Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 2

ID: 952091294

Term: Spring 2025 Due Date: 16^{th} April, 2025

Exercise 11.1.2

True or false? $Gal(k(x)/k) = \{1\}$, where k(x) is the field of rational functions.

Solution: This is false. Suppose \mathbb{K} has characteristic not 2 and consider the field homomorphism $\phi: k(x) \to k(x)$ by sending x to 2x. ϕ has an inverse ϕ^{-1} sending x to $\frac{1}{2}x$. So ϕ is a field automorphism of \mathbb{K} and fixes the base field \mathbb{K} .

Exercise 11.1.9

Let \mathbb{K}/\mathbb{k} be a finite field extension. Then $|\operatorname{Gal}(\mathbb{K}/\mathbb{k})| \leq [\mathbb{K} : \mathbb{k}]$, and if $|\operatorname{Gal}(\mathbb{K}/\mathbb{k})| < [\mathbb{K} : \mathbb{k}]$, then the fixed subfield $\operatorname{Gal}(\mathbb{K}/\mathbb{k})^*$ properly contains \mathbb{k} .

Solution: Let $G = \operatorname{Gal}(\mathbb{K}/\mathbb{k})$ and $[\mathbb{K} : \mathbb{k}] = n$. We know G is a finite group and assume $|G| = m < \infty$. For ang $g \in G$, we could define a \mathbb{K} -linear map

$$\mathbb{K} \otimes_{\mathbb{k}} \mathbb{K} \to \mathbb{K},$$
$$x \otimes y \mapsto q(x)y$$

Consider the direct sum of all these distinct \mathbb{K} -linear maps $\phi = g_1 \oplus \cdots \oplus g_m : \mathbb{K} \otimes_{\mathbb{k}} \mathbb{K} \to \mathbb{K}^m$. We need to show that this map ϕ is surjective. Consider the \mathbb{K} -linear dual map

$$\phi^* : \hom_{\mathbb{K}}(\mathbb{K}^m, \mathbb{K}) \to \hom_{\mathbb{K}}(\mathbb{K} \otimes_{\mathbb{k}} \mathbb{K}, \mathbb{K})$$

Identify $\hom_{\mathbb{K}}(\mathbb{K}^m, \mathbb{K}) \cong \mathbb{K}^m$ and by $\hom - \otimes$ adjunction,

$$\begin{aligned} \hom_{\mathbb{K}}(\mathbb{K} \otimes_{\mathbb{k}} \mathbb{K}, \mathbb{K}) &\cong \hom_{\mathbb{k}}(\mathbb{K}, \hom_{\mathbb{K}}(\mathbb{K}, \mathbb{K})) \\ &\cong \hom_{\mathbb{k}}(\mathbb{K}, \mathbb{K}) \end{aligned}$$

Given a m-tuple $(z_1, \ldots, z_m) \in \mathbb{K}^m$, by definition $\phi^*(z_1, \ldots, z_m) \in \text{hom}_{\mathbb{K}}(\mathbb{K}, \mathbb{K})$ and it sends $x \in \mathbb{K}$ to $z_1g_1(x) + \cdots + z_mg_m(x) \in \mathbb{K}$. Suppose $(z_1, \ldots, z_m) \in \text{ker } \phi^*$, then $z_1g_1 + \cdots + z_mg_m$ is the zero map and by Dedekind's Lemma, $z_1 = \cdots = z_m = 0$ since g_1, \ldots, g_m are \mathbb{K} -linearly independent. This proves ϕ^* is injective. Thus, ϕ is surjective. so we have

$$\dim_{\mathbb{K}} \mathbb{K} \otimes_{\mathbb{k}} \mathbb{K} > m$$

Since $[\mathbb{K} : \mathbb{k}] = n$, so $\mathbb{K} \otimes_{\mathbb{k}} \mathbb{K}$ is a *n*-dimensional \mathbb{K} -vector space, therefore, $|\operatorname{Gal}(\mathbb{K}/\mathbb{k})| \leq [\mathbb{K} : \mathbb{k}]$. Now suppose $|G| = |\operatorname{Gal}(\mathbb{K}/\mathbb{k})| = m < n = [\mathbb{K} : \mathbb{k}]$. Write $\mathbb{F} = \operatorname{Gal}(\mathbb{K}/\mathbb{k})^*$ as the fixed subfield under the automorphism group $\operatorname{Gal}(\mathbb{K}/\mathbb{k})$. By Theorem 11.1.6, we have

$$[\mathbb{K} : \mathbb{F}] = |G| = m < n = [\mathbb{K} : \mathbb{k}]$$

This implies that \mathbb{F} strictly contains \mathbb{k} .

Exercise 11.2.8

Construct subfields of \mathbb{C} which are splitting fields over \mathbb{Q} for the polynomials

- (a) $x^3 1$
- (b) $x^4 5x^2 + 6$
- (c) $x^6 8$

Find the degrees of thoses fields as extensions over Q.

Solution:

(a) Let ξ be the 3rd primitive root of unit. Note that $x^3 - 1$ splits into

$$x^3 - 1 = (x - 1)(x - \xi)(x - \xi^2)$$

over $Q(\xi)$. So $Q(\xi)$ is the splitting field and $[\mathbb{Q}(\xi):\mathbb{Q}]=2$ as x^2+x+1 is the irreducible minimal polynomial of ξ over \mathbb{Q} .

(b) Note that

$$x^4 - 5x^2 + 6 = (x^2 - 2)(x^2 - 3).$$

Both $x^2 - 2$ and $x^2 - 3$ are irreducible over \mathbb{Q} . The splitting field is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and we have

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2 \cdot 2 = 4.$$

(c) Note that

$$x^6 - 8 = (x^2 - 2)(x^4 + 2x^2 + 4)$$

Let $\xi = e^{(\pi/3)i} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ satisfying $\xi^3 + 1 = 0$. By calculation, over the complex number \mathbb{C} , we have

$$x^4 + 2x^2 + 4 = (x - \sqrt{2}\xi)(x + \sqrt{2}\xi)(x - \sqrt{2}\xi^2)(x + \sqrt{2}\xi^2).$$

The minimal polynomial of ξ over \mathbb{Q} is $x^2 - x + 1$. So the splitting field is $\mathbb{Q}(\sqrt{2}, \xi)$, and we have

$$[\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\xi):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4.$$

Exercise 11.3.2

True or false? If $[\mathbb{K} : \mathbb{k}] = 2$, then \mathbb{K}/\mathbb{k} is normal.

Solution: This is true. Let $\alpha \in \mathbb{K}$ and $\alpha \notin \mathbb{k}$. Denote the minial polynomial of α over \mathbb{k} by f. We have $\deg f = 2$ because $[\mathbb{K} : \mathbb{k}] = 2$. Suppose f has two roots α and β . We need to show that $\beta \in \mathbb{k}(\alpha)$. Note that f can be written as

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

We know $\alpha + \beta \in \mathbb{k}$ and $\alpha \in \mathbb{k}(\alpha)$, so $\beta \in \mathbb{k}(\alpha)$. This means \mathbb{K} is the splitting field of f over \mathbb{k} , and by Theorem 11.3.3, \mathbb{K}/\mathbb{k} is normal.

Exercise 11.3.6

Which of the following extensions are normal?

- (a) $\mathbb{Q}(x)/\mathbb{Q}$
- (b) $\mathbb{Q}(\sqrt{-5})/\mathbb{Q}$
- (c) $\mathbb{Q}(\sqrt[7]{5})/\mathbb{Q}$
- (d) $\mathbb{Q}(\sqrt{5}, \sqrt[7]{5})/\mathbb{Q}(\sqrt[7]{5})$
- (e) $\mathbb{R}(\sqrt{-7})/\mathbb{R}$

Solution:

- (a) This is not an algebraic extension so it is not normal.
- (b) We know that $\sqrt{-5}$ has minimal polynomial $x^2 + 5$ over \mathbb{Q} . Note that both of the two roots $\sqrt{-5}$ and $-\sqrt{-5}$ are in the field $\mathbb{Q}(\sqrt{-5})$, so $\mathbb{Q}(\sqrt{-5})$ is the splitting field of the polynomial $x^2 + 5$. The field extension $\mathbb{Q}(\sqrt{-2})/\mathbb{Q}$ is normal.
- (c) $\sqrt[7]{5}$ has minimal polynomial $x^7 5$ over \mathbb{Q} . Let ξ be the 7th primitive root of unity and $\sqrt[7]{5}\xi$ is a root of $x^7 + 5$ but $\xi \notin \mathbb{Q}(\sqrt[7]{5})$. So the field extension $\mathbb{Q}(\sqrt[7]{5})/\mathbb{Q}$ is not normal.
- (d) Write $\mathbb{Q}(\sqrt{5}, \sqrt[7]{5}) = \mathbb{Q}(\sqrt[7]{5})(\sqrt{5})$. The minimal polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt[7]{5})$ is $x^2 5$, so

$$[\mathbb{Q}(\sqrt[7]{5})(\sqrt{5}):\mathbb{Q}(\sqrt[7]{5})]=2.$$

According to what we have proved in Exercise 11.3.2, this is a normal extension.

(e) The minimal polynomial of $\sqrt{-7}$ over \mathbb{R} is $x^2 + 7$. So the field extension $\mathbb{R}(\sqrt{-7})/\mathbb{R}$ has degree 2 and by Exercise 11.3.2, we know that this is a normal extension.

Exercise (complexification/realification functors)

- (a) Construct an isomorphism of rings $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$.
- (b) Let $\text{Vect}_{\mathbb{R}}$ (resp. $\text{Vect}_{\mathbb{C}}$) denote the category of vector spaces over \mathbb{R} (resp. over \mathbb{C}). Consider the realification and complexification functors

$$R: \mathrm{Vect}_{\mathbb{C}} \to \mathrm{Vect}_{\mathbb{R}}, \quad C: \mathrm{Vect}_{\mathbb{R}} \to \mathrm{Vect}_{\mathbb{C}}$$

where R sends $V \in \operatorname{Vect}_{\mathbb{C}}$ to itself viewed as a real vector space (forgetting part of the structure), while C sends $V \in \operatorname{Vect}_{\mathbb{R}}$ to $V \otimes_{\mathbb{R}} \mathbb{C}$ with the complex structure $z \cdot (v \otimes x) =$

 $v \otimes zx$, for $x, z \in \mathbb{C}$, $v \in V$. Construct an isomorphism of functors

$$CR(V) \cong V \oplus \overline{V}$$

for $V \in \operatorname{Vect}_{\mathbb{C}}$, where \overline{V} denote the same space V with the conjugate complex structure, i.e., the multiplication by $z \in \mathbb{C}$ in \overline{V} is given by $z * v := \overline{z} \cdot v$, where $z \mapsto \overline{z}$ is the complex conjugation.

Solution:

(a) We know that $\mathbb{C} \cong \mathbb{R}[x]/(x^2+1)$ as \mathbb{R} -algebras. By Chinese Remainder Theorem, we have

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{R}[x]/(x^2+1) \otimes_{\mathbb{R}} \mathbb{C}$$

$$\cong \mathbb{C}[x]/(x^2+1)$$

$$\cong (\mathbb{C}[x]/(x+i) \oplus \mathbb{C}[x]/(x-i))$$

$$\cong \mathbb{C} \oplus \mathbb{C}.$$

We still need to prove that

Claim: $\mathbb{R}[x]/(x^2+1) \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}[x]/(x^2+1)$ is a ring isomorphism.

<u>Proof:</u> We know every element in $\mathbb{R}[x]/(x^2+1)$ can be written as a+bx for some $a,b\in\mathbb{R}$. Consider the map

$$\phi: \mathbb{R}[x]/(x^2+1) \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}[x]/(x^2+1),$$
$$(a+bx) \otimes z \mapsto az + bzx$$

This is a well-defined ring map because

$$\phi((a+bx)\otimes z)\phi((c+dx)\otimes w) = (az+bzx)(cw+dwx)$$

$$= aczw + (bzcw+azdw)x + bzdwx^{2}$$

$$= (aczw-bzdw) + (bzcw+azdw)x$$

$$= (ac-bd)zw + (bc+ad)zwx$$

$$= \phi(((ac-bd) + (bc+ad)x)\otimes zw)$$

$$= \phi(((a+bx)\otimes z)((c+dx)\otimes w))$$

It is easy to see ϕ is injective and as an \mathbb{R} -vector space, we have

$$\dim_{\mathbb{R}}(\mathbb{R}[x]/(x^2+1)\otimes_{\mathbb{R}}\mathbb{C}) = \dim_{\mathbb{R}}\mathbb{C}[x]/(x^2+1) = 4.$$

So ϕ is an isomorphism.

(b) For \mathbb{C} -vector spaces V, W, we can check by definition that $\overline{V \oplus W} \cong \overline{V} \oplus \overline{W}$. We know that a \mathbb{C} -vector space V can be written as

$$V = \bigoplus_{i \in I} V_i$$

for some index set I where V_i is a one dimensional complex vector space. We only need to

prove this result for one dimensional complex vector space. Indeed, we have

$$CR(V) = V \otimes_{\mathbb{R}} \mathbb{C}$$

$$\cong (\bigoplus_{i \in I} V_i) \otimes_{\mathbb{R}} \mathbb{C}$$

$$\cong \bigoplus_{i \in I} (V_i \otimes_{\mathbb{R}} \mathbb{C})$$

$$\cong \bigoplus_{i \in I} (\overline{V_i} \oplus V_i)$$

$$\cong (\bigoplus_{i \in I} \overline{V_i}) \oplus (\bigoplus_{i \in I} V_i)$$

$$= \overline{V} \oplus V.$$

Suppose V is generated by v as a \mathbb{C} -vector space. Define the following map

$$\phi: R(V) \otimes_{\mathbb{R}} \mathbb{C} \to \overline{V} \oplus V,$$
$$u \otimes z \mapsto (z * u, zu) = (\bar{z}u, zu).$$

This is a well-defined map because for any $w \in \mathbb{C}$, we have

$$\phi(w \cdot (u \otimes z)) = \phi(u \otimes wz)$$

$$= (\overline{wz}u, wzu)$$

$$= ((wz) * u, wzu)$$

$$= w \cdot (z * u, zu)$$

$$= w \cdot \phi(u \otimes z).$$

We know R(V) is a 2-dimensional \mathbb{R} -vector space generated by v and iv. Every $u \in R(V) \otimes_{\mathbb{R}} \mathbb{C}$ can be written as

$$u = v \otimes x + iv \otimes y$$

for some $x, y \in \mathbb{C}$. Suppose $u \in \ker \phi$, then we have

$$0 = \phi(u) = \phi(v \otimes x + iv \otimes y) = \phi(v \otimes x) + \phi(iv \otimes y) = (\bar{x}v + \bar{y}iv, xv + yiv)$$

This implies

$$\begin{cases} \bar{x} + i\bar{y} = 0\\ x + iy = 0 \end{cases}$$

Note that $x + \bar{x} = 2\text{Re}(x)$ and $x - \bar{x} = 2\text{Im}(x)$, so we have

$$\begin{cases} 0 = 2\operatorname{Re}(x) = 2\operatorname{Re}(y) \\ 0 = 2\operatorname{Im}(x) = 2\operatorname{Im}(y) \end{cases}$$

This implies x=y=0, namely u=0. We have proved $\ker \phi=0$, thus, ϕ is injective. Moreover,

$$2 = \dim_{\mathbb{C}} CR(V) = \dim_{\mathbb{C}}(\overline{V} \oplus V).$$

This implies ϕ is an isomorphism.