Real Analysis, Chapter 0 Appendix A: Set Cardinality

Quan Nguyen

International University, VNU-HCM quannguyenuw@gmail.com

October 2021

Definition 0.1.1 (Equivalent Sets)

Two sets A and B are said to be equivalent, denoted A \sim B if there exists a bijection f : A \rightarrow B.

Theorem 0.1.1

For any nonempty sets A, B, C:

- (a) $A \sim A$;
- (b) If $A \sim B$ then $B \sim A$;
- (c) If $A \sim B$ and $B \sim C$ then $A \sim C$.

Guidelines:

- (a) Let $f: A \to A$ be the identity mapping. Then f is bijective;
- (b) If $f: A \to B$ is bijective then $f^{-1}: B \to A$ is bijective;
- (c) If $f:A\to B$ and $g:B\to C$ are bijections then $g\circ f:A\to C$ is bijective.

The following set cardinal system was proposed by Georg Cantor (1870).

Definition 0.1.2 (Set Cardinality)

A set E is called:

- (a) finite if $E \sim \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$, and infinite otherwise;
- (b) countably infinite if $E \sim \mathbb{N}$;
- (c) countable if E is either finite or countably infinite;
- (d) uncountable if E is not countable.

We sometimes call a countable set enumerable.

Remark 0.1.1

Given two equivalent sets A and B, if A is:

- (a) finite then B is also finite;
- (b) countably infinite then B is also countably infinite;
- (c) countable then B is also countable.

In words, two equivalent sets must have the same cardinality.

For any set A, we denote the cardinality of A by |A|.

For the sake of convenience, denote $|\mathbb{N}| = \aleph_0$. Then A is called:

- finite if $|A| < \aleph_0$, and infinite otherwise;
- countably infinite if $|A| = \aleph_0$;
- countable if $|A| \leq \aleph_0$;
- uncountable if $|A| > \aleph_0$.

Two sets A and B are equivalent if and only if |A| = |B|.

When A is finite, we usually define |A| as the number of elements of A.

A subset of a countable set is countable.

Guidelines: Pick a countable set A and any set $B \subset A$.

- If A is finite, then so is B. Hence B is countable;
- \bullet Else, A is countably infinite and has the representation $A=\left\{ x_{n}\right\} _{1}^{\infty}.$
 - If B is finite, then it is countable;
 - Else, selecting elements of B from A is equivalent to considering a subsequence of $\{x_n\}$. Since a subsequence is countably infinite, so is B. Thus B is countable.
- In all cases, B is countable. The result follows.

Remark 0.1.2

A superset of an uncountable set is uncountable.

In general, if $B \subset A$ then $|B| \leq |A|$.

For any set $A \neq \emptyset$, the following statements are equivalent:

- (a) A is countable;
- (b) There is a countable set B and a surjection $f: B \to A$;
- (c) There is a countable set F and an injection $f: A \to F$.

Guidelines:

- $(a \Rightarrow b)$ Let $f : A \rightarrow A$ be the identity mapping;
- (b \Rightarrow a) Since f is surjective, each element in A corresponds to at least one element in f⁻¹(A). Hence $|A| \le |f^{-1}(A)| \le |B|$, as f⁻¹(A) \subset B;
- (a \Rightarrow c) Let f : A \rightarrow A be the identity mapping;
- (c \Rightarrow a) Since f is injective, distinct elements in A correspond to distinct elements in f(A). Hence $|A| = |f(A)| \le |F|$, as f(A) \subset F.

If A and B are countable, then so is $A \times B$.

Guidelines:

- Without loss of generality, assume that $|A| = |B| = \aleph_0$;
- Then we have the representation $A = \{x_n\}_1^{\infty}$ and $B = \{y_n\}_1^{\infty}$;
- Plot elements of A × B in a table, as follows:

	x_1	x ₂	L
y_1	$z_{1,1}$	z _{2,1}	
у ₂	z _{1,2}	z _{2,2}	

- Now we can list the elements of A \times B in a 'zig-zag' order: $(1,1) \rightarrow (2,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,2) \rightarrow (3,1) \rightarrow ...$
- Thus $|A \times B| = \aleph_0$.

Inductively, if $A_1,A_2,...A_n$ are countable then so is $\prod_{i=1}^n A_i = A_1 \times ... \times A_n.$

If I is countable and A_i is countable for each $i \in I$, then so is $A = \bigcup_{i \in I} A_i$.

Guidelines:

- Without loss of generality, assume that $I=\mathbb{N}$ and $|A_i|=\aleph_0, \forall i\in\mathbb{N};$
- Then we have the representation $A_i = \{x_{n,i}\}_{n=1}^{\infty}, \forall i \in \mathbb{N};$
- Plot elements of A in a table, as follows:

- Now we can list the elements of A in a 'zig-zag' order;
- Thus $|A| = \aleph_0$.

If $a, b \in \mathbb{R}$ and a < b, then the closed interval [a, b] is uncountable.

Guidelines: Let A = [a, b].

- Define a sequence $\{c_n\}: c_n = a + \frac{b-a}{2^n}, \forall n \in \mathbb{N};$
- Then $\{c_n\}\subset A,$ thus A is infinite. Assume conversely that $|A|=\aleph_0;$
- Then we have the representation $A = \{x_n\}_1^{\infty}$;
- Construct two new sequence $\{a_n\}$ and $\{b_n\}$ as follows:
 - $a_1 = a$ and $b_1 = b$;
 - If $x_n \in (a_n,b_n)^c$ then $a_{n+1} = \frac{a_n + b_n}{2}$ and $b_{n+1} = \frac{a_{n+1} + b_n}{2}$;
 - Else, $a_{n+1} = \frac{x_n + b_n}{2}$ and $b_{n+1} = \frac{a_{n+1} + b_n}{2}$;
- Then $\{a_n\}$ is strictly increasing and bounded above, while $\{b_n\}$ is strictly decreasing and bounded below. Thus $\exists a_0 = \lim_{n \to \infty} a_n$ and $\exists b_0 = \lim_{n \to \infty} b_n$. Moreover, $a_0 \le b_0$ and $x_n \notin [a_{n+1}, b_{n+1}], \forall n \in \mathbb{N}$;
- Thus if $c_0 = \frac{a_0 + b_0}{2}$ then $c_0 \in A$ and $c_0 \neq x_n, \forall n \in \mathbb{N}$, a contradiction;
- Hence $|A| > \aleph_0$.

Example 0.1.1

 \mathbb{Z} is countable.

Hint.
$$|\mathbb{Z}| = |\mathbb{N} \cup \{0, -1, -2, ...\}| = |\mathbb{N} \cup \mathbb{N}| = \aleph_0.$$

Example 0.1.2

O is countable.

$$\textbf{Hint.} \ |\mathbb{Q}| = \left|\left\{\tfrac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}\right| = \left|\left\{m: m \in \mathbb{Z}\right\} \times \left\{n: n \in \mathbb{N}\right\}\right| = \aleph_0.$$

Example 0.1.3

 \mathbb{R} is uncountable. In set theory, we usually denote $|\mathbb{R}| = \aleph_1 = 2^{\aleph_0}$.

Hint. If \mathbb{R} is countable then $[a,b] \subset \mathbb{R}$ is countable, a contradiction.

Example 0.1.4

The set of all irrational numbers, denoted \mathbb{Q}^c , is uncountable.

Hint. If \mathbb{Q}^c is countable then $\mathbb{R}=\mathbb{Q}\cup\mathbb{Q}^c$ is countable, a contradiction.