GAME THEORY FOR COMPUTING

HW-4 SOLUTIONS

Problem 1

Given CTRs X,,..., Xk where dj = IP (end user dicks the jth slot). and per-dick valuations VI,..., Vn advertisers,

the valuation of ith advertiser regarding ith slot Vià = di Vi

Let Bij denote the allocation variable at the ith advertiser regarding ith slot.

i.e. $\beta_{ij} = \begin{cases} 1 & \text{; jth shot } 1 \\ 0 & \text{; otherwise} \end{cases}$

Then, Social welfare
$$\left[\overline{\Phi} = \sum_{i=1}^{n} \frac{\sum_{j=1}^{k} \beta_{ij}}{\widehat{J}^{-1}} \right]^{k}$$

Given
$$x_1 = \frac{2}{3}$$
 and $x_2 = \frac{1}{3}$ for the two slots, and per-click valuations $v_A = 10$, $v_B = 8$ and $v_C = 4$,

the valuations are $V_{A,1} = \alpha_1 \cdot v_A = \frac{2}{3} \times 10 = \frac{20}{3}$ $V_{A,2} = \alpha_2 \cdot v_A = \frac{1}{3} \times 10 = \frac{10}{3}$ $V_{B,1} = \alpha_1 \cdot v_B = \frac{2}{3} \times 8 = \frac{16}{3}$ $V_{B,1} = \alpha_2 \cdot v_B = \frac{1}{3} \times 8 = \frac{8}{3}$ $V_{B,2} = \alpha_2 \cdot v_B = \frac{1}{3} \times 8 = \frac{8}{3}$

$$V_{c,1} = \alpha_1 \cdot V_c = \frac{2}{3} \times 4 = \frac{8}{3}$$
 $V_{c,1} = \alpha_2 \cdot V_c = \frac{1}{3} \times 4 = \frac{4}{3}$
 $V_{c,2} = \alpha_2 \cdot V_c = \frac{1}{3} \times 4 = \frac{4}{3}$

Assuming B and C bords touthfully,

in GSP, if $b_A = 10$, $b_B = 8$, $b_c = 4$ are the brds, $\beta_{A,1} = 1$, $\beta_{A,2} = 0$, $\beta_{B,1} = 0$, $\beta_{B,2} = 1$, $\beta_{C,1} = \beta_{C,2} = 0$.

i.e. A gets slot 1, B gets slot 2.

P. T. O.

$$=) P_{A} = V_{B,1} = \frac{16}{3}, P_{B} = V_{c,2} = \frac{4}{3}, P_{C} = 0.$$

However, if
$$b_A = 5$$
, $b_B = 8$ and $b_C = 4$,

the allocation twins out to be

allocation turns
$$\beta_{A,1} = 0, \quad \beta_{A,2} = 1, \quad \beta_{B,1} = 1, \quad \beta_{B,2} = 0,$$

$$\beta_{C,1} = \beta_{C,2} = 0.$$

and the payments are
$$P_A = V_{c,2} = \frac{4}{3}$$
, $P_B = \alpha_1 \cdot b_A = \frac{2}{3} \times 5 = \frac{10}{3}$, $P_C = 0$.

:. Utilitées are given by

$$U_{A} = V_{A,1} \cdot \beta_{A,1} + V_{A,2} \cdot \beta_{A,2} - \beta_{A} = \frac{10}{3} - \frac{4}{3} = 2.$$

Since
$$V_A(b_A=5)=a>\frac{4}{3}=V_A(b_A=10)$$
,

A does not bord truthfully in GSP anctrons.

P.T.D.

if
$$b_A = 10$$
, $b_B = 8$ and $b_C = 4$,

then
$$\beta_A = \Phi_A - (\Phi - \beta_{A,1} V_{A,1} - \beta_{A,2} V_{A,2})$$

welfare of the remaining

$$= \left(8 \times \frac{2}{3} + 4 \times \frac{1}{3}\right) - \left(8 \times \frac{1}{3} + 0\right)$$

$$= \frac{20}{3} - \frac{8}{3} = 4.$$

$$\Rightarrow V_{A} = \frac{20}{3} - 4 = \frac{8}{3}.$$

$$V_{A} = \frac{a_{0}}{3} - 4$$
 $V_{A} = \frac{a_{0}}{3} - 4$
 $V_{A} = \frac{a_{0}}{3} - 4$

But, if
$$b_A = 5$$
, $b_A = 5$, $b_A = 5$, $b_A = 5$, $b_A = 5$, $b_A = 6$, b

$$\sqrt{V_A} = \frac{10}{3} - \frac{4}{3} = 2$$

Since
$$U_A(b_A = 10) = \frac{8}{3} > 2 = U_A(b_A = 5)$$
,

A bods bA = 10 and stays touthful in a VCG auction.

(d) If
$$b_A = 10$$
, $b_B = 8$, $b_c = 4$,

$$p_A = \left(8 \times \frac{2}{3} + 4 \times \frac{1}{3}\right) - \left(8 \times \frac{1}{3}\right) = 4$$

$$p_B = \left(10 \times \frac{2}{3} + 4 \times \frac{1}{3}\right) - \left(10 \times \frac{2}{3}\right) = \frac{4}{3}$$

$$p_C = \left(10 \times \frac{2}{3} + 8 \times \frac{1}{3}\right) - \left(10 \times \frac{2}{3} + 8 \times \frac{1}{3}\right) = 0$$

Prob. 2

	PLUR	ALITY	GUNTS
	CANDIDATE		1 11 -
Phorality rule assigns	N	35	35x1 = 35
1 point to Top-1-9	S	28	28x1 = 28
For Simplicity, we assume there are 100 voters in	J	37	37×1=37
total.			

Since J gets highest points, J wins.

(b) By Booda Count, N has the max. points. N wins.

BORDA COUNTS

CANDIDATE	## # POINTS	
2	35×2+(28+20)	
A 1	= 118	
5	28×2+(35+17)×1	
T	= 108 (20+17)x2+0=74	

-		1
/	1	
(-
1		

CANDIDATE	# VOTERS RANKING PIRST	# VOTERS RANKING LAST
N	35	17
S	28	20
J	37)	63

i. I is racked both as top candidate as well as last candidate by most # of voters.

(d)

Pair wise Contests	# WITERS
N 18. S	N: 35+20, S: 28+17 = 55 = 45
N vs J	N: 35+28, J: 20+17 = 63 = 37
s vs J	S: 35+28, J: 20+17

o. # wins for N = 2# wins for S = 1# wins for J = 0.

>> By Condorcet's criterion, N wins.

Since J wins by Plurality vote,
palurality rule does not follow Condorcet's
criteroon