

CLASIFICACIÓN

25/8/23 – Oberá, Misiones, Argentina

DESEMPEÑO GENERAL

Clase predicha

		1	2	3
Clase rea	1	8	1	1
	2	2	4	1
	3	1	0	5

Matriz confusión

CLASIFICADORES

LINEAL

$$x_2 = f(x_1)$$

$$x_2 = a_0 + a_1 \cdot x_1$$

LINEAL DE ORDEN SUPERIOR

$$x_2 = f(x_1)$$

$$x_2 = a_0 + a_1 \cdot x_1 + a_2 \cdot x_1^2 + \dots + a_k \cdot x_1^k$$

SVM

Mapea los puntos del espacio n dimensional de entrada en un hiperespacio m dimensional dónde si sean linealmente separables.

- Para optimizar cómputo, se busca un espacio ortogonal (producto vectorial nulo).
- El núcleo de las funciones matemáticas puede ser lineal en el hiperespacio, en cuyo caso la separación resulta en hiperplanos de fronteras.
- Otra opción para el núcleo incluye funciones más complejas (Gaussiana, Sigmoidea, etc.)

KNN

d	Clase	
0,5	2	
0,7	1	
0,9	1	
1	2	
1,1	1	
1,2	2	
1,2	1	
1,2	3	
1,3	3	

ÁRBOLES DE DECISIÓN

- Dado n predictores binarios, con una salida binaria, se convierte en un problema 2^{2^n} .
- Computar eficientemente requiere limitaciones en la profundidad de cada rama y estrategias eficientes de búsqueda.