Formele Talen - Inleveropgaven II

Martijn Vermaat mvermaat@cs.vu.nl

14 december 2004

Opgave 1

$$L = \{a^n b^m a^n \, | \, n, m \ge 0\}$$

a) We gebruiken de pompstelling voor reguliere talen om te bewijzen dat L niet regulier is.

Stel dat L wel regulier is. Volgens de pompstelling bestaat er nu een positief getal m zo dat iedere $w \in L$ met $|w| \ge m$ als volgt opgedeeld kan worden in x, y en z:

$$w=xyz,$$
met
$$|xy|\leq m\quad\text{en}\quad |y|\geq 1,$$
zo dat
$$xy^iz\in L\quad\text{voor alle }i\in\mathbb{N}.$$

Laten we bij deze m de string $w=a^mba^m$ bekijken. Dan kan w geschreven worden als xyz met:

$$x = a^{|x|},$$

 $y = a^{|y|},$
 $z = a^{m-|x|-|y|}ba^{m}.$

Nu moet ook de volgende string in L zitten:

$$xy^2z = a^{|x|}a^{2|y|}a^{m-|x|-|y|}ba^m$$

= $a^{m+|y|}ba^m$.

Maar omdat $|y| \ge 1$ volgt $m + |y| \ne m$ en dus zit xy^2z niet in L. Dit is in tegenspraak met onze eerdere veronderstelling, dus moet onze aanname onjuist geweest zijn en is L niet regulier.

1

b) Een contextvrije grammatica die L genereert:

 \mathbf{c}) Een nondeterministische pushdown automaat die L accepteert:

Opgave 2

a) 1. Na eliminatie van λ -producties:

$$\begin{array}{ccc} S & \rightarrow & SAa \,|\, Sa \,|\, BBb \,|\, Bb \,|\, b \\ A & \rightarrow & CC \,|\, C \,|\, a \\ B & \rightarrow & C \,|\, Sb \\ C & \rightarrow & SDE \,|\, SE \\ D & \rightarrow & A \,|\, ab \end{array}$$

2. Na eliminatie van unit-producties:

$$\begin{array}{cccc} S & \rightarrow & SAa \,|\, Sa \,|\, BBb \,|\, Bb \,|\, b \\ A & \rightarrow & CC \,|\, a \,|\, SDE \,|\, SE \\ B & \rightarrow & Sb \,|\, SDE \,|\, SE \\ C & \rightarrow & SDE \,|\, SE \\ D & \rightarrow & ab \,|\, CC \,|\, a \,|\, SDE \,|\, SE \end{array}$$

3. Na verwijderen van nutteloze producties:

$$\begin{array}{ccc} S & \rightarrow & SAa \, | \, Sa \, | \, BBb \, | \, Bb \, | \, b \\ A & \rightarrow & a \\ B & \rightarrow & Sb \end{array}$$

b) Dezelfde grammatica in Chomsky normaalvorm:

$$S \rightarrow SY_1 | SX_a | BY_2 | BX_b | b$$

$$A \rightarrow a$$

$$B \rightarrow SX_b$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b$$

$$Y_1 \rightarrow AX_a$$

$$Y_2 \rightarrow BX_b$$

c) We schrijven nu dezelfde grammatica om naar Greibach normaalvorm. We gebruiken hierbij de ordening < op de non-terminals gedefiniëerd als

$$S < A < B$$
.

... hier moet ik even over nadenken...

Opgave 3

Hieronder volgt een visuele voortelling van het CYK parseer algoritme toegepast op baaba en de gegeven grammatica. Voor $V_{nm} = \{\varphi\}$ schrijven we $\{\varphi\}_{nm}$.

We zien dat $S \in V_{15}$ en dus zit baaba in de taal die door de gegeven grammatica wordt gegenereerd.

Opgave 4

De volgende context vrije grammatica genereert precies L(M) voor de gegeven npda M:

$$\begin{array}{ccc} (q_0yq_1) & \to & \lambda \\ (q_1yq_1) & \to & \lambda \\ (q_1zq_1) & \to & 1 \\ (q_0zr) & \to & 0(qyr')(r'zr) \\ (q_0yr) & \to & 0(q_0yr')(r'yr) & | & 1(q_0yr) \\ (q_1yr) & \to & 1(q_1yr')(r'yr) \end{array}$$

met $S = (q_0 z q_1)$ en $r, r' \in \{q_0, q_1\}$.