Contest simulado de programação competitiva Caderno de Provas

Servidor BOCA (Chapecó): http://87.98.147.128/boca/

Dicas importantes

Para soluções em java o nome de classe deve ser

Problema LETRA DO PROBLEMA.JAVA

EXEMPLO : Problema_A.java

Nome do arquivo deve ser o mesmo nome da classe.

Todos os compiladores (Java, Python, C e C++) são padrões da distribuição Ubuntu versão 16.04 (gcc C11 habilitado);

Penalidade de 20 pontos por errada.

Problemas

Problema A: Família TIRANA e o dia do INTEROGOSSAURO

Problema B: Array de CCO

Problema C: Equação de Felipe

Problema D: Números eufóricos

Problema E: Raiz bonita

Problema F: Fibonor

Problema G: Pares

Problema H: Polígono regular convexo

Problema I: Macacos e os nobres triângulos

Problema J: Jogo do xardes

Problema K: Circulos

Problema L: Matriz

1 Problema A: Família TIRANA e o dia do INTERROGOSSAURO

Arquivo: A.[c|cpp|java|py] Tempo limite: 8s

A família TIRANA é muito supersticiosa quando se fala em parentesco porque quando questionados sobre seus ascendentes eles devem ser muito cautelosos para não errar quando perguntados quem são seus ascendentes. Hoje é um dia muito importante para a família TIRANA; pois hoje é o dia do INTERROGOSSAURO neste dia tão especial da família alguns membros são interrogados por um juiz externo convidado pela majestade da família, a majestade da família não faz parte da família é apenas uma pessoa de confiança que escolhe o juiz que realiza o INTERROGOSSAURO.

O INTERROGOSSAURO é um evento da família TIRANA que acontece todo ano, pois eles acreditam que alguns de seus ascendentes foram DINOSSAUROS algumas gerações passadas e como alguns dos membros da família não são tão próximos, logo eles não se conhecem e eles gostariam de saber quem é o maior ascendente comum da família dos dois membros interrogados e caso o maior ascendente comum for um número primo isto quer dizer que foi dinossauro nas gerações em que viveu ou em que vive, a majestade achou que você seria a pessoa perfeita para ser o juiz e chegou a hora de você ajudar a família.Sim existe a possibilidade de uma geração de dinossauros ter tido como seu descendente uma pessoa e o contrário também é válido.

Problema

A família TIRANA solicitou sua ajuda para responder várias perguntas do tipo qual é o ascendente comum mais próximo das duas pessoas que estão sendo interrogadas e responder se ele foi dinossauro.

A família UNOESC possui **N** pessoas ou dinossauro e cada membro recebeu um número **NI**, como podemos ver neste exemplo uma família com 15 membros. A distribuição do nível de parentesco foi criada para que cada membro tenha no máximo 2 descendentes.a família foi distribuída em ordem crescente como mostra o exemplo na figura acima.

Entrada

A primeira linha possui um inteiro \mathbf{M} representando respectivamente a quantidade de casos de teste, em seguida terão \mathbf{M} linhas em cada linha possui 3 inteiros \mathbf{N} AI \mathbf{BI} , representando uma família com \mathbf{N} membros.

1 <= M <= 200.

N >= 3.

0 <= AI <= BI <= N-1 <= 1 000 000 000 0.</pre>

Saída

Para cada caso de teste N AI BI, imprima qual é o ascendente comum mais próximo de dois membros da família AI e BI que estão sendo interrogadas e em seguida de um inteiro 1 ou 0. 1 se o maior ascendente comum entre AI e BI for primo caso contrário 0.

3	0 0
15 9 12	1 0
11 8 10	3 1
17 3 16	

2 Problema B: Array de CCO

Arquivo: B.[c|cpp|java|py]

Hiaguinho é considerado o garoto mais esperto na escola onde estuda ainda mais por ele acreditar que o array de CCO(Clube de Calouros do Oeste de

Santa Catarina) é o mais bonito do mundo, é um array na qual o elemento I aparece I vezes exatamente;

Problema

Dado o valor N responda qual é o e-nésimo menor valor.

Entrada

A entrada possui um inteiro ${\bf Q}$ representando respectivamente a quantidade de consultas. Na sequência possui ${\bf Q}$ linhas representando uma consulta do e-nésimo menor valor.

1 <= Q <= 50 000. 1 <= N <= 1 000 000 000 000 00.

Saída

Para cada consulta imprima o e-nésimo menor valor.

Exemplos

2	
2	
3	
3	
3	
	2 2 3 3 3

Tempo limite: 1s

3 Problema C: Equação de Felipe

Arquivo: C.[c|cpp|java|py]

Tempo limite: 1s

Recentemente foi descoberta uma nova equação matemática e Felipe ficou muito curioso para descobrir qual seria o menor inteiro positivo \mathbf{X} e \mathbf{Y} tal que satisfaça a equação $\mathbf{A} * \mathbf{X} - \mathbf{B} * \mathbf{y} = \mathbf{0}$.

Entrada

A entrada possui um inteiro ${\bf Q}$ representando respectivamente a quantidade de consultas em seguidas terão ${\bf Q}$ linhas em cada consulta possui 2 inteiros ${\bf A}$ e ${\bf B}$.

1 <= Q <= 1000.

1 <= L <= R <= 1 000 000 000.

Saída

Para cada consulta imprima o resto da divisão por 1 000 000 007.

2	2 1
4 8	320 3
120 12800	

4 Problema D: Números eufóricos

Arquivo: D.[c|cpp|java|py]

Um número é considerado eufórico se no número ${\bf I}$ há pelo menos ${\bf K}$ dígitos pares distintos ou pelo menos ${\bf K}$ dígitos ímpares distintos, mas não em ambos os casos.

Tempo limite: 2s

Exemplo 1:
$$I = 123460 e K = 3$$

 $\hbox{\'e} \ \ \hbox{considerado euf\'orico por que possui no mínimo K d\'igitos pares distintos e a quantidade de números ímpares distintos \'e menor que K. }$

Problema

 $\mbox{ \begin{tabular}{lll} Dado dois intervalos & {\bf A} \ e \ {\bf B} \ \mbox{responda quantos números eufóricos} \\ \mbox{ existem no intervalo} \end{tabular}$

entre A e B(inclusive).

Entrada

A entrada possui possui 3 inteiros ${\bf A}$, ${\bf B}$ e ${\bf K}$.

Saída

Para cada consulta imprima $\$ resposta como $\$ resto da divisão por $\$ 1 000 007.

2 50 2	16
--------	----

5 Problema E: Raiz bonita

Arquivo: E.[c|cpp|java|py]

Tempo limite: 1s

Dado dois inteiros ${\bf A}$ e ${\bf B}$ qual é a soma da parte inteira da raiz de todos os números compreendidos

entre A e B.

A PARTE INTEIRA DA RAIZ DE UM NÚMERO CORRESPONDE AO VALOR ANTES DO PONTO FLUTUANTE.

Exemplo $\sqrt{2}$ = 1.41421356237 (a parte inteira é o número 1). Exemplo $\sqrt{25}$ = 5 (a parte inteira é o número 5).

Problema

Dado dois intervalos A e B responda a soma da parte inteira da raiz para todo número compreendido entre A e B (inclusive).

Entrada

A entrada possui um inteiro \mathbf{Q} representando respectivamente a quantidade de consultas. em seguidas terão \mathbf{Q} linhas em cada linha possui 2 inteiros \mathbf{A} e \mathbf{B} separados por espaço.

Q <= 10 000.
1 <= A <= B <= 1 000 000 000.</pre>

Saída

Para cada consulta imprima resposta como resto da divisão por **1 000 000 007.**

3	6
2 5	9
1 6	70
1 6 5 25	

6 Problema F: FibonOr

Arquivo: F.[c|cpp|java|py]

Problema

A função f(n) é definida por

$$f(1) = 2;$$

$$f(2) = 3;$$

$$f(n) = (f(n-1)|f(n-2))|n.$$

para n > 2.

| = operador bit a bit or.

Entrada

A entrada possui um inteiro ${\bf Q}$ e na sequência ${\bf Q}$ linhas, em cada linha possui um valor ${\bf n}.$

Tempo limite: 1s

 $1 \le n \le 1000000000$.

Saída

imprima a resposta f(n).

2	3
3	255
178	

7 Problema G: Pares

Arquivo: G.[c|cpp|java|py]

Tempo limite: 1s

Gui e Jú estão tentando descobrir quantos números pares existem entre dois intervalos.

um número é considerado par quando dividido por 2 e deixa resto $0 \, ({\sf zero})$ na divisão.

Problema

Dado um intervalo ${\bf A}$ e ${\bf B}$; quantos números que são pares existem neste intervalo(inclusive).

Entrada

A entrada possui um inteiro ${\bf Q}$ representando respectivamente a quantidade de consultas. Na sequência possui ${\bf Q}$ linhas. cada linha possui dois inteiros ${\bf A}$ e ${\bf B}$..

1 <= Q <= 50 000.

1 <= A <= B <= 1 000 000 000.

Saída

Para cada consulta imprima quantos números pares existem entre ${\bf A}$ e ${\bf B}$ (inclusive).

2	2
1 5	4
2 9	

8 Problema H: Polígono regular convexo

Arquivo: H.[c|cpp|java|py] Tempo limite: 1s

Júlio adoro os polígonos ainda mais os que são regulares e convexos.

Problema

Dado um polígono que seja regular e convexo de ${\bf N}$ lados. responda, quantas arestas distintas intersectam o centro do polígono.uma aresta do polígono é uma reta entre dois pontos do polígono, segue um exemplo de todas arestas de um polígono de 6 lados com 18 arestas.

3 ARESTAS INTERSECTAM O CENTRO DO POLÍGONO DE 6 LADOS

Entrada

A entrada possui um inteiro ${\bf Q}$ representando respectivamente a quantidade de consultas.Na sequência possui ${\bf Q}$ linhas. cada linha possui um inteiro ${\bf N}$.

1 <= Q <= 50 000.

1 <= N <= 1 000 000 000.

Saída

Para cada consulta imprima quantas arestas distintas intersectam o centro do polígono.

1	3
6	

9 Problema I: Macacos e os nobres triângulos

Arquivo: I.[c|cpp|java|py]

Tempo limite: 1s

Em cidelândia os macacos precisam realizar a construção de uma pirâmide que usa blocos de triângulos e a lei dos macacos não permite que eles utilizem mais de (k*2)-1 triângulo no dia k, e eles querem construir a maior pirâmide possível durante k dias, e você deve ajudá-los informando a quantidade máxima de triângulo utilizado para construir a pirâmide durante k dias.

dia 1 dia 2 dia 3 dia 4

um exemplo de uma pirâmide construída por 4 dias.

no dia 1 foi utilizado um triângulo na construção

no dia 2 foi utilizado três triângulo na construção

no dia 3 foi utilizado cinco triângulo na construção

no dia 4 foi utilizado sete triângulo na construção totalizando 1+3+5+7=16 triângulos para k=4.

Problema

 $\hbox{\tt Dado K dias informe a quantidade m\'{a}xima de tri\^angulos utilizadas } \\ \hbox{\tt por k dias.}$

Entrada

A entrada possui um inteiro ${\bf Q}$ representando respectivamente a quantidade de consultas.Na sequência possui ${\bf Q}$ linhas. cada linha possui um inteiro ${\bf K}$.

1 <= Q <= 50 000.

1 <= K <= 1 000 000 000

Saída

Para cada consulta imprima a quantidade máxima de triângulos utilizadas por $\,$ k dias na construção.

|--|

4

10 Problema J: Jogo de Xardes

Arquivo: J.[c|cpp|java|py]

Em Chapecó é realiza a maior competição de xardes do mundo. xardes é uma versão modificada de xadres. é um tabuleiro de 20 x 20 em cada coordenada xardes[x][y] possui um valor entre -3000 e 3000 e sua tarefa é dizer qual é a pontuação máxima. a pontução máxima é a soma das 20 melhores pontuações de forma que não apareça duas coordanadas x repetidas ou duas coordenadas y

Tempo limite: 5s

Exemplo as coordenadas [x: 4, y: 5] e coordenadas [x:5: y:5] não são válidas pois a coordenada y = 5 apareceu duas vezes.

coordenada [x:4, y: 5] e coordenada [x:5 e y:4] é válida.

Entrada

repetidas.

A entrada possui 20 linhas e em cada linha possui 20 valores separados por espaço que corresponde aos valores xardes[x][y].

pontuação máxima <= 60000.

Saída

Imprima a resposta máxima.

Exemplos

	1	2	3	4	5	6	3	7	8	9	10	11	12	13	14	15	16	17	' 18	19	20	
1	8	8	1	1	1	1	۱ ٔ	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1
2	1	1	1	1	1	1	I	5	-7	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	10	1	1	۱ '	1	1	1	7	1	1	-10	1	1	1	1	1	1	1	3
4	1	1	1	15	1	1	۱ ،	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
5	1	1	1	1	1	1	۱,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	5
6	1	1	1	1	1	1	•	1	1	1	1	1	1	1	1	1	1	1	1	1	1	6
7	8	1	1	1	1	1	۱ ،	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7
8	7	1	1	1	1	1	۱ ،	1	1	1	1	1	1	1	1	1	1	1	1	1	1	8
9	-	2	1	1	1	1	۱,	1	1	1	1	1	1	1	0	4	8	8	8	1	1	9
10	5	1	1	1	1	1	•	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10
11	4	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	·	· 1	1	1	11
12	3	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	12
13	2	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	13
14	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	14
15	0	1	:	•	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	15
16	-1	1	1	1	1	1		1	1	1	1	1	4	1	1	1	1	1	1	1	1	16
	-1 -2	1	1	1	1	4		1 1	1	4	1	1	4	1	1	1	1	1	1	1	1	
17	_	1	1	1	آ م	1	I '	I 4	1	1	1	1	1	1	1	1	1	1	1	1	1	17
18	-3	1	1	1	1	1	l '	1	1	1	1	1	1	1	1	1	1	1	1	1	1	18
19	-4	1	1	1	1	1	! '	1	1	1	1	1	1	1	1	1	1	1	1	1	2	19
20	-5		•	•	1	1	ľ	•	1	1	8	1	1	1	1	1	1	1	1	99		20
	1	2	3	4	5	6	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

 $\acute{\text{E}}$ garantido que a pontuação máxima sempre será maior que zero.

Apenas por demonstração possui espaço entre os números.

Os valores em vermelho são as coordenadas **X(vertical)** e **Y(horizontal)**.

11 Problema K: Circulo

Arquivo: K.[c|cpp|java|py] Tempo limite: 1s

Em Circunlândia acontece a festa dos círculos, é uma festa onde os convidados são recepcionados com um giz e um círculo, na sequência o convidado coloca o círculo sobre a mesa e utiliza o giz e realiza N riscos retilíneos sobre o círculo e assim que completar os N riscos retilíneos com o giz na sequência uma máquina lazer realiza os cortes exatamente onde possui o risco do giz e quando a máquina termina de realizar todos cortes então Joãozinho conta qual é o número de partes em que o círculo se dividiu após n cortes retos. Como muito dos convidados não são experientes em riscos de giz eles solicitaram sua ajuda para fazer os cortes com o maior número de partes em que se pode dividir o círculo com n cortes retos;

Exemplo de um círculo com N = 1.

OBTEVE 2 PARTES.

Exemplo de um círculo com N = 2. OBTEVE 4 PARTES.

Os círculos são tão grande que sempre é possível realizar os N riscos retilíneos sobre o círculo e o giz foi projetado para dar exatamente para os N riscos.

Entrada

A entrada possui um inteiro Q, representando a quantidade de consultas. Segue Q linhas e cada linha possui um inteiro N.

 $Q \le 50000$.

 $N \le 1 000 000 000 000$.

Saída

imprima qual é o maior número de partes em que se pode dividir o círculo com n cortes retos pelo resto da divisão por 1 000 000 007.

3 1	2 4
2 1250	783127

12 Problema L: Matriz

Arquivo: L.[c|cpp|java|py] Tempo limite: 3s

Dada uma matriz com ${\bf N}$ linhas e ${\bf N}$ colunas realize três tipos de operações

- ${\bf 1}$ K conte qual é a soma de todos elementos da ${\bf K-\acute{E}SIMA}$ diagonal secundária.
 - 2 K conte quantos elementos distintos possui a K-ÉSIMA diagonal
 - 3 S X Y adicione S na matriz[X][Y].

INICIALMENTE TODOS VALORES ENTRE 1 E N*N ESTÃO PRESENTES NA MATRIZ EM ORDEM CRESCENTE COMO MOSTRA O EXEMPLO ABAIXO.

No exemplo abaixo cada diagonal foi pintada de uma cor

- a primeira diagonal possui a soma 1 (cor cinza).
- a segunda diagonal possui soma 7 (cor verde).
- a terceira diagonal possui soma 18 (cor vermelho).
- a quarta diagonal possui soma 34 (cor branco).
- a quinta diagonal possui soma 33 (cor azul).
- a sexta diagonal possui soma 27 (cor rosa).
- a oitava diagonal possui soma 16 (cor laranja).

Entrada

A entrada possui um inteiro ${\bf N}.$ representando o número de linhas e colunas.

na próxima linha possui um inteiro \mathbf{Q} , representando o número de operações. na sequência possui \mathbf{Q} linhas em cada linha indicando uma operação do tipo $\mathbf{1,2}$ ou $\mathbf{3;}$

 $N \le 1000.$

 $Q \le 10 000.$

 $1 \le x \le n$.

 $1 \le Y \le N$.

1 <= S <= 5000.

Saída

Para cada consulta do tipo 1 ou 2 imprima a resposta.

4	34
5	4
14	21
2 4 3 3 2 2	2
13	
2 3	