Sharif University of Technology Computer Engineering Department Ali Sharifi-Zarchi

Homework Assignment 0 Machine Learning for Bioinformatics, Spring 2023

1401-11-28

Peyman Naseri, Matin Ale Mohammad, Sana Harighi, Alireza Gargoori

1 Probability & Statistics

1.1

Suppose $X_1, X_2, ...$ are independent normal random variables with mean 0 and variance 9. N is also an integer random variable, independent of X_i s, with mean 2 and variance 1. We define $S \triangleq \sum_{i=1}^{N} X_i$.

- Prove: $Var(X) = \mathbb{E}(Var(X|Y)) + Var(\mathbb{E}(X|Y))$
- Find the variance of S.
- Derive the correlation coefficient between the random variables S and N.

1.2

Suppose the data samples of an experiment are drawn from a normal distribution $\mathcal{N}(\mu, \sigma^2)$. We assume that the variance of this population σ^2 , is known, but its mean μ , is unknown, and we want to estimate it from N independent observations $X_1,...,X_N$.

- Find the ML estimate for the population mean.
- Suppose that the prior distribution of the parameter μ is the normal distribution $\mathcal{N}(\alpha, \beta^2)$. Find the MAP estimate for the population mean. What is the effect of choosing this prior on the posterior distribution?
- Explain the relationship between these two estimates when the number of samples is increased.

1.3

Suppose $X_1, X_2, ..., X_n$ are iid random variables. Find the probability density function of $Y_1 = max[X_1, X_2, ..., X_n]$ and $Y_2 = min[X_1, X_2, ..., X_N]$.

2 Linear Algebra

2.1

Suppose $A, B \in M_{m \times n}(\mathbb{R})$. Show that $\langle A, B \rangle = tr(B^T A)$ is an inner product.

2.2

Assume that x is a vector and A is a square matrix. Show that:

$$\bullet \ \frac{\partial x^T A x}{\partial x} = 2x^T A$$

•
$$\frac{\partial trace(x^T A x)}{\partial x} = x^T (A + A^T)$$

2.3

Suppose $\lambda_1, \lambda_2, ..., \lambda_n$ are the eignvalues of matrix A, Prove:

- $\lambda_1 + \lambda_2 + \dots + \lambda_n = trace(A)$
- $\lambda_1 \lambda_2 ... \lambda_n = det(A)$
- AB and BA have the same set of eigenvalues.
- A and A^T have the same set of eigenvalues.