Basic Elements (Reactance and Freq Response)

- The Derivative
 - Intro and understanding (qualitative)
 - Effects of frequency
 - □ Calculus (the details)
- Response of R,L,C to Sinusoids (as forcing functions)
 - Resistor
 - Inductor
 - Inductor ICPs
 - Capacitor
 - □ Capacitor ICPs
- R,L,C Over Frequency (Intro)
 - □ Ideal vs "practical" models

М

Understanding the Derivative

FIG. 14.1 Defining those points in a sinusoidal waveform that have maximum and minimum derivatives.

Note max dx/dt at wt=0,pi and 2pi And dx/dt = 0 at wt = pi/2 and 3*pi/2

Ŋ

Understanding the Derivative

FIG. 14.2 Derivative of the sine wave of Fig. 14.1.

Notice that x(t) = cos(wt) and that d/dt (sinx) = cos(x)

Ŋ,

Effect of Frequency on the Peak Value

FIG. 14.3 Effect of frequency on the peak value of the derivative.

Steeper slope = higher peak in the derivative or Higher frequency = higher peak in the derivative

Effect of Frequency on the Peak Value

CALCULUS Dx SIN (0) = COS (0) Dx 0 CONSIDER: Va) = Em SIN (WI + 0) dva) = EnCos(wx+0).d (wx+0) V'(x) = Em w Cos(wx+0) Dx Cos(U) = - SIN(U) Dx U CONSIDER: V(t) = Em Cos (WI+0) $\frac{dV(a)}{dt} = Em(-Sin((vz+\theta))) \cdot \frac{d}{dt}((vz+\theta))$ v(z) = -Emw Sin(wz+0)

Response of the Inductor to a Sinusoidal Forcing Function —

RECAUL:
$$V_{L}(x) = L \frac{di}{dx}$$
 $V_{L}(x) = L \frac{d}{dx} \left[Im Sin(\omega x) \right]$
 $V_{L}(x) = Im Lw Cos(w x)$
 $V_{L}(x) = Im Lw Cos(w x)$
 $V_{L}(x) = Im Lw Cos(w x)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = w L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x) = v L Im Sin(w x + 90°)$
 $V_{L}(x)$

Response of the Inductor to a Sinusoidal Forcing Function

FIG. 14.6
Investigating the sinusoidal response of an inductive element.

FIG. 14.7 For a pure inductor, the voltage across the coil leads the current through the coil by 90°.

ICPs – Inductive Reactance

P1 – Find the reactance of a 2H inductor at

- a) F=60Hz
- b) F=2kHz

P2 – Determine the inductance of a coil with a reactance of

- a) 20 Ohms @ 2Hz
- b) 5280 Ohms @ 1000Hz

P3 – Determine the frequency (in Hz) for a 10H inductor with

- a) XL = 50 Ohms
- b) XL = 3770 Ohms

Response of the Capacitor to a Sinusoidal Forcing Function

CAPACITOR
$\int i_c(\sigma)$
(v) = (x) + (x) = (x) = V m S m (u x)
FIND ic(T) &
$ic(G) = C dV_{c(G)}$
$= C \frac{d}{dx} \left[V_{m} S_{m}(\omega x) \right]$
ic (I) = wCVm Cos(WI)
ic (x) = WC Vm SIN(WX+90°)
COMPARE: New = Vm SIN(WX)
ic (a) = WCVm SIN(Wt+90°) Im
I'm = WCVm, PEAK VALUE OF ICE IS DIRECTLY
RELATED to W+C
SIN (WX+90°), THE PHASE ANGLE OF 1c(T) LEADS THAT OF VCG) BY 90°
E -> VM = XC = 1 OHMS, FOR A CAPACITOR (CAPACITOR REACTINE REACTINE)
(CAPACITIVE PERCENCE)

Response of the Capacitor to a Sinusoidal Forcing Function

FIG. 14.8 Investigating the sinusoidal response of a capacitive element.

FIG. 14.9 The current of a purely capacitive element leads the voltage across the element by 90° .

* ELI the ICE Man *

ICPs – Capacitive Reactance

P1 – Find the reactance of a 5uF capacitor for

- a) F=DC
- b) F=60Hz
- c) F=24kHz

P2 – Find the frequency at which a 50uF capacitor has

- a) Xc = 342 Ohms
- b) Xc = 2000 Ohms

P3 – Given Vc(t) = 30*sin(200t) Volts for a 1uF capacitor, find ic(t)

Using an Oscilloscope to Determine Network Characteristics

The oscilloscope is a 2-channel volt-meter

By placing a "sense" resistor in series with the input current we can measure it indirectly

SUM	MARY			
	R		<u> </u>	
REACTANCE	×	WL	/wc	,
REACTANCE				
$\begin{array}{c} AT & OC \\ (W = O) \end{array}$	X	(SHORT)	≪ (OPEN)	, ~
NCREASE FREQ	NO CHA,	NGE INCREAS	wce reac	teasing Tance
REACTANCE AT				
W→ 00 (HIGH FRED)		Ø (OPEN)		
EXAMPLE		THE REAC	99.	
A second		VOLTAGE		
$X_{\ell} = \ell$	w L			W = 400 1/s
= (400 r/s X	(aH)		f = 63.66H
(X <=	400×10-6.	n € Loh		
X _c = -	tvc =	(400 y/s)(JuF)	<u> </u>	
311	1.7	2,500~		

N

Frequency Response of The Basic Elements (ideal)

FIG. 14.16 *R* versus *f* for the range of interest.

FIG. 14.17 X_L versus frequency.

Frequency Response of The Basic Elements (ideal)

FIG. 14.19 X_C *versus frequency.*

Frequency Response of The Basic Elements (more realistic)

FIG. 14.21 Typical resistance-versus-frequency curves for carbon composition resistors.

Frequency Response of The Basic Elements (more realistic)

FIG. 14.22 Practical equivalent for an inductor.

FIG. 14.23 Z_L versus frequency for the practical inductor equivalent of Fig. 14.22.

Frequency Response of The Basic Elements (more realistic)

FIG. 14.24 Practical equivalent for a capacitor; (a) network; (b) response.