

EEG/MEG 2:

Spatial Resolution and Nonlinear Methods

Olaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Spatial Resolution of EEG/MEG – Basic Concepts

Resolution Matrix, Point-Spread and Cross-Talk Functions (PSFs and CTFs)

The EEG/MEG Forward Problem

 $j_1 + j_2 = 1$ under-determined problem, no unique solution

d=Lj

d: data (n_sensors x 1) **L**: "leadfield" (n_sensors x n_dipoles), **j**: dipoles (n_dipoles x 1) Usually n_dipoles >> n_sensors.

Let's Start Again: The "Blurry Image" Analogy

Just because the brain is complicated doesn't mean source estimation has to be complicated

The Superposition Principle A "Constraint-Free" Interpretation of Linear Methods

Linear Methods Can Easily Tell Us If They Do What We Want Superposition Principle

If you know the behaviour for point sources, you can predict the behaviour for complex sources.

Spatial Resolution of Source Estimation Is Complex

Spatial resolution depends on:

number of sensors (EEG/MEG or both)
source location
source orientation
signal-to-noise ratio
head modelling
assumptions about the sources

=> difficult to make general statement

The Resolution Matrix

Relationship between estimated and true source distribution.

Creating an Optimal Resolution Matrix

$$\hat{\mathbf{s}} = \mathbf{R}\mathbf{s}$$

The closer **R** is to the identity matrix, the closer our estimate is to the true source.

Therefore, let us minimise the difference between **R** and the identity matrix in the least-squares sense:

$$\|R - I\|_2 = min$$

This leads to the **Minimum Norm Estimator (MNE)**:

$$G_{MN} = \mathbf{L}^T (\mathbf{L} \mathbf{L}^T)^{-1}$$

Its resolution matrix $\mathbf{R}_{MN} = \mathbf{L}^T (\mathbf{L} \mathbf{L}^T)^{-1} \mathbf{L}$ is symmetric.

Spatial Resolution / Leakage:

Point-Spread and Cross-Talk

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Good

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Less good

Localisation Bias Has Consequences for ROI analysis

PSFs/CTFs Can Tell You How It Looks Like

Desikan-Killiany Atlas parcellation

Adaptive cortical parcellation based on resolution matrix are possible: Farahibozorg/Henson/Hauk NI 2018 https://pubmed.ncbi.nlm.nih.gov/28893608/

Spatial Resolution / Leakage:

Point-Spread and Cross-Talk

Quantifying Resolution From PSFs and CTFs

It's not just peak localisation that counts, but also spatial extent of the distribution.

Whole-Brain Maps of Resolution Metrics

Combining EEG and MEG improves spatial resolution.

Sensitivity Maps

Sensor type, coverage and distance to sources strongly affect sensitivity and spatial resolution

Methods Comparison

- MEG+EEG: Elekta Vectorview (360+70 channels), Wakeman & Henson open data set
- Methods:
 - L2-MNE
 - depth-weighted L2-MNE
 - dSPM
 - e/sLORETA
 - 2 LCMV beamformers (pre- and post-stimulus covariance matrices)
- Resolution Metrics:
 - Peak Localisation Error
 - Spatial Deviation (extent)

Example PSFs and CTFs for MNE and eLORETA

Note: For MNE PSFs and CTFs are the same

Comparing Estimators – MNE-type methods

Example PSFs and CTFs for Beamformers

Comparing Estimators – Beamformers

Conclusion From Methods Comparison

- Methods vary with respect to localisation error and spatial deviation.
- Improvements in localization error are accompanied by increases in spatial deviation.
- Localisation error for PSFs can be minimised (even to zero), but not for CTFs.
- Spatial deviation for PSFs and CTFs cannot be minimised beyond a certain limit.
- Localisation error for beamformers is low (even zero), but spatial deviation higher than for MNE-type methods.
- Performance of beamformers similar for different covariance matrices.
- ⇒ There is no obvious "best method".
- ⇒ In this analysis, MNE and eLORETA seem to offer the best compromise between localisation and spatial deviation.
- ⇒ The tools (PSFs/CTFs, resolution metrics) can be applied to individual datasets try it yourself!

Thank you

