EN.601.414/614 Computer Networks

Introduction

Xin Jin

Spring 2019 (MW 3:00-4:15pm in Shaffer 301)

Introduction

Instructor: Xin Jin

- ➤ PhD in Computer Science from Princeton in June 2016
- ➤On the Hopkins faculty since July 2017
- Research areas: computer networks, distributed systems
- >Current research
 - Co-design networks and distributed systems with new-generation programmable switches
 - Design low-latency data analytics systems with approximate and sub-linear techniques
 - Design self-driving networks with SDN and AI
- ➤ EN.601.714 Advanced Computer Networks (fall semester): exciting new developments of computer networks

Introduction

- Teaching assistants: Zhihao Bai, Hang Zhu
 - > PhD student in computer science
 - ➤ Interested in computer networks and distributed systems

Course assistants: TBD

Office Hours

- Monday: 4:15-5:15pm
- Wednesday: 4:15-5:15pm
- Friday: 4:15-5:15pm
- Tentative, starting next week

Location: TBD

601.414/614 in CS Curriculum

601.220 Intermediate Programming

- ➤ High-level logic -> Programs
- Coding skills learned in 601.220 are critical for 601.414/614 assignments

601.229 Computer System Fundamentals

- > How do machines work?
- Execute programs, interact with users, etc.
- ➤ Many concepts of 601.229 will be useful

What is missing

- How do we access most services?
 - Examples include search engines, social networks, video streaming, etc.
- How do two machines communicate?
 - ➤ When they are directly connected
 - When they are not directly connected

Using a network

What is a network?

 A system of "links" that interconnect "nodes" in order to move "information" between nodes

Yes, this is very vague

There are many different types of networks

- Internet
- Telephone network
- Transportation networks
- Etc.

We will focus primarily on the Internet

The Internet: An Exciting Time

One of the most influential inventions

- >A research experiment that escaped from the lab
- ➤ ... to be a global communications infrastructure

Even wider reach

- ➤ Today: more than 3 billion users
- Tomorrow: more users, computers, things, ...

Near-constant innovation

- Apps: Web, social networks, Bitcoin, blockchain, ...
- Links: optics, WiFi, cellular, satellite, ...

Transforming Everything

- The ways we do business
 - E-commerce, advertising, cloud computing, ...
- The way we communicate and socialize
 - E-mail, Facebook, Twitter, Instagram, Snapchat, ...
- The way we learn
 - ➤ Wikipedia, MOOCs, search engines, ...
- How we think about law
 - ➤ Interstate commerce? National boundaries? Smart contracts?
- The way we govern
 - E-voting, censorship, democratic organization on blockchain, ...

So, what is Internet?

Internet

Inter-net

A network of networks

The Internet consists of many end-systems

- car navigator
- heart pacemaker

smartphone

end-system

iPad

Linux server

Connected by switches

And links

Managed by many parties

Transfers data

Shared among many services

A federated system

- The Internet ties together different networks by the IP protocol
 - ➤One interface to bind them all together

Why a common interface?

The Internet ties together different networks

>>18,000 ISP networks

 Interoperability between users and networks as well as between different networks

Massive Scale

- 4.2 Billion users (55% of world population)
- 1 Trillion websites
- 200 Billion emails sent per day
- 2.5 Billion smartphones
- 2.2 Billion Facebook users
- 4 Billion YouTube videos watched per day
- Routers that switch 10 Terabits/second
- Links that carry 100 Gigabits/second

Diversity in all dimensions

Technology

➤ Optical, wireless, satellite, copper

Endpoint devices

From wearable devices and cell phones to datacenters and supercomputers

Applications

➤ Video streaming, social networking, file transfer, live TV, gaming, remote medicine, messaging, cryptocurrency

Users

Malicious, naïve, savvy, embarrassed, paranoid

The Internet is also

- Constantly evolving
- Decentralized
 - ➤ Many parties with (often conflicting) interests
- Failure-prone
 - > Physical errors, logic errors, human errors, etc.
- Constrained by technology
 - > Speed of the light is the limit (so far!)

Have we found the right solution?

We don't really know

- What we do know
 - The early Internet pioneers came up with a solution that was successful beyond all imagining
 - Several enduring architectural principles and practices emerged from their work

Still, it is just one design with many questions

The Internet is a lesson

- In how to reason through the design of a very complex system
 - ➤ What are our goals and constraints?
 - ➤ What's the right prioritization of goals?
 - ➤ How do we decompose a problem?
 - ➤ Who does what? How?
 - ➤ What are the interfaces between components?
 - ➤ What are the tradeoffs between design options?

What is 601.414/614 about?

To learn about (at a high level)

- ➤ How the Internet works
- ➤ Why it works the way it does
- How to reason about complicated design problems

What it's not about

- > How to write web services
- ➤ How to design web pages
- >...

What is 601.414/614 about?

Basics

- > Packets, circuits, multiplexing, delay, loss, protocols
- ➤ Application layer: HTTP
- Transport layer: TCP, UDP, congestion control
- ➤ Network layer: IP, routing protocols
- ➤ Link layer: Ethernet, wireless
- ➤ Standard network course (e.g., Princeton 461 and UMich 489)

New EXCITING materials

- > Programmable networks, software defined networking (SDN)
- ➤ Big network data processing, cloud computing
- ➤ Blockchain, Bitcoin, and decentralized Internet applications

Class workload

- Four programming assignments
- Exams
 - ➤ Midterm exam: March 13
 - Final exam: final examination period

Grading

- Class participation: 5%
 - ➤ Small quiz in class
- Programming assignments: 40%
 - ≥10% for each assignment
- Midterm exam: 25%
- Final exam: 30%

Programming assignments

- Assignment 1: socket programming
- Assignment 2: routing algorithms
- Assignment 3: congestion control
- Assignment 4: programmable networks

Updated from last year

Textbook

- Kurose and Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson, 2017. ISBN 978-0133594140.
 - Earlier editions are ok, but translate reading assignments

Communication protocol

- Course website: https://github.com/xinjin/course-net
 - Announcements, lecture slides, assignments

- Piazza for discussion
 - >Link on course website

- Assignment submission via Gradescope
 - >Link on course website

Policies on late submission, cheating, ...

Description in the course website

- Assignments must be submitted within deadline to receive full points
- ➤ Grace period: 96 hours for the entire semester.
 - Use them judiciously
- ➤ After the grace period, 25% off for each 24 hours late, rounded up.

DO NOT cheat

Participation

- Ask and answer questions
 - >It helps you understand and others too
 - ➤ It helps you stay awake
 - ➤ It helps me stay awake
- Sit toward the front

Summary

- Learning about the Internet and networking in general is
 - >important and relevant
 - ➤ lots of fun challenging real-world problems

- Next lecture
 - ➤ Read 1.1 and 1.3 of K&R

Thanks! Q&A