Contents

1	Introduction							
	1.1	Introd	luction to Cryptography	2				
		1.1.1	Secret-Key Cryptography	2				
		1.1.2	Public-Key Cryptography	2				
	1.2	Secure	e Hardware and Embedded Cryptography	2				
		1.2.1	The Example of the Smart Card	2				
		1.2.2	Certification of a Secure Hardware	2				
		1.2.3	Embedded Cryptography Vulnerabilities	2				
	1.3	Introd	luction to Side-Channel Attacks	2				
		1.3.1	Historical Overview	2				
		1.3.2	Terminology and Generalities	2				
			Target and Leakage Model	2				
			Points of Interest	2				
			Simple vs Advanced SCAs	2				
			Vertical vs Horizontal SCAs	2				
			Profiled vs Non-Profiled SCAs	2				
			Distinguishers	2				
			SCA Metrics	2				
		1.3.3	Side-Channel Attacks vs Machine Learning	2				
			Distinguishers vs Classifiers	2				
	1.4		Side-Channel Countermeasures	2				
		1.4.1	Masking	2				
		1.4.2	Shuffling	2				
		1.4.3	Blinding	2				
		1.4.4	Random Delays and Jitter	2				
2	Points of Interest and Dimensionality Reduction							
	2.1		rations	3				
		2.1.1	The Curse of Dimensionality	3				
	2.2	Select	ion on Points of Interest: Classical Statistics	3				
	2.3	Relate	ed Issues: Leakage Detection and Leakage Assessment	3				
	2.4		nsionality Reduction Approach	3				
		2.4.1	Feature Selection as a Machine Learning Task	3				
3	Line	ear Din	nensionality Reduction	5				
	3.1		luction	5				
		3.1.1	Principal Component Analysis	5				
		3.1.2	Linear Discriminant Analysis	5				
		3.1.3	Projection Pursuits	5				
	3.2		pal Component Analysis	5				
		3.2.1	Statistical Point of View	5				
		3.2.2	Geometrical Point of View	5				
	3.3	Appli	cation of PCA in SCAs	5				

		3.3.1 Original vs Class-Oriented PCA	5
		3.3.2 The Choice of the Principal Components	5
	3.4	Linear Discriminant Analysis	5
		3.4.1 Statistical Point of View	5
		3.4.2 Geometrical Point of View	5
	3.5	Application of LDA in SCAs	5
		3.5.1 The Small Sample Size problem	5
4	Kor	nel Dimensionality Reduction	7
1	4.1	Motivation	7
	7.1	4.1.1 Higher-Order Attacks	7
		Higher-Order Version of Projection Pursuits	7
	4.2	Kernel Function and Kernel Trick	7
	7.2	4.2.1 Local Kernel Functions as Similarity Metrics	7
	4.3	Kernel Discriminant Analysis	7
	4.4	Experiments over Atmega328P	7
	7.7	4.4.1 The Regularization Problem	7
		4.4.2 The Multi-Class Trade-Off	7
		4.4.3 Multi-Class vs 2-class Approach	7
		4.4.4 Asymmetric Preprocessing/Attack Approach	7
		Comparison with Projection Pursuits	7
		Comparison with Projection Pursuits	1
5		chine Learning Approach	9
	5.1	Motivation	9
	5.2	Introduction to Machine Learning	9
		5.2.1 The Task, the Experience and the Performance	9
		5.2.2 Supervised, Semi-Supervised, Unsupervised Learning	9
		5.2.3 Training, Validation and Test Sets	9
		5.2.4 Underfitting, Overfitting and Regularization	9
		5.2.5 Data Augmentation	9
	- 0	5.2.6 No Free Lunch Theorem	9
	5.3	Machine Learning Applications in Side-Channel Context	9
		5.3.1 Profiled Attack as a Classification Problem	9
		Support Vector Machine	9
	- 4	Random Forest	9
	5.4	Artificial Neural Networks	9
		5.4.1 Motivations Leading from Kernel Machines to Deep Learning .	9
		5.4.2 The Multi-Layer Perceptron	9
	5.5	Simulated Experiment for Profiled HO-Attacks	9
		5.5.1 The Simulations	9
	- .	5.5.2 Comparison between KDA and MLP	9
	5.6	Real-Case Experiments over ARM Cortex-M4	9
6	Con	volutional Neural Networks against Jitter-Based Countermeasures	11
	6.1	Misalignment of Side-Channel Traces	11
		6.1.1 The Necessity and the Risks of Applying Realignment Tech-	
		1	11
		0, 0	11
	6.2		11
	6.3		11
	6.4		11

	6.5	Experiments against Artificial Hardware Countermeasures	11
	6.6	Experiments against Real-Case Hardware Countermeasures	11
7	Neu	ral Networks: Back to Dimensionality Reduction	13
	7.1	Motivation	13
	7.2	Stacked Auto-Encoders	13
		7.2.1 The Same Issues of Classic PCA	13
	7.3	Siamese Neural Networks	13
		7.3.1 Distances and Loss Functions	13
		7.3.2 Relation with Kernel Machines	13
	7.4	A Experimental comparison between KDA and Siamese NNs	13
	7.5	Collision Attacks with Siamese NNs	13
		7.5.1 Experimental Results	13