

Remote Memory-Deduplication Attacks

Martin Schwarzl, Erik Kraft, Moritz Lipp, Daniel Gruss

Graz University of Technology

• More and more services hosted in the cloud

- More and more services hosted in the cloud
- Providers try to isolate tenants

- More and more services hosted in the cloud
- Providers try to isolate tenants
- Need to consider side-channel attacks in both soft- and hardware

- More and more services hosted in the cloud
- Providers try to isolate tenants
- Need to consider side-channel attacks in both soft- and hardware
- Network throughput is increasing

• Memory deduplication got re-enabled on Windows and Linux

- Memory deduplication got re-enabled on Windows and Linux
- Is used in virtual machines in the cloud

- Memory deduplication got re-enabled on Windows and Linux
- Is used in virtual machines in the cloud
- Current active mitigations try to prevent cross-security-domain attacks

- Memory deduplication got re-enabled on Windows and Linux
- Is used in virtual machines in the cloud
- Current active mitigations try to prevent cross-security-domain attacks
- Can memory deduplication attacks be performed on the same security domain across the internet?

Timing Difference of COW-PF vs. Non-COW

Victim's RAM

Page A

Page B

Attacker

Victim's RAM

Page A

Page B

Attacker

Victim's RAM

Page A

Page B

Attacker

1. Send data with same content as page A to server

Victim

Attack Idea

Attack Idea

Attack Idea

ullet Remote Server 14 hops ightarrow high-latency

- ullet Remote Server 14 hops ightarrow high-latency
- KVM with Ubuntu VM

- Remote Server 14 hops → high-latency
- KVM with Ubuntu VM
- Nginx with PHP, Memcached and MySQL installed

- Remote Server 14 hops → high-latency
- KVM with Ubuntu VM
- Nginx with PHP, Memcached and MySQL installed
- Use pyshark to capture web requests

Remote Covert Channel

• Use amplification across the internet

Remote Covert Channel

- Use amplification across the internet
- Transmit multiple bits at once

Remote Covert Channel

- Use amplification across the internet
- Transmit multiple bits at once
- Use asyncio
- Covert channel across internet is 34.41 B/h

Attacks	Location	Environment	Local	Туре	Attack Type	Performance
Suzaki	Co-located	Cross-VM	Yes	Native	Fingerprinting	-
Owens	Co-located	Cross-VM	Yes	Native	Fingerprinting	-
Gruss	Remote	Browser/Cross-VM	Yes	JS	Fingerprinting	-
Barresi	Remote	Cross-VM	Yes	Native	ASLR break	8.7 days
Bosman	Remote	Browser	Yes	JS	Bytewise leakage, ASLR	2.75 h
					break, Rowhammer	
Lindemann	Co-located	Cross-VM	Yes	Native	Fingerprinting	1.8 h
Kim	Co-located	Cross-VM	Yes	Native	KASLR break	12 min
Our work	Remote	Internet/LAN	No	None	Bytewise leakage,	1.5 B/h (LAN) /
					KASLR break, Finger-	4 min / 166.51 s

printing

Challenges

• C1: Remotely amplify latencies for non-repeatable events.

Challenges

- C1: Remotely amplify latencies for non-repeatable events.
- C2: Trigger and observe COW-pagefaults in a victim domain that shares no memory with any attacker domain.

Challenges

- C1: Remotely amplify latencies for non-repeatable events.
- C2: Trigger and observe COW-pagefaults in a victim domain that shares no memory with any attacker domain.
- C3: Find remote request paths that do not only keep attacker-controlled data in memory but also provide the attacker with control over alignment and in-memory representation.

C1: Amplification

• A web application provides a file-upload

- A web application provides a file-upload
- Data is cached in RAM e.g., Memcached

- A web application provides a file-upload
- Data is cached in RAM e.g., Memcached
- The attacker can update/overwrite the uploaded data → trigger pagefaults

• Fingerprint a system by uploading memory

- Fingerprint a system by uploading memory
- Use Memcached to store and replace

- Fingerprint a system by uploading memory
- Use Memcached to store and replace
- Page-alignment unknown therefore we guess all possible offsets

- Fingerprint a system by uploading memory
- Use Memcached to store and replace
- Page-alignment unknown therefore we guess all possible offsets
- Race with other users via re-allocation on free-list

- Fingerprint a system by uploading memory
- Use Memcached to store and replace
- Page-alignment unknown therefore we guess all possible offsets
- Race with other users via re-allocation on free-list
- If re-assigned overwrite page and trigger COW-pagefault

C2: Fingerprinting (LAN)

C2: Fingerprinting (LAN)

C2: Fingerprinting (Internet)

C2: Fingerprinting (Internet)

• Break KASLR in remote VMs

- Break KASLR in remote VMs
- Sample low-entropy pages offline pointing to kernel text

- Break KASLR in remote VMs
- Sample low-entropy pages offline pointing to kernel text
- Try all 512 different offsets

- Break KASLR in remote VMs
- Sample low-entropy pages offline pointing to kernel text
- Try all 512 different offsets
- Attacker uploads blob and triggers pagefaults

Break KASLR

C3: Control over alignment and in-memory representation

• InnoDB is a memory cache for DBMS (e.g., MySQL/MariaDB)

C3: Control over alignment and in-memory representation

- InnoDB is a memory cache for DBMS (e.g., MySQL/MariaDB)
- Reorganization optimization in index page enables bytewise leakage

C3: Control over alignment and in-memory representation

- InnoDB is a memory cache for DBMS (e.g., MySQL/MariaDB)
- Reorganization optimization in index page enables bytewise leakage
- Use Memcached as leakage primitive to leak InnoDB records

Inno-DB record

0 kB Initial State 16 kB

Inno-DB Reorganization

0 kB Reorganized State 16 kB

Inno-DB Reset

0 kB Reset State 16 kB

. Gi

② Guess secret byte in parallel.

② Guess secret byte in parallel.

① Change target alignment

Amplification factor 1

 ${\Large \textcircled{1}} \ {\sf Change \ target \ alignment}$

InnoDB page

Amplification factor 1

Memcached page

① Change target alignment

InnoDB page

Amplification factor 1

② Guess secret byte in parallel per amplification factor.

Memcached page

② Guess secret byte in parallel per amplification factor.

Memcached page

• Disable memory deduplication

- Disable memory deduplication
- Apply same behaviour for every memory write (VUsion)

- Disable memory deduplication
- Apply same behaviour for every memory write (VUsion)
- Only deduplicate zero pages

- Disable memory deduplication
- Apply same behaviour for every memory write (VUsion)
- Only deduplicate zero pages
- Detect attack on network layer with packet inspection

- Disable memory deduplication
- Apply same behaviour for every memory write (VUsion)
- Only deduplicate zero pages
- Detect attack on network layer with packet inspection
- Encode pages with different random salts

VUsion

VUsion

• Remote Attack was assigned CVE-2021-3714

- Remote Attack was assigned CVE-2021-3714
- Remotely fingerprinting of libraries

- Remote Attack was assigned CVE-2021-3714
- Remotely fingerprinting of libraries
- Break KASLR in ≤ 4 minutes across the internet

- Remote Attack was assigned CVE-2021-3714
- Remotely fingerprinting of libraries
- Break KASLR in ≤ 4 minutes across the internet
- Leak database records via InnoDB reorganization

- Remote Attack was assigned CVE-2021-3714
- Remotely fingerprinting of libraries
- Break KASLR in ≤ 4 minutes across the internet
- Leak database records via InnoDB reorganization
- Red Hat developed a probabilistic mitigation as opt-in for Linux kernel

Remote Memory-Deduplication Attacks

Martin Schwarzl, Erik Kraft, Moritz Lipp, Daniel Gruss

Graz University of Technology