Pratique de l'apprentissage statistique

2. Régression régularisée

V. Lefieux

Plan

Généralités

Régression Ridge

Régression LASSO

Compléments

Plan

Généralités

Régression Ridge

Régression LASSC

Compléments

Introduction

Les méthodes de régularisation permettent de répondre à plusieurs problématiques :

- Sélection (ou pondération) de variables.
- Traitement de la colinéarité dans les modèles linéaires.
- ► Traitement des « fat matrix » : n < p (méthodes « sparses »).

变量的选择(或加权)。 处理线性模型中的共线性。

处理"脂肪矩阵": n < p ("稀疏"方法)。

Données considérées

▶ On dispose d'un échantillon de (X, Y) :

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où
$$X=(X_1,\ldots,X_p)^{\top}\in\mathbb{R}^p$$
 et $Y\in\mathbb{R}$.

► On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

Modèle

On considère le modèle de régression linéaire suivant :

$$Y = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon$$

où ε désigne l'erreur du modèle de régression.

Plan

Généralités

Régression Ridge

Régression LASSC

Compléments

Estimateur Ridge

Point of the image of the property of the pr

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

où $\lambda \geq 0$ est un paramètre de régularisation (à déterminer).

▶ On considère ici une pénalité ℓ^2 .

Problème d'optimisation équivalent

On peut également voir cet estimateur comme solution du problème d'optimisation suivant :

$$\min_{m{\beta}} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j \, x_{ij} \right)^2$$
 误差平方之和 $\sum_{j=1}^p \beta_j^2 \leq c$.

Remarques

我们首先将变量 (Y;X1;::;Xp) 居中。 惩罚常数被排除 (如果存在)。 通过交叉验证得到最优参数。

- ▶ On centre au préalable les variables $(Y, X_1, ..., X_p)$.
- On exclut la constante de la pénalisation (si elle est présente).
- Le paramètre optimal est obtenue par validation croisée.

Illustration

Explicitation de la solution

▶ On peut réécrire ce problème sous forme matricielle :

$$\min_{oldsymbol{eta}} (\mathbf{Y} - \mathbb{X}oldsymbol{eta})^{ op} (\mathbf{Y} - \mathbb{X}oldsymbol{eta}) + \lambda oldsymbol{eta}^{ op} oldsymbol{eta}.$$

où:

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbb{X} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}.$$

La solution est :

$$\widehat{\beta}^{\mathsf{Ridge}} = \left(\mathbb{X}^{\top} \mathbb{X} + \lambda \, \mathsf{I}_{p} \right)^{-1} \mathbb{X}^{\top} \mathbf{Y} \; .$$

▶ Il s'agit encore d'un estimateur linéaire en Y.

Mise en évidence du seuillage I

阈值

▶ On suppose que n > p. n:样本数 p:系数个数

La décomposition en valeurs singulières permet d'obtenir :

分解成奇异值

$$\mathbb{X} = UDV^{\top}$$
.

où:

▶ U est une matrice orthogonale de dimensions (n,n) : n*n正交阵

$$U U^{\top} = U^{\top} U = I_n$$

ullet V est une matrice orthogonale de dimensions (p,p): p^*p 正交阵

$$VV^{\top} = V^{\top}V = I_p$$

 \triangleright *D* est une matrice de dimensions (n, p) ne contenant que des termes positifs sur sa « diagonale » : n*p对角阵

$$d_1 \geq \ldots \geq d_p \geq 0$$
.

Mise en évidence du seuillage II

On peut écrire :

$$\mathbb{X}\,\widehat{\beta}^{\mathsf{Ridge}} = \mathit{UD}\left(\mathit{D}^{\top}\mathit{D} + \lambda\,\mathsf{I}_{\mathit{p}}\right)^{-1}\mathit{D}^{\top}\mathit{U}^{\top}\mathsf{Y}\;.$$

▶ On a:

$$\mathbb{X}\,\widehat{\beta}^{\mathsf{Ridge}} = \sum_{j=1}^{p} u^{j} \left(\frac{d_{j}^{2}}{d_{j}^{2} + \lambda^{2}} \right) u^{j\top} \mathbf{Y}$$

où (u^1, \ldots, u^p) désignent les colonnes de la matrice U.

▶ Pour $\lambda = 0$, on retrouve bien la solution des MCO :

$$\mathbb{X}\,\widehat{\beta} = \sum_{i=1}^p u^j u^j^{\top} \mathbf{Y} \ .$$

Mise en évidence du seuillage III

- ▶ L'élément j de la base est « seuillée » par $\frac{d_j^2}{d_i^2 + \lambda^2}$. 阈值确定
- Les plus petits coefficients sont les plus seuillés.
- ▶ Plus λ est grand, plus le seuillage est important.
- L'effet biais augmente avec λ. 偏差增大
- L'effet variance diminue avec λ. 方差減小
 Dans le cas où λ est faible, on peut être confronté à du sur-apprentissage.
- On définit le degré de liberté par :

$$\operatorname{\mathsf{ddl}}(\lambda) = \sum_{i=1}^p \frac{d_j^2}{d_j^2 + \lambda^2}$$
 . 自由度

Mise en évidence du seuillage IV

▶ Dans le cas où les variables sont centrées, la matrice de variance-covariance des variables vaut :

$$\frac{1}{n} \mathbb{X}^{\top} \mathbb{X} = \frac{1}{n} V D^{\top} D V^{\top} .$$

► On sait que :

$$D^{\top}D = \operatorname{diag}\left(d_1^2, \dots, d_p^2\right)$$
.

- Si $(v^1, ..., v^p)$ désignent les colonnes de la matrice V, on peut montrer que \mathbb{X} v^j est la j-ème composante principale de \mathbb{X} , de variance $\frac{d_j^2}{n}$.
- ► La régression Ridge seuille donc peu les premières composantes principales (*d_j* grand) mais davantage les dernières.

Plan

Généralités

Régression Ridge

Régression LASSO

Compléments

Estimateur LASSO

最小绝对收缩和选择算子

► On appelle estimateur LASSO (Least Absolute Shrinkage and Seletion Operator) de $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$ le vecteur $\widehat{\boldsymbol{\beta}}^{\text{LASSO}}$ solution de :

$$\min_{\beta} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

où $\lambda \geq 0$ est un paramètre de régularisation (à déterminer).

▶ On considère ici une pénalité ℓ^1 .

Problème d'optimisation équivalent

On peut également voir cet estimateur comme solution du problème d'optimisation suivant :

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$\operatorname{sc} \sum_{i=1}^{p} |\beta_j| \le c.$$

Remarques

- ▶ On centre au préalable les variables $(Y, X_1, ..., X_p)$.
- ► On exclut la constante de la pénalisation (si elle est présente).
- Le paramètre optimal est obtenue par validation croisée.

Illustration

Propriétés

- L'estimateur LASSO n'est pas linéaire en Y.
- ▶ En toute généralité, on ne dispose pas d'expression explicite de l'estimateur LASSO (non-dérivabilité du critère ℓ^1).
- ▶ Si $\lambda \to +\infty$, on tend à annuler tous les paramètres $(\beta_j)_{j \in \{1,...,p\}}$.

Cas particulier

▶ On considère le cas où la matrice X est orthogonale :

$$\mathbb{X}^{\top}\mathbb{X} = \mathsf{I}_{p}$$
.

► On considère le problème :

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + 2\lambda \sum_{j=1}^{p} |\beta_j|.$$

▶ Pour $j \in \{1, ..., p\}$, on obtient la solution explicite suivante :

$$\widehat{\beta}_j^{\mathsf{LASSO}} = \mathsf{signe}\left(\widehat{\beta}_j^{\mathsf{MCO}}\right) \, \left(\left|\widehat{\beta}_j^{\mathsf{MCO}}\right| - \lambda\right) \, \mathbb{1}_{\left|\widehat{\beta}_j^{\mathsf{MCO}}\right| \geq \lambda} \; .$$

 On parle de « seuillage doux » (soft thresholding) de l'estimateur des MCO.

Seuillage doux

Plan

Généralités

Régression Ridge

Régression LASSC

Compléments

Critère ℓ^q

Les estimateurs Ridge et LASSO sont des cas particulier du problème d'optimisation suivant :

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q$$

où $\lambda \geq 0$ est un paramètre de régularisation (à déterminer par validation croisée) et $q \in \mathbb{R}^+$.

Méthode Elastic Net

La méthode Elastic Net combine les régressions Ridge et LASSO via le problème d'optimisation suivant :

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right)$$

où $\lambda \geq 0$ et $\alpha \in]0,1[$ sont des paramètres de régularisation (à déterminer par validation croisée).

Méthode LARS : principe

La régression LARS (Least Angle Regression) est une méthode :

- de type forward,
- qui n'intègre pas complètement une variable explicative : elle l'intègre au niveau de son « mérite ».

LARS回归 (最小角度回归) 是一种方法: 前向型,

它没有完全整合一个解释变量:它在它的"优点"水平上整合它。

Méthode LARS : algorithme

- 1. Initialisation:
 - ► Centrage et réduction des covariables. 协变量的居中和归约
 - $\mathbf{e} = \mathbf{Y} \bar{y} \mathbf{1}_n$ où $\mathbf{1}_n$ est une vecteur de dimension n constitué de 1.
 - ▶ *β* = 0. 找到与残差 e 最相关的协变量 Xi
- 2. Trouver la covariable X_i la plus corrélée avec le résidu \mathbf{e} .
- 3. « Déplacer » β_j vers corr $(\mathbf{X}_j, \mathbf{e})$, où $\mathbf{X}_j = (X_{1j}, \dots, X_{nj})^{\top}$, jusqu'à ce qu'une autre covariable X_k ait une corrélation plus importante avec le résidu.
- 4. « Déplacer » β_j et β_k dans une direction donnée par leur estimation des MCO conjointe jusqu'à ce qu'une autre covariable X_ℓ ait une corrélation plus importante avec le résidu.
- 5. Poursuivre jusqu'à intégration de toutes les covariables.

Références

- Hastie, T., R. Tibshirani et J. H. Friedman. 2009, *The elements of statistical learning. Data Mining, inference, and prediction*, 2^e éd., Springer Series in Statistics, Springer.
- Hastie, T., R. Tibshirani et M. Wainwright. 2015, Statistical learning with sparsity. The Lasso and generalizations, Monographs on Statistics & Applied Probability (143), CRC. Chapman & Hall.