SVD:奇异值分解;PCA:主成成分分析

日录

降维

• 动机1: 数据压缩

• 动机2: 数据可视化

• SVD: 奇异值分解

· PCA: 主成成分分析

数据压缩

- 如图有房价数据:
- 这种一维数据可以直接放在实数轴上:

• 求均值 x, 以 x 为中心点表示数据, 中心化

$$\overline{X} = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5} = \frac{10 + 2 + 1 + 7 + 3}{5} = 4.6$$

	房价(百万元)		
a	$10-\overline{X}=5.4$		
b	$2-\overline{X}=-2.6$		
c	$1-\overline{X}=-3.6$		
$oldsymbol{d}$	$7-\overline{X}=2.4$		
e	$3-\overline{X}=-1.6$		

$$Var(X) = rac{1}{n} \sum_{i=1}^n (rac{X_i}{N} - \overline{rac{X}{N}})^2$$

数据压缩

	房化	-	主元1	主元2
a		a	-6.94	0.084
b		b	3.02	0.364
C		c	4.42	0.204
d		d	-3.05	-0.006
e		e	2.55	-0.646

面积(百平米)		
4.4		
-1.6		
-2.6		
1.9		
-2.1		

降维

数据可视化

Data Visualization										
						Mean				
		Per capita			Poverty	household				
	GDP	GDP	Human		Index	income				
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands				
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)				
Canada	1.577	39.17	0.908	80.7	32.6	67.293				
China	5.878	7.54	0.687	73	46.9	10.22				
India	1.632	3.41	0.547	64.7	36.8	0.735				
Russia	1.48	19.84	0.755	65.5	39.9	0.72				
Singapore	0.223	56.69	0.866	80	42.5	67.1				
USA	14.527	`46.86	0.91	78.3	40.8	84.3				

SVD奇异值分解

- 定义
- SVD计算
- ·SVD分解的性质
- SVD的应用

特征值、特征向量、特征分解

- $Ax = \lambda x$
- 特征分解
 - 针对可对角化的方阵
 - 如果求出了A的 n 个特征值 $\lambda_1 \le \lambda_2 \le ... \le \lambda_n$,以及 n 个特征值所对应的特征向量 $w_1, w_2, ..., w_n$,如果这 n 个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:
 - $A = W\Sigma W^{-1}$
 - 其中W是这n个特征向量所张成的 $n \times n$ 维矩阵,而 Σ 为这n个特征值为主对角线的 $n \times n$ 维矩阵。
 - 标准化: $A = W\Sigma W^T$
- 注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进 行分解吗? 答案是可以,此时我们的SVD登场了。

定义

- 奇异值分解可以用来分解任意形状的矩阵,不一定非要是方阵。
- 定义矩阵M的SVD为: $M = U\Sigma V^T$
- · U和V是酉矩阵,Σ是对角矩阵矩阵,主对角线上的每个元素都称为奇异值
- $U^TU = I, V^TV = I$

性质

$$A = U\Sigma V^{T} = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

性质

$$A = U\Sigma V^{T} = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

- Numpy 模块中的 np.linalg.svd() 函数
 - u,sigma,v = np.linalg.svd(A)
 - 其中 u, v 分别返回矩阵 A 的左右奇异向量
 - sigma 返回的是按从大到小的顺序排列的奇异值

並用

- 图片压缩
- 推荐系统

PCA主成成分分析

- 基
- 基变换的矩阵表示
- 方差
- 协方差
- 协方差矩阵
- 计算PCA

基

- (3,2)
- 要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。只不过我们经常省略第一步,而默认以(1,0)和(0,1)为基。

$$x(1, 0)^T + y(0, 1)^T$$

- 内积: A * B = |A| |B| cos(a)
 - 如果 |B| = 1,那么内积=|A| cos(a)
- (1,1)和(-1,1)也可以成为一组基
- 方便计算标准化: $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ 和 $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ 分别计算(3,2)和两个基的内积 $(\frac{5}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

基变换的矩阵表示

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 5/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} \qquad \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2/\sqrt{2} & 4/\sqrt{2} & 6/\sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

一般的,如果我们有M个N维向量,想将其变换为由R个N维向量表示的新空间中,那么首先将R个基按行组成矩阵A,然后将向量按列组成矩阵B,那么两矩阵的乘积AB就是变换结果,其中AB的第m列为A中第m列变换后的结果。

$$\begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_R \end{pmatrix} (a_1 \quad a_2 \quad \cdots \quad a_M) = \begin{pmatrix} p_1 a_1 & p_1 a_2 & \cdots & p_1 a_M \\ p_2 a_1 & p_2 a_2 & \cdots & p_2 a_M \\ \vdots & \vdots & \ddots & \vdots \\ p_R a_1 & p_R a_2 & \cdots & p_R a_M \end{pmatrix}$$

 上述分析同时给矩阵相乘找到了一种物理解释:两个矩阵相乘的意义是将右边矩阵中的每一列列 向量变换到左边矩阵中每一行行向量为基所表示的空间中去。更抽象的说,一个矩阵可以表示一 种线性变换。

方差、协方差

• 方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度

• 方差 =
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 协方差 = $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})$

我们希望投影后投影值尽可能分散,寻找一个一维基,使得所有数据变换为这个基上的坐标表示后,方差值最大。

Var(a) =
$$\frac{1}{m} \sum_{i=1}^{m} a_i^2$$
 Cov(a, b) = $\frac{1}{m} \sum_{i=1}^{m} a_i b_i$

 降维问题的优化目标:将一组N维向量降为K维(K大于O,小于N),其目标是选择K个单位(模为1)正交基, 使得原始数据变换到这组基上后,各字段两两间协方差为O,而字段的方差则尽可能大(在正交的约束下,取最 大的K个方差)。

协方差矩阵

- 假设我们只有a和b两个字段,那么我们将它们按行组成矩阵X: $X = \begin{pmatrix} a_1 & a_2 & \cdots & a_m \\ b_1 & b_2 & \cdots & b_m \end{pmatrix}$
- · 然后我们用X乘以X的转置,并乘上系数1/m:

$$\frac{1}{m} X X^{T} = \begin{pmatrix} \frac{1}{m} \sum_{i=1}^{m} a_{i}^{2} & \frac{1}{m} \sum_{i=1}^{m} a_{i} b_{i} \\ \frac{1}{m} \sum_{i=1}^{m} a_{i} b_{i} & \frac{1}{m} \sum_{i=1}^{m} b_{i}^{2} \end{pmatrix}$$

・推广:设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设 $C = \frac{1}{-1}XX^T$,则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。

计算

$$\mathsf{E}^\mathsf{T}\mathsf{C}\mathsf{E} = \mathsf{\Lambda} = \left(\begin{array}{c} \lambda_1 & & \\ & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{array} \right)$$

- 原矩阵X => Y
 - Y = PX
 - X的协方差矩阵 $C = \frac{1}{m}XX^T$,可以找到 n 个单位正交特征向量 e_1, \ldots, e_n ,组成矩阵 $E(e_1, \ldots, e_n)$
 - ·设Y的协方差矩阵为 D, 那么D与C的关系:
 - Y的协方差矩阵 $D = PCP^T$
 - 对协方差矩阵C有: E^TCE
 - $P = E^T$

$$D = \frac{1}{m} (PX)^{T}$$

$$= \frac{1}{m} (PX)(PX)^{T}$$

$$= \frac{1}{m} PXX^{T}P^{T}$$

$$= P(\frac{1}{m} XX^{T})P^{T}$$

$$= PCP^{T}$$

算法

总结一下PCA的算法步骤:

设有m条n维数据。

- 1) 将原始数据按列组成n行m列矩阵X
- 2) 将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
- 3) 求出协方差矩阵 $C = \frac{1}{m}XX^T$
- 4) 求出协方差矩阵的特征值及对应的特征向量
- 5) 将特征向量按对应特征值大小从上到下按行排列成矩阵, 取前k行组成矩阵P
- 6) Y = PX即为降维到k维后的数据

举例

这里以上文提到的

$$\begin{pmatrix} -1 & -1 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix}$$

为例,我们用PCA方法将这组二维数据其降到一维。

因为这个矩阵的每行已经是零均值,这里我们直接求协方差矩阵:

$$C = \frac{1}{5} \begin{pmatrix} -1 & -1 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ -1 & 0 \\ 0 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{6}{5} \end{pmatrix}$$

然后求其特征值和特征向量,具体求解方法不再详述,可以参考相关资料。求解后特征值为:

$$\lambda_1 = 2, \lambda_2 = 2/5$$

其对应的特征向量分别是:

$$c_1\begin{pmatrix}1\\1\end{pmatrix}, c_2\begin{pmatrix}-1\\1\end{pmatrix}$$

其中对应的特征向量分别是一个通解, C_1 和 C_2 可取任意实数。那么标准化后的特征向量为:

$$\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

因此我们的矩阵P是:

$$P = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

可以验证协方差矩阵C的对角化:

$$PCP^{T} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 6/5 & 4/5 \\ 4/5 & 6/5 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2/5 \end{pmatrix}$$

最后我们用P的第一行乘以数据矩阵,就得到了降维后的表示:

$$Y = (1/\sqrt{2} \ 1/\sqrt{2}) \begin{pmatrix} -1 & -1 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix} = (-3/\sqrt{2} \ -1/\sqrt{2} \ 0 \ 3/\sqrt{2} \ -1/\sqrt{2})$$

降维投影结果如下图:

