

SOT-23 Plastic-Encapsulate MOSFETS

20V P-Channel MOSFET

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
-20V	70mΩ@4.5V	-3.0A
	78mΩ@3.3V	0.071

Features

Trench FET Power MOSFET

MARKING

APPLICATION

- Load Switch for Portable Devices
- DC/DC Converter

Equivalent circuit

PACKAGE SPECIFICATIONS

Package	Reel Size	Reel DIA. (mm)	Q'TY/Reel (pcs)	Box Size (mm)	QTY/Box (pcs)	Carton Size (mm)	Q'TY/Carton (pcs)
SOT-23	7'	330	3000	203×203×195	45000	438×438×220	180000

Maximum Ratings and Thermal Characteristics (TA = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage		V_{GS}	±10	V
Outlineau Brain Outline	T _A = 25 °C	lь	-3.0	Α
Continuous Drain Current	T _A = 70°C		-2.5	
Pulsed Drain Current 1)		I _{DM}	-12	Α
Maximum Power Dissipation 2)	$T_A = 25 ^{\circ}\text{C}$ $T_1 = 70 ^{\circ}\text{C}$	P _D	1.2	W
	$T_A = 70^{\circ}C$		0.9	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-50 to 150	°C
Junction-to-Ambient Thermal Resistance (PCB mounted) ²⁾		R _{thJA}	100	°C/W

The above data are for reference only.

Notes
1) Pulse width limited by maximum junction temperature.

²⁾ Surface Mounted on FR4 Board, $t \le 5$ sec.

MOSFET ELECTRICAL CHARACTERISTICS

$T_a=25$ °C unless otherwise specified

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Static							
Drain-source breakdown voltage	V(BR)DSS	V _{GS} = 0V, I _D =-250µA	-20			V	
Gate-source threshold voltage	V _G S(th)	V _{DS} =V _{GS} , I _D =-250μA	-0.4	-0.6	-1		
Gate-source leakage	I _{GSS}	V _{DS} =0V, V _{GS} =±10V			±100	nA	
Zero gate voltage drain current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	μΑ	
Drain agurag an atata ragistanga ^a	_	V _G S =-4.5V, I _D =-3A		70	90	0	
Drain-source on-state resistance ^a	RDS(on)	V _{GS} =-3.3V, I _D =-2.0A		78	100	mΩ	
Forward transconductance ^a	g fs	V _{DS} =-5V, I _D =-2.8A		4.0		S	
Dynamic ^b			•				
Input capacitance	C _{iss}			330		pF	
Output capacitance	C _{oss}	V _{DS} =-10V,V _{GS} =0V,f =1MHz		50			
Reverse transfer capacitance	C _{rss}			45			
	0	V _{DS} =-10V,V _{GS} =-4.5V,I _D =-3A		6.6			
Total gate charge	Qg			0.8		nC	
Gate-source charge	Q _{gs}	V _{DS} =-10V,V _{GS} =-4.5V,I _D =-3A		0.7		nC	
Gate-drain charge	Q_{gd}			1.4			
Turn-on delay time	td(on)	V 40V D 400		11			
Rise time	tr	V_{DD} =-10V, R_L =10 Ω ,		12		ns	
Turn-off delay time	td(off)	V _{GEN} =-4.5V,Rg=3.3Ω		18			
Fall time	tf	- VGLIVOV,119-0.032		30			
Drain-source body diode characteristics							
Continuous source-drain diode current	Is	T _C =25℃			-1.5	Α	
Body diode voltage	V_{SD}	Is=-2A		-0.85	-1.2	V	

a) Pulse test: pulse width ≤ 300us, duty cycle≤ 2%

b) Guaranteed by design, not subject to production testing

Typical Characteristics

Fig1. Typical Output Characteristics

Fig3. Typical Transfer Characteristics

Fig5. Typical Source-Drain Diode Forward Voltage

Fig2. Normalized Threshold Voltage Vs. Temperature

Fig4. Drain -Source Voltage vs Gate -Source Voltage

-VDS, Drain -Source Voltage (V)

Fig6. Maximum Safe Operating Area

http://www.microdiode.com Rev:2019A0 Page :3

Typical Characteristics

Fig7. Typical Capacitance Vs. Drain-Source Voltage

Fig8. Typical Gate Charge Vs. Gate-Source Voltage

Fig9. Normalized Maximum Transient Thermal Impedance

Fig10. Switching Time Test Circuit and waveforms

http://www.microdiode.com Rev:2019A0 Page :4

Outlitne Drawing

SOT-23 Package Outline Dimensions

Symbol	Dimensions In Millimeters				
	Min	Тур	Max		
Α	1.00		1.40		
A1			0.10		
b	0.35		0.50		
С	0.10		0.20		
D	2.70	2.90	3.10		
Е	1.40		1.60		
E1	2.4		2.80		
е		1.90			
L	0.10		0.30		
L1	0.4				
θ	0°		10°		

Suggested Pad Layout

Note:

Controlling

dimension:in/millimeters. 2.General

tolerance: ±0.05mm.

3. The pad layout is for reference purposes only.

Important Notice and Disclaimer

Microdiode Electronics (Jiangsu) reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

Microdiode Electronics (Jiangsu) makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, not does Microdiode Electronics (Jiangsu) assume any liability for application assistance or customer product design. Microdiode Electronics (Jiangsu) does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of Microdiode Electronics (Jiangsu).

Microdiode Electronics (Jiangsu) products are not authorized for use as critical components in life support devices or systems without express written approval of Microdiode Electronics (Jiangsu).