On the feasibility for the system of quadratic equations, explanations

1. Theorem 3.2 (Sufficient condition)

Consider $f: \mathbb{R}^n \to \mathbb{R}^m$, s.t. $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$. Define $F = f(\mathbb{R}^n)$. Then why $A = \inf_{y \in F} (c, y) = \inf_{y \in \text{conv } F} (c, y) = B$?

- 1. First, $F \subseteq \text{conv } F$, therefore, $B \leqslant A$.
- 2. Secondly, let $y_k \in \text{conv } F$ be a sequence s.t. $g_k = (c, y_k) \underset{k \to \infty}{\longrightarrow} B$. $y_k = \sum_{i=1}^{n_k} \alpha_i^k y_i^k$.

 $g_k(c,y_k) = \sum_{i=1}^{n_k} \alpha_i^k(c,y_i^k) = \sum_{i=1}^{n_k} \alpha_i^k g_i^k$. Define $g_0^k = \min_{i \in \overline{1,n_k}} g_i^k$. Then $B \leqslant g_0^k \leqslant g^k$. Therefore, $g_0^k \to B$ also. This way, we have constructed a sequence $y_0^k \in F$ s.t. $(c,y_0^k) \to B$, therefore, $A \leqslant B$.

2. Minimum of f(x)

Consider $f: \mathbb{R}^n \to \mathbb{R}^m$. $f_i(x) = x^T A_i x + 2b_i^T x$. $A_i^T = A_i$. Let $c \in \mathbb{R}^m$ We want to find $g(c) = \inf_{x \in \mathbb{R}^n} (c, f(x))$.

Define
$$A_c \equiv c \cdot A = \sum_{i=1}^m c_i A_i, b_c = c \cdot b = \sum_{i=1}^m c_i b_i.$$

$$(c, f(x)) = \sum_{i=1}^{m} c_i f_i(x) = \sum_{i=1}$$

 $(c,f(x)) = \sum_{i=1}^m c_i f_i(x) = \sum c_i (x^T A_i x + 2b_i^T x) = x^T A_c x + 2b_c^T x.$ If $\exists v \colon -\alpha = v^T A_c v < 0$ then $g(c) = -\infty \colon g(\beta v) = -\beta^2 \alpha + \beta 2b_c^T v \to -\infty, \ \beta \to +\infty.$ From this point on, we assume $A_c \geqslant 0$. Let R_0 be a zero eigenspace (=kernel) of $A_c \colon R_0 = \{v \colon A_c v = a_c v : a_c v \in A_c v = a_c v : A_c v : A_c v = a_c v : A_c v :$ 0} = ker A_c

If
$$\exists v \in R_0 : v^T b_c \neq 0$$
 then $g(c) = -\infty$: Consider $f(\beta v) = \beta^2 v^T (A_c v)^{-0} + 2\beta \underbrace{b_c^T v}_{\neq 0} \rightarrow -\infty, \beta \rightarrow \infty$

Consider
$$A = \sum_{i=1}^{n} \lambda_i s_i s_i^T = S \Lambda S^T, S = ||s_1 ... s_n||, S^T S = E, s_i^T s_j = \delta_{ij}.$$

f is differentiable, then for finding g(c) the gradiend $\nabla(c, f(x)) = 2A_c x + 2b_c = 0$.

$$S\Lambda S^{T}x=-b_{c}\Leftrightarrow\Lambda S^{T}x=-S^{T}b_{c}\left(\ast\right)$$

Let x be $x = x^{\|} + x^{\perp}, x^{\|} \in R_0, x^{\perp} \perp R_0.$

Then neither f(x) nor $\Lambda S^T x$ depend on x^{\parallel} . This means that the x minimizing g(c) is defined in terms of x^{\perp} and x^{\parallel} is arbitrary.

Define
$$\lambda_i^g = \begin{cases} 0, & \lambda_i = 0 \\ 1/\lambda_i, & \lambda_i \neq 0 \end{cases}$$
. Define $\Lambda^g = \operatorname{diag}(\lambda_1^g, ..., \lambda_n^g)$. Then $\Lambda \Lambda^g = \delta_{ij}[\lambda_i \neq 0]$. Then $S\Lambda^g \Lambda S^T$ is a projector on $R_n^{\frac{1}{\alpha}}$.

Projector on
$$R_0^{\perp}$$
.

Consider $(*) \Leftrightarrow \Lambda^g \Lambda S^T (x^{\parallel} + x^{\perp}) = -\Lambda^g S^T b_c$. But $\Lambda S^T x^{\parallel} = 0$, therefore, $\underbrace{S\Lambda^g \Lambda S^T}_{\text{projector}} x^{\perp} = -S\Lambda^g S^T b_c$.

But x^{\perp} is already in R_0^{\perp} , therefore, $x^{\perp} = -\underbrace{S\Lambda^g S^T}_{A_c^g} b_c$. Here A_c^g is a pseudoinverse of A_c .

Therefore,
$$x = -A_c^g b_c + x^{\parallel}$$
, where $x^{\parallel} \in R_0$.

Consider $(c, f(x)) = (c, f(x^{\perp})) = b_c^T A_c^g A_c A_c^g b_c - 2b_c^T A_c^g b_c$. Consider $A_c A_c^g b_c = S \Lambda S^T S^T \Lambda_c^g S^T b_c$. Because $R_0 \subseteq \{b_c\}^{\perp}$, $\Lambda \Lambda^g S^T b_c = S^T b_c$. Therefore, $A_c A_c^g b_c = b_c$. Then $(c, f(x)) = b_c^T A_c^g b_c - 2b_c^T A_c^g b_c = S \Lambda S^T S^T b_c$.

3. Finding c provided d

Let $H: \mathbb{R}^{n+1,n+1} \to \mathbb{R}^n$ be a map s.t. $H_i(X) = \text{Tr}(H_iX)$,

$$H_i = \left| \left| \begin{array}{cc} A_i & b_i \\ b_i^T & 0 \end{array} \right| \right|^{\square}$$

Consider a boundary point X, which is a solution of (main article, (4)):

$$\begin{cases} \sup & t \\ H(X) = y^0 + td \\ X \ge 0 \\ X_{n+1,n+1} = 1 \end{cases}$$

Define f(t,X) = t, $D_0 = \{(t,X) | X \ge 0, X_{n+1,n+1} = 1\}$, $D_1 = \{(t,X) | H(X) = y^0 + td\}$. Then supremum is equivalent to

$$\sup_{(t,X)\in D_0\cap D_1} f(t,X)$$

Define a Lagrange function $L(c,t,X) = \underbrace{t}_{f(t,X)} + \sum_{i=1}^{m} c_i(y_i^0 + td_i - H_i(X)).$

Here we divided the constraints into two parts: D_1 goes to the Lagrange function, D_0 goes to the inner supremum. Stephen Boyd, Lieven Vandenberghe. Convex Optimization. Page ???. Cambridge University

Then the dual function is $g(c) = \sup_{(t,X) \in D_0} L(c,t,X)$.

Because $L = t(1 + \sum_{i=1}^m c_i d_i) + \sum_{i=1}^n c_i (y_i^0 - H_i(X)), g = +\infty$ when $(c,d) \neq -1$. From this point we assume that (c,d) = -1.

Now, $g(c) = \sup_{X_{n+1,n+1} = 1,X \geqslant 0} (c,y^0 - H(X)) = (c,y^0) + \sup_{y \in \text{conv } F} -(c,y) = (c,y^0) - \inf_{y \in \text{conv } F} (c,y)$.

Then the dual problem is

Now,
$$g(c) = \sup_{X_{n+1,n+1}=1,X\geqslant 0} (c, y^0 - H(X)) = (c, y^0) + \sup_{y\in \text{conv } F} -(c, y) = (c, y^0) - \inf_{y\in \text{conv } F} (c, y)$$

$$g(c) \to \inf_{(c,d)=-1}$$

Let us prove that $\inf_{y \in \text{conv } F}(c, y) = \inf_{H = \left| \left| \begin{array}{cc} A_c & b_c \\ b_c^T & \gamma \end{array} \right| \right| \geqslant 0} (-\gamma)$

Via Schur complement $H \geqslant 0 \Leftrightarrow \begin{cases} A_c \geqslant 0 \\ \gamma - b_c^T A_c^g b_c \geqslant 0 \\ (E - A_c A_c^g) b_c = 0 \end{cases}$

 $A_c \geqslant 0$ is a necessary condition for $\exists g(c) \in \mathbb{R}$ (see part 2).

 $(E - A_c A_c^g)b_c = 0$ is another necessary condition for $\exists g(c) \in \mathbb{R}$. Statement $\gamma \geqslant b_c^T A_c b_c$ means $-\gamma \leqslant -b_c^T A_c b_c = \inf_{y \in \text{conv } F}(c, y)$, which means that $-\gamma$ is a lower bound for $\inf_{y \in \text{conv } F} (c, y)$.

Then $H \geqslant 0 \Leftrightarrow -\gamma \leqslant \inf_{y \in \text{conv } F} (c, y)$.

Then $g(c) = (c, y^0) - \inf_{H \geqslant 0} -\gamma$.

Then the dual problem is:
$$\inf_{(c,d)=-1} g(c) \Leftrightarrow \inf_{(c,d)=-1} \left[(c,y^0) - \inf_{H\geqslant 0} (-\gamma) \right] \Leftrightarrow \inf_{(c,d)=-1} \inf_{H\geqslant 0} (c,y^0) + \gamma = \begin{bmatrix} \inf & \gamma + (c,y^0) \\ H\geqslant 0 \\ (c,d)=-1 \end{bmatrix}$$

This problem is exactly (5) from main article \blacksquare .

4. What is z_{max} ?

Consider $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$. Let $c_+ \in \mathbb{R}^m$ s.t. $A_+ = \sum c_i A_i > 0$. Then the minimum $\inf_x (c, f(x))$ is obtained at a single point $x_0 = -A_+^{-1}b_+, b_+ = \sum c_i b_i$

Consider $S_{\varepsilon}^{+} = \{x \in \mathbb{R}^{n} | (x - x_{0})^{T} A_{+}(x - x_{0}) = \varepsilon^{2} \}$. Then $f(S_{\varepsilon}^{+}) = \{y \in \mathbb{R}^{m} | (c_{+}, y) = (c_{+}, f(x_{0})) + \varepsilon^{2} \}$.

Indeed, if
$$\begin{cases} P = (c_+, f(x) - f(x_0)) \\ Q = (x - x_0)^T A_+(x - x_0) \end{cases}$$
 then
$$P - Q = \underline{x^T A_+ x} - x_0^T A_+ x_0 + 2b_+^T x - 2b_+^T x_0 - \underline{x^T A_+ x} - x_0^T A_+ x_0 + 2b_+^T x_0 - 2b_+^T x_0 -$$

5. Variables s.t. $c \cdot A = I$, $c \cdot b = 0$

Given: the map $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$, vector $c \in \mathbb{R}^m : c \cdot A > 0$ We need to find a new pair of bases s.t. $\begin{cases} \tilde{c} \cdot \tilde{A} = I & (1) \\ \tilde{c} \cdot \tilde{b} = 0 & (2) \end{cases}$ Problem here: $c \cdot A = \Lambda$

- 1. Condition (1). Changing variables in the x space: $x = S\tilde{x} \Leftrightarrow \tilde{x} = S^{-1}x$. Then $f_i(x) = x^T A_i x +$ $2b_i^T x = \tilde{x}^T S^T A_i S \tilde{x} + 2\tilde{b_i}^T S \tilde{x}$. $\tilde{A}_i = S^T A_i S$. $c\tilde{A} = \sum c_i \tilde{A}_i = \sum c_i S^T A_i S = S^T A_c S$. Therefore, condition (1) is equal to diagonalising A_c . Consider $||c \cdot \tilde{b}|| = ||\sum c_i S^T b_i|| = ||S^T \sum c_i b_i|| = ||\sum c_i b_i||$. Therefore, a change of variables in the x space does not affect on the value of $c \cdot b$
- 2. Condition (2). New variables: \tilde{x} , \tilde{y} ,

$$\begin{cases} x = \tilde{x} + x^0 \\ y = \tilde{y} + y^0 \end{cases}$$

Function $y_i(x) = \tilde{y}_i(\tilde{x}) + y_i^0$. Consider $y_i(x) = x^T A_i x + 2b_i^T x = (\tilde{x} + x^0)^T A_i (\tilde{x} + x^0) + 2b_i^T (\tilde{x} + x^0) = \tilde{x}^T A_i \tilde{x} + 2x^{0T} A_i \tilde{x} + x^{0T} A_i x^0 + 2b_i^T x^0 + 2b_i^T \tilde{x} = \tilde{x}^T A_i \tilde{x} + 2(\underbrace{b_i + A_i x^0}_{\tilde{h}})^T \tilde{x} + \underbrace{x^{0T} A_i x^0 + 2b_i^T x^0}_{y^0}.$

Consider $\sum c_i \tilde{b}_i = c \cdot b + (c \cdot A)x^0$. Therefore, $x^0 = -(c \cdot A)^{-1}(c \cdot b)$

The algorithm:

- 1. Compute S via the eigenbasis of $c \cdot A$, $S^{T}(c \cdot A)S = I$
- 2. Compute $\tilde{A}_i = S^T A_i S$, $\tilde{b}_i = S^T b_i$
- 3. Compute $\tilde{x}^0 = -(c \cdot \tilde{b}), y_i^0 = (\tilde{x}^0)^T \tilde{A}_i \tilde{x}^0 + 2\tilde{b}_i^T \tilde{x}^0$
- 4. Compute $\hat{A}_i = \tilde{A}_i$, $\hat{b}_i = \tilde{b}_i + \tilde{A}_i \tilde{x}^0$

Then $\hat{y}_i = \hat{x}^T \hat{A}_i \hat{x} + 2\hat{b}_i^T \hat{x}, \ x = S(\hat{x} + \tilde{x}^0), \ y = \hat{y} + \tilde{y}^0$

6.
$$z(c) = ?$$

Given: the map $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$, two vectors $c, c_+ \in \mathbb{R}^m$. $c_+ A = I$, $c_+b=0$. Find: $z(c)=\inf_{c}(c_+,y)$ where Y is an intersection of $f(\mathbb{R}^n)$ with a tangent hyperplane defined by its normal vector c.

Define $\sigma(Q) = \{\lambda \mid \dim \operatorname{Ker}(Q - \lambda E) > 0\}$. Define $\lambda_{\min}(Q) = \min \sigma(Q)$ — minimal eigenvalue of Q.

- 1. If $\lambda_{\min}(c \cdot A) < 0$ then the tangent hyperplane does not exist, and $z(c) = +\inf$
- 2. Then $\lambda_{\min}(c \cdot A) > 0$, then there is no nonconvexity, and $z(c) = \inf$
- 3. For $\lambda_{\min} = 0$ in part 2 Y was found explicitly: $Y = \{f(x)|x = x^{\parallel} A_c^g b_c, x^{\parallel} \in \operatorname{Ker} A_c\}$. Then for $y \in Y \ (c_+, y) = x^T (c_+ A^T) x + 2(c_+ b^0)^T x = x^T x$

- 4. $x^T x = ||x||^2 = ||x^{\parallel}||^2 + ||A_c^g b_c||^2$. We want to minimize (c_+, y) , therefore, we choose $x^{\parallel} = 0$. Then $z(c) = ||A_c^g b_c||^2 = \overline{\left| (c \cdot A)^g (c \cdot b) \right|^2}$
- 5. Consider $\inf_{x \in \mathbb{R}^n} (c_+, f(x)) = -(c_+ b^0) (A_{c_+})^{-1} (c_+ b) = 0$. Therore, $z(c) = \inf_{y \in Y} (c_+, y) \inf_{y \in F} (c_+, y)$

Now consider
$$z(c) = \begin{cases} |(c \cdot A)^g (c \cdot b)|^2, & \lambda_{\min}(c \cdot A) = 0 \\ +\infty, & \text{otherwise} \end{cases}$$

Consider $z(c+\alpha c_+) = |(c \cdot A + \alpha c_+ A^{-I})^g b_c|^2 = |(c \cdot A + \alpha I)^g b_c|^2$. We need α s.t. $\lambda_{\min}(c \cdot A + \alpha I) = 0$, therefore, $\alpha = -\lambda_{\min}(c \cdot A)$.

Define $\hat{z}(c) = |(c \cdot A - \lambda_{\min}(A))^g(c \cdot b)|^2$. Consider $\mathbb{R}^m \ni c = c^{\parallel} + c^{\perp}$, $c^{\parallel} \parallel c_+$, $(c_+, c^{\perp}) = 0$. Then $\hat{z}(c) = \hat{z}(c^{\perp})$, i.e. \hat{z} does not depend on c^{\parallel} . It depends only on c^{\perp} , and c^{\parallel} is chosen in a way that $\lambda_{\min}(c \cdot A) = 0$.

7. Theorem 3.4 (Nonconvexity certificate)

Given.

- 1. The map $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$, $m, n \geqslant 3$. The vector $c \in \mathbb{R}^m$.
- 2. $A_c \geqslant 0$, dim Ker $A_c = 1$ (=simple zero eigenvalue), Ker $A_c = \text{Lin}\{e\}$
- 3. $b_c \perp \operatorname{Ker} A_c$
- 4. $b \perp \text{Ker } A_c, e^0 = -A_c^g b_c$
- 5. $f(\alpha e + e^0) = f^0 + 2\alpha f^1 + \alpha^2 f^2$, $f^1 \not \mid f^2$

Then $F = \operatorname{Im} f$ is nonconvex.

Consider
$$\inf_{y \in F} (c, y)$$
 (part 2). $x = \underbrace{x^{\parallel}}_{\alpha e} + \underbrace{(-A_c^g b_c)}_{c_0}$. Then

$$f_i(\alpha e + e^0) = \alpha^2 \underbrace{e^T A_i e}_{f_i^2} + 2\alpha \underbrace{(b_i^T e + e^T A_i e^0)}_{f_i^1} + \underbrace{2b_i^T e^0 + e^{0T} A_i e^0}_{f_i^0}$$

If $f^1 \not | f^2$, then $\{f(\alpha e + e^0 | \alpha \in \mathbb{R})\} = F \cap \{y | (c, y) = \inf_{u \in F} (c, y)\}$ is nonconvex. Then F is nonconvex.