Sección SI 6 Resistencia al fuego de la estructura

1 Generalidades

- 1 La elevación de la temperatura que se produce como consecuencia de un incendio en un edificio afecta a su estructura de dos formas diferentes. Por un lado, los materiales ven afectadas sus propiedades, modificándose de forma importante su capacidad mecánica. Por otro, aparecen acciones indirectas como consecuencia de las deformaciones de los elementos, que generalmente dan lugar a tensiones que se suman a las debidas a otras acciones.
- 2 En este Documento Básico se indican únicamente métodos simplificados de cálculo suficientemente aproximados para la mayoría de las situaciones habituales (véase anejos B a F). Estos métodos sólo recogen el estudio de la resistencia al fuego de los elementos estructurales individuales ante la curva normalizada tiempo temperatura.
- Pueden adoptarse otros modelos de incendio para representar la evolución de la temperatura durante el incendio, tales como las denominadas *curvas paramétricas* o, para efectos locales los modelos de incendio de una o dos zonas o de *fuegos localizados* o métodos basados en dinámica de fluidos (CFD, según siglas inglesas) tales como los que se contemplan en la norma UNE-EN 1991-1-2:2004.
 - En dicha norma se recogen, asimismo, también otras *curvas nominales* para fuego exterior o para incendios producidos por combustibles de gran poder calorífico, como hidrocarburos, y métodos para el estudio de los elementos externos situados fuera de la envolvente del *sector de incendio* y a los que el fuego afecta a través de las aberturas en fachada.
- 4 En las normas UNE-EN 1992-1-2:2011, UNE-EN 1993-1-2:2016, UNE-EN 1994-1-2:2016, UNE-EN 1995-1-2:2016, se incluyen modelos de resistencia para los materiales.
- Los modelos de incendio citados en el párrafo 3 son adecuados para el estudio de edificios singulares o para el tratamiento global de la estructura o parte de ella, así como cuando se requiera un estudio más ajustado a la situación de incendio real.
- 6 En cualquier caso, también es válido evaluar el comportamiento de una estructura, de parte de ella o de un elemento estructural mediante la realización de los ensayos que establece el Real Decreto842/2013 de 31 de octubre.
- 7 Si se utilizan los métodos simplificados indicados en este Documento Básico no es necesario tener en cuenta las acciones indirectas derivadas del incendio.

2 Resistencia al fuego de la estructura

- 1 Se admite que un elemento tiene suficiente *resistencia al fuego* si, durante la duración del incendio, el valor de cálculo del efecto de las acciones, en todo instante t, no supera el valor de la resistencia de dicho elemento. En general, basta con hacer la comprobación en el instante de mayor temperatura que, con el modelo de *curva normalizada tiempo-temperatura*, se produce al final del mismo.
- 2 En el caso de sectores de riesgo mínimo y en aquellos sectores de incendio en los que, por su tamaño y por la distribución de la carga de fuego, no sea previsible la existencia de fuegos totalmente desarrollados, la comprobación de la resistencia al fuego puede hacerse elemento a elemento me-

diante el estudio por medio de *fuegos localizados*, según se indica en el Eurocódigo 1 (UNE-EN 1991-1-2: 2004) situando sucesivamente la *carga de fuego* en la posición previsible más desfavorable.

3 En este Documento Básico no se considera la capacidad portante de la estructura tras el incendio.

3 Elementos estructurales principales

- 1 Se considera que la *resistencia al fuego* de un elemento estructural principal del edificio (incluidos forjados, vigas y soportes), es suficiente si:
 - a) alcanza la clase indicada en la tabla 3.1 o 3.2 que representa el tiempo en minutos de resistencia ante la acción representada por la *curva normalizada tiempo temperatura*, o
 - soporta dicha acción durante el tiempo equivalente de exposición al fuego indicado en el anejo
 B.

Tabla 3.1 Resistencia al fuego suficiente de los elementos estructurales

		Plantas sobre rasante		
Uso del sector de incendio considerado ⁽¹⁾	Plantas de sótano	<i>altura de evacuación</i> del edificio		
		≤15 m	≤28 m	>28 m
Vivienda unifamiliar ⁽²⁾	R 30	R 30	-	-
Residencial Vivienda, Residencial Público, Docente, Administrativo	R 120	R 60	R 90	R 120
Comercial, Pública concurrencia, Hospitalario	R 120 ⁽³⁾	R 90	R 120	R 180
Aparcamiento (edificio de uso exclusivo o situado sobre otro uso)	R 90			
Aparcamiento (situado bajo un uso distinto)	R 120 ⁽⁴⁾			

⁽¹⁾ La resistencia al fuego suficiente R de los elementos estructurales de un suelo que separa sectores de incendio es función del uso del sector inferior. Los elementos estructurales de suelos que no delimitan un sector de incendios, sino que están contenidos en él, deben tener al menos la resistencia al fuego suficiente R que se exija para el uso de dicho sector

Tabla 3.2 Resistencia al fuego suficiente de los elementos estructurales de zonas de riesgo especial integradas en los edificios⁽¹⁾

Riesgo especial bajo	R 90
Riesgo especial medio	R 120
Riesgo especial alto	R 180

⁽¹⁾ No será inferior al de la estructura portante de la planta del edificio excepto cuando la zona se encuentre bajo una cubierta no prevista para evacuación y cuyo fallo no suponga riesgo para la estabilidad de otras plantas ni para la compartimentación contra incendios, en cuyo caso puede ser R 30.

La estructura principal de las cubiertas ligeras no previstas para ser utilizadas en la evacuación de los ocupantes y cuya altura respecto de la rasante exterior no exceda de 28 m, así como los elementos que únicamente sustenten dichas cubiertas, podrán ser R 30 cuando su fallo no pueda ocasionar daños graves a los edificios o establecimientos próximos, ni comprometer la estabilidad de otras plantas inferiores o la compartimentación de los sectores de incendio. A tales efectos, puede enten-

⁽²⁾ En viviendas unifamiliares agrupadas o adosadas, los elementos que formen parte de la estructura común tendrán la resistencia al fuego exigible a edificios de uso Residencial Vivienda.

⁽³⁾ R 180 si la altura de evacuación del edificio excede de 28 m.

⁽⁴⁾ R 180 cuando se trate de aparcamientos robotizados.

La resistencia al fuego suficiente R de los elementos estructurales de un suelo de una zona de riesgo especial es función del uso del espacio existente bajo dicho suelo

derse como ligera aquella cubierta cuya carga permanente debida únicamente a su cerramiento no exceda de 1 kN/m².

3 Los elementos estructurales de una escalera protegida o de un pasillo protegido que estén contenidos en el recinto de éstos, serán como mínimo R 30. Cuando se trate de escaleras especialmente protegidas no se exige resistencia al fuego a los elementos estructurales.

4 Elementos estructurales secundarios

- 1 Los elementos estructurales cuyo colapso ante la acción directa del incendio no pueda ocasionar daños a los ocupantes, ni comprometer la estabilidad global de la estructura, la evacuación o la compartimentación en sectores de incendio del edificio, como puede ser el caso de pequeñas entreplantas o de suelos o escaleras de construcción ligera, etc., no precisan cumplir ninguna exigencia de resistencia al fuego.
 - No obstante, todo suelo que, teniendo en cuenta lo anterior, deba garantizar la resistencia al fuego R que se establece en la tabla 3.1 del apartado anterior, debe ser accesible al menos por una escalera que garantice esa misma resistencia o que sea protegida.
- 2 Las estructuras sustentantes de cerramientos formados por elementos textiles, tales como carpas, serán R 30, excepto cuando se acredite que el elemento textil, además de ser nivel T2 conforme a la norma UNE-EN 15619:2014 o C-s2,d0, conforme a la UNE-EN 13501-1:2007, según se establece en el Capítulo 4 de la Sección 1 de este DB, presenta, en todas sus capas de cubrición, una perforación de superficie igual o mayor que 20 cm2 tras el ensayo definido en la norma UNE-EN 14115:2002.

5 Determinación de los efectos de las acciones durante el incendio

- 1 Deben ser consideradas las mismas acciones permanentes y variables que en el cálculo en situación persistente, si es probable que actúen en caso de incendio.
- 2 Los efectos de las acciones durante la exposición al incendio deben obtenerse del Documento Básico DB-SE.
- 3 Los valores de las distintas acciones y coeficientes deben ser obtenidos según se indica en el Documento Básico DB-SE, apartado 4.2.2.
- 4 Si se emplean los métodos indicados en este Documento Básico para el cálculo de la *resistencia al fuego* estructural puede tomarse como efecto de la acción de incendio únicamente el derivado del efecto de la temperatura en la resistencia del elemento estructural.
- 5 Como simplificación para el cálculo se puede estimar el efecto de las acciones de cálculo en situación de incendio a partir del efecto de las acciones de cálculo a temperatura normal, como:

$$\mathsf{E}_{\mathsf{fi},\mathsf{d}} = \eta_{\mathsf{fi}} \; \mathsf{E}_{\mathsf{d}} \tag{5.2}$$

siendo:

E_d efecto de las acciones de cálculo en situación persistente (temperatura normal);

η_{fi} factor de reducción.

donde el factor η_{fi} se puede obtener como:

$$\eta_{fi} = \frac{G_K + \psi_{1,1} Q_{K,1}}{\gamma_G G_K + \gamma_{Q,1} Q_{K,1}}$$
 (5.3)

donde el subíndice 1 es la acción variable dominante considerada en la situación persistente.

6 Determinación de la resistencia al fuego

- 1 La resistencia al fuego de un elemento puede establecerse de alguna de las formas siguientes:
 - a) comprobando las dimensiones de su sección transversal con lo indicado en las distintas tablas según el material dadas en los anejos C a F, para las distintas *resistencias al fuego*;
 - b) obteniendo su resistencia por los métodos simplificados dados en los mismos anejos.
 - mediante la realización de los ensayos que establece el Real Decreto 842/2013 de 31 de octubre.
- 2 En el análisis del elemento puede considerarse que las coacciones en los apoyos y extremos del elemento durante el tiempo de exposición al fuego no varían con respecto a las que se producen a temperatura normal.
- 3 Cualquier modo de fallo no tenido en cuenta explícitamente en el análisis de esfuerzos o en la respuesta estructural deberá evitarse mediante detalles constructivos apropiados.
- 4 Si el anejo correspondiente al material específico (C a F) no indica lo contrario, los valores de los coeficientes parciales de resistencia en situación de incendio deben tomarse iguales a la unidad:

$$\gamma_{M,fi} = 1$$

5 En la utilización de algunas tablas de especificaciones de hormigón y acero se considera el coeficiente de sobredimensionado μ_{fi} definido como:

$$\mu_{fi} = \frac{E_{fi,d}}{R_{fi,d,0}} \tag{6.1}$$

siendo:

R_{fi,d,0} resistencia del elemento estructural en situación de incendio en el instante inicial t=0, a temperatura normal.