Hone Work #2 - Ophere & Romi

Part 1: Theoretical Exercises (16 points)

1. Gini Impurity

In class, we defined the Gini impurity as

$$arphi_{Gini}(p)=1-\sum_{j=1}^k p_j^2, \qquad p\in [0,1]^k \ ,$$

where $p=(p_1,\ldots,p_k)$ represents class proportions in a set of instances. This means that $\sum_{j=1}^k p_j=1$.

1. Prove that

$$arphi_{Gini}(p) \leq 1 - 1/k.$$

Hint

ullet Express the function $f:\mathbb{R}^{k-1}
ightarrow\mathbb{R}$:

$$f(p_1,\ldots,p_{k-1})=arphi_{Gini}(p_1,\ldots,1-\sum_{i=1}^k).$$

- Argue that f is bounded from above, hence it has a maximal value in \mathbb{R}^{k-1} .
- Solve the equation abla f=0 and argue that the solution is unique.

(you do not have to follow the hint; all correct and clearly written solutions are acceptable)

Let Y_1 and Y_2 be two independent random variables, each represnting the class label of a randomly sampled instance from the set. Namely:

$$\Pr[Y_i=j]=p_j, \qquad i\in\{1,2\}, \qquad j\in\{1\dots k\}\,.$$

2. Prove that Gini impurity is the probability that two randomly sampled instances (with replacement) from the set of instances have different class labels. Namley, that

$$\varphi_{Gini}(p) = \Pr[Y_1 \neq Y_2].$$

	2.	Let	Ψ	& ሂ	be	Ama	· ·^	deper	elent	(AL	سولوسر		rarial	les.	Each	repr	esent	- fh	و دلاه	22
	Ĺ	label a	st a	rans	lowly	عمد	pled	inst	ance	Low	~ f	فبو ر	set:	pr(۲	(ن= :	= (3	; e { 1	, 2}	je [1	k
					surity															
					(p) =		Y, ≠Y,]												
					V				ity th	e two	Samp	les ho	we							
										ss labo										
	ې د	Σ4. ≠	- ሂጊ -	1-8-	JY, = 4	i Corl	0 .2 .6.) '''''''												
					.[Y, = Y ndext or[Y,=(2 نے ایم											
		1	*		2.4	,4 6	2 0 >	1010	10											
	ю	oth sou sawe	abrel	ace																
		_	7					. (*)	0		C	rø	.,	٠٢،١٠						
		/a a			U		probak	sility	for	each	ot	the	posib	ાતાહક						
	F _	j=1 (Y	,=() 1.	Y2 =()	= \(\frac{2}{5}\)	(N)														
_							K		Sinific											
_	8- 2	Y, ≠ Y,] = 1.	- p-E	7, = Y ₂]	= 1	- \S). 4 <u>-</u>	(Gir	(م)										

2. Information Gain

In class we claimed that information gain is always non-negative. Here, we will prove this for the specific case of binary classification, where we have only two class labels.

Recall that information gain is defined as follows:

$$IG(S,A) = H(S) - \sum_{v \in Values(A)} rac{|S_v|}{|S|} H(S_v) \; ,$$

where S is a set of data instances, A is an attribute (ferature) with a finite set of possible values Values(A), and H is the entropy function applied to the probability vector associated with the class frequencies. Assuming that there are only two class lables, the entropy can be expressed as follows:

$$H(S) = h(p_1) = -p_1 \log(p_1) - (1-p_1) \log(1-p_1),$$

where p_1 is the frequency of the first label (and $1-p_1$ is the frequency of the second label). Here, we adhere to the convention that $0 \cdot \log(0) = 0$ (as $\log(0)$ is undefined).

We start by examining the function h(), which is also called the *binary entropy function* (see plot below). One feature of this function is that it is <u>concave</u>. Concave functions satisfy the following property: for every $x_1, x_2 \in [0, 1]$ and for every $\lambda_1, \lambda_2 \in [0, 1]$ such that $\lambda_1 + \lambda_2 = 1$, we have:

$$h(\lambda_1x_1+\lambda_2x_2)\geq \lambda_1h(x_1)+\lambda_2h(x_2).$$

1. Use the inequality in (1) to prove (by induction) a more general claim: for any $t \geq 2$ points $x_1 \dots x_t \in [0,1]$, and t weights $\lambda_1 \dots \lambda_t \in [0,1]$ such that $\sum_{j=1}^t \lambda_j = 1$, we have

$$h\left(\sum_{j=1}^t \lambda_j x_j
ight) \geq \sum_{j=1}^t \lambda_j h(x_j) \ .$$

This inequality, which applies to all concave functions, is also called Jensen's inequality.

2. Use the inequality you proved above to prove that information gain is always non-negative (when there are only two classes).

