MTH201 - Curves and Surfaces End-semester examination

6th of December, 2022

- 1. Consider the circle of radius r
 - (a) (1 point) Find a parametrization γ for a part of the circle.
 - (b) (2 points) Compute the curvature of γ and show that it is constant.
- 2. (3 points) Consider a curve parametrized by $\gamma:(\alpha,\beta)\to\mathbb{R}^2$. Show that if the curvature is a constant and 0, then it lies on a straight line.
- 3. Consider a surface patch $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $\sigma(x,y) = (x,\sqrt{1-x^2},y)$ and the curve $\gamma(t) = (0,1,1)$
 - (a) (3 points) Compute the unit tangent $\mathbf{T}(t)$, unit normal $\mathbf{N}(t)$, and unit binormal, $\mathbf{B}(t)$ of γ .
 - (b) (2 points) Compute the usual curvature, $\kappa(t)$, of γ .
 - $\mathcal{J}(c)$ (3 points) Compute the normal curvature, $\kappa_n(t)$, of γ on the surface.
 - χ (d) (3 points) Compute the geodesic curvature, $\kappa_g(t)$, of γ on the surface. $\chi''_{\gamma}(N\chi\gamma')$
 - V. (3 points) Consider a curve parametrized by γ lying on a surface patch given by some $\sigma: U \to S \subset \mathbb{R}^3$. Show that if the unit normal $\mathbf{N}(t_0)$ of the curve at the point $\gamma(t_0)$ is parallel to the normal $\hat{\mathbf{n}}$ of the surface at the point $\gamma(t_0)$, then the geodesic curvature is 0.
 - 5. Consider a surface patch defined by $\sigma(x,y) = (x,\sqrt{1-x^2},y)$.
 - (a) (2 points) What surface is this surface patch a part of?
 - (b) (2 points) Compute the first fundamental form, E, F, G.
 - (c) (2 points) Compute the second fundamental form, L, M, N.
 - (d) (2 points) Compute the Gaussian Curvature
- 6. (3 points) Show that if $\gamma:(\alpha,\beta)\to S$ parametrizes a straight line, then it is a geodesic.
- 7. Consider a surface patch σ , with the terms of the first fundamental form, E, F, G and tems of its second fundamental form, L, M, and N.
 - (2 points) Express $\sigma_{xx}.\sigma_x$ in terms of E, F, G, and / or their partial derivatives.
 - (b) (2 points) Express $\sigma_{xx}.\sigma_y$ in terms of E, F, G, and / or their partial derivatives.
 - (c) (2 points) Compute the Christoffel symbol Γ^1_{11} . Recall the Christoffel symbol appears as a coefficient in

$$\sigma_{xx} = \Gamma_{11}^1 \sigma_x + \Gamma_{11}^2 \sigma_y + L\hat{\mathbf{n}}$$

8. (3 points) Consider a tangent vector field \mathbf{v} along a curve parametrized by γ on a part of a surface covered by the surface patch $\sigma: U \to S$. Show that its covariant derivative along γ , i.e. $\nabla_{\gamma}\mathbf{v}$, is 0 if $\dot{\mathbf{v}}.\sigma_x = 0$ and $\dot{\mathbf{v}}.\sigma_y = 0$.