Équations différentielles linéaires d'ordre 1: y' = ay + b (a, b fonctions)

Étape	Nom	Ce qu'il faut faire	Comment faire	Exemple: $ty' + 3y = t^2$
0	Mise sous la bonne forme	Mettre l'équation sous la forme $y' = ay + b$, si ce n'est pas déjà fait. Identifier clairement a et b .	Passer les choses du bon côté du signe = , multiplier / diviser par ce qu'il faut	On passe le $3y$ à droite, et on divise tout par t : $y' = -\frac{3}{t}y + t$, donc $a = -\frac{3}{t}$ et $b = t$.
1	Résolution de l'équation ho- mogène associée	Virer le b , et trouver toutes les solutions de $y' = ay$.	Calculer $A = \int a$ une primitive de a ; les solutions de $y' = ay$ sont les Ce^A , C constante.	$A = \int -\frac{3}{t}dt = -3\int \frac{dt}{t} = -3\ln t$, donc $y = Ce^{-3\ln t} = C(e^{\ln t})^{-3} = C/t^3$, C constante.
2	Recherche d'une solution parti- culière	Trouver une solution de l'équation complète $y' = ay + b$.	Si par chance on "voit" déjà une solution, on la prend et il n'y a rien à faire. Sinon, variation de la constante : on cherche une solution de forme $y = ce^A$, où c n'est plus une constante mais une fonction, qu'il faut déterminer. On branche $y = ce^A$ dans $y' = ay + b$; il doit se produire une simplification, et on tombe sur $c' = \cdots$. On primitive ça pour trouver c , et on a la solution $y = ce^A$.	On cherche une solution de forme $y = c/t^3$. On branche ça dans $y' = -\frac{3}{t}y + t$, ce qui donne après simplification $c' = t^4$, donc $c = \frac{t^5}{5}$. On a donc une solution particulière $y = \frac{t^5}{5t^3} = \frac{t^2}{5}$.
3	Conclusion	Conclure en disant qui sont les solutions de l'équation complète y' = ay + b.	Îl n'y a presque rien à faire : juste additionner le résultat de l'étape 1 et celui de l'étape 2. Les solutions de $y' = ay + b$ sont les $y = Ce^A +$ la solution particulière trouvée à l'étape 2, C constante.	Les solutions de $ty'+3y=t^2$ sont donc les $y=\frac{C}{t^3}+\frac{t^2}{5}$, C constante.

Si, en plus, on avait une **condition initiale** $y'(t_0) = y_0$ à respecter, il faut ajuster la constante C pour que la condition initiale soit vérifiée. D'après le théorème de Cauchy, il y a une et une seule valeur de C qui convient.

Équations différentielles linéaires d'ordre 2: ay'' + by' + cy = f (a, b, c constantes, f fonction)

Étape	Nom	Ce qu'il faut faire	Comment faire	Exemple: $y'' + 2y + 5y = \cos t$
0	Mise sous la bonne forme	Mettre l'équation sous la forme ay'' + by' + cy = f, si ce n'est pas déjà fait. Identifier a, b , c et f .	Passer les choses du bon côté du signe = , multiplier / diviser par ce qu'il faut	Il n'y a rien à faire, c'est déjà sous la bonne forme. $a=1,b=2,c=5,f=\cos t.$
1	Résolution de l'équation homogène associée	Virer f , et trouver toutes les solutions de ay'' + by' + cy = 0.	Résoudre l'équation caractéristique $ax^2 + bx + c = 0$: $\Delta = b^2 - 4ac$, - Si $\Delta > 0$, deux solutions réelles : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$. Alors les solutions sont $y = C_1 e^{x_1 t} + C_2 e^{x_2 t}$, C_1 , C_2 constantes. - Si $\Delta = 0$, une solution réelle $x = \frac{-b}{2a}$. Alors les solutions sont $y = C_1 e^{xt} + C_2 t e^{xt}$, C_1 , C_2 constantes. - Si $\Delta < 0$, deux solutions complexes conjuguées : $x = \frac{-b \pm i \sqrt{ \Delta }}{2a} = \lambda \pm \omega i$. Alors les solutions sont $y = C_1 e^{\lambda t} \cos(\omega t) + C_2 e^{\lambda t} \sin(\omega t)$, C_1 , C_2 constantes.	Équation caractéristique : $x^2 + 2x + 5 = 0$. $\Delta = -16 < 0.$ $x = \frac{-2 \pm i\sqrt{16}}{2} = -1 \pm 2i.$ Donc $y = C_1 e^{-t} \cos(2t) + C_2 e^{-t} \sin(2t)$, C_1 , C_2 constantes.
2	Recherche d'une solution parti- culière	Trouver une solution de l'équation complète $ay'' + by' + cy = f$.	Si par chance on "voit" déjà une solution, on la prend et il n'y a rien à faire. Sinon, on utilise le tableau donné en cours, qui suggère sous quelle forme chercher une solution. Dans cette forme il y a des constantes (par exemple A et B) à ajuster; pour ce faire, on branche la solution dans $ay'' + by' + cy = f$, et ça fait un système d'équations d'inconnues A et B , ce qui détermine la valeur de A et de B .	Comme $f = \cos t$, le tableau du cours suggère de chercher une solution de forme $y = A\cos t + B\sin t$, A et B étant des constantes à ajuster. On calcule que $y'' + 2y + 5y = (4A + 2B)\cos t + (4B - 2A)\sin t$, donc on veut $4A + 2B = 1$ et $4B - 2A = 0$. On résout ce système : $A = \frac{1}{5}$, $B = \frac{1}{10}$. Donc on a une solution particulière $y = \frac{1}{5}\cos t + \frac{1}{10}\sin t$.
3	Conclusion	Conclure en disant qui sont les solu- tions de l'équation complète ay'' + by' + cy = f.	Il n'y a presque rien à faire : juste additionner le résultat de l'étape 1 et celui de l'étape 2. Les solutions de $ay'' + by' + cy = f$ sont les $y = C_1 \operatorname{truc} + C_2 \operatorname{machin} + \operatorname{la solution particulière}, C_1, C_2 \operatorname{constantes}.$ étape 1	Les solutions de $y'' + 2y + 5y = \cos t$ sont donc les $y = C_1 e^{-t} \cos(2t) + C_2 e^{-t} \sin(2t) + \frac{1}{5} \cos t + \frac{1}{10} \sin t$, C_1 , C_2 constantes.

Si, en plus, on avait des **conditions initiales** $y(t_0) = y_0$, $y'(t_0) = v_0$ à respecter, il faut ajuster les constantes C_1 et C_2 pour que les conditions initiales soient vérifiées. D'après le théorème de Cauchy, il y a une et une seule valeur de C_1 et C_2 qui convient.