Getting started:

1)<u>Installation</u>

>git clone https://github.com/wdklotz/simulinac XXX

Use the command above to clone the latest version into the directory XXX.

2)run the sample

Make shure you use pyhton 3 cd to XXX >python simu.py [<input-file>]

3) If it works - bingo!

4)Input (*.yml)

Default sample input-file is

"XXX/yml/25_09_2017_versuche_70_200MeV.yml". This input file is loaded with lots of comments which explain how to set up input for simu.py. Be aware: its syntax is YAML which is very picky with indentation!

Edit filepath at the end of simu.py if you want other default input files.

5)Features

The new version is loaded with new features:

5.1)flags:

Most of them are commented. If so, they are set to their default values which are shown in brackets {....}. If you want to activate uncomment! Most important are:

map: **if** False the linear T3D mappings are used for cavities **else** nonlinear mapping through the cavities is used.

sigma: if True beam size is calculated from sigma matrix formalism else from twiss functions.

express: **if** True quadrupoles are replaced by fast implementations of thin-lense matrices **else** the thin-lens is calculated as triplet product D*KICK*D.

5.2) sections:

Two sections are defined in the sample LE and HE like

- [&<section alias><space><name>,&<section alias><space><name>,....]
Only HE is used in the sample.

5.3)parameters:

Physics and lattice parameter definitions like:

- <name>: &<parameter alias><space><value> | <value> | *<parameter alias> Some parameter names (see the sample input) are recognized by the program and used as starting conditions. They are: aperture, betax_i, alfax_i, emitx_i, betay_i, alfay_i, emity_i, sigmaz_i, dp2p_i, frequency and Tkin. Others are of free choice to be used in element definitions.

5.4)elements:

Definition of elements

```
1st line - <ID>: &<element alias> #any ID you like
2nd line - type: <CLASS> #defines the lattice element
attribute 1 - <key>: *<parameter alias> | <value>
```

•

attribute N - <key>: *<parameter alias> | <value>

thin express F quadrupole

thin express D quadrupole

All attribute keys with exception *sec*: *<*section alias*> are mandatory and depend on the element CLASS.

5.4.1) Element CLASS definitions:

NOP unit (available in python) 1 D Drift SIXD Drift with SixTrack mapping thick F quadrupole with slices option QF QD thick D quadrupole with slices option RF gap with **mapping** options (ref. T3D and A.Shishlo) RFG TimeTransitionFactorGap (ref. A.Shishlo) using superfish data TTFG RFC RF cavity as triple product D*RFG*D GAP Simple zero length RF-gap w/o (s,dp/p) (ref. Dr.Tiede & T.Wrangler) M Marker with action attributes SD T3D sector dipole in x-plane (available in python) RD T3D rectangular dipole x-plane (available in python) WD T3D dipole wedge x-plane (available in python) QFth thin F quadrupole (available in python) thin D quadrupole (available in python) QDth

(available in python)

(available in python)

5.4.2)CLASS "RFG" has a **mapping** attribute which can be either "base" or "simple". "base" is a simplified non-linear map assuming constant time-transition factors. "simple" is a linear map and gives same result as T3D matrix. Both options are only active if flag map is activated.

5.4.3)CLASS "QF" and "QD" have a **slices** attribute which can take values [1,...,N]. **if** N=1 the thick T3D matrix is used **elif** N>1 the quadrupole is cut into N slices of thin-lens quadrupoles, either as D*KICK*D or "express".

5.4.4)CLASS "TTFG" has a **SFdata** attribute which has to be set to the name of the file containing the field profile data from superfish.

5.4.5)CLASS "SIXD" is a **symplectic drift space mapping** using SixTrack canonical coordinates. Slows the calculation sensibly down and is useful to check final results.

6)segments:

A segment is defined as:

QFthx

QDthx

- <seg name>: #any name you like

- *<element alias>- *<element alias>

.

7)lattice:

Finally the lattice is defined as

1st line - title: <any text> # must be present as 1st line!
lines below - [N, <seg name>,<seg name>,...,<seg name>]
lines below - [N, <seg name>,<seg name>,...,<seg name>]

Number N expands the segment list in same brackets N times. Many segment lines can be given, for instance one for each section.