KEPAJAIA 4-AGRUGEIS. - I-IYNEXELA KAI OPIA EYNAPTH ZEON

Epweigens caravoneus.

1. Av n $f: \mathbb{R} \to \mathbb{R}$. Eival 600 exis 600 xo was $f(x_0)=1$, core unapxel $\delta > 0$ were you is $e(x_0 - \delta, x_0 + \delta)$ 16xivel f(x) > 4/5. $e(x_0 - \delta) = 1$

Anavey64

Opiqués suvéxeas: Escu $0 \neq A \subseteq \mathbb{R}$, $f:A \to \mathbb{R}$ uai escu $x_0 \in A$ 4.1.1 sex 75. Neple or in f suvexis sero x_0 , au yia uade

270 unaipxel $\delta > 0$ recolo inste:

au $x \in A$ uai $|x-x_0| < \delta$, rôte $|f(x)-f(x_0)| < \epsilon$ Acple or in f eval suvexis sero A au eval

Luon

Εφαρμό συμε του ορισμό των συσεκτιας με ε=1/5. Αφού η ξειναι συνεχών σεο χο, υπαρχει δτο, τέτοιο ωσιε χια μαθε χε (χοδ, χοτδ) να ισχυτι | f(x) - $f(x_0)$ | <1/5 | Από την υπόθεσή μαν έχουμε στι $f(x_0)$ =1 (2) Από (1) τογω των (2) εχουμε: |f(x)-1| <1/5 (Ε) -1/5 < f(x)-1</1/5 (Ε) f Ορισμοίς 4.3.1: Έστων Α ενα μια μενό υποσύνολο του R μαι εστω χοεR

Λεμε ου το χο είναι συμείο σωσσώνενσις του Α, αν χια κάθε
δ>Ο μπορούμε να βρούμε χεΑ τετοιο ώστε Ο</x>
Δυλαδιλ, ο χο είναι συμείο συσσώνομουσινς του Α αν οσοδώποτε μουτά
στου χο μπορούμε να βρούμε στοιχεία του Α διαφορετιμά από του χο.
Παράδεμμα

1. Au $A = [0,1] \cup \{2\}$ éxoupe ou 0-5 [0+5] +5 [0

- α) τα 0,1 eivai suficia sussimpersus γιατί μονιά τους μπορούμε υα βρουξε στοιχεία του Α διαφορετιμά από αυτά
- β) το 2 δεν ειναι εμμέιο ευερώρενσης χιατί μουρά του ΔΕΝ μπορούμε να βρούμε ετοιχεία του Α διαφορετικά κπό αυτό Αρα, το 2 είναι μεμουωρένο επρείο

2. To IN={1,2,3,...} Ser exer naviera supreio sussimpensas

Οριδμός 4.3.3. Εκεω $\phi \neq A \subseteq \mathbb{R}$ μαι $x_o \in A$. Λεμε ότι ο x_o είναι μεμουωμεύο δυμείο του A αυ δευ είναι δυμείο δυδεώρευσης του A, δηλαδή αυ υπάρχει περιοχίν του x_o ν οποία δευ περιέχει αλλα δημεία του A, ευτός από το x_o . (160δυυαγα, αυ υπαρχει $\delta > 0$ ωστε $A \cap (x_o - \delta, x_o + \delta) = \{x_o\}$)

A6 KUGU:

H f: N→ R με f(x)=/x avou ouvexis. Sword in Λados?

Anaversey:

Oλα τα δυμεία του πεδίου ορισμού τως f, εναι μεμουωμεύα σωμεία του, αρά α f είναι συνεχώς σε αυτά Το επιχείρωμα είναι το εμίς:

Este mell non éste ezo. Grizegoupe $\delta > 0$ Av nell non $|n-m| < \frac{1}{2}$ tôte avayuastiká |n-m|Suvenius and tov opispio rus suvexeras da éxoupe: $|f(n) - f(m)| = |f(m) - f(m)| = 0 < \epsilon$:

Apa, [30570]

April ous pecagopais (662. 77-78)

θεωρ ημα 4.1.5 (αρχή τως μεταφοράς): Η $f:A \rightarrow \mathbb{R}$ ειναι δυνεχώς 6το $x_0 \in A$ αν μαι μόνο αν χια καθε ακοθουθία (x_n) 6μμείων του A με $x_n \rightarrow x_0$; η ακοθουθία $(f(x_n))$ 6υχκθίνει 6το $f(x_0)$.

Парагириви 4.1.6

Η αρχή τως μεταφοράς μπορεί να χρυσιμοποιωθεί με δύο διαφορετικούς τρόπους:

- (i) Fia va Seifoujue òu u f envar ouvexis oco x_0 aprier va Seifoujue òu $(x_n \to x_0 \Rightarrow f(x_0) \to f(x_0) \Rightarrow$
- (ii) lia va Seizou pe ó cu u f Sev envai ouvexus o co xo aprei va spoi pe ma ano hovdía $x_n \to x_0$ (o co A) wo ce lim $f(x_n) \neq f(x_0)$.

 To hi oux à Ejasopa hi jou pre cuv a o vexera cus f o co xo boi o ano hovdies $x_n \to x_0$ uai $y_n \to x_0$ (o co A) wo re him $f(x_n) \neq \lim_n f(y_n)$. Av u f i y cav o vexus o co x_0 , da en pere ta súo ó pia va envai (o a pre $f(x_0)$ apa uai petazi rous io a

Ackyon

Au $f(1/m) = (-1)^M$ you nade nell, core u févai aboveris 600 ouprée 0.

Sweed in Nados?

Anaucusy

Ebrus xy = 1. , yell. 16x04 or 1 24 >0

Cow y= 1 , NEN I 6xich oct 1 1-2000

Opus and eur und Deon pas Éxoupe des:

$$f(x_n) = f(\frac{1}{2n}) = (-1)^{2n} = 1 \xrightarrow{n \to \infty} 1$$

$$\max f(y_n) = f(\frac{1}{2n-1}) = (-1)^{2n-1} = -1 \xrightarrow{n \to \infty} -1$$
 (2)

Συμφωνα με την Παρατηριών 4.1.6 (ii) από την αρχή τως μεταφοράς εχουμε ότι αφού $x_m \rightarrow 0$ μαι $y_n \rightarrow 0$, αλλα

limf(xu)=1 \(\frac{1}{2} - 1 = limf(xu) \) (20 \(\text{Aoyw} \) \(\text{Twv} \) (1), (21)

Da 16xVer ou u f etuar a6vvexús seo supeio x=0.

Dewoupa 1.2.3 (Bólzano)

Even $f: [a_1b] \to \mathbb{R}$ governs oviaprusy. Ynodecoupe ou fla)<0 was f(b)>0. Toce unapxer $f(a_1b)$ were f(g)=0

Ocuopha 4.2.4 (Desipula Essiáncons Tipins)

Euro $f:[a,b] \rightarrow \mathbb{R}$ eurexús eurapruem. Au f(a) < f(b) war $f(a) < \rho < f(b)$, tore unapxer $g \in (a,b)$ were $f(g) = \rho$. Opera, au f(b) < f(a) war $f(b) < \rho < f(a)$, tore unapxer $g \in (a,b)$.

where $f(g) = \rho$.

AGUUGY

Au u $f: \mathbb{R} \to \mathbb{R}$ cival 60 vexús uai f(0) = -f(1), voite unapxel $\chi_0 \in [0,1]$ wiste $f(\chi_0) = 0$ $\chi_0 \in [0,1]$ wiste $\chi_0 \in [0,1]$ wiste

Anaucusy

Au f(0)=0 tôte naipvoupe $x_0=0$ in 1 grati θ a eivar uar y f(1)=0 apoi f(0)=-f(1)

H f eval 600 ex ús 600 $R \Rightarrow$ f 600 ex ús 600 [0,1] uau apois f(0) = -f(1) da 16x0 ex oru

etce f(0)>0 uai f(1)<0 } θ . Bolzano unapxet $x_0 \in [0,1]: f(x_0)=0$ etce f(0)<0 uai f(1)>0 }

Apr [50,270]

DEMOURA 4,22. (Meziocus non Edaxiscus Tipins)

Esco $f: [a,b] \to \mathbb{R}$ sovexis sovaptusu. Ynapxov $y, y_2 \in [a,b]$ were $f(y_1) \le f(x) \le f(y_2)$, $g(a) = x \in [a,b]$

AGRUGY

Av n f: $(a_1b) \rightarrow \mathbb{R}$ etval 600 exús, rôre u f naípuel pegiscu uou $\in Jdx_1624$ repi 600 (a_1b)

Sweed y Nados?

Anavcusy

Gaw ou 4 f: (0,1) → R με f(x)=x

H f eval sovexis sto (0,1), dopos ser noupres pezisty val Ejáxisty tiph madius da Énpene va eixa y esto Slastyla [0,1].

Apa, [1AOOI]

Δηλαδή, η f κίσαι ανω μαι ματω φραγμένη.

A6KU64

Au n f étuai 60 vexis 620 [a,b] core n févai graypéun 620 [a,b]

Zwerd in Nados?

Andronon

Sward, 20 ju Dewpydros 4.2.1

Dewpuled 4.1.5 (April Heragopas)

H $f:A \to \mathbb{R}$ Eval 600 exús 600 x eA av ual pòro ar y la viale audhoudia (xu) on peiwr tou A pe $x_n \to x_o$, y audhoudia (fixu) ou peiwr tou A pe $x_n \to x_o$, y audhoudia (fixu) ou peiwr for $f(x_o)$

A6KU64

Av lung(x)=0 (1), vôce lung(x)·sin =0

Sweed in Mados?

Anaveugu

Esco $x_n \neq 0$ not $x_n \rightarrow 0$, nell.

And the (1) excupt ou ling(x)=0, apa not ling(x_n)=0

Jozu uns apxis μεταφορας

H SIN(1), MEN EIVAI PRASHEUM GUVARTUGU @

Οπότε έχουμε μηδευιμή * φραγμεύμ δυνάρτιμου δομω των Φ, 2

$$\Rightarrow \lim_{x \to 0} g(x) \sin \frac{1}{x_n} = 0$$

Apa, [505 TO]

OMADA A'

A6KU6M

Even $f: X \to \mathbb{R}$ non even $x \in X$. An $u \in \mathcal{E}$ fever 600 ex ús 600 x non $f(x_0) \neq 0$, va Süzette óu:

- (a) Av flx₀) >0; unapxer δ 70 whote: au $|x-x_0|<\delta$ una $x\in X$, the flx) > $\frac{f(x)}{g}$ >0
- (B) Au flxo/(0, unapxer δ 70 where: au $|x-x_0|<\delta$ una xeX, the f(x) $<\frac{f(x_0)}{9}<0$

Noon

(a) Esew or f(x) > 0. Apoi u f eval suvexis or x_0 , au Dewpi sour $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo with $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo with $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Total unapxel $\delta > 0$ Terolo $\epsilon = \frac{f(x_0)}{2} > 0$ Total unapxel $\delta > 0$ Total un

$$|f(x) - f(x_0)| < \varepsilon \Rightarrow |f(x) - f(x_0)| \frac{f(x_0)}{2} \Rightarrow$$

$$= \frac{f(x_0)}{2} < f(x_0) - f(x_0) < \frac{f(x_0)}{2} \qquad (2)$$

And the api6tepy au160 rura cus (1) exouge où

$$-\frac{f(x_0)}{2} < f(x_0) - f(x_0) \Rightarrow f(x_0) - \frac{f(x_0)}{2} < f(x) \Rightarrow \frac{f(x_0)}{2} < f(x)$$

$$+no (1), (3) \stackrel{\text{(1')}}{\Rightarrow} 0 < \frac{f(x_0)}{2} < f(x).$$

B) Escu de flx)<0. (3)

Apoù y f quai 600ex is 670 x_0 , au θ Empy 600 μ E τ 40 $\varepsilon = -\frac{f(x_0)}{2} > 0$. Unapx θ 8 > 0 τ 600 θ

Av x e X · uai /x-xo/<ð, tôte

 $|f(x)-f(x_0)|<\varepsilon \Rightarrow |f(x)-f(x_0)|<-\frac{f(x_0)}{2} \Rightarrow$

 \Rightarrow flx)-flx_o) < -flx_o) \Rightarrow flx) < $\frac{f(x_0)}{2}$ (4)

Orione and run (4) $\frac{(31/3')}{2}$ fix) $<\frac{f(x_0)}{2}<0$.

AGRUGY 1

E6cm f: [0,2] - R GUVEXÚS GUVÁPCUGU pe flo)=f(2). Na Seigexe ότι υπάρχει χε[0,1] με f(x+1)=f(x).

Noon

Corw h(x)=f(x+1)-f(x), x ∈ [0,1]

H h civai mada opiofiéum mai suvexús são [0,1]

Maparuporine ore

h(0) = f(1) - f(0)

 $h(1) = f(2) - f(1) \xrightarrow{\frac{1}{2}} f(0) - f(1) = -(f(1) - f(0))$

 $\Rightarrow h(0) \cdot h(1) = -(f(1) - f(0))^{2} < 0$

Enou Euws, and to OEwpufia Bolzano, GUMEPOUVOUPLE ou Unapx4 $x \in (0,1)$ révolo wisce $h(x)=0 \iff f(x+1)=f(x)$

Au f(1)=f(0)=0, côte $f(\alpha x=0)$ in x=1 exorpre h(x)=0Suj. 60 inate repinausy da unapxer 26 [0,1] W618

h(x)=0 (=) f(x+1)-f(x)=0 (=) f(x+1)=f(x).

A6UU64

Escur f 60 vexus 600 [0,1] van f(0)=f(1). *Escur neth. Deigre on unapxer $x \in [0,1-/u]$ were f(x)=f(x+/u)

Noon

Θεωρουμε του $h(x) = f(x) - f(x+h_1)$ $(x+h_1)$ $(x+h_$

And cuv(1) yill x=0 exorpie: $h(0)=f(0)-f(0+/n) \Rightarrow$ $\Rightarrow h(0)=f(0)-f(/n)$ (2)

And cuv (1) year $x=1-\frac{1}{4}$ Exorpre: $h(1-\frac{1}{4})=f(1-\frac{1}{4})-f(1-\frac{1}{4})=9$ $\Rightarrow h(1-\frac{1}{4})=f(1-\frac{1}{4})-f(1)$ $\Rightarrow h(1-\frac{1}{4})=f(1-\frac{1}{4})-f(0)$. (3)

Av u=2, $toree f(\frac{1}{2})-f(0)$ was $f(0)-f(\frac{1}{2})$ revou eseposation, δnA . For $toree f(\frac{1}{2})-f(0)$ was $f(0)-f(\frac{1}{2}) < 0$, onote and $\theta = 0$ and $\theta = 0$ below that $\theta = 0$ below $\theta = 0$ by $\theta = 0$ below $\theta = 0$ by $\theta = 0$

Στη γενιμή περιπεωδη av h(o) wou h(1-/4) εναι ετερόδωμοι δα 16χύει ano θ. Bolzano ou £χε [o, 1-/4]: h(x)=0. Demonina 4.2.4 (Endrapeous Tryins) (O.E.T.)

Ebem f: [a/b] -> R 600exus 600apeu6u. Au fla/flb) was fla)<p<flb), rore unapxer ze (a,b) were flz)=p. Opora, au flb) < f(a) uai f(b) < p < f(a), tôte viapxel ze(a,b) were f(z)=p.

A 6 uu 6 M

Escert: [a16] > R soucxus souapensy non x1, x2,,..., x4 & [a,6] Na Seizere ou unapxer yela, b] reroio wore

 $f(y) = \frac{f(x_1) + f(x_2) + \cdots + f(x_u)}{n}$

If f eivar ouvexus ouvaperson oto [a10], apa naiprer ejaxiocy eifig og nær pegisky eigig M sco [a,b] Enoperies you made i=1,00,4 exoupe ou M = f(xi) = M Sus ExOUPE

 $m \leq f(x_1) \leq M$ $m \leq f(x_2) \leq M$ f $M \leq \beta(x_n) \leq M$

 $n \cdot m \leq f(x_1) + o \cdot o + f(x_n) \leq u \cdot M \Rightarrow m \leq \frac{f(x_1) + o \cdot o + f(x_n)}{2} \leq M \Rightarrow$ => u = p = M onow u = f(4), M=f(42). Apx and O, E. TECO [4,42] P(4) = P(4) 101 P(4) = 0 = P(40) 2018 UNXPXEN YEYYYZ : F(Y)=0

A644

Even $a, b, \chi > 0$ un $A < \mu < \chi$. Na Seigerz ou $M \in \mathcal{A}$ lewsy $\frac{\alpha}{x-\lambda} + \frac{\beta}{x-\mu} + \frac{\chi}{x-\nu} = 0$

Exer tou Laxistor pira pifa se nadéva ano la Siascinpaca (2, p) non (p, v)

Noon

Aprili va Sci Pouri E ou 4 Gisway

$$g(x) = \alpha(x-\mu)(x-\nu) + \beta(x-\lambda)(x-\nu) + \beta(x-\lambda)(x-\mu) = 0$$

Magacupoupe ou:

$$g(x) = \alpha(a-\mu)(a-v) > 0$$

 $g(\mu) = \beta(\mu-a)(\mu-v) < 0$
 $g(\nu) = \gamma(\nu-a)(\nu-\mu) > 0$

And $\theta. \epsilon. T$ unapxer $g(x, \mu)$ where $g(y, \mu) = 0$ was unapxer $g(y, \mu) : g(y, \mu) : g(y, \mu) = 0$.

Просави 3.3.2 бед: 68

Au $0 < x < \frac{\pi}{2}$, edec $siux < x < taux = \frac{siux}{\cos x}$

Energy de you unde $x \in (-\frac{1}{2}, \frac{1}{2})$ 16x000v 01 av 160 cyces $|s_{1}y_{1}x| \leq |x| \leq |t_{2}y_{2}|$

uai de yia viade xell 16xver 4

'AGKUGY

Ezeráper au civai ouvexeis or audhoudes ouvagiques

(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ | $u \in f(x) = \sum_{x=0}^{sin x} , \forall x \neq 0$

(B) $f:[-1,0] \to \mathbb{R}$ $\mu \in f(x) = \int_{-\infty}^{\infty} x^{2} \cdot \sin \frac{1}{x} \cdot (x + 0) \cdot (x = 0,1,2,...)$

(x) f: R-R µε f(x)= S/x s111 / x2, av x ≠0

Noon

a) And ϵuv $\pi p d \epsilon a d uv$ $\delta uv g d uv$

 (\exists) $SINX < X \le \frac{SIMX}{COSX} (\exists) \frac{COOX}{SINX} = \frac{1}{X} \le \frac{1}{SINX} (\exists)$

 $(\exists \cos x \leq \frac{\sin x}{x} \leq 1), \forall x \in (0, \frac{1}{2})$

Av (xy) Eval pia audoudia decirio apidin pe xy=>0

tôte cos xy -> cos 0 = 1

Από το ποιτήριο 16060 χαλινονων απολουδιών εχουξε στι

f(xm) = SIUXy => 1 + f(0)

Apa, n f SEN ENOU GUVEXUS 600 X0=0

H & GUOY GUVEXIN BE UXUE X0 = 0.

θεωριφα 2.2.4 (μριτικο παρεμβολώς ή μριτήριο 1606υχιλινου6ωίο αμορουθιώς) 6ελ 40

Demponne après aud dondres an, Bu, Ju non manoroion ca Efins (a) ay = by = 8u, tuell

(B) liman = lim 8n = l Ecol, M (bn) 608×2/ver var limbn=l B) Diaupivoupe Suo répiradoseis:

 $\int_{0}^{4} \int_{0}^{4} \int_{0$

16xuer and run Mpdragu 4.4.14 (667 96) ou:

Enophorus, to opro tus sint otav x >0 seu unaprei; apa seu

Guar Guverino 600 O.

Παρατηρουμε ότι $|f(x)| = |x^k \sin \frac{1}{x}| \leq |x^k| = |x|^k \leq |x|$, $\forall x \in [-1,0]$

apa -x < f(x) < x

mon Energin X => 0 ano Deinpripa 16060 gudivoriscons auoλουθιών εχουμε ότα limf(x) = 0 = f(0), Αρα, η f είναι $x \to 0$

6UVEXNO

8) Maparen puby A.L. (Apxy Metagopols)

Hapry eus peradopas propei va xpusivonoisdei pe 2 d 1000perauous coonous

(i) y la va seizoupe ou n f Ewar ovexús 600 xo après va seizorge or $(x_m \to x_0 \Longrightarrow f(x_n) \to f(x_0) \rightarrow$

(11) Fia va Seizovpe ou u f Sev elvas 600 exis 600 xo apuei va Bpobpe pria auodovôsa $x_n \to x_0$ (600 A) were $\lim_n f(x_n) \neq f(x_0)$ Flodó 60xvá, equadadijou pe tuv a600exeia tus f 600 xo Bpi6000tas Súo auodovôses $x_n \to x_0$ uas $y_u \to x_0$ (600 A) were $\lim_n f(x_n) \neq \lim_n f(y_n)$. Av u f úzav 600exús 600 xo Da enpene ta Súo ópia va euvou i6x pe $f(x_0)$, apx uas peraĵu tous i6a.

Emopiewus gra eo g epidzupa cus x6u46us exorpe: Gorw $x_n = \frac{1}{\sqrt{2nn+\frac{1}{2}}} \rightarrow 0$, core $f(x_n) = \frac{1}{x_n} \cdot \sin \frac{1}{x_n^2} = \frac{1}{x_n^2} \cdot \sin \frac{1}{x_n^2} =$

 $\frac{1}{\sqrt{2n\pi+\frac{\eta}{2}}} = \int \frac{1}{2n\pi+\frac{\eta}{2}} \sin\left(2n\pi+\frac{\eta}{2}\right) = \frac{1}{\sqrt{2n\pi+\frac{\eta}{2}}} \sin\left(2n\pi+\frac{\eta}{2}\right) = \frac{1}{2n\pi+\frac{\eta}{2}}$

= \langle 2nn+\frac{1}{2} \cdot 1 = \langle 2nn+\frac{1}{2} \rightarrow +00, \delta ny. u f \delta w \text{ u as

60 vexis 600 6 milio 0.

Apa, 4 f evan suvexús se viade x0 +0