APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF2010)

FELIPE DEL CANTO

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

INTRODUCCIÓN

Introducción

- Hasta ahora hemos visto problemas sin restricciones.
 - ▶ Donde las variables tienen libertad para tomar cualquier valor.

■ En este capítulo incorporamos restricciones para las variables

■ Lo que se puede interpretar de dos maneras.

Introducción

- Una opción es pensar que el conjunto factible cambia.
 - ightharpoonup Dejo de escoger variables en \mathbb{R}^2 , sino que en el interior de un círculo.
- Pero también podemos pensar que las restricciones son condiciones.
 - ▶ Puedo escoger variables en todo \mathbb{R}^2 pero tales que ax + by = c.
- Lo importante es que muchas veces estas restricciones tendrán un significado.
 - Restricciones presupuestarias al momento de consumir.
 - Producción fija para una empresa.
 - Presupuesto fijo para campañas publicitarias.

Introducción

■ Resolver problemas como estos puede ser difícil con nuestras herramientas.

■ Para ello necesitamos un método que nos ayude.

■ Ese método se conoce como **método de Lagrange**.

- Recordemos este problema del capítulo 1.
- Ustedes tienen 8 horas libres para ver series o jugar videojuegos.
 - ightharpoonup La cantidad de horas viendo series se llama v.
 - La cantidad de horas jugando videojuegos se llama s.

■ Y quiere maximizar su utilidad, que está dada por la función

$$u(v,s) = \ln(v) + \ln(s)$$

■ Escribir este problema como

$$\max_{v,s \in \mathbb{R}} \ln(v) + \ln(s)$$

es incorrecto por dos razones:

- La función ln no acepta valores menores o iguales que 0.
- ightharpoonup No es posible que v y s ni su suma superen 8 (horas libres).
- La forma correcta de escribir este problema es:

$$\max_{v,s \in \mathbb{R}_+} \quad \ln(v) + \ln(s)$$
s.a. $v + s = 8$

■ Graficamente el problema se ve así

- Aquí la restricción tiene una interpretación.
 - La cantidad de horas utilizadas debe ser igual a mi tiempo libre.

- Si recordamos bien, la solución de este problema cumple:
 - La curva de nivel en ese punto es tangente a la restricción.

■ Esa condición no es coincidencia y veremos por qué se da.

ALGUNAS CONSIDERACIONES

- Al comienzo del capítulo nos centraremos en:
 - ► Problemas de maximización.
 - Con dos variables de decisión y una restricción.

■ La notación general de este tipo de problemas es:

$$\max_{x,y} \quad f(x,y)$$
s.a.
$$g(x,y) = c$$

lacktriangle Notar que estamos maximizando f dentro de una cierta curva de nivel de g.

Ł

ALGUNAS CONSIDERACIONES

■ Luego ampliaremos para muchas variables y restricciones.

■ Para analizar problemas de minimización recuerden que:

- Es decir, podemos ver problemas de minimización como maximización.
- Y viceversa.

ALGUNAS CONSIDERACIONES

■ Antes de empezar, veremos un resultado importantísimo para tener intuición.

Proposición (Gradiente y crecimiento)

Sea $f:D\to\mathbb{R}$ una función diferenciable y $D\subset\mathbb{R}^n$ abierto. Entonces ∇f apunta en la dirección de máximo crecimiento de f.

- Esto es "claro" si miramos el diferencial total.
 - ► En el caso bivariado, pensemos que (dx,dy) tiene norma (largo) 1:

$$df = \nabla f \cdot (dx, dy) \le ||\nabla f|| ||(dx, dy)|| = ||\nabla f||$$

ightharpoonup Y la igualdad se da cuando (dx, dy) apunta en la misma dirección de ∇f .

■ Partamos ahora con un poco de intuición geométrica

■ Consideremos nuestro problema típico:

$$\max_{x,y} \quad f(x,y)$$

s.a. $g(x,y) = c$

lacksquare La restricción nos obliga a vivir dentro de la curva de nivel de g a altura c.

■ ¿Qué punto será el óptimo?

■ Tomemos un punto (x_0, y_0) en esta curva de nivel.

■ Supongamos que el gradiente de *f* apunta como en la imagen.

■ Como queremos maximizar, nos movemos en la dirección del gradiente.

■ ¿Cuándo paramos este proceso?

lacksquare Solo cuando movernos hacia ∇f nos saca de la curva de nivel de g.

lacktriangle Eso pasa cuando ∇f es perpendicular a la curva de nivel de g.

- ¿Qué otra cosa es perpendicular a esa curva de nivel?
 - ► ¡El gradiente de g!

- lacktriangle Luego debe ser cierto que ∇f y ∇g tienen la misma dirección.
 - ▶ Es decir, $\nabla f = \lambda \nabla g$ para cierto $\lambda \in \mathbb{R}$.

■ Este es el espíritu del método de Lagrange.

■ Observen cómo fue la lógica.

■ Si estamos en un máximo, **entonces** ∇f es perpendicular a g(x,y) = c.

- Es decir, es **necesario** que esto sea así.
 - ► Pero, de nuevo, no tiene por qué ser **suficiente**.

Teorema (Teorema de Lagrange)

Sean f y g dos funciones bivariadas con derivadas parciales continuas y sea $c \in \mathbb{R}$. Supongamos que (x^*, y^*) es la solución del problema

$$\max_{x,y} \quad f(x,y)$$

s.a. $g(x,y) = c$

y que (x^*,y^*) no es un punto crítico de g. Entonces, existe un número λ^* tal que (x^*,y^*,λ^*) es un punto crítico de la función

$$\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda [g(x,y) - c]$$

que se conoce como función lagrangiana o lagrangiano.

■ Observar que ser un punto crítico de $\mathcal{L}(x,y,\lambda)$ significa que

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(g(x, y) - c) = 0$$

- Las primeras dos igualdades dicen que $\nabla f = \lambda \nabla g$.
- La tercera igualdad dice que g(x,y) = c.

Ejemplo (Teorema de Lagrange)

Supongamos que una empresa tiene un presupuesto de 500 que debe gastar completamente. Esta empresa produce un bien que se vende a p. Para hacerlo, usa K y L, donde el costo de una unidad de K es 1 y de una unidad de L es 20. La función de producción de la empresa es $f(K,L) = \sqrt{K} + L$. Encuentre los niveles óptimos de K y L que maximizan los ingresos de la empresa.

Ejemplo (Teorema de Lagrange)

Supongamos que una empresa tiene un presupuesto de 500 que debe gastar completamente. Esta empresa produce un bien que se vende a p. Para hacerlo, usa K y L, donde el costo de una unidad de K es 1 y de una unidad de L es 20. La función de producción de la empresa es $f(K,L) = \sqrt{K} + L$. Encuentre los niveles óptimos de K y L que maximizan los ingresos de la empresa.

De acuerdo al problema, el problema de optimización es

$$\max_{K,L \in \mathbb{R}_+} \quad p(\sqrt{K} + L)$$
 s.a. $K + 20L = 500$

Ejemplo (Teorema de Lagrange)

Notar que la solución del problema anterior es igual a la solución de este problema

$$\label{eq:kappa} \begin{aligned} & \max_{K,L \in \mathbb{R}_+} & \sqrt{K} + L \\ & \text{s.a.} & K + 20L = 500 \end{aligned}$$

Porque p solo multiplica el resultado por una constante. Luego, para que $p(\sqrt{K}+L)$ sea el máximo posible, debe ser cierto que $\sqrt{K}+L$ es lo más grande posible.

Ejemplo (Teorema de Lagrange)

Notar que la solución del problema anterior es igual a la solución de este problema

$$\label{eq:kappa} \begin{aligned} & \max_{K,L \in \mathbb{R}_+} & \sqrt{K} + L \\ & \text{s.a.} & K + 20L = 500 \end{aligned}$$

Porque p solo multiplica el resultado por una constante. Luego, para que $p(\sqrt{K}+L)$ sea el máximo posible, debe ser cierto que $\sqrt{K}+L$ es lo más grande posible.La primera pregunta es: ¿tiene sentido resolver este problema?

Ejemplo (Teorema de Lagrange)

Notar que la solución del problema anterior es igual a la solución de este problema

$$\max_{K,L\in\mathbb{R}_+} \quad \sqrt{K} + L$$
 s.a. $K+20L=500$

Porque p solo multiplica el resultado por una constante. Luego, para que $p(\sqrt{K}+L)$ sea el máximo posible, debe ser cierto que $\sqrt{K}+L$ es lo más grande posible.La primera pregunta es: ¿tiene sentido resolver este problema?

La respuesta es sí. El problema nos obliga a elegir puntos solamente en el conjunto $\{K+20L=500\}$. Si además consideramos que K y L no debieran ser negativos, entonces el conjunto de opciones es cerrado y acotado.

Ejemplo (Teorema de Lagrange)

Notar que la solución del problema anterior es igual a la solución de este problema

$$\max_{K,L\in\mathbb{R}_+} \quad \sqrt{K} + L$$
 s.a. $K+20L=500$

Porque p solo multiplica el resultado por una constante. Luego, para que $p(\sqrt{K}+L)$ sea el máximo posible, debe ser cierto que $\sqrt{K}+L$ es lo más grande posible.La primera pregunta es: ¿tiene sentido resolver este problema?

La respuesta es sí. El problema nos obliga a elegir puntos solamente en el conjunto $\{K+20L=500\}$. Si además consideramos que K y L no debieran ser negativos, entonces el conjunto de opciones es cerrado y acotado. Como además $\sqrt{K}+L$ es continua, entonces por el teorema de Weierstrass el máximo existe.

Ejemplo (Teorema de Lagrange)

Gráficamente el problema se ve así

Ejemplo (Teorema de Lagrange)

Ahora hagamos uso del teorema de Lagrange. La función lagrangiana en este caso es

$$\mathcal{L}(K, L, \lambda) = \sqrt{K} + L - \lambda \left[K + 20L - 500 \right]$$

Ejemplo (Teorema de Lagrange)

Ahora hagamos uso del teorema de Lagrange. La función lagrangiana en este caso es

$$\mathcal{L}(K,L,\lambda) = \sqrt{K} + L - \lambda \left[K + 20L - 500 \right]$$

y en la solución del problema debe cumplirse que

$$\frac{\partial \mathcal{L}}{\partial K} = \frac{1}{2\sqrt{K}} - \lambda = 0$$
 (CPO-K)

$$\frac{\partial \mathcal{L}}{\partial L} = 1 - 20\lambda = 0 \tag{CPO-L}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = K + 20L - 500 = 0 \tag{CPO-}\lambda)$$

Ejemplo (Teorema de Lagrange)

Ahora hagamos uso del teorema de Lagrange. La función lagrangiana en este caso es

$$\mathcal{L}(K, L, \lambda) = \sqrt{K} + L - \lambda \left[K + 20L - 500 \right]$$

y en la solución del problema debe cumplirse que

$$\frac{\partial \mathcal{L}}{\partial K} = \frac{1}{2\sqrt{K}} - \lambda = 0$$
 (CPO-K)

$$\frac{\partial \mathcal{L}}{\partial L} = 1 - 20\lambda = 0 \tag{CPO-L}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = K + 20L - 500 = 0 \tag{CPO-}\lambda)$$

Por (CPO-L), $\lambda = \frac{1}{20}$. Luego, de (CPO-K) tenemos K = 100 y de (CPO- λ) tenemos L = 20.

Ejemplo (Teorema de Lagrange)

El teorema nos dio un único candidato a óptimo. Pero ¿es un máximo? Recordemos que el teorema da condiciones **necesarias**, pero no **suficientes**. En este caso podemos confirmar "a mano".

Ejemplo (Teorema de Lagrange)

El teorema nos dio un único candidato a óptimo. Pero ¿es un máximo? Recordemos que el teorema da condiciones **necesarias**, pero no **suficientes**. En este caso podemos confirmar "a mano".

Notar que este candidato cumple f(100,20)=30. Como el gradiente de la restricción es (1,20), no hay puntos que violen el teorema (recordar que se pide que $\nabla g \neq 0$ en el punto óptimo).

Ejemplo (Teorema de Lagrange)

El teorema nos dio un único candidato a óptimo. Pero ¿es un máximo? Recordemos que el teorema da condiciones **necesarias**, pero no **suficientes**. En este caso podemos confirmar "a mano".

Notar que este candidato cumple f(100,20)=30. Como el gradiente de la restricción es (1,20), no hay puntos que violen el teorema (recordar que se pide que $\nabla g \neq 0$ en el punto óptimo).

Finalmente, debemos revisar los "extremos" de la restricción: (500,0) y (0,25). En esos puntos f(500,0)=22,3 y f(0,25)=25.

Ejemplo (Teorema de Lagrange)

El teorema nos dio un único candidato a óptimo. Pero ¿es un máximo? Recordemos que el teorema da condiciones **necesarias**, pero no **suficientes**. En este caso podemos confirmar "a mano".

Notar que este candidato cumple f(100,20)=30. Como el gradiente de la restricción es (1,20), no hay puntos que violen el teorema (recordar que se pide que $\nabla g \neq 0$ en el punto óptimo).

Finalmente, debemos revisar los "extremos" de la restricción: (500,0) y (0,25). En esos puntos f(500,0)=22,3 y f(0,25)=25. En ambos casos tenemos valores menores que f(100,20), mostrando que este punto es la solución al problema.

- El argumento anterior para justificar el máximo es muy interesante.
 - Pero no siempre es humanamente posible usarlo.
 - Los candidatos podrían ser DEMASIADOS.
- Hay que tener ojo con los puntos donde $\nabla g = 0$.
 - Esos puntos, si cumplen la restricción, también son candidatos.
 - La condición $\nabla g \neq 0$ se conoce como **calificación de restricción** (CCR).
- Igual que antes, necesitamos herramientas para clasificar los candidatos.
 - Necesitamos condiciones suficientes.
 - Estas "condiciones de segundo orden" las veremos más adelante.

Ejercicio (Teorema de Lagrange)

Resuelva el mismo problema anterior, pero "inverso". Suponga que la empresa debe producir 30 unidades al menor costo posible. Determine los valores de K y L que resuelven el problema asociado a esta situación.

Ejercicio (Teorema de Lagrange)

Resuelva el problema del consumidor de la motivación.

Ejercicio (Teorema de Lagrange)

Encuentre candidatos a solución del problema

$$\max_{x,y \in \mathbb{R}} x^2 y$$
s.a.
$$2x^2 + y^2 = 3$$

Para justificar cuál de ellos es la solución, argumente como en el ejemplo anterior. (Ayuda: En este caso hay un punto de la restricción con $\nabla g = 0$. ¿Cúmple ese punto la restricción? Si lo hace, inclúvalo.)

Ejercicio (Teorema de Lagrange)

Encuentre candidatos a solución del problema

$$\max_{x,y \in \mathbb{R}} 2x^3 - 3x^2$$

s.a. $(3-x)^3 - y^2 = 0$

Para justificar cuál de ellos es la solución, argumente como en el ejemplo anterior. (Ayuda: En este caso hay un punto de la restricción con $\nabla g = 0$. ¿Cúmple ese punto la restricción? Si lo hace, inclúyalo.)

■ El método de Lagrange dice algo muy interesante.

- No tenemos idea cómo resolver un problema con restricciones.
 - Entonces cambiamos la función objetivo.
 - ► Y eso elimina la restricción

- Los problemas sin restricciones sabemos resolverlos por el capítulo 3.
 - ► El teorema de Lagrange nos da las condiciones **necesarias**.
 - Para las suficientes debemos recordar lo visto en el capítulo anterior.