Ejercicios

Polinomios

Curso Álgebra Lineal

Pregunta 1

¿Son las siguientes expresiones algebraicas polinomios en $\mathbb{R}[x]$? En caso afirmativo, ¿qué grado tienen?

- 1+x+x²+x³+x⁴+···+x² Es un polinomio de grado n.
 1+ ½ + x² + ½ no es un polinomio ya que algunos términos tienen exponente negativo.
 1-x² no es un polinomio ya que algunos términos tienen exponente negativo.
- $\sqrt{x} + 3$ no es un polinomio ya que algunos términos no tienen como exponente un natural.
- $(x+1)^2$ representa un polinomio de grado 2. $x+x^5+x^{10001}$ es un polinomio de grado 10001.

Pregunta 2

Hallar α y β para que $x^5 - \alpha x + \beta$ sea divisible entre $x^2 - 4$.

Figure 1: unchanged image

$$-\alpha x + \beta = -16x + k(x^2 - 4)^z$$
 donde $k \in \mathbb{N}$ y $z \in \mathbb{N} - \{0\}$

Pregunta 3

Hallar α y β para que $x^3 - \alpha x^2 + \beta x + 3$ sea divisible entre $x^2 + x + 1$

$$-\alpha x^2 + \beta x + 4 - k(x^2 - 4)^z = 0$$
donde $k \in \mathbb{N}$ y $z \in \mathbb{N} - \{0\}$

Pregunta 4

Encontrar el valor de α para que al dividir $2x^3 - 2x^2 - \alpha x + 4$ entre x - 2 dé resto 2

 $-\alpha x + 12 - k(x-2)^z = 2$ donde $k \in \mathbb{N}$ y $z \in \mathbb{N} - \{0\}$

$$-\alpha x + 12 - k(x - 2)^z = 2$$

$$\alpha = \frac{2 - 12 + k(x - 2)^z}{x} = \frac{-10 + k(x - 2)^z}{x}$$

Pregunta 5

Determinar el valor de α para que $2x^3-2x^2-\alpha x+4$ admita x=2 como una de sus raíces

Para que admita x=2 como una raíz $2x^3-2x^2-\alpha x+4$ debe de ser divisible entre x-2. Haciendo el mismo ejercicio 4 pero igualando a 0.

$$-\alpha x + 12 - k(x-2)^z = 0$$
donde $k \in \mathbb{N}$ y $z \in \mathbb{N} - \{0\}$

$$\alpha = \frac{0 - 12 + k(x - 2)^z}{x} = \frac{-12 + k(x - 2)^z}{x}$$

Pregunta 6

Dados los polinomios

$$p(x) = x^4 - 6x + 1$$
 $q(x) = 3x^3 - 5x$ $r(x) = x^4 - x^2 + 2$

```
p = "x ^ 4 - 6 * x + 1"

q = '3 * x ^ 3 - 5 * x'

r = 'x ^ 4 - x ^ 2 + 2'
```

Realizar las siguientes operaciones

•
$$p(x) + 3q(x) + r(x)$$

result = paste(p, '+3*(', q, ')+', r)

x = result %>% y_fn("Simplify") %>% y_fn("TeXForm") %>% yac_str()

$$p(x) + 3q(x) + r(x) = 2x^4 + 9x^3 - x^2 - 21x + 3$$

•
$$p(x) - [q(x) + 5r(x)]$$

result = paste('(', p, ') - ((', q, ') + 5 * (', r, '))')

x = result %>% y_fn("Simplify") %>% y_fn("TeXForm") %>% yac_str()

$$p(x) - [q(x) + 5r(x)] = -4x^4 - 3x^3 + 5x^2 - x - 9$$
• $p(x) + q(x) * r(x)$
result = paste('(', p, ') + (', q, ') * (', r, ')')
$$x = \text{result \%}\% \text{ y_fn("Simplify") \%}\% \text{ y_fn("TeXForm") \%}\% \text{ yac_str()}$$

$$p(x) + q(x) * r(x) = 3x^7 - 8x^5 + x^4 + 11x^3 - 16x + 1$$
• $[4p(x) + q(x)] * r(x)$

result = paste('(4 * (', p, ') + (', q, ')) * (', r, ')')

x = result %>% y_fn("Simplify") %>% y_fn("TeXForm") %>% yac_str()

$$[4p(x) + q(x)] \cdot r(x) = 4x^8 + 3x^7 - 4x^6 - 32x^5 + 12x^4 + 35x^3 - 4x^2 - 58x + 8$$

$$\bullet \frac{p(x)}{q(x)} - r(x)$$

$$\mathsf{result} = \mathsf{paste}('((', p, ') / (', q, ')) - (', r, ')')$$

$$\mathsf{x} = \mathsf{result} \ \% \ \mathsf{y_fn}("\mathsf{Simplify}") \ \% \ \mathsf{y_fn}("\mathsf{TeXForm}") \ \% \ \mathsf{yac_str}()$$

$$\frac{p(x)}{q(x)} - r(x) = \frac{3x^7 - 8x^5 - x^4 + 11x^3 - 4x - 1}{(-3x^2 + 5)x}$$

• $\frac{p(x)}{r(x)} \cdot 2q(x)$

$$\frac{p(x)}{r(x)} \cdot 2q(x) = \frac{x\left(3x^6 - 5x^4 - 18x^3 + 3x^2 + 30x - 5\right)}{2\left(x^4 - x^2 + 2\right)}$$

Finalmente, en cada uno de los polinomios resultantes, evaluar en 0, -2 y 2

Pregunta 7

Dividir

•
$$x^7 - x^5 + x^2 - 3$$
 entre $x^4 + x^3 + x^2 + x$
result = "(x^7-x^5+x^2-3) / (x^4+x^3+x^2+x)"
x = result %% y_fn("Simplify") %% y_fn("TeXForm") %% yac_str()

$$\frac{x^7 - x^5 + x^2 - 3}{x^4 + x^3 + x^2 + x} = \frac{x^7 - x^5 + x^2 - 3}{(x^3 + x^2 + x + 1)x}$$
• $x^8 + x^7 - 3x^6 + x^5 + 2x^4 + -3x^3 + x^2 - x - 10$ entre $x^4 + x^3 - x^2 + x + 1$

result = "(x^8+x^7-3*x^6+x^5+2*x^4+-3*x^3+x^2-x-10)/(x^4+x^3-x^2+x+1)"

x = result %>% y_fn("Simplify") %>% y_fn("TeXForm") %>% yac_str()

$$\frac{x^8 + x^7 - 3x^6 + x^5 + 2x^4 + -3x^3 + x^2 - x - 10}{x^4 + x^3 - x^2 + x + 1} = \frac{x^8 + x^7 - 3x^6 + x^5 + 2x^4 - 3x^3 + x^2 - x - 10}{x^4 + x^3 - x^2 + x + 1}$$

$$-x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \text{ entre } x + 1$$

$$\text{result} = \text{"(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/(x+1)"}$$

$$x = \text{result } \%\% \text{ y_fn("Simplify") } \%\% \text{ y_fn("TeXForm") } \%\% \text{ yac_str()}$$

$$\frac{x^6 - x^5 + x^4 - x^3 + x^2 - x + 1}{x + 1} = \frac{x^6 - x^5 + x^4 - x^3 + x^2 - x + 1}{x + 1}$$

Finalmente, en cada uno de los polinomios resultantes, evaluar en 1, 2 y 3