Assignment -3

Abalone Age Prediction

Assignment Date	10 October 2022
Student Name	Ishwarya
Student Roll Number	731719104008
Maximum Marks	2 Marks

1.Importing necessary packages & Downloading the packages

import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt import seaborn as sns
from sklearn.preprocessing import StandardScaler from
sklearn.preprocessing import LabelEncoder import numpy
as np from collections import Counter from sklearn.pipeline
import make_pipeline from sklearn.linear_model import
Ridge, Lasso from sklearn.ensemble import
RandomForestRegressor from sklearn.pipeline import
make_pipeline from sklearn.linear_model import
make_pipeline from sklearn.linear_model import
make_pipeline from sklearn.model_selection import GridSearchCV
from sklearn.exceptions import NotFittedError from
sklearn.metrics import r2 score,mean absolute error

2. Download the dataset:

df= pd.read_csv("abalone.csv")
df.head()

Output:

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings

0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
	¥7.*								

3. Visualizations (i) Univariate Analysis

Input: sns.displot(df["Diameter"]) Output:
<seaborn.axisgrid.FacetGrid at 0x1a7c3cc60a0>

Input:

sns.set(rc={'figure.figsize':(7,7)}) depth =
df['Rings'].value_counts(normalize=False).reset_index()
sns.barplot(data=depth,x='index',y='Rings') Output:
<AxesSubplot:xlabel='index', ylabel='Rings'>

Input: df['Sex'].value_counts().plot(kind='pie',autopct='%.0f')

Output:

<AxesSubplot:ylabel='Sex'>

(ii) BiVariate Analysis

```
sns.set(rc={'figure.figsize':(17,10)})
sns.countplot(df['Rings'] ,hue = df['Sex'] ,color ='y') Output:
<AxesSubplot:xlabel='Rings', ylabel='count'>
```


Input:

sns.set(rc={'figure.figsize':(10,7)})
plt.scatter(df.Length, df.Height)
plt.title('Length vs Height')
plt.xlabel('Height')
plt.ylabel('Length') **Output:**Text(0, 0.5, 'Length')

(iii) MultiVariate Analysis

Input:

plt.figure(figsize=(12,10))
sns.pairplot(df) **Output:**

<seaborn.axisgrid.PairGrid at 0x1a8005d43a0>

<Figure size 864x720 with 0 Axes>

plt.figure(figsize = (8,6)) corr = df.corr() sns.heatmap(corr,

annot = **True**) **Output:**

<AxesSubplot:>

4.Descriptive Statistics

Input: df.info()

Output:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

Column Non-Null Count Dtype

--- ----------

0 Sex 4177 non-null object 4177 non-null float64 1 Length 2 Diameter 4177 non-null float64

- 3 Height 4177 non-null float64 4 Whole weight 4177 non-null float64
- 5 Shucked weight 4177 non-null float64
- 6 Viscera weight 4177 non-null float64
- 7 Shell weight 4177 non-null float64 8 Rings int64(1), object(1) memory usage: 293.8+ KB

4177 non-null int64 dtypes: float64(7),

df.describe() Output:

	Length	Diamete r	Height	Whole weight	Shucke d weight	Viscera weight	Shell weight	Rings
cou	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000
me an	0.52399	0.40788	0.13951	0.82874	0.35936	0.18059	0.23883	9.93368
std	0.12009	0.09924	0.04182	0.49038	0.22196	0.10961	0.13920	3.22416
mi n	0.07500	0.05500	0.00000	0.00200	0.00100	0.00050	0.00150	1.00000
25 %	0.45000	0.35000	0.11500	0.44150	0.18600	0.09350	0.13000	8.00000
50 %	0.54500	0.42500	0.14000	0.79950 0	0.33600	0.17100	0.23400	9.00000

75 %	0.61500	0.48000	0.16500 0	1.15300 0	0.50200	0.25300	0.32900	11.0000 00
ma	0.81500	0.65000	1.13000	2.82550	1.48800	0.76000	1.00500	29.0000
	T 43		** • • •	****			a	
	Length	Diamete r	Height	Whole weight	Shucke d weight	Viscera weight	Shell weight	Rings
	Length		Height					Rings
x	Length 0		Height 0					Rings 00

5.Handle Missing Values

Input:

df.isna().sum()

Output:

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0 Rings
0 dtype: int64 6.

Outlier Detection

Input: outlier_correction_df =
df.drop(columns=['Sex'],axis=1) outlier_correction_df.head()

Output:

	ււբաւ.							
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
def detection(df,features):
outlier_indices=[]
  for c in features:
     Q1 = np.percentile(df[c],25)
     Q3 = np.percentile(df[c],75)
     IQR = Q3 - Q1
                          outlier_step
                  lower_range = Q1 -
= IQR * 1.5
(outlier_step)
                    upper_range = Q3
+ (outlier_step)
     outlier_list_col=df[ (df[c] < lower_range) | (df[c] > upper_range) ].index
     outlier_indices.extend(outlier_list_col)
return outlier_indices
     def multiple_outlier_indices(outlier_indices):
                                                          outlier_indices=Counter(outlier_indices)
multiple_outliers = list(i for i, v in outlier_indices.items() if v > 2)
     return multiple_outliers
Solution: outlier correction df.columns
Output:
   Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight'
    'Viscera weight', 'Shell weight', 'Rings'],
dtype='object')
Solution:
    outliers=detection(df,['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
'Viscera weight', 'Shell weight']) Input: Counter(outliers) Output:
Counter({148: 2,
      149: 2.
      236: 3,
```

```
237: 3,
```

238: 3,

239: 3,

305: 2,

306: 3,

321: 2,

465: 2,

523: 2,

525: 2, 526: 2,

611: 2,

694: 3,

696: 2, 718:

3,

719: 3,

720: 3,

1053: 2,

1054: 2,

1055: 2,

1056: 1,

1210: 1,

1429: 3,

1824: 2,

1986: 2,

1987: 3,

2114: 3,

2115: 2,

2169: 3,

2171: 3,

2343: 2,

2371: 2,

2380: 2, 2381:

3,

2458: 2,

2711: 3,

3141: 2,

3143: 2,

3190: 3,

3318: 2,

3380: 2,

3472: 2,

3600: 2,

3837: 3,

3899: 3,

```
3902: 3,
     3994: 2,
     43: 1,
     44: 1,
       520: 1,
    892: 1,
     898: 1,
     1988: 1,
     2172: 2,
     2545: 1,
      2712: 1,
     3473: 1,
     3521: 1,
     3716: 1,
     1174: 1,
     1257: 1,
     1417: 2,
     1428: 3,
     1763: 4,
     2051: 1,
2179: 1,
     3996: 1,
     165: 3,
     358: 2,
     891: 3,
     1051: 2,
     1052: 3,
     1193: 3,
     1206: 3, 1207: 4,
     1209: 3,
     1426: 2, 1427:
     3,
     1761: 3,
     1762: 4,
     2265: 1,
     2334: 2,
     2623: 3,
2624: 3,
     2811: 3,
     2862: 2,
     2863: 3,
     3007: 2,
```

3008: 2,

```
3188: 2,
     3427: 3,
     3599: 2,
     3715: 4,
     3800: 1,
3993: 2,
     1048: 2,
     1197: 1,
     1199: 1,
     1202: 1,
     1418: 1, 1527:
     1,
     1528: 1,
     1749: 1,
     1750: 2,
   1754: 1,
     1756: 1,
     1821: 1,
     1982: 1,
     2544: 1,
2625: 1,
     2675: 1,
     2710: 2,
     2810: 2,
     2970: 1,
2972: 1,
     3082: 1,
     3713: 1,
     3961: 1,
     3962: 1,
     170: 1, 1204: 1,
     1422: 1,
     1757: 1,
      1759: 1,
     2709: 1,
     3628: 1,
     4148: 1,
     81: 1,
     129: 1,
     157: 1,
     163: 1,
     164: 1,
166: 1,
```

```
167: 1,
     168: 1,
     277: 1,
     334: 1,
     1823: 1,
1985: 1,
     2090: 1,
     2108: 1,
     2157: 1,
     2161: 1,
     2208: 1, 2274:
     1,
     2368: 1,
     3148: 1,
     3149: 1,
     3151: 1,
     3928: 1,
     4145: 1})
Input: multiple_outlier_indices =
multiple outlier indices(outliers) Solution:
print(Counter(multiple_outlier_indices))
Counter({236: 1, 237: 1, 238: 1, 239: 1, 306: 1, 694: 1, 718: 1, 719: 1, 720: 1, 1429: 1, 1987: 1,
2114: 1, 2169: 1, 2171: 1, 2381: 1, 2711: 1, 3190: 1, 3837: 1, 3899: 1, 3902: 1, 1428: 1, 1763: 1, 165:
1, 891: 1, 1052: 1, 1193: 1, 1206: 1, 1207: 1, 1209: 1, 1427: 1, 1761: 1, 1762: 1, 2623: 1, 2624: 1,
2811: 1, 2863: 1, 3427: 1, 3715: 1})
```

Input: df=df.drop(multiple_outlier_indices,axis=0).reset_index(drop =
True) Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									
4134	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4135	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4136	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4137	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4138	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4139 rows × 9 columns

Input: df.shape
Output: (4139, 9)

7. Categorical Attribute Encoding

Input: le=LabelEncoder()

df['Sex']=le.fit_transform(df['Sex']
) Solution: df.head() Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

8. Seperate dataframe into Predictor and Target

Input: feature =pd.DataFrame(df.drop(['Rings'], axis =
1)) label
= pd.DataFrame(df.Rings)

9. Scaling the Predictor variables Input:

convert = StandardScaler() feature =
pd.DataFrame(convert.fit_transform(feature))

10. Perform the train test split

```
Input:
X_train, X_test, y_train, y_test = train_test_split(feature, label, test_size = 0.2, random_state = 0)
Input:
print('X_train : ') print(X_train)
print(X train.shape)
print(") print('X_test
: ') print(X_test)
print(X_test.shape)
print(") print('y_train
: ') print(y_train)
print(y_train.shape)
print(")
print('y_test : ')
print(y_test)
print(y_test.shape) X_train
       0
                    2
                           3
                                 4
                                              6 \
64 1.151942 -0.040971 -0.087769 -0.481759 -0.514480 -0.574405 -0.453057
1521 -0.062807 -1.409929 -1.432469 -1.091508 -1.310493 -1.322352 -1.158735
3436 1.151942 1.670227 1.618965 1.469438 2.013909 1.674082 1.916340
3444 -0.062807 -0.768230 -0.760119 -0.725659 -0.868496 -0.720742 -0.798886
3993 -0.062807 -0.725450 -0.863557 -0.725659 -0.689393 -0.462910 -0.565218
1033 1.151942 1.413547 1.205212 0.859689 1.832711 2.173488 1.701365
3264 1.151942 1.028527 0.946616 1.225538 0.845026 0.772829 0.916240
1653 -1.277555 0.729068 0.688019 0.493839 0.607270 0.120118 0.402169
2607 -0.062807 -0.725450 -0.708400 -0.969558 -0.876875 -0.690546 -0.995167
2732 -0.062807 0.215709 0.119108 0.371889 0.180984 0.638106 0.004933
       7
64 -0.390700
1521 -1.300351
3436 2.132846
3444 - 1.014251
3993 -0.959232
1033 1.223195
3264 1.149837
1653 1.032462
```

```
2732 -0.243983
[3311 rows x 8 columns]
(3311, 8)
X test:
                   2
                         3
                               4
                                     5
                                            6 \
958 1.151942 -0.126531 0.015669 0.127990 -0.062009 0.134054 0.014280
2613 -0.062807 -0.425991 -0.346365 -0.603709 -0.639119 -0.579050 -0.569891
45 -0.062807 -1.153250 -1.173873 -1.091508 -1.304208 -1.254990 -1.261549
3145 -1.277555 -0.169311 0.015669 -0.115910 -0.353182 -0.309604 -0.439037
                                                                          3994
-0.062807 -0.340431 -0.449804 -1.213458 -0.365751 -0.191140 -0.448384
                      ...
                                 ...
620 -1.277555 -0.853790 -0.760119 -1.091508 -1.054931 -1.101684 -1.112002
1544 -0.062807 -0.597110 -0.501523 -0.603709 -0.772137 -0.692869 -0.883007
2954 1.151942 0.087369 -0.036050 0.859689 0.931959 0.884324 1.369556
177 -0.062807 -2.564988 -2.570292 -2.311006 -1.632040 -1.545343 -1.541951
                                                                          50
-0.062807 -0.040971 0.015669 -0.481759 -0.483058 -0.553499 -0.644665
958 -0.313674
2613 -0.680468
45 -1.197648
3145 -0.317342
3994 -0.427380
620 -0.830854
1544 -0.669464
2954 0.724355
177 -1.637802
50 -0.354021
[828 rows x 8 columns]
(828, 8)
y_train
Rings
64
      8
1521
       8
3436
       11
3444
       7
3993
       8
```

2607 - 0.992243

```
1033
       8
3264
       17
       10
1653
2607
       7
2732
       9
[3311 rows x 1 columns]
(3311, 1)
y_test
Rings
958
       8
2613
       7
45
      7
3145
       15
3994
       8
... ...
620
      10
1544
       10
2954
       13
177
       4
50
      8
[828 rows x 1 columns] (828,
1)
11.Build Model
```

```
Input: pipelines={
'rf':make_pipeline(RandomForestRegressor(random_state=1234)),
'ridge':make_pipeline(Ridge(random_state=1234)),
'lasso':make_pipeline(Lasso(random_state=1234)),
} Input: hyperparagrid={
'rf':{
'randomforestregressor__min_samples_split':[2,4,6],
'randomforestregressor__min_samples_leaf':[1,2,3]
},
'ridge':{
    'ridge__alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
},
```

```
'lasso':{
    'lasso__alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
}
}
```

12. Traning the Model

```
Input: fit_models={} for
algo,pipeline in
pipelines.items():
    model=GridSearchCV(pipeline,hyperparagrid[algo],cv=10,n_jobs=-1)
try:    print('Start training for {}'.format(algo))
model.fit(X_train,y_train)    fit_models[algo]=model
except
NotFittedError as e:    print(repr(e)) Start training
for rf
Start training for ridge Start
training for lasso
```

13,14 Testing and Measuring Performance

```
best_model_ridge=fit_models['ridge']
best_model_ridge Output:
GridSearchCV(cv=10,
estimator=Pipeline(steps=[('ridge', Ridge(random_state=1234))]),
n_jobs=-1,
param_grid={'ridge__alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5,
```

```
Input: best_model_lasso=fit_models['lasso']
best_model_lasso
Output:

GridSearchCV(cv=10,
estimator=Pipeline(steps=[('lasso', Lasso(random_state=1234))]),
n_jobs=-1,
param_grid={'lasso__alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.99]})
```

```
for algo,model in fit_models.items(): ya=model.predict(X_test) print('{} scores-R2:{} MAE:{}'.format(algo,r2_score(y_test,ya), mean_absolute_error(y_test,ya))) Output: rf scores-R2:0.5255029479701915 MAE:1.570513566816263 ridge scores-R2:0.5189099860811324 MAE:1.6528099660919895 lasso scores-R2:0.5190720174119673 MAE:1.6525494856846143
```