

Conceptual Data Models

Lesson Objectives and Contents

→ Conceptual Data Model

DATA MODELLING

Let's take a look at an Airline System.

- Passenger
- Ticket
- Aircraft
- Flight

From Analysis to Data Model...

ENTITIES AND RELATIONSHIPS

Identifying Entities and Relationships – NOUNS & VERBS

Let's take a look at an ... Airline System

- A Passenger buys a Ticket to travel on an Aircraft which carries out a Flight from one Airport to another Airport.
- A Passenger buys a Ticket to travel on an Aircraft which carries out a Flight from one Airport to another Airport.

Entities and Relationships

Let's introduce another term – Cardinality.

This specifies the **number** of each **entity** that is involved in the relationship.

There are three types of cardinality:

- 1. One to one (1:1). For example, 1 person is in a relationship with another person.
- 2. One to many (1:m). For example, 1 manager manages many employees, each employee is managed by 1 manager.
- 3. Many to many (m:n). For example, each students take many modules, each module is taken by many students.

The cardinality in our Airline model.

In a UML diagram, we specify the cardinality along our relationship edge:

Passenger -----Ticket

One passenger can buy multiple tickets

Or

One passenger can travel on one ticket

Depends on the definition of Passenger – what's the business rule?

The cardinality in our Airline model.

So, we specify the cardinality according to our business rule.

OPTIONALITY

This gives three types for binary relationships:

- **1.** Optional for both entities (not very common).
- Employee may not have a manager.
- **2.** Optional for one entity, mandatory for the other.
- Employee may not have a Manager (e.g. CEO).
- Manager must have at least one employee.
- **3.** Mandatory for both entities.
- Employee must work in a department.
- Department must have at least one employee.

Optionality Types

Mandatory:

Conditional:

Optional:

Cardinality in our model

Extending the Conceptual Model

Extended Conceptual Model

Diagram Notations - UML

Diagram Notations - IEM (Crow's Foot)

Diagram Notations - Chen

Relationships

1:M relationship

- → Relational modeling ideal
- → Should be the norm in any relational database design

The 1: M relationship between PAINTER and PAINTING

Model + significant properties

Extended Conceptual Model with significant properties

Exercise EG_01-Conceptual Data Diagrams

Part 1 – Acme Vehicle Hire

Part 2 – Cerberus Security Systems

Summarising ... Conceptual Diagram

- → Entities
- → Relationships
- → Cardinality
- → Significant Attributes
- → Inclusion is optional at this stage

No knowledge of the database technology!