Nonlinear and Nonseparable Structural Functions in Fuzzy Regression Discontinuity Designs

Haitian Xie

Department of Economics University of California San Diego

October, 2022

Motivation

- Regression discontinuity (RD) design one of the most important non-experimental methods for causal inference
- Treatment changes discontinuously as a function of some underlying index which we call the running variable
- Most theoretical results study binary treatment variable
 either 0 or 1
- In practice, the treatment may well be continuous
 - taking values inside an interval

RD first stage: binary treatment

Figure: Demonstration of RD designs with a binary treatment.

RD first stage: continuous treatment

Figure: Demonstration of RD designs with a continuous treatment.

Example: time zone boundaries

Figure: Time Zones and Average Sunset Time. The darker the color, the later the average sunset time.

Example: time zone boundaries (cont'd)

- Giuntella and Mazzonna (2019)
- Sleep time \rightarrow Health
- Treatment T: sleep time (continuous variable)
- Outcome of interest Y: health (measured by BMI)
- Running variable R: distance to the time zone boundary (boundary is the cutoff/threshold \bar{r})

Example: time zone boundaries (cont'd)

Figure: Empirical illustration of RD designs with a continuous treatment.

Causal object of interest

• The structural function (SF)

$$Y=g^*(T,R,\varepsilon)$$

- g* fully describes the effect of treatment on the outcome without referring to any compliers
- When T is binary, we care about a scalar treatment effect $g^*(1, \bar{r}, \varepsilon) g^*(0, \bar{r}, \varepsilon)$
- When T is continuous, the function is infinite-dimensional

Wald ratio

• Empirical studies use TSLS to estimate the Wald ratio

$$ext{WR} = rac{\lim_{r \uparrow ar{r}} \mathbb{E}[Y|R=r] - \lim_{r \downarrow ar{r}} \mathbb{E}[Y|R=r]}{\lim_{r \uparrow ar{r}} \mathbb{E}[T|R=r] - \lim_{r \downarrow ar{r}} \mathbb{E}[T|R=r]}$$

- Binary case (Hahn et al., 2001)
 - treatment effect = WR
- Continuous case: if g^* is linear and separable in the treatment

$$g^*(T,R,arepsilon)=eta T+ ilde{g}(R,arepsilon)$$

then $\beta = WR$

Question on identification

- Question: is the structural function (at the cutoff) identified without linearity or separability?
- Practice: time zone example
 - nonlinearity undersleeping and oversleeping are both bad
 - nonseparability effect heterogeneity due to eating habits
 - determining the optimal sleep time needs a nonlinear specification
- Theoretical perspective
 - achieve nonparametric identification
 - avoid identification by functional form

Main contributions

- Nonlinear and nonseparable structural function
- Nonparametric identification result under shape restrictions (monotonicity and smoothness)
- Semiparametric estimator with the same convergence rate as in the binary treatment case $(n^{-2/5})$

- China's Huai River winter heating policy
- Chen et al. (2013), Ebenstein et al. (2017)
- Y − life expectancy
- \bullet T air pollution
- R distance to Huai River

Huai River and PM₁₀ level

- Very low birth weight threshold
- Almond et al. (2010),
 Barreca et al. (2011),
 Bharadwaj et al. (2013)
- Y infants health
- T medical spending, days of hospitalization
- R birth weight

- Brazil tax redistribution
- Litschig and Morrison (2010)
- Y incumbnet's reelection
- T local government spending
- R district population

- Child-related tax benefits
- Barr et al. (2021), Cole (2021)
- *Y* academic achievements
- \bullet T family income
- R birth date

Roadmap

- 1 Introduction
- 2 The model and comparison with the literature
- Nonparametric identification
- 4 Semiparametric estimation
- Numerical results

Setup

A triangular system

Outcome Equation: $Y = g^*(T, R, \varepsilon)$

Treatment Choice:
$$T = h(R,U) = egin{cases} h_0(R,U), R < ar{r} \\ h_1(R,U), R \geq ar{r} \end{cases}$$

- h treatment choice function (conditional quantile)
- U conditional rank of T given R
- \bar{r} cutoff/threshold
- ε can correlate with T, R

Back to the graph

Theoretical Literature (RD)

Binary treatment (T = 0 or 1)

- seminal work: Hahn et al. (2001)
- early reviews: Imbens and Lemieux (2008), Lee and Lemieux (2010)
- recent reviews: Cattaneo and Escanciano (2017), Cattaneo and Titiunik (2021)
- focused on using TSLS to estimate the Wald ratio around the cutoff

Theoretical Literature (RD)

Continuous treatment: Dong et al. (2021)

Quantile specific LATE

$$rac{\lim_{r \uparrow ar{r}} \mathbb{E}[Y|U=u,R=r] - \lim_{r \downarrow ar{r}} \mathbb{E}[Y|U=u,R=r]}{\lim_{r \uparrow ar{r}} \mathbb{E}[T|U=u,R=r] - \lim_{r \downarrow ar{r}} \mathbb{E}[T|U=u,R=r]}$$

Theoretical Literature (RD)

Continuous treatment: Dong et al. (2021)

Quantile specific LATE

$$rac{\lim_{r\uparrowar{r}}\mathbb{E}[Y|U=u,R=r]-\lim_{r\downarrowar{r}}\mathbb{E}[Y|U=u,R=r]}{\lim_{r\uparrowar{r}}\mathbb{E}[T|U=u,R=r]-\lim_{r\downarrowar{r}}\mathbb{E}[T|U=u,R=r]}$$

$$=\int_{h_0(ar{r},u)}^{h_1(ar{r},u)} rac{\mathbb{E}[rac{\partial}{\partial t}g^*(t,ar{r},arepsilon)|U=u,R=ar{r}]}{h_1(ar{r},u)-h_0(ar{r},u)} dt$$

- a weighted average derivative of q*
- my paper focuses on how to directly identify the structural function $g^*(T, \bar{r}, \varepsilon)$ at the cutoff

Literature: IV

- Instruments with small support
 - Torgovitsky (2015, 2016),
 D'Haultfoeuille and Février (2015), Ishihara (2021)
 - Need independent instrument: $\varepsilon \perp R$ and exclusion restriction: R excluded from g^*, h_0, h_1
- Challenges we face in RD designs
 - R can violate independence and exclusion restrictions
 - estimation theory is more complicated (local to the cutoff)

Literature: nonseparable structural functions

- Matzkin (2003, 2013, 2016),
 Hoderlein and Mammen (2007, 2009),
 Sasaki (2015), Su et al. (2019)
- Need independent treatment: $T \perp \varepsilon | R$

Roadmap

- 1 Introduction
- 2 The model and comparison with the literature
- 3 Nonparametric identification
- 4 Semiparametric estimation
- Numerical results

Identification assumptions

Dual monotonicity

- $g^*(T, R, \varepsilon)$ is strictly increasing in ε (ε is one-dimensional)
- h(R, U) is strictly increasing in U
- ullet one-to-one mapping $(Y,T)\leftrightarrow (arepsilon,U)$ given R

Smoothness

- g^*, h_0, h_1 continuous
- ullet $F_{arepsilon|U,R}(e|u,r)$ is strictly increasing in e and

$$\lim_{r\uparrowar{r}}F_{arepsilon|U,R}(e|u,r)=\lim_{r\downarrowar{r}}F_{arepsilon|U,R}(e|u,r)$$

Identification assumptions (cont'd)

Fuzzy RD

- There are treatment levels that are taken both below and above the cutoff.
- Overlapping support: $Supp(h_0(\bar{r}, U)) \cap Supp(h_1(\bar{r}, U)) \neq \emptyset$

Support invariance

- ullet Supp(arepsilon|U=u,R=r) does not depend on u or r
- still allows ε to be correlated with U or R arbitrarily

Identification assumptions (cont'd)

Strong discontinuity

• $h_0(\bar{r},\cdot)$ and $h_1(\bar{r},\cdot)$ intersect but do not overlap

Smoothness

Smoothness Dual Monotonicity

Smoothness Dual Monotonicity

$$egin{array}{ll} \lim_{r\uparrowar{r}}F_{arepsilon|U,R}(e|u,r) &=F_{Y|T,R}^{-}(g^{st}(h_{0}(u),e)|h_{0}(u)) \ &|| \ \lim_{r\downarrowar{r}}F_{arepsilon|U,R}(e|u,r) &=F_{Y|T,R}^{+}(g^{st}(h_{1}(u),e)|h_{1}(u)) \end{array}$$

Smoothness Dual Monotonicity

$$egin{array}{ll} \lim_{r\uparrowar{r}}F_{arepsilon|U,R}(e|u,r) &=F_{Y|T,R}^{-}(g^{st}(h_{0}(u),e)|h_{0}(u)) \ &|| \ \lim_{r\downarrowar{r}}F_{arepsilon|U,R}(e|u,r) &=F_{Y|T,R}^{+}(g^{st}(h_{1}(u),e)|h_{1}(u)) \end{array}$$

- $F_{Y|T,R}$ and (h_0, h_1) are identified \implies restrictions on the structural function
- These restrictions identify a unique structural function

Nonparametric identification

Theorem 1

If a qualifying g satisfies the following condition

$$F_{Y|T,R}^-(g(h_0(u),e)|h_0(u)) = F_{Y|T,R}^+(g(h_1(u),e)|h_1(u)),$$

then there exists a continuous and strictly increasing function λ^g such that

$$g^*(T,ar{r},arepsilon)=g(T,ar{r},\lambda^g(arepsilon)).$$

- identification at the cutoff (\bar{r} suppressed in the notation)
- identification up to a monotone transformation in ε

Roadmap

- Introduction
- 2 The model and comparison with the literature
- Nonparametric identification
- Semiparametric estimation
- 5 Numerical results

Semiparametric estimation

Parametrize the SF

$$g_{\gamma}(T,ar{r},arepsilon)=\gamma_{1}T+\gamma_{2}T^{2}+\gamma_{3}Tarepsilon+arepsilon$$

Three-step estimation procedure

- estimate conditional quantiles of T|R: $\hat{h}_0(\bar{r}, u)$, $\hat{h}_1(\bar{r}, u)$
- ② local linear regression estimates $\hat{F}^{\pm}_{Y|T,R}(y|t,ar{r})$
- § $\hat{\gamma}$ is the minimizer of the criterion function based on the nonparametric identification equation

Criterion function

Rearrange the identification equation

$$egin{align} D_{\gamma,h}(e,u) &= \int_0^u \left(F_{Y|T,R}^-(g_\gamma(h_0(v),e)|h_0(v))
ight. \ & \left. - F_{Y|T,R}^+(g_\gamma(h_1(v),e)|h_1(v))
ight) \!\! dv. \end{split}$$

Take L^2 -norm

$$\|D_{\gamma,h}\|_w=\Big(\int_0^1\int_{\mathbb{R}}|D_{\gamma,h}(e,u)|^2w(e,u)dedu\Big)^{1/2},$$

where w(e, u) is a positive weighting function on $\mathbb{R} \times [0, 1]$.

Asymptotic normality

Theorem 2

Under regularity conditions, the following term is asymptotically standard normal

$$n^{2/5}(\Sigma_- + \Sigma_+)^{-1/2}\Delta(\hat{\gamma} - \gamma^*) - (B_- - B_+)$$

Regularity conditions Proof

- same convergence rate as in the binary case
- ullet second step estimators $\hat{F}_{Y|T,R}^{\pm}(y|t,ar{r})$ converges slower
- analogy: a \sqrt{n} -semiparametric estimator with a nonparametric first step being $o(n^{-1/4})$

Roadmap

- 1 Introduction
- 2 The model and comparison with the literature
- Nonparametric identification
- 4 Semiparametric estimation
- Numerical results

Empirical study: sleep time

Figure: Estimated marginal effects (structural derivative) of sleep time on BMI (kg/m^2) .

Empirical findings

- Marginal effects are increasing, indicating a nonlinear (U-shaped) structural function.
- Optimal sleep time is between 7 and 8 hours.
- The TSLS is not capable of demonstrating such results.

Simulations

- Semiparametric estimator vs TSLS
- marginal effect:

$$rac{\partial}{\partial t}g_{\gamma}(t,ar{r},arepsilon)=\gamma_{1}+2\gamma_{2}t+\gamma_{3}arepsilon$$

estimated marginal effect

SP:
$$\hat{\gamma}_1 + 2\hat{\gamma}_2 t + \hat{\gamma}_3 \varepsilon$$

TSLS: WR

Nonseparable SF

Nonlinear SF

Linear SF: weakly identified TSLS

- $\hat{\gamma}$ can outperform TSLS even with a linear g^*
- weak identification in the difference in means
- $h_0(\bar{r},\cdot)$ quantile of Beta(0.1,0.1), $h_1(\bar{r},\cdot)$ quantile of Beta(10,10)

Linear SF: weakly identified TSLS

Conclusion

- RD designs with a continuous treatment
- Nonlinear and nonseparable structural function
- Nonparametric identification
- Semiparametric estimation
- Future work
 - partial identification when some assumptions fail
 - extrapolation away from the cutoff
 - Regression kink designs

Thank You!

Sequencing approach

Prove that the identification equation pins down a unique structural function. Back

• If g satisfies the identification equation, then

$$g^{-1}(h_0(u), g^*(h_0(u), e)) = g^{-1}(h_1(u), g^*(h_1(u), e))$$

• Define $\pi(t) = h_1(h_0^{-1}(t))$, then

$$egin{aligned} g^{-1}(t,g^*(t,e)) &= g^{-1}(\pi(t),g^*(\pi(t),e)) \ &= g^{-1}(\pi(\pi(t)),g^*(\pi(\pi(t)),e)) \ &= g^{-1}(\pi^m(t),g^*(\pi^m(t),e)) \end{aligned}$$

- The sequence $t, \pi(t), \pi(\pi(t)), \cdots, \pi^m(t), \cdots$ is convergent.
- $g^{-1}(t, g^*(t, e))$ does not depend on t.

Regularity conditions

- Distributions of Y, T, and R detail
- Complexity of the parametric model detail
- Kernel functions detail
- Bandwidth detail
- First-step conditional quantile estimators detail

Proof

- uniform convergence results on the LLR estimators
- \odot consistency of $\hat{\gamma}$
- \odot initial bound on the convergence rate of $\hat{\gamma}$
- stochastic equicontinuity of the criterion function
- linearization of the criterion function
- asymptotic normality of the minimizer of the linearized criterion function
- **7** asymptotic normality of $\hat{\gamma}$

- The support of T does not vary with R except when crossing the cutoff \bar{r} , i.e., $\operatorname{Supp}(T|R=r)=[t_0',t_0'']$ for $r<\bar{r}$ and $\operatorname{Supp}(T|R=r)=[t_1',t_1'']$ for $r>\bar{r}$. The density functions $f_{T,R}^-$ and $f_{T,R}^+$ are bound away from zero.
- ② The density functions $f_{T,R}^-$ and $f_{T,R}^+$ are twice continuously differentiable, and $\frac{\partial^2}{\partial T^2} f_{T,R}^-(t,\bar{r})$ and $\frac{\partial^2}{\partial T^2} f_{T,R}^+(t,\bar{r})$ are Lipschitz continuous with respect to t.
- **③** The support of Y, \mathcal{Y} , is compact. The conditional distribution functions $F_{Y|T,R}^-$ and $F_{Y|T,R}^+$ are three-times continuously differentiable over $\mathcal{Y} \times [t_0', t_0''] \times [r_0, \bar{r}]$ and $\mathcal{Y} \times [t_1', t_1''] \times [\bar{r}, r_1]$, respectively.

The parametrization $\{g_{\gamma}(\cdot, \bar{r}, \cdot) : \gamma \in \Gamma\}$ satisfies the following conditions.

- **1** The parameter space Γ is compact.
- ② The class of functions $\{T\mapsto g_{\gamma}(T+v,\bar{r},e): \gamma\in\Gamma, v\in(-1,1), e\in\mathcal{E}\}$ is finite-dimensional.
- **3** The function $g_{\gamma}(t, \bar{r}, e)$ is twice continuously differentiable over $\gamma \in \Gamma$, $t \in [t'_0, t''_0] \cup [t'_1, t''_1]$, and $e \in \mathcal{E}$.
- **3** The gradient $\nabla_{\gamma} D_{\gamma^*,h^*}(e,u)$ is a vector of linearly independent functions of (e,u).

- The kernel functions k_T and k_R are (1) supported on [-1, 1], (2) strictly greater than zero in the interior of the support, (3) of bounded variation, (4) continuously differentiable on \mathbb{R} .
- ② The kernel function k_Y is (1) nonnegative and (2) integrable on $\mathbb R$ with $\int k_Y(y)dy=1$ and satisfies (3) $\int yk_Y(y)dy=0$.

Bandwidth

The bandwidth b_1 and b_2 satisfy the following conditions:

- ② $(n \log n)b_1^6 = o(1)$.

In particular, the optimal bandwidth $n^{-1/5}$ is allowed.

First-step conditional quantile estimators (1)

Monotonicity and smoothness: for every n sufficiently large, there exist C > 0 and deterministic and finite partitions \mathcal{P}_0^n and \mathcal{P}_1^n on (0,1) such that

$$\mathbb{P}\left(\hat{h}_0(ar{r},\cdot)
otin\mathcal{H}_0(\mathcal{P}_0^n)
ight), \mathbb{P}\left(\hat{h}_1(ar{r},\cdot)
otin\mathcal{H}_1(\mathcal{P}_1^n)
ight) = \mathcal{O}(\sqrt{b_1}),$$

where $\mathcal{H}_0(\mathcal{P}_0^n)$ includes functions that are strictly increasing with a three-times continuously differentiable inverse on each element of \mathcal{P}_0^n . $\mathcal{H}_1(\mathcal{P}_1^n)$ is defined analogously by replacing \mathcal{P}_0^n with \mathcal{P}_1^n .

First-step conditional quantile estimators (2)

Uniform Bahadur representation:

$$egin{aligned} \hat{h}_0(ar{r},u) - h_0(ar{r},u) &= b_1^2
u_0(u) + \mathcal{O}_p(b_1^3) \ &+ rac{1}{n b_1} \sum_{i=1}^n q_0(T_i,R_i;u) k_{\mathcal{Q},0} \left(rac{R_i - ar{r}}{b_1}
ight) \mathbf{1}\{R_i < ar{r}\} + o_p \Big(1/\sqrt{n b_1}\Big), \end{aligned}$$

uniformly over $u \in (0, 1)$. The same for \hat{h}_1 . The functions ν_0 and ν_1 are bounded. The functions q_0 and q_1 are (1) bounded, (2) centered, that is,

 $\mathbb{E}[q_0(T,R;u)|T,R] = \mathbb{E}[q_1(T,R;u)|T,R] = 0$, and (3) does not vary with n. The functions $k_{Q,0}$ and $k_{Q,1}$ are bounded.

First-step conditional quantile estimators (3)

Uniform convergence rate:

$$egin{aligned} \|\hat{h} - h\|_{\infty} &= \sup_{u \in (0,1)} |\hat{h}_0(ar{r},u) - h_0(ar{r},u)| ee |\hat{h}_1(ar{r},u) - h_1(ar{r},u)| \ &= O_p\left(\sqrt{\log n/(nb_1)} + b_1^2
ight). \end{aligned}$$