Stochastic approximation in mathematical finance

Jean-Sébastien Delineau, Shivang Sichar

EPFL

February 2024

Introduction: Framework

Let $\{S_t, t \in [0, T]\}$ be a geometric Brownian motion modelling the stock price.

The put option is defined as the function

$$f(X_{\sigma}) = e^{-rT}(K - X_{\sigma})_+$$
 with $(x)_+ = max(x, 0)$.

Where X_{σ} is defined as,

- European: $X_{\sigma} := S_T$
- Asian: $X_{\sigma} := \overline{S}$, where $\overline{S} = \frac{1}{m} \sum_{i=1}^{m} S_{t_i}$ and $t_i = \frac{iT}{m}$.

The option price is defined as,

$$I(\sigma) = E[(f(X_{\sigma})].$$

For a desired price I_{market} , we seek the root σ^* ,

$$I(\sigma^*) - I_{market} = 0.$$

Introduction: Robin-Monro Algorithm

In the frame considered, I is an increasing function of σ . To find the root σ^* , we implemented the Robin-Monro algorithm:

$$\sigma_{n+1} = \sigma_n - \alpha_n J(\sigma_n)$$
 where $\alpha_n := \frac{\alpha_0}{n^{\rho}}$.

With an MC estimator of J,

$$\hat{J}_N(\sigma_n) := \hat{I}_N(\sigma_n) - I_{market} = \frac{1}{N} \sum_{i=1}^N (Z^{(i)} - I_{market}) = \frac{1}{N} \sum_{i=1}^N \tilde{Z}^{(i)}$$

And a estimator $\hat{I}(\sigma)$ as it it stochastic,

$$\hat{I}_N(\sigma) = \frac{1}{N} \sum_{i=1}^N Z^{(i)}.$$

RM Algorithm for pricing a European Put Option

Figure: Plots of MSE $\mathbb{E}[(\sigma_n - \sigma_*)^2]$

Convergence rate

$$\log(\mathsf{MSE}) = -\alpha \log(n) + \mathsf{constant}$$

ρ	Ν	$\alpha =$ Convergence Rate	
0.8	1	0.7487	
0.8	10	0.7702	
0.8	100	0.7844	
1	1	0.2878	
1	10	0.2899	
1	100	0.2902	

Asian Put Option

$$I(\sigma) = E[f(X_{\sigma})]$$
 with $X_{\sigma} := \frac{1}{m} \sum_{i=1}^{m} S_{t_i}$, $t_i = \frac{iT}{m}$.

- No closed formula
- X_{σ} can only be expressed as the average sum of lognormal.
- Consider random vector $(S_{T/m}, S_{2T/m}, \ldots, S_T)$ (Markov chain) its joint pdf (product lognnormal pdf),

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m \frac{1}{x_i \sigma \sqrt{T/m}} \varphi \left(\frac{\log[x_i/x_{i-1}] - (r - \sigma^2/2)(T/m)}{\sigma \sqrt{T/m}} \right)$$

ullet X_{σ} is heavy tailed and skewed (Super slow CLT & poor confidence intervals).

Algorithm: Speed or Precision?

$$\sigma_{n+1} = \sigma_n - \alpha_n \hat{J}_N(\sigma_n)$$
 where $\alpha_n := \frac{\alpha_0}{n^\rho}$, $\alpha_0 := \frac{2}{K + S_0}$.

Speed or Precision? "Burn-in" to reconcile.

Stopping Criterion

Stopping criteria:

- Moving average of the last 1000 iterations of $\hat{J}(\sigma_n)$ is less than a tolerance t_1 .
- Current value of $|\hat{J}(\sigma_n)| < t_2$.

Statistic	Mean	Standard deviation	
σ_n	0.81021	0.00107	
iterations	15945.45	11704.99317	

Figure: MC simulation of 20 samples, $\rho = 0.5$ constant, $t_1, t_2 = 10^{-2}$

Importance sampling

Figure: The optimal \tilde{r} should be a function of $\sigma_n(I_{\text{market}}), S_0, K$

Sophisticated Importance Sampling

For a given σ , the optimal value of \tilde{r} is the one that minimizes the variance of the IS estimator:

$$\begin{split} \tilde{r}(\sigma) &= \arg\min_{\eta} \mathbb{E}_{p(\cdot;r,\sigma)} \left[f^2(S;r,\sigma) \frac{p(S;r,\sigma)}{p(S;\eta,\sigma)} \right] \\ &= \arg\min_{\eta} \mathbb{E}_{p(\cdot;r,\sigma)} \left[f^2(S;r,\sigma) \left(\frac{S_T}{S_0} \right)^{\frac{r-\eta}{\sigma^2}} \exp \left(\frac{(r+\eta-\sigma^2)(\eta-r)T}{2\sigma^2} \right) \right] \end{split}$$

Using a MC estimator

Comparison of different strategies

Comparison of different strategies

Algorithm	Average num. of iterations <i>n</i>	Mean value of σ_n	Standard deviation in σ_n
Standard RM	31632	1.11100	0.00352
RM with IS	12983	1.10952	0.00192
RM with IS and optimal \tilde{r}	8080	1.10958	0.00295

Variance of sigma_n over a window of size 5000 iterations

THANK YOU!