# Topic 5:

Unconstrained optimization

## Outline

- 1. Local optimization, first order necessary condition
- 2. Positive (negative) definite matrix
- 3. Second order sufficient conditions for local extreme points
- 4. Concavity
- 5. Quasi-concavity
- 6. Global optimization
- 7. Economic applications
- 8. Envelope Theorem

# 1. Local optimization, first order necessary condition

- Consider a two-variable differentiable function z = f(x, y) defined on S,  $(x_0, y_0)$  is an interior point of S
- $(x_0, y_0)$  is said to be local maximum point of f if  $f(x, y) \le f(x_0, y_0)$  for all pairs of (x, y) in S that lie close to  $(x_0, y_0)$ .
- $(x_0, y_0)$  is said to be local minimum point of f if  $f(x, y) \ge f(x_0, y_0)$  for all pairs of (x, y) in S that lie close to  $(x_0, y_0)$ .
- Let  $y = y_0$ , if  $(x_0, y_0)$  is a local maximum point of f, then  $g(x) = f(x, y_0)$  will reach its maximum at  $x = x_0$ , so  $g'(x_0) = f_1'(x_0, y_0) = 0$

• First-order necessary condition for interior extreme point:  $(x_0, y_0)$  is a local extreme point of f, then  $(x_0, y_0)$  is a stationary point, satisfying the FOC:

$$f_1'(x_0, y_0) = 0$$
,  $f_2'(x_0, y_0) = 0$ , or  $f'(x_0, y_0) = 0$ 

• A saddle point  $(x_0, y_0)$  is a stationary point with the property that there exist points (x, y) close to  $(x_0, y_0)$  with  $f(x, y) < f(x_0, y_0)$ , and there also exist such points with  $f(x, y) > f(x_0, y_0)$ 

• **Example**: For the following functions, obviously (0,0) is the stationary point

$$f(x, y) = x^2 + y^2$$
 [minimum point]  
 $f(x, y) = -x^2 - y^2$  [maximum point]  
 $f(x, y) = x^2 - y^2$  [saddle point]







• Recall: for one-variable function f(x), if  $x_0$  is a stationary point, then sufficient condition for  $x_0$  to be extreme points is

 $x_0$  is local maximum  $f''(x_0) < 0$ 

 $x_0$  is local minimum  $f''(x_0) > 0$ 

• Recall justification of second derivative test: For  $f \in C^2$ :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2}(x - x_0)^2$$

where  $\xi$  is between x and  $x_0$ .

- If  $f'(x_0) = 0$  and  $f''(x_0) < 0$ , then  $f''(\xi) < 0$  when x is close to  $x_0$ , therefore  $f(x) < f(x_0)$ :  $x_0$  is a local maximum.
- If  $f'(x_0) = 0$  and  $f''(x_0) > 0$ , then  $f''(\xi) > 0$  when x is close to  $x_0$ . therefore  $f(x) > f(x_0)$ :  $x_0$  is a local minimum.

• Extension of Taylor expansion from one variable to multi-variable: for  $x \in \mathbb{R}^n$ 

$$f'(x) = (f_{x_1}'(x), f_{x_2}'(x), \dots, f_{x_n}'(x))^T = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^T$$

$$f''(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \dots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

note that f'(x) is a  $n \times 1$  vector and f''(x) is  $n \times n$  symmetric matrix.

- Taylor expansion for  $f \in C^2(f)$ : function of n variables):  $f(x) = f(x_0) + f'(x_0) \cdot (x x_0) + (1/2)(x x_0)'f''(\xi)(x x_0)$  where  $\xi$  is between x and  $x_0$
- $x_0$  is a stationary point if  $f'(x_0) = 0$ .
- whether  $x_0$  is local maximum or minimum depends on whether  $(x x_0)'f''(x_0)(x x_0)$  is > 0 or < 0.
- Let  $h = x x_0$ . We need to learn when f(h) = h'Ah > 0 or < 0 for a symmetric matrix A.

# 2. Positive (negative) definite matrix

• Let  $x \in \mathbb{R}^n$  and A be symmetric matrix,

$$f(x) = x'Ax$$

is said to be of quadratic form.

• **Examples**: for symmetric matrices

$$A_{1} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ A_{2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \ A_{3} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \ A_{4} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -2 \end{pmatrix}$$

$$f_{1}(x) = f_{1}(x_{1}, x_{2}) = x' A_{1}x = 2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2}$$

$$f_{2}(x) = f_{2}(x_{1}, x_{2}) = x' A_{2}x = x_{1}^{2} - 2x_{1}x_{2} + x_{2}^{2}$$

$$f_{3}(x) = f_{3}(x_{1}, x_{2}) = x' A_{3}x = x_{1}x_{2}$$

$$f_{4}(x) = f_{4}(x_{1}, x_{2}, x_{3}) = x' A_{4}x = -2x_{1}^{2} - 3x_{2}^{2} - 2x_{3}^{2} + 2x_{1}x_{3}$$

# Definition of definite matrices

• A symmetric matrix  $A \in \mathbb{R}^{n \times n}$  is

| Positive semi-definite ( $A \ge 0$ )  | if | $x'Ax \ge 0$ for any $x \in R^n$                   |
|---------------------------------------|----|----------------------------------------------------|
| Positive definite $(A > 0)$           | if | $x'Ax > 0$ for any $x \in R^n$ , $x \neq 0$        |
| Negative semi-definite ( $A \leq 0$ ) | if | $x'Ax \leq 0$ for any $x \in R^n$                  |
| Negative definite $(A < 0)$           | if | $x'Ax < 0$ for any $x \in R^n$ , $x \neq 0$        |
| Indefinite                            | If | x'Ax > 0 for some $x$ and $< 0$ for some other $x$ |

#### **Examples (revisit):**

$$A_{1} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ A_{2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \ A_{3} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \ A_{4} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -2 \end{pmatrix}$$

$$f_{1}(x) = 2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2} = (x_{1} - x_{2})^{2} + x_{1}^{2} + x_{2}^{2} > 0 \text{ for } x \neq 0$$

$$f_{2}(x) = x_{1}^{2} - 2x_{1}x_{2} + x_{2}^{2} = (x_{1} - x_{2})^{2} \geq 0$$

$$f_{3}(x) = x_{1}x_{2} > 0 \text{ for some } x, \text{ and } < 0 \text{ for some other } x$$

$$f_{4}(x) = -2x_{1}^{2} - 3x_{2}^{2} - 2x_{3}^{2} + 2x_{1}x_{3} = -x_{1}^{2} - 3x_{2}^{2} - x_{3}^{2} - (x_{1} - x_{3})^{2} < 0 \text{ for } x \neq 0$$

$$A_{1} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} > 0, \ A_{2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \geq 0,$$

$$A_{3} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \text{ is indefinite, } A_{4} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -2 \end{pmatrix} < 0$$

- Note:  $A \le 0$  iff  $-A \ge 0$ , and A < 0 iff -A > 0
- If  $A \ge 0$ , then  $a_{ii} \ge 0$  for all i; If A > 0, then  $a_{ii} > 0$  for all i.
- If  $A \leq 0$ , then  $a_{ii} \leq 0$  for all i; If A < 0, then  $a_{ii} < 0$  for all i.

• **Exercise**: is

$$A = \begin{pmatrix} 0 & 0 & 3 \\ 0 & -1 & 2 \\ 3 & 2 & 5 \end{pmatrix} \ge 0?$$

- **Example**: Let  $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ , then
  - $-A>0 \Leftrightarrow a>0, ac-b^2>0$
  - $-A \ge 0 \Leftrightarrow a \ge 0, c \ge 0, ac b^2 \ge 0$
  - $-A < 0 \Leftrightarrow a < 0, ac b^2 > 0$
  - $-A \le 0 \Leftrightarrow a \le 0, c \le 0, ac b^2 \ge 0$
  - A is indefinite  $⇔ ac b^2 < 0$

• Given a matrix  $A=(a_{ij})_{n\times n}$ , for  $i_1< i_2< \cdots < i_k\in\{1,2,\cdots,n\}$ , define a k-dimensional principal minor as

$$d_{\{i_1,...,i_k\}} = egin{bmatrix} a_{i_1,i_1} & a_{i_1,i_2} & \cdots & a_{i_1,i_k} \ a_{i_2,i_1} & a_{i_2,i_2} & \cdots & a_{i_2,i_k} \ dots & dots & dots \ a_{i_k,i_1} & a_{i_k,i_2} & \cdots & a_{i_k,i_k} \ \end{pmatrix}$$

In particular, denote the leading principal minors as

$$d_1 = d_{\{1\}}, \ d_2 = d_{\{1,2\}}, \dots, d_n = d_{\{1,2,\dots,n\}}$$

• **Example**: Let 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

• The 1-dimensional principal minors are:

$$d_{\{1\}} = 1, d_{\{2\}} = 5, d_{\{3\}} = 9$$

The 2-dimensional principal minors are:

$$d_{\{1,2\}} = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}, d_{\{1,3\}} = \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix}, d_{\{2,3\}} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix}$$

- The 3-dimensional principal minor is  $d_{\{1,2,3\}} = |A|$
- The leading principal minors are

$$d_1 = d_{\{1\}} = 1, d_2 = d_{\{1,2\}} = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}, d_3 = d_{\{1,2,3\}} = |A|$$

- **Example**: For  $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$
- The 1-dimensional principal minors are  $d_{\{1\}}=a$ ,  $d_{\{2\}}=c$
- The 2-dimensional principal minors are:  $d_{\{1,2\}} = |A| = ac b^2$
- The leading principal minors are  $d_1=d_{\{1\}}=a$ ,  $d_2=d_{\{1,2\}}=ac-b^2$

#### Compare

- 1.  $A > 0 \Leftrightarrow a > 0, ac b^2 > 0$  (all leading principal minors > 0)
- 2.  $A \ge 0 \Leftrightarrow a \ge 0, c \ge 0, ac b^2 \ge 0$  (all principal minors  $\ge 0$ )
- 3.  $A < 0 \Leftrightarrow a < 0$ ,  $ac b^2 > 0$  (all leading principal minors < 0 if odd dimension, > 0 if even dimension)
- 4.  $A \le 0 \Leftrightarrow a \le 0, c \le 0, ac b^2 \ge 0$  (all principal minors,  $\le 0$  if odd dimension,  $\ge 0$  if even dimension)

#### • **Theorem**: For a symmetric matrix *A*

- 1.  $A > 0 \Leftrightarrow d_k > 0$  for all k
- 2.  $A < 0 \Leftrightarrow (-1)^k d_k > 0$  for all k
- $3. \quad A \geq 0 \Leftrightarrow d_{\{i_1,i_2,\ldots,i_k\}} \geq 0 \text{ for all } \{i_1,i_2,\ldots,i_k\} \in \{1,2,\ldots,n\} \text{ with } i_1 < i_2 < \cdots < i_k$
- $4. \qquad A \leq 0 \Leftrightarrow (-1)^k d_{\{i_1,i_2,\dots,i_k\}} \geq 0 \text{ for all } \{i_1,i_2,\dots,i_k\} \in \{1,2,\dots,n\} \text{ with } i_1 < i_2 < \dots < i_k \leq 1, \dots \leq i_k \leq 1, \dots \leq n \}$

• **Example** (revisit): use the above theorem to verify that

$$A_{1} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} > 0, \ A_{2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \ge 0,$$

$$A_{3} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \text{ is indefinite, } A_{4} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -2 \end{pmatrix} < 0$$

- For  $A_1$ ,  $d_1 = 2 > 0$ ,  $d_2 = |A_1| = 3 > 0$ , thus  $A_1 > 0$
- For  $A_2$ ,  $d_{\{1\}} > 0$ ,  $d_{\{2\}} > 0$ ,  $d_{\{1,2\}} = 0$ , thus  $A_2 \ge 0$
- For  $A_3$ ,  $d_{\{1,2\}} < 0$ , thus  $A_3$  is indefinite
- For  $A_4$ ,  $d_1 = -2 < 0$ ,  $d_2 = \begin{vmatrix} -2 & 0 \\ 0 & -3 \end{vmatrix} = 6 > 0$ ,  $d_3 = |A_4| < 0$ , thus  $A_4 < 0$

 Exercise: Use the above theorem to check the following matrices for definiteness

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

# 3. Second order sufficient conditions for local extreme points

• Example: 
$$f(x,y) = -x^2 + xy - y^2 = (x,y) \begin{pmatrix} -1 & \frac{1}{2} \\ \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = v'Av$$
,

the matrix 
$$A = \begin{pmatrix} -1 & \frac{1}{2} \\ \frac{1}{2} & -1 \end{pmatrix}$$
 is negative definite, therefore,  $v'Av < 1$ 

0 if  $v \neq 0$ . In summary, f(0,0) = 0, and f(x,y) < 0 if  $(x,y) \neq (0,0)$ , the stationary point (0,0) is (unique) local (global) maximum.

• **Example**: 
$$f(x,y) = -x^2 + 2xy - y^2 = (x,y) \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
, the matrix  $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$  is negative semi-definite, (0,0) is a local maximum, but not the unique maximum point.

• Example: 
$$f(x,y) = ax^2 + 2bxy + cy^2 = (x,y)A \begin{pmatrix} x \\ y \end{pmatrix}$$
 with  $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ 

- If A < 0, then (0,0) is unique maximum point
- If A > 0, then (0,0) is unique minimum point
- Note:  $(x_0, y_0) = (0,0)$  is the stationary point of f
- f''(x,y) = 2A
- Second-order sufficient condition for local extreme points for general function of two variables f(x, y)
  - $-(x_0,y_0)$  is a stationary point of f
  - A sufficient condition for  $(x_0, y_0)$  to be local maximum point is  $f''(x^0, y^0) < 0$
  - A sufficient condition for  $(x_0, y_0)$  to be local minimum point is  $f''(x^0, y^0) > 0$
  - A necessary condition for  $(x_0, y_0)$  to be local maximum point is  $f''(x^0, y^0) \le 0$
  - A necessary condition for  $(x_0, y_0)$  to be local minimum point is  $f''(x^0, y^0) \ge 0$
  - If  $f''(x_0, y_0)$  is indefinite, then,  $(x_0, y_0)$  must is a saddle point

- **Example**:  $f(x,y) = x^3 x^2 y^2 + 8$ , find local extreme points
  - FOC:  $\begin{cases} f_1'(x, y) = 3x^2 2x = 0 \\ f_2'(x, y) = -2y = 0 \end{cases}$
  - Stationary points: (0,0) and  $(\frac{2}{3},0)$
  - Hessian matrix:  $f''(x, y) = \begin{pmatrix} 6x 2 & 0 \\ 0 & -2 \end{pmatrix}$
  - Thus,

$$f''(0,0) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} < 0, \ f''(\frac{2}{3},0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 is indefinite

- Therefore, (0,0) is local maximum point and (2/3,0) is a saddle point
- Exercise: Find local extreme point(s) of

$$f(x,y) = x^2 + y - xy - y^3$$

• Exercise: Find local extreme point(s) of

$$f(x,y) = x + 2ey - e^x - e^{2y}$$

- Extension to n-variable function: Let  $A \in \mathbb{R}^n$ , for  $f: \mathbb{R}^n \to \mathbb{R}$  twice continuously differentiable
- $x^* \in R^n$  is a stationary point if it satisfies  $f'(x^*) = 0$ , or equivalently  $\frac{\partial f(x^*)}{\partial x_i} = 0$  for i = 1, 2, ..., n
- Second-order sufficient condition for local maximum/minimum
  - A sufficient condition for  $x^*$  to be local maximum is  $f''(x^*) < 0$
  - A sufficient condition for  $x^*$  to be local minimum is  $f''(x^*) > 0$
  - A necessary condition for  $x^*$  to be local maximum is  $f''(x^*) \le 0$
  - A necessary condition for  $x^*$  to be local minimum is  $f''(x^*) \ge 0$
  - If  $f''(x^*)$  is indefinite, then,  $x^*$  must is a saddle point

• **Example**:  $x \in R^3$ ,  $f(x) = x_1^3 + x_2^2 + 2x_3^2 - 2x_2x_3 - 3x_1 + 10$ , find local maximum/minimum point.

FOC: 
$$\begin{cases} f_1'(x) = \frac{\partial f}{\partial x_1} = 3x_1^2 - 3 = 0 \\ f_2'(x) = \frac{\partial f}{\partial x_2} = 2x_2 - 2x_3 = 0 \\ f_3'(x) = \frac{\partial f}{\partial x_3} = 4x_3 - 2x_2 = 0 \end{cases}$$

- Stationary points:  $c_1 = (1,0,0)$  and  $c_2 = (-1,0,0)$
- Hessian matrix:  $f''(x) = \begin{pmatrix} 6x_1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 4 \end{pmatrix}$

$$f''(c_1) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 4 \end{pmatrix} > 0; \ f''(c_2) = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 4 \end{pmatrix}$$
 is indefinite

•  $c_1$  is a local minimum point.  $c_2$  is a saddle point.

## 4. Concavity

- Concavity is a sufficient condition for a stationary point to be a global maximum.
- Given any two points  $x, y \in R^n$ , define the intervals:

Closed interval:  $[x, y] = \{z | z = \lambda x + (1 - \lambda)y, \lambda \in [0, 1]\}$ 

Open interval:  $(x, y) = \{z | z = \lambda x + (1 - \lambda)y, \lambda \in (0, 1)\}$ 

• **Example**: n=2, x=(1,2), y=(2,1), [x,y] is the line connecting the two points:



• A set  $S \subset R^n$  is a convex set if  $x, y \in S \Rightarrow [x, y] \subset S$ 



• If S and T are convex sets, then  $S \cap T$  is a convex set (not true for  $S \cup T$ )





### Concave/Convex functions

- Given a convex set  $S \subset \mathbb{R}^n$ ,  $f: S \to \mathbb{R}$ 
  - f is concave if  $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$ ,  $\forall \lambda \in (0,1)$ , and  $x, y \in S$
  - f is strictly concave if  $f(\lambda x + (1 \lambda)y) > \lambda f(x) + (1 \lambda)f(y)$ ,  $\forall \lambda \in (0,1)$ , and  $x,y \in S$
  - f is convex if  $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$ ,  $\forall \lambda \in (0,1)$ , and  $x, y \in S$
  - f is strictly convex if  $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$ ,  $\forall \lambda \in (0,1)$ , and  $x,y \in S$





## Example

Use definition to argue that  $f(x) = x_1^2 + x_2^2$  defined on  $R^2$  is a convex function

• Let  $x, y \in \mathbb{R}^2$ ,  $\lambda \in (0,1)$  $f(\lambda x + (1-\lambda)y) = (\lambda x_1 + (1-\lambda)y_1)^2 + (\lambda x_2 + (1-\lambda)y_2)^2$   $= \lambda^2 (x_1^2 + x_2^2) + 2\lambda (1-\lambda)(x_1 y_1 + x_2 y_2) + (1-\lambda)^2 (y_1^2 + y_2^2)$   $= \lambda^2 f(x) + 2\lambda (1-\lambda)(x_1 y_1 + x_2 y_2) + (1-\lambda)^2 f(y)$   $\leq \lambda^2 f(x) + \lambda (1-\lambda)(x_1^2 + y_1^2 + x_2^2 + y_2^2) + (1-\lambda)^2 f(y)$   $= (\lambda^2 + \lambda (1-\lambda)) f(x) + (\lambda (1-\lambda) + (1-\lambda)^2) f(y)$   $= \lambda f(x) + (1-\lambda) f(y)$ 

### **Properties**

- f is concave iff -f is convex;
- f is strictly concave iff -f is strictly convex.
- A linear function is both concave and convex
- $f: S \to R$  is concave, then the upper level set  $\{x \in S | f(x) \ge t\}$  is convex,  $\forall t \in R$
- $f: S \to R$  is convex, then the lower level set  $\{x \in S | f(x) \le t\}$  is convex,  $\forall t \in R$





- Theorem (First-order characterization of concave(convex) functions): Let  $f: S \to R$  be  $C^1$  function defined on an open, convex set S, then
  - 1. f is concave  $\Leftrightarrow f(v) \leq f(u) + \nabla f(u) \cdot (v u)$  for all  $u, v \in S$ . In other words, the curve is always below any tangent plane
  - 2. f is strictly concave  $\Leftrightarrow f(v) < f(u) + \nabla f(u) \cdot (v u)$  for all  $u, v \in S$  and  $u \neq v$ .
  - 3. f is convex  $\Leftrightarrow f(v) \ge f(u) + \nabla f(u) \cdot (v u)$  for all  $u, v \in S$ . In other words, the curve is always above any tangent plane
  - 4. f is strictly convex  $\Leftrightarrow f(v) > f(u) + \nabla f(u) \cdot (v u)$  for all  $u, v \in S$  and  $u \neq v$ .





## Example

• Consider the function f defined on  $R^2$ 

$$f(x) = x_1^2 + x_2^2$$

• For  $u, v \in \mathbb{R}^2$ 

$$\nabla f(u) = (2u_1, 2u_2)^T$$

$$[f(v) - f(u)] - \nabla f(u) \cdot (v - u)$$

$$= [(v_1^2 + v_2^2) - (u_1^2 + u_2^2)] - (2u_1, 2u_2) \begin{pmatrix} v_1 - u_1 \\ v_2 - u_2 \end{pmatrix}$$

$$= v_1^2 + v_2^2 - u_1^2 - u_2^2 - (2u_1v_1 - 2u_1^2 + 2u_2v_2 - 2u_2^2)$$

$$= (u_1 - v_1)^2 + (u_2 - v_2)^2 = ||u - v||^2 > 0 \text{ for } u \neq v$$
thus  $f$  is strictly convex

- **Theorem**: Let  $S \subset \mathbb{R}^n$  be a convex set, and  $f: S \to \mathbb{R}$  is twice differentiable  $(f \in \mathbb{C}^2)$ , then
  - 1. f is convex  $\Leftrightarrow$   $f''(x) \ge 0$  for all  $x \in S$
  - 2. f is concave  $\Leftrightarrow f''(x) \leq 0$  for all  $x \in S$
  - 3. f''(x) > 0 for all  $x \in S \Rightarrow f$  is strictly convex
  - 4. f''(x) < 0 for all  $x \in S \Rightarrow f$  is strictly concave
- Note, "f is strictly convex" does not necessarily imply that f''(x) > 0. Example:  $f(x) = x^4$
- **Example:** function f(x, y) = xy

$$f''(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

is indefinite and f is neither concave nor convex

• **Example**: Discuss the concavity of  $f(x,y) = ax^2 + 2bxy + cy^2$ 

- Note 
$$f''(x,y) = 2\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

1. 
$$f$$
 is convex $\Leftrightarrow$   $\begin{pmatrix} a & b \\ b & c \end{pmatrix} \ge 0 \Leftrightarrow a \ge 0, c \ge 0, ac - b^2 \ge 0$ 

2. 
$$f$$
 is concave  $\Leftrightarrow \begin{pmatrix} a & b \\ b & c \end{pmatrix} \le 0 \Leftrightarrow a \le 0, c \le 0, ac - b^2 \ge 0$ 

3. 
$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} > 0 \Leftrightarrow a > 0, ac - b^2 > 0 \Rightarrow f$$
 is strictly convex

4. 
$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} < 0 \Leftrightarrow a < 0, ac - b^2 > 0 \Rightarrow f$$
 is strictly concave

• **Example**: For  $f(x,y) = x^{\alpha} + y^{\beta}$  defined on  $R_{++}^{2}(x > 0, y > 0)$  for  $\alpha, \beta \ge 0$ 

$$f_{x} = \alpha x^{\alpha - 1}, \ f_{y} = \beta y^{\beta - 1}$$

$$f_{xx} = \alpha (\alpha - 1) x^{\alpha - 2}, \ f_{xy} = 0, \ f_{yy} = \beta (\beta - 1) y^{\beta - 2}$$

$$f''(x, y) = \begin{pmatrix} \alpha (\alpha - 1) x^{\alpha - 2} & 0\\ 0 & \beta (\beta - 1) y^{\beta - 2} \end{pmatrix}$$

$$f \text{ is } \begin{cases} \text{concave} & \text{if } 0 \le \alpha, \beta \le 1\\ \text{strictly concave} & \text{if } 0 < \alpha, \beta < 1 \end{cases}$$

• **Example**: For Cobb-Douglas function  $f(x,y) = x^{\alpha}y^{\beta}$  defined on  $R_{++}^2$  for  $\alpha, \beta \geq 0$  Since

$$\begin{split} f_{x} &= \alpha x^{\alpha - 1} y^{\beta}, \ f_{y} = \beta x^{\alpha} y^{\beta - 1} \\ f_{xx} &= \alpha (\alpha - 1) x^{\alpha - 2} y^{\beta}, \ f_{xy} = \alpha \beta x^{\alpha - 1} y^{\beta - 1}, \ f_{yy} = \beta (\beta - 1) x^{\alpha} y^{\beta - 2} \\ f''(x, y) &= \begin{pmatrix} \alpha (\alpha - 1) x^{\alpha - 2} y^{\beta} & \alpha \beta x^{\alpha - 1} y^{\beta - 1} \\ \alpha \beta x^{\alpha - 1} y^{\beta - 1} & \beta (\beta - 1) x^{\alpha} y^{\beta - 2} \end{pmatrix} \end{split}$$

$$f \text{ is } \begin{cases} \text{concave} & \text{if } \alpha, \beta \ge 0, \alpha + \beta \le 1 \\ \text{strictly concave} & \text{if } \alpha, \beta > 0, \alpha + \beta < 1 \end{cases}$$

• **Example**: Let  $f(x, y) = -x^2 - y^2$ ,

$$f''(x,y) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} < 0$$

- f(x, y) is strictly concave on  $R^2$ .
- Let  $g(x, y) = e^{-x^2 y^2} = e^{f(x, y)}$  then

$$g''(x,y) = \begin{pmatrix} 2(2x^2 - 1)g & 4xyg \\ 4xyg & 2(2y^2 - 1)g \end{pmatrix} \le 0 \text{ only when } x^2 + y^2 \le \frac{1}{2}$$

- g(x, y) is not concave on  $R^2$
- Concavity is not preserved under monotone transformation

## 5. Quasi-concavity

- One problem with concavity and convexity is that a monotone transformation of a concave (or convex) function need not be a concave (convex).
- A weaker condition to describe a function is quasiconcavity (quasiconvexity)
- Let  $S \subset \mathbb{R}^n$  be a convex set,  $f: S \to \mathbb{R}$

```
- f is quasi-concave if f(y) \ge f(x) f(z) \ge f(x), for all x, y \in S, z \in (x, y)

- f is strictly quasi-concave if f(y) \ge f(x) f(z) > f(x), for all x, y \in S, z \in (x, y)

- f is quasi-convex if f(y) \le f(x) f(z) \le f(x), for all x, y \in S, z \in (x, y)

- f is strictly quasi-convex if f(y) \le f(x) f(z) < f(x), for all x, y \in S, z \in (x, y)
```

- f is quasi-convex (strictly quasi-convex) if -f is quasi-concave (strictly quasi-concave)
- $f: S \to R$  is quasi-concave iff the upper level set  $L_f(t) = \{x \in S | f(x) \ge t\}$  is convex,  $\forall t \in R$
- $f: S \to R$  is quasi-convex iff lower level set  $L_f(t) = \{x \in S | f(x) \le t\} \text{ is convex, } \forall t \in R$

- **Example**: Show that f(x, y) = xy is quasi-concave on  $R_+^2$ .
  - $\forall t \in R$ , if t > 0, then the upper level set is a convex set



– If  $t \le 0$ , then the upper level set is  $R_+^2$ , obviously it is convex.

- **Example**: Show that  $f(x, y) = e^{-x^2 y^2}$  is quasi-concave on  $R^2$ 
  - ∀  $t \in R$ , if  $0 < t \le 1$ , then the upper level set is a convex set

$$\{(x,y): f(x,y) \ge t\} = \{(x,y): e^{-x^2 - y^2} \ge t\}$$
$$= \{(x,y): x^2 + y^2 \le \ln(t)\}$$



- if  $t \le 0$ , then the upper level set =  $R^2$ , obviously it is convex
- If t > 1, then the upper level set =  $\emptyset$  (empty set, ignore)

• Monotone functions defined on  ${\it R}$  are both quasi-concave and quasi-convex



- Concave functions are quasi-concave; convex functions are quasi-convex
- Strictly Concave functions are strictly quasi-concave; strictly convex functions are strictly quasi-convex
- Summary:



• Quasi-concavity does not necessarily imply concavity, an example:  $f(x) = \exp(-x^2 - y^2)$ 

- (Quasiconcavity is preserved under monotone transformation) If f is quasi-concave (quasi-convex) and H is strictly increasing, then  $H(f(\cdot))$  is quasi-concave (quasi-convex)
- **Example** (revisit): Show that  $g(x, y) = e^{-x^2 y^2}$  is quasi-concave on  $R^2$ 
  - The function  $f(x,y) = -(x^2 + y^2)$  is concave (thus quasi-concave) on  $R^2$ , and  $H(z) = e^z$  is strictly increasing, thus g(x,y) = H(f(x,y)) is quasi-concave

• Theorem: Given second order differentiable  $f: S \to R$ , the bordered Hessian matrix

$$B_{f}(x) = \begin{pmatrix} 0 & f_{1} & \cdots & f_{n} \\ f_{1} & f_{11} & \cdots & f_{1n} \\ \vdots & \vdots & & \vdots \\ f_{n} & f_{n1} & \cdots & f_{nn} \end{pmatrix} \text{ where } f_{ij} = \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$$

for i, j = 1, 2, ..., n, and its leading principal minors are  $b_1(x), b_2(x), ..., b_{n+1}(x)$ , then

- 1. f is quasi-convex $\Rightarrow b_k(x) \le 0$  for  $\forall k \ge 2$  and  $\forall x \in S$
- 2. f is quasi-concave  $\Rightarrow (-1)^k b_k(x) \le 0$  for  $\forall k \ge 2$  and  $\forall x \in S$
- 3.  $b_k(x) < 0$  for  $\forall k \ge 2$  and  $\forall x \in S \Rightarrow f$  is strictly quasi-convex
- 4.  $\Rightarrow (-1)^k b_k(x) < 0$  for  $\forall k \ge 2$  and  $\forall x \in S \Rightarrow f$  is strictly quasi-concave

- **Example**: Apply the theorem to how that f(x, y) = xy is strictly quasiconcave on  $R_{++}^2$ .
  - Bordered Hessian matrix:

$$B_f(x,y) = \begin{pmatrix} 0 & y & x \\ y & 0 & 1 \\ x & 1 & 0 \end{pmatrix}$$

$$- (-1)^2 b_2(x, y) = -y^2 < 0;$$

$$(-1)^{3}b_{3}(x,y) = -\begin{vmatrix} 0 & y & x \\ y & 0 & 1 \\ x & 1 & 0 \end{vmatrix} = -2xy < 0$$

- therefore, f(x,y) is strictly quasi-concave on  $R_{++}^2$ 

- **Exercise**:  $f(x,y) = x^{\alpha} + y^{\beta}$  defined on  $R_{++}^2(x>0,y>0)$  for  $\alpha,\beta\geq 0$  is strictly quasi-concave if  $0<\alpha,\beta\leq 1$  and  $\alpha\neq 1$  or  $\beta\neq 1$ 
  - Recall: f is strictly concave if  $0 < \alpha, \beta < 1$
- **Exercise**: Cobb-Douglas function  $f(x,y) = x^{\alpha}y^{\beta}$  defined on  $R_{++}^2$  for  $\alpha, \beta \geq 0$  is strictly quasi-concave if  $\alpha, \beta > 0$ 
  - Recall: f is strictly concave if  $\alpha, \beta > 0$ ,  $\alpha + \beta < 1$

## 6. Global optimization

- Recall: A set  $A \subset R^n$  is a compact set if it is closed and bounded.
- (Existence of global maximum: Optimal Value Theorem). Given function  $f: X \to R$ , where  $X \subset R^n$ , if f is continuous and X is compact, then f has at least one minimum point and one maximum point
  - If f is not continuous, e.g.

$$f(x) = \begin{cases} x+1 & \text{if } x < 1\\ 1 & \text{if } x = 1\\ x-1 & \text{if } x > 1 \end{cases}$$

does not have a minimum or maximum on [0,2] (compact set).

- If X is not compact, e.g., f(x) = x for  $x \in (0,1)$ , f does not have minimum or maximum.

#### Sufficient conditions for global maximum

- Let  $f: X \to R$ , where  $X \subset R^n$  is convex set, consider problem  $\max_{x \in X} f(x)$ 
  - 1. Sufficient condition #1: If f is concave on X, any stationary point  $x^* \in X$  is a global maximum point
  - 2. Sufficient condition #2.1: If f is quasi-concave, a local maximum  $x^*$  satisfing  $f''(x^*) < 0$  is a global maximum
  - 3. Sufficient condition #2.2: If f is strictly quasi-concave, a local maximum  $x^*$  is a global maximum

### Sufficient conditions for global minimum

- Let  $f: X \to R$ , where  $X \subset R^n$  is convex set, consider problem  $min_{x \in X} f(x)$ 
  - 1. Sufficient condition #1: If f is convex on X, any stationary point  $x^* \in X$  is a global minimum point
  - 2. Sufficient condition #2.1: If f is quasi-convex, a local minimum  $x^*$  satisfing  $f''(x^*) > 0$  is a global minimum
  - 3. Sufficient condition #2.2: If f is strictly quasi-convex, a local minimum  $x^*$  is a global minimum

### Notes:

- When  $x^*$  is a corner solution, it may not satisfy FOC. (consider f(x) = x, and X = [0,1])
- FOC and strict quasi-concavity together are not sufficient to ensure optimality (consider  $f(x) = x^3$ )
- A quasi-concave can go up and down, but it can go up and down at most once. i.e., a quasi-concave function can have at most one hump, therefore, a local maximum must be a global maximum.

• **Example**: Quadratic function with non-zero stationary point:

$$f(x,y) = -2x^2 - 2xy - 2y^2 + 36x + 42y - 158$$

find extreme points.

• FOC: 
$$\begin{cases} f_1' = -4x - 2y + 36 = 0 \\ f_2' = -2x - 4y + 42 = 0 \end{cases}$$

- Stationary point:  $(x_0, y_0) = (5.8)$
- Hessian matrix  $f''(x,y) = \begin{pmatrix} -4 & -2 \\ -2 & -4 \end{pmatrix} < 0$ , f is strictly concave function
- Thus (5,8) is the unique maximum point of f.

• **Example**: Find the extreme point(s) of

$$f(x,y) = x + 2ey - e^x - e^{2y}$$

• FOC: 
$$\begin{cases} f_x = 1 - e^x = 0 \\ f_y = 2e - 2e^{2y} = 0 \end{cases}$$

- Stationary point  $(0, \frac{1}{2})$
- Hessian matrix:  $f''(x,y) = \begin{pmatrix} -e^x & 0 \\ 0 & -4e^{2y} \end{pmatrix} < 0$
- *f* is strictly concave
- (0,1/2) is a (unique) global maximum point.

• **Example**: Find extreme point(s) of

$$f(x,y) = \exp(-x^2 - y^2)$$

• FOC: 
$$\begin{cases} f_x = -2xe^{-x^2 - y^2} = 0\\ f_y = -2ye^{-x^2 - y^2} = 0 \end{cases}$$

- stationary point: (0,0).
- (0,0) is a unique maximum point.
- Is *f* concave?
- Is *f* quasi-concave?

# 7. Economic applications

- Example: (problem of a multiproduct firm, P331 Example 1)
  - A two-product firm under circumstances of pure competition, prices of two products:  $p_1$  and  $p_2$  are given.
  - Revenue of firm:  $R=p_1Q_1+p_2Q_2$  where  $Q_1,Q_2$  are the output level of the two products
  - Cost function:  $C = 2Q_1^2 + Q_1Q_2 + 2Q_2^2$
  - Profit:  $\pi(Q_1, Q_2) = p_1Q_1 + p_2Q_2 (2Q_1^2 + Q_1Q_2 + 2Q_2^2)$

- FOC: 
$$\begin{cases} \frac{\partial \pi}{\partial Q_1} = p_1 - 4Q_1 - Q_2 = 0\\ \frac{\partial \pi}{\partial Q_2} = p_2 - Q_1 - 4Q_2 = 0 \end{cases}$$

- stationary point:  $({Q_1}^*, {Q_2}^*) = (\frac{4p_1 p_2}{15}, \frac{4p_2 p_1}{15})$
- Hessian matrix:  $\begin{pmatrix} -4 & -1 \\ -1 & -4 \end{pmatrix} < 0$ ,  $\pi(Q_1, Q_2)$  is strictly concave
- $-({Q_1}^*,{Q_2}^*)$  is unique maximum point.

### • Example: (Monopoly price discrimination, P336 Example 4)

- A monopoly sells its product in three separable markets.
- Inverse market demands:  $p_1 = 63 4Q_1$ ,  $p_2 = 105 5Q_2$ ,  $p_3 = 75 6Q_3$
- Cost function: C(Q) = 20 + 15Q where  $Q = Q_1 + Q_2 + Q_3$
- Profit function:

$$\pi(Q_1, Q_2, Q_3) = p_1 Q_1 + p_2 Q_2 + p_3 Q_3 - C(Q)$$

$$= (63 - 4Q_1)Q_1 + (105 - 5Q_2)Q_2 + (75 - 6Q_3)Q_3 - [20 + 15(Q_1 + Q_2 + Q_3)]$$

$$\begin{cases} \frac{\partial \pi}{\partial Q_1} = 63 - 8Q_1 - 15 = 0 \\ \frac{\partial \pi}{\partial Q_2} = 105 - 10Q_2 - 15 = 0 \\ \frac{\partial \pi}{\partial Q_3} = 75 - 12Q_3 - 15 = 0 \end{cases}$$

- Stationary point: 
$$({Q_1}^*, {Q_2}^*, {Q_2}^*) = (6,9,5)$$

- Hessian matrix: 
$$\begin{pmatrix} -8 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & -12 \end{pmatrix}$$
,  $\pi(\cdot)$  is concave function

- therefore,  $({Q_1}^*, {Q_2}^*, {Q_2}^*)$  is a unique maximum of  $\pi(Q_1, Q_2, Q_3)$
- The maximum profit:  $\pi({Q_1}^*, {Q_2}^*, {Q_2}^*) = 679$
- From inverse demands, the price that the firm charges in the three markets are:

$$p_1^* = 63 - 4Q_1^* = 39$$
,  $p_2^* = 105 - 5Q_2^* = 60$ ,  $p_3^* = 75 - 6Q_3^* = 45$ 

- Example: (input decisions of a firm, P337 Example 5)
  - A competitive firm has the following profit function:  $\pi=R-\mathcal{C}=pQ-wL-rK$
  - where

$$p =$$
price (exogenous variable due to competitive market)

L = labor

K = capital

$$Q = \text{output} = Q(K, L) = K^{\alpha}L^{\alpha} \text{ where } 0 < \alpha < 1/2$$

w, r = prices for labor and capital respectively, exogenous variables

- Profit function:  $\pi(K, L) = pK^{\alpha}L^{\alpha} - rK - wL$ 

- FOC 
$$\begin{cases} \pi_{K} = \alpha p K^{\alpha - 1} L^{\alpha} - r = 0 \\ \pi_{L} = \alpha p K^{\alpha} L^{\alpha - 1} - w = 0 \end{cases} \text{ or } \begin{cases} \alpha p K^{\alpha - 1} L^{\alpha} = r \\ \alpha p K^{\alpha} L^{\alpha - 1} = w \end{cases} \Rightarrow \frac{K}{L} = \frac{w}{r}$$

- Stationary points: 
$$(K^*, L^*) = \left( (p\alpha r^{\alpha-1} w^{-\alpha})^{\frac{1}{1-2\alpha}}, (p\alpha w^{\alpha-1} r^{-\alpha})^{\frac{1}{1-2\alpha}} \right)$$

Hessian matrix:

$$\pi''(K,L) = \begin{pmatrix} \frac{\partial^2 \pi}{\partial K^2} & \frac{\partial^2 \pi}{\partial K \partial L} \\ \frac{\partial^2 \pi}{\partial L \partial K} & \frac{\partial^2 \pi}{\partial L^2} \end{pmatrix} = \begin{pmatrix} p\alpha(\alpha - 1)K^{\alpha - 2}L^{\alpha} & p\alpha^2 K^{\alpha - 1}L^{\alpha - 1} \\ p\alpha^2 K^{\alpha - 1}L^{\alpha - 1} & p\alpha(\alpha - 1)K^{\alpha}L^{\alpha - 2} \end{pmatrix}$$

since 
$$p\alpha(\alpha-1)K^{\alpha-2}L^{\alpha} < 0$$
 
$$|\pi''(K,L)| = p^2\alpha^2(\alpha-1)^2K^{2\alpha-2}L^{2\alpha-2} - (p\alpha^2K^{\alpha-1}L^{\alpha-1})^2$$
 
$$= p^2\alpha^2(1-2\alpha)K^{2\alpha-2}L^{2\alpha-2} > 0$$

 $-\pi(K,L)$  is negative definite for all  $K>0, L>0, (K^*,L^*)$  is the unique maximum point.

# 8. Envelope Theorem

- Example: (problem of a one-product firm under pure competition):
  - The price of product p is given and the cost function  $C(Q) = Q^2$ , where Q is the output level of the product. The profit function with parameter p is  $f(Q,p) = pQ Q^2$  find Q that maximizes the profit function.
  - FOC:  $\frac{\partial f}{\partial o} = p 2Q = 0$
  - Stationary point:  $Q^* = p/2$
  - SOC:  $\frac{\partial^2 f}{\partial Q^2} = -2 < 0$ , f is strictly concave,  $Q^*$  maximizes the π for a given p
  - Note in this example the optimal value of the choice variable Q\*(p) = p/2 is a function of the parameter problem (p)
  - Once the optimal value of the choice variable has been substituted into the profit function, the objective function indirectly becomes a function of the parameter.

$$f^*(p) = pQ^*(p) - [Q^*(p)]^2 = \frac{p^2}{4}$$

- The maximum value function  $f^*(p)$  is referred to as the indirect profit function; f(p,Q) is referred to as the direct profit function
- We can easily work out  $\frac{d}{dp}f^*(p) = \frac{p}{2}$

- Note that evaluating  $f^*(p)$  requires a two-step procedure for general objective function f(x,p) with parameter p
  - First, given p, find the value of  $x^*(p)$  that solves the problem
  - Second, substitute this value of  $x^*(p)$  into the objective function to obtain  $f^*(p) = f(x^*(p), p)$
  - We want to take the derivative of  $f^*$  with respect to p

• Envelop Theorem for maximization problem without constraints: Given a differentiable function  $f(x,a): X \times A \to R$ , where  $X \subset R^n$  and  $A \subset R^k$ , if  $x^*(a)$  is an interior optimal point of

then 
$$f^*(a) = \max_{x \in X} f(x, a)$$
$$\frac{\partial f^*(a)}{\partial a_i} = \frac{\partial f(x, a)}{\partial a_i} \bigg|_{x = x^*(a)}$$

for 
$$i = 1, 2, ..., k$$

• Note the key advantage of the Envelope Theorem is that we can find the derivative of  $f^*(p)$  without actually solving for  $f^*(p)$ .

- **Example** (revisit): (problem of a one-product firm under pure competition): Objective function  $f(Q,p) = pQ Q^2$
- Recall:  $Q^*(p) = \frac{p}{2}$
- $\bullet \quad \frac{\partial f(Q,p)}{\partial p} = Q$
- Apply the envelop theorem (for the case n = k = 1)

$$\left. \frac{df^*(p)}{dp} = \frac{\partial f(Q, p)}{\partial p} \right|_{Q = Q^*(p)} = Q^*(p) = \frac{p}{2}$$

- Example: (problem of a two-product firm, P331 Example 1, revisit)
  - Profit:  $\pi(Q_1, Q_2, p_1, p_2) = p_1Q_1 + p_2Q_2 (2Q_1^2 + Q_1Q_2 + 2Q_2^2)$
  - Recall: for given  $p_1, p_2$ , unique maximum point:

$$(Q_1^*(p_1, p_2), Q_2^*(p_1, p_2)) = \left(\frac{4p_1 - p_2}{15}, \frac{4p_2 - p_1}{15}\right)$$

- Maximum profit as function of  $p_1$ ,  $p_2$ :

$$\pi^*(p_1, p_2) = \pi(Q_1^*(p_1, p_2), Q_2^*(p_1, p_2), p_1, p_2)$$

- Since 
$$\frac{\partial \pi}{\partial p_1} = Q_1$$
,  $\frac{\partial \pi}{\partial p_2} = Q_2$ 

From the envelop theorem

$$\frac{\partial \pi^*(p_1, p_2)}{\partial p_1} = Q_1^*(p_1, p_2) = \frac{4p_1 - p_2}{15}$$

$$\frac{\partial \pi^*(p_1, p_2)}{\partial p_2} = Q_2^*(p_1, p_2) = \frac{4p_2 - p_1}{15}$$

- Example: (revisit, input decisions of a firm, P337 Example 5)
  - Profit function:

$$\pi(K, L, p, r, w) = pQ(K, L) - rK - wL = pK^{\alpha}L^{\alpha} - rK - wL$$

Where p, r, w are parameters

- K, L that maximizes profit:  $(K^*, L^*) = \left( (p\alpha r^{\alpha-1} w^{-\alpha})^{\frac{1}{1-2\alpha}}, (p\alpha w^{\alpha-1} r^{-\alpha})^{\frac{1}{1-2\alpha}} \right)$
- Maximized profit:  $\pi^*(p,r,w) = \pi(K^*,L^*,p,r,w)$

- Since 
$$\frac{\partial \pi}{\partial p} = K^{\alpha} L^{\alpha}$$
,  $\frac{\partial \pi}{\partial r} = -K$ ,  $\frac{\partial \pi}{\partial w} = -L$ 

Apply the envelop theorem gives the following Hotelling's lemma:

$$\frac{\partial \pi^*(p,r,w)}{\partial p} = (K^*)^{\alpha} (K^*)^{\alpha} = Q(K^*,L^*)$$

$$\frac{\partial \pi^*(p,r,w)}{\partial r} = -K^*, \ \frac{\partial \pi^*(p,r,w)}{\partial w} = -L^*$$

- Note it is extremely tedious to work out  $\pi^*(p,r,w)$  and then take partial derivatives

$$\frac{\partial \pi^*}{\partial p}, \frac{\partial \pi^*}{\partial r}$$
 and  $\frac{\partial \pi^*}{\partial w}$