プライバシーを保護する特許 検索

中川研 M2 胡 瀚林 指導教員:中川 裕志 教授

2016年月日

- 背景紹介
- 2 既存研究
- 3 提案手法
- 4 プライバシー分析
- **5** まとめ
- 6 参考文献

- 背景紹介
- ② 既存研究
- ❸ 提案手法
- 4 プライバシー分析
- **6** まとめ
- ❸ 参考文献

特許

特許とは?

- 特許法第1条には、「この法律は、発明の保護及び利用を図ることにより、発明を奨励し、もつて産業の発達に寄与することを目的とする」とある。
- 特許制度は、発明者には一定期間、一定の条件の もとに特許権という独占的な権利を与えて発明の 保護を図る一方、その発明を公開して利用を図る ことにより新しい技術を人類共通の財産としてい くことを定めて、これにより技術の進歩を促進 し、産業の発達に寄与しようというものである。

特許

特許請求の範囲

【請求項1】植物の種子をパルプ繊維の水懸濁液に混合して抄紙する播種シートの製造方法。

【請求項2】水懸濁液にさらに水溶性接着剤を添加する請求項1記載の播種シートの製造方法。

【請求項3】あらかじめ種子を低粘度多価アルコールで被覆する請求項1記載の播種シートの製造方法。

特許請求の範囲の作成方法

8技術用語は、学術用語を用いる。

9 用語は、その有する普通の意味で使用し、かつ、明 細書及び特許請求の範囲全体を通じて統一して使用 する

国際特許分類

A61C 5/08A

セクション:A サブセクション:61 クラス: C

メイングループ:5

サブグループ:08

健康および娯楽

医学または獣医学:衛生学

歯科:□腔または歯科衛生

歯の充填または被覆

歯冠:その製造:口中での歯冠固定

全ての特許が人の手によって分類されている

特許検索

検索タイプー	検索対象 (specification)	検索目的
技術水準調査 (State of the Art Search)	イデア	自分の発明に関連する背景知識を得る
新規性調査 (Novelty Search)	特許文章	特許登録の可能性を判断する
侵害調査 (Infringement Search)	商品と 商品に関連する技術	権利侵害とならないかを判断する

新規性調查

新規性調查

特許検索質問

播種シートの製造方法

植物 種子 パルプ 繊維 水 液 混合 抄 紙 播種 シート 製造 方法 水溶 性 接着 剤 添加 記載 度 価 アルコール 被覆

- 請求項から名詞を取り出し,検索質問とする
- 検索質問は単語(名詞)の集合である
- 質問に含む単語数が多い
 - ウェブ検索:2.35 特許検索:20.1
- 専門用語が多い

テキスト検索

- 検索質問 q:単語の集合
- 質問 qの検索結果 R(Q):文章の集合

Obfuscation Search

- 真の質問とK-1個真の質問と区別できないダ ミー質問と同時に検索する
- サーバーが真の質問を見つける確率が1/k

Obfuscation Search:例

- 実践的には長い質問に対応できない
- 質問 q' を使うことより検索の精度と再現率が下がる

Obfuscation Search

ユニバーサル質問集合:Q

W を全ての単語の集合とする.ユニバーサル質問集合 Q とは W の冪集合である,つまり

$$Q = P(W) = \{X | X \subset W\} \tag{1}$$

質問-トピックスコア関数:rscore

Tを全ての可能なトピックの集合とする.質問 q とトピック t の関係を表す関数とは

$$rscore: Q \times T \to \mathbb{R}$$
 (2)

質問間距離関数:dist

質問 q1 と質問 q2 間の距離を表す関数とは

$$dist: Q \times Q \to \mathbb{R} \tag{3}$$

目標

- 長い質問に対応できる
- 専門用語が多いダミーを生成できる
- 検索の精度と再現率を維持できる

- 背景紹介
- 2 既存研究
- 3 提案手法
- 4 プライバシー分析
- **6** まとめ
- 参考文献

質問 q をユーザーが入力した質問とする.ダミー質問生成システム D が k 個の質問を含んでいる質問集合 $D(q_u) = \{q_1, \ldots, q_k\}$ を出力しサーバーに提出する. $D(q_u)$ が以下の性質を持つなら, $D(q_u)$ を PD-質問集合といい,D を k - 否認可能検索という

- ① $\exists q_i \in D(q_u), q_i \lor q_u$ が意味的に近い
- ③ $\forall q_j \in D(q_u), q_j$ が違うトピックに含まれる

Latent Semantic Indexing

潜在的意味インデキシング

単語・文書行列 A の (i,j) 番目の要素は i 番目の単語が j 番目の文章に出現した回数である

A を特異値分解 $A = USV^T$ し、U、S、V の各列ベクトルを特異値が大きい順に K 個用いて A の低ランク近似 $A_K = U_K S_K V_K^T$ を得るこのように低ランク分解によって、単語とトピックの関係を分析できる

 A_K の(i,j)番目の要素はi番目の単語とj番目のトピックの関係を表す

質問-トピックスコア関数:rscore_{LSI}

 S_{κ} を単語 · 文書行列 A の低ランク近似の結果とし, $S_{\kappa}(i,j)$ を S_{κ} の (i,j) 番目の要素とする.LSI による質問 q とトピック t の関係を表す関数とは

$$rscore_{LSI}(q,t) = \sum_{w \in q} S_K(w,t)$$
 (4)

質問間距離関数:distLSI

LSI による質問 q_1 と質問 q_2 の距離を表す関数とは

$$dist_{LSI}(q_1, q_2) = 1 - \frac{\sum_{t \in T} rscore_{LSI}(q_1, t) \cdot rscore_{LSI}(q_2, t)}{\sum_{t \in T} (rscore_{LSI}(q_1, t^2))^{1/2} + \sum_{t \in T} (rscore_{LSI}(q_2, t)^2)^{1/2}}$$
(5)

問題点

- 質問の長さの増加に伴って標準質問の数が指数的 に増加するため、長い質問対応できない
- 真の質問ではなく,真の質問に意味的に近い標準質問を用いるため,精度と再現率が低い
- (MC09)ではPD-質問集合を作るときは質問間で 距離しか配慮していないため、同じトピックにつ いて複数検索すると真の質問が属するトピック出 現回数がほかのトピックより多くなる.したがっ て出現回数が一番多いトピックに属する質問が真 の質問となる可能性が大きい.

Embellishing Text Search Queries to Protect User Privacy (PDX10)

- 質問の全体ではなく単語ごとにダミー単語を混 ザる。
- 単語バケットを事前に作り,真の質問の単語と同じバケットにある他の単語をダミー単語とする.

バケット作り

- 同じバケットにある単語の特殊さは近いが,意味 的には大きい違いがある。
- 任意の2つのバケットの全ての単語間の意味的距離の差が近い

Wordnet

スクリーンショット

- 1 synset番号(synset offset)
- 2 同義語(synonym)
- 3 定義文·例文(gloss)
- 4関連synsetとのリンク
- 5 他の言語資源とのリンク
- 6 兩億

単語を類義関係のセット (synset) でグループ化し、一つの synset が一つの概念に対応する 各 synset は上位下位関係などの関係で結ばれている

Wordnet

Embellishing Text Search Queries to Protect User Privacy (PDX10)

単語間距離関数:distwordNet

単語 a の synset を A とし単語 b の synset を B とする . synset A と synset B 間の最短パスを PATH(A, B) とする . WordNet による単語間距離関数 dist_{WordNet} とは

$$dist_{WordNet}(a, b) = |PATH(A, B)|$$
 (6)

Embellishing Text Search Queries to Protect User Privacy (PDX10)

問題点

- WordNet に含まれていない専門用語が多い
- 単語バケットを作るときは単語間で距離しか配慮 していない。

On masking topical intent in keyword search (WR14)

- Hash 関数を用いてダミー質問が属するトピック を決定する
- LDA を用いてトピック t に単語 w の出現確率 Pr(w|t) を計算し、Pr(w|t) からランダムで取り出した単語の集合をダミー質問にする

latent Dirichlet allocation (BNJ03)

- Hash 関数を用いてダミー質問が属するトピック を決定する
- LDA を用いてトピック t に単語 w の出現確率 Pr(w|t) を計算し、Pr(w|t) からランダムで取り出した単語の集合をダミー質問にする

On masking topical intent in keyword search (WR14)

問題点

- 単語数が多いデーターベースの LDA 計算
- 真の質問が同じトピックに属するとき対応するダミー質問も同じトピックに属するが,これだけで安全だと言えるか

SimAttack (PCB⁺16)

類似度:sim

```
Input: 質問 q, ユーザープロフィール P_u, スムージングパラメータ:\alpha
1: for q_i \in P_u:
2: coef[i] \leftarrow 2 \cdot |q \cap q_i| \cdot \frac{1}{|q| + |q_i|}
3: coef \leftarrow sort(coef)
4: sim \leftarrow coef[0]
5: for i \in [1, |P_u|]:
6: sim \leftarrow \alpha \cdot coef[i] + (1 - \alpha) \cdot sim
Output: sim
```

SimAttack

```
Input: 質問集合 Q, ユーザープロフィール Pu, スムージングパラメータ:\alpha 1: q^* = \operatorname{argmax}_{q \in Q} sim_{q,Pu} Output: q^*
```

既存研究

	潜在意味分析手法	質問列の対応	長い質問の対応
(MC09)	LSI	X	X
(PDX10)	WordNet	X	0
(WR14)	LDA	0	0

- 背景紹介
- 2 既存研究
- 3 提案手法
- 4 プライバシー分析
- **⑤** まとめ
- € 参考文献

単語ベクトル

単語ベクトルル

Tを全てのトピックの集合としWを全て単語の集合とする.トピックtの単語ベクトルtとは

$$I_{t} = \{w_{1}, w_{2}, \dots, w_{|W|}\},$$

$$\forall w \in I_{t}, w \in W$$

$$\forall 1 \leq i \neq j \leq, w_{i} \neq w_{j}$$

$$\forall 1 \leq i < j \leq |W|, rscore(w_{i}, t) \geq rscore(w_{i}, t)$$

$$(7)$$

トピック間の距離

トピック間の cos 距離関数 distcos

 I_{t_1}, I_{t_2} をトピック t_1, t_2 の単語ベクトルをする.トピック t_1, t_2 の cos 距離関数 $dist_{cos}$ とは

$$dist_{cos}(t_1, t_2) = dist_{LSA}(I_{t_1}[1:1000], I_{t_2}[1:1000])$$
 (8)

トピック間の coef 距離関数 dist_{coef}

 I_{t_1}, I_{t_2} をトピック t_1, t_2 の単語ベクトルをする.トピック t_1, t_2 の coef 距離関数 $dist_{coef}$ とは

$$dist_{coef}(t_1, t_2) = 1 - \frac{I_{t_1}[1:1000] \cap I_{t_2}[1:1000])}{1000}$$
 (9)

- 背景紹介
- 2 既存研究
- ❸ 提案手法
- 4 プライバシー分析
- **6** まとめ
- 6 参考文献

SimAttack New

SimAttack_{New}

```
Input: 質問集合列 \hat{Q} = \{Q_1, Q_2, \dots, Q_n\}, スムージングパラメー
      \boldsymbol{9}:\alpha
 1: for j \in |Q_1|:
 2: \hat{Pu}[j] = Q_1[j]
 3: \hat{Put}[j] = \Phi
 4: d[j] = 0
 5: for i \in [2, n]:
 6: for j \in |Q_i| :
              \hat{Put}[j] = \operatorname{argmax}_{Pu \in \hat{Put}} sim_{Q_i[j], \hat{Put}[j]}
 8: q_i^* = \operatorname{argmin}_{Q_i[j] \in Q_i} \operatorname{sim}_{Q_i[j], P\hat{u}t[j]}
 9: for j \in |Q_i|:
10: \hat{Pu}[i] = \hat{Put}[i] \cap Q_i[i]
Output: q*
```

メイントピック攻撃

MainTopicAttack

```
Input: 質問集合 Q
  1: if Q = \{q_1, q_2, \dots, q_{|Q|}\}:
 2: q^* = \operatorname{argmax}_q \operatorname{max}_t rscore_{LSA}(q, t)
 3: else if Q = \{w_1^1, w_1^2, \dots, w_1^k, \dots, w_n^k\}:
  4: t^* = \operatorname{argmax}_t \operatorname{rscore}_{LSA}(Q, t)
 5: for i \in \{1, 2, ..., n\}:
            w_i^* = \operatorname{argmax}_{w_i^j} rscore_{LSA}(w_i^j, t^*)
 7: q^* = \{w_1^*, w_2^*, \dots, w_n^*\}
Output: q*
```

実験

重複を除いた単語数	2,973,096
文章数	3, 496, 253
質問数	2,908
質問平均単語数	21.0
メイントピック攻撃成功率	90.1%

- 背景紹介
- 2 既存研究
- ❸ 提案手法
- 4 プライバシー分析
- **5** まとめ
- 6 参考文献

まとめ

- 質問を単語ごとに分割し,暗号と組み合わせする 手法
- 質問のメイントピックを保護するのは難しい
- Wordnetではなく他のダミー単語を生成するツー ルが欲しい

- 背景紹介
- 2 既存研究
- 3 提案手法
- ₫ プライバシー分析
- 6まとめ
- 6 参考文献

Bibliography I

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of machine Learning research, 3(Jan):993–1022, 2003.

M. Murugesan and C. Clifton.

Providing Privacy through Plausibly Deniable Search.

In *Proceedings of the 2009 SIAM International Conference on Data Mining*, Proceedings, pages 768–779. Society for Industrial and Applied Mathematics, April 2009.

Albin Petit, Thomas Cerqueus, Antoine Boutet, Sonia Ben Mokhtar, David Coquil, Lionel Brunie, and Harald Kosch.

SimAttack: private web search under fire.

Journal of Internet Services and Applications, 7(1):1, 2016.

HweeHwa Pang, Xuhua Ding, and Xiaokui Xiao.

Embellishing Text Search Queries to Protect User Privacy.

Proc. VLDB Endow., 3(1-2):598-607, September 2010.

Peng Wang and Chinya V. Ravishankar.

On masking topical intent in keyword search.

In 2014 IEEE 30th International Conference on Data Engineering, pages 256–267. IEEE, 2014.