

词典的重要性,词典的完备性例子: 把几何对象翻译成代数对象(交换代数申屠老师的词典) 把新的对象翻译成旧对象(Grothendieck topology...)

从Grothendieck拓扑个是拓扑谈起

数学概念的命名往往带有无意的误导性。

同名不同义: 平坦(flat), seperated scheme/map and seperated presheaf 同源不同义: reduced & reducible 约化的不可约概形

同名多类(支持变量多个类型): 拓扑空间的基本群,根系的基本群,概形的étale基本群

affine scheme, affine map, affine scheme over \$S\$: 是affine scheme + over \$S\$还是scheme over \$S\$+ affine map? exact functor(of abelian category/triangulated category)

历史遗留问题:

presheaf, seperated presheaf, sheaf(我们按照现代观点,或者说Vakil的note) quasi-compact and compact(代数几何+Class AT2使用quasi-compact,目常用compact)

概念的含混性: Borel-Moore同调是同调吗?紧支上同调是上同调吗?推广而非限制: Grothendieck拓扑和étale拓扑都不是拓扑

含混义:descent

找大致知道的同调上同调:

type:

Borel-Moore homology

compact supported cohomology

real cohomology:

de Rham cohomology

cellular (co)homology

simplicial (co)homology

singular (co)homology

我大致不知道的同调上同调:

Cêch cohomology

sheaf cohomology (derived Hom functors)

Étale cohomology

Galois cohomology

Group (co)homology

Hochchild (co)homology

l-adic cohomology

crystalline cohomology

intersection (co)homology

elliptic cohomology

flat cohomology

infinitesimal cohomology

代数拓扑需要学啥?

six functors:

-Poincaré duality

-pullback and pushforward

Lefschetz trace formula

Lefschetz hyperplane theorem

Coefficients

 $\mathsf{D}_c^{\mathsf{b}}(X;\mathbb{Q}_\ell)$ constructible ℓ -adic sheaves $\mathsf{D}^{\mathsf{b}}_{c}(X(\mathbb{C});\mathbb{Z})$ constructible analytic sheaves

 $\mathsf{D}^{\mathsf{b}}_{\mathsf{h}}(\mathfrak{D}_X)$ holonomic \mathfrak{D} -modules

 $D^b(Coh(X))$ coherent sheaves

 $\mathsf{D}^{\mathsf{b}}(\mathsf{MHM}(X))$ mixed Hodge modules

DM(X) Voevodsky motivic sheaves

SH(X) stable motivic homotopy sheaves

cohomology groups

l-adic cohomology Betti cohomology de Rham cohomology coherent cohomology absolute Hodge cohomology

(weight-0) motivic cohomology

stable motivic (weight-0) cohomotopy groups

Ex. of Sheaves on Xét

Let G. finite abelian group

O G_{pre} :

O G_{pre} :

The Homelyx (-, G_{pre}) is a sheaf over Xét G_{pre} G_{pre} G_{pre} is a sheaf over Xét G_{pre} G_{pre} G_{pre}

3 reduced to $G_p = G$ for $\forall p \in X$ i.e. lim Homsehlx (U, TIX) = G U-x ét + Ifp