Algorithm for testing membership in a CFL

Given a CFG G and a string w, to determine whether w is generated by G:

If $w = \varepsilon$ check whether S is nullable.

If $w = a_1 a_2 a_n$ we have to first bring G to CNF and then use an efficient $O(n^3)$ algorithm based on dynamic programming known as the CYK algorithm found independently by T. Cocke, D. Younger and T. Kasami:

Compute an upper-triangular table X_{ij} ($i \le j$) where a table-entry X_{ij} will eventually be a set of variables which generate a_i a_{i+1} a_j .

Initially for all i,j $i \le j X_{ij} < -\Phi$

For the main diagonal:

for i=1 to n

for every A such that A -> a_i insert A in X_{ii} .

Now the X_{ij} 's for i < j will have to be computed diagonally from the main diagonal to the upper right corner ie to X_{1n} . This means that X_{ij} can be computed only after X_{ik} for k < j and X_{kj} for k > i are computed. X_{ij} can be computed by

for k=i to j-1

 $if \ X_{ik} \ contains \ B \ and \ X_{k+1}, j \ contains \ C \ and \\ A \ -> B \ C \ is \ a \ production$

insert A in X_{ii}.

Filling up the table in this way we can determine whether G generates w by checking whether X_{1n} contains S.

Example S-> AB | BC

A -> B B | 0

B -> B A | 1

C-> A C | C A | 0

When w = 110100 we fill up the squares adjacent to the left of the main diagonal, by the string w as shown. Now since B -> 1, A -> 0 and C -> 0 we can fill up the squares X_{11} , X_{22} and X_{44} with B and the squares X_{33} , X_{55} and X_{66}

with A, C. Now we come to the next diagonal. The first entry to be computed is X_{12} . For this we need the pair of squares X₁₁ and X₂₂ which give a possible body of production BB. We find that this is produced by A and so we insert A in X_{12} . For X_{23} we need the pair X_{22} and X_{33} giving possible bodies of production BA and BC which are produced respectively by B and S and so we insert B and S in X_{23} . Like this we fill up the other squares of this diagonal by S; B,S; and C. This way we go on filling the squares diagonal by diagonal. For example when we come to X_{25} we need the pairs $(X_{22} X_{35})$, $(X_{23} X_{45})$, $(X_{24} X_{55})$ which yield possible bodies of production BS, BB, BS, SB, SS and AC. Of these only BB and AC are valid bodies of production produced by A and C respectively. So A and C get inserted in X₂₅. In this way filling up all the squares we find that X_{16} (Note that n = 6 here) contains S and hence G generates w. In the next case we take the string w = 1010. After filling up the table we find that X_{14} does not contain S and so G does not generate w.