

ML-Classification

Brainstorming:

- ✓ Benchmark between algorithms.
- ✓ Different algorithms used in classification.
- ✓ We will cover why classification is used, its benefits.
- ✓ Project: Insurance binary classification from end to end.

Classification Models:

• K Nearest Neighbor:

- We usually use KNN is if we are facing issues like (Imbalance data/outliers/categorical data).
- o hat is the K?
 - It means how many points I'll take from my groups to decide where to put my new data.
- o How it works?
 - I mainly calculcate the Eucledian Distance between K points and my new data(point in green), then I decide where to integrate mine(based on the priority/short distance).
- Random Forest:

- Random Forest is a combination of decision trees, and a method called "Bagging" to give one decision.
- Why Random Forest over A decision tree? The combination increases results.
- Decision Tree(Small part of random forest)
- Logistic Regression.

Project

Fraud Detection With Logistic Regression:

• Project Pipeline

Classification methods commonly used for fraud detection

• Logistic regression

• ML Syntax:

scikit-learn syntax

```
from sklearn.module import Model
model = Model()
model.fit(X, y)
predictions = model.predict(X_new)
print(predictions)
```

- from sklearn.linear_model LogisticRegression
- Metrics:
 - F1-score:
 - Recall:
 - Support:
 - o Precision:

ML-Classification 4

Precision-recall tradeoff

$$Precision = \frac{\#True\ Positives}{\#True\ Positives + \#False\ Positives}$$

$$Recall = \frac{\#True\ Positives}{\#True\ Positives + \#False\ Negatives}$$

$$\begin{split} F-measure &= \frac{2 \times Precision \times Recall}{Precision + Recall} \\ &= \frac{2 \times TP}{2 \times TP + FP + FN} \end{split}$$

Accuracy:

Accuracy isn't everything

Throw accuracy out of the window when working on fraud detection problems

• Imbalance data issue:

sns.countplot(y)

• Confusion Matrix:

Notebook Link:
 https://colab.research.google.com/drive/1lkgASl8Uy4_J7RWHu_1xDquMRwqAnwlG?

 https://colab.research.google.com/drive/1lkgASl8Uy4_J7RWHu_1xDquMRwqAnwlG?