Тема: «Оптимизация»

Реализовать решения задач на любом языке программирования, допустимо использовать библиотеки только для визуализации результатов.

На защиту ЛР необходимо уметь решать задачи любым из рассмотренных методов оптимизации; будет предложена задача, которую студент решает на листочке с объяснением.

Вариант1 (нечётные номера из группового журнала)

1.

Решить графически задачу линейного программирования:

$$z(x) = x_1 + 2x_2 \rightarrow \text{max, min}.$$

$$\begin{cases} 2x_1 - 5x_2 \ge -10, \\ 4x_1 + 5x_2 \le 40, \\ x_1 + 5x_2 \ge 5, \\ x_1 \ge 0, \\ x_2 \ge 0. \end{cases}$$

2.

Решить симплексным методом следующую задачу линейного программирования:

$$z(x) = -3x_1 + 4x_2 - x_3 \rightarrow \max.$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10, \\ 2x_1 + x_2 + 2x_3 \le 6, \\ 3x_1 + x_2 + 2x_3 \le 12. \end{cases}$$

$$x_j \ge 0, j = 1, 2, 3.$$

3.

Решить транспортную задачу. Имеются четыре пункта поставки однородного груза A_1 , A_2 , A_3 , A_4 , в каждом из которых находится груз соответственно в количестве a_1 , a_2 , a_3 , a_4 тонн и пять пунктов потребления этого груза B_1 , B_2 , B_3 , B_4 , B_5 . В пункты B_1 , B_2 , B_3 , B_4 , B_5 требуется доставить соответственно b_1 , b_2 , b_3 , b_4 , b_5 тонн груза. Транспортные расходы при перевозке единицы груза из пункта A_i в пункт B_j равны C_{ij} , где i=1,2,3,4,j=1,2,3,4,5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: a_1 = 15, a_2 = 15, a_3 = 15, a_4 = 15,

$$C = c_{ij} = \begin{cases} 11, & b_3 = 11, & b_4 = 11, & b_5 = 16, \\ 17 & 20 & 29 & 26 & 25 \\ 3 & 4 & 5 & 15 & 24 \\ 19 & 2 & 22 & 4 & 13 \\ 20 & 27 & 1 & 17 & 19 \end{cases}.$$

Вариант 2 (чётные номера из группового журнала)

1.

Решить графически задачу линейного программирования: $z(x) = x_1 + x_2 \rightarrow \max$, min.

$$\begin{cases} 3x_1 - 4x_2 \le 12, \\ x_1 - x_2 \ge -2, \\ 3x_1 + x_2 \ge 6, \\ 3x_1 + 4x_2 \le 36, \\ x_1 \ge 0. \end{cases}$$

2.

Решить симплексным методом следующие задачи линейного программирования:

$$z(x) = -2x_1 + 3x_2 - 4x_3 \rightarrow \max.$$

$$\begin{cases} x_1 + 3x_2 + 5x_3 \le 15, \\ x_1 + x_2 + x_3 \le 7, \\ 2x_1 + x_2 + 4x_3 \le 12. \end{cases}$$

$$x_1 \ge 0, j = 1, 2, 3.$$

Решить транспортную задачу. Имеются четыре пункта поставки однородного груза A_1 , A_2 , A_3 , A_4 , в каждом из которых находится груз соответственно в количестве a_1 , a_2 , a_3 , a_4 тонн и пять пунктов потребления этого груза B_1 , B_2 , B_3 , B_4 , B_5 . В пункты B_1 , B_2 , B_3 , B_4 , B_5 требуется доставить соответственно b_1 , b_2 , b_3 , b_4 , b_5 тонн груза. Транспортные расходы при перевозке единицы груза из пункта A_i в пункт B_j равны C_{ij} , где i=1, 2, 3, 4, j=1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: $a_1 = 18$, $a_2 = 14$, $a_3 = 16$, $a_4 = 12$,

$$C = c_{ij} = \begin{cases} 11, & b_{3} = 11, & b_{4} = 9, & b_{5} = 21, \\ 14 & 5 & 27 & 29 & 23 \\ 17 & 7 & 16 & 19 & 2 \\ 20 & 12 & 15 & 29 & 5 \\ 14 & 24 & 18 & 7 & 13 \end{cases}.$$