

Proof. By properties of integrals, we observe

$$\int_0^x (e^{-t^2} + 1) dt = \int_0^x (e^{-t^2}) dt + \int_0^x 1 dt$$
$$= \int_0^x (e^{-t^2} + 1) dt + x$$

Since $e^{-t^2} > 0$ for all t, $\int_0^x (e^{-t^2} + 1) dt > x$ for $x \ge 0$. Then, $e^{-t^2} \le 1 \implies e^{-t^2} + 1 \le 2 \implies \int_0^x (e^{-t^2} + 1) dt \le 2x$, which leaves us with

$$x \le F(x) \le 2x$$

(c)

Proof. By properties of integrals, we have

$$\int_0^x (e^{-t^2} + 1) dt = -\int_x^0 (e^{-t^2} + 1) dt$$

Thus for $x \leq 0$, this is simply the inverse of (b).

(d)

Proof. By (b) and (c) and the Squeeze Theorem, for $x \ge 0$:

$$x \le F(x) \le 2x \implies \lim_{x \to \infty} F(x) = \infty$$

This also holds for the opposite case, $x \leq 0$.

(e) True.