

M22 : Mathématiques fondamentales 2

L1 SESI 2019-2020

Corrigé du devoir surveillé n° 3 – Partie Algèbre

Exercice 1.

- 1. (a) On calcule les carrés et les cubes des entiers n modulo 4:
 - si $n \equiv 0 \pmod{4}$ alors $n^2 \equiv 0 \pmod{4}$ et $n^3 \equiv 0 \pmod{4}$,
 - si $n \equiv 1 \pmod{4}$ alors $n^2 \equiv 1 \pmod{4}$ et $n^3 \equiv 1 \pmod{4}$,
 - si $n \equiv 2 \pmod{4}$ alors $n^2 \equiv 0 \pmod{4}$ et $n^3 \equiv 0 \pmod{4}$,
 - si $n \equiv 3 \pmod{4}$ alors $n^2 \equiv 1 \pmod{4}$ et $n^3 \equiv 3 \pmod{4}$.
 - (b) Si $x \equiv 0 \pmod{4}$ ou $x \equiv 2 \pmod{4}$, alors on a $x^3 \equiv 0 \pmod{4}$ d'après la question précédente, et donc $y^2 = x^3 + 7 \equiv 7 \equiv 3 \pmod{4}$, ce qui est impossible encore d'après la question précédente. De même, si $x \equiv 3 \pmod{4}$, alors $x^3 \equiv 3 \pmod{4}$ et donc $y^2 = x^3 + 7 \equiv 10 \equiv 2 \pmod{4}$, ce qui est également impossible. On a donc bien $x \equiv 1 \pmod{4}$.
 - Comme $x \equiv 1 \pmod{4}$ d'après le point précédent, alors il existe $k \in \mathbb{Z}$ tel que x = 4k + 1. Si on suppose que $k \leq -1$, alors on obtient $x \leq -3$, puis $x^3 \leq -27$, et donc $y^2 = x^3 + 7 \leq -20$, ce qui est absurde. On a donc en fait k > 0, et donc x = 4k + 1 > 1.
- 2. (a) Le polynôme X^3+8 admet -2 comme racine, donc on peut le factoriser par X+2 dans $\mathbb{Z}[X]$. En effectuant la division euclidienne de X^3+8 par X+2, on obtient

$$X^3 + 8 = (X+2)(X^2 - 2X + 4).$$

Comme de plus le discriminant du polynôme $X^2 - 2X + 4$ vaut -12 < 0, alors ce polynôme est irréductible dans $\mathbb{R}[X]$ et donc dans $\mathbb{Z}[X]$. Ainsi, la factorisation écrite ci-dessus est bien celle de $X^3 + 8$ dans $\mathbb{Z}[X]$.

(b) Les entiers x et y vérifiant $y^2 = x^3 + 7$ par hypothèse, on a d'après la question précédente

$$y^{2} + 1 = x^{3} + 8 = (x+2)(x^{2} - 2x + 4).$$

Comme $x \ge 1$ et $x \equiv 1 \pmod 4$ d'après le point (b) de la question 1, on en déduit que l'entier n = x + 2 divise $y^2 + 1$ et vérifie $n \ge 3$ et $n \equiv 3 \pmod 4$.

(c) Si n n'admet que des facteurs premiers congrus à 0, 1 ou 2 modulo 4 alors, d'après le point (a) de la question 1, leurs puissances sont aussi congrues à 0, 1 ou 2 modulo 4, et il en est donc de même pour leur produit donnant n, ce qui est impossible puisque $n \equiv 3 \pmod{4}$. Par conséquent, il existe un nombre premier p divisant n et vérifiant $p \equiv 3 \pmod{4}$.

- (d) Comme p divise n d'après le point (c) et comme n divise y^2+1 d'après le point (b), alors p divise y^2+1 par transitivité. Ainsi, on a $y^2+1\equiv 0\pmod p$, soit encore $y^2\equiv -1\pmod p$.
- 3. Par l'absurde, si p divise y, alors $y \equiv 0 \pmod{p}$ et donc $y^2 \equiv 0 \pmod{p}$, et on en déduit d'après la question précédente que $1 \equiv 0 \pmod{p}$. Cela signifie que p divise 1, ce qui est impossible puisque p est un nombre premier. Ainsi, p ne divise pas y et donc, d'après le petit théorème de Fermat, on a $y^{p-1} \equiv 1 \pmod{p}$.
- 4. D'après le point (c) de la question 2, on a $p \equiv 3 \pmod{4}$. Ainsi, il existe $k \in \mathbb{Z}$ tel que p = 4k + 3, et donc $\frac{p-1}{2} = 2k + 1$ est bien impair. Puisque de plus $y^2 \equiv -1 \pmod{p}$ d'après le point (d) de la question 2, on en déduit en élevant cette congruence à la puissance impaire $\frac{p-1}{2}$ que

$$y^{p-1} = (y^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

5. D'après les deux questions précédentes, on a obtenu respectivement $y^{p-1} \equiv 1 \pmod{p}$ et $y^{p-1} \equiv -1 \pmod{p}$. Par transitivité, on en déduit que $1 \equiv -1 \pmod{p}$, soit encore $2 \equiv 0 \pmod{p}$, ce qui signifie que p divise 2. Comme 2 est un nombre premier et comme $p \geq 2$ puisque p est aussi un nombre premier, on en déduit que p = 2, ce qui est contradictoire avec le fait que $p \equiv 3 \pmod{4}$. On a donc bien obtenu la contradiction attendue en supposant l'existence de $(x, y) \in \mathbb{Z}^2$ vérifiant $y^2 = x^3 + 7$.

Exercice 2.

- 1. Montrons que (A, +) est un sous-groupe du groupe $(\mathcal{M}_2(\mathbb{R}), +)$:
 - la matrice nulle s'écrit $M_{0,0} \in A$
 - si $M_{a,b}, M_{c,d} \in A$ alors $M_{a,b} + M_{c,d} = M_{a+c,b+d} \in A$,
 - si $M_{a,b} \in A$ alors $-M_{a,b} = M_{-a,-b} \in A$.
 - La matrice identité s'écrit $M_{1,0} \in A$.
 - Si $M_{a,b}, M_{c,d} \in A$, alors $M_{a,b} \cdot M_{c,d} = M_{c,d} \cdot M_{a,b} = M_{ac,bc+ad} \in A$.

Ainsi, $(A, +, \cdot)$ est bien un sous-anneau commutatif de l'anneau $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$.

- 2. Montrons que (H, +) est un sous-groupe du groupe (A, +):
 - la matrice nulle s'écrit $M_{0,0} \in H$,
 - si $M_{0,b}, M_{0,d} \in H$ alors $M_{0,b} + M_{0,d} = M_{0,b+d} \in H$,
 - si $M_{0,b} \in H$ alors $-M_{0,b} = M_{0,-b} \in H$.
- 3. Soient $M_{a,b}, M_{c,d} \in A$. Alors $M_{a,b} \cdot M_{c,d} = M_{c,d} \cdot M_{a,b} = M_{ac,bc+ad}$, et donc

 $M_{a,b} \cdot M_{c,d} \in H \iff ac = 0 \iff a = 0 \text{ ou } c = 0 \iff M_{a,b} \in H \text{ ou } M_{c,d} \in H.$