

King

Falcon

FCC 15.247:2018 802.11bgn SISO (DTS) Radio

Report # KING0032

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

CERTIFICATE OF TEST

Last Date of Test: August 17, 2018
King
Model: Falcon

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2018	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required. Covered by previous testing under the original system level certification. FCC ID: V7TAC6-V2
11.12.1, 11.13.2, 6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.2.2.4	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	No	N/A	Not required. Covered by previous testing under the original system level certification. FCC ID: V7TAC6-V2
11.11	Band Edge Compliance	No	N/A	Not required. Covered by previous testing under the original system level certification. FCC ID: V7TAC6-V2
11.11	Spurious Conducted Emissions	No	N/A	Not required. Covered by previous testing under the original system level certification. FCC ID: V7TAC6-V2

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. KING0032 2/84

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. KING0032 3/84

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. KING0032 4/84

FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington	
Labs OC01-17 41 Tesla	Labs MN01-10 9349 W Broadway Ave.	Labs NY01-04 4939 Jordan Rd.	Labs EV01-12 6775 NE Evergreen Pkwy #400	Labs TX01-09 3801 E Plano Pkwy	Labs NC01-05 19201 120 th Ave NE	
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600	
(040) 001 0010	(612) 666 6166	(010) 004 0214	(600) 644 4000	(400) 004 0200	(420)004 0000	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

Report No. KING0032 5/84

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

<u>Test</u>	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. KING0032 6/84

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. KING0032 7/84

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	King
Address:	11200 Hampshire Ave S
City, State, Zip:	Bloomington, MN 55438
Test Requested By:	Michael Bendzick
Model:	Falcon (KF1000 / KF1001)
First Date of Test:	August 1, 2018
Last Date of Test:	August 17, 2018
Receipt Date of Samples:	July 26, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Wi-Fi extenders to the Recreational (RV) market so that users can extend campground or retail store Wi-Fi to a variety of devices in their vehicle.

Model Equivalency Statement:

Additional Falcon antenna model comes in black and has a different model number, KF1001, and can be used with the KWM1000 WiFi Extender.

Testing Objective:

To demonstrate compliance of the 802.11 radio with the Yagi and antenna connector change under FCC 15.247 for operation in the 2.4 GHz band.

Report No. KING0032

CONFIGURATIONS

Configuration KING0032-1

Software/Firmware Running during test				
Description	Version			
RTL819x	3.4			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Router	KING	KWM1000	None
Router Power Supply	Generic	BN049-A05009U	None
Antenna Assembly	KING	KF1000	122GE-02090
Power Inserter	KING	23239R2	D0718S00015
Power Inserter Power Supply	GlobTek, Inc.	GT-46180-1812	None

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Laptop	Lenovo	E530	MP-11AN9-12-07		
Laptop Power Supply	Lenovo	45N0197	11S45N0197Z1ZK1E23F0MH		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable (wall wart)	No	1.8m	No	Router	AC Mains
Ethernet Cable	No	3.0m	No	Router	Laptop
RG316 Cable	Yes	0.33m	No	Router	Power Inserter
Antenna Assembly Cable	No	3.3m	Yes	Power Inserter	Antenna Assembly
DC Cable (wall wart)	No	1.0m	Yes	Power Inserter	AC Mains
AC Cable	No	1.0m	No	Laptop Power Supply	AC Mains
DC Cable	No	2.0m	Yes	Laptop Power Supply	Laptop
Ethernet Cable (3)	No	1.0m	No	Router	Unterminated

Report No. KING0032 9/84

CONFIGURATIONS

Configuration KING0032- 2

Software/Firmware Running during test				
Description	Version			
RTL819x	3.4			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Router	KING	KWM1000	None	
Router Power Supply	Generic	BN049-A05009U	None	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop	Lenovo	E530	MP-11AN9-12-07	
Laptop Power Supply	Lenovo	45N0197	11S45N0197Z1ZK1E23F0MH	

Cables					
Cable Type Shield		Length (m)	Length (m) Ferrite Connection		Connection 2
DC Cable (wall wart)	No	1.8m	No	Router	AC Mains
Ethernet Cable	No	3.0m	No	Router	Laptop
DC Cable (wall wart)	No	1.0m	Yes	Power Inserter	AC Mains
AC Cable	No	1.0m	No	Laptop Power Supply	AC Mains

Report No. KING0032 10/84

CONFIGURATIONS

Configuration KING0038-1

Software/Firmware Running during test	
Description	Version
RTL819x	3.4

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Router	KING	KWM1000	None		
Router Power Supply	Generic	BN049-A05009U	None		
Antenna Assembly	KING	KF1000	122GE-02090		
Power Inserter	KING	23239R2	D0718S00015		
Power Inserter Power Supply	GlobTek, Inc.	GT-46180-1812	None		

Peripherals in test setup boundary					
Description	Manufacturer	Manufacturer Model/Part Number Serial Number			
Laptop	Lenovo	E530	MP-11AN9-12-07		
Laptop Power Supply	Lenovo	45N0197	11S45N0197Z1ZK1E23F0MH		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable (wall wart)	No	1.8m	No	Router	AC Mains
Ethernet Cable	No	3.0m	No	Router	Laptop
RG316 Cable	Yes	0.33m	No	Router	Power Inserter
Antenna Assembly Cable	No	3.3m	Yes	Power Inserter	Antenna Assembly
DC Cable (wall wart)	No	1.0m	Yes	Power Inserter	AC Mains
AC Cable	No	1.0m	No	Laptop Power Supply	AC Mains
DC Cable	No	2.0m	Yes	Laptop Power Supply	Laptop
Ethernet Cable (3)	No	1.0m	No	Router	Unterminated

Report No. KING0032 11/84

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		Т		No EMI suppression	EUT remained at	
1	2018-08-01	Duty Cycle	delivered to	devices were added or	Element following the	
			Test Station.	modified during this test.	test.	
		Occupied	Tested as	No EMI suppression	EUT remained at	
2	2018-08-01	Bandwidth	delivered to	devices were added or	Element following the	
			Test Station.	modified during this test.	test.	
			Tested as	No EMI suppression	EUT remained at	
3	2018-08-01		delivered to	devices were added or	Element following the	
			Test Station.	modified during this test.	test.	
		Spurious	Tested as	No EMI suppression	Sahadulad taating	
4	2018-08-17	·	delivered to	devices were added or	Scheduled testing was completed.	
			Emissions	Test Station.	modified during this test.	was completed.

Report No. KING0032 12/84

POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation	Channel			Frequency	Default Power	Final Power
Types	Bandwidths	Channel	Position	(MHz)	Setting	Setting
		1	Low Channel	2412	36	29
1 Mbps	20	6	Mid Channel	2437	38	31
		11	High Channel	2462	40	36
		1	Low Channel	2412	36	36
11 Mbps	20	6	Mid Channel	2437	38	38
I I Mibps		11	High Channel	2462	40	40
		1	Low Channel	2412	23	23
6 Mbps	20	6	Mid Channel	2437	25	25
		11	High Channel	2462	27	27
		1	Low Channel	2412	23	23
36 Mbps	20	6	Mid Channel	2437	25	25
		11	High Channel	2462	27	27
		1	Low Channel	2412	23	23
54 Mbps	20	6	Mid Channel	2437	25	25
		11	High Channel	2462	27	27
		1	Low Channel	2412	20	20
MCS0	20	6	Mid Channel	2437	23	23
		11	High Channel	2462	25	25
		1	Low Channel	2412	20	20
MCS7	20	6	Mid Channel	2437	23	23
		11	High Channel	2462	25	25
		1/5	Low Channel	2422	21	21
MCS0	40	4/8	Mid Channel	2437	23	23
		7/11	High Channel	2452	23	23
		1/5	Low Channel	2422	21	21
MCS7	40	4/8	Mid Channel	2437	23	23
		7/11	High Channel	2452	23	23

Report No. KING0032 13/84

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 802.11 b/g/n: Low Ch 1 (2412 MHz), High Ch 11 (2462 MHz) and Low Ch 3 (2422 MHz), High Ch 9 (2452 MHz)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

KING0032 - 1

FREQUENCY RANGE INVESTIGATED

|--|

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Fairview Microwave	SA18H-20	TKQ	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	10-Jul-2018	12 mo
Cable	ESM Cable Corp.	1-8GHz cables	OCX	14-May-2018	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIR	28-Jun-2018	24 mo
Filter - Low Pass	Micro-Tronics	LPM50004	HGK	25-Jan-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1551	AOX	1-Aug-2018	12 mo
Cable	ESM Cable Corp.	30-1GHz cables	OCW	10-May-2018	12 mo
Antenna - Biconilog	EMCO	3142	AXB	5-Apr-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	8-Dec-2017	12 mo

MEASUREMENT BANDWIDTHS

MERCONCEMENT BRANCHISTING				
Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
(MHz)	(kHz)	(kHz)	(kHz)	
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Report No. KING0032 14/84

SPURIOUS RADIATED EMISSIONS

				EmiR5 2018.05.07 PSA-ESCI 2018.05.04					
Work Order:	KING0032	KING0032 Date: 29-Aug-2018							
Project:	None	Temperature:	25.4 °C	ML But					
Job Site:	OC10	Humidity:	43.9% RH						
Serial Number:	See Configurations	Barometric Pres.:	1015 mbar	Tested by: Mark Baytan					
EUT:	Falcon								
Configuration:	1								
Customer:	ing								
Attendees:	None								
EUT Power:	110VAC/60Hz								
	Transmitting at 802.11 MHz)	b/g/n: Low Ch 1 (2412	MHz), High Ch 11 (2	2462 MHz) and Low Ch 3 (2422 MHz), High Ch 9 (2452					
Deviations:	None								
Comments:	See comments for data rates. Comments:								
Test Specifications			Test Met	hod					

W 50

ο I								
100	00						100	000
		MHz		-	PK •	▶ AV	•	QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2484.037	24.5	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.4	54.0	-6.6	EUT Horz, High Ch 9, MCS0, 40MHz, TX Pwr=23
2483.690	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 9, MCS0, 40MHz, TX Pwr=23
2483.720	24.4	2.9	1.0	208.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Vert, High Ch 9, MCS0, 40MHz, TX Pwr=23
2484.477	24.4	2.9	1.0	170.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Vert, High Ch 9, MCS0, 40MHz, TX Pwr=23
2484.773	24.4	2.9	1.0	95.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT on Side, High Ch 9, MCS0, 40MHz, TX Pwr=23
2484.577	24.4	2.9	1.0	334.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT on Side, High Ch 9, MCS0, 40MHz, TX Pwr=23
2483.583	24.4	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 9, MCS7, 40MHz, TX Pwr=23
2483.553	24.4	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 1Mbps, 20MHz, TX Pwr=36
2483.500	24.4	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 11Mbps, 20MHz, TX Pwr=40
2484.500	24.4	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 36Mbps, 20MHz, TX Pwr=27
2483.787	24.4	2.9	1.0	17.0	3.0	20.0	Horz	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 54Mbps, 20MHz, TX Pwr=27
2484.360	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 9, MCS7, 40MHz, TX Pwr=23
2484.037	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 1Mbps, 20MHz, TX Pwr=36
2485.010	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 11Mbps, 20MHz, TX Pwr=40
2483.737	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 6Mbps, 20MHz, TX Pwr=27
2485.337	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 36Mbps, 20MHz, TX Pwr=27
2483.693	24.4	2.9	1.3	167.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch 11, 54Mbps, 20MHz, TX Pwr=27
2389.800	24.5	2.5	1.0	113.0	3.0	20.0	Horz	AV	0.0	47.0	54.0	-7.0	EUT Horz, Low Ch 1, 6Mbps, 20MHz, TX Pwr=23
2388.507	24.4	2.5	1.0	113.0	3.0	20.0	Horz	AV	0.0	46.9	54.0	-7.1	EUT Horz, Low Ch 1, 1Mbps, 20MHz, TX Pwr=29

Report No. KING0032

SPURIOUS RADIATED EMISSIONS - HARMONICS

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 802.11 b/g/n: Low Ch 1 (2412 MHz), Mid Ch 6 (2437 MHz), High Ch 11 (2462 MHz) Transmitting at 802.11 n: Low Ch 3 (2422MHz), Mid Ch 6 (2437 MHz), High Ch 9 (2452 MHz)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

KING0038 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
Miteq	AMF-6F-18002650-25-10P	AOI	27-Dec-2017	12 mo
Northwest EMC	18-26GHz RE Cables	OCK	27-Dec-2017	12 mo
ETS Lindgren	3160-09	AHN	NCR	0 mo
Miteq	AMF-6F-12001800-30-10P	AOF	24-May-2018	12 mo
Miteq	AMF-6F-08001200-30-10P	AOE	16-Jul-2018	12 mo
Miteq	AMF-3D-00100800-32-13P	AVJ	10-Jul-2018	12 mo
Micro-Tronics	HPM50111	HHX	16-Jul-2018	12 mo
Northwest EMC	8-18GHz RE Cables	OCO	16-Jul-2018	12 mo
Northwest EMC	1-8GHz RE Cables	OCJ	2-Jul-2018	12 mo
ETS Lindgren	3160-08	AHT	NCR	0 mo
ETS Lindgren	3160-07	AHR	NCR	0 mo
EMCO	3115	AHB	28-Mar-2018	24 mo
Agilent	E4446A	AAY	21-Nov-2017	12 mo
	Miteq Northwest EMC ETS Lindgren Miteq Miteq Miteq Micro-Tronics Northwest EMC Northwest EMC ETS Lindgren ETS Lindgren EMCO	Miteq AMF-6F-18002650-25-10P Northwest EMC 18-26GHz RE Cables ETS Lindgren 3160-09 Miteq AMF-6F-12001800-30-10P Miteq AMF-6F-08001200-30-10P Miteq AMF-3D-00100800-32-13P Micro-Tronics HPM50111 Northwest EMC 8-18GHz RE Cables Northwest EMC 1-8GHz RE Cables ETS Lindgren 3160-08 ETS Lindgren 3160-07 EMCO 3115	Miteq AMF-6F-18002650-25-10P AOI Northwest EMC 18-26GHz RE Cables OCK ETS Lindgren 3160-09 AHN Miteq AMF-6F-12001800-30-10P AOF Miteq AMF-6F-08001200-30-10P AOE Miteq AMF-3D-00100800-32-13P AVJ Micro-Tronics HPM50111 HHX Northwest EMC 8-18GHz RE Cables OCO Northwest EMC 1-8GHz RE Cables OCJ ETS Lindgren 3160-08 AHT ETS Lindgren 3160-07 AHR EMCO 3115 AHB	Miteq AMF-6F-18002650-25-10P AOI 27-Dec-2017 Northwest EMC 18-26GHz RE Cables OCK 27-Dec-2017 ETS Lindgren 3160-09 AHN NCR Miteq AMF-6F-12001800-30-10P AOF 24-May-2018 Miteq AMF-6F-08001200-30-10P AOE 16-Jul-2018 Miteq AMF-3D-00100800-32-13P AVJ 10-Jul-2018 Micro-Tronics HPM50111 HHX 16-Jul-2018 Northwest EMC 8-18GHz RE Cables OCO 16-Jul-2018 Northwest EMC 1-8GHz RE Cables OCJ 2-Jul-2018 ETS Lindgren 3160-08 AHT NCR ETS Lindgren 3160-07 AHR NCR EMCO 3115 AHB 28-Mar-2018

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Report No. KING0032 16/84

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*LOG(dc).

Report No. KING0032 17/84

SPURIOUS RADIATED EMISSIONS -HARMONICS

Date:

16-Aug-2018

Work Order: KING0038

Open	Job Site: rial Number: EUT: enfiguration: Customer: Attendees: EUT Power: ating Mode: Deviations: Comments:	See Cor Falcon 1 King None 110VAC/6 Transmitt None	IC10 Infigurations 60Hz ing at 802.11		Humidity: etric Pres.:	43.69 1018	mbar	37 MHz), Hi	Fested by:	Mark Bayta			
Run	# 1	Test D	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	l Pa	ass	
Null		I CSL D	istante (III)	J	Antenna	neight(s)		1 10 4(111)		INCOURS			
80	+											++	
70	-												
60													
60													
50 ع													
w//ngp	-								•				
30													
30													
20													
10													
0													
	10		100			1000 MHz			10000	■ PK	◆ AV	100000 • QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4924.00 4874.01 4823.99 4923.55 4924.01 4824.00 4924.01 4824.00 4924.01 7385.12 7383.81 7309.40 7312.75 4923.04 4924.42 4924.05 4924.42 4923.03 4924.42 4923.05 4924.12 4922.36 4924.12 4922.38 4924.14 4923.38	7 40.9 40.9 40.9 5 37.9 5 36.1 36.0 34.6 34.5 34.5 34.5 34.5 34.5 24.8 7 24.7 24.9 24.9 24.9 24.9 24.9 25.7 26.9 27.7 47.2 27.1 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9	11.9 11.9 11.9 11.9 11.9 11.9 10.9 11.9 16.6 16.6 16.3 16.3 11.9 11.9 11.9 11.9 11.9 11.9 11.9	1.6 1.1 1.2 1.2 1.6 1.0 1.2 1.2 1.2 4.0 1.0 1.0 3.0 1.6 1.6 1.6 1.6 1.2 1.2 1.2 1.2	97.0 100.0 97.0 85.0 230.0 113.0 45.0 229.0 177.0 12.0 78.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Horz Horz Horz Vert Vert Vert Vert Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Horz Vert Horz Horz Vert Horz Vert Horz Horz Horz Horz Horz Horz Horz Horz	AV AV AV AV AV AV AV AV AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.3 52.3 51.8 49.8 49.8 47.4 46.5 46.1 43.6 41.4 41.3 41.2 41.2 40.6 40.1 40.1 39.7 39.6 59.1 38.8 58.3 38.2 57.8 56.7 56.4 56.3	54.0 74.0 54.0 74.0	-1.7 -1.7 -2.2 -4.2 -6.6 -7.5 -7.6 -7.7 -7.9 -10.4 -12.6 -12.7 -12.8 -13.4 -13.9 -13.9 -14.3 -14.3 -14.9 -15.2 -15.7 -15.2 -15.7 -15.8 -16.2 -17.3 -17.6 -17.7	EUT Vert, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, Mid Ch 6, 1Mbps, TX Pwr=31 EUT Vert, Low Ch 1, 1Mbps, TX Pwr=29 EUT Horz, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, High Ch 11, 11Mbps, TX Pwr=36 EUT Horz, Low Ch 1, 1Mbps, TX Pwr=29 EUT on Side, High Ch 11, 1Mbps, TX Pwr=36 EUT Horz, Low Ch 1, 1Mbps, TX Pwr=36 EUT Horz, Low Ch 1, 1Mbps, TX Pwr=36 EUT Oside, High Ch 11, 1Mbps, TX Pwr=36 EUT Horz, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, High Ch 11, 1Mbps, TX Pwr=31 EUT Vert, High Ch 11, 6Mbps, TX Pwr=27 EUT Vert, High Ch 11, 54Mbps, TX Pwr=27 EUT Vert, High Ch 11, 1Mbps, TX Pwr=25 EUT Horz, High Ch 11, 1Mbps, TX Pwr=25 EUT Horz, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, High Ch 11, 1Mbps, TX Pwr=36

Report No. KING0032 18/84

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4925.410	44.2	11.9	1.6	97.0	3.0	0.0	Horz	PK	0.0	56.1	74.0	-17.9	EUT Vert, High Ch 11, 6Mbps, TX Pwr=27
4823.983	45.2	10.9	1.2	97.0	3.0	0.0	Horz	PK	0.0	56.1	74.0	-17.9	EUT Vert, Low Ch 1, 1Mbps, TX Pwr=29
4922.955	43.6	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	55.5	74.0	-18.5	EUT Horz, High Ch 11, 54Mbps, TX Pwr=27
7312.592	39.2	16.3	3.0	130.0	3.0	0.0	Vert	PK	0.0	55.5	74.0	-18.5	EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31
7313.150	39.1	16.3	1.0	249.0	3.0	0.0	Horz	PK	0.0	55.4	74.0	-18.6	EUT Vert, Mid Ch 6, 1Mbps, TX Pwr=31
4924.217	43.4	11.9	1.6	97.0	3.0	0.0	Horz	PK	0.0	55.3	74.0	-18.7	EUT Vert, High Ch 11, 36Mbps, TX Pwr=27
4924.230	43.3	11.9	1.2	194.0	3.0	0.0	Horz	PK	0.0	55.2	74.0	-18.8	EUT Horz, High Ch 11, 1Mbps, TX Pwr=36
4922.520	23.1	11.9	1.2	85.0	3.0	0.0	Vert	AV	0.0	35.0	54.0	-19.0	EUT Horz, High Ch 11, 36Mbps, TX Pwr=27
4921.533	23.0	11.8	1.2	85.0	3.0	0.0	Vert	AV	0.0	34.8	54.0	-19.2	EUT Horz, High Ch 9, MCS7, TX Pwr=23
4922.100	23.0	11.8	1.6	97.0	3.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	EUT Vert, High Ch 11, MCS7, TX Pwr=25
7386.275	38.2	16.6	1.0	12.0	3.0	0.0	Vert	PK	0.0	54.8	74.0	-19.2	EUT Horz, High Ch 11, 1Mbps, TX Pwr=36
4923.825	42.8	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	54.7	74.0	-19.3	EUT Horz, High Ch 11, 1Mbps, TX Pwr=36
4924.015	42.7	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	54.6	74.0	-19.4	EUT Horz, High Ch 11, 6Mbps, TX Pwr=27
4923.508	42.7	11.9	1.6	97.0	3.0	0.0	Horz	PK	0.0	54.6	74.0	-19.4	EUT Vert, High Ch 11, 54Mbps, TX Pwr=27
4923.660	42.1	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	54.0	74.0	-20.0	EUT Horz, High Ch 11, MCS0, TX Pwr=25
4923.508	41.7	11.9	1.6	97.0	3.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	EUT Vert, High Ch 11, MCS0, TX Pwr=25
4923.825	41.1	11.9	1.2	113.0	3.0	0.0	Vert	PK	0.0	53.0	74.0	-21.0	EUT on Side, High Ch 11, 1Mbps, TX Pwr=36
4924.095	41.0	11.9	1.2	45.0	3.0	0.0	Vert	PK	0.0	52.9	74.0	-21.1	EUT Vert, High Ch 11, 1Mbps, TX Pwr=36
4874.125	41.4	11.4	1.0	230.0	3.0	0.0	Vert	PK	0.0	52.8	74.0	-21.2	EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31
4823.658	41.4	10.9	1.2	229.0	3.0	0.0	Vert	PK	0.0	52.3	74.0	-21.7	EUT Horz, Low Ch 1, 1Mbps, TX Pwr=29
4923.885	40.3	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	52.2	74.0	-21.8	EUT Horz, High Ch 11, MCS7, TX Pwr=25
4924.117	39.2	11.9	4.0	177.0	3.0	0.0	Horz	PK	0.0	51.1	74.0	-22.9	EUT on Side, High Ch 11, 1Mbps, TX Pwr=36
4924.170	37.6	11.9	1.2	85.0	3.0	0.0	Vert	PK	0.0	49.5	74.0	-24.5	EUT Horz, High Ch 11, 36Mbps, TX Pwr=27
4926.342	36.9	11.9	1.6	97.0	3.0	0.0	Horz	PK	0.0	48.8	74.0	-25.2	EUT Vert, High Ch 11, MCS7, TX Pwr=25

Report No. KING0032 19/84

SPURIOUS RADIATED EMISSIONS - HARMONICS

										EmiR5 2018.05.07		PSA-ESCI 2018.05.04	4
Wo	ork Order:	KING	G0038		Date:	17-Au	g-2018		11				
	Project:		one	Tei	nperature:		2 °C		21	4	< ,		
	Job Site:		210	101	Humidity:		% RH		(7		
				_				-					<u></u>
Seria	I Number:		figurations	Barome	etric Pres.:	1020) mbar		Tested by:	Mark Bayta	an		_
	EUT:	Falcon											_
Conf	figuration:	1											_
	Customer:												_
													_
	Attendees:												_
El	UT Power:	110VAC/6	0Hz										_
		Transmitti	ng at 802.1	1 n: Low C	h 3 (2422MF	lz). Mid Cl	n 6 (2437 M	Hz). Hiah (Ch 9 (2452 N	MHz)			_
Operat	ing Mode:		3		- (,,	- (,, 3	- (,			
		Nicor											_
D	eviations:	None											
													_
		None											
C	omments:												
													-
Test Snec	ifications						Test Meth	od					-
													-
FCC 15.24	17.2010						ANSI C63.	10.2013					
Run #	2	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	l Pa	ass	-
			- ()		7					Hooding			=
Г													
00													
80 +													
70 +												++	
60													
60 T													
- 50 +												++	
W//Ngp				_									
≥													
⋥ 40 ∔									•			Ш	
# · ·								\mathbf{X}					
·													
								1					
30 +												++	
20												Ш	
20													
10													
10 +													
_													
0 +									100			40005	
10)		100			1000			10000			100000	
						MHz						• •	
										■ PK	◆ AV	• QP	
							Polarity/						
_			Antenna			External	Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
							,,			44.1			Comments
7353.850	24.9	16.5	1.0	223.0	3.0	0.0	Vert	AV	0.0	41.4	54.0	-12.6	EUT Horz, High Ch 9, MCS0, 40MHz,
7355.533	24.9	16.4	1.0	42.0	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Vert, High Ch 9, MCS7, 40MHz, 7
7310.642	24.9	16.3	1.0	249.0	3.0	0.0	Horz	AV	0.0	41.2	54.0	-12.8	EUT Vert, Mid Ch 6, MCS7, 40MHz
7311.517	24.9	16.3	3.0	130.0	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8	EUT Horz, Mid Ch 6, MCS7, 40MHz
7268.233	25.0	16.0	1.0	327.0	3.0	0.0	Vert	AV	0.0	41.0	54.0	-13.0	EUT Horz, Low Ch 3, MCS7, 40MHz,
7265.225	25.0	15.9	1.8	110.0	3.0	0.0	Horz	AV	0.0	40.9	54.0	-13.1	EUT Horz, Low Ch 3, MCS7, 40MHz,
4842.683	28.4	11.1	1.0	104.0	3.0	0.0	Horz	AV	0.0	39.5	54.0	-14.5	EUT Vert, Low Ch 3, MCS7, 40MHz, T
4902.658	25.3	11.7	1.0	52.0	3.0	0.0	Vert	AV	0.0	37.0	54.0	-17.0	EUT Horz, High Ch 9, MCS7, 40MHz,
4902.058	24.9	11.7	1.0	52.0	3.0	0.0	Vert	AV	0.0	36.6	54.0	-17.4	EUT Horz, High Ch 9, MCS0, 40MHz.

Freq	Amplitude	Factor	Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
7353.850	24.9	16.5	1.0	223.0	3.0	0.0	Vert	AV	0.0	41.4	54.0	-12.6	EUT Horz, High Ch 9, MCS0, 40MHz, T.
7355.533	24.9	16.4	1.0	42.0	3.0	0.0	Horz	AV	0.0	41.3	54.0	-12.7	EUT Vert, High Ch 9, MCS7, 40MHz, TX
7310.642	24.9	16.3	1.0	249.0	3.0	0.0	Horz	AV	0.0	41.2	54.0	-12.8	EUT Vert, Mid Ch 6, MCS7, 40MHz
7311.517	24.9	16.3	3.0	130.0	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8	EUT Horz, Mid Ch 6, MCS7, 40MHz
7268.233	25.0	16.0	1.0	327.0	3.0	0.0	Vert	AV	0.0	41.0	54.0	-13.0	EUT Horz, Low Ch 3, MCS7, 40MHz, TX
7265.225	25.0	15.9	1.8	110.0	3.0	0.0	Horz	AV	0.0	40.9	54.0	-13.1	EUT Horz, Low Ch 3, MCS7, 40MHz, TX
4842.683	28.4	11.1	1.0	104.0	3.0	0.0	Horz	AV	0.0	39.5	54.0	-14.5	EUT Vert, Low Ch 3, MCS7, 40MHz, TX
4902.658	25.3	11.7	1.0	52.0	3.0	0.0	Vert	AV	0.0	37.0	54.0	-17.0	EUT Horz, High Ch 9, MCS7, 40MHz, T.
4903.458	24.9	11.7	1.0	52.0	3.0	0.0	Vert	AV	0.0	36.6	54.0	-17.4	EUT Horz, High Ch 9, MCS0, 40MHz, T>
7354.975	39.7	16.4	1.0	223.0	3.0	0.0	Vert	PK	0.0	56.1	74.0	-17.9	EUT Horz, High Ch 9, MCS0, 40MHz, T>
7354.233	39.1	16.5	1.0	42.0	3.0	0.0	Horz	PK	0.0	55.6	74.0	-18.4	EUT Vert, High Ch 9, MCS7, 40MHz, TX
7311.283	38.7	16.3	3.0	130.0	3.0	0.0	Vert	PK	0.0	55.0	74.0	-19.0	EUT Horz, Mid Ch 6, MCS7, 40MHz, TX
7310.567	38.5	16.3	1.0	249.0	3.0	0.0	Horz	PK	0.0	54.8	74.0	-19.2	EUT Vert, Mid Ch 6, MCS7, 40MHz, TX
4901.600	23.1	11.7	1.0	116.0	3.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	EUT Vert, High Ch 9, MCS7, 40MHz, TX
4874.075	23.3	11.4	1.0	66.0	3.0	0.0	Vert	AV	0.0	34.7	54.0	-19.3	EUT Vert, Mid Ch 6, MCS0, 40MHz, TX
4871.683	23.2	11.4	1.1	100.0	3.0	0.0	Horz	AV	0.0	34.6	54.0	-19.4	EUT Vert, Mid Ch 6, MCS7, 40MHz, TX
7267.892	38.6	16.0	1.0	327.0	3.0	0.0	Vert	PK	0.0	54.6	74.0	-19.4	EUT Horz, Low Ch 3, MCS7, 40MHz, TX
4844.017	23.5	11.1	1.0	39.0	3.0	0.0	Vert	AV	0.0	34.6	54.0	-19.4	EUT Horz, Low Ch 3, MCS7, 40MHz, T>
7267.092	38.5	15.9	1.8	110.0	3.0	0.0	Horz	PK	0.0	54.4	74.0	-19.6	EUT Vert, Low Ch 3, MCS7, 40MHz, TX
4846.325	41.9	11.1	1.0	104.0	3.0	0.0	Horz	PK	0.0	53.0	74.0	-21.0	EUT Vert, Low Ch 3, MCS7, 40MHz, TX
4903.675	38.8	11.7	1.0	52.0	3.0	0.0	Vert	PK	0.0	50.5	74.0	-23.5	EUT Horz, High Ch 9, MCS0, 40MHz, T>
4906.125	38.8	11.7	1.0	52.0	3.0	0.0	Vert	PK	0.0	50.5	74.0	-23.5	EUT Horz, High Ch 9, MCS7, 40MHz, T>
4902.217	37.0	11.7	1.0	116.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	EUT Vert, High Ch 9, MCS7, 40MHz, TX
4875.875	36.9	11.5	1.0	66.0	3.0	0.0	Vert	PK	0.0	48.4	74.0	-25.6	EUT Vert, Mid Ch 6, MCS7, 40MHz, TX
4845.675	37.2	11.1	1.0	39.0	3.0	0.0	Vert	PK	0.0	48.3	74.0	-25.7	EUT Horz, Low Ch 3, MCS7, 40MHz, TX

Report No. KING0032 20/84

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4974 622	26.7	11.5	1.1	100.0	2.0	0.0	Horz	DK	0.0	10.2	740	25.0	FLIT Vert Mid Ch 6 MCS7 40MHz TY I

Report No. KING0032 21/84

SPURIOUS RADIATED EMISSIONS -HARMONICS

12186.330 12183.980

12061.280 12060.290

43.6 43.3

45.1 44.6

-3.8 -3.8

-5.8 -5.8

										EmiR5 2018.05.07		PSA-ESCI 2018.05.0	4
Wo	ork Order:	KING	30038		Date:		g-2018		11		7		7
	Project:		one	Tei	mperature:		2 °C		4	\leq	7/	-	
Caria	Job Site:		C10	Danama	Humidity:		% RH		Tastad bu	Marie David	_		
Seria	I Number:	Falcon	figurations	Barome	etric Pres.:	1020	mbar		rested by:	Mark Bayta	an		_
Conf	figuration:	1											=
	Customer:	King											=
	Attendees:												-
El	UT Power:												_
Operat	ing Mode:	Transmittir	ng at 802.11	l b/g/n: Lo	w Ch 1 (241	2 MHz), Mi	d Ch 6 (243	37 MHz), H	gh Ch 11 (2	2462 MHz)			
D	eviations:	None											_
		None											_
С	omments:	None											
Test Spec	ifications						Test Meth	od	1				=
FCC 15.24							ANSI C63.						_
Prop #	2	Toot Di	stance (m)	3	Antons	Hoight/c)		1 to 4/~\		Dogulta		200	_
Run #	3	l est Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
90													
80 +													
70										1			
70													
60													
										+			
⊆ ⁵⁰ +													
\$													
m//ngp													
≂							_						
30													
30							A						
							•						
20													
10													
0 + 100	00	-	-	,		10000		'	'			100000	
						MHz				■ PK	◆ AV	• QP	
							D. Indiad			- FK	▼ AV	<u> </u>	
			Antenna			External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude (dBuV)	Factor (dB)	Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
(MHz)													Comments
12310.950	29.8	-2.6	1.0	158.0	3.0	0.0	Vert	AV	0.0	27.2	54.0	-26.8	EUT Horz, High Ch 11, 1Mbps, TX Pwr=36
12312.460 12185.890	29.4 30.0	-2.6 -3.8	1.0 1.0	15.0 291.0	3.0 3.0	0.0 0.0	Horz Horz	AV AV	0.0 0.0	26.8 26.2	54.0 54.0	-27.2 -27.8	EUT Vert, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, Mid Ch 6, 1Mbps, TX Pwr=31
12061.060	31.8	-5.8	3.9	209.0	3.0	0.0	Horz	AV	0.0	26.0	54.0	-27.0	EUT Vert, Isla Cit 6, 1Mbps, TX F Wr=29
12185.150	29.7	-3.8	1.7	19.0	3.0	0.0	Vert	AV	0.0	25.9	54.0	-28.1	EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31
12061.100	31.2	-5.8	1.0	149.0	3.0	0.0	Vert	AV	0.0	25.4	54.0	-28.6	EUT Horz, Low Ch 1, 1Mbps, TX Pwr=29
12311.880	44.0	-2.6	1.0	158.0	3.0	0.0	Vert	PK	0.0	41.4	74.0	-32.6	EUT Horz, High Ch 11, 1Mbps, TX Pwr=36
12310.440	42.8	-2.6	1.0	15.0	3.0	0.0	Horz	PK	0.0	40.2	74.0	-33.8	EUT Vert, High Ch 11, 1Mbps, TX Pwr=36
12186.330	43.6	-3.8	1.7	19.0	3.0	0.0	Vert	PK	0.0	39.8	74.0	-34.2	EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31

3.0

3.0

19.0 291.0

209.0

149.0

3.9 1.7 1.0 1.0 1.0 1.7 1.0

0.0

0.0

Vert Horz

Horz

Vert

Report No. KING0032 22/84

0.0

AV AV PK PK PK PK PK

39.8 39.5

74.0 74.0

-34.2 -34.5

EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31 EUT Horz, Low Ch 1, 1Mbps, TX Pwr=29 EUT Horz, High Ch 11, 1Mbps, TX Pwr=36 EUT Vert, High Ch 11, 1Mbps, TX Pwr=36 EUT Horz, Mid Ch 6, 1Mbps, TX Pwr=31 EUT Vert, Mid Ch 6, 1Mbps, TX Pwr=21 EUT Vert, Low Ch 1, 1Mbps, TX Pwr=29 EUT Horz, Low Ch 1, 1Mbps, TX Pwr=29

SPURIOUS RADIATED EMISSIONS - HARMONICS

				EmiR5 2018.05.07 PSA-ESCI 2018.05.04
Work Order:	KING0038	Date:	17-Aug-2018	11 3
Project:	None	Temperature:	24.2 °C	14 Byt
Job Site:	OC10	Humidity:	50.9% RH	
Serial Number:	See Configurations	Barometric Pres.:	1020 mbar	Tested by: Mark Baytan
EUT:	Falcon			
Configuration:	1			
Customer:	King			
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	Transmitting at 802.11	I n: Low Ch 3 (2422MHz	z), Mid Ch 6 (2437 N	иНz), High Ch 9 (2452 MHz)
Deviations:	None			
Comments:	None			

Test Specifications	Test Method	
FCC 15.247:2018	ANSI C63.10:2013	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12258.380	29.7	-2.9	2.9	50.0	3.0	0.0	Horz	AV	0.0	26.8	54.0	-27.2	EUT Vert, High Ch 9, MCS7, 40MHz, TX Pwr=23
12257.710	29.7	-2.9	1.0	320.0	3.0	0.0	Vert	AV	0.0	26.8	54.0	-27.2	EUT Horz, High Ch 9, MCS7, 40MHz, TX Pwr=23
12185.570	29.5	-3.8	1.0	86.0	3.0	0.0	Horz	AV	0.0	25.7	54.0	-28.3	EUT Vert, Mid Ch 6, MCS7, 40MHz, TX Pwr=23
12186.100	29.5	-3.8	1.0	269.0	3.0	0.0	Vert	AV	0.0	25.7	54.0	-28.3	EUT Horz, Mid Ch 6, MCS7, 40MHz, TX Pwr=23
12109.760	29.6	-4.9	2.1	90.0	3.0	0.0	Vert	AV	0.0	24.7	54.0	-29.3	EUT Horz, Low Ch 3, MCS7, 40MHz, TX Pwr=21
12108.400	29.6	-5.0	1.7	312.0	3.0	0.0	Horz	AV	0.0	24.6	54.0	-29.4	EUT Vert, Low Ch 3, MCS7, 40MHz, TX Pwr=21
12260.590	43.4	-2.8	1.0	320.0	3.0	0.0	Vert	PK	0.0	40.6	74.0	-33.4	EUT Horz, High Ch 9, MCS7, 40MHz, TX Pwr=23
12258.070	43.3	-2.9	2.9	50.0	3.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	EUT Vert, High Ch 9, MCS7, 40MHz, TX Pwr=23
12184.360	43.9	-3.8	1.0	269.0	3.0	0.0	Vert	PK	0.0	40.1	74.0	-33.9	EUT Horz, Mid Ch 6, MCS7, 40MHz, TX Pwr=23
12184.530	43.2	-3.8	1.0	86.0	3.0	0.0	Horz	PK	0.0	39.4	74.0	-34.6	EUT Vert, Mid Ch 6, MCS7, 40MHz, TX Pwr=23
12109.130	43.4	-4.9	2.1	90.0	3.0	0.0	Vert	PK	0.0	38.5	74.0	-35.5	EUT Horz, Low Ch 3, MCS7, 40MHz, TX Pwr=21
12109.830	43.1	-4.9	1.7	312.0	3.0	0.0	Horz	PK	0.0	38.2	74.0	-35.8	EUT Vert, Low Ch 3, MCS7, 40MHz, TX Pwr=21

Report No. KING0032 23/84

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	28-Dec-17	28-Dec-18
Block - DC	Fairview Microwave	SD3379	AMV	28-Dec-17	28-Dec-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	9-Nov-17	9-Nov-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

Report No. KING0032 24/84

Work Order: KING0032 Date: 1-Aug-18 Serial Number: See Configurations Customer: King Temperature: 26.3 °C Humidity: 44.5% RH Barometric Pres.: 1015 mba Project: None
Tested by: Johnny Candelas
TEST SPECIFICATIONS Power: 110VAC/60Hz Test Method Job Site: OC13 COMMENTS Directly connected to the antenna port of the King Router (MN: KWM1000) DEVIATIONS FROM TEST STANDARD Configuration # Signature (%) Results Pulse Width Period Pulses (%) 2400 MHz - 2483.5 MHz Band 802.11(b) 1 Mbps Low Channel 1, 2412 MHz, TX Pwr=36 Low Channel 1, 2412 MHz, TX Pwr=36 8.19 ms 8.209 ms 99.8 N/A N/A N/A N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=38 8.19 ms 8.209 ms 99.8 N/A Mid Channel 6, 2437 MHz, TX Pwr=38 High Channel 11, 2462 MHz, TX Pwr=40 N/A N/A 5 N/A N/A N/A 8.19 ms 8.209 ms 99.8 N/A N/A High Channel 11, 2462 MHz, TX Pwr=40 802.11(b) 11 Mbps N/A N/A N/A N/A N/A Low Channel 1, 2412 MHz, TX Pwr=36 Low Channel 1, 2412 MHz, TX Pwr=36 916.9 us 934.3 us 98 1 N/A N/A N/A N/A N/A N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=38 Mid Channel 6, 2437 MHz, TX Pwr=38 917.8 us 934.2 us 98.2 N/A N/A N/A N/A N/A N/A N/A High Channel 11, 2462 MHz, TX Pwr=40 High Channel 11, 2462 MHz, TX Pwr=40 917.8 us 934 2 us 98.2 N/A N/A N/A N/A N/A N/A N/A 802.11(g) 6 Mbps Low Channel 1, 2412 MHz, TX Pwr=23 1.352 ms 1.373 ms 98.5 N/A N/A Low Channel 1, 2412 MHz, TX Pwr=23 Mid Channel 6, 2437 MHz, TX Pwr=25 N/A 1.373 ms N/A N/A N/A N/A N/A 1.351 ms 98.4 N/A Mid Channel 6, 2437 MHz, TX Pwr=25 N/A N/A 5 N/A N/A N/A High Channel 11, 2462 MHz, TX Pwr=27 1.351 ms 1.373 ms 98.4 High Channel 11, 2462 MHz, TX Pwr=27 N/A N/A N/A N/A N/A Low Channel 1, 2412 MHz, TX Pwr=23 Low Channel 1, 2412 MHz, TX Pwr=23 242.113 us 256.678 us 94.3 N/A N/A N/A N/A N/A N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=25 Mid Channel 6, 2437 MHz, TX Pwr=25 242.035 us 256.556 us 94.3 N/A N/A N/A N/A N/A N/A N/A High Channel 11, 2462 MHz, TX Pwr=27 High Channel 11, 2462 MHz, TX Pwr=27 256.822 us N/A 242.279 us 94.3 N/A N/A 802.11(g) 54 Mbps Low Channel 1, 2412 MHz, TX Pwr=23 170.213 us 184.578 us 92.2 N/A N/A Low Channel 1, 2412 MHz, TX Pwr=23 Mid Channel 6, 2437 MHz, TX Pwr=25 N/A N/A 5 N/A N/A N/A 170.135 us 184.944 us 92 N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=25 High Channel 11, 2462 MHz, TX Pwr=27 N/A N/A N/A N/A N/A 170.257 us 184.700 us 92.2 N/A N/A High Channel 11, 2462 MHz, TX Pwr=27 N/A N/A N/A N/A N/A 802.11(n) MCS0 1.284 ms Low Channel 1, 2412 MHz, TX Pwr=20 Low Channel 1, 2412 MHz, TX Pwr=20 98.3 N/A N/A N/A 1.263 ms N/A N/A N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=23 Mid Channel 6, 2437 MHz, TX Pwr=23 1.264 ms 1.286 ms 98.3 N/A N/A N/A N/A N/A High Channel 11, 2462 MHz, TX Pwr=25 High Channel 11, 2462 MHz, TX Pwr=25 1.260 ms 1.286 ms 98 N/A N/A N/A N/A N/A N/A N/A Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21 620.858 us 644.6 us 96.3 N/A N/A Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21 N/A N/A N/A N/A N/A Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23 Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23 621.458 us 645.2 us 96.3 N/A N/A N/A N/A N/A N/A N/A High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23 High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23 621.437 us 645.2 us N/A 96.3 N/A 802.11(n) MCS7 Low Channel 1, 2412 MHz, TX Pwr=20 91.5 158.257 us 172.922 us N/A N/A Low Channel 1, 2412 MHz, TX Pwr=20 Mid Channel 6, 2437 MHz, TX Pwr=23 N/A N/A N/A N/A 158.623 us 173.044 us 91.7 N/A N/A Mid Channel 6, 2437 MHz, TX Pwr=23 High Channel 11, 2462 MHz, TX Pwr=25 N/A N/A N/A N/A N/A 158.257 us 172.944 us 91.5 N/A N/A High Channel 11, 2462 MHz, TX Pwr=25 Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21 N/A N/A N/A N/A N/A N/A 108.822 us 79.4 N/A 86.445 us Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21 Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23 N/A N/A N/A N/A N/A N/A 86.445 us 108.700 us 79.5 N/A Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23 N/A N/A N/A N/A N/A High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23 86.445 us 108.678 us N/A 79.5

Report No. KING0032 25/84

N/A

N/A

High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23

TbtTx 2017.12.14

2400 MHz - 2483.5 MHz Band, 802.11(b) 1 Mbps, Low Channel 1, 2412 MHz

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

8.19 ms 8.209 ms 1 99.8 N/A N/A

		2400 MHz - 2	2483.5 MHz Band	l, 802.11(b) 1 Mb	ps, Low Channel	1, 2412 MHz	
				Number of	Value	Limit	
_		Pulse Width	Period	Pulses	(%)	(%)	Results
í l	·	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 26/84

TMTs: 2017.12.14 XMM: 2017.12.13

2400 MHz - 2	2483.5 MHz Band	d, 802.11(b) 1 Mb	ps, Mid Channel	6, 2437 MHz		
		Number of	Value	Limit		
Pulse Width	Period	Pulses	(%)	(%)	Results	
8.19 ms	8.209 ms	1	99.8	N/A	N/A	

	2400 MHz - 2	2483.5 MHz Band	d, 802.11(b) 1 Mb	ps, Mid Channel	6, 2437 MHz	
			Number of	Value	Limit	
_	Pulse Width	Period	Pulses	(%)	(%)	Results
i	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 27/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 24	483.5 MHz Band,	802.11(b) 1 Mbp	s, High Channel	11, 2462 MHz					
Number of Value Limit									
Pulse Width	Period	Pulses	(%)	(%)	Results				
8.19 ms	8.209 ms	1	99.8	N/A	N/A				

	2400 MHz - 2	483.5 MHz Band,	802.11(b) 1 Mbp	s, High Channel	11, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 28/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(b) 11 Mbps, Low Channel 1, 2412 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	916.9 us	934.3 us	1	98.1	N/A	N/A		

2400 MHz - 2	483.5 MHz Band	l, 802.11(b) 11 Mi	ops, Low Channe	1, 2412 MHz	
		Number of	Value	Limit	
 Pulse Width	Period	Pulses	(%)	(%)	Results
N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 29/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	, 802.11(b) 11 MI	bps, Mid Channel	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	917.8 us	934.2 us	1	98.2	N/A	N/A	

	2400 MHz - 2	483.5 MHz Band	, 802.11(b) 11 MI	ops, Mid Channel	6, 2437 MHz						
	Number of Value Limit										
	Pulse Width	Period	Pulses	(%)	(%)	Results					
	N/A	N/A	5	N/A	N/A	N/A					

Report No. KING0032 30/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 24	83.5 MHz Band,	802.11(b) 11 Mb	2400 MHz - 2483.5 MHz Band, 802.11(b) 11 Mbps, High Channel 11, 2462 MHz									
		Number of	Value	Limit								
 Pulse Width	Period	Pulses	(%)	(%)	Results							
917.8 us	934.2 us	1	98.2	N/A	N/A							

	2400 MHz - 2483.5 MHz Band, 802.11(b) 11 Mbps, High Channel 11, 2462 MHz									
				Number of	Value	Limit				
		Pulse Width	Period	Pulses	(%)	(%)	Results			
i		N/A	N/A	5	N/A	N/A	N/A			

Report No. KING0032 31/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	2483.5 MHz Band	d, 802.11(g) 6 Mb	ps, Low Channel	1, 2412 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	1.352 ms	1.373 ms	1	98.5	N/A	N/A	

	2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, Low Channel 1, 2412 MHz								
				Number of	Value	Limit			
		Pulse Width	Period	Pulses	(%)	(%)	Results		
i		N/A	N/A	5	N/A	N/A	N/A		

Report No. KING0032 32/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	2483.5 MHz Band	d, 802.11(g) 6 Mb	ps, Mid Channel	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	1.351 ms	1.373 ms	1	98.4	N/A	N/A	

2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, Mid Channel 6, 2437 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		

Report No. KING0032 33/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, High Channel 11, 2462 MHz									
			Number of	Value	Limit				
	Pulse Width	Period	Pulses	(%)	(%)	Results			
	1.351 ms	1.373 ms	1	98.4	N/A	N/A			

	2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, High Channel 11, 2462 MHz								
				Number of	Value	Limit			
_		Pulse Width	Period	Pulses	(%)	(%)	Results		
1 [<u> </u>	N/A	N/A	5	N/A	N/A	N/A		

Report No. KING0032 34/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(g) 36 Mbps, Low Channel 1, 2412 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	242.113 us	256.678 us	1	94.3	N/A	N/A		

2400 MHz - 2483.5 MHz Band, 802.11(g) 36 Mbps, Low Channel 1, 2412 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		

Report No. KING0032 35/84

Tb(Tx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	l, 802.11(g) 36 MI	ops, Mid Channel	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	242.035 us	256.556 us	1	94.3	N/A	N/A	

2400 MHz - 2483.5 MHz Band, 802.11(g) 36 Mbps, Mid Channel 6, 2437 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		

Report No. KING0032 36/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 24	83.5 MHz Band,	802.11(g) 36 Mb	os, High Channel	11, 2462 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	242.279 us	256.822 us	1	94.3	N/A	N/A	

	2400 MHz - 24	183.5 MHz Band,	802.11(g) 36 Mb	ps, High Channel	11, 2462 MHz	
			Number of	Value	Limit	
<u> </u>	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 37/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	, 802.11(g) 54 Mb	ps, Low Channel	1, 2412 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	170.213 us	184.578 us	1	92.2	N/A	N/A

	2400 MHz - 2	483.5 MHz Band	, 802.11(g) 54 Mb	ps, Low Channel	l 1, 2412 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 38/84

TbiTx 2017.12.14 XMM 2017.12.13

	2400 MHz - 2	483.5 MHz Band	l, 802.11(g) 54 MI	pps, Mid Channel	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	170.135 us	184.944 us	1	92	N/A	N/A	

2400 MHz - 2	2483.5 MHz Band	l, 802.11(g) 54 MI	bps, Mid Channel	6, 2437 MHz	
		Number of	Value	Limit	
 Pulse Width	Period	Pulses	(%)	(%)	Results
N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 39/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 24	83.5 MHz Band,	802.11(g) 54 Mb	ps, High Channel	11, 2462 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	170.257 us	184.700 us	1	92.2	N/A	N/A	

	2400 MHz - 24	183.5 MHz Band,	802.11(g) 54 Mb	os, High Channel	11, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 40/84

TbtfX 2017.12.14 XMM 2017.12.13

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	0, Low Channel	1, 2412 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	1.263 ms	1.284 ms	1	98.3	N/A	N/A

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	30, Low Channel	1, 2412 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 41/84

TMTx 2017.12.14 XMM 2017.12.13

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	30, Mid Channel 6	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	1.264 ms	1.286 ms	1	98.3	N/A	N/A	

240	0 MHz - 248	33.5 MHz Band	d, 802.11(n) MCS	60, Mid Channel 6	6, 2437 MHz	
			Number of	Value	Limit	
 Pulse	Width	Period	Pulses	(%)	(%)	Results
N/	Ά	N/A	5	N/A	N/A	N/A

Report No. KING0032 42/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	, 802.11(n) MCS), High Channel 1	1, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	1.260 ms	1.286 ms	1	98	N/A	N/A

	2400 MHz - 2	2483.5 MHz Band	l, 802.11(n) MCS	0, High Channel 1	11, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 43/84

TNTv 2017 12 14 YMR 2017 12 13

2	2400 MHz - 2483.	5 MHz Band, 802	2.11(n) MCS0, Lo	w Channel 1/5, 2	422 MHz, 40 MH	Z	
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	620.858 us	644.6 us	1	96.3	N/A	N/A	

2400 MHz - 2483.	.5 MHz Band, 80	2.11(n) MCS0, Lo	w Channel 1/5, 2	422 MHz, 40 MH	Z
		Number of	Value	Limit	
 Pulse Width	Period	Pulses	(%)	(%)	Results
N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 44/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2483	.5 MHz Band, 802	2.11(n) MCS0, M	id Channel 4/8, 24	437 MHz, 40 MHz	7	
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	621.458 us	645.2 us	1	96.3	N/A	N/A	

I	2400 MHz - 2483	.5 MHz Band, 80	2.11(n) MCS0, M	id Channel 4/8, 24	437 MHz, 40 MHz	Z
I			Number of	Value	Limit	
ı	 Pulse Width	Period	Pulses	(%)	(%)	Results
ı	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 45/84

TNTv 2017 12 14 YMR 2017 12 13

2	400 MHz - 2483.5	MHz Band, 802.	.11(n) MCS0, Hig	h Channel 7/11, 2	2452 MHz, 40 MH	łz	
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	621.437 us	645.2 us	1	96.3	N/A	N/A	

2	400 MHz - 2483.5	MHz Band, 802	.11(n) MCS0, Hig	h Channel 7/11, 2	2452 MHz, 40 MF	łz
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 46/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	7, Low Channel	1, 2412 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	158.257 us	172.922 us	1	91.5	N/A	N/A	

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	67, Low Channel	1, 2412 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
1	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 47/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	67, Mid Channel 6	6, 2437 MHz		
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	158.623 us	173.044 us	1	91.7	N/A	N/A	

	2400 MHz -	2483.5 MHz Ban	d, 802.11(n) MCS	S7, Mid Channel 6	6, 2437 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 48/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	, 802.11(n) MCS	7, High Channel 1	1, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	158.257 us	172.944 us	1	91.5	N/A	N/A

	2400 MHz - 2	483.5 MHz Band	l, 802.11(n) MCS	7, High Channel 1	1, 2462 MHz	
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 49/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Low Channel 1/5, 2422 MHz, 40 MHz								
				Number of	Value	Limit			
		Pulse Width	Period	Pulses	(%)	(%)	Results		
1		86.445 us	108.822 us	1	79.4	N/A	N/A		

	2400 MHz - 2483	5 MHz Band, 802	2.11(n) MCS7, Lo	w Channel 1/5, 2	422 MHz, 40 MH:	Z
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 50/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Mid Channel 4/8, 2437 MHz, 40 MHz							
		Number of	Value	Limit			
 Pulse Width	Period	Pulses	(%)	(%)	Results	_	
86.445 us	108.700 us	1	79.5	N/A	N/A	Ì	

	2400 MHz - 2483	.5 MHz Band, 802	2.11(n) MCS7, M	id Channel 4/8, 24	437 MHz, 40 MHz	7
			Number of	Value	Limit	
	 Pulse Width	Period	Pulses	(%)	(%)	Results
1	N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 51/84

TMTs: 2017.12.14 XMM: 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, High Channel 7/11, 2452 MHz, 40 MHz							
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	86.445 us	108.678 us	1	79.5	N/A	N/A	

	2	400 MHz - 2483.5	MHz Band, 802	.11(n) MCS7, Hig	h Channel 7/11, 2	2452 MHz, 40 MF	łz
				Number of	Value	Limit	
		Pulse Width	Period	Pulses	(%)	(%)	Results
I		N/A	N/A	5	N/A	N/A	N/A

Report No. KING0032 52/84

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	28-Dec-17	28-Dec-18
Block - DC	Fairview Microwave	SD3379	AMV	28-Dec-17	28-Dec-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	9-Nov-17	9-Nov-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

Report No. KING0032 53/84

			TbtTx 2017.12.14	XMit 2017
	Falcon	Work Order:		
	See Configurations		1-Aug-18	
Customer:	King	Temperature:	26.3 °C	
Attendees:	None	Humidity:	44.5% RH	
Project:	None	Barometric Pres.:	1015 mbar	
Tested by:	Johnny Candelas Power: 110VAC/60Hz	Job Site:	OC13	
EST SPECIFICATI	ONS Test Method			
CC 15.247:2018	ANSI C63.10:2013			
COMMENTS				
Directly connected	to the antenna port of the King Router (MN: KWM1000)			
	I TEST STANDARD			
lone				
Configuration #	2 Julillan			
	Signature CJ			
		Value	Limit (>)	Result
400 MHz - 2483.5 M	MHz Band	74.40	(-)	rooun
	802.11(b) 1 Mbps			
	Low Channel 1, 2412 MHz, TX Pwr=36	10.008 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=38	9.277 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=40	9.778 MHz	500 kHz	Pass
	802.11(b) 11 Mbps	0.770 11112	000 111 12	1 000
	Low Channel 1, 2412 MHz, TX Pwr=36	9.912 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=38	9.570 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=40	9.177 MHz	500 kHz	Pass
	802.11(q) 6 Mbps	5.177 WILL	300 KI IZ	1 033
	Low Channel 1, 2412 MHz, TX Pwr=23	15.899 MHz	500 kHz	Pass
		16.112 MHz	500 kHz	
	Mid Channel 6, 2437 MHz, TX Pwr=25			Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.293 MHz	500 kHz	Pass
	802.11(g) 36 Mbps			
	Low Channel 1, 2412 MHz, TX Pwr=23	16.337 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=25	16.325 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.302 MHz	500 kHz	Pass
	802.11(g) 54 Mbps			
	Low Channel 1, 2412 MHz, TX Pwr=23	16.376 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=25	16.375 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.365 MHz	500 kHz	Pass
	802.11(n) MCS0			
	Low Channel 1, 2412 MHz, TX Pwr=20	16.164 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=23	16.278 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=25	15.995 MHz	500 kHz	Pass
	Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21	34.871 MHz	500 kHz	Pass
	Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23	34.977 MHz	500 kHz	Pass
	High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23	35.049 MHz	500 kHz	Pass
	High Chainlei 7/11, 2452 MHz, 40 MHz, 1X PWI=23 802.11(n) MCS7	30.049 MHZ	JUU KIIZ	F 455
	Low Channel 1, 2412 MHz, TX Pwr=20	16.635 MHz	500 kHz	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=23	16.650 MHz	500 kHz	Pass
	High Channel 11, 2462 MHz, TX Pwr=25	16.636 MHz	500 kHz	Pass
	1 01 14/5 0400 MIL 40 MIL TV B 04			
	Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21	35.132 MHz	500 kHz	Pass
	Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21 Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23 High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23	35.132 MHz 35.120 MHz 35.121 MHz	500 kHz 500 kHz 500 kHz	Pass Pass Pass

Report No. KING0032 54/84

2400 MHz - 2483.5 MHz Band, 802.11(b) 1 Mbps, Low Channel 1, 2412 MHz

Limit

Value
(-)

Result

10.008 MHz
500 kHz
Pass

Report No. KING0032 55/84

2400 MHz - 2483.5 MHz Band, 802.11(b) 1 Mbps, High Channel 11, 2462 MHz

Limit

Value (>) Result

9.778 MHz 500 kHz Pass

Report No. KING0032 56/84

2400 MHz - 2483.5 MHz Band, 802.11(b) 11 Mbps, Mid Channel 6, 2437 MHz

Limit

Value (>) Result

9.570 MHz 500 kHz Pass

Report No. KING0032 57/84

2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, Low Channel 1, 2412 MHz

Limit

Value (>) Result

15.899 MHz 500 kHz Pass

Report No. KING0032 58/84

2400 MHz - 2483.5 MHz Band, 802.11(g) 6 Mbps, High Channel 11, 2462 MHz Limit **(>)** 500 kHz Result

16.293 MHz

Report No. KING0032 59/84

2400 MHz - 2483.5 MHz Band, 802.11(g) 36 Mbps, Mid Channel 6, 2437 MHz

Limit

Value (-) Result

16.325 MHz 500 kHz Pass

Report No. KING0032 60/84

2400 MHz - 2483.5 MHz Band, 802.11(g) 54 Mbps, Low Channel 1, 2412 MHz

Limit

Value (>) Result

16.376 MHz 500 kHz Pass

Report No. KING0032 61/84

2400 MHz - 2483.5 MHz Band, 802.11(g) 54 Mbps, High Channel 11, 2462 MHz

Limit

Value (>) Result

16.365 MHz 500 kHz Pass

Report No. KING0032 62/84

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, Mid Channel 6, 2437 MHz

Limit

Value (>) Result

16.278 MHz 500 kHz Pass

Report No. KING0032 63/84

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, Low Channel 1/5, 2422 MHz, 40 MHz

Limit

Value
(>) Result

34.871 MHz

500 kHz

Pass

Report No. KING0032 64/84

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, High Channel 7/11, 2452 MHz, 40 MHz

Limit

Value
(-)

Result

35.049 MHz

500 kHz

Pass

Report No. KING0032 65/84

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Mid Channel 6, 2437 MHz

Limit

Value (>) Result

16.650 MHz 500 kHz Pass

Report No. KING0032 66/84

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Low Channel 1/5, 2422 MHz, 40 MHz

Limit

Value
(>) Result

35.132 MHz
Pass

Report No. KING0032 67/84

1811 2017/12.14 XMI 2017/12.13

Report No. KING0032 68/84

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-12(OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	28-Dec-17	28-Dec-18
Block - DC	Fairview Microwave	SD3379	AMV	28-Dec-17	28-Dec-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	9-Nov-17	9-Nov-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm. Limit of +28 dBm is being applied since the EUT uses an Antenna with 8 dBi gain.

Report No. KING0032 69/84

FIIT-	Falcon			Work Order:	TbtTx 2017.12.14	XMit 2
	See Configurations				1-Aug-18	
Customer:				Temperature:		
	J .				44.5% RH	
Attendees:				Barometric Pres.:		
Project:		D				
	Johnny Candelas	Power: 110VAC/60Hz		Job Site:	10013	
ST SPECIFICATI	IONS	Test Method				
CC 15.247:2018		ANSI C63.10:2013				
OMMENTS						
	to the antenna port of the King Router (MN: KWM1000)					
EVIATIONS FROM	M TEST STANDARD					
one						
onfiguration #	2 Signature	S. Colle				
		Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Value (dBm)	Limit (dBm)	Result
400 MHz - 2483.5 I		<u> </u>	` '	` '	<u> </u>	
	802.11(b) 1 Mbps					
	Low Channel 1, 2412 MHz, TX Pwr=29	15.741	0	15.7	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=31	16.044	0	16.0	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=36	17.229	0	17.2	28	Pass
	802.11(b) 11 Mbps					
	Low Channel 1, 2412 MHz, TX Pwr=36	18.526	0.1	18.6	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=38	19.045	0.1	19.1	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=40	19.420	0.1	19.5	28	Pass
	802.11(g) 6 Mbps					
	Low Channel 1, 2412 MHz, TX Pwr=23	16.133	0.1	16.2	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=25	16.589	0.1	16.7	28	Pass
		16.999	0.1	17.1	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.999	0.1	17.1	20	Pass
	802.11(g) 36 Mbps	17.001		47.5		
	Low Channel 1, 2412 MHz, TX Pwr=23	17.234	0.3	17.5	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=25	16.500	0.3	16.8	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.967	0.3	17.2	28	Pass
	802.11(g) 54 Mbps					
	Low Channel 1, 2412 MHz, TX Pwr=23	16.099	0.4	16.5	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=25	16.390	0.4	16.8	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=27	16.766	0.4	17.1	28	Pass
	802.11(n) MCS0					
	Low Channel 1, 2412 MHz, TX Pwr=20	14.565	0.1	14.6	28	Pass
	Mid Channel 6, 2437 MHz, TX Pwr=23	15.441	0.1	15.5	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=25	15.789	0.1	15.9	28	Pass
		14.916	0.1	15.1	28	Pass
	Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21					
	Mid Channel 4/8, 2437 MHz, 40 MHz, TX Pwr=23	15.452	0.2	15.6	28	Pass
	High Channel 7/11, 2452 MHz, 40 MHz, TX Pwr=23 802.11(n) MCS7	15.109	0.2	15.3	28	Pass
		14 561	0.4	14.0	28	Dane
	Low Channel 1, 2412 MHz, TX Pwr=20	14.561		14.9		Pass
	Mid Channel 6, 2437 MHz, TX Pwr=23	15.716	0.4	16.1	28	Pass
		15.643	0.4	16.0	28	Pass
	High Channel 11, 2462 MHz, TX Pwr=25					
	Low Channel 1/5, 2422 MHz, 40 MHz, TX Pwr=21	14.550	1	15.6	28	
				15.6 16.2	28 28	Pass Pass

Report No. KING0032 70/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - :	2483.5 MHz Band	d, 802.11(b) 1 Mb	ps, Low Channel	1, 2412 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	15.741	0		15.7	28	Pass	

	2400 MHz - :	2483.5 MHz Band	d, 802.11(b) 1 Mb	ps, Mid Channel	6, 2437 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	16.044	0		16.0	28	Pass

Report No. KING0032 71/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band,	802.11(b) 1 Mbp	s, High Channel	11, 2462 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	17.229	0		17.2	28	Pass	

	2400 MHz - 2	483.5 MHz Band	, 802.11(b) 11 Mb	ps, Low Channe	l 1, 2412 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
_	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	18.526	0.1		18.6	28	Pass

Report No. KING0032 72/84

TNTv 2017 12 14 YMR 2017 12 13

	2400 MHz - 2	483.5 MHz Band	, 802.11(b) 11 Mb	ps, Mid Channel	6, 2437 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	19.045	0.1		19.1	28	Pass	

	2400 MHz - 24	183.5 MHz Band,	802.11(b) 11 Mb _l	os, High Channel	11, 2462 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
<u>.</u>	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	19.420	0.1		19.5	28	Pass

Report No. KING0032 73/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	2483.5 MHz Band	l, 802.11(g) 6 Mb _l	ps, Low Channel	1, 2412 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	16.133	0.1		16.2	28	Pass	

	2400 MHz - :	2483.5 MHz Band	d, 802.11(g) 6 Mbps, Mid Chanr	nel 6, 2437 MHz	
	Avg Cond	Duty Cycle	Value	Limit	
<u></u>	Pwr (dBm)	Factor (dB)	(dBm)	(dBm)	Results
	16.589	0.1	16.7	28	Pass

Report No. KING0032 74/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band,	802.11(g) 6 Mbp	s, High Channel	11, 2462 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	16.999	0.1		17.1	28	Pass	

	2400 MHz - 2	483.5 MHz Band	, 802.11(g) 36 Mb	ps, Low Channe	1, 2412 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
I	17.234	0.3		17.5	28	Pass

Report No. KING0032 75/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2	483.5 MHz Band	, 802.11(g) 36 Mb	ps, Mid Channel	6, 2437 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	16.500	0.3		16.8	28	Pass	

	2400 MHz - 24	83.5 MHz Band,	802.11(g) 36 Mb _l	ps, High Channel	11, 2462 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	16.967	0.3		17.2	28	Pass

Report No. KING0032 76/84

TNTv 2017 12 14 YMR 2017 12 13

	2400 MHz - 2	483.5 MHz Band	, 802.11(g) 54 Mb	ps, Low Channel	1, 2412 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
	16.099	0.4		16.5	28	Pass	

	2400 MHz - 2	2483.5 MHz Band	l, 802.11(g) 54 Mi	ps, Mid Channel	6, 2437 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
_	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
1 [16.390	0.4		16.8	28	Pass

Report No. KING0032 77/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 24	183.5 MHz Band,	802.11(g) 54 Mbj	ps, High Channel	11, 2462 MHz		
	Avg Cond	Duty Cycle		Value	Limit		
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results	
1	16.766	0.4		17.1	28	Pass	

	2400 MHz -	2483.5 MHz Band	d, 802.11(n) MCS	0, Low Channel	1, 2412 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
l	14.565	0.1		14.6	28	Pass

Report No. KING0032 78/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, Mid Channel 6, 2437 MHz									
	Avg Cond Duty Cycle Value Limit									
		Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results			
1		15.441	0.1		15.5	28	Pass			

	2400 MHz - 2	2483.5 MHz Band	l, 802.11(n) MCS), High Channel 1	11, 2462 MHz	
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	15.789	0.1		15.9	28	Pass

Report No. KING0032 79/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, Low Channel 1/5, 2422 MHz, 40 MHz										
Avg Cond Duty Cycle Value Limit										
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results				
	14.916 0.2 15.1 28 Pass									

		2400 MHz - 2483	.5 MHz Band, 802	2.11(n) MCS0, Mi	d Channel 4/8, 24	437 MHz, 40 MHz	7		
	Avg Cond Duty Cycle Value Limit								
_		Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results		
1 [<u> </u>	15.452	0.2		15.6	28	Pass		

Report No. KING0032 80/84

TbtTx 2017.12.14 XMit 2017.12.13

24	2400 MHz - 2483.5 MHz Band, 802.11(n) MCS0, High Channel 7/11, 2452 MHz, 40 MHz										
	Avg Cond Duty Cycle Value Limit										
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results					
	15.109	0.2		15.3	28	Pass					

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Low Channel 1, 2412 MHz										
	Avg Cond	Duty Cycle		Value	Limit					
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results				
	14.561	0.4		14.9	28	Pass				

Report No. KING0032 81/84

TbtTx 2017.12.14 XMit 2017.12.13

	2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Mid Channel 6, 2437 MHz									
		Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results			
1		15.716	0.4		16.1	28	Pass			

	2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, High Channel 11, 2462 MHz										
	Avg Cond	Duty Cycle		Value	Limit						
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results					
	15.643	0.4		16.0	28	Pass					

Report No. KING0032 82/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, Low Channel 1/5, 2422 MHz, 40 MHz										
	Avg Cond	Limit								
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results				
	14.550	1		15.6	28	Pass				

		2400 MHz - 2483	.5 MHz Band, 802	2.11(n) MCS7, Mi	d Channel 4/8, 24	437 MHz, 40 MHz	Z		
	Avg Cond Duty Cycle Value Limit								
_		Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results		
1 [15.222	1		16.2	28	Pass		

Report No. KING0032 83/84

TbtTx 2017.12.14 XMit 2017.12.13

2400 MHz - 2483.5 MHz Band, 802.11(n) MCS7, High Channel 7/11, 2452 MHz, 40 MHz										
Avg Cond Duty Cycle Value Limit										
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results				
	14.939	1		15.9	28	Pass				

Report No. KING0032 84/84