

#### **General Description**

The UM1650/UM1750 series are very low dropout linear regulators designed for low power portable applications. Typical output noise is only  $195\mu V_{RMS}$  and maximum dropout is just 110mV(Typ) at the load current of 150mA. The internal P-channel MOSFET pass transistor requires no base current, allowing the device to draw only  $190\mu A$  during normal operation at the maximum load current of 350mA. With a shutdown control pin, the UM1750 consumes less than  $1\mu A$  current in shutdown mode.

Other features include high output voltage accuracy, excellent transient response, under voltage lockout, stability with ultralow ESR ceramic capacitors as small as  $1\mu F$ , short-circuit and thermal overload protection and output current limiting.

The UM1650 series are available in a low profile SOT23-3 package. The UM1750 series are available in low profile SOT23-5, SOT89-5 and DFN6 2.0×2.0 packages.

### **Applications**

- Bluetooth/802.11 Cards
- PDAs and Notebook Computers
- Portable Instruments and Battery-Powered Systems
- Cellular Phones

#### **Features**

- Very Low Dropout: 150mV (Max) at 150mA
- Maximum Input Voltage: 6.0V
- ±2% Voltage Accuracy at V<sub>OUT</sub>>1.5V ±30mV Voltage Accuracy at V<sub>OUT</sub>≤1.5V
- Fast Transient Response
- Under Voltage Lockout
- Fixed Output Voltage of UM1650S-xx and UM1750S/Y/DA-xx from 1.0V to 4.0V with 0.1V Interval
- Adjustable Output Voltage of UM1750S/Y/DA-00 from 1.0V to 5.0V
- Output Current Limit
- Stable with 1μF Output Capacitor
- Short-Circuit and Thermal Overload Protection
- Low Profile SOT23-3, SOT23-5, SOT89-5 and DFN6 2.0×2.0 Packages

# **Pin Configurations Top View** GND 1 6XX≥ ] 3 IN Marking Pin 1 OUT 2 M: Month Code UM1650S-xx SOT23-3 IN 1 [ ]5OUT 5XX ≥ GND 2 SHDN 3 ] 4 NC M: Month Code UM1750S-xx SOT23-5 IN 1 75 OUT 5CT≥ GND 2 SHDN 3 ] 4 FB M: Month Code **UM1750S-00** SOT23-5 NC 1 5 OUT 1750-XX XX GND 2 GND SHDN 3 4 IN XX: Week Code **UM1750Y-xx** SOT89-5

**Pin Configurations (Continued)** 

**Top View** 



<sup>\*</sup> The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board. If not, the tab can be left open.

#### **Pin Description**

|            | Pin Number                              |                                              |        |                                                           |
|------------|-----------------------------------------|----------------------------------------------|--------|-----------------------------------------------------------|
| UM1650S-xx | UM1750S-xx<br>(Fixed V <sub>OUT</sub> ) | UM1750S-00<br>(Adjustable V <sub>OUT</sub> ) | Symbol | Function                                                  |
| 3          | 1                                       | 1                                            | IN     | Power Supply                                              |
| 1          | 2                                       | 2                                            | GND    | Ground                                                    |
| -          | 3                                       | 3                                            | SHDN   | Shutdown Input:<br>High=Activate LDO,<br>Low=Shutdown LDO |
| -          | 4                                       | -                                            | NC     | Not Connected                                             |
| 2          | 5                                       | 5                                            | OUT    | Voltage Regulated Output                                  |
| -          | -                                       | 4                                            | FB     | Output Voltage Feedback                                   |

## **Pin Description (Continued)**

|                                         | Pin 1                                                                                                    | Number                                   |                                                  |        |                                                                 |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|--------|-----------------------------------------------------------------|
| UM1750Y-xx<br>(Fixed V <sub>OUT</sub> ) | $\begin{array}{c} \textbf{UM1750Y-00} \\ \textbf{(Adjustable} \\ \textbf{V}_{\textbf{OUT}}) \end{array}$ | UM1750DA-xx<br>(Fixed V <sub>OUT</sub> ) | UM1750DA-00<br>(Adjustable<br>V <sub>OUT</sub> ) | Symbol | Function                                                        |
| 4                                       | 4                                                                                                        | 3                                        | 3                                                | IN     | Power Supply                                                    |
| 2                                       | 2                                                                                                        | 2                                        | 2                                                | GND    | Ground                                                          |
| 3                                       | 3                                                                                                        | 1                                        | 1                                                | SHDN   | Shutdown Input:<br>High=Activate<br>LDO,<br>Low=Shutdown<br>LDO |
| 1                                       | -                                                                                                        | 5,6                                      | 5                                                | NC     | Not Connected                                                   |
| 5                                       | 5                                                                                                        | 4                                        | 4                                                | OUT    | Voltage<br>Regulated<br>Output                                  |
| -                                       | 1                                                                                                        | -                                        | 6                                                | FB     | Output Voltage<br>Feedback                                      |

# **Naming Information**



# **Ordering Information**

| Part Number | Output Voltage | Packaging Type | Marking Code | Shipping Qty                 |
|-------------|----------------|----------------|--------------|------------------------------|
| UM1650S-10  | 1.0V           |                | 6AA          |                              |
| UM1650S-11  | 1.1V           |                | 6AB          |                              |
| UM1650S-12  | 1.2V           |                | 6A2          |                              |
| UM1650S-13  | 1.3V           |                | 6A3          |                              |
| UM1650S-14  | 1.4V           |                | 6A4          |                              |
| UM1650S-15  | 1.5V           |                | 6A5          |                              |
| UM1650S-16  | 1.6V           |                | 6A6          |                              |
| UM1650S-17  | 1.7V           |                | 6A7          |                              |
| UM1650S-18  | 1.8V           |                | 6A8          |                              |
| UM1650S-19  | 1.9V           |                | 6A9          |                              |
| UM1650S-20  | 2.0V           |                | 6BA          |                              |
| UM1650S-21  | 2.1V           |                | 6BB          |                              |
| UM1650S-22  | 2.2V           |                | 6B2          |                              |
| UM1650S-23  | 2.3V           |                | 6B3          |                              |
| UM1650S-24  | 2.4V           |                | 6B4          | 2000 /71 1                   |
| UM1650S-25  | 2.5V           | SOT23-3        | 6B5          | 3000pcs/7Inch<br>Tape & Reel |
| UM1650S-26  | 2.6V           |                | 6B6          | Tape & Reel                  |
| UM1650S-27  | 2.7V           |                | 6B7          |                              |
| UM1650S-28  | 2.8V           |                | 6B8          |                              |
| UM1650S-29  | 2.9V           |                | 6B9          |                              |
| UM1650S-30  | 3.0V           |                | 6CA          |                              |
| UM1650S-31  | 3.1V           |                | 6CB          |                              |
| UM1650S-32  | 3.2V           |                | 6C2          |                              |
| UM1650S-33  | 3.3V           |                | 6C3          |                              |
| UM1650S-34  | 3.4V           |                | 6C4          |                              |
| UM1650S-35  | 3.5V           |                | 6C5          |                              |
| UM1650S-36  | 3.6V           |                | 6C6          |                              |
| UM1650S-37  | 3.7V           |                | 6C7          | 1                            |
| UM1650S-38  | 3.8V           |                | 6C8          | 1                            |
| UM1650S-39  | 3.9V           |                | 6C9          | 1                            |
| UM1650S-40  | 4.0V           |                | 6CC          | 1                            |

# **Ordering Information (Continued)**

| Part Number | Output Voltage | Packaging Type | Marking Code | Shipping Qty  |
|-------------|----------------|----------------|--------------|---------------|
| UM1750S-00  | ADJ            |                | 5CT          |               |
| UM1750S-10  | 1.0V           |                | 5JA          | ]             |
| UM1750S-11  | 1.1V           |                | 5JB          |               |
| UM1750S-12  | 1.2V           |                | 5J2          | ]             |
| UM1750S-13  | 1.3V           |                | 5J3          | ]             |
| UM1750S-14  | 1.4V           |                | 5J4          | ]             |
| UM1750S-15  | 1.5V           |                | 5J5          |               |
| UM1750S-16  | 1.6V           |                | 5J6          |               |
| UM1750S-17  | 1.7V           |                | 5J7          |               |
| UM1750S-18  | 1.8V           |                | 5J8          |               |
| UM1750S-19  | 1.9V           |                | 5J9          |               |
| UM1750S-20  | 2.0V           |                | 5NA          |               |
| UM1750S-21  | 2.1V           |                | 5NB          |               |
| UM1750S-22  | 2.2V           |                | 5N2          |               |
| UM1750S-23  | 2.3V           |                | 5N3          |               |
| UM1750S-24  | 2.4V           | SOT23-5        | 5N4          | 3000pcs/7Inch |
| UM1750S-25  | 2.5V           | 50125-5        | 5N5          | Tape & Reel   |
| UM1750S-26  | 2.6V           |                | 5N6          |               |
| UM1750S-27  | 2.7V           |                | 5N7          |               |
| UM1750S-28  | 2.8V           |                | 5N8          |               |
| UM1750S-29  | 2.9V           |                | 5N9          |               |
| UM1750S-30  | 3.0V           |                | 5PA          |               |
| UM1750S-31  | 3.1V           |                | 5PB          |               |
| UM1750S-32  | 3.2V           |                | 5HP          |               |
| UM1750S-33  | 3.3V           |                | 5CU          |               |
| UM1750S-34  | 3.4V           |                | 5P4          |               |
| UM1750S-35  | 3.5V           |                | 5P5          |               |
| UM1750S-36  | 3.6V           |                | 5P6          |               |
| UM1750S-37  | 3.7V           |                | 5P7          |               |
| UM1750S-38  | 3.8V           |                | 5P8          |               |
| UM1750S-39  | 3.9V           |                | 5P9          |               |
| UM1750S-40  | 4.0V           |                | 5PC          |               |

# **Ordering Information (Continued)**

| Part Number | Output Voltage | Packaging Type | Marking Code | Shipping Qty  |
|-------------|----------------|----------------|--------------|---------------|
| UM1750Y-00  | ADJ            |                | 1750-00      |               |
| UM1750Y-10  | 1.0V           |                | 1750-10      |               |
| UM1750Y-11  | 1.1V           |                | 1750-11      |               |
| UM1750Y-12  | 1.2V           |                | 1750-12      | 1             |
| UM1750Y-13  | 1.3V           |                | 1750-13      |               |
| UM1750Y-14  | 1.4V           |                | 1750-14      |               |
| UM1750Y-15  | 1.5V           |                | 1750-15      |               |
| UM1750Y-16  | 1.6V           |                | 1750-16      |               |
| UM1750Y-17  | 1.7V           |                | 1750-17      |               |
| UM1750Y-18  | 1.8V           |                | 1750-18      |               |
| UM1750Y-19  | 1.9V           |                | 1750-19      |               |
| UM1750Y-20  | 2.0V           |                | 1750-20      |               |
| UM1750Y-21  | 2.1V           |                | 1750-21      |               |
| UM1750Y-22  | 2.2V           |                | 1750-22      |               |
| UM1750Y-23  | 2.3V           |                | 1750-23      |               |
| UM1750Y-24  | 2.4V           | SOT89-5        | 1750-24      | 1000pcs/7Inch |
| UM1750Y-25  | 2.5V           | 30169-3        | 1750-25      | Tape & Reel   |
| UM1750Y-26  | 2.6V           |                | 1750-26      |               |
| UM1750Y-27  | 2.7V           |                | 1750-27      |               |
| UM1750Y-28  | 2.8V           |                | 1750-28      |               |
| UM1750Y-29  | 2.9V           |                | 1750-29      |               |
| UM1750Y-30  | 3.0V           |                | 1750-30      |               |
| UM1750Y-31  | 3.1V           |                | 1750-31      |               |
| UM1750Y-32  | 3.2V           |                | 1750-32      |               |
| UM1750Y-33  | 3.3V           |                | 1750-33      |               |
| UM1750Y-34  | 3.4V           |                | 1750-34      | 1             |
| UM1750Y-35  | 3.5V           |                | 1750-35      | 1             |
| UM1750Y-36  | 3.6V           |                | 1750-36      | 1             |
| UM1750Y-37  | 3.7V           |                | 1750-37      | ]             |
| UM1750Y-38  | 3.8V           |                | 1750-38      | ]             |
| UM1750Y-39  | 3.9V           |                | 1750-39      | ]             |
| UM1750Y-40  | 4.0V           |                | 1750-40      |               |

# **Ordering Information (Continued)**

| Part Number | Output Voltage | Packaging Type | Marking Code | Shipping Qty  |
|-------------|----------------|----------------|--------------|---------------|
| UM1750DA-00 | ADJ            |                | BFJ          |               |
| UM1750DA-10 | 1.0V           |                | BFE          |               |
| UM1750DA-11 | 1.1V           |                | BFF          |               |
| UM1750DA-12 | 1.2V           |                | BH2          | ]             |
| UM1750DA-13 | 1.3V           |                | BH3          |               |
| UM1750DA-14 | 1.4V           |                | BH4          | ]             |
| UM1750DA-15 | 1.5V           |                | BH5          |               |
| UM1750DA-16 | 1.6V           |                | BH6          |               |
| UM1750DA-17 | 1.7V           |                | BH7          |               |
| UM1750DA-18 | 1.8V           |                | BH8          |               |
| UM1750DA-19 | 1.9V           |                | BH9          |               |
| UM1750DA-20 | 2.0V           |                | BHA          |               |
| UM1750DA-21 | 2.1V           |                | ВНВ          |               |
| UM1750DA-22 | 2.2V           |                | BJ2          |               |
| UM1750DA-23 | 2.3V           |                | BJ3          |               |
| UM1750DA-24 | 2.4V           | DFN6 2.0×2.0   | BJ4          | 3000pcs/7Inch |
| UM1750DA-25 | 2.5V           | DFN0 2.0×2.0   | BJ5          | Tape & Reel   |
| UM1750DA-26 | 2.6V           |                | BJ6          |               |
| UM1750DA-27 | 2.7V           |                | BJ7          |               |
| UM1750DA-28 | 2.8V           |                | BJ8          |               |
| UM1750DA-29 | 2.9V           |                | BJ9          |               |
| UM1750DA-30 | 3.0V           |                | BJA          |               |
| UM1750DA-31 | 3.1V           |                | BJB          |               |
| UM1750DA-32 | 3.2V           |                | BK2          |               |
| UM1750DA-33 | 3.3V           |                | BK3          |               |
| UM1750DA-34 | 3.4V           |                | BK4          |               |
| UM1750DA-35 | 3.5V           |                | BK5          | ]             |
| UM1750DA-36 | 3.6V           |                | BK6          | ]             |
| UM1750DA-37 | 3.7V           |                | BK7          | ]             |
| UM1750DA-38 | 3.8V           |                | BK8          |               |
| UM1750DA-39 | 3.9V           |                | BK9          | ]             |
| UM1750DA-40 | 4.0V           |                | BKA          |               |

### **Absolute Maximum Ratings (Note 1)**

| Symbol            | Parameter                      |              | Value        | Unit |
|-------------------|--------------------------------|--------------|--------------|------|
| $V_{\rm IN}$      | Supply Voltage on IN Pin       |              | -0.3 to +7.5 | V    |
| V <sub>SHDN</sub> | Voltage on SHDN Pin            |              | -0.3 to +7.5 | V    |
| $V_{\mathrm{FB}}$ | Voltage on FB Pin              |              | -0.3 to +7.5 | V    |
| $V_{OUT}$         | Voltage on OUT Pin             |              | -0.3 to +7.5 | V    |
|                   | Output Short-Circuit Duration  |              | Indefinite   |      |
|                   |                                | SOT23-3      | +225         |      |
|                   | Junction Thermal Resistance    | SOT23-5      | +215         | °C/W |
| $	heta_{ m JA}$   | (Note 2)                       | SOT89-5      | +66          | ·C/W |
|                   |                                | DFN6 2.0×2.0 | +110         |      |
| $T_{\mathrm{J}}$  | Operating Junction Temperature | -40 to +125  | °C           |      |
| T <sub>STG</sub>  | Storage Temperature Range      |              | -65 to +150  | °C   |
| $T_{\rm L}$       | Lead Temperature for Soldering | 10 Seconds   | +300         | °C   |

- Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
- Note 2: The maximum allowable power dissipation of any  $T_A$  (ambient temperature) is  $P_{D(max)} = (T_{J(max)} T_A)/\theta_{JA}$ . Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- Note 3: The UM1650/UM1750 is tested and specified under pulse load conditions such that  $T_J \approx T_A$ . Specifications over the -40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls.
- Note 4: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed 125°C when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

## **Electrical Characteristics**

 $V_{\overline{SHDN}}\!\!=\!\!V_{IN}\!\!=\!\!V_{OUT}\!\!+\!1V,\,C_{IN}\!\!=\!\!C_{OUT}\!\!=\!\!1.0\mu F,\,T_{A}\!\!=\!\!25^{\circ}C,\,unless\;noted.$ 

| Symbol                   | Parameter                      | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | Min  | Тур  | Max  | Unit                 |
|--------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|------|----------------------|
| V <sub>IN</sub>          | Input Voltage Range            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2.5  |      | 6.0  | V                    |
| V <sub>UVLO</sub>        | Input Under Voltage<br>Lockout | V <sub>IN</sub> Fallin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng                     | 1.8  |      | 2.4  | V                    |
| ī                        | Operating Quiescent            | V <sub>IN</sub> =4.3V, I <sub>OU</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sub>T</sub> =0mA      |      | 90   | 130  | 4                    |
| $I_Q$                    | Current                        | $V_{IN}=4.3V$ , $I_{OUT}=4.3V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =350mA                 |      | 190  | 300  | μΑ                   |
| I                        | Shutdown Leakage Current       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |      |      | 1    | μΑ                   |
| I <sub>OUT</sub>         | Output Current                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 350  |      |      | mA                   |
| $V_{\mathrm{FB}}$        | Feedback Reference<br>Voltage  | $V_{IN}=2.5V$ to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0V                   | 0.98 | 1.00 | 1.02 | V                    |
|                          | Output Voltage Accuracy        | 0mA≤I <sub>OUT</sub> ≤350mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{OUT} > 1.5V$       | -2   |      | +2   | %                    |
|                          | Output voltage Accuracy        | OIIIA\square 10UT\square 330IIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>OUT</sub> ≤1.5V | -30  |      | +30  | mV                   |
| $\Delta V_{DO}$ (Note 5) | Dropout Voltage                | I <sub>OUT</sub> =150r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA                     |      | 110  | 150  | mV                   |
| $I_{LIMIT}$              | Output Current Limit           | V <sub>IN</sub> ≥2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                      | 550  |      |      | mA                   |
| t                        | Startup Time Response          | $R_L$ =68 $\Omega$ , $C_{OUT}$ =1 $\mu$ F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |      | 44   |      | μs                   |
| $ m V_{IL}$              | SHDN Input Low Voltage         | V <sub>IN</sub> =6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                      |      |      | 0.4  | V                    |
| $V_{\mathrm{IH}}$        | SHDN Input High Voltage        | V <sub>IN</sub> =6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                      | 2.0  |      |      | V                    |
|                          | SHDN Input Current             | SHDN=V <sub>IN</sub> or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r GND                  | -1   |      | +1   | μΑ                   |
| $T_{SHDN}$               | Thermal-Shutdown Temperature   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |      | 160  |      | °C                   |
| $\Delta T_{SHDN}$        | Thermal-Shutdown<br>Hysteresis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |      | 20   |      | °C                   |
|                          | Line Regulation                | $V_{OUT}+1V \le V_{IN} \le V_{IN}$ | V                      |      | 0.09 |      | %/V                  |
|                          | Load Regulation                | $V_{IN}=V_{OUT}+1V, V_{IN}\geq 2.5V$ $1mA\leq I_{OUT}\leq 150mA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |      | 0.2  |      | %                    |
|                          | Output Voltage Noise           | $10$ Hz to $100$ kHz $C_{IN}$ = $1\mu$ F, $V_{OUT}$ = $3.3$ V, $I_{OUT}$ = $150$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      | 195  |      | $\mu V_{\text{RMS}}$ |
| _                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f=100Hz                |      | 63   |      |                      |
| PSRR                     | Power Supply Ripple Rejection  | $V_{IN}=V_{OUT}+1V$ $I_{OUT}=100$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f=1kHz                 |      | 55   | 55 d |                      |
|                          | Rejection                      | 1001-100104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f=10kHz                |      | 40   |      |                      |

Note 5:  $\Delta V_{DO}$  just defined for device with  $V_{OUT}\!\!\ge\!\!2.5V.$ 



#### **Typical Application Circuit**



Figure 1. UM1650S-xx Typical Application Circuit



Figure 2. UM1750S-xx/UM1750Y-xx/UM1750DA-xx (Fixed  $V_{OUT}$ )
Typical Application Circuit



Figure 3. UM1750S-00/UM1750Y-00/UM1750DA-00 (Adjustable  $V_{OUT}$ ) Typical Application Circuit

#### UM1750S-00/UM1750Y-00/UM1750DA-00 Output Voltage Setting

The output voltage of the UM1750 adjustable regulator is programmed using an external resistor divider as shown in Figure 3. The output voltage is calculated using:

$$V_{\rm OUT} = V_{\rm FB} \! \left( 1 \! + \! \frac{R1}{R2} \right) \!$$

Where: V<sub>FB</sub>=1.00V (Typ) (the internal reference voltage)

Resistors R1 and R2 should be chosen for approximately 3-5 $\mu$ A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided, as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2=200k $\Omega$  to set the divider current at 5 $\mu$ A and then calculate R1 using:

$$R1 = \left(\frac{V_{OUT}}{V_{FB}} - 1\right) \times R2$$

Where:  $V_{FB}=1.00V$  (Typ).



## **Typical Performance Characteristics**

(Shown for 3.3V Output Option)

#### **Quiescent Current vs. Input Voltage**



#### **GND Current vs. Output Current**



**Output Voltage vs. Output Current** 



#### **Quiescent Current vs. Temperature**



#### **Output Voltage vs. Input Voltage**



#### **Output Voltage vs. Temperature**



## **Typical Performance Characteristics (Continued)**

(Shown for 3.3V Output Option)

#### **Dropout Voltage vs. Output Current**



#### PSRR vs. Frequency



#### **Noise**



#### **Load Transient Response**



#### **Line Transient Response**



### **Startup Waveform**



# **Package Information**

UM1650S-xx: SOT23-3

**Outline Drawing** 



|         | DIMENSIONS |         |      |        |         |       |  |  |  |  |
|---------|------------|---------|------|--------|---------|-------|--|--|--|--|
| Crombal | MILI       | IMET    | ERS  | INCHES |         |       |  |  |  |  |
| Symbol  | Min        | Тур     | Max  | Min    | Тур     | Max   |  |  |  |  |
| A       | 1.013      | 1.15    | 1.40 | 0.040  | 0.045   | 0.055 |  |  |  |  |
| A1      | 0.00       | 0.05    | 0.10 | 0.000  | 0.002   | 0.004 |  |  |  |  |
| A2      | 1.00       | 1.10    | 1.30 | 0.039  | 0.043   | 0.051 |  |  |  |  |
| b       | 0.30       | -       | 0.50 | 0.012  | -       | 0.020 |  |  |  |  |
| С       | 0.10       | 0.15    | 0.20 | 0.004  | 0.006   | 0.008 |  |  |  |  |
| D       | 2.82       | -       | 3.10 | 0.111  | -       | 0.122 |  |  |  |  |
| Е       | 1.50       | 1.60    | 1.70 | 0.059  | 0.063   | 0.067 |  |  |  |  |
| E1      | 2.60       | 2.80    | 3.00 | 0.102  | 0.110   | 0.118 |  |  |  |  |
| e       | 0          | .95REI  | 7    | 0      | 0.037RE | F     |  |  |  |  |
| e1      | 1          | 1.90REF |      |        | ).075RE | F     |  |  |  |  |
| L       | 0.30       | -       | 0.60 | 0.012  | -       | 0.024 |  |  |  |  |
| θ       | 0°         | -       | 8°   | 0°     | -       | 8°    |  |  |  |  |

## **Land Pattern**



#### NOTES:

- 1. Compound dimension: 2.92×1.60;
- 2. Unit: mm;
- 3. General tolerance ±0.05mm unless otherwise specified;
- 4. The layout is just for reference.



## UM1750S-xx: SOT23-5

## **Outline Drawing**



|        | DIMENSIONS  |                  |      |        |         |       |  |  |  |  |
|--------|-------------|------------------|------|--------|---------|-------|--|--|--|--|
| Ch al  | MILLIMETERS |                  |      | INCHES |         |       |  |  |  |  |
| Symbol | Min         | Тур              | Max  | Min    | Тур     | Max   |  |  |  |  |
| A      | 1.013       | 1.15             | 1.40 | 0.040  | 0.045   | 0.055 |  |  |  |  |
| A1     | 0.00        | 0.05             | 0.10 | 0.000  | 0.002   | 0.004 |  |  |  |  |
| A2     | 1.00        | 1.10             | 1.30 | 0.039  | 0.043   | 0.051 |  |  |  |  |
| b      | 0.30        | -                | 0.50 | 0.012  | -       | 0.020 |  |  |  |  |
| c      | 0.10        | 0.15             | 0.20 | 0.004  | 0.006   | 0.008 |  |  |  |  |
| D      | 2.82        | -                | 3.10 | 0.111  | -       | 0.122 |  |  |  |  |
| Е      | 1.50        | 1.60             | 1.70 | 0.059  | 0.063   | 0.067 |  |  |  |  |
| E1     | 2.60        | 2.80             | 3.00 | 0.102  | 0.110   | 0.118 |  |  |  |  |
| e      | 0           | .95REI           | 7    | 0      | 0.037RE | F     |  |  |  |  |
| e1     | 1           | 1.90REF 0.075REF |      |        | F       |       |  |  |  |  |
| L      | 0.30        | -                | 0.60 | 0.012  | -       | 0.024 |  |  |  |  |
| θ      | 0°          | -                | 8°   | 0°     | -       | 8°    |  |  |  |  |

#### **Land Pattern**



#### NOTES:

- 1. Compound dimension: 2.92×1.60;
- 2. Unit: mm;
- 3. General tolerance  $\pm 0.05$ mm unless otherwise specified;
- 4. The layout is just for reference.



## UM1750Y-xx: SOT89-5

## **Outline Drawing**



|         | DIMENSIONS |                  |      |        |       |       |  |  |  |
|---------|------------|------------------|------|--------|-------|-------|--|--|--|
| Crombal | MIL        | LIME             | TERS | INCHES |       |       |  |  |  |
| Symbol  | Min        | Тур              | Max  | Min    | Тур   | Max   |  |  |  |
| A       | 1.40       | 1.50             | 1.60 | 0.055  | 0.059 | 0.063 |  |  |  |
| b       | 0.32       | -                | 0.54 | 0.013  | 1     | 0.021 |  |  |  |
| b1      | 0.38       | -                | 0.62 | 0.015  | -     | 0.024 |  |  |  |
| с       | 0.35       | -                | 0.44 | 0.014  | 1     | 0.017 |  |  |  |
| D       | 4.40       | 4.50             | 4.60 | 0.173  | 0.177 | 0.181 |  |  |  |
| D1      | 1.40       | -                | 1.83 | 0.055  | -     | 0.072 |  |  |  |
| Е       | 2.30       | 2.50             | 2.60 | 0.091  | 0.098 | 0.102 |  |  |  |
| e       | 1          | 1.50TYP 0.059TYP |      |        |       |       |  |  |  |
| L       | 0.65       | -                | 1.20 | 0.026  | -     | 0.047 |  |  |  |

#### **Land Pattern**



#### NOTES:

- 1. Compound dimension: 4.50×2.50;
- 2. Unit: mm;
- 3. General tolerance ±0.05mm unless otherwise specified;
- 4. The layout is just for reference.



## UM1750DA-xx: DFN6 2.0×2.0

## **Outline Drawing**



|         | DIMENSIONS |         |       |       |          |       |  |  |  |  |
|---------|------------|---------|-------|-------|----------|-------|--|--|--|--|
| Crombol | MILI       | LIMET   | TERS  | J     | INCHES   | 3     |  |  |  |  |
| Symbol  | Min        | Тур     | Max   | Min   | Typ      | Max   |  |  |  |  |
| A       | 0.55       |         | 0.80  | 0.022 | _        | 0.031 |  |  |  |  |
| A1      | 0.00       |         | 0.05  | 0.000 |          | 0.002 |  |  |  |  |
| A3      | 0          | ).20REI | F     | 0     | ).008REI | F     |  |  |  |  |
| b       | 0.25       | 0.30    | 0.35  | 0.010 | 0.012    | 0.014 |  |  |  |  |
| D       | 1.924      | 2.00    | 2.076 | 0.076 | 0.079    | 0.082 |  |  |  |  |
| D2      | 1.35       |         | 1.75  | 0.053 |          | 0.069 |  |  |  |  |
| Е       | 1.924      | 2.00    | 2.076 | 0.076 | 0.079    | 0.082 |  |  |  |  |
| E2      | 0.65       |         | 1.06  | 0.026 |          | 0.042 |  |  |  |  |
| e       | 0          | 0.65BSC |       |       |          |       |  |  |  |  |
| L       | 0.224      | _       | 0.45  | 0.009 | -        | 0.018 |  |  |  |  |

#### **Land Pattern**



#### NOTES:

- 1. Compound dimension: 2.00×2.00;
- 2. Unit: mm;
- 3. General tolerance  $\pm 0.05$ mm unless otherwise specified;
- 4. The layout is just for reference.



#### **GREEN COMPLIANCE**

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat code=RoHSDeclaration

#### **IMPORTANT NOTICE**

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.



Union Semiconductor, Inc

Add: Unit 606, No.570 Shengxia Road, Shanghai 201210

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com