Calc III Notes Day 26

Joseph Brooksbank

May 7, 2019

Notes: Web Assign 5 involves section 11.3, postponed until Friday. Questions 6-8 not doable yet! Inf Series Questions:

Does it converge (add up to some finite number?)

or Diverge (doesn't add to some finite number)? So far, we know

- 1. How to check if geom. series converges / diverges
- 2. $(x_n) \rightarrow 0$, then $\sum_{i=1}^n x_i$ conv?

no, if $\sum_{i=1}^n x_n$ conv, then terms $x_n \, o \, 0$

I.E, if x_n does not o 0, then $\sum_{i=1}^n x_n$ diverges

The alternative is not neccesarily true

EX:
$$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \dots$$

The terms go to zero, but the sum still diverges (1/2+1/2=1, etc)

If the terms go to Θ , the serives might converge Θ R it might diverge, rest of quarter is how to check this

Big picture: finding out if the denominator or numerator goes to infinity faster

Stepping back for a bit..

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

This sum is the area of all rectangles in this infinite sum Area of each rectangle is greater than the area under the curve y = 1 / x Doing the integral of y = 1 / x gives a diverging improper integral, which by the comparison test means that the thing larger than it also diverges (goes to infinity) EX 2:

$$\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{2^3} + 1^{3^3}.$$

If we set the rectangles to start area from the left,

These rectangles all fit under $y=rac{1}{x^3}$

IE purple area > sum of series

However if area starts to the left, the integral is $\int_0^\infty \frac{1}{x^3} dx$ Which fails Instead, we can "chop off" the first term which equals 1 and do $\int_1^\infty \frac{1}{x^3} dx$ which equals $\frac{1}{2}$.

Since all the boxes are less than the integral, the sum from 2 to ∞ is less than 1 / 2.

adding back the 1 from the first term, then the entire thing is $<\frac{3}{2}$. Thus, the original series converges.

Putting all of this together: Integral Test

How do decide whether something converges or diverges with integrals?

Say $\sum_{n=1}^{\infty} x_n$ satisfies:

- 1. We can turn func into f(x).
- 2. x_n decreasing
- 3. (x_n) is positive

Then convergence status of $\sum_{n=1}^\infty x_n$ is SAME as the convergence status of $\int_1^\infty f(x)dx$. aka

fintegral converges series converges
integral diverges series diverges

Example:

does series

$$\sum_{n=3}^{\infty} \frac{\ln(n)}{n}$$

Converge or diverge?

1. turn x_n into function:

$$f(x) = \frac{\ln x}{x}$$

2. $\frac{lnn}{n}$ decreasing?

Usually take first derivative of f(x)

3. are terms $\frac{lnn}{n} > 0$?

all n are greater than 3, which implies that ln n > 0, and n > 0, so everything is greater than 0