++ Typo in Volume?: Interp 2D ++ ++ go through Control Plotting Function ++ streamlines not working ++

Paper Example 3D

We choose

$$\rho_0 = 0.125$$

$$V_{ext} = ((x_1 + 0.3)^2 - 1)((x_1 - 0.4)^2 - 0.5)$$

$$((x_2 + 0.3)^2 - 1)((x_2 - 0.4)^2 - 0.5)((x_3 + 0.3)^2 - 1)((x_3 - 0.4)^2 - 0.5)$$

$$\hat{\rho} = 0.125(1 - t) + t\left(\frac{\pi}{4}\right)^3 \cos\left(\frac{\pi x_1}{2}\right) \cos\left(\frac{\pi x_2}{2}\right) \cos\left(\frac{\pi x_3}{2}\right)$$

The external potential is shown in Figure 1.

Figure 1: External Potential V_{ext}

For N=20 and n=11, with $\beta=10^{-3}$ we get for $\kappa=0$, $\mathcal{J}_c=0.0078$, with $\mathcal{J}_1=0.0071$ and $\mathcal{J}_2=8.5034$. This can be compared to $\mathcal{J}_{uc}=0.0195$ from the computed forward problem with $\mathbf{w}=\vec{0}$.

For $\kappa = 1$, we get that $\mathcal{J}_c = 0.0102$, with $\mathcal{J}_1 = 0.0097$, $\mathcal{J}_2 = 10.7306$. Compare to $\mathcal{J}_{uc} = 0.0232$. For $\kappa = -1$ we have $\mathcal{J}_c = 0.0059$, $\mathcal{J}_1 = 0.0054$, $\mathcal{J}_2 = 6.4039$. Compare to $\mathcal{J}_{uc} = 0.0477$.

While the forward problem takes around 12 minutes to solve, the optimal control problem with Newton-Krylov takes about 35 hours for 10 outer iterations, which is enough for convergence. Mass is conserved to 10^{-4} . The results can be seen in Figures 2, 3 and 4.

The controls are plotted in Figures 5, 6 and 7. They are all normalized to the maximum over all three controls and scaled by a factor of 2 for visibility. The figures are still not good though. I am not sure how the scaling works – $\kappa = 0$ should have way smaller arrows by that logic.

The norm of the control (in Euclidean norm) can be seen in Figures 8, 9 and 10. Between these there is not much of a qualitative difference. However, the control for $\kappa = 0$ is of order 10^{-4} , while the control for $\kappa = 1$ and $\kappa = -1$ is of order 1.

Figure 2: Optimal state ρ for $\kappa = 1$.

Figure 3: Optimal state ρ for $\kappa = 0$.

Figure 4: Optimal state ρ for $\kappa = -1$.

Figure 5: Optimal control **w** for $\kappa = 1$.

Figure 6: Optimal control **w** for $\kappa = 0$.

Figure 7: Optimal control **w** for $\kappa = -1$.

Figure 8: Norm of the optimal control \mathbf{w} , at times 1, 3, 5, 7 and 9 for $\kappa=1.$

Figure 9: Norm of the optimal control \mathbf{w} , at times 1, 3, 5, 7 and 9 for $\kappa = 0$.

Figure 10: Norm of the optimal control \mathbf{w} , at times 1, 3, 5, 7 and 9 for $\kappa = -1$.