Introduction à l'analyse biographique des durées

Support de formation 2023

Marc Thévenin

2023-10-11

Table des matières

1	Le s	upport	(
I	Int	roduction	8
2	L'ana	alyse biographique des durées	9
	2.1	Questions	
	2.2	Terminologies	(
	2.3	Exemples d'analyse	
	2.4	Elements nécessaire à l'analyse	1(
Ш	Do	onnées et théorie	1'
3	Les	Données	12
•	3.1	Données prospectives et rétrospectives	
	9.2	3.1.1 Les données prospectives	
		3.1.2 Les données rétrospectives	
	3.2	Grille AGEVEN	
	3.3	Enregistrement des données	14
		3.3.1 Large [format individu]	14
		3.3.2 Semi-long [format individu-évènements]	
		3.3.3 Long [format individu-périodes]	
	3.4	Exemples de mise à disposition	
		3.4.1 Enquête biographie et entourage (Ined)	
		3.4.2 Enquête MAFE (Ined)	18
4			19
	4.1	1	19
	4.2	Le Risk Set	
	4.3	La Censure	
			2(
	1 1		2.
	4.4	Les grandeurs	
			24 24

		4.4.3 La fonction de répartition $F(t)$	25
		4.4.4 La fonction de densité $f(t)$	25
	4.5	Le risque instantané $h(t)$	
		4.5.1 Le risque cumulé $H(t)$	
	4.6	Remarques complémentaires	
		4.6.1 Formes typiques de la fonction de survie	
		4.6.2 Absence de censures à droites	
		4.6.3 Utilisation des pondérations dans un schema retrospectif avec des biogra	
		longues	-
		iongues	
Ш	Má	éthodes non paramétrique	32
•••	1.10	ethodes non parametrique	<i>32</i>
5	Esti	mations des fonctions de survie	33
	5.1	Les fonctions de survie/séjour	33
		5.1.1 Les variables d'analyse	33
		5.1.2 Calcul de la fonction de survie	34
	5.2	La méthode actuarielle	35
		5.2.1 Estimation	35
		5.2.1.1 R	36
		5.2.1.2 Stata	36
		5.2.1.3 Sas	
		5.2.1.4 Python	
		5.2.2 Application	
	5.3	La méthode de Kaplan-Meier	
	0.0	5.3.1 Estimation	
		5.3.1.1 R	
		5.3.1.2 Stata	
		5.3.1.4 Python	
		5.3.2 Application	
		5.3.3 Quantités associées à l'estimateur Kaplan-Meier	42
6	Test	s de comparaison	45
	6.1	Tests du log-rank	45
		6.1.1 Principe de calcul de la statistique de test	
		6.1.2 Les principaux tests log-rank	
		6.1.2.1 R	
		6.1.2.2 Stata	
		6.1.2.3 Sas	
		6.1.2.4 Python	
		6.1.3 Application	
	6.2	Comparaison des RMST	
	0.2	1	
		6.2.0.2 Stata	
		6.2.0.3 SAS	
		6.2.0.4 Python	49

IV	Modèles à risques proportionnels	52
7	Introduction aux modèles 7.1 Proprortionnalité des risques	53 53 54
8	Le modèle de Cox 8.1 Le modèle semi-paramétrique de Cox	56 56 58 59 60 60 60
	8.2 Analyse de la constance des rapports de risque	60 61 63 63 63 63 64 66
9	Modèle à durée discrète 9.1 Organisation des données 9.2 Ajustement de la durée 9.2.1 Ajustement avec une fonction quantitative de la durée 9.2.2 Ajustement discret 9.3 Proportionnalité des risques	68 69 70 70 72 73
10	Variables dynamiques 10.1 Facteur dynamique traitée de manière fixe 10.2 Estimation avec une variable dynamique 10.2.1 Modèle de Cox 10.2.2 Sas 10.2.3 R - Stata, Python 10.2.4 Modèle à temps discret 10.3 Précautions	75 76 76 77 77 78 78
٧	Compléments	79
11	Eléments de mise en forme des données 11.1 Calcul des variables d'analyses	80 81 87 87

		11.2.2 Fusion des informations biographiques) 1
		11.2.2.1 Fusion avec l'ensemble des périodes observables) 1
		11.2.2.2 Fusion avec une autre base biographique) 4
	11.3	Sélection d'un type de séquence et mise en forme pour l'analyse) 7
	11.4	Durée jusqu'à la première séquence) 7
	11.5	Durée de séjour dans la séquence d'intérêt et variables d'analyse)1
12	•	ues concurrents 10	_
		Problématique	
		Risques cause-specific et biais sur les estimateurs KM	
	12.3	Estimations en présence de risques concurrents (CIF)	
		12.3.1 Estimation non paramétrique)8
		12.3.2 Compararaison des CIF	12
	12.4	Modèles	13
		12.4.1 Modèles Semi paramétriques	13
		12.4.2 Modèle à temps discret	13
13		èles paramétriques 11	_
		Principes	
		Hypothèse AFT: Accelerated Failure Time	
		Principe de construction des modèles AFT	
		Quelques modèles paramétriques usuels	
	13.5	Exemple avec le modèle de Weibull	18
	13.6	Le modèle de Parmar-Royston	18
	A	10	_
14	Anne		_
		Tests Grambsch-Therneau OLS sur les résidus de Schoenfeld	
	14.2	Fragilité et immunité	
		14.2.1 Fragilité (Frailty)	
		14.2.2 Immunité (Cure fraction)	23
١, ١	D		
۷I	Pro	ogrammation 12	. ၁
15	R	12	6
15		Packages et fonctions	_
		Analyse Non paramétrique	
	10.2	15.2.1 Méthode actuarielle	
		15.2.2 Méthode Kaplan-Meier	
	150	15.2.3 Comparaison des S(t) méthode KM	
	15.3	Modèle de Cox	
		15.3.1 Estimation du modèle	
		15.3.2 Hypothèse PH	
		15.3.2.1 Test Grambsch-Therneau	
		15.3.2.2 Introduction d'une intéraction	
		15.3.3 Introduction d'une variable dynamique (binaire)	10

15.4	Analyse en du	rée discrète			 									143
	15.4.1 $f(t)$ qua	ntitative			 									145
	15.4.2 $f(t)$ en i	indicatrices			 									146
15.5	Modèles paramé	triques usuels			 									147
15.6	Risques concurre	ents			 									149
	15.6.0.1	Incidences cur	nulée	S	 									150
	15.6.0.2	Modèles			 									153

Liste des Figures

3.1	Biographie et entourage: base caracteristiques individuelle	1(
3.2	Biographie et entourage: base biographique logements	16
3.3	MAFE: base caractéristiques individuelles	17
3.4	MAFE: base biographique logement	
4.1	Schéma évènement/censure en temps calendaire	22
4.2	Schéma évènement/censure sous forme de durée	22
4.3	Grandeurs de la loi exponentielle avec $h(t)=0.04$	28
4.4	Fonction de survie: 3 situtation typiques	29
4.5	Fonction de survie et modification de la métrique temporelle	30
5.1	Courbe de survie: estimation méthode actuarielle	38
5.2	Courbe de survie: estimation méthode Kaplan-Meier	42
5.3	Courbe de survie: estimation méthode Kaplan-Meier + CI	42
5.4	Risque cumulé: estimateur Nelson-Aalen	43
5.5	Risque instantané: estimateur du Kernel	44
6.1	Comparaison des Rmst à chaque jour où au moins un décès est observé	51
7.1	L'hypothèse de proportionalite des risques	54
9.1	Probabilité de décéder avec 3 ajustements de la durée	71
9.2	Probabilité de décéder après correction de la non proportionnalité pour la variable surgery	74
	Fonction de répartition avec une cause concurrente traitée comme une censure à droite . 1	
12.2	Risques concurrent: estimation de la CIF	108
15.1	S(t) méthode actuarielle avec discSurv (1)	128
15.2	Méthode actuarielle avec discSury (2)	129

Liste des Tables

5.2 5.3	Quantiles de la fonction de séjour type actuarielle - Bornes Sas
6.1 6.2 6.3	Résultats des tests du logrank 48 Estimation des Rmst pour la variable surgery 50 Différences entre Rmst pour la variable surgery 50
8.1 8.2 8.3 8.4 8.5 8.6	$\begin{array}{llllllllllllllllllllllllllllllllllll$
9.1 9.2 9.4 9.5 9.6 9.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10.2 10.3 10.4	Modèle de cox avec une variable dynamique (binaire) traitée de manière fixe (estimation biaisée
12.2	Test de Gray pour la variable surgery
	Modèle de Weibull

1 Présentation - Bibliographie - Outils

Le support

Ce document est utilisé comme de support de formation, principalement pour des formations internes à l'Ined, des formations dans le cadre d'HED, et le cours de master 2 de démographie de l'Université de Strasbourg. En terme de contenu il reste classique, il s'agit d'une introduction, même si certaines nouveautés méthodologiques (pas si récente non plus) sont présentées comme l'estimation des $RMST^1$. Une méthode modélisation reposant des pseudo-observations² est en cours d'évaluation, et devrait être introduite dans le support en 2024^3

Pour cette version 2023, le principal ajout concerne un chapitre sur les manipulations des données biographiques [Lien]. C'est un premier jet, il ne peut pas être exhaustif ou représentatif de toutes les manipulations auxquelles on peut être confrontées, mais il permet à partir d'un format de données de s'en faire une idée. Dans une démarche plus collective le nouveau support mis en place par le service Sms de l'Ined, et dédié principalement à la programmation sous R [lien], sera alimenté par des fiches d'exemples concernant cette problématique.

Sur la forme, le support a été passé en format ouvrage (sans en avoir l'ambition je précise) et une version pdf peut-être directement téléchargée. Il est identique à la version html, sauf pour le chapitre programmation ou seulement les éléments relatifs à R sont inclus.

Un petit mot sur l'application présente dans le support. Issu du champ de la médecine (essai clinique), soit l'analyse de lasurvie de personnes souffrant d'une insuffisance cardiaque, elle pourrait décevoir vu son éloignement avec des problématiques issues des sciences sociales. Cependant, cette base d'analyse permet néanmoins de couvrir avec peu d'information, la quasi totalité des points traités dans ce support. Je l'admets qu'il serait préférable de trouver un jour autre chose, ou de donner par exemple en annexe, quelques exemples d'applications supplémentaires.

Néanmoins pour les personnes participant à la formation, les jeux de données sont bien issus des sciences sociales.

Il ne s'agit pas d'un support validé institutionnellement. J'assume seul et totalement les partis pris ou erreurs conceptuelles. J'en profite également pour remercier, quelques soient leur statut, l'ensemble des personnes ayant fait appel à mon assistance sur ce domaine d'analyse, ainsi que l'ensemble les participant.e.s aux formations et cours. Par leurs remarques, les problématiques traitées, ils me permettent

¹Restricted Mean of Survival Time

²Résidus du Jackknife

³Très intéressante comme technique de modélisation des RMST et pour palier à certaines contraintes des modèles à risques proportionnels, on peut déjà dire que sa généralisation sera compliquée dans le domaine des sciences sociales en raison de l'hypothèse d'indépendance des covariables avec la censure. Par exemple, des variables indiquant la génération impliquera des proportions plus ou moins élevées de censures à droite : les générations récentes seront plus facilement censurées ou tronquées à droite que les générations les plus anciennes.

de réviser et mettre à jour régulièrement ce document. Enfin, je remercie plus particulierement **Eva** Lelièvre et Arnaud Bringé pour l'ensemble du savoir qu'ils m'ont transmis.

Bibliographie

Les éléments bibliographiques qui figurent ci-dessous proviennent du champ des sciences sociales. Elle est volontairement courte, mais efficace. Quelle que soit la langue, le nombre de cours ou support sont très nombreux en médecine, qui est ici l'espace privilégié de l'ingénierie méthodologique. On trouve également de (trop) nombreux tutoriels généraliste à dominante $mise\ en\ pratique\ avec\ R$, dont je ne conseille pas forcément l'utilisation.

Accès en ligne

- Cours Gilbert Colletaz (Université d'Orléans Master d'économétrie).
 - Le cours est mis à jour tous les ans, applications uniquement avec Sas.
 - Dernière version 2020: lien
- Document de travail de Simon Quantin (Insee).
 - Couvre l'ensemble des techniques de base d'analyse des durées en durée dite continue. Il propose surement la meilleure introduction en langue française à la problématique de la fraqilité, qui sera ici seulement présenté trop brièvement.
 - Application en R seulement (Attention au passage de la v3 du package survival)
 - -2019 pas de mise à jour: lien
- Les notes de cours de German Rodriguez (en)
 - Démographe à l'université de Princeton.
 - Les dernières mises à jour doivent dater de 2017-2018: lien

Ouvrage de référence en démographie:

• L'analyse démographique des biographies de Daniel Courgeau et Eva Lelièvre (Edition de l'Ined - 1989). Malheureusement cet ouvrage ne dispose pas de version epub ou pdf disponible en ligne ⁴.

Outils

- Support réalisé sous Rstudio avec l'outil d'édition Quarto
- Langages utilisés pour la partie programmation:
 - -R
 - Stata v18
 - Sas
 - Python

⁴Pour les résident.e.s du campus Condorcet, l'ouvrage est disponible au GED [lien]

partie I Introduction

2 L'analyse biographique des durées

2.1 Questions

On dispose de données dites "longitudinales", et on cherche à appréhender l'occurence d'un évènement au sein d'une population. Les problématiques se basent sur les questions suivantes:

- Observe-t-on la survenue de l'évènement pour l'ensemble des individus?
- Quelle est la durée jusqu'à la survenue de l'évènement?
- Quels sont les facteurs qui favorisent la survenue de cet évènement? Facteurs fixes ou facteurs pouvant apparaître/changer au cours de la période d'observation: variables dynamiques (**TVC**: *Time Varying Covariate*)

2.2 Terminologies

Français	Anglais
Analyse des durées	Duration analysis
Analyse de survie/séjour	Survival analysis
Analyse de fiabilité	Failure time data analysis
Analyse des transitions	Event-history analysis

Pour ce support, le choix de son titre me pose toujours problème pour éviter qu'il soit trop à rallonge. Si j'avais à trancher, il devrait un peu s'éterniser sous l'appelation Introduction à l'analyse biographique des durées en présence de données censurée (à droite¹).

2.3 Exemples d'analyse

- Nuptialité, Mise en couple: cohabiter, décohabiter, se marier, Rompre une union ...
- Logement: Changement de statut (locataire <=> propriétaire), mobilité résidentielle/migration ...
- Emploi: Trouver un 1er emploi, changer d'emploi, entrée ou sortie du chômage ...
- Fécondité: Avoir un premier enfant, avoir un nouvel enfant ...
- Mortalité: Décéder après diagnostic, survivre après l'administration un traitement, rechute...

 $^{^{1}\}mathrm{Ce}$ qui est déjà bien suffisant

2.4 Elements nécessaire à l'analyse

1. Un processus temporel

- Une échelle de mesure ou métrique temporelle: minutes, heures, jours, mois, années....
- Une origine **commune** définissant un évènement de départ ²: naissance, mariage si on analyse la séparation,
- Une définition précise de l'évènement d'étude.
- Une durée entre le début et la fin de la période d'observation, si nécessaire avec la fin de la période d'exposition au risque. Cette durée doit être généralement calculée à l'aide des informations de datation.
- 2. Une population soumise au risque de connaître l'évènement (Risk Set)
- 3. Des variables explicatives ou covariables
 - Fixes: sexe/genre, génération, niveau de diplôme le plus élevé,......
 - Dynamiques (TVC: *Time varying covariates*):
 - Mesurées à tout moment entre le début et la sortie de l'observation: statut matrimonial, taille du ménage, statut d'activité...
 - Pour les modèles à l'exception du semi-paramétrique de Cox, en présence de données censurées la durée ou une transformation de celle-ci est une variable dynamique introduite comme variable indépendante pour assurer le bon ajustement des données. L'introduction directe d'une fonction de la durée comme variable dépendante seule ne peut se faire qu'en absence d'observation censurée, en particulier à droite. Quelle que soit leur forme c'est une caractéristique propre aux modèles pleinement paramétriques.

²Attention, dans le cadre des données prospectives ou de suivi, cela ne peut pas être le moment de l'inclusion à la base données

partie II Données et théorie

3 Les Données

On distingue deux types de données: les données prospectives et rétrospectives:

3.1 Données prospectives et rétrospectives

3.1.1 Les données prospectives

- Individus suivis à des dates successives. On parle souvent de données de stock mises à jour à intervalle de temps plus ou moins réguliers.
- Instrument de mesure identique à chaque vague (si possible).
- Avantages:
- Qualité des données et techniquement l'absence de biais de mémoire¹.
- Si le suivi est pérenne un même analyse peut être répliquée à intervalles réguliés.
- Inconvénients:
- Délais pour les exploiter dans une analyse. Mais à minima deux points d'observations permettent déjà sur une exposition certes très courte, de présenter des résultats.
- Mêmes hypothèses entre deux passages pas forcément respectées
- Attrition, censure ou troncature à gauche liés aux âges d'inclusion. C'est sans aucun doute le plus gros problème, et ces phénomènes demande une vigilance extrême. Sans connaissance des principes de base en analyse des durées ou de survie, on peut être amené à réaliser, évaluer ou lire des études que l'on pourrait qualifier ici de *Canada dry*.

A noter l'exploitation croissante des données administratives qui peuvent regorger d'informations biographiques. Déjà disponibles, le problème du coût de collecte peut-être est contourné². Ce type de données comprend par exemple les informations issues des fichiers des Ressources Humaines des entreprises, qui ont été exploitées à l'Ined dans le cadre du projet « worklife » (https://worklife.site.ined.fr/). Une des sources de plus en plus utilisée en France est maintenant l'EDP³. Elles engendrent en revanche des

¹Cet avantage peut se trouver contrebalancé par des phénomènes de censure par intervalles, donc de *trous* tout aussi problématique que ceux liés à la mémoire

²Je ne suis par forcément à l'aise avec cet argument souvent avancé. La maintenance et l'alimentation de ce type de données peut être également coûteuse, ne se faisant pas par magie, comme pour l'EDP de l'Insee. Malheureusement cet argument est sûrement une des raisons qui expliquent les problèmes de financement des enquêtes retrospective

³Echantillon Démographique Permanent. Un bon exemple de données administrative dont le coût de production est loin d'être négligeable

questionnements techniques liés à l'inférence (on ne travaille directement pas sur des échantillons), et à une présence potentiellement massive de problèmes de censures à gauche ou par intervalles, ou de troncature à gauche⁴.

Un exemple de mauvaise pratique avec ce type de données sera développé plus loin dans la section relative aux censures et aux troncatures.

3.1.2 Les données rétrospectives

- Individus interrogés une seule fois.
- Recueil de biographies thématiques depuis une origine jusqu'au moment de l'enquête.
- Recueil d'informations complémentaires à la date de l'enquête (âge, sexe, csp au moment de l'enquête et/ou csp représentative).
- Avantages: Information longitudinale immédiatement disponible.
- Inconvénients: questionnaire long, informations datées qui font appel à la mémoire de l'enquêté.e. A de rares exceptions (enfant, mariage), il est difficile d'aller chercher des datations trop fines avec une retrospectivité assez longue.

Les deux types de recueil peuvent être mixés avec des enquêtes à passages répétés comprenant des informations retrospectives entre 2 vagues. Par exemple la cohorte Elfe de l'Ined-Inserm ou la *Millenium-Cohort-Study* en Grande Bretagne⁵.

3.2 Grille AGEVEN

Pour recueillir des informations biographiques retrospectives, on utilise généralement la méthode des grilles AGEVEN.

Il s'agit d'une grille âge-évènement, de type chronologique, avec des repères temporels en ligne (âge, année). En colonne, sont complétés de manière progressive et relative, les évènements relatifs à des domaines, par exemple la biographie professionnelle, familiale, résidentielle...

i Références

- Antoine P., X. Bry and P.D. Diouf, 1987 "La fiche Ageven: un outil pour la collecte des données rétrospectives", Statistiques Canada 13(2).
- Vivier G, "Comment collecter des biographies? De la fiche Ageven aux grilles biographiques, Principes de collecte et Innovations récentes", Acte des colloques de l'AIDELF, 2006.
- GRAB, 1999, "Biographies d'enquêtes : bilan de 14 collectes biographiques", Paris, INED.

⁴Se reporter par exemple à la présentation du très rigoureux guide de l'utilisateur de l'EDP: Les informations disponibles : des informations à géométrie variable et à trous

⁵Pour avoir exploité ces données, cette cohorte souffre contrairement à Elfe de changement assez récurrent d'un passage à un autre (parait-il lié à ses changements de direction, chacune souhaitant laisser sa "patte"). En revanche elle a le mérite de s'être investi sur la récupération de l'attrition au cours du temps. Cela rend les données difficile à exploiter dans un cadre longitudinal, mais cela à le mérite de donner une certaine stabilisation de l'échantillon de départ

3.3 Enregistrement des données

La question du format des fichiers biographiques mis à disposition n'est pas neutre, en particulier au niveau des manipulations pour créer le fichier d'analyse, opération qui pourra s'avérer particulièrement chronophage et complexe si plusieurs modules doivent être appariés. On distingue trois formats d'enregistrement.

3.3.1 Large [format individu]

Une ligne par individu, qui renseigne sur une même ligne tous les évènements liés à un domaine : les datations et les caractéristiques des évènements.

Exemple: domaine : unions - échelle temporelle: année - fin de l'observation en 1986:

id	debut1	fin1	cause1	début2	fin2	cause2
A	1979	1982	décès conjoint	1985		
В	1983	1984	Séparation			•

Inconvénients: peut générer beaucoup de vecteurs colonnes avec de nombreuses valeurs manquantes. Le nombre de colonnes va dépendre du nombre maximum d'évènements. Si ce nombre concerne un seul individu, on va multiplier le nombre de colonnes pour un niveau d'information très limité. Situation classique, le nombre d'enfants, où les naissances de rang élevé deviennent de plus en plus rares.

3.3.2 Semi-long [format individu-évènements]

C'est le format le plus courant de mise à disposition des enquêtes biographiques. Si les transitions sont de type continu, par exemple le lieu de résidence (on habite toujours quelque part), la date de fin de la séquence correspond à la date de début de la séquence suivante. Les dates de fin ne sont pas forcément renseignées sur une ligne pour des trajectoires continues, l'information peut être donnée sur la ligne suivante avec la date de début.

Pour la séquence qui se déroule au moment de l'enquête, la date de fin est souvent une valeur manquante, une fin de séquence pouvant se produire juste avant l'enquête au cours d'une même année. Il est également possible d'avoir une information qui ne s'est pas encore produite au moment de l'enquête, mais qui aura lieu peu de temps après (personne enceinte, donc une naissance probable la même année).

Exemple précédent (trajectoires discontinues):

id	debut	fin	cause	Numero séquence
A	1979	1982	décès conjoint	1
A	1985			2

id	debut	fin	cause	Numero séquence
В	1983	1984	Séparation	1

3.3.3 Long [format individu-périodes]

Typique des recueils prospectifs. Ils engendrent des lignes sans information supplémentaire par rapport à la ligne précédente.

Exemple précédent:

id	Année	cause	Numero séquence
A	1979		1
A	1980		1
A	1981	•	1
A	1982	Décès conjoint	1
A	1985		2
A	1986	•	2
В	1983		1
В	1984	Séparation	1

Ici les trajectoires ne sont pas continues. Une forme continue présenterait toute la trajectoire, avec l'ajout d'un statut du type être en couple ou non. Pour ID=A, en 1983 et 1984, deux lignes « pas couple » (cohabitant ou non) pourraient être insérées avec au total 3 séquences.

Remarque : pour certaines analyses (par exemple analyse en temps discret), on doit transformer passer d'un format large ou semi-long à un format long, sur les durées observées ou sur des intervalles de durées construits.

3.4 Exemples de mise à disposition

Deux enquêtes biographiques de type rétrospectives produite par l'Ined, avec un fichier qui fournit des informations générales sur les individus (une ligne par individu), et une série de modules biographiques en format individus-évènements.

3.4.1 Enquête biographie et entourage (Ined)

https://grab.site.ined.fr/fr/enquetes/france/biographie_entourage/

Figure 3.1: Biographie et entourage: base caractéristiques individuelle

VIEW	TABLE: TMP1.	.tego							
	Identifiant questionniare	prénom d ego	sexe d ego	Date de naissance	Département de naissance	Commune ou pays de naissance	Pays ou DOM-TOM de naissance	Numéro INSEE de la commune de naissance	Nationalité actuelle en clair
1	101	ANDREE	2	06/19/1938	93	LIVRY-GARGAN		46	FRANCAISE
2	102	JEANINE	2	06/11/1934	37	TOURS		261	FRANCAISE
3	103	MANUEL	1	08/20/1942	99	NR	PORTUGAL	99139	PORTUGAISE
4	104	LEON	1	01/13/1933	93	BONDY		10	FRANCAISE
5	105	FRANCOIS	1	12/27/1932	99	ALGER	ALGERIE	99352	FRANCAISE
6	106	EVELYNE	2	11/21/1950	99	NR	ALGERIE	99352	FRANCAISE
7	107	MICHEL	1	05/23/1949	75	PARIS-20E_ARRONDISSEMENT		120	FRANCAISE
8	108	JEANNINE	2	05/21/1948	94	PERREUX-SUR-MARNE		58	FRANCAISE
9	109	BEATRICE	2	06/09/1949	59	LOUVROIL		365	FRANCAISE
10	110	THANH CUA	1	03/16/1941	99	TRAVINH	VIET NAM	99243	FRANCAISE
11	111	MAXIME	1	07/31/1950	77	LAGNY-SUR-MARNE		243	FRANCAISE
12	112	JACQUELINE	2	09/25/1934	54	SAINT-MAX		482	FRANCAISE
13	113	YVETTE	2	09/09/1937	19	CORNIL		61	FRANCAISE
14	114	ZOFIA	2	06/11/1935	99	EMILOWNA	POLOGNE	99122	POLONAISE
15	115	ANTONIO	1	09/19/1932	99	SEVILLE	ESPAGNE	99134	ESPAGNOL
16	116	JEAN PIERRE	1	04/18/1930	75	PARIS-12E_ARRONDISSEMENT		112	FRANCAISE
17	117	JOSETTE	2	04/20/1939	75	PARIS- 6EARRONDISSEMENT		106	FRANCAISE
18	118	RADA	2	12/18/1945	99	ZAGREB	YOUGOSLAVIE	99121	CROATE
19	119	JACQUELINE	2	03/23/1933	92	CLICHY		24	FRANCAISE
20	120	CLAUDE	1	09/11/1942	83	TOULON		137	FRANCAISE
21	121	MARIE-NOELLE	2	07/06/1944	21	SEMUR-EN-AUXOIS		603	FRANCAISE
22		ROGER		12/03/1935		ESQUERDES			FRANCAISE
23	123	DANIEL	1	06/12/1948	75	PARIS-14E_ARRONDISSEMENT		114	FRANCAISE
24		JEAN-CLAUDE		08/31/1936	92	NEUILLY-SUR-SEINE			FRANCAISE
25		GHISLAINE	2	01/20/1944	60	BRETEUIL		104	FRANCAISE
26	126	JOCELYNE	2	06/28/1949	28	BOULLAY-LES-DEUX-EGLISES		53	FRANCAISE
27	127	MARIE-JOSE	2	10/31/1949	76	MONT-SAINT-AIGNAN		451	FRANCAISE

Figure 3.2: Biographie et entourage: base biographique logements

	Identifiant questionnaire	Age en début de période	Code des événements familiaux	Etape	Département	Liste de communes ou pays ou DOM-TOM	INSEEL3	Type de logement (appartement, maison,)	Nombre de pièces dans le logement	Confort sanitaire	Détenteur du statut
1	101	0		1	93	LIVRY-GARGAN	46	21	3	1	PM
2	101	18	M1	2	93	LIVRY-GARGAN	46	22	3	0	2
3	101	23		2M	93	LIVRY-GARGAN	46	22	3	4	2
4	101	49	DCC1	2M	93	LIVRY-GARGAN	46	22	3	4	1
5	102	0		1	37	TOURS	261	12	99	99	PM
6	102	5		2	37	TOURS	261	22	4	1	PM
7	102	7		3T							
8	102	7		3	37	TOURS	261	12	99	1	PM
9	102	10	NF3	4	75	PARIS-18E_ARRONDISSEMENT	118	41	2	0	PM
10	102	22	M1	5	93	BOBIGNY	8	22	1	1	12
11	102	26		6	93	BOBIGNY	8	21	4	4	12
12	102	37		7	93	LIVRY-GARGAN	46	21	3	4	12
13	103	0		1	99	PORTUGAL	99139	22	2	0	PM
14	103	20		2T							
15	103	20		2	92	NANTERRE	50	43	1	88	1
16	103	22		3	93	DRANCY	29	43	1	88	1
17	103	24	M1	4	93	LIVRY-GARGAN	46	22	2	2	1
18	103	27		5	93	LIVRY-GARGAN	46	21	3	4	12

Figure 3.3: MAFE: base caractéristiques individuelles

ident	q1	q1a	statu_mig	year	age_survey
E1	Man	1972	Migrant	2008	37
E10	Man	1966	Migrant	2008	43
E100	Man	1972	Migrant	2008	37
E101	Woman	1977	Migrant	2008	32
E102	Woman	1966	Migrant	2008	43
E103	Woman	1978	Migrant	2008	31
E104	Woman	1958	Migrant	2008	51
E105	Man	1968	Migrant	2008	41
E106	Man	1961	Migrant	2008	48
E107	Woman	1965	Migrant	2008	44
E108	Man	1972	Migrant	2008	37
E109	Woman	1966	Migrant	2008	43
E11	Man	1979	Migrant	2008	30
E110	Man	1966	Migrant	2008	43
E111	Woman	1983	Migrant	2008	26
E112	Man	1972	Migrant	2008	37
E113	Man	1977	Migrant	2008	32
E114	Man	1964	Migrant	2008	45
E115	Woman	1983	Migrant	2008	26
E116	Man	1951	Migrant	2008	58
E117	Man	1963	Migrant	2008	46
E118	Woman	1965	Migrant	2008	44
E119	Woman	1968	Migrant	2008	41
E12	Woman	1977	Migrant	2008	32
E120	Woman	1973	Migrant	2008	36

Figure 3.4: MAFE: base biographique logement

ident	num_log	q301d	q301f	q302	q303	age_survey	q1a
E1	1	1972	1975	SENEGAL	Namanieque	37	1977
E1	2	1975	2001	SENEGAL	Madina Aly	37	1977
E1	3	2001	2007	SPAIN	Santa Maria De Palautordera	37	1977
E1	4	2007		SPAIN	Santa Maria De Palautordera	37	1977
E10	1	1966	1996	SENEGAL	Anambe	43	1960
E10	2	1996	1997	SPAIN	Pineda De Mar	43	196
E10	3	1997	1999	SPAIN	Granollers	43	1960
E10	4	1999	2006	SPAIN	Figueres	43	196
E10	5	2006		SPAIN	Figueres	43	196
E100	1	1972	2004	SENEGAL	Dakar	37	197
E100	2	2004	2007	SENEGAL	Fass / Colobane / Gueule Tapee	37	197
E100	3	2007		SPAIN	Murcia	37	197
E101	1	1977	1997	SENEGAL	Mandegane	32	197
E101	2	1997	2006	SENEGAL	Dakar	32	197
E101	3	2006	2007	SPAIN	Rubi	32	197
E101	4	2007		SPAIN	Rubi	32	197
E102	1	1966	2005	SENEGAL	Bignona	43	196
E102	2	2005		SPAIN	Mataro	43	196
E103	1	1978	1992	SENEGAL	Medina Yero	31	197
E103	2	1992	1995	SPAIN	Calella	31	197
E103	3	1995	1997	SENEGAL	Medina Yero	31	197
E103	4	1997		SPAIN	Barcelona	31	197
E104	1	1958	2004	SENEGAL	Dakar	51	195
E104	2	2004	2007	SPAIN	Salou	51	195
E104	3	2007		SPAIN	Salou	51	195

3.4.2 Enquête MAFE (Ined)

Quelques éléments de manipulation de ce type de données biographiques sont présentés dans le chapitre compléments 6 [lien]

⁶Il s'agit d'un premier jet réalisé pour la version 2023 et qui ne peut pas viser l'exhaustivité

4 La théorie

L'analyse des durées peut être vue comme l'étude d'une variable aléatoire T qui décrit la durée d'attente jusqu'à l'occurence d'un évènement.

- La durée T = 0 est le début de l'exposition au risque (entrée dans le **Risk set**).
- T est une mesure non négative de la durée.

La principale caractéristique de l'analyse des durées est le traitement des informations dites **censurées**, lorsque la **durée d'observation est plus courte que la durée d'exposition au risque**.

4.1 Temps et durée

Le temps est une dimension (la quatrième), la durée est sa mesure. La durée est tout simplement calculée par la différence, pour une échelle temporelle donnée, entre la fin et le début d'une période d'exposition ou d'observation.

On distingue généralement deux types de mesure de la durée : continue et discrète/groupée. Ces deux notions ne possèdent pas réellement de définition, la différence s'explique plutôt par la présence ou non de simultanéité dans l'occurrence des évènements. Le temps étant intrasèquement continu car deux évènements ne peuvent pas avoir lieu en « même temps ». C'est donc l'échelle temporelle choisie ou imposée par l'analyse et les données qui pourra rendre cette mesure continue ou discrète/groupée. Pour un physicien travaillant sur la théorie de la relativité avec des horloges atomiques, une minute (voire une seconde) est une mesure très groupée pour ne pas dire grossière du temps, alors que pour un géologue c'est une mesure continue. Pour ces deux disciplines, cette échelle de mesure n'est pas adaptée à leur domaine. Le choix de l'échelle temporelle doit être pertinent par rapport aux objectifs de l'analyse même si on dispose des informations très fines (dates de naissance exactes). Etudier la fécondité avec une métrique journalière n'aurait pas de sens.

Il existe des situations où les durées sont par nature discrète, lorsqu'un évènement ne peut avoir lieu qu'à un moment précis (date d'anniversaire des contrats pour l'analyse des résiliation). Généralement dans les sciences sociales avec un recueil de données de type rétrospectif, les mesures dites discrètes sont plutôt de nature groupées. Pour une même année, on considèrera indifféremment des évènements qui se produiront un premier janvier et un 31 décembre d'une même année.

! Important

- Durée continue : absence (ou très peu) d'évènements mesurés simultanément
- Durée discrète/groupée : présence constante et/ou en grand nombre d'évènements simultanés

4.2 Le Risk Set

- 1. Il s'agit de la population **soumise** ou **exposée** au risque lorsque $T = t_i$.
- 2. Cette population varie dans le temps car:
 - Certaines personnes ont connu l'évènement, donc ne peuvent plus être soumises au risque (ex: décès si on analyse la mortalité).
 - Certaines personnes sortent de l'observation sans avoir (encore) observé l'évènement: décès si on analyse un autre type d'évènement, perdu.e.s de vue, fin de l'observation dans un recueil rétrospectif.

4.3 La Censure

Important

Une observation est dite censurée lorsque la durée d'observation est inférieure à la durée d'exposition au risque

4.3.1 Censure à droite

Définition

Certains individus n'auront pas (encore) connu l'évènement à la date de l'enquête après une certaine durée d'exposition. On a donc besoin d'un marqueur permettant de déterminer que les individus n'ont pas observé l'évènement sur la période d'étude.

Pourquoi une information est-elle censurée (à droite)?

- Fin de l'étude, date de l'enquête.
- Perdu de vue, décès si autre évènement étudié.

En pratique (important)

- Ne pas exclure ces observations, sinon on surestime la survenue de l'évènement.
- Ne pas les considérer a-priori comme sorties de l'exposition sans avoir connu l'évènement. Elles peuvent connaître l'évènement après la date de l'enquête ou en étant perdues de vue. Sinon on sous-estime la durée moyenne de survenue de l'évènement.

Exemple

On effectue une enquête auprès de femmes : On souhaite mesurer l'âge à la première naissance. Au moment de l'enquête, une femme est âgée de 29 ans n'a pas (encore) d'enfant.

Cette information sera dite «censurée».

Elle est clairement encore soumise au risque après la date de l'enquête. Au niveau de l'analyse, elle sera soumise au risque à partir de ses premières règles jusqu'au moment de l'enquête.

Hypothèse fondamentale

Les observations censurées ont vis à vis du phénomène observé le même comportement que les observations non censurées. On dit que la **censure est non informative**. Elle ne dépend pas de l'évènement analysé. Normalement le problème ne se pose pas dans les recueil retrospectif.

Problème posé par la censure informative

Par exemple en analysant des décès avec un recueil prospectif, si un individu est perdu de vue en raison d'une dégradation de son état de santé, l'indépendance entre la cause de la censure et le décès ne peut plus être assurée.

• A l'Ined l'exploitation du registre des personnes atteintes de mucoviscidose (G.Belis) donne une autre illustration de ce phénomène. Chaque année un nombre significatif de personnes sortent du registre (pas de résultats aux examens annuels). Si certain.e.s perdu.e.s de vue s'expliquent par des déménagements, émigration ou par un simple problème d'enregistrement des informations, on note qu'ils/elles sont nombreu.se.s à présenter une forme « légère » de la maladie. L'information pouvant être donnée ici par la mutation du gène. Comme il n'est pas recommandé de supprimer ou de traiter ces observations comme des censures à droite non informatives, on peut les appréhender comme un risque concurrent au décès ou à tout autre évènement analysé à partir de ce registre (voir section dédiée).

•

Les graphiques suivant représentent, en temps calendaire et après sa transformation en durée, la logique des censures à droite. Le recueil des informations est ici de nature prospectives, et bien évidemment on suppose que le début de l'observation correspond à un début d'exposition cohérent avec l'analyse réalisée (année de diagnostic d'une maladie, début d'une séquence d'emploi, de lieu de résidence, de couple ou de célibat strict etc....).

Trait plein : durée observée
Pointillés : durée censurée
Bulle : moment de l'évènement

4.3.2 Censure à gauche, troncature et censure par intervalle

Censure à gauche

L'évènement a pu se produire avant le début période d'observation, mais on est pas en mesure de savoir s'il s'est produit, et si on sait qu'il s'est produit on est pas en mesure de savoir quand. Typique des données prospectives, de type registre, avec par exemple des âges à l'inclusion différenciés. La présence de ce type de censure ne permet de définir lors de la création de l'échantillon d'analyse des durées d'exposition cohérente pour l'ensemble de observations de départ. Même si elle ne sont pas traitée dans ce support, il existe des méthodes pour obtenir des résultats en précense de ce type de censure, mais

Figure 4.1: Schéma évènement/censure en temps calendaire

Figure 4.2: Schéma évènement/censure sous forme de durée

à la condition qu'elle ne soit pas trop nombreuses. On peut également filtré l'échantillon en amont en conservent seulement celles dont le début d'exposition est clairement défini.

Censure par intervalle

Traditionnellement la censure par intervalle est définie sur l'impossibilité de dater exactement la survenue d'un évènement dans un intervalle de temps¹. Dans ce sens, on pourrait donc affirmer qu'elle est une caractéristique propre aux temporalité groupées dites à durée discrète². On peut sans problème généraliser ce phénomène de censure à l'occurence: un évènement peut se produire entre 2 temps d'observations sans qu'on puisse l'observer. Un exemple classique en criminologie est celle de la récidive d'un délit entre deux arrestations ou deux condamnation: on sait qu'une personne a récidivé en raison de son arrestation, mais on est pas en mesure de savoir s'elle a récidivé plus tôt....Pas vu pas pris. A noter également, toujours dans un recueil prospectif, qu'un phénomène de censure à droite lié aux *perdu.e de vue* peut se transformer en censure par intervalle lorsque la personne "réapparait" et est de nouveau incluse à l'échantillon³.

Troncature

Par l'exemple, on analyse la survie d'une population. Seule la survie des individus vivants à l'inclusion peut être analysée (troncature à gauche). On peut donc rencontrer un phénomène de sélection difficement contrôlable. On peut également avoir de la troncature à droite lorsqu'on mesure la durée à partir ou jusqu'à un certain seuil niveau. Celle-ci n'est pas forcément problématique.

Ces situations sont généralement plutôt bien contrôlées dans les recueils rétrospectifs, en particulier pour la censure ou la troncature à gauche. Elles sont en revanche assez courantes lorsque le recueil est de type prospectif, et certaines études passent complètement à travers.

Durée d'observation supérieure à la durée d'exposition

A l'inverse de la censure, des individus peuvent sortir de l'exposition avant la fin de la période d'observation, et il convient donc de corriger la durée de cette sortie.

- Si au moment de l'enquête une femme sans enfant a 70 ans, cela n'a pas de sens de continuer de l'exposer au risque au-delà d'un certain âge. Si on ne dispose pas d'information sur l'âge à la ménopause on peut tronquer la durée un peu au-delà de l'âge le plus élevé à la première naissance observée dans les données.
- Situation traitée dans le TP de la formation: on analyse la durée de la première séquence d'emploi ou d'une suite de séquence d'emploi sans rupture (chômage, maladie, sortie du marché du travail etc...). Il conviendra pour les personnes qui n'on pas connu de rupture (d'au moins un an par exemple) de faire sortir certaines personnes au moment de la retraite et non au moment de l'enquête, si elle sont déjà retraitées à ce moment. On pourra considérer ces âges à la retraite censures comme des censures à droites non informatives.

¹Garder en mémoire que l'analyse des durées ou de survie a été très largement développé dans un carde à durée continue ²Si on utilisee une mesure de la durée sur l'âge, on ne sait pas si l'évènement à eu lieu le lendemain de l'anniversaire ou

la veille de l'anniversaire suivant

³Voir exemple plus haut sur le registre de la mucoviscidose

4.4 Les grandeurs

4.4.1 Les grandeurs utilisées

• La fonction de survie: S(t)

• La fonction de répartition: F(t)

• La fonction de densité: f(t)

• Le risque $instantan\acute{e}$: h(t)

• Le risque $instantan\acute{e}$ cumulé: H(t)

Remarques:

- Toutes ces grandeurs sont mathématiquement liées les unes par rapport aux autres. En connaître une permet d'obtenir les autres.
- Au niveau formel on se placera ici du point de vue où la durée mesurée est strictement continue. Cela se traduit, entre autre, par l'absence d'évènements dits "simultanés". En présence de durée discrète/groupé, il est a noté que les expressions se simplifie, en particulier pour la densite ou le risque dit instantané.
- Les expressions qui vont suivre ne sont pas des estimateurs, mais des grandeurs dont on précisera les propriétés. Les techniques d'estimations devront respecter ces propriétés .

4.4.2 La fonction de Survie S(t)

Dans ce type d'analyse, il est courant d'analyser la courbe dite de survie. Hors contexte de mortalité on peut préférer la notion de **courbe de de séjour** (Courgeau, Lelièvre).

La fonction de survie donne la proportion de la population qui n'a pas encore connue l'évènement après une certaine durée t. Elle y a donc "survécu".

Formellement, la fonction de survie est la probabilité de survivre au-delà de t, soit:

$$S(t)=P(T>t)$$

Propriétés:

•
$$S(0) = 1$$

•
$$\lim_{t \to \infty} S(t) = 0$$

La fonction de survie est donc strictement non croissante.

4.4.3 La fonction de répartition F(t)

C'est la probabilité de connaître l'évènement jusqu'en t, soit:

$$F(t) = P(T \le t)$$

Soit:
$$F(t) = 1 - S(t)$$

La fonction de survie et la fonction de répartition sont donc deux grandeurs strictement complémentaires et décrivent la même information.

Propriétés:

- F(0) = 0
- $\lim_{t \to \infty} F(t) = 1$

4.4.4 La fonction de densité f(t)

- Pour une valeur de t donnée, la fonction de densité de l'évènement donne la distribution des moments où les évènement ont eu lieu. Elle est donnée dans un premier temps par la probabilité de connaître l'évènement dans un petit intervalle de temps dt. Si dt est proche de 0 (temps continu) alors cette probabilité tend également vers 0. On norme donc cette probabilité par dt. Rappel: on est toujours ici dans la théorie.
- En temps continu, la fonction de densité est donnée par la dérivée de la fonction de répartition: f(t) = F'(t) = -S'(t).

Formellement la fonction de densité f(t) s'écrit:

$$f(t) = \lim_{dt \to 0} \frac{P(t \le T < t + dt)}{dt}$$

4.5 Le risque instantané h(t)

Concept fondamental de l'analyse des durées:

$$h(t) = \lim_{dt \to 0} \frac{P(t \le T < t + dt | T \ge t)}{dt}$$

- $P(t \le T < t + dt | T \ge t)$ donne la probabilité de survenue de l'évènement sur l'intervalle [t, t + dt] conditionnellement à la survie au temps t.
- En divisant par dt, La quantité obtenue donne alors un nombre moyen d'évènements que connaîtrait un individu durant un très court intervalle de temps.

• A priori cette quantité n'est pas une probabilité. C'est la nature de l'évènement, en particulier sa non récurrence, et la métrique temporelle choisie ou disponible qui peut la rendre assimilable à une probabilité. Tout comme la densité, on est plutôt dans la définition d'un taux (d'où l'expression hazard rate en anglais).

On peut également écrire:

$$h(t)=\frac{f(t)}{S(t)}=\frac{F'(t)}{S(t)}=-\frac{S'(t)}{S(t)}$$
 4

On remarque que cette fonction de risque (ou hazard rate) n'est pas une probabilité car $\frac{f(t)}{S(t)}$ ne peut pas contraindre ici la valeur obtenue à ne pas être supérieure à 1.

Grandeurs avec des durées discrètes/groupées

Les expressions de la densité et du risque dit instantané se simplifie: $f(t) = P(t \le T < t + dt)$ et h(t) = P(t < T < t + dt | T > t). Ces deux grandeurs ne sont plus des taux tel qu'ils ont été définit précedemment, mais des probabilités. En durée discrète, on aurait donc dt = 1Néanmoins les relations entre les grandeurs, en particulier celle qui lie risque, densité et survie reste toujours valable. Ceci est fondamental, car elle permet de définir la fonction de vraisemblance sur laquelle repose le calcul de tous les estimateurs

Illustration du concept

Cette notion de taux de risque ou hazard rate non réductible à un probabilité, est à mon sens très bien illustré par G.Colletaz dans ces notes de cours (pages 11-12). Dans ce qui suit, j'en fais un quasi copiercoller. En ce positionnant sur des échelle temporelle plus facilement saisissable pour la description de phénomènes socio-démographiques (on supprime la limite des expressions données pour f(t) et h(t):

- 1. On s'intéresse au risque d'attraper un rhume durant les mois d'hiver, disons entre le 1er janvier et le 1er avril [3 mois]. Si la probabilité, constante, d'attraper un rhume chaque mois est de 48% (il s'agit bien évidemment d'un risque). Quel est le risque d'attraper le rhume durant l'unité de temps qu'est cette saison froide de 3 mois?
- $\frac{0.48}{1/3}=1.44.$ On peut donc s'attendre a attraper 1.44 rhume durant la période d'hiver.
- 2. On passe une année en vacances dans une région, franchement pas très accueillante, où la probabilité de décéder chaque mois est évaluée à 33%. Quel est le risque de décéder pendant cette année? $\frac{0.33}{1/12} = 3.96$

On le voit, cette mesure du risque peut donc être supérieur à 1. En soit cela ne pose pas de problème comme il s'agit d'un nombre moyen d'évènements espérés, mais pour des évènements qui ne peuvent pas se répéter, évènements dits absorbants (par définition la mortalité), l'interprétation n'est pas très intuitive.

Le risque étant constant dans chaque intervalle (mois), on peut prendre son inverse qui va mesurer la durée moyenne (espérée) jusqu'à l'occurence de l'évènement.

Par analogie seulement, on retrouve ici un concept classique en analyse démographique comme

 $^{^4}$ La relation $h(t) = \frac{f(t)}{S(t)}$ et donc $f(t) = h(t) \times S(t)$ est intéressante et importante car elle permet d'écrire la vraisemblance du processus probabiliste permettant d'estimer les paramètres des différentes analyses. On voit déjà sa proximité avec la fonction de masse de Bernouilli: $f(y_i) = p^{y_i} \times (1-p)^{1-y_i}$. Se reporté à la section qui décrit qui la vraisemblance partielle de Cox pour s'en faire une idée plus précise.

l'espérance de vie (survie): la question n'est pas de savoir si on va mourir ou non, ce risque inconditionnellement à la durée étant par définition égal à 1, mais jusqu'à quand on peut espérer (sur)vivre.

- Pour le rhume, la durée moyenne est de $1.44^{-1} = 0.69$ du trimestre hivernal. On peut donc s'attendre, en moyenne, à attraper un rhume approximativement au début du mois de mars. Bien évidemment, certain.e.s attraperons un rhume avant, certaine.s après, certain.e.s aucun⁵.
- Pour l'année sabbatique, la durée moyenne de survie est de $3.96^{-1} = 0.25$ d'une année soit 3 mois après l'arrivée dans la région.

4.5.1 Le risque cumulé H(t)

Le risque cumulé est égal à :

$$H(t) = \int_0^t h(u) du = -log(S(t))$$

On peut alors réécrire toutes les autres quantités à partir de celle-ci:

- $\bullet \quad S(t) = e^{-H(t)}$
- $F(t) = 1 e^{-H(t)}$
- $f(t) = h(t) \times e^{-H(t)}$

Exemple avec la loi exponentielle (risque constant)

Si on pose que le risque (ou taux de risque) est strictement constant au cours du temps: h(t) = a, on dira que ce profilsuit une **loi exponentielle**. Cette situation est, par exemple, typique des processus dits sans mémoire comme la durée de vie des ampoules. Sans trop de difficulté, toutes les expressions peuvent être formellement définies:

- h(t) = a
- $H(t) = a \times t$
- $S(t) = e^{-a \times t}$
- $F(t) = 1 e^{-a \times t}$
- $\bullet \quad f(t) = a \times e^{-a \times t}$

Exercice

• On a une population de 100 cochons d'Inde.

 $^{^{5}}$ et une analyse plus fine pourrait s'intéresser sur l'effet du port du masque sur ce risque d'attraper le rhume

Figure 4.3: Grandeurs de la loi exponentielle avec h(t)=0.04

- On analyse leur mortalité (naturelle).
- Ici l'analyse est en temps discret.
- La durée représente le nombre d'année de vie.
- Il n'y a pas de censure ou troncature à droite.

Durée	Nombre de décès
1	1
2	1
3	3
4	9
5	30
6	40
7	10
8	3
9	2
10	1

N = 100

A quel âge le risque de mourir des cochons d'Inde est-il le plus élevé? Et quelle est sa valeur?

4.6 Remarques complémentaires

4.6.1 Formes typiques de la fonction de survie

Une des propriétés de la fonction de survie ou de séjour est qu'elles tendent vers 0. A la lecture du graphique suivant, cela peut correspondre à la forme de la courbe S2, bien que le % de survivant tend à baisser de moins en moins à mesure que la durée augmente. Deux cas limites doivent être considéré.

Par anticipation, on peut déjà signalée que les fonctions de séjours qui sont représentées ci-dessous, font l'objet d'une estimation de type Kaplan-Meier.

Figure 4.4: Fonction de survie: 3 situtation typiques

- S1: très peu d'évènements et la fonction de séjour suit une asymptote nettement supérieur à 0 ($\lim_{t\to\infty} S(t) = a$ avec a>0). La question est plus délicate car on interroge l'exposition au risque d'une partie de l'échantillon ou, dit autrement on peut penser qu'une fraction est immunisé au risque. Cette problématique est rapidement posée en fin de formation.
- S2: la situation attendue
- S3: La survie tombe à 0 très/trop rapidement: il n'y a donc pas ou presque pas de durée (par exemple presque tout l'échantillon observe l'évènement la première année de l'exposition). Les méthodes en temps continue ne sont a priori pas adaptées à ce genre de situation. Si on dispose

d'une information plus fine pour dater les évènements, la fonction de séjour pourra reprendre une forme plus "standard". Dans le graphique, S(t=1)=0.4, S(t=2)=0.025, mais si on dispose par exemple de 10 points d'observations supplémentaires dans chaque durée groupée:

Figure 4.5: Fonction de survie et modification de la métrique temporelle

4.6.2 Absence de censures à droites

Les méthodes qui vont être présentées plus tard *gèrent* la présence de censures à droite. En leur absence, elles restent néanmoins parfaitement valables. L'absence de censure facilite certaines analyses, par exemple celles des fonctions de séjour où le calcul direct des durées moyennes est rendu possible. On peut alors utiliser d'autres méthodes plus, en première intentions plus simples, en analysant directement la distribution des évènement dans le temps. La durée ou une fonction de celle-ci pouvant être directement passées comme variable dépendante.

4.6.3 Utilisation des pondérations dans un schema retrospectif avec des biographies longues

Une question assez récurrente concerne l'utilisation des poids de sondage dans les analyses de durées avec longueurs biographiques souvent assez longues. Leur utilisation ne me semble pas recommandée

voire à exclure sauf exceptions. En effet les pondérations sont générées au moment de l'enquête, alors que les évènements étudiés peuvent remonter dans un passé plus ou moins lointain pour une partie de la population analysée. Si on regarde de plus près, la création de poids longitudinaux ne résoudrait pas grand chose , les pondérations devant être recalculées à chaque moment d'observation ou à chaque moment où des évènements se produisent. Par ailleurs on mélangerait régulièrement à un instant donné des personnes issues de générations différentes ce qui rend impossible tout calage sur des caractéristiques d'un population. Supposons une personne âgée de 25 ans et un personne âgée de 70 ans au moment de l'enquête en 2022, avec un début d'observation à l'âge de 18 ans . A 20 ans (t=2), pour la première personne les caractéristiques de la population sont celles de 2017, pour celle de 70 ans celles de 1972. On fait comment???????

partie III Méthodes non paramétrique

5 Estimations des fonctions de survie

Les méthodes non paramétriques portent généralement sur l'analyse des fonctions de survie (S(t)) ou sur celles des fonctions de répartitions (F(t)), plus rarement sur les mesures d'incidence données par le risque cumulé. Deux méthodes d'estimations sont proposées : la méthode dite actuarielle et la méthode dite de Kaplan & Meier. Ces deux approches sont adaptées à des mesures différentes de la durée : plutôt discrète/groupée pour la technique actuarielle et plutôt continue pour Kaplan-Meier (KM). Cela induit un traitement différent de la censure dans l'estimation. La seconde est de très très loin la plus utilisée, en partie en raison des tests de comparaison, plus ou moins pertinents, qu'elle permet de réaliser.

Important

- J'insiste sur la nécessité de passer par cette étape avant de se lancer *corps perdu* dans des modèles, comme ceux à durée discrète.
 - Les applications ont des gardes fous permettant d'alerter sur des durées d'exposition incorrecte, en particulier lorsqu'on travaille sur des données prospectives.
 - Egalement très utile, la comparaison graphique de courbes de séjour permet de repérer rapidement des violations fortes de l'hypothèse de proportionalité des risques, ou des situations de quasi *immunité*.
- Concernant les tests non paramétriques, ceux utilsant la technique du *logrank*, présente à mon sens tellement de défauts qu'ils devraient être abandonné. Malheureusement encore très peu diffusée dans les sciences sociales, la comparaison des RMST (*Restricted Mean of Survival Time*) me semble une solution largement supérieure, tant au niveau statistique qu'au niveau interprétatif.

5.1 Les fonctions de survie/séjour

5.1.1 Les variables d'analyse

On a un échantillon aléatoire de n individus avec:

- Des indicateurs de fin d'épisode $e_1,e_2,....,e_k$ avec $e_i=0$ si censure à droite et $e_i=1$ si évènement observé pendant la période d'observation.
- Des durées d'exposition au risque $t_1, t_2, ..., t_k$ jusqu'à l'évènement ou la censure.
- En théorie, il ne peut pas y avoir d'évènement en t=0.

5.1.2 Calcul de la fonction de survie

Rappel: La fonction de survie donne la probabilité que l'évènement survienne après t_i , soit $S(t_i) = P(T > t_i)$. Pour survivre en t_i , il faut donc avoir survécu en t_{i-1} , t_{i-2} , ..., t_1 .

La fonction de survie renvoie donc des probabilités conditionnelles: on survit en t_i conditionnellement au fait d'y avoir survécu avant. Il s'agit donc d'un produit de probabilités.

Soit $d_i = \sum e_i$ le nombre d'évènements observé en t_i et r_i la population encore soumise au risque en i. On peut mesurer l'intensité de l'évènement en t_i en calculant le quotient $q(t_i) = \frac{d_i}{r_i}$.

Si le temps est strictement continu on devrait toujours avoir $q(t_i) = \frac{1}{r_i}$.

$$S(t_i) = (1 - \frac{d_i}{r_i}) \times S(t_{i-1}) = S(t_i) = (1 - q(t_i)) \times S(t_{i-1})$$
. En remplaçant $S(t_{i-1})$ par sa valeur: $S(t_i) = (1 - \frac{d_i}{r_i}) \times (1 - \frac{d_{i-1}}{r_{i-1}}) \times S(t_{i-2})$.

Au final, en remplaçant toutes les expressions de la survie jusqu'en t_0 (S(0) = 1):

$$S(t_i) = \prod_{t_i \leq k} (1 - q(t_i))$$

i Application pour la suite du support

- On va analyser le risque de décéder (la survie) de personnes souffrant d'une insuffisance cardiaque. Le début de l'exposition est leur inscription dans un registre d'attente pour une greffe du coeur.
- Les covariables sont dans un premier temps toutes fixes: l'année (year) et l'âge (age) à l'entrée dans le registre, et le fait d'avoir été opéré pour un pontage aorto-coronarien avant l'inscription (surgery).
- Le début de l'exposition au risque est l'entrée dans le registre, la durée est mesurée en jour (stime). La variable évènement/censure est le décès (died). Les durées de la variable stime ont été regroupée par période de 30 jours pour réaliser des analyses à durée discrete. Cette nouvelle variable de durée a été appelé mois.
- L'introduction d'une dimension dynamique, la greffe, est donnée par les informations contenues dans les variables *transplant* et *wait*.
- La variable *compet* est une information simulée pour réaliser des analyses en risques concurrents.
- Les bases en format .csv, .sas7bdat et .dta sont disponibles dans ce dépôt [lien]

Extrait de la base:

id	year	age	died	stime	surgery	transplant	wait	mois	compet
15	68	53	1	1	0	0	0	1	1
43	70	43	1	2	0	0	0	1	1

						0				
75	72	52	1	2	0	0	0	1	1	
102	74	40	0	11	0	0	0	1	0	
74	72	29	1	17	0	1	5	1	2	

5.2 La méthode actuarielle

- Estimation sur des intervalles définies par l'utilisateur.
- Méthode dite «continue», estimation en milieu d'intevalle.
- Méthode apropriée lorsque la durée est mesurée de manière discrète/groupée.
- Méthode, hélas, quasiment abandonnée dans les sciences sociales où les durées sont plus rarement mesurées de manière exacte. L'absence de test de comparaison des fonctions de survie n'y est pas étranger, tout comme le lien de la méthode suivante (Kaplan-Meier) avec le modèle de Cox.
- Contrairement à la méthode de Cox, la méthode actuarielle permet de calculer les quantiles de la durée.

5.2.1 Estimation

Echelle temporelle

La durée est divisée en J intervalles, en choisissant J points: $t_0 < t_1 < ... < t_J$ avec $t_{J+1} = \infty$.

Calcul du Risk set

- A $t_{min} = 0$, $n_0 = n$ individus soumis au risque: $r_0 = n_0$.
- Le nombre d'exposé.e.s au risque sur un intervalle est calculé en soustrayant la moitié des cas censurés sur la longueur de l'intervalle: $r_i = n_i 0.5 \times c_i$, avec n_i le nombre de personnes soumises au risque au début de l'intervalle et c_i le nombre d'observations censurées sur la longueur de l'intervalle. On suppose donc que les observations censurées c_i sont sorties de l'observation uniformément sur l'intervalle. Les cas censurés le sont en moyenne au millieu de l'intervalle.

Calcul de $S(t_i)$

On applique la méthode de la section précédente avec:

$$q(t_i) = \frac{d_i}{n_i - 0.5 \times c_i}$$

Calcul de la durée médiane (ou autre quantiles)

Rappel: en raison de la présence de censures à droite, le dernier intervalle étant ouvert jusqu'à la dernière sortie d'observation, il n'est pas conseillé de calculer des durées moyennes. On préfère utiliser la médiane ou tout autre quantile lorsqu'ils sont calculables.

Définition: il s'agit de la durée telle que $S(t_i) = 0.5$.

Calcul: Comme on applique une méthode continue et monotone à l'intérieur d'intervalles, on ne peut pas calculer directement un point de coupure qui correspond à 50% de survivants. On doit donc trouver ce point par interpolation linéaire dans l'intervalle $[t_i; t_{i+1}]$ avec $S(t_{i+1}) \leq 0.5$ et $S(t_i) > 0.5$.

R-Stata-Sas-Python

5.2.1.1 R

Les fonctions de survie avec la méthode dite actuarielle sont estimables avec le package **discSurv**. Avec le temps, il s'est étoffé, on peut maintenant paramatrer des intervalles (programmation pénible), mais les quantiles de la durée ne sont toujours pas estimables, ce qui est bien dommage.

5.2.1.2 Stata

Commande ltable, avec en option la paramétrisation des intervalles de durées. Voir la commande externe qlt (MT) qui calcule les durées médianes (+ autres quartiles) et qui recalcule la fonction de séjour avec une définition des intervalles de durées identique à celle de SAS.

5.2.1.3 Sas

Sous une proc lifetest avec en option method=lifetable. On peut paramétrer les intervalles d'estimation avec l'option width.

5.2.1.4 Python

A l'heure actuelle, aucune fonction à ma connaissance

5.2.2 Application

Les résultats qui suivent ont été estimés avec Stata en retenant la définition des bornes de Sas, plus pertinente à mon sens, avec des intervalles fixes de 30 jours.

	+-						+
		t0	t1	survival	CI 95% low	CI 95% up	
	-						
1.		0	30	1			
2.		30	60	.7853659	.6925991	.8530615	
3.		60	90	.6461871	. 5449008	.7304808	
4.		90	120	. 525027	. 4232338	.6170507	
5.		120	150	. 4740535	.3737563	.5677139	
	-						
6.		150	180	. 4636348	.3637283	. 5575485	
7.		180	210	.4425605	. 3435417	. 5368989	

8.	210	240	.4105681	.3132064	.5052779
9.	240	270	.3997637	.3030412	. 4945301
10.	270	300	.3888113	. 2927645	. 4836136
11.	300	330	. 3665935	. 2720434	.4613676
12.	330	360	.3554846	. 2617823	.4501585
13.	360	390	.3216289	. 2308275	. 4157428
14.	390	420	.3216289	. 2308275	. 4157428
15.	420	450	.3216289	. 2308275	. 4157428
16.	480	510	.3216289	. 2308275	. 4157428
17.	510	540	.3216289	. 2308275	. 4157428
18.	540	570	.3216289	. 2308275	. 4157428
19.	570	600	.3216289	. 2308275	. 4157428
20.	600	630	. 3059397	. 2154747	. 4009653
21.	660	690	. 3059397	. 2154747	.4009653
22.	720	750	. 2884574	. 1981834	. 3848506
23.	840	870	.2704288	. 1806664	.3680736
24.	900	930	. 2517786	.1628919	.3505543
25.	930	960	. 2517786	. 1628919	.3505543
26.	960	990	. 2517786	. 1628919	.3505543
27.	990	1020	. 2288896	. 1404089	.3303913
28.	1020	1050	.2060007	. 1191749	.3093143
29.	1140	1170	. 1831117	.0991601	. 2873401
30.	1320	1350	. 1831117	.0991601	. 2873401
31.	1380	1410	. 1831117	.0991601	. 2873401
32.	1560	1590	. 1464894	.0645215	.2602391
33.	1770	1800	. 1464894	.0645215	. 2602391
34.	1800		.1464894	.0645215	. 2602391
+	+				

Table 5.2: Quantiles de la fonction de séjour type actuarielle - Bornes Sas

t
13.977
37.623
104.729
906.993

Lecture des résultats: 102 jours après leur inscription dans le registre d'attente pour une greffe, 50% des malades sont toujours en vie. Au bout de 914 jours, 75% sont décédés.

Figure 5.1: Courbe de survie: estimation méthode actuarielle

5.3 La méthode de Kaplan-Meier

- L'approche qui exploite toute l'information disponible est celle dite de **Kaplan-Meier** (KM).
- Il y a autant d'intervalles que de durées où l'on observe au moins un évènement.
- Au lieu d'utiliser des intervalles prédéterminés, l'estimateur KM va définir un intervalle entre chaque évènement enregistré.
- La fonction de survie estimée par la méthode KM est une fonction en escalier (stairstep), d'où une estimation dite "discrète".
- Pour chaque intervalle, on compte le nombe d'évènements et le nombre de censures.
- Méthode adaptée pour une mesure de la durée de type continue.

5.3.1 Estimation

Définition du Risk Set (r_i)

S'il y a à la fois des évènements et des censures à une durée t_i , les observations censurées sont considérées comme exposées au risque à ce moment, comme si elles étaient censurées très rapidement après. C'est la principale caractéristique de cette méthode, appelé également l'estimateur product-limit

$$r_i = r_{i-1} - d_{i-1} - c_{i-1}$$

Calcul de q_i

On applique la méthode de la section précédente avec:

$$q_i = \frac{d_i}{r_{i-1} - d_{i-1} - c_{i-1}}$$

Remarque: la variance de l'estimateur est obtenu par la méthode dite de Greenwood. Il n'y a pas d'intérêt particulier de la décrire dans ce support.

Récupération de la médiane

Il n'y a pas de méthode pour calculer directement la durée médiane (ou tout autre quantile) contrairement à l'approche actuarielle.

La définition retenue est conventionnelle. On va prendre la valeur de la durée qui se situe juste **en dessous** de 50% de survivant.e.s. Elle est donc définie tel que $S(t) \leq 0.5$. Attention, il n'est pas impossible que le % de survivant.e.s soit bien en deçà de 50% pour l'obtention cette durée médiane.

R-Stata-Sas-Python

5.3.1.1 R

Les estimateurs sont obtenus avec fonction **survfit** du package **survival**. On peut obtenir des rendus graphiques de meilleures qualité avec le package **survminer** (fonction **ggsurvplot**)

5.3.1.2 Stata

Après avoir appelé les variables de durée et de censure en mode **survival** avec **stset**), le tableau des estimateurs est obtenu avec la commande **sts list** et le graphique avec **sts graph**.

5.3.1.3 SAS

L'estimation de Kaplan-Meier est affichée par défaut par la proc lifetest. **Warning** : le tableau affiché par SAS est particulièrement pénible à lire voire illisible, en particulier lorsque le nombre de censures est élevé, une ligne étant ajoutée pour chaque observation censurée. Je conseille de ne pas afficher cette partie de l'output (se reporter à la section SAS du chapitre programmation). On récupère pour le reste de l'output les valeurs de la durée pour S(t) = (.75, .5, .25) ainsi que le graphique, ce qui est suffisant.

5.3.1.4 Python

Les resultats sont donnés dans la librairie lifeline par des fonctions au nom interminable. Je conseille plutôt l'utilisation de la librairie statmodels (se reporter à la section dédiée à Python).

5.3.2 Application

On reprend l'exemple précédent.

Time	Total	Fail	Lost	Function	Error	[95% Conf.	Int.]
1	103	1	 0	 0.9903	0.0097	0.9331	0.9986
2	102	3	0	0.9612	0.0190	0.8998	0.9852
3	99	3	0	0.9320	0.0248	0.8627	0.9670
5	96	2	0	0.9126	0.0278	0.8388	0.9535
6	94	2	0	0.8932	0.0304	0.8155	0.9394
8	92	1	0	0.8835	0.0316	0.8040	0.9321
9	91	1	0	0.8738	0.0327	0.7926	0.9247
11	90	0	1	0.8738	0.0327	0.7926	0.9247
12	89	1	0	0.8640	0.0338	0.7811	0.9171
16	88	3	0	0.8345	0.0367	0.7474	0.8937
17	85	1	0	0.8247	0.0375	0.7363	0.8857
18	84	1	0	0.8149	0.0383	0.7253	0.8777
21	83	2	0	0.7952	0.0399	0.7034	0.8614
28	81	1	0	0.7854	0.0406	0.6926	0.8531
30	80	1	0	0.7756	0.0412	0.6819	0.8448
31	79	0	1	0.7756	0.0412	0.6819	0.8448
32	78	1	0	0.7657	0.0419	0.6710	0.8363
35	77	1	0	0.7557	0.0425	0.6603	0.8278
36	76	1	0	0.7458	0.0431	0.6495	0.8192
37	75	1	0	0.7358	0.0436	0.6388	0.8106
39	74	1	1	0.7259	0.0442	0.6282	0.8019
40	72	2	0	0.7057	0.0452	0.6068	0.7842
43	70	1	0	0.6956	0.0457	0.5961	0.7752
45	69	1	0	0.6856	0.0461	0.5855	0.7662
50	68	1	0	0.6755	0.0465	0.5750	0.7572
51	67	1	0	0.6654	0.0469	0.5645	0.7481
53	66	1	0	0.6553	0.0472	0.5541	0.7390
58	65	1	0	0.6452	0.0476	0.5437	0.7298
61	64	1	0	0.6352	0.0479	0.5333	0.7206
66	63	1	0	0.6251	0.0482	0.5230	0.7113
68	62	2	0	0.6049	0.0487	0.5026	0.6926
69	60	1	0	0.5948	0.0489	0.4924	0.6832
72	59	2	0	0.5747	0.0493	0.4722	0.6643
77	57	1	0	0.5646	0.0494	0.4621	0.6548
78	56	1	0	0.5545	0.0496	0.4521	0.6453
80	55	1	0	0.5444	0.0497	0.4422	0.6357
81	54	1	0	0.5343	0.0498	0.4323	0.6261
85	53	1	0	0.5243	0.0499	0.4224	0.6164
90	52	1	0	0.5142	0.0499	0.4125	0.6067
96	51	1	0	0.5041	0.0499	0.4027	0.5969
100	50	1	0	0.4940	0.0499	0.3930	0.5872
102	49	1	0	0.4839	0.0499	0.3833	0.5773
109	48	0	1	0.4839	0.0499	0.3833	0.5773
110	47	1	0	0.4736	0.0499	0.3733	0.5673

131	46	0	1	0.4736	0.0499	0.3733	0.5673
149	45	1	0	0.4631	0.0499	0.3632	0.5571
153	44	1	Ö	0.4526	0.0499	0.3531	0.5468
165	43	1	0	0.4421	0.0498	0.3430	0.5364
180	42	0	1	0.4421	0.0498	0.3430	0.5364
186	41	1	0	0.4313	0.0497	0.3327	0.5258
188	40	1	0	0.4205	0.0497	0.3225	0.5152
207	39	1	0	0.4097	0.0495	0.3123	0.5045
219	38	1	0	0.3989	0.0494	0.3022	0.4938
263	37	1	0	0.3881	0.0492	0.2921	0.4830
265	36	0	1	0.3881	0.0492	0.2921	0.4830
285	35	2	0	0.3660	0.0488	0.2714	0.4608
308	33	1	0	0.3549	0.0486	0.2612	0.4496
334	32	1	0	0.3438	0.0483	0.2510	0.4383
340	31	1	1	0.3327	0.0480	0.2409	0.4270
342	29	1	0	0.3212	0.0477	0.2305	0.4153
370	28	0	1	0.3212	0.0477	0.2305	0.4153
397	27	0	1	0.3212	0.0477	0.2305	0.4153
427	26	0	1	0.3212	0.0477	0.2305	0.4153
445	25	0	1	0.3212	0.0477	0.2305	0.4153
482	24	0	1	0.3212	0.0477	0.2305	0.4153
515	23	0	1	0.3212	0.0477	0.2305	0.4153
545	22	0	1	0.3212	0.0477	0.2305	0.4153
583	21	1	0	0.3059	0.0478	0.2156	0.4008
596	20	0	1	0.3059	0.0478	0.2156	0.4008
620	19	0	1	0.3059	0.0478	0.2156	0.4008
670	18	0	1	0.3059	0.0478	0.2156	0.4008
675	17	1	0	0.2879	0.0483	0.1976	0.3844
733	16	1	0	0.2699	0.0485	0.1802	0.3676
841	15	0	1	0.2699	0.0485	0.1802	0.3676
852	14	1	0	0.2507	0.0487	0.1616	0.3497
915	13	0	1	0.2507	0.0487		0.3497
941	12	0	1	0.2507	0.0487	0.1616	0.3497
979	11	1	0	0.2279			0.3295
995	10	1	0	0.2051	0.0494	0.1183	0.3085
[Résultats	non rep	ortés à	partir	de t=1000]			

La durée durée médiane de survie est t=100. Elle correspond à S(t)=0.4940.

Table 5.3: Quantiles de la fonction de séjour type Kaplan-Meier

S(t)	\mathbf{t}
0.90	6
0.75	36

S(t)	\mathbf{t}
0.50	100
0.25	979
0.1	•

Figure 5.2: Courbe de survie: estimation méthode Kaplan-Meier

Figure 5.3: Courbe de survie: estimation méthode Kaplan-Meier + CI

5.3.3 Quantités associées à l'estimateur Kaplan-Meier..

Le risque cumulé: estimateur de Nelson AAlen

Il est simplément égal à:

$$H(t) = \sum_{t_i \leq k} q(t_i)$$

Figure 5.4: Risque cumulé: estimateur Nelson-Aalen

Le risque ou taux de hasard instantané

Nécessite l'estimateur de risque cumulé de Nelson-Aalen. Le risque est obtenu en lissant les différences - toujours positive - entre H(t) par la méthode dite du **kernel** (cf estimation de la densité des distributions). Elle permet d'obtenir une fonction continue avec la durée (paramétrables sur les largeurs des fenêtres de lissage). D'autres méthodes de lissage sont maintenant possibles, et de plus en plus utilisées, en particulier celles utilisant des splines.

Note

Il n'est pas inutile de noter qu'il n'y a pas de *formule* toute faite pour obtenir des valeurs du risque instantané. Ce type de méthode par lissage est pleinement paramétrable, par exemple sa fenêtre, ce qui implique que son profil varie d'un paramétrage à l'autre. Le graphique précédent a été fait avec Stata, si on utilisait le package muhaz les différences de paramétrage par défaut font que les courbes ne se confondent pas.

Figure 5.5: Risque instantané: estimateur du Kernel

6 Tests de comparaison

- Les tests d'égalités des fonctions de survie entre différentes valeurs d'une covariable sont calculés à partir de la méthode de Kaplan Meier.
- L'utilisation du test correspond à la nécessité de déterminer si une même distribution gouverne les évènements observés dans les différentes strates.
- Attention: pas de test possible sur des variables quantitatives. Il faut donc prévoir des regroupements pour les transformer en variable ordinale.

Deux méthodes sont utilisées:

- La plus ancienne, la plus diffusée, et peut-être la moins bonne: test dits du log-rank).
- Plus récente et (hélas) moins difusée: comparaison des RMST (Restricted Mean of Survival Time).

6.1 Tests du log-rank

Il s'agit d'une série de tests qui répondent à la même logique, la seule différence réside dans le poids accordé au début ou à la fin de la période d'observation. Par ailleurs ces différents tests sont plus ou moins sensibles à la distribution des censures à droites entre les sous échantillons et à la non proportionalité des risques.

Dans leur logique, ces tests entrent dans le cadre des tests d'indépendance du Khi2, même si formellement ils relèvent des techniques dites de rang.

Il s'agira donc de comparer des effectifs observés à des effectifs espérés à chaque moment d'évènement. La principale différence réside dans le calcul de la variance de la statistique du test qui, ici, suit assez logiquement une loi hypergéométrique [proche loi binomiale mais avec tirage avec remise].

6.1.1 Principe de calcul de la statistique de test

- Effectifs observés en t_i : o_{i1} et o_{i2} sont égaux à d_{i1} et d_{i2} , et leur somme pour tous les temps d'évènement à O_1 et O_2 .
- Effectifs expérés (hypothèse nulle H_0): comme pour une statistique du χ^2 on se base sur les marges, avec le risque set (R_i) en t_i pour dénombrer les effectifs, soit $e_{i1} = R_{i1} \times \frac{d_i}{R_i}$ et $e_{i2} = R_{i2} \times \frac{d_2}{R_i}$. Leur somme pour tous les temps d'évènement est égale à E_1 et E_2 . Le principe de calcul des effectifs observés reposent donc sur l'hypothèse d'un rapport des risques toujours égal à 1 au cours du temps (hypothèse fondamentale de risques proportionnels).
- Statistique du log-rank: $(O_1-E_1)=-(O_2-E_2).$

• Statistique de test: sous H_0 , $\frac{(O_1-E_1)^2}{\sum v_i}$, avec v_i la variance de $(o_{i1}-e_{i2})$, suis un $\chi^2(1)$. Si on teste simultanément la différence de g fonctions de survie, ce qui n'est pas une bonne idée en passant, la statistique de test suis un $\chi^2(g-1)$.

6.1.2 Les principaux tests log-rank

Le principe de construction des effectifs observés et espérés reste le même dans chaque test, les différences résident dans les pondérations (w_i) qui prennent en compte, de manière différente, la taille de la population soumise au risque à chaque durée où au moins un évènement est observé.

- Test du log-rank: $w_i=1$ Il accorde le même poids à toutes les durées d'évènement. C'est le test standard, le plus utilisé.
- Test de Wilconxon-Breslow-Grehan: $w_i = R_i$ Les écarts entre effectifs observés et espérés sont pondérés par la population soumise à risque en t_i . Le test accorde plus de poids au début de la période analysée, et il est sensible aux différences de distributions entre les strates des observations censurées.
- Test de Tarone-Ware: $w_i = \sqrt{R_i}$ Variante du test précédent, il atténue le poids accordé aux évènements au début de la période d'observation. Il est par ailleurs moins sensible au problème de la distribution des censures entre les strates.
- Test de Peto-Peto : $w_i = S_i$ La pondération est une variante de la fonction de survie KM (avec $R_i = R_i + 1$). Le test n'est pas sensible au problème de distribution des censures.
- Test de Fleming-Harington: $w_i = (S_i)^p \times (1 S_i)^q$ avec $0 \le p \le 1$ Il permet de paramétrer le poids accordé au début où à la fin de temps d'observation. Si p = q = 0 on retrouve le test de base non pondéré.

En pratique/remarques:

- Les tests du log-rank sont sensibles à l'hypothèse de risques proportionnels (voir modèle semiparamétrique de Cox). En pratique si des courbes de séjours se croisent, il est fortement déconseillé de les utiliser. Cela ne signifie pas que si les courbes ne se croisent pas, l'hypothèse de proportionalité des risques est respectée : des rapports de risque peuvent au cours du temps s'intensifier, se réduire ou, le cas échant s'inverser, ce qui est typique d'un croisement.
- Effectuer un test global (multiple/omnibus) sur un nombre important de groupes (ou >2) peut rendre le test très facilement significatif. Il peut être intéressant de tester des courbes deux à deux (idem qu'une régression avec covariable discrète), en conservant un seul degré de liberté. Des méthodes de correction du test multiple sont possibles ou disponibles si on utilise R.

R-Stata-Sas-Python

6.1.2.1 R

On utilise la fonction **survdiff** de la librairie **survival**. Le résultat du test de Peto-Peto est affiché par défaut (rho=1). Si on souhaite utiliser le test non pondéré, on ajoute l'option rho=0. Pour obtenir le résultat d'un test multiple corrigé (plus d'un degré de liberté), on peut utiliser la fonction **pairwise_survdiff** du package **survminer**. Cette fonction permet également d'obtenir des tests 2 à 2.

Je conseille de rester sur l'option *Peto-Peto* et dans le cas d'une variable à plus de deux modalités, d'utiliser la fonction de survminer pairwise_survdiff.

6.1.2.2 Stata

On utilise la commande **sts test** avec le nom de la version du test: **peto**, **wilcoxon** . Sans préciser le nom de la variante, le test non pondéré est exécuté.

6.1.2.3 Sas

Le test non pondéré et la version Wilcoxon sont données avec l'option **strata** de la **proc lifetest**. Attention : ne jamais utiliser la version LR Test qui est biaisée. Pour obtenir d'autres versions du test du log-rank, on ajoute **/test=all** à l'option **strata**.

6.1.2.4 Python

Avec la librairie lifelines, on utilise la fonction logrank_test. Quatre variantes sont disponibles (Wilcoxon, Tarone-Ware, Peto-Peto et Fleming-Harrigton). On peut également utiliser la fonction duration.survdiff de statmodels (non pondéré, Wilcoxon - appelé ici Breslow- et Tarone-Ware).

6.1.3 Application

On compare ici l'effet du pontage coronarien sur le risque de décéder depuis l'inscription dans le registre de greffe.

Table 6.1: Résultats des tests du logrank

Test	df	Chi2	P>Chi2
Non pondéré	1	6.59	0.0103
Wilcoxon (Breslow)	1	8.99	0.0027
Tarone-Ware	1	8.46	0.0036
Peto-Peto		8.66	0.0033

Les résultats font apparaître que l'opération permet d'augmenter la durée de survie des personnes. Il apparait que la p-value est plus élevée pour test non pondérée. Cela peut-il s'expliquer en regardant les deux courbes de séjours? Qu'en est-il de la proportionalité des risques ???? Réponse pendant la formation.

6.2 Comparaison des RMST

RMST: Restricted Mean of Survival Time

La comparaison des RMST est une alternative pertinente aux tests du log-rank car elle ne repose pas sur des hypothèses contraignantes (proportionnalité des risques, distribution des censures), et permet une lecture vivante basée sur des espérances de séjour et non sur la lecture d'une simple p-value traduisant l'homogénéité ou non des fonctions de séjour. Par ailleurs les comparaisons sont souples, on peut choisir un ou plusieurs points d'horizon pour alimenter l'analyse.

Principe

- L'aire sous la fonction de survie représente la durée moyenne d'attente jusqu'à l'évènement, soit une espérance de survie.
- En présence de censure à droite, il faut borner la durée maximale $t^* < \infty$. L'espérance de survie s'interprète donc sur un horizon fini. On est très proche d'une mesure en analyse démographique type « espérance de vie partielle ».

- $RMST = \int_0^{t^*} S(t)dt$.
- On peut facilement comparer les RMST de deux groupes, en termes de différence ou de ratio.
- Par défaut on définit généralement t^* à partir le temps du dernier évènement observé. Il est néanmoins possible de calculer le RMST sur des intervalles plus court, ce qui lui permet une véritable souplesse au niveau de l'analyse.

R-Stata-Sas-Python

Attention, selon les logiciels la durée max par défaut n'est pas la même. Pour R et Sas, il s'agit du dernier évènement observé sur l'ensemble de l'échantillon, alors que Stata prend la durée qui correspond au dernier évènement observé le plus court des deux groupes . Cela affectera légèrement la valeur des Rmst estimées par défaut.

Pour l'exemple, la durée maximale utilisée par R est de 1407 jours alors que pour Stata elle est de 995 jours.

6.2.0.1 R

Librairie **SurvRm2**. Programmée par les mêmes personnes que la commande Stata, la fonction proposée n'est pas très souple.

6.2.0.2 Stata

Commande externe **strmst2**. La plus ancienne fonction proposée par les logiciels. Au final plus limitée que la solution Sas. J'ai programmé une commande, **diffrmst**, qui représente graphiquement les estimations des Rmst pour chaque temps d'évènement, leurs différences et les p-value issues des comparaisons.

6.2.0.3 SAS

Disponible depuis la version 15.1 de SAS/Stat (fin 2018). Les estimations et le résultat du test de comparaison sont récupérables très simplement dans une proc lifetest, avec en option **plots=(rmst)**. Bien que sortie tardivement par rapport Stata et R, les résultats sont particulièrement complets.

6.2.0.4 Python

Estimation un peu pénible. A partir de l'estimateur KM obtenu avec la fonction KaplanMeierFitter de lifelines, on peut obtenir les RMST avec la fonction restricted_mean_survival_time. On peut tracer les fonctions, en revanche le test de comparaison n'est pas implémenté.

Application

Avec tmax = 1407:

Table 6.2: Estimation des Rmst pour la variable surgery

Groupes	RMST	Std. Err	95% CI
$ \overline{surgery = 1} \\ surgery = 0 $			517.546 - 1251.605 258.282 - 500.014

Table 6.3: Différences entre Rmst pour la variable surgery

Types de contraste	Ecarts RMST	P> z	95% CI
Rmst(surgery1-surgery0)	505.428	0.010	517.546 - 1251.605
$Rmst\left(rac{surgery1}{surgery0} ight)$	2.333	0.002	1.383 - 3.937

Ici t^* est égal à 1407 jours, soit la durée qui correspond au dernier décès observé.

Sur un horizon de 1407 jours, ces individus opérés d'un pontage peuvent espérer vivre 884 jours en moyenne, contre 379 jours pour les autres. La durée moyenne de survie est donc 2.3 fois plus importante pour les personnes opérées (rapport des Rmst = 2.3), ce qui correspond à une différence de 379 jours.

Le tableau et le graphique suivant donnent les valeurs des Rmst et les écarts de la variable *surgery* en faisant varier *tmax* sur chaque jour où au moins un décès a été observé. Il a été réalisé avec Stata, la durée maximale utilisée a été paramétrée à 1407 jours (idem R, Sas).

Comme le premier décès observé pour les personnes opéré se situe le 165eme jours, il est tout à fait normal que pour ce groupe de personnes la valeur de la Rmst soit identique au jour de décès des individus non opérés.

Note

Pour la version pdf, seulement une dizaine de points a été sélectionné en raison de la longueur du tableau

+-	time	_rmst1	_rmst0	diff	95%CI lowe	 er 95%CI upp	per pvalue
 	 1	1	 1	0	 0	 0	۱ ۱ .
- 1	2	2	1.989011	.010989	0104304	.0324084	.3146368
- 1	3	3	2.945055	.0549451	0009099	.1108	.0538507
- 1	5	5	4.791209	.2087912	.0549289	. 3626535	.0078217
- [6	6	5.692307	.3076923	. 0995576	.5158269	.0037617
- -	 8	 8	 7.45055	 . 5494505	 . 2224352	 .8764658	ا ا 0009908.
i	9	9	8.318682	.6813186	.2913915	1.071246	.0006156
i	50	50	38.90242	11.09758	7.539261	14.6559	9.80e-10
	515	437.5454	197.5971	239.9483	150.1031	329.7935	1.65e-07
	995	734.7576	310.1678	424.5898	204.0643	645.1152	.0001609
1	1032	748.2121	317.5443	430.6678	202.7468	658.5889	.0002127

1141	787.8485	335.6531	452.1953	200.7097	703.681	.0004248	
1323	853.303	365.5577	487.7454	191.5434	783.9473	.0012492	
1386	876.9394	376.3565	500.5829	186.9499	814.2158	.0017585	
1400	882.0303	378.2173	503.813	186.4392	821.1869	.0018625	
1407	7 884.5757	379.1476	505.4281	186.1745	824.6817	.0019162	
+						+	

Figure 6.1: Comparaison des Rmst à chaque jour où au moins un décès est observé

partie IV Modèles à risques proportionnels

7 Introduction aux modèles

7.1 Proprortionnalité des risques

La spécification usuelle d'un modèle à risque proportionnel est:

$$h(t) = h_0(t) \times e^{X'b}$$

- h(t) est une fonction de risque (ou taux de risque).
- $h_0(t)$ est une fonction qui dépend de la durée mais pas des caractéristiques individuelles. Il définiera le risque de base, et jouera donc le rôle de la constante dans un modèle classique.
- $e^{X'b}$ est une fonction qui ne dépend pas de la durée, mais des caractéristiques individuelles $X'b = \sum_{k=1}^{p} b_k X_k$. La forme exponentielle assurera sa positivité ¹.

Le risque de base

 $h(t) = h_0(t)$ donc $e^{X'b} = 1$. Observations pour lesquelles X = 0

Risques proportionnels

Cette hypothèse stipule l'invariance dans la durée du rapport des risques (hazard ratio).

Exemple:

Avec une seule covariable X introduite au modèle, et 2 observations disons A et B:

- $\bullet \quad h_A(t) = h_0(t) e^{b X_A}$
- $h_B(t) = h_0(t)e^{bX_B}$.

Le rapport des risques entre A et B est simplement égal à:

$$\frac{h_A(t)}{h_B(t)} = \frac{e^{bX_A}}{e^{bX_B}} = e^{b(X_A - X_B)}$$

Autrement dit, cette proportionnalité des risques est la traduction d'une absence d'interaction entre les rapports de risques estimés par un modèle à risque proportionnel et la durée (ou une fonction de celle-ci).

Si on part d'un modèle tel que $h_0(t)=0.1$ quelque soit t (baseline à risque constant).

Si $h_1(t)$ est lui même constant, le rapport entre $h_1(t)$ et $h_0(t)$ sera lui même constant dans la durée. On dit que les risques sont proportionnels. Ici, $h_1(t) = 0.2$ quel que soit t, le rapport des risques est

¹On rappelera qu'en durée continue, seule positivité du risque doit être assurée, d'où l'expression hazard rate

Figure 7.1: L'hypothèse de proportionalite des risques

toujours égal à $\frac{0.2}{0.1} = 2 = e^b$. Le paramètre estimé par un modèle à risque proportionnel sera égal à log(2) = 0.69.

Pour $h_{1b}(t)$, le risque augmente de manière à un rythme constant (linéaire): $h_{1b}(1) = 0.15$ et $h_{1b}(1000) = 0.25$. Comme $h_0(t)$ * est constant, le rapport des risques s'accroît également. On dit que les risques ne sont pas proportionnels.

Si on est dans le deuxième cas de figure, un modèle à risque proportionnel estimera un rapport toujours égal à 2. Il estimera un rapport moyen sur la période d'observation.

7.2 Les modèles usuels

- Modèle semi-paramétrique de Cox (1972)

Le modèle estime directement les b indépendamment de $h_0(t)$. C'est pour cela qu'il est appelé modèle **semi-paramétrique de Cox**. Les rapports de risque (e^b) seront utilisés dans un deuxième temps pour estimer la baseline $h_0(t)$, qui peut s'avérer nécessaire pour calculer des fonctions de survie ajustées. Le respect de l'hypothèse de proportionnalité est donc importante et doit donc être analysée.

• Modèle à durée discrète Sa spécification diffère quelque peu de la présentation usuelle d'un modèle à risque proportionnel. Toutefois, il est régi par une hypothèse de proportionnalité. Le non respect de l'hypothèse est moins critique car la baseline du taux de risque est estimée simultanément aux autres paramètres. Il est comme son nom l'indique, particulièrement adapté au durées discrètes ou groupées. Avec une spécification logistique, les Odds vont sous certaines conditions (souvent respectée), se confondre avec des probabilités/risques. Lorsque le nombre de points d'observations (t) n'est pas trop faible, les résultats obtenus sont très proches de ceux issus directement d'un modèle de Cox. On peut souligné que ce modèle a été à l'origine proposé par Cox lui même à la fin des années 60.

• Les modèles paramétriques standards

Les modèles dits de Weibull, exponentiel, Gompertz ont une spécification sous hypothèse de risque

proportionnel. Ils seront traités brièvement dans les compléments. Historiquement, le modèle de Cox est une réponse à une possible difficulté dans l'ajustement du risque par une loi de distribution du risque a priori.

- Modèle paramétrique de Parmar-Royston (non traité)
 - $h_0(t)$, via le risque cumulé H(t), est estimé simultanément avec les rapports de risques en utilisant la méthode des *splines cubiques*. Il est maintenant implémenté dans les logiciels standards (R, Stata, Sas). Les rapports de risque obtenus sont très proches de ceux estimés par le modèle classique de Cox. Il offre donc une alternative surement intéressante au Cox standard, et il s'est maintenant largement diffusé dans l'analyse des effets cliniques.
- Modèle à non proportionnalité: on a bien évidemment les modèles paramétriques de type AFT (Accelerated Failure Time), le peut-être prometteur modèle à pseudo observations d'Andersen (en cours d'évaluation et introduit au support en 2024). Dans le domaine du machine learning, il y a depuis son origine une version modèle de survie dans les forêts aléatoires.

8 Le modèle de Cox

On peut ignorer la partie sur l'estimation du modèle. On retiendra tout de même qu'il est déconseillé d'utiliser la méthode dite *exacte* pour la correction de la vraisemblance, qui ne peut matériellement fonctionner qu'avec un nombre très limité d'évènements observés simultanément. Ce qui est plutôt rare avec des données à durées discrètes ou groupées, très fréquentes dans les sciences sociales.

8.1 Le modèle semi-paramétrique de Cox

8.1.1 La vraisemblance partielle et estimation des paramètres

On se situe dans une situation où la durée est mesurée sur une échelle strictement continue. Il ne peut donc y avoir qu'un seul évènement observé en t_i (idem pour la censure).

On peut représenter le processus aléatoire d'une analyse de survie en présence de censure à droite, avec l'équation de vraisemblance suivante:

$$L_i = f(t_i)^{\delta_i} S(t_i)^{1-\delta_i}$$

- $f(t_i)$ est la valeur de la fonction de densité en t_i
- $S(t_i)$ est la valeur de la fonction de survie en t_i
- $\delta_i=1$ si l'évènement est observé: $L_i=f(t_i)$
- $\delta_i = 0$ si l'observation est censurée: $L_i = S(t_i)$

Vraisemblance partielle de Cox

 $\text{Comme } f(t_i) = h(t_i) \times S(t_i)^{-1} \text{, on obtient: } L_i = [h(t_i)S(t_i)]^{\delta_i}S(t_i)^{1-\delta_i} = h(t_i)^{\delta_i}S(t_i).$

Pour i=1,2,....,n, la vraisemblance s'ecrit donc: $L_i=\prod_{i=1}^n h(t_i)^{\delta_i}S(t_i)$.

On peut réécrire cette vraisemblance en la multipliant et en la divisant par: $\sum_{j \in R_i} h(t_i)$, où $j \in R_i$ est l'ensemble des observations soumises au risque en t_i .

$$L = \prod_{i=1}^n \left[h(t_i) \frac{\sum_{j \in R} h(t_i)}{\sum_{j \in R} h(t_i)} \right]^{\delta_i} S(t_i) = \prod_{i=1}^n \left[\frac{h(t_i)}{\sum_{j \in R_i} h(t_i)} \right]^{\delta_i} \sum_{j \in R_i} h(t_i)^{\delta_i} S(t_i)$$

La vraisemblance partielle retient seulement le premier terme de la vraisemblance, soit:

¹Se reporter à la définition des grandeurs dans la section *Théorie*

$$PL = \prod_{i=1}^n \left[\frac{h(t_i)}{\sum_{j \in R} h(t_i)} \right]^{\delta_i}$$

Une fois remplacée la valeur de $h(t_i)$ par son expression en tant que modèle à risques proportionnels, la vraisemblance partielle ne dépendra plus de la durée. Mais elle va dépendre de l'ordre d'arrivée des évènements, c'est à dire leur rang.

Remarque: pour les observations censurées $(\delta_i = 0)$, PL = 1. Toutefois, ces censures à droite entrent dans l'expression $\sum_{i \in R} h(t_i)$ tant qu'elles sont soumises au risque.

En remplaçant donc $h(t_i)$ par l'expression $h_0(t)e^{X_i'b}$:

$$PL = \prod_{i=1}^{n} \left[\frac{h_0(t)e^{X_i'b}}{\sum_{j \in R_i} h_0(t)e^{X_j'b}} \right]^{\delta_i} = \prod_{i=1}^{n} \left[\frac{e^{X_i'b}}{\sum_{j \in R_i} e^{X_j'b}} \right]^{\delta_i}$$

L'expression $\frac{e^{Xb}}{\sum_{j\in R}e^{Xb}}$ est donc bien une probabilité, et la vraisemblance partielle est donc bien un produit de probabilités. Pour un individu ayant connu l'évènement, la contribution à la vraisemblance partielle est la probabilité que l'individu observe l'évènement en t_i sachant qu'un évènement (et un seul) s'est produit.

• Si $\delta_i = 0$: $PL_i = 1$

• Si
$$\delta_i = 1$$
: $PL_i = \frac{e^{X_i'b}}{\sum_{j \in R_i} e^{X_j'b}}$

Condition nécessaire: pas d'évènement simultané: en présence d'évènements mesurés simultanément, l'estimation de la vraisemblance doit faire l'objet d'une correction.

Correction de la vraisemblance avec des évènements simultanés:

- La méthode dite exacte: Comme il ne doit pas y avoir d'évènement simultané, on va introduire à la vraisemblance partielle toutes les permutations possibles des évènements observés au même moment. Bien qu'en t_i on observe au même moment l'évènement pour 2 observations (A,B) une métrique temporelle plus précise permettrait de savoir si A s'est produit avant B ou B s'est produit avant A (2 permutations). Comme le nombre de permutations est calculé à l'aide d'une factorielle ², avec 3 évènements mesurés simultanément, on obtient 6 permutations (3 × 2 × 1). Problème: le nombre de permutations pour chaque t_i peut devenir très vite particulièrement élevé. Par exemple pour 10 évènements simultanés, le nombre de permutations est égal à 3,628,800. Le temps de calcul devient extrêmement long, et ce type de correction totalement inopérant.
- La *méthode dite de Breslow*: il s'agit d'une approximation de la méthode exacte permettant de ne pas avoir à intégrer chaque permutation. Cette approximation est utilisée par défaut par les logiciels Sas et Stata.

 $²n! = (n) \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$

• La *méthode dite d'Efron*: elle corrige l'approximation de Breslow, et est jugée plus proche de la méthode exacte. C'est la méthode utilisée par défaut avec le logiciel R, et elle est disponible avec les autres applications.

8.1.2 Estimation des paramètres

On utilise la méthode habituelle, à savoir la maximisation de la log-vraisemblance (ici partielle).

• Conditions de premier ordre: calcul des équations de score à partir des dérivées partielles. Solution: $\frac{\partial log(PL)}{\partial b_k} = 0$. On ne peut pas obtenir de solution numérique directe.

Remarque: les équations de score sont utilisées pour tester la validité de l'hypothèse de constance des rapports de risque pour calculer les **résidus de Schoenfeld** (voir plus loin).

- Conditions de second ordre: calcul des dérivées secondes qui permettent d'obtenir la matrice d'information de Fisher et la matrice des variances-covariances des paramètres.
- Comme il n'y a pas de solution numérique directe, on utilise un algorithme d'optimisation (ex: Newton-Raphson) à partir des équations de score et de la matrice d'information de Fisher.

Eléments de calcul

En logarithme (sans évènement simultané), la vraisemblance partielle s'ecrit:

$$pl(b) = \sum_{i=1}^n \delta_i \left(log(e^{X_i'b}) - log \sum_{j \in R_i} e^{X_j'b} \right)$$

$$pl(b) = \sum_{i=1}^{n} \delta_i \left(\boldsymbol{X}_i^{'} b - log \sum_{j \in R_i} e^{\boldsymbol{X}_j^{'} b} \right)$$

Calcul de l'équation de score pour une covariable X_k :

$$\frac{\partial pl(b)}{\partial b_k} = \sum_{i=1}^n \delta_i \left(X_{ik} - \sum_{j \in R_i} X_{jk} \frac{e^{X_j'b}}{\sum_{j \in R_i} e^{X_j'b}} \right)$$

Comme $\frac{e^{X_jb}}{\sum_{j\in R}e^{X_jb}}$ est une probabilité, et $\sum_{j\in R}X_{ik}\times p_i$ est l'espérance (la moyenne) $E(X_k)$ d'avoir la caractéristique X_k lorsqu'un évènement a été observé. Au final:

$$\frac{\partial lp(b)}{\partial b_k} = \sum_{i=1}^n \delta_i \left(X_{ik} - E(X_{j \in R_i,k}) \right)$$

Cette expression va permettre d'analyser le respect ou non de l'hypothèse de risques proportionnels via les résidus de Schoenfeld.

8.1.3 Lecture des résultats

Comme il s'agit d'un modèle à risque proportionnel, les rapports de risques sont constants pendant toute la période d'observation. Il s'agit d'une propriété de l'estimation.

Covariable binaire (indicatrice)
$$X = (0,1)$$
: $RR = \frac{h(t \mid X=1)}{h(t \mid X=0)} = e^b$.

A chaque moment de la durée t, le risque d'observer l'évènement est e^b fois plus important/plus faible pour X=1 que pour X=0.

Covariable quantitative (fixe dans le temps)

 $RR = \frac{h(t \mid X = a + c)}{h(t \mid X = a)} = e^{c \times b}$. On prendra pour illustrer une variable type âge au début de l'exposition au risque (a) et un delta de comparaison avec un âge inférieur c.

Si c=1 (résultat de l'estimation): A un âge donnée, le risque de connaitre l'évènement est e^b fois inférieur/supérieur à celui d'une personne qui a un an de moins.

Exemple pour les insuffisances cardiaques

• Correction de la vraisemblance: méthode d'Efron

• Nombre d'observations: 103

• Nombre de décès: 75

• Log-Vraisemblance: -289.30639

Table 8.1: Cox: log Hazard Ratio (Risks Ratio)

Variables	logRR	Std.Err	Z	P > z	95% IC
year	-0.119		-1.78	0.076	-0.2516;+0.0124
age	+0.0296		2.19	0.029	+0.0031;+0.0561
surgery	-0.9873		-2.26	0.024	-1.8424;-0.1323

Table 8.2: Cox: Hazard Ratio (Risks Ratio)

Variables	RR	Std.Err	Z	P > z	95%CI
year age surgery	1.0300	0.0139	-1.78 2.19 -2.26	0.029	0.7775; 1.0124 1.0031; 1.0577 0.1584; 0.8761

On retrouve les des tests non paramétriques pour l'opération, à savoir qu'un pontage réduit les risques journaliers de décès pendant la période d'observation (augmente la durée de survie).

De la même manière, plus on entre à un âge élevé dans la liste d'attente plus le risque de décès augmente. La variable *year*, qui traduit des progrès en médecine, renvoie à une réduction plutôt modérée du risque journalier de décès durant l'attente d'une greffe.

R-Stata-Sas-Python

8.1.4 R

Le modèle est estimé avec la fonction **coxph** de la librairie **survival**. Hors options, la syntaxe est identiques aux fonctions **survfit** et **survdif**.

8.1.4.1 Stata

Le modèle est estimé avec la commande stcox.

8.1.4.2 SAS

Le modèle est estimé avec la proc phreg.

8.1.4.3 Python

Avec la librairie lifelines, le modèle est estimé avec la fonction CoxPHFitter. Avec la librairie statmodels, il est estimé avec la fonction smf.phreg.

8.2 Analyse de la constance des rapports de risque

- Les rapports de risque (RR) estimés par le modèle sont contraints à être constant sur toute la période d'observation. C'est une hypothèse forte.
- Le respect de cette hypothèse doit être analysé, en particulier pour le modèle de Cox où la baseline du risque est habituellement estimée à l'aide de ces rapports (par exemple la méthode dite de Breslow, non traitée). En post-estimation, les valeurs estimées du risque pourront présenter des valeurs aberrantes si on dévie trop de constance, en particulier en obtenant des négatives des taux de risque.
- Analyser cette hypothèse revient à introduire une interaction entre les rapports et la durée ou plutôt précisément une fonction de la durée).
- Plusieurs méthodes disponibles, on traitera celles basées sur les **résidus de Schoenfeld**, et l'introduction directe d'une intéraction entre une fonction la durée et les covariables du modèle. Cette dernière fait également office de méthode de correction lorsque la violation de l'hypothèse est jugée trop importante ou problématique du point de vue des résultats obtenus.
- Si on regarde les courbes de Kaplan-Meier, leurs croisement non tardif impliquera nécessairement un problème sur cette hypothèse.

8.2.1 Test de Grambsch-Therneau sur les résidus de Schoenfeld

Ce test a été proposé par P.Grambsch et T.Therneau ³ dans un cadre à durée strictement continue. Il repose originellement sur une régression linéaire estimé avec les moindres carrés généralisés (GLS) correction de l'autocorrélation des erreurs avec des sér). Dans un premier temps pour des raisons plutôt pratiques (informatique), le test a une version moindres carrés ordinaires (OLS). Jusqu'en 2020, tous les logiciels ne proposaient que le test OLS. T.Therneau avec la V3 de package survival a substitué - assez brutalement - le test GLS au test OLS. Si les résultats sont proches dans le cadre d'une durée continue et que le test GLS peut être considéré comme un test *exact*, cela devient problématique dans une situation de durée discrète/groupée ⁴. Le test OLS reste, à mon sens, la méthode à privilégier dans le cas discret.

Il est également important de souligner que pour P.Grambsch et T.Therneau ⁵ n'est qu'un moyen parmi d'autres d'analyser une violation de l'hypothèse de proportionnalité. Ce n'est pas *the solution* (comme tout autre test au passage). Le croisement des courbes de séjours peut-être suffisant pour alerter sur cette violation.

Principe du test: consiste à regarder la corrélation entre les **résidus de Schoenfeld** obtenus directement avec la fonction de score de la vraisemblanc partielle de Cox et une fonction de la durée.

Principe de calcul des résidus

- Les résidus bruts sont directement calculés à partir des équations de scores [voir section estimation].
- Ils ne sont calculés que pour les observations qui ont connues l'évènement, au moment où un évènement s'est produit.
- La somme des résidus pour chaque covariable est égale à 0. Il s'agit de la propriété de l'équation de score à l'équilibre.
- On utilise généralement les résidus standardisés (remis à l'échelle / scaled) par leur variance -. C'est la mesure de cette variance qui distingue le test OLS du test GLS.

Pour une observation dont l'évènement s'est produit en t_i , le résidu brut de Schoenfeld pour la covariable X_k , après estimation du modèle, est égal à:

$$rs_{ik} = X_{ik} - \sum_{j \in R_i} X_{jk} \frac{e^{X_j'b}}{\sum_{j \in R_i} e^{X_j'b}} = X_{ik} - E(X_{j \in R_i})$$

- Ce résidu est formellement la contribution d'une observation ou d'un moment d'évènement au score. Il se lit comme la différence entre la valeur observée d'une covariable et sa valeur espérée au moment où l'évènement s'est produit.
- Si la constance des rapports de risque varie peu les résidus ne doivent pas suivre une tendance précise localement ou globalement, à la hausse ou à la baisse.

³Il s'agit bien de la personne qui maintient le package **survival** dans R

⁴Pour les personnes utilisant R, je donne un moyen pour récupérer et exécuter le test OLS sous R

⁵Se reporter à leur ouvrage Modeling Survival Data: Extending the Cox Model (2001)

Pourquoi?

Par l'exemple, sans censure à droite et en ne considérant que les résidus bruts: Avec un rapport de risque strictement égal à 1 en début d'exposition, une population soumise au risque $R_i = 100$ avec 50 hommes et 50 femmes. Si l'hypothèse PH (strictement) respectée, lorsqu'il reste 90 personnes soumises au risque, on devrait avoir 45 hommes et 45 femmes. Avec $R_i=50,\,25$ hommes et 25 femmes,.....avec $R_i=10,\,5$ hommes et 5 femmes.

Au final l'espérance d'avoir la caractéristique X est toujours égal à 0.5 et les résidus bruts prendront toujours la valeur - .5 si X=0 et .5 si X=1. En faisant une simple régression linéaire entre les résidus, qui alternent ces deux valeurs, et t, le coefficient estimé sera en toute logique très proche de 0.

De manière encore plus simple, cette proportionnalité avec un risque ratio égal à 1 suggère qu'au cours de la durée d'observation, on observe une succession d'un même nombre d'hommes et de femmes qui connaissent l'évènement. Si tous les hommes ou presque avaient observés l'évènement plutôt en début d'éxposition et si toutes les femmes ou presque avaient observé l'évènement plutôt en fin d'exposition, l'hypothèse de proportionnalité pourraient fortement remise en cause.

On trouvera des éléments de calcul du test OLS ici

Avertissement

- Test omnibus: Ne pas l'utiliser bien qu'il figure généralement en bas des output. Il n'a pas d'interprétation directe, et les p-value peuvent présenter des valeurs très faibles alors que ce n'est pas le cas pour les covariables prises une à une. Rester comme c'est souvent le cas à un test à un degré de liberté.
- Transformations de la durée: n'importe quelle fonction de la durée peut être utilisée pour réaliser le test. On retient généralement les fonctions suivantes: g(t) = t (« identity »), g(t) = log(t), g(t) = KM(t) ou g(t) = 1 - S(t) où S(t) est l'estimateur de Kaplan-Meier. Enfin une transformation appelée « rank » est utilisée seulement pour les durées strictement continue ou suffisamment dispersées. Par exemple t = (0.1, 0.5, 1, 2.6, 3) donne une transformation t = (1, 2, 3, 4). A savoir : g(t)=t rend le test relativement sensible aux évènements tardifs lorsque la population restant soumise est peu nombreuse (outliers).
- Par défaut Stata, Sas, Python: q(t) = t
- Par défaut R: g(t) = 1 S(t)

Pour des raisons de reproductibilité dans l'espace des logiciels et dans le temps pour les différentes versions du package survival de R, on ne présente ici que la version OLS.

Test OLS avec g(t) = t

Table 8.3: Test OLS Grambsch-Therneau avec q(t) = t

Variables	chi2	df	P>Chi2
year	0.80	1	0.3720
age	1.61	1	0.2043
surgery	5.54	1	0.0186

Ici l'hypothèse de proportionnalité des risques est questionnable pour la variable *surgery*. Le risque ratio pourrait ne pas constant dans le temps. Ce n'est pas du tout étonnant, le premier décès pour les personnes opérées d'un pontage n'est observé qu'au bout de 165 jours. Au final, un test était-il bien nécessaire pour arriver à ce constat ????????

Test OLS avec g(t) = 1 - S(t)

Table 8.4: Test Grambsch-Therneau avec g(t) = 1 - S(t)

Variables	chi2	df	P>Chi2
year	1.96	1	0.162
age	1.15	1	0.284
surgery	3.96	1	0.046

R-Stata-Sas-Python

8.2.2 R

Attention seulement version GLS du test depuis le V3 de survival.

- Après avoir créer un objet à l'estimation du modèle de Cox, on utilise la fonction cox.zph. Cette fonction utilise par défaut g(t) = 1 S(t) où S(t) sont les estimateurs de la courbe de Kaplan-Meier. On peut modifier cette fonction. Il est préférable de conserver cette fonction par défaut.
- Test OLS: j'ai récupéré le programme du test antérieur, renommé cox.zphold. On peut le charger simplement, et il est facilement exécutable. Pour le charger: source("https://raw.githubusercontent.c

8.2.2.1 Stata

Le test (OLS) est obtenu avec la commande estat phtest, d. Par défaut Stata utilise g(t) = t. On peut modifier cette fonction.

8.2.2.2 SAS

Le test (OLS) est disponible depuis quelques années avec l'argument **zph** sur la ligne **proc** lifetest. Par défaut SAS utilise g(t) = t. On peut modifier cette fonction.

8.2.2.3 Python

Le test (OLS) est donné avec la fonction **proportional_hazard_test** de la librairie lifelines. La fonction utilise par défaut g(t) = t, mais on peut afficher les résultats pour toutes les transformations de t disponibles avec l'option time_transform='all'.

8.2.3 Intéraction avec la durée

Petit retour sur l'estimation du modèle

Pour estimer le modèle de Cox, les données sont dans un premier temps splitées aux moment où au moins un évènement a été observé.

Sur l'application, avec 2 individus avec la covariable age (rappel: il s'agit de l'âge en t_0 :

Table 8.5: Base spittées sur les intervals d'évènement

id	age	died	t_0	t
2	51	0	0	1
2	51	0	1	2
2	51	0	2	3
2	51	0	3	5
2	51	1	5	6
3	54	0	0	1
3	54	0	1	2
3	54	0	2	3
3	54	0	3	5
3	54	0	5	6
3	54	0	6	8
3	54	0	8	9
3	54	0	9	12
3	54	1	12	16

Les bornes des intervalles $[t_0;t]$ présentent des valeurs seulement lorsqu'un évènement s'est produit (principe de la vraisemblance partielle). Il n'y a donc pas de valeurs pour t et t_0 en t=4 pour id=(2,3)et t=7,10,11,13,14,15 pour id=3.

Les deux individus observent l'évènement en t=6 pour id=2, et en t=16 pour id=3. Avant ce moment la valeur de la variable évènement/censure (ici d) prend toujours la valeur 0, et prend la valeur 1 le jour du décès.

Sur cette base *splitée* aux moments d'évènement (n=3573), on pourra vérifier facilement que les résultats obtenus par le modèle de Cox sont identiques à ceux obtenus précédemment.

Introduction d'une intéraction avec une fonction de la durée

On a une variable de durée (on prendra g(t) = t) qui sera croisée avec la variable surgery.

Le modèle s'écrit:

$$h(t|X,t) = h_0(t)e^{b_1age + b_2year + b_3surgery + b_4(surgery \times t)}$$

Le modèle avec cette intéraction donne les résultats suivants:

Table 8.6: Modèle de Cox avec une intéraction entre une fonction de la durée et la variable *surgery

Variable	e^b	Std.err	Z	P> z	95% IC
year	0.884	0.059	-1.84	0.066	0.776; 1.008
age	1.029	0.014	+2.15	0.032	1.003 ; 1.057
$surgery(t_{0+})$	0.173	0.117	-2.60	0.009	0.046 ; 0.649
$surgery \times t$	1.002	0.001	+2.02	0.043	1.000; 1.004

On retrouve donc un résultat proche de celui obtenu à partir du test OLS sur les résidus de Schoenfeld pour la variable *surgery*. Et c'est normal. Avec g(t) = t, il a le mérite de pouvoir être interprété directement. Ce qui ne veut pas dire qu'il s'agit de la meilleure solution.

Donc, malgré une hypothèse plutôt forte sur la forme fonctionnelle de l'intéraction, et dans les faits surement pas pertinente, on peut dire que chaque jour le rapport des risques entre personnes opérées et personnes non opérées augmente de +0.2%. Pour plus précis, étant à l'origine <1, l'écart se modère. L'effet de l'opération sur la survie des individus s'estompe donc avec le temps.

A noter

• Le modèle n'est plus un modèle à risque proportionnel. La variable *surgery* n'est plus une variable **fixe** mais une variable tronquée dynamique qui prend la valeur de t pour les personnes qui ont été opérées d'un pontage avant leur entrée dans le registre de greffe.

Si surgery = 0

id	surgery	died	t_0	t	surgery*t
2	0	0	0	1	0
2	0	0	1	2	0
2	0	0	2	3	0
2	0	0	3	5	0
2	0	1	5	6	0

Si surgery = 1 (jusqu'à t = 6 car aucun décès précoce pour ce groupe)

id	surgery	died	t_0	t	surgery*t
40	1	0	0	1	1
40	1	0	1	2	2
40	1	0	2	3	3
40	1	0	3	5	5
40	1	1	5	6	6

Exemple pour une variable quantitative (age)

id	age	died	t_0	t	age*t
2	51	0	0	1	51
2	51	0	1	2	102
2	51	0	2	3	153
2	51	0	3	5	255
2	51	1	5	6	306

• L'altération des rapports de risque dépend de la forme fonctionnelle de l'intéraction choisie. Ici la variation dans la durée du rapport des risque est constante, ce qui est une hypothèse assez forte. On a, en quelques sorte, réintroduit une hypothèse de proportionnalité, ici sur le degré d'altération des écarts de risques dans le temps, qui devient lui même strictement constant.

8.2.4 Que faire?

Ne rien faire

On interprète le risque ratio comme un ratio moyen pendant la durée d'observation (P.Allison). Difficilement soutenable pour l'analyse des effets cliniques, elle peut être envisagée dans d'autres domaines. Attention au nombre de variables qui ne respectent pas l'hypothèse, l'estimation de la baseline du risque pourrait être sensiblement affectée si l'analyse a des visée prédictives. Il convient tout de même lors de l'interprétation, de préciser les variables qui seront analysées sous cette forme très « moyenne » sur la période d'observation.

On peut également adapter cette stratégie du « ne rien faire » selon sens de l'altération des rapports de risque. Si aux cours du temps des écarts de risque, s'accentuent à la hausse comme à la baisse, on peut conserver cet estimateur moyen. Mais si cette non proportionnalité conduit à un changement du sens des rapport de risque je suis moins convaincu de la pertinence de cette stratégie. Encore une fois, et il faut le rappeler, l'estimation des courbes de survie doit permette d'anticiper ce dernier cas de figure.

Il faut également tenir compte de l'intérêt portée par les variables qui présentent un problème par rapport à l'hypothèse. Il n'est peut-être pas nécessaire de complexifier le modèle pour des variables introduites comme simples contrôles.

Mais plus problématique [important]... On sait qu'une des causes du non respect de l'hypothèse peut provenir d'effets de sélection liées à des variables omises ou non observables. En analyse de durée ce problème prend le nom de *frailty* (fragilité) lorsque cette non homogénéité n'est pas observable. Des estimations, plus complexes, sont possibles dans ce cas, et sont en mesure malgré leur interprétation plutôt difficile de régler le problème. Il convient donc de bien spécifier le modèle au niveau des variables de contrôle observables et disponibles.

Modèle de Cox stratifié

Utiliser la méthode dite de « Cox stratifiée » (non traitée). Utile si l'objectif est de présenter des fonctions de survie prédites ajustées, et si une seule covariable (binaire) présente un problème. Les HR ne seront pas estimés pour la variable qui ne respecte pas l'hypothèse.

Intéraction

Introduire une interaction avec la durée. Cela peut permettre en plus d'enrichir le modèle au niveau de l'interprétation. Valable si peu de covariables présentent des problèmes de stabilité des rapports de risque, dans l'idéal une seule variable. Attention tout de même à la forme de la fonction, dans l'exemple on a contraint l'effet d'interaction à être strictement linéaire, ce qui est une hypothèse plutôt forte.... on introduit de nouveau une contrainte de proportionnalité dans le modèle.

Modèles alternatifs

Utiliser un modèle alternatif: modèles paramétriques à risques proportionnels si la distribution du risque s'ajuste bien, le modèle paramétrique « flexible » de Parmar-Royston ou un modèle à temps discret. Pour la dernière solution, on peut également corriger la non proportionnalité avec l'introduction d'une intéraction. Si on ne le fait pas, les risques prédits, par définition des probabilités conditionnelles, resteront toujours dans les bornes contrairement au modèle de Cox.

Utiliser un modèle non paramétrique additif dit d'Aalen ou une de ses variantes (non traité). Mais ces modèles, dont les résultats sont présentés par des graphiques, se commentent assez difficilement.

Forêt aléatoire

Autre méthode : les forêts aléatoires. L.Breiman a dès le départ proposé une estimation des modèles de survie par cette méthode. Par définition, pas sensible à l'hypothèse PH. Mais cela reste des méthodes à finalité prédictive, moins riche en interprétation.

9 Modèle à durée discrète

On va principalement traiter du modèle logistique à durée discrète.

- Par définition ce n'est pas un modèle à risques proportionnels, mais à **Odds proportionnels**. Toutefois en situation de rareté (p<10%), l'Odds converge vers une probabilité, qui est une mesure du risque.
- Le modèle à durée discrète est de type pleinement paramétrique, il est moins contraignant que le modèle de Cox si l'hypothèse de proportionnalité n'est pas respectée, car le modèle est ajusté par une fonction de la durée.
- Pour être estimé, la base de données doit être préalablement transformée en format long: sur les durées d'observation directement disponibles ou sur des regroupements de celles ci éventuellement de longueur différentes, ou sur les intervalles définis à partir des moments d'évènement (Kaplan-Meier et Cox).
- Ce modèle permet d'introduire bien plus simplement qu'avec le modèle de Cox un ensemble de covariables non fixes.

Avec un lien logistique, le modèle à durée discrète, avec seulement des covariables fixes, peut s'écrire:

$$\log\left[\frac{P(Y=1\mid t_p,X_k)}{1-P(Y=1\mid t_p,X_k)}\right] = a_0 + \sum_p a_p f(t_p) + \sum_k b_k X_k$$

Les fonctions de lien

On restera ici sur la fonctions de lien logistique, mais bien évidemment les autres fonctions associées à la fonction de masse binomiale sont utilisables. La seconde qui sera rapidemment exposée mérité une attention particulière.

- Le lien probit, est a ma connaissance très peut utilisé en analyse des durées. C'est bien évidemment lié aux lectures des paramètres estimés. On peut utiliser des formes standardisés sur l'échelle des probabilités avec des effets marginaux, mais ceux-ci ne pourront pas être généralisés sur l'ajustement de la durée se fait avec une forme quadratique ou à la présence d'une intéraction de quelque forme que ce soit (même problème si lien logistique).
- Le lien complémentaire log-log, est une alternative bien plus intéressante en raison de son lien avec la relation entre fonction de séjour et risque cumulé. Son utilisation se doit néanmoins d'être réservé à des situations de rareté des probabilités conditionnelles (disons <.10), ce qui est souvent le cas en analyse de survie ¹. Sous cette condition, on peut interpréter directement les estimateurs commes des rapports de risque au sens de l'analyse de survie. On pourra se reporter à l'explication de G.Rodrigez dont le support est dans la bibliographie du document. Je ferai peut-être un jour une section dédiée dans la partie annexe. La construction

mathématique est plutôt intéressante.

• Pour information seulement car non testé: développés dans le domaine l'épidémiologie, il existe des algorithmes forçant l'application du lien log(p) à une vraisemblance binomiale. On parle de modèle log-binomial. Il s'agit bien de la fonction de lien canonique associée à la vraisemblance d'un processus poissonien (on en ai pas loin en analyse des durées) et dont les estimateurs sont idrectement interprétables en rapport de risque. Cette technique ne doit être envisagé qu'avec des probabilités d'incidences dans les intervalles de durées supérieurs à 20%. Je n'ai pas d'expérience particulière sur ce type de modèles 2 , je ne suis pas capable de les évaluer en analyse de durée avec des données très groupées, mais au niveau application il semble que les solutions disponibles dans des packages R comme logbin sont à privilégier.

9.1 Organisation des données

Format long

Les données doivent être en format long: pour chaque individu on a une ligne par durée observée ou par intevalle de durées jusqu'à l'évènement ou la censure. On retrouve le *split* des données du modèle de Cox, mais généralisé à des intervalles où aucun évènement n'est observé. Avec des données de type discrètes ou groupées, phénomène classique en sciences sociales, il y a souvent peu de différence entre un allongement aux temps d'évènement et aux temps d'observation (voir encadré plus loin sur le modèle d Cox à temps discret).

Durée

La durée est dans un premier temps construite sous forme d'un simple compteur, par exemple t = 1, 2, 3, 4, 5... (des valeurs non entières sont possibles). Le choix de la forme fonctionnelle de la durée sera présentée plus tard.

Variable évènement/censure

Si l'individu a connu l'évènement, elle prend la valeur 0 avant celui-ci. Au moment de l'évènement sa valeur est égale à 1. Pour les observations censurées, la variable prend toujours la valeur 0.

Application

On reprend les données de la base *transplantation*, mais les durées ont été regroupées par période de 30 jours. Il n'y a pas de durée mesurée comme nulle, on a considéré que les 30 premiers jours représentaient, le premier mois d'exposition. Cette variable de durée se nomme *mois*.

Format d'origine

²la distribution des probabilités sous cette loi n'est pas, contrairement aux lois normale ou logistique, symétrique. Dans ce qui suit, il ne serait pas conseillé de l'utiliser dans l'application avec l'ajustement sous forme d'indicatrice avec seulement 4 intervalles

²je remercie Emilie Counil et Nargès Gouhoubi pour m'avoir informé de leur existence

Table 9.1: Durée discrète: données en format d'origine

id	year	age	surgery	mois	died
1	67	30	0	2	1

La personne décède lors du deuxième intervalle de 30 jours

Format long et variables pour l'analyse

Table 9.2: Durée discrète: données en format long

id	year	age	surgery	mois	died	t
1	67	30	0	2	0	1
1	67	30	0	2	1	2

9.2 Ajustement de la durée

Un des principaux enjeux réside dans la paramétrisation de la durée:

- Elle peut-être modélisée sous forme de fonction d'une variable de type quantitative/continue.
- Elle peut-être modélisée comme variable discrète, de type indicatrice 0; 1, sur tous les points d'observation ou sous forme de regroupements. Il doit y avoir au moins un évènement observé dans chaque intervalle.

Le modèle de Cox à durée discrète/groupée

Cox est également à l'origine du modèle à durée discrète (je crois également en 1972). Par rapport aux pratiques courantes, la différence repose sur les bornes intervalles, identiques à celles définies pour l'estimation de la courbe de survie KM ou du modèle semi-paramétrique, à savoir une définition sur les moments d'évènement. Avec un ajustement de la durée reposant sur des indicatrices (ajustement sur des variables discrètes), ce modèle est quasiment identique au modèle semi paramétrique.

On peut remarquer que dans les sciences sociales, avec des durées assez fortement groupées, les intervalles directement observés et les intervalles définis aux moments d'évènements sont souvent identiques et s'ils ne le sont pas c'est souvent en tout début ou en toute fin de la période d'observation/exposition. En cas d'ajustement de la durée par des indicatrices, la définition des bornes des intervalles aux moments des évènements permet de s'assurer au moins une occurence de l'évènement.

9.2.1 Ajustement avec une fonction quantitative de la durée

Le modèle étant paramétrique, on doit trouver une fonction qui ajuste le mieux les données. Toutes transformations de la variable est possible: $f(t) = a \times t$, $f(t) = a \times log(t)$formes quadratiques. Les ajustements sous forme de **splines cubiques** tendent à se développer ces dernières années.

Pour sélectionner cette fonction, on peut tester différents modèles sans covariable additionnelle, et sélectionner la forme dont le critère d'information de type vraisemblance pénalisée (AIC, BIC) est le plus faible, avec au moins des différences de -6 ou -8.

Exemple:

On va tester les paramétrisations suivantes: une forme linéraire stricte $f(t) = a \times t$ et des effets quadratiques d'ordres 2 et 3: $f(t) = a_1 \times t + a_2 \times t^2$ et $f(t) = a_1 \times t + a_2 \times t^2 + a_3 \times t^3$.

Figure 9.1: Probabilité de décéder avec 3 ajustements de la durée

Critères AIC

f(t)	AIC
$a \times t$	504
$a_1 \times t + a_2 \times t^2$	492
$a_1\times t + a_2\times t^2 + a_3\times t^3$	486

On peut utiliser la troisième forme à savoir $a_1 \times t + a_2 \times t^2 + a_3 \times t^3$.

Estimation du modèle avec toutes les covariables

Table 9.4: Modèle logistique à durée discrète (f(t)) continue

Variables	OR - RR	Std. err	Z	P> z	95% IC
\overline{t}	0.678	0.057	-4.52	0.000	0.587; 0.810
t^2	1.014	0.005	+2.83	0.005	1.004 ; 1.024
t^3	1.000	0.000	-2.11	0.035	1.000 ; 1.000

³Ce n'est pas le cas ici, mais si on sélectionne une forme cubique, je conseille vivement de regarder les probabilités conditionnelle obtenues, en particulier en fin de périodes d'observation/exposition si peut d'individu reste soumis au risque. On peut rencontrer des problèmes d'overfitting avec des probabilités conditionnelles estimées trop proche de 1. Pour les personnes qui suivent la formation, c'est le cas avec les données des TP

Variables	OR - RR	Std. err	Z	P> z	95% IC
\overline{year}	0.876	0.015	-1.80	0.072	0.758; 1.012
age	1.034	0.163	+2.27	0.023	1.005; 1.064
surgery	0.364	0.110	-2.25	0.024	0.151 ; 0.877
Constante	0.440	0.110	-3.29	0.001	0.270 ; 0.718

Remarque: les variables year et age ont été centrée sur leur moyenne pour rendre la constante interprétable. La constante reporte donc l'Odds de décéder lors des 30 premiers jours d'une personne dont l'âge et l'année à l'entrée dans le registre est égal à l'âge et à l'année moyenne et qui n'a pas été opéré préalablement.

Si maintenant on estime un modèle de Cox sur ces données journalières groupées, on remarque que les résultats obtenus, et ce n'est pas une surprise, sont très proches.

Variables OR - RR Std. err P>|z|95% IC \mathbf{Z} -1.930.769 ; 1.0020.8780.0590.053year+2.130.033 1.002; 1.0571.029 0.014 age-2.22 0.026 0.111; 0.8920.3790.165surgery

Table 9.5: Modèle de Cox

9.2.2 Ajustement discret

- Il s'agit d'introduire la variable de durée dans le modèle comme une variable catégorielle (indicatrices).
- Démarche pas conseillé si on a beaucoup de points d'observation, ce qui est le cas ici.
- A l'inverse, si peu de points d'observation la paramétrisation avec une durée continue n'est pas conseillé.
- La correction de la non proportionnalité peut être plus compliquée à mettre en oeuvre.

On va supposer que l'on ne dispose que de 4 intervalles d'observation. Pour l'exemple, on va créer ces points à partir des quartiles de la durée, et conserver pour chaque personne une seule observation par intervalle.

- t=1: Entre le début de l'exposition et 4 mois.
- t=2: Entre 5 mois et 11 mois .
- t = 3: Entre 12 mois et 23 mois.
- t=4: 24 mois et plus.

On va estimer le risque globalement sur l'intervalle. La base sera plus courte que la précédente (197 observations pour 103 individus). Il ne sera plus possible ici d'interpréter les résultats en termes de rapport de probabilité, l'évènement devenant trop fréquent à l'intérieur de chaque intervalle.

Table 9.6: Modèle	logistique à durée discrète	(f((t)) indicatrices)	į

Variables	OR - RR	Std. err	Z	P> z	95% IC
$\overline{0-4mois}$	2.811	1.177	+2.47	0.014	1.237; 6.387
5-11 mois	ref	-	-	-	-
12-23 mois	0.559	0.346	-0.94	0.347	0.166; 1.881
24-46mois	1.741	1.159	+0.83	0.405	0.472 ; 6.417
year	0.816	0.076	-2.18	0.029	0.680 ; 0.980
age	1.048	0.019	+2.53	0.011	1.011 ; 1.087
surgery	0.330	0.166	-2.21	0.027	0.123 ; 0.882
Constante	0.407	0.151	2.43	0.015	0.198; 0.840

On trouve des résultats proches de ceux éstimés avec un ajustement continu de la durée. C'est normal, la dirée fait office de variable d'ajustement peu ou pas corrélée avec les autres variables introduites.

Variables	Ajustement discret	Ajustement continu
year	0.816	0.876
age	1.048	1.034
surgery	0.330	0.364

Lien avec des modèles usuels à durée continue

Si la durée discrète/groupée sous tend une durée continue (ce qui est clairement le cas ici):

- On l'a déjà souligné, l'ajustement avec des durées sous forme d'indicatrices correspond au modèle à durée discrète défini par Cox, et le plus proche du modèle semi-paramétrique. Il est également assimilable à un modèle de type exponential piecewice constant (donc un modèle de poisson).
- Si l'ajustement se fait en utilisation une transformation de la durée par une fonction:
 - -f(t) = log(t) correspond à un modèle de Weibull à risque proportionnel ⁴.
- Si l'ajustement se fait avec des splines cubiques, le modèle à durée discrète correspond à un modèle de type *Parmar-Royston*. Avec une forme quadratique classique, on peut également obtenir cette correspondance.

9.3 Proportionnalité des risques

• Formellement un modèle logistique à temps discret repose sur une hypothèse d'Odds proportionnel [Odds ratios constants pendant la durée d'observation]. Contrairement au modèle de Cox, l'estimation des probabilités (risque) n'est pas biaisée si l'hypothèse PH n'est pas respectée, les paramètres estimés sont considérés au pire comme des approximation.

⁴voir la courte section sur les modèle paramétriques usuels

• Comme pour le modèle de Cox, la correction de la non proportionnalité peut se faire en intégrant une interaction avec la durée dans le modèle.

Avec un ajustement continue, on remarque de nouveau que le résultat du modèle est de nouveau très proche de celui estimé avec un modèle de Cox.

Table 9.8: Modèle logistique à durée discrète avec correction de la non proportionnalité

Variables	OR - RR	Std. err	Z	P> z	95% CI
\overline{t}	0.702	0.059	-4.2	0.000	0.595; 0.828
surgery(t=0)	0.155	0.108	-2.67	0.008	0.039 ; 0.609
$surgery \times t$	1.072	0.036	2.08	0.037	1.004 ; 1.145
t^2	1.013	0.005	2.37	0.018	1.002 ; 1.023
t^3	1.00	0.000	-1.71	0.086	1.000; 1.000
year	0.872	0.064	-1.86	0.062	0.755 ; 1.007
age	1.033	0.015	2.23	0.026	1.004 ; 1.063
constante	0.445	0.112	-3.22	0.001	$0.272 \; ; \; 0.728$

Si on avait omis les variables year et age du modèle:

Figure 9.2: Probabilité de décéder après correction de la non proportionnalité pour la variable surgery

10 Variables dynamiques

Cette section sera principalement traitée par l'exemple, et on ne s'intéressera qu'aux variables de type discrète, avec un seul changement d'état.

- Dans un modèle de durée, une variable dynamique peut-être appréhendée comme une intéraction entre la durée et une variable quantitative.
- Pour un modèle de Cox, l'hypothèse de risque proportionnel ne peut donc pas être testée sur ce type de variable.
- Ne pas tenir compte du caractère dynamique d'une dimension peut conduire à des interprétations erronées.
- Warning: La façon de modéliser les dimensions dynamiques en analyse des durées peut conduire à des biais de causalité, en particulier en sciences sociales, en omettant les effets d'anticipation. C'est une situation classique avec des covariables dynamiques de type discrètes. Les techniques standards ne peuvent modéliser que des effets d'adaptation: la cause observée précède l'effet.

10.1 Facteur dynamique traitée de manière fixe

On reprend l'exemple sur malformation cardiaque, en ajoutant la variable relative à la greffe. La question est donc de savoir si une transplantation du coeur réduitle risque journalier de décéder (ou augmente la durée de survie).

On a dans la base 2 variables: une variable binaire pour savoir si l'individu à été greffé ou non, **transplant**, et la variable *wait* de type continue tronquée donnant la durée en jour jusqu'à l'opération depuis l'inscription dans le registre (0 si transplant = 0).

On va dans un premier temps estimer le modèle de Cox avec la variable fixe transplant.

Table 10.1: Modèle de cox avec une variable dynamique (binaire) traitée de manière fixe (estimation biaisée

Variables	HR	Std. err	\mathbf{Z}	P> z	95% CI
year	0.910	0.060	-1.42	0.155	0.799; 1.036
age	1.054	0.015	3.71	0.000	1.025; 1.084
surgery	0.541	0.243	-1.37	0.171	0.224 ; 1.304
transplant	0.278	0.088	-4.06	0.000	0.150 ; 0.515
wait	0.992	0.005	-1.50	0.134	0.982 ; 1.002

Interprétation: traitée de manière fixe, la greffe réduit donc sensiblement le risque journalier de décéder (RR=0.278). De même on peut admettre une certaine cohérence pour la durée jusqu'à la transplantation: plus elle est précoce et plus les personnes survivent (HR=0.992).

Sauf que.....

Au niveau des données le modèle à été estimé, pour une personne greffée (ici id=70), à partir de ce mapping:

Table 10.2: Mapping de la base avec une variable dynamique binaire traitée de manière fixe

id	year	age	surgery	transplant	wait	died	t_0	t
70	72	52	0	1	5	0	0	1
70	72	52	0	1	5	0	1	2
70	72	52	0	1	5	0	2	3
70	72	52	0	1	5	0	3	5
70	72	52	0	1	5	0	5	6
70	72	52	0	1	5	0	6	8
70	72	52	0	1	5	0	8	9
70	72	52	0	1	5	0	9	12
70	72	52	0	1	5	0	12	16
70	72	52	0	1	5	0	16	17
70	72	52	0	1	5	0	17	18
70	72	52	0	1	5	0	18	21
70	72	52	0	1	5	0	21	28
70	72	52	0	1	5	1	28	30

Une personne est codée greffée avant le jour de la transplantation. L'**effet causal** est donc mal mesuré si sa dimension temporelle a été ignorée, ici le jour exact de l'opération. C'est le même principe pour l'évènement, la personne est codée décédée (1) le jour du décès, et vivante avant (0).

10.2 Estimation avec une variable dynamique

Il convient donc de modifier l'information avec le délai d'attente jusqu'à la greffe. Le principe de construction de la variable dynamique, quelle que soit le logiciel utilisé, doit suivre la logique suivante:

tvc = transplant, si transplant = 1 et t < wait alors tvc = 0

10.2.1 Modèle de Cox

Table 10.3: Mapping correct de la base avec une variable dynamique binaire

id	year	age	surgery	transplant	wait	died	t_0	t	TVC
70	72	52	0	1	5	0	0	1	0
70	72	52	0	1	5	0	1	2	0
70	72	52	0	1	5	0	2	3	0
70	72	52	0	1	5	0	3	5	0
70	72	52	0	1	5	0	5	6	1

id	year	age	surgery	transplant	wait	died	t_0	t	TVC
70	72	52	0	1	5	0	6	8	1
70	72	52	0	1	5	0	8	9	1
70	72	52	0	1	5	0	9	12	1
70	72	52	0	1	5	0	12	16	1
70	72	52	0	1	5	0	16	17	1
70	72	52	0	1	5	0	17	18	1
70	72	52	0	1	5	0	18	21	1
70	72	52	0	1	5	0	21	28	1
70	72	52	0	1	5	1	28	30	1

Si on estime maintenant le modèle avec cette variable dynamique qui indique clairement le moment de la transition (jour de la greffe):

Table 10.4: Modèle de Cox avec une variable dynamique binaire

Variables	HR	Std. err	Z	P> z	95% CI
year	0.887	0.060	-1.79	0.074	0.777 ; 1.012
age	1.031	0.014	2.19	0.029	1.003 ; 1.059
surgery	0.374	0.163	-2.25	0.024	0.159 ; 0.880
TVC transplantation	0.921	0.281	-0.27	0.787	0.507 ; 1.674

L'impact de la greffe apparaît maintenant bien plus modéré sur la survie des individus. Cela ne signifie pas non plus que des personnes ont pu être sauvée grâce à cette opération (ou plutôt leur durée de vie augmentée), mais des complications lors de l'opération ou post-opératoire, surtout à une époque où ces techniques étaient à leurs balbutiements, ont pu également accélérer la mortalité. Il faut également garder en tête que l'état de santé des personnes est particulièrement dégradé, cette opération étant celle de la dernière chance.

R - Stata - Sas - Python

10.2.2 Sas

La base n'est pas modifiée et la création de la TVC est faite *en aveugle* dans la procédure **phreg**, après l'instruction model. Ce n'est franchement pas super.

10.2.3 R - Stata, Python

La base doit être transformée en format long aux temps d'évènement (survsplit avec R, stsplit avec Stata) avant la création de la variable dynamique.

10.2.4 Modèle à temps discret

Même principe pour la construction de la variable dynamique. Pour rappel l'échelle temporelle est le mois, on a créé en amont une variable qui regroupe les valeurs de la variable wait en périodes de 30 jours.

Variables	OR - RR	Std. err.	Z	P> z	95% IC
\overline{t}	0.686	0.070	-3.71	0.000	0.562; 0.837
t^2	1.015	0.006	2.53	0.011	1.003; 1.026
t^3	1.000	0.000	-1.97	0.049	1.000; 1.000
year	0.876	0.065	-1.79	0.073	0.758 ; 1.012
age	1.034	0.015	2.22	0.027	1.004 ; 1.064
surgery	0.363	0.163	-2.25	0.024	0.151 ; 0.876
$TVC\ greffe$	1.029	0.355	0.08	0.934	0.524 ; 2.022
Constante	0.440	0.110	-3.29	0.001	0.270; 0.718

Table 10.5: Modèle logistique à durée discrète avec variable dynamique binaire

10.3 Précautions

- Rappel: la cause doit précèder l'effet.
- Lorsque l'évènement étudié n'est pas intrinsèquement de type absorbant comme le décès, la cause peut se manifester ou plutôt être observée après la survenue de l'évènement étudié. Les modèles de durée standards ne peuvent pas gérer ces situations car l'observation sort du risque après la survenue de l'évènement. Il y a d'autres techniques, par exemple de type économétrique, qui sont plus à même de traiter ce genre de situations.
- Même si la cause est bien mesurée avant l'évènement d'intérêt, un *choc* n'est peut-être qu'un point final d'un processus causal antérieur: une séparation est rarement un évènement ponctuel, une phase plus ou moins longue de mésentente dans le couple lui a vraisemblablement préexister. La datation du début d'un processus causal n'est donc pas toujours facile à mesurer.
 - Logique d'adaptation: la cause identifiée est mesurée avant l'évènement étudié.
 - Logique d'anticipation: la cause identifiée est mesurée après l'occurrence de l'évènement étudié. L'origine causale est bien antérieure à l'évènement, mais elle n'est pas directement observable.
- Lorsque les variables dynamiques sont de type quantitatives/continues, le problème on doit aussi considérer avec des phénomènes d'anticipation sur les valeurs attendues de ces variables, observées postérieurement à l'évènement étudié. On peut introduire des « lags » dans le modèle pour saisir ce phénomène : par exemple $x_t = x_{t+1}$. Ce décalage des durées d'occurrence peut être aussi introduite pour les variables discrètes (naissance d'un enfant par exemple).

partie V Compléments

11 Eléments de mise en forme des données

Ce qui suit est un premier jet réalisé en 2023, encore très perfectible, mais j'avais bien conscience depuis très longtemps que l'absence d'une partie dédiée aux manipulations des données biographiques était problématique. Ce qui suit ne peut pas couvrir toutes les problématiques que l'on peut rencontrer lorsqu'on met en forme ce type de données: le format de mise à disposition, l'extraction de l'information pertinente correspondant à la question analysée, voire le logiciel utilisé, rend quasiment impossible la production d'un guide clé en main.

Quelques conseils

- Comme l'analyse des durées/survie consiste à extraire une (ou plusieurs) séquence(s) bien identifier les situations types que l'on sera conduit à rencontrer et à traiter. Ici il peut être intéressant, de manière exploratoire, à conduire une analyse de séquences au préalable.
- Vérifier à chaque étape de la programmation la validité ou la cohérence des informations contenues dans les variables créées et/ou de la mise en forme.

Le format des données utilisé dans cette section

- Il est identique à celui utilisé dans l'enquête MAFE [lien]¹, donc de type individus-séquences avec un marquage des informations temporelles de type $ann\acute{e}e$.
- Sur chaque séquence l'année de début et l'année de fin sont indiquée.
- Les trajectoires peuvent être continues ou non. Si elle ne sont pas continues, un exemple montre comment récupérer les séquences en "creux".

Programmation

- Cette section n'est pas centrée sur la méthode de programmation, mais plutôt sur les questions que l'on doit se poser et leur résolution.
- Comme la formation est appliquée en R, j'ai néanmoins donné les codes que j'ai utilisé.
 - Les codes R sont ici largement hérité d'une programmation Stata que je maîtrise encore bien mieux.
 - On pourrait aller *plus vite*, mais j'applique une programmation assumée prudente.
 - Le type de programmation applique assez massivement l'utilisation de compteurs ou de double compteurs, et si nécessaire l'utilisation de variables décalée de type lead ou lag.

Le support assistoolsms

Le service SMS de l'Ined a mis en place récemment un support de programmation dédié principalement à R [Lien]. Ce support est construit sur l'idée d'une liste de fiches thématiques qui trouvent

¹Des éléments de manipulation/programmation pour un exemple volontairement très compliqué sont donnés dans $m\acute{e}$ thodes => notes $m\acute{e}$ thodologiques. Ayant été fait en 2015, le code pour R est largement out of date

leur origine, mais pas que, dans des demandes d'assistances de programmation de la part de chercheur.e.s, (post)doctorant.e.s ou stagiaires. Bien que cela ne soit pas pour tout de suite, il est prévu d'alimenter ce support sur la question des manipulations des données biographiques avec: d'autres exemples, des alternatives aux codes proposés plus loin, ou l'application des exemples traités ici mais avec un format de mise à disposition des données différents.

... Ceci au mieux pour l'été 2024.

Packages utilisés:

```
library(dplyr)
library(tidyr)
library(knitr)
```

11.1 Calcul des variables d'analyses

On partira de la base individus-séquences suivante:

```
 \begin{split} \text{df = data.frame(id = c(1, 1, 1, 2),} \\ \text{deb = c(2020, 2023, 2024, 2022),} \\ \text{fin = c(2021, 2024, 2025, NA),} \\ \text{x = c(1,2,1,2))} \\ \text{kable(df)}  \end{split}
```

id	deb	fin	X
1	2020	2021	1
1	2023	2024	2
1	2024	2025	1
2	2022	NA	2

On supposera que l'année de collecte, pour toutes les observations, est 2025 ².

Si cela n'est pas donné dans le module biographique, il peut être intéressant de construire les numéros de séquences des trajectoires.

```
df$nseq = 1
df = df %>% group_by(id) %>% mutate(nseq = cumsum(nseq))
kable(df)
```

²Ici on a une enquête réalisée une même année pour toute les observations, ce n'est pas toujours le cas. De même au lieu de l'année, si les datations avaient été données par l'âge, au moment de l'enquête l'âge varierait d'une personne à une autre. Ces datations différentes (année ou âge) peuvent être présentes dans chaque module biographique d'une enquête, ou dans le fichier des caractéristiques fixes. Dans ce cas l'information devra être récupérée

id	deb	fin	X	nseq
1	2020	2021	1	1
1	2023	2024	2	2
1	2024	2025	1	3
2	2022	NA	2	1

Exemple 1 : durée de séjour de la première séquence observée

Supposons que x traduit un type de relation/union, par exemple x=1 est une relation non cohabitante et x=2 est une relation cohabitante. On s'intéresse à la durée de la première relation, sans distinction entre 1 et 2. Il suffit de séléctionner la première séquence.

df = filter(df, nseq==1)

La variable de fin va permettre de repérer les informations censurées, et de générer la variable d'évènement. A ce niveau il est donc important de ne pas encore remplacer la date de censure par sa valeur.

- Si fin est une valeur manquante: observation censurée.
- Si fin est une valeur renseignée: occurence de l'évènement.

```
df$e = ifelse(is.na(df$fin), 0,1)
kable(df)
```

id	deb	fin	X	nseq	е
1	2020	2021	1	1	1
2	2022	NA	2	1	0

Pour la variable de durée 3 , une repéré les observations censurées, elle est calculée directement avec les variables fin et deb.

```
df$dur = ifelse(df$e==1, df$fin - df$deb + 1, 2025 - df$deb + 1)
kable(df)
```

³La mesure est ici discrète/groupée, il me semble toujours préférable d'allonger les durées à +1. On démarre donc toujours un premier janvier pour terminer un 31 décembre sur l'information est donnée par des année. Ici t=1 représente la première année après la sortie des études. Une personne qui aura eu un emploi durant cette année, l'aura eu durant cette première année, que ce soit 2 semaines après ou 11 mois après. Si on disposait des mois, cela pourrait être intéressant de modifier cette métrique temporelle. Voir exemple 3

id	deb	fin	X	nseq	е	dur
1	2020	2021	1	1	1	2
2	2022	NA	2	1	0	4

Exemple 2 : changement de métrique temporelle

Toujours avec le même exemple, mais en ajoutant une observation, supposons que l'on dispose également de l'information sur les mois. Sur les mois où l'évènement à eu lieu, mais également sur les mois où l'enquête a été réalisée.

id	deb	debm	fin	finm	X	enq	enqm	nseq
1	2020	2	2021	4	1	2025	4	1
1	2023	5	2024	2	2	2025	4	2
1	2024	3	2025	12	1	2025	4	3
2	2022	10	NA	NA	2	2025	5	1
3	2021	9	2021	11	1	2025	4	1

On remarque que la nouvelle observation (id=3) a connu l'évènement, ici la fin de la relation, la même année qu'au début d'exposition (le début de la relation).... mais au bout de 2,6,11 mois???? Commeon dispose de l'information sur les mois de début et de fin cela peut être intéressant de l'exploite. De la même manière si l'enquête a été réalisée la même année, les entretiens n'ont pas eu lieu le même mois. On aura besoin de cette information pour les observations censurées.

De nouveau on sélectionne la première séquence, et pour la lisibilité de la base on retire les informations qui ne seront pas ou plus exploitées (nseq, x).

```
df2 = filter(df2,nseq==1)
df2 = select(df2, -c(x,nseq))
kable(df2)
```

id	deb	debm	fin	finm	enq	enqm
1	2020	2	2021	4	2025	4
2	2022	10	NA	NA	2025	5
3	2021	9	2021	11	2025	4

On génère la variable censure/évènement (toujours à faire avant la variable de durée) de la même manière que pour l'exemple 1.

```
df2$e = ifelse(is.na(df2$fin), 0, 1)
kable(df2)
```

id	deb	debm	fin	finm	enq	enqm	е
1	2020	2	2021	4	2025	4	1
2	2022	10	NA	NA	2025	5	0
3	2021	9	2021	11	2025	4	1

Pour la variable de durée, le principe est de multiplié par 12 la différence entre l'année de fin et l'année de début et d'ajouter la différence entre le mois de fin et le mois de début.

Pour les observations censurées, ici l'année de fin est identique mais les mois varient. En terme de programmation, surtout si avec R on utilise ifelse, il est préférable d'y aller doucement en créant une durée pour les observations qui ont connu l'évènement et une durée pour les observations censurées. Puis de regrouper les deux cas. C'est ce qui est fait dans le code qui suit.

Durée selon les valeurs de e:

```
df2$dur1 = ifelse(df2$e==1, 12*(df2$fin - df2$deb) + (df2$finm - df2$debm), 0)
df2$dur0 = ifelse(df2$e==0, 12*(2025 - df2$deb) + (df2$enqm - df2$debm), 0)
kable(df2)
```

id	deb	debm	fin	finm	enq	enqm	е	dur1	dur0
1	2020	2	2021	4	2025	4	1	14	0
2	2022	10	NA	NA	2025	5	0	0	31
3	2021	9	2021	11	2025	4	1	2	0

On regroupe par simple sommation (le *else* étant 0).

```
df2$dur = df2$dur1 + df2$dur0

df2 = select(df2, -c(dur1,dur0))

kable(df2)
```

id	deb	debm	fin	finm	enq	enqm	e	dur
1	2020	2	2021	4	2025	4	1	14
2	2022	10	NA	NA	2025	5	0	31
3	2021	9	2021	11	2025	4	1	2

On dispose ainsi des éléments nécessaire pour faire une analyse de durée avec une métrique mensuelle 4

Exemple 3: importation d'un début d'expositon externe

On repart de la première base

$\overline{\mathrm{id}}$	deb	fin	X	nseq
1	2020	2021	1	1
1	2023	2024	2	2
1	2024	2025	1	3
2	2022	NA	2	1

On suppose maintenant que x traduit des situations sur le marché du travail. Par exemple $\mathbf{x=1}$ est un emploi en CDD et $\mathbf{x=2}$ un emploi en CDI. On s'intéresse à la durée entre la fin des études et le premier emploi, quel que soit sont type.

- On ne dispose pas ici de toutes l'information pour calculer la durée, soit la fin des études. Elle peut être donnée dans une base classique regroupant l'ensemble des caractéristiques individuelles de type fixe (année de naissance, sexe...).
- Comme on s'intéresse à la durée de recherche du premier emploi, dans le module biographique la date de début va devenir la date de fin.
- Pour les observations présente dans la base biographique, il n'y a pas de censure à droite. Mais si on regarde le fichier des caractéristiques générales, fixe:

id	fin_	_etude
1		2020
2		2021
3		2023

Une nouvelle observation (id=3) apparaît. Au moment de l'enquête, elle n'a pas (**encore**) trouvé un emploi depuis la fin de ces études. On a donc une observation qui sera censurée.

⁴Contrairement au durée annuelle je n'ai pas ajouté 1 à chaque durée, ce qui est de nouveau envisageable par exemple si on veut explicitement indiquer les évènements qui ont lieu le premier mois. Pour id=3 la relation a t-elle durée du 1er septembre au 30 novembre, ou du 30 septembre au 1er novembre?? On a toujours un problème de précision, mais ici d'une trentaine de jours

Note

Certaines bases biographiques peuvent être structurées avec des trajectoires strictement continue, l'année (l'âge) de fin étant l'année (l'âge) de début de la trajectoire suivante. Dans ce cas, l'information serait immédiatement disponible, avec la présence d'un nombre de séquences plus important dans la base.

On va devoir:

- Sélectionner la première sequence d'emploi dans la base df (variable nseq).
- La fusionner avec la base étude.

Avant la fusion, on peut conserver seulement les informations nécessaires (id, deb). La variable deb va changer également de statut en devenant l'année de fin de la période de recherche d'emploi.

```
df = filter(df, nseq==1)
df = select(df, -c(fin,x,nseq))

df = rename(df, fin = deb)
kable(df)
```

id	fin
1	2020
2	2022

Après la fusion:

```
df = full_join(etude, df, by = c('id'))
df = rename(df, deb = fin_etude)
kable(df)
```

id	deb	fin
1	2020	2020
2	2021	2022
3	2023	NA

On a toutes les informations pour générer la variable censure/évènement et la variable de durée:

```
df$e = ifelse(is.na(df$fin),0,1)

df$dur = ifelse(df$e, df$fin - df$deb + 1, 2025 - df$deb + 1)
kable(df)
```

id	deb	fin	е	dur
1	2020	2020	1	1
2	2021	2022	1	2
3	2023	NA	0	3

11.2 Appariement de modules biographiques

On repart de la première base, avec les numéros de séquence.

id	deb	fin	X	nseq
1	2020	2021	1	1
1	2023	2024	2	2
1	2024	2025	1	3
2	2022	NA	2	1

11.2.1 Mise en forme d'une base

Pour apparier des informations de plusieurs modules biographiques, on doit transformer les bases en format individus-séquences en format individus-périodes (ici individus années).

- Etape 1: allongement sur chaque séquence après avoir générées leur durée
- Etape 2: générer une variable de période (année) sur chaque ligne. Elle servira pour l'appariement.

Pourquoi ne pas utiliser la simple différence entre la fin et le début ?

Durée (fin - début) et allongement de la base:

On ne génère pas des variables d'analyse, on aurait besoin de l'information sur l'année de l'enquête pour les informations censurées.

df\$fin[is.na(df\$fin)] = 2025
kable(df)

$\overline{\mathrm{id}}$	deb	fin	X	nseq
1	2020	2021	1	1
1	2023	2024	2	2
1	2024	2025	1	3
2	2022	2025	2	1

Allongement de la base:

```
df1 = df
df1$dur1 = df1$fin - df1$deb

df1$dur1b = df1$dur1 # uncount supprime la variable d'origine
df1 = uncount(df1,dur1b)

kable(df1)
```

id	deb	fin	X	nseq	dur1
1	2020	2021	1	1	1
1	2023	2024	2	2	1
1	2024	2025	1	3	1
2	2022	2025	2	1	3
2	2022	2025	2	1	3
2	2022	2025	2	1	3

Pour générer la variable période (année), on a besoin d'un compteur qui sera associé à la variable deb. On doit bien contrôler l'opération par identifiant et numéro de séquence.

```
df1%c = 1
df1 = df1 %>% group_by(id,nseq) %>% mutate(year = deb + cumsum(c))
kable(df1)
```

id	deb	fin	X	nseq	dur1	c	year
1	2020	2021	1	1	1	1	2021
1	2023	2024	2	2	1	1	2024
1	2024	2025	1	3	1	1	2025
2	2022	2025	2	1	3	1	2023
2	2022	2025	2	1	3	1	2024
2	2022	2025	2	1	3	1	2025

Problème: les années de début ne sont pas correncte: 2021 au lieu de 2020 pour la première séquence de id=1 par exemple.

Important

On doit donc impérativement augmenter la différence entre la fin et le début par +1 pour que l'ensemble des périodes (années) soit couvertes.

On reprend donc les opérations précédentes mais avec durée = fin - debut + 1

• Allongement de la base avec durée augmentée

```
df2 = df
df2$dur2 = df2$fin - df2$deb + 1

df2$dur2b = df2$dur2 # uncount supprime la variable d'origine
df2 = uncount(df2,dur2b)

kable(df2)
```

id	deb	fin	X	nseq	dur2
1	2020	2021	1	1	2
1	2020	2021	1	1	2
1	2023	2024	2	2	2
1	2023	2024	2	2	2
1	2024	2025	1	3	2
1	2024	2025	1	3	2
2	2022	2025	2	1	4
2	2022	2025	2	1	4
2	2022	2025	2	1	4
2	2022	2025	2	1	4

• Création de la variable *year*: sur chaque individus-séquences, la somme entre le compteur et l'année de début doit être réduite de 11.

```
df2$c = 1
df2 = df2 %>% group_by(id,nseq) %>% mutate(year = deb + cumsum(c) - 1)
df2 = select(df2, -c(deb,fin,dur2))
kable(df2)
```

id	X	nseq	c	year
1	1	1	1	2020
1	1	1	1	2021
1	2	2	1	2023
1	2	2	1	2024
1	1	3	1	2024
1	1	3	1	2025
2	2	1	1	2022
2	2	1	1	2023
2	2	1	1	2024
2	2	1	1	2025

Les années sont toutes couvertes....mais un peu trop. En effet, lorsque les trajectoires sont continues soit lorsque l'année de fin d'une séquence est identique à l'année de début de la suivante, les années vont être doublonnées. On doit dont supprimer ce doublon.

• Suppression des doublons des trajectoires continues.

De nouveaux on doit faire un choix, soit on priviligie l'année de fin, soit on privilégie l'année de début. Les applications ont des fonctions qui permettent de supprimer les doublons⁵. On peut le faire manuellement en regardant pour chaque personnes-années le nombre de doublon. Cela se fait facilement à l'aide d'un compteur, ici la variable *nyear*.

```
df2 = df2 %>% group_by(id,year) %>% mutate(nyear = cumsum(c))
kable(df2)
```

$\overline{\mathrm{id}}$	X	nseq	С	year	nyear
	1		1		
1	1	1	1	2020	1
1	1	1	1	2021	1
1	2	2	1	2023	1
1	2	2	1	2024	1
1	1	3	1	2024	2
1	1	3	1	2025	1
2	2	1	1	2022	1
2	2	1	1	2023	1
2	2	1	1	2024	1
2	2	1	1	2025	1

Si on souhaite garder l'année de fin on filtre les observations en conservant celles dont nyear=1. Si on souhaite privilégier les années de début on foltre les observations en conservant celles dont nyear=2. Si on souhaite conserver les années de fin de séquence:

```
df2 = filter(df2, nyear==1)
df2 = select(df2, -c(nseq,c,nyear))
kable(df2)
```

id	X	year
1	1	2020
1	1	2021
1	2	2023
1	2	2024

 $^{^5 \}mathrm{avec}$ R par exemple la fonction unique de d
plyr

id	X	year
1	1	2025
2	2	2022
2	2	2023
2	2	2024
2	2	2025

En résumé

- A la date (année/âge) de censure remplacer la valeur manquante par sa valeur. Si ultérieurement on a besoin de garder l'information sur la censure valeur manquante , on peut générer une variable mirroir de *fin*.
- Sur chaque séquence calculer la durée avec une augmentation de +1.
- Créer une variable période (année) sur chaque ligne. Elle servira à définir la clé d'appariement.
- Supprimer les doublons sur les transition continue $fin_t = debut_{t+1}$.

11.2.2 Fusion des informations biographiques

11.2.2.1 Fusion avec l'ensemble des périodes observables

Pour commencer par un exemple plutôt simple, on note que pour id=1 l'année 2022 n'est pas renseignée (trajectoire non continue). Si on reprend un exemple précédent (relations de couple), cette année pourrait être identifiée comme une période sans relation. Une façon simple de boucher ce type "trous", est d'utiliser les années de naissances des individus, et de créer une base individus-périodes qui couvre toutes les années de vie de l'individu jusqu'à l'enquête. On remontera jusque là, mais on va par exemple considérer que pour id=1 et id=2 ce début de tout est en 2018.

	id	t0
2 2018	1	2018
	2	2018

- On ajoute l'information sur l'année de l'enquête (2025).
- On génère la durée
- On allonge la base
- On génère la variable année sur chaque ligne (on contrôle seulement sur id)

```
dftout$tmax = 2025

dftout$dur = dftout$tmax - dftout$t0 + 1

dftout = uncount(dftout,dur)

dftout$c = 1
    dftout = dftout %>% group_by(id) %>% mutate(year = t0 + cumsum(c) - 1)

dftout = select(dftout, -c(t0,tmax,c))

kable(dftout)
```

```
id year
1
   2018
1 2019
1 2020
1 2021
1 2022
1 2023
1 2024
1 2025
2 2018
2 2019
2 2020
2 2021
2 2022
2 2023
2 2024
2 2025
```

On peut maintenant apparier cette couverture de toutes les années de vie jusqu'à l'enquête à la base biographique:

```
df2 = full_join(df2, dftout, by = c("id", "year"))
df2 = arrange(df2, id, year)
kable(df2)
```

id	X	year
1	NA	2018
1	NA	2019

id	X	year
1	1	2020
1	1	2021
1	NA	2022
1	2	2023
1	2	2024
1	1	2025
2	NA	2018
2	NA	2019
2	NA	2020
2	NA	2021
2	2	2022
2	2	2023
2	2	2024
2	2	2025

Pour supprimer les informations qui précèdent la première séquence de la biographie, on peut générer un compteur sur la variable x après avoir remplacer ses valeurs manquantes par des 0. On gardera les lignes pour lesquels ce compteur est supérieur à 1.

```
df2$x[is.na(df2$x)] = 0

df2 = df2 %>% group_by(id) %>% mutate(nx = cumsum(x))

kable(df2)
```

id	X	year	nx
1	0	2018	0
1	0	2019	0
1	1	2020	1
1	1	2021	2
1	0	2022	2
1	2	2023	4
1	2	2024	6
1	1	2025	7
2	0	2018	0
2	0	2019	0
2	0	2020	0
2	0	2021	0
2	2	2022	2
2	2	2023	4
2	2	2024	6
2	2	2025	8

On supprime les lignes lorsque nx=0.

```
df2 = filter(df2, nx>0)
df2 = select(df2, -c(nx))
kable(df2)
```

id	X	year
1	1	2020
1	1	2021
1	0	2022
1	2	2023
1	2	2024
1	1	2025
2	2	2022
2	2	2023
2	2	2024
2	2	2025

11.2.2.2 Fusion avec une autre base biographique

On peut être amené à fusionner plusieurs modules biographique. Jusqu'à présent, une même année, tous les individus ne pouvaient être que dans une situation, par exemple une seul emploi, un seul lieu de résidence etc... Pour certains phénomènes, une même années ou pendant une période plus longue on peut observer simultanément plusieurs états différent, ou plus classiquement observer une somme d'un même état. On parle ici d'overlapping. Ce type de situation est typiquement celle qu'on observe avec le nombre d'enfants.

Supposons que le base ci-dessous traduit la naissance et potentiellement le décès des enfants.

id	deb	fin	nseq
1	2022	NA	1
2	2019	2024	1
2	2023	NA	2

• id=1 a un premier enfant en 2022 qui est toujours en vie au moment de l'enquête (2025)

- id=2:
 - A un premier enfant en 2019 qui décède en 2024
 - A un second enfant en 2023, toujours en vie au moment de l'enquête
 - De la naissance du second enfant au décès du premier, on va donc avoir des doublons (overlapping) sur les années

Si on reprend les manipulations précédentes jusqu'à la création de la variable year:

```
dfy$fin[is.na(dfy$fin)] = 2025
dfy$dur = dfy$fin - dfy$deb + 1

dfy$durb = dfy$dur # Uncount supprime la variable d'origine
dfy = uncount(dfy,durb)

dfy$c = 1
dfy = dfy %>% group_by(id,nseq) %>% mutate(year = deb + cumsum(c) - 1)
```

La variable year est bien renseignée 2 fois pour les années 2023 et 2024.

On peut s'intéresser au fait d'avoir ou non un enfant, ou de manière plus générale au nombre d'enfant. En créant cette information, on se donne également le moyen de corriger cet overlapping:

- On peut de nouveau générer un compteur contrôlé par individu année
- En génerant un total de ligne doublonnée, on récupèrera par exemple ici le nombre d'enfant en vie chaque année.
- En ne gardant que la ligne ou le compteur est égal à 1, on supprime les doublons tout en gardant l'information sur le nombre d'enfant en vie une année donnée.

```
dfy = dfy %>% group_by(id,year) %>% mutate(ny = cumsum(c))
dfy = dfy %>% group_by(id,year) %>% mutate(tot_y = sum(c))
kable(dfy)
```

id	deb	fin	nseq	dur	С	year	ny	tot_y
1	2022	2025	1	4	1	2022	1	1
1	2022	2025	1	4	1	2023	1	1
1	2022	2025	1	4	1	2024	1	1
1	2022	2025	1	4	1	2025	1	1
2	2019	2024	1	6	1	2019	1	1
2	2019	2024	1	6	1	2020	1	1
2	2019	2024	1	6	1	2021	1	1
2	2019	2024	1	6	1	2022	1	1
2	2019	2024	1	6	1	2023	1	2
2	2019	2024	1	6	1	2024	1	2
2	2023	2025	2	3	1	2023	2	2

id	deb	fin	nseq	dur	c	year	ny	tot_y
2	2023	2025	2	3	1	2024	2	2
2	2023	2025	2	3	1	2025	1	1

Il ne reste plus qu'à supprimer les lignes où ny>1

```
dfy = filter(dfy, ny==1)
dfy = select(dfy, -c(ny,deb, fin, dur, nseq, c))
kable(dfy)
```

id	year	tot_y
1	2022	1
1	2023	1
1	2024	1
1	2025	1
2	2019	1
2	2020	1
2	2021	1
2	2022	1
2	2023	2
2	2024	2
2	2025	1

Avec une ligne par année, on peut la fusionner avec une autre base biographique en format individusannées (même principe qu'avec la fusion avec la base sur toutes les années de vie).

```
df2y = full_join(dfy, df2, by = c("id","year"))

df2y = arrange(df2y, id,year)

df2y = select(df2y, c(id,year,x,tot_y))

df2y$tot_y[is.na(df2y$tot_y)] = 0

df2y$x[is.na(df2y$x)] = 0

kable(df2y)
```

id	year	X	tot_y
1	2020	1	0
1	2021	1	0
1	2022	0	1

id	year	X	tot_y
1	2023	2	1
1	2024	2	1
1	2025	1	1
2	2019	0	1
2	2020	0	1
2	2021	0	1
2	2022	2	1
2	2023	2	2
2	2024	2	2
2	2025	2	1

11.3 Sélection d'un type de séquence et mise en forme pour l'analyse

11.4 Durée jusqu'à la première séquence

$\overline{\mathrm{id}}$	deb	fin	у	nseq
1	2018	2021	1	1
1	2022	2024	2	2
1	2024	2025	1	3
2	2019	NA	2	1
3	2023	2024	3	1
3	2024	NA	2	2
4	2023	NA	1	1

On va s'intéresser à la durée jusqu'à l'occurence de la séquence de type 2 ou 3 (variable y). On considéra que le début de l'exposition est donné par la variable deb sur la première séquence.

- id=1: début de l'exposition/observation en 2018, observe l'évènement en 2022.
- id=2: début de l'exposition/observation en 2019, observe l'évènement la même année.
- id=3: début de l'exposition/observation en 2019, observe l'évènement la même année.

• id=4: début de l'exposition/observation en 2023, n'a pas connu l'évènement au moment de l'enquête.

Recupération de l'année de l'évènement

On peut repérer la présence d'une des deux séquences d'intérêt avec une indicatrice.

```
\label{eq:dfsy=2} \begin{split} df\$e &= ifelse(df\$y==2 \mid df\$y==3,1,0) \\ kable(df) \end{split}
```

id	deb	fin	у	nseq	е
1	2018	2021	1	1	0
1	2022	2024	2	2	1
1	2024	2025	1	3	0
2	2019	NA	2	1	1
3	2023	2024	3	1	1
3	2024	NA	2	2	1
4	2023	NA	1	1	0

De nouveau l'utilisation d'un compteur sur cette variable indicatrice, peut s'avérer utile pour repérer le moment de l'occurence.

```
df = df %>% group_by(id) %>% mutate(n = cumsum(e))
kable(df)
```

$\overline{\mathrm{id}}$	deb	fin	у	nseq	е	n
1	2018	2021	1	1	0	0
1	2022	2024	2	2	1	1
1	2024	2025	1	3	0	1
2	2019	NA	2	1	1	1
3	2023	2024	3	1	1	1
3	2024	NA	2	2	1	2
4	2023	NA	1	1	0	0

Pour id=(2,3,4), ce compteur permet d'obtenir l'information souhaitée, à savoir n=0 en situation d'attente/séjour/survie et n=1 l'année de l'évènement. Pour id=1 cependant, l'alternance en y=1 et y=(2,3) ne permet pas de récupérer l'année d'occurence (première fois en 2 ou 3). Cela peut être fait, en faisant un compteur sur le compteur précédent:

```
df = df %>% group_by(id) %>% mutate(nn = cumsum(n))
kable(df)
```

id	deb	fin	у	nseq	е	n	nn
1	2018	2021	1	1	0	0	0
1	2022	2024	2	2	1	1	1
1	2024	2025	1	3	0	1	2
2	2019	NA	2	1	1	1	1
3	2023	2024	3	1	1	1	1
3	2024	NA	2	2	1	2	3
4	2023	NA	1	1	0	0	0

Récupération des information censurée

Pour récupérer l'information sur les observations qui seront censurée, on peut faire un total sur la variable n ou e: si n=0, l'individu n'aura pas connu l'évènement.

```
df = df %>% group_by(id) %>% mutate(N = sum(n))
kable(df)
```

id	deb	fin	у	nseq	е	n	nn	N
1	2018	2021	1	1	0	0	0	2
1	2022	2024	2	2	1	1	1	2
1	2024	2025	1	3	0	1	2	2
2	2019	NA	2	1	1	1	1	1
3	2023	2024	3	1	1	1	1	3
3	2024	NA	2	2	1	2	3	3
4	2023	NA	1	1	0	0	0	0

Pour id=4, N est bien égal à 0.

Récupération du début de l'exposition

Le début de l'exposition étant ici l'année de début de la première séquence. On peut facilement récupérer cette sur toute les lignes en la repérant (ici en générant une nouvelle variable avec la fonction ifelse), et en sommant sa valeur sur les autres lignes (=0).

```
df$ debexp = ifelse(df$nseq==1, df$deb, 0)

df = df %>% group_by(id) %>% mutate(debexp = sum(debexp))

&able(df)
```

- ① La variable debex est égale à deb si nseq=1, 0 sinon.
- (2) On somme cette valeur sur chaque individu pour l'ajouter aux séquences suivantes.

id	deb	fin	у	nseq	е	n	nn	N	debexp
1	2018	2021	1	1	0	0	0	2	2018
1	2022	2024	2	2	1	1	1	2	2018
1	2024	2025	1	3	0	1	2	2	2018
2	2019	NA	2	1	1	1	1	1	2019
3	2023	2024	3	1	1	1	1	3	2023
3	2024	NA	2	2	1	2	3	3	2023
4	2023	NA	1	1	0	0	0	0	2023

Mise en forme finale de la base

On peut maintenant conserver les lignes qui nous intéresse à savoir celle où nn=1 (évènement) ou N=0 (censure).

```
\label{eq:df_nn} \begin{split} \mathrm{df} &= \mathrm{filter}(\mathrm{df}, \ \mathrm{nn==1} \ | \ \mathrm{N==0}) \\ &= \mathrm{kable}(\mathrm{df}) \end{split}
```

id	deb	fin	у	nseq	е	n	nn	N	debexp
1	2022	2024	2	2	1	1	1	2	2018
2	2019	NA	2	1	1	1	1	1	2019
3	2023	2024	3	1	1	1	1	3	2023
4	2023	NA	1	1	0	0	0	0	2023

On dispose déjà de la variable d'évènement/censure (e ou n=(0,1), on finit donc par la variable de durée.

```
df$fin[is.na(df$fin)] = 2025

df$dur = ifelse(df$e==1, df$deb - df$debexp + 1, df$fin - df$debexp + 1)

df = select(df, c(id,e,dur))

kable(df)
```

id	е	dur
1	1	5
2	1	1
3	1	1
4	0	3

Ces informations sont suffisantes pour estimer une fonction de séjour et on peut ajouter, si elles ne sont pas présentes, des covariables fixes issues du fichier des caractéristiques générales. Pour l'ajout

de covariables dynamiques, leur ajout n'est pas forcément difficile pour une analyse en durée discrète ⁶. Pour les analyses type Cox, selon la nature de la variable dynamique, l'opération (quel que soit le logiciel utilisé) risque d'être plus ou moins compliquée.

11.5 Durée de séjour dans la séquence d'intérêt et variables d'analyse

En première ou deuxième analyse, on peut également voir s'intéresser à la durée de séjour dans l'état précédent. Par exemple, si l'analyse précédent consistait à regarder la durée de séjour dans le premier emploi, on pourrait regarder ensuite la durée jusqu'à sa reprise.

Cela va un peu (voir plus) se compliquer. On va repartir de la base de départ précédente en ajoutant une observation.

id	deb	fin	у	nseq
1	2018	2021	1	1
1	2022	2024	2	2
1	2024	2025	1	3
2	2019	NA	2	1
3	2023	2024	3	1
3	2024	NA	2	2
4	2023	NA	1	1
5	2019	2021	1	1
5	2021	2023	2	2
5	2023	2024	1	3
5	2024	NA	3	4

Filtrage des observations hors champs

On peut déjà supprimer les observations hors champs, à savoir ici id=4 qui n'a pas connu l'évènement dont on analyse la durée.

⁶En conservant l'information sur les années, on transformera la base en format individu-période et on procédera à une fusion des informations

```
df$e23 = ifelse(df$y==2 | df$y==3,1,0)

df = df %>% group_by(id) %>% mutate(n23 = cumsum(e23))
df = filter(df, n23!=0)

kable(df)
```

- ① Nom de la variable e23 pour repérer la présence de l'évènement dont on analyse la durée.
- 2 Ce compteur est suffisant car l'observation n'a qu'une ligne.

$\overline{\mathrm{id}}$	deb	fin	у	nseq	e23	n23
1	2022	2024	2	2	1	1
1	2024	2025	1	3	0	1
2	2019	NA	2	1	1	1
3	2023	2024	3	1	1	1
3	2024	NA	2	2	1	2
5	2021	2023	2	2	1	1
5	2023	2024	1	3	0	1
5	2024	NA	3	4	1	2

Récupération de l'évènement analysé

Ici l'évènement sera un *retour* dans l'état y=1. Il y a de nouveau une possibilité de censure à droite si une observation reste dans l'état 2 ou 3 jusqu'au moment de l'enquête.

Il peut être utile d'utiliser des variables décalées pour repérer les changements d'état d'une séquence à une autre. Ces décalages sont appelées *lead* ou *lag*:

- lead: $x_t = x_{t+1}$
- $lag: x_t = x_{t-1}$

On va utilise ici des *lead* et donc pouvoir repérer les changements d'état d'une séquence à une autre. Comme on s'intéresse au retour à l'état 1:

```
df$e = ifelse(df$y==1,1,0)

df = df %>% group_by(id) %>% mutate(diff_e = e - lead(e))

kable(df)
```

- 1) e est une indicatrice qui repère l'état 1
- (2) On fait redescendre la valeur de e sur la séquence précédente, et on calcule la difference.

id	deb	fin	У	nseq	e23	n23	е	diff_e
1	2022	2024	2	2	1	1	0	-1
1	2024	2025	1	3	0	1	1	NA

$\overline{\mathrm{id}}$	deb	fin	у	nseq	e23	n23	е	diff_e
2	2019	NA	2	1	1	1	0	NA
3	2023	2024	3	1	1	1	0	0
3	2024	NA	2	2	1	2	0	NA
5	2021	2023	2	2	1	1	0	-1
5	2023	2024	1	3	0	1	1	1
5	2024	NA	3	4	1	2	0	NA

Pour chaque dernière séquence la valeur du lag est une valeur manquante. On repère l'évènement avec une valeur de -1 (transition de 0 à 1). On ne peut pas encore filtrer les informations car il va falloir récupérer la fin de la séquence, mais on peut déjà construire l'information.

```
df$e = ifelse(df$diff_e==-1,1,0)
df$e[is.na(df$e)] = 0
df = df %>% group_by(id) %>% mutate(e = sum(e))
kable(df)
```

id	deb	fin	у	nseq	e23	n23	е	diff_e
1	2022	2024	2	2	1	1	1	-1
1	2024	2025	1	3	0	1	1	NA
2	2019	NA	2	1	1	1	0	NA
3	2023	2024	3	1	1	1	0	0
3	2024	NA	2	2	1	2	0	NA
5	2021	2023	2	2	1	1	1	-1
5	2023	2024	1	3	0	1	1	1
5	2024	NA	3	4	1	2	1	NA

Récupération de l'année final avec succesion d'états de même type

La difficulté ici est apportée seulement par id=3. Jusqu'à 2025, on a successivement l'état 2 puis 3. Il va donc falloir récupérer cette dernière année de succession de 2 et 3, jusqu'à la censure ou jusqu'à un retour dans l'état 1. S'il n'y avait pas ce genre de situation, l'utilisation de la variable diff_e aurait été suffisante pour récupérer l'année de fin lorsqu'on a plusieurs séquences (situations pour id=1,5).

On va de nouveau utiliser un lead, mais sur la variable e23.

```
df = select(df, -c(nseq, diff_e))

df = df %>% group_by(id) %>% mutate(lead_e23 = lead(e23, n = 1, default = NA))

df$idem = ifelse(df$e23 == df$lead_e23, 1, 0)

df$idem[is.na(df$idem)]=0

df = df %>% group_by(id) %>% mutate(idem = sum(idem))

4
```

kable(df)

- ① On supprime les colonnes non utilisées pour gagner ici de la lisibilité
- (2) lead sur la variable e23.
- 3 La variable *idem* permet de repérer une suite d'état 2 et 3. On ne passe pas ici par une variable de différence (le faire par prudence si on le souhaite).
- (4) Ici le total est égal à 1. Si on avait eu une séquence supplémentaire de 3, il serait égal à 2. L'important ici est de repérer la situation, soit 0 ou supérieur à 0.

id	deb	fin	у	e23	n23	е	lead_e23	idem
1	2022	2024	2	1	1	1	0	0
1	2024	2025	1	0	1	1	NA	0
2	2019	NA	2	1	1	0	NA	0
3	2023	2024	3	1	1	0	1	1
3	2024	NA	2	1	2	0	NA	1
5	2021	2023	2	1	1	1	0	0
5	2023	2024	1	0	1	1	1	0
5	2024	NA	3	1	2	1	NA	0

On doit maintenant récupérer la dernière année de fin des situations où idem>0, et la placer sur la première.

```
df$fin[is.na(df$fin)] = 2025
df$lead_e23[is.na(df$lead_e23)] = -10

df$truefin = ifelse((df$lead_e23 != df$e23) & df$idem>0, df$fin,0)

df = df %>% group_by(id) %>% mutate(truefin = sum(truefin))
df$fin = ifelse(df$idem>0, df$truefin, df$fin)

df = select(df, -c(y,e23,lead_e23,idem))
kable(df)
```

- ① On remplace l'année de la censure par sa valeur (important pour id=3).
- 2 Pour régler un problème de gestion des NA avec ifelse. A tester avec if_else ou case_when.
- 3 On recupère la valeur de l'année de fin lorsqu'il y a une succession d'états de même nature pour l'analyse.
- (4) on remplace la valeur dans la variable fin en cas de succession seulement.

id	deb	fin	n23	е	truefin
1	2022	2024	1	1	0
1	2024	2025	1	1	0

id	deb	fin	n23	е	truefin
2	2019	2025	1	0	0
3	2023	2025	1	0	2025
3	2024	2025	2	0	2025
5	2021	2023	1	1	0
5	2023	2024	1	1	0
5	2024	2025	2	1	0

On peut [enfin] sélectionner et conserver une seule ligne par individu et générer la variable de durée

```
df= select(df,-truefin)

df = df %>% group_by(id) %>% mutate(nn23 = cumsum(n23))

df = filter(df, n23==nn23)

df$dur= df$fin - df$deb + 1

df = select(df, -c(n23,nn23))

kable(df)
```

id	deb	fin	е	dur
1	2022	2024	1	3
2	2019	2025	0	7
3	2023	2025	0	3
5	2021	2023	1	3

12 Risques concurrents

Le problème des événements multiples dans les analyses de survie a été posé dans les années 1970 avec la notion de **risques concurrents** (*competing risks*) : il s'agit d'événements survenant au cours de la période d'observations et qui *empêchent* l'occurence de l'événement d'intérêt.

12.1 Problématique

On étudie un processus dont l'occurence a plusieurs modalités, types ou causes:

- La mortalité par cause de décès, les types de sortie du chômage: formation, emploi, radiation.
- Les types de sortie de l'emploi: chômage, longue maladie, sortie du marché du travail hors retraite.
- Les lieux de migration ou les espaces de mobilité résidentielle
- Les types de rupture d'union: séparation-divorce, veuvage).

Rappel: Déjà abordé dans la partie théorie, avec un recueil de données de type prospectif les "perdu.e.s de vue" peuvent difficilement être assimilés à des sorties d'observation non informatives (censures).

L'analyse des risques concurrents est un cas particulier des modèles **multi-états** avec différents risques considérés comme absorbants.

En présence de risques concurrents, l'estimation de Kaplan-Meier ne peut se faire que sous **l'hypothèse** d'indépendance entre chacun des risques. Sinon l'estimateur de Kaplan-Meier n'est plus une probabilité. Une estimation de type KM d'un évènement en concurrence avec d'autres impose que ces derniers soient traités comme des censures à droites non informatives. Mais il n'est pas possible de tester cette hypothèse.

12.2 Risques cause-specific et biais sur les estimateurs KM

Si les risques ne sont pas indépendants les uns par rapport aux autres, la somme des estimateurs de (1-KM) pour chaque risque n'est pas égale - elle est **supérieure** - à l'estimateur de (1-KM) où les risques concurrents sont regroupés en un évènement unique. Par exemple les décès si on analyse ses causes.

Le risque calculé en considérant les risques concurrents comme des censures à droite est appelé "cause-specific risk.

Cause specific risk

Pour le risque de type k, le risque cause-spécific en t_i est égal à:

$$h_k(t_i) = \frac{d_{i,k}}{R_i}$$

Où $d_{i,k}$ est le nombre d'évènement de type k survenu en t_i et R_i la population soumise en t_i .

Conséquence: si les risques ne sont pas indépendants, la fonction de survie estimée avec la méthode Kaplan Meier n'exprime plus une probabilité.

Exemple sur les décès causés par une malformation cardiaque

Dans la base d'origine, il n'y a pas directement cette dimension de risque concurrent, même si on trouve dans la littérature médicale des études prenant le décès rapide post greffe comme un risque de ce type. Les données étant assez anciennes, avec beaucoup de décès post-opératoire, je ne me suis pas « risquer » à générer directement un risque concurrent sur cette information. Une sortie concurrente a donc été simulée sans plus de précision (variable *compet*), que l'on considèrera non strictement indépendante à la cause d'intérêt. Ce risque entre donc en concurrence avec la cause du décès directement liée à la malformation cardiaque, que la personne ait été transplantée ou non.

<IPython.core.display.HTML object>

	 	Survival St (1=dead)		
compet	 +	0	1	Total
0 1 2	 	28 0 0	0 56 19	28 56 19
Total	+ 	28	75	103

Variable compet:

cause 1 = décès directement provoquer par la malformation: compet=1 cause 2 = autre cause compet=0 = censure à droite

Lorsqu'on a analysé le décès par la méthode KM, la proportion de survivant.e.s était de 15%.

Si on applique la méthode de Kaplan Meier à la cause 1 en traitant la cause 2 comme une censure à droite (n = 18 + 29 = 48), puis en sommant les deux estimateurs, la fonction de répartition excède 100% au bout de 1000 jours environs. La proportion de survivant es est donc négative.

1.2 Cause1 + Cause2

.8 ... Cause1

... Cause1

... Cause2

Figure 12.1: Fonction de répartition avec une cause concurrente traitée comme une censure à droite

12.3 Estimations en présence de risques concurrents (CIF)

1600

1800

Durée

12.3.1 Estimation non paramétrique

Durée

• Utiliser l'estimateur de Nelson Aalen: il s'agit du risque instantané cumulé. Comme il ne s'agit pas d'une probabilité, il a été longtemps utilisé comme mesure de l'incidence en présence de risques concurrents dans une logique dite cause specific.

$$H_k(t_i) = \sum_{t_i \leq t} \left(\frac{e_{i,k}}{n_i}\right)$$

- Actuellement, l'estimateur le plus utilisé est la fonction dite d'**incidence cumulée CIF-** de Kalbfleisch-Prentice et Marubini-Valscchi:
 - Il repose sur une probabilité tout en supportant la non indépendance des risques.
 - Son interprétation est identique à la fonction de répartition F(t) = 1 S(t). Cette fonction est donc croissante.
 - Il est possible de tester les différences entres CIF: test de Gray (R, SAS) ou test de Pepe-Mori (Stata).

CIF (Cumulative Incidence Function)

• Si $h_k(t_i)$ est le risque cause-spécific en t_i et $S(t_i-1)$ l'estimateur de Kaplan-Meier en t_i-1 lorsque tous les risques sont regroupés en un évènement unique, l'incidence cumulée pour le risque k en t_i est égale à:

$$IC_k(t_i) = \sum_{t_i \leq t} S(t_i - 1) h_k(t_i)$$

- Les valeurs prises par cette fonction pour la cause k ne dépendent donc pas seulement des individus ayant observé l'évènement à partir de cette seule cause, mais aussi du nombre de personnes qui n'ont pas encore observés l'évènement à partir des autres causes identifiées. Cette dernière information est donnée par $S(t_i-1)$.
- L'incidence cumulée peut ainsi s'interpréter, simplement, comme la proportion d'individus qui sont sortis du risque jusqu'en t_i en raison de la cause k.

Figure 12.2: Risques concurrent: estimation de la CIF

 $\begin{array}{rcl} & \text{failure:} & \text{compet == 1} \\ \text{competing failures:} & \text{compet == 2} \end{array}$

Time	CIF	SE	[95% Con	f. Int.]
1	0.0097	0.0097	0.0009	0.0477
2	0.0388	0.0190	0.0127	0.0892
3	0.0583	0.0231	0.0239	0.1149
5	0.0777	0.0264	0.0363	0.1395
6	0.0874	0.0278	0.0429	0.1515
8	0.0971	0.0292	0.0497	0.1634
9	0.1068	0.0304	0.0566	0.1751

12	0.1166	0.0316	0.0638	0.1868
16	0.1160	0.0338	0.0785	0.2099
18	0.1461	0.0349	0.0860	0.2212
21	0.1657	0.0367	0.1014	0.2437
32	0.1756	0.0376	0.1093	0.2550
37	0.1856	0.0384	0.1173	0.2662
40	0.1957	0.0393	0.1254	0.2775
43	0.2058	0.0400	0.1337	0.2888
45	0.2158	0.0408	0.1420	0.2999
50	0.2259	0.0415	0.1503	0.3110
51	0.2360	0.0422	0.1588	0.3221
53	0.2461	0.0428	0.1673	0.3330
58	0.2562	0.0434	0.1759	0.3439
61	0.2662	0.0440	0.1845	0.3548
66	0.2763	0.0445	0.1932	0.3656
69	0.2864	0.0450	0.2020	0.3763
72	0.3066	0.0459	0.2197	0.3976
77	0.3167	0.0464	0.2286	0.4082
78	0.3267	0.0467	0.2376	0.4187
81	0.3368	0.0471	0.2466	0.4292
85	0.3469	0.0475	0.2556	0.4396
90	0.3570	0.0478	0.2648	0.4500
96	0.3671	0.0481	0.2739	0.4604
102	0.3771	0.0484	0.2831	0.4707
110	0.3874	0.0487	0.2925	0.4812
149	0.3980	0.0489	0.3021	0.4920
165	0.4085	0.0492	0.3118	0.5027
186	0.4193	0.0495	0.3217	0.5137
188	0.4301	0.0497	0.3316	0.5246
207	0.4408	0.0499	0.3417	0.5354
219	0.4516	0.0501	0.3517	0.5462
263	0.4624	0.0502	0.3618	0.5570
285	0.4846	0.0505	0.3826	0.5791
308	0.4957	0.0506	0.3931	0.5900
340	0.5068	0.0507	0.4037	0.6009
583	0.5221	0.0514	0.4171	0.6168
675	0.5401	0.0524	0.4322	0.6361
733	0.5580	0.0532	0.4477	0.6548
995	0.5808	0.0548	0.4659	0.6795
1032	0.6036	0.0559	0.4851	0.7031
1386	0.6340	0.0583	0.5083	0.7357

failure: compet == 2
competing failures: compet == 1

Time CIF SE [95% Conf. Int.]

3	0.0097	0.0097	0.0009	0.0477
6	0.0194	0.0136	0.0038	0.0619
16	0.0292	0.0166	0.0079	0.0761
17	0.0391	0.0191	0.0128	0.0897
28	0.0489	0.0213	0.0182	0.1029
30	0.0587	0.0232	0.0240	0.1157
35	0.0686	0.0250	0.0302	0.1286
36	0.0786	0.0267	0.0367	0.1411
39	0.0885	0.0282	0.0435	0.1534
40	0.0986	0.0296	0.0504	0.1658
68	0.1188	0.0322	0.0650	0.1901
80	0.1288	0.0334	0.0724	0.2020
100	0.1389	0.0345	0.0800	0.2138
153	0.1495	0.0356	0.0880	0.2261
334	0.1605	0.0368	0.0964	0.2392
342	0.1720	0.0381	0.1052	0.2526
852	0.1913	0.0417	0.1175	0.2787
979	0.2141	0.0460	0.1320	0.3094

En présence du risque concurrent, et traité comme tel, la moitié des personnes sont décédées suite à la malformation cardiaque au bout de 308 jours (200 jours avec une estimation de type « cause specific »).

On peut vérifier que la somme des estimateurs permet d'obtenir la survie toutes causes confondues. Il n'y a pas de surprise à cela, dans l'estimateur Marubini-Valscchi la survie d'ensemble intervient comme un facteur de pondération du quotient d'intensité dite « cause-specific ».

R-Stata-Sas-Python

L'estimation avec des risques de type « cause-specific » demande juste de recoder la variable évènement/censure, en glissant les risques concurrents en censure à droite. Pour l'estimation des CIF (risque de sous répartition):

- R: la librairie cmprsk permet d'estimer simplement les incidences cumulées avec la fonction cuminc.
- Sas: maintenant directement estimable avec proc lifetest. Il suffit d'indiquer le ou les risques d'intérêt dans l'instruction indiquant la variable de durée et de censure avec l'option failcode=valeur.
- Stata: Estimation avec la commande externe **stcompet**. La commande génère des variables qui demande des manipulations supplémentaires pour afficher les résultats sous forme de tableau par exemple. On peut utiliser et préférer la commande externe **stcomlist**.
- Python: le wrapper de R (cmprsk) ne fonctionne plus à ce jour à défaut de mise à jour [2022].

12.3.2 Compararaison des CIF

- Test d'homogénéité de Gray: est basé sur une autre mesure du risque en évènement concurrent. Sur le principe, identique à la philosopjie des test du logrank. Il s'agit du « subdistribution risks (« risque de sous-répartition », A.Latouche). Son interprétation n'est pas aisée car les personnes ayant observé un risque concurrent sont remises dans le Risk Set. Mais il est directement lié à l'estimation des CIF. Disponible avec SAS et R. Il est également sensible l'hypothèse de proportionnalité et à la distribution des censures à droites entre les groupes comparés. A ma connaissance il n'y a pas de variantes pondérées.
- Test de Pepe & Mori: teste directement deux courbes d'incidences et seulement 2. Je n'ai pas le recul nécessaire sur cette alternative, qui n'est implémenté que dans Stata.

Table 12.1: Test de Gray pour la variable surgery

Risques Chi2 P>Chi2 Cause1 5.783 0.0161			
	Risques	Chi2	P>Chi2
Cause $0.129 0.7191$	Cause1 Cause2		

Table 12.2: Test de Pepe-Mori pour la variable surgery

Risques	Chi2	P>Chi2
Cause1 Cause2		0.0127 0.7038

? R-Stata-Sas-Python

- Sas: le test de Gray est estimé si on ajoute l'option strata=nom_variable à la proc lifetest sous risque concurrent (voir encadré précédent). Le test de Pepe-Mori est disponible via une macro externe (%compcif: non testée) :
- Stata: Le test de Gray n'est pas disponible, il faut passer par une exécution de la fonction cuminc de la librairie R cmprsk directement dans stata (voir la commande rsource). Pour faire plus simple, on peut estimer le modèle de Fine-Gray avec une seule variable (discrète). Le résultat est comparable à celui du test (voir plus bas). Le test de Pepe-Mori est disponible via la commande externe stpepemori.
- R: On ajoute une variable à la fonction cuminc de la librairie cmprsk. Pas de test de *Pepe-Mori* sur les fonctions d'incidence à ma connaissance.
- Python: ne pas essayer d'utiliser la librairie cmprsk qui n'est pas mis à jour et ne fonctionne plus.

12.4 Modèles

12.4.1 Modèles Semi paramétriques

Cette présentation sera plutôt brève. Dans le domaine des sciences sociales, je préconise plutôt l'utilisation d'un modèle multinomial à temps discret de type logistique. Le modèle de Cox en présence de risques concurrent n'est valable que dans une logique de risques « cause-specific », le modèle de Fine et Gray bien que directement relié à l'estimation des incidences cumulées, repose sur une définition du risque (de sous répartition) dont l'interprétation n'est pas naturelle. Il est également soumis à l'hypothèse de proportionnalité des risques.

Modélisation des risques « cause-specific » : Cox

Modèle de Cox «standard» pour chaque évènement, les évènements concurrents sont traités comme des censures à droite. Aucune interprétation sur les fonctions d'incidence ne peut-être faite.

Modèle de Fine-Gray: subdistribution hazard regression

Modèle de type semi-paramétrique avec une redéfinition du risque lié à l'estimation des fonctions d'incidence (voir test de Gray). La différence avec le Cox classique réside dans le calcul du risk-set : les évènements concurrents ne sont pas considérés comme des censures, on laisse les individus leur « survivre » jusqu'à la durée maximale observée dans l'échantillon. L'interprétation n'est donc pas très intuitive (Fine et Gray le soulignent). Ce modèle est relativement contreversé. Il ne sera donc pas exécuté pour l'application

Pour les questions liées à l'interprétation de ces deux types de modèles, se reporter à: https://onlinelibrary.wiley.com/doi/epdf/ $10.1002/\sin.7501$

? R-Stata-Sas-Python

- R: on utilise la fonction crr du package cmprsk.
- Sas: même principe que pour l'estimation non paramétrique, on ajoute l'option eventcode=valeur à l'instruction model de la proc phreg.
- Stata: on utilise la commande interne stcrreg.
- Python : ne pas essayer d'utiliser la librairie cmprsk qui n'est pas mis à jour et ne fonctionne donc plus.

12.4.2 Modèle à temps discret

- Il s'agit d'une extension du modèle à temps discret à évènement unique (toutes causes regroupées) avec ici le modèle logistique multinomial.
- S'il ne permet pas une interprétation sur les fonctions d'incidences, les risques concurrents ne sont pas traitées comme des censures à droite.

Table 12.3: Modèle logistique multinomial avec risques concurrent

(a) Cause 1

(b) Cause 2

Cause 1	RRR	p> z	95% IC
t	0.816	0.000	0.752 - 0.885
t^2	1.003	0.000	1.001 - 1.005
year	0.879	0.116	0.749 - 1.032
age	1.045	0.012	1.010 - 1.081
surgery	0.318	0.033	0.110 - 0.913
constante	0.231	0.000	0.148 - 0.360

Cause 2	RRR	p> z	95% IC
t	0.817	0.003	0.713 - 0.935
t^2	1.003	0.052	1.000 - 1.006
year	0.816	0.141	0.622 - 1.070
age	1.011	0.654	0.964 - 1.061
surgery	0.541	0.431	0.117 - 2.496
constante	0.076	0.000	0.037 - 0.157

- Le modèle multinomial repose sur une hypothèse dite « d'indépendance des alternatives non pertinentes » (IIA). Cela peut donc paraître contradictoire d'utiliser ce modèle pour des évènements qui sont supposés non indépendants. Néanmoins la dépendance entre risques concurrents n'est pas non plus stricte et cette hypothèse d'IIA, seulement testable par le bon sens, est souvent illustrée par l'exemple des couleurs des bus dans le choix du mode de transport, ou les couleurs de chaussure dans les études marketing. Soit est une situation relativement limite.
- En terme de lecture, les estiupateurs du modèle logistique multinomial peuvent directement s'interpréter comme des rapports de risque (ou relative risk ratio).
- En sciences sociales, il me semble que ce type de modèle soit à privilégier.
- On peut également envisager un modèle de type probit multinomial, mais on peut rencontrer des problèmes d'estimations (repose sur la loi normale multivariée). Prévoir un regroupement des causes concurrentes, et dans tous les cas de figure ne pas dépasser trois causes.
- Niveau lecture, on peut utiliser une méthode de standardisation, de type **AME** (Average Marginal Effect).

Pour l'application, nous avons pris le mois (30 jours) comme métrique temporelle. On rappelle que les valeurs des estimateurs sont fictives en raison de la simulation des évènement pour le risque concurrent (cause2)

Notes:

- On a utilisé le terme RRR Relative Risk Ratio pour la colonne raportant les estimations. Dans un cadre de risque concurrent il est un peu difficile d'utiliser formellement la notion de hazard rate tel qu'il a été difini plus haut, enfin les modèles multinomiaux ne reportent pas formellement des Odds Ratios dont l'utilisation devrait être réservé exclusivement à une alternative binaire.
- les variables *year* et *age* ont été centrées sur leur valeur moyenne pour donner aux constantes des valeurs acceptables.
- Pour faciliter la lecture on peut utiliser une méthode de standardisation de type AME (Average Marginal Effect).

13 Modèles paramétriques

Objectifs: présenter, assez rapidement, la logique des modèles de type AFT (Accelerated Failure Time), principalement celui de Weibull.

13.1 Principes

- Dans les modèles paramétriques usuels¹, la durée de survie est distribuée selon une loi dont la densité f(t) pleinement paramétrée.
- Pour utiliser l'approche paramétrique, il faut avoir de bonnes raisons de penser que les durées de survie sont distribuées selon une certaine loi connue plutôt qu'une autre.
- La majorité des distributions reposent sur une hypothèse dite AFT (**Ac r la proportionnalité des risques. Certaines modèles peuvent reposer sur les deux comme le modèle de Weibull. Enfin, les modèles log-logistique ou log-normal n'ont qu'une paramétrisation de type AFT. Depuis une vingtaine, un modèle dit flexible (Parmar-Royston) ne paramétrise pas la distributions des évènement à partir d'une loi mais à partir d'un ajustement reposant sur la méthode de lissage par spline cubique².

13.2 Hypothèse AFT: Accelerated Failure Time

L'hypothèse **AFT** signifie que l'effet des covariables est multiplicatif par rapport à la durée de survie/séjour. Par opposition, les modèles PH décrivent un effet multiplicatif par rapport au risque.

Selon les caractérisques des individus, le temps ne s'écoulent pas à la même vitesse, ils ne partagent donc plus la même métrique temporelle. Cela renvoie a des interprétations de type dilation/contraction du temps, par analogie à la théorie de la relativité, mais ici avec une seule dimension.

Exemple simple: la durée de vie d'un être humain et d'un chien.

On dit qu'une année de vie d'un être humain est équivalent à 7 années de vie d'un chien. C'est typiquement une hypothèse d'AFT.

$$S_h(t) = S_c(7 \times t).$$

C'est ce facteur multiplicatif qu'estime un modèle paramétrique de type AFT.

$$S(t_i|X_1) = S(\phi t_i|X_0)$$

¹Plus anciens que le modèle de Cox

²permet un ajustement relativement proche des modèles à durée groupée mais avec des durées strictement continues

Remarque: si un modèle s'estime AFT s'estime également sous hypothèse PH, comme celui de Weibull: $h(t_i|X_1) = -\rho\phi h(t_i|X_0)$

- Avantage: l'interprétation des modèles est directement liée aux fonctions de survie. Cela s'avère donc pratique après une analyse non paramétrique de type Kaplan-Meier par exemple.
- Inconvénient: très difficile d'introduire de variables dynamiques³.

Humain versus chien: la probabilité qu'un être humain survive 80 ans est égale à la probabilité qu'un chien survive 11 ans (80/7). Le temps s'écoulerait donc plus vite pour le chien que pour l'être humain du point de vue d'un référentiel extérieur. Ce raisonnement peut s'appliquer aux quantile du temps de survie: le temps de survie médian d'un être humain est 7 fois plus élevé que celui d'un chien. En terme d'interprétation des paramètres estimés, si la durée de survie est plus courte, alors le risque est plus élevé.

13.3 Principe de construction des modèles AFT

Le raisonnement mathématique est ici plus complexe que pour les modèles de Cox ou à durée discrète. On donnera juste quelques pistes en début de raisonnement. On part d'une expression proche du modèle linéaire à une transformation logarithmique près de la variable dépendante. En imposant la contrainte $t_i > 0$, en ne posant qu'une seule covariable X de type binaire, et en se situant de nouveau dans une logique de temps continu (pas d'évènement simultané):

$$log(t_i) = \alpha_0 + \alpha_1 X_i + b u_i$$

b est un paramètre d'échelle identique pour toutes les observations et u_i un terme terme d'erreur qui suit une loi de distribution de densité f(u). Cette combinaison linéaire définira le paramètre de position. C'est la forme de f(u) qui définie le type de modèle paramétrique.

On peut écrire:
$$f(u_i) = f(\frac{\log(t_i) - \alpha_0 - \alpha_1 X_i}{b})$$
.

Remarque: pour une distibution normale/gaussienne, le paramètre de position est l'espérance et le paramètre d'échelle l'écart-type.

13.4 Quelques modèles paramétriques usuels

Modèle exponentiel et de Weibull

Weibull

- Peut estimer un modèle PH ou AFT, d'où sa popularité.
- Distribution monotone des durées d'évènement, toujours croissante ou décroissante.
- $f(t) = \lambda \alpha t^{\alpha-1} e^{-\alpha t^{\lambda}}$ et $h(t) = \lambda \alpha (\lambda t)^{\alpha-1}$, $\alpha > 0$ et $\lambda > 0$. Si $\lambda > 1$ le risque est croissant, décroissant si $\lambda < 1$, et est constant (loi exponentielle) si $\lambda = 1$.

³Jamis testé de mon côté

Table 13.1: Modèle de Weibull

(a) Accelerated Failure Time (AFT)

(b) Proportional hazard (PH)

Variables	Time Ratio	p> z	95% IC
year	1.176	0.184	0.926 - 1.493
age	0.940	0.013	0.896 - 0.987
surgery	7.173	0.011	1.557 - 33.048
ho	0.556	-	0.464 - 0.667

Variables	HR	p> z	95% IC
year	0.914	0.175	0.802 - 1.041
age	1.035	0.014	1.007 - 1.063
surgery	0.334	0.012	0.143 - 0.783
ho	0.556	-	0.464 - 0.667

Exponentiel

- Processus sans mémoire, utilisé pour étudier par exemple la durée de vie composants électriques ou électroniques.
- La fonction de risque est une constante.
- Cas limite de la loi de Weibull. Un modèle de type exponentiel peut-être de type AFT ou PH.
- Pour contourner la constance du risque dans le temps, on peut estimer un modèle en scindant la durée en plusieurs intervalles. Le risque sera constant à l'intérieur de ces intervalles, il s'agit d'un modèle "exponential piecewise" (exponential par morceau).

Log-logistique

- Estime un modèle de type AFT seulement. Proche du modèle log-normal (plus difficile à estimer).
- Permet une interprétation en terme d'Odds de survie.
- La fontion du risque peut-être "U-shaped" (unimodale croissante puis décroissante).

Autres lois: Gompertz (PH seulement), Gamma et Gamma généralisé.....

Sélection de la loi On peut sélectionner la loi en comprarant les AIC où les BIC des modèles. Pour le modèle de Weibull, on peut regarder s'il ajuste bien les données si la transformation $log(-log(S(t_i)))$ est linéaire par rapport à $log(t_i)$.

Application

Comparaison des AIC (sans covariable)

• Weibull: 400.1

• Exponentiel: 461.0

• Gompertz: 409.6

• Log-logistique: 391.8

13.5 Exemple avec le modèle de Weibull

Note: la constante n'est pas reporté. ρ indique la valeur estimé d'un paramètre de forme. Son signe indique sur le risque est décroissant ou croissant (1 si risque constant), et permet de passer de la paramétrisation AFT à la paramétrisation PH (et inversement).

- **AFT**: Un jour de survie d'une personne qui n'a pas été opérée d'un pontage correspond environ à 7 jours de survie d'une personne opérée. Cette remise à l'échelle de la métrique temporelle entre les deux groupes exprime bien le gain en durée de survie pour les personnes opérées, soit des risques journaliers de décès plus faibles (et plus faibles à valeurs constantes, proportionnalité oblige).
- PH: Lecture en rapport de risque ou hazard rate (idem Cox). Si on avait reporté les coefficients (échelle log) $b_{ph}=-\rho\times b_{aft}$. Ici $-0.556\times(1.97)=-1.096$. Et $e^{-1.096}=0.334$

Attention: on ne peut pas comparer la qualité d'un modèle paramétrique à celle d'un modèle de Cox par des critères type AIC ou BIC. Les deux méthodes d'estimation diffèrent.

13.6 Le modèle de Parmar-Royston

- Le bon ajustement par une loi de distribution predéfinie peut s'avérer contraignante. Le modèle de Cox avait justement pour objectif de se défaire de cette contrainte, la plupart des distributions utilisées étant monotone ou unimodale (log-logistique ou log-normal).
- Le principe des splines peut-être rapproché de celui qui a été utilisé plus haut dans le modèle logistique à durée discrète avec l'introduction des polynomes [$f(t) = (a_1 \times t) + (a_2 \times t^2) + (a_3 \times t^3) + ... + (a_k \times t^k)$.
 - Cette méthode brute d'ajustement consiste finalement à introduire une intéraction ou plusieurs intéractions entre la variable de durée elle-même.
 - Elle est sujette à une forte sensibilité aux outliers (overfitting) au delà de $k > 2^{4}$.
- Les splines cubiques restreintes propose une méthode d'ajustement et de lissage de meilleure qualité et permet de contenir les problèmes d'overfitting.
 - les splines cubiques sont donc basées sur des polynomes d'ordre 3 (d'où cubique) avec une estimation par morceau (intervalles). les morceaux sont définis manuellement ou par un nombre de degrés de liberté obtenu à partir des quantiles du logarithme de la fonction de survie après avoir exclu les observation censurées.
 - * Deux degrés de liberté (1 noeud) avec un intervalle allant jusqu'au log de la moitié des survivants et un second à partir de cette seconde moitié.
 - * Sur le même principe trois degrés de liberté (2 noeuds) coupe la durée en 3 intervalles sur ses terciles.
 - * En pratique, il est préférable de donner à l'application le nombre de degré de liberté plutôt que d'indiquer manuellement la position des noeuds.
 - * Il convient également de ne pas être trop gourmand sur le nombre de noeuds, un ou deux étant souvant suffisant (donc 2 ou 3 degrés de liberté).

⁴lors la formation il suffit de la tester avec la base des TP pour k=3 et calculer la probabilité conditionnelle pour s'en convaincre

- * On peut choisir le nombre de degrés de liberté en estimant des modèles sans covariables et comparer les AIC (vraisemblance pénalisée).
- Contrairement aux autres modèles, et sans rentrer dans les détails, le modèle de Parmar-Royston part de la fonction de risque cumulée et non des taux de risque/hasard. Les risk ratios sont obtenus en utilisant les relations entre les différentes grandeurs (voir section théorie).

Exemple

Avec 2 degrés de liberté (un noeud):

Table 13.2: Modèle de Parmar-Roytston

Variables	\$e^(b)	p> z	95% IC
\overline{year}	0.885	0.067	0.777 - 1.008
age	1.030	0.026	1.004 - 1.058
surgery	0.373	0.025	0.159 - 0.876
spline1	3.157	0.000	2.503 - 3.981
spline2	1.289	0.002	1.099 - 1.511
constante	0.510	0.000	0.386 - 0.674

A savoir:

- Avec un degré de liberté, le modèle de Parmar-Royston estime un modèle de Weibull sous paramétrisation PH.
- Les paramètres pour les splines ne sont pas interprétables directement. Ils servent calculer la baseline du risque via l'équation du polynome (non reporté car expression bien corsée).
- De nouveau il s'agit d'un modèle à risque proportionnel.

14 Annexes

14.1 Tests Grambsch-Therneau OLS sur les résidus de Schoenfeld

Important

Attention il ne s'agit pas du test actuellement implémenté dans la nouvelle version de survival (v3) qui, malheureusement, lui a substitué la version dite exacte (moindres carrés généralisés). Le programme de la fonction du test OLS est néanmoins facilement récupérable et exécutable. lien. Je continue de préconiser l'utilisation de cette version OLS du test, reproductible avec les autres applications statistiques (Stata,Sas,Python).

- Le test dit "simplifié", qui n'apparait pas dans le texte original de P.Gramsch et T.Thernau lien, répond à un soucis d'instabilité des variances des résidus de Schoenfeld en fin de durée d'observation lorsque peu d'observation restent soumises au risque. Cet argument est soulevé dans leur ouvrage de 2022 lien avant d'en présenter sa version.
- Il est simplifié car on applique à tous les résidus bruts la variance du paramètre (b) estimés par le modèle de Cox.
- Le test devient alors un simple test de corrélation entre les résidus et une fonction de la durée (centrée). Dans l'esprit, il peut être également approché par une regression linéaire par les moindre carrés ordinaires entre les résidus et une fonction de la durée (voir page 134 de l'ouvrage de Grambsch et Therneau).

Soit les données suivantes, avec t la variable de durées, Y la variable de censure et X la seule et unique covariable.

- Pas d'évènement simultané (donc pas de correction de la vraisemblance)
- Covariable de type indicatrice

$\overline{t_i}$	Y_{i}	X_{\cdot}
1	1	1
2	0	0
3	0	0
4	1	1
5	1	1
6	1	0
7	0	1

```
test = data.frame(time=
                       c(1,2,3,4,5,6,7),
                   Y=c(1,0,0,1,1,1,0),
                     c(1,0,0,1,1,0,1))
```

Estimation du modèle de Cox:

```
library(survival)
fit = coxph(formula = Surv(time, Y) ~ X, data=test)
```

Call:

coxph(formula = Surv(time, Y) ~ X, data = test)

Likelihood ratio test=0.31 on 1 df, p=0.5797 n= 7, number of events= 4

Calcul des résidus brut (si et seulement si Y=1) dans le cas d'une seule covariable avec b égal à **0.62**:

$$rs_i = X_i - \sum_{j \in R_i} X_i \frac{e^{0.62 \times X}}{\sum_{j \in R_i} e^{0.62 \times X}} = X_i - E(X_{j \in R_i})$$

Il y a ici 4 résidus à calculer, pour t = (1, 4, 5, 6)

Résidus pour t=1

- $a_1 = \sum_{j \in R_i} e^{0.62 \times X} = e^{0.62} + 1 + 1 + e^{0.62} + 1 + e^{0.62} = 10.43$
- $b_1 = \sum_{j \in R_i}^{J \in H_i} X_i \frac{e^{0.62 \times X}}{\sum_{j \in R_i} e^{0.62 \times X}} = 4 \times \frac{e^{0.62}}{10.43} = 0.71$
- $r_1 = 1 0.71 = 0.29$

Résidus pour t=4

- $a_4 = e^{0.62} + e^{0.62} + 1 + e^{0.62} = 6.58$
- $a_4 = e$ + e + 1 $b_4 = 4 \times \frac{e^{0.62}}{6.58} = 0.84$ $r_4 = 1 0.84 = 0.15$

Résidus pour t=5

- $a_5 = e^{0.62} + e^{0.62} + 1 = 4.71$
- $b_5 = 2 \times \frac{e^{0.62}}{4.71} = 0.78$ $r_5 = 1 0.78 = 0.21$

Résidus pour t=6

•
$$a_6 = e^{0.62} + 1 = 2.86$$

$$\begin{array}{ll} \bullet & b_6 = \frac{e^{0.62}}{2.86} = 0.65 \\ \bullet & r_6 = 0 - 0.65 = -0.65 \end{array}$$

•
$$r_6 = 0 - 0.65 = -0.65$$

Les résidus "standardisés", ou plutôt scaled residuals (je cale sur une traduction correcte en français) sont égaux à:

$$sr_i = b + nd \times Var(b) \times r_i$$

Avec $nd = \sum Y_i$

- $\sum Y_i = 4$
- $Var(b) = (1.1723)^2 = 1.37$
- $sr_1 = 0.62 + 4 \times 1.37 \times 0.29 = 2.20$
- $sr_4 = 0.62 + 4 \times 1.37 \times 0.15 = 1.47$
- $sr_5 = 0.62 + 4 \times 1.37 \times 0.21 = 1.78$
- $sr_6 = 0.62 + 4 \times 1.37 \times (-0.65) = -2.95$

Avec $g(t_i)$ une fonction de la durée $(g(t_i)=t_i,\,g(t_i)=1-KM(t_i)...)$ et $\overline{g(t)}$ sa valeur moyenne, la statistique du test score simplifié pour une covariable est égale à :

$$\frac{[\sum_i (g(t_i) - \overline{g(t_i)} \times sr_i)]^2}{nd \times Var(b) \times (\sum_i (g(t_i) - \overline{g(t_i)})^2}$$

Et suis un χ^2 à 1 degré de liberté.

Avec $\overline{g(t_i)} = t_i$, le calcul de la statistique de test est:

•
$$\overline{g(t_i)} = \frac{28}{7} = 4$$

$$\bullet \quad \tfrac{[(1-4)\times 2.20] + [(4-4)\times 1.47 + (5-4)\times 1.78 + (6-4)\times (-2.95)]^2}{4\times 1.37\times [(1-4)^2 + (4-4)^2 + (5-4)^2 + (6-4)^2]} = \tfrac{114.9}{76.72} = 1.49$$

#source("D:/D/Marc/SMS/FORMATIONS/analyse_duree/cox.zphold/cox.zphold.R")

source("https://raw.githubusercontent.com/mthevenin/analyse duree/master/cox.zphold/cox.zphol

cox.zphold(fit, transform="identity")

14.2 Fragilité et immunité

Seulement quelques remarques, le traitement de ces problématiques dépassant largement le contenu de la formation.

14.2.1 Fragilité (Frailty)

Pour la fragilité, je conseille fortement de lire la dernière section du document de travail de **Simon Quantin** (cf bibliographie), il n'y a pas meilleure présentation du problème que la sienne ^[petite maj par rapport à la version précédente: il ne traite que la fragilité individuelle stricto sensu et non la fragilité plus connu sous le terme de shared frailty* (proche modèle multiniveau). Problèmatique importante, car une des origines de la non proportionnalité des risques réside dans l'omission de variables. Ici on va être confronté une omission sur des traits non observables ou latents, qui accélèrent dès le début de la période d'exposition la survenue de l'évènement. L'introduction d'un facteur de fragilité se fait par l'introduction d'un effet aléatoire dans le modèle, de nature plus complexe, et rendant l'interprétation des modèles plus compliquée.

On peut distinguer deux types de modèles:

- les modèles à fragilité partagée, c'est la situation la plus simple car la logique se rapproche des modèles multiniveaux, des groupes d'individus, identifiables, partagent une même fragilité, par exemple géographique.
- les modèles à fragilité non partagée, avec des caractéristiques latentes non observable comme les préférences, ou en médecine certains traits génétiques non identifiés.

14.2.2 Immunité (Cure fraction)

Le phénomène d'immunité est un cas particulier du précédent, et a été étudié dès le début des années 1950, en questionnant l'exposition au risque d'une partie des observations. On s'interrogeait par exemple sur les risques de rechute et de décès après le traitement d'un premier cancer. Visuellement on peut commencer à se proser des questions sur la présence d'une fraction immunisée ou non susceptible de connaître l'évènement lorsque la fonction de séjour ne tend pas vers 0 mais présente une longue asymptote (plateau) sur une valeur supérieure à 0: $\lim_{t\to\infty} S(t) = a$.

Les modèles avec une fraction immunisée peuvent être de *type mixte* en associant une probabilité d'être immunisé aux observations censurées à droite à un modèle de durée ¹. Plus dans le vent je crois, on a également des modèles de **type non mixte**, avec il me semble une connotation bayesienne qui semble s'accroître. Il n'y a donc pas de méthode unifiée à ce jour [Si vous voulez vous en convaincre].

On peut également noter, c'est important, que cette problématique affecte les analyses avec des évènements dits récurrents. Ici, la stratégie classique qui consiste à introduire dans un modèle un simple effet aléatoire de type fragilité partagée (shared frailty) pour contrôler risque d'être insuffisante. Ici le groupe est constitué de chaque séquence de remise dans le risque set. Exemple pour la fécondité: une personne

¹Le plus classique utilise un algorithme Expectation Maximisation utilisé en imputation: on estime une probabilité d'être susceptible de connaitre l'évènement aux observations censurées à droite, qui intervient comme facteur de pondération dans le modèle de durée. Cette probabilité et le modèle de durée qui lui est associé est réévalué à chaque boucle de l'algorithme jusqu'à convergence. Le principale problème de cette méthode résite dans l'estimation de la variance, souvent effectué par bootstrap. Cette méthode à l'avantage d'être implémentable en durée discrète, bien qu'à ma connaissance aucun logiciel ne la propose (j'ai une commande Stata encore perfectible sous le coude). On trouve en revanche ce type d'estimation sous R, pour les modèles de Cox ou les modèles paramétriques dans le package smcure

ayant eu un enfant est exposée au risque d'en avoir un autre, l'horloge temporelle étant alors simplement réinitialisée. Et donc, quid des préférences individuelles en terme de fécondité ².

Enfin, les modèles à fragilité ou à fraction immunisée repose tous sur une hypothèse très forte. La fragilité ou le degré d'immunité est toujours défini (estimé) en début d'exposition, et il ne varie pas. Cela peut ne pas toujours faire sens, en particulier pour les préférences, pas forcément stables ou fixes dans le temps.

 $^{^2}$ en situation de récurrence, toujours penser à remettre à jour les conditions initiales, par exemple pour la fécondite l'âge de la mère à la naissance de l'enfant pour les rang supérieur à 1

partie VI Programmation

15 R

Programme de cette section: Lien

15.1 Packages et fonctions

Analyse	Packages - Fonctions		
Non paramétrique	• discsurv		
	- lifetable		
	<pre>- contToDisc</pre>		
	• survival		
	<pre>- survfit</pre>		
	<pre>- survdif</pre>		
	• survRM2		
37 181 8 4	- rmst2		
Modèles à risques proportionnel	• survival		
	- coxph		
	- cox.zph $(v3)$ cox.zphold $(récupération v2)$ $-$ survsplit		
	-		
	• base et tydir		
	- uncount		
Madèles papamétriques (ph eu eft)	- glm		
Modèles paramétriques (ph ou aft)	• survival		
	<pre>- survreg</pre>		
	• flexsurv		
	- survreg		
Risques concurents	• cmprsk		
	- cuminc		
	• nnet		
	- multinom		

Analyse	Packages - Fonctions
Autres (graphiques - mise en forme)	• survminer
	• jtools
	• gtsummary

Installation

Les dernières versions de certains packages peuvent être installées via Github (ex: survminer). Pour les récupérer, passer par le package devtools.

```
#install.packages("survival")
#install.packages("flexsurv")
#install.packages("flexsurv")
#install.packages("survRM2")
#install.packages("tidyr")
#install.packages("dplyr")
#install.packages("jtools")
#install.packages("gtools")
#install.packages("gtools")
#install.packages("gtowary")
#install.packages("munaz")
#install.packages("munaz")
#install.packages("munaz")
#install.packages("nnet")

library(survival)
library(survwiner)
library(survwiner)
library(survR2)
library(tidyr)
library(tidyr)
library(gtools)
library(gtools)
library(gtools)
library(gtools)
library(gtsummary)
library(gtsummary)
library(gtsummary)
library(gtsummary)
library(gtsummary)
library(munaz)
library(munaz)
```

15.2 Analyse Non paramétrique

Chargement de la base transplantation

```
library(readr)
trans <- read.csv("https://raw.githubusercontent.com/mthevenin/analyse_duree/master/bases/trans/")</pre>
```

15.2.1 Méthode actuarielle

La fonction disponible du paquet discsurv, *lifetable*, a des fonctionalités plutôt limitées. Si on peut depuis une MAJ récente définir des intervalles de durée, il n'y a toujours pas d'estimateurs les différents quantiles de la courbe de survie.

La programmation est rendue un peu compliquée pour pas grand chose. Je donne les codes pour info, sans plus de commentaires.

```
trans = as.data.frame(trans)
```

Fonction lifeTable

Intervalle par defaut dt = 1

```
lt = lifeTable(dataShort=trans, timeColumn="stime", eventColumn = "died")
plot(lt, x = 1:dim(lt$Output)[1], y = lt$Output$S, xlab = "Intervalles t = journalier", y
```

Figure 15.1: S(t) méthode actuarielle avec discSurv (1)

Intervalle dt = 30

```
# On définit un vecteur définissant les intervalles (il n'y avait pas plus simple????)
dt <- 1:ceiling(max(trans$stime)/30)*30

# Base dis avec une nouvelle variable de durée => timeDisc

dis <- contToDisc(dataShort=trans, timeColumn="stime", intervalLimits = dt )

lt <- lifeTable(dataShort=dis, timeColumn="timeDisc", eventColumn = "died")

plot(lt, x = 1:dim(lt$Output)[1], y = lt$Output$S, xlab = "Intervalles dt = 30 jours",</pre>
```

Figure 15.2: Méthode actuarielle avec discSurv (2)

Sur les abscisses, ce sont les valeurs des intervalles qui sont reportés: 10=300 jours. Ce n'est vraiment pas terrible. Pour ce type d'estimateurs, il est préférable d'utiliser Sas ou Stata.

15.2.2 Méthode Kaplan-Meier

Le package survival est le principal outil d'analyse des durée. Le package **survminer** permet d'améliorer la présentation des graphiques.

Estimation des fonctions de survie

Fonction survfit

On peut renseigner directement les variables permettant de calculer la durée et non la variable de durée elle-même. Cette méthode est utilisée lorsqu'on introduit une variable dynamique dans un modèle semi-paramétrique de Cox (coxph).

Listing 15.1 syntaxe

```
fit <- survfit(Surv(time, status) ~ x, data = base)</pre>
```

Listing 15.2 Syntaxe

```
fit <- survfit(Surv(variable_start, variable_end, status) ~ x, data = nom_base)</pre>
```

Sans comparaison de groupes:

```
fit <- survfit(Surv(stime, died) ~ 1, data = trans)
fit</pre>
```

summary(fit)

Call: survfit(formula = Surv(stime, died) ~ 1, data = trans)

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
1	103	1	0.990	0.00966		0.9715		1.000
2	102	3	0.961	0.01904		0.9246		0.999
3	99	3	0.932	0.02480		0.8847		0.982
5	96	2	0.913	0.02782		0.8597		0.969
6	94	2	0.893	0.03043		0.8355		0.955
8	92	1	0.883	0.03161		0.8237		0.948
9	91	1	0.874	0.03272		0.8119		0.940
12	89	1	0.864	0.03379		0.8002		0.933
16	88	3	0.835	0.03667		0.7656		0.910
17	85	1	0.825	0.03753		0.7543		0.902
18	84	1	0.815	0.03835		0.7431		0.894
21	83	2	0.795	0.03986		0.7208		0.877
28	81	1	0.785	0.04056		0.7098		0.869
30	80	1	0.776	0.04122		0.6989		0.861
32	78	1	0.766	0.04188		0.6878		0.852
35	77	1	0.756	0.04250		0.6769		0.844
36	76	1	0.746	0.04308		0.6659		0.835
37	75	1	0.736	0.04364		0.6551		0.827
39	74	1	0.726	0.04417		0.6443		0.818

40	72	2	0.706 0.04519	0.6225	0.800
43	70	1	0.696 0.04565	0.6117	0.791
45	69	1	0.686 0.04609	0.6009	0.782
50	68	1	0.675 0.04650	0.5902	0.773
51	67	1	0.665 0.04689	0.5796	0.764
53	66	1	0.655 0.04725	0.5690	0.755
58	65	1	0.645 0.04759	0.5584	0.746
61	64	1	0.635 0.04790	0.5479	0.736
66	63	1	0.625 0.04819	0.5374	0.727
68	62	2	0.605 0.04870	0.5166	0.708
69	60	1	0.595 0.04892	0.5063	0.699
72	59	2	0.575 0.04929	0.4857	0.680
77	57	1	0.565 0.04945	0.4755	0.670
78	56	1	0.554 0.04958	0.4654	0.661
80	55	1	0.544 0.04970	0.4552	0.651
81	54	1	0.534 0.04979	0.4451	0.641
85	53	1	0.524 0.04986	0.4351	0.632
90	52	1	0.514 0.04991	0.4251	0.622
96	51	1	0.504 0.04994	0.4151	0.612
100	50	1	0.494 0.04995	0.4052	0.602
102	49	1	0.484 0.04993	0.3953	0.592
110	47	1	0.474 0.04992	0.3852	0.582
149	45	1	0.463 0.04991	0.3749	0.572
153	44	1	0.453 0.04987	0.3647	0.562
165	43	1	0.442 0.04981	0.3545	0.551
186	41	1	0.431 0.04975	0.3440	0.541
188	40	1	0.420 0.04966	0.3336	0.530
207	39	1	0.410 0.04954	0.3233	0.519
219	38	1	0.399 0.04940	0.3130	0.509
263	37	1	0.388 0.04923	0.3027	0.498
285	35	2	0.366 0.04885	0.2817	0.475
308	33	1	0.355 0.04861	0.2713	0.464
334	32	1	0.344 0.04834	0.2610	0.453
340	31	1	0.333 0.04804	0.2507	0.442
342	29	1	0.321 0.04773	0.2401	0.430
583	21	1	0.306 0.04785	0.2252	0.416
675	17	1	0.288 0.04830	0.2073	0.400
733	16	1	0.270 0.04852	0.1898	0.384
852	14	1	0.251 0.04873	0.1712	0.367
979	11	1	0.228 0.04934	0.1491	0.348
995	10	1	0.205 0.04939	0.1279	0.329
1032	9	1	0.182 0.04888	0.1078	0.308
1386	6	1	0.152 0.04928	0.0804	0.287

plot(fit)

Le premier output fit permet d'obtenir la durée médiane, ici égale à $100 \ (S(100) = 0.494)$. Le second avec la fonction summary permet d'obtenir une table des estimateurs. La fonction de survie peut être tracée avec la fonction plot (en pointillés les intervalles de confiance).

On peut obtenir des graphes de meilleur qualité avec la librairie **survminer**, avec la fonction **ggsurvplot**

ggsurvplot(fit, conf.int = TRUE)

On peut ajouter la population encore soumise au risque à plusieurs points d'observation avec l'argument risk.table = TRUE

ggsurvplot(fit, conf.int = TRUE, risk.table = TRUE)

15.2.3 Comparaison des S(t) méthode KM

ggsurvplot(fit, conf.int = TRUE, risk.table = TRUE)

On va comparer les deuxfonctions de survie pour la variable *surgery*, celle pour les personnes non opérées et celle pour les personnes opérées.

Tests du logrank

On utilise la fonction **survdiff**, avec comme variante le test de Peto-Peto (rho=1). La syntaxe est quasiment identique à la fonction **survdiff**.

survdiff(Surv(stime, died) ~ surgery, rho=1, data = trans)

Chisq= 8.7 on 1 degrees of freedom, p= 0.003

Ici la variable est binaire. Si on veux tester deux à deux les niveaux d'une variable catégorielle à plus de deux modalités, il est fortement conseillé d'utiliser la fonction pairwise_survdiff de survminer (syntaxe identique que survdiff).

Comparaison des RMST

La fonction **rmst2** du package **survRM2** permet de comparer les RMST entre 2 groupes . La strate pour les comparaisons doit être impérativement renommée *arm*. La fonction, issue d'une commande de Stata, n'est pas très souple.

trans\$arm=trans\$surgery a=rmst2(trans\$stime, trans\$died, trans\$arm, tau=NULL) print(a)

The truncation time, tau, was not specified. Thus, the default tau 1407 is used.

Restricted Mean Survival Time (RMST) by arm
Est. se lower .95 upper .95
RMST (arm=1) 884.576 151.979 586.702 1182.450
RMST (arm=0) 379.148 58.606 264.283 494.012

Restricted Mean Time Lost (RMTL) by arm

Est. se lower .95 upper .95

RMTL (arm=1) 522.424 151.979 224.550 820.298

RMTL (arm=0) 1027.852 58.606 912.988 1142.717

Between-group contrast

		Est.	lower	. 95	upper	. 95	р
RMST	(arm=1)-(arm=0)	505.428	186.	175	824	. 682	0.002
RMST	(arm=1)/(arm=0)	2.333	1.	483	3	. 670	0.000
RMTI.	(arm=1)/(arm=0)	0.508	0.	284	0	909	0.022

plot(a)

arm=1 arm=0 8.0 4.0 1000 0 500 1500

RMST: 884.58 RMST: 379.15

15.3 Modèle de Cox

Ici tout est estimé de nouveau avec des fonctions du package survival:

- Estimation du modèle: coxph.
- Test de Grambsch-Therneau: cox.zph et cox.oldzph.
- Introduction d'une variable dynamique: allongement de la base avec survsplit.

15.3.1 Estimation du modèle

Par défaut, R utilise la correction d'Efron pour les évènements simultanés. Il est préférable de ne pas la modifier.

Syntaxe:

Listing 15.3 Syntaxe

```
coxph(Surv(time, status) ~ x1 + x2 + ...., data=base, ties="nom_correction"))
```

```
coxfit = coxph(formula = Surv(stime, died) ~ year + age + surgery, data = trans)
summary(coxfit)
```

```
Call:
```

```
coxph(formula = Surv(stime, died) ~ year + age + surgery, data = trans)
  n= 103, number of events= 75
            coef exp(coef) se(coef)
                                           z Pr(>|z|)
year
        -0.11963
                    0.88725 \quad 0.06734 \quad -1.776
                                               0.0757
         0.02958
                    1.03002 0.01352 2.187
                                               0.0287
age
surgery -0.98732
                    0.37257
                            0.43626 - 2.263
                                               0.0236
        exp(coef) exp(-coef) lower .95 upper .95
           0.8872
                       1.1271
                                 0.7775
                                            1.0124
year
           1.0300
                       0.9709
                                            1.0577
age
                                 1.0031
           0.3726
                       2.6840
                                 0.1584
                                            0.8761
surgery
Concordance= 0.653 (se = 0.032)
Likelihood ratio test= 17.63
                               on 3 df,
                                           p=5e-04
Wald test
                      = 15.76
                               on 3 df,
                                           p=0.001
Score (logrank) test = 16.71
                               on 3 df,
                                           p = 8e - 04
```

tbl_regression(coxfit, exponentiate = TRUE,)

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	HR	95% CI	p-value
year	0.89	0.78, 1.01	0.076
age	1.03	1.00, 1.06	0.029
surgery	0.37	0.16, 0.88	0.024

L'output des résultats reporte le logarithme des Risques Ratios (coef) ainsi que les RR (exp(coef)). Il est intéressant de regarder la valeur de concordance (Harrel's) qui donne des indications sur la qualité de l'ajustement (proche de l'AUC/ROC d'un modèle probabiliste standard).

On peut représenter sous forme graphique les résultats avec la fonction ggforest de survminer

ggforest(coxfit)

Warning in .get_data(model, data = data): The `data` argument is not provided. Data will be extracted from model fit.

15.3.2 Hypothèse PH

15.3.2.1 Test Grambsch-Therneau

Résidus de Schoenfeld

On utilise la fonction cox.zph pour effectuer le test GLS (moindre carrés généralisés) qui a été substitué au test OLS (moindres carrés ordinaires) avec le passage à la v3 du package. Je donne plus loin un moyen de récupérer et d'exécuter le test OLS, que je conseille d'utiliser en présence de durées discrètes/groupées.

Le test peut utiliser plusieurs fonctions de la durée. Par défaut la fonction utilise 1 - KM, soit le complémentaire de l'estimateur de Kaplan-Meier (option transform="km").

• Test GLS (V3 de survival)

Avec transform="km"

cox.zph(coxfit)

```
chisq df p
year 3.309 1 0.069
age 0.922 1 0.337
surgery 5.494 1 0.019
GLOBAL 8.581 3 0.035
```

Avec transform="identity" (f(t) = t)

cox.zph(coxfit, transform="identity")

```
chisq df p
year 4.54 1 0.033
age 1.71 1 0.191
surgery 4.92 1 0.027
GLOBAL 9.47 3 0.024
```

Remarque: avec la v3 de survival, quelques options ont été ajoutées tel que *terms* qui permet pour une variable catégorielle à plus de deux modalités de choisir entre un sous test multiple sur la variable (k modalités => k-1 degré de liberté) et une série de tests à 1 degré de liberté sur chaque modalité (k-1 tests). De mon point de vue préférer la seconde solution avec *terms=FALSE*. le test de Grambsch-Therneau est particulièrement sensible au nombre de degré de liberté, et il convient donc d'éviter de l'utiliser dans un cadre multiple.

• Test OLS (V2 de survival - Stata - Sas - Python)

```
rho chisq p
year 0.102 0.797 0.3720
age 0.129 1.612 0.2043
surgery 0.297 5.539 0.0186
GLOBAL NA 8.756 0.0327
```

Listing 15.4 Récupération du test ols

source("https://raw.githubusercontent.com/mthevenin/analyse_duree/main/cox.zphold/cox.zphold

Listing 15.5 Exécution du test ols

```
cox.zphold(coxfit, transform="identity")
```

15.3.2.2 Introduction d'une intéraction

Lorsque la covariable n'est pas continue, elle doit être impérativement transformée en indicatrice ¹. Penser à vérifier en amont que les résultats du modèle sont bien identiques avec le modèle estimé précédemment (ne pas oublier d'omettre le niveau en référence).

La variable d'intéraction est tt(nom_variable), la fonction de la durée (ici forme linéaire simple) est indiquée en option de la fonction: tt = function(x, t, ...) x*t.

```
coxfit2 = coxph(formula = Surv(stime, died) ~ year + age + surgery + tt(surgery), data = tr
summary(coxfit2)
```

```
Call:
coxph(formula = Surv(stime, died) ~ year + age + surgery + tt(surgery),
   data = trans, tt = function(x, t, ...) x * t)
 n= 103, number of events= 75
                coef exp(coef)
                               se(coef)
                                            z Pr(>|z|)
           year
age
            0.028888 1.029310
                               0.013449 2.148 0.03172
           -1.754738 0.172953
                               0.674391 -2.602 0.00927
surgery
tt(surgery) 0.002231 1.002234 0.001102 2.024 0.04299
           exp(coef) exp(-coef) lower .95 upper .95
              0.8842
                        1.1310
                                 0.77564
                                           1.0080
year
age
              1.0293
                        0.9715
                                 1.00253
                                           1.0568
              0.1730
                        5.7819
                                 0.04612
                                           0.6486
surgery
tt(surgery)
                        0.9978
                                           1.0044
              1.0022
                                 1.00007
Concordance= 0.656 (se = 0.032)
Likelihood ratio test= 21.58 on 4 df,
                                      p = 2e - 04
Wald test
                    = 16.99 on 4 df,
                                      p=0.002
Score (logrank) test = 19 on 4 df,
```

¹c'est le cas ici, la variable *surgery* est bien codée (0;1)

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	HR	95% CI	p-value
year	0.884	0.776, 1.008	0.066
age	1.029	1.003, 1.057	0.032
surgery	0.173	0.046, 0.649	0.009
tt(surgery)	1.002	1.000, 1.004	0.043

Rappel: le paramètre estimé pour tt(surgery) ne reporte pas un rapport de risques, mais un rapport de de deux rapports de risques. C'est bien une double différence sur l'échelle d'estimation (log).

15.3.3 Introduction d'une variable dynamique (binaire)

La dimension dynamique est ici le fait d'avoir été opéré pour une greffe du coeur.

- Etape 1: créer un vecteur donnant les durées aux temps d'évènement.
- Etape 2: appliquer ce vecteurs de points de coupure à la fonction survsplit.
- Etape 3: modifier la variable transplant (ou créer une nouvelle) à l'aide de la variable wait qui prend la valeur 1 à partir du jour de la greffe, 0 avant.
- Etape 1: création de l'objet cut (vecteur), qui récupère les moments où au moins un évènement est observé.

```
cut= unique(trans$stime[trans$died == 1])
cut
 [1]
         1
              2
                    3
                          5
                                6
                                      8
                                           9
                                                12
                                                                       21
                                                                             28
                                                                                   30
                                                                                         32
                                                      16
                                                            17
                                                                  18
[16]
       35
                         39
                               40
                                    43
                                                50
             36
                   37
                                          45
                                                      51
                                                            53
                                                                  58
                                                                       61
                                                                             66
                                                                                   68
                                                                                         69
Γ317
       72
             77
                   78
                         80
                               81
                                    85
                                          90
                                                96
                                                     100
                                                           102
                                                                110
                                                                      149
                                                                            153
                                                                                  165
                                                                                        186
[46]
      188
            207
                  219
                        263
                             285
                                   308
                                         334
                                               340
                                                     342
                                                           583
                                                                675
                                                                      733
                                                                            852
                                                                                  979
                                                                                       995
[61] 1032 1386
```

Etape 2: allonger la base aux durées d'évènement

```
tvc = survSplit(data = trans, cut = cut, end = "stime", start = "stime0", event = "died")
head(tvc, n=20 )
```

```
id year age surgery transplant wait mois compet arm stimeO stime died
1
   15
          68
               53
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            0
                                                                                    1
                                                                                          1
2
   43
          70
               43
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
3
   43
          70
               43
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            1
                                                                                    2
                                                                                          1
4
   61
               52
                                        0
                                               0
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
          71
                          0
                                                     1
                                                              1
                                                                            1
                                                                                    2
5
   61
          71
               52
                          0
                                        0
                                                     1
                                                              1
                                                                   0
                                                                                          1
6
   75
          72
               52
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
                                                                                    2
7
   75
                          0
                                        0
                                                                            1
          72
               52
                                                     1
                                                              1
                                                                   0
                                                                                          1
8
    6
          68
               54
                          0
                                        0
                                               0
                                                              2
                                                                   0
                                                                            0
                                                                                          0
                                                     1
                                                                                    1
9
     6
               54
                          0
                                        0
                                               0
                                                     1
                                                              2
                                                                   0
                                                                            1
                                                                                    2
                                                                                          0
          68
    6
                          0
                                        0
                                               0
                                                              2
                                                                            2
                                                                                    3
10
          68
               54
                                                     1
                                                                   0
                                                                                          1
11 42
          70
               36
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
12 42
               36
                                        0
                                                                   0
                                                                                    2
                                                                                          0
          70
                          0
                                               0
                                                     1
                                                              1
                                                                            1
          70
                          0
                                        0
                                               0
                                                                   0
                                                                            2
                                                                                    3
13 42
               36
                                                     1
                                                              1
                                                                                          1
14 54
          71
               47
                          0
                                        0
                                               0
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
                                                     1
                                                              1
15 54
               47
                                        0
                                               0
                                                                   0
                                                                            1
                                                                                    2
                                                                                          0
          71
                          0
                                                     1
                                                              1
16 54
          71
               47
                          0
                                        0
                                               0
                                                     1
                                                              1
                                                                   0
                                                                            2
                                                                                    3
                                                                                          1
          70
                                        1
17 38
               41
                          0
                                               5
                                                     1
                                                              1
                                                                   0
                                                                            0
                                                                                    1
                                                                                          0
                                               5
                                                                            1
                                                                                    2
18 38
          70
               41
                          0
                                        1
                                                     1
                                                              1
                                                                   0
                                                                                          0
                                        1
                                               5
                                                                            2
19 38
          70
               41
                          0
                                                     1
                                                              1
                                                                   0
                                                                                    3
                                                                                          0
                                        1
                                               5
                                                                            3
                                                                                    5
20 38
          70
              41
                          0
                                                     1
                                                              1
                                                                                          1
```

On vérifie qu'on obtient les même résultats avec le modèle sans tvc

```
Call:
coxph(formula = Surv(stime0, stime, died) ~ year + age + surgery,
    data = tvc
            coef exp(coef) se(coef)
                                          z
                                                 р
        -0.11963
                   0.88725
                            0.06734 - 1.776 \ 0.0757
year
         0.02958
                   1.03002
                             0.01352 2.187 0.0287
age
                   0.37257
                             0.43626 -2.263 0.0236
surgery -0.98732
```

coxph(formula = Surv(stime0, stime, died) ~ year + age + surgery, data = tvc)

Likelihood ratio test=17.63 on 3 df, p=0.0005243 n= 3573, number of events= 75

• Etape 3: on génère la variable dynamique de sorte que les personnes n'apparaissent pas greffés avant l'opération

```
tvc$tvc=ifelse(tvc$transplant==1 & tvc$wait<=tvc$stime,1,0)</pre>
```

Estimation du modèle

En format long, on doit préciser dans la formule l'intervalle de durée avec les variables stime0 (début) et stime(fin)

```
summary(tvcfit)
Call:
coxph(formula = Surv(stime0, stime, died) ~ year + age + surgery +
    tvc, data = tvc)
 n= 3573, number of events= 75
            coef exp(coef) se(coef)
                                        z Pr(>|z|)
        -0.12032
                   0.88664 0.06734 -1.787
                                            0.0740
year
        0.03044 1.03091 0.01390 2.190
                                            0.0285
age
surgery -0.98289 0.37423 0.43655 -2.251
                                            0.0244
       -0.08221
                   0.92108 0.30484 -0.270
                                            0.7874
tvc
        exp(coef) exp(-coef) lower .95 upper .95
          0.8866
                       1.128
                               0.7770
                                          1.0117
year
           1.0309
                       0.970
                                1.0032
                                          1.0594
age
          0.3742
                       2.672
                               0.1591
                                         0.8805
surgery
          0.9211
                       1.086
                               0.5068
                                          1.6741
tvc
Concordance= 0.659 (se = 0.032)
Likelihood ratio test= 17.7 on 4 df, p=0.001
                     = 15.79 on 4 df, p=0.003
Wald test
Score (logrank) test = 16.74 on 4 df,
                                        p=0.002
```

tbl_regression(tvcfit, exponentiate = TRUE, estimate_fun = purrr::partial(style_ratio, digital)

tvcfit = coxph(formula = Surv(stime0, stime, died) ~ year + age + surgery + tvc, data = tvc)

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	$^{ m HR}$	95% CI	p-value
year	0.887	0.777, 1.012	0.074
age	1.031	1.003, 1.059	0.029
surgery	0.374	0.159, 0.880	0.024
tvc	0.921	0.507, 1.674	0.8

ggforest(tvcfit)

Warning in .get_data(model, data = data): The `data` argument is not provided. Data will be extracted from model fit.

15.4 Analyse en durée discrète

Pour la durée, on va utiliser la variable mois (regroupement sur 30 jours).

La fonction **uncount** du package **tidyr** permettra de splitter la base aux durées d'observation. C'est ici la principale différence avec le modèle de Cox qui est une estimation aux durées d'évènement

```
trans <- read.csv("https://raw.githubusercontent.com/mthevenin/analyse_duree/master/bases/tra
```

La variable *mois*, va être supprimée avec **uncount**. Comme on en aura besoin plus loin pour générer proprement la variable évènement, on peut créer ici une variable mirroir.

```
trans$T = trans$mois
```

```
dt = uncount(trans,mois)
dt = dt[order(dt$id),]
```

head(dt,11)

	id	year	age	died	$\operatorname{\mathtt{stime}}$	surgery	transplant	wait	compet	T
48	1	67	30	1	50	0	0	0	1	2
49	1	67	30	1	50	0	0	0	1	2
10	2	68	51	1	6	0	0	0	1	1
18	3	68	54	1	16	0	1	1	1	1
36	4	68	40	1	39	0	1	36	2	2

```
37
      4
          68
               40
                            39
                                       0
                                                         36
                                                                   2
                                                                      2
                      1
                                                    1
      5
                                                    0
                                                          0
                                                                      1
20
          68
               20
                      1
                            18
                                       0
                                                                   1
5
      6
          68
               54
                      1
                             3
                                       0
                                                    0
                                                          0
                                                                   2
                                                                      1
                                                         51
466
     7
          68
               50
                      1
                           675
                                       0
                                                    1
                                                                   1 23
     7
467
          68
               50
                      1
                           675
                                       0
                                                    1
                                                         51
                                                                   1 23
468
     7
          68
               50
                           675
                                       0
                                                         51
                                                                   1 23
```

On va générer une variable type compteur pour mesurer la durée à chaque point d'observation.

```
dt$x=1
dt$t = ave(dt$x,dt$id, FUN=cumsum)
head(dt, n=8)
```

```
id year age died stime surgery transplant wait compet T x t
48
    1
         67
             30
                    1
                          50
                                     0
                                                       0
                                                               1 2 1 1
    1
         67
             30
                    1
                          50
                                     0
                                                       0
                                                               1 2 1 2
49
                                                 0
    2
                           6
                                                 0
10
         68
             51
                    1
                                     0
                                                       0
                                                               1 1 1 1
    3
             54
                          16
                                     0
                                                 1
                                                       1
                                                               1 1 1 1
18
         68
                    1
36
    4
         68
             40
                    1
                          39
                                     0
                                                 1
                                                      36
                                                               2 2 1 1
37
    4
         68
             40
                    1
                          39
                                     0
                                                 1
                                                      36
                                                               2 2 1 2
                                                 0
20
    5
         68
             20
                    1
                          18
                                     0
                                                       0
                                                               1 1 1 1
                           3
                                     0
                                                 0
5
    6
         68
             54
                    1
                                                       0
                                                               2 1 1 1
```

Si un individu est décédé, died=1 est reporté sur toute les lignes (idem qu'avec la variable dynamique). On va modifier la variable tel que died=0 si t < T\$.

```
dt = arrange(dt,id,t)
dt$died[dt$t<dt$T]=0
head(dt, n=8)</pre>
```

```
id year age died stime surgery transplant wait compet T x t
   1
       67
            30
                   0
                         50
                                   0
                                               0
                                                     0
                                                             1 2 1 1
1
2
   1
       67
            30
                   1
                         50
                                   0
                                               0
                                                     0
                                                             1 2 1 2
3
   2
       68
           51
                   1
                          6
                                   0
                                               0
                                                     0
                                                             1 1 1 1
   3
4
       68
            54
                   1
                         16
                                   0
                                                1
                                                     1
                                                             1 1 1 1
5
   4
       68 40
                   0
                         39
                                                             2 2 1 1
                                   0
                                                1
                                                    36
6
   4
                   1
                                   0
                                               1
                                                             2 2 1 2
       68
           40
                         39
                                                    36
7
   5
       68 20
                         18
                                   0
                                               0
                                                     0
                                                             1 1 1 1
                   1
                                               0
8
   6
       68
                   1
                          3
                                   0
                                                     0
                                                             2 1 1 1
            54
```

15.4.1 f(t) quantitative

Avec un effet quadratique d'ordre 3 ^[Attention ici cela marche bien. Bien vérifier qu'il n'y a pas un problème d'overfitting, comme c'est le cas dans le TP.

On centre également les variables year et age sur leur valeur moyenne pour donner un sens à la constante

```
dt$t2=dt$t^2
dt$t3=dt$t^3

my = mean(dt$year)
dt$yearb = dt$year - my
ma = mean(dt$age)
dt$ageb = dt$age - ma

dtfit = glm(died ~ t + t2 + t3 + yearb + ageb + surgery, data=dt, family="binomial")
summ(dtfit, confint=TRUE, exp=TRUE)
```

Observations	1127
Dependent variable	died
Type	Generalized linear model
Family	binomial
Link	logit

$\chi^{2}(6)$	90.69
Pseudo-R ² (Cragg-Uhler)	0.20
Pseudo-R ² (McFadden)	0.16
AIC	474.67
BIC	509.86

	$\exp(\text{Est.})$	2.5%	97.5%	z val.	р
(Intercept)	0.44	0.27	0.72	-3.29	0.00
t	0.69	0.59	0.81	-4.52	0.00
t2	1.01	1.00	1.02	2.83	0.00
t3	1.00	1.00	1.00	-2.11	0.03
yearb	0.88	0.76	1.01	-1.80	0.07
ageb	1.03	1.00	1.06	2.27	0.02
surgery	0.36	0.15	0.88	-2.25	0.02

Standard errors: MLE

```
tbl_regression(dtfit, exponentiate = TRUE, estimate_fun = purrr::partial(style_ratio, digi
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	OR	95% CI	p-value
t	0.689	0.582, 0.805	< 0.001
t2	1.014	1.005, 1.025	0.005
t3	1.000	1.000, 1.000	0.035
yearb	0.876	0.756, 1.011	0.072
ageb	1.034	1.006, 1.066	0.023
surgery	0.364	0.136, 0.815	0.024

15.4.2 f(t) en indicatrices

On va créer une variable de type dicrète regroupant la variable t sur ses quartiles (pour l'exemple seulement, tous types de regroupement est envisageable). On va utiliser la fonction quantcut du package gtools.

```
dt$ct4 <- quantcut(dt$t)
table(dt$ct4)</pre>
```

```
[1,4] (4,11] (11,23] (23,60]
299 275 282 271
```

On va générer un compteur et un total d'observations sur la strate regroupant id et ct4.

```
dt$n = ave(dt$x,dt$id, dt$ct4, FUN=cumsum)
dt$N = ave(dt$x,dt$id, dt$ct4, FUN=sum)
```

On conserve la dernière observation dans la strate.

```
dt2 = subset(dt, n==N)
```

Estimation du modèle

```
fit = glm(died ~ ct4 + yearb + ageb + surgery, data=dt2, family=binomial)
summ(fit, confint=TRUE, exp=TRUE)
```

Observations	197
Dependent variable	died
Type	Generalized linear model
Family	binomial
Link	logit

$\chi^2(6)$	39.30
Pseudo-R ² (Cragg-Uhler)	0.25
Pseudo-R ² (McFadden)	0.15
AIC	236.48
BIC	259.46

	$\exp(\text{Est.})$	2.5%	97.5%	z val.	p
(Intercept)	1.17	0.77	1.79	0.73	0.47
ct4(4,11]	0.36	0.16	0.81	-2.47	0.01
ct4(11,23]	0.20	0.07	0.58	-2.96	0.00
ct4(23,60]	0.62	0.19	2.01	-0.80	0.42
yearb	0.82	0.68	0.98	-2.18	0.03
ageb	1.05	1.01	1.09	2.53	0.01
surgery	0.33	0.12	0.88	-2.21	0.03

Standard errors: MLE

tbl_regression(fit, exponentiate = TRUE, estimate_fun = purrr::partial(style_ratio, digits =

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	OR	95% CI	p-value
ct4			
[1,4]			
(4,11]	0.356	0.152, 0.792	0.014
(11,23]	0.199	0.061, 0.541	0.003
(23,60]	0.619	0.183, 1.981	0.4
yearb	0.816	0.677, 0.977	0.029
ageb	1.048	1.012, 1.089	0.011
surgery	0.330	0.113, 0.837	0.027

15.5 Modèles paramétriques usuels

Pour le modèle de Weibull par exemple.

• De type **AFT**

On utilise la fonction survreg du package survival

```
weibull = survreg(formula = Surv(stime, died) ~ year + age + surgery, data = trans, dist="weisummary(weibull)
```

```
Call:
survreg(formula = Surv(stime, died) ~ year + age + surgery, data = trans,
    dist = "weibull")
              Value Std. Error
                                            p
(Intercept) -3.0220
                        8.7284 -0.35
                                        0.729
year
             0.1620
                        0.1218 1.33
                                        0.184
            -0.0615
                        0.0247 - 2.49
                                        0.013
age
                        0.7794 2.53
surgery
             1.9703
                                        0.011
Log(scale)
                        0.0927 6.33 2.5e-10
             0.5868
Scale= 1.8
Weibull distribution
Loglik(model) = -488.2
                        Loglik(intercept only) = -497.6
    Chisq= 18.87 on 3 degrees of freedom, p= 0.00029
Number of Newton-Raphson Iterations: 5
```

tbl regression(weibull, exponentiate = TRUE, estimate fun = purrr::partial(style ratio,

Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.

Characteristic	$\exp(\mathrm{Beta})$	95% CI	p-value
year	0.162	-0.077, 0.401	0.2
age	-0.062	-0.110, -0.013	0.013
surgery	1.970	0.443, 3.498	0.011

• De type **PH**

n = 103

La paramétrisation PH n'est pas possible avec la fonction survreg. Il faut utiliser le package **flexsurv**, qui permet également d'estimer les modèles paramétriques disponibles avec survival. La syntaxe est quasiment identique.

Pour estimer le modèle de Weibull de type PH, on utilise en option l'agument dist="weibullPH.

```
weibullph = flexsurvreg(formula = Surv(stime, died) ~ year + age + surgery, data = trans, dis
weibullph
```

Call:

```
flexsurvreg(formula = Surv(stime, died) ~ year + age + surgery,
    data = trans, dist = "weibullPH")
```

Estimates:

	data mean	est	L95%	U95%	se	exp(est)
shape	NA	5.56e-01	4.64e-01	6.67e-01	5.16e-02	NA
scale	NA	5.37e+00	4.27e-04	6.75e+04	2.59e+01	NA
year	7.06e+01	-9.01e-02	-2.20e-01	3.97e-02	6.62e-02	9.14e-01
age	4.46e+01	3.42e-02	7.13e-03	6.13e-02	1.38e-02	1.03e+00
surgery	1.17e-01	-1.10e+00	-1.95e+00	-2.45e-01	4.34e-01	3.34e-01
	L95%	U95%				
shape	NA	NA				
scale	NA	NA				
year	8.03e-01	1.04e+00				
age	1.01e+00	1.06e+00				
surgery	1.43e-01	7.83e-01				

```
N = 103, Events: 75, Censored: 28
```

Total time at risk: 31938

Log-likelihood = -488.1683, df = 5

AIC = 986.3366

15.6 Risques concurrents

Le package cmprsk pour l'analyse non paramétrique et le modèle de Fine-Gray (non traité).

Package cmprsk pour l'analyse non paramétrique et le modèle de Fine-Gray. La variable de censure/évènement, *compet*, correspond à la variable died avec une modalité supplémentaire simulée. On suppose l'existence d'une cause supplémentaire au décès autre qu'une malformation cardiaque et non strictement indépendante de cell-ci.

```
compet <- read.csv("https://raw.githubusercontent.com/mthevenin/analyse_duree/master/bases/tr
# variable compet
table(compet$compet)</pre>
```

0 1 2 28 56 19

variable died table(compet\$died)

0 1 28 75

15.6.0.1 Incidences cumulées

On utilise la fonction cuminc du package cmprsk.

Pas de comparaison de groupes

ic = cuminc(compet\$stime, compet\$compet) ic

Estimates and Variances:

\$est

500 1000 1500 1 1 0.5067598 0.5808345 0.6340038 1 2 0.1720161 0.2140841 0.2140841

\$var

500 1000 1500 1 1 0.002619449 0.003131847 0.003676516 1 2 0.001473283 0.002203770 0.002203770

plot(ic)

ggcompetingrisks(fit = ic)

Cumulative incidence functions

Comparaison de groupes

Le test de Gray est automatiquement exécuté.

```
ic = cuminc(compet$stime, compet$compet, group=compet$surgery, rho=1)
ic
```

Tests:

\$var

500 1000 1500 0 1 0.002955869 0.003335897 0.004199157 1 1 0.014958678 0.033339569 NA

plot(ic)

Avec survminer, pour obtenir un seul graphique pour toutes les courbes ajouter l'option $multiple_panels = F$

ggcompetingrisks(fit = ic)

Cumulative incidence functions

Cumulative incidence functions

15.6.0.2 Modèles

On va utilisé seulement le modèle multinomial à durée discrète, le modèle *fine-gray* pendant du modèle de Cox pour les risques concurrents étant fortement critiqué. Si une analyse de type *cause-specific* est envisageable (issues concurrentes traitées comme des censures à droites) on utilise simplement la fonction coxph de survival.

On va de nouveau utiliser la variable mois (durée discrète). Le modèle sera estimé à l'aide la fonction **multinom** du très vieillissant package **nnet**, les p-values doivent-être programmées, l'output ne donnant que les erreurs-types.

Mise en formae de la base

```
compet <- read.csv("https://raw.githubusercontent.com/mthevenin/analyse_duree/master/bases/tr
compet$T = compet$mois
td = uncount(compet, mois)
td = arrange(td, id)

td$x=1
td$t = ave(td$x, td$id, FUN=cumsum)
td$t2 = td$t^2

my = mean(td$year)
td$yearb = td$year - my</pre>
```

```
ma = mean(td$age)
td$ageb = td$age - ma

td$e = ifelse(td$t<td$T,0, td$compet)</pre>
```

Estimation

Pour estimer le modèle, on utilise la fonction **mlogit**. Les p-values seront calculées à partir d'un test bilatéral (statistique z).

competfit = multinom(formula = e ~ t + t2 + yearb + ageb + surgery, data = td)

```
# weights: 21 (12 variable)
initial value 1238.136049
iter 10 value 608.949443
iter 20 value 341.102661
iter 30 value 277.143136
iter 40 value 275.005451
final value 275.005419
converged
```

tbl_regression(competfit, exponentiate = TRUE,)

Outcome	Characteristic	OR	95% CI	p-value
1	t	0.82	0.75, 0.88	< 0.001
	t2	1.00	1.00, 1.00	< 0.001
	yearb	0.88	0.75, 1.03	0.12
	ageb	1.04	1.01, 1.08	0.012
	surgery	0.32	0.11, 0.91	0.033
2	t	0.82	0.71, 0.94	0.003
	t2	1.00	1.00, 1.01	0.052
	yearb	0.82	0.62, 1.07	0.14
	ageb	1.01	0.96, 1.06	0.7
	surgery	0.54	0.12, 2.50	0.4