Aula 21 - Roteamento Broadcast e Multicast

Diego Passos

Universidade Federal Fluminense

Redes de Computadores I

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Revisão da Última Aula...

Roteamento Intra-AS:

- Critério: desempenho.
- Principais protocolos: OSPF, RIP, IGRP.
- Também conhecido como IGP.

• RIP:

- Vetor de Distâncias.
- Entradas para sub-redes.
- Métrica: número de saltos.
- Distância máxima: 16.
- Envenenamento reverso.
- Roda sobre UDP.

• OSPF:

- Estado de Enlace.
- Mais moderno que o RIP.
- Considera segurança, múltiplos caminhos, hierarquia, ...
- Roda diretamente sobre IP.

• Roteamento Inter-AS:

- Orientado a políticas.
- Principal protocolo: BGP.

• BGP:

- "Vetor de Caminhos".
- Sessões BGP: TCP.
- Anúncios: compromisso de rotear.
- eBGP vs. iBGP.
- BGP: rotas.
 - Possuem atributos.
 - e.g., AS-PATH.
 - e.g., NEXT-HOP.
- BGP: seleção de rotas.
 - Baseada em políticas.
 - AS-PATH mais curto.
 - NEXT-HOP mais próximo: roteamento batata-quente.
 - Outros critérios.

Roteamento Broadcast

Roteamento Broadcast

- Entrega pacotes da origem a todos os outros nós.
- Replicação na origem é ineficiente:

• Replicação na origem: como a origem determina o endereço dos destinatários?

Replicação na Rede

- **Inundação:** quando nó recebe pacote em *broadcast*, envia cópias para todos os seus vizinhos.
 - Problemas: ciclos e tempestade de broadcast.
- Inundação Controlada: nó só envia cópias se está é a primeira recepção deste pacote.
 - Nós mantêm lista dos IDs dos pacotes já replicados.
 - Outra alternativa é o Reverse Path Forwarding (RPF): apenas replicar pacotes que chegaram pelo enlace de próximo salto do caminho entre o nó corrente e a origem.
- Árvore Geradora (Spanning Tree):
 - Nós nunca recebem pacotes redundantes.

Árvores Geradoras

- Primeiramente, construa uma árvore geradora.
 - Grafo acíclico conectando todos os nós.
- Os nós, então, encaminham/criam cópias dos pacotes apenas nos enlaces da árvore geradora.

(a) broadcast iniciado em A

(b) broadcast iniciado em D

Árvores Geradoras: Criação Distribuída

- Elege-se um nó central.
 - e.g., origem do tráfego broadcast.
- Cada nó envia uma mensagem join em unicast para o nó central.
 - Mensagem encaminhada normalmente até que chega a um nó que já pertence à árvore geradora.

(a) construção passo a passo da árvore geradora (centro: E)

(b) árvore geradora construída

Roteamento Multicast

Roteamento Multicast: Definição do Problema

- Objetivo: encontrar uma árvore (ou árvores) conectando roteadores membros de um grupo multicast.
- Mais definições:
 - **Arvore**: nem todos os enlaces da rede são usados.
 - Árvore Compartilhada: uma mesma árvore é usada por todos os membros do grupo.
 - Enraizada na Fonte: árvores diferentes para cada transmissor do grupo.

árvore compartilhada

árvores enraizadas na fonte

legenda

membro do grupo

não membro

roteador com membro do grupo

roteador sem membro do grupo

Abordagens para Construção de Árvores Multicast

- Árvores enraizadas na fonte: uma árvore por fonte.
 - Árvore de caminhos mais curtos.
 - Encaminhamento baseado no caminho reverso.
- Árvores compartilhadas: grupo todo usa árvore única.
 - Árvore de custo mínimo (Árvore de Steiner).
 - Árvore baseadas em nó central.
- Veremos cada uma destas abordagens.

Árvore de Caminhos mais Curtos

- Árvore de encaminhamento *multicast*: árvore composta pelos caminhos mais curtos da origem até cada destinatário.
 - Sub-produto do Algoritmo de Dijkstra.

Legenda

enlace usado paraencaminhamento, i indica quando foi adicionado

Encaminhamento baseado no Caminho Reverso

- Se baseia no conhecimento dos roteadores sobre os caminhos *unicast* mais curtos para a origem.
- Cada roteador aplica o seguinte algoritmo para realizar o encaminhamento:

Se (datagrama *multicast* foi recebido no enlace de próximo salto no caminho mais curto de volta à origem)

Então inunde datagrama para todos os enlaces de saída.

Senão ignore datagrama.

Encaminhamento baseado no Caminho Reverso: Exemplo

- Resultado é uma árvore específica para nó de origem.
 - Árvore de caminhos mais curtos reversa.
 - Pode não ser uma boa escolha se enlaces forem muito assimétricos.

Encaminhamento baseado no Caminho Reverso: Poda

- Árvore de encaminhamento contém sub-árvores sem membros do grupo multicast.
 - Não é necessário encaminhar datagramas por estas sub-árvores.
 - Mensagens de "poda" enviadas em direção à origem por roteadores sem membros conectados.

Árvore Compartilhada: Árvore de Steiner

- Árvore de Steiner: árvore de custo mínimo conectando todos os roteadores que possuem membros do grupo.
- Problema é NP-Difícil.
 - *i.e.*, hoje não conhecemos algoritmos ótimos eficientes.
 - E é possível que não existam.
- Mas há excelentes heurísticas disponíveis.
- Mesmo assim, não é utilizado na prática:
 - Complexidade computacional.
 - Necessidade de informação sobre toda a rede.
 - Monolítico: re-execução é necessária sempre que um novo roteador entra/sai do grupo.

Árvores Baseadas em Nó Central

- Uma única árvore de encaminhamento compartilhada por todos os nós.
- Um roteador se define como o "centro" da árvore.
- Para se juntar ao grupo:
 - Roteador de borda envia mensagem *unicast* do tipo *join* endereçada ao centro da árvore.
 - Mensagem é "processada" pelos roteadores intermediários e encaminhada em direção ao centro.
 - A mensagem de join ou chega ao centro ou chega a algum ramo já existente da árvore.
 - Caminho usado pela mensagem *join* se torna, então, um novo ramo da árvore conectando o novo roteador.

Árvores Baseadas em Nó Central: Exemplo

• Suponha que R6 seja escolhido como centro.

Legenda

ordem na qual as mensagens join foram geradas

Resumo da Aula...

Modos de Comunicação:

- Unicast: com um nó de destino específico.
- Broadcast: com todos os nós da rede.
- Multicast: com um sub-conjunto (grupo) de nós da rede.

Roteamento Broadcast:

- Evitar: replicação na fonte, tempestade de broadcast.
- Métodos: inundação controlada, árvore geradora (spanning tree).

• Roteamento Multicast:

- Objetivo: encontrar árvore(s) conectando nós do grupo.
- Abordagens: uma árvore por fonte vs. múltiplas árvores.
- Técnicas: árvore de caminhos mínimos, encaminhamento por caminho reverso, árvore de Steiner, árvores de nó central.
- Mecanismo auxiliar: mensagens de poda.

(Breve) Revisão do Capítulo 4 (I)

Camada de rede:

- Comunicação fim a fim entre hosts.
- Encapsula segmentos em datagramas.
- Roda em todos os nós.

• Funções chave:

- Encaminhamento: mover datagrama da entrada para saída.
- Roteamento: encontrar **rota** fim-a-fim.

Tabela de roteamento:

- Montada pelo roteamento.
- Usada pelo encaminhamento.

• Modelos de Serviço:

- O que a rede promete.
- e.g., banda mínima, atraso máximo, entrega ordenada.
- Modelo da Internet: melhor esforço.

• Redes de Circuitos Virtuais:

- Serviço orientado a conexão.
- Pacotes corregam identificador do VC.
 - E não endereço de destino.
- Recursos muitas vezes reservados.
- Tabela de roteamento associa:
 - Interface, # do VC de entrada.
 - Interface, # do VC de saída.

Redes de datagramas:

- Paradigma usado na Internet.
- Encaminhamento baseado no endereço de destino.
- Agregação de endereço.
- Casamento por prefixo mais longo.

(Breve) Revisão do Capítulo 4 (II)

Roteadores: arquitetura.

- Plano de controle: protocolos de roteamento.
- Plano de encaminhamento: portas, malha de comutação.

Portas de entrada:

- Terminação do enlace físico.
- Camada de enlace.
- Decisões de comutação, fila.
- Head-of-line Blocking.

Malha de comutação:

- Transporta pacotes de entradas para saída.
- Memória, barramento, rede de interconexão.
- Taxa de comutação.

Portas de saída:

• Fila: atrasos, perdas.

Buffers: tamanho.

- Objetivo: absorver variações temporárias.
- Buffer excessivo → atrasos altos, mascara congestionamento.

Políticas de enfileiramento:

- Descarte e escalonamento.
- Impacto em QoS, desempenho do TCP.

Políticas de Escalonamento:

- FIFO, Priority Scheduling, RR.
- Esfomeação vs. Justiça vs. Simplicidade.

Políticas de Descarte:

- Drop-tail, Drop-head, RED.
- Sincronização.
- Detecção avançada de congestionamento.

(Breve) Revisão do Capítulo 4 (III)

Protocolos da Camada de Rede:

- Vários contribuem.
- Protocolos de roteamento.
- IP.
- ICMP.

• Protocolo IP:

- Define convenções.
- Formato de datagrama.
- Endereçamento.

• Datagrama IP:

- Checksum apenas do cabeçalho.
- Campo de opções, tamanho variável.
- TTL (time-to-live).

• Fragmentação:

- Quebrar datagramas grandes.
- Adequa a limitações de cada enlace.
- Remontados apenas no destinatário.

• Endereçamento IP:

- 32 bits.
- Associados a interfaces.
- Prefixo identifica a sub-rede.
- CIDR, máscara de sub-rede.

• DHCP:

- Protocolo de auto-configuração.
- Atribuição dinâmica de endereços IP.
- Roteador de primeiro salto.
- E mais configurações.
- Cliente-servidor.
- Roda sobre UDP.
- Mensagens em broadcast.

• Endereçamento hierárquico:

- Sub-redes são divididas.
- Novas sub-redes menores.
- Simplifica anúncio de rotas.

(Breve) Revisão do Capítulo 4 (IV)

• NAT:

- Tradução de endereços.
- Rede local vs. rede externa.
- Endereços privados vs. públicos, roteáveis.
- Pacote sai: IP e porta de origem alterados.
- Pacote entra: IP e porta de destino são alterados.
- Tabela NAT: armazana mapeamentos.
- NAT: Motivação.
 - Escassez de IPs.
 - Independência dos endereços do ISP.
 - Segurança.
- NAT Traversal:
 - Conexão de fora para dentro do NAT.
 - Entradas estáticas na tabela.
 - Protocolo IGD.
 - Relaying (aplicação).

• ICMP:

- Gerência do IP.
- Informações, condições de erro.
- Diversas tipos de mensagens.
- Suporte a algumas ferramentas usuais.
- IPv6: Motivações.
 - Mais endereços.
 - Menor overhead de processamento.
- IPv6: diferenças.
 - Cabeçalho fixo.
 - Fragmentação não permitida.
 - Melhor suporte a QoS.
 - ICMPv6.
- IPv6: Transição.
 - Gradual, coexistência com IPv4.
 - Solução: tunelamento.

(Breve) Revisão do Capítulo 4 (V)

Roteamento:

- Encontrar caminhos fim-a-fim.
- Construir tabela de roteamento.
 - Consultada no encaminhamento.
- Grafos: usados como abstração para representar a rede.
 - Roteadores são nós.
 - Enlaces são arestas.
 - Podem ter pesos: medida de qualidade do enlace.
 - Relacionado a banda, atraso, congestionamento, ...

Classificações:

- Estado de Enlace vs. Vetor de Distâncias.
- Dinâmico vs. Estático.
- Roteamento baseado em Estado de Enlaces:
 - Algoritmo de Dijkstra.

(Breve) Revisão do Capítulo 4 (VI)

Roteamento baseado em Vetor de Distâncias:

- Ideia: melhor caminho até destino composto por enlace até vizinho e melhor caminho do vizinho até destino.
- Nós anunciam suas estimativas de custo até cada destino.
- Ao receber novas estimativas, nó atualiza suas próprias.
- Processo iterativo, converge para melhores rotas.
- Algoritmo distribuído: nós precisam conhecer apenas vizinhança.

Contagem ao infinito:

- Potencial problema, ocorre em caso de grandes pioras nos custos dos enlaces.
- Solução (parcial): envenenamento reverso.

Roteamento Hierárquico:

- Dois níveis: dentro e fora de Sistemas Autônomos.
 - Intra-AS e Inter-AS.
- Tabela de roteamento construída por colaboração dos dois processos.
- Reduz escopo, complexidade do roteamento.
- Nem sempre é globalmente ótimo!
- Roteamento batata-quente:
 - Tirar datagrama do AS o mais rápido possível.

(Breve) Revisão do Capítulo 4 (VII)

Roteamento Intra-AS:

- Critério: desempenho.
- Principais protocolos: OSPF, RIP, IGRP.
- Também conhecido como IGP.

• RIP:

- Vetor de Distâncias.
- Entradas para sub-redes.
- Métrica: número de saltos.
- Distância máxima: 16.
- Envenenamento reverso.
- Roda sobre UDP.

OSPF:

- Estado de Enlace.
- Mais moderno que o RIP.
- Considera segurança, múltiplos caminhos, hierarquia, ...
- Roda diretamente sobre IP.

Roteamento Inter-AS:

- Orientado a políticas.
- Principal protocolo: BGP.

• BGP:

- "Vetor de Caminhos".
- Sessões BGP: TCP.
- Anúncios: compromisso de rotear.
- eBGP vs. iBGP.
- BGP: rotas.
 - Possuem atributos.
 - e.g., AS-PATH.
 - e.g., NEXT-HOP.
- BGP: seleção de rotas.
 - Baseada em políticas.
 - AS-PATH mais curto.
 - NEXT-HOP mais próximo: roteamento batata-quente.
 - Outros critérios.

(Breve) Revisão do Capítulo 4 (VIII)

Modos de Comunicação:

- Unicast: com um nó de destino específico.
- Broadcast: com todos os nós da rede.
- Multicast: com um sub-conjunto (grupo) de nós da rede.

Roteamento Broadcast:

- Evitar: replicação na fonte, tempestade de broadcast.
- Métodos: inundação controlada, árvore geradora (spanning tree).

• Roteamento Multicast:

- Objetivo: encontrar árvore(s) conectando nós do grupo.
- Abordagens: uma árvore por fonte vs. múltiplas árvores.
- Técnicas: árvore de caminhos mínimos, encaminhamento por caminho reverso, árvore de Steiner, árvores de nó central.
- Mecanismo auxiliar: mensagens de poda.

Próxima Aula...

- Aulas de conteúdo acabaram!
- Daqui até o fim do período, haverá apenas avaliações, vistas e entregas de notas.