing

DATA CLEANING

Process of fixing and removing incorrect, corrupted, incomplete, duplicated, and incorrectly formatted data from a dataset

DATA PROCESSING

VS

Process of data conversion from a given form to a more easy-to-use one based on the aims of the analysis

DATA CLEANING

Process of fixing and removing incorrect, corrupted, incomplete, duplicated, and incorrectly formatted data from a dataset

Data cleaning

Data cleaning: irrelevant data

Irrelevant data and data structure

- 1. Do you have row and column names?
- 2. Are column and row names interpretable?
- 3. Which data do you need for your analysis?

- 1. Add column and row names
- 2. Modify column and row names
- 3. Filter data

Computational resources and interpretability

Data cleaning: data constraints

Data Constraints

1. Data Type:

- Are numerical columns *int* or *float*?
- Are categorical variables str?

2. Data Range:

- Are the numerical columns within the expected range? (Ex: Age)
- 1. Convert to proper data types
- 2. Different solutions:
 - 1. Set to NA
 - 2. Set equal to max or min
 - 3. Remove participants
 - 4. Check for typing error

Data cleaning: duplicates

De-duplication

-> Why do you have duplicates?

- 1. Are there fully duplicated rows?
- 2. Are there partially duplicates rows?

- 1. Removal of duplicates
- 2. Different solutions (depend on WHY):
 - Merge the partial duplicates
 - Remove the partial duplicates
 - Select one of the partial duplicates
 - Keep entry that are duplicates and set rest as NA

Data cleaning: formatting

Data formatting

- 1. Are there unique names for each category (e.g. Education?)
- 2. Are text data consistently formatted? (Ex: dates)
- 3. Are there special characters?

- 1. Different solutions based on data:
 - Map different categories to unique names
 - Set as NA categories with different formatting (if right category not clear)
 - Infer right category from different data entries

- 1. Match right formatting
- 2. Set as NA (if not interpretable)
- 3. Infer from other data points
- 3. Remove special characters (iMPORTANT for free text)

Data cleaning: uniformity

Data Uniformity

- 1. Do all numerical values have the same units (Ex: ms)?
- 2. Are columns with similar information consistent (Ex: age and age in decade)?

- L. Different solutions:
 - Standardise units (if easy to understand)
 - Set as NA
- 2. Different solutions:
 - Correct the inconsistent values
 - Set as NA

Data cleaning: missing data

Missing data

- -> Are the data missing at random or not? Why are they missing?
- 1. Are there missing data? How many? (IMPORTANT: Always check the number of missing data)
- 1. Different solutions:
 - Drop participants with more than N NA
 - Drop columns with more than N NA
 - Impute missing data with mean/median
 - Impute missing data with ML algorithms
 - Infer missing data from other data points

You cannot analyse data if there are missing values

Data cleaning: outliers

Outliers detection

1. Are there outliers? (WHY?)

Are they really outliers?

- Filter out the outliers (e.g. set as NA)
- Winsorize the outliers
- Set as mean/median

It really depends on the type of outliers!!

Data cleaning: feature scaling

1. Are the numerical data properly scaled?

1. Different solutions:

- Data stadardisation: rescale data to have a mean of 0 and standard deviation of 1
- Data normalisation: rescale values in a range between 0 and 1

Let's apply what you have learnt to real data!