安徽大学 20 20 — 20 21 学年第 1 学期

《 数字逻辑 》(A卷)考试试题参考答案及评分标准

一、解答题(共35分)

- 1. 解答:使用代数法证明,过程略。(5分)
- 2. 解答: (5分)
- $F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
- $= \overline{AB}(\overline{C} + C) + \overline{ABC} + A\overline{BC}$
- $= \overline{AB} + \overline{ABC} + A\overline{BC}$
- $= \overline{AB} + \overline{AC} + \overline{BC}$
- 3. 解答: $F = \sum m(3,4)$ (5分)
- 4. 解答: (5分)

	AB				
CD		00	01	11	10
	00	0	0	d	0
	01	0	1	d	0
	11	\forall	1	d	d
	10	0	0	d	d

F(A, B, C, D) = BD + CD

5. 解答: (5分)

现态	次态/输出		
	X=0	X=1	
00	11/0	01/0	
01	11/1	00/1	
11	00/0	00/1	

6. 解答: (10分)

得到等效对: (A,F)(B,H)(B,C)(C,H),得到最大等效类: (A,F)(B,C,H)(D)(E)(G)最小化状态表: A B D E G

现态	次态/输出			
少心心	<i>x</i> =0	<i>x</i> =1		
Α	D/0	D/0		
В	B/1	D/0		
D	D/0	B/0		
Е	B/1	A/0		
G	G/0	G/0		

二、组合电路设计题(共10分)

[解答]

(1) 填写真值表; (5分)

1 - / 1 4 / 1 E 14 / 1 = /4 /					
Α	В	С	F		
0	0	0	1		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	0		

(2)如果自由选择逻辑门,请给出一种需要门的数量最少的实现方案,写出对应的表达式,并画出逻辑电路图。(5分)

$$F = \overline{A \oplus B \oplus C}$$

两个异或加一个非门。

三、组合电路分析题(共10分)

(1) 写出逻辑函数表达式; (6分)

该电路有四个输出函数,根据电路图可以得到

 $S_0 = A_0 \oplus B_0$

 $C_0 = A_0 \cdot B_0$

 $S_1 = A_1 \oplus B_1 \oplus C_0$

 $C_1 = A_1B_1 + (A_1 \oplus B_1) \cdot C_0$

(2) 分析电路的逻辑功能。(4分)

由逻辑表达式可以看出, S_0 和 C_0 是一位半加器的输出, S_1 和 C_1 是一位全加器的输出,所以,图所示的电路是两个二进制数 A_1A_0 和 B_1B_0 作加法运算电路。

四、时序电路分析题(共15分)

[解答]

(1) 写出激励函数表达式,输出函数表达式和电路的次态方程;(6分)

$$J_0 = \overline{Q_2} \quad K_0 = Q_2 \quad \text{B} \quad J_1 = Q_0 \quad K_1 = \overline{Q_0} \quad J_2 = Q_1 \quad K_2 = \overline{Q_1}$$

$$F = \overline{Q_1} \overline{Q_0} Q_2$$
 $Q_0^{n+1} = \overline{Q}_2$ $Q_1^{n+1} = Q_0$ $Q_2^{n+1} = Q_1$

(2) 画出状态表和状态图; (6分) 状态表如下, 状态图根据状态表绘制。

y_3	y_2	y_1	y_3^{n+1}	\mathcal{Y}_{2}^{n+1}	y_1^{n+1}	F
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	0
1	0	0	0	0	0	1
1	0	1	0	1	0	0
1	1	0	1	1	0	0
1	1	1	1	1	0	0

(3)分析电路的逻辑功能,并讨论电路是否存在无效状态,是否存在挂起现象。(3分)电路为模六的计数器电路,每完成一轮,电路输入1,电路存在挂起现象。

五、时序电路设计题(共15分)

(1)使用 JK 触发器设计电路,求解激励函数表达式和输出函数表达式;(10分)需要两个触发器。

$$J_1 = k_1 = 1$$
 $J_2 = Q_1$ $K_2 = \overline{Q_1}$

 $Y = Q_2 A$

(2) 画出电路图。(5分)

两个 JK 触发器, 按照步骤 1 中的表达式连接电路。

六、综合设计题(共15分)

- (1) 根据题意,完成右图真值表;(5分)
- (2) 若只有"或非"门器件,如何用最优的方案设计电路,写出表达式;(5分)

$$F = AB + AC + BCD = \overline{\overline{A + C} + \overline{B + C} + \overline{A + B} + \overline{A + D}}$$

А	В	C	U	г
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(3) 求输出函数的最小项表达式,并用 74138 辅助适当的逻辑门来实现。(5分)

$$F = \sum m(7,10,11,12,13,14,15)$$

电路图采用 2 个 138 级联的方式。