Machine Learning

Chapter 3 지도 학습(Supervised Learning)

- Decision Tree 알고리즘을 이해 할 수 있다.
- Label 인코딩과 One-hot 인코딩을 이해 할 수 있다.
- 교차 검증 기법을 이해 할 수 있다.

Decision Tree(결정트리)

- Tree를 만들기 위해 예/아니오 질문을 반복하며 학습한다.
- 다양한 앙상블(ensemble) 모델이 존재한다 (RandomForest, GradientBoosting, XGBoost, LightGBM)
- 분류와 회귀에 모두 사용 가능

Decision Tree(결정트리)

0.0

0.0

0.2

0.4

0.6

0.8

빨간 구슬의 비율

Decision Tree(결정트리)

- 타깃 값이 한 개인 리프 노드를 순수 노드라고 한다.
- 모든 노드가 순수 노드가 될 때 까지 학습하면 복잡해지고 과대 적합이 된다.
- 새로운 데이터 포인트가 들어오면 해당하는 노드를 찾아 분류라
 면 더 많은 클래스를 선택하고, 회귀라면 평균을 구한다.

Decision Tree(결정트리) 과대적합 제어

- 노드 생성을 미리 중단하는 사전 가지치기(pre-pruning)와 트리를 만든후에 크기가 작은 노드를 삭제하는 사후 가지치기 (pruning)가 있다 (sklearn은 사전 가지치기만 지원)
- 트리의 최대 깊이나 리프 노드의 최대 개수를 제어
- 노드가 분할 하기 위한 데이터 포인트의 최소 개수를 지정

장단점 및 주요 매개변수(Hyperparameter)

- 트리의 최대 깊이: max_depth (값이 클수록 모델의 복잡도가 올라간다.)
- 리프 노드의 최대 개수: max_leaf_nodes
- 리프 노드가 되기 위한 최소 샘플의 개수: min_samples_leaf

장단점 및 주요 매개변수(Hyperparameter)

- 만들어진 모델을 쉽게 시각화할 수 있어 이해하기 쉽다. (white box model)
- 각 특성이 개별 처리되기 때문에 데이터 스케일에 영향을 받지 않아 특성의 정규화나 표준화가 필요 없다.
- 트리 구성시 각 특성의 중요도를 계산하기때문에 특성 선택 (Feature selection)에 활용될 수 있다.

장단점 및 주요 매개변수(Hyperparameter)

- 훈련데이터 범위 밖의 포인트는 예측 할 수 없다. (ex: 시계열 데이터)
- 가지치기를 사용함에도 불구하고 과대적합되는 경향이 있어 일 반화 성능이 좋지 않다.

Mushroom 데이터 활용 Decision Tree 분류 실습

poisonous: 독버섯(poisonous), 식용버섯(edible)

cap-shape : 갓 모양(b,c,x,f,k,s) : 원뿔/평면/볼록 등

cap-surface : 갓 표면(f.g.u.s) : 섬유질/비늘모양/부드러움 등

cap-color: 갓 색(n,b,c,g,r,p,u,e,w,u): 계피/회색/노란색 등

bruises : 타박상(t,f) : 예/아니오

odor: 냄새(a,l,c,y,f,m,n,p,s): 아몬드,생선,매운 등

gill-attachment(자실층 위치), gill-spacing(자실층 간격), gill-size(자실층 크기), gill-color(자실층 색), stalk-shape(자루 모양), stalk-root(자루 뿌리), stalk-surface-above-ring(자루 표면 위 자루테), stalk-surface-below-ring(자루 표면 아래 자루테), stalk-color-above-ring(자루 색 위 자루테), stalk-color-below-ring(자루 색 아래 자루테), veil-type(베일 유형), veil-color(베일 색), ring-number(링 번호), ring-type(링 타입), spore-pring-color(포자 색), population(인구), habitat(서식지)

	А	В	С	D	Е	F	G	Н	T.	J	K	L	М	N	0
1	poisonous	cap-shape	cap-surfac	cap-color	bruises	odor	gill-attach	gill-spacin	gill-size	gill-color	stalk-shap	stalk-root	stalk-surfa	stalk-surfa	stalk-color
2	р	х	S	n	t	p	f	С	n	k	e	e	S	S	w
3	e	х	S	y	t	a	f	С	b	k	e	С	S	S	w
4	e	b	S	W	t	I	f	С	b	n	e	С	S	S	w
5	р	х	у	W	t	p	f	С	n	n	e	e	S	S	w
6	e	х	S	g	f	n	f	w	b	k	t	e	S	S	w
7	е	х	у	y	t	a	f	С	b	n	e	С	S	S	W
8	e	b	S	W	t	a	f	С	b	g	e	С	S	S	w
9	e	b	у	W	t	I	f	С	b	n	e	С	S	S	W
10	р	Х	у	W	t	p	f	С	n	p	e	e	S	S	W
11	е	b	S	у	t	a	f	С	b	g	e	С	S	S	W
12	e	Х	у	у	t	I	f	С	b	g	e	С	S	S	W
13	е	х	у	y	t	a	f	С	b	n	e	С	S	S	W
14	e	b	S	у	t	a	f	С	b	W	e	С	S	S	W
15	р	X	y	W	t	p	f	С	n	k	e	е	S	S	W

범주형(이산형) 특성이기 때문에 인코딩 필요

categorical feature

Label 인코딩 or One-hot 인코딩 방식을 이용해 수치화한다.

Label Encoding 단순 수치 값으로 mapping하는 작업

ı	J	К	L
Ticket	Fare	Cabin	Embarked
A/5 21171	7.25		S
PC 17599	71.2833	C85	С
STON/O2.	7.925		S
113803	53.1	C123	S
373450	8.05		S
330877	8.4583		Q
17463	51.8625	E46	S
349909	21.075		S

L
Embarked
0
1
0
0
0
2
0
0

One-hot Encoding 0 or 1의 값을 가진 여러 개의 새로운 특성으로 변경하는 작업

ı	J	K	L
Ticket	Fare	Cabin	Embarked
A/5 21171	7.25		S
PC 17599	71.2833	C85	С
STON/O2.	7.925		S
113803	53.1	C123	S
373450	8.05		S
330877	8.4583		Q
17463	51.8625	E46	S
349909	21.075		S

N	0
Embarked_C	Embarked_Q
0	0
1	0
0	0
0	0
0	0
0	1
0	0
0	0
	Embarked_C 0 1 0 0 0 0

테스트 세트에 맞게 학습 될 수 있다.

Cross validation

(교차검증)

학습-평가 데이터 나누기를 여러 번 반복하여 일반화 에러를 평가하는 방법

K-fold cross-validation 동작 방법

- 1. 데이터 셋을 k개로 <u>나눈다.</u>
- 2. 첫 번째 세트를 제외하고 나머지에 대해 모델을 학습한다. 그리고 첫 번째 세트를 이용해서 평가를 수행한다.
- 3. 2번 과정을 마지막 세트까지 반복한다.
- 4. 각 세트에 대해 구했던 평가 결과의 평균을 구한다.

K-fold cross-validation 동작 방법

1번 세트

2번 세트

3번 세트

4번 세트

5번 세트

K-fold cross-validation 동작 방법

			<u> </u>			
test	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
					Smart	Modia

cross-validation 장/단점

- 데이터의 여러 부분을 학습하고 평가해서 일반화 성능을 측정하기 때문에 안정적이고 정확하다. (샘플링 차이 최소화)
- 모델이 훈련 데이터에 대해 얼마나 민감한지 파악가능 (점수 대역 폭이 넓으면 민감)
- 데이터 세트 크기가 충분하지 않은 경우에도 유용하게 사용 가 능하다.
- 여러 번 학습하고 평가하는 과정을 거치기 때문에 계산량이 많 아진다

Decision Tree 활용 Titanic 실습 - ex05

Decision Tree를 활용해 Titanic 데이터 를 학습하고 교차검증을 적용해보자.

