

SEQUENCE LISTING

<110> National University of Singapore
<120> Pygopus in Diagnosis and Treatment of Cancer
<130> 50680-4
<150> US 60/463 309
<151> 2003-04-17
<150> US 60/496 012
<151> 2003-08-19
<160> 28
<170> PatentIn version 3.3

<210> 1
<211> 3190
<212> DNA
<213> homosapiens

<220>
<223> hPygo-2

<220>
<221> CDS
<222> (173)..(1393)

<400> 1
gtctggagag agcgcgcagt ttgcgcggcg gctcgccgt tccctgtcgt cgcaactttgt 60
ggtgtctgca gtcgggggc ctgggctgcc cctgacaccc cttctggcg atggtgcagc 120
ccaaggcgca ctccatcccc cgccgctgcc gctaaccgg gtcccccact cc atg gcc 178
Met Ala
1
gcc tcg gcg ccc cca ccg gac aag ctg gag gga ggt ggc ggc ccc 226
Ala Ser Ala Pro Pro Pro Pro Asp Lys Leu Glu Gly Gly Gly Pro
5 10 15
gca ccg ccc cct gcg ccg ccc agc acc ggg agg aag cag ggc aag gcc 274
Ala Pro Pro Pro Ala Pro Pro Ser Thr Gly Arg Lys Gln Gly Lys Ala
20 25 30
ggt ctg caa atg aag agt cca gaa aag aag cga agg aag tca aat act 322
Gly Leu Gln Met Lys Ser Pro Glu Lys Lys Arg Arg Lys Ser Asn Thr
35 40 45 50
cag ggc cct gca tac tca cat ctg acg gag ttt gca cca ccc cca act 370
Gln Gly Pro Ala Tyr Ser His Leu Thr Glu Phe Ala Pro Pro Pro Thr
55 60 65
ccc atg gtg gat cac ctg gtt gca tcc aac cct ttt gaa gat gac ttc 418
Pro Met Val Asp His Leu Val Ala Ser Asn Pro Phe Glu Asp Asp Phe
70 75 80

gga gcc ccc aaa gtg ggg gtt gca gcc cct cca ttc ctt ggc agt cct		466	
Gly Ala Pro Lys Val Gly Val Ala Ala Pro Pro Phe Leu Gly Ser Pro			
85	90	95	
gtg ccc ttc gga ggc ttc cgt gtg cag ggg ggc atg gcg ggc cag gta		514	
Val Pro Phe Gly Gly Phe Arg Val Gln Gly Gly Met Ala Gly Gln Val			
100	105	110	
ccc cca ggc tac agc act gga ggt gga ggg ggc ccc cag cca ctc cgt		562	
Pro Pro Gly Tyr Ser Thr Gly Gly Gly Pro Gln Pro Leu Arg			
115	120	125	130
cga cag cca ccc ccc ttc cct ccc aat cct atg ggc cct gct ttc aac		610	
Arg Gln Pro Pro Phe Pro Pro Asn Pro Met Gly Pro Ala Phe Asn			
135	140	145	
atg ccc ccc cag ggt cct ggc tac cca ccc cca ggc aac atg aac ttt		658	
Met Pro Pro Gln Gly Pro Gly Tyr Pro Pro Pro Gly Asn Met Asn Phe			
150	155	160	
ccc agc caa ccc ttc aac cag cct ctg ggt caa aac ttt agt cct ccc		706	
Pro Ser Gln Pro Phe Asn Gln Pro Leu Gly Gln Asn Phe Ser Pro Pro			
165	170	175	
agt ggg cag atg atg ccg ggc cca gtg ggg gga ttt ggt ccc atg atc		754	
Ser Gly Gln Met Met Pro Gly Pro Val Gly Gly Phe Gly Pro Met Ile			
180	185	190	
tca ccc acc atg gga cag cct ccc aga gca gag ctg ggc cca cct tct		802	
Ser Pro Thr Met Gly Gln Pro Pro Arg Ala Glu Leu Gly Pro Pro Ser			
195	200	205	210
ctg tcc caa cga ttt gct cag cca ggg gct cct ttt ggc cct tct cct		850	
Leu Ser Gln Arg Phe Ala Gln Pro Gly Ala Pro Phe Gly Pro Ser Pro			
215	220	225	
ctc cag aga cct ggt cag ggg ctc ccc agc ctg ccg cct aac aca agt		898	
Leu Gln Arg Pro Gly Gln Gly Leu Pro Ser Leu Pro Pro Asn Thr Ser			
230	235	240	
ccc ttt cct ggt ccg gac cct ggc ttt cct ggc cct ggt ggt gag gat		946	
Pro Phe Pro Gly Pro Asp Pro Gly Phe Pro Gly Pro Gly Glu Asp			
245	250	255	
ggg ggg aag ccc ttg aat cca cct gct tct act gct ttt ccc cag gag		994	
Gly Gly Lys Pro Leu Asn Pro Pro Ala Ser Thr Ala Phe Pro Gln Glu			
260	265	270	
ccc cac tca ggc tcc ccg gct gct gct gtt aat ggg aac cag ccc agt		1042	
Pro His Ser Gly Ser Pro Ala Ala Ala Val Asn Gly Asn Gln Pro Ser			
275	280	285	290
ttc ccc ccg aac agc agt ggg cgg ggt ggg ggc act cca gat gcc aac		1090	
Phe Pro Pro Asn Ser Ser Gly Arg Gly Gly Gly Thr Pro Asp Ala Asn			
295	300	305	
agc ttg gca ccc cct ggc aag gca ggt ggg ggc tcc ggg ccc cag cct		1138	
Ser Leu Ala Pro Pro Gly Lys Ala Gly Gly Gly Ser Gly Pro Gln Pro			
310	315	320	

ccc cca ggc ttg gtg tac cca tgt ggt gcc tgt cggttcc agt gag gtg aac	1186
Pro Pro Gly Leu Val Tyr Pro Cys Gly Ala Cys Arg Ser Glu Val Asn	
325 330 335	
 gat gac cag gat gcc att ctg tgt gag gcc tcc tgc cag aaa tgg ttc	1234
Asp Asp Gln Asp Ala Ile Leu Cys Glu Ala Ser Cys Gln Lys Trp Phe	
340 345 350	
 cac cgt gag tgc aca ggc atg act gag agc gcc tat ggg ctg ctg acc	1282
His Arg Glu Cys Thr Gly Met Thr Glu Ser Ala Tyr Gly Leu Leu Thr	
355 360 365 370	
 act gaa gct tct gcc gtc tgg gcc tgc gat ctc tgc ctc aag acc aag	1330
Thr Glu Ala Ser Ala Val Trp Ala Cys Asp Leu Cys Leu Lys Thr Lys	
375 380 385	
 gag atc cag tct gtc tac atc cgt gag ggc atg ggg cag ctg gtg gct	1378
Glu Ile Gln Ser Val Tyr Ile Arg Glu Gly Met Gly Gln Leu Val Ala	
390 395 400	
 gct aac gat ggg tga cgctggtgaa gtggccagg gaagtgcaca tgtctctccc	1433
Ala Asn Asp Gly	
405	
 tgctctcca gggtgatttt tttgatgttt ggctcttggc cttgtttcc actggctttc	1493
catccccatg gggcagaaaac agtggctcct gggagcagaa aagaattga ggtggccagg	1553
cagaagagcc tggattgctc actgttttgg gaaacttaca ttttgtggc tatttcttggc	1613
caggaaacca aagccctgtc gagcagagcc attttgtggc tatttcttggc gcccaggag	1673
tgtggctca agagaaaagg ggctggagga agatccggag ggcagggtg ttccctctgc	1733
tgtatgttgc tgccctaacc acctgtgcct aacaccccta ctgaacccca cagctccagc	1793
cttagtttt ggagtcaagt gttaaagggtt tctggccaga ggaattgggg ttttgcatac	1853
cctgcaatacg ccctttatg ggctctggc gacagctta gggaaaaat ggggattttc	1913
cccttttct acccactcct ttgcttcctc caagacttac ccaactcctt ccccttcaga	1973
gaaccaaata gcctgaggaa gcaggagagt tcctggttt ggcagtttct tgggtatttgc	2033
gggcttcaag acagtaggtt agagatgtc tcaggacgta tcttcttcat accaaagtca	2093
ctggccctt ctcagcctc tctgtgttt tcccttaatg accatatttt tgccaaaaat	2153
tgggatatgt tatctgacag accagaatat ttgaagtttggctgtcctg aaagtcttgc	2213
cttgggttgtt acccttcctc cccagcccat ctgttgcaca ttatactccg ttttttttttgc	2273
aacttcggc gcccttatttc ccctgccttc ctggcttgc tgaaggaaag cttgaaaagg	2333
cgccagagccc tatacctcat ttccctccatg ataaaaggat ccaagtggc ccctgtcaca	2393
gcctgtgggtt agggatgcg ggggatcctt cattgccatg gtactcaaag gtagaaagagc	2453
ctggagtttg ttgcttcctc ttgctattct ttcatatcctt cttggccctg gtgattaatt	2513
agcaatttctc attccttcata gccaaaggcc tgcactggc tttatttgc ttttttttttttttgc	2573
tttaagcac tgcctgccag agatggccctt gggcctgtat gaggaccta ggcgtgtcg	2633
ttctccctttt ctgttcatgc acacattctt ccatgggtt gggaaaggcag gcatgggttgc	2693
tggccctcgg agaagtttagt agtccccccat ctcagatatac agtggcaag acctagttgt	2753
cccttacccc cacttccttc agttccctggc atgaggagag aagaccctgc tctggtgag	2813
ctgacaacact ttgaggctgg gaggagagca ggccttggc atcgatccca gtgtccctca	2873
cactaaaacg gcgtagatgg caacccccc cccccacccc gctgtcaac tcttgtgttt	2933
tttgttctgt ttgccccatt tatctgttgc ttgtttttgtt ttgttttccctt ctgtccgca	2993
ttttgtaaaaa tggcccttgg gggagttttt ttgctggatc tgctccctt cgtctctca	3053
ctccactact ttttgacaa agtggatggca gaatgcgggtt gtggtgggg tcttttgc	3113
tttgtggatataaaatgtat tttaaaatcc caaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	3173
aaaaaaaaaaa aaaaaaaaaaaa	3190

<210> 2
<211> 406
<212> PRT
<213> homosapiens

<220>
<223> hPygo-2

<400> 2
Met Ala Ala Ser Ala Pro Pro Pro Pro Asp Lys Leu Glu Gly Gly Gly
1 5 10 15

Gly Pro Ala Pro Pro Pro Ala Pro Pro Ser Thr Gly Arg Lys Gln Gly
20 25 30

Lys Ala Gly Leu Gln Met Lys Ser Pro Glu Lys Lys Arg Arg Lys Ser
35 40 45

Asn Thr Gln Gly Pro Ala Tyr Ser His Leu Thr Glu Phe Ala Pro Pro
50 55 60

Pro Thr Pro Met Val Asp His Leu Val Ala Ser Asn Pro Phe Glu Asp
65 70 75 80

Asp Phe Gly Ala Pro Lys Val Gly Val Ala Ala Pro Pro Phe Leu Gly
85 90 95

Ser Pro Val Pro Phe Gly Phe Arg Val Gln Gly Gly Met Ala Gly
100 105 110

Gln Val Pro Pro Gly Tyr Ser Thr Gly Gly Gly Pro Gln Pro
115 120 125

Leu Arg Arg Gln Pro Pro Phe Pro Pro Asn Pro Met Gly Pro Ala
130 135 140

Phe Asn Met Pro Pro Gln Gly Pro Gly Tyr Pro Pro Pro Gly Asn Met
145 150 155 160

Asn Phe Pro Ser Gln Pro Phe Asn Gln Pro Leu Gly Gln Asn Phe Ser
165 170 175

Pro Pro Ser Gly Gln Met Met Pro Gly Pro Val Gly Phe Gly Pro
180 185 190

Met Ile Ser Pro Thr Met Gly Gln Pro Pro Arg Ala Glu Leu Gly Pro
195 200 205

Pro Ser Leu Ser Gln Arg Phe Ala Gln Pro Gly Ala Pro Phe Gly Pro
210 215 220

Ser Pro Leu Gln Arg Pro Gly Gln Gly Leu Pro Ser Leu Pro Pro Asn
225 230 235 240

Thr Ser Pro Phe Pro Gly Pro Asp Pro Gly Phe Pro Gly Pro Gly Gly
245 250 255

Glu Asp Gly Gly Lys Pro Leu Asn Pro Pro Ala Ser Thr Ala Phe Pro
260 265 270

Gln Glu Pro His Ser Gly Ser Pro Ala Ala Ala Val Asn Gly Asn Gln
275 280 285

Pro Ser Phe Pro Pro Asn Ser Ser Gly Arg Gly Gly Gly Thr Pro Asp
290 295 300

Ala Asn Ser Leu Ala Pro Pro Gly Lys Ala Gly Gly Gly Ser Gly Pro
 305 310 315 320

Gln Pro Pro Pro Gly Leu Val Tyr Pro Cys Gly Ala Cys Arg Ser Glu
 325 330 335

Val Asn Asp Asp Gln Asp Ala Ile Leu Cys Glu Ala Ser Cys Gln Lys
 340 345 350

Trp Phe His Arg Glu Cys Thr Gly Met Thr Glu Ser Ala Tyr Gly Leu
 355 360 365

Leu Thr Thr Glu Ala Ser Ala Val Trp Ala Cys Asp Leu Cys Leu Lys
 370 375 380

Thr Lys Glu Ile Gln Ser Val Tyr Ile Arg Glu Gly Met Gly Gln Leu
 385 390 395 400

Val Ala Ala Asn Asp Gly
 405

<210> 3

<211> 1260

<212> DNA

<213> homosapiens

<220>

<221> CDS

<222> (1)...(1260)

<220>

<223> hPygo-1

<400> 3

atg ccc gcc gag aac tct cca gct ccc gct tac aaa gtt tcc tcg cat	48
Met Pro Ala Glu Asn Ser Pro Ala Pro Ala Tyr Lys Val Ser Ser His	
1 5 10 15	

ggt ggt gat agt gga ctg gat ggg tta gga gga cca ggt gta caa cta	96
Gly Gly Asp Ser Gly Leu Asp Gly Leu Gly Gly Pro Gly Val Gln Leu	
20 25 30	

gga agc cca gat aag aaa aag cgc aag gca aat aca cag gga cct tct	144
Gly Ser Pro Asp Lys Lys Lys Arg Lys Ala Asn Thr Gln Gly Pro Ser	
35 40 45	

ttc cct cca ttg tct gag tat gct cca cca ccg aat cca aac tct gac	192
Phe Pro Pro Leu Ser Glu Tyr Ala Pro Pro Pro Asn Pro Asn Ser Asp	
50 55 60	

cat cta gtg gct gct aat cca ttt gat gac aac tat aat act att tcc	240
His Leu Val Ala Ala Asn Pro Phe Asp Asp Asn Tyr Asn Thr Ile Ser	
65 70 75 80	

tat aaa cca cta cct tcg tca aat cca tat ctt ggc cct ggt tat cct	288
Tyr Lys Pro Leu Pro Ser Ser Asn Pro Tyr Leu Gly Pro Gly Tyr Pro	
85 90 95	

ggc ttt gga ggc tat agt aca ttc aga atg cca cct cac gtt ccc cca Gly Phe Gly Tyr Ser Thr Phe Arg Met Pro Pro His Val Pro Pro	336
100 105 110	
aga atg tct tcc cca tac tgt ggt cct tac tca ctc agg aac cag cca Arg Met Ser Ser Pro Tyr Cys Gly Pro Tyr Ser Leu Arg Asn Gln Pro	384
115 120 125	
cac cca ttt cct cag aat cct ctg ggc atg ggt ttt aat cga cct cat His Pro Phe Pro Gln Asn Pro Leu Gly Met Gly Phe Asn Arg Pro His	432
130 135 140	
gct ttt aac ttt ggg cca cat gat aat tca agt ttc ggt aat cca tct Ala Phe Asn Phe Gly Pro His Asp Asn Ser Ser Phe Gly Asn Pro Ser	480
145 150 155 160	
tat aat aat gca cta agt cag aat gtc aac atg cct aat caa cat ttt Tyr Asn Asn Ala Leu Ser Gln Asn Val Asn Met Pro Asn Gln His Phe	528
165 170 175	
aga caa aat cct gct gaa aat ttc agt caa att cct cca cag aat gct Arg Gln Asn Pro Ala Glu Asn Phe Ser Gln Ile Pro Pro Gln Asn Ala	576
180 185 190	
agc caa gtt tct aac ccc gat ttg gca tct aat ttt gtt cct gga aat Ser Gln Val Ser Asn Pro Asp Leu Ala Ser Asn Phe Val Pro Gly Asn	624
195 200 205	
aat tca aat ttt act tct ccg tta gaa tct aat cat tct ttt att cct Asn Ser Asn Phe Thr Ser Pro Leu Glu Ser Asn His Ser Phe Ile Pro	672
210 215 220	
ccc cca aac act ttt ggt caa gca aaa gca cca ccc cca aaa caa gac Pro Pro Asn Thr Phe Gly Gln Ala Lys Ala Pro Pro Pro Lys Gln Asp	720
225 230 235 240	
ttt act caa gga gca acc aaa aac act aat caa aat tcc tct gct cat Phe Thr Gln Gly Ala Thr Lys Asn Thr Asn Gln Asn Ser Ser Ala His	768
245 250 255	
cca cct cac ttg aat atg gat gac aca gtg aat cag agt aat att gaa Pro Pro His Leu Asn Met Asp Asp Thr Val Asn Gln Ser Asn Ile Glu	816
260 265 270	
tta aaa aat gtt aat cga aac aat gca gta aat cag gag aac agc cgt Leu Lys Asn Val Asn Arg Asn Asn Ala Val Asn Gln Glu Asn Ser Arg	864
275 280 285	
tca agt agc act gaa gcc aca aac aat aac cct gca aat ggg acg cag Ser Ser Ser Thr Glu Ala Thr Asn Asn Pro Ala Asn Gly Thr Gln	912
290 295 300	
aat aag cca cga caa cca aga ggt gca gca gat gcc tgc acc aca gaa Asn Lys Pro Arg Gln Pro Arg Gly Ala Ala Asp Ala Cys Thr Thr Glu	960
305 310 315 320	
aaa agc aat aaa tcc tct ctt cac cca aac cgt cat ggc cat tcg tct Lys Ser Asn Lys Ser Ser Leu His Pro Asn Arg His Gly His Ser Ser	1008
325 330 335	

7/13

tct gac cca gtg tat cct tgt gga att tgt aca aac gag gtg aac gat Ser Asp Pro Val Tyr Pro Cys Gly Ile Cys Thr Asn Glu Val Asn Asp	1056
340 345 350	
gat cag gat gcc atc tta tgt gag gcc tct tgt cag aaa tgg ttt cat Asp Gln Asp Ala Ile Leu Cys Glu Ala Ser Cys Gln Lys Trp Phe His	1104
355 360 365	
cgg atc tgt act gga atg act gaa aca gct tat ggc ctc tta act gca Arg Ile Cys Thr Gly Met Thr Glu Thr Ala Tyr Gly Leu Leu Thr Ala	1152
370 375 380	
gaa gca tct gca gta tgg ggc tgt gat acc tgt atg gct gac aaa gat Glu Ala Ser Ala Val Trp Gly Cys Asp Thr Cys Met Ala Asp Lys Asp	1200
385 390 395 400	
gtc cag tta atg cgt act aga gaa act ttt ggt cca tct gca gtg ggc Val Gln Leu Met Arg Thr Arg Glu Thr Phe Gly Pro Ser Ala Val Gly	1248
405 410 415	
agt gat gct taa Ser Asp Ala	1260

<210> 4				
<211> 419				
<212> PRT				
<213> homosapiens				
 <220>				
<223> hPygo-1				
 <400> 4				
Met Pro Ala Glu Asn Ser Pro Ala Pro Ala Tyr Lys Val Ser Ser His				
1 5 10 15				
Gly Gly Asp Ser Gly Leu Asp Gly Leu Gly Gly Pro Gly Val Gln Leu				
20 25 30				
Gly Ser Pro Asp Lys Lys Arg Lys Ala Asn Thr Gln Gly Pro Ser				
35 40 45				
Phe Pro Pro Leu Ser Glu Tyr Ala Pro Pro Pro Asn Pro Asn Ser Asp				
50 55 60				
His Leu Val Ala Ala Asn Pro Phe Asp Asp Asn Tyr Asn Thr Ile Ser				
65 70 75 80				
Tyr Lys Pro Leu Pro Ser Ser Asn Pro Tyr Leu Gly Pro Gly Tyr Pro				
85 90 95				
Gly Phe Gly Gly Tyr Ser Thr Phe Arg Met Pro Pro His Val Pro Pro				
100 105 110				
Arg Met Ser Ser Pro Tyr Cys Gly Pro Tyr Ser Leu Arg Asn Gln Pro				
115 120 125				
His Pro Phe Pro Gln Asn Pro Leu Gly Met Gly Phe Asn Arg Pro His				
130 135 140				

Ala Phe Asn Phe Gly Pro His Asp Asn Ser Ser Phe Gly Asn Pro Ser
 145 150 155 160
 Tyr Asn Asn Ala Leu Ser Gln Asn Val Asn Met Pro Asn Gln His Phe
 165 170 175
 Arg Gln Asn Pro Ala Glu Asn Phe Ser Gln Ile Pro Pro Gln Asn Ala
 180 185 190
 Ser Gln Val Ser Asn Pro Asp Leu Ala Ser Asn Phe Val Pro Gly Asn
 195 200 205
 Asn Ser Asn Phe Thr Ser Pro Leu Glu Ser Asn His Ser Phe Ile Pro
 210 215 220
 Pro Pro Asn Thr Phe Gly Gln Ala Lys Ala Pro Pro Pro Lys Gln Asp
 225 230 235 240
 Phe Thr Gln Gly Ala Thr Lys Asn Thr Asn Gln Asn Ser Ser Ala His
 245 250 255
 Pro Pro His Leu Asn Met Asp Asp Thr Val Asn Gln Ser Asn Ile Glu
 260 265 270
 Leu Lys Asn Val Asn Arg Asn Asn Ala Val Asn Gln Glu Asn Ser Arg
 275 280 285
 Ser Ser Ser Thr Glu Ala Thr Asn Asn Asn Pro Ala Asn Gly Thr Gln
 290 295 300
 Asn Lys Pro Arg Gln Pro Arg Gly Ala Ala Asp Ala Cys Thr Thr Glu
 305 310 315 320
 Lys Ser Asn Lys Ser Ser Leu His Pro Asn Arg His Gly His Ser Ser
 325 330 335
 Ser Asp Pro Val Tyr Pro Cys Gly Ile Cys Thr Asn Glu Val Asn Asp
 340 345 350
 Asp Gln Asp Ala Ile Leu Cys Glu Ala Ser Cys Gln Lys Trp Phe His
 355 360 365
 Arg Ile Cys Thr Gly Met Thr Glu Thr Ala Tyr Gly Leu Leu Thr Ala
 370 375 380
 Glu Ala Ser Ala Val Trp Gly Cys Asp Thr Cys Met Ala Asp Lys Asp
 385 390 395 400
 Val Gln Leu Met Arg Thr Arg Glu Thr Phe Gly Pro Ser Ala Val Gly
 405 410 415
 Ser Asp Ala

<210> 5
 <211> 20
 <212> DNA
 <213> artificial

<220>
 <223> Hpy1 antisense ON

<400> 5
gagctgcagc aaccacaaag 20

<210> 6
<211> 21
<212> DNA
<213> artificial

<220>
<223> Hpy2 antisense ON

<400> 6
ggacccgggt tagcggcagc g 21

<210> 7
<211> 21
<212> DNA
<213> artificial

<220>
<223> Hpy3 antisense ON

<400> 7
ccacacctccct ccagcttgtc c 21

<210> 8
<211> 19
<212> DNA
<213> artificial

<220>
<223> Hpy4 antisense ON

<400> 8
ggaggactaa agttttgac 19

<210> 9
<211> 19
<212> DNA
<213> artificial

<220>
<223> Hpy5 antisense ON

<400> 9
ggctgagcaa atcggttggg 19

<210> 10
<211> 20
<212> DNA
<213> artificial

<220>
<223> Hpy6 antisense ON

<400> 10
gaaaaggcagt agaaggcaggt 20

<210> 11
<211> 18
<212> DNA
<213> artificial

<220>
<223> Hpy7 antisense ON

<400> 11
ctcacggatg tagacaga 18

<210> 12
<211> 19
<212> DNA
<213> artificial

<220>
<223> Hpy8 antisense ON

<400> 12
cctctggcca gaaaccttt 19

<210> 13
<211> 19
<212> DNA
<213> artificial

<220>
<223> Hpy9 antisense ON

<400> 13
ctcttctacc tttgagttac 19

<210> 14
<211> 18
<212> DNA
<213> artificial

<220>
<223> Hpy10 antisense ON

<400> 14
cactgttatct tgagctgg 18

<210> 15
<211> 19
<212> RNA
<213> artificial

<220>
<223> Hpy2A siRNA

<400> 15
cgaugaccag gaugccauu 19

<210> 16
<211> 19
<212> RNA
<213> artificial

<220>
<223> Hpy2B siRNA

<400> 16
agaaggcgaag gaagucaaa 19

<210> 17
<211> 19
<212> RNA
<213> artificial

<220>
<223> Hpy2C siRNA

<400> 17
ugggaaccag cccaguuuc 19

<210> 18
<211> 19
<212> RNA
<213> artificial

<220>
<223> Hpy2D siRNA

<400> 18
ccagccucug ggucaaaac 19

<210> 19
<211> 19
<212> RNA
<213> artificial

<220>
<223> Hpy2E siRNA

<400> 19
cuuuccccagc caacccuuc 19

<210> 20
<211> 19
<212> DNA
<213> artificial

<220>
<223> mismatched sequence to Hpy5

<400> 20
gcctgagcta atcattggt 19

<210> 21
<211> 18
<212> DNA
<213> artificial

<220>
<223> anti-Xenopus pygo2

<400> 21
tttgcgccgt ttcttctc 18

<210> 22
<211> 24
<212> DNA
<213> artificial

<220>
<223> Forward hPygo2 primer

<400> 22
gcatccaacc ctttgaaaga tgac 24

<210> 23
<211> 25
<212> DNA
<213> artificial

<220>
<223> Reverse hPygo2 primer

<400> 23
tcagccaggg ggtgccaaggc tgg 25

<210> 24
<211> 20
<212> DNA
<213> artificial

<220>
<223> Forward hPygo1 primer

<400> 24
gccacgacaa ccaagaggta 20

<210> 25
<211> 22
<212> DNA
<213> artificial

<220>
<223> Reverse hPygo1 primer

<400> 25
ccagtagaca tccgatgaaa cc 22

<210> 26
<211> 20
<212> DNA
<213> artificial

<220>
<223> Forward Bcl-9 primer

<400> 26
gatgttgtcc tgggtgtcttg 20

<210> 27
<211> 21
<212> DNA
<213> artificial

<220>
<223> Reverse Bcl-9 primer

<400> 27
ggtcacgaca ctgcagtgct c 21

<210> 28
<211> 19
<212> DNA
<213> artificial

<220>
<223> mismatched sequence to Hpy5

<400> 28
gtctgagcta atcattgg 19