Common Code

I created a decimal class to avoid rounding errors with floating point keys for std::map.

```
decimal.hpp:
#pragma once
#include <iostream>
#include <algorithm>
#include <type_traits>
#include <stdint.h>
#include <vector>
class decimal;
namespace dec { int pow10(int); }
std::istream& operator>>(std::istream&, decimal&);
std::ostream& operator<<(std::ostream&, const decimal&);</pre>
class decimal {
private:
    typedef int64_t v_type;
    typedef unsigned int r_type;
    v type value;
    r type radix;
public:
    decimal() : value(0), radix(0) {}
    decimal(const decimal& obj) { value = obj.value; radix = obj.radix; }
    decimal& operator=(const decimal& obj) { value = obj.value; radix =
obj.radix; return *this; }
    r_type getRadix() const { return radix; }
    void setRadix(r_type);
    // Primitive Type Conversions
    template <typename N, typename
std::enable_if<std::is_arithmetic<N>::value>::type* = nullptr>
    explicit operator N() const { return (N)value / dec::pow10(radix); }
    template <typename N, typename
std::enable if<std::is arithmetic<N>::value>::type* = nullptr>
    decimal(const N& n, int r) { value = (n * dec::pow10(r + 1) + 5) / 10;
radix = r; }
    template <typename N, typename
std::enable_if<std::is_arithmetic<N>::value>::type* = nullptr>
    decimal(const N& n) {
        value = (int)n;
        radix = 0;
        // Determine an appropriate radix
        N r = (n - value) * 10;
        int temp = (int)r;
        while(temp != 0) {
```

```
++radix;
            value = (value * 10) + temp;
            r = (r - temp) * 10;
            temp = (int)r;
        }
    }
    // Comparison operators
   bool operator==(const decimal& n) const { decimal t = *this - n; return
t.value == 0; }
   bool operator!=(const decimal& n) const { decimal t = *this - n; return
t.value != 0; }
   bool operator< (const decimal& n) const { decimal t = *this - n; return</pre>
t.value < 0; }
    bool operator<=(const decimal& n) const { decimal t = *this - n; return</pre>
t.value <= 0; }
    bool operator> (const decimal& n) const { decimal t = *this - n; return
t.value > 0; }
   bool operator>=(const decimal& n) const { decimal t = *this - n; return
t.value >= 0; }
    // Arithmetic Operators
    friend decimal operator+(const decimal& 1, const decimal& r) { return
decimal(1) += r; }
    friend decimal operator-(const decimal& 1, const decimal& r) { return
decimal(1) -= r; }
    // Compound Arithmetic Operators
    decimal& operator+=(const decimal&);
   decimal& operator-=(const decimal&);
    // Multiplicative Operators
    friend decimal operator*(const decimal& 1, const decimal& r) { return
(double)1 * (double)r; }
    friend decimal operator/(const decimal& 1, const decimal& r) { return
(double)r * (double)r; }
    // Compound Multiplicative Operators
   decimal& operator*=(const decimal& n) { *this = *this * n; return *this;
}
   decimal& operator/=(const decimal& n) { *this = *this / n; return *this;
};
decimal.cpp:
#include "decimal.hpp"
int dec::pow10(int pow) {
    static std::vector<int> list{1, 10, 100, 1000, 10000, 100000, 1000000)};
    static int n = list.size() - 1;
    while (n < pow) {</pre>
        list.push_back(10 * list[n - 1]); ++n;
   return list[pow];
}
```

```
std::istream& operator>>(std::istream& in, decimal& obj) {
    double d;
    in >> d;
    obj = d;
    return in;
}
std::ostream& operator<<(std::ostream& out, const decimal& obj) {
    out << (double)obj;</pre>
    return out;
void decimal::setRadix(r_type r) {
    if (r > radix) { value *= dec::pow10(r - radix); radix = r; }
    if (r < radix) { value = ((value / dec::pow10(radix + 1 - r)) + 5) / 10;</pre>
radix = r; }
decimal& decimal::operator+= (const decimal& n) {
    if (n.radix > radix) { setRadix(n.radix); }
    value += n.value * dec::pow10(radix - n.radix);
    return *this;
decimal& decimal::operator-=(const decimal& n) {
    if (n.radix > radix) { setRadix(n.radix); }
    value -= n.value * dec::pow10(radix - n.radix);
    return *this;
}
```

25.21 The logistic model is used to simulate population as in

$$\frac{dp}{dt} = k_{gm} \left(1 - p/p_{\text{max}}\right)p$$

where p= population, $k_{gm}=$ the maximum growth rate under unlimited conditions, and $p_{\max}=$ the carrying capacity. Simulate the world's population from 1950 to 2000 using one of the numerical methods described in this chapter. Employ the following initial conditions and parameter values for your simulation: p_0 (in 1950) = 2555 million people, $k_{gm}=0.026/\text{yr}$, and $p_{\max}=12,000$ million people. Have the function generate output corresponding to the dates for the following measured population data. Develop a plot of your simulation along with the data.

t	1950	1960	1970	1980	1990	2000
p	2555	3040	3708	4454	5276	6079

Problem 1:					
t	p	p_exact	p_actual		
1950	2555	2555	2555		
1960	3116.62	3040	3040		
1970	3752.64	3708	3708		
1980	4453.39	4454	4454		
1990	5202.45	5276	5276		
2000	5977.7	6079	6079		

Your table of results show the values of population, p, predicted for the years, 1950 to 2000, by solving the ODE shown above using the Runge-Kutta 4th-order method. The table of results should also show the values predicted by the exact solution to the ODE (see below), as well as the actual population values shown in the table describing problem 25.21 as shown above.

Code: (notice my RK4 method is the same in each c++ problem, I just change the three typedefs)

```
#include "a6p1.hpp"
#include <iomanip>
#include <iostream>
#include <functional>
#include <map>
#include "../shared/decimal.hpp"
typedef std::function<double(const decimal&, const double&)> ODE;
typedef std::map<decimal, double> Table;
typedef std::pair<decimal, double> Point;
Table RK4(ODE f, Point init, decimal t_final, double h) {
    double k1, k2, k3, k4,
        s = init.second;
    decimal t = init.first;
    Table data{init};
    do {
        k1 = f(t, s);
        k2 = f(t + h / 2, s + k1 * h / 2);
        k3 = f(t + h / 2, s + k2 * h / 2);
        k4 = f(t + h, s + k3 * h);
        s += h * (k1 + 2 * (k2 + k3) + k4) / 6;
        t += h;
        data.insert(std::make_pair(t, s));
    } while (t < t_final);</pre>
    return data;
}
```

```
void assign6::Prob1() {
    Table exact{
        {1950, 2555},
        {1960, 3040},
        {1970, 3708},
        {1980, 4454},
        {1990, 5276},
        {2000, 6079},
    };
    Table actual{
        {1950, 2555},
        {1960, 3040},
        {1970, 3708},
        {1980, 4454},
        {1990, 5276},
        {2000, 6079},
    };
    const double kgm = 0.026;
    const double pmax = 12000; // p measured in millions
    ODE dpdt = [&kgm, &pmax](const decimal& t, const double& p) {
        return kgm * (1 - p / pmax) * p;
    };
    Table results = RK4(dpdt, std::make_pair(1950, 2555), 2000, 0.1);
    std::cout << "Problem 1: " << std::left << std::endl
        << std::setw(10) << "t"
        << std::setw(10) << "p"
        << std::setw(10) << "p_exact"
        << std::setw(10) << "p_actual"
        << std::endl
        << "----" << std::endl;</pre>
    for (decimal year = 1950; year <= 2000; year += 10) {</pre>
        std::cout
            << std::setw(10) << (double)year
            << std::setw(10) << results[year]</pre>
            << std::setw(10) << exact[year]</pre>
            << std::setw(10) << actual[year]
            << std::endl;
    std::cout << std::endl;</pre>
```

Assignment 6 - Problem [2]: Prepare a SCILAB script, similar to the one shown above, to solve problem 25.21, i.e., the same problem solved as Problem [1] for this Assignment:

25.21 The logistic model is used to simulate population as in

$$\frac{dp}{dt} = k_{gm} \left(1 - p/p_{\text{max}}\right)p$$

where p= population, $k_{gm}=$ the maximum growth rate under unlimited conditions, and $p_{\max}=$ the carrying capacity. Simulate the world's population from 1950 to 2000 using one of the numerical methods described in this chapter. Employ the following initial conditions and parameter values for your simulation: p_0 (in 1950) = 2555 million people, $k_{gm}=0.026/\text{yr}$, and $p_{\max}=12,000$ million people. Have the function generate output corresponding to the dates for the following measured population data. Develop a plot of your simulation along with the data.

t	1950	1960	1970	1980	1990	2000
P	2555	3040	3708	4454	5276	6079

Produce a plot showing the numerical solution for the values of t shown in the table given in Problem 25.21, together with the exact solution:

$$p(t) = \frac{p_{max}}{1 - \left(1 - \frac{p_{max}}{p_0}\right) \cdot e^{-k} gm(t - t_0)}$$

-->exec('C:\Users\John\Source\USU\ENGR 2450\src\assign6\scilab\Prob2.sci', -1)

x y

1950. 2555. 1960. 3116.6194 1970. 3752.6407 1980. 4453.3888 1990. 5202.448 2000. 5977.7003

Solving dp/dt = k(1-p/pmax)p


```
function [z] = \underline{f}(x, y)
 z = .026 * (1 - y / 12000.0) * y;
endfunction;
x0 = 1950.0; y0 = 2555.0; xn = 2000.0; h = 10.0;
x = [x0:h:xn];
y = ode("rk", y0, x0, x, f);
disp("x y"); // show titles for output table
disp("----"); // show a line for the table
disp([x' y']);
// fe(x) = exact solution
function z = fe(x)
  \mathbf{z} = 12000 / (1 - (1 - (12000 / 2555.0)) * \exp(-.026 * (\mathbf{x} - 1950.0)));
endfunction;
xe = [x0:h / 10:xn];
n = length(xe);
for i = 1:n
  ye(i) = \underline{fe}(xe(i));
end;
// NEXT: plot numerical solution as red circles and
// exact solution as a continuous blue line
plot(x, y, 'ro', xe, ye, '-b');
legend('RK4', 'Exact', 3);
xtitle('Solving dp/dt = k(1-p/pmax)p', 't', 'p');
```

Assignment 6 - Problem [3]: Prepare a SCILAB script, similar to the one shown above, to solve problem 25.17, shown below:

25.17 If water is drained from a vertical cylindrical tank by opening a valve at the base, the water will flow fast when the tank is full and slow down as it continues to drain. As it turns out, the rate at which the water level drops is:

$$\frac{dy}{dt} = -k\sqrt{y}$$

where k is a constant depending on the shape of the hole and the cross-sectional area of the tank and drain hole. The depth of the water y is measured in meters and the time t in minutes. If k = 0.06, determine how long it takes the tank to drain if the fluid level is initially 3 m. Solve by applying Euler's equation and writing a computer program or using Excel. Use a step of 0.5 minutes.

- Notes: (1) Do not solve this problem using the Euler's method as indicated in the problem statement. Instead, use a script similar to the one used in this document. Select a vector of values of t = [0, 0.5, 1.0, ..., tmax]. Guess the value of tmax so that your numerical solution shows that y becomes zero for some time t in the range 0 < t < tmax.
 - (2) Use the following exact solution:

$$y = \frac{k^2}{4} \cdot \left(\frac{2}{k} \cdot \sqrt{y_0} - t\right)^2$$

5/6

1 Apr 2014 22:55:58 - ENGR2450SCILABFunctionODE.sm

(3) In your assignment report show the SCILAB script you used to solve the problem, the table of numerical results, and the graph showing the numerical and the

> exec('	C:\Users\John\Source\USU\ENGR	27.5	0.8227412
· ·	ssign6\scilab\Prob3.sci', -1)	28.	0.7957546
2130 (810 (4	bbigno (bciiab (iiobbibci , i,	28.5	0.7692181
		1	
ху		29.	0.7431316
	_	29.5	0.7174951
0.	3.	30.	0.6923085
0.5	2.9482635	30.5	0.6675720
1.	2.896977	31.	0.6432855
1.5	2.8461404	31.5	0.6194490
2.	2.7957539	32.	0.5960624
2.5	2.7458174	32.5	0.5731259
3.	2.6963309	33.	0.5506394
3.5	2.6472943	33.5	0.5286029
4.	2.5987078	34.	0.5070164
4.5	2.5505713	34.5	0.4858798
5.	2.5028848	35.	0.4651933
5.5	2.4556482	35.5	0.4449568
		1	
6.	2.4088617	36.	0.4251703
6.5	2.3625252	36.5	0.4058337
7.	2.3166387	37.	0.3869472
7.5	2.2712021	37.5	0.3685107
8.	2.2262156	38.	0.3505242
8.5	2.1816791	38.5	0.3329876
9.	2.1375926	39.	0.3159011
9.5	2.093956	39.5	0.2992646
10.	2.0507695	40.	0.2830781
10.5	2.008033	40.5	0.2673415
11.	1.9657465	41.	0.2520550
11.5	1.9239099	41.5	0.2372185
12.	1.8825234	42.	0.2228320
12.5	1.8415869	42.5	0.2088954
13.	1.8011004	43.	0.1954089
13.5	1.7610638	43.5	0.1823724
14.	1.7214773	44.	0.1697859
14.5	1.6823408	44.5	0.1576493
		1	
15.	1.6436543	45.	0.1459628
15.5	1.6054177	45.5	0.1347263
16.	1.5676312	46.	0.1239398
16.5	1.5302947	46.5	0.1136032
17.	1.4934082	47.	0.1037167
17.5	1.4569717	47.5	0.0942802
18.	1.4209851	48.	0.0852937
18.5	1.3854486	48.5	0.0767571
19.	1.3503621	49.	0.0686706
19.5	1.3157256	49.5	0.0610341
20.	1.281539	50.	0.0538476
20.5	1.2478025	50.5	0.0471111
21.	1.214516	51.	0.0408245
21.5	1.1816795	51.5	0.0349880
22.	1.1492929	52.	0.0296015
22.5	1.1173564	52.5	0.0246650
23.	1.0858699	53.	0.0201784
23.5	1.0548334	53.5	0.0161419
24.	1.0242468	54.	0.0101119
24.5	0.9941103	54.5	0.0123334
		1	
25.	0.9644238	55.	0.0067323
25.5	0.9351873	55.5	0.0044958
26.	0.9064007	56.	0.0027093
26.5	0.8780642	56.5	0.0013728
27.	0.8501777	57.	0.0004862

```
function [z]=f(x, y)
  z = -0.06 * sqrt(y);
endfunction;
x0 = 0.0; y0 = 3.0; xn = 57; h = 0.5;
x = [x0:h:xn];
y = ode("rk", y0, x0, x, f);
disp("x y"); // show titles for output table
disp("----"); // show a line for the table
disp([x' y']);
// fe(x) = exact solution
function z=fe(x)
  \mathbf{z} = (0.06)^2 / 4 * (2 / 0.06 * sqrt(3.0) - \mathbf{x})^2;
endfunction;
xe = [x0:h / 10:xn];
n = length(xe);
for i = 1:n
 ye(i) = \underline{fe}(xe(i));
end;
// NEXT: plot numerical solution as red circles and
// exact solution as a continuous blue line
plot(x, y, 'ro', xe, ye, '-b');
legend('RK4', 'Exact', 3);
xtitle('Solving dy/dt = -k*sqrt(y)', 't', 'y');
```

Assignment 6 - Problem [4]

Using your favorite computer language (VBA/Excel, C++) implement the solution to the Lorenz equations, shown earlier, using the pseudocode of Figure 25.18 (see above). The Lorenz equations are shown here, once more:

An example of a simple model based on atmospheric fluid dynamics is the *Lorenz* equations developed by the American meteorologist Edward Lorenz,

$$\frac{dx}{dt} = -\sigma x + \sigma y \tag{28.6}$$

$$\frac{dy}{dt} = rx - y - xz \tag{28.7}$$

$$\frac{dz}{dt} = -bz + xy \tag{28.8}$$

Lorenz developed these equations to relate the intensity of atmospheric fluid motion, x, to temperature variations y and z in the horizontal and vertical directions, respectively.

For your solution, use the values given in the textbook, namely, $\sigma = 10$, b = 2.666667, and r = 28, and use the initial conditions x = y = z = 5. Solve the system of equations in the interval 0 < t < 20, with an increment dx = 0.1, and a printing interval of xout = 2.0.

In your assignment report show:

- (a) Code and interface with input/output, if using VBA/Excel, or Code and printout of output screen if using C++
- (b) Table of results showing x, y, z as functions of t

Problem 4:					
t	x(t)	y(t)	z(t)		
0	5	5	5		
2	-8.21676	-11.9054	20.6038		
4	-7.75106	-11.6741	19.2247		
6	-5.09585	-7.89709	16.4316		
8	-1.59655	-1.02981	19.9723		
10	3.97735	6.22195	20.4694		
12	4.13094	5.16084	19.5005		
14	3.03881	2.97829	20.5851		
16	5.39265	0.00529396	30.1135		
18	4.45528	7.54385	14.7979		
20	11.3718	0.829441	39.3069		

```
#include "a6p4.hpp"
#include <iomanip>
#include <iostream>
#include <functional>
#include <type_traits>
#include <map>
#include "../shared/decimal.hpp"
```

```
struct s3eqs {
    double x, y, z;
    s3eqs() : x(0), y(0), z(0) {}
    s3eqs(double sx, double sy, double sz) : x(sx), y(sy), z(sz) {}
    s3eqs(const s3eqs\& s) { x = s.x; y = s.y; z = s.z; }
    template <typename N, typename
std::enable_if<std::is_arithmetic<N>::value>::type* = nullptr>
    s3eqs(const N\& n) \{ x = n; y = n; z = n; \}
    s3eqs& operator+= (const s3eqs& s) \{x += s.x; y += s.y; z += s.z; return \}
*this; }
    s3eqs& operator-= (const s3eqs& s) { x -= s.x; y -= s.y; z -= s.z; return
*this; }
    s3eqs& operator*= (const s3eqs& s) { x *= s.x; y *= s.y; z *= s.z; return
*this; }
    s3eqs& operator/= (const s3eqs& s) { x /= s.x; y /= s.y; z /= s.z; return
*this; }
    friend s3eqs operator+ (const s3eqs& 1, const s3eqs& r) { return s3eqs(1)
    friend s3eqs operator- (const s3eqs& 1, const s3eqs& r) { return s3eqs(1)
-= r; 
    friend s3eqs operator* (const s3eqs& 1, const s3eqs& r) { return s3eqs(1)
*= r; }
    friend s3eqs operator/ (const s3eqs& 1, const s3eqs& r) { return s3eqs(1)
/= r; }
};
typedef std::function<s3eqs(const decimal&, const s3eqs&)> ODE;
typedef std::map<decimal, s3eqs> Table;
typedef std::pair<decimal, s3eqs> Point;
Table RK4(ODE f, Point init, decimal t_final, double h) {
    s3eqs k1, k2, k3, k4,
        s = init.second;
    decimal t = init.first;
    Table data{init};
    do {
       k1 = f(t, s);
        k2 = f(t + h / 2, s + k1 * h / 2);
        k3 = f(t + h / 2, s + k2 * h / 2);
       k4 = f(t + h, s + k3 * h);
        s += h * (k1 + 2 * (k2 + k3) + k4) / 6;
        t += h;
        data.insert(std::make_pair(t, s));
    } while (t < t_final);</pre>
   return data;
}
```

```
void assign6::Prob4() {
    const double sigma = 10, b = 2.666667, r = 28;
    ODE dsdt = [&sigma, &b, &r](const decimal& t, const s3eqs& s) {
       s3egs ds;
       ds.x = -sigma * s.x + sigma * s.y;
       ds.y = r * s.x - s.y - s.x * s.z;
       ds.z = -b * s.z + s.x * s.y;
       return ds;
    };
   Table results = RK4(dsdt, std::make_pair(0, 5), 20, 0.1);
    std::cout << "Problem 4: " << std::left << std::endl</pre>
        << std::setw(7) << "t"
       << std::setw(15) << "x(t)"
        << std::setw(15) << "y(t)"
       << std::setw(15) << "z(t)"
       << std::endl
       << "----" << std::endl;
    for (decimal t = 0; t <= 20; t += 2) {</pre>
       std::cout
            << std::setw(7) << (double)t
           << std::setw(15) << results[t].x
           << std::setw(15) << results[t].y</pre>
           << std::setw(15) << results[t].z
           << std::endl;
   std::cout << std::endl;</pre>
}
```

Assignment 6 - Problem [5]

Solve problem 28.19 from the Chapra/Canale, 6th-edition, textbook.

28.19 The following equation can be used to model the deflection of a sailboat mast subject to a wind force:

$$\frac{d^2y}{dz^2} = \frac{f}{2EI}(L-z)^2$$

where f = wind force, E = modulus of elasticity, L = mast length, and I = moment of inertia. Calculate the deflection if y = 0 and dy/dz = 0 at z = 0. Use parameter values of f = 60, L = 30, E = 1.25 × 10 8 , and I = 0.05 for your computation.

The conversion of this second-order ODE into a system of two, first-order, ODEs was shown above. What you need to do is modify the code you developed for Problem [4], to solve the resulting system of two, first-order, ODEs for this problem. The solution uses a domain 0 < z < L. For your solution, use an increment dz = 0.5, and xout = 5.0

In your assignment report show:

- (a) Code and interface with input/output, if using VBA/Excel, or Code and printout of output screen if using C++
- (b) Table of results showing y, and dy/dz, as functions of z

Output:

```
Problem 5:
       y'(z)
                  y''(z)
                  0
       0.04825
                  0.0182
       0.172
                  0.0304
       0.34425
                  0.0378
20
       0.544
                  0.0416
       0.75625
                  0.043
                  0.0432
       0.972
```

```
#i ncl ude "a6p5. hpp"
#i ncl ude <i omani p>
#i ncl ude <i ostream>
#i ncl ude <functi onal >
#i ncl ude <type_trai ts>
#i ncl ude <math. h>
#i ncl ude <map>
#i ncl ude ".../shared/deci mal. hpp"
```

```
struct s2eqs {
    double y1, y2;
    s2eqs(): y1(0), y2(0) {}
    s2eqs(double sx, double sy, double sz) : y1(sx), y2(sy) {}
    s2eqs(const s2eqs\& s) { y1 = s. y1; y2 = s. y2; }
    template <typename N, typename std::enable_if<std::is_arithmetic<N>::value>::type* =
nul | ptr>
    s2eqs(const N\& n) { y1 = n; y2 = n; }
    s2eqs& operator+= (const s2eqs& s) { y1 += s.y1; y2 += s.y2; return *this; }
    s2eqs& operator== (const s2eqs& s) { y1 -= s.y1; y2 -= s.y2; return *this; }
s2eqs& operator*= (const s2eqs& s) { y1 *= s.y1; y2 *= s.y2; return *this; }
    s2eqs& operator/= (const s2eqs& s) { y1 /= s.y1; y2 /= s.y2; return *this; }
    friend s2eqs operator+ (const s2eqs& I, const s2eqs& r) { return s2eqs(I) += r; }
    friend s2eqs operator- (const s2eqs& I, const s2eqs& r) { return s2eqs(I) -= r; }
    friend s2eqs operator* (const s2eqs& I, const s2eqs& r) { return s2eqs(I) *= r; }
    friend s2eqs operator/ (const s2eqs& I, const s2eqs& r) { return s2eqs(I) /= r; }
};
typedef std::function<s2eqs(const decimal &, const s2eqs&)> ODE;
typedef std::map<decimal, s2eqs> Table;
typedef std::pair<decimal, s2eqs> Point;
Table RK4(ODE f, Point init, decimal t_final, double h) {
    s2eqs k1, k2, k3, k4,
        s = init. second;
    decimal t = init.first:
    Table data{init};
    do {
        k1 = f(t, s);
        k2 = f(t + h / 2, s + k1 * h / 2);
        k3 = f(t + h / 2, s + k2 * h / 2);
        k4 = f(t + h, s + k3 * h);
        s += h * (k1 + 2 * (k2 + k3) + k4) / 6;
        t += h;
        data.insert(std::make_pair(t, s));
    } while (t < t_final);</pre>
    return data;
}
voi d assign6::Prob5() {
    const double f = 60, L = 30, E = 125000000, I = 0.05;
    ODE dsdt = [&f, &L, &E, &I](const decimal & z, const s2eqs& s) {
        s2eqs ds;
        double temp = L - (double)z;
        ds. y1 = s. y2;
        ds. y2 = f * temp * temp / (2 * E * I);
        return ds;
    };
    Table results = RK4(dsdt, std::make_pair(0, 0), L, 0.5);
```

Assignment 6 - Problem [6]

Modify the script shown above so as to produce the numerical solution of the Lorenz equations shown below:

An example of a simple model based on atmospheric fluid dynamics is the *Lorenz* equations developed by the American meteorologist Edward Lorenz,

$$\frac{dx}{dt} = -\sigma x + \sigma y \tag{28.6}$$

$$\frac{dy}{dz} = rx - y - xz \tag{28.7}$$

$$\frac{dz}{dt} = -bz + xy \tag{28.8}$$

Lorenz developed these equations to relate the intensity of atmospheric fluid motion, x, to temperature variations y and z in the horizontal and vertical directions, respectively.

For your solution, use the values given in the textbook, namely, $\sigma=10$, b = 2.666667, and r = 28, and use the initial conditions x = y = z = 5. Solve the system of equations in the interval 0 < t < 20, with an increment dt = 0.5, and produce a table of values of t, x, y, and z. Then, run the solution again, but now using an increment of dt = 0.01, and produce signal plots of x vs. t, y vs. t, and z vs. t, in the same set of axes. Also, produce phase portraits of x vs. y, y vs. z, and z vs. x, in separate plots. It is not necessary to report the solution for this second case (with dt = 0.01), only report the plots.

In your assignment report show the following:

- (a) A copy of your script
- (b) The results shown in the SCILAB script for dx = 0.5
- (c) Printscreens of the single signal plot, and of the three phase portraits for dx = 0.01

0. 5. 5. 5. 23.647634 0.5 - 3.7814106 - 6.3169311 - 7.0906465 - 4.1386816 29.061623 1. - 11.595625 - 10.143753 32.548029 1.5 - 9.1334883 - 12.695516 22.463797 2. - 4.769982 - 6.0499785 20.033587 2.5 3. - 5.0081004 - 2.5352284 26.615529 3.5 - 12.125545 - 8.7253588 35.088112 4. - 8.1282379 - 12.686092 18.56868 4.5 - 2.3818654 - 2.7159269 18.774727 - 7.6106433 - 0.5349684 33.467966 5. 5.5 - 3.686293 - 6.7968469 10.088964 1.0242741 3.3178066 22.77626 6. 6.5 10.854489 4.497227 36.107139 7 -6.1728431 10.650915 13.895474 19.676757 7.5 0.0907112 - 0.8721182 25.62721 - 14.232407 - 21.597105 8. 16.949726 8.5 4.9661488 7.8260625 1.4514892 2.7805677 23.063958 9. 37.837017 9.5 13.263849 8.3341082 11.395483 2.1147599 3.7251072 10. 1.5377615 - 3.2983107 10.5 27.516312 34.713982 11. - 14.092675 - 13.880206 11.5 - 2.801965 - 4.704838 13.16033 26.076456 - 1.7012279 1.9638365 12. 12.5 12.909464 19.531438 24.169917 13. - 1.9550934 - 3.2937689 15.004878 13.5 - 4.4209484 1.7909131 30.334953 14. 7.7547255 13.784561 13.699074 14.5 - 1.6475387 - 2.9407104 18.197664 15. - 7.6171841 - 0.1606193 33.787152 15.5 - 0.7267126 - 1.3565902 8.8388018 16. - 7.3987413 4.4236376 36.789302 16.5 12.085237 12.815898 30.873117 7.2777553 10.622188 19.635627 17. 3.8369271 4.0400133 21.13478 17.5 6.8700656 2.157853 30.694365 18. 12.98711 16.074606 29.346399 18.5 3.5027921 5.5218223 15.163712 19. 2.4027939 - 0.5091207 25.361272 19.5 11.232319

12.966543

t x y

20.

6.9793893

```
//Script to solve dY/dx = F(x, Y), Y(x0) = Y0
function [Z] = F(x, Y)
  \mathbf{Z}(1) = -10 * \mathbf{Y}(1) + 10 * \mathbf{Y}(2);
  \mathbf{Z}(2) = 28 * \mathbf{Y}(1) - \mathbf{Y}(2) - \mathbf{Y}(1) * \mathbf{Y}(3);
  \mathbf{Z}(3) = -2.6666667 * \mathbf{Y}(3) + \mathbf{Y}(1) * \mathbf{Y}(2);
Endfunction;
//ODE solution
x = [0.0:0.01:20.0];
x0 = 0;
Y0 = [5;5;5];
Y = ode("rk", Y0, x0, x, F); //solve ODE
disp("t x y z")
disp([x' Y']);
y1 = Y(1, :); y2 = Y(2, :); y3 = Y(3, :); //extract y1, y2, y3
scf();
<u>plot</u>(x, y1, 'b-', x, y2, 'r-', x, y3, 'g-');
legend('x', 'y', 'z', 1);
xtitle('signal plots', 't', 'y');
scf();
plot(y1, y2);
xtitle('phase portrait', 'x', 'y');
scf();
plot(y2, y3);
xtitle('phase portrait', 'y', 'z');
scf();
plot(y3, y1);
xtitle('phase portrait', 'z', 'x');
```

Assignment 6 - Problem [7]

Solve problem 28.47 (see below) by modifying the script shown above that uses function 'ode' in SCILAB. First, you'll need to convert the second-order ODE described in the problem statement, into a system of two, first-order, ODEs, in order to use the modified script.

28.47 A forced damped spring-mass system (Fig. P28.47) has the following ordinary differential equation of motion:

$$m\frac{d^2x}{dt^2} + a\left|\frac{dx}{dt}\right|\frac{dx}{dt} + kx = F_o\sin(\omega t)$$

where x= displacement from the equilibrium position, t= time, m=2 kg mass, a=5 N/(m/s)², and k=6 N/m. The damping term is nonlinear and represents air damping. The forcing function $F_o\sin(\omega t)$ has values of $F_o=2.5$ N and $\omega=0.5$ rad/sec. The initial conditions are

Initial velocity $\frac{dx}{dt} = 0 \text{ m/s}$ Initial displacement x = 1 m

Solve this equation using a numerical method over the time period $0 \le t \le 15$ s. Plot the displacement and velocity versus time, and plot the forcing function on the same curve. Also, develop a separate plot of velocity versus displacement.

Figure P28.47

In your assignment report include the following:

- (a) A write up showing how you converted the 2nd-order ODE into a system of two, 1st-order, ODEs.
- (b) The SCILAB script used to produce the solution.
- (c) The table of position x, and velocity dx/dt, as function of time t, produced by 'ode' (these results can be copied from the SCILAB console after the script is executed).
- (d) The plot of x vs. t, dx/dt vs. t, required from the problem, in the same set of axes (i.e., signal plots).
- (e) The phase portrait of dx/dt vs. x, required from the problem.

Write-up in Latex:

```
-->exec('C:\Users\John\Source\USU\ENGR 2450\src\assign6\scilab\Prob7.sci', -1)
     Displacement
                      Velocity
    0.
                            0.
              1.
    0.25
              0.9154604
                         - 0.6166714
              0.7277995
                         - 0.8234252
    0.5
    0.75
                         - 0.7814252
              0.5241681
                         - 0.6485298
    1.
              0.3443730
                                                                   signal plots
                         - 0.4820589
    1.25
              0.2026036
                          - 0.2986876
    1.5
              0.1047191
                                                                                          Disp.
    1.75
              0.0544165
                          - 0.1012159
                                                                                          Velo.
                                            0.8
    2.
              0.0555627
                            0.1123009
                                            0.6
                            0.2971271
    2.25
              0.1081797
    2.5
              0.1966896
                            0.3951189
                                            0.4
    2.75
              0.2985625
                            0.4077322
              0.3956909
                            0.3617355
    3.
                                            0.2
    3.25
              0.4764842
                            0.2800503
    3.5
              0.5338876
                            0.1761942
                                             0 -
    3.75
              0.5632914
                            0.0567133
                                            -0.2
                          - 0.0751275
    4.
              0.5611603
    4.25
              0.5265626
                          - 0.1968859
                                            -0.4
    4.5
              0.4661165
                          - 0.2787639
    4.75
              0.3911007
                          - 0.3141686
                                            -0.6
    5.
              0.3120706
                          - 0.3132178
    5.25
              0.2363239
                          - 0.2901899
                                            -0.8
    5.5
              0.1677952
                          - 0.2572100
    5.75
                          - 0.2230526
              0.1078092
                          - 0.1936491
    6.
              0.0558665
    6.25
                          - 0.1726452
              0.0102790
                          - 0.1616342
    6.5
            - 0.0312944
    6.75
            - 0.0713415
                          - 0.1602004
                                                                   phase portrait
    7.
            - 0.1120069
                          - 0.1660669
                                           0.6
    7.25
            - 0.1546814
                         - 0.1755937
    7.5
            - 0.1997620
                         - 0.1846352
                                           0.4
    7.75
            - 0.2466461
                         - 0.1894800
    8.
            - 0.2939305
                         - 0.1875105
                                           0.2
    8.25
            - 0.3397195
                         - 0.1773972
    8.5
            - 0.3819292
                          - 0.1589106
                                            0
    8.75
            - 0.4185188
                          - 0.1325642
    9.
            - 0.4476323
                          - 0.0992748
                                          · 0.2
                          - 0.0601262
    9.25
            - 0.4676678
    9.5
            - 0.4773013
                          - 0.0162483
                                           -0.4
    9.75
            - 0.4755040
                            0.0309496
            - 0.4619349
                            0.0768392
    10.
           - 0.4376947
    10.25
                            0.1155002
                                           -0.6
    10.5
            - 0.4050750
                            0.1435889
    10.75
           - 0.3668033
                            0.1609207
                                           -0.8
    11.
            - 0.3253325
                            0.1696744
    11.25
           - 0.2824083
                            0.1731202
                                            -1
    11.5
            - 0.2389400
                            0.1745300
                                             -0.6
                                                   -0.4
                                                         -0.2
                                                                0
                                                                     0.2
                                                                           0.4
                                                                                 0.6
                                                                                       0.8
    11.75
           - 0.1950957
                            0.1764743
            - 0.1505291
    12.
                            0.1804641
    12.25
           - 0.1046604
                            0.1868576
    12.5
            - 0.0569533
                            0.1949904
    12.75
           - 0.0071341
                            0.2034867
    13.
              0.0446803
                            0.2106703
    13.25
              0.0979588
                            0.2149603
    13.5
              0.1518169
                            0.2151444
    13.75
              0.2051265
                            0.2104894
    14.
              0.2566337
                            0.2007102
    14.25
              0.3050586
                            0.1858619
    14.5
              0.3491643
                            0.1662135
    14.75
              0.3877967
                            0.1421434
```

15.

0.4199023

0.1140695