ESERCIZI TUTORATO ALGEBRA 2 25 OTTOBRE 2019 - LEZIONE 3

MARCO ABBADINI

Esercizio 1. Stabilire se i gruppi \mathbb{Z} e $2\mathbb{Z}$ (l'operazione da considerare è la classica somma) sono isomorfi.

Esercizio 2. (a) Si mostri che due qualsiasi gruppi di ordine 3 sono isomorfi.

(b) É vero che, dati G ed H due gruppi aventi la stessa cardinalità, G ed H sono isomorfi?

Esercizio 3. Sia $V := \{ \text{Id}, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}$ il sottoinsieme di S_4 costituito dall'identità Id (=l'elemento neutro di S_4) e dai doppi scambi.

- (a) Si provi che V è un sottogruppo normale sia di S_4 che di A_4 , si determinino gli indici $|S_4:V|$ e $|A_4:V|$, e si trovino i laterali di V in A_4 .
- (b) Si scriva la tavola di moltiplicazione del gruppo quoziente A_4/V , e si stabilisca se A_4/V è abeliano.
- (c) Si stabilisca se S_4/V è ciclico.

Esercizio 4. (a) Elencare i sottogruppi di S_3 e stabilire quali di essi sono normali.

- (b) Sia C_2 un gruppo di ordine 2 e sia C_3 un gruppo di ordine 3. Si determinino tutti i possibili omomorfismi iniettivi da C_2 a C_3 .
- (c) Si determinino tutti i possibili omomorfismi da S_3 a $\mathbb{Z}_3.$
- (d) Siano C_2 e \widetilde{C}_2 due gruppi di ordine 2. Si determinino tutti i possibili omomorfismi iniettivi da C_2 a \widetilde{C}_2 .
- (e) Determinare tutti i possibili omomorfismi da S_3 a \mathbb{Z}_2 .

Esercizio 5. Per $a \in b$ numeri reali, con $a \neq 0$, si definisca la mappa $f_{a,b} : \mathbb{R} \to \mathbb{R}$ tale che $f_{a,b}(x) = ax + b$ per ogni $x \in \mathbb{R}$. (Nota che $f_{a,b} = f_{c,d}$ se e solo se a = c e b = d).

- (a) Provare che $G = \{f_{a,b} : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}$ è un gruppo rispetto alla composizione di mappe da sinistra a destra $(f_{a,b}f_{c,d})$ è la funzione ottenuta applicando prima $f_{a,b}$ poi $f_{c,d}$).
- (b) Provare che $K = \{f_{1,b} : b \in \mathbb{R}\}$ è un sottogruppo normale di G e che $H = \{f_{a,0} : a \in \mathbb{R} \setminus \{0\}\}$ è un sottogruppo non normale di G.
- (c) Dimostrare che G/K è isomorfo a \mathbb{R}^{\times} , dove con \mathbb{R}^{\times} si intende il gruppo moltiplicativo $(\mathbb{R} \setminus \{0\}, \cdot)$ dei reali non nulli.

Ultimo aggiornamento: 22 ottobre 2019.

 $^{^1}V$ è detto gruppo di Klein. Una cosa che rende V speciale è che V è l'unico caso di sottoruppo normale di un gruppo alterno A_n che non sia nè il gruppo banale (cioè con un solo elemento) nè il gruppo alterno A_n stesso. Difatti A_4 non è semplice "a causa di V", mentre A_n lo è per ogni $n \neq 4$. V è isomorfo al prodotto diretto $\mathbb{Z}_2 \times \mathbb{Z}_2$ (nel prodotto diretto l'operazione di gruppo è definita coordinata per coordinata).