### Q.1 What is Cloud Computing?

[SPPU: Dec.-22, Marks 3]

#### **Answer:**

- Cloud computing is using internet-based services to store and access data, programs, and servers instead of keeping them on your personal computer or company server.
- It allows you to use IT services like servers, storage, databases, networking, and software directly from the internet this "internet" is called the **cloud**.
- It helps developers and companies quickly access computing resources without buying hardware.
- It reduces the cost of building and running infrastructure, and you can increase or decrease the usage as per your needs.

### **Easy Points to Remember:**

- Cloud = Internet-based services
- No need to buy hardware
- Access from anywhere
- Save money and time

## **Q.2** What are the Benefits of Cloud Computing?

[SPPU: Dec.-22, Marks 3]

#### **Answer:**

#### 1. Cost:

You only pay for what you use. No need to buy expensive servers or storage devices.

#### 2. Performance Speed:

Cloud providers offer fast servers, so your apps and websites work quickly.

### 3. Productivity:

Your team can focus on coding and developing instead of setting up hardware.

#### 4. Reliability:

Your data is backed up and stored safely. If one server fails, your work won't stop.

#### 5. Security:

Cloud companies offer high-level security to protect your data.

#### 6. Global Scale:

You can use cloud services from anywhere in the world, and they grow as your project grows.

### Easy Points to Remember:

- Saves money
- Fast performance
- Safe and secure
- Accessible globally
- Reliable and easy to use

Let me know if you'd like the next answers (Q3 onward) in the same style.



You said:

yes

ChatGPT said:

Perfect! Let's continue with the same easy and long explanation format for the next questions:



### **Q.3** What are the types of Cloud Computing?

[SPPU: Dec.-22, Marks 3]

#### **Answer:**

Cloud computing is divided into different types based on the services it provides. These are:

#### 1. IaaS (Infrastructure as a Service):

- Provides virtual machines, storage, networks, etc.
- You manage your software and applications, and the provider manages hardware.
- Example: AWS EC2, Google Compute Engine
- Easy: Like renting a computer to install your own OS and software.

#### **PaaS** (Platform as a Service):

- Provides a platform to develop and deploy your apps without managing servers.
- You just write your code; the cloud takes care of everything else.
- Example: Google App Engine, AWS Elastic Beanstalk
- Easy: Like using a ready-to-use stage to perform your act (app).

#### 3. SaaS (Software as a Service):

- Software is hosted on the cloud and accessed by users via the internet.
- You don't install anything. Just log in and use.
- Example: Gmail, Microsoft 365
- Easy: Like using an app in a browser.

### 4. Serverless Computing:

- You write functions and code; the cloud runs and scales it automatically.
- No need to manage servers at all.
- Example: AWS Lambda
- Easy: You write the code, and the cloud runs it for you when needed.

# **Q.4** What is AWS Cloud? List Different Services Provided by It.

[SPPU: June-22, Dec.-22, Marks 6]

#### Answer:

- **AWS** (**Amazon Web Services**) is a popular cloud platform by Amazon that provides more than 200 services to help individuals and companies build applications and websites easily.
- It offers services like servers, storage, databases, security, networking, analytics, and artificial intelligence.
- AWS is flexible, secure, and helps businesses scale globally. It also offers "pay-as-you-go" pricing only pay for what you use.
- It is used by companies like Netflix, Samsung, BMW, and many others.

Easy: AWS is like a super powerful toolset for developers. Everything you need to build apps and websites is provided online.

#### **Major Services in AWS:**

- 1. Compute Services like EC2 to run virtual machines
- 2. Storage Services like S3, EBS to store files and data
- 3. Database Services like RDS, DynamoDB to store structured data
- **4. Security** Services like IAM, KMS to protect your system
- **5. Analytics** Tools like Athena, Redshift for big data

- 6. **Developer Tools** – CodeDeploy, CodePipeline for DevOps
- 7. **Mobile Services** – Tools for building mobile backends
- 8. **IoT** – Services for connecting devices
- 9. **Migration** – Helps you move your apps from your computer to AWS
- **10. Management Tools** Monitor and manage your apps easily

Let me know when you're ready for:

- $\checkmark$  Q.5: What is EC2?
- Q.6: Types of EC2
- $\bigcirc$  Q.7: What is PuTTY?
- Q.8: How to connect EC2 with PuTTY?

Would you like me to continue?

40

You said:

yes

ChatGPT said:

Awesome! Here are detailed and easy explanations for the next questions:



**Q.5** What is EC2 service?

[SPPU: June-22, Dec.-22, Marks 6]

- EC2 (Elastic Compute Cloud) is a service by AWS that allows you to run virtual computers (called instances) on the cloud.
- These virtual computers work like real computers, where you can install an operating system (like Linux or Windows), software, and run your applications.
- EC2 lets you use powerful computers without buying physical hardware, so you save money and time.
- You can start or stop these virtual computers anytime and use only what you need.

- This makes it easy to build websites, apps, and other projects quickly and scale them when needed.
- **Easy:** EC2 is like renting a computer on the internet that you can control and use anytime.

# **Q.6** What are the EC2 types?

[SPPU: June-22, Dec.-22, Marks 3]

#### Answer:

AWS offers different types of EC2 instances depending on what your application needs:

#### 1. General Purpose:

- Balanced CPU, memory, and network resources.
- Good for many common tasks.
- Example: Web servers, small databases.

#### 2. Compute-Optimized:

- More CPU power for tasks that need lots of calculations.
- Example: High-performance web servers, scientific modeling.

#### 3. **Memory-Optimized:**

- More RAM for apps that need to handle large data in memory.
- Example: Databases, real-time big data processing.

#### 4. Accelerated Computing:

- Use special hardware like GPUs for heavy tasks.
- Example: Machine learning, graphics rendering.

### 5. Storage Optimized:

- Designed for high-speed and large data storage.
- Example: Data warehousing, large databases.

**Easy:** Pick the EC2 type that best fits your app's need: balanced, CPU-heavy, memory-heavy, GPU, or storage-focused.



[SPPU: Dec.-22, Marks 2]

#### **Answer:**

- PuTTY is a free program you can install on your computer to connect securely to servers over the
- It supports protocols like SSH (secure shell), which is used to safely log in to remote servers like EC2 instances.
- PuTTY lets you type commands on your computer that run on the remote server, helping you manage it.

Easy: PuTTY is like a remote control for your server, allowing you to access and control it securely from your computer.

### $\checkmark$ Q.8 How to connect EC2 instance with PuTTY?

[SPPU: Dec.-22, Marks 3]

#### **Answer:**

#### 1. **Download PuTTYGen:**

This tool converts the .pem file (AWS key) into a .ppk file that PuTTY can use.

#### 2. **Convert PEM to PPK:**

Open PuTTYGen, load your .pem file, and save it as a .ppk file.

#### **Open PuTTY:** 3.

Enter your EC2 instance's public IP address.

#### Set the username: 4.

For Linux EC2, username is usually ec2-user.

#### Add the PPK file:

Under "SSH > Auth" settings, browse and select your .ppk file.

#### **Connect:** 6.

Click "Open" to connect to your EC2 instance securely.

## Easy:

- Convert AWS key file to PuTTY format
- Open PuTTY, enter IP and username
- Use the key file to log in

Would you like me to continue with the next set about AWS Load Balancer, VPC, and Storage?

4.1-mini

#### You said:

yes give me all ans

#### ChatGPT said:

Great! Here are detailed and easy explanations for the next important AWS questions:

# **Q.9** What is Elastic Load Balancer and explain its working?

[SPPU: June-22, Marks 5]

#### **Answer:**

- Every app needs to handle many users and requests efficiently.
- When too many requests come to a single server, it gets overloaded and slows down or crashes.
- Elastic Load Balancer (ELB) is a service by AWS that spreads incoming traffic across multiple servers (EC2 instances).
- This makes the app faster, more reliable, and highly available (always accessible).
- ELB monitors the health of servers and stops sending traffic to unhealthy ones until they recover.
- You can create and manage load balancers easily via the AWS Console.

#### **How ELB Works:**

- Client sends a request to ELB.
- ELB checks which servers are healthy.
- It forwards the request to one of the healthy servers.
- If a server is down, ELB reroutes traffic to others.

**Easy:** ELB is like a traffic police directing users to different servers so no one server gets overloaded.

# **Q.10** Explain in detail types of Elastic Load Balancer.

[SPPU: June-22, Marks 6]

There are three main types of AWS load balancers:

#### 1. Classic Load Balancer (CLB):

- The original load balancer for EC2.
- Works on connection level and request level.
- Doesn't support advanced routing like path or host-based routing.
- Suitable for simple load balancing needs.

#### 2. Network Load Balancer (NLB):

- Works at the transport layer (TCP/SSL).
- Can handle millions of requests per second.
- Very fast and reliable for handling sudden and high volumes of traffic.
- Supports static IPs and elastic IPs.

### 3. Application Load Balancer (ALB):

- Works at the application layer (HTTP/HTTPS).
- Supports advanced routing like path-based (URL paths) and host-based (domain names) routing.
- Useful for modern web apps and microservices architecture.
- Inspects incoming requests and routes them based on rules.

## Easy:

- CLB: Simple, old-school load balancing.
- NLB: Super fast for TCP traffic.
- ALB: Smart, for web apps with flexible routing.

## **Q.11** What is AWS VPC?

[SPPU: Dec.-22, Marks 3]

- **VPC** (**Virtual Private Cloud**) is a virtual network inside AWS where you can place your AWS resources like servers and databases.
- It gives you full control over the network, like IP addresses, subnets, route tables, and security settings.

- VPC lets you isolate your resources from others and secure your cloud environment.
- It's like your own private data center in the cloud.
- Resources in a VPC communicate securely using IPv4 or IPv6.
- There are two types of VPCs:
  - **1. Default VPC** Automatically created by AWS for ease.
  - 2. User-defined VPC You create and customize as per your needs.
- **Easy:** VPC is your private area in AWS where your cloud computers and databases live safely.

# **Q.12** What are the advantages of VPC?

#### **Answer:**

- You can change security group settings (firewall rules) for your EC2 instances anytime.
- Assign static IP addresses that don't change even if the instance restarts.
- Use Access Control Lists (ACLs) to add extra security layers.
- Assign multiple IPv4 addresses to an instance.
- Control both inbound and outbound network traffic precisely.
- **Easy:** VPC gives you full power to protect and control your cloud resources like a real private network.

# **Q.13** What are the different components of VPC?

[SPPU: June-22, Dec.-22, Marks 5, 3]

- 1. **Subnet:** A smaller network segment inside a VPC to group resources.
- 2. Internet Gateway: Connects your VPC to the public internet.
- **3. NAT Gateway:** Allows private resources to access the internet securely without exposing them.
- **4. Virtual Private Gateway:** Connects your VPC securely to your on-premises network via VPN.
- **5. Peering Connection:** Connects two VPCs so they can communicate privately.
- **6. VPC Endpoints:** Allows private access to AWS services without going through the internet.

- 7. Egress-only Internet Gateway: Lets IPv6 traffic go out to the internet but not come in.
- **Easy:** These components help build and manage your private cloud network safely and flexibly.

# $\checkmark$ Q.14 Explain the concept of AWS storage.

#### **Answer:**

- AWS Storage means saving your data on the internet securely and flexibly.
- Cloud storage is managed by AWS, so you don't worry about hardware failures or backups.
- It's cost-effective since you pay only for what you use.
- Different storage types are available depending on your data type and usage frequency.
- Easy: Store your files and data safely on AWS cloud, accessible anytime from anywhere.

## **Q.15** Explain any three AWS storage services.

[SPPU: June-22, Dec.-22, Marks 6]

#### **Answer:**

#### 1. Amazon S3 (Simple Storage Service):

- Stores any type of file or data.
- Used for websites, backups, apps, and more.
- Very durable and secure with encryption options.
- You organize files in buckets and folders.

#### 2. Amazon S3 Glacier:

- Used for long-term archival storage (data you don't access often).
- Very cheap and secure.
- Retrieval time is longer, so it's for backup and compliance data.

#### 3. Elastic Block Storage (EBS):

- Like a hard disk attached to your EC2 instance.
- Stores data in blocks and can be used to install operating systems.
- Comes in SSD or HDD options for performance or cost optimization.

### Easy:

- S3: Store files online like in a folder.
- Glacier: Store old files cheaply for long time.
- EBS: Hard drive for your cloud computer.

## **Q.16** What is S3 bucket?

[SPPU: Dec.-22, Marks 6]

#### **Answer:**

- An S3 bucket is a container where you store your files (called objects) in Amazon S3.
- You can create many buckets, but each bucket name must be unique worldwide.
- Inside a bucket, you can create folders to organize your files.
- You use buckets to store anything from images to videos, backups, or website data.
- **Easy:** S3 bucket = a big online folder where you save all your files safely.

# **Q.17** List steps to deploy website on EC2.

#### **Answer:**

- 1. Connect to your EC2 server using PuTTY.
- 2. Update your Ubuntu server with the command sudo apt-get update.
- 3. Install Apache Web Server using sudo apt-get install apache2.
- 4. Open AWS EC2 security group settings, go to **Inbound rules**, and add an **HTTP** rule allowing traffic from anywhere.
- 5. Open your web browser, enter your EC2 public IP address, and check the Apache welcome page.
- 6. Upload your website files (HTML, CSS, JS) to /var/www/html folder on the EC2 server.
- **Easy:** Connect  $\rightarrow$  Update  $\rightarrow$  Install Apache  $\rightarrow$  Allow HTTP  $\rightarrow$  Upload files  $\rightarrow$  Open website.

# **Q.18** How to update the Ubuntu server?

#### **Answer:**

Run this command in your terminal:

#### bash

CopyEdit

sudo apt-get update

It refreshes the list of available software and updates packages.

Easy: This command keeps your server software fresh and up to date.

## **Q.19** What is the default port no for HTTP protocol?

#### **Answer:**

- The default port number for HTTP is **80**.
- For HTTPS (secure HTTP), the default port is **443**.

**Easy:** Web browsers connect using port 80 for normal websites and 443 for secure ones.

If you want, I can help you with more questions or summarize any topic. Just let me know!

4.1-mini

#### You said:

main types of AWS load balancers: difference between

#### ChatGPT said:

Here's a simple and clear comparison of the **main types of AWS Load Balancers** with their differences:

| Feature              | Classic Load Balancer                          | Network Load                               | Application Load Balancer                                   |
|----------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|
| OSI<br>Layer         | Works at Layer 4<br>(Transport) & Layer 7      | Works at Layer 4<br>(Transport)            | Works at Layer 7 (Application)                              |
| Use Case             | Basic load balancing for EC2-Classic instances | High performance, low latency, TCP         | Advanced routing for HTTP/<br>HTTPS apps                    |
| Routing              | Simple round-robin or sticky sessions          | Routes TCP traffic based on IP and port    | Supports host-based and path-based routing                  |
| Performa<br>nce      | Moderate                                       | Very high, can handle millions of requests | Moderate, designed for HTTP/<br>HTTPS traffic               |
| IP<br>Address        | Dynamic IP only                                | Supports static IP addresses and Elastic   | Dynamic IPs                                                 |
| Health               | Basic TCP/HTTP health                          | Advanced TCP health                        | HTTP/HTTPS health checks with                               |
| Security<br>Features | Supports security groups                       | Supports security groups                   | Supports security groups and Web Application Firewall (WAF) |

| Sticky | Supported     | Not supported                           | Supported     |
|--------|---------------|-----------------------------------------|---------------|
| Cost   | Usually lower | Slightly higher due to high performance | Moderate cost |

### **Easy summary:**

- **CLB**: Old and simple, good for basic needs.
- **NLB**: Fast and powerful, best for heavy TCP traffic.
- ALB: Smart and flexible, best for modern web apps with complex routing.

If you want, I can also help you with examples or how to choose one!

4.1-mini

#### You said:

Subnet: A smaller network segment inside a VPC to group resources. Internet Gateway: Connects your VPC to the public internet. NAT Gateway: Allows private resources to access the internet securely without exposing them. Virtual Private Gateway: Connects your VPC securely to your onpremises network via VPN. Peering Connection: Connects two VPCs so they can communicate privately. VPC Endpoints: Allows private access to AWS services without going through the internet. Egress-only Internet Gateway: Lets IPv6 traffic go out to the internet but not come in. explain in simple term

#### ChatGPT said:

Sure! Here's a simple explanation of each term in easy words:

#### • Subnet:

It's like a smaller neighborhood inside your big network (VPC) where you keep related computers or resources together.

#### • Internet Gateway:

It's a gate that connects your private network to the internet so your resources can talk to the outside world.

#### NAT Gateway:

It's a helper that lets private computers use the internet safely without letting the internet come directly to them.

#### Virtual Private Gateway:

It's a secure tunnel that links your cloud network to your office or home network using VPN, so they can communicate safely.

### • Peering Connection:

It's a private road between two cloud networks (VPCs) so they can share information directly without going on the public internet.

## • VPC Endpoints:

It's a shortcut inside your network that lets your resources connect to AWS services without using the internet, keeping things safer and faster.

### • Egress-only Internet Gateway:

It's a one-way door for IPv6 traffic, allowing your network to send data out to the internet but blocking incoming data from outside.