Contents

Contents				
Ι	Ba	asic Geometry	1	
1	Geometry in Regions of a Space			
	§ 1	Co-odinate and its transformation	2	
	§2	Riemannian and Pseudo-Riemannnian Spaces	3	
	§3	The Simplest Groups of Transformations of a Euclidean Space	4	
	§4	Curvature and Torsion	5	
	§5	Pseudo-Euclidean Spaces	5	
Bibliography				
Symbol List				
Tn	dov		a	

ii CONTENTS

Part I Basic Geometry

Chapter 1

Geometry in Regions of a Space

§1 Co-odinate and its transformation

Definition 1.1 (Jacobian). A transformation of co-ordinate from x to y

$$\mathbf{y}(\mathbf{x}) = y^i(x^j)\hat{\mathbf{e}}_i = y(x^j).$$

Its Jacobian:

$$\boldsymbol{J} = \left(\frac{\partial y^i}{\partial x^j}\right) \tag{1-1}$$

A **vector** u at point x_0 under such transformation would follow:

$$v^{i} = \frac{\partial y^{i}}{\partial x^{j}} \Big|_{x_{0}} u^{i} \tag{1-2}$$

i.e.
$$v = J_0 u$$

A linear form (*covector*) $\ell \colon \boldsymbol{x} \mapsto \ell(\boldsymbol{x}) = l_i x^i$ under such transformation would follow:

$$l_i' dy^i = l_j dx^j$$
 \Rightarrow $l_i' = \frac{\partial x^j}{\partial y_i} \Big|_{x_0} l_j$ (1-3)

i.e.
$$oldsymbol{l}' = oldsymbol{l} oldsymbol{J}_0^{-1}$$

A linear transformation $\mathcal{L} \colon \boldsymbol{x} \mapsto \boldsymbol{L} \boldsymbol{x}$ where $\boldsymbol{L} = (L^i{}_j)_{i,j \in n}$ under such transformation would follow:

$$dy \left(\mathcal{L}^{i}(\boldsymbol{x}) \right) = (L')^{i}{}_{j} dy^{j}$$

$$= \frac{\partial y^{i}}{\partial x^{k}} \Big|_{\boldsymbol{x}_{0}} d\mathcal{L}^{k}(\boldsymbol{x}) = \frac{\partial y^{i}}{\partial x^{k}} \Big|_{\boldsymbol{x}_{0}} L^{k}{}_{h} dx^{h} = \frac{\partial y^{i}}{\partial x^{k}} \Big|_{\boldsymbol{x}_{0}} L^{k}{}_{h} \frac{\partial x^{h}}{\partial y_{j}} \Big|_{\boldsymbol{x}_{0}} dy^{j}$$

$$(L')_{j}^{i} = \frac{\partial y^{i}}{\partial x^{k}} \bigg|_{x_{0}} L_{h}^{k} \frac{\partial x^{h}}{\partial y_{j}} \bigg|_{x_{0}}$$
 or
$$L' = J_{0}LJ_{0}^{-1}$$
 (1-4)

A bilinear form $\mathscr{B} \colon \boldsymbol{x} \mapsto \boldsymbol{x}^{\mathrm{T}} \boldsymbol{b} \boldsymbol{x} = x^{i} b_{ij} x^{j}$:

$$b'_{ij} \, \mathrm{d}y^{i} \, \mathrm{d}y^{j} = b'_{ij} \left. \frac{\partial y^{i}}{\partial x^{k}} \right|_{\boldsymbol{x}_{0}} \left. \frac{\partial y^{j}}{\partial x^{h}} \right|_{\boldsymbol{x}_{0}} \mathrm{d}x^{k} \, \mathrm{d}x^{h} = b_{kh} \, \mathrm{d}x^{k} \, \mathrm{d}x^{h} \quad \Rightarrow \quad b'_{ij} = \left. \frac{\partial x^{k}}{\partial y^{h}} \right|_{\boldsymbol{x}_{0}} b_{kh} \left. \frac{\partial x^{h}}{\partial y^{j}} \right|_{\boldsymbol{x}_{0}}$$
i.e.
$$\boldsymbol{b}' = (\boldsymbol{J}_{0}^{-1})^{\mathrm{T}} \boldsymbol{b} \boldsymbol{J}_{0}^{-1} \tag{1-5}$$

§2 Riemannian and Pseudo-Riemannian Spaces

Definition 2.1 (Riemannian metric). A *Riemannian metric* G is a smooth, positive-definite quadrutic form defined on a finite-dimensional vector space over \mathbb{R} .

Given a basis, we usually denote the Riemannian metric by $g_{ij}(\mathbf{x})$.

We can define $arc\ length\ \ell$ and $inner\ product\ \langle,\rangle$ in a $Riemannian\ space$ (i.e. a vector space equiped with a Riemannian metric):

$$\ell := \int_{t_1}^{t_2} \sqrt{g_{ij}[\boldsymbol{x}(t)] \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\mathrm{d}x^j}{\mathrm{d}t}} \, \mathrm{d}t, \qquad \langle \boldsymbol{u}, \boldsymbol{v} \rangle := g_{ij} u^i v^j.$$

We can also introduce the following notation: $u_i := g_{ij}u^j$, which means the linear form $\mathbf{v} \mapsto u_i v^i$; and $d\ell^2 = g_{ij} dx^i dx^j$.

Definition 2.2 (Euclidean metric). If a metric G(x) is said to be **Euclidean** if there exists a coordinates y(x) s.t.

$$g_{ij} = \delta_{k\ell} \frac{\partial y^k}{\partial x^i} \frac{\partial y^\ell}{\partial x^j}.$$

Such coordinates y(x) are said to be a **Euclidean coordinates**.

Definition 2.3 (Pseudo-Riemannian metric). A *pseudo-Riemannian metric* G is a smooth, indefinite quadrutic form defined on a finite-dimensional vector space over \mathbb{R} .

A pseudo-Riemannian metric shall have the following cannonical form at some coodinates:

$$G = \operatorname{diag}(\eta_1^2, \dots, \eta_p^2, -\eta_{p+1}^2, \dots, -\eta_n^2)$$

where η

By Sylvester's law of inertia, the index of inertia i.e. the number of positive terms on the caninical form, shall conserve under any coordinate change.

Definition 2.4 (Pseudo-Euclidean metric). If a metric G(x) is said to be **pseudo-Euclidean** if there exists a coordinates y(x) s.t.

$$g_{ij} = \sum_{k=1}^{p} \frac{\partial y^{k}}{\partial x^{i}} \frac{\partial y^{k}}{\partial x^{j}} - \sum_{\ell=n+1}^{n} \frac{\partial y^{\ell}}{\partial x^{i}} \frac{\partial y^{\ell}}{\partial x^{j}}.$$

Such coordinates y(x) are said to be a pseudo-Euclidean coordinates.

We denote a pseudo-Euclidean space by $\mathbb{R}^n_{p,n-p}$, where p is the index of innertia. Especially, we call $\mathbb{R}^4_{1,3}$ the *Minkowski space*, since its significance in relativistic mechanics.

§3 The Simplest Groups of Transformations of a Euclidean Space

When we say a **tansformation** from Ω to Ω' , we refer to a bijective φ s.t. both φ and φ^{-1} are smooth, i.e. a **diffeomorphism**. If $\Omega = \Omega'$, we would call it the transformation of Ω .

The transformations form a group, we might call it the *transformation group*.

Definition 3.1 (Isometry). If a transformation φ of Ω , with a metric G, satisfies that $\forall x \in \Omega$,

$$g_{ij} = g_{k\ell} \frac{\partial \varphi^k}{\partial x^i} \frac{\partial \varphi^\ell}{\partial x^j},$$

we shall call it a *isometry*, or a *motion* of the given metric.

Theorem 3.1 (Isometry group). The isometries of a region form a group.

We might call this group the *isometries* or the *group of motions*. If an isometry preserve the orientation of \mathbb{R}^n , we might call it a *proper isometry*. The proper isometries is a subgroup of the isometries of \mathbb{R}^n .

Lemma 1 (Proper isometries of Euclidean space). Every proper isometry of \mathbb{R}^n is either a translation along a vector, or a rotation about a point.

The proper isometries can be parameterised by a special othogonal matrix $\mathbf{A} \in SO(n)$ (2D special othogonal group), and a vector \mathbf{v} :

$$x \mapsto Ax + v$$
.

We can find the group a representation by a matrix:

$$\begin{pmatrix} \mathbf{A} & \mathbf{v} \\ \mathbf{0}^{\mathrm{T}} & 1 \end{pmatrix} \tag{3-1}$$

If det $A = \pm 1$, then we have the parametrisation of the isometry of the Euclidean space \mathbb{R}^n .

Theorem 3.2 (Mazur-Ulam Theorem). The isometry group of \mathbb{R}^n is the semiproduct of translations $(\cong \mathbb{R}^n)$ and the othogonal group O(n) (rotations and rotatory reflections).

The isometry group can be represented by Eq. 3-1.

Theorem 3.3. SO(n), as a Lie group, is continuous.

Proof. find the rotation a basis so that it take canonical form

$$\begin{pmatrix} \pm 1 & & & \\ & \ddots & & \\ & & \pm 1 & & \\ & & \cos \theta_1 & -\sin \theta_1 & \\ & & & \sin \theta_1 & \cos \theta_1 & \\ & & & \ddots & \\ & & & & \cos \theta_m & -\sin \theta_m \\ & & & & \sin \theta_m & \cos \theta_m \end{pmatrix}$$

Hence by replacing θ_i by $t\theta_i$, we can get the rotation from identity continuously by changing t from 0 to 1.

The *Galilean group* is the group of *Galilean transformation*, characterising by a rotatory reflection $A \in O(3)$, a translation $x_0 \in \mathbb{R}^3$ a velocity $v \in \mathbb{R}^3$:

$$x := (ct, \mathbf{x}) \mapsto (ct, \mathbf{A}\mathbf{x} + \mathbf{x}_0 - \mathbf{v}t).$$

The Galilean group can be represented as:

$$\begin{pmatrix} \mathbf{A} & \mathbf{x}_0 & \mathbf{v} \\ \mathbf{0}^{\mathrm{T}} & 1 & 0 \\ \mathbf{0}^{\mathrm{T}} & 0 & 1 \end{pmatrix} \tag{3-2}$$

§4 Curvature and Torsion

Let $\gamma: [t_1, t_2] \to \mathbb{R}^3$; $t \mapsto \boldsymbol{x}(t)$ be a diffeomorphism to a smooth curve in \mathbb{R}^3 , the velocity and the acceleration are defined as:

$$\boldsymbol{v} := \dot{\boldsymbol{x}} := \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \gamma'(t), \qquad \boldsymbol{a} := \ddot{\boldsymbol{x}} := \frac{\mathrm{d}^2\boldsymbol{x}}{\mathrm{d}t^2} = \gamma''(t).$$

Definition 4.1 (Natural parameter). s(t) is the **natural parameter** of the curve defined as:

$$s(t) = \int_0^t |\boldsymbol{v}| \, \mathrm{d}t.$$

We shall denote the velocity and the accelaration by v_s and a_s , with natural parametre. To change the parameter, we only need:

$$ds = |\mathbf{v}| dt, \qquad \frac{d}{ds} = \frac{1}{|\mathbf{v}|} \frac{d}{dt}.$$

By differentiating $\mathbf{v}_s \cdot \mathbf{v}_s = 1$ we know the orthogonality of \mathbf{a}_s and \mathbf{v}_s .

Define three unit vectors for a parameterised curve $t \mapsto \boldsymbol{x}(t)$: the tangent vector $\hat{\boldsymbol{t}} := \boldsymbol{v}/|\boldsymbol{v}|$, the (primary) normal $\hat{\boldsymbol{n}} := \frac{\mathrm{d}\hat{\boldsymbol{t}}}{\mathrm{d}s}/|\frac{\mathrm{d}\hat{\boldsymbol{t}}}{\mathrm{d}s}|$ and $\hat{\boldsymbol{b}} = \hat{\boldsymbol{t}} \times \hat{\boldsymbol{n}}$.

$$oldsymbol{v}_s = \hat{oldsymbol{t}}, \, \hat{oldsymbol{n}} = \hat{oldsymbol{a}}_s/|\hat{oldsymbol{a}}_s|.$$

Definition 4.2 (Curvature and torsion). The *curvature* κ is the norm of a_s , and the torsion is defined as $\tau = \frac{d\hat{n}}{ds}$.

Theorem 4.1 (Serret-Frenet formulae for space curve).

$$\frac{\mathrm{d}}{\mathrm{d}s} \begin{pmatrix} \hat{\boldsymbol{t}} \\ \hat{\boldsymbol{n}} \\ \hat{\boldsymbol{b}} \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & \\ 0 & \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{t}} \\ \hat{\boldsymbol{n}} \\ \hat{\boldsymbol{b}} \end{pmatrix}. \tag{4-1}$$

§5 Pseudo-Euclidean Spaces

 $\mathbb{R}^4_{1,2}$ (or, more general case, $\mathbb{R}^n_{1,n-1}$) is called the Minkowski space. The metric is always denoted by $\eta_{\mu\nu}$, $\eta_{00}=1$, $\eta_{ij}=-\delta_{ij}$, $i,j\neq 0$. (By convention, greek index take its value from 0 to n-1)

Considering the physics reality, we usually restrict our study to the region where $x_{\mu}x^{\mu} = \eta_{\mu\nu}x^{\mu}x^{\nu} \ge 0$, that is, the *time-like* region bounded by the *light cone* (or *isotropic cone*).

A **world-line** is the curve $x(t) := (ct, \mathbf{x}(t))$, where $t := x^0/c$. The natural parametre of a world-line is called the **proper time** τ (not to be confused with the torsion).

The isomeries of $\mathbb{R}^4_{1,3}$ is called the **Poincarér group**.

Theorem 5.1. Any isometry of $\mathbb{R}^4_{1,3}$ is an affine transformation.

Proof. We need to prove that if there points are collinear, the image of them under the isometry is also collinear. After a translation, which is affine, we can set one of the point to be the origin, and the remianing two points are in the same branch (both t > 0 or both t < 0).

Figure 1.1: Pseudo-spheres in $\mathbb{R}^2_{1,1}$.

A pseudo-sphere centred at a point is a hyperboloid (of two sheets) centred at it and the principal axis is along the x^0 -axis. Since the isometry preserve the distance, under which the points must move along the pseudo-sphere centred at origin. As illustrated in Fig. 1.1. If $x_{\mu}x^{\mu} = \ell$, and $y^{\mu} = \lambda x^{\mu}$, under an isometry, $x \mapsto x'$. The pseudo-sphere centred at x' of radius $(\lambda - 1)\ell$ and the pseudo-sphere centred at origin of radius $\lambda \ell$ are tangent at y', which along with x' and the origin are collinear.

Bibliography

[1] R.G. Burns et al. Modern Geometry — Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields. Graduate Texts in Mathematics. Springer New York, 1991. ISBN: 9780387976631. URL: https://books.google.co.jp/books?id=FCOQFlx12pwC.

Symbol List

Here listed the important symbols used in this notes.

$$g_{ij}(m{x}),\, m{3}$$
 $au,\, m{5},\, m{6}$

Index

arc length, 3	motion, 4	
covector, 2	natural parametre, 5	
curvature, 5	<u>-</u>	
diffeomorphism, 4	Poincarér group, 6 proper isometry, 4	
Euclidean coodinates, 3 Euclidean metric, 3	proper time, 6 pseudo-Euclidean coodinates, pseudo-Euclidean metric, 3	
Galilean group, 5	pseudo-Riemannian metric, 3	
Galilean transformation, $\frac{5}{9}$ group of motions, $\frac{4}{9}$	Riemannian metric, 3 Riemannian space, 3	
inner product, $\frac{3}{4}$ isometries, $\frac{4}{4}$	Serret-Frenet formulae, 5	
isometry, 4 isotropic cone, 6	tansformation, 4 time-like, 6	
Jacobian, 2	transformation group, 4	
light cone, 6	vector, 2	
Minkowski space. 3	world-line, 6	