Unique Games - pt. II

Lucas Daher

2018

1 Redução ao multi cut

1.1 MAX 2LIN

Existe uma versão especial do unique games problem chamada MAX 2LIN(k), em que temos um conjunto de rótulos $L = \{0, 1, ..., k-1\}$ e é dado um grafo G = (V, E). Para cada $uv \in E$, a permutação π_{uv} é dada por uma constante $c_{uv} \in L$, tal que se u recebe o rótulo $x_u \in L$ e $v, x_v \in L$, então $\pi_{uv}(x_u) = x_v$ se e somente se $x_u - x_v = c_{uv} \pmod{k}$.

Para o MAX 2LIN, definimos outra conjectura, equivalente à UGC definida originalmente:

Conjectura 1.1 (LUGC: Linear Unique Games Conjecture) dados δ , $\epsilon > 0$ quaisquer, existe k > 0 dependente de δ e ϵ tal que, para o MAX 2LIN(k), é NP-difícil distinguir entre instâncias em que pelo menos uma fração de $1 - \epsilon$ das restrições pode ser satisfeita e instâncias em que no máximo uma fração δ das restrições pode ser satisfeita.

1.2 MULTI CUT

Relembramos a definição do problema do multi cut: dado um grafo $G=(V,\ E)$ com custos $c_e\geq 0$ para todo $e\in E$ e pares de vértices $L:=\{(s_1,\ t_1),\ (s_2,\ t_2),\ldots,\ (s_n,t_n)\}$ com $s_i\neq t_i,$ para $1\leq i\leq n,$ queremos encontrar um conjunto de arestas R de custo mínimo tal que para todo $1\leq i\leq n$ não há caminho entre s_i e t_i no grafo $(V,\ E-R)$.

1.3 Modelagem

Consideramos uma instância do MAX 2LIN(k) que recebe o grafo $G=(V,\ E)$. Criamos uma instância do multi cut descrita a seguir:

- * Seja $V' := V \times L$
- * Seja E' conjunto de aresta tal que $((u, i), (v, j)) \in E'$ se e somente se $uv \in E$ e $i j = c_{uv} \pmod{k}$. Para todo $e \in E'$, e tem custo unitário
- * G' := (V', E')
- * para todo $u \in V$ e todo par $i, j \in L$ com $i \neq j$ criamos um par $((u, i), (u, j)) \in L$

Note que |E'| = k|E| e |V'| = k|V|.

1.4 Desenvolvimento

Primeiramente apresentamos os lema 1.1 e lema 1.2:

Lema 1.1 Para $0 \le \epsilon \le 1$ qualquer, dado uma solução viável de uma instância do MAX 2LIN(k) que satisfaz pelo menos $(1-\epsilon)|E|$ arestas, existe uma solução viável da instância equivalente do multi cut de custo $\le \epsilon |E'|$.

Lema 1.2 Para $0 \le \epsilon \le 1$ qualquer, dado uma solução viável de uma instância do multi cut de custo $\le \epsilon |E'|$, existe uma solução viável da instância equivalente do MAX 2LIN(k) que satisfaz pelo menos $(1-2\epsilon)|E|$ arestas.

A partir desses dois lemas, derivamos o seguinte corolário:

Corolário 1.1 Assumindo a UGC e que $P \neq NP$, para qualquer constante $\alpha \geq 1$, não existe α -aproximação para o problema do multicut.

1.5 Provas adicionais

Apresentaremos a seguir provas para lema 1.1, lema 1.2 e corolário 1.1:

Lema 1.1. Começamos com uma instância MAX 2LIN(k) e uma solução viável que satisfaz pelo menos $(1 - \epsilon)|E|$ arestas. Construiremos uma solução para a instância do multi cut equivalente de custo menor ou igual a $\epsilon k|E| = \epsilon |E'|$.

Dividimos o conjunto de vértices V' em k partes: V'_0, \ldots, V'_{k-1} . Para $0 \le i \le k-1$ e para todo $v \in V$, fazemos $(v, x_v + i \pmod k) \in V'_i$. Para toda aresta uv tal que $u \in V'_i, v \in V'_j$ e $i \ne j, uv \in R$.

Primeiramente, notamos que R é de fato um multi corte de G'. Lembramos que todos os pares source-sink são da forma ((u, i), (u, j)) com $i \neq j$. É claro que $(u, i) \in V'_m$ e $(u, j) \in V'_n$ com $m \neq n$. Como removemos todas as arestas entre os conjuntos de vértices, se dois vértices estão em conjuntos diferentes, eles estão em componentes conexas diferentes de (V', E' - R). Assim, não há caminho entre (u, i) e (u, j).

Agora devemos calcular o custo de R. Vamos provar que se $((u, i), (v, j)) \in R$, então uv não é satisfeita pela solução do MAX 2LIN(k), ou seja, $c_{uv} \neq (x_u - x_v) \pmod{k}$. Como para cada $uv \in E$ correspondem k arestas em E' e a solução satisfaz pelo menos $(1 - \epsilon)|E|$ arestas, temos que $|R| \leq k|E|\epsilon \leq k|E'|$.

Seja ((u, i), (v, j)) uma aresta qualquer tal que (u, i) e (v, j) estão em conjuntos diferentes, digamos $(u, i) \in V'_{\alpha}$ e $(v, j) \in V'_{\beta}$, com $\alpha \neq \beta$. Por construção, temos que:

$$i - j = c_{uv} \pmod{k}$$

 $i = x_u + \alpha \pmod{k}$
 $j = x_v + \beta \pmod{k}$

Então:

$$c_{uv} = i - j \pmod{k}$$

$$= (x_u + \alpha) - (x_v + \beta) \pmod{k}$$

$$= (x_u - x_v) + (\alpha - \beta) \pmod{k}$$

$$\neq (x_u - x_v) \pmod{k}$$

Lema 1.2. Suponha que ao remover as arestas de G' que resolvem uma instância do multi cut, acabamos com l componentes conexas. Vamos indexar aleatoriamente rótulos de 1 a l para o conjunto de vértices de cada partição resultando nos conjuntos V_1', V_2', \ldots, V_l' . Usaremos essa partição para determinar a solução da instância do MAX 2LIN(k).

Seja $u \in V$, existe uma componente V'_c com c mínimo tal que para algum $i \in L$ existe um vértice $(u, i) \in V'_c$ e para todo $j \in L$, $j \neq i$ não existe vértice $(u, j) \in V'_{c'}$ para c' < c. Como a partição é dada por um multi corte, sabemos

que não há $(u, j) \in V'_c$ com $j \neq i$. Daremos rótulo i para o u e dizemos que V'_c define u.

Seja $uv \in E$, analisaremos as k arestas correspondentes em E'. Seja ϵ_{uv} a fração das k arestas que faz parte do multi corte, então para a fração de $(1-\epsilon_{uv})$, ambas as pontas de cada aresta estão dentro de uma mesma componente.

Seja V'_c uma componente que contém os vértices (u, i) e (v, j) e a aresta ((u, i), (v, j)). Notamos que se V'_c define u e v, então os rótulos dados a u e v satisfazem $uv \in E$, pois a existência da aresta ((u, i), (v, j)) implica que $i - j = c_{uv} \pmod{k}$. Definimos que (u, i) e (v, j) são uma componente da subpartição boa. Para uv, há $(1 - \epsilon_{uv})k$ componentes na subpartição boa.

Agora, analisaremos a probabilidade de uma componente da subpartição boa definir u e v, um lower bound da probabilidade de satisfazer uv. Temos no máximo $2\epsilon_{uv}k$ componentes da subpartição ruim, que são de 3 possíveis tipos:

- * contém (u, i) e não contém (v, j);
- * contém (v, j) e não contém (u, i);
- * contém (u, i) e (v, j), mas não contém ((u, i), (v, j));

Se uma componente de ruim for ordenada primeiro, uma componente de boa não irá definir os rótulos de u e v. Seja $b \leq 2\epsilon_{uv}k$ a quantidade de partições ruins, a probabilidade de uma partição ruim ser ordenada primeiro é:

$$\frac{b}{b+(1-\epsilon_{uv})k} \leq \frac{2\epsilon_{uv}k}{2\epsilon_{uv}k+(1-\epsilon_{uv})k} \leq \frac{2\epsilon_{uv}}{1+\epsilon_{uv}} \leq 2\epsilon_{uv}$$

Assim, o número esperado de arestas não satisfeitas é $\leq 2\Sigma_{uv\in E}\epsilon_{uv}$. Por definição, $k\Sigma_{uv\in E}\epsilon_{uv}$ arestas estão no multi corte. Assim, se o multi corte tem custo $k\Sigma_{uv\in E}\epsilon_{uv} \leq \epsilon|E'| = \epsilon k|E|$, então $\Sigma_{uv\in E}\epsilon_{uv} \leq \epsilon|E|$. Finalmente, o número esperado de arestas não satisfeitas é $\leq 2\epsilon|E|$ e o número esperado de arestas satisfeitas é pelo menos $(1-2\epsilon)|E|$.

Desaleatorizando o algoritmo, obtemos o corolário 1.2:

Corolário 1.2 Existe um algoritmo determinístico polinomial tal que, dado uma solução viável de uma instância do multi cut de custo $\leq \epsilon |E'|$, retorna uma solução viável da instância equivalente do MAX 2LIN(k) que satisfaz pelo menos $(1-2\epsilon)|E|$ arestas.

Corolário 1.1. Supomos que para alguma constante $\alpha \geq 1$ existe uma α -aproximação para o problema do multi cut. Escolhemos ϵ e δ quaisquer tais que

 $\epsilon < \frac{1-\delta}{2\alpha}$. Dado uma instância qualquer do MAX 2LIN(k), criamos uma instância do multi cut como descrita na seção 1.3. Para essa instância do multi cut criada, encontramos a α -aproximação e, utilizando o resultado do corolário 1.2, obtemos uma solução para a instância do MAX 2LIN(k).

Dado uma instância do MAX 2LIN(k) em que pelo menos $(1-\epsilon)|E|$ restrições podem ser satisfeitas, pelo lema 1.1, a solução ótima da instância equivalente do multi cut tem solução ótima de custo menor ou igual a $\epsilon |E'|$. Então, a solução retornada pelo algoritmo terá custo menor ou igual a $\epsilon \alpha |E'|$. Pelo corolário 1.2, a solução que obtemos do MAX 2LIN(k) satisfaz pelo menos $(1-2\epsilon\alpha)|E|$ restrições.

Dado uma instância do MAX 2LIN(k) em que no máximo $\delta|E|$ restrições podem ser satisfeitas, nosso algoritmo irá satisfazer no máximo $\delta|E|$ restrições. Como $\epsilon < \frac{1-\delta}{2\alpha}$, então $(1-2\epsilon\alpha) > \delta$ e conseguimos distinguir em tempo polinomial entre instâncias que satisfazem no máximo $\delta|E|$ e no mínimo $(1-\epsilon)|E|$ restrições. Absurdo!