NeurIPS 2019 Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models

Vancouver

33rd Conference on Neural Information Processing Systems

Vincent Le Guen^{1,2}, Nicolas Thome²

¹ EDF R&D, Chatou, France

² CEDRIC, Conservatoire National des Arts et Métiers, Paris, France

Context

Multi-step and non stationary time series forecasting (with sudden changes) Important in many contexts, eg anticipate future drops of electricity production

Task-dependent metrics for evaluating forecasts (*e.g.* Time Distortion Index [1], ramp score, Hausdorff) often **non differentiable**

⇒ Mean Squared Error (MSE) as a surrogate training loss for most state-ofthe-art models [2,3,4]

MSE however ill-adapted to favour interesting vs naïve forecasts...

Motivation: differentiable loss function for training deep models for precise shape and temporal change detection

Shape Loss

Based on **Dynamic Time Warping (DTW)** that computes optimal alignment \mathbf{A}^* between time series:

We use the soft-DTW [6] with $\min_{\gamma}(a_1,...,a_n) = -\gamma \log(\sum_{i=1}^n \exp(-a_i/\gamma))$

to get our **differentiable shape loss**: $\mathbf{A}^* = rg \min_{A \in \mathcal{A}_{k,k}} \left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i)
ight
angle$

$$\mathcal{L}_{shape}(\hat{\mathbf{y}}_i, \mathring{\mathbf{y}}_i) = DTW_{\gamma}(\hat{\mathbf{y}}_i, \mathring{\mathbf{y}}_i)$$

DILATE (Distortion Loss with shape and Time)

Multi-step time series forecasting: predict the future k-steps trajectory $\hat{\mathbf{y}}_i = (\hat{\mathbf{y}}_i^1, ..., \hat{\mathbf{y}}_i^k) \in \mathbb{R}^{d \times k}$ given input sequence $\mathbf{x}_i = (\mathbf{x}_i^1, ..., \mathbf{x}_i^n) \in \mathbb{R}^{p \times n}$

$$\mathcal{L}_{DILATE}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) = \alpha \, \mathcal{L}_{shape}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) + (1 - \alpha) \, \mathcal{L}_{temporal}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i)$$
Ground truth future trajectory y^*

$$\mathcal{L}_{DILATE} = \alpha \, \mathcal{L}_{shape} + (1 - \alpha) \, \mathcal{L}_{temporal}$$

$$\mathcal{L}_{shape}$$

$$\mathcal{L}_{$$

Temporal Loss

Quantify the deviation of optimal path ${\bf A}^*$ from the main diagonal with the Time Distortion Index (TDI) [1]:

Challenge: differentiating TDI: replace A^* by its smooth approximation:

$$\mathbf{A}_{\gamma}^{*} = \nabla_{\Delta} DTW_{\gamma}(\hat{\mathbf{y}}_{i}, \hat{\mathbf{y}}_{i}^{*}) = 1/Z \sum_{\mathbf{A} \in \mathcal{A}_{k,k}} \mathbf{A} \exp^{-\frac{\left(\mathbf{A}, \Delta(\hat{\mathbf{y}}_{i}, \hat{\mathbf{y}}_{i}^{*})\right)}{\gamma}}$$

$$\mathcal{L}_{temporal}(\hat{\mathbf{y}}_i, \hat{\mathbf{y}}_i^*) := \left\langle \mathbf{A}_{\gamma}^*, \mathbf{\Omega} \right\rangle = \frac{1}{Z} \sum_{\mathbf{A} \in \mathcal{A}_{k,k}} \left\langle \mathbf{A}, \mathbf{\Omega} \right\rangle \exp^{-\frac{\left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_i, \hat{\mathbf{y}}_i) \right\rangle}{\gamma}}$$

Efficient implementation

Direct computation of \mathcal{L}_{shape} and $\mathcal{L}_{temporal}$ intractable $(|\mathcal{A}_{k,k}| = O(exp(k^2)))$

⇒ <u>Solution</u>: dynamic programming with custom forward/backward implementation (Pytorch)

Experiments

3 various datasets: Synthetic, ECG 5000, Traffic Evaluate *k*-steps future trajectories (k=20 for Synthetic, 57 for ECG, 24 for Traffic)

		Fully connected network (MLP)		Recurrent neural network (Seq2Seq)			
Dataset	Eval	MSE	DTW_{γ} [13]	DILATE (ours)	MSE	DTW_{γ} [13]	DILATE (ours)
Synth	MSE	1.65 ± 0.14	4.82 ± 0.40	1.67 ± 0.184	$\boldsymbol{1.10 \pm 0.17}$	2.31 ± 0.45	1.21 ± 0.13
	DTW	38.6 ± 1.28	27.3 ± 1.37	32.1 ± 5.33	24.6 ± 1.20	22.7 ± 3.55	23.1 ± 2.44
	TDI	15.3 ± 1.39	26.9 ± 4.16	13.8 ± 0.712	17.2 ± 1.22	20.0 ± 3.72	14.8 ± 1.29
ECG	MSE	31.5 ± 1.39	70.9 ± 37.2	37.2 ± 3.59	21.2 ± 2.24	75.1 ± 6.30	30.3 ± 4.10
	DTW	19.5 ± 0.159	18.4 ± 0.749	17.7 ± 0.427	17.8 ± 1.62	17.1 ± 0.650	16.1 ± 0.156
	TDI	7.58 ± 0.192	38.9 ± 8.76	7.21 ± 0.886	8.27 ± 1.03)	27.2 ± 11.1	6.59 ± 0.786
Traffic	MSE	0.620 ± 0.010	2.52 ± 0.230	1.93 ± 0.080	0.890 ± 0.11	2.22 ± 0.26	1.00 ± 0.260
	DTW	24.6 ± 0.180	23.4 ± 5.40	23.1 ± 0.41	24.6 ± 1.85	22.6 ± 1.34	23.0 ± 1.62
	TDI	16.8 ± 0.799	27.4 ± 5.01	16.7 ± 0.508	15.4 ± 2.25	22.3 ± 3.66	14.4 ± 1.58

⇒ DILATE loss better when evaluated on shape (DTW) and time (TDI), equivalent when evaluated on MSE

State-of-the-art comparison: DILATE training can improve SOTA deep forecasting models (*e.g.* TT-RNN [4]) on shape and time metrics

Eval loss		LSTNet-rec [30]	TT-RNN [60, 61]	Seq2Seq DILATE
Euclidian	MSE (x100)	1.74 ± 0.11	0.837 ± 0.106	1.00 ± 0.260
Shape	DTW (x100)	42.0 ± 2.2	25.9 ± 1.99	23.0 ± 1.62
	Ramp (x10)	9.00 ± 0.577	6.71 ± 0.546	5.93 ± 0.235
Time	TDI (x10)	25.7 ± 4.75	17.8 ± 1.73	14.4 ± 1.58
	Hausdorff	$\textbf{2.34} \pm \textbf{1.41}$	2.19 ± 0.125	2.13 ± 0.514

Speedup compared to auto-diff

References

- [1] L. Vallance et al, Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time
- [2] Laptev, Time-series extreme event forecasting with NNs
 - u, Long-term forecasting using tensor-train RNNs, Arxiv
- [4] Deep state space models for time series forecasting,
- [5] Cuturi et al, Soft-DTW, ICML'17

