$11n_{30} (K11n_{30})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{19} - 3u^{18} + \dots + 4b + 8, -3u^{19} - 18u^{18} + \dots + 4a + 9, u^{20} + 5u^{19} + \dots - 6u - 1 \rangle$$

 $I_2^u = \langle b^4 + b^3 + 3b^2 + 2b + 1, a, u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{19} - 3u^{18} + \dots + 4b + 8, -3u^{19} - 18u^{18} + \dots + 4a + 9, u^{20} + 5u^{19} + \dots - 6u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{4}u^{19} + \frac{9}{2}u^{18} + \dots - \frac{71}{4}u - \frac{9}{4} \\ -\frac{1}{4}u^{19} + \frac{3}{4}u^{18} + \dots - \frac{25}{4}u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -\frac{1}{8}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{21}{8}u + \frac{1}{8} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{19} + \frac{15}{4}u^{18} + \dots - \frac{23}{2}u - \frac{1}{4} \\ -\frac{1}{4}u^{19} + \frac{3}{4}u^{18} + \dots - \frac{25}{4}u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{4}u^{19} + \frac{9}{2}u^{18} + \dots - \frac{71}{4}u - \frac{9}{4} \\ 2u^{19} + \frac{29}{4}u^{18} + \dots - \frac{23}{2}u - \frac{11}{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{8}u^{19} - \frac{1}{2}u^{18} + \dots - \frac{3}{8}u + \frac{17}{8} \\ \frac{1}{8}u^{19} + \frac{1}{2}u^{18} + \dots - \frac{13}{8}u - \frac{1}{8} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{19} - \frac{5}{4}u^{18} + \dots - \frac{7}{4}u + \frac{5}{2} \\ -\frac{5}{2}u^{19} - 10u^{18} + \dots + 13u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{19} - \frac{5}{4}u^{18} + \dots - \frac{7}{4}u + \frac{5}{2} \\ -\frac{5}{2}u^{19} - 10u^{18} + \dots + 13u + 3 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{7}{2}u^{19} - \frac{65}{4}u^{18} + \frac{33}{4}u^{17} + \frac{241}{2}u^{16} + \frac{57}{4}u^{15} - \frac{877}{2}u^{14} - u^{13} + \frac{4221}{4}u^{12} - 344u^{11} - \frac{6731}{4}u^{10} + \frac{2343}{2}u^{9} + \frac{6133}{4}u^{8} - \frac{3593}{2}u^{7} - 491u^{6} + 1313u^{5} - \frac{457}{2}u^{4} - \frac{783}{2}u^{3} + \frac{281}{4}u^{2} + 50u + \frac{21}{4}u^{12} - \frac{1}{4}u^{13} + \frac{1}{4}u^{14} - \frac{1}{4}u^{15} - \frac{1}{4}u^{15}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{20} - 5u^{19} + \dots + 6u - 1$
c_2	$u^{20} + 27u^{19} + \dots - 12u + 1$
c_3, c_7	$u^{20} + u^{19} + \dots - 40u - 16$
<i>C</i> 5	$u^{20} - 2u^{19} + \dots + 2u + 1$
c_6, c_{10}	$u^{20} - 2u^{19} + \dots + 2u + 1$
c_8, c_9, c_{11}	$u^{20} + 6u^{19} + \dots - 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{20} - 27y^{19} + \dots + 12y + 1$
c_2	$y^{20} - 63y^{19} + \dots + 564y + 1$
c_{3}, c_{7}	$y^{20} - 27y^{19} + \dots + 960y + 256$
<i>C</i> ₅	$y^{20} - 42y^{19} + \dots - 6y + 1$
c_6,c_{10}	$y^{20} + 6y^{19} + \dots - 6y + 1$
c_8, c_9, c_{11}	$y^{20} + 18y^{19} + \dots - 142y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.593945 + 0.749573I		
a = 0.901534 - 0.870244I	1.80617 + 0.15475I	-5.78761 + 0.24947I
b = -0.062242 + 1.190030I		
u = 0.593945 - 0.749573I		
a = 0.901534 + 0.870244I	1.80617 - 0.15475I	-5.78761 - 0.24947I
b = -0.062242 - 1.190030I		
u = 0.742600 + 0.805837I		
a = -0.823991 + 0.896190I	1.34574 - 5.46019I	-7.11600 + 5.63427I
b = -0.361535 - 1.366300I		
u = 0.742600 - 0.805837I		
a = -0.823991 - 0.896190I	1.34574 + 5.46019I	-7.11600 - 5.63427I
b = -0.361535 + 1.366300I		
u = 1.049030 + 0.433248I		
a = -0.533800 + 0.720846I	-3.47404 - 1.25358I	-14.5901 + 1.6218I
b = -0.786836 - 0.158628I		
u = 1.049030 - 0.433248I		
a = -0.533800 - 0.720846I	-3.47404 + 1.25358I	-14.5901 - 1.6218I
b = -0.786836 + 0.158628I		
u = 0.723331		
a = 0.811887	-1.09578	-8.64200
b = 0.0840139		
u = 1.41765 + 0.08558I		
a = -0.075401 + 0.848821I	-0.40356 + 2.62035I	-6.94831 - 3.53102I
b = -0.300271 + 1.184320I		
u = 1.41765 - 0.08558I		
a = -0.075401 - 0.848821I	-0.40356 - 2.62035I	-6.94831 + 3.53102I
b = -0.300271 - 1.184320I		
u = -0.494818 + 0.034941I		
a = 0.071730 - 1.233390I	6.00682 - 3.10793I	1.19914 + 2.44206I
b = -0.12366 - 1.50920I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.494818 - 0.034941I		
a = 0.071730 + 1.233390I	6.00682 + 3.10793I	1.19914 - 2.44206I
b = -0.12366 + 1.50920I		
u = -1.67897 + 0.22535I		
a = 1.055750 - 0.143916I	-6.07483 + 3.49044I	-7.50331 - 0.69756I
b = 0.293817 - 1.327320I		
u = -1.67897 - 0.22535I		
a = 1.055750 + 0.143916I	-6.07483 - 3.49044I	-7.50331 + 0.69756I
b = 0.293817 + 1.327320I		
u = -1.73062		
a = 1.07368	-10.3113	-7.59680
b = 0.672482		
u = -1.71507 + 0.27164I		
a = -1.083580 + 0.166912I	-7.04125 + 9.73657I	-8.64627 - 5.28115I
b = -0.46653 + 1.62043I		
u = -1.71507 - 0.27164I		
a = -1.083580 - 0.166912I	-7.04125 - 9.73657I	-8.64627 + 5.28115I
b = -0.46653 - 1.62043I		
u = -0.098700 + 0.173726I		
a = 1.16971 - 1.93438I	-0.333685 - 1.164940I	-4.31355 + 5.64475I
b = -0.407505 - 0.376718I		
u = -0.098700 - 0.173726I		
a = 1.16971 + 1.93438I	-0.333685 + 1.164940I	-4.31355 - 5.64475I
b = -0.407505 + 0.376718I		
u = -1.81202 + 0.09860I		
a = -1.124740 + 0.057142I	-14.0917 + 3.7151I	-12.67457 - 3.10159I
b = -1.163490 + 0.628217I		
u = -1.81202 - 0.09860I		
a = -1.124740 - 0.057142I	-14.0917 - 3.7151I	-12.67457 + 3.10159I
b = -1.163490 - 0.628217I		

II.
$$I_2^u = \langle b^4 + b^3 + 3b^2 + 2b + 1, \ a, \ u - 1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -b^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -b \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b^2 + 1 \\ -b^2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b^{2} + 1 \\ -b^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -b^{3} - 2b \\ b^{3} + b \end{pmatrix}$$

$$\begin{pmatrix} -b^{3} - 2b \\ -b^{3} - 2b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -b^3 - 2b \\ b^3 + b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2b^3 2b^2 7b 13$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_7	u^4
c_5,c_8,c_9	$u^4 - u^3 + 3u^2 - 2u + 1$
c_6	$u^4 - u^3 + u^2 + 1$
c_{10}	$u^4 + u^3 + u^2 + 1$
c_{11}	$u^4 + u^3 + 3u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5, c_8, c_9 c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_6, c_{10}	$y^4 + y^3 + 3y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-1.85594 + 1.41510I	-10.51825 - 2.96122I
b = -0.395123 + 0.506844I		
u = 1.00000		
a = 0	-1.85594 - 1.41510I	-10.51825 + 2.96122I
b = -0.395123 - 0.506844I		
u = 1.00000		
a = 0	5.14581 + 3.16396I	-8.98175 - 2.83489I
b = -0.10488 + 1.55249I		
u = 1.00000		
a = 0	5.14581 - 3.16396I	-8.98175 + 2.83489I
b = -0.10488 - 1.55249I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{20} - 5u^{19} + \dots + 6u - 1)$
c_2	$((u+1)^4)(u^{20}+27u^{19}+\cdots-12u+1)$
c_3, c_7	$u^4(u^{20} + u^{19} + \dots - 40u - 16)$
c_4	$((u+1)^4)(u^{20} - 5u^{19} + \dots + 6u - 1)$
c_5	$ (u^4 - u^3 + 3u^2 - 2u + 1)(u^{20} - 2u^{19} + \dots + 2u + 1) $
<i>c</i> ₆	$(u^4 - u^3 + u^2 + 1)(u^{20} - 2u^{19} + \dots + 2u + 1)$
c_8, c_9	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{20} + 6u^{19} + \dots - 6u + 1)$
c_{10}	$(u^4 + u^3 + u^2 + 1)(u^{20} - 2u^{19} + \dots + 2u + 1)$
c_{11}	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{20} + 6u^{19} + \dots - 6u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^{20} - 27y^{19} + \dots + 12y + 1)$
c_2	$((y-1)^4)(y^{20} - 63y^{19} + \dots + 564y + 1)$
c_3, c_7	$y^4(y^{20} - 27y^{19} + \dots + 960y + 256)$
<i>C</i> ₅	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{20} - 42y^{19} + \dots - 6y + 1)$
c_6, c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{20} + 6y^{19} + \dots - 6y + 1)$
c_8, c_9, c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{20} + 18y^{19} + \dots - 142y + 1)$