TOSHIBA

TC531000CP-12/15 TC531000CF-12/15

SILICON STACKED GATE CMOS

131,072 WORD x 8 BIT CMOS MASK ROM

Description

The TC531000CP/CF is a 1,048,576 bit read only memory organized as 131,072 words by 8 bits. A low bit cost makes it suitable for use as program memory for microprocessors or for fixed data storage such as a character generator. The TC531000CP/CF uses CMOS technology and is suitable for low power applications where battery operation is required.

The TC531000CP/CF has a programmable chip enable input (CE/CE) for device selection. This ROM is available in two speed versions. The TC531000CP/CF-12 is the 120ns version while the TC531000CP/CF-15 is the 150ns version.

Features

TC531000CP/CF	-12	-15	
Access Time (max.)	120ns	150ns	
Operating Current (max.)	40mA	35mA	
Standby Current (max.)	20μΑ	20μΑ	

- Single 5V power supply
- . Inputs and outputs TTL compatible
- · Three state outputs
- Fully static operation
- Programmable chip enable
- Package
 - TC531000CP : DIP28-P-600TC531000CF : SOP28-P-450

Pin Names

A0 ~ A16	Address Inputs
D0 ~ D7	Data Outputs
CE/CE	Chip Enable Input
V _{DD}	Power Supply Voltage (+5V)
GND	Ground

Pin Connection (Top View)

Block Diagram

Operating Mode

MODE	CE (CE)	A0 ~ 16	OUTPUTS	POWER
Read	L (H)	Valid	Data Out	Operating
Standby	H (L)	*	High-Z	Standby

 $H = V_{IH}, L = V_{IL}, \star = V_{IH} \text{ or } V_{IL}$

Maximum Ratings

SYMBOL	ITEM	RATING	UNIT
V_{DD}	Power Supply Voltage	-0.5 ~ 7.0	
V _{IN}	Input Voltage	-0.5 ~ V _{DD}	v
V _{OUT} Output Voltage		0 ~ V _{DD}	
PD	Power Dissipation 1.0/0.6*		W
T _{STRG}	Storage Temperature	-55 ~ 150	⊸°C
T _{OPR} Operating Temperature		-40 ~ 70	
T _{SOLDER}	Soldering Temperature • Time	260 • 10	°C • se

^{*} SOP

DC Recommended Operating Conditions

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	
V _{IH}	Input High Voltage	2.2	_	V _{DD} + 0.3	\ \
V _{IL}	Input Low Voltage	-0.3	-	0.8	

DC Characteristics (Ta = -40 ~ 70°C, V_{DD} = $5V\pm10\%$)

SYMBOL	PARAMETER	TEST CONDITION		MIN.	MAX.	UNIT
ILI	Input Leakage Current	$V_{IN} = 0 \sim V_{DD}$		_	±1.0	μА
l _{LO}	Output Leakage Current	CE = V _{IH} , V _{OUT} = 0 ~ V _{DD}			±5.0	μΛ
loh	Output High Current	V _{OH} = 2.4V V _{OL} = 0.4V		-1.0	_	
loL	Output Low Current			3.2		mA
I _{DDS1}	Standby Current	$CE = 0.8V(\overline{CE} = 2.2V)$		-	2	
I _{DDS2}	Standby Current	CE = 0.2V (CE = V _{DD} - 0.2V)			20	μ A
		$V_{IN} = V_{IH}/V_{IL}$	t _{cycle} = 120ns	-	50	
I _{DDO1}	On analysis Outside	"' "- "- "-	t _{cycle} = 150ns	-	45	mA
_	Operating Current	$V_{IN} = V_{DD} - 0.2V/0.2V$	t _{cycle} = 120ns	_	40	
DDO2		t _{cycle} = 150ns	-	35		

AC Characteristics (Ta = -40 ~ 70°C, V_{DD} = 5V \pm 10%)

SYMBOL	DADAMETED	-12		-15		UNIT	
	PARAMETER	MIN.	MAX.	MIN.	MAX.	וואט	
t _{CYC}	Cycle Time	120	_	150	_		
t _{ACC}	Address Access Time		120	_	150	ns	
t _{CE}	Chip Enable Access Time	_	120	_	150		
t _{CED}	Output Disable Time	-	50	_	50		
t _{OH}	Output Hold Time	5	_	5			

AC Test Conditions

Input Pulse Levels	2.4V/0.6V
Input Pulse Rise and Fall Times	5ns max.
Input Timing Measurement Reference Levels	2.2V/0.8V
Output Timing Measurement Reference Levels	2.0V/0.8V
Output Load	1 TTL Gate and C _L = 100 pF

Capacitance* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = 0V	-	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	-	10	ρi

^{*}This parameter is periodically sampled and is not 100% tested.

Timing Waveforms

