

特許協力条約

PCT

国際予備審査報告

REC'D **1 0 JUN 2004**WIPO PCT

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 JHTK-51-PCT	今後の手続きについては、国際予備審査報告の送付通知(様式PCT/ IPEA/416)を参照すること。
国際出願番号 PCT/JP03/06860	国際出願日 (日.月.年) 30.05.2003 (日.月.年) 18.07.2002
国際特許分類 (IPC) Int. Cl ⁷ H01G4/40, H01G4/1	H05K1/16, H05K3/46, H01F17/00,
出願人 (氏名又は名称) 日立化成工業株式会社	
	国際予備審査報告を法施行規則第57条(PCT36条)の規定に従い送付する。
	紙を含めて全部で4 ページからなる。
X この国際予備審査報告には、 査機関に対してした訂正を含 (PCT規則70.16及びPC' この附属書類は、全部で	附属審類、つまり補正されて、この報告の基礎とされた及び/又はこの国際予備審 む明細書、請求の範囲及び/又は図面も添付されている。 T実施細則第607号参照) ページである。
3. この国際予備審査報告は、次の内	日容を含む。
I X 国際予備審査報告の基	遊
Ⅱ □ 優先権	
Ⅲ ∭ 新規性、進歩性又は産	業上の利用可能性についての国際予備審査報告の不作成
IV 第明の単一性の欠如	
V X PCT35条(2)に規類 の文献及び説明 VI	定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるため
VII 国際出願の不備	
WII 国際出願に対する意見	L ,
•	
国際予備審査の請求魯を受理した日 11.12.2003	国際予備審査報告を作成した日 19.05.2004
名称及びあて先	特許庁審査官(権限のある職員) 3 S 8 8 1 1
日本国特許庁(IPEA/J 郵便番号100-891	5 長屋 陽二郎
東京都千代田区領が関三丁目	4番3号 電話番号 03-3581-1101 内線 6232

国際予備審査報告

国際出願番号 PCT/JP03/06860

I. 国際予備審査報告の基礎
1. この国際予備審査報告は下記の出願書類に基づいて作成された。 (法第6条 (PCT14条) の規定に基づく命令に 応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。 PCT規則70.16,70.17)
出願時の国際出願書類
X 明細書 第 1-33 ページ、
X請求の範囲第4-5, 13-14, 19-20, 24-30, 32項、 1, 3, 6, 8-12, 15-18, 21-23 31項、 項、出願時に提出されたもの PCT 1 9条の規定に基づき補正されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの
図面 第 1-7 ページ/図、出願時に提出されたもの 図面 第 ページ/図、国際予備審査の請求書と共に提出されたもの 図面 第 ページ/図、 一・ジ/図、 付の審簡と共に提出されたもの
明細書の配列表の部分 第ページ、 出願時に提出されたもの
 2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。 上記の書類は、下記の言語である 語である。 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語 PCT規則48.3(b)にいう国際公開の言語 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語 3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。
□ この国際出願に含まれる書面による配列表 □ この国際出願と共に提出された磁気ディスクによる配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された審面による配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された磁気ディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった □ 書面による配列表に記載した配列と磁気ディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。
4. 補正により、下記の書類が削除された。

国際予備審査報告

国際出願番号 PCT/JP03/06860

v.	新規性、進歩性又は産業上の利用可能性についての法第12条(PCT35条(2))に定める見解、それを裏付ける
	文献及び説明
1.	9.0 C

新規性(N)

有 請求の範囲 1,3,5,6,8-23,26-32 請求の範囲 4, 24-25

進歩性(IS)

有 請求の範囲1,3請求の範囲4-6,8-32 無

産業上の利用可能性 (IA)

右 請求の範囲 1,3-6,8-32 無 請求の範囲

2. 文献及び説明 (PCT規則70.7)

文献1: JP 9-148746 A (京セラ株式会社) 1997.06.06

文献2:JP 10-013036 A (京セラ株式会社) 1998.01.16

2001-68858 A (新光電気工業株式会社) 文献3:JP

2001.03.16

文献4: JP 1-189999 A (松下電工株式会社) 1989.07.31

文献5: JP 7-183665 A (株式会社村田製作所) 1995.07.21

文献6: JP 6-085462 A (日本セメント株式会社)

1994. 03. 25

請求の範囲1,3に記載された発明は、国際調査報告で引用された文献1乃至6に対 して進歩性を有する。文献1万至6には、コア層を除く任意の層においコンデンサを であることが記載されておらず、しかもその点は当業者といえども自明のものではな い。

請求の範囲4,24,25に記載された発明は、国際調査報告で引用された文献3か ら新規性を有さない。

請求の範囲5に記載された発明は、国際調査報告で引用された文献3より進歩性を有 しない。文献3の発明から、導体パターンが3種類の異なる絶縁材料に接するように する程度のことは、当業者にとって容易である。

請求の範囲6,8-9に記載された発明は、国際調査報告で引用された文献1,文献2及び文献5より進歩性を有しない。文献1または2に記載された発明おいて、文献 5に記載の一方の電極を対向する電極より内側に配置するという手段を適用すること は、当業者にとって容易である。

補充欄(いずれかの欄の大きさが足りない場合に使用すること)

第 V 欄の続き

請求の範囲10-11に記載された発明は、国際調査報告で引用された文献1,文献2及び文献5より進歩性を有しない。導体層の不要部分をエッチングすることは文献2に記載されている。

請求の範囲12-14に記載された発明は、国際調査報告で引用された文献3及び文献4より進歩性を有しない。文献3に記載された発明おいて、文献4に記載のインダクタを多層配線板に形成するという手段を適用することは、当業者にとって容易である。

請求の範囲15-23に記載された発明は、国際調査報告で引用された文献1,文献 2,文献3,文献4及び文献5より進歩性を有しない。

請求の範囲26-29に記載された発明は、国際調査報告で引用された文献1,文献2,文献3及び文献6より進歩性を有しない。文献1,2または3に記載された発明おいて、文献6に記載の複数回の露光を行うという手段を適用することは、当業者にとって容易である。

請求の範囲30に記載された発明は、国際調査報告で引用された文献1-3,文献4 及び文献6より進歩性を有しない。

請求の範囲31-32に記載された発明は、国際調査報告で引用された文献1-6より進歩性を有しない。

請 求 の 範 囲

1. (補正後)複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料を含む少なくとも1つの前記絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、コア層を除く任意の層に前記コンデンサを有する非対称の層構成を有し、その反りが室温において曲率4. $0 \times 10^{-4} \, \mathrm{mm}^{-1}$ 以下であり、かつ前記高誘電率材料硬化物の、 $25 \, \mathrm{C}$ 、 $1 \, \mathrm{MHz}$ における比誘電率が $20 \, \mathrm{cm}$ 100、厚みが $0.1 \, \mathrm{cm}$ 100 $0.1 \, \mathrm{cm}$ 20 $0.1 \, \mathrm{cm}$ 20 $0.1 \, \mathrm{cm}$ 20 $0.1 \, \mathrm{cm}$ 30 $0.1 \, \mathrm{cm}$ 20 $0.1 \, \mathrm{cm}$ 30 $0.1 \, \mathrm{cm}$ 20 $0.1 \, \mathrm{cm}$ 30 $0.1 \, \mathrm{cm}$

2. (削除)

10

- 3. (補正後) コア層を除く任意の層に前記コンデンサを有する非対 15 称の層構成を有し、その反り量が1mm以下であることを特徴とする 請求項1に記載の多層配線板。
 - 4. 複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的に接続する導体化された非貫通穴と、高誘電率材料を含む少なくとも1つの前記絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、前記電極を含む導体パターン間の凹部に前記高誘電率材料と異なる絶縁材料が充填され、該導体パターン表面と充填された絶縁材料表面とが平坦化されていることを特徴とする多層配線板。

25

20

- 5. 少なくとも1つの前記電極を含む導体パターンが前記高誘電率材料を含む3種類の異なる絶縁材料に接していることを特徴とする請求項4に記載の多層配線板。
- 30 6. (補正後) 複数の絶縁層と、複数の導体層と、前記複数の導体層

34/1

を電気的に接続する導体化された穴と、少なくとも1層の前記絶縁層の比誘電率が25 $\mathbb C$ 、1 MH z において20 \sim 100 の高誘電率材料を含むものからなり、該絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板であって、対向する前記電極の少なくとも片側が厚み1 \sim 18 μ mの範囲であり、これに対向する電極の外周より内側にあることを特徴とする多層配線板。

7. (削除)

- 8. (補正後) 前記 $1\sim18\mu$ mの厚みを有する電極の各側面と、これに対向する電極の各側面との最短となる水平距離が、それぞれ $50\sim100\mu$ mの範囲であることを特徴とする請求項 6 に記載の多層配線板。
- 9. (補正後) 前記 1~18 μmの厚みを有する電極の各側面と、該電極上に設けられた、任意の導体層間を電気的に接続する導体化されたの外周部との最短となる水平距離が、それぞれ 100 μm以上であることを特徴とする請求項6または8に記載の多層配線板。
 - 10. (補正後) 前記1~18μmの厚みを有する電極が、導体層の不要部分をエッチング除去することにより形成されることを特徴と 15: する請求項6、8および9のいずれかに記載の多層配線板。
 - 11. (補正後) コア層を除く任意の層に前記コンデンサを有し、かつコンデンサの容量ばらつきが ± 5 %未満であることを特徴とする請求項 $4\sim6$ および $8\sim1$ 0 のいずれかに記載の多層配線板。

20

12. (補正後) 少なくとも1つの導体層をパターン形成してなるインダクタを有することを特徴とする請求項1、3~6、および8~1 1のいずれかに記載の多層配線板。

- 13. 前記インダクタを形成した導体層の厚みが他の導体層の厚みよりも薄く、かつその厚みが $1\sim12\mu$ mであることを特徴とする請求項12に記載の多層配線板。
- 5 14. 前記インダクタは、前記絶縁層の上下面に形成された前記電極 のうち、いずれか一方に作製されることを特徴とする請求項12また は13に記載の多層配線板。
- 15. (補正後) 前記高誘電率材料を含む少なくとも1つの前記絶縁 10 層とこれに隣接する絶縁層とを同時に貫く非貫通穴を有することを 特徴とする請求項1、3~6、および8~14のいずれかに記載の多 層配線板。
- 16. (補正後) 前記高誘電率材料が、エポキシ樹脂、その硬化剤、 15 および高誘電率充填材を含むことを特徴とする請求項1、3~6、お よび8~15のいずれかに記載の多層配線板。
- 17. (補正後) 前記高誘電率材料が、エポキシ樹脂、その硬化剤、 高誘電率充填材、および少なくとも一種類の官能基を有する重量平均 20 分子量が1万~80万である高分子量樹脂を含むことを特徴とする 請求項1、3~6、および8~16のいずれかに記載の多層配線板。
- 18. (補正後) 前記高誘電率材料のBステージ状態の120℃における溶融粘度が100~200Pa・Sであることを特徴とする請求25 項1、3~6、および8~17のいずれかに記載の多層配線板。
 - 19. 前記高誘電率充填材が、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸鉛、二酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛からなる群から選ばれる1種以上であることを特徴とする請

30

求項16~18のいずれかに記載の多層配線板。

5

10

20

25

20. 前記高誘電率充填材が、重量比として、前記エポキシ樹脂100に対して300~3000配合されることを特徴とする請求項16~19のいずれかに記載の多層配線板。

21. (補正後)最外導体層として、 300μ m以上の幅を有する導体パターンが少なくとも1本形成され、さらに該最外導体層に隣接する絶縁層の厚みが 150μ m以上であることを特徴とする請求項 $1、3\sim6$ 、および $8\sim20$ のいずれかに記載の多層配線板。

22. (補正後) 前記高誘電率材料を含む少なくとも1つの前記絶縁 層以外の絶縁層が、ガラス基材で補強され、かつ無機フィラーを含む ことを特徴とする請求項1、3~6、および8~21のいずれかに記 載の多層配線板。

23. (補正後) 前記絶縁層の上下面に形成された電極が、該絶縁層の片面もしくは両面の全てを覆わないように形成されていることを特徴とする請求項1、3~6、および8~22のいずれかに記載の多層配線板。

24. 複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的 に接続する導体化された非貫通穴と、高誘電率材料を含む少なくとも 1つの前記絶縁層の上下面に電極を形成してなるコンデンサとを有 する多層配線板の製造方法であって、

前記電極の一方を含む導体パターンを形成する工程と、

前記導体パターン間の凹部に前記高誘電率材料と異なる絶縁材料 を充填、硬化する工程と、

研磨により前記導体パターンの表面と該導体パターン間の凹部に 30 充填、硬化された絶縁材料表面とを平坦にする工程と、 37/1

半硬化状態の前記高誘電率材料を備えた金属箔を加熱積層する工程と、

を少なくとも含むことを特徴とする多層配線板の製造方法。

25. さらに、前記金属箔をエッチングすることにより、前記電極の 他方を含む導体パターンを形成する工程を含む請求項24に記載の 多層配線板の製造方法。

26. 複数の絶縁層と、複数の導体層と、前記複数の導体層を電気的に接続する導体化された穴と、少なくとも1層の前記絶縁層の比誘電率が25℃、1MHzにおいて20~100の高誘電率材料を含むものからなり、該絶縁層の上下面に電極を形成してなるコンデンサと、を有する多層配線板の製造方法であって、導体パターン形成時、感光性レジストのパターン露光面積を1~250cm²/回として、同一基板内に複数回露光することを特徴とする多層配線板の製造方法。

27. 前記電極が1~18μmの厚みを有し、該電極を含む導体パターン形成時に前記複数回の露光を行うことを特徴とする請求項26に記載の多層配線板の製造方法。

28. 感光性レジストのパターン露光時に無機物からなるフォトマス 20 クを使用することを特徴とする請求項26または27に記載の多層 配線板の製造方法。

29.前記電極を含む導体パターンを導体層の不要部分をエッチング 除去して形成することを特徴とする請求項26~28のいずれかに 記載の多層配線板の製造方法。

25

30. さらに、少なくとも1つの導体層にインダクタを形成する工程を含む請求項24~29のいずれかに記載の多層配線板の製造方法。

30 31. (補正後) 請求項1、3~6、および8~23のいずれかに記

補正された用紙(条約第19条)

● ● 03-6860 03 Nov 03

38/1

載の多層配線板、または請求項

CLAIMS

- 1. A multilayer wiring board comprising a plurality of insulating layers, applurality of conductive layers, a conductive non-through hole for electrically connecting the plurality of conductive layers to each other, and a capacitor produced by forming electrodes on upper and lower surfaces of at least one insulating layer containing a high-dielectric material, wherein a hardened material of the high-dielectric material has a specific inductive capacity ranging from 20 to 100 at 25°C, 1 MHz and a thickness ranging from 0.1 to 30 μ m.
- 2. The multilayer wiring board according to claim 1, wherein the capacitor is in an arbitrary layer except for a core layer and a layer structure is asymmetrical, a warpage is $4.0 \times 10^{-4} \text{mm}^{-1}$ or less in curvature at a room temperature.
- 3. The multilayer wiring board according to claims 1 or 2, wherein the capacitor is in an arbitrary layer except for a core layer and a layer structure is asymmetrical, and a warpage is 1 mm or less.
- 4. A multilayer wiring board comprising a plurality of insulating layer, a plurality of conductive layers, a conductive non-through hole for electrically connecting the plurality of conductive layers to each other, and a capacitor produced by forming electrodes on upper and lower surfaces of at least

one insulating layer containing a high-dielectric material, wherein an insulating material different from the high-dielectric material is filled in a recessed portion between conductive patterns including the electrodes, and the surfaces of the conductive patterns and the surface of the filled insulating material are planarized.

- 5. The multilayer wiring board according to claim 4, wherein the conductive pattern including at least one of the electrodes is in contact with different insulating materials of three types including the high-dielectric material.
- 6. A multilayer wiring board comprising a plurality of insulating layers, aplurality of conductive layers, a conductive hole for electrically connecting the plurality of conductive layers to each other, and a capacitor comprising at least one of the insulating layers containing a high-dielectric material having a specific inductive capacity ranging from 20 to 100 at 25°C, 1 MHz and produced by forming electrodes on upper and lower surfaces of the insulating layer, wherein at least one side of the counter electrodes has a thickness ranging from 1 to 18 µm.
- 7. The multilayer wiring board according to claim 6, wherein the electrode having the thickness ranging from 1 to 18 μm is arranged inside the outer periphery of the electrode opposing the electrode having the thickness.

- 8. The multilayer wiring board according to claim 6 or 7, wherein a minimum horizontal distance between each side surface of the electrode having the thickness ranging from 1 to 18 μ m and each side surface of the electrode opposing it are respectively ranging from 50 to 100 μ m.
- 9. The multilayer wiring board according to claims 6 to 8, wherein a minimum horizontal distance between each side surface of the electrode having the thickness ranging from 1 to 18 μ m and an outer edge of the conductive hole formed on the electrode for electrically connecting arbitrary conductive layers are respectively 100 μ m or more.
- 10. The multilayer wiring board according to any one of claims 6 to 9, wherein the electrode having the thickness ranging from 1 to 18 μm is formed by etching and removing an unnecessary portion of a conductive layer.
- 11. The multilayer wiring board according to any one of claims 4 to 10, wherein the capacitor is in an arbitrary layer except for a core layer, and a fluctuation in capacitance of the capacitor is less than $\pm 5\%$.
- 12. The multilayer wiring board according to any one of claims 1 to 11, comprising an inductor formed by patterning at least one conductive layer.

- 13. The multilayer wiring board according to claim 12, wherein a thickness of the conductive layer in which the inductor is formed is smaller than a thickness of another conductive layer and ranges from 1 to 12 μ m.
- 14. The multilayer wiring board according to claim 12 or 13, wherein the inductor is manufactured on any one of the electrodes formed on the upper and lower surfaces of the insulating layer.
- 15. The multilayer wiring board according to any one of claims 1 to 14, comprising a non-through hole which simultaneously penetrates at least one of the insulating layer containing the high-dielectric material and another insulating layer adjacent to the insulating layer containing the high-dielectric material.
- 16. The multilayer wiring board according to any one of claims 1 to 15, wherein the high-dielectric material contains an epoxy resin, a hardening agent for the epoxy resin, and a high-dielectric material filler.
- 17. The multilayer wiring board according to any one of claims 1 to 16, wherein the high-dielectric material contains an epoxy resin, a hardening agent for the epoxy resin, a high-dielectric material filler, and a high-molecular-weight

resin having at least one functional group and a weight-average molecular weight ranging from 10000 to 800000.

- 18. The multilayer wiring board according to any one of claims 1 to 17, wherein a melting viscosity of the high-dielectric material in a B-stage state at 120°C preferably ranges from 100 to 200 Pa·S.
- 19. The multilayer wiring board according to any one of claims 16 to 18, wherein the high-dielectric material filler is at least one selected from the group consisting of barium titanate, strontium titanate, calcium titanate, magnesium titanate, lead titanate, titanium dioxide, barium zirconate, and calcium zirconate, lead zirconate.
- 20. The multilayer wiring board according to any one of claims 16 to 19, wherein the high-dielectric filler is compounded 300 to 3000 parts by weight to the epoxy resin of 100 parts by weight.
 - 21. The multilayer wiring board according to any one of claims 1 to 20, wherein, as an outermost conductive layer, at least one conductive pattern having a width of 300 μ m or more is formed, and a thickness of an insulating layer adjacent to the outermost conductive layer is 150 μ m or more.

- 22. The multilayer wiring board according to any one of claims 1 to 21, wherein an insulating layer except for at least one of the insulating layers containing the high-dielectric material is reinforced by a glass substrate and contains an inorganic filler.
- 23. The multilayer wiring board according to any one of claims 1 to 22, wherein the electrodes formed on the upper and lower surfaces of the insulating layer are formed so that one surface or both the surfaces of the insulating layer may not be entirely covered.
- 24. A manufacturing method of a multilayer wiring board which includes a plurality of insulating layers, a plurality of conductive layers, a conductive non-through hole for electrically connecting the plurality of conductive layers to each other, and a capacitor produced by forming electrodes on upper and lower surfaces of at least one insulating layer containing a high-dielectric material, comprising: at least

the step of forming conductive patterns including one of the electrodes;

the step of filling and hardening an insulating material different from the high-dielectric material in a recessed portion between the conductive patterns;

the step of planarizing the surfaces of the conductive patterns and the surface of the insulating material filled and hardened in the recessed portion between the conductive

patterns by polishing; and

the step of heating and laminating a metal foil having the high-dielectric material in a semi-hardened state.

- 25. The manufacturing method of a multilayer wiring board according to claim 24, further comprising a step of forming a conductive pattern including the other of the electrodes by etching the metal foil.
- 26. The manufacturing method of a multilayer wiring board which includes a plurality of insulating layers, a plurality of conductive layers, a conductive hole for electrically connecting the plurality of conductive layers to each other, and a capacitor comprising at least one of the insulating layers containing a high-dielectric material having a specific inductive capacity ranging from 20 to 100 at 25°C, 1 MHz and produced by forming electrodes on upper and lower surfaces of the insulating layer, wherein, in formation of a conductive pattern, the same substrate is exposed a plurality of times such that a pattern exposure area of a photosensitive resist is set at 1 to 250 cm²/time.
- 27. The manufacturing method of a multilayer wiring board according to claim 26, wherein the electrode has a thickness ranging from 1 to 18 μm , and exposure is performed the plurality of times in formation of the conductive pattern including the electrode.

- 28. The manufacturing method of a multilayer wiring board according to claim 26 or 27, wherein a photomask consisting of an inorganic material is used in pattern exposure of the photosensitive resist.
- 29. The manufacturing method of a multilayer wiring board according to any one of claims 26 to 28, wherein the conductive pattern including the electrode is formed by etching and removing an unnecessary portion of a conductive layer.
- 30. The manufacturing method of a multilayer wiring board according to any one of claims 24 to 29, further comprising the step of forming an inductor in at least one of the conductive layers.
- 31. A semiconductor device wherein a semiconductor chip is mounted on a multilayer wiring board according to any one of claims 1 to 23 or a multilayer wiring board manufactured by a manufacturing method according to any one of claims 24 to 30.
- 32. A wireless electronic device wherein a semiconductor device according to claim 31 is mounted.

ABSTRACT

Amultilayer wiring board exhibiting excellent moldability and having a capacitor where variation of capacitance is suppressed, its producing method, a semiconductor device mounting a semiconductor chip on the multilayer wiring board, and a wireless electronic device mounting the semiconductor device.

