C5 Les Bus série RS232, SPI et I2C

Yann DOUZE Polytech Sorbonne

Les interfaces séries

- Liaison série asynchrone
- Liaison série synchrone
- Full Duplex
- Half Duplex
- Point à Point
- Multi-Point

Liaison asynchrone
Full Duplex
2 fils (Tx /Rx)
Liaison point à point

LIAISON RS232 ET RS485

RS232: Organisation matérielle

RS232: Protocole

- un bit de Start,
- les 5 à 8 bits de données, poids faible en tête,
- éventuellement, un bit de vérification de Parité (paire ou impaire) qui permet de déceler des erreurs de transmission des 8 bits de donnée sur la ligne,
- un, un et demi, ou 2 bits de Stop.

Vitesse de transmission

- BAUDS : nombre de variations de fréquence (ou de phase) par seconde.
- Pour le RS232 -> BAUDS = BPS (Bits Par Seconde)
- Les principales vitesses de transmission normalisé :
 - 75, 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 31200, 33600, 38400, 56000, 57600, 115200, 128000, 256000 bits/s

Transmission Full Duplex

• Full Duplex : l'émission et la réception peuvent se faire en même temps.

Les signaux

Tx	Transmit	conducteur d'émission des données
Rx	Receive	conducteur de réception des données
Gnd	Ground	conducteur de masse du signal

Niveaux des signaux RS232 :

Niveau logique	Polarité	Intervalle de niveau électrique	Typique
'1'	Basse	entre –3V et –15 V	-12V
' 0'	Haute	entre +3V et +15 V	+ 12V

Versions de la norme :

- RS232 → 48V
- RS232A → 25V
- RS232B →12V
- RS232C → 5V

Trace RS232 (obsolète)

Connectiques RS232 : DB9 (obsolète)

DB-9M	Function	Abbreviation	
Pin #1	Data Carrier Detect	CD	
Pin #2	Receive Data	RD or RX or RXD	1 5
Pin #3	Transmitted Data	TD or TX or TXD	
Pin #4	Data Terminal Ready	DTR	\000000/
Pin #5	Signal Ground	GND	(0000)
Pin #6	Data Set Ready	DSR	6 9
Pin #7	Request To Send	RTS	
Pin #8	Clear To Send	CTS	
Pin #9	Ring Indicator	RI	

- Computer Terminal Equipment (CTE)
 - Tx sur la pin 2 et Rx sur la pin 3.
- Data Terminal Equipment (DTE)
 - Tx sur la pin 3 et Rx sur la pin 2.

Communications

Convertisseur série / USB

• Chip FTDI TTL-232RG

Convertisseur USB-Série DFR0065

Bus Synchrone
2 signaux (SCL / SDA)
Half Duplex
Liaison Multipoint

BUS I2C (INTER INTEGRATED CIRCUIT)

Bus I2C

- two-wired bus
- speeds:
 - 100 kbps (standard mode)
 - 400 kbps (fast mode)
 - 3.4 Mbps (high-speed mode)
- data transfers: serial, 8-bit oriented, bi-directional
- master/slave relationships with multi-master option (arbitration)
- master can operate as transmitter or receiver
- addressing: 7bit or 10bit unique addresses

Wires and Signal

- two-wired bus
 - serial data line (SDA)
 - serial clock line (SCL)

- voltage levels
 - HIGH 1
 - LOW 0
- bit transfer (level triggered)
 - SCL = 1 \rightarrow SDA = valid data
 - one clock pulse per data bit
 - stable data during high clocks
 - data change during low clocks

Wired-AND connection

- bus is free → SDA and SCL are high
 - by pull-up resistors
- device output is ANDed with signal on bus

Frame

- start condition (S)
 - SDA 1 \rightarrow 0 transition when SCL = 1
- stop condition (P)
 - SDA 0 \rightarrow 1 transition when SCL = 1
- repeated start (Sr)
 - start is generated instead of stop
- bus state
 - busy ... after S and before next P
 - free ... after P and before next S

Masters and Slaves

- Master device
 - controls the SCL
 - starts and stops data transfer
 - controls addressing of other devices
- Slave device
 - device addressed by master
- Transmitter/Receiver
 - master or slave
 - master-transmitter sends data to slave-recevier
 - master-receiver requires data from slavetransmitter

Data Transfer

- data bits are transferred after start condition
- transmission is byte oriented
- byte = 8 bits + one acknowledge bit
- most significant bit (MSB) first
- Data transfer example :
 - first byte transferred
 - during the first byte transfer:
 - master is transmitter
 - addressed slave is receiver
 - next bytes: depends on the last bit in address byte

Adressing by 7 bits

- the first byte transmitted by master:
 - 7 bits: address
 - 1 bit: direction (R/W)
 - 0 ... master writes data (W), becomes transmitter
 - 1 ... master reads data (R), becomes receiver
- data transfer terminated by stop condition
- master may generate repeated start and address another device
- each device listens to address
 - address matches its own → device switches state
 according to R/W bit
- address = fixed part + programmable part
 - fixed part assigned by I2C committee

Data Transfer - SDA

- data bits are generated by transmitter as SCL pulses
- 9-th pulse:
 - transmitter releases SDA
 - receiver must hold SDA low in order to ack. received data
 - slave must release SDA after ack. bit (allows master to end frame)

Diagramme Temporel

Frame Formats

master-transmitter

master-receiver (since second byte)

from master to slave

from slave to master

A = acknowledge (SDA LOW)

Ā = not acknowledge (SDA HIGH)

S = START condition

P = STOP condition

Exemple

La communication commence par le StartBit puis l'adresse, (sur 8bits \$4C) avec bit de read/write à 0 l'acknowledge (Ack) un octet de données (\$A5) de nouveau l'acknowledge (Ack) et enfin le StopBit.

Exercice

Quel signal représente SCLK ? Quel signal représente SDAT ? Quels sont les messages qui sont transférés ? Bus synchrone
4 fils (SCLK, SS, MISO, MOSI)
Liaison multipoint
Full duplex

BUS SPI (SERIAL PERIPHERAL INTERFACE)

Propriétés du SPI

- SPI: Serial Peripheral Interface
- Full Duplex
- Bus Synchrone

Signaux du bus SPI

- Le bus SPI contient 4 signaux logiques
 - SCLK : Serial Clock Horloge (généré par le maître)
 - MOSI: Master Output, Slave Input (généré par le maître)
 - MISO: Master Input, Slave Output (généré par l'esclave)
 - SS : Slave Select, Actif à l'état bas, (généré par le maître)
- Il existe d'autres noms qui sont souvent utilisés.
 - SCK : Horloge (généré par le maître)
 - SDI,DI,SI: Serial Data IN
 - SDO,DO,SO : Serial Data OUT
 - nCS, CS, nSS, STE : Slave Select

Maitre / Esclave

• Bus SPI: 1 maitre et un ou plusieurs escalves.

Diagramme temporel d'une liaison SPI

Clock Polarity / Clock Phase

CPOL (Clock Polarity)
CPHA (Clock Phase)

Mode	CPOL	СРНА
0 (0,0)	0	0
1 (0,1)	0	1
2 (1,0)	1	0
3 (1,1)	1	1

Avantages

Avantages

- Communication <u>Full duplex</u>
- Débit plus important que L2C
- Flexibilité du nombre de bits à transmettre
- Simplicité de l'interface matérielle
 - Aucun arbitre nécessaire car aucune collision possible
 - Les esclaves utilisent l'horloge du maître et n'ont donc pas besoin d'oscillateur de précision
 - Pas de phy nécessaire
- Partage d'un bus commun pour l'horloge, MISO et MOSI entre les périphériques

Inconvénients

Inconvénients

- Monopolise plus de pattes d'un boîtier que l'<u>I2C</u> ou un <u>UART</u> qui en utilisent seulement deux.
- Aucun adressage possible, il faut une ligne de sélection par esclave en mode non chaîné.
- Le protocole n'a pas d'acquittement. Le maître peut parler dans le vide sans le savoir.
- Il ne peut y avoir qu'un seul maître sur le bus.
- Ne s'utilise que sur de courtes distances contrairement aux protocoles <u>RS-232</u>, <u>RS-485</u> ou <u>bus CAN</u>

Exemple

