Travail du mercredi 6/12

Exercice 1

Soit $(0, \vec{l}, \vec{j})$ repère du plan, 3 points A, B, C de coordonnées respective (2; 1), (0; 1) et (4; 1)

- a) Déterminer les coordonnées du point *D* pour que *ABCD* soit un parallélogramme. De même pour que ABDC soit un parallélogramme.
- b) Calculer l'aire de ces parallélogrammes.

Exercice 2

Soit $\vec{u} = \vec{i} + \vec{j}$ et $\vec{v} = -\vec{j} + \vec{i}$

- 1) Calculer \vec{u} . \vec{v} et interpréter.
- 2) Calculer $||\vec{u}||$ et $||\vec{v}||$.

Exercice 3

Décomposer les nombres 92 400 et 123 552 en facteurs premiers.

En déduire le pgcd de 92 400 et 123 552.

Exercice 4

Donner la liste des diviseurs de 75 582 et 2 068 560

En déduire le pgcd de ces deux nombres.

Exercice 5

Déterminer les coordonnées polaires de A(4;4)

A l'inverse déterminer les coordonnées cartésiennes de $B\left(2;\frac{\pi}{3}\right)$

Exercice 6

Soit U la suite définie oar $u_0 = 2$ et $U_{n+1} = 2U_n - 8$

- a) Donner les 4 premiers termes de la suite.
- b) On pose $V_n = U_n 8$ Montrer que (V_n) est géométrique. Donner son 1^{er} terme.
- c) Exprimer alors V_n en fonction de n.
- d) En déduire une expression de U_n en fonction de n.
- e) Calculer $S = U_0 + U_1 + \dots + U_{12}$

Exercice 7

Déterminer n tel que $1 + 2 + \cdots + m = 7875$

Déterminer *n* tel que $1 + 2^2 + \dots + n^2 = 597 \ 861$