

521150A Introduction to Internet

Lecture 4 – Data link layer, part II: Link Control

Schedule of the course

2 521150A Introduction to Internet University of Oulu

Main learning objectives of this lecture

- 1. Know the main functions of Link Control
- 2. Understand the basic concept of flow control and know its basic types:
 - Stop&wait
 - Pipelining
 - Sliding window
- 3. Understand the concept of error control and know its basic types:
 - Stop&wait ARQ
 - Go-Back-N ARQ
 - Selective repeat

521150A Introduction to Internet
University of Oulu

Basics of Link Control

521150A Introduction to Internet
University of Oulu

Link Control (LC)

Data link layer architecture

MULT TRANSP SEC NETWORK **DATA LINK** PHYSICAL

Typically data link layer comprises of two

sublayers: Network layer

- Link control (LC) sublayer
 - Error control
 - Flow control

Link control (LC) sublayer

- **Medium access control** (MAC) sublayer
 - Framing
 - **Transmission** (medium access)

Medium access control (MAC) sublayer

MAC provider Transmit-receive interface Transmission control circuit Line driver/ receiver circuits

protocol

Idle RQ

protocol entity

(primary)

LS user

MAC user

LS provider

TIM provider

Timer

TIM user

Network layer protocol Network layer provide

Destination

Idle RQ

protocol entity

(secondary)

interface

- layer Transmit-receive
 - Transmission
 - control circuit

Line driver/ Physical receiver circuits layer

Data link control protocols

- Requirements/objectives for effective data communication between two directly-connected transmitting-receiving stations
 - Frame synchronization: data are sent in frames, the beginning and end of each frame must be recognizable;
 - Flow control: sending station must not send frames at a rate faster than the receiving station can absorb them;
 - Error control: bit errors introduced by the transmission system should be corrected, or at least the upper layer should be informed;
 - Addressing: in a shared link (such as LAN), the identity of the two stations involved in transmission must be specified;
 - Control and data on same link: not desirable to have a separate physical communication path for control information, receiver must be able to distinguish control information from the data being transmitted;
 - Link management: procedures for coordination and cooperation among stations for the initiation, maintenance and termination of sustained data exchange;

→ A data link control protocol is needed

Specification of a data link control protocol

Building blocks

- Frames (data, acknowledgments)
- Buffers
- Timers
- Sequence numbers (frame ID's)
- Flow control
- Error control (incl. error detection)

Notation of following protocol examples

- P = primary (sender, source)
- S = secondary (receiver, destination)
- I(N) = information (data) with sequence number N
- ACK = positive acknowledgment frame
- NAK = negative acknowledgment frame

PPP: Point-to-point data link control

MULT TRANSP NETWORK

DATA LINK

PHYSICAL

- RFC 1661 etc.
- One sender, one receiver, one link
- Easier than shared broadcast link
 - No medium access control
 - No need for explicit MAC addressing
 - E.g., dialup link, ISDN line

HDLC (High-level Data Link Control)

- ISO 3009, ISO 4335
- Most important data link control protocol
- Bit-oriented
- Synchronous transmission
 - All transmission in form of frames
- Widely used for point-to-point and point-to-multipoint links
- Also basis for many other important data link protocols

Link performance characterization (1)

Assumptions

- d: length of the physical link (m)
- V: signal propagation speed in the link medium (m/s)
- L: length of a frame (bits)
- Data rate (R, bps) (also called bit rate or bandwidth)
- Amount of data (bits) that can be transmitted per unit of time (s)
- Note inverse relation between data rate and bit duration

Delays

- Transmission delay T_x : time taken to transmit a frame at the data rate of the link (L/R)
- Propagation delay T_p: time for the signal to propagate (travel) from one of the link to the other end (medium specific) (d / V)
- One-way delay: time from the transmission of the first bit of a frame to the arrival of the last bit of the frame at receiver
- Round-trip delay: time from the transmission of the first bit of a frame to the arrival of the last bit of the acknowledgment sent by the receiver at sender

521150A Introduction to Internet

University of Oul

Link performance characterization (2)

- Bit length of a link: B = R x (d / V)
 - Number of bits fully occupying a link (i.e. bandwidth x delay product, bdp)
- Let's define relationship a = B / L = (d/V) / (L/R) = T_p / T_x
 - Number of frames in link of bit length B, when frame length is L
 - Ratio between propagation delay and transmission delay
- Relationship between a and round-trip delay
 - a<1 → round-trip delay determined primarily by transmission delay
 - a=1 → both delays have qual effect
 - a>1 → round-trip delay determined primarily by propagation delay
 - This relationship has great impact on link utilization, as we will soon see
- Bandwidth-delay product (bdp)
 - One-way: number of bits transmitted before first bit arrives at receiver
 - Round-trip: number of bits transmitted before sender receives acknowledgment

Flow control

14

- Regulate the flow of data in such manner that fast senders do not swamp slow receivers
 - Receiver typically allocates data buffer of finite length for a connection
- Two basic approaches
 - Feedback-based flow control
 - Based on information provided by receiver to sender
 - Stop-and-wait flow control
 - Flow control with sliding windows
 - Rate-based flow control
 - Built in sender, not based on information provided by receiver
 - Not used in data link layer protocols

15

Stop-and-wait flow control

a<1: first bit of frame arrives at receiver before last bit has been transmitted

- Source transmits frame
- Destination receives frame and replies with acknowledgement (ACK)
- Source waits for ACK before sending next frame
- Destination can stop flow by not send ACK
- Only one frame in transit at any time

521150A Introduction to Internet

University of Oulu

Stop-and-wait flow control (2)

Link utilization: $U=T_{ix}/T_t \sim T_{ix}/(T_{ix}+2T_p) = 1/(1+2T_p/T_{ix}) = 1/(1+2a)$, where $a = T_p/T_{ix}$

Stop-and-wait flow control: Example (1)

- A series of 1000-bit frames is to be transmitted using stop-andwait protocol.
- Determine the link utilization for the following types of data links assuming a transmission bit rate of:
 - I. 1 kbps
 - II. 1 Mbps
 - III. 1 Gbps
 - a) 1 km long twisted-pair cable. Signal propagation speed is 2x10⁸ m/s.
 - b) 200 km long leased line. Signal propagation speed is 2x108 m/s.
 - c) 50000 km long satellite link. Signal propagation speed is 3x108 m/s.
 - Bit error rate is negligible (can be ignored).

Stop-and-wait flow control: Example (2)

Twisted pair

Frame transmission time T_{ix} = Number of bits in frame / Bit rate

- (i) 1 kbps: $T_{ix} = 1000 \text{ b} / 10^3 \text{ b/s} = 1 \text{ s}$
- (ii) 1 Mbps: $T_{ix} = 1000 \text{ b} / 10^6 \text{ b/s} = 10^{-3} \text{ s} = 1 \text{ ms}$
- (iii) 1 Gbps: $T_{ix} = 1000 \text{ b} / 10^9 \text{ b/s} = 10^{-6} \text{ s} = 1 \text{ }\mu\text{s}$
- (a) 1 km long twisted-pair cable. Signal propagation speed is 2x10⁸ m/s.

Frame propagation delay $T_p = 10^3 \text{ m} / 2x10^8 \text{ m/s} = 5x10^{-6} \text{ s}$

(i)
$$a = T_p/T_{ix} = 5x10^{-6} \text{ s} / 1 \text{ s} = 5x10^{-6} \rightarrow (1 + 2a) \approx 1, U = 1$$

(ii)
$$a = 5x10^{-6} \text{ s} / 10^{-3} \text{ s} = 5x10^{-3} \rightarrow (1 + 2a) \approx 1, U = 1$$

(iii)
$$a = 5x10^{-6} \text{ s} / 10^{-6} \text{ s} = 5 \rightarrow (1 + 2a) = 11, U = 0.09$$

Stop-and-wait flow control: Example (3)

Leased line

Frame transmission time T_{ix} = Number of bits in frame / Bit rate

(i) 1 kbps:
$$T_{ix} = 1000 \text{ b} / 10^3 \text{ b/s} = 1 \text{ s}$$

(ii) 1 Mbps:
$$T_{ix} = 1000 \text{ b} / 10^6 \text{ b/s} = 10^{-3} \text{ s} = 1 \text{ ms}$$

(iii) 1 Gbps:
$$T_{ix} = 1000 \text{ b} / 10^9 \text{ b/s} = 10^{-6} \text{ s} = 1 \text{ }\mu\text{s}$$

(b) 200 km long leased line. Signal propagation speed is 2x10⁸ m/s.

Frame propagation delay $T_p = 200x10^3 \text{ m} / 2x10^8 \text{ m/s} = 10^{-3} \text{ s}$

(i)
$$a = T_p/T_{ix} = 10^{-3} \text{ s} / 1 \text{ s} = 1 \times 10^{-3} \rightarrow (1 + 2a) \approx 1, U = 1$$

(ii)
$$a = 10^{-3} \text{ s} / 10^{-3} \text{ s} = 1 \rightarrow (1 + 2a) > 1$$
, $U = 1/(1+2) = 0.33$

(iii)
$$a = 10^{-3} \text{ s} / 10^{-6} \text{ s} = 1000 \rightarrow U = 0.0005$$

Stop-and-wait flow control: Example (4)

DATA LINK
PHYSICAL

Satellite link

Frame transmission time T_{ix} = Number of bits in frame / Bit rate

- (i) 1 kbps: $T_{ix} = 1000 \text{ b} / 10^3 \text{ b/s} = 1 \text{ s}$
- (ii) 1 Mbps: $T_{ix} = 1000 \text{ b} / 10^6 \text{ b/s} = 10^{-3} \text{ s} = 1 \text{ ms}$
- (c) A 50000 km long satellite link. Signal propagation speed is 3x108 m/s.

Frame propagation delay $T_p = 50x10^6 \text{ m} / 3x10^8 \text{ m/s} = 0.167 \text{ s}$

- (i) $a = T_p/T_{ix} = 0.167 \text{ s} / 1 \text{ s} = 0.167 \rightarrow (1 + 2a) > 1$, U = 1/(1+0.334) = 0.75
- (ii) $a = 0.167 \text{ s} / 10^{-3} \text{ s} = 167 \rightarrow (1 + 2a) > 1$, U = 1/(1+334) = 0.003

Stop-and-wait flow control: Example (5)

Observations

- Relatively short links
 - Link utilization is 100% for lower bit rates
- Longer terrestial links
 - Link utilization is high for low bit rates
 - Link utilization falls off significantly as bit rate increases
- Long satellite links
 - Link utilization is poor (due to high propagation delay)

→Stop-and-wait flow-control suitable for short and low bit rate links

E.g. links based on modems and analog PSTN

Pipelining (1)

Primary (sender, source) is allowed to send multiple packets
 without waiting for acknowledgements

a. A stop-and-wait protocol in operation

b. A pipelined protocol in operation

- Much better utilization of link capacity, with increased buffer requirements and larger ranges of sequence numbers
- Bi-directional, requires full-duplex link
- Requires flow control with sliding windows

Pipelining (2)

b. Pipelined operation

-Flow control: Sliding windows (1)

Window of frames that may be accepted

O 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 ...

Window shrinks from trailing edge as frames are received

Window shrinks from trailing edge as frames are received

Window shrinks from trailing edge as frames are received

- Receiver has buffer W long
- Transmitter can send up to W frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected

TRANSP

NETWORK

PHYSICAL

Flow control: Sliding windows (2)

Example with sliding window of 7 frames

Flow control: Performance enhancements

 Receiver acknowledges multiple I frames with one ACK

Piggybacking

 Acknowledgements are attached to I frames (ACK field), instead of being transmitted as separate ACK frames

521150A Introduction to Internet University of Oulu

521150A Introduction to Internet

University of Oulu

27

Error control

- Two types of errors
 - Lost frame
 - Damaged frame
- Mechanisms used for error control
 - Error detection
 - Positive acknowledgments
 - Retransmission after timeout (retransmission timer)
 - Negative acknowledgment and retransmission
- Three types of ARQ (automatic repeat request)
 - Stop-and-wait ARQ
 - Go-back-N ARQ
 - Selective repeat ARQ

Continuous RQ

(uses sliding window flow control)

Stop-and-wait ARQ (aka idle RQ)

error free

corrupted
I frame

Primary, P I(N) I(N + 1)

Secondary, S I(N) I(N + 1)

Timer started Timer stopped

Timer stopped

Timer stopped

Timer stopped

Timer stopped

Timer stopped

corrupted ACK frame

Duplicate detected

Building blocks

- Retransmission timer
- Error detection
- Receiver feedback(ACK, NAK)
- Retransmission

Continuous RQ

Continuous RQ frame sequence without transmission errors:

- Incorporate flow control
- Link utilization much improved with increased buffer storage requirements
- Bidirectional
 - Requires duplex link
- Two basic types
 - Go-back-N ARQ
 - Selective repeat ARQ

V(S) = send sequence variable

V(R) = receive sequence variable

Go-back-N ARQ (1)

DATA LINK
PHYSICAL

- Receiver discards all frames after an erroneous frame
- Sender resends all discarded frames
 - Sender has to buffer unacknowledged frames

Go-back-N ARQ (2)

Corrupted I frame:

NETWORK

DATA LINK
PHYSICAL

Go-back-N ARQ (3)

Corrupted ACK frame:

DATA LINK
PHYSICAL

Selective repeat ARQ (1)

- Receiver buffers frames received after an erroneous frame
- Sender retransmits only the erroneous frame
 - Sender has to buffer unacknowledged frames

521150A Introduction to Internet University of Oult

Selective repeat ARQ (2)

PHYSICAL

P enters

Selective repeat ARQ (3) Corrupted ACK frame:

ARQ: Send/receive window sizes

37

Send window, K = 3

Protocol	Send window	Receive window
Idle RQ	1	1
Selective repeat	K	<i>K</i>
Go-back-N	K	1

521150A Introduction to Internet

University of Oulu

ARQ: Sequence numbers (frame ID's)

Number of sequence numbers required for window size K

Protocol	Maximum number of frame identifiers
Idle RQ	2
Selective repeat	2K
Go-back-N	K + 1

- In practice, *N bits* reserved for sequence numbers
 - Selective repeat: max window size = 2^{N-1}
 - Go-back-N: max window size = 2^{N-1}
 - Example: Go-back-N with window size K=7 (need 8 sequence numbers, i.e. 3-bit field, $2^3=8$)

Go-back-N, K = 7Sequence numbers incremented modulo 8

Performance: Error-free stop-and-wait flow control

Link utilization: U = 1/(1+2a)

$$a = T_{prop} / T_{trans}$$

- a ~ Number of frames in link of bit length B, when frame length is L
- a ~ Ratio between propagation delay and transmission delay

$$a = (d/V)/(L/R) = [Rd/V)] / L$$

Rd/V = length of medium in bits (bit length)

L = length of frame in bits

Performance: Error-free sliding window flow control (1)

Case 1: W (window size) \geq 2a+1

ACK reaches A at t = 2a+1

→ A can transmit without pause → utilization = 1

Performance: Error-free sliding window flow control (2)

Case 2: W (window size) < 2a+1

A exhausts its send window at t = W frames

- \rightarrow A cannot send additional frames until t = 2a+1
- \rightarrow utilization = W/(2a + 1)

Performance: Error-free sliding window flow

control (3)

Utilization:

$$U = \begin{cases} 1 & W \ge 2a+1 \\ \frac{W}{2a+1} & W < 2a+1 \end{cases}$$

42

Performance: Stop-and-wait ARQ (1)

Utilization of error-free transmission:

$$U = \frac{T_f}{T_t} \approx \frac{T_f}{T_f + 2T_p} = \frac{1}{1 + 2a}$$

where T_f = time for emitting single frame

T_t = total time of line being engaged in transmission of single frame

 T_p = propagation time

- If errors occur, then utilization

$$U = \frac{T_f}{N_r T_t} = \frac{1}{N_r (1 + 2a)}$$

where N_r is the expected number of transmissions of a frame

NETWORK

DATA LINK PHYSICAL

Performance: Stop-and-wait ARQ (2)

- N_r derived assuming
 - A single data frame is in error with probability P
 - ACK and NAK are never in error
- Propability it takes exactly k attempts to transmit a frame successfully is $P^{k-1}(1-P)$
- Then expected number of transmissions of a frame

$$N_{r} = E[transmission] = \sum_{i=1}^{\infty} (i \times \Pr[i \ transmissions]) = \sum_{i=1}^{\infty} (iP^{i-1}(1-P)) = \frac{1}{1-P}$$

Derivation uses equality

$$\sum_{i=1}^{\infty} (iX^{i-1}) = \frac{1}{(1-X)^2} \text{ for } (-1 < X < 1)$$

Hence utilization

$$U = \left\{ \frac{1 - P}{1 + 2a} \right\}$$

Performance: Selective repeat ARQ

Utilization without errors was

$$U = \begin{cases} 1 & W \ge 2a+1\\ \frac{W}{2a+1} & W < 2a+1 \end{cases}$$

Again utilization is divided by

$$N_r = \frac{1}{1 - P}$$

Thus utilization for selective repeat ARQ

$$U = \begin{cases} 1 - P & W \ge 2a + 1 \\ \frac{W(1 - P)}{2a + 1} & W < 2a + 1 \end{cases}$$

Note: $W=1 \rightarrow reduces$ to stop-and-wait ARQ utilization

Performance: Go-back-N ARQ (1)

DATA LINK PHYSICAL

Error in single frame generates requirement to retransmit K frames

 $N_r = \text{E[number of transmitt ed frames to successful ly transmit tone frame]} = \sum_{i=1}^{\infty} f(i)P^{i-1}(1-P)$

where f(i) is the total number of frames transmitted if the original frame must be transmitted i times:

$$f(i) = 1 + (i-1)K = (1-K) + Ki$$

Substituting yields

$$N_r = (1 - K) \sum_{i=1}^{\infty} P^{i-1} (1 - P) + K \sum_{i=1}^{\infty} i P^{i-1} (1 - P)$$
$$= 1 - K + \frac{K}{1 - P} = \frac{1 - P + KP}{1 - P}$$

derivation uses equality

$$\sum_{i=1}^{\infty} X^{i-1} = \frac{1}{1-X} \text{ for } (-1 < X < 1)$$

Performance: Go-back-N ARQ (2)

DATA LINK
PHYSICAL

It can be approximated that

$$K = (2a+1)$$
 for $W \ge (2a+1)$
 $K = W$ for $W < (2a+1)$

Thus utilization for Go-back-N ARQ

$$U = \begin{cases} \frac{1-P}{1+2aP} & W \ge 2a+1\\ \frac{W(1-P)}{(2a+1)(1-P+WP)} & W < 2a+1 \end{cases}$$

Note: W=1 → reduces to stop-and-wait ARQ utilization

Performance: ARQ comparison

ARQ utilization as of a function of a (P=10⁻³)
Selective repeat ARQ is effectively equal to Go-back-N ARQ

Key points to remember

1. Main functions of Link Control

2. Flow control and its basic types:

- Stop&wait
- Pipelining
- Sliding window

3. Error control and its basic types:

- Stop&wait ARQ
- Go-Back-N ARQ
- Selective repeat

521150A Introduction to Internet University of Oulu

