Uniform Convergence of Function Sequences/Series

Kang Qiyu

Nanyang Technological University 50 Nanyang Ave, Singapore 639798 kang0080@e.ntu.edu.sg

Sep. 2023

Motivation

Why do we care about function sequences/series?

Motivation

• Stone-Weierstras theorem: can we "uniformly" well approximate an arbitrary continuous function f over an interval using polynomial sequence $\{P_n\}$?

ullet neural network approximation capabilities as width $o \infty$

- sequential estimation/learning: $Y_1(\omega) = f_1(X_1(\omega)), \ Y_2(\omega) = f_2(X_1(\omega), X_2(\omega)), \ldots$ How does the estimator $Y_n(\omega)$ behave? Can we get an arbitrarily good estimation of some unknown r.v. $Y(\omega)$ or parameter asymptotically?
- numerical computation: E.g. numerically approximate incomplete gamma function $\gamma(a,x) \equiv \int_0^x \mathrm{e}^{-t} t^{a-1} \; \mathrm{d}t \approx x^a \sum_{n=0}^N \frac{(-1)^n x^n}{(a+n)n!}.$
- network analysis (social, citation, collaboration): converge from increasing sized graphs to an asymptotic graphon (symmetric function $W: [0,1]^2 \mapsto [0,1]$)

Pointwise Convergence

We confine our attention to complex- or real-valued functions.

Definition (pointwise convergence)

Suppose $\{f_n\}$, $n=1,2,3,\ldots$, is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\{f_n(x)\}$ converges for every $x \in E$. We can then define a limit function f, by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E).$$
 (1)

We say that " $\{f_n\}$ converges to f pointwise on E".

summary: $\{f_n\}$ converges to f pointwise on E iff $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x\in E$.

Remark (Series)

Similarly, if $\sum f_n(x)$ converges for $x \in E$, and if we define the limit function as $f(x) = \sum_{n=1}^{\infty} f_n(x)$ $(x \in E)$. We say that " $\sum f_n$ converges to f pointwise on E".

Uniform Convergence

Motivation: The rate of convergence is "uniform" across the entire domain.

Definition (uniform convergence)

We say that a sequence of functions $\{f_n\}$, $n=1,2,3,\ldots$, converges uniformly on E to a function f if for every $\varepsilon>0$ there is an integer N such that $n\geq N$ implies

$$|f_n(x) - f(x)| \le \varepsilon \tag{2}$$

for all $x \in E$.

summary: $\{f_n\}$ converges to f uniformly on E iff $\forall \epsilon > 0$, $\exists N$ s.t. $\sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon$ for all n > N.

Remark (Series)

Similarly, the series $\sum f_n(x)$ converges uniformly on E if the sequence $\{s_n\}$ of partial sums defined by $s_n(x) := \sum_{i=1}^n f_i(x)$ converges uniformly on E.

Comparison

- **1** pointwise convergence: $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x\in E$. equivalent ε - δ description: for every x>0, and for every $\varepsilon\in E$, there is an integer $N(\varepsilon,x)$, depending on ε and on x, s.t. $|f_n(x)-f(x)|\leq \varepsilon$ holds if $n\geq N$.
- **Q** uniform convergence: for every $\varepsilon > 0$ there is an integer $N(\varepsilon)$, depending only on ε , s.t. $|f_n(x) f(x)| \le \varepsilon$ if $n \ge N$ for all $x \in E$.

- **Observation:** uniform convergence ⇒ pointwise convergence.
- **Question:** uniform convergence \Leftarrow pointwise convergence?

uniform convergence \neq pointwise convergence

Consider $\{f_n(x)\}$ defined on the interval [0,1] by:

$$f_n(x) = \begin{cases} nx & \text{for } 0 \le x \le \frac{1}{n} \\ 1 & \text{for } \frac{1}{n} < x \le 1 \end{cases}$$

pointwisely convergent to

$$f(x) = \begin{cases} 0 & \text{for } x = 0\\ 1 & \text{for } 0 < x \le 1 \end{cases}$$

but not uniformly:

$$\left| f_n \left(\frac{1}{2n^2} \right) - f \left(\frac{1}{2n^2} \right) \right| = \left| n \cdot \frac{1}{2n^2} - 1 \right| = 1 - \frac{1}{2n} \ge \frac{1}{2}$$

Interchange of Limit Processes (e.g. continuous, differentiable, or integrable)

Uniform Convergence and Continuity

Theorem (Interchanging Two Limits)

Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and assume the existence of $\lim_{t\to x} f_n(t)$ for all n, we have

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

basic theorem \Rightarrow theorems about continuous, differentiable.

Proof Hint: Let a ε be given.

Step 1: Define $A_n := \lim_{t \to x} f_n(t)$. Uniform convergence $\Rightarrow \exists N$ s.t.

$$|f_n(t) - f_m(t)| \le \varepsilon \ \forall n, m \ge N, \forall t \in E$$
. It follows that $|A_n - A_m| \le \varepsilon$, a Cauchy sequence. So, it converges to a limit, denoted by A .

sequence. So, it converges to a limit, denoted by A.

Stop 2: |f(t)-A| < |f(t)-f(t)| + |f(t)-A| + |A| Provi

Step 2:
$$|f(t) - A| \le |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A|$$
. Prove each item $< \varepsilon/3$ for large enough n and for t sufficiently close to x . We therefore have $|f(t) - A| < \varepsilon$ when t is sufficiently close to x .

Corollary (Continuity Preserved under Uniform Convergence)

If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

Example: pointwise convergence may lead to discontinuous

Let

$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 (x real; $n = 0, 1, 2, ...$),

and consider

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$$

Since $f_n(0) = 0$, we have f(0) = 0. For $x \neq 0$, the last series is a convergent geometric series with sum $1+x^2$. Hence

$$f(x) = \begin{cases} 0 & (x = 0), \\ 1 + x^2 & (x \neq 0). \end{cases}$$

So, a pointwise convergent series of continuous functions may have a discontinuous sum.

Uniform Convergence and Differentiation

• $f_n \to f$ uniformly \Rightarrow the convergence of $f'_n \to f'$? No! Example:

$$f_n(x) = \frac{\sin nx}{\sqrt{n}}$$
 (x real, $n = 1, 2, 3, ...$),

and

$$f(x) = \lim_{n \to \infty} f_n(x) = 0.$$

Then f'(x) = 0, and $f'_n(x) = \sqrt{n} \cos nx$, so that $\{f'_n\}$ does not converge to f'. For instance, $f'_n(0) = \sqrt{n} \to +\infty$ as $n \to \infty$, whereas f'(0) = 0. So we need stronger hypotheses to get $f'_n \to f'!$

Theorem (Interchanging Limit and Differentiation)

Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}\$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad (a \le x \le b).$$

Uniform Convergence and Differentiation

Proof Hint: Let $\varepsilon > 0$ be given.

Step 1: Prove $\{f_n\} \to f$ uniformly:

Uniform convergence of $\{f'_n\}$ leads to $|f'_n(t) - f'_m(t)| < \frac{\varepsilon}{2(b-a)}$ $(a \le t \le b)$ if $n,m \geq N_0$. Apply the mean value theorem to $f_n - f_m$ and get

$$|f_n(x)-f_m(x)-f_n(t)+f_m(t)|\leq \frac{|x-t|\varepsilon}{2(b-a)}\leq \frac{\varepsilon}{2}. \text{ Finally use } |f_n(x)-f_m(x)|\leq |f_n(x)-f_m(x)-f_m(x)|+|f_n(x_0)-f_m(x_0)|<\varepsilon \text{ when } n,m>N_1 \text{ for all } x.$$

Step 2: Prove $\{\phi_n\} \to \phi(t)$ uniformly: Fix a x and define

$$\phi_n(t) = \frac{f_n(t) - f_n(x)}{t - x}, \quad \phi(t) = \frac{f(t) - f(x)}{t - x}$$

for $a < t < b, t \neq x$.

Step 3: Interchanging limits: Since $\{f_n\}$ converges to f, it follows that

$$\lim_{n \to \infty} \phi_n(t) = \phi(t)$$

uniformly for $a \le t \le b, t \ne x$. Theorem (Interchanging Two Limits) show that

$$\lim_{t \to x} \phi(t) = \lim_{n \to \infty} f'_n(x);$$

Analytic Functions/Power Series

Lemma (Uniform Convergence Test for Series)

Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n \quad (x \in E, n = 1, 2, 3, \ldots).$$

Then $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Theorem

Suppose the real-valued series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, and define

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \quad (|x| < R).$$
 (3)

Then the series converges uniformly on $[-R+\varepsilon,R-\varepsilon]$, no matter which $\varepsilon>0$ is chosen. The function f is continuous and differentiable in (-R,R), and

$$f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1} \quad (|x| < R).$$
 (4)

Proof Hint: Use the above Lemma and "Interchanging Limit and Differentiation".

Post-Course Tasks and Recommended Readings

- Self-write the complete proofs of discussed theorems.
- Complete all assigned homework.
- Delve into Convergence Types: L_1 convergence, almost surely convergence, pointwise convergence, and uniform convergence.
- Investigate the Approximation Capabilities of Neural Networks [1].
- Explore the intricacies of Sequential Estimation [2].
- Explore Neural Ordinary Differential Equations [3] and the associated existence and uniqueness of solutions: Picard-Lindelöf theorem [4] where the function sequence and uniform convergence are used in the proof.

References

- 1 Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), pp.251-257.
- 2 Chapter 3, Stochastic processes, detection, and estimation, MIT 6.432 Course Notes
- 3 Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information processing systems 31 (2018).
- 4 Chapter II, Theorem 1.1., Hartman, P., 2002. Ordinary differential equations. Society for Industrial and Applied Mathematics.