

Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 10th Introduction Trigonometry Unsolved Paper

Click Button Below To Buy Solution

BUY NOW WITH PayUmoney

Only ₹ 25

OR

Call us on 9557655662 for Paytm or UPI / NEFT payment

CBSE 10th Introduction Trigonometry **Unsolved Paper**

Question 1:

In each of the following one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

- $Sin A = \frac{2}{3}$
- $\cos A = \frac{4}{5}$
- $\tan \theta = 11$ (iii)
- $\sin\theta = \frac{11}{5}$
- $\tan\alpha=\frac{5}{12}$ **(v)**
- $\sin \theta = \frac{\sqrt{3}}{2}$ $\cos \theta = \frac{7}{25}$ $\tan \theta = 8/15$ $\cot \theta = \frac{12}{5}$ (vi)
- (vii)
- (viii)
- (ix)

$$\sec \theta = \frac{13}{5}$$

(xi)
$$\csc \theta = \sqrt{10}$$

(xii)
$$\cos \theta = 12/5$$

Question 2:

In Fig below, Find $\tan P$ and $\cot R$. Is $\tan P = \cot R$?

Question 3:

If $\cot \theta = \frac{7}{8}$, evaluate:

(i)
$$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$$

(ii)
$$\cot^2 \theta$$

Question 4:

If $3 \cot A = 4$, Check whether $\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$ or not.

Question 5:

If $\operatorname{Tan} \theta = \frac{a}{b}$, find the value of $\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}$

Question 6:

If 3 tan $\theta = 4$, find the value of $\frac{4\cos\theta - \sin\theta}{2\cos\theta + \sin\theta}$

Question 7:

If $3\cot\theta = 2$, find the value of $=\frac{4\sin\theta - 3\cos\theta}{2\sin\theta + 6\sin\theta}$

Question 8:

If
$$\tan \theta = \frac{a}{b}$$
, prove that $\frac{a\sin \theta - b\cos \theta}{a\sin \theta + b\cos \theta} = \frac{a^2 - b^2}{a^2 + b^2}$

Question 9:

$$2 sin^2 \, 30^\circ - 3 cos^2 \, 45^\circ + \, tan^2 \, 60^\circ$$

Question 10:

$$sin^2 \, 30^\circ \, cos^2 \, 45^\circ + 4 \, tan^2 \, 30^\circ + \frac{1}{2} sin^2 \, 90^\circ - 2 \, cos^2 \, 90^\circ + \frac{1}{24} cos^2 \, 0^\circ$$

Question 11:

$$(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ})(\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ})$$

Question 12:

$$\frac{\sin 30^\circ - \sin 90^\circ + 2\cos 0^\circ}{\tan 30^\circ \tan 60^\circ}$$

Question 13:

$$\frac{4}{\cot^2 30^\circ} + \frac{1}{\sin^2 60^\circ} - \cos^2 45^\circ$$

Question 14:

$$\frac{\sin 30^{\circ}}{\sin 45^{\circ}} + \frac{\sin 45^{\circ}}{\sin 60^{\circ}} - \frac{\sin 60^{\circ}}{\sin 45^{\circ}} - \frac{\sin 30^{\circ}}{\sin 60^{\circ}}$$

Question 15:

$$\frac{\text{Tan } 45^{\circ}}{\text{cosec } 30^{\circ}} + \frac{\text{Sec } 60^{\circ}}{\text{cot } 45^{\circ}} - \frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$$

Question 16:

If
$$A = B = 60^{\circ}$$
. Verify

- (i) $\cos(A B) = \cos A \cos B + \sin A \sin B$
- (ii) Substitute A & B in (i)
- (iii) $\operatorname{Tan}(A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$

Question 16:

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A-B) = \cos A \cos B - \sin A \sin B$$

Question 17:

Evaluate the following

4ono.com

- $1. \ \frac{\sin 20^{\circ}}{\cos 70^{\circ}}$
- $2.\frac{\cos 19^{\circ}}{}$ sins 71°
- $3.\frac{Sin\ 21^{\circ}}{\cos\ 69^{\circ}}$
- $4.\frac{tan\ 10^{\circ}}{cot\ 80^{\circ}}$
- sec 11° $5.\frac{3}{\text{cosec } 79^{\circ}}$

Question 18:

Prove that

- $tan 20^{\circ}tan 35^{\circ}tan 45^{\circ}tan 55^{\circ}tan 70^{\circ} = 1$ (i)
- (ii) $\sin 48^{\circ} sec 42^{\circ} + cosec 42^{\circ} = 2$
- $\frac{\sin 70^{\circ}}{\cos 20^{\circ}} + \frac{\csc 20^{\circ}}{\sec 70^{\circ}} 2\cos 70^{\circ} \csc 20^{\circ} = 0$ $\frac{\cos 80^{\circ}}{\sin 10^{\circ}} + \cos 59^{\circ} \csc 31^{\circ} = 2$ (iii)
- (iv)

Question 19:

Prove the following trigonometric identities:

- 1. $(1 \cos^2 A) \csc^2 A = 1$
- 2. $(1 + \cos^2 A) \sin^2 A = 1$

- 3. $\tan^2\theta\cos^2\theta=1-\cos^2\theta$
- 4. $\csc\theta\sqrt{1-\cos^2\theta}=1$
- 5. $(\sec^2 \theta 1)(\csc^2 \theta 1) = 1$
- 6. $\tan \theta \frac{1}{\tan \theta} = \sec \theta \csc \theta$

Question 20:

$$\frac{\cos\theta}{1+\sin\theta} = \frac{1-\sin\theta}{\cos\theta}$$

Question 21:

$$\cos^2 A + \frac{1}{1 + \cot^2 A} = 1$$

Question 22:

$$\sin^2 A + \frac{1}{1 = \tan^2 A} = 1$$

Question 23:

$$\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \csc\theta - \cot\theta$$

Question 24:

$$\frac{1-\sin\theta}{1+\sin\theta}-(\sec\theta-\tan\theta)^2$$

Question 25:

$$\tan^2 \theta - \sin^2 \theta \tan^2 \theta \sin^2 \theta$$

Question: 26

$$\sin^2 A \cot^2 A + \cos^2 A \tan^2 A = 1$$

Question: 27

$$\cos\theta - \tan\theta = \frac{2\cos^2\theta - 1}{\sin\theta\cos\theta}$$

Question: 28

$$\frac{\cos^2\theta}{\sin\theta} - \csc\theta + \sin\theta = \theta$$

Question: 29

$$\frac{1}{1 + \sin A} + \frac{1}{1 - \sin A} = 2 \sec^2 A$$

Question: 30

$$\frac{1+\sin\theta}{\cos\theta}+\frac{\cos\theta}{1+\sin\theta}=2\sec\theta$$

Question: 31

$$\frac{(1+\sin\theta)^2+(1-\sin\theta)^2}{2\cos^2\theta}=\frac{1+\sin^2\theta}{1-\sin^2\theta}$$

Question: 32

$$\frac{1+\tan^2\theta}{1+\cot^2\theta}-\Big[\frac{1-\tan\theta}{\cot\theta}\Big]^2-\tan^2\theta$$

Question: 33

$$\frac{1+\sec\theta}{\sec\theta}=\frac{\sin^2\theta}{1-\cos\theta}$$

Question: 34

$$\frac{\tan\theta}{1-\cot\theta} = \frac{\cot\theta}{1-\tan\theta} = 1 + \tan\theta + \cot\theta$$

Question:35

$$\sec^6\theta = \tan^6\theta + 3\tan^2\theta\sec^2\theta + 1$$

Question: 36

$$\csc^6\theta = \cot^6\theta + 3\cot^2\theta\csc^2\theta + 1$$

Question: 37

$$\frac{(1+\tan^2\theta)\cot\theta}{\csc^2\theta}=\tan\theta$$

Question: 38

$$\frac{1+\cos A}{\sin^2 A} = \frac{1}{1-\cos A}$$

Question 39

$$\frac{\sec A - \tan A}{\sec A + \tan A} = \frac{\cos^2 A}{(1 + \sin A)^2}$$

Question 40

$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sin A + \tan A$$

Question 41

$$(\sec A - \tan A)^2 = \frac{1 - \sin A}{1 + \sin A}$$

Question 42

$$\frac{1+\cos A}{1-\cos A}=(\cot A-\csc A)^2$$

Question 43

$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{(1 - \cot A)} = \sin A + \cos A$$

Question 44

$$\tan^2 A + \cot^2 A = \sec^2 A \csc^2 A - 2$$

Question 45

$$\frac{1-\tan^2 A}{\cot^2 A - 1} = \tan^2 A$$

Question 46

$$\frac{\cos\theta}{\csc\theta+1} + \frac{\cos\theta}{\csc\theta-1} = 2\tan\theta$$

Question 47

$$\left[\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}\right]^2=\frac{1-\cos\theta}{1+\cos\theta}$$

Question 48:

$$(\sec\theta + \tan\theta - 1)(\sec\theta - \tan\theta + 1) = 2\tan\theta$$

Question 49:

If
$$\csc \theta - \sin \theta = a^3$$
, $\sec \theta - \cos \theta = b^3$, Prove that $a^2b^2(a^2 + b^2) = 1$

Question 50:

Prove that:

(i)
$$\sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} = 2 \csc \theta$$

(ii)
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2\sec\theta$$

(iii)
$$\frac{\sec \theta - 1}{\sec \theta + 1} = \left(\frac{\sin \theta}{\cos \theta + 1}\right)^2$$

Click Button Below To Buy Solution

BUY NOW WITH PayUmoney

Only ₹ 25

OR

Call us on 9557655662 for Paytm or UPI / NEFT payment

