# Precision and Recall for Time Series

Nesime Tatbul \* Intel Labs and MIT

Tae Jun Lee \* Microsoft

Stan Zdonik Brown University

Mejbah Alam Intel Labs

Justin Gottschlich Intel Labs

# 目次

1 概要

2 モデルの紹介

3 実験

## Precision and Recall for Time Series

#### どんなもの?

ポイントベースの異常検知では現実に対応しきれないので、

範囲ベースの異常検知に対応する為に「Precision」「Recall」を改善した数学モデル

表現力、柔軟性、拡張性を意識した新しい数学モデル。

#### どうやって有効だと検証した?

従来のモデルと比較して7種類のデータセットを使用。 全て単変量の時系列データで、タクシー集客率、ツイート数、産業用機械 の温度センサー等を使い、テンソーフローのLSTM-ADを学習機とした。 各パラメータを変更することで、様々な異常予測値のスコアを出すことが 出来た。

#### 技術の手法や肝は?

パラメータの追加

Existence: 少しでも異常を捉えること自体に重みを置く

Size: 異常検知出来た数。

Position: 場所ごとに重みを置く。

Cardinality: 1 つの予測幅内で2つ以上の異常が検知が出来た時に重み付け

#### 議論はある?

多分無い。

#### 先行研究と比べて何がすごい?

異常の位置を考慮に入れている。

更にその位置を調整することが出来るので、ドメインによって必要な位置 に重みを置くことが出来る。

#### 次に読むべき論文は?

G. H. Chen, S. Nikolov, and D. Shah.

「A Latent Source Model for Nonparametric Time Series Classification」

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff.

「LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection.」

## 時系列データにおける異常検知



#### 「他の大多数のデータとは振る舞いが異なるデータを検出する技術」

「サイバー攻撃の驚異検出」、「クレジットの不正利用検知」、「医療分野における早期診断」等様々なドメインで
「異常」を検知することはとても重要

## 評価

$$Precision = TP \div (TP + FP)$$
  
 $Recall = TP \div (TP + FN)$ 

### precision

適合率。正と予測したデータのうち、実際に正であるものの割合。

#### recall

再現率。実際に正であるもののうち、正であると予測されたものの割合。

## 問題点



Figure 1: Point-based vs. range-based anomalies.

#### 実世界の異常は連続して一定期間にわたる

古典的な評価手法ではポイントベースでの評価になってしまう。 範囲ベースでの異常を正しく評価することが出来ない。 新たな評価モデル

# モデル

| Notation      | Description                                                                             |
|---------------|-----------------------------------------------------------------------------------------|
| $R, R_i$      | set of real anomaly ranges, the $i^{th}$ real anomaly range                             |
| $P, P_j$      | set of predicted anomaly ranges, the $j^{th}$ predicted anomaly range                   |
| $N, N_r, N_p$ | number of all points, number of real anomaly ranges, number of predicted anomaly ranges |

## 数式達

R:実際に起きた異常範囲

P:予測した異常範囲

N, Nr, Np:全体の点の合計, 実際に起きた異常範囲の合計, 予測した異常範囲の合計

## Recallの提案モデル

$$Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}$$

#### 基本的なモデル

- 1. 実際の異常と予測した異常の全ての組に対してリコールを計算する。
- 2. 合計スコアを実際の異常の総数で割って、平均化する。

この部分では古典的なモデルと変わらない。

一つ一つのリコールを計算する際に工夫する。

## 新たなパラメータの追加

- Existence: Catching the existence of an anomaly (even by predicting only a single point in  $R_i$ ), by itself, might be valuable for the application.
- Size: The larger the size of the correctly predicted portion of  $R_i$ , the higher the recall score.
- *Position*: In some cases, not only size, but also the relative position of the correctly predicted portion of  $R_i$  might matter to the application.
- Cardinality: Detecting  $R_i$  with a single prediction range  $P_j \in P$  may be more valuable than doing so with multiple different ranges in P in a fragmented manner.

#### 4つのパラメータ

Existence: 少なくても異常を捉えること自体に重みを置く

Size: 異常検知出来た数。

Position: 異常のある場所ごとに重みを変える。

Cardinality: 1 つの予測幅内で2つ以上の異常が検知が出来た時に重み付け

| $\alpha$                     | relative weight of existence reward                                           |
|------------------------------|-------------------------------------------------------------------------------|
| $\gamma(),\omega(),\delta()$ | overlap cardinality function, overlap size function, positional bias function |

## Existence

 $\alpha$ 

relative weight of existence reward

こっちは次のページで計算

$$Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$$
 (4)

If anomaly range  $R_i$  is identified (i.e.,  $|R_i \cap P_j| \ge 1$  across all  $P_j \in P$ ), then a reward is earned.

$$ExistenceReward(R_i, P) = \begin{cases} 1, & \text{if } \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1\\ 0, & \text{otherwise} \end{cases}$$
 (5)

#### 1点異常検知しただけでも偉いパラメータ

1点だけでも予測出来たら1,何も予測出来ないときは0を返す。 そこに  $\alpha$  を掛けて重み付けする。 基本は 0

## Size & Position

# Size(ただ足してるだけ) **function** $\omega$ (AnomalyRange, OverlapSet, $\delta$ ) MyValue $\leftarrow 0$ MaxValue $\leftarrow 0$

AnomalyLength ← length(AnomalyRange)

for  $i \leftarrow 1$ , AnomalyLength do
Bias  $\leftarrow \delta(i, AnomalyLength)$ 

MaxValue ← MaxValue + Bias

 $\begin{tabular}{ll} \textbf{if AnomalyRange[i] in OverlapSet then} \\ \textbf{MyValue} \leftarrow \textbf{MyValue} + \textbf{Bias} \\ \end{tabular}$ 

return MyValue/MaxValue

(a) Overlap size

#### Position(前半、後半、中盤に重み付け出来る)

(b) Positional bias

Figure 2: Example definitions for  $\omega()$  and  $\delta()$  functions.

#### 異常検知の場所に重みをつける

検知された異常をPositionフェーズで重みをつけて、Sizeフェーズでそれぞれ足していくだけ

## Cardinality

$$OverlapReward(R_i, P) = CardinalityFactor(R_i, P) \times \sum_{j=1}^{N_p} \omega(R_i, R_i \cap P_j, \delta)$$
 (6)

When  $R_i$  overlaps with only one predicted anomaly range, the cardinality factor reward is the largest (i.e., 1). Otherwise, it receives  $0 \le \gamma() \le 1$  defined by the application.

$$CardinalityFactor(R_i, P) = \begin{cases} 1, & \text{if } R_i \text{ overlaps with at most one } P_j \in P \\ \gamma(R_i, P), & \text{otherwise} \end{cases}$$
(7)

## 1つの予測幅で複数の異常を検知した場合に重み付け

 $\gamma = 1/x$  とするのがちょうど良い。 例) 1 つの予測幅に3つの異常幅が見られた場合は 1 / 3となる。 ワンセットを予測してようやく 1 となる。

## 数式まとめ

$$CardinalityFactor(R_i, P) = \begin{cases} 1, & \text{if } R_i \text{ overlaps with at most one } P_j \in P \\ \gamma(R_i, P), & \text{otherwise} \end{cases}$$
(7)

$$OverlapReward(R_i, P) = CardinalityFactor(R_i, P) \times \sum_{j=1}^{N_p} \omega(R_i, R_i \cap P_j, \delta)$$
 (6)

$$ExistenceReward(R_i, P) = \begin{cases} 1, & \text{if } \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1\\ 0, & \text{otherwise} \end{cases}$$
 (5)

$$Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$$
 (4)

$$Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}$$

## Prediction

Recallとおなじ

# 実験

# 古典的モデルと比較



(a) Recall

#### 7つのデータを使用

全て単変量の時系列データを使用

パラメータ

 $\alpha = 0$ ,  $\gamma$  () = 1,  $\omega$  () is as in Figure 2a

Recall\_Classical = 従来の古典的モデル。

Recall\_T\_Classical = 新しい提案モデルのフラットパラメータ。

Recall\_T\_Flat = cardinalyパラメータのみ追加。

Recall\_T\_Front = 早めの異常に重み

Recall\_T\_Back = 遅めの異常に重み

Recall\_T\_Middle = 中間の異常に重み

## 古典的モデルと比較



(a) Recall

## 新モデルは旧モデルを包含

Recall\_Classical = Recall\_T\_Classical 旧モデルと、新モデルのパラメータフラットのものは全て数字が変わらない

→新モデルを使うことで、旧モデルの表現は可能。

## 古典的モデルと比較



(a) Recall

### カーディナリー係数によって縮小

カーディナリティ係数を使っているモデルは、recallが縮小する。

重複しているデータに対して、報酬を軽くしているから。

幅をひろ一くとって異常予測をするとこんな感じに縮小する。

古典的モデルではこんな表現は不可能だった。

## 他のモデルと比較(Numentaモデル)

Table 2: Sensitivity to positional bias

|                 | Numenta_Standard | F1_T_Front_Flat | F1_T_Back_Flat |
|-----------------|------------------|-----------------|----------------|
| Front-Predicted | 0.67             | 0.42            | 0.11           |
| Back-Predicted  | 0.63             | 0.11            | 0.42           |

#### 新しいモデルのほうが、位置の偏りに敏感

Numentaモデルは早期発見の為に設計されたモデル

位置に偏りがあるデータを入れてみた場合、提案モデルのほうがそれぞれ<mark>敏感に反応</mark>することが出来るので、 多彩な表現力を持つ。

# 他にも、

色々実験やってたけど結局はなに?

## つまりは

## 拡張性と表現力が高いモデルとなった。

ドメインごとに、時系列データの異常に関して、異常の位置や、重複している部分が重要だったりと異なる。

このモデルはパラメータを調整することで、それぞれのドメインにあった**様々な基準**で評価することが出来る。

## 参照

論文元
 <a href="https://arxiv.org/pdf/1803.03639v3.pdf">https://arxiv.org/pdf/1803.03639v3.pdf</a>

• Albert(時系列データにおける異常検知)
<a href="https://www.albert2005.co.jp/knowledge/machine\_learning/anomaly\_detection\_basics/anomaly\_detection\_time">https://www.albert2005.co.jp/knowledge/machine\_learning/anomaly\_detection\_basics/anomaly\_detection\_time</a>