

Introdução ao Aprendizado de Máquina

Huei Diana Lee

Inteligência Artificial CECE/UNIOESTE-FOZ

Inteligência x Aprendizado

Aprendizado é a essência da Inteligência

Para que uma máquina tenha Comportamento Inteligente, deve-se aumentar a Capacidade de Aprendizado

Inteligência x Aprendizado

- Ser humano pré-programado para o aprendizado: aprende ampliando o alcance do conhecimento que já possui, por meio de reordenações sucessivas
- Computador não possui o programa inicial para procurar por informações e realizar aprendizado em geral
- Paradigmas e técnicas de Aprendizado de Máquina possuem um alvo bem mais limitado do que o aprendizado humano

Aprendizado de Máquina (AM)

Subárea de Inteligência Artificial (IA) que pesquisa métodos computacionais relacionados à aquisição de:

- novos conhecimentos
- novas habilidades
- novas formas de organizar o conhecimento já existente

Objetivos de AM

 Um melhor entendimento dos mecanismos de aprendizado humano

Automação da aquisição do conhecimento

Aprendizado de Máquina: definição

Um programa aprende a partir da experiência **E**, em relação a uma classe de tarefas **T**, com medida de desempenho **P**, se seu desempenho em **T**, medido por **P**, melhora com **E**

Mitchell, 1997

Algoritmos de AM: induzem uma função ou hipótese capaz de resolver o problema a partir de exemplos (casos/instâncias) do problema a ser resolvido

- Problema: aprender a jogar damas
 - Tarefa T: jogar damas
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: aprender a jogar damas
 - Tarefa T: jogar damas
 - Medida de desempenho P: porcentagem de jogos vencidos contra adversários
 - Experiência E: praticar jogando

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: porcentagem de mensagens de spam corretamente identificadas
 - Experiência E: conjunto de exemplos de spams

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: ?
 - Experiência E: ?

7210414959 0690159734 9665407401 3134727121 1742351244

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: porcentagem de dígitos corretamente identificados
 - Experiência E: exemplos de dígitos manuscritos
 com as respectivas classificações

0690159734

9665407401

3 1 3 4 7 2 7 1 2 1

- Problema: carro autônomo (aprender a dirigir)
 - Tarefa T: dirigir em uma rodovia pública usando sensores de visão
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: carro autônomo (aprender a dirigir)
 - Tarefa T: dirigir em uma rodovia pública usando sensores de visão
 - Medida de desempenho P: distância média percorrida antes de um erro
 - Experiência E: sequência de imagens e comandos de direção registrados observando um motorista humano

- Problema: diagnóstico médico
 - Tarefa T: diagnosticar o estado de um paciente dado um conjunto de sintomas
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: diagnóstico médico
 - Tarefa T: diagnosticar o estado de um paciente dado um conjunto de sintomas
 - Medida de desempenho P: porcentagem de pacientes corretamente diagnosticados
 - Experiência E: prontuários médicos de pacientes com seus diagnósticos

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: ?
 - Experiência E: ?

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: porcentagem de clientes classificados
 - Experiência E: uma base de dados histórica em que os clientes já conhecidos são previamente classificados como bons ou maus pagadores

AM: multidisciplinar

Probabilidade e Estatística Teoria da Informação

Aprendizado de Máquina

Teoria da Computação

Neurociência

Aprendizado por Hábito
 Aprendizado por Instrução
 Aprendizado por Dedução
 Aprendizado por Analogia
 Aprendizado por Indução

Aprendizado por Hábito
Aprendizado nstrução

- Aprendiz não precisa desempenhar nenhuma inferência sobre a informação
- Conhecimento diretamente assimilado (ex. memorização direta)

Whienmannan her immadan

Aprendizado por Hábito

Aprendizado por Instrução

- Adquire conceitos de uma fonte (professor ou livro por ex.)
- Não copia diretamente a informação fornecida
- Seleciona fatos mais relevantes e/ou transforma informação fonte em formas mais apropriadas

Aprendizado por Hábito

Aprendizado por Instrução

Aprendizado por Dedução

- DEDUÇÃO: inferência logicamente correta
- Aprendiz adquire um conceito por meio da dedução de um conceito já adquirido; transformação sobre um conceito já possuído (PRESERVA veracidade)

Anrendizado nor Hábito

Aprendiz adquire conceito modificando/adaptando a definição de um conceito semelhante já conhecido

Aprendizado por Analogia

Aprendizado por Indução

- Permite a habilidade humana realizar generalizações a partir de alguns fatos ou descobrir padrões em coleções de observações aparentemente caóticas
- Conclusões gerais obtidas a partir de exemplos específicos; raciocínio que parte do esp. p/ geral
- PODE OU NÃO PRESERVAR a veracidade

Aprendizado por Indução

-Aprendizado por Hábito
Aprendizado por Instrução
Aprendizado por Dedução
Aprendizado por Analogia
- Aprendizado por Indução

Complexidade de Aprendizado

Inferência Indutiva

 A Inferência Indutiva é um dos principais meios para a aquisição de novos conhecimentos

 Indução: raciocínio para obter conclusões sobre todos os membros de uma classe pela análise de alguns membros da classe

Raciocínio do particular para o geral

Inferência indutiva: exemplo

Se eu noto que:

- Todos pacientes com déficit de atenção atendidos em 1986 sofriam de ansiedade
- Todos pacientes com déficit de atenção atendidos em 1987 sofriam de ansiedade
- Todos pacientes com déficit de atenção atendidos em 1988 sofriam de ansiedade
- **—** ...
- → Posso inferir que pacientes que sofrem de déficit de atenção também sofrem de ansiedade

Isto pode ser ou não verdade, mas propicia uma boa generalização

Experiência pode ser provida por um conjunto de dados (de treinamento)

Ex. base de dados de um hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Meta: induzir hipótese para fazer diagnósticos corretos para novos pacientes

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Cada linha (paciente) é um dado (objeto, exemplo, padrão ou registro)

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Cada objeto é uma tupla com valores de características (atributos, campos ou variáveis), que descrevem seus principais aspectos

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

Atributo de saída (alvo/meta): presente em algumas tarefas, seus valores devem ser estimados usando outros atributos (de entrada/preditivos)

Importante: atributos de identificação e nome não possuem relação com a doença e não são utilizados como entradas

Hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Importante: lidar com dados imperfeitos (ruídos, ausentes, entre outros)

Inferência Indutiva é um dos principais meios para a aquisição de novos conhecimentos e previsão de eventos futuros

Aprendizado por Indução

Observações permitem descobrir regras e procedimentos

Porém deve-se ter cuidado com o número de observações e a relevância dos dados

Argumentos Dedutivos vs Indutivos

Argumento dedutivo:

- Todo homem é mortal.
- João é homem.
- Logo, João é mortal.

- Todo brasileiro é mortal.
- Todo paulista é brasileiro.
- Logo, todo paulista é mortal.

Argumento indutivo:

- O ferro conduz eletricidade.
- O ouro conduz eletricidade.
- O chumbo conduz eletricidade.
- A prata conduz eletricidade.
- **–** ..
- Logo, todo metal conduz eletricidade.
- Todo cão é mortal.
- Todo gato é mortal.
- Todo peixe é mortal.
- Todo pássaro é mortal.
- **–** ...
- Logo, todo animal é mortal.

Hierarquia do Aprendizado Indutivo

Hierarquia do Aprendizado Indutivo

Paradigmas de AM

- Simbólico
- Baseado em Casos
- Conexionista
- Genético
- Estatístico

Paradigmas de AM Simbólico

- Explora representações de estruturas gráficas ou lógicas, ao invés de métodos estatísticos ou numéricos
- Descrições simbólicas representam um conhecimento de alto nível
- As representações simbólicas estão tipicamente na forma de:
 - expressão lógica
 - árvore de decisão
 - regras de produção
 - rede semântica

Paradigmas de AM **Baseado em Casos** (Instance-Based)

- Exemplos de treinamento s\u00e3o armazenados
- Casos nunca vistos são classificados por meio de casos similares conhecidos

 Classificação de um caso é realizada por meio da "lembrança" de um caso similar cuja classe é conhecida e assume-se que o novo caso terá a mesma classe

Paradigmas de AM Estatístico

 Regra geral: técnicas estatísticas tendem a focar tarefas em que todos os atributos têm valores contínuos ou ordinais

- Exemplo um classificador linear:
 - Classes podem ser expressas como combinação linear dos valores dos atributos
 - Procura-se uma combinação linear particular que fornece a melhor aproximação sobre o conjunto de dados

Paradigma Estatístico **Aprendizado Bayesiano**

• Provê uma abordagem probabilística à inferência

- Baseia-se na suposição de que:
 - Quantidades de interesse são governadas pela distribuição de probabilidades
 - Decisões ótimas podem ser tomadas por meio de raciocínio sobre estas probabilidades juntamente com os dados observados

Teorema de Bayes

$$P(B|A) = P(A|B)P(B)/P(A)$$

Paradigmas de AM Conexionista

 Redes Neurais Artificiais inspiradas, em parte, na observação de que sistemas de aprendizado biológico são compostos por redes muito complexas de neurônios interconectados

 Redes Neurais Artificiais são redes construídas a partir de conjuntos de unidades simples altamente interconectadas (conexionismo)

Paradigmas de AM **Genético**

- Classificador genético: uma população de elementos de classificação que competem para fazer a predição
- Elementos com performance "fraca" são descartados; elementos mais "fortes" proliferam, produzindo variações de si mesmos
- Analogia direta com a teoria de Darwin sobrevivem os mais bem adaptados ao ambiente

- Aprendizado Incremental
- Aprendizado Não Incremental

Linguagens de Descrição

Aprendizado Incremental

Em geral, no aprendizado incremental, o processo de aprendizado procede através de uma sequência de hipótese, H_1 , H_2 , ... etc., sobre o conceito que está sendo aprendido

Quando um exemplo é processado, a hipótese corrente é atualizada, se necessário, resultando na próxima hipótese

- Aprendizado Incremental
- Aprendizado Não Incremental

Necessita de que todos os exemplos de treinamento, simultaneamente, estejam disponíveis para que seja induzido um conceito

É vantajoso usar esses algoritmos para problemas de aprendizado, no qual todos os exemplos estão disponíveis e, provavelmente, não irão ocorrer mudanças

Linguagens de Descrição (LD)

- 1. LD de exemplos $L_{\mathcal{E}^{(Objetos)}}$
- 2. LD de conceitos L_H (Hipóteses)
- 3. LD da teoria do domínio L_K (Conhecimento de fundo)

Características do Aprendizado Indutivo LD de exemplos L_E(Objetos)

 Qualquer que seja o tipo de aprendizado, é necessário uma linguagem para descrever objetos (ou possíveis eventos) e uma linguagem para descrever conceitos

- Em geral, é possível distinguir dois tipos de descrições para objetos:
 - Descrições estruturais
 - Descrições de atributos

Descrições Estruturais

Um objeto é descrito em termos de seus componentes e a relação entre eles.

Descrições de Atributos

Um objeto é descrito em termos de suas características globais como um vetor de valores de atributos.

Características do Aprendizado Indutivo LD de conceitos L_H (Hipóteses)

- Formalismos frequentemente usados em AM para descrever conceitos são:
 - Regras se-então (if-then) para representar conceitos

Se Nublado ou Chovendo então Levar_Guarda-Chuva

Características do Aprendizado Indutivo LD de conceitos L_H (Hipóteses)

Árvores de decisão para representar conceitos

Lógica de predicados

```
filha(X, Y) <-- mulher(X), pais(X,Y).
```

Características do Aprendizado Indutivo LD de conceitos L_H (Hipóteses)

Redes semânticas

Características do

Aprendizado Indutivo LD da teoria do domínio Lk

(Conhecimento de fundo)

- Constituído por algum conhecimento relevante do domínio do problema
- Exemplo do Viajante na Itália:
 - a generalização de que todos os italianos falam italiano é sustentada pela regularidade mais geral de que em um dado país a maioria da população fala a mesma língua
 - por outro lado, não é assumido que todos os italianos são chamados de Giuseppe devido à regularidade mais geral de que a maioria dos grupos sociais utilizam nomes diversos para diferentes indivíduos

Aprendizado Indutivo de Conceitos

Dados

 $\varepsilon = \varepsilon^+ \cup \varepsilon^-$ conjunto de exemplos de treinamento de um conceito C,

encontrar uma hipótese H, expressa em uma linguagem de descrição L tal que:

- cada exemplo $e \in \varepsilon^+$ é coberto por H
- nenhum exemplo negativo $e \in \varepsilon^{-}$ é coberto por H

Aprendizado Indutivo de Conceitos

• $cobre(H, \varepsilon) = \{e \in \varepsilon^+ \mid cobre(H, e) = true\}$ (instância positiva)

• $cobre(H, \varepsilon) = \{e \in \varepsilon^- \mid cobre(H, e) = false\}$ (instância negativa)

Completeza e Consistência de H

H: completa, consistente

H: incompleta, consistente

Completeza e Consistência de H (Cont)

H: completa, inconsistente

H: incompleta, inconsistente

Sistemas de Aprendizado de Máquina Indutivo

O paradigma de aprendizado indutivo busca aprender conceitos por meio de instâncias destes conceitos

Sistemas de Aprendizado de Máquina Indutivo (Cont)

O classificador utiliza os conceitos aprendidos para classificar novos exemplos

Representação da Classificação

Conhecimento Adquirido (Hipótese H)

H vista como classificador

H vista como conjunto de regras

Sistemas de Aprendizado de Máquina

Modo de Aprendizado	Paradigmas de Aprendizado	Linguagens de Descrição	Formas de Aprendizado
- Supervisionado	- Simbólico	- Instâncias ou Exemplos	- Incremental
- Não Supervisionado	- Estatístico	- Conceitos	- Não Incremental
- Semi	- Instance-Based	Aprendidos ou Hipóteses	moremental
Supervisionado	- Conexionista	- Teoria de Domínio ou	
	- Genético	Conhecimento de Fundo	
		de Fulluo	

Colaboraram com a preparação deste material, pesquisadores, alunos de pós-graduação e graduação do Labic/ICMC-USP São Carlos e Labi/Unioeste:

- Profa. Maria Carolina Monard
- Profa. Huei Diana Lee
- Prof. José Augusto Baranauskas
- Prof. Gustavo E.A.P.A. Batista
- Chandler Caulkins
- Prof. Cláudio Alex Rocha
- Marcos Roberto Geromini
- Profa. Thereza Patrícia Padilha
- Prof. Paulo Horst
- Vangrei Fonseca Simão
- Livro Inteligência Artificial: uma abordagem de Aprendizado de Máquina, 2011.

 Autores Katti Faceli, Ana Carolina Lorena, João Gama, André C.P.L.F. de Carvalho
 Editora LTC

Revisado por Huei Diana Lee