Implementation: DBSCAN

Alysia Halverson, Daniel Stein, Han Luong, Mikhaela Anderson/

- Palmer Penguins (Kmeans Exercise)
 - Characteristics for three species of penguins (source) totaling 344 penguins
 - Importance of domain knowledge

penguins.head()										
	Region	Stage	Individual ID	Culmen Length (mm)	Culmen Depth (mm)	Flipper Length (mm)	Body Mass (g)	Delta 15 N (o/oo)	Delta 13 C (o/oo)	Comments
0	Anvers	Adult, 1 Egg Stage	N1A1	39.1	18.7	181.0	3750.0	NaN	NaN	Not enough blood for isotopes.
1	Anvers	Adult, 1 Egg Stage	N1A2	39.5	17.4	186.0	3800.0	8.94956	-24.69454	NaN
2	Anvers	Adult, 1 Egg Stage	N2A1	40.3	18.0	195.0	3250.0	8.36821	-25.33302	NaN
3	Anvers	Adult, 1 Egg Stage	N2A2	NaN	NaN	NaN	NaN	NaN	NaN	Adult not sampled.
4	Anvers	Adult, 1 Egg Stage	N3A1	36.7	19.3	193.0	3450.0	8.76651	-25.32426	NaN

```
#renaming the columns so to N
penguins.rename(columns={'Indiv
#removing all categorical columns. Thi
penguins.drop(['Region', 'Stage', 'Indivi
#there are two rows in the dataset that
penguins.dropna(axis=0, thresh=4, inpla
#for the remaining NAs, it seems reaso
impute mean = SimpleImputer(strategy=
penguins2 = pd.DataFrame(impute meam
```

penguins2.columns = penguins.col

penguins=penguins2

```
Data Cleaning
```


DBSCAN Pre-Optimization


```
db = DBSCAN(eps=.8,min_samples=12).fit(z_penguins)
plt.scatter(z_penguins['CulmenDepth'],z_penguins['CulmenLength'], c=db.labels_)
```

Optimization

Domain Knowledge

Hyperparameter tuning

Hyperparameter Tuning

Epsilon

```
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(z penguins)
distances, indices = nbrs.kneighbors(z_penguins)
distances = np.sort(distances, axis=0)
distances = distances[:,1]
plt.figure(figsize=(10,5))
plt.plot(distances)
plt.title('K-distance Graph', fontsize=20)
plt.xlabel('Data Points sorted by distance', fontsize=14)
plt.ylabel('Epsilon',fontsize=14)
plt.show()
                                K-distance Graph
   1.6
   1.4
   1.2
   0.4
                             Data Points sorted by distance
```

Min_samples

```
silhouettes = []
for mins in range(1,31):
    dbscan = DBSCAN(eps=1,min samples=mins).fit(z penguins)
    labels = dbscan.labels
    silhouettes.append(metrics.silhouette score(z penguins, labels))
mins = range(1,31)
plt.figure(figsize=(10,5))
plt.scatter(x=mins, y=silhouettes)
plt.xlabel('minPts')
plt.ylabel('Silhouette Score')
Text(0, 0.5, 'Silhouette Score')
Silhouette Score
   -0.1
```

DBSCAN In Review

- Our most successful DBScan model came about using a K-Distance graph for the Epsilon Hyperparameter, and a combination of silhouette scores and for-loop-outlier-testing for the min_samples value.
- We attempted dimension reducing techniques to find better hyper-parameters but they produced weaker models

Accuracy Scores

K-means (.976)

```
kmeans = KMeans(n_clusters=3, random_state=0)
kclusters = kmeans.fit_predict(X)
print(accuracy_score(kclusters, y))
```

0.9757575757575757

DBSCAN (.336)

```
dbscan = DBSCAN(eps=1,min_samples=8).fit(X)
df_result = dbscan.labels_
# df_result = pd.DataFrame(dbscan.labels_)
print(accuracy_score(df_result, y))
```

0.33636363636363636

DBSCAN PCA (.327)

```
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)
X_reduced = pd.DataFrame(X_reduced)

dbscan=DBSCAN(eps=.37, min_samples=9).fit(X_reduced)
df_result = dbscan.labels_
# df_result = pd.DataFrame(dbscan.labels_)
print(accuracy_score(df_result, y))

0.3272727272727272727
```

K-means Comparison: Clusters Verification

- We used K-means to graph the inertia to verify the ideal number of clusters
- We found that it was able to recognize the separation between the 3 species of penguins as ideal

K-means Model

```
K-means with 3 clusters as indicated on elbow graph

kmeans = KMeans(n_clusters=3, max_iter=300, random_state=0)

y_kmeans = kmeans.fit_predict(z_penguins)

print(pd.DataFrame(y_kmeans).value_counts())

for i in penguins.columns[:4]:
    y="Delta13C"
    penguins.plot(kind="scatter",x=i, y=y,c=y_kmeans);
    plt.scatter(penguins[i], penguins[y], c=y_kmeans);

0 143
1 123
2 76
dtype: int64
```


Model Comparison

DBSCAN Model

K-means Model

Final Thoughts

• We agreed that this algorithm is not the best for our dataset. DBSCAN is density based, and our theory is that the penguins' species information is too closely similar for this algorithm to effectively determine the differences. Because K-means is centroid based, it's better at determining data in hypersphere shapes.

Citation

- Back to Machine Learning Basics Clustering (2020). https://rubikscode.net/2020/10/05/back-to-machine-learning-basics-clustering/
- Palmer Penguins https://www.kaggle.com/datasets/malanep/palmer-penguine/code?resource=download