Implicit Surfaces Maillage

From mathematics ...

... to the screen

Maillage

▶ Classification

Cubes

Tétraèdres

Continuation

Particules

Classification

Selon la méthode de génération des triangle

Critères de qualité

Un maillage est une approximation de la surface Cohérence topologique, maillage homéomorphe à la surface Bonne approximation géométrique Triangles de bonne qualité

L'algorithme de maillage doit être rapide

Marching Cubes

Classification

▶ Cubes

Tétraèdres

Continuation

Particules

Décomposition de l'espace

Grille de n^3 cellules cubiques C_{ijk} Calcul du signe du potentiel aux sommets Analyse des 256 configurations Maillage de chaque cellule

Subdivision adaptative

Nécessite un critère déterminant que $S \cap C_{ijk} = \emptyset$

Subdivision en tétraèdres

Evite les ambigüités mais génère plus de triangles

Analyse de la qualité du maillage et améliorations

Qualité du maillage

L'algorithme produit de nombreux triangles aplatis

$$\rho = \frac{r}{R}$$
 Rayon du cercle circonscrit Rayon du cercle inscrit

$$r = \frac{\|\mathbf{ab} \wedge \mathbf{ac}\|}{\mathbf{ab} + \mathbf{bc} + \mathbf{ca}}$$

$$R = \frac{\mathbf{ab} \cdot \mathbf{bc} \cdot \mathbf{ca}}{2\|\mathbf{ab} \wedge \mathbf{ac}\|}$$

Marching Cubes

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Principe

Modèles à squelettes

Echantillonnage et maillage de la surface dans les régions d'influence des primitives

Raccordement des morceaux de surface

M. Desbrun, N. Tsingos, M-P. Cani. Adaptive Sampling of Implicit Surfaces for Interactive Modeling and Animation. *Computer Graphics Forum*, **5**(15), 1996

M. Desbrun, M.-P. Cani. Active Implicit Surface for Animation. *Graphics Interface*, 143 – 150, 1998.

Marching Triangles

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

▶ Maillage

Nuages de points

Conclusion

Principe de l'algorithme

Construction directe de triangles quasi équilatéraux sur la surface S et s'adaptant à la courbure locale

Critère de la sphère vide

Un nouveau triangle T_k de sphère circonscrite \mathbf{S}_k ne doit pas contenir d'autre sommet du maillage \mathcal{M}

Propagation de triangles T_k par ajout de sommets **p** respectant un critère de Delaunay

Fermeture du maillage \mathcal{M} par couture

Marching Triangles

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

▶ Maillage

Nuages de points

Conclusion

Propagation de triangles sur la surface

Initialisation par un triangle germe

Maintient d'un front de propagation (arêtes actives)

Respect du critère de la sphère vide pour la création des nouveaux triangles

Fermeture du maillage par couture

Systèmes de particules

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Principe

Echantillonnage de la surface

Méthode générale [Witkin 1994] lente pour les formes complexes Méthode optimisée pour les surfaces implicites à squelettes (type BlobTree)

Textures

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Problèmes

On ne connait pas la surface S
Pas de paramétrisation naturelle

Textures volumiques

Fonction qui définissent la texture en

tout point de l'espace : $T(\mathbf{p}) : \mathbf{R} \to E$

Manque de contrôle : plongement effectué dans tout l'espace

Système de particules

Calcul des coordonnées inverses par un suivi de gradient du potentiel vers une surface de référence texturée

M. Tigges and B. Wyvill. A Field Interpolated Texture Mapping Algorithm for Skeletal Implicit Surfaces. *Computer Graphics International*, 25 – 33, 1999