# Advanced Graph Algorithms

Conf. dr. ing. Guillaume Ducoffe

guillaume.ducoffe@fmi.unibuc.ro

# Graph search

Given a graph G = (V, E), a (connected) graph search with start vertex  $v_{n-1}$  consists of a total ordering  $v_{n-1}, v_{n-2}, \ldots, v_0$  of the vertices, under the following rule:

- for every  $1 \le i \le n-1$ , let  $V_i = \bigcup_{j=i}^{n-1} N(v_j) \setminus \{v_i, v_{i+1}, \dots, v_{n-1}\}$ . If  $V_i \ne \emptyset$ , then  $v_{i-1} \in V_i$ .
- ightarrow "Choose any neighbour of an already visited vertex as the next vertex to be visited."

#### Today's objectives:

- Review of classical graph searches (DFS, BFS, and more).
- Implementation
- Properties

# Graph search vs. Spanning forests

**Observation**: in any graph search, all vertices in a same connected component must be consecutive.

#### Consequences:

- We can list all connected components: a new component starts each time we visit a vertex  $v_{i-1}$  with no neighbours in  $\{v_i, v_{i+1}, \dots, v_{n-1}\}$ .
- We can construct a *spanning tree* for every connected component: if a vertex  $v_i$  is in the same connected component as  $v_{i-1}$ , choose any of its neighbours in  $\{v_i, v_{i+1}, \ldots, v_{n-1}\}$  as its father node.

Complexity: Time to execute the search  $+ \mathcal{O}(n+m)$ .

# Algorithmic applications

In order to solve some fundamental graph problems, we only need to compute a spanning tree for each connected component.

#### Examples:

- Acyclicity: test whether all edges of the graph belong to one of the spanning trees.
- Bipartite: compute the unique bipartition of every spanning tree and check whether it is also valid for the whole graph.
- 2-edge connectivity: for any edge between a vertex v and its parent u, let us denote by  $T_v$  the spanning subtree rooted at v. Then, uv is a cut-edge (i.e., it disconnects the graph) if and only if there is no edge xy such that  $x \in V(T_v)$ ,  $y \notin V(T_v)$ .
  - $\rightarrow$  Keep track, for each xy not in the spanning forest, of the least common ancestor of x, y.

### **DFS**

Pick the **most recently visited** vertex with at least one neighbour unvisited. Then, go to an arbitrary unvisited neighbour of this vertex.



Equivalently: either continue the search to any neighbour of the current vertex (if possible) or backtrack to the father node in the search tree.

# **Implementation**

At any moment during the execution of the algorithm, we keep in a stack the path from the start vertex  $v_{n-1}$  to the current vertex  $v_i$ .

```
S := \{\}
S.push(v_{n-1})
Visit v_{n-1}
while !S.empty():
     u := S.top() //current vertex
     if there exists some v \in N(u) unvisited:
        S.push(v)
        Visit v
     else: S.pop()
Complexity: \mathcal{O}(n+m)
```

### Palm tree

### Definition (Palm tree)

A spanning tree output by DFS.

**Characterization**: A spanning tree of a connected graph G is a palm tree if and only if every *backward edge* xy (i.e., not in the spanning tree) satisfies that x is an ancestor of y, or y is an ancestor of x.

Consequence: one can decide in  $\mathcal{O}(n+m)$  time whether a spanning tree is a palm tree.

Application: simpler algorithm to compute all cut-edges in  $\mathcal{O}(n+m)$  time (and other related problems such as strongly connected components, etc.).

### **BFS**

Pick the **least recently visited** vertex with at least one neighbour unvisited. Then, go to an arbitrary unvisited neighbour of this vertex.



## **Implementation**

We keep in a queue the next vertices to be visited, in order.

```
Q := \{\}
Q.enqueue(v_{n-1})
visited[v_{n-1}] := True
while !Q.empty():
     u := Q.dequeue() //current vertex
     Visit u
     for all v \in N(u):
         if !visited[v]:
            Q.enqueue(v)
            visited[v] := True
Complexity: \mathcal{O}(n+m)
```

# Shortest path tree

If G is connected, then we can define the distance  $d_G(u, v) = minimum$  number of edges on a uv-path.

### Definition (Shortest-path tree)

Rooted spanning tree (T, r) such that  $d_G(r, v) = d_T(r, v)$  for every  $v \in V(G)$ .

Property: every output of a BFS is a shortest-path tree.

The converse is false:



# Recognition of BFS trees

Let (T, r) be a shortest-path tree of G, and let xy be a backward edge (of  $E(G) \setminus E(T)$ ). Edge xy is either:

- horizontal: d(x,r) = d(y,r)
- vertical: d(x, r) = d(y, r) 1.

Observation: only vertical edges matter.

Manber's property: if z = lca(x, y) and  $a_x, a_y$  are the respective ancestors of x, y such that  $d(a_x, r) = d(a_y, r) = d(z, r) + 1$ , then we must visit  $a_y$  before  $a_x$  in the BFS.

 $\rightarrow$  Add an arc  $(a_x, a_y)$ . For every level, the resulting directed graph must be a DAG! Any topological ordering indicates in which order we should visit vertices of this level, with the additional properties that all children of a same node must be visited consecutively.

# Layering search

A weakening of BFS: Pick a closest to the root visited vertex with at least one neighbour unvisited. Then, go to an arbitrary unvisited neighbour of this vertex.

#### Proposition

A spanning tree is a shortest-path tree if and only if it is the output of a layering search.

### **LexBFS**

The visited neighbours of each vertex are ordered by decreasing label. At every step, the next vertex to be visited must have a label which is **lexicographically** maximum.



#### Partition Refinement

- Data Structure that maintains an ordered collection of pairwise disjoint sets, subject to the following basic operations:
  - init(V): initialize the structure with one set, equal to V.
  - refine(S): for each set X such that  $X \cap S \neq \emptyset$  and  $X \setminus S \neq \emptyset$ , we replace X by the two consecutive new sets  $X \cap S$  and  $X \setminus S$ .

• Operation init(V) is in worst-case  $\mathcal{O}(|V|)$ . Each operation refine(S) is in worst-case  $\mathcal{O}(|S|)$ . Note that these are optimal runtimes!

# Implementation

- Elements in V are maintained in a doubly-linked list  $\mathcal{L}$ , such that all elements in a same set X are consecutive.
- Each set X of the partition is represented by a structure with two fields: pointers to its first and last elements in  $\mathcal{L}$ .
- ullet Each node in the list  ${\mathcal L}$  stores a pointer to the set X which contains it.



### Refinement

- To each set X, "lazily" associate an empty list L[X] (we effectively create the list only if it needs to be accessed at some point during the execution of the algorithm).
- For each  $s \in S$ , access to its set X and add a pointer to s in L[X]. Put a pointer to X in an auxiliary list  $\mathcal{H}$  (the sets of  $\mathcal{H}$  are those intersecting S).
- For each set X in  $\mathcal{H}$ , if  $L[X] \neq X$ , then:
  - Update the first and last element of X as its first and last elements not in S (forward/backward search in  $\mathcal{L}$ ).
  - Remove all elements in L[X] from  $\mathcal{L}$ ;
  - Reinsert L[X] immediately before the first element of X (or immediately after the last element of X);
  - Create a new set from L[X].

# Refinement: illustration



# Application to LexBFS

Traverse backward the list of all vertices – with the start vertex  $v_{n-1}$  at the end.

Repeatedly visit the next vertex  $v_i$  and refine the unvisited vertices according to  $N(v_i)$ .



Complexity:  $\mathcal{O}(n+m)$ 

### LexBFS-tree

### Theorem (Beisegel et al., 2019)

Deciding whether a spanning tree is the output of a LexBFS is NP-complete.

Tightly related to the following end-vertex problem:

 Given a vertex v in a graph G, does there exist a graph search where we visit v last?

The end-vertex problem is NP-complete for LexBFS, but also for DFS, BFS, etc.

### **LexDFS**

The vertices are labeled from 1 to n (before they were labeled from n-1 to 0). As before, the visited neighbours of each vertex are ordered by decreasing label. At every step, the next vertex to be visited must have a label which is lexicographically maximum.



**Open**: existence of an  $\mathcal{O}(n+m)$ -time implementation? Spinrad claimed an  $\mathcal{O}(n+m\log\log n)$ -time implementation.

# Implementation in $\mathcal{O}(n + m \log n)$ time

- 1) Traverse forward the list of all vertices with the start vertex  $v_1$  at the front.
- 2) After i steps, unvisited vertices are grouped by decreasing labels  $X_{i,1}, X_{i,2}, \ldots, X_{i,q_i}$  such that  $lab(X_{i,1}) \geq lab(X_{i,2}) \geq \ldots \geq lab(X_{i,q_i})$ .
- 3) We refine:  $X_{i,1} \cap N(v_i), X_{i,1} \setminus N(v_i), X_{i,2} \cap N(v_i), X_{i,2} \setminus N(v_i), \dots, X_{i,q_i} \cap N(v_i), X_{i,q_i} \setminus N(v_i)$ .
- 4) The intersections with  $N(v_i)$  are pushed to the left:  $X_{i,1} \cap N(v_i), X_{i,2} \cap N(v_i), \dots, X_{i,q_i} \cap N(v_i), X_{i,1} \setminus N(v_i), X_{i,2} \setminus N(v_i), \dots, X_{i,q_i} \setminus N(v_i)$ .
- $\rightarrow$  This has to be done while respecting the group orders. If all groups  $X_{i,j}$  are labeled by decreasing integers  $\ell_{i,1} > \ell_{i,2} > \ell_{i,3} > \ldots > \ell_{i,q_i}$  then it can be done in  $\mathcal{O}(d(v_i)\log n)$  time by sorting.

#### **MCS**

At every step, the next vertex to be visited must have a **maximum number of visited neighbours**.



In general, a MCS is neither a BFS nor a DFS. However, it has common properties with both LexDFS and LexBFS.

# Implementation

A **frequency queue** stores a collection of repeated elements, ordered by their number of repetitions.

#### Two operations:

- insertion of a new element (if the element was already present, its number of repetitions increases).
- output and removal of any element with maximum number of repetitions.

<u>Implementation</u>: we store a list of lists  $[L[i_0], L[i_1], \ldots, L[i_q]]$  such that all elements repeated exactly  $i_j$  times are stored in list  $L[i_j]$ , and  $i_0 < i_1 < \ldots < i_q$ . A pointer to the position of each element in  $L[i_j]$  is stored in a separate Hash table.

ightarrow Every operation in expected  $\mathcal{O}(1)$  time.

# Application to MCS

FQ := empty frequency queue.

Insert  $v_{n-1}$  in FQ.

#### While FQ is nonempty:

- 1) Output a vertex  $v_i$  with maximum frequency (removed from FQ).
- 2) Visit  $v_i$
- 3) Insert all neighbours of  $v_i$  in FQ (if a neighbour was already present, increase its number of repetitions).

Complexity: in expected O(n+m) time.

#### **MNS**

Every unvisited vertex stores the set of all its visited neighbours. At every step, the next vertex to be visited must have a set of visited neighbours which is **inclusion-wise maximal**.

Far-reaching generalization of:

- LexBFS
- LexDFS
- MCS

Common properties to all these graph searches can be explained/proved only once by proving them directly for MNS.

# Four-point characterizations

• Generic search:



• BFS:



• DFS:



# Four-point characterizations

• LexBFS:



LexDFS:



MNS:



Consequence: Polynomial-time recognition of search orderings.

### What about MCS?

No 4-point characterization known.

(P<sub>3</sub>) If  $a < b < \{c_1, ..., c_k\}$ ,  $c_1, ..., c_k$  pairwise distinct vertices, and  $ac_i \in E$  and  $bc_i \notin E$ , i = 1, ..., k, then there are pairwise distinct vertices,  $d_1, ..., d_k$  such that  $b < d_i$ ,  $d_ib \in E$  and  $d_ia \notin E$ , i = 1, ..., k.

Recognition of MCS order in  $\mathcal{O}(n+m)$  time: scan the ordering and, for every vertex not yet visited, keep track of its number of visited neighbours.

# Multi-sweep

- At some points during the execution of some graph search, there may be several vertices which could be visited next.
- A tie-break rule consists in an additional rule in order to decide *unambiguously* which vertex must be next visited.
- For instance, we may use the ordering obtained from a previous search.
- This is a powerful approach for many problems (e.g., recognition of graph classes).
- Application to the recognition of (Lex)DFS/BFS orders: just execute the algorithm and use the order to be checked for tie-break rules.
- $\rightarrow$  equivalent point of view: in the partition refinement data structures, vertices are sorted according to the order to be verified.

# Weighted graphs

If all edge-weights are positive, we can use Dijkstra's algorithm as a replacement for BFS:

```
H := empty heap
```

Insert every  $v \in V$  in H with infinite value.

$$H[v_{n-1}] := 0 //start vertex$$

while H is nonempty:

$$(v_i, d_i) := H.extract_min()$$

for all  $u \in N(v_i)$  such that u is in the heap:

if 
$$d_i + w(v_i, u) < H[u]$$
: H.decrease\_key(u,  $d_i + w(v_i, u)$ )

We need to perform on the heap: n insertions, n deletions, and  $\mathcal{O}(m)$  decrease key operations.

 $\rightarrow \mathcal{O}(n \log n + m)$  time by using Fibonacci heaps.

# Optimality

Being given a vertex v with n elements, we construct a star with n+1 nodes, whose center is numbered n+1 and whose leaves are numbered  $0,1,\ldots,n$ .

• For every i such that  $0 \le i \le n$ , the edge between i and the center n+1 has weight v[i].

**Proposition**: If we follow the order in which Dijkstra's algorithm visits the nodes, then we can sort vector v.

Consequence:  $\Omega(n \log n)$ -time lower bound.

# Questions

