REPORT ON TRUE_BECON ASSIGNMENT CODE

March 12 2024

Shubhankar Mondal

Mtech Al'25

IISc Bangalore

1. Project background and description

The provided code focuses on analyzing financial data using statistical models, specifically implementing a Z-Score model and an enhanced Random Forest model

2. Data Loading and Preprocessing:

- loaded the data from a Parquet file using pandas.read_parquet.
- Performed data cleaning by handling missing values with df.dropna() and filtering the data between '09:15' and '15:30' using .between time.
- Checked data types using a custom function check data types.

3. Spread and P/L Calculation

 Defined a spread column by subtracting the nifty price from the banknifty price (df['spread'] = df['banknifty'] - df['nifty'])

.

 Defined a function calculate_pl to calculate the Profit/Loss (P/L) based on spread difference, position, and Time To Expiry (TTE).

4. Z-Score Model

- Implemented a Z-Score model for identifying entry and exit signals:
 - Calculated the Z-score using a rolling window mean and standard deviation (calculate zscore).
 - Defined thresholds
 (threshold_zscore_long and threshold_z score_short) for long and short positions
 based on the Z-score.
 - Created a function calculate_zscore_position to generate trading signals based on the Z-score thresholds.
 - Visualized the spread, Z-score, and trading signals using matplotlib.pyplot.
 - Calculated the daily P/L for the Z-score model and plotted the cumulative P/L.

5. Plots for Z -Scored Based Model:

6. Random Forest Model:

- Implemented a Random Forest Regression model for spread prediction:
 - Performed feature engineering by calculating moving average, standard deviation of spread, and squared TTE

```
(df_rf['spread_ma'], df_rf['spread_std
'], and df rf['tte squared']).
```

- Split the data into training and testing sets using train_test_split.
- Defined a function train_evaluate_rf to train the Random Forest model and evaluate its performance using Mean Squared Error (MSE).
- Created a function calculate_pl_random_forest to calculate the P/L based on the model's predicted spread and defined thresholds (threshold_long_rf and threshold_short _rf).

8. Plots for Random Forest Based Model:

9. Metric Comparisons:

```
Base Z-Score Model:
Total P/L:
46.7943528499999996
Sharpe Ratio:
0.12428119394963918
Max Drawdown: -
0.053550499999999295
```

Enhanced Random
Forest Model:
Total P/L: 0.0
Sharpe Ratio: nan
Max Drawdown: 0.0

10. Performance Evaluation:

- Defined a function calculate_performance_metrics to calculate total P/L, Sharpe Ratio (a measure of riskadjusted return), and maximum drawdown for each model.
- Compared the performance metrics (total P/L, Sharpe Ratio, and maximum drawdown) between the Z-score and Random Forest models.
- Visualized the cumulative P/L of both models for comparison.

11. Summary and Recommendations:

- The code successfully implements and visualizes two trading models: Z-Score and Random Forest.
- It provides a comprehensive analysis of financial data, including signal generation and performance metrics.
- Future improvements could include optimizing model parameters, exploring additional features, and conducting a more thorough sensitivity analysis.
- Lastly LSTM can be used for further improvements like stock price prediction.