习题 9.2

- **1.** 将二重积分 $\iint_D f(x,y) d\sigma$ 化为两种不同次序的二次积分, 其中 D 是:
 - (1) 由曲线 $y = \ln x$, 直线 x = 2 及 x 轴所围成的闭区域;
 - (2) 由抛物线 $y = x^2$ 与直线 2x + y = 3 所围成的闭区域;
 - (3) 由曲线 $y = \sin x (0 \le x \le \pi)$ 与 x 轴所围成的闭区域;
 - (4) 由曲线 $y=x^3$ 与直线 x=-1 及 y=1 所围成的闭区域.
- 2. 计算下列二重积分.
 - (1) $\iint_D (x^2 + y^2) dxdy$, $\not\equiv D = \{(x, y) | |x| \le 1, |y| \le 1\}$;
 - (2) $\iint_{D} (xy^{2} + e^{x+2y}) dxdy, \quad \sharp + D = \{(x, y) | -1 \le x \le 1, 0 \le y \le 1\};$
 - (3) $\iint_{D} xy e^{xy^{2}} dxdy, \quad \text{ if } D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\};$
 - (4) $\iint_D x^2 y \sin(xy^2) dxdy$, $\sharp + D = \left\{ (x, y) \middle| 0 \le x \le \frac{\pi}{2}, 0 \le y \le 2 \right\}$;
 - (5) $\iint_{D} \frac{x^{2}}{y^{2}} dxdy$, D 是由曲线 x = 2, y = x, xy = 1 所围成的闭区域;
 - (6) $\iint_D x\cos(x+y) dxdy$, D 是顶点为(0,0), $(\pi,0)$, (π,π) 的三角形闭区域;
 - (7) $\iint_D xy dx dy$, D 是由抛物线 $y^2 = x$ 与直线 y = x 2 所围成的闭区域;
 - (8) $\iint_{D} \sin\left(\frac{x}{y}\right) dxdy$, D 是由直线 y = x, y = 2 与曲线 $x = y^3$ 所围成的闭区域;
- 3. 设 $D = [a, b] \times [c, d]$, 证明:

$$\iint_{D} f(x)g(y)dxdy = \left(\int_{a}^{b} f(x)dx\right)\left(\int_{c}^{d} g(y)dy\right).$$

- **4.** 交换下列二次积分的次序(假定 f(x, y) 为连续函数).
 - $(1) \int_0^1 \mathrm{d}y \int_y^{\sqrt{y}} f(x, y) \mathrm{d}x;$
 - (2) $\int_0^1 dx \int_0^{x^2} f(x, y) dy + \int_1^2 dx \int_0^{2-x} f(x, y) dy$;
 - (3) $\int_{-2}^{1} dy \int_{y^2}^{2-y} f(x, y) dx$;
 - (4) $\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x, y) dy$.
- 5. 通过交换积分次序计算下列二次积分.
 - (1) $\int_0^1 dy \int_{v^{1/3}}^1 \sqrt{1-x^4} dx$;

$$(2) \int_0^{\pi} \mathrm{d}x \int_x^{\pi} \frac{\sin y}{y} \, \mathrm{d}y \; ;$$

(3)
$$\int_0^1 dy \int_{3y}^3 e^{x^2} dx$$
;

(4)
$$\int_0^2 dx \int_x^2 2y^2 \sin(xy) dy$$
;

(5)
$$\int_0^1 dy \int_{\arcsin y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos^2 x} dx$$
;

$$(6) \int_0^{\pi} \mathrm{d}x \int_x^{\sqrt{\pi x}} \frac{\sin y}{y} \, \mathrm{d}y \ .$$

6. 利用积分区域的对称性和被积函数关于x或y的奇偶性, 计算下列二重积分.

(1)
$$\iint_{D} |xy| \, dxdy$$
, $\sharp + D = \{(x,y) | x^2 + y^2 \le R^2 \}$;

(2)
$$\iint_{D} (x^{2} \tan x + y^{3} + 4) dxdy, \quad \sharp + D = \{(x, y) | x^{2} + y^{2} \le 4\};$$

(3)
$$\iint_{D} (1+x+x^{2}) \arcsin \frac{y}{R} dxdy, \quad \sharp + D = \{(x,y) | (x-R)^{2} + y^{2} \le R^{2} \};$$

(4)
$$\iint_{D} (|x|+|y|) dxdy$$
, $\sharp + D = \{(x,y) ||x|+|y| \le 1\}$.

7. 将二重积分 $\iint_D f(x,y)d\sigma$ 化为极坐标形式下的二次积分,其中积分区域 D 为:

(1)
$$x^2 + y^2 \le ax \quad (a > 0);$$

(2)
$$1 \le x^2 + y^2 \le 4$$
:

(3)
$$0 \le x \le 1$$
, $0 \le y \le 1 - x$;

(4)
$$x^2 + y^2 \le 2(x + y)$$
;

$$(5) 2x \le x^2 + y^2 \le 4.$$

8. 利用极坐标计算下列二重积分.

(1)
$$\iint_{D} \sqrt{R^2 - x^2 - y^2} \, dx dy , \quad \sharp + D = \{(x, y) | x^2 + y^2 \le Rx\};$$

(2)
$$\iint_{D} \arctan \frac{y}{x} dxdy, \quad \sharp + D = \{(x, y) | 1 \le x^{2} + y^{2} \le 4, \quad y \ge 0, y \le x\};$$

(3)
$$\iint_{D} (x^2 + y^2) dxdy, \quad \sharp + D = \{(x, y) | (x^2 + y^2)^2 \le a^2(x^2 - y^2) \};$$

(4)
$$\iint\limits_{D} \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \mathrm{d}x \mathrm{d}y \;, \quad \not\exists \vdash D = \{(x,y) \mid x^2+y^2 \le 1, x \ge 0, y \ge 0\} \;;$$

(5)
$$\iint_D xy dx dy$$
, 其中 D 是第一象限中由圆周 $x^2 + y^2 = 1$ 与 $x^2 + y^2 = 2x$ 所围成的闭区域;

(6)
$$\iint_D (x^2 + y^2) dxdy$$
, 其中 D 是第一象限中由圆周 $x^2 + y^2 = 2y$, $x^2 + y^2 = 4y$ 及直线

$$x = \sqrt{3}y$$
 , $y = \sqrt{3}x$ 所围成的闭区域.

9. 设r, θ 为极坐标,交换下列二次积分的次序:

$$(1) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} f(r,\theta) dr (a>0);$$

$$(2) \int_0^{\frac{\pi}{2}} d\theta \int_0^{a\sqrt{\sin 2\theta}} f(r,\theta) dr (a > 0);$$

$$(3) \int_0^a \mathrm{d}\theta \int_0^\theta f(r,\theta) \mathrm{d}r \, (0 < a < 2\pi).$$

10. 将下列二次积分化为极坐标形式的二次积分, 并计算积分值.

(1)
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy$$
;

(2)
$$\int_0^{\sqrt{2}/2} dy \int_y^{\sqrt{1-y^2}} \arctan \frac{y}{x} dx;$$

(3)
$$\int_0^2 dy \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x^2 y^2 dx$$
;

(4)
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy$$
;

(5)
$$\int_{\sqrt{2}/2}^{1} dx \int_{\sqrt{1-x^2}}^{x} xy dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{x} xy dy + \int_{\sqrt{2}}^{2} dx \int_{0}^{\sqrt{4-x^2}} xy dy ;$$

(6)
$$\int_0^1 dy \int_{\sqrt{2y-y^2}}^{1+\sqrt{1-y^2}} e^{\frac{xy}{x^2+y^2}} dx$$
.

11. 作适当的变量变换,计算下列二重积分.

(1)
$$\iint_{D} \sin(9x^2 + 4y^2) dxdy$$
,其中 D 是椭圆形闭区域 $9x^2 + 4y^2 \le 1$ 位于第一象限内的部分:

(2)
$$\iint_D x^2 y^2 dxdy$$
, 其中 D 是由双曲线 $xy = 1$, $xy = 2$ 与直线 $x = y$, $x = 4y$ 所围成的位于第一象限的闭区域:

(3)
$$\iint_{D} \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} \right) dxdy, 其中 D 是椭圆形闭区域 $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} \le 1;$$$

(4)
$$\iint_{D} e^{x+y} dxdy$$
,其中 D 是闭区域 $|x|+|y| \le 1$.

(5)
$$\iint_D (x+y)^3 \cos^2(x-y) dx dy$$
,其中 D 是以 $(\pi,0)$, $(3\pi,2\pi)$, $(2\pi,3\pi)$, $(0,\pi)$ 为顶点的平行四边形闭区域.

12. 利用两种给定的变换

(1)
$$u = x + y, v = x - y$$
; (2) $u = x^2 + y^2, v = xy$

计算二重积分
$$\iint_D (x^2 - y^2) e^{(x+y)^2} dxdy$$
,其中 $D = \left\{ (x,y) \middle| y \le x \le \sqrt{1-y^2}, 0 \le y \le \frac{\sqrt{2}}{2} \right\}$.