工科数学分析期末试题(A 卷)

班级			学号							
(本试卷	共 6 页,	九个大	、题,试	卷后面空	空白纸挂	斯下做草	草稿纸)		T	
题号	_	=	三	四	五	六	七	八	九	总分
得分										
签名										
一. 填空	ヹ (毎	小题 4	分, 共	28 分)						
1. 设e ^y	$= xy + \epsilon$	$e, \iint \frac{dy}{dx}$; -=			$, \frac{d^2y}{dx^2}\Big $	x=0 =		·	
$2. I_1 = \int$	$e^{+\infty}\frac{\ln^2 x}{x}$	$\frac{\alpha}{d}dx = I$	$\frac{1}{2} = \int_{e}^{+\infty}$	$\frac{dx}{x \ln^3 x}$	中收敛的	勺为		,其	其值等于	
3. $\int_{-1}^{1} 3\sqrt{1}$	$\sqrt{1-x^2}dx$	x =		,	$\int_{-1}^{1} x \sqrt{1-x}$	$-x^2 dx =$	=		·	
4. 变量	代换		能》	タ微分プ	万程 $\frac{dy}{dx}$	$=\frac{xy-x}{x^2+3}$	y² Bxy 化成	立 可分离	写变量的	微分方程,所
得可	分离变	量的微	分方程	为				·		
5. 曲线	xy = a	(a > 0)	与直线	x = a,	x = 2a	及 x 轴角		图形绕 x	轴旋转	一周所得旋转
体的	体积V ₁	=		_, 绕)	,轴旋转	一周所	得旋转	体的体	积 $V_2 =$	
6. 函数	f(x) = x	$xe^x - co$	s <i>x</i> 的带	佩亚诺	余项的	4 阶麦豆	克劳林る	公式为		
f(x)) =									·
7. 已知	$y = \frac{x^3}{2}$	是微分	方程 $\frac{dy}{dx}$	+P(x)y	$y = x^2$ 的	解,则	P(x) =		, J	此微分方程的
通解	为 y = _			•						

- 二. (9 分) 求极限 $\lim_{x\to 0} \frac{(x-2)e^x + x + 2}{\sin^3 x}$.
- 三. (9 分) 求不定积分 $\int x \ln(1+x) dx$.
- 四. (9分) 当船的速度为6m/sec时,船的推进器停止工作, 5秒后船的速度减至一半,已 知船所受到的阻力与船的速度成正比,求船的速度随时间的变化规律.

五. (8 分) 设
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x > 0\\ 0 & x = 0, \ \text{求 } f'(x).\\ \frac{1 - \cos x^2}{x} & x < 0 \end{cases}$$

- 六. (13 分) 设函数 f(x) 连续,且满足 $f(x) = e^{-x} + \int_0^x (t-x)f(t)dt$,求 f(x) 的表达式.
- 七. (8 分) 一贮水池的上部是高h=2 m, 半径R=1 m 的圆柱体, 下部是半径R=1 m 的半球体,已知半球体部分装满了水,圆柱体部分没有水,如果将水从池中全部抽出,求所作的功(水的密度 $\mu=1000$ kg/m³).
- 八. (8 分) 设函数 f(x) 在[0,3]上可导,且 f(3) = -1, $\int_{1}^{2} f(x) dx = 1$,证明在(0,3)内存在 ξ , 使 $\xi f'(\xi) + f(\xi) = 0$.
- 九. (8 分) 设 f(x) 有连续导数,且 $\lim_{x\to 0} \frac{f(x)+f'(x)}{e^x-1} = 2$, f(0)=0,证明 x=0 是 f(x) 的驻点,并判断 f(0) 是否为 f(x) 的极值,若是极值,指出是极大值还是极小值.