колеса и при старте колеса не проскальзывают.

- **1.1** Известно, что при разгоне автомобиля с задними ведущими колесами передок (передняя часть) автомобиля приподнимается. На какой угол α_1 «задерет нос» автомобиль при старте с максимально возможным ускорением?
- **1.2** Определите модуль максимального ускорения a_{\max} , с которым автомобиль может начать движение.
- **1.3** Чему равен модуль скорости v_1 автомобиля через промежуток времени $\Delta t = 5.0$ с после начала движения с максимально возможным ускорением?

Часто можно наблюдать, как водители «рвут с места», включая двигатель на максимальную мощность, при которой колеса прокручиваются при еще неподвижном автомобиле. Насколько эффективен такой старт?

1.4. Чему равно максимальное ускорение при таком старте при заданных значениях коэффициентов трения?

Нужные Вам дополнительные характеристики автомобиля задайте самостоятельно.

Часть 2 Приехали – торможение и остановка.

Тормозить тоже желательно аккуратно, но иногда возникает необходимость в резком торможении. Считайте, что при таком торможении вращение колес прекращается практически мгновенно.

- 2.1 Определите тормозной путь s автомобиля, движущегося со скоростью $\upsilon = 90 \frac{{\rm KM}}{{\rm Y}}$, при резком торможении.
- 2.2 Известно, что при резком торможении, когда вращение всех колес резко прекращается, автомобиль «клюет носом». На какой угол α_2 наклонится автомобиль при таком торможении?

Можно ли уменьшить тормозной путь, применяя другую стратегию торможения? 2.3 Каким может быть минимальный тормозной путь s' автомобиля, движущегося со скоростью $\upsilon = 90\frac{\rm KM}{\rm H}$, при торможении опытным водителем, знающим основы физики?

Задача 2. Две трубы, два поршня, две части...

Два цилиндра поперечными сечениями $S_1 = 20\,\mathrm{cm}^2$ и $S_2 = 80\,\mathrm{cm}^2$ сварены так, что их оси совпадают. В цилиндры вставлены легкоподвижные поршни массами

 $m_1 = 200 \, \Gamma$ и $m_2 = 800 \, \Gamma$ соответственно, связанные жестким невесомым стержнем длиной $l = 20 \, cm$.

Часть 1. Воздух.

Между поршнями герметически заперт воздух, количество которого остается постоянным. При нормальном атмосферном давлении $p_0 = 101 \, \mathrm{k\Pi a}$ поршни находятся в равновесии на одинаковом расстоянии от места стыка труб. Температура окружающего воздуха и воздуха внутри труб не изменяется.

- 1.1. Определите давление p воздуха между поршнями, при котором поршни находятся в равновесии.
- 1.2. Сжат или растянут стержень? Чему равна сила упругости, действующая в стержне?
- 1.3. Рассмотрим поршни, стержень и воздух между ними как единую систему. Укажите все внешние силы, действующие на нее. Покажите, что эта система находится в равновесии при найденном вами в п. 1.1 давлении воздуха между поршнями.

Рассматриваемое устройство может служить барометром – прибором для измерения атмосферного давления.

1.4 Определите изменение атмосферного давления Δp_0 , если поршни опустились на $\Delta h = 1.0\,\mathrm{cm}$.

Будем считать, что устройство разрушается, если верхний поршень опускается ниже уровня стыка труб. Считаем, что атмосферное давление опять стало равным $p_0 = 101 \mathrm{k} \Pi \mathrm{a}$.

- 1.5 Найдите максимальную массу груза, который можно положить на верхний поршень, чтобы при этом система не разрушилась.
- 1.6 Найдите максимальную массу груза, который можно подвесить к нижнему поршню, чтобы при этом система не разрушилась.

Часть 2. Вода.

(численных расчетов в данной части проводить не надо!)

Пространство между поршнями полностью заполнили водой, плотность которой равна ρ . При этом верхний поршень оказался на некотором расстоянии l_1 от места стыка труб.

- 2.1. Определите модуль силы упругости T в стержне при отсутствии дополнительного груза. Сжат или растянут стержень в этом случае?
- 2.2. Как изменится сила упругости в стержне, если груз массой m,

первоначально находившийся на верхнем поршне, подвесить к нижнему поршню?

- 2.3. Рассмотрим поршни, стержень и воду между ними как единую систему. Укажите все внешние силы, действующие на нее. Покажите, что эта система находится в равновесии при найденных вами в п. 2.1 условиях.
- 2.4 Может ли система находиться в состоянии равновесия при отсутствии атмосферного давления?
- 2.5 Какой максимальный груз (имеется ввиду его масса M) можно положить на верхний поршень, чтобы система оставалась в равновесии при нормальном атмосферном давлении? Считайте, что сами поршни, трубы и стержень не разрушаются. Температуру воды считайте близкой к комнатной.