Chapitre X: Droites du plan

Le plan est muni d'un repère $(O; \vec{\imath}, \vec{\jmath})$.

I - Caractérisation analytique d'une droite

a) Droite non parallèle à l'axe des ordonnées

Exemple : Dans un repère $(O; \vec{i}, \vec{j})$, on définit les points A(1; 2) et B(4; -2).

On se propose de déterminer une équation de la droite (AB), c'est-à-dire de caractériser analytiquement l'ensemble des points de cette droite.

<u>Théorème</u>: Dans le plan muni d'un repère, toute droite \mathscr{D} est caractérisée par une relation de la forme ax+by+c=0 appelée **équation cartésienne** de la droite \mathscr{D} .

Si \mathscr{D} est non parallèle à l'axe des ordonnées, alors cette relation peut être écrite sous la forme y = mx + p, où m et p sont deux nombres réels constants.

On dit que y = mx + p est l'équation réduite de la droite \mathscr{D} .

<u>Démonstration</u>: On considère une droite \mathscr{D} non parallèle à l'axe des ordonnées, et deux points $A(x_A;y_A)$ et $B(x_B;y_B)$ appartenant à \mathscr{D} . Soit M(x;y) un point du plan.

 $M(x;y) \in \mathscr{D}$ équivaut à \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

Or
$$\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$$
 et $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$. D'où :

$$M(x;y) \in \mathscr{D} \iff \det\left(\overrightarrow{AM}; \overrightarrow{AB}\right) = 0 \iff \begin{vmatrix} x - x_A & x_B - x_A \\ y - y_A & y_B - y_A \end{vmatrix} = 0$$
$$\iff (x - x_A)(y_B - y_A) - (x_B - x_A)(y - y_A) = 0$$
$$\iff x(y_B - y_A) - x_A(y_B - y_A) - y(x_B - x_A) + y_A(x_B - x_A) = 0.$$

Les points A et B sont distincts et la droite \mathcal{D} n'est pas parallèle à l'axe des ordonnées, donc $x_A \neq x_B$. On peut donc écrire :

$$M(x\:;\:y)\in\mathscr{D}$$
équivaut à $y=\frac{y_B-y_A}{x_B-x_A}x-x_A\frac{y_B-y_A}{x_B-x_A}+y_A.$

On a obtenu une relation de la forme y = mx + p, avec $m = \frac{y_B - y_A}{x_B - x_A}$ et $p = -x_A \frac{y_B - y_A}{x_B - x_A} + y_A$. Cette relation caractérise alors la droite \mathscr{D} .

<u>Propriété</u>: Dans le plan muni d'un repère, toute droite non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

Plus précisément, si y = mx + p est l'équation réduite de \mathcal{D} , alors \mathcal{D} est la représentation graphique de la fonction affine $f: x \longmapsto mx + p$.

Définition : Le plan est muni d'un repère.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points quelconques d'une droite \mathscr{D} non parallèle à l'axe des ordonnées.

(AB) a ainsi une équation de la forme y = mx + p où :

- est le coefficient directeur de la droite \mathscr{D} .
- L'ordonnée du point d'intersection de la droite \mathcal{D} d'équation y = mx + p avec l'axe des ordonnées est égale à p et est appelée **ordonnée à l'origine** de la droite \mathcal{D} .
- ullet Tout vecteur \overrightarrow{v} non nul colinéaire au vecteur \overrightarrow{AB} est appelé

Conséquences

- Dans un repère, si le vecteur $\overrightarrow{u} \binom{1}{m}$ est un vecteur directeur d'une droite \mathscr{D} , alors m est le coefficient
 - directeur de \mathcal{D} , cette identification n'étant possible que **pour un vecteur directeur d'abscisse 1**.
- Si dans un repère deux points distincts A et B ont la même **ordonnée**, alors la droite (AB) est parallèle à l'axe des abscisses. Son coefficient directeur est alors égal à 0, et une équation de (AB) est de la forme : $y = y_A$.

Exercice 1: Dans un repère $(O; \vec{i}, \vec{j})$, on donne le point A(-4; 5) et le vecteur $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Exercice 2: Dans un repère $(O; \vec{i}, \vec{j})$, on donne les points A(1; 4), B(4; 0), C(7; 4).

Déterminer une équation des droites (AB) et (AC).

Propriété: Un point A appartient à une droite d'équation y = mx + p si, et seulement si, ses coordonnées $(x_A; y_A)$ vérifient l'équation de la droite c'est-à-dire qu'on a l'égalité $y_A = m \times x_A + p$.

Droite parallèle à l'axe des ordonnées

<u>Théorème</u>: Dans le plan muni d'un repère $(O; \vec{i}, \vec{j})$, toute droite \mathcal{D} parallèle à l'axe des ordonnées est caractérisée par une relation de la forme x = k, où k est un nombre réel constant.

On dit que x = k est l'équation réduite de la droite \mathcal{D} .

Démonstration :

On considère une droite \mathcal{D} parallèle à l'axe des ordonnées et un point $A(x_A; y_A)$ appartenant à \mathscr{D} .

Pour tout point $M(x\,;\,y)$ de la droite $\mathscr{D},\,\overrightarrow{AM}$ et $\vec{\jmath}$ sont colinéaires.

Or
$$\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$$
 et $\overrightarrow{\jmath} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Or
$$\overrightarrow{AM}\begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$$
 et $\overrightarrow{\jmath}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

 \overrightarrow{AM} et $\overrightarrow{\jmath}$ colinéaires $\iff \begin{vmatrix} x - x_A & 0 \\ y - y_A & 1 \end{vmatrix} \iff (x - x_A) \times 1 + 0 \times (y - y_A) = 0$

c'est-à-dire $x - x_A = 0$ équivant à $x = x_A$

Remarque: Une droite parallèle à l'axe des ordonnées n'est pas la représentation graphique d'une fonction affine (ni d'aucune fonction).

Exercice: Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, on définit les points E(-2; 4) et F(-2; -1).

Quelle est l'équation réduite de la droite (EF)?

c) Droites parallèles

Propriété : Le plan est muni d'un repère $(O; \vec{\imath}, \vec{\jmath})$.

Soient deux droites \mathscr{D} et \mathscr{D}' d'équations respectives y = mx + p et y = m'x + p'. Les droites \mathcal{D} et \mathcal{D}' sont parallèles si, et seulement si, leurs coefficients directeurs m et m' sont égaux.

<u>Démonstration</u>: Les droites \mathscr{D} et \mathscr{D}' ont pour vecteurs directeurs respectifs

 \mathscr{D} et \mathscr{D}' sont parallèles équivaut à \overrightarrow{u} et \overrightarrow{v} sont colinéaires

$$\iff 1 \times m' - 1 \times m = 0$$

$$\iff m = m'$$

Remarque : Si deux droites parallèles ont la même ordonnée à l'origine, alors elles sont confondues, sinon elles sont strictement parallèles.

Exercice: Soient d la droite d'équation 3x - 5y = 10 et le point A(2;4).

Déterminer une équation de la droite d' parallèle à d et passant par A.

