Prix Master RO/AD

electric Vehicle Assignement Problem with Parking Constraints

Mathis Azéma

Ecole Polytechnique

6 mars 2023

Tuteurs: Guy Desaulniers, Jorge Mendoza, Gilles Pesant

Mathis Azéma Ecole Polytechnique Prix Master RO/AD

- 1 Description du problème
- 2 Modèle PLNE
- 3 Modèle PPC
- 4 Extensions

Modèle PLNE

Description du problème

•00

- Modèle PPC

Sujet du stage

Description du problème

• Le secteur du transport est responsable de 20% des émissions de $CO2 \rightarrow$ développement des bus électriques.

Sujet du stage

 Le secteur du transport est responsable de 20% des émissions de $CO2 \rightarrow$ développement des bus électriques.

	Bus diesel 🖼	Bus électrique 🛱 ♥	
Recharge	Quelques minutes	Plusieurs heures	
Autonomie	Longue	Courte	

Prise en compte des évènements de recharge dans les plannings.

Sujet du stage

Description du problème

 Le secteur du transport est responsable de 20% des émissions de $CO2 \rightarrow$ développement des bus électriques.

	Bus diesel ⊊ ₽	Bus électrique 🗬♥	
Recharge	Quelques minutes	Plusieurs heures	
Autonomie	Longue	Courte	

Prise en compte des évènements de recharge dans les plannings.

Originalité du sujet

→ Les bus sont stationnés dans des dépôts fermés entre deux trajets dans les pays nordiques.

Modèle PPC

Sujet du stage

 Le secteur du transport est responsable de 20% des émissions de CO2 → développement des bus électriques.

	Bus diesel ⊊ ₽	Bus électrique 🗬♥	
Recharge	Quelques minutes	Plusieurs heures	
Autonomie	Longue	Courte	

Prise en compte des évènements de recharge dans les plannings.

Originalité du sujet

- → Les bus sont stationnés dans des dépôts fermés entre deux trajets dans les pays nordiques.
 - ⇒ Ajout de contraintes de stationnement.

Description du problème

000

Description du problème

000

Description du problème

000

Description du problème

000

Contraintes

→ Tournées de véhicules

- → Tournées de véhicules
- → Quelle voie de stationnement après un trajet ?

- → Tournées de véhicules
- \rightarrow Quelle voie de stationnement après un trajet ?
- → Règle FIFO dans les voies

- → Tournées de véhicules
- → Quelle voie de stationnement après un trajet ?
- → Règle FIFO dans les voies
- → Gestion de l'énergie des bus.

- → Tournées de véhicules
- ightarrow Quelle voie de stationnement après un trajet ?
- → Règle FIFO dans les voies
- → Gestion de l'énergie des bus.
- → Puissance du dépôt limitée
 (= Nombre de chargeurs)

- 2 Modèle PLNE

Modèle PLNE 00000000

- 2 Modèle PLNE Modélisation générale

Sous-problème d'affectation

Affecte les bus aux trajets & Planifie les évènements de recharge

Sous-problème d'affectation

Affecte les bus aux trajets & Planifie les évènements de recharge

Un chemin est un planning réalisable de trajets pour un bus

Un chemin est la suite des trajets stationnés dans une même voie

Sous-problème de stationnement

Modèle PLNE

Un chemin est la suite des recharges effectuées par un même chargeur

Sous-problème de recharge

00000000

- Modèle PLNE Stratégies d'accélération

Stratégies d'accélération

- Réduction des graphes
 - → Un bus ne reste pas dans le dépôt 24 heures consécutives.

Stratégies d'accélération

- Réduction des graphes
 - → Un bus ne reste pas dans le dépôt 24 heures consécutives.
- Décomposition en deux étapes

Étape 1 eVAP-PC sans contrainte sur le nombre de chargeurs

Étape 2 Trouver un planning de recharge réalisable

Stratégies d'accélération

- Réduction des graphes
 - → Un bus ne reste pas dans le dépôt 24 heures consécutives.
- Décomposition en deux étapes

Étape 1 eVAP-PC sans contrainte sur le nombre de chargeurs

Étape 2 Trouver un planning de recharge réalisable

Ajout d'une fonction objectif

Graphe affectation Graphe stationnement
$$c_{ij} = (h_j^{\textit{start}} - h_i^{\textit{end}} - 4h)^2$$
 $c_{ij} = (h_j^{\textit{end}} - h_i^{\textit{end}} - 1h)^2$

Modèle PLNE

- 2 Modèle PLNE Résultats

Modèle PLNE 00000000

Method	2-steps	Objective	Reduction
Global			X

Mathis Azéma Ecole Polytechnique

Modèle PLNE

Method	2-steps	Objective	Reduction
Global			X
Global_obj		X	X

Mathis Azéma Ecole Polytechnique

Modèle PLNE

Method	2-steps	Objective	Reduction
Global			X
Global_obj		Х	Х
2_steps	Х		X

Mathis Azéma Ecole Polytechnique

Modèle PLNE

Method	2-steps	Objective	Reduction
Global			X
Global_obj		Х	X
2_steps	Х		X
2_steps_obj	Х	X	X

Mathis Azéma Ecole Polytechnique Prix Master RO/AD

12 / 25

Résultats: 30-40 bus, 2-3 jours, 2-3 trajets/bus/jour

Modèle PLNE

Method	2-steps	Objective	Reduction
Global			X
Global_obj		X	X
2_steps	Х		Х
2_steps_obj	Х	Х	X
2_steps_obj_NR	X	X	

Mathis Azéma Ecole Polytechnique

Résultats avec un horizon de 3 jours

- T: Nombre trajets par bus en moyenne
- V: Nombre de bus par voies
 - ex: 30 bus, $V = 6 \implies 5$ voies

Résultats avec un horizon de 3 jours

- T: Nombre trajets par bus en moyenne
- V: Nombre de bus par voies
 - ex: 30 bus, $V = 6 \implies 5$ voies

Number of EBs

(a)
$$V = 6$$

Résultats avec un horizon de 3 jours

- T: Nombre trajets par bus en moyenne
- V: Nombre de bus par voies
 - ex: 30 bus, $V = 6 \implies 5$ voies

(b)
$$T = 3.5$$

- 2 Modèle PLNE
- 3 Modèle PPC
- 4 Extensions

- Description du problème
- 2 Modèle PLNE
- 3 Modèle PPC Description
- 4 Extensions

• interval variables v définies par :

- interval variables v définies par :
 - PRES(v): Présence de la variable v.

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.
- sequence variables :

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.
- sequence variables :
 - Ensemble de plusieurs interval variables.

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.
- sequence variables :
 - Ensemble de plusieurs interval variables.
 - Contraintes spécifiques : NoOverlap, Previous, ...

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.
- sequence variables :
 - Ensemble de plusieurs interval variables.
 - Contraintes spécifiques : NoOverlap, Previous, ...
- Fonctions cumulatives :

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - LENGTH(v): Longueur de l'intervalle v.
- sequence variables :
 - Ensemble de plusieurs interval variables.
 - Contraintes spécifiques : NoOverlap, Previous, ...
- Fonctions cumulatives :

- interval variables v définies par :
 - PRES(v): Présence de la variable v.
 - START(v): Début de l'intervalle v.
 - Length(v): Longueur de l'intervalle v.
- sequence variables :
 - Ensemble de plusieurs interval variables.
 - Contraintes spécifiques : NoOverlap, Previous, ...
- Fonctions cumulatives :

Mathis Azéma

La batterie des bus :

- La batterie des bus :
 - → Consommée par les trajets.

- La batterie des bus :
 - → Consommée par les trajets.
 - → Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - → Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - → Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - → Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - Produite par les évènements de recharge au dépôt.

- La batterie des bus :
 - → Consommée par les trajets.
 - Produite par les évènements de recharge au dépôt.

• Les voies du dépôt :

- Les voies du dépôt :
 - → Les bus consomment une unité pendant leur stationnement.

- Les voies du dépôt :
 - → Les bus consomment une unité pendant leur stationnement.

- Les voies du dépôt :
 - → Les bus consomment une unité pendant leur stationnement.

- Les voies du dépôt :
 - → Les bus consomment une unité pendant leur stationnement.

- 2 Modèle PLNE
- 3 Modèle PPC Résultats
- 4 Extensions

• CP-searchPhase: Fixer les variables de recharge en dernier.

Fig. 3: Horizon: 3 jours

Résultats

• *CP-searchPhase*: Fixer les variables de recharge en dernier.

Fig. 3: Horizon: 3 jours

Fig. 4: Horizon: 1 jour avec contraintes cibles

- 1 Description du problème
- Modèle PLNE
- Modèle PPC
- 4 Extensions

Modèle PLNE linéaire par morceaux

- Fonction de recharge par morceaux concave avec le même temps de recharge 0-100% que celle linéaire.
- Ajout de variables binaires pour déterminer dans quel morceau on se trouve avant la recharge.
- Utilisation de la concavité pour déterminer le niveau d'énergie après la recharge.

Modèle PLNE linéaire par morceaux

- Fonction de recharge par morceaux concave avec le même temps de recharge 0-100% que celle linéaire.
- Ajout de variables binaires pour déterminer dans quel morceau on se trouve avant la recharge.
- Utilisation de la concavité pour déterminer le niveau d'énergie après la recharge.

Mathis Azéma Ecole Polytechnique

Méthode	60 bus	150 bus	210 bus	300 bus
CP-searchPhase	40	Χ	Χ	X

Table 1: Résumé des résultats (en secondes) sur des instances allant jusqu'à 900 trajets, 300 bus et 1 jour.

Méthode	60 bus	150 bus	210 bus	300 bus
CP-searchPhase	40	Χ	Χ	Х

Table 1: Résumé des résultats (en secondes) sur des instances allant jusqu'à 900 trajets, 300 bus et 1 jour.

Partitionnement de l'instance : Capacité de recharge du dépôt comme seule contrainte liante.

Mathis Azéma Ecole Polytechnique Prix Master RO/AD

Méthode	60 bus	150 bus	210 bus	300 bus
CP-searchPhase	40	Χ	Χ	X

Table 1: Résumé des résultats (en secondes) sur des instances allant jusqu'à 900 trajets, 300 bus et 1 jour.

Partitionnement de l'instance : Capacité de recharge du dépôt comme seule contrainte liante.

◆ロ → ◆問 → ◆ き → ◆ き → り へ ○

Mathis Azéma Ecole Polytechnique
Prix Master RO/AD 23 / 25

Méthode	60 bus	150 bus	210 bus	300 bus
CP-searchPhase	40	Х	Х	X
CP-partition	4	50	140	500

Table 1: Résumé des résultats (en secondes) sur des instances allant jusqu'à 900 trajets, 300 bus et 1 jour.

Partitionnement de l'instance : Capacité de recharge du dépôt comme seule contrainte liante.

Mathis Azéma Ecole Polytechnique

Bilan

- Formulation PLNE :
 - Basée sur trois graphes.
 - Développement de trois stratégies d'accélération.
 - Trouve un planning de 3 jours réalisable en moins de 5 minutes pour 50 bus.

Bilan

- Formulation PI NE :
 - Basée sur trois graphes.
 - Développement de trois stratégies d'accélération.
 - Trouve un planning de 3 jours réalisable en moins de 5 minutes pour 50 bus.
- Formulation PPC :
 - Basée sur des variables intervalles consommant/produisant 2 ressources: les batteries et les voies.
 - Moins efficace sur des plannings de plusieurs jours.
 - Très efficace pour un planning sur un jour avec des contraintes cibles.

Mathis Azéma

Bilan

Formulation PI NE :

- Basée sur trois graphes.
- Développement de trois stratégies d'accélération.
- Trouve un planning de 3 jours réalisable en moins de 5 minutes pour 50 bus.

Formulation PPC :

- Basée sur des variables intervalles consommant/produisant 2 ressources: les batteries et les voies.
- Moins efficace sur des plannings de plusieurs jours.
- Très efficace pour un planning sur un jour avec des contraintes cibles.

Extensions :

- Fonction de recharge linéaire par morceaux.
- Passage à l'échelle possible.

Mathis Azéma