

Redutor de velocidades com engrenagens de eixos paralelos

Estudante:

João Marques 98246

Pedro Teixeira 98477

Professor:

António Completo Pedro Prates

Disciplina:

Introdução ao Projeto Mecânico

Índice 1 Introdução4 2 3 Enunciado5 4 Número de andares6 Esquema cinemático......8 5 6 Dimensionamento de engrenagens9 6.1 Número de dentes......9 Dimensionamento à fadiga por flexão para os 3 andares10 6.2 6.3 Módulo para pressão superficial de Hertz14 6.4 6.5 Esquema síntese18 7 Comparação do redutor com o catálogo PSP Pohony19 8 8.1 Cálculo das forças e momentos torsores nos veios20 8.2 8.3 Cálculo das reações nos apoios e momentos fletores22 8.4 Capacidade de carga estática (C0) e capacidade de carga dinâmica (C) 26 Cálculo à cedência......30 Diâmetro mínimo da secção do veio......30 Cálculo à Rigidez32 Chavetas e veios estriados......34 12 Cálculo à Fadiga37 12.1 Veio 141 12.2 Veio 242 12.3 Veio 3......43 Veio 4......44 12.4 13 Soluções Construtivas45 13.1 Arquitetura......45 13.2 Acessibilidade para montagem e manutenção45 13.3 Dimensões45 Montagem47 13.4 14 Vedação/Lubrificação......48

15	Conclusão	49
16	Bibliografia	50

2 Introdução

No âmbito da cadeira de Introdução ao Projeto Mecânico foi proposto o dimensionamento de um redutor de velocidades de eixos paralelos com os veios de entrada e saída em lados opostos do redutor.

Um redutor de velocidades é um dispositivo mecânico que, tal como o nome indica tem como função reduzir a velocidade (rotação) de um acionador.

O trabalho foi baseado em informações e valores tirados a partir do enunciado do trabalho 5 fornecido pelos docentes, onde estavam indicados valores, como a potência do motor e as velocidades de rotação de entrada e de saída.

A realização do relatório teve como principal apoio o livro "Introdução ao Projeto Mecânico" de autoria de António Completo e Francisco Queiroz de Melo. Sendo que, todas as informações relativas a este livro estão mais detalhadas na bibliografia [1].

3 Enunciado

Trabalho 5

Projeto de um Redutor de velocidade de eixos paralelos com os veios de entrada e saída em lados opostos do redutor.

Características essenciais:

- Motor de 9.2 KW/1500 rpm
- Saída a 30 rpm
- Engrenagens de dentado helicoidal
- Cárter em ferro fundido, permitindo fácil acesso interno p/ manutenção
- Deve calcular todos os elementos de máquinas que suportem esforços em funcionamento (Engrenagens, Veios, Rolamentos, Chavetas, etc);
- Deve efetuar os desenhos de conjunto permitindo compreender a construção do redutor; usar representação normalizada de desenho de construção mecânica

Referências de consulta (lista não exaustiva):

- 1 Completo A., Melo F.Q. 2019. Introdução ao Projeto Mecânico, Publindústria, Porto, ISBN: 9789897232251.
- 2 Niemann, G., "Elementos de máquinas", Edgar Blucher eds.
- 3 Páginas disponíveis na web em "sites" de fabricantes de redutores

Exemplo ilustrativo:

4 Número de andares

O início do dimensionamento do redutor começa pelo cálculo do número de andares necessários. Este cálculo tem por base as rotações necessárias, tanto de entrada como de saída. A partir da expressão (1) temos:

$$N_{andares} = \frac{\log\left(\frac{W_{entrada}}{W_{saida}}\right)}{\log 4} \tag{1}$$

$$N_{andares} = \frac{\log\left(\frac{1500}{30}\right)}{\log 4} = 2,8219 \approx 3$$

Logo, neste caso, são necessários 3 andares.

Cada andar tem uma relação de transmissão inerente.

Para o primeiro andar considerou-se a máxima relação de transmissão possível, uma relação (u_1) de 4, uma vez que o veio de entrada apresenta uma velocidade de rotação (rpm) mais elevada.

O segundo andar apresenta a mesma relação que o primeiro andar, uma vez que existe uma grande diferença de velocidade de rotação entre a entrada e a saída, portanto $(u_1) = (u_2)$

Para a relação do terceiro andar, recorrendo às fórmulas (2) e (3), obteve-se uma relação (u_3) de 3,125.

$$\boldsymbol{u_{Total}} = \frac{n_1}{n_4} \qquad (2)$$

$$\boldsymbol{u_{Total}} = u_1 \cdot u_2 \cdot u_3 \tag{3}$$

$$u_{Total} = \frac{1500}{30} = 50$$

$$(u_1) = (u_2) = 4$$

$$u_3 = \frac{50}{4 \cdot 4} = 3,125$$

Tabela 1 - Relações para os andares.

Relações					
Z2/Z1	Eixos paralelos	Helicoidal	u1	4	
Z4/Z3	Eixos paralelos	Helicoidal	u2	4	
Z6/Z5	Eixos paralelos	Helicoidal	u3	3,125	
			ut	50	

Já calculadas as relações de transmissão, pretende-se agora obter a velocidade de cada veio. Assim, através da fórmula (4), foi possível determinar a velocidade de rotação para os 4 veios.

$$u_1 = \frac{n_1}{n_2}$$
 $u_2 = \frac{n_2}{n_3}$ $u_3 = \frac{n_3}{n_4}$ (4)

Tabela 2 – Velocidade de rotação dos veios.

Velocidade de rotação dos veios [rpm]		
n1 1500		
n2	375	
n3 93,75		
n4	30	

5 Esquema cinemático

Após os cálculos realizados no capítulo 4, efetuou-se o desenho do esquema cinemático do redutor, o qual se pode observar na Figura 1.

Figura 1 - Esquema cinemático de um redutor de velocidades com engrenagens de eixos paralelos, com os veios de entrada e saída em sentidos opostos do redutor.

6 Dimensionamento de engrenagens

Neste capítulo pretende-se obter o dimensionamento das engrenagens dos 3 andares. Para isso recorreu-se a dois métodos.

- Dimensionamento à rotura por fadiga em flexão do dente.
- Dimensionamento à pressão superficial de Hertz limite para o flanco dos dentes.

Para os 3 andares foram utilizadas as mesmas metodologias uma vez que todos os andares apresentam características semelhantes.

6.1 Número de dentes

Após a discussão com o docente relativamente ao valor concreto a atribuir ao número de dentes para cada pinhão, foi decidido optar pela tentativa de todos os pinhões terem o número de dentes igual a 21.

No entanto, para o <u>último andar</u>, foi impossível utilizar essa relação, sendo necessário calcular o impacto, que diferentes números de dentes teriam no projeto.

Após algumas tentativas (Tabela 3) chegou-se a uma conclusão de acordo com as condições impostas de modo a obter uma velocidade de saída concordante com o enunciado (Tabela 4).

Tabela 3 - Número de dentes do 3 andar e respetiva influência.

Número de dentes do 3º andar		u3	Velocidade de saída (rpm)	Erro %	
Z5 (pinhão)	21	2 101	00.00	2.4	
Z6	67	3,191	29,38	2,1	
Z5 (pinhão)	21	3,333	28,13	6,7	
Z6	70	3,333	20,13		
Z5 (pinhão)	23	3,174	29,54	1.6	
Z6	73	3,174	29,54	1,6	
Z5 (pinhão)	24	2 125	30	0	
Z6	75	3,125	30	U	

Tabela 4 - Número de dentes.

Roda	Nº
Z1 (pinhão)	21
Z2	84
Z3 (pinhão)	21
Z4	84
Z5 (pinhão)	24
Z6	75

6.2 Dimensionamento à fadiga por flexão para os 3 andares

Como referido no enunciado do trabalho proposto, os 3 andares consistem em veios paralelos e engrenagens helicoidais. Assim, o dimensionamento é feito de forma semelhante, porém com algumas alterações nos parâmetros.

No caso de os parâmetros variarem consoante o andar, está devidamente tabelado o valor a adotar para cada andar.

Para o dimensionamento, à <u>rotura por fadiga em flexão do dente</u>, utiliza-se a expressão (5), apresentada abaixo, de modo a calcular o módulo mínimo.

$$m_n \ge \sqrt[3]{\frac{1.96 \cdot 10^4 \cdot P \cdot \cos(\beta) \cdot K_M \cdot K_{bL} \cdot Y_{\varepsilon}}{CL\beta \cdot \sigma_{bLimite} \cdot n_1 \cdot K_A \cdot Z_{V1} \cdot Y_F \cdot Y\beta} \cdot \left(\frac{u_1 + 1}{u_1}\right)}$$
 (5)

 m_n — módulo real da engrenagem [mm]

P-potência a transmitir pela engrenagem [W]

 β – ângulo de hélice primitiva do dentado [°]

 $K_M - f$ ator de efeito dinâmico [adimensional]

 K_{bL} – fator de fadiga por flexão [adimensional]

 Y_{ε} – fator de condução [adimensional]

u − *razão de transmissão* [adimensional]

 $C_{L\beta}$ – fator proporção largura/módulo [adimensional]

 $\sigma_{bLimite}$ — tensão limite de fadiga à flexão [MPa]

n – rotação do pinhão [rpm]

 K_A – fator de alinhamento [adimensional]

 Z_V – número de dentes equivalentes do pinhão [adimensional]

 Y_F-f ator de concentração de tensões à flexão [adimensional]

 Y_{β} – fator de efeito do dentado helicoidal [adimensional]

6.2.1 Potência a transmitir pela engrenagem - P

Este parâmetro da expressão corresponde à potência do motor associado ao redutor e este valor foi obtido a partir do enunciado e corresponde a 9,2 kW.

6.2.2 Fator de efeito dinâmico - K_M

O fator de efeito dinâmico foi arbitrado, com o auxílio do professor e com a consulta da página 99 do [1], onde está presente a Tabela 4.5, que ajudou na escolha do valor final. Considerando, assim, o valor de 1 apresentado na Tabela 5, correspondente a um movimento uniforme na máquina motriz e na máquina acionada.

Tabela 5 - Fator de efeito dinâmico.

		Máquina acionada			
		U - Uniforme	L - Leve	M - Médio	H - Forte
	U – Uniforme	1,00	1,25	1,50	1,75
Máquina	L – Leve	1,10	1,35	1,60	1,85
Motriz	Motriz M - Médio	1,25	1,50	1,75	2,00
	H - Forte	1,50	1,75	2,00	2,25

6.2.3 Fator de fadiga por flexão - K_{bL}

O cálculo deste fator tem por base a fórmula (7), onde o valor de N_{Lh} consiste no tempo de vida de funcionamento (20 anos, 300 dias, 8 horas, 60 minutos, para o caso do primeiro andar 1500 rpm, para o segundo 375 rpm, para o terceiro e último andar 93.75 rpm) e pode ser obtido a partir da expressão (6)

$$N_{Lh} = anos \cdot dias \cdot horas \cdot minutos \cdot rpm \tag{6}$$

$$K_{bL} = \frac{\log_{10}(N_{Lh})}{8} \tag{7}$$

Tabela 6 - Fator de fadiga por flexão por andar.

Andar	NLh	KbL
1º	$4,32 \times 10^9$	1,20
2º	$1,08 \times 10^9$	1,13
3º	$2,70 \times 10^{8}$	1,05

6.2.4 Ângulo de hélice primitiva do dentado - β

Em relação ao ângulo de hélice, este parâmetro pode variar desde 0° a 45°, em intervalos de 5°. Portanto, optou-se por um valor intermédio de 20°.

6.2.5 Fator de condução - Y_{ε}

Sendo $Z_1 \ge 19$ e $u \ge 1,5:1$ pode considerar-se um Y_{ε} igual a 0,8.

6.2.6 Razão de transmissão - u

As razões de transmissão u_1, u_2, u_3 são calculadas pela divisão do número de dentes envolvidos na engrenagem em questão. Estes valores estão tabelados na Tabela 1.

6.2.7 Fator proporção largura/módulo - $C_{L\beta}$

Para obter este fator é necessário arbitrar o parâmetro C_L , com o auxílio da Tabela 7, que corresponde à Tabela 4.7 da página 99 do [1].

Tabela 7 - Valores de CL para engrenagens cilíndricas.

$C_L = \frac{L}{m_n}$	Máquina acionada		
5 a 8	Rodas móveis em caixas de velocidade de máquinas ferramenta		
10 a 12	Redutores fixos de eixos paralelos (P≤10kW); mecânica geral		
12 a 15 (máximo)	Redutores fixos de eixos paralelos (P≤10kW); rodas helicoidais ou dentado Chevron. Motorização da máquina pesadas; redutores de comportas em hidroelétricas, distribuidores de fluxo em turbinas; acionamento de graus		

Através da análise da Tabela 7 e com uma discussão com o professor, assumiu-se o valor de 10 para o parâmetro C_L . Por conseguinte, a partir da fórmula (8), obteve-se o fator de proporção.

$$C_{L\beta} = \frac{C_L}{\cos \beta} \tag{8}$$

$$C_{L\beta} = \frac{10}{\cos(20^\circ)} = 10,64$$

6.2.8 Tensão limite de fadiga à flexão - $\sigma_{bLimite}$

A tensão limite de fadiga à flexão será 295 MPa, uma vez que se optou por dimensionar todos os pares de engrenagens com o mesmo material - 42CrMo4, material que se encontra sugerido na resolução de um exercício do [1] na página 107. É de notar que a análise aos vários materiais e a sua influência pode vir a ser estudada em trabalhos futuros, uma vez que estes influenciam os módulos e os tamanhos dos redutores.

Tabela 8 - Tensão limite de fadiga em flexão para engrenagens sem endurecimento superficial.

Material	Designação DIN	$\sigma_{bLimite}$ [MPa]
	35Mn5, 30NiCr14, 42CrMo4	295-340
	35Mn5, 30NiCr14, 42CrMo4	340
Aços ligados temperados (óleos)	30NiCr14, 42CrMo4, 34NiCrMo6	365
temperades (elecs)	42CrMo4, 34NiCrMo6	375-390
	34NiCrMo6	410

6.2.9 Rotação do pinhão - n

Para este parâmetro não foi necessário arbitrar nenhum valor, pois, através do enunciado do problema, conseguiu-se obter a velocidade pretendida para o primeiro pinhão, a qual é de 1500 rpm e por consequência e com uso das relações foi obtido n_2 = 375 rpm e n_3 = 93.75 rpm de modo a respeitar o valor de saída de 30 rpm pedido (Tabela 2).

6.2.10 Fator de alinhamento - K_A

Para o fator de alinhamento assumiu-se que $^L/_d < 1$, o que leva a que o fator K_A tome o valor de 1.

6.2.11 Número de dentes equivalentes do pinhão - Z_V

O número de dentes equivalente do pinhão determinou-se aplicando equação (9).

$$Z_V = \frac{Z}{\cos^3 \beta} \tag{9}$$

Tabela 9 - Nº de dentes virtual dos pinhões.

Número de dentes virtual dos pinhões			
ZV1	25,31		
ZV3	25,31		
ZV5	28,93		

6.2.12 Fator de concentração de tensões à flexão - Y_F

Este fator provém da equação (10), em que K_F é o fator de concentração de tensões. Sabendo que, o raio de concordância na raiz do dente é dependente do valor de correção de dentado (x), considera-se x igual a 0 e, por isso, o Y_F toma o valor de 0,4.

$$Y_F = \frac{1}{K_F} \tag{10}$$

6.2.13 Fator de efeito do dentado helicoidal - Y_{β}

O fator de efeito do dentado helicoidal é calculado com a expressão (11).

$$Y_{\beta} = \frac{1}{\cos \beta} \tag{11}$$

$$Y_{\beta} = \frac{1}{\cos(20^{\circ})} = 1,06$$

6.3 Módulo para pressão superficial de Hertz

Para o dimensionamento à fadiga por flexão por ação das tensões de contacto (pressões de contacto de Hertz) durante o engrenamento, utiliza-se a expressão (12), de modo a determinar o módulo mínimo para o segundo andar.

$$m_n \ge \sqrt[3]{\frac{6 \cdot 10^4 \cdot P \cdot \cos \beta \cdot K_M}{\pi^2 \cdot C_{L\beta} \cdot \sigma_{HLim}^2 \cdot n \cdot K_A \cdot Z_V^2 \cdot K_{HL} \cdot \sin(2\alpha)} \cdot \frac{2 \cdot E}{(1 - \nu^2)} \cdot \left(\frac{u_1 \pm 1}{u_1}\right)}$$
(12)

 m_n – módulo real da engrenagem [mm]

P - potência a transmitir pela engrenagem [W]

 β – ângulo de hélice primitiva do dentado [°]

 $K_M - f$ ator de efeito dinâmico [adimensional]

E - módulo de elasticidade [MPa]

 $u_1 - razão de transmissão [adimensional]$

 $C_{L\beta}-f$ ator proporção largura/módulo [adimensional]

 σ_{HLim} — tensão limite de fadiga de contacto [MPa]

 $n_1 - rotação do pinhão [rpm]$

 $K_A - f$ ator de alinhamento [adimensional]

 Z_V – número de dentes equivalentes do pinhão [adimensional]

 K_{HL} – fator de fadiga à tensão de contacto [adimensional]

 α – ângulo de pressão [°]

v – coeficiente de Poisson [adimensional]

6.3.1 módulo de Young (E)

O módulo de elasticidade *E*, que para aço toma o valor de 210000Mpa.

6.3.2 Coeficiente de Poisson (ν)

O coeficiente de Poisson para o aço é igual a v = 0.3.

6.3.3 ângulo de pressão (α)

O ângulo de pressão assumido é de 20 graus.

6.3.4 Tensão limite de fadiga de contacto - σ_{HLim}

Para obter o valor desta tensão consultou-se a Tabela 10 e, dentro dos valores possíveis para o material escolhido - 42CrMo4, optou-se pela tensão de 965 MPa.

Tabela 10 - Tensão limite de fadiga de contacto.

Material	Designação DIN	$\sigma_{HLim}\left[MPa ight]$
	35Mn5	700-745
Aços ligados temperados (óleos)	35Mn5, 30NiCr14, 42CrMo4	760-835
	30NiCr14, 42CrMo4, 34NiCrMo6	840-950
	42CrMo4, 34NiCrMo6	965-980

6.3.5 Fator de fadiga à tensão de contacto - K_{HL}

O fator K_{HL} tem por base o tempo de vida de funcionamento do redutor (20 anos, 300 dias, 8 horas, 60 minutos, para o 1º andar 1500 rpm, para o 2º andar 375 rpm e para o último 93.75 rpm) e determina-se com a fórmula (13).

$$K_{HL} = \frac{8}{\log_{10}(N_{Lh})} \tag{13}$$

O parâmetro N_{Lh} foi definido na secção 6.2.3 encontra-se registado na Tabela 6.

Tabela 11 - Fator de fadiga à tensão de contacto.

Andar	Fator de fadiga à tensão de contacto K _{HL}
10	0,830
2º	0,886
30	0,949

6.4 Discussão do Dimensionamento dos 3 Andares.

6.4.1 Escolha dos módulos

Foram calculados dois módulos para cada andar, sendo agora necessário fazer uma escolha do módulo normalizado para cada andar.

Os módulos são normalizados através da tabela 4.2 do [1].

A escolha vai ser sempre o módulo superior, pois desta forma respeitamos obrigatoriamente o dimensionamento do módulo inferior.

Tabela 12 - Módulos calculados.

Dimensionamento à fadiga por flexão			Dimensionamento à pressão superficial de Hertz				
Andar	mn Real	mn norm.	Andar	m₁ Real	mn norm.		
1	1,59	1,75	1	1,81	2		
2	2,47	2,5	2	2,82	3		
3	3,73	3,75	3	4,07	4,5		

6.4.2 Características geométricas das engrenagens

Já feita a escolha de todos os módulos, no caso, o superior foi sempre o calculado a partir do dimensionamento à pressão de Hertz, pretende-se calcular o módulo aparente (m_t) através da fórmula (14) de modo a conseguir os diâmetros primitivos de cada pinhão e roda, recorrendo à fórmula (15).

$$m_t = \frac{m_n}{\cos \beta}$$
 (14)

$$D = m_t \cdot Z$$
 (15)

$$D = m_t \cdot Z \tag{15}$$

Na Tabela 13 encontram-se os módulos aparentes e os diâmetros primitivos para cada andar. É importante notar que os valores apresentados se encontram arredondados à centésima, este arredondamento tem consequências na velocidade de saída, apesar disso e de na prática ser impossível obter um redutor ideal, o erro calculado após os arredondamentos é de 0,006%, obtendo uma velocidade de saída de 30,002 rpm, sendo esta praticamente igual à pretendida.

Tabela 13 - Módulo aparente e Diâmetro primitivo por andar.

Andar	m t	Dpinhão	Droda
1º	2,13	44,70	178,78
2º	3,19	67,04	268,17
3º	4,79	114,93	359,16

Assim, foi possível calcular, para todos os andares, os parâmetros característicos das engrenagens. As próximas tabelas (tabela 14 a 16) transmitem as informações cruciais no dimensionamento do redutor. As tabelas são derivadas da tabela 4.25 do [1].

Tabela 14 - Parâmetros do 1º Andar.

	Parâmetros 1º Andar	Pinhão 1	Roda 2	Unidade
р	Passo	6,2	28	mm
pt	Passo aparente	6,6	69	mm
α	Ângulo pressão nominal	20,	00	0
αt	Ângulo pressão aparente	21,	17	0
D	Diâmetro primitivo	44,70	178,78	mm
Db	Diâmetro base	41,68	166,71	mm
β	Ângulo dentado	20,	00	0
L	Largura da roda	20,00		mm
Lt	Largura do dentado	21,28		mm
Dp	Diâmetro do pé dente	39,70	173,78	mm
De	Diâmetro externo	48,70	182,78	mm
hz	Altura total dente	4,50		mm
hc	Altura cabeça dente	2,00		mm
hf	Altura pé dente	2,	50	mm
S	Folga cabeça	0,	50	mm
е	Entre eixo	111	,74	mm

Tabela 15 - Parâmetros do 2º Andar.

	Parâmetros 2º Andar	Pinhão 3	Roda 4	Unidade
р	Passo	9,4	9,42	
pt	Passo aparente	10,	03	mm
α	Ângulo pressão nominal	20,	00	0
αt	Ângulo pressão aparente	21,	17	0
D	Diâmetro primitivo	67,04	268,17	mm
Db	Diâmetro base	62,52	250,07	mm
β	Ângulo dentado	20,00		0
L	Largura da roda	30,00		mm
Lt	Largura do dentado	31,	93	mm
Dp	Diâmetro do pé dente	59,54	260,67	mm
De	Diâmetro externo	73,04	274,17	mm
hz	Altura total dente	6,75		mm
hc	Altura cabeça dente	3,00		mm
hf	Altura pé dente	3,7	75	mm
S	Folga cabeça	0,7	75	mm
е	Entre eixo	167	',61	mm

Tabela 16 - Parâmetros do 3º Andar.

	Parâmetros 3º Andar	Pinhão 5	Roda 6	Unidade
р	Passo	14,	14	mm
pt	Passo aparente	15,	04	mm
α	Ângulo pressão nominal	20,	00	0
αt	Ângulo pressão aparente	21,	17	0
D	Diâmetro primitivo	114,93	359,16	mm
Db	Diâmetro base	107,17	334,91	mm
β	Ângulo dentado	20,	00	0
L	Largura da roda	45,00		mm
Lt	Largura do dentado	47,	89	mm
Dp	Diâmetro do pé dente	103,68	347,91	mm
De	Diâmetro externo	123,93	368,16	mm
hz	Altura total dente	10,13		mm
hc	Altura cabeça dente	4,50		mm
hf	Altura pé dente	5,63		mm
S	Folga cabeça	1,	13	mm
е	Entre eixo	237	,05	mm

As larguras de roda (L) foram calculadas pela fórmula (16), sendo esta retirada da Tabela 7.

$$C_L = \frac{L}{m_n} \qquad (16)$$

6.5 Esquema síntese

Após o dimensionamento das engrenagens, para todos os andares, é agora possível verificar algumas das dimensões necessárias a ter em conta para o dimensionamento total do redutor.

Surge agora a possibilidade de tentar otimizar o redutor no que toca ao tamanho, de forma a reduzir a largura, isto é tentar colocar a roda 2 alinhada com o pinhão 5. Para isso verificamos se existe uma folga entre as rodas, caso isso se verifique é possível obter um redutor mais compacto que o apresentado na Figura 1

Verificou-se que é possível, sendo a folga entre a roda 2 e o pinhão 5 de $\cong 16$ mm. Deste modo, obteve-se o seguinte esquema cinemático Figura 2.

Figura 2 - Esquema cinemático atualizado.

7 Comparação do redutor com o catálogo PSP Pohony

Com a realização do esquema síntese tem se uma ideia das dimensões do redutor. Deste modo, procedeu se à pesquisa de um redutor com propriedades semelhantes ao redutor deste trabalho, de maneira a averiguar se as dimensões obtidas seriam plausíveis.

O redutor escolhido para comparação é o apresentado nas Figura 3 e 4, sendo que este está submetido a condições aproximadas ao estudado, assim optou-se por uma referência de 11kW e com velocidade à saída de 30,5 rpm.

A partir do catálogo da PSP Pohony [2], foi retirada a seguinte referência: C3(P)-200M.

Figura 3 - Tabela de dimensões para 11 kW.

Figura 4 – Tabela de dimensões para o esquema.

Figura 5 - Esquema de dimensões

Analisando as figuras 4 e 5, pode-se verificar que as dimensões do parâmetro J (dimensão total do comprimento do redutor) e H (altura do redutor) apresentam os valores de 840 mm e 392 mm. O que se encontra de acordo com as dimensões obtidas a partir do dimensionamento das engrenagens, J'=782 mm e H'=395 mm.

Em suma, verifica-se que todos os parâmetros estão de acordo e dentro da realidade, o que permite o seguimento do estudo e traz, de certa forma segurança aos cálculos anteriormente feitos.

8 Dimensionamento dos rolamentos

8.1 Sistema de eixos

Para se conseguir representar as forças presentes em cada uma das engrenagens foi desenvolvido um diagrama para facilitar a visualização da orientação de cada força, para posteriormente se proceder ao cálculo das suas magnitudes e com isso as reações em cada um dos apoios dos veios.

Figura 6 - Esquema do Sistema de eixos e respetivos forças.

Todas as forças aplicadas em cada par de engrenagens $(Z_1/Z_2, Z_3/Z_4 e Z_5/Z_6)$, formam pares de ação reação e cada engrenagem apresenta três forças distintas: F_t – foça tangencial, sentido do movimento ou contrário consoante a engrenagem, F_r – força radial, sempre na direção do raio, F_x – força axial, que depende do sentido do dentado helicoidal. Como existem forças radiais e axiais a hipótese inicial de rolamentos é <u>rolamentos de contacto angular de esferas</u>.

8.2 Cálculo das forças e momentos torsores nos veios

Para auxiliar os cálculos de todas as forças e momentos necessários para a etapa seguinte, foi tido, mais uma vez, o livro "Introdução ao Projeto Mecânico" como principal base de consulta. Para engrenagens de dentado helicoidal consulta-se a página 104 do [1], onde estão presentes as seguintes fórmulas.

$$M_t = \frac{P}{w}$$
 [17] $F_t = \frac{M_t}{R_m}$ (18) $F_r = F_t \cdot \frac{\tan \alpha}{\cos \beta}$ (19) $F_x = F_t \cdot \tan \beta$ (20)

 M_t - Momento torsor a transmitir pelo pinhão [Nm]

P - Potência a transmitir pela engrenagem [W]

w - Velocidade angular do pinhão [rad/s]

 F_t – Força tangencial no pinhão [N]

 R_m – Raio primitivo médio [m]

 F_x – Força axial [N]

 F_r – Força radial na roda [N]

α – Ângulo de pressão [°]

 β – Ângulo dentado [°]

Tabela 17 - Magnitude de todas as forças e momentos torsores nos veios.

Veio 1			
Pinhão		Z1	
Momento torsor no pinhão	Mt1	58,56902	Nm
Força tangencial no pinhão 1	Ft1	2620,538	N
Força axial no pinhão 1	Fx1	953,7977	N
Força radial no pinhão 1	Fr1	-1015,01	N
Veio 2			
Par de rodas que se encontram no veio		Z2/Z3	
Momento torsor do/a pinhão /roda	Mt2/Mt3	234,2761	Nm
Força tangencial na roda 2	Ft2	-2620,83	N
Força axial na roda 2	Fx2	-953,904	N
Força radial na roda 2	Fr2	1015,124	N
Força tangencial no pinhão 3	Ft3	-6989,14	N
Força axial no pinhão 3	Fx3	-2543,84	N
Força radial no pinhão 3	Fr3	-2707,1	N
Veio 3			
Par de rodas que se encontram no veio		Z4/Z5	
Momento torsor da/o roda/pinhão	Mt4/Mt5	937,1043	Nm
Força tangencial na roda 4	Ft4	6988,882	N
Força axial na roda 4	Fx4	2543,745	N
Força radial na roda 4	Fr4	2706,997	N
Força tangencial do pinhão 5	Ft5	16307,39	N
Força axial no pinhão 5	Fx5	5935,405	N
Força radial no pinhão 5	Fr5	-6316,33	N
Veio 4			
Roda		Z6	
Roud			
Momento torsor na roda	Mt6	2928,451	Nm
	Mt6 Ft6	2928,451 -16307,2	Nm N
Momento torsor na roda		-	

8.3 Cálculo das reações nos apoios e momentos fletores

Para esta parte do trabalho, o formulário de elementos de estruturas e máquinas [3] foi um grande aliado, visto que a resolução teve por base esse apoio. Para cada veio foram representadas, em duas perspetivas diferentes, as forças que nele atuam bem como os momentos fletores que nele são criados.

Para obter as reações foi utilizado o software "MDSolids", este programa permite obter o cálculo das reações nos apoios e as equações descontínuas que caracterizam os respetivos diagramas.

Para calcular o tamanho dos veios e distâncias entre o centro das rodas e cárter, recorreu-se às páginas 252 e 319 do [1], onde se encontram as seguintes fórmulas e dimensões indicativas:

$$a = 1,1 * 0,025 * e + 1$$
 (21) $l = a + b + c$ (22)

a – Distância da parede interior do cárter ao centro da primeira roda [mm]

b–Distância entre os centros das rodas[mm]

c – Distância do centro da roda à parede interna do cárter [mm]

e - Distância entre eixos [mm]

l – Distância total do veio sem rolamentos [mm]

As seguintes figuras mostram para cada veio as <u>cargas</u> e <u>momentos fletores</u> impostos nos planos <u>Oxy</u> e <u>Oxz</u> e estão acompanhadas de uma <u>tabela com os parâmetros</u> a utilizar nos esquemas.

Notar que para o cálculo dos momentos fletores, mais uma vez, recorreu-se aos apontamentos de Elementos de estruturas e máquinas [3].

$$Mf = Fx \cdot \frac{D}{2} \qquad (23)$$

Mf - Momento fletor [Nmm]

Fx – $Força\ axial\ [N]$

D - Diâmetro primitivo da roda [mm]

Tabela 18 - Parâmetros a introduzir no "MDSolids".

Veio 1 Veio 2											
Ft1	Fx1	Fr1	Mf1	Ft2	Fx2	Fr2	Mf2	Ft3	Fx3	Fr3	Mf3
2620,54	953,80	-1015,01	21317,38	-2620,83	-953,90	1015,12	-85269,5	-6989,14	-2543,84	-2707,1	-85269,5
N	N	N	Nmm	N	N	N	Nmm	N	N	N	Nmm
	Veio 3										
				Veio 3					/	/eio 4	
Ft4	Fx4	Fr4	Mf4	Veio 3 Ft5	Fx5	Fr5	Mf5	Ft6	Fx6	/eio 4 Fr6	Mf6
Ft4 6988,88	Fx4 2543,75	Fr4 2706,99			Fx5 5935,41	Fr5 -6316,33	Mf5 341078,1	Ft6 -16307,2			Mf6 -1065869

Veio 1

Figura 7 - Diagramas Corte e Momento - Veio 1 – Oxy.

Figura 8 - Diagramas Corte e Momento - Veio 1 – Oxz.

Veio 2

Figura 9 - Diagramas Corte e Momento - Veio 2 - Oxy.

Figura 10 - Diagramas Corte e Momento - Veio 2 - Oxz.

Figura 11 - Diagramas Corte e Momento - Veio 3 – Oxy. Figura 12 - Diagramas Corte e Momento - Veio 3 – Oxz.

Também na página 319 do livro [1] se encontram as expressões utilizadas na folha de cálculo para o cálculo das Reações esquerda (Resq) e Reações direitas (Rdir) nas diferentes direções, é de notar que é necessário calcular o módulo de ambas para se obter a magnitude pretendida.

$$Resq = \frac{Fe \cdot (b+c) + Fd \cdot (c)}{a+b+c}$$
 (24)
$$Rdir = Fe + Fd - \left[\frac{Fe \cdot (b+c) + Fd \cdot (c)}{a+b+c} \right]$$
 (25)

a - Distância da parede interior do cárter ao centro da primeira roda [mm]

b– *Distância entre rodas*[*mm*]

c-Distância do centro da roda ao final do veio [mm]

Fe - Força aplicada à esquerda [N]

Fd-Força aplicada à direita [N]

Assim, é agora possível apresentar o resumo das variáveis de cálculo e resultados em forma de tabela.

Tabela 19 - Cálculo das Forças de Reação nos apoios.

	Eixo	a (mm)	b (mm)	c (mm)	Fe (N)	Fd (N)	Resq P	Rdir P	Resq (N)	Rdir(N)
Veio1	z(rad)	21,2	0	21,2	-1015,01	0	-507,505	-507,505	1405,12	1405,12
veioi	y(tan)	21,2	0	21,2	2620,54	0	1310,269	1310,269		
Voice	z(rad)	22,7	35	29,2	1015,12	-2707,10	-159,894	-1532,07	4200 F0	FF20.4F
Veio2	y(tan)	22,7	35	29,2	-2620,83	-6989,14	-4286,60	-5323,36	4289,58	5539,45
Voice	z(rad)	41,6	47,5	29,7	-6316,33	2706,99	-3427,269	-182,06	12010 15	10054.61
Veio3	y(tan)	41,6	47,5	29,7	16307,39	6988,88	12343,17	10953,10	12810,15	10954,61
\/aia4	z(rad)	39,1	0	39,1	6316,26	0	3158,14	3158,12	0742.00	0742.05
Veio4	y(tan)	39,1	0	39,1	-16307,20	0	-8153,63	-8153,59	8743,88	8743,85

8.4 Capacidade de carga estática (C0) e capacidade de carga dinâmica (C)

A <u>Capacidade de carga estática</u> é a carga que provoca, na pista e elemento rolante, uma deformação plástica de 0,001% do diâmetro do elemento rolante. A capacidade de carga estática pode ser calculada através da seguinte expressão:

$$C_0 = f_s \cdot P_0$$
 (26)
 $P_0 = X_0 \cdot F_r + Y_0 \cdot F_a$ (27)

 C_0 – capacidade de carga estática [kN]

 f_s – coeficiente de segurança [adimensional]

 P_0 – carga estática equivalente [adimensional]

 $X_0 - fator\ radial\ [adimensional]$

 F_r – carga radial [kN]

 $Y_0 - fator\ axial\ [adimensional]$

 F_a – carga axial [kN]

8.4.1 Coeficiente de segurança - f_s

O fator de segurança é o fator que evita a ocorrência da deformação plástica no contacto entre os corpos rolantes e a pista. Com consulta ao livro [1], escolheu-se um fator de segurança de 1,5.

Tabela 20 - Coeficiente de Segurança (fs).

Grau de exigência	Reduzida	Normal	Elevada
Coeficiente de segurança (f_s)	$0.7 < f_s < 1.0$	$1.0 < f_s < 1.5$	$1.5 < f_s < 2.5$

8.4.2 Fator Radial - X_0 e Fator Axial - Y_0

Tendo por base a tabela 5.8 presente na página 145 do livro [1], e optando por escolher um rolamento de esferas radial-axial com contacto angular de 40° de uma carreira simples, foi possível obter um X_0 =0,5 e um Y_0 =0,26.

Tabela 21 - Valores dos fatores de carga estática Xo e Yo para rolamentos de esferas.

Tipo do relementos	Ângulo de contacto (α°)	Carreira	Carreira Simples		
Tipo de rolamentos	Anguio de contacto (d.)	X_0	Y_0		
	12°		0,47		
	15°		0,46		
	20°	0.5	0,42		
Esferas radial-axial, com contacto	25°		0,38		
angular (α°)	30°	0,5	0,33		
	35°		0,29		
	40°		0,26		
	45°		0,22		

Deste modo, apresenta-se, de seguida os resultados finais obtidos para a Capacidade de carga estática (tabela 22)

		Fr [kN]	Fa [kN]	X0	Y0	P0 [kN]	fs	Co [kN]
veio 1	Resq	1,41	0,95	0,50	0,26	0,95	1,50	1,43
	Rdir	1,41	0,95	0,50	0,26	0,95	1,50	1,43
veio 2	Resq	4,29	0,95	0,50	0,26	2,33	1,50	3,59
	Rdir	5,54	2,54	0,50	0,26	3,52	1,50	5,15
veio 3	Resq	12,80	5,94	0,50	0,26	8,21	1,50	11,90
veio 3	Rdir	10,95	2,54	0,50	0,26	5,92	1,50	9,2
voia 4	Resq	8,74	5,94	0,50	0,26	5,92	1,50	8,87
veio 4	Rdir	8,74	5,94	0,50	0,26	5,92	1,50	8,87

Tabela 22 - Cálculos finais da capacidade de carga estática.

A <u>capacidade de carga dinâmica</u> é a carga para a qual, num ensaio de fadiga, 90% dos rolamentos da amostra em teste alcança um milhão de rotações sem apresentar sinais de fadiga. Esta capacidade de carga pode ser determinada a partir das fórmulas (28) e (29).

$$P = X \cdot F_r + Y \cdot F_a \qquad (28)$$

$$C = \frac{f_l}{f_n \cdot f_t} \cdot P \qquad (29)$$

 $f_n - f$ ator de rotação [adimensional]

 $f_t - f$ ator de temperatura [adimensional]

P - carga dinâmica equivalente [N]

 $X - fator\ radial\ [adimensional]$

 F_r – Carga radial [N]

 $Y - fator\ axial\ [adimensional]$

 F_a – Carga axial [N]

C − Capacidade de carga dinâmica [N]

 f_l – fator de esforços dinâmicos [adimensional]

8.4.3 Fator de esforços dinâmicos - f_l

Para se obter este valor, foi necessário consultar a Tabela 5.6 presente na página 144 do livro [1], sendo que nesta pode-se encontrar valores indicativos para o fator de esforço dinâmico para diferentes aplicações. No caso deste trabalho, a aplicação do redutor trata-se de "Acionamento – Redutores" e é visível que o fator tem de ser um número no intervalo de 2,0 a 3,0, acabando por se optar pela escolha do valor 2,0.

8.4.4 Fator de rotação - f_n

Para determinar o valor numérico deste parâmetro foi necessário escolher o tipo de rolamentos e, tal como já foi referido anteriormente, optou-se por rolamentos de carreira simples de esferas. Por conseguinte, com o auxílio da Tabela 5.7 presente na página 144 do livro [1] foi possível determinar o valor do fator de rotação, sendo que, como este fator depende da rotação do veio onde os rolamentos se encontram, este vai apresentar valores distintos dependendo do veio.

Assim, a partir da tabela 23, observou-se que seria necessário recorrer a algumas iterações para encontrar o valor do fator de rotação para 3 veios.

Tipo de rolamento	10-5000 rpm		
	n(rpm)	f_n	
	10	1,49	
	30	1,31	
	93,75	0,744	
	100	0,693	
	375	0,495	
Esferas	500	0,405	
	1000	0,322	
	1500	0,281	
	2600	0,234	
	4000	0,203	
	4600	0,194	
	5000	0,188	

Tabela 23 - V alores indicativos do fator de rotação.

Posto isto, consegue-se retirar os valores do fator de rotação para cada veio. Para o veio 1, $f_n=0.281$, para o veio 2, $f_n=0.495$, para o veio 3, $f_n=0.744$ e finalmente para o veio 4 $f_n=1.31$.

8.4.5 Fator de temperatura - f_t

Tabela 24 - Valores médios para o fator de temperatura (ft).

Temperatura máxima de serviço	<120°	Até 200°	Até 250°	Até 300°
Fator de temperatura (f_t)	1,0	0,73	0,42	0,22

Para este parâmetro, chegou-se à conclusão de que a temperatura teria de ser sempre inferior a 200° e como tal, o fator de temperatura toma um valor de 0,73.

8.4.6 Fator radial X e fator axial Y

Tendo por base a tabela 5.9 presente na página 145 do livro [1], e optando por escolher um rolamento de esferas radial-axial com contacto angular de 40°, foi possível obter um X=1 e um Y=0 visto que $Fa/Fr \le e$, sendo (e) o coeficiente de carga axial. Considerou-se também uma carreira simples.

Tabela 25 - Valores dos fatores de carga dinâmica X e Y.

Tipo do	Ângulo de	Confiniento de cargo		Carreira simples				
Tipo de rolamento	contacto	Coeficiente de carga axial (e)		⁻ ≤ e	Fa/Fr > e			
Totallielito	(a°)	axiai (e)	Χ	Υ	Χ	Υ		
Fafanaa	12°	$0.41 \cdot [(14 \cdot Fa)/C_o]^{0.17}$	1,0	0	0,45	0,55/e		
	15°	$0.46 \cdot [(12 \cdot Fa)/C_o]^{0.11}$	1,0	0	0,44	0,56/e		
Esferas radial-axial	18°	0,57	1,0	0	0,43	1,0		
com contacto	25°	0,68	1,0	0	0,41	0,87		
angular(α°)	26°	0,68	1,0	0	0,41	0,87		
	36°	0,95	1,0	0	0,37	0,66		
	40°	1,14	1,0	0	0,35	0,57		

Agora com todos os parâmetros atribuídos, é então possível calcular a Capacidade de carga dinâmica (C) para cada rolamento.

Tabela 26 – Cálculos finais da capacidade de carga dinâmica (C).

		Fr [kN]	Fa [kN]	Х	Υ	Р	fı	fn	ft	C [kN]
Veio 1	Resq	1,41	0,95	1,00	0,00	1,41	2,00	0,28	0,73	13,70
	Rdir	1,41	0,95	1,00	0,00	1,41	2,00	0,28	0,73	13,70
Veio 2	Resq	4,29	0,95	1,00	0,00	4,16	2,00	0,50	0,73	23,74
	Rdir	5,54	2,54	1,00	0,00	5,71	2,00	0,50	0,73	30,66
Veio 3	Resq	12,80	5,94	1,00	0,00	13,34	2,00	0,74	0,73	47,16
	Rdir	10,95	2,54	1,00	0,00	10,51	2,00	0,74	0,73	40,33
Veio 4	Resq	8,74	5,94	1,00	0,00	8,74	2,00	1,31	0,73	18,26
	Rdir	8,74	5,94	1,00	0,00	8,74	2,00	1,31	0,73	18,26

Neste momento, com todas as capacidades de carga determinadas, é possível proceder-se para a seleção dos rolamentos mais indicados. Para isso, o grupo contou com a ajuda do catálogo da SKF-Portugal (1), mais concretamente o catálogo onde se encontravam os rolamentos de esferas de contacto angular de uma carreira. Com as medidas obtidas previamente chegou-se a um tipo de rolamentos, contudo ainda existe a possibilidade de ocorrer trocas dos mesmos, com os cálculos que se procedem: cálculo à cedência e à rigidez. É notável que os rolamentos escolhidos devem apresentar valores maiores ou iguais às cargas estática e dinâmica calculadas nas tabelas (22) e (26) respetivamente, de modo a suportarem as cargas aplicadas com segurança.

Tabela 27 - Rolamentos escolhidos e caraterísticas em (mm).

		Rolamentos						
		Nome	d	D	Н	С	C0	
Veio 1	1	BSA 204 CGA	20	47	14	22	49	
veio 1	2	BSA 204 CGA	20	47	14	22	43	
Veio 2	3	BSA 207 CGA	35	72	17	36,5	98	
Veio 2	4	BJA 207 CGA	33	12	1/	30,3	36	
Veio 3	5	BSA 308 CGA	40	90	23	67	180	
veio 5	6	BSA 208 CGA	40	80	18	42,5	112	
Veio 4	7	BSA 204 CGA	20	47	1./	22	49	
VEIU 4	8	D3A 204 CGA	20	47	14	22	43	

9 Cálculo à cedência

Neste capítulo verifica-se a condição de resistência mecânica de um veio e deve-se começar por determinar os principais esforços. Os esforços mais importantes são os momentos fletores (Mb), gerados pelas forças transversais (perpendiculares ao eixo do veio), e os momentos torsores (Mt) (axiais ao eixo do veio).

Assim, vai ser possível obter o diâmetro mínimo necessário de acordo com dois critérios que foram alvo de discussão, o critério de Tresca e o critério de Von Mises, onde se concluiu que o segundo exige um diâmetro inferior ao previsto pelo primeiro.

9.1 Diâmetro mínimo da secção do veio

Na tabela 7.1 do livro [1], apresentada na página 212, é possível encontrar as tensões de cedência (σ_Y) e de rotura (σ_y) em MPa, para aços utilizados em veios, consoante o diâmetro, em mm.

DIN	Estado	<i>d</i> ≤	1 6	16 ≤ d	$16 \le d \le 40$		$40 \le d \le 100$	
DIN	LStado	σ_{Y}	σ_u	σ_{Y}	σ_u	σ_{Y}	σ_u	
01.05	Normalizado	300	480	270	480	270	480	
Ck 35	Tempera+revenido	430	630	370	600	320	550	
01.45	Normalizado	340	580	305	580	305	580	
Ck 45	Tempera+revenido	500	700	430	650	370	630	
34 Cr4	Tempera+revenido	700	900	590	800	460	700	
42CrMo4	Tempera+revenido	900	1100	750	1000	650	900	
30CrNiMo8	Tempera+revenido	1050	1250	1050	1250	900	1100	
		Aços de	cementaçã	io				
	d (mm)	11	mm	30 n	nm	63 m	m	
		σ_{Y}	σ_u	σ_{Y}	σ_u	σ_{Y}	σ_u	
16MnCr5		635	880	590	780	440	640	
15CrNi6		685	960	635	880	540	780	
17CrNiMo6		835	1180	785	1080	685	980	

Tabela 28 - Tenções de cedência e rotura em MPa.

Para se conseguir proceder com o cálculo à cedência teve de se fazer algumas escolhas para conseguir retirar os valores da tabela. Tal como foi feito nas engrenagens, optou-se por um aço 42CrMo4. Pela tabela, nota-se também que é preciso o diâmetro interno. Para o coeficiente de segurança, atendo ao que se encontra no livro, deve-se considerar o valor de 1,5 normalmente.

Posto isto, estão reunidos todos os valores necessários para calcular o diâmetro mínimo que cada veio deve ter de acordo com os dois critérios:

$$D_{i} \ge \sqrt[3]{\frac{32 \cdot \gamma}{\pi \cdot \sigma_{Y}} \cdot \sqrt{\left(M_{b}(x)\right)^{2} + \left(M_{t}(x)\right)^{2}}}$$
 (30)

Critério de Von Mises

$$D_i \ge \sqrt[3]{\frac{32 \cdot \gamma}{\pi \cdot \sigma_Y} \cdot \sqrt{\left(M_b(x)\right)^2 + 0.75 \cdot \left(M_t(x)\right)^2}} \tag{31}$$

Tabela 29 - Cálculo dos diâmetros mínimos para os veios em função dos critérios.

	Eixo	Material	σy (MPa)	Mb max. (Nmm)	Mb res. (Nmm)	Mt (Nmm)	C. segurança (y)	Tresca	Von- Mises	D. final (mm)
veio1	x(rad)	42CrMo4	750,00	-27777	35075	35075 58569,02	1,50	D. min (mm)	D. min (mm)	12
	z(tan)	42CrMo4	ŕ	21417				11,16	10,79	
veio2	x(rad)	42CrMo4	750,00	155497	202688	234276,08	3 1,50	D. min (mm)	D. min (mm)	19,00
	z(tan)	42CrMo4	ŕ	130012				18,47	18,01	
veio3	x(rad)	42CrMo4	750,00	-513521	705439	937104,30	1,50	D. min (mm)	D. min (mm)	29,00
	z(tan)	42CrMo4	·	483674		ŕ	·	28,80	27,98	,
veio4	x(rad)	42CrMo4	750,00	318805	729736	2928450,95	1,50	D. min (mm)	D. min (mm)	40,00
	z(tan)	42CrMo4	·	-656413			,	39,46	37,74	.0,00

Comparando esta tabela com a tabela 26, é agora possível saber se os rolamentos escolhidos cumprem com a cedência, uma vez que estes definem a secção mínima de diâmetro dos veios.

Com uma simples análise é visível que para o veio 4 é obrigatório alterar os rolamentos anteriormente escolhidos, optando-se agora por um diâmetro mínimo de 40 mm.

Assim, atualizamos a tabela 27 para a tabela 30, onde todos os rolamentos cumprem com a cedência.

Tabela 30 - Rolamentos escolhidos e caraterísticas em (mm).

		Rolamentos						
		Nome	d	D	Н	С	C0	
Veio 1	1	BSA 204 CGA	20	47	14	22	49	
V GIO I	2	D3A 204 CGA	20	71	14	22	43	
Veio 2	3	BSA 207 CGA	35	72	17	36,5	98	
V C 10 Z	4	B6/(20/ C6/(- 55	12	1,	50,5	, 00	
Veio 3	5	BSA 308 CGA	40	90	23	67	180	
veio 3	6	BSA 208 CGA	40	80	18	42,5	112	
Veio 4	7	BSA 208 CGA	40	80	18	12.5	112	
V 610 4	8	B3A 208 CGA	40	00	18	42,5	112	

No que toca à escolha de rolamentos, em relação à entrega anterior, estes foram corrigidos. Assim sendo, os rolamentos cumprem com os critérios, não existindo interferências, e os diagramas correspondem aos reais.

10 Cálculo à Rigidez

Após obter o diâmetro mínimo para cada um dos veios segue-se a verificação da sua rigidez. Deste modo, a partir do software "MDSolids", foi possível determinar os valores das rotações e dos deslocamentos ao longo dos 4 veios e compará-los com os valores admissíveis apresentados na Tabela 31 (a qual foi obtida a partir da Tabela 7.2 da página 213 do livro [1]). Estes valores foram apenas verificados nos planos onde estão aplicadas as forças radiais, ou seja, os veios foram analisados segundo o plano Oxz.

Elemento do veio	Rotação [× 10 ⁻³ radianos]	Flecha na secção de engrenamento [<i>mm</i>]
Engrenagens máquinas ferramenta ou redutores de precisão	0,5	$< 0.01 \cdot m_n$
Rolamento de esferas	3,0	
Máximo geral		Comprimento / 100

Tabela 31 - Valores admissíveis indicativos de flecha e rotação.

Primeiramente, foi necessário definir o valor do módulo de Young (*E*), que tal como anteriormente é igual a 210000 MPa, e calcular o momento de inércia da secção transversal de cada veio, a partir da fórmula (32).

$$I = \frac{\pi \cdot d^4}{64} \tag{32}$$

Tabela 32 - Cálculo da Rigidez à flexão.

	Módulo de Young (E) [Pa]	Momento de Inércia (I) [m^4]	Rigidez à flexão (<i>EI</i>) [<i>N</i> · <i>m</i> ²]
Veio 1		7,854E-09	1649,34
Veio 2	2,1E+11	7,366E-08	15468,97
Veio 3	·	1,257E-07	26389,38
Veio 4		1,257E-07	26389,38

De seguida, recorrendo ao *software "MDSolids*", procedeu-se à realização dos diagramas das rotações e dos deslocamentos, os quais são apresentados nas seguintes figuras:

Figura 15 - Diagrama Rotação e Flecha - Veio 1 – Oxz.

Figura 16 - Diagrama Rotação e Flecha - Veio 2 – Oxz.

Figura 17 - Diagrama Rotação e Flecha - Veio 3 - Oxz.

Figura 18 - Diagrama Rotação e Flecha - Veio 4 — Oxz.

Após se obterem os diagramas, já é possível tabelar os valores e fazer uma comparação com os máximos definidos na tabela 31, sendo estes 0.003 e $0.01 \cdot m_n$ para a rotação e flecha respetivamente.

Tabela 33 - Verificação entre valores de Rotação e Flecha nominais e máximos.

	Rotação (rad)		Flecha (mm)		
	Nominalmax	0,000091	0,00	098	
Veio 1	Máxima	0,003	0,	02	
	Respeita?	SIM	SI	М	
	Nominalmax	0,00015	0,0032	0,004	
Veio 2	Máxima	0,003	0,02	0,03	
	Respeita?	SIM	SIM		
	Nominalmax	0,000431	0,016	0,013	
Veio 3	Máxima	0,003	0,045	0,03	
	Respeita?	SIM	SI	М	
	Nominalmax	0,0000223	0,0	023	
Veio 4	Máxima	0,003	0,045		
	Respeita?	SIM	SIM		

Pela tabela verifica-se que os diagramas de rotação e flecha obtidos através do software respeitam os critérios, confirmando assim que os menores diâmetros dos veios e rolamentos passam à rigidez, confirmando-se mais uma vez que o processo de escolha de rolamentos está correto.

11 Chavetas e veios estriados

Esta fase de trabalho consiste no cálculo das chavetas ou veios estriados, se necessários, para permitir que a potência fornecida seja transmitida sem prejudicar o funcionamento do sistema.

O dimensionamento/verificação das chavetas está relacionado, por um lado com a resistência ao corte do material da chaveta ($\tau_{a\ adm}$), devido ao esforço gerado pela ação da força tangencial (Ft) na secção horizontal da chaveta ($L\ x\ b$) e, por outro com a resistência à compressão-esmagamento ($\sigma_{d\ adm}$) do material, já que esta força tangencial tende a esmagar a chaveta contra o cubo.

$$\tau_a = \frac{F_t}{L \cdot b} = \frac{2 \cdot M_t}{L \cdot b \cdot d} < \tau_{a \ adm} \quad (33) \qquad \qquad \sigma_d = \frac{F_t}{L \cdot (h - t_1)} = \frac{2 \cdot M_t}{L \cdot d \cdot (h - t_1)} < \sigma_{d \ adm} \quad (34)$$

 τ_a – tensão de corte $[N/m^2]$

 $F_t - força\ tangencial\ [N]$

L — Comprimento útil da chaveta [m]

 $b-latgura\ da\ chaveta\ [m]$

 σ_d – tensão de escoamento $[N/m^2]$

 M_t – momento torsor [Nm]

 $d-diametro\ do\ veio\ [m]$

No entanto, foi necessário recorrer, primeiramente, à Tabela 34 (Tabela 6.1 da página 166 do livro [1]), de modo a obter as dimensões normalizadas de chavetas e à Tabela 35 (Tabela 6.2 da página 167 do livro [1]), para obter a tensão de esmagamento admissível.

Tabela 34 - Dimensões das chavetas paralelas (fixas e móveis) DIN 6885 em mm.

	D	b	_			L		
de	até	veio (N9/h9) cubo(JS9/h9)	h	t ₁	t ₂	L _{min}	L _{max}	
6	8	2	2	1,2	1	6	20	
8	10	3	3	1,8	1,4	6	36	
10	12	4	4	2,5	1,8	8	45	
12	17	5	5	3	2,3	10	56	
17	22	6	6	3,5	2,8	14	70	
22	30	8	7	4	3,3	18	90	
30	38	10	8	5	3,3	22	110	

Tabela 35 - Tensão de esmagamento admissível em chavetas (veio em aço).

Tipo de engrenagem	σ _{d adm} [MPa]		
Fixa, cubo em aço	130-200		
Fixa, cubo em ferro fundido ou aço fundido	80-110		
Deslizante sem carga, cubo em aço	20-40		

Para se fazer a escolha entre chavetas e veio estriado é necessário ter em conta que o comprimento do cubo (lc) deve ser, aproximadamente, 10 mm mais longo que o comprimento da chaveta. É aconselhado, por questões de irregularidades da distribuição de tensões ao longo da altura e comprimento da chaveta, que o comprimento do cubo seja limitado a lc < 2,5 d.

Engrenagem	τaadm	Mt	d	b	L τa	L σd	σ dadm	h	t1	t2	Diâmetro do veio	lc<2,5*d	L chaveta	lc
z1	100	58569,02	20	6	9,8	11,7	200	6	3,5	2,8	20	50	14	24
z2	100	234276,08	35	10	13,4	22,3	200	8	5	3,3	35	87,5	22	32
z3	100	234276,1	35	10	13,4	22,3	200	8	5	3,3	35	87,5	22	32
z4	100	937104,30	40	12	39,0	78,1	200	8	5	3,3	40	100	28	38
z5	100	937104,30	40	12	39,0	78,1	200	8	5	3,3	40	100	28	38
z6	100	2928450.95	40	12	122.0	244.0	200	8	5	3.3	40	100	28	38

Tabela 36 - Cálculos para o comprimento e características das chavetas.

Embora o critério acima (lc < 2,5 d) seja sempre cumprido, foi necessário analisar os valores obtidos.

Os comprimentos em *mm* para chavetas devem ser o maior valor entre as colunas L ta, L od e L chaveta (tabela 36) e verificam-se valores muito elevados exceto para a primeira roda e para a terceira, isto é os tamanhos das chavetas iriam ser demasiado grandes para as larguras das rodas, afetando os tamanhos dos cubos e o normal funcionamento do sistema, sendo desta forma necessário estriar os 3 últimos veios.

Optou-se por evitar utilizar mais que uma chaveta para cada roda, uma vez que este mecanismo apresenta mais dificuldade na montagem, acabando assim por se utilizar o veio estriado.

Para cálculos associados à aplicação de secções estriadas nos veios recorreu-se às fórmulas (35) e (36).

$$\sigma_d = \frac{2 \cdot M_t \cdot K_t}{\left(\frac{D+d}{2}\right) \cdot z \cdot L \cdot h} < \sigma_{d \ adm} \tag{35} \qquad h = 0.75 \cdot \frac{D-d}{2} \tag{36}$$

 σ_d – tensão de esmagamento $[N/m^2]$

 M_t – momento torsor [Nm]

 K_t – fator de irregularidade de carga entre estrias [adimensional]

D − diâmetro exterior do veio − estriado [m]

d - diâmetro interior do veio - estriado [m]

L – comprimento útil da estria [m]

z – número de estrias [adimensional]

 $h-altura\ util\ de\ contacto\ das\ estrias\ [m]$

Contudo, foi necessário consultar ainda a Tabela 37 (Tabela 6.4 da página 168 do livro [1]) e a Tabela 38 (Tabela 6.5 da página 169 do livro [1]), para obter as dimensões e a tensão de esmagamento.

Tabela 37 - Dimensões (mm) normalizadas das secções estriadas. (1)

Ligeira	Média		Forte			
$z \times d \times D$	b	$z \times d \times D$	b	$z \times d \times D$	b	
_	_	$6 \times 16 \times 20$	4	$10\times16\times20$	2,5	
_	_	$6 \times 18 \times 22$	5	$10 \times 18 \times 23$	3	
_	_	$6 \times 21 \times 25$	5	$10\times21\times26$	3	
$6\times23\times26$	6	$6 \times 23 \times 28$	6	$10 \times 23 \times 29$	4	
$6\times26\times30$	6	$6 \times 26 \times 32$	6	$10 \times 26 \times 32$	4	
$6\times28\times32$	7	$6 \times 28 \times 34$	7	$10\times28\times35$	4	
$8 \times 32 \times 36$	7	$8 \times 32 \times 38$	6	$10 \times 32 \times 40$	5	
$8\times36\times40$	7	$8 \times 36 \times 42$	7	$10\times36\times45$	5	

Tabela 38 - Tensão de esmagamento admissível em secções estriadas.

Tipo de ligação	σ _{d adm} [MPa] <350 HB	$\sigma_{ m dadm}$ [MPa] > 40HRC		
Fixa	60-100	100-140		
Deslizante sem carga (pinhão de caixa de velocidade)	20-30	30-60		
Deslizante com carga (ligação eixo transmissão)	-	5-15		

No caso do primeiro veio, optou-se por atribuir o valor de tensão de esmagamento admissível 60 MPa, para o segundo veio 85 MPa e para o último que apresenta maior torque, um valor de 100 MPa-

Tabela 39 – Dimensões para estriado

Veios estriados(z2/z4/z5/z6)										
Veio 2			0 3	Veio 4						
Estria roda 2		Estria roda 4		Estria roda 5		Estria roda 6		Estria saída		
ligeira		media		ligeira		forte		forte		
z	8	Z	8	Z	8	Z	10	z	10	
d (mm)	42	d (mm)	46	d (mm)	52	d (mm)	42	d (mm)	32	
D (mm)	46	D (mm)	54	D (mm)	58	D (mm)	52	D (mm)	40	
b (mm)	8	b (mm)	9	b (mm)	10	b (mm)	6	b (mm)	5	
h (mm)	1,5	h (mm)	3	h (mm)	2,25	h (mm)	3,75	h (mm)	3	
L (mm) >	22,2	L (mm) >	22,0	L (mm) >	26,7	L (mm) >	36,6	L (mm) >	15,3	
Kt	1,5	Kt	1,2	Kt	1,2	Kt	1,1	Kt	1,1	
σ_adm (MPa)	60	σ_adm (MPa)	85	σ_adm (MPa)	85	σ_adm (MPa)	100	σ_adm (MPa)	100	

É notório o uso de diferentes tipos de veio estriado, estes valores vêm a crescer do segundo até ao quarto e último veio, esta análise é correta, pois o estriado final recebe a maior das desmultiplicações de velocidades que se traduzem num aumento de um binário aplicado no veio.

Neste momento, já foram obtidas todas as medidas necessárias para calcular os elementos de transmissão, estando todos os valores tabelados.

12 Cálculo à Fadiga

Para o estudo da fadiga foi necessário considerar alguns pontos críticos, sendo que estes se entendem por zonas onde ocorre transição geométrica (diâmetros, chavetas, estrias, ...). Deste modo, para se conseguir analisar estes pontos de uma forma mais precisa, precedeu-se à modelação dos veios no software Solidworks.

Começou-se por consultar a Tabela 7.4 da página 232 do livro [1] (tabela 40) para verificar os valores de um dos parâmetros a ter em conta, as tensões limites de fadiga normais (σ_e) e de corte (τ_e).

Material	σ_u (Tensão de rutura)	$oldsymbol{\sigma_e}$ (Tensão limite de fadiga normal)	$ au_e$ (Tensão limite de fadiga ao corte)	
Aço	< 1300 MPa	$0.5 \cdot \sigma_u$		
	$1300 \ MPa < \sigma_u < 1400 \ MPa$	$0 MPa < \sigma_u < 1400 MPa $ 680 MPa		
	> 1400 MPa	700 MPa		

Tabela 40 - Valores da tensão limite de fadiga normal e de corte.

Como o material escolhido é o 42CrMo4 e através das tabelas 40 e 28, os valores a atribuir são $(\sigma_v = 750 \ MPa, \ \sigma_u = 1000 \ MPa, \ \sigma_e = 500 \ MPa$ e $\tau_e = 290 \ MPa)$.

$$\sigma_{est}^{equi} = \sigma_m + \frac{\sigma_Y}{\sigma_e^c} \cdot \sigma_a \qquad (37)$$

$$\tau_{est}^{equi} = \tau_m + \frac{\tau_Y}{\tau_e^c} \cdot \tau_a \qquad (38)$$

$$\sigma_{est}^{equi} - tensão estática equivalente$$

$$\sigma_m - tensão média constante$$

 $\sigma_{\rm Y}$ – tensão de rotura

 σ_e^c — tensão limite de fadiga corrigida

 σ_a – tensão alternada

 au_{est}^{equi} – tensão de corte estática equivalente

 au_m – tensão de corte média constante

 τ_Y – tensão de corte

 τ_e^c – tensão de corte limite à fadiga corrigido

Outro elemento a considerar para o cálculo da fadiga é o fator de tamanho (K_s) que depende do diâmetro mínimo da secção em estudo e pode ser calculado pela expressão (39).

$$K_s = 1{,}189 \cdot d^{-0{,}097} \ (8 \ mm < d < 250 \ mm)$$
 (39)

Para o valor corrigido da tensão de fadiga normal e de corte foi necessário descobrir qual o valor do fator K_{AS} e isso é possível através da figura 19 sendo que, neste caso, se considerou que todos os veios são maquinados finos ou estirados a frio, e das equações (40) e (41).

Figura 19 - Fator Kas de acabamento superficial na correção da tensão limite de fadiga [1].

$$\sigma_e^{\ c} = K_{AS} \cdot K_S \cdot \sigma_e \tag{40}$$

$$\tau_e^c = K_{AS} \cdot K_S \cdot \tau_e \tag{41}$$

No cálculo do fator de concentração efetivo (K_f) , foi necessário recorrer à figura 20 para se conseguir chegar ao valor do índice de sensibilidade ao entalhe (q), sendo que, neste caso, se considerou aços revenidos e normalizados, à figura 21, para se obter os fatores K_t para cada uma das situações: flexão, torção e axial e à fórmula (42).

Figura 20 - Índice de sensibilidade ao entalhe (q) de aços de construção de ligas de alumínio.

Figura 21 - Fator K_t para veios de flexão (M_b) com transição de secção; Fator K_t para veios sob torção (M_t) com transição de secção; Fator K_t para veios sob tensão axial (T) com transição de secção; Fator K_t para veios com chavetas ou escatéis em flexão e torção (2).

$$K_f = 1 + q \cdot (K_t - 1)$$
 (42)

O cálculo da tensão normal média e da tensão de corte média realizou-se através das equações (43) e (44).

$$\sigma_m = \frac{4 \cdot F_{axial}}{\pi \cdot d^2} \tag{43}$$

$$\tau_m = \frac{16 \cdot M_t}{\pi \cdot d^3} \tag{44}$$

Em relação à tensão normal alternada, esta foi obtida a partir das equações (45) e (46).

$$\sigma_b = \frac{32 \cdot M_b}{\pi \cdot d^3} \tag{45}$$

$$\sigma_a = K_{f,flex\tilde{a}o} \cdot \sigma_b \tag{46}$$

Quanto à tensão de *von Mises* foi necessário ter as tensões estáticas equivalentes calculadas para, de seguida, aplicar a expressão (47).

$$\sigma_{VM} = \sqrt{(\sigma_{est}^{equiv})^2 + 3 \cdot (\tau_{est}^{equiv})^2}$$
 (47)

Com todas as expressões apresentadas e com os gráficos foi possível o cálculo da fadiga para cada um dos veios e verificar se o coeficiente de segurança se encontra acima do recomendado, ou se seria necessário proceder a melhoramentos a nível do material, ou a nível do diâmetro de alguma secção do veio. Teoricamente, considera-se o coeficiente de segurança igual a 1,5, ou seja, os coeficientes calculados para cada um dos pontos críticos num veio têm de estar acima desse valor.

As figuras seguintes, são uma representação esquemática das transições geométricas no veio 1, 2, 3 e 4 respetivamente, bem como os diâmetros de cada secção e a localização dos pontos críticos em análise. Nas tabelas 41, 42, 43 e 44 estão apresentados os valores obtidos dos diversos parâmetros necessários para o cálculo dos coeficientes de segurança em cada um dos pontos críticos dos três veios.

Os coeficientes de segurança obtidos têm ordem de gradeza média das dezenas, indicando a possibilidade de redução da qualidade do material utilizado, com o objetivo de diminuir custos e respeitando os critérios.

12.1 Veio 1

Figura 22 - Representação dos pontos críticos no veio 1.

Tabela 41 – Cálculo dos coeficientes de segurança no veio 1.

x (mm)		-42	-32	-22	7	9	10,7	20,7	30,7	
	y(tan)				-9172	-13103	-14020	-27123	-15328	
Mb (Nmm)	z(rad)				33,15	42,63	50,68	98,04	11819	
	Resultante				9172	13103	14020	27123	19357	
Mt (Nmr	n)	58569	58569	58569	58569	58569	58569	58569	58569	
d secção mir	n (mm)	20	20	20	20	20	20	20	20	
σb (Mpa	a)				11,68	16,68	17,85	34,54	24,65	
r (mm))				1	1				
r/d					0,05	0,05				
D secção ma	x (mm)				24	24				
D/d					1,2	1,2				
kt (flexã	o)	1,6	1,6	1,6	1,94	1,94	1,6	1,6	1,6	
q		1	1	1	0,78	0,78	1	1	1	
Kf		1,6	1,6	1,6	1,73	1,73	1,6	1,6	1,6	
σf max (Mpa)					20,24	28,92	28,56	55,26	39,43	
σт (Мр	σm (Mpa)		3,04	3,04	3,04	3,04	3,04	3,04	3,04	
Ks	Ks		0,89	0,89	0,89	0,89	0,89	0,89	0,89	
KAS		0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	
σе (Мра	a)	500	500	500	500	500	500	500	500	
σe corrig	ido	288,98	288,98	288,98	288,98	288,98	288,98	288,98	288,98	
σу (Mpa	σy (Mpa)		750	750	750	750	750	750	750	
σa (Mpa)					11,68	16,68	17,85	34,54	24,65	
σest (eqv) (MPa)		3,04	3,04	3,04	33,35	46,34	49,37	92,67	67,00	
τM (MP	a)	37,29	37,29	37,29	37,29	37,29	37,29	37,29	37,29	
Kt (torção)		3,5	3,5	3,5	1,6	1,6	3,5	3,5	3,5	
тest (Mpa)		130,5	130,5	130,5	59,66	59,66	130,5	130,5	130,5	
σVM (Mμ	σVM (Mpa)		20,02	20,02	35,93	48,23	53,18	94,75	69,86	
coef. seg.		37,47	37,47	37,47	20,88	15,55	14,10	7,91	10,74	

12.2 Veio 2

Figura 23 - Representação dos pontos críticos no veio 2.

Tabela 42 – Cálculo dos coeficientes de segurança no veio 2.

	x (mm)	8,5	22,7	32,7	37,7	41,55	57,7	73,7
Mb (Nmm)	y(tan)	36420	97263	11390	122221	139148	155498	70294
	z(rad)	1357,4	88894,7	100642	106516	110981	130012	20226
, ,	Resultante	36445	131766	151995	162122	177985	202689	73146
I	Mt (Nmm)	234276	234276	234276	234276	234276	234276	234276
d sec	ção min (mm)	35	42	46	35	35	35	35
1	σb (Mpa)	8,66	18,12	15,91	38,52	42,28	48,15	17,38
	r (mm)	1		1	1			
	r/d	0,03		0,02	0,03			
D sec	ção max (mm)	42		54	54			
	D/d	1,2		1,17	1,17			
kt (flexão)		2,1	1,6	2,4	2,1	1,6	1,6	1,6
q		0,78	1	0,78	0,78	1	1	1
Kf		1,86	1,6	2,09	1,86	1,6	1,6	1,6
σf max (Mpa)		16,09	28,99	33,27	71,56	67,66	77,05	27,80
σm (Mpa)		-0,99	-0,69	-0,57	-2,64	-2,64	-2,64	-2,64
Ks		0,84	0,82	0,82	0,84	0,84	0,84	0,84
KAS		0,65	0,65	0,65	0,65	0,65	0,65	0,65
	σe (Mpa)	500	500	500	500	500	500	500
σ	e corrigido	273,71	268,91	266,55	273,71	273,71	273,71	273,71
	σу (Мра)	750	750	750	750	750	750	750
1	σa (Mpa)	8,66	18,12	15,91	38,52	42,28	48,15	17,38
σest (eqv) (MPa)		22,73	49,84	44,18	102,89	113,22	129,30	44,97
тМ (MPa)		27,83	16,11	12,26	27,83	27,83	27,83	27,83
Kt (torção)		1,74	3,5	2,1	1,74	3,5	3,5	3,5
тest (Mpa)		48,42	56,37	25,74	48,42	97,40	97,40	97,40
σ	·VM (Mpa)	25,73	51,51	45,05	103,60	114,50	130,43	48,11
(coef. seg.	29,15	14,55	16,65	7,24	6,55	5,75	15,59

12.3 Veio 3

Figura 24 - Representação dos pontos críticos no veio 3.

Tabela 43 – Cálculo dos coeficientes de segurança no veio 3.

x (mm)		19,1	41,6	64,1	74,1	89,1	104,1
	y(tan)	-235776	-513522	-424353	-384721	-325274	-160994
Mb (Nmm)	z(rad)	65470,64	142595,8	418683,2	389798,1	346470,5	2668,58
	Resultante	244697	532953	596130	547679	475232	161016
Mt (N	lmm)	937104	937104	937104	937104	937104	937104
d secção	min (mm)	40	52	58	58	46	40
σb (I	Мра)	38,95	38,62	31,12	28,59	49,73	25,63
r (n	nm)	1		1	1		1
r/	′d	0,025		0,017	0,017		0,025
D secção	max (mm)	52		70	70		46
D	/d	1,3		1,21	1,21		1,15
kt (fle	exão)	2,52	1,6	2,55	2,55	1,6	2,48
C	7	0,78	1	0,78	0,78	1	0,78
Kf		2,19	1,6	2,21	2,21	1,6	2,15
σf max (Mpa)		85,12	61,77	68,75	63,16	79,57	55,21
σm (Mpa)		0,76	0,45	0,36	0,36	0,57	0,76
Ks		0,83	0,81	0,80	0,80	0,82	0,83
KAS		0,65	0,65	0,65	0,65	0,65	0,65
σe (I	Мра)	500	500	500	500	500	500
σе сог	rrigido	270,19	263,40	260,62	260,62	266,55	270,19
σy (N	<i>Ира)</i>	750	750	750	750	750	750
σa (I	Мра)	38,95	38,61	31,12	28,59	49,73	25,63
σest (eq	v) (MPa)	108,86	110,38	89,92	82,64	140,51	71,89
τM (N	<i>ИРа)</i>	74,57	33,94	24,46	24,46	49,03	74,57
Kt (to	rção)	2	3,5	2,1	2,1	3,5	1,85
тest (Мра)	149,14	118,80	51,37	51,37	171,60	137,96
σ VM ((Mpa)	110,90	111,98	90,77	83,57	142,33	74,72
coef.	coef. seg.		6,70	8,26	8,98	5,27	10,04

12.4 Veio 4

Figura 25 - Representação dos pontos críticos no veio 4.

Tabela 44 – Cálculo dos coeficientes de segurança no veio 4.

x (mm)		9	39,1	69,2	112,2	124,7
	y(tan)	73382	318806	73382		
Mb (Nmm)	z(rad)	-151093	-656413	94247		
	Resultante	167970	729737	119447		
Mt (N	lmm)	2928451	2928451	2928451	2928451	2928451
d secção	min (mm)	40	42	40	32	32
σb (N	<i>Мра)</i>	26,73	100,3	19,01		
r (m	nm)	1		1	1	
r/	'd	0,025		0,025	0,031	
D secção	max (mm)	42		42	40	
D	/d	1,05		1,05	1,25	
kt (fle	exão)	2,1	1,6	2,1	2,15	1,6
q		0,8	1	0,8	0,8	1
K	Kf		1,6	1,88	1,92	1,6
σf max (Mpa)		50,26	160,52	35,74		
σm (I	σm (Mpa)		-4,28	-4,72	-7,38	-7,38
K	Ks		0,83	0,83	0,85	0,85
KA	KAS		0,65	0,65	0,65	0,65
σe (N	σe (Mpa)		500	500	500	500
σе сог	rigido	270,19	268,91	270,19	276,10	276,10
σy (N	<i>Ира)</i>	750	750	750	750	750
σa (N	σa (Mpa)		100,33	19,01		
σest (eqv) (MPa)		69,48	275,53	48,05	-7,38	-7,38
τΜ (MPa)		233,04	201,31	233,04	455,15	455,15
Kt (torção)		1,5	3,5	1,5	1,78	3,5
тest (Mpa)		349,56	704,58	349,56	810,17	1593,04
σVM ((Мра)	76,66	279,34	57,94	49,85	69,52
coef.	coef. seg.		2,68	12,94	15,05	10,79

13 Soluções Construtivas

Este capítulo tem como objetivo descrever todo o processo de construção e definir todas as etapas e desempenhos desejados para se obter o projeto final de acordo com o pretendido.

13.1 Arquitetura

Sendo o cárter a estrutura que suporta e protege todos os componentes do redutor, é necessário conceber uma série de características para que o mesmo garanta o bom funcionamento do mecanismo e facilidade de acessibilidade aos componentes para manutenção e ou substituição.

Os tipos de arquitetura podem ser variados, no entanto para o tipo de mecanismo em estudo é necessário ter em conta fatores de extrema importância como o atravacamento, compatibilidade com o local de instalação, montagem dos componentes e manutenção.

Devido aos motivos acima referidos e tendo em conta a tabela 8.1 de [1], é preferível utilizar um cárter separável, com um plano que passa pelos eixos dos veios. Este tipo de arquitetura oferece facilidade de montagem e acessibilidade, já que os veios podem ser montados fora do sistema e depois montados no cárter, garante também espaço e praticidade durante o processo de manutenção.

Os cárteres separáveis, exigem maquinagem cuidada nas faces de referência, sendo que primeiro é necessário obter o mesmo por fundição, em ferro fundido. Após esse processo, devem ser maquinadas as faces de encosto e furos para os respetivos parafusos. Por outro lado, este tipo de arquitetura apresenta menor rigidez, para compensar isso adicionaram-se bastantes nervuras na estrutura, de modo a garantir uma melhor capacidade de absorção de ruído e a proteção dos componentes, embora aumentando significativamente o peso.

13.2 Acessibilidade para montagem e manutenção

Como referido acima, a conceção de um cárter separável pelo plano dos eixos dos veios permite uma acessibilidade excelente. A montagem de engrenagens, rolamentos, mangas e anilhas, pode ser feita com o auxílio do veio apoiado simplesmente na metade inferior do cárter do mecanismo. Após isso basta pousar a metade superior que a mesma é guiada por pinos, garantido assim a correta montagem dos diferentes componentes e assegurando o devido alinhamento para se realizarem as uniões mecânicas.

13.3 Dimensões

Para a projeção do cárter é necessário ter em conta as várias dimensões associadas ao cálculo estrutural dos diferentes componentes que compõem o mecanismo, tais como: os diâmetros e larguras das engrenagens; os diâmetros e comprimentos dos veios; os diâmetros e largura dos rolamentos, entre outros. No entanto, não só são necessárias regras e indicações que auxiliem o projetista no processo de escolha de dimensões, como também é necessário ter em conta o processo de fabrico.

As regras indicativas encontram-se na página 250 de [1], destacando-se algumas que foram particularmente importantes na projeção deste projeto.

- Espessura mais uniforme possível.
- Evitar ângulos retos nas transições de geometria, optando por raios de concordância.
- Reforço de paredes longas com nervuras.
- Evitar formas pouco elásticas.
- Sempre que possível substituir as bossas por maquinações locais.

13.3.1 Dimensões Indicativas

No processo de escolha das medidas foi necessário começar por escolher a medida da espessura mínima das paredes, o mesmo encontra-se tabelado na página 252 do [1]. Aqui verifica-se que para o Ferro Fundido e para um comprimento de 840 mm se deve utilizar uma espessura mínima de 7 mm. Ainda assim, de modo a sobre dimensionar e a compensar a falta de rigidez característica deste tipo de arquitetura utilizou-se 10 mm.

É necessário que as restantes medidas sejam proporcionais à espessura da parede e aos restantes componentes que integram o mecanismo, de modo a respeitar essas características a tabela 8.3 da página 252 do livro [1] permite estimar medidas guia que podem ser alteradas de acordo com o aspeto funcional do mecanismo e fabrico do mesmo. Os resultados para a projeção encontram-se na tabela 45 e estes foram baseados na maior das engrenagens, aumentando a segurança do mecanismo e tornando o mais robusto.

Figura 26 - Representação das dimensões a atribuir na conceção de um cárter de mecanismo. Adapt [1].

Tabela 45 - Dimensões indicativas para o cárter.

Dimensão (mm)	Cálculo-valor(mm)	Dimensão (mm)	Cálculo- valor(mm)
Е	237,05	d9	124,20
D	80,00	d10	16,00
L	45,00	d11	6,40
d1	237,05	d12	11,00
d2	15,00	d13	4,00
d3	15,00	d14	20,53
d4	23,50	d15	49,28
d5	8,50	d16	15,40
d6	64,28	d17	5,74
d7	10,00	d18	30,80
d8	11,00	d19	36,96

13.3.2 Adaptações de dimensões

Por constrangimentos dimensionais e de modo a tornar funcional o mecanismo, necessário alterar algumas medidas, sempre dentro de valores razoáveis, sendo o caso mais evidente os parafusos correspondentes a d16 na tabela 45. Estes parafusos seriam do tipo M16, porém devido à fundição não foi possível utilizar os mesmos, uma vez que o parafuso não se acomodava ao cárter.

De modo a contornar a situação estudou-se o comportamento do mecanismo puramente à tração ,uma vez que o estudo das componentes de corte é mais elaborado. Para um bloco maciço de 500 kg, assumindo um valor superior ao do cárter, a Força aplicada seria de aproximadamente 5000N. De acordo com o livro [5], na página 244 encontra-se o cálculo da resistência nominal à tração (equação 48).

$$R_{m,nom} = (1^{\circ} \text{ valor da classe de parafuso}) \cdot 100$$
 (48)

Assim, a alternativa ao parafuso M16 seria o M12 de classe 8.8 e Dureza HV de 230 [5], que conta com uma resistência nominal à tração de 800 MPa. De acordo com a figura 5 de [5] o diâmetro interno do parafuso M12 é 10,1 mm, o que representa uma área submetida à tração de 78,5 mm².

$$A = \pi r^2 \tag{49}$$

Deste modo, é agora possível saber quanto é que cada parafuso aguenta M12 aguenta em Newton à tração (equação 50). Assim, cada parafuso aguenta à tração 62800 N.

$$F_{adm} = A \cdot R_{m,nom} \tag{50}$$

Como é visível a troca de parafusos em nada altera o comportamento à tração do mecanismo, uma vez que se verifica que apenas um parafuso suporta com a carga, além disso o mecanismo conta ainda com 16 destes parafusos, assim obtém-se um coeficiente de segurança bastante elevado.

13.4 Montagem

Para o processo de montagem de cárteres com veios de comprimentos diferentes que não dispõem de rolamentos nas paredes do cárter existem várias soluções mecânicas que foram utilizadas de forma a manter o correto funcionamento do mecanismo.

Os processos utilizados para assegurar a correta montagem dos veios no mecanismo encontram-se exemplificados nas páginas 306 e 307 do livro [1] e designam-se por parede interna e manga, esquematizados nas figuras 9.28 e 9.29 a azul, respetivamente.

No caso do primeiro veio, estão presentes as duas soluções construtivas, uma manga suporta o primeiro rolamento e uma parede interna suporta o segundo, sendo que neste caso são ambos os rolamentos BSA 204 CGA da SKF. Para o segundo veio apenas o terceiro rolamento (BSA 207 CGA) se apresenta suportado por uma manga. Por outro lado já no caso do terceiro veio, ambos os rolamentos se encontram apoiados pela parede do cárter, uma vez que este apresenta o maior diâmetro do mecanismo. Para o quarto e último veio, apenas o rolamento de saída (BSA 208 CGA) se apresenta acompanhado de uma manga.

Em todos os casos existem anilhas de pré-carga para se regular a pré-carga transferida aos rolamentos, e estas são apertadas pelas tampas que fazem de batente aos rolamentos.

14 Vedação/Lubrificação

A lubrificação é a forma de separação de superfícies constituintes de elementos mecânicos em contacto com movimento relativo, por meio de uma substância – o lubrificante. A lubrificação reduz o atrito entre as superfícies em contacto, o que leva a um menor desgaste e consequentemente a um modo de funcionamento mais suave e silencioso. A interação das superfícies acaba sempre por gerar resíduos derivados do desgaste das mesmas (limalhas, por exemplo) e a lubrificação é um meio que ajuda na remoção desses resíduos das zonas de contacto.

De forma a assegurar a correta manutenção da lubrificação, o cárter desenhado é dotado de um mecanismo de abertura que permite o fácil enchimento do óleo - bujão de carga. Um orifício que permite controlar o nível de óleo – bujão com vidro e de um orifício para mudança de óleo – bujão para drenagem.

Para definir o óleo a utilizar determinou-se a viscosidade cinemática e consequentemente a norma do óleo. A solução parte por escolher a condição de funcionamento que exige a viscosidade mais elevada, de forma a garantir o bom funcionamento dos elementos que necessitem de viscosidades mais baixas. Calculou-se a viscosidade para uma temperatura de 40 °C para as engrenagens e para os rolamentos, a maior das viscosidades obteve se para uma ISO VG 460 a 40°C, sendo o índice de maior viscosidade no veio 4. Ao transpor o índice de viscosidade para a temperatura de funcionamento de 80°C, a classe de viscosidade é maior, sendo que no veio 4 ultrapassaria a classe ISO VG 1500.

Optou-se por utilizar um óleo mineral "BESLUX GEAR XP", visto que abrange um maior índice de viscosidade. Este óleo tem uma boa estabilidade térmica, mas em contrapartida por ter uma viscosidade elevada terá mais perdas mecânicas. A partir da base inclinada do cárter, calculou-se o volume de óleo necessário para cobrir uma a três vezes a altura do dente da maior roda da primeira engrenagem, uma vez que é necessário lubrificar o primeiro pinhão, sendo este o elemento de diâmetro mais curto de todo o mecanismo [7]. É notável que com o normal funcionamento do redutor o óleo irá ser projetado devido às elevadas rotações, acabando assim por ser possível lubrificar todo o sistema. O volume total de óleo a utilizar é de 7 Litros.

Os vedantes são responsáveis por prevenir fugas de lubrificante, isolando o sistema, não deixando sair óleo, nem entrar partículas indesejadas como poeiras. São montados dentro do redutor, de maneira a preservar as suas características ao longo da vida útil do mecanismo. Num mecanismo, existem vários pontos a vedar, dos quais se destacam os veios de entrada e de saída.

Na sua escolha optou-se por vedação dinâmica com contacto, mais especificamente por vedação tipo AS, sendo que este tipo de vedação não só assegura estanquicidade num só sentido, mas também oferece uma protecão anti poeira em sentido oposto.

Deste modo, optou-se, novamente, pelo catálogo da SKF [4] e escolheu-se, para o veio de entrada, o vedante 20X35X10 HMSA10 RG e, para o veio de saída, o vedante 40X65X10 HMSA10 RG.

Além dos vedantes, é necessário verificar outras possíveis fugas de óleo. Para prevenir estas situações as tampas são vedadas com massa de vedação silicone e os bujões apresentam anilhas de pressão.

15 Conclusão

Ao longo deste trabalho foi desenvolvido o dimensionamento de engrenagens, de rolamentos e dos veios, sendo que todos os passos foram descritos ao longo do desenvolvimento de cada etapa. Algumas dificuldades e obstáculos foram aparecendo, mas com a ajuda do livro, de apontamentos e do professor, os enigmas foram sendo revelados e o processo foi concluído com sucesso e o redutor é mecanicamente funcional.

O trabalho permitiu o desenvolvimento e relacionamento de um conjunto de disciplinas, o que prepara os estudantes para o futuro na engenharia e para o desempenho da sua futura profissão, a engenharia mecânica.

16 Bibliografia

- 1. SKF. SKF Catalogue. [Online]
- 2. **A., Completo e F. Q., De Melo.** *Introdução ao Projeto Mecânico.* Porto : Engebook, 2019.
- 3. **PSP Pohony.** *Helical Gearbox C3(P)-M.* Přerov : s.n., 2000.
- 4. **EEM.** Formulário Elementos de Estruturas e Máquinas.
- 5. **Morais, Simões.** *Desenho Técnico Básico.* 2016. 978-972-95175-6-3.
- 6. **Brugarolas.** Brugarolas . [Online] [Citação: 20 de Julho de 2022.] https://brugarolas.com/pt-pt/.
- 7. Lubrification of Gears. KHK Stock Gears. [Online] [Citação: 3 de Junho de 2022.] https://khkgears.net/new/.