Editorial RoAlgo PreOJI 2025

1-8 Martie 2025

Copyright © 2025 RoAlgo

Această lucrare este licențiată sub Creative Commons Atribuire-Necomercial-Partajare în Condiții Identice 4.0 Internațional (CC BY-NC-SA 4.0) Aceasta este un sumar al licenței și nu servește ca un substitut al acesteia. Poți să:

- **Distribui:** copiază și redistribuie această operă în orice mediu sau format.
- Adaptezi: remixezi, transformi, și construiești pe baza operei.

Licențiatorul nu poate revoca aceste drepturi atât timp cât respectați termenii licenței.

- **Atribuire:** Trebuie să acorzi creditul potrivit, să faci un link spre licență și să indici dacă s-au făcut modificări. Poți face aceste lucruri în orice manieră rezonabilă, dar nu în vreun mod care să sugereze că licențiatorul te sprijină pe tine sau modul tău de folosire a operei.
- Necomercial: Nu poți folosi această operă în scopuri comerciale.
- **Partajare în Condiții Identice:** Dacă remixezi, transformi, sau construiești pe baza operei, trebuie să distribui contribuțiile tale sub aceeași licență precum originalul.

Pentru a vedea o copie completă a acestei licențe în original (în limba engleză), vizitează: https://creativecommons.org/licenses/by-nc-sa/4.0

Cuprins

1			4
2			5
	2.1	Aflarea primalității unui număr	5
	2.2	Condiția de oprire a extinderii unui interval	5
	2.3	Căutarea intervalului final	5
	2.4	Aflarea lui x_t	6
	2.5	Adăugarea pe interval	6
	2.6	Maximul de la început până la un moment	6
	2.7	Cod sursă	7
3	Bit Transformations Vlad Muntean		8
	3.1	Soluție de 70 de puncte	8
	3.2	Soluție de 100 de puncte	9
4	Balansoar Andrei Paul Iorgulescu		10
	4.1	Idee generală și soluție pentru $N = 4k$ și $N = 4k + 3$	10
	4.2	Cazurile $N = 4k + 1$ si $N = 4k + 2$	11
	4.3	N mic și finalizare	11
	4.4	Cod sursă	11

1 Multumiri

Acest concurs nu ar fi putut avea loc fără următoarele persoane:

- Andrei Iorgulescu, Ștefan Dăscălescu, Traian Danciu, Vlad Munteanu, autorii și propunătorii problemelor și laureați la concursurile de informatică și membri activi ai comunității RoAlgo;
- Alex Vasiluță, fondatorul și dezvoltatorul principal al Kilonova;
- Ștefan Alecu, creatorul acestui șablon LATEX pe care îl folosim;
- Andrei Chertes, David Curcă, Tudor Iacob, Susan, testerii concursului, care au dat numeroase sugestii și sfaturi utile pentru buna desfășurare a rundei;
- Ștefan Dăscălescu, Andrei Iorgulescu și Luca Mureșan, coordonatorii rundelor;
- Comunității RoAlgo, pentru participarea la acest concurs.

2 Substantiv

Autor: Traian Mihai Danciu

2.1 Aflarea primalității unui număr

Acest lucru poate fi făcut brut, în $O(\sqrt{x})$, însă acest lucru ar obține un punctaj parțial. Noi vom folosi Ciurul lui Eratostene.

2.2 Condiția de oprire a extinderii unui interval

Să notăm cu [L,R] intervalul inițial al unui gigel. Dacă suntem la un moment t, să notăm cu x_t câte numere prime am găsit de la L la t. Noi ne vom opri atunci când nu mai găsim destule numere prime ca să mai continuăm, adică $R + x_t < t$. Cu alte cuvinte, suntem la momentul t, am găsit x_t numere prime până acum, dar nu am mai putut extinde destul intervalul.

2.3 Căutarea intervalului final

Un algoritm brut ar afla câte numere prime sunt de la L la R (adică ar afla x_R), iar apoi ar merge cu t începand cu R+1, până când $R+x_t < t$.

5

Observație. $R + x_t < t$ este același lucru cu $R < t - x_t$. Din moment ce $x_{t+1} - x_t \in \{0, 1\}$, rezultă că $(t + 1 - x_{t+1}) - (t - x_t) \in \{0, 1\}$. Cum multe numere sunt compuse, rezultă că va fi un moment în care $t - x_t$ o să crească destul de mult încât să depășească R.

Însă, din moment ce am arătat că $t - x_t$ este crescător, iar noi vrem să aflăm primul număr mai mare ca R, putem folosi căutare binară.

2.4 Aflarea lui x_t

 x_t reprezintă numărul de numere prime de la L la t. Acest lucru poate fi aflat ușor cu sume parțiale pe valorile obținute în Ciurul lui Eratostene. Cu alte cuvinte, $x_t = sp_t - sp_L$, unde sp_i este numărul de numere prime de la 1 la i.

2.5 Adăugarea pe interval

Noi trebuie să aflam, pentru fiecare moment de timp, numărul de gigei de la acel moment. Adică, după ce am aflat intervalul final, fie acesta $[L_{final}, R_{final}]$, noi trebuie să adaugăm 1 de la L_{final} la R_{final} . Vom folosi Șmenul lui Mars (în engleză, Difference Arrays).

2.6 Maximul de la început până la un moment

Nouă ni se cere să aflăm numărul maxim de gigei în toate momentele de la 1 la *t*. Pentru a obține acest rezultat, vom folosi maxime parțiale (similar cu sume parțiale).

2.7 Cod sursă

Soluție de 36 Soluție de 100

3 Bit Transformations

AUTOR: VLAD MUNTEANU

O primă observație este că nicio subsecvență nu trebuie folosită mai mult de o dată. Acest lucru este ușor de demonstrat dacă ne uităm la ce se întamplă în cazul în care am folosi o subsecvență de două ori, și anume, fiecare valoare ar fi inversată de două ori, astfel rămânând neschimbată.

3.1 Soluție de 70 de puncte

Odată stabilit că fiecare subsecvență va fi folosită maxim o dată, ne trebuie o strategie pentru a găsi ce subsecvențe trebuie totuși să luăm. Pentru a face acest lucru, ne vom uita la poziția 1 din vectorul inițial. Putem observa că valoarea de la poziția 1 poate fi afectată numai de subsecvența [1, K]. Așadar, dacă poziția 1 necesită o schimbare, această schimbare poate veni numai prin intermediul subsecvenței [1, K]. Odată stabilit dacă subsecvența [1, K] trebuie folosită sau nu, putem itera prin ea și să schimbăm toate valorile din cadrul ei.

Ulterior, ne vom muta la poziția 2. Deoarece subsecvența [1, K] deja a fost considerată, singura subsecvență ramasă care afectează poziția 2 este subsecvența [2, K+1]. Inductiv, putem demonstra că singura subsecvență care poate modifica valoarea i, odată ce valorile de la 1 la i-1 au fost rezolvate, este subsecvența [i, i+K-1]. Tot ce rămâne de făcut la final este

să validăm faptul că ultimele poziții, de la N-K+2 până la N, au valorile corecte fără a fi nevoie de vreo modificare. În caz contrar, răspunsul va fi -1.

3.2 Soluție de 100 de puncte

Pentru a scăpa de parcurgerea folosită pentru a schimba valorile fiecărei subsecvențe, ne putem folosi de tehnica Șmenul lui Mars pentru a face aceste modificări În O(1). Când o subsecvență [i, i+K-1] este folosită, vom modifica valorile de la pozițiile i și i+K, ramânând doar ca pe parcurs ce trecem de la o poziție la alta, să aplicăm în paralel și pasul de update de la Șmenul lui Mars, și anume mars[i] = mars[i-1] XOR mars[i]. Această soluție are complexitate O(N) și obține 100 de puncte.

4 Balansoar

Autor: Andrei Paul Iorgulescu

4.1 Idee generală și soluție pentru N=4k și N=4k+3

Trebuie să atribuim fiecărui număr de la 1 la $2 \cdot N$ un coeficient întreg nenul între -N și N, astfel încât să nu fie două numere cu același coeficient.

$$B = \sum_{i=1}^{2*N} (i * coef_i)$$

unde am notat cu B "balansul" şirului.

O idee de început este să grupăm numerele $2 \cdot i - 1$ și $2 \cdot i$ și să le dăm coeficienți de același modul, x și -x. Astfel, balansul va crește sau va scădea cu x. De fapt, dacă putem împărți șirul numerelor naturale de la 1 la N în două grupuri de sumă egală, putem crește B cu x-urile dintr-o grupă și îl scădem cu celelalte, obținând suma 0. Totuși, noi putem împărți numerele de la 1 la N în două grupuri cu sumă egală doar atunci când suma lor este divizibilă cu 2, adică $N \cdot (N+1) = 4k$. Asta se întâmplă când N = 4q și N = 4q + 3, adică pe aproximativ jumătate din teste. Un procedeu simplu de a obține una dintre cele două grupe este să pornim cu un $S = N \cdot (N+1)/4$ și

să parcurgem numerele de la N la 1, mereu băgând numărul curent în grupă și scăzându-l din S dacă este mai mic sau egal cu S. Evident, celelalte numere formează cealaltă grupă.

4.2 Cazurile N = 4k + 1 si N = 4k + 2

Ne rămân cazurile când N=4k+1 și N=4k+2. Ne putem folosi totuși de ideea de a grupa numerele 2i-1 și 2i. Să presupunem că avem o soluție cu B=0 pentru un N, și vrem să atribuim coeficienții cu modul între N+1 și N+4 numerelor între 2*N+1 și 2*N+8 pentru a rămâne cu B=0. Folosind cele 4 grupe cu diferența 1, putem pune numerele N+1 și N+4 cu plus, numerele N+2 și N+3 cu minus, astfel modificând B cu N+1+N+4-(N+2)-(N+3)=0, deci lăsând B=0. Așadar, dacă avem o soluție cu B=0 pentru N, putem obține o soluție cu B=0 pentru orice N+4k.

4.3 N mic și finalizare

Cazurile N=1 și N=2 nu admit soluție cu B=0, dar putem găsi soluții cu B=1. Pentru $3 \le N \le 6$, există soluții cu B=0, iar acestea pot să fie găsite fie pe foaie, de mână, fie cu ajutorul calculatorului. Astfel, pentru orice $N \ge 7$, putem găsi un $3 \le n \le 6$ astfel încât N=n+4k, și putem aplica procedeul de mai sus pentru a produce o soluție optimă de la n la N.

4.4 Cod sursă

Soluție de 100