EXPERIÊNCIA SOBRE TOMOGRAFIA COMPUTADORIZADA

Vítor H. Nascimento Carlos A. Prete Jr.

27 de setembro de 2020

1. Neste exercício, vamos comparar trabalhar com a reconstrução de uma imagem sintética (o fantasma de Shepp-Logan) de tamanho 100×100 , que está no moodle, no arquivo phantom.mat, e também pode ser encontrado no Matlab e no Octave, com o comando phantom(100, 100)), no Python (from skimage.data import shepp_logan_phantom, pht = shepp_logan_phantom() — o comando do Python só permite obter a imagem com dimensões 400×400) e em Julia (using Images, phantom = shepp_logan(100,100)). Você também pode ler o arquivo de dados, usando o comando load phatom no Matlab, ou em Julia, os comandos using MAT; phtm = matread("phantom.mat"); phantom = phtm["I"].

Esta imagem representa os coeficientes de atenuação de um corte transversal de um fantasma que modela a cabeça humana. Cada pixel da imagem é um coeficiente de atenuação cujo valor varia entre 0 e 57.27, o coeficiente de atenuação do osso humano em m^{-1} . Vamos supor que a imagem tem tamanho $20cm \times 20cm$, de forma que a distância entre dois pixels adjacentes seja de 2mm. Se você preferir usar as funções prontas para criar o fantasma, é necessário normalizar os valores dos pixels para que o máximo seja igual a 52, 27, para obter os coeficientes de atenuação.

(a) Vamos simular uma tomografia de raios paralelos com o fantasma usando uma máquina que meça 720 projeções de raios-X em ângulos linearmente espaçados, isto é, que meça uma projeção a cada 0.5° . Considerando que as dimensões da imagem sejam de $20 \, \mathrm{cm} \times 20 \, \mathrm{cm}$, use a função radon do Matlab para calcular a atenuação total para cada projeção e depois plote o sinograma. Em Julia, é necessário usar a função radom do Python, com os comandos using PyCall; simg = pyimport("skimage.transform"); sinograma = simg.radon(imagem, θ).

Não se esqueça de colocar os eixos e a escala de cor. No Matlab, imagesc(theta,u,R) mostra a matriz R com eixos theta e u. Os comandos xlabel e ylabel adicionam legenda aos eixos. O comando colorbar adiciona a escala de cores.

Em Julia, o comando using PyPlot; imshow(imagem/maximum(imagem)) desenha a figura (a divisão por maximum(imagem) é necessária caso os valores dos pixels não estejam no intervalo [0, 1]). A escala de cores também é obtida em Julia com o comando colorbar().

Importante: A função Radon considera que o espaçamento entre dois pixels é unitário. Como a integral da Transformada Radon foi trocada por uma soma, precisamos multiplicar o resultado pelo 'dl' equivalente, no nosso caso igual a 2 mm.

(b) Na prática, o número de fótons em cada projeção é limitado, gerando um ruído de medida do tipo Poisson. Se N é o número de fótons recebidos por um detector e N_0 é o número de fótons emitido pela fonte na direção do detector, então o valor esperado do número de fótons recebidos segue a lei de Beer-Lambert:

$$\mathbb{E}\{N\} = N_0 e^{-\int \mu(x,y) d\ell} = N_0 e^{-R(u,\theta)},$$

onde μ é a imagem e R sua transformada Radon.

Suponha que sejam emitidos $N_0 = 100$ fótons na direção de cada detector em cada projeção. Simule o número de fótons recebidos por cada detector em cada projeção e então plote o sinograma medido. Compare com o sinograma sem ruído.

Dica: Basta gerar um ruído de Poisson N com média $N_0e^{-R(u,\theta)}$ e depois calcular o sinograma ruidoso como $R_{noisy}(u,\theta) = -\ln{(N/N_0)}$. Em Matlab, use a função poissrnd para gerar amostras de uma variável de Poisson, em Julia, os comandos using Distributions; rand(Poisson(λ)) geram uma amostra de uma variável de Poisson com média λ .

(c) Reconstrua as imagens com ruído e sem ruído usando a transformada Radon inversa sem a aplicação do filtro. Para isso, em Matlab use a função iradon com o par de argumentos 'Filter', 'None'. Depois, reconstrua usando o filtro de Ram-Lak. Em Julia e Python, o comando iradon assume o filtro de Ram-Lak como default. Para não usar filtro algum, use iradon(sinograma, θ , filter_name = nothing) em Julia (filter_name = None em Python).

Compare as quatro imagens que você obteve.

2. O Filtered Back Projection é uma das dezenas de técnicas de reconstrução de imagens tomográficas. Uma outra classe de algoritmos de reconstrução consiste em modelar o problema de reconstrução tomográfica como

$$y = Ax$$

onde \mathbf{y} é a matriz de projeções vetorizada (uma coluna em cima da outra), \mathbf{x} é a o mapa de atenuações vetorizado e \mathbf{A} é uma matriz característica do aparelho de tomografia que pode ser modelada medindo o número de fótons recebidos por cada sensor quando não há nenhum objeto atenuante. Uma das vantagens de algoritmos deste tipo é que não é necessário considerar que os raios são paralelos como no caso da FBP, pois a geometria dos raios está descrita na matriz A.

O arquivo 'walnut.mat' contém as projeções da tomografia de uma noz, retiradas de https://www.fips.fi/dataset.php. Neste caso, os feixes de raios-X não são exatamente paralelos, mas a matriz **A** é fornecida.

Você aprendeu em Cálculo Numérico a resolver o sistema sobredeterminado $\mathbf{y} = \mathbf{A}\mathbf{x}$. Uma das maneiras é por mínimos quadrados, isto é, encontrar \mathbf{x} que minimiza a funçãocusto

$$J(\mathbf{x}) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$

No entanto, sabemos que a imagem vetorizada \mathbf{x} não pode ter coeficientes muito grandes. Por isso, é comum adicionar um regularizador à função-custo que limita a norma de \mathbf{x} . Esta técnica é chamada de Regularização de Tikhonov, e consiste em encontrar \mathbf{x} que minimiza a função-custo

$$J(\mathbf{x}) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{2}^{2},$$

em que $\lambda \geq 0$ é uma constante que penaliza a norma de \mathbf{x} . É possível mostrar que o valor de \mathbf{x} que minimiza $J(\mathbf{x})$ é dado por

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y}$$

Aplique a transformada Radon inversa com o filtro de Ram-Lak às projeções da noz e compare com a solução obtida pela regularização de Tikhonov com os valores $\lambda=0$, $\lambda=0.1,~\lambda=10,~\lambda=10^2,~\lambda=10^3,~\lambda=10^4,~\lambda=10^5$ e $\lambda=10^6$.

Na sua opinião, qual é o melhor valor de λ neste caso?

Dica: O arquivo walnut.mat contém duas variáveis: **A** e as projeções **y**. Cada projeção foi medida em 120 ângulos linearmente espaçados entre 0 e 357° , e com 82 sensores para cada projeção. No Matlab pode usar y(:) para vetorizar a matriz y (em Julia, y[:]), e depois usar a função vec2mat para transformar a imagem reconstruída vetorizada em uma matriz (em Julia, use a função reshape(x, Nx, Nx).