	Studente (Nome e c	ognome, in stampa	atello):			
	Matricola:		Corso di Laurea:	□ IEL; □ IDT;	□Altro; Valuta	z.:
	l/la sottoscritto/a, ai se suindicati (Nome, Co Do il con	gnome, atricola, Cors	D.Lgs. 196/2003, pres so di laurea, valutazion onsenso □ Firma:	sta il suo consenso a ne) ai fini della pubb	l trattamento dei da licazione su pagina	'i personali internet?
	l – Un'onda piana a obliquamente con a perpendicolare su un'is $\mu_1 = \mu_0$, e un mezzo L'onda piana incidente campo magnetico; (2) cubo C di lato 1m cer flusso della parte reale distinguendo esplicitan	a frequenza 3GHz e ingolo di incidenz interfaccia tra un mez e nel sistema di riferi Il campo riflesso e (3) intrato nell'origine rapidel vettore di Poynting	di ampiezza $E_0 = 1V$ a $\theta_i = 30^\circ$ a polezzo ① caratterizzato $\varepsilon_1 = 4\varepsilon_0$, $\mu_1 = \mu_0$. Simento in figura, com) trasmesso. Si consideresentato in figura e g attraverso la superfic	larizzazione da $\varepsilon_1 = \varepsilon_0$, i scriva (1) aprensiva di eri quindi il si valuti il ie del cubo,	θ_i S_1 C S_2	x
	inferiore S. e (6) lateral	e S.				
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sing - jek, co o sing - jek, co o	E (- cop. i.	+ 51: 0, (2)	0 = ac sin((E. sia Or)
②	H2 = e		, T = (06 0°	+ 51-0:62)	$\Gamma_1 = \frac{3.60 \cdot -3}{3.60 \cdot +3}$	
3	Ēr = e-j*k; H_ = e-j*k;	sind - jxke cos	0, TE, 2, 600,	îx + 51-0, cz)	T_ = 1+ T_1	
5	$\frac{E_{\sigma_1}}{E_{\sigma_1}} = E_{\sigma_1} \times H_{\sigma_1} = \frac{1}{2}$	e. kz=kz a x (c-jkz +	n 0: [[ejkzz] iz] ikz ;kz	H= = = e-jhx2	(e - j k = 2 (- co 8	î 151 0îz)
5	$L = \frac{1}{2} \underbrace{E_{e_i}} \times \underbrace{H_{e_1}} = \frac{1}{2}$	+ (e-)he	e ^j)(-e ^j , I	1e) ²) ω θ ^{k₂2} , Γc ^{jk₂2})	(-îz) + sin 0 îz]	. 1
5	= 1 15/ (1-1)	11-21 sin (2k	(z) [) co 0. Ce	+ (1411)+2	1 co (2 x 2) 1.) 5/20 0; (x
f	a S, + (R	(\21 \· (- 2) 6	$(xdy = \frac{1}{2} \frac{ x_0 }{ x_0 }$	$\int \int \left(1- \Gamma_i ^2\right)$	(s) 0. 12. (- 2)	23, (100
P	$u S_{L} in 1$ $S_{L} in 2$	Sa Non do	yende da x Szamiora	non Styrens	66x -9	
	5L -0	Non vi somo	perdite +	B = 0 -)	s, =)) s ₁ s ₂	

2 - Si consideri il circuito in figura. Sia $Z_0 = 50\Omega$ l'impedenza caratteristica dell'intero circuito, salvo il tratto di linea lungo $d_2 = 0.2m$, di impedenza $Z_1 = 100\Omega$. Siano i carichi $Z_{L_1} = 100 + j100\Omega$ e $Z_{L_2} = 100 - j100\Omega$, sia $d_1 = 0.5m$. Si ricavi, per $\lambda = 1$ m: (1) il carico complessivo a destra della sezione AA'; (2) la lunghezza dei due stub l_1 (minima possibile) e l_2 che adattano tale carico alla linea; (3) il rapporto fra la potenza attiva dissipata su Z_{L_1} e Z_{L_2} in caso di adattamento. Infine (4) si indichi approssimativamente la zona di non adattabilità per Z_{l_1} , considerando d_1 , d_2 e Z_{L_2} fissi e dati dal problema.

 $d_{i} = 0.5 \rightarrow Z_{L_{i}}^{AA'} = Z_{L_{i}}^{AA} = 100 + j/00$ $d_{i} = 0.2 \rightarrow Z_{L_{i}}^{AA'} = 40.1 + j/20.7$ $Serie + Z_{L_{i}}^{AA'} = 140.1 + j/20.7 + Z_{L_{i}}^{AA'} = 2.8 + j/2.4$ Ab = -0.227 + (2 = 0.214)

(2) $y_{\perp}^{AA} = \frac{1}{z_{\perp}^{AA}} = 0.20 - 10.17$

+y 1 = 0.20 - 0.40 -y 38' 1+ j 1.97 + ab=-1.97 - l2=0.024)

3 Su Ze circola I inagnite, upale per entrembe essent enc in serie - PL = Re{Z_4} = 100 = 2.49

Re{Z_4} = 40.1

3) Per encre adattabile you deve encre from de in zan' questo si riflette in essere frori da

quind: $Z_{L}^{AA'} = Z_{L_{1}}^{AA'} + Z_{L_{2}}^{AA'} = Z_{L_{1}}^{AA'} + 0.80 + 0.41$ de ve essent from

Tele one O consideriano la porte reale la zirconferenza si allargo // (si allestana

(2) consideran le parte immeginerie, ogni punto s sposte lungo la circo-fina e g=costate st-0.41

(3) Infine cisimore viso il carico (1 giro) - 3 – Risolvere il problema della riflessione di un'onda piana ad un'interfaccia fra due mezzi dielettrici diversi privi di perdite caratterizzati da (ε_1, μ_1) e (ε_2, μ_2) . Discutere l'eventuale annullarsi del coefficiente di riflessione nel caso $\varepsilon_1 = \varepsilon_2$ e $\mu_1 \neq \mu_2$.

$$\begin{array}{c}
\boxed{2} \quad \boxed{I}_{i} = \frac{\vec{J}_{i} \, Co\theta_{i} - \vec{J}_{i} \, Co\theta_{t}}{\vec{J}_{i} \, Co\theta_{t} - \vec{J}_{i} \, Co\theta_{t}} \\
\boxed{I}_{ij} = \frac{\sqrt{R_{i}} \, Co\theta_{i} - \sqrt{R_{i}} \sqrt{1 - 5in^{4}\theta_{t}}}{\sqrt{R_{i}} \, Co\theta_{t} - \sqrt{R_{i}} \sqrt{1 - 5in^{4}\theta_{t}}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{i} - \sqrt{\frac{R_{i}}{E}} \sqrt{1 - 5in^{4}\theta_{t}}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{i} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{i} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{\frac{R_{i}}{E} \, Co\theta_{t}} - \sqrt{\frac{R_{i}}{R_{i}}} \, Sin^{4}\theta_{t}} \\
\boxed{I}_{ij} = \sqrt{$$

$$\Gamma_{1} = \frac{3_{1} \cos \theta_{1} - 3_{1} \cos \theta_{2}}{3_{2} \cos \theta_{1} + 3_{2} \cos \theta_{2}}$$

$$\Gamma_{1} = \sqrt{\frac{8_{2}}{2}} \cos \theta_{1} - \sqrt{\frac{8_{2}}{2}} \sqrt{1 - \sin^{2}\theta_{1}}$$

$$\sqrt{\frac{8_{2}}{2}} \cos \theta_{1} - \sqrt{\frac{8_{2}}{2}} \sqrt{1 - \sin^{2}\theta_{1}}$$

$$\sqrt{\frac{8_{2}}{2}} \cos \theta_{1} - \sqrt{\frac{8_{2}}{2}} \sqrt{1 - \sqrt{\frac{8_{2}}{2}}} \sin^{2}\theta_{1}$$

$$\sqrt{\frac{8_{2}}{2}} \cos \theta_{1} - \sqrt{\frac{8_{2}}{2}} \sin^{2}\theta_{1}$$

$$\sqrt{\frac{8_{2}}{2}} \cos \theta_{1} - \sqrt{\frac{8_{2}}{2}} \sin^{2}\theta_{1}$$

$$\sqrt{\frac{8_{2}}{2}} \cos^{2}\theta_{1} = \sqrt{\frac{8_{2}}{2}} \sin^{2}\theta_{1}$$

$$\sqrt{\frac{8_{2}}{2}} \cos^{2}\theta_{1} = \sqrt{\frac{8_{2}}{2}} \sin^{2}\theta_{1}$$

$$\sqrt{\frac{8_{2}}{2}} \cos^{2}\theta_{1}$$

$$\sqrt{$$

Solvzione corceTa

Paril 4) esercizio la soluzione i agli