Lesson 16: Analyse!

 $Pseudo\ code,\ binary\ search,\ insertion\ sort,\ selection\ sort,\ lower\\bound\ complexity$

AICE1005

Algorithms and Analysis

Algorithm Analysis

- We've covered most of the basic data structures
- The rest of the course is going to focus more on algorithms
- We will look predominantly at
 - ⋆ Searching
 - ★ Sorting
 - ⋆ Graph Algorithms
- Emphasise general solution strategies

AICE100

Algorithms and Analysis

Pseudo Code

- There is no standard for pseudo code
- The commands are not too dissimilar to C++
- ullet Arrays are written in bold $oldsymbol{a}$ with elements a_i
- In pseudo-code you are free to invent any operations that can be easily interpreted

1. Algorithm Analysis

- 2. Search
- 3. Simple Sort
 - Insertion Sort
 - Selection Sort
- 4. Lower Bound

1005 Algorithms and Ana

Code and Pseudo Code

- C++ code is often difficult to read—there are often programming details we don't care abour
- It contains details such as throwing exception which are repetitive and often depends on who you are writing the code for
- Algorithms are not language dependent (data structures are a bit more language dependent)
- To focus on what is important we will use a stylised programming language called pseudo code!

AICE1005

Algorithms and Analysi

Outline

- 1. Algorithm Analysis
- 2. Search
- 3. Simple Sort
 - Insertion Sort
 - Selection Sort
- 4. Lower Bound

AICE1005

AICE1005

Algorithms and Analysis

Dumb Search

DUMBSEARCH
$$(a, x)$$
 {

/* search array $a = (a_1, \dots a_n)$ */
/* for x return true */
/* if successful else false */
for $i \leftarrow 1$ to n

if $(a_i = x)$
return true
endif
endfor

return false
}

bool search(T a[], T x)

{
 for (int $i = 0$; $i < n$; $i + +$) {
 if $(a[i] = x)$
 return true;
}

return false;
}

Time Complexity

Algorithms and Analysis

- Worst case:
 - ★ The worst case for a successful search is when the element is in the last location in the array
 - \star This takes n comparisons: worst case is $\Theta(n)$
- Best case:
- ★ The best case is when the element is in the first location
- \star This takes 1 comparison: best case is $\Theta(1)$
- Average case:
 - * Assume every location is equally likely to hold the key

$$\frac{1+2+\ldots+n}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}$$

ullet For an unsuccessful search n comparison are necessary

AICE1005

Algorithms and Analysis

Binary Search

• If the array is ordered we can do better

• At each step we bisect the array

```
BINARYSEARCH (a, x)
                                           * Based on a divide-and-conquer
  low ←1
                                               strategy
  high ←n
  while (low ≤ high)
     mid \leftarrow \lfloor (\log + \text{high})/2 \rfloor
                                           * We check the middle of the array
    \begin{array}{c} \text{if } x > a_{\min} \\ \text{low } \leftarrow \min \\ + 1 \end{array}
    \begin{array}{c} \text{elseif } x < a_{\text{mid}} \\ \text{high } \leftarrow \text{mid } -1 \end{array}
     else
       return true
     endif
  endwhile
                                           * Based on a recursive ideal
  return false
```

Analysis

- We count the number of comparisons (counting each if/else if statement as a single comparison)
- \bullet Let C(n) be the number of comparisons needed to search in an array of size n
- After one comparison we are left (in the worst case) with having to search an array not larger than $\lfloor n/2 \rfloor \mathbb{I}$ thus

$$C(n) < C(|n/2|) + 1$$

- We've seen this relation before (lesson on Recursion)
- \bullet Easy to show $C(n) < \lfloor \log_2(n) \rfloor + 1 = O(\log(n)) \mathbb{I}$

AICE1005 Algorithms and Analysis 1

Sort Characteristics

- Sort is one of the best studied algorithms
 We care about stability, space and time complexity
- A sort algorithm is said to be stable if it does not change the order of elements that have the same value.
- Space Complexity. Sort is said to be
 - \star In-place if the memory used is O(1)
- Time Complexity. In particular we are interested in
 - ⋆ Worst case
 - * Average case
 - ⋆ Best case

AICE1005 Algorithms and Analysis

Properties of Insertion Sort

- Insertion sort is **stable**. We only swap the ordering of two elements if one is strictly less than the other
- It is in-place!

AICE1005

- Worst time complexity
 - ★ Occurs when the array is in inverse order
 - ★ Every element has to be moved to front of the array
 - \star Number of comparisons for an array of size $C_w(n)$

$$C_w(n) = \sum_{i=2}^n (i-1) = 1 + 2 + \dots + n - 1 = \frac{n(n-1)}{2} \in \Theta(n^2)$$

Binary Search in Action

BINARYSEARCH(a, 95) nofofmind

AICE1005 Algorithms and Analysis 10

Outline

- 1. Algorithm Analysis
- 2. Search
- 3. Simple Sort
 - Insertion Sort
 - Selection Sort
- 4. Lower Bound

1005 Algorithms and Analysis 1

Insertion Sort

- In insertion sort we keep a subsequence of elements on the left in sorted order!
- This subsequence is increased by inserting the next element into its correct position!

```
INSERTIONSORT (a) {  \begin{cases} \text{for } i \leftarrow 2 \text{ to n} \\ \text{$\forall \leftarrow a_i$} \\ \text{$j \leftarrow i - 1$} \end{cases} \\ \text{while } j \geq 1 \text{ and } a_j > \text{$\forall \leftarrow a_i$} \\ \text{$a_{j+1} \leftarrow a_j$} \\ \text{$j \leftarrow j - 1$} \\ \text{endwhile} \\ \text{$a_{j+1} \leftarrow \text{$\lor \leftarrow a_i$}$} \\ \text{endfor} \\ \} \end{cases}  sorted unsorted
```

AICE1005 Algorithms and Analysis

Time Complexity

- Average Time Complexity
 - On average we can expect that each new element being sorted moves half the way down sorted list
 - \star This gives us an average time complexity, ${\cal C}_a(n)$ of half the worst time

$$C_a(n) = \frac{n(n-1)}{4} \in \Theta(n^2)$$

- Best Time Complexity
 - ★ This occurs if the array is already sorted
 - \star In this case we only need $C_b(n) = n-1 \in \Theta(n)$ comparisons

16

 Insertion sort is a good sort for small arrays because it is stable, in-place and is efficient when the arrays are almost sorted.

AICE1005 Algorithms and Analysis

Selection Sort

- A more direct brute force method is to find the least element iteratively
- We can make this an in-place method by swapping the least element with the first element, the second least element with the second element, etc.

AICE1005 Algorithms and Analysis 1:

Insertion versus Selection Sort

AICE1005 Algorithms and Analysis 19

Outline

- 1. Algorithm Analysis
- 2. Search
- 3. Simple Sort
 - Insertion Sort
 - Selection Sort
- 4. Lower Bound

AICE1005 Algorithms and Analysis 2

Decision Trees

- Decision trees are a way to visualise (at least, in principle) many algorithms
- They will eventually give us a lower bound on the time complexity of sort using binary decisions
- A decision tree shows the series of decisions made during an algorithm
- For sort based on binary comparisons the decision tree shows what the algorithm does after every comparison

Analysis of Selection Sort

- Selection sort is in-place
- It isn't stable

- Selection sort always requires n(n-1)/2 comparisons so has the same worst case, but worse average case and best case complexity as insertion sort!
- ullet It only performs n-1 swaps—this makes it attractive (insertion sort moved more elements).

AICE1005 Algorithms and Analysis 18

Bubble Sort

- There are many other simple sort strategies
- One popular one is bubble sort—keep on swapping neighbours until the array is sorted
- It is stable and in-place
- This again has $O(n^2)$ complexity
- This isn't bad for a simple sort, but it does do more work than insertion sort and selection sort
- Apart from its name it just doesn't have anything going for it

AICE1005 Algorithms and Analysis 20

How Well Can You Do?

- Given a problem we would like to know what is the time complexity of the best possible program
- Usually there is no way of knowing this
- We can get an upper bound—if we know the time complexity of any algorithm that solves the problem we have an upper bound
- Lower bounds are far trickier
- A lower bound of f(n) is a guarantee that we spend at least f(n) operations to solve the problem

Decision Tree for Insertion Sort

• Note there is one leaf for every possible way of sorting the list

EE1005 Algorithms and Analysis 23 AICE1005 Algorithms and Analysis

Decision Trees and Time Complexity

- The time taken to complete the task is the depth of the tree at which we finish (i.e. the leaf nodes)
- We can thus read of the time complexity
 - ★ worst case time: depth of the deepest of leaf
 - ★ best case time: depth of the shallowest of leaf
 - * average case time: average depth of leaves
- Different sort strategies will have different decision trees
- Decision trees are usually far too large to write out ©

Minimum Number of Leaves

- There must be, at least, one leaf node of the decision tree for each possible permutation of the list
- How many permutations are there of a list of size n?
- Start with a sequence (a_1, a_2, \ldots, a_n)
- To create a new permutation we can choose any member of the list as the first element.
- We can choose any of the remaining n-1 elements of the list as the second element of the permutation
- The total number of permutation is $n\times (n-1)\times (n-2)\times \cdots \times 2\times 1=n!$

AICE1005 Algorithms and Analysis

How Big is $\log_2(n!)$

• We showed in the second lecture that

$$\left(\frac{n}{2}\right)^{n/2} < n! < n^n$$

- It is not too difficult to show that asymptotically (i.e. as $n \to \infty$) that n! approaches $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ —this is known as **Stirling's** approximation
- Thus

AICE1005

$$\begin{split} \log_2(n!) &\approx n \log_2(n) - n \log_2(e) + \frac{\log_2(n)}{2} + \frac{\log_2(2\pi)}{2} \\ &= \Theta(n \log_2(n)) \mathbb{I} \end{split}$$

AICE1005 Algorithms and Analysis 2

Lessons

- Analysis of algorithms is hard
- Analysis is important: without it we don't know if we have a good algorithm or whether we should try to find a more efficient one
- Lower bounds are particularly important

Requirements of Correct Sort

- Any sort based on binary comparisons must have a leaf of the tree for every possible way of sorting the list
- The array [a, b, c] must be arranged differently for all combinations

$$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1] \blacksquare$$

- That is they must go through a different path of the decision tree!
- If not sort won't work

AICE1005 Algorithms and Analysis 26

Lower Bound Time Complexity for Sorting

- Any sort algorithm using binary comparisons must have a decision tree with at least n! leaf nodes
- ullet This will be a binary tree with some depth $d{
 m I}$
- ullet The number of leaves at depth d is $2^d {
 m I}$
- \bullet Thus the smallest depth tree must have a depth d such that $2^d > n! {\rm I\hspace{-.1em}I}$
- That is, the depth of the decision tree satisfies $d \ge \log_2(n!)$
- But this is the number of comparisons needed in our sort
- We are left with a lower bound on the time complexity of $log_2(n!)$

AICE1005 Algorithms and Analysis 2

Complexity of Sorting

- We therefore have a lower bound on the time complexity of $\Omega(n\log(n))$
- This is true for any sort using binary comparisons
- We will see in the next lecture there exists algorithms with time complexity O(n log(n))
- This means our lower bound is tight—i.e. it is the true cost of the best algorithm
- Having a lower bound we know we are not going to obtain a substantially faster algorithm

AICE1005 Algorithms and Analysis 30