09/384,351 Page 2

element of the claim must be described, either expressly or inherently, in a single prior art reference (M.P.E.P. §2131, quoting from *Verdegaal Bros. v. Union Oil Co. of California*, 814 F.2d 628, 621 (Fed. Cir. 1987)). As acknowledged previously by the USPTO, LAUBE does not expressly describe Applicants' tire bead area compound. The USPTO therefore relies on KITAHARA as evidence that tire inner liner compositions may be used interchangeably with tire bead filler compositions.

Applicants disagree with the USPTO's interpretation of col. 5, lines 3-6 of KITAHARA. The paragraph of KITAHARA cited from by the USTPO begins as follows:

"Since a compound of the modified rubber obtained by the method of this invention has excellent green strength in the unvulcanized state and excellent dynamic properties such as tear strength, fatigue resistance and rebound after vulcanization, it is useful as the carcasses, treads, side walls, bead fillers and inner liners of vehicle tires, ..."

Some tire compounding ingredients may be present in rubber compounds to be used for different tire components, at the same or in varying amounts. However, each rubber composition used for a specific tire component will be highly engineered for that component. Evidence that a functional polymer may broadly have application in different rubber compositions does not support the contention that the inner liner compositions of LAUBE inherently disclose Applicants' bead filler compositions.

As evidence of Applicants' assertions, Applicants point to the inner liner compositions and properties disclosed in LAUBE, and the formulations and properties disclosed in Applicants specification. These compositions vary in ingredients and amounts, resulting in different physical properties for the inner liner versus the bead filler compositions. Most notably, Applicants wish to point out the differences in Mooney Viscosity, Modulus/Elongations (Applicants' compounds report breakage at slightly greater than 300% elongation) and rebound.

As additional evidence of the differences in composition and physical properties between the two compounds, Applicants' submit exemplary inner liner and bead filler formulations, and physical properties thereof (*The Rubber Formulary*, Ciullo, Peter, 1999 pp. 78, 195-197). These compounds differ both in formulation and ingredients, as well as physical properties. Specifically interesting are the differences

09/384,351 Page 3

in hardness and elongation at break. Applicants believe that this additional reference serves as evidence that tire inner liner and bead filler compounds are not interchangeable, and that the use of a tire inner liner composition as a bead filler composition cannot be inherent in a reference that only discloses the use of such composition as an inner liner.

Conclusion

Applicants respectfully request reconsideration of the pending claims.

Applicants attorney further requests a telephone interview to discuss the pending office action at the Examiner's convenience.

Respectfully Submitted By:

Date

Bridgestone Americas Holding, Inc.

1200 Firestone Parkway Akron, Ohio 44317-0001

Telephone: (330) 379-6543 Facsimile: (330) 379-4064 Meredith E. Palmer

Registration No. 47,839

BEST AVAILABLE C

Copyright © 1999 by Peter A. Ciulio and Norman Hewitt No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the Publisher. Library of Congress Catalog Card Number: 99-26196 ISBN: 0-8155-1434-4 Printed in the United States

Published in the United States of America by Noyes Publications/William Andrew Publishing, LLC 13 Eaton Avenue, Norwich, New York 13815

10987654321

BEST AVAILABLE COPY

CIP

Library of Congress Cataloging-in-Publication Data

Ciullo, Peter A., 1954-

The rubber formulary / by Peter A. Ciullo and Norman Hewitt.

Includes bibliographical references. ISBN 0-8155-1434-4

1. Rubber chemistry. 2. Chemistry, Technical--Formulas, receipts, prescriptions. I. Hewitt, Norman. II. Title. TS1890.C58 1999 678' .2--dc21 99-26196

THE RUBBER FORMULARY

BEST AVAILABLE COPY

by

Peter A. Ciullo
R.T. Vanderbilt Company, Inc.
Norwalk, Conntecticut

Norman Hewitt
PPG Industries, Inc.
Pittsburgh, Pennsylvania

BEST AVAILABLE

THE RUBBER FORMULARY

Kilocycles (kc) to failure

П

TIRE BEAD FILLER/APEX CO Uniroyal			
Naugard® Q		2.0	***
Novazone® AS			2.0
Natural Rubber	100.0	100.0	100.0
Phenol Formaldehyde Resin	10.0	10.0	10.0
N-351 Black	55.0	55.0	55.0
Aromatic Oil	5.0	5.0	5.0
Zinc Oxide	10.0	10.0	10.0
Stearic Acid	2.0	2.0	2.0
SP 6700 Resin	2.0	2.0	2.0
Bonding Agent M3P	2.0	2.0	2.0
Delac [®] NS	0.6	0.6	0.6
Benzyl Tuex® (TBzTD)	0.25	0.25	0.25
CPT (vulcanization inhibitor)	0.25	0.25	0.25
Insoluble Sulfur, 80% Oiled	5.0	5.0	5.0
Mooney Viscosity			5.0
ML (1+4) @ 100°C	49	51	52
Mooney Scorch, MS @ 132°C			<u>JZ</u>
3 pt Rise, minutes	15.9	16.3	15.1
Physical Properties at Room Temp	erature		13.1
Press Cured 10 minutes @ 177°C		•	
Tensile Strength, MPa	15.7	16.2	177
Elongation, %	370	350	17.7
200% Modulus, MPa	8.1	8.3	450
300% Modulus, MPa	13.1	13.7	9.7
Hardness, Shore A	84	85	13.4
Tear, Die C, kN/m	39	40	87 37
Oven Aging, 2 Days @ 100°C, % Re	etention	10	37
Tensile Strength	49	59	74
Elongation	26	39	74 27
Hardness, points change	+6	+5	27 1
Tear, Die C	52	61	+1
Oven Aging, 2 Weeks @ 70°C, % Re	etention	01	62
lensile Strength	61	73	77
Elongation	31	40	77 33
Hardness, points change	+5	+5	33 1
Tear, Die C	59	65	+1 71
DeMattia Flexing - Unaged		0.5	71
Kilocycles (kc) to failure	0		

Natural Black 1 Zinc O: Stearic Naphth Cobalt: Bondin; Flexzor **HMMN DCBS** 80% In: Mooney ML (1+ Mooney MS @ 1 3 pt. Ris Cureme ts2, min tc90, mi ML, dN: MH, dN Physical Press C Tensile (Elongati 300% M Hardnes: Tear, Die

TIRE]

Uniroyal

8

12

84

INNERLINERS BEST AVAILABLE COPY

R.T. Vanderbilt

R.T. Vanderbilt			
	1	2	3
Chlorobutyl 1065	100.0	80.0	
Chlorobutyl 1066		70-	60.0
Natural Rubber	***	20.0	25.0
Plioflex 1778			20.6
N-660 GPF Black	60.0	55.0	
N-330 HAF Black			40.0
Whiting (OMYA)		***	40.0
Phenol-Formaldehyde Resin	4.0	8.0	4.0
Struktol 40 MS	7.0	10.0	
Naphthenic Oil	8.0		10.0
Stearic Acid	2.0	2.0	1.0
Magnesium Oxide	0.15		0.5
Zinc Oxide	3.0	3.0	3.0
Sulfur	0.5	0.5	
ALTAX	1.5	1.5	1.0
Vultac 5			1.3
METHYL TUADS		***	0.25
Mooney Viscosity at 100°C, ML			
1+4 Minute Reading	43	52	54
Mooney Scorch, MS			
Minutes to 3 Pt. Rise, 135°C	. 12	12	-
Minutes to 5 Pt. Rise, 121°C			15
Original/After Aging 3 Days at 12	25°C in Air		
Cure Time, Minutes at 160°C	25	25	20
Shore A Hardness	55/74	63/76	55
300% Modulus, MPa	3.2/8.3	3.6/6.8	5.2
Tensile Strength, MPa	8.1/8.6	10.8/8.7	11.1
Elongation, %	860/330	850/510	520
Tear Strength, kN/m at 100°C	27	25	28
Air Permeability, 66°C			
$Q \times 10^3$	3.0	6.0	8.2
General Purpose Rubber Carcass A	Adhesion, 100		
kN/m	4.4 1*	15.0 S/1*	-
*S denotes stock tearing; 1 denotes	s interfacial se	paration	
Monsanto Fatigue-to-Failure			
Extension, %	140	140	100
Kilocycle to Failure	415	434	236
			200

THE RUBBER FORMULARY

BEST AVAILABLE COPY

INN

Cont

Static

* = S

Perm

cm³.c

Wate

g.cm.

INNERLINER R.T. Vanderbilt

Exxon Bromobutyl 2255	
Carbon Black GPF (N-660)	100.0
Flexon 876	50.0
Stearic Acid	8.0
Maglite D	2.0
Mineral Rubber	0.5
Sulfur	7.0
ALTAX	0.5
Mooney Viscosity at 100°C	1.5
1+8 Min. Reading	
Mooney Scorch at 135°C	65
Min. to 5 Pt. Rise	
Rheometer at 150°C	22
ML/MH, lb/in	
tc90, Min.	18/44
Monsanto Tel-Tak, kPa (30 s, 16 oz.)	37
• To Self	
To 100% NR Carcass	240
To 50/50 NR/SBR Carcass	125
• To 25/75 NR/BR Chafer	80
Green Strength, MPa x 10 ⁻²	85
Decay Time to 50% of Initial Stress, s	27
Press Cured Tc90 Minute at 150°C	32
Initial/After Aging 2 Days -1 10505	
Initial/After Aging 3 Days at 125°C in Air Hardness, Shore A	
100% Modulus, MPa	44/48
300% Modulus, MPa	1.1/1.5
Tensile Strength, MPa	3.7/4.8
Elongation at Break, %	11.8/10.4
Tear Strength, kN/m	756/687
Monsanto Fatigue-to-Failure	40/36
K cycles, 140% Extension	
Mean	
Range	40
	25-55
•	

BUTYL & HALOBUTYL

INNERLINER Continued

100.0

50.0 8.0 2.0

0.5

7.0 0.5

1.5

65

22

37

240

125

80

85 27

32

44/48 1.1/1.5 3.7/4.8 8/10.4 56/687 40/36

> 40 25-55

18/44

Static Peel Adhesion to 100% NR Carcass, kN/m * = Separation with stock tearing	35*
Permeability to Air at 65°C	3.0
Water Vapor Permeability at 65°C g.cm.cm ⁻² .h ⁻¹ .atm ⁻¹ .10 ⁻⁶	2.5

BEST AVAILABLE 60PY