KUIS 1

Mata kuliah : Statistika Nonparametrik

Kode mata kuliah : MAS245

Program Studi : Teknologi Sains Data Hari / Tanggal : Kamis, 12 Oktober 2023

Waktu : 60 menit Sifat : open book

Dosen pengampu : Ratih Ardiati Ningrum, S.Si., M.S., M.Stat.

Dr. Dwi Rantini, S.Si. Septia Devi P. Y., S.Si.

Ketentuan kuis:

kuis dikerjakan mandiri

- durasi pengerjaan kuis 60 menit
- NIM ganjil mengerjakan soal nomor ganjil
- NIM genap mengerjakan soal nomor genap
- ❖ jawaban ditulis tangan secara lengkap lalu di scan dan dikumpulkan dalam format pdf ke hebat e-learning
- lembar jawaban kuis diberi nama, nim, dan ttd mahasiswa di pojok kanan atas
- ❖ tools dapat dimanfaatkan untuk membantu penghitungan

Soal:

1. Jennie melaporkan penelitian tentang skor-skor daya tahan (*endurance scores*) untuk sejumlah hewan yang dikucilkan selama 48 jam. Dengan elektroda-elektroda yang ditanam dalam hipotalamus, median skor yang dihasilkan adalah 97,5. Andaikan eksperimen itu ditiru di sebuah laboratorium lain terhadap 12 ekor hewan, namun dengan elektroda-elektroda yang ditanam dalam otak bagian depan. Skor-skor daya tahan yang teramati oleh para peneliti itu tampak seperti dalam tabel berikut.

Tabel	1. Endur	ance sc	ores hev	van deng	gan elek	troda ya	ng ditan	amkan p	ada otal	k bagian	depan
93,6	89,1	97,7	84,4	97,8	94,5	88,3	97,5	83,7	94,6	85,5	82,6

Gunakan uji tanda sampel tunggal untuk melihat apakah para peneliti itu boleh menyimpulkan pada $\alpha = 0.05$ bahwa median *endurance scores* hewan-hewan dengan elektroda-elektroda yang ditanam dalam otak bagian depan kurang dari 97,5? Berapakah *p-value* untuk uji ini?

2. Raisa melaporkan hasil sebuah studi tentang berat tubuh para pemain bola di Universitas Airlangga antara tahun 1899 hingga 1970. Umpama sebuah sampel acak yang terdiri dari 15

pemain bola selama 10 tahun terakhir pada sebuah universitas terkenal lain memberikan data berat tubuh seperti dalam tabel berikut.

Tabel 2.	Tabel 2. Berat tubuh para pemain bola (pounds)								
Pemain	Berat tubuh	Pemain	Berat tubuh	Pemain	Berat tubuh				
1	188,0	6	223,1	11	162,0				
2	211,2	7	235,9	12	222,8				
3	170,8	8	183,9	13	174,1				
4	212,4	9	214,4	14	210,3				
5	156,9	10	221,0	15	195,2				

Dapatkah kita menyimpulkan bahwa median berat populasi yang sampelnya kita ambil ini lebih besar dari 163,5 pounds? Misalkan $\alpha = 0.05$ berapakah *p-value* untuk uji ini?

3. Dalam sebuah artikel tentang *quality control* mengetengahkan seperangkat data tipikal seperti yang tampak dalam tabel berikut. Kelompokkan masing-masing pengamatan itu berdasarkan apakah harganya lebih besar atau lebih kecil dari 1435 dan ujilah keacakan pola perolehan tersebut.

Tabel 3. Data tentang usia lampu pijar (jam) sebelum upaya pengendalian mutu dilaksanakan									
Sampel	Median	Sampel	Median	Sampel	Median	Sampel	Median		
1	1100	9	1630	17	1210	25	1300		
2	1280	10	2100	18	1620	26	1500		
3	1460	11	1210	19	1560	27	1270		
4	1350	12	1760	20	730	28	1560		
5	1060	13	2410	21	1260	29	1150		
6	1250	14	2080	22	1560	30	1940		
7	1440	15	1500	23	1770	31	840		
8	1230	16	1550	24	1160	32	1140		
						Rata-rata	1435		

4. Tabel 4 menunjukkan data persentase waktu bersinarnya matahari pada setiap siang hari yang diamati di Surabaya selama bulan November 2022. Data ini berasal dari Kementerian

Perdagangan Indonesia. Bagi dua pengamatan-pengamatan tersebut berdasarkan lebih atau kurangnya persentase waktu dari 50% dan ujilah hipotesis nol yang menyatakan bahwa pola perolehan kedua jenis data itu acak.

Tabel 4. Pers	Tabel 4. Persentase pancaran sinar matahari harian di Surabaya selama bulan November 2022								
Hari ke-	Persentase	Hari ke-	Persentase	Hari ke-	Persentase				
1	85	11	31	21	87				
2	85	12	86	22	100				
3	99	13	100	23	100				
4	70	14	0	24	88				
5	17	15	100	25	50				
6	74	16	100	26	100				
7	100	17	46	27	100				
8	28	18	7	28	100				
9	100	19	12	29	48				
10	100	20	54	30	0				

5. Hughes dan Wood- Gush menyelidiki dampak kekurangan kalsium dan natrium terhadap aktivitas ayam peliharaan. Unggas yang kekurangan natrium dan kalsium ternyata menunjukkan suatu peningkatan dalam aktivitas spontannya, yang diukur baik berdasarkan gerak keseluruhan tubuhnya maupun dari nafsu mematuknya. Tabel 5 memperlihatkan banyaknya patukan per burung yang dicatat untuk 17 ekor unggas berusia 11 minggu yang selama 22 hari diberi makan dengan gizi yang cukup, kecuali dalam hal kandungan natrium (hanya sekitar 0,004%) dan 15 ekor unggas lain sebagai kontrol atau pembanding yang diberi makan dengan kandungan natrium normal (0,15%). Dari data ini dengan menggunakan uji median, dapatkah kita menyimpulkan bahwa kedua populasi di atas berbeda? Misalkan α = 0,05. Hitung pula *p-value*.

Tabel 5. Banyaknya patukan oleh burung eksperimental dan oleh burung kontrol																	
Burung eksperimental	0	0	0	2	17	58	67	67	68	74	79	85	92	95	97	150	181
Burung kontrol	0	0	0	0	0	8	13	13	20	33	34	57	60	64	78		

6. Seorang pengusaha ingin mengetahui frekuensi belanja online dan belanja offline tiap bulan (datang langsung ke supermarket / pasar) masyarakat yang tinggal di kota Surabaya. Diambil sampel beberapa warga dengan frekuensi belanja online maupun offine adalah sebagai berikut. Apakah terdapat perbedaan frekuensi belanja online dan offline untuk warga Surabaya? Gunakan uji median dengan $\alpha = 0.01$ serta hitung *p-value* nya.

Tabel 6. Frekuensi belanja masyarakat kota Surabaya										
Frekuensi Belanja online	5	1	10	3	6	16	3	4	9	10
Frekuensi Belanja offline	3	2	10	3	3	2				

7. Tabel 7 menunjukkan *tidal volume* 37 subyek dewasa yang menyandang *atrial septal defect*. Pada 26 dari subyek-subyek ini *pulmonary hypertension* tidak ada dan pada 11 yang lain ada. Apakah data yang dilaporkan menyediakan bukti yang cukup untuk menunjukkan bahwa *tidal volume* pada subyek-subyek yang tanpa *pulmonary hypertension* lebih rendah? Misalkan $\alpha = 0,05$, dengan menggunakan uji Mann-Whitney berapakah *p-value* disini?

Tabel 7. <i>Tidal volume</i> (mm) pada dua kelompok subyek							
Dengan pulmon	ary hypertension	Tanpa pulmonary hypertension					
652	481	876					
556	572	556					
618	589	493					
500	605	348					
500	436	530					
526	724	780					
511	515	569					
538	552	546					
440	722	766					
547	778	819					
605	677	710					
500	680						
437	428						

8. Dilakukan penelitian untuk mengetahui adakah perbedaan keuntungan antara penambang bitcoin dengan ethereum. Penelitian menggunakan sampel 17 orang yang mempunyai aset bitcoin dan 23 orang yang mempunyai aset ethereum. Selanjutnya kedua kelompok jenis aset tersebut diukur besaran keuntungannya. Gunakan uji Mann-Whitney untuk mengetahui perbedaan kualitas antara kedua jenis kripto tersebut dengan $\alpha = 0,01$ dan berapakah p-value disini?

Tabel 8. Keuntungan asset						
Keuntungan Bitcoin	Keuntungan Ethereum					
101	191					
183	262					
219	274					
196	282					
264	210					
240	235					
271	212					
242	242					
248	258					
174	295					
266	260					
169	261					
200	290					
301	190					
450	89					
141	101					
98	250					
	78					
	98					
	70					
	103					
	77					
	303					

9. Perhatikan data kandungan oksidan air embun pada Tabel 9. Lakukan pengujian hipotesis menggunakan uji Wilcoxon bahwa kandungan oksidan median air embun adalah 0,25 terhadap hipotesis alternatif yang kurang dari 0,25. Gunakan $\alpha = 0,05$.

Tabel 9. Kandungan oksidan air embun							
Sampel ke-	Ppm ozon						
1	0,35						
2	0,15						
3	0,17						
4	0,08						
5	0,21						
6	0,20						
7	0,31						
8	0,17						
9	0,11						
10	0,22						
11	0,28						
12	0,32						

10. Di masa pandemic COVID-19, kesehatan adalah hal penting dan perlu perhatian ekstra. Oleh sebab itu, olahraga menjadi keharusan agar kesehatan tubuh tetap terjaga. Seorang trainer olah raga ingin membuka program training online bagi warga di Surabaya. Sebelum program ini ini dilakukan, trainer menduga bahwa median intensitas olah raga warga Surabaya dalam sebulan adalah 7 kali. Untuk menguatkan dugaannya tersebut, ia ingin mengetahui intensitas olah raga yang dilakukan warga Surabaya selama satu bulan terakhir. Secara acak, ia memilih 60 warga dan menghitung frekuensi olah raga selama sebulan. Data yang diperoleh adalah 1, 5, 12, 8, 3, 9, 8, 12, 13, 6, 7, 9, 10, 12, 5, 14, 9, 14, 9, 5, 12, 6, 8, 13, 9, 2, 4, 1, 7, 12, 9, 2, 14, 11, 5, 9, 10, 7, 12, 12, 9, 8, 14, 6, 9, 11, 9, 12, 10, 7, 2, 9, 1, 5, 10, 3, 14, 8, 10, 9. Apakah dengan data tersebut dapat dibuktikan pernyataan trainer bahwa intensitas olah raga warga Surabaya selama sebulan adalah 7 kali? Berikan saran terbaik Anda untuk trainer tersebut. Gunakan uji Wilcoxon dengan α = 0,05.