APPLICATION NOTE for SMIA95-5M Auto Focus camera module

Module model name: TCM8341MD Sensor model name: ET8EK8-AS

Ver. 2.30b

CONTENTS

	a. Overview	3
	b. System diagram	3
	c. INTERFACE TERMINAL DESCRIPTION	4
	1. Power supply control	5
	1-1 Power up/down sequence	5
	1-2 Timing chart of POWER ON	5
	1-3 Initial command settings	6
	1-4 Timing chart of POWER OFF	7
	1-5 Software Stand-by	7
	1-6 Image data of sensor restart	7
2	. IIC control I/F	8
3	Register map	9
4	Sensor version information	12
5.	. Output-mode	12
6	. Start pixel information	14
7	Data output specification	14
8	Command effect timing	15
9	PLL and Frame rate setting when CCP2 output	15
1	0. Picture size and View finder setting	17
	10-1 Picture size setting	. 17
	10-1-1 Output format setting	. 17
	10-2 VGA view finder with zoom setting	. 17
	10-3 How to digital zoom in case of VGA	. 17
1	1. Analog gain and Digital gain setting	18
	11-1 Analog gain	. 18
	11-2 Digital gain	. 19
1	3. Preset gain and White balance gain	20

TOSHIBA	Dynastron	Confidential	Application Note Ver 2.30b
14. Electrical sh	utter		20
15. Data format	of CCP2 Output		21
16. CCP2 Skew /	<mark>Adjustment</mark>		24
17 Pavision His	tory		25

09/05/11

a. Overview

This document specifies a very compact size of 1/2.5" 5M pixel auto-focus camera module compatible with SMIA95 size.

- (1) SMIA95 size auto focus camera module suitable for the main stream cameras
- (2) Superb picture quality by employing Toshiba's best-in-class 5 Mega-pixel CMOS sensor with 2.2 um pixel.
- (3) Good object distance coverage by auto-focus actuator.
- (4) Mitigated motion artifact for downsized picture by enabling 30 fps operation.

Table 1 General Overview

Area	Item	Туре	
Sensor	Maximum Resolution	2592 (H) x 1968 (V)	
(model name ET8EK8-AS)	Color filtering type	Bayer	
	Optical format	1/2.5 "	
	Pixel size	2.2 um	
Optical System	F number	F2.8	
	Focusing type: fixed / auto focus	Auto Focus	
Module System	Actuator Driver	Embedded inside camera Module	
Data interface	Image data bus	CCP2 sub LVDS	
	Supported output formats	10 bit RAW Bayer	
	Control bus	IIC bus	
Mechanical specification	Module size	9.5 (D) x 9.5(W) x 8.0(H) mm	
	PAD count	16	

VCM

(1) Operating Condition

- Actuator type: Voice Coil Motor

- Rated Current: 80mA - Absolute Maximum Current : 100mA

(2) Performance and Characteristics

- Stroke: min 0.31mm (at all directions, when applied 80mA)

- Starting Current : min 10mA (at horizontal direction)

b. System diagram

09/05/11 3/25

c. INTERFACE TERMINAL DESCRIPTION

Bottom view

Pad 1 **Pad 16** Vbat **GNDV**bat **VCAP** DGND **AGND** DATA+ VANA DATA-XSHUTDOWN VDIG **EXTCLK** CLK+ SCL CLK-Pad 8 SDA **DGND** Pad 9

Pad No.	Signal name	Signal description		
1	Vbat	Battery voltage supply Can not be connected to VANA directly		
2	VCAP	Open or can be connected to GND via a capacitor		
3	AGND	Ground for VANA		
4	VANA	Voltage source to camera module		
5	XSHUTDOWN	Power down control		
6	ExtClk	External clock signal from BB engine.		
7	SCL	I2C clock		
8	SDA	I2C data line		
9	DGND	Digital GND		
10	CLK-	CCP2 bus: Differential clock output, negative polarity signal		
11	CLK+	CCP2 bus: Differential clock output, positive polarity signal		
12	VDIG	Digital GND		
13	DATA-	CCP2 bus: Differential data output, negative polarity signal		
14	DATA+	CCP2 bus: Differential data output, positive polarity signal		
15	DGND	Digital GND		
16	GNDVbat	Ground for Battery voltage supply		

09/05/11 4/25

1. Power supply control

TOSHIBA

1-1 Power up/down sequence

Fig1-1: Power up/down sequence

1-2 Timing chart of POWER ON

Fig1-2: Timing chart of POWER ON

09/05/11 5/25

1-3 Initial command settings

When power on, please set these commands only one time.

This initial setting is below status. Please also refer to command settings section.

(1) Serial out

(2)RAW10

(3)5M output, w/o embedded data, 640Mbps

Below file is initial command settings and changing history of setting based on mode2 (5M full output) And also we recommended input order of register settings about both sensors.

This version is ver1.7

09/05/11 6/25

1-4 Timing chart of POWER OFF

Fig1-3: Timing chart of POWER ON

1-5 Software Stand-by

If changing to software standby status, SLEEP set from H to L (Address: 0x1252, D7).

Address	Data	Bit Symbol	Description		
0x1252	D7	SLEEP	0d: Software Standby status	1d: Streaming (Active)	

Software standby status

	CCI I/F	Sensor	CCP2	ISP	VCO
Software standby(*1)	Active	Stop	Hi-Z	Stop	Stop
Operation	Active	Active	Active	Active	Active

^{(*1)-}Software standby is from High level of Xshutdown to first I2C command input -During after input 30h (Add: 0x1252) and before input B0h (Add: 0x1252).

1-6 Image data of sensor restart

When sensor restarts, Normal image can get 2 frames after.

Firstly readout operation is started. And then Electrical shutter is started.

09/05/11 7/25

2. IIC control I/F

Sub address is 2 bytes, and first data is MSB, last data is LSB.

Write mode

S Slave Address 0 A Sub Address A Sub Address A DATA1 A DATAn A P MSB 7bit MSB 8bit MSB 8bit MSB 8bit

Read mode

S Slave Address 0 A Sub Address1 A Sub Address2 A S Slave Address 1 A DATA1 A ----- DATAN N P MSB 7bit MSB 8bit MSB 8bit MSB 8bit MSB 8bit

Camera Host Command

S: Start condition, P: End condition, A: Acknowledge, Ā: not Acknowledge

Start condition, End condition

Bit Transfer

Acknowledge

Not Acknowledge

Slave Address (2 table can be selected)

Sensor

A6	A5	A4	A3	A2	A1	A0	R/W
0	1	1	1	1	1	0	1/0

7bit Slave address is used.

The system conforms to the I2C Standard Specification defined by Philips.

Actuator driver

7.010.010.							
A6	A5	A4	A3	A2	A1	A0	R/W
0	0	0	1	1	0	0	1/0

09/05/11 8/25

3. Register map

Gray mesh area is not defined. Default value is recommended in white area.

09/05/11 9/25

09/05/11 10/25

09/05/11 11/25

4. Sensor version information

This sensor can be recognized if reading below address data.

Address	Data	Bit Symbol	Description	
0x1200	D7-D0	VER_NUM[7:0]	VED NUMBER OF OAK in coop of #4 Conserv	
0x1201	D7-D0	VER_NUM[15:8]	VER_NUM[15:0] =01h in case of #1Sensor.	

5. Output-mode

TOSHIBA

This sensor has 14 modes of output. (7 type serial and 7 type parallel)

Table5-1: Explanation of Output-mode parameter

Address	Data	Bit Symbol	Description
	D7	CCP_LVDS_MODE	0h : Parallel output (default) 1h : Serial output
	D3	USE_PRED2	The predictor for DPCM compression. 0h : use predictor1 for DPCM 10bits to 8bits 1h : use predictor2 for other DPCMs (default)
0x125D	D2-D0	CCP_COMP_MODE[2:0]	(1) Serial output case 0h RAW10 1h RAW12 2h RAW8 3h DPCM 10bits to 8bits 4h DPCM 12bits to 8bits (default) 5h DPCM 10bits to 6bits 6h DPCM 12bits to 6bits (2) Parallel output case 0h 12bit 1h 10bit (from LSB to 2 nd LSB output "L" level) 2h 8bit (from LSB to 4 th LSB output "L" level) 3h DPCM 10bits to 8bits (from LSB to 4 th LSB output "L" level) 4h DPCM 12bits to 8bits (from LSB to 4 th LSB output "L" level) 5h DPCM 10bits to 6bits (from LSB to 6 th LSB output "L" level) 6h DPCM 12bits to 6bits (from LSB to 6 th LSB output "L" level)

09/05/11 12/25

How to set DPCM

[1] DPCM 10bits to 8bits

- (1) $CCP_COMP_MODE = 3d$
- (2) $USE_PRED2 = 0d$
- (3) MRCK = SPCK = 1/8 and MRCK=1/8,SPCK=1/7 and MRCK=1/8,SPCK=1/6

[2] DPCM 12bits to 8bits

- (1) CCP_COMP_MODE = 4d (2) USE_PRED2 = 1d
- (3) MRCK = SPCK = 1/8

[3] DPCM 10bits to 6bits

- (1) CCP_COMP_MODE = 5d (2) USE_PRED2 = 1d
- (3) MRCK = SPCK = 1/6

How to set MRCK and SPCK,

Please refer to the Section 9. PLL and Frame rate Setting when CCP2 output.

09/05/11 13/25

6. Start pixel information

Start pixel information is as follows.

- (1) B pixel (In case of No top/bottom flip and No right/left flip)
- (2) Gb pixel (In case of No top/bottom flip and right/left flip)
- (3) Gr pixel (In case of top/bottom flip and No right/left flip)
- (4) R pixel (In case of top/bottom flip and right/left flip)

7. Data output specification

This sensor has dummy data at 1st line and end line.

All of output mode(e.g.binning mode/crop mode) have dummy data.

5M full output case (No top/bottom flip and No right/left flip)

Dummy data specification

RAW10 case

0A 07 07 07 55 07 07 07 07 55 07 ····· 07 07 07 07 55

RAW8 and other format

0A 07 07 07 ····· 07

Dummy bit of multiple of 32 in serial output mode Dummy data is without 0x00

With or without Dummy data can be selected by a resister. (Add:0x125E, D5. Resister name is EMBEDDED_DATA. 0h:OFF(without dummy data) 1h:ON(with dummy data), default setting is 1h)

Fig7-1: In case of WITH dummy data

Fig7-2: In case of WITHOUT dummy data

09/05/11 14/25

8. Command effect timing

If changing parameter setting, input at period of imaging data. Setting parameter will be effected next frame. About electrical shutter, will be effected 2 flames after.

In detail, Command latch timing from FE are following formula.

LTfFE(=Latch Timing from FE) = V blanking -7 (line)

These values depend on mode setting. Also refer to "column M" in a excel sheet at Page14

Fig8-1: Command effect timing

9. PLL and Frame rate setting when CCP2 output

(1) About CCP2 output case, please keep to the following relation of frequency

LVDSCK: MRCK = 8:1 (w/o DPCM 10bits to 6bits)

(2) Fastest frame rate will be needed, relation(1) and VCO_DIV=0d(x1 setting)

MRCK: 1/8 of CCP2 data rate

Fig9-1: PLL circuit

Fig9-2: Relation between SPCK, MRCK and LVDSCK

09/05/11 15/25 Table9-1: Explanation of PLL parameter

Address	Data	Bit Symbol	Description
0x1238	1238 D3-D0 CKREE DIVI3:0		Selection of reference clock for PLL 0d: 1/1, 1d: 1/2, 2d: 1/3, 3d: 1/4,,,, 15d: 1/16
0x1239	D7-D0	CKVAR DIV [8:0]	Selection of divider clock for PLL
0x1238 D7		CRVAR_DIV [0.0]	0d to 15d: N/A, 16d: 1/16, 17d: 1/17,,,, 510d: 1/510, 511d: 1/511
0.4004	D7-D4	VCO_DIV[3:0]	Selection of divider of VCO clock 0d: 1/1, 1d: 1/2, 2d: 1/3, 3d: 1/4,,,, 15d: 1/16
0x123A	D3-D0	SPCK_DIV[3:0]	Selection of divider for Clock for LOGIC 0d: 1/1, 1d: 1/2, 2d: 1/3, 3d: 1/4,,,, 15d: 1/16
0v422D	D7-D4	MRCK_DIV[3:0]	Selection of divider for Clock for LOGIC 0d: 1/1, 1d: 1/2, 2d: 1/3, 3d: 1/4,,,, 15d: 1/16
0x123B	D3-D0	LVDSCK_DIV[3:0]	Selection of divider for LVDS clock 0d: 1/1, 1d: 1/2, 2d: 1/3, 3d: 1/4,,,, 15d: 1/16

Detail of PLL and Frame rate setting, please refer to below a excel sheet (table2). This version is ver1.7.

Formula is as follows

```
VCO [MHz] = EXTCLK * CKVAR_DIV / 3

CCP2 [Mbps] = VCO / { ( LVDSCK_DIV + 1 ) * ( VCO_DIV + 1 ) }

spck [MHz] = VCO / { ( SPCK_DIV +1 ) * ( VCO_DIV + 1 ) }

Frame rate [fps] = { spck / ( IA_H * IA_V ) } * 1,000,000

( IA_H and IA_V : H and V values of Image area readout with blanking. )
```

09/05/11 16/25

10. Picture size and View finder setting

10-1 Picture size setting

Table10-1: Explanation of output format parameter

Address	Data	Bit Symbol	Description
0x1221	H COUNTION P		Selection of total horizontal clock count including blanking
0x1220			Please refer to excel sheet of table of Setting rage(*1)
0x1223	D4-D0	V_COUNT[12:0]	Selection of total Vertical line count including blanking
0x1222	D7-D0	V_COONT[12.0]	Setting rage is from 84d to 2730d.
0x1225	D7	TBINV	ON/OFF of vertical inversion 0d: OFF(normal), 1d:ON (vertical flip)
0.000	D6	RLINV	ON/OFF of horizontal inversion 0d: OFF(normal), 1d:ON (horizontal flip)
0x121D	D6-D4	H_SIZE[2:0]	Horizontal CROP mode 0d:1/6, 1d: 1/4, 2d: 1/3, 3d: 1/2, 4d: 2/3, 5d: 3/4, 6d-7d: no crop (=full)
0.0012110	D2-D0	H_INTERMIT[2:0]	Horizontal digital scaling mode 0d:1/6, 1d:1/4, 2d: 1/3, 3d:1/2 4d-7d: 1/1(=full)
0v424B	D6-D4	PIC_SIZE[2:0]	Vertical CROP mode 0d:1/6, 1d: 1/4, 2d: 1/3, 3d: 1/2, 4d: 2/3, 5d: 3/4, 6d-7d: no crop (=full)
0x121B	D2-D0	MONI_MODE[2:0]	Horizontal pixel binning mode 0d:1/6, 1d:1/4, 2d: 1/3, 3d:1/2 4d-7d: 1/1(=full)
0x1224 D5-D0 F_COUNT[5:0] Selection of intermittent frame output mode 0d: 1/1, 1d: 1/2 , 2d: 1/3 , 3d: 1/4 ,,,, 63d: 1/64		·	

Below excel sheet is table of H_count setting range.

If Night mode setting like a long exposure is needed, please increase value of V_COUNT (not slowing down of vco/pixclk).

10-1-1 Output format setting

Please refer to a excel sheet at Page 11(table2)

10-2 VGA view finder with zoom setting

Please refer to a excel sheet at Page 11 (table3)

10-3 How to digital zoom in case of VGA

Please refer to a excel sheet at Page 11 (digital zoom page)

09/05/11 17/25

11. Analog gain and Digital gain setting

Table11-1: Explanation of Gain setting parameter

Address	Data	Bit Symbol	Description	
0x124A	D3-D0	MA C[44.0]	Analog gain setting	
0x1249	D7-D0	MAG[11:0]	20h: 0dB, 40h: 6dB, 80h: 12dB, 100h: 18dB(max recommended)	
0x124D	D1-D0	MDC[0:0]	Gain setting of digital gain	
0x124C	D7-D0	MDG[9:0]	0h: x1, 3FF: x 2 (Normal mode) (**Depend on setting of DGM_MODE)	
0x124D	D7-D6	DGM_MODE[1:0]	0d : from x1 to x2 1d : from x0 to x2 2d : from x1 to x3 3d : from x0 to x4	

11-1 Analog gain

Analog gain can be changed by MAG [11-0]. (Add:0x1249 Data:D7-D0 and Add:0x124A Data:D3-D0)

Analog gain [dB] = 20*log10 (setting value(decimal) /32) Setting range is from 0x020 to 0x100.

09/05/11 18/25

11-2 Digital gain

Digital gain can be changed by MDG [9-0]. (Add:0x124C Data:D7-D0 and Add:0x124D Data:D1-D0) Changing DGM_MODE(Add:124D D7-D6), characteristics of digital gain can be changed.

DGM_MODE=0d

Digital gain[dB] = 20*log10(1/1023*Setting value(hex)+1)

DGM MODE=1d

Digital gain[dB] = 20*log10(2/1023* Setting value(hex))

DGM_MODE=2d

Digital gain[dB] = 20*log10(2/1023* Setting value(hex)+1)

DGM_MODE=3d

Digital gain[dB] = 20*log10(4/1023* Setting value(hex))

09/05/11 19/25

13. Preset gain and White balance gain

Table13-1: Explanation of White balance parameter

Address	Data	Bit Symbol	Description	
0x1435	D7-D0	PWB_RG[7:0]	Pre-set gain for Red pixel (00h:x1, FFh:x3)	
0x1436	D7-D0	PWB_GRG[7:0]	Pre-set gain for G pixel in Red line. (00h:x1, FFh:x3)	
0x1437	D7-D0	PWB_GBG[7:0] Pre-set gain for G pixel in Blue line. (00h:x1, FFh:x3)		
0x1438	D7-D0	PWB_BG[7:0]	Pre-set gain for Blue pixel (00h:x1, FFh: x3)	
0x124E	D1-D0	WD DC[0.0]	Gain setting of B digital gain for white balance	
0x124F	D7-D0	WB_RG[9:0]	0h: x0, 100h: x1, 200h: x2, 3FFh: x 4	
0x124E	D3-D2	WD 0010-01	Gain setting of G digital gain for white balance	
0x1250	D7-D0	WB_GG[9:0]	0h: x0, 100h: x1, 200h: x2, 3FFh: x 4	
0x124E	D5-D4	WD DC[0.0]	Gain setting of B digital gain for white balance	
0x1251	D5-D4	WB_BG[9:0]	0h: x0, 100h: x1, 200h: x2, 3FFh: x 4	
0x1439	D7	DIG_PWB_SW	Switch of Preset-White-balance (0d:disable / 1d:enable)	

14. Electrical shutter

Table14-1: Explanation of Electrical shutter parameter

Address	Data	Bit Symbol	Description
0x1244	D7-D0	MES[15:0]	Setting of electrical exposure time
0x1243	D7-D0	WE3[13.0]	1h: 1H ~ FFFFh: 65535H (max)

max exp time(MES) = VCOUNT value (=Total line numbers) - 4line

09/05/11 20/25

15. Data format of CCP2 Output

8 byte of synchronization codes are attached at the start and the end of each frame and each line.

	Code	Value
SOL	Line start code	FF _H 00 _H 00 _H 00 _H
EOL	Line end code	FF _H 00 _H 00 _H 01 _H
SOF	Frame start code	FF _H 00 _H 00 _H 02 _H
EOF	Frame end code	FF _H 00 _H 00 _H 03 _H

<Data structure in one vertical scan for CCP2 output>

To detect possible errors in transmission, a checksum is calculated over each data line. The checksum is realized as 16-bit CRC. The generator polynomial is $x^16+x^12+x^5+1$. The checksum sequence is then padded with 16-bit padding sequence (101010 ---10) to fulfill the 32-bit word alignment requirement in the CCP link. The transmission of checksum is illustrated in the figure below.

09/05/11 21/25

TOSHIBA

Polynomial: $x^{16} + x^{12} + x^5 + 1$

Note: C15 represents x⁰, C0 represents x¹⁵

Data description in each byte in one line (LSB first expression)

P3[9:2]

P4[9:2]

Line end P2	589[7:0] P	P2590[7:0]	P2591[7:0]	P2592[7:0]	FF	00	00	01

09/05/11 22/25

<Bit by bit structure> Output mode of sensor raw data

Sensor raw data (R or G or B pixel by pixel)

10 bit sensor raw data are divided into upper 8 bit and lower 2 bit to send 10 bit depth data in 8 bit data scheme of CCP serial output. The following procedure and data arrangement is implemented to avoid 00h and FFh appearance in each 8 bit data.

(1) Sensor raw data range is compressed from 0 -1023 to 4 -1023. Namely 0-3 data are set to 4.

This compaction does not affect the picture quality, because , for example, the black level is set to $64\ \text{level}$.

(2) 10 bit data (4 - 1023) is separated into upper 8bit and lower 2 bit.

The upper 8 bit has never all "0" value.

The four pixel data with 10 bit are arranged into the following five bytes.

	upper 8 bit of pixel A
2	upper 8 bit of pixel B
3	upper 8 bit of pixel C
4	upper 8 bit of pixel D
5	4 of lower 2 bit for 4 pixels

When all bits of No.5 byte are 0, 00h is replaced by 10h. In the LSB first form, "00001000" is used in conformity with CCP2 specification.

(3) The host rearranges the five bytes to 4 pixel data with 10 bit.

09/05/11 23/25

16. CCP2 Skew Adjustment

I²C command at 0x1269 address is used to adjust the delay of data and strobe signal in CCP2 to compensate skew between data and strobe. CRC data is checked for a certain pattern data by changing the data at address 0x1269 as 40h->30h->20h->10h->00h->01h->02h->03h->04h to find out OK zone. After that 0x1269 is set corresponding to the center of the OK zone.

Address	Data	Bit Symbol	Description
0x1269	D7-D4	CCP2SDLY[3:0]	CCP2 strobe signal delay adjustment 0h: No delay, 1h: 0.1nsec delay, 2h: 0.2nsec delay, ~ Fh: 1.5nsec delay
0.1209	D3-D0	CCP2DDLY[3:0]	CCP2 data signal delay adjustment Oh: No delay, 1h: 0.1nsec delay, 2h: 0.2nsec delay, ~ Fh: 1.5nsec delay
0x1268	D7	CCP2STP_X	CCP2 output ON/OFF 0h: ON(=operate), 1h: OFF(=stop)
0x1263	D4	CCP2CRCSW	CRC data output ON/OFF 0h: OFF, 1h: ON(CRC data are added)

CCP2 skew adjustment between data & strobe

09/05/11 24/25

17. Revision History

Revision Date Comments Ver2.30a 21th Dec, 2008 Draft

Ver2.30b 11th May, 2009 Following yellow hatched items are added.

Sensor/Module model name (P1,P3) Data format of CCP2 Output(P21) CCP2 Skew Adjustment(P24)

09/05/11 25/25