Worksheet 22: More on Determinants (§§6.1,6.2,6.3)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Problem 1: Laplace expansions.

Let A be an $n \times n$ matrix, with (i, j)-entry a_{ij} . For each $1 \le i, j \le n$, let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained from A by deleting row i and column j. Then for any $1 \le i \le n$ and $1 \le j \le n$,

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \cdot \det A_{ij} \qquad \longleftarrow \text{ (Laplace expansion along column } j)$$

$$= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \det A_{ij} \qquad \longleftarrow \text{ (Laplace expansion along row } i)$$

Find the determinants of the matrices

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

using Laplace expansions along various rows and columns.

Solution: Using a Laplace expansion along the first row, we have

$$\det \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 0 \end{bmatrix} = 1 \det \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix} - 0 \det \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + 2 \det \begin{bmatrix} 0 & 3 \\ -1 & 2 \end{bmatrix}$$
$$= 1(3 \cdot 0 - 2 \cdot 1) - 0(0 \cdot 0 - 1 \cdot (-1)) + 2(0 \cdot 2 - 3 \cdot (-1))$$
$$= -2 + 2(3) = 4.$$

Using a Laplace expansion along the second column, we have

$$\det\begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{bmatrix} = -2 \det\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = (-2)(3) = -6.$$

Problem 2. Use elementary row operations to compute the determinant of the following matrix:

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} & \frac{5}{2} \\ 2 & -4 & -2 & 8 \\ -1 & 3 & 6 & -1 \\ 1 & -3 & -1 & 2 \end{bmatrix}.$$

Solution: Scaling the first row of A by 2 and then applying three successive row addition operations reduces A to the upper triangular matrix

$$R = \begin{bmatrix} 1 & -3 & -1 & 5 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & -3 \end{bmatrix}.$$

Thus $-30 = \det R = 2 \det A$, so $\det A = -15$.

Problem 3: Volumes of parallelepipeds.

(a) If Q is an orthogonal $n \times n$ matrix, what are the possible values of det Q?

Solution: Suppose Q is orthogonal, so $Q^{\top}Q = I_n$. Then $1 = \det I_n = \det(Q^{\top}Q) = \det(Q^{\top}) \det Q = (\det Q)^2$. Thus $\det Q = \pm 1$.

- (b) Draw a picture showing that if \vec{v}_1, \vec{v}_2 are linearly independent vectors in \mathbb{R}^2 , the area of the parallelogram $\mathcal{P}(\vec{v}_1, \vec{v}_2)$ determined by them is $\|\vec{v}_1\| \|\vec{v}_2 \operatorname{proj}_{\vec{v}_1}(\vec{v}_2)\|$.
- (c) Higher-dimensional analogues of parallelograms are called *parallelepipeds*. Using the usual "volume = base × height" formula, show that the volume of the parallelepiped $\mathcal{P}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ determined by the linearly independent vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in \mathbb{R}^3 is

$$\|\vec{v}_1\|\|\vec{v}_2 - \operatorname{proj}_{\vec{v}_1}(\vec{v}_2)\|\|\vec{v}_3 - \operatorname{proj}_{\vec{v}_1,\vec{v}_2}(\vec{v}_3)\|.$$

(d) In higher dimensions, the "n-dimensional volume" of the n-dimensional parallelepiped $\mathcal{P}(\vec{v}_1,\ldots,\vec{v}_n)$ determined by the linearly independent vectors $\vec{v}_1,\ldots,\vec{v}_n$ in \mathbb{R}^n is given by

$$\prod_{k=1}^n \|\vec{v}_k - \operatorname{proj}_{V_k}(\vec{v}_k)\|, \quad \text{where} \quad V_k = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_{k-1}).$$

Show that the volume of $\mathcal{P}(\vec{v}_1,\ldots,\vec{v}_n)$ is $|\det[\vec{v}_1 \cdots \vec{v}_n]|$.

[HINT: consider the QR-factorization of $[\vec{v}_1 \cdots \vec{v}_n]$].

Solution: Let $\vec{v}_1, \ldots, \vec{v}_n$ be linearly independent vectors in \mathbb{R}^n , and let $A = [\vec{v}_1 \cdots \vec{v}_n]$, so that A is invertible. Let A = QR be the QR-factorization of A, so Q is orthogonal and R is upper triangular. Then det $A = (\det Q)(\det R)$, which implies $|\det A| = |\det R|$ since $\det Q = \pm 1$. But det R is just the product of the diagonal entries of R, which by the definition of QR-factorization are the magnitudes $||\vec{v}_k^{\perp}|| = ||\vec{v}_k - \operatorname{proj}_{V_k}(\vec{v}_k)||$.

Problem 4: Determinant as expansion factor.

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a transformation, the direct image of a subset $A \subseteq \mathbb{R}^n$ under T is the set

$$T[A] = \{T(\vec{x}) : \vec{x} \in A\} \subseteq \mathbb{R}^n.$$

If T is a linear transformation, and if the set $A \subseteq \mathbb{R}^n$ can be assigned a volume Vol(A), then the relation between Vol(A) and the volume Vol(T[A]) of the direct image of A under T is given by the determinant of T, namely:

$$Vol(T[A]) = |\det T| Vol(A).$$

This enables us to think of (the absolute value of) the determinant as an *expansion factor*. Of course, for this to make sense we first have to define what is meant by the determinant of a linear transformation.

(a) Define the determinant $\det T$ of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$. More generally, how could you define the determinant of a linear transformation $T: V \to V$ on a finite-dimensional vector space V? Explain why your definitions make sense!

Solution: In general, we define $\det T = \det[T]_{\mathcal{B}}$ where \mathcal{B} is any basis of V. This definition makes sense because if \mathcal{C} is any other basis of V, then $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ are similar to each other, and we already know that similar matrices have the same determinant. Thus our definition of $\det T$ does not depend on the particular basis \mathcal{B} that is chosen.

(b) The ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is just the direct image of the unit circle under the linear transformation $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$. Use this fact to derive a formula for the area of this ellipse in terms of a and b.

Solution: The matrix of T in the standard basis is $[T]_{\mathcal{E}} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. Thus the area of the region contained inside the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is just det T times the area of the unit circle, or πab .

(c) What is the volume of the region contained inside the (3-dimensional) ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
?

Solution: The region \mathcal{R} contained inside the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is just the direct image of the unit sphere under the linear transformation whose matrix in standard coordinates is

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix},$$

which has determinant abc. Thus the volume of \mathcal{R} is abc times the volume of the unit sphere, or $\frac{4}{3}\pi abc$.

Problem 5. Let
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -3 & c & 0 \\ c & -1 & 1 \end{bmatrix}$$
.

- (a) Find all values of c, if any, for which A is not invertible.
- (b) Find all values of c, if any, for which the mapping $T_A(\vec{x}) = A\vec{x}$ preserves volumes.

Solution:

- (a) $\det A = \det \begin{bmatrix} -3 & c \\ c & -1 \end{bmatrix} + \det \begin{bmatrix} 2 & -1 \\ -3 & c \end{bmatrix} = (3-c^2) + (2c-3) = c(2-c)$. Thus A is not invertible if and only if c=0 or c=2.
- (b) The mapping T_A preserves volumes if $|\det A| = 1$, so we must solve $c(2-c) = \pm 1$. These equations have solutions c = 1 and $c = 1 \pm \sqrt{2}$.

Problem 6. Let n > 1, and suppose that $T : \mathbb{R}^{n \times n} \to \mathbb{R}$ is a multilinear function (of the columns of the matrices in $\mathbb{R}^{n \times n}$) with the property that T(A) = 0 whenever A has two identical columns.[†] Prove that for any $n \times n$ matrix A, if B is obtained from A by interchanging two columns of A, then T(B) = -T(A).

Solution: We will use the following notation: for any $n \times n$ matrix C and $1 \leq i, j \leq n$, let C(i/j) be the $n \times n$ matrix obtained from C by replacing the ith column of C with the jth column of C, and let C(i/i+j) be the $n \times n$ matrix obtained from C by replacing the ith column of C with the sum of the ith and jth columns of C.

[†]A multilinear function with this property is usually said to be *alternating*.

Now, let $A \in \mathbb{R}^{n \times n}$, and suppose that B is obtained from A by interchanging columns i and j of A where $i \neq j$, so B = A(i/j)(j/i) in our notation. Then

$$A = A(i/i + j) - A(i/j)$$

$$= A(i/i + j)(j/i + j) - A(i/i + j)(j/i) - A(i/j)$$

$$= A(i/i + j)(j/i + j) - A(i/j)(j/i) - A(j/i) - A(i/j).$$

Since T is alternating, we have

$$T(A(i/j)) = T(A(j/i)) = T(A(i/i+j)(j/i+j)) = 0.$$

Therefore, using multilinearity of T we obtain

$$T(A) = T(A(i/i + j)) - T(A(i/j))$$

= $T(A(i/i + j)(j/i + j)) - T(A(i/i + j)(j/i))$
= $-T(A(i/j)(j/i) - T(A(j/i)) = -T(B)$.