

1/28

HBsAg CD8 IFN- γ ELISA

Figure 1

BEST AVAILABLE COPY

2/28

Figure 2

3/28

Figure 3

4/28

Figure 4

5/28

HBsAg CD8 ELISPOTs

Figure 5

6/28

Figure 6

7/28

Figure 7

8/28

Figure 8

9/28

IFN- γ secretion in response to UV inactivated HSV-2

Figure 9

10/28

Proliferation in response to UV-inactivated HSV-2

Figure 10

11/28

Figure 11

12/28

Figure 12

13/28

Figure 13

14/28

Figure 14

15/28

Figure 15

16/28

Figure 16

17/28

Figure 17

Figure 18

19/28

Figure 19**Sequence of p55 gag insert in pGagOptpr2**

5 ATGGGTGCCCGAGCTCGGTACTGTCTGGTGGAGAGCTGGACAGATGGGAGAAAATTAGGCT
GCGCCCGGGAGGCAGAAAGAAATACAAGCTCAAGCATATCGTGTGGCCTCGAGGGAGCTTG
AACGGTTTGCCTGAACCCAGGCCTGCTGGAAACATCTGAGGGATGTCGCCAGATCCTGGGG
CAATTGCAGCCATCCCTCCAGACCGGGAGTGAAGAGCTGAGGTCTGTATAACACAGTGGC
TACCCCTCTACTGCGTACACCAGAGGATCGAGATTAAAGGATACCAAGGAGGCCTGGACAAAAA
10 TTGAGGAGGAGCAAAACAAGAGCAAGAAGAAGGCCAGCAGGCAGCTGCTGACACTGGCATT
AGCAACCAGGTATCACAGAACTATCCTATTGTCCAAAACATTAGGGCCAGATGGTCATCA
GGCCATCAGCCCCGGACGCTCAATGCCCTGGTGAAGGTTGTCGAAGAGAAGGCCTTTCTC
CTGAGGTTATCCCCATGTTCTCCGCTTGAGTGAGGGGGCACTCCTCAGGACCTCAATACA
ATGCTTAATACCGTGGCGGCCATCAGGCCCATGCAAATGTTGAAGGAGACTATCACAGA
15 GGAGGCAGCCGAGTGGGACAGAGTGCATCCCGTCCACGCTGGCCAATCGCGCCGGACAGA
TGCAGGGAGCCTCGCGGCTCTGACATTGCCGGCACCACTCTACACTGCAAGAGCAAATCGGA
TGGATGACCAACAATCCTCCCATCCAGTTGGAGAAATCTATAAACGGTGGATCATTCTCGG
TCTCAATAAAATTGTTAGAATGACTCTCCGACATCCATCCTGACATTAGACAGGGACCCA
AAGAGCCTTTAGGGATTACGTCGACGGTTTATAAGACCTGCGAGCAGAGCAGGCCTCT
20 CAGGAGGTCAAAACTGGATGACGGAGACACTCCTGGTACAGAACGCTAACCCGACTGCAA
AACAAATCTGAAGGCACTAGGCCGGCTGCCACCCCTGGAAGAGATGATGACGCCCTGTCAGG
GAGTAGGCAGGACACAAAGCCAGAGTGTGGCCGAAGCCATGAGCCAGGTGACGAAC
TCCGCAACCACATGATGCAGAGAGGGAACTTCCGCAATCAGCGGAAGATCGTGAAGTGT
CAATTGCGGCAAGGAGGGTCATACCGCCCGCAACTGTCGGCCCTAGGAAGAAAGGGTGT
25 GGAAGTGGCGCAAGGAGGGACACCAGATGAAAGACTGTACAGAACGACAGGCCAATTTCTT
GGAAAGATTGGCCGAGCTACAAGGGAGACCTGGTAATTCTGCAAAGCAGGCCAGGAGCC
CACCGCCCCCTGAGGAATCCTCAGGTCCGGAGTGGAGACCACAACGCCCTCCCCAAAAC
AGGAACCAATCGACAAGGAGCTGTACCTTAACCTCTCGGTTCTCTGGCAACGAC
CCGTCGTCTCAATAA
30 MGARASVLSG GELDRWEKIR LRPGKKKYK LKHIVWASRE LERFAVNPL
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
LDKIEEEQNQ SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAIISPR
TLNAWVKVVE EKAESPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
35 LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQIGWM
TNNPPIPVGE IYKRWIILGL NKIVRMYSP SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC
QGVGGPGHKA RVLAEAMSQV TNSATIMMQR GNFRNQRKIV KCFNCGKEGH
TARNCRAPRK KGCKWKCGKEG HQMKDCTERQ ANFLGKIWPS YKGRPGNFLO
40 SRPEPTAPPE ESFRSGVETT TPPQKQEPIP KELYPLTSR SLFGNDPSSQ

20/28

Figure 20

Sequence of the p17/24trNEF insert in p17/24trNEF1

5 ATGGGTGCGAGAGCGTCAGTATTAGCAGGGGGAGAATTAGATCGATGGGAAAAATTGGTT
AAGGCCAGGGGGAAAGAAAAATAAATTAAAACATATAGTATGGCAAGCAGGGAGCTAG
AACGATTCCAGTTAACCTCTGGCTGTAGAACATCAGAAGGCTGTAGACAAATACTGGGA
CAGCTACAACCATCCCTCAGACAGGATCAGAAGAACTTAGATCATTATATAACAGTAGC
AACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTAGACAAGA
10 TAGAGGAAGAGCAAAACAAAAGTAAGAAAAAGCACAGCAAGCAGCAGCTGACACAGGACAC
AGCAATCAGGTCAGCCAAAATTACCTATAGTGCAGAACATCCAGGGCAAATGGTACATCA
GCCATATCACCTAGAACTTAAATGCATGGTAAAGTAGTAGAGAGAAGGCTTCAGCC
CAGAAGTGATAACCATGTTTCAGCATTATCAGAAGGAGCCACCCCACAAGATTTAACACC
ATGCTAACACAGTGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGA
15 GGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCAAGGGCTATTGCACCAAGGCCAGA
TGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCCTCAGGAACAAATAGGA
TGGATGACAAATAATCCACCTATCCCAGTAGGAGAAATTATAAAAGATGGATAATCCTGGG
ATAAATAAAATAGTAAGAATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACAA
AAGAACCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCCAGCAAGCTCA
20 CAGGAGGTAAAAAATTGGATGACAGAACCTTGTGGTCCAAATGCGAACCCAGATTGAA
GACTATTTAAAAGCATTGGGACCAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGG
GAGTAGGAGGACCCGGCCATAAGGCAAGAGTTGGTGGGTTCCAGTCACACCTCAGGTA
CCTTTAAGACCAATGACTTACAAGGAGCTGTAGATCTAGCCACTTTAAAAGAAAAGGG
GGGACTGGAAGGGCTAATTCACTCCAAAGAACAGATATCCTGATCTGTGGATCTACC
25 ACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCA
CTGACCTTGGATGGTGCCTACAAGCTAGTACCGAGTTGAGCCAGATAAGGTAGAAGAGGCCAA
TAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGGATGGATGACCCGGAGA
GAGAAGTGTAGAGTGGAGGTTGACAGCCACCTAGCATTCACTACGTGGCCAGAGCTG
CATCCGGAGTACTTCAAGAACGTGCTGA
30 MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPL
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
LDKIEEEQNQ SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR
TLNAWKVVE EKAESPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
35 LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQIGWM
TNNPPPIPVG EYKRWIILGL NKIVRMYSP SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQANPDC KTILKALGPA ATLEEMMTAC
QGVGGPGHK RVLVGFPVTP QVPLRPMTYK AAVDLSHFLK EKGGLEGLIH
SQRQRQDILDL WIYHTQGYFP DWQNYTPGPG VRYPPLTFGWC YKLVPVEPDK
40 VEEANKGENT SLLHPVSLHG MDDPEREVLE WRFDSHLAFH HVARELHPEY
FKNC*

Figure 21

Sequence of the p17/24opt/trNef insert in p17/24opt/trNef1

5 ATGGGTGCCGAGCTCGGTACTGTCTGGTGGAGAGCTGGACAGATGGGAGAAAATTAGGCT
 GCGCCCGGGAGGCAAAAGAAATACAAGCTCAAGCATATCGTGTGGCCTCGAGGGAGCTTG
 AACGGTTGCGGTGAACCCAGGCCTGCTGGAAACATCTGAGGGATGTCGCCAGATCCTGGGG
 CAATTGCAGCCATCCCTCCAGACCAGGGAGTGAAGAGCTGAGGTCTTGTATAACACAGTGGC
 TACCCCTCTACTGCGTACACCAGAGGATCGAGATAAGGATACCAAGGAGGCCCTGGACAAAAA
 10 TTGAGGAGGAGCAAAACAAGAGCAAGAAGAAGGCCCAGCAGGCAGCTGCTGACACTGGGCAT
 AGCAACCAGGTATCACAGAACTATCCTATTGTCCAAAACATTAGGGCCAGATGGTCATCA
 GCCCATCAGCCCCCGGACGCTCAATGCTGGGTGAAGGTTGTCGAAGAGAAGGCCTTCTC
 CTGAGGTTATCCCCATGTTCTCCGCTTGAGTGAGGGGGCCACTCCTCAGGACCTCAATACA
 ATGCTTAATACCGTGGCGGCCATCAGGCCCATGCAAATGTTGAAGGAGACTATCAACGA
 15 GGAGGCAGCCGAGTGGGACAGAGTGCATCCCGTCCACGCTGGCCAATCGCGCCGGACAGA
 TCGGGGAGCCTCGCGCTCTGACATTGCCGGCACCCACTACACTGCAAGAGCAATCGGA
 TGGATGACCAACAATCCTCCCATCCCAGTTGGAGAAATCTATAAACGGTGGATCATTCTCGG
 TCTCAATAAAATTGTTAGAATGTTAGCTCCGACATCCCTTGACATTAGACAGGGACCCA
 AAGAGCCTTTAGGGATTACGTCGACCGGTTTATAAGACCCCTGCGAGCAGAGCAGGCCCT
 20 CAGGAGGTCAAAACTGGATGACGGAGACACTCCTGGTACAGAACGCTAACCCGACTGCAA
 ACAATCTGAAGGCACTAGGCCGGCTGCCACCCCTGGAAGAGATGATGACCGCCTGTCAGG
 GAGTAGGCGGACCCGGACACAAAGCCAGAGTGTGATGGTGGGTTTCCAGTCACACCTCAG
 GTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAA
 GGGGGGACTGGAAGGGCTAATTCACTCCAAAGAAGACAAGATATCCTGATCTGTGGATCT
 25 ACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGGTAGATAT
 CCACTGACCTTGGATGGTGCTACAAGCTAGTACCGAGTTGAGCCAGATAAGGTAGAAGAGGC
 CAATAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGGATGGATGACCGG
 AGAGAGAAGTGTAGAGTGGAGGTTGACAGCCACCTAGCATTACACGTGGCCAGAG
 CTGCATCCGGAGTACTTCAAGAACGTGA
 30 MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPL
 LETSEGRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
 LDKIEEEQNQ SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAIISPR
 TLNAWKVVE EKAESPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
 35 LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQIGWM
 TNPPPIPVGIE IYKRWIIILGL NKIVRMYSP SILDIRQGPK EPFRDYVDRF
 YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC
 QGVGGPGHK A RVLMVGFPT PQVPLRPMTY KAAVDLSHFL KEKGGLEGLI
 HSQRQDILD LWIYHTQGYF PDWQNYTPGP GVRYPLTFGW CYKLVPVEPD
 40 KVEEANKGEN TSLLHPVSLH GMDDPEREVL EWRFDSHLAF HHVARELHPE
 YFKNC*

22/28

Figure 22
Sequence of RT insert of p7077-RT3:

5 ATGGGCCCATCAGTCCCATCGAGACCGTGCCGGTGAAGCTGAAACCCGGATGGACGGCCC
 CAAGGTCAAGCAGTGGCCACTCACCGAGGAGAAGATCAAGGCCCTGGGGAGATCTGCACCG
 AGATGGAGAAAGAGGGCAAGATCAGCAAGATCGGGCCTGAGAACCCATAAACACACCCCGTG
 TTTGCCATCAAGAAGAAGGACAGCACCAAGTGGCGCAAGCTGGTGGATTCCGGAGCTGAA
 10 TAAGCGGACCCAGGATTCTGGGAGGTCCAGCTGGCATCCCCATCCGGCGGCCCTGAAGA
 AGAAGAAAGAGCGTGACCGTGTGGACGTGGCGACGCTTACTTCAGCGTCCCTGGACGAG
 GACTTTAGAAAGTACACCGCCTTACCATCCCCTATCAACAACGAGACCCCTGGCATCAG
 ATATCAGTACAACCGTCTCCCCAGGGCTGGAAAGGGCTCTCCCGCCATTTCAGAGCTCCA
 TGACCAAGATCCTGGAGCCGTTCGGAAGCAGAACCCGATATCGTCATCTACCAAGTACATG
 15 GACGACCTGTACGTGGCTCTGACCTGGAAATCGGGCAGCATCGCACGAAGATTGAGGAGCT
 GAGGCAGCATCTGCTGAGATGGGGCTGACCACTCCGGACAAGAAGCATCAGAAGGAGCCGC
 CATTCTGTGGATGGCTACGAGCTCCATCCGACAAGTGGACCCTGCAGCCTATCGTCCTC
 CCCGAGAAGGACAGCTGGACCCTGAACGACATCCAGAAGCTGGTGGCAAGCTCAACTGGGC

23/28

TAGCCAGATCTATCCGGGATCAAGGTGCGCCAGCTCTGCAAGCTGCTGCGCGGCACCAAGG
CCCTGACCGAGGTGATTCCCCTCACGGAGGAAGCCGAGCTCGAGCTGGCTGAGAACCGGGAG
ATCCTGAAGGAGC^{CC}GTGCACGGCGTGTACTATGACCCCTCCAAGGACCTGATGCCGAAAT
CCAGAAGCAGGGCCAGGGCAGTGGACATACCAGATTACCAGGAGC^{TTT}CAAGAACCTCA
5 AGACCGGCAAGTACGCCGCATGAGGGCGCCACACCAACGATGTCAAGCAGCTGACCGAG
GCCGTCCAGAAGATCACGACCGAGTCCATCGTGATCTGGGGAGACACCCAGTTCAAGCT
GCCTATCCAGAAGGAGACCTGGGAGACGTGGTGGACCGAATATTGGCAGGCCACCTGGATT
CCGAGTGGGAGTTCGTGAATAACACCTCCTGGTGAAGCTGTGGTACCAAGCTCGAGAAGGAG
CCCATCGTGGCGCGGAGACATTCTACGTGGACGGCGGCCAACCGCGAAACAAAGCTCGG
10 GAAGGCCGGGTACGTACCAACCGGGCCAGAAGGTGTCACCC^TGACCGACACCA
ACCAGAAGACGGAGCTGCAGGCCATCTATCTCGCTCTCCAGGACTCCGCCTGGAGGTGAAC
ATCGTGACGGACAGCCAGTACCGC^TGGCATTATTCAAGGCCAGCCGACCAGTCCGAGAG
CGAACTGGTGAACCAGATTATCGAGCAGCTGATCAAGAAAGAGAAGGTCTACCTGCC^TGG
TCCC^CGGCCATAAGGGATTGGCGCAACGAGCAGGTGACAAGCTGGTGAAGTGC^{GGG}GATT
15 AGAAAGGTGCTGTAA

MPISPIETV SVKLPGMDG PKVKQWPLTE EKIKALVEIC TEMEKEGKIS
KIGPENPYNT PVFAIKKKDS TKWRKLVD^FR ELNKRTQDFW EVQLGIPHPA
GLKKKKSVTV LDVGDAYFSV PLDEDFRKY^T AFTIPSINNE TPGIRYQYNV
20 LPQGWKGSPA IFQSSMTKIL EPFRKQNPD^I VIYQYMDLY VGSDLEIGQH
RTKIEELRQH LLRWGLTPD KKHQKEPPFL WMGYELHPDK WTVQPIVLPE
KDSWTVDI^Q KLVGKLNWAS QIYPGIKVRQ LCKLLRGTKA LTEVIPLTEE
AELELAENRE ILKEPVHG^V YDPSKDLIAE IOKQGQQQWT YQIYQEPFKN
LKTGKYARMR GAHTNDVKQL TEAVQKITTE SIVIWGKTPK FKLPIQKETW
25 ETWWTEYWQA TWIPEWEFVN TPPLVKLWYQ LEKEPIVGAE TFYVDGAANR
ETKLGKAGYV TNRGRQKVVT LTDTTNQKTE LQAIYLALQD SGLEVNVITD
SQYALGIIQ^A QPDQSESELV NQIIEQLIKK EKVYLA^WVPA HKGIGGNEQV
DKLVSAGIRK VL*

Figure 23

Sequence of the coding insert in p73i-RT3:

5 ATGGGCCCATCAGTCCCATCGAGACC GTGCCGGTGAAGCTGAAACCCGGATGGACGGCCC
 CAAAGGTCAAGCAGTGGCCACTCACCGAGGAGAACGATCAAGGCCCTGGTGGAGATCTGCACCG
 AGATGGAGAAAGAGGGCAAGATCAGCAAGATCGGGCCTGAGAACCCATACAACACCCCCGTG
 TTTGCCATCAAGAAGAAGGACAGCACCAAGTGGCGCAAGCTGGTGGATTCCGGGAGCTGAA
 TAAAGCGGACCCAGGATTCTGGGAGGTCCAGCTGGCATCCCCATCCGGCCGGCCTGAAGA
 10 AGAAGAAGAGCGTGACCGTGTGGACGTGGCGACGTTACTTCAGCGTCCCTGGACGAG
 GACTTTAGAAAGTACACCGCTTTACCATCCATCTATCAACAACGAGACCCCTGGCATCAG
 ATATCAGTACAACGTCCCTCCCCAGGGCTGGAAGGGCTCTCCCGCCATTTCCAGAGCTCCA
 TGACCAAGATCCTGGAGCCGTTCGGAAGCAGAACCCGATATCGTCATCTACAGTACATG
 GACGACCTGTACGTGGCTCTGACCTGAAATCGGCAGCATCGCACGAAGATTGAGGAGCT
 15 GAGGCAGCATCTGCTGAGATGGGCCTGACCACTCCGACAAGAACGATCAGAAGGAGCCGC
 CATTCCCTGTGGATGGCTACGAGCTCCATCCGACAAGTGGACCGTGCAGCCTATCGTCCTC
 CCCGAGAAGGACAGCTGGACCGTGAACGACATCCAGAACGCTGGTGGCAAGCTCAACTGGC
 TAGCCAGATCTATCCGGATCAAGGTGCGCCAGCTCTGCAAGCTGCTGCGCGGACCAAGG
 CCCTGACCGAGGTGATTCCCTCACGGAGGAAGCCGAGCTGAGCTGGCTGAGAACCGGGAG
 20 ATCCTGAAGGAGCCGTGCACGGCGTGTACTATGACCCCTCCAAGGACCTGATGCCGAAAT

25/28

CAGCTGACCGAGGCCGTCCAGAAGATCACGACCGAGTCCATCGTATCTGGGGAAAGACACCCAAGTTC
 AAGCTGCCTATCCAGAAGGAGACCTGGAGACGTGGTGACCGAATATTGGCAGGCCACCTGGATTCCC
 GAGTGGGAGTTCTGTGAATAACACCTCCTCTGGTGAAGCTGTGGTACCAAGCTCGAGAAGGAGCCCACATCGT
 GGCGCGGAGACATTCTACGTGGACGGCGCGCCAACCGCAGAACAAAGCTCGGGAA
 5 GGCGGGTACGTACCAACCAGGGGCCAGAAGTCGTACCCGTACCGACACCACCAACCAGAAC
 GGAGCTGCAGGCCATCTATCTCGCTCTCCAGGACTCCGGCTGGAGGTGAACATCGTACGGACAGCCA
 GTACCGCCTGGCATTATTCAAGGCCAGCCGACAGTCCGAGAGCGAACCTGGTAACCAGATTATCGA
 GCAGCTGATCAAGAAAGAGAAGGTCTACCTCGCTGGTCCCGGCCATAAGGCATTGGCGAACGA
 GCAGGTCGACAAGCTGGTAGTGCAGGGATTAGAAAGGTGCTGTAA
 10 MGPISPIETV SVKLKPGMDG PKVKQWPLTE EKIKALVEIC TEMEKEGKIS
 KIGPENPYNT PVFAIKKKDS TKWRKLVDFR ELNKRTQDFW EVQLGIPH
 GLKKKKSVTV LDVGDAYFSV PLDEDFRKYA AFTIPSINNE TPGIRYQYNV
 LPQGWKGSPA IFQSSMTKIL EPFRKQNPDVI VIYQYMDDLY VGSDELIGQH
 15 RTKIEELRQH LLRWGLTPD KKHQKEPPFL WMGYELHPDK WTVQPIVLPE
 KDSWTVNNDIQ KLVGKLNWAS QIYPGIKVRQ LCKLLRGTKA LTEVIPLTEE
 AELELAENRE ILKEPVHGKV YDPSKDLIAE IQKQGQGQWT YQIYQEPEFKN
 LKTGKYARMR GAHTNDVKQL TEAVQKITTE SIVIWGKTPK FKLPIQKETW
 ETWWTEYWQA TWIPEWEFVN TPPLVKLWYQ LEKEPIVGAE TFYVDGAANR
 20 ETKLGKAGYV TNRGRQKVVT LTDTTNQKTE LQAIYLALQD SGLEVNIIVTD
 SQYALGIIQA QPDQSESELV NQIIEQLIKK EKVYLAWVPA HKGIGGNEQV
 DKLVSAGIRK VL*

26/28

Figure 24
Responses to Gag peptide measured using IFN-gamma ELIspot at 5 days post-boost

Figure 25

Responses to Nef peptide using IFN-gamma ELISPOT at 5 days post-boost

28/28

Figure 26

Responses to Rt peptide by IFN-gamma ELISPOT at 5 days post-boost

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.