AAM53244 24 April 2020

Question 1

$$\delta(x) = \begin{cases} kx^3(1+x), & 0 \le x < 2 \\ 0, & \text{elsewhere} \end{cases}$$

(i)
$$\int_{0}^{2} kx^{3}(1+x) dx = 1$$
 $k(\frac{16}{4} + \frac{32}{5}) = 1$
 $k \int_{0}^{2} x^{3} + x^{4} dx = 1$ $k = \frac{5}{52}$
 $k(\frac{x^{4}}{4} + \frac{x^{5}}{5})^{2} = 1$
 $k(\frac{2^{4}}{4} + \frac{2^{5}}{5}) = 1$

(i)
$$M = \int_{0}^{2} x \left[\frac{5}{52} z^{3} (1+x) \right] dx = \frac{5}{52} \int_{0}^{2} x^{4} + x^{5} dx$$

$$= \frac{5}{52} \left[\frac{x^{5}}{5} + \frac{x^{6}}{6} \right]_{0}^{2}$$

$$= \frac{5}{52} \left(\frac{32}{5} + \frac{14}{6} \right)$$

$$\begin{aligned} \delta^2 &= & = \frac{5}{52} \left(\frac{32}{5} + \frac{14}{6} \right) \\ (iii) & \int_0^2 x^2 \left(\frac{5}{52} x^3 (1+x) \right) dx - \lambda^2 = \frac{5}{52} \int_0^2 x^5 + x^6 dx - \left(\frac{14}{39} \right)^2 \\ &= \frac{5}{52} \left[\frac{x^6}{6} + \frac{x^7}{7} \right]_0^2 - \left(\frac{64}{39} \right)^7 \\ &= \frac{5}{52} \left(\frac{2^6}{6} + \frac{2^7}{7} \right) - \left(\frac{64}{39} \right)^2 \end{aligned}$$

$$6 = \sqrt{\frac{968}{10647}}$$

£ 0,3015

Question 1 (continued)

b) Let X be the no. of people prefer brand A hand phone than brand B hand phone $X \sim B(10, 0.65)$

$$P[X \ge 2] = |-P[X < 2]$$

$$= |-|^{10}C_{0}(0.65)^{0}(0.35)^{0} - |^{10}C_{1}(0.65)^{1}(0.35)^{0}$$

$$= 0.9995$$

Let X be the weights of canned sardine $X \sim N(250, 12^2)$

(i) 1)
$$P[X < 270] = P[Z < \frac{270 - 250}{12}]$$
 2) $P[260 < X < 280]$
 $= P[Z < 1.67]$ $= P[\frac{260 - 250}{12} < Z < \frac{280 - 250}{12}]$
 $= 0.0475$ $= P[0.83 < Z < 2.5]$
 $= P[Z > 0.83] - P[Z > 2.5]$

$$= 0.2033 - 0.00621$$
$$= 0.19709$$

(ii)
$$P[X < x] = 0.05$$

 $P[Z < \frac{x - 250}{12}] = 0.05$

x-250 = 1.6449

a) h=12 ==20 s=4

Since 6 is unknown and n=12<30, t-distribution is used.

The 98% confidence interval for the true mean time taken by all the computer science students to solve this computer assignment is

$$\bar{\chi} \pm t_{0.01,11} \frac{5}{5n} = 20 \pm 2.718 \left(\frac{\mu}{5n}\right)$$

Let x_i be the no. of people who read newspaper i, where i = 1(x), 2(Y)Pi be the true pap proportion of people who read newspaper i, where i = 1(x), 2(Y)

$$H_0: P_1 \leq P_2 \implies H_0: P_1 - P_2 \leq 0$$

 $H_1: P_1 > P_2 \implies H_1: P_1 - P_2 > 0$

At
$$d = 0.01$$
, critical value = $Z_{0.01} = 2.3263$

critical region: 2 > 2.3263

$$\hat{p} = \frac{180 + 150}{240 + 250} = \frac{33}{449} \quad \hat{q} = 1 - \frac{31}{449} = \frac{16}{449}$$

$$Z = \frac{\frac{180}{240} - \frac{150}{250}}{\frac{33}{100}(\frac{16}{100})(\frac{1}{100} + \frac{1}{200})} = 3.5395$$

Since Z = 3.5395 > 2.3263, Ho is rejected at d=0.01.

There is sufficient evidence that the proportion of people who read newspaper X was higher than the proportion of people who read newspaper Y.

Page 3 out of 10 pages

Question 2 (continued)

c) Let us be the true pop. mean scores of students from group is where i=1(A), 2(B)

$$H_0: u_1 = u_2$$
 $H_0: u_1 - u_2 = 0$ $n_1 = 40$ $n_2 = 42$
 $H_1: u_1 \neq u_2 = 0$ $H_2: u_1 - u_2 \neq 0$ $H_3: u_1 = 0$ $H_4: u_1 - u_2 \neq 0$ $H_5: u_1 = 0$ $H_5: u_1 = 0$ $H_6: u_1 - u_2 \neq 0$ $H_6: u_1 = 0$ $H_6: u_1 - u_2 \neq 0$ $H_6: u_1 = 0$ $H_6: u_1 - u_2 \neq 0$

Since 6, and 62 are unknown, but n, =40, and n2 =42 >30,

Z-test is used

At d = 0.05, colical value = ± = 0.025 = ± 1.9600

$$\frac{7}{7} = \frac{(\tilde{X}_1 - \tilde{X}_2) - (u_1 - u_2)}{\sqrt{\frac{5_1^2}{n_1} + \frac{5_2^2}{n_2}}} = \frac{82 - 75}{\sqrt{\frac{4_1^2}{40} + \frac{6_2^2}{42}}}$$

Sme Z = 6.2432 > 1.9600, Ho is rejected at d = 0.05.

There is sufficient evidence that the mean scores for the students from group A was different from the mean scores of students from group B after implementing two different teaching methods.

a)	0ij (Eij)	Branc	of sport	T. .	
_	Sex	Adida	Niky	Old Balance	Total
_	Boys	65 (46.8)	45 (52)	20 (31.2)	130
_	Girk	25 (43.2)	ss (48)	40 (28.8)	120
•	Total	90	loo	60	250

Ho: There is no association between the choices of brand of sport shoes and sex H.: There is a significant association between the choices of brand of sport shoes and sex

At
$$d = 0.02$$
, $v = (2-1)(3-1) = 2$, critical value = $\chi^2_{0.02,2} = 7.378$
critical region : $\chi^2 > 7.378$

$$\chi^{2} = \frac{2}{5} \sum_{i=1}^{3} \frac{(0_{ij} - E_{ij})^{2}}{E_{ij}} = \frac{(65 - 46.8)^{2}}{46.8} + \dots + \frac{(40 - 28.8)^{2}}{28.8}$$

Since $\chi^2 = 25.085 > 7.378$, Ho is rejected at d = 0.02. We can conclude that there is a significant association between the choices of brand of sport shoes and sex

Question 3 (continued)

b) Let X be the monthly phone bill.

$$X \sim N(55, 12^2) \Rightarrow \overline{X} \sim N(55, \frac{12^7}{15})$$

$$P[\bar{X} 750] = P[\bar{Z} > \frac{50-55}{12/16}]$$

$$= P[\bar{Z} > -1.61]$$

P,

$$= \frac{25}{23} \times 100$$

Po

(1ii) Paasche quantity index

q.

£0,2,

= 24 500

= 20 750

£ρ0 q.

= 18570

$$=\frac{20750}{15570} \times 100$$

= 111.74%

Page 6 out of 10 pages

Let independ variable, X = Grade Point Average (GPA)
dependent variable, Y = Satary (RM 00)

(i)
$$b = \frac{n \times xY - \times x \times xY}{n \times x^2 - (\times x)^2} = \frac{7(516.35) - 21.2(164)}{7(64.74) - (21.2)^2} = 7.7384$$

$$a = \frac{\Sigma Y}{h} - b \frac{\Sigma X}{h} = \frac{169}{7} - 7.7384 \frac{(21.2)}{7} = 0.7066$$

$$Y' = 0.7066 + 7.7384(3.8)$$

= 30.1125 (RM 00)

$$\Gamma = \frac{n \, 2 \, \text{XY} - 2 \, \text{X} (2 \, \text{Y})}{\left[n \, 2 \, \text{X}^2 - (2 \, \text{X})^2 \right] \left[n \, 2 \, \text{Y}^2 - (2 \, \text{Y})^2 \right]} = \frac{7 \, (5 \, 16 \, .35) - 21.2 \, (16 \, 9)}{\left[7 \, (64.79) - (21.2)^2 \right] \left[7 \, (4127) - (169)^2 \right]}$$

There is a very strong positive linear correlation between GPA and salary. As the GPA higher, the salary will be higher as well.

Question 4 (continued)

a) (iv)	.GPA , X Salany (RM 00), Y	2.85	3.50	3. 25	2.75	3.10	2.60	3.15	
	Salary (RM 00), Y	24	28	27	23	22	20	25	,
	۲	3	+	6	2	4	1	S	_
	۲۲	4	7	Ъ	3	7	l	S	
	$D = L^{x} - L^{\lambda}$	-1	0	O	-1	2	0	0	
	₽² ('	1	O	٥	1	4	0	0	
	٤٤٠ =	6							

 $\Gamma_{s} = 1 - \frac{620^{2}}{n(n^{2}-1)} = 1 - \frac{6(6)}{7(7^{2}-1)} = 0.8929$

Page 8 out of 10 pages

Question 4 (continued)

15	(1)		- Milin	ued)						
6)	Week	Week Day 17						(5)		
		Mo	n		CKM)		Total Total		Average, T	+ Y - T
		Tu					-			
	Wed		530					_		
		Thu			200				-	
				220			1110		222	-2
		Fri 280		80	1090		T	218		
}		Mon		180			1115		223	62
	2 Tue Wec The			210			1110		222	-43
				7 25			1090			-12
				2					218	7
		Fn: 260			llis		223	-8		
	Mo Tu 3 We		20				1130		226	34
				502			1139		227	- 22
			-	225		1130			226	-1
				230		1145			229	
		Thu Fri			210		-		`	
			u	27	278				_	
(.)					ŀ					-
(fi)	Week Week Total		۱,	4	1 -		F		!	
				lon Ti		<u>.</u>	Wed		Thu	Fni
				_					~2	
			~	43	43 -12		7		-8	62
			-	-22	-1		1		-	34
				-65 -13						
			-65		-		7.		-10	96
Average			-37.5		-6.5		7,		-5	48
Adjustment					-	1(7,	.2		
Seasonal Variotion, S		-	34.7	- 8. 7		4, 8		-7.2	45.8	
4										2 2 1 6 10

Page 9 out of 10 pages

(continued)

(iii) Average change per time period = 229-222 = 7

Week 4 Tuesday:

$$T_{\text{est}} = 229 + \frac{7}{9}(4)$$

Page 10 out of 10 page