

LECTURE 4

Pandas Bootcamp: Part 2

Advanced Pandas (Aggregation, Merging)

CSCI 3022 @ CU Boulder

Maribeth Oscamou

Content credit: Acknowledgments

Lesson Learning Objectives:

- Recognize situations where aggregation is useful and identify the correct technique for performing an aggregation
- Define primary keys vs foreign keys; perform merges on DataFrames

Pandas Bootcamp Part 2

- Pandas Bootcamp Part 2:
 - Grouping
 - Joining

Plan for first 2 weeks

(Weeks 1 and 2)

EDA, Wrangling, and Data Visualization

Lesson Learning Objectives:

 Recognize situations where aggregation is useful and identify the correct technique for performing an aggregation

- Finish Pandas Bootcamp:
 - Grouping
 - Joining

Learning Objectives:

Use groupby to aggregate data

Groupby.agg

Some groupby.agg Puzzles

Why Group?

Our goal:

- Group together rows that fall under the same category.
 - o For example, group together all rows from the same year.
- Perform an operation that aggregates across all rows in the category.
 - o For example, sum up the total number of babies born in that year.

Grouping is a powerful tool to

1) perform large operations, all at once

and 2) summarize trends in a dataset.

.groupby()

A .groupby() operation involves some combination of splitting the object, applying a function, and combining the results.

- Calling .groupby() generates DataFrameGroupBy objects → "mini" sub-DataFrames
- Each subframe contains all rows that correspond to the same group (here, a particular year)

	State	Sev	Year	Name	Count			State	Sex	Year	Name	Count
	State	JUX	icai	Ivaille	Count		2	СО	F	1910	Frances	56
0	СО	F	2008	Brittany	5		4	СО	F	1910	Marie	32
1	СО	F	2015	Emma	355			State	Sex	Year	Name	Count
2	CO	F	1910	Frances	56	.groupby("Year")	0	СО	F			
3	СО	F	2008	Galilea	6		3	СО		2008	Galilea	
4	СО	F	1910	Marie	32			State	Sex	Year	Name	Count
5	СО	F	2015	Olivia	348		1	со	F	2015	Emma	355
							5	СО	F	2015	Olivia	348
	_						-					
			Original	DataFram	е				Gro	oupBy	Object	

.groupby().agg()

- We cannot work directly with DataFrameGroupBy objects! The diagram below is to help understand what goes on conceptually - in reality, we can't "see" the result of calling .groupby.
- Instead, we transform a DataFrameGroupBy object back into a DataFrame using .agg . agg is how we apply an aggregation operation to the data.

Year Name Count State 2008 Brittany CO 2015 Emma 355 CO 1910 Frances 2 56 Galilea CO F 2008 CO 1910 Marie 32 2015 CO Olivia 348 Original DataFrame

babynames temp.groupby("Year") Name Count Frances 56 F 1910 CO Marie 32 Year Name Count 2008 Brittany 5 2008 Galilea 6 Name Count 355 2015 Emma CO F 2015 Olivia 348 GroupBy Object

.agg({"Count":"sum"}) or [["Count"]].agg(sum) Count Year 1910 88 2008 11 2015 703 Output DataFrame Index of output is the col you

grouped on

A Note on Nuisance Columns

	State	Sex	Year	Name	Count
0	со	F	2008	Brittany	5
1	со	F	2015	Emma	355
2	co	F	1910	Frances	56
3	co	F	2008	Galilea	6
4	со	F	1910	Marie	32
5	co	F	2015	Olivia	348

babynames_temp.groupby("Year").agg({"Count":"sum"})
babynames_temp.groupby("Year")[["Count"]].agg(sum)

Count
88
11
703

If you don't specify the column to aggregate, the aggregation function will be applied to all columns:

babynames_temp.groupby("Year").agg(sum)

	State	Sex	Name	Coun
Year				
1910	coco	FF	FrancesMarie	88
2008	coco	FF	BrittanyGalilea	1
2015	coco	FF	EmmaOlivia	703

If the aggregation function can't be applied to all columns it results in a TypeError.

babynames_temp.groupby("Year").agg(mean)

Aggregation Functions

What goes inside of .agg()?

• Any function that aggregates several values into one summary value. Common examples:

Built-in Python Functions	NumPy Functions	Built-In panda functions	as
<pre>.agg(sum) .agg(max) group</pre>	<pre>.agg(np.sum) .agg(np.max)</pre>	<pre>.agg("sum") .agg("max")</pre>	Returns sum of each col in each group Returns max of each col in each
.agg(min) group	<pre>.agg(np.min)</pre>	.agg("min")	Returns min of each col in each
	.agg(np.mean)	.agg("first"	Returns mean of each col in each group)Returns first/last non-null entry in g("last") each group for each column) Returns counts of non-null values in

each col of each group
.agg("size")

You can also define your own function!

babynames.groupby("Year").mean()

Reconstitutions for the state of the state o

@030

groupby.size()

@036

groupby.first()

The "first" row in each sub-DataFrame depends on how the original DataFrame is sorted:

```
State Sex
                                                                                                      Name Count
babynames_temp.sort_values(by="Count").groupby("Year").first()
                                                                                     Year
                                                                                            CO
                                                                                                             32.0
                                                                                     1910
                                                                                                      Marie
                                                                                     2008
                                                                                            CO
                                                                                                  F Brittany
                                                                                                              5.0
                                                                                     2015
                                                                                            CO
                                                                                                      Olivia
                                                                                                            348.0
```


Aggregating the Same Column Using Multiple Aggregation Functions

babynames_temp.groupby("Year").agg({"Count":[max, min, sum]})

	State	Sex	Year	Name	Count		
0	СО	F	2008	Brittany	5		
1	СО	F	2015	Emma	355		
2	CO	F	1910	Frances	56		
3	СО	F	2008	Galilea	6		
4	СО	F	1910	Marie	32		
5	СО	F	2015	Olivia	348		
Original DataFrame							

Aggregating Different Columns Using Different Functions

babynames_temp.groupby("Year").agg({"Count":max, "Name":min})

	State	Sex	Year	Name	Count		
0	СО	F	2008	Brittany	5		
1	СО	F	2015	Emma	355		
2	СО	F	1910	Frances	56		
3	СО	F	2008	Galilea	6		
4	СО	F	1910	Marie	32		
5	СО	F	2015	Olivia	348		
	Original DataFrame						

	Count	Name
Year		
1910	56	Frances
2008	6	Brittany
2015	355	Emma

.rename(columns={"Count":"MaxCount", "Name":"MinName"})

Notice, the column names don't
indicate how they've been
aggregated.

	MaxCount	MinName
Year		
1910	56	Frances
2008	6	Brittany
2015	355	Emma

Grouping by Multiple Columns

Suppose we want to build a table showing the total number of babies born of each sex in each year. One way is to **groupby** using both columns of interest:

Learning Objectives:

Use groupby to aggregate data

- Groupby.agg
- Some groupby.agg Puzzles

Groupby.agg

Groupby Puzzle 1

Goal: Find the baby name with sex "F" that has fallen in popularity the most.

```
f_babynames = babynames[babynames["Sex"] == "F"]
f_babynames = f_babynames.sort_values(["Year"])
jenn_counts_series = f_babynames[f_babynames["Name"] == "Jennifer"]["Count"]
```

Number of Jennifers Born in Colorado Per Year

What Is "Popularity"?

Goal: Find the baby name with sex "F" that has fallen in popularity the most.

How do we define "fallen in popularity?"

- Let's create a metric: "ratio to peak" (RTP).
- The RTP is the ratio of babies born with a given name in the year of the most recent data
 we have for that name to the maximum number of babies born with that name in any
 year.

Example for "Jennifer":

- In 1977, we hit peak Jennifer: 866 Jennifers were born.
- In 2022, there were only 8 Jennifers.
- RTP is 8 /866 = 0.00923...

Calculating RTP

def ratio to peak(series):

```
max_jenn = max(f_babynames[f_babynames["Name"] == "Jennifer"]["Count"])
866

curr_jenn = f_babynames[f_babynames["Name"] == "Jennifer"]["Count"].iloc[-1]
8

Remember: f_babynames is sorted by year.
.iloc[-1] means "grab the latest year"

0.009237875288683603
```

```
return series.iloc[-1] / max(series)

jenn_counts_ser = f_babynames[f_babynames["Name"] == "Jennifer"]["Count"]
ratio_to_peak(jenn_counts_ser)
0.009237875288683603
```


Calculating RTP Using .groupby()

.groupby() makes it easy to compute the RTP for all names at once!

```
rtp_table = f_babynames.groupby("Name")[["Year", "Count"]].agg(ratio_to_peak)
```

	Count	Year
Name		
Aadhya	1.000000	1.0
Aaliyah	0.523256	1.0
Aanya	1.000000	1.0
Aaralyn	0.714286	1.0
Aarna	1.000000	1.0
Zora	1.000000	1.0
Zoya	1.000000	1.0
Zuleyka	1.000000	1.0
Zuri	1.000000	1.0
Zyla	1.000000	1.0
0500	0	

3568 rows x 2 columns

Poll

In the 10 rows shown, note the Year is 1.0 for every value.

Are there any rows for which Year is **not** 1.0?

- A. Yes, names that appeared for the first time in 2022.
- B. Yes, names that did not appear in 2022.
- C. Yes, names whose peak Count was in 2022.
- D. No, every row has a Year value of 1.0.

	Count	Year
Name		
Aadhya	1.000000	1.0
Aaliyah	0.523256	1.0
Aanya	1.000000	1.0
Aaralyn	0.714286	1.0
Aarna	1.000000	1.0
Zora	1.000000	1.0
Zoya	1.000000	1.0
Zuleyka	1.000000	1.0
Zuri	1.000000	1.0
Zyla	1.000000	1.0
0500	0 - 1	

3568 rows x 2 columns

Answer

In the five rows shown, note the Year is 1.0 for every value.

Are there any rows for which Year is **not** 1.0?

- A. Yes, names that appeared for the first time in 2022.
- B. Yes, names that did not appear in 2022.
- C. Yes, names whose peak Count was in 2022.
- D. No, every row has a Year value of 1.0.

	Count	Year
Name		
Aadhya	1.000000	1.0
Aaliyah	0.523256	1.0
Aanya	1.000000	1.0
Aaralyn	0.714286	1.0
Aarna	1.000000	1.0
Zora	1.000000	1.0
Zoya	1.000000	1.0
Zuleyka	1.000000	1.0
Zuri	1.000000	1.0
Zyla	1.000000	1.0
0500	0 - 1	

3568 rows x 2 columns

A Note on Nuisance Columns

At least as of the time of this slide creation, executing our agg call results in a TypeError.

f_babynames.groupby("Name").agg(ratio_to_peak)

A Note on Nuisance Columns

Below, we explicitly select the column(s) we want to apply our aggregation function to **BEFORE** calling agg. This avoids the warning (and can prevent unintentional loss of data).

```
rtp_table = f_babynames.groupby("Name")[["Count"]].agg(ratio_to_peak)
```

	Count
Name	
Aadhya	1.000000
Aaliyah	0.523256
Aanya	1.000000
Aaralyn	0.714286
Aarna	1.000000
Zora	1.000000
Zoya	1.000000
Zuleyka	1.000000
Zuri	1.000000
Zyla	1.000000

Renaming Columns After Grouping

By default, **.groupby** will not rename any aggregated columns (the column is still named "Count", even though it now represents the RTP.

For better readability, we may wish to rename "Count" to "Count RTP"

```
rtp_table = female_babynames.groupby("Name")[["Count"]].agg(ratio_to_peak)
rtp_table = rtp_table.rename(columns = {"Count": "Count RTP"})
```


Some Data Science Payoff

By sorting rtp_table we can see the names whose popularity has decreased the most.

rtp_table.sort_values("Count RTP")

	Count RTP
Name	
Linda	0.006750
Debra	0.007728
Amanda	0.007974
Jennifer	0.009238
Patricia	0.010309
Julietta	1.000000
Juliann	1.000000
Jules	1.000000
Kaida	1.000000
Zyla	1.000000

3568 rows x 1 columns

Groupby Puzzle 1: Some Data Science Payoff

By sorting rtp_table we can see the names whose popularity has decreased the most.

rtp_table.sort_values("Count RTP")

Some Data Science Payoff

We can get the list of the top 10 names and then plot popularity with::

Practice! GroupBy Puzzle 2

a). Write code to compute the total number of babies with each name.

b). Write code to compute the total number of babies born each year.

Answer: Part A

Before, we saw that the code below generates the Count RTP for all female names.

```
babynames.groupby("Name")[["Count"]].agg(ratio_to_peak)
```

We use similar logic to compute the summed counts of all baby names.

Count
Count
65
10
1469
5
12
5
112
35
11
10

Answer: Part B

Now, we create groups for each year.

```
Year
                                                                1910
                                                                      3609
 babynames.groupby("Year")[["Count"]].agg(sum)
                                                                1911
                                                                      3650
                          or
                                                                1912
                                                                      5884
   babynames.groupby("Year")[["Count"]].sum()
                                                                1913
                                                                      6831
                          or
                                                                1914
                                                                      8528
babynames.groupby("Year").sum(numeric_only=True)
                                                                  ...
                                                                2018
                                                                    48008
                                                                    47736
                                                                2019
                                                                    46548
                                                               2020
                                                                2021 47815
                                                               2022
                                                                    47048
```

Count

Plotting Birth Counts

Plotting the **DataFrame** we just generated tells an interesting story.

```
puzzle2 = babynames.groupby("Year")[["Count"]].agg(sum)
px.line(puzzle2, y = "Count")
```


A Word of Warning!

We made an enormous assumption when we decided to use this dataset to estimate the birth rate.

- According to <u>https://cohealthviz.dphe.state.co.us/t/HealthInformaticsPublic/views/COHIDLiveBirthsDashboard/LiveBirthStatistics</u> the true number of babies born in Colorado in 2020 was 61,496 but our plot shows 46,548 babies.
- What happened?

Recall: Exploratory Data Analysis and Visualization

- How is our data organized and what does it contain?
- Do we already have relevant data?
- What are the biases, anomalies, or other issues with the data?
- How do we transform the data to enable effective analysis?

Bottom line: Blindly using tools is dangerous!

Recall: Exploratory Data Analysis and Visualization

What are the biases, anomalies, or other issues with the data?

- The database does not include names of popularity less than 5 per year
- Not all babies register for social security.

Lesson Learning Objectives:

- Recognize situations where aggregation is useful and identify the correct technique for performing an aggregation
- Define primary keys vs foreign keys; perform merges on DataFrames

- Finish Pandas Bootcamp:
 - Grouping
 - Joining

Joining DataFrames

Suppose want to know how many babies born in Colorado in 2023 share a name with a former US president.

To solve this problem, we'll have to join DataFrames

Structure: Primary Keys and Foreign Keys

Customers.csv

8/21/2017

8/30/2017

Sometimes your data comes in multiple files:

- Often data will reference other pieces of data.
- Alternatively, you will collect multiple pieces of related data.

Use <u>.merge()</u> to **join** data on **keys**.

	<u>CustID</u>	Addr
	171345	Harmon
	281139	Main
		Orders.csv
<u>OrderNum</u>	<u>CustID</u>	Date

Products.csv

171345

281139

ProdID	Cost				
42	3.14				
999	2.72				

Purchases.csv

<u>OrderNum</u>	ProdID	Quantity
1	42	3
1	999	2
2	42	1

Structure: Primary Keys and Foreign Keys

Sometimes your data comes in multiple files:

- Often data will reference other pieces of data.
- Alternatively, you will collect multiple pieces of related data.

Use <u>.merge()</u> to join data on **keys**.

Primary key: the column or set of columns in a table that *uniquely* determine the values in the remaining columns

- Primary keys are unique, but could be tuples.
- Examples: SSN, ProductIDs, ...

I filliary IXCy	GUSTOTTICIS.CSV				
	<u>CustID</u>	Addr			
	171345	Harmon			
Primary Key	281139	Main			
		Orders.csv			
<u>OrderNum</u>	<u>CustID</u>	Date			
1	171345	8/21/2017			
2	281139	8/30/2017			

Primary Key

Products.csv
ProdID Cost
42 3.14
999 2.72

Customers csv

	F	Purchases.csv
<u>OrderNum</u>	ProdID	Quantity
1	42	3
1	999	2
2	42	1

Primary Key

Structure: Primary Keys and Foreign Keys

Sometimes your data comes in multiple files:

- Often data will reference other pieces of data.
- Alternatively, you will collect multiple pieces of related data.

Use <u>.merge()</u> to join data on **keys**.

Primary key: the column or set of columns in a table that determine the values of the remaining columns

- Primary keys are unique, but could be tuples.
- Examples: SSN, ProductIDs, ...

Foreign keys: the column or sets of columns that reference primary keys in other tables.

Primary Ney			มอเ	Storriers.csv		
	7	<u>CustID</u>		Addr		
		171345		Harmon		
		281139		Main		
Foreign Key						
religitive			(Orders.csv		
	Cu	stID		Orders.csv ate		
OrderNum 1		<u>stID</u> 1345	Da	ate		
<u>OrderNum</u>	17	stID 1345 1139	D :			

Cuctomore cev

Producte cev

Drimary Kay

	1 10000000
ProdID	Cost
42	3.14
999	2.72
	Purchases.csv

		Purchases.csv
<u>OrderNum</u>	ProdID	Quantity
1	42	3
1	999	2
2	42	1

Merging on columns

Basic syntax for joining two dataframes df and df2

The default setting is Inner Join (so it will only keep the rows that have matching keys in both dataframes).

Merging - More options

- · left: A DataFrame object
- right: Another DataFrame object
- on: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and left_index and right_index are False, the intersection of the columns in the DataFrames will be inferred to be the join keys
- left_on: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- right_on: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- left_index: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a
 DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the
 right DataFrame
- right_index: Same usage as left_index for the right DataFrame
- how: One of 'left', 'right', 'outer', 'inner'. Defaults to inner. See below for more detailed description of each method
- sort: Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False will improve performance substantially in many cases
- suffixes: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y').
- copy: Always copy data (default True) from the passed DataFrame objects, even when reindexing is not
 necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases
 where copying can be avoided are somewhat pathological but this option is provided nonetheless.
- indicator: Add a column to the output DataFrame called _merge with information on the source of each row.
 _merge is Categorical-type and takes on a value of left_only for observations whose merge key only appears in 'left' DataFrame, right_only for observations whose merge key only appears in 'right' DataFrame, and both if the observation's merge key is found in both.

Joining Tables: Types of Joins

- inner: the default join type in Pandas merge() function and it produces records that have matching values in both DataFrames
- left: produces all records from the left DataFrame and the matched records from the right DataFrame
- right: produces all records from the right DataFrame and the matched records from the left DataFrame
- outer: produces all records when there is a match in either left or right DataFrame

Joining Tables

	id	age	sex
0	2	31	F
1	3	20	М
2	4	40	М
3	5	70	F

Creating Table 1: Babynames in 2023

babynames_temp.groupby("Year"):

babynames_2023 = babynames[babynames["Year"] == 2023]
babynames_2023

	State	Sex	Year	Name	Count
63786	СО	F	2023	Charlotte	288
63787	CO	F	2023	Olivia	265
63788	CO	F	2023	Sophia	212
63789	СО	F	2023	Emma	211
63790	CO	F	2023	Amelia	200
63791	CO	F	2023	Mia	200
63792	CO	F	2023	Evelyn	187
63793	СО	F	2023	Isabella	174
63794	CO	F	2023	Harper	169
63795	CO	F	2023	Ava	153

Creating Table 2: Presidents with First Names

To join our table, we'll also need to set aside the first names of each candidate.

	Year	Candidate	Party	Popular vote	Result	%	First Name
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122	Andrew
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878	John
2	1828	Andrew Jackson	Democratic	642806	win	56.203927	Andrew
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073	John
4	1832	Andrew Jackson	Democratic	702735	win	54.574789	Andrew
177	2016	Jill Stein	Green	1457226	loss	1.073699	Jill
178	2020	Joseph Biden	Democratic	81268924	win	51.311515	Joseph
179	2020	Donald Trump	Republican	74216154	loss	46.858542	Donald
180	2020	Jo Jorgensen	Libertarian	1865724	loss	1.177979	Jo
181	2020	Howard Hawkins	Green	405035	loss	0.255731	Howard

182 rows x 7 columns

Joining Our Tables: Two Options

	Year_x	Candidate	Party	Popular vote	Result	%	First Name	First_Name	State	Sex	Year_y	Name	Count
0	2020	Joseph Biden	Democratic	81268924	win	51.311515	Joseph	Joseph	со	М	2023	Joseph	87
1	2020	Donald Trump	Republican	74216154	loss	46.858542	Donald	Donald	со	М	2023	Donald	8
2	2016	Donald Trump	Republican	62984828	win	46.407862	Donald	Donald	со	М	2023	Donald	8
3	2020	Howard Hawkins	Green	405035	loss	0.255731	Howard	Howard	со	М	2023	Howard	7
4	1996	Howard Phillips	Taxpayers	184656	loss	0.192045	Howard	Howard	со	М	2023	Howard	7

Supporting Materials

Supporting Materials:

GroupBy Practice

Back to the Elections Dataset

 For the next practice problems, we'll be working with the elections dataset that we practiced with when first introducing Pandas:

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073
4	1832	Andrew Jackson	Democratic	702735	win	54.574789

More on DataFrameGroupby Object

We can look into DataFrameGroupby objects in following ways:

```
grouped_by_party = elections.groupby("Party")
grouped_by_party.groups
```

```
{'American': [22, 126], 'American Independent': [115, 119, 124], 'Anti-Masonic': [6], 'Anti-Monopoly': [38], 'Citiz
ens': [127], 'Communist': [89], 'Constitution': [160, 164, 172], 'Constitutional Union': [24], 'Democratic': [2, 4,
8, 10, 13, 14, 17, 20, 28, 29, 34, 37, 39, 45, 47, 52, 55, 57, 64, 70, 74, 77, 81, 83, 86, 91, 94, 97, 100, 105, 10
8, 111, 114, 116, 118, 123, 129, 134, 137, 140, 144, 151, 158, 162, 168, 176, 178], 'Democratic-Republican': [0,
1], 'Dixiecrat': [103], 'Farmer-Labor': [78], 'Free Soil': [15, 18], 'Green': [149, 155, 156, 165, 170, 177, 181],
'Greenback': [35], 'Independent': [121, 130, 143, 161, 167, 174], 'Liberal Republican': [31], 'Libertarian': [125,
128, 132, 138, 139, 146, 153, 159, 163, 169, 175, 180], 'National Democratic': [50], 'National Republican': [3, 5],
'National Union': [27], 'Natural Law': [148], 'New Alliance': [136], 'Northern Democratic': [26], 'Populist': [48,
61, 141], 'Progressive': [68, 82, 101, 107], 'Prohibition': [41, 44, 49, 51, 54, 59, 63, 67, 73, 75, 99], 'Reform':
[150, 154], 'Republican': [21, 23, 30, 32, 33, 36, 40, 43, 46, 53, 56, 60, 65, 69, 72, 79, 80, 84, 87, 90, 96, 98,
104, 106, 109, 112, 113, 117, 120, 122, 131, 133, 135, 142, 145, 152, 157, 166, 171, 173, 179], 'Socialist': [58, 6
2, 66, 71, 76, 85, 88, 92, 95, 102], 'Southern Democratic': [25], 'States' Rights': [110], 'Taxpayers': [147], 'Uni
on': [93], 'Union Labor': [42], 'Whig': [7, 9, 11, 12, 16, 19]}
```

grouped_by_party.get_group("Socialist")

	Year	Candidate	Party	Popular vote	Result	%
58	1904	Eugene V. Debs	Socialist	402810	loss	2.985897
62	1908	Eugene V. Debs	Socialist	420852	loss	2.850866
66	1912	Eugene V. Debs	Socialist	901551	loss	6.004354
71	1916	Allan L. Benson	Socialist	590524	loss	3.194193

Why does the table seem to claim that Woodrow Wilson won the presidency in 2020?

elections.groupby("Party").agg(max).head(10)

	Year	Candidate	Popular vote	Result	%
Party					
American	1976	Thomas J. Anderson	873053	loss	21.554001
American Independent	1976	Lester Maddox	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2016	Michael Peroutka	203091	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.639283
Democratic	2020	Woodrow Wilson	81268924	win	61.344703
Democratic-Republican	1824	John Quincy Adams	151271	win	57.210122

Why does the table seem to claim that Woodrow Wilson won the presidency in 2020?

Every column is calculated independently! Among Democrats:

- Last year they ran: 2020
- Alphabetically latest candidate name: Woodrow Wilson
- Highest % of vote: 61.34

elections.groupby("Party").agg(max).head(10)

	Year	Candidate	Popular vote	Result	%
Party					
American	1976	Thomas J. Anderson	873053	loss	21.554001
American Independent	1976	Lester Maddox	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2016	Michael Peroutka	203091	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.63928
Democratic	2020	Woodrow Wilson	81268924	win	61.34470
Democratic-Republican	1824	John Quincy Adams	151271	win	57.21012

Try to write code that returns the table below.

- Each row shows the best result (in %) by each party.
 - o For example: Best Democratic result ever was Johnson's 1964 win.

	Year	Candidate	Popular vote	Result	%
Party					
American	1856	Millard Fillmore	873053	loss	21.554001
American Independent	1968	George Wallace	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2008	Chuck Baldwin	199750	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.639283
Democratic	1964	Lyndon Johnson	43127041	win	61.344703

Try to write code that returns the table below.

- First sort the DataFrame so that rows are in descending order of %.
- Then group by Party and take the first item of each series.

```
elections_sorted_by_percent = elections.sort_values("%", ascending=False)
elections_sorted_by_percent.groupby("Party").first()
```

	Year	Candidate	Party	Popular vote	Result	%
114	1964	Lyndon Johnson	Democratic	43127041	win	61.344703
91	1936	Franklin Roosevelt	Democratic	27752648	win	60.978107
120	1972	Richard Nixon	Republican	47168710	win	60.907806
79	1920	Warren Harding	Republican	16144093	win	60.574501
133	1984	Ronald Reagan	Republican	54455472	win	59.023326

Groupby Puzzle #4 - Alternate Approaches

Using a lambda function

```
elections_sorted_by_percent = elections.sort_values("%", ascending=False)
elections_sorted_by_percent.groupby("Party").agg(lambda x : x.iloc[0])
```

Using idxmax function

```
best_per_party = elections.loc[elections.groupby("Party")["%"].idxmax()]
```

Using drop_duplicates function

best per party2 = elections.sort values("%").drop_duplicates(["Party"], keep="last")

There's More Than One Way to Find the Best Result by Party

In Pandas, there's more than one way to get to the same answer.

- Each approach has different tradeoffs in terms of readability, performance, memory consumption, complexity, etc.
- Takes a very long time to understand these tradeoffs!
- If you find your current solution to be particularly convoluted or hard to read, maybe try finding another way!

A fun little data science personal project?

 Are there enough unique baby names in recent years to skew these data significantly?

How would you test that?

FAMILY

The Age of the Unique Baby Name

Parents used to want kids to fit in. Now they want them to stand out.

By Joe Pinsker

Sign In