Numerical Computing

Secant Method and Regula Falsi Method

QASID AHMED ALEEM

COURSE TEACHER: DR. SHAHID QURESHI

BSC(HONOURS)

H-2 (MORNING)

INSTITUTE OF SPACE AND PLANETARY ASTROPHYSICS

UNIVERSITY OF KARACHI

Date:13/2/18

Tasks

Task 1: Secant Method

Python Code:

```
#Qasid Ahmed Aleem
#Secant Method
def func(f):
                                                  #given function
        return(f^{**3})+(f^{**2})-(3*f)-3
def msec(xi,xi1):
                                                  #secant function
        return (func(xi1)-func(xi))/(xi1-xi)
def newx(xi,xi1):
                                                  #new x function
        return xi-(func(xi)/msec(xi,xi1))
xi = 1.0 \#a
xi1=2.0
print("{:^10s} {:^18s} {:^18s} {:^19s}{:^18s} {:^19s} {:^21s}".format(
"Counter","x","xi+1","f(x)","f(xi+1)","msec","newx"))
for x in range(0,30):
        if xi-xi1==0:
                print("the root is ",xi)
        print("{:^10d} {: 18.16f} {: 18.16f} {: 18.16f} {: 18.16f}\
{: 19.15f} {:21.20f}".format(x,xi,
        xi1,func(xi),func(xi1),msec(xi,xi1),newx(xi,xi1)))
        xn=xi
        xi=xi1
        xi1=newx(xn,xi)
```

Output:

```
Counter
                                                                           f(xi+1)
    0
            1.000000000000000000
                                2.0000000000000000 -4.00000000000000000
                                                                         3.0000000000000000
                                                                                              7.000000000000000 1.57142857142857139685
            2.000000000000000000
                                1.5714285714285714 3.00000000000000000
                                                                        -1.3644314868804672 10.183673469387756 1.70541082164328661186
    1
            1.5714285714285714
                                1.7054108216432866 -1.3644314868804672
                                                                         -0.2477450996385961
                                                                                              8.334584509905671 1.73513577066073909627
                                1.7351357706607391 -0.2477450996385961
                                                                         0.0292554023056582
                                                                                              9.318788125813716 1.73199637078269930157
            1.7054108216432866
    4
            1.7351357706607391
                                1.7319963707826993
                                                    0.0292554023056582
                                                                         -0.0005151769146980
                                                                                              9.482888570074293 1.73205069778558362614
            1.7319963707826993
                                1.7320506977855836 -0.0005151769146980
                                                                        -0.0000010390001730
                                                                                              9.463763639230418 1.73205080757279006320
            1.7320506977855836
                                1.7320508075727901 -0.0000010390001730
                                                                         0.0000000000370299
                                                                                              9.464100933646186 1.73205080756887741522
            1.7320508075727901
                                1.7320508075688774
                                                    0.0000000000370299
                                                                         0.00000000000000018
                                                                                              9.463708075591624 1.73205080756887719318
            1.7320508075688774
                                1.7320508075688772
                                                    0.0000000000000018
                                                                         -0.0000000000000018 16.00000000000000 1.73205080756887719318
the root is 1.7320508075688772
```

Excel Table:

counter	хі	xi+1	f(x)	f(xi+1)	msec=f(xi+1)- f(xi)/ (xi+1)-xi	xi+2=xi- f(xi)/ msec
1	1	2	-4	3	7	1.571428571
2	2	1.571428571	3	-1.36443149	10.18367347	1.705410822
3	1.571428571429	1.705410822	-1.36443149	-0.2477451	8.33458451	1.735135771
4	1.705410821643	1.735135771	-0.2477451	0.029255402	9.318788126	1.731996371
5	1.735135770661	1.731996371	0.029255402	-0.00051518	9.48288857	1.732050698
6	1.731996370783	1.732050698	-0.00051518	-1.039E-06	9.463763639	1.732050808
7	1.732050697786	1.732050808	-1.039E-06	3.70299E-11	9.464100934	1.732050808
8	1.732050807573	1.732050808	3.70299E-11	0	9.464162079	1.732050808
9	1.732050807569	1.732050808	0	0	#DIV/0!	#DIV/0!

Task 2:Regula Falsi Method

Python Code:

```
#Qasid Ahmed Aleem
#Regula Falsi Method
def func(f):
                                             #given function
       return(f^{**3})+(f^{**2})-(3*f)-3
def msec(xi,xi1):
                                             #secant function
       return (func(xi1)-func(xi))/(xi1-xi)
def newx(xi,xi1):
                                             #new x function
       return xi-(func(xi)/msec(xi,xi1))
xi = 1.0 \#a
xi1=2.0
i=int(input("Enter the tolerance:"))
for x in range(0,1000):
       if (\text{newx}(xi,xi1)-xi)<1*(10**-i):
               print("the root is {:30.28f} correct to {:d} decimals
".format(\
               newx(xi,xi1),i))
               break
       print("{:^10d} {: 18.16f} {: 18.16f} {: 18.16f} {: 18.16f}\
{: 19.15f} {:21.20f}".format(x,xi,
       xi1,func(xi),func(xi1),msec(xi,xi1),newx(xi,xi1)))
       if (func(xi)*func(newx(xi,xi1)))<0:</pre>
               xi1=newx(xi,xi1)
       else:
               xi=newx(xi,xi1)
```

Output:

Enter the tolerance:28						
Counter	x	xi+1	f(x)	f(xi+1)	msec	newx
0	1.000000000000000000	2.000000000000000000	-4.00000000000000000	3.00000000000000000	7.00000000000000000	1.57142857142857139685
1	1.5714285714285714	2.000000000000000000	-1.3644314868804672	3.00000000000000000	10.183673469387756	1.70541082164328661186
2	1.7054108216432866	2.00000000000000000	-0.2477450996385961	3.00000000000000000	11.024658535507889	1.72788272849107382712
3	1.7278827284910738	2.000000000000000000	-0.0393395513114898	3.00000000000000000	11.169226908890975	1.73140486584510822077
4	1.7314048658451082	2.000000000000000000	-0.0061106730936817	3.00000000000000000	11.191977407007442	1.73195085274907167872
5	1.7319508527490717	2.000000000000000000	-0.0009459206670135	3.00000000000000000	11.195506314585451	1.73203534385116508787
6	1.7320353438511651	2.00000000000000000	-0.0001463487141153	3.00000000000000000	11.196052463903120	1.73204841530778663738
7	1.7320484153077866	2.000000000000000000	-0.0000226405665913	3.00000000000000000	11.196136958893574	1.73205043748442433227
8	1.7320504374844243	2.000000000000000000	-0.0000035025160194	3.00000000000000000	11.196150030443254	1.73205075031660404861
9	1.7320507503166040	2.000000000000000000	-0.0000005418413114	3.00000000000000000	11.196152052622123	1.73205079871191958141
10	1.7320507987119196	2.00000000000000000	-0.0000000838231458	3.00000000000000000	11.196152365454351	1.73205080619870099845
11	1.7320508061987010	2.000000000000000000	-0.0000000129674866	3.00000000000000000	11.196152413849669	1.73205080735691008265
12	1.7320508073569101	2.000000000000000000	-0.0000000020060789	3.00000000000000000	11.196152421336453	1.73205080753608586797
13	1.7320508075360859	2.000000000000000000	-0.0000000003103402	3.00000000000000000	11.196152422494661	1.73205080756380436213
14	1.7320508075638044	2.000000000000000000	-0.0000000000480105	3.00000000000000000	11.196152422673839	1.73205080756809248754
15	1.7320508075680925	2.00000000000000000	-0.0000000000074278	3.00000000000000000	11.196152422701561	1.73205080756875595682
16	1.7320508075687560	2.000000000000000000	-0.0000000000011493	3.00000000000000000	11.196152422705850	1.73205080756885854143
17	1.7320508075688585	2.000000000000000000	-0.0000000000001776	3.00000000000000000	11.196152422706511	1.73205080756887430660
18	1.7320508075688743	2.000000000000000000	-0.00000000000000284	3.00000000000000000	11.196152422706612	1.73205080756887674909
19	1.7320508075688767	2.000000000000000000	-0.00000000000000053	3.00000000000000000	11.196152422706628	1.73205080756887719318
20	1.7320508075688772	2.000000000000000000	-0.00000000000000018	3.00000000000000000	11.196152422706634	1.73205080756887741522
the root is	1.73205080756887719	31766041234 correct	to 28 decimals			

Excel Table:

counter	хi	xi+1	f(x)	f(xi+1)	msec=f(xi+1)- f(xi)/ (xi+1)-xi	xi+2=xi- f(xi)/ msec	f(xi+2)
1	1.00000000000	2.0000000	-4.0000000	3.0000000	7.0000000	1.57142857143	-1.3644315
2.0	1.57142857143	2.0000000	-1.3644315	3.0000000	10.1836735	1.70541082164	-0.2477451
3.0	1.70541082164	2.0000000	-0.2477451	3.0000000	11.0246585	1.72788272849	-0.0393396
4.0	1.72788272849	2.0000000	-0.0393396	3.0000000	11.1692269	1.73140486585	-0.0061107
5.0	1.73140486585	2.0000000	-0.0061107	3.0000000	11.1919774	1.73195085275	-0.0009459
6.0	1.73195085275	2.0000000	-0.0009459	3.0000000	11.1955063	1.73203534385	-0.0001463
7.0	1.73203534385	2.0000000	-0.0001463	3.0000000	11.1960525	1.73204841531	-0.0000226
8.0	1.73204841531	2.0000000	-0.0000226	3.0000000	11.1961370	1.73205043748	-0.0000035
9.0	1.73205043748	2.0000000	-0.0000035	3.0000000	11.1961500	1.73205075032	-0.0000005
10.0	1.73205075032	2.0000000	-0.0000005	3.0000000	11.1961521	1.73205079871	-0.0000001
11.0	1.73205079871	2.0000000	-0.0000001	3.0000000	11.1961524	1.73205080620	0.0000000
12.0	1.73205080620	2.0000000	0.0000000	3.0000000	11.1961524	1.73205080736	0.0000000
13.0	1.73205080736	2.0000000	0.0000000	3.0000000	11.1961524	1.73205080754	0.0000000
14.0	1.73205080754	2.0000000	0.0000000	3.0000000	11.1961524	1.73205080756	0.0000000
15.0	1.73205080756	2.0000000	0.0000000	3.0000000	11.1961524	1.73205080757	0.0000000
16.0	1.73205080757	2.0000000	0.0000000	3.0000000	11.1961524	1.73205080757	0.0000000