南京大学数学系期末试卷 (A)

		2017/20	18_ 学年	第一学期	月 考试开	形式闭=	卷 课	程名称_	高等代数		
	院系								_姓名		
	考试时间								绩		
	题号	_	二	三	四	五	六	七	总分		
	得分										
		(本题共 述是否正						请在括号	内打"—".		
									\cdots, α_n 线性无	三关.()
2.		线性方程 它的一个			失为 <i>r</i> , <i>ラ</i>	卡知量的·	个数为 n	,则该方	程组的任意 n	- r 个)	解向
3.		$lpha_2,\cdots,lpha_2, \cdots$			A 是 n	级可逆知	拒阵,则	$\alpha_1, \alpha_2, \cdots$	$\cdot,lpha_r$ 线性相差	关 当且((仅当)
4.		$lpha_2,\cdots,lpha$ 程组的解		齐次线性	方程组。	$AX = \beta$	的解,贝	$\exists \ \alpha_1, \alpha_2, \cdot$	\cdots, α_r 的任一	线性组 ⁻ (合还)
5.	设 A 为	习 $s imes n$ 矢	巨阵, 则 🛭	1的秩小	于等于 <i>r</i>	$(r\geqslant 1)$ 3	当且仅当	A 中所有	頁 r + 1 级子式	都是零.	.)
6.	设 A カ	n 级方[阵 $(n \geqslant 2$), 则 A	≠0 当且	.仅当 A	的行向量	组线性无	美.	()
7.	两个 s	×n 矩阵	等价(或材	泪抵)当且	仅当它们]的秩相同	司.			()
8.	设 A 为	ウ n 级方	阵,则 A	是对角知	巨阵当且位	又当 A 与	i所有 n :	级方阵可	交换.	()
9.	方阵 A	可逆当上	且仅当 A	可表为有	限个初等	穿矩阵的刻	乘积.			()
10.	设 A, E	3 都是 n	级方阵,	E 是 n ś	级单位矩	阵. 如果	$(AB)^2 =$	= E, 则 (<i>I</i>	$(BA)^2 = E.$	()

二. 填空题(本题共 10 小题,每小题 4 分,共 40 分).

1. 设正整数
$$n \ge 2$$
,则 $\left(\begin{array}{ccc} 1 & \lambda & 0 \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{array} \right)^n =$

- 2. 设矩阵 $\begin{pmatrix} 1 & a & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}$ 不可逆,则 a =______.
- 3. 设矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ -1 & 2 & 1 \end{pmatrix}$, 则 $A^{-1} =$
- 4. 设 $\alpha_1=(2,1,0),\alpha_2=(3,2,5),\alpha_3=(5,4,t),$ 则 $\alpha_1,\alpha_2,\alpha_3$ 线性相关的充要条件是 t= .

6. 设 A 为 3 级方阵, A^* 为 A 的伴随矩阵,并且 |A|=2, 则 $|A^*-(\frac{1}{4}A)^{-1}|=$ ______.

7. 设 3 级方阵
$$A$$
 的秩为 2 , $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & k \\ 3 & 6 & 9 \end{pmatrix}$, 并且 $AB = 0$, 则 $k = \underline{\qquad}$.

8. 设 A 为 n 级非零方阵,E 为 n 级单位矩阵,并且 $A^2 = A$,则 $|A - E| = ______$.

9. 矩阵方程
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$
 的解为

10.
$$\begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{l} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ \end{tabular} \right), \begin{tabular}{l} \b$$

三. (15分) 设向量组 $\alpha_1=(-1,2,0,4),$ $\alpha_2=(5,0,3,1),$ $\alpha_3=(3,-1,4,-2),$ $\alpha_4=(-2,4,-5,9),$ $\alpha_5=(1,3,-1,7).$

- (1) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的秩;
- (2) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个极大线性无关组;
- (3) 将向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 中其余向量表为极大线性无关组的线性组合.

四. (15分) 讨论 λ 为何值时实数域上的线性方程组

$$\begin{cases} (2-\lambda)x_1 + 2x_2 - 2x_3 = 1\\ 2x_1 + (5-\lambda)x_2 - 4x_3 = 2\\ 2x_1 + 4x_2 - (5-\lambda)x_3 = \lambda + 1 \end{cases}$$

- (1) 无解并说明理由;
- (2) 有唯一解并求其解;
- (3) 有无穷多解并用其导出组的基础解系表示该非齐次线性方程组的一般解.

五. (10分) 设 A 是 n 级不可逆方阵, $n \ge 2$, A^* 是 A 的伴随矩阵. 如果 r(A) 表示矩阵 A 的秩,证明: $r(A) = n - 1 \iff r(A^*) = 1.$

六. (10分) 设 $A=(a_{ij})_{n\times n}$ 是整数矩阵,即每个 a_{ij} 都是整数. 如果对任意的一组整数 b_1,b_2,\cdots,b_n ,方程组 $AX=\begin{pmatrix}b_1\\b_2\\\vdots\\b_n\end{pmatrix}$ 都有整数解,证明: |A|=1,或者 |A|=-1.

七. (10分)设 $\alpha=(1,2,3),\ \beta=(0,1,2)\in\mathbb{R}^3.$ 求集合

 $\{\gamma \in \mathbb{R}^3 \mid \exists A \in M_{3\times 3}(\mathbb{R}), \notin [A] = 0, \ \alpha A = \beta, \ \beta A = \gamma, \ \gamma A = \alpha\}.$