

INTRODUCTION TO FPGA DESIGN IN QUARTUS (REMOTE EDITION)

November 2020

TOPICS

- FPGAs at Intel
- Fundamentals of Digital Electronics
- FPGA Architecture
- Intel® Quartus® Prime Design Software
- FPGA Design Flow

COMPANION LAB

- 1. <u>Download</u> the Quartus Prime Lite Software:
- 2. We will run with a remote DE10-Lite development board

Quartus Prime Lite Edition

Release date: June, 2020 Latest Release: v20.1

Intel' Quartus' Prime

Select edition: Lite Select release: 20.1

Operating System () • Mindows O 🐧 Linux

The Quartus Prime Life Edition Design Software, Version co. 20.1 includes functional and security puddates. Users should keep their software up-to-date and follow the technical recommendations to help improve security, Additional security updates are planned and will be provided as they become available. Users should promptly install the latest version upon release.

The Quartus Prime Lite Edition Design Software, Version 20.1 is subject to removal from the web when support for all devices in this release are available in a newer version, or all devices supported by this version are obsolete. If you would like to receive extender not extended please subscribe to our subscribe to our customer notification by e-mail, please subscribe to our subscribe to our customer notification and please subscribe to our subscribe to our customer notification.

√ The Quartus Prime Lite Edition Design Software, Version 20.1 supports the following device families: Arria II, Cyclone 10 LP, Cyclone IV, Cyclone V, MAX II, MAX V, and MAX 10 FPGA.

√ More

✓ More

✓

uick Start Guid		
Ouartus Prin	ne Lite Edition (Eree)	
Size: 1.6 ("Nics II ED requires :	Prime (Includes Nios II EDS) 38 MDS: 23479E446326A05C4EC63D0E6B6F192 6 on Vinicious requires (Dourte 1604 LTS on Windows Subsystem for Linux (WSL), which meaning the control of the Control of the Control of the Control 6 requires you to install an Etipse (DE manually.	0
	n-Intel FPGA Edition (Includes Starter Edition) SB MDs: DsE63sE32291040888018sD920ACC694	0
Arria II de	tall device support for at least one device family to use the Quartus Prime soft wice support 1 MB MDS: A399884973E698D23E35ACED3EA98A8C	ware.
You must ins Arria II de Size: 499.	evice support	ware.
You must ins Arria II de Size: 499 Cyclone I	evice support 1 MB MDs: A4398B4873E69BD23E36ACED3EA9BA8C	oware.
You must ins Arria II de Size: 499 Cyclone I Size: 466 Cyclone 1	wice support 1 MB MDs: A439884873E698D23E36ACED3EA98A8C V device support	oware.
You must ins Arria II de Size: 499. Cyclone I Size: 466. Cyclone 1 Size: 265. Cyclone V	wice support 1 MB MDs: A4398B4873E69BD23E35ACED3EA9BA8C V device support 0 MB MDs: 14E47510CEA47DC0ED92C8CB97D76488 to LP device support	0
You must Ins Arria II de Size: 499 Cyclone I Size: 466 Cyclone 1 Size: 265 Cyclone N	vice support 1 MB MDs: A439B84873E698D23E35ACED3EA9BA8C V device support 0 MB MDs: 14547510CEA47DC0ED92C8CB97D76488 0 LP device support 7 MB MDs: A5447540CE9503SDD084E9E8B621EB1378 V device support	0

FIELD PROGRAMMABLE GATE ARRAY (FPGA)

- Flexible, multi-functional reprogrammable silicon
- Custom hardware functionality
- Bare-metal speed and reliability
- Truly parallel in nature

BENEFITS OF FPGA TECHNOLOGY

- Flexibility
- Time to market
- Performance
- Reliability
- Long-Term Maintenance reprogram if features change or bugs found
- Many different applications 5G, Data Center, Industrial, DSP
- Excellent prototyping vehicle

THE BIRTH OF FPGAS

INTEL'S DEEP HISTORY WITH FPGAS

BACK TO THE BASICS

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

OR Z = A | B

AND Z = A & B

LOOK-UP TABLE (LUT): THE FOUNDATION

LOGIC ARRAY (BUILDING) BLOCKS

BUILDING THE ARRAY

HOW ITS PROGRAMMED

Row/Column Interconnect Junction

Programming info stored in a external non-volatile device

- Active: programmed automatically at power-on
- Passive: Intelligent host (CPU) controls programming

MODERN FPGAS

DESCRIBING FPGAS

- Schematics
- System Integration Tools predefined blocks
- Hardware Description Languages (HDLs)
 - -Verilog, VHDL are most popular
- Other high level languages
 - -"HLS"
 - -OpenCL
 - -Data Parallel C++

Use	Connections	Name	Description	Export	Clock
\square		□ CLK_IP	Clock Source		
	D-	dk_in	Clock Input	clk	exported
	○ D-	dk_in_reset	Reset Input	reset	
		dk	Clock Output	Double-click to export	CLK_IP
	\parallel	dk_reset	Reset Output	Double-click to export	
$\overline{\mathbf{A}}$		□ 🕮 JTAG_2_Avalon_I	P JTAG to Avalon Master Bridge		
	♦	dk	Clock Input	Double-click to export	CLK_IP
	+ - + →	dk_reset	Reset Input	Double-click to export	
		master	Avalon Memory Mapped Master	Double-click to export	[dk]
		master_reset	Reset Output	Double-click to export	
		□ LED_IP_0	PIO (Parallel I/O) Intel FPGA IP		
	♦ 	dk	Clock Input	Double-click to export	CLK_IP
	 	reset	Reset Input	Double-click to export	[dk]
		s1	Avalon Memory Mapped Slave	Double-click to export	[dk]
		external_connection	Conduit	ledr31_to_0	
\square		☐ SW_IP	PIO (Parallel I/O) Intel FPGA IP		
	♦	dk	Clock Input	Double-click to export	CLK_IP
	 	reset	Reset Input	Double-click to export	[dk]
		s1	Avalon Memory Mapped Slave	Double-click to export	[dk]
	0-0	external_connection	Conduit	control13_to_12_key11	
		□ LED_IP_1	PIO (Parallel I/O) Intel FPGA IP		
	♦	dk	Clock Input	Double-click to export	CLK_IP
	 	reset	Reset Input	Double-click to export	[dk]
		s1	Avalon Memory Mapped Slave	Double-click to export	[dk]
	0.0	external_connection	Conduit	ledr63_to_32	

```
Y = \sim (\sim (\sim A \mid (A\&B\&C)));

Z = (\sim (\sim A \mid (A\&B\&C))) \& ((A\&B\&C) \mid \sim C) \& \sim C);
```

```
try {
    sycl::queue q(sycl::default_selector{});
    const float A(aval);

sycl::buffer<float,1> d_X { h_X.data(), sycl::range<1>(h_X.size()) };
    sycl::buffer<float,1> d_Y { h_Y.data(), sycl::range<1>(h_Y.size()) };
    sycl::buffer<float,1> d_Z { h_Z.data(), sycl::range<1>(h_Z.size()) };

q.submit([&](sycl::handler& h) {
        auto X = d_X.template get_access<sycl::access::mode::read>(h);
        auto Y = d_Y.template get_access<sycl::access::mode::read>(h);
        auto Z = d_Z.template get_access<sycl::access::mode::read_write>(h);

        h.parallel_for<class nstream>( sycl::range<1>{length}, [=] (sycl::id<1> it) {
            const int i = it[e];
            Z[i] += A * X[i] + Y[i];
            ));
            q.vait();
}
```


WHAT IS IP (INTELLECTUAL PROPERTY)?

- Complex functions that Intel designs for our customers so they don't have to design it themselves
 - Sometimes IP is free
 - The more complex stuff costs since its expensive to develop and make sure it works
- Examples: Ethernet Controller, PCIe Controller, soft processor, multiplier functions, etc.

INTRO TO QUARTUS

- Intel® Quartus® Prime Design Software is a tool for FPGA, SOC and CPLD design
- Includes synthesis, debug, optimization, verification and simulation
- Takes a description of an FPGA (schematic or HDL) and determines how the lookup tables are programmed

- Many formats to program an FPGA
 - -In this class we will use a ".sof" file (SRAM object file)
 - -The .sof file is "volatile" and needs to be reprogrammed every time the board is restarted

QUARTUS USER INTERFACE

Quartus Prime Software Main Window

- Project Navigator shows your project hierarchy, source files, design units, IP and design revisions in your project.
- Tasks window shows the status of the design and can be used to run or re-run parts of the design flow
- Messages window outputs messages from each process of the run.
- *Files* window has tabs for the report browser, open design files and any other file opened by the user.
- IP Catalog window is open by default and is used to generate IP functions that are to be used in your design.

TOOLS OVERVIEW

NEW PROJECT WIZARD

- 1. Name project
- 2. Set Working Directory & Top-Level Entity
- 3. Add source files
- 4. Select Device
- 5. EDA tool settings

All settings can be modified later. Some steps can be skipped.

The top level entity must match the top level module in your design exactly (case sensitive) in order to avoid a compile error.

HINT: FAMILY & DEVICE SETTINGS

Expand the window so you can see all the fields

Get the part number for your specific device by looking on the chip on your board or the side of the box.

PIN PLANNER

COMPILE YOUR DESIGN

✓	▲ Compile Design	00:01:59
✓	Analysis & Synthesis	00:00:40
✓	→ Fitter (Place & Route)	00:00:42
✓	Assembler (Generate programming files)	00:00:19
✓		00:00:18

332012 Synopsys Design Constraints File file not found: 'Lab1.sdc'.

Warnings shown in blue won't prevent your design from compiling or being programmed, but they could indicate possible bugs. This lab does not have any design constraints, so the .sdc file is not needed. You will learn how to create one in the timing analysis workshop.

PROGRAM YOUR FPGA

32-bit Parameter 0

32-bit Parameter 1

32-bit Parameter 2

Board launched! Connected to USB-Blaster [USB-0]

Time remaining: 20:19 Ping: 22 ms

Reset Timer

Live Hardware

Remote Console

COVID-19: NEW CHALLENGES FOR REMOTE LEARNERS

In June 2020, we launched initiatives to help remote learners

Addresses situation where student does not have a physical board in their possession

Simulation based only requires Modelsim

- •Quick compiles
- More setup with IP
- Slower clock speed

Hardware based requires Intel Quartus Prime-Lite

- Longer compiles, but hardware accurate
- •More complex networking, adds a level of hierarchy in the design

SIMULATION CONSOLE FOR FPGAS

Supports: Switches, Push Buttons, LED, 7-Segments, PS2 character i/f and VGA Display

Modelsim mimics behavior of board

Good for initial bring-up and debug

No need for viewing waveforms

OVERVIEW

Support for remote GPIO-based labs.

• Good for undergraduate curriculum.

Leverages existing Quartus Prime Lite installation.

- No additional software needed.
- Up and running in minutes.

Requirements:

- Windows machine
- Quartus Prime Lite
- Access to local or remote development kit

CONNECTING TO DEVELOPMENT KIT

Right-click launch task

Select "Start"

If development kit is locally connected keep IPv4 as "local"

- Otherwise a host's IPv4 and password are used.
- Select project .sof.
- Link

NEW REMOTE CONSOLE PROJECTS

Download the blankProject.qar example project for your dev kit.

Unarchive the project into Quartus.

Add source files and connect new design to top-level wrapper.

Debug and compile.

Launch Remote Console and validate functionality in hardware.

HOSTING DEVELOPMENT KITS

Requirements:

- Linux Ubuntu 18.04
- Static IP assignment
- Enough USB connections (supports USB hubs)
- Quartus Prime Lite Programmer and Tools package
- Clients with VPN privileges

Run setup bash script as root

Distribute IPv4/passwords to clients

Saved in jtag_server_passwords.txt

FIRST LAB: SWITCH TO LED

NEXT LAB: MULTIPLEXER

The multiplexer can be described by the following Verilog statement:

assign
$$m = (\sim s \& x) | (s \& y);$$

KNIGHTRIDER

FINAL TIPS

- When Quartus Prime Lite first starts for the very first time it might ask you about purchasing a license, select Run Quartus, all licenses are free for this lab.
- If things fail to compile, check your top Level Entity Setting → Setting → Top Level Entity and make sure that the module <design> matches your top level entity, including case.
- Check the LEDR[0] and LEDR[9] pins carefully in the Knight Rider lab and see if they sequence properly. If not, study the code carefully!
- Sometimes copy and paste from files into Quartus has carriage return formatting errors. If you see run on lines with no carriage return, you need to copy things over line by line, or add the appropriate file to your project. It's better to click on the links and download the files.

