Université: Mohamed Khider

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématéques

Nivaux Master 01

Module: Lois des probabilités 2020/2021

Cours N^o 01

Définition 1.1. On appelle probabilité P sur un espace mesurable (Ω, F) toute application de F dans \mathbb{R}^+ vérifiant les axiomes de Kolmogorov:

- 1) $P(A) \ge 0$ pour tout $A \in \mathcal{F}$.
- 2) $P(\Omega) = 1$.
- 3) Si deux événements A et B $(A, B \in \mathcal{F})$ sont incompatibles et tels que $A \cap B = \emptyset$, alors $P(A \cup B) = P(A) + P(B)$, (additivité de P).
- 4) Soit $\{An\}$ une suite d'événements, décroissante (au sens de l'inclusion) vers \emptyset , $A_n \downarrow \emptyset$, $A_1 \supseteq A_2 \supseteq \dots$ et $\bigcap_{n \ge 1} A_n = \emptyset$, $A_n \in \mathcal{F}$, alors

$$\lim_{n\to\infty} P(A_n) = 0, \text{ (continuité en 0 de } P).$$

Définition 1.2. Le triplet (Ω, \mathcal{F}, P) est appelé espace probabilisé.

Définition 1.3. On dit que l'événement A est impossible (négligable), si P(A) = 0.

Il est évident que \varnothing est l'événement impossible.

Définition 1.4. On dit qu'une propriété est vérifiée presque partout ou presque sûrement et on note (mod P), si elle est vraie sur un événement Λ , $\Lambda \in \mathcal{F}$, tel que $P(\Lambda) = 1$.

On dit aussi que Λ est un événement certain. Il est évident que Ω est l'événement certain.

Définition 1.5. Deux événements A et B sont incompatibles si $P(A \cap B) = 0$.

Théorème 1.1. La fonction P(A) est σ -additive sur A, i.e. pour chaque suite d'événements $A_n \in A$, $n \in \mathbb{N}^*$, incompatibles deux a deux on a

$$P\left(\bigcup_{n\geq 1} A_n\right) = \sum_{n>1} P\left(A_n\right).$$

L'indépendance

Définition 1.6. Soient (Ω, \mathcal{F}, P) un espace probabilisé, A et B deux événements, $A, B \in \mathcal{F}$. On dit que A et B sont indépendants si $P(A \cap B) = P(A)P(B)$.

Définition 1.7. Les σ -algèbres $F_1, ..., F_m$ sont indépendantes si $P(A_1...A_m) = P(A_1)...P(A_m)$ pour tout $A_i \in F_i$, i = 1, ..., m.

Exemple 1. Si les événements A et B sont indépendents, alors A et \overline{B} sont indépendents

aussi. En effet,

$$P(B \cap \overline{A}) = P(B \setminus A \cap B),$$

$$= P(B) - P(A \cap B),$$

$$= P(B) - P(A)P(B),$$

$$= P(B)[1 - P(A)],$$

$$= P(B)P(A).$$

Exemple 2. Si A_1 et B sont indépendants, A_2 et B sont indépendants, $A_1 \cap A_2 = \emptyset$, alors $A_1 \cup A_2$ et B sont indépendants aussi. En effet, comme

$$P(A_i \cap B) = P(A_i)P(B),$$

on a

$$P((A_1 \cup A_2) \cap B) = P(A_1 \cap B) + P(A_2 \cap B),$$

= $P(B)[P(A_1) + P(A_2)],$
= $P(B)P(A_1 \cup A_2).$

Théorème de Borel-Cantelli

Définition 1.8. Soit $\{A_n\}$, $n \in \mathbb{N}^*$ une suite d'événements $A_n \in \mathcal{F}$. Alors les événements

$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k, \text{ et } \underline{\lim} A_n = \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k,$$

sont appelés la limite supérieure et la limite inférieure respectivement de la suite $\{A_n\}$.

L'événement $\overline{\lim} A_n$ se produit si et seulement si le nombre infini d'événements de la suite se produisent, puisque

$$\omega \in \overline{\lim}_{n \to \infty} A_n \Leftrightarrow \forall n \in \mathbb{N}^*, \exists k \ge n : \omega \in A_k.$$

L'événement $\underline{\lim} A_n$ se produit si et seulement si tous les événemets de la suite se produisent sauf peut-être un nombre fini parmi eux, puisque

$$\omega \in \underline{\lim}_{n \to \infty} A_n \Leftrightarrow \exists n \in \mathbb{N}^*, \forall k \ge n : \omega \in A_k.$$