Les calculs explicites de sommes et produits de matrices peuvent être vérifiés à l'aide de vos fonctions en python ou de calculatrices. Ne sont donc corrigés que les exercices comportant une part de raisonnement algébrique ou logique.

Exercices d'entraînement

Exercice 1. Effectuer le produit des matrices:

$$\left(\begin{array}{ccc} 4 & 5 & 6\end{array}\right) \times \left(\begin{array}{c} 2\\3\\-1\end{array}\right) \qquad \left(\begin{array}{c} 2\\3\\-1\end{array}\right) \times \left(\begin{array}{ccc} 4 & 5 & 6\end{array}\right)$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 4 & -6 & 9 & 6 \\ 0 & -7 & 10 & 7 \\ 5 & 8 & -11 & -8 \end{pmatrix} \quad \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & -4 \\ 1 & 5 \\ -2 & 2 \end{pmatrix}$$

Exercice 2. Soit A et B deux matrices carrées d'ordre n, I_n la matrice identitée d'ordre n. Développer et simplifier les produits suivants :

1.
$$(2A - I_n)(A + 3I_n)$$
,

5.
$$(2A - B)(A + B)$$
,

2.
$$(A-4I_n)(2A+3I_n)$$
,

6.
$$(-A+3B)(3A-B)$$

3.
$$(I_n - A)(I_n + A + A^2)$$
,

7.
$$(B-4A)(B+4A)$$
,

4.
$$(A+2I_n)^2$$
.

8.
$$(3A - B)^2$$
.

Solution:

1.

$$(2A - I_n)(A + 3I_n) = 2A \times A + 2A \times 3I_n - I_n \times A - I_n \times 3I_n$$

= $2A^2 + 6A - A - 3I_n$
= $2A^2 + 5A - 3I_n$

2.

$$(A - 4I_n)(2A + 3I_n) = A \times 2A + A \times 3I_n - 4I_n \times 2A - 4I_n \times 3I_n$$

= $2A^2 - 5A - 12I_n$

3.

$$(I_n - A)(I_n + A + A^2) = I_n \times I_n + I_n \times A + I_n \times A^2 - A \times I_n - A \times A - A \times A^2$$

= $I_n - A^3$

4.

$$(A + 2I_n)^2 = A \times A + A \times 2I_n + 2I_n \times A + 2I_n \times 2I_n$$

= $A^2 + 4A + 4I_n$

5.

$$(2A - B)(A + B) = 2A \times A + 2A \times B - B \times A - B \times B$$

= $2A^2 + 2AB - BA - B^2$

6.

$$(-A+3B)(3A-B) = -A \times 3A - A \times (-B) + 3B \times 3A + 3B \times (-B)$$
$$= -3A^2 + AB + 9BA - 3B^2$$

7.

$$(B-4A)(B+4A) = B \times B + B \times 4A - 4A \times B - 4A \times 4A$$

= $B^2 + 4BA - 4AB - 16A^2$

8.

$$(3A - B)^2 = 3A \times 3A + 3A \times (-B) - B \times 3A - B \times (-B)$$
$$= 9A^2 - 3AB - 3BA + B^2$$

Exercices d'approfondissement

Exercice 3. Soit M la matrice suivante: $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- 1. Calculer M^2 puis M^3 et M^4 .
- 2. Conjecturer, pour tout entier naturel n, une expression de M^n .
- 3. Démontrer cette conjecture par récurrence.

Solution:

1. On a, après calcul:

$$M^{2} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix},$$

$$M^{3} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix},$$

$$M^{4} = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}.$$

2. On peut donc formuler la conjecture suivante :

Pour tout
$$n \in \mathbb{N}$$
, $M^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.

3. Montrons cette conjecture par récurrence sur n:

Initialisation: Si n = 0, $M^n = M^0 = I_2$ par convention.

$$\operatorname{et} \left(\begin{array}{cc} 1 & 0 \\ n & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = I_2$$

L'égalité est donc vraie au rang n = 0.

 $\emph{H\'er\'edit\'e}:$ Supposons que l'égalité est vraie jusqu'au rang n, Alors

$$\begin{split} M^{n+1} &= M^n \times M \\ &= \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ n+1 & 1 \end{pmatrix} \end{split}$$

L'égalité est donc encore vraie au rang n + 1.

En conclusion, elle est vraie pour tout entier naturel n.

Exercice 4. On considère la matrice $A: A = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$

- 1. Calculer A^2 . Prouver que $A^3 = -I_2$.
- 2. Exprimer pour tout entier naturel $n, A^{3n}, A^{3n+1}, A^{3n+2}$ en fonction de n.

Solution:

1. Un calcul direct donne:

Puis
$$A^3 = \begin{pmatrix} 1 & 3 \\ -1 & -2 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 1 & 3 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2.$$

2. On en déduit pour tout entier naturel n:

$$A^{3n} = (A^3)^n = (-I_2)^n = (-1)^n I_n,$$

$$A^{3n+1} = (A^3)^n \times A = (-1)^n I_n \times A = (-1)^n A,$$

$$A^{3n+2} = (A^3)^n \times A^2 = (-1)^n I_n \times A^2 = (-1)^n A^2,$$

Exercice 5. Soit A et B deux matrices carrées non nulles d'ordre n telles que $A+B=I_n$. Soit M une matrice carrée d'ordre n telle qu'il existe deux réels non nulls distincts λ et μ vérifiant :

$$M = \lambda A + \mu B$$
 et $M^2 = \lambda^2 A + \mu^2 B$

- 1. (a) Montrer que $(M \lambda I_n)(M \mu I_n) = (M \mu I_n)(M \lambda I_n) = O_n$
 - (b) En déduire que $AB = BA = 0_n$ et que $A^2 = A$ et $B^2 = B$.
- 2. Démontrer que, pour tout $p \in \mathbb{N}$, on a :

$$M^p = \lambda^p A + \mu^p B.$$

- 3. **Application:** Soient $A = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$ et $M = \begin{pmatrix} 8 & -18 \\ 3 & -7 \end{pmatrix}$
 - (a) Déterminer λ et μ tels que $M = \lambda A + \mu B$ et $M^2 = \lambda^2 A + \mu^2 B$.
 - (b) En déduire M^p pour tout $p \in \mathbb{N}$.

Solution:

1.

$$(M - \lambda I_n)(M - \mu I_n) = M^2 - (\lambda + \mu)M + \lambda \mu I_n$$

$$= \lambda^2 A + \mu^2 B - (\lambda + \mu)(\lambda A + \mu B) + \lambda \mu (A + B)$$

$$= \lambda^2 A + \mu^2 B - \lambda^2 A - \lambda \mu B - \mu \lambda A + \mu^2 B + \lambda \mu A + \lambda \mu B$$

$$= 0_n$$

Un calcul analogue montre $(M - \mu I_n)(M - \lambda I_n) = O_n$.

2. De $M = \lambda A + \mu B$ et $A + B = I_n$, on en déduit $(M - \lambda I_n) = (\lambda A + \mu B - \lambda A - \lambda B) = (\mu - \lambda)B$.

De même, on a:
$$(M - \mu I_n) = (\lambda - \mu)A$$
.

Avec
$$(M - \lambda I_n)(M - \mu I_n) = 0n$$
,

on obtient $(\mu - \lambda)B \times (\lambda - \mu)A = (\lambda - \mu)BA = 0_n$.

Or $\lambda \neq \mu$ par hypothèse, donc $BA = 0_n$.

On procède de même pour montrer que $BA = 0_n$.

Enfin, si $A + B = I_n$ alors $(A + B)^2 = I_n = A + B$ et, puisque $AB = BA = 0_n$, on en déduit que $A^2 + B^2 = A + B$.

En remplaçant B par $I_n - A$, on obtient $A^2 + (I_n - A)^2 = A + (I_n - A)$, soit finalement $2A^2 = 2A$.

En conclusion $A^2 = A$ et, de même, on montre que $B^2 = B$.

3. La démonstration de $M^p = \lambda^p A + \mu^p B$ se fait par récurrence :

Initialisation: Si p = 0, alors $M^p = M^0 = I_n$ par convention et $\lambda^p A + \mu^p B = A + B = I_n$, donc l'égalité est vraie si p = 0.

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons l'égalité vraie au rang p, dans ce cas

$$\begin{split} M^{p+1} &= M^p \times M \\ &= (\lambda^p A + \mu^p B) \times (\lambda A + \mu B) \\ &= \lambda^{p+1} A^2 + \mu^{p+1} B^2 \\ &= \lambda^{p+1} A + \mu^{p+1} B. \end{split}$$

La récurrence est donc démontrée.

4. La condition $M = \lambda A + \mu B$ s'écrit : $\begin{pmatrix} 8 & -18 \\ 3 & -7 \end{pmatrix} = \lambda \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix} + \mu \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$

Donc on doit avoir en comparant les deux premières colonnes des matrices obtenues : $3\lambda - 2\mu = 8$ et $\lambda - \mu = 3$.

On en déduit $\lambda=2$ et $\mu=-1$, puis on vérifie par le calcul que cela donne les deux égalités attendues.

5. Nous sommes dans les hypothèses du résultat établi à la question 2, on a donc: $M^p = 2^p A + (-1)^p B$ pour tout $p \in \mathbb{N}$.