WE CLAIM:

1. A compound having the structural formula (I)

(I)
$$R^{4} \xrightarrow{R^{2}} R^{10} \xrightarrow{R^{10}} O$$

wherein:

5

10

15

20

X is lower hydrocarbyl;

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, -OR¹³, and -SR¹³ wherein R^{13} is alkyl;

R⁴, R⁵, R⁶, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

R9 is hydrogen or hydrocarbyl; and

R¹⁰ is methyl or ethyl.

2. The compound of claim 1, having the structural formula (II)

wherein:

(II)

5

10

15

20

25

30

X is lower alkyl; and

R⁶ is selected from the group consisting of hydrogen and lower alkyl.

3. The compound of claim 2, wherein R^6 is hydrogen.

4. The compound of claim 2, wherein R⁶ is lower alkyl.

5. The compound of claim 4, wherein R^6 is methyl.

6. A compound having the structural formula (III)

(III)
$$R^{9} \longrightarrow R^{19}$$

$$R^{19} \longrightarrow R^{19}$$

$$R^{10} \longrightarrow R^{19}$$

$$R^{10} \longrightarrow R^{19}$$

$$R^{10} \longrightarrow R^{19}$$

wherein:

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

R² is selected from the group consisting of hydrogen, hydroxyl, alkyl, -OR¹³, and -SR¹³

wherein R13 is alkyl;

R³ is selected from the group consisting of hydrogen and hydrocarbyl;

R⁴, R⁵, and R⁷ are independently hydrogen or lower alkyl;

R⁹ is hydrogen or hydrocarbyl;

R¹⁰ is methyl or ethyl; and

 R^{19} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxyl, activated hydroxyl, or activated hydroxylmethyl.

7. The compoundof claim 6, having the structural formula (IV)

10

15

5

wherein:

R³ is hydrogen or lower alkyl; and

R¹⁹ is hydroxyl, hydroxymethyl, -O-acetyl, or -O-tetrahydropyranyl.

20

- 8. The compound of claim 7, wherein R³ is hydrogen or methyl, and R¹9 is hydroxymethyl.
 - 9. The compound of claim 8, wherein \mathbb{R}^3 is hydrogen.

25

- 10. The compound of claim 8, wherein R^3 is methyl.
- 11. The compound of claim 7, wherein R³ is hydrogen or methyl, and R¹⁹ is hydroxyl.
- 12. The compound of claim 11, wherein R³ is hydrogen.

- 13. The compound of claim 11, wherein R^3 is methyl.
- 14. A compound having the structural formula (V)

wherein:

R¹ is hydrogen or CR¹¹R¹², wherein R¹¹ and R¹² are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, $-OR^{13}$, and $-SR^{13}$ wherein R^{13} is alkyl;

R³ is selected from the group consisting of hydrogen and hydrocarbyl;

R⁴, R⁵, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

R^{6Mod} is selected from the group consisting of hydrogen, alkyl, acyl, -C(O)-aryl, -C(O)-alkyl, hydroxyl-protecting groups, and hydroxyl-activating groups;

 R^{8a} is selected from the group consisting of hydrogen, hydroxyl, oxo, and -OR 18 wherein R^{18} is lower alkyl or lower acyl;

R⁹ is hydrogen or alkyl;

R¹⁰ is methyl or ethyl; and

 R^{20} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxyl, activated hydroxyl, activated hydroxymethyl, or

$$CH_2)_m$$
 $CH_2)_{p-1}$ CH_2 CH_2

COFOCON NOTES

5

10

15

20

25

5

10

15

20

in which m is zero or 1, p is an integer in the range of 1 to 7 inclusive, t is zero or 1, with the proviso that when R^{8a} is oxo, t is 1, and when R^{8a} is hydrogen, t is zero, and R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino.

15. The compound of claim 14, having the structural formula (VI)

$$(VI) \qquad \qquad \begin{array}{c} R^{19} \\ R^{6Mod}O \end{array}$$

wherein:

R³ is hydrogen or lower alkyl;

 R^{6Mod} is hydrogen or a hydroxyl-protecting group;

 R^{8b} is selected from the group consisting of hydrogen, hydroxyl, and oxo; and R^{19} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxymethyl, activated hydroxyl, or activated hydroxymethyl.

- 16. The compound of claim 15, wherein R³ is hydrogen or methyl, R^{6Mod} is hydrogen or lower alkyl, R^{8b} is oxo, and R¹⁹ is hydroxyl, hydroxymethyl, -O-acetyl, or -O-tetrahydropyranyl.
 - 17. The compound of claim 16, wherein R³ is methyl.
 - 18. The compound of claim 17, wherein $R^{6\text{Mod}}$ is isopropyl.

19. A compound having the structural formula (XXVII)

5 (XXVII) R^{5} $R^{6\text{Mod}}$

10 wherein:

 R^1 is hydrogen or $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, -OR¹³, and -SR¹³ wherein R^{13} is alkyl;

R⁴, R⁵, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

 R^{6Mod} is selected from the group consisting of hydrogen, alkyl, acyl, -C(O)-aryl, -C(O)-alkyl, hydroxyl-protecting groups, and hydroxyl-activating groups;

R¹⁰ is methyl or ethyl; and

R¹⁹ is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxymethyl,

20 activated hydroxyl, or activated hydroxymethyl.

20. A compound having the structural formula (XXVIII)

5 (XXVIII)

$$R^{5}$$
 R^{7}
 R^{10}
 R^{10}

10 wherein:

 R^1 is hydrogen or $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, $-OR^{13}$, and $-SR^{13}$ wherein R^{13} is alkyl;

R⁴, R⁵, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

R¹⁰ is methyl or ethyl; and

 R^{19} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxymethyl, activated hydroxyl, or activated hydroxymethyl.

21. A compound having the structural formula (VII)

(VII)
$$\begin{array}{c}
Q^{1} & Q^{2} \\
 & (CH_{2})_{p-1} & C \downarrow 1 \\
 & R^{2} \\
 & Q^{3} & Q^{4}
\end{array}$$

wherein:

R³ is hydrogen or hydrocarbyl;

15

20

R^{8b} is selected from the group consisting of hydrogen, hydroxyl, and oxo;

m is zero or 1;

p is an integer in the range of 1 to 7 inclusive;

t is zero or 1, with the proviso that when R^{8a} is oxo, t is 1, and when R^{8a} is hydrogen, t is zero, and;

 R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino.

22. A compound having the structural formula (XVI)

(XVI)

 $\begin{array}{c} & & \\$

wherein:

20

25

R¹ is CR¹¹R¹², wherein R¹¹ and R¹² are hydrogen or lower alkyl;

R² is selected from the group consisting of hydrogen, hydroxyl, alkyl, -OR¹³, and -SR¹³ wherein R¹³ is alkyl;

R³ is hydrogen or hydrocarbyl;

R⁴ and R⁵ are independently selected from the group consisting of hydrogen and lower alkyl;

R⁷ is hydrogen or lower alkyl;

R¹⁰ is methyl or ethyl;

m is zero or 1;

5

10

p is an integer in the range of 1 to 7 inclusive;

 R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, 5 hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino, or a pharmacologically acceptable acid addition salt thereof.

23. The compound of claim 22, having the structural formula (XVII)

(XVII)

10

15

20

25

$$(CH_2)_m$$
 O Q^3 Q^4 $(CH_2)_p$ N R^{22}

wherein:

m is zero or 1;

p is an integer in the range of 1 to 7 inclusive;

R³ is hydrogen or lower alkyl;

 R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino,

or a pharmacologically acceptable acid addition salt thereof.

24. The compound of claim 21, wherein R³ is lower alkyl.

25. The compound of claim 22, wherein R³ is methyl.

26. A method for synthesizing 21-hydroxy-19-norpregna-4-en-one and substituted analogs thereof, comprising treating a starting material having the structural formula (I)

(I)
$$R^{5} \longrightarrow R^{1}$$

$$R^{6} \bigcirc Q$$

with an alkali metal in the presence of ammonia or an alkylamine, wherein, in formula (I),

X is lower hydrocarbyl;

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, -OR¹³, and -SR¹³ wherein R^{13} is alkyl;

R⁴, R⁵, R⁶, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

R9 is hydrogen or hydrocarbyl; and

 R^{10} is methyl or ethyl, resulting in a reaction product having the structural formula

20 (VIII)

(VIII)
$$R^{5}$$
 R^{10} OH

5

10

27. A method for synthesizing 21-hydroxy-19-norpregna-4-en-3-one, comprising treating (IX)

5 (IX)

10

wherein X and Y are independently lower alkyl, with an alkali metal in the presence of ammonia or an alkylamine.

15

28. A method for synthesizing a 7-alkyl-6-keto-1,3,5(10) estratriene, comprising contacting a 19-norpregna-4-en-3-one with gaseous oxygen in the presence of base, followed by reaction of the intermediate so provided with an alkyl halide.

29. A method for synthesizing a 7-alkyl-6-keto-1,3,5(10) estratriene having the structural formula (VIa)

20

25

wherein:

R^{3A} is lower alkyl;

R^{6Mod} is hydrogen or a hydroxyl-protecting group;

R^{8a} is hydrogen or oxo; and

R¹⁹ is hydroxyl, hydroxymethyl, protected hydroxyl, or protected hydroxymethyl, the method comprising the steps of

(a) contacting the 19-norpregna-4-en-3-one (X)

5

(X)

10

with oxygen in the presence of a base;

""/R^{3A}

- (b) protecting the 3-hydroxyl group thus formed with a protecting group, and
- (c) treating the 3-hydroxyl-protected intermediate with an alkyl halide.

15

30. A method for synthesizing an anti-estrogenic steroid having the structural formula

(XI)

25

30

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl, and when r1 is absent, R^1 is hydrogen or alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, and -OR¹³ wherein R^{13} is alkyl;

R^{3A} is lower alkyl;

R⁴, R⁵, R⁶, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl; and

R¹⁰ is methyl or ethyl;

m is zero or 1;

p is an integer in the range of 1 to 7 inclusive;

R²¹ and R²² are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino, said method comprising:

(a) providing a starting material having the structural formula (XII)

(XIII)
$$\begin{array}{c} R^{4} \\ R^{2} \\ R^{7} \end{array}$$

(b) converting the -OH group to an -O-LG moiety wherein LG is a leaving group displaceable by nucleophilic attack, and displacing LG by reaction with a hydroxyl-containing compound having the structural formula (XIII)

(XIII)
$$Q^1 = Q^2 = Q^2$$

nayandan anaont

5

10

15

- 5
- (c) oxidizing the A ring and providing a 6-keto moiety by exposure to gaseous oxygen in the presence of base;
 - (d) protecting the 3-hydroxyl group with a protecting group;
 - (e) contacting the product of step (d) with an alkyl halide, to provide a 7α -alkyl
 - substituent; and
 - (f) reducing the compound so provided to remove all keto moieties, with the proviso that steps (c) and (d) may occur prior to or simultaneously with step (b).
 - 31. The method of claim 30, further including (g) treating the product of step (f) with an acid to produce an acid addition salt.
 - 32. A method for synthesizing an anti-estrogenic steroid having the structural formula (XI)

15

20

30

10

wherein:

(XI)

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, and -OR 13 wherein R^{13} is alkyl;

R^{3A} is lower alkyl;

 R^4 , R^5 , R^6 and R^7 are independently selected from the group consisting of hydrogen and lower alkyl; and

R¹⁰ is methyl or ethyl.

m is zero or 1;

p is an integer in the range of 1 to 7 inclusive;

R²¹ and R²² are lower alkyl or are linked together to form a five- or six-membered

5 heterocycloalkyl ring; and

 Q^1 , Q^2 , Q^3 , and Q^4 are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino,

said method comprising:

(a) providing a starting material having the structural formula (XII)

10

(XIII)
$$\begin{array}{c} R^4 \\ R^2 \\ R^1 \\ R^7 \end{array}$$

15

- (b) protecting the -OH group and the oxy group with protecting groups, thereby converting the compound into a diene;
 - (c) deprotecting the oxy group to form a dienone;
 - (d) contacting the product of step (b) with an alkyl lithium in the presence of a lithium halide, to provide a 7α -alkyl substituent;
 - (e) deprotecting the -OH group;
- 25 (f) effecting reaction between the -OH group and an aldehyde having the structural formula (XIV)

(XIV)
$$HO \longrightarrow \begin{array}{c} Q^1 & Q^2 \\ & & \\$$

to result in an intermediate having the structural formula (XV)

$$(XV) \qquad \qquad \begin{array}{c} Q^1 & Q^2 \\ (CH_2)_m - O \end{array} ;$$

(g) treating (XV) with an alkylamine having the structure $HNR^{21}R^{22}$ under reaction conditions effective to produce the amine (XVI)

(XVI)
$$\begin{array}{c} Q^1 & Q^2 \\ & &$$

(h) oxidizing and thereby aromatizing the A ring by reaction with a suitable oxidizing agent or agents.

33. The method of claim 32, further including (i) treating the product of step (h) with an acid to produce an acid addition salt.

5

10

15

20

34. A method for synthesizing an anti-estrogenic steroid having the structural formula

10

15

20

25

5

wherein:

 R^1 is $CR^{11}R^{12}$, wherein R^{11} and R^{12} are hydrogen or lower alkyl, and when r1 is absent, R^1 is hydrogen or alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, and -OR 13 wherein R^{13} is alkyl;

R^{3A} is lower alkyl;

 $R^4, R^5, R^6,$ and R^7 are independently selected from the group consisting of hydrogen and lower alkyl; and

R¹⁰ is methyl or ethyl;

m is zero or 1;

p is an integer in the range of 1 to 7 inclusive;

 R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

 Q^1 , Q^2 , Q^3 , and Q^4 are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino,

said method comprising:

(a) providing a starting material having the structural formula (XII)

(XII)
$$R^{5} \xrightarrow{R^{10}} R^{10}$$

(b) converting the -OH group to an -O-LG moiety wherein LG is a leaving group displaceable by nucleophilic attack, and displacing LG by reaction with a hydroxyl-containing compound having the structural formula (XIII)

(XIII)
$$Q^1 = Q^2 + Q^2$$

- (c) oxidizing the A ring to form a diene and protecting resulting the 3-hydroxyl group with a protecting group;
 - (d) converting the protected 3-hydroxyl group into an oxo group, thereby forming a dienone;
 - (e) contacting the product of step (d) with an alkyl lithium in the presence of lithium halide, to provide a 7α -alkyl substituent; and
 - (f) reducing the compound so provided to remove all keto moieties.
 - 35. The method of claim 34, further including (g) treating the product of step (f) with an acid to produce an acid addition salt.

5

10

15

20

12

5

10

15

20

25

30

- 36. A pharmaceutical composition for administration of a therapeutic agent, comprising a therapeutically effective amount of the compound of claim 20, in combination with a pharmaceutically acceptable carrier.
- 37. A pharmaceutical composition for administration of a therapeutic agent, comprising a therapeutically effective amount of the compound of claim 21, in combination with a pharmaceutically acceptable carrier.
- 38. A pharmaceutical composition for administration of a therapeutic agent, comprising a therapeutically effective amount of a compound having the structural formula

or a pharmaceutically acceptable acid addition salt thereof, in combination with a pharmaceutically acceptable carrier.

39. A pharmaceutical composition for administration of a therapeutic agent, comprising a therapeutically effective amount of a compound having the structural formula

or a pharmaceutically acceptable acid addition salt thereof, in combination with a

pharmaceutically acceptable carrier.

- 40. A method for treating a human patient suffering from a prostate disorder, comprising administering to the patient, within the context of an effective dosage regimen, a therapeutically effective amount of the compound of claim 20.
- 41. A method for treating a human patient suffering from a prostate disorder, comprising administering to the patient, within the context of an effective dosage regimen, a therapeutically effective amount of the compound of claim 21.
- 42. A method for treating a human patient suffering from a prostate disorder, comprising administering to the patient, within the context of an effective dosage regimen, a therapeutically effective amount of a compound having the structural formula

or a pharmaceutically acceptable acid addition salt thereof.

43. A method for treating a human patient suffering from a prostate disorder, comprising administering to the patient, within the context of an effective dosage regimen, a therapeutically effective amount of a compound having the structural formula

5

15

20

25

or a pharmaceutically acceptable acid addition salt thereof.

44. A method for stereoselectively adding an alkyl moiety to the 7α position of a 6
 5 keto steroid comprising providing a C ¹⁹ or C²⁰ tetrehydropyranyl protected hydroxyl moiety on the steroid and reacting the protected steroid with an alkylhalide in the presence of base.

DIFERRAL OPERA