Tarea V

Nicholas Mc-Donnell

 $2 do \ semestre \ 2017$

${\bf \acute{I}ndice}$

Capítulo 10	2
10.5	2
1	2
7	2
9	2
10.6 Dominio de Enteros y Cuerpos Fraccionarios	2
1	2
3	2
5	2
10.7 Ideales Máximos	3
1	3
3	3
7	3
10.8 Geometría Algebraica	3
1	3
5	3
7	3
Capítulo 11	4
11.1 Factorización de Enteros y Polinomios	4
3	4
5	4
Q.	1

Capítulo 10

10.5

1

Describe the ring obtained from \mathbb{Z} by adjoining an element α satisfying the two relations $2\alpha - 6 = 0$ and $\alpha - 10 = 0$

7

Analyze the ring obtained from $\mathbb Z$ by adjoining an element α which satisfies the pair of relations $\alpha^3 + \alpha^2 + 1 = 0$ and $\alpha^2 + \alpha = 0$

9

Describe the ring obtained fro $\mathbb{Z}/12\mathbb{Z}$ by adjoining an inverse of 2

Demostración. Se sabe que adjuntar un inverso a un anillo es equivalente a cocientar de la siguiente forma:

$$R' = R[x]/(ax - 1)$$

Donde a es el inverso del elemento en cuestión. Para este caso en especifico es el inverso de 2 \Box

10.6 Dominio de Enteros y Cuerpos Fraccionarios

1

Prove that the subring of an integral domain is an integral domain.

3

Let R be an integral domain. Prove that the polynomial ring R[x] is an integral domain.

5

Is there an integral domain containing exactly 10 elements?

Demostración. Hay dos grupos de orden 10, el dihedral y \mathbb{Z}_{10} , notamos que solo \mathbb{Z}_{10} es un grupo abeliano. Vemos los siguientes elementos de \mathbb{Z}_{10} :

$$2 \cdot 5 = 10 = 0$$

 \implies No hay dominio de orden 10

10.7 Ideales Máximos

1

Prove that the maximal ideals of the ring of integers are the principal ideals generated by prime integers.

3

Prove that the ideal () in $\mathbb{C}[x,y]$ is a maximal ideal

7

Prove that the ring $\mathbb{F}_2/$ is a field, but that $\mathbb{F}_3/$ is not a field.

10.8 Geometría Algebraica

1

Determine the following points of intersection of two complex plane curves in each of the following:

- (a)
- (b)
- (c)
- (d)
- (e)

 $\mathbf{5}$

Let $f_1,...,f_r;g_1,...,g_r\in\mathbb{C}[x_1,...,x_n]$, and let U,V be the zeros of $\{f_1,...,f_r\},\{g_1,...,g_r\}$ respectively. Prove that if U and V do not meet, then $(f_1,...,f_r;g_1,...,g_r)$ is the unit ideal.

7

Prove that the variety defined by a set $\{f_1, ..., f_r\}$ of polynomials depends only on the ideal $(f_1, ..., f_r)$ that they generate.

Capítulo 11

11.1 Factorización de Enteros y Polinomios

3

Prove that if d is the greatest common divisor of $a_1, ..., a_n$ then the greatest common divisor of $a_1/d, ..., a_n/d$ is 1.

 $\mathbf{5}$

8

Factor the following polynomials into irreducible factors in $\mathbb{F}_p[x]$