WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W CIAŁACH STAŁYCH

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Źródło promieniowania γ (w niniejszym ćwiczeniu Co⁶⁰ o czasie połowicznego rozpadu 5,3 roku) umieszczone jest w ołowianej obudowie (w tzw. domku ołowiowym) o kształcie walca. Rozpad jądra Co⁶⁰ uwalnia dwa kwanty promieniowania γ (1, 17 MeV i 1,33 MeV – używane w ćwiczeniu). Wzdłuż jego osi wywiercony jest kanał spełniający rolę kolimatora. Źródło promieniotwórcze umieszczone jest w dolnej części kanału, zaś bezpośrednio nad górnym końcem kanału znajduje się kryształ scyntylacyjny licznika kwantów promieniowania γ. Z boku obudowy prostopadle do osi walca znajduje się otwór służący do wprowadzania absorbentu wykonanego w postaci płytek. Po włożeniu płytki do komory pomiarowej znajdzie się ona na drodze promieni γ podążających w stronę licznika.

Emisja promieniowania jest zjawiskiem losowym. Dokonujemy pojedynczego pomiaru liczby zliczeń kwantów promieniowania γ w określonym czasie. Wynik N_t tego pomiaru obarczony jest niepewnością średnią

kwadratową równą $\sqrt{N_t}$ (pojedyncza próba). Niepewność względna ilości zliczeń $\frac{\Delta N_t}{N_t} = \frac{1}{\sqrt{N_t}}$ maleje wraz ze wzrostem ilości zliczeń N_t . Jeśli np. wymagana jest dokładność pomiaru rzędu 3%, to ilość zliczeń powinna być równa około 1 000. Czas pomiaru powinien być tak ustalony, aby zapewnić spełnienie tego warunku.

Do dyspozycji osób wykonujących ćwiczenie są komplety płytek wykonanych z miedzi, ołowiu, żelaza, aluminium i ebonitu. Jako licznik kwantów γ zastosowano kryształ scyntylacyjny (NaJ) wraz z fotopowielaczem.

Działanie licznika scyntylacyjnego wykorzystuje luminescencję występującą w niektórych substancjach pod wpływem działania promieniowania jonizującego. W tym przypadku role promieniowania jonizacyjnego spełniają elektrony powstające przy oddziaływaniu promieniowania γ z substancją scyntylatora wskutek procesów związanych ze zjawiskiem fotoefektu, efektu Comptona i efektu tworzenia pary elektron-pozyton. Rozbłyski świetlne (scyntylacyjne) wywołane promieniowaniem w scyntylatorze są rejestrowane za pomocą fotopowielaczy o bardzo dużej światłoczułości przekształcających je w impulsy elektryczne. Impulsy te po wzmocnieniu przekazywane są za pomocą kabla do urządzenia liczącego, zwanego przelicznikiem elektronowym. W jednej obudowie z przelicznikiem elektronowym znajduje się zasilacz wysokiego napięcia fotopowielacza.

Rys. 1. Schemat stanowiska pomiarowego.

3. Przeprowadzenie pomiarów

- 1. Zaznajomić się z rozmieszczeniem i przeznaczeniem elementów zestawu pomiarowego.
- 2. Włączyć zasilacz wysokiego napięcia (przycisk czerwony), a następnie uruchomić na chwilę przelicznik (START) w celu sprawdzenia poprawności działania układu. Wyłączyć przelicznik (STOP). Wyzerować przelicznik (RESET).
- 3. Zmierzyć natężenie promieniowania tła N_{tlo} wstawiając do otworu specjalnie dopasowaną bryłę ołowianą (można z dodatkowymi płytkami ołowianymi), a następnie mierzyć ilość impulsów z dokładnością nie gorszą niż 5%. Praktycznie pomiar należy prowadzić w ciągu czasu t_{tlo} równego 3 5 minut.
- 4. Zmierzyć natężenie promieniowania źródła wraz z tłem ^{N_{suma}} przeprowadzając pomiar z pustą komorą pomiarową w takim czasie jak w punkcie 3.
- 5. Zmierzyć kilkakrotnie (np. 5 razy) natężenie promieniowania źródła wraz z tłem przeprowadzając kilka pomiarów (np. 5 razy) z pustą komorą pomiarową w krótkich odcinkach czasu (np. 30-60 s).
- 6. Dla płytek ołowiu zmierzyć zależność pomiędzy ilością zliczeń (natężeniem promieniowania) a grubością warstwy absorbentu pochłaniającej promieniowanie $^{\gamma}$. W tym celu umieścić w komorze pomiarowej jedną płytkę ołowianą i dokonać pomiaru N_i ilości zliczeń. Pomiar przeprowadzić z dokładnością nie gorszą niż przy pomiarach wstępnych, co oznacza pomiary przez 1 2 minuty.
- 7. Po zapisaniu wyniku dołożyć następną płytkę ołowianą i wykonać pomiar ilości zliczeń dla zwiększonej grubości warstwy pochłaniającej. Pomiary kontynuować dla minimum 5 płytek ołowianych przy jednakowych wartościach czasu pomiaru.
- 8. Powtórzyć pomiary według punktów 6-7 dla minimum dwóch innych rodzajów absorbentów. Wyniki zapisać.
- 9. Zapisać wartości parametrów stanowiska i niepewności pomiarowych.

Obsługa licznika Geigera-Muellera-Zaehlera firmy PHYWE

Domek ołowiowy z otwartą komora pomiarową

Licznik G-M-Z z czujnikiem oraz płytki (po 5 sztuk) ze stali, aluminium i ołowiu z suwmiarką do pomiaru ich grubości

Licznik włączamy przyciskiem On/Off

po czym wybieramy zakres pracy (Time – pomiar ilości impulsów) w wybranym zakresie czasu (300s).

Widok wyświetlacza miernika G-M-Z z klawiszami (Góra/Lewo, Dół/Prawo oraz Zatwierdź) po włączeniu Pierwsze naciśnięcie klawisza Zatwierdź pozwala na wybór opcji opisanych w pionie. Klawiszami Góra albo Dół wybieramy Time i naciskamy Zatwierdź.

Następnie klawisze Góra oraz Dół zmieniają znaczenie na Lewo oraz Prawo. Wybieramy wtedy czas pomiaru 300 po czym naciskamy Zatwierdź.

Po ustawieniu Time-300s kolejne pomiary wykonujemy naciskając Start/Stop.

4. Opracowanie wyników pomiarów

Wyznaczenie natężenia promieniowania źródła

1. Wyznaczyć natężenia promieniowania źródła $N_z = N_{suma} - N_{tlo}$ jako różnicę między sumą natężeń promieniowania źródła oraz tła, a natężeniem promieniowania samego tła dla pomiarów realizowanych w punktach 3 i 4.

 $n_z = \frac{N_z}{t_z}$ Obliczyć natężenia promieniowania źródła w jednostce czasu jako ilość zliczeń np. na minutę.

 $n_{tlo} = \frac{N_{tlo}}{t_{tlo}}$ Obliczyć natężenia promieniowania tła w jednostce czasu jako ilość zliczeń np. na minutę.

2. Wyciągnąć wnioski (1), co do stabilności pracy źródła na podstawie pomiarów w krótkich odcinkach czasu realizowanych w punkcie 5.

Wyznaczenie stopnia pochłaniania promieniowania w zależności od grubości absorbentu

3. Dla każdej grubości x_i każdego badanego absorbentu wyznaczyć ilość zliczonych impulsów

 $n_i = \frac{N_i}{t_i}$ w jednostce czasu (np. na minutę).

- 4. Obliczyć $\ln^{(n_i n_{tlo})}$ dla wszystkich rodzajów absorbentów w funkcji ich grubości x.

 Uwaga ilości zliczeń n_i , n_{tlo} muszą być przeliczone na tą samą jednostkę czasu, np. na minutę.
- 5. Wykres-1. Wykonać wykresy zależności $f(x)=\ln \binom{n_i-n_{ilo}}{}$ dla wszystkich rodzajów badanych absorbentów. Zgodnie z teorią powinna to być prosta f(x)=-kx, gdzie k- współczynnik absorpcji, x- grubość warstwy absorbentu.

Niepewności pomiarowe nanosimy tylko dla grubości absorbentu (*x*). W zależności od otrzymanych wartości wykresy wykonać na jednej kartce papieru milimetrowego lub na oddzielnych kartkach (Wykres-1a, Wykres-1b, Wykres-1c), aby zapewnić ich przejrzystość.

Przez punkty pomiarowe przeprowadzić prostą $y=\overline{a}x+\overline{b}$, parametry prostej oraz ich niepewności wyznaczyć z

$$\bar{a} = \frac{\left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right) - n \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \cdot \left(\sum_{i=1}^{n} x_{i}^{2}\right)}, \quad \bar{b} = \frac{\left(\sum_{i=1}^{n} y_{i}\right) - \bar{a} \cdot \left(\sum_{i=1}^{n} x_{i}\right)}{n},$$

$$u(\bar{a}) = \sigma_{\bar{a}} = \sqrt{\frac{n}{n-2} \cdot \frac{\left(\sum_{i=1}^{n} y_{i}^{2}\right) - \bar{a} \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right) - \bar{b} \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n}}, \quad u(\bar{b}) = \sigma_{\bar{b}} = \sigma_{\bar{a}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}$$

Przy wyznaczaniu parametrów prostych zaleca się wykonanie tabeli zawierającym kolumny

z poszczególnymi wartościami: x_i , y_i , x_i^2 , y_i^2 , $x_i \cdot y_i$ oraz ich sumy w celu uniknięcia błędów przy przetwarzaniu wartości zmierzonych.

Prostą wraz z wyznaczonymi parametrami nanieś na wykres (1).

- 6. Wartość wyrazu wolnego równania prostej \overline{b} związana jest ze zmianą aktywności źródła w trakcie pomiaru każdego z absorbentów. Wyciągnąć wnioski (2) co do stabilności źródła.
- 7. Niepewność wyrazu wolnego prostej $\sigma_{\bar{b}}$ związana jest z niepewnością standardową chwilowej aktywności źródła $u_c(\bar{b}) = e^{\bar{b}} \sigma_{\bar{b}}$.

Wyznaczenie współczynnika pochłaniania i grubości warstwy półchłonnej

8. Wartość i niepewność współczynnika kierunkowego prostej \bar{a} odpowiadają wartości i niepewności standardowej współczynnika absorpcji k danego materiału. Dla każdego materiału wartość grubości

warstwy półchłonnej $d_{1/2} = \frac{\ln 2}{k}$ a jej niepewność $u_c(d_{1/2}) = \left| \frac{\ln 2}{(\overline{a})^2} \cdot \sigma_{\overline{a}} \right|$.

9. Dla wszystkich materiałów wyznaczyć niepewności złożone względne współczynnika absorpcji k

 $u_{c,r}(k) = \frac{u_c(k)}{k} \text{ oraz grubości warstwy półchłonnej} \qquad u_{c,r}(d_{1/2}) = \frac{u_c(d_{1/2})}{d_{1/2}}$

10. Dla wszystkich materiałów wyznaczyć niepewności rozszerzone współczynnika absorpcji k $U(k) = 2 \cdot u_c(k)$ oraz grubości warstwy półchłonnej $U(d_{1/2}) = 2 \cdot u_c(d_{1/2})$.

Ocena zależności współczynnika pochłaniania i grubości warstwy półchłonnej od gęstości absorbentu.

- 11. Wykres-2. Nanieść na wykres wyznaczone wartości współczynnika absorpcji *k* w funkcji gęstości absorbentów. Nie nanosić niepewności pomiarowych oraz nie dokonywać aproksymacji. Wyciągnąć wnioski (3).
- 12. Wykres-3. Nanieść na wykres wyznaczone wartości grubości warstw półchłonnych w funkcji gęstości absorbentów. Nie nanosić niepewności pomiarowych oraz nie dokonywać aproksymacji. Wyciągnąć wnioski (4).

5. Podsumowanie (wersja podstawowa)

1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone parametry $(k, u_c(k), u_{c,r}(k), U(k))$ oraz wartość odniesienia,

oraz wartość odniesienia,
$$(d_{1/2}, u_c(d_{1/2}), u_{c,r}(d_{1/2}), U(d_{1/2}))$$
 oraz wartość odniesienia,

- 2. Przeanalizować uzyskane rezultaty:
- a1) czy spełniona jest relacja $u_{c,r}(k) < 0,1$
- a2) czy spełniona jest relacja $u_{c,r}(d_{1/2}) < 0.1$,
- b1) czy spełniona jest relacja $|(k)_{odniesienie} k| < U(k)$

Fizyka jądra, atomu i ciała stałego

b2) czy spełniona jest relacja $\left| \left(d_{1/2} \right)_{odniesienie} - d_{1/2} \right| < U(d_{1/2})$,

- c) rozkład punktów na Wykresie-1 pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- d) rozkład punktów na Wykresie-2 lub Wykresie-3 pod kątem zależności wyznaczonych parametrów od gęstości absorbentu.
- 3. Wnioski z analizy rezultatów.
- **a)** Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn. Uwzględnić tu wnioski (1) i (2).
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia zostały osiągnięte. Uwzględnić tu wnioski (3) i (4).

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

Zadania dodatkowe do wyznaczenia i analizy:

1. Obliczyć natężenie promieniowania źródła (Co⁶⁰) w dniu badania i rok temu w oparciu o wartość okresu połowicznego rozpadu (5,3 roku) oraz ilości jąder promieniotwórczych podlegających rozpadowi w

czasie
$$N(t) = N_0 e^{-\frac{\ln 2}{T}t}$$
. Wyniki poddać analizie i syntezie.

2. Obliczyć natężenie promieniowania źródła (Co⁶⁰) w dniu badania i za rok w oparciu o wartość okresu połowicznego rozpadu (5,3 roku) oraz ilości jąder promieniotwórczych podlegających rozpadowi w

czasie
$$N(t) = N_0 e^{-\frac{\ln 2}{T}t}$$
. Wyniki poddać analizie i syntezie.

- 3. Ustalić czy zmierzone promieniowanie tła odbiega od średniej krajowej. Wyciągnąć wnioski (5).
- 4. Dokonać aproksymacji liniowej wykresów (2) lub (3). Wyniki poddać analizie i syntezie.

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})\right]^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right] \cdot \left[\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}\right]} dI$$

5. Wyznaczyć współczynnik korelacji liniowej dla i zapisać go na wykresie. Wynik poddać analizie i wyciągnąć wnioski.

Zespół w sk	ładzie		
, .	iczyć grubość warst	wy półchłonnej badanych m arstwy półchłonnej jest prop	ateriałów, orcjonalna do gęstości absorbenta,
, ,		oochłaniania badanych mate nik pochłaniania jest propor	eriałów, cjonalny do gęstości absorbenta,
3.1 Wartośc	i teoretyczne wielko	ści wyznaczanych lub okreś	ślanych.
Przy emitow	vaniu skolimowaneg	o promieniowania gamma o	energii 1,33 MeV (2,13 10 ⁻¹³ J) przez
izotop Co ⁶⁰	(okres połowicznego	o rozpadu 5,3 lat) grubości p	pierwszej warstwy półchłonnej wynoszą
		6 cm, aluminium - 4,6 cm.	
			w Polsce to około 100 nSv/h
(0,878 mSv)	/rok), za bezpieczny	próg przyjmuje się do 1 mS	Sv/rok (1 Sv = 1 J/kg).
3.2 Parame	try stanowiska (wart	ości i niepewności).	
Ołów:	gęstość	, grubość płytki	niepewność
Żelazo,	gęstość	, grubość płytki	niepewność
Aluminium,	gęstość	, grubość płytki	niepewność
Tekstolit,	gęstość	, grubość płytki	niepewność
	i uwagi do ich wyko		
niepewność	pomiaru czasu		
niepewność	pomiaru impulsów		

Liczba impulsów przy komorze pomiarowej całkowicie wypełnionej ołowiem:

0,5 min	1 min.	1,5 min.	2 min.	2,5 min.	3 min.	3,5 min.	4 min.	4,5 min.	5 min.

Liczba impulsów przy komorze pomiarowej całkowicie pustej:

0,5 min	1 min.	1,5 min.	2 min.	2,5 min.	3 min.	3,5 min.	4 min.	4,5 min.	5 min.

Liczba impulsów przy różnej ilości płytek absorbentów, wszystkie, pomiary trwały

Absorbent	ołów	żelazo	aluminium	tekstolit
/ ilość płytek				
1				
2				
3				
4				
5				
6				
7				
8				