Math 523 HW 4

Morgan Gribbins

Section 2.1

Use the rules for differentiation to find the derivatives of (2) and (4).

(2) $z^2 + 10z$

$$(z^{2}+10z)' = \lim_{h \to 0} \frac{(z+h)^{2} + 10(z+h) - z^{2} - 10z}{h} = \lim_{h \to 0} \frac{z^{2} + 2zh + h^{2} + 10z + 10h - z^{2} - 10z}{h}$$
$$= \lim_{h \to 0} \frac{2zh + h^{2} + 10h}{h} = \lim_{h \to 0} 2z + h + 10 = 2z + 10.$$

(4) $[\cos(z^2)]^3$

Note that

$$[\cos(z^2)]^3 = \frac{1}{8} \left(e^{iz^2} + e^{-iz^2} \right)^3,$$

SO

$$\left\{ [\cos(z^2)]^3 \right\}' = \left\{ \frac{1}{8} \left(e^{iz^2} + e^{-iz^2} \right)^3 \right\}'$$

$$\implies \left\{ [\cos(z^2)]^3 \right\}' = \frac{3}{8} \left(e^{iz^2} + e^{-iz^2} \right)^2 \times \left(2zie^{iz^2} - 2zie^{-iz^2} \right)$$

$$\implies \left\{ [\cos(z^2)]^3 \right\}' = \frac{3zi}{4} \times 4[\cos(z^2)]^2 \times 2i\sin(z^2)$$

$$\implies \left\{ [\cos(z^2)]^3 \right\}' = -6z\cos^2(z^2)\sin(z^2).$$

For each function f listed in Exercises (8) and (10), find an analytic function F with F'=f.

(8)
$$f(z) = z - 2$$

$$F(z) = \frac{1}{2}z^2 - 2z$$
 is analytic with $F' = f$.

(10) $f(z) = \sin z \cos z$

 $F(z) = \frac{1}{2} (\sin z)^2$ is analytic with F' = f.

(14) Let $P(z) = A(z - z_1)...(z - z_n)$, where A and $z_1,...z_n$ are complex numbers and $A \neq 0$. Show that

$$\frac{P'(z)}{P(z)} = \sum_{j=1}^{n} \frac{1}{z - z_j}, \ z \neq z_1, ..., z_n.$$

(16) Find the derivative of the linear fractional transformation T(z) = (az+b)/(cz+d), $ad \neq bc$. In what way does the condition $ad - bc \neq 0$ enter? Conclude that T'(z) is never zero, $z \neq -d/c$.

$$T'(z) = \left(\frac{az+b}{cz+d}\right)' = \lim_{h \to 0} \frac{\frac{a(z+h)+b}{c(z+h)+d} - \frac{az+b}{cz+d}}{h} = \lim_{h \to 0} \frac{\frac{az+ah+b}{cz+ch+d} - \frac{az+b}{cz+d}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{(az+ah+b)(cz+d)-(az+b)(cz+ch+d)}{(cz+ch+d)(cz+d)}}{h} = \lim_{h \to 0} \frac{\frac{(acz^2+aczh+bcz+adz+adh+bd)-(acz^2+aczh+adz+bcz+bch+bd)}{(cz+ch+d)(cz+d)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{adh-bch}{(cz+ch+d)(cz+d)}}{h} = \lim_{h \to 0} \frac{ad-bc}{(cz+ch+d)(cz+d)} = \frac{ad-bc}{(cz+ch+d)(cz+d)}.$$
The condition $ad-bc \neq 0$ enters when taking the limit as $h \to 0$ —if $ad-bc = 0$, then therefore

The condition $ad - bc \neq 0$ enters when taking the limit as $h \to 0$ —if ad - bc = 0, then there would be additional h in the denominator of the limit, and the limit would not converge. Therefore, T'(z) can never be zero, and $z \neq -d/c$, as that would cause T'(z) to not converge to a limit.

(18) Show that $h(z) = \bar{z}$ is not analytic on any domain. (Hint: check the Cauchy-Riemann equations.)

If $h(z) = \bar{z}$, where h(z) = u(x,y) + iv(x,y) were analytic, we would have $u_x = v_y$ and $u_y = -v_x$. We also have h(z) = x - iy, so $u_x = 1 \neq v_y$, as $v_y = -1$. Therefore, $h(z) = \bar{z}$ cannot be analytic.

(20) Let f = u + iv be analytic. In each of the following, find v given u.

(20a)
$$u = x^2 - y^2$$

 $u_x = 2x$, $u_y = -2y$, so $v_y = 2x$, $v_x = 2y$. Therefore, v = 2xy.

(20b)
$$u = \frac{x}{x^2 + y^2}$$

Section 2.2

In exercises (2) and (4), use Theorem 2 or Example 4 to find the radius of convergence of the following power series.

(2)
$$\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} (z-2)^k$$

(4)
$$\sum_{k=0}^{\infty} (-1)^k z^{2k}$$

In exercises (8) and (10), find the power series about the origin for the given function. (8) $z^2\cos z$

(10)
$$\frac{1+z}{1-z}$$
, $|z| < 1$

In exercises (14), (16), and (18), find a "closed form" (that is, a simple expression) for each of the given power series.

(14)
$$\sum_{n=0}^{\infty} \frac{z^{2n}}{n!}$$

(16)
$$\sum_{n=1}^{\infty} n(z-1)^{n-1}$$

(18)
$$\sum_{n=2}^{\infty} n(n-1)z^n$$

(22)

(22a) If $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ has radius of convergence R > 0 and if f(z) = 0 for all $z, |z-z_0| < r \le R$, show that $a_0 = a_1 = \dots = 0$.

(22b) If $F(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ and $G(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ are equal on some disc $|z-z_0| < r$, show that $a_n = b_n$ for all n.