Topics - State Modeling

- Events
- States
- Transitions and
- Conditions
- State Diagrams

Introduction

- Changes to the objects and their relationships over time.
- Those aspects of a system with time and changes are called state model.
- Control is the aspect of the system that describes the sequences of operations that occur in response to external stimuli

Introduction

- The major state modeling concepts are:
 - Events :- represent external stimuli
 - States :- represent values of objects
 - State diagrams :- graphical representation of finite state machine

1.Events

- An event is an occurrence at a point in time.
- One event may logically precede or follow another, or the two events may be unrelated.
- Two events that are causally unrelated or related
- Causally unrelated event is said to be concurrent; they have no effect on each other. Concurrent events can occur in any order.
 - Two events are causally **related**. E.g. Flight 123 must depart Chicago after it can arrive in San Francisco.
 - The two events are causally **unrelated**. E.g. Flight 123 may depart before or after Flight 456 departs Rome.

1.Events contd.

- An event is a one way transmission of information from one object to another.
- Events include error conditions as well as normal occurrences.
- Eg:-transaction aborted, time out
- Note: often appear past tense verb (ex: power turned on) or on set condition (temperature becomes lower than freezing)

Kinds of Events

There are several kinds of events, the most common are

- Signal event
- Change event
- Time event

6

Signal Event

- A signal is an explicit one-way transmission of information from one object to another
- A signal event is the event of sending or receiving a signal.
- Event is not like a subroutine call that returns a value
 - An object sending an event to another may expect a reply, but the reply is a separate event under the control of the second object, which may or may not choose to send it.
 - Note: A signal is a message between objects but a signal event is an occurrence in time

Signal Class and Attributes

«signal»

MouseButtonPushed

button
location

«signal»
StringEntered
text

«signal»
ReceiverLifted
«signal»

DigitDialed digit

Signal classes and attributes. A signal is an explicit one-way transmission of information from one object to another.

Change Events

- A change is an event that is caused by the satisfaction of a Boolean expression.
- The uses of change event is tested continuously: whenever the expression changes from false to true
- The UML notation: when keyword followed by a parenthesized Boolean expression
- Example of change events
 - When (room temperature < heating set point)</p>
 - When (room temperature > cooling set point)

Time Events

- A time event is an event caused by the occurrence of an absolute time or the elapse of a time interval.
- The UML notation: The notation for a time interval is the keyword **when / after** followed by a parenthesized expression
- Example of time events
 - **When** (date= January 1, 2014)
 - After (10 seconds)

2.States

- It is often associated with a continuous activity. Ex.
 Telephone ringing
- A STATE is an abstraction of the attribute values and links of an object
- It has duration (occupies an interval of time)
- A state is drawn as a rounded box containing an optional name

State - Examples

Waiting

Dialing

Powered

Difference between states and events

States

- 1. Represent values of 1. object
- 2. The attribute values and links held by an object
- 3. A state has duration. it occupies an interval of time
- events

Events

- Represent external stimuli
- 2. An individual stimulus from one object to another
- 3. An event has duration. It happens at a point of time
- 4. State separates two 4. An event separates two states

3. Transitions

- A change of state caused by an event is called transitions.
- It is an instantaneous change from one state to another.
- The source and target of a transition are **different states** or same state.
- The choice of next state depends on both the original state and the event received.
- The UML notation for a transition is a **line with** arrowhead from the source state to the target state
- Example of transition:
 - When a called phone is answered, the phone line transitions from the Ringing state to the Connected state.

4. Conditions

- A guard condition is a Boolean expression that must be true in order for a transition to occur.
- A state can be defined in terms of a condition that valid over interval of time
- Conditions can be used as guards on transitions
- A guards transitions fires when its event occurs, but only if the guard condition is true
- a guard condition is checked only once
- A condition is listed within square brackets [] after an event name
- For example
 - a person goes out in the morning (event),
 - if the temperature is below freezing (condition), then put on your gloves(next state).

5.State Diagrams

- A state diagram is a graph whose nodes are states and whose directed arcs are transitions labeled by an event names
- A state diagram specifies the state sequences caused by event sequences.
- State names must be unique within the scope of a state diagram
- Note: state diagrams can implement by direct implementation or by converting into programming code

- The state model consists of multiple state diagrams, one state diagram for each class with important temporal behavior
- State diagram contains sequences associated with normal call as well as abnormal call (time out while dialing, getting busy line)
- States can represent
 - continuous loops
 - one shot life cycles

State diagram(continuous loop) for phone line

One-shot life cycles

- It represents objects with finite lives
- It has initial and final states
- The initial state is entered on creation of an object
- An initial state is shown by a solid circle
- The circle can be labeled to indicate different initial conditions
- Final state implies destruction of the object
- The final state shown by a bull's eye. It distinguished from initial state

State diagram(One-shot life cycles) for chess game

Summary of Basic State Diagram Notation

The following Figure summarizes the basic UML syntax for state diagrams.

2.

Change of state

ASTRA

State Transition Diagram for ATM System