

Deriving the Euler and Milstein Schemes for the Heston Model

Kevin Alando 171671

August 29, 2024

Deriving the Euler and Milstein Schemes for the Heston Model

Problem Statement

The Heston model is given by the following system of stochastic differential equations (SDEs) for the stock price S_t and its variance v_t :

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^1$$

$$dv_t = \kappa(\bar{v} - v_t) dt + \sigma \sqrt{v_t} dW_t^2$$

where W_t^1 and W_t^2 are Wiener processes with a correlation $\mathbb{E}[dW_t^1dW_t^2] = \rho dt$.

Step 1: Decouple the System Using Cholesky Decomposition

Since W_t^1 and W_t^2 are correlated, we first decouple them using the Cholesky decomposition. We can express dW_t^2 as:

$$dW_{t}^{2} = \rho dW_{t}^{1} + \sqrt{1 - \rho^{2}} dZ_{t}$$

where dZ_t is a Wiener process independent of dW_t^1 . This transformation simplifies the SDEs to:

$$\begin{split} dS_t &= rS_t dt + \sqrt{v_t} S_t dW_t^1 \\ dv_t &= \kappa (\bar{v} - v_t) dt + \sigma \sqrt{v_t} (\rho dW_t^1 + \sqrt{1 - \rho^2} dZ_t) \end{split}$$

Step 2: Euler Scheme

The Euler scheme is the simplest method for numerically solving SDEs. For the Heston model, the Euler discretization is as follows:

Discretization for S_t :

$$S_{t+\Delta t} = S_t + rS_t \Delta t + \sqrt{v_t} S_t \Delta W_t^1$$

where ΔW_t^1 is a Wiener increment over Δt , typically $\Delta W_t^1 \sim \mathcal{N}(0, \Delta t)$.

Discretization for v_t :

$$v_{t+\Delta t} = v_t + \kappa(\bar{v} - v_t)\Delta t + \sigma\sqrt{v_t}(\rho\Delta W_t^1 + \sqrt{1 - \rho^2}\Delta Z_t)$$

where ΔZ_t is another independent Wiener increment.

Step 3: Milstein Scheme

The Milstein scheme extends the Euler method by including a correction term that accounts for the derivative of the diffusion term.

Milstein Discretization for S_t :

$$S_{t+\Delta t} = S_t + rS_t \Delta t + \sqrt{v_t} S_t \Delta W_t^1 + \frac{1}{2} \cdot v_t S_t ((\Delta W_t^1)^2 - \Delta t)$$

The Milstein correction term $\frac{1}{2} \cdot v_t S_t((\Delta W_t^1)^2 - \Delta t)$ accounts for the curvature of the diffusion term.

Milstein Discretization for v_t :

$$v_{t+\Delta t} = v_t + \kappa(\bar{v} - v_t)\Delta t + \sigma\sqrt{v_t}(\rho\Delta W_t^1 + \sqrt{1 - \rho^2}\Delta Z_t) + \frac{1}{2}\cdot\sigma^2v_t((\Delta W_t^2)^2 - \Delta t)$$

The Milstein correction here uses ΔW_t^2 in the same manner as for S_t , but with the appropriate derivative terms for the variance process.

Summary

- **Euler Scheme:** The simplest numerical method, providing first-order weak convergence by approximating the SDEs using the current value of the process and the Wiener increments.
- **Milstein Scheme:** Extends the Euler method by including a correction term for the diffusion component, leading to first-order strong convergence.