Interpreting the Proportion Explained: There is no Escaping Unverifiable Assumptions

Florian Stijven ¹ Ariel Alonso ¹ Geert Molenberghs ^{1, 2}

¹KU Leuven, I-BioStat, B-3000 Leuven, Belgium

²UHasselt, I-Biostat, B-3500 Hasselt, Belgium

March 11, 2024

Contact: florian.stijven@kuleuven.be

Introduction

- Freedman et al. (1992) defined the proportion of treatment effect explained (PTE)
 - Model-based definition
- Later, Wang and Taylor (2002) proposed a non-parametric definition $\rightarrow PTE_{WT}$
- Recent literature: focus on estimating PTE_{WT}
- 2 Central questions in this talk
 - **1** How can we interpret PTE_{WT} ?
 - ② Do we need additional assumptions for certain interpretations?

Notation

- Consider a randomized trial with 2 parallel arms
 - Treatment indicator: Z
 - Control treatment: Z = 0
 - Active treatment: Z = 1
 - Surrogate endpoint: S
 - True endpoint: *T*
- Under SUTVA¹, we can define corresponding potential outcomes
 - S_0 and S_1
 - \bullet T_0 and T_1

PTE_{WT} simplified

Definition (PTE_{WT} simplified)

$$PTE_{WT} = \frac{\Delta - \Delta_{S}}{\Delta}$$

where

$$\Delta = E(T_1) - E(T_0)$$

is the total treatment effect and

$$\Delta_S = \int E(T_1|S_1 = s) dF_{S_0}(s) - E(T_0)$$

is the residual treatment effect (Parast et al. 2016)

- Special case of general definition
- ullet Simpler o focus on interpretation

Causal Interpretation 1: Principal Surrogacy

Definition (Principal Surrogate (Frangakis and Rubin 2002))

S is a principal surrogate for T iff

$$E(T_1 - T_0 | S_0 = S_1 = s) = 0 \ \forall \ s$$

- $S_1 S_0 = 0 \Rightarrow$ No expected treatment effect on T
- Accepting this definition, at least two practical issues remain:
 - Surrogacy is not quantified in a single value
 - Unlikely that principal surrogacy holds exactly in practice
 → How can we determine whether S is approximately a principal
 - ightarrow How can we determine whether S is approximately a principal surrogate?

Causal Interpretation 1: Principal Surrogacy (ctd.)

1 The causal residual treatment effect, $\Delta_{S,c}$, summarizes principal surrogacy

$$\Delta_{S,c} = \int E(T_1 - T_0 | S_0 = S_1 = s) dF_{S_0}(s)$$

- Principal surrogacy $\Rightarrow \Delta_{\mathcal{S},c} = 0$
- ② Principal surrogacy approximately satisfied if $\frac{\Delta_{s,c}}{\Delta} \approx 0$
- ullet $\Delta_{\mathcal{S},c}$ is unidentifiable without **additional assumptions**
 - Assume conditional independence (Parast et al. 2016):

$$S_0 \perp T_1 \mid S_1$$
 and $S_1 \perp T_0 \mid S_0$

- Then $\Delta_{S,c} = \Delta_S$
- Now PTE_{WT} quantifies principal surrogacy

$$\frac{\Delta_{S,c}}{\Delta} \approx 0 \iff \frac{\Delta_S}{\Delta} \approx 0 \iff \textit{PTE}_{\textit{WT}} \approx 1$$

Causal Interpretation 2: Proportion Mediated

- PTE_{WT} often interpreted like a proportion mediated
- Only valid under the following causal diagram
- Additional assumption: No confounding of the S-T relation
 - Not satisfied by randomization of Z
 - Extremely unlikely to hold

Causal Interpretation 2: Proportion Mediated

- PTE_{WT} often interpreted like a proportion mediated
- Only valid under the following causal diagram
- Additional assumption: No confounding of the S-T relation
 - Not satisfied by randomization of Z
 - Extremely unlikely to hold
- Take baseline covariates, X, into account

More realistic ...

Non-Causal Interpretation: Notation

- Evaluation trial, A = 1
 - S and T observed
 - Total treatment effect: $\Delta = E(T_1|A=1) E(T_0|A=1)$
- Application trial, A = 0
 - S observed, T unobserved
 - Total treatment effect: $\Delta^* = E(T_1|A=0) E(T_0|A=0)$

Can we predict Δ and Δ^* using only S?

Non-Causal Interpretation: Evaluation Trial

- $\mu(s) = E(T_1|S_1 = s, A = 1)$ is a prediction rule for T_z
- In the definition of Δ , replace T_z with its prediction:

$$\Delta = E(T_1 - T_0|A = 1) \longrightarrow \tilde{\Delta} = E\{\mu(S_1) - \mu(S_0)|A = 1\}$$

• Δ_S is the prediction bias:

$$\tilde{\Delta} = \Delta - \Delta_S$$

• *PTE_{WT}* is the relative prediction bias:

$$PTE_{WT} = \frac{\Delta - \Delta_{S}}{\Delta} = \frac{\tilde{\Delta}}{\Delta}$$

• **However**, $\tilde{\Delta}$ not relevant because we can estimate Δ directly \rightarrow Apply this thinking to the application trial

Non-Causal Interpretation: Application Trial

• In the definition of Δ^* , replace T_z with its prediction:

$$\tilde{\Delta}^* = E\{\mu(S_1) - \mu(S_0)|A = 0\}$$

Lemma (Treatment effect prediction, Application trial)

Under the following assumptions,

1
$$E(T_z|S_z=s, A=1) = E(T_z|S_z=s, A=0)$$
 for $z=0,1$

$$P_{S_0|A=1} = F_{S_0|A=0},$$

 Δ_S is the prediction bias in the application trial, i.e.,

$$\tilde{\Delta}^* = \Delta^* - \Delta_S$$
.

Under these additional assumptions

 $PTE_{WT} \approx 1 \iff \Delta_S \approx 0 \Rightarrow \tilde{\Delta}^*$ is a good prediction

Application: Evaluation and Applications Trials

- Three simulated vaccine trials (N = 20,000)
 - T: infection status
 - S: neutralizing antibody level
 - X: baseline health and age
- Evaluation trial
 - *S* is an important mediator
- Application trial 1
 - *S* is an important mediator
 - Assumptions of previous lemma satisfied conditional on X
- Application trial 2
 - Vaccine operates mainly through cellular immunity
 - Assumptions of previous lemma not satisfied

Application: Results in Evaluation Trial

- Estimate *PTE_{WT}* and related quantities
 - **1** Ignoring $X \rightarrow PTE_{WT}$
 - 2 Including $X \to PTE_{WT}^{X}$
 - \bullet Estimate components conditional on X, then marginalize over X
- ullet $PTE_{WT}>>1 \Rightarrow ilde{\Delta}$ predicts Δ poorly
 - ullet $ilde{\Delta}^*$ is likely also a poor predictor of Δ^*
- $PTE_{WT}^X \approx 1 \Rightarrow \text{can predict } \Delta \text{ well}$
 - Including X, we *might* predict Δ^* well

Ignoring Baseline Covariates			Including Baseline Covariates		
Δ_S	Δ	PTE_{WT}	$E(\Delta_S(X))$	Δ	PTE_{WT}^{X}
-0.015	0.069	1.470	0.005	0.071	0.870

Application: Results in Evaluation Trial

- Estimate PTE_{WT} and related quantities
 - **1** Ignoring $X \rightarrow PTE_{WT}$
 - 2 Including $X \to PTE_{WT}^{X}$
 - \bullet Estimate components conditional on X, then marginalize over X
- ullet $PTE_{WT}>>1 \Rightarrow ilde{\Delta}$ predicts Δ poorly
 - ullet $ilde{\Delta}^*$ is likely also a poor predictor of Δ^*
- $PTE_{WT}^{X} \approx 1 \Rightarrow \mathsf{can} \mathsf{\ predict} \ \Delta \mathsf{\ well}$
 - Including X, we might predict Δ^* well

Ignoring Baseline Covariates			Including Ba	aseline C	Covariates
Δ_S	Δ	PTE_{WT}	$E(\Delta_S(X))$	Δ	PTE_{WT}^{X}
-0.015	0.069	1.470	0.005	0.071	0.870

Results: Treatment Effect Predictions

- $\tilde{\Delta}^*$: prediction ignoring X
 - Related to PTE_{WT}
- $E\left(\tilde{\Delta}^*(X)\right)$: prediction taking X into account
 - Related to PTEX
- Prediction only accurate in application trial 1 when we take X into account
 - Only case where we expected an accurate prediction

	Δ*	$\tilde{\Delta}^*$	$E\left(\tilde{\Delta}^*(X)\right)$
Application Trial 1	0.053	0.077	0.051
Application Trial 2	0.118	0.015	0.011

Results: Treatment Effect Predictions

- $\tilde{\Delta}^*$: prediction ignoring X• Related to PTE_{WT}
- $E\left(\tilde{\Delta}^*(X)\right)$: prediction taking X into account
 - Related to PTE_{WT}^X
- Prediction only accurate in application trial 1 when we take X into account
 - Only case where we expected an accurate prediction

	Δ^*	$ ilde{ ilde{\Delta}}^*$	$E\left(\tilde{\Delta}^*(X)\right)$
Application Trial 1	0.053	0.077	0.051
Application Trial 2	0.118	0.015	0.011

Results: Treatment Effect Predictions

- $\tilde{\Delta}^*$: prediction ignoring X
 - Related to PTE_{WT}
- $E\left(\tilde{\Delta}^*(X)\right)$: prediction taking X into account
 - Related to PTE_{WT}^X
- Prediction only accurate in application trial 1 when we take X into account
 - Only case where we expected an accurate prediction

	Δ^*	$\tilde{\Delta}^*$	$E\left(\tilde{\Delta}^*(X)\right)$
Application Trial 1	0.053	0.077	0.051
Application Trial 2	0.118	0.015	0.011

Conclusions

- We identified 3 possible interpretations of the PTE_{WT}
 - Measure of principal surrogacy
 - 2 Proportion mediated
 - Relative trial-level prediction bias
- These interpretations are only possible under additional unverifiable assumptions
- ullet These interpretations "make sense" for $PTE_{WT}>1$
 - · Contrary to what is commonly assumed
- Non-causal interpretation aligns most with the final goal of surrogates:
 - \rightarrow Prediction of treatment effects using only S

References

- Frangakis, Constantine E. and Donald B. Rubin (2002). "Principal stratification in causal inference". In: *Biometrics* 58.1, pp. 21–29.
- Freedman, Laurence S. et al. (1992). "Statistical validation of intermediate endpoints for chronic diseases". In: *Statistics in medicine* 11.2, pp. 167–178.
- Imbens, Guido W. and Donald B. Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
- Parast, Layla et al. (2016). "Robust estimation of the proportion of treatment effect explained by surrogate marker information". In: Statistics in medicine 35.10, pp. 1637–1653.
- Wang, Yue and Jeremy M.G. Taylor (2002). "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker". In: *Biometrics* 58.4, pp. 803–812.

Application: Data Generating Mechanism

• Distribution of T|S, Z, X, A is modeled through its conditional mean, $\pi = E(T|S, Z, X, A)$:

$$\log\left(\frac{\pi}{1-\pi}\right) = 0.8 + \alpha_0 \cdot (1-A) + (0.1 + \alpha_1 \cdot (1-A)) \cdot Z + 0.5 \cdot S - 0.03 \cdot (X_1 - 45) + 0.1 \cdot X_2.$$

- Application trial 1: $\alpha_0 = \alpha_1 = 0$
- Application trial 2: $\alpha_0=0.2$ and $\alpha_1=0.90$
- \bullet S|Z,X,A is Gaussian with unit variance and following mean function

$$E(S|Z,X,A) = (1.5 \cdot Z + \beta \cdot (1-A)) \cdot Z - 0.05 \cdot (X_1 - 45) + 0.15 \cdot X_2.$$

- Application trial 1: $\beta = -0.75$
- Application trail 2: $\beta = -1.4$

Application: Data Generating Mechanism (ctd.)

Distribution of age

$$X_1|A=1\sim \textit{N}\left(35,7^2
ight)$$
 and $X_1|A=0\sim \textit{N}\left(40,5^2
ight)$

Distribution of baseline health (larger values indicate of better health)

$$X_2|A=1\sim N\left(5,5^2
ight)$$
 and $X_2|A=0\sim\left(2,4^2
ight)$

Baseline covariates and PTE_{WT}^{X}

$$PTE_{WT}^{X} = \frac{E\left\{\Delta(X) - \Delta_{\mathcal{S}}(X)|A=1\right\}}{E(\Delta(X)|A=1)} = \frac{E\left\{\tilde{\Delta}(X)|A=1\right\}}{E(\Delta(X)|A=1)}.$$

where

$$E\{\Delta(X)|A=1\} = E\{E(T_1 - T_0|X)\} = \Delta$$

$$E\{\tilde{\Delta}(X)|A=1\} = E\{\mu_X(S_1) - \mu_X(S_0)|A=1\}$$

$$\mu_X(s) = E(T_1|S_1 = s, X = x, A=1)$$