F

2.

•				1100CST3080	52302		1	STATE	NAZ	
Reg 1	No.:				Name:	^	15	Se Se	(00/ X/1	
		APJ ABD	UL KA	LAMTECHN	OLOGICA	AL UNIVERS	ITY	E. Si	3340/	
	В.	Tech Degree So	6 (R, S)	/ S6 (PT) (R) E	xamination	June 2023 (20	19 Sche	me)	and the second	
								CHERUT	HUP	
Max. M	arks: 50		name:	Course Cod COMPREHI			ORK	Duratio	n: 1Hour	
IVIAA. IVI	arks. 50							2		
Instructio) Each question o ?) Total number o			ve marks for	wrong answers				
	(3 w	t) Total number of B) All questions ar hich only ONE is I) If more than on	e to be an	swered. Each que			sible answ	vers of		
1.	The wo	rst case comp	lexity o	f q <mark>uick s</mark> ort is						
	a) C	O (n)	b)	O(log n)	c)	$O(n^2)$	d)	O(n log 1	1)	
		s the output of >2->3->4->5-		ng function fo	or start poir	nting to first n	node of	following	linked	
	void fu	ın(struct node	* start)							
	{									
	if(start	== NULL)								
	return;									
	_	%d ", start->c								
	,	>next != NUI								
	•	rt->next->nex %d ", start->c								
	}	700 , Start-20	iaia),							
	,									
	a) 1	4 6 6 4 1	b)	135135	c)	1 2 3 5	d)	1 3 5 5 3	1	
3.	The pr	efix form of A	A-B/ (C	* D ∧ E) is?	-					
	,	-/*∧ACBDE	b)	-ABCD*∧DI		-A/B*C∧DI		-A/BC*/		
	the firs	Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this: 2 5 1 7 9 12 11 10								
		statement is c			1.1	TTI		NI alaba	m tha 7	
	1,000	The pivot coul		The pivot c		The pivot i		Neithe nor the		
		be either the 7 or the 9.	1	be the 7, but not the 9		not the 7, but it could be		nor the		
		of the 3.		not the	,	it could be		PIV	J.,	

In a complete k-ary tree, every internal node has exactly k children or no child. The 5.

the 9

	number of leaves in	such a	tree with n internal	nodes	is:		
	a) nk	b)	,	c)	n(k-1)+1	l d)	n(k-1)
6.	If a node in a Bina	ry searc	ch tree has two child	lren, t	hen its inorder	r prede	ecessor has
	a) No child	b)	No left child	c)	No right child	d)	Two children
7.	Using Bubble sort, the	ne num	ber of interchanges	requir	red to sort 5, 1	, 6, 2 a	and 4 in ascending
	order is a) 7						
8.		b)		c)	8	d)	6
0.	Which one of the fol						
9.	a) stack	b)	dequeue	c)	queue	d)	set
<i>)</i> .	Minimum number of	queues	s needed to impleme	ent the		ie is	••••••
10.	a) 1	b)		c)	3	d)	4
10.	The data structure us			lgorith	nm is		
11	a) queue		stack	c)	heap	d)	hash table
11	Consider three CPU-	intensi	ve processes, which	requi	ire 10, 20 and	30 tim	e units and arrive
	at times 0, 2 and 6 i	especti	vely. How many co	ontext	switches are	neede	d if the operating
	system implements a	shorte	st remaining time fi	irst sc	h <mark>eduli</mark> ng algo	rithm?	Do not count the
	context switches at ti						
12	a) 1	b)		c)	3	d)	4
12	Which of the following	ng are I	NOT shared by the t	hread	s of the same	proces	s?
	a) Stack						
	b) Registers						
	c) Address space						
	d) Message queue a) a and d	1.)	1				NAT 200
13	,	b)	b and c	c)	a and b	d)	a, b and c
13	The problem of indefalgorithm can be solv	od wain	ockage of low prior	ity job	os in general p	riority	scheduling
	a) Swapping		_		.0	1)	
14	Which of the following	og are ti	Dirty Bit	C)	Aging	d)	Compaction
	a) High and					•	
			CPU scheduling is	,	•	d)	All of the above
	efficient CPU		not required		management		
1.5	utilization				is good		
15	A memory manageme	nt syste	em has 64 pages wit	h 512	byt <mark>es page si</mark>	ze. Phy	ysical memory
	consists of 32 page fra	ames N	umber of bits requir	ed in	logical and ph	ysical	address are
	respectively:						
1.6	a) 14 and 15		14 and 29	c)	15 and 14	d)	16 and 32
16	Consider the reference	string	:				
	012301401234						
	If FIFO page replacen	nent alg	corithm is used, then	the n	number of pag	e fault	S
	with three page frames	s and fo	our page frames are		and respe	ctively	'.
	a) 10, 9	b)	9, 9	c)	10, 10	d)	9, 10
17	Consider a disk queue	with I	O requests on the	follow	ving cylinders	in the	ir arriving order
	6,10,12,54,97,73,128,	15,44,1	10,34,45. The disk	head	is assumed to	be at	cylinder 23 and
	moving in the direction	n of de	creasing number of	cylind	ders. Total nur	nber o	f cylinders in the
				100			

	disk is 150. The disk head movement using SCA				
18	a) 172 b) 1 7 3	c)	151	d)	161
10	At a particular time of computation, the value	of a	counting semaj	phore	e is 10. Then 12 P
	operations and "x" V operations were performed semaphore is 7, x will be	ea or	i this semaphor	e. If	the final value of
	a) 8 b) 9	۵)	10	٦)	11
19	In the algorithm, the disk head moves from	c)	10	d)	11
	along the way. When the head reaches the	othe	r and it imme	ner,	servicing requests
	beginning of the disk without servicing any requ	lests i	on the return tri	n	ry returns to the
	a) LOOK b) SCAN		C-SCAN	р. d)	C-LOOK
20	Paging suffers from fragmentation	0)	CBCITI	u)	C-LOOK
	a) External b) Internal	c)	Physical	d)	All of the abve
21	The main virtue for using single Bus structure is				
	a) Fast data b) Cost effective	c)	Cost	d)	None of the
	transfers connectivity and		effective		mentioned
	sp <mark>eed</mark>		connectivity		
			and ease of		
			attaching		
			peripheral		
22	Momory Buffor Bosistar (MDB)		devices		
22	Memory Buffer Register (MBR) is connected to a) Control Bus b) Address Bus		D . D	1)	G
23	a) Control Bus b) Address Bus The basic component of arithmetic circuit is	c)	Data Bus	d)	System Bus
	a) parallel b) parallel adder.	<u>a)</u>	half adder.	4)	6.11 a.4.4
	subtractor.	C)	nan adder.	d)	full adder.
24	When we use auto increment or auto decrement	ents	which of the	follo	wing is/are true?
	1) In both, the address is used to retrieve the	oners	and and then th	e ad	dress gets altered
	2) In auto increment, the operand is retrie	wed	first and then	the	address aftered
,					
	3) Both of them can be used on general purpose a a) 1, 2, 3 b) 2				
25		c)	1, 3	d)	$\frac{2}{3}$
	When we perform subtraction on -7 and -5 the ar a) 11110 b) 1110				
26	a) 11110 b) 1110 The instruction -> Add LOCA, R0 does	c)	1010	d)	0010
-0	· · · · · · · · · · · · · · · · · · ·			45	
	, , , , , , , , , , , , , , , , , , , ,	c)	Adds the	d)	Adds the value
	of LOCA to R0 R0 to the address and stores in the of LOCA		values of both LOCA		of LOCA with a
	temp register		and R0 and		value in accumulator and
	Togother Togother		stores it in		stores it in R0
			R0		Stores it iii Ko
27	Suppose, after analyzing a new cache design, you	u dis		ache	has far too many
	conflict misses, and this needs to be resolv	ed.	You know tha	t vo	u must increase
	associativity in order to decrease the number of o	cache	misses What	are th	e implications of
	increasing associativity?	Lacric	minutes. What	(11	· implications of

	a)	Slower cache access time	b)	Increase index bits	c)	Increase block size	d)	All of these			
28	In a		tive c	ache, the cache is d	livided		each of	which consists of			
				are placed in seque							
				n set (s+1). The ma							
	The	The main memory block numbered j must be mapped to any one of the cache lines from.									
	AA	AA									
	a)	$(j \mod v) * k to$	(j mo	dv) * k + (k-1)							
	b)	(j mod v) to (j n	nod v) + (k-1)							
	c) d)	(j mod k) to (j m									
	u)	(j mod k) * v to	(j mo	d k) * v + (v-1)							
29	Higl	hly encoded schem	es th	at use compact code	es to si	pecify a small	l numbe	er of functions in			
		micro instruction						01 1401.01.0 1			
	a)	Horizontal	b)	Vertical	c)	Diagonal	d)	None of the			
		organisation		organisation		organisation		mentioned			
20	DM	A :	•				C	L c C			
30	DIVI	A interface unit eff	mina	tes the need to use (PU re	egisters to trai	nsiers c	iata irom			
	a)	MAR to MBR	b)	MBR to MAR	c)	I/O units to memory	d)	Memory to I/O units			
31	and man	R2 are two relati y-to-many. R1 and	onshi 1 R2 red to	ties in an E/Rdiagraps between E1 and do not have any attorion represent this situation.	d E2, ribute	where R1 is s of their ow	one-to n. Wha	-many and R2 is the minimum			
20	a)	2	b)		c)	4	d)	5			
32				on R with relation S	. If R	has m tuples	and S h	as n tuples,then			
	the r	naximum size of jo	01 n 1S								
4	a)	mn	b)	m+n	c)	(m+n)/2	d)	2(m+n)			
33	An i			every search key va	alue ir						
	a)	Dense index	b)	•	c)	Hash index	d)	Single-key index			
34		relatin is in BCNF				1.200	1	1.75 10.75			
35	a) Whi	2 NF ch of the following	b)		c)	1 NF	d)	1 NF and 2 NF			
	a)	"Select		Create	c)	Insert	d)	Delete			
36	,		,	a relation is called i			۵)				
	a)	cardinality	b)	size	c)	schema	d)	degree			
37			-	nented using B+ tre		_					
				B. The size of sear		•					
	noin	ter is 8 bytes Assi	iime 1	hat the database ha	s one	million recon	rds Ale	o assume that no			

	node of the B+ tree an record fits into one disany record in the database.	sk block. Th					
38	a) 1 Consider the relation F highest normal form of	b) 2 R(A,B,C,D,I f this relatio	E) and the set		3 AB->CE, E->Al	d) B, C-	4 >D}. What is the
39	a) 1 NF What is the Lost Upda	b) 2 NF te Problem		c) ?	3 NF	d)	BCNF
	a) W-W Conflict	b)	W-R Conflict	c)	R-R Confli	d)	None
40	Consider the following	g transaction	s with data ite	ems I	and Q initializ	ed to	zero:
	T1: read (P); read (Q); if P = 0 then Q := Q + write (Q); T2: read (Q); read (P); if Q = 0 then P := P + write (P);						
	Any non-serial interlea	ving of T1	and T2 for cor	curr	ent execution le	ads t	0
,	a) A serializable schedule	b) A sch not co	edule that is onflict izable	c)	A conflict serializable schedule	d)	A schedule for which a precedence graph cannot be drawn
41	The non- Kleene Star of over set $A = \{(0,1) \mid wh$	operation acc nere string s	cepts the follo contains even	wing num	string of finite ber of 0 and 1}	leng	
٧	a) 01, 0011, 010101		11001100		ε, 0011, 11001100	d)	ε, 0011, 1100 1 100
42	Which of the following a) Input alphabet	is a not a p b) Trans functi	ition	finite c)	automata: Initial State	d)	Output Alphabet
43	Which of the following a) Regular grammar to CFG	conversion b) Non I FA to			gorithmically)? Non Deterministic PDA to Deterministic PDA	d)	Non Deterministic TM to Deterministic TM
44	Regular expression for	all strings st	arts with ab a	nd er		• • • • • • •	

45			nerally	used for proving th				
	a)	Given grammar is regular	b)	Given grammar is not regular	c)	Whether two given regular expressions are equivalent or not	d)	None of these
46	Cons	ider the regular la	inguag	ge L= (111+11111)*	. Th	e minimum nun	iber (of states in any
		accepting this lan						
	a)	3	b)	5	c)	8	d)	9
47	Supp be	ose a regular lang	uage	L is closed under the	e ope	ration halving, t	hen t	the result would
	a)	1/4 L will be regular	b)	1/2 L will be regular	c)	1/8 L will be regular	d)	All of the mentioned
48	Whic			cannot be accepted			r?	
	a)	L is a set of numbers divisible by 2	b)	L is a set of binary complement	c)	L is a set of string with odd number of 0	d)	L is a set of $0^n 1^n$
19	If L1	and L2 are contex	xt free	languages, which o	of the		ntext	free?
	a)	L1*	b)	L2UL1	c)	L1.L2	d)	All of the mentioned
50	S> : S>	aab bac aB	ith the	following producti	ons			
		> bdb						
	The a	bove grammar is						
	a)	Context free	b)	Regular	c)	Context sensitive	d)	Type 0