УДК 517.986.225

Гомологическая тривиальность категории модулей L_p

H. **T**. **Немеш**¹

В статье дано полное описание топологически инъективных, топологически сюръективных, изометрических и коизометрических операторов умножения на функцию, действующих между L_p -пространствами σ -конечных пространств с мерой. Доказано, что все такие операторы обратимы слева или справа. Как следствие доказано, что в категории, состоящей из L_p -пространств для всех $p \in [1, +\infty]$, рассмотренных как левые банаховы модули над алгеброй ограниченных измеримых функций, все объекты являются метрически и топологически проективными, инъективными и плоскими модулями.

 ${\it Kлючевые}$ слова: оператор умножения, L_p -пространства, проективность, инъективность, плоскость.

We prove that all objects of the category of L_p -spaces considered as Banach modules over the algebra of bounded measurable functions are projective, injective and flat.

 $\mathit{Key\ words}$: multiplication operator, L_p -spaces, projectivity, injectivity, flatness.

1. Введение. В работе [1] А.Я. Хелемский дал определения метрически и топологически проективных и инъективных банаховых модулей над произвольной банаховой алгеброй. В работах [2, 3] дано прозрачное описание метрически проективных и плоских модулей над алгебрами последовательностей. Очевидно, дальнейшим развитием этой программы было бы решение аналогичных задач для алгебр измеримых функций. Уже в случае модулей, являющихся лебеговскими L_p -пространствами, мы сталкиваемся с проблемой отсутствия конкретного значения в точке у функции (точнее, у класса эквивалентности). Таким образом, уже класс лебеговских пространств представляет интерес. В данной работе мы покажем, что эти пространства, рассмотренные как банаховы модули над алгеброй ограниченных измеримых функций, гомологически тривиальны по отношению к категории, из этих пространств состоящей.

Пусть (Ω, Σ) — измеримое пространство. Через $B(\Omega)$ мы обозначаем банахову алгебру ограниченных комплекснозначных измеримых функций на Ω с ѕир-нормой. Через $M(\Omega)$ мы обозначаем множество положительных σ -аддитивных σ -конечных мер на Ω . Очевидно, что для каждой меры $\mu \in M(\Omega)$ и каждого $p \in [1, +\infty]$ пространство $L_p(\Omega, \mu)$ является левым, правым и двусторонним банаховым $B(\Omega)$ -модулем с поточечным внешним умножением. Так как алгебра $B(\Omega)$ коммутативна, то без ограничения общности мы будем рассматривать только левые модули. Через $B(\Omega)$ -modLp мы обозначим категорию левых банаховых $B(\Omega)$ -модулей, состоящую из пространств $L_p(\Omega, \mu)$ для некоторых мер $\mu \in M(\Omega)$. Морфизмы в $B(\Omega)$ -modLp суть морфизмы банаховых $B(\Omega)$ -модулей. Здесь и далее если C — некоторая категория банаховых пространств или банаховых модулей с операторами в роли морфизмов, то C_1 — это категория с теми же объектами и лишь сжимающими морфизмами. Ключевым для нас будет следующий результат [4, теорема 4.1].

Теорема 1. Пусть Ω — локально компактное топологическое пространство, $p,q \in [1,+\infty]$ и $\mu,\nu \in M(\Omega)$. Тогда существуют банахово пространство $L_{p,q,\mu,\nu}(\Omega)$, состоящее из некоторых борелевских комплекснозначных функций на Ω , и изометрический изоморфизм

$$\mathcal{I}_{p,q,\mu,\nu}: L_{p,q,\mu,\nu}(\Omega) \to \operatorname{Hom}_{B(\Omega) \to \mathbf{modLp}}(L_p(\Omega,\mu), L_q(\Omega,\nu)), g \mapsto (f \mapsto g \cdot f).$$

Эта теорема была доказана для локально компактных пространств Ω с борелевской σ -алеброй, но сходное доказательство работает и для произвольных измеримых пространств. Итак, морфизмы категории $B(\Omega)$ -modLp — это операторы умножения. Поэтому для описания метрически и топологически проективных, инъективных и плоских модулей достаточно знать строение допустимых эпиморфизмов и мономорфизмов в категориях $B(\Omega)$ -modLp и $B(\Omega)$ -modLp. Другими словами, нам требуется описание топологически сюръективных, топологически инъективных, коизометрических и изометрических операторов умножения между L_p -пространствами.

¹ Немеш Норберт Тиборович, e-mail:nemeshnorbert@yandex.ru.

 $^{2 \,\, {\}rm BMY},$ математика, механика, $123 \, 1$

Все стандартные факты и определения теории меры мы берем из монографии [5]. В дальнейшем мы будем рассматривать только σ -конечные положительные σ -аддитивные меры. Следовательно, мы можем считать, что все атомы имеют конечную меру и каждое атомическое пространство содержит не более чем счетное число атомов.

Все линейные пространства в настоящей работе рассматриваются над полем С. Для заданного измеримого пространства (Ω, Σ) через $L_0(\Omega, \Sigma)$ мы обозначаем линейное пространство измеримых комплекснозначных функций на Ω . Для $p=\infty$ мы по определению полагаем 1/p=0. Все равенства и неравенства понимаются с точностью до множеств меры 0. Напомним, что каждое пространство с мерой имеет атомическую и неатомическую часть, т.е. существуют атомическая мера $\mu_1:\Sigma\to[0,+\infty]$ и неатомическая мера $\mu_2: \Sigma \to [0, +\infty]$, такие, что $\mu = \mu_1 + \mu_2$ и $\mu_1 \perp \mu_2$ (т.е. существуют такие дизъюнктные измеримые множества $\Omega_a^\mu, \Omega_{na}^\mu \in \Sigma$, что $\mu_1(\Omega_{na}^\mu) = \mu_2(\Omega_a^\mu) = 0$ и $\Omega = \Omega_a^\mu \bigcup \Omega_{na}^\mu$).

C позиций функционального анализа, точки в атоме неотличимы и ограничение любой функции из L_p на атом есть постоянная функция. Действительно, если Ω' — атом, то для почти всех $\omega' \in \Omega'$ имеем $f(\omega')$ = $\mu(\Omega')^{-1}\int_{\Omega'}f(\omega)d\mu(\omega)$. Отсюда мы получаем изометрический изоморфизм: $J_p:L_p(\Omega',\mu|_{\Omega'})\to \ell_p(\{1\}):$ $f\mapsto \left(1\mapsto \mu(\Omega')^{1/p-1}\int_{\Omega'}f(\omega)d\mu(\omega)\right)$ Следовательно, если атомическое пространство представлено в виде дизъюнктного объединения своих атомов $\{\Omega_{\lambda}:\lambda:\in\Lambda\}$, то имеет место изометрический изоморфизм $I_p: L_p(\Omega, \mu) \to \ell_p(\Lambda): f \mapsto (\lambda \mapsto J_p(f|_{\Omega_\lambda})(1)).$

Классификация L_p -пространств неатомических мер несколько сложнее, но она нам не понадобится. Нам достаточно знать, что меры измеримых подмножеств в неатомических пространствах с мерой в некотором смысле меняются непрерывно, а именно если E — измеримое множество положительной меры, не содержащее атомов, то для любого $t \in [0, \mu(E)]$ существует измеримое подмножество $F \subset E$, такое, что $\mu(F)=t$. Также напомним теорему Лебега о разложении мер: если $(\Omega,\Sigma,\mu), (\Omega,\Sigma,\nu)$ — два пространства с мерой, то существуют неотрицательная измеримая функция $\rho_{\nu,\mu}$, σ -конечная мера $\nu_s:\Sigma\to[0,+\infty]$ и множество $\Omega_s^{\nu,\mu} \in \Sigma$, такие, что $\nu = \rho_{\nu,\mu} \cdot \mu + \nu_s$ и $\mu \perp \nu_s$ (т.е. $\mu(\Omega_s^{\nu,\mu}) = \nu_s(\Omega_c^{\nu,\mu}) = 0$ для $\Omega_c^{\nu,\mu} = \Omega \setminus \Omega_s^{\nu,\mu}$). Наконец, напомним, что для любой положительной функции $\rho \in L_0(\Omega, \Sigma)$ на пространстве с мерой (Ω, Σ, μ) имеет место изометрический изоморфизм $\bar{I}_p: L_p(\Omega, \mu) \to L_p(\Omega, \rho \cdot \mu): f \mapsto \rho^{-1/p} \cdot f.$ 2. Классификация операторов умножения. Пусть (Ω, Σ, μ) и (Ω, Σ, ν) — два пространства с

мерой и одной и той же σ -алгеброй измеримых множеств. Для заданной функции $g \in L_0(\Omega, \Sigma)$ и чисел $p,q \in [1,+\infty]$ мы определяем оператор умножения

$$M_g: L_p(\Omega, \mu) \to L_q(\Omega, \nu), f \mapsto g \cdot f.$$

Конечно, требуются определенные ограничения на g, μ и ν , чтобы оператор M_g был корректно определен, но мы предполагаем, что это всегда выполнено. Для заданного $E \in \Sigma$ через M_g^E мы обозначаем оператор

$$M_q^E: L_p(E, \mu|_E) \to L_q(E, \nu|_E), f \mapsto g|_E \cdot f.$$

Он корректно определен, так как равенство $f|_{\Omega\setminus E}=0$ влечет $M_g(f)|_{\Omega\setminus E}=0$. Как простое следствие данной импликации мы получаем следующие утверждения:

- $(i) \ {\rm Ker}(M_g) = \{ f \in L_p(\Omega,\mu) : f|_{\Omega \setminus Z_g} = 0 \}$, т.е. оператор M_g инъективен, если и только если $\mu(Z_g) = 0 ;$ $(ii) \ {\rm Im}(M_g) \subset \{ h \in L_q(\Omega,\mu) : h|_{Z_g} = 0 \}$, поэтому если оператор M_g сюръективен, то $\mu(Z_g) = 0 .$

Здесь мы использовали обозначение $Z_g = g^{-1}(\{0\})$. Мы хотим классифицировать операторы умножения в соответствии со следующим определением.

Определение 1. Если T:E o F — ограниченный линейный оператор между нормированными пространствами E и F, то T называется:

- (i) с-топологически интективным, если $||x||_E \leqslant c||T(x)||_F$ для всех $x \in E$;
- (ii) строго с-топологически строективным, если для любого $y \in F$ существует вектор $x \in E$, такой, что T(x) = y и $||x||_E \leqslant c||y||_F$;
- (iii) с-топологически сюрzективным, если для любого c' > c и любого $y \in F$ существует вектор $x \in E$, такой, что T(x) = y и $||x||_E < c'||y||_F$;
- (iv) (строго) коизометрическим, если он (строго) 1-топологически сюръективен с нормой не более 1. Если конкретное значение константы c для нас не важно, то мы будем просто говорить, что оператор топологически инъективный или топологически сюръективный. Для заданного измеримого множества $E\in \Sigma$ и функции $f\in L_0(E,\Sigma|_E)$ через \widetilde{f} мы обозначим продолжение функции f, такое, что $\widetilde{f}|_E=f$ и $\widetilde{f}|_{\Omega\setminus E}=0$. Далее, нам пригодится следующее простое равенство:

$$||f||_{L_p(\Omega,\mu)} = \left\| \left(||f|_{\Omega_\lambda} ||_{L_p(\Omega_\lambda,\mu|_{\Omega_\lambda})} : \lambda \in \Lambda \right) \right||_{\ell_p(\Lambda)},$$

верное для любого представления Ω в виде дизъюнктного объединения измеримых подмножеств $\{\Omega_{\lambda}:\lambda\in\Lambda\}$. Хотя мы и не нашли нижеследующего результата в литературе, мы не будем его доказывать, так к ак он является простой проверкой определений.

Предложение 1. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой и $p, q \in [1, +\infty]$. Допустим, имеется представление $\Omega = \bigcup_{\lambda \in \Lambda} \Omega_{\lambda}$ в виде конечного дизъюнктного объединения измеримых подмножеств. Тогла:

- (i) оператор M_g топологически инъективен тогда и только тогда, когда операторы $M_g^{\Omega_{\lambda}}$ топологически инъективны для всех $\lambda \in \Lambda$;
- (ii) оператор M_g топологически сюръективен тогда и только тогда когда, операторы $M_g^{\Omega_{\lambda}}$ топологически сюръективны для всех $\lambda \in \Lambda$;
 - (iii) если M_g изометричен, то таковы и $M_g^{\Omega_\lambda}$ для всех $\lambda \in \Lambda;$
 - (iv) если M_g коизометричен, то таковы и $M_g^{\Omega_\lambda}$ для всех $\lambda \in \Lambda.$

Предложение 2. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Если $\mu \perp \nu$, то $M_g \in \mathcal{B}(L_p(\Omega, \mu), L_q(\Omega, \nu))$ есть нулевой оператор.

Доказательство. В силу того, что $\mu \perp \nu$, существует множество $\Omega_s^{\nu,\mu} \in \Sigma$, такое, что $\mu(\Omega_s^{\nu,\mu}) = \nu(\Omega_c^{\nu,\mu}) = 0$, где $\Omega_c^{\nu,\mu} = \Omega \setminus \Omega_s^{\nu,\mu}$. Так как $\mu(\Omega_s^{\nu,\mu}) = 0$, то $\chi_{\Omega_c^{\nu,\mu}} = \chi_{\Omega}$ в $L_p(\Omega,\mu)$ и $\chi_{\Omega_c^{\nu,\mu}} = 0$ в $L_q(\Omega,\nu)$. Следовательно, для любого $f \in L_p(\Omega,\mu)$ мы имеем $M_g(f) = M_g(f \cdot \chi_{\Omega}) = M_g(f \cdot \chi_{\Omega_c^{\nu,\mu}}) = g \cdot f \cdot \chi_{\Omega_c^{\nu,\mu}} = 0$. Отметим, что равенство $M_g = 0$ не влечет g = 0.

Напомним следующий простой факт: линейный оператор $M_g: L_p(\Omega,\mu) \to L_p(\Omega,\mu)$ ограничен и корректно определен тогда и только тогда, когда $g \in L_\infty(\Omega,\mu)$. Как следствие оператор M_g является изоморфизмом тогда и только тогда, когда $C \geqslant |g| \geqslant c$ для некоторых C,c>0.

Легко проверить, что для атомического пространства с мерой (Ω, Σ, μ) оператор $\widetilde{M}_{\widetilde{g}} := \widetilde{I}_q M_g \widetilde{I}_p^{-1} \in \mathcal{B}(\ell_p(\Lambda), \ell_q(\Lambda))$ есть оператор умножения на функцию $\widetilde{g}: \Lambda \to \mathbb{C}: \lambda \mapsto \mu(\Omega_\lambda)^{1/q-1/p-1} \int_{\Omega_\lambda} g(\omega) d\mu(\omega)$, где $\{\Omega_\lambda: \lambda \in \Lambda\}$ есть не более чем счетное семейство непересекающихся атомов в Ω . Поскольку \widetilde{I}_p и \widetilde{I}_q являются изометрическими изоморфизмами, оператор M_g топологически инъективен тогда и только тогда, когда $\widetilde{M}_{\widetilde{g}}$ топологически инъективен.

Предложение 3. Пусть (Ω, Σ, μ) — атомическое пространство с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- (i) $M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\mu))$ топологически инъективный оператор;
- (ii) $|ec{g}|\geqslant c$ для некоторого c>0, при этом если $p\neq q$, то пространство (Ω,Σ,μ) имеет конечное число атомов.

Доказательство. $(i)\Longrightarrow (ii).$ Из предположения получаем, что оператор $\widetilde{M}_{\widetilde{g}}$ топологически инъективен, т.е. $\|\widetilde{M}_{\widetilde{g}}(x)\|_{\ell_q(\Lambda)}\geqslant c\|x\|_{\ell_p(\Lambda)}$ для всех $x\in\ell_p(\Lambda)$ и некоторого c>0. Пусть $\{\Omega_\lambda:\lambda\in\Lambda\}$ — не более чем счетное разложение Ω на непересекающиеся атомы. Мы рассмотрим два случая.

(1) Пусть $p \neq q$. Допустим, что множество Λ счетно. Если $p,q < +\infty$, то мы приходим к противоречию, так как по теореме Питта [6, следствие 2.1.6] не существует вложения между пространствами $\ell_p(\Lambda)$ и $\ell_q(\Lambda)$ для счетного Λ и $1 \leqslant p,q < +\infty, p \neq q$.

Если $1\leqslant p<+\infty$ и $q=+\infty$, то рассмотрим произвольное конечное подмножество $F\subset\Lambda$. Тогда мы имеем неравенства $\sup_{\lambda\in\Lambda}|\widetilde{g}(\lambda)|\geqslant \|\widetilde{M}_{\widetilde{g}}\left(\sum_{\lambda\in F}e_{\lambda}\right)\|_{\ell_{\infty}(\Lambda)}\geqslant c\left\|\sum_{\lambda\in F}e_{\lambda}\right\|_{\ell_{p}(\Lambda)}=c\mathrm{Card}(F)^{1/p}$. Так как множество Λ счетно, то $\sup_{\lambda\in\Lambda}|\widetilde{g}(\lambda)|\geqslant c\sup_{F\subset\Lambda}\mathrm{Card}(F)^{1/p}=+\infty$. С другой стороны, поскольку $\widetilde{M}_{\widetilde{g}}$ — ограниченный оператор, мы получаем, что $\sup_{\lambda\in\Lambda}|\widetilde{g}(\lambda)|\leqslant\sup_{\lambda\in\Lambda}\|\widetilde{M}_{\widetilde{g}}\|\|e_{\lambda}\|_{\ell_{p}(\Lambda)}=\|\widetilde{M}_{\widetilde{g}}\|<+\infty$. Противоречие.

Если $1\leqslant q<+\infty$ и $p=+\infty$, то из топологической инъективности $M_{\widetilde{g}}$ следует наличие вложения несепарабельного пространства $l_{\infty}(\Lambda)\cong \mathrm{Im}(\widetilde{M_{\widetilde{g}}})$ в сепарабельное пространство $\ell_q(\Lambda)$. Противоречие. Во всех случаях мы получили противоречие, значит, пространство (Ω,Σ,μ) имеет лишь конечное число атомов. Мы знаем, что g однозначно определяется своими значениями $k_{\lambda}\in\mathbb{C}$ на атомах. Для того чтобы оператор M_g был по крайней мере инъективным, все эти значения должны быть ненулевыми. Так как множество Λ конечно, то мы получаем, что $|g|\geqslant c:=\min_{\lambda\in\Lambda}|k_{\lambda}|>0$.

- (2) Пусть p=q, тогда для всех $\lambda\in\Lambda$ и $\omega\in\Omega_\lambda$ мы имеем $|g(\omega)|=|\widetilde{g}(\lambda)|=\|\widetilde{M}_{\widetilde{g}}(e_\lambda)\|_{\ell_q(\Lambda)}\geqslant c\|e_\lambda\|_{\ell_p(\Lambda)}=c$. Поскольку $\Omega=\bigcup_{\lambda\in\Lambda}\Omega_\lambda$, мы получаем $|g|\geqslant c$.
- $(ii)\Longrightarrow (i)$. Из предположения легко получить, что $|\widetilde{g}|\geqslant c$. Если $p\neq q$, то мы дополнительно предполагаем, что (Ω,Σ,μ) имеет конечное число атомов. Следовательно, пространство $L_p(\Omega,\mu)$ конечномерно и оператор M_g топологически инъективен, так как g не принимает нулевых значений на атомах. Если

p=q, то тогда, очевидно, из ограничений на g получаем, что M_q топологически инъективен.

Предложение 4. Пусть (Ω, Σ, μ) — пространство с мерой, не содержащее атомов, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- (i) $M_q \in \mathcal{B}(L_p(\Omega, \mu), L_q(\Omega, \mu))$ топологически инъективный оператор;
- $(ii) |g| \geqslant c$ для некоторого c > 0, и p = q.

Доказательство. (i) \Longrightarrow (ii). Согласно условию $\|M_g(f)\|_{L_q(\Omega,\mu)} \geqslant c\|f\|_{L_p(\Omega,\mu)}$ для всех $f \in L_p(\Omega,\mu)$ и некоторого c > 0. Мы рассмотрим три случая.

Пусть p>q, тогда существуют C>0 и множество $E\in\Sigma$ положительной меры, такие, что $|g|_E|\leqslant C$, иначе M_g не определен корректно. Возьмем произвольную последовательность $\{E_n:n\in\mathbb{N}\}\subset\Sigma$ подмножеств E, такую, что $\mu(E_n)=2^{-n}$. Заметим, что

$$c \leqslant \|M_g(\chi_{E_n})\|_{L_q(\Omega,\mu)} / \|\chi_{E_n}\|_{L_p(\Omega,\mu)} \leqslant C \|\chi_{E_n}\|_{L_q(\Omega,\mu)} / \|\chi_{E_n}\|_{L_p(\Omega,\mu)} \leqslant C \mu(E_n)^{1/q-1/p}.$$

Поэтому из неравенства p > q мы получим противоречие, так как

$$c \leqslant \inf_{n \in \mathbb{N}} C\mu(E_n)^{1/q - 1/p} = C \inf_{n \in \mathbb{N}} 2^{n(1/p - 1/q)} = 0.$$

Теперь пусть p < q, тогда существуют c' > 0 и множество $E \in \Sigma$ положительной меры, такие, что $|g|_E| > c'$, иначе g = 0 и оператор M_g не будет топологически инъективным. Возьмем произвольную последовательность $\{E_n : n \in \mathbb{N}\} \subset \Sigma$ подмножеств E, такую, что $\mu(E_n) = 2^{-n}$. Заметим, что

$$||M_g|| \ge ||M_g(\chi_{E_n})||_{L_q(\Omega,\mu)} / ||\chi_{E_n}||_{L_p(\Omega,\mu)} \ge c' ||\chi_{E_n}||_{L_q(\Omega,\mu)} / ||\chi_{E_n}||_{L_p(\Omega,\mu)} \ge c' \mu(E_n)^{1/q-1/p}.$$

Поэтому из неравенства p < q мы получим противоречие, так как

$$||M_g|| \geqslant \sup_{n \in \mathbb{N}} c' \mu(E_n)^{1/q - 1/p} \geqslant c' \sup_{n \in \mathbb{N}} 2^{n(1/p - 1/q)} = +\infty.$$

Наконец, пусть p=q. Фиксируем c'< c. Допустим, что найдется множество $E\in \Sigma$ положительной меры, такое, что $|g|_E|< c'$. Тогда $\|M_g(\chi_E)\|_{L_p(\Omega,\mu)}=\|g\cdot\chi_E\|_{L_p(\Omega,\mu)}\leqslant c'\|\chi_E\|_{L_p(\Omega,\mu)}< c\|\chi_E\|_{L_p(\Omega,\mu)}$. Противоречие. Так как c'< c произвольно, то мы заключаем, что $|g|_E|\geqslant c$ для любого множества $E\in \Sigma$ положительной меры. Значит, $|g|\geqslant c$.

 $(ii) \Longrightarrow (i)$. Импликация очевидна.

Предложение 5. Пусть (Ω, Σ, μ) — произвольное пространство с мерой, $p, q \in [1, +\infty]$ и $g, \rho \in L_0(\Omega, \Sigma)$, причем ρ — неотрицательная функция. Тогда следующие условия эквивалентны:

- $(i)\ M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\rho\cdot\mu))$ топологически инъективный оператор;
- $(ii)\ \mathring{M}_{q}\in \mathcal{B}(\mathring{L}_{p}(\Omega,\mu),\mathring{L}_{q}(\Omega,\rho\cdot\mu))$ топологический изоморфизм;
- (iii) функция ρ положительна, $|g \cdot \rho^{1/q}| \geqslant c$ для некоторого c > 0, при этом если $p \neq q$, то пространство (Ω, Σ, μ) состит из конечного числа атомов.

Доказательство. $(i)\Longrightarrow (iii)$. Так как $M_g(\chi_{\rho^{-1}(\{0\})})=0$ в $L_q(\Omega,\rho\cdot\mu)$ и оператор M_g топологически инъективен, то функция ρ должна быть положительной. Следовательно, корректно определен изометрический изоморфизм $\bar{I}_q:L_q(\Omega,\mu)\to L_q(\Omega,\rho\cdot\mu), f\mapsto \rho^{-1/q}\cdot f$. Тогда оператор $M_{g\cdot\rho^{1/q}}=\bar{I}_q^{-1}M_g\in\mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\mu))$ также топологически инъективен. Рассмотрим представление $\Omega=\Omega_a^\mu\cup\Omega_{na}^\mu$ пространства Ω в виде объединения атомической и неатомической части. По предложению 1 оператор $M_{g\cdot\rho^{1/q}}$ топологически инъективен тогда и только тогда, когда топологически инъективны операторы $M_{g\cdot\rho^{1/q}}^{\Omega_{na}^\mu}$ и $M_{g\cdot\rho^{1/q}}^{\Omega_{na}^\mu}$. Осталось воспользоваться предложениями 3,4.

- $(iii)\Longrightarrow (i).$ Используя предложения 3, 4, мы видим, что оператор $M_{g\cdot \rho^{1/q}}$ топологически инъективен. Так как функция ρ положительна, то существует изометрический изоморфизм \bar{I}_q . Следовательно, оператор $M_g=\bar{I}_q M_{g\cdot \rho^{1/q}}$ также топологически инъективен.
- $(i)\Longrightarrow (ii)$. Как мы показали ранее, оператор $M_{g\cdot \rho^{1/q}}$ топологически инъективен и \bar{I}_q является изометрическим изоморфизмом. Если p=q, то из предыдущих рассуждений следует, что $|g\cdot \rho^{1/q}|\geqslant c>0$. Также мы имеем неравенство $C\geqslant |g\cdot \rho^{1/q}|$ для некоторого C>0, поскольку $M_{g\cdot \rho^{1/q}}$ ограничен. Таким образом, $M_{g\cdot \rho^{1/q}}$ является топологическим изоморфизмом. Если $p\neq q$, то по предыдущим рассуждениям пространство (Ω,Σ,μ) состоит из конечного числа атомов и функция $g\cdot \rho^{1/q}$ не принимает нулевых значений ни на

одном атоме. Следовательно, $M_{q \cdot \rho^{1/q}}$ — инъективный оператор между конечномерными пространствами одинаковой размерности $\operatorname{Card}(\Lambda)$, поэтому он является изоморфизмом. Значит, $M_q = \bar{I}_q M_{q \cdot \rho^{1/q}}$ является топологическим изоморфизмом как композиция топологических изоморфизмов.

 $(ii) \Longrightarrow (i)$. Импликация очевидна.

Теорема 2. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $(i)\ M_g\in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ топологически инъективный оператор;
- $(ii) \; M_a^{\Omega_c^{
 u,\mu}} -$ топологически инъективный оператор;
- (iii) функция $\rho_{\nu,\mu}|_{\Omega_c^{\nu,\mu}}$ положительна, $|g\cdot \rho_{\nu,\mu}^{1/q}|_{\Omega_c^{\nu,\mu}}|\geqslant c$ для некоторого c>0, если $p\neq q$, то пространство (Ω, Σ, μ) состоит из конечного числа атомов.

Доказательство. По предложению 1, оператор M_g топологически инъективен тогда и только тогда, когда операторы $M_g^{\Omega_c^{\nu,\mu}}: L_p(\Omega_c^{\nu,\mu},\mu|_{\Omega_c^{\nu,\mu}}) \to L_q(\Omega_c^{\nu,\mu},\rho_{\nu,\mu}\cdot\mu|_{\Omega_c^{\nu,\mu}})$ и $M_g^{\Omega_s^{\nu,\mu}}: L_p(\Omega_s^{\nu,\mu},\mu|_{\Omega_s^{\nu,\mu}}) \to L_q(\Omega_s^{\nu,\mu},\rho_{\nu,\mu}\cdot\mu|_{\Omega_c^{\nu,\mu}})$ топологически инъективны. По предложению 2, оператор $M_g^{\Omega_s^{\nu,\mu}}$ нулевой. Так как $\mu(\Omega_s^{\nu,\mu})=0$, то пространство $L_p(\Omega_s^{\nu,\mu},\mu|_{\Omega_s^{\nu,\mu}})=\{0\}$, поэтому оператор $M_g^{\Omega_s^{\nu,\mu}}$ топологически инъективен. Следовательно, топологическая инъективность M_g эквивалентна топологической инъективности оператора $M_q^{\Omega_c^{\nu,\mu}}$. Осталось применить предложение 5.

Теорема 3. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $\begin{array}{l} (i) \ M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu)) \ \ \text{топологически инъективный оператор;} \\ (ii) \ M_{\chi_{\Omega_c^{\nu,\mu}/g}} \in \mathcal{B}(L_q(\Omega,\nu),L_p(\Omega,\mu)) \ \ \text{топологически сюръективный левый обратный оператор к } M_g. \end{array}$

Доказательство. $(i)\Longrightarrow (ii).$ Из условия следует, что оператор $M_g^{\Omega_c^{\nu,\mu}}$ топологически инъективен. По предложению 5 оператор $M_g^{\Omega_c^{\nu,\mu}}$ обратим и, очевидно, $(M_g^{\Omega_c^{\nu,\mu}})^{-1}=M_{1/g}^{\Omega_c^{\nu,\mu}}.$ Оператор $M_{\chi_{\Omega_c^{\nu,\mu}/g}}$ ограничен, поскольку для любого $h \in L_q(\Omega, \nu)$ мы имеем

$$\|M_{\chi_{\Omega_c^{\nu,\mu}/g}}(h)\|_{L_p(\Omega,\mu)} = \|M_{1/g}^{\Omega_c^{\nu,\mu}}(h|_{\Omega_c^{\nu,\mu}})\|_{L_p(\Omega_c^{\nu,\mu},\mu|_{\Omega_c^{\nu,\mu}})} \leqslant \|M_{1/g}^{\Omega_c^{\nu,\mu}}\| \|h|_{\Omega_c^{\nu,\mu}}\|_{L_q(\Omega_c^{\nu,\mu},\nu|_{\Omega_c^{\nu,\mu}})} \leqslant \|M_{1/g}^{\Omega_c^{\nu,\mu}}\| \|h\|_{L_q(\Omega,\nu)}.$$

Так как $\mu(\Omega \setminus \Omega_c^{\nu,\mu}) = 0$, то $\chi_{\Omega_c^{\nu,\mu}} = \chi_\Omega$ в $L_p(\Omega,\mu)$, поэтому для всех $f \in L_p(\Omega,\mu)$ выполнено $M_{\chi_{\Omega_c^{\nu,\mu}/g}}(M_g(f)) = 0$ $f\cdot\chi_{\Omega^{\nu,\mu}}=f\cdot\chi_{\Omega}=f$. Это означает, что M_g имеет левый обратный оператор умножения. Он топологически сюръективен, так как для любого $f\in L_p(\Omega,\mu)$ мы можем рассмотреть функцию $h=M_g(f)$ и получить, что $M_{\chi_{\Omega^{\nu,\mu}/g}}(h) = f$ и $\|h\|_{L_q(\Omega,\nu)} \leqslant \|M_g\|\|f\|_{L_p(\Omega,\mu)}$.

 $(ii) \Longrightarrow (i)$. Импликация очевидна.

Предложение 6. Пусть (Ω, Σ, μ) — пространство с мерой, $p, q \in [1, +\infty]$ и $g, \rho \in L_0(\Omega, \Sigma)$, причем ρ — неотрицательная функция. Тогда следующие условия эквивалентны:

- (i) $M_g \in \mathcal{B}(L_p(\Omega,\mu), L_q(\Omega,\rho\cdot\mu))$ изометрический оператор;
- $(ii) M_g$ изометрический изоморфизм;
- (iii) функция ρ положительна, $|g\cdot
 ho^{1/q}|=\mu(\Omega)^{1/p-1/q}$, при этом если $p\neq q$, то пространство (Ω,Σ,μ) состоит из одного атома.

Доказательство. $(i) \Longrightarrow (iii)$. Согласно условию, оператор M_g топологически инъективен. Тогда по теореме 2 функция ρ положительна, и поэтому имеет место изометрический изоморфизм $\bar{I}_q:L_q(\Omega,\mu)\to$ $L_q(\Omega, \rho \cdot \mu), f \mapsto \rho^{-1/q} \cdot f$. Следовательно, оператор $M_{g \cdot \rho^{1/q}} = \bar{I}_q^{-1} M_g \in \mathcal{B}(L_p(\Omega, \mu), L_q(\Omega, \mu))$ изометричен как композиция изометрий. Введем обозначение $\bar{q} = q \cdot \rho^{1/q}$. Мы рассмотрим два случая.

Пусть p=q. Допустим, существует множество $E \in \Sigma$ положительной меры, такое, что $|\bar{q}|_E < 1$, тогда $\|M_{\bar{g}}(\chi_E)\|_{L_p(\Omega,\mu)} = \|\bar{g}\cdot\chi_E\|_{L_p(\Omega,\mu)} < \|\chi_E\|_{L_p(\Omega,\mu)} = \|M_{\bar{g}}(\chi_E)\|_{L_p(\Omega,\mu)}$. Противоречие, следовательно, $|\bar{g}|\geqslant 1$. Аналогично можно показать, что $|\bar{g}|\leqslant 1$, значит, $|g\cdot
ho^{1/q}|=1=\mu(\Omega)^{1/p-1/q}$.

Пусть $p \neq q$. По теореме 2, пространство (Ω, Σ, μ) состоит из конечного числа атомов. Предположим, что есть, по крайней мере, два различных атома Ω_1 и Ω_2 . Рассмотрим функции $h_{\lambda} = \|\chi_{\Omega_{\lambda}}\|_{L_p(\Omega,\mu)}^{-1}\chi_{\Omega_{\lambda}}$, где $\lambda \in \{1,2\}$. Так как $h_1h_2=0$, то $\|M_{\bar{g}}(h_1)+M_{\bar{g}}(h_2)\|_{L_q(\Omega,\mu)}=\|h_1+h_2\|_{L_p(\Omega,\mu)}=2^{1/p}$. Аналогично $\|M_{\bar{g}}(h_1)+M_{\bar{g}}(h_2)\|_{L_q(\Omega,\mu)}=\left\|\left(\|M_{\bar{g}}(h_\lambda)\|_{L_q(\Omega,\mu)}:\lambda\in\{1,2\}\right)\right\|_{\ell_q(\{1,2\})}=2^{1/q}$. Мы получили противоречие, так как $p \neq q$. Таким образом, пространство (Ω, Σ, μ) состоит из одного атома. Через c мы обозначим константное значение функции \bar{g} , тогда легко проверить, что $\|M_{\bar{q}}(f)\|_{L_q(\Omega,\mu)} = \mu(\Omega)^{1/q-1/p} |c| \|f\|_{L_q(\Omega,\mu)}$.

Следовательно $|g \cdot \rho^{1/q}| = |\bar{g}| = \mu(\Omega)^{1/p-1/q}$.

- $(iii) \Longrightarrow (i)$. Проверяется непосредственно.
- $(i)\Longrightarrow(ii)$. В силу предположения оператор M_g топологически инъективен, и по предложению 5 он является изоморфизмом, который согласно условию изометричен.
 - $(ii) \Longrightarrow (i)$. Импликация очевидна.

Теорема 4. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $(i)\ M_g\in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ изометрический оператор;
- $(ii)\ M_a^{\Omega_c^{\nu,\mu}}$ изометрический оператор;
- (iii) функция $\rho_{\nu,\mu}|_{\Omega_c^{\nu,\mu}}$ положительна, $|g\cdot \rho_{\nu,\mu}^{1/q}|_{\Omega_c^{\nu,\mu}}|=\mu(\Omega_c^{\nu,\mu})^{1/p-1/q}$, при этом если $p\neq q$, то пространство (Ω, Σ, μ) состоит из одного атома.

Доказательство. $(i) \Longrightarrow (ii)$. Следует из предложения 1.

 $(ii)\Longrightarrow (i)$. Рассмотрим произвольную функцию $f\in L_p(\Omega,\mu)$. Так как $\mu(\Omega\setminus\Omega_c^{\nu,\mu})=0$, то $\chi_{\Omega_c^{\nu,\mu}}=\chi_{\Omega}$ в $L_p(\Omega,\mu)$. Как следствие $f=f\chi_{\Omega}=f\chi_{\Omega^{\nu,\mu}}=f\chi_{\Omega^{\nu,\mu}}\chi_{\Omega^{\nu,\mu}}$ и

$$\|M_g(f)\|_{L_q(\Omega,\nu)} = \|M_g(f\chi_{\Omega_c^{\nu,\mu}})\chi_{\Omega_c^{\nu,\mu}}\|_{L_q(\Omega,\nu)} = \|M_g^{\Omega_c^{\nu,\mu}}(f|_{\Omega_c^{\nu,\mu}})\|_{L_q(\Omega_c^{\nu,\mu},\nu|_{\Omega_c^{\nu,\mu}},\nu|_{\Omega_c^{\nu,\mu}})} = \|f|_{\Omega_c^{\nu,\mu}}\|_{L_p(\Omega_c^{\nu,\mu},\mu|_{\Omega_c^{\nu,\mu}},\mu|_{\Omega_c^{\nu,\mu}})}.$$

Так как $\mu(\Omega \setminus \Omega_c^{\nu,\mu}) = 0$, то $\|M_g(f)\|_{L_q(\Omega,\nu)} = \|f|_{\Omega_c^{\nu,\mu}}\|_{L_p(\Omega_c^{\nu,\mu},\mu|_{\Omega_c^{\nu,\mu}})} = \|f\|_{L_p(\Omega,\mu)}$, значит оператор $M_g(f)$ изометричен.

 $(ii) \iff (iii)$. Следует из предложения 6.

Теорема 5. Пусть $(\Omega, \Sigma, \mu), (\Omega, \Sigma, \nu)$ — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- (i) $M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ изометрический оператор; (ii) $M_{\chi_{\Omega_c^{\nu},\mu}/g} \in \mathcal{B}(L_q(\Omega,\nu),L_p(\Omega,\mu))$ строго коизометрический левый обратный оператор к M_g .

Доказательство. $(i) \Longrightarrow (ii)$. По предложению 1 оператор $M_g^{\Omega_c^{\nu,\mu}}$ изометричен, и тогда по предложению 6 он обратим, причем, очевидно, что $(M_g^{\Omega_c^{\nu,\mu}})^{-1} = M_{1/g}^{\Omega_c^{\nu,\mu}}$. Так как оператор $M_g^{\Omega_c^{\nu,\mu}}$ изометричен, то таков же и его обратный. Оператор $M_{\chi_{\Omega_c^{\nu,\mu}/g}}$ сжимающий, поскольку для всех $h \in L_q(\Omega,\nu)$ выполнено $\|M_{\chi_{\Omega_c^{\nu,\mu}/g}}(h)\|_{L_p(\Omega,\mu)} = \|M_{1/g}^{\Omega_c^{\nu,\mu}}(h|_{\Omega_c^{\nu,\mu}})\|_{L_p(\Omega_c^{\nu,\mu},\mu|_{\Omega_c^{\nu,\mu}})} = \|h|_{\Omega_c^{\nu,\mu}}\|_{L_q(\Omega_c^{\nu,\mu},\nu|_{\Omega_c^{\nu,\mu}})} \leqslant \|h\|_{L_q(\Omega,\nu)}.$ Так как $\mu(\Omega \setminus \Omega_c^{\nu,\mu}) = 0$, то $\chi_{\Omega_c^{\nu,\mu}} = \chi_{\Omega}$ в $L_p(\Omega,\mu)$, поэтому для любой функции $f \in L_p(\Omega,\mu)$ мы имеем $M_{\chi_{\Omega_c^{\nu,\mu}/g}}(M_g(f))=f\cdot\chi_{\Omega_c^{\nu,\mu}}=f\cdot\chi_{\Omega}=f.$ Это значит, что M_g имеет левый обратный оператор умножения. Рассмотрим произвольную функцию $f\in L_p(\Omega,\mu)$, тогда для $h=M_g(f)$ выполнено $M_{\chi_{\Omega^{\nu,\mu}/g}}(h)=f$ и $\|h\|_{L_q(\Omega,\nu)}\leqslant \|f\|_{L_p(\Omega,\mu)}$. Следовательно, оператор $M_{\chi_{\Omega^{\nu,\mu}/g}}$ строго 1-топологически сюръективный, но он также сжимающий и, значит, строго коизометрический.

 $(ii) \Longrightarrow (i)$. Для произвольной функции $f \in L_p(\Omega,\mu)$ найдется функция $h \in L_q(\Omega,\nu)$, такая, что $M_{\chi_{\Omega^{\nu,\mu}/g}}(h) = f$ и $||h||_{L_q(\Omega,\nu)} \leqslant ||f||_{L_p(\Omega,\mu)}$. Следовательно, выполнено неравенство

$$\|M_g(f)\|_{L_q(\Omega,\nu)} = \|M_g(M_{\chi_{\Omega_c^{\nu,\mu}/g}}(h))\|_{L_q(\Omega,\nu)} = \|\chi_{\Omega_c^{\nu,\mu}}h\|_{L_q(\Omega,\nu)} \leqslant \|h\|_{L_q(\Omega,\nu)} \leqslant \|f\|_{L_p(\Omega,\mu)}.$$

С другой стороны, $M_{\chi_{\Omega^{\nu,\mu}/g}}$ сжимающий оператор и левый обратный оператор к M_g , поэтому $\|f\|_{L_p(\Omega,\mu)}=$ $\|M_{\chi_{\Omega^{\nu,\mu}/g}}(M_g(f))\|_{L_p(\Omega,\mu)}\leqslant \|M_g(f)\|_{L_q(\Omega,\nu)}$. Так как функция f произвольна, то из обоих неравенств мы заключаем, что оператор M_q изометричен.

Описание топологически сюръективных операторов умножения получить несколько проще. Мы покажем, что все такие операторы обратимы справа. Большинство доказательств аналогичны доказательствам для топологически инъективных операторов.

Предложение 7. Пусть (Ω, Σ, ν) — пространство с мерой, $p, q \in [1, +\infty]$ и $g, \rho \in L_0(\Omega, \Sigma)$, причем ρ неотрицательная функция. Тогда следующие условия эквивалентны:

- $(i)\ M_g \in \mathcal{B}(L_p(\Omega, \rho \cdot \nu), L_q(\Omega, \nu))$ топологически сюръективный оператор;
- $(ii) M_q$ топологический изоморфизм;
- (iii) функция ρ положительна, $|g \cdot \rho^{-1/p}| \geqslant c$ для некоторого c > 0, при этом если $p \neq q$, то пространство (Ω, Σ, μ) состоит из конечного числа атомов.

Доказательство. (i) \Longrightarrow (iii). Рассмотрим множество $E = \rho^{-1}(\{0\})$, тогда, очевидно, $\chi_E = 0$ в $L_q(\Omega, \rho \cdot \mu)$. Теперь для любой функции $f \in L_p(\Omega, \rho \cdot \nu)$ имеем $M_q(f)\chi_E = M_q(f \cdot \chi_E) = 0$ в $L_q(\Omega, \nu)$, следова-

тельно, $\operatorname{Im}(M_q) \subset \{h \in L_q(\Omega, \nu) : h|_E = 0\}$. Так как оператор M_q сюръективен, то $\nu(E) = 0$. Значит, ρ — положительная функция и корректно определен изометрический изоморфизм $I_p: L_p(\Omega, \nu) o L_p(\Omega, \rho \cdot \nu), f \mapsto$ $\rho^{-1/p} \cdot f$. Поскольку M_g топологически сюръективен, то таков же и $M_{g \cdot \rho^{-1/p}} = M_g \bar{I}_p \in \mathcal{B}(L_p(\Omega, \nu), L_q(\Omega, \nu))$. В частности, оператор $M_{g\cdot \rho^{-1/p}}$ сюръективен и, как было отмечено в начале статьи, инъективен. Таким образом, $M_{q \cdot \rho^{-1/p}}$ биективен, и по теореме Банаха об обратном операторе M_g — изоморфизм. Осталось применить предложение 5.

- $(iii)\Longrightarrow (i).$ Из предложения 5 следует, что оператор $M_{q\cdot
 ho^{-1/p}}$ топологически сюръективен и корректно определен изометрический изоморфизм \bar{I}_p . Таким образом, $M_g = M_{q \cdot \rho^{-1/p}} \bar{I}_p^{-1}$ также топологически
- $(i)\Longrightarrow (ii)$. Как мы показали ранее, оператор $M_{q\cdot o^{1/q}}$ топологически сюръективен и \bar{I}_q является изометрическим изоморфизмом. По предложению 5 оператор $M_{q \cdot \rho^{1/q}}$ — топологический изоморфизм. Таким образом, $M_g = I_q M_{q \cdot \rho^{1/q}}$ тоже является топологическим изоморфизмом как композиция топологических изоморфизмов.
 - $(ii) \Longrightarrow (i)$. Импликация очевидна.

Теорема 6. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $(i)\ M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ топологически сюръективный оператор;
- $(ii) \; M_{a}^{\Omega_{c}^{\mu,\nu}} -$ топологический изоморфизм;
- (iii) функция $\rho_{\mu,\nu}|_{\Omega^{\mu,\nu}_c}$ неотрицательна, $|g\cdot \rho_{\mu,\nu}^{-1/p}|_{\Omega^{\mu,\nu}_c}|\geqslant c$ для некоторого c>0, при этом если $p\neq q$, то пространство (Ω, Σ, μ) состоит из конечного числа атомов.

Доказательство. По предложению 1 оператор M_g топологически сюръективен тогда и только тогда, когда операторы $M_g^{\Omega_c^{\mu,\nu}}: L_p(\Omega_c^{\mu,\nu}, \rho_{\mu,\nu} \cdot \nu|_{\Omega_c^{\mu,\nu}}) \to L_q(\Omega_c^{\mu,\nu}, \nu|_{\Omega_c^{\mu,\nu}})$ и $M_g^{\Omega_s^{\mu,\nu}}: L_p(\Omega_s^{\mu,\nu}, \mu_s|_{\Omega_s^{\mu,\nu}}) \to L_q(\Omega_s^{\mu,\nu}, \nu|_{\Omega_s^{\mu,\nu}})$ топологически сюръективны. По предложению 2 оператор $M_g^{\Omega_s^{\mu,\nu}}$ нулевой. Так как $\nu(\Omega_s^{\mu,\nu}) = 0$, то пространство $L_p(\Omega_s^{\mu,\nu},\nu|_{\Omega_s^{\mu,\nu}})=\{0\},$ следовательно, $M_g^{\Omega_s^{\mu,\nu}}$ топологически сюръективен. Таким образом, топологическая сюръективность оператора M_g эквивалентна топологической сюръективности $M_q^{\Omega_c^{\mu,\nu}}.$ Теперь остается применить предложение 7.

Теорема 7. Пусть $(\Omega, \Sigma, \mu), (\Omega, \Sigma, \nu)$ — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $\begin{array}{l} (i) \ M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu)) \ \ \text{топологически сюръективный оператор;} \\ (ii) \ M_{\chi_{\Omega_c^{\mu,\nu}/g}} \in \mathcal{B}(L_q(\Omega,\nu),L_p(\Omega,\mu)) \ \ \text{топологически инъективный правый обратный оператор к } M_g. \end{array}$

Доказательство. $(i)\Longrightarrow (ii).$ Из условия следует, что оператор $M_g^{\Omega_c^{\mu,\nu}}$ топологически сюръективен. По предложению 7 оператор $M_g^{\Omega_c^{\mu,\nu}}$ обратим, причем, очевидно, $(M_g^{\Omega_c^{\mu,\nu}})^{-1}=M_{1/g}^{\Omega_c^{\mu,\nu}}.$ Оператор $M_{\chi_{\Omega_c^{\mu,\nu}}/g}$ ограничен, поскольку для любого $h \in L_q(\Omega, \nu)$ выполнено

$$\|M_{\chi_{\Omega_c^{\mu,\nu}/g}}(h)\|_{L_p(\Omega,\mu)} = \|M_{1/g}^{\Omega_c^{\mu,\nu}}(h|_{\Omega_c^{\mu,\nu}})\|_{L_p(\Omega_c^{\mu,\nu},\mu|_{\Omega_c^{\mu,\nu}})} \leqslant \|M_{1/g}^{\Omega_c^{\mu,\nu}}\| \|h|_{\Omega_c^{\mu,\nu}}\|_{L_q(\Omega_c^{\mu,\nu},\nu|_{\Omega_c^{\mu,\nu}})} \leqslant \|M_{1/g}^{\Omega_c^{\mu,\nu}}\| \|h\|_{L_q(\Omega,\nu)}.$$

Так как $\nu(\Omega\setminus\Omega_c^{\mu,\nu})=0$, то $\chi_{\Omega_c^{\mu,\nu}}=\chi_{\Omega}$, поэтому $M_g(M_{\chi_{\Omega_c^{\mu,\nu}}/g}(h))=h\cdot\chi_{\Omega_c^{\mu,\nu}}=h\cdot\chi_{\Omega}=h$. Это означает, что M_g имеет правый обратный оператор умножения. Он топологически инъективен, поскольку для любой функции $h \in L_q(\Omega, \nu)$ выполнено неравенство $\|M_{\chi_{\Omega^{\mu,\nu}/g}}(h)\|_{L_p(\Omega,\mu)} \geqslant \|M_g\| \|M_g(M_{\chi_{\Omega^{\mu,\nu}/g}}(h))\|_{L_q(\Omega,\nu)} \geqslant$ $||M_g|||h||_{L_q(\Omega,\nu)}.$

 $(ii) \Longrightarrow (i)$. Импликация очевидна.

Предложение 8. Пусть (Ω, Σ, ν) — пространство с мерой, $p,q \in [1, +\infty]$ и $g, \rho \in L_0(\Omega, \Sigma)$, причем ρ — неотрицательная функция. Тогда следующие условия эквивалентны:

- $(i)\ M_g \in \mathcal{B}(L_p(\Omega, \rho \cdot \nu), L_q(\Omega, \nu))$ коизометрический оператор;
- $(ii) M_q$ изометрический изоморфизм;
- (iii) функция ρ неотрицательна, $|g\cdot \rho^{-1/p}|=\mu(\Omega)^{1/p-1/q}$, при этом если $p\neq q$, то пространство (Ω,Σ,μ) состоит из одного атома.

Доказательство. $(i) \Longrightarrow (iii)$. По условию оператор M_q топологически сюръективен, и по предложению 7 функция ρ положительна. Таким образом, имеет место изометрический изоморфизм I_p : $L_p(\Omega,\nu) \to L_p(\Omega,\rho\cdot\nu), f\mapsto
ho^{-1/p}\cdot f.$ Так как оператор M_g коизометричен, то таков же и оператор $M_{g \cdot \rho^{-1/p}} = M_g \bar{I}_p \in \mathcal{B}(L_p(\Omega, \nu), L_q(\Omega, \nu))$. В частности, оператор $M_{g \cdot \rho^{-1/p}}$ сюръективен, следовательно, как отмечалось выше, инъективен. Заметим, что инъективные коизометрические операторы изометричны. Осталось применить предложение 6.

- $(iii) \Longrightarrow (i)$. Проверяется непосредственно.
- $(i) \Longrightarrow (ii)$. Ввиду предположения оператор M_q топологически сюръективен. По предложению 7 он изоморфизм, следовательно, биективен. Осталось напомнить, что всякая биективная коизометрия есть изометрический изоморфизм.
 - $(ii) \Longrightarrow (i)$. Импликация очевидна.

Теорема 8. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- $(i)\ M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ коизометрический оператор;
- $(ii) \; M_a^{\Omega_c^{\mu,\nu}} \; -$ изометрический изоморфизм;
- (iii) функция $\rho_{\mu,\nu}|_{\Omega^{\mu,\nu}_c}$ положительна, $|g\cdot \rho^{-1/p}_{\mu,\nu}|_{\Omega^{\mu,\nu}_c}|=\mu(\Omega^{\mu,\nu}_c)^{1/p-1/q},$ при этом если $p\neq q,$ то пространство (Ω, Σ, μ) состоит из одного атома.

Доказательство. $(i) \Longrightarrow (ii)$. Следует из предложений 1 и 8.

Доказательство. (t) \longrightarrow (t). Следует из предложении т и о. (ii) \Longrightarrow (i). Рассмотрим произвольную функцию $h \in L_q(\Omega, \nu)$, тогда существует функция $f \in L_p(\Omega_c^{\mu,\nu}, \mu|_{\Omega_c^{\mu,\nu}})$, такая, что $M_g^{\Omega_c^{\mu,\nu}}(f) = h|_{\Omega_c^{\mu,\nu}}$. По предложению 2 оператор $M_g^{\Omega_s^{\mu,\nu}}$ нулевой, поэтому $M_g(\widetilde{f}) = M_g^{\Omega_c^{\mu,\nu}}(\widetilde{f}|_{\Omega_c^{\mu,\nu}}) + M_g^{\Omega_s^{\mu,\nu}}(\widetilde{f}|_{\Omega_s^{\mu,\nu}}) = \widetilde{h}|_{\Omega_c^{\mu,\nu}}$. Так как $\nu(\Omega_s^{\mu,\nu}) = 0$, то $h = \widetilde{h}|_{\Omega_c^{\mu,\nu}}$. Таким образом, мы нашли функцию $\widetilde{f} \in L_p(\Omega,\mu)$, такую, что $M_g(\widetilde{f}) = h$ и $\|\widetilde{f}\|_{L_p(\Omega,\mu)} = \|f\|_{L_p(\Omega_c^{\mu,\nu},\mu|_{\Omega_c^{\mu,\nu}})} = \|h|_{\Omega_c^{\mu,\nu}}\|_{L_q(\Omega_c^{\mu,\nu},\nu|_{\Omega_c^{\mu,\nu}})} \le \|h\|_{L_p(\Omega_c^{\mu,\nu},\mu|_{\Omega_c^{\mu,\nu}})}$ $\|h\|_{L_q(\Omega,\nu)}$. Поскольку функция h произвольна, то оператор M_g является 1-топологически сюръективным. Для любой функции $f \in L_p(\Omega, \mu)$ выполнено

$$\begin{split} \|M_g(f)\|_{L_q(\Omega,\nu)} &= \|\widetilde{M_g^{\Omega_c^{\mu,\nu}}(f|_{\Omega_c^{\mu,\nu}})} + \widetilde{M_g^{\Omega_s^{\mu,\nu}}(f|_{\Omega_s^{\mu,\nu}})}\|_{L_q(\Omega,\nu)} = \|\widetilde{M_g^{\Omega_c^{\mu,\nu}}(f|_{\Omega_c^{\mu,\nu}})}\|_{L_q(\Omega,\nu)} = \\ &= \|M_g^{\Omega_c^{\mu,\nu}}(f|_{\Omega_c^{\mu,\nu}})\|_{L_q(\Omega_c^{\mu,\nu},\nu|_{\Omega_c^{\mu,\nu}})} = \|f|_{\Omega_c^{\mu,\nu}}\|_{L_p(\Omega_c^{\mu,\nu},\mu|_{\Omega_c^{\mu,\nu}})} \leqslant \|f\|_{L_p(\Omega,\mu)}. \end{split}$$

Так как f — произвольная функция, то M_q сжимающий оператор, но он также 1-топологически сюръективен. Таким образом, M_g коизометричен.

 $(ii) \iff (iii)$. Следует из предложения 8.

Теорема 9. Пусть (Ω, Σ, μ) , (Ω, Σ, ν) — два пространства с мерой, $p, q \in [1, +\infty]$ и $g \in L_0(\Omega, \Sigma)$. Тогда следующие условия эквивалентны:

- (i) $M_g \in \mathcal{B}(L_p(\Omega,\mu),L_q(\Omega,\nu))$ коизометрический оператор; (ii) $M_{\chi_{\Omega_p^{\mu,\nu}/g}} \in \mathcal{B}(L_q(\Omega,\nu),L_p(\Omega,\mu))$ изометрический правый обратный оператор к M_g .

Доказательство. $(i) \Longrightarrow (ii)$. Из предложения 1 следует, что оператор $M_g^{\Omega_c^{\mu,\nu}}$ коизометричен. По предложению 8 оператор $M_g^{\Omega_c^{\mu,\nu}}$ изометричен, обратим и, очевидно, $(M_g^{\Omega_c^{\mu,\nu}})^{-1} = M_{1/g}^{\Omega_c^{\mu,\nu}}$. Оператор $M_{\chi_{\Omega_c^{\mu,\nu}/g}}$ сжимающий, так как для любой функции $h\in L_q(\Omega,\nu)$ выполнено неравенство $\|M_{\chi_{\Omega_p^{\mu,\nu}/g}}(h)\|_{L_p(\Omega,\mu)}=$ $\|M_{1/g}^{\Omega_c^{\mu,\nu}}(h|_{\Omega_c^{\mu,\nu}})\|_{L_p(\Omega_c^{\mu,\nu},\mu|_{\Omega_c^{\mu,\nu}})} = \|h|_{\Omega_c^{\mu,\nu}}\|_{L_q(\Omega_c^{\mu,\nu},\nu|_{\Omega_c^{\mu,\nu}})} \leqslant \|h\|_{L_q(\Omega,\nu)}.$ Поскольку $\nu(\Omega\setminus\Omega_c^{\mu,\nu}) = 0$, то $\chi_{\Omega_c^{\mu,\nu}} = \chi_{\Omega}$, поэтому для любой функции $h\in L_q(\Omega,\nu)$ выполнено $M_g(M_{\chi_{\Omega_c^{\mu,\nu}}/g}(h)) = h\cdot\chi_{\Omega_c^{\mu,\nu}} = h\cdot\chi_{\Omega} = h$. Это означает, что M_q имеет правый обратный оператор умножения. Рассмотрим произвольную функцию $h \in L_q(\Omega, \nu)$, тогда $\|M_{\chi_{\Omega_c^{\mu,\nu}/g}(h)}\|_{L_p(\Omega,\mu)} \geqslant \|M_g\| \|M_g(M_{\chi_{\Omega_c^{\mu,\nu}/g}(h)})\|_{L_q(\Omega,\nu)}$

 $\geqslant \|h\|_{L_q(\Omega,
u)}$. Так как h — произвольная функция, то оператор $M_{\chi_{\Omega^{\mu,
u}/g}}$ является 1-топологически инъективным, но он также сжимающий, следовательно, изометрический.

 $(ii) \Longrightarrow (i).$ Рассмотрим произвольную функцию $h \in L_q(\Omega, \nu)$ и функцию $f = M_{\chi_{\Omega^{\mu,\nu}/g}}(h).$ Тогда $M_g(f)=M_g(M_{\chi_{\Omega_c^{\mu,\nu}/g}}(h))=h$ и $\|f\|_{L_p(\Omega,\mu)}\leqslant \|h\|_{L_q(\Omega,\nu)}.$ Так как h — произвольная функция, то M_g строго 1-топологически сюръективен. Пусть $f\in L_p(\Omega,\mu)$. Ввиду изометричности оператора $M_{\chi_{\Omega_c^{\mu,\nu}/g}}$ имеем $\|M_g(f)\|_{L_q(\Omega,\nu)} = \|M_{\chi_{\Omega_c^{\mu,\nu}/g}}(M_g(f))\|_{L_p(\Omega,\mu)} = \|f\chi_{\Omega_c^{\mu,\nu}}\|_{L_p(\Omega,\mu)} \leqslant \|f\|_{L_p(\Omega,\mu)}.$ Раз f — произвольная функция, то M_q — сжимающий оператор, но он также строго 1-топологически сюръективен, следовательно, строго коизометричен.

Из доказательства видно, что каждый коизометрический оператор умножения строго коизометричен.

3. Гомологическая тривиальность категории $B(\Omega)$ -модулей L_p . Результаты пп. 1, 2 могут быть сформулированы следующим образом:

- (i) все строго коизометрические и изометрические морфизмы в $B(\Omega)$ -**modLp**₁ суть в точности ретракции и коретракции соответственно;
- (ii) все топологически сюръективные и топологически инъективные морфизмы в $B(\Omega)$ -modLp суть в точности ретракции и коретракции соответственно.

Теперь напомним определения проективности, инъективности и плоскости из работ [1-3]. Через **Set** мы обозначаем категорию множеств, а через **Ban** категорию банаховых простраств.

Определение 2. Пусть ${\bf C}$ — некоторая категория левых A-модулей над банаховой алгеброй A. Тогда A-модуль X в ${\bf C}$ называется

- (i) метрически (топологически) проективным, если ковариантный функтор $F_p := \operatorname{Hom}_{\mathbf{C}}(X, -) : \mathbf{C} \to \mathbf{Ban}_1$ ($F_p := \operatorname{Hom}_{\mathbf{C}}(X, -) : \mathbf{C} \to \mathbf{Ban}$) переводит всякий строго коизометрический (топологически сюръективный) морфизм ξ в строго коизометрический (топологически сюръективный);
- (іі) метрически (топологически) инъективным, если контравариантный функтор $F_i := \operatorname{Hom}_{\mathbf{C}}(-,X) : \mathbf{C} \to \mathbf{Ban}_1$ ($F_i := \operatorname{Hom}_{\mathbf{C}}(-,X) : \mathbf{C} \to \mathbf{Ban}$) переводит всякий изометрический (топологически инъективный) морфизм ξ в строго коизометрический (топологически сюръективный);
- (ііі) метрически (топологически) плоским, если ковариантный функтор $F_f := -\widehat{\otimes}_{B(\Omega)} X : \mathbf{C} \to \mathbf{Ban}_1$ ($F_f := -\widehat{\otimes}_{B(\Omega)} X : \mathbf{C} \to \mathbf{Ban}$) переводит всякий изометрический (топологически инъективный) морфизм ξ в изометрию (топологически инъективный оператор).

Теорема 10. Пусть (Ω, Σ) — измеримое пространство и $\mu \in M(\Omega)$, тогда $L_p(\Omega, \mu)$ — метрически (топологически) проективный, инъективный и плоский модуль в $B(\Omega)$ -modLp₁ $(B(\Omega)$ -modLp).

Доказательство. Мы проведем доказательство лишь для первого случая, поскольку для второго случая доказательства аналогичны. Обозначим $X = L_p(\Omega, \mu)$ и $\mathbf{C} = B(\Omega)$ -modLp₁.

Так как любой строго коизометрический морфизм ξ в \mathbf{C} есть ретракция, то морфизм $F_p(\xi)$ — ретракция в \mathbf{Ban}_1 , а значит, строго коизометричен. Поскольку морфизм ξ произволен, то модуль X метрически проективен.

Так как любой изометрический морфизм ξ в ${\bf C}$ есть коретракция, то морфизм $F_i(\xi)$ — ретракция в ${\bf Ban}_1$, а значит, строго коизометричен. Поскольку морфизм ξ произволен, то модуль X метрически интективен

Так как любой изометрический морфизм ξ в \mathbf{C} есть коретракция, то морфизм $F_f(\xi)$ — коретракция в \mathbf{Ban}_1 , и в частности изометрия. Поскольку морфизм ξ произволен, то модуль X метрически плоский.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Хелемский А.Я.* Метрическая свобода и проективность для классических и квантовых нормированных модулей // Матем. сб. 2013. **204**, №7. 127–158.
- 2. Helemskii~A.Ya. Extreme version of projectivity for normed modules over sequence algebras // Can. J. Math. 2013. **65**. 559–574.
- 3. Helemskii A. Ya. Metric version of flatness and Hahn-Banach type theorems for normed modules over sequence algebras // Stud. Math. 2011. **206**, No. 2. 135–160.
- 4. Xелемский A.Я. Тензорные произведения и мультипликаторы модулей L_p на локально компактных пространствах с мерой // Матем. зам. 2014. **96**, №3. 450–469.
- 5. Богачев В.И. Основы теории меры. 2-е изд. М.; Ижевск: РХД, 2006.
- 6. Albiac F., Kalton N.J. Topics in Banach space theory. Springer Inc. New-York, 2006.

Поступила в редакцию 13.02.2015