

Virtual Ground Circuit

Active Lowpass Filter

Vref is the reference voltage from the virtual ground circuit which is 2.5V

We are using an input signal of $100mV_{p-p}$

The active filter can go up to input signal of $150mV_{p-p}$

On higher voltage then 150mV output starts clipping.

Simulation

- Input and Output comparison below the cutoff frequency.
- At cursor 1 channel A and channel B is -100 mV and 904 mV

•
$$\frac{904}{100}$$
 = 9.04 = $gain$

Simulation

- Input and Output comparison at the cutoff frequency.
- Phase shift is visible in the plot as the peaks mismatch.

•
$$\frac{653}{100}$$
 = 6.53 = $gain$

• About 3dB loss.

Simulation

- Input and Output comparison above the cutoff frequency.
- $\frac{56}{100}$ = 0.56 = gain

Frequency Analysis

- At the cutoff frequency, a filter have a -3dB loss.
- Our active filter have a gain of 9.
- For gain of 9 we have a magnitude of 19dB.
- Thus, at the cutoff frequency we will have a: $19 3 = 16dB \ at \ 30Hz$

	V(PR1)
x l	30.0696
yl	16.3329
x 2	1.6547
y2	19.2312

