#### Data is collected from information

## Pipeline:

- Planning
- Gathering data many sources (websites, user surveys, sensors, legacy databases)
- Processing cleaning (80% of the time), aligning, integrating (computers are simple, people are not)
- Analysing statistics, machine learning, exploring (Number crunching, discovering patterns)
- Presenting visualisations, communication, actionable (message & audience)
- Preserving storing, management, re-use (data storage & indexing, recording processes provenance)

#### Data:

- Structured:
  - o Tables, organised, observations
  - o Row is an instance; column -> attribute
  - o Easier for ML to work with

## 4 special types of data to look for:

- 1. Temporal time series
- 2. Geographic spatial

#### Qualitative:

- Quality, label, trait
- Categorical
- Limited mathematical functions

- E.g. Fav colour, gender

#### Data sources:

- 1. Files texts or binary, open or proprietary, tabulated data (csv, tsv, db), other text data (Json, Html, KML)
- 2. Databases
- 3. The Internet
- 4. Open Data public data, shared and freely available

03/10/2024

### Metadata comes from

- Simple EXIF,
- Structured Adhering to a standard
- Professional created by librarian
- Crowdsourced hashtags, comments

## Assignment:

CSC1143 – visualisation

Any dataset can be used except

Check specification file

Marking criteria – 30% dataset; Visualisation 50%; Report 20%

5 good things to know about data visualisation:

1. Pie charts – never a good idea. It looks good but not very technical when there is loads of information. Only use it for parts of a whole. (1005 divided into groups). No more than 5 slices. Never use 3d.

### 24/10/2024

Chart types: - CHART

1. Categorical: Comparing categories

a. Comparison:

i. Bar graph

ii. Dot plot

iii. Circle packing

iv. Polar/Radar/Spider chart

b. Distribution:

i. Box-and-whisker plot

ii. Histogram

iii. Word cloud (not very accurate)

- 2. Hierarchical: Charting part-to-whole relationships
  - a. Part-to-whole:

i. Pie charts

ii. Waffle charts

iii. Stacked bar chart

iv. Tree map

v. Venn diagram

b. Hierarchies:

|    |            |                        | i.          | Dendrogram: clusters               |
|----|------------|------------------------|-------------|------------------------------------|
| 3. | Relationa  | l: Graphing relationsh | nips to exp | olore correlations and connections |
|    | a.         | Connections:           |             |                                    |
|    |            |                        | i.          | Scatter plot                       |
|    |            |                        | ii.         | Bubble plot                        |
|    |            |                        | iii.        | Heatmap                            |
|    |            |                        | iv.         | Matrix chart                       |
|    |            |                        | ٧.          | Sankey diagram                     |
|    |            |                        |             |                                    |
| 4. | Temporal   | : Showing trends/acti  | vities over | time                               |
|    | a.         | trends                 |             |                                    |
|    |            |                        | i.          | Line chart                         |
|    |            |                        | ii.         | Area chart                         |
|    |            |                        | iii.        | Stream graph                       |
|    | b.         | Activities:            |             |                                    |
|    |            |                        | i.          | Gantt chart                        |
|    |            |                        |             |                                    |
| 5. | Spatial: M | lapping                |             |                                    |
|    | a.         | Overlays               |             |                                    |
|    |            |                        | i.          | Choropleth                         |
|    |            |                        | ii.         | Isarithmic                         |
|    |            |                        | iii.        | Proportional symbol                |

b. Distortion:

- i. Area cartogram
- ii. Dorling cartogram

07/12

# **TILE: Finding data**

| Scraping                                                       | Crawling                                                                  |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| to extract data from semi-structured sources (e.g., webpages). | traversing the web via links in <a> tags to gather data via scraping.</a> |

The general process of **Scraping** is as follows:

- Have a plan (how to identify the data items on the page)
- Request webpage (e.g., urlopen, requests)
- Parse HTML (e.g., lxml, beautifulsoup)
- Store data (e.g., as list or dict)
- Format as required (e.g., CSV, json, dataframe, sql)

You will almost certainly need to clean the data as scraping can be very prone to introducing errors and artefacts.

#### Good practices for scarping:

- Check site's terms and conditions
- Make sure you allocate your requests properly and in order so that, you don't hammer the site's server causing denial of service attack.
- Scarper's break sites change their layout all the time. If that happens, be prepared to rewrite your code.
- Web pages can be messy, so you might need to tidy up the data by hand after you've collected it.

#### Python libraries to help with scraping

- requests downloading the page
- BeautifulSoup parsing the HTML into an object to search and manipulate
- **Scrapy -** Writing a spider to crawl a site and extract data



APIs are like bridges that allow different software systems to communicate and share data or features with each other. Forms of APIs include:

- REST (REpresentational State Transfer) more common in recent years
- SOAP (Simple Object Access Protocol) more powerful
- JSON (JavaScript Object Notation) used when returning results from REST calls.

What are the advantages and disadvantages of providing or accessing data via an online REST API?

| Advantages                                                                                                                       | Disadvantages                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| REST APIs are based on the same standards used for the web. They are highly interoperable and can easily interact.               | the design of a REST API can be more complex than other APIs                                                                        |  |
| Flexibility- REST APIs can communicate using any data format                                                                     | REST APIs can have slightly lower performance than other APIs                                                                       |  |
| Security - REST APIs typically use authentication via access tokens, Tokens are much more difficult to crack as they are unique. | All changes to your REST API must be executed on the web and only on the web. You must always connect to make the slightest change. |  |
| REST APIs are highly scalable                                                                                                    |                                                                                                                                     |  |
| REST APIs are simpler and easier to use than other APIs.                                                                         |                                                                                                                                     |  |

# **TILE: Data Quality & Cleaning**

High-quality data is free from both errors and artefacts.

- Error: data that is missing or lost due to the capture process and cannot be recovered.
- Artefact: something that has been introduced into the dataset during the gathering, processing, integration or cleaning activities.

Where do we face issues with data quality or cleaning?

- 1. Data gathering & Data Retrieval
  - a. Manual entry errors like (duc instead of dcu)
  - b. Poor survey or interface design (asking the user their favourite colour but the only options available are red, green, blue)
  - c. No standard format (DCU or Dublin City University)
  - d. Source data not understood

e. *Solutions* - build in integrity check, Process management - reward accurate human data entry. Cleaning focus (duplicate removal, merge/purge), Diagnostic focus (automated detection of glitches).

#### 2. Data delivery (Data Processing):

- a. Destroying or mutilating information by inappropriate pre-processingInappropriate aggregation Nulls converted to default values
- b. Loss of data
- c. Solutions Build reliable transmission protocols, verification (checksums), interface agreements (data quality commitment)

## 3. Data Storage (preserving)

- a. Format conversion errors (string/float)
- b. No meta data
- c. Transmission errors, corruption

#### 4. Data Integration

- a. Combining data sets (Heterogeneous data : no common key, different field formats, Different definitions : What is a customer, an account, a family, Time synchronization : Does the data relate to the same time periods?, Legacy data : IMS, spreadsheets, Sociological factors : Reluctance to share loss of power)
- b. Solutions Have metadata

#### 5. Data Analysis

- a. Scale and performance
- b. Insufficient domain expertise

Data quality is defined as the degree to which data meets a company's expectations of accuracy, validity, completeness, and consistency.

## Measures of **Data Quality**:

- Accuracy: The data was recorded correctly.
- Completeness : All relevant data was recorded.
- Uniqueness: Entities are recorded once.
- Timeliness: The data is recent or kept up to date. Date published vs Data captured ...
- Consistency: The data agrees with itself (internal).
- Credibility: The data comes from a recognised (or official) source.

#### Ways to clean data:

- Implement process mandates fixing the human problem by including schema to maintain a format.
- Custom tools written in a General Purpose language (hack a script) Good for one-off quick fixes (cleaning that only happens once)

## Suggestions:

- Missing values, records or variables are empty cells no value (0) or no measurement (null)? How should they be handled?
- Erroneous values typos or values that are clearly out of place (gender value in age column
- Inconsistencies capitalisation, units of measurement
- Duplicate records
- Out of date e.g., age will have changed
- Leading or trailing spaces! Windows or Linux end of line characters
- Format of dates DD/MM/YYYY, MM/DD/YYYY, ?? Excel based or Unix based
- "Sanity checks" look for extreme values or outliers, count how many record