ALGEBRA 2

ANELLI

- Se A è un anello finito allora $A = A^* \sqcup \mathcal{D}(A)$
- $f: A \to B$ allora $\operatorname{Im} f \cong \frac{A}{\operatorname{Ker} f}$
- $I\subseteq A$ ideale, $B\subseteq A$ sottoanello allora vale $\frac{I+B}{I}\cong \frac{B}{I\cap B}$
- $I,J\subseteq A$ ideali e $I\subseteq J$. Allora vale $\frac{\frac{A}{J}}{\frac{J}{I}}\cong \frac{A}{J}$ Si ha inoltre la corrispondenza tra gli ideali di $\frac{A}{I}$ e gli ideali $J\subseteq A$ tali che $I\subseteq J$. In questa corrispondenza i primi ed i massimali si corrispondono
- $IJ \subseteq I \cap J$. Se vale I+J=1 allora $IJ=I \cap J$. Inoltre vale sempre che $(I \cap J)(I+J) \subseteq IJ$
- Sorprendentemente $I+J=1 \implies \forall n,m \in \mathbb{N} \quad I^n+J^m=1$
- È FALSO che $I \cap (J + K) = (I \cap J) + (I \cap K)$. FALSO
- Se I + J = 1 allora $(I \cap J) + K = (K + I) \cap (K + J)$
- $I \subseteq \sqrt{I}$. $I \subseteq \sqrt{J} \implies \sqrt{I} \subseteq \sqrt{J}$
- $\bullet \ \ I \subseteq J \implies \forall n \quad I^n \subseteq J^n$
- (A dominio) a primo $\implies a$ irriducibile
- (A UFD) a irriducibile $\implies a$ primo
- Se $H \subseteq A \times B$ è ideale allora $H = I \times J$ con $I \subseteq A$, $J \subseteq B$ ideali
- $A \cong A_1 \times A_2 \Leftrightarrow \exists e \in A, e \neq 0, 1 \quad e^2 = e$
- $\mathcal{D}(A) = \bigcup_{a \notin A^*} (0:a) = \bigcup_{a \notin A^*} \sqrt{(0:a)} \text{ e } \sqrt{\mathcal{D}(A)} = \mathcal{D}(A)$, anche se non è necessariamente un ideale
- $\{E_{\lambda}\}_{{\lambda} \in {\Lambda}}$ sottoinsiemi di A. Allora $\cup_{{\lambda} \in {\Lambda}} \sqrt{E_{\lambda}} = \sqrt{\cup_{{\lambda} \in {\Lambda}} E_{\lambda}}$
- Sia A dominio con un numero infinito di elementi e $\mid A^* \mid < \infty$ allora A possiede infiniti ideali massimali
- I massimale $\Longrightarrow I$ primo $\Longrightarrow I$ primario. Inoltre A dominio \Leftrightarrow (0) ideale primo. I primo $\Longrightarrow I$ radicale (infatti $x^n \in I \implies x \in I$ con I primo) inoltre I primo $\Longrightarrow I$ irriducibile (vedi lemma di scansamento più sotto).
- Sono equivalenti:
 - -A ha un unico ideale massimale (ovvero A è locale)
 - ∃ \mathfrak{m} ⊆ A ideale massimale t.c. $\forall a \in A \setminus \mathfrak{m} \implies a \notin A^*$
 - \exists m ⊆ A ideale massimale t.c. ogni elemento della forma 1 + m è invertibile
- $a \in \mathcal{J}(A) = \bigcap_{\mathfrak{m} \text{ max}} \mathfrak{m} \Leftrightarrow \forall b \in A \quad 1 ab \in A^*$
- $\sqrt{I} = \bigcap_{I \subseteq P \text{ primi}} P$
- (Lemma di Scansamento) P_1, \ldots, P_n ideali primi. Sia $I \subseteq A$ ideale t.c. $I \subseteq \bigcup_{i=1}^n P_i$. Allora $\exists j$ t.c. $I \subseteq P_i$
- I_1, \ldots, I_n ideali e P ideale primo. $\bigcap_{i=1}^n I_i \subseteq P \implies \exists j \text{ t.c. } I_j \subset P$. Inoltre se $P = \bigcap_i I_i$ allora $\exists j \text{ t.c. } I_j = P$

- (Teorema cinese) Siano $I_1, \ldots, I_n \subseteq A$ ideali tali che $I_i + I_j = 1$. Allora $\forall a_1, \ldots, a_n \in A \exists a \in A \text{ t.c. } a \equiv a_i(I_i)$
- A anello c.u. Allora si ha che
 - $f \in A[x]$ è un'unità $\Leftrightarrow f = \sum_{i=0}^n a_i x^i$ con $a_i \in A$ tali che $a_0 \in A^*$ e $a_i \in \mathcal{N}(A) \quad \forall i \geq 1$
 - $f \in A[x]$ è nilpotente $\Leftrightarrow \forall i \quad a_i \in \mathcal{N}(A)$
 - $f \in A[x]$ è divisore di zero $\Leftrightarrow \exists c \in A, c \neq 0$ t.c. cf = 0

Si ha inoltre per gli anelli di polinomi che

- $I \text{ primo} \Leftrightarrow I[x] \text{ primo}$
- I primario $\Leftrightarrow I[x]$ primario

NON è vero che tutti gli ideali di A[x] sono del tipo I[x], come ad esempio (x)

- Gli ideali primi di $\mathbb{Z}[x]$ sono dei seguenti tipi:
 - -(0)
 - $(p)[x] \operatorname{con} p \in \mathbb{P}$
 - -(f(x)) con f irriducibile
 - (p, f(x)) con $p \in \mathbb{P}$ e f irriducibile modulo p (Questi sono anche massimali)
- $u \in A^*$, $a \in \mathcal{N}(A)$, allora $u + a \in A^*$ (Somma di un nilpotente e di un invertibile)
- In A[x] si ha $\mathcal{N}(A[x]) = \mathcal{J}(A[x])$ (Mentre in generale vale solo che $\mathcal{N}(A) \subseteq \mathcal{J}(A)$)
- Sia $\phi:A\to B$ omomorfismo di anelli. Allora
 - $-\phi(\mathcal{N}(A))\subseteq\mathcal{N}(B)$
 - Se ϕ è surgettivo allora $\phi(\mathcal{J}(A)) \subseteq \mathcal{J}(B)$
 - A semilocale (con un numero finito di ideali massimali) $\implies \phi(\mathcal{J}(A)) = \mathcal{J}(B)$
- $A \text{ PID} \implies \mathcal{J}(A) = \mathcal{N}(A)$
- A t.c. ogni ideale è primo $\implies A$ è un campo
- A t.c. ogni ideale primo è principale $\implies A$ è un anello ad ideali principali
- \sqrt{I} massimale $\implies I$ primario.
- I primario e radicale $\implies I$ primo.
- I irriducibile e A Nötheriano $\implies I$ primario.
- $I = (f_i)_i, J = (g_j)_j$ allora si ha $IJ = (f_ig_j)_{i,j}$
- P primo $\Leftrightarrow \forall I, J \subseteq A$ ideali si ha $IJ \subseteq P, I \not\subseteq P \implies J \subseteq P$
- P primario $\Leftrightarrow [\forall I, J \subseteq A \text{ ideali finitamente generati si ha } IJ \subseteq P, I \not\subseteq P \implies \exists n \quad J^n \subseteq P] \Leftrightarrow [\forall I, J \subseteq A \quad IJ \subseteq P, I \not\subseteq P \implies J \subseteq \sqrt{P}]$
- I primario, $J \not\subseteq \sqrt{I} \implies \sqrt{I:J^i} = \sqrt{I} \forall i$
- $I = \sqrt{I}$ e $h \notin I \implies I : h$ è radicale
- (**Teorema della base di Hilbert**) Se A è un anello Nötheriano, allora A[x] è Nötheriano
- Se A è locale, $\mathfrak m$ il suo ideale massimale e Q è $\mathfrak m$ -primario, allora si ha $(\frac{A}{Q})_{\frac{\mathfrak m}{Q}}\cong \frac{A}{Q}$
- Prodotto o intersezione di ideali primi è radicale

Ideali Monomiali

Un ideale monomiale in $K[x_1, \ldots, x_n]$ è un ideale generato dai monomi

- (Criterio di appartenenza) Sia I un ideale monomiale e $f \in K[x_1, \dots, x_n]$, $f = \sum_{\beta} c_{\beta} x^{\beta}$ con $c_{\beta} \in K$. Allora $f \in K \Leftrightarrow \forall \beta x^{\beta} \in I$
- (**Lemma di Dickson**) Ogni ideale monomiale è finitamente generato. (La frontiera minimale di un ideale monomiale è unica, e viene detta Escalièr)
- (Operazioni con ideali monomiali) Siano $I_1 = (m_1, \dots, m_k)$ e $I_2 = (n_1, \dots, n_s)$ con m_i, n_j monomi. Allora si ha

```
-I_1+I_2=(m_1,\ldots,m_k,n_1,\ldots,n_s)
```

-
$$I_1 \cap I_2 = (MCD_{i,j}(m_i, n_j))$$

- $I_1 \cdot I_2 = (m_i \cdot n_j)_{i,j}$
- (Iatto) $(I, m \cdot n) = (I, m) \cap (I, n)$ se MCD (m, n) = 1 come monomi
- I primo $\Leftrightarrow I = (x_{i_1}, \dots, x_{i_k})$ (ed è massimale solo se le variabili compaiono tutte, ma DEVE essere monomiale)
- $I = \sqrt{I}$ (ovvero I è radicale) $\Leftrightarrow \sqrt{m_i} = m_i \forall i$
- I è primario $\Leftrightarrow I=(x_{i_1}^{lpha_1},\ldots,x_{i_k}^{lpha_k},m_1,\ldots,m_s)$ dove $m_1,\ldots,m_s\in K[x_{i_1},\ldots,x_{i_k}]$
- I è irriducibile $\Leftrightarrow I = (x_{i_1}^{\alpha_1}, \dots, x_{i_k}^{\alpha_k})$
- $I \cdot J = I \cap J \Leftrightarrow \forall i, j \quad \text{MCD} (m_i, n_j) = 1$
- $I: J = \cap_i (I:n_i) e I: (n_i) = (\frac{m_j}{MCD(n_i, m_j)})_j$
- Notare che usando la terza relazione del punto precedente possiamo spezzare ogni ideale monomiale in ideali primari e utilizzando $\sqrt{I\cap J}=\sqrt{I}\cap\sqrt{J}$ si possono calcolare anche gli ideali primi associati. Inoltre con la decomposizione in primari si calcolano bene i divisori di zero, i nilpotenti, etc.

ORDINAMENTI MONOMIALI COMUNI

- LEX $x_1 > x_2 > \ldots > x_n$. Dico che $\alpha \geq \beta \Leftrightarrow \text{In } \alpha \beta \text{ la prima coordinata} \neq 0$ è positiva
- DEGLEX Sia | α |:= $\sum_i \alpha_i$. Allora $\alpha \geq \beta \Leftrightarrow \text{si ha}$ | α |>| β | oppure | α |=| β | e vale $\alpha \geq \beta$ con LEX
- DEGREVLEX $\alpha \ge \beta \Leftrightarrow |\alpha| > |\beta|$ oppure si ha $|\alpha| = |\beta|$ e in $\alpha \beta$ l'ultima coordinata $\ne 0$ è negativa

BASI DI GRÖBNER E ALGORITMO DI DIVISIONE

- (Algoritmo di Divisione) Siano $f_1, \ldots, f_k, f \in K[x_1, \ldots, x_n]$ allora $\exists a_1, \ldots, x_k, r \in K[x_1, \ldots, x_n]$ tali che $f = \sum_i a_i f_i + r$ e deg $(a_i f_i) \leq \deg(f)$. Inoltre se $r = \sum_{\alpha} r_{\alpha} x^{\alpha}$ si ha che se $r_{\alpha} \neq 0$ allora $x^{\alpha} \in (\operatorname{lt}(f_1), \ldots, \operatorname{lt}(f_k))$
 - Notiamo che posso fare dei passaggi "a mano" prima di partire con l'algoritmo di divisione e lui funzionerà comunque. La cosa importante è ricordarsi di soddisfare la condizione deg $(a_if_i) \leq \deg(f)$ ad ogni passaggio.
- (Base di Gröbner) Un insieme di polinomi g_1, \dots, g_k generatori di un ideale I i cui leading term generano lt (I) si dicono base di Gröbner. Sono equivalenti inoltre:
 - $\forall f \exists ! r \text{ resto della divisione di } f \text{ per } \{g_1, \dots, g_k\}$
 - $\forall f \in I = (g_1, \dots, g_k)$ si ha r = 0 dall'algoritmo di divisione
 - $\forall i,j$ $S(g_i,g_j)$ ha resto r=0 nell'algoritmo di divisione

Dove per divisione si intende un risultato che soddisfi le ipotesi dell'algoritmo di divisione

- (Base di Gröbner ridotta) Una BdG $G=\{g_1,\ldots,g_k\}$ si dice ridotta se è minimale per inclusione e inoltre
 - $\operatorname{lc}(g_i) = 1 \quad \forall i$
 - $(\deg{(g_1)},\ldots,\deg{(g_k)})$ sono un'escalièr per $\deg{(I)}$
 - $\forall g_i \quad g_i = \sum_{\alpha} c_{\alpha} x^{\alpha}$ allora $x^{\alpha} \notin \operatorname{lt} (G \setminus \{g_i\})$

Teorema: La base ridotta è unica. Per ridurre una BdG basta prendere ciascun elemento g ed effettuare la divisione per $G \setminus \{g\}$

• (S-polinomio) Dati $f, g \in K[x_1, ..., x_n]$ e supponiamo $f = c_{\alpha} x^{\alpha} + f_1$ e $g = d_{\beta} x^{\beta} + g_1$ con deg $f = \alpha$, deg $g = \beta$. Allora dico S-polinomio tra f, g il polinomio definito da $\gamma = (\gamma_1, ..., \gamma_n)$ con $\gamma_i = \max(\alpha_i, \beta_i)$

 $S(f,g) = \frac{x^{\gamma}}{c_{\alpha}x^{\alpha}}f - \frac{x^{\gamma}}{d_{\beta}x^{\beta}}g$

APPLICAZIONI E COMPUTAZIONI

- (Eliminazione di LEX) $I \subseteq K[x_1,\ldots,x_n]$ allora $I_k = I \cap K[x_{k+1},\ldots,x_n]$ è il k-esimo ideale di eliminazione. Vale il teorema: Se G è una BdG rispetto a LEX con $x_1 \ge \ldots \ge x_n$ allora $\forall k=1,\ldots,n-1$ si ha che $G_k = G \cap K[x_{k+1},\ldots,x_n]$ è BdG di I_k
- (Cose calcolabili) Dati $I, J \subseteq K[x_1, \dots, x_n]$ e note le loro due BdG si ha
 - (Intersezione) $I \cap J = (tI, (1-t)J) \cap K[x_1, \dots, x_n]$ dove quindi bisognerà usare l'ordinamento LEX con t come variabile più pesante per poter usare eliminazione
 - (Colon) Se BdG $(J) = \{h_1, \ldots, h_r\}$ allora $I: J = \cap_{i=1}^r (I:h_i)$. Se ora ho $f \in K[x_1, \ldots, x_n]$ e voglio calcolare $I: (f) = \{g \mid gf \in I\}$ allora ho che $I: (f) = \frac{1}{f} \cdot (I \cap (f))$, ovvero se BdG $(I \cap (f)) = \{g_1 f, \ldots, g_k f\}$ allora ho BdG $(I: (f)) = \{g_1, \ldots, g_k\}$
 - (Ker di morfismi) Sia $\Phi: K[x_1,\ldots,x_n] \to K[y_1,\ldots,y_n]$ tale che $f_i(Y) := \Phi(x_i)$. Allora si ha Ker $\Phi = (x_1 f_1(Y),\ldots,x_n f_n(Y)) \cap K[x_1,\ldots,x_n]$ ovvero bisogna calcolare l'ideale di eliminazione senza le Y
 - (Appartenenza al radicale) $f \in \sqrt{I} \Leftrightarrow 1 \in (I, 1-tf)$ e NON serve K algebricamente chiuso
- (Sistemi di equazioni polinomiali) Cerchiamo le soluzioni comuni di $f_1=0,\ldots,f_n=0$ in K^n . Valgono:
 - (Esistenza di soluzioni) Se K è algebricamente chiuso, il sistema non ha soluzioni se e solo se $1 \in I = (f_1, \dots, f_n)$, che si vede subito se c'è o meno con una BdG
 - (Teorema di Estensione) $I=(f_1,\ldots,f_k)$ e supponiamo K algebricamente chiuso. $I_1=I\cap K[x_2,\ldots,x_n]$ e $\beta\in\mathcal{V}(I_1)$. $f_i=c_i(x_2,\ldots,x_n)\cdot x_1^{n_1}+\ldots\in K[x_2,\ldots,x_n][x_1]$. Se $\beta\notin\mathcal{V}(c_1,\ldots,c_k)$ allora $\exists a\in K$ t.c. $(a,\beta)\in\mathcal{V}(I)$. Ovvero se i termini davanti alle potenze più alte di x_1 non si annullano tutti su β allora posso estendere β ad una radice di I.
 - (Conseguenza di Estensione) Se la BdG è del tipo $\{x_1^{N_1}+\ldots,x_2^{N_2}+\ldots,x_k^{N_k}+\ldots\}$ (deve essere di questa forma in tutte le variabili) allora la varietà è finita.
 - (**Soluzioni finite**) K algebricamente chiuso. $I \subseteq A$. Allora sono fatti equivalenti:
 - * $|\mathcal{V}(I)| < \infty (\mathcal{V}(I)$ è costituita da un numero finito di punti)
 - * $\forall i = 1, \ldots, n \quad \exists m_i \text{ t.c. } x_i^{m_i} \in \text{lt } (I)$
 - * $G = \{g_1, \dots, g_r\}$ BdG di I allora $\forall i = 1, \dots, n \quad \exists h_i \in \mathbb{N} \quad \exists g_r \in G \text{ t.c. lt } (g_r) \mid x_i^{h_i} \mid g_r \in G \text{ t.c. lt } (g_r) \mid g_r \in$
 - * dim $K^{\frac{A}{I}} < \infty$
 - * dim I = 0 (come dimensione di Krull)

Inoltre vale che una K-base di $\frac{A}{I}$ è $\{x^{\alpha}$ t.c. $x^{\alpha} \notin \text{lt } (I)\}$, e anche dim $K \frac{A}{\sqrt{I}} = |\mathcal{V}(I)|$

Osservazione: Il nullstellensatz serve solo per la freccia che $|\mathcal{V}(I)| < \infty$ implica una delle altre. Per le freccie inverse non serve.

Ideali e Varietà

Siano $I, J, H \subseteq K[x_1, \dots, x_n]$ ideali e V varietà affine. Allora vale

- $I \subseteq J \implies \mathcal{V}(J) \subseteq \mathcal{V}(I)$
- $I \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(\mathcal{I}(V)) = V$
- $\bullet \ \mathcal{V}(I) \subseteq \mathcal{V}(J) \implies \mathcal{I}(\mathcal{V}(J)) \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(I+J) = \mathcal{V}(I) \cap \mathcal{V}(J)$
- $\mathcal{V}(I \cdot J) = \mathcal{V}(I) \cup \mathcal{V}(J) = \mathcal{V}(I \cap J)$
- $V(I) = V(\sqrt{I})$
- $\mathcal{V}(I,JH) = \mathcal{V}(I,J) \cup \mathcal{V}(I,H)$

Valgono inoltre i seguenti fatti:

- V è irriducibile $\implies \exists \mathfrak{pprimo}$ t.c. $V = \mathcal{V}(\mathfrak{p})$ (il viceversa è vero se K è algebricamente chiuso)
- Ogni varietà affine si decompone come unione di un numero finito di varietà irriducibili. Tale decomposizione si può minimizzare nel modo seguente: se compaiono due varietà irriducibili una contenuta dentro l'altra si toglie dall'unione la più piccola. La decomposizione minimalizzata è unica a meno dell'ordine con cui compaiono i fattori irriducibili
- $V = \{\alpha\}$ con $\alpha = (\alpha_1, \dots, \alpha_n)$ allora $\mathcal{I}(V) = (x_1 \alpha_1, \dots, x_n \alpha_n)$ è un ideale massimale. (Se K è algebricamente chiuso allora I è massimale se e solo se è di quella forma)
- (Nullstellensatz) K algebricamente chiuso. Allora $I \subseteq K[x_1, \dots, x_n]$ e si ha:
 - (Forma debole) $V(I) = \emptyset \Leftrightarrow 1 \in I$
 - (Forma forte) $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$
- (Normalizzazione di Nöther) K infinito. Se f è un polinomio in $K[x_1,\ldots,x_n]$ t.c. $f\notin I_1=K[x_2,\ldots,x_n]$ (ovvero x_1 compare) allora $\exists \phi$ cambio lineare di coordinate tale che $\phi(f)=c\cdot x_1^N+\overline{f}$ con deg x_1 $\overline{f}< N$ e $c\neq 0$ costante.
- K algebricamente chiuso. Se I è radicale allora $I = \bigcap_{i=1}^k P_i$ con P_i primi. (Basta decomporre la varietà)

RISULTANTE

• (Definizione di Risultante) Sia R un dominio d'integrità, $f,g \in R[x]$ e $f = \sum_{i=0}^n a_i x^i$, $g = \sum_{i=0}^m b_i x^i$. Definiamo allora la matrice di Sylvester come

$$\mathrm{Sylv}(f,g) = \begin{bmatrix} a_0 & a_1 & \dots & \dots & a_n & 0 & \dots & 0 \\ 0 & a_0 & a_1 & \dots & \dots & a_n & 0 & 0 \\ \vdots & & \ddots & & & & \ddots & \vdots \\ 0 & \dots & 0 & a_0 & a_1 & \dots & \dots & a_n \\ \hline b_0 & b_1 & \dots & b_m & 0 & \dots & \dots & 0 \\ 0 & b_0 & b_1 & \dots & b_m & 0 & \dots & 0 \\ 0 & 0 & b_0 & b_1 & \dots & b_m & 0 & 0 \\ \vdots & & & \ddots & & & \ddots & \vdots \\ 0 & \dots & \dots & 0 & b_0 & b_1 & \dots & b_m \end{bmatrix}$$

Ed il risultante di f e g è Ris $(f,g) = \det \operatorname{Sylv}(f,g)$

- (Definizione alternativa) Ris $(f,g) = a_n^m b_m^n \prod_{i,j} (\alpha_i \beta_j) = a_n^m \cdot \prod_{f(\alpha_i)=0} g(\alpha_i) = (-1)^{mn} b_m^n \cdot \prod_{g(\beta_i)=0} f(\beta_j)$ dove le α_i e le β_j sono le radici rispettivamente di f e di g, con molteplicità
- (Proprietà del risultante) Valgono le seguenti proprietà:
 - Ris $(f,g) = (-1)^{mn}$ Ris (g,f)
 - Ris $(af,g)=a^m \mathrm{Ris}\ (f,g)$ con $a\in R$ scalare
 - Ris $(f, ag) = a^n \text{Ris } (f, g) \text{ con } a \in R \text{ scalare}$
 - Ris (a, b) = 1 dove $a, b \in R$ sono scalari
 - Ris $(f,g)=0 \Leftrightarrow \exists \alpha \in \overline{R}$ t.c. $f(\alpha)=g(\alpha)=0$ (ovvero il risultante è nullo se e solo se f e g hanno una radice in comune nella chiusura algebrica del campo delle frazioni di R). Inoltre, se R è UFD allora le due precedenti sono equivalenti a $\exists h \in R[x]$ t.c. deg $h>0, h\mid f,h\mid g$
 - $f,g \in R[x]$ e deg $f=n,\deg g=m$, allora Ris(f,g)=Af+Bg con $A,B \in R[x]$ e deg $A< m,\deg B < n$
 - Ris $(f, h_1 \cdot h_2)$ = Ris $(f, h_1) \cdot$ Ris (f, h_2)
 - Ris $(f,hf+g)=a_m^{\deg(hf+g)-\deg g}\cdot {
 m Ris}\ (f,g)$ [ATTENZIONE: della formula a fianco non sono completamente sicuro]
 - In molti casi vale che Ris $(f,g)\mid_{\alpha}=$ Ris $(f\mid_{\alpha},g\mid_{\alpha})$ dove con \mid_{α} si intende la valutazione in α . Bisogna solo stare attenti che almeno uno dei coefficienti direttivi valutati sia non nullo, altrimenti cambia la dimensione della matrice di sylvester e di conseguenza anche il polinomio che definisce il risultante
 - Può essere comodo sapere che, detti a_i e b_i i coefficienti di f e di g, si ha che Ris $(f,g) \in \mathbb{Z}[a_i,b_i]$
- (Trucchi utili con il risultante) Dati $f = \prod_i (x \alpha_i)$ e $g = \prod_j (x \beta_j)$, allora si possono costruire i seguenti polinomi:
 - Ris $_{y}(f(x-y),g(y))$ ha radici $\gamma_{i,j}=\alpha_{i}+\beta_{j}$
 - Ris y(f(x+y),g(y)) ha radici $\gamma_{i,j}=\alpha_i-\beta_j$
 - Ris $_{y}(y^{\mbox{deg }f}f(\frac{x}{y}),g(y))$ ha radici $\gamma_{i,j}=\alpha_{i}\cdot\beta_{j}$
 - Se $g(0) \neq 0$ allora Ris $_y(f(xy),g(y))$ ha radici $\gamma_{i,j} = \frac{\alpha_i}{\beta_j}$

Moduli

PRIMI FATTI

- (Fregatura dei Moduli) Attenzione che le seguenti cose non sono sempre vere su moduli generici:
 - Non sempre esiste una base
 - Un sistema di generatori minimale non è necessariamente una base
 - Un insieme libero massimale non è necessariamente una base
 - Due sistemi di generatori minimali non hanno necessariamente la stessa cardinalità (e nemmeno gli insiemi liberi massimali)
- (Cardinalità di una base di un modulo libero) Se un modulo M è libero, allora ogni base ha la stessa cardinalità. Inoltre ogni insieme di generatori di M ha cardinalità maggiore o uguale a quella di una base.
- (Omomorfismi di A-Moduli) Dati due A-Moduli M ed N, allora si ha che anche $\operatorname{Hom}\nolimits_A(M,N)$ è un A-modulo con le operazioni di somma e di prodotto scalare effettuate in arrivo. (Notare che questa proprietà è particolarmente strana e ci tornerà utile più volte). Inoltre si può notare come dato un omomorfismo $f:M\to N$ di A-moduli si ha che $\operatorname{Ker}\nolimits f=\{m\in M\mid f(m)=0\}$ ed $\operatorname{Im}\nolimits f=\{f(m)\mid m\in M\}$ sono entrambi due sottomoduli rispettivamente di M e di N. Allora possiamo anche sempre definire co $\operatorname{Ker}\nolimits f=\frac{N}{\operatorname{Im}\nolimits_f}$

- (Fatti di base e definizioni di operazioni importanti) Valgono le seguenti cose:
 - Hom $_A(A,M)\cong_{A\text{-mod}}M.$ Infatti conoscere il valore di f(1) caratterizza tutto l'omomorfismo f, visto che è di A-moduli
 - $L\subseteq N\subseteq M$ allora vale $\frac{M}{N}\cong_{\mathsf{A-mod}}\frac{\frac{M}{N}}{N}$
 - $M_1,M_2\subseteq M$ sottomoduli. $M_1+M_2:=\{m_1+m_2\mid m_1\in M_1,m_2\in M_2\}$ allora vale che $\frac{M_1+M_2}{M_2}\cong_{\text{A-mod}}\frac{M_1}{M_1\cap M_2}$
 - $(\frac{A}{I}$ -moduli) Dato $I \subseteq A$ idale ed M modulo si può definire $IM = \{\sum_i a_i m_i \mid a_i \in I, m_i \in M\}$ e si verifica che è un sottomodulo di M. Inoltre vale che $\frac{M}{IM}$ è anche un $\frac{A}{I}$ -modulo. Possiamo invece notare che M non è sempre un $\frac{A}{I}$ -modulo. Ci possiamo però riuscire se $I \subseteq (0:M) = \{a \in A \mid aM \subseteq (0)\}$.
 - (Somma diretta e prodotto) Dati $\{M_i\}_{i\in I}$ una famiglia di A-moduli si definisce

$$\bigoplus_i M_i = \{(a_i)_{i \in I} \mid a_i \in M_i, a_i \neq 0 \text{ solo per un numero finito di indici}\}$$

Inoltre si definisce

$$\prod_{i} M_i = \{(a_i)_{i \in I} \mid a_i \in M_i\}$$

senza la condizione di sopra.

Se l'insieme I di indici è finito allora si ha che $\bigoplus_i M_i = \prod_i M_i$. Valgono inoltre le seguenti proprietà universali per somma diretta e prodotto:

- * Dati $\{M_i\}_{i\in I}$ A-moduli, si hanno $M_i\hookrightarrow^{j_i}\oplus_i M_i$ date da $m_i\mapsto (0,\dots,0,m_i,0,\dots)$. Allora per ogni assegnamento di $\{\varphi_i\}_{i\in I}$ con $\varphi_i:M_i\to N$ omomorfismi di A-moduli, esiste unico $\tilde{\phi}:\oplus_i M_i\to N$ tale che $\varphi_i=\tilde{\phi}\circ j_i$
- * Dati $\{M_i\}_{i\in I}$ A-moduli, si hanno $\prod_i M_i \to^{\pi_i} M_i$ le proiezioni date da $m=(m_j)_{j\in I} \mapsto m_i$. Allora per ogni assegnamento di $\{\varphi_i\}_{i\in I}$ con $\varphi_i:N\to M_i$ omomorfismi di A-moduli, esiste unico $\tilde{\phi}:N\to\prod_i M_i$ tale che $\varphi_i=\pi_i\circ\tilde{\phi}$
- (Morfismi da un modulo libero) Sia M un A-modulo libero e sia $S = \{s_1, \ldots, s_k\}$ una sua base. Allora dati $n_1, \ldots, n_k \in N$ (N è un altro A-modulo) si ha che $\exists ! \Phi : M \to N$ tale che $\Phi(s_i) = n_i$, Φ morfismo di A-moduli
- (Rango di un modulo libero) Sia M un A-modulo libero con base $B = \{b_1, \ldots, b_k\}$ finita. Allora ogni altra base di M ha cardinalità k. Se M è libero con base di cardinalità k si dice che M ha rango k (rk M = k)
- Hom $_A(A^n, M) \cong M^n$.
- M è un A-modulo finitamente generato $\Leftrightarrow M \cong \frac{A^k}{\operatorname{Ker} \varphi}$ per un certo $k \in \mathbb{N}$ e per un certo φ . Se $M = \langle m_1, \dots, m_k \rangle$ si ha $\varphi : A^k \to M$ definito da $e_i \mapsto m_i$. Allora $M \cong \frac{A^k}{\operatorname{Ker} \varphi}$. Il viceversa è ovvio.
- (Hamilton-Cayley) Sia M un A-modulo finitamente generato, $I\subseteq A$ ideale. Sia $\varphi\in \operatorname{Hom}\nolimits_A(M,M)$ endomorfismo tale che $\phi(M)\subseteq IM$. Allora $\exists b_0,\dots,b_{n-1}\in I$ t.c. $\phi^n+\sum_{i=0}^{n-1}a_i\phi^i=0$ in $\operatorname{Hom}\nolimits_A(M,M)$
- (Nakayama) Come corollario di Hamilton-Cayley si ottengono le seguenti tre versioni di Nakayama:
 - Sia M un A-modulo finitamente generato, $I \subseteq A$ ideale t.c. M = IM. Allora ∃a ∈ A t.c. a ≡ 1 (mod I) e $a \cdot M = 0$ (Basta applicare HC a φ = id)
 - Sia M un A-modulo finitamente generato, $\mathcal{J}(A)$ radicale di Jacobson, $I\subseteq\mathcal{J}(A)$ ideale di A tale che M=IM. Allora M=0 (Usiamo il Nakayama precedente ed usiamo la caratterizzazione del radicale di Jacobson)
 - Sia M un A-modulo finitamente generato, N un sottomodulo, $I \subseteq \mathcal{J}(A)$ ideale di A. Se M = N + IM allora M = N (Usando il Nakayama precedente basta mostrare che $\frac{M}{N} = I(\frac{M}{N})$ così che $\frac{M}{N} = (0) \implies M = N$ e questo è piuttosto semplice)

Come corollario otteniamo che se A è un anello locale e $\mathfrak m$ un suo ideale massimale, M un A-modulo finitamente generato. Allora se n_1,\ldots,n_k sono elementi di M tali che si ha che $\overline{n_1},\ldots,\overline{n_k}$ generano $\frac{M}{\mathfrak m M}$ come $\frac{A}{\mathfrak m}$ -modulo (ovvero come spazio vettoriale) allora n_1,\ldots,n_k generano M come A-modulo (considerare $N\hookrightarrow M \twoheadrightarrow \frac{M}{\mathfrak m M}$ e usare Nakayama 3)

Come altro corollario sia M un A-modulo finitamente generato, $f \in \operatorname{End}_A(M)$ surgettivo $\implies f$ è un isomorfismo.

• (Funtori f^* e g_*) Se ho $f: P \to M$ allora posso considerare $f^*: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(P,N)$ definito da $\phi \mapsto \phi \circ f$. Notiamo che è contravariante. Inoltre dato $g: M \to P$ si ha $g_*: \operatorname{Hom}_A(N,M) \to \operatorname{Hom}_A(N,P)$ definito da $\psi \mapsto g \circ \psi$, che è covariante.

Omomorfismi tra moduli liberi e forma normale di Smith

- Ogni elemento di Hom $_A(A^m,A^n)$ si può rappresentare in modo unico come matrice, quindi mi basta sapere dove vanno gli e_i base di A^m per sapere dove vanno tutti gli altri elementi. Inoltre una matrice sarà invertibile se e solo se il suo determinante è un elemento invertibile dell'anello (Basta usare l'aggiunta sapendo che $MM^* = (\det M)$ id)
- S,T matrici si dicono equivalenti per righe se $\exists P$ invertibile tale che PS=T, equivalenti per colonne se $\exists Q$ invertibile tale che SQ=T e si dicono equivalenti se $\exists P,Q$ tali che PSQ=T
- Se A è PID, allora si ha che ogni matrice è equivalente ad una matrice diagonale (D si dice diagonale se $D_{ij}=0$ quando $i\neq j$).

Il trucco fondamentale è che sui blocchetti 2×2 riesco a triangolarli. Infatti, usando che A è PID si ha d = MCD (a,b) e quindi $\exists s,t$ t.c. d = as + bt ovvero

$$\left(\begin{array}{cc} a & b \\ u & v \end{array}\right) \cdot \left[\begin{array}{cc} s & -\frac{b}{d} \\ t & \frac{a}{d} \end{array}\right] = \left(\begin{array}{cc} d & 0 \\ w & x \end{array}\right)$$

e trasponendo la relazione si riesce anche a portare in forma triangolare superiore.

Il modo generale di procedere è piuttosto semplice: con il metodo precedente si pongono a zero tutti i numeri sulla prima riga tranne il primo, a questo punto si mettono a zero tutti i numeri sulla prima colonna tranne il primo, e si procede riga-colonna fino a quando non sono nulli sia tutti i numeri sulla prima riga che sulla prima colonna (tranne ovviamente il primo). Questa cosa deve succere prima o poi. Quando accade si ricorre per induzione sulla sottomatrice $(n-1)\times (n-1)$ che si ottiene levando la prima riga e la prima colonna.

• (Forma normale di Smith) A PID. Vogliamo dare una forma canonica alle matrici che rappresentano gli omomorfismi tra moduli liberi. Una matrice diagonale D si dice in forma di Smith se $d_1 \mid d_2 \mid \dots \mid$

$$d_n \operatorname{con} D = \left(\begin{array}{ccc} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{array} \right)$$

- (Ogni matrice diagonale si può portare in forma di Smith) Infatti data $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ e detto $d = \text{MCD}\left(a,b\right) = as + bt$ si computa $\begin{pmatrix} s & t \\ -\frac{b}{d} & \frac{a}{d} \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} 1 & -\frac{tb}{d} \\ 1 & \frac{sa}{d} \end{pmatrix} = \begin{pmatrix} d & 0 \\ 0 & \frac{ab}{d} \end{pmatrix}$
- (Caratterizzazione tramite ideali determinanti) Se S è una matrice definiamo $\Delta_i(S)$ come l'ideale generato dai determinanti delle sottomatrici $i \times i$ di S. Se S, T $m \times n$ sono equivalenti allora $\Delta_i S = \Delta_i T \quad \forall i$. Se D_1 e D_2 sono matrici in forma di Smith allora D_1 è equivalente a D_2 se e solo se $d_i^{(1)}$ e $d_i^{(2)}$ differiscono di un invertibile (ovvero sono associati). Inoltre si ha che i d_i sono $d_i = \frac{\Delta_i}{\Delta_{i-1}}$ per $i \geq 1$ (dove convenzionalmente $\Delta_0 = 1$)
- (Sottomoduli di moduli liberi su PID) Se M è un A-modulo libero con A PID e $N\subseteq M$ sottomodulo, allora N è libero e inoltre vale che rk $N\le {\rm rk}\ M$

- (Teorema di struttura di moduli f.g. su PID) Ogni modulo finitamente generato su PID si scrive come somma diretta di moduli ciclici. M f.g. su PID (ovvero è quoziente di un modulo libero). $M=\langle m_1,\ldots,m_k\rangle$. Allora $A^n\to^f M\to 0$ con $f(e_i)=m_i$ e $f(a_1,\ldots,a_n)=\sum_i a_im_i$ ovvero $M\cong \frac{A^n}{\operatorname{Ker}\,f}$ e Ker $f\subseteq A^n$ è un sottomodulo di modulo libero. Sapendo che ogni sottomodulo di modulo libero su PID è libero abbiamo che $A^m\to^\phi A^k\to^f M\to 0$ allora $M\cong \frac{A^m}{\operatorname{Ker}\,f}\cong \frac{A^k}{\operatorname{Im}\,\phi}\cong \operatorname{coKer}\phi\cong \oplus_i \frac{A}{(d_i)}\cong \oplus_i \langle z_i\rangle$ con $d_i=\operatorname{Ann}(z_i)$
- Se $M = \langle m \rangle$ è un A-modulo ciclico allora $M \cong \frac{A}{\operatorname{Ann}\ (m)}$
- $M = \frac{A}{J}$ come A-modulo. Dato $a \in A$ si ha $(a) \cdot M \cong \frac{A}{(J \cdot (a))}$
- $\bullet \ A^n \cong A^m \Leftrightarrow n = m$
- $\phi: A^m \twoheadrightarrow A^n$ surgettivo e $m < n \implies A = 0$
- $M = \frac{A}{I_1} \oplus \frac{A}{I_2}$, con $I \subseteq A$ ideale. Allora valgono:
 - $IM \cong \frac{I+J_1}{J_1} \oplus \frac{I+J_2}{J_2}$
 - $\frac{M}{IM} \cong \frac{A}{I+J_1} \oplus \frac{A}{I+J_2}$
- Sia M un A-modulo finitamente generato su PID allora M si scrive come somma diretta di moduli ciclici $M=\langle m_1\rangle\oplus\ldots\oplus\langle m_k\rangle$
- Se ho due catene di ideali $I_n \subseteq \ldots \subseteq I_1$, $J_m \subseteq \ldots \subseteq J_1$ con $n \ge m$, e supponiamo $M = \bigoplus_{k=1}^n \frac{A}{I_k} = \bigoplus_{i=1}^m \frac{A}{J_i}$ allora $J_1 = \ldots = J_{n-m} = A$ e $I_i = J_{n-m+i}$
- Se A è un dominio ed M un A-modulo, allora chiamiamo sottomodulo di torsione $\tau(M) = \{m \in M \mid \text{Ann } (m) \neq 0\} \subseteq M$.
 - $f \in \text{Hom }_A(M, N) \implies f(\tau(M)) \subseteq \tau(M)$
 - Data $0 \to M \to N \to P \to 0$ esatta $\implies 0 \to \tau(M) \to \tau(N) \to \tau(P)$ è esatta ma non a destra
 - M f.g. su A PID. Allora $M \cong \tau(M) \oplus A^k$ per un qualche k
- M si dice modulo p-primario se Ann $(M) = (p^s)$
- (Riassunto di tutto) M f.g. su A PID. allora valgono:
 - $M=(\oplus_{i=1}^m \frac{A}{(d_i)}) \oplus A^k$ con $d_1 \mid \ldots \mid d_m$ non necessariamente distinti, unicamente determinati a meno di associati. Tali d_i si chiamo fattori invarianti di M.
 - $M\cong (\oplus_{p_i}M_{p_i})\oplus A^k$ dove gli M_{p_i} sono moduli ciclici p_i -primari di torsione. Tutti i $p_1^{s_1}\dots p_r^{s_r}$ si chiamano divisori elementari di M.

 Infatti se $\tau(M)=\oplus_i \frac{A}{(d_i)}$ con $d_i\in A$ PID allora se $d_i=p_{i_1}^{s_1}\cdot\dots\cdot p_{i_k}^{s_k}\implies \frac{A}{(d_i)}=\oplus_{j=1}^k \frac{A}{p_j^{s_j}}$

PRODOTTO TENSORE

- (Proprietà universale) Sia R un anello, M,N due R-moduli. Un prodotto tensore di M e N è un R-modulo denotato con $M \otimes_R N$ con una mappa $\tau: M \times N \to M \otimes_R N$ bilineare tale che $\forall \phi: M \times N \to P$ bilineare (con P un generico R-modulo) $\exists ! \tilde{\phi}: M \otimes_R N \to P$ tale che $\phi = \tilde{\phi} \circ \tau$ Deriva dalla definizione che se un tale modulo esiste allora è unico a meno di unico isomorfismo. Si può costruire in maniera piuttosto semplice sui moduli prendendo l'R-modulo libero generato dagli elementi di $M \times N$ e quozientando per il sottomodulo delle relazioni, ovvero il generato da $i(m_1+m_2,n)-i(m_1,n)-i(m_2,n), i(m,n_1+n_2)-i(m,n_1)-i(m,n_2), i(r-m,n)-ri(m,n), i(m,rn)-ri(m,n)$
- (Tensori semplici) Una cosa della forma $m \otimes n$ in $M \otimes_R N$ è detto tensore semplice. L'insieme dei tensori semplici genera $M \otimes_R N$ come R-modulo. Inoltre se $\{m_\alpha\}$ genera M e $\{n_\beta\}$ genera N, allora $\{m_\alpha \otimes n_\beta\}$ genera $M \otimes_R N$

- (Formule di uguaglianza) Valgono le seguenti cose, alcune ovvie alcune meno:
 - $-R\otimes_R M\cong M$
 - $M \otimes_R N \cong N \otimes_R M$
 - $(M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R P)$
 - $(M \oplus N) \otimes_R P \cong (M \otimes_R P) \oplus (M \otimes_R P)$ (vale anche per somme dirette infinite)
 - $-\frac{R}{I}\otimes_R M\cong \frac{M}{IM}$
 - $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} = (M \otimes_{A} N)_{\mathfrak{p}}$
 - $-\frac{A}{I}\otimes_A\frac{A}{J}\cong\frac{A}{I+J}$
 - Hom $_A(\frac{A}{I}, \frac{A}{I}) \cong \frac{(J:I)}{I}$ [Non fatta in classe]
- (Aggiunzione con Hom) M, N, P tre R-moduli. Allora vale che Hom $_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$ dove l'isomorfismo è naturale (e vale in particolare anche a livello di R-moduli)
- (Esattezza a destra) Essendo aggiunto sinistro il funtore $_{-}\otimes_{R}M$ (o anche $M\otimes_{R}$ -, che è canonicamente equivalente al primo) è esatto a destra, cioè:

$$M o N o P o 0$$
 è esatta $\Leftrightarrow \forall Q$ $M \otimes Q o N \otimes Q o P \otimes Q o 0$ è esatta

- (Implicazioni varie)
 - M, N f.g. $\Longrightarrow M \otimes_R N$ f.g.
 - M, N liberi $\implies M \otimes_R N$ libero

Anello e Modulo delle frazioni

• (Anello delle frazioni) A anello ed $S\subseteq A$ moltiplicativamente chiuso $(1\in S, s, t\in S\implies st\in S)$. Allora l'insieme $A\times S$ quozientato per la relazione di equivalenza $(a,s)\sim (b,t)\Leftrightarrow \exists u\neq 0\in S$ t.c. u(at-bs)=0 è un anello dotato di una mappa $A\to \frac{A\times S}{\sim}$ tale per cui ogni elemento di S va a finire in un invertibile.

Gode inoltre della proprietà universale per la quale per ogni altro anello B e morfismo di anelli $g:A\to B$ tale che tutti gli elementi di S vadano a finire in elementi invertibili di B, allora questo morfismo si spezza in modo unico attraverso il passaggio per $S^{-1}A:=\frac{A\times S}{S}$

- (Nullità dell'anello delle frazioni) $0 \in S \Leftrightarrow S^{-1}A = 0$
- (Ingigantimento di un ideale) $I \subseteq A$ ideale. Allora $S^{-1}I = 1 \Leftrightarrow I \cap S \neq \emptyset$.
- (**Ideali di** $S^{-1}A$) Valgono le seguenti affermazioni sugli ideali di $S^{-1}A$:
 - Ogni ideale di $S^{-1}A$ è un ideale esteso
 - Sia $I\subseteq A$ ideale. Allora $I^e=1\Leftrightarrow I\cap S\neq\emptyset$
 - $I^{ec} = \bigcup_{s \in S} (I:s)$
 - C'è una corrispondenza biunivoca tra gli ideali primi di A che non intersecano S ed i primi di $S^{-1}A$. Infatti:
 - * Se Q è primo in $S^{-1}A$ allora Q^c è primo in A (e questo è sempre vero)
 - * P primo in $A, P \cap S = \emptyset \implies S^{-1}P$ primo
 - P_1 , P_2 ideali primi. Allora si ha $S^{-1}P_1=S^{-1}P_2 \implies P_1=P_2$
 - $Q \subseteq A$ ideale P-primario. Allora se $S \cap P \neq \emptyset$ si ha $S^{-1}Q = S^{-1}A$ Se $S \cap P = \emptyset$ allora $S^{-1}Q$ è $S^{-1}P$ -primario ed inoltre $(S^{-1}Q)^c = Q$
- (S^{-1} e le altre operazioni) Potremmo dire in linea di massima che S^{-1} commuta con tutte le operazioni principali, purché siano finite:

$$-S^{-1}(I+J)=S^{-1}I+S^{-1}J$$

```
\begin{split} &-S^{-1}(I\cap J)=S^{-1}I\cap S^{-1}J\\ &-S^{-1}(I\cdot J)=(S^{-1}I)\cdot (S^{-1}J)\\ &-S^{-1}\sqrt{I}=\sqrt{S^{-1}I}\\ &-T^{-1}(S^{-1}A)=(TS)^{-1}A \text{ dove per }TS \text{ si intendono tutti i prodotti di }t\in T \text{ con }s\in S \end{split}
```

- (Modulo delle frazioni) Sia M un A-modulo ed $S\subseteq A$ un insieme moltiplicativamente chiuso. Allora definiamo $S^{-1}M:=\frac{S\times M}{\sim}$ dove $(m,s)\sim (m',s')\Leftrightarrow \exists u\in S\quad u(s'm-sm')=0$ ed indicheremo con $\frac{m}{s}$ la classe di equivalenza.
- (Nullità del Modulo delle frazioni) Sia M un A-modulo finitamente generato e $S\subseteq A$ moltiplicativamente chiuso. Allora si ha $S^{-1}M=0\Leftrightarrow \exists s\in S \text{ t.c. } sM=0$
- $S^{-1}M$ ha una struttura di $S^{-1}A$ -modulo. Inoltre si può facilmente verificare che S^{-1} è un funtore dalla categoria degli A-moduli a quella degli $S^{-1}A$ -moduli, dove dato $f:M\to N$ morfismo si può definire $S^{-1}f:S^{-1}M\to S^{-1}N$ come $(S^{-1}f)(\frac{m}{s})=\frac{f(m)}{s}$
- (S^{-1} è un funtore esatto) Si ha che S^{-1} è esatto, ovvero se $M \to^f N \to^g P$ è una sequenza esatta di A-moduli allora $S^{-1}M \to^{S^{-1}f} S^{-1}N \to^{S^{-1}g} S^{-1}P$ è una sequenza esatta di $S^{-1}A$ -moduli. In particolare omomorfismi iniettivi o surgettivi rimangono rispettivamente iniettivi o surgettivi
- (S^{-1} e le altre operazioni) Siano $M, P \subseteq N$ sotto A-moduli, $S \subseteq A$ moltiplicativamente chiuso. Allora S^{-1} commuta con somme finite, intersezioni finite e quozienti, ovvero vale che

$$- S^{-1}(M+P) = S^{-1}M + S^{-1}P$$

$$-\ S^{-1}(M\cap P) = S^{-1}M\cap S^{-1}P$$

- $\,S^{-1}(\frac{N}{M})\cong \frac{S^{-1}N}{S^{-1}M}\,$ dove l'isomorfismo è come $S^{-1}A$ -moduli
- Se M è f.g. allora Ann $(S^{-1}M)=S^{-1}$ Ann (M)
- Sapendo che (N:P)= Ann $(\frac{N+P}{N})$ si può mostrare che se P è f.g. allora $S^{-1}(N:P)=(S^{-1}N:S^{-1}P)$

Valgono inoltre le seguenti uguaglianze furbe:

-
$$S^{-1}A \otimes_A M = S^{-1}M$$

- $S^{-1}(M \otimes_A N) \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N$

- (Correlazione tra anello e modulo delle frazione e prodotto tensore) Vale che $S^{-1}A\otimes_A M=S^{-1}M$. Inoltre abbiamo anche dimostrato che $S^{-1}A$ è un A-modulo piatto, ovvero $0\to M\to^f N$ rimane iniettiva tensorizzando per il piatto, cioè $0\to S^{-1}A\otimes_A M\to^{S^{-1}A\otimes_A f} S^{-1}A\otimes_A N$ per l'osservazione precedente.
- (Altri fatti)
 - $f:A\to B$ omomorfismo di anelli, $S\subseteq A$ motliplicativamente chiuso e T=f(S). Allora $S^{-1}B\cong T^{-1}B$ come $S^{-1}A$ -moduli
 - $S \subseteq A$ molt. chiuso. Diciamo che S è saturato se $xy \in S \implies x \in S, y \in S$. Si ha allora che:
 - * S saturato $\Leftrightarrow S = A \setminus \bigcup_{\mathfrak{p} \cap S = \emptyset} \mathfrak{p}$
 - * Se S è un sistema molt. chiuso allora $\exists !S\subseteq \overline{S}$ con \overline{S} saturato e minimale rispetto alla proprietà di contenere S.

$$* \overline{S}^{-1}A \cong S^{-1}A$$

LOCALIZZAZIONE E PROPRIETÀ LOCALI

- (**Definizione**) A anello, $\mathfrak{p} \subseteq A$ ideale primo e consideriamo $S = A \setminus \mathfrak{p}$ che è moltiplicativamente chiuso. Allora $A_{\mathfrak{p}} := S^{-1}A$ si dice localizzazione a \mathfrak{p} . Si ha che $A_{\mathfrak{p}}$ è un anello locale, dove l'unico ideale massimale è $\mathfrak{p}_{\mathfrak{p}} = \{\frac{a}{s} \mid a \in \mathfrak{p}, s \notin \mathfrak{p}\}$
- (**Proprietà locali**) P è una proprietà per A anello oppure per M modulo si dice che è locale se P vale per A (o per M) $\Leftrightarrow P$ vale per $A_{\mathfrak{p}}$ (o $M_{\mathfrak{p}}$) $\forall \mathfrak{p}$ primo
- (Essere nullo è una proprietà locale (e anche massimale)) M un A-modulo. TFAE:
 - -M = 0
 - $M_{\mathfrak{p}} = 0 \quad \forall \mathfrak{p} \text{ primo}$
 - $M_{\mathfrak{m}} = 0 \quad \forall \mathfrak{m} \text{ massimale}$
- (Per un omomorfismo essere iniettivo (o surgettivo) è una proprietà locale (e anche massimale)) Sia $f: M \to N$. TFAE:
 - f iniettivo (surgettivo)
 - $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ iniettivo (surgettivo) $\forall \mathfrak{p}$ primo
 - $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ iniettivo (surgettivo) $\forall \mathfrak{m}$ massimale

Per l'iniettività basta mostrare che Ker $f_p = (\text{Ker } f)_p$ e usare che M = 0 è locale. Uguale per la surgettività con i coKer

- (Essere ridotto è una proprietà locale) Un anello infatti è ridotto se $\mathcal{N}(A)=0$ e abbiamo mostrato che $S^{-1}\mathcal{N}(A)=\mathcal{N}(S^{-1}A)$, ovvero $\mathcal{N}(A)=0 \Leftrightarrow \mathcal{N}(A)_{\mathfrak{p}}=\mathcal{N}(A_{\mathfrak{p}})=0 \quad \forall \mathfrak{p}$ primo
- (Dominio NON è una proprietà locale)
- (L'esattezza è una proprietà locale e massimale) $M \to N \to P$ è esatta in N se e solo se lo solo le sequenze localizzate ai primi o ai massimali [Questo ci viene detto da D.A. ma non è stato fatto a lezione]

SUCCESSIONI ESATTE DI MODULI

- La successione $M_1 \to^f M \to^g M_2 \to 0$ è esatta \Leftrightarrow la successione $0 \to \operatorname{Hom}_A(M_2,N) \to^{g^*} \operatorname{Hom}_A(M,N) \to^{f^*} \operatorname{Hom}_A(M_1,N)$ è esatta $\forall N$ A-moduli.
- La successione $0 \to M_1 \to^f M \to^g M_2$ è esatta \Leftrightarrow la successione $0 \to \operatorname{Hom}_A(N, M_1) \to^{f^*} \operatorname{Hom}_A(N, M) \to^{g^*} \operatorname{Hom}_A(N, M_2)$ è esatta $\forall N$ A-moduli.
- (Successioni che spezzano) Data una successione esatta corta di A-moduli $0 \to M \to^{\alpha} N \to^{\beta} P \to 0$ si ha TFAE:
 - $N \cong M \oplus P$
 - $-\exists r: N \to M \text{ t.c. } r \circ \alpha = \mathrm{id}_M$
 - $\exists s: P \to N \text{ t.c. } \beta \circ s = \text{id}_P$
- (Proprietà estremi-intermedio) Sia $0 \to M \to^{\alpha} N \to^{\beta} P \to 0$ una successione esatta di A-moduli. Allora valgono le seguenti:
 - -M, P f.g $\implies N$ f.g (Il viceversa non vale)
- (Moduli Proiettivi) P si dice proiettivo se vale una delle seguenti, tutte equivalenti:
 - Data $\phi: M \twoheadrightarrow N$ surgettivo si ha $\forall f: P \to N$, $\exists q: P \to M$ tale che $f = \phi \circ q$
 - $\forall g: M \rightarrow N$ surgettiva l'omomorfismo indotto $\text{Hom }_A(P,M) \rightarrow g^* \text{Hom }_A(P,N)$ è surgettivo
 - Ogni successione esatta corta $0 \to M \to N \to P \to 0$ spezza
 - P è sommando diretto di un modulo libero (ovvero $\exists F$ libero t.c. $F = P \oplus C$)

- 0 → K → M → N → 0 esatta \Leftrightarrow 0 → Hom $_A(P,K)$ → Hom $_A(P,M)$ → Hom $_A(P,N)$ → 0 esatta

Ovvero anche Hom $_A(P, _)$ è un funtore esatto

Hanno inoltre le seguenti proprietà rispetto ad alcune costruzioni:

- $P_1 \oplus P_2$ proiettivo $\Leftrightarrow P_1$ e P_2 sono proiettivi
- P_1, P_2 proiettivi $\implies P_1 \otimes_R P_2$ proiettivo (il viceversa non vale)
- ullet (Moduli Iniettivi) Q si dice modulo iniettivo se vale una delle seguenti, tutte equivalenti:
 - Per ogni $f:N\hookrightarrow M$ iniettiva e $g:N\to Q$ si ha $\exists G:M\to Q$ tale che $g=G\circ f$
 - Ogni successione esatta $0 \to Q \to M \to N \to 0$ spezza
 - $\forall g:N\hookrightarrow M$ iniettiva l'omomorfismo indotto $\text{Hom }_A(M,Q)\to^{g_*}\text{Hom }_A(N,Q)$ è iniettivo
 - Per ogni $I\subseteq A$ ideale vale la caratterizzazione (1) con N=I e M=A Si può dire anche per per ogni I ideale di A si ha che ogni $f:I\to Q$ si estende ad una funzione $\tilde{f}:A\to Q$ [Su questa serbiamo qualche dubbio]
 - 0 $\to K \to M \to N \to 0$ esatta \Leftrightarrow 0 \to Hom $_A(N,Q) \to$ Hom $_A(M,Q) \to$ Hom $_A(K,Q) \to 0$ esatta

Ovvero anche Hom $_A(_,Q)$ è un funtore esatto

- (Moduli Piatti) N è un R-modulo piatto se il funtore $N \otimes_R$ è esatto Valgono le seguenti proprietà rispetto alle costruzioni:
 - N, M piatti $\Leftrightarrow N \oplus M$ piatto
 - N, M piatti $\implies N ⊗_R M$ piatto (il viceversa non vale)
 - $S^{-1}R$ è un R-modulo piatto $\forall S\subseteq R$ moltiplicativamente chiusi

Per quozienti si può controllare la piattezza sapendo che le seguenti sono equivalenti:

- $-a \in a^2A$
- -aA è sommando diretto di A
- $\frac{A}{aA}$ è A-piatto
- (Implicazioni varie)
 - Libero \implies Proiettivo (Il viceversa vale se A è PID oppure anche se A è locale e P f.g.)
 - Proiettivo \Longrightarrow Piatto (Viene da Libero \Longrightarrow Piatto, piuttosto semplice da mostrare usando che $L=\oplus_{\nu}R^{(\nu)}$ se L è libero ed utilizzando il fatto che un modulo proiettivo è un sommando diretto di un modulo libero).

Il viceversa non vale. Ad esempio ℚ come ℤ-modulo

Moduli Nötheriani ed Artiniani

- (**Definizione**) Se (Σ, \leq) è un insieme parzialmente ordinato allora sono equivalenti:
 - Ogni catena ascendente è stazionaria
 - Ogni sottoinsieme diverso dal vuoto ha un elemento massimale

Sia ora A un anello, M un A-modulo e $\Sigma = \{N \subseteq M \text{ sottomodulo }\}$. Se (Σ, \subseteq) soddisfa una delle due condizioni equivalenti di cui sopra, M viene detto A-modulo Nötheriano [ACC] Se invece è (Σ, \supseteq) a soddisfare una delle due condizioni, M viene detto A-modulo Artiniano [DCC] Un anello A si dice Artiniano (Nötheriano) se è Artiniano (Nötheriano) come A-modulo su sè stesso

• (Condizione equivalente alla Nötherianità) M è un A-modulo Nötheriano \Leftrightarrow ogni sottomodulo è f.g.

- (Passaggio per sequenze esatte) Sia $0 \to M \to N \to P \to 0$ una sequenza esatta corta. Allora vale che:
 - N Nötheriano $\Leftrightarrow M$. P Nötheriani
 - N Artiniano $\Leftrightarrow M, P$ Artiniani

Come corollari si ottengono i seguenti:

- M_1, \ldots, M_n Nötheriani $\Leftrightarrow \bigoplus_i M_i$ Nötheriano
- A Nötheriano e M A-modulo f.g. $\implies M$ Nötheriano
- A Nötheriano e $I \subseteq A$ ideale $\implies \frac{A}{I}$ Nötheriano
- f : A → B surgettiva. Allora A Nötheriano $\implies B$ Nötheriano
- A Nötheriano $\implies S^{-1}A$ Nötheriano (per la corrispondenza tra ideali)
- Vale inoltre che A Nötheriano $\implies A[x]$ Nötheriano (Base di Hilbert)
- (Lemmi per i Nötheriani) Valgono le seguenti cose a caso:
 - A Nötheriano. Ogni ideale contiene allora una potenza del suo radicale, ovvero $\forall I\subseteq A$ $\exists n$ t.c. $(\sqrt{I})^n\subseteq I$
 - A Nötheriano, m ideale massimale. Allora TFAE:
 - *~Qè \mathfrak{m} -primario
 - $* \sqrt{Q} = \mathfrak{m}$
 - $* \exists n \quad \mathfrak{m}^n \subseteq Q \subseteq \mathfrak{m}$
- (Teoremi per gli Artiniani)
 - A è Artiniano $\Leftrightarrow A$ è Nötheriano e dim A = 0 [Non dimostrato]
 - (Teorema di Struttura per anelli artiniani) A è Artiniano $\Leftrightarrow A = \bigoplus_i A_i$ con gli A_i Artiniani e Locali. La decomposizione è unica a meno di isomorfismi [Non dimostrato]
 - A Artiniano $\implies A$ semilocale

DECOMPOSIZIONE PRIMARIA

- (Decomposizione primaria di un ideale) $I \subseteq A$ ideale si dice decomponibile se si può scrivere come intersezione di un numero finito di ideali primari Q_1, \ldots, Q_n come $I = \cap_i Q_i$. (Definiamo inoltre primi associati ad una decomposizione $P_i := \sqrt{Q_i}$)
- (Minimalizzazione di una decomposizione) Se $P_i = P_j$ in una decomposizione allora vale che $Q_i \cap Q_j$ è ancora primario e posso quindi sostituirlo al posto di Q_i e Q_j (Vale ancora che $\sqrt{Q_i \cap Q_j} = P_i = P_j$. Una decomposizione si dice minimale o irridondante se $P_i \neq P_j$ $\forall i \neq j \in \cap_{i \neq j} Q_i \not\subseteq Q_i$
- (**Proposizione tecniche**) Q primario e $P = \sqrt{Q}$, $a \in A$. Allora valgono le seguenti:
 - Se $a \in Q$ si ha (Q:a) = 1
 - Se $a \notin Q$ allora (Q:a) è P-primario, ovvero Q:a è primario e $\sqrt{Q:a}=P$
 - Se $a \notin P$ allora (Q : a) = Q

Notare che se dovessi avere un ideale J finitamente generato al posto di a, basta ricordare che $(Q : \sum_i J_i) = \cap_i (Q : J_i)$ per ricavarne le relative proposizioni

• (Unicità dei primi associati) Sia $I = \bigcap_{i=1}^n Q_i$ con $\sqrt{Q_i} = P_i$ e supponiamo la scrittura minimale. Allora i P_i sono indipendenti dalla decomposizione ed inoltre vale che $\{P_1, \dots, P_n\} = \{\sqrt{I:a} \text{ primi } | a \in A\}$ (Ovvero $\forall a \in A$ faccio $\sqrt{I:a}$. Se $\sqrt{I:a}$ è primo allora lo prendo.

- (**Primi minimali**) Data una decomposizione minimale di I, considero i primi associati P_i . Tra questi posso considerare i primi minimali per inclusione (detti primi minimali). In particolare i primi minimali associati ad I sono quelli tali che $\forall P$ primo tale che $I \subseteq P$ allora si ha $\exists i$ tale che $P_i \subseteq P$ dove P_i è un primo minimale.
- (Nilradicale) In particolare se (0) è decomponibile allora $\mathcal{N}(A) = \bigcap_{P_i \text{ minimali di } (0)} P_i$
- (Caratterizzazione dell'unione dei primi associati) $I=\cap_i Q_i$ minimale con $P_i=\sqrt{Q_i}$ allora $\{a\in A\mid (I:a)\neq I\}=\cup_i P_i$
- (Divisori di Zero) Se (0) è decomponibile allora si ha $\mathcal{D}(A) = \bigcup_{0 \neq a \in A} \sqrt{0:a}$ e se $(0) = \bigcap_i Q_i$ allora $\sqrt{0:a} = \bigcap_{a \notin Q} \sqrt{Q:a} = \bigcap_{a \notin Q_i} P_i \subseteq P_i$, ovvero $\mathcal{D}(A) \subseteq \bigcup_i P_i$ e visto che $P_i = \sqrt{0:a}$ si ha $P_i \subseteq \mathcal{D}(A)$
- (Decomposizione Primaria con S^{-1}) $S\subseteq A$ e $I=\cap_i Q_i$ minimale. Siano inoltre $P_1,\dots,P_m,P_{m+1},\dots,P_n$ i primi associati ordinati in modo che $S\cap P_i=\emptyset$ con $i\leq m$ e che $S\cap P_j\neq\emptyset$ se $j\geq m+1$.
 - Allora si ha che $S^{-1}I=\cap_i S^{-1}Q_i=\cap_{i\leq m}S^{-1}Q_i$ e quindi $(S^{-1}I)^c=Q_1\cap\ldots\cap Q_m$. "Facendo così abbiamo ucciso le componenti i cui primi intersecano S"
- (Unicità dei primari minimali) Per il lemma di sopra abbiamo l'unicità dei primari minimali. Infatti visto che P_i è minimale si ha $S = A \cap P_i$ e allora $S \cap P_j \quad \forall j \neq i$ e quindi Q_i non dipende dalla decomposizione perché anche i P_i non dipendono dalla decomposizione.
- (Esistenza della Decomposizione Primaria) Mostriamo che in un anello Nötheriano ogni ideale è decomponibile, nei seguenti due step:
 - Dimostriamo prima che $I \subseteq A$ ideale, con A Nötheriano, allora $I = \cap_i I_i$ dove gli I_i sono ideali irriducibili (ovvero tali che $I_i = J \cap K \implies I = J$ oppure I = K)
 - Ogni irriducibile in un Nötheriano è primario
- (Uguaglianze per i conti) Valgono le seguenti proposizioni:
- Se I + H + K = 1 allora (I, K)(I, H) = (I, KH)
- Vale sempre che $\sqrt{(I,KH)} = \sqrt{(I,K)} \cap \sqrt{(I,H)}$
- $(I,K)(I,H) \subseteq (I,KH) \subseteq (I,K) \cap (I,H)$

Prontuario di cose utili (da ascari)

OPERAZIONI TRA IDEALI

 $\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}$ ideali di *A* valgono le seguenti:

- $\mathfrak{a}(\mathfrak{b} + \mathfrak{d}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{d}$
- $\bullet \ \mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$
- $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{ab}$
- $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c}) = ((\mathfrak{a}:\mathfrak{c}):\mathfrak{b}) = (\mathfrak{a}:\mathfrak{bc})$
- $(\cap_i \mathfrak{a}_i : \mathfrak{b}) = \cap_i (\mathfrak{a}_i : \mathfrak{b})$
- $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \cap_{i}(\mathfrak{a}: \mathfrak{b}_{i})$
- $\bullet \ \mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$
- $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$
- $\bullet \ \sqrt{\mathfrak{a}\mathfrak{b}} = \sqrt{\mathfrak{a}\cap\mathfrak{b}} = \sqrt{\mathfrak{a}}\cap\sqrt{\mathfrak{b}}$
- $\bullet \ \sqrt{\mathfrak{a}+\mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}}+\sqrt{\mathfrak{b}}}$
- Due ideali \mathfrak{a} e \mathfrak{b} si dicono coprimi se $\mathfrak{a}+\mathfrak{b}=1.$
- $\mathfrak{a} + \mathfrak{b} = 1$, $\mathfrak{a} + \mathfrak{d} = 1 \implies \mathfrak{a} + \mathfrak{b}\mathfrak{d} = 1$
- $\bullet \ \mathfrak{a} + \mathfrak{b} = 1 \implies \mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$

ESTENSIONE E CONTRAZIONE

Sia dato un morfismo di anelli $\phi:A\to B$. Allora si hanno le due operazioni di estensione e contrazione. Indicheremo con $\mathfrak a$ gli ideali di A e con $\mathfrak b$ ideali di B. Allora vale che:

- $\bullet \ \mathfrak{a} \subseteq \mathfrak{a}^{ec}$
- ullet $\mathfrak{b}\supseteq \mathfrak{b}^{ce}$
- $\mathfrak{a}^{ece} = \mathfrak{a}^e$
- $\mathfrak{b}^{cec} = \mathfrak{b}^c$
- L'insieme degli ideali contratti e di quelli estesi sono in biggezione tramite le operazioni di estensione e contrazione
- $\bullet \ (\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$
- $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$
- $\bullet \ (\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e$
- $(\mathfrak{a}_1 : \mathfrak{a}_2)^e \subseteq (\mathfrak{a}_1^e : \mathfrak{a}_2^e)$
- $(\sqrt{\mathfrak{a}})^e \subseteq \sqrt{\mathfrak{a}^e}$

- $(\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$
- $(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$
- $(\mathfrak{b}_1\mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c\mathfrak{b}_2^c$
- $(\mathfrak{b}_1:\mathfrak{b}_2)^c\subseteq (\mathfrak{b}_1^c:\mathfrak{b}_2^c)$
- $(\sqrt{\mathfrak{b}})^c = \sqrt{\mathfrak{b}^c}$
- Inoltre si ha che se \mathfrak{b} è primo (primario) (radicale) allora \mathfrak{b}^c è primo (primario) (radicale)
- Se \mathfrak{a} è principale (finitamente generato) allora \mathfrak{a}^e è principale (finitamente generato)

S^{-1} e corrispondenze tra ideali

- \mathfrak{b} radicale (primario) (primo) $\Leftrightarrow \mathfrak{b}^c$ radicale (primario) (primo)
- $\mathfrak b$ massimale $\Leftrightarrow \mathfrak b^c$ massimale tra quelli che non intersecano S
- a primo (primario) (massimale) tale che $\mathfrak{a} \cap S = \emptyset$ $\Longrightarrow \mathfrak{a}^{ec} = \mathfrak{a} \text{ ed } \mathfrak{a}^e \text{ primo (primario) (massimale)}$
- \mathfrak{b} principale (finitamente generato) $\implies \mathfrak{b}^c$ principale (finitamente generato) (Con A dominio vale anche il viceversa)

Vale inoltre che:

- $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$
- $(\sqrt{\mathfrak{a}})^e = \sqrt{\mathfrak{a}^e}$
- Se \mathfrak{a}_2 è f.g. allora $(\mathfrak{a}_1:\mathfrak{a}_2)^e=(\mathfrak{a}_1^e:\mathfrak{a}_2^e)$

Inoltre se A è dominio (UFD) (PID) (Nötheriano) allora $S^{-1}A$ è dominio (UFD) (PID) (Nötheriano)