

Concours Commun d'accès en 1^{ère} année ENSAM Session du 24 Juillet 2023

Epreuve de : Mathématiques		Durée : 2h15mn	
Importants :	1. Les calculatrices sont strictement interdites.		
	2. Aucune question n'est p	permise pendant l'épreuve.	

Partie I: Questions à choix multiples

Pour chaque question qui suit, cocher la bonne réponse dans la partie correspondante de la feuille des réponses

(Une réponse correcte = 2pts, aucune réponse, plus d'une réponse ou une réponse fausse = 0pts)

	Questions		
Question 1	Dans $[1, \pi]$, l'équation $Ln(x) e^x - \cos(x) - 1 = 0$ admet :		
Question 2	Pour $n \in \mathbb{N}$, soit $S_n = 1 - \frac{1}{3} - \frac{1}{3^2} - \dots - \frac{1}{3^n}$. Choisir la bonne réponse.		
Question 3	Soit $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \sqrt[3]{u_n^2 + 2u_n}, \ \forall \ n \ge 0. \end{cases}$ Sachant que la suite $(u_n)_n$ est croissante, choisir la bonne réponse :		
Question 4	Soit f une fonction dérivable en 0 telle que $f(0)=0$ et $f'(0)=\frac{1}{2}$. La limite $\ell=\lim_{x\to 0}\frac{x}{f(x)+2f\left(\frac{x}{2}\right)+\cdots+nf\left(\frac{x}{n}\right)}$ est égale à :		
Question 5	Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{x^2} - \cos(x)}{x}$ si $x \neq 0$ et $f(0) = 0$, et soit C_f la courbe représentative de f. Choisir la bonne réponse.		
Question 6	Soit $f(x) = \frac{e^x}{\sqrt{x}} - \frac{Ln(x)}{1+x}$. La courbe représentative \mathcal{C}_f de f admet en $+\infty$:		
Question 7	Pour $z \in \mathbb{C}$, on note par $M(z)$ le point du plan complexe d'affixe z . L'ensemble $A = \{M(z) : 2z + 2\bar{z} + z\bar{z} = 0\}$ est :		
Question 8	Dans l'espace muni d'un repère orthonormé $(0, \vec{l}, \vec{j}, \vec{k})$ avec $ \vec{l} = \vec{j} = \vec{k} = 1$ cm, on considère le plan (P) passant par O et de vecteur $\vec{n}(2, -1, 3)$. La distance d du point $A(1, 0, -1)$ au plan (P) est égale à :		
Question 9	Pour $n \in \mathbb{N}$, soit $I_n = \int_0^1 \frac{x^n}{1+x^n} dx$ et $J_n = \int_0^1 \frac{1}{1+x^n} dx$. Choisir la bonne réponse.		
Question 10	Pour $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$, soit le polynôme $P = X^n + aX^{n-1} + aX^{n-2} + \dots + aX + a$. Le nombre réel $P(1-a)$ est égale à :		
Question 11	Soit f une fonction de \mathbb{R} vers \mathbb{R}^* telle que $f(x-y)=f(x)f(y), \ \forall (x,y)\in\mathbb{R}^2$. Choisir la bonne réponse.		
Question 12	L'équation $1 + \cos(x) + \cos(2x) = 0$ admet dans $] - \pi, \pi]$:		
Question 13	Dans \mathbb{Z}^2 , l'équation $x^2 - 3y^2 = 8$ admet :		
Question 14	Le reste r de la division euclidienne de 2022^{2023} est :		
Question 15	Soit u le chiffre des unités du nombre entier naturel $4444^{6666} + 6666^{4444}$. Choisir la bonne réponse.		

Partie II : Questions à réponses précises

Pour chaque question qui suit, écrire la réponse dans la partie correspondante de la feuille des réponses

(Chaque réponse est notée sur 2pts)

	Questions		
Question 16	Une enquête faite auprès de la population étudiante d'un campus révèle : la population féminine représente 48% de la population totale, 60% des filles possèdent des compétences en soft skills et 20% des garçons sans compétences. Quelle est la probabilité P pour qu'un étudiant interrogé au hasard soit sans compétences ?		
Question 17	Une société de voyage marocaine propose aux tourismes pressés une formule "Le Maroc en huit jours". Il s'agit de visiter 4 villes principales, en passant 2 jours dans chaque ville. Ces villes sont Meknès, Fès, Taza, Rabat, Marrakech et Agadir, suivant le goût de chaque client. Quel est le nombre N de formules possibles ?		
Question 18	En donnant la forme géométrique et la forme algébrique du nombre complexe $\frac{1+i\sqrt{3}}{2-2i}$, déterminer la valeur de $\tan(\frac{7\pi}{12})$.		
Question 19	Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A, B, C et D d'affixes respectivement a, b, c et d . Sachar que $a + c = b + d$ et $\frac{c - a}{b - d} = I$, donner la nature du quadrilatère $ABCD$.		
Question 20	Calculer la limite $\lim_{x\to 1^-} f(x)$; où $f(x) = \frac{e^{\frac{2}{\ln(x)}}}{\sqrt{x}-1}$.		
Question 21	Calculer l'intégrale $I = \int_0^{\frac{\pi}{4}} \frac{\cos(x) - \sin(x)}{\cos(x) + \sin(x)} dx$.		
Question 22	Soit $f(x) = \frac{\sqrt{x}e^{\frac{x}{2}}}{e^{x}+1}$ et soit C_f sa courbe représentative dans un repère orthonormé $(0,\vec{t},\vec{f})$ tel que : $ \vec{t} = \vec{f} = 1cm$. Calculer le volume V du solice engendré par la rotation de C_f autour de l'axe des abscisses et délimité par les plans d'équations $x = 0$ et $x = 1$.		
Question 23	Dans l'espace muni d'un repère orthonormé d'origine O , on considère la sphère S d'équation cartésienne : $x^2 + y^2 + z^2 - 2y - 2z = 0$. Détermiléquation cartésienne du plan (P) tangent à la sphère S au point O .		
Question 24	On considère l'équation différentielle $(E): y''-2y'+2y=\cos(x)+2\sin(x)$. Sachant que la fonction $x\mapsto\cos(x)$ est une solution de (E) , déterminer la solution particulière y_0 de (E) telle sa courbe représentative passe par l'origine O et ayant une tangente en O de coefficient directeur -1 .		
Question 25	Une boite en carton parallélépipède rectangle ouverte sur le dessus a un volume de 32 cm³ et une arête de la base de dessous de longueur 4cm. Quelles doivent être ses dimensions pour que sa surface totale soit minimale.		