

CORRECTED SEQUENCE LISTING

RECEIVED

EDDS 8 8 YAM

TECH CENTER 1600/2900

23

<110> Conseiller, Emmanuel Debussche, Laurent Gallagher, William

<120> Polypeptide (MBP1) Capable Of Interacting With Oncogenic Mutants Of The P53 Protein

- <130> ST98033
- <140> 09/829,936
- <141> 2001-04-11
- <150> FR9812754
- <151> 1998-10-12
- <160> 33
- <170> PatentIn version 3.1
- <210> 1
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Oligonucleotide 5'-1(p53)
- <400> 1

agatctgtat ggaggagccg cag

- <210> 2
- <211> 29
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Oligonucleotide 3' -393 (p53)

<400> agatct	2 catc agtctgagtc aggcccttc	29
<210>	3	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Oligonucleotide H175 3'	
<400>		15
ggggca	gtgc ctcac	1.7
<210>	4	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Oligonucleotide W248 3'	
<400> gggcct	4 ccag ttcat	15
<210>	5	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Oligonucleotide H273 3'	
<400> acaaac	5 catgc acctc	15
<210>	6	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	

Page 2

<220> <223>		Oligonucleotide G281 3'														
	400> 6 cgccggcct ctccc											15				
<210>	. 7	•														
<211>	2	:3														
<212>	D	NA														
<213>	A	rtif	ficia	al Se	equer	ıce										
<220> <223>		ligo	onuc]	leoti	ide :	5'-73	3									
<400> agatc			gcco	ctg	ca co	ca										23
<210>	. 8	;														
<211>	. 1	.021														
<212>	D	NA														
<213>	. Д	rtif	ficia	al Se	equer	nce										
<220> <223>		lurir	ne ME	3P1 (C-tei	m fi	agmo	ent								
<220> <221> <222>			. (885	5)												
<400> tgc a			cct	ast	aat	tac	cas	222	2++	aas			tat	ata	asc	48
Cys T	hr	Cys	Pro	Asp 5	Gly	Tyr	Arg	Lys	Ile 10	Gly	Pro	Glu	Cys	val 15	Asp	40
ata g Ile A	at sp	gag Glu	tgt Cys 20	cgt Arg	tac Tyr	cgc Arg	tat Tyr	tgc Cys 25	cag Gln	cat His	cga Arg	tgt Cys	gtg val 30	aac Asn	ctg Leu	96
ccg g Pro G																144
aac a Asn A 5	ac sn 0	cgc Arg	tct Ser	tgt Cys	gtg Val	gat Asp 55	gtg Val	aat Asn	gag Glu	tgt Cys	gac Asp 60	atg Met	gga Gly	gcc Ala	cca Pro	192
tgt g Cys G 65																240
aac c	ag	ggc	tat	gag	ctg	cac	cgg	gat		ttc		tgc	agc	gat	atc	288

Asn Gln Gly Tyr Glu Leu His Arg Asp Gly	Phe Ser Cys Ser Asp Ile 95
gat gag tgc ggc tac tcc agt tac ctc tgc	cag tac cgc tgt gtc aac 336
Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys	Gln Tyr Arg Cys Val Asn
100 105	110
gag cca ggc cga ttc tcc tgt cac tgc cca	caa ggc tac cag ctg ctg 384
Glu Pro Gly Arg Phe Ser Cys His Cys Pro	Gln Gly Tyr Gln Leu Leu
115 120	125
gct aca agg ctc tgc caa gat att gac gag	tgt gaa aca ggt gca cac 432
Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu	Cys Glu Thr Gly Ala His
130	140
caa tgt tct gag gcc caa acc tgt gtc aac	ttc cat ggg ggt tac cgc 480
Gln Cys Ser Glu Ala Gln Thr Cys Val Asn	Phe His Gly Gly Tyr Arg
145	155 160
tgt gtg gac acc aac cgt tgt gtg gag ccc	tat gtc caa gtg tca gac 528
Cys Val Asp Thr Asn Arg Cys Val Glu Pro	Tyr Val Gln Val Ser Asp
165 170	175
aac cgc tgc ctc tgc cct gcc tcc aat ccc	ctt tgt cga gag cag cct 576
Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro	Leu Cys Arg Glu Gln Pro
180	190
tca tcc att gtg cac cgc tac atg agc atc	acc tca gag cga agt gtg 624
Ser Ser Ile Val His Arg Tyr Met Ser Ile	Thr Ser Glu Arg Ser Val
195 200	205
cct gct gac gtg ttt cag atc cag gca acc	tct gtc tac cct ggt gcc 672
Pro Ala Asp Val Phe Gln Ile Gln Ala Thr	Ser Val Tyr Pro Gly Ala
210 215	220
tac aat gcc ttt cag atc cgt tct gga aac	aca cag ggg gac ttc tac 720
Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn	Thr Gln Gly Asp Phe Tyr
225 230	235 240
att agg caa atc aac aat gtc agc gcc atg	ctg gtc ctc gcc agg cca 768
Ile Arg Gln Ile Asn Asn Val Ser Ala Met	Leu Val Leu Ala Arg Pro
245 250	255
gtg acg gga ccc cgg gag tac gtg ctg gac	ctg gag atg gtc acc atg 816
Val Thr Gly Pro Arg Glu Tyr Val Leu Asp	Leu Glu Met Val Thr Met
260 265	270
aat tcc ctt atg agc tac cgg gcc agc tct	gta ctg aga ctc acg gtc 864
Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser	Val Leu Arg Leu Thr Val
275 280	285
ttt gtg gga gcc tat acc ttc tgaagaccct Phe Val Gly Ala Tyr Thr Phe 290 295	cagggaaggg ccatgtgggg 915
gccccttccc cctcccatag cttaagcagc cccggg	ggcc tagggatgac cgttctgctt 975
aaaggaacta tgatgtgaag gacaataaag ggagaa	agaa ggaaaa 1021
<210> 9	
<211> 295	

<211> 295

<212> PRT

<213> Artificial Sequence

<220> <223>

<223> Murine MBP1 C-term fragment

<400> 9

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 1 5 10 15

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 60

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 65 70 75 80

Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 85 90 95

Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His 130 135 140

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 145 150 155 160

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser Asp 165 170 175

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 180 185 190

Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu Arg Ser Val 195 200 205

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala Page 5

210 215 220

Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe Tyr 225 230 235 240

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 245 250 255

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 260 265 270

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 275 280 285

Phe Val Gly Ala Tyr Thr Phe 290 295

<210> 10

<211> 39

<212> DNA

<213> Artificial Sequence

<220> <223> Oligonucleotide c-myc 5'

400 10

<400> 10 gatccatgga gcagaagctg atctccgagg aggacctga

<210> 11

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide c-myc 3'

<400> 11
gatctcaggt cctcctcgga gatcagcttc tgctccatg

<210> 12

<211> 45

<212> DNA

<213> Artificial Sequence

39

```
<220>
     5' MCS oligonucleotide
<400> 12
gatctcggtc gacctgcatg caattcccgg gtgcggccgc gagct
                                                                       45
<210>
      13
<211>
      37
<212> DNA
<213> Artificial Sequence
<220>
<223>
      3' MCS oligonucleotide
<400> 13
                                                                       37
cgcggccgca cccgggaatt gcatgcaggt cgaccga
<210>
      14
<211>
      22
<212> DNA
<213>
      Artificial Sequence
<220>
      Oligonucleotide 3' mMBP1
<223>
<400>
      14
                                                                       22
cggtactggc agaggtaact gg
<210>
      15
<211>
      1513
<212> DNA
<213> Artificial Sequence
<220>
<223>
      MBP1 murine (complete sequence)
<220>
<221>
      CDS
<222>
      (49)..(1377)
<400> 15
gctgtggcag aaacccctga cttctgccca ccacctccca gcctcagg atg ctc cct
                                                                       57
                                                     Met Leu Pro
```

ttt Phe	gcc Ala 5	tcc Ser	tgc Cys	ctc Leu	ccc Pro	ggg Gly 10	tct Ser	ttg Leu	ctg Leu	ctc Leu	tgg Trp 15	gcg Ala	ttt Phe	ctg Leu	ctg Leu	105
ttg Leu 20	ctc Leu	ttg Leu	gga Gly	gca Ala	gcg Ala 25	tcc Ser	cca Pro	cag Gln	gat Asp	ccc Pro 30	gag Glu	gag Glu	ccg Pro	gac Asp	agc Ser 35	153
tac Tyr	acg Thr	gaa Glu	tgc Cys	aca Thr 40	gat Asp	ggc Gly	tat Tyr	gag Glu	tgg Trp 45	gat Asp	gca Ala	gac Asp	agc Ser	cag Gln 50	cac His	201
tgc Cys	cgg Arg	gat Asp	gtc Val 55	aac Asn	gag Glu	tgc Cys	ctg Leu	acc Thr 60	atc Ile	ccg Pro	gag Glu	gct Ala	tgc Cys 65	aag Lys	ggt Gly	249
gag Glu	atg Met	aaa Lys 70	tgc Cys	atc Ile	aac Asn	cac His	tac Tyr 75	ggg Gly	ggt Gly	tat Tyr	t.tg Leu	tgt Cys 80	ctg Leu	cct Pro	cgc Arg	297
tct Ser	gct Ala 85	gcc Ala	gtc Val	atc Ile	agt Ser	gat Asp 90	ctc Leu	cat His	ggt Gly	gaa Glu	gga Gly 95	cct Pro	cca Pro	ccg Pro	cca Pro	345
gcg Ala 100	gcc Ala	cat His	gct Ala	caa Gln	caa Gln 105	cca Pro	aac Asn	cct Pro	tgc Cys	ccg Pro 110	cag Gln	ggc Gly	tac Tyr	gag Glu	cct Pro 115	393
gat Asp	gaa Glu	cag Gln	gag Glu	agc Ser 120	tgt Cys	gtg Val	gat Asp	gtg Val	gac Asp 125	gag Glu	tgt Cys	acc Thr	cag Gln	gct Ala 130	ttg Leu	441
cat His	gac Asp	tgt Cys	cgc Arg 135	cct Pro	agt Ser	cag Gln	gac Asp	tgc Cys 140	cat His	aac Asn	ctt Leu	cct Pro	ggc Gly 145	tcc Ser	tac Tyr	489
cag Gln	tgc Cys	acc Thr 150	tgc Cys	cct Pro	gat Asp	ggt Gly	tac Tyr 155	cga Arg	aaa Lys	att Ile	gga Gly	ccc Pro 160	gaa Glu	tgt Cys	gtg Val	537
gac Asp	ata Ile 165	gat Asp	gag Glu	tgt Cys	cgt Arg	tac Tyr 170	cgc Arg	tat Tyr	tgc Cys	cag Gln	cat His 175	cga Arg	tgt Cys	gtg Val	aac Asn	585
ctg Leu 180	ccg Pro	ggc Gly	tct Ser	ttt Phe	cga Arg 185	tgc Cys	cag Gln	tgt Cys	gag Glu	cca Pro 190	ggc Gly	ttc Phe	cag Gln	ttg Leu	gga Gly 195	633
cct Pro	aac Asn	aac Asn	cgc Arg	tct Ser 200	tgt Cys	gtg Val	gat Asp	gtg val	aat Asn 205	gag Glu	tgt Cys	gac Asp	atg Met	gga Gly 210	gcc Ala	681
cca Pro	tgt Cys	gag Glu	cag Gln 215	cgc Arg	tgc Cys	ttc Phe	aac Asn	tcc Ser 220	tat Tyr	ggg Gly	acc Thr	ttc Phe	ctg Leu 225	tgt Cys	cgc Arg	729
tgt Cys	aac Asn	cag Gln 230	ggc Gly	tat Tyr	gag Glu	ctg Leu	cac His 235	cgg Arg	gat Asp	ggc Gly	ttc Phe	tcc Ser 240	tgc Cys	agc Ser	gat Asp	777
	gat Asp 245															825

aac g Asn G 260	ag cca lu Pro	ggc Gly	cga Arg	ttc Phe 265	tcc Ser	tgt Cys	cac His	tgc Cys	cca Pro 270	caa Gln	ggc Gly	tac Tyr	cag Gln	ctg Leu 275	873
ctg g Leu A	ct aca la Thr	agg Arg	ctc Leu 280	tgc Cys	caa Gln	gat Asp	att Ile	gac Asp 285	gag Glu	tgt Cys	gaa Glu	aca Thr	ggt Gly 290	gca Ala	921
	aa tgt In Cys														969
cgc to	gt gtg ys Val 310	Āsp	acc Thr	aac Asn	cgt Arg	tgt Cys 315	gtg Val	gag Glu	ccc Pro	tat Tyr	gtc Val 320	caa Gln	gtg Val	tca Ser	1017
Asp A	ac cgc sn Arg 25	tgc Cys	ctc Leu	tgc Cys	cct Pro 330	gcc Ala	tcc Ser	aat Asn	ccc Pro	ctt Leu 335	tgt Cys	cga Arg	gag Glu	cag Gln	1065
cct to Pro So 340	ca tcc er Ser	att Ile	gtg val	cac His 345	cgc Arg	tac Tyr	atg Met	agc Ser	atc Ile 350	acc Thr	tca Ser	gag Glu	cga Arg	agt Ser 355	1113
	ct gct ro Ala														1161
gcc to Ala T	ac aat yr Asn	gcc Ala 375	ttt Phe	cag Gln	atc Ile	cgt Arg	tct Ser 380	gga Gly	aac Asn	aca Thr	cag Gln	ggg Gly 385	gac Asp	ttc Phe	1209
tac a Tyr I	tt agg le Arg 390	Gln	atc Ile	aac Asn	aat Asn	gtc Val 395	agc Ser	gcc Ala	atg Met	ctg Leu	gtc Val 400	ctc Leu	gcc Ala	agg Arg	1257
Pro V	tg acg al Thr 05	gga Gly	ccc Pro	cgg Arg	gag Glu 410	tac Tyr	gtg Val	ctg Leu	gac Asp	ctg Leu 415	gag Glu	atg Met	gtc Val	acc Thr	1305
atg a Met A 420	at tcc sn Ser	ctt Leu	atg Met	agc Ser 425	tac Tyr	cgg Arg	gcc Ala	agc Ser	tct Ser 430	gta Val	ctg Leu	aga Arg	ctc Leu	acg Thr 435	1353
gtc t Val P	tt gtg he Val	gga Gly	gcc Ala 440	tat Tyr	acc Thr	ttc Phe	tgaa	agaco	ct o	caggg	gaag	gg co	catg	gggg	1407
gcccc	ttccc	cctc	ccata	ag ct	ttaag	gcago	ccc	gggg	gcc	tagg	ggate	gac o	gtt	tgctt	1467
aaagg	aacta	tgat	gtgaa	ag ga	acaat	caaag	g gga	agaaa	igaa	ggaa	aaa				1513
<210>	16														
<211>	443														
<212>															
	Arti	ficia	al Se	equer	ice										
<220> <223>		mur	ine ((comp	olete	e sec	quenc	ce)							

Met Leu Pro Phe Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 10 15 Phe Leu Leu Leu Leu Gly Ala Ala Ser Pro Gln Asp Pro Glu Glu 20 25 30 Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Ala Asp 35 40 45 Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala 50 60 Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys 65 70 75 80 Leu Pro Arg Ser Ala Ala Val Ile Ser Asp Leu His Gly Glu Gly Pro 85 90 95 Pro Pro Pro Ala Ala His Ala Gln Gln Pro Asn Pro Cys Pro Gln Gly 100 105 110 Tyr Glu Pro Asp Glu Gln Glu Ser Cys Val Asp Val Asp Glu Cys Thr 115 120 125 Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 135 140 Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145 150 155 160 Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 165 170 175 Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 180 185 190 Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp 195 200 205 Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 210 215 220 Leu Cys Arg Cys Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 235 230 235 Cys Ser Asp Ile Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr 245 250 255 Page 10

Arg Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val 305 Gln Val Ser Asp Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser

Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser 340 345 350

Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val 355 360 365

Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln 370 380

Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val 385 390 395 400

Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 405 410 415

Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu 420 425 430

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe
435
440

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220> <223> Oligonucleotide 3' hMBP1

ctccgctccg aggtgatggt c	21
<210> 18	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide 5' hMBP1	
<400> 18 tgtagctact ccagctacct c	21
<210> 19	
<211> 1122	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Human MBP1 cDNA (partial sequence)	
<400> 19 aagccagccg agccgccaga gccgcgggcc gcgggggtgt cgcgggccca acccca	ggat 60
gctcccctgc gcctcctgcc tacccgggtc tctactgctc tgggcgctgc tactgt	tgct 120
cttgggatca gcttctcctc aggattctga agagcccgac agctacacgg aatgca	caga 180
tggctatgag tgggacccag acagccagca ctgccgggat gtcaacgagt gtctga	ccat 240
ccctgaggcc tgcaaggggg aaatgaagtg catcaaccac tacgggggct acttgt	gcct 300
gccccgctcc gctgccgtca tcaacgacct acacggcgag ggacccccgc caccag	tgcc 360
tcccgctcaa caccccaacc cctgcccacc aggctatgag cccgacgatc aggaca	gctg 420
tgtggatgtg gacgagtgtg cccaggccct gcacgactgt cgccccagcc aggact	gcca 480
taacttgcct ggctcctatc agtgcacctg ccctgatggt taccgcaaga tcgggc	ccga 540
gtgtgtggac atagacgagt gccgctaccg ctactgccag caccgctgcg tgaacc	tgcc 600
tggctccttc cgctgccagt gcgagccggg cttccagctg gggcctaaca accgct	cctg 660
tgttgatgtg aacgagtgtg acatgggggc cccatgcgag cagcgctgct tcaact	ccta 720
tgggaccttc ctgtgtcgct gccaccaggg ctatgagctg catcgggatg gcttct	cctg 780
cagtgatatt gatgagtgta gctactccag ctacctctgt cagtaccgct gcgtca	acga 840
gccaggccgt ttctcctgcc actgcccaca gggttaccag ctgctggcca cacgcc	tctg 900


```
960
ccaagacatt gatgagtgtg agtctggtgc gcaccagtgc tccgaggccc aaacctgtgt
caacttccat gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca
                                                                    1020
                                                                    1080
ggtctctgag aaccgctgtc tctgcccggc ctccaaccct ctatgtcgag agcagccttc
                                                                    1122
atccattgtg caccgctaca tgaccatcac ctcggagcgg ag
<210>
      20
<211>
      684
<212> DNA
<213> Artificial Sequence
<220>
       Human MBP1 cDNA (partial sequence)
<223>
<400>
      20
tgtagctact ccagctacct ctgtcagtac cgctgcgtca acgagccagg ccgtttctcc
                                                                      60
tgccactgcc cacagggtta ccagctgctg gccacacgcc tctgccaaga cattgatgag
                                                                     120
                                                                     180
tgtgagtctg gtgcgcacca gtgctccgag gcccaaacct gtgtcaactt ccatgggggc
                                                                     240
taccgctgcg tggacaccaa ccgctgcgtg gagccctaca tccaggtctc tgagaaccgc
                                                                     300
tgtctctgcc cggcctccaa ccctctatgt cgagagcagc cttcatccat tgtgcaccgc
                                                                     360
tacatgacca tcacctcgga gcggagcgtg cccgctgacg tgttccagat ccaggcgacc
                                                                     420
tccgtctacc ccggtgccta caatgccttt cagatccgtg ctggaaactc gcagggggac
                                                                     480
ttttacatta qqcaaatcaa caacqtcaqc qccatqctqq tcctcqcccg gccggtgacg
ggccccggg agtacgtgct ggacctggag atggtcacca tgaattccct catgagctac
                                                                     540
                                                                     600
cgggccagct ctgtactgag gctcaccgtc tttgtagggg cctacacctt ctgaggagca
                                                                     660
ggagggagcc accetecetg cagetaccet agetgaggag cetgttgtga ggggcagaat
                                                                     684
gagaaaggca ataaagggag aaag
<210> 21
<211> 1480
<212> DNA
<213> Artificial Sequence
<220>
<223>
       Human MBP1 (complete sequence)
<220>
<221>
       CDS
       (59)..(1387)
                                                                      58
aagccagccg agccgccaga gccgcgggcc gcgggggtgt cgcgggccca accccagg
```

Page 13

atg ctc ccc Met Leu Pro 1	tgc gcc tcc Cys Ala Sei 5	tgc cta c Cys Leu P	ccc ggg tct Pro Gly Ser 10	cta ctg c Leu Leu L	tc tgg eu Trp 15	gcg 106 Ala	5
ctg cta ctg Leu Leu Leu	ttg ctc ttg Leu Leu Leu 20	ı Gly Ser A	gct tct cct Ala Ser Pro 25	Gln Asp S	ct gaa Ser Glu 80	gag 154 Glu	ŀ
ccc gac agc Pro Asp Ser 35	tac acg gaa Tyr Thr Glu	tgc aca g UCys Thr A 40	gat ggc tat Asp Gly Tyr	gag tgg g Glu Trp A 45	gac cca Asp Pro	gac 202 Asp	<u>'</u>
agc cag cac Ser Gln His 50	tgc cgg gat Cys Arg Asp	gtc aac g Val Asn G 55	gag tgt ctg Glu Cys Leu	acc atc o Thr Ile F 60	ct gag Pro Glu	gcc 250 Ala)
tgc aag ggg Cys Lys Gly 65	gaa atg aag Glu Met Lys 70	g tgc atc a s Cys Ile A	aac cac tac Asn His Tyr 75	ggg ggc t Gly Gly T	ac ttg yr Leu	tgc 298 Cys 80	;
ctg ccc cgc Leu Pro Arg	tcc gct gcc Ser Ala Ala 85	gtc atc a Val Ile A	aac gac cta Asn Asp Leu 90	cac ggc g His Gly G	gag gga Glu Gly 95	ccc 346 Pro	5
ccg cca cca Pro Pro Pro	gtg cct ccc Val Pro Pro 100	o Ála Gln Ḥ	cac ccc aac His Pro Asn LO5	Pro Cys F	cca cca Pro Pro L10	ggc 394 Gly	ļ
tat gag ccc Tyr Glu Pro 115	gac gat cag Asp Asp Gli	gac agc t n Asp Ser C 120	tgt gtg gat Cys Val Asp	gtg gac g Val Asp 0 125	gag tgt Glu Cys	gcc 442 Ala	<u>!</u>
cag gcc ctg Gln Ala Leu 130	cac gac tg His Asp Cys	cgc ccc a Arg Pro S 135	agc cag gac Ser Gln Asp	tgc cat a Cys His A 140	ac ttg Asn Leu	cct 490 Pro)
ggc tcc tat Gly Ser Tyr 145	cag tgc acc Gln Cys Thi 150	Cys Pro Ā	gat ggt tac Asp Gly Tyr 155	cgc aag a Arg Lys I	itc ggg le Gly	ccc 538 Pro 160	}
	gac ata gad Asp Ile Asp 165)
tgc gtg aac Cys Val Asn	ctg cct ggo Leu Pro Gly 180	/ Ser Phe A	cgc tgc cag Arg Cys Gln L85	Cys Glu F	cg ggc Pro Gly 190	ttc 634 Phe	ļ
cag ctg ggg Gln Leu Gly 195	cct aac aac Pro Asn Asi	c cgc tcc t n Arg Ser C 200	tgt gtt gat Cys Val Asp	gtg aac g Val Asn 0 205	gag tgt Glu Cys	gac 682 Asp	<u>)</u>
	cca tgc gaq Pro Cys Gli)
	tgc cac cag Cys His Gli 230	i Ğly Tyr Ğ					}
	att gat gag Ile Asp Gli 245			Tyr Leu (5

cgc Arg	tgc Cys	gtc Val	aac Asn 260	gag Glu	cca Pro	ggc Gly	cgt Arg	ttc Phe 265	tcc Ser	tgc Cys	cac His	tgc Cys	cca Pro 270	cag Gln	ggt Gly	874
						cgc Arg										922
tct Ser	ggt Gly 290	gcg Ala	cac His	cag Gln	tgc Cys	tcc ser 295	gag Glu	gcc Ala	caa Gln	acc Thr	tgt Cys 300	gtc val	aac Asn	ttc Phe	cat His	970
ggg Gly 305	ggc Gly	tac Tyr	cgc Arg	tgc Cys	gtg val 310	gac Asp	acc Thr	aac Asn	cgc Arg	tgc Cys 315	gtg Val	gag Glu	ccc Pro	tac Tyr	atc Ile 320	1018
cag Gln	gtc val	tct Ser	gag Glu	aac Asn 325	cgc Arg	tgt Cys	ctc Leu	tgc Cys	ccg Pro 330	gcc Ala	tcc Ser	aac Asn	cct Pro	cta Leu 335	tgt Cys	1066
cga Arg	gag Glu	cag Gln	cct Pro 340	tca Ser	tcc Ser	att Ile	gtg Val	cac His 345	cgc Arg	tac Tyr	atg Met	acc Thr	atc Ile 350	acc Thr	tcg Ser	1114
gag Glu	cgg Arg	agc Ser 355	gtg Val	ccc Pro	gct Ala	gac Asp	gtg Val 360	ttc Phe	cag Gln	atc Ile	cag Gln	gcg Ala 365	acc Thr	tcc Ser	gtc Val	1162
tac Tyr	ccc Pro 370	ggt Gly	gcc Ala	tac Tyr	aat Asn	gcc Ala 375	ttt Phe	cag Gln	atc Ile	cgt Arg	gct Ala 380	gga Gly	aac Asn	tcg Ser	cag Gln	1210
ggg Gly 385	gac Asp	ttt Phe	tac Tyr	att Ile	agg Arg 390	caa Gln	atc Ile	aac Asn	aac Asn	gtc Val 395	agc Ser	gcc Ala	atg Met	ctg Leu	gtc Val 400	1258
ctc Leu	gcc Ala	cgg Arg	ccg Pro	gtg Va1 405	acg Thr	ggc Gly	ccc Pro	cgg Arg	gag Glu 410	tac Tyr	gtg Val	ctg Leu	gac Asp	ctg Leu 415	gag Glu	1306
						ctc Leu										1354
agg Arg	ctc Leu	acc Thr 435	gtc Val	ttt Phe	gta Val	ggg Gly	gcc Ala 440	tac Tyr	acc Thr	ttc Phe	tgag	ggag	cag (gagg	gagcca	1407
ccct	tccct	tgc a	agcta	accct	ta go	ctgag	ggago	ctg	gttgt	gag	ggg	cagaa	atg a	agaaa	aggcaa	1467
taaa	aggga	aga a	aag													1480
		-	_													

<210> 22

<211> 443

<212> PRT

<213> Artificial Sequence

Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 160 Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 175 Arg Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 180 Fro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp 200 Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 240

CysSerAspIleAsp
245GluCysSerTyrSerSerTyrLeuCysGlnTyrArgCysValAsnGluProGlyArgPhe
265SerCysHisCysProGlnGlyTyrGlnLeuAlaThrArgLeuCysGlnAspIleAspGluCysGluSerGlyAlaHisGlnCysSerGluAlaGlnThrCysValAsnPheHisGlyGlyTyrArgCysValAspThrAsnArgCysValGluProTyrIleGlnValGluAspArgCysLeuCysAlaSerAsnProLeuCysArgGluGlnArgSerSerIleValHisArgTyrMetThrIleThrSer

Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val 355 360 365

Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln 370 375 380

 \mathcal{D}

Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Phe Ala Met Leu Val 385 390 395 400

Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 405 410 415

Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu 420 425 430

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 435 440

<210> 23

<211> 817

<212> DNA

<213> Artificial Sequence

<220> <223> Murine MBP1 cDNA (partial sequence)

<400> gctgtg	23 gcag	aaacccctga	cttctgccca	ecacctccca	gcctcaggat	gctccctttt	60
gcctcc	tgcc	tccccgggtc	tttgctgctc	tgggcgtttc	tgctgttgct	cttgggagca	120
gcgtcc	ccac	aggatcccga	ggagccggac	agctacacgg	aatgcacaga	tggctatgag	180
tgggat	gcag	acagccagca	ctgccgggat	gtcaacgagt	gcctgaccat	cccggaggct	240
tgcaag	ggtg	agatgaaatg	catcaaccac	tacgggggtt	atttgtgtct	gcctcgctct	300
gctgcc	gtca	tcagtgatct	ccatggtgaa	ggacctccac	cgccagcggc	ccatgctcaa	360
caacca	aacc	cttgcccgca	gggctacgag	cctgatgaac	aggagagctg	tgtggatgtg	420
gacgag	tgta	cccaggcttt	gcatgactgt	cgccctagtc	aggactgcca	taaccttcct	480
ggctcc	tacc	agtgcacctg	ccctgatggt	taccgaaaaa	ttggacccga	atgtgtggac	540
atagat	gagt	gtcgttaccg	ctattgccag	catcgatgtg	tgaacctgcc	gggctctttt	600
cgatgc	cagt	gtgagccagg	cttccagttg	ggacctaaca	accgctcttg	tgtggatgtg	660
aatgag	tgtg	acatgggagc	cccatgtgag	cagcgctgct	tcaactccta	tgggaccttc	720
ctgtgt	cgct	gtaaccaggg	ctatgagctg	caccgggatg	gcttctcctg	cagcgatatc	780
gatgag	tgcg	gctactccag	ttacctctgc	cagtacc			817
<210>	24						
<211>	24						
<212>	DNA						
		ificial Sequ	ience	,			
(215)	711 21	Trefat Sequ					
<220> <223>	sens	se-GAPDH oli	aonucleotio	de			
			. g				
<400>	24 caac	ggatttggtc	gtat				24
-333			3				
<210>	25						
<211>	24						
<212>	DNA						
<213>	Arti	ificial Sequ	ience				
<220>							
<223>	anti	isense-GAPDH	l oligonucle	eotide			

<400> 25 agccttctcc atggtggtga agac

```
<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
      antisense-beta-actin oligonucleotide
<223>
<400> 26
                                                                     25
cggttggcct tggggttcag ggggg
<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
      sense-MBP1 oligonucleotide
<223>
<400> 27
                                                                     21
gccctgatgg ttaccgcaag a
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
      antisense MBP1 oligonucleotide
<223>
<400> 28
                                                                     21
agccccatg gaagttgaca c
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      sense-beta-actin oligonucleotide
<400> 29
```

tgc gtg gac acc aac cgc tgc gtg gag ccc tac atc cag gtc tct gag Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu

aac cgc tgt ctc tgc ccg gcc tcc aac cct cta tgt cga gag cag cct

Page 20

528

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 185 624 tca tcc att gtg cac cgc tac atg acc atc acc tcg gag cgg agc gtg Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Ğlü Arğ Ser Val 200 ccc gct gac gtg ttc cag atc cag gcg acc tcc gtc tac ccc ggt gcc Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 672 tac aat gcc ttt cag atc cgt gct gga aac tcg cag ggg gac ttt tac Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 225 235 240 720 att agg caa atc aac aac gtc agc gcc atg ctg gtc ctc gcc cgg ccg Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 768 gtg acg ggc ccc cgg gag tac gtg ctg gac ctg gag atg gtc acc atg Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 816 265 270 aat tcc ctc atg agc tac cgg gcc agc tct gta ctg agg ctc acc gtc Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 864 915 ttt gta ggg gcc tac acc ttc tgaggagcag gagggagcca ccctccctgc Phe Val Gly Ala Tyr Thr Phe 290 agctacccta gctgaggagc ctgttgtgag gggcagaatg agaaaggcaa taaagggaga 975 1035 aagaaagtcc tggtggctga ggtgggcggg tcacactgca ggaagcctca ggctggggca gggtggcact tgggggggca ggccaagttc acctaaatgg gggtctctat atgttcaggc 1095 ccaggggccc ccattgacag gagctgggag ctctgcacca cgagcttcag tcaccccgag 1155 1215 aggagaggag gtaacgagga gggcggactc caggccccgg cccagagatt tggacttggc 1275 tggcttgcag gggtcctaag aaactccact ctggacagcg ccaggaggcc ctgggttcca ttcctaactc tgcctcaaac tgtacatttg gataagccct agtagttccc tgggcctgtt 1335 1358 tttctataaa acgaggcaac tgg <210> 31 <211> 295 <212> **PRT** <213> Artificial Sequence <220> <223> Human MBP1 C-term fragment <400> 31 Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp

Page 21

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 20 25 30 Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45 Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 55 60 Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 65 70 75 80 His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 85 90 95 Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110 Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125 Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 130 135 140 Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 145 150 155 160 Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 165 170 175 Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 180 Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val 195 200 205 Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 210 215 220 Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 225 230 235 240 Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 245 250 255 Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met Page 22

 \mathcal{C}

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 280 Phe Val Gly Ala Tyr Thr Phe <210> 32 <211> 1663 <212> DNA <213> Artificial Sequence <220> murine fibulin 2 c-term fragment <220> <221> <222> CDS (1)..(999)<400> 32 gag ggc tct gaa tgt gtg gat gtg aat gag tgt gag aca ggt gtg cat Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His 1 10 15 48 cgc tgt ggc gag ggc caa ctg tgc tat aac ctc cct gga tcc tac cgc Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg 20 25 30 96 tgt gac tgc aag ccc ggc ttc cag agg gat gca ttc ggc agg act tgc Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys 35 40 45144 att gat gtg aac gaa tgc tgg gtc tcg ccg ggc cgc ctg tgc cag cac Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His 50 60192 aca tgt gag aac aca ccg ggc tcc tac cgc tgc tcc tgc gct gct ggc Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 75 80 240 ttc ctt ttg gcc gca gat ggc aaa cat tgt gaa gat gtg aac gag tgc Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 90 95 288 gag act cgg cgc tgc agc cag gaa tgt gcc aac atc tat ggc tcc tat Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr 100 105 110336 cag tgc tac tgc cgt cag ggc tac cag ctg gca gag gat ggg cat acc Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 115 120 125 384 tgc aca gac atc gat gag tgt gca cag ggc gcg ggc att ctc tgt acc Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 130 135 140

·	
ttc cgc tgt gtc aac gtg cct ggg agc tac cag tgt gca tgc cca gag Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu 145 150 155 160	480
caa ggg tat aca atg atg gcc aac ggg agg tcc tgc aag gac ctg gat Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp 165 170	528
gag tgt gca ctg ggc acc cac aac tgc tct gag gct gag acc tgc cac Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His 180 185 190	576
aat atc cag ggg agt ttc cgc tgc ctg cgc ttt gat tgt cca ccc aac Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn 195 200 205	624
tat gtc cgt gtc tca caa acg aag tgc gag cgc acc aca tgc cag gat Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp 210 215 220	672
atc acg gaa tgt caa acc tca cca gct cgc atc acg cac tac cag ctc Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu 225 230 240	720
aat ttc cag aca ggc cta ctg gta cct gca cat atc ttc cgc atc ggc Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly 245 250 255	768
cct gct ccc gcc ttt gct ggg gac acc atc tcc ctg acc atc acg aag Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys 260 265 270	816
ggc aat gag gag ggc tac ttc gtc aca cgc aga ctc aat gcc tac act Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr 275 280 285	864
ggt gtg gta tcc ctg cag cgg tct gtt ctg gag ccg cgg gac ttt gcc Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala 290 295 300	912
cta gat gtg gag atg aag ctt tgg cgc cag ggc tct gtc act acc ttc Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe 305 310 315 320	960
ctg gcc aag atg tac atc ttc ttc acc act ttt gcc cca tgaggtgaca Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro 325 330	1009
tgtcaggcaa tccctccagg tgatgcctgg gcggtgggca gctgcgccac tcctaagtgg	1069
ctttttgctg tgactctgta acttaactta atcatgctga gctggttggt cttgagtctc	1129
taccctagag ggagggagat gcaccccagc aggcactgag tacaggccag ggtcacccga	1189
ggctagatgg tgacctgcaa actggaaaca gccatagggg gcttctgaac tccactcctc	1249
aactatggct acagctgaca ttccattcct tcatccactg tgttcctcaa ttaaaaaaaa	1309
aaatcagctg tgcatggtag cacagacctt taatcctagc actggggagg cagaggtagg	1369
tagatctctg agttccaggc cagcctggtc tacactggga gttctaacca gccagagcta	1429
catagagaga ccctatctca acaaggaaaa aacgaaagaa atctctgtga gttccaggcc	1489

Page 24

agcctggtct acgctgggag ttctaaccag ccagagctac atagagagat cctatctcaa 1549
caaggaaaaa tgaaagaaat cattttaaaa ggttttttt tttgctgttg ttgtttaatg 1609
ataagagtag cacatataca ttattaaaaa tgatcaaata gcacagaaag gtta 1663

<210> 33

<211> 333

<212> PRT

<213> Artificial Sequence

<220>

<223> Murine fibulin 2 c-term fragment

<400> 33

Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His
1 10 15

Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg 20 25 30

Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys 35 40 45

Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His 50 60

Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 75 80

Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 90 95

Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr 100 105 110

Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 115 120 125

Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 130 135 140

Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu 145 150 155 160

Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp 165 170 175 Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His 180 185 190

Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn 195 200 205

Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp 210 220

Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu 225 230 235 240

Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly 245 250 255

Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys 260 265 270

Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr 275 280 285

Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala 290 295 300

Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe 305 310 315 320

Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro 325 330