Gradient and Stochastic Gradient Descent

David Rosenberg

New York University

October 29, 2016

Linear Least Squares Regression

Setup

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Output space $\mathcal{Y} = \mathbf{R}$
- Action space y = R
- Loss: $\ell(\hat{y}, y) = \frac{1}{2} (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbf{R}^d \to \mathbf{R} \mid f(x) = w^T x, w \in \mathbf{R}^d \}$

Linear Least Squares Regression

Setup

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Output space $\mathcal{Y} = \mathbf{R}$
- Action space y = R
- Loss: $\ell(\hat{y}, y) = \frac{1}{2} (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbf{R}^d \to \mathbf{R} \mid f(x) = w^T x, w \in \mathbf{R}^d \}$
- Given data set $\mathfrak{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\},\$
 - Let's find the ERM $\hat{f} \in \mathcal{F}$.

Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2,$$

where $w \in \mathbb{R}^d$ parameterizes the hypothesis space \mathcal{F} .

Unconstrained Optimization

Setting

Objective function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable. Want to find

$$x^* = \arg\min_{x \in \mathbf{R}^d} f(x)$$

The Gradient

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.

Definition

The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction to move in for the fastest increase in f(x), when starting from x_0 .

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Gradient Descent

Gradient Descent

- Initialize x = 0
- repeat

•
$$x \leftarrow x - \underbrace{\eta}_{\text{step size}} \nabla f(x)$$

• until stopping criterion satisfied

Gradient Descent Path

Gradient Descent for a nice (convex) function

Step Size

- Empirically $\eta = 0.1$ often works well
- Better: Optimize at every step (e.g. backtracking line search)

Step Size

- Empirically $\eta = 0.1$ often works well
- Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule

- Could use a maximum number of steps (e.g. 100)
- Wait until $\|\nabla f(x)\| \leq \varepsilon$.

Step Size

- Empirically $\eta = 0.1$ often works well
- Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule

- Could use a maximum number of steps (e.g. 100)
- Wait until $\|\nabla f(x)\| \leq \varepsilon$.
- Wait until decreases in f(x) become very slow.

Step Size

- Empirically $\eta = 0.1$ often works well
- Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule

- Could use a maximum number of steps (e.g. 100)
- Wait until $\|\nabla f(x)\| \leq \varepsilon$.
- Wait until decreases in f(x) become very slow.
- Test performance on holdout data (in learning setting)

Gradient Descent for Linear Regression

Gradient of Objective Function:

The gradient of the objective is

$$\nabla_{w} \hat{R}_{n}(w) = \nabla_{w} \left[\frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} \right]$$

Gradient Descent for Linear Regression

Gradient of Objective Function:

The gradient of the objective is

$$\nabla_{w} \hat{R}_{n}(w) = \nabla_{w} \left[\frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} \right]$$
$$= \frac{2}{n} \sum_{i=1}^{n} \underbrace{(w^{T} x_{i} - y_{i})}_{i \text{th residual}} x_{i}$$

• At every iteration, we compute the gradient at current w:

$$\nabla_{w} \hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

• At every iteration, we compute the gradient at current w:

$$\nabla_{w} \hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

• We have to touch all n training points to take a single step. [O(n)]

• At every iteration, we compute the gradient at current w:

$$\nabla_{w} \hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

- We have to touch all n training points to take a single step. [O(n)]
 - Will this scale to "big data"?

• At every iteration, we compute the gradient at current w:

$$\nabla_{w} \hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

- We have to touch all n training points to take a single step. [O(n)]
 - Will this scale to "big data"?
- Can we make progress without looking at all the data?

Real goal is to minimize the risk (expected loss)

$$R(f) = \mathbb{E}[\ell(f(X), Y)]$$

over a hypothesis space \mathcal{F} .

Real goal is to minimize the risk (expected loss)

$$R(f) = \mathbb{E}[\ell(f(X), Y)]$$

over a hypothesis space \mathcal{F} .

② Say hypothesis space \mathcal{F} is parameterized by $w \in \mathbb{R}^d$.

Real goal is to minimize the risk (expected loss)

$$R(f) = \mathbb{E}[\ell(f(X), Y)]$$

over a hypothesis space \mathcal{F} .

- ② Say hypothesis space \mathcal{F} is parameterized by $w \in \mathbb{R}^d$.
- 3 Can we do anything with

$$\nabla_w \mathbb{E}[\ell(f(X), Y)]$$
?

• We have

$$\mathsf{Gradient}\big(\mathsf{Risk}\big) = \nabla_{w} \mathbb{E}\left[\ell(f(X), Y)\right]$$

We have

$$\mathsf{Gradient}(\mathsf{Risk}) = \nabla_w \mathbb{E}\left[\ell(f(X), Y)\right]$$

ullet Switching $abla_w$ and $\mathbb E$ we can write the gradient of risk as

$$Gradient(Risk) = \mathbb{E}[\nabla_w \ell(f(X), Y)]$$

We have

$$\mathsf{Gradient}(\mathsf{Risk}) = \nabla_w \mathbb{E}\left[\ell(f(X), Y)\right]$$

ullet Switching $abla_w$ and $\mathbb E$ we can write the gradient of risk as

$$\mathsf{Gradient}(\mathsf{Risk}) = \mathbb{E}\left[\nabla_{w}\ell(f(X), Y)\right]$$

• Can we approximate this expectation?

Let's approximate Gradient(Risk)

$$\nabla_w R(f) = \mathbb{E} \left[\nabla_w \ell(f(X), Y) \right]$$

with an average over the data:

$$\widehat{\nabla_w R(f)} = \frac{1}{n} \sum_{i=1}^n \left[\nabla_w \ell(f_w(x_i), y_i) \right]$$

Let's approximate Gradient(Risk)

$$\nabla_{w} R(f) = \mathbb{E} \left[\nabla_{w} \ell(f(X), Y) \right]$$

with an average over the data:

$$\widehat{\nabla_w R(f)} = \frac{1}{n} \sum_{i=1}^n \left[\nabla_w \ell(f_w(x_i), y_i) \right]$$

Three things to note about of $\widehat{\nabla_w R(f)}$ as an estimator of $\nabla_w R(f)$:

Let's approximate Gradient(Risk)

$$\nabla_{w} R(f) = \mathbb{E} \left[\nabla_{w} \ell(f(X), Y) \right]$$

with an average over the data:

$$\widehat{\nabla_w R(f)} = \frac{1}{n} \sum_{i=1}^n \left[\nabla_w \ell(f_w(x_i), y_i) \right]$$

Three things to note about of $\widehat{\nabla_w R(f)}$ as an estimator of $\nabla_w R(f)$:

1 Unbiased: $\mathbb{E}\widehat{\nabla_w R(f)} = \nabla_w R(f)$.

Let's approximate Gradient(Risk)

$$\nabla_{w} R(f) = \mathbb{E} \left[\nabla_{w} \ell(f(X), Y) \right]$$

with an average over the data:

$$\widehat{\nabla_w R(f)} = \frac{1}{n} \sum_{i=1}^n \left[\nabla_w \ell(f_w(x_i), y_i) \right]$$

Three things to note about of $\widehat{\nabla_w R(f)}$ as an estimator of $\nabla_w R(f)$:

- **1** Unbiased: $\mathbb{E}\widehat{\nabla_w R(f)} = \nabla_w R(f)$.
- **2** Consistent: $\lim_{n\to\infty}\widehat{\nabla_w R(f)} = \nabla_w R(f)$. (Law of large numbers.)

Let's approximate Gradient(Risk)

$$\nabla_{w} R(f) = \mathbb{E} \left[\nabla_{w} \ell(f(X), Y) \right]$$

with an average over the data:

$$\widehat{\nabla_w R(f)} = \frac{1}{n} \sum_{i=1}^n \left[\nabla_w \ell(f_w(x_i), y_i) \right]$$

Three things to note about of $\widehat{\nabla_w R(f)}$ as an estimator of $\nabla_w R(f)$:

- **1** Unbiased: $\mathbb{E}\widehat{\nabla_w R(f)} = \nabla_w R(f)$.
- **2** Consistent: $\lim_{n\to\infty}\widehat{\nabla_w R(f)} = \nabla_w R(f)$. (Law of large numbers.)
- **3** It's exactly the gradient of the emprical risk $\nabla \hat{R}(f)$.

- We want Gradient(Risk)
- Estimate it using sample of size n.
 - (Our standard procedure when we see an expectation.)

- We want Gradient(Risk)
- Estimate it using sample of size n.
 - (Our standard procedure when we see an expectation.)
- Bigger $n \Longrightarrow$ Better estimate

- We want Gradient(Risk)
- Estimate it using sample of size n.
 - (Our standard procedure when we see an expectation.)
- Bigger $n \Longrightarrow$ Better estimate
- Bigger $n \Longrightarrow \text{Touching more data (slower!)}$

- We want Gradient(Risk)
- Estimate it using sample of size n.
 - (Our standard procedure when we see an expectation.)
- Bigger $n \Longrightarrow$ Better estimate
- Bigger $n \Longrightarrow \text{Touching more data (slower!)}$
- But how big an *n* do we need?

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,
 - an empirical estimate using all training data $\nabla \hat{R}_n(w)$, or

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,
 - an empirical estimate using all training data $\nabla \hat{R}_n(w)$, or
 - an empirical estimate using a random subset of data $abla \hat{R}_m(w)$ $(m \ll n)$

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,
 - an empirical estimate using all training data $\nabla \hat{R}_n(w)$, or
 - an empirical estimate using a random subset of data $\nabla \hat{R}_m(w)$ $(m \ll n)$
- What about m=1?

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,
 - an empirical estimate using all training data $\nabla \hat{R}_n(w)$, or
 - ullet an empirical estimate using a random subset of data $abla \hat{R}_m(w)$ $(m \ll n)$
- What about m=1?
- Even with a sample of size 1, the estimate

$$\nabla_{w}\ell(f_{w}(x_{i}),y_{i})$$

is still unbiased for Gradient(Risk).

Terminology for Gradient Descent Risk Minimization

- Gradient descent or "batch" gradient descent
 - Use full data set of size *n* to determine step direction

¹See Yoshua Bengio's "Practical recommendations for gradient-based training of deep architectures" http://arxiv.org/abs/1206.5533.

Terminology for Gradient Descent Risk Minimization

- Gradient descent or "batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size *m* to determine step direction

¹See Yoshua Bengio's "Practical recommendations for gradient-based training of deep architectures" http://arxiv.org/abs/1206.5533.

Terminology for Gradient Descent Risk Minimization

Gradient descent or "batch" gradient descent

• Use full data set of size *n* to determine step direction

Minibatch gradient descent

- ullet Use a random subset of size m to determine step direction
- Yoshua Bengio says¹:
 - m is typically between 1 and few hundred
 - m = 32 is a good default value
 - With $m \ge 10$ we get computational speedup (per datum touched)

Stochastic gradient descent

- Minibatch with m=1.
- Use a single randomly chosen point to determine step direction.

¹See Yoshua Bengio's "Practical recommendations for gradient-based training of deep architectures" http://arxiv.org/abs/1206.5533.

Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size m)

- initialize w = 0
- repeat
 - randomly choose m points $\{(x_i, y_i)\}_{i=1}^m \subset \mathcal{D}_n$
 - $w \leftarrow w \eta \left[\frac{1}{m} \sum_{i=1}^{m} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$
- until stopping criteria met

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize w = 0
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$
 - $w \leftarrow w \eta$ $\nabla_{w} \ell(f_{w}(x_{i}), y_{i})$ Grad(Loss on i'th example)
- until stopping criteria met

Step Size

- Let η_t be the step size at the t'th step.
- What should should first step size be?
- How should η_t 's decrease with each step?

Step Size

- Let η_t be the step size at the t'th step.
- What should should first step size be?
- How should η_t 's decrease with each step?

Robbins-Monro Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \qquad \sum_{t=1}^{\infty} \eta_t = \infty$$

Step Size

- Let η_t be the step size at the t'th step.
- What should should first step size be?
- How should η_t 's decrease with each step?

Robbins-Monro Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \qquad \sum_{t=1}^{\infty} \eta_t = \infty$$

- As fast as $\eta_t = O\left(\frac{1}{t}\right)$ would satisfy this... but should be faster than $O\left(\frac{1}{\sqrt{t}}\right)$.
- A useful reference for practical techniques: Leon Bottou's "Tricks":
 http:

//research.microsoft.com/pubs/192769/tricks-2012.pdf