1 Обозначения и определения

dD – четырёх и более мерное пространство.

hD – трёх- или более мерное пространство.

Евклидово пространство \mathbb{R}^d , d > 1. Его элементы обозначим $\vec{x} = (x_i)_{i=1}^d$.

Ноль-вектор будем обозначать $\vec{0}$.

Аффинное пространство \mathbb{A}^d , d > 1. Его элементы обозначим $x = [x_i]_{i=1}^d$.

Элементу $x \in \mathbb{A}^d$ сопоставляется элемент $\vec{x} \in \mathbb{R}^d$, который есть радиус-вектор точки x.

Определены операции умножения на скаляр, сложения и вычитания. Над элементами \mathbb{R}^d они определяются классическим образом как операции линейного пространства. Для аффинного пространства \mathbb{A}^d определения следующие:

- $\forall \alpha \in \mathbb{R} \ \forall x = [x_i] \in \mathbb{A}^d \ \alpha \cdot x = \alpha x = [\alpha \cdot x_i] \in \mathbb{A}^d;$
- $\forall a \in \mathbb{A}^d \ \forall \vec{x} \in \mathbb{R}^d \ a + \vec{x} = [a_i + x_i] \in \mathbb{A}^d;$
- $\forall a, b \in \mathbb{A}^d \ a b = (a_i b_i) \in \mathbb{R}^d$.

Линейная независимость векторов из \mathbb{R}^d понимается в классическом смысле линейной независимости в линейном пространстве.

Линейная независимость набора точек $\{a_k\}_{k=0}^m \subset \mathbb{A}^d$, $m \leqslant d$, понимается как линейная независимость набора векторов $\{a_k-a_0\}_{k=1}^m \subset \mathbb{R}^d$.

k-мерным симплексом (k-симплексом) в пространстве \mathbb{A}^d , $k \leqslant d$, назовём линейно независимый набор k+1 точек.

Базис линейного пространства \mathbb{R}^d понимается в классическом смысле. Аффинный базис аффинного пространства \mathbb{A}^d может представляться в двух эквивалентных формах: либо как d-симплекс этого пространства, либо как пару $(o, \{\vec{x}_i\}_{i=1}^d), o \in \mathbb{A}^d, \vec{x}_i \in \mathbb{R}^d$, такую что набор точек $\{o, o + \vec{x}_i\}_{i=1}^d$ линейно независим.

Назовём (d-1)-грань d-многогранника cимплициальной, если она имеет ровно d вершин (является (d-1)-симплексом).

Под словом «плоскость в пространстве \mathbb{R}^d » будем понимать гиперплоскость размерности \mathbb{R}^{d-1} .

Вектор $\vec{e_i} = (\delta_{i,k})_{k=1}^d - i$ -й вектор ортонормированного базиса \mathbb{R}^d . Здесь $\delta_{i,k}$ – символ Кро́некера:

$$\delta_{i,k} = \begin{cases} 1, & i = k, \\ 0, & i \neq k. \end{cases}$$

Обозначим через $\mathcal{N}(\vec{x})$ операцию нормирования вектора: $\mathcal{N}(\vec{x}) = \vec{x}/\|\vec{x}\|$. Считаем, что $\mathcal{N}(\vec{0}) = \vec{0}$.

Обозначим через $\mathcal{ON}(\vec{v}, \mathcal{B})$ операцию ортонормирования вектора \vec{v} на фоне ортонормированного набора векторов \mathcal{B} . Выполняется с использованием алгоритма Грамма-Шмидта. Считаем, что $\mathcal{ON}(\vec{a}, \varnothing) = \mathcal{N}(\vec{a})$.

2 Построение начальной грани ${\cal P}$

Пусть $\mathcal{S} \subset \mathbb{R}^d$ — рой d-мерных точек в d-мерном пространстве. Пусть \mathcal{B} — базис текущей плоскости. Построение начальной грани состоит из двух шагов. Первый — поиск аффинной плоскости, содержащей какую-либо грань выпуклой оболочки \mathcal{P} . Второй — поиск вершин этой грани. Построение аффинной плоскости заключается в последовательном

повороте некоторой начальной плоскости, проходящей через одну точку роя. Каждый поворот аффинной плоскости заключается в подмене одного вектора из её базиса так, чтобы она проходила через ещё хотя бы одну точку роя. Когда очередная плоскость содержит d линейно независимых точек, искомая плоскость построена.

Временные векторы базиса \mathbf{T} – векторы из этого множества могут быть заменены.

 Φ инальные векторы базиса **F** – векторы базиса, которые далее не будут заменяться и будут входить в базис искомой плоскости.

Если требуется построить выпуклую оболочку в двумерном пространстве, то запускается какой-либо плоский алгоритм построения выпуклой оболочки. Иначе запускается следующий многомерный алгоритм, вообще говоря, рекурсивный по размерности овыпукляемых роёв.

2.1 Построение начальной плоскости $\mathcal L$

Вход: $\mathcal{S} \subset \mathbb{R}^d$ – рой точек в d-мерном пространстве.

Выход: Начальная плоскость $\mathcal{L} \subset \mathbb{R}^d$, заданная аффинным базисом (o, \mathcal{B}) , где размерность линейного базиса равна d-1. Внешняя нормаль \vec{n} к этой плоскости.

- 1. Выберем точку $o \in \mathcal{S}$, минимальную в лексикографическом порядке (она гарантировано будет вершиной \mathcal{P});
- 2. Проведём через $o = (o_i)_{i=1}^d$ плоскость \mathcal{L} перпендикулярно первому базисному вектору пространства. (Все точки роя \mathcal{S} гарантированно лежат не левее этой плоскости.) Положим $\mathbf{F}_0 = \varnothing$, $\mathbf{T}_0 = \{\vec{e_i}\}_{i=2}^d$.
- 3. Положим нормаль к плоскости $\vec{n}_0 = -\vec{e}_1$.
- 4. Обозначим V множество просмотренных точек плоскости \mathcal{L} . Положим $V = \{o\}$.
- 5. Пока $\mathbf{T} \neq \emptyset$, повторяем:
 - (a) Имеем \vec{n}_k нормаль к текущей плоскости, \mathbf{F}_k накопленная часть базиса плоскости такая, что (o, \mathbf{F}_k) аффинный базис тех точек, которые уже просмотрены и включены в плоскость. \mathbf{T}_k оставшаяся часть временного базиса.
 - (b) Возьмём произвольный $\vec{t} \in \mathbf{T}_k$. Удалим вектор \vec{t} из \mathbf{T}_k : $\mathbf{T}_{k+1} \leftarrow \mathbf{T}_k \setminus \{\vec{t}\}$.
 - (c) Вычислим вектор \vec{v} , перпендикулярный оси вращения: $\vec{v} = \mathcal{ON}(\vec{t}, \mathbf{F}_k)$.
 - (d) Возьмём произвольную точку $s \in \mathcal{S}$, $s \notin \mathcal{V}$. Рассмотрим вектор $\vec{u} = \langle s o, \vec{v} \rangle \vec{v} + \langle s o, \vec{n}_k \rangle \vec{n}_k$ вектор, перпендикулярный оси вращения и лежащий в новой плоскости, содержащей точку s. Если $\vec{u} = \vec{0}$, то есть точка s лежит в оси вращения, то добавляем точку s в множество \mathcal{V} и переходим на шаг 5d.
 - (e) Иначе найдём точку $s_* \in \mathcal{S}$ такую, что $s_* \notin \mathcal{V}$, и угол между \vec{v} и \vec{u} , наибольший среди всех точек роя (то есть скалярное произведение $\langle \vec{v}, \mathcal{N}(\vec{u}) \rangle$, наименьшее среди всех таких точек из \mathcal{S}).
 - (f) Если точка s_* не нашлась, это означает, что весь рой \mathcal{S} лежит в аффинном подпространстве размерности меньше d-1. В этом случае или алгоритм прекращает работу, если целью было найти выпуклую оболочку полной размерности, или переходит к построению выпуклой оболочки роя \mathcal{S} в найденном аффинном подпространстве с базисом (o, \mathbf{F}_k) .
 - (g) Если таких экстремальных точек несколько, то можно выбрать любую. Расширим финальный базис: $\mathbf{F}_{k+1} \leftarrow \mathbf{F}_k \cup \{\mathcal{ON}(s_* o, \mathbf{F}_k)\}$. Добавим точку s_* в множество \mathcal{V} .

- (h) Вычислим нормаль \vec{n}_{k+1} новой плоскости: $\vec{n}_{k+1} = \langle \vec{u}^*, \vec{n}_k \rangle \vec{v} \langle \vec{u}^*, \vec{v} \rangle \vec{n}_k$. При необходимости надо переориентировать \vec{n}_{k+1} так, чтобы $\langle \vec{n}_{k+1}, s o \rangle < 0$, где s точка роя, не лежащая в текущей плоскости, то есть такая, что $\langle \vec{n}_{k+1}, s o \rangle \neq 0$. Если такой точки не нашлось, значит все точки лежат в аффинном подпространстве с базисом (o, \mathbf{F}_{k+1}) . Аналогично пункту $5\mathbf{f}$ либо останавливаем алгоритм, либо переходим к построению выпуклой оболочки в этом аффинном подпространстве.
- 6. Положим $\mathcal{B} = F_k$, $\vec{n} = \vec{n}_k$.

2.2 Построение грани

Вход: Рой точек $\mathcal{S} \subset \mathbb{R}^d$ и плоскость $\mathcal{L} \subset \mathbb{R}^d$, то есть аффинный базис (o, \mathcal{B}) . Возможна передача (d-2)-ребра \mathcal{E} , являющегося начальной гранью для процедуры овыпукления в (d-1)-пространстве плоскости \mathcal{L} .

Выход: (d-1)-грань $\mathcal{F} \subset \mathbb{R}^d$, лежащая в плоскости \mathcal{L} .

- 1. Пусть теперь \mathcal{V} множество точек \mathcal{S} , лежащих в плоскости \mathcal{L} .
- 2. Если $|\mathcal{V}| = d$, то полученная грань симплициальна, дальнейшая обработка не требуется. Искомая грань симплекс, построенный на d данных точках.
- 3. Иначе проецируем S на \mathcal{L} используя аффинный базис (предварительно запоминая из какой точки $s \in S$ получилась очередная точка $s' \in \mathcal{L}$) и рекурсивно строим выпуклую оболочку в аффинном подпространстве плоскости \mathcal{L} , если передано ребро \mathcal{E} , то проецируем его на \mathcal{L} и передаём в процедуру овыпукления в подпространстве.
- 4. Результатом овыпукления в подпространстве плоскости будет (d-1)-многогранник выраженный в терминах (d-1)-пространства, поэтому «поднимаем» его в d-мерное исходное пространство: очередную вершину s' подменяем исходной для неё точкой s. Производим аналогичную операцию для всех дочерних объектов данного многогранника.

3 Процесс заворачивания

Можно рассмотреть граф граней искомой выпуклой оболочки \mathcal{P} . Вершины графа сопоставляются с гранями \mathcal{P} . Две вершины являются соседними, если соответствующие им (d-1)-грани имеют общее (d-2)-ребро.

В начале процесса заворачивания нам известна какая-то вершина этого графа, соответствующая грани, построенной алгоритмом из предыдущего раздела. Также нам известны рёбра графа, выходящие из этой вершины, так как нам известны рёбра этой начальной грани.

В таком рассмотрении построение выпуклой оболочки соответствует обходу всех её граней, то есть обходу графа граней \mathcal{P} . Такой обход графа может быть осуществлён какимлибо поисковым алгоритмом. Наиболее компактную реализацию имеет алгоритм поиска в глубину. Эта реализация является рекурсивной.

Напомним, что один рекурсивный шаг поиска в глубину состоит в переборе всех не посещённых соседей текущей вершины и переходов в них с продолжением поиска оттуда. В геометрических терминах перебор соседей и переход в них соответствует перебору рёбер текущей грани и построению грани, соседней текущей через очередное рассматриваемое ребро. Такое построение осуществляется поворотом плоскости текущей грани вокруг

рассматриваемого ребра до касания какой-либо точки роя \mathcal{S} , не лежащей на рассматриваемом ребре. Такой поворот осуществляется аналогично шагу 5d алгоритма построения плоскости начальной грани.

3.1 Запуск поиска в глубину

Вход: $\mathcal{S} \subset \mathbb{R}^d$, возможна передача информации о начальной (d-1)-грани $\mathcal{F} \subset \mathbb{R}^d$. Выход: d-многогранник $\mathcal{P} \subset \mathbb{R}^d$.

- Если не передали начальную грань:
 - 1. Выполняем построение начальной плоскости см. 2.1.
 - 2. Строим начальную грань \mathcal{F} см. 2.2.
- Для всех (d-2)-рёбер грани ${\mathcal F}$ счётчик смежных граней устанавливаем равным единице.
- Запускаем поиск в глубину от грани \mathcal{F} .

3.2 Поиск в глубину

Имеется текущая грань \mathcal{F} .

- 1. Пока у грани \mathcal{F} есть рёбра со счётчиком, равным единице, повторяем:
 - (а) Перекатываемся через ребро со счётчиком равным единице.
 - (b) Всем рёбрам получившейся грани увеличиваем счётчик на один.
 - (с) Запускаем поиск в глубину от получившейся грани.
- 2. Завершаем процедуру.

3.3 Процедура перекатывания через ребро

Вход: $\mathcal{S} \in \mathbb{R}^d$, текущая (d-1)-грань \mathcal{F} и (d-2)-ребро \mathcal{E} текущей грани, через которое происходит перекатывание, $(o, \mathcal{B}_{\mathcal{F}})$ — аффинный базис плоскости содержащей грань \mathcal{F} . Вектор \vec{n} — нормаль грани \mathcal{F} .

Выход: Новая грань \mathcal{F} и внешняя нормаль к ней.

- 1. Построим аффинный базис ребра \mathcal{E} .
 - (a) Возьмём произвольную точку $o \in \mathcal{E}$ начало аффинного базиса. Положим $\mathcal{B}_{\mathcal{E}} = \varnothing$.
 - (b) Пока $|\mathcal{B}_{\mathcal{E}}| < d-2$: $\mathcal{B}_{\mathcal{E}} \leftarrow \mathcal{ON}(s_e o, \mathcal{B}_{\mathcal{E}})$, где $s_e \in \mathcal{E}$.
- 2. Вычислим вектор \vec{v} , перпендикулярный оси вращения и лежащий в плоскости \mathcal{F} .
 - (a) Возьмём точку $f \in \mathcal{F} \setminus \mathcal{E}$.
 - (b) Тогда искомый вектор равняется $\vec{v} = \mathcal{ON}(f o, \mathcal{B}_{\mathcal{E}})$.
- 3. Находим точку $s_* \in \mathcal{S}$ такую, что $s_* \notin \mathcal{F}$, и угол между \vec{v} и \vec{u} , наибольший среди всех точек роя (то есть скалярное произведение $\langle \vec{v}, \mathcal{N}(\vec{u}) \rangle$, наименьшее среди всех таких точек из \mathcal{S}), где $\vec{u} = \langle s o, \vec{v} \rangle \vec{v} + \langle s o, \vec{n} \rangle \vec{n}$ вектор, перпендикулярный оси вращения и лежащий в новой плоскости, содержащей точку s_* . Соответствующий такой точке s_* вектор \vec{u} обозначим \vec{r} .

- 4. Аффинный базис плоскости $\mathcal{B}_{\mathcal{L}} \triangleq (o, \mathcal{B}_{\mathcal{E}} \cup \{\vec{r}\}).$
- 5. Вычислим нормаль \vec{n}_* новой плоскости: $\vec{n}_* = \langle \vec{r}, \vec{n} \rangle \vec{v} \langle \vec{r}, \vec{v} \rangle \vec{n}$. При необходимости надо переориентировать \vec{n}_* так, чтобы $\langle \vec{n}_*, s o \rangle < 0$, где s точка роя, не лежащая в текущей плоскости \mathcal{F} , то есть такая, что $\langle \vec{n}_*, s o \rangle \neq 0$.
- 6. Выполняем построение новой грани \mathcal{F}' на точках роя, попавших в плоскость \mathcal{L} , проходящую через ребро \mathcal{E} и точку s (см. процедуру 2.2).

3.4 Процедура получения базиса плоскости, содержащего базис ребра

Вход: базис $\mathcal{B}_{\mathcal{F}}$ (d-1)-грани \mathcal{F} , (d-2)-ребро \mathcal{E} этой грани (важен набор E точек, лежащих в этом ребре).

Выход: базис $\mathcal{B}_{\mathcal{F}}$, содержащий базис ребра \mathcal{E} .

- 1. Выбираем две точки p, p' из $E, p \neq p'$. Точку p полагаем началом аффинного базиса, нормированный вектор p'-p полагаем первым вектором \vec{b}_1 конструируемого набора $\mathcal{B}'_{\mathcal{F}}$.
- 2. Берём точку $p'' \in \mathcal{F}$, $p'' \notin E$. Вектор p'' p, нормированный на фоне \vec{b}_1 , полагаем (d-1)-м вектором \vec{b}_{d-1} конструируемого набора $\mathcal{B}'_{\mathcal{F}}$.
- 3. Для всех векторов $b \in \mathcal{B}_{\mathcal{F}}$ проверяем, является ли b линейно-независимым на фоне уже накопленного набора $\mathcal{B}'_{\mathcal{F}}$, и, если является, добавляем в $\mathcal{B}'_{\mathcal{F}}$ результат ортонормирования b на фоне текущего набора $\mathcal{B}'_{\mathcal{F}}$.

4 TODO

- 1. Переписать 3.3 (Пункты 1 и 2)
- 2. Переделать программу
- 3. Сравнить производительность.