Academia Sabatina de Jóvenes Talento

Polinomios I

Encuentro: 2 Curso: Álgebra

Álgebra Semestre: I

Nivel: Preolímpico IMO

Fecha: 26 de abril de 2025

Instructor: Kenny Jordan Tinoco
Instructor Aux: Jonathan Gutiérrez

Índice

1		amentos	
	1.1	Conceptos	1
	1.2	División de polinomios	2
	1.3	Raíces	3
		1.3.1 Raíces en intervalos	4
	1.4	Interpolación de Lagrange	4
2	Prob	lemas	5
3	Solu	ción de los ejercicios	7

1. Fundamentos

En esta segunda sesión repasaremos aspectos fundamentales sobre los polinomios que debemos conocer, veremos conceptos de polinomios, divisiones, raíces y una serie de teoremas importantes.

1.1. Conceptos

Definición 1.1. Un monomio en la variable x es una expresión cx^k donde c es una constante y k un entero no negativo.

Un polinomio es la suma de finitos monomios. En otras palabras un polinomio es una expresión de la forma

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Asumamos que $a_n \neq 0$. En este caso, los números $a_n, a_{n-1}, \ldots, a_1, a_0$ se llaman los coeficientes del polinomio, y n es llamado el grado del polinomio.

Los polinomios pueden ser sumados y multiplicados. Para $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ y $B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_nx^n$ definimos

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$
$$A(x)B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$$

Para los motivos de este documento consideraremos a los polinomios con coeficientes reales, racionales, enteros, complejos o incluso valores que son residuos en módulo de algún primo p.

1.2. División de polinomios

Definición 1.2. Para los polinomios F(x) y G(x), llamamos *cociente* y *resto* a los polinomios Q(x) y R(x), respectivamente, si

$$F(x) = Q(x)G(x) + R(x)$$

 $y \deg R < \deg G$.

Teorema 1.1 (División polinómica). El cociente y resto siempre existen y son únicos.

Teorema 1.2 (Bezout version 1). El resto de P(x) dividido por (x-a) es igual a P(a).

Teorema 1.3 (Bezout version 2). Un número a es raíz de P(x) si y solo si (x-a)|P(x).

Corolario 1.1. Si a_1, a_2, \ldots, a_n son raíces distintas de P(x), entonces

$$(x-a_1)(x-a_2)\dots(x-a_n)|P(x).$$

Teorema 1.4. El polinomio P(x) con grado n tiene a lo más n raíces.

Corolario 1.2. Si A(x) y B(x) no son iguales, y su grado es a lo máximo n, entonces la ecuación A(x) = B(x) tiene a lo sumo n raíces.

Ejemplo 1.1. Probar que

$$a\frac{(x-b)(x-c)}{(a-b)(a-c)} + b\frac{(x-c)(x-a)}{(b-c)(b-a)} + c\frac{(x-a)(x-b)}{(c-a)(c-b)} = x.$$

Solución. Denotemos por P(x) al lado izquierdo de la ecuación. Sabemos que P(x) es un polinomio con grado a lo sumo 2 y P(a) = a, P(b) = b y P(c) = c. Por tanto, por el corolario previo P(x) = x.

Ejemplo 1.2. Dado el entero positivo n. El polinomio P(x) satisface $P(i) = 2^i$ para todo i = 0, 1, ..., n. Probar que deg $P \ge n$.

Solución. Considere el polinomio Q(x) = 2P(x) - P(x+1). Es obvio que deg $Q = \deg P$. Y los números $0, 1, \ldots, n-1$ son raíces de Q, por lo cual deg $Q \ge n$.

Ejemplo 1.3. Dado el polinomio P(x) con grado tres. Llamaremos a una tripleta de números reales (a, b, c) cíclica si P(a) = b, P(b) = c y P(c) = a. Probar que existen a lo más nueve tripletas cíclicas.

Solución. Dividamos la solución

1. Tripletas cíclicas diferentes no tienen elementos compartidos. Supongamos lo contrario y que hay dos tripletas cíclicas con números iguales (a, b, c) y (a, d, e). Con base en la definición de tripleta cíclica, b = P(a) y d = P(a), por tanto d = b. Y c = P(b) y e = P(d) = P(b), por tanto c = e. Esto implica que las tripletas son iguales.

2. Todos los números en cualquier tripleta cíclica son raíces del polinomio Q(x) = P(P(P(x))) - x. Consideremos cualquier tripleta cíclica (a, b, c).

$$P(P(P(a))) = P(P(b)) = P(c) = a.$$

3. El grado del polinomio P(P(P(x))) - x es 27, ya que si existen 10 tripletas cíclicas distintas, entonces existen 30 raíces distintas para Q(x). Lo cual es absurdo.

1.3. Raíces

Teorema 1.5 (Teorema Fundamental del álgebra). Cualquier polinomio no constante con coeficientes complejos tiene al menos una raíz compleja. Equivalentemente, todo polinomio de grado $n \geq 1$ con coeficientes complejos pude factorizarse como

$$P(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n),$$

donde $a_n \neq 0$, y $z_1, z_2, \dots, z_n \in \mathbb{C}$ (considerando la multiplicidad).

Ejemplo 1.4. Dado el polinomio $P(x) \in \mathbb{R}[x]$ tal que $P(x) \geq 0$ para todo real a. Probar que existen polinomios $Q(x), R(x) \in \mathbb{R}[x]$ para el cual $P(x) = Q(x)^2 + R(x)^2$.

Solución. Sea $P(x) \in \mathbb{R}[x]$ sea un polinomio con coeficientes reales. Por el teorema Fundamental del álgebra, P(x) puede factorizarse como

$$P(x) = c \prod j = 1c(x - \alpha_j),$$

donde $c \in \mathbb{R}$ y $\alpha_j \in \mathbb{C}$. Ya que P(x) tiene coeficientes reales, cualquier raíz no real α debe tener su conjugado complejo $\overline{\alpha}$ en la factorización. De esta manera, los factores reales de P(x) son productos de

- Factores lineales: $(x-r)^{2k}$, correspondientes a raíces reales.
- Factores cuadráticos irreducibles: $ax^2 + bx + c$ con $b^2 4ac < 0$.

Si consideramos un polinomio cuadrático $x^2 + bx + c$ sin raíces reales (es decir $b^2 - 4c < 0$) y completando cuadrados, obtenemos que

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(c - \frac{b^{2}}{4}\right) = \left(x + \frac{b}{2}\right)^{2} + \frac{4c - b^{2}}{4}.$$

Esto puede escribirse como

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(\frac{\sqrt{4c - b^{2}}}{2}\right)^{2}$$

Por la identidad de Brahmagupta sabemos que el producto de dos sumas de dos cuadrados es igual a la suma de dos cuadrados, esto es

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

Así que cada factor de P(x) puede ser representado como la suma de dos cuadrados, por lo cual, P(x) puede ser escrito de la forma

$$P(x) = Q(x)^2 + R(x)^2$$

$$con Q(x), R(x) \in \mathbb{R}[x].$$

1.3.1. Raíces en intervalos

Aquí haremos uso de algunos teoremas de cálculo y sus corolarios.

Teorema 1.6 (Teorema del valor intermedio). Sea f(x) una función continua en un intervalo cerrado [a, b], asumamos que se toman los valores extremos con signos opuestos, es decir

$$f(a)\cdots f(b)<0,$$

entonces existe un punto $c \in (a, b)$ tal que f(c) = 0.

1.4. Interpolación de Lagrange

Teorema 1.7. Para reales distintos x_0, x_1, \ldots, x_n y cualesquiera y_0, y_1, \ldots, y_n definimos

$$P_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)},$$

así, el único polinomio P(x) con grado como máximo n tal que $P(x_i) = y_i$ para todo $i = 0, 1, \ldots, n$ es igual a

$$y_0P_0(x) + y_1P_1(x) + \ldots + y_nP_n(x)$$

Ejemplo 1.5. Dado el polinomio P(x) con coeficientes reales y grado 10. ¿Cuál es el mayor número de intersecciones que y = P(x) y el círculo $x^2 + y^2 = 1$ puede tener?

Solución. La respuesta es 20. Supongamos que hay más de 20 intersecciones, considerando el polinomio $Q(x) = x^2 + P(x)^2 - 1$. Si (x_0, y_0) es un punto de intersección, entonces x_0 es raíz de Q(x). Pero deg Q(x) es que solo pueden existir a lo máximo 20 valores x_0 .

2. Problemas

Problema 2.1. Dado el polinomio $P(x) \in \mathbb{R}[x]$ tal que $P(x) \geq 0$ para todo real a. Probar que existen polinomios $Q(x), R(x) \in \mathbb{R}[x]$ para el cual $P(x) = Q(x)^2 + R(x)^2$.

Problema 2.2. Encontrar todos los polinomios $P(x) \in \mathbb{R}[x]$ tales que

$$(x-3)P(x+1) = (x+1)P(x).$$

Problema 2.3. Probar que un polinomio de grado impar tiene al menos una raíz real.

Problema 2.4. ¿Existe un polinomio cuadrático P(x) tal que dos de sus coeficientes son enteros y

 $P\left(\frac{1}{2024}\right) = \frac{1}{2025}, \quad P\left(\frac{1}{2025}\right) = \frac{1}{2024}?$

Problema 2.5. Sean a, b, c números reales distintos tales que para el polinomio cuadrático f(x) se tiene

$$f(a) = ab$$
, $f(b) = ac$, $f(x) = ab$.

Probar que f(a+b+c) = ab+bc+ca.

Problema 2.6. Sea k un entero positivo tal que

$$1 + x^{k} + x^{2k} = (1 + a_1x + x^2)(1 + a_2x + x^2)\dots(1 + a_kx + x^2),$$

hallar el valor de $a_1^2 + a_2^2 + \ldots + a_k^2$

Problema 2.7. Dado los polinomios P(x) y Q(x), se sabe que estos tienen tres términos cada uno ¿cuántos monomios distintos de cero tiene como mínimo el producto P(x)Q(x)?

Problema 2.8. Sea $P(x) = 1 - \frac{x}{2} + \frac{x^2}{6}$, definimos

$$Q(x) = P(x)P(x^3)P(x^5)P(x^7)P(x^9) = \sum_{i=0}^{50} a_i x^i,$$

encontrar $\sum_{i=0}^{50} |a_i|$.

Problema 2.9. Sean P(x) y Q(x) polinomios de segundo grado con coeficientes enteros. Probar que existe un polinomio R(x) con coeficientes enteros y de grado a lo sumo dos tal que

$$R(8)R(12)R(2017) = P(8)P(12)P(2017)Q(8)Q(12)Q(2017).$$

Problema 2.10. Suponga que f(x) es un polinomio de grado 3 con coeficiente principal igual a 2 y

$$f(2024) = 2025, \quad f(2025) = 2026,$$

hallar el valor de f(2026) - f(2023).

Problema 2.11. Sea P(x) un polinomio mónico de grado cuatro tal que $P(1+2^n) = 1+8^n$ para todo n = 1, 2, 3, 4. Hallar el valor de P(1).

Problema 2.12. Sea $f(x) = a_0 + a_1x + ... + a_4x^4$ con $a_4 \neq 0$. El resto del polinomio f cuando es dividido por (x - 2023), (x - 2024), (x - 2025), (x - 2026) y (x - 2027) son 24, -6, 4, -6 y 24, respectivamente. Hallar el valor de f(2028).

Problema 2.13. Probar que para todo número real a el polinomio

$$x^4 + a^2x^3 + 2ax^2 + 3a^2x + a - 1$$

tiene al menos una raíz real.

Problema 2.14. Probar que el polinomio

$$P(x) = x^4 + ax^3 + bx^2 + cx - \frac{b}{2} - \frac{1}{4}$$

tiene una raíz real para cualesquiera números reales a, b, c.

Problema 2.15. Sea P(x) un polinomio arbitrario tal que

$$P(2008) + P(17) < 2025 < P(18) + P(2007).$$

Probar que existen números reales x, y tales que

$$x + y = P(x) + P(y) = 2025.$$

Problema 2.16. Sean P(x) y Q(x) polinomios mónicos con coeficientes reales y

$$\deg(P) = \deg(Q) = 10.$$

Probar que si la ecuación P(x) = Q(x) no tiene soluciones reales, entonces la ecuación

$$P(x+1) = Q(x-1)$$

tiene una solución real.

3. Solución de los ejercicios

Corolario 3.1. Si un polinomio de grado n tiene n+1 raíces, entonces $P(x) \equiv 0$.

Demostración. Si un polinomio $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, de grado n, tiene n+1 raíces reales distintas y son los números $r_1, r_2, \ldots, r_{n+1}$. Por el teorema del factor, el polinomio puede ser escrito como

$$P(x) = C(x - r_1)(x - r_2) \dots (x - r_{n+1}).$$

Sin embargo, al desarrollar el lado derecho de la expresión obtenemos un polinomio de grado n+1, cuyo término principal sería Cx^{n+1} . Como este término no aparece al lado izquierdo, entonces C=0. Luego, $P(x)\equiv 0$.

Ejercicio 1. Probar que

$$a\frac{(x-b)(x-c)}{(a-b)(a-c)} + b\frac{(x-c)(x-a)}{(b-c)(b-a)} + c\frac{(x-a)(x-b)}{(c-a)(c-b)} = x.$$

Solución. Diremos que el lado izquierdo de la expresión es el polinomio P(x), consideremos el polinomio Q(x) = P(x) - x, vamos a demostrar que $Q(x) \equiv 0$. Podemos notar que P(x) tiene a lo sumo grado dos, por lo cual Q(x) también tiene a lo sumo grado dos. Al evaluar $a, b \ y \ c$ en Q(x), obtenemos que Q(a) = Q(b) = Q(c) = 0, es decir, un polinomio de grado a lo sumo dos tiene tres raíces, por tanto $Q(x) \equiv 0$, luego P(x) = x.

Ejercicio 2. Sean p, q, r tres números reales no nulos tales que -p, 2q y 3r son raíces de la ecuación $x^3 + px^2 + qx + r = 0$, encontrar los valores de p, q y r.

Solución. Los valores son $(p,q,r) = \left(-\frac{2}{3}, -\frac{1}{4}, \frac{1}{6}\right)$. Sea el polinomio $Q(x) = x^3 + px^2 + qx + r$, como -p, 2q y 3r son sus raíces y es mónico, por el teorema del factor podemos escribirlo como

$$Q(x) = (x+p)(x-2q)(x-3r)$$

= $x^3 + (p-2q-3r)x^2 + (-2pq+6qr-3pr)x + 6pqr$.

Comparando los coeficientes de la ecuación inicial con los del polinomio Q(x), obtenemos el sistema

$$\begin{cases} p - 2q - 3r = p \\ -2pq + 6qr - 3pr = q \\ 6pqr = r \end{cases}$$

De la primera ecuación vemos que 2q + 3r = 0, de la segunda obtenemos

$$-2pq + 6qr - 3pr = q$$
$$-p(2q + 3r) + 6qr = q$$

$$6qr = q \implies r = \frac{1}{6}$$

Como $r = \frac{1}{6}$, entonces $q = -\frac{1}{4}$. Finalmente, en la tercera ecuación al sustituir q y r obtenemos $p = -\frac{2}{3}$.

Ejercicio 3. Si a, b, c, x, y son números reales tales que

$$\begin{cases} a^3 + ax + y = 0 \\ b^3 + bx + y = 0 \\ c^3 + cx + y = 0 \end{cases}$$

y $a \neq b \neq c$, determinar el valor de a + b + c.

Solución. La respuesta es a + b + c = 0. Consideremos el polinomio $A(k) = k^3 + xk + y$, es claro que a, b y c son raíces de A(k), por el teorema del factor, podemos escribir a A(k) como

$$A(k) = (x - a)(x - b)(x - c)$$

= $x^3 - (a + b + c)x^2 + (ab + bc + ca)x - abc$

Como la definición inicial de A(k) no tiene un término cuadrático, entonces a+b+c debe ser cero.

Ejercicio 4. Encontrar las condiciones necesarias y suficientes sobres los naturales m, n para que el polinomio

$$\sum_{k=0}^{m^n} x^k,$$

sea divisible entre $x^3 + x^2 + x + 1$.

Solución. La respuesta es m = 4p - 1 y n = 2q - 1 con $p, q \in \mathbb{N}$. Sea P(x) el polinomio. Como $x^3 + x^2 + x + 1 = (x+1)(x^2+1)$, entonces $(x+1)(x^2+1)$ divide a P(x) si y solo si -1 y i son raíces de P(x).

■ Para que -1 sea raíz de P(x) solo basta que el grado de P(x) sea impar. Un polinomio de grado impar tiene una cantidad par de términos, si este se evalua en -1 los términos se cancelan entre sí. Ejemplo,

$$x^5 + x^4 + x^3 + x^2 + x + 1 \implies (-1)^5 + (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1 = 0.$$

- Para que i sea raíz, el grado de P(x) tiene que ser congruente con -1 en módulo 4. Como la suma de cuatro potencias consecutivas de i se cancelan, en necesario que P(x) tenga una cantidad de términos múltiplos de cuatro.
- Cualquier potencia impar de un número de la forma 4k-1 es de la forma 4t-1.

Ejercicio 5. Sea $a, b, c, d \in \mathbb{R}$, sin tres o cuatro de ellos iguales a cero a la vez, tales que

$$\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}=1.$$

Determinar el valor de

$$\frac{a^2}{b+c+d} + \frac{b^2}{a+c+d} + \frac{c^2}{a+b+d} + \frac{d^2}{a+b+c} = 1.$$

Solución. La respuesta es cero. Sea k = a + b + c + d, la condición puede ser escrita como

$$\frac{a}{k-a} + \frac{b}{k-b} + \frac{c}{k-c} + \frac{d}{k-d} = 1.$$

Notemos que $\frac{a}{k-a} = \frac{a-k+k}{k-a} = \frac{k}{k-a} - 1$, esto puede ser realizado con las demás fracciones, con lo cual obtenemos

$$\frac{k}{k-a} + \frac{k}{k-b} + \frac{k}{k-c} + \frac{k}{k-d} = 5.$$

Veamos que $\frac{a^2}{k-a} = \frac{a^2-k^2+k^2}{k-a} = \frac{k^2}{k-a} - (a+k)$, análogamente con las demas fracciones, obtenemos que

$$\frac{a^2}{k-a} + \frac{b^2}{k-b} + \frac{c^2}{k-c} + \frac{d^2}{k-d} = \frac{k^2}{k-a} + \frac{k^2}{k-b} + \frac{k^2}{k-c} + \frac{k^2}{k-d} - (a+b+c+d+4k)$$

$$= k\left(\frac{k}{k-a} + \frac{k}{k-b} + \frac{k}{k-c} + \frac{k}{k-d}\right) - 5k$$

$$= k(5) - 5k$$

$$= 0$$