問題	解答				
1a. 從batch processing 擴充成 multi-programmed 的好處?	p. 19, 提升CPU之使用率.				
1b. 保護I/O設備的常用策略?	p 21, (1) CPU電路 提供dual mode operations; (2) 訂定 I/O 指令為特權指令				
1c. 誰管理CPU內的cache? 誰管理一般目的之暫存器?	p.28, 由硬體電路管理cache; 編譯器管理暫存器.				
2a. 在類似UNIX的系統, 為何要使用POSIX API 而不要直接使用system callls?	p. 61, 如此才容易 移植 應用軟體於不同版本的 OS.				
2b. 程序控制、檔案操作、資訊維護之系統呼叫類別, 各舉一例.	p. 65-66, (a) fork(), 程序複製; (b) open(),開啟檔案; (c) getpid(), 取得程序pid值.				
2c. Micro-kernel 結構可以有那些好處?	p. 79, (a) 易擴充功能; (b) 容易移植至其它CPU架構; (c) 較安全(許多模組放在user mode).				
3a. 舉例兩種中斷, 分別讓process移至ready與waiting狀態.	p. 106, (a) timer 中斷, 移至ready; (b) adae-align: right;				
3b. 列出三項存於PCB之資料項.	p. 106, program counter值, 暫存器值, 開啟的檔案				
4a. 為何process所佔記憶體 會比執行檔的大?	p. 104, process 會長出 stack, heap 兩部分.				
4b. IPC機制, 共享記憶體比起 訊息傳遞的優缺點?	p. 120, 共享記憶體建立後, 存取不透過OS, 速度快; 但是程式寫作時 容易發生bug.				
5a. 多執行緒程式, responsiveness? scalability?	p. 163, 反應能力(如一執行緒作I/O時, 其它執行緒不會被綁住); 擴充性(當CPU的數量或core數增加, process執行速度會加快).				
5b. 多執行緒模式 many-to-many 的好處?	p. 168, (a) 執行緒不會被綁住(blocking); (b) 執行緒的數量沒有限制.				
5c. 在信號處理的議題, 分別舉例 同步與 非同步信號的例子.	p. 182, (α)同步信號: 非法記憶體參考; (b)非同步信號: 按 <control><c>以結束執行.</c></control>				
6a. CPU排程, turnaround time? response time?	p. 205, (a)從行程起動至完成執行所經過的時間長度; (b)從行程起動至開始有反照出來 所經過的時間長度.				
6b. 何謂non-preemptive CPU排程? preemptive 排程為何較困難製作?	p. 204, (a)只在前一process主動作I/O或執行完畢, OS才作CPU排程; (b)kernel space可能會發生資料結構毀損, 或user space 之共享變數發生數值錯誤.				
6c. 可區分I/O bound行程與CPU bound行程的CPU排程法是?	p. 216, multi-level feedback queue 排程法				
7a. 計算 先佔式 Shortest-Job-First 排程法之平均等待時間.	p <u>. 210</u> , 甘梯圖(Gantt chart)				
7b. 計算 Round-Robin 排程法之平均等待時間, time slice=3.	p. 212, 甘梯圖				
8a. 那些地址綁定時間, 邏輯地址值會等於實體地址值?	p. 348, compile time, load time.				
8b. 在contiguous 記憶體分配,何謂 first-fit 與 worst-fit 之策略?	p. 357, (a) 從 hole list 尋找, 先發現可用的hole就先使用; (b) 尋找 hole list的全部 hole, 找出最大的 hole 去切割使用.				
9a. 在記憶體管理法, paging, access 主記憶體花100ns, TLB處理花20ns, hit ratio為90%, 計算effective access time.	<u>p. 368</u> .				
9b. 使用反向式(inverted)頁表的 分頁法裡, 畫圖說明邏輯地址如何被轉成實體地址?	p <u>. 376</u>				

Process	Arrival Time	Burst Time		
P1	0	10		
P2	1	5		
Р3	4	7		

0	1	6	13	22	
P1	P2	Р3	P1		

[(22-0-10) + (6-1-5) + (13-4-7)] / 3 = 4.666

7b

0	3	6	9	12	14	17	20	21	22
P1	P2	P1	Р3	P2	P1	Р3	P1	Р3	

[(21-0-10) + (14-1-5) + (22-4-7)] / 3 = 10.0