1. Emlékeztető

Az (absztrakt) halmazok mérését (a mértéküknek az értelmezését) egy

$$\varphi \in \mathcal{P}(X) \to [0, +\infty]$$

függvény segítségével végezzük, ahol X egy adott alaphalmaz. Ezen

1. φ (véges) additív, ha

$$\varphi\bigg(\bigcup_{k=0}^{n} A_k\bigg) = \sum_{k=0}^{n} \varphi(A_k)$$

minden olyan $A_0,\ldots,A_n\in\mathcal{D}_{\varphi}$ páronként diszjunkt elemű halmazrendszerre fennáll, amelynek az egyesítésére $A_0\cup\cdots\cup A_n\in\mathcal{D}_{\varphi}$ teljesül;

2. φ szigma-additív (röviden σ -additív), ha

$$\varphi\left(\bigcup_{n=0}^{\infty} A_n\right) = \sum_{n=0}^{\infty} \varphi(A_n)$$

minden olyan (A_n) páronként diszjunkt tagokból álló \mathcal{D}_{φ} -beli sorozatra igaz, amelynek az egyesítésére $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{D}_{\varphi}$ teljesül.

1.1. Definíció: Mérték, kvázimérték, előmérték

Azt mondjuk, hogy a $\mu \in \mathcal{P}(X) \to [0, +\infty]$ halmazfüggvény egy

- 1. **mérték**, ha \mathcal{D}_{μ} szigma-algebra, $\mu(\emptyset) = 0$, és a μ szigma-additív;
- 2. kvázimérték, ha \mathcal{D}_{μ} halmazgyűrű, $\mu(\emptyset) = 0$, és a μ szigma-additív;
- 3. előmérték, ha \mathcal{D}_{μ} halmazgyűrű, $\mu(\emptyset) = 0$, és a μ additív.

1.2. Tétel: Az előmérték tulajdonságai

Legyen μ előmérték a $\mathcal{G} \subseteq \mathcal{P}(X)$ gyűrűn, továbbá $A, B, A_n \in \mathcal{G} \ (n \in \mathbb{N}).$

- 1. Ha $B \subseteq A$, akkor $\mu(B) \leq \mu(A)$.
- 2. Ha $B \subseteq A$ és $\mu(B)$ véges, akkor $\mu(A \setminus B) = \mu(A) \mu(B)$.
- 3. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- 4. Minden $n \in \mathbb{N}$ indexre $\mu\left(\bigcup_{k=0}^{n} A_k\right) \leq \sum_{k=0}^{n} \mu(A_k)$.
- 5. Ha az (A_n) tagjai páronként diszjunktak és $\bigcup_{n=0}^{\infty}A_n\in\mathcal{G},$ akkor

$$\sum_{n=0}^{\infty} \mu(A_n) \leq \mu \Bigg(\bigcup_{n=0}^{\infty} A_n\Bigg).$$

Ekkor

$$\mathcal{P}(X) := \{ A \text{ halmaz } | A \subseteq X \}$$

az X úgynevezett hatványhalmaza.

Tehát $\mu: \mathcal{G} \to [0, +\infty]$ egy előmérték.

- 1. tulajdonság: μ monoton növő.
- 2. tulajdonság: *μ* szubtraktív.
- 3. tulajdonság: szita-formula.
- 4. tulajdonság: μ szubadditív.

2. A kvázimérték jellemzése

2.1. Tétel

Legyen μ egy előmérték a $\mathcal{G} \subseteq \mathcal{P}(X)$ gyűrűn, és vegyük az alábbi állításokat.

- a) A μ kvázimérték.
- b) Minden G-beli $A_n\subseteq A_{n+1}\ (n\in\mathbb{N})$ monoton bővülő halmazsorozatra

$$A := \bigcup_{n=0}^{\infty} A_n \in \mathcal{G} \qquad \Longrightarrow \qquad \mu(A) = \lim_{n \to \infty} \mu(A_n).$$

c) Minden G-beli $B_{n+1}\subseteq B_n\ (n\in\mathbb{N})$ halmazsorozatra, ha $\mu(B_n)<+\infty$

$$B := \bigcap_{n=0}^{\infty} B_n \in \mathcal{G} \qquad \Longrightarrow \qquad \mu(B) = \lim_{n \to \infty} \mu(B_n).$$

d) Minden \mathcal{G} -beli $C_{n+1} \subseteq C_n \ (n \in \mathbb{N})$ halmazsorozatra, ha $\mu(C_n) < +\infty$

$$\emptyset = \bigcap_{n=0}^{\infty} C_n \in \mathcal{G} \implies \mu(\emptyset) = \lim_{n \to \infty} \mu(C_n) = 0.$$

Ekkor

- 1. a) \iff b) \implies c) \iff d);
- 2. ha μ véges, akkor még b) \iff c) is fennáll.

Bizonyítás.

 $a) \Longrightarrow b)$ Tekintsük az A "határhalmaznak" az

$$A = A_0 \cup (A_1 \setminus A_0) \cup (A_2 \setminus A_1) \cup \cdots$$

páronként diszjunkt halmazokból álló felbontását. Ekkor

$$\mu(A) = \mu(A_0) + \mu(A_1 \setminus A_0) + \mu(A_2 \setminus A_1) + \cdots$$

$$= \lim_{n \to \infty} \left(\mu(A_0) + \mu(A_1 \setminus A_0) + \cdots + \mu(A_n \setminus A_{n-1}) \right)$$

$$= \lim_{n \to \infty} \mu(A_0 \cup (A_1 \setminus A_0) \cup \cdots \cup (A_n \setminus A_{n-1}))$$

$$= \lim_{n \to \infty} \mu(A_n).$$

Kihasználtuk, hogy μ szigma- és véges additív, valamint a (*) egyenlőséget.

 $b) \Longrightarrow a)$ Azt kell igazolni, hogy μ szigma-additív. Legyen ehhez

$$X_n \in \mathcal{G}, \quad A \coloneqq \bigcup_{k=0}^{\infty} X_k \in \mathcal{G} \quad \text{ és } \quad A_n \coloneqq \bigcup_{k=0}^{n} X_k \quad (n \in \mathbb{N}),$$

ahol az (X_n) halmazsorozat tagjai páronként diszjunktak. Ekkor az (A_n) sorozat tagjai monoton bővülő módon tartanak az A-hoz, ezért

$$\mu\bigg(\bigcup_{n=0}^{\infty}X_n\bigg)=\mu(A)\stackrel{\mathbf{b})}{=}\lim_{n\to\infty}\mu(A_n)\stackrel{**}{=}\lim_{n\to\infty}\sum_{k=0}^n\mu(X_k)=\sum_{k=0}^{\infty}\mu(X_k).$$

Vagyis $\mu: \mathcal{G} \to [0, +\infty]$ alakú függvény.

A b) állítást röviden úgy mondjuk, hogy "a μ alulról félig folytonos".

A c) állítást röviden úgy mondjuk, hogy "a μ felülről félig folytonos".

Figyelem! Ilyenkor b) \Leftarrow c).

Tehát minden $Z \in \mathcal{G}$ esetén $\mu(Z)$ véges.

Tehát az előbbi halmazsorozat elemei

$$D_0 := A_0, \ D_n := A_n \setminus A_{n-1},$$

ha $n \in \mathbb{N}^+$. Ekkor nyilványaló módon

$$A_n = \bigcup_{k=0}^n D_k \quad (n \in \mathbb{N}) \tag{*}$$

is igaz, hiszen az (A_n) monoton bővül.

Kihasználjuk, hogy μ addititása miatt

$$\mu(A_n) = \mu\left(\bigcup_{k=0}^n X_n\right) = \sum_{k=0}^n \mu(X_k).$$
(**)

A többi állítás bizonyítása során gyakran alkalmazzuk az alábbi észrevételt.

Lemma. Amennyiben $Z \subseteq W$ és $\mu(W)$ véges, akkor $\mu(Z)$ is véges, és ezért

$$\mu(W \setminus Z) = \mu(W) - \mu(Z).$$

Bizonyítás. Mivel a μ monoton, ezért $\mu(Z) \leq \mu(W)$, ahonnan $\mu(Z)$ véges mivolta következik. Továbbá a második állítás minden előmértékre igaz.

 $(b) \Longrightarrow (c)$ Mivel a (B_n) sorozat monoton szűkül, ezért az

$$A_n := B_0 \setminus B_n \qquad (n \in \mathbb{N})$$

halmazsorozat monoton bővülve tart a $B_0 \setminus B \in \mathcal{G}$ határhalmazhoz. Ekkor

$$\mu(B_0 \setminus B) \stackrel{\text{b)}}{=} \lim_{n \to \infty} \mu(B_0 \setminus B_n) = \mu(B_0) - \lim_{n \to \infty} \mu(B_n).$$

Nyilván $B \subseteq B_0$. Mivel $\mu(B_0)$ véges, ezért a μ monotonitás miatt $\mu(B)$ is az

$$\mu(B_0 \setminus B) = \mu(B_0) - \lim_{n \to \infty} \mu(B_n) = \mu(B_0) - \mu(B).$$

Innen $\mu(B_0)$ -vel egyszerűsítve adódik a bizonyítandó állítás.

 $c) \Longrightarrow d)$ Az igazolandó d) állítás speciális esete a c) kijelentésnek.

 $(d) \Longrightarrow c)$ Ha a (B_n) sorozat monoton szűkülve tart a B-hez, akkor a

$$C_n := B_n \setminus B \in \mathcal{G} \qquad (n \in \mathbb{N})$$

halmazsorozat monoton szűkülve tart az üres halmazhoz. Ekkor

$$0 = \mu(\emptyset) = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \mu(B_n \setminus B) = \lim_{n \to \infty} \mu(B_n) - \mu(B).$$

Mivel itt $\mu(B)$ véges, ezért átrendezés után kapjuk a bizonyítandó állítást.

A továbbiakban feltesszük, hogy μ véges. Az alábbi állítást mutatjuk meg. $\boxed{\mathbf{d}) \Longrightarrow \mathbf{b}} \text{ Ha az } (A_n) \text{ sorozat monoton bővülve tart az } A\text{-hoz, akkor a}$

$$C_n := A \setminus A_n \in \mathcal{G} \qquad (n \in \mathbb{N})$$

sorozat monoton szűkülve tart az üres halmazhoz. Mivel μ véges, így

$$0 = \mu(\emptyset) = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \mu(A \setminus A_n) = \mu(A) - \lim_{n \to \infty} \mu(A_n).$$

Innen átrendezéssel adódik a bizonyítandó állítás.

c) \Longrightarrow b) Ha μ véges, akkor a c) \Longrightarrow d) \Longrightarrow b) állítások következménye.

Természetesen $Z, W \in \mathcal{G}$ halmazok.

Mivel $B_n \subseteq B_0$ és $\mu(B_n)$ véges, ezért $\mu(B_0 \setminus B_n) = \mu(B_0) - \mu(B_n).$

Mivel $B \subseteq B_n$ és $\mu(B_n)$ véges, ezért $\mu(B_n \setminus B) = \mu(B_n) - \mu(B).$

3. A Lebesgue-féle kvázimérték

A továbbiakban legyen $p \in \mathbb{N}^+$ egy rögzített kitevő, valamint az

$$\mathbf{x} = (x_1, \dots, x_p), \ \mathbf{y} = (y_1, \dots, y_p) \in \mathbb{R}^p$$

vektorok körében definiáljuk a komponensenkénti rendezést az alábbi módon:

$$\mathbf{x} \leq \mathbf{y} \quad :\iff \quad x_i \leq y_i$$

 $\mathbf{x} < \mathbf{y} \quad :\iff \quad x_i < y_i$ $(i = 1, \dots, p).$

Amennyiben $\mathbf{x} < \mathbf{y}$, akkor az

$$[\mathbf{x}, \mathbf{y}) \coloneqq \{ \mathbf{z} \in \mathbb{R}^p \mid \mathbf{x} \le \mathbf{z} < \mathbf{y} \} = [x_1, y_1) \times \cdots \times [x_p, y_p)$$

halmazt az \mathbf{x}, \mathbf{y} végpontú, balról zárt és jobbról nyílt (p-dimenziós) intervallumnak nevezzük. Könnyen belátható ilyenkor, hogy az

$$\mathbf{I}^p \coloneqq \Big\{ \emptyset, [\mathbf{x}, \mathbf{y}) \; \Big| \; \mathbf{x}, \mathbf{y} \in \mathbb{R}^p \; \text{ \'es } \; \mathbf{x} < \mathbf{y} \; \Big\}$$

halmazrendszer egy félgyűrű. Tekintsük az \mathbf{I}^p által generált gyűrűt, vagyis az

$$\mathcal{I}^p \coloneqq \mathcal{G}(\mathbf{I}^p) = \left\{ A \coloneqq \bigcup_{k=0}^n I_k \mid I_0, \dots, I_n \in \mathbf{I}^p \text{ diszjunktak } (n \in \mathbb{N}) \right\}$$

halmazt.

3.1. Definíció: Lebesgue-féle kvázimérték

Legyen $m_p: \mathbf{I}^p \to [0, +\infty)$ az a véges halmazfüggvény, amire

$$m_p(\emptyset) := 0, \quad m_p([\mathbf{x}, \mathbf{y})) := \prod_{k=1}^p (y_i - x_i) \qquad ([\mathbf{x}, \mathbf{y}) \in \mathbf{I}^p).$$

Ekkor az m_p halmazfüggvény \mathcal{I}^p -re történő

$$\widetilde{\mu}_p: \mathcal{I}^p \to [0, +\infty), \qquad \widetilde{\mu}_p \big|_{\mathbf{I}^p} = m_p.$$

kiterjesztését Lebesgue-féle kvázimértéknek nevezzük.

3.2. Tétel

Az előbb definiált $\widetilde{\mu}_p: \mathcal{I}^p \to [0, +\infty)$ függvény egy kvázimérték.

Bizonyítás. Mivel a $\widetilde{\mu}_p$ egy véges előmérték, ezért a 2.1. tétel miatt elegendő azt megmutatni, hogy minden \mathcal{I}^p -beli monoton szűkülő (A_n) sorozatra

$$\bigcap_{n=0}^{\infty} A_n = \emptyset \qquad \Longrightarrow \qquad \lim_{n \to \infty} \widetilde{\mu}_p(A_n) = 0.$$

Indirekt tegyük fel, hogy van olyan, az előbbi feltételeknek eleget tevő (A_n) halmazsorozat, amelyre

$$\delta := \lim_{n \to \infty} \widetilde{\mu}_p(A_n) = \inf \{ \widetilde{\mu}_p(A_n) \mid n \in \mathbb{N} \} > 0.$$

Vagyis tetszőlegesen véve egy

$$A \in \mathcal{I}^p, \ A = \bigcup_{k=0}^n I_k$$

diszjunkt felbontású halmazt, akkor

$$\widetilde{\mu}_p(A) = \sum_{k=0}^n m_p(I_k).$$

Ekkor megadható olyan (B_n) halmazsorozat, illetve (δ_n) számsorozat, hogy

$$\overline{B}_n \subseteq A_n$$
 és $\widetilde{\mu}_p(A_n) - \widetilde{\mu}_p(B_n) < \delta_n$ $(n \in \mathbb{N}).$ (*)

Továbbá legyen

$$C_n := \bigcap_{k=0}^n B_k \qquad (n \in \mathbb{N})$$

Nyilvánvaló, hogy az így megadott halmazsorozatokra igaz a következő:

$$\overline{C}_n \subseteq \overline{B}_n \subseteq A_n \subseteq A_0 \qquad (n \in \mathbb{N}).$$

Következésképpen a \overline{C}_n halmazok mindegyike korlátos és zárt, valamint

$$\bigcap_{n=0}^{\infty} \overline{C}_n \subseteq \bigcap_{n=0}^{\infty} A_n = \emptyset \qquad \Longrightarrow \qquad \bigcap_{n=0}^{\infty} \overline{C}_n = \emptyset.$$

Megmutatjuk, hogy egyetlen egy C_n halmaz sem üres. Mivel ilyenkor a \overline{C}_n halmazok sem üresek, valamint ezek korlátos és zárt, egymásba skatulyázott intervallumok, ezért a Cantor-tétel alkalmazásával a

$$\bigcap_{n=0}^{\infty} \overline{C}_n \neq \emptyset$$

ellentmondás áll elő. Tehát legyen $n\in\mathbb{N}$ rögzített. Ekkor

$$\widetilde{\mu}_p(C_{n+1}) = \widetilde{\mu}_p(C_n \cap B_{n+1})$$

$$= \widetilde{\mu}_p(C_n) + \widetilde{\mu}_p(B_{n+1}) - \widetilde{\mu}_p(C_n \cup B_{n+1})$$

$$\geq \widetilde{\mu}_p(C_n) + \widetilde{\mu}_p(B_{n+1}) - \widetilde{\mu}_p(A_n)$$

$$> \widetilde{\mu}_p(C_n) + \widetilde{\mu}_p(A_{n+1}) - \delta_{n+1} - \widetilde{\mu}_p(A_n).$$

Ezt átrendezve a soron következő rekurzióhoz jutunk:

$$\widetilde{\mu}_n(C_{n+1}) - \widetilde{\mu}_n(A_{n+1}) > \widetilde{\mu}_n(C_n) - \widetilde{\mu}_n(A_n) - \delta_{n+1} \qquad (n \in \mathbb{N}).$$

Visszafejtve a rekurziót azt kapjuk, hogy tetszőleges $n \in \mathbb{N}$ indexre

$$\widetilde{\mu}_{p}(C_{n}) - \widetilde{\mu}_{p}(A_{n}) > \widetilde{\mu}_{p}(C_{0}) - \widetilde{\mu}_{p}(A_{0}) - \sum_{k=1}^{n} \delta_{k}$$

$$= \widetilde{\mu}_{p}(B_{0}) - \widetilde{\mu}_{p}(A_{0}) - \sum_{k=1}^{n} \delta_{k}$$

$$> \delta_{0} - \sum_{k=1}^{n} \delta_{k} > - \sum_{k=0}^{\infty} \delta_{k}.$$

Ha most az eddig tetszőleges (δ_n) sorozatól megköveteljük, hogy

$$\sum_{k=0}^{\infty} \delta_k < \delta \quad \Longrightarrow \quad \widetilde{\mu}_p(C_n) > \widetilde{\mu}_p(A_n) - \sum_{k=0}^{\infty} \delta_k > 0 \quad \Longrightarrow \quad C_n \neq \emptyset. \checkmark$$

Ezzel eljutottunk a kívánt ellentmondáshoz.

Két \mathbb{R}^p -beli $\mathbf{x} \leq \mathbf{y}$ vektor esetén az

$$[\mathbf{x}, \mathbf{y}] \coloneqq \{ \mathbf{z} \in \mathbb{R}^p \mid \mathbf{x} \le \mathbf{z} \le \mathbf{y} \}$$

halmazt zárt intervallumnak nevezzük.

Tétel (Cantor-tétel). Amennyiben

$$[\mathbf{x}_{n+1}, \mathbf{y}_{n+1}] \subseteq [\mathbf{x}_n, \mathbf{y}_n]$$

fennáll minden $n \in \mathbb{N}$ indexre, akkor

$$\bigcap_{n=0}^{\infty} [\mathbf{x}_n, \mathbf{y}_n] \neq \emptyset.$$

Lásd szita-formula.

Lásd μ monoton $(C_n \cup B_{n+1} \subseteq A_n)$.

Lásd (*) becslés átrendezve.