

Sales Clothes Prediction

Market Basket Analysis

Presented by Group D

Course name: Data Mining

Professors: Dr. Nguyen Thi Thanh Sang, MSc. Nguyen Quang Phu

Members:

Dang Quoc Anh Duy - ITDSIU20015 Doan Huu Nguyen - ITITIU20260 Nguyen Hoang Minh Tuan - ITITIU20343

CONTENTS

01

02

03

Prediction

Sequence Mining

Conclusion

INTRODUCTION

- With the exponential growth of online shopping, the vast amounts of data related to products
- Businesses are increasingly reliant on accurate sales predictions to make decisions

The need of robust prediction model

Objective:

- Perform sales prediction on E-Commerce dataset
- Figure out key features affect the prediction model
- Implement using Weka API and Python to find the best classifier

INTRODUCTION

Dataset info:

- Summer Sales Clothes in E-Commerce Kaggle
- Was scrapped from the Wish platform with 1573 observations and 43 variables
- Contain product listings, ratings and sales performance

	title	title_orig	price	retail_price	currency_buyer	units_sold	uses_ad_boosts	rating	rating_count	rating_five_count
0	2020 Summer Vintage Flamingo Print Pajamas Se	2020 Summer Vintage Flamingo Print Pajamas Se	16.00	14	EUR	100	0	3.76	54	26.0
1	SSHOUSE Summer Casual Sleeveless Soirée Party	Women's Casual Summer Sleeveless Sexy Mini Dress	8.00	22	EUR	20000	1	3.45	6135	2269.0
2	2020 Nouvelle Arrivée Femmes Printemps et Été	2020 New Arrival Women Spring and Summer Beach	8.00	43	EUR	100	0	3.57	14	5.0

METHODOLOGY

DATA PREPROCESSING

2. Data Preprocessing + EDA

Handle missing values

Standardize data

Drop unnecessary attributes

Save cleaned ARFF dataset

Detect anomalies

Convert categorical data to nominal

```
[ ] # Fill number of ratings by 0 if the value is None
    data['rating_five_count'] = data['rating_five_count'].replace(np.nan, 0)
    data['rating_four_count'] = data['rating_four_count'].replace(np.nan, 0)
    data['rating_three_count'] = data['rating_three_count'].replace(np.nan, 0)
    data['rating_two_count'] = data['rating_two_count'].replace(np.nan, 0)
    data['rating_one_count'] = data['rating_one_count'].replace(np.nan, 0)
```

```
def standardize_product_size(name):
    valid_sizes = ['S', 'XS', 'XXS', 'M', 'L', 'XL', 'XXL', 'XXXL', 'XXXXL']
    return name if name in valid_sizes else 'OTHER'

data['product_variation_size_id'] = data['product_variation_size_id'].replace(np.nan,'OTHER')
    data['product_variation_size_id'] = data['product_variation_size_id'].apply(standardize_product_size)
```

```
# Encode the categorical attributes

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
data['product_color'] = le.fit_transform(data['product_color'])
data['product_variation_size_id'] = le.fit_transform(data['product_variation_size_id'])
data['origin_country'] = le.fit_transform(data['origin_country'])
data['units_sold'] = le.fit_transform(data['units_sold'])
```

EXPLORATORY DATA ANALYSIS


```
public class AttrSelection{
   public static void main(String args[]) throws Exception{
       //load data
       DataSource source = new DataSource("D:\\Year 4\\Data Mining\\Project\\data\\filtered_sales_clothes.arff");
       Instances filteredData = source.getDataSet();
       // Set the index of the target attribute
       int targetAttributeIndex = 2;
       filteredData.setClassIndex(targetAttributeIndex);
       AttributeSelection filter = new AttributeSelection();
       //create evaluator and search algorithm objects
        CfsSubsetEval eval = new CfsSubsetEval();
       GreedyStepwise search = new GreedyStepwise();
        search.setSearchBackwards(true);
       filter.setEvaluator(eval);
        filter.setSearch(search);
       filter.setInputFormat(filteredData);
       Instances newData = Filter.useFilter(filteredData, filter);
       ArffSaver saver = new ArffSaver();
       saver.setInstances(newData);
       saver.setFile(new File("D:\\Year 4\\Data Mining\\Project\\data\\dimension_reduction_sales_clothes.arff"));
        saver.writeBatch();
```

```
public class Classification{
   public static void main(String args[]) throws Exception{
       DataSource source = new DataSource("D:\\Year 4\\Data Mining\\Project\\data\\sales_train.arff");
       Instances dataset = source.getDataSet();
       // set class index to the last attribute
       dataset.setClassIndex(dataset.numAttributes()-1);
       // 1. Apply OneR classifier
       OneR oneR = new OneR();
       oneR.buildClassifier(dataset);
       Evaluation evalOneR = new Evaluation(dataset);
       evalOneR.crossValidateModel(oneR, dataset, 10, new java.util.Random(1)); // 10-fold cross-validation
       // Print out evaluation results for OneR
       System.out.println("=== OneR Evaluation ===");
       System.out.println(evalOneR.toSummaryString());
       System.out.println(evalOneR.toMatrixString());
       System.out.println(evalOneR.toClassDetailsString());
       // Save OneR model
       SerializationHelper.write("D:\\Year 4\\Data Mining\\Project\\models\\prediction\\OneR.model", oneR);
```

```
public class ClassifyInstance{
    public static void main(String args[]) throws Exception{
       // Load test data
       DataSource testSource = new DataSource("D:\\Year 4\\Data Mining\\Project\\data\\sales_test.arff");
       Instances testDataset = testSource.getDataSet();
        testDataset.setClassIndex(testDataset.numAttributes() - 1);
        // Load the saved model: OneR
        Classifier oneR = (Classifier) SerializationHelper.read("OneR.model");
        // Perform predictions and print actual class and OneR predicted class
        System.out.println("=======");
        System.out.println("Actual Class, OneR Predicted");
        for (int i = 0; i < testDataset.numInstances(); i++) {</pre>
            // Get class double value for current instance
            double actualValue = testDataset.instance(i).classValue();
           // Get Instance object of current instance
            Instance newInst = testDataset.instance(i);
           // Call classifyInstance, which returns a double value for the class
            double predOneR = oneR.classifyInstance(newInst);
            System.out.println(actualValue + ", " + predOneR);
        // Evaluate the model on the test data
        Evaluation eval oneR = new Evaluation(testDataset);
        eval_oneR.evaluateModel(oneR, testDataset);
        System.out.println("=======");
        System.out.println("Evaluation Results:");
        System.out.println(eval oneR.toSummaryString());
        System.out.println(eval oneR.toMatrixString());
        System.out.println(eval oneR.toClassDetailsString());
```

■ Console ×							
<terminated> Classification [Java Application</terminated>	n] C:\Program Fil	es\Java\jdk-	1.8\bin\javaw.e	xe (May 22,	2024, 10:04:4	9 AM - 10:04:0)2 AM) [pid: 5112]
=== NaiveBayes Evaluation ===							
Correctly Classified Instances	875			%			
Incorrectly Classified Instances	241		21.595	%			
Kappa statistic	0.70						
Mean absolute error	0.08						
Root mean squared error	0.28						
Relative absolute error	28.99 72.80						
Root relative squared error Total Number of Instances	1116	00 /0					
Total Number of Instances	1110						
=== Confusion Matrix ===							
a b c d e < classi	fied as						
380 17 0 0 0 a = 100							
53 235 34 0 0 b = 1000							
1 42 108 21 0 c = 5000							
0 4 35 98 4 d = 1000							
0 0 3 27 54 e = 2000	0						
=== Detailed Accuracy By Class ==	_						
becaried Accuracy by class	_						
TP Rate FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.957 0.075	0.876	0.957	0.915	0.866	0.981	0.958	100
0.730 0.079	0.789	0.730	0.758	0.666	0.932	0.848	1000
0.628 0.076	0.600	0.628	0.614	0.542	0.917	0.617	5000
0.695 0.049	0.671	0.695	0.683	0.636	0.951	0.664	10000
0.643 0.004	0.931	0.643	0.761	0.759	0.982	0.867	20000
Weighted Avg. 0.784 0.068	0.786	0.784	0.782	0.721	0.953	0.830	
Ti-i +i 407 -illi							
Training time: 107 milliseconds							

ANOTHER APPROACH

SVM - Support Vector Machine

Apply for both PCA and entire set to compare performance

```
# Split the dataset into training and test sets
X train, X test, y train, y test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train the SVM model
svm model = SVC(kernel='linear', random state=42)
param grid = {'C': [0.1, 1, 10, 100, 1000]}
# Apply Grid Search with Cross-Validation
grid search = GridSearchCV(estimator=svm model, param grid=param grid, cv=10, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train_scaled, y_train)
# Get the best parameters and best score
best_C = grid_search.best_params_['C']
best_score = grid_search.best_score_
print(f"Best C: {best_C}")
print(f"Best cross-validation score: {best_score}")
Best C: 1
Best cross-validation score: 0.8010939510939512
```

```
start_time = time.time() # Start timing

# Apply SVM model
svm_model = SVC(kernel='linear', C=1.0, random_state=42)
kf = KFold(n_splits=10, shuffle=True, random_state=42)
cv_scores = cross_val_score(svm_model, X_scaled, y, cv=kf, scoring='accuracy')

# Train the svm model
svm_model.fit(X_train_scaled, y_train)

# Make predictions on the testing set
y_pred = svm_model.predict(X_test_scaled)

# Calculate runtime
runtime = time.time() - start_time
print("Runtime:", runtime, "seconds")

# Evaluate the model
print("Accuracy on the testing set:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Parameter Selection

ANOTHER APPROACH

SVM with PCA

Classification	Report: precision	recall	f1-score	support
0	0.84	0.95	0.89	500
1	0.77	0.69	0.73	402
2	0.63	0.61	0.62	216
3	0.66	0.69	0.68	176
4	0.90	0.62	0.74	101
accuracy			0.77	1395
macro avg	0.76	0.71	0.73	1395
weighted avg	0.77	0.77	0.76	1395

SVM without PCA

Classification	Report:			
	precision	recall	f1-score	support
0	0.88	0.97	0.92	500
1	0.82	0.77	0.79	402
2	0.68	0.66	0.67	216
3	0.74	0.74	0.74	176
4	0.94	0.75	0.84	101
accuracy			0.82	1395
macro avg	0.81	0.78	0.79	1395
weighted avg	0.82	0.82	0.82	1395

MODEL EVALUATION

Models	Accuracy	MAE	RMSE	Run-time
OneR	76.13%	0.0955	0.309	388 ms
NaiveBayes	77.92%	0.0888	0.2843	103 ms
RandomForest	80.07%	0.108	0.2385	2875 ms
SVM	81.94%	0.185	0.442	1346 ms
SVM (PCA)	76.71%	0.2394	0.5023	610 ms

Remarks:

Accuracy: SVM

Run-time: NaiveBayes

Best Model: SVM

- 1. Performance of Weka prediction model is quite good for the small dataset
- 2. Not much improvement in Python compared to the Weka models

INTRODUCTION

- Sequence mining for recommendation systems addresses the demands of businesses to provide personalized experiences and marketing
- Help to optimize revenue generation by driving sales through targeted suggestions

Objective:

- Analyze the sequential data
- Implement on various sequence mining models to find the best one
- Evaluate on the generated rules

INTRODUCTION

Dataset info:

- The Bread Basket Kaggle
- Belong to a bakery located in Edinburgh
- Has 20507 entries, over 9000 transactions, and 4 columns

	Transaction	Item	date_time	period_day	weekday_weekend
0	1	Bread	30-10-2016 09:58	morning	weekend
1	2	Scandinavian	30-10-2016 10:05	morning	weekend
2	2	Scandinavian	30-10-2016 10:05	morning	weekend
3	3	Hot chocolate	30-10-2016 10:07	morning	weekend
4	3	Jam	30-10-2016 10:07	morning	weekend

METHODOLOGY

DATA PREPROCESSING

	Transaction	Item
0	1	Bread
1	2	Scandinavian
2	2	Scandinavian
3	3	Hot chocolate
4	3	Jam

	m Adjustment	Afternoon with the baker	Alfajores	Argentina Night	Art Tray	Bacon	Baguette	Bakewell	
Transactio	n								
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

EXPLORATORY DATA ANALYSIS


```
import weka.core.Instances;
public class AttributeFilter {
   public static void main(String args[]) throws Exception {
       // Load data
       DataSource source = new DataSource("D:\\Year 4\\Data Mining\\Project\\data\\basket_sets.arff");
       Instances dataset = source.getDataSet();
       // Apply the NumericToNominal filter only to specified attributes
       NumericToNominal numericToNominalFilter = new NumericToNominal();
       numericToNominalFilter.setAttributeIndices("first-last");
       numericToNominalFilter.setInputFormat(dataset);
       Instances convertedData = Filter.useFilter(dataset, numericToNominalFilter);
       // Remove unnecessary attributes
       String[] opts = new String[]{"-R", "1"};
       // Create a Remove object (this is the filter class)
       Remove remove = new Remove();
       // Set filter options
       remove.setOptions(opts);
       // Pass the data to apply filter
       remove.setInputFormat(convertedData);
       Instances filteredData = Filter.useFilter(convertedData, remove);
       // Now save the data to a new file
       ArffSaver saver = new ArffSaver();
       saver.setInstances(filteredData);
       saver.setFile(new File("D:\\Year 4\\Data Mining\\Project\\data\\filtered_basket_sets.arff"));
       saver.writeBatch();
```



```
import weka.associations.Apriori;
public class AprioriModel {
    public static void main(String args[]) throws Exception{
        //load data
        String dataset = "D:\\Year 4\\Data Mining\\Project\\data\\filtered_basket_sets.arff";
        DataSource source = new DataSource(dataset);
        Instances data = source.getDataSet();
        //the Apriori algorithm
        Apriori model = new Apriori();
        String[] options = {"-N", "10", "-T", "1", "-C", "0.9", "-D", "0.05", "-M", "0.1", "-V",};
        model.setOptions(options);
        //build model
        model.buildAssociations(data);
        System.out.println(model);
//
           Save Apriori model
        SerializationHelper.write("D:\\Year 4\\Data Mining\\Project\\models\\sequence mining\\Apriori.model", model);
```



```
public class FPGrowthModel {
    public static void main(String args[]) throws Exception{
        //load data
       String dataset = "D:\\Year 4\\Data Mining\\Project\\data\\filtered_basket_sets.arff";
       DataSource source = new DataSource(dataset);
       Instances data = source.getDataSet();
       //the FPGrowth algorithm
       FPGrowth model = new FPGrowth();
       String[] options = {"-P", "2", "-I", "-1", "-N", "10", "-T", "0", "-C", "0.2", "-M", "0.01"};
       model.setOptions(options);
       // Build associations
       model.buildAssociations(data);
       System.out.println(model);
        // Get association rules
       List<AssociationRule> rules = model.getAssociationRules().getRules();
        // Print performance metrics for each association rule
       System.out.println("Association Rules:");
        for (AssociationRule rule : rules) {
            System.out.println("Rule: " + rule.getPremise() + " => " + rule.getConsequence());
           System.out.println("Support: " + rule.getTotalSupport());
            System.out.println();
       // Save FPGrowth model
     SerializationHelper.write("D:\\Year 4\\Data Mining\\Project\\models\\sequence mining\\FPGrowth.model", model);
```



```
Console X
<terminated > FPGrowthModel [Java Application] C:\Program Files\Java\jdk-1.8\bin\javaw.exe (May 21, 2024, 11:38:47 PM - 11:38:48 PM) [pid: 14632]
FPGrowth found 78 rules (displaying top 10)
1. [toast=1]: 931 ==> [coffee=1]: 679 <conf:(0.73)> lift:(1.3) lev:(0.01) conv:(1.61)
2. [cake=1, sandwich=1]: 284 ==> [coffee=1]: 205 <conf:(0.72)> lift:(1.28) lev:(0) conv:(1.55)
 3. [salad=1]: 351 ==> [coffee=1]: 242 <conf:(0.69)> lift:(1.23) lev:(0) conv:(1.4)
 4. [cake=1, hot chocolate=1]: 402 ==> [coffee=1]: 265 <conf:(0.66)> lift:(1.17) lev:(0) conv:(1.28)
 5. [medialuna=1]: 1635 ==> [coffee=1]: 1044 <conf:(0.64)> lift:(1.14) lev:(0.01) conv:(1.21)
 6. [spanish_brunch=1]: 610 ==> [coffee=1]: 389 <conf:(0.64)> lift:(1.13) lev:(0) conv:(1.2)
8. [hearty & seasonal=1]: 307 ==> [coffee=1]: 192 <conf:(0.63)> lift:(1.11) lev:(0) conv:(1.16)
9. [pastry=1]: 2174 ==> [coffee=1]: 1348 <conf:(0.62)> lift:(1.1) lev:(0.01) conv:(1.15)
10. [sandwich=1]: 2017 ==> [coffee=1]: 1241 (conf:(0.62)> lift:(1.09) lev:(0.01) conv:(1.14)
Association Rules:
Rule: [toast=1] => [coffee=1]
Support: 679
Rule: [cake=1, sandwich=1] => [coffee=1]
Support: 205
Rule: [salad=1] => [coffee=1]
Support: 242
Rule: [cake=1, hot chocolate=1] => [coffee=1]
Support: 265
```


ANOTHER APPROACH

ECLAT model:

- Stand for Equivalence Class Clustering and bottom-up Lattice Traversal
- A more efficient and scalable version of the Apriori algorithm
- Work in a vertical manner just like the Depth-First Search of a graph

ANOTHER APPROACH

Procedure:

- Step 1: Scan the database to create a vertical representation
- Step 2: Generate initial candidate frequent itemsets = 1 by calculating the support
- Step 3: Filter out the items that do not meet the minimum support threshold.
- Step 4: Generate Recursive Frequent Itemset
- **Step 5:** Repeat process from step 1 to 4 and output a list of all frequent itemsets that meet the minimum support threshold.

ANOTHER APPROACH

```
# Convert data to transactions
transactions = data.groupby('Transaction')['Item'].apply(set).tolist()
def eclat(transactions, min support):
    def get_frequent_itemsets(itemsets, support):
        result = {}
        for itemset in itemsets:
            support count = sum(1 for transaction in transactions if itemset.issubset(transaction))
            if support count >= min support:
                result[itemset] = support count
        return result
    # Initial single items
    single items = {frozenset([item]) for transaction in transactions for item in transaction}
    frequent_itemsets = get_frequent_itemsets(single_items, min_support)
    all_frequent_itemsets = frequent_itemsets.copy()
    k = 2
    while frequent itemsets:
        # Generate new itemsets by merging previous ones
        new itemsets = \{frozenset(x) \mid frozenset(y) \text{ for } x \text{ in frequent itemsets } for y \text{ in frequent itemsets } if len(frozenset(x) \mid frozenset(y)) == k\}
        frequent itemsets = get frequent itemsets(new itemsets, min support)
        all_frequent_itemsets.update(frequent_itemsets)
        k += 1
    return all frequent itemsets
```


MODEL EVALUATION

Models	Top 5 rules generated by model	Run-time(ms)
Apriori	1. tea=1 3719 ==> class=low 3708 conf:(1) < lift:(1)> lev:(0) [8] conv:(1.59) 2. class=low 18790 ==> tea=1 3708 conf:(0.2) < lift:(1)> lev:(0) [8] conv:(1) 3. bread=1 6627 ==> class=low 6599 conf:(1) < lift:(1)> lev:(0) [6] conv:(1.17) 4. class=low 18790 ==> bread=1 6599 conf:(0.35) < lift:(1)> lev:(0) [6] conv:(1) 5. pastry=1 2174 ==> class=low 2164 conf:(1) < lift:(1)> lev:(0) [1] conv:(1.02)	1095 ms
FPGrowth	1. [toast=1]: 931 ==> [coffee=1]: 679 <conf:(0.73)> lift:(1.3) lev:(0.01) conv:(1.61) 2. [cake=1, sandwich=1]: 284 ==> [coffee=1]: 205 <conf:(0.72)> lift:(1.28) lev:(0) conv:(1.55) 3. [salad=1]: 351 ==> [coffee=1]: 242 <conf:(0.69)> lift:(1.23) lev:(0) conv:(1.4) 4. [cake=1, hot_chocolate=1]: 402 ==> [coffee=1]: 265 <conf:(0.66)> lift:(1.17) lev:(0) conv:(1.28) 5. [medialuna=1]: 1635 ==> [coffee=1]: 1044 <conf:(0.64)> lift:(1.14) lev:(0.01) conv:(1.21)</conf:(0.64)></conf:(0.66)></conf:(0.69)></conf:(0.72)></conf:(0.73)>	740 ms
ECLAT	1. Rule: {'Toast'} -> {'Coffee'}, Support: 224, Confidence: 0.70, Lift: 1.47 2. Rule: {'Spanish Brunch'} -> {'Coffee'}, Support: 103, Confidence: 0.60, Lift: 1.25 3. Rule: {'Medialuna'} -> {'Coffee'}, Support: 333, Confidence: 0.57, Lift: 1.19 4. Rule: {'Pastry'} -> {'Coffee'}, Support: 450, Confidence: 0.55, Lift: 1.15 5. Rule: {'Alfajores'} -> {'Coffee'}, Support: 186, Confidence: 0.54, Lift: 1.13	411 ms

CONCLUSION

01

Features

02

Limitation

03

Future Plans

- Comprehensive Data Processing: Successfully handled data collection, preprocessing, and feature engineering to prepare data for analysis
- Model Implementation: Implemented and compared prediction algorithms using Java WEKA and Python libraries.
- Performance Evaluation: Conducted rigorous model evaluation using metrics like MAE, MSE, and RMSE to ensure accuracy.
- Scalability and Complexity: Faced challenges in handling large datasets and computational complexity.
- Dependency on Data Quality: Model performance was heavily dependent on the quality and completeness of the data.
- Tool Limitations (Java WEKA): Experienced limitations in flexibility and community support with Java WEKA compared to Python.
- Adopt Advanced Algorithms: Plan to explore more advanced algorithms like GBM and neural networks for better accuracy.
- Shift to Python Ecosystem: Intend to transition to Python libraries for greater flexibility and ease of use in model implementation.

REFERENCES

- https://www.kaggle.com/datasets/mittalvasu95/the-bread-basket
- https://www.kaggle.com/datasets/jmmvutu/summer-products-and-sales-in-ecommerce-wish
- https://waikato.github.io/weka-wiki/use_weka_in_your_java_code/
- https://www.youtube.com/playlist?list=PLeaOWJq13cnBVfsPVNyRAus2NK-KhCuzJ
- Jiawei Han, Jian Pei, Hanghang Tong, Data Mining: Concepts and Techniques, 4th Edition, Morgan
- Kaufmann, 2022. Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd Edition, 2020.

Thank you!

FOR YOUR ATTENTION

