Assignment #2 Matt Langlois - 7731813 October 25

Question 1

- a) 20, 15, 10, 5, 3, 7, 13, 12, 19, 16, 35, 25, 40, 38
- b) 3, 7, 5, 12, 13, 10, 16, 19, 15, 25, 38, 40, 35, 20
- c) Searches for the largest value in a binary tree.

```
findMax(Node n) {
    if (n.hasRightChild()) {
        return findMax(n.rightChild());
    }
    return n;
}
```

d) Insert element: 21

e) Case 1: Replace 15 with the left most node of the right subtree. Then remove the leftmost node of the right subtree.

Case 2: Replace 15 with the right most node of the left subtree. Any children of the right most node become children of the right most node's parent.

Question 2

a) Step 1: Replace node with the last node in the heap

Step 2: Downheap while the children are larger

Step 3: Downheap while the children are larger

Step 4: Downheap to become a leaf node

b) Insert element 3 at the left most position on the empty row. No further changes are required as the $7 \geq 3$ property of the max heap is satisfied

c) Step 1: Insert at left most node in the empty row

16 14 10 8 7	$9 \mid 3$	2 4	1	<u>15</u>
----------------------	------------	-----	---	-----------

Step 2: Upheap 15 until max heap property $parent \geq child$ is met

Step 3: Upheap once more to satisfy the max-heap property.

16	15	10	8	14	9	3	2	4	1	7

d) Calculate the height of a 2000 element heap:

$$h(n) = \lfloor log_2(n) \rfloor$$
$$h(2000) = \lfloor log_2(2000) \rfloor$$
$$h(2000) = 10$$

 \therefore the height of a 2000 node heap is 10.