

HACKEREARTH RAG APPLICATION – SPRINT 5

Ethan Villalovoz, Molly Iverson, Adam Shtrikman, Chandler Juego

Introduction

Develop a RAG (Retrieval-Augmented Generation) application for HackerEarth that will utilize vector search, knowledge graphs, and a LLM to answer questions and generate content from a knowledge base of more than 10,000 Wikipedia articles.

Sprint Objectives

Large Dataset Testing: Fully embed and process the full Wikipedia dataset to test the RAG model against it.

Vector Search Optimization: Improve vector search results to respond with more relevant information to user queries.

App Packaging and CI/CD: Streamline the build, testing, and deployment process of the app for easier updates.

Custom Use-Cases: Preprocess and embed custom user data to test robustness of the RAG model.

Documentation and Reporting: Continue realigning priorities and goals with client

Feature Implementation

Team Member	Feature	Impact
Ethan	Full Dataset Embedding and Indexing	Expanding to the full Wikipedia dataset enhances the model's ability to retrieve comprehensive, diverse, and well-sourced responses, improving accuracy and contextual relevance for users.
Chandler	Optimize Vector Search Results	Ensures that queries return the most relevant and precise information, reducing noise and ultimately improving response quality. Further tests need to be run.
Molly	App Packaging and CI/CD Pipeline	Allows users to easily run the app on their own machines by providing a consistent, pre-configured environment, eliminating setup complexities and ensuring compatibility across different systems.
Adam	Custom Dataset Integration	Improving the quality of our RAG model against more customized datasets allows for our RAG model to adapt to specific specialized use

Feature Demos

Deployment and Feedback

Deployment: Our client is not using our project, but we've successfully deployed using Docker

Feedback: The client is happy with our progress

Platform and Process: Docker and GitHub Actions CI/CD pipeline. GitHub packages stored on the cloud

Use Testing: Manual testing. CI/CD pipeline only triggers after test pipeline succeeds. Performance is much quicker after deployment

Deployment and Feedback

Running the Application with Docker If you prefer to use the pre-built Docker images instead of setting up the project manually, follow these steps. • Install Docker Desktop: Download and install Docker Desktop. • Install Docker Compose: Ensure you have docker-compose installed. You can install it via Python: pip install docker-compose • LLM API Key: Ensure you have an OpenAI key saved in your environment # For Linux export OPEN_API_KEY=value **Running the Application** 1. Pull the Frontend Image: docker pull ghcr.io/mollyiverson/acme10-he-ragapp-frontend:latest 2. Pull the Backend Image: docker pull ghcr.io/mollyiverson/acme10-he-ragapp-backend:latest 3. Download the docker-compose.yml File: curl -O https://raw.githubusercontent.com/mollyiverson/ACME10-HE-RAGApp/main/docker-compose.yml

CI/CD pipeline using docker-publish.yml workflow and GitHub actions

Kanban Overview & Contributions

Molly

- Packaged and deployed the app using Docker and created a CI/CD pipeline for continuous deployment
- Wrote project report

Ethan

- Generated and indexed large embeddings files (~5 GB total) with and without chunking
- Sprint report

Chandler

- Improved vector search accuracy
- Conducted quality assurance and final prep by testing a wide variety of questions and simplifying the UI

Adam

 Integrated custom dataset (class notes) into embeddings workflow for personalized embedding generation

All

- Wrote meeting notes for client meetings
- Edited final report

Project Report Refinements

Evidence of Client meetings

Three meetings in Sprint 5:

- Feb 14th
- Feb 21st
- Mar 7th

Evidence of Client meetings

2/14/2025

2. Meeting Summary

Introduction:

- Started with informal chatting and catching up.
- Reviewed current progress and summary of tasks completed from last sprint.

Client's Requirements:

- · Client expressed satisfaction with progress and would like to focus on having a demo next week.
- Client suggested we do not focus on deploying the app.

Key Discussion Points:

· Sprint Priorities: Reviewed the main deliverables for this sprint, ensuring they align with long-term project

goals.

- Discussed Team Member Tasks To Complete:
 - o Adam: Expanding dataset creation beyond Wikipedia documents to provide more diverse and useful retrieval data.
 - o Chandler: Research various vector search ranking techniques and implement most suitable one.
 - Molly: Help with vector search ranking research and implementation.
 - Ethan: Embedding full wikipedia dataset and uploading instructions to the repo for gaining access to them.

Action Items:

• Action 1: Have demoable application with use cases and tests shown. – Due by 02/21/2025.

Evidence of Client meetings

2/21/2025

2. Meeting Summary

Introduction:

- The meeting began with brief introductions from the project team.
- An overview was provided of the current state of the application.

Client's Requirements:

- Enhance the current custom dataset implementation with advanced features such as graphs and images.
- Due to a git branch issue, the demo was unsuccessful; the client requested to view our Sprint 4 Demo Video as a supplement.

Key Discussion Points:

- Sprint Priorities:
 - Reviewed the main deliverables for this sprint, showcasing performance metrics and current implementation speed compared to previous versions.
- Team Member Contributions:
 - · Adam: Discussed and sought feedback on further developing the custom dataset functionality.
 - Chandler: Discussed the chunking implementation.
 - Molly: Presented performance metrics.
 - Ethan: Discussed rebuilding new embeddings containing the full dataset.

Decisions Made:

- Complete Full Embeddings Generation with the Wikipedia Dataset:
 - o Prioritize this task during the final coding sprint to allow our RAG model to address a wider array of queries.
- Begin Deployment Work:
 - $\,\circ\,$ Start packaging and deployment efforts during the final coding sprint.
- Improve Vector Search Ranking:
 - o Implement a ranking mechanism to deliver more relevant responses to users.

Sprint Achievements & Challenges

Achievements:

- Progress on Large Dataset Implementation: Initial embedding trials with larger Wikipedia subsets and custom dataset
- Vector Search Ranking Improvements: Thresholdbased filtering design to ensure high-relevance results and switching to SentenceTransformer Model to enhance semantic search.
- Packaging & Deployment: CI/CD pipeline for app build and deployment
- Custom Data Integration: embeddings created from custom data

Challenges:

 Text Chunking Strategy: test segmentation into larger chunks to better preserve context and improve embedding quality

Next Steps and Sprint Retro

What Went Well:

- Implemented full Wiki dataset embeddings alongside custom data set
- Improved RAG response with quality assurance testing

Next Steps:

- Refine vector search optimization with threshold filtering and expand testing with diverse queries
- Continue to test full dataset with varying embeddings strategies and verify performance
- Poster and client presentation
- Research paper

Conclusion

Key Progress:

- Included full Wikipedia dataset embeddings
- Integrated custom dataset
- Optimized vector search ranking with thresholds and improved sentence embedding model
- Created app deployment pipeline

Thank You!