Theoretical Supervised Learning Questions IMA205

Giovanni Benedetti da Rosa

March 11, 2024

1 OLS

The OLS estimator can be defined as

$$\beta^* = (X^T X)^{-1} X^T Y = HY. \tag{1}$$

Another linear unbiased estimator of β is defined as

$$\tilde{\beta} = CY, \tag{2}$$

where C is a $d \times n$ matrix and C = H + D, D being a non-zero matrix.

Let $Y = \beta X + \epsilon$, where X is deterministic and the error ϵ follows $E[\epsilon] = 0$ with $Var(\epsilon) = \sigma I^2$.

Calculating expected value and variance of $\tilde{\beta}$:

- $E[\tilde{\beta}] = E[CY] = CE[Y] = (H+D)E[Y] = (H+D)\beta X = (I+DX)\beta$. This estimator is unbiased iff DX = 0.
- $Var(\tilde{\beta}) = Var(CY) = CVar(Y)C^T = \sigma^2CC^T = \sigma^2(H^TH + H^TD + D^TH + D^TD)$

By the previous answer: $Var(\tilde{\beta}) = \sigma^2((X^TX)^{-1} + D^TD) = Var(\beta^*) + \sigma^2D^TD$.

So, as $\sigma^2 ||x||_2^2 > 0$:

$$Var(\tilde{\beta}) > Var(\beta^*), \forall D \neq 0$$

2 Ridge Regression

• Show that the estimator of ridge regression is biased:

To minimize the function, as it a strictly convex function, let's compute the gradient and evaluate the critical points, setting it to zero.

$$\nabla J(\beta) = -2X_c^T (y_c - X_c \beta) + 2\lambda \beta$$
$$-2X_c^T (y_c - X_c \beta) + 2\lambda \beta = 0$$
$$-2X_c^T y_c + 2X_c^T X_c \beta + 2\lambda \beta = 0$$
$$X_c^T X_c \beta + \lambda \beta = X_c^T y_c$$
$$(X_c^T X_c + \lambda I)\beta = X_c^T y_c$$
$$\beta_{\text{ridge}} = (X_c^T X_c + \lambda I)^{-1} X_c^T y_c$$

Now, let's compute the expectation:

$$E[\beta_{\text{ridge}}] = E[(X_c^T X_c + \lambda I)^{-1} X_c^T y_c]$$

$$= (X_c^T X_c + \lambda I)^{-1} E[X_c^T y_c]$$

$$= (X_c^T X_c + \lambda I)^{-1} (X_c^T X_c \beta)$$

$$= (X_c^T X_c + \lambda I)^{-1} X_c^T X_c \beta$$

Finally, using the definition of bias $b(\beta_{\text{ridge}}) = E[\beta_{\text{ridge}}] - \beta$, which is zero if and only if $\lambda = 0(\text{OLS})$. Thus, it's a biased model for $\lambda \neq 0$

• Recall that the SVD decomposition is $X_c = UDV^T$. Write down by hand the solution–ridge using the SVD decomposition. When is it useful using this decomposition?

$$\begin{split} \beta_{\text{ridge}} &= ((VDU^T)(UDV^T) + \lambda I)^{-1}(VDU^T)y_c \\ &= ((VD^2V^T) + \lambda I)^{-1}(VDU^T)y_c \\ &= ((VD^2) + \lambda I)^{-1}(V^TVDU^T)y_c \\ &= ((VD^2) + \lambda I)^{-1}(DU^T)y_c \\ &= ((VD^2) + \lambda I)^{-1}(DU^T)UDV^T\beta \\ &= V(D^2 + \lambda I)^{-1}D^2V^T\beta \end{split}$$

In this formulation, we need to invert the diagonal matrix $(D^2 + \lambda I)^{-1}$ instead of $(X_c^T X_c + \lambda I)^{-1}$, that can be ill-conditioned or really large, improving then the computational efficiency.

• Show that $Var(\beta_{OLS}^*) \ge Var(\beta_{Ridge}^*)$: Using Covariance properties:

Given:
$$\hat{\beta}_{\text{ridge}} = (X_c^T X_c + \lambda I)^{-1} X_c^T y_c$$

Variance: $\text{Var}(\hat{\beta}_{\text{ridge}}) = \text{Var}((X_c^T X_c + \lambda I)^{-1} X_c^T y_c)$

$$= (X_c^T X_c + \lambda I)^{-1} \text{Var}(X_c^T y_c) (X_c^T X_c + \lambda I)^{-1}$$

$$= (X_c^T X_c + \lambda I)^{-1} \sigma^2 (X_c^T X_c) (X_c^T X_c + \lambda I)^{-1}$$

It's easy to see that for all positive λ , the OLS term will be bigger than the ridge, and if $\lambda = 0$, the terms are equal.

ullet When λ increases what happens to the bias and to the variance? To evaluate this cases, let's recall the SVD decomposition for the Ridge estimator.

First, for the Variance:

$$\operatorname{Var}(\hat{\beta}_{\text{ridge}}) = V((D^2 + \lambda I)^{-1}D^2V^T\beta)$$
$$= \sigma^2 \sum_{i=1}^n \left(\frac{d_i^2}{(d_i^2 + \lambda)^2} v_i(v_i^T\beta) \right)$$

And for the bias:

$$\sum_{i=1}^{n} \left(\frac{d_i^2}{(d_i^2 + \lambda)^2} v_i(v_i^T \beta) \right) - \beta$$

For inference, if λ increases the absolute value of the bias becomes bigger, while the variance becomes smaller. In the limit case, If $\lambda \to \infty$, $Var(\hat{\beta}_{ridge}) \to 0$.

• Show that
$$\hat{\beta}_{\text{ridge}} = \hat{\beta}_{\text{OLS}}(1+\lambda)$$
 when $x_c^T x_c = I_d$:
 $\beta_{\text{ridge}} = (I+\lambda I)^{-1} X_c^T y_c$ and $\beta_{\text{OLS}} = X_c^T y_c$, So: $\beta_{\text{ridge}} \frac{\beta_{\text{OLS}}}{1+\lambda}$.

3 Elastic Net

Equation 2 is a strictly convex function, we can use Fermat's rule to find its minima:

$$\partial f = 2X_c^T (Y_c - X_c \beta) + 2\lambda_2 \beta + \lambda_1 \begin{cases} \{-1\} & , \beta < 0 \\ \{1\} & , \beta > 0 \\ [-1, 1] & , \beta = 0 \end{cases}$$

$$\beta + \lambda_1 = 0$$

$$-2X_c^T (Y_c - X_c \beta) + 2\lambda_2 \beta \pm \lambda_1 = 0$$

$$-2X_c^T Y_c + 2X_c^T X_c \beta + 2\lambda_2 \beta \pm \lambda_1 = 0$$

If $X_c^T X_c = I$, we have that $\beta_{\text{OLS}} = X_c^T y_c$, and we have:

$$\beta_{\text{OLS}} = -2\beta(1+\lambda_2) \pm \lambda_1 \implies \beta_{\text{El.NET}} = \frac{\beta_{\text{OLS}} \pm \frac{\lambda_1}{2}}{(1+\lambda_2)}$$