

Decision Tree

Course Objectives

What is a decision tree model

How does a decision tree is being constructed?

Benefits of a decision tree model

Learning Outcomes

At the end of the course, you will be able to

- Understand what is a decision tree model
- Be familiar with how a decision tree is constructed
- Understand the benefits of a decision tree model

Classification Model – Decision Tree

Another classification model

 As compared to other classification model such as KNN and Logistics Regression, it constructs a decision tree to assist in decision making

Example – Bank Loan Application

Based on his profile, should I classify him as a potential loan defaulter?

If yes, I shall reject his application.

What is your age, job status, and credit history?
Do you own a house?

Bank Loan Example

ID	Age	Has_job	Own_house	Credit_rating	Outcome
1	young	false	false	fair	Reject
2	young	false	false	good	Reject
3	young	true	false	good	Approve
4	young	true	true	fair	Approve
5	young	false	false	fair	Reject
6	middle	false	false	fair	Reject
7	middle	false	false	good	Reject
8	middle	true	true	good	Approve
9	middle	false	true	excellent	Approve
10	middle	false	true	excellent	Approve
11	old	false	true	excellent	Approve
12	old	false	true	good	Approve
13	old	true	false	good	Approve
14	old	true	false	excellent	Approve
15	old	false	false	fair	Reject

Outcome
Approve (non-defaulter)

Reject (defaulter)

Finding patterns in data

ID	Age	Has_job	Own_house	Credit_rating	Outcome
1	young	false	false	fair	Reject
2	young	false	false	good	Reject
3	young	true	false	good	Approve
4	young	true	true	fair	Approve
5	young	false	false	fair	Reject
6	middle	false	false	fair	Reject
7	middle	false	false	good	Reject
8	middle	true	true	good	Approve
9	middle	false	true —	excellent	Approve
10	middle	false	true	excellent	Approve
11	old	false	true	excellent	Approve
12	old	false	true	good	Approve
13	old	true	false	good	Approve
14	old	true	false	excellent	Approve
15	old	false	false	fair	Reject

Decision Tree

A decision tree is a flow-chart-like tree structure.

Outcome: Approve (non defaulter) or Rejecting (defaulter) an applicant.

Decision Tree Concepts

A path from root to a leaf node is a conjunction ("AND") of attribute

tests

Decision Trees – Predict outcome

☐ Given a middle age person, but does not own a house, would the bank approve or reject his application?

Outcome is reject!

Many Possible Split

Age	Has_job	Own_house	Credit_rating	Outcome
young	false	false	fair	Reject
young	false	false	good	Reject
young	true	false	good	Approve
young	true	true	fair	Approve
young	false	false	fair	Reject
middle	false	false	fair	Reject
middle	false	false	good	Reject
middle	true	true	good	Approve
middle	false	true	excellent	Approve
middle	false	true	excellent	Approve
old	false	true	excellent	Approve
old	false	true	good	Approve
old	true	false	good	Approve
old	true	false	excellent	Approve
old	false	false	fair	Reject

Many possible ways to split the same data!

We could start the with root node as Age, Own_house, Has_job or Credit_rating.

The Smallest Tree

Which is the best attribute to be chosen as the root node?

The one which yields the smallest tree

A popular technique:

• Gini index

Example

			Own_	Credit_	
	Age	Has_job	house	rating	Outcome
į.	young	false	false	fair	0
-	young	false	false	good	0
i i	young	true	false	good	1
ŀ	young	true	true	fair	1
Ĺ	young	false	false	fair	0
	middle	false	false	fair	0
i	middle	false	false	good	0
-	middle	true	true	good	1
i	middle	false	true	excellent	1
L	middle	false	true	excellent	11
	old	false	true	excellent	1
i	old	false	true	good	1
1	old	true	false	good	1
i	old	true	false	excellent	1
1	old	false	false	fair	0

"0": Reject (defaulter)

"1": Approve (non-defaulter)

If we build a decision tree with Age as the root node

3 "0"s and 2 "1"s when we branch by "young: age

Determine the Split with Gini Index

For each possible split, compute Gini index of the nodes

For each possible split, compute the Gini split value.

good

fair

Choose the split with the smallest Gini split value.

Which split has the lowest split value?

Example

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

"0": Reject (defaulter)

"1": Approve (non-defaulter)

Starting with Age as the root node

Gini Index and Gini Split

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

A node

Age

Value =[6,9]

where $p(j \mid t)$ is the relative frequency of class j at node t

- Gini Split
 - When a node p is split into k partitions (children), the

quality of split is computed

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Gini Index and Split Value (Age)

Compute Gini Index

for the node and the branches

$$Gini(Age) = 1 - \left(\frac{6}{15}\right)^2 - \left(\frac{9}{15}\right)^2 = 0.48$$

$$Gini(Y) = 1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

$$Gini(M) = 1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = 0.48$$

$$Gini(O) = 1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = 0.32$$

$$Gini_{split}(Age) = \left(\frac{5}{15}\right)0.48 + \left(\frac{5}{15}\right)0.48 + \left(\frac{5}{15}\right)0.32 = 0.43$$

Example – Different Roots

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

Gini Index and Split Value (Own_House)

Compute Gini Index

for the node and the branches

$$Gini(Own_House) = 1 - \left(\frac{6}{15}\right)^2 - \left(\frac{9}{15}\right)^2 = 0.48$$

$$Gini(T) = 1 - \left(\frac{6}{6}\right)^2 - \left(\frac{0}{6}\right)^2 = 0$$

$$Gini(F) = 1 - \left(\frac{3}{9}\right)^2 - \left(\frac{6}{9}\right)^2 = 0.45$$

$$Gini_{split}(House) = \left(\frac{6}{15}\right)0 + \left(\frac{9}{15}\right)0.45 = 0.27$$

Gini Index and Split Value (Has_Job)

Compute Gini Index

for the node and the branches

$$Gini(Has_Job) = 1 - \left(\frac{6}{15}\right)^2 - \left(\frac{9}{15}\right)^2 = 0.48$$

$$Gini(T) = 1 - \left(\frac{0}{5}\right)^2 - \left(\frac{5}{5}\right)^2 = 0$$

$$Gini(F) = 1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2 = 0.48$$

$$Gini_{split}(Has_Job) = \left(\frac{5}{15}\right)0 + \left(\frac{10}{15}\right)0.48 = 0.32$$

Gini Index and Split Value (Credit_Rating)

Compute Gini Index

Credit_Rating Value =[6,9]

• for the node and the branches

branches fair good excellent

Value=[4,1]

Value=[2,4]

Value=[0,4]

$$Gini(Credit_Rating) = 1 - \left(\frac{6}{15}\right)^2 - \left(\frac{9}{15}\right)^2 = 0.48$$

$$Gini(F) = 1 - \left(\frac{4}{5}\right)^2 - \left(\frac{1}{5}\right)^2 = 0.32$$

$$Gini(G) = 1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2 = 0.45$$

$$Gini(E) = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

$$Gini_{split}(Credit_Rating) = \left(\frac{5}{15}\right)0.32 + \left(\frac{6}{15}\right)0.45 + \left(\frac{4}{15}\right)0 = 0.285$$

The First Level

Possible Root Node	Gini Split
Age	0.43
Own_House	0.27
Has_Job	0.32
Credit_Rating	0.285

What Attribute to choose Next?

When an applicant does not owns a house, the outcome could be 0 or 1. Hence, we need to further split this node.

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

The Next Split -

By Age

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

When age group is young, there are 3 "0" 's and 1 "1"'s

The Next Split - By Has_Job

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

The Next Split - By Credit_Rating

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

The Next Level-Gini Split (Age)

Compute Gini Index

for the node and the branches

$$Gini(Age) = 1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2 = 0.45$$

$$Gini(Y) = 1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 = 0.38$$

$$Gini(M) = 1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2 = 0$$

$$Gini(O) = 1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = 0.45$$

$$Gini_{split}(Age) = {4 \choose 9} 0.38 + {2 \choose 9} 0 + {3 \choose 9} 0.45 = 0.31$$

The Next Level-Gini Split (Has_Job)

Compute Gini Index

for the node and the branches

$$Gini(Has_Job) = 1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2 = 0.45$$

$$Gini(T) = 1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0$$

$$Gini(F) = 1 - \left(\frac{6}{6}\right)^2 - \left(\frac{0}{6}\right)^2 = 0$$

$$Gini_{split}(Has_Job) = \left(\frac{3}{9}\right)0 + \left(\frac{6}{9}\right)0 = \mathbf{0}$$

The Next Level-Gini Split (Credit_Rating)

Compute Gini Index

for the node and the branches

$$Gini(Credit_Rating) = 1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2 = 0.45$$

$$Gini(F) = 1 - \left(\frac{4}{4}\right)^2 - \left(\frac{0}{4}\right)^2 = 0$$

$$Gini(G) = 1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 = 0.5$$

$$Gini(E) = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$$

$$Gini_{split}(Credit_Rating) = \left(\frac{4}{9}\right)0 + \left(\frac{4}{9}\right)0.5 + \left(\frac{1}{9}\right)0 = 0.22$$

The Next Level

Possible Split	Gini Split
Age	0.31
Has_Job	0
Credit_Rating	0.22

Need Further Split?

		Own_	Credit_	
Age	Has_job	house	rating	Outcome
young	false	false	fair	0
young	false	false	good	0
young	true	false	good	1
young	true	true	fair	1
young	false	false	fair	0
middle	false	false	fair	0
middle	false	false	good	0
middle	true	true	good	1
middle	false	true	excellent	1
middle	false	true	excellent	1
old	false	true	excellent	1
old	false	true	good	1
old	true	false	good	1
old	true	false	excellent	1
old	false	false	fair	0

No further split is required!

Final Decision Tree

Decision Tree - Features

- Features
 - The machine could handle both numerical and categorical data

Forming of Business Rules

1) Decision Logic yielded by the tree:

IF own_house=true

THEN Approve

IF own_house=false AND has_job=true

THEN Approve

IF own_house=false AND has_job=false

THEN Reject

2) Based on this dataset, only two attributes are needed to classify new applicants

Decision Tree can be visualized - simple to understand

The model can be easily explained

Model can be validated by the domain expert

Overfitting

Decision Trees can suffer from Overfitting

Level of depth = 6

Some outcome need 6 levels of split!

Level of Depth

Level of depth = 6

What Have We Learnt?

What is a decision tree classification model

How the model constructs an optimal decision tree

The advantages of a decision tree model

Handling overfitting of a decision tree model