Testing the Future

WaveLynx Technologies Corporation

TEST REPORT FOR

ET10-7

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.209

Report No.: 100602-28

Date of issue: January 18, 2018

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 30 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.215(c) Occupied Bandwidth (20dB BW)	7
15.209 Field Strength of Fundamental	10
15.209 Radiated Emissions	15
15.207 AC Conducted Emissions	22
Supplemental Information	29
Measurement Uncertainty	
Fmissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

WaveLynx Technologies Corporation
Joyce Walker
100 Technology Drive, Suite B150
CKC Laboratories, Inc.
Broomfield, CO 80021
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Daniel Field Project Number: 100602

Customer Reference Number: CKPO111017

DATE OF EQUIPMENT RECEIPT:December 13, 2017 **DATE(S) OF TESTING:**December 13 - 15, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 2 Be

Page 3 of 30 Report No.: 100602-28

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa D, CA	US0103	SL2-IN-E-1147R	3082A-1	US1024	A-0136

Page 4 of 30 Report No.: 100602-28

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.209

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.209	Field Strength of Fundamental	NA	Pass
15.209	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions		
None		

Page 5 of 30 Report No.: 100602-28

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N	
ET25-7	WaveLynx	ET25-7	NA	
Support Equipment:				

Support Equipment:

Device	Manufacturer	Model #	S/N
Power Supply	HP	8721A	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Modulation Type(s):	CW
Antenna Type(s) and Gain:	Loop
Antenna Connection Type:	Integral
Nominal Input Voltage:	12VDC
Firmware / Software used for Test:	WR220

Page 6 of 30 Report No.: 100602-28

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Mariposa Lab D	Test Engineer:	Michael Rauch Jr.	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/13/2017	
Configuration:	Configuration: 1			
Test Setup: Equipment is powered via DC power supply and configured for continuous operation on				
125kHz.				

Environmental Conditions				
Temperature (°C) 16 Relative Humidity (%): 63				

Test Equipment					
Asset# / Serial#	Description	Manufacturer	Model	Cal Date	Cal Due
00226	Loop Antenna	EMCO	6502	4/4/2016	4/4/2018
P06229	Cable	Andrew	CXTA04A-50	11/29/2016	11/29/2018
P07059	Cable	Andrew	CNT-195-FR-3	11/8/2016	11/8/2018
03634	Spectrum Analyzer	Agilent	E4445A	8/30/2017	8/30/2018
MD3M	Cable	NA	NA	3/17/2016	3/17/2018

	Test Data Summary										
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)							
0.125	1	CW	0.248	None							

Page 7 of 30 Report No.: 100602-28

Plot(s)

Test Setup Photo(s)

15.209 Field Strength of Fundamental

Test Setup/Conditions									
Test Location:	Mariposa Lab D	Test Engineer:	Michael Rauch Jr.						
Test Method:	ANSI C63.10 (2013)	ANSI C63.10 (2013) Test Date(s): 12/13/2017							
Configuration:	1								
Test Setup	Test Setup Equipment is powered via DC power supply and configured for continuous operation on								
	125kHz.								

Test Data Summary - Voltage Variations										
Frequency (MHz) Modulation / Ant Port V _{Minimum} V _{Nominal} V _{Maximum} Max Deviation (dBuV/m) (dBuV/m) (dBuV/m) from V _{Nominal} (dB)										
0.125	CW / Integral	-6.9	-2.1	-7.0	4.9					

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value	
V _{Nominal} :	120 VAC	
V _{Minimum} :	102.00 VAC	
V _{Maximum} :	138.00 VAC	

	Test Data Summary – Radiated Field Strength Measurement									
Frequency (MHz) Modulation Ant. Type Measured (dBuV/m @ 3m) (dBuV/m @ 3m) Results										
0.125	CW	Integral	-2.1	≤25.5	Pass					

Page 10 of 30 Report No.: 100602-28

Plot Data

Test Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

WaveLynx Technologies Corporation. Customer:

Specification: 15.209 Radiated Emissions

Work Order #: 100602 Date: 12/13/2017 Test Type: **Maximized Emissions** Time: 10:42:51 Tested By: Sequence#: 1 Michael Rauch Jr.

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emissions Spurious Measurements (125kHz)

Temperature: 12.2°C Humidity:60%

Atmospheric Pressure: 97.8kPa

Method: ANSI C63.10 (2013)

Modulation: CW Antenna Type: Integral

The EUT is powered by a DC power supply at 12VDC. The customer declares a typical configuration will be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

125kHz.

Page 12 of 30 Report No.: 100602-28

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANMD3M	Cable		3/17/2016	3/17/2018
T2	ANP07059	Cable	CNT-195-FR-3	11/8/2016	11/8/2018
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
	ANP06229	Cable-Amplitude	CXTA04A-50	11/29/2016	11/29/2018
		15 to 45degC (dB)			
T3	ANP06229	Cable-Amplitude -	CXTA04A-50	11/29/2016	11/29/2018
		15 to 15degC			
T4	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018

Measure	ement Data:	Re	ading list	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	126.983k	67.4	+0.0	+0.0	+0.0	+10.5	-80.0	-2.1	25.5	-27.6	Paral
							104		12VDC		100
2	126.963k	62.6	+0.0	+0.0	+0.0	+10.5	-80.0	-6.9	25.5	-32.4	Paral
							103		10.8VDC		100
3	126.963k	62.5	+0.0	+0.0	+0.0	+10.5	-80.0	-7.0	25.5	-32.5	Paral
							103		13.8VDC		100
4	126.968k	57.6	+0.0	+0.0	+0.0	+10.5	-80.0	-11.9	25.5	-37.4	Perpe
							141		13.8VDC		100
5	126.953k	57.4	+0.0	+0.0	+0.0	+10.5	-80.0	-12.1	25.5	-37.6	Perpe
							135		10.8VDC		100
6	126.973k	56.7	+0.0	+0.0	+0.0	+10.5	-80.0	-12.8	25.5	-38.3	Perpe
							133		12VDC		100
7	126.973k	41.6	+0.0	+0.0	+0.0	+10.5	-80.0	-27.9	25.5	-53.4	Z-Axi
							6		12VDC		100
8	126.993k	41.5	+0.0	+0.0	+0.0	+10.5	-80.0	-28.0	25.5	-53.5	Z-Axi
							6		10.8VDC		100
9	126.953k	41.0	+0.0	+0.0	+0.0	+10.5	-80.0	-28.5	25.5	-54.0	Z-Axi
							6		13.8VDC		100

Page 13 of 30 Report No.: 100602-28

Test Setup Photo(s)

15.209 Radiated Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

WaveLvnx Technologies Corporation. Customer:

Specification: 15.209 Radiated Emissions

Work Order #: Date: 12/13/2017 100602 Test Type: **Maximized Emissions** Time: 17:44:53 Tested By: Randal Clark Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N Configuration 1

Support Equipment:

Device Manufacturer Model # S/N Configuration 1

Test Conditions / Notes:

Radiated Emissions Spurious Measurements (125kHz)

Temperature: 16°C Humidity: 63%

Atmospheric Pressure: 97.8 kPa

Method: ANSI C63.10 (2013)

Modulation: CW Antenna Type: Integral

The EUT is powered by a DC power supply at 12VDC. The customer declares a typical configuration will be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at

125kHz.

Frequency range tested: 9kHz – 30MHz

Page 15 of 30 Report No.: 100602-28

WaveLynx Technologies Corporation. WO#: 100602 Sequence#: 6 Date: 12/13/2017 15.209 Radiated Emissions Test Distance: 3 Meters

Readings

* Average Readings

1 - 15.209 Radiated Emissions

Peak Readings
Ambient

× QP Readings Software Version: 5.03.11

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANMD3M	Cable		3/17/2016	3/17/2018
T2	ANP07059	Cable	CNT-195-FR-3	11/8/2016	11/8/2018
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
T3	ANP06229	Cable-Amplitude	CXTA04A-50	11/29/2016	11/29/2018
		15 to 45degC (dB)			
	ANP06229	Cable-Amplitude -	CXTA04A-50	11/29/2016	11/29/2018
		15 to 15degC			
T4	AN00226	Loop Antenna	6502	4/4/2016	4/4/2018
	ANdBuA	Unit Conversion		7/20/2016	7/20/2018

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	507.880k	36.1	+0.1	+0.0	+0.1	+9.7	-40.0	6.0	33.5	-27.5	Parra
									Ambient no	oise floor	
2	507.880k	35.1	+0.1	+0.0	+0.1	+9.7	-40.0	5.0	33.5	-28.5	Perpe
									Ambient no	oise floor	
3	253.940k	46.6	+0.1	+0.0	+0.0	+9.9	-80.0	-23.4	19.5	-42.9	Parra
4	253.940k	42.8	+0.1	+0.0	+0.0	+9.9	-80.0	-27.2	19.5	-46.7	Perpe
5	380.910k	38.6	+0.1	+0.0	+0.1	+9.8	-80.0	-31.4	16.0	-47.4	Parra
									Ambient no	oise floor	
6	380.910k	38.0	+0.1	+0.0	+0.1	+9.8	-80.0	-32.0	16.0	-48.0	Perpe
									Ambient no	oise floor	-

Page 17 of 30 Report No.: 100602-28

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.209 Radiated Emissions

Work Order #: 100602 Date: 12/14/2017
Test Type: Maximized Emissions Time: 15:43:17
Tested By: Randal Clark Sequence#: 16

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emissions Spurious Measurements (125kHz)

Temperature: 18°C Humidity:27%

Atmospheric Pressure: 97.8kPa

Modulation: CW Antenna Type: Integral

The EUT is powered by a DC power supply at 12VDC. The customer declares a typical configuration will be wall mounted in an upright/vertical (Y-axis) orientation.

The EUT is setup on an 80cm foam block. It has been programmed to continuously transmit the RFID signal at 125kHz.

No EUT emissions detected within 20dB of the limit.

Frequency range tested: 30-1000MHz

Page 18 of 30 Report No.: 100602-28

WaveLynx Technologies Corporation. WO#: 100602 Sequence#: 16 Date: 12/14/2017 15.209 Radiated Emissions Test Distance: 3 Meters

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
T1	AN00282	Preamp	8447D	4/7/2016	4/7/2018
T2	AN01993	Biconilog Antenna	CBL6111C	11/1/2016	11/1/2018
T3	ANP05656	Attenuator	PE7004-6	12/22/2015	12/22/2017
T4	ANMD3M	Cable		3/17/2016	3/17/2018
T5	ANP07059	Cable	CNT-195-FR-3	11/8/2016	11/8/2018
T6	ANP06229	Cable-Amplitude	CXTA04A-50	11/29/2016	11/29/2018
		15 to 45degC (dB)			
	ANP06229	Cable-Amplitude -	CXTA04A-50	11/29/2016	11/29/2018
		15 to 15degC			
T7	ANP06885	Cable	P06885	9/6/2017	9/6/2019

Meas	urement Data	ı: Re	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m \\$	dB	Ant
1	64.000M	32.9	-27.8	+6.0	+6.0	+0.9	+0.0	19.1	40.0	-20.9	Vert
	Ambient		+0.1	+0.8	+0.2						
2	300.000M	26.5	-27.0	+13.4	+6.0	+1.9	+0.0	23.3	46.0	-22.7	Vert
	Ambient		+0.2	+1.9	+0.4						
3	64.000M	30.0	-27.8	+6.0	+6.0	+0.9	+0.0	16.2	40.0	-23.8	Horiz
	Ambient		+0.1	+0.8	+0.2						
4	304.000M	23.9	-27.0	+13.5	+6.0	+1.9	+0.0	20.9	46.0	-25.1	Horiz
	Ambient		+0.2	+2.0	+0.4						

Page 20 of 30 Report No.: 100602-28

Test Setup Photo(s)

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

 Work Order #:
 100602
 Date:
 12/15/2017

 Test Type:
 Conducted Emissions
 Time:
 1:58:22 PM

Tested By: Randal Clark Sequence#: 22

Software: EMITest 5.03.11 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Conducted Emissions Measurements (125kHz)

Temperature: 17°C Humidity:51%

Atmospheric Pressure: 97.8kPa

Method: ANSI C63.10 (2013)

The EUT is powered by a DC power supply at 12VDC. The customer declares a typical configuration will be wall mounted in an upright/vertical (Y-axis) orientation.

Equipment has been programmed to continuously transmit the RFID signal at 125kHz.

Page 22 of 30 Report No.: 100602-28

WaveLynx Technologies Corporation. WO#: 100602 Sequence#: 22 Date: 12/15/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Sweep Data
 QP Readings
 Software Version: 5.03.11

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
T2	AN02608	High Pass Filter	HE9615-150K-	2/16/2016	2/16/2018
			50-720B		
T3	ANP06229	Cable-Amplitude	CXTA04A-50	11/29/2016	11/29/2018
		15 to 45degC (dB)			
T4	ANMD3M	Cable		3/17/2016	3/17/2018
T5	AN01248	50uH LISN-Line (L1)	8028-50-TS-24-	1/12/2017	1/12/2018
		(dB)	BNC		
	AN01248	50uH LISN-Return	8028-50-TS-24-	1/12/2017	1/12/2018
		(L2) (dB)	BNC		

Measi	urement Date	a: Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	721.583k	15.7	+10.0	+0.4	+0.1	+0.1	+0.0	26.4	46.0	-19.6	Line
			+0.1								
2	679.405k	15.4	+10.0	+0.4	+0.1	+0.1	+0.0	26.1	46.0	-19.9	Line
			+0.1								
3	486.696k	15.6	+10.0	+0.3	+0.1	+0.1	+0.0	26.2	46.2	-20.0	Line
			+0.1								
4	533.964k	15.1	+10.0	+0.4	+0.1	+0.1	+0.0	25.8	46.0	-20.2	Line
			+0.1								
5	653.953k	14.7	+10.0	+0.4	+0.1	+0.1	+0.0	25.4	46.0	-20.6	Line
			+0.1								
6	804.485k	14.5	+10.0	+0.4	+0.1	+0.1	+0.0	25.2	46.0	-20.8	Line
			+0.1								

Page 24 of 30 Report No.: 100602-28

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 100602 Date: 12/15/2017 Test Type: Conducted Emissions Time: 2:06:33 PM

Tested By: Randal Clark Sequence#: 23

Software: EMITest 5.03.11 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Conducted Emissions Measurements (125kHz)

Temperature: 17°C Humidity:51%

Atmospheric Pressure: 97.8kPa

Method: ANSI C63.10 (2013)

The EUT is powered by a DC power supply at 12VDC. The customer declares a typical configuration will be wall mounted in an upright/vertical (Y-axis) orientation.

Equipment has been programmed to continuously transmit the RFID signal at 125kHz.

Page 25 of 30 Report No.: 100602-28

WaveLynx Technologies Corporation. WO#: 100602 Sequence#: 23 Date: 12/15/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Return

Sweep Data
 QP Readings
 Software Version: 5.03.11

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
T2	AN02608	High Pass Filter	HE9615-150K-	2/16/2016	2/16/2018
			50-720B		
T3	ANP06229	Cable-Amplitude	CXTA04A-50	11/29/2016	11/29/2018
		15 to 45degC (dB)			
T4	ANMD3M	Cable		3/17/2016	3/17/2018
	AN01248	50uH LISN-Line (L1)	8028-50-TS-24-	1/12/2017	1/12/2018
		(dB)	BNC		
T5	AN01248	50uH LISN-Return	8028-50-TS-24-	1/12/2017	1/12/2018
		(L2) (dB)	BNC		

Meası	urement Date	a: Re	eading lis	ted by ma	argin.			Test Lead	d: Return		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	547.054k	16.0	+10.0	+0.4	+0.1	+0.1	+0.0	26.7	46.0	-19.3	Retur
			+0.1								
2	1.183M	13.9	+10.0	+0.3	+0.1	+0.1	+0.0	24.5	46.0	-21.5	Retur
			+0.1								
3	1.192M	13.5	+10.0	+0.3	+0.1	+0.1	+0.0	24.1	46.0	-21.9	Retur
			+0.1								
4	889.963k	13.4	+10.0	+0.4	+0.1	+0.1	+0.0	24.1	46.0	-21.9	Retur
			+0.1								
5	164.544k	22.5	+10.0	+0.6	+0.0	+0.0	+0.0	33.2	55.2	-22.0	Retur
			+0.1								
6	1.030M	13.4	+10.0	+0.3	+0.1	+0.1	+0.0	24.0	46.0	-22.0	Retur
			+0.1								

Page 27 of 30 Report No.: 100602-28

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS									
	Meter reading (dBμV)									
+	Antenna Factor	(dB/m)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	- Preamplifier Gain (dB)									
=	Corrected Reading	(dBμV/m)								

Page 29 of 30 Report No.: 100602-28

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 30 of 30 Report No.: 100602-28