Propagation d'un signal

- différents phénomènes physiques peuvent servir de support à un signal
- ils diffèrent par :
 - le *milieu* de propagation
 - la gamme de fréquences pertinentes

Définition: Signal

Un *signal* est la variation temporelle et/ou spatiale d'une ou de plusieurs grandeurs physiques.

Signaux acoustiques

Définition : Signal acoustique

Un signal acoustique correspond à la variation conjointe de la pression et de la vitesse des constituants du milieu

Signaux électriques

Qu'est-ce qu'un signal ADSL, téléphone filaire?

Définition : Signal électrique

Un signal électrique correspond à la variation conjointe de la tension et de l'intensité du courant dans un circuit

Ordres de grandeur

mécanique	sismique gravitationnelle acoustique (audible)	1 Hz→100 Hz 10 Hz → 400 Hz 20 Hz→20 kHz	LIGO2015
électromagnétique	hertzien	$1 \cdot 10^4 \text{Hz} \rightarrow 1 \cdot 10^{11} \text{Hz}$	antennes télécom, µ-ondes
	infrarouge	$1 \cdot 10^{12} \text{Hz} \rightarrow 1 \cdot 10^{13} \text{Hz}$	chauffage, laser, observation nocture
	visible	1 · 10 ¹⁴ Hz	
	ultraviolet	$1 \cdot 10^{15} \text{Hz} \rightarrow 1 \cdot 10^{17} \text{Hz}$	analyse chimique
	X	$1 \cdot 10^{17} \text{Hz} \rightarrow 1 \cdot 10^{21} \text{Hz}$	radiothérapie, imagerie médicale et industrielle
	γ	$1 \cdot 10^{21} \text{ Hz} \rightarrow \dots$	physique nucléaire, radioactivité, gammascopie, radiothérapie
électrique	basse fréquence	$\rightarrow 1 \cdot 10^6 \text{Hz}$	en TP
	haute fréquence :	$\rightarrow 1 \cdot 10^{11} \text{ Hz}$	pour l'émission/réception des ondes hertziennes

Onde mécanique progressive

Définition : Onde mécanique progressive

Une onde mécanique progressive est une perturbation d'un milieu *matériel* s'y propageant *sans déplacement global de matière*

Variations spatiale et temporelle

Définition : Célérité d'une onde et sens de propagation

Une onde se propage à la *célérité* c si les évolutions temporelles des perturbations notées y_A et y_B en deux points A et B points vérifient :

$$y_B(t) = y_A(t - \frac{AB}{c})$$
 ou : $y_A(t) = y_B(t - \frac{AB}{c})$.

Le premier (resp. deuxième) cas correspond à une propagation de A vers B (resp. de B vers A).

Profils

même fonction mathématique d'I variable permet de représenter les variations **spatiale** et **temporelle** de l'excitation en tout point

Ondes régressives et généralisation

Champ de perturbation d'une onde de célérité c

Le signal associé à une onde se propageant unidimensionnellement dans un milieu linéaire et non dispersif à la célérité c est de la forme

$$f(x-ct)$$
 ou $g\left(t-\frac{x}{c}\right)$

dans le cas d'une onde progressive se propageant vers les x croissants ou de la forme

$$f(x+ct)$$
 ou $g\left(t+\frac{x}{c}\right)$

dans le cas d'une onde *régressive* se propageant vers les x décroissants.

- 1. Tracer le profil d'une perturbation y décrite par une fonction f(u)
 - (a) croissante de f = 0 à $f = y_0$ de u = 0 à $u = \tau > 0$
 - (b) nulle partout ailleurs
- 2. Déterminer l'expression de $y = \xi(x, t)$ décrivant une onde de célérité c en propagation unidimensionnelle progressive de direction x telle que la perturbation en x = 0 croît de y = 0 à $y = y_0$ quand t croît de 0 à τ .
- 3. En déduire les allures de :
 - (a) $\xi(x = 0, t)$ et $\xi(x_1, t)$ pour $x_1 > 0$;
 - (b) $\xi(x, t = 0)$ et $(\xi(x, t = t_1) \text{ pour } t_1 > \tau$
- 4. Même question pour une propagation régressive (et $x_1 < 0$).

Source ponctuelle dans les cas 2D et 3D

Source ponctuelle

La perturbation créée au point M et à l'instant t par une source ponctuelle située au point M se met sous la forme :

$$\xi = a(OM)f(t - \frac{OM}{c}),$$

dans laquelle, même en l'absence de phénomènes dissipatifs, l'amplitude a(OM) décroît avec la distance OM pour les cas 2D et 3D

Double périodicité : périodicité temporelle

Définition: Période

La *période* d'un signal périodique est le plus petit intervalle de temps T tel que pour tous x, t:

$$\xi(x, t + T) = \xi(x, t)$$

Double périodicité : périodicité spatiale

Définition : Longueur d'onde

La *longueur d'onde* d'un signal périodique est la plus petite distance λ telle que pour tous x, t:

$$\xi(x + \lambda, t) = \xi(x, t).$$

On a $\lambda = cT = c/v = 2\pi c/\omega = 2\pi/k$.

Déphasage

Définition : Phase d'une onde sinusoïdale

La phase d'une onde sinusoïdale *en un point* M *et à un instant* t, notée $\Phi(M, t)$ caractérise complètement son évolution.

Le déphasage entre deux points M_1 et M_2 est indépendant du temps, il ne dépend que de la distance les séparant. On a, à 1D, pour une onde progressive selon x:

$$\Phi(M_2) - \Phi(M_1) = \frac{2\pi(x_1 - x_2)}{\lambda}.$$

Déphasages remarquables

• M_2 et M_1 en phase

$$\Phi(M_2) = \Phi(M_1) \pmod{2\pi} \Leftrightarrow x_1 - x_2 = p\lambda \Leftrightarrow \xi(M_2, t) = \xi(M_1, t) \forall t$$

• M_2 en quadrature **avance** par rapport à M_1 :

$$\Phi(M_2) = \Phi(M_1) + \frac{\pi}{2} \pmod{2\pi} \to x_1 - x_2 = \frac{\lambda}{4} + p\lambda.$$

 ξ maximal en M_2 quand il est nul et croissant en M_1

• M_2 en quadrature **retard** par rapport à M_1 :

$$\Phi(M_2) = \Phi(M_1) - \frac{\pi}{2} \pmod{2\pi} \Rightarrow x_1 - x_2 = -\frac{\lambda}{4} + p\lambda.$$

 ξ maximal en M_2 quand il est nul et décroissant en M_1

• M_2 en *opposition de phase* par rapport à M_1 :

$$\Phi(M_2) = \Phi(M_1) + \pi \pmod{2\pi} \Leftrightarrow \xi(M_2, t) = -\xi(M_1, t) \Leftrightarrow x_1 - x_2 = \frac{\lambda}{2} + p\lambda$$

Signaux non monochromatiques

Définition: Dispersion

La propagation d'une onde dans un milieu est dite *dispersive* si la *vitesse de phase* $c = \omega/k$ dépend de la pulsation ω . Elle est dite *non-dispersive* dans le cas contraire.

Onde plane

Définition : Front d'onde et onde plane

Un *front d'onde* est une surface formée des points où le *phase* est la même. Une onde *plane* est une onde dont les fronts d'ondes sont contenus dans des plans tous *perpendiculaires* à une même droite qui constitue la *direction de propagation* de l'onde : ξ = f (t-x/c) (progressive) ξ = f (t+x/c) (régressive)

Extension finie

- modèle de propagation des ondes : chaque point atteint devient une source ponctuelle
- les interférences entre leurs ondes donnent l'onde globale

simulation de l'onde produite par 3 sources sur la fente

simulation de l'onde produite par 200 sources sur la fente

Définition : Cône de diffraction

Une onde de *longueur d'onde* λ tombant sur une ouverture de *taille caractéristique d* dans la direction perpendiculaire à sa propagation est *diffractée*. Loin en aval de l'ouverture, la perturbation est essentiellement *concentrée dans un cône de demi angle au sommet* θ tel que :

$$\sin(\theta) \simeq \frac{\lambda}{d}.$$

Ubiquité

Diffraction de la lumière par une fente

Diffraction d'un faisceau d'atomes par une fente (cf. Mécanique Quantique)

Milieu linéaire

Définition : Milieu linéaire et principe de superposition

Un milieu est dit *linéaire* si la réponse à une combinaison linéaire de signaux est la même combinaison linéaires des réponses à chaque signal pris séparément. Il obéit au *principe de superposition*.

Représentation de Fresnel: Utilisation

Détermination graphique

Conditions d'interférences

Conditions d'interférences

Les ondes *synchrones* de longueur d'onde λ émises par deux sources S_1 et S_2 *en phase* interfèrent :

- constructivement aux points M tels que $S_2M S_1M = p\lambda$ $p \in \mathbb{Z}$
- destructivement aux points M tels que $S_2M S_1M = \frac{\lambda}{2} + p\lambda$ $p \in \mathbb{Z}$

L'amplitude en interférences constructives (resp. destructives) est maximale (resp. minimale) si elles ont même amplitude X, elle vaut alors 2X (resp. 0).

Détermination graphique des interférences constructives

Fréquence de battement

Fréquence de battement

La somme de deux fonctions sinusoïdales $g_1(u)$ et $g_2(u)$ de fréquences v_1 et v_2 *proches* est une fonction *quasipériodique* dont l'amplitude varie lentement. Dans le cas où g_1 et g_2 ont même amplitude g_0 , la somme $g_1 + g_2$ peut être décrite comme :

- une sinusoïde à la *fréquence* moyenne $v_0 = (v_1 + v_2)/2$,
- dont l'amplitude oscille sinusoïdalement à la *fréquence différence* Δv = |v₂ - v₁|, d'autant plus faible que v₂ et v₁ sont proches.

Chemin optique

Définition: Chemin optique

Pour étudier la propagation, dans un milieu homogène d'indice n, d'une onde lumineuse on définit le *chemin optique* $\mathcal{L}_{M_1M_2}$ entre deux points M_1 et M_2 comme le produit :

$$\mathcal{L}_{M_1M_2} = nM_1M_2$$

Interférences et chemin optique

Déphasage et chemin optique

Pour une onde lumineuse monochromatique de longueur d'onde dans le vide λ se propageant dans un milieu homogène d'indice n:

- on considère deux points M_1 et M_2 pouvant être atteints par un rayon lumineux se propageant selon la même direction et le même sens que l'onde;
- la phase acquise par une onde lumineuse lors de sa propagation dans un milieu homogène d'indice n d'un point M_1 à un point M_2 est égale au quotient :

$$\Delta \varphi_{M_1 M_2} = \frac{2\pi \mathscr{L}_{M_1 M_2}}{\lambda}$$

Condition d'interférences

- les interférences entre les ondes empruntant différents chemins seront *constructives* (resp. *destructives*) quand leurs *différences de chemins optiques* δ seront congrues à $0 \mod \lambda$ (resp. congrues à $\lambda/2 \mod \lambda$).
- dans le cas de l'expérience des trous d'Young, on aura donc des interférences :
 constructives pour δ = n(SA₂ + A₂M) (SA₁ + A₁M) = 0 mod λ
 destructives pour δ = n(SA₂ + A₂M) (SA₁ + A₁M) = λ/2 mod λ
- sur l'écran, le lieu des points contigus de même phase est nommé *frange d'interfé*rences

Définition: Interfrange

On nomme interfrange, noté δ , la distance séparant deux zones d'interférences constructives.

Dans l'expérience des trous d'Young, dans le plan S; A_1 ; A_2 , elle vaut, pour $x \ll :$

$$i = \frac{\lambda D}{2na},$$

avec 2a la distance entre les trous.

Intensité lumineuse

Formule de Fresnel

On considère deux ondes lumineuses monochromatiques de même fréquence, d'intensité lumineuses respectives I_1 et I_2 . En un point où leur déphasage est $\Delta \varphi$, l'intensité de l'onde totale est :

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \varphi).$$

On nomme *contraste* de la figure d'interférences le quotient :

$$C = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

Exercice: Expérience des trous d'Young

On réalise une expérience de trous d'Young avec une source lumineuse de longueur d'onde dans le vide égale à $\lambda = 633 \,\mathrm{nm}$. L'écran est placé à une distance $D = 2.0 \,\mathrm{m}$ du plan des deux trous qui sont identiques. On note x l'abscisse d'un point par rapport au centre de l'écran, dans la direction de l'axe des trous.

- 1. On mesure une interfrange de 0,5 mm. En déduire la distance 2a entre les trous.
- 2. En déduire l'allure de la courbe de l'intensité I(x) sur l'écran.
- 3. Dans cette question, un des trous a un rayon deux fois plus faible que l'autre :
 - (a) L'interfrange est-elle modifiée?
 - (b) Calculer le contraste et tracer la nouvelle allure de I(x).

Interférences à l'infini

Interférences à l'infini

Dans une expérience de trous d'Young distants de 2a observée à l'infini, la *différence de chemin optique* dans la direction θ entre les deux sources vaut :

$$\delta = 2an\sin(\theta)$$

Indispensable

- expressions de la phase d'une onde progressive régressive en fonction de x, t
- relations entre fréquence, période, pulsation, longueur d'onde et vitesse de phase pour une onde sinusoïdale
- déphasages remarquables
- principe de la décomposition en série de Fourier
- conditions sur les phases de deux ondes pour avoir des interférences constructives/destructives
- cône de diffraction
- chemin optique et déphasage
- dispositif des trous d'Young : calcul de l'interfrange
- formule de Fresnel de l'intensité

Indispensable