

NCERT EXRECISES

- 10.1. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:
- (i) (CH₃)2CHCH(Cl)CH₃
- (ii) CH₃CH₂CH(CH₃)CH(C₂H₅)CI
- (iii) CH₃CH₂C(CH₃)₂CH₂I
- (iv) (CH₃)3CCH₂CH(Br)C6H₅
- (v) CH₃CH(CH₃)CH(Br)CH₃
- (vi) CH₃C(C2H₅)₂CH2Br
- (vii) $CH_3C(CI)(C_2H_5)CH_2CH_3$
- (viii) CH₃CH=C(CI)CH₂CH(CH₃)₂
- (ix) CH₃CH=CHC(Br)(CH₃)₂
- (x) $p-CIC_6H_4CH_2CH(CH_3)_2$
- (xi) m-ClCH₂C₆H₄CH₂C(CH₃)₃
- (xii) o-Br -C₆H₄CH (CH₃)CH₂CH₃

Ans:

- (i) 2-Chloro-3methylbutane, 2° alkyl halide
- (ii) 3-Chloro-4methyl hexane, 2° alkyl halide
- (iii) 1 -lodo-2,2-dimethylbutane, 1° alkyl halide
- (iv) I-Bromo-3, 3-dimethyl -1-phenylbutane, 2° benzylic halide
- (v) 2-Bromo-3-methylbutane, 2° alkyl halide
- (vi) 1-Bromo-2-ethyl-2-methylbutane, 1° alkyl halide
- (vii) 3-Chloro-3-methylpentane, 3° alkyl halide
- (viii) 3-Chloro-5-methylhex-2-ene, vinylic halide
- (ix) 4-Bromo-4-methylpent-2-ene, allylic halide
- (x) 1-Chloro-4-(2-methylpropyl) benzene, aryl halide
- (xi) 1-Chloromethyl-3- (2,2-dimethylpropyl) benzene, 1° benzylic halide.
- (xii) 1-Bromo-2-(I-methylpropyl) benzene, aryl halide.
- 10.2. Give the IUPAC names of the following compounds:
- (i) CH₃CH(CI)CH (Br)CH₃
- (ii) CHF2CBrCIF
- (iii) CICH₂C=CCH₂Br
- (iv) (CCl₃)₃CCl
- (v) $CH_3C(p-ClC_6H_4)_2CH(Br)CH_3$
- (vi) $(CH_3)_3CCH=C(CI)C_6H_4I-p$

Ans:

- (i) 2-Bromo-3-chlorobutane
- (ii) 1-Bromo-1 -chloro-1,2,2-trifluoroethane
- (iii) 1-Bromo-4-chlorobut-2-yne
- (iv) 2-(Trichloromethyl)-I, 1,1,2,3,3,3- heptachloropropane
- (v) 2-Bromo-3,3-bis-(4-chlorophenyl) butane
- (vi) 1-Chloro-l-(4-iodophenyl)-3,3- dimethylbut-l-ene.
- 10.3. Write the structures of the following organic halogen compounds:

- (i) 2-Chloro-3-methylpentane
- (ii) p-Bromochlorobenzene
- (iii) 1-Chloro-4-ethylcyclohexane
- (iv) 2r (2-Chlorophenyl) -1- iodooctane
- (v) 2-Bromobutane
- (vi) 4-tert-Butyl-3-iodoheptane
- (vii) 1-Bromo-4-sec-butyl-2-methylbenzene
- (viii) 1,4-Dibromobut-2-ene

Ans:

(i)

2-Chloro-3-methylpentane

(ii)

p-Bromochlorobenzene

(iii)

1-Chloro-4-ethylcyclohexane

(iv)

$$I - CH_2 - CH_3$$

$$G' - G' - G' - G' - CH_2 - CH_3$$

$$G' - G' - G' - G' - CH_2 - CH_3$$

2-(2-Chlorophenyl)-1-iodooctane

$$F$$
 F
 F
 F
 F
 F

Perfluorobenzene

4-Tert-Butyl-3-iodoheptane

1-Bromo-4-sec-butyl-2-methylbenzene

(viii)

$$Br - \overset{1}{C}H_2 - \overset{2}{C}H = \overset{3}{C}H - \overset{4}{C}H_2 - Br$$

1,4-Dibromobut-2-ene

10.4. Which one of the following has the highest dipole moment? (i) CH_3Cl_2 (ii) CHCl_3 (iii) CCl_4

Ans: The three dimensional structures of the three compounds along with the direction of dipole moment in each of their bonds are given below:

 ${\rm CCl_4}$ being symmetrical has zero dipole moment. In CHC $_5$, the resultant of two C - Cl dipole moments is opposed by the resultant of C - H and C - Cl bonds. Since the dipole moment of latter resultant is expected to be smaller than the former, CHCl $_3$ has a finite dipole (1.03 D) moment.

In CH_2CI_2 , the resultant of two C - Cl dipole moments is reinforced by resultant of two C - H dipoles, therefore, CH_2CI_2 (1.62 D) has a dipole moment higher than that of $CHCI_3$. Thus, CH_2CI_2 has highest

dipole moment.

10.5. A hydrocarbon $\rm C_5H_{10}$ does not react with chlorine in dark but gives a single monochloro compound $\rm C_5H_9Cl$ in bright sunlight. Identify the hydrocarbon.

Ans: The hydrocarbon with molecular formula ${\rm C_5H_{10}}$ can either a cycloalkane or an alkene.

Since the compound does not react with ${\rm Cl}_2$ in the dark, therefore it cannot be an alkene but must be a cycloalkane. Since the cycloalkane reacts with ${\rm Cl}_2$ in the presence of bright sunlight to give a single monochloro compound, ${\rm C}_5{\rm H}_9{\rm Cl}$, therefore, all the ten hydrogen atoms of the cycloalkanes must be equivalent. Thus, the cycloalkane is cyclopentane.

No reaction
$$\leftarrow \frac{\text{Cl}_2}{\text{dark}}$$

Cyclopentane

 (C_5H_{10})
 $\leftarrow Cl_2$

Sunlight

Monochloro-cyclopentane

 (C_5H_9Cl)

10.6. Write the isomers of the compound having formula ${\rm QH_9Br}$. Ans:

Double bond equivalent (DBE) for
$$C_4H_9Br$$

= $\frac{4(4-2) + 9(1-2) + 1(1-2)}{2} + 1 = 0$

So none of the isomer has a ring or unsaturation, so the isomers are position or chain isomers

(i)1-butanol (ii)1-chlorobutane (iii) but-l-ene. Ans:

(i)
$$CH_3 CH_2 CH_2 CH_2 OH + KI + H_3 PO_4$$

 $\rightarrow CH_3 CH_2 CH_2 CH_2 I + H_2 O + KH_2 PO_4$

(iii)
$$CH_3 CH_2 - CH = CH_2 + HBr \xrightarrow{Permide}$$

CH₃CH₂CH₂CH₂Br ↓ NaI / Acetone CH₃CH₂CH₂CH₂'-I+NaBr

10.8. What are ambident nucleophiles? Explain with an example. Ans: Nucleophiles which can attack through two different sites are called ambident nucleophiles. For example, cyanide ion is a resonance hybrid of the following two structures:

It can attack through carbon to form cyanide and through N to form is O cyanide.

10.9. Which compound in each of the following-pairs . will react faster in SN2 reaction with -OH?

- (i) CH₃Br or CH₃I
- (ii) (CH₃)₃CCl or CH₃Cl

Ans:

- (i) Since I $^-$ ion is a better leaving group than Br $^-$ ion, therefore, CH $_3$ I reacts faster CH $_3$ Br in S $_N$ 2 reaction with OH $^-$ ion.
- (ii) On steric grounds, 1° alkyl halides are more reactive than tertalkyl halides in $S_N 2$ reactions. Therefore, CH_3CI will react at a faster rate than $(CH_3)_3CCI$ in a $S_N 2$ reaction with OH^- ion.
- 10.10. Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethonol and identify the major alkene:
- (i) 1-Bromo-l-methylcyclohexane
- (ii) 2-Chloro-2-methylbutane.
- (ill) 2,2,3-Trimethyl-3-bromopentane.

Ans:

********* END *******