Code

```
\# Prepare the model and get a summary for som1-5
model1 <- glm(disorder~som1 + som2 + som3 + som4 + som5, data = final, family</pre>
= "binomial")
model1$coef
exp(model1$coef)
summary(model1)
\# Prepare the model and get a summary for som6-9
model2 <- glm(disorder~som6 + som7 + som8 + som9, data = final, family =</pre>
"binomial")
model2$coef
exp(model2$coef)
summary(model2)
\# Prepare the model and get a summary for som 10-14
model3 <- glm(disorder~som10 + som11 + som12 + som13 + som14, data = final,</pre>
family = "binomial")
model3$coef
exp(model3$coef)
summary(model3)
```

Results

Call:

```
glm(formula = disorder \sim som1 + som2 + som3 + som4 + som5, family = "binomial",
```

data = final)

Deviance Residuals:

```
Min 1Q Median 3Q Max
-3.3107 -0.2463 0.0000 0.0957 3.0752
```

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)	-4.7196	0.5726	-8.242	< 2e-16	***
som1	0.5215	0.2351	2.218	0.02656	*
som2	1.2390	0.2970	4.172	3.02e-05	***
som3	0.5441	0.1171	4.648	3.35e-06	***
som4	0.5320	0.1468	3.624	0.00029	***
som5	2.4536	0.4228	5.804	6.48e-09	***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 447.70 on 322 degrees of freedom Residual deviance: 123.75 on 317 degrees of freedom

AIC: 135.75

Number of Fisher Scoring iterations: 8

Call:

```
glm(formula = disorder ~ som6 + som7 + som8 + som9, family = "binomial",
    data = final)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.34372 -0.62207 0.00045 0.49654 1.86426

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)	-1.5442	0.2009	-7.685	1.53e-14	***
som6	1.9406	0.4662	4.163	3.15e-05	***
som7	1.0921	0.2536	4.307	1.66e-05	***
som8	1.1669	0.4176	2.794	0.0052	**
som9	1.1918	0.1925	6.190	6.03e-10	***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 447.70 on 322 degrees of freedom Residual deviance: 270.32 on 318 degrees of freedom

AIC: 280.32

Number of Fisher Scoring iterations: 7

Call:

```
glm(formula = disorder ~ som10 + som11 + som12 + som13 + som14,
    family = "binomial", data = final)
```

Deviance Residuals:

Min	10	Median	3Q	Max
-1.84363	-0.26365	0.00067	0.05370	3.09428

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-4.7789	0.6066	-7.878	3.32e-15	***
som10	1.0075	0.3260	3.090	0.0020	**
som11	0.7396	0.3913	1.890	0.0587	
som12	0.5288	0.3161	1.673	0.0944	
som13	1.4370	0.2148	6.689	2.24e-11	***
som14	1.0204	0.4125	2.474	0.0134	*

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 447.70 on 322 degrees of freedom Residual deviance: 110.32 on 317 degrees of freedom

AIC: 122.32

Number of Fisher Scoring iterations: 8

Interpretation

- 1. The important features in this model are SOM2-5 as demonstrated by their '***' markings and their small p-values. SOM1 is not important for analyzing the disorder as shown by the high p-value.
- 2. All of the somatic markers 6-9 are important in this model. Only marker 8, with a slightly higher p-value and a marking '**' is of lesser, but still significant, importance.
- 3. In this model, we see that the order of importance of the markers is 13, 10, 14 and lastly 11 and 12. Marker 13 has a '***' marking, 10 is '**', 14 is '*' and 11/12 are ''.
- 4. In terms of which model is better for predicting the likelihood of the disorder, model 3 is the best, followed closely by model 1 and model 2 in a distant $3^{\rm rd}$. The best way to see which is