

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: E1+TE1

Time : Three Hours Max.Marks:100

$PART - A (10 \times 3 = 30 \text{ Marks})$ Answer <u>ALL</u> the Questions

1. If
$$u = f(x-y, y-z, z-x)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

2. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)} \times \frac{\partial(x, y)}{\partial(r, \theta)} = 1$.

3. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dx \, dy}{1+x^2+y^2}.$$

4. Find the value of
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta.$$

- 5. Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at the point P(1, -2, -1) in the direction of PQ where Q is (3, -3, 2).
- 6. Find the work done by the force $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ when it moves a particle along the curve $\vec{r} = \cos t\vec{i} + \sin t\vec{j} + t\vec{k}$ from t = 0 to $t = 2\pi$.
- 7. Find the particular integral of $(D^2 + 5D + 4)y = e^{-x} \sin 2x$
- Solve the equation $(x^2D^2 + 4 xD + 2)y = 0$.
- 9. Find the inverse Laplace transform of $\frac{s^2 + s 2}{s(s+3)(s-2)}$.
- 10. Use Laplace transform to evaluate $\int_{0}^{\infty} \frac{e^{-t} \sin \sqrt{3} t}{t} dt$.

PART – B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. a) Expand the Taylor's series expansion of $e^x \cos y$ at the point (0, 0) up to third [7] degree terms.
 - b) If $u = x\sqrt{1 y^2} + y\sqrt{1 x^2}$, $v = \sin^{-1} x + \sin^{-1} y$, show that u and v are functionally related and find the relationship. [7]

- 12. a) Change the order of integration in $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2+y^2}}$ and hence evaluate it. [7]
 - b) Evaluate the integral $\iiint (x^2 + y^2 + z^2) dx dy dz$ over the region of space defined by $x^2 + y^2 \le 1$ and $0 \le z \le 1$ by transforming in to cylindrical coordinates. [7]
- 13. a) Verify Stoke's theorem when $\vec{F} = (2xy x^2)\vec{i} (x^2 y^2)\vec{j}$ and C is the boundary [10] of the region enclosed by the parabolas $y^2 = x$ and $x^2 = y$.
 - b) Find the values of the constants a, b, c so that $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3xz^2 y)\vec{k} \text{ may be irrotational.}$ [4]
- 14. (a) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} + 4y = 5\sin 3x$. [7]
 - (b) Solve the differential equation $(2x+1)^2 \frac{d^2y}{dx^2} 2(2x+1)\frac{dy}{dx} 12y = 96x$. [7]
- 15. (a) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dt} 3y = \sin t$ by using Laplace transform, given that $y = \frac{dy}{dt} = 0$ when t = 0.
 - (b) Using convolution theorem, evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$ [7]
- 16. a) The temperature T at any point (x, y, z) in space is $400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
 - b) Show that volume of the region of space bounded by the co-ordinate planes and the surface $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} + \sqrt{\frac{z}{c}} = 1$ is $\frac{abc}{90}$.
- 17. a) Verify Gauss divergence theorem for $\overline{F} = 4xz \,\hat{i} y^2 \,\hat{j} + yz \,\hat{k}$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
 - b) Find the inverse Laplace transform of $\frac{1}{s^2(s^2+a^2)}$. [4]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$