Equivalent Notations in Relational Algebra, Tuple Relational Calculus, and Domain Relational Calculus

Select Operation

R = (A, B)

Relational Algebra: $_{B=17}$ (r)

Tuple Calculus: $\{t \mid t \in r \land B = 17\}$

Domain Calculus: $\{\langle a, b \rangle \mid \langle a, b \rangle \in r \land b = 17\}$

Project Operation

R = (A, B)

Relational Algebra: $_{A}(\mathbf{r})$

Tuple Calculus: $\{t \mid \exists p \in r (t[A] = p[A])\}$

Domain Calculus: $\{\langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r)\}$

Combining Operations

R = (A, B)

Relational Algebra: $_{A}(_{B=17}(r))$

Tuple Calculus: $\{t \mid \exists p \in r (t[A] = p[A] \land p[B] = 17)\}$

Domain Calculus: $\{\langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r \land b = 17)\}$

Natural Join

$$R = (A, B, C, D)$$
 $S = (B, D, E)$

Relational Algebra: $r \bowtie s$

$$_{\textit{r.A.r.B.r.C.r.D.s.E}}(\ _{r.B=s.B} \wedge _{r.D=s.D} (r \times s))$$

Tuple Calculus:
$$\{t \mid \exists \ p \in r \ \exists \ q \in s \ (t[A] = p[A] \land t[B] = p[B] \ \land$$

$$t[C] = p[C] \, \wedge \, t[D] = p[D] \, \wedge \, t[E] = q[E] \, \wedge \,$$

$$p[B] = q[B] \land p[D] = q[D])\}$$

Domain Calculus:
$$\{\langle a, b, c, d, e \rangle \mid \langle a, b, c, d \rangle \in r \land \langle b, d, e \rangle \in s\}$$

Union

$$R = (A, B, C)$$
 $S = (A, B, C)$

Relational Algebra: $r \cup s$

Tuple Calculus: $\{t \mid t \in r \lor t \in s\}$

Domain Calculus: $\{\langle a, b, c \rangle | \langle a, b, c \rangle \in r \lor \langle a, b, c \rangle \in s\}$

CMPT 354 Page 2 of 4

Intersection

$$R = (A, B, C)$$
 $S = (A, B, C)$

Relational Algebra:
$$r \cap s$$

Tuple Calculus:
$$\{t \mid t \in r \land t \in s\}$$

Domain Calculus:
$$\{\langle a, b, c \rangle | \langle a, b, c \rangle \in r \land \langle a, b, c \rangle \in s\}$$

Set Difference

$$R = (A, B, C)$$
 $S = (A, B, C)$

Tuple Calculus:
$$\{t \mid t \in r \land t \notin s\}$$

Domain Calculus:
$$\{\langle a, b, c \rangle \mid \langle a, b, c \rangle \in r \land \langle a, b, c \rangle \notin s\}$$

Cartesian/Cross Product

$$R = (A, B) \qquad S = (C, D)$$

Relational Algebra:
$$r \times s$$

Tuple Calculus:
$$\{t \mid \exists \ p \in r \ \exists \ q \in s \ (t[A] = p[A] \land t[B] = p[B] \land \}$$

$$t[C] = q[C] \land t[D] = q[D])$$

Domain Calculus:
$$\{\langle a, b, c, d \rangle \mid \langle a, b \rangle \in r \land \langle c, d \rangle \in s\}$$

Division

$$R = (A, B) \qquad S = (B)$$

Relational Algebra: $r \div s$

Tuple Calculus:
$$\{t \mid \exists \ p \in r \ \forall q \in s \ (p[B] = q[B] \Rightarrow t[A] = p[A]) \}$$

Domain Calculus:
$$\{ \langle a \rangle \mid \langle a \rangle \in r \land \forall \langle b \rangle (\langle b \rangle \in s \Rightarrow \langle a, b \rangle \in r) \}$$

Use of the Universal Quantifier

salary = (employee, salary-amount)

To find the maximum salary-amount:

(Extended) Relational Algebra:

 $max_{salary\text{-}amount}(salary)$

Tuple Calculus:

$$\{t \mid \forall p \in salary \Rightarrow p[salary\text{-amount}] \leq t[salary\text{-amount}]\}$$

Domain Calculus:

$$\{ \langle s \rangle \mid \exists e (\langle e, s \rangle \in salary \land \forall e1, s1 (\langle e1, s1 \rangle \in salary \Rightarrow s1 \leq s)) \}$$

CMPT 354 Page 4 of 4