Chapitre 6 Le Logiciel R et Statistique Inférentielle

Introduction

Dans ce chapitre on donne les fonctions R les plus couramment utilisées afin d'obtenir les estimations, les intervalles de confiance pour les paramètres classiques : moyenne, proportion, variance les tests d'hypothèses les plus classiques.

.Nous allons fonder tous les exemples de ce chapitre sur le fichier de données *intimamedia.csv*

Présentation du fichier:

La paroi artérielle est constituée de trois couches : l'intima, la media et l'adventice. L'épaisseur de l'intima-media est un marqueur reconnu d'athérosclérose. Elle a été mesurée par échographie sur un échantillon de 110 sujets. Des informations sur les principaux facteurs de risque ont aussi été recueillies.

Description	Unité ou Codage	Variable
Sexe	1-Homme; 2-Femme	SEXE
Âge le jour de la visite	Années	AGE
Taille	Cm	taille
Poids	Kg	poids
Statut tebegique	0—Ne fume pas 1—A arrêté de fumer 2—Fume	tabac
Estimation de consommation pour les funeurs et ex-fumeurs	Nombre de poquets/année	paqan
Activité physique	0=Non; 1=Out	SPURT
Mesure de l'intima-média	Mm	mesure
Consumnation d'alcool	0=Ne boit pas 1=Boit occasionnellement 2=Boit régulièrement	alcool

6.1 ESTIMATION PONCTUELLE

Le tableau ci-dessous présente les fonctions R qui donnent les estimateur des paramètre les plus connus.

Paramètre	Notation	Estimateur	Estimation	Fonction R
moyenne	μ	Š.	Я	nean()
variance	σ^2	θ^2	$\hat{\sigma}^2$	var()
médiane	m_e	$\widetilde{\mathrm{M}_{e}}$	$\widehat{m_e}$	nedian()
corrélation	ρ	R	r	cor()
proportion	p	Ŷ	p	nean()

6.1 INTERVAL DE CONFIANCE

6.1.1 Intervalles de confiance pour une moyenne

• Cas des grands échantillons (n > 30) ou des petits échantillons avec hypothèse de normalité

L'intervalle de confiance est obtenu grâce à la fonction t. test().

Exemple d'application:

On s'intéresse à l'estimation par intervalle de confiance de la moyenne du poids des personnes de l'étude.

> t.test(poids,conf.level=0.9)\$conf.int

[1] 65.16024 67.80436

Nous obtenons l'intervalle de confiance [65.16,67.80] de niveau de confiance 0.9.

• Cas des petits échantillons

Dans le cas où aucune hypothèse n'est faite sur les données, nous conseillons d'utiliser une approche par *bootstrap*. Il est possible d'utiliser les fonctions boot () et boot. ci () disponibles dans le *package* boot.

Exemple d'application: Nous disposons d'un échantillon, représentatif de la population féminine, de dix femmes ayant les taux de cholestérol suivants (en g/l): > taux <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)

Sans hypothèse gaussienne des données, nous proposons un intervalle de confiance de niveau 95 % du taux moyen de cholestérol des femmes

```
> require(boot)
> moyenne <- function (x, indices) mean(x[indices])
> taux.boot <- boot (taux, moyenne, R = 999, stype "i", sim = "ordinary")
> boot.ci(taux.boot, conf = 0.95,type = c("norm", "basic", "perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 939 bootstrap replicates
CALL:
boot.ci(boot.out = taux.boot, conf = 0.95, type = c("norm", "basic", "perc", "bca"))
Intervals !
Level Normal Basic
95% (1.787, 2.366) (1.770, 2.340)
Level Percentile BCs
95% (1.82, 2.39) (1.83, 2.41)
Calculations and Intervals on Original Scale
```

- 6.1.1 Intervalles de confiance pour une proportion *p*
- Cas des grands échantillons $(np \sim 5 \text{ et n}(1 p) \sim 5)$

Il est possible d'utiliser la fonction binom. approx () du package epitools.

Exemple d'application : On s'interesse à l'estimation par intervalle de confiance de la proportion d'hommes (codes 2 ci-dessous) chez les personnes étudiés

- > require(epitools)
- > table(sexe) # Repartition de la variable sexe.
- > binom.approx(141,226) [c("lower","upper")] # Calcul de l'ic

La fonction prop. test () fournit egalement un intervalle de confiancede la proportion

• Cas des petits echantillons : calcul exact

Il est possible d'utiliser la fonction binom. Test().

> binom.test(141,226)\$conf # Calcul de l'ic avec n=226.

La fonction binom. exact () du *package* epitools renvoie le même intervalle de confiance.

Intervalles de confiance pour une vanance

- Cas des echantillons avec une hypothese de normalito
- > require(sigma2tools)
- > sigma2.test(poids,conf.level=0.9)\$conf

Cas des echantillons sans hypothese de normalitc

Il est possible d'utiliser les fonctions boot () et boot. ci () disponibles dans le package boot.

~ *Exemple d'application* : Reprenons les donnees du taux de cholesterol des femmes et calculons un intervalle de confiance de la variance du taux de cholesterol sans hypothese de normalite des donnees.

```
> taux <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> require(boot) # Charger Ie package boot.
> variance <- function(x,indices) var(x[indices])
> taux.boot <- boot(taux, variance, R 999, stype = "i", sim = "ordinary")
> boot.ci(taux.boot, conf = 0.95,type c("norm", "basic", "perc", "bca"))
 BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
 Based on 999 bootstrap replicates
 CALL :
 boot.ci(boot.out = taux.boot, conf = 0.95, type =
                    c("norm", "basic", "perc", "bca"))
 Intervals :
 Level Normal
                                       Basic
                                   (0.1026, 0.4448)
 95% ( 0.1060,  0.4412 )
             Percentile
                                        BCa
        (0.0521, 0.3943) (0.1201, 0.4670)
 Calculations and Intervals on Original Scale
 Some BCa intervals may be unstable
```

Remarque : pour de grands échantillons sans hypothèse de normalité, on peut utiliser une approche asymptotique en utilisant :

- > require (asympTest)
- > asymp.test(poids,par="var")\$conf

Ici vous trouvez un tableau récapitulatif pour les différents intervalles de confiances

Type	Condition de validité	Fonction R
proportion	$np \ge 5$ et $n(1-p) \ge 5$	prop.test(x)\$conf
	aucune	binom.test(x)\$conf
moyenne	n > 30 ou normalité	t.test(x)\$conf
variance	normalité	sigma2.test(x)\$conf
médiane	aucune	wilcox.test(x)\$conf
corrélation	binormale	cor.test(x)\$conf

D'une manière similaire on donne un tableau récapitulatif pour les différents tests statistiques

Nature	Données	Conditions de validité	Fonction R
Tests paramétriques :			
moyenne	1 échantillon 2 échantillons 2 échantillons 2 éch. appariés	n > 30 ou normalité normalité et variances égales normalité n > 30 ou normalité	<pre>t.test(x,) t.test(x,y,) t.test(x,y,var.equal=F) t.test(x,y,paired=T)</pre>
variance	1 échantillon 2 échantillons 2 échantillons	normalité normalité grand échantillon	<pre>sigma2.test(x,) var.test(x,y,) asymp.test(x,y,)</pre>
corrélation	1 échantillon 2 échantillons	normalité, $\mathcal{H}_0: \rho = \rho_0$ normalité	<pre>cor.test(x,y) cor.test.2.sample(x,y,</pre>
proportion	1 échantillon 1 échantillon 2 échantillons	$np \ge 5$ et $n(1-p) \ge 5$ grand échantillon	<pre>prop.test(x,) binom.test(x,) prop.test(x,y,)</pre>
Tests d'indépendance	:	M	
χ ² d'indépendance χ ² de Yates Fisher exact	tableau de contingence tableau 2×2 tableau de contingence	effectifs théoriques ≥ 5 effectifs théoriques ≥ 2.5	<pre>chisq.test(.,correct=F) chisq.test() fisher.test()</pre>
Tests d'adéquation :			1
Shapiro-Wilk χ^2 d'ajustement Kolmogorov-Smirnov	1 échantillon 1 échantillon 1 échantillon 2 échantillons	${\it effectifs\ th\'eoriques} \geq 5$	<pre>shapiro.test(x,) chisq.test() ks.test(x,.) ks.test(x,y)</pre>
Tests de position :	i.	A.S.	2.0
médiane test du signe Mann-Whitney Mann-Whitney Wilcoxon	1 échantillon 2 échantillons 2 éch. appariés 2 échantillons 2 échantillons 2 échantillons	$min(n_1, n_2) \ge 10$ $min(n_1, n_2) \le 10$	<pre>binom.test(x,) fisher.test(x,y,) binom.test(x,y,paired=T) wilcox.test(x,y,exact=F) wilcox.test(x,y) wilcox.test(x,y)</pre>

Plus d'explications seront fournie dans la session de travaux pratique sur le logiciel $R \ ! \ (cf. \ Tp03)$