Mathematical Proof

John Shea

January 13, 2019

Assignment #2

Question 1

- a. Any of:
 - $\{x \mid x \text{ is a positive integer that is divisible by } 5\}$
 - $\{x \in \mathbb{Z}^+ \mid 5 \equiv 0 \pmod{5}\}$
 - $\{5x \mid x \in \mathbb{Z}^+\}$
- b. Any of:
 - $\{x \mid x \text{ is an integer between -4 and 3 inclusive}\}$
 - $\{x \in \mathbb{Z} \mid -4 \le x \le 3\}$
- c. Any of:
 - $\{x \mid x \text{ is a prime number}\}$
 - $\{x \mid \pi(x)\}$

Question 2

a.

 $(A \cap B) \setminus C$ (i.e. $A \cap B$ remove C)

b.

Question 3

Question 4

a.
$$W \to (S \land \neg M)$$

b. $(W \land \neg M) \to S$

b.
$$(W \land \neg M) \rightarrow S$$

c.
$$W \to (S \land \neg M)$$

Explanation

- b and e are equivalent
 - using the distribution law, e become $(K \vee J) \wedge (K \vee \neg K)$
 - $-\ K \vee \neg K$ is a tautology, therefore the above statement is equivalent to $J \vee K,$ which is statement b
- c and d are equivalent
 - using DeMorgan's law, d becomes $\neg\neg J \vee \neg K$
 - using the Double Negation law, the above statement becomes $J \vee \neg K$, which is c

Question 5

Preliminaries

N	$M \wedge \neg N$	$\neg M \wedge N$	$\neg M \vee N$	$\neg M \vee N$
TRUE	FALSE	FALSE	FALSE	TRUE
FALSE	TRUE	FALSE	FALSE	FALSE
TRUE	FALSE	TRUE	FALSE	TRUE
FALSE	FALSE	FALSE	TRUE	TRUE
	TRUE FALSE TRUE	TRUE FALSE FALSE TRUE TRUE FALSE	TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE	N $M \wedge \neg N$ $\neg M \wedge N$ $\neg M \vee N$ TRUEFALSEFALSEFALSEFALSETRUEFALSEFALSEFALSEFALSEFALSETRUE

Conclusion

$(M \wedge \neg N) \vee (\neg M \wedge N)$	$b \\ (M \wedge \neg N) \wedge (\neg M \wedge N)$	$(\neg M \land \neg N) \lor (\neg M \lor N) \lor (M \land \neg N)$
FALSE	FALSE	TRUE
TRUE	FALSE	TRUE
TRUE	FALSE	TRUE
FALSE	FALSE	TRUE

Explanation

Question 6

- a. $Q \wedge P$ b. $P \wedge \neg R$