MA 630 - Homework 4 (Module 2 - Section 2)

Solutions must be typeset in LATEX and submitted to Canvas as a .pdf file. When applicable, write in complete sentences.

Use mathematical induction to solve each problem below.

1. Prove that

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

for all natural numbers n.

Proof: Define $S = \left\{ n \in \mathbb{N} | \sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4} \right\}$. For the base-case, notice that since $1^3 = 1 = \frac{1^2(1+1)^2}{4}$ this is the condition which ensures $1 \in S$.

For the inductive case, assume that $n \in \mathbb{N}$ and that $n \in S$. Then consider

$$\sum_{i=1}^{n+1} i^3 = \left(\sum_{i=1}^n i^3\right) + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4}$$

$$= \frac{(n+1)^2(n^2 + 4n + 4)}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4}.$$

The second equality follows from the inductive hypothesis. The above chain of equalities then shows that $n+1 \in S$. Hence by the Principle of Mathematical Induction $S = \mathbb{N}$, which is to say that for all $n \in \mathbb{N}$ we have $1^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

2. Prove that $3^{4n+1} - 5^{2n-1}$ is divisible by 7 for all $n \in \mathbb{N}$. Hint: It may be helpful to note that 81 = 77 + 4, and that 25 = 21 + 4.

Proof: Define $S = \{n \in \mathbb{N} | 3^{4n+1} - 5^{2n-1} \}$. For the base-case notice that $3^{4(1)+1} - 5^{2(1)-1} = 3^5 - 5 = 243 - 5 = 238 = 7 \cdot 34$. Hence this is divisible by 7 and so 1 ∈ S.

Now suppose for the inductive hypothesis that $n \in \mathbb{N}$ and $n \in S$. Since $n \in S$ we can infer that there is some $k \in \mathbb{Z}$ such that $3^{4n+1} - 5^{2n-1} = 7k$. Hence

$$3^{4(n+1)+1} - 5^{2(n+1)-1} = 3^{4n+5} - 5^{2n+1}$$

$$= 3^4 \cdot 3^{4n+1} - 5^2 \cdot 5^{2n-1}$$

$$= (77+4)3^{4n+1} + (21+4)5^{2n-1}$$

$$= 77 \cdot 3^{4n+1} - 21 \cdot 5^{2n-1} + 4(3^{4n+1} - 5^{2n-1})$$

$$= 7(11 \cdot 3^{4n+1} - 3 \cdot 5^{2n-1}) + 4 \cdot 7k$$

$$= 7(11 \cdot 3^{4n+1} - 3 \cdot 5^{2n-1} + 28).$$

Therefore $3^{4(n+1)+1} - 5^{2(n+1)-1} = 3^{4n+5} - 5^{2n+1}$ is divisible by 7, which is the condition for $n+1 \in S$. So by the Principle of Mathematical Induction we have $S = \mathbb{N}$, which is to say that for every $n \in \mathbb{N}$ we have that $3^{4n+1} - 5^{2n-1}$ is divisible by 7.

3. Prove that $\left(1+\frac{1}{n}\right)^n < n$ for all natural numbers $n \geq 3$.

Proof: Define $S = \{n \in \mathbb{N} | (1 + \frac{1}{n})^n < n\}$. Since $(1 + \frac{1}{3})^3 = (\frac{4}{3})^3 = \frac{64}{27}$ and since $3 = \frac{81}{27}$, then we have $(1 + \frac{1}{3})^3 < 3$. This establishes the base-case that $3 \in S$.

Now suppose for the inductive hypothesis that $n \in S$ and $n \geq 3$. Then

$$\left(1 + \frac{1}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^n \left(1 + \frac{1}{n+1}\right)$$

$$< \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n+1}\right)$$

$$< n\left(1 + \frac{1}{n+1}\right)$$

$$= n + \frac{n}{n+1}$$

$$< n+1.$$

The third line above is justified by the inductive hypothesis, and the last line follows from $\frac{n}{n+1} < 1$, as this is equivalent to n < n+1. We then have that $n+1 \in S$ and therefore by the Principle of Mathematical Induction, $S = \mathbb{N} \setminus \{1, 2, 3\}$.

(Note: By a direct and tedious calculation we could confirm that indeed $1,2,3\not\in S$.)

- 4. (a) For which natural numbers n is $n^3 < 2^n$?
 - (b) Prove your result. Hint: It may be helpful to note that $(n+1)^3 = n^3 + 3n^2 + 3n + 1$. Then, to find a useful upper bound for this expression, note that n^2 is greater than both n and 1 whenever n > 1.
 - (a) It is true for 1 but not for 2 through 9. It is again true for 10 and every number after that.
 - (b) Proof: Define $S=\{n\in\mathbb{N}|n^3\geq 2^n\}$. For the base-case, notice that $10^3=1000\geq 1024=2^{10}$. Hence $10\in S$.

For the inductive hypothesis suppose that $n \in S$ and $n \ge 10$. Then

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$
$$< 2^n + 3n^2 + 3n^2 + n^2$$
$$= 2^n + 7n^2.$$

From here we need to prove that $2^n+7n^2<2^{n+1}$. This inequation is equivalent to $7n^2<2^{n+1}-2^n=2^n(2-1)=2^n$. To prove this inequation is true, we begin another proof by induction. Let $T=\{n\in\mathbb{N}|7n^2<2^n\}$. First note that $10\in T$ because $7(10^2)=700<1024=2^{10}$. Now for the inductive hypothesis suppose that $m\in T$ and $m\geq 10$. First note that since $m\geq 10$ we have that $7<2^m$. Then we have

$$7(m+1) = 7m + 7$$

 $< 2^m + 2^m$
 $= 2^{m+1}$.

This establishes the inductive case and therefore $\{n \in \mathbb{N} | n \geq 10\} \subseteq T$. Since $n \geq 10$ from before, then we have that $7n^2 < 2^n$ and therefore $2^n + 7n^2 < 2^{n+1}$ as desired.

This now completes the inductive proof that began at the start, so that by the Principle of Mathematical Induction, $\{n \in \mathbb{N} | n \ge 10\} \subseteq S$. Moreover, since we directly confirmed the remaining cases, we can say that $S = \{n \in \mathbb{N} | n = 1 \text{ or } n \ge 10\}$.

- 5. (a) Let n be a natural number. Prove that $2\sqrt{n^2+n}+1 \le 2(n+1)$. You do not need to use induction. Hint: First, consider $4(n^2+n)$ and $(2n+1)^2$.
 - (b) Let n be a natural number. Use induction to prove that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

(a) First note that $2\sqrt{n^2+n}+1 \le 2(n+1)$, if we distribute and subtract 1, is equivalent to

$$2\sqrt{n^2 + n} \le 2n + 1.$$

Since all quantities are positive, this is true if and only if $4(n^2 + n) \le (2n + 1)^2$ which we get from squaring both sides. This is the same as $4n^2 + 4n \le 4n^2 + 1$

4n + 1. Since the right-hand side is one more than the left, this is clearly a true inequality. Hence we have shown that

$$2\sqrt{n^2 + n} + 1 \le 2(n+1).$$

(b) Define $S=\{n\in\mathbb{N}|\sum_{i=1}^n\frac{1}{\sqrt{i}}\leq 2\sqrt{n}-1\}$. For the base case note that $\frac{1}{\sqrt{1}}=1=2\sqrt{1}-1$. Hence $1\in S$. For the inductive hypothesis suppose that $n\in\mathbb{N}$ and $n\in S$. Then

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \left(\sum_{i=1}^{n} \frac{1}{\sqrt{i}}\right) + \frac{1}{\sqrt{n+1}}$$

$$\leq 2\sqrt{n} - 1 + \frac{1}{\sqrt{n+1}}$$

$$= \frac{(2\sqrt{n} - 1)\sqrt{n+1} + 1}{\sqrt{n+1}}$$

$$= \frac{2\sqrt{n^2 + n} - \sqrt{n+1} + 1}{\sqrt{n+1}}$$

$$\leq \frac{2(n+1) - \sqrt{n+1}}{\sqrt{n+1}}$$

$$= 2\sqrt{n+1} - 1.$$

This shows that the inductive case holds, and therefore by the Principle of Mathematical Induction $S = \mathbb{N}$. That is to say,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n} - 1.$$