

Status of HTS Material and Application Development in Germany

Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics IEA EXCO Meeting, July 2017

KIT-ZENTRUM ENERGIE

KIT - Die Forschungsuniversität in der Heimholtz Gemeinschaft

Acknowledgement

- Markus Abplanalp, ABB Corporate Technology
- Tabea Arndt, Siemens Corporate Technology
- Markus Bauer, Theva
- Michael Bäcker, d-nano
- Wolfgang Reiser, Vision Electric Super Conductors
- Klaus Schlenga, Bruker
- Frank Werfel, ATZ
- My Co-workers at Institute of Technical Physics and many project partners from industry and academia

M. Noe, Status of HTS Material and Application Development in Germany

KIT-Zentrum Energie

Status of HTS Material and Application Development in Germany

- Materials and tapes
 - REBCO tapes
 - YBCO bulk material
- Conductor concepts
 - Roebel conductor
 - Cross-Conductor
- Energy Applications
 - Cable and busbars
 - Rotating machines
 - Current Limiters
 - Transformers

Pro-Line HTS wires

Pilot line for industrial HTS wire production

Capacity 150 km/yr (@ 12 mm-width) Typical production tape length: 300 m different wire types now available

Pro-Line HTS wires

June 2017- Copyright THEVA Dünnschichttechnik GmbH

Improved wire performance

Expanded pilot line

- Opening of expanded pilot line in Rheinbach in 2016
- Annual capacity > 200km technical HTS wire

- Chemical solution deposition (CSD) for all layers
 - Price performance ratio
 - Scalability
 - Reliability
- Customized electrical and mechanical stabilization

Performance

- Single piece length >100m
- Regular performance >300A/cmw (@77K,sf)

- Copper and stainless steel laminate
- Bridge-type joints <10nW

- Typical behaviour (B, T)
- Lift factors 0-5T, 20-77K available

Milestones

BHTS milestones in HTS wire leng

- > 2013 100m length
- > 2014 200m length

BRUKER HTS GmbH

Applications

Application of BHTS coated cond

BRUKER HTS GmbH

HTS wire performance

Ic in-field performance of HTS wires at 4.2K

- ➤ BHTS samples from HTS 600m tapes (tape ID# 16037, 16039)
- I_c measured up to 30T B//c at 4.2K

(NHMFL) presented at WAMHTS-4 Barcelona in Feb. 2017 $_{
m High\ f}$

D. Abraimov, D.C. Larbalestier et al

All Diabta Danson

PAGE 9

Next generation of BRUKER BIOSPIN persistent super-conducting magnet for NMR spectroscopy

EuCARD-2: Next generation of accelerator magnets for High-Energy-Physics Collider at CERN

Status of HTS wire development

Manufacturer	Country	Width/ mm	Stabilizer	Piece length ¹⁾	I _c , 77 K, sf
AMSC	US	4, 12	Brass, Cu, SS	200	250 A/cm
Bruker	Germany	4, 12	Cu	600 m ²⁾	High field tape
d-nano	Germany	4, 12	Cu, SS	> 100 m	~ 300 A/cm
Fujikura	Japan	4, 10, 12	Cu	300 m	> 500 A/cm
Shanghai ST	China	4, 12	Cu	up to 1 km	200-500 A/cm
Shanghai CST	China	4, 6, 12	Brass, Cu, SS	> 100 m	100-250 A/cm
STI	US	3,4,10	Cu	> 100 m	250-500 A/cm
Sunam	Korea	4, 12	Brass, Cu	200 m	500 A/cm
SuperPower	US	2,3,4,6,12	r oach applicat	400 000	100.44

4, 12

Superox

Theva

For each application several suppliers

- Width 2-12 mm
- 4, 12 Stabilizer Brass, Cu, SS
 - Piece length up to several 100 m
 - Ic mostly between 200-500 A/cm at 77 K, sf

Russia/Japan

Germany

¹⁾ Single piece length without splices

^{2) 600} m for 4 mm

HTS Röbelwire for Accelerator Magnets

15 strands Bruker 12 mm tape 20 μm Cu layer Transposition pitch 226 mm 12.9 kA at 25 K

Cross-Conductor High Current Conductor (KIT)

Worldwide first test of HTS Röbelwire in future Accelerator from Bruker and Röbelwire from KIT)

G. Kirby et.al., "First Cold Powering Test of REBCO Roebel Wound Coil for the EuCARD2 Future Magnet Development Project", IEEE TRANSACTIONS ON APPLIED SUPERCOND

M. Noe, Status of HTS Material and Application Development in Germany

	6/4 CroCo	4/2 CroCo	3/2 CroCo
Number of	20 x 6 mm	16 x 4 mm	16 x 3 mm
REBCO tapes	10 x 4 mm	16 x 2 mm	8 x 2 mm
Ø incl. tube	9.1 mm	6.8 mm	5.7 mm
I _c (4.2 K, 12 T)	8000 A	4800 A	3200 A
I _c (77 K, s.f.)	3000 A	1800 A	1300 A

- Continous manufacturing
- Small twist pitch
- Low resistive terminations (30-50 nOhm)
- Applicable for AC and DC

M. Noe, Status of HTS Material and Application Development in Germany

KIT-Zentrum Energie

Status of HTS Material and Application Development in Germany

- Materials and tapes
 - REBCO tapes
 - YBCO bulk material
- Conductor concepts
 - Roebel conductor
 - Cross-Conductor
- Energy Applications
 - Cable and busbars
 - Rotating machines
 - Current Limiters
 - Transformers
 - Flywheel

Status of HTS DC cable and busbar development

Year	Place	Country	Application	Length/ m	Current/ A	Voltage	HTS
2017	Ludwigahafa	2C Cuproci	Chlaralalstraksaa	25	20000	8 ta\7	VDCC
2017	St. Pete		tromSchienen des Hochstromsystem fi gen	ür DC-			
2016	Ishi				2		V 26 17 12

Current lead and connection CU-HTS

Worldwide first

2015

2015

2014

2013

2012

2010

2006

Ishi

M. Noe, Stand der 24

Projektpartner:

Gefördert durch: Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

SUPRAPOWER project Outline

SUPRAPOWER project Outline

- Funded by the European Union's FP7 Programme under grant agreement 308793
- Time scope: Dic 2012 May 2017
- Total Budget: 5.4 M€, EC funding: 3.9 M€
- **TECNALIA leads a consortium of 8 partners:**

Coordinator:

Industrial Partners:

Research centres and Universities:

Scale Machine Validator: a comparison to full scale and scale generator (SG)

30 rpm

528 mm

	10 MW	SG	SMV
Power	10 MW	550 kW	# 0
Speed	8.1 rpm	121.5 rpm	30 rpr
Torque	11.8 MN·m	43.2 kN·m	
Number of poles	48	4	2
Frequency	3.24 Hz	4.05 Hz	7.
Location of armature	External	Internal	
Operating temperature	20 K	20 K	20 K
Armature winding	Copper	Copper	-
Magnetic core length	744 mm	528 mm	528 m
Armature current density	3 A/mm ²	3 A/mm ²	_
Induction peak value in airgap	1.5 T	1.5 T	Scale I
Peak field in the superconductor	1.37 T	1.36 T	
Working point in the load line	65 %	65 %	Doub

Scale Machine Validator: a comparison to full scale and scale generator (SG)

Double Pancake

Scale Machine Validator

Consortium

Direct Drive

Drive Train

Generato

 The idea is to replace a PM generator with a superconducting generator

· Well defined responsibilities

Substantial development team

Program: EU Horizon 2020

Reference: 656024

Start Date: 2015-03-01

End Date: 2019-03-01

Total Cost: EUR 13,846,594

• EU Contribution: EUR 10,591,734

on's Horizon 2020 research and innovation programme under the author's view. The Commission is not responsible for any use

ENVISION

 This includes power conversion and refrigeration equipment.

HTS coils

Coil winding and casting technology was developed

- Resin potted
- double pancake coils
- About 200 turns
- Operating at 30 K
- Conduction cooled

Ongoing:

Small series production of more than 30 coils for a 3.6 MW windpower generator within the EcoSwing project

Technology can be adapted for different size, number of turns and wire width.

Type test result showing expected performance

2 x 87 turn double layer test coil

"EcoSwing has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 656024." "Herein we reflect only the author's view. The Commission is not responsible for any use that may be made of the information it contains."

Rotating machines for electric aircrafts based on HTS technology

HTS technology as an enabler for sustainable electric aircraft propulsion

Details

- High power density
- High efficiency
- Power rating: several megawatt
- partnering with Airbus and others funded project "TELOS" in the german LuFo-Program

Airbus Group and Siemens Sign Long-Term Cooperation
Agreement

in the Field of Hybrid Electric Propulsion Systems Munich, 2016-Apr-07

Both companies take significant joint development decision Assemble joint development team of some 200 employees Target: breakthrough innovation in aerospace e-mobility

Press Release

ASuMED Advanced Superconducting Motor Experimental Demonstrator (H2020, started May 2017)

Participants

OSWALD Elektromotoren GmbH, Germany
ROLLS-ROYCE PLC, United Kingdom
UNIVERSITY OF CAMBRIDGE, United Kingdom
KARLSRUHER INSTITUT FUER TECHNOLOGIE, Germany
HOCHSCHULE FUR ANGEWANDTE WISSENSCHAFTEN ASCHAFFENBURG, Germany
AIR LIQUIDE ADVANCED TECHNOLOGIES SA, France
DeMaCo Holland bv, Netherlands
SuperOx, Russian Federation
Institute of Electrical Engineering, Slovak Academy of Sciences, Slov

K & S GMBH PROJEKTMANAGEMENT, Germany

Purpose

- Demonstrate benefits of a new fully superconducting motor with a power density of 20kW/kg. In particular:
 - · design an appropriate motor topology
 - develop a high-temperature superconducting (HTS) stator with an electric loading of >450kA/m
 - develop a rotor using HTS stacks operating like permanent magnets providing an average magnetic loading of >2.5 T
 - integrate a magnetization system into the stator area
 - implement a highly efficient cryostat for motor combined with integrated cryogenic cooling system and associated power converter
- Demonstrate above technologies in a prototype with approximately
 1 MW power at 10.000rpm and a thermal loss < 0.1%
- Design innovative modular inverter topology with enhanced failure protection, to realize highly dynamic and robust control of superconducting machines.

Current limiter Nexans

12 kV, 1600 A resistive FCL installed at busbar at Western Power Distribution, Chester Street, Birmingham, since End 2015

Quelle: Nexans

"ASSIST" – SFCL for public 10 kV grid of Stadtwerke Augsburg, Bavaria, Germany

SFCL based Solution (SFCL+switchgear+control+DAQ) successfully installed and inaugurated in 03/2016.

gefördert
Bayerisches Staatsministerium
Wirtschaft und Medien, Energie und Technok

Details

- Collaboration of Siemens EM, CT & Stadtwerke Augsburg
- Integration of MTU's extended testing facility of combined heat and power unit requires reduction of short-circuit current
- Combination of superconducting 15 MVA SFCL with ultrafast breaker and parallel series reactor
- Closed cooling system (cold heads included)
 no blow-off during limitation
- Reduction of losses compared to conventional solution
- Increased system stability, no voltage drop
- Large area breaker up-grade dispensable
- Timeline:
 - Apr. 15, 2014: project start
 - Mar. 15, 2016: official inauguration

Superconducting Current Limiter SMARTCOIL

Siemens, KIT Project to develop a single phase FCL based

on air coil limiter concept

<u> </u>	000 4
Current	600 A
Voltage (Phase-Ground)	5.77 kV
Height of coil	1170 mm
Inner diameter	1318 mm
Number of turns	45
Number of layers	1
Nominal impedance	1.95 mH (0.60 Ω)
Short-circuit voltage	6%
Max. Op. Temp.	< 155 °C

Cost effective FCL using advanced supercon. tapes for future HVDC grids

Significant advances of the economical attractiveness of SCFCLs by improving REBCO tapes, especially in their current limitation mode

Advanced REBCO tape

- Low standard deviation in term of critical current (I_c) over the tape length
- Electric field higher than 100 V/m (50 ms)
- Critical current higher than 1000 A/cm-w at 65 K (self-field)

Emerging REBCO tape

- Tape with enhanced propagation velocity (CFD concept)
- Sapphire substrate REBCO tape with ultra high electric fields

Smart module of a HVDC apparatus

- Current and voltage in the range of 0.5/1 kA and 30/50 kV
- New functionality such as quench detection through optical fiber
- Extensive testing of the module in relevant operating conditions

- H2020 project
- 42 months
- Starting: 01/2017
- Coord.: CNRS (FR)
- Total budget: 9 M€

Staus of FCL development (> 100 kV)

11.5 kV, 400 A

10 kV, 2.4 kA

24 kV, 1 kA

15 kV / 1kA

12 kV/1.6 kA

10 kV / 15 MVA

Status of			3-5	30		SE		
Otatus Of	Lead Company	Year/Country 1)	Data	2)		Туре	Phase	HTS
Lead Company	Innopower	China /2011	220 kV, 30	NVA	DC biased iron core		3-ph. √	BSCCO
ACCEL/NexansSC	AMSC / Siemens	US / D / 2012	115 kV, 1.:	115 kV, 1.2 kA 154 kV, 2 kA		Res.	1-ph. 1-ph.	YBCO tape YBCO tape
CESI RICERCA	KEPRI	Korea/2015	154 kV, 2 l			Res.		
Siemens / AMSC	Applied Materials	US / 2016	115 kV, 55	0 A		Res.	3-ph. ✓	YBCO tape
LSIS	IEE CAS	China /2017	220 kV	2.		Res.		YBCO tape
Hyundai / AMSC	IEE CAS	China /2017	500 kV	-	DC bi	ased iron core	·	BSCCO
KEPRI	IEE CAS	China/	160 kV DC	160 kV DC		Res.		YBCO tape
Toshiba	Superox	Russia /2018	220 kV	220 kV		Res.		YBCO tape
Nexans SC					1	2005.74		
Nexans SC	D / 2009	12 kV, 800	Α	3-ph	1.√	Bi 2212 bu	lk	
RSE	1/2011	9 kV, 250 A	4	3-ph	1.	Bi 2223 tap	e	
RSE	1/2012	9 kV, 1 kA		3-ph	1.	YBCO tape	9	
KEPRI	Korea / 2011	22.9 kV, 3	kA	3-ph	1.√	YBCO tape	9	
Nexans SC	D / 2011	12 kV, 800	Α	3-ph	1.✓	YBCO tape	9	

3-ph.

3-ph. ✓

3-ph. ✓

3-ph. ✓

3-ph. ✓

3-ph. ✓

UK / -

D/2013

EU 2013

US /2013

UK/2015

D / 2016

MgB, wire

YBCO tape

YBCO tape

YBCO tape

YBCO tape

YBCO tape

Rolls Royce

Nexans SC

Nexans SC

Nexans SC

Siemens

Applied Materiaks

Strombegrenzender Transformator (ABB-KIT)

Name	Value
Nominal power	577.4 kVA
	20 kV
Primary winding Cu	28.9 A
Secondary winding	1 kV
HTS	577.4 A
Fault duration	60 ms
Current lim. 1st HW	13.55 kA
Limitation 1st HW in resp. to prosp. Current	71.4 %
Current limitation 6th HW	6.5 kA
Limitation 6th HW in resp. to prosp. current	35.7 %

M. Noe, Status of HTS Material and Application Development in Germany

Strombegrenzender Transformator (ABB-KIT)

Stand der Entwicklung supraleitender Transformatoren (> 500 kVA, seit 2000)

Country	Inst.	Application	Data	Phase	Year	HTS
Japan	Fuji Electric	Demonstrator	1 MVA, 22 kV/6,9 kV	1	2001	Bi 2223
Germany	Siemens	Railway	1 MVA, 25 kV/1,4 kV	1	2001	Bi 2223
Korea	U Seoul	Demonstrator	1 MVA, 22,9 kV/6,6 kV	1	2004	Bi 2223
Japan	Fuji Electric	Railway	4 MVA, 25 kV/1.2 kV	1	2004	Bi 2223
Japan	Kuyshu Uni.	Demonstrator	2 MVA, 66 kV/6.9 kV	1	2004	Bi 2223
China	IEE CAS	Demonstrator	630 kVA, 10.5 kV/400 V	3	2005	Bi 2223
Japan	U Nagoya	Demonstrator	2 MVA, 22 kV/6,6 kV	1	2009	P-Bi 2223/S- YBCO
Australia	Callaghan Innovation	Demonstrator	1 MVA, 11 kV/415 V	3 Dy	2013	YBCO
China	IEE CAS	Demonstrator	1.25 MVA, 10.5 kV/400 V	3 Yyn0	2014	Bi 2223
Germany	KIT/ABB	Demonstrator	577 kVA, 20 kV/1 kV	1	2016	P-Cu/S-YBCO

END