■部分思考题、习题参考答案与提示

思考题-

- 1. 全对.
- 2. $f_n(A)$ 是一个变化的量 (其实就是第 2 章中的随机变量), P(A) 是个实数, 当 n 充分大时, $f_n(A) \approx P(A)$ (严格表述见第5章). 不一定成立.

 - 4. P(A|A∪B) 一般不等于 1.
 - 5. 不能同时成立.
 - 6. 不一定.

习题一

- 1. (1) 9; (2) $A = \{(0, a), (1, a), (2, a)\};$ (3) $B = \{(0, a), (0, b), (0, c)\}.$
- 2. (1) $\overline{AB} \cup \overline{AC} \cup \overline{BC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC}$; (2) $\overline{ABC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC}$; (3) $\overline{ABC} \cup \overline{ABC} \cup \overline{ABC$ (4) $\overline{A} \cup \overline{B} \cup \overline{C}$ 或 \overline{ABC} .
 - 3. (1) 0.5; (2) 0.3.
 - 4. (1) 0.8; (2) 0.2; (3) 0.5.
 - 5. (1) 0.1; (2) 0.6; (3) 0.3.
 - 6. 当不放回抽样时: (1) $\frac{28}{45}$; (2) $\frac{16}{45}$; (3) $\frac{4}{5}$; 当放回抽样时:(1) 0.64; (2) 0.32; (3) 0.8.
 - 7. (1) $\frac{28}{435}$; (2) $\frac{1}{435}$.
 - 8. (1) $\frac{12}{35}$; (2) $\frac{1}{35}$; (3) $\frac{2}{35}$.
 - 9. (1) $\frac{1}{9}$; (2) $\frac{7}{72}$.
 - 10. $\frac{80}{243}$.
 - 11. $\frac{1}{1\ 225}$.
 - 12. (1) $\frac{7}{9}$; (2) $\frac{2}{5}$; (3) $\frac{2}{9}$.

 - 13. 0.86. 14. (1) $\frac{1}{9}$; (2) $\frac{1}{2}$.
 - 15. (1) $\frac{37}{80}$; (2) $\frac{1}{37}$.
 - 16. (1) 0.22; (2) 0.54.
 - 17. (1) 0.014 54; (2) 0.606 60. 18. 0.834.

 - 19. (1) 0.541 7; (2) 0.394 4.

20. $\frac{6}{25}$

21. 略.

22. (1) 对; (2) 错; (3) 错; (4) 对.

23. (1) $\alpha = p_1 p_2 p_3 + p_1 p_2 p_4 + p_2 p_3 p_4 + p_1 p_3 p_4 - 3 p_1 p_2 p_3 p_4$; (2) $\beta = \frac{p_1 p_2 p_3 p_4}{\alpha}$; (3) $\gamma = C_3^2 \alpha^2 (1 - \alpha)$.

24. (1) $P(A_i) = p(1-p)^{i-1}, i = 1, 2, \dots, P(B_4) = p^2(1-p); (2) p^2(1-p); (3) p.$

25. (1) $\frac{1}{19}$; (2) 0.998 4.

26. 14

27. (1) 0.086; (2) 0.213.

思考题二

1. 略.

2. 不一定.

3. 不对.

4. (D).

5. (B).

6. 仅与 σ 有关.

7. 不可以.

习题二

1.
$$P\{X=k\} = \frac{C_{k-1}^1 \cdot C_{7-k}^1}{C_7^3} = \frac{(k-1)(7-k)}{35}, k=2,3,\cdots,6$$

2. (1)

X	- 0	1	2	4
p	0.80	0.16	0.032	0.008

(2) 0.008; (3) 0.2.

3.

X	0	1	2
	1	3	1
p	5	5	5

4. (1) $(1-10^{-7})^n$; (2) $(1-10^{-6})^n$.

5. (1) 0.882; (2) 0.367; (3) 0.127; (4) 0.260.

6. (1) 0.204 8; (2) 0.737 3; (3) 0.057 9.

7. (1)
$$P\{X = 0\} = \prod_{i=1}^{3} (1 - p_i),$$

 $P\{X = 1\} = p_1(1 - p_2)(1 - p_3) + (1 - p_1)p_2(1 - p_3) + (1 - p_1)(1 - p_2)p_3,$
 $P\{X = 2\} = p_1p_2(1 - p_3) + p_1(1 - p_2)p_3 + (1 - p_1)p_2p_3, P\{X = 3\} = p_1p_2p_3;$

Y	0	1	2	3
p	p_1	$(1-p_1)p_2$	$(1-p_1)(1-p_2)p_3$	$(1-p_1)(1-p_2)(1-p_3)$

8. (1)
$$P\{X = k\} = p(1-p)^{k-1}, k = 1, 2, 3, 4, P\{X = 5\} = (1-p)^4;$$
 (2) $p(2-p)$.
9. (1) $1 - 2e^{-1};$ (2) $\frac{2}{3(e-2)}.$
10. (1) $1 - 11e^{-10};$ (2) $e^{-0.5}.$
11. (1) $1 - \frac{11}{2}e^{-4.5};$ (2) $\frac{16}{5(e^{3.2} - 1)}.$

9. (1)
$$1 - 2e^{-1}$$
; (2) $\frac{2}{3(e-2)}$

10. (1)
$$1 - 11e^{-10}$$
; (2) $e^{-0.5}$

11. (1)
$$1 - \frac{11}{2}e^{-4.5}$$
; (2) $\frac{16}{5(e^{3.2} - 1)}$

12. (1)
$$\frac{324}{5}e^{-6}$$
; (2) $\frac{324}{5(e^6 - 115)}$

14. (1)
$$P\{X = k\} = \frac{C_3^k C_7^{3-k}}{C_{10}^3}, k = 0, 1, 2, 3;$$

(2)
$$P{Y = k} = \frac{C_3^k}{8}, k = 0, 1, 2, 3$$

(2)
$$P{Y = k} = \frac{C_3^k}{8}, k = 0, 1, 2, 3;$$

(3) $P{Z = k} = \frac{9^{k-1}}{10^k}, k = 1, 2, 3, \dots;$

$$(4) \frac{3}{16}$$

$$(4) \frac{3}{16}.$$

$$15. (1) F(x) = \begin{cases} 0, & x < 0, \\ \frac{x}{2}, & 0 \le x < 1, \\ \frac{1}{2}, & 1 \le x < 2, \\ \frac{x-1}{2}, & 2 \le x < 3, \\ 1, & x \ge 3; \end{cases}$$

$$16. (1) \frac{3}{16}; (2) F(x) = \begin{cases} 0, & x < 0, \\ \frac{12x - x^3}{16}, & 0 \le x < 2, \\ 1, & x \ge 2; \end{cases}$$

16. (1)
$$\frac{3}{16}$$
; (2) $F(x) = \begin{cases} 0, & x < 0, \\ \frac{12x - x^3}{16}, & 0 \le x < 2, \end{cases}$ (3) $\frac{11}{16}$; (4) 0.144 2.

17. (1)
$$a = b = 0.5$$
; (2) $f(x) = \begin{cases} x, & 0 < x < 1, \\ 0.5, & 1 < x < 2, \\ 0, & \sharp \text{ th}; \end{cases}$

18. (1)
$$\frac{3}{5}$$
; (2) $\frac{3}{5}$; (3) $\frac{1}{4}$.

19.
$$f_X(x) = \begin{cases} \frac{1}{4}, & -1 < x < 3, \\ 0, & \text{if the}, \end{cases} P\{Y = k\} = C_n^k \left(\frac{3}{4}\right)^k \left(\frac{1}{4}\right)^{n-k}, k = 0, 1, 2, \dots, n.$$

- 20. (1) 0.993 8; (2) 0.069 4; (3) 0.682 6; (4) 0.045 6.
- 21. 0.308 5.
- 22. (1) 0.5; (2) 0.682 6; (3) 0.655 4.
- 23. (1) 0.111; (2) 0.244; (3) 0.297.
- 24. (1) 0.064; (2) 0.662; (3) 0.972.

25.
$$\mu = 14\ 109, \sigma = 2\ 498.$$

$$26, x_1 = 15, x_2 = 17$$

27. (1)
$$\frac{1}{\sqrt{\pi}}$$
; (2) 0.239.

28. (1)
$$f(x) = \begin{cases} \frac{1}{8} e^{-x/8}, & x > 0, \\ 0, & x \le 0; \end{cases}$$
 (2) $e^{-1.25}$; (3) $e^{-1} - e^{-2}$.

29 (1) 0.275; (2)
$$e^{-2/9}$$

30. (1)
$$f(x) = \begin{cases} 0.2e^{-0.2x}, & x > 0, \\ 0, & x \le 0; \end{cases}$$
 (2) $e^{-1} - e^{-2}$; (3) $(1 - e^{-1})^6 (6e^{-1} + 1)$.

31. (1) 0.116; (2) 0.127.

32.

Y	2	8	10
p	0.216	0.294	0.490

$$(3) F_{Z}(t) = \begin{cases} 0, & t \leq 0, \\ \frac{2}{9} \left(4t - \frac{t^{3}}{3} \right), & 0 < t \leq 1, \\ \frac{1}{9} \left(4t - \frac{t^{3}}{3} + \frac{11}{3} \right), & 1 < t < 2, \\ 1, & t \geqslant 2, \end{cases} f_{Z}(t) = \begin{cases} \frac{2}{9} (4 - t^{2}), & 0 < t \leq 1, \\ \frac{1}{9} (4 - t^{2}), & 1 < t < 2, \\ 0, & \not\equiv \text{Me.} \end{cases}$$

34. (1)
$$F_T(t) = \begin{cases} 1 - e^{-\lambda t}, & t > 0, \\ 0, & t \leq 0; \end{cases}$$
 (2) $e^{-\lambda t}$

35.
$$f_Y(y) = \begin{cases} \frac{1}{n} y^{\frac{1}{n} - 1}, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

$$\begin{cases} 1, & t \ge 2, \\ 34. & (1) \ F_T(t) = \begin{cases} 1 - e^{-\lambda t}, & t > 0, \\ 0, & t \le 0; \end{cases} \\ 35. & f_Y(y) = \begin{cases} \frac{1}{n} y^{\frac{1}{n} - 1}, & 0 < y < 1, \\ 0, & \cancel{1} \text{ th.} \end{cases} \\ 36. & F_Y(y) = \begin{cases} 0, & y < -1, \\ \frac{4(\pi - \arccos y)}{3\pi}, & -1 \le y < 0, \\ 1 - \frac{2\arccos y}{3\pi}, & 0 \le y < 1, \\ 1, & y \ge 1. \end{cases}$$

37.
$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{2\pi y}\sigma} \left[e^{-(\sqrt{y}-\mu)^2/(2\sigma^2)} + e^{-(\sqrt{y}+\mu)^2/(2\sigma^2)} \right], & y > 0, \\ 0, & \text{if the } \end{cases}$$

38. (1)
$$a = \frac{1}{3}, b = \frac{1}{6}$$
; (2) $f_Y(y) = \begin{cases} \frac{y(2y^2 + 1)}{3}, & 0 < y < \sqrt{2}, \\ 0, & 其他. \end{cases}$

$$\begin{cases}
1, & y \ge 1. \\
37. & f_Y(y) = \begin{cases}
\frac{1}{2\sqrt{2\pi y}\sigma} \left[e^{-(\sqrt{y}-\mu)^2/(2\sigma^2)} + e^{-(\sqrt{y}+\mu)^2/(2\sigma^2)} \right], & y > 0, \\
0, & \text{i.e.}
\end{cases}$$

$$38. & (1) & a = \frac{1}{3}, b = \frac{1}{6}; (2) & f_Y(y) = \begin{cases}
\frac{y(2y^2 + 1)}{3}, & 0 < y < \sqrt{2}, \\
0, & \text{i.e.}
\end{cases}$$

$$39. & (1) & f_Y(y) = \begin{cases}
\frac{1}{\sqrt{2\pi y}} e^{-(\ln y)^2/2}, & y > 0, \\
0, & y \le 0;
\end{cases}$$

$$(2) & f_Z(y) = \sqrt{\frac{2}{\pi}} e^{y - \frac{e^2y}{2}}, |y| < +\infty.$$

思考题三

1. 联合分布可以决定边际分布, 而边际分布不能决定联合分布.

2. (3) 正确.

3. 不对.

4. (2) 正确.

5. 第一个说法对, 第二个说法不对.

习题三

1.
$$P\{X=2,Y=4\}=P\{X=4,Y=2\}=\frac{6}{25}, P\{X=3,Y=3\}=\frac{13}{25};$$
 $P\{X=2\}=P\{X=4\}=\frac{6}{25}, P\{X=3\}=\frac{13}{25}.$ 2. $a=0.3,b=0.2.$

3. a = c = 0.2, b = 0.3,

X	1	2
p	0.6	0.4

Y	-1	0	1
p	0.3	0.2	0.5

4. (1)

MA HAVE			Y	
		0	1	2
	0	0.2	0.1	0.1
X	1	0	0.4	0.2

(2)
$$P{Y = k | X = 0} = \begin{cases} \frac{1}{2}, & k = 0, \\ \frac{1}{4}, & k = 1, \\ \frac{1}{4}, & k = 2. \end{cases}$$

5. (1)

10.10	N. T.		0		Y 5.0		42	$P\{X=i\}$
		1	2 2	3	4	5	6	$P\{X=i\}$
100	1	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
	2	0	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
	3	0	0	$\frac{3}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
X	4	0	0	0	$\frac{4}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
	5	0	0	0	0	$\frac{5}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
	6	0	0	0	0	0	$\frac{6}{36}$	$\frac{1}{6}$
$P\{Y$	$=j$ }	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$	

X	1	2	3	4	5	6
	1	1	1	1	1	6
$P\{X=k Y=6\}$	11	11	11	11	11	11

6. (1)

			Y	
		1	2	3
		1	11	1
	0	15	30	15
X	Marie Value	7	1	1
	1 = (0 -	18	18	18

(2)

	Y	1	2	3	
	W. J. T. T.	41	38	11	
	p	90	90	90	
(3) $P\{X = k Y = 1\}$	$= \begin{cases} \frac{6}{41}, & k \\ 35 \end{cases}$	= 0,			
7. (1) $P\{X = i, Y = i\}$, 11		-j, $i = 0, 1, 2$,	$\cdots, j=0,1,3$	$2,\cdots,i;$
(2) $P{Y = j} = \frac{e^{-0}}{}$	$\frac{1}{j!}$, $j =$	$=0,1,2,\cdots$			
8. (1)					

(3)
$$P\{X = k | Y = 1\} = \begin{cases} \frac{6}{41}, & k = 0, \\ \frac{35}{41}, & k = 1. \end{cases}$$

7. (1)
$$P\{X=i, Y=j\} = \frac{e^{-\lambda}\lambda^i}{i!} \cdot C_i^j(0.1)^j(0.9)^{i-j}, i=0,1,2,\cdots,j=0,1,2,\cdots,i;$$

(2)
$$P{Y = j} = \frac{e^{-0.1\lambda}(0.1\lambda)^j}{j!}, j = 0, 1, 2, \cdots$$

8. (1)

AL PRODUCT		Y = Y		
		0	a	2a) 8
	0	0.6	0	0
X	1	0.3(1-p)	0.3p	0
	2	$0.1(1-p)^2$	0.2p(1-p)	$0.1p^{2}$

(2)
$$P{Y = t | X = 1} = \begin{cases} 1 - p, & t = 0, \\ p, & t = a. \end{cases}$$

9. (1)

				Y
	0		1	
	M. J.	1	0.1	0.2
X		2	0.3	0.4

$$(2) F_{X|Y}(x|0) = \begin{cases} 0, & x < 1, \\ 0.25, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

$$10. (1)$$

		HARR.	Y
100	15000	0.	1
X	0	0.35	0.35
	1	0.25	0.05

(2)
$$F_X(x) = \begin{cases} 0, & x < 0, \\ 0.7, & 0 \le x < 1, \\ 1, & x \ge 1; \end{cases}$$

$$(2) F_X(x) = \begin{cases} 0, & x < 0, \\ 0.7, & 0 \le x < 1, \\ 1, & x \ge 1; \end{cases}$$

$$(3) F_{Y|X}(y|1) = \begin{cases} 0, & y < 0, \\ \frac{5}{6}, & 0 \le y < 1, \\ 1, & y \ge 1. \end{cases}$$

$$(3) F_{Y|X}(y|1) = \begin{cases} \frac{5}{6}, & 0 \leqslant y < 1, \\ 1 & y \geqslant 1. \end{cases}$$

$$11. F(x,y) = \begin{cases} 0, & x < 0 \ \text{id} \ y < 0, \\ 0.1 + 0.8xy, & 0 \leqslant x < 1, 0 \leqslant y < 1, \\ 0.1 + 0.8x, & 0 \leqslant x < 1, y \geqslant 1, \\ 0.1 + 0.8y, & x \geqslant 1, 0 \leqslant y < 1, \\ 1, & x \geqslant 1, y \geqslant 1. \end{cases}$$

$$12. (1) c = 6; (2) 0.5; (3) \frac{7}{8}.$$

12. (1)
$$c = 6$$
; (2) 0.5; (3) $\frac{7}{8}$.

12. (1)
$$c = 6$$
; (2) 0.5; (3) $\frac{1}{8}$.

13. (1) $f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{i.e.} \end{cases}$, $f_Y(y) = \begin{cases} \frac{1}{2}, & 0 < y < 2, \\ 0, & \text{i.e.} \end{cases}$

(2)
$$\frac{2}{3}$$
.

14. (1)
$$c = 3$$
;

14. (1)
$$c = 3$$
;
(2) $f_X(x) = \begin{cases} 6(x-1)(2-x), & 1 < x < 2, \\ 0, & \text{ i.e. } \end{cases}$ $f_Y(y) = \begin{cases} \frac{3(y-1)^2}{2}, & 1 < y \le 2, \\ \frac{3(3-y)^2}{2}, & 2 < y < 3, \\ 0, & \text{ i.e. } \end{cases}$

15. (1)
$$f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0; \end{cases}$ (2) 当 $x > 0$ 时, $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, & 0 < y < x, \\ 0, &$ 其他;

(2) 当
$$x > 0$$
 时, $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, & 0 < y < x \\ 0, & 其他; \end{cases}$

(3) 当 $\{X = x\}$ 时, Y 的条件分布为区间 (0,x) 上均匀分布.

16. (1)
$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda x} e^{-y/x}, & x > 0, y > 0, \\ 0, & 其他; \end{cases}$$

(2)
$$\leq x > 0$$
 $\forall f$, $F_{Y|X}(y|x) = \begin{cases} 1 - e^{-y/x}, & y > 0, \\ 0, & y \leq 0; \end{cases}$

$$(3) e^{-1}$$

17. (1)
$$f_Y(y) = \begin{cases} \frac{5(1-y^4)}{8}, & |y| < 1, \\ 0, & \text{其他;} \end{cases}$$

(2) 当
$$|y| < 1$$
 时, $f_{X|Y}(x|y) = \begin{cases} \frac{2x}{1-y^4}, & y^2 < x < 1, \\ 0, & 其他; \end{cases}$

(3) 0.8.

18. (1)
$$f(x,y) = \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1, \\ 0, & \sharp \text{ (b)} \end{cases}$$

(2) 当
$$0 < y < 1$$
 时, $f_{X|Y}(x|y) = \begin{cases} \frac{-1}{(1-x)\ln(1-y)}, & 0 < x < y, \\ 0, & 其他. \end{cases}$

19. (1)
$$f(x,y) = \begin{cases} \frac{2(4-y)}{(3-x)^2}, & 1 < x < 2, x+1 < y < 4, \\ 0, & \text{i.e.} \end{cases} P\{Y < 3\} = \frac{1}{2};$$

(2)
$$f_Y(y) = \begin{cases} y-2, & 2 < y < 3, \\ 4-y, & 3 < y < 4, \\ 0, & \sharp \text{th}; \end{cases}$$

$$(3) \frac{1}{3}$$

20.
$$f_Z(t) = \begin{cases} \frac{2(m-t)}{m^2}, & 0 < t < m, \\ 0, & 其他. \end{cases}$$

21. (1)
$$f_X(x) = \begin{cases} \frac{4\sqrt{1-x^2}}{\pi}, & 0 < x < 1, \\ 0, & \sharp \text{th}; \end{cases}$$

(2)
$$\frac{1}{3} + \frac{\sqrt{3}}{2\pi}$$
;

(3)
$$X$$
 与 Y 不独立,因为 $f(x,y) \neq f_X(x) \cdot f_Y(y), (x,y) \in D$.

22. (1)
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, |x| < +\infty, f_Y(y) = \frac{1}{2\sqrt{\pi}} e^{-(y-1)^2/4}, |y| < +\infty;$$

(2)
$$f_{Y|X}(y|0) = \frac{1}{\sqrt{3\pi}} e^{-(y-1)^2/3}, |y| < +\infty;$$

23. (1)
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, |x| < +\infty, f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, |y| < +\infty;$$

$$24. \ F_T(t) = \begin{cases} 1 - 2e^{-2\lambda t} + e^{-3\lambda t}, & t > 0, \\ 0, & t \leq 0, \end{cases}$$
$$f_T(t) = \begin{cases} 4\lambda e^{-2\lambda t} - 3\lambda e^{-3\lambda t}, & t > 0, \\ 0, & t \leq 0. \end{cases}$$

$$P\{Z = k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n;$$

25. (1)
$$Z \sim B(n,p)$$
, $P\{Z = k\}$ $P\{W = k\} = C_{m+n}^k p^k (1-p)^{m+n-k}$, $k = 0, 1, 2, \dots, m+n$.

25. (1)
$$Z \sim B(n,p), P\{Z=k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n;$$

(2) $W \sim B(m+n,p), P\{W=k\} = C_{m+n}^k p^k (1-p)^{m+n-k}, k = 0, 1, 2, \dots, m+n.$
26. $f_Z(t) = \frac{1}{2a} \left[\Phi\left(\frac{t+a-\mu}{\sigma}\right) - \Phi\left(\frac{t-a-\mu}{\sigma}\right) \right], |t| < +\infty.$

$$27. \ f_Z(t) = \begin{cases} \frac{t(3-t)}{3} & 0 < t \le 1, \\ \frac{3-t}{3}, & 1 < t \le 2, \\ \frac{(3-t)^2}{3}, & 2 < t \le 3, \\ 0 & \text{ i.i.} \end{cases}$$

28.
$$f_Z(t) = 0.5f(t) + 0.3f(t - 1\ 000) + 0.2f(t - 5\ 000)$$

29. (1)
$$\frac{3}{8}$$
;

$$(2) F_{Z}(z) = \begin{cases} 0, & z < 48, \\ \frac{z}{32} - \frac{3}{2}, & 48 \le z < 60, \\ \frac{9z}{160} - 3, & 60 \le z < 64, \\ \frac{z}{40} - 1, & 64 \le z < 80, \\ 1, & z \ge 80. \end{cases}$$

30. (1)
$$1 - e^{-10\lambda} - 10\lambda e^{-10\lambda}$$
;

(2)
$$1 - e^{-10\lambda} (1 + \lambda)^{10}$$
;

$$\begin{aligned} &(2) \ 1 - \mathrm{e}^{-10\lambda} (1+\lambda)^{10}; \\ &(3) \ 1 - \frac{\mathrm{e}^{-10\lambda} [(1+\lambda)^{10} - \lambda^{10}]}{1 - (1-\mathrm{e}^{-\lambda})^{10}} \end{aligned}$$

31.

Z	1	2	3	4	5
n	0.04	0.14	0.30	0.32	0.20

M	1	2	3
D	0.10	0.50	0.40

	A service		
N	0	1	2
p	0.20	0.40	0.40

32. (1)
$$f_T(t) = \begin{cases} (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)t}, & t > 0, \\ 0, & t \leq 0; \end{cases}$$

(2)
$$f_T(t) = \begin{cases} \lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t} - (\lambda_1 + \lambda_2) e^{-(\lambda_1 + \lambda_2)t}, & t > 0, \\ 0, & t \leqslant 0; \end{cases}$$

32. (1)
$$f_T(t) = \begin{cases} (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)t}, & t > 0, \\ 0, & t \leqslant 0; \end{cases}$$
(2) $f_T(t) = \begin{cases} \lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t} - (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)t}, & t > 0, \\ 0, & t \leqslant 0; \end{cases}$
(3) $\stackrel{\text{def}}{=} \lambda_1 \neq \lambda_2 \text{ Bd}, f_T(t) = \begin{cases} \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} [e^{-\lambda_1 t} - e^{-\lambda_2 t}], & t > 0, \\ 0, & t \leqslant 0, \end{cases}$

当
$$\lambda_1 = \lambda_2 = \lambda$$
 时, $f_T(t) = \begin{cases} \lambda^2 t e^{-\lambda t}, & t > 0, \\ 0, & t \leqslant 0. \end{cases}$
33. $f_Z(t) = \begin{cases} \frac{1}{2} - \frac{t}{8}, & 0 < t \leqslant 4, \\ 0, & 其他. \end{cases}$

33.
$$f_Z(t) = \begin{cases} \frac{1}{2} - \frac{t}{8}, & 0 < t \leq 4, \\ 0, & 其他. \end{cases}$$

34. (1)
$$P\{W=k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n;$$

	ALL WAY	1 0 / 1 N	Z) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
the second		0	(3-5)1 1
	0	$(1-p)^2$	p(1-p)
X	1	p^2	p(1-p) $p(1-p)$

35.
$$f_M(s) = \begin{cases} 3s^2, & 0 < s < 1, \\ 0, & 其他, \end{cases}$$
 $f_N(t) = \begin{cases} 1 + 2t - 3t^2, & 0 < t < 1, \\ 0, & 其他. \end{cases}$

思考题四

1. 不对. 随机变量 X 的数学期望按定义应该是

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$
$$= \int_{-\infty}^{-1} x \cdot 0 dx + \int_{-1}^{0} x \cdot (1+x) dx + \int_{0}^{1} x \cdot (1-x) dx + \int_{1}^{+\infty} x \cdot 0 dx.$$

- 2. 随机变量 X 与 Y 同分布, 那么它们的任意阶矩 (如果存在) 全部相等. 反之, 若有 E(X)=E(Y)且 Var(X) = Var(Y),不能推出随机变量 X 与 Y 分布一定相同. 反例,当 $X \sim P(1), Y \sim N(1,1)$ 时, E(X) = E(Y) = 1 且 Var(X) = Var(Y) = 1, 但显然两者的分布不一样.
 - 3. 方差是 2×2.52.
 - 4. 两个随机变量如果相互独立则它们一定不相关, 反之则不然,

5. (1) 对于
$$n \ge 1$$
, 有 $E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$ 成立, 但 $Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$ 不一定成立, 因为

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j}).$$

且只有当 $\{X_i, i \ge 1\}$ 两两不相关时, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i)$ 才成立;

(2) 若
$$\{X_i, i \geqslant 1\}$$
 相互独立,那么对于 $n \geqslant 1$,有 $E\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n E(X_i)$ 成立,但 $\operatorname{Var}\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n \operatorname{Var}(X_i)$ 不一定成立,仅知

$$\operatorname{Var}\left(\prod_{i=1}^{n} X_{i}\right) = E\left(\prod_{i=1}^{n} X_{i}^{2}\right) - \left(E\left(\prod_{i=1}^{n} X_{i}\right)\right)^{2} = \prod_{i=1}^{n} E(X_{i}^{2}) - \prod_{i=1}^{n} (E(X_{i}))^{2}.$$

- 6. 错. 应为 $Var(X 2Y) = Var(X) + (-2)^2 Var(Y) + 2Cov(X, -2Y) = 5 4Cov(X, Y)$. 7. 错. 应根据定理 4.1.1 来计算,

$$E\left(\frac{1}{X}\right) = \int_{1}^{3} \frac{1}{x} \cdot \frac{1}{2} dx = \frac{1}{2} \cdot (\ln 3 - \ln 1) = \ln \sqrt{3}.$$