#### Математическая логика

11 февраля 2013 г.

## Три основные логические операции

| Название   | Обозначение | Альт.    | Соответствие | Знач. |
|------------|-------------|----------|--------------|-------|
| Конъюнкция | &           | $\wedge$ | умножение    | И     |
| Дизъюнкция | V           |          | сложение     | или   |
| Отрицание  |             |          | отрицание    | не    |

 Полезно запомнить соответствия — это помогает определить порядок выполнения операций: отрицание, конъюнкция, дизъюнкция.





$$A \vee \neg B\&C$$

Какой порядок выполнения?

$$\neg A\&\neg B\lor C\&(\neg D\lor E)$$

Какой порядок выполнения?

# Таблицы истинности

## Таблица истинности для конъюнкции

• Рассмотрим, чему может быть равно высказывание А & В:

| Α | В | A & B |
|---|---|-------|
| И | И | И     |
| И | Л | Л     |
| Л | И | Л     |
| Л | Л | Л     |

#### Таблица истинности для дизъюнкции

• Рассмотрим, чему может быть равно высказывание  $A \lor B$ :

| Α | В | $A \vee B$ |
|---|---|------------|
| И | И | И          |
| И | Л | И          |
| Л | И | И          |
| Л | Л | Л          |

#### Таблица истинности для отрицания

• Рассмотрим, чему может быть равно высказывание  $\neg A$ :

| Α | $\neg A$ |
|---|----------|
| И | Л        |
| Л | И        |

#### Правила для запоминания / понимания

- Конъюнкция требует, чтобы оба условия были истинны: и то, и другое.
- Дизъюнкции достаточно, чтобы одно из условий выполнялось: или первое, или второе (или оба вместе).
- Отрицание меняет значение на противоположное.

## Пример построения таблицы истинности

- Построим таблицу истинности для высказывания  $A \& B \lor \neg C$ .
- Построение заключается в переборе всех возможных вариантов.

| Α | В | C | Итог |
|---|---|---|------|
| И | И | И |      |
| И | И | Л |      |
| И | Л | И |      |
| Л | И | И |      |
| И | Л | Л |      |
| Л | И | Л |      |
| Л | Л | И |      |
| Л | Л | Л |      |

## Пример построения таблицы истинности

- Посчитаем первую строку, подставив значения А, В, С:
- $A\&B \lor \neg C = V\&V \lor \neg V = V\&V \lor J = V \lor J = V$

| Α | В | C | Итог |
|---|---|---|------|
| И | И | И | И    |
| И | И | Л |      |
| И | Л | И |      |
| Л | И | И |      |
| И | Л | Л |      |
| Л | И | Л |      |
| Л | Л | И |      |
| Л | Л | Л |      |

## Пример построения таблицы истинности

• Аналогично рассчитываем для каждой оставшейся строки.

| Α | В | С | Итог |
|---|---|---|------|
| И | И | И | И    |
| И | И | Л | И    |
| И | Л | И | Л    |
| Л | И | И | Л    |
| И | Л | Л | И    |
| Л | И | Л | И    |
| Л | Л | И | Л    |
| Л | Л | Л | И    |

## Задачи

- Построить таблицу истинности для следующих высказываний:
  - $\bigcirc$  A  $\neg$  B  $\lor \neg \neg$ A
  - **②** ¬(A&¬B)&*C*
  - A ¬A
  - A ∨ ¬A

# Законы логики

#### Основные законы логики

- Как и в математике, в логике есть свои законы.
- Во многом, они похожи на математические.

| Название           | Закон                                        |
|--------------------|----------------------------------------------|
| Переместительный   | A&B = B&A                                    |
|                    | $A \lor B = B \lor A$                        |
| Сочетательный      | A&(B&C) = A&(B&C)                            |
|                    | $A \lor (B \lor C) = A \lor (B \lor C)$      |
| Распределительный  | $A\&(B\lor C) = (A\&B)\lor (A\&C)$           |
|                    | $A \lor (B \& C) = (A \lor B) \& (A \lor C)$ |
| Правила де Моргана | $\neg(A\&B) = \neg A \lor \neg B$            |
|                    | $\neg(A\lorB) = \neg A\&\neg B$              |

В логике можно доказывать законы

Но как?

# Доказательство правила де Моргана

- В логике два высказывания называются равными, если совпадают их таблицы истинности.
- Для доказательства одного из правил де Моргана построим таблицы истинности для левых и правых частей равенства.
- Если таблицы совпадут, значит, формула верна:

| Α | В | ¬(A&B) |
|---|---|--------|
| И | И | Л      |
| И | Л | И      |
| Л | И | И      |
| Л | Л | И      |

| Α | В | $\neg A \lor \neg B$ |
|---|---|----------------------|
| И | И | Л                    |
| И | Л | И                    |
| Л | И | И                    |
| Л | Л | И                    |

#### Задачи

- Докажите переместительный закон для конъюнкции.
- Докажите распределительный закон конъюнкции относительно дизъюнкции (первый).

#### Остальные законы

| Закон               |
|---------------------|
| $\neg \neg A = A$   |
| А&¬А = Л            |
| $A \lor \neg A = M$ |
| A&A = A             |
| $A \lor A = A$      |
| A & N = A           |
| $N = N \lor A$      |
| А&Л = Л             |
| А∨Л = А             |
|                     |

#### Задачи

- Пример с раскрытием скобок:
- $A\&\neg(B\lor C) = A\&(\neg B\&\neg C) = A\&\neg B\&\neg C$
- Раскрыть скобки у следующих выражений:
  - ¬(A&¬B)&C
  - **②** ¬(¬(¬¬A&¬B)&*C*)