

Charles GUILLEMET | ITSEF Technical Manager | 2016-2017 CEA Grenoble – charles.guillemet@cea.fr

LECTURES AGENDA

- L1: 26/10/2016 (Today) | 9:45 13:00
- L2: 07/12/2016 | 8:00 13:00
- L3: 14/12/2016 | 8:00 13:00
- L4: 11/01/2016 | 9:45 13:00

OVERVIEW OF LECTURE

- What is a smart card?
 - From the Design to the Application
- **Applications example:**
 - **EMV**
 - Mifare
- **Faults attacks**
- Side channel analysis

WHAT IS A SMARTCARD?

- **Pocket-sized card**
 - With embedded integrated circuits
- Communication
 - Contact ISO 7816
 - Contactless ISO 14443

- **Used for various applications**
 - Identification
 - Authentification
 - Data storage
 - Application processing

Usage examples

- EMV cards
- MIFARE tokens
- Health Care cards
- Ski resort Tokens
- **Passport**
- PayTV card
- SIM cards
- Public transportation

WHAT IS A SMARTCARD? ACTORS

- Main IC actors
 - Samsung
 - Infineon
 - NXP
- Smaller IC actors
 - Tiempo
 - Starship
 - others,
- **Embedded software developper**
 - Gemalto
 - Morpho (ex: Safran)
 - Oberthur
 - Giesecke & Devrient
- **Certification bodies**
 - CC: ANSSI, BSI, CESG, ...
 - **EMVCo**
 - Mifare

SMARTCARD LIFE CYCLE (COMMON CRITERIA)

COMMON CRITERIA PARENTHESIS

COMMON CRITERIA - OVERVIEW

- 7 level of security (EAL1-7)
- TOE SFR TSF SM
- **Assurance components**
 - ADV
 - AGD
 - ALC
 - ASE
 - ATE
 - AVA
- **AVA:** 5 levels of security
 - AVA_VAN.1 to 5

WHAT IS A SMARTCARD?

- **Threats**
 - Attacker has a physical access
 - Listen
 - Perturb
 - Modify
- Not an HSM in a bunker / data farm!

- CPU (MCU)
 - ARM
 - Proprietary instruction set
- **Memories:**
 - **ROM**
 - RAM
 - EEPROM / Flash
- Crypto-processors : DES, AES, multiplier...
- Communication interface: serial bi-directionnal I/O line, RF, USB...

On the same silicon!

The Micro module

The architecture

- Design of a smart card
 - memory blocks
 - analogical part
 - numerical part
 - language used for dev.: VHDL, Verilog

Embedded software

- application example
- development : assembly language, C, C++, JAVA

EMBEDDED SOFTWARE

- Source Code : C, C++, ASM
- Compilation gcc, keil
 - Target: depends on CPU the Instruction set
 - ARM 8-bits, 16-bits, 32-bits (v5,v7...), MIPS
 - Other proprietary instruction set
- Javacard
 - JVM (compiled for the target : CPU + accelerators)
 - Applets

WHAT IS A SMART CARD – DESIGN OVERVIEW

- 1. Architecture Scheme
- 2. Design
 - Analogic
 - Digital
- 3. Synthesis
- 4. Floor Planning
- 5. Place And Route
- 6. Tape-Out

EDA tools

(Electronic Design Automation)

TESTS

TESTS

TESTS

This is not software:

Bug is not option

Long time process: very costly

WHAT IS A SMART CARD – DESIGN OVERVIEW (1/5)

1. Architecture Scheme (DES example)

WHAT IS A SMART CARD – DESIGN OVERVIEW (2/5)

2. Design – simple Verilog example (Sbox1)

```
module Sbox Rom1(S1 INPUT, S1 OUTPUT);
input [6:1] S1 INPUT;
output [3 : 0] S1 OUTPUT;
wire [6:1] S1 INPUT;
reg [3 : 0] S1 OUTPUT;
wire [6 : 1] S1 SELECT;
assign S1 SELECT = {S1 INPUT[6], S1 INPUT[1], S1 INPUT[5 : 2]};
always @ (S1 SELECT)
 begin
   case (S1 SELECT)
        6'b0000000: S1 OUTPUT <= 4'hE;
        6'b000001: S1 OUTPUT <= 4'h4;
        6'b000010: S1 OUTPUT <= 4'hD;
        6'b000011: S1 OUTPUT <= 4'h1;
        6'b000100: S1 OUTPUT <= 4'h2;
        6'b000101: S1 OUTPUT <= 4'hF;
        6'b000110: S1 OUTPUT <= 4'hB;
        6'b000111: S1 OUTPUT <= 4'h8;
   endcase
 end
```

=> TESTS: Verilog/VHDL simulation

WHAT IS A SMART CARD – DESIGN OVERVIEW (3/5)

- 3. Synthesis
 - Kind of compilation
 - From Verilog/VHDL code source
 - To Netlist File
- TESTS: Netlist Simulation

- Spice Simuation
 - Electrical simulation
 - EDP/Differential equations solving at each step of time

WHAT IS A SMART CARD - DESIGN OVERVIEW (4/5)

- 4. Floor Planning
 - From the netlist
 - To a 2D plan
- 5. Place And route
 - Cells are placed on the floor plan
 - Routing
 - Design Rules Check / Layout Versus Schematic
 - Parasitics extraction
 - **TESTS**: simulation

WHAT IS A SMART CARD – DESIGN OVERVIEW (5/5)

- 5. Tape-Out
 - GDS sent to the foundry
 - Wafer
 - **Tested**
 - Cut
 - Packaged

WHAT IS A SMART CARD – A WORD ON TECHNOLOGY NODE

- 130nm, 90nm, 65nm, 45nm, 32nm, 22nm, 14nm
- Smallest half-pitch of contacted M1 lines in the fabrication process
- Defines the size of cells
- Smaller implies
 - Less power consumption
 - Faster electronic
 - Less silicon => cheaper production
 - New techno => lot of investments => more expensive
- TSMC, Global foundery, UMC, Samsung, Intel, ...

WHAT IS A SMART CARD? MICRO-MODULE: PINS

SMARTCARD ACTIVATION SEQUENCE

- 1. RST low
- 2. Apply VCC
- 3. Put IO in receive mode
- 4. Apply CLK
- 5. RST High

ISO 7816-3

- ATR
 - Contains several data
 - TS, T0, clock frequency, convention, ...

- Indirect mode
 - \blacksquare Z \rightarrow 0, A \rightarrow 1
 - Msb first
- Direct mode
 - $Z \rightarrow 1, A \rightarrow 0$
 - Lsb first

$$1 \text{ etu } = \frac{372}{f}$$

ISO 7816-3 TS CHARACTER

WHAT IS A SMART CARD? **CONTACT AND CONTACTLESS DUAL MODE**

WHAT IS A SMART CARD... CONTACTLESS MODE

ISO 14443

- Proximity coupling (< 10cm)
- Two types
 - Type A (Philips MIFARE)
 - Type B (Others: STM, MOTOROLA)
- EM Field
 - Carrier @ 13.56 MHz
 - EM amplitude field $H_{min}=1.5$ to $H_{max}=7.5$ A/m
- **Terminology**
 - PCD: Proximity Coupling Device (Reader)
 - PICC: Proximity Integrated Circuit Card (Card)

ISO 14 443-2 TYPE A - PHY & MAC LAYERS

Modulation & Coding (Type A)

- **Forward link**
 - 100%-ASK (OOK)
 - Logic 1: Modified Miller with pause on carrier
 - Logic 0 : No pause

Return link

- Load modulation of a sub carrier

- Frequency of sub carrier = Fc/16 = 848 kHz Logic 1: first half bit with sub carrier modulation Logic 0: second half bit with sub carrier modulation

Data rate: 106 kbps

ISO 14 443-2 TYPE B - PHY & MAC LAYERS

Modulation & Coding (Type B)

- Forward link
 - 10%-ASK [8% 14%]
 - Coding: NRZ-L
 - Logic 1 : Carrier high field amplitude (No modulation)
 - Logic 0 : Carrier low field amplitude

- Load modulation of a sub carrier Fc/16 = 848 kHz
- BPSK NR7-I
 - Logic 1: sub carrier phase + 0°
 - Logic 0 : sub carrier phase + 180°

ISO 14443

Example communication signals for Type A and Type B interfaces

WHAT IS A SMART CARD? MICRO-MODULE

WHAT IS A SMART CARD...

