11.	. Hallar frontera y puntos de acumulación	de cada uno de los subconjuntos de $\mathbb R$ del
	Ejercicio 5.	

5.	Hallar	interior y	clausura	de cada	uno de	los	siguientes	$\operatorname{subconjuntos}$	$de \mathbb{R}$.	Deter-
	minar cuáles son abiertos o cerrados.									

(a)
$$[0,1]$$

(e)
$$\mathbb{Z}$$

(g)
$$\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$$

(b)
$$(0,1)$$

(d)
$$\mathbb{Q} \cap [0, 1]$$

(d)
$$\mathbb{Q} \cap [0,1]$$
 (f) $[0,1) \cup \{2\}$

(h)
$$\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup \{0\}$$

Interior

[0,1]

[0, 1]

o)
$$\phi$$
 (quer numerable)

R

[0,1] c R

 \mathbb{Z}

[0,1] U {2}

 $\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \left\{0\right\}$

{ ine N} U [0]

- **12.** Sea (E, d) un espacio métrico y sea $A \subseteq E$.
 - (a) Probar que $\partial A = \overline{A} \setminus A^{\circ}$, y concluir que ∂A es cerrado.
 - (b) Probar que $\partial A = \overline{A} \cap \overline{E \setminus A}$, y concluir que $\partial A = \partial (E \setminus A)$.

Se ac DA

$$\Rightarrow$$
 $\mathbb{B}(\alpha, r) \cap A \neq \phi$

$$\not$$

$$\Rightarrow B(a,r) \cap A \neq \phi \quad g \quad B(a,r) \cap A^c \neq \phi$$

$$\Rightarrow \exists \varepsilon \geq 0 / \exists (a, \varepsilon) \subseteq A$$

$$\Rightarrow \mathcal{B}(\alpha, \varepsilon) \cap A^{c} = \phi$$

$$\Rightarrow$$
 $\mathbb{B}(a,r) \cap A \neq \phi$ $\mathcal{B}(a,r) \notin A$ $\forall r > 0$

$$\Rightarrow \mathcal{B}(\alpha,r) \cap A^c \neq \phi$$

Finalmente

$$\partial A = \overline{A} \setminus A^{\circ}$$

如

$$\partial A$$
 er corodo $(=)$ $\partial A = \overline{\partial A}$

Como
$$> A = \overline{A} \setminus A^{\circ}$$

$$\overline{AA} = \overline{AA^{\circ}}$$

(b) Probar que $\partial A = \overline{A} \cap \overline{E \setminus A}$, y concluir que $\partial A = \partial (E \setminus A)$.

$$\Rightarrow \overline{A} \cap (E \setminus A^{\circ}) = \overline{A} \setminus A^{\circ}$$

$$\overline{A} \setminus A^{\circ} = \partial A$$

$$\partial \mathcal{B} = \partial \left(\mathcal{E} \setminus \mathcal{B} \right)$$

$$E \setminus A^{\circ} = \overline{A} \setminus A^{\circ}$$
 $E \setminus E \setminus B$

The portion of the second seco

M

S

13. Sea (E,d) un espacio métrico. Dados $A\subseteq E$ no vacío y $x\in E,$ se define la distancia de x a A como

$$d_A(x) = \inf\{d(x, a) : a \in A\}.$$

Probar que para todos $x, y \in E$ y r > 0:

(a)
$$|d_A(x) - d_A(y)| \le d(x, y)$$
.

(b)
$$x \in A \implies d_A(x) = 0$$
.

(c)
$$d_A(x) = 0 \iff x \in \overline{A}$$
.

(d)
$$B_A(r) = \{x \in E : d_A(x) < r\}$$
 es abierto.

(e)
$$\overline{B}_A(r) = \{x \in E : d_A(x) \le r\}$$
 es cerrado.

a) Qué para si
$$A = \{a\}$$
?

Designal dad triangular!
$$\Rightarrow d(x,y) \leq d(x,a) + d(a,y)$$

Pero el ceso més des fevorable es con dien (A) =0

pues contre mayor dien (A), menor puede ser dA(x)-dA(y)

inhimo entre todor los a e A

$$d_A(x) \leqslant d(x,a) \leqslant d(x,b) + d(y,a)$$

pere code as A

pere

$$d_A(x) \leq d(x,5) + d(5,a)$$

$$d_A(x) - d(x, y) \leq d(y, a)$$
 in him entre to do s los a A

$$d_A(x) - d(x, y) \leq d_A(y) \leq d(y, a)$$

$$d_A(x) - d_A(y) \leq d(x,y)$$

S: poto de

$$d_A(y) \leq d(y, a) \leq d(x, y) + d(x, a)$$
 $d_A(y) \leq d(x, y) + d(x, a)$
 $d_A(y) - d(x, y) \leq d_A(x) \leq d(x, a)$
 $d_A(y) - d_A(x) \leq d(x, y)$
 $d_A(y) - d_A(x) \leq d(x, y)$

$$|d_A(x) - d_A(y)| \leq d(x, y)$$

b)
$$5i \times A \Rightarrow dA(x) = \inf \left\{ d(x, a) : a \in A \right\}$$

 $=0 \text{ pver } x \in A$
 $y d(x, a) > 0$
 $\Rightarrow 5i \quad a = x$
 $d(x, x) = 0$

$$\therefore d_A(x) = 0$$

(c)
$$d_A(x) = 0 \iff x \in \overline{A}$$
.

$$\Rightarrow dA(x) = 0$$

$$\Rightarrow \forall r>0, \mathcal{B}(x_1r) \cap A \neq \emptyset$$

$$\Rightarrow \exists a \in A / a \in B(x,r) \quad con x \neq a$$

$$\Rightarrow d(a,x) < \Gamma \qquad \forall r>0$$

1. Probar que si $x < y + \varepsilon$ para todo $\varepsilon > 0$, entonces $x \le y$. Deducir que si $|x - y| < \varepsilon$ para todo $\varepsilon > 0$, entonces x = y.

$$\Rightarrow d(a,x) = 0$$

$$\therefore \quad \text{si} \quad \text{xe} \quad \overline{A} \quad \Rightarrow \quad d_A(x) = 0$$

$$=) \qquad 5: \quad d_A(x) = 0$$

$$\Rightarrow$$
 $0 = inf[d(a,x): a \in A]$

Si
$$x \notin \overline{A}$$

$$\Rightarrow \exists r_{>0}, \exists (x_1 r) \subseteq (E \setminus A)^{\circ}$$

Final mente

$$d_A(x) = 0 \iff x \in \overline{A}$$

(d) $B_A(r) = \{x \in E : d_A(x) < r\}$ es abierto.

$$d_A(x) = \inf \{ d(a_1 x) : a \in A \}$$

$$\Rightarrow d_A(x) < \Gamma$$

$$\Rightarrow \exists \epsilon > 0 / \exists (x, \epsilon) \subseteq \exists A(r)$$

Puer si
$$\varepsilon = \Gamma - d_A(x)$$

$$\frac{2}{2}$$

todos los be $B(x, \varepsilon)$ distan

2 la suma
$$\frac{\Gamma - d_A(x)}{2}$$
 de la Prontera de BA (r)

(e) $\overline{B}_A(r) = \{x \in E : d_A(x) \le r\}$ es cerrado.

Tono complemento

$$\overline{\mathcal{B}}_{A}^{C}(r) = \left\{ x \in E : d_{A}(x) > r \right\}$$

Uso argumento parecido al de anter

$$\Rightarrow$$
 50 $\varepsilon = \frac{d_{\bar{R}_A}(r)}{2}$

$$\Rightarrow \mathbb{B}(x, \varepsilon) \subseteq \overline{\mathbb{B}}_{A}^{c}(r)$$

- : Ba(r) er abierto,
- :. BA(F) es corredo.

14. Sea (E,d) un espacio métrico. Consideremos el conjunto $\mathcal{X} = \{A \subseteq E : A \neq \emptyset\}$. \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow Definimos la función $\hat{d} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ como

$$\widehat{d}(A,B) = \inf\{d(a,b) : a \in A , b \in B\}.$$

Partes de R...

Determinar si las siguientes afirmaciones son verdaderas o falsas:

(a)
$$\widehat{d}(A,B) = \widehat{d}(\overline{A},B)$$
.

Pinto &
$$(c)$$
 $\widehat{d}(A,B)=0\Longleftrightarrow \overline{A}\cap \overline{B}
eq\emptyset$

(d)
$$\widehat{d}(A,B) \le \widehat{d}(A,C) + \widehat{d}(C,B)$$

Concluir que \hat{d} no es una distancia.

infer coro

AnB =
$$\phi$$

in Falso

$$\mathbb{S}(\mathbb{R})$$

$$\{A \subseteq \mathbb{R}\}$$

- **15.** Sea (E,d) un espacio métrico y sean $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ sucesiones en E.
 - (a) Si $\lim_{n\to\infty} x_n = x$ y $\lim_{n\to\infty} y_n = y$, probar que $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$.
 - (b) Si $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ son dos sucesiones de Cauchy en E, probar que la sucesión de números reales $(d(x_n,y_n))_{n\in\mathbb{N}}$ es convergente.

16. Probar que (\mathbb{R}^n, d_1) , (\mathbb{R}^n, d_2) y $(\mathbb{R}^n, d_{\infty})$ son completos.

17. Sea (E,d) un espacio métrico completo y $A\subseteq E$ un subconjunto de E. Probar que si A es cerrado entonces el espacio métrico (A,d) es completo.

Si A et corredo => To de suc. de elementer de A que converge, con voge en A

Cono tode suc, convergente et de Cardry

=> Toder les sucerion es de Ceuchy en A son convergenter

in (A, d) er completo.

18.	Teorema	de la	intersección	(Cantor).	Sea	(E,d)	un esp	oacio	$m\'{e}trico$	comp	leto.	Sea
	$(A_n)_{n\in\mathbb{N}}$	una s	ucesión de su	bconjuntos	s cerr	ados,	acotado	os y r	io vacíos	de E	tales	que

- $A_{n+1} \subseteq A_n$ para todo $n \ge 1$.
- $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0$.

Probar que existe un único elemento $x \in \bigcap_{n \in \mathbb{N}} A_n$.

Ideas:

Carro do puer A casodo es carro do

· Si tomo an decede An

tengo
$$(a_n) \longrightarrow x \in \bigcap_{n \in \mathbb{N}} A_n$$

Puer como le nem er curisde, Lode sucurión converge en nem

· Por ej 10. a)

10. Sean (E, d) un espacio métrico y $A, B \subseteq E$ subconjuntos acotados de E.

- (a) Probar que si $A \subseteq B$ entonces $diam(A) \le diam(B)$.
- (b) Probar que $diam(A) = diam(\overline{A})$.

dian Anti & dian An Vnxi

· Por Flo

dian An == 0

· Como E er completo

=> todo suc. de Cauchy converge en E

· Pued a segurar que

apartir de un no eN,

```
todos los elementos de (an) está
   a distancia & diam Ano Hozno:
For mal mente
   para cada no e N,
    d (an, am) < diam An.
                                             Yn, m > no
 y como dien Anti E diam An
y además diam An -> 0
Pres regurer que:
 \forall \varepsilon > 0, \exists n \circ / d(a_n, a_m) < \varepsilon \forall n, m > n \circ
 puer existe algun Ano / dian Ano < E
.. (an) nen er une rucerion de Cauchy
     que converge en E (puer E es completo).
io \bigcap An \neq \emptyset (prer (an) converge en \bigcap An)
```

y cono lin dien An =0

in
$$\#\left(\bigcap_{n\in\mathbb{N}}A_n\right)=1$$
 (prer er no vacis => debe ser 1)

Reviser o

