```
#Importing neccessary files
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# When working with Google colab and Google drive
from google.colab import drive
drive.mount('/content/drive')
%cd '/content/drive/MyDrive/Project2'
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour
     /content/drive/MyDrive/Project2
#importing data
movies Data = pd.read csv("movies.dat",delimiter="::",names=["MovieID","Title","Genres"])
users_Data = pd.read_csv("users.dat",delimiter="::",names=["UserID","Gender","Age","Occupatio
ratings_Data = pd.read_csv("ratings.dat",delimiter="::",names=["UserID","MovieID","Rating","T
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2: ParserWarning: Falling &
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3: ParserWarning: Falling b
       This is separate from the ipykernel package so we can avoid doing imports until
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4: ParserWarning: Falling b
       after removing the cwd from sys.path.
#printing the shape of the df
print(movies Data.shape)
print(users Data.shape)
print(ratings Data.shape)
     (3883, 3)
     (6040, 5)
     (1000209, 4)
#1.Create a new dataset [Master Data] with the following columns MovieID Title UserID Age Gen
masters_columns = ["MovieID","Title","UserID","Age","Gender","Occupation","Rating"]
masters Data = pd.merge((pd.merge(movies Data,ratings Data,on="MovieID")),users Data,on="User
masters_Data.head()
```

MovieID		Title	UserID	Age	Gender	Occupation	Rating
0	1	Toy Story (1995)	1	1	F	10	5
1	48	Pocahontas (1995)	1	1	F	10	5

#checking the datatype of the columns

```
masters_Data.dtypes
     MovieID
                   int64
                   object
     Title
                   int64
     UserID
     Age
                    int64
     Gender
                   object
     Occupation
                   int64
                    int64
     Rating
     dtype: object
#printing the shape of the final df
masters_Data.shape
     (1000209, 7)
#Data Preprocessing
#User age grouping dictionary as per the data given
userAgeGroupDict={
1:'Under 18',
18: '18-24',
 25: '25-34',
 35: '35-44',
 45: '45-49',
 50: '50-55',
 56: '56+'
}
def userAgeGrp(age):
     if age<18:
             return userAgeGroupDict[1]
     elif age>=18 and age <=24:
             return userAgeGroupDict[18]
     elif age>=25 and age <=34:
             return userAgeGroupDict[25]
     elif age>=35 and age <=44:
             return userAgeGroupDict[35]
     elif age>=45 and age <=49:
             return userAgeGroupDict[45]
     elif age>=50 and age <=55:
         return userAgeGroupDict[50]
     elif age>=56 :
         return userAgeGroupDict[56]
```

```
#Adding age group to the User Data
users_Data["Age Group"] = [userAgeGrp(age) for age in users_Data['Age']]
```

```
#Title and Year of release split into two columns so that year can be used to build model as
#defining a function to extract title and year
def extractTitle_Year(title):
    year = title[title.rfind('(')+1:title.rfind(')')]
    movieTitle = title[0:title.rfind('(')-1]
    return movieTitle, year

#assigning null columns for title and year
movies_Data['MovieTitle']=''
movies_Data['Year of Release']=''
```

```
for index, movie in movies_Data.iterrows():
    movieTitle,year = extractTitle_Year(movie.Title)
    movies_Data.at[index,'MovieTitle']=movieTitle
    movies_Data.at[index,'Year of Release']=year
```

#2.Explore the datasets using visual representations (graphs or tables), also include your co
a) User Age Distribution
masters_Data.Age.plot(kind='hist')
#plotting a histogram to visually represent the age of all the users.

b) User rating of the movie "Toy Story"
ToyStory= masters_Data.loc[masters_Data['Title'].str.contains("Toy Story",case=False)]
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
 display(ToyStory)

#checking whether the Title contains the words Toy story irrespective of the case and assigni

			, ,	,	,		
480522	1	Toy Story (1995)	4975	35	М	0	3
480697	1	Toy Story (1995)	4979	35	М	2	5
481579	1	Toy Story (1995)	4983	45	F	16	4
481703	3114	Toy Story 2 (1999)	4983	45	F	16	5
481722	1	Toy Story (1995)	4989	25	М	0	5
481786	3114	Toy Story 2 (1999)	4989	25	М	0	5
481799	1	Toy Story (1995)	4990	25	F	4	3
481855	3114	Toy Story 2 (1999)	4990	25	F	4	3
481860	1	Toy Story (1995)	4995	50	M	20	4
482216	1	Toy Story (1995)	4998	18	F	4	3
482295	1	Toy Story (1995)	4999	56	F	13	5
482351	3114	Toy Story 2 (1999)	4999	56	F	13	5
482363	1	Toy Story (1995)	5005	45	М	16	4
482792	1	Toy Story (1995)	5009	45	F	16	3
482855	1	Toy Story (1995)	5011	18	М	4	4
483414	1	Toy Story (1995)	5015	35	М	6	5
483942	3114	Toy Story 2 (1999)	5015	35	М	6	5
484058	1	Toy Story (1995)	5026	25	М	17	4
484797	3114	Toy Story 2 (1999)	5026	25	М	17	3
484932	1	Toy Story (1995)	5032	18	М	17	4
485017	3114	Toy Story 2 (1999)	5032	18	М	17	5
485035	1	Toy Story (1995)	5034	25	F	15	4
485176	1	Toy Story (1995)	5035	25	F	17	5
485392	3114	Toy Story 2 (1999)	5035	25	F	17	5
485425	1	Toy Story (1995)	5037	35	М	12	5
485517	3114	Toy Story 2 (1999)	5037	35	М	12	5
485530	1	Toy Story (1995)	5038	25	М	20	5
485684	3114	Toy Story 2 (1999)	5038	25	М	20	4
485740	1	Toy Story (1995)	5042	18	F	2	4
486066	3114	Toy Story 2 (1999)	5042	18	F	2	4
486108	1	Toy Story (1995)	5046	25	М	16	5
486821	3114	Tov Storv 2 (1999)	5046	25	М	16	5