Dire Dawa University Department of Mathematics

Course Outline

Course Information	
Program	Regular
Module Name	Advanced Engineering Mathematics
Course Title	Applied Mathematics III
Course Code	Math1042
ECTS	7
Students workload	Cr. Hr 4 (Lecture Hrs 4, Tutorial Hrs 3)
Academic year	2017 E.C
Semester	II
Target group	2 nd year Chemical, Electrical and Mechanical Engineering
	Students

Course Description

This course covers first and second-order differential equations, the Fourier series and its transformations, Vector calculus with some applications, and complex analysis

Learning Outcomes:

At the end of this course, students will be able to:

- Solve linear differential equations of first and second order and apply to physical phenomena.
- Derive the Laplace transform and apply it to solve ordinary differential equations.
- Find the Fourier series of periodic functions.
- Evaluate line and surface integral of functions.
- Compare the limit and derivative of complex variables with real variables.

Chapter 1: Ordinary Differential Equations

- 1.1 Basic concepts of ODE
- 1.2 Separable Differential Equations
- 1.3 Homogeneous Differential Equations
- 1.4 Exact Differential Equations
- 1.5 First-order Differential Equations
- 1.6 Second order linear differential equations

Chapter 2: Laplace Transform

- 2.1 Definition
- 2.2 Linearity & Inverse of Laplace transform
- 2.3 Existence of Laplace transform
- 2.4 First order shift(s-shifting)
- 2.5 Laplace transforms of derivative & Integrals
- 2.6 Second order shift(t-shifting)
- 2.7 Differentiation & Integration of transforms

- 2.8 Convolution
- 2.9 Systems of Differential Equations

Chapter 3: Fourier Series and Integrals

- 3.1 Periodic functions
- 3.2 Fourier Series
- 3.3 Fourier Cosine and Sine Series
- 3.4 Complex Fourier Series
- 3.5 Fourier Integral
- 3.6 Fourier Cosine and Sine Integral
- 3.7 Fourier Transform

Chapter 4: Vector Calculus

- 4.1 Revision of vector-valued function.
- 4.2 Revision on vector differential calculus
- Gradient of scalar field
- Divergence and Curl of a vector field
- 4.3 Line Integral
- 4.4 Existence and Independence of Path
- 4.5 Green's Theorem
- 4.6 Surface Integral
- 4.7 Gauss divergence theorem

Chapter 5: Complex Analysis

- 5.1 Complex numbers and plane
- 5.2 Functions of complex variables
- 5.3 Limit and continuity of analytic functions
- 5.4 Cauchy-Riemann and Laplace equation
- 5.4 Complex Integration

Assessment plan: Quiz 1 (5%), Mid-exam (30%), Quiz 2 (5%), Assignment (10%), Final examination (50%).

Text & Reference Books:

- 1. Erwin Kreyszing(2005). Advanced Engineering Mathematics. 9thedition.Wiley.(Text)
- 2. R.Ellis and D.Gulick(1998). Calculus with Analytic Geometry, 5thedition. Harcourt.
- 3. Stewart, J. (2002), Calculus, 5th edition, Brooks Cole.
- 4. Churchile, R.V. (2003). Complex variable and application.