Sistemas Microprogramados

Pré-Aula 01 Unidade Jundiaí

SISTEMAS MICROPROGRAMADOS

1. Sistemas de Numeração

Como simplificação, uma base numérica é um conjunto de símbolos (ou algarismos) com os quais podemos representar uma quantidade ou um número.

A base decimal (base 10) é a mais difundida e é composta por 10 números: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9. Para expressarmos números maiores que 9, devemos somar um dígito ao número original, levando-se então a: 9 + 1 = 10, 99 + 1 = 100, 999 + 1 = 1000 e assim por diante.

Tal seqüência repete-se indefinidamente, seguindo o padrão, podemos representar os números como uma seqüência de baseⁿ que, neste caso equivale a 10ⁿ.

Posição do Dígito	4	3	2	1	0
Peso	104=10000	10 ³ =1000	10 ² =100	10 ¹ =10	100=1

■ Por exemplo:

» O número **1735** seria representado por: $1x10^3 + 7x10^2 + 3x10^1 + 5x10^0 = 1000 + 700 + 30 + 5 = 1735$

Com base nesta premissa, podemos representar uma seqüência numérica de base decimal

$$\sum_{i=0}^{n-1} x_i B$$

Outras bases possuem representação de seus símbolos similar à base decimal, ou seja, com a sequenciação de símbolos, obedecendo a seus limites de dígitos.

- Base = 10 (decimal) \rightarrow 0₁₀, 1₁₀, 2₁₀, 3₁₀, 4₁₀, 5₁₀, 6₁₀, 7₁₀, 8₁₀, 9₁₀, 10₁₀, 11₁₀, 12₁₀, 13₁₀, 14₁₀, 15₁₀, 16₁₀, 17₁₀, ...
- Base = 8 (octal) \rightarrow 0₈, 1₈, 2₈, 3₈, 4₈, 5₈, 6₈, 7₈, 10₈, 11₈, 12₈, 13₈, 14₈, 15₈, 16₈, 17₈, 20₈, 21₈, 22₈, 23₈, ...
- Base = 16 (hexadecimal) \rightarrow 0₁₆, 1₁₆, 2₁₆, 3₁₆, 4₁₆, 5₁₆, 6₁₆, 7₁₆, 8₁₆, 9₁₆, A₁₆, B₁₆, C₁₆, D₁₆, E₁₆, F₁₆, 10₁₆, 11₁₆, 12₁₆, 13₁₆, 14₁₆, 15₁₆, 16₁₆, 17₁₆, 18₁₆, 19₁₆, 1A₁₆, 1B₁₆, 1C₁₆, 1D₁₆, ...
- Base = 2 (binária) \rightarrow 0₂, 1₂, 10₂, 11₂, 100₂, 101₂, 110₂, 111₂, 1000₂, ...