Lecture 2: Random Variables and Stochastic Processes

Prof. Deniz Gunduz

Department of Electrical & Electronic Engineering Imperial College London

Outline

- Random Variables
 - √ Joint distribution
 - ✓ Independence and uncorrelation
- Stochastic Processes
 - ✓ Mean and autocorrelation function
 - √ Gaussian process
 - √ Wide-sense stationary (WSS) process
- References
 - √ [Haykin] Chapter 5
 - ✓ [Lathi] Chapter 8

Joint Distribution

ullet Joint cdf for two random variables X and Y

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

Joint pdf

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$$

- Properties

 - **1** Independent: $f_{XY}(x,y) = f_X(x)f_Y(y)$

Independent and Uncorrelated

- Independent \Rightarrow uncorrelated
- Uncorrelated ⇒ independent
- \bullet For jointly Gaussian random variables, uncorrelated \iff independent

Joint Distribution of n random variables

Joint cdf

$$F_{X_1 X_2 \dots X_n}(x_1 x_2 \dots x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots X_n \le x_n)$$

Joint pdf

$$f_{X_1 X_2 \dots X_n}(x_1 x_2 \dots x_n) = \frac{\partial^n F_{X_1 X_2 \dots X_n}(x_1 x_2 \dots x_n)}{\partial x_1 \partial x_2 \dots \partial x_n}$$

Independent

$$F_{X_1 X_2 \dots X_n}(x_1 x_2 \dots x_n) = F_{X_1}(x_1) F_{X_2}(x_2) \dots F_{X_n}(x_n)$$

$$f_{X_1 X_2 \dots X_n}(x_1 x_2 \dots x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n)$$

- i.i.d. (independent and identically distributed)
 - \checkmark Independent random variables with the same distribution (e.g., flipping n coins)

Stochastic Process

- ullet Stochastic process X(t,s): a collection of random variables over time. It represents the *evolution* of a random system.
- At a given time t_0 , $X(t_0, s)$ is a random variable.
- At a sample outcome s_j , $X(t, s_j)$ is a deterministic function over time.
- Stochastic process X(t,s) is often denoted by X(t) for simplicity.
- Noise is often modelled as a Gaussian stochastic process.

Statistics of Stochastic Processes

- Probability density function
 - ✓ 1st order: $f_X(x;t)$
 - ✓ 2nd order: $f_X(x_1, x_2; t_1, t_2)$
 - \checkmark n-th order: $f_X(x_1,\ldots,x_n;t_1,\ldots,t_n)$
- Mean is usually a function of t:

$$\mu_X(t) = \mathbb{E}\{X(t)\} = \int_{-\infty}^{\infty} x f_X(x;t) dx$$

• Autocorrelation function is usually a function of t_1 and t_2 . It measures the correlation between samples:

$$R_X(t_1, t_2) = \mathbb{E}\{X(t_1)X(t_2)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_X(x_1, x_2; t_1, t_2) dx_1 dx_2$$

ullet A stochastic process is Gaussian if and only if the pdf $f_X(x;t)$ is Gaussian at any time t_n .

Wide-Sense Stationary (WSS) Stochastic Processes

- A stochastic process is wide-sense stationary (WSS) if and only if:
 - 1 The mean is not a function of time:

$$\mu_X(t) = \mu_X, \quad \forall t$$

The autocorrelation function only depends on time difference:

$$R_X(t+\tau,t) = R_X(\tau), \quad \forall t, \tau$$

Noise and message signals are often modelled as WSS processes.

Properties of Autocorrelation Function

For a real WSS process X(t) with autocorrelation function $R_X(\tau)$:

- $R_X(0) = \mathbb{E}\{X^2(t)\}$

$$R_X(\tau) = \mathbb{E}\{x(t+\tau)x(t)\} = \mathbb{E}\{x(t)x(t+\tau)\} = R_X(-\tau)$$

1 $R_X(\tau)$ takes maximum magnitude at $\tau=0$ (Homework 1 Problem 5)

$$|R_X(\tau)| \le R_X(0)$$

 $R_X(\tau)$ can tell how predictable X(t) is based on $X(t-\tau)$.

Exercise

WSS example

Show that a sinusoidal wave with a random uniformly distributed phase is WSS.

$$X(t) = A\cos(\omega_c t + \Theta), \quad f_{\Theta}(\theta) = \frac{1}{2\pi}, \quad \theta \in [0, 2\pi).$$

Note