Машинное обучение в экономике Эффекты воздействия

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Эффект воздействия

Определение

• Предположим, что одновременно существуют два гипотетически **режима** (counterfactual states) целевой переменной, обозначаемых Y_{0i} и Y_{1i} . Но в данных мы наблюдаем только один из них, в зависимости от значения бинарной переменной воздействия (treatment) T_i .

$$Y_i = egin{cases} Y_{1i}, ext{ если } T_i = 1 \ Y_{0i}, ext{ если } T_i = 0 \end{cases} = T_i Y_{1i} + (1 - T_i) \ Y_{0i}$$

• Эффект воздействия (treatment effect) T_i на Y_i определяется как:

$$\mathsf{TE}_i = Y_{1i} - Y_{0i}$$

- Например, Y_i может отражать факт соверешения покупки клиентом, а T_i факт наличия персонального предложения по бесплатной доставке товара на дом.
- На практике мы не можем одновременно наблюдать, как клиент мог бы повести себя и в случае наличия Y_{1i} и в случае отсутствия Y_{i0} предложения о доставке T_i , поскольку он либо получает это предложение (воздейсвтие) $T_i = 1$, либо нет $T_i = 0$.

Средний эффект воздействия Определение

• На практике часто рассматривается средний эффект воздействия:

$$ATE = E(TE_i) = E(Y_{1i} - Y_{0i}) = E(Y_{1i}) - E(Y_{0i})$$

- Предположим, что Y_{1i} и Y_{0i} являются бинарными переменными, то есть $Y_{1i} \sim Ber(p_1)$ и $Y_{0i} \sim Ber(p_0)$.
- Обратим внимание, что:

$$E(Y_{1i}) = p_1 = P(Y_{1i} = 1)$$
 $E(Y_{0i}) = p_0 = P(Y_{0i} = 1)$

- Следовательно, в случае с бинарными целевыми переменными средний эффект воздействия можно интерпретировать как среднюю разность в вероятностях единицы в режимах, соответствующих наличию $T_i=1$ и отсутствию $T_i=0$ эффекта воздействия.
- Для простоты дальнейшего изложения будем придерживаться допущения о том, что Y_{ji} и Y_{jt} независимы при любых $i \neq t$.

Допущение о независимости

- Предположим, что в данных n_1 наблюдений попали в группу воздействия $T_i=1$, а n_0 наблюдений оказались в контрольной группе $T_i=0$.
- Введем допущение о независимости, согласно которому $E(Y_{1i}|T_i=1)=E(Y_{1i})$ и $E(Y_{0i}|T_i=0)=E(Y_{0i}).$
- Это допущение обычно соблюдается в рамках контролируемых случайных экспериментов.
- Например, для измеренеия среднего эффекта воздействия вакцины на излечение от болезни, пациентов случайным образом распределеняют между группой воздействия, получающей лекарство, и контрольной группой, принимающей плацебо.
- При соблюдении допущения о независимости вследствие закона больших чисел получаем состоятельные оценки:

$$\hat{E}(Y_{1i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} \qquad \qquad \hat{E}(Y_{0i}) = \frac{1}{n_0} \sum_{i:T_i=0} Y_{0i}$$

• Тогда по теореме Слуцкого состоятельная оценка среднего эффекта воздействия может быть получена как:

$$\widehat{\mathsf{ATE}} = \hat{\mathcal{E}}(Y_{1i}) - \hat{\mathcal{E}}(Y_{0i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} - \frac{1}{n_0} \sum_{i:T_i=0} Y_{0i}$$

Технический комментарий о числе наблюдений в группе воздействия и контрольной группе

- При оценивании $E(Y_{1i})$ и $E(Y_{0i})$ для простоты изложения ранее и далее предполагается, что n_1 и n_0 являются константами.
- Однако, за пределами контролируемых экспериментов размеры группы воздействия и контрольной группы, как правило, являются случайными величинами:

$$n_1 = \sum_{i=1}^n T_i$$
 $n_0 = \sum_{i=1}^n 1 - T_i$

• При введеном ранее допущении о независимости для доказательства состоятельности необходимо воспользоваться законом больших чисел (в числителе и знаменателе) и теоремой Слуцкого:

$$\hat{E}(Y_{1i}) = \frac{1}{n_1} \sum_{i:T_i=1} Y_{1i} = \frac{\frac{1}{n} \sum_{i=1}^{n} T_i Y_{1i}}{\frac{1}{n} \sum_{i=1}^{n} T_i} \xrightarrow{P} \frac{E(T_i Y_{1i})}{E(T_i)} =$$

$$= \frac{E(Y_{1i}|T_i=1)P(T_i=1) + 0 \times P(T_i=0)}{P(T_i=1)} = E(Y_{1i}|T_i=1) = E(Y_{1i})$$

• По аналогии нетрудно показать, что $\hat{\mathbb{E}}(Y_{0i}) \xrightarrow{p} E(Y_{0i})$.

АВ-тестирование

- Как правило под **AB-тестированием** понимается проверка гипотезы H_0 : ATE = 0 при допущении о независимости $E(Y_{ji}|T_i=j)=E(Y_{ji})$.
- Например, представим, что клиентская база продавца составляет 1000 человек. Из них он случайным образом отобрал 100 и предоставил им специальное предложение, согласно которому при покупке телефона они получат в подарок наушники.
- Из 100 человек, получивших предложение, покупку совершили 50, а из оставшихся 900 покупку осуществили 360 человек.
- Оценим средний эффект воздействия, то есть насколько, всреднем, возросла вероятность покупки благодаря предоставлению предложения:

$$\widehat{ATE} = 50/100 - 360/900 = 0.1$$

• Протестируем гипотезу H_0 : ATE = 0 против альтернативы H_1 : ATE > 0 с помощью теста о разнице долей, тестовая статистика которого, при верной нулевой гипотезе, в асимптотике (при стремящемся к бесконечности числе наблюдений) имеет стандартное нормальное распределение:

$$T = \frac{0.1}{\sqrt{0.410 \times (1 - 0.410)(1/100 + 1/900)}} \approx 1.93$$
 p-value = $1 - \Phi(T) \approx 0.03$

Последствия нарушения допущения о независимости

- Если допущение о независимости не соблюдается, то $E(Y_{ji}) \neq E(Y_{ji} | T_i = j)$.
- Обычно оно нарушается в неконтролируемых экспериментах, например, когда имеется самоотбор в число тех, кто решил принять участие в новой программе лояльности магазина.
- Нарушение предпосылки о независимости приводит к смещению введенной ранее оценки среднего эффекта воздействия, что, в частности, не позволяет применять AB-тестирование (для простоты предположим n_1 и n_0 экзогенными):

$$E\left(\widehat{\mathsf{ATE}}\right) = E\left(\frac{1}{n_1} \sum_{i:T_i=1} (Y_{1i}|T_i=1) - \frac{1}{n_0} \sum_{i:T_i=0} (Y_{0i}|T_i=0)\right) =$$

$$= \frac{1}{n_1} \sum_{i:T_i=1} E(Y_{1i}|T_i=1) - \frac{1}{n_0} \sum_{i:T_i=0} E(Y_{0i}|T_i=0) =$$

$$= E(Y_{1i}|T_i=1) - E(Y_{0i}|T_i=0) \neq E(Y_{1i}) - E(Y_{0i})$$

Оценивание при нарушении допущения о независимости

• Рассмотрим альтернативную оценку эффекта воздействия:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} E(Y_{1i}|X_i) - E(Y_{0i}|X_i)$$

 Несмещенность этой оценки следует из закона чередующихся математических ожиданий.

$$E(\widehat{ATE}) = E(E(Y_{1i}|X_i)) - E(E(Y_{0i}|X_i)) = E(Y_{1i}) - E(Y_{0i})$$

- Проблема на практике мы не знаем $E(Y_{0i}|X_i)$ и $E(Y_{1i}|X_i)$.
- Решение методами машинного обучения при некоторых условиях можно получить состоятельную оценку функций $\hat{E}(Y_{0i}|X_i)$ и $\hat{E}(Y_{1i}|X_i)$, а затем подставить их в формулу для оценки среднего эффекта воздействия.
- ullet Отметим, что в задаче бинарной классификации $\hat{E}(Y_{ii}|X_i) = \hat{P}(Y_{ii} = 1|X_i)$.

Допущение об условной независимости

- Введем допущение об условной независимости, при котором $E(Y_{ji}|X_i=x_i,T_i=j)=E(Y_{ji}|X_i=x_i)$ при любых $x_i\in \text{supp}(X_i)$ и $j\in\{0,1\}$.
- Обычно это допущение соблюдается, когда X_i отражает все факторы, которые могут быть статистически связаны и с T_i , и с Y_{ii} .

- Предполагается, что связь между T_i и Y_i обусловлена наблюдаемыми в данных переменными X_i , именуемыми **смешивающими** (confounders).
- Прерывистыми линиями отображены связи T_i и Y_i с агрегированными ненаблюдаемыми переменными u_i и ε_i .

Оценивание с помощью условных математических ожиданий

• При соблюдении допущения об условной независимости:

$$\begin{aligned} \mathsf{ATE} &= E(Y_{1i}) - E(Y_{0i}) = E\left(E(Y_{1i}|X_i) - E(Y_{0i}|X_i)\right) = \\ &= E\left(E(Y_{1i}|X_i, T_i = 1) - E(Y_{0i}|X_i, T_i = 0)\right) = \\ &= E\left(E(T_iY_{1i} + (1 - T_i)Y_{0i}|X_i, T_i = 1) - E(T_iY_{1i} + (1 - T_i)Y_{0i}|X_i, T_i = 0)\right) = \\ &= E\left(E(Y_i|X_i, T_i = 1) - E(Y_i|X_i, T_i = 0)\right) \end{aligned}$$

- Вывод достаточно найти состоятельную оценку функции $E(Y_i|X_i,T_i)$, что в большинстве случаев можно сделать методами машинного обучения, поскольку Y_i всегде наблюдается в данных.
- В итоге средний эффект воздействия оценивается как:

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathcal{E}}(Y_i | X_i, T_i = 1) - \hat{\mathcal{E}}(Y_i | X_i, T_i = 0)$$

Оценивание с помощью взвешивания на обратные вероятности

• Обратим внимание, что при соблюдении допущения об условной независимости:

$$\mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i})|X_{i}) = \mathsf{E}(Y_{1i}/P(T_{i}=1|X_{i})|X_{i},T_{i}=1) P(T_{i}=1|X_{i}) = \mathsf{E}(Y_{1i}|X_{i}) \implies \mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i})) = \mathsf{E}(\mathsf{E}(Y_{1i}|X_{i})|X_{i}) = \mathsf{E}(\mathsf{E}(T_{i}Y_{i}/P(T_{i}=1|X_{i}))) = \mathsf{E}(Y_{1i})$$

• По аналогии можно показать, что:

$$E((1-T_i) Y_i/(1-P(T_i=1|X_i)))=E(Y_{0i})$$

В итоге получаем:

$$\mathsf{ATE} = \mathsf{E}\left(T_{i}Y_{i}/P(T_{i}=1|X_{i})\right) - \mathsf{E}\left((1-T_{i})Y_{i}/(1-P(T_{i}=1|X_{i}))\right)$$

• Из полученны результатов следует альтернативный способ оценивания ATE, именуемый оценкой с помощью взвешивания на обратные вероятности (inverse probability weighting):

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_{i} Y_{i}}{\hat{P}(T_{i} = 1 | X_{i})} - \frac{(1 - T_{i}) Y_{i}}{1 - \hat{P}(T_{i} = 1 | X_{i})}$$

• Преимущество – достаточно с помощью методов машинного обучения оценить $\hat{P}(T_i = 1|X_i)$.

Двойная устойчивость

- Мы рассмотрели два способа оценивания АТЕ при допущении об условной независимости, первый из которых опирается на оценки $E(Y_i|X_i,T_i)$, а второй на оценки $P(T_i=1|X_i)$.
- **Проблема** точность оценок каждого из этих способов зависит от точности оценок соответствующих условных математических ожиданий или вероятностей. Если они оценены неточно, то и итоговая оценка АТЕ также будет неточной.
- Решение обеспечить двойную устойчивость, то есть совместить оба способа, чтобы оценка АТЕ оказывалась состоятельной, если по крайней мере один из них дает состоятельную оценку.

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{1i} - \hat{g}_{0i} + \frac{1}{n} \sum_{i=1}^{n} \frac{T_i(Y_i - \hat{g}_{1i})}{\hat{g}_{Ti}} - \frac{(1 - T_i)(Y_i - \hat{g}_{0i})}{1 - \hat{g}_{Ti}} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i Y_i}{\hat{g}_{Ti}} - \frac{(1 - T_i)(Y_i - \hat{g}_{0i})}{1 - \hat{g}_{Ti}} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i Y_i}{\hat{g}_{Ti}} - \frac{(1 - T_i)Y_i}{1 - \hat{g}_{Ti}} + \frac{1}{n} \sum_{i=1}^{n} \frac{(T_i - \hat{g}_{Ti}) \hat{g}_{0i}}{1 - \hat{g}_{Ti}} - \frac{(T_i - \hat{g}_{Ti}) \hat{g}_{1i}}{\hat{g}_{Ti}} = \frac{\hat{g}_{1i}}{n} = \hat{g}_{1i} = \hat{g}_{1i} + \frac{\hat{g}_{0i}}{n} = \hat{g}_{0i} = \hat{g}_{0$$

Двойное машинное обучение

• Средний эффект воздействия можно также оценить с помощью DML метода, рассмотрев уравнение:

$$Y_i = g(T_i, X_i) + \varepsilon_i$$
 ATE = E $(g(1, X_i) - g(0, X_i))$

- ullet Допущение об условной независимости можно сформулировать как $E(arepsilon_i|X_i,T_i)=0.$
- Рассмотрим вклад, удовлетворяющий условию ортогональности по Нейману:

$$\psi = \frac{T_i(Y_i - g_1(X_i))}{g_{\mathcal{T}}(X_i)} - \frac{(1 - T_i)(Y_i - g_0(X_i))}{1 - g_{\mathcal{T}}(X_i)} + g_1(X_i) - g_0(X_i) - \mathsf{ATE}$$

$$g_1(X_i) = E(Y_i | X = x_i, T_i = 1), \quad g_0(X_i) = E(Y_i | X = x_i, T_i = 0), \quad g_{\mathcal{T}}(X_i) = P(T_i = 1 | X_i)$$

• Решая $E(\psi)=0$ для АТЕ, а также подставляя оценки (полученные с помощью машинного обучения) неизвестных функций и применяя кросс-фиттинг, получаем оценку, обладающую свойством двойной устойчивости:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i(Y_i - \hat{g}_1^{(q_i)}(X_i))}{\hat{g}_T^{(q_i)}(X_i)} - \frac{(1 - T_i)(Y_i - \hat{g}_0^{(q_i)}(X_i))}{1 - \hat{g}_T^{(q_i)}(X_i)} + \hat{g}_1^{(q_i)}(X_i) - \hat{g}_0^{(q_i)}(X_i)$$

• Функции $\hat{g}_1^{(k)}$, $\hat{g}_0^{(k)}$ и $\hat{g}_T^{(k)}$ оцениваются с помощью машинного обучения на данных, **не** вошедших в k-ю из K выборок. Также, $q_i = k$, если наблюдение i **не** вошло в k-ю выборку.

Классические подходы к оцениванию

• Средний эффект воздействия не всегда достаточно информативен для принятия конкретных решений. Поэтому в качестве альтернативы часто оценивают условный средний эффект воздействия, что в маркетинге именуется uplift моделированием.

$$CATE_i = E(Y_{1i}|X_i) - E(Y_{0i}|X_i) = E(Y_i|X_i, T_i = 1) - E(Y_i|X_i, T_i = 0)$$

• При допущении об условной независимости нетрудно получить оценку условного среднего эффекта воздействия:

$$\widehat{\mathsf{CATE}}_i = \hat{E}(Y_i|X_i,\,T_i=1) - \hat{E}(Y_i|X_i,\,T_i=0)$$

- Можно либо оценить $\hat{E}(Y_i|X_i,T_i)$ по всей выборке (Single-learner/S-learner), либо отдельно $\hat{E}(Y_i|X_i,T_i=1)$ и $\hat{E}(Y_i|X_i,T_i=0)$ по группе воздействия и контрольной группе соответственно (Two-learner/T-learner).
- Однако существуют и иные, менее очевидные подходы к оцениванию САТЕ;

Интуиция X-learner

- Проблема иногда группа воздействия может включать малое число наблюдений, что осложняет оценивание $\hat{E}(Y_i|X_i,T_i=1)$ по данным группы воздействия.
- Решение рассмотрим вспомогательную переменную:

$$D_{1i} = Y_{1i} - E(Y_i|X_i, T_i = 0)$$

• Обратим внимание, что:

$$E(D_{1i}|X_i) = E(Y_{1i}|X_i) - E(Y_i|X_i, T_i = 0) = CATE_i$$

- Следовательно, $\hat{E}(D_{1i}|X)$ можно рассматривать как оценку САТЕ $_i$, полученную с помощью Y_{1i} и $\hat{E}(Y_i|X_i,T_i=0)$, то есть без использования неэффективно оцениваемого по малому числу наблюдений группы воздействия $E(Y_i|X_i,T_i=1)$.
- Проблема в данных отсутствуют наблюдения по D_{1i} .
- ullet Решение рассмотреть $\hat{D}_{1i} = Y_{1i} \hat{E}(Y_i|X_i,T_i=0)$ и оценить $\widehat{\mathsf{CATE}}_i = \hat{E}\left(\hat{D}_{1i}|X_i\right)$.

Алгоритм X-learner

- Первый шаг по аналогии с T-learner оцениваются условные математические ожидания $E(Y_i|X_i,T_i=1)$ и $E(Y_i|X_i,T_i=0)$.
- Второгой шаг рассчитываются вспомогательные переменные:

$$\hat{D}_{1i} = Y_{1i} - \hat{E}(Y_i|X_i, T_i = 0)$$
 $\hat{D}_{0i} = \hat{E}(Y_i|X_i, T_i = 1) - Y_{0i}$

- ullet Третий шаг оцениваются $E\left(\hat{D}_{1i}|X_i
 ight)$ и $E\left(\hat{D}_{0i}|X_i
 ight)$.
- Четвертый шаг оцениваются условные вероятности попадания в группу воздействия $P(T_i = 1|X_i)$.
- Пятый шаг с помощью взвешивания оценивается условный эффект воздействия:

$$\widehat{\mathsf{CATE}}_i = \left(1 - \hat{P}(T_i = 1|X_i)\right) \hat{E}\left(\hat{D}_{1i}|X_i\right) + \hat{P}(T_i = 1|X_i)\hat{E}\left(\hat{D}_{0i}|X_i\right)$$

• Интуиция взвешивания – чем меньше наблюдений в группе воздействия, тем больший вес присваивается $\hat{E}\left(\hat{D}_{1i}|X_i\right)$, который не зависит от $\hat{E}\left(Y_i|X_i,T_i=1\right)$.

Метод трансформации класса

• Скронструируем псевдоисход:

$$Y_i^* = Y_i \left(\frac{T_i}{P(T_i = 1|X_i)} + \frac{1 - T_i}{1 - P(T_i = 1|X_i)} \right)$$

- Обозначим через \hat{Y}_i величину Y_i , посчитанную с использованием $\hat{P}(T_i=1|X_i)$ вместо $P(T_i=1|X_i)$.
- При соблюдении допущения об условной независимости можно показать, по аналогии с тем, как это было сделано с оцениванием АТЕ с помощью взвешивания на обратные вероятности, что:

$$E(Y_i^*|X_i) = \mathsf{CATE}_i$$

- Следовательно, для оценивания САТЕ; можно воспользоваться двухшаговой процедурой, часто именуемой **методом трансформации классов**.
- ullet Первый шаг вычислить $\hat{P}(T_i = 1|X_i)$ и \hat{Y}_i^* .
- ullet Второй шаг оценить $E(\hat{Y}_i^*|X_i)$ и получить $\widehat{\mathsf{CATE}}_i = \hat{E}(\hat{Y}_i^*|X_i).$

Качество оценивания условных средних эффектов воздействия

• Для измерения качества прогнозирования условных эффектов воздействия хотелось бы использовать метрику:

$$MSE_0 = \frac{1}{n} \sum_{i=1}^{n} \left(CATE_i - \widehat{CATE}_i \right)^2$$

- Проблема на практике САТЕ; неизвестно.
- Решение в качестве косвенной метрики качества прогнорзов условных эффектов воздействия использовать метрику качества точности прогнозов исхода:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{E}(Y_i | X_i, T_i))^2$$

• Проблема – модель, точнее оценивающая Y_i , не обязательно будет точнее оценивать САТЕ $_i$. Например, даже если оценки $\hat{E}\left(Y_i|X_i,T_i=1\right)$ и $\hat{E}\left(Y_i|X_i,T_i=0\right)$ обладают очень большим, но примерно одинаковым смещением, то их разница, то есть $\widehat{\text{CATE}}_i$, может оказаться весьма точной оценкой, поскольку смещения сократятся.

Качество оценивания условных средних эффектов воздействия

Использование псевдоисходов

• Рассмотрим псевдоисход Y_i^* , такой, что $E(Y_i^*|X_i) = \mathsf{CATE}_i$ и соблюдены некоторые дополнительные, технические условия. Например, можно использовать псевдоисход метода трансформации классов:

$$Y_i^* = Y_i \left(\frac{T_i}{P(T_i = 1|X_i)} + \frac{1 - T_i}{1 - P(T_i = 1|X_i)} \right)$$

• Рассмотрим следующую метрику качества:

$$\mathsf{MSE}^* = \frac{1}{n} \sum_{i=1}^n \left(\hat{Y}_i^* - \widehat{\mathsf{CATE}}_i \right)^2$$

- Можно показать, что при определенных условиях, в частности, больших объемах выборки, MSE* является достаточно точной аппроксимацией MSE₀.
- Существует множество иных подходов к аппроксимации MSE₀ с помощью метрик, зависящих от различных псевдоисходов.

Локальный средний эффект воздействия

Эндогенность

• Проблема – на практике допущение об условной независимости $E(Y_{ji}|X_i,T_i)=E(Y_{ji}|X_i)$ часто нарушается вследствие эндогенности, из-за чего описанные ранее методы обычно дают несостоятельные оценки эффектов воздействия.

- Эндогенность обычно возникает из-за наличия ненаблюдаемых характеристик V_i , одновремнено влияющих и на целевую переменную Y_i , и на вероятность воздействия $T_i=1$.
- Решение адаптировать метод инструментальных переменных.

Локальный средний эффект воздействия

Определение

- Рассмотрим случай, когда эндогенный регрессор T_i и инструментальная переменная Z_i являются бинарными переменными, отражающими, например, факт наличия высшего образования у индивида и его родителей соответственно. Кроме того, временно проигнорируем все остальные признаки X_i .
- ullet По аналогии с Y_{1i} и Y_{0i} введем гипотетические состояния переменной воздействия T_{1i} и T_{0i} .

$$T_i = egin{cases} T_{1i}, ext{ если } Z_i = 1 \ T_{0i}, ext{ если } Z_i = 0 \end{cases} = Z_i T_{1i} + (1 - Z_i) T_{0i}$$

- ullet Введем допущение об **экзогенности** инструмента вектор $(Y_{1i},Y_{0i},T_{1i},T_{0i})$ и инструмент Z_i независимы.
- Выделим четыре группы индивидов:

$$T_{0i}=1$$
 $T_{0i}=1$ $T_{1i}=0$ $T_{1i}=0$ $T_{0i}=1$ $T_{0i}=0$ Всегда согласные (always takers) $T_{0i}=0$ Соблюдатели (compliers) Всегда несогласные (never takers)

• Без введения дополнительных строгих допущений, например, о том что эффект воздействия T_i на Y_i является одинаковым для всех индивидов, в общем случае оценить ATE не получится, но можно оценить локальный эффект воздействия LATE, отражающий средний эффект воздействия на соблюдателей.

LATE =
$$E(Y_{1i} - Y_{0i} | \underbrace{T_{1i} > T_{0i}}_{\text{соблюдатели}}) = \underbrace{\frac{E(Y_i | Z_i = 1) - E(Y_i | Z_i = 0)}{P(T_i = 1 | Z_i = 1) - P(T_i = 1 | Z_i = 0)}}_{P(T_i = 1 | Z_i = 1) - P(T_i = 1 | Z_i = 0)}$$

если нет отрицателей, есть соблюдатели и Z_i экзогенна

• Вывод – при отсутствии отрицателей для оценивания LATE достаточно оценить $E(Y_i|Z_i)$ и $P(T_i|Z_i)$, для чего достаточно посчитать соответствующие доли.

Локальный средний эффект воздействия

Двойное машинное обучение

- **Проблема** без использования дополнительных наблюдаемых признаков X_i оценка LATE может иметь достаточно большую дисперсию.
- Решение воспользоваться двойным машинным обучением, позволяющим использовать инструментальную переменую Z_i вместе с признаками X_i :

$$\begin{aligned} Y_i &= g_Y(Z_i, X_i) + \varepsilon_i^{(Y)} & T_i &= g_T(Z_i, X_i) + \varepsilon_i^{(T)} & Z_i &= g_Z(X_i) + \varepsilon_i^{(Z)} \\ g_Y(Z_i, X_i) &= \mathsf{E}\left(Y_i | Z_i, X_i\right) & g_T(Z_i, X_i) &= \mathsf{E}\left(T_i | Z_i, X_i\right) & g_Z(X_i) &= \mathsf{E}\left(Z_i | X_i\right) \\ \mathsf{E}(\varepsilon_i^{(Y)} | Z_i, X_i) &= 0 & \mathsf{E}(\varepsilon_i^{(T)} | Z_i, X_i) &= 0 & \mathsf{E}(\varepsilon_i^{(Z)} | X_i) &= 0 \end{aligned}$$

• Функции g_Y , g_T и g_Z оцениваются с помощью машинного обучения. При выполнении некоторых дополнительных технических условий двойное машинное обучение позволяет получить состоятельную и асимптотически нормальную оценку LATE (выражение оценки опущено для краткости).

$$LATE = \frac{E(g_Y(1, X_i)) - E(g_Y(0, X_i))}{E(g_T(1, X_i)) - E(g_T(0, X_i))}$$

- Преимущество 1 благодаря использованию инструментальных переменных решает проблему эндогенности, являющуюся серьезным препятствием к состоятельному оцениванию эффектов воздействия с использованием обсуждавшихся ранее методов машинного обучения.
- Преимущество 2 в отличие от классического линейного метода инструментальных переменных не опирается на допущения о линейной связи между переменными.