R-code for 'Heterozygosity at neutral and immune loci does not influence neonatal mortality due to microbial infection in Antarctic fur seals'

 $\label{lem:linear_problem} \begin{center} \textit{Vivienne Litzke}, \textit{Meinolf Ottensmann}, \textit{Jaume Forcada}, \textit{Louise Heitzmann & Joseph I.} \\ \textit{Hoffman} \end{center}$

This document provides all the R code used in our paper. Both the Rmarkdown file and the data can be downloaded from the accompanying GitHub repository on (https://github.com/vlitzke/HeterozygosityPupSurvival) as a zip archive containing all the files. We recommend to download or clone this GitHub repository in order to access the documentation together with all the files that are needed to repeat analyses shown in this document. Just click on the link above and then on the green box Clone or download. In order to function properly, the same structure of folders must be kept. If you have any questions, don't hesitate to contact vivienne.litzke[at]mail.mcgill.ca

The data originates from samples collected from a colony of Antarctic fur seals (*Arctocephalus gazella*) at Bird Island, South Georgia between the years of 2000 and 2014. We investigated the effects of neutral and immune gene heterozygosity on early mortality due to bacterial infection using the inbreedR package.¹

- If you have downloaded the project from github then you will see that:
- The raw data required are located in the folder data/
- The Arctocephalus gazella transcriptome² may be downloaded here and saved as arc_gaz_transcriptome.fasta in data.
- This pipeline invokes the MIcroSAtellite identification tool for primer identification. Click on the following link for details and how to install it: MISA³.
- Primer development was conducted using primer3⁴.
- Additionally, the R packages listed below are required and may be installed on your system.

Download packages and libraries

In order to repeat analyses presented in this manuscript a number of packages that extend the functionalities of base R are required. These can be installed using the code shown below.

```
install.packages('inbreedR')
install.packages("readxl")
install.packages("ggplot2")
install.packages("gridExtra")
install.packages("stringi")
install.packages("adegenet")
install.packages("AICcmodavg")
install.packages("reshape2")
install.packages("kableExtra")
```

¹Stoffel, M. A., Esser, M., Kardos, M., Humble, E., Nichols, H., David, P., & Hoffman, J. I. (2016). inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods in Ecology and Evolution, 7(11), 1331-1339.

²Humble, E., Thorne, M.A., Forcada, J. & Hoffman, J.I., (2016). Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success. BMC research notes, 9(1), p.418.

³Thiel, T., (2003). MISA—Microsatellite identification tool. Website http://pgrc. ipk-gatersleben.

⁴Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. & Leunissen, J.A., (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic acids research, 35(suppl_2), pp.W71-W74.

```
source("https://bioconductor.org/biocLite.R")
biocLite("qvalue")

library(inbreedR)
library(readxl)
library(magrittr)
library(ggplot2)
library(grid)
library(gridExtra)
library(AICcmodavg)
library(Matrix)
library(lme4)
library(qvalue)
library(adegenet)
library(reshape2)
library(kableExtra)
```

In order to use inbreedR, the working format is typically an *individual x loci* matrix, where rows represent individuals and every two columns represent a single locus. If an individual is heterozygous at a given locus, it is coded as 1, whereas a homozygote is coded as 0, and missing data are coded as NA.

The first step is to read the data from an excel file. Our original table includes, plate number, well number, species, id, year, health status (represented by a binomial with 0 for healthy and 1 for infected), birth weight, and the following markers (a and b for alleles).

```
## read data
seals <- readxl::read_xlsx("data/data.xlsx")[1:234, ]
## express alleles as numerals
seals[8:ncol(seals)] <- lapply(seals[8:ncol(seals)], as.numeric)</pre>
```

Here's an example of what the data frame looks like:

```
head(seals[1:6,4:11])
```

```
## # A tibble: 6 x 8
##
     ID
            Year
                  `Health status` Birthweight Agt47.a Agt47.b Agt10.a Agt10.b
##
     <chr> <chr> <chr>
                                   <chr>>
                                                           <dbl>
                                                                    <dbl>
                                                                            <dbl>
                                                   <dbl>
## 1 AGP00~ 2000
                                   5.099999999~
                                                     237
                                                             245
                                                                      213
                                                                              213
## 2 AGP00~ 2000 1
                                   4.8
                                                     241
                                                             245
                                                                      213
                                                                              213
## 3 AGP00~ 2000 0
                                   4.099999999~
                                                     237
                                                             241
                                                                      213
                                                                              213
## 4 AGP00~ 2000
                                   4.8
                                                     237
                                                             241
                                                                      213
                                                                              213
## 5 AGP00~ 2000
                                   5.2
                                                     241
                                                             241
                                                                      213
                                                                              215
## 6 AGP00~ 2000
                                   5.9
                                                     241
                                                             241
                                                                      213
                                                                              213
```

Since demographic data is present in the beginning of our data frame, we will start our new genotype file from the 8th column onwards. The function <code>convert_raw</code> converts a common format for genetic markers (two columns per locus) into the <code>inbreedR</code> working format. Afterwards, <code>check_data</code> allows us to test whether the genotype data frame has the correct format for subsequent analyses that use <code>inbreedR</code> functions.

```
seals_geno <- convert_raw(seals[8:ncol(seals)])
invisible(lapply(seals_geno, table, useNA = "always"))
check_data(seals_geno, num_ind = 234, num_loci = 61)</pre>
```

Separate markers

Divide the neutral and immune markers from their respective columns in the adjusted inbreedR format, and compute standard multilocus heterozygosity (sMLH).⁵

```
## subset markers based on type
imm_msats <- seals_geno[, 1:13]
neut_msats <- seals_geno[, 14:61]

## estimate sMLH
all_het <- sMLH(seals_geno)
neutral_het <- sMLH(neut_msats)
immune_het <- sMLH(imm_msats)</pre>
```

Create and reshape dataframes

Take out id, health, marker types, and birth weight as variables. Tack on the year.

Calculate g_2

 g_2 is a proxy for identity disequilibrium. It is a measure of two-locus disequilibrium, which quantifies the extent to which heterozygosities are correlated across pairs of loci.⁶ This allows us to take a look at our neutral marker heterozygosity to determine if there is variation in inbreeding in the population.

Plot the distribution of g2 estimates:

⁵Coltman, D. W. and J. Slate. 2003. Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983.

⁶David, P., Pujol, B., Viard, F., Castella, V., & Goudet, J. (2007). Reliable selfing rate estimates from imperfect population genetic data. Molecular ecology, 16(12), 2474-2487.

Plot heterozygosity among marker sets

In order to visualize sMLH for all, neutral, and immune markers, create the following box-plot:

```
het_plot <-
  ggplot(data = sealdf_reshaped, aes(x=health, y=value, fill = variable)) +
  stat_boxplot(aes(x = health, y = value),
               geom='errorbar', linetype=1, width=0.5) +
  geom_boxplot( aes(x = health, y = value),outlier.shape=1) +
  geom_jitter(shape=16, position=position_jitter(0.4), size = .1) +
  theme classic() +
  theme(legend.position = "none",
       panel.border = element_blank(),
       strip.background = element blank(),
       text = element text(size = 12),
       plot.margin = grid::unit(c(2,2,2,2), 'mm')) +
  xlab("Infection status") +
  ylab("sMLH") +
  ggtitle("b)") +
  scale_fill_manual(values = c("#A79C93", "#0294A5", "#C1403D")) +
  facet_wrap(~variable, nrow = 1) +
  scale_y_continuous(limits = c(0.3, 2),
                     expand = c(0,0))
```

Estimating heterozygosity for individual loci

As we have previously looked at genome-wide effects, it may be of interest to look for local effects. Therefore, we wanted to examine the heterozygosity for each locus. First, define the confidence interval:

```
confidence_interval <- function(vector) {
    ## standard deviation
    vec_sd <- sd(vector)
    ## sample size
    n <- length(vector)
    ## sample mean
    vec_mean <- mean(vector)
    ## error according to t distribution
    error <- qt((.95 + 1)/2, df = n - 1) * vec_sd / sqrt(n)
    ## confidence interval as a vector
    result <- c("lower" = vec_mean - error, "upper" = vec_mean + error)
    return(result)
}</pre>
```

Calculate the heterozygosity for each locus, and use a regression on infection status:

```
het_per_locus <- apply(seals_geno, 2, sMLH)</pre>
## add factors
df <- cbind(sealdf, seals_geno)</pre>
## add marker type as names to the data.frame
names(df)[6:66] <- c(paste0("I", 1:13), paste0("N", 1:48))
lm_by_loc <- lapply(1:61, function(x) {</pre>
  ## extract data of given marker x
  value <- df[x + 5]
  ## run linear models
  res <- summary(lm(as.numeric(df$health) ~ value))
  conf <- confint(lm(as.numeric(df$health) ~ value))</pre>
  f <- res$fstatistic</pre>
  pf(f[1], f[2], f[3], lower=FALSE)
  out <- data.frame(beta = res$coefficients[2,1],</pre>
                     lcl = conf[2,1],
                     ucl = conf[2,2])
}) %>%
  do.call("rbind",.) %>%
  cbind(., data.frame(names = colnames(seals)[seq(8, ncol(seals), 2)] %%
                            substring(., first = 1, last = nchar(.) - 2),
                       type = c(rep("Immune", 13),rep("Neutral", 48)),
                       dummy = ""))
## order by effect size
lm_by_loc <- lm_by_loc[with(lm_by_loc, order(type, beta, decreasing = F)),]</pre>
lm_by_loc$num <- 1:61</pre>
## create data frame to label effects
names_df <- data.frame(label = lm_by_loc$names,</pre>
                         num = lm_by_loc$num)
```

Create a plot to feature each loci and their relevant effect sizes:

```
het_by_loci_plot <- ggplot(lm_by_loc, aes(x = num, y = beta, col = type)) +
  geom_errorbar(aes(ymin = lcl, ymax = ucl),
                width=0.6, alpha=0.7, size = 0.7) +
  geom_point(size = 1) +
  scale_x_continuous(expand = c(0,0), breaks = 1:61, labels = names_df$label) +
  scale_y_continuous(expand = c(0,0)) +
  geom hline(yintercept = 0, linetype = "dotted") +
  coord_flip(xlim = c(0, 61.5), ylim = c(-0.5, 0.6)) +
  scale_color_manual(values=c("#C1403D","#0294A5"),
                     name = "",
                     breaks = c("Neutral", "Immune"),
                     labels = c("Neutral", "Immune")) +
  theme_classic() +
  xlab("") +
  ylab("Effect size") +
  theme(legend.justification = c(0,1),
        legend.position = c(0,1.05),
        legend.background = element_rect(fill = NA),
        text = element_text(size = 12),
        axis.text.y = element_text(size = 5),
        legend.text = element_text(size = 7),
        panel.border = element_blank(),
        strip.background =element_rect(fill = "white", colour = "white"),
        strip.text = element_text(colour = 'white'),
        plot.margin = grid::unit(c(2,2,2,2), 'mm')) +
  guides(color = guide legend(
   keywidth = 0.05,
   keyheight = 0.05,
   default.unit = "inch")) +
  facet_wrap(~dummy) +
  ggtitle("c)")
```

First we can look at the mean and standard error between neutral and immune loci, then we can look for local effects between the effect sizes of neutral and immune loci, using a Wilcoxon test:

```
mean(lm_by_loc$beta[1:13])
sd(lm_by_loc$beta[1:13])/13

mean(lm_by_loc$beta[14:61])
sd(lm_by_loc$beta[14:61])/48

wilcox.test(lm_by_loc$beta[1:13],lm_by_loc$beta[14:61])
```

Create the final combined figure

To create a combination plot of all figures (as in the manuscript):

Modeling effects of sMLH on bacterial infection status

To test for associations between microsatellite heterozygosity and death from bacterial infection, we constructed several alternative generalized linear mixed-models (GLMMs) incorporating relevant predictor variables and quantified their relative support using AICc weights within a multi-model inference framework. All of the models had pup survival as a binary response variable (coded as 0 = alive and 1 = dead) and included year as a random effect to statistically control for any variation in survivorship attributable to inter-annual variation. The following GLMMs were considered:

```
## define models
models <- list(
  glmer(health ~ 1 + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ All + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ Immune + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ Neutral + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ 1 + birthweight + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ All + birthweight + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ Neutral + birthweight + (1|year), data = sealdf_year, family = 'binomial'),
  glmer(health ~ Neutral + birthweight + (1|year), data = sealdf_year, family = 'binomial'))</pre>
```

```
## boundary (singular) fit: see ?isSingular
names(models) <- paste0("m", 1:length(models))</pre>
## model selection using delta AICc
kableExtra::kable(AICcmodavg::aictab(models, second.ord = T), booktabs = TRUE,
                  longtable = FALSE, caption = "Model selection")
# Model averaged paramaters, one by one
AICcmodavg::modavg(models, parm = "All")
AICcmodavg::modavg(models, parm = "Immune")
AICcmodavg::modavg(models, parm = "Neutral")
AICcmodavg::modavg(models, parm = "birthweight")
```

These included 'null models' without any genetic effects (models i and v) as well as models that included sMLH combined over all loci or calculated separately for the neutral versus immune loci. Models v to viii also included pup birth weight (in kg) to incorporate any potential effects of body size on survivorship. All of the models were specified using the glmer function of the package "lme4" with a binomial error structure. Using the R package AICcmodavg, the most parsimonious model was selected based on the delta AICc value, which compares weights as a measure of the likelihood of a particular model. The best supported model has Δ AICc = 0 and a difference of two or more units was applied as a criterion for choosing one model over a competing model.

Supplementary Data

(a) Patterns of allelic richness and cross-amplification

We tested for patterns in allelic richness among markers (i.e. immune vs neutral), developmental source (i.e. designed for Antarctic fur seals, phocids or otariids). Secondly, we evaluate the cross-amplification success of loci in two other species of pinnipeds, namely the Grey seal and Nothern Elephant seal.

 $^{^7}$ Bates, D., Maechler, AICcmodavg::aictab(models, second.ord = T)M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

⁸Mazerolle, M. J., & Mazerolle, M. M. J. (2017). Package 'AICcmodavg'. R package.

⁹Anderson, D. R., & Burnham, K. P. (2002). Avoiding pitfalls when using information-theoretic methods. The Journal of Wildlife Management, 912-918.

```
size = 6, replace = F)),]
## extract geno
marker_geno <- apply(heatmap_df[,-1], 2, as.character)</pre>
## get loci names
loci_names <- colnames(marker_geno)[seq(1, ncol(marker_geno), 2)] %>%
  substring(., first = 1, last = nchar(.) - 2)
## define a vector of immune marker names
immune_marker_names <- c("Agi01", "Agi02", "Agi03", "Agi04",</pre>
                          "Agi05", "Agi06", "Agi07", "Agi08",
                          "Agi09", "Agi10", "Agi11", "Agt10", "Agt47")
## collapse information for each locus in one column
marker_geno <- lapply(seq(1, ncol(marker_geno), 2), function(x) {</pre>
  marker_geno[,x:(x + 1)] %>%
    apply(., 1, paste0, collapse = "/")
}) %>%
  do.call("cbind",.) %>%
  ## rename loci
  set_colnames(x = ., value = paste0("Locus", 1:61))
## set missing data to NA
marker_geno[which(marker_geno == "NA/NA")] <- NA
## convert to GENIND object
genind <- adegenet::df2genind(marker_geno, ploidy = 2, sep = "/",</pre>
                               pop = heatmap_df[["Species"]] %>% as.factor)
## convert to GENPOP
genpop <- adegenet::genind2genpop(genind)</pre>
heatmap df <- lapply(levels(genpop@loc.fac), function(i) {
  df.temp <- genpop@tab[,which(genpop@loc.fac == i)] ## fetch data</pre>
  if (is.null(dim(df.temp))) {
    df.temp[df.temp > 0] <- 1</pre>
    df.temp[df.temp == 0] <- 0
  } else {
    df.temp <-
                 apply(df.temp, 2, function(x) ifelse(x > 0, 1, 0)) \%
      ## presence/absence of allele
    rowSums(na.rm = T) ## count alleles
  }
  # return results
  return(data.frame(Species = names(df.temp),
                    Locus = i,
                    Alleles = df.temp))
}) %>%
  do.call("rbind", .)
## set zero to NA
heatmap_df[["Alleles"]][which(heatmap_df[["Alleles"]] == 0)] <- NA
```

```
heatmap_df[["Locus"]] <- factor(heatmap_df[["Locus"]], labels = loci_names)</pre>
heatmap_df[["Type"]] <- 'Neutral'</pre>
heatmap_df[["Type"]][which(heatmap_df[["Locus"]] %in% immune_marker_names)] <- 'Immune'
## sort by species
heatmap_df[["Species"]] <- factor(heatmap_df[["Species"]],</pre>
                          levels = c("Fur seal", "Grey seal",
                                      "Northern Elephant seal"),
                          labels = c("Antarctic fur seal", "Grey seal",
                                      "Northern Elephant seal"))
## define colors for marker types
col_key <- ifelse(levels(heatmap_df[["Locus"]]) %in% immune_marker_names,</pre>
                   "#C1403D", "#0294A5")
plot <- ggplot(data = heatmap_df, aes(x = Species, y = Locus, fill = Alleles)) +</pre>
  theme_classic() +
  geom_tile(colour = "Black", size = .75) +
  scale_fill_viridis_c(name = "Alleles", na.value = "Grey75") +
  scale_x_discrete(expand = c(0,0)) +
  theme(
    plot.margin = margin(t = 5, r = 25, b = 5, l = 15, unit = "mm"),
    legend.position = c(1,1),
    legend.justification = c(0, 1),
    legend.direction = "vertical",
    legend.margin = margin(0,0,0,5, "mm"),
    axis.text.y = element_text(hjust = 0, colour = col_key, size = 8),
    axis.line.x = element_blank(),
    axis.text.x = element text(size = 10)) +
  xlab("Species") +
  ylab("")
ggsave(plot,
       filename = 'HeatmapLoci.tiff',
       width = 6,
       height = 9,
       units = "in",
       dpi = 300)
```


The heatmap above shows several patterns which are tested statistically next.

```
## get raw data again
genotypes_raw <- readxl::read_xlsx("data/data.xlsx", skip = 1)[, c(3, 8:ncol(seals))]</pre>
## extract genotypes
marker_geno <- apply(genotypes_raw[,-1], 2, as.character)</pre>
## collapse information for each locus in one column
marker_geno <- lapply(seq(1, ncol(marker_geno), 2), function(x) {</pre>
  marker_geno[,x:(x + 1)] %>%
    apply(., 1, paste0, collapse = "/")
}) %>%
  do.call("cbind",.) %>%
  ## rename loci
  set_colnames(x = ., value = paste0("Locus", 1:61))
## set missing data to NA
marker geno[which(marker geno == "NA/NA")] <- NA
## create GENIND for Antarctic fur seal alone
genind_afs <- adegenet::df2genind(marker_geno[1:78,], ploidy = 2, sep = "/")</pre>
## extract allele numbers for both marker types
immune_afs <- genind@loc.n.all[1:13]</pre>
mean(immune_afs)
sd(immune_afs)
```

```
neutral_afs <- genind@loc.n.all[14:61]
mean(neutral_afs)
sd(neutral afs)
## compare marker types
wilcox.test(immune_afs, neutral_afs, paired = F)
## compare neutral markers by origin
neutral_afs <- genind@loc.n.all[14:22]</pre>
mean(neutral_afs)
sd(neutral_afs)
neutral_others <- genind@loc.n.all[23:61]</pre>
mean(neutral_others)
sd(neutral_others)
## compare by marker
wilcox.test(neutral afs, neutral others, paired = F)
## cross-amplification
immune <- dplyr::filter(heatmap_df, Species != "Antarctic fur seal",
                         Type == "Immune")[["Alleles"]]
immune <- ifelse(is.na(immune), 0, 1) # check if amplified</pre>
mean(immune) ## cross-amplification rate
neutral <- dplyr::filter(heatmap_df, Species != "Antarctic fur seal")[27:44, "Alleles"]
neutral <- ifelse(is.na(neutral), 0, 1) # check if amplified</pre>
mean(neutral) ## cross-amplification rate
wilcox.test(neutral, immune, paired = F)
```

(b) FDR Correction

After receiving HWE values, apply a false discovery rate correction for a table of p-values.

(c) Sensitivity of loci number on estimates of g_2

Here, we repeat the estimation of g_2 for each marker type and for the entire dataset

```
g2_neutral_resampled <- pbapply::pblapply(seq(4, 48, 4), function(x) {</pre>
  subs <- lapply(1:100, function(y) {</pre>
    rand <- sample(1:48, x, replace = FALSE)</pre>
    loci <- neutral_markers[, rand]</pre>
    g2 <- g2_microsats(loci, nperm = 0, nboot = 9999, verbose = F)
    df <- data.frame(bs = g2$g2_boot,</pre>
                     lcl = g2\$CI_boot[[1]],
                     ucl = g2\$CI_boot[[2]],
                      g2 = g2\$g2,
                     p = g2 p_val)
    return(df[1,])
  }) %>% do.call("rbind", .)
  return(data.frame(g2 = mean(subs$g2),
                    lcl = confidence_interval(subs$g2)[1],
                    ucl = confidence_interval(subs$g2)[2]))
}) %>% do.call("rbind", .)
g2_neutral_resampled$loci <- seq(4, 48, 4)
## load saved dataset
load("data/g2_neutral_resampled.RData")
g2_neutral_resampled_plot <-
  ggplot(data = g2_neutral_resampled, aes(x = loci, y = g2)) +
  geom line() +
  geom_point(size = 1.5) +
  geom_errorbar(aes(ymin = lcl,
                    ymax = ucl),
                width = 0.8, alpha = 0.7, size = 0.8, colour = "black") +
  geom hline(vintercept = 0, linetype = "dotted") +
  theme_classic() +
  theme(legend.position = "none",
        panel.border = element_blank(),
        strip.background = element_blank(),
        text = element_text(size = 12),
        aspect.ratio = 1.
        axis.title.y = element_text(face = "italic"),
        plot.margin = grid::unit(c(2,2,2,2), 'mm')) +
  xlab("Number of loci") +
  labs(y = expression(italic(g)["2"])) +
  scale_x_continuous(expand = c(0,0), limits = c(0, 50))
g2_neutral_resampled_plot
```

Microsatellite development

Identifying microsatellites within the transcriptome

Short tandem repeats were identified within the Antarctic fur seal transcriptome assembly using the script misa.pl. The required initiation file called misa.ini is available in the folder data and defines the minimum number of five repeats for di-, tri- and tetranucleotide motifs. As already mentioned before, MISA needs to be downloaded by the user

```
# identify microsats
perl misa.pl arc_gaz_transcriptome.fasta
```

The code above generates one ouput file arc_gaz_transcriptome.fasta.misa containing a total of 2577 microsatellites found within the transcriptome. The resulting data table was subsequently reformatted for further filtering steps.

```
## read the data
data <- readLines("data/arc_gaz_transcriptome.fasta.misa")</pre>
## create a matrix
microsats_table <- matrix(ncol = length(strsplit(data[1], split = "\t")[[1]]),
                           nrow = length(data))
for (i in 1:length(data)) {
microsats_table[i,1:length(strsplit(data[i], split = "\t")[[1]])] <-
  strsplit(data[i], split = "\t")[[1]]
microsats_table <- as.data.frame(microsats_table[2:nrow(microsats_table),])</pre>
## add column names
names(microsats table) <-</pre>
  c('contig.name', 'ssr.no','ssr.type','ssr.seq','ssr.size','ssr.start','ssr.end')
## read contig length information
contig_length <- read.table("data/transcriptlength.txt", header = T)</pre>
names(contig_length) <- c('MatchID', 'contig.length')</pre>
## set to character
microsats_table[["contig.name"]] <-</pre>
  as.character(microsats_table[["contig.name"]])
contig_length[["MatchID"]] <-</pre>
  as.character(contig_length[["MatchID"]])
## correct 'MatchID' for cross-referencing
microsats_table[["MatchID"]] <- NA
for (i in 1:nrow(microsats_table)) {
  # discard chunk following the underscore (e.g. 4708387_length... becomes 4708387)
 microsats table$MatchID[i] <-</pre>
   strsplit(microsats_table$contig.name[i],split = "_")[[1]][1]
 microsats table$MatchID[i] <-</pre>
    strsplit(microsats_table$MatchID[i],split = " ")[[1]][1]
}
## correct contig_length
for (i in 1:nrow(contig_length)) {
  # remove everything after the underscore, see above
  contig_length$MatchID[i] <-</pre>
    strsplit(contig_length$MatchID[i],split = "_")[[1]][1]
}
## merge data frames
microsats_table <-
dplyr::left_join(microsats_table,contig_length, by = "MatchID")
```

```
## some data class conversions
microsats_table[["ssr.start"]] <-</pre>
  as.numeric(as.character(microsats table[["ssr.start"]]))
microsats table[["ssr.end"]] <-</pre>
  as.numeric(as.character(microsats_table[["ssr.end"]]))
microsats_table[["contig.length"]] <-
  as.numeric(as.character(microsats_table[["contig.length"]]))
## export Supplementary Table S1
write.csv(microsats_table, file = "data/Supplementary Table S1.csv", row.names = F)
## summary of microsatellite types
summary(microsats_table$ssr.type)
##
                    рЗ
                          p4
          c*
               p2
                          80
    211
           4 1687
                   595
```

Filtering Microsatellites

Among the 2577 identified microsatellites, there are some compound microsatellites as well as repeats that do not offer adequate flanking sites for primer design. These were discarded next.

```
## remove compound microsats
microsats table <-
  subset(microsats_table, microsats_table[["ssr.type"]] != 'c')
microsats_table <-
  subset(microsats_table, microsats_table[["ssr.type"]] != 'c*')
## selection based on flanking sites
microsats_table[["temp"]] <-
  rep(1,nrow(microsats_table)) # flag for removal
for (i in 1:nrow(microsats_table)) {
  # inspect flanking site upstream
if (microsats_table[["ssr.start"]][i] <= 100) {</pre>
      microsats_table[["temp"]][i] <- 0</pre>
      # inspect flanking site downstream
} else if ((microsats_table[["contig.length"]][i] -
            microsats_table[["ssr.end"]][i]) <= 100) {
    microsats_table[["temp"]][i] <- 0
  }
}
## Remove flagged microsats
microsats_table <- subset(microsats_table, microsats_table[["temp"]] != 0)
microsats_table <- microsats_table[,1:9]
```

After the above filtering 1580 microsatellites were retained. Now, we selected microsatellites that are associated to immunity based on Gene Ontology Gene annotations.

```
## Keywords including 'immune*'
annotation <- readLines("data/arc_gaz_transcriptome_annotations.txt")
annotations <- matrix(ncol = 18, nrow = length(annotation))
## fill table</pre>
```

```
for (i in 1:nrow(annotations)) {
annotations[i, 1:length(strsplit(annotation[i], split = "\t")[[1]])] <-</pre>
  strsplit(annotation[i], split = "\t")[[1]]
}
annotations <- data.frame(annotations)[-1,]</pre>
annotations <- annotations[, c(1,14:18)]
names(annotations) <- c('MatchID', 'goTerm', 'cellular.components', 'biological.processes',</pre>
                         'molecular.functions', 'keywords')
annotations[["MatchID"]] <- as.character(annotations[["MatchID"]])
for (i in 1:nrow(annotations)) {
  annotations[["MatchID"]][i] <-</pre>
    strsplit(annotations[["MatchID"]][i],split = "_")[[1]][1]
}
annotations.extd <- dplyr::left_join(microsats_table, annotations,by = 'MatchID')
immuneTable2 <- data.frame(annotations.extd) %>% # Check for matches with keywords
  dplyr::filter(grepl('immun*', keywords))
ImmuneMarker_Keywords <- immuneTable2 # 13 within just keywords</pre>
```

For 13 microsatellites, we found a match to the term 'immun*' under the keywords of the GO annotations. To increase the number of suitable microsatellites, we repeated the initial search to all categories of the GO annotations with an extended list of search terms shown below.

```
## define list of keywords
immune <- c('immun*', 'antigen', 'chemokine', 'T cell',</pre>
             'MHC', 'Antibody', 'histocompatibility',
             'Interleukin', 'Leucocyte', 'Lymphocyte')
immuneLines <- NULL
for (i in immune) {
  immuneLines <- c(immuneLines, annotation[grep(i, annotation, ignore.case = T)])</pre>
}
immuneTable <- matrix(ncol = 18, nrow = length(immuneLines))</pre>
for (i in 1:length(immuneLines)) {
immuneTable[i,1:length(strsplit(immuneLines[i], split = "\t")[[1]])] <-</pre>
  strsplit(immuneLines[i], split = "\t")[[1]]
immuneTable <- data.frame(immuneTable)[,c(1,10,14:18)]</pre>
names(immuneTable) <-</pre>
  c('MatchID', 'geneID', 'goTerm', 'cellular.components', 'biological.processes',
                          'molecular.functions', 'keywords')
immuneTable[["MatchID"]] <-</pre>
  as.character(immuneTable[["MatchID"]])
for (i in 1:nrow(immuneTable)) {
  immuneTable[["MatchID"]][i] <-</pre>
    strsplit(immuneTable[["MatchID"]][i],split = "_")[[1]][1]
}
```

```
ImmuneMarker_whole_file <-
    unique(dplyr::inner_join(microsats_table, immuneTable, by = "MatchID"))
## write to file
write.csv2(ImmuneMarker_whole_file, file = "data/immune_microsats_raw.csv", row.names = F)</pre>
```

The extended search yielded a total of 137 microsatellites. The entire list is shown below.

Table 1: Annotated microsatellites

	Contig	Motif	Start	End	Gene ID
1	AgU000001_v1.1	(CA)5	1586	1595	VWF_CANLF
2	AgU000018_v1.1	(AC)5	4757	4766	AGRF5_HUMAN
4	AgU000018_v1.1	(TG)5	5364	5373	AGRF5_HUMAN
6	AgU000026_v1.1	(GT)5	3260	3269	BMR1A_HUMAN
8	$AgU000026_v1.1$	(CA)5	3970	3979	BMR1A_HUMAN
10	$AgU000033_v1.1$	(CT)5	1804	1813	$RORA_MOUSE$
12	AgU000033_v1.1	(AAT)5	3514	3528	$RORA_MOUSE$
14	AgU000038_v1.1	(TA)5	3523	3532	IL6RB_HUMAN
17	AgU000053_v1.1	(AG)6	3638	3649	AKAP9_HUMAN
18	AgU000073_v1.1	(TA)6	2171	2182	TGFR2_HUMAN
20	$AgU000074_v1.1$	(AC)8	4025	4040	$CD302_PIG$
21	AgU000087_v1.1	(ATT)6	3163	3180	ITAV_BOVIN
22	AgU000123_v1.1	(CT)5	511	520	NCKP1_HUMAN
23	AgU000160_v1.1	(TC)6	2967	2978	EMP2_BOVIN
24	$AgU000254_v1.1$	(TC)13	1338	1363	CD44_CANLF
25	AgU000356_v1.1	(GA)5	1841	1850	IL3RB_HUMAN
27	AgU000367_v1.1	(AC)5	2501	2510	PSA_HUMAN
29	AgU000376_v1.1	(CAG)5	458	472	EGR1_HUMAN
31	AgU000376_v1.1	(CCT)5	805	819	EGR1_HUMAN
33	$AgU000386_v1.1$	(TC)5	1928	1937	EZRI_HUMAN
36	AgU000395_v1.1	(CAG)5	593	607	TISD_HUMAN
37	AgU000395_v1.1	(CGC)5	1044	1058	TISD_HUMAN
38	AgU000395_v1.1	(AAC)5	2333	2347	TISD_HUMAN
39	AgU000416_v1.1	(AC)5	2494	2503	RAB5B_PONAB
40	$AgU000523_v1.1$	(GCG)7	2676	2696	$MAPK2_HUMAN$
42	$AgU000542_v1.1$	(AG)5	662	671	ERBB3_HUMAN
43	AgU000543_v1.1	(TG)7	1250	1263	G9L1E5_MUSPF
44	AgU000568_v1.1	(CT)7	1660	1673	IL33_CANLF
45	AgU000696_v1.1	(CG)5	2544	2553	SOCS3_HUMAN
46	$AgU000706_v1.1$	(GT)15	1718	1747	PTPRJ_HUMAN
48	AgU000706_v1.1	(TA)6	1865	1876	PTPRJ_HUMAN
50	AgU000892 v1.1	(CA)6	1013	1024	SDCB1 HUMAN
52	AgU000895 v1.1	(GAT)5	1865	1879	VAMP7 HUMAN
53	AgU000982_v1.1	(CT)6	1390	1401	ERRFI HUMAN
54	AgU001017_v1.1	(TCC)5	1891	1905	MSH6_HUMAN
55	$AgU001054_v1.1$	(TC)5	964	973	SDF1 HUMAN
58	AgU001075_v1.1	(AC)6	1677	1688	SIN3A HUMAN
59	AgU001075_v1.1	(TC)6	2012	2023	SIN3A_HUMAN
60	AgU001116_v1.1	(GT)5	1753	1762	MYLK_SHEEP
	_	\ /			

Table 1: Annotated microsatellites (continued)

	Contig	Motif	Start	End	Gene ID
61	AgU001116_v1.1	(GT)5	2153	2162	MYLK_SHEEP
62	AgU001227_v1.1	(GA)6	1585	1596	UBA3_HUMAN
63	AgU001338_v1.1	(GAT)7	1822	1842	VAMP3_HUMAN
64	$AgU001432_v1.1$	(AT)8	1652	1667	FOXC1_HUMAN
65	AgU001679_v1.1	(GA)5	1766	1775	TOPRS_HUMAN
66	AgU001875_v1.1	(TA)10	1659	1678	ACKR3_CANLF
67	AgU001893_v1.1	(AG)5	504	513	PDPK1_HUMAN
69	AgU002020_v1.1	(TC)5	1366	1375	$TF65_MOUSE$
71	AgU002096_v1.1	(CTG)5	676	690	M3YA16_MUSPF
73	AgU002096_v1.1	(GA)5	1309	1318	M3YA16_MUSPF
75	AgU002160_v1.1	(AAG)6	1065	1082	PK3CB_MOUSE
76	AgU002268_v1.1	(GCG)5	1137	1151	CEBPB_HUMAN
79	AgU002404_v1.1	(GC)5	1363	1372	NFKB2_HUMAN
80	AgU002472_v1.1	(TAAA)5	539	558	ANKR1_HUMAN
81	AgU002542_v1.1	(AC)8	301	316	PAR1_HUMAN
82	AgU002562_v1.1	(AT)5	939	948	AP1AR_HUMAN
83	$AgU002579_v1.1$	(TG)5	1135	1144	AP2A1_HUMAN
85	$AgU002812_v1.1$	(CGG)9	163	189	TM131_HUMAN
86	AgU002813_v1.1	(TC)5	1011	1020	RIPK1_HUMAN
89	AgU002947_v1.1	(CT)5	1509	1518	NCK1_HUMAN
91	$AgU003069_v1.1$	(CT)5	688	697	NR4A1_BOVIN
92	AgU003233_v1.1	(AG)5	429	438	KSYK_PIG
93	AgU003302_v1.1	(GT)5	114	123	TNF13_HUMAN
94	AgU003381_v1.1	(TTC)5	131	145	OTU7B_HUMAN
96	AgU003480_v1.1	(AC)5	217	226	M3K5_HUMAN
97	AgU003551_v1.1	(GCA)5	1297	1311	CD14_BOVIN
99	AgU003600_v1.1	(AG)5	828	837	CY24B_HUMAN
102	AgU003731_v1.1	(TATT)6	1223	1246	IL1B_EUMJU
104	AgU003752_v1.1	(GA)5	687	696	DICER_HUMAN
105	AgU003880_v1.1	(AC)12	504	527	SNAI2_MOUSE
107	AgU004117_v1.1	(TA)5	1207	1216	I23O1_HUMAN
110	AgU004295_v1.1	(TC)5	1124	1133	HOIL1_HUMAN
111	~	(CTC)6	223		
112	AgU004826_v1.1	(AT)7	886	899	FBX9_HUMAN
$\frac{114}{115}$	AgU005175_v1.1 AgU005564_v1.1	(AT)7 (AG)5	$304 \\ 1082$	$317 \\ 1091$	ID2_PONAB TRIM5 ATEGE
					_
116	AgU005573_v1.1	(CCG)5	193	207	TNR1A_HUMAN
117	AgU005575_v1.1 AgU005648_v1.1	(GA)5	115	124	MEF2C_PONAB
$\frac{119}{121}$	AgU005740_v1.1 AgU005740_v1.1	(GCT)7 (GC)5	$207 \\ 248$	$\frac{227}{257}$	PVRL2_HUMAN CD34 CANLF
$121 \\ 123$	AgU006740_v1.1 AgU006059_v1.1	$(GC)_5$ $(CAT)_5$	$\frac{248}{397}$	411	PSA1 HUMAN
		, ,			_
$\frac{127}{128}$	AgU006102_v1.1 AgU006175 v1.1	(GT)5 (GA)6	$807 \\ 227$	$816 \\ 238$	SEM3C_PONAB F6PLB9_CANLF
131	AgU006223 v1.1	(GA)0 (TA) 5	507	516	MP2K3 HUMAN
131	AgU006292 v1.1	(AT)8	503	518	NPTN MOUSE
132	AgU006300_v1.1	(CG)5	544	553	TRPM4 HUMAN
100		(00)0	911	555	2201 101111 () 1011 111 1

Table 1: Annotated microsatellites (continued)

	Contig	Motif	Start	End	Gene ID
135	AgU006317_v1.1	(TA)9	797	814	CXL10_CANLF
138	AgU006325_v1.1	(TA)5	102	111	NPC1_HUMAN
139	AgU006325_v1.1	(CA)5	539	548	NPC1_HUMAN
140	AgU006358_v1.1	(GA)5	215	224	PTMS_HUMAN
141	AgU006358_v1.1	(GGC)5	900	914	PTMS_HUMAN
142	AgU006421_v1.1	(AG)8	311	326	CLC2D_HUMAN
143	AgU007141_v1.1	(GCT)5	341	355	ROBO4_HUMAN
144	AgU007556_v1.1	(AG)6	107	118	BST2_HUMAN
146	AgU007808_v1.1	(TC)5	678	687	AKIP1_HUMAN
147	AgU007843_v1.1	(CA)5	332	341	SMAD3_RAT
150	AgU007845_v1.1	(CATT)6	463	486	TNR12_HUMAN
151	AgU008174_v1.1	(CCT)5	147	161	CD2B2_MOUSE
152	AgU008391_v1.1	(CA)20	338	377	TNR1A_HUMAN
153	AgU009399_v1.1	(CA)5	665	674	UFO_MOUSE
156	AgU009504_v1.1	(TGC)5	440	454	EP300_HUMAN
159	AgU009791_v1.1	(AT)5	127	136	Q7Z5E4_HUMAN
160	AgU010008_v1.1	(CA)8	318	333	STA5A_HUMAN
162	AgU010547_v1.1	(AT)6	455	466	WASL_MOUSE
163	AgU010559_v1.1	(AT)6	250	261	CCL20_BOVIN
167	AgU010620_v1.1	(TG)5	309	318	AACS_RAT
168	AgU011733_v1.1	(CA)5	418	427	UB2L6_HUMAN
169	AgU011784_v1.1	(GC)5	419	428	ZN580_MOUSE
170	AgU013299_v1.1	(AC)5	546	555	RN125_MACFA
171	AgU013484_v1.1	(TC)5	389	398	DYHC1_HUMAN
173	AgU013617_v1.1	(TC)5	295	304	MARH7_HUMAN
174	AgU013753_v1.1	(TTC)5	484	498	MYH10_MOUSE
175	AgU013922_v1.1	(GT)5	310	319	ICAM3_PANTR
176	AgU014161_v1.1	(CT)5	304	313	CSPG2_BOVIN
177	AgU014501_v1.1	(GA)5	300	309	NKAP_HUMAN
178	AgU014501_v1.1	(AGA)6	445	462	NKAP_HUMAN
179	AgU032052_v1.1	(AT)6	1875	1886	SKAP2_HUMAN
180	AgU032202_v1.1	(AG)5	799	808	LEG3_CANLF
181	AgU032055_v1.1	(TA)5	524	533	TXNIP_HUMAN
182	AgU032268_v1.1	(AC)21	553	594	CD59_PIG
183	AgU025816_v1.1	(GGA)6	126	143	HS90A_HUMAN
185	AgU032568_v1.1	(CCT)6	365	382	KIF3B_HUMAN
187	AgU032760_v1.1	(AGA)6	122	139	CHD7_HUMAN
188	4741325_length_871_cvg_4.5_tip_1	(CA)5	760	769	GCSAM_HUMAN
189	4744327_length_942_cvg_8.2_tip_1	(AG)5	120	129	IFIH1_HUMAN
190	4744731_length_953_cvg_17.8_tip_0	(GA)6	219	230	CD20_CANLF
192	4744731_length_953_cvg_17.8_tip_0	(TTC)5	466	480	CD20_CANLF
194	4746463_length_1006_cvg_3.8_tip_1	(GGC)6	102	119	EGR2_PIG
195	4750219_length_1140_cvg_4.7_tip_1	(CT)5	568	577	SNAI1_HUMAN
196	4750387_length_1146_cvg_5.5_tip_1	(AAG)5	530	544	DAB2P_HUMAN
198	4750419_length_1148_cvg_8.7_tip_1	(CA)5	901	910	GAB2_HUMAN
200	4750933_length_1171_cvg_8.8_tip_1	(TC)5	945	954	DYH7_HUMAN

Table 1: Annotated microsatellites (continued)

	Contig	Motif	Start	End	Gene ID
201	4751237_length_1187_cvg_6.3_tip_1	(GA)5	192	201	SRC_HUMAN
204	4751391_length_1195_cvg_12.9_tip_0	(TC)5	704	713	$MEFV_MOUSE$
206	4753675_length_1332_cvg_9.9_tip_1	(TC)6	418	429	E2AK3_HUMAN
207	$4754597_length_1401_cvg_5.7_tip_1$	(GA)5	477	486	MYOM1_MOUSE
208	4755571_length_1487_cvg_10.6_tip_1	(AG)5	1029	1038	AGRA3_HUMAN
209	4756187_length_1545_cvg_8.7_tip_1	(CA)7	319	332	TNR9_HUMAN

Designing primers

For all of the 137 we developed oligonucleotide primers using the primer design tool primer3. In order to use the command line interface, the list of microsatellites should be re-formatted accordingly.

```
## list of microsatellites
data <- read.csv(file = "data/immune_microsats_raw.csv", sep = ';')[,1:7]</pre>
names(data) <- c('ID', 'SSR nr.', 'SSR type', 'SSR', 'size', 'start', 'end')</pre>
data[["ID"]] <- as.character(data[["ID"]])</pre>
for (i in 1:nrow(data)) {
  if ((nchar(data[["ID"]][i]) > 20)) {
    data[["ID"]][i] <-
      paste0(strsplit(data[["ID"]][[i]],split = "_")[[1]][1]," ",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][2]," ",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][3]," ",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][4],"_",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][5],"_",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][6],"_",
             strsplit(data[["ID"]][[i]],split = "_")[[1]][7])
 }
}
write.table(row.names = FALSE, quote = FALSE, x = data,
            sep = "\t",file = 'data/arc_gaz_transcriptome.fasta.misa2')
```

Invoke primer 3 for primer design

```
perl p3_in_fur_seal.pl arc_gaz_transcriptome.fasta.misa2
primer3_core <arc_gaz_transcriptome.fasta.p3in> arc_gaz_transcriptome.fasta.p3out
```

Overview of initially tested microsatellites

The table below summarises the results of testing 96 primers on 12 Antarctic fur seal individuals. See the manuscript for further details.

Table 2: Overview microsatellite testing. Primers used in the present study are named Agi01-Agi11 $\,$

Contig	Gene ID	Motif	Marker ID	Forward primer 5'-3'	Reverse primer 5'-3'	PCR result
AgU000073 AgU000395 AgU000568 AgU000706 AgU000982	TGFR2_HUMAN TISD_HUMAN IL33_CANLF PTPRJ_HUMAN ERRFI_HUMAN	(TA)6 (AAC)5 (CT)7 (GT)15 (CT)6	NA Agi03 NA Agi01 NA	GAAGCATTCTAGGCCTTTGACA GCCTTGATTGTAGTCCTCAGC GAGCCTGCTTCTCCCTCTG GGTTGGCATTTTATGTGTGTCC CAGACTTTTCTCCAACGCCA	GAGCTCTCCAAACAAACCAATT GAACTAAGCTCTGCCCAAGG TCCCTGAAGCATAGTGTCAGA TGCAGAGAGACTAAAGCCAGT TGAAGCGCAAACATCTGTCC	Monomorph Polymorph Failed Polymorph Monomorph
AgU001227 AgU001338 AgU001875 AgU003551 AgU004366	UBA3_HUMAN VAMP3_HUMAN ACKR3_CANLF CD14_BOVIN RAGE_BOVIN	(GA)6 (GAT)7 (TA)10 (GCA)5 (CTC)6	NA NA NA NA Agi09	TGGGGTTGGTACTTGTAAGCA CTGGGGCTACACTGGTTCTT GGCTAGTTGGATTTCAGTTTTGA CAGAAGCAGCGGAAATCCTC GGGGCTGATAGATGGGGTC	TGGGTGCTCACATGAAAACTG GGAGTTAGACGATCGTGCAG CTGTTCCATATCCCATGCCG ACGTGTGTGGAGCCTAGAAA GAACTGTAGCCCTGGTCCTG	Monomorph Monomorph Monomorph Monomorph Polymorph
AgU006292 AgU006421 AgU007843 AgU007845 AgU008391	NPTN_MOUSE CLC2D_HUMAN SMAD3_RAT TNR12_HUMAN TNR1A_HUMAN	(AT)8 (AG)8 (CA)5 (CATT)6 (CA)20	NA NA NA NA	CTGCTGCCGTCTAGTGATGA GCCAACTATATACAAAGGGCGT ACGGAGAAGTGGGAATAACAGA ATCCAGTGACAGTGAGAGCC CCCTATCTCTGCAGCCACAA	ACCAGAACTGCACGATTTCC GCTTAACCAACTGAGCCACC CACTGATGTCTTGTTGGGCA GCCTTGGAGAGCTGATTCAC ATGCCCTTCGGACCCTTTT	Monomorph Failed Monomorph Monomorph Monomorph
AgU013617 AgU014501 AgU032055 AgU032268 AgU025816	MARH7_HUMAN NKAP_HUMAN TXNIP_HUMAN CD59_PIG HS90A_HUMAN	(TC)5 (GA)5 (TA)5 (AC)21 (GGA)6	NA NA NA NA	TGGTCTTGCTCCCTGTGAAT TCTGACGAACACACACCAGT TGATAGCAGCAACCCTTCTCA CTGCCAGACACCAGCTAGTT GAAGAGAAAGGAGCCCGATGA	GTTCCCAGATCTTCATCAATGGT TCATCGCTGGAGTCTGAGTC TCATGTGACTCCTTTGGAATGG ATCCTCTCCCTTTATGGCCC TGCCAAGTGATCTTCCCAGT	Failed Monomorph Monomorph Failed Failed
AgU003233 AgU003480 AgU005564 AgU006175 AgU006300	KSYK_PIG M3K5_HUMAN TRIM5_ATEGE F6PLB9_CANLF TRPM4_HUMAN	(AG)5 (AC)5 (AG)5 (GA)6 (CG)5	NA NA NA Agi02 NA	GTCATGTCCCGCACGAGG CTGCTTCTCGGATTCTGCAC GAAAGAGAGCAGCATGACGG GGACTCCTTCAAGTTCGAATTTG AACGCTGTGTCCACCTTTTG	GCTGCGCAACTACTACTACG CTGTTGCACTTCGGCCAAAT AAGACACTCAGGGGCACATG GAACACATCAGCTTGCCCTG GCTCCGCCCCTTATCATCAT	Monomorph Monomorph Monomorph Polymorph Monomorph
AgU007556 AgU009399 AgU013299 AgU032202 4744327 4750387	BST2_HUMAN UFO_MOUSE RN125_MACFA LEG3_CANLF IFIH1_HUMAN DAB2P_HUMAN	(AG)6 (CA)5 (AC)5 (AG)5 (AG)5 (AG)5	NA NA NA Agi04 NA	ACAGATGTTCTTCCCCTTAGAGA CCACTTGACTGGCATCTTGG AACGGCAAAGTGGACAGAAC TGCTTTCCACTTTAACCCGC CTTTTAGCCACAGGTCAGCC GGGAGCACTTTGAGTTCCAC	GTGCCTCCATTGGTTAAGCG ATGCTGGTGAAGTTCATGGC GCGAAATGAGGGCACACATA CAGGTCATGATCCCAGGGTC ACTTCCCATGGTGCCTGAAT ATGGTGATGGTCTGGTAGCG	Monomorph Failed Failed Polymorph Failed Monomorph

Table 2: Overview microsatellite testing. Primers used in the present study are named Agi01-Agi11 (continued)

Contig	Gene ID	Motif	Marker ID	Forward primer 5'-3'	Reverse primer 5'-3'	PCR result
4751391	MEFV_MOUSE	(TC)5	NA	GGCTGCTGAGTCTGGATGAT GCCATGTTAAAAGGTCCAGCA TCCTCTTCTTCCTCCTCTTCC AGGCTCGACTTGACATGGAA	AGTCCTAGTGTCACGCTACG	Monomorph
AgU000074	CD302_PIG	(AC)8	NA		GTGGATGATCTGTGAACAAGTGT	Monomorph
AgU000254	CD44_CANLF	(TC)13	Agi05		AGAAGTCCCATTGGTCCTGG	Polymorph
AgU000523	MAPK2_HUMAN	(GCG)7	NA		CATGCTGTCCAACTCCCAAG	Monomorph
AgU000543	G9L1E5_MUSPF	(TG)7	NA	GTCCCCAGCACAACTCTTCT TACATACATCCCCGTGAGCC TTCTACACCGCACTGCAAAC AGGGTGGTCGAAGTCTTTGT TCTTCACTCCGGCTCCAAAT	TCAGGAAAGAACGCCAAAGC	Monomorph
AgU001432	FOXC1_HUMAN	(AT)8	Agi07		ATCCCTTTCCAACCCACAGT	Polymorph
AgU002542	PAR1_HUMAN	(AC)8	NA		ACGACAAGTCTGATTTGCATGT	Monomorph
AgU002812	TM131_HUMAN	(CGG)9	NA		CAAGCAGAGCCAGCACAG	Failed
AgU003880	SNAI2_MOUSE	(AC)12	Agi06		TCCTCTCAATCTAGCTGTCAGT	Polymorph
AgU004826	FBX9_HUMAN	(AT)7	NA	GGCTTCACATCCAGTCCTCT	CCCTCCCCTGAAGCAAGTAA	Monomorph
AgU005175	ID2_PONAB	(AT)7	Agi08	CAGAAATACACATCTCTGCCACT	TTTCAAAGGTGGAGCGTGAA	Polymorph
AgU005648	PVRL2_HUMAN	(GCT)7	NA	GAGTAGAGCGGGCGGGAA	CACTCGGACTTGCACATCCT	Monomorph
AgU010008	STA5A_HUMAN	(CA)8	NA	GATCTGGAGAGCAAGCTGGT	AGGCTCGCTCTCATGAATGT	Monomorph
4756187	TNR9_HUMAN	(CA)7	NA	TCCGAACCAATGGAAAGTTTGT	CTTGTGGGAAAGGGGCATTT	Failed
4744731 4746463 4753675 AgU001075 AgU007141	CD20_CANLF EGR2_PIG E2AK3_HUMAN SIN3A_HUMAN ROBO4_HUMAN	(GA)6 (GGC)6 (TC)6 (TC)6 (GCT)5	NA NA NA NA NA	TGACATGTTTTGCCTGCAGT GGCAGGTGGTGTGGGTTATA TGAGCCCTTTACTGTGCAGA TCCTTCCTTTCTGTCTTTCTTGT TCCACGCCTAGCCTGCTG	GTGTTCATAGCTTCCAAGAGACA CTCCACTCACTCCACTC	Failed Monomorph Failed Monomorph Failed
AgU009791 AgU010559 AgU010620 AgU014161 AgU032568	Q7Z5E4_HUMAN CCL20_BOVIN AACS_RAT CSPG2_BOVIN KIF3B_HUMAN	(AT)5 (AT)6 (TG)5 (CT)5 (CCT)6	NA NA NA NA	CACAGGTAGAGAGCAAACAAGG AGCAAACACAGACACACA TTCCCCATGTTCTTCCCGG CGAATGCTTTAGATGGTCTGGG CCTTCCTCCTCACCCTCTTC	TTGCAGCTGGTTTTCGAGTT ATGGAATTGGACAGAGCCCA AAGGCAAGATCGCTCCTCAG GTGCCAGCTACCTCCTTTCT AAGCCAAGGGTCAATGAGGA	Monomorph Failed Monomorph Monomorph Monomorph
AgU000053 AgU000087 AgU000160 AgU000892 AgU002160	AKAP9_HUMAN ITAV_BOVIN EMP2_BOVIN SDCB1_HUMAN PK3CB_MOUSE	(AG)6 (ATT)6 (TC)6 (CA)6 (AAG)6	NA NA NA NA	TTTTACACAGACGTTTTGCAATG TGAGAAACATTTGTGCGAGGG TCCGAATGCCAGCCTTCATA CGTGTTTTATAGGCGCGCA AGGTGTGGATAAGTTGGCTGA	CTGCTGTCCCTGAATCTTACT TCAAAAGTCTTTCACAGCCCTC CGGCCTCATGTACCTGATCT CTGTGTTAGAACCAGTCACCT TGAACAATCCCCGATGACCA	Monomorph Monomorph Monomorph Monomorph
AgU003731	IL1B_EUMJU	(TATT)6	NA	TCTACTTACTCGGAGCCAGC	GATGCTTCTTGGCCCTCTTG	Monomorph
AgU010547	WASL_MOUSE	(AT)6	NA	TGCACACAATAACAGGGAGT	GGATGATGAATGGGAAGACT	Failed

Table 2: Overview microsatellite testing. Primers used in the present study are named Agi01-Agi11 (continued)

Contig	Gene ID	Motif	Marker ID	Forward primer 5'-3'	Reverse primer 5'-3'	PCR result
AgU032052 AgU032760 AgU000033	SKAP2_HUMAN CHD7_HUMAN RORA_MOUSE	(AT)6 (AGA)6 (AAT)5	NA NA NA	TGCTGACGAGGTATCTGTGG GCCCAGCTAGTGAAGAGTGA AGCTTACCAGGAAGCAAAGT	TCAGTACGTTCACAGCTAGAATC GGTTCTTTCGGTTCCTTCGG TGCTAGCGTGTTCACTGTTG	Monomorph Monomorph Monomorph
AgU000376 AgU000895 AgU001017 AgU002096 AgU002268	EGR1_HUMAN VAMP7_HUMAN MSH6_HUMAN M3YA16_MUSPF CEBPB_HUMAN	(CAG)5 (GAT)5 (TCC)5 (CTG)5 (GCG)5	NA NA Agi11 NA NA	TGGAAGAGATGATGCTGCTGA TTCACACACTTTTGGCCATGT TGTCTCATGAGCGTGGACTT GTGGATGAAGACCGGACTGA TCCTCCTTCCGCTTGCAG	TCAGGAAAAGACTCTGCGGT TCAGCGAGGAGAAAGATTGGA GCCCTATGTGTCGTCCAGTA AGACAACCTGACTGCCTTCA ACCTCTTCTCCGACGACTAC	Monomorph Failed Polymorph Monomorph Failed
AgU002472 AgU003302 AgU005573 AgU006059 AgU006358	ANKR1_HUMAN TNF13_HUMAN TNR1A_HUMAN PSA1_HUMAN PTMS_HUMAN	(TAAA)5 (GT)5 (CCG)5 (CAT)5 (GA)5	NA NA NA NA NA	TGAATACCAGTGGCATCGAAG CCCTTCCAGCTCTTCAGTGA GATCTTCACCCCGGTCTCC TGTGCCTTTCTCTGTGGTCT GCCTTCTCCTCCACCTTCTC	CCAGCTCCTATCCACCTGTT GCAAGCGGAAAGAGAAGTCA ACCAGTGCCGTAACCCTTAA TTAAACATGGTCTGCGTGCC TCTTCCAGAGACCCAGCTTG	Monomorph Monomorph Failed Monomorph Failed
AgU008174 AgU009504 AgU013753 AgU000001 AgU002562	CD2B2_MOUSE EP300_HUMAN MYH10_MOUSE VWF_CANLF AP1AR_HUMAN	(CCT)5 (TGC)5 (TTC)5 (CA)5 (AT)5	NA NA NA NA	CCCAGAGAGCCGATCCAAG GGAACTGGTTATGGTTGGCC TCCAAGTCCTGAATATGCGC GGGATTGGTCAGGGTCATCT AGTGGCTGCATGTAAAAGGA	GGGTGAAGATTAGGGAGCGA TGCCGAACATGAACCCCA CGAGCTGGAAGAGATGGAGA GGGCGGAAGGTCAATTGTAC GCACAATTGAGTAGATGACCCT	Monomorph Monomorph Failed Monomorph Monomorph
AgU000123 AgU000356 AgU000367 AgU000376 AgU000416	NCKP1_HUMAN IL3RB_HUMAN PSA_HUMAN EGR1_HUMAN RAB5B_PONAB	(CT)5 (GA)5 (AC)5 (CCT)5 (AC)5	NA NA NA NA	GCTTCATTTTGTGCCATGGG AATGTGCGTGTGTCTGTGTC AAAGGCAGGGTTTTAGCAGC TTTCTGCTCGTAGTCCTGCA GACTCTGAAGGACCCAGCTT	GTGACACAGCTGCCTCTTTG ACATGAGTGGGAGGAGGTCT TCGGAAACCATACCCTGATGA AGCTCTGCATGGGGAATCAT TGGGGAAAGATGCACAGAGA	Monomorph Monomorph Failed Failed Monomorph
AgU000542 AgU001054 AgU001116 AgU001679 AgU001893	ERBB3_HUMAN SDF1_HUMAN MYLK_SHEEP TOPRS_HUMAN PDPK1_HUMAN	(AG)5 (TC)5 (GT)5 (GA)5 (AG)5	NA NA NA NA	ACTAGCCAACGAGTTCACCA CCCCTCATCCTCAGCTCTTC ATGTGCATCAGTCAGGCCTT ACGAGATCTTGATCTGCTGGT TCAAAGAGAACAAGGTCCCGT	CATCCTCCTCTGCCTCCAAG CGCAGGATTGGACAACAGAC CCTGCACTTTACAAACAGTGGA CAGATTCCCGTTCCCAGAGT ACTCCAGAGCTGACACCATC	Monomorph Monomorph Monomorph Monomorph Failed
AgU002020 AgU002404 AgU002579	TF65_MOUSE NFKB2_HUMAN AP2A1_HUMAN	(TC)5 (GC)5 (TG)5	Agi10 NA NA	CTTTGGGTAATGTCTTCTGGGG GCAGGTGATTGGTGAGGTTG CCATCCAGGGGCTGTGTATT	GAAGCTGGAGGGTAGGGATG GTACAATGCGCGCCTGTT CTGCTACCTGGTGTCCGG	Polymorph Failed Monomorph

Table 2: Overview microsatellite testing. Primers used in the present study are named Agi01-Agi11 (continued)

Contig	Gene ID	Motif	Marker ID	Forward primer 5'-3'	Reverse primer 5'-3'	PCR result
AgU002813 AgU002947	RIPK1_HUMAN NCK1_HUMAN	(TC)5 (CT)5	NA NA	TGAATGTCATTGCGGAAGGT TGTCCATTGTAGCTACCCCG	CTGATACACGTTCTCTGTCTGC AGTGTGCCAGATTCTGCATC	Monomorph Failed
AgU003069	NR4A1_BOVIN	(CT)5	NA	${\tt TCAAGGTGTGGAGAAGTGGG}$	TTCTCACCCAGCCAGACGTA	Monomorph

```
setting value
   version R version 3.5.3 (2019-03-11)
##
##
            Windows 10 x64
   OS
##
   system
            x86 64, mingw32
##
   ui
            RTerm
##
   language (EN)
##
   collate English_United Kingdom.1252
##
            English_United Kingdom.1252
   ctype
##
   tz
            Europe/Berlin
##
   date
            2019-05-13
##
   - Packages -----
                   ______
##
   ! package
                 * version date
                                       lib source
                            2018-08-31 [1] CRAN (R 3.5.1)
##
      ade4
                 * 1.7-13
##
      adegenet
                 * 2.1.1
                            2018-02-02 [1] CRAN (R 3.5.1)
##
      AICcmodavg * 2.2-1
                            2019-03-08 [1] CRAN (R 3.5.3)
##
                            2019-03-17 [1] CRAN (R 3.5.3)
                   5.3
      ape
##
      assertthat
                   0.2.0
                            2017-04-11 [1] CRAN (R 3.5.1)
##
                            2017-08-06 [2] CRAN (R 3.5.3)
     boot
                   1.3-20
##
                   1.1.0
                            2016-07-27 [1] CRAN (R 3.5.1)
      cellranger
##
      class
                   7.3 - 15
                            2019-01-01 [2] CRAN (R 3.5.3)
##
      classInt
                   0.3 - 1
                            2018-12-18 [1] CRAN (R 3.5.3)
##
      cli
                   1.0.1
                            2018-09-25 [1] CRAN (R 3.5.1)
                            2018-04-13 [2] CRAN (R 3.5.3)
##
      cluster
                   2.0.7-1
##
      coda
                   0.19 - 2
                            2018-10-08 [1] CRAN (R 3.5.1)
##
                   0.2-16
                            2018-12-24 [2] CRAN (R 3.5.3)
      codetools
##
      colorspace
                   1.4-0
                            2019-01-13 [1] CRAN (R 3.5.3)
                            2017-09-16 [1] CRAN (R 3.5.1)
##
                   1.3.4
      crayon
##
      data.table
                   1.12.0
                            2019-01-13 [1] CRAN (R 3.5.3)
##
     DBI
                   1.0.0
                            2018-05-02 [1] CRAN (R 3.5.1)
                   0.1-16
                            2019-01-04 [1] CRAN (R 3.5.2)
##
     deldir
##
                   0.6.18
                            2018-10-10 [1] CRAN (R 3.5.1)
     digest
                   0.8.0.1
                            2019-02-15 [1] CRAN (R 3.5.3)
##
     dplyr
##
     e1071
                   1.7-0.1
                            2019-01-21 [1] CRAN (R 3.5.3)
                            2019-02-12 [1] CRAN (R 3.5.3)
##
      evaluate
                   0.13
##
                   0.999-3
                            2018-09-22 [1] CRAN (R 3.5.1)
      expm
##
     fansi
                   0.4.0
                            2018-10-05 [1] CRAN (R 3.5.1)
##
     gdata
                   2.18.0
                            2017-06-06 [1] CRAN (R 3.5.0)
##
                 * 3.1.0
                            2018-10-25 [1] CRAN (R 3.5.1)
     ggplot2
##
     glue
                   1.3.1
                            2019-03-12 [1] CRAN (R 3.5.3)
##
     gmodels
                   2.18.1
                            2018-06-25 [1] CRAN (R 3.5.1)
##
     gridExtra
                 * 2.3
                            2017-09-09 [1] CRAN (R 3.5.1)
                            2016-02-26 [1] CRAN (R 3.5.1)
##
                   0.2.0
     gtable
##
     gtools
                   3.8.1
                            2018-06-26 [1] CRAN (R 3.5.0)
##
                   0.4.2
                            2018-03-10 [1] CRAN (R 3.5.1)
     hms
##
                   0.3.6
                            2017-04-28 [1] CRAN (R 3.5.1)
     htmltools
##
                            2019-03-15 [1] CRAN (R 3.5.3)
     httpuv
                   1.5.0
##
     httr
                   1.4.0
                            2018-12-11 [1] CRAN (R 3.5.3)
##
                   1.2.4
                            2019-02-13 [1] CRAN (R 3.5.3)
      igraph
##
                            2016-09-09 [1] CRAN (R 3.5.1)
      inbreedR
                 * 0.3.2
                            2018-05-21 [1] CRAN (R 3.5.1)
##
     kableExtra * 0.9.0
```

```
2019-03-08 [1] CRAN (R 3.5.3)
##
      knitr
                     1.22
##
                     0.3
                               2014-08-23 [1] CRAN (R 3.5.0)
      labeling
##
      later
                     0.8.0
                               2019-02-11 [1] CRAN (R 3.5.3)
                              2018-11-04 [2] CRAN (R 3.5.3)
##
      lattice
                     0.20-38
##
      lazyeval
                     0.2.2
                               2019-03-15 [1] CRAN (R 3.5.3)
##
      LearnBayes
                     2.15.1
                               2018-03-18 [1] CRAN (R 3.5.0)
##
                               2019-03-05 [1] CRAN (R 3.5.3)
      lme4
                   * 1.1-21
##
                               2014-11-22 [1] CRAN (R 3.5.1)
      magrittr
                   * 1.5
##
      MASS
                     7.3-51.1 2018-11-01 [2] CRAN (R 3.5.3)
##
                               2018-11-01 [2] CRAN (R 3.5.3)
      Matrix
                   * 1.2-15
##
                     1.8-27
                               2019-02-06 [2] CRAN (R 3.5.3)
      mgcv
##
                     0.6
                               2018-10-05 [1] CRAN (R 3.5.1)
      mime
##
                     1.2.4
                               2014-10-09 [1] CRAN (R 3.5.1)
      minqa
##
      munsell
                     0.5.0
                               2018-06-12 [1] CRAN (R 3.5.1)
##
                     3.1-137
                              2018-04-07 [2] CRAN (R 3.5.3)
      nlme
##
      nloptr
                     1.2.1
                               2018-10-03 [1] CRAN (R 3.5.1)
##
                               2019-03-12 [1] CRAN (R 3.5.3)
      permute
                     0.9 - 5
##
      pillar
                     1.3.1
                               2018-12-15 [1] CRAN (R 3.5.3)
##
                               2018-08-16 [1] CRAN (R 3.5.1)
      pkgconfig
                     2.0.2
##
      plyr
                     1.8.4
                               2016-06-08 [1] CRAN (R 3.5.1)
##
      promises
                     1.0.1
                               2018-04-13 [1] CRAN (R 3.5.1)
##
                     0.3.2
                               2019-03-15 [1] CRAN (R 3.5.3)
      purrr
##
                   * 2.12.0
                               2018-05-01 [1] Bioconductor
      qvalue
##
                               2019-02-14 [1] CRAN (R 3.5.3)
      R.6
                     2.4.0
##
                               2019-01-30 [1] CRAN (R 3.5.3)
      raster
                     2.8 - 19
##
      Rcpp
                     1.0.1
                               2019-03-17 [1] CRAN (R 3.5.3)
##
                     1.3.1
                               2018-12-21 [1] CRAN (R 3.5.3)
      readr
                               2019-03-13 [1] CRAN (R 3.5.3)
##
      readxl
                   * 1.3.1
##
                   * 1.4.3
                               2017-12-11 [1] CRAN (R 3.5.1)
      reshape2
##
                     0.3.1
                               2019-01-08 [1] CRAN (R 3.5.3)
      rlang
##
      rmarkdown
                     1.12
                               2019-03-14 [1] CRAN (R 3.5.3)
##
      rstudioapi
                     0.9.0
                               2019-01-09 [1] CRAN (R 3.5.3)
##
      rvest
                     0.3.2
                               2016-06-17 [1] CRAN (R 3.5.1)
                               2018-08-09 [1] CRAN (R 3.5.1)
##
                     1.0.0
      scales
##
                     3.4 - 5
                               2017-08-01 [1] CRAN (R 3.5.1)
      seginr
##
                               2018-11-05 [1] CRAN (R 3.5.1)
      sessioninfo
                     1.1.1
##
      sf
                     0.7 - 3
                               2019-02-21 [1] CRAN (R 3.5.3)
##
                     1.2.0
                               2018-11-02 [1] CRAN (R 3.5.1)
      shiny
##
                     1.3-1
                               2018-06-05 [1] CRAN (R 3.5.1)
      sp
##
                               2019-01-07 [1] CRAN (R 3.5.3)
      spData
                     0.3.0
##
                               2019-02-13 [1] CRAN (R 3.5.3)
      spdep
                     1.0 - 2
                               2019-03-12 [1] CRAN (R 3.5.3)
##
      stringi
                     1.4.3
                               2019-02-10 [1] CRAN (R 3.5.3)
##
      stringr
                     1.4.0
##
    R survival
                     2.43 - 3
                               <NA>
                                           [2] <NA>
                               2019-03-16 [1] CRAN (R 3.5.3)
##
      tibble
                     2.1.1
                     0.2.5
##
                               2018-10-11 [1] CRAN (R 3.5.1)
      tidyselect
##
      units
                     0.6 - 2
                               2018-12-05 [1] CRAN (R 3.5.1)
##
                               2019-02-05 [1] CRAN (R 3.5.3)
      unmarked
                     0.12 - 3
##
      utf8
                     1.1.4
                               2018-05-24 [1] CRAN (R 3.5.1)
##
      vegan
                     2.5 - 4
                               2019-02-04 [1] CRAN (R 3.5.3)
##
      VGAM
                               2019-02-18 [1] CRAN (R 3.5.3)
                     1.1-1
##
      viridisLite
                     0.3.0
                               2018-02-01 [1] CRAN (R 3.5.1)
##
      withr
                     2.1.2
                               2018-03-15 [1] CRAN (R 3.5.1)
                               2019-02-20 [1] CRAN (R 3.5.3)
##
      xfun
                     0.5
```

```
2018-01-24 [1] CRAN (R 3.5.1)
##
      xm12
                   1.2.0
##
     xtable
                   1.8-3
                            2018-08-29 [1] CRAN (R 3.5.1)
                   2.2.0
                            2018-07-25 [1] CRAN (R 3.5.1)
      yaml
##
##
## [1] C:/Users/MOMO/Documents/R/win-library/3.5
## [2] C:/Program Files/R/R-3.5.3/library
## R -- Package was removed from disk.
```