Toward Systematic Detection and Resolution of Network Control Conflicts

Dennis Volpano

Joint work with Xin Sun and Geoffrey Xie

What's the problem?

Control logic:

 Implements application, e.g., load balancing or power management

Control logic

Controller:

- Collects & provides a global view of network for control logics
- Runs control logics which act on switches to achieve the goals of apps

Control logics can take conflicting actions resulting in network instability

Example due to Franck Le

Control logic 1: (fast reroute)

 Need at least two disjoint paths between two critical nodes

Control logic 2: (energy saving)

 Reroute traffic to turn off network devices as much as possible

- Want to know effect of combining logics BEFORE they're deployed
- This has been the focus of our research

Solution

Use Det Finite State Transducers to express control logics; a DFT has 3 major advantages:

- 1) Reveals a stable operating region
 - network operating conditions under which the control logic never acts
- 2) Their intersection is computable
 - intersection is also a control logic that can run on an SDN controller
- 3) Whether an intersection has an empty stable region is decidable
 - not even semi-decidable for Python
 - nonempty implies an operating condition under which all control logics are dormant
 - can inspect the stable region BEFORE deployment
 - make decision to use based on region's narrowness

Conclusion

- We want alternatives to Python for defining control logics that admit formal processing
- We want expressiveness and decidability
 - control logic equivalence
 - emptiness of intersection's stable region
- We want scalable formal reasoning
 - with DFTs, the invariant of the conjunction of states is the conjunction of invariants

- DFTs are limited to regular properties
 - problem in practice? Needs more study

