

Determine the vertical force \mathbf{P} which must be applied at G to maintain the equilibrium of the linkage.

SOLUTION

Assuming

$$\delta y_A \downarrow$$

it follows

$$\delta y_C = \frac{120}{80} \delta y_A = 1.5 \delta y_A \dagger$$

$$\delta y_E = \delta y_C = 1.5 \delta y_A \dagger$$

$$\delta y_D = \frac{180}{60} \delta y_A = 3(1.5 \delta y_A) = 4.5 \delta y_A \dagger$$

$$\delta y_G = \frac{100}{60} \delta y_A = \frac{100}{60} (1.5 \delta y_A) = 2.5 \delta y_A \dagger$$

Then, by Virtual Work

$$\delta U = 0: (300 \text{ N}) \delta y_A - (100 \text{ N}) \delta y_D + P \delta y_G = 0$$
$$300 \delta y_A - 100 (4.5 \delta y_A) + P (2.5 \delta y_A) = 0$$
$$300 - 450 + 2.5P = 0$$
$$P = +60 \text{ N}$$

 $\mathbf{P} = 60 \,\mathrm{N} \,\mathbf{\downarrow} \,\blacktriangleleft$

5 in. Determine the vertical force **P** which must be applied at *G* to maintain the equilibrium of the linkage.

SOLUTION

Link ABC

Assume

 $\delta\theta$ clockwise

Then for point C

$$\delta x_C = (5\delta\theta)$$
 in. \rightarrow

Link DEFG

and for point D

$$\delta x_D = \delta x_C = (5\delta\theta) \text{ in.} \longrightarrow$$

And for link DEFG

$$\delta x_D = 15\delta\phi$$

$$\therefore 5\delta\theta = 15\delta\phi$$

 $\delta\phi = \frac{1}{3}\delta\theta$

Then

or

$$\delta_G = 4\sqrt{2}\delta\phi = \left(\frac{4}{3}\sqrt{2}\delta\theta\right)$$
 in.

Now

$$\delta y_G = \delta_G \cos 45^{\circ}$$

$$= \left(\frac{4}{3}\sqrt{2}\delta\theta\right)\cos 45^{\circ}$$

$$= \left(\frac{4}{3}\delta\theta\right) \text{ in.}$$

Then, by Virtual Work.

$$\delta U = 0$$
: $(80 \text{ lb} \cdot \text{in.}) \delta \theta - (40 \text{ lb}) \delta x_E(\text{in.}) + P \delta y_G(\text{in.}) = 0$

$$80\delta\theta - 40\left(\frac{10}{3}\delta\theta\right) + P\left(\frac{4}{3}\delta\theta\right) = 0$$

or $\mathbf{P} = 40 \text{ lb} \downarrow \blacktriangleleft$

5 in. Determine the couple **M** which must be applied to member *DEFG* to maintain the equilibrium of the linkage.

SOLUTION

Link ABC

Following the kinematic analysis of Problem 10.2, we have U = 0:

$$\delta U = 0: \quad \left(80 \text{ lb} \cdot \text{in.}\right) \delta \theta - \left(40 \text{ lb}\right) \delta x_E \left(\text{in.}\right) + M \delta \phi = 0$$

$$80\delta\theta - 40\left(\frac{10}{3}\delta\theta\right) + M\left(\frac{1}{3}\delta\theta\right) = 0$$

or $\mathbf{M} = 160 \text{ lb} \cdot \text{in.}$

Link DEFG

Determine the couple M which must be applied to member DEFG to maintain the equilibrium of the linkage.

SOLUTION

Assuming

$$\delta y_A \downarrow$$

it follows

$$\delta y_C = \frac{120}{80} \delta y_A = 1.5 \delta y_A \uparrow$$

$$\delta y_E = \delta y_C = 1.5 \delta y_A \uparrow$$

$$\delta y_D = \frac{180}{60} \delta y_A = 3(1.5 \delta y_A) = 4.5 \delta y_A \uparrow$$

$$\delta \phi = \frac{\delta y_E}{60} = \frac{1.5 \delta y_A}{60} = \frac{1}{40} \delta y_A$$

Then, by Virtual Work:

$$\delta U = 0: (300 \text{ N}) \delta y_A - (100 \text{ N}) \delta y_D + M \delta \phi = 0$$
$$300 \delta y_A - 100 (4.5 \delta y_A) + M \left(\frac{1}{40} \delta y_A\right) = 0$$
$$300 - 450 + \frac{1}{40} M = 0$$
$$M = +6000 \text{ N} \cdot \text{mm}$$

 $\mathbf{M} = 6.00 \,\mathrm{N \cdot m}$

An unstretched spring of constant 4 lb/in. is attached to pins at points C and I as shown. The pin at B is attached to member BDE and can slide freely along the slot in the fixed plate. Determine the force in the spring and the horizontal displacement of point H when a 20-lb horizontal force directed to the right is applied (a) at point G, (b) at points G and H.

SOLUTION

First note:

$$x_G = 3x_D \Rightarrow \delta x_G = 3\delta x_D$$

 $x_H = 4x_D \Rightarrow \delta x_H = 4\delta x_D$

$$x_I = 5x_D \Rightarrow \delta x_I = 5\delta x_D$$

(a) Virtual Work

Virtual Work
$$\delta U = 0: \quad F_G \delta x_G - F_{SP} \delta x_I = 0$$

or

$$(20 \text{ lb})(3\delta x_D) - F_{SP}(5\delta x_D) = 0$$

thus, $F_{SP} = 12.00 \text{ lb } T \blacktriangleleft$

 $F_{SP} = k\Delta x_I$ Now

or
$$12.00 \text{ lb} = (4 \text{ lb/in.}) \Delta x_I$$

 $\Delta x_I = 3 \text{ in.}$ Thus,

 $\delta x_D = \frac{1}{4} \delta x_H = \frac{1}{5} \delta x_I$ and

$$\therefore \Delta x_H = \frac{4}{5} \Delta x_I$$

$$= \frac{4}{5} (3 \text{ in.}) \qquad \text{or } \Delta x_H = 2.40 \text{ in.} \longrightarrow \blacktriangleleft$$

 $\delta U = 0$: $F_G \delta x_G + F_H \delta x_H - F_{SP} \delta x_I = 0$ (b) Virtual Work:

or
$$(20 \text{ lb})(3\delta x_D) + (20 \text{ lb})(4\delta x_D) - F_{SP}(5\delta x_D) = 0$$

thus, $F_{SP} = 28.0 \text{ lb } T \blacktriangleleft$

 $F_{SP} = k\Delta x_I$ Now

or
$$28.0 \text{ lb} = (4 \text{ lb/in.}) \Delta x_I$$

 $\Delta x_I = 7$ in. Thus,

From part (a)
$$\Delta x_H = \frac{4}{5} \Delta x_I$$

$$= \frac{4}{5} (7 \text{ in.}) \qquad \text{or } \Delta x_H = 5.60 \text{ in.} \longrightarrow \blacktriangleleft$$

An unstretched spring of constant 4 lb/in. is attached to pins at points C and I as shown. The pin at B is attached to member BDE and can slide freely along the slot in the fixed plate. Determine the force in the spring and the horizontal displacement of point H when a 20-lb horizontal force directed to the right is applied (a) at point E, (b) at points D and E.

SOLUTION

First note:

$$x_G = 3x_D \Rightarrow \delta x_G = 3\delta x_D$$

$$x_H = 4x_D \Rightarrow \delta x_H = 4\delta x_D$$

$$x_I = 5x_D \Rightarrow \delta x_I = 5\delta x_D$$

(a) Virtual Work:

 $\delta U = 0: \quad F_E \delta x_E - F_{SP} \delta x_I = 0$

or

$$(20 \text{ lb})(2\delta x_D) - F_{SP}(5\delta x_D) = 0$$

thus, $F_{SP} = 8.00 \text{ lb } T \blacktriangleleft$

Now

$$F_{SP} = k\Delta x_I$$

or

$$8.00 \text{ lb} = (4 \text{ lb/in.}) \Delta x_I$$

Thus,

$$\Delta x_I = 2 \text{ in.}$$

And

$$\delta x_D = \frac{1}{4} \delta x_H = \frac{1}{5} \delta x_I$$

$$\therefore \quad \Delta x_H = \frac{4}{5} \Delta x_I$$

$$=\frac{4}{5}(2 \text{ in.})$$

or
$$\Delta x_H = 1.600$$
 in. $\longrightarrow \blacktriangleleft$

(b) Virtual Work:

$$\delta U = 0: \quad F_D \delta x_D + F_E \delta x_E - F_{SP} \delta x_I = 0$$

or

$$(20 \text{ lb})\delta x_D + (20 \text{ lb})(2\delta x_D) - F_{SP}(5\delta x_D) = 0$$

thus, $F_{SP} = 12.00 \text{ lb } T \blacktriangleleft$

PROBLEM 10.6 CONTINUED

Now

$$F_{SP} = k\Delta x_I$$

or

 $12.00 \text{ lb} = (4 \text{ lb/in.}) \Delta x_I$

Thus,

$$\Delta x_I = 3 \text{ in.}$$

From part (a)

$$\Delta x_H = \frac{4}{5} \Delta x_I$$
$$= \frac{4}{5} (3 \text{ in.})$$

or
$$\Delta x_H = 2.40$$
 in. $\longrightarrow \blacktriangleleft$

400 mm 400 mm 8 kg 8 kg k₂

PROBLEM 10.7

Knowing that the maximum friction force exerted by the bottle on the cork is 300 N, determine (a) the force **P** which must be applied to the corkscrew to open the bottle, (b) the maximum force exerted by the base of the corkscrew on the top of the bottle.

SOLUTION

From sketch

$$y_A = 4y_C$$

Thus,

$$\delta y_A = 4\delta y_C$$

(a) Virtual Work:

$$\delta U = 0$$
: $P\delta y_A - F\delta y_C = 0$

$$P = \frac{1}{4}F$$

$$F = 300 \text{ N}$$
: $P = \frac{1}{4} (300 \text{ N}) = 75 \text{ N}$

(b) Free body: Corkscrew

$$+ \uparrow \Sigma F_y = 0$$
: $R + P - F = 0$

$$R + 75 N - 300 N = 0$$

 $\mathbf{R} = 225 \,\mathrm{N} \,\mathbf{\downarrow} \blacktriangleleft$

The two-bar linkage shown is supported by a pin and bracket at B and a collar at D that slides freely on a vertical rod. Determine the force Prequired to maintain the equilibrium of the linkage.

SOLUTION

Assume

Have

$$\delta y_C = \frac{160}{320} \delta y_A$$
 or $\delta y_C = \frac{1}{2} \delta y_A \downarrow$

$$\delta y_C = \frac{1}{2} \delta y_A$$

Since bar CD moves in translation

$$\delta y_E = \delta y_F = \delta y_C$$

or

$$\delta y_E = \delta y_F = \frac{1}{2} \delta y_A \downarrow$$

Virtual Work:

$$\delta U = 0: -P\delta y_A + (400 \text{ N})\delta y_E + (600 \text{ N})\delta y_F = 0$$
$$-P\delta y_A + (400 \text{ N})\left(\frac{1}{2}\delta y_A\right) + (600 \text{ N})\left(\frac{1}{2}\delta y_A\right) = 0$$

P = 500 N

or

The mechanism shown is acted upon by the force P; derive an expression for the magnitude of the force Q required for equilibrium.

SOLUTION

Virtual Work:

Have $x_A = 2l \sin \theta$

 $\delta x_A = 2l\cos\theta\,\delta\theta$

and $y_F = 3l\cos\theta$

 $\delta y_F = -3l\sin\theta\,\delta\theta$

Virtual Work: $\delta U = 0$: $Q\delta x_A + P\delta y_F = 0$

 $Q(2l\cos\theta\,\delta\theta) + P(-3l\sin\theta\,\delta\theta) = 0$

 $Q = \frac{3}{2}P\tan\theta \blacktriangleleft$

Knowing that the line of action of the force \mathbf{Q} passes through point C, derive an expression for the magnitude of Q required to maintain equilibrium

SOLUTION

Have

$$y_A = 2l\cos\theta;$$
 $\delta y_A = -2l\sin\theta\,\delta\theta$

$$y_A = 2l\cos\theta;$$
 $\delta y_A = -2l\sin\theta\,\delta\theta$ $CD = 2l\sin\frac{\theta}{2};$ $\delta(CD) = l\cos\frac{\theta}{2}\delta\theta$

Virtual Work:

$$\delta U = 0$$
: $-P\delta y_A - Q\delta(CD) = 0$

$$-P(-2l\sin\theta\,\delta\theta) - Q\left(l\cos\frac{\theta}{2}\,\delta\theta\right) = 0$$

$$Q = 2P \frac{\sin \theta}{\cos(\theta/2)} \blacktriangleleft$$