Plan d'étude et représentation graphique de $y = f(x) = \frac{x^2 - 3}{x^2 + 1}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{x^2 - 3}{x^2 + 1} \Rightarrow D_f = \circ = (-\infty, +\infty)$$

Etudier la fonction au bornes de D_f

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{x^2 - 3}{x^2 + 1} = 1$$

Alors la droite d'équation $\,Y=1\,$ est une asymptote horizontale pour la courbe de f .

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{x^2 - 3}{x^2 + 1} = 1$$

Alors la droite d'équation Y = 1 est une asymptote horizontale pour la courbe de f .

Le sens de variation de f

$$y' = f'(x) = \frac{8x}{(x^2 + 1)^2}$$

$$8x = 0 \Rightarrow x = 0 \Rightarrow y = -3 \Rightarrow \begin{vmatrix} 0 \\ -3 \end{vmatrix}$$

Convexité de f

$$y'' = f''(x) = \frac{-8(3x^2 - 1)}{(x^2 + 1)^3}$$

$$-8(3x^{2}-1) = 0 \Rightarrow \begin{cases} x = 0.57 \Rightarrow y = -2.02 \Rightarrow \begin{vmatrix} 0.57 \\ -2.02 \end{vmatrix} \\ x = -0.57 \Rightarrow y = -2.02 \Rightarrow \begin{vmatrix} -0.57 \\ -2.02 \end{vmatrix}$$

$$m_{x=-0.57} = f'(-0.57) = -2.59$$

$$m_{x=0.57} = f'(0.57) = 2.59$$

Le tableau de variation

x	- ∞		- 0.57		0		0.57		+∞
\mathcal{Y}'		-	-2.59	_	0	+	2.59	+	
y"		-	0	+		+	0	_	
У	1	\ <u></u>	- 2.02	<u> </u>	-3		- 2.02		1
			Inf	\bigcirc	Min	$\overline{}$	Inf		

La courbe

