МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	И	Информационные и управляющие системы
	шифр	Наименование
Кафедра	И9	Систем управления и компьютерных технологий
	шифр	наименование
Дисциплина	Моделир	ование систем

Лабораторная работа №2 на тему «Имитационное моделирование детерминированного конечного автомата» Вариант №3

Выполнил студент групп	ы И967
Василье	в Н.А
Фамилия	И.О.
ПРЕПОДАВАТЕЛЬ	
Захаров А.Ю.	
Фамилия И.О.	Подпись
« <u></u> »	2019 г.

Основные сведения из теории

Математическая F-схема, или детерминированный автомат, является удобной формой описания логических закономерностей развития процессов в системе, но не учитывает фактор случайности. Поэтому она обычно используется для моделирования подсистем контроля и управления и позволяет решать задачи разработки, проверки и оценки качества реализуемых ими алгоритмов принятия решения, выбора закона управления или изменения структуры системы.

F-схема задается в форме следующей совокупности:

$$F=\langle X, Z, Y, \varphi, \psi \rangle$$
,

где $Z=(z_1, z_2, ..., z_K)$ — множество состояний, или внутренний алфавит; $X=(x_1, x_2, ..., x_J)$ — конечное множество входных сигналов, или входной алфавит; $Y=(y_1, y_2, ..., y_L)$ — конечное множество выходных сигналов, или выходной алфавит; $\varphi=\varphi(z,x)$ — функция переходов, описывающая закономерности смены состояний; $\psi=\psi(z,x)$ — функция выходов, описывающая закономерности формирования выходных сигналов. Если множество состояний является конечным, автомат называется конечным. Конечный автомат представляет собой абстрактную математическую схему, поэтому природа состояний и сигналов безразлична.

Иногда F-схему дополняют значением состояния автомата в начальный момент времени работы (z_0):

$$F = \langle X, Z, Y, \varphi, \psi, z_0 \rangle, \tag{5}$$

где z_0 совпадает с одним из элементов множества Z.

Теория автоматов получила свое первоначальное развитие в тесной связи с разработкой логических схем цифровой вычислительной техники. Для ее применения при построении моделей систем управления целесообразно уточнить смысл некоторых терминов.

С позиций теории управления конечный автомат может рассматриваться как "черный ящик" с одним входом и одним выходом. На вход подается сигнал x, а с выхода снимается сигнал y (рис. 2,a). Сигналы x и y могут принимать только фиксированные значения. Возможные значения входного сигнала образуют дискретное конечное множество X, значения выходного — дискретное конечное множество Y. Множества X и Y отображены совокупностями отметок на вертикальных осях на рис. 2, 6 и 6 соответственно. На рис. 2, 6 и 6 представлены примеры последовательности входных и выходных сигналов автомата.

Другая, расширенная, трактовка понятия автомата допускает наличие нескольких входов или выходов. Так, например, допустим наличие у автомата M входных каналов с собственными алфавитами $X^{(n)}=(x_1^{(m)},\ x_2^{(m)},...,\ x_{J_m}^{(m)})$. Тогда алфавит X вводится как произведение алфавитов: $X=X^{(1)}\times X^{(2)}\times ...\times X^{(M)}$, т. е. символами алфавита X объявляются все возможные сочетания элементов алфавитов $X^{(m)}$ по одному из каждого. Количество элементов в X в результате составит:

$$J = \prod_{m=1}^{M} J_m$$
.

Аналогичный прием может быть использован в предположении, что имеется несколько выходных каналов. В любом случае сохраняется общий вид представления автомата в представленной выше форме F-схемы.

Содержание задания

В соответствии с индивидуальным вариантом задания (табл. 11):

- 1. Составить в табличной форме модель детерминированного конечного автомата заданного типа с заданными размерностями внутреннего, входного и выходного алфавитов.
- 2. Разработать и отладить программное приложение, обеспечивающее имитационное моделирование процесса функционирования автомата в соответствии с составленной моделью.

Номер варианта	Тип автомата	Количество входов	Количество состояний	Количество выходов
3	Мили	2	4	2

Результат работы программы

Таблица переходов

	\mathbf{Z}_1	\mathbf{Z}_2	\mathbb{Z}_3	$\mathbf{Z_4}$
X ₁	Z_4	Z_3	Z_2	Z_1
X ₂	Z_2	Z_1	Z_4	Z_3

Таблица выходов

	\mathbf{Z}_1	\mathbf{Z}_2	\mathbf{Z}_3	Z ₄
X ₁	Y ₁	Y ₁	Y ₂	Y ₂
X ₂	Y ₁	Y ₂	Y ₂	Y ₁

Текущее состояние автомата - ХЗ

Подать на вход X1	Подать на вход X2
Вход X1 -> Состояни	
Вход Х2 -> Состояни	ıe Z3 -> Выход Y1
Вход X2 -> Состояни	ie Z4 -> Выход Y2
Вход X1 -> Состояни	e Z1 -> Выход Y2
Вход X1 -> Состояни	e Z4 -> Выход Y1
Вход X2 -> Состояни	ie Z3 -> Выход Y1