QVI Trial and Control Groups analysis

Here our objective is to find control stores for the selected trial stores. A few stores are selected on which trials are conducted to see if the two metrics notably customer acquisition and revenue are improving or not within the observation period. The control stores need to be selected on the basis of similar metrics for the trial stores and on the basis of the observed similarity score, trial-control combinations will be made.

```
In [1]: #getting the dataset
import pandas as pd
qvi= pd.read_csv("C:\\Users\\sujoydutta\\Downloads\\QVI_data.csv")
```

In [2]: #seeing the dataset
 qvi.head(10)

Out[2]:	LYLTY_0	CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_S
	0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2	6.0	1
	1	1002	2018- 09-16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	2.7	1
	2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	3.6	2
	3	1003	2019- 03-08	1	4	106	Natural ChipCo Hony Soy Chckn175g	1	3.0	1
	4	1004	2018- 11-02	1	5	96	WW Original Stacked Chips 160g	1	1.9	1
	5	1005	2018- 12-28	1	6	86	Cheetos Puffs 165g	1	2.8	1
	6	1007	2018- 12-04	1	7	49	Infuzions SourCream&Herbs Veg Strws 110g	1	3.8	1
	7	1007	2018- 12-05	1	8	10	RRD SR Slow Rst Pork Belly 150g	1	2.7	1
	8	1009	2018- 11-20	1	9	20	Doritos Cheese Supreme 330g	1	5.7	3
	9	1010	2018- 09-09	1	10	51	Doritos Mexicana 170g	2	8.8	1

```
In [3]: #examining the dataset
  qvi.info()
```

```
2 STORE_NBR 264834 non-null int64
3 TXN_ID 264834 non-null int64
4 PROD_NBR 264834 non-null int64
5 PROD_NAME 264834 non-null object
6 PROD_QTY 264834 non-null int64
7 TOT_SALES 264834 non-null float64
8 PACK_SIZE 264834 non-null int64
9 BRAND 264834 non-null int64
9 BRAND 264834 non-null object
10 LIFESTAGE 264834 non-null object
           2 STORE NBR
                                  264834 non-null int64
          11 PREMIUM CUSTOMER 264834 non-null object
          dtypes: float64(1), int64(6), object(5)
         memory usage: 24.2+ MB
 In [4]: # Convert DATE to datetime
          qvi['DATE'] = pd.to datetime(qvi['DATE'])
 In [5]: # Converting PACK_SIZE, PROD QTY and TOT SALES to numeric types
          qvi['PROD QTY'] = qvi['PROD_QTY'].astype(int)
          qvi['TOT SALES'] = qvi['TOT SALES'].astype(float)
          qvi['PACK SIZE'] = qvi['PACK SIZE'].astype(int)
 In [6]: # Ensure the remaining columns are of type object
          object columns = ['LYLTY CARD NBR', 'LIFESTAGE', 'PREMIUM CUSTOMER', 'STORE NBR', 'TXN I
          qvi[object columns] = qvi[object columns].astype(object)
 In [7]: # Display the DataFrame
          print(qvi.dtypes)
          LYLTY CARD NBR
                               object
          DATE
                              datetime64[ns]
                               object
object
object
          STORE NBR
          TXN ID
          PROD NBR
         PROD NAME
                                      object
int32
         PROD QTY
                                     float64
         TOT SALES
         PACK SIZE
                                        int32
         BRAND
                                       object
         LIFESTAGE
                                       object
          PREMIUM CUSTOMER
                                        object
         dtype: object
 In [8]: # Creating the month ID column
          qvi['YEARMONTH'] = qvi['DATE'].dt.year * 100 + qvi['DATE'].dt.month
 In [9]: # Grouping by STORE NBR and YEARMONTH and getting the required metrics
          measure over time = qvi.groupby(['STORE NBR', 'YEARMONTH']).agg(
             totSales=('TOT SALES', 'sum'),
              nCustomers=('LYLTY CARD NBR', 'nunique'),
              nTxn=('TXN ID', 'nunique'),
              totQty=('PROD QTY', 'sum')
          ).reset index()
In [10]: # Getting additional metrics
          measure over time['nTxnPerCust'] = measure over time['nTxn'] / measure over time['nCusto
          measure over time['nChipsPerTxn'] = measure over time['totQty'] / measure over time['nTx
          measure over time['avgPricePerUnit'] = measure over time['totSales'] / measure over time
In [11]: # Sorting by STORE NBR and YEARMONTH
          measure over time.sort values(by=['STORE NBR', 'YEARMONTH'], inplace=True)
In [12]: # Filtering to stores with full observation periods and pre-trial
```

1 DATE

264834 non-null object

```
pre trial measures = measure over time[(measure over time['YEARMONTH'] < 201902) &
                                                    (measure over time['STORE NBR'].isin(stores with
In [13]: #viewing the Pre trial measures which is before February 2019
         pre trial measures.head()
Out[13]:
            STORE_NBR YEARMONTH totSales nCustomers nTxn totQty nTxnPerCust nChipsPerTxn avgPricePerUnit
         0
                    1
                            201807
                                      206.9
                                                   49
                                                         52
                                                               62
                                                                      1.061224
                                                                                  1.192308
                                                                                                 3.337097
         1
                                                         43
                            201808
                                      176.1
                                                   42
                                                               54
                                                                      1.023810
                                                                                  1.255814
                                                                                                 3.261111
         2
                    1
                            201809
                                      278.8
                                                   59
                                                        62
                                                               75
                                                                      1.050847
                                                                                  1.209677
                                                                                                 3.717333
         3
                            201810
                                      188.1
                                                   44
                                                         45
                                                                      1.022727
                                                                                   1.288889
                                                                                                 3.243103
                                                               58
         4
                    1
                            201811
                                      192.6
                                                   46
                                                        47
                                                               57
                                                                      1.021739
                                                                                  1.212766
                                                                                                 3.378947
         #seeing value counts of stores
In [14]:
         pre trial measures['STORE NBR'].value counts()
         STORE NBR
Out[14]:
                 7
         171
                 7
                 7
         173
         174
                 7
                 7
         175
         98
                7
         99
                 7
                 7
         100
                 7
         101
         272
         Name: count, Length: 260, dtype: int64
         #viewing the stores with full observations
In [15]:
         stores with full obs
         array([ 1,
                        2,
                             3,
                                   4,
                                        5,
                                              6,
                                                   7,
                                                         8,
                                                              9,
                                                                   10,
                                                                        12,
                                                                              13,
                                                                                   14,
Out[15]:
                                             20,
                                                  21,
                                                        22,
                                                             23,
                                                                        25,
                       16,
                             17,
                                  18,
                                       19,
                                                                   24,
                                                                              26,
                                                                                   27,
                  15,
                       29,
                            30,
                                             34,
                                                  35,
                                                        36,
                  28,
                                  32,
                                       33,
                                                             37,
                                                                   38,
                                                                        39,
                                                                              40,
                                                                                   41,
                                       47,
                                                        50,
                  42,
                       43,
                            45,
                                  46,
                                             48,
                                                  49,
                                                             51,
                                                                        53,
                                                                              54,
                                                                   52,
                                                                                   55,
                  56,
                       57,
                            58,
                                  59,
                                       60,
                                             61,
                                                  62,
                                                        63,
                                                             64,
                                                                   65,
                                                                        66,
                                                                              67,
                                                                                   68,
                  69,
                       70,
                            71,
                                  72,
                                       73,
                                             74,
                                                  75,
                                                        77,
                                                             78,
                                                                   79,
                                                                        80,
                                                                              81,
                  83,
                       84,
                            86,
                                 87,
                                       88,
                                            89,
                                                  90,
                                                        91,
                                                             93,
                                                                   94,
                                                                        95,
                                                                              96,
                                                                                   97,
                       99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
                 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124,
                 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
                 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
                 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
                 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
                 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
                 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
                 204, 205, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 219,
                 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232,
                 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,
                 246, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 258, 259,
                 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272],
               dtype=int64)
In [16]:
         #Building a correlation table
         def calculate correlation(input table, metric col, store comparison):
             store numbers = input table['STORE NBR'].unique()
```

stores with full obs = measure over time.groupby('STORE NBR').filter(lambda x: len(x) ==

```
for store in store numbers:
                 if store == store comparison:
                     continue
                 control data = input table[input table['STORE NBR'] == store][metric col]
                 if not trial data.empty and not control data.empty:
                    corr = trial data.corr(control data)
                 else:
                    corr = None
                 correlations.append(('Store1': store comparison, 'Store2': store, 'corr measure'
             return pd.DataFrame(correlations)
In [17]: #Function to calculate magnitude
         def calculate magnitude distance(input table, metric col, store comparison):
             calc dist df = pd.DataFrame(columns=['Store1', 'Store2', 'YEARMONTH', 'measure'])
             store numbers = input table['STORE NBR'].unique()
             for store in store numbers:
                 if store == store comparison:
                     continue
                 trial data = input table[input table['STORE NBR'] == store comparison]
                 control data = input table[input table['STORE NBR'] == store]
                 merged data = pd.merge(trial data[['YEARMONTH', metric col]],
                                        control data[['YEARMONTH', metric col]],
                                        on='YEARMONTH',
                                        suffixes=(' trial', ' control'))
                 merged data['measure'] = abs(merged data[f'{metric col} trial'] - merged data[f'
                 calc dist df = pd.concat([
                     calc dist df,
                     pd.DataFrame({
                         'Store1': store comparison,
                         'Store2': store,
                         'YEARMONTH': merged data['YEARMONTH'],
                         'measure': merged data['measure']
                 ], ignore index=True)
             min max dist = calc dist df.groupby(['Store1', 'YEARMONTH']).agg(minDist=('measure',
                                                                              maxDist=('measure',
             dist_df = pd.merge(calc_dist_df, min_max_dist, on=['Store1', 'YEARMONTH'])
             dist df['magnitudeMeasure'] = 1 - (dist df['measure'] - dist df['minDist']) / (dist
             final dist df = dist df.groupby(['Store1', 'Store2']).agg(mag measure=('magnitudeMea
             return final dist df
In [18]: # Calculating for store 77
         trial store1 = 77
```

corr_nSales77 = calculate_correlation(pre_trial_measures, 'totSales', trial_store1)
corr nCustomers77 = calculate correlation(pre trial measures, 'nCustomers', trial store1

trial data = input table[input table['STORE NBR'] == store comparison][metric col]

correlations = []

```
magnitude_nSales77 = calculate_magnitude_distance(pre_trial_measures, 'totSales', trial_
magnitude_nCustomers77 = calculate_magnitude_distance(pre_trial_measures, 'nCustomers',

print("Correlation for total sales:\n", corr_nSales77)
print("\nCorrelation for number of customers:\n", corr_nCustomers77)
print("\nMagnitude distance for total sales:\n", magnitude_nSales77)
print("\nMagnitude distance for number of customers:\n", magnitude_nCustomers77)
```

Lation fo	or total	sales:
Store1	Store2	corr_measure
77	1	NaN
77	2	NaN
77	3	NaN
77	4	NaN
77	5	NaN
77	268	NaN
77	269	NaN
77	270	NaN
77	271	NaN
77	272	NaN
	Store1 77 77 77 77 77 77 77 77 77 77 77 77	77 1 77 2 77 3 77 4 77 5 77 268 77 269 77 270 77 271

[259 rows x 3 columns]

Correlation for number of customers:

r_measure NaN NaN
NaN
NaN
NaN
NaN
NaN

[259 rows x 3 columns]

Magnitude distance for total sales:

	0440 410	001100 = 01	- 0000 0010
	Store1	Store2	mag_measure
0	77	1	0.955061
1	77	2	0.939318
2	77	3	0.354963
3	77	4	0.177414
4	77	5	0.554066
254	77	268	0.962563
255	77	269	0.452903
256	77	270	0.446991
257	77	271	0.553304
258	77	272	0.886697

[259 rows x 3 columns]

Magnitude distance for number of customers:

_				
	Store1	Store2	mag_measure	
0	77	1	0.940321	
1	77	2	0.924638	
2	77	3	0.345067	
3	77	4	0.189579	
4	77	5	0.481199	

```
77
                        268 0.939907
         254
              77 269 0.343547
77 270 0.357725
77 271 0.483457
77 272 0.948207
         255
         256
         257
         258
         [259 rows x 3 columns]
In [19]: # Calculating for store 86
         trial store2 = 86
         corr nSales86 = calculate correlation(pre trial measures, 'totSales', trial store2)
         corr nCustomers86 = calculate correlation(pre trial measures, 'nCustomers', trial store2
         magnitude nSales86 = calculate magnitude distance(pre trial measures, 'totSales', trial
         magnitude nCustomers86 = calculate magnitude distance(pre trial measures, 'nCustomers',
         print("Correlation for total sales:\n", corr nSales86)
         print("\nCorrelation for number of customers:\n", corr nCustomers86)
```

print("\nMagnitude distance for total sales:\n", magnitude nSales86)

print("\nMagnitude distance for number of customers:\n", magnitude nCustomers86)

Correlation for total sales:

	Store1	Store2	corr_measure
0	86	1	NaN
1	86	2	NaN
2	86	3	NaN
3	86	4	NaN
4	86	5	NaN
254	86	268	NaN
255	86	269	NaN
256	86	270	NaN
257	86	271	NaN
258	86	272	NaN

... ...

. .

[259 rows x 3 columns]

Correlation for number of customers:

	Store1	Store2	corr_measure
0	86	1	NaN
1	86	2	NaN
2	86	3	NaN
3	86	4	NaN
4	86	5	NaN
254	86	268	NaN
255	86	269	NaN
256	86	270	NaN
257	86	271	NaN
258	86	272	NaN

[259 rows x 3 columns]

Magnitude distance for total sales:

	Store1	Store2	mag_measure
0	86	1	0.220565
1	86	2	0.179640
2	86	3	0.762894
3	86	4	0.498526
4	86	5	0.929321

```
254
               86 268
                              0.250819
                       269
        255
                86
                              0.902040
        256
               86
                      270
                              0.834520
               86 271 0.922919
86 272 0.446702
        257
        258
        [259 rows x 3 columns]
        Magnitude distance for number of customers:
             Storel Store2 mag measure
                86
                      1 0.444597
               86
86
                              0.38062
        1
                         2
                        3
        2
                              0.91185
                        4 0.773922
               86
                        5 0.926509
        4
               . . .
                      . . .
        . .
                                    . . .
                             0.42739
        254
               86
                      268
        255
               86
                      269 0.917082

      256
      86
      270
      0.890489

      257
      86
      271
      0.935896

      258
      86
      272
      0.425196

        [259 rows x 3 columns]
In [20]: # Calculating for store 88
        trial store3 = 88
        corr nSales88 = calculate correlation(pre trial measures, 'totSales', trial store3)
        corr nCustomers88 = calculate correlation(pre trial measures, 'nCustomers', trial store3
        magnitude nSales88 = calculate magnitude distance(pre trial measures, 'totSales', trial
        magnitude nCustomers88 = calculate magnitude distance(pre trial measures, 'nCustomers',
        print("Correlation for total sales:\n", corr nSales88)
        print("\nCorrelation for number of customers:\n", corr nCustomers88)
        print("\nMagnitude distance for total sales:\n", magnitude nSales88)
        print("\nMagnitude distance for number of customers:\n", magnitude nCustomers88)
        Correlation for total sales:
             Storel Store2 corr measure
               88 1
                88
                         2
                                    NaN
        1
                88
                         3
                                    NaN
                88
        3
                         4
                                     NaN
                       5
                                    NaN
               88
               . . .
                       . . .
              88 268
88 269
88 270
        254
                                    NaN
        255
                                     NaN
        256
                                    NaN
        257
               88
                      271
                                    NaN
        258 88 272
                                    NaN
        [259 rows x 3 columns]
        Correlation for number of customers:
             Storel Store2 corr measure
               88 1
                              NaN
        1
                88
                         2
                                     NaN
                88
                         3
        2
                                     NaN
```

5

. . .

NaN

NaN

88

88

88 268

. . .

3

254

```
270
        257
               88
                      271
                                   NaN
        258
               88
                      272
                                   NaN
        [259 rows x 3 columns]
        Magnitude distance for total sales:
             Storel Store2 mag measure
               88 1 0.143453
        1
               88
                       2
                             0.116355
               88
88
                       3 0.806064
4 0.901383
5 0.612614
        3
               88
                       5
              . . .
        . .
                       . . .
                                   . . .
              88 268 0.161613
88 269 0.712728
        254
        255
        256
               88
                     270
                             0.717650
                     271 0.615957
272 0.291095
        257
               88
               88
        258
        [259 rows x 3 columns]
        Magnitude distance for number of customers:
             Storel Store2 mag measure
               88 1 0.353668
        0
                     2
               88
        1
                            0.302289
        2
               88
                       3 0.849307
               88 4
88 5
        3
                             0.93093
                            0.742127
              . . .
                      . . .
               88 268 0.337873
        254
               88
                     269 0.852599
        255
             88
                   270
        256
                           0.839071
        257
               88
                     271 0.743121
               88 272 0.336616
        258
        [259 rows x 3 columns]
In [21]: # getting the final dataframe
        magnitude df 88 = pd.merge(
           magnitude nSales88[['Store1', 'Store2', 'mag measure']],
            magnitude nCustomers88[['Store1', 'Store2', 'mag measure']],
            on=['Store1', 'Store2'],
            suffixes=(' sales', ' customers')
        magnitude df 88['Trial Store'] = 88
        magnitude df 86 = pd.merge(
            magnitude nSales86[['Store1', 'Store2', 'mag measure']],
            magnitude nCustomers86[['Store1', 'Store2', 'mag measure']],
            on=['Store1', 'Store2'],
            suffixes=(' sales', ' customers')
        magnitude df 86['Trial Store'] = 86
        magnitude df 77 = pd.merge(
            magnitude nSales77[['Store1', 'Store2', 'mag measure']],
            magnitude nCustomers77[['Store1', 'Store2', 'mag measure']],
            on=['Store1', 'Store2'],
            suffixes=(' sales', ' customers')
        magnitude df 77['Trial Store'] = 77
```

256

88

88

269

NaN

NaN

```
final magnitude df = pd.concat([magnitude df 88, magnitude df 86, magnitude df 77], igno
         print("Combined Magnitude Distances DataFrame:\n", final magnitude df)
        Combined Magnitude Distances DataFrame:
              Storel Store2 mag measure sales mag measure customers Trial Store
                                                           0.353668
                88 1
        0
                                     0.143453
        1
                88
                                     0.116355
                                                           0.302289
               88 3
88 4
88 5
                                     0.806064
                                                           0.849307
        2
                                                                               88
                                     0.901383
                                                            0.93093
                                     0.612614
                                                          0.742127
                                                                               88
                                                      0.939907
0.343547
0.357725
               . . .
                        . . .
        772 77 268 0.962563 0.939907
773 77 269 0.452903 0.343547
774 77 270 0.446991 0.357725
775 77 271 0.553304 0.483457
776 77 272 0.886697 0.948207
                                                                               77
                                                                               77
                                                                               77
                                                                               77
                                                                               77
        [777 rows x 5 columns]
In [22]: # Defin the correlation weight
         corr weight = 0.5
         final magnitude df['composite score'] = (
            final magnitude df['mag measure sales'] * corr weight +
            final magnitude df['mag measure customers'] * (1 - corr weight)
In [23]: | # Ensuring the composite_score column is numeric and handle NaNs
         final magnitude df['composite score'] = pd.to numeric(final magnitude df['composite score
In [24]: # Grouping by trial store and find the best control store for each trial store
        best control stores = final magnitude df.groupby('Trial Store').apply(
           lambda x: x.loc[x['composite score'].idxmax()]
         ).reset index(drop=True)
In [25]: # Selecting only the relevant columns
        best control stores = best control stores[['Trial Store', 'Store2', 'composite score']]
        best control stores
         Trial_Store Store2 composite_score
Out[25]:
                                0.989932
        0
                 77
                      233
                 86
                      155
                                0.974909
         2
                 88
                      237
                                0.977147
In [26]: # Rename columns for clarity
        best control stores.columns = ['Trial Store', 'Control Store', 'Composite Score']
In [27]: # Printing the best control store for each trial store
        print("Best Control Store for Each Trial Store:\n", best control stores)
        Best Control Store for Each Trial Store:
           Trial Store Control Store Composite Score
                    77 233 0.989932
        0
                                 155
                                             0.974909
                                 237 0.977147
        2
                    88
In [28]: # Getting unique trial and control stores
         trial stores = best control stores['Trial Store'].tolist()
```

```
all stores
          {77, 86, 88, 155, 233, 237}
Out[28]:
          # Filtering the main DataFrame
In [29]:
          relevant = pre trial measures[pre trial measures['STORE NBR'].isin(all stores)]
          #seeing new database
In [30]:
          relevant.head()
Out[30]:
               STORE_NBR YEARMONTH totSales nCustomers nTxn totQty nTxnPerCust nChipsPerTxn avgPricePerUnit
          880
                       77
                                201807
                                          296.8
                                                        51
                                                              55
                                                                     84
                                                                             1.078431
                                                                                          1.527273
                                                                                                         3.533333
          881
                       77
                                201808
                                          255.5
                                                        47
                                                              48
                                                                     74
                                                                             1.021277
                                                                                          1.541667
                                                                                                         3.452703
          882
                       77
                                201809
                                          225.2
                                                                     70
                                                                             1.047619
                                                                                          1.590909
                                                                                                         3.217143
                                                        42
                                                              44
          883
                       77
                                201810
                                          204.5
                                                                             1.027027
                                                                                                         3.932692
                                                        37
                                                              38
                                                                      52
                                                                                          1.368421
          884
                       77
                                201811
                                          245.3
                                                        41
                                                              44
                                                                     67
                                                                             1.073171
                                                                                          1.522727
                                                                                                         3.661194
          Analysing the First Trial and control pair (77 and 233)
          We will analyse on the basis of total sales and number of customers.
          # Defining trial and control stores
In [31]:
          trial store = 77
          control store = 233
          # Adding Store type based on STORE NBR
In [32]:
          measure over time['Store type'] = measure over time['STORE NBR'].apply(
               lambda x: 'Trial' if x == trial store else ('Control' if x == control store else 'Ot
          # Calculating average total sales by YEARMONTH and Store type
In [33]:
          pastSales = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'totSales': 'mea
          pastSales
              YEARMONTH
                                         totSales
Out[33]:
                            Store_type
           0
                               Control 290.700000
                   201807
           1
                   201807
                           Other stores 623.817424
           2
                   201807
                                 Trial 296.800000
           3
                   201808
                               Control 285.900000
           4
                   201808
                           Other stores 603.600192
           5
                   201808
                                  Trial 255.500000
                   201809
           6
                               Control 228.600000
           7
                   201809
                           Other stores 610.947328
           8
                   201809
                                  Trial 225.200000
```

control stores = best control stores['Control Store'].tolist()

all stores = set(trial stores + control stores)

9

10

11

201810

201810

Control 185.700000

Trial 204.500000

201810 Other stores 623.671103

12	201811	Control	211.600000
13	201811	Other stores	609.835115
14	201811	Trial	245.300000
15	201812	Control	279.800000
16	201812	Other stores	641.250192
17	201812	Trial	267.300000
18	201901	Control	177.500000
19	201901	Other stores	621.687356
20	201901	Trial	204.400000
21	201902	Control	244.000000
22	201902	Other stores	573.229008
23	201902	Trial	235.000000
24	201903	Control	199.100000
25	201903	Other stores	630.371103
26	201903	Trial	278.500000
27	201904	Control	158.600000
28	201904	Other stores	606.171103
29	201904	Trial	263.500000
30	201905	Control	344.400000
31	201905	Other stores	597.984483
32	201905	Trial	299.300000
33	201906	Control	221.000000
34	201906	Other stores	610.888931
35	201906	Trial	264.700000

8

9

10

11

12

13

14

15

16

17

2018-09-01

2018-09-01

2018-10-01

2018-10-01

2018-10-01

2018-11-01

2018-11-01

2018-11-01

2018-12-01

2018-12-01

2018-12-01

```
18
    2019-01-01
19
    2019-01-01
20
   2019-01-01
21
   2019-02-01
22
   2019-02-01
23
   2019-02-01
24
   2019-03-01
25
   2019-03-01
26
   2019-03-01
27
   2019-04-01
28
   2019-04-01
   2019-04-01
29
30
   2019-05-01
31
   2019-05-01
32
   2019-05-01
33
   2019-06-01
34
   2019-06-01
35
    2019-06-01
Name: TransactionMonth, dtype: datetime64[ns]
```

In [35]: # Calculating average number of customers by YEARMONTH and Store_type
 customersacquired = measure_over_time.groupby(['YEARMONTH', 'Store_type']).agg({'nCustom
 customersacquired

Out[35]:		YEARMONTH	Store_type	nCustomers
	0	201807	Control	51.000000
	1	201807	Other stores	70.750000
	2	201807	Trial	51.000000
	3	201808	Control	48.000000
	4	201808	Other stores	71.352490
	5	201808	Trial	47.000000
	6	201809	Control	42.000000
	7	201809	Other stores	69.110687
	8	201809	Trial	42.000000
	9	201810	Control	35.000000
	10	201810	Other stores	70.334601
	11	201810	Trial	37.000000
	12	201811	Control	40.000000
	13	201811	Other stores	69.534351
	14	201811	Trial	41.000000
	15	201812	Control	47.000000
	16	201812	Other stores	72.731801
	17	201812	Trial	46.000000
	18	201901	Control	35.000000
	19	201901	Other stores	70.471264
	20	201901	Trial	35.000000
	21	201902	Control	45.000000
	22	201902	Other stores	65.492366

```
23
           201902
                                    45.000000
                            Trial
24
           201903
                        Control
                                    40.000000
25
           201903
                                   71.509506
                   Other stores
26
           201903
                           Trial
                                    50.000000
27
           201904
                        Control
                                   30.000000
28
           201904
                   Other stores
                                    68.771863
29
           201904
                            Trial
                                   47.000000
30
           201905
                        Control
                                    57.000000
31
           201905
                    Other stores
                                    70.865900
                                    55.000000
32
           201905
                            Trial
33
           201906
                         Control
                                   41.000000
34
                                    69.396947
           201906
                   Other stores
35
           201906
                           Trial
                                   41.000000
```

```
# Converting YEARMONTH to datetime format
In [36]:
         customersacquired['AcquireMonth'] = pd.to datetime(customersacquired['YEARMONTH'].astype
         customersacquired['AcquireMonth']
              2018-07-01
Out[36]:
              2018-07-01
         2
              2018-07-01
         3
             2018-08-01
         4
              2018-08-01
         5
              2018-08-01
         6
             2018-09-01
         7
             2018-09-01
         8
              2018-09-01
         9
             2018-10-01
```

10 2018-10-01 11 2018-10-01 12 2018-11-01 13 2018-11-01 14 2018-11-01 15 2018-12-01 16 2018-12-01 17 2018-12-01 2019-01-01 18 19 2019-01-01 20 2019-01-01 2019-02-01 21 22 2019-02-01 23 2019-02-01 24 2019-03-01 25 2019-03-01

27 2019-04-01 28 2019-04-01 29 2019-04-01

2019-03-01

26

30 2019-05-01 31 2019-05-01

32 2019-05-01

33 2019-06-01 34 2019-06-01

35 2019-06-01

Name: AcquireMonth, dtype: datetime64[ns]

```
In [37]: # Plot the data on basis of total sales by month
    import matplotlib.pyplot as plt
    import seaborn as sns
    pastSales = pastSales[pastSales['YEARMONTH'] < 201903]

    plt.figure(figsize=(12, 6))
    sns.lineplot(data=pastSales, x='TransactionMonth', y='totSales', hue='Store_type')
    plt.xlabel('Month of operation')
    plt.ylabel('Total sales')
    plt.title('Total sales by month')
    plt.legend(title='Store Type')
    plt.grid(True)
    plt.sticks(rotation=45)
    plt.tight_layout()
    plt.show()</pre>
```


Before the Trial period we can see the control and trial stores have almost similar sales where control is performing better mostly than trial.

```
In [38]: # Plotting the data on basis of number of customers by month

customersacquired = customersacquired[customersacquired['YEARMONTH'] < 201903]

plt.figure(figsize=(12, 6))
sns.lineplot(data=customersacquired, x='AcquireMonth', y='nCustomers', hue='Store_type')
plt.xlabel('Month of operation')
plt.ylabel('Number of customer')
plt.title('Number of customer by month')
plt.legend(title='Store Type')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()</pre>
```


Here we can see that the number of customers acquired is almost the same for both types of stores.

Out[39]:

	STORE_NBR	YEARMONTH	totSales	nCustomers	nTxn	totQty	nTxnPerCust	nChipsPerTxn	avgPricePerUn
880	77	201807	296.8	51	55	84	1.078431	1.527273	3.53333
881	77	201808	255.5	47	48	74	1.021277	1.541667	3.45270
882	77	201809	225.2	42	44	70	1.047619	1.590909	3.21714
883	77	201810	204.5	37	38	52	1.027027	1.368421	3.93269
884	. 77	201811	245.3	41	44	67	1.073171	1.522727	3.66119
885	77	201812	267.3	46	48	72	1.043478	1.500000	3.71250
886	77	201901	204.4	35	39	65	1.114286	1.666667	3.14461
887	77	201902	235.0	45	45	74	1.000000	1.644444	3.17567
888	77	201903	278.5	50	55	82	1.100000	1.490909	3.39634
889	77	201904	263.5	47	48	78	1.021277	1.625000	3.37820
890	77	201905	299.3	55	56	84	1.018182	1.500000	3.56309
891	77	201906	264.7	41	42	70	1.024390	1.666667	3.78142
2699	233	201807	290.7	51	54	88	1.058824	1.629630	3.30340
2700	233	201808	285.9	48	50	80	1.041667	1.600000	3.57375
2701	233	201809	228.6	42	45	70	1.071429	1.555556	3.26571
2702	233	201810	185.7	35	36	56	1.028571	1.555556	3.31607
2703	233	201811	211.6	40	41	62	1.025000	1.512195	3.41290
2704	233	201812	279.8	47	50	75	1.063830	1.500000	3.73066
2705	233	201901	177.5	35	35	47	1.000000	1.342857	3.77659

```
2706
              233
                          201902
                                     244.0
                                                     45
                                                           47
                                                                   70
                                                                           1.044444
                                                                                          1.489362
                                                                                                           3.48571
2707
              233
                          201903
                                     199.1
                                                     40
                                                           41
                                                                   59
                                                                           1.025000
                                                                                          1.439024
                                                                                                           3.37457
2708
              233
                          201904
                                     158.6
                                                     30
                                                           32
                                                                   46
                                                                           1.066667
                                                                                          1.437500
                                                                                                           3.44782
2709
              233
                          201905
                                                                   92
                                     344.4
                                                     57
                                                           62
                                                                           1.087719
                                                                                          1.483871
                                                                                                           3.74347
2710
              233
                          201906
                                     221.0
                                                    41
                                                           41
                                                                   61
                                                                           1.000000
                                                                                          1.487805
                                                                                                           3.62295
```

```
In [92]:
         # Calculate scaling factor for sales
         scalingFactorForControlSales = pre trial period[pre trial period['Store type'] == 'Trial
         scalingFactorForControlSales
```

1.0753829282960135 Out[92]:

```
In [93]: # Apply scaling factor to control store sales
        measure over time['scaledControlSales'] = measure over time.apply(
            lambda row: row['totSales'] * scalingFactorForControlSales if row['STORE NBR'] == co
            axis=1
```

Recalculating pastSales with scaled control sales In [42]: pastSales = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'totSales': 'mea pastSales['TransactionMonth'] = pd.to datetime(pastSales['YEARMONTH'].astype(str) + '01' pastSales

Out[42]:		YEARMONTH	Store_type	totSales	scaledControlSales	TransactionMonth
	0	201807	Control	290.700000	312.613817	2018-07-01
	1	201807	Other stores	623.817424	623.817424	2018-07-01
	2	201807	Trial	296.800000	296.800000	2018-07-01
	3	201808	Control	285.900000	307.451979	2018-08-01
	4	201808	Other stores	603.600192	603.600192	2018-08-01
	5	201808	Trial	255.500000	255.500000	2018-08-01
	6	201809	Control	228.600000	245.832537	2018-09-01
	7	201809	Other stores	610.947328	610.947328	2018-09-01
	8	201809	Trial	225.200000	225.200000	2018-09-01
	9	201810	Control	185.700000	199.698610	2018-10-01
	10	201810	Other stores	623.671103	623.671103	2018-10-01
	11	201810	Trial	204.500000	204.500000	2018-10-01
	12	201811	Control	211.600000	227.551028	2018-11-01
	13	201811	Other stores	609.835115	609.835115	2018-11-01
	14	201811	Trial	245.300000	245.300000	2018-11-01
	15	201812	Control	279.800000	300.892143	2018-12-01
	16	201812	Other stores	641.250192	641.250192	2018-12-01
	17	201812	Trial	267.300000	267.300000	2018-12-01
	18	201901	Control	177.500000	190.880470	2019-01-01
	19	201901	Other stores	621.687356	621.687356	2019-01-01
	20	201901	Trial	204.400000	204.400000	2019-01-01

21	201902	Control	244.000000	262.393435	2019-02-01
22	201902	Other stores	573.229008	573.229008	2019-02-01
23	201902	Trial	235.000000	235.000000	2019-02-01
24	201903	Control	199.100000	214.108741	2019-03-01
25	201903	Other stores	630.371103	630.371103	2019-03-01
26	201903	Trial	278.500000	278.500000	2019-03-01
27	201904	Control	158.600000	170.555732	2019-04-01
28	201904	Other stores	606.171103	606.171103	2019-04-01
29	201904	Trial	263.500000	263.500000	2019-04-01
30	201905	Control	344.400000	370.361881	2019-05-01
31	201905	Other stores	597.984483	597.984483	2019-05-01
32	201905	Trial	299.300000	299.300000	2019-05-01
33	201906	Control	221.000000	237.659627	2019-06-01
34	201906	Other stores	610.888931	610.888931	2019-06-01
35	201906	Trial	264.700000	264.700000	2019-06-01

```
In [72]: # Control store 95th percentile and 5th percentile
         stdDev = pastSales['scaledControlSales'].std()
         pastSales Controls95 = pastSales[pastSales['Store type'] == 'Control'].copy()
         pastSales Controls95['scaledControlSales'] = pastSales Controls95['scaledControlSales']
         pastSales Controls95['Store type'] = 'Control 95th % confidence interval'
         pastSales Controls5 = pastSales[pastSales['Store type'] == 'Control'].copy()
         pastSales Controls5['scaledControlSales'] = pastSales Controls5['scaledControlSales'] *
        pastSales Controls5['Store type'] = 'Control 5th % confidence interval'
In [44]: # Rename columns before merging to avoid conflicts
         pastSales Controls95.rename(columns={'scaledControlSales': 'scaled95'}, inplace=True)
         pastSales Controls5.rename(columns={'scaledControlSales': 'scaled5'}, inplace=True)
In [45]: #Building final df for sales assessment
         combined data 95 = pd.merge(
            pastSales,
            pastSales Controls95[['TransactionMonth', 'scaled95']],
             on='TransactionMonth'
         combined data = pd.merge(
            combined data 95,
            pastSales Controls5[['TransactionMonth', 'scaled5']],
            on='TransactionMonth'
         combined data.rename(columns={'scaledControlSales': 'scaledNormal'}, inplace=True)
```

combined data.drop duplicates(inplace=True)

combined data.head()

Out[45]:	YEARMONTH		Store_type	totSales	scaledNormal	TransactionMonth	scaled95	scaled5
	0	201807	Control	290.700000	312.613817	2018-07-01	110480.631600	-109855.403965
	1	201807	Other stores	623.817424	623.817424	2018-07-01	110480.631600	-109855.403965
	2	201807	Trial	296.800000	296.800000	2018-07-01	110480.631600	-109855.403965
	3	201808	Control	285.900000	307.451979	2018-08-01	108656.390005	-108041.486046
	4	201808	Other stores	603.600192	603.600192	2018-08-01	108656.390005	-108041.486046

```
In [46]: # Plotting the difference between control and trial stores on sales basis in the trial p
         plt.figure(figsize=(12, 6))
         sns.lineplot(data=combined data, x='TransactionMonth', y='totSales', hue='Store type', p
         highlight period = (combined data['TransactionMonth'] < pd.to datetime('2019-05-01')) &
         highlight data = combined data[highlight period]
         plt.fill between(
            highlight data['TransactionMonth'],
            highlight data['totSales'].max(),
             color='grey',
             alpha=0.3,
            label='Highlighted Area',
             zorder=1
         plt.xlabel('Month of operation')
         plt.ylabel('Sales')
         plt.title('Sales by Month with Confidence Intervals')
         handles, labels = plt.gca().get legend handles labels()
         unique labels = []
         unique handles = []
         for handle, label in zip(handles, labels):
             if label not in unique labels:
                unique labels.append(label)
                 unique handles.append(handle)
         plt.legend(handles=unique handles, labels=unique labels, title='Legend')
         plt.grid(True)
         plt.xticks(rotation=45)
         plt.tight layout()
         plt.show()
```


The area shaded in grey represents the highlighted period which is the trial period. The Trial store has seen a significant increase in sales than the control stores within the trial period.

```
# Set trial and control stores
In [47]:
           trial store = 77
           control store = 235
In [49]:
           # Extracting pre-trial measures
           preTrialMeasures = measure over time[measure over time['YEARMONTH'] < 201902]</pre>
           preTrialMeasures.head()
Out[49]:
             STORE_NBR YEARMONTH totSales nCustomers nTxn totQty nTxnPerCust nChipsPerTxn avgPricePerUnit
          0
                      1
                              201807
                                        206.9
                                                      49
                                                           52
                                                                  62
                                                                         1.061224
                                                                                      1.192308
                                                                                                     3.337097
          1
                              201808
                                        176.1
                                                      42
                                                           43
                                                                  54
                                                                          1.023810
                                                                                      1.255814
                                                                                                     3.261111
          2
                      1
                              201809
                                        278.8
                                                      59
                                                           62
                                                                  75
                                                                         1.050847
                                                                                      1.209677
                                                                                                     3.717333
          3
                      1
                              201810
                                        188.1
                                                           45
                                                                  58
                                                                          1.022727
                                                                                      1.288889
                                                                                                     3.243103
          4
                      1
                              201811
                                        192.6
                                                      46
                                                           47
                                                                  57
                                                                          1.021739
                                                                                      1.212766
                                                                                                     3.378947
In [102...
           # Calculate scaling factor for customers
           scalingFactorForControlcustomers = pre trial period[pre trial period['Store type']
           scalingFactorForControlcustomers
           1.050880626223092
Out[102]:
In [95]:
           # Applying scaling factor to control store sales
           measure over time['scaledControlcustomers'] = measure over time.apply(
               lambda row: row['nCustomers'] * scalingFactorForControlSales if row['STORE NBR'] ==
```

Recalculating pastcustomer with scaled customer sales

axis=1

```
In [54]: pastcustomer = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'nCustomers':
         pastcustomer['TransactionMonth'] = pd.to datetime(pastcustomer['YEARMONTH'].astype(str)
         pastcustomer.head()
                         Store_type nCustomers scaledControlcustomers TransactionMonth
Out[54]:
            YEARMONTH
                 201807
                                                                        2018-07-01
         0
                            Control
                                      51.00000
                                                         51.000000
         1
                 201807
                        Other stores
                                      70.75000
                                                         70.765990
                                                                        2018-07-01
         2
                 201807
                              Trial
                                      51.00000
                                                         51.000000
                                                                        2018-07-01
         3
                 201808
                                      48.00000
                                                         48.000000
                                                                        2018-08-01
                            Control
         4
                 201808 Other stores
                                      71.35249
                                                         71.365776
                                                                        2018-08-01
         # Converting YEARMONTH to TransactionMonth
In [65]:
         pastcustomer['TransactionMonth'] = pd.to datetime(pastcustomer['YEARMONTH'].astype(str)
         pastcustomer.head()
                         Store_type nCustomers scaledControlcustomers TransactionMonth
Out[65]:
            YEARMONTH
         0
                 201807
                            Control
                                      51.00000
                                                         51.000000
                                                                        2018-07-01
                 201807 Other stores
                                      70.75000
                                                         70.765990
                                                                        2018-07-01
         2
                 201807
                              Trial
                                      51.00000
                                                         51.000000
                                                                        2018-07-01
                 201808
                            Control
                                      48.00000
                                                         48.000000
                                                                        2018-08-01
         4
                 201808 Other stores
                                      71.35249
                                                         71.365776
                                                                        2018-08-01
         # Defining highlight period
In [58]:
         highlight start = pd.to datetime('2019-01-01')
         highlight end = pd.to datetime('2019-05-01')
         highlight period = (pastcustomer['TransactionMonth'] >= highlight start) & (pastcustomer
         # Control store 95th percentile and 5th percentile
In [103...
         stdDev nc = pastcustomer[pastcustomer['Store type'] == 'Control']['nCustomers'].std()
         pastcustomer95 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
         pastcustomer95['scaledControlcustomers'] = pastcustomer95['scaledControlcustomers'] * (1
         pastcustomer95['Store type'] = 'Control 95th % confidence interval'
         pastcustomer5 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
         pastcustomer5['scaledControlcustomers'] = pastcustomer5['scaledControlcustomers'] * (1 -
         pastcustomer5['Store type'] = 'Control 5th % confidence interval'
         # Rename columns before merging to avoid conflicts
In [104...
         pastcustomer95.rename(columns={'scaledControlcustomers': 'scaledcust95'}, inplace=True)
         pastcustomer5.rename(columns={'scaledControlcustomers': 'scaledcust5'}, inplace=True)
         #Building final df for customer assessment
In [108...
         pastcustomer95 = pd.merge(
             pastcustomer,
             pastcustomer95[['TransactionMonth', 'scaledcust95']],
             on='TransactionMonth'
         mergedata = pd.merge(
             pastcustomer95,
```

```
pastcustomer5[['TransactionMonth', 'scaledcust5']],
  on='TransactionMonth'
)

mergedata.rename(columns={'scaledControlcustomers': 'scaledNormal'}, inplace=True)

mergedata.drop_duplicates(inplace=True)

mergedata.head()
```

```
Out[108]:
               YEARMONTH
                               Store type nCustomers scaledNormal TransactionMonth scaledcust95 scaledcust5
                     201807
                                              51.00000
                                                           51.000000
                                                                             2018-07-01
                                                                                           818.571436 -716.571436
                                  Control
                     201807 Other stores
                                              70.75000
                                                           70.765990
                                                                             2018-07-01
                                                                                           818.571436 -716.571436
            2
                     201807
                                     Trial
                                              51.00000
                                                           51.000000
                                                                             2018-07-01
                                                                                           818.571436 -716.571436
            3
                     201808
                                  Control
                                              48.00000
                                                           48.000000
                                                                             2018-08-01
                                                                                           770.420175 -674.420175
            4
                     201808 Other stores
                                              71.35249
                                                           71.365776
                                                                             2018-08-01
                                                                                           770.420175 -674.420175
```

```
In [118... # Plotting the difference between control and trial stores on sales basis in the trial p
         plt.figure(figsize=(12, 6))
         sns.lineplot(data=mergedata, x='TransactionMonth', y='nCustomers', hue='Store type', pal
         highlight period = (mergedata['TransactionMonth'] < pd.to datetime('2019-05-01')) & (mergedata
         highlight data = mergedata[highlight period]
         plt.fill between(
            highlight data['TransactionMonth'],
             highlight data['nCustomers'].max(),
             color='grey',
             alpha=0.3,
             label='Highlighted Area',
             zorder=1
         plt.xlabel('Month of operation')
         plt.ylabel('Number of customers')
         plt.title('Number of Customers by Month with Confidence Intervals')
         handles, labels = plt.gca().get legend handles labels()
         unique labels = []
         unique handles = []
         for handle, label in zip(handles, labels):
             if label not in unique labels:
                 unique labels.append(label)
                 unique handles.append(handle)
         plt.legend(handles=unique handles, labels=unique labels, title='Legend')
         plt.grid(True)
         plt.xticks(rotation=45)
        plt.tight layout()
         plt.show()
```


We can clearly see in the highlight period that the trial store is performing better than the control store within the trial period. The trial stores are getting more customers than the control stores.

Analysing the Second Trial and control pair (86 and 155)

We will analyse on the basis of total sales and number of customers.

```
# Set trial and control stores
In [123...
           trial store = 86
           control_store = 155
           # Adding Store type based on STORE NBR
In [124...
           measure over time['Store type'] = measure over time['STORE NBR'].apply(
                lambda x: 'Trial' if x == trial store else ('Control' if x == control store else 'Ot
Out[124]:
              STORE_NBR YEARMONTH totSales
                                                                  totQty nTxnPerCust nChipsPerTxn avgPricePerUnit
                                               nCustomers
                                                            nTxn
           0
                                201807
                                          206.9
                                                        49
                                                               52
                                                                      62
                       1
                                                                             1.061224
                                                                                           1.192308
                                                                                                          3.337097
           1
                       1
                                201808
                                                        42
                                                               43
                                                                      54
                                          176.1
                                                                             1.023810
                                                                                           1.255814
                                                                                                          3.261111
           2
                       1
                                201809
                                                        59
                                                               62
                                                                      75
                                                                             1.050847
                                                                                                          3.717333
                                          278.8
                                                                                           1.209677
           3
                       1
                                201810
                                                               45
                                                                             1.022727
                                          188.1
                                                                      58
                                                                                           1.288889
                                                                                                          3.243103
                       1
                                          192.6
                                                        46
                                                               47
                                                                      57
                                                                             1.021739
                                                                                           1.212766
                                                                                                          3.378947
           4
                                201811
```

pastSales = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'totSales': 'mea

Calculating average total sales by YEARMONTH and Store type

```
        Out[125]:
        YEARMONTH
        Store_type
        totSales

        0
        201807
        Control
        924.600000
```

pastSales

In [125...

1	201807	Other stores	619.160985
2	201807	Trial	892.200000
3	201808	Control	782.700000
4	201808	Other stores	599.748276
5	201808	Trial	764.050000
6	201809	Control	1014.400000
7	201809	Other stores	605.316794
8	201809	Trial	914.600000
9	201810	Control	963.800000
10	201810	Other stores	617.884030
11	201810	Trial	948.400000
12	201811	Control	898.800000
13	201811	Other stores	604.644656
14	201811	Trial	918.000000
15	201812	Control	849.800000
16	201812	Other stores	636.867433
17	201812	Trial	841.200000
18	201901	Control	874.600000
19	201901	Other stores	616.575862
20	201901	Trial	841.400000
21	201902	Control	891.200000
22	201902	Other stores	568.170229
23	201902	Trial	913.200000
24	201903	Control	804.400000
25	201903	Other stores	625.224335
26	201903	Trial	1026.800000
27	201904	Control	844.600000
28	201904	Other stores	601.339544
29	201904	Trial	848.200000
30	201905	Control	922.850000
31	201905	Other stores	593.507663
32	201905	Trial	889.300000
33	201906	Control	857.200000
34	201906	Other stores	606.272519
35	201906	Trial	838.000000

```
0
               2018-07-01
Out[126]:
               2018-07-01
          2
               2018-07-01
          3
               2018-08-01
               2018-08-01
          4
          5
               2018-08-01
          6
               2018-09-01
          7
               2018-09-01
          8
               2018-09-01
          9
               2018-10-01
          10
               2018-10-01
               2018-10-01
          11
          12
               2018-11-01
          13
               2018-11-01
          14
               2018-11-01
          15
               2018-12-01
          16
               2018-12-01
          17
               2018-12-01
          18
               2019-01-01
          19
               2019-01-01
          20
               2019-01-01
          21
               2019-02-01
          22
               2019-02-01
          23
               2019-02-01
          24
               2019-03-01
          25
               2019-03-01
          26
               2019-03-01
          27
               2019-04-01
          28
               2019-04-01
          29
               2019-04-01
          30
               2019-05-01
          31
               2019-05-01
          32
               2019-05-01
          33
               2019-06-01
          34
               2019-06-01
          35
               2019-06-01
          Name: TransactionMonth, dtype: datetime64[ns]
          # Calculating average number of customers by YEARMONTH and Store type
In [127...
          customersacquired = measure_over_time.groupby(['YEARMONTH', 'Store_type']).agg({'nCustom
          customersacquired
Out[127]:
              YEARMONTH
                           Store_type nCustomers
           0
                   201807
                                      101.000000
                              Control
                   201807
           1
                          Other stores
                                       70.378788
```

3

4

5

6

7

8

9

10

11

201807

201808

201808

201808

201809

201809

201809

201810

201810

201810

Trial

Trial

Trial

Trial

Control

Control

Control

Other stores

Other stores

Other stores

99.000000

91.000000

71.007663

94.000000

103.000000

68.645038

103.000000

108.000000

69.783270

109.000000

12	201811	Control	101.000000
13	201811	Other stores	69.076336
14	201811	Trial	100.000000
15	201812	Control	97.000000
16	201812	Other stores	72.340996
17	201812	Trial	98.000000
18	201901	Control	96.000000
19	201901	Other stores	70.011494
20	201901	Trial	94.000000
21	201902	Control	95.000000
22	201902	Other stores	65.064885
23	201902	Trial	107.000000
24	201903	Control	94.000000
25	201903	Other stores	71.057034
26	201903	Trial	115.000000
27	201904	Control	99.000000
28	201904	Other stores	68.288973
29	201904	Trial	105.000000
30	201905	Control	106.000000
31	201905	Other stores	70.490421
32	201905	Trial	104.000000
33	201906	Control	95.000000
34	201906	Other stores	68.973282
35	201906	Trial	98.000000

```
In [128... # Converting YEARMONTH to datetime format
    customersacquired['AcquireMonth'] = pd.to_datetime(customersacquired['YEARMONTH'].astype
    customersacquired['AcquireMonth']
```

```
Out[128]:
```

```
0
     2018-07-01
     2018-07-01
2
     2018-07-01
3
     2018-08-01
4
     2018-08-01
5
     2018-08-01
     2018-09-01
6
7
     2018-09-01
8
     2018-09-01
9
     2018-10-01
     2018-10-01
10
11
     2018-10-01
12
     2018-11-01
13
     2018-11-01
14
     2018-11-01
```

2018-12-01 2018-12-01

2018-12-01

15

16 17

```
20
   2019-01-01
21
   2019-02-01
22
   2019-02-01
23 2019-02-01
24 2019-03-01
25
   2019-03-01
26 2019-03-01
27 2019-04-01
28
   2019-04-01
29
   2019-04-01
30 2019-05-01
31
   2019-05-01
   2019-05-01
32
33
   2019-06-01
   2019-06-01
34
35
   2019-06-01
Name: AcquireMonth, dtype: datetime64[ns]
# Plot the data on basis of total sales by month
pastSales = pastSales[pastSales['YEARMONTH'] < 201903]</pre>
plt.figure(figsize=(12, 6))
sns.lineplot(data=pastSales, x='TransactionMonth', y='totSales', hue='Store type')
plt.xlabel('Month of operation')
plt.ylabel('Total sales')
plt.title('Total sales by month')
```

19

In [130...

2019-01-01

plt.legend(title='Store Type')

plt.xticks(rotation=45)
plt.tight layout()

plt.grid(True)

2019-01-01

Here we can see the control stores have higher sales than trial stores before the trial period.

```
plt.xlabel('Month of operation')
plt.ylabel('Number of customer')
plt.title('Number of customer by month')
plt.legend(title='Store Type')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Acquisition of customers is almost same in both trial and control stores.

```
In [132...
         # Sampling pre-trial measures for demonstration
          pre trial period = measure over time[(measure over time['STORE NBR'] == trial store) |
                                                   (measure over time['STORE NBR'] == control store
          # Calculate scaling factor for sales
In [133...
          scalingFactorForControlSales = pre trial period[pre trial period['Store type'] == 'Trial
          scalingFactorForControlSales
          1.000602129090832
Out[133]:
In [134...
          # Apply scaling factor to control store sales
         measure over time['scaledControlSales'] = measure over time.apply(
              lambda row: row['totSales'] * scalingFactorForControlSales if row['STORE NBR'] == co
              axis=1
In [135...
          # Recalculating pastSales with scaled control sales
          pastSales = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'totSales': 'mea
         pastSales['TransactionMonth'] = pd.to datetime(pastSales['YEARMONTH'].astype(str) + '01'
          pastSales
```

Out[135]:		YEARMONTH	Store_type	totSales	scaledControlSales	TransactionMonth
	0	201807	Control	924.600000	925.156729	2018-07-01
	1	201807	Other stores	619.160985	619.160985	2018-07-01
	2	201807	Trial	892.200000	892.200000	2018-07-01
	3	201808	Control	782.700000	783.171286	2018-08-01

4	201808	Other stores	599.748276	599.748276	2018-08-01
5	201808	Trial	764.050000	764.050000	2018-08-01
6	201809	Control	1014.400000	1015.010800	2018-09-01
7	201809	Other stores	605.316794	605.316794	2018-09-01
8	201809	Trial	914.600000	914.600000	2018-09-01
9	201810	Control	963.800000	964.380332	2018-10-01
10	201810	Other stores	617.884030	617.884030	2018-10-01
11	201810	Trial	948.400000	948.400000	2018-10-01
12	201811	Control	898.800000	899.341194	2018-11-01
13	201811	Other stores	604.644656	604.644656	2018-11-01
14	201811	Trial	918.000000	918.000000	2018-11-01
15	201812	Control	849.800000	850.311689	2018-12-01
16	201812	Other stores	636.867433	636.867433	2018-12-01
17	201812	Trial	841.200000	841.200000	2018-12-01
18	201901	Control	874.600000	875.126622	2019-01-01
19	201901	Other stores	616.575862	616.575862	2019-01-01
20	201901	Trial	841.400000	841.400000	2019-01-01
21	201902	Control	891.200000	891.736617	2019-02-01
22	201902	Other stores	568.170229	568.170229	2019-02-01
23	201902	Trial	913.200000	913.200000	2019-02-01
24	201903	Control	804.400000	804.884353	2019-03-01
25	201903	Other stores	625.224335	625.224335	2019-03-01
26	201903	Trial	1026.800000	1026.800000	2019-03-01
27	201904	Control	844.600000	845.108558	2019-04-01
28	201904	Other stores	601.339544	601.339544	2019-04-01
29	201904	Trial	848.200000	848.200000	2019-04-01
30	201905	Control	922.850000	923.405675	2019-05-01
31	201905	Other stores	593.507663	593.507663	2019-05-01
32	201905	Trial	889.300000	889.300000	2019-05-01
33	201906	Control	857.200000	857.716145	2019-06-01
34	201906	Other stores	606.272519	606.272519	2019-06-01
35	201906	Trial	838.000000	838.000000	2019-06-01

```
In [137... # Control store 95th percentile and 5th percentile
    stdDev = pastSales['scaledControlSales'].std()
    pastSales_Controls95 = pastSales[pastSales['Store_type'] == 'Control'].copy()
    pastSales_Controls95['scaledControlSales'] = pastSales_Controls95['scaledControlSales']
    pastSales_Controls95['Store_type'] = 'Control 95th % confidence interval'
    pastSales_Controls5 = pastSales[pastSales['Store_type'] == 'Control'].copy()
```

```
pastSales Controls5['scaledControlSales'] = pastSales_Controls5['scaledControlSales'] *
         pastSales Controls5['Store type'] = 'Control 5th % confidence interval'
In [138... # Rename columns before merging to avoid conflicts
         pastSales Controls95.rename(columns={'scaledControlSales': 'scaled95'}, inplace=True)
         pastSales Controls5.rename(columns={'scaledControlSales': 'scaled5'}, inplace=True)
In [139... # Rename columns before merging to avoid conflicts
         pastSales Controls95.rename(columns={'scaledControlSales': 'scaled95'}, inplace=True)
         pastSales Controls5.rename(columns={'scaledControlSales': 'scaled5'}, inplace=True)
In [140... #Building final df for sales assessment
         combined data 95 = pd.merge(
             pastSales,
             pastSales Controls95[['TransactionMonth', 'scaled95']],
             on='TransactionMonth'
         combined data = pd.merge(
             combined data 95,
             pastSales Controls5[['TransactionMonth', 'scaled5']],
             on='TransactionMonth'
         combined data.rename(columns={'scaledControlSales': 'scaledNormal'}, inplace=True)
         combined data.drop duplicates(inplace=True)
         combined data.head()
Ou
```

ut[140]:		YEARMONTH	Store_type	totSales	scaledNormal	TransactionMonth	scaled95	scaled5
	0	201807	Control	924.600000	925.156729	2018-07-01	266171.648788	-264321.335330
	1	201807	Other stores	619.160985	619.160985	2018-07-01	266171.648788	-264321.335330
	2	201807	Trial	892.200000	892.200000	2018-07-01	266171.648788	-264321.335330
	3	201808	Control	782.700000	783.171286	2018-08-01	225321.814305	-223755.471732
	4	201808	Other stores	599.748276	599.748276	2018-08-01	225321.814305	-223755.471732

```
In [141... # Plotting the difference between control and trial stores on sales basis in the trial p
plt.figure(figsize=(12, 6))
sns.lineplot(data=combined_data, x='TransactionMonth', y='totSales', hue='Store_type', p
highlight_period = (combined_data['TransactionMonth'] < pd.to_datetime('2019-05-01')) &
highlight_data = combined_data[highlight_period]

plt.fill_between(
    highlight_data['TransactionMonth'],
    0,
    highlight_data['totSales'].max(),
    color='grey',
    alpha=0.3,
    label='Highlighted Area',</pre>
```

```
zorder=1
plt.xlabel('Month of operation')
plt.ylabel('Sales')
plt.title('Sales by Month with Confidence Intervals')
handles, labels = plt.gca().get legend handles labels()
unique labels = []
unique handles = []
for handle, label in zip(handles, labels):
    if label not in unique labels:
        unique labels.append(label)
        unique handles.append(handle)
plt.legend(handles=unique handles, labels=unique labels, title='Legend')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight layout()
plt.show()
```


Here we can see in this trial-control pair that the trial store has more sales than the control store in this observation period

In [144... # Recalculating pastcustomer with scaled customer sales

```
pastcustomer = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'nCustomers':
          pastcustomer['TransactionMonth'] = pd.to datetime(pastcustomer['YEARMONTH'].astype(str)
          pastcustomer.head()
                          Store_type nCustomers scaledControlcustomers TransactionMonth
Out[144]:
             YEARMONTH
                  201807
                                                                          2018-07-01
          0
                             Control
                                     101.000000
                                                          101.060815
          1
                  201807
                         Other stores
                                      70.378788
                                                           70.378788
                                                                          2018-07-01
          2
                  201807
                                Trial
                                      99.000000
                                                           99.000000
                                                                          2018-07-01
          3
                  201808
                                      91.000000
                                                           91.054794
                                                                          2018-08-01
                             Control
          4
                  201808 Other stores
                                      71.007663
                                                           71.007663
                                                                          2018-08-01
          # Converting YEARMONTH to TransactionMonth
In [145...
          pastcustomer['TransactionMonth'] = pd.to datetime(pastcustomer['YEARMONTH'].astype(str)
          pastcustomer.head()
                          Store_type nCustomers scaledControlcustomers TransactionMonth
Out[145]:
             YEARMONTH
          0
                  201807
                                     101.000000
                                                          101.060815
                                                                          2018-07-01
                             Control
          1
                  201807 Other stores
                                      70.378788
                                                           70.378788
                                                                          2018-07-01
          2
                  201807
                                Trial
                                      99.000000
                                                           99.000000
                                                                          2018-07-01
          3
                  201808
                             Control
                                      91.000000
                                                           91.054794
                                                                          2018-08-01
          4
                  201808 Other stores
                                      71.007663
                                                           71.007663
                                                                          2018-08-01
          # Defining highlight period
In [146...
          highlight start = pd.to datetime('2019-01-01')
          highlight end = pd.to datetime('2019-05-01')
          highlight period = (pastcustomer['TransactionMonth'] >= highlight start) & (pastcustomer
          # Control store 95th percentile and 5th percentile
In [147...
          stdDev nc = pastcustomer[pastcustomer['Store type'] == 'Control']['nCustomers'].std()
          pastcustomer95 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
          pastcustomer95['scaledControlcustomers'] = pastcustomer95['scaledControlcustomers'] * (1
          pastcustomer95['Store type'] = 'Control 95th % confidence interval'
          pastcustomer5 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
          pastcustomer5['scaledControlcustomers'] = pastcustomer5['scaledControlcustomers'] * (1 -
          pastcustomer5['Store type'] = 'Control 5th % confidence interval'
          # Rename columns before merging to avoid conflicts
In [148...
          pastcustomer95.rename(columns={'scaledControlcustomers': 'scaledcust95'}, inplace=True)
          pastcustomer5.rename(columns={'scaledControlcustomers': 'scaledcust5'}, inplace=True)
          #Building final df for customer assessment
In [149...
          pastcustomer95 = pd.merge(
              pastcustomer,
              pastcustomer95[['TransactionMonth', 'scaledcust95']],
               on='TransactionMonth'
          mergedata = pd.merge(
              pastcustomer95,
```

```
pastcustomer5[['TransactionMonth', 'scaledcust5']],
  on='TransactionMonth'
)

mergedata.rename(columns={'scaledControlcustomers': 'scaledNormal'}, inplace=True)

mergedata.drop_duplicates(inplace=True)

mergedata.head()
```

```
Out[149]:
               YEARMONTH
                              Store type nCustomers scaledNormal TransactionMonth scaledcust95 scaledcust5
                     201807
                                           101.000000
                                                         101.060815
                                                                           2018-07-01
                                                                                        1134.681567 -932.559937
                                 Control
                     201807 Other stores
                                            70.378788
                                                          70.378788
                                                                           2018-07-01 1134.681567 -932.559937
            2
                     201807
                                    Trial
                                            99.000000
                                                          99.000000
                                                                           2018-07-01 1134.681567 -932.559937
            3
                     201808
                                 Control
                                            91.000000
                                                          91.054794
                                                                            2018-08-01
                                                                                        1022.336857 -840.227270
            4
                     201808 Other stores
                                           71.007663
                                                          71.007663
                                                                           2018-08-01 1022.336857 -840.227270
```

```
In [150... # Plotting the difference between control and trial stores on sales basis in the trial p
         plt.figure(figsize=(12, 6))
         sns.lineplot(data=mergedata, x='TransactionMonth', y='nCustomers', hue='Store type', pal
         highlight period = (mergedata['TransactionMonth'] < pd.to datetime('2019-05-01')) & (mergedata
         highlight data = mergedata[highlight period]
         plt.fill between(
            highlight data['TransactionMonth'],
             highlight data['nCustomers'].max(),
             color='grey',
             alpha=0.3,
             label='Highlighted Area',
             zorder=1
         plt.xlabel('Month of operation')
         plt.ylabel('Number of customers')
         plt.title('Number of Customers by Month with Confidence Intervals')
         handles, labels = plt.gca().get legend handles labels()
         unique labels = []
         unique handles = []
         for handle, label in zip(handles, labels):
             if label not in unique labels:
                 unique labels.append(label)
                 unique handles.append(handle)
         plt.legend(handles=unique handles, labels=unique labels, title='Legend')
         plt.grid(True)
         plt.xticks(rotation=45)
        plt.tight layout()
         plt.show()
```


In this case, the trial store is better than the control store in terms of number of customers gained.

Analysing the Third Trial and control pair (88 and 237)

We will analyse on the basis of total sales and number of customers.

Out[154]:		YEARMONTH	Store_type	totSales
	0	201807	Control	1448.400000
	1	201807	Other stores	615.594318
	2	201807	Trial	1310.000000
	3	201808	Control	1367.800000
	4	201808	Other stores	595.361877
	5	201808	Trial	1323.800000
	6	201809	Control	1322.200000
	7	201809	Other stores	602.201527
	8	201809	Trial	1423.000000
	9	201810	Control	1348.300000
	10	201810	Other stores	614.885932
	11	201810	Trial	1352.400000

12	201811	Control	1397.600000
13	201811	Other stores	600.966794
14	201811	Trial	1382.800000
15	201812	Control	1265.000000
16	201812	Other stores	633.422222
17	201812	Trial	1325.200000
18	201901	Control	1219.700000
19	201901	Other stores	613.625287
20	201901	Trial	1266.400000
21	201902	Control	1404.800000
22	201902	Other stores	564.465649
23	201902	Trial	1370.200000
24	201903	Control	1208.200000
25	201903	Other stores	621.976426
26	201903	Trial	1477.200000
27	201904	Control	1204.600000
28	201904	Other stores	597.722814
29	201904	Trial	1439.400000
30	201905	Control	1199.300000
31	201905	Other stores	590.843295
32	201905	Trial	1308.250000
33	201906	Control	1153.600000
34	201906	Other stores	603.169466
35	201906	Trial	1354.600000

14 15

16

17

2018-11-01 2018-11-01

2018-12-01

2018-12-01

2018-12-01

```
In [155... # Converting YEARMONTH to datetime format
         pastSales['TransactionMonth'] = pd.to_datetime(pastSales['YEARMONTH'].astype(str) + '01'
         pastSales['TransactionMonth']
              2018-07-01
Out[155]:
              2018-07-01
         2
              2018-07-01
             2018-08-01
         3
             2018-08-01
         5
             2018-08-01
         6
             2018-09-01
         7
             2018-09-01
         8
             2018-09-01
         9
             2018-10-01
         10
             2018-10-01
         11
            2018-10-01
         12
             2018-11-01
```

```
18
     2019-01-01
19
    2019-01-01
20
    2019-01-01
21
    2019-02-01
22
   2019-02-01
23
   2019-02-01
24
   2019-03-01
25
    2019-03-01
26
   2019-03-01
27
   2019-04-01
28
   2019-04-01
29
    2019-04-01
30
   2019-05-01
31
   2019-05-01
32
   2019-05-01
33
    2019-06-01
34
   2019-06-01
35
    2019-06-01
Name: TransactionMonth, dtype: datetime64[ns]
```

Store_type nCustomers

In [156... # Calculating average number of customers by YEARMONTH and Store_type customersacquired = measure_over_time.groupby(['YEARMONTH', 'Store_type']).agg({'nCustom

customersacquired

YEARMONTH

Out[156]:

ouc[ibo].		1 EARTH OTT III	Store_type	incustomers
	0	201807	Control	128.000000
	1	201807	Other stores	70.162879
	2	201807	Trial	129.000000
	3	201808	Control	135.000000
	4	201808	Other stores	70.697318
	5	201808	Trial	131.000000
	6	201809	Control	126.000000
	7	201809	Other stores	68.477099
	8	201809	Trial	124.000000
	9	201810	Control	123.000000
	10	201810	Other stores	69.673004
	11	201810	Trial	123.000000
	12	201811	Control	132.000000
	13	201811	Other stores	68.843511
	14	201811	Trial	130.000000
	15	201812	Control	124.000000
	16	201812	Other stores	72.130268
	17	201812	Trial	126.000000
	18	201901	Control	117.000000
	19	201901	Other stores	69.842912
	20	201901	Trial	117.000000

201902

Control

201902 Other stores

126.000000

64.881679

21

22

```
23
           201902
                                  124.000000
                           Trial
           201903
24
                        Control
                                  119.000000
25
           201903
                   Other stores
                                   70.889734
26
           201903
                           Trial
                                  134.000000
27
           201904
                        Control
                                  120.000000
28
           201904 Other stores
                                   68.121673
29
           201904
                           Trial
                                  128.000000
           201905
30
                        Control
                                  129.000000
31
           201905
                   Other stores
                                   70.310345
32
           201905
                                  128.000000
                           Trial
           201906
33
                        Control
                                  119.000000
34
           201906 Other stores
                                   68.793893
35
                                  121.000000
           201906
                           Trial
```

9

10 11

12

13

14

15

16

17

18 19

20

21 22

23 24

25

26

27

28 29

30 31

32

33

34

35

2018-09-01

2018-10-01 2018-10-01

2018-10-01

2018-11-01

2018-11-01

2018-11-01

2018-12-01

2018-12-01 2019-01-01

2019-01-01

2019-01-01 2019-02-01

2019-02-01 2019-02-01

2019-03-01

2019-03-01

2019-03-01

2019-04-01 2019-05-01

2019-05-01

2019-05-01

2019-06-01

2019-06-01

2019-06-01

Name: AcquireMonth, dtype: datetime64[ns]

2019-04-01 2019-04-01

2018-12-01

```
# Converting YEARMONTH to datetime format
In [157...
          customersacquired['AcquireMonth'] = pd.to datetime(customersacquired['YEARMONTH'].astype
          customersacquired['AcquireMonth']
              2018-07-01
Out[157]:
               2018-07-01
          2
              2018-07-01
          3
              2018-08-01
          4
              2018-08-01
          5
              2018-08-01
              2018-09-01
          6
          7
              2018-09-01
```

```
In [158... # Plot the data on basis of total sales by month

pastSales = pastSales[pastSales['YEARMONTH'] < 201903]

plt.figure(figsize=(12, 6))
    sns.lineplot(data=pastSales, x='TransactionMonth', y='totSales', hue='Store_type')
    plt.xlabel('Month of operation')
    plt.ylabel('Total sales')
    plt.title('Total sales by month')
    plt.legend(title='Store Type')
    plt.grid(True)
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()</pre>
```


Here we can see that the trial store has higher sales than the control store before the Trial period.

Both type of stores have almost the same number of customers acquired per week.

Out[161]:

	STORE_NBR	YEARMONTH	totSales	nCustomers	nTxn	totQty	nTxnPerCust	nChipsPerTxn	avgPricePerUn
1001	88	201807	1310.00	129	153	306	1.186047	2.000000	4.28104
1002	88	201808	1323.80	131	158	303	1.206107	1.917722	4.36897
1003	88	201809	1423.00	124	157	318	1.266129	2.025478	4.47484
1004	88	201810	1352.40	123	155	316	1.260163	2.038710	4.27974
1005	88	201811	1382.80	130	156	314	1.200000	2.012821	4.40382
1006	88	201812	1325.20	126	148	298	1.174603	2.013514	4.44698
1007	88	201901	1266.40	117	144	292	1.230769	2.027778	4.33698
1008	88	201902	1370.20	124	153	308	1.233871	2.013072	4.44870
1009	88	201903	1477.20	134	169	340	1.261194	2.011834	4.34470
1010	88	201904	1439.40	128	162	324	1.265625	2.000000	4.44259
1011	88	201905	1308.25	128	154	299	1.203125	1.941558	4.37541
1012	88	201906	1354.60	121	148	300	1.223140	2.027027	4.51533
2747	237	201807	1448.40	128	162	324	1.265625	2.000000	4.47037
2748	237	201808	1367.80	135	165	313	1.222222	1.896970	4.36996
2749	237	201809	1322.20	126	149	299	1.182540	2.006711	4.42207
2750	237	201810	1348.30	123	147	299	1.195122	2.034014	4.50936
2751	237	201811	1397.60	132	161	320	1.219697	1.987578	4.36750
2752	237	201812	1265.00	124	144	289	1.161290	2.006944	4.37716
2753	237	201901	1219.70	117	139	277	1.188034	1.992806	4.40324

```
237
2754
                         201902 1404.80
                                                  126
                                                        157
                                                                314
                                                                        1.246032
                                                                                       2.000000
                                                                                                       4.47388
             237
2755
                         201903 1208.20
                                                  119
                                                        134
                                                                274
                                                                        1.126050
                                                                                       2.044776
                                                                                                       4.40948
2756
             237
                         201904 1204.60
                                                  120
                                                        135
                                                                272
                                                                        1.125000
                                                                                       2.014815
                                                                                                       4.42867
             237
2757
                         201905 1199.30
                                                                272
                                                                                                       4.40919
                                                  129
                                                        149
                                                                        1.155039
                                                                                       1.825503
2758
              237
                         201906 1153.60
                                                        131
                                                                262
                                                                        1.100840
                                                                                       2.000000
                                                                                                       4.40305
                                                  119
```

```
In [162...
         # Calculate scaling factor for sales
         scalingFactorForControlSales = pre trial period[pre trial period['Store type'] == 'Trial
         scalingFactorForControlSales
```

1.0510795070626469 Out[162]:

```
In [163...
         # Apply scaling factor to control store sales
         measure over time['scaledControlSales'] = measure over time.apply(
             lambda row: row['totSales'] * scalingFactorForControlSales if row['STORE NBR'] == co
             axis=1
```

In [164... # Recalculating pastSales with scaled control sales pastSales = measure over time.groupby(['YEARMONTH', 'Store type']).agg({'totSales': 'mea pastSales['TransactionMonth'] = pd.to datetime(pastSales['YEARMONTH'].astype(str) + '01' pastSales

Out[164]:		YEARMONTH	Store_type	totSales	scaledControlSales	TransactionMonth
	0	201807	Control	1448.400000	1522.383558	2018-07-01
	1	201807	Other stores	615.594318	615.594318	2018-07-01
	2	201807	Trial	1310.000000	1310.000000	2018-07-01
	3	201808	Control	1367.800000	1437.666550	2018-08-01
	4	201808	Other stores	595.361877	595.361877	2018-08-01
	5	201808	Trial	1323.800000	1323.800000	2018-08-01
	6	201809	Control	1322.200000	1389.737324	2018-09-01
	7	201809	Other stores	602.201527	602.201527	2018-09-01
	8	201809	Trial	1423.000000	1423.000000	2018-09-01
	9	201810	Control	1348.300000	1417.170499	2018-10-01
	10	201810	Other stores	614.885932	614.885932	2018-10-01
	11	201810	Trial	1352.400000	1352.400000	2018-10-01
	12	201811	Control	1397.600000	1468.988719	2018-11-01
	13	201811	Other stores	600.966794	600.966794	2018-11-01
	14	201811	Trial	1382.800000	1382.800000	2018-11-01
	15	201812	Control	1265.000000	1329.615576	2018-12-01
	16	201812	Other stores	633.422222	633.422222	2018-12-01
	17	201812	Trial	1325.200000	1325.200000	2018-12-01
	18	201901	Control	1219.700000	1282.001675	2019-01-01
	19	201901	Other stores	613.625287	613.625287	2019-01-01
	20	201901	Trial	1266.400000	1266.400000	2019-01-01

21	201902	Control	1404.800000	1476.556492	2019-02-01
22	201902	Other stores	564.465649	564.465649	2019-02-01
23	201902	Trial	1370.200000	1370.200000	2019-02-01
24	201903	Control	1208.200000	1269.914260	2019-03-01
25	201903	Other stores	621.976426	621.976426	2019-03-01
26	201903	Trial	1477.200000	1477.200000	2019-03-01
27	201904	Control	1204.600000	1266.130374	2019-04-01
28	201904	Other stores	597.722814	597.722814	2019-04-01
29	201904	Trial	1439.400000	1439.400000	2019-04-01
30	201905	Control	1199.300000	1260.559653	2019-05-01
31	201905	Other stores	590.843295	590.843295	2019-05-01
32	201905	Trial	1308.250000	1308.250000	2019-05-01
33	201906	Control	1153.600000	1212.525319	2019-06-01
34	201906	Other stores	603.169466	603.169466	2019-06-01
35	201906	Trial	1354.600000	1354.600000	2019-06-01

In [165... # Control store 95th percentile and 5th percentile

```
stdDev = pastSales['scaledControlSales'].std()
         pastSales Controls95 = pastSales[pastSales['Store type'] == 'Control'].copy()
         pastSales Controls95['scaledControlSales'] = pastSales Controls95['scaledControlSales']
         pastSales Controls95['Store type'] = 'Control 95th % confidence interval'
         pastSales Controls5 = pastSales[pastSales['Store type'] == 'Control'].copy()
         pastSales Controls5['scaledControlSales'] = pastSales Controls5['scaledControlSales'] *
        pastSales Controls5['Store type'] = 'Control 5th % confidence interval'
In [166... # Rename columns before merging to avoid conflicts
         pastSales Controls95.rename(columns={'scaledControlSales': 'scaled95'}, inplace=True)
        pastSales Controls5.rename(columns={'scaledControlSales': 'scaled5'}, inplace=True)
In [167... #Building final df for sales assessment
         combined data 95 = pd.merge(
            pastSales,
             pastSales Controls95[['TransactionMonth', 'scaled95']],
             on='TransactionMonth'
         combined data = pd.merge(
            combined data 95,
             pastSales Controls5[['TransactionMonth', 'scaled5']],
             on='TransactionMonth'
         combined data.rename(columns={'scaledControlSales': 'scaledNormal'}, inplace=True)
         combined data.drop duplicates(inplace=True)
```

```
combined data.head()
```

Out[167]:		YEARMONTH	Store_type	totSales	scaledNormal	TransactionMonth	scaled95	scaled5
	0	201807	Control	1448.400000	1522.383558	2018-07-01	1.122192e+06	-1.119148e+06
	1	201807	Other stores	615.594318	615.594318	2018-07-01	1.122192e+06	-1.119148e+06
	2	201807	Trial	1310.000000	1310.000000	2018-07-01	1.122192e+06	-1.119148e+06
	3	201808	Control	1367.800000	1437.666550	2018-08-01	1.059745e+06	-1.056870e+06
	4	201808	Other stores	595.361877	595.361877	2018-08-01	1.059745e+06	-1.056870e+06

```
In [168... # Plotting the difference between control and trial stores on sales basis in the trial p
         plt.figure(figsize=(12, 6))
         sns.lineplot(data=combined data, x='TransactionMonth', y='totSales', hue='Store type', p
         highlight period = (combined data['TransactionMonth'] < pd.to datetime('2019-05-01')) &
         highlight data = combined data[highlight period]
         plt.fill between(
            highlight data['TransactionMonth'],
            highlight data['totSales'].max(),
             color='grey',
             alpha=0.3,
             label='Highlighted Area',
             zorder=1
         plt.xlabel('Month of operation')
         plt.ylabel('Sales')
         plt.title('Sales by Month with Confidence Intervals')
         handles, labels = plt.gca().get legend handles labels()
         unique labels = []
         unique handles = []
         for handle, label in zip(handles, labels):
             if label not in unique labels:
                 unique labels.append(label)
                 unique handles.append(handle)
         plt.legend(handles=unique handles, labels=unique labels, title='Legend')
         plt.grid(True)
         plt.xticks(rotation=45)
         plt.tight layout()
         plt.show()
```


In this case, we see during the observation period that the Trial store gets more revenue than the control store.

Out[171]:		YEARMONTH	Store_type	nCustomers	scaledControlcustomers	TransactionMonth
	0	201807	Control	128.000000	134.538177	2018-07-01
	1	201807	Other stores	70.162879	70.162879	2018-07-01
	2	201807	Trial	129.000000	129.000000	2018-07-01
	3	201808	Control	135.000000	141.895733	2018-08-01
	4	201808	Other stores	70.697318	70.697318	2018-08-01

Calculate scaling factor for customers

In [169...

```
In [172... # Converting YEARMONTH to TransactionMonth
    pastcustomer['TransactionMonth'] = pd.to_datetime(pastcustomer['YEARMONTH'].astype(str)
    pastcustomer.head()
```

Out[172]:		YEARMONTH	Store_type	nCustomers	scaledControlcustomers	TransactionMonth
	0	201807	Control	128.000000	134.538177	2018-07-01
	1	201807	Other stores	70.162879	70.162879	2018-07-01
	2	201807	Trial	129.000000	129.000000	2018-07-01

```
201808 Other stores
                                   70.697318
                                                      70.697318
                                                                     2018-08-01
         # Defining highlight period
In [173...
         highlight start = pd.to datetime('2019-01-01')
         highlight end = pd.to datetime('2019-05-01')
         highlight period = (pastcustomer['TransactionMonth'] >= highlight start) & (pastcustomer
In [174... # Control store 95th percentile and 5th percentile
         stdDev nc = pastcustomer[pastcustomer['Store type'] == 'Control']['nCustomers'].std()
         pastcustomer95 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
         pastcustomer95['scaledControlcustomers'] = pastcustomer95['scaledControlcustomers'] * (1
         pastcustomer95['Store type'] = 'Control 95th % confidence interval'
         pastcustomer5 = pastcustomer[pastcustomer['Store type'] == 'Control'].copy()
         pastcustomer5['scaledControlcustomers'] = pastcustomer5['scaledControlcustomers'] * (1 -
         pastcustomer5['Store type'] = 'Control 5th % confidence interval'
         # Rename columns before merging to avoid conflicts
In [175...
         pastcustomer95.rename(columns={'scaledControlcustomers': 'scaledcust95'}, inplace=True)
         pastcustomer5.rename(columns={'scaledControlcustomers': 'scaledcust5'}, inplace=True)
         #Building final df for customer assessment
In [176...
         pastcustomer95 = pd.merge(
            pastcustomer,
             pastcustomer95[['TransactionMonth', 'scaledcust95']],
             on='TransactionMonth'
         mergedata = pd.merge(
            pastcustomer95,
             pastcustomer5[['TransactionMonth', 'scaledcust5']],
             on='TransactionMonth'
         mergedata.rename(columns={'scaledControlcustomers': 'scaledNormal'}, inplace=True)
         mergedata.drop duplicates(inplace=True)
         mergedata.head()
```

141.895733

2018-08-01

201808

Control

135.000000

Out[176]: YEARMONTH Store_type nCustomers scaledNormal TransactionMonth scaledcust95 scaledcust5 0 201807 Control 128.000000 134.538177 2018-07-01 1634.155666 -1365.079313 1 201807 Other stores 70.162879 70.162879 2018-07-01 1634.155666 -1365.079313 201807 129.000000 1634.155666 -1365.079313 2 Trial 129.000000 2018-07-01 201808 135.000000 141.895733 1723.523554 -1439.732087 3 Control 2018-08-01 4 201808 Other stores 70.697318 70.697318 2018-08-01 1723.523554 -1439.732087

```
sns.lineplot(data=mergedata, x='TransactionMonth', y='nCustomers', hue='Store type', pal
highlight period = (mergedata['TransactionMonth'] < pd.to datetime('2019-05-01')) & (mergedata
highlight data = mergedata[highlight period]
plt.fill between(
    highlight data['TransactionMonth'],
   highlight data['nCustomers'].max(),
    color='grey',
    alpha=0.3,
    label='Highlighted Area',
    zorder=1
plt.xlabel('Month of operation')
plt.ylabel('Number of customers')
plt.title('Number of Customers by Month with Confidence Intervals')
handles, labels = plt.gca().get legend handles labels()
unique labels = []
unique handles = []
for handle, label in zip(handles, labels):
    if label not in unique labels:
        unique labels.append(label)
        unique handles.append(handle)
plt.legend(handles=unique handles, labels=unique labels, title='Legend')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight layout()
plt.show()
```


Same case as above that trial stores have gained a higher number of customers than the control stores.