DETECCIÓN DE LA RETINOPATÍA DIABÉTICA POR MEDIO DE INTELIGENCIA **ARTIFICIAL**

DIABETES EN EL MUNDO

10 principales causas de muerte en 2016

	Personas	Diabetes	
mundo	7545	425	5,63%
Latinoamerica	626	26	4,15%
Ecuador	17,1	1,3	7,60%

PROYECCIÓN ECUADOR 2035 1,82 MILLONES DE PERSONAS

RETINOPATÍA DIABÉTICA

OJO SANO

4 FASES DE LA RETINOPATÍA DIABÉTICA

1) Retinopatía no proliferativa ligera

LEVE

2) Retinopatía no proliferativa moderada.

MODERADA

3) Retinopatía no proliferativa severa

SEVERA

4)Retinopatía proliferativa severa

PROLIFERATIVA

TRATAMIENTO

DEL GASTO MUNDIAL EN SALUD SE DESTINA A LA DIABETES (MÁS DE 600 BILLONES)

DE LOS ADULTOS CON DIABETES ESTÁN SIN DIAGNOSTICAR

Ministerio de Salud Pública del Ecuador

1550*

132

27

^{*} DE LOS 1550 CENTROS DE SALUD, 198 SON DE TIPO B

CENTRO DE SALUD TIPO B

198 EN TODO EL PAÍS

CENTROS DE SALUD TIPO B ATENCIÓN DE 10.000 A 25.000 HABITANTES

ÁREA DE CONSTRUCCIÓN:

1.450m2

CARTERA DE SERVICIOS:

- ·Consulta Externa General y Especializada (Familiar, Psicología, Ginecología, Pediatría),
- ·Odontología
- ·Procedimientos
- ·Imagenología
- ·Farmacia y Laboratorio.

OBJETIVO DEL PROYECTO IA

El objetivo del Proyecto es servir de <u>alternativa</u> al examen tradicional de RD para reducir costos y facilitar el <u>acceso</u> a poblaciones actualmente desatendidas, esto es, <u>detectar</u> la enfermedad e <u>identificar</u> la fase en la que se encuentra, mediante imágenes de exámenes oculares.

ALCANCE

- Beneficiar principalmente a comunidades con nivel económico bajo o aisladas de los servicios de salud estatal.
- Asegurar que la frecuencia del examen sea cubierta.

CONSIDERACIONES

- Casi todos los casos de RD se originan por diabetes (pocas excepciones por alta presión).
- Una vez iniciada esta enfermedad, se vuelve imperativo realizar exámenes seguidos para identificar si se ha pasado de una fase a otra
 - El paso de una fase a otra es rápida(si no se controla la diabetes).

COSTO-BENEFICIO DEL PROYECTO

En el 2014 se atendió en la red pública alrededor de 80.000 pacientes con diabetes: 16.000 con RD :

Consulta médica diagnóstico Costo privado promedio Especialidad Oftalmología US\$40 Frecuencia 2 veces al año	Consultas médicas US\$6,4 MM anuales
Operación con láser Costo privado promedio Especialidad Retinología US\$100 Frecuencia 2 veces al año Sesiones mínimas 4 por fase	Operación con láser US\$12,8 MM anuales
TOTAL MEDICINA CORRECTIVA	US\$19,2 MM anuales

TOTAL PROYECTO IA US\$2,3MM VS. DIAGNÓSTICO ACTUAL US\$6,4MM

• EL AHORRO PREVENTIVO ESTIMADO, TENDRÁ UN RUBRO POR LA EFICIENCIA EN LA OPERACIONES CON LASER

POTENCIALIDADES DEL PROYECTO:

- 1. Para contrarrestar la falta de acceso a grupos vulnerables, la baja cantidad de especialistas y los altos costos de diagnóstico:
 - Instalar el modelo predictivo de Python en Raspberry Pi 3 A+ y conectarlo a ZEISS
 CLARUS 500 mediante interfaz USB ETHERNET WIFI
 - O Lo usará un optometrista del ente estatal o de una óptica privada que tenga convenio con el estado

0	Equipo ZEISS CLARUS 500	US\$ 12,000	
0	Equipo Raspberry	US\$ 30	
0	TOTAL POR SOLUCION IA	US\$ 12,030	
0	COSTO TOTAL NIVEL NACIONAL	US\$ 2,3 MM	1

- 2. Entrenar el modelo predictivo para diagnosticar otro tipo de patologías relacionadas con la retina, como por ejemplo vasculopatías que se traducen en microaneurismas o hemorragias internas.
- 3. Posibilidad de evaluar soluciones integradoras con smartphones: instalación de APP del proyecto y aprovechando una generación avanzada lentes de cámara disponibles siempre y cuando sean útiles para el modelo.

Marco de Trabajo

1
PYTHON

2 OPENCV

3

FASTAI

NUMPY / PANDAS

SOBRE LOS DATOS

Más de 2000 imágenes de entrenamiento y validación

Etiquetamiento de imágenes por médicos 5 categorías:

- (0) NoDR
- (1) Mild
- (2) Moderate
- (3) Severe
- (4) PDR

FLUJO DE DATOS PARA ENTRENAR

EXTRACCIÓN

Descarga de datos (imágenes) que sirven para entrenar y validar el modelo

TRANSFORMACIÓN

Aplicación de escalas grises y cortes

CATEGORIZACIÓN

Clasificar las imágenes de entrenamiento por cada tipo de diabetes

CARGA

De las imágenes para el set de entrenamiento y validación

MODELO

ENTRENAMIENTO

Entrenar el modelo CNN

MEDIDA DE ACTUACIONES

Verificar accuracy si es confiable o lo podemos mejorar

AJUSTANDO/ OPTIMIZANDO MODELO

Mejorando el modelo con nuevos rangos para los ciclos.

RESULTADO DEL MODELO

ACCURACY: 75,4% **ERROR RATE:** 24,6%

[]	learn.fit_one_cycle(5)						
₽	epoch	train_loss	valid_loss	error_rate	time		
	0	1.962131	1.532244	0.706349	23:12		
	1	1.688711	1.132299	0.380952	23:14		
	2	1.402610	0.913268	0.246032	23:14		
	3	1.218193	0.877778	0.246032	23:16		
	4	1.114336	0.855162	0.246032	23:01		

IMAGEN A VERIFICAR

```
learn.export()

[ ] learn = load_learner(path)

[ ] pred_class,pred_idx,outputs = learn.predict(img)
    print('La categoria es:')
    pred_class

La categoria es:
    1_Mild
```

RESULTADO

Participantes:

Stalin Arroyabe Geovanny Jiménez Daniel Jiménez Christian Sánchez Silvia Velasco

Mentor:

Jorge Mendoza

Gracias por su atención