```
In [2]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import os
        %matplotlib inline
```

Setting the working Directory

```
In [21]: os.chdir("D:/Great Lakes PGPDSE/Great Lakes/13 Ensemble Techniques/Mini Projec
```

Reading the data set

Out[22]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
0	41	Yes	Travel_Rarely	1102	Sales	1	2
1	49	No	Travel_Frequently	279	Research & Development	8	1
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2
3	33	No	Travel_Frequently	1392	Research & Development	3	4
4	27	No	Travel_Rarely	591	Research & Development	2	1

5 rows × 35 columns

```
In [23]: hr.shape
Out[23]: (2940, 35)
```

There are 35 columns and 2940 data entries in the file

In [24]: hr.dtypes Out[24]: Age int64 Attrition object BusinessTravel object DailyRate int64 Department object DistanceFromHome int64 Education int64 EducationField object EmployeeCount int64 EmployeeNumber int64 EnvironmentSatisfaction int64 Gender object int64 HourlyRate JobInvolvement int64 JobLevel int64 JobRole object int64 JobSatisfaction object MaritalStatus MonthlyIncome int64 MonthlyRate int64 NumCompaniesWorked int64 Over18 object OverTime object PercentSalaryHike int64 PerformanceRating int64 RelationshipSatisfaction int64 StandardHours int64 int64 StockOptionLevel TotalWorkingYears int64 TrainingTimesLastYear int64 WorkLifeBalance int64 YearsAtCompany int64 YearsInCurrentRole int64 YearsSinceLastPromotion int64 YearsWithCurrManager int64 dtype: object

Checking summary statistics

In [25]: hr.describe()

Out[25]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	Em
count	2940.000000	2940.000000	2940.000000	2940.000000	2940.0	294
mean	36.923810	802.485714	9.192517	2.912925	1.0	147
std	9.133819	403.440447	8.105485	1.023991	0.0	848
min	18.000000	102.000000	1.000000	1.000000	1.0	1.0
25%	30.000000	465.000000	2.000000	2.000000	1.0	735
50%	36.000000	802.000000	7.000000	3.000000	1.0	147
75%	43.000000	1157.000000	14.000000	4.000000	1.0	220
max	60.000000	1499.000000	29.000000	5.000000	1.0	294

8 rows × 26 columns

Checking for missing values

In [26]: hr[hr.isnull().any(axis=1)]

Out[26]:

Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education

0 rows × 35 columns

There are no missing values

In [27]:	hr.nunique()		
Out[27]:	Age	43	
	Attrition	2	
	BusinessTravel	3	
	DailyRate	886	
	Department	3	
	DistanceFromHome	29	
	Education	5	
	EducationField	6	
	EmployeeCount	1	
	EmployeeNumber	2940	
	EnvironmentSatisfaction	4	
	Gender	2	
	HourlyRate	71	
	JobInvolvement	4	
	JobLevel	5	
	JobRole	9	
	JobSatisfaction	4	
	MaritalStatus	3	
	MonthlyIncome	1349	
	MonthlyRate	1427	
	NumCompaniesWorked	10	
	Over18	1	
	OverTime	2	
	PercentSalaryHike	15	
	PerformanceRating	2	
	RelationshipSatisfaction	4	
	StandardHours	1	
	StockOptionLevel	4	
	TotalWorkingYears	40	
	TrainingTimesLastYear	7	
	WorkLifeBalance	4	
	YearsAtCompany	37	
	YearsInCurrentRole	19	
	YearsSinceLastPromotion	16	
	YearsWithCurrManager	18	
	dtype: int64		

Here the value for columns, Over18, StandardHours and EmployeeCount same for all rows, we can eliminate these columns.

```
In [28]: del hr["Over18"]
         del hr["EmployeeCount"]
         del hr["StandardHours"]
```

Ploting Histogram for various factors in the same plot space.

```
In [29]:
         fig,ax = plt.subplots(2,3, figsize=(10,10))
         plt.suptitle("Distribution of various factors", fontsize=20)
         sns.distplot(hr['Age'], ax = ax[0,0])
         sns.distplot(hr['MonthlyIncome'], ax = ax[0,1])
         sns.distplot(hr['DistanceFromHome'], ax = ax[0,2])
         sns.kdeplot(hr['YearsInCurrentRole'], ax = ax[1,0])
         sns.kdeplot(hr['TotalWorkingYears'], ax = ax[1,1])
         sns.kdeplot(hr['YearsAtCompany'], ax = ax[1,2])
         plt.show()
```

Distribution of various factors

Only Age is showing the normal distribution in the data, all other variables not showing the normal distribution

Checking the distribution of various factors

```
In [30]: fig,ax = plt.subplots(2,3, figsize=(20,20))
    plt.suptitle("Distribution of various factors", fontsize=20)
    sns.countplot(hr['Attrition'], ax = ax[0,0])
    sns.countplot(hr['BusinessTravel'], ax = ax[0,1])
    sns.countplot(hr['Department'], ax = ax[0,2])
    sns.countplot(hr['EducationField'], ax = ax[1,0])
    sns.countplot(hr['Gender'], ax = ax[1,1])
    sns.countplot(hr['OverTime'], ax = ax[1,2])
    plt.xticks(rotation=20)
    plt.subplots_adjust(bottom=0.4)
    plt.show()
```

Distribution of various factors

In the data we have, Attrition data is not distributed equally in this dataset. So this dataset is unbalanced data set.

Checking gender wise distribution

```
In [31]: fig,ax = plt.subplots(2,3, figsize=(20,20))
    plt.suptitle("Distribution of various factors", fontsize=20)
    sns.barplot(hr['Gender'],hr['DistanceFromHome'],hue = hr['Attrition'], ax = ax
    [0,0]);
    sns.barplot(hr['Gender'],hr['YearsAtCompany'],hue = hr['Attrition'], ax = ax[0,1]);
    sns.barplot(hr['Gender'],hr['TotalWorkingYears'],hue = hr['Attrition'], ax = ax[0,2]);
    sns.barplot(hr['Gender'],hr['YearsInCurrentRole'],hue = hr['Attrition'], ax = ax[1,0]);
    sns.barplot(hr['Gender'],hr['YearsSinceLastPromotion'],hue = hr['Attrition'], ax = ax[1,1]);
    sns.barplot(hr['Gender'],hr['NumCompaniesWorked'],hue = hr['Attrition'], ax = ax[1,2]);
    plt.show()
```

Distribution of various factors

Ploting a correlation map for all numeric variables

```
In [32]: f,ax = plt.subplots(figsize=(18, 18))
    sns.heatmap(hr.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
    plt.show()
```


Converting Yes / No values in Attrition column to 1 / 0

```
In [34]: cleanup_nums = {"Attrition": {"Yes": 1, "No": 0}}
```

In [35]: hr.replace(cleanup nums, inplace=True) hr.head()

Out[35]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
0	41	1	Travel_Rarely	1102	Sales	1	2
1	49	0	Travel_Frequently	279	Research & Development	8	1
2	37	1	Travel_Rarely	1373	Research & Development	2	2
3	33	0	Travel_Frequently	1392	Research & Development	3	4
4	27	0	Travel_Rarely	591	Research & Development	2	1

5 rows × 32 columns

Splitting to training and testing data

from sklearn.cross validation import train test split In [36]: import random

> C:\ProgramData\Anaconda3\lib\site-packages\sklearn\cross validation.py:41: De precationWarning: This module was deprecated in version 0.18 in favor of the model selection module into which all the refactored classes and functions ar e moved. Also note that the interface of the new CV iterators are different f rom that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

In [38]: np.random.seed(1010) train,test = train test split(hr, test size = 0.3)

Checking distribution of Attribution in each group

In [39]: hr.Attrition.value_counts()

Out[39]: 0 2466 474

Name: Attrition, dtype: int64

In [14]: 474/(2466+474)

Out[14]: 0.16122448979591836

Split of attribution is approxsame for both train and test data

Spliting target variable y_train and y_test and independent variables X1 and X2 variables

```
In [45]: X1 = train[['Age', 'BusinessTravel', 'DailyRate', 'Department',
                'DistanceFromHome', 'Education', 'EducationField',
                 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
                 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
                'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'OverTime',
                'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
                'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                 'YearsSinceLastPromotion', 'YearsWithCurrManager']]
         X2 = test[['Age', 'BusinessTravel', 'DailyRate', 'Department',
                'DistanceFromHome', 'Education', 'EducationField',
                'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
                'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
                'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'OverTime',
                'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
                'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                 'YearsSinceLastPromotion', 'YearsWithCurrManager']]
In [46]: y_train = train["Attrition"]
         y test = test["Attrition"]
```

Categorical Variable to Numerical Variables

```
In [47]: X train = pd.get dummies(X1)
         X test = pd.get dummies(X2)
         X train.columns
Out[47]: Index(['Age', 'DailyRate', 'DistanceFromHome', 'Education',
                 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
                 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorke
         d',
                 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
                'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                'YearsSinceLastPromotion', 'YearsWithCurrManager',
                'BusinessTravel_Non-Travel', 'BusinessTravel_Travel_Frequently',
                'BusinessTravel_Travel_Rarely', 'Department_Human Resources',
                'Department_Research & Development', 'Department_Sales',
                'EducationField_Human Resources', 'EducationField_Life Sciences',
                 'EducationField_Marketing', 'EducationField_Medical',
                'EducationField Other', 'EducationField Technical Degree',
                'Gender_Female', 'Gender_Male', 'JobRole_Healthcare Representative',
                'JobRole_Human Resources', 'JobRole_Laboratory Technician',
                'JobRole_Manager', 'JobRole_Manufacturing Director',
                'JobRole_Research Director', 'JobRole_Research Scientist',
                'JobRole_Sales Executive', 'JobRole_Sales Representative',
                'MaritalStatus_Divorced', 'MaritalStatus_Married',
                 'MaritalStatus_Single', 'OverTime_No', 'OverTime_Yes'],
               dtype='object')
```

Applying Random Forest for the above data

Scaling the data

```
In [52]: pred y train = model.predict(X train)
         pred_y_train
Out[52]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
```

Let us see the classification accuracy of our model

```
In [54]: | from sklearn.metrics import accuracy_score
         score = accuracy_score(y_train, pred_y_train)
         score
```

Out[54]: 0.9941690962099126

AUC

```
In [55]: from sklearn.metrics import roc_curve
         from sklearn.metrics import auc,confusion matrix
         y_train_prob = model.predict_proba(X_train)
         fpr, tpr, thresholds = roc curve(y train, y train prob[:,1])
         auc(fpr, tpr)
```

Out[55]: 0.9999296969216265

Checking for Test data

```
In [56]:
         pred_y_test = model.predict(X_test)
         pred_y_test
         ## Let us see the classification accuracy of our model
         score_test = accuracy_score(y_test, pred_y_test)
         score_test
```

Out[56]: 0.9319727891156463

```
In [57]: y test prob = model.predict proba(X test)
         fpr, tpr, thresholds = roc_curve(y_test, y_test_prob[:,1])
         auc(fpr, tpr)
```

Out[57]: 0.9500377157563118

```
In [58]: | from sklearn import model_selection
         scores = model_selection.cross_val_score(model, X_train, y_train, cv = 10, sco
         ring='roc auc')
         scores.mean()
```

Out[58]: 0.9422174385315734

In [59]: scores.std()

Out[59]: 0.020981436334551497

So by cross validation we get the correct AUC of the model, that is 94.26% is the correct AUC with standard deviation of 0.020. For test data and model selection through cross validation is almost same, but auc for training data is high. so the model is overfitted.

Checking important variables and arranging in the descending order

```
In [61]:
         import pandas as pd
         feature imp = pd.Series(model.feature importances ,index= ['Age', 'DailyRate',
          'DistanceFromHome', 'Education',
                 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
                 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked'
                 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
                 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                 'YearsSinceLastPromotion', 'YearsWithCurrManager',
                 'BusinessTravel_Non-Travel', 'BusinessTravel_Travel_Frequently',
                 'BusinessTravel_Travel_Rarely', 'Department_Human Resources',
                 'Department_Research & Development', 'Department_Sales',
                 'EducationField_Human Resources', 'EducationField_Life Sciences',
                 'EducationField Marketing', 'EducationField Medical',
                 'EducationField_Other', 'EducationField_Technical Degree',
                 'Gender_Female', 'Gender_Male', 'JobRole_Healthcare Representative',
                 'JobRole_Human Resources', 'JobRole_Laboratory Technician',
                 'JobRole_Manager', 'JobRole_Manufacturing Director',
                 'JobRole_Research Director', 'JobRole_Research Scientist',
                'JobRole_Sales Executive', 'JobRole_Sales Representative',
                 'MaritalStatus_Divorced', 'MaritalStatus_Married',
                 'MaritalStatus_Single', 'OverTime_No', 'OverTime_Yes'] ).sort_values(as
         cending=False)
         feature imp
```

Out[61]:		0.082483
	Age	0.064031
	DailyRate	0.052367
	DistanceFromHome	0.048545
	HourlyRate	0.046515
	TotalWorkingYears	0.041863
	NumCompaniesWorked	0.041041
	YearsAtCompany	0.038896
	OverTime_Yes	0.035306
	MonthlyRate	0.034621
	EnvironmentSatisfaction	0.032266
	YearsSinceLastPromotion	0.031774
	YearsWithCurrManager	0.030587
	WorkLifeBalance	0.030251
	StockOptionLevel	0.029649
	PercentSalaryHike	0.029339
	YearsInCurrentRole	0.028878
	TrainingTimesLastYear	0.024228
	JobSatisfaction	0.024214
	RelationshipSatisfaction	0.022147
	JobInvolvement	0.021971
	MaritalStatus_Single	0.017762
	Education	0.016408
	JobLevel	0.015559
	BusinessTravel_Travel_Frequently	0.014292
	OverTime_No	0.013723
	EducationField_Medical	0.010010
	JobRole_Sales Representative	0.009031
	Gender_Male	0.008289
	JobRole_Laboratory Technician	0.008053
	EducationField_Marketing	0.007692
	BusinessTravel_Travel_Rarely	0.007366
	Department_Sales	0.006842
	Gender_Female	0.006837
	<pre>Department_Research & Development</pre>	0.006449
	EducationField_Life Sciences	0.006368
	EducationField_Technical Degree	0.005867
	MaritalStatus_Married	0.005426
	JobRole_Research Scientist	0.005175
	BusinessTravel Non-Travel	0.005132
	EducationField_Other	0.004881
	MaritalStatus_Divorced	0.004880
	JobRole_Sales Executive	0.004716
	PerformanceRating	0.004259
	JobRole_Manufacturing Director	0.002619
	Department_Human Resources	0.002533
	EducationField_Human Resources	0.002338
	JobRole_Healthcare Representative	0.002277
	JobRole_Research Director	0.002218
	JobRole_Human Resources	0.001650
	JobRole_Manager	0.000375
	dtype: float64	2.300073
	,	

In [62]: import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # Creating a bar plot feature_imp=feature_imp[0:10,] sns.barplot(x=feature_imp, y=feature_imp.index) # Add labels to your graph plt.xlabel('Feature Importance Score of given variable') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show()

No handles with labels found to put in legend.

Here most important variable is MonthlyIncome followed by Age and Daily rate

Parameter Tuning for the Random forest model

In [63]: import time from sklearn.grid_search import GridSearchCV

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\grid_search.py:42: Depreca tionWarning: This module was deprecated in version 0.18 in favor of the model _selection module into which all the refactored classes and functions are mov ed. This module will be removed in 0.20.

DeprecationWarning)

```
In [64]: np.random.seed(42)
         start = time.time()
         param dist = {
                        'n_estimators':np.arange(10,20),
                        'max_depth': [2, 3, 4],
                        'bootstrap': [True, False],
                        'max_features': ['auto', 'sqrt', 'log2', None],
                        'criterion': ['gini', 'entropy']}
         cv_rf = GridSearchCV(model, cv = 10,
                               param_grid=param_dist,
                               n jobs = 3
         cv_rf.fit(X_train, y_train)
         print('Best Parameters using grid search: \n',
               cv_rf.best_params_)
         end = time.time()
         print('Time taken in grid search: {0: .2f}'.format(end - start))
         Best Parameters using grid search:
          {'bootstrap': True, 'criterion': 'gini', 'max_depth': 4, 'max_features': Non
         e, 'n estimators': 19}
         Time taken in grid search: 236.21
In [65]: classifier = cv_rf.best_estimator_
         classifier.fit(X_train,y_train)
Out[65]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=4, max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min weight fraction leaf=0.0, n estimators=19, n jobs=1,
                     oob_score=False, random_state=None, verbose=0,
                     warm_start=False)
```

AUC

```
In [66]: y train prob = classifier.predict proba(X train)
         fpr, tpr, thresholds = roc_curve(y_train, y_train_prob[:,1])
         auc d = auc(fpr, tpr)
         auc_d
Out[66]: 0.8709199428201629
In [67]: y test prob = classifier.predict proba(X test)
         fpr, tpr, thresholds = roc_curve(y_test, y_test_prob[:,1])
         auc_h = auc(fpr, tpr)
         auc_h
Out[67]: 0.8300927363890491
```

Now the model seems more good. AUC for both data is almost same with 4% difference between train dataset and test dataset.

```
In [69]: Prediction = classifier.predict_proba(X_train)
    train["prob_score"] = Prediction[:,1]

    C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWi
    thCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
    able/indexing.html#indexing-view-versus-copy
```

scoring and rank ordering

decile code

```
In [71]:
          def deciles(x):
               decile = pd.Series(index=[0,1,2,3,4,5,6,7,8,9])
               for i in np.arange(0.1,1.1,0.1):
                    decile[int(i*10)]=x.quantile(i)
               def z(x):
                    if x<decile[1]: return(1)</pre>
                    elif x<decile[2]: return(2)</pre>
                    elif x<decile[3]: return(3)</pre>
                    elif x<decile[4]: return(4)</pre>
                    elif x<decile[5]: return(5)</pre>
                    elif x<decile[6]: return(6)</pre>
                    elif x<decile[7]: return(7)</pre>
                    elif x<decile[8]: return(8)</pre>
                    elif x<decile[9]: return(9)</pre>
                    elif x<=decile[10]: return(10)</pre>
                    else:return(np.NaN)
               s=x.map(z)
               return(s)
```

```
In [72]:
         def Rank_Ordering(X,y,Target):
             X['decile']=deciles(X[y])
             Rank=X.groupby('decile').apply(lambda x: pd.Series([
                 np.min(x[y]),
                 np.max(x[y]),
                 np.mean(x[y]),
                 np.size(x[y]),
                 np.sum(x[Target]),
                 np.size(x[Target][x[Target]==0]),
                  index=(["min_resp","max_resp","avg_resp",
                          "cnt","cnt_resp","cnt_non_resp"])
                  )).reset_index()
             Rank = Rank.sort values(by='decile',ascending=False)
             Rank["rrate"] = Rank["cnt resp"]*100/Rank["cnt"]
             Rank["cum_resp"] = np.cumsum(Rank["cnt_resp"])
             Rank["cum_non_resp"] = np.cumsum(Rank["cnt_non_resp"])
             Rank["cum_resp_pct"] = Rank["cum_resp"]/np.sum(Rank["cnt_resp"])
             Rank["cum_non_resp_pct"]=Rank["cum_non_resp"]/np.sum(Rank["cnt_non_resp"])
             Rank["KS"] = Rank["cum resp pct"] - Rank["cum non resp pct"]
             Rank
             return(Rank)
```

Rank ordering for train data

In [74]: Rank = Rank_Ordering(train, "prob_score", "Attrition")
 Rank

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Out[74]:

	decile	min_resp	max_resp	avg_resp	cnt	cnt_resp	cnt_non_resp	rrate	cun
9	10	0.297405	0.950011	0.522539	206.0	161.0	45.0	78.155340	161.
8	9	0.191513	0.295821	0.232902	207.0	63.0	144.0	30.434783	224.
7	8	0.145209	0.190643	0.166641	205.0	32.0	173.0	15.609756	256.
6	7	0.118834	0.145195	0.132132	205.0	21.0	184.0	10.243902	277.
5	6	0.101833	0.118789	0.109218	206.0	8.0	198.0	3.883495	285.
4	5	0.092359	0.101824	0.096665	206.0	8.0	198.0	3.883495	293.
3	4	0.078050	0.092211	0.087245	206.0	8.0	198.0	3.883495	301.
2	3	0.059630	0.078050	0.067872	211.0	6.0	205.0	2.843602	307.
1	2	0.054601	0.059538	0.056443	203.0	5.0	198.0	2.463054	312.
0	1	0.047246	0.054419	0.050603	203.0	7.0	196.0	3.448276	319.
4		_							•

Response rate in top deciles is 80.25% and Highest ks value 59.94%. This looks bit overfitting.

Rank ordering for test data

```
In [75]:
         Prediction h = classifier.predict proba(X test)
         test["prob_score"] = Prediction_h[:,1]
         Rank h = Rank Ordering(test,"prob score","Attrition")
         Rank h
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.py:2: SettingWi thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st able/indexing.html#indexing-view-versus-copy

Out[75]:

	decile	min_resp	max_resp	avg_resp	cnt	cnt_resp	cnt_non_resp	rrate	cum_	
9	10	0.301090	0.936781	0.507944	89.0	64.0	25.0	71.910112	64.0	
8	9	0.184474	0.300052	0.224480	88.0	28.0	60.0	31.818182	92.0	
7	8	0.148623	0.183026	0.165121	89.0	18.0	71.0	20.224719	110.0	
6	7	0.123403	0.147540	0.135241	87.0	13.0	74.0	14.942529	123.0	
5	6	0.103882	0.123064	0.111437	92.0	15.0	77.0	16.304348	138.0	
4	5	0.095047	0.103834	0.099146	84.0	4.0	80.0	4.761905	142.0	
3	4	0.085524	0.094750	0.090676	89.0	3.0	86.0	3.370787	145.0	
2	3	0.061764	0.085384	0.070817	87.0	1.0	86.0	1.149425	146.0	
1	2	0.054601	0.061516	0.057357	92.0	6.0	86.0	6.521739	152.0	
0	1	0.049909	0.054419	0.050659	85.0	3.0	82.0	3.529412	155.0	
4										

Here on testing the model on test data we are getting KS value of 49.50% and response rate of 70.22% in the top decile. This looks very good but compared to the training data this is less. The model looks bit over fitted.

Here the employees who all comes in the 10th,9th and 8th decile are most likely to leave the company. Let's assume that training of new employee costs 1000 dollar and since we know which employee is likely to leave next month, and propose him/her a bonus program worth 500 to keep him for next 6 months, we are 500 dollar to keep him for next 6 months, we are 500 dollar on plus and keep experienced, well-trained employee under the hood, with higher morale. So better to take care of these employees and company should be prepared to find substitution for those. Also to find the better experienced resource company will get time to search better alternative resource.