Показать напрямую, что условие (i) леммы 8.1 эквивалентно одному из условий (ii), (iii) или (iv) Доказательство:

- 1. Пусть $\forall a \in \mathbb{R}$ или $\forall a \in \mathbb{Q} \ \{u \geq a\} \in \mathcal{A}$. По определению означает, что $\{u \geq a\} := \{x \in X : u(x) \geq a\} = \{x \in X : u(x) \in [a, \infty)\} = u^{-1} [a, \infty)$
- 2. Поскольку $u:(X,\mathcal{A})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ поскольку \mathcal{A} и $\mathcal{B}(\mathbb{R})$ сигма алгебры, то $\{x\in X:u(x)\in (-\infty,a)\}:=\{u< a\}$. А это в точности (iv)

Задача № 2

Проверить, что $\mathcal{B}\left(\overline{\mathbb{R}}\right)$ определенная в (8.5) - сигма алгебра. Показать, что $\mathcal{B}\left(\mathbb{R}\right)=\mathbb{R}\cap\mathcal{B}\left(\overline{\mathbb{R}}\right)$ Доказательство:

- 1. Уравнение (8.5) говорит, что $B^* \in \mathcal{B}\left(\overline{\mathbb{R}}\right)$ тогда и только тогда, когда $B^* = B \cup S$ для произвольного $B \in \mathcal{B}\left(\mathbb{R}\right)$ и $S \in \mathcal{S} := \left\{\left\{\varnothing\right\}, \left\{+\infty\right\}, \left\{-\infty\right\}, \left\{-\infty, +\infty\right\}\right\}$. Чтобы доказать, что $\mathcal{B}\left(\overline{\mathbb{R}}\right)$ сигма алгебра, мы покажем, что выполняются $\sum_1 \sum_3$
- 2. По определению. $B^* = \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. И это свойство \sum_1
- 3. Предположим $B \cup S \in \mathcal{B}(\overline{\mathbb{R}})$. Докажем, что дополнение $\overline{B \cup S} = \overline{B} \cap \overline{S} \in \mathcal{B}(\overline{\mathbb{R}})$.
 - (a) Пусть $S = \{\emptyset\}$. Тогда $S^c = [-\infty, +\infty] = \mathbb{R} \cup \{-\infty, +\infty\}$. Отсюда следует, что $\overline{B} \cap (\mathbb{R} \cup \{-\infty, +\infty\}) = (\overline{B} \cap \mathbb{R}) \cup (\overline{B} \cap \{-\infty, +\infty\}) = \overline{B} \cup \overline{B} = \overline{B} \cup \{\emptyset\} \in \mathcal{B}(\overline{\mathbb{R}})$
 - (b) Пусть $S = \{-\infty\}$. Тогда $S^c = (-\infty, +\infty] = \mathbb{R} \cup \{+\infty\}$. Отсюда следует, что $\overline{B} \cap (\mathbb{R} \cup \{+\infty\}) = (\overline{B} \cap \mathbb{R}) \cup (\overline{B} \cap \{+\infty\}) = \overline{B} \cup \{\emptyset\} \in \mathcal{B}(\overline{\mathbb{R}})$. Аналогично и для $S = \{+\infty\}$
 - (c) Пусть $S = \{-\infty, +\infty\}$. Тогда $S^c = \mathbb{R}$. Отсюда следует, что $\overline{B} \cap \mathbb{R} = \overline{B} \cup \{\emptyset\} \in \mathcal{B}(\overline{\mathbb{R}})$
 - (d) Из (a) (b) и (c) следует, что выполнено \sum_{2}
- 4. Пусть $(B_n \cup S_n)_{n \in \mathbb{N}} \mathcal{B}\left(\mathbb{R}\right)$. Тогда $\bigcup_{n \in \mathbb{N}} B_n \cup S_n = \left(\bigcup_{n \in \mathbb{N}} B_n\right) \cup \left(\bigcup_{n \in \mathbb{N}} S_n\right)$. Поскольку Борелевская сигма алгебра замкнута относительно счетного объединения и легко видеть, что \mathcal{S} также замкнута относительно счетного объединения, следовательно $\bigcup_{n \in \mathbb{N}} B_n \cup S_n \in \mathcal{B}\left(\mathbb{R}\right)$. Что в свою очередь означает, что выполнено \sum_3

Далее мы покажем, что $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$.

1. Легко заметить $\mathbb{R} \cap \mathcal{B}\left(\overline{\mathbb{R}}\right) := \left\{\mathbb{R} \cap B^* : B^* \in \mathcal{B}\left(\overline{\mathbb{R}}\right)\right\}$. Легко заметить, что $\mathcal{B}\left(\mathbb{R}\right)$ след сигма алгебры $\mathbb{R} \cap \mathcal{B}\left(\overline{\mathbb{R}}\right)$. Тогда из (3.3 iv) $\mathcal{B}\left(\mathbb{R}\right)$ - сигма алгебра

Задача № 3

• Пусть (X, \mathcal{A}) - измеримо. Пусть $f, g: X \to \mathbb{R}$ - измеримые функции. Показать, что для всех $A \in \mathcal{A}$ функция h(x) := f(x), если $x \in A$ и h(x) := g(x), если $x \notin A$, измеримая функция (речь про h(x))

Доказательство:

1. Представим искомую функцию как $h(x) = f(x) 1_A(x) + g(x) 1_{A^c}(x)$. Поскольку следствие 8.11 также выполняется для $f, g: X \to \mathbb{R}$, то fg и f+g - измеримы. Следовательно h(x) - измеримо.

• Пусть $(f_n)_{n\in\mathbb{N}}$ последовательность измеримых функций. Пусть $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ так что $\bigcup_{n\in\mathbb{N}}A_n=X$. Предположим, что $f_n|_{A_n\cap A_k}=f_k|_{A_n\cap A_k}$ для всех $k,n\in\mathbb{N}$ и множество $f(x):=f_n(x)$, если $x\in A_n$. Показать, что $f:X\to\mathbb{R}$ измеримо.

Доказательство:

1. Пусто

Задача № 4

Доказательство:

1. Пусто

Задача № 5

Показать, что если $f\in\mathcal{E}$, то $f^\pm\in\mathcal{E}$, где \mathcal{E} - множество простых функций. Доказательство:

- 1. Поскольку $f \in \mathcal{E}$, то $f(x) = \sum_{m=1}^{M} y_m 1_{A_m}(x)$, где $M \in \mathbb{N}$, $y_m \in \mathbb{R}$ $A_m \in \mathcal{A}$ попарно непересекаются.
- 2. Мы можем извлечь коэффициенты y_m из f(x) следующим образом.
- 3. $f^+(x) = \sum_{m=1}^M y_m^+ 1_{A_m}(x)$, где $y_m^+ = y_m$, для всех $y_m \ge 0$, в ином случае $y_m^+ = 0$
- 4. $f^-(x) = \sum_{m=1}^M y_m^- 1_{A_m}(x)$, где $y_m^- = y_m$, для всех $y_m \le 0$, в ином случае $y_m^- = 0$
- 5. Легко заметить, что $f^{\pm} \in \mathcal{E}$
- 6. Ч.Т.Д.

Задача № 6

Показать, что $f = f^+ - f^-$ и $|f| = f^+ + f^-$

- 1. По определению $f\left(x\right)=\sum_{m=1}^{M}y_{m}1_{A_{m}}\left(x\right)$, где $M\in\mathbb{N},\,y_{m}\in\mathbb{R}\,A_{m}\in\mathcal{A}$ попарно непересекаются.
- 2. По определению $f^{+}\left(x\right)=\sum_{m=1}^{M}\max\left\{ y_{m},0\right\} 1_{A_{m}}\left(x\right)$ и $f^{-}\left(x\right)=-\sum_{m=1}^{M}\min\left\{ y_{m},0\right\} 1_{A_{m}}\left(x\right)$
- 3. Из 2 следует, что $f^{+}\left(x\right)-f^{-}\left(x\right)=\sum_{m=1}^{M}\left(\max\left\{ y_{m},0\right\} +\min\left\{ y_{m},0\right\} \right)1_{A_{m}}\left(x\right)$
- 4. Покажем, что $\max\{y_m,0\} + \min\{y_m,0\} = y_m$
 - (a) По определению $\max\{y_m,0\}=\left\{\begin{array}{ll} y_m,y_m>0\\ 0,y_m\leq 0\end{array}\right.$ и $\min\{y_m,0\}=\left\{\begin{array}{ll} 0,y_m>0\\ y_m,y_m\leq 0\end{array}\right.$. Тогда $\max\{y_m,0\}+\min\{y_m,0\}=\left\{\begin{array}{ll} y_m,y_m>0\\ y_m,y_m\leq 0\end{array}\right.$. Поэтому верно (4)
- 5. Из (3) и (4) следует, что $f^{+}\left(x\right)-f^{-}\left(x\right)=\sum_{m=1}^{M}y_{m}1_{A_{m}}\left(x\right)$ а это тоже самое, что и (1)
- 6. Покажем, что $\max \{y_m, 0\} \min \{y_m, 0\} = |y_m|$

- (a) По определению $\max\{y_m,0\}=\left\{\begin{array}{ll} y_m,y_m>0\\ 0,y_m\leq 0\end{array}\right.$ и $-\min\{y_m,0\}=\left\{\begin{array}{ll} 0,y_m>0\\ -y_m,y_m\leq 0\end{array}\right.$. Тогда $\max\{y_m,0\}-\min\{y_m,0\}=\left\{\begin{array}{ll} y_m,y_m>0\\ -y_m,y_m\leq 0\end{array}\right.$. Поэтому верно (6)
- 7. Из (6) следует, что $f^+(x) + f^-(x) = \sum_{m=1}^M y_m 1_{A_m}(x)$ а это тоже самое, что $|f| = f^+ + f^-$

Показать, что каждая непрерывная функция $u:\mathbb{R}\to\mathbb{R}\ \mathcal{B}\left(\mathbb{R}\right)/\mathcal{B}\left(\mathbb{R}\right)$ измерима Доказательство:

1. Все непрерывные отображения (Пример 7.3) $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ измеримы

Задача № 8

Показать, что $x\mapsto \max\{x,0\}$ и $x\mapsto \min\{x,0\}$ непрерывны и используя пример 7.3 показать что они измеримые функции $\mathbb{R}\to\mathbb{R}$. Заключить, что на любом измеримом пространстве (X,\mathcal{A}) положительные и отрицательные компоненты u^\pm измеримой функции $u:X\to\mathbb{R}$ измеримы.

Доказательство:

- 1. Пусть $x\mapsto \max\{x,0\}$. Мы представим искомую функцию как $\max\{x,0\}=\frac{1}{2}\,(x+|x|)$.
- 2. Чтобы доказать, что функция непрерывна, необходимо доказать, что $\forall \varepsilon > 0 \; \exists \delta > 0$, такой что $|x-y| < \delta$ имплицирует за собой $\left|\frac{1}{2}\left(x+|x|\right)-\frac{1}{2}\left(y+|y|\right)\right| < \varepsilon$
 - (a) Пусть $\delta=\varepsilon$. Тогда $\left|\frac{1}{2}\left(x-y+|x-y|\right)\right|=\frac{1}{2}\left|x-y+|x-y|\right|\leq \frac{1}{2}\left|x-y|+\frac{1}{2}\left|x-y|\leq |x-y|<\delta=\varepsilon$.
 - (b) Таким образом если $|x-y| < \delta = \varepsilon$, то $|x-y| < \varepsilon$
 - (c) Поэтому $x \mapsto max\{x,0\}$ непрерывная функция
 - (d) Поскольку $x\mapsto \max\{x,0\}$ функция вида $\mathbb{R}\to\mathbb{R}$ и непрерывна, то отсюда следует, что она измерима.
- 3. Пусть $x \mapsto min\{x,0\}$. Мы представим искомую функцию как $min\{x,0\} = \frac{1}{2}(x-|x|)$.
 - (a) Пусть $\delta=\varepsilon$. Пусть $|x-y|<\delta$. Поэтому $\frac{1}{2}\,|x-y-|x-y||\leq |x-y|<\varepsilon$
 - (b) Поэтому $x \mapsto min\{x,0\}$ непрерывна.
 - (c) Тогда из (примера 7.3) $x \mapsto min\{x,0\}$ непрерывна
- 4. Из (2) и (3) следует, что u^{\pm} измеримы.
- 5. Ч.Т.Д

Задача № 9

• Доказать, что $\{sup_i f_i > \lambda\} = \bigcup_{i \in \mathbb{N}} \{f_i > \lambda\}$

Доказательство:

1. $\{sup_{i}f_{i} > \lambda\} \iff \{x \in X : \bigcup_{i \in \mathbb{N}} f_{i}(x) > \lambda\} \iff \{x \in X : \bigcup_{i \in \mathbb{N}} f_{i}(x) \in (\lambda, \infty)\} \iff \bigcup_{i \in \mathbb{N}} \{x \in X : f_{i}(x) \in (\lambda, \infty)\} \iff \bigcup_{i \in \mathbb{N}} \{f_{i} > \lambda\}$

• Доказать, что $\{sup_i f_i \geq \lambda\} \supseteq \bigcup_{i \in \mathbb{N}} \{f_i \geq \lambda\}$

Доказательство:

- 1. Доказывается так же как и предыдущий пример, поскольку $\{sup_i f_i \geq \lambda\} = \bigcup_{i \in \mathbb{N}} \{f_i \geq \lambda\}$ то $\{sup_i f_i \geq \lambda\} \supseteq \bigcup_{i \in \mathbb{N}} \{f_i \geq \lambda\}$
- Доказать, что $\{inf_i f_i > \lambda\} = \bigcap_{i \in \mathbb{N}} \{f_i > \lambda\}$

Доказательство:

- 1. $\{inf_{i}f_{i} > \lambda\} \iff \{x \in X : \bigcap_{i \in \mathbb{N}} f_{i}(x) > \lambda\} \iff \{x \in X : \bigcap_{i \in \mathbb{N}} f_{i}(x) \in (\lambda, \infty)\} \iff \bigcap_{i \in \mathbb{N}} \{x \in X : f_{i}(x) \in (\lambda, \infty)\} \iff \bigcap_{i \in \mathbb{N}} \{f_{i} > \lambda\}$
- Доказать, что $\{inf_i f_i \geq \lambda\} = \bigcap_{i \in \mathbb{N}} \{f_i \geq \lambda\}$

Доказательство:

1. Аналогичо предыдущему примеру

Задача № 10

Проверить, что аппроксимационная последовательность $(f_n)_{n\in\mathbb{N}}$ для u в теореме 8.8 состоит из $\sigma(u)$ - измеримых функций.

Доказательство:

1. Пусто

Задача № 11

• Функция $u \ \mathcal{A}/\mathcal{B}\left(\overline{\mathbb{R}}\right)$ измерима тогда и только тогда, когда $u^{\pm} \ \mathcal{A}/\mathcal{B}\left(\overline{\mathbb{R}}\right)$ измеримы

Доказательство:

- 1. С одной стороны:
 - (а) Пусть функция $u \ \mathcal{A}/\mathcal{B}\left(\overline{\mathbb{R}}\right)$ измерима, тогда $u^+ = \max\{u,0\}$. Поскольку f(x) = c измерима и поточечный максимум измерим (Corollary 8.11), то $u^+ \ \mathcal{A}/\mathcal{B}\left(\overline{\mathbb{R}}\right)$ измерима
 - (b) Пусть функция $u \ \mathcal{A}/\mathcal{B}(\overline{\mathbb{R}})$ измерима, тогда $u^- = max\{u,0\}$. Поскольку f(x) = c измерима и поточечный максимум измерим (Corollary 8.11), то $u^- \ \mathcal{A}/\mathcal{B}(\overline{\mathbb{R}})$ измерима
- 2. С другой стороны:
 - (а) Пусть $u^{\pm} \mathcal{A}/\mathcal{B}\left(\mathbb{R}\right)$ измеримо. Поскольку $u^{+}-u^{-}$ измеримо (Corollary 8.11), и $u^{+}-u^{-}=u$ то u $\mathcal{A}/\mathcal{B}\left(\mathbb{R}\right)$ измерима
- 3. Ч.Т.Д.
- Если $u,v:X \to \overline{\mathbb{R}}$ $\mathcal{A}/\mathcal{B}\left(\overline{\mathbb{R}}\right)$ измеримые функции, то $\left\{u < v\right\}, \left\{u \leq v\right\}, \left\{u = v\right\}, \left\{u \neq v\right\} \in \mathcal{A}$

Доказательство:

- 1. $\{u < v\} = \{x \in X : u(x) < v(x)\} = \{x \in X : u(x) v(x) < 0\}$. Поскольку разность измеримых функций измерима, то по лемме 8.1 выполняется условие $\{u < v\}$. Аналогично доказывается $\{u \le v\}$
- 2. $\{u=v\}=\{x\in X:u\left(x\right)-v\left(x\right)=0\}=\{x\in X:u\left(x\right)-v\left(x\right)\leq0\}\cap\{x\in X:u\left(x\right)-v\left(x\right)\geq0\}$. И левая и правая часть пересечения измеримы по лемме 8.1, следовательно они измеримы вместе, а это значит что измеримо их пересечение.
- 3. Поскольку сигма алгебра замкнута относительно дополнения, то $\{u=v\}^C=\{u\neq v\}\in\mathcal{A}$
- 4. Заметим, что эти функции $\mathcal{A}/\mathcal{B}(\mathbb{R})$ измеримы. Поскольку операция $\infty \infty$ не определена, следовательно не доказано $\{u \leq v\} \in \mathcal{A}$, когда $u, v = \infty$
- **5.** Пусто

Доказательство:

1. Пусто

Задача № 13

Пусть $u:\mathbb{R} \to \mathbb{R}$ дифференцируема. Пояснить, почему u и u'=du/dx - измеримы Доказательство:

- 1. Пусть $u: \mathbb{R} \to \mathbb{R}$ дифференцируема. Поскольку u дифференцируема, следовательно она непрерывна. Поскольку она непрерывна, то она $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ измерима по Example 7.3
- 2. Рассмотрим последовательность функций $u_n(x) = \frac{u(x+\frac{1}{n})-u(x)}{1/n}$. Из Corollary 8.11 сумма измеримых функций измерима и произведение измеримо (зная, что f(x) = n измерима). Тогда по Corollary 8.11 $\lim_{n\to\infty} \sup u_n(x) = u_n$ измерима.
- 3. Ч.Т.Д.

Задача № 14

• Определить сигма алгебру сгенерированную функциями: $f,g,h:\mathbb{R}\to\mathbb{R}$, где $f\left(x\right)=x,\ g\left(x\right)=x^2$ и $h\left(x\right)=|x|$

Решение:

- 1. Пусть $f: \mathbb{R} \to \mathbb{R}$ такое что $f: x \mapsto x$. Поскольку f(x) = x непрерывна, следовательно она (по Example 7.3) $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ измерима. Легко заметить, что $\sigma(f) := \mathcal{B}(\mathbb{R})$
- 2. Пусть $g:\mathbb{R}\to\mathbb{R}$ такое что $g:x\mapsto x^2$. Тогда $g^{-1}:y\mapsto \pm \sqrt{y}$. Таким образом $g^{-1}:\sqrt{(\mathbb{R}\cap[0,\infty))}\cup -\sqrt{(\mathbb{R}\cap[0,\infty))}$
- 3. По определению 7.5 $\sigma\left(g_i:i\in\mathcal{A}\right):=\sigma\left\{\bigcup_{i\in\mathbb{N}}g_i^{-1}\left(\mathcal{A}_i\right)\right\}$.
- 4. Из (2) и (3) следует, что $\sigma\left(g^{-1}\right)=\sigma\left\{\sqrt{B}\cup\left(-\sqrt{B}\right):B\in\mathcal{B}\left(\mathbb{R}\right),B\subset\left[0,\infty\right)\right\}$

- 5. Пусть $h:\mathbb{R}\to\mathbb{R}$ такое, что $h:x\mapsto |x|$. Тогда $g^{-1}:y\mapsto |y|$. Таким образом $g^{-1}:(\mathbb{R}\cap[0,\infty))\cup(\mathbb{R}\cap-[0,\infty))$
- 6. Из (5) следует, что $\sigma\left(h^{-1}\right)=\sigma\left\{B\cup\left(-B\right):B\in\mathcal{B}\left(\mathbb{R}\right),B\subset\left[0,\infty\right)\right\}$
- Определить сигма алгебру сгенерированную функциями: $F,G:\mathbb{R}^2\to\mathbb{R}$, где $F\left(x,y\right)=x+y,\ G\left(x,y\right)=x^2+y^2$

Пусть $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ измеримо и $u: \mathbb{R} \to \mathbb{R}$. Показать, что $\{x\} \in \sigma(u)$ для каждого $x \in \mathbb{R}$ тогда и только тогда, когда u - инъективно

Доказательство:

- 1. С одной стороны, предположим $\{x\} \in \sigma(u)$ для каждого $x \in \mathbb{R}$
 - (a) Рассмотрим произвольный $\{x_0\} \in \sigma(u) := \{x \in \mathbb{R} : u(x) = a\}.$
 - (b) Заметим, что прообраз единственный. Это значит, что если бы $\{x_1\} \neq \{x_0\} \in \{x \in \mathbb{R} : u(x) = a\}$, то прообраз синглетоном не был бы.
 - (c) Из (b) следует, что если $u(x_1) = u(x_2)$, то $x_1 = x_1$. А это в точности определение инъективной функции
- 2. С другой стороны, предположим u инъективно. Это значит, что, если $u\left(x_{1}\right)=u\left(x_{2}\right)$, то $x_{1}=x_{2}$
 - (а) Предположим $\{x_1\}:=\{x\in\mathbb{R}:u\,(x)=a\}$, тогда из (2) следует, что если $\{x_2\}:=\{x\in\mathbb{R}:u\,(x)=a\}$, то $\{x_1\}:=\{x_2\}$
 - (b) Таким образом если отображение u инъективно, то $\{x\} \in \sigma(u)$
- 3. Из (1) и (2) следует цель.

Задача № 16

Пусть λ - одномерная мера Лебега. Найти $\lambda \circ u^{-1}$, если u(x) = |x|

Решение:

1. Заметим, что $u^{-1}(a,b) = (-b,-a) \cup (a,b)$. Тогда $\lambda \circ u^{-1} = \lambda \left((-b,-a) \cup (a,b) \right) = \lambda \left(-b,-a \right) + \lambda \left(a,b \right) = -a+b+b-a = 2 \left(b-a \right)$. Тогда $\lambda \circ u^{-1} = 2\lambda \left((a,b) \cap \mathbb{R} \right)$

Задача № 17

Пусть $E \in \mathcal{B}(\mathbb{R}), Q: E \to \mathbb{R}, Q(x) = x^2$ и $\lambda(E \cap \cdot)$

• Доказать, что $Q \mathcal{B}(E) / \mathcal{B}(\mathbb{R})$ - измеримо

Доказательство:

1. Вспомним, что индуцированная сигма алгебра (Аналог примера 3.3 (iv)) представляет собой систему множеств $\mathcal{B}(E) = E \cap \mathcal{B}(\mathbb{R}) := \{E \cap B : B \in \mathcal{B}(\mathbb{R})\}$ с единицей E, где $E \subset \mathbb{R}$.

2. Из (1) следует, что заданы два измеримых пространства $(E, \mathcal{B}(E))$ и $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Чтобы доказать, что $Q: E \to \mathbb{R}$ - измеримо, необходимо доказать, что для произвольного $B \in \mathcal{B}(\mathbb{R})$ $Q^{-1}(B) \in \mathcal{B}(E)$. Мы воспользуемся леммой 7.2, где в качестве генератора рассмотрим систему полуоткрытых интервалов $\mathcal{F} := \{[a,b): a \leq b\}$

(a)
$$Q^{-1}\left(B\right)=E\cap \left\{egin{array}{l} \varnothing, \ \mathrm{гдe}\ a,b<0 \ \left(-\sqrt{b},\sqrt{b}\right)\ \mathrm{гдe}\ a<0,b\geq0 \ \left(-\sqrt{b},\sqrt{a}\right]\cup\left[-\sqrt{a},\sqrt{b}\right)\ \mathrm{гдe}\ a\geq0,b\geq0 \end{array}\right.$$
 . Все эти множества лежат $\mathcal{B}\left(E\right)$ поэтому по лемме 7.2 измеримы.

Задача № 18

Пусть $u: \mathbb{R} \to \mathbb{R}$ - измеримо. Какие из следующих функций измеримы? $u(x-2), e^{u(x)}, \sin(u(x)+8), u''(x)$ и sign[u(x-7)]

Решение для u(x-2):

- 1. Представим u(x-2) как $(u \circ f)(x)$, где f(x) = x-2
- 2. Докажем, что f(x) = x 2 непрерывна и, следовательно, измерима (Example 7.3)
 - (а) Чтобы показать, что f непрерывна, необходимо доказать, что $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{такое},$ что если $|x-y| < \delta$, то $|f(x)-f(y)| < \varepsilon$
 - (b) Заметим, что |f(x) f(y)| = |x 2 y + 2| = |x y|. Фиксируя $\delta = \varepsilon$, следует цель.
- 3. Поскольку f и u измеримы, то по теорему 7.4 $(u \circ f)(x)$ измеримо

Решение для $e^{u(x)}$:

1. Известен тот факт, что e^x - непрерывна и, следовательно, измерима. Тогда по теореме 7.4 $(e \circ u)(x)$ измерима

Решение для sin(u(x) + 8):

- 1. Известен тот факт, что константная функция измерима. Тогда по Corollary $8.11\ u\left(x\right)+8$ измеримая функция
- 2. sin(x) непрерывная функция: $\left|sin\left(x\right)-sin\left(y\right)\right|=\left|2cos\left(\frac{x+y}{2}\right)sin\left(\frac{x-y}{2}\right)\right|\leq \left|x-y\right|<\varepsilon$ Фиксируя $\delta=\varepsilon,$ доказана непрерывность
- 3. Таким образом из Example 7.3 следует измеримость цели