MI-ARI

(Computer arithmetics) winter semester 2017/18

N1. Multiplication I.

© Alois Pluháček Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

N1. Multiplication I.

- Shifts
 - 2's complement code
 - 1's complement code
- Barrel Shifter
- Format extension
- Multiplication of unsigned numbers
- Signed-digit number systems and their using
- Modified Booth method
- 2's complement multiplication
 - Booth method
 - Another way
- Sign and magnitude multiplication
- 1's complement multiplication

Shifts

Shifts:

- logical
- cyclic [rotation]
- arithmetic

```
X^* \sim X X^* 	riangleleft i \sim X \cdot z^i + overflow detection X^* 	riangleleft i \sim X \cdot z^{-i} + ? detection of accuracy loss ?
```

sign and magnitude code:

- no change of sign bit;
- shift of magnitude;
- left shift & MSB of magnitude is non-zero, ⇒ overflow
- ullet right shift of odd magnitude, \Rightarrow loss of accuracy

Shifts ii

2's complement code

Arithmetic shift to the left (by 1 position):

$$\mathcal{D}(A) \sim a_n^{\mathcal{D}} a_{n-1}^{\mathcal{D}} \dots a_1^{\mathcal{D}} a_0^{\mathcal{D}}$$

 $\bullet \ A \ge 0 \ \Rightarrow \ \mathcal{D}(A \cdot z) = A \cdot z$

log.: $\mathcal{D}(A) \cdot z - a_n^{\mathcal{D}} \cdot \mathcal{Z} = A \cdot z - a_n^{\mathcal{D}} \cdot \mathcal{Z}$

arith.: $A \cdot z$

diff: $a_n^{\mathcal{D}} \cdot \mathcal{Z} \Rightarrow a_n^{\mathcal{D}} = 0 \implies \mathsf{ok}.$

ullet $A < 0 \Rightarrow \mathcal{D}(A) = \mathcal{Z} + A$

 $\mathsf{log.:} \quad \mathcal{D}(A) \cdot z - a_n^{\mathcal{D}} \cdot \mathcal{Z} = (\mathcal{Z} + A) \cdot z - a_n^{\mathcal{D}} \cdot \mathcal{Z}$

arith.: $\mathcal{Z} + A \cdot z$

 $\text{diff:} \hspace{0.5cm} (a_n^{\mathcal{D}} - (z-1)) \cdot \mathcal{Z} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} a_n^{\mathcal{D}} = z-1 \bullet \text{ok}.$

conclusion: arithmetic shift → logical shift +

+ overflow detection:

- The sign can not change.
- Only zero or z-1 digit can came out.

Shifts iii

(2's complement code — 2)

Arithmetic shift to the right

If there is neither overflow nor loss of accuracy:

$$(A \triangleright 1) \triangleleft 1 = A = (A \triangleleft 1) \triangleright 1.$$

- \Rightarrow from left the digit is inserted
 - 0 for unsigned number and
 - z-1 for negative numbers.
- ⇒ If non-zero digit come out from right, there is the loss of accuracy.

ex.:
$$z=2$$

Shifts iv

1's complement code (integers)

Arithmetic shift to the left (by 1 position):

$$\mathcal{I}(A) \sim a_n^{\mathcal{I}} a_{n-1}^{\mathcal{I}} \dots a_1^{\mathcal{I}} a_0^{\mathcal{I}}$$

 $\bullet \ A > 0 \Rightarrow \mathcal{I}(A \cdot z) = A \cdot z$

log.: $\mathcal{I}(A) \cdot z - a_n^{\mathcal{I}} \cdot \mathcal{Z} = A \cdot z - a_n^{\mathcal{I}} \cdot \mathcal{Z}$

arith.: $A \cdot z$

diff: $a_n^{\mathcal{I}} \cdot \mathcal{Z} \Rightarrow a_n^{\mathcal{I}} = 0 \longrightarrow \text{ok}.$

 $\bullet A < 0 \Rightarrow \mathcal{I}(A) = (\mathcal{Z}-1) + A$

 $\text{log.:} \qquad \mathcal{I}(A) \cdot z - a_n^{\mathcal{I}} \cdot \mathcal{Z} = ((\mathcal{Z} - 1) + A) \cdot z - a_n^{\mathcal{I}} \cdot \mathcal{Z}$

arith.: $(\mathcal{Z}-1) + A \cdot z$

diff: $(a_n^{\mathcal{I}} - (z-1)) \cdot \mathcal{Z} + (z-1)$

 $\Rightarrow \quad a_n^{\mathcal{I}} = z\!-\!1 \quad \& \quad a_0^{\mathcal{I}} = z\!-\!1 riangleq \mathsf{ok}.$

Shift v

(1's complement code -2)

Arithmetic shift to the left:

logical shift and

insert digit
$$\left\{ egin{array}{ll} 0 & \mbox{for } A \geq 0 \\ z-1 & \mbox{for } A \leq 0 \end{array}
ight\}$$
 from right and

overflow detection:

The sign can not change.

Only zero or z-1 digit can came out.

Arithmetic shift to the right:

If there is neither overflow nor loss of accuracy:

$$(A \triangleright 1) \triangleleft 1 = A = (A \triangleleft 1) \triangleright 1.$$

⇒ From left the digit is inserted

0 for positive numbers and positive zero

z-1 for negative numbers and negative zero.

 \Rightarrow If there come out other digit from right

0 for positive numbers and positive zero

 $z\!-\!1$ for negative numbers and negative zero there is a loss of accuracy.

Format extension

format extension:

$$\left. \begin{array}{l} \text{module } \mathcal{Z} = z^{n+1} \\ \text{unit } \varepsilon = z^{-m} \end{array} \right\} \, \, \, \left\{ \begin{array}{l} \text{module } \mathcal{Z}^* = z^{n+2} \\ \text{unit } \varepsilon^* = z^{-m-1} \end{array} \right.$$

 $sign\ and\ magnitude$ — trivial: zero-extension of magnitude

no change of sign.

other representations: zero-extension + correction

correction:
$$\mathcal{Z}^*-\mathcal{Z}=(z-1)\cdot z^n+1$$
 ... new MSB
$$\frac{1}{2}\mathcal{Z}^*-\frac{1}{2}\mathcal{Z}=(z-1)\cdot z^n \qquad \text{old MSB}$$

$$\varepsilon-\varepsilon^*=(z-1)\cdot z^{-m-1} \qquad \text{new LSB}$$
 (If $z=2$, then $(z-1)=1$)

Format extension ii

example — diminished radix complement:

$$\mathcal{I}(X) = \left\{ egin{array}{ll} X & extbf{pro } X \geq 0 & ext{(positive zero including)} \\ \overline{|X|} = & extbf{pro } X \leq 0 & ext{(negative zero including)} \\ = \mathcal{Z} - \varepsilon + X & extbf{pro } X \leq 0 & ext{(negative zero including)} \end{array}
ight.$$

$$\begin{array}{cccc} X \geq 0 & \Longrightarrow & \mathcal{I}^*(X) - \mathcal{I}(X) = \mathbf{0} & \Longrightarrow & \text{no correction} \\ X \leq 0 & \Longrightarrow & \mathcal{I}^*(X) - \mathcal{I}(X) = \mathcal{Z}^* - \mathcal{Z} + \varepsilon - \varepsilon^* \\ & \Longrightarrow & \mathcal{I}^*(X) - \mathcal{I}(X) = z^{n+1} + z^{-m-1} \\ & \Longrightarrow & \text{old MSB} \twoheadrightarrow \begin{cases} \text{new MSB} \\ \text{new LSB} \end{cases} \end{array}$$

 \mathcal{D}

 \mathcal{I}

 \mathcal{A}_0

 \mathcal{A}_1

instead of B as well as C0!

Signed-digit number systems and their using

Only integers will be considered!

(In essence it is without the loss of generality.)

$$B = \sum\limits_{i=0}^{n} b_i z^i \quad \sim \ b_n b_{n-1} \ldots b_0 \ z$$
 , where

$$0 \le b_i < z$$

$$B=\sum\limits_{i=0}^n b_i z^i ~\sim ~b_n b_{n-1} \dots b_0 ~z$$
 , where $0 \leq b_i < z$ $B=\sum\limits_{i=0}^{n+1} eta_i z^i ~\sim ~eta_{n+1} eta_n \dots eta_0 ~z \pm$, where $-rac{1}{2}z \leq eta_i \leq rac{1}{2}z$

convention: $|\hat{x} = -x|$

$$\hat{x} = -x$$

Ex.:
$$z = 10$$

Ex.:
$$z = 10$$
 6 7 2 $_{10} = 1 \hat{3} \hat{3} \hat{3} \hat{2}_{10\pm}$

conversion:
$$b_i < \frac{1}{2}z \Rightarrow \beta_i \leftarrow b_i$$

$$b_i > \frac{1}{2}z \quad \Rightarrow \quad \beta_i \leftarrow b_i - z; \quad b_{i+1} \leftarrow b_{i+1} + 1$$

$$b_i = \frac{1}{2}z \quad \Rightarrow \quad \beta_i \leftarrow ?$$

Signed-digit number systems and their using ii

conversion (consideration continue):

	$b_i < rac{1}{2}z$	$b_i=rac{1}{2}z$	$b_i > rac{1}{2}z$
Q_0	$oldsymbol{b_i}$?	b_i-z
Q_1	$b_i + 1$	b_i+1-z	b_i+1-z
Q_0	Q_0	?	Q_1
Q_1	Q_0	$oldsymbol{Q_1}$	$\boldsymbol{Q_1}$

	$b_i < rac{1}{2}z$	$b_i \geq rac{1}{2}z$
Q_0	$oldsymbol{b_i}$	b_i-z
Q_1	b_i+1	b_i+1-z
Q_0	Q_0	Q_1
Q_1	Q_0	Q_1

Signed-digit number systems and their using iii

conversion $(b_i \rightarrow \beta_i)$:

$$b_{-1} \stackrel{\mathsf{def}}{=} 0$$

$$z = 4$$

b_{i-1}	b_i			
	00	01	10	11
0x	0	1	-2	-1
1x	1	2	-1	0

$$z = 2$$

b_{i-1}	b_i		
	0	1	
0	0	-1	
1	1	0	

Modified Booth method (unsigned numbers)

convertion of multiplier to quaternary signed-digit system

ex.:
$$A = 198_{10} = 11\ 00\ 01\ 10_2$$
 $B = 231_{10} = 11\ 10\ 01\ 11_2 = 3213,0_4 = 10221_{4\pm}$

$$11\ 11\ 11\ 11\ 11\ 00\ 11\ 10\ 01\ 1$$

$$00\ 00\ 01\ 10\ 00\ 11\ 0$$

$$2$$

$$11\ 10\ 01\ 11\ 00\ 1$$

$$2$$

$$1$$

$$00\ 00\ 00\ 00\ 00\ 0$$

$$11\ 00\ 01\ 10$$

$$1$$

$$1$$

$$1$$

$$A \cdot B = 1011 \ 0010 \ 1010 \ 1010 \ _2 = 45 \ 738 \ _{10}$$

note.: addition and format extensions can be performed in successive steps

2's complement multiplication

format:
$$\mathcal{Z}=z^{n+1}$$
, $\varepsilon=1$

$$\underbrace{b \, n \cdots b \, 0}_{X} \quad \longrightarrow \quad \underbrace{\beta \, n \cdots \beta \, 0}_{Y}$$

$$egin{array}{|c|c|c|c|c|} b_i & b_{i-1} & eta_i \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & \widehat{1} \\ 1 & 1 & 0 \\ \hline \end{array}$$

$$X = \mathcal{D}(B)$$

1.
$$b_n = 0 \Rightarrow B \ge 0 \Rightarrow Y = B$$

2.
$$b_n = 1 \Rightarrow B < 0 \Rightarrow X = \mathcal{Z} + B$$
 $\beta_{n+1} = 1 \dots$ out of format is omitted $\Rightarrow Y = X - \mathcal{Z} \Rightarrow Y = B$

Ex.:
$$X = \mathcal{D}(B) = \mathbf{1011}_2 \Rightarrow B = -5_{10}$$

 $\mathbf{1011} \longrightarrow \widehat{1}\mathbf{10}\widehat{1} \Rightarrow Y = -5_{10}$

Booth method:

Example:
$$A=-11_2$$
 $B=-010_2$ $A\cdot B=110_2$ $\mathcal{D}(A)=101$ $\mathcal{D}(B)=110$ $\mathcal{D}'(A\cdot B)=000\,110$ $B=-010=0\hat{1}0$

4bit adder is used:

another way:

$$\mathcal{D}(B) = \sum_{i=0}^n b_i^{\mathcal{D}} \cdot 2^i = B' + B'',$$
 where $B' = b_n^{\mathcal{D}} \cdot 2^n$ a $B'' = \sum_{i=0}^{n-1} b_i^{\mathcal{D}} \cdot 2^i$ only the B' is converted $\left\{ \begin{array}{ccc} 10 \cdots 0 & \longrightarrow \widehat{1}0 \cdots 0 \\ 00 \cdots 0 & \longrightarrow 00 \cdots 0 \end{array} \right.$

Therefore: The first bit $\mathcal{D}(B)$ from left (it means. $b_n^{\mathcal{D}}$) has oposite weight, it means weight -2^n (not weight $+2^n$).

Conclusion: everything is same as for unsigned numbers, but in the last step the subtraction operation (0 or 1 multiple) is processed instead of addition.

Ex.:
$$X = \mathcal{D}(B) = 1011_2 \Rightarrow B = -5_{10}$$

 $1011 \longrightarrow \widehat{1}011 = -5_{10}$

2's complement multiplication v

modified Booth method

— convertion of multiplier to quaternary signed-digit number system

Sign and magnitude multiplication

sign:

- magnitude non-negative number alias unsigned number
 - ⇒ multiplication of unsigned numbers (and it is known)

