Graded for Honest Effort 1.1,2 c) n v m.

used disjunction to express nausea or migraines" e) to n used conjunction to express despite to, n f) 7 t Used negation to express "no way that t" 1,2,7 c) B v (D n M)
Use conjunction to express "Both D and M" then use disjunction to eapyess "either B or Both D and M'" 1,3,3 b) If 9<5, then 5<3 Inverse: If 7 > 5, then 5 > 3. True the inverse of if p, then Q is if not p, then not g Contrapositive: If 5 > 3, then 7 > 5. True The contrapositive of if p, then q is if not q, then not p converse: If 5 < 3, then 7 < 5. True The converse of if p, then q, is if g, then p

	Graded for Honest Effort
e)	$P \rightarrow (r \vee q)$ $T \rightarrow (\cup \vee F)$
	T -> U
	Since the hypothesis is true and the conclusion is unknown, therefore the truth value is unknown
F)	$\begin{array}{c} (P \wedge Q) \rightarrow \Gamma \\ (T \wedge F) \rightarrow V \\ \hline F \rightarrow V \end{array}$
	True Since the hupothesis is false, the truth value is true regardless the conclusion is true
	or not.
	a) $\gamma(pvq)$ and $\gamma p \Lambda q$
	P 9 7 P 7 Q 7 (P V 7 Q) 7 P N Q T T F F T F F T F T F T T F F T T F T T F
	the truth table shows that the two expressions are logically equivalent

	Graded for Honest Effort
c)	$P \wedge (P \rightarrow q)$ and $P \rightarrow q$
	P Q P 7 Q P N (P 7 Q) T T F F F F T T F F F T T
	P:F, Q:T
	the truth table shows that the two expressions are not logically equivalent when p is false and q is true
1.5,1	c) r v (¬r > p) r v (¬r v p) Conditional Identity r v (r v p) Duble regation Iaw (r v r) v p Associative law r v p Idempotent Iaw
	Justifications are provided for each steps which shows the two expressions are logically equivalent

Graded	for	Honest	EFFOR	and	Feeback	Given
_						

	1,2,4	d `) (r v	P)	\wedge (9	r V	9 (<u>'</u>
--	-------	-----	-----	-----	-----	------------	---	-----	-----	----------

P	G	٢	7 G	7 1	rvp	7r V 7g	result	
T	7	T	F	F	Ţ	F		
	T	F	F					
) (F	T	T	F	7	T	T	
7	F	F	7	T	T			
1	T	T	F	F	T	F	<u></u>	
<u> </u>	T	F	F	T	<u></u>		F	
7	F	T	7	F	T	T	+	
F	<u> </u>	F	T	T		T		
			,					

All the intermediate adumns are shown in the truth table

Graded for Honest Effort and Feeback Given

 $\begin{array}{c}
1.4.5 \text{ b)} & \neg j \rightarrow (l \vee r) \\
& (r \wedge \neg l) \rightarrow j
\end{array}$

			1					
ĺ	l	r	7	lvr	カシーノリン	7 L	r n al	(アハコル) ラゴ
T	7	T	 	T	-	F		7
T	7	F	F	7	_	F	F	T
T	F	T	F	7	4		T	
7	F	F	F	F	-		<u></u>	T
F	7	7	T	T	_	F	F	
F	-	F	, T	7	, T	F	F	
F	F	T	T	T	T		<u>'</u>	F
F	F	F	一	F	t	T		
				1			1	

I turn each of English sentences into logical expressions, the I use truth table show that they are not logically equivalent.

			(4)	Feeback Give	δÚ
1,4,5 d)	(r v 7 l j -> (r	_			
	TFFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	T T T T F T F F English sel	F F F T F T Se trut	j > (r r 7 l) F T T T T T T T T T T T T	
(p) (p) (np) (np) (np) (np) (np) (np) (n	Fractions use	$p \rightarrow r)$ stup $p \rightarrow r)$ ($p \rightarrow r)$ ($p \rightarrow r$) ($p $	onditional onditional orditional orditional	identity identity identity	

	Graded for Honest Effort and Feeback Given
1,5.2	$f)$ $5 (p \vee (p \wedge q) \equiv p \wedge q$
	7 (PV (7 P A Q) Start
	7 ((pv7p) 1 (pvq)) Distributive law
	7 (T / (p v q)) Complement law
	7 ((pvq) 1 T) Commutative law
	7 (pvq) Identity law
	7 p 1 7 q De Morgan's law
	Justifications are provided for each steps which
	shows the two expressions are logically equivalent
1,5,4	b) A conditional statement is not logically
	equivalent to its inverse
	$p \rightarrow q$ inverse: $\neg p \rightarrow \neg q$
	9 9 7 P 7 9 P 7 9 7 P 7 7 9 7 P 7 9 7 P 7 9 9 9 9
	T. (
	The stands total about that a condition of
	The truth table shows that p>q and ¬p> 7q
	are not logically equivalent

	Graded for Honest Effort and Feeback Given
1.5,4	c) A anditional statement is logically equivalent to its contrapositive
	P > q, Contrupositive > 7 Q -> 7 P
	p > q start 7 p v q conditional identity
	q v 7p commutative law 7 q > 7p conditional identity
	D > Q = 7Q > 7P
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Justifications are provided for each steps which
	shows the two expressions are logically equivalent Also a truth table is provided to show that they are logically equivalent,