Natural Language Processing and Text Mining:

HW#2

小組成員和負責工作:

109590041 范遠皓 測試和報告

109590043 柯瑞霖 撰寫程式

環境

使用的語言: Python

所需套件:

click==8.1.3

colorama==0.4.6

joblib==1.2.0

nltk = 3.8.1

numpy==1.24.2

pandas = = 1.5.3

python-dateutil==2.8.2

pytz==2023.2

regex==2023.3.23

scikit-learn==1.2.2

scipy==1.10.1

six = 1.16.0

threadpoolctl==3.1.0

tqdm = = 4.65.0

安裝辦法:

Zip 檔內有 requirements.txt

終端機輸入以下指令安裝

pip3 install -r requirements.txt

資料讀取並進行前置處理

```
# 處理完的數據

frain_sents_f = []

for file_name in train_file_names:

train_sents = all_preprocess(file_name)

train_sents_f.append(train_sents)

test_sents_f = []

for file_name in test_file_names:

test_sents = all_preprocess(file_name)

test_sents_f.append(test_sents)
```

NLTK 前置處理:

對資料進行詞性標記,然後提取其中的名詞短語 (NP),並將其特徵值插入原始資料中。

```
def preprocess(sent):
    sent = nltk.word_tokenize(sent)
    sent = nltk.pos tag(sent) #詞性標記
    return sent
def nltk_preprocess(data):
   data_without_second_value = [(t[0]) for t in data]
   data_tostrig = ' '.join(data_without_second_value)
data_preprocess = preprocess(data_tostrig)
   pattern = 'NP: {<DT>?<JJ>*<NN>}' #正規表達式提取NP短語
    cp = nltk.RegexpParser(pattern)
    data_cs = cp.parse(data_preprocess)
    data_iob_tagged = tree2conlltags(data_cs)
    return data_iob_tagged
def nltk_insert_data(nltk_preprocess_data, data_o):
        temp_l = list(data)
        temp_l.insert(1, nltk_preprocess_data[i][1])
        temp_t = tuple(temp_1)
        result.append(temp_t)
           i+=1
def all_preprocess(file_name):
    data_o = read_conll_file(file_name)
    nltk_preprocess_result = nltk_preprocess(data_o)
    nltk insert data result = nltk insert data(nltk preprocess result, data o)
    return nltk_insert_data_result
```

提取特徵後放入 Perceptron 模型進行分類訓練,最後輸出結果。

```
# 特徵和標籤提取

X_train = extract_features(train_sents_f)

y_train = extract_labels(train_sents_f)

X_test = extract_features(test_sents_f)

y_test = extract_labels(test_sents_f)

# 特徵向量化

X_train = vec.fit_transform(X_train)

X_train = vec.fit_transform(X_train)

X_test = vec.transform(X_test)

# 感知模型訓練和預測

Clf = Perceptron(verbose=10, n_jobs=-1, max_iter=5)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

# 報告結果輸出

print(classification_report(y_test, y_pred))
```

特徵提取

```
def word2features(sent, i):
            word = sent[i][0]
             features = {
                  'bias': 1.0,
                 'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
                  'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
                  'word.isdigit()': word.isdigit(),
            if i > 0:
                 word1 = sent[i-1][0]
                  features.update({
                       '-1:word.lower()': word1.lower(),
                       '-1:word.istitle()': word1.istitle(),
'-1:word.isupper()': word1.isupper(),
                 features['BOS'] = True
             if i < len(sent)-1:</pre>
                 word1 = sent[i+1][0]
                  features.update({
                       '+1:word.lower()': word1.lower(),
                       '+1:word.istitle()': word1.istitle(),
'+1:word.isupper()': word1.isupper(),
104
                  })
                 features['EOS'] = True
             return features
       def extract_features(sentences):
                  for i in range(len(sent)):
                      X.append(word2features(sent, i))
            return X
```

執行結果:

+4013 WD > .				
	precision	recall	f1-score	support
B-LOC B-ORG	0.78 0.30	0.22 0.30	0.34 0.30	309 736
B-PER	0.85	0.65	0.74	2323
I-LOC I-ORG	0.20 0.16	0.31 0.13	0.24 0.14	114 127
I-PER	0.64 0.96	0.34 0.99	0.44 0.97	201 25662
0	0.90	0.99	0.97	23002
accuracy macro avg	0.55	0.42	0.92 0.45	29472 29472
weighted avg	0.92	0.92	0.92	29472