

Discrete Structures (Monsoon 2022)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

Infinite Series and Convergence Tests

Comparison Tests of Convergence

Theorem

Let $\sum u_n$ and $\sum v_n$ be two infinite series of positive terms. If $\sum v_n$ is convergent, then $\sum u_n$ is also convergent, provided that

- (i) $u_n \le v_n$, for all $n \ge m$, m being some fixed finite number
- (ii) $\lim_{n\to\infty}\frac{u_n}{v_n}=k$, a finite positive non-zero number.

Comparison Tests of Convergence

Problem: Let $\sum u_n$ be infinite series of positive terms, $u_n = \frac{1}{n^2+1}$. Test whether the given series $\sum u_n$ is convergent or divergent.

Comparing this series with the convergent series for which $v_n = \frac{1}{n^2}$, we obtain

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1}$$
= 1, a finite quantity

Therefore, by "Comparison Test", the series is **convergent**.

Cauchy's Root Test

Theorem

• An infinite series $\sum u_n$ of positive terms is **convergent**, if

$$\lim_{n\to\infty}(u_n)^{\frac{1}{n}}<1.$$

• An infinite series $\sum u_n$ of positive terms is **divergent**, if

$$\lim_{n\to\infty}(u_n)^{\frac{1}{n}}>1.$$

Cauchy's Root Test

Problem: Find whether the series

$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \cdots$$

is convergent or divergent.

We have,
$$u_n = \left[\left(\frac{n+1}{n} \right)^{n+1} - \frac{n+1}{n} \right]^{-n}$$
. Then,

$$u_n^{\frac{1}{n}} = \left[\left(\frac{n+1}{n} \right)^{n+1} - \frac{n+1}{n} \right]^{-1} = \left[\left(1 + \frac{1}{n} \right)^n - 1 \right]^{-1} \cdot \left(\frac{n+1}{n} \right)^{-1}$$

Therefore, $\lim_{n\to\infty}u_n^{\frac{1}{n}}=1.(e-1)^{-1}$, since $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$. Thus, $\lim_{n\to\infty}u_n^{\frac{1}{n}}<1$, since e=2.71828...>2. By Cauchy's root test, the series is **convergent**.

D'Alembert's Ratio Test

Theorem

Let $\sum u_n$ be an infinite series of positive terms. Let

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=I.$$

- $\sum u_n$ is **convergent**, if l < 1.
- $\sum u_n$ is **divergent**, if l > 1.

D'Alembert's Ratio Test

Problem: Examine the convergency or divergency of the following series:

$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^5}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$$

We have, $u_n = \frac{x^n}{n^2+1}$ and $u_{n+1} = \frac{x^{n+1}}{(n+1)^2+1}$. Then,

$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \frac{n^2 + 2n + 2}{n^2 + 1} \cdot \frac{1}{x}$$

$$= \lim_{n \to \infty} \frac{(n^2 + 2n + 2)/n^2}{(n^2 + 1)/n^2} \cdot \frac{1}{x}$$

$$= \lim_{n \to \infty} \frac{1 + 2/n + 2/n^2}{1 + 1/n^2} \cdot \frac{1}{x} = \frac{1}{x}$$

Hence, $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = x$. Thus, if x < 1, the series is **convergent**, and if x > 1, the series is **divergent**.