Peter Waldert, Theresa Rienmüller, Christian Baumgartner, Sonja Langthaler Institute of Health Care Engineering with European Testing Center of Medical Devices

Live, In-Browser Cell Simulation Interface

Good stuff

Available live on in-silico.hce.tugraz.at.

Model

 $I(t) := \sum_{k=1}^{M} N_k I_k(t) = \sum_{k=1}^{M} N_k g_k p_{o,k} \left(V(t) - E_k \right) ,$ (1)

At each time step,

$$\boldsymbol{s}_{k,n+1} = H_k(V(t_n), \boldsymbol{C}(t_n), t_n) \, \boldsymbol{s}_{k,n}$$
(2)

Formulation as a Quadratic Program

Relaxing the integer condition on the solution, and letting $d := I_{\text{meas}}$ for brevity, we can reformulate ??,

$$oldsymbol{N}_{ ext{opt}} pprox rg \min_{oldsymbol{x} \in \mathbb{R}_+^M} f(oldsymbol{x}) = rg \min_{oldsymbol{x} \in \mathbb{R}_+^M} {}^1 / {}_2 \left\| R oldsymbol{x} - oldsymbol{d}
ight\|_2^2 \; ,$$

with cost function $f: \mathbb{R}^M \to \mathbb{R}^+$, which we manipulate to

$$f(\boldsymbol{x}) = \frac{1}{2}(R\boldsymbol{x} - \boldsymbol{d})^{T}(R\boldsymbol{x} - \boldsymbol{d})$$

$$= \frac{1}{2}(\boldsymbol{x}^{T}R^{T}R\boldsymbol{x} - \boldsymbol{x}^{T}R^{T}\boldsymbol{d} - \boldsymbol{d}^{T}R\boldsymbol{x} + \boldsymbol{d}^{T}\boldsymbol{d})$$

$$= \frac{1}{2}(\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{x}^{T}\boldsymbol{q} + \boldsymbol{q}^{T}\boldsymbol{x}) + \mathcal{O}(1)$$

$$= \frac{1}{2}\boldsymbol{x}^{T}P\boldsymbol{x} + \boldsymbol{q}^{T}\boldsymbol{x} + \mathcal{O}(1)$$

where we let $P:=R^TR\in\mathbb{R}^{M\times M}$ and $\boldsymbol{q}:=-R^T\boldsymbol{d}\in\mathbb{R}^M$ and leave out the constant $\boldsymbol{d}^T\boldsymbol{d}$ as $\mathcal{O}(1)$. We can express the nonnegativity constraint $x \geq 0$ as an equality constraint using a slack variable $s \in \mathbb{R}^{M}_{+}$,

$$-x+s=0 \Leftrightarrow Ax+s=b$$
,

where we set $A:=-1\in\mathbb{R}^{M\times M}$ and $\boldsymbol{b}:=\boldsymbol{0}\in\mathbb{R}^{M}$. This leaves us with a constrained quadratic program,

$$\min_{\boldsymbol{x} \in \mathbb{R}^{M}} \frac{1}{2} \boldsymbol{x}^{T} P \boldsymbol{x} + \boldsymbol{q}^{T} \boldsymbol{x},
s.t. A \boldsymbol{x} + \boldsymbol{s} = \boldsymbol{b}, \ \boldsymbol{s} \in \mathbb{R}^{M}_{+}. \tag{3}$$

$$s.t. A \boldsymbol{x} + \boldsymbol{s} = \boldsymbol{b}, \ \boldsymbol{s} \in \mathbb{R}_{+}^{M}. \tag{4}$$

We solve the quadratic problem in this exact form using Clarabel [1]. Note that in Clarabel notation, the slack variable is to be taken as an element of the nonnegativity cone. The integer solution can then be obtained from rounding,

$$oldsymbol{N}_{ ext{opt}} = |oldsymbol{x}| \in \mathbb{N}_0^M$$
 .

Pointwise Error between Simulation and Measurements

Adaptive Timestepping

Comparison of Optimization Methods

Algorithm	Abbreviation	Runtime / ms	RMSE / pA
Particle Swarm Optimization	PSO	22571	27.69
Gradient Descent + More Thuente	GD	18924	32.34
Limited-Memory BFGS + Hager Zhang	LBFGS	4845	32.20
Non-Negative Least Squares [2]	NNLS	318	28.00
Quadratic Program	QP	18	28.13

.........