IN THE SPECIFICATION

Please replace paragraph [0030] beginning at page 15, line 12 to page 16, line 5, with the following rewritten paragraph:

[0030]

Here, R₁₇ and R₁₈, R₁₉ and R₂₀, R₁₇' and R₁₈', R₁₉' and R₂₀' may be condensed with each other to form a hydrocarbon ring or a heterocyclic structure and the hydrocarbon ring and the heterocycles may have substituent), X₁ is an electron-withdrawing group, and X₂ is a hydrogen atom or -Q-Y (Q is a direct bond, an alkylene group having 1 or 2 carbon atoms, an arylene group or a heteroarylene group, and Y is an electron-withdrawing group, and the alkylene group, the arylene group, the heteroarylene group may have arbitrary substituent groups besides Y), ring C is a carbocyclic ketone ring or a heterocyclic ketone ring which may have a substituent group along with C = O; Z and Z' each represent -O-, -S-, -SO₂-, -NR₂₁- [wherein R₂₁ is a hydrogen atom, a hydrocarbon group which may be substituted, a heterocyclic group which may be substituted, a cyano group, a hydroxy group, an amino group represented by -NR₂₂R₂₃ (wherein R₂₂ and R₂₃ each independently represent a hydrogen atom, a hydrocarbon group or a heterocyclic group) or an acyl group represented by -COR₂₄ (R₂₄ is a hydrocarbon group or a heterocyclic group)].

Please replace paragraph [0032] beginning at page 16, line 14 to page 17, line 13, with the following rewritten paragraph:

[0033]

(In the formula (V), X represents -O -, -S -, -NR₃₃-; R₂₆, R₂₇, R₂₈, R₂₉, and R₃₀ each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 12 carbon atoms, a linear or branched alkenyl

group having 2 to 12 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, a linear or branched alkoxy group having 1 to 12 carbon atoms, a linear or branched alkylthio group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, a saturated or unsaturated heterocyclic group, a halogen atom, a nitro group, a cyano group, a mercapto group, a hydroxy group, a formyl group, an acyl group represented by -COR₃₄, an amino group represented by -NR₃₅R₃₆, an acylamino group represented by -NHCOR₃₇, a carbamate group represented by -NHCOOR₃₈, a carboxylic acid ester group represented by -COOR₃₉, an acyloxy group represented by -OCOR₄₀, a carbamoyl group represented by -CONR₄₁R₄₂, a sulfonyl group represented by -SO₂R₄₅R₄₆, a sulfonic acid ester group represented by -SO₃R₄₇ or a sulfonamide group represented by -NHSO₂R₄₈.

Please replace paragraph [0113] beginning at page 51, line 16, with the following rewritten paragraph:

[0113]

In the general formula (I), XL represents a substituent which becomes capable of coordinating to a metal when a leaving group L is eliminated. Specifically, the substituent represented by XL includes a hydroxy group (-O⁻; X, H⁺,L), a sulfonic acid group (<u>-SO₃</u>⁻;X, H⁺;L), an amino group (<u>-N-H⁻</u>; X, H⁺;L), an acylamino group (<u>-N-COR₃₇</u>;X, H⁺;L), a sulfonamide group (<u>-N-SO₂R₄₈</u>;X, H⁺;L), a mercapto group (<u>-S⁻</u>;X, H⁺;L), a carboxyl group (-COO⁻;X, H⁺;L).

Please replace paragraph [0146] beginning at page 73, line 24 to page 74, line 17, with the following rewritten paragraph:

[0146]

However, R_{17} and R_{18} , R_{19} and R_{20} , R_{17} and R_{18} , R_{19} and R_{20} may be condensed with each other to form a hydrocarbon ring or a heterocycle structure. The hydrocarbon ring and the heterocycle may have a substituent. X_1 is an electron-withdrawing group, and X_2 is a hydrogen atom or -Q-Y (Q is a direct bond, an alkylene group having 1 or 2 carbon atoms, an arylene group or a heteroarylene group, and Y is an electron-withdrawing group, and the alkylene group, the arylene group, the heteroarylene group may have arbitrary substituent groups besides Y.). Ring C is a carbocyclic ketone ring or a heterocyclic ketone ring which may have a substituent group along with C = O. Z and Z' each represent -O-, -S-, -SO₂-, -NR₂₁- [wherein R_{21} is a hydrogen atom, a hydrocarbon group which may be substituted, a heterocyclic group which may be substituted, a cyano group, a hydroxy group, an amino group represented by -NR₂₂R₂₃ (wherein R_{22} and R_{23} each independently represent a hydrogen atom, a hydrocarbon group or a heterocyclic group) or an acyl group represented by -COR₂₄ (R_{24} is a hydrocarbon group or a heterocyclic group) or -COR₂₅ (R_{25} is a hydrocarbon group or a heterocyclic group)].

Please replace the paragraph beginning at page 98, line 5, with the following rewritten paragraph:

In the general formula (V), X represents an oxygen atom, a sulfur atom or -N-R₃₃. R₂₆, R₂₇, R₂₈, R₂₉, R₃₀ each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms; a cyclic alkyl groups having 3 to 12 carbon atoms; a linear or branched alkenyl group having 2 to 12 carbon atoms; an aralkyl group having 7 to 18 carbon atoms; a linear or branched alkoxy group having 1 to 12 carbon atoms; a linear or branched alkylthio group having 1 to 12 carbon atoms; an aryl group having 6 to 18 carbon atoms; a saturated or unsaturated heterocyclic group; a halogen atom; a nitro group; a cyano

Docket No. 294886US Preliminary Amendment

group; a mercapto group; a hydroxy group; a formyl group; an acyl group represented by - COR₃₄; an amino group represented by -NR₃₅R₃₆; an acylamino group represented by - NHCOR₃₇; a carbamate group represented by -NHCOOR₃₈; a carboxylic acid ester group represented by -COOR₃₉; an acyloxy group represented by -OCOR₄₀; a carbamoyl group represented by -CONR₄₁R₄₂; a sulfonyl group represented by -SO₂R₄₃; a sulfinyl group represented by -SO₂NR₄₅R₄₆; a sulfonic acid ester group represented by -SO₃R₄₇; a sulfonamide group represented by -NHSO₂R₄₈.

Please replace paragraph [0233] beginning at page 130, line 6, with the following rewritten paragraph:

[0233]

(Synthesis examples of compound)

The synthesis method of a compound to be used in the embodiment of the invention is not particularly limited, but includes, for example, a synthesis method described in Japanese Patent Laid-Open No. 6-329616, etc. as a synthesis method of an azo compound represented by formula (I). The synthesis method of a compound represented by formula (II) includes, for example, Japanese Patent Application No. 63-057846(Japanese Patent Laid-Open No. 2-000667), etc. The synthesis method of a compound represented by formula (III) and formula (IV) includes, for example, a method described in Japanese Patent Application No. 2001-372199 (USP6815033) and the synthesis method of a compound represented by formula (V) includes, for example, a method described in Japanese Patent Application No. 2001-027599, etc.

Please replace the table at paragraph [0259] beginning at page 141, line 9, with the following rewritten table:

Docket No. 294886US Preliminary Amendment

[0260]

[Table 6]

	Component	Component (B)	A/B	CN		Recording
	(A)			8T	3T	sensitivity (mW)
Example 22	A3	В3	80/20	52.9	46.6	10.9
Comparative Example 20	A3	В3	100/0	53.6	44.5	11.6

Please replace the table at paragraph [0263] beginning at page 142, line 11, with the following rewritten table:

[0263]

[Table 7]

TG-DTA measurement (Condition: employing nitrogen as flow gas)					
	Component (A)	Component (B)	A/B	Decomposition starting temperature (°C)	DTG Peak Temperature (°C)
Example 23	A2	В3	80/20	277.7	339.4
Example 24	A2	B3	70/30	271.4	325.7
Comparative Example 21	A2	В3	100/0	294.7	348.0
Comparative Example 22	A2	В3	90/10	284.3	344.1
Comparative Example 23	A2	В3	0/100	284.5	290.5

Please replace the table at paragraph [0264] beginning at page 142, line 13, to page 143, line 1, with the following rewritten table:

Docket No. 294886US Preliminary Amendment

[0264]

[Table 8]

TG-DTA measurement (Condition: employing air as flow gas)						
	Component (A)	Component (B)	A/B	Decomposition starting temperature (°C)	DTG Peak Temperature (°C)	
Example 25	A2	B3	80/20	271.2	317.5	
Example 26	A2	В3	70/30	264.2	304.7	
Comparative Example 24	A2	В3	100/0	289.7	344.3	
Comparative Example 25	A2	В3	90/10	269.9	324.1	
Comparative Example 26	A2	В3	0/100	266.6	379.0	