Comparación de resultados ejercicio 7

Antonio Jesús Heredia Castilllo March 11, 2020

En este ejercicio vamos a comparar como funcionaria un kernel para sumar matrices en Cuda con diferentes modificaciones.

El código original usara bloques 2D para sumar las matrices. En la primera modificación usaremos bloques 1D donde una hebra sumara todas posiciones de una misma fila. Y en la segunda modificación una hebra sumara todas las posiciones de la misma columna. El código de estas modificaciones esta adjuntado junto al PDF. Para ver como responde estas modificaciones haremos pruebas con distintos parámetros.

El primer experimento lo hemos realizado con un tamaño de bloque de 8x8 y matrices de distintos tamaños. Los datos obtenidos los podemos ver en la sigu-

iente tabla:

N	Original	Modificación 1	Modificacióin 2
40	0,000037	0,000045	0,000056
100	0,000089	0,000133	0,000096
200	0,000206	0,000211	0,000295
500	0,001403	0,001081	0,001570
1000	0,004000	0,004133	0,006002
2000	0,015110	0,020209	0,022229
5000	0,096241	0,161487	0,177768
10000	0,360276	0,745313	0,665087
20000	0,699896	0,787172	0,753009

Y a continuación podemos ver una grafica comparando los resultados.

Figure 1: Comparación 8x8

El siguiente experimento lo he realizado para tamaños de bloque de 16x16.

Los resultados se pueden ver en la siguiente tabla:

N	Original	Modificación 1	Modificacióin 2			
40	0,000034	0,000076	0,000149			
100	0,000067	0,000138	0,000089			
200	0,000223	0,000283	0,000230			
500	0,001229	0,001267	0,001325			
1000	0,004194	0,003891	0,004356			
2000	0,018465	0,024261	0,016769			
5000	0,101747	0,170346	0,096955			
10000	0,420579	0,654600	0,448342			
20000	0,742035	1,012560	0,738639			

Y a continuación podemos ver una grafica comparando los resultados.

Figure 2: Comparación 16x16

El siguiente experimento lo he realizado para tamaños de bloque de 32x32. Los resultados se pueden ver en la siguiente tabla:

N	Original	Modificación 1	Modificación 2
40	0,000056	0,000056	0,000046
100	0,000069	0,000096	0,000086
200	0,000317	0,000295	0,000232
500	0,001090	0,001570	0,001247
1000	0,005071	0,006002	0,004240
2000	0,015409	0,022229	0,017617
5000	0,093398	0,177768	0,094377
10000	0,375558	0,665087	0,407680
20000	0,881141	0,753009	0,782449

En la Figura 3 podemos ver la grafica comparando resultados.

Viendo los resultados de tiempo de los experimentos realizados podemos concluir que la mejor opción seria usar un tamaño de bloque de 16x16 con la modificación 2. Aunque para asegurarnos de estos datos habría que haber realizado varios experimentos para el mismo tamaño de bloque y el mismo tamaño de matriz. Otra cosa que podemos deducir de los experimentos realizados es que

Figure 3: Comparación 32x32

la peor opción es usar la modificación numero 1 en todos los casos. Mientras que en la modificación 2 y en la original obtenemos datos muy parecidos.