Christian Wakim

Elena Ghazi

Karim Hatem

Rita Maria Charbel

Project Report

Graphical User Interface:

We designed a GUI for DES encryption/decryption using Swing and Java.

The main page contains a field for the entry of the 16-digit (64-bit) hexadecimal plaintext/ciphertext and another field for the entry of the 16-digit (64-bit) hexadecimal key. When the correct size of the plaintext/ciphertext or key is input, the respective field turns green. Otherwise, it turns red. Then, the user has 3 options: encrypt, decrypt, or reset.

If the user has entered a plaintext with a key, he/she must click on encrypt to get the ciphertext. On the other hand, if the user enters a ciphertext with the key, he/she must click on decrypt to get the plaintext. The reset button clears the plaintext/ciphertext and key fields, allowing the user to change his/her input.

When the user clicks on either encrypt or decrypt, the main page closes, and the results page appears.

Encrypton:

Decryption:

The results page displays every step of the encryption/decryption at every round of the process, and finally displays the ciphertext/plaintext. So, our interface shows the result of the message after each step in the encryption/decryption process at each and every round.

In addition to that, there is a "go back" button on the top right of the results page, so that when clicked, it takes the user back to the main page so that he/she inputs new plaintext/ciphertext and key for encryption/decryption.

EXPANSION	XOR1	SBOX	PERMUTATION	XOR2
3A5456AAD454	EEB7FEA87203	0F14D2FF	6F3E5C31	4B7E7C8A
256BFC3F9454	C3E25ADF85DF	FF3C91C2	659AF257	1711A4DD
8AE8A3D096FA	3042A0D6A4D5	B83A0836	16CA0666	5DB47AEC
2FBDA83F5758	068B92494EB8	0A02535F	6A7E2820	7D6F8CFD
BFAB5FC597FA	5BBF83C51E81	C5786651	06B5C8DC	5B01B230
2F6803D/ Expansion Permutation is performed on the Right part of the output of the previous round through the use of the 'E table'.				
6529568FC3F5	9RD094F9C98D	9ED9ACA/	D28R0DFR	SESAR ECB
C5D4555FFE57	6BF11A562659	999CFE20	35AC55CA	FC874BB0
7F940EA57DA1	748399BD72C9	3651DE9A	FF27021B	71ADBDD0
3A3D5BDFBEA0	472DB24746B0	A8C154A0	A08D0709	5C0A4CB9
AF80542595F2	3C40BC44F3C2	180855A2	200E244B	51A3999B
AA3D07CF3CF6	3276917614FC	B1448435	03815E2A	5F8B1293
AFFC568A54A6	9BC75B2E06B0	82FA79A0	74C525C5	2566BC5E

When hovering with the mouse over the elements of the table, the user gets a description of what the specific operation does.

Error Handling:

When the plaintext/ciphertext and key input match the required size, their respective fields turns green, indicating to the user that he/she has input the right length of key and plaintext/ciphertext.

However, if the user decides to click on encrypt/decrypt when the input is not of the right size, a dialog appears, indicating that the user has entered an invalid input.

Task Division:

For this project, we met and worked as a group on Zoom. Designing an interface was new to us, so we each did our research individually, then combined our knowledge into an interface when we met virtually. The DES encryption/decryption code was available online, but the hard part was linking our interface to the code.

Link to our demo video:

https://www.youtube.com/watch?v=AydjFDb15xQ

Acknowledgments:

We would like to thank Dr. Issa and Dr. Chehab for their continuous support and hard work. They were always available to answer our questions and help us through the process of developing the GUI.

References:

https://www.geeksforgeeks.org/data-encryption-standard-des-set-1/