On Multiphase-Linear Ranking Functions

Xie Li

June 19, 2020

Contributions

- Equivalence of different classes of ranking function.
- Algorithms for converting between ranking functions.
- Converting ranking functions on integers to rational.
- ▶ Depth bound and iteration bound for M Φ RF.

Single Path Linear Constraint Loop

Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

while
$$(x_2-x_1\leq 0,\, x_1+x_2\geq 1)$$
 do $x_2'=x_2-2x_1+1,\, x_1'=x_1$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

Ranking Functions

Definition (Linear Ranking Function(LRF))

$$f(x_1,...,x_n) = a_1x_1 + ... a_nx_n + a_0$$
, such that

- ▶ $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- ▶ $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-5$

Its LRF:
$$f(x) = x - 1$$

We can define a binary relation $\mathbf{x}\succeq\mathbf{x}'$ iff $f(\mathbf{x})-f(\mathbf{x}')\geq 1$ and $f(\mathbf{x})\geq 0$

Example: Nested Ranking Function

Example: Multiphase Ranking Function

Problem: LRF is not strong enough for all loops.

Example

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

 $f(x, y, z) = a_1x + a_2y + a_3z + b$ assume a_1, a_2, a_3 and b are given,

$$f(x, y, z) - f(x', y', z') = a_3 + ya_1 + za_2$$

variable y,z do not have bound and cannot be used in the ranking function.

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

x	y	z	z+1	y+1	x
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \le i \cdot \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i \cdot f_j(\mathbf{x}) \le 0.$$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example Revisit

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

 $\forall j \le i . \Delta f_j(\mathbf{x}'') \ge 1,$ $f_i(\mathbf{x}) \ge 0,$ $\forall j < i . f_j(\mathbf{x}) \le 0.$

Nested Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Loop condition: x+z>0. We only want to use this constraint for the ranking function.

$$\langle z+1, y+1, x+z \rangle$$

Definition (Nested Ranking Function)

A tuple $\langle f_1, \dots, f_d \rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}'' \in T$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Let $f_0 = 0$.

Nested is Multiphase, but not the opposite.

$$(x = -1, y = 0, z = 1)$$

$M\Phi RF$ to Nested Ranking Function?

Theorem

If T has a $M\Phi RF$ of depth d, then it has a nested ranking function of depth at most d.

Sythesising nested ranking function is in PTIME, with theorem above we have..

Lexicography Linear Ranking Function

Intuition: remind binary relation $\mathbf{x}\succeq\mathbf{x}'$ iff $f(\mathbf{x})-f(\mathbf{x}')\geq 1$ and $f(\mathbf{x})\geq 0.$

Generalize it into several phases using lexicographical order of ranking functions.

$$\langle f_1, f_2, \dots, f_d \rangle$$

 $(2, 3, 1, 3) \ge (2, 1, 5, 4)$

Definition (LLRF)

Given a set of transitions T we say that $\langle f_1, f_2, \dots, f_d \rangle$ is a LLRF (of depth d) for T if for every $\mathbf{x}'' \in T$ there is an index i such that

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

A LLRF is weak if ..

Example: $M\Phi RF$ is a LLRF

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

\boldsymbol{x}	y	z	z+1	y+1	\boldsymbol{x}
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

LLRF to M Φ RF?

Theorem (weak LLRF to M Φ RF)

If T has a weak LLRF of depth d, it has a $M\Phi$ RF of depth d.

Ranking Function Over Integers

$$A''\mathbf{x}'' \leq \mathbf{c}$$

- Rational convex polyhedra: polyhedra defined by $\mathcal{P} = \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid A''\mathbf{x}'' \leq \mathbf{c}\}.$
- ▶ Integers: $I(\mathcal{P}) = \mathcal{P} \cap \mathbb{Z}^{2n}$
- ▶ Integer hull: Q_I is the space of convex combinition of points in $I(\mathcal{P})$.

Why consider integer?

- ► Actual programs with int.
- More important, conclusions for rational does not always applicable in on integer version.

Example

while
$$(x_2 - x_1 \le 0, x_1 + x_2 \ge 1)$$
 do $x_2' = x_2 - 2x_1 + 1, x_1' = x_1$

For rationals:
$$x_1 = \frac{1}{2}, x_2 = \frac{1}{2}$$

For integers: there exists a linear ranking function

$$f(x_1, x_2) = x_1 + x_2$$

Integer to Rational

Theorem

Let $\langle f_1, f_2, \ldots, f_d \rangle$ be a weak LLRF for $I(\mathcal{P})$. Then there are constants c_1, \ldots, c_d such that $\langle f_1 + c_1, f_2 + c_2, \ldots, f_d + c_d \rangle$ is a weak LLRF for \mathcal{Q}_I

The Depth of a $M\Phi RF$

Idea: precompute an upper bound of depth \to a decision procedure for M ΦRF in general

Theorem

For integer B>0, following loop needs at lease B+1 components in any ${\it M}\Phi{\it RF}.$

while
$$(x \ge 1, y \ge 1, x \ge y, 2^B y \ge x)$$
 do $x' = 2x, y' = 3y$

Example

while
$$(x \ge 1, y \ge 1, x \ge y, 4y \ge x)$$
 do $x' = 2x, y' = 3y$

Iteration Bound

Theorem

An SLC loop that has a M Φ RF terminates in a number of iterations bounded by $O(||x_0||_{\infty})$

Future Work & Questions