MATH 220 Practice Midterm 2 — September, 2024, Duration: 50 minutes This test has 5 questions on 9 pages, for a total of 50 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5
Points:					
Total:					/50

- 1. Negate each of the following and prove or disprove the original statement:
 - (a) For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$, such that there exists $z \in \mathbb{Z}$, such that xy > z implies x + y < z".

Solution: The negation is "There exists $x \in \mathbb{Z}$ such that for all $y \in \mathbb{Z}$, there exists $z \in \mathbb{Z}$ such that xy > z and $z \le x + y$.

Proof. Let $x \in \mathbb{Z}$. Choose y = 0 and z = -1. Notice the hypothesis xy > z is false, so the result holds.

(b) For all $x \in \mathbb{N}$, for all $y \in \mathbb{N}$ such that x < y, there exists $a, b \in \mathbb{Z}$ such that $ax + by < \left|\frac{x}{y}\right|$

Solution: The negation is "There exists $x \in \mathbb{N}$ such that there exists $y \in \mathbb{N}$ such that x < y such that for all $a, b \in \mathbb{Z}$, $ax + by \ge \left|\frac{x}{y}\right|$

Proof. Let $x, y \in \mathbb{N}$. Choose a, b = -1 and hence the result holds.

10 Marks | 2.

2. Let $n, k \in \mathbb{N}$. Prove that if for all $m \in \mathbb{Z}$, $m^k \neq n$, then $n^{1/k}$ is irrational.

Solution:

Proof. Let $n, k \in \mathbb{N}$. We prove the contrapositive. Assume $n^{1/k}$ is rational, so $n^{1/k} = \frac{a}{b}$ for some coprime $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Notice $n = \frac{a^k}{b^k}$. Since n is an integer, we know b = 1 so $n = a^k$ and thus the results follows.

- 3. The Archimedean property of the reals guarantees that for all $x, y \in \mathbb{R}$ where x > 0, there exists $n \in \mathbb{N}$ such that nx > y.
 - (a) Let $x, y \in \mathbb{R}^+$. Prove that there exists $m \in \mathbb{N}$ such that $(m-1)x \leq y < mx$.

Solution:

Proof. Let $x, y \in \mathbb{R}^+$. By the Archimedean property of the reals, we know there exists $m \in \mathbb{N}$ such that mx > y. Now choose m to be the smallest possible m such that mx > y. It follows that $(m-1)x \leq y$ as otherwise we would have (m-1)x = mx which is impossible since $x \neq 0$. Thus, $(m-1)x \leq y < mx$ as required.

(b) Using (a), prove that for all $x, y \in \mathbb{R}^+$ such that x < y, there exists $q \in \mathbb{Q}$ such that x < q < y. (Hint: Consider y - x and also notice $1 \in \mathbb{R}^+$)

Solution:

Proof. Let $x, y \in \mathbb{R}^+$. By the Archimedean property of the reals, we know there exists $n \in \mathbb{N}$ such that n(y-x) > 1. From part (a), we also know there exists $m \in \mathbb{N}$ such that $(m-1) \le nx < m$. Hence,

$$1 < n(y - x)$$

$$1 + nx < ny$$

$$1 + (m - 1) \le 1 + nx < ny$$

$$m < ny$$

$$nx < m < ny$$

$$x < \frac{m}{n} < y$$

Since $n \in \mathbb{N}$, it follows $\frac{m}{n} \in \mathbb{Q}$ so there exists $q \in \mathbb{Q}$ such that x < q < y as required.

(c) Assume that $\sqrt{2}$ is irrational. Using $\sqrt{2}$, prove that for all $x, y \in \mathbb{R}^+$ such that x < y, there exists $z \in \mathbb{R} \setminus \mathbb{Q}$ such that x < z < y. You may assume that irrational numbers added to and multiplied by rational numbers are still irrational. (Hint: From part (b), we have that there exists $p, q \in \mathbb{Q}$ such that x)

Solution:

Proof. Let $x,y \in \mathbb{R}^+$ and assume that $\sqrt{2}$ is irrational. Notice, $\frac{\sqrt{2}}{2}$ is also irrational and $\frac{\sqrt{2}}{2} < 1$. From part (b), we know there exists $p,q \in \mathbb{Q}$ such that $x . Choose <math>\alpha = p + \frac{\sqrt{2}}{2}(q-p)$. Then, q-p>0 since q>p, so $\alpha>p$. But also, since $\frac{\sqrt{2}}{2} < 1$, $\alpha . Since <math>\alpha$ is irrational and x , we have that for all <math>x, y, there exists $z \in \mathbb{R} \setminus \mathbb{Q}$ such that x < z < y as required.

- 4. Let $A = \{-1, 2, \frac{1}{2}\}$
 - (a) Prove by induction that if 1 is written as a product $1 = p_1 p_2 p_3 \dots p_n$ where $p_i \in A$, then n is even.

Solution:

Proof. Let A be as stated. We proceed with mathematical induction on the number of $p_i \in A$ that are being multiplied together.

- For the base case, notice $1 \notin A$ so $1 \neq p_1$. The base case holds.
- Assume that if for all i such that $1 \le i \le k$, $1 = p_1 p_2 p_3 \dots p_k$ is only possible when k is even. For k + 1, we proceed with a proof by cases.
 - Assume $p_{k+1} = \frac{1}{p_i}$ for some i such that $1 \le i \le k$. Then, $p_i p_{k+1} = 1$ and thus we are left with $p_1 p_2 \dots p_{i-1} p_{i+1} \dots p_k$, which has a length of k-1 and thus by our assumption, k-1 is even or 1 cannot be written as a product $1 = p_1 p_2 \dots p_{i-1} p_{i+1} \dots p_k$. In both cases, we have k+1 is even or 1 cannot be written as a product $1 = p_1 p_2 \dots p_{k+1}$
 - Assume $p_{k+1} \neq \frac{1}{p_i}$ for all i such that $1 \leq i \leq k$. We split this into another proof by cases.
 - * If $p_{k+1} = -1$, then we know for all i such that $1 \le i \le k$, $p_i \ne -1$ so $p_1 p_2 \dots p_{k+1} < 0$ and hence cannot be 1.
 - * If $p_{k+1} \neq -1$, then there exists j where $1 \leq j \leq k$ such that $p_{k+1} = p_j$. There are 2 cases to verify.
 - · Assume for all i such that $1 \le i \le k$, $p_i \ne 2$. Then, $p_1 p_2 \dots p_{k+1} \le \frac{1}{2}$ and hence cannot be 1.
 - · Assume for all i such that $1 \le i \le k$, $p_i \ne \frac{1}{2}$ and thus $p_1 p_2 \dots p_{k+1} \ge 2$ and hence cannot be 1.

Since we have that this product is equal to 1 in none of the cases, our inductive step still holds.

Since both the base case and the inductive step hold, by the principle of mathematical induction, the result holds for all $n \in \mathbb{N}$.

(b) Prove or disprove that the same applies for $B = \{-1, \pm 2, \pm \frac{1}{2}\}.$

Solution:

Disproof. Let B be as stated. Notice $1 = -1 \cdot -2 \cdot \frac{1}{2}$ so $1 = p_1 p_2 p_3$ where $p_1, p_2, p_3 \in B$ but 3 is not even, so the same does not apply for B.

5. Prove that for all $\delta > 0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{\frac{\pi}{2} + 2\pi n} < \delta$, and hence prove that the limit $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = L$ does not exist. (Hint: Archimedean property of the reals)

Solution:

Proof. Let $\delta > 0$. Notice $2\pi, \frac{1}{\delta} - \frac{\pi}{2} \in \mathbb{R}$ and by the Archimedean property of the reals, we know there exists $n \in \mathbb{N}$ such that

$$2\pi n > \frac{1}{\delta} - \frac{\pi}{2}$$
$$\frac{\pi}{2} + 2\pi n > \frac{1}{\delta}$$

so $\frac{1}{\frac{\pi}{2}+2\pi n}<\delta$ as required. Let $\varepsilon=1,\ \delta>0$ and choose $x=\frac{1}{\frac{\pi}{2}+2\pi n}$ such that $x<\delta$, and notice x=|x| and x>0 so we have $0<|x|<\delta$. Observe that $\left|\sin\left(\frac{1}{x}\right)\right|=\left|\sin\left(\frac{\pi}{2}+2\pi n\right)\right|=1=\varepsilon$ so the limit $\lim_{x\to 0}\sin\left(\frac{1}{x}\right)=L$ does not exist.