

ARMY RESEARCH LABORATORY

Characterization of Candidate Materials for Composite Cartridge Case

**by Aristedes Yiournas, Brian M. Powers,
Travis A. Bogetti, and William H. Drysdale**

ARL-TR-3341

September 2004

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-3341

September 2004

Characterization of Candidate Materials for Composite Cartridge Case

**Aristedes Yiournas, Brian M. Powers,
Travis A. Bogetti, and William H. Drysdale
Weapons and Materials Research Directorate, ARL**

REPORT DOCUMENTATION PAGE				<i>Form Approved OMB No. 0704-0188</i>
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.				
1. REPORT DATE (DD-MM-YYYY) September 2004	2. REPORT TYPE Final		3. DATES COVERED (From - To) October 2002	
4. TITLE AND SUBTITLE Characterization of Candidate Materials for Composite Cartridge Case			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Aristedes Yiournas, Brian M. Powers, Travis A. Bogetti, and William H. Drysdale			5d. PROJECT NUMBER 622618.AH80	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRD-ARL-WM-MB Aberdeen Proving Ground, MD 21005-5069			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-3341	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT Cased telescoped ammunition designs were developed for the Multi-Role Armament and Ammunition System that employed a composite cartridge case. Three candidate composite material systems are being considered for the application—50% chopped fiberglass/Nylon 12, 30% chopped fiberglass/ULTEM (a registered trademark of GE Plastics Corp.), and a continuous fiberglass/urethane. Each of these material systems was subjected to preliminary mechanical testing in order to characterize their basic material properties and to support finite-element modeling of the cartridge case/gun chamber during the firing cycle. Basic mechanical properties such as stress-strain curves, Poisson's ratio, and residual plastic deformation after unloading were obtained and are presented in this report.				
15. SUBJECT TERMS composite materials, cartridge case, characterization				
16. SECURITY CLASSIFICATION OF: UNCLASSIFIED		17. LIMITATION OF ABSTRACT UL	18. NUMBER OF PAGES 40	19a. NAME OF RESPONSIBLE PERSON Aristedes Yiournas
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED			c. THIS PAGE UNCLASSIFIED

Contents

List of Figures	iv
List of Tables	iv
Acknowledgments	v
1. Introduction	1
2. Sample Materials and Test Preparation	2
3. Test Results	3
3.1 The 50% Fiberglass/Nylon	3
3.2 The 30% Fiberglass/ULTEM	7
3.2.1 Extruded Fiberglass/ULTEM	8
3.2.2 Injection-Molded Fiberglass/ULTEM	8
3.3 Fiberglass/Urethane.....	10
3.3.1 $[0^\circ]_5$ Fiberglass/Urethane	10
3.3.2 $[90^\circ]_{10}$ Fiberglass/Urethane	10
3.3.3 $[\pm 45^\circ]_5$ Fiberglass/Urethane	12
3.3.4 $[0^\circ/90^\circ]_5$ Fiberglass/Urethane	14
4. Conclusions	16
Distribution List	17

List of Figures

Figure 1. Illustration of tensile specimen sectioning from sample tubes and radial coordinate system with respect to tube arc.....	2
Figure 2. Illustration of tensile specimen sectioning from sample tubes and radial coordinate system with respect to tube arc.....	5
Figure 3. Examples of Poisson's ratio behavior of Nylon 12 material.....	6
Figure 4. Example of load/unload of Nylon 12 material for residual strain characteristics.....	6
Figure 5. Micrograph of Nylon 12 material where alignment can be seen near tube inner wall in longitudinal direction. View is looking into the "theta" direction.....	7
Figure 6. Representative example of extruded/machined ULTEM series results.....	8
Figure 7. Summary of injection molded ULTEM series results.....	9
Figure 8. Summary of Poisson's ratio behavior of both ULTEM series.....	9
Figure 9. Summary of $[0^\circ]_5$ urethane response obtained prior to end tab debond.....	10
Figure 10. Poisson's ratio behavior of $[0^\circ]_5$ urethane series specimens.....	11
Figure 11. Initial portion of $[90^\circ]^{10}$ urethane response. Strains exceeded gage capabilities, while loads remained low until failure.....	11
Figure 12. Example of Poisson's ratio behavior of a $[90^\circ]_{10}$ urethane specimen. Strain gage measured lateral contraction on outer ply face, which was resisted by the alignment of the fibers in this direction. Through-thickness behavior is not represented and may differ significantly.....	12
Figure 13. Tensile response of a $[\pm 45^\circ]_{10}$ coupon.....	13
Figure 14. Reduction of $[\pm 45^\circ]_{10}$ tensile data into shear coordinate system.....	13
Figure 15. Apparent Poisson's ratio behavior on outer ply face of a $[\pm 45^\circ]_{10}$ specimen.....	14
Figure 16. Stress-strain data reduced from $[0^\circ/90^\circ]_{10}$ tests. Odd failure region results from strain gage being mounted on outer 0° ply, which failed prior to catastrophic specimen failure. This ply partially relaxed before specimens went on to a slightly higher load.....	15
Figure 17. Observed Poisson's ratio behavior on outer 0° ply of $[0^\circ/90^\circ]_{10}$ samples.....	15

List of Tables

Table 1. Summary of tensile test configurations.....	4
Table 2. Summary of tensile test results.....	4
Table 3. Summary of residual strain after loading/elastic recovery.....	5

Acknowledgments

This research was supported in part by an appointment to the Research Participation Program at the U.S. Army Research Laboratory (ARL) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ARL.

INTENTIONALLY LEFT BLANK.

1. Introduction

A cartridge case contains the propellant and ignition system necessary to launch a projectile from a gun and provides alignment to allow the projectile to enter the gun tube smoothly. After the firing cycle is complete, the case must be extracted from the gun chamber to allow the next round to be loaded.

Conventional breech loaded cartridge cases have traditionally been made of brass or steel. The case is inserted into the chamber of a gun, and the propellant is ignited. Relatively low pressure is needed to expand the case until it contacts the gun chamber wall, taking up the clearance designed between the case and chamber wall. From this point in the loading until peak pressure, the gun chamber provides the major part of the resistance to gun pressure.

The deformation of the gun chamber by the propellant pressure is completely elastic due to the residual stresses created in the gun tube by the autofrettage process. In contrast, the deformation in the case commonly contains a significant plastic component.

As the propellant pressure decreases in the chamber, both the case and chamber shrink elastically. The goal of the case design and material selection is to ensure that the plastic deformation is not allowed to develop to such a level that there is no clearance between the case and the chamber wall after all pressure has been exhausted.¹

Further aid in the extraction of a conventional case is obtained by including a slight taper in the case and chamber wall. Then, any rearward movement of the case due to engagement of the extractor pins at breech opening further increases the clearance and assists smooth extraction.

Cased telescoped ammunition (CTA) was developed for use in the Multi-Role Armament and Ammunition System (MRAAS) swing chamber gun. This concept places additional design burdens on the cartridge case.

For the swing chamber gun, the round is loaded into the chamber in its rotated position. The chamber is then turned 90° so that it is aligned with the gun tube, and the round is fired. The chamber is then rotated back into the open position, and the spent cartridge is extracted by being pushed through the chamber by the loading of the next round.²

The cartridge must now seal both ends of the chamber, not just the breach end, as with conventional guns. This push-through feature for removing spent rounds means that the chamber

¹U.S. Army Materiel Command. *Engineering Design Handbook: Ammunition Series, Section 4, Design Projection*; AMCP 706-247, July 1964.

²FC Munition Design Team Review. Picatinny Arsenal, NJ, 11 July 2000.

and case cannot be tapered to aid in extraction. Thus, the responsibility for ease of case extraction falls solely on case design (clearances, etc.) and material selection.

The material must deform without failing under firing pressures and elastically recover enough deformation so that the spent case can be removed by the force of loading. Since the gun chamber absorbs the majority of the propellant pressure, ductility and elastic recovery, rather than strength, are the important properties of the sought material.

2. Sample Materials and Test Preparation

Three composite material systems were evaluated for use in the CTA. They are fiberglass/Nylon 12, fiberglass/ULTEM,^{*} and fiberglass/urethane. The Nylon 12 and ULTEM matrix composites used chopped fiberglass, while the urethane composites used continuous fiberglass laminates.

The fiberglass/Nylon 12 was supplied as a hollow tube of ~6° inches in length and 5.5 inches in diameter, made by injection molding. The wall thickness was 0.375 in. The fiber reinforcement consisted of chopped fiberglass of 50% weight. Narrow arcs were cut out and machined into rectangular blocks from which tensile test coupons were sectioned with a precision slot-grinder machine fitted with a diamond cut-off saw. This process and the tube coordinate system are illustrated in figure 1.

Figure 1. Illustration of tensile specimen sectioning from sample tubes and radial coordinate system with respect to tube arc.

^{*}ULTEM is a registered trademark of GE Plastics Corp.

The 30% weight fiberglass/ULTEM was also supplied in two hollow tubes, with the effects of two manufacturing processes investigated. Both tubes had a diameter of 5.5 in and a length of 6 in. The first tube was made by machining an extruded fiberglass/ULTEM cylinder. After extrusion, the cylinder was machined to a 0.25-in wall thickness, and end-seal chevrons were placed on each end of the tube. The second tube was manufactured by injection molding and had a wall thickness of 0.375 in. This tube was supplied with no further processing after being injection molded. Samples from both the ULETEM matrix tubes were prepared by the same process outlined for the Nylon 12 matrix tube.

The fiberglass/urethane samples were manufactured by the hand lay-up of unidirectional fiberglass plies into flat panels with various laminates from which tensile coupons were sectioned directly. The manufacturing process took place at the U.S. Army Research Laboratory facility located in Aberdeen, MD. The four lay-ups manufactured were $[0^\circ]_5$, $[90^\circ]_{10}$, $[\pm 45^\circ]_5$, and $[0^\circ/90^\circ]_5$. Test samples were cut from the flat panels using a slot-grinder fitted with a diamond cut-off wheel.

As was practical, all materials were tensile tested in the best accordance with ASTM D 3039.³ This standard specifies whether bonded end tabs or friction tabs, such as emory cloth, are appropriate for random, discontinuous fiber composites. Where applicable, end-tab material was a fiberglass composite. Except for where specifically noted, Hysol^{*} structural adhesive was used to bond the end tabs to the samples. An Instron[†] 4484 multipurpose test machine was used to perform tensile tests on all the samples, and cross-head displacement rates varied from 0.05 to 0.5 in/min, depending on lay-up as defined in the ASTM D 3039 standard. Table 1 summarizes the test configurations and loading rates for all test samples. Except where noted, all specimens were instrumented with strain gages to measure both longitudinal and transverse strain. Young's modulus and Poisson's ratio were determined from this data.

3. Test Results

Data from the Instron's load cell and a strain gage acquisition computer was reduced to stress vs. strain curves. It was found that all materials except for $[0^\circ]_5$ and $[0^\circ/90^\circ]_{10}$ fiberglass/urethane exhibited a nonlinear softening curve. Tables 2 and 3 summarize all of the test results. Sections 3.1–3.3 discuss individual materials.

3.1 The 50% Fiberglass/Nylon

The first series of tests on the 50% fiberglass/Nylon 12 was not fitted with strain gages. Because calculation of strain from crosshead displacement was inaccurate, stress-strain curves could not be constructed for series 1. Tensile strength was determined and found to be ~7–8 ksi.

³ASTM D 3039. Standard Test Method for Tensile Properties of Fiber-Resin Composites, *Annu. Book ASTM Stand.* **2002**.

*Hysol is a registered trademark of the Dexter Corp.

[†]Instron is a registered trademark of the Instron Corp.

Table 1. Summary of tensile test configurations.

Material	Original Section	Dimensions (in)	End Tabs/Adhesive/No.	Loading Rate (in/min)
Nylon series 1	3/8-in wall tube injection mold	4 × 0.31 × 0.13	2 tabbed (quick epoxy) 2 untabbed	0.05
Nylon series 2	3/8-in wall tube injection mold	4 × 0.29 × 0.09	3 tabbed (quick epoxy) 2 untabbed	0.025
Nylon series 3	3/8-in wall tube injection mold	4 × 0.33 × 0.09	6 tabbed (Hysol 9309)	0.025
ULTEM extruded	1/4-in wall tube machined	4.38 × 0.39 × 0.1	4 untabbed emory cloth	0.025
ULTEM injection molded	3/8-in wall tube injection mold	6 × 0.31 × 0.1	4 untabbed emory cloth	0.025
Urethane [0°] ₁₀	~1/10-in sheet 5 plies	10 × 0.5 × 0.09	4 tabbed (Hysol 1C)	0.05
Urethane [90°] ₁₀	~1/4-in sheet 10 plies	10 × 1 × 0.24	5 tabbed (Hysol 9309) 3 untabbed	0.5
Urethane [±45°] ₅	~1/4-in sheet 10 plies	10 × 1 × 0.22	5 tabbed (Hysol 9309)	0.25
Urethane [0°/90°] ₅	~1/4-in sheet 10 plies	10 × 1 × 0.24	5 untabbed	0.05

Table 2. Summary of tensile test results.

Material System	Average σ_f Standard Deviation (psi)	Average E_o (psi)	Average ε_f (in/in)	Average Poisson's Ratio
Nylon series 1	7160	533	NA	NA
Nylon series 2	7484	449	890,000	0.013
Nylon series 3	8220	882	812,000	0.018
ULTEM extruded	21525	1550	1,000,000	0.031
ULTEM injection molded	17340	869	1,048,000	0.024
Urethane [0°] ₁₀	51870 ^a	5106	6,100,000	0.4 (parallel to lamina)
Urethane [90°] ₁₀	811	130	39,900	0.05 (parallel to lamina)
Urethane [±45°] ₅	8727 ^a	488	60,600	1.0 (parallel to lamina)
Urethane [0°/90°] ₅	15822 ^a	968	1,754,000	0.25 (parallel to lamina)

^a Value is not the true failure stress.

Note: NA = not available.

Table 3. Summary of residual strain after loading/elastic recovery.

Material	Nylon/Glass	ULTEM/Glass	Urethane [90°] (%)	Urethane [45°] (%)
Residual plastic strain	0.3%	0.2%	1.6	1.0
Unloaded form	90% fail load/ 1.4% strain	90% fail load/ 2% strain	4.6	4.5

Series 2 was fitted with strain gages, and stress-strain results are shown in figure 2. The samples had 0.75-in fiberglass/epoxy end tabs bonded with a common quick-set epoxy. Specimens 1 and 2 in figure 2 show drops in stress that correspond to the end tabs pulling away from the samples. The samples did not have transverse strain gages, so Poisson's effect was not measured.

Figure 2. Illustration of tensile specimen sectioning from sample tubes and radial coordinate system with respect to tube arc.

To prevent the end tabs from pulling away, Hysol structural adhesive was used in series 3 tests. Despite this, the material did not strain greater than 2%. Biaxial strain gages accurate up to 5% were mounted on specimens, allowing the Poisson's ratio results in figure 3. The samples were also loaded and unloaded incrementally to measure residual plastic strain after loading, as shown in figure 4.

Some fiberglass/Nylon 12 specimens were tested using emory cloth, as recommended by the American Society for Testing and Materials. Failure loads from these tests compared favorably to tests performed using end tabs. Also, the end-tabbed samples did not show a preference for

Figure 3. Examples of Poisson's ratio behavior of Nylon 12 material.

Figure 4. Example of load/unload of Nylon 12 material for residual strain characteristics.

where failure occurred, with samples failing both in the gage section and at the end tabs. This trend was also observed in the tests using the emory cloth.

Commercial data sheets on similar materials report strengths of ~20 ksi. The discrepancy between current tests and published data may be due to manufacturing differences. It has been suggested that preferential fiber alignments, which can occur easily in thin-walled injection molded parts, do not occur throughout a thicker part, such as the 0.375-in thick tube supplied for this study. Microscopy performed on the fiberglass/Nylon 12 material shows varied fiber alignment, as seen in figure 5. Some alignment occurs in the injection direction (longitudinal tube directions) near the walls of the mold. The alignment of fibers found near the inner wall can be seen to diminish to near random closer to the center of the thickness. In an effort to preserve fiber alignment, the series 3 tests employed specimens that were carefully sectioned directly from an arc section of tube. The results of this last series showed negligible benefit as a result of this method. In general, the occasional irregularities between similar specimens may be due to irregularities in the dispersion and orientation of fibers that can occur during mixing and injection.

Figure 5. Micrograph of Nylon 12 material where alignment can be seen near tube inner wall in longitudinal direction. View is looking into the “theta” direction.

3.2 The 30% Fiberglass/ULTEM

Two tubes of the 30% chopped fiberglass/ULTEM were tested in this study. The first tube was machined from an extruded section. The second tube was injection molded to shape, with no

post-molding machining. This allowed for the effects of processing to be evaluated in regards to material properties.

3.2.1 Extruded Fiberglass/ULTEM

The extruded 30% chopped fiberglass/ULTEM was supplied as a 6-in long tube of 5.5-in diameter, with a 0.25-in wall thickness with end-seal chevrons. The samples were prepared using the previously outlined method, except the chevrons on the end were removed. The ultimate strength of this material is 21.5 ksi, with an initial modulus of 1 to 1.1 Msi, making it slightly stiffer but over twice as strong as the fiberglass/Nylon 12 samples. The strain capability of this system is also significantly better with a 3.1% strain to failure. The stress-strain response is similar to the fiberglass/Nylon 12, exhibiting nonlinear softening to a clean break, as shown in figure 6.

Figure 6. Representative example of extruded/machined ULTEM series results.

3.2.2 Injection-Molded Fiberglass/ULTEM

The injection-molded tube had a 6-in diameter and a 0.375-in wall thickness. Samples were prepared and tested with the method outlined for the fiberglass/Nylon 12 tube. The stress-strain results from the tension tests are shown in figure 7. The plastic strain is measured from a load/unload test. The stress-strain behavior is similar to the extruded material, but the failure properties differ. The ultimate stress is 18 ksi, and strain-to-failure is 2.4%. Both properties are lower than for the extruded version of the ULTEM material. The Poisson's ratio graph in figure 8 shows the slight difference in transverse behavior between the two types of ULTEM samples.

Figure 7. Summary of injection molded ULTEM series results.

Figure 8. Summary of Poisson's ratio behavior of both ULTEM series.

3.3 Fiberglass/Urethane

A continuous fiberglass/urethane composite was also examined as a candidate cartridge case material. Four different lay-ups were tested— $[0^\circ]_5$, $[90^\circ]_{10}$, $[\pm 45^\circ]_5$, and $[0^\circ/90^\circ]_5$. These lay-ups allowed the characterization of the longitudinal, transverse, and shear properties.

3.3.1 $[0^\circ]_5$ Fiberglass/Urethane

The stress-strain results from tension tests on the $[0^\circ]_5$ samples are shown in figure 9. Since the behavior of the samples is governed by the glass fibers, the stress-strain relation is basically linear, with a modulus of 6.1 Ms. The average ultimate stress is 51.8 ksi, but it should be noted that all of the samples failed at the ends with the same characteristic pattern. The self-tightening action of the Instron grips squeezed out the material between the end tabs. The end tabs pulled off, tearing out a section of the sample. A different end-tabbing scheme is required to measure actual ultimate strength. The transverse behavior is mainly due to the properties of the rubber, as evident in figure 10 where Poisson's ratio approaches 0.5.

Figure 9. Summary of $[0^\circ]_5$ urethane response obtained prior to end tab debond.

3.3.2 $[90^\circ]_{10}$ Fiberglass/Urethane

The properties of the $[90^\circ]_{10}$ samples are now primarily due to the rubber, with no reinforcement in the test direction. The stress-strain results are shown in figure 11, indicating a high degree of nonlinear flattening of the curve. The plot is not indicative of the failure strains, which

Figure 10. Poisson's ratio behavior of $[0^\circ]_5$ urethane series specimens.

Figure 11. Initial portion of $[90^\circ]^{10}$ urethane response. Strains exceeded gage capabilities, while loads remained low until failure.

approached 50%, because the strain gages used have a maximum strain capacity of 5%. The stress never became greater than 1 ksi. At higher strains, striations between fiber bundles became apparent on the outer surfaces until the specimens failed. Because of the transverse fibers, lateral contraction was limited, as evident in figure 12, which shows the transverse Poisson's ratio behavior of the [90°]₁₀.

Figure 12. Example of Poisson's ratio behavior of a [90°]₁₀ urethane specimen. Strain gage measured lateral contraction on outer ply face, which was resisted by the alignment of the fibers in this direction. Through-thickness behavior is not represented and may differ significantly.

3.3.3 [±45°]₅ Fiberglass/Urethane

The next lay-up tested with the fiberglass/urethane materials was a [±45°]₅. Figure 13 shows the tensile response of a test sample. This specific lay-up allows the shear properties (G_{12} , τ_{ult}) to be measured through tension. To determine the shear stress-shear strain curves, the tensile response is transformed to the shear response using the relations $\tau_{shear} = \frac{\sigma_x}{2}$ and $\gamma_{shear} = |\varepsilon_x| + |\varepsilon_y|$.

Figure 14 shows the data from a test converted to shear components. This particular configuration exhibits a “scissoring” dominated mode of contraction, tending to rotate fibers into the test direction. A directional Poisson's ratio this large would suggest a negative ration in the through-thickness direction, correlating with the observed behavior of the cross section of the samples. Expansion in the thickness direction and high Poisson in the lateral direction produced a rounded cross section from a rectangular one.

Figure 13. Tensile response of a $[\pm 45^\circ]_{10}$ coupon.

Figure 14. Reduction of $[\pm 45^\circ]_{10}$ tensile data into shear coordinate system.

The initial shear modulus is \sim 15 ksi. The maximum loads achieved are not representative of the ultimate because of the type of failure observed. At the end tabs, a ply-by-ply failure was observed as outer plies appeared to tear off. This suggests that even higher loads are possible if end effects are effectively neutralized. A Poisson's ratio near 1, evident in figure 15, demonstrates the high transverse contraction of this lay-up, which is due to the "scissoring" action of the fibers as they rotate into the test direction.

Figure 15. Apparent Poisson's ratio behavior on outer ply face of a $[\pm 45^\circ]_{10}$ specimen.

3.3.4 $[0^\circ/90^\circ]_5$ Fiberglass/Urethane

The final fiberglass/urethane combination tested was a $[0^\circ/90^\circ]_5$ lay-up. These specimens were placed directly into the grips of the testing machine, with no end tabs. The stress-strain results are shown in figure 16, and the Poisson's ratio results are shown in figure 17.

Until failure, the samples displayed approximate linear behavior, with a modulus of \sim 1.8 MsI. Ply-level failure of the outer $[0^\circ]$ ply occurred at \sim 12 ksi. This is most likely from the stress concentration at the grips, causing the fibers in the outer ply to fail. Instead of the opposite $[90^\circ]$ face, the strain gage was mounted on this same $[0^\circ]$ face because of a better bonding surface. When the $[0^\circ]$ outer ply failed, it became partially unloaded, causing the strain to decrease (represented by the erratic behavior of the stress-strain curve above 12 ksi). The remainder of the laminate stayed intact and carried a higher load. To obtain the true ultimate characteristics of this lay-up, an effective end-tabbing scheme is again required.

Figure 16. Stress-strain data reduced from $[0^\circ/90^\circ]_{10}$ tests. Odd failure region results from strain gage being mounted on outer 0° ply, which failed prior to catastrophic specimen failure. This ply partially relaxed before specimens went on to a slightly higher load.

Figure 17. Observed Poisson's ratio behavior on outer 0° ply of $[0^\circ/90^\circ]_{10}$ samples.

It should be noted that after the initial outer [0°] ply failure and marginally increased load, all [0°] plies failed completely, as could be expected in comparison to the compliant [90°] plies. The interesting characteristic of this particular lay-up is that even after complete failure of the [0°] plies, the [90°] plies kept the coupon in one piece.

4. Conclusions

Three composite material systems, 50% chopped fiberglass/Nylon 12, 30% chopped fiberglass/ULTEM, and continuous fiberglass/urethane, were tested in order to determine basic material properties and suitability as candidates for use in the cartridge case for the CTA of the MRAAS 105-mm gun. The shape of the stress-strain curve, moduli, Poisson's ratio, failure stress and strain, and residual plastic deformation after unloading were determined. The results are presented graphically and in tabular form. These material properties are required to understand the mechanical response of the case to the loading cycle and to support the finite-element modeling of the case/chamber.

Finite-element analysis of the cartridge case in the chamber of the MRAAS swing chamber gun during a firing cycle will be presented in a separate report.⁴ These analyses confirm the intuitive feeling that strength and stiffness in this case are superfluous; the gun chamber supports the load created by the high-propellant gas pressure. The most important characteristics for the case material are its ability to go to high levels of failure strain (especially in the vicinity of the discontinuation near the end seals) and to suffer minimal residual plastic strain after a firing cycle.

⁴Powers, B.; Bogetti, T.; Drysdale, W. *Finite Element Analysis of a Composite Cartridge Case in the Multi-Role Armament and Ammunition System Gun*. U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, to be published.

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1 (PDF ONLY)	DEFENSE TECHNICAL INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	1	<u>ABERDEEN PROVING GROUND</u> DIR USARL AMSRD ARL CI OK TP (BLDG 4600)
1	US ARMY RSRCH DEV & ENGRG CMD SYSTEMS OF SYSTEMS INTEGRATION AMSRD SS T 6000 6TH ST STE 100 FORT BELVOIR VA 22060-5608		
1	INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN 3925 W BRAKER LN STE 400 AUSTIN TX 78759-5316		
1	US MILITARY ACADEMY MATH SCI CTR EXCELLENCE MADN MATH THAYER HALL WEST POINT NY 10996-1786		
1	DIRECTOR US ARMY RESEARCH LAB IMNE AD IM DR 2800 POWDER MILL RD ADELPHI MD 20783-1197		
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CI OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197		
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CS IS T 2800 POWDER MILL RD ADELPHI MD 20783-1197		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL SE L D SNIDER 2800 POWDER MILL RD ADELPHI MD 20783-1197	1	COMMANDER US ARMY ARDEC AMSTA AR FSE PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL SE DE R ATKINSON 2800 POWDER MILL RD ADELPHI MD 20783-1197	1	COMMANDER US ARMY ARDEC AMSTA AR TD PICATINNY ARSENAL NJ 07806-5000
5	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A ABRAHAMIAN M BERMAN M CHOWDHURY T LI E SZYMANSKI 2800 POWDER MILL RD ADELPHI MD 20783-1197	13	COMMANDER US ARMY ARDEC AMSTA AR CCH A F ALTAMURA M NICOLICH M PALATHINGUL D VO R HOWELL A VELLA M YOUNG L MANOLE S MUSALLI R CARR M LUCIANO E LOGSDEN T LOUZEIRO PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY MATERIEL CMD AMXMI INT 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001		
2	PM MAS SFAE AMO MAS MC PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR CCH P J LUTZ PICATINNY ARSENAL NJ 07806-5000
3	COMMANDER US ARMY ARDEC AMSTA AR CC M PADGETT J HEDDERICH H OPAT PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR FSF T C LIVECCHIA PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR AE WW E BAKER J PEARSON PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA ASF PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T C J PAGE PICATINNY ARSENAL NJ 07806-5000	1	US ARMY ARDEC INTELLIGENCE SPECIALIST AMSTA AR WEL F M GUERRIERE PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR M D DEMELLA PICATINNY ARSENAL NJ 07806-5000	10	COMMANDER US ARMY ARDEC AMSTA AR CCH B P DONADIA F DONLON P VALENTI C KNUTSON G EUSTICE K HENRY J MCNABOC G WAGNECZ R SAYER F CHANG PICATINNY ARSENAL NJ 07806-5000
3	COMMANDER US ARMY ARDEC AMSTA AR FSA A WARNASH B MACHAK M CHIEFA PICATINNY ARSENAL NJ 07806-5000		
2	COMMANDER US ARMY ARDEC AMSTA AR FSP G M SCHIKSNIS D CARLUCCI PICATINNY ARSENAL NJ 07806-5000	6	COMMANDER US ARMY ARDEC AMSTA AR CCL F PUZYCKI R MCHUGH D CONWAY E JAROSZEWSKI R SCHLENNER M CLUNE PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR CCH C H CHANIN S CHICO PICATINNY ARSENAL NJ 07806-5000	1	PM ARMS SFAE GCSS ARMS BLDG 171 PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T D RIGOGLIOSO PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR WEA J BRESCIA PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR WET T SACHAR BLDG 172 PICATINNY ARSENAL NJ 07806-5000	1	PM MAS SFAE AMO MAS PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	PM MAS SFAE AMO MAS CHIEF ENGINEER PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM PM SURVIVABLE SYSTEMS SFAE GCSS W GSI H M RYZYI 6501 ELEVEN MILE RD WARREN MI 48397-5000
1	PM MAS SFAE AMO MAS PS PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM CHIEF ABRAMS TESTING SFAE GCSS W AB QT T KRASKIEWICZ 6501 ELEVEN MILE RD WARREN MI 48397-5000
2	PM MAS SFAE AMO MAS LC PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER WATERVLIET ARSENAL SMCWV QAE Q B VANINA BLDG 44 WATERVLIET NY 12189-4050
1	COMMANDER US ARMY ARDEC PRODUCTION BASE MODERN ACTY AMSMC PBM K PICATINNY ARSENAL NJ 07806-5000	1	TNG, DOC, & CBT DEV ATZK TDD IRS A POMEY FT KNOX KY 40121
1	COMMANDER US ARMY TACOM PM COMBAT SYSTEMS SFAE GCS CS 6501 ELEVEN MILE RD WARREN MI 48397-5000	2	HQ IOC TANK AMMUNITION TEAM AMSIO SMT R CRAWFORD W HARRIS ROCK ISLAND IL 61299-6000
1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000	2	COMMANDER US ARMY AMCOM AVIATION APPLIED TECH DIR J SCHUCK FT EUSTIS VA 23604-5577
1	DIRECTOR AIR FORCE RESEARCH LAB MLLMD D MIRACLE 2230 TENTH ST WRIGHT PATTERSON AFB OH 45433-7817	1	NSWC DAHLGREN DIV CODE G06 DAHLGREN VA 22448
1	OFC OF NAVAL RESEARCH J CHRISTODOULOU ONR CODE 332 800 N QUINCY ST ARLINGTON VA 22217-5600	2	US ARMY CORPS OF ENGR CERD C T LIU CEW ET T TAN 20 MASSACHUSETTS AVE NW WASHINGTON DC 20314
1	US ARMY CERL R LAMPO 2902 NEWMARK DR CHAMPAIGN IL 61822		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	US ARMY COLD REGIONS RSCH & ENGRNG LAB P DUTTA 72 LYME RD HANOVER NH 03755	1	NSWC TECH LIBRARY CODE 323 17320 DAHLGREN RD DAHLGREN VA 22448
14	COMMANDER US ARMY TACOM AMSTA TR R R MCCLELLAND D THOMAS J BENNETT D HANSEN AMSTA JSK S GOODMAN J FLORENCE K IYER D TEMPLETON A SCHUMACHER AMSTA TR D D OSTBERG L HINOJOSA B RAJU AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000	2	USA SBCCOM MATERIAL SCIENCE TEAM AMSSB RSS J HERBERT M SENNETT KANSAS ST NATICK MA 01760-5057
		2	OFC OF NAVAL RESEARCH D SIEGEL CODE 351 J KELLY 800 N QUINCY ST ARLINGTON VA 22217-5660
		1	NSWC CRANE DIVISION M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245
		2	NSWC U SORATHIA C WILLIAMS CD 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817
14	BENET LABS AMSTA AR CCB R FISCELLA M SOJA E KATHE M SCAVULO G SPENCER P WHEELER S KRUPSKI J VASILAKIS G FRIAR R HASENBEIN AMSTA CCB R S SOPOK E HYLAND D CRAYON R DILLON WATERVLIET NY 12189-4050	2	COMMANDER NSWC CARDEROCK DIVISION R PETERSON CODE 2020 M CRITCHFIELD CODE 1730 BETHESDA MD 20084
		8	DIRECTOR US ARMY NGIC D LEITER MS 404 M HOLTUS MS 301 M WOLFE MS 307 S MINGLEDORF MS 504 J GASTON MS 301 W GSTATTENBAUER MS 304 R WARNER MS 305 J CRIDER MS 306 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318
1	USA SBCCOM PM SOLDIER SPT AMSSB PM RSS A J CONNORS KANSAS ST NATICK MA 01760-5057		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	NAVAL SEA SYSTEMS CMD D LIESE 1333 ISAAC HULL AVE SE 1100 WASHINGTON DC 20376-1100	8	NSWC J FRANCIS CODE G30 D WILSON CODE G32 R D COOPER CODE G32 J FRAYSSE CODE G33 E ROWE CODE G33 T DURAN CODE G33 L DE SIMONE CODE G33 R HUBBARD CODE G33 DAHLGREN VA 22448
1	EXPEDITIONARY WARFARE DIV N85 F SHOUP 2000 NAVY PENTAGON WASHINGTON DC 20350-2000	1	NSWC CARDEROCK DIVISION R CRANE CODE 6553 9500 MACARTHUR BLVD WEST BETHESDA MD 20817-5700
8	US ARMY SBCCOM SOLDIER SYSTEMS CENTER BALLISTICS TEAM J WARD W ZUKAS P CUNNIFF J SONG MARINE CORPS TEAM J MACKIEWICZ BUS AREA ADVOCACY TEAM W HASKELL AMSSB RCP SS W NYKVIST S BEAUDOIN KANSAS ST NATICK MA 01760-5019	1	AFRL MLSS R THOMSON 2179 12TH ST RM 122 WRIGHT PATTERSON AFB OH 45433-7718
7	US ARMY RESEARCH OFC A CROWSON H EVERETT J PRATER G ANDERSON D STEPP D KISEROW J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	2	AFRL F ABRAMS J BROWN BLDG 653 2977 P ST STE 6 WRIGHT PATTERSON AFB OH 45433-7739
1	AFRL MLBC 2941 P ST RM 136 WRIGHT PATTERSON AFB OH 45433-7750	5	DIRECTOR LLNL R CHRISTENSEN S DETERESA F MAGNESS M FINGER MS 313 M MURPHY L 282 PO BOX 808 LIVERMORE CA 94550
1	DIRECTOR LOS ALAMOS NATL LAB F L ADDESSIO T 3 MS 5000 PO BOX 1633 LOS ALAMOS NM 87545	1	AFRL MLS OL L COULTER 5851 F AVE BLDG 849 RM AD1A HILL AFB UT 84056-5713
1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199	1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
3	DARPA M VANFOSSEN S WAX L CHRISTODOULOU 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	3	NASA Langley Research CTR AMSRD ARL VS W ELBER MS 266 F BARTLETT JR MS 266 G FARLEY MS 266 HAMPTON VA 23681-0001
2	SERDP PROGRAM OFC PM P2 C PELLERIN B SMITH 901 N STUART ST STE 303 ARLINGTON VA 22203	1	NASA Langley Research CTR T GATES MS 188E HAMPTON VA 23661-3400
1	OAK RIDGE NATL LAB R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195	1	FHWA E MUNLEY 6300 GEORGETOWN PIKE MCLEAN VA 22101
1	OAK RIDGE NATL LAB C EBERLE MS 8048 PO BOX 2008 OAK RIDGE TN 37831	1	USDOT FEDERAL RAILROAD M FATEH RDV 31 WASHINGTON DC 20590
3	DIRECTOR SANDIA NATL LABS APPLIED MECHS DEPT MS 9042 J HANDROCK Y R KAN J LAUFFER PO BOX 969 LIVERMORE CA 94551-0969	3	CYTEC FIBERITE R DUNNE D KOHLI R MAYHEW 1300 REVOLUTION ST HAVRE DE GRACE MD 21078
1	OAK RIDGE NATL LAB C D WARREN MS 8039 PO BOX 2008 OAK RIDGE TN 37831	1	DIRECTOR NGIC IANG TMT 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318
4	NIST M VANLANDINGHAM MS 8621 J CHIN MS 8621 J MARTIN MS 8621 D DUTHINH MS 8611 100 BUREAU DR GAITHERSBURG MD 20899	2	3TEX CORP A BOGDANOVICH J SINGLETARY 109 MACKENAN DR CARY NC 27511
1	HYDROGEOLOGIC INC SERDP ESTCP SPT OFC S WALSH 1155 HERNDON PKWY STE 900 HERNDON VA 20170	1	3M CORP J SKILDUM 3M CENTER BLDG 60 IN 01 ST PAUL MN 55144-1000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR DEFENSE INTLLGNC AGNCY TA 5 K CRELLING WASHINGTON DC 20310	1	ROM DEVELOPMENT CORP R O MEARA 136 SWINEBURNE ROW BRICK MARKET PLACE NEWPORT RI 02840
1	ADVANCED GLASS FIBER YARNS T COLLINS 281 SPRING RUN LANE STE A DOWNTON PA 19335	2	TEXTRON SYSTEMS T FOLTZ M TREASURE 1449 MIDDLESEX ST LOWELL MA 01851
1	COMPOSITE MATERIALS INC D SHORTT 19105 63 AVE NE PO BOX 25 ARLINGTON WA 98223	1	O GARA HESS & EISENHARDT M GILLESPIE 9113 LESAIN DR FAIRFIELD OH 45014
1	JPS GLASS L CARTER PO BOX 260 SLATER RD SLATER SC 29683	2	MILLIKEN RESEARCH CORP H KUHN M MACLEOD PO BOX 1926 SPARTANBURG SC 29303
1	COMPOSITE MATERIALS INC R HOLLAND 11 JEWEL CT ORINDA CA 94563	1	CONNEAUGHT INDUSTRIES INC J SANTOS PO BOX 1425 COVENTRY RI 02816
1	COMPOSITE MATERIALS INC C RILEY 14530 S ANSON AVE SANTA FE SPRINGS CA 90670	1	ARMTEC DEFENSE PRODUCTS S DYER 85 901 AVE 53 PO BOX 848 COACHELLA CA 92236
2	SIMULA J COLTMAN R HUYETT 10016 S 51ST ST PHOENIX AZ 85044	1	NATL COMPOSITE CTR T CORDELL 2000 COMPOSITE DR KETTERING OH 45420
2	PROTECTION MATERIALS INC M MILLER F CRILLEY 14000 NW 58 CT MIAMI LAKES FL 33014	3	PACIFIC NORTHWEST LAB M SMITH G VAN ARSDALE R SHIPPELL PO BOX 999 RICHLAND WA 99352
2	FOSTER MILLER M ROYLANCE W ZUKAS 195 BEAR HILL RD WALTHAM MA 02354-1196	1	SAIC M PALMER 1410 SPRING HILL RD STE 400 MS SH4 5 MCLEAN VA 22102

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	ALLIANT TECHSYSTEMS INC 4700 NATHAN LN N PLYMOUTH MN 55442-2512	5	NORTHROP GRUMMAN B IRWIN K EVANS D EWART A SHREKENHAMER J MCGLYNN BLDG 160 DEPT 3700 1100 WEST HOLLYVALE ST AZUSA CA 91701
1	APPLIED COMPOSITES W GRISCH 333 NORTH SIXTH ST ST CHARLES IL 60174		
1	CUSTOM ANALYTICAL ENG SYS INC A ALEXANDER 13000 TENSOR LANE NE FLINTSTONE MD 21530	1	HERCULES INC HERCULES PLAZA WILMINGTON DE 19894
1	AAI CORP DR N B MCNELLIS PO BOX 126 HUNT VALLEY MD 21030-0126	1	BRIGS COMPANY J BACKOFEN 2668 PETERBOROUGH ST HERNDON VA 22071-2443
1	OFC DEPUTY UNDER SEC DEFNS J THOMPSON 1745 JEFFERSON DAVIS HWY CRYSTAL SQ 4 STE 501 ARLINGTON VA 22202	1	ZERNOW TECHNICAL SERVICES L ZERNOW 425 W BONITA AVE STE 208 SAN DIMAS CA 91773
3	ALLIANT TECHSYSTEMS INC J CONDON E LYNAM J GERHARD WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210	1	GENERAL DYNAMICS OTS L WHITMORE 10101 NINTH ST NORTH ST PETERSBURG FL 33702
1	PROJECTILE TECHNOLOGY INC 515 GILES ST HAVRE DE GRACE MD 21078	2	GENERAL DYNAMICS OTS FLINCHBAUGH DIV K LINDE T LYNCH PO BOX 127 RED LION PA 17356
1	HEXCEL INC R BOE PO BOX 18748 SALT LAKE CITY UT 84118	1	GKN WESTLAND AEROSPACE D OLDS 450 MURDOCK AVE MERIDEN CT 06450-8324
1	PRATT & WHITNEY C WATSON 400 MAIN ST MS 114 37 EAST HARTFORD CT 06108	2	BOEING ROTORCRAFT P MINGURT P HANDEL 800 B PUTNAM BLVD WALLINGFORD PA 19086

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
5	SIKORSKY AIRCRAFT G JACARUSO T CARSTENSAN B KAY S GARBO MS S330A J ADELMANN 6900 MAIN ST PO BOX 9729 STRATFORD CT 06497-9729	1	NORTHRUP GRUMMAN CORP ELECTRONIC SENSORS & SYSTEMS DIV E SCHOCH MS V 16 1745A W NURSERY RD LINTHICUM MD 21090
1	AEROSPACE CORP G HAWKINS M4 945 2350 E EL SEGUNDO BLVD EL SEGUNDO CA 90245	1	GDLS DIVISION D BARTLE PO BOX 1901 WARREN MI 48090
2	CYTEC FIBERITE M LIN W WEB 1440 N KRAEMER BLVD ANAHEIM CA 92806	2	GDLS D REES M PASIK PO BOX 2074 WARREN MI 48090-2074
2	UDLP G THOMAS M MACLEAN PO BOX 58123 SANTA CLARA CA 95052	1	GDLS MUSKEGON OPER M SOIMAR 76 GETTY ST MUSKEGON MI 49442
1	UDLP WARREN OFC A LEE 31201 CHICAGO RD SOUTH SUITE B102 WARREN MI 48093	1	GENERAL DYNAMICS AMPHIBIOUS SYS SURVIVABILITY LEAD G WALKER 991 ANNAPOLIS WAY WOODBRIDGE VA 22191
2	UDLP R BRYNSVOLD P JANKE MS 170 4800 EAST RIVER RD MINNEAPOLIS MN 55421-1498	6	INST FOR ADVANCED TECH H FAIR I MCNAB P SULLIVAN S BLESS W REINECKE C PERSAD
1	LOCKHEED MARTIN SKUNK WORKS D FORTNEY 1011 LOCKHEED WAY PALMDALE CA 93599-2502	1	3925 W BRAKER LN STE 400 AUSTIN TX 78759-5316
1	LOCKHEED MARTIN R FIELDS 5537 PGA BLVD SUITE 4516 ORLANDO FL 32839	1	ARROW TECH ASSOC 1233 SHELBURNE RD STE D8 SOUTH BURLINGTON VT 05403-7700
		1	R EICHELBERGER CONSULTANT 409 W CATHERINE ST BEL AIR MD 21014-3613

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	SAIC G CHRYSSOMALLIS 8500 NORMANDALE LAKE BLVD SUITE 1610 BLOOMINGTON MN 55437-3828	2	PENN STATE UNIV R MCNITT C BAKIS 212 EARTH ENGR SCIENCES BLDG UNIVERSITY PARK PA 16802
1	UCLA MANE DEPT ENGR IV H T HAHN LOS ANGELES CA 90024-1597	1	PURDUE UNIV SCHOOL OF AERO & ASTRO C T SUN W LAFAYETTE IN 47907-1282
2	UNIV OF DAYTON RESEARCH INST R Y KIM A K ROY 300 COLLEGE PARK AVE DAYTON OH 45469-0168	1	STANFORD UNIV DEPT OF AERONAUTICS & AEROBALLISTICS S TSAI DURANT BLDG STANFORD CA 94305
1	UMASS LOWELL PLASTICS DEPT N SCHOTT 1 UNIVERSITY AVE LOWELL MA 01854	1	UNIV OF MAINE ADV STR & COMP LAB R LOPEZ ANIDO 5793 AEWC BLDG ORONO ME 04469-5793
1	IIT RESEARCH CTR D ROSE 201 MILL ST ROME NY 13440-6916	1	JOHNS HOPKINS UNIV APPLIED PHYSICS LAB P WIENHOLD 11100 JOHNS HOPKINS RD LAUREL MD 20723-6099
1	GA TECH RESEARCH INST GA INST OF TCHNLGY P FRIEDERICH ATLANTA GA 30392	1	UNIV OF DAYTON J M WHITNEY COLLEGE PARK AVE DAYTON OH 45469-0240
1	MICHIGAN ST UNIV MSM DEPT R AVERILL 3515 EB EAST LANSING MI 48824-1226	1	NORTH CAROLINA ST UNIV CIVIL ENGINEERING DEPT W RASDORF PO BOX 7908 RALEIGH NC 27696-7908
1	UNIV OF WYOMING D ADAMS PO BOX 3295 LARAMIE WY 82071	5	UNIV OF DELAWARE CTR FOR COMPOSITE MTRLS J GILLESPIE M SANTARE S YARLAGADDA S ADVANI D HEIDER 201 SPENCER LAB NEWARK DE 19716
1	PENN STATE UNIV R S ENGEL 245 HAMMOND BLDG UNIVERSITY PARK PA 16801		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DEPT OF MTRLS SCIENCE & ENGRG UNIV OF ILLINOIS AT URBANA CHAMPAIGN J ECONOMY 1304 WEST GREEN ST 115B URBANA IL 61801		<u>ABERDEEN PROVING GROUND</u>
1	UNIV OF MARYLAND DEPT OF AEROSPACE ENGRG A J VIZZINI COLLEGE PARK MD 20742	1	US ARMY ATC CSTE DTC AT AC I W C FRAZER 400 COLLERAN RD APG MD 21005-5059
1	DREXEL UNIV A S D WANG 3141 CHESTNUT ST PHILADELPHIA PA 19104	91	DIR USARL AMSRD ARL CI AMSRD ARL O AP EG M ADAMSON AMSRD ARL SL BA AMSRD ARL SL BB D BELY AMSRD ARL WM J SMITH H WALLACE AMSRD ARL WM B
3	UNIV OF TEXAS AT AUSTIN CTR FOR ELECTROMECHANICS J PRICE A WALLS J KITZMILLER 10100 BURNET RD AUSTIN TX 78758-4497		A HORST T KOGLER AMSRD ARL WM BA D LYON AMSRD ARL WM BC J NEWILL P PLOSTINS A ZIELINSKI AMSRD ARL WM BD
3	VA POLYTECHNICAL INST & STATE UNIV DEPT OF ESM M W HYER K REIFSNIDER R JONES BLACKSBURG VA 24061-0219		P CONROY B FORCH M LEADORE C LEVERITT R LIEB R PESCE RODRIGUEZ B RICE AMSRD ARL WM BF
1	SOUTHWEST RESEARCH INST ENGR & MATL SCIENCES DIV J RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510		S WILKERSON AMSRD ARL WM M B FINK J MCCUALEY AMSRD ARL WM MA
1	BATELLE NATICK OPERS B HALPIN 313 SPEEN ST NATICK MA 01760		L GHIORSE S MCKNIGHT E WETZEL AMSRD ARL WM MB
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A FRYDMAN 2800 POWDER MILL RD ADELPHI MD 20783-1197		J BENDER T BOGETTI L BURTON R CARTER K CHO W DE ROSSET G DEWING R DOWDING W DRYSDALE

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
R EMERSON	
D HENRY	
D HOPKINS	
R KASTE	
L KECKES	
M MINNICONO	
B POWERS	
D SNOHA	
J SOUTH	
M STAKER	
J SWAB	
J TZENG	
AMSRD ARL WM MC	
J BEATTY	
R BOSSOLI	
E CHIN	
S CORNELISON	
D GRANVILLE	
B HART	
J LASALVIA	
J MONTGOMERY	
F PIERCE	
E RIGAS	
W SPURGEON	
AMSRD ARL WM MD	
B CHEESEMAN	
P DEHMER	
R DOOLEY	
G GAZONAS	
S GHIORSE	
C HOPPEL	
M KLUSEWITZ	
W ROY	
J SANDS	
D SPAGNUOLO	
S WALSH	
S WOLF	
AMSRD ARL WM RP	
J BORNSTEIN	
C SHOEMAKER	
AMSRD ARL WM T	
B BURNS	
AMSRD ARL WM TA	
W BRUCHEY	
M BURKINS	
W GILLICH	
B GOOCH	
T HAVEL	
E HORWATH	
M NORMANDIA	
J RUNYEON	
M ZOLTOSKI	

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
AMSRD ARL WM TB	
P BAKER	
AMSRD ARL WM TC	
R COATES	
AMSRD ARL WM TD	
D DANDEKAR	
T HADUCH	
T MOYNIHAN	
M RAFTENBERG	
S SCHOENFELD	
T WEERASOORIYA	
AMSRD ARL WM TE	
A NIILER	
J POWELL	

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	LTD R MARTIN MERL TAMWORTH RD HERTFORD SG13 7DG UK	1	ISRAEL INST OF TECHLGY S BODNER FACULTY OF MECHANICAL ENGR HAIFA 3200 ISRAEL
1	SMC SCOTLAND P W LAY DERA ROSYTH ROSYTH ROYAL DOCKYARD DUNFERMLINE FIFE KY 11 2XR UK	1	DSTO WEAPONS SYSTEMS DIVISION N BURMAN RLLWS SALISBURY SOUTH AUSTRALIA 5108 AUSTRALIA
1	CIVIL AVIATION ADMINISTRATION T GOTTESMAN PO BOX 8 BEN GURION INTRNL AIRPORT LOD 70150 ISRAEL	1	DEF RES ESTABLISHMENT VALCARTIER A DUPUIS 2459 BLVD PIE XI NORTH VALCARTIER QUEBEC CANADA PO BOX 8800 COURCELETTE GOA IRO QUEBEC CANADA
1	AEROSPATIALE S ANDRE A BTE CC RTE MD132 316 ROUTE DE BAYONNE TOULOUSE 31060 FRANCE	1	ECOLE POLYTECH J MANSON DMX LTC CH 1015 LAUSANNE SWITZERLAND
1	DRA FORT HALSTEAD P N JONES SEVEN OAKS KENT TN 147BP UK	1	TNO DEFENSE RESEARCH R IJSELSTEIN ACCOUNT DIRECTOR R&D ARMEE PO BOX 6006 2600 JA DELFT THE NETHERLANDS
1	SWISS FEDERAL ARMAMENTS WKS W LANZ ALLMENDSTRASSE 86 3602 THUN SWITZERLAND	2	FOA NATL DEFENSE RESEARCH ESTAB DIR DEPT OF WEAPONS & PROTECTION B JANZON R HOLMLIN S 172 90 STOCKHOLM SWEDEN
1	DYNAMEC RESEARCH LAB AKE PERSSON BOX 201 SE 151 23 SODERTALJE SWEDEN		

NO. OF
COPIES ORGANIZATION

2 DEFENSE TECH & PROC
AGENCY GROUND
I CREWTHER
GENERAL HERZOG HAUS
3602 THUN
SWITZERLAND

1 MINISTRY OF DEFENCE
RAFAEL
ARMAMENT DEVELOPMENT
AUTH
M MAYSELESS
PO BOX 2250
HAIFA 31021
ISRAEL

1 TNO DEFENSE RESEARCH
I H PASMAN
POSTBUS 6006
2600 JA DELFT
THE NETHERLANDS

1 B HIRSCH
TACHKEMONY ST 6
NETAMUA 42611
ISRAEL

1 DEUTSCHE AEROSPACE AG
DYNAMICS SYSTEMS
M HELD
PO BOX 1340
D 86523 SCHROBENHAUSEN
GERMANY

INTENTIONALLY LEFT BLANK.