Practice Questions – Chapter 9 AS.180.334.SP19

Question 1

The R-squared from estimating the model

$$\log(salary) = \beta 0 + \beta 1 \log(sales) + \beta 2 \log(mktval) + \beta 3 profmarg + \beta 4 ceoten + \beta 5 comten + u$$

is $R^2 = 0.353$ (n = 177). When *ceoten*² and *comten*² are added, $R^2 = 0.375$. Is there evidence of functional form misspecification in this model?

Question 2

Let *math10* denote the percentage of students at a Michigan high school receiving a passing score on a standardized math test. We are interested in estimating the effect of per student spending on math performance. A simple model is

$$math 10 = \beta 0 + \beta 1 \log(expend) + \beta 2 \log(enroll) + \beta 3 poverty + u$$
,

where *poverty* is the percentage of students living in poverty.

- (i) The variable *lnchprg* is the percentage of students eligible for the federally funded school lunch program. Why is this a sensible proxy variable for poverty?
- (ii) The table that follows contains OLS estimates, with and without *lnchprg* as an explanatory variable.

Dependent Variable: math10		
Independent Variables	(1)	(2)
log(expend)	11.13 (3.30)	7.75 (3.04)
log(enroll)	.022 (.615)	-1.26 (.58)
Inchprg	_	324 (.036)
intercept	-69.24 (26.72)	-23.14 (24.99)
Observations <i>R</i> -squared	428 .0297	428 .1893

Explain why the effect of expenditures on *math10* is lower in column (2) than in column (1). Is the effect in column (2) still statistically greater than zero?

- (iii) Does it appear that pass rates are lower at larger schools, other factors being equal? Explain.
- (iv) Interpret the coefficient on *lnchprg* in column (2).
- (v) What do you make of the substantial increase in R² from column (1) to column (2)?

Question 3

The following equation explains weekly hours of television viewing by a child in terms of the child's age, mother's education, father's education, and number of siblings:

$$tvhours^* = \beta 0 + \beta 1^*age + \beta 2^*age^2 + \beta 3^*motheduc + \beta 4^*fatheduc + \beta 5^*sibs + u.$$

We are worried that *tvhours** is measured with error in our survey. Let *tvhours* denote the reported hours of television viewing per week.

- (i) What do the classical errors-in-variables (CEV) assumptions require in this application?
- (ii) Do you think the CEV assumptions are likely to hold? Explain.