Адекватные доказательства теорем по дифференциальным уравнениям

В заметке собраны ссылки на наиболее понятные, простые, но вместе с тем достаточно полные доказательства теорем курса дифференциальных уравнений. Нумерация совпадает с нумерацией экзаменационных билетов в программе.

Также даны некоторые замечания по вопросам, не освещенным в указанных учебниках. Приведены планы доказательств.

22. (Теорема Коши) Эльсгольц

Используется принцип сжатых отображений, доказательство которого (стр. 48-49) практически очевидно, дальше вручную проверяется, что оператор A[y] (интегральной формы диф. уравнения) является сжимающим.

Принцип сжимающих отображений \to Замена диф. уравнения интегральным \to Введение оператора A[y] \to Условие Липшица \to Проверка, что A[y] — сжимающий \to Обобщение на случай систем

$23/24.~(\Phi {\rm CP},~{\rm вронскиан})~\Phi$ илиппов

Доказывается все для однородной системы (стр. 67-78), затем почти очевидным образом переносится на линейные уравнения (стр. 81-86).

Линейная независимость \to Вронскиан \to Фунд. система решений \to Дифференцирование детерминанта \to Формула Лиувилля \to Замена переменных (переход от системы к лин. уравнению)

25. (Вариация постоянных) *Филиппов*

Аналогично предыдущему. Доказывается в одну строчку (стр. 79) для систем, затем заменой переменных (стр. 90) для линейных уравнений.

Примечание. Система уравнений для вариации постоянной в случае линейного уравнения получается из явной записи матричного равенства $X(t)c'(t) = f_0(t)$.

Вариация постоянных $(c=c(t)) \to \mathcal{L}$ ифференцирование общего решения \to Подстановка в неоднородное уравнение \to Окончательная формула через обратную матрицу \to Замена переменных (переход от системы к лин. уравнению)

26. (Теорема Штурма и следствия) <u>Романко, Филиппов</u>

Доказательство слово-в-слово повторяет Филиппова, но переходы освещены более подробно (стр. 193-197). Кроме того, в Филиппове есть не все следствия. Но следствие о расстоянии между нулями уравнения y''+q(x)y=0 с $m^2\leq y(x)\leq M^2$ понятнее в Филиппове (стр. 113).

Замена переменного \to Общий вид y''+q(x)y=0 \to Лемма о простых нулях $(y(x_0)=0\Rightarrow y'(x_0)\neq 0)$ \to Без о.о. y>0, z>0 \to Домножение исходных уравнений на y и z, вычитание полученных равенств и интегрирование по x \to Теорема Штурма и несколько очевидных следствий, полученных из разных оценок с разными Q(x)

27. (Устойчивость по Ляпунову) Романко, Филиппов

Определение устойчивости по Ляпунову и асимптотической устойчивости дано в Романко (стр. 241-242). Достаточные условия асимпт. устойчивости приведены в теореме в Филиппове (стр. 165), нужна только 1-ая часть доказательства.

Примечание. Устойчивость по Ляпунову необходимо требует продолжимости решений бесконечно вправо в малой окрестности положения равновесия (см. билет 14).

Устойчивость по Ляпунову — Асимптотическая устойчивость — \to Общий вид решения линейной системы — \to Осраниченность $||X(t)|| < M \to$ Оценка сверху с $\delta = \varepsilon/M$