SJK002 Computer Vision

Master in Intelligent Systems

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

Introduction

- Projection of a scene (3D) in 2 o or more planes (2D)
 - Binocular system
 - Moving camera
 - System of a camera with mirrors
 - System of multiple cameras

Binocular system

http://users.rcn.com/mclaughl.dnai/products.htm

http://www.lucs.lu.se/Projects/Robots/Robots1990/StereoHead2.html

Moving camera

http://www.dis.uniroma1.it/~iocchi/stereo/stereo.html

System of a camer with mirrors

http://www-sop.inria.fr/robotvis/hardware/HardwarePictures.html

Introduction

System of multiple cameras

http://www.ptgrey.com/products/digiclops

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

What is stereo vision?

- Stereo vision:
 - 2 or more 2D images ⇒ 3D information

http://www.ai.sri.com/~konolige/svs/pictures.htm

What is stereo vision?

- Stereo vision:
 - 2 or more 2D images ⇒ 3D information

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

Pinhole camera model

Perspective projection

Pinhole camera model

 $m = \text{intersection of line } CM \text{ with plane } \mathcal{R}$

Coordinate systems

From camera to image coordinates

Perspective projection matrix

Scale factor S=z

$$P$$
 = projection matrix

Homogeneous coordinates

$$\widetilde{m} = P\widetilde{M}$$

The objective is to represent m in normalized coordinates

 From image coordinates to normalized coordinates (origin and pixel units)

Normalized image coordinates

Coordinates change de (c, u, v) a (c_n, u_n, v_n)

$$\overline{c_n m} = \overline{c_n c} + \overline{c m}$$

Add c position to m with respect to c_n : (u_0, v_0)

From image coordinates to normalized coordinates

Units of $u, v \implies meters$ Units of $u_n, v_n \implies pixels$

k_u, k_v pixels/meter

In general $k_u \neq k_v$

Normalized image coordinates

From image coordinates to normalized coordinates

Change of

coordinates origin

Normalized image coordinates

Perspective projection matrix

$$S\begin{bmatrix} u_n \\ v_n \\ 1 \end{bmatrix} = \begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} fk_u & 0 & u_0 & 0 \\ 0 & fk_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$u_n = U/S$$
 $v_n = V/S$ $si S \neq 0$

Intrinsic parameters: f, k_u , k_v , u_0 , v_0

Perspective projection matrix

$$S\begin{bmatrix} u_n \\ v_n \\ 1 \end{bmatrix} = \begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 & 0 \\ 0 & \alpha_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$u_n = U/S$$
 $v_n = V/S$ $si S \neq 0$

Focal length in units of u_n and v_n : α_u , α_v

Perspective projection matrix

$$S\begin{bmatrix} u_n \\ v_n \\ 1 \end{bmatrix} = \begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} \alpha_u & -\alpha_u \cot \theta & u_0 & 0 \\ 0 & \alpha_v / \sin \theta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$u_n = U/S$$
 $v_n = V/S$ $si S \neq 0$

11 degrees of freedom

When there is a posible deviation of the optical axis

- Extrinsic parameters:
 - from the world coordinates to camera coordinates

Extrinsic parameters

Rotation + Traslation

$$\widetilde{M} = K\widetilde{M}_{o}$$

Rotation + Traslation

$$K = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

General form of the projection matrix

$$S\begin{bmatrix} u_n \\ v_n \\ 1 \end{bmatrix} = \begin{bmatrix} U \\ V \\ S \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$u_n = U/S$$
 $v_n = V/S$ $si S \neq 0$

General form of the projection matrix

- Calibration:
 - Step 1: Estimate matrix P
 - Step 2: Estimate intrinsic and extrinsic parameters from P

For some applications (e.g. **stereo vision**) it is only necessary step 1.

- Camera calibration
 - Linear regression (least squares).
 - Non linear optimization.
 - Multiple planar patterns.

Calibration: Linear regression

- Directly estimate the 11 unknown values of matrix M.
- Use a set of known 3D points (X_i, Y_i, Z_i) and measure the image position of the corresponding projected points (u_i, v_i)

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$
$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

Each point defines two equations

Solve for the projection matrix M using least squares

- Least squares:
 - p/2 points of the calibration grid (patterns)
 - n=11 unknown values of matrix M

to the coefficients of one equation

$$\begin{bmatrix} a_{00} & a_{01} & \dots & a_{0n} \\ a_{10} & a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{p0} & a_{p1} & \dots & a_{pn} \end{bmatrix} \begin{pmatrix} m_{00} \\ m_{01} \\ \dots \\ m_{22} \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ \dots \\ b_n \end{pmatrix}$$

$$Am = b$$

Independent terms vector

Least squares

$$Am = b$$

Linear system with m equations and n unknowns

$$A^tAm = A^tb$$

Normal equation which minimizes the sum of squared differences

$$\mathbf{m} = (\mathbf{A}^{\mathsf{t}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{t}} \mathbf{b}$$

Solution vector m of n values to be estimated

Advantages:

- All camera parameters summarized in a single matrix.
- Can predict how any 3D point is projected into the image plane.

Disadvantages:

- Does not provide specific information for each of the camera parameters.
- Mixture of intrinsic and extrinsic parameters:
 - Dependent on camera position.
 - If camera moves, the estimated projection camera is not the same one.

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

Geometry of 2 cameras:

- The simplest case:
 - Parallel geometry

- The simplest case:
 - Parallel geometry

$$P_{1} = \begin{bmatrix} fk_{u} & 0 & u_{0} & 0 \\ 0 & fk_{v} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Change to the camera 1 coordinates system

$$P_{2} = \begin{bmatrix} fk_{u} & 0 & u_{0} & 0 \\ 0 & fk_{v} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The simplest case:
 - Parallel geometry

$$P_{1} = \begin{bmatrix} fk_{u} & 0 & u_{0} & 0 \\ 0 & fk_{v} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 They are the same!

$$P_{2} = \begin{bmatrix} fk_{u} & 0 & u_{0} & fk_{u}b \\ 0 & fk_{v} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- The simplest case:
 - Parallel geometry

$$\widetilde{m}_1 = P_1 \widetilde{M}, \quad m_1 = \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}$$

$$\widetilde{m}_2 = P_2 \widetilde{M}, \quad m_2 = \begin{bmatrix} u_2 \\ v_2 \end{bmatrix}$$

$$v_1 = v_2$$

- The simplest case:
 - Parallel geometry

$$u_1 = fk_u \frac{x}{z} + u_0$$

$$u_2 = fk_u \frac{x}{z} + u_0 + fk_u \frac{b}{z}$$

$$u_2 = u_1 + fk_u \frac{b}{z}$$

- The simplest case:
 - Parallel geometry

- The simplest case:
 - Parallel geometry

Parallel geometry

Disparity $u_2 - u_1$ u_1 u_2

Search for homologous points:

The correspondence problem

Non-parallel geometry

$$P_{2} = \begin{bmatrix} fk_{u} & 0 & u_{0} & 0 \\ 0 & fk_{v} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Fundamental matrix

Matriz 3x3

F= Fundamental matrix

$$F^{-1} = F^{T}$$

$$F\widetilde{m}_1 = l_2$$

$$F^T \widetilde{m}_2 = l_1$$

Homogeneous coordinates

$$\widetilde{m}_{2}^{T} \widetilde{F} \widetilde{m}_{1} = 0$$

$$\widetilde{m}_1^T \widetilde{F}^T \widetilde{m}_2 = 0$$

- Calibration:
 - Obtain all calibration parameters (projection matrices P₁ y P₂)

$$s_1 \widetilde{m}_1 = P_1 \widetilde{M}$$
 s_1 , s_2 : scale factors $s_2 \widetilde{m}_2 = P_2 \widetilde{M}$

Calculate F from P₁ y P₂

$$F = [q_2 - Q_2 Q_1^{-1} q_1] \times Q_2 Q_1^{-1}$$

where Q_i are 3x3 matrices and q_i are 3x1 vectors,

- Weak calibration:
 - Find pairs of homologous points in both images
 - Estimate F matrix from pairs of corresponding points
 - Method of 8-points
 - Linear methods
 - Non-linear methods

Index

- Introduction
 - What is stereo vision?
- Geometry of a binocular system
 - Projection geometry
 - Binocular geometry. Fundamental matrix
 - Rectification

- Rectification:
 - Make coincide epipolar lines with image rows

- Rectification:
 - If the cameras have linear perspective
 - Rectify = project P_1 and P_2 in a rectification plane
 - If they have non-linear perspective
 - Must take into account distortion
 - If they do not have perspective projection
 - Very different methods

- Rectification:
 - If the cameras have linear perspective
 - Rectify = project P_1 and P_2 in a rectification plane
 - Epipoles are sent to infinit
 - Rectified F is:

$$F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Rectification:

$$F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \qquad F \tilde{m}_1 = l_2$$

$$F \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ v_1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = l_2$$

$$l_2 \tilde{m}_2 = 0$$

$$\begin{bmatrix} 0 & -1 & v_1 \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = -v_2 + v_1 = 0$$

$$v_1 = v_2$$

Rectification:

Rectification:

Rectification:

Rectification: comparison between linear and non-

linear method

References

Basic:

 Forsyth, D.A. and Ponce, J.; Computer Vision: A Modern Approach, Prentice Hall, 2003.

Complementary:

- Jähne, B. Practical Handbook on Image Processing for Scientific Applications, CRC Press, 1997.
- Jain, R.; Kasturi, R.; and Schunck, B.G.; *Machine Vision*, McGraw-Hill Inc., 1995.
- Shapiro, L. and Stockman, G.; Computer Vision, Prentice Hall, 2000.

- Geometry of computer vision systems:
 - Faugeras, O.; *Three-Dimensional Computer Vision. A Geometric Approach*. MIT Press, 1993
 - Hartley, R. and Zisserman, A.; Multiple View Geometry in Computer Vision, Cambridge University Press, 2000