End-to-end optimization of onboard autonomy workloads

Sebastian Jodłowski

Intro: Nuro.ai

01

Autonomy for all. All roads, all rides.

Scalable Level 4 autonomous driving system, vehicle-platform agnostic.

Build on top of NVIDIA Thor automotive SoC and NVIDIA DriveOS 7 software platform.

Content

- 01 Inference: Cloud vs Car
- 02 Determinism
- GPU model scheduler

Inference: Cloud vs Car

Inference in the cloud: strawman service

Let's focus on the online inference - closer to the AV use case.

Inference in the car: Autonomy invocation

Input Data

Non-Learned

Learned

Inference in the car: Autonomy pipeline

Cloud versus Car

Missing the latency gate - for 7x9s, @10Hz:

- 1 in 10m invocations
- once per ~227h
- @15mph: once per ~4155k miles

Category	Cloud	Car
COMPUTE	Flexible	Fixed
WORKLOAD	Flexible	Fixed
INPUT SIZE	Flexible	Fixed
FREQUENCY	Flexible	Fixed
KEY METRIC	Latency: P99, but P50 as well	Latency: P99.99999

Determinism

Determinism

Fighting system contention

CPU mechanisms

Very strong scheduling support:

- SCHED RR
 - Allows for real-time scheduling policy
 - Tasks of the same priority execute in cyclic order
 - 100 levels allow for fine-grained configuration
 - Fixed time-slice per task

Very strong resource isolation support:

- cgroup.cpuset
 - Allows for core isolation between processes
- sched_setaffinity
 - Allows for core isolation between threads within a process

GPU mechanisms: Stream Priority

- Allows to control kernel priority at a stream granularity only within the same context
- Only 8 levels
- Extremely difficult to benefit from due to priority selection being applied at the block scheduler level
 - The block must be ready to fire!

GPU mechanism: TSG (Time-Slice Group)

- Allows to logically group contexts that share a common scheduling policy
- Controls the priority within the group and the time slice length
 - Only 3 priority levels (L/M/H)
 - Fixed time slice per group
- Feels like poor's man SCHED_RR
 - Because tasks cannot share the GPU

GPU mechanisms: MPS (Multi-Process Service)

- Allows for multiple process to share a single GPU context.
- Allows for limiting the number of SMs process can utilize.
 - CUDA MPS ACTIVE THREAD PERCENTAGE
- Introduced only recently for Tegra!

GPU mechanisms: MIG (Multi-Instance GPU)

- Allows for a single physical GPU to be partitioned into multiple, smaller, independent GPU instances
- Complete isolation at the hardware level
 - But only single configuration: 1:2 GPCs

GPU mechanisms: Green Contexts

- Extension to MPS that allows for finer-grain resource allocation
- Carve out a dedicated subset of SMs
 - Not a full static partitioning (yet!)

https://docs.nvidia.com/deploy/mps/_images/image1.png

Faster Than Light

Model Compiler and Interpreter

Machine Learning Compilers

Machine Learning Compilers

OpenXLA

Two challenges:

- No clear winner (especially for non-mainstream models)
 - Inference latency
 - Accuracy
 - Unsupported layers
- Unaware of scheduling, prioritization and isolation requirements

Machine Learning Compilers

OpenXLA

Two challenges:

- No clear winner (especially for non-mainstream models)
 - Inference latency
 - Accuracy
 - Unsupported layers
- Unaware of scheduling, prioritization and isolation requirements

FTL Orchestrator Compiler

FTL Model Interpreter

FTL Orchestrator Compiler

- Leverages different industry leading compilers in tandem
- Produces a highly optimized binary that is faster than any single industry compiler
- Based on MLIR
- Highly configurable: programmatically select subset of the model to compile

FTL Orchestrator Compiler

 Compile islands: greedily collect layers in topological order, stopping if a certain layer fails a certain predefined criteria

Stitch multiple sub-compiler islands

FTL Orchestrator Compiler

 Custom kernel injection for problematic ops

Supporting CUDA, Triton and Pallas

FTL Model Interpreter

- Allows to specify both pipeline and model parallelism
- Allows for scheduler to prioritize critical model outputs (Stream Priority)
- Allows for scheduler to target isolated compute resources (MPS + Green Context)
- Unlocks flexible frequency control, i.e. running one part of the model less frequently

FTL: In action

Wrap up

- Autonomy workloads are a complex mix of many cooperating models deployed on limited compute resources
- The very-long-tail events are all that matter
- Deterministic latency = resource isolation + scheduling
- GPU mechanisms are a bit lagging behind, but getting there
- Resource-aware scheduling on top of classical model compilers is necessary

Thank you.

