

BMIF 310: Foundations of Bioinformatics

Sequence Analysis: Lecture B

Substitution matrices: PAM and

BLOSUM

Overview

- Prediction of matrices by theoretical means
- Generation of matrices by empirical means
 - PAM matrices
 - MO Dayhoff, RM Schwartz, BC Orcutt
 - Atlas of Protein Seq. and Struct. (1978) 5:345-352
 - BLOSUM matrices
 - S Henikoff and JG Henikoff
 - PNAS (1992) 89: 10915-10919

Substitution matrix role

- In comparing sequences, one should account for the influence of molecular evolution.
- The probability of acceptably replacing an amino acid with a similar amino acid is greater than replacement by a very different one.
- Substitution matrices evaluate potential replacements for protein and nucleic acid sequences.

Jukes-Cantor (1969)

- Assumes that if mutation happens, change to any other letter occurs with equal probability.
- Probability of mutation increases as linear function of time.

	A	C	G	T
A	1-3α	α	α	α
С	α	1-3α	α	α
G	α	α	1-3α	α
Т	α	α	α	1-3α

Kimura (1980)

- Differentiates transition and transversion rate.
- α : Transition= C \longleftrightarrow T, G \longleftrightarrow A
- β : Transversion= T, C \longleftrightarrow G, A

	A	C	G	T
A	1-α-2β	β	α	β
С	β	1-α-2β	β	α
G	α	β	1-α-2β	β
Т	β	α	β	1-α-2β

Theoretical vs. empirical substitutions

- Theoretical substitution matrices embody theoretical models of evolution.
- Empirical substitution matrices are constructed from the results of evolution.
- Empirical matrices are more common for proteins because codon position of mutations modulates effect at protein level.

Point Accepted Mutation (PAM)

- "An accepted point mutation in a protein is a replacement of one amino acid by another, accepted by natural selection."
- Aim is to characterize accepted mutations at one PAM (1% of residues changed) distance.
- Dataset included only 1572 mutations in 71 conserved proteins. Sequences in each tree were no more than 15% different. Updates have been computed with more sequences.

Protein sequence trees imply transition matrix

Relative mutability

- F_i= frequency for AA_i among sequences (Leu is 9.7% of SwissProt, while Trp is only 1.1%)
- $M_{i,j}$ = frequency of mutation for $AA_i \rightarrow AA_j$
- Relatedness odds are a ratio of the two: M_{i,i}/F_i
- Log odds ratio is $log_{10}(M_{i,j}/F_i)$

 Asn and Ser showed high mutability, while Cys and Trp showed low mutability.

What PAM-1 means

 Given residues x and y, we can look up the probability that a given x will be replaced by y in the time that 1% of residues have mutated.

 Multiplying PAM-1 by itself n times yields a matrix showing mutation probabilities over longer intervals of evolution (e.g. PAM-250).

 \mathbf{E}

Q

Η

BLOSUM (blocks substitution matrix)

- PAM models mutations using very similar sequences. Many uses of substitution matrix focus on matching distant sequences.
- Rather than build a distant matrix by raising PAM-1 to a power, why not build a matrix from more distantly related sequences?
- Henikoff and Henikoff used BLOCKS database of short, ungapped sequences to create BLOSUM matrices at several similarity levels.

Substitution without phylogeny

LDGADC IMLSGETAKGDYPL
LDGADC IMLSGETAKGDYPL
LDGADC IMLSGETAKGDYPL
LDGADC VMLSGETAKGEYPL
LDGTDC VMLSGETAAGAYPE
FDGTDA IMLSGETAAGIYPV
LDGTDA VMLSGETAAGIYPV
REGADA VMLSGETAHGKYPL
YDGTDC LMLSNETTIGKYPI

- If each letter were paired with every other, we would observe VV, VI, VL, II, and IL pairs.
- These pair counts are accumulated across the positions of multiple blocks into a single table.
- At least 2369 occurrences of any substitution.

Two probabilities make an odds ratio

- Observed probability of occurrence:
- q_{ij} = the fraction of table sum found in this cell.
- Expected probability of occurrence:
- e_{ij} = the product of the background probabilities of either residue.
- BLOSUM rounds values of $log_2(q_{ij}/e_{ij})$.
- 0 is expected rate, positive is more than usual.

Different BLOSUM, different data

- The BLOSUM number describes how identical sequences must be to be counted as one sequence. BLOSUM62 = 62% identical.
- When number is low, closely related sequences are condensed, emphasizing most diverse sequences in matrix.
- When number is high, only nearly identical sequences are condensed, emphasizing sequences of lesser diversity.

BLOSUM62 (log₂)

	Α	R	Ν	D	С	Q	Ε	G	Н	1	L	K	M	F	Р	S	Т	W	Υ	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

W

-3

-3

-4

-4

-2

-2

-3

-2

-2

-3

-2

-3

-1

1

-4

-3

-2

11

2

-3

0

-1

0

-1

-1

-1

-1

-2

-2

-1

-1

-1

-1

-2

-1

1

5

-2

-2

0

0

-1

0

0

0

-1

-2

-2

0

-1

-2

-1

4

-3

-2

-2

Υ

-2

-2

-2

-3

-2

-1

-2

-3

2

-1

-1

-2

-1

3

-3

-2

-2

2

7

-1

0

-3

-3

-3

-1

-2

-2

-3

-3

3

1

-2

1

-1

-2

-2

0

-3

-1

4

E S G E T H G K P ADAVM L A ${f L}$ R

-2	+2	+6-	+0-	+6-	- 0	+1-	+5+	-4 -	-4 -	+0-	۲5-	F5 -	١٥-	-3-	+6 -	+5 +	-7-	⊦7 ⊦	-2
Y	D	G	T	D	C	L	M	L	S	N	E	T	T	I	G	K	Y	P	I

	7 2	L O -	LO-	L O -	ru-	LT.	7 3-	-4	-4	ru-	רטי	г Э -	ru-	- 3	г О -	7 3	<i>「</i> / ¬	Г/7	72
Y	D	G	T	D	C	L	M	L	S	N	E	T	T	I	G	K	Y	P	I

Н

-2

0

-1

-3

0

0

-2

8

-3

-3

-1

-2

-1

-2

-1

-2

-2

2

-3

G

0

-2

0

-1

-3

-2

-2

6

-2

-4

-4

-2

-3

-3

-2

0

-2

-2

-3

-3

Α

4

-1

-2

-2

0

-1

-1

0

-2

-1

-1

-1

-1

-2

-1

1

0

-3

-2

0

Α

Ν

D

C

Q

Ε

G

Н

K

M

F

Р

S

Т

W

Υ

٧

R

-1

5

0

-2

-3

1

0

-2

0

-3

-2

2

-1

-3

-2

-1

-1

-3

-2

-3

Ν

-2

0

6

-3

0

0

0

1

-3

-3

0

-2

-3

-2

1

0

-4

-2

-3

D

-2

-2

6

-3

0

2

-1

-1

-3

-4

-1

-3

-3

-1

0

-1

-4

-3

-3

0

-3

-3

-3

9

-3

-4

-3

-3

-1

-1

-3

-1

-2

-3

-1

-1

-2

-2

-1

Q

-1

1

0

0

-3

5

-2

0

-3

-2

1

0

-3

-1

0

-1

-2

-1

-2

-1

0

0

-4

2

5

-2

0

-3

-3

1

-2

-3

-1

0

-1

-3

-2

-2

-2	+	-2-	+6 -	- 0-	+6-	- 0-	⊦ ⊥-	F5-	-4-	-4 -	FO-	15-	15-	FO-	-3-	+6 -	-5 -	- / -	F / -	-2
Y		D	G	T	D	С	L	M	L	S	N	E	T	T	I	G	K	Y	P	I

-1

-3

-3

-3

-1

-3

-3

-4

-3

4

2

-3

1

0

-3

-2

-1

-3

-1

3

-1

-2

-3

-4

-1

-2

-3

-4

-3

2

4

-2

2

0

-3

-2

-1

-2

-1

1

Μ

-1

-1

-2

-3

-1

0

-2

-3

-2

1

-1

5

0

-2

-1

-1

-1

-1

1

2

0

-1

-3

1

1

-2

-1

-3

-2

5

-1

-3

-1

0

-1

-3

-2

-2

F

-2

-3

-3

-3

-2

-3

-3

-3

-1

0

0

-3

0

6

-4

-2

-2

1

3

-1

P

-1

-2

-2

-1

-3

-1

-1

-2

-2

-3

-3

-1

-2

-4

7

-1

-1

-4

-3

-2

-2-	+2-	+6-	- 0-	+6-	+ 0-	+1-	+5+	-4 -	-4 -	+0-	+5-	⊦5 -	١٥-	-3-	۱6-	+5+	⊦7-	⊦7 ⊣	-2
Y	D	G	T	D	C	L	M	L	S	N	E	T	T	I	G	K	Y	P	I

Summary

- Both theoretical and empirical techniques can yield substitution matrices.
- PAM matrices are designed to model small evolutionary changes, but they can be extrapolated to handle larger scales.
- BLOSUM matrices effectively represent more distant sequence relationships, and BLOSUM62 has become a standard matrix.
- Protein-level comparisons are more common for distant evolutionary relationships.