

Charting the Right Manifold: Manifold Mixup for Few-shot Learning

Puneet Mangla* 1 2 Abhishek Sinha 2 Mayank Singh 2 Nupur Kumari 2 Vineeth N Balasubramanian 1 Balaji Krishnamurthy 2

¹IIT Hyderabad, India ²Media and Data Science Research (MDSR), Adobe Noida, India

Github

Charting the Right Manifold: Manifold Mixup for Few-shot Learning

Puneet Mangla* 1 2 Abhishek Sinha 2 Mayank Singh 2 Nupur Kumari 2 Vineeth N Balasubramanian 1 Balaji Krishnamurthy 2

¹IIT Hyderabad, India ²Media and Data Science Research (MDSR), Adobe Noida, India

thub

Problem Definition and Contribution

Few-Shot Learning: To learn model parameters capable of adapting to unseen classes with only a few labeled examples.

Key Contributions:

- Manifold Mixup over the feature manifold enriched via the self-supervision task improves few-shot classification.
- More pronounced effect on increasing N in the N-way K-shot evaluation
- Improves cross-domain few-shot task evaluation.

Notations and Preliminaries

Training:

- First phase: training a feature extractor f_{θ} over base class data $\mathcal{D}_b = \{(\mathbf{x}_i, y_i), i = 1, \cdots, m_b\}$.
- Second phase: Freezing feature extractor module and learning a new classifier for novel class data $\mathcal{D}_n = \{(\mathbf{x}_i, y_i), i = 1, \dots, m_n\}.$

Manifold-Mixup: leverages linear interpolations in hidden layers of neural network to help the trained model generalize better.

$$L_{mm} = \mathbb{E}_{(x,y) \in \mathcal{D}_b} \left[L \left(Mix_{\lambda}(f_{\theta}^l(\mathbf{x}), f_{\theta}^l(\mathbf{x}')), Mix_{\lambda}(y, y') \right) \right]$$

where $Mix_{\lambda}(a,b) = \lambda \cdot a + (1-\lambda) \cdot b$ and L is cross-entropy loss.

Self Supervision: Towards the Right Manifold:

• Rotation: the input image is rotated, and the auxiliary task of the model is to predict the rotation.

$$L_{rot} = \frac{1}{|C_R|} * \sum_{\mathbf{x} \in \mathcal{D}_t} \sum_{r \in C_R} L(c_{W_r}(f_{\theta}(\mathbf{x}^r)), r)$$

where \mathbf{x}^r is the image x rotated by r degrees and $r \in C_R = \{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$

• Exemplar: feature representation of same image with random augmentations are promoted to be similar and different from other images through triplet loss L_e .

Cosine Classifier: Given an image x and $W_b = \{w_1, w_2...w_{N_b}\}$, final scores and training loss is given by:

$$s = SoftMax(\lambda \cdot \frac{f_{\theta}(x) \cdot w_{j}}{||f_{\theta}(x)|| \cdot ||w_{j}||})$$

$$L_{class} = \mathbb{E}_{x,y \in D_{b}} CrossEntropy(s, y)$$

Our Approach: Self-Supervised Manifold-Mixup (S2M2)

Step 1: Self-supervised training: Train feature extractor using self-supervision as an auxiliary loss along with classification loss.

Step 2: Fine-tuning with Manifold Mixup: Fine-tune the above model with Manifold-Mixup for a few more epochs. After obtaining the backbone, a cosine classifier is learned over it to adapt to few-shot tasks.

Experiments

Comparison with prior/current state of the art methods on mini-ImageNet, tiered-ImageNet, and CUB dataset.

Method	mini-ImageNet		tiered-In	nageNet	CUB	
	1-Shot	5-Shot	1-Shot	5-Shot	1-Shot	5-Shot
MAML	54.69 ± 0.89	66.62 ± 0.83	51.67 ± 1.81	70.30 ± 0.08	71.29 ± 0.95	80.33 ± 0.70
ProtoNet	54.16 ± 0.82	73.68±0.65	53.31 ± 0.89	72.69 ± 0.74	71.88 ± 0.91	87.42 ± 0.48
RelationNet	52.19 ± 0.83	70.20 ± 0.66	54.48 ± 0.93	71.32 ± 0.78	68.65 ± 0.91	81.12 ± 0.63
LEO [3]	61.76 ± 0.08	77.59 ± 0.12	66.33 ± 0.05	81.44 ± 0.09	68.22 ± 0.22*	78.27 ± 0.16 *
DCO [2]	62.64 ± 0.61	78.63 ± 0.46	65.99 ± 0.72	81.56 ± 0.53	_	_
Baseline++	57.53 ± 0.10	72.99 ± 0.43	60.98 ± 0.21	75.93 ± 0.17	70.4 ± 0.81	82.92 ± 0.78
Manifold Mixup	57.16 ± 0.17	75.89 ± 0.13	68.19 ± 0.23	84.61 ± 0.16	73.47 ± 0.89	85.42 ± 0.53
Rotation	63.9 ± 0.18	81.03 ± 0.11	73.04 ± 0.22	87.89 ± 0.14	77.61 ± 0.86	89.32 ± 0.46
$S2M2_R$	64.93 ± 0.18	83.18 ± 0.11	73.71 ± 0.22	88.59 ± 0.14	80.68 ± 0.81	90.85 ± 0.44

Ablation Studies

Effect of varying N **in** N**-way Classification** We test our proposed methodology in complex few-shot settings. We vary N in N-way K-shot evaluation criteria from 5 to 10, 15 and 20.

2* N	1ethod	10-way		15-way		20-way	
		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Base	eline++	40.43	56.89	31.96	48.2	26.92	42.8
	EO	45.26	64.36	36.74	56.26	31.42	50.48
)CO	44.83	64.49	36.88	57.04	31.5	51.25
Manifo	old Mixup	42.46	62.48	34.32	54.9	29.24	48.74
Rot	tation	47.77	67.2	38.4	59.59	33.21	54.16
S2	$M2_R$	50.4	70.93	41.65	63.32	36.5	58.36

Cross-domain few-shot learning To further highlight the significance of selecting the right manifold for feature space, we evaluate the few-shot classification performance over cross-domain dataset : **mini-ImageNet** \Longrightarrow **CUB** (coarse-grained to fine-grained distribution).

Method	$mini$ -Imagenet \Longrightarrow CUB				
	1-Shot	5-Shot			
DCO	44.79 ± 0.75	64.98 ± 0.68			
Baseline++	40.44 ± 0.75				
Manifold Mixup					
Rotation	48.42 ± 0.84	68.40 ± 0.75			
$S2M2_R$	48.24 ± 0.84	70.44 ± 0.75			

Visualization of feature representations Our approach has more segregated clusters with less variance. Thus, using both self supervision and Manifold Mixup regularization helps in learning feature representations with well separated margin between novel classes.

UMAP (2-dim) plot for feature vectors of examples from novel classes of mini-Imagenet using Baseline++, Rotation, $S2M2_R$ (left to right).

References

- [1] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang, and Jia-Bin Huang. A closer look at few-shot classification.
- [2] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with differentiable convex optimization. *CoRR*, abs/1904.03758, 2019.

In International Conference on Learning Representations, 2019.

- [3] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference on Learning Representations, 2019.
- [4] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In International Conference on Machine Learning, pages 6438–6447, 2019.
- [5] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S ⁴ I: Self-supervised semi-supervised learning. *arXiv*:1905.03670, 2019.