DoSA-3D 사용 메뉴얼

Solenoid Example

2022-05-07 zgitae@gmail.com

DoSA 구성

PC 요구사항

➤ CPU : 4 Core 이상

➤ RAM : 16GB 이상

프로그램 구성

Toolbar

1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정

✓ Steel : 연자성체 추가 및 사양 설정

3. 가상실험

✓ Force : 자기력 예측

해석 모델

해석모델 설명

1. 형상 모델

2. 제품 사양

가. 코일권선

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. 전원

• Voltage: 14.5V

(작업 예제파일 : DoSA-3D 설치 디렉토리 > Samples > Solenoid)

Design 생성

- 1. Toolbar > New 버튼 클릭
- 2. Design Name : 작업 명칭 입력 (Solenoid)
- 3. Shape File (STEP): Solenoid.step 선택 (튜토리얼 문서와 함께 제공됨)

[형상작업 주의사항]

DoSA-3D 는 아직 아래의 기능제한을 가지고 있음

- 가. 코일 형상 제한
 - 코일 중심 축이 Y 축 방향이어야 한다.
 - 전류는 원통코일 형태로 인가된다.(사각 코일은 약간의 차이가 발생할 수 있음)
- 나. 구동부 형상 제한
 - 구동부는 아직 하나의 부품만을 지원함
- 다. 형상작업 가이드
 - https://solenoid.or.kr/data/Drawing Guide KOR.pdf

Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.

Design 생성

8. Design 생성을 확인한다.

Parts Design

Coil 추가

- 1. Toolbar > Coil 버튼 클릭
- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭

Coil 설계

1. Coil 기구사양 입력

✓ Inner Diameter: 9.6

✓ Outer Diameter: 21.6

✓ Coil Height: 16

✓ Copper Diameter: 0.27

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

3. Coil 사양 확인

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
Δ	Design Fields (optio	nal)
	Coil Wire Grade	Enameled_IEC_Grade_2
	Inner Diameter [mm]	9.6
	Outer Diameter [mm]	21.6
	Coil Height [mm]	16
	Copper Diameter [mm]	0.27
	Wire Diameter [mm]	0.31072
	Coil Temperature [°€]	20
	Horizontal Coefficient	0.9
	Vertical Coefficient	0.98
	vertical Coefficient	0, 30

1

Armature 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Armature" 선택
- 3. OK 버튼 클릭

Armature 설정

1. Armature 속성 설정

✓ Part Material : SUS_430 선택

✓ Moving Parts : MOVING

자기력 계산 파트 선정

[BH 곡선]

Core 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Core" 선택
- 3. OK 버튼 클릭

Core 설정

1. Core 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Case 생성

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭

Case 설정

1. Case 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Virtual Test

자기력 가상실험

- 1. Toolbar > Force 버튼 클릭
- 2. Test Name: "force"
- 3. OK 버튼 클릭
- 4. 자기력 가상실험 설정
 - ✓ Voltage: 14.5
- 5. 해석조건 설정
 - ✓ Mesh Size Percent : 5✓ Actuator Type : Solenoid
- 6. Force Test 버튼 클릭

~	Common Fields		
	Node Name	Force	
~	Input Fields		
	Voltage [V]	14.5 4	
	Max, Current [A]	0,95335	
~	Initial Position Fields		
	Y Movement [mm]	0	
	X Movement [mm]	0	
	Z Movement [mm]	0	
~	Condition Fields		
	Mesh Size [%]	5 5	
	Actuator Type	Solenoid -	

자기력 가상실험 실행

- 7. 형상을 확인 하고 Run 버튼 클릭
- 8. 해석 진행 중에 상황을 확인하려면 Gmsh 상태 바를 클릭한다

자기력 가상실험 결과

- 9. 해석 결과를 확인 함 (해석 시간은 컴퓨터 사양에 따라 다름)
- 10. **Gmsh** 를 종료한다.
- 11. 자기력을 확인한다.

Tips

Design 열기

- 1. Toolbar > Open 버튼 클릭
- 2. Design 디렉토리 더블 클릭
- 3. Design 파일 더블 클릭

Thank You

Email: zgitae@gmail.com