

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы у	управления»	
КАФЕДРА «Компьютерные системы и се:	ги»	
НАПРАВЛЕНИЕ ПОДГОТОВКИ <u>«09.03.</u>	01 Информатика и вычисл	ительная техника»
C	ТЧЕТ	
	орная работа № 3	
Название: «Проектирование устрой Цисциплина: «Основы проектирова Вариант № 38		ове ПЛИС»
Студент <u>ИУ6-62Б</u>		А.Е.Медведев
(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель	(Полпись, дата)	(И. О. Фамилия)

Цель работы:

Закрепление на практике теоретических знаний о способах реализации устройств управления, исследование способов организации узлов ЭВМ, освоение принципов проектирования цифровых устройств на основе ПЛИС.

По варианту в данном домашнем задании будет графф под номером 2. Название платы — Nexus2 Сам граф приведён на рисунке 1

Рисунок 1 – Граф задания

Таблица 1 – Варианты диаграмм и активных сигналов.

S1	S2	S3	S4	S5	S6
1	3,5	6	-	7	2,4

Таблица 2 – Условия переходов и наименование отладочной платы

У1	. У2	У3	У4	У5	У6	У7	У8	У9	У10	У11	У12	У13	У14	У15
0	CE	AC	@	!E+C	F	@	!DF	В	0	!A!C	A!B	0	0	ABCF

Таблица 3 – Условия переходов и наименование отладочной платы

У1	У2	У3	У4	У5	У6	У7	У8	У9	У10	У11	У12	У13	У14	У15
-	-	-	-	-	_	-	_	-	-	-	_	_	-	-

Этап 1

В лабораторной работе необходимо разработать и реализовать на ПЛИС XC3S200 или XC3E-500 управляющий автомат схемного типа, обрабатывающий входное командное слово C=A,B,C,D,E,F, выдающий сигналы управления M=M0,...,Mk-1 операционному блоку Конечный граф представлен на рисунке 2

Вариант 2

Рисунок 2 – Исправленные граф

Этап 2

Результаты моделирования приведены на рисунках 3.

Рисунок 3 – Переключения состояний программы

Исходный код модуля верхнего уровня разрабатываемого устройства приведен в листинге 1.

Листинг 1 – Описание устройства

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity main is
PORT ( CLK : IN std_logic;
COUNT : IN std_logic;
RESET : IN std_logic;
SW : IN std_logic_vector (5 DOWNTO 0);
LED : OUT std_logic_vector (7 DOWNTO 0));
end main;
architecture Behavioral of main is
COMPONENT control_unit
PORT (
C : IN std_logic_vector (5 DOWNTO 0);
CLK : IN std_logic;
RST : IN std_logic;
M : OUT std_logic_vector (7 DOWNTO 0) );
END COMPONENT;
COMPONENT stab
```

```
PORT (
RST: IN STD_LOGIC; --Системный сигнал сброса
CLK: IN STD_LOGIC; --Сигнал синхронизации
COUNT: IN STD_LOGIC; --Сигнал кнопки с дребезгом
CNT: OUT STD_LOGIC --Сигнал кнопки, очищенный от дребезга
);
END COMPONENT;
SIGNAL CNT_int:std_logic;
begin
stab_inst : stab
PORT MAP (CLK=>CLK,
COUNT => COUNT,
RST=>RESET,
CNT=>CNT_int);
control_unit_inst : control_unit
PORT MAP (C=>SW,
RST=>RESET,
M = > LED,
CLK=>CNT_int);
end Behavioral;
```

Вывод:

В ходе выполнения лабораторной работы были закреплены на практике навыки разработки устройств управления на языке VHDL (в данном случае – устройства управления с жесткой логикой на основе цифровых автоматов)