

Ing. Silvia Quiroga

Ing. Rubén Flecha

a Intervalos Irregulares

Metodología de Avance del tiempo

(Metodología Evento a Evento)

Ejercicio Nro 1

Sistema con un puesto de atención, con su correspondiente cola.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) uniforme entre 0 y 10

minutos. El tiempo de atención que varía según el trámite entre 10 y 20 minutos, se conoce recién cuando el cliente comienza a ser atendido y responde a una f.d.p. lineal donde f(20)=2*f(10).

Obtener los siguientes resultados:

- Promedio de permanencia en el sistema
- Porcentaje de tiempo ocioso del puesto de atención.

Análisis Previo

A. Clasificación de Variables

B. Metodologia de Avance del Tiempo

Análisis Previo

A. Clasificación de Variables

Ejercicio Nro 1

Sistema con un puesto de atención, con su correspondiente cola.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) uniforme entre 0 y 10 minutos. El tiempo de atención que varía según el trámite entre 10 y 20 minutos, se conoce recién cuando el cliente comienza a ser atendido y responde a una f.d.p. lineal donde f(20)=2*f(10).

Obtener los siguientes resultados:

- Promedio de permanencia en el sistema
- Porcentaje de tiempo ocioso del puesto de atención.

Tiempo de atención

A. ANÁLISIS PREVIO

Clasificación de las variables.

- V. Exógenas No Controlables (Datos):
 Intervalo entre arribos (IA) minutos
 Tiempo de atención (TA) minutos
 - V. Exógenas de Control: (Implícita)
 - V. Endógenas de Resultado:

 Promedio de permanencia en el sistema (PPS Porcentaje de tiempo ocioso (PTO)
 - V. Endógenas de Estado: Ns (número de elementos en el sistema

Análisis Previo

- B. Metodología de Avance del Tiempo Evento a Evento
 - C. Tabla de eventos Independientes (TEI)
 - 1. Evento
 - 2. Evento Futuro No Condicionado (EFNC)
 - 3. Evento Futuro Condicionado (EFC)

1. ANÁLISIS PREVIO

C. Tabla de Eventos Independientes (TEI)

TEI:

EVENTO	EFNC	EFC	CONDICIÓN
LLEGADA	LLEGADA	SALIDA	NS = 1
SALIDA	-	SALIDA	NS ≥ 1

TEF:

TPLL	TPS
------	-----

B. Pasos de la METODOLOGÍA EVENTO a EVENTO

Determinación del instante "T" en que ocurrirá el próximo evento

Determinación del Tipo de Evento que ocurre en el instante "T"

Avance del Tiempo hasta el instante "T"

Determinación de los Instantes en que ocurrirán **Eventos Futuros No Condicionados** consecuencia del evento actual

Actualización del Vector de Estado del Modelo

Determinación de los Instantes en que ocurrirán **Eventos Futuros Condicionados** consecuencia del evento actual

✓ Cálculo de resultados. ✓ Impresión de resultados ✓ Fin de la Simulación. C.I. LLEGADA SALIDA SI NO TPLL ≤ TPS T = TPS T = TPLLNS = NS - 1IΑ TPLL = T + IANO SI NS = Ns + 1SI NO NS = 1NS > = 1TA TPS = H.V.TA TPS = T + TATPS = T + TANO T < TF PPS = PTO = PPS, PTO Fin

B. Pasos de la METODOLOGÍA EVENTO a EVENTO

Calculo de resultados

Porcentaje de tiempo ocioso

Desde la salida del ultimo(cuando queda vacío el sistema) - Hasta que llega el primero al sistema

Calculo de resultados

Promedio de permanencia en el sistema

Hora de salida – Hora de llegada

11:00 - 10:20

40 minutos

VACIAMIENTO

Todos los elementos que ingresaron DEBEN SALIR luego de ser atendidos.

IMPORTANTE para calcular la permanencia en el sistema como la diferencia entre los tiempos de salidas y llegadas DEBO hacer el VACIAMIENTO.

VACIAMIENTO

PLATAFORMA EDUCATIVA que permite representar la Metodología EVENTO A EVENTO: VICTORIA

https://drive.google.com/file/d/1AstyJ9Nn5Qryj1oRw9OvhtDmmqlJZbq8