

Fundamentos Computacionais

Fundamentos Computacionais

Aula anterior – revisão

Negação

Negação de Proposição

A negação de uma proposição em lógica proposicional, pode ser simples ou composta e gera a tabela verdade inversa à proposição que está sendo negada.

- Proposição: Hoje é domingo.
- Negação: Hoje não é domingo.
- Proposição: p
- Negação: ¬p

Negação da Conjunção

Para negar uma conjunção deve-se negar as proposições e "inverter" o conectivo de ∧ para ∨

- Proposição: Pedro é alto e magro.
- Negação: Pedro não é alto **ou** não é magro.
- Proposição: p ∧ q
- Negação: ¬p ∨ ¬q

Negação da Disjunção

Para negar uma disjunção deve-se negar as proposições e "inverter" o conectivo de ∨ para ∧

- Proposição: Amanhã vai chover ou fazer frio.
- Negação: Amanhã não vai chover e não vai fazer frio.
- Proposição: p ∨ q
- Negação: ¬p ∧ ¬q

Negação da Condição / Implicação

Para negar uma condição deve-se repetir a primeira proposição e negar a segunda unindo elas pelo conectivo ∧.

- Proposição: Se bebo, então fico furioso.
- Negação: Bebo e não fico furioso.
- Proposição: $p \rightarrow q$
- Negação: p ∧ ¬q

Negação Composta

Proposição	Negação
p \ q	¬p ∨ ¬q
p∨q	$\neg p \wedge \neg q$
$p \rightarrow q$	p ∧ ¬q

Obs.: As duas primeiras, são conhecidas como as leis de De Morgan, em honra ao matemático inglês do século XIX Augustus De Morgan, primeiro a enunciá-las.

Negação de Quantificadores

Quantificadores	Negação	
Todo / Todos	Existe, Algum, alguém (não)	
Existe, Alguém	Todo / Todos (não)	
Nenhum	Algum	

Hoje

Correção dos exercícios da aula anterior

1) Qual o valor lógico de cada uma das proposições a seguir? Apresente o desenvolvimento.

- a) Se 8 for ímpar, então 6 é ímpar.
- b) Se 8 for par, então 6 é ímpar.
- c) Se 8 for ímpar, então 6 é par.
- d) Se 8 for impar e 6 for par, então 8<6.

2) Determine o "p" em cada um dos seguintes casos:

a)
$$q = F e p \rightarrow q = F$$

b)
$$q = V e p \leftrightarrow q = F$$

c)
$$q = F e q \leftrightarrow p = V$$

3) Determine o "p" e "q" em cada um dos seguintes casos:

- a) $p \rightarrow q = V e p \vee q = F$
- b) $p \leftrightarrow q = V e p \land q = V$
- c) $p \leftrightarrow q = V e p \lor q = V$
- d) $p \leftrightarrow q = F e \neg p \lor q = V$

4) Construa as tabelas-verdade das seguintes fórmulas e identifique as que são tautologias ou contradições.

a)
$$\neg (p \lor \neg q)$$

b)
$$\neg (p \rightarrow \neg q)$$

c)
$$p \wedge q \rightarrow p \vee q$$

d)
$$\neg p \rightarrow (q \rightarrow p)$$

e)
$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

f)
$$\neg (p \rightarrow (\neg p \rightarrow q))$$

a)
$$\neg (p \lor \neg q)$$

p	q	$\neg q$	p v ¬q	$\neg (p \lor \neg q)$
V	V	F	V	F
V	F	V	V	F
F	V	F	F	V
F	F	V	V	F

b)
$$\neg (p \rightarrow \neg q)$$

р	q	$\neg \mathbf{q}$	$p \rightarrow \neg q$	$\boxed{\neg(p \to \neg q)}$
V	V	F	F	V
V	F	V	V	F
F	V	F	V	F
F	F	V	V	F

c) $p \land q \rightarrow p \lor q$ (tautologia)

р	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$p \wedge q \rightarrow p \vee q$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

$$d) \neg p \rightarrow (q \rightarrow p)$$

р	q	$(q \rightarrow p)$	¬р	$\neg p \rightarrow (q \rightarrow p)$
V	V	V	F	V
V	F	V	F	V
F	V	F	V	F
F	F	V	V	V

e) $p \rightarrow (q \rightarrow (q \rightarrow p))$ (tautologia)

р	q	$(q \rightarrow p)$	$q \rightarrow (q \rightarrow p)$	$p \rightarrow (q \rightarrow (q \rightarrow p))$
V	V	V	V	V
V	F	V	V	V
F	V	F	F	V
F	F	V	V	V

f) $\neg(p \rightarrow (\neg p \rightarrow q))$ (contradição)

р	q	¬р	$(\neg p \rightarrow q)$	$p \rightarrow (\neg p \rightarrow q)$	$\neg(p \rightarrow (\neg p \rightarrow q))$
V	V	F	V	V	F
V	F	F	V	V	F
F	٧	V	V	V	F
F	F	V	F	V	F

Exercícios

