

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2001 (25.10.2001)

PCT

(10) International Publication Number
WO 01/78702 A2

(51) International Patent Classification⁷: **A61K 31/00**

(74) Agents: **FISHER, Carlos, A. et al.**; Allergan Sales, Inc.,
2525 Dupont Drive, Irvine, CA 92612 (US).

(21) International Application Number: **PCT/US01/11842**

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 11 April 2001 (11.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/548,315 13 April 2000 (13.04.2000) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant: **ALLERGAN SALES, INC. [US/US]**; 2525
Dupont Drive, Irvine, CA 92612 (US).

(72) Inventors: **CHOW, Ken**; 20 Tidal Surf, Newport Coast,
CA 92657 (US). **GIL, Daniel, W.**; 2541 Point Del Mar,
Corona Del Mar, CA 92625 (US). **FANG, Wenku, Ken**;
73 Peppermint Tree, Irvine, CA 92618 (US). **GARST,
Michael, E.**; 2627 Raqueta, Newport Beach, CA 92660
(US). **WHEELER, Larry, A.**; 18 Valley View, Irvine, CA
92612 (US).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/78702 A2

(54) Title: METHODS AND COMPOSITIONS FOR MODULATING ALPHA ADRENERGIC RECEPTOR ACTIVITY

(57) Abstract: Methods and compositions for the treatment of pain. Particularly disclosed are new compositions for the treatment of chronic pain, and methods for their use.

**METHODS AND COMPOSITIONS FOR MODULATING ALPHA
ADRENERGIC RECEPTOR ACTIVITY**

5

This application is a continuation-in-part of co-pending serial number 09/548,315, filed April 13, 2000.

10

BACKGROUND OF THE INVENTION

Human adrenergic receptors are integral membrane proteins which have been classified into two broad classes, the alpha and the beta adrenergic receptors.

15 Both types mediate the action of the peripheral sympathetic nervous system upon binding of catecholamines, norepinephrine and epinephrine.

Norepinephrine is produced by adrenergic nerve endings, while epinephrine is produced by the adrenal medulla. The binding affinity of adrenergic receptors for these compounds forms one basis of the classification: alpha receptors tend to bind norepinephrine more strongly than epinephrine and much more strongly than the synthetic compound 25 isoproterenol. The preferred binding affinity of these hormones is reversed for the beta receptors. In many tissues, the functional responses, such as smooth muscle contraction, induced by alpha receptor activation are opposed to responses induced by beta 30 receptor binding.

Subsequently, the functional distinction between alpha and beta receptors was further highlighted and refined by the pharmacological characterization of these receptors from various animal and tissue

sources. As a result, alpha and beta adrenergic receptors were further subdivided into α_1 , α_2 , β_1 , and β_2 subtypes.

Functional differences between α_1 and α_2 receptors have been recognized, and compounds which exhibit selective binding between these two subtypes have been developed. Thus, in WO 92/0073, the selective ability of the R(+) enantiomer of terazosin to selectively bind to adrenergic receptors of the α_1 subtype was reported. The α_1/α_2 selectivity of this compound was disclosed as being significant because agonist stimulation of the α_2 receptors was said to inhibit secretion of epinephrine and norepinephrine, while antagonism of the α_2 receptor was said to increase secretion of these hormones. Thus, the use of non-selective alpha-adrenergic blockers, such as phenoxybenzamine and phentolamine, was said to be limited by their α_2 adrenergic receptor mediated induction of increased plasma catecholamine concentration and the attendant physiological sequelae (increased heart rate and smooth muscle contraction).

For a general background on the α -adrenergic receptors, the reader's attention is directed to Robert R. Ruffolo, Jr., α -Adrenoreceptors: Molecular Biology, Biochemistry and Pharmacology, (Progress in Basic and Clinical Pharmacology series, Karger, 1991), wherein the basis of α_1/α_2 subclassification, the molecular biology, signal transduction, agonist structure-activity relationships, receptor functions, and therapeutic applications for compounds exhibiting α -adrenergic receptor affinity was explored.

The cloning, sequencing and expression of alpha receptor subtypes from animal tissues has led to the subclassification of the α_1 adrenoreceptors into α_{1A} , α_{1B} , and α_{1D} . Similarly, the α_2 adrenoreceptors have 5 also been classified α_{2A} , α_{2B} , and α_{2C} receptors. Each α_2 receptor subtype appears to exhibit its own pharmacological and tissue specificities. Compounds having a degree of specificity for one or more of these subtypes may be more specific therapeutic 10 agents for a given indication than an α_2 receptor pan-agonist (such as the drug clonidine) or a pan-antagonist.

Among other indications, such as the treatment of glaucoma, hypertension, sexual dysfunction, and 15 depression, certain compounds having alpha 2 adrenergic receptor agonist activity are known analgesics. However, many compounds having such activity do not provide the activity and specificity desirable when treating disorders modulated by alpha-20 adrenoreceptors. For example, many compounds found to be effective agents in the treatment of pain are frequently found to have undesirable side effects, such as causing hypotension and sedation at systemically effective doses. There is a need for new 25 drugs that provide relief from pain without causing these undesirable side effects. Additionally, there is a need for agents which display activity against pain, particularly chronic pain, such as chronic neuropathic and visceral pain.

30 British Patent 1 499 485, published February 1, 1978 describes certain thiocarbamide derivatives; some of these are said to be useful in the treatment

of conditions such as hypertension, depression or pain.

OBJECTS OF THE INVENTION

5

It is an object of the invention to provide compounds and compositions useful in treating disorders modulated by alpha-2 adrenoreceptors.

10 It is an object of this invention to provide novel compounds having substantial analgesic activity in the treatment of chronic pain, regardless of origin. Chronic pain may be, without limitation, visceral, inflammatory, referred or neuropathic in origin. Such chronic pain may arise as a result of, 15 or be attendant to, conditions including without limitation: arthritis, (including rheumatoid arthritis), spondylitis, gouty arthritis, osteoarthritis, juvenile arthritis, and autoimmune diseases including, without limitation, lupus 20 erythematosus.

These compositions can also be used within the context of the treatment of chronic gastrointestinal inflammations, Crohn's disease, gastritis, irritable bowel disease (IBD) and ulcerative colitis; and in 25 treatment of visceral pain, including pain caused by cancer or attendant to the treatment of cancer as, for example, by chemotherapy or radiation therapy.

These compositions can be used within the context of the treatment of other chronic pain 30 symptoms, and especially in the treatment of chronic forms of neuropathic pain, in particular, without limitation, neuralgia, herpes, deafferentation pain, and diabetic neuropathies. In a preferred embodiment these compositions are specifically analgesic in

chronic pain models and do not have significant activity in acute pain models.

It is also an object of this invention to provide novel compounds for treating ocular disorders, such as ocular hypertension, glaucoma, hyperemia, conjunctivitis and uveitis.

It is also an object of this invention to provide novel compounds for treating the pain associated with substance abuse and/or withdrawal.

It is a still further object of this invention to provide such compounds which have good activity when delivered by peroral, parenteral, intranasal, ophthalmic, and/or topical dosing, or injection.

It is also an object of this invention to provide methods of treating pain through the therapeutic administration of the compounds disclosed herein.

It is further an object of the present invention to provide methods of treating conditions known to be susceptible to treatment through alpha 2 adrenergic receptors.

SUMMARY OF THE INVENTION

The present invention is directed to compounds having the formula:

wherein R₁ and R₅ are independently selected from the group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, trifluoromethyl, hydroxyl or H, R₂ and R₄ are independently selected from the group consisting of 5 Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, hydroxyl, trifluoromethyl or H, and R₃ is selected from the group consisting of F or H; and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

10 The invention is also directed to methods of treating pain, particularly chronic pain, through the administration of pharmaceutically effective amounts of compounds of the above structure.

15 In an alternative embodiment, the invention is directed to compounds of the structure of Formula 1, excepting the compound(s) designated below as Formula 2 and/or Formula 3.

20 Further, the invention is directed to methods of treating glaucoma and other ophthalmic conditions (including ocular pain) through the administration of a pharmaceutically effective amount of these compounds.

DETAILED DESCRIPTION OF THE INVENTION

25

In one aspect, the present invention is directed to compounds having the formula:

wherein R₁ and R₅ are independently selected from the group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, trifluoromethyl, hydroxyl or H, R₂ and R₄ are independently selected from the group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, hydroxyl, trifluoromethyl or H, and R₃ is selected from the group consisting of F or H; and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

10 In one embodiment preferred compounds corresponding to this structure are the following compound (hereinafter termed Formula 2):

15 Formula 2

and the following compound (hereinafter termed Formula 3):

20

Formula 3

and their alkyl esters, and pharmaceutically acceptable derivatives and/or salts of these compounds. In an alternative embodiment, the
25 invention is drawn to the subset of Formula 1 that

excludes the compounds designated Formula 2 and/or Formula 3.

Applicants have discovered that these compounds activate α_2 receptors, particularly α_{2B} receptors.

5 Additionally, these compounds act as a highly effective analgesic, particularly in chronic pain models, with minimal undesirable side effects, such as sedation and cardiovascular depression, commonly seen with agonists of the α_2 receptors.

10 Such compounds may be administered at pharmaceutically effective dosages. Such dosages are normally the minimum dose necessary to achieve the desired therapeutic effect; in the treatment of chronic pain, this amount would be roughly that necessary to reduce the discomfort caused by the pain to tolerable levels. Generally, such doses will be in the range 1-1000 mg/day; more preferably in the range 10 to 500 mg/day. However, the actual amount of the compound to be administered in any given case will be
15 determined by a physician taking into account the relevant circumstances, such as the severity of the pain, the age and weight of the patient, the patient's general physical condition, the cause of the pain, and the route of administration.

20 The compounds are useful in the treatment of pain in a mammal; particularly a human being. Preferably, the patient will be given the compound orally in any acceptable form, such as a tablet, liquid, capsule, powder and the like. However, other routes may be desirable or necessary, particularly if the patient suffers from nausea. Such other routes
25 may include, without exception, transdermal, parenteral, subcutaneous, intranasal, intrathecal,

intramuscular, intravenous, and intrarectal modes of delivery. Additionally, the formulations may be designed to delay release of the active compound over a given period of time, or to carefully control the 5 amount of drug released at a given time during the course of therapy.

Another aspect of the invention is drawn to therapeutic compositions comprising the compounds of Formula 1 and alkyl esters and pharmaceutically acceptable derivatives and/or salts of these 10 compounds and a pharmaceutically acceptable excipient, or the subset of these compounds excluding Formula 2 and/or Formula 3. Such an excipient may be a carrier or a diluent; this is usually mixed with 15 the active compound, or permitted to dilute or enclose the active compound. If a diluent, the carrier may be solid, semi-solid, or liquid material that acts as an excipient or vehicle for the active compound. The formulations may also include wetting 20 agents, emulsifying agents, preserving agents, sweetening agents, and/or flavoring agents. If used as in an ophthalmic or infusion format, the formulation will usually contain one or more salt to influence the osmotic pressure of the formulation.

In another aspect, the invention is directed to 25 methods for the treatment of pain, particularly chronic pain, through the administration of a compound of Formula 1 having activity against chronic pain, and pharmaceutically acceptable alkyl esters, salts, and derivatives thereof to a mammal in need 30 thereof. In a preferred embodiment the compounds lack significant activity towards acute pain. In a further embodiment, such methods employ a compound selected from this group, but such compound is not

Formula 2 or Formula 3. As indicated above, the compound will usually be formulated in a form consistent with the desired mode of delivery.

It is known that chronic pain (such as pain from cancer, arthritis, and many neuropathic injuries) and acute pain (such as that pain produced by an immediate mechanical stimulus, such as tissue section, pinch, prick, or crush) are distinct neurological phenomena mediated to a large degree either by different nerve fibers and neuroreceptors or by a rearrangement or alteration of the function of these nerves upon chronic stimulation. Sensation of acute pain is transmitted quite quickly, primarily by afferent nerve fibers termed C fibers, which normally have a high threshold for mechanical, thermal, and chemical stimulation. While the mechanisms of chronic pain are not completely understood, acute tissue injury can give rise within minutes or hours after the initial stimulation to secondary symptoms, including a regional reduction in the magnitude of the stimulus necessary to elicit a pain response. This phenomenon, which typically occurs in a region emanating from (but larger than) the site of the original stimulus, is termed hyperalgesia. The secondary response can give rise to profoundly enhanced sensitivity to mechanical or thermal stimulus.

The A afferent fibers (A β and A δ fibers) can be stimulated at a lower threshold than C fibers, and appear to be involved in the sensation of chronic pain. For example, under normal conditions, low threshold stimulation of these fibers (such as a light brush or tickling) is not painful. However,

under certain conditions such as those following nerve injury or in the herpesvirus-mediated condition known as shingles the application of even such a light touch or the brush of clothing can be 5 very painful. This condition is termed allodynia and appears to be mediated at least in part by A_B afferent nerves. C fibers may also be involved in the sensation of chronic pain, but if so it appears clear that persistent firing of the neurons over time 10 brings about some sort of change which now results in the sensation of chronic pain.

By "acute pain" is meant immediate, usually high threshold, pain brought about by injury such as a cut, crush, burn, or by chemical stimulation such as 15 that experienced upon exposure to capsaicin, the active ingredient in chili peppers.

By "chronic pain" is meant pain other than acute pain, such as, without limitation, neuropathic pain, visceral pain (including that brought about by Cron's 20 disease and irritable bowel syndrome (IBS)), and referred pain.

It has been discovered that compounds of Formula 1 have activity against chronic pain. Preferably, though not necessarily, this activity is relatively 25 specific to chronic pain and the compounds have little activity towards acute pain. In one embodiment compounds of Figure 1 which are monosubstituted will have either a fluorine or hydrogen substitution at the para position.

30 Table 1 below lists exemplary thiourea compounds and indicates, with some exceptions, their ability to modulate alpha 2_A, alpha 2_B and alpha 2_C adrenergic receptor activity, indicated by the EC₅₀ value (the

concentration of the compound, expressed as 10^{-9} moles per liter, effective to cause a modulation of receptor activity). The compounds of this invention are preferably at least 10-fold less active at the 5 alpha 2_A receptor than at the alpha 2_B and/or alpha 2_C receptors. While not wishing to be limited by theory, the present inventors believe that stimulation of the alpha 2_A receptor is associated in mammals, including human beings, with cardiovascular 10 effects, sedation, and diuretic activity, which activities are preferably not desired to be stimulated in compounds to be used as drugs for the treatment of chronic pain.

Activity was measured using the RSAT (Receptor 15 Selection and Amplification Technology) assay, developed by Receptor Technologies, Inc. of Winooski, VT (now Acadia Pharmaceuticals of San Diego, CA), adapted for use with recombinant alpha₂ adrenergic receptors in collaboration with Allergan. The assay 20 measures receptor-mediated loss of contact inhibition that results in selective proliferation of receptor-containing cells in a mixed population of confluent cells. The increase in cell number is assessed with an appropriate transfected marker gene such as β-galactosidase, the activity of which can be easily 25 measured in a 96-well format. Receptors that activate the G protein, G_q, elicit this response. Alpha₂ receptors, which normally couple to G_i, activate the RSAT response when coexpressed with a 30 hybrid G_q protein that has a G_i receptor recognition domain, called G_{q/i5}.

The assay is conducted as follows. NIH-3T3 cells are plated at a density of 2×10^6 cells in 15 cm

dishes and maintained in Dulbecco's modified Eagle's medium supplemented with 10% calf serum. One day later, cells are cotransfected by calcium phosphate precipitation with mammalian expression plasmids

5 encoding p-SV- β -galactosidase (5-10 μ g), receptor (1-2 μ g) and G protein (1-2 μ g). 40 μ g salmon sperm DNA may also be included in the transfection mixture to increase transfection efficiency. Fresh media is added on the following day and 1-2 days later, cells

10 are harvested and frozen in 50 assay aliquots.

Transfectant cells are thawed and 100 μ l added to 100 μ l aliquots of various concentrations of drugs in triplicate in 96-well dishes. Incubations continue

15 72-96 hr at 37°. After washing with phosphate-buffered saline, β -galactosidase enzyme activity is determined by adding 200 μ l of the chromogenic substrate (consisting of 3.5 mM o-nitrophenyl- β -D-galactopyranoside and 0.5% of the non-ionic surfactant nonidet P-40 in phosphate buffered

20 saline), incubating overnight at 30° and measuring optical density at 420 nm. The absorbency is a measure of enzyme activity, which depends on cell number and reflects a receptor-mediated cell proliferation. The EC₅₀ and maximal effect of each

25 drug at each alpha₂ receptor is determined. The efficacy or intrinsic activity is calculated as a ratio of the maximal effect of the drug to the maximal effect of a standard full agonist for each receptor subtype. Brimonidine, also called UK14304,

30 is used as the standard agonist for the alpha_{2A}, alpha_{2B} and alpha_{2C} receptors. The RSAT assay is also discussed in Messier et al. (1995) *High throughput assays of cloned adrenergic, muscarinic, neurokinin*

and neurotrophin receptors in living mammalian cells, Pharmacol. Toxicol. 76:308-11; see also Conklin et al. (1993) Substitution of three amino acids switches receptor specificity of $G_{Q\alpha}$ to that of $5 G_{i\alpha}$, Nature 363:274-6; Both of these papers are incorporated by reference herein.

Table 1

10

NA=Not active ($EC_{50} \geq 210,000$)

ND=Not tested

15

Compounds	RSAT EC ₅₀ (nM)		
	Alpha 2A	Alpha 2B	Alpha 2C
 FORMULA 5	NA	2053 (0.89)	NA
 FORMULA 6	NA	141 (1.08)	>2000
 FORMULA 7	NA	380 (0.93)	NA
 FORMULA 8	NA	462 (0.45)	5057 (0.4)
 FORMULA 9	NA	694 (0.93)	783 (0.4)

 FORMULA 10	NA	495 (0.73)	NA
 FORMULA 11	NA	2395 (0.55)	NA
 FORMULA 12	NA	174 (0.7)	NA
 FORMULA 13	NA	913 (0.9)	602 (0.3)
 FORMULA 15	NA	59 (0.6)	1805 (0.4)
 FORMULA 16	NA	898 (0.40)	NA
 FORMULA 17	NA	99 (0.6)	NA
 FORMULA 18	NA	42 (0.7)	28 (0.4)
 FORMULA 19	NA	579 (0.75)	NA
 FORMULA 20	NA	174 (0.55)	NA
 FORMULA 21	NA	16 (0.82)	457 (0.37)

 FORMULA 22	NA	37 (0.7)	632 (0.3)
 FORMULA 23	NA	10 (0.8)	273 (0.4)
 FORMULA 24	295 (0.3)	14 (0.9)	NA
 FORMULA 25	ND	ND	ND
 FORMULA 26	NA	16 (0.7)	NA
 FORMULA 27	NA	3 (0.99)	54.5 (0.33)
 FORMULA 28	ND	ND	ND
 FORMULA 29	135.5 (0.52)	5.5 (1.03)	41 (0.88)
 FORMULA 30	NA	98 (0.83)	>2000
 FORMULA 31	379.5 (0.33)	19 (1.09)	175 (0.53)

	NA	169.5 (0.95)	843 (0.38)
	NA	36 (0.97)	459 (0.58)
	NA	20 (1.0)	137 (0.63)
	>2000	429 (1.04)	>3000
	NA	282 (0.91)	ND
	NA	95 (0.91)	ND
	NA	205 (0.81)	ND
	NA	37.5 (1.02)	181 (0.62)
	NA	50 (0.78)	ND
	NA	25 (0.82)	ND

 FORMULA 42	NA	271 (0.48)	ND
 FORMULA 43	NA	33 (1.1)	ND
 FORMULA 44	NA	118 (0.92)	ND
 FORMULA 45	NA	482 (0.76)	NA
 FORMULA 46	NA	281 (0.58)	NA
 FORMULA 47	NA	115 (0.8)	>3000
 FORMULA 48	>2000	22 (0.73)	819 (0.56)
 FORMULA 49	NA	240 (0.8)	1486 (0.37)
 FORMULA 50	NA	116 (1.23)	1408 (0.58)
 FORMULA 51	NA	512 (1.07)	NA

	NA	120 (0.92)	NA
	NA	117 (1.13)	>2000
	NA	181 (0.95)	>2000
	NA	17 (1.13)	87 (0.6)
	NA	44 (0.94)	1852 (0.54)
	NA	21 (1.26)	226 (0.7)
	63 (0.42)	30 (1.16)	232 (0.58)
	NA	13 (0.85)	53 (0.51)
	NA	2356 (0.73)	NA
	NA	478 (0.72)	>2000

 FORMULA 62	NA	235 (0.92)	406 (0.43)
 FORMULA 63	930 (0.39)	9 (0.96)	45 (0.78)
 FORMULA 64	NA	137 (0.68)	617 (0.37)
 FORMULA 65	NA	30 (0.75)	238 (0.34)
 FORMULA 66	NA	523 (0.8)	853 (0.7)
 FORMULA 67	546 (0.31)	62 (1.06)	278 (0.66)
 FORMULA 68	NA	89 (0.92)	1422 (0.78)
 FORMULA 69	NA	243 (0.9)	2370 (0.51)
 FORMULA 70	NA	27 (1.20)	144 (0.74)
 FORMULA 71	NA	2053 (0.89)	NA

 FORMULA 72	NA	141 (1.08)	>2000
 FORMULA 73	62 (0.85)	2 (1.35)	23 (0.91)
 FORMULA 74	NA	49 (0.76)	322 (0.68)
 FORMULA 75	NA	70 (0.49)	NA
 FORMULA 76	NA	138 (1.01)	786 (0.66)
 FORMULA 77	NA	48 (0.60)	NA
 FORMULA 78	ND	ND	ND
 FORMULA 79	ND	ND	ND
 FORMULA 80	ND	ND	ND
 FORMULA 81	ND	ND	ND

 FORMULA 82	ND	ND	ND
 FORMULA 83	ND	ND	ND
 FORMULA 84	ND	ND	ND
 FORMULA 85	ND	ND	ND

5

EXAMPLES

10 Example 1: Synthesis of 1-(3-chloro-2-fluorobenzyl)-3-(2-hydroxyethyl)-thiourea (Formula 2)

One molar equivalent of 3-chloro-2-fluoro-benzyl bromide (commercially available from e.g., Lancaster 15 Synthesis, Ltd.) is permitted to react with 2 molar equivalents of potassium isothiocyanate in dimethylformamide (DMF) containing 0.5 molar equivalent of NaI at 90° C for 5 hours with stirring

to yield 3-chloro-2-fluorobenzyl isothiocyanate. The reaction mixture is permitted to cool to room temperature, and the solution is diluted with H₂O and extracted with ether. The ether phase containing the product is removed and the reaction mixture extracted twice more with fresh ether. The ether phases are combined and the product is concentrated in a Speed Vac® vacuum centrifuge (using house vacuum) set in a water bath at about 45° C. When the ether has evaporated, the unpurified 3-chloro-2-fluorobenzyl isothiocyanate is a viscous liquid.

3.57 g of this compound is mixed with 3 molar equivalents of ethanalamine in acetonitrile, and a catalytic amount (less than 1%) of DMAP (N-N-dimethyl amino pyridine) is added. The reaction mixture is incubated for 14 hours at room temperature with constant stirring. The resulting solution is then concentrated using the Speed Vac® vacuum centrifuge in a 60° C-70° C water bath.

The product, 1-(3-chloro-2-fluorobenzyl)-3-(2-hydroxyethyl)-thiourea, is purified by liquid chromatography using 200-300 mesh silica gel in a glass column. The concentrated reaction solution is applied to the column and the column washed with three column volumes of Solvent A (50% ethyl acetate/50% hexanes). The product is then eluted using 2-3 column volumes of Solvent B (10% methanol/90% ethyl acetate). The eluted product is again concentrated in a Speed Vac® vacuum centrifuge to remove the solvent. The product is then permitted to stand at room temperature, where it crystallizes spontaneously. The crystals are stored in the freezer at -78°C.

The product has the following spectroscopic characteristics: ^1H NMR (D_6 DMSO, 300 MHz) δ 7.98 (br s, 1 H), 7.63 (br s, 1 H), 7.46 (t, $J=3.9$ Hz, 1 H), 7.32-7.18 (m, 2 H), 4.78 (br s, 1H), 4.72 (d, $J=3.9$ Hz, 2 H), 3.47 (br s, 4 H).

In order to compare the biological activity of 1-(3-chloro-2-fluorobenzyl)-3-(2-hydroxyethyl)-thiourea with that of the 2-fluorobenzyl derivative (FORMULA 4) and the 4-fluorobenzyl derivative (FORMULA 3), FORMULA 4 is synthesized using 2-fluoro-benzyl bromide (also commercially available) as the starting material. FORMULA 3 is synthesized using commercially purchased 4-fluorobenzyl isothiocyanate. Other synthetic steps are analogous to those used above to synthesize the compound of FORMULA 2.

The 2-fluorobenzyl isothiourea derivative (hereinafter termed FORMULA 4) has the following formula:

20

Formula 4

25 The physiological activity of these compounds was tested using four models: a rat locomotor model to assess sedation, an assay of cardiovascular activity in monkeys, a rat thermal paw withdrawal assay (Dirig et al., *J. Neurosci. Methods* 76:183-191 30 (1997) to test the alleviation of acute pain, and the

rat spinal nerve ligation allodynia model (Kim and Chung, *Pain* 50:355-363 (1992) to assess the alleviation of neuropathic pain and central sensitization typical of chronic pain. As is known to those of skill in the art, these tests are established pharmacological methods for determining sedation, cardiovascular effects, acute pain and chronic pain, respectively, of pharmaceutical agents.

10

Example 2: Sedative Activity

To test sedation, six male Sprague-Dawley rats were given up to 3 mg/kg of each compound in a saline or DMSO vehicle by intraperitoneal injection (i.p.). Sedation was graded 30 minutes following administration of the drug by monitoring locomotor skills as follows.

The Sprague-Dawley rats are weighed and 1 ml/kg body weight of an appropriate concentration (ie. 3 mg/ml for a final dose of 3 mg/kg) drug solution is injected intraperitoneally. FORMULA 3 is formulated in approximately 10% DMSO and FORMULA 2 and FORMULA 4 are formulated in 50% DMSO. The results are compared to 29 historical controls that were injected with 1 ml/kg saline or 50% DMSO. Rat activity is then determined 30 minutes after injection of the drug solution. Rats are placed in a dark covered chamber and a digicom analyzer (Omnitech Electronic) quantitates their exploratory behavior for a five-minute period. The machine records each time the rat interrupts an array of 32 photoelectric beams in the X and Y orientation.

The results show that, in comparison to the appropriate vehicle controls, none of the compounds caused a statistically significant reduction in the exploratory activity of the rats. FORMULA 2 and 5 FORMULA 3 were tested at 1 mg/kg and FORMULA 4 was tested at 3 mg/kg. Thus, the compounds are not sedating.

10 Example 3: Effects on Cardiovascular System

To test the effect of the compounds on the cardiovascular system, six cynomolgus monkeys were given 500 µg/kg of each compound by intravenous injection (i.v.). The effects of each compound on the animals' blood pressure and heart rate was measured at time intervals from 30 minutes to six hours following administration of the drug. The peak change from a baseline measurement taken 30 minutes before drug administration is recorded using a blood pressure cuff modified for use on monkeys.

The monkeys are weighed (approximately 4 kg) and an appropriate volume (0.1 ml/kg) of a 5 mg/ml solution of each compound formulated in 10% DMSO is 25 injected into the cephalic vein in the animals' arms. Cardiovascular measurements are made with a BP 100S automated sphygmomanometer (Nippon Colin, Japan) at 0.5, 1, 2, 4 and 6 hours.

30 The results show that, in comparison to the predrug control, none of the compounds have any detectable effect on the cardiovascular system.

Example 4: Alleviation of Acute Pain

Models to measure sensitivity to acute pain have typically involved the acute application of thermal stimuli; such a stimulus causes a programmed escape mechanism to remove the affected area from the stimulus. The proper stimulus is thought to involve the activation of high threshold thermoreceptors and C fiber dorsal root ganglion neurons that transmit the pain signal to the spinal cord.

The escape response may be "wired" to occur solely through spinal neurons, which receive the afferent input from the stimulated nerve receptors and cause the "escape" neuromuscular response, or may be processed supraspinally - that is, at the level of the brain. A commonly used method to measure nociceptive reflexes involves quantification of the withdrawal or licking of the rodent paw following thermal excitation. See Dirig, D.M. et al., *J. Neurosci. Methods* 76:183-191 (1997) and Hargreaves, K. et al., *Pain* 32:77-88 (1988), hereby incorporated by reference herein.

In a variation of this latter model, male Sprague-Dawley rats were tested by being placed on a commercially available thermal stimulus device constructed as described in Hargreaves et al. This device consists of a box containing a glass plate. The nociceptive stimulus is provided by a focused projection bulb that is movable, permitting the stimulus to be applied to the heel of one or both hindpaws of the test animal. A timer is actuated with the light source, and the response latency (defined as the time period between application of the stimulus and an abrupt withdrawal of the hindpaw)

is registered by use of a photodiode motion sensor array that turns off the timer and light. Stimulus strength can be controlled by current regulation to the light source. Heating is automatically terminated 5 after 20 seconds to prevent tissue damage.

Four test animals per group were weighed (approximately 0.3 kg) and injected intraperitonealy (i.p.) with 1 ml/kg of each compound formulated in approximately 50% dimethylsulfoxide (DMSO) vehicle. 10 Animals received a 0.3 mg/kg and a 3 mg/kg dose of the three compounds. Rats were acclimated to the test chamber for about 15 minutes prior to testing. The paw withdrawal latency was measured at 30, 60 and 120 minutes after drug administration. The right and 15 left paws were tested 1 minute apart, and the response latencies for each paw were averaged. Stimulus intensity was sufficient to provide a temperature of 45-50 degrees centigrade to each rat hindpaw. 20 The results show that none of the compounds provide analgesic effects in this bioassay of acute pain. The response latencies for rats treated with the compounds were not statistically different from the response latencies of the rats treated with 25 vehicle alone.

Example 5: Alleviation of Chronic Pain

A model for chronic pain (in particular 30 peripheral neuropathy such as causalgia) involves the surgical ligation of the L5 (and optionally the L6) spinal nerves on one side in experimental animals. Rats recovering from the surgery gain weight and display a level of general activity similar to that

of normal rats. However, these rats develop abnormalities of the foot, wherein the hindpaw is moderately everted and the toes are held together. More importantly, the hindpaw on the side affected by 5 the surgery appears to become sensitive to pain from low-threshold mechanical stimuli, such as that producing a faint sensation of touch in a human, within about 1 week following surgery. This sensitivity to normally non-painful touch is called 10 "tactile allodynia" and lasts for at least two months. The response includes lifting the affected hindpaw to escape from the stimulus, licking the paw and holding it in the air for many seconds. None of 15 these responses is normally seen in the control group.

Rats are anesthetized before surgery. The surgical site is shaved and prepared either with betadine or Novacaine. Incision is made from the thoracic vertebra Xlll down toward the sacrum. Muscle 20 tissue is separated from the spinal vertebra (left side) at the L4 - S2 levels. The L6 vertebra is located and the transverse process is carefully removed with a small rongeur to expose the L4 - L6 spinal nerves. The L5 and L6 spinal nerves are 25 isolated and tightly ligated with 6-0 silk thread. The same procedure is done on the right side as a control, except no ligation of the spinal nerves is performed.

A complete hemostasis is confirmed, then the 30 wounds are sutured. A small amount of antibiotic ointment is applied to the incised area, and the rat is transferred to the recovery plastic cage under a regulated heat-temperature lamp. On the day of the experiment, at least seven days after the surgery,

six rats per test group are administered the test drugs by intraperitoneal (i.p.) injection or oral gavage. For i.p. injection, the compounds are formulated in approximately 50% DMSO and given in a 5 volume of 1 ml/kg body weight. FORMULA 2 was tested at doses ranging between 1 and 300 µg /kg, FORMULA 3 was tested at doses between 0.1 and 3 mg/kg and FORMULA 4 was tested at doses of 0.3 and 3 mg/kg. FORMULA 2 was also administered by oral gavage at 10 doses of 0.1, 0.3 and 1 mg/kg body weight to 24-hour fasted rats. A volume equal to 1 ml/kg body weight of an appropriate concentration (ie. 1 mg/ml for a 1 mg/kg dose) of FORMULA 2 formulated in approximately 50% DMSO was injected using an 18-gauge, 3-inch 15 gavage needle that is slowly inserted through the esophagus into the stomach.

Tactile allodynia is measured prior to and 30 minutes after drug administration using von Frey hairs that are a series of fine hairs with 20 incremental differences in stiffness. Rats are placed in a plastic cage with a wire mesh bottom and allowed to acclimate for approximately 30 minutes. The von Frey hairs are applied perpendicularly through the mesh to the mid-plantar region of the 25 rats' hindpaw with sufficient force to cause slight buckling and held for 6-8 seconds. The applied force has been calculated to range from 0.41 to 15.1 grams. If the paw is sharply withdrawn, it is considered a positive response. A normal animal will not respond 30 to stimuli in this range, but a surgically ligated paw will be withdrawn in response to a 1-2 gram hair. The 50% paw withdrawal threshold is determined using the method of Dixon, W.J., *Ann. Rev. Pharmacol.*

Toxicol. 20:441-462 (1980). The post-drug threshold is compared to the pre-drug threshold and the percent reversal of tactile sensitivity is calculated based on a normal threshold of 15.1 grams.

5 The results showed that FORMULA 4 had no analgesic activity at doses up to 3 mg/kg. Surprisingly, AGN 196204 and FORMULA 2 were both able to reduce the response to the tactile stimuli that indicate tactile allodynia. FORMULA 3 reversed the allodynic pain by
10 34% at an i.p. dose of 0.3 mg/kg, 32% at 1 mg/kg and 26% at 3 mg/kg. FORMULA 2 reversed the allodynia by 55% at an i.p. dose of 3 µg/kg, 85% at 10 µg/kg, 90% at 30 µg/kg, 95% at 100 µg/kg and 92% at 300 µg/kg. The oral doses of FORMULA 2 ranging from 0.1 to 1
15 mg/kg alleviated the allodynic pain by 82-86%. Thus, FORMULA 3 and FORMULA 2 are analgesic in a model of chronic pain.

20

Example 6: Treatment of Allodynia with FORMULA 3

25 A 50 year old male in generally good physical condition suffers from serious pain to his upper body due caused by contact of his skin with his clothing. The patient is unable to wear clothing on his upper body without severe pain. His symptoms suggest a diagnosis of shingles.

30 The patient is given a therapeutically effective oral dose of FORMULA 3 in capsule form as needed for the treatment of pain. Following two day's treatment, the patient reports that the allodynia resulting from shingles is markedly reduced, and that he is able to
35 wear clothing on his upper body with greater comfort.

Example 6: Treatment of Allodynia with FORMULA 2

Same facts as in Example 5, except the patient
5 is given a therapeutically effective oral dose of
FORMULA 2 in capsule form as needed for the treatment
of pain. Following two day's treatment, the patient
reports that the allodynia resulting from shingles is
markedly reduced, and that he is able to wear
10 clothing on his upper body with greater comfort.

Example 7: Treatment of Visceral Pain with FORMULA 3

15 A 43 year old female patient suffering from
colon cancer and undergoing chemotherapy experiences
severe visceral pain associated with this primary
condition. Treatment of this pain with opiates have
been ineffective to provide substantial relief.

20 The patient is given a therapeutic amount of
FORMULA 3 by intravenous infusion in a
pharmaceutically acceptable vehicle. The treatment
is given twice daily. After two days the patient
reports a significant alleviation in the visceral
25 pain associated with her condition.

Example 8: Treatment of Visceral Pain with FORMULA 2

Under the same facts as Example 7, except the
5 patient is given FORMULA 2 instead of FORMULA 3.

After two days the patient reports a significant
alleviation in the visceral pain associated with her
condition.

10 The examples contained herein are intended to be
exemplary only, and do not limit the scope of the
invention, which is defined by the claims that
conclude this specification.

CLAIMS

We claim:

5 1. A composition comprising a compound
represented by the formula:

15 wherein R₁ and R₅ are independently selected from the
group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃
alkoxy, trifluoromethyl, hydroxyl or H, R₂ and R₄ are
independently selected from the group consisting of
Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, hydroxyl,
trifluoromethyl or H, and R₃ is selected from the
20 group consisting of F or H; and alkyl esters
thereof, and pharmaceutically acceptable salts of
these compounds,
and a pharmaceutically acceptable excipient.

25 2. The composition of claim 1 wherein the compound
is not represented by the formula:

and alkyl esters thereof, and pharmaceutically
acceptable salts of these compounds.

3. The composition of claim 1 wherein the compound is not represented by the formula:

5 and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

4. The composition of claim 3 wherein the compound is not represented by the formula

10 and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

5. The composition of claim 1 wherein said
15 composition comprises a pharmaceutically acceptable excipient for therapeutic delivery of said compound.

6. The composition of claim 5 wherein said compound is not represented by the formula:

20

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

7. The composition of claim 5 wherein said compound
5 is not represented by the formula:

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

10

8. The composition of claim 7 wherein the compound is not represented by

15

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

9. A method of treating pain in a mammal in need thereof comprising the step: administering to said patient a therapeutically effective dose of a

5 composition comprising a compound represented by having the formula:

10

wherein R₁ and R₅ are independently selected from the group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, trifluoromethyl, hydroxyl or H, R₂ and R₄ are

15 independently selected from the group consisting of Cl, F, I, Br, C₁₋₃ alkyl, C₁₋₃ alkoxy, hydroxyl, trifluoromethyl or H, and R₃ is selected from the group consisting of F or H; and alkyl esters thereof, and pharmaceutically acceptable salts of

20 these compounds.

10. The method of claim 9 wherein said compound is not represented by the formula

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

11. The method of claim 10 wherein said compound is
5 administered orally.

12. The method of claim 9 wherein said compound is not represented by the formula

10 and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

13. The method of claim 9 wherein said compound is administered orally.

15 14. The method of claim 12 wherein said compound is not represented by the formula

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

15. A compound represented by the formula:

wherein R₁, R₂, R₃, R₄ and R₅ are each independently
5 selected from the group consisting of Cl, F, Br or H
with the proviso that at least one of R₂ and R₄ are
Cl, F, or Br and that at least three of R₁, R₂, R₃, R₄,
and R₅ are H; and alkyl esters thereof, and
pharmaceutically acceptable salts of these compounds.

10

16. A compound of claim 15 not represented by the
formula

15 and alkyl esters thereof, and pharmaceutically
acceptable salts of these compounds.

17. A compound of claim 15 not represented by the
formula

20 and alkyl esters thereof, and pharmaceutically
acceptable salts of these compounds.

18. A compound of claim 17 not represented by the
formula

and alkyl esters thereof, and pharmaceutically acceptable salts of these compounds.

THIS PAGE BLANK (USPTO)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 October 2001 (25.10.2001)

PCT

(10) International Publication Number
WO 01/78702 A3

(51) International Patent Classification⁷: A61K 31/17, A61P 25/00, 19/00, 1/04

(21) International Application Number: PCT/US01/11842

(22) International Filing Date: 11 April 2001 (11.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/548,315 13 April 2000 (13.04.2000) US

(71) Applicant: ALLERGAN SALES, INC. [US/US]; 2525 Dupont Drive, Irvine, CA 92612 (US).

(72) Inventors: CHOW, Ken; 20 Tidal Surf, Newport Coast, CA 92657 (US). GIL, Daniel, W.; 2541 Point Del Mar, Corona Del Mar, CA 92625 (US). FANG, Wenkui, Ken; 73 Peppermint Tree, Irvine, CA 92618 (US). GARST, Michael, E.; 2627 Raqueta, Newport Beach, CA 92660 (US). WHEELER, Larry, A.; 18 Valley View, Irvine, CA 92612 (US).

(74) Agents: FISHER, Carlos, A. et al.; Allergan Sales, Inc., 2525 Dupont Drive, Irvine, CA 92612 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
21 March 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/78702 A3

(54) Title: METHODS AND COMPOSITIONS FOR MODULATING ALPHA ADRENERGIC RECEPTOR ACTIVITY

(57) Abstract: Methods and compositions for the treatment of pain. Particularly disclosed are new compositions for the treatment of chronic pain, and methods for their use.

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/US 01/11842

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K31/17 A61P25/00 A61P19/00 A61P1/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal, BIOSIS, EMBASE, CHEM ABS Data, PHARMAPROJECTS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 411 615 A (WARNER LAMBERT CO) 6 February 1991 (1991-02-06) *cf. abstract, page 2, 1st para., page 3, line 15 bridging with page 4, line 57*	1-18
Y	GB 2 206 347 A (SANDOZ PRODUCTS LTD) 5 January 1989 (1989-01-05) *cf. abstract, page 7, 2nd and 3rd paras.*	1-18
Y	EP 0 068 590 A (PROCTER & GAMBLE) 5 January 1983 (1983-01-05) *cf. abstract, page 2, lines 3-14*	1-18
Y	EP 0 462 933 A (SANDOZ LTD ;SANDOZ AG (DE); SANDOZ AG (AT); SANDOZ PRODUCTS LTD (G) 27 December 1991 (1991-12-27) *cf. page 3, lines 1-53, page 8, line 51 to page 9, lines 1-10*	1-18

	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 October 2001

15/10/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaanlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Stoltner, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/11842

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 20 29 967 A (AMERICAN CYANAMID COMPANY) 23 December 1970 (1970-12-23) *cf. page 1 to page 2, 1st para.* -----	1-18
Y	DE 26 10 865 A (EGYT GYOGYSZERVEGYESZETI GYAR) 30 September 1976 (1976-09-30) *cf. page 2, first para., generic formula on page 3, bridging with page 4, definitions given for the groups R4-R6* -----	1-18

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte	onal Application No
	PCT/US 01/11842

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0411615	A	06-02-1991	US 4988688 A AT 99290 T AU 6001990 A CA 2022510 A1 DE 69005557 D1 DE 69005557 T2 DK 411615 T3 EP 0411615 A1 ES 2062220 T3 IE 902792 A1 JP 3074359 A NO 903384 A PT 94874 A ZA 9006057 A	29-01-1991 15-01-1994 07-02-1991 03-02-1991 10-02-1994 21-04-1994 24-01-1994 06-02-1991 16-12-1994 27-02-1991 28-03-1991 04-02-1991 18-04-1991 29-04-1992
GB 2206347	A	05-01-1989	AU 1846488 A DE 3821317 A1 DK 356588 A ES 2010284 A6 FI 883097 A FR 2617477 A1 IT 1219676 B JP 1026551 A LU 87261 A1 NL 8801659 A PT 87854 A ,B SE 8802412 A ZA 8804693 A	05-01-1989 12-01-1989 31-12-1988 01-11-1989 31-12-1988 06-01-1989 24-05-1990 27-01-1989 08-03-1989 16-01-1989 01-07-1988 31-12-1988 28-03-1990
EP 0068590	A	05-01-1983	US 4460602 A CA 1191862 A1 DE 3261757 D1 EP 0068590 A1	17-07-1984 13-08-1985 14-02-1985 05-01-1983
EP 0462933	A	27-12-1991	AT 106866 T AU 645090 B2 AU 7843891 A CA 2044797 A1 CS 9101850 A3 DE 69102352 D1 DE 69102352 T2 DK 462933 T3 EP 0462933 A1 ES 2054474 T3 FI 912903 A HU 210683 B IE 912055 A1 JP 4230257 A JP 7053708 B NZ 238571 A PL 290703 A1 PT 98004 A ZA 9104678 A	15-06-1994 06-01-1994 19-12-1991 19-12-1991 15-01-1992 14-07-1994 17-11-1994 15-08-1994 27-12-1991 01-08-1994 19-12-1991 28-06-1995 18-12-1991 19-08-1992 07-06-1995 26-08-1993 21-09-1992 31-03-1992 24-02-1993
DE 2029967	A	23-12-1970	BE 752103 A1 DE 2029967 A1 FR 2052978 A5 NL 7008856 A	17-12-1970 23-12-1970 16-04-1971 21-12-1970

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/11842

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
DE 2029967	A	US	3562391 A	09-02-1971
DE 2610865	A	30-09-1976	HU 173459 B AT 347476 B AT 185776 A BE 839502 A1 CA 1069931 A1 CH 619210 A5 CS 188132 B2 DD 125615 A5 DE 2610865 A1 DK 107876 A EG 12505 A FR 2303532 A1 GB 1499485 A IL 49194 A IN 143559 A1 NL 7602670 A SE 7603242 A SU 795462 A3	28-05-1979 27-12-1978 15-05-1978 01-07-1976 15-01-1980 15-09-1980 28-02-1979 04-05-1977 30-09-1976 15-09-1976 31-07-1980 08-10-1976 01-02-1978 16-09-1980 24-12-1977 16-09-1976 15-10-1976 07-01-1981

THIS PAGE BLANK (USPTO)