16.4. AN ALGORITHM TO FIND A QUATERNION REPRESENTING A ROTATION597

First observe that the trace of R_q is given by

$$tr(R_a) = 3a^2 - b^2 - c^2 - d^2,$$

but since $a^2 + b^2 + c^2 + d^2 = 1$, we get $tr(R_q) = 4a^2 - 1$, so

$$a^2 = \frac{\operatorname{tr}(R_q) + 1}{4}.$$

If $R \in SO(3)$ is any rotation matrix and if we write

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}, \end{pmatrix}$$

we are looking for a unit quaternion $q \in SU(2)$ such that $R_q = R$. Therefore, we must have

$$a^2 = \frac{\operatorname{tr}(R) + 1}{4}.$$

We also know that

$$tr(R) = 1 + 2\cos\theta,$$

where $\theta \in [0, \pi]$ is the angle of the rotation R, so we get

$$a^2 = \frac{\cos \theta + 1}{2} = \cos^2 \left(\frac{\theta}{2}\right),$$

which implies that

$$|a| = \cos\left(\frac{\theta}{2}\right) \quad (0 \le \theta \le \pi).$$

Note that we may assume that $\theta \in [0, \pi]$, because if $\pi \le \theta \le 2\pi$, then $\theta - 2\pi \in [-\pi, 0]$, and then the rotation of angle $\theta - 2\pi$ and axis determined by the vector (b, c, d) is the same as the rotation of angle $2\pi - \theta \in [0, \pi]$ and axis determined by the vector -(b, c, d). There are two cases.

Case 1. $\operatorname{tr}(R) \neq -1$, or equivalently $\theta \neq \pi$. In this case $a \neq 0$. Pick

$$a = \frac{\sqrt{\operatorname{tr}(R) + 1}}{2}.$$

Then by equating $R - R^{\top}$ and $R_q - R_q^{\top}$, we get

$$4ab = r_{32} - r_{23}$$

$$4ac = r_{13} - r_{31}$$

$$4ad = r_{21} - r_{12},$$