

Connect 4: Artificial Intelligence Agents

Minimax and Alpha-Beta Algorithms

Tobin Joseph, Almas Amjad, Keshav Haranath • 08.26.2022

Overview

Evaluation function

Mathematical Definition

Changes in testing and fine tunning

- Auxiliary functions
- Weights calibration

Evaluation function

Strategy behind its design

Performance Optimization

Depth calibration

Demonstrations

- minimaxAl
- alphaBetaAl

Evaluation Function - Definition

- The countInColumn
 - counts how many chips the specified player has in the specified column and gives a point for each chip. Column 3 is the middle column.
- The consecutive2 and consecutive3 functions
 - look for consecutive chips in all horizontal, vertical, and diagonal positions and give a point for each pair with a space before or after the pair adding another point if spaces on both sides
- The seven
 - looks for the 7 positions normal, reflected and inverted giving a point for each one found.
- GameOver
 - looks to see if the player has a winning move on the board giving a point if it finds one.

Evaluation Function - Definition

Basic Form

```
value =
```

- w₁ * countInColumn(3, player)
- + w₂ * consecutive2(player)
- + w₃ * consecutive3(player)
- + w₄ * seven(player)
- + w₅ * gameOver(player)

Zero Sum

```
value =
```

- w₁ * countInColumn(3, player)
- + w₂ * consecutive2(player)
- + w₃ * consecutive3(player)
- + w₄ * seven(player)
- + w₅ * gameOver(player)
- + w₆ * countInColumn(3, opponent)
- + w₇ * consecutive2(opponent)
- + w₈ * consecutive3(opponent)
- + w₉ * seven(opponent)
- + w₁₀ * gameOver(opponent)

Changes in Testing & Fine Tuning

Auxiliary Functions

- Functions to identify certain chip combinations example: seven
- Created new gameOver function to substitute the one from connect4 class to search everywhere instead of just from the last move

Weights Calibration

- We used different weights for some of the opponents auxiliary functions to force defensive moves
- We found better
 performance with the
 bottom of the three being a
 max function

Evaluation Function - Strategy

Strategy Research

- We researched different strategy recommendations
- We assessed how good of a position we are in the game based on the recommended strategies

Identify Combinations

- Playing the middle column is good
- Having 3 consecutive chips with a space to win is good
- Having 2 consecutive chips with spaces is good
- Having a 7 combination is almost a certain win

Performance Optimization

Depth Calibration

- A depth of 4 with minimax took too long to run
- A depth of 3 was faster but lost a lot in alphaBetaAi
- A depth of 2 performed better with lots of wins in alphaBetaAl

Reordering of nodes

- The states being evaluated are new each time due to the depth of 2
- The depth of 2 provided 73% win rate in 0.5 secs allowed for computing being competitive with Monte Carlo without reordering of nodes

Demonstrations

Minimax and Alpha-Beta Algorithms

alphabetaAl vs stupidAl

alphabetaAl wins both as player 1 and player 2

alphabetaAl vs randomAl

Alphabeta wins out of 5 games

Wins	Seed					
Player	0	1	2	3	4	
As 1	5	5	5	5	5	
As 2	5	5	5	5	5	

Alphabeta wins 100 % of the time

alphabetaAl vs montecarloAl

Alphabeta wins out of 10 games

upriabota trino out or 10 garneo						
Wins	Seed					
Player	0	1	2	3	4	
As 1	7	10	10	3	10	
As 2	9	10	1	1	10	

Wins	Seed					
Player	5	6	7	8	9	
As 1	0	10	10	10	10	
As 2	6	10	1	8	10	

Total Wins as player 1 = 80/100 = 80%Total Wins as player 2 = 66/100 = 66%

Total Wins = 146/200 = 73%