NE/SE531

DESCRIPTION

The 531 is a fast slewing high performance operational amplifier which retains DC performance equal to the best general purpose types while providing far superior large-signal AC performance. A unique input stage design allows the amplifier to have a large-signal response nearly identical to its small-signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large-signal bandwidths are required, the amplifier out-performs conventional designs which have much better small-signal response. Also, because the small-signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation, and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications.

FEATURES

- 35V/μs slew rate at unity gain
- Pin-for-pin replacement for μA709, μA748, or LM101
- Compensated with a single capacitor

PIN CONFIGURATIONS

- Same low drift offset null circuitry as μA741
- Small-signal bandwidth 1MHz
- Large-signal bandwidth 500kHz
- True op amp DC characteristics make the 531 the ideal answer to all slew rate limited operational amplifier applications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE531N	0404B
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE531FE	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0°C to +70°C	NE531FE	0580A

ABSOLUTE MAXIMUM RATINGS

SYMBOL PARAMETER		RATING	UNIT
V _S	Supply voltage	±22	V
P _{D MAX}	Maximum power dissipation		
	T _A =25°C (still-air) ¹		
	FE package	780	mW
	N package	1160	mW
	Differential input voltage	±15	V
V _{CM}	Common-mode input voltage ²	±15	V
	Voltage between offset null and V-	±0.5	V
T _A	Operating ambient temperature range		
	NE531	0 to +70	°C
	SE531	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C
	Output short-circuit duration ³	indefinite	

NOTES:

- 1. The following derating factors should be applied above 25°C:
 - FE package at 6.2mW/°C
 - N package at 9.3mW/°C
- 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
- 3. Short-circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature.

NE/SE531

EQUIVALENT SCHEMATIC

NE/SE531

DC ELECTRICAL CHARACTERISTICS

 V_S = $\pm 15V$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE531			NE531			
			Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage	R _S ≤10kΩ, T _A =25°C		2.0	5.0		2.0	6.0	mV
	Onset voltage	R_S 310 $k\Omega$, over temp			6.0			7.5	mV
ΔV_{OS}		Over temp		10			10		μV/°C
		T _A =25°C		30	200		50	200	nA
los	Offset current	T _A =High			200			200	nA
		T _A =Low		L	500			300	nA
Δl _{OS}		Over temp		0.4			0.4		nA/°C
	l	T=25°C		300	500		400	1500	nA
I _{BIAS}	Input bias current	T _A =High T _A =Low			500 1500			1500 2000	nA nA
Λ1		Over temp	+	2	1300		2	2000	nA/°C
ΔI _{BIAS}	Common mode voltage range	T _A =25°C	±10			±10			V
V _{CM}	Common-mode voltage range	* *	±10	-					
CMRR	Common-mode rejection ratio	$T_A=25^{\circ}C,~R_S\leq 10$ k Ω				70	100		dB
		Over temp R _S ≤10kΩ	70	90					dB
R _{IN}	Input resistance	T _A =25°C		20			20		MΩ
V _{OUT}	Output voltage swing	$R_L \ge 10 k\Omega$, over temp	±10	±13		±10	±13		V
I _{CC}	Supply current	T _A =25°C			7.0			10	mA
		T_{MAX}			7.0			10	mA
P _D	Power consumption	T _A =25°C			210			300	mW
		R _S ≤10kΩ, T _A =25°C					10	150	μV/V
PSRR	Power supply rejection ratio	-							
		R _S ≤10kΩ, over temp		10	150				μV/V
R _{OUT}	Output resistance	T _A =25°C		75			75		Ω
A _{VOL}		T _A =25°C,	1						
		R _L ≥10kΩ, V _{OUT} =±10V	50	100		20	60		V/mV
		$R_L \ge 10 k\Omega$, $V_{OUT} = \pm 10 V$,							
	Large-signal voltage gain	over temp	25			15			V/mV
V _{INN}	Input noise voltage	25°C f=1kHz		20			20		nV/√Hz
I _{sc}	Short-circuit current	25°C	5	15	45	5	15	45	mA

AC ELECTRICAL CHARACTERISTICS

 T_A =25°C V_S =+15V, unless otherwise specified.¹

SYMBOL	PARAMETER	TEST CONDITIONS		SE531			NE531		
			Min	Тур	Max	Min	Тур	Max	UNIT
BW	Full power bandwidth			500			500		kHz
t _S	Settling time (1%) (0.1%)	A _V =+1, V _{IN} =±10V		1.5 2.5			1.5 2.5		μs μs
	Large-signal overshoot	A _V =+1, V _{IN} =±10V		2			2		%
	Small-signal overshoot	A _V =+1, V _{IN} =400mV		5			5		%
t _R	Small-signal rise time	A _V =+1, V _{IN} =400mV		300			300		ns
SR	Slew rate	A _V =100		35			35		V/μs
		A _V =10		35			35		V/μs
		A _V =1 (non-inverting)	20	30			30		V/μs
		A _V =1 (inverting)	25	35			35		V/μs

NOTES:

^{1.} All AC testing is performed in the transient response test circuit.

NE/SE531

TEST LOAD CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS V_S = +15V, T_A = +255C, unless otherwise specified.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

 $V_S = +15V$, $T_A = 25$ °C, unless otherwise specified.

NE/SE531

TYPICAL APPLICATIONS

NE/SE531

TYPICAL APPLICATIONS (Continued)

NE/SE531

CYCLIC A-TO-D CONVERTER

One interesting, but much ignored, A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts V_{REF} from the input and doubles the remainder if the polarity was correct. In Figure 1, the signal is full-wave rectified and the remainder of V_{IN} - V_{REF} is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of V_{REF} . Possessing high potential accuracy, the circuit using NE531 devices settles in $5\mu s$.

TRIANGLE AND SQUARE WAVE GENERATOR

The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by the output

swing of op amp A-1, and R1/R2 sets the triangle amplitude. The frequency of oscillation in either case is:

$$f = \frac{1}{4RC} \cdot \frac{R2}{R1} \tag{1}$$

The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical.

The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open-loop, there is no need for compensation. The triangle-generating amplifier must be compensated. The NE5535 device can be used as well, except for the lower frequency response.

