

Relative Measure

- □ Relative measure: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm
- □ Silhouette coefficient as an internal measure: Check cluster cohesion and separation
 - For each point \mathbf{x}_i , its silhouette coefficient s_i is: $s_i = \frac{\mu_{out}^{\min}(\mathbf{x}_i) \mu_{in}(\mathbf{x}_i)}{\max\{\mu_{out}^{\min}(\mathbf{x}_i), \mu_{in}(\mathbf{x}_i)\}}$ where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster $\mu_{out}^{\min}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its closest cluster
 - Silhouette coefficient (SC) is the mean values of s_i across all the points: $SC = \frac{1}{n} \sum_{i=1}^{n} s_i$
 - □ *SC* close to +1 implies good clustering
 - □ Points are close to their own clusters but far from other clusters
- □ Silhouette coefficient as a relative measure: Estimate the # of clusters in the data

$$SC_i = \frac{1}{n_i} \sum_{x_i \in C_i} s_j$$
 Pick the k value that yields the best clustering, i.e., yielding high values for SC and SC_i ($1 \le i \le k$)