EE3235 Analog Integrated Circuit Analysis and Design I Homework 6 2-Stage Opamp with CMFB

In this homework, you are asked to build the circuit shown in Fig. 1, and the specifications you need to meet are listed in Table. 1. Please make sure your circuit meets all specs in TT, FF, and SS corners.

Please note that there's no restriction on how to design the CM SENSE and CMFB blocks, if only the common-mode feedback loops are stable; however, you are welcomed to refer to Fig. 5. for a basic implementation.

Fig. 1. 2-Stage Opamp with Common Mode Feedback.

Parameters	Specification	This Work							
rarameters	Specification	TT	FF	SS					
Supply Voltage(V)		1	.8						
Temp. (°C)		2	.7						
Loading Cap. (pF)			1						
Output CM Voltage (V) @ Vin, cm=0.8V	0.9 ±20 mV	899.9916m	899.9872m	899.9943					
Open Loop Gain(dB)	>70	75.7115	74.6379	77.6288					
GBW (MHz)	>5	14.4632	26.7331	5.3342					
Phase Margin (degree)	> 60	80.2694	60.2790	104.2876					
Phase Margin Mode Range (V)	≥ 1	1.26	1.33	1.06					
Power Consumption(uW)	< 50	17.2189	28.7019	9.9794					

Table. 1. Specification and Performance

- 1. Elaborate on your design strategy, including how you intend to meet each specification and how you determine the size of the transistors. Please note that every design strategy must come from certain reasonable inferences or calculations, no SPICE monkeys are allowed in the class!
 - Step1. Use ideal E element first and choose the size of NMOS and PMOS and CM SENSE

- r1 and r2 are used as CM SENSE, so r1 and r2 must be large enough to ensure that M8 or M9 is not starved when a large differential swing appears at the output. Therefore, I choose r1=r2=80MΩ which are large enough to maintain the output CM level.
- Choose the size of NMOS and PMOS
 - O Assume the mobility of NMOS is three times of that of PMOS, so the $W_{PMOS} = 3W_{NMOS}$
 - M1 is the current source and is divided into two path (M4 and M5), so the Id of M1 should be two times the Id of M4 or M5 so I assume width of M1 is two times of M4 or M5.
 - O Choose bias voltage Vbp=1.2V since threshold voltage of PMOS in this process is about 450mV to 550mV so I set bias voltage equal 1.2 so V_{SG} = 1.8 1.2 = 600mV. In this way, M1 will not go to subthreshold region.
 - o All transistors should be in saturation region.
 - VGS > VTH. Otherwise, it will go to subth or cut off. So, VTH should be small enough which means the length of transistors should be large enough.
 - VDS > VGS VTH. Otherwise, it will go to linear region. So, VTH should also no too small which means the length of transistors should be larger enough.
 - So I considers using l = 1.4u for all transistors which gives VTH = 375mV
 - Gain should be larger than 70dB (3162.3V/V), and by the gain equation I derive below:

We can see the best way to boost the gain is to increase the gm, since there are two gm factors. And we know.

Since I fixed the length(VTH) and bias voltage so VGS – VTH does not change a lot, so I decided to increase ID(do not increase too much, or the power consumption would be too large). By the ID equation:

we can see that as I fixed the length and bias voltage, so I can only increase current by increase the width. And consider M1 which is the current source of the circuit, I decided to use w = 8.4u, which has enough but not too much power consumption. Since I have decided the ratio of all NMOS and PMOS, I can derive the width of all other transistors(M2 \sim M9).

Step2. Adjust Rc and Cc

• in step1, I only check gain and power consumption meet the spec. or not. To satisfy GBW and phase margin, we use miller compensation with Rc and Cc. According to frequency compensation learned in class:

So, by adjust Rc and Cc, we can have enough phase margin.

• Look at the pole and zero in my design:

• Bode plot.

• I found that adjust Cc doesn't affect the simulation result too much. I think it is because:

So, I decided to change Rc to $250k\Omega$ and Cc I used my original value (50pF)

Step3. Design CMFB: replace the ideal CMFB with the following design:

- Using same strategy in step1, PMOS width is three times of NMOS and since MOPB is the current source and is divided into two path (MOP1 and MOP2), so the Id of MOPB should be two times the Id of MOP1 or MOP2 so I assume width of MOPB is two times of MOP1 or MOP2.
- When using ideal E element, I assume that gain equal 1000, so the gain of my design should be larger as possible, so using the same strategy in step1, I use (W/L)NMOS =1.4u/1.4u, (W/L)PMOS = 4.2u/1.4u and bias voltage VB = 1.2V to have larger gain and keep the power not too large.
- Input is connected to PMOS gate. Compare with input connected to NMOS:

I found that it is easier to enter linear region when input connected to NMOS. I think it is because in my design under this process, VTH of PMOS is higher than that of NMOS so:

Stap4. Return to check if I meet all the spec. or not.

subckt							subckt							subckt		
element	0:m1	0:m2	0:m3	0:m4	0:m5	0:m6	element	0:m7	0:m8	0:m9	0:mopb	0:mop1	0:mop2		0:mop3	0:mop4
model	0:p 18.1	0:p 18.1	0:p 18.1			0:n 18.1	model					0:p 18.1	0:p 18.1	model		0:n_18.1
region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation	region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation	region		Saturation
id	-3.1824u	-1.6139u	-1.6139u	-1.5912u	-1.5912u	1.5912u	id	1.5912u	1.6139u	1.6139u	-3.1558u	-1.5778u	-1.5780u	id	1.5778u	
ibs	4.510e-22	2.531e-22					ibs	-5.641e-22	-5.721e-22	-5.721e-22	4.473e-22	74.2319a	74.2319a	ibs		-5.594e-22
ibd	178.7780a						ibd	-109.8365a	-214.7343a	-214.7342a	134.1539a	423.4140a	423.2250a	ibd		-110.6265a
vgs		-600.0000m				463.6577m	vgs	463.6577m	460.3467m	460.3467m	-600.0000m	-665.6120m	-665.6204m	vgs	463.0610m	
vds		-900.0084m			-1.0273	460.3467m	vds	460.3467m	899.9916m	899.9916m	-234.3880m	-1.1026	-1.1020	vds	463.0610m	
vbs	Θ.	θ.	θ.	312.3531m		θ.	vbs					234.3880m		vbs	0.	0.
vth		-488.6972m				375.2334m	vth	375.2334m			-488.0098m			vth	375.2169m	
vdsat		-129.2682m				107.3303m	vdsat	107.3303m			-128.6111m			vdsat	106.9656m	
vod		-111.3028m				88.4243m	vod	88.4243m			-111.9902m			vod	87.8441m	
beta		209.6698u					beta	301.9646u	301.8915u					beta	301.9574u	301.9573u
gam eff		557.0847m			554.9713m	507.4460m	gam eff	507.4460m						gam eff	507.4460m	507.4460m
gm	40.7298u					23.6267u	gm	23.6267u						gm	23.4946u	23.4962u
gds	253.0841n	49.7514n			44.7198n	242.7020n	gds	242.7020n		225.4346n				gds	240.8166n	240.7610n
gmb	12.4045u	6.2893u	6.2893u		5.4364u	4.8111u	gmb	4.8111u						gmb	4.7847u	4.785θu
cdtot	10.8661f	4.7513f	4.7513f	4.4763f	4.4763f	2.0681f	cdtot	2.0681f	1.9014f	1.9014f	11.6711f	4.4769f	4.4772f	cdtot	2.0666f	2.0663f
cgtot	74.6345f	37.1086f	37.1086f	36.8262f	36.8262f	12.9906f	cgtot	12.9906f	12.9716f	12.9716f	74.9339f	36.8524f	36.8527f	cgtot	12.9833f	12.9834f
cstot	85.1467f	42.6675f	42.6675f	41.2103f	41.2103f	14.2086f	cstot	14.2086f	14.1886f	14.1886f	85.0338f	41.4709f	41.4712f	cstot	14.1991f	14.1992f
cbtot	39.2337f	19.1978f	19.1978f	16.8783f	16.8783f	6.5216f	cbtot	6.5216f	6.3666f	6.3666f	39.5072f	17.3110f	17.3113f	cbtot	6.5206f	6.5204f
cgs	65.5249f	32.5313f	32.5313f		32.6696f	11.3650f	cgs	11.3650f	11.3264f	11.3264f	65.6642f	32.5950f	32.5953f	cgs	11.3558f	11.3558f
cgd	3.1695f	1.5092f	1.5092f	1.5084f	1.5084f	495.1688a	cgd	495.1688a	490.7838a	490.7838a	3.4157f	1.5080f	1.5080f	cqd	495.0775a	495.0576a

TT: All transistors are in saturation.

FF: All transistors are in saturation.

SS: All transistors are in saturation.

phase_margin alter#	gain_db	gbw	temper
80.2785	75.3294	1.446e+07	27.0000
phase_margin alter#	gain_db	gbw	temper
60.2839	74.3817	2.673e+07	27.0000
phase_margin alter#	gain_db	gbw	temper
104.3118	76.9882	5.333e+06	27.0000

Meet spec. in TT FF and SS

2. From fig. 1, we can observe a common-mode feedback loop in this circuit. Please analyze the loop by hand, the content must include the breakdown of the entire loop gain and also the distribution of poles.

Breakdown the loop:

Gain:

Poles:

3. Compare the SPICE simulation result with the hand analysis you do in question number 1, and explain what causes the error between the simulation and your calculation (at least include open loop gain, GBW, and Power Consumption).

Open loop gain:

Error discussion: CM sense resistance is not large enough, so in stage2, the resistance will affect output resistance which make some error. Power consumption:

Power:

$$V_{1d} \times \hat{i}$$
 total to V_{1d}

= $V_{0d} \times (id M) + idM_2 + id M_3 + id Opb)$

= $1.8 \times (3.1824u + 1.6139u + 1.6139u + 3.1558)$

= $17.2188uW$

error:

 $\frac{17.2189-17.2188}{17.2189} \approx 5.8 \times 10^{-4}\%$

Error discussion: simulation result round to the fourth decimal place, so it will have a little difference with my calculations. GBW:

1. Find pole and zero.

***** pole/zero analysis

Pole and zero in simulation

Error discussion: I think it is because we neglect parasitic capacitance.

2. Use bode plot to estimate unit gain bandwidth.

Error discussion: first, we neglect parasitic capacitance. Second, bode plot is just an estimation, if two pole or zero are too close, there will be some error.

4. Run the ac simulation to make sure your common-mode feedback loop is stable. Please note that the content must include the graph of gain and phase margin. Hints are provided in Fig. 4.

Fig. 4. Frequency Analysis of a Feedback Loop

TT:

x-axis: frequency in log(Hz) – y-axis: gain in dB(red line) and phase in degree(blue line)

FF:

x-axis: frequency in log(Hz) – y-axis: gain in dB(red line) and phase in degree(blue line)

SS:

x-axis: frequency in log(Hz) – y-axis: gain in dB(red line) and phase in degree(blue line)

From the above 3 figures, we can see that under the 3 different corners, before gain reaches 0dB, the phase of Vfb is always positive, which make that the design remains negative feedback and provide stability in the output node.

5. Run the transient simulation. Insert an input signal with an amplitude of 0.1mVpp and set the initial value of both output nodes to 0V. Observe whether, after a period of time, the output common mode stabilizes back to 0.9V±20mV.

x-axis: time(second) – y-axis: common mode voltage(V)

By measuring the voltage output common mode at time when vocm is stable in each corner, we can see that the voltage matches the requirement of 0.9 ± 20 mV. and FF corner become stable fastest and SS corner become stable slower.

6. Sweep input common-mode voltage to make sure your input CM range meets the spec.

Check when vincm=0V, vincm=0.5V and vincm=1V all transistors are in saturation

Gain:

x-axis: input common mode(V) – y-axis: gain in dB

UGB:

x-axis: input common mode (V) – y-axis: gain bandwidth (MHz)

phase margin:

 $x\hbox{-axis: input common mode }(V)-y\hbox{-axis: phase margin in degree}$ saturation of all transistors when input common mode is 0V:

TT

subckt				95			subckt							subckt		
element	θ:m1	0:m2	0:m3	0:m4	0:m5	0:m6	element	0:m7	θ:m8	0:m9	0:mopb	0:mop1	0:mop2	element	0:тор3	0:mop4
model	0:p 18.1	0:p 18.1	0:p_18.1	0:p 18.1	0:p 18.1	0:n 18.1	model	0:n_18.1	0:n_18.1	0:n_18.1	0:p_18.1	0:p_18.1	0:p_18.1	model	θ:n_18.1	θ:n_18.1
region	Saturation						region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation	region	Saturation	
id	-3.2705u			-1.6352u			id	1.6352u	1.6139u	1.6139u	-3.1558u	-1.5776u	-1.5782u	id	1.5776u	
ibs				301.5763a			ibs		-5.721e-22			74.2346a	74.2346a	ibs	-5.592e-22	
ibd				424.2735a			ibd	-109.8366a	-214.7280a	-214.7280a	134.1588a	423,4170a	422.6401a	ibd	-110.4819a	
vgs				-847.7677m			vgs		460.3470m				-665.6378m	vgs	463.0517m	
vds	-952.2323m						vds	460.3470m	899.9656m	899.9656m	-234.3966m	-1.1026	-1.1001	vds	463.0517m	465.5046m
vbs	θ.	0.	0.		952.2323m		vbs	0.	θ.	θ.	θ.	23413966m		vbs	Θ.	θ.
vth	-488.0099m						vth	375.2334m					-555.2374m	vth	375.2170m	375.2021m
vdsat				-147.0177m			vdsat	108.4950m	106.9272m				-132.2886m	vdsat	106.9597m	106.9691m
vod	-111.9901m						vod	90.2712m					-110.4005m	vod	87.8347m	87.8496m
beta				175.9542u			beta	301.9861u					199.9297u	beta	301.9573u	301.9571u
gam eff			557.0847m				gam eff	507.4460m	507.4460m	507.4460m			555.4707m	gam eff	507.4460m	507.4460m
gm	41.8856u	20.6658u		19.9068u	19.9068u		gm	24.0596u		23.9342u				gm	23.4924u	23.4990u
gds	98.3664n	49.7586n	49.7506n	90.3835n	90.3835n		gds	247.7770n			491.2208n	43.0772n	43.1383n	gds	240.7921n	240.5657n
gmb	12.7625u	6.2893u	6.2893u	4.4595u	4.4595u		gmb	4.8965u	4.8293u	4.8293u	12.2579u	5.5815u	5.5827u	qmb	4.7843u	4.7854u
cdtot	9.2900f	4.7513f	4.7513f	4.5806f	4.5806f	2.8684f	cdtot	2.0684f	1.9014f	1.9014f	11.6709f	4.4768f	4.4782f	cdtot	2.0666f	2.0653f
cgtot	74.3806f	37.1086f	37.1086f	36.7498f	36.7498f	13.0122f	cgtot	13.0122f	12.9716f	12.9716f	74.9339f	36.8522f	36.8531f	cgtot	12.9832f	12.9832f
cstot	85.2907f 37.9720f	42.6675f 19.1978f	42.6675f 19.1978f	39.6707f 14.4328f	39.6707f	14.2375f 6.5209f	cstot	14.2375f	14.1886f	14.1886f	85.0338f	41.4704f	41.4717f	cstot	14.1990f	14.1992f
					14.4328f		cbtot	6.5209f	6.3666f	6.3666f	39.5071f	17.3110f	17.3123f	cbtot	6.5207f	6.5196f
cgs	65.3500f	32.5313f	32.5313f	33.1536f	33.1536f	11.3922f	cgs	11.3922f	11.3264f	11.3264f	65.6641f	32.5947f	32.5958f	cas	11.3557f	11.3557f
cgd	3.0176f	1.5092f	1.5092f	1.5559f	1.5559f	495.1746a	cgd	495.1746a	490.7838a	490.7838a	3.4156f	1.5080f	1.5080f	cgd	495.0778a	

FF

subckt							subckt							subckt		
element	0:m1	0:m2	0:m3	0:m4	0:m5	0:m6	element	0:m7	0:m8	0:m9	0:mopb	0:mop1	θ:mop2	element	0:тор3	0:mop4
model	0:p_18.1	0:p_18.1	0:p_18.1	0:p_18.1	0:p_18.1	0:n_18.1	model	0:n_18.1	0:n_18.1	0:n_18.1	0:p_18.1	0:p_18.1	0:p_18.1	model	0:n_18.1	0:n 18.1
region	Saturation	Saturation			Saturation	Saturation	region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation	region	Saturation	Saturation
id	-5.4354u	-2.7165u					id	2.7177u	2.7165u			-2.6137u		id	2.6137u	
ibs	7.702e-22	4.258e-22				-9.571e-22	ibs		-9.567e-22			75.3944a		ibs	-9.204e-22	
ibd	549.3018a	285.8700a			426.6417a		ibd		-216.6669a					ibd	-110.3022a	
vgs					-841.8134m		vgs	461.2226m	456.7414m			-662.6264m		vgs	458.1560m	
vds	-958.1866m						vds	456.7414m	899.9534m	899.9534m	-237.3736m	-1.1045	-1.1014	vds	458.1560m	
vbs	θ.	0.		958.1866m		θ.	vbs	θ.	θ.	θ.	0.	237.3736m		vbs	θ.	
vth	-452.5666m						vth	341.0607m			-452.5666m			vth	341.0521m	
vdsat	-155.1748m						vdsat	128.8751m	127.6722m		-155.1718m			vdsat	126.8075m	126.8202m
vod					-158.9228m		vod	120.1619m	118.3836m					vod	117.1040m	117.1227m
beta	456.8393u						beta	331.8815u	331.7714u			215.6341u		beta	331.8342u	331.8340u
gam eff	557.0846m	557.0846m	557.0846m				gam eff	507.4460m	507.4460m	507.4460m	557.0846m	555.4513m		gam eff	507.4460m	507.4460m
gm	58.9826u	29.3682u	29.3682u				gm	34.5070u	34.6570u		56.2002u	28.4425u		gm	33.6930u	33.7038u
gds	158.0994n	81.8184n	81.8184n				gds	375.3257n	333.8875n	333.8875n	1.1092u	68.6920n		gds	364.1120n	363.4426n
gmb	17.4476u	8.6828u	8.6828u				gmb	6.7445u	6.7110u		16.6275u	7.6193u	7.6211u	gmb	6.5914u	6.5930u
cdtot	8.8221f	4.5194f	4.5194f	4.4501f	4.4501f	1.9739f	cdtot	1.9739f	1.8137f	1.8137f	11.7121f	4.2706f	4.2721f	cdtot	1.9724f	1.9708f
cgtot	78.0770f	39.0444f	39.0444f	38.4685f	38.4685f	13.7184f	cgtot	13.7184f	13.6961f	13.6961f	78.8862f	38.7419f	38.7424f	cgtot	13.7051f	13.7048f
cstot	88.1423f	44.1928f	44.1928f	40.8753f	40.8753f	14.7618f	cstot	14.7618f	14.7422f	14.7422f	87.8622f	42.9367f	42.9373f	cstot	14.7443f	14.7445f
cbtot	36.2608f	18.3605f	18.3605f	13.7364f	13.7364f	6.2276f	cbtot	6.2276f	6.0866f	6.0866f	37.6749f	16.5340f	16.5354f	cbtot	6.2287f	6.2275f
cgs	69.2125f	34.5474f	34.5474f	34.8173f	34.8173f	12.1003f	cgs	12.1003f	12.0589f	12.0589f	69.5580f	34.5338f	34.5344f	cgs	12.0827f	12.0824f
cgd	3.2397f	1.6235f	1.6235f	1.7042f	1.7042f	535.0119a	cgd	535,0119a	527.6921a	527.6921a	3.9238f	1.6216f	1.6217f	cgd	534.7048a	534.5367a

saturation of all transistors when input common mode is 1V:

TT

subckt							subckt							subckt		
element				θ:m4	θ:m5	θ:m6	element	0:m7	0:m8	0:m9	0:mopb	0:mop1	0:mop2	element	0:mop3	0:mop4
model						0:n_18.1	model						0:p_18.1	model	0:n_18.1	0:n_18.1
region		Saturation					region	Saturation						region	Saturation	Saturation
id	-3.0740u	-1.6139u	-1.6139u			1.537θu	id	1.5370u	1.6139u					id	1.5781u	1.5777u
ibs	4.357e-22						ibs				4.473e-22		74.2285a	ibs	-5.594e-22	-5.593e-22
ibd	90.4206a					-109.8365a	ibd				134.1477a			ibd	-110.4870a	-110.0726a
vgs		-600.0000m					vgs	461.3359m			-600.0000m			vgs	463.0727m	463.0727m
vds	-157.9794m	-899.9756m		-1.1817	-1.1817	460.3463m	vds	460.3463m			-234.3772m		-1.1043	vds	463.0727m	461.3359m
vbs	Θ.	Θ.	θ.	157.9794m		Θ.	vbs	Θ.	Θ.	θ.	0.	234.3772m		vbs		0.
vth		-488.6972m					vth	375.2334m	372.5645m		-488.0098m			vth	375.2169m	375.2274m
vdsat		-129.2682m					vdsat	105.8748m	106.9270m		-128.6111m			vdsat	106.9730m	106.9664m
vod		-111.3028m					vod	86.1025m			-111.9902m			vod	87.8559m	87.8453m
beta	424.7955u				203.0990u		beta	301.9374u	301.8915u					beta	301.9575u	301.9577u
gam eff	557.0847m			555.9770m			gam eff	507.4460m	507.4460m	507.4460m			555.4708m	gam eff	507.4460m	507.4460m
gm	38.1668u	20.6658u	20.6658u	19.9603u			gm	23.0848u	23.9341u					qm	23.4973u	23.4926u
gds	2.3036u	49.7524n	49.7524n	40.9664n	40.9664n		gds	236.3952n 4.7040u	225.4340n 4.8293u	225.4340n 4.8293u	491.3445n 12.2578u	43.0893n 5.5827u	43.0462n	gds	240.8474n	241.0110n
gmb	11.6537u	6.2893u	6.2893u	5.6724u	5.6724u	4.7040u	gmb	2.0677f	1.9014f	1.9014f	12.2578u 11.6713f	4.4769f	5.5818u 4.4759f	gmb	4.7853u	4.7845u
cdtot	14.4011f	4.7514f	4.7514f	4.4747f	4.4747f	2.0677f	cdtot	12.9615f	12,9716f	12.9716f	74.9340f	36.8528f	36.8522f	cdtot	2.0666f	2.0675f
cgtot	75.9578f	37.1086f	37.1086f	36.8465f	36.8465f	12.9615f	cstot	14.1695f	12.97161 14.1886f	14.1886f	85.0337f	41.4714f	41.4705f	cgtot	12.9835f	12.9835f
cstot	84.8113f	42.6675f	42.6675f	41.7011f	41.7011f	14.1695f	cbtot	6.5225f	6.3666f	6.3666f	39.5072f	17.3111f	17.3102f	cstot	14.1993f	14.1991f
cbtot	39.9320f	19.1978f	19.1978f	17.7771f	17.7771f	6.5225f	cas	11.3283f	11.3264f	11.3264f	65.6642f	32.5955f	32.5946f	cbtot	6.5206f	6.5214f
cgs	65.9361f	32.5313f	32.5313f	32.4699f	32.4699f	11.3283f	cgd	495.1766a			3.4158f	1.5080f	1.5080f	cgs	11.3560f	11.3560f
cgd	4.4619f	1.5092f	1.5092f	1.5077f	1.5077f	495.1766a	cgu	493.17000	490.76374	490.76374	3.41361	1,30001	1.50601	cgd	495.0770a	495.1355a

FF

subckt element	θ:m1	θ:m2	0:m3	0:m4	0:m5	0:m6	subckt	θ:m7	0:m8	0:m9	dqom:0	0:mop1	θ:mop2	subckt element	0:mop3	0:mop4
model						0:n 18.1	model						0:mop2 0:p 18.1	model		0:n 18.1
region				Saturation			region		Saturation					region	Saturation	Saturation
id	-5.0252u	-2.7165u	-2.7165u	-2.5126u	-2.5126u	2.5126u	id	2.5126u		2.7165u	-5.2284u			id	2.6148u	2.6137u
ibs	7.121e-22	4.258e-22	4.258e-22	51.3591a	51.3591a	-8.848e-22	ibs	-8.848e-22	-9.566e-22	-9.566e-22	7.409e-22	75.3847a	75.3847a	ibs	-9.208e-22	-9. 204e-22
ibd	92.6975a	285.8404a	285.8404a	426.6421a	426.6421a	-109.9614a	ibd	-109.9614a	-216.6893a	-216.6893a	136.0617a	426.1822a	427.1520a	ibd		-109.5749a
vgs	-600.0000m	-600.0000m	-600.0000m	-638.3001m	-638.3001m	455.1350m	vgs	455.1350m	456.7403m	456.7403m	-600.0000m	-662.6568m	-662.6103m	vgs		458.1882m
vds	-161.6999m	-899.9535m	-899.9535m	-1.1816	-1.1816	456.7403m	vds	456.7403m	900,0465m	900.0465m	-237.3432m	-1.1045	-1.1075	vds	458.1882m	455.1350m
vbs				161.6999m	161.6999m	θ.	vbs					237.3432m	237.3432m	vbs		θ.
vth	-452.5665m	-452.3564m	-452.3564m	-497.3512m	-497.3512m	341.0607m	vth	341.0607m	338.3572m	338.3572m	-452.5666m	-517.2800m	-517.2800m	vth	341.0519m	341.0705m
vdsat	-155.1715m	-156.5774m	-156.5774m	-154.5559m	-154.5559m	124.7695m	vdsat	124.7695m	127.6718m		-155.1718m			vdsat	126.8294m	126.8168m
vod	-147.4335m	-147.6436m	-147.6436m	-140.9489m	-140.9489m	114.0743m	vod	114.0743m	118.3831m	118.3831m	-147.4334m	-145.3769m	-145.3304m	vod	117.1364m	117.1178m
beta	456.8399u	226.1769u	226.1769u	219.1337u	219.1337u	331.7875u	beta	331.7875u	331.7714u	331.7714u	456.8398u	215.6331u	215.6359u	beta	331.8347u	331.8350u
gam eff	557.0846m	557.0846m	557.0846m	555.9519m	555.9519m	507.4460m	gam eff	507.4460m	507.4460m	507.4460m	557.0846m		555.4515m	gam eff	507.4460m	507.4460m
cym	51.2653u	29.3681u	29.3681u	27.9250u	27.9250u	32.8820u	gm	32.8820u		34.6570u	56.1995u			gm	33.7017u	33.6909u
gds	5.8561u	81.8238n	81.8238n	64.1695n	64.1695n	353.8471n	gds	353.8471n		333.8842n	1.1097u	68.7179n	68.5832n	gds	364.2183n	364.9038n
qmb	15.2551u	8.6828u	8.6828u	7.6961u	7.6961u	6.4390u	gmb	6.4390u		6.7110u	16.6273u	7.6213u	7.6196u	qmb	6.5931u	6.5914u
cdtot	16.3487f	4.5195f	4.5195f	4.2689f	4.2689f	1.9724f	cdtot	1.9724f	1.8137f	1.8137f	11.7129f	4.2786f	4.2691f	cdtot	1.9724f	1.9740f
cgtot	80.5044f	39.0444f	39.0444f	38.7748f	38.7748f	13.6906f	cgtot	13.6906f	13.6961f	13.6961f	78.8865f	38.7423f	38.7418f	cgtot	13.7052f	13.7054f
cstot	87.7065f	44.1928f	44.1928f	43.2171f	43.2171f	14.7249f	cstot	14.7249f	14.7422f	14.7422f	87.8622f	42.9373f	42.9368f	cstot	14.7445f	14.7444f
cbtot	38.1590f	18.3605f	18.3605f	16.9843f	16.9843f	6.2309f	cbtot	6.23091	6.0866f	6.0866f	37.6750f	16.5342f	16.5328f	cbtot	6.2287f	6.2299f
cgs	69.7423f	34.5474f	34.5474f	34.4638f	34.4638f	12.0636f	cgs	12.0636f	12.0589f	12.0589f	69.5581f	34.5343f	34.5336f	cgs	12.0828f	12.0831f
cgd	5.7983f	1.6235f	1.6235f	1.6212f	1.6212f	534.5755a	cgd	534.5755a	527.6918a	527.6918a	3.9241f	1.6216f	1.6216f	cgd	534.7052a	

SS

cgtot 76.3273f 37.2892f 37.2892f 37.8999f 37.0959f 13.8005f cgtot 13.8005f 13.7742f 13.7742f 75.5839f 37.1448f 37.1448f cgtot 13.8209f 13.	model region id ibs ibd vgs vds vbs vth vdsat vod beta gam eff gm cdtot cgtot cstot cbtot	Saturation -1.8128u 2.570e-22 88.4289a -600.0000m -154.8270m 0. -516.8058m -83.1942m 374.0022u 557.0847m 944.9822n 8.1196u 13.9233f 76.3273f 86.1004f 43.3755f	Saturation -917.5769n 1.440e-22 283.9336a -600.0000m -899.9861m 0. -190.340m -188.1892m -80.9660m 133.8773u 557.0847m 13.4973u 27.2563n 4.1962u 5.01367 43.0544f 20.8276f	Saturation -917.5769n 1.440e-22 283.9336a 600.0000m -899.9861m 0. -519.0340m -108.1892m -80.9669m 183.8773u 557.08473 13.4973 13.4973 27.2563n 4.1962u 5.0136f 37.2892f 4.0544f 20.8276f	Saturat ion -906.4057n 48.8460a 417.2132a -645.1730m -1.1676 154.8270m -564.9338m -189.9337m -89.2393m 178.0915u 555.9933m 13.3568u 23.7162n 3.8816u 4.7187f 37.0959f 42.2063f 19.3204f	-906. 4057n 48.8460a 417. 2132a -645. 1730m -1.1676 154. 8270m -564. 9338m -89. 2393m 178. 0915u 555. 9983m 13.3568u 23. 7162n 3. 8816u 4. 7187f 37. 0959f 42. 2063f 19. 3204f	996.4872n -3.233e-22 -113.9962a 488.5812m 477.5571m 6. 411.3522m 93.8753m 69.2560m 14.7767u 137.6513n 3.1525u 2.1537 13.8905f 15.1627f 7.2837f	cstot cbtot	996.4972n -3.233e-22 -113.0962a 480.5812m 0. 417.5572m 69.2566m 236.2154u f 597.4460m 14.7707u 137.0513n 3.15252 2.1537f 13.8005f 15.1627f 7.2837f	2-3, 2/3e-22 -212, 9741a 477, 5571m 900, 0139m 0, 0 488, 9750m 93, 4847m 68, 5821m 236, 1722u 130, 8499n 14, 9391u 13, 1623u 1, 9840f 13, 7742f 7, 1223f 7, 1223f	917.5769n -3.273e-22 -212.9741a 477.5571m 98.9139m -0. 408.9750m 93.4847m 236.1722u 507.4460m 14.9391u 130.8499n 3.1623u 1.9840f 13.7742f 15.1295f 7.1223f	Saturation -1.8480u 2.620e-22 132.1837a -600.0000m -231.4377m 0. -516.8058m -108.5581m -83.1942m 374.0022u 557.0847m 26.96372 230.1047n 8.3894u 12.0542f 75.5839f 86.3389f 42.9688f	Saturation -924.0589n 73.0157a 415.8968a -668.5623m -1.0868 231.4377m -586.4585m -112.0642m -82.1038m 175.3461u 555.4906m 13.5054u 24.6817n 3.8087u 4.7217f 37.1448f 42.0408f 18.8190f	-923,8994n 73,0157a 416,2591a -608,5484m -1,0880 231,4377m -586,4585m -112,0552m -82,0898m 175,34669n 3,8083u 4,7219f 37,1440f 42,0397f 18,8183f	cgtot cstot	0:n 18.1 Saturation 924.0604n -3.296e-22 -113.9935 481.7295m 481.7295m 94.5572m 70.4275m 236.2236u 507.4460m 14.974tu 138.9126n 3.1945u 2.1517f 13.8299f 15.2017f	923.9008n -3.295e-22 -113.7218a 481.7295m
--	---	--	--	---	---	--	---	----------------	---	--	--	---	--	--	----------------	---	--

7. Neatly list the sizes of all transistors, capacitance of the compensation capacitors and resistance of the compensation resistors.

	Size of NMOS and PMOS in the circuit												
	Width	Length		Width	Length		Width	Length					
M1	8.4um	1.4um	M4	4.2um	1.4um	M7	1.4um	1.4um					
M2	4.2um	1.4um	M5	4.2um	1.4um	M8	1.4um	1.4um					
M3	4.2um	1.4um	M6	1.4um	1.4um	M9	1.4um	1.4um					
Size of NMOS and PMOS in the CMFB													
Width Length Width Length Width Length													
Mopb 8.4um 1.4um Mop2 4.2um 1.4um Mop4 1.4un													
Mop1													
			Compe	ensation ca	pacitor								
Cc1	50	pF	Cc2	50	pF	-							
			Comp	ensation re	sistors								
Rc1	250	kΩ	Rc2	250	kΩ	-							

R-Sense CMFB loop

Fig. 5. R-Sense Common-Mode Feedback Loop