Asymptotics

(1)
$$f \in \Theta(\log_2 n) \iff f \in \Theta(\log_3 n)$$

 $(=) f \in \Theta(\log_k n), k = const.$

$$2 \leq 3 \qquad \text{ff} \Theta(n^2) \implies \text{ff} O(n^3)$$

$$\text{ff} \Theta(n^3)$$

$$a \le b$$
 $f \in O(n^a) = 0$ $f \in O(n^b)$
 $f \notin O(n^b)$

(3) ordering of common asymptotics
$$\Theta(1) \subseteq \Theta(\log n) \subseteq \Theta(n) \subseteq \Theta(\log n)$$
 "constant" $O(n) \subseteq O(n^2) \subseteq O(n^2)$

quadratic $\neq \Theta(2^n)$ exponential

(4) Fun Fact $\Theta(n^{\omega})$ is "matrix mult. time" $\Theta(n^2) \leq \Theta(n^{\omega}) \leq \Theta(n^3)$

[currently w=2.3737...

B) The Ackerman Fen

A: R -> R is the ackerman fen...

intuitively, this is really fast growing.

A: R -> R

x -> A'(*) is the inverse Ackerman fen

grows very slow

in practice, will be constant.

Problem: Given a graph, want to know
1 how many connected components?
2) are vertiles x + y connected?
Examples:
· airline flights · nodes= cities · flight poths bothn cities=edges · can I get from city A to city B?
· galaxies · nocles: Stars ufin one galaxy · edges: distance bothen stars
stars do I see?
Netflix: nodes = Shows edges = connected if person A wateres snow Sut of graphs G = \(\frac{2}{3} \) A = person
o nodes = people, rep as a vector (show 1 count, show 2 count,, edges = weighted dist b/c 2 vectors.
· Web 2s 2 graph. Q: Is there I spider or 2?

union- End data structure
supports 3 operations
1) make Node -> can be done as
many times as needed, but only before other operations start
②UNION (a,b) -> joins 2's component of b's component, if not 2/17 ady the same component.
(3) FIND (a) -> finds the label conresponding
to a's component unique
example: 2 en 3 en 2 en 4 en 5
① create one component per node
1 2 3 4 5
5 components
2) go through all the edges.

FIRST ATTEMPT: Quick Find you give me index of vert, I quickly give you the component label DS = an array (hash table can work two, whose rase whose rase analysis)

note: Let's assume vert are ids 1.... n =) FIND is $\Theta(1)$.

=) Union is $\Theta(n)$.

So, after M operations, could cost O (Mn)