STAT 135 Lecture 6

Henry Liev

3 July 2025

Remark 0.1

Parametric Bootstrap Recap:

- 1. Get a CI for estimators with no theory, just simulation.
- 2. Don't even need closed form for estimate

Example 0.2

True parameter θ_0

Estimator: $\hat{\theta}$

 $\hat{\theta} - \theta_0$ distribution can give us a CI for θ_0

95% CI $(\hat{\theta} - b, \hat{\theta} - a)$ is a 95% CI for θ_0 , come up with estimates for \hat{b} and \hat{a}

 $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} f(x|\theta_0)$ (Unknown distribution)

Replace θ_0 with $\hat{\theta}$

 $X_1^*, \dots, X_n^* \stackrel{i.i.d}{\sim} f(x|\hat{\theta})$

Take 10000 samples of size 100 from $f(x|\hat{\theta})$

Compute $\hat{\theta}^*$ for each sample

Method 0.3

Measuring Goodess of Estimators:

- unbiased
- Consistency
- Small Variance

"Concentrated around the true value" Suppose θ is the truth then $\forall \theta, E[\hat{\theta}] = \theta$

Definition 0.4

Loss Function θ True value

 $\hat{\theta}$ Estimator

 $L(\hat{\theta}, \theta)$ "Cost of estimating θ as $\hat{\theta}$ "

 $L(\hat{\theta}, \theta) = 0$ ideally

Non-decreasing in $|\hat{\theta} - \theta|$

Larger mistake are worse

 $E[L(\hat{\theta}, \theta)]$ Try to minimize this (Risk)

Method 0.5

In statistics, we very often use squared loss: $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$

Definition 0.6

Mean Squared Error: $MSE = E\left[(\hat{\theta} - \theta)^2\right]$

$$E(\hat{\theta}) = \mu$$

$$E\left[(\hat{\theta} - \mu + \mu - \theta)^2\right]$$

$$= E \left[(\hat{\theta} - \mu)^2 + (\mu - \theta)^2 + 2(\hat{\theta} - \mu)(\mu - \theta) \right]$$

$$= E \left[(\hat{\theta} - \mu)^2 \right] + (\mu - \theta)^2 + 2(\mu - \theta)E[\hat{\theta} - \mu]$$

= $Var(\hat{\theta}) + (\mu - \theta)^2$

$$= Var(\hat{\theta}) + (\mu - \theta)^2$$

$$= Var(\hat{\theta}) + Bias^2$$

Definition 0.7

Bias-Variance Decomposition $MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias^2$

 $Var(\hat{\theta}) \rightarrow \text{`Noise'}$

 $Bias^2 \rightarrow$ 'Systematic Error'

Often we encounter bias-variance tradeoff

Example 0.8

 $X_1,\ldots,X_n \overset{i.i.d}{\sim} N(\mu,\sigma^2)$ $\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2 \to \text{unbiased, higher variance, higher MSE}$ $\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2 \to \text{biased, lower variance, lower MSE}$

Example 0.9

Suppose we have $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mu = \mu, \sigma^2 = \sigma^2$

- What's an estimate of μ with zero bias, but very high variance?
 - What's an estimate of μ with very low variance, but very high bias?
 - Suppose $\mu = 3$

• $\hat{\mu} = X_1$ We can just use one observation Solution.

- Pick any random number, numbers do not have variance, but they have mean, so we can pick $3, \pi, etc.$
- Constant estimate, $\hat{\mu} = 3$, when the true mean $\mu = 3$, as 3 has no MSE
 - 'There is no uniformly most wonderful estimator'
 - 'Have to constrain the problem to find "optimal" estimator.

Definition 0.10

Cramer-Rao inequality

Restrict to unbiased estimators

$$E[\hat{\theta}] = \theta, \forall \theta$$

Then we can find the "best" lowest variance estimator

Theorem 0.11

$$X_1,\ldots,X_n \stackrel{i.i.d}{\sim} f(x|\theta)$$

Cramer-Rao inequality $X_1, \dots, X_n \overset{i.i.d}{\sim} f(x|\theta)$ Let T be an unbiased estimate of θ

Then $Var(T) \geq \frac{1}{nI(\theta)}$

Method 0.12

Cramer-Rao Playbook:

- 1. Have an unbiased estimator
- 2. Calculate the variance
- 3. Check if it achieves the lower bound
- 4. If it does, then it is the "best" unbiased estimator
- 5. Use to verify that candidate estimator is best possible unbiased estimator

Example 0.13

Let
$$X_1, \ldots, X_n \stackrel{i.i.d}{\sim} Poisson \ f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

 $\mu = \lambda \to \overline{x}$ reasonable estimator

$$\mu = \lambda \rightarrow \overline{x}$$
 reasonable estimator

$$\sigma^2 = \lambda$$

Consider
$$\overline{X}$$
. It is unbiased

$$\begin{array}{l} Var(\overline{X}) = \frac{\lambda}{n} \\ \text{Compute } I(\lambda) \end{array}$$

Compute
$$I(\lambda)$$

$$I(\lambda) = -E \left[\frac{\partial^2}{\partial \lambda^2} \log f(X|\lambda) \right]$$
$$= -E \left[\frac{\partial^2}{\partial \lambda^2} \log \frac{\lambda^x e^{-\lambda}}{x!} \right]$$

$$= -E \left[\frac{\partial^2}{\partial \lambda^2} \log \frac{\lambda^x e^{-\lambda}}{r!} \right]$$

$$= -E \left[\frac{\partial^2}{\partial \lambda^2} (x \log \lambda - \lambda - \log x!) \right]$$

$$= -E \left[\frac{\partial}{\partial \lambda} \left(\frac{x}{\lambda} - 1 \right) \right]$$

$$= -E \left[-\frac{x}{\lambda^2} \right] = \frac{1}{\lambda}$$

$$\frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

$$= -E \left[\frac{\partial}{\partial \lambda} \left(\frac{x}{\lambda} - 1 \right) \right]$$
$$- -E \left[-\frac{x}{\lambda} \right] - \frac{1}{\lambda}$$

$$\frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

Example 0.14

Toss a biased coin with P(heads) = p n times Get x heads. f(x|p) Binomial Estimate $p \frac{x}{n}$ $Var(\frac{x}{n}) = \frac{1}{n^2}Var(x) = \frac{1}{n^2}np(1-p) = \frac{p(1-p)}{n}$ $f(x|p) = \binom{n}{x}p^x(1-p)^{n-x}$ $l(X|p) = \log f(X|p) = X\log p + (n-X)\log(1-p) + \log\binom{n}{X}$ $\frac{\partial l(X|p)}{\partial p} = \frac{X}{p} - \frac{n-X}{1-p}$ $\frac{\partial^2 l(X|p)}{\partial p^2} = -\frac{X}{p^2} - \frac{n-X}{(1-p)^2}$ $I(p) = -E\left[\frac{\partial^2}{\partial p^2}\log f(X|p)\right] = -E\left[-\frac{X}{p^2} - \frac{n-X}{(1-p)^2}\right] = \frac{np}{p^2} + \frac{n(1-p)}{(1-p)^2} = \frac{n}{p} + \frac{n}{1-p} = \frac{n}{p(1-p)}$ $\frac{1}{nI(p)} = \frac{p(1-p)}{n}$

Remark 0.15

Connection to Asymptotic Efficiency:

We learned that $\sqrt{n}(\hat{\theta}_{MLE} - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \frac{1}{I(\theta)})$

$$\hat{\theta}_{MLE} \approx \mathcal{N}(\theta, \frac{1}{I(\theta)})$$

For large n, approximately unbiased, variance is approximately bounded by Cramer-Rao lower bound

Takeaways:

- 1. MSE is a way to measure goodness
- 2. $MSE = Variance + Bias^2$
- 3. Often encounter bias-variance tradeoff
- 4. Cramer-Rao inequality