Regression and Lab HW 5

Na SeungChan

2023-06-06

Q1

Importing Data

```
b1 < c(2.60, 31.0, 21)
b2 <- c(2.40, 31.0, 21)
b3 < c(17.32, 31.5, 24)
b4 < c(15.60, 31.5, 24)
b5 \leftarrow c(16.12, 31.5, 24)
b6 <- c(5.36, 30.5, 22)
b7 < c(6.19, 31.5, 22)
b8 < -c(10.17, 30.5, 23)
b9 < -c(2.62, 31, 21.5)
b10 < -c(2.98, 30.5, 21.5)
b11 < c(6.92, 31, 22.5)
b12 < -c(7.06, 30.5, 22.6)
Beverages <- as_tibble(rbind(b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12)) %>%
rename(Carbonation = V1, Temperature = V2, Pressure = V3)
## Warning: The `x` argument of `as tibble.matrix()` must have unique column names if
## `.name repair` is omitted as of tibble 2.0.0.
## i Using compatibility `.name_repair`.
```

(a)

```
fit11 <- lm(Carbonation ~ poly(Temperature, Pressure, degree = 2, raw = TRUE), data = Beverages) summary(fit11)
```

```
##
## Call:
## lm(formula = Carbonation ~ poly(Temperature, Pressure, degree = 2,
    raw = TRUE), data = Beverages)
##
## Residuals:
            1Q Median
                           3Q Max
## -0.76031 -0.32595 0.04094 0.25689 0.95969
## Coefficients:
##
                             Estimate Std. Error
                                  2968.7591 2230.2245
## (Intercept)
## poly(Temperature, Pressure, degree = 2, raw = TRUE)1.0 -187.5829 143.9432
## poly(Temperature, Pressure, degree = 2, raw = TRUE)2.0 3.4640 2.4061
```

```
## poly(Temperature, Pressure, degree = 2, raw = TRUE)0.1 -10.4076 22.1038
## poly(Temperature, Pressure, degree = 2, raw = TRUE)1.1 -1.1758
                                                                      0.9638
## poly(Temperature, Pressure, degree = 2, raw = TRUE)0.2 1.1424
                                                                      0.3528
                              t value Pr(>|t|)
##
                                     1.331 0.2315
## (Intercept)
## poly(Temperature, Pressure, degree = 2, raw = TRUE)1.0 -1.303 0.2403
## poly(Temperature, Pressure, degree = 2, raw = TRUE)2.0 1.440 0.2000
## poly(Temperature, Pressure, degree = 2, raw = TRUE)0.1 -0.471 0.6544
## poly(Temperature, Pressure, degree = 2, raw = TRUE)1.1 -1.220 0.2683
## poly(Temperature, Pressure, degree = 2, raw = TRUE)0.2 3.238 0.0177 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6746 on 6 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.9854
## F-statistic: 149.2 on 5 and 6 DF, p-value: 3.305e-06
(b)
From summary of fit1, we can get F-statistic 149.2 on (5,6) DF. p-value is 3.305e-06, and regression is
significant.
(c)
lack of fit test
fit13 <- lm(Carbonation ~ Temperature + Pressure, data = Beverages)
anova(fit11, fit13)
## Analysis of Variance Table
## Model 1: Carbonation ~ poly(Temperature, Pressure, degree = 2, raw = TRUE)
## Model 2: Carbonation ~ Temperature + Pressure
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1
      62.7308
## 2
      9 8.6434 -3 -5.9126 4.3304 0.06021 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
no lack of fit.
(d)
t-value for interaction term is -1.220. Interaction term does not significantly contribute to the model.
fit12 <- lm(Carbonation ~ poly(Temperature, degree = 2, raw = TRUE) + poly(Pressure, degree = 2, raw = TRUE), data
summary(fit12)
##
## Call:
## lm(formula = Carbonation ~ poly(Temperature, degree = 2, raw = TRUE) +
    poly(Pressure, degree = 2, raw = TRUE), data = Beverages)
##
## Residuals:
```

Min

1Q Median

3Q Max

```
## -0.8209 -0.4707 0.1394 0.3155 0.8991
##
## Coefficients:
##
                        Estimate Std. Error t value
                             2781.5067 2301.2131 1.209
## (Intercept)
## poly(Temperature, degree = 2, raw = TRUE)1 -158.7518 146.8575 -1.081
## poly(Temperature, degree = 2, raw = TRUE)2 2.5748 2.3717 1.086
## poly(Pressure, degree = 2, raw = TRUE)1 -33.5184 11.7782 -2.846
## poly(Pressure, degree = 2, raw = TRUE)2
                                             0.8423 0.2616 3.220
##
                       Pr(>|t|)
## (Intercept)
                              0.2660
## poly(Temperature, degree = 2, raw = TRUE)1 0.3155
## poly(Temperature, degree = 2, raw = TRUE)2 0.3136
## poly(Pressure, degree = 2, raw = TRUE)1
                                             0.0248*
## poly(Pressure, degree = 2, raw = TRUE)2
                                             0.0147*
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6978 on 7 degrees of freedom
## Multiple R-squared: 0.99, Adjusted R-squared: 0.9843
## F-statistic: 174 on 4 and 7 DF, p-value: 4.402e-07
Adjusted R-Squared also does not changed significantly.
```

(e)

Fit the multiple linear regression model.

```
summary(fit13)
```

```
##
## Call:
## lm(formula = Carbonation ~ Temperature + Pressure, data = Beverages)
##
## Residuals:
## Min
          10 Median
                         3Q Max
## -1.3640 -0.7462 0.1358 0.6475 1.3165
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -151.6265 21.9720 -6.901 7.06e-05 ***
## Temperature 1.8774 0.7822 2.400 0.0399 *
## Pressure
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.98 on 9 degrees of freedom
## Multiple R-squared: 0.9747, Adjusted R-squared: 0.9691
## F-statistic: 173.7 on 2 and 9 DF, p-value: 6.47e-08
quadratic term for Pressure is significant, but for Temperature intercept isn't significant.
```

Q2

Answer is on the 1st page of pdf file.

Q3

Data importing

```
dfq3 <- na.omit(MPV::table.b3)
```

Trans AM, Astre has NA in x3. I just dropped all the data in Trnas AM and Astre, but additional analysis is needed for justification of droping those two data.

(a)

x6, x7, x11 are categorical variable, so those variables are not included in correlation matrix.

```
dfq3 %>%
select(x1, x2, x3, x4, x5, x8, x9, x10) %>%
cor()
```

```
##
             x2
       x1
                   х3
                         x4
                              x5
                                    x8
## x1 1.0000000 0.9408473 0.9891628 -0.3469725 -0.6720903 0.8623681
## x2 0.9408473 1.0000000 0.9643592 -0.2898995 -0.5509642 0.8027387
## x3 0.9891628 0.9643592 1.0000000 -0.3259992 -0.6728661 0.8641224
## x4 -0.3469725 -0.2898995 -0.3259992 1.0000000 0.4137808 -0.3041503
## x5 -0.6720903 -0.5509642 -0.6728661 0.4137808 1.0000000 -0.5613315
## x9 0.7974811 0.7105117 0.7881284 -0.3781736 -0.4534470 0.8831512
## x10 0.9515520 0.8878810 0.9434871 -0.3584588 -0.5798617 0.9554541
##
       x9
            x10
## x1 0.7974811 0.9515520
## x2 0.7105117 0.8878810
## x3 0.7881284 0.9434871
## x4 -0.3781736 -0.3584588
## x5 -0.4534470 -0.5798617
## x8 0.8831512 0.9554541
## x9 1.0000000 0.8994711
## x10 0.8994711 1.0000000
```

some data pairs like (x1, x2), (x1, x3), (x3, x10) show large correlation. There could be some multicolinearity and large VIFs.

(b)

```
lmq3 < -lm(y \sim x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11, \frac{data}{data} = dfq3) vif(lmq3)
```

```
## x1 x2 x3 x4 x5 x6 x7

## 119.487804 42.800811 149.234409 2.060036 7.729187 5.324730 11.761341

## x8 x9 x10 x11

## 20.917632 9.397108 85.744344 5.145052

variables with VIF > 10 : x1, x2, x3, x7, x8, x10, x11.
```

This model shows serious multicolinearity problems.