Amendments to the Specification

Page 25, please replace the paragraph spanning line 7 through page 26, line 29, with the following rewritten paragraph:

It was confirmed that, in a same manner as in Example 7, an anti-adduct and a syn-adduct were obtained from an E-body and a Z-body at high diastereoselectivity and high enantioselectivity, respectively.

Table 6

No.	R ²	R ³	$R^4 \cdot R^5$	Yield	Syn/anti	ee
				(%)		(%)
8-1	BnO	Ph	Et, H	90	1/99	98
			(E)			
8-2	BnO	Ph	H, Et	92	99/1	98
			(Z)			
8-3	BnO	Et	Me, H	83	3/97	97
			(E)	<u>89</u>	<u>8/92</u>	<u>98</u>
8-4	BnO	Et	H, Me	89	92/8	98
			(Z)	83	97/3	97

(2S)-3-Benzoyl-2-hydroxy-pentanoic acid ethyl ester (syn/anti mixture): ^{1}H NMR syn (CDCl₃) $\delta = 0.93$ (t, 3H, J = 7.5 Hz), 1.19 (t, 3H, O

J=7.1 Hz), 1.70-2.05 (m, 2H), 3.18 (brs, 1H), 3.83 (dt, 1H, J=5.3, 8.3 Hz), 4.19 (q, 2H, J=7.1 Hz), 4.51 (d, 1H, J=5.3 Hz), 7.42-7.54 (m, 2H), 7.54-7.62 (m, 1H), 7.90-8.02 (m, 2H); anti (CDCl₃) $\delta=1.04$ (t, 3H, J=7.6 Hz), 1.15 (t, 3H, J=7.1 Hz), 1.80-1.95 (m, 2H), 3.70 (d, 1H, J=9.5 Hz), 3.83 (dt, 1H, J=4.2, 7.1 Hz), 4.09 (q, 2H, J=7.1 Hz), 4.43 (dd, 1H, J=4.2, 9.5 Hz), 7.46-7.52 (m, 2H), 7.56-7.63 (m, 1H), 7.88-7.95 (m, 2H); 1.30 NMR syn (CDCl₃) $\delta=12.0$, 13.9, 21.3, 51.2, 61.9, 71.1, 128.3, 128.6, 133.2, 137.0, 173.6, 201.5; anti (CDCl₃) $\delta=12.0$, 13.9, 22.3, 50.1, 61.4, 71.3, 128.3, 128.7, 133.5, 136.6, 173.4, 203.9; IR (neat) syn 3477, 2972, 2876, 1738, 1675, 1596, 1447, 1372, 1255, 1220, 1118, 1023, 931, 849, 779, 701; anti 3485, 3062, 2966, 2941, 2875, 1738, 1682, 1596, 1579, 1448, 1368, 1268, 1208, 1134, 1100, 1028, 914, 849, 785, 699 cm⁻¹; HRMS (FAB); Exact mass calcd for $C_{14}H_{19}O_{4}$ [M+H]⁺, 251.1283. Found 251.1277.; HPLC, Daicel Chiralcel AS, hexanc/PPrOH = 4/1, flow rate = 0.5 mL/min: $t_R=13.7$ min (2S, 3S), $t_R=15.3$ min (2S, 3R), $t_R=17.6$ min (2R, 3R), $t_R=23.1$ min (2R, 3S).

(2S)-2-Hydroxy-3-methyl-4-oxo-hexanoic acid ethyl ester (syn/anti mixture): ${}^{1}H$ NMR syn-anti ($C_{6}D_{6}$) $\delta = 0.89$ (t, 3H, J = 7.1 Hz), 0.99 (d, 3H, J = 7.2 Hz), 1.97-2.08 (m, 2H), 2.70 (dq, 1H, J = 4.9, 7.2 Hz), 3.39 (d, 1H, J = 6.7 Hz), 3.80-4.00 (m, 2H), 4.11 (dd, 1H, J = 4.9, 6.7 Hz); anti-syn ($C_{6}D_{6}$) $\delta = 0.87$ (t, 3H, J = 7.1 Hz), 0.93 (t, 3H, J = 7.3 Hz), 1.02 (d, 3H, J = 7.2 Hz), 1.95-2.22 (m, 2H), 2.65 (dq, 1H, J = 4.4, 7.2 Hz), 3.05-3.23 (m, 1H), 3.80-4.00 (m, 2H), 4.38-4.47 (m, 1H); ${}^{13}C$ NMR syn-anti ($C_{6}D_{6}$) $\delta = 7.58$, 12.8, 14.0, 34.6, 49.4, 61.3, 73.0, 173.5, 211.3; anti-syn ($C_{6}D_{6}$) $\delta = 7.7$, 11.0, 14.0, 34.0, 49.5, 61.6, 71.7, 173.7, 209.9; IR (neat) syn-anti (3484, 2981, 2940, 1739, 1716, 1459, 1409, 1375, 1268, 1209, 1108, 1066, 1025, 975, 862, 808, 748; anti-syn 3488, 2981, 2940, 1733, 1716, 1459, 1373, 1218, 1145, 1025, 977, 862, 800, 752 cm⁻¹; HRMS (FAB); Exact mass calcd for $C_{9}H_{17}O_{4}$ [M+H]+, 189.1127. Found 189.1120.;

Page 28, please replace Table 7 with the following rewritten Table 7:

Table 7

entry	2	product	yleid (%)*	syn/antib	ee (%) ^c
1.	2fE	71	83	1/99	98
2 d	2fE *	7f	93	1/99	97
3 d	21E /	7f	95	1/99	98
4	2f Z	7f	82	98/2	98
5	2fZ ^B	7 f	93	98/2	98
6	2fZ'	7f	96	98/2	98
7	2gE	7g	96	2/93	98
8	2gZ	7 g	97	98/2	98
9	2hE	7g	82	3/97	96
10	2hZ	7g	96	99/1	98
11	2iE	7i	85	2/98	98
12	2iZ	7 i	79	99/1	98
13	2jE ⁹	7 j	58	1/99	98
14	2jZ	7 j	92	99/1	98
15 ^d	2kE	7k	83 <u>89</u>	3/97 ^h 8/92 ^h	
18 d	2kZ	7k	<u>89_83</u>	92/8" 97/3"	98 <u>97</u>
17	21	71	85	16/84 ^h	94

^a Isolated yield of ketone product. ^b Determined by HPLC. ^c Ee of the major diastereomer, determined by HPLC. ^d –20°C. ^e 1 mol% of catalyst was used. ^f 0.1 mol% of catalyst was used. ^g 1 (1.0 eq.) and 2 (2.0 eq.) were used. ^h Determined by NMR

2f: Ar = Ph, R = Bn 2g: Ar = PMP, R = Bn 2h: Ar = PMP, R = Et 2i: Ar = PCP, R = Bn

Page 31, please replace the paragraph spanning lines 10-14 with the following rewritten paragraph:

When a reaction was performed under same conditions as described above except that Cu(OTf)₂ was used in place of Ni(OTf)₂, hydroxydiketone was obtained at a yield of 52% with an optical purity of 72% ee.