МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ПиТФ

Лаборатория № VI-206

Лабораторная работа № 7

Изучение распределения Больцмана

Факультет: ФЭН Группа: ЭН2-31

 Студент:
 Полозов А. А.

 Преподаватель:
 Сейфи В. А.

 Дата выполнения работы:
 13.04.2024

Отметка о защите:

1. Цель лабораторной работы

Проверка применимости распределения Больцмана к газу электронов, эмитированных из нагретого металлического катода, и определение температуры электронного газа.

2. Таблица приборов

	№	Наименование	Тип или система	Предел измерений	Цена деления	Приборная погрешность	
	1	Вольтметр	цифровой	1000 мВ	1 мВ	1 мВ	
2		Микроамперметр	цифровой	1000 мкА	1 мкА	1 мкА	

3. Рабочие формулы и исходные данные

i — номер измерения.

U — напряжение между анодом и катодом.

I – анодный ток.

ln I — натуральный логарифм анодного тока.

Погрешность измерения напряжения между анодом и катодом: $\sigma_U = \Delta_{\text{инст}} = 1$ мВ.

Погрешность измерения натурального логарифма анодного тока: $\sigma_{\ln I} = \overline{\ln I} \cdot \frac{\sigma_U}{\overline{u}}$.

Модуль элементарного заряда: $|q| = 1, 6 \cdot 10^{-19}$ Кл.

Постоянная Больцмана: $k_{\rm B}=1,38\cdot 10^{-23}$ Дж/К.

4. Таблица измерений

i	U	Ι	ln I	i	U	I	ln I	σ_U	$\sigma_{\ln I}$
	мВ	мкА	ln (мкА)		мВ	мкА	ln (мкА)	мВ	ln (мкА)
1	-925	2	0,69	11	-425	31	3,43		
2	-875	3	1,10	12	-375	51	3,93	1	0,01
3	-825	4	1,39	13	-325	83	4,42		
4	-775	5	1,61	14	-275	133	4,89		
5	-725	6	1,79	15	-225	215	5,37		
6	-675	7	1,95	16	-175	353	5,87		
7	-625	8	2,08	17	-125	595	6,39		
8	-575	10	2,30	18	-75	977	6,88		
9	-525	12	2,48	19	-25	1545	7,34		
10	-475	18	2,89	20	-2	1943	7,57		

5. Графики экспериментальных зависимостей

6. Задание к работе

Температура катода находится по формуле

$$T = \frac{|q|}{k_{\rm B}} \cdot \frac{|U_2| - |U_1|}{\ln(I_1/I_2)}.$$

Пусть $U_1 = -2$ мВ, $U_2 = -525$ мВ, тогда $I_1 = 1943$ мкА, $I_2 = 12$ мкА и

$$T = \frac{1,6 \cdot 10^{-19}}{1,38 \cdot 10^{-23}} \cdot \frac{(525-2) \cdot 10^{-3}}{\ln(1943/12)} = 1192 \text{ K}.$$

7. Выводы

На участке от -525 мВ до -2 мВ график экспериментальной зависимости представляет из себя линейную функцию, следовательно распределение Больцмана применимо. Искривление графика на более низких напряжениях можно объяснить недостаточной нагретостью катода, низкой чувствительностью оборудования и ошибкой при снятии показаний.