Part I – Analyze with Diode Connected Structure (R:NMOS B:PMOS)

1. Threshold voltage V_{th} (TT)

Fig. 1 waveform of threshold voltage in TT corner X-axis: channel length (m) Y-axis: threshold voltage (V)

2. Threshold voltage V_{th} (SS)

Fig. 2 waveform of threshold voltage in SS corner X-axis: channel length (m) Y-axis: threshold voltage (V)

3. Threshold voltage V_{th} (FF)

Fig. 3 waveform of threshold voltage in FF corner X-axis: channel length (m) Y-axis: threshold voltage (V)

首先討論因製程而生的改變,總體而言 Vth 的大小是 SS > TT > FF 符合我們對越快(Fast)的 MOS 有更低 Vth 的期望。然而若是越快的製程,就得面對更嚴重的 short channel effect,其中包含了 Vth 會隨 channel length 增加先增加再減少,並且最後趨近一個定值。

再來看到 NMOS 與 PMOS 的差別,第一個看到的就是 PMOS 的 Vth 明顯的 比 NMOS 來的大,不過 PMOS 的 Vth 對 channel length 影響也小過 NMOS。

4. Transconductance g_m

Fig. 4 waveform of transconductance

X-axis: channel length (m) Y-axis: transconductance ($1/\Omega$) 根據 g_m = u_n * C_{ox} *(W/L)*(V_{GS} - V_{th}), g_m 與(V_{GS} - V_{th})成正比,因此如圖,NMOS 的 gm 會隨著 Vth 越大而有變小的趨勢,PMOS 則是相反。

5. Output conductance gds

Fig. 5 waveform of output conductance

X-axis: channel length (m) Y-axis: output conductance ($1/\Omega$) 我們知道 conductance 與 resistance / impedance 是倒數關係,而根據 output impedance 的公式 $Z_{out} = 1/\lambda\,I_D$,而 I_D 又與 V_{th} 相關,並且 V_{th} 越大,ID 越小,output impedance 越大,output conductance 越小(如上圖)的結果。

Fig. 6 waveform of Saturation drain voltage

X-axis: channel length (m) Y-axis: Saturation drain voltage (V)

在此條件下 small channel length 的部分 NMOS 和 PMOS 的 V_{dsat} 都有上升 的趨勢,然而當趨於穩定之後 NMOS 的 V_{dsat} 緩慢上升,PMOS 則相反,原因不難看出,因為若要使得 MOS 進入 saturation mode,在 NMOS 中是要 大過 V_{gs} – V_{th} ,而 PMOS 則是小過 overdrive voltage。

7. Intrinsic gain g_mr₀

Fig. 7 waveform of Intrinsic gain

X-axis: channel length (m) Y-axis: Intrinsic gain (V/V)

此題可以直接從 3.與 5.看出來,在兩者 output impedance 相差不大時,即使 PMOS 的 output impedance 較大,但在 NMOS 的 g_m 遠大於 PMOS,便可以 得出如上圖的結果。

8. Power efficiency g_m/I_D

Fig. 8 waveform of power efficiency

X-axis: channel length (m) Y-axis: power efficiency $(1/A \Omega)$

由數學的定義,當流過 MOS 的 ID 固定時,有越高的 gain 就會有越高的 Power efficiency,在此題中,我們利用一個理想電壓源當作 tail current,使得兩個 MOS 一定留過相同的電流,因此 8. 的圖形應該與 4. 完全一樣,只差倍數而已。

9. Speed gm/Cg

Fig. 9 waveform of speed

X-axis: channel length (m) Y-axis: speed (m/s)

由 speed 的定義,gate 的 parasitic 電容 Cg 越大、gm 越小,speed 就越大。 從 Fig. 4、Fig. 9 可以得知,NMOS 有較大的 gm,因此 NMOS 速度上本質 就會比 PMOS 快。除此之外,我們還可以看出當 channel length 越大,parasitic capacitor 就會變得很大(因為 gm 不太隨 channel length 而變)

Part II - Drain Current

Fig. 10 drain current of NMOS

X-axis: gate voltage (V) Y-axis: drain current (A)

Fig. 11 drain current of PMOS

X-axis: gate voltage (V) Y-axis: drain current (A)

在 Fig. 10 中 channel length 由下而上依序是 1.8, 3.6, 5.4, 7.2, 9.0 (um),因為流經 NMOS 電流的公式為 I_D = 0.5* u_n * C_{ox} *(W/L)*(V_{GS} - V_{th})²,所以我們可以看到 I_D 對 V_{GS} 的作圖接近二次曲線符合 square law。並且隨著 VG 變大,越長的 channel length 會有越大的 drain current。

在 Fig. 11 中 channel length 由上而下依序是 1.8, 3.6, 5.4, 7.2, 9.0 (um),因為在 HSPICE 中 ID 的方向定義為從 source 到 drain 的電流方向,因此 PMOS 的 ID 為負,若取絕對值的概念來看,PMOS 一樣符合 square law,但是從座標軸來看,在同樣的 overdrive voltage 下 ,PMOS 的 ID 大小會小於 NMOS。

Part III – Body Effect

1. Find correct size

Fig. 12 the code about how to find the correct size of MOS

```
*** 110030039 homework 1

****** dc transfer curves tnom= 25.000 temp= 25.000 *****

number= 1.6043

***** job concluded

1****** PrimeSim HSPICE -- R-2020.12-SP2 linux64 (May 24 2021 7074677) *****

******

*** 110030039 homework 1

****** job statistics summary tnom= 25.000 temp= 25.000 ******
```

Fig. 13 test results in hw1 3.lis

我先設定 channel length 為 10um (避免因 channel length 太小而生不理想效應),再設定一個倍數 n,做改變 n 的 DC 分析,並使用 find/when 的功能找到適合的(W/L)。得到 n =1.6043,於是之後的題目都設定 n = 1.6。

2. Body effect analysis

Fig. 14 drain current analysis with body effect

X-axis: source voltage (V) Y-axis: drain current (A)

Fig. 15 threshold voltage analysis with body effect X-axis: source voltage (V) Y-axis: threshold voltage (V)

Fig. 16 transconductance analysis with body effect

X-axis: source voltage (V) Y-axis: transconductance $(1/\Omega)$

根據 body effect 的公式 $V_{th} = V_{th0} + \gamma \left(\sqrt{|2\varphi f + Vsb}| - \sqrt{|2\varphi f}| \right)$, 如果 V_{sb} 越大, V_{th} 就會越大,且根據 Fig. 15, V_{th} 是隨著 V_{sb} 線性變大的。且因為 overdrive voltage 越變越小, I_D 就會越來越小,當 overdrive voltage 太小, MOS 就不被 turn on,所以 I_D 近乎為 0 並導致 g_m 也趨近為 0。

3. Compare body effect free case to 2.

(R: with body effect B: without body effect)

Fig. 17 drain current analysis of body effect

X-axis: source voltage (V) Y-axis: drain current (A)

Fig. 18 threshold voltage analysis of body effect

X-axis: source voltage (V) Y-axis: threshold voltage (V)

Fig. 19 threshold voltage analysis of body effect

X-axis: source voltage (V) Y-axis: transconductance $(1/\Omega)$

從 Fig. 18 中,我們可以看到當我們把 source and body 接到同一點, V_{th} 基本上沒有變化,可以消除 body effect。再看到 Fig. 17 和 Fig. 19 我們可以看到因為藍線沒有 body effect,所以藍線的 V_{th} 不會隨著 V_{s} 增加而變大,overdrive voltage 只與 V_{gs} 相關,因此 ID 以及 gm 都比有 body effect 的 MOS 來的大,但當 V_{s} 太大,使得 V_{gs} 太小沒辦法 turn on MOS,最後的電流跟 transconductance 都會趨近於零。