Međuispit iz Umjetne inteligencije (ak. god. 2014./2015.)

Ispit se sastoji od 20 pitanja i ukupno nosi 35 bodova. Pitanja s poudenim odgovorima nose po 1 bod (1/2 boda oduzima se za pogresan odgovor), dok problemski zadatci nose po 4 boda. Trajanje ispita je 120 minuta. Primjerak ispita morate predati zajedno sa svojim rješenjima.

- aio;	zadatci	S Domident			-	
1. (I had to	ponudenim	odgovorima	(15	hadana	

(1 bod) U Hornovom obliku ne može se zapisati formula:

(a) $\neg (P_1 \land P_2) \rightarrow Q$ (b) $(P_1 \land P_2) \rightarrow Q$ (c) $\neg P \rightarrow \neg Q$ (d) $\neg P_1 \lor Q$ (e) $P \rightarrow \neg Q$

2. (1 bod) Uklanjanje nevažnih klauzula svodi se na uklanjanje:

(a) praznih klauzula NIL

(b) klauzula koje sadrže komplementarne literale (e) nezadovoljivih klauzula

3. (1 bod) U formuli ' $\exists y GT(y, x)$ ':

(a) x je slobodna i vezana varijabla (d) y je vezana a x slobodna varijabla

(b) y je slobodna i vezana varijabla (e) x i y su slobodne varijable

(c) x i y su vezane varijable

4. (1 bod) Interpretacija s domenom $D=\{a,b\}$ i ekstenzijom $P(a)\equiv \top$ je model formule:

(a) $\exists x P(x) \to P(b)$ (c) $\forall x P(x) \lor \neg P(a)$ (e) $\forall x (P(x) \land P(a))$

(b) $P(b) \lor \exists x \neg P(x)$ (d) $\forall x P(x) \leftrightarrow P(a)$

5. (1 bod) Funkcijom f definirane su operacije nad skupom stanja $S = \{a, b, c, d, e\}$ na sljedeći način: $f(a) = \{b, c, d\}, f(b) = \{c\}, f(c) = \{a, d, e\}, f(d) = \{e\}, f(e) = \emptyset$. Za početno stanje a i ciljno stanje e, redoslijed ispitivanja čvorova kod pretraživanja u dubinu ograničenog na dubinu 4 (dubina korijenskog čvora je 0) jest:

(a) a, b, c, d, c, a, d, e

(c) $a, b, c, a, b, c, a, b, c, \dots$ (e) a, b, c, a, b, c, d, d, e

(b) a, b, c, d, a, b, c, c, a, d, e (d) a, b, c, a, d, e

6. (1 bod) Stavak u Prologu p(X):-q(X) odgovara logičkoj formuli:

(a) $\forall x(Q(x) \leftrightarrow P(x))$ (c) $\forall x(Q(x) \to P(x))$ (e) $\exists x(P(x) \to Q(x))$

(b) $\exists x (Q(x) \to P(x))$ (d) $\forall x (P(x) \to Q(x))$

7. (1 bod) Algoritmom minimax nastoji se:

(a) maksimizirati dobitak protivnika (d) minimizirati maksimalno mogući gubitak

(e) smanjiti prostor pretraživanja (b) podrezati stablo pretraživanja

(c) minimizirati gubitak protivnika

8. (1 bod) Prema teoremu semantičke dedukcije, dokazati da je G logička posljedica od F je isto kao dokazati da je:

(a) $F \vee G$ teorem

(c) $F \wedge \neg G$ je valjana formula (e) $F \to G$ je zadovoljivo

(b) $F \to G$ valjana formula (d) $F \wedge \neg G$ je zadovoljivo

- 9. (1 bod) Koji je od sljedećih parova atoma moguće unificirati?
 - (a) P(f(x)) i P(g(x)) (c) P(f(x), a) i P(g(y), z) (e) P(x, y) i P(a, f(y))
 - (d) P(x,y) i P(a,b)(b) P(x,x) i P(a,b)
- 10. (1 bod) Traktabilnu vremensku složenost ima:

 - (a) pretraživanje u dubinu (d) pretraživanje s jednolikom cijenom
 - (b) ograničeno pretraživanje u dubinu (e) niti jedan od navedenih postupaka
 - (c) pretraživanje u širinu
- 11. (1 bod) U propozicijskoj logici, SAT-problem je:
 - (a) nedeterministički (b) potpun (c) traktabilan (d) neodlučiv (e) NP-potpun
- 12. (1 bod) Rezolventa klauzula $\{P(x), R(x)\}$ i $\{\neg P(y), Q(a), Q(y)\}$ je klauzula:
 - (a) $\{R(y), Q(a)\}$ (b) $\{R(y)\}$ (c) $\{R(y), Q(y)\}$ (d) $\{R(x), Q(a), Q(x)\}$ (e) $\{R(a)\}$
- 13. (1 bod) Ako se udaljenost čvora od početnog čvora ne koristi (g=0), algoritam A^* degenerira u
 - (a) pretraživanje u širinu
- (d) pretraživanje usponom na vrh
- (b) dvosmjerno pretraživanje
- (e) pohlepno pretraživanje "najbolji prvi"
- (c) pretraživanje s jednolikom cijenom
- 14. (1 bod) Nad pretraživanjem s jednolikom cijenom dominira:
 - (a) dvosmjerno pretraživanje
- (c) pretraživanje "najbolji prvi" (e) pretraživanje u širinu
- (b) pretraživanje usponom na vrh (d) algoritam A*
- 15. (1 bod) Neka je $h_1(s)$ broj pločica slagalice koje u stanju s nisu na svome mjestu, a $h_2(s)$ zbroj L_1 udaljenosti pločica od svoga mjesta. Koja je od navedenih heuristika optimistična?
 - (a) $\max(h_1(s), 2)$ (b) $\max(h_1(s), 1)$ (c) $\max(1, h_2(s))$ (d) $h_1(s) + h_2(s)$ (e) $\min(h_1(s), h_2(s))$

II. dio: problemski zadatci (20 bodova)

16. (4 boda) Heurističko pretraživanje.

Zadan je usmjeren graf sa 7 vrhova, $S = \{a,b,\ldots,g\}$. Neka je $succ(a) = \{(b,3),(d,2),(g,9)\}$, $succ(b) = \{(c,2),(e,3)\}$, $succ(c) = \{(g,4)\}$, $succ(d) = \{(e,2),(f,5)\}$, $succ(e) = \{(g,4)\}$. Početní čvor je a, a ciljni g. Vrijednosti heurističke funkcije su: h(a) = 7, h(b) = 0, h(c) = 4, h(d) = 6. h(e) = 1, h(f) = 11, h(g) = 0.

- (a) Napišite trag izvođenja algoritma A^* (za svaki korak napišite listu otvorenih i zatvorenih čvorova). Čvorove proširujte leksikografskim poretkom.
- (b) Je li heuristička funkcija h konzistentna? Je li optimistična?
- (c) Neka je $h_2(s)=k\cdot$ (najmanji broj bridova od s do cilja). Koji je najveći k za koji je h_2 konzistentna? Koji je najveći k za koji je h_2 optimistična?
- 17. (4 boda) Igranje igara.

Stablo igre definirano je sljedećim prijelazima: $A\mapsto\{B,C,D\},\; B\mapsto\{E,F\},\; C\mapsto\{G,H\},\; D\mapsto\{G,H\}$ $\{I,J\}, \ E \mapsto \{M,N\}, \ F \mapsto \{K,L\}, \ G \mapsto \{K,L\}, \ H \mapsto \{M,N\}, \ I \mapsto \{M,N\}, \ J \mapsto \{O,P\}.$

(a) Neka prvi igrač koristi heuristiku h_1 (dobit kakvu je vidi prvi igrač), a drugi heuristiku h_2 (dobit kakvu je vidi drugi igrač), prema sljedećoj tablici:

E	F	G	H	I	J	K	L	M	N	0	P	
h_1 h_2	1	-2	3	2	0	5	-1 3	0 2	$-2 \\ 1$	-1 -1	0	2 -2
h_2	0	5	2	4	-1	4			-	-		

Igračima nije poznata heuristika protivnika. Igru započinje prvi igrač iz stanja A. Ako igrači svoje strategije određuju algoritmom minimax i pretražuju najviše dva poteza unaprijed (jedan svoj i jedan suparnički), odredite tijek (slijed stanja) igre.

(b) Pretpostavimo da prvi igrač pretražuje tri poteza unaprijed i koristi podrezivanje alfa-beta.

Odredite koja će stanja biti nodrazane (odredite koja če stanja bit Odredite koja će stanja biti podrezana (odnosno neće biti posjećena) kod izračuna minimaks-

(c) Ukratko (u jednoj rečenici) objasnite zašto nam kod algoritama igranja igara treba heuristička

- 18. (4 boda) Logika i zaključívanje

 - (a) Napišite algoritam rezolucije opovrgavanjem za propozicijsku logiku. (b) Zadane su premise: "Sami smo u svemiru (S) ili su porezi previsoki (P). Ako postoji potražnja za devizoma (D) za devizama (D), onda djeca brzo rastu (R). Djeca ne rastu brzo ako su porezi previsoki i ako vole Modru Lasta (M). vole Modru Lastu (M). Djeca ne vole Modru Lastu i postoji potražnja za devizama". Ciljna formula je: "Sami smo u svemiru". Izvedite ciljnu formulu koristeći rezoluciju opovrgavanjem uz strategiju skupa potpore i strategiju briganjem uz strategiju skupa potpore i strategiju briganjem uz strategiju skupa potpore i strategiju skupa po tegiju brisanja redundantnih i nevažnih klauzula. Izvedite redom sve rezolvente, kao da se postupak doista izvodi na računalu.
- 19. (4 boda) Zaključivanje u logici prvog reda.
 - (a) Rezolucijom opovrgavanjem dokažite:

$$\forall x \Big(P(x,a) \to \neg \forall y \big(Q(y) \to \exists z R(z,y) \big) \Big), \ \exists x \forall y \Big(Q(y) \to R(x,y) \Big) \ \vdash \ \exists x \neg \Big(P(c,x) \land R(x,c) \Big)$$

- (b) Formalno definirajte što je to najopćenitji zajednički unifikator.
- 20. (4 boda) Logičko programiranje u Prologu.

Baza znanja u Prologu sadrži činjenice oblika podvrsta(X,Y), sa značenjem organizam X je podvrsta organizma Y u biološkoj taksonomiji. U bazi nisu definirane nikakve druge činjenice.

- (a) Napišite definiciju predikata potomak(X,Y) koji se vrednuje istinito ako je X genetički potomak od Y. Predikat mora biti deklarativno i proceduralno ispravan.
- (b) Baza znanja sadrži sljedeće činjenice i pravila: podvrsta(sisavac, kraljeznjak). podvrsta(kraljeznjak, zivotinja). podvrsta (beskraljeznjak, zivotinja). predak(X,Y) :- potomak(Y,X). potomak(X,Y) :- ...

Nacrtajte stablo izvođenja za upit predak(zivotinja, sisavac). U svakom čvoru treba nacrtati stanje Prologovog stoga.

(c) Definirajte predika nerod(X,Y) kojim se iz baze znanja mogu dohvatiti svi parovi organizama X i Y koji nisu genetički povezani. Organizmi su genetički povezani akko je jedan predak drugoga ili imaju zajedničkog pretka. Predikat može ponavljati parove te vraćati parove s istim organizmom.