

Anul I, Semestrul II 2022

Laurențiu Leuștean

Pagina web: https://cs.unibuc.ro//~lleustean/Teaching/ 2022-LOGICMATH/index.html

Preliminarii

Operații cu mulțimi

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A - B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T - A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N}=\{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^*=\mathbb{N}\setminus\{0\}; \ \mathbb{Z}$ este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor reale; \mathbb{Q} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Exemplu.
$$\mathcal{P}(\emptyset) = \{\emptyset\}, \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}, \mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$$

Produsul cartezian

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Fie A și B mulțimi și $f:A \rightarrow B$ o funcție. Spunem că f este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor lui f sau codomeniul lui f.

Notație: Mulțimea funcțiilor de la A la B se notează Fun(A, B), B^A sau $(A \to B)$.

Fie $f: A \rightarrow B$ o funcție, $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Fie $f: A \rightarrow B$ o functie.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ▶ f este bijectivă dacă f este injectivă și surjectivă.

Funcții

Fie $f: A \to B$ şi $g: B \to C$ două funcții. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcția identică a lui A este $1_A: A \to A$, $1_A(x) = x$.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$. Funcția g este unică, se numește inversa lui f și se notează f^{-1} .

O funcție este bijectivă ddacă este inversabilă.

Fie $f: A \to A$. Pentru orice $n \in \mathbb{N}$, definim $f^n: A \to A$ astfel:

$$f^0 = 1_A$$
, $f^{n+1} = f^n \circ f$ pentru $n \ge 0$.

Funcția caracteristică

Fie A, T mulțimi a.î. $A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: T o \{0,1\}, \quad \chi_A(x) = egin{cases} 1 & \mathsf{dac} \ x \in A \ 0 & \mathsf{dac} \ x
otin A \end{cases}$$

Proprietăți

Dacă $A, B \subseteq T$ și $x \in T$ atunci

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{C_T A}(x) = 1 - \chi_A(x).$$

Observație

Funcția caracteristică se poate folosi pentru a arăta că două mulțimi sunt egale: A=B ddacă $\chi_A=\chi_B$.

Relații binare

Definiție

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A \times A$.

Exemple

ightharpoonup | \subset $\mathbb{N} \times \mathbb{N}$

$$|=\{(k,n)\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$$

ightharpoonup $< \subseteq \mathbb{N} \times \mathbb{N}$

$$<=\{(k,n)\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$$

Operații cu relații

Fie A. B. C multimi.

Definiție

▶ Dacă $R \subseteq A \times B$, atunci relația inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

▶ Dacă $R \subseteq A \times B$ și $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a,c) \mid \text{ există } b \in B \text{ a.î. } (a,b) \in R \text{ și } (b,c) \in Q\}.$$

▶ Diagonala lui A este $\Delta_A = \{(a, a) \mid a \in A\}$.

Exercițiu

- ► Compunerea relațiilor este asociativă.
- ▶ Dacă $R \subseteq A \times B$ atunci $R \circ \Delta_A = R$ și $\Delta_B \circ R = R$.

Relații binare

Fie A o mulțime nevidă și $R \subseteq A \times A$ o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiție

- ightharpoonup R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- ► R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy și yRz implică xRz.
- ightharpoonup R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Relații de echivalență

Definiție

Fie A o mulțime nevidă. O relație binară R pe A se numește relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Notații: Vom nota relațiile de echivalență cu \sim . Scriem $x \sim y$ dacă $(x,y) \in \sim$ și $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulțime nevidă și \sim o relație de echivalență pe A.

Definiție

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel: $[x] = \{y \in A \mid x \sim y\}$.

Relații de echivalență

Proprietăți

- $ightharpoonup A = \bigcup_{x \in A} [x].$
- $ightharpoonup [x] = [y] \ ddacă \ x \sim y.$
- ▶ $[x] \cap [y] = \emptyset$ ddacă $x \not\sim y$ ddacă $[x] \neq [y]$.

Definiție

Mulțimea tuturor claselor de echivalență distincte ale elementelor lui A se numeșt mulțimea cât a lui A prin \sim și se notează A/\sim . Aplicația $\pi:A\to A/\sim$, $\pi(x)=[x]$ se numește funcția cât.

► or

Relații de ordine

Definiție

Fie A o mulțime nevidă. O relație binară R pe A este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

Definitie

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Mulțimi parțial ordonate

Fie (A, \leq) o mulțime parțial ordonată.

Proprietăți

- Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.
- ▶ Relația < definită prin $x < y \iff x \le y$ și $x \ne y$ este relație de ordine strictă.
- ▶ Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulțime parțial ordonată.

Dem.: Exercițiu.

Mulțimi parțial ordonate

Fie (A, \leq) o mulțime parțial ordonată și $\emptyset \neq S \subseteq A$.

Definitie

Un element $e \in S$ se numește

- element minimal al lui S dacă pentru orice $a \in S$, a < e implică a = e;
- element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;
- ▶ cel mai mic element (sau minim) al lui S, notat min S, dacă $e \le a$ pentru orice $a \in S$;
- ▶ cel mai mare element (sau maxim) al lui S, notat max S, dacă $a \le e$ pentru orice $a \in S$.

Mulțimi parțial ordonate

Proprietăți

- ► Atât minimul, cât și maximul lui *S* sunt unice (dacă există).
- ▶ Dacă min S există, atunci min S este element minimal al lui S.
- ▶ Dacă max S există, atunci max S este element maximal al lui S.
- ▶ *S* poate avea mai multe elemente maximale sau minimale.
- ► Un element minimal (maximal) al lui *S* nu este în general minim (maxim) al lui *S*.

Dem.: Exercițiu.

Mulțimi parțial ordonate

Fie (A, \leq) o mulțime parțial ordonată și $\emptyset \neq S \subseteq A$.

Definiție

Un element $e \in A$ se numeste

- ▶ majorant al lui S dacă $a \le e$ pentru orice $a \in S$;
- ightharpoonup minorant al lui S dacă e < a pentru orice $a \in S$;
- supremum al lui S, notat sup S, dacă e este cel mai mic majorant al lui S;
- ▶ infimum al lui S, notat inf S, dacă e este cel mai mare minorant al lui S.

Proprietăți

- Atât mulţimea majoranţilor, cât şi mulţimea minoranţilor lui S pot fi vide.
- ► Atât supremumul, cât și infimumul lui *S* sunt unice (dacă există).

18

Mulțimi bine ordonate

Fie (A, \leq) o mulțime parțial ordonată.

Definiție

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

Exemple

 (\mathbb{N}, \leq) este bine ordonată, dar (\mathbb{Z}, \leq) nu este bine ordonată.

Observație

Orice mulțime bine ordonată este total ordonată.

Mulțimi inductiv ordonate

Fie (A, \leq) o mulțime parțial ordonată.

Definiție

 (A, \leq) se numește inductiv ordonată dacă orice submulțime total ordonată a sa admite un majorant.

Lema lui Zorn

Orice mulțime inductiv ordonată are un element maximal.

• un instrument foarte util în demonstrații.

Fie / o multime nevidă.

Fie A o multime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Dacă $A_i \cap A_j = \emptyset$ pentru orice $i, j \in I, i \neq j$, spunem că $\bigcup_{i \in I} A_i$ este o reuniune disjunctă.

Produsul cartezian al unei familii

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, aplicația $\pi_i : \prod_{i \in I} A_i \to A_i$, $\pi_i((x_i)_{i \in I}) = x_i$ se numește proiecție canonică a lui $\prod_{i \in I} A_i$. π_i este surjectivă.

Exercițiu. Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I}A_i\times\bigcup_{j\in J}B_j=\bigcup_{(i,j)\in I\times J}A_i\times B_j \text{ si }\bigcap_{i\in I}A_i\times\bigcap_{j\in J}B_j=\bigcap_{(i,j)\in I\times J}A_i\times B_j.$$

Fie *n* număr natural, n > 1, $I = \{1, \ldots, n\}$ si $A_1, \ldots, A_n \subset T$.

- $(x_i)_{i \in I} = (x_1, \dots, x_n), \text{ un } \underbrace{n\text{-tuplu (ordonat)}}_{n \text{-tuplu }}$ $\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$

Definiție

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^{n} A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Axioma alegerii

Axioma alegerii (în engleză Axiom of Choice) (AC)

Dacă $(A_i)_{i \in I}$ este o familie de mulțimi nevide, atunci există o funcție f_C care asociază la fiecare $i \in I$ un element $f_C(i) \in A_i$.

- ► formulată de Zermelo (1904)
- ▶ a provocat discuții aprinse datorită caracterului său neconstructiv: nu există nicio regulă pentru a construi funcția alegere f_C .

Reformulare

Următoarea afirmație este echivalentă cu Axioma alegerii: Dacă $(A_i)_{i \in I}$ este o familie de mulțimi nevide, atunci $\prod_{i \in I} A_i$ este o multime nevidă.

Axioma alegerii

- ▶ Gödel (1940) a demonstrat că axioma alegerii este consistentă cu ZF.
- ➤ Cohen (1963) a demonstrat că negația axiomei alegerii este consistentă cu ZF. Prin urmare, axioma alegerii este independentă de ZF. Cohen a primit în 1966 Medalia Fields.

Următoarele afirmații sunt echivalente cu Axioma alegerii:

- ► Lema lui Zorn
- Principiul bunei ordonări: Orice mulțime nevidă X poate fi bine ordonată (adică, pentru orice X există o relație binară \leq pe X a.î. (X, \leq) este mulțime bine ordonată).

H. Rubin, J. Rubin, Equivalents of the Axiom of Choice II, North Holland, Elsevier, 1985

Echipotență

Definiția 1.1

Spunem că A este echipotentă cu B dacă există o bijecție $f: A \rightarrow B$. Notație: $A \sim B$.

Propoziția 1.2

Pentru orice mulțimi A, B, C au loc:

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Mulțimi finite, numărabile

Definiția 1.3

O mulțime A se numește finită dacă $A=\emptyset$ sau dacă există $n\in\mathbb{N}^*$ a.î. A este echipotentă cu $\{0,1,\ldots,n-1\}$. În acest caz, notăm cu |A| numărul elementelor lui A.

O mulțime care nu este finită se numește infinită.

Definiția 1.4

O mulțime A este numărabilă dacă este echipotentă cu \mathbb{N} .

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple

- $ightharpoonup \mathbb{Z}$, $\mathbb{N} \times \mathbb{N}$ și \mathbb{Q} sunt numărabile.
- ▶ Orice submulțime infinită a lui N este numărabilă.

Teoremă Cantor

 $\mathcal{P}(\mathbb{N})$ nu este mulțime numărabilă.

Cardinale

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Definiția 2.1

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ► |A| este unic determinat de A.
- ▶ pentru orice mulțimi A, B, avem că |A| = |B| ddacă $A \sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei mulțimi A.

Cardinale

Prin urmare, este naturală întrebarea dacă există cardinale.

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a mulțimilor. Conform acestei definiții, pentru orice mulțime A, |A| este tot o mulțime.

Colecția tuturor cardinalelor nu este mulțime, ci clasă. Vom nota cu Card clasa tuturor cardinalelor.

Notăm cardinalele cu α , β , γ , κ ,

Cardinale

Definiția 2.2

 α este cardinal ddacă există o mulțime A a.î. $\alpha = |A|$. Spunem, în acest caz, că A este un reprezentant al lui α .

Desigur, orice mulțime echipotentă cu A este, de asemenea, reprezentant al lui α .

Definiția 2.3

Fie $\alpha = |A|$ un cardinal. Dacă A este finită (respectiv infinită), spunem că α este un cardinal finit (respectiv cardinal infinit).

Notatii

- Notăm $0 := |\emptyset|$ și, pentru orice $n \ge 1$, $n := |\{0, 1, \dots, n-1\}|$.
- \triangleright $|\mathbb{N}|$ se notează \aleph_0 (se citește *alef zero*).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.

Cardinale

Observația 2.4

- (i) O mulțime A este finită ddacă există $n \in \mathbb{N}$ a.î. n = |A|. Prin urmare, putem identifica cardinalul |A| cu numărul elementelor lui A.
- (ii) O mulțime A este numărabilă ddacă $|A| = \aleph_0$.

Observația 2.5

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă. Prin urmare, $|Fun(\emptyset, A)| = 1$.
- (ii) Pentru orice mulțime nevidă A, $Fun(A, \emptyset) = \emptyset$, deci $|Fun(A, \emptyset)| = 0$.

Cardinale - relația de ordine

Definiția 2.6

Definim următoarea relație: pentru orice cardinale $\alpha = |A|$, $\beta = |B|$,

 $\alpha \leq \beta \iff \text{există o funcție injectivă } f: A \rightarrow B.$

Observația 2.7

Definiția relației < nu depinde de reprezentanți.

Dem.: Fie $\alpha=|A|=|A'|$, $\beta=|B|=|B'|$. Considerăm bijecțiile $u:A\to A'$ și $v:B\to B'$. Demonstrăm că

 $\alpha \leq \beta \iff \text{există o funcție injectivă } g: A' \to B'.$

 \Rightarrow Fie $f:A \rightarrow B$ o funcție injectivă. Atunci

 $g := v \circ f \circ u^{-1} : A' \to B'$ este injectivă.

 \Leftarrow Avem că $f := v^{-1} \circ g \circ u : A \to B$ este injectivă.

Deci, definiția nu depinde de reprezentanții A și B.

Cardinale - relația de ordine

Relației \leq se asociază o nouă relație, definită astfel:

$$\alpha < \beta \iff \alpha < \beta \text{ si } \alpha \neq \beta.$$

Propoziția 2.8

- (i) Pentru orice mulțimi A, B, dacă $A \subseteq B$, atunci $|A| \le |B|$.
- (ii) Pentru orice cardinal finit α , avem că $\alpha < \aleph_0$.
- (iii) Pentru orice mulțime A și orice cardinal α , dacă $\alpha \leq |A|$, atunci există o submulțime B a lui A a.î. $|B| = \alpha$.
- (iv) $0 < \alpha$ pentru orice cardinal α .
- (v) $1 \le \alpha$ pentru orice cardinal $\alpha \ne 0$.
- (vi) Relația ≤ este reflexivă și tranzitivă.

Dem.: Exercițiu.

Cardinale - relația de ordine

Următorul rezultat este fundamental.

Teorema 2.9 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există $f:A\to B$ şi $g:B\to A$ funcții injective. Atunci $A\sim B$.

Dem.: (Schită). Pentru orice n > 0, definim

$$h_n := (g \circ f)^n : A \to A, \quad A_n := h_n(A) \subset A, \quad B_n := h_n(g(B)) \subset A.$$

Evident, $h_0=1_A$, $A_0=A$ și $B_0=g(B)$. De asemenea, h_n este injectivă pentru orice $n\in\mathbb{N}$ și $h_m\circ h_n=h_{m+n}$ pentru orice $m,n\in\mathbb{N}$.

Afirmația 1: Pentru orice $n \in \mathbb{N}$, $B_{n+1} \subseteq A_{n+1} \subseteq B_n \subseteq A_n$. Prin urmare, $(A_n)_{n \in \mathbb{N}}$ și $(B_n)_{n \in \mathbb{N}}$ sunt șiruri descrescătoare de mulțimi a.î. $\bigcap_{n \geq 0} A_n = \bigcap_{n \geq 0} B_n$.

Dem.: Exercițiu suplimentar.

Cardinale - relația de ordine

Introducem următoarele notații:

$$C:=\bigcap_{n\geq 0}A_n$$
 și, pentru orice $n\in\mathbb{N},\ A_n':=A_n-B_n,\ B_n':=B_n-A_{n+1}.$

Deoarece h_n, g sunt injective, avem că

$$A'_{n} = A_{n} - B_{n} = h_{n}(A) - h_{n}(g(B)) = h_{n}(A - g(B)),$$

$$B'_{n} = B_{n} - A_{n+1} = h_{n}(g(B)) - h_{n+1}(A)$$

$$= (h_{n} \circ g)(B) - (h_{n} \circ g)(f(A)) = (h_{n} \circ g)(B - f(A))$$

pentru orice $n \in \mathbb{N}$. Se observă ușor că mulțimile C, $\bigcup_{n \geq 0} A'_n$ și $\bigcup_{n \geq 0} B'_n$ sunt disjuncte două câte două.

Afirmația 2: $A = C \cup \bigcup_{n>0} A'_n \cup \bigcup_{n>0} B'_n$.

Dem.: Exercițiu suplimentar.

Cardinale - relația de ordine

Definim

$$\Phi: A \to B, \ \Phi(a) = \begin{cases} f(a) & \text{dacă } a \in C \cup \bigcup_{n \geq 0} A'_n \\ b & \text{dacă } a \in \bigcup_{n \geq 0} B'_n \text{ și } b \text{ este unicul element} \\ & \text{din } B \text{ a.î. } g(b) = a. \end{cases}$$

Observăm că Φ e bine definită pe a doua ramură: deoarece

$$\bigcup_{n>0} B'_n \subseteq \bigcup_{n>0} B_n = B_0 = g(B),$$

avem, în acest caz, $a \in g(B)$. Din injectivitatea funcției g, rezultă că există un unic $b \in B$ a.î. g(b) = a.

Afirmația 3: Φ este bijectivă.

Dem.: Exercițiu suplimentar.

Prin urmare, $A \sim B$.

Cardinale - relația de ordine

O reformulare a Teoremei Cantor-Schröder-Bernstein este

Teorema 2.10

Relația \leq este antisimetrică, adică pentru orice cardinale α , β avem:

$$\alpha \leq \beta$$
 și $\beta \leq \alpha$ implică $\alpha = \beta$.

Dem.: Fie $\alpha = |A|$ și $\beta = |B|$. Atunci

- $ightharpoonup \alpha < \beta$ ddacă există o funcție injectivă $f: A \to B$.
- ▶ $\beta < \alpha$ ddacă există o funcție injectivă $g : B \rightarrow A$.
- $ightharpoonup \alpha = \beta$ ddacă $A \sim B$.

Cardinale - relația de ordine

Teorema 2.11

Relația \leq este totală, adică pentru orice cardinale α , β avem că $\alpha \leq \beta$ sau $\beta \leq \alpha$.

Dem.: Fie $\alpha = |A|$ și $\beta = |B|$. Definim

$$\mathcal{F} = \{(X, f) \mid X \subseteq A \text{ si } f : X \to B \text{ este funcție injectivă}\}.$$

Evident, \mathcal{F} este nevidă. Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) \leq (X_2, f_2) \iff X_1 \subseteq X_2 \text{ și } f_2|_{X_1} = f_1.$$

Se observă ușor că (\mathcal{F}, \leq) este o mulțime parțial ordonată.

Cardinale - relația de ordine

Afirmația 1: (\mathcal{F}, \leq) este inductiv ordonată.

Dem.: Exercițiu.

Aplicând Lema lui Zorn, obținem că \mathcal{F} are un element maximal (Y,g). Deoarece $Y\subseteq A$ și $g:Y\to B$ este injectivă, avem că $|Y|\leq \alpha$ și $|Y|\leq \beta$. Distingem următoarele două cazuri:

- ▶ g este surjectivă. Atunci g este bijectivă, deci |Y| = |B|. Obținem că $\beta = |B| = |Y| \le \alpha$.
- ▶ g nu este surjectivă. Atunci există $b \in B g(Y)$. Dacă $Y \neq A$, luăm $a \in A Y$ și definim funcția $f : Y \cup \{a\} \rightarrow B$ astfel:

$$f|_Y = g \text{ si } f(a) = b.$$

Se observă ușor că $(Y \cup \{a\}, f) \in \mathcal{F}$ și $(Y, g) < (Y \cup \{a\}, f)$, ceea ce este o contradicție cu faptul că (Y, g) este element maximal al lui \mathcal{F} . Prin urmare, trebuie să avem Y = A. Rezultă atunci că $\alpha = |A| = |Y| \le \beta$.

Cardinale - relația de ordine

Teorema 2.12

Relația ≤ este o relație de ordine totală.

Dem.: Exercițiu.

Rezultă ușor că

Corolar 2.13

Relația < este o relație de ordine strictă.

Dem.: Exercițiu.

4

Cardinale - relația de ordine

Propoziția 2.14

Pentru orice mulțime infinită A, $\aleph_0 \leq |A|$. Prin urmare, orice mulțime infinită are o submulțime numărabilă.

Dem.: Definim inductiv șirul $(a_n)_{n\in\mathbb{N}}$ din A cu proprietatea că $a_i \neq a_j$ pentru orice $i, j \in \mathbb{N}, i \neq j$.

Deoarece A este nevidă, există $a_0 \in A$.

Cum A este infinită, $A - \{a_0\}$ este nevidă, deci există $a_1 \in A$ a.î. $a_1 \neq a_0$.

Cum A este infinită, $A - \{a_0, a_1\}$ este nevidă, deci există $a_2 \in A$ a.î. $a_2 \neq a_0$ și $a_2 \neq a_1$.

În general, presupunem că am definit $a_0, \ldots, a_n \in A$ distincte două câte două. Cum A este infinită, $A - \{a_0, \ldots, a_n\}$ este nevidă, deci există $a_{n+1} \in A$ diferit de toți a_0, \ldots, a_n .

Cardinale - relația de ordine

Definind funcția $f: \mathbb{N} \to A$ prin $f(n) = a_n$ pentru orice $n \in \mathbb{N}$, rezultă că f este injectivă. Prin urmare, $\aleph_0 \leq |A|$.

Deoarece f este injectivă, avem că $f(\mathbb{N}) \sim \mathbb{N}$. Rezultă că $f(\mathbb{N})$ este o submulțime numărabilă a lui A.

Propoziția 2.15

Fie α un cardinal finit și β un cardinal infinit. Atunci $\alpha < \beta$.

Dem.: Exercițiu.

Propoziția 2.16

Fie A o mulțime infinită și $F \subseteq A$ o submulțime finită a sa. Atunci |A - F| = |A|.

Dem.: Exercițiu.

Suma cardinalelor

Definiția 2.17

Fie $\alpha = |A|$ şi $\beta = |B|$ două cardinale, reprezentanții A şi B fiind aleşi $a.\hat{i}. A \cap B = \emptyset$. Definim suma cardinalelor α şi β prin

$$\alpha + \beta := |A \cup B|.$$

Observația 2.18

Observăm mai întâi că pentru orice cardinale α , β putem alege mulțimi A, B cu $|A|=\alpha$, $|B|=\beta$ și $A\cap B=\emptyset$. Într-adevăr, dacă $\alpha=|U|$ și $\beta=|V|$, atunci luăm $A=U\times\{1\}$ și $B=V\times\{2\}$.

Observația 2.19

Definiția operației + nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$ cu $A \cap B = A' \cap B' = \emptyset$. Considerăm bijecțiile $u : A \to A'$ și $v : B \to B'$. Definim

$$f:A\cup B o A'\cup B',\quad f(x)=egin{cases} u(x) & ext{dacă}\ x\in A\ v(x) & ext{dacă}\ x\in B. \end{cases}$$

Se demonstrează ușor că f este bijectivă. Prin urmare, $\alpha + \beta = |A \cup B| = |A' \cup B'|$.

Suma cardinalelor

Propoziția 2.20

- (i) 0 este element neutru al lui +.
- (ii) Operația + este comutativă și asociativă.
- (iii) Pentru orice cardinale α , β , γ ,

$$\beta \leq \gamma \text{ implică } \alpha + \beta \leq \alpha + \gamma.$$

În particular, $\alpha \leq \alpha + \gamma$.

Dem.: Exercițiu.

Suma cardinalelor

Propoziția 2.21

Pentru orice cardinal infinit α , avem $\alpha + \alpha = \alpha$.

Dem.: Fie $\alpha = |A|$. Definim

 $\mathcal{F} = \{(X, f) \mid \emptyset \neq X \subseteq A \text{ si } f : X \times \{0, 1\} \rightarrow X \text{ este funcție bijectivă}\}.$

Afirmația 1: \mathcal{F} este nevidă.

Dem.: Deoarece A este infinită, putem aplica Propoziția 2.14 pentru a obține o submulțime numărabilă $X = \{x_n \mid n \in \mathbb{N}\}$ a lui A. Definim

$$f: X \times \{0,1\} \to X$$
, $f(x_n,0) = x_{2n}$, $f(x_n,1) = x_{2n+1}$.

Se observă ușor că f este bijecție. Prin urmare, $(X, f) \in \mathcal{F}$.

Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) \leq (X_2, f_2) \Longleftrightarrow X_1 \subseteq X_2 \text{ si } f_2|_{X_1 \times \{0,1\}} = f_1.$$

Suma cardinalelor

Se observă ușor că (\mathcal{F},\leq) este o mulțime parțial ordonată.

Afirmația 2: (\mathcal{F}, \leq) este inductiv ordonată.

Demonstrație: Fie $\mathcal{G} = (X_i, f_i)_{i \in I}$ o submulțime total ordonată a lui \mathcal{F} . Fie $X := \bigcup_{i \in I} X_i \subseteq A$. Definim $f : X \times \{0, 1\} \to X$ astfel:

dacă
$$x \in X$$
, alegem un $i \in I$ a.î. $x \in X_i$ și definim $f(x,t) = f_i(x,t)$ pentru orice $t \in \{0,1\}$.

Definiția lui f este corectă, deoarece pentru orice $i,j \in I, i \neq j$, dacă $x \in X_i \cap X_j$, atunci $f_i(x,t) = f_j(x,t)$. De asemenea, se observă ușor că $(X_i,f_i) \leq (X,f)$ pentru orice $i \in I$. Rămâne să mai arătăm că f este bijectivă.

Suma cardinalelor

Demonstrăm că f este surjectivă. Fie $y \in X$ arbitrar. Atunci există $i \in I$ a.î. $y \in X_i$. Deoarece f_i este surjectivă, există $x \in X_i$, $t \in \{0,1\}$ a.î. $f_i(x,t) = y$. Conform definiției lui f, rezultă că $f(x,t) = f_i(x,t) = y$.

Demonstrăm că f este injectivă. Fie $x,y\in X,s,t\in\{0,1\}$ a.î. f(x,s)=f(y,t). Atunci există $i,j\in I$ a.î. $x\in X_i$ și $y\in X_j$. Rezultă că $f(x,s)=f_i(x,s)$ și $f(y,t)=f_j(y,t)$, deci $f_i(x,s)=f_j(y,t)$. Deoarece $\mathcal G$ este total ordonată, avem următoarele două posibilități:

- ▶ $(X_i, f_i) \le (X_j, f_j)$. Atunci $x \in X_i \subseteq X_j$ și $f_j|_{X_i \times \{0,1\}} = f_i$, deci $f_j(x, s) = f_i(x, s)$. Obținem că $f_j(x, s) = f_j(y, t)$. Deoarece f_j este injectivă, rezultă că x = y și s = t.
- $(X_j, f_j) \le (X_i, f_i)$. Se demonstrează similar că x = y și s = t.

Suma cardinalelor

Aplicând Lema lui Zorn, obţinem că \mathcal{F} are un element maximal (Y,g). Aşadar, $\emptyset \neq Y \subseteq A$ şi $g: Y \times \{0,1\} \to Y$ este bijecţie, deci $|Y \times \{0,1\}| = |Y|$.

Afirmația 3: A - Y este finită

Demonstrație: Presupunem că A-Y este infinită. Din Propoziția 2.14, rezultă că A-Y are o submulțime numărabilă C. Obținem, ca în demonstrația Afirmației 1, o bijecție $h: C \times \{0,1\} \to C$. Definim

$$p: (Y \cup C) imes \{0,1\} o Y \cup C, \quad p(x,t) = egin{cases} g(x,t) & \mathsf{dac} \ x \in Y \ h(x,t) & \mathsf{dac} \ x \in C. \end{cases}$$

Deoarece g și h sunt bijecții, se arată ușor că p este, de asemenea, bijecție. Rezultă că $(Y \cup C, p) \in \mathcal{F}$ și $(Y, g) < (Y \cup C, p)$, ceea ce contrazice maximalitatea lui (Y, g). Prin urmare, A - Y este finită.

Suma cardinalelor

Aplicând Propoziția 2.16, avem că $|Y| = |A - (A - Y)| = |A| = \alpha$. Obținem

$$\alpha = |Y| = |Y \times \{0, 1\}| = |(Y \times \{0\}) \cup (Y \times \{1\})|$$

= |Y \times \{0\}| + |Y \times \{1\}| = |Y| + |Y| = \alpha + \alpha.

Propoziția 2.22

Dacă α și β sunt cardinale cu α infinit și $\beta \leq \alpha$, atunci $\alpha + \beta = \alpha$.

Dem.: Exercițiu.

Propoziția 2.23

Fie α , β cardinale a.î. cel puţin unul dintre ele este infinit. Atunci $\alpha + \beta = \max\{\alpha, \beta\}$.

Dem.: Exercițiu.

Produsul cardinalelor

Definiția 2.24

Fie $\alpha = |A|$ și $\beta = |B|$ două cardinale. Definim produsul cardinalelor α și β prin

$$\alpha \cdot \beta := |A \times B|.$$

Observația 2.25

Definiția operației · nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$. Considerăm bijecțiile $u: A \to A'$ și $v: B \to B'$. Definim

$$f: A \times B \rightarrow A' \times B', \quad f(a,b) = (u(a), v(b)).$$

Se demonstrează ușor că f este bijectivă. Prin urmare, $\alpha \cdot \beta = |A \times B| = |A' \times B'|$.

Produsul cardinalelor

Propoziția 2.26

- (i) $0 \cdot \alpha = \alpha \cdot 0 = 0$ pentru orice cardinal α .
- (ii) 1 este element neutru al lui ·.
- (iii) Pentru orice cardinale α , β , γ ,

$$\beta \leq \gamma$$
 implică $\alpha \cdot \beta \leq \alpha \cdot \gamma$.

- (iv) Pentru orice cardinale α , β a.î. $\beta \neq 0$, $\alpha < \alpha \cdot \beta$.
- (v) Operația · este comutativă, asociativă și distributivă față de +.

Dem.: Exercițiu.

-

Produsul cardinalelor

Propoziția 2.27

Pentru orice cardinal infinit α , avem $\alpha \cdot \alpha = \alpha$.

Dem.: Fie $\alpha = |A|$. Definim

 $\mathcal{F} = \{(X, f) \mid X \subseteq A, X \text{ infinită } \text{ si } f : X \to X \times X \text{ este funcție bijectivă} \}.$

Afirmația 1: \mathcal{F} este nevidă.

Demonstrație: Deoarece A este infinită, putem aplica Propoziția 2.14 pentru a obține o submulțime numărabilă $B\subseteq A$. Prin urmare, există o bijecție $g:B\to\mathbb{N}$. Deoarece $\mathbb{N}\times\mathbb{N}$ este numărabilă, există o bijecție $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$. Definim

$$h: B \times B \rightarrow B, \quad h(x,y) = (g^{-1} \circ f)(g(x), g(y)).$$

Se arată ușor că h este bijecție. Rezultă că $(B, h^{-1}) \in \mathcal{F}$.

Produsul cardinalelor

Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) < (X_2, f_2) \iff X_1 \subseteq X_2 \text{ si } f_2|_{X_1} = f_1.$$

Se observă ușor că (\mathcal{F}, \leq) este o mulțime parțial ordonată.

Afirmația 2: (\mathcal{F}, \leq) este inductiv ordonată.

Dem.: Exercițiu.

Aplicând Lema lui Zorn, obținem că \mathcal{F} are un element maximal (Y,g). Fie $\beta:=|Y|$. Cum Y este o submulțime infinită a lui A, avem că β este un cardinal infinit și $\beta \leq \alpha$. Deoarece $g:Y \to Y \times Y$ este bijecție, avem că

(*)
$$\beta = |Y| = |Y \times Y| = |Y| \cdot |Y| = \beta \cdot \beta$$
.

Afirmația 3: $\beta = \alpha$.

Dem.: Exercițiu suplimentar.

Aplicăm acum (*) pentru a conclude că $\alpha \cdot \alpha = \alpha$.

Produsul cardinalelor

Definim inductiv α^n pentru orice $n \in \mathbb{N}^*$ astfel:

$$\alpha^1 = \alpha, \quad \alpha^{n+1} = \alpha^n \cdot \alpha.$$

Propoziția 2.28

Pentru orice cardinal infinit α și orice $n \in \mathbb{N}^*$, $\alpha^n = \alpha$.

Dem.: Exercițiu.

Propoziția 2.29

Dacă α și β sunt cardinale cu α infinit și $0 \neq \beta \leq \alpha$, atunci $\alpha \cdot \beta = \alpha$.

Produsul cardinalelor

Propoziția 2.30

Fie α , β cardinale nenule a.î. cel puțin unul dintre ele este infinit. Atunci $\alpha \cdot \beta = \max\{\alpha, \beta\}$.

Dem.: Presupunem că α este infinit. Deoarece \leq este totală, avem următoarele două cazuri:

- ▶ $\beta \leq \alpha$. Atunci $\max\{\alpha, \beta\} = \alpha$ și $\alpha \cdot \beta = \alpha$, conform Propoziției 2.29.
- ▶ $\alpha \leq \beta$. Atunci β este, de asemenea, infinit, $\max\{\alpha, \beta\} = \beta$ și $\alpha \cdot \beta = \beta \cdot \alpha = \beta$, conform Propoziției 2.29.

Exponențierea cardinalelor

Definiția 2.31

Fie $\alpha = |A|$ și $\beta = |B|$ două cardinale. Definim

$$\alpha^{\beta} := |A^{B}| = |Fun(B, A)|.$$

Observația 2.32

Definiția lui α^{β} nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$. Considerăm bijecțiile $u: A \to A'$ și $v: B \to B'$. Definim $\Phi: Fun(B, A) \to Fun(B', A')$ astfel:

pentru orice funcție $f: B \to A$, $\Phi(f) := u \circ f \circ v^{-1}: B' \to A'$.

Se demonstrează ușor că Φ este inversabilă, inversa sa fiind

$$\Psi: Fun(B',A') \rightarrow Fun(B,A), \quad \Psi(g) = u^{-1} \circ g \circ v$$

Prin urmare, $\alpha^{\beta} = |Fun(B, A)| = |Fun(B', A')|$.

Exponențierea cardinalelor

Observația 2.33

- (i) Pentru orice cardinal α , $1^{\alpha} = 1$, $\alpha^{0} = 1$.
- (ii) Pentru orice cardinal nenul α , $0^{\alpha} = 0$.

Dem.: Exercițiu.

Lema 2.34

Fie A, B, C mulțimi. Atunci

- (i) $Fun(A, Fun(B, C)) \sim Fun(A \times B, C)$.
- (ii) $Fun(A, B \times C) \sim Fun(A, B) \times Fun(A, C)$.
- (iii) Dacă în plus $A \cap B = \emptyset$, atunci Fun $(A \cup B, C) \sim Fun(A, C) \times Fun(B, C)$.

Dem.: Exercițiu.

Exponențierea cardinalelor

Propoziția 2.35

Fie α , β , γ cardinale arbitrare.

(i)
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
, $(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$ și $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.

(ii) Dacă $\alpha < \beta$, atunci $\alpha^{\gamma} < \beta^{\gamma}$.

Dem.: Exercițiu.

Propoziția 2.36

Fie α un cardinal infinit și β un cardinal a.î. $2 \le \beta \le 2^{\alpha}$. Atunci $\beta^{\alpha} = 2^{\alpha}$.

Exponențierea cardinalelor

Propoziția 2.37

Fie α un cardinal.

(i) Pentru orice reprezentant A al lui α , are loc $|\mathcal{P}(A)| = 2^{\alpha}$.

(ii) $\alpha < 2^{\alpha}$.

Dem.: Fie $\alpha = |A|$.

(i) Avem că $2^{\alpha} = |Fun(A, \{0, 1\})|$. Definim

$$\Psi: \mathcal{P}(A) \to \operatorname{Fun}(A, \{0, 1\}), \quad \Psi(B) = \chi_B,$$

unde χ_B este funcția caracteristică a submulțimii B a lui A. Se demonstrează ușor că Ψ este bijectivă.

(ii) Deoarece funcția $f:A\to \mathcal{P}(A), \ f(a)=\{a\}$ este injectivă, avem că $\alpha\leq 2^{\alpha}$. Conform (S1.1), nu există funcții surjective cu domeniul A și codomeniul $\mathcal{P}(A)$. Rezultă că $\alpha\neq 2^{\alpha}$. Prin urmare, $\alpha<2^{\alpha}$.

Cardinale

Propoziția 2.38

Fie α un număr cardinal și $(A_i)_{i\in I}$ o familie de mulțimi a.î. $|A_i| \leq \alpha$ pentru orice $i \in I$. Atunci

$$\left|\bigcup_{i\in I}A_i\right|\leq \alpha\cdot |I|.$$

Dem.: Fie $\alpha = |A|$. Pentru orice $i \in I$, deoarece $|A_i| \le \alpha$, există o funcție injectivă $f_i : A_i \to A$.

Definim $f: \bigcup_{i \in I} A_i \to A \times I$ astfel:

dacă $a \in \bigcup_{i \in I} A_i$, alegem $i_a \in I$ cu $a \in A_{i_a}$ și definim $f(a) = (f_{i_a}(a), i_a)$.

Rezultă ușor că f este injectivă: dacă $a, b \in \bigcup_{i \in I} A_i$ sunt a.î. $(f_{i_a}(a), i_a) = (f_{i_b}(b), i_b)$, atunci $i_a = i_b$ și $f_{i_a}(a) = f_{i_b}(b)$. Rezultă că $f_{i_a}(a) = f_{i_a}(b)$, deci a = b, deoarece f_{i_a} este injectivă.

Prin urmare, $\left|\bigcup_{i\in I}A_i\right|\leq |A\times I|=\alpha\cdot |I|$.

Cardinale

Propoziția 2.39

Fie $\alpha = |A|$, $\beta = |B|$ două cardinale nenule. Următoarele afirmații sunt echivalente:

- (i) $\alpha \leq \beta$.
- (ii) Există o funcție surjectivă $g: B \rightarrow A$.

Dem.: (i) \Rightarrow (ii) Fie $f: A \rightarrow B$ injectivă. Fixăm $a_0 \in A$. Definim

$$g:B o A,\quad g(b)= egin{cases} a_0 & ext{dacă}\ b\in B-f(A)\ a & ext{dacă}\ b\in f(A)\ ext{și}\ a\ ext{este}\ ext{unicul}\ ext{element}\ ext{din}\ A\ ext{a.î.}\ f(a)=b. \end{cases}$$

Deoarece f este injectivă, g este bine definită. De asemenea, se observă imediat că g este surjectivă.

Cardinale

(ii) \Rightarrow (i) Fie $g: B \rightarrow A$ surjectivă. Pentru fiecare $a \in A$, alegem un element $b_a \in B$ a.î. $g(b_a) = a$. Definim

$$f:A\to B,\quad f(a)=b_a.$$

Se arată ușor că f este injectivă: dacă $a_1, a_2 \in A$ a.î. $b_{a_1} = b_{a_2}$, atunci $a_1 = g(b_{a_1}) = g(b_{a_2}) = a_2$. Prin urmare, $\alpha \leq \beta$.

Propoziția 2.40

Pentru orice mulțime infinită A, $|\bigcup_{n\in\mathbb{N}^*} A^n| = |A|$.

Propoziția 2.41

Fie A o mulțime infinită și $\mathcal{P}_f(A)$ mulțimea tuturor submulțimilor finite ale lui A. Atunci $|\mathcal{P}_f(A)| = |A|$.

Dem.: Definim funcția $g: A \to \mathcal{P}_f(A)$, $g(a) = \{a\}$. Deoarece g este injectivă, rezultă că

$$|A| \leq |\mathcal{P}_f(A)|$$
.

Prin urmare, $\mathcal{P}_f(A)$ este o mulțime infinită. Fie $\mathcal{P}' = \mathcal{P}_f(A) - \{\emptyset\}$. Conform Propoziției 2.16, avem că $|\mathcal{P}'| = |\mathcal{P}_f(A)|$.

Definim $h: \bigcup_{n\in\mathbb{N}^*} A^n \to \mathcal{P}'$ astfel:

dacă $a=(a_1,\ldots,a_n)\in A^n\ (n\geq 1)$, atunci h(a)=A', unde A' este mulțimea obținută luând toți a_i diferiți.

Se observă ușor că h este surjectivă. Aplicând Propozițiile 2.39 și 2.40, rezultă că $|\mathcal{P}_f(A)| = |\mathcal{P}'| \leq \left|\bigcup_{n \in \mathbb{N}^*} A^n\right| = |A|$. Aplicăm Teorema Cantor-Schröder-Bernstein.

(iii) Fie I o mulțime cel mult numărabilă (deci $|I| \leq \aleph_0$) și $(A_i)_{i \in I}$ o familie de mulțimi cel mult numărabile. Rezultă că $|A_i| \leq \aleph_0$ pentru orice $i \in I$. Obținem

$$\left| \bigcup_{i \in I} A_i \right| \leq \aleph_0 \cdot |I| \quad \text{conform Propoziției 2.38}$$

$$\leq \aleph_0 \cdot \aleph_0 \quad \text{din Propoziția 2.26.(iii)}$$

$$= \aleph_0 \quad \text{din Propoziția 2.27.}$$

- (iv) $\mathbb{Z} = \mathbb{N} \cup A$, unde $A = \bigcup_{n \in \mathbb{N}^*} \{-n\}$. Aplicăm (iii) de două ori pentru a obține că A este cel mult numărabilă și, apoi, că \mathbb{Z} este cel cel mult numărabilă. Cum \mathbb{Z} este infinită, avem că \mathbb{Z} este numărabilă.
- (v) Pentru orice $n \in \mathbb{N}^*$, fie $A_n := \{ \frac{m}{n} \mid m \in \mathbb{Z} \}$ și $f_n : \mathbb{Z} \to A_n$, $f_n(m) = \frac{m}{n}$. Este evident că f_n este bijectivă, deci A_n este numărabilă pentru orice $n \in \mathbb{N}^*$. Deoarece $\mathbb{Q} = \bigcup_{n \in \mathbb{N}^*} A_n$, aplicăm (iii) și faptul că \mathbb{Q} este infinită.

Cardinale - numărabilitate

Propoziția 2.42

- (i) Dacă A este numărabilă, atunci A^k este numărabilă pentru orice $k \in \mathbb{N}^*$.
- (ii) Orice submulțime infinită a unei mulțimi numărabile este numărabilă.
- (iii) O reuniune cel mult numărabilă de mulțimi cel mult numărabile este cel mult numărabilă.
- (iv) \mathbb{Z} este numărabilă.
- (v) ℚ este numărabilă.

Dem.:

- (i) Avem că $|A| = \aleph_0$. Prin urmare, $|A^k| = \aleph_0^k = \aleph_0$, conform Propoziției 2.28.
- (ii) Fie B o mulțime numărabilă și $A\subseteq B$ o mulțime infinită. Atunci $|A|\leq |B|=\aleph_0$. Pe de altă parte, avem din Propoziția 2.14 că $\aleph_0\leq |A|$. Aplicăm Teorema Cantor-Schröder-Bernstein.

Cardinale

Propoziția 2.43

 $2^{\aleph_0} = \mathfrak{c}$.

Dem.: Demonstrăm că $\mathfrak{c}=|\mathcal{P}(\mathbb{N})|$ și apoi aplicăm Propoziția 2.37.(i). Definim următoarea funcție

$$\Phi: \mathcal{P}(\mathbb{N}) \to \mathbb{R}, \quad \Phi(A) = \sum_{i=0}^{\infty} \frac{2\chi_{A}(i)}{3^{i}}.$$

Demonstrăm că seria considerată mai sus este convergentă. Deoarece seria este cu termeni pozitivi, e suficient să arătăm că șirul sumelor parțiale $\left(\sum_{i=0}^n \frac{2\chi_A(i)}{3^i}\right)_{n\in\mathbb{N}}$ este majorat. Observăm că, pentru orice $n\in\mathbb{N}$, avem

$$\sum_{i=0}^{n} \frac{2\chi_A(i)}{3^i} \le \sum_{i=0}^{n} \frac{2}{3^i} = 2\sum_{i=0}^{n} \frac{1}{3^i} = 2 \cdot \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} < 3.$$

Aşadar, Φ este bine definită.

Afirmația 1: Φ este injectivă.

Demonstrație: Presupunem că $A \neq B$ și demonstrăm că $\Phi(A) \neq \Phi(B)$. Deoarece A și B sunt diferite, există $I := \min\{i \in \mathbb{N} \mid \chi_A(i) \neq \chi_B(i)\}$. Presupunem fără a restrânge generalitatea că $\chi_A(I) = 0$ și $\chi_B(I) = 1$. Definim

$$a := \sum_{i=0}^{I-1} \frac{2\chi_A(i)}{3^i} = \sum_{i=0}^{I-1} \frac{2\chi_B(i)}{3^i} \operatorname{dacă} I \neq 0 \quad \text{și} \quad a := 0 \operatorname{dacă} I = 0.$$

Pentru orice $n \ge l + 1$ avem

$$\sum_{i=0}^{n} \frac{2\chi_{A}(i)}{3^{i}} = a + \frac{2 \cdot 0}{3} + \sum_{i=l+1}^{n} \frac{2\chi_{A}(i)}{3^{i}} \le a + \frac{2}{3^{l+1}} \sum_{i=0}^{n-l-1} \frac{1}{3^{i}}$$
$$= a + \frac{2}{3^{l+1}} \cdot \frac{1 - \left(\frac{1}{3}\right)^{n-l}}{1 - \frac{1}{3}} < a + \frac{2}{3^{l+1}} \cdot \frac{1}{\frac{2}{3}} = a + \frac{1}{3^{l}}.$$

Cardinale

Rezultă că

$$\Phi(A) = \sum_{i=0}^{\infty} \frac{2\chi_A(i)}{3^i} \le a + \frac{1}{3^I}.$$

Pentru orice $n \ge l + 1$ avem

$$\sum_{i=0}^{n} \frac{2\chi_B(i)}{3^i} = a + \frac{2 \cdot 1}{3^l} + \sum_{i=l+1}^{n} \frac{2\chi_B(i)}{3^i} \ge a + \frac{2}{3^l}.$$

Aşadar,

$$\Phi(B) = \sum_{i=0}^{\infty} \frac{2\chi_B(i)}{3^i} \ge a + \frac{2}{3^l} > a + \frac{1}{3^l}.$$

Obţinem astfel că $\Phi(A) < \Phi(B)$, deci $\Phi(A) \neq \Phi(B)$.

Cum Φ este injectivă, avem că

$$(*) \quad |\mathcal{P}(\mathbb{N})| \leq \mathfrak{c}.$$

Cardinale

Deoarece $\mathbb Q$ este numărabilă, există o bijecție $j:\mathbb N\to\mathbb Q$. Definim funcția

$$\Psi : \mathbb{R} \to \mathcal{P}(\mathbb{N}), \quad \Psi(r) = \{ n \in \mathbb{N} \mid j(n) < r \}.$$

Afirmaţia 2: Ψ este injectivă.

Demonstrație: Fie $r_1 \neq r_2$ două numere reale. Fără a restrânge generalitatea, putem presupune că $r_1 < r_2$. Deoarece $\mathbb Q$ este densă în $\mathbb R$, există $q \in \mathbb Q$ astfel încât $r_1 < q < r_2$. Cum j este bijectivă, există $m \in \mathbb N$ a.î. j(m) = q. Rezultă că $m \in \Psi(r_2)$ și $m \notin \Psi(r_1)$, demonstrând astfel că $\Psi(r_1) \neq \Psi(r_2)$.

Prin urmare,

$$(**)$$
 $\mathfrak{c} \leq |\mathcal{P}(\mathbb{N})|.$

Aplicăm Teorema Cantor-Schröder-Bernstein pentru a obține, din (*) și (**), că $\mathfrak{c} = |\mathcal{P}(\mathbb{N})|$.

Cardinale

Propoziția 2.44

 \mathbb{R} nu este numărabilă.

Dem.: Aplicând Propozițiile 2.43 și 2.37.(ii), obținem că $\aleph_0 < 2^{\aleph_0} = \mathfrak{c}$, deci $\aleph_0 \neq \mathfrak{c}$.

Lema 2.45

Pentru orice numere reale a < b, c < d, |(a,b)| = |(c,d)|.

Dem.: Exercițiu.

Propoziția 2.46

Pentru orice numere reale a < b,

$$|(a,b)| = |[a,b)| = |(a,b]| = |[a,b]| = \mathfrak{c}.$$

Dem.: Exercițiu.

72

LOGICA PROPOZIŢIONALĂ

/3

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm p, q, r, \ldots sau p_1, p_2, p_3, \ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. <math>r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- ► Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- ► Andrei este deştept.
- ► Marțienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ► Pleacă!

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este joi, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este joi. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este joi și nu avem curs de logică.

74

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Logica propozițională LP - Limbajul

Definiția 3.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectori logici: \neg (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulţimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Logica propozițională LP - Limbajul

Definiția 3.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Logica propozițională LP - Limbajul

Definiția 3.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 3.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci $(\varphi \to \psi)$ este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează *Form*. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- ➤ Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

Formule

Exemple:

- $ightharpoonup v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 3.5

Mulțimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

4

Principiul inducției pe formule

Propoziția 3.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \boldsymbol{P} , atunci $(\varphi \to \psi)$ are proprietatea \boldsymbol{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea \boldsymbol{P} .

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $\varphi = v \in V$. Atunci φ are proprietatea **P**, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Principiul inducției pe formule

Propoziția 3.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- V ⊂ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ , φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 3.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Subformule

Definiția 3.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

SubForm(
$$\varphi$$
) = { $v_1, v_2, (v_1 \to v_2), (\neg v_1), \varphi$ }.

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Conventii

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Principiul recursiei pe formule

Propoziția 3.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A$$
, $G_{\neg}: A \to A$, $G_{\rightarrow}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ , $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v

$$c(\neg \varphi) = c(\varphi) + 1$$
 pentru orice formulă φ

$$c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$$
 pentru orice formule φ, ψ .

În acest caz,
$$A = \mathbb{N}$$
, $G_0 : V \to A$, $G_0(v) = 0$,

$$G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$$

$$G_{\rightarrow}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\rightarrow}(m, n) = m + n + 1.$$

Principiul recursiei pe formule

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$abla : \{0,1\} o \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda: \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	p	q	$p \wedge q$	р	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	0	0	1	0	0
1	0 1 0 1	1	1	0 1 0 1	1	1	0 1 0 1	1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ $\Rightarrow p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Evaluare (Interpretare)

Propoziția 3.12

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ , ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Definiția 3.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 3.11

Pentru orice evaluare $e:V \to \{0,1\}$ există o unică funcție

$$e^+: \textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice φ , $\psi \in Form$.

Dem.: Aplicăm Principiul Recursiei pe formule (Propoziția 3.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \to \{0,1\}, G_{\neg}(p) = \neg p \text{ și } G_{\rightarrow} : \{0,1\} \times \{0,1\} \to \{0,1\}, G_{\rightarrow}(p,q) = p \to q.$

Modele. Satisfiabilitate. Tautologii

Fie arphi o formulă.

Definiția 3.13

- O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\triangleright \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- $ightharpoonup \varphi$ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 3.14

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Consecință semantică. Echivalență

Definiția 3.15

Fie φ, ψ două formule. Spunem că

- φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- φ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui LP.

Propoziția 3.16

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă $(\psi \models \varphi \text{ si } \varphi \models \psi)$ ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exerciţiu.

Evaluare (Interpretare)

Propoziția 3.17

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

 φ are proprietatea \boldsymbol{P} ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \ \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

 $\varphi = v$. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Evaluare (Interpretare)

Propoziția 3.17

Pentru orice formulă arphi și orice evaluări $\emph{e}_1,\emph{e}_2:\emph{V} \rightarrow \{0,1\}$,

(*) $e_1(v)=e_2(v)$ pentru orice $v\in \mathit{Var}(arphi)\implies e_1^+(arphi)=e_2^+(arphi).$

Dem.: (continuare)

• $\varphi = (\neg \psi)$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Evaluare (Interpretare)

Propoziția 3.17

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*) $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $\varphi = (\psi \to \chi)$ și ψ, χ satisfac \boldsymbol{P} . Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\psi) \subseteq Var(\varphi)$ și $Var(\chi) \subseteq Var(\varphi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$ și pentru orice $v \in Var(\chi)$. Așadar, aplicând \boldsymbol{P} pentru ψ și χ , obținem că $e_1^+(\psi) = e_2^+(\psi)$ și $e_1^+(\chi) = e_2^+(\chi)$. Rezultă că

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0,1\}, e^+(\varphi)$ depinde doar de $e(x_1), \ldots, e(x_k)$, conform Propoziției 3.17.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

x_1	<i>x</i> ₂		x_k	\ldots subformule ale lui $arphi$ \ldots	arphi
$\overline{e_1'(x_1)}$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(arphi)$
$e_{2}'(x_{1})$	$e_2'(x_2)$		$e_2'(x_k)$		${e_2^\prime}^+(arphi)$
:	:	٠.,	į		:
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$				${e_{2^k}^{\prime}}^+(arphi)$

Pentru orice i, $e'_i^+(\varphi)$ se definește similar cu Teorema 3.11.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \dots, 2^k\}$.

Metoda tabelului

Exemplu:

Fie

$$\varphi = \mathsf{v}_1 \to (\mathsf{v}_2 \to (\mathsf{v}_1 \land \mathsf{v}_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> 2	$v_1 \wedge v_2$	$v_2 \rightarrow (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

idempotenta

Tautologii, consecințe semantice și echivalențe

Propoziția 3.18

Pentru orice formule φ, ψ, χ ,

terțul exclus
$$\models \varphi \lor \neg \varphi$$
 (1)

modus ponens
$$\varphi \wedge (\varphi \rightarrow \psi) \vDash \psi$$
 (2)

afirmarea concluziei
$$\psi \models \varphi \rightarrow \psi$$
 (3)

contradicția
$$\models \neg(\varphi \land \neg \varphi)$$
 (4)

dubla negație
$$\varphi \sim \neg \neg \varphi$$
 (5)

contrapoziția
$$\varphi \to \psi \sim \neg \psi \to \neg \varphi$$
 (6)

negarea premizei
$$\neg \varphi \vDash \varphi \rightarrow \psi$$
 (7)

modus tollens
$$\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$$
 (8)

tranzitivitatea implicației
$$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$$
 (9)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan
$$\varphi \lor \psi \sim \neg((\neg \varphi) \land (\neg \psi))$$
 (10)

$$\varphi \wedge \psi \sim \neg((\neg \varphi) \vee (\neg \psi))$$
 (11)

exportarea și importarea
$$\varphi \to (\psi \to \chi) \sim \varphi \land \psi \to \chi$$
 (12)

lempotenţa
$$\varphi \sim \varphi \land \varphi \sim \varphi \lor \varphi$$
 (13)
slăbirea $\vDash \varphi \land \psi \rightarrow \varphi \qquad \vDash \varphi \rightarrow \varphi \lor \psi$ (14)

comutativitatea
$$\varphi \wedge \psi \sim \psi \wedge \varphi$$
 $\varphi \vee \psi \sim \psi \vee \varphi$ (15)

asociativitatea
$$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$$
 (16)

$$\varphi \vee (\psi \vee \chi) \sim (\varphi \vee \psi) \vee \chi \tag{17}$$

 $\varphi \sim \varphi \wedge \varphi \sim \varphi \vee \varphi$

absorbţia
$$\varphi \lor (\varphi \land \psi) \sim \varphi$$
 (18)

$$\varphi \wedge (\varphi \vee \psi) \sim \varphi$$
 (19)

distributivitatea
$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
 (20)

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
 (21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$$
 (22)

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$$
 (23)

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi)$$
 (24)

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi)$$
 (25)

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi)$$
 (26)

$$\neg \varphi \sim \varphi \rightarrow \neg \varphi \sim (\varphi \rightarrow \psi) \land (\varphi \rightarrow \neg \psi) \tag{27}$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi)$$
 (28)

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi$$
 (29)

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$
 (30)

$$\models (\varphi \to \psi) \lor (\neg \varphi \to \psi)$$
 (31)

$$\models (\varphi \to \psi) \lor (\varphi \to \neg \psi)$$
 (32)

$$\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi))$$
 (33)

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \tag{34}$$

Dem.: Exerciţiu.

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e: V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

$$\begin{array}{c|cccc} e^+(\varphi) & \neg e^+(\varphi) & e^+(\varphi) \lor \neg e^+(\varphi) \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ \end{array}$$

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

⊤ și ⊥

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0
ightarrow v_0$ este tautologie și $\neg (v_0
ightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notatii

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- $ightharpoonup \varphi$ este tautologie ddacă $\varphi \sim \top$.
- $ightharpoonup \varphi$ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Conjuncții și disjuncții finite

Notatii

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n$$

- $\triangleright \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \vee \ldots \vee \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

Conjuncții și disjuncții finite

Propoziția 3.19

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge ... \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, ..., n\}$.
- $e^+(\varphi_1 \lor \ldots \lor \varphi_n) = 1$ ddacă există $i \in \{1, \ldots, n\}$ a. \hat{i} $e^+(\varphi_i) = 1$.

Dem.: Exercițiu.

Propoziția 3.20

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg \varphi_1 \wedge \ldots \wedge \neg \varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg \varphi_1 \vee \ldots \vee \neg \varphi_n$$

Dem.: Exercițiu.

Mulțimi de formule

Fie Γ o multime de formule.

Definiția 3.21

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 3.22

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \vDash \varphi$.

Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 3.23

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \vDash \Delta$.
- ▶ Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Proprietăți

Observație

- $\blacktriangleright \psi \vDash \varphi \text{ ddacă } \{\psi\} \vDash \varphi \text{ ddacă } \{\psi\} \vDash \{\varphi\}.$
- $\psi \sim \varphi$ ddacă $\{\psi\} \sim \{\varphi\}$.

Propoziția 3.24

- ▶ $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.

SINTAXA LP

Sistemul deductiv

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Γ-teoreme

Fie Γ o mulțime de formule. Definiția Γ -teoremelor este un nou exemplu de definiție inductivă.

Definitia 3.25

Γ-teoremele sunt formulele lui LP definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ-teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ-teoreme, atunci ψ este Γ-teoremă.
- (T3) Numai formulele obținute aplicând regulile (T0), (T1), (T2) sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

 $Thm(\Gamma)$:= mulţimea Γ-teoremelor Thm := $Thm(\emptyset)$

 $\Gamma \vdash \Delta$: $\Leftrightarrow \Gamma \vdash \varphi$ pentru orice $\varphi \in \Delta$.

Definiția 3.26

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 3.27

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

O definiție alternativă a Γ-teoremelor:

Mulțimea $Thm(\Gamma)$ este intersecția tuturor mulțimilor de formule Σ care satisfac următoarele proprietăți:

- (i) $Axm \subseteq \Sigma$;
- (ii) $\Gamma \subseteq \Sigma$;
- (iii) Σ este închisă la modus ponens:

dacă
$$\varphi, \varphi \to \psi \in \Sigma$$
, atunci $\psi \in \Sigma$.

117

Γ-teoreme

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

Versiunea 1

Fie P o proprietate a formulelor. Demonstrăm că orice Γ-teoremă satisface P astfel:

- (i) demonstrăm că orice axiomă are proprietatea **P**;
- (ii) demonstrăm că orice formulă din Γ are proprietatea P;
- (iii) demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea ${\bf P}$, atunci ψ are proprietatea ${\bf P}$.

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) demonstrăm că orice axiomă este în Σ ;
- (ii) demonstrăm că orice formulă din Γ este în Σ ;
- (iii) demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

118

Γ-teoreme

Propoziția 3.28

Fie Γ , Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

(ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Γ-demonstrații

Definiția 3.29

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_i \rightarrow \theta_i$.
- *O* ∅-demonstrație se va numi simplu demonstrație.

Lema 3.30

Dacă $\theta_1, \ldots, \theta_n$ este o Γ-demonstrație, atunci

$$\Gamma \vdash \theta_i$$
 pentru orice $i \in \{1, \ldots, n\}$.

Definiția 3.31

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ -demonstrației.

Propoziția 3.32

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Proprietăți sintactice

Propoziția 3.33

Pentru orice mulțime de formule Γ și orice formulă φ , $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 3.28.(i) obținem că $\Gamma \vdash \varphi$. " \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 3.32, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.

21

123

$\vdash \varphi \to \varphi$

Propoziția 3.34

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

- (1) $\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ (A2) (cu φ , $\psi := \varphi \to \varphi$, $\chi := \varphi$) și Propoziția 3.27.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi \rightarrow \varphi$) și Propoziția 3.27.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 3.27.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi$) și Propoziția 3.27.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

Teorema deducției

Teorema 3.35 (Teorema deducției)

Fie $\Gamma \subseteq Form \ si \ \varphi, \psi \in Form. \ Atunci$

$$\Gamma \cup \{\varphi\} \vdash \psi \quad ddac \ \Gamma \vdash \varphi \rightarrow \psi.$$

Dem.: " \Leftarrow " Presupunem că $\Gamma \vdash \varphi \rightarrow \psi$.

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteză
- (2) $\Gamma \cup \{\varphi\} \vdash \varphi \rightarrow \psi$ Propoziția 3.28.(i)
- (3) $\Gamma \cup \{\varphi\} \vdash \varphi$ Propoziția 3.27.(ii)
- (4) $\Gamma \cup \{\varphi\} \vdash \psi$ (MP): (2), (3).

Teorema deducției

$$\Sigma := \{ \psi \in \mathit{Form} \mid \Gamma \vdash \varphi \to \psi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. O facem prin inducție după $\Gamma \cup \{\varphi\}$ -teoreme.

- Fie ψ o axiomă sau o formulă din Γ . Atunci
- (1) $\Gamma \vdash \psi$

Propoziția 3.27.(i), (ii)

- (2) $\Gamma \vdash \psi \rightarrow (\varphi \rightarrow \psi)$ (A1) și Propoziția 3.27.(i)
- (3) $\Gamma \vdash \varphi \rightarrow \psi$ (MP): (1), (2).

Asadar $\psi \in \Sigma$.

• Fie $\psi = \varphi$. Atunci $\varphi \to \psi = \varphi \to \varphi$ este teoremă, conform Propoziției 3.34, deci $\Gamma \vdash \varphi \rightarrow \psi$. Așadar $\psi \in \Sigma$.

Teorema deducției

- Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\psi, \psi \to \chi \in \Sigma$ și trebuie să arătăm că $\chi \in \Sigma$. Atunci
- (1) $\Gamma \vdash \varphi \rightarrow \psi$

ipoteză inducție

(2) $\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \chi)$

ipoteză inducție

(3) $\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$ (A2) și P.3.27.(i)

(4) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$

(MP): (2), (3).

(5) $\Gamma \vdash \varphi \rightarrow \chi$

(MP): (1), (4).

Aşadar $\chi \in \Sigma$.

Câteva consecinte

Teorema deducției este un instrument foarte util pentru a arăta că o formulă e teoremă.

Propoziția 3.36

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (35)

Dem.: Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \frac{\varphi}{} \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

Câteva consecinte

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ Propoziția 3.27.(ii)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ Propoziția 3.27.(ii)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (MP): (1), (2)
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$ Propoziția 3.27.(ii)
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (MP): (3), (4).

Câteva consecințe

Propoziția 3.37

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \quad \text{si} \quad \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$

Dem.:

- (1) $\Gamma \vdash \varphi \rightarrow \psi$
- ipoteză
- (2) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$
 - P.3.36 și P.3.28.(ii)

(3) $\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$

(MP): (1), (2)

(4) $\Gamma \vdash \psi \rightarrow \chi$

ipoteză

(5) $\Gamma \vdash \varphi \rightarrow \chi$

(MP): (3), (4).

Câteva consecințe

Propoziția 3.38

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)) \tag{36}$$

Dem.: Exercițiu.

Propoziția 3.39

Pentru orice mulțime de formule Γ și orice formule φ , ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Dem.: Exercițiu.

Câteva consecinte

Propoziția 3.40

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi$$
 (37)

$$\vdash \neg \psi \to (\psi \to \varphi) \tag{38}$$

$$\vdash \quad \psi \to (\neg \psi \to \varphi) \tag{39}$$

$$\vdash \neg \neg \varphi \to \varphi \tag{40}$$

$$\vdash \varphi \to \neg \neg \varphi \tag{41}$$

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi) \tag{42}$$

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi)$$
 (43)

$$\vdash (\varphi \to \neg \varphi) \to \neg \varphi \tag{44}$$

$$\vdash (\neg \varphi \to \varphi) \to \varphi \tag{45}$$

Dem.: Exercițiu.

Câteva consecințe

Propoziția 3.41

Pentru orice mulțime de formule Γ și orice formule φ , ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \quad \textit{si} \quad \Gamma \cup \{\neg\psi\} \vdash \varphi \quad \Rightarrow \quad \Gamma \vdash \varphi.$$

Dem.:

(1)
$$\Gamma \cup \{\psi\} \vdash \varphi$$

(2)
$$\Gamma \vdash \psi \rightarrow \varphi$$

Teorema deducției

(3)
$$\Gamma \cup \{\neg \psi\} \vdash \varphi$$

ipoteză

$$(4) \quad \Gamma \vdash \neg \psi \to \varphi$$

Teorema deducției (5) $\Gamma \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi)$ (42) și P.3.28.(ii)

$$(6) \quad \Gamma \vdash \neg \varphi \to \neg \psi$$

(MP): (2), (5)

(7)
$$\Gamma \vdash \neg \varphi \rightarrow \varphi$$

(8)
$$\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

(9)
$$\Gamma \vdash \varphi$$

Câteva consecințe

Propoziția 3.42

Pentru orice formule φ , ψ ,

$$\{\varphi \wedge \psi\} \vdash \varphi$$
 (46)

$$\{\varphi \wedge \psi\} \vdash \psi$$
 (47)

$$\{\varphi \wedge \psi\} \qquad \vdash \qquad \psi \tag{47}$$

$$\{\varphi, \psi\} \qquad \vdash \qquad \varphi \wedge \psi \tag{48}$$

$$\{\varphi,\psi\} \vdash \chi \quad \textit{ddac} \quad \{\varphi \land \psi\} \vdash \chi \tag{49}$$

$$\vdash \qquad \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \tag{50}$$

Dem.: Exercițiu suplimentar.

SINTAXA și SEMANTICA

Corectitudine

Teorema 3.43 (Teorema de corectitudine (Soundness Theorem))

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form \ \text{$\it si} \ \Gamma \subseteq Form.$

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ-teoreme.

- \triangleright Axiomele sunt în Σ (exercițiu).
- Evident, Γ ⊂ Σ.
- \triangleright Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Rezultă ușor că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Completitudinea

Teorema 3.44 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi \quad ddac\check{a} \quad \models \varphi.$$

Prin urmare, tautologiile coincid cu teoremele.

Teorema 3.45 (Teorema de completitudine tare)

Pentru orice mulțime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Mai general, \(\Gamma\)-teoremele coincid cu consecințele semantice ale lui Γ.

LOGICA DE ORDINUL I

137

Limbaje de ordinul I

Fie \mathcal{L} un limbaj de ordinul I.

• Mulţimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x,y,z,v,\ldots , simbolurile de relații cu $P,Q,R\ldots$, simbolurile de funcții cu f,g,h,\ldots și simbolurile de constante cu c,d,e,\ldots
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 \mathcal{F}_m := multimea simbolurilor de funcții de aritate m;

 $\mathcal{R}_m := \text{mulțimea simbolurilor de relații de aritate } m.$

Limbaje de ordinul I

Definiția 4.1

Un limbaj L de ordinul I este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- paranteze: (,);
- ► simbolul de egalitate =;
- ► cuantificatorul universal ∀;
- ▶ o mulțime R de simboluri de relații;
- ▶ o mulțime F de simboluri de funcții;
- ▶ o mulțime C de simboluri de constante;
- ightharpoonup o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- $ightharpoonup \mathcal{L}$ este unic determinat de cvadruplul $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- au se numește signatura lui $\mathcal L$ sau vocabularul lui $\mathcal L$ sau alfabetul lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

130

Limbaje de ordinul I

Definiția 4.2

Mulţimea $\mathsf{Expr}_{\mathcal{L}}$ a $\mathsf{expresiilor}$ lui \mathcal{L} este mulţimea tuturor şirurilor finite de simboluri ale lui \mathcal{L} .

- ightharpoonup Expresia vidă se notează λ .
- **L**ungimea unei expresii θ este numărul simbolurilor din θ .

Definiția 4.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui \mathcal{L} , unde $\theta_i \in Sim_{\mathcal{L}}$ pentru orice i.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i, j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ ;
- Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .

Definiția 4.4

Termenii lui \mathcal{L} sunt expresiile definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și t_1, \ldots, t_m sunt termeni, atunci $ft_1 \ldots t_m$ este termen.
- (T3) Numai expresiile obținute aplicând regulile (T0), (T1), (T2) sunt termeni.

Notații:

- ► Mulţimea termenilor se notează *Term*_C.
- ► Termeni: $t, s, t_1, t_2, s_1, s_2, ...$
- ightharpoonup Var(t) este mulțimea variabilelor care apar în termenul t.

Definiția 4.5

Un termen t se numește închis dacă $Var(t) = \emptyset$.

Definiția 4.6

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- \triangleright (s = t), unde s, t sunt termeni;
- $ightharpoonup (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m$ și t_1, \dots, t_m sunt termeni.

Definiția 4.7

Formulele lui \mathcal{L} sunt expresiile definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Dacă φ este formulă, atunci $(\forall x \varphi)$ este formulă pentru orice variabilă x.
- (F4) Numai expresiile obținute aplicând regulile (F0), (F1), (F2), (F3) sunt formule.

142

Formule

Notații

- ► Mulţimea formulelor se notează Form_L.
- Formule: $\varphi, \psi, \chi, \ldots$
- $ightharpoonup Var(\varphi)$ este mulțimea variabilelor care apar în formula φ .

Convenție

De obicei renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Atunci când nu e pericol de confuzie, scriem s=t în loc de (s=t), $Rt_1\ldots t_m$ în loc de $(Rt_1\ldots t_m)$, $\neg\varphi$ în loc de $(\neg\varphi)$, $\varphi\to\psi$ în loc de $(\varphi\to\psi)$, $\forall x\varphi$ în loc de $(\forall x\varphi)$. Scriem însă $(\varphi\to\psi)\to\chi$.

Formule

Conectori derivați

Conectorii \lor , \land , \leftrightarrow și cuantificatorul existențial \exists sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := ((\neg \varphi) \to \psi)
\varphi \land \psi := \neg(\varphi \to (\neg \psi)))
\varphi \leftrightarrow \psi := ((\varphi \to \psi) \land (\psi \to \varphi))
\exists x \varphi := (\neg \forall x (\neg \varphi)).$$

Convenții

- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ightharpoonup ¬ are precedență mai mare decât conectorii \rightarrow , \land , \lor , \leftrightarrow .
 - \triangleright \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .
- Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.
- ► Cuantificatorii ∀, ∃ au precedență mai mare decât ceilalţi conectori.
- ▶ Aşadar, $\forall x \varphi \rightarrow \psi$ este $(\forall x \varphi) \rightarrow \psi$ şi nu $\forall x (\varphi \rightarrow \psi)$.

De multe ori identificăm un limbaj \mathcal{L} cu mulțimea simbolurilor sale non-logice și scriem $\mathcal{L}=(\mathcal{R},\mathcal{F},\mathcal{C})$.

- Scriem de multe ori $f(t_1, \ldots, t_m)$ în loc de $ft_1 \ldots t_m$ și $R(t_1, \ldots, t_m)$ în loc de $Rt_1 \ldots t_m$.
- Pentru simboluri f de operații binare scriem t_1ft_2 în loc de ft_1t_2 .
- Analog pentru simboluri R de relații binare: scriem t_1Rt_2 în loc de Rt_1t_2 .

145

L-structura

Definiția 4.8

O L-structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- A este o mulţime nevidă;
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ este o mulțime de operații pe A; dacă f are aritatea m, atunci $f^{\mathcal{A}} : A^m \to A$;
- $ightharpoonup \mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulțime de relații pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- $\triangleright C^{A} = \{c^{A} \in A \mid c \in C\}.$
- ▶ A se numește universul structurii A. Notație: A = |A|
- ▶ f^A (respectiv R^A , c^A) se numește denotația sau interpretarea lui f (respectiv R, c) în A.

Exemple - Limbajul egalității $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- \triangleright \mathcal{L}_- -structurile sunt multimile nevide

Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \to y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

 $\mathcal{L}_{ar} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<}$ este simbol de relație binară, adică are aritatea 2;
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de operații binare și \dot{S} este simbol de operație unar (adică are aritatea 1);
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{ar} = (\dot{\langle}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ sau $\mathcal{L}_{ar} = (\dot{\langle}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

Exemplul natural de \mathcal{L}_{ar} -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde $S:\mathbb{N}\to\mathbb{N}, S(m)=m+1$ este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}} = <, \dot{+}^{\mathcal{N}} = +, \dot{\times}^{\mathcal{N}} = \cdot, \dot{S}^{\mathcal{N}} = S, \dot{O}^{\mathcal{N}} = 0.$$

• Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\},<,\mathsf{V},\mathsf{\Lambda},\mathsf{\neg},1)$.

Exemplu - Limbajul cu un simbol de relație binar

 $\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \{R\}; R \text{ simbol binar}$
- $ightharpoonup \mathcal{F} = \mathcal{C} = \emptyset$
- $ightharpoonup \mathcal{L}_R$ -structurile sunt mulțimile nevide împreună cu o relație binară
- ▶ Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu \mathcal{L}_{\leq} .
- Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul $\dot{<}$ în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- ▶ Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .
- ▶ Dacă suntem interesați de structuri (A, \in) , folosim simbolul \in în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

4

Exemple - Limbajul grupurilor \mathcal{L}_{Gr}

 $\mathcal{L}_{Gr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \emptyset;$
- $\mathcal{F} = \{\dot{*}, \dot{-1}\}; \dot{*} \text{ simbol binar, } \dot{-1} \text{ simbol unar}$
- $ightharpoonup \mathcal{C} = \{\dot{e}\}.$

Scriem $\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$ sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G} = (G, \cdot, ^{-1}, e)$. Prin urmare, $\dot{*}^{\mathcal{G}} = \cdot, \dot{^{-1}}^{\mathcal{G}} = ^{-1}, \dot{e}^{\mathcal{G}} = e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $\triangleright \mathcal{R} = \emptyset$:
- $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$

SEMANTICA

Interpretare (evaluare)

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{A} o \mathcal{L} -structură.

Definiția 4.9

O interpretare sau evaluare a (variabilelor) lui $\mathcal L$ în $\mathcal A$ este o funcție $e:V\to A$.

În continuare, $e:V\to A$ este o interpretare a lui $\mathcal L$ in $\mathcal A$.

Definiția 4.10 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

- \blacktriangleright dacă $t = x \in V$, atunci $t^{A}(e) := e(x)$;
- ightharpoonup dacă $t=c\in\mathcal{C}$, atunci $t^{\mathcal{A}}(e):=c^{\mathcal{A}}$;
- ightharpoonup dacă $t=ft_1\ldots t_m$, atunci $t^{\mathcal{A}}(e):=f^{\mathcal{A}}(t_1^{\mathcal{A}}(e),\ldots,t_m^{\mathcal{A}}(e)).$

Interpretarea formulelor

Prin inducție pe formule se definește interpretarea

$$arphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \begin{cases} 1 & \operatorname{dacă} s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \operatorname{altfel}. \end{cases}$$
 $(Rt_1 \dots t_m)^{\mathcal{A}}(e) = \begin{cases} 1 & \operatorname{dacă} R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e)) \\ 0 & \operatorname{altfel}. \end{cases}$

Interpretarea formulelor

Negația și implicația

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \varphi^{\mathcal{A}}(e);$
- $(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$, unde,

Prin urmare,

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$
- \blacktriangleright $(\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$

Interpretarea formulelor

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretarea $e_{x \leftarrow a}: V \to A$ prin

$$e_{x \leftarrow a}(v) = \left\{ egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v = x. \end{array}
ight.$$

Interpretarea formulelor

$$(orall x arphi)^{\mathcal{A}}(e) = egin{cases} 1 & \mathsf{dac} \ \mathsf{d} & arphi^{\mathcal{A}}(e_{\mathsf{x} \leftarrow \mathsf{a}}) = 1 \ \mathsf{pentru\ orice}\ a \in \mathcal{A} \ 0 & \mathsf{altfel}. \end{cases}$$

Relația de satisfacere

Fie $\mathcal A$ o $\mathcal L$ -structură și $e:V\to A$ o interpretare a lui $\mathcal L$ în $\mathcal A$.

Definiția 4.11

Fie φ o formulă. Spunem că:

- e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notație: $\mathcal{A} \models \varphi[e]$.
- e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notație: $\mathcal{A} \not\models \varphi[e]$.

Corolar 4.12

Pentru orice formule φ, ψ și orice variabilă x,

- (i) $\mathcal{A} \vDash \neg \varphi[e] \iff \mathcal{A} \not\vDash \varphi[e].$
- (ii) $\mathcal{A} \vDash (\varphi \to \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \text{ implică } \mathcal{A} \vDash \psi[e] \iff \mathcal{A} \not\vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \psi[e].$
- (iii) $A \models (\forall x \varphi)[e] \iff pentru \ orice \ a \in A, \ A \models \varphi[e_{x \leftarrow a}].$

Dem.: Exercițiu ușor.

•

Relația de satisfacere

Propoziția 4.13

- (i) $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e]$ si $A \vDash \psi[e]$.
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- $\textit{(iii)} \ \mathcal{A} \vDash (\varphi \leftrightarrow \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \ \textit{ddacă} \ \mathcal{A} \vDash \psi[e].$
- (iv) $A \models (\exists x \varphi)[e] \iff \text{exist} \ a \in A \ a.\hat{i}. \ A \models \varphi[e_{x \leftarrow a}].$

Dem.: Exercițiu ușor. Arătăm, de exemplu, (iv).

$$\mathcal{A} \vDash (\exists x \varphi)[e] \iff \mathcal{A} \vDash (\neg \forall x \neg \varphi)[e] \iff \mathcal{A} \nvDash (\forall x \neg \varphi)[e]$$

$$\iff \text{există } a \in A \text{ a.î. } \mathcal{A} \nvDash (\neg \varphi)[e_{x \leftarrow a}]$$

$$\iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}].$$

Exemple

Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

Fie $x, y \in V$ cu $x \neq y$ și

$$t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y).$$

Să se calculeze $t^{\mathcal{N}}(e)$, unde $e:V\to\mathbb{N}$ este o evaluare ce verifică e(x)=3 și e(y)=7.

Dem.: Pentru orice interpretare $e:V\to\mathbb{N}$, avem

$$t^{\mathcal{N}}(e) = \dot{x}^{\mathcal{N}}((\dot{S}x)^{\mathcal{N}}(e), (\dot{S}\dot{S}y)^{\mathcal{N}}(e)) = (\dot{S}x)^{\mathcal{N}}(e) \cdot (\dot{S}\dot{S}y)^{\mathcal{N}}(e)$$

$$= \dot{S}^{\mathcal{N}}(x^{\mathcal{N}}(e)) \cdot \dot{S}^{\mathcal{N}}((\dot{S}y)^{\mathcal{N}}(e)) = S(e(x)) \cdot S(\dot{S}^{\mathcal{N}}(y^{\mathcal{N}}(e)))$$

$$= S(e(x)) \cdot S(S(e(y))).$$

Prin urmare, dacă e(x) = 3 și e(y) = 7, atunci

$$t^{\mathcal{N}}(e) = S(3) \cdot S(S(7)) = 4 \cdot 9 = 36.$$

Exemple

Fie

$$\varphi = x \dot{<} \dot{S}y \rightarrow (x \dot{<} y \lor x = y) = \dot{<} (x, \dot{S}y) \rightarrow (\dot{<} (x, y) \lor x = y).$$

Să se arate că $\mathcal{N} \vDash \varphi[e]$ pentru orice $e : V \to \mathbb{N}$.

Dem.: Pentru orice interpretare $e:V o\mathbb{N}$, avem

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x,\dot{S}y))[e] \text{ sau } \mathcal{N} \vDash (\dot{<}(x,y) \lor x = y)[e]$$

$$\iff \dot{<}^{\mathcal{N}}(e(x),S(e(y)) \text{ nu e satisfăcută sau}$$

$$\mathcal{N} \vDash (\dot{<}(x,y))[e] \text{ sau } \mathcal{N} \vDash (x = y)[e]$$

$$\iff < (e(x),S(e(y)) \text{ nu e satisfăcută sau } < (e(x),e(y))$$
 sau $e(x) = e(y)$

$$\iff$$
 $e(x) \geq S(e(y))$ sau $e(x) < e(y)$ sau $e(x) = e(y)$

$$\iff e(x) \geq e(y) + 1 \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y).$$

Prin urmare, $\mathcal{N} \vDash \varphi[e]$ pentru orice $e : V \to \mathbb{N}$.

Fie φ formulă a lui \mathcal{L} .

Definiția 4.14

Spunem că φ este adevărată într-o \mathcal{L} -structură \mathcal{A} dacă pentru orice evaluare e : $V \to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că $\mathcal A$ satisface φ sau că $\mathcal A$ este un model al lui φ .

Notație: $A \models \varphi$

Definiția 4.15

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \models \varphi$$
.

Notație: $\models \varphi$

161

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 4.16

 φ și ψ sunt logic echivalente dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare e : $V \to \mathcal{A}$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \bowtie \psi$

Definiția 4.17

 ψ este consecință semantică a lui φ dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare e : $V \to \mathcal{A}$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \vDash \psi$

Observație

- (i) $\varphi \vDash \psi$ ddacă $\vDash \varphi \rightarrow \psi$.
- (ii) $\varphi \bowtie \psi$ ddacă $(\psi \bowtie \varphi \text{ și } \varphi \bowtie \psi)$ ddacă $\bowtie \psi \leftrightarrow \varphi$.

162

Echivalențe și consecințe logice

Propoziția 4.18

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \tag{51}$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi \tag{52}$$

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \forall x \varphi \wedge \forall x \psi \tag{53}$$

$$\forall x \varphi \lor \forall x \psi \models \forall x (\varphi \lor \psi) \tag{54}$$

$$\exists x (\varphi \wedge \psi) \models \exists x \varphi \wedge \exists x \psi \tag{55}$$

$$\exists x (\varphi \lor \psi) \quad \exists \ x \varphi \lor \exists x \psi \tag{56}$$

$$\forall x(\varphi \to \psi) \models \forall x\varphi \to \forall x\psi \tag{57}$$

$$\forall x(\varphi \to \psi) \models \exists x \varphi \to \exists x \psi \tag{58}$$

$$\forall x \varphi \models \exists x \varphi \tag{59}$$

Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi \tag{60}$$

$$\forall x \varphi \models \varphi \tag{61}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{62}$$

$$\exists x \exists y \varphi \quad \exists y \exists x \varphi$$
 (63)

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{64}$$

Dem.: Exercițiu.

Dăm câteva demonstrații ca exemplu. Fie ${\mathcal A}$ o ${\mathcal L}$ -structură și $e:V \to A$.

(51): $\mathcal{A} \vDash (\neg \exists x \varphi)[e] \iff \mathcal{A} \vDash (\neg \neg \forall x \neg \varphi)[e] \iff$ nu este adevărat că $\mathcal{A} \vDash (\neg \forall x \neg \varphi)[e] \iff$ nu este adevărat că nu este adevărat că $\mathcal{A} \vDash (\forall x \neg \varphi)[e] \iff \mathcal{A} \vDash (\forall x \neg \varphi)[e]$.

Echivalențe și consecințe logice

(53): $\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}] \iff \text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ și } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \iff (\text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}]) \text{ și } (\text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash (\forall x \varphi)[e] \text{ și } \mathcal{A} \vDash (\forall x \psi)[e] \iff \mathcal{A} \vDash (\forall x \varphi \land \forall x \psi)[e].$

(57): Avem că $\mathcal{A} \models (\forall x(\varphi \rightarrow \psi))[e] \iff$ pentru orice $a \in A$, $\mathcal{A} \models (\varphi \rightarrow \psi)[e_{x \leftarrow a}] \iff$ pentru orice $a \in A$, $\varphi^{\mathcal{A}}(e_{x \leftarrow a}) \rightarrow \psi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \iff$

(*) pentru orice $a \in A$, $\varphi^{\mathcal{A}}(e_{\mathsf{x}\leftarrow \mathsf{a}}) \leq \psi^{\mathcal{A}}(e_{\mathsf{x}\leftarrow \mathsf{a}})$.

Similar obţinem că $\mathcal{A} \vDash (\forall x \varphi \rightarrow \forall x \psi)[e] \iff$

(**)
$$(\forall x \varphi)^{\mathcal{A}}(e) \leq (\forall x \psi)^{\mathcal{A}}(e).$$

Presupunem (*) și trebuie să demonstrăm (**).

Echivalențe și consecințe logice

Dacă $(\forall x \varphi)^{\mathcal{A}}(e) = 0$, (**) este evident. Presupunem, așadar, că $(\forall x \varphi)^{\mathcal{A}}(e) = 1$, adică

(***) pentru orice
$$b \in A$$
, $\varphi^{\mathcal{A}}(e_{x \leftarrow b}) = 1$.

Ne rămâne de arătat că $(\forall x \psi)^{\mathcal{A}}(e) = 1$, adică

pentru orice
$$c \in A$$
, $\psi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$.

Fie $c \in A$. Din (*), avem că $\varphi^{\mathcal{A}}(e_{x \leftarrow c}) \leq \psi^{\mathcal{A}}(e_{x \leftarrow c})$, iar din (***), că $\varphi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$. Rezultă că $\psi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$, ceea ce trebuia să demonstrăm.

Variabile legate și libere

Definiția 4.19

Fie $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ o formulă a lui \mathcal{L} și x o variabilă.

- ▶ spunem că variabila x apare legată pe poziția k în φ dacă $x = \varphi_k$ și există $0 \le i \le k \le j \le n-1$ și o formulă ψ a.î. (i,j)-subexpresia lui φ este $\forall x \psi$;
- Problem că x apare liberă pe poziția k în φ dacă x = φ_k , dar x nu apare legată pe poziția k în φ ;
- ightharpoonup x este variabilă legată (bounded variable) a lui φ dacă există un k a.î. x apare legată pe poziția k în φ ;
- ightharpoonup x este variable ilberă (free variable) a lui φ dacă există un k a.î. x apare liberă pe poziția k în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

Variabile legate și libere

Notație: $FV(\varphi) := \text{mulțimea variabilelor libere ale lui } \varphi$.

Definiție alternativă

Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducție pe formule:

$$FV(\varphi)$$
 = $Var(\varphi)$, dacă φ este formulă atomică;

$$FV(\neg \varphi) = FV(\varphi);$$

$$FV(\varphi \to \psi) = FV(\varphi) \cup FV(\psi);$$

$$FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}.$$

Notație: $\varphi(x_1,\ldots,x_n)$ dacă $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

Propoziția 4.20

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1,e_2:V\to A$, pentru orice termen t,

dacă $e_1(v) = e_2(v)$ pentru orice variabilă $v \in Var(t)$, atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

Propoziția 4.21

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2 : V \to A$, pentru orice formulă φ ,

dacă $e_1(v) = e_2(v)$ pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$

Enunțuri

Definiția 4.22

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: Sent $_{\mathcal{L}}$:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 4.23

Fie φ un enunţ. Pentru orice interpretări $e_1, e_2 : V \to A$,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Dem.: Este o consecință imediată a Propoziției 4.21 și a faptului că $FV(\varphi) = \emptyset$.

Definiția 4.24

O \mathcal{L} -structură \mathcal{A} este un model al lui φ dacă $\mathcal{A} \vDash \varphi[e]$ pentru o (orice) evaluare $e: V \to A$. Notație: $\mathcal{A} \vDash \varphi$

•

Echivalențe și consecințe logice

Propoziția 4.25

Pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\varphi \ \exists x \varphi$$
 (65)

$$\varphi \ \ \exists \ \ \forall x \varphi$$
 (66)

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x \psi \tag{67}$$

$$\forall x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \forall x \psi \tag{68}$$

$$\exists x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \exists x \psi \tag{69}$$

$$\exists x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \exists x \psi \tag{70}$$

$$\forall x(\varphi \to \psi) \quad \exists \quad \varphi \to \forall x\psi \tag{71}$$

$$\exists x (\varphi \to \psi) \quad \exists \quad \varphi \to \exists x \psi$$
 (72)

$$\forall x(\psi \to \varphi) \quad \exists x\psi \to \varphi \tag{73}$$

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi$$
 (74)

Dem.: Exercițiu.

Echivalențe și consecințe logice

Dăm câteva demonstrații ca exemplu. Fie ${\mathcal A}$ o ${\mathcal L}$ -structură și e:V o A.

(65):

 $\mathcal{A} \vDash (\exists x \varphi)[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \iff \text{există}$ $a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e] \text{ (aplicând Propoziția 4.21)} \iff \mathcal{A} \vDash \varphi[e].$

(67):

Fie x o variabilă a lui \mathcal{L} și u termen al lui \mathcal{L} .

Definiția 4.26

Pentru orice termen t al lui \mathcal{L} , definim $t_x(u) := \exp(iu)$ expresia obținută din t prin înlocuirea tuturor aparițiilor lui x cu u.

Propoziția 4.27

Pentru orice termen t al lui \mathcal{L} , $t_x(u)$ este termen al lui \mathcal{L} .

Substituția

- Vrem să definim analog $\varphi_x(u)$ ca fiind expresia obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- ► De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_x(u) \quad \text{si} \quad \vDash \varphi_x(u) \to \exists x \varphi.$$

Apar însă probleme.

Fie
$$\varphi := \exists y \neg (x = y)$$
 și $u := y$. Atunci $\varphi_x(u) = \exists y \neg (y = y)$. Avem

- ▶ Pentru orice \mathcal{L} -structură \mathcal{A} cu $|\mathcal{A}| \geq 2$, avem $\mathcal{A} \models \forall x \varphi$.
- $\triangleright \varphi_x(u)$ nu este satisfiabilă.

173

17/

Substituția

Fie x o variabilă, u un termen și φ o formulă.

Definitia 4.28

Spunem că x este liberă pentru u în φ sau că u este substituibil pentru x în φ dacă pentru orice variabilă y care apare în u, nici o subformulă a lui φ de forma $\forall y \psi$ nu conține apariții libere ale lui x.

Observație

x este liberă pentru u în φ în oricare din următoarele situații:

- u nu conține variabile;
- $\triangleright \varphi$ nu conține variabile care apar în u;
- \triangleright nici o variabilă din u nu apare legată în φ ;
- \triangleright x nu apare în φ ;
- $\triangleright \varphi$ nu conține apariții libere ale lui x.

Substituția

Fie x o variabilă, u termen și φ o formulă a.î. x este liberă pentru u în φ .

Definiția 4.29

 $\varphi_x(u) := \exp \operatorname{resia} \operatorname{obținută} \operatorname{din} \varphi \operatorname{prin} \operatorname{înlocuirea} \operatorname{tuturor} \operatorname{aparițiilor} \operatorname{libere} \operatorname{ale} \operatorname{lui} x \operatorname{cu} u.$

Spunem că $\varphi_x(u)$ este o substituție liberă.

Propoziția 4.30

 $\varphi_{\mathsf{x}}(\mathsf{u})$ este formulă a lui \mathcal{L} .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.

Propoziția 4.31

Pentru orice termeni u_1 și u_2 și orice variabilă x,

(i) pentru orice termen t,

$$\vDash u_1 = u_2 \to t_{\scriptscriptstyle X}(u_1) = t_{\scriptscriptstyle X}(u_2).$$

(ii) pentru orice formulă φ a.î. x este liberă pentru u_1 și u_2 în φ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{x}}(u_1) \leftrightarrow \varphi_{\mathsf{x}}(u_2)).$$

Propoziția 4.32

Fie φ o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în φ ,

$$\vDash \forall x \varphi \to \varphi_x(u), \qquad \vDash \varphi_x(u) \to \exists x \varphi.$$

(ii)
$$\vDash \forall x \varphi \to \varphi$$
, $\vDash \varphi \to \exists x \varphi$.

(iii) Pentru orice simbol de constantă c,

$$\vDash \forall x \varphi \to \varphi_x(c), \qquad \vDash \varphi_x(c) \to \exists x \varphi.$$

Substituția

În general, dacă x si y sunt variabile, φ și $\varphi_x(y)$ nu sunt logic echivalente: fie \mathcal{L}_{ar} , \mathcal{N} și $e:V\to\mathbb{N}$ a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \models (x \dot{<} z)[e], \text{ dar } \mathcal{N} \not\models (x \dot{<} z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

178

Substituția

Propoziția 4.33

Pentru orice formulă φ , variabile distincte x și y a.î. $y \notin FV(\varphi)$ și y este substituibil pentru x în φ ,

$$\exists x \varphi \vDash \exists y \varphi_x(y)$$
 $\forall x \varphi \vDash \forall y \varphi_x(y).$

Folosim Propoziția 4.33 astfel: dacă $\varphi_x(u)$ nu este substituție liberă (i.e. x nu este liberă pentru u în φ), atunci înlocuim φ cu o formulă φ' logic echivalentă a.î. $\varphi'_x(u)$ este substituție liberă.

Substituția

Definiția 4.34

Pentru orice formulă φ și orice variabile y_1, \ldots, y_k , varianta y_1, \ldots, y_k -liberă φ' a lui φ este definită recursiv astfel:

- ▶ dacă φ este formulă atomică, atunci φ' este φ ;
- ▶ dacă φ = ¬ψ, atunci φ' este ¬ψ';
- dacă $\varphi = \psi \rightarrow \chi$, atunci φ' este $\psi' \rightarrow \chi'$;
- ightharpoonup dacă $\varphi = \forall z \psi$, atunci

$$\varphi' \text{ este } \begin{cases} \forall w \psi_z'(w) & \textit{dacă } z \in \{y_1, \dots, y_k\} \\ \forall z \psi' & \textit{altfel}; \end{cases}$$

unde w este prima variabilă din șirul $v_0, v_1, \ldots,$ care nu apare în ψ' și nu este printre y_1, \ldots, y_k .

Definiția 4.35

 φ' este variantă a lui φ dacă este varianta y_1, \ldots, y_k -liberă a lui φ pentru anumite variabile y_1, \ldots, y_k .

Propoziția 4.36

- (i) Pentru orice formulă φ , dacă φ' este o variantă a lui φ , atunci $\varphi \bowtie \varphi'$;
- (ii) Pentru orice formulă φ și orice termen t, dacă variabilele lui t se află printre y_1, \ldots, y_k și φ' este varianta y_1, \ldots, y_k -liberă a lui φ , atunci $\varphi'_*(t)$ este o substituție liberă.

Forma normală prenex

Definiția 4.37

O formulă care nu conține cuantificatori se numește liberă de cuantificatori ("quantifier-free").

Definiția 4.38

O formulă φ este în formă normală prenex dacă

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile și ψ este formulă liberă de cuantificatori. Formula ψ se numește matricea lui φ și $Q_1x_1Q_2x_2\ldots Q_nx_n$ este prefixul lui φ .

Teorema 4.39 (Teorema de formă normală prenex) Pentru orice formulă φ există o formulă φ^* în formă normală prenex a.î. $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

181

,

Forma normală prenex

Fie \mathcal{L} un limbaj de ordinul întâi care conține

- ▶ două simboluri de relații unare R, S şi două simboluri de relații binare P, Q;
- \blacktriangleright un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \exists y (g(y, z) = c) \land \neg \exists x (f(x) = d)$$

Avem

$$\varphi \quad \exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$$

$$\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$$

$$\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$$

Prin urmare, $\varphi^* = \exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$ este o formă normală prenex pentru φ .

Forma normală prenex

1 Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

Avem că

$$\varphi \quad \exists y \neg (S(y) \rightarrow \exists z R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d)$$

$$\exists y \forall z \neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d)$$

$$\exists y \forall z (\neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x (\neg (S(y) \rightarrow R(z)) \land \exists y (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land \exists x (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land (P(x, y) \rightarrow f(x) = d))$$

$$\varphi^* = \exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land (P(x, y) \rightarrow f(x) = d)) \text{ este o}$$

 $\varphi^* = \exists y \forall z \forall x \exists v (\neg(S(y) \rightarrow R(z)) \land (P(x, v) \rightarrow f(x) = d))$ est formă normală prenex pentru φ .

Noțiunile de tautologie și consecință semantică din logica propozițională se pot aplica și unui limbaj de ordinul întâi. Intuitiv: o tautologie este o formulă "adevărată" numai pe baza interpretărilor conectorilor \neg, \rightarrow .

Definitia 4.40

O \mathcal{L} -evaluare de adevăr este o funcție $F: Form_{\mathcal{L}} \to \{0,1\}$ cu următoarele proprietăți: pentru orice formule φ, ψ ,

- $ightharpoonup F(\neg \varphi) = \neg F(\varphi);$
- $F(\varphi \to \psi) = F(\varphi) \to F(\psi).$

Propoziția 4.41

Pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e:V \to \mathcal{A}$, funcția

$$V_{e,\mathcal{A}}: Form_{\mathcal{L}} \to \{0,1\}, \quad V_{e,\mathcal{A}}(\varphi) = \varphi^{\mathcal{A}}(e)$$

este o L-evaluare de adevăr.

Tautologii

Definiția 4.42

 φ este tautologie dacă $F(\varphi)=1$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemple de tautologii: $\varphi \to (\psi \to \varphi)$, $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$

Propoziția 4.43

Orice tautologie este validă.

Dem.: Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o evaluare. Deoarece φ este tautologie și $V_{e,\mathcal{A}}$ este \mathcal{L} -evaluare de adevăr, rezultă că $\varphi^{\mathcal{A}}(e)=V_{e,\mathcal{A}}(\varphi)=1$, adică $\mathcal{A}\vDash\varphi[e]$.

Exemplu

x = x este validă, dar nu este tautologie.

Tautologii

Definiția 4.44

Două formule φ și ψ sunt tautologic echivalente dacă $F(\varphi) = F(\psi)$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemplul 4.45

 $\varphi_1 \to (\varphi_2 \to \varphi_3)$ şi $\varphi_1 \land \varphi_2 \to \varphi_3$ sunt tautologic echivalente.

Definiția 4.46

O formulă φ este consecință tautologică a unei mulțimi de formule Γ dacă pentru orice \mathcal{L} -evaluare de adevăr F,

$$F(\gamma) = 1$$
 pentru orice $\gamma \in \Gamma \implies F(\varphi) = 1$.

Mulțimi de enunțuri

Fie φ un enunț al lui \mathcal{L} și Γ o mulțime de enunțuri.

Definiția 4.47

Spunem că Γ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} a.î.

$$A \vDash \gamma$$
 pentru orice $\gamma \in \Gamma$.

Spunem și că A este un model al lui Γ . Notație: $A \models \Gamma$

Definiția 4.48

Spunem că φ este consecință semantică a lui Γ dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi$$
.

Notație: $\Gamma \vDash \varphi$

Notație: Pentru orice mulțime de enunțuri Г, notăm

 $Mod(\Gamma)$:= clasa modelelor lui Γ .

Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

Lema 4.49

Pentru orice mulțimi de enunțuri Γ, Δ și orice enunț ψ ,

- (i) $\Gamma \vDash \psi \iff Mod(\Gamma) \subseteq Mod(\psi)$.
- (ii) $\Gamma \subseteq \Delta \implies Mod(\Delta) \subseteq Mod(\Gamma)$.
- (iii) Γ este satisfiabil $\check{a} \iff Mod(\Gamma) \neq \emptyset$.

Dem.: Exercițiu ușor.

Propoziția 4.50

Dacă φ este consecință tautologică a lui Γ , atunci $\Gamma \vDash \varphi$.

Teorii

Definiția 4.51

O \mathcal{L} -teorie este o mulțime T de enunțuri ale lui \mathcal{L} care este închisă la consecința semantică, adică:

pentru orice enunț φ , $T \vDash \varphi \implies \varphi \in T$.

Definiția 4.52

Pentru orice mulțime de enunțuri Γ , teoria generată de Γ este mulțimea

$$Th(\Gamma) := \{ \varphi \mid \varphi \text{ este enunț } \text{i } \Gamma \vDash \varphi \}$$
$$= \{ \varphi \mid \varphi \text{ este enunț } \text{i Mod}(\Gamma) \subseteq \text{Mod}(\varphi) \}.$$

189

4

Teorii

Propoziția 4.53

Fie Γ o mulțime de enunțuri.

- (i) $Mod(\Gamma) = Mod(Th(\Gamma))$.
- (ii) $Th(\Gamma)$ este cea mai mică teorie T a.î. $\Gamma \subseteq T$.

Dem.: Exercițiu.

- ightharpoonup O teorie prezentată ca $Th(\Gamma)$ se numește teorie axiomatică sau teorie prezentată axiomatic. Γ se numește mulțime de axiome pentru $Th(\Gamma)$.
- Orice teorie poate fi prezentată axiomatic, dar suntem interesați de mulțimi de axiome care satisfac anumite condiții.

Teorii

Definiția 4.54

O teorie T este finit axiomatizabilă dacă $T = Th(\Gamma)$ pentru o mulțime de enunțuri finită Γ .

Definiția 4.55

O clasă K de L-structuri este axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime de enunțuri Γ . Spunem și că Γ axiomatizează K.

Definiția 4.56

O clasă K de L-structuri este finit axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime finită de enunțuri Γ .

Exemple - Teoria egalității

Pentru orice $n \ge 2$, notăm următorul enunț cu $\exists \ge n$:

$$\exists x_1 \ldots \exists x_n (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \ldots \land \neg (x_{n-1} = x_n)),$$

pe care îl scriem mai compact astfel:

$$\exists^{\geq n} = \exists x_1 \dots \exists x_n \left(\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \right).$$

Propozitia 4.57

Pentru orice \mathcal{L} -structură \mathcal{A} si orice n > 2.

 $A \models \exists^{\geq n} \iff A$ are cel putin n elemente.

Dem.: Exercițiu ușor.

Pentru uniformitate, notăm $\exists^{\geq 1} := \exists x(x = x)$.

Notații Fie n > 1.

- $ightharpoonup
 eg \leq n \cdot = \neg \exists \geq n+1$

Propozitia 4.58

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

Exemple - Teoria egalității

$$A \vDash \exists^{\leq n} \iff A \text{ are cel mult } n \text{ elemente}$$

 $A \vDash \exists^{=n} \iff A \text{ are exact } n \text{ elemente}.$

Dem.: Exercițiu ușor.

Propoziția 4.59

Fie $T := Th(\{\exists^{\geq n} \mid n \geq 1\})$. Atunci pentru orice \mathcal{L} -structură \mathcal{A} , $A \models T \iff A \text{ este mulțime infinită.}$

Dem.: Exercitiu usor.

Exemple - Teoria grafurilor

Un graf este o pereche G = (V, E) de multimi a.î. E este o multime de submultimi cu 2 elemente ale lui V. Elementele lui V se numesc vârfuri, iar elementele lui E se numesc muchii.

- $\blacktriangleright \mathcal{L}_{Graf} = (\dot{E}, \emptyset, \emptyset) = (\dot{E})$
- \triangleright \mathcal{L}_{Graf} -structurile sunt $\mathcal{A} = (A, E)$, unde E este relație binară.

Fie $\Gamma := \{(IREFL), (SIM)\}$, unde

$$(IREFL) := \forall x \neg \dot{E}(x, x)$$

$$(SIM) := \forall x \forall y (\dot{E}(x,y) \rightarrow \dot{E}(y,x)).$$

Definitie

Teoria grafurilor este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt grafurile.
- Γ axiomatizează clasa grafurilor. Prin urmare, clasa grafurilor este finit axiomatizabilă.

Exemple - Teoria ordinii parțiale

- \blacktriangleright $\mathcal{L}_{<} = (\dot{\leq}, \emptyset, \emptyset) = (\dot{\leq})$
- $\mathcal{L}_{\dot{<}}$ -structurile sunt $\mathcal{A}=(A,\leq)$, unde \leq este relație binară.

Fie $\Gamma := \{(REFL), (ANTISIM), (TRANZ)\}, \text{ unde }$

$$(REFL) := \forall x(x \leq x)$$

$$(ANTISIM) := \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$$

$$(TRANZ) := \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$$

Definitie

Teoria ordinii parțiale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui T sunt multimile partial ordonate.
- Γ axiomatizează clasa mulţimilor parţial ordonate. Prin urmare, clasa multimilor partial ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii totale

Fie
$$\Gamma := \{(ANTISIM), (TRANZ), (TOTAL)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x \leq y \lor y \leq x)$$

Definiție

Teoria ordinii totale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt mulțimile total ordonate.
- ► Γ axiomatizează clasa mulțimilor total ordonate. Prin urmare, clasa mulțimilor total ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii stricte

- $\mathcal{L}_{\dot{<}} = (\dot{<}, \emptyset, \emptyset) = (\dot{<})$
- \mathcal{L}_{\geq} -structurile sunt $\mathcal{A} = (A, <)$, unde < este relație binară.

Fie
$$\Gamma := \{(IREFL), (TRANZ)\}$$
, unde
$$(IREFL) := \forall x \neg (x \dot{<} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \rightarrow x \dot{<} z)$$

Definiție

Teoria ordinii stricte este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt mulțimile strict ordonate.
- Γ axiomatizează clasa mulțimilor strict ordonate. Prin urmare, clasa multimilor strict ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii dense

Fie
$$\Gamma := \{(IREFL), (TRANZ), (TOTAL), (DENS)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x = y \lor x \dot{<} y \lor y \dot{<} x)$$

$$(DENS) := \forall x \forall y (x \dot{<} y \to \exists z (x \dot{<} z \land z \dot{<} y)).$$

Definiție

Teoria ordinii dense este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt mulțimile dens ordonate.
- ► Γ axiomatizează clasa mulțimilor dens ordonate. Prin urmare, clasa mulțimilor dens ordonate este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

- \triangleright $\mathcal{L}_{\doteq} = (\dot{\equiv}, \emptyset, \emptyset) = (\dot{\equiv})$
- $ightharpoonup \mathcal{L}_{\stackrel{.}{\equiv}}$ -structurile sunt $\mathcal{A}=(A,\equiv)$, unde \equiv este relație binară.

Fie
$$\Gamma := \{(REFL), (SIM), (TRANZ)\}$$
, unde
$$(REFL) := \forall x (x \stackrel{.}{=} x)$$
$$(SIM) := \forall x \forall y (x \stackrel{.}{=} y \rightarrow y \stackrel{.}{=} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \stackrel{.}{=} y \wedge y \stackrel{.}{=} z \rightarrow x \stackrel{.}{=} z)$$

Definiție

Teoria relațiilor de echivalență este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ► Fie \mathcal{K} clasa structurilor (A, \equiv) , unde \equiv este relație de echivalență pe A. Avem că $\mathcal{K} = Mod(\Gamma)$, așadar Γ axiomatizează \mathcal{K} . Prin urmare, \mathcal{K} este finit axiomatizabilă.

Teorema de compacitate

Dacă adăugăm axioma:

$$\forall x \exists y (\neg (x = y) \land x \stackrel{.}{=} y \land \forall z (z \stackrel{.}{=} x \rightarrow (z = x \lor z = y))),$$

obținem teoria relațiilor de echivalență cu proprietatea că orice clasă de echivalență are exact două elemente.

Teorema 4.60 (Teorema de compacitate)

O mulțime de enunțuri Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

unul din rezultatele centrale ale logicii de ordinul întâi

201

Teorema de compacitate - aplicații

 $\dot{\mathsf{F}}$ ie $\mathcal L$ un limbaj de ordinul întâi.

Propoziția 4.61

Clasa \mathcal{L} -structurilor finite nu este axiomatizabilă, adică nu există o mulțime de enunțuri Γ astfel încât

(*) pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models \Gamma \iff \mathcal{A}$ este finită.

Dem.: Presupunem prin reducere la absurd că există $\Gamma \subseteq Sen_{\mathcal{L}}$ a.î. (*) are loc. Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie \mathcal{A} o \mathcal{L} -structură finită a.î. $|A| \geq \max\{n_1, \ldots, n_k\}$. Atunci $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$ și $\mathcal{A} \models \Gamma$ deoarece \mathcal{A} este finită.

Teorema de compacitate - aplicații

Prin urmare, $A \models \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$, de unde rezultă că $A \models \Delta_0$. Așadar, Δ_0 este satisfiabilă.

Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Gamma$, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.

Corolar 4.62

Clasa mulțimilor nevide finite nu este axiomatizabilă în $\mathcal{L}_{=}$.

203

Teorema de compacitate - aplicații

Propoziția 4.63

Clasa L-structurilor infinite este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Notăm cu \mathcal{K}_{Inf} clasa \mathcal{L} -structurilor infinite. Conform Propoziției 4.59, pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \in \mathcal{K}_{\mathit{Inf}} \iff A \text{ este infinită} \iff \mathcal{A} \vDash \{\exists^{\geq n} \mid n \geq 1\}.$$

Prin urmare,

$$\mathcal{K}_{Inf} = Mod(\{\exists^{\geq n} \mid n \geq 1\})$$

deci e axiomatizabilă.

Teorema de compacitate - aplicații

Presupunem că \mathcal{K}_{Inf} este finit axiomatizabilă, deci există

$$\Gamma := \{\varphi_1, \dots, \varphi_n\} \subseteq Sen_{\mathcal{L}} \text{ a.i. } \mathcal{K}_{Inf} = Mod(\Gamma).$$

Fie $\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n$. Atunci $\mathcal{K}_{Inf} = Mod(\varphi)$. Rezultă că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A}$$
 este finită $\iff \mathcal{A} \notin \mathcal{K}_{Inf} \iff \mathcal{A} \not\models \varphi \iff \mathcal{A} \models \neg \varphi$.

Așadar, clasa \mathcal{L} -structurilor finite este axiomatizabilă, ceea ce contrazice Propoziția 4.61.

Corolar 4.64

Clasa mulțimilor infinite nu este finit axiomatizabilă în $\mathcal{L}_=$.

Teorema de compacitate - aplicații

Propoziția 4.65

Atunci \(\Gamma\) are un model infinit.

Fie Γ o mulțime de enunțuri ale lui $\mathcal L$ cu proprietatea (*) pentru orice $m \in \mathbb N$, Γ are un model finit de cardinal $\geq m$.

Dem.: Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie $m:=\max\{n_1,\ldots,n_k\}$. Conform (*), Γ are un model finit $\mathcal A$ a.î. $|\mathcal A|\geq m$. Atunci $\mathcal A\vDash\exists^{\geq n_i}$ pentru orice $i=1,\ldots,k$, deci $\mathcal A\vDash\Delta_0$.

Aplicând Teorema de compacitate, rezultă că Δ are un model \mathcal{B} . Prin urmare, \mathcal{B} este un model infinit al lui Γ .

Teorema de compacitate - aplicații

Propoziția 4.66

Dacă un enunț φ este adevărat în orice \mathcal{L} -structură infinită, atunci există $m \in \mathbb{N}$ cu proprietatea că φ este adevărat în orice \mathcal{L} -structură finită de cardinal $\geq m$.

Dem.: Presupunem că nu e adevărat. Fie $\Gamma := \{ \neg \varphi \}$. Atunci pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Aplicând Propoziția 4.65, rezultă că Γ are un model infinit \mathcal{A} . Prin urmare, $\mathcal{A} \not\models \varphi$, ceea ce contrazice ipoteza.

207

 \square .

Teorema de compacitate - aplicații

Propoziția 4.67

Fie Γ o mulțime de enunțuri cu proprietatea că

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$.

Atunci

- (i) Γ are un model infinit.
- (ii) Clasa modelelor finite ale lui Γ nu este axiomatizabilă.
- (iii) Clasa modelelor infinite ale lui Γ este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Exercițiu.

Modele non-standard ale aritmeticii

Considerăm limbajul $\mathcal{L}=(\dot{+},\dot{\times},\dot{S},\dot{0})$, unde $\dot{+},\dot{\times}$ sunt simboluri de operații binare, \dot{S} este simbol de operație unară și $\dot{0}$ este simbol de constantă.

Pentru orice $n \in \mathbb{N}$, definim prin inducție \mathcal{L} -termenul $\Delta(n)$ astfel:

$$\Delta(0) = \dot{0}, \quad \Delta(n+1) = \dot{S}\Delta(n).$$

Fie \mathcal{L} -structura $\mathcal{N}=(\mathbb{N},+,\cdot,S,0)$. Atunci $\Delta(n)^{\mathcal{N}}=n$ pentru orice $n\in\mathbb{N}$. Prin urmare, $\mathbb{N}=\{\Delta(n)^{\mathcal{N}}\mid n\in\mathbb{N}\}$.

Definiția 4.68

O \mathcal{L} -structură \mathcal{A} se numește non-standard dacă există $a \in A$ $a.\hat{i}$. $a \neq \Delta(n)^{\mathcal{A}}$ pentru orice $n \in \mathbb{N}$. Un astfel de element a se numește element non-standard.

209

210

4

Modele nonstandard ale aritmeticii

Teoria lui \mathcal{N} se definește astfel:

$$Th(\mathcal{N}) := \{ \varphi \in Sen_{\mathcal{L}} \mid \mathcal{N} \vDash \varphi \}.$$

Se poate demonstra ușor că $Th(\mathcal{N})$ este o teorie.

Teorema 4.69

Există un model non-standard al teoriei $Th(\mathcal{N})$.

Dem.: Fie c un simbol de constantă nou, $\mathcal{L}^+ = \mathcal{L} \cup \{c\}$ și

$$\Gamma = Th(\mathcal{N}) \cup \{\neg(\Delta(n) = c) \mid n \in \mathbb{N}\}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 \subseteq Th(\mathcal{N}) \cup \{\neg(\Delta(n_1) = c), \dots, \neg(\Delta(n_k) = c)\}.$$

Modele nonstandard ale aritmeticii

Fie $n_0 > \max\{n_1, \dots, n_k\}$. Considerăm extensia \mathcal{N}^+ a lui \mathcal{N} la \mathcal{L}^+ definită astfel: $c^{\mathcal{N}^+} := n_0$. Atunci $\mathcal{N}^+ \models \Gamma_0$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{A} = (A, +^{\mathcal{A}}, \cdot^{\mathcal{A}}, S^{\mathcal{A}}, 0^{\mathcal{A}}, c^{\mathcal{A}}).$$

Rezultă că $a:=c^{\mathcal{A}}$ este element non-standard al lui \mathcal{A} .

Teoria Ramsey

Teoria Ramsey este o ramură a combinatoricii, a cărei temă principală este:

"Complete disorder is impossible." (T.S. Motzkin)

O structură mare, oricât de haotică ar fi, conține substructuri cu regularități.

Problemă tipică

O anumită structură este partiționată într-un număr finit de clase. Ce tip de substructură rămâne intactă în cel puțin una din clase?

- ► Rezultatele din teoria Ramsey sunt foarte puternice, deoarece ele sunt generale, se obțin presupunând ipoteze foarte slabe.
- ► Graham, Rothschild, Sperner, Ramsey Theory, 1990.

Teoria Ramsey

Teorema Schur (1916)

Fie $r \in \mathbb{N}, r \geq 1$ și $\mathbb{N} = \bigcup_{i=1}^r C_i$ o partiție a lui \mathbb{N} . Atunci există $i \in \{1, \dots, r\}$ a.î.

$$\{x, y, x + y\} \subseteq C_i$$
 pentru $x, y \in \mathbb{N}$.

$$X = \mathbb{N}, \quad \mathcal{G} = \{\{x, y, x + y\} \mid x, y \in \mathbb{N}\}.$$

Versiunea cu colorări: Pentru orice r-colorare a lui $\mathbb N$ există $x,y\in\mathbb N$ a.î. mulțimea $\{x,y,x+y\}$ este monocromatică.

Teoria Ramsey

X mulţime, \mathcal{G} colecţie de submulţimi bune ale lui X, $r \in \mathbb{N} \setminus \{0\}$.

Definiția 4.70

O r-colorare a lui X este o funcție $c: X \to \{1, 2, ..., r\}$. Pentru $x \in X$, c(x) este culoarea lui x. O submulțime $A \subseteq X$ se numește monocromatică dacă toate elementele din A au aceeași culoare.

Definitia 4.71

O familie de mulțimi C_1, \ldots, C_r se numește partiție a lui X dacă $X = \bigcup_{i=1}^r C_i$ și $C_i \cap C_j = \emptyset$ pentru orice $i \neq j \in \{1, \ldots, n\}$.

Următoarele afirmatii sunt echivalente:

- ▶ Pentru orice partiție $X = \bigcup_{i=1}^r C_i$ a lui X, există $i \in \{1, \ldots, r\}$ și $G \in \mathcal{G}$ a.î. $G \subseteq C_i$.
- Pentru orice r-colorare a lui X există o mulțime $G \in \mathcal{G}$ monocromatică.

214

Teoria Ramsey

Teorema van der Waerden (1927)

Fie $r \in \mathbb{N}, r \geq 1$ și $\mathbb{N} = \bigcup_{i=1}^r C_i$ o partiție a lui \mathbb{N} . Pentru orice $k \in \mathbb{N}$ există $i \in \{1, \dots, r\}$ a.î. C_i conține progresii aritmetice de lungime k.

- rezultat central în teoria Ramsey
- ▶ una din cele trei perle în teoria numerelor Khintchin (1948)
- ▶ demonstrație combinatorială prin inducție dublă după *r* și *k*.

 $X = \mathbb{N}$, $\mathcal{G} = \text{multimea progresiilor aritmetice de lungime } k$.

Versiunea cu colorări: Orice colorare finită a lui $\mathbb N$ conține progresii aritmetice monocromatice de lungime finită arbitrară.

Teoria Ramsey

Y mulțime, $k \in \mathbb{N} \setminus \{0\}$. Notăm cu $[Y]^k$ mulțimea submulțimilor lui Y cu k elemente: $[Y]^k = \{A \subseteq Y \mid |A| = k\}$. Putem să ne gândim la $[Y]^2$ ca fiind mulțimea muchiilor grafului complet peste Y.

Teorema 4.72 (Teorema Ramsey)

Fie Y o mulțime infinită, $k, r \in \mathbb{N} \setminus \{0\}$ și $[Y]^k = \bigcup_{i=1}^r C_i$ o partiție a lui $[Y]^k$. Atunci există $i \in \{1, ..., r\}$ și o submulțime infinită B a lui Y a.î. $[B]^k \subseteq C_i$.

- rezultat structural general, nu depinde de proprietățile aritmetice ale lui N:
- ▶ articolul lui Ramsey: On a problem of formal logic (1930);
- ▶ teorema lui Ramsey a fost popularizată de Erdös și Szekeres, care au redescoperit-o într-un articol clasic din 1935.

Teoria Ramsey

Teorema 4.73 (Teorema Ramsey - versiunea cu colorări)

Fie Y o mulțime infinită și $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[Y]^k$, există o submulțime infinită B a lui Y a.î. $[B]^k$ este monocromatică.

Versiune echivalentă

Teorema 4.74 (Teorema Ramsey - versiunea cu colorări)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[\mathbb{N}]^k$, există o submulțime infinită B a lui \mathbb{N} a.î. $[B]^k$ este monocromatică.

Consecință: Principiul cutiei - varianta infinită (Infinite Pigeonhole Principle)

Fie Y o mulțime infinită și $r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui Y, există o submulțime infinită monocromatică B a lui Y.

217

Teoria Ramsey

Notăm $[n] := \{1, ..., n\}$ și $[n]^k = \{A \subseteq [n] \mid |A| = k\}.$

Teorema 4.75 (Teorema Ramsey finitară)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice r-colorare a lui $[n]^k$ există o submulțime $D \subseteq [n]$ de cardinal m cu proprietatea că $[D]^k$ este monocromatică.

Generalizare a Principiului cutiei (Pigeonhole Principle): Dacă avem r cutii și r+1 obiecte, atunci cel puțin într-o cutie vor fi două obiecte. \iff Dacă colorăm r+1 obiecte cu r culori, atunci există două obiecte care au aceeași culoare.

Pentru k, r, m date, notăm cel mai mic n cu proprietatea de mai sus cu R(k, r, m). Atunci R(1, r, 2) = r + 1.

Teorema Ramsey finitară

Vom demonstra folosind Teorema de compacitate că Teorema Ramsey implică Teorema Ramsey finitară.

Pentru simplitate, considerăm r = 2, k = 2.

Teorema 4.76 (Teorema Ramsey finitară)

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: Presupunem prin reducere la absurd că teorema nu are loc. Atunci există $M \in \mathbb{N}$ cu următoarea proprietate:

(*) pentru orice $n \in \mathbb{N}$ există o 2-colorare a lui $[n]^2$ a.î. [n] nu are submulțimi D de cardinal M cu proprietatea că $[D]^2$ este monocromatică.

În continuare, fixăm M ca mai sus.

218

ŕ

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare)

Pentru orice mulțime nevidă D,

• oricărei 2-colorări c a lui $[D]^2$, îi asociem relația binară R_c pe D definită astfel:

$$R_c = \{(a, b) \in D^2 \mid c(\{a, b\}) = 1\}.$$

▶ oricărei relații binare R pe D îi asociem 2-colorarea c_R a lui $[D]^2$ definită astfel: pentru orice $\{a,b\}\subseteq D$,

$$c_R(\{a,b\})=1 \iff (a,b) \in R.$$

4

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} limbajul de ordinul întâi care conține simbolurile de constantă $\{c_k \mid k \geq 1\}$ și un simbol U de relație binară. Pentru orice $n \geq M$, definim un enunț φ_n din \mathcal{L} cu următoarea proprietate: pentru orice $\mathcal{A} = (A, \{c_k^{\mathcal{A}} \mid k \geq 1\}, U^{\mathcal{A}})$,

$$\mathcal{A} \vDash \varphi_n \iff c_i^{\mathcal{A}} \neq c_j^{\mathcal{A}}$$
 pentru orice $i \neq j \in \{1, \dots, n\}$
și pentru orice $D \subseteq \{c_1^{\mathcal{A}}, \dots, c_n^{\mathcal{A}}\}$ de cardinal M , $[D]^2$ nu este monocromatică relativ la 2-colorarea $c_{\mathcal{U}^{\mathcal{A}}}$.

$$\varphi_n = \bigwedge_{1 \leq i < j \leq n} \neg(c_i = c_j) \land \bigwedge_{1 \leq i_1 < i_2 < \dots < i_M \leq n} \psi_{i_1, \dots, i_M}, \text{ unde}$$

$$\psi_{i_1, \dots, i_M} = \bigvee_{\substack{1 \leq j, k, p, q \leq M, \\ j \neq k, p \neq q, (j, k) \neq (p, q)}} U(c_{i_j}, c_{i_k}) \land \neg U(c_{i_p}, c_{i_q}).$$

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Evident, pentru $m \ge p$, avem că $\varphi_m \models \varphi_p$. Fie

$$\Gamma := \{ \varphi_n \mid n \ge M \}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 = \{\varphi_{n_1}, \dots, \varphi_{n_k}\}, \text{ unde } n_1, \dots, n_k \geq M.$$

Fie $n_0 = \max\{n_1, \ldots, n_k\}$. Atunci orice model al lui φ_{n_0} este model al lui Γ_0 . Aplicând (*) pentru n_0 , rezultă că există o 2-colorare c_{n_0} a lui $[n_0]^2$ a.î. $[D]^2$ nu este monocromatică pentru nicio submulțime $D \subseteq [n_0]$ de cardinal M.

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} -structura \mathcal{A} definită astfel:

- ▶ $|A| = [n_0];$
- ▶ pentru orice $i = 1, ..., n_0, c_i^A = i$ și c_k^A arbitrar pentru $k > n_0$;
- $V^{\mathcal{A}} = R_{c_{n_0}}$.

Atunci $A \vDash \varphi_{n_0}$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{B} = (B, \{c_n^{\mathcal{B}} \mid n \geq 1\}, U^{\mathcal{B}}).$$

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie

$$C = \{c_n^{\mathcal{B}} \mid n \ge 1\} \subseteq B.$$

Deoarece $\mathcal{B} \vDash \Gamma$, avem că $c_n^{\mathcal{B}} \neq c_m^{\mathcal{B}}$ pentru $n \neq m$. Prin urmare, $|C| = |\mathbb{N}| = \aleph_0$. Aplicând Teorema Ramsey 4.73 pentru mulțimea infinită C și 2-colorarea $c_{U^{\mathcal{B}}}$ a lui $[B]^2$ (deci și a lui $[C]^2$), rezultă că C are o submulțime infinită D a.î. $[D]^2$ este monocromatică. Deoarece D este infinită, există N a.î. mulțimea $D_N := D \cap \{c_1^{\mathcal{B}}, \dots, c_N^{\mathcal{B}}\}$ are cardinal M. Cum $[D_N]^2 \subseteq [D]^2$ este monocromatică, am obținut o contradicție cu faptul că $\mathcal{B} \vDash \varphi_N$.

Sintaxa

Definiția 4.77

 $Mulțimea\ Axm_{\mathcal{L}} \subseteq Form_{\mathcal{L}}\ a\ axiomelor\ (logice)\ ale\ lui\ \mathcal{L}\ constă\ din:$

- (i) toate tautologiile.
- (ii) formulele de forma

$$t=t, \quad s=t \rightarrow t=s, \quad s=t \wedge t=u \rightarrow s=u,$$
 pentru orice termeni s, t, u.

(iii) formulele de forma

$$t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow ft_1 \ldots t_m = fu_1 \ldots u_m,$$
 $t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow (Rt_1 \ldots t_m \leftrightarrow Ru_1 \ldots u_m),$ pentru orice $m \geq 1$, $f \in \mathcal{F}_m$, $R \in \mathcal{R}_m$ și orice termeni t_i, u_i $(i = 1, \ldots, m).$

(iv) formulele de forma

$$\varphi_{\mathsf{x}}(t) \to \exists \mathsf{x} \varphi$$
,

unde $\varphi_x(t)$ este o substituție liberă (\exists -axiomele).

Sintaxa

Definiția 4.78

Regulile de deducție (sau inferență) sunt următoarele: pentru orice formule φ , ψ ,

(i) din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

(ii) dacă $x \notin FV(\psi)$, atunci din $\varphi \to \psi$ se inferă $\exists x \varphi \to \psi$ (\exists -introducerea):

$$\frac{arphi o \psi}{\exists x arphi o \psi}$$
 dəcă $x \notin FV(\psi)$.

Sintaxa

Fie Γ o mulțime de formule ale lui $\mathcal{L}.$

Definiția 4.79

 Γ -teoremele lui $\mathcal L$ sunt formulele definite astfel:

- (Γ0) Orice axiomă logică este Γ-teoremă.
- (Γ1) Orice formulă din Γ este Γ-teoremă.
- $(\Gamma 2)$ Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (Γ3) Dacă $\varphi \to \psi$ este Γ-teoremă şi $x \notin FV(\psi)$, atunci $\exists x \varphi \to \psi$ este Γ-teoremă.
- (Γ4) Numai formulele obținute aplicând regulile (Γ0) (Γ1), (Γ2) și (Γ3) sunt Γ-teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Notații

 $\Gamma \vdash_{\mathcal{L}} \varphi := \varphi \text{ este } \Gamma \text{-teorem} \ \ \, \vdash_{\mathcal{L}} \varphi := \emptyset \vdash_{\mathcal{L}} \varphi$

Definiția 4.80

O formulă φ se numește teoremă (logică) a lui \mathcal{L} dacă $\vdash_{\mathcal{L}} \varphi$.

Reformulând condițiile din definiția Γ -teoremelor folosind notația \vdash , obținem

Pentru orice mulțime de formule Γ și orice formule φ, ψ , au loc următoarele:

- (i) Dacă φ este axiomă, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (ii) Dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (iii) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi$ și $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$, atunci $\Gamma \vdash_{\mathcal{L}} \psi$.
- (iv) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$ și $x \notin FV(\psi)$, atunci $\Gamma \vdash_{\mathcal{L}} \exists x \varphi \to \psi$.

4

Sintaxa

Definitia 4.81

O Γ -demonstrație (demonstrație din ipotezele Γ) a lui $\mathcal L$ este o secvență de formule $\theta_1, \ldots, \theta_n$ astfel încât pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i astfel încât $\theta_k = \theta_i \rightarrow \theta_i$;
- (iv) există j < i astfel încât

$$\theta_i = \varphi \to \psi$$
 și $\theta_i = \exists x \varphi \to \psi$, unde $x \notin FV(\psi)$.

O ∅-demonstrație se va numi simplu demonstrație.

Sintaxa

Definiția 4.82

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ astfel încât $\theta_n = \varphi$.

Propoziția 4.83

Fie Γ o mulțime de formule. Pentru orice formulă φ ,

 $\Gamma \vdash_{\mathcal{L}} \varphi$ ddacă există o Γ -demonstrație a lui φ .

Sintaxa

Fie Γ o mulțime de formule.

Teorema 4.84 (Teorema Tautologiei (Post))

Fie $\psi, \varphi_1, \ldots, \varphi_n$ astfel încât

- (i) ψ este consecință tautologică a mulțimii $\{\varphi_1, \ldots, \varphi_n\}$.
- (ii) $\Gamma \vdash_{\mathcal{L}} \varphi_1, \Gamma \vdash_{\mathcal{L}} \varphi_2, \ldots, \Gamma \vdash_{\mathcal{L}} \varphi_n$.

Atunci $\Gamma \vdash_{\mathcal{L}} \psi$.

Teorema 4.85 (Teorema Deducției)

Fie ψ o formulă și φ un enunț. Atunci

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{L}} \psi \quad ddac\check{a} \quad \Gamma \vdash_{\mathcal{L}} \varphi \rightarrow \psi.$$

Propoziția 4.86

Pentru orice formulă φ și orice variabilă x,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \forall x \varphi.$$

Definiția 4.87

Fie φ o formula cu $FV(\varphi) = \{x_1, \dots, x_n\}$. Închiderea universală a lui φ este enunțul

$$\overline{\forall \varphi} := \forall x_1 \dots \forall x_n \varphi.$$

Notații 4.88

 $\overline{\forall \Gamma} := \{ \overline{\forall \psi} \mid \psi \in \Gamma \}.$

Propoziția 4.89

Pentru orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \overline{\forall \varphi} \iff \overline{\forall \Gamma} \vdash \varphi \iff \overline{\forall \Gamma} \vdash \overline{\forall \varphi}.$$

233

Teorema de completitudine

Teorema de completitudine - prima versiune

Fie Γ o mulțime de enunțuri.

 Γ este consistentă \iff Γ este satisfiabilă.

Teorema de completitudine - a doua versiune

Pentru orice mulțime de enunțuri Γ și orice enunț φ ,

$$\Gamma \vdash_{\mathcal{L}} \varphi \iff \Gamma \vDash_{\mathcal{L}} \varphi.$$

- ► Teorema de completitudine a fost demonstrată de Gödel în 1929 în teza sa de doctorat.
- ► Henkin a dat în teza sa de doctorat din 1947 o demonstrație simplificată.

Mulțimi consistente

Definiția 4.90

Fie Γ o mulțime de formule. Spunem că

- (i) Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash_{\mathcal{L}} \varphi$.
- (ii) Γ este inconsistentă dacă nu este consistentă, adică $\Gamma \vdash_{\mathcal{L}} \varphi$ pentru orice formulă φ .

Propoziția 4.91

Pentru orice mulțime de formule Γ , următoarele afirmații sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ astfel încât $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.