Cycle 0

rites-robotisees-a-double-embrayage-22,

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Sciences
Industrielles de
l'Ingénieur

Chapitre 3

Application du Principe Fondamental de la Dynamique

Savoirs et compétences :

Cours

- *Mod2.C16 : torseur cinétique*
- □ *Mod2.C17* : torseur dynamique
- Mod2.C17.SF1 : déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- Mod2.C15 : matrice d'inertie
- □ Res1.C2: principe fondamental de la dynamique
- □ Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement
- □ Res1.C2.SF1: proposer une méthode permettant la détermination d'une inconnue de liaison

Toupie

Volants d'inertie d'un vilebrequin

1	Énoncé du Principe Fondamental de la Dynamique	:
	cas général	2
1.1	Théorème de la résultante dynamique	2
1.2	Théorème du moment dynamique	2
2	Torseur cinétique	2
2.1	Définition	2
2.2	Écriture avec l'opérateur d'inertie	2
2.3	Cas particuliers	2
2.4	Méthodologie de Calcul	3
3	Torseur dynamique	3
3.1	Définition	3
3.2	Relations entre les torseurs cinétiques et dynamiques	4
3.3	Cas particuliers	4
3 4	Méthodologie de calcul	5

Énoncé du Principe Fondamental de la Dynamique : cas général

Définition — Énoncé du Principe Fondamental de la Dynamique. Soit un ensemble matériel *E* en mouvement par rapport à un référentiel galiléen (R_0) , alors la somme des actions mécaniques extérieures s'appliquant sur Eest égale au torseur dynamique du mouvement de E par rapport à R_0 :

$$\{\mathscr{D}(E/R_0)\} = \{\mathscr{T}(\overline{E} \to E)\}.$$

De plus le **Principe Fondamental de la Dynamique** postule que pour tout mouvement, il existe au moins un référentiel dans lequel le PFD est vérifié. Ce sera donc un référentiel galiléen.

Le **torseur dynamique** est de la forme :

$$\{\mathscr{D}(E/R_0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(E/R_0)} = m \ \overrightarrow{\Gamma(G \in E/R_0)} \end{array}\right\}_A.$$
 l'accélération est **toujours** calculée au centre d'inertie G .

• Le **moment dynamique** dépend du point A et se pote $\overleftarrow{\delta(A E/R_0)}$

- On note $R_d(S/R_0)$ la résultante dynamique où

Du Principe Fondamental de la dynamique découle plusieurs théorèmes généraux.

Théorème de la résultante dynamique

Théorème — Théorème de la résultante dynamique. Pour tout ensemble matériel (E) de masse m et de centre d'inertie G en mouvement par rapport à un référentiel galiléen (R_0) , la somme des résultantes des efforts extérieurs s'appliquant sur E est égale à la résultante dynamique du mouvement de E par rapport à R_0 :

$$\overrightarrow{R(E \to E)} = \overrightarrow{R_d(E/R_0)} = m \overrightarrow{\Gamma(G \in E/R_0)}.$$

Théorème du moment dynamique

Théorème — **Théorème du moment dynamique**. Pour tout ensemble matériel (E) de masse m en mouvement par rapport à un référentiel galiléen (R_0) , la somme des moments des efforts extérieurs s'appliquant sur E en un point quelconque A est égale au moment dynamique du mouvement de E par rapport à R_0 en A:

$$\overrightarrow{\mathcal{M}}(A, \overline{E} \to E) = \overrightarrow{\delta}(A, E/R_0).$$

Torseur cinétique

2.1 Définition

Définition Le **torseur cinétique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante,

$$\{\mathscr{C}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = \int_{P \in S} \overrightarrow{V}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

- La résultante du torseur cinétique, $\overrightarrow{R_c}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie : $\overrightarrow{R_c}(S/R_0) = m \overrightarrow{V}(G/R_0)$.
- Le moment cinétique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point : $\overrightarrow{\sigma(B,S/R_0)} = \overrightarrow{\sigma(A,S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_c}(S/R_0)$.

Écriture avec l'opérateur d'inertie

Propriété Pour un solide S de masse m dans son mouvement par rapport au repère R_0 et soit un point Aquelconque.

$$\overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)} + m \overrightarrow{AG} \wedge \overrightarrow{V(A \in S/R_0)}.$$

Cas particuliers

- En appliquant cette formule en un point A fixe dans le mouvement de S/R_0 , on a : $\overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)}$. En appliquant cette formule en G, centre d'inertie de S, on a : $\overrightarrow{\sigma(G,S/R_0)} = I_G(S) \cdot \overrightarrow{\Omega(S/R_0)}$.

2.4 Méthodologie de Calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne la méthodologie de calcul du moment cinétique en un point A sur la figure suivante.

3 Torseur dynamique

3.1 Définition

Définition Le **torseur dynamique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante,

$$\{\mathscr{D}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = \int_{P \in S} \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\delta(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

- La résultante du torseur dynamique, $\overrightarrow{R_d}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie : $\overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0)$.
- Le moment dynamique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point : $\overrightarrow{\delta(B,S/R_0)} = \overrightarrow{\delta(A,S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_d}(S/R_0)$.

Relations entre les torseurs cinétiques et dynamiques

Propriété — Relations entre les torseurs cinétiques et dynamiques. Pour un solide S de masse M dans son mouvement par rapport au repère R_0 et soit un point A quelconque.

- Relation entre les **résultantes** : $\overrightarrow{R_d}(S/R_0) = \left[\frac{\overrightarrow{dR_c}(S/R_0)}{\overrightarrow{dt}}\right]_{R_0}$. Relation entre les **moments** : $\overrightarrow{\delta(A,S/R_0)} = \left[\frac{\overrightarrow{d\sigma(A,S/R_0)}}{\overrightarrow{dt}}\right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge \overrightarrow{R_c}(S/R_0)$.

Cas particuliers 3.3

- En appliquant cette formule en un point O fixe dans R_0 , on a : $\overline{\delta(O, S/R_0)} = \left[\frac{d\overline{\sigma(O, S/R_0)}}{dt}\right]_{R_0}$. En appliquant cette formule en un point G, centre d'inertie de S, on a : $\overline{\delta(G, S/R_0)} = \left[\frac{d\overline{\sigma(G, S/R_0)}}{dt}\right]_{R_0}$.

3.4 Méthodologie de calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne l'algorigramme de calcul du moment dynamique en un point A sur la figure ci-dessous.

Références

- [1] Emilien Durif, Cinétique des solides, Lycée La Martinière Monplaisir, Lyon.
- [2] Florestan Mathurin, Cinétique, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.

Bilan

Point considéré	Point quelconque A	Centre de gravité G	Point fixe dans $\mathcal{R}_0 A$
Torseur cinétique $\{\mathscr{C}(S/R_0)\}$	$ \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)} + m \ \overrightarrow{AG} \wedge \overrightarrow{V(A \in S/R_0)} \end{array} \right\}_A $	$\left\{\begin{array}{c} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overrightarrow{\sigma(G,S/R_0)} = I_G(S) \cdot \overrightarrow{\Omega(S/R_0)} \end{array}\right\}_G$	$ \left\{ \begin{array}{l} \overline{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overline{\sigma(A, S/R_0)} = I_A(S) \cdot \overline{\Omega(S/R_0)} \end{array} \right\}_A $
Forseur dynamique $\{\mathscr{D}(S/R_0)\}$	$\left\{\begin{array}{c} \overrightarrow{R_d}(S/R_0) = m \ \overrightarrow{\Gamma}(G/R_0) \\ \overrightarrow{\delta(A,S/R_0)} = \left[\overrightarrow{\frac{d\sigma(A,S/R_0)}{dt}} \right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge \overrightarrow{R_c}(S/R_0) \end{array}\right\}_A$	$ \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0) \\ \overrightarrow{\delta}(G, S/R_0) = \left[\overrightarrow{a_{G(G,S/R_0)}} \right] \\ \end{array} \right\}_G $	$ \begin{cases} \overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0) \\ \overrightarrow{\delta}(A, S/R_0) = \begin{bmatrix} \overrightarrow{d\sigma(A, S/R_0)} \\ \overrightarrow{dt} \end{bmatrix}_{R_0} \end{cases} $