NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

Volume 5. Issue 12. Pages 1847-2008. 2010 ISSN 1934-578X (printed); ISSN 1555-9475 (online) www.naturalproduct.us

NPC

Natural Product Communications

EDITOR-IN-CHIEF

DR. PAWAN K AGRAWAL

Natural Product Inc. 7963, Anderson Park Lane, Westerville, Ohio 43081, USA agrawal@naturalproduct.us

EDITORS

PROFESSOR ALESSANDRA BRACA

Dipartimento di Chimica Bioorganicae Biofarmacia, Universita di Pisa, via Bonanno 33, 56126 Pisa, Italy braca@farm.unipi.it

PROFESSOR DEAN GUO

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China gda5958@163.com

PROFESSOR J. ALBERTO MARCO

Departamento de Quimica Organica, Universidade de Valencia, E-46100 Burjassot, Valencia, Spain alberto.marco@uv.es

PROFESSOR YOSHIHIRO MIMAKI

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE

Department of Chemistry University of Wollongong Wollongong, New South Wales, 2522, Australia spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE

Department of Chemistry, Texas Christian University, Forts Worth, TX 76129, USA m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER

Department of Chemistry
The University of Alabama in Huntsville
Huntsville, AL 35809, USA
wsetzer@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA

Institute of Natural Medicine Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan tezuka@inm.u-toyama.ac.jp

PROFESSOR DAVID E. THURSTON

Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WCIN 1AX, UK david.thurston@pharmacy.ac.uk

HONORARY EDITOR

PROFESSOR GERALD BLUNDEN

The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, POI 2DT U.K. axuf64@dsl.pipex.com

ADVISORY BOARD

Prof. Berhanu M. Abegaz Gaborone, Botswana Prof. Viqar Uddin Ahmad Karachi, Pakistan Prof. Øyvind M. Andersen Bergen, Norway Prof. Giovanni Appendino

Novara, Italy
Prof. Yoshinori Asakawa
Tokushima, Japan
Prof. Lee Banting
Portsmouth, U.K.
Prof. Julie Banerji
Kolkata, India
Prof. Anna R. Bilia
Florence, Italy
Prof. Maurizio Bruno
Palermo, Italy

Palermo, Italy
Prof. Josep Coll
Barcelona, Spain
Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Cristina Gracia-Viguera

Murcia, Spain

Prof. Duvvuru Gunasekar *Tirupati, India*

irupati, Inaid

Prof. A.A. Leslie Gunatilaka

Tucson, AZ, USA
Prof. Kurt Hostettmann
Lausanne, Switzerland
Prof. Martin A. Iglesias Arteaga
Mexico, D. F, Mexico
Prof. Jerzy Jaroszewski

Copenhagen, Denmark Prof. Leopold Jirovetz Vienna, Austria Prof. Teodoro Kaufman

Rosario, Argentina Prof. Norbert De Kimpe Gent, Belgium Prof. Karsten Krohn Paderborn, Germany Prof. Hartmut Laatsch Gottingen, Germany

Prof. Marie Lacaille-Dubois

Dijon, France

Taipei, Taiwan
Prof. Francisco Macias
Cadiz, Spain

Prof. Shoei-Sheng Lee

Prof. Imre Mathe Szeged, Hungary Prof. Joseph Michael Johannesburg, South Africa Prof. Ermino Murano Trieste, Italy

Prof. M. Soledade C. Pedras

Saskatoon, Cnada Prof. Luc Pieters Antwerp, Belgium Prof. Om Prakash Manhattan, KS, USA Prof. Peter Proksch Düsseldorf, Germany

Prof. Phila Raharivelomanana Tahiti, French Plynesia Prof. Satyajit Sarker Wolverhampton, UK Prof. Monique Simmonds Richmond, UK

Richmond, UK

Prof. Valentin Stonik

Vladivostok, Russia

Prof. Winston F. Tinto

Barbados, West Indies

Prof. Karen Valant-Vetschera

Vienna, Austria
Prof. Peter G. Waterman

Prof. Peter G. Waterman Lismore, Australia

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2010 subscription price: US\$1,695 (Print, ISSN# 1934-578X); US\$1,695 (Web edition, ISSN# 1555-9475); US\$2,095 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.

Volume 5, Number 12

Contents

Original Paper	<u>Page</u>
Anticonvulsant Activity of the Linalool Enantiomers and Racemate: Investigation of Chiral Influence Damião P. de Sousa, Franklin F. F. Nóbrega, Camila C. M. P. Santos and Reinaldo N. de Almeida	1847
Kinetic Analysis of Genipin Degradation in Aqueous Solution Paul Slusarewicz, Keng Zhu and Tom Hedman	1853
Microbial Transformation of Marine Halogenated Sesquiterpenes Aurelio San Martin, Juana Rovirosa, Alvaro Carrasco, Silvia Orejarena, Jorge Soto-Delgado, Renato Contreras and M. Cristina Chamy	1859
Two New Guaianolides from <i>Amberboa ramosa</i> Muhammad Ibrahim, Rehan Khan and Abdul Malik	1865
Antiplasmodial and Cytotoxic Activities of Drimane Sesquiterpenes from <i>Canella winterana</i> Mary H. Grace, Carmen Lategan, Flaubert Mbeunkui, Rocky Graziose, Peter J. Smith, Ilya Raskin and Mary Ann Lila	1869
Three New 18-Oxygenated <i>ent</i> -Kaurane Diterpenoids from <i>Isodon leucophyllus</i> Hai Bo Zhang, Jian Xin Pu, Yong Zhao, Fei He, Wei Zhao, Li Guang Lou, Wei Lie Xiao and Han Dong Sun	1873
Immunomodulatory Action of Monosulfated Triterpene Glycosides from the Sea Cucumber Cucumaria okhotensis: Stimulation of Activity of Mouse Peritoneal Macrophages Dmitry L. Aminin, Alexandra S. Silchenko, Sergey A. Avilov, Vadim G. Stepanov and Vladimir I. Kalinin	1877
Three New Aaptamines from the Marine Sponge <i>Aaptos</i> sp. and Their Proapoptotic Properties Larisa K. Shubina, Tatyana N. Makarieva, Sergey A. Dyshlovoy, Sergey N. Fedorov, Pavel S. Dmitrenok and Valentin A. Stonik	1881
Isolation and Characterization of Crotosparsamide, a New Cyclic Nonapeptide from <i>Croton sparsiflorus</i> Rashad Mehmood and Abdul Malik	1885
Two New Lavandulyl Flavonoids from <i>Sophora flavescens</i> Dan Liu, Xiulan Xin, Dong-hai Su, Junying Liu, Qing Wei, Bo Li and Jian Cui	1889
Biotransformation of Naringenin to Eriodictyol by Saccharomyces cerevisiea Functionally Expressing Flavonoid 3' Hydroxylase Ilef Limem-Ben Amor, Alain Hehn, Emmanuel Guedon, Kamel Ghedira, Jean-Marc Engasser, Leila Chekir-Ghedrira and Mohamed Ghoul	1893
Two New 3-C-Carboxylated Flavones from the Rhizomes of Caragana conferta Rehan Khan, Abdul Malik, Shazia Yasmeen and Nighat Afza	1899
Kaempferol Glycosides in the Flowers of Carnation and their Contribution to the Creamy White Flower Color	
Tsukasa Iwashina, Masa-atsu Yamaguchi, Masayoshi Nakayama, Takashi Onozaki, Hiroyuki Yoshida, Shuji Kawanobu, Hiroshi Ono and Masachika Okamura	1903
Factors Influencing Glabridin Stability Mingzhang Ao, Yue Shi, Yongming Cui, Wentao Guo, Jing Wang and Longjiang Yu	1907
Effect of Different Strains of Agrobacterium rhizogenes and Nature of Explants on Plumbago indica Hairy Root Culture with Special Emphasis on Root Biomass and Plumbagin Production Moumita Gangopadhyay, Saikat Dewanjee, Somnath Bhattacharyya and Sabita Bhattacharya	1913
Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived <i>Streptomyces</i> sp. B6219 Muna Ali Abdalla, Elisabeth Helmke and Hartmut Laatsch	1917
Dioscorealide B from the Traditional Thai Medicine Hua-Khao-Yen Induces Apoptosis in MCF-7 Human Breast Cancer Cells via Modulation of Bax, Bak and Bcl-2 Protein Expression Jiraporn Saekoo, Potchanapond Graidist, Wilairat Leeanansaksiri, Chavaboon Dechsukum and Arunporn Itharat Continued Overleaf	1921

Inhibition of Protein Tyrosine Phosphatase 1β by Hispidin Derivatives Isolated from the Fruiting Body of <i>Phellinus linteus</i> Yeon Sil Lee, Il-Jun Kang, Moo Ho Won, Jae-Yong Lee, Jin Kyu Kim and Soon Sung Lim	1927
A New Azafluorenone from the Roots of <i>Polyalthia cerasoides</i> and its Biological Activity Kanchana Pumsalid, Haruthai Thaisuchat, Chatchanok Loetchutinat, Narong Nuntasaen, Puttinan Meepowpan and Wilart Pompimon	1931
Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line Keivan Zandi, Elissa Ramedani, Khosro Mohammadi, Saeed Tajbakhsh, Iman Deilami, Zahra Rastian, Moradali Fouladvand, Forough Yousefi and Fatemeh Farshadpour	1935
Hyloglyceride and Hylodiglyceride: Two New Glyceride Derivatives from <i>Hylodendron gabunensis</i> Awazi Tengu Nyongha, Hidayat Hussain, Etienne Dongo, Ishtiaq Ahmed and Karsten Krohn	1939
Chemical Composition and Bioactivities of the Marine Alga <i>Isochrysis galbana</i> from Taiwan Chi-Cheng Yu, Hsiao-Wei Chen, Mao-Jing Chen, Yu-Ching Chang, Shih-Chang Chien, Yueh-Hsiung Kuo, Feng-Ling Yang, Shih-Hsiung Wu, Jie Chen, Hsiao-Hui Yu and Louis Kuop-Ping Chao	1941
An Efficient Protocol for High-frequency Direct Multiple Shoot Regeneration from Internodes of Peppermint (<i>Mentha</i> x piperita) Sanjog T. Thul and Arun K. Kukreja	1945
Essential Oil Yield and Chemical Composition Changes During Leaf Ontogeny of Palmarosa	1743
(Cymbopogon martinii var. motia) Bhaskaruni R. Rajeswara Rao, Dharmendra K. Rajput, Rajendra P. Patel and Somasi Purnanand	1947
Essential Oil Composition of Four Endemic Ferulago Species Growing in Turkey	
Ceyda Sibel Kılıç, Ayşe Mine Gençler Özkan, Betül Demirci, Maksut Coşkun and Kemal Hüsnü Can Başer	1951
Essential Oils of <i>Daucus carota</i> subsp. <i>carota</i> of Tunisia Obtained by Supercritical Carbon Dioxide Extraction	
Hanen Marzouki, Abdelhamid Khaldi, Danilo Falconieri, Alessandra Piras, Bruno Marongiu, Paola Molicotti and Stefania Zanetti	1955
Oil Constituents of Artemisia nilagirica var. septentrionalis Growing at Different Altitudes Flora Haider, Narendra Kumar, Ali Arif Naqvi and Guru Das Bagchi	1959
Volatile Oil Composition of <i>Pogostemon heyneanus</i> and Comparison of its Composition with Patchouli Oil Ramar Murugan, Gopal Rao Mallavarapu, Kyathsandra Venkataramaiah Padmashree, Ramachandra Raghavendra Rao and Christus Livingstone	1961
Chemical Composition of Volatile Oils of Aquilaria malaccensis (Thymelaeaceae) from Malaysia Saiful Nizam Tajuddin and Mashitah M. Yusoff	1965
Chemical Composition and Phytotoxic Effects of Essential Oils from Four <i>Teucrium</i> Species Laura De Martino, Carmen Formisano, Emilia Mancini, Vincenzo De Feo, Franco Piozzi, Daniela Rigano and Felice Senatore	1969
Chemical Constituents and Larvicidal Activity of Hymenaea courbaril Fruit Peel	
José Cláudio D. Aguiar, Gilvandete M. P. Santiago, Patrícia L. Lavor, Helenicy N. H. Veras, Yana S. Ferreira, Michele A. A. Lima, Ângela M. C. Arriaga, Telma L. G. Lemos, Jefferson Q. Lima, Hugo C. R. de Jesus, Péricles B. Alves and Raimundo Braz-Filho	1977
Caryophyllene Oxide-rich Essential Oils of Lithuanian Artemisia campestris ssp. campestris and	
Their Toxicity Asta Judzentiene, Jurga Budiene, Rita Butkiene, Eugenija Kupcinskiene, Isabelle Laffont-Schwob and Véronique Masotti	1981
Comparison of Antibacterial Activity of Natural and Hydroformylated Essential Oil of <i>Thymus capitatus</i> Growing Wild in North Sardinia with Commercial <i>Thymus</i> Essential Oils Marianna Usai, Marzia Foddai, Barbara Sechi, Claudia Juliano and Mauro Marchetti	1985
Composition and Chemical Variability of the Leaf Oil from Corsican Juniperus thurifera	1703
Integrated Analysis by GC(RI), GC-MS and ¹³ C NMR Josephine Ottavioli, Joseph Casanova and Ange Bighelli	1991

Combined Analysis by GC (RI), GC-MS and ¹³C NMR of the Supercritical Fluid Extract of Abies alba Twigs Emilie Duquesnoy, Bruno Marongiu, Vincent Castola, Alessandra Piras, Silvia Porcedda and Joseph Casanova 1995 Review/Account **Eugenol: A Natural Compound with Versatile Pharmacological Actions** Kannissery Pramod, Shahid H. Ansari and Javed Ali 1999 Manuscripts in Press 2007 **Cummulative Index** Contents i-xvii Author Index 1-7 Keywords Index i-viii

LIST OF AUTHORS

Abdalla, MA 1917	Ferreira, YS	1977
Afza, N 1899	Filho, RB	1977
Aguiar, JCD 1977	Foddai, M	1985
Ahmed, I 1939	Formisano, C	1969
Ali, J 1999	Fouladvand, M	1935
Alves, PB 1977		
Aminin, DL 1877	Gangopadhyay, M	1913
Amor, ILB1893	Ghedira, K	1893
Ansari, SH 1999	Ghedrira, LC	
Ao, M	Ghoul, M	1893
Arriaga, AMC 1977	Grace, MH	
Avilov, SA 1877	Graidist, P	
,	Graziose, R	
Bagchi, GD 1959	Guedon, E	
Başer, KHC 1951	Guo, W	
Bhattacharya, S 1913	,	
Bhattacharyya, S 1913	Haider, F	1959
Bighelli, A	He, F	
Budiene, J	Hedman, T	
Butkiene, R	Hehn, A	
Butkiene, R	Helmke, E	
Carrasco, A	Hussain, H	
Casanova, J	11u35am, 11	1/3/
Castola, V	Ibrahim, M	1865
Chamy, MC 1859	Itharat, A	
Chang, YC	Iwashina, T	
Chao, LKP	Twasiiiia, T	1903
	Judzentiene, A	1001
Chen, HW	· · · · · · · · · · · · · · · · · · ·	
Chen, J	Juliano, C	1903
Chen, MJ	V-1::. VII	1077
Chien, SC	Kalinin, VI	
Contreras, R	Kang, IJ	
Coşkun, M	Kawanobu, S	
Cui, J	Khaldi, A	
Cui, Y 1907	Khan, R 1865,	
1 11 11 737	Kılıç, CS	
de Almeida, RN	Kim, JK	
de Jesus, HCR	Krohn, K	
de Sousa, DP 1847	Kukreja, AK	
Dechsukum, C	Kumar, N	
Deilami, I	Kuo, YH	
Demirci, B 1951	Kupcinskiene, E	1981
Dewanjee, S 1913		
Dmitrenok, PS 1881	Laatsch, H	
Dongo, E	Lategan, C	
Duquesnoy, E 1995	Lavor, PL	
Dyshlovoy, SA 1881	Lee, JY	
	Lee, YS	
Engasser, JM 1893	Leeanansaksiri, W	
	Lemos, TLG	1977
Falconieri, D 1955	Li, B	1889
Farshadpour, F 1935	Lila, MA	1869
Fedorov, SN 1881	Lim, SS	1927
Feo, VD 1969	Lima, JQ	1977

Lima, MAA	1977
Liu, D	
Liu, J	1889
Livingstone, C	1961
Loetchutinat, C	1931
Lou, LG	1873
Makarieva, TN	1881
Malik, A 1865,1885,	1899
Mallavarapu, GR	1961
Mancini, E	
Marchetti, M	1985
Marongiu, B 1955,	1995
Martin, AS	1859
Martino, LD	1969
Marzouki, H	
Masotti, V	
Mbeunkui, F	
Meepowpan, P	1931
Mehmood, R Mohammadi, K	1025
Molicotti, P	
Murugan, R	1933
Williugali, K	1901
Nakayama, M	1903
Naqvi, AA	1050
Nóbrega, FFF	1847
Nuntasaen, N	1931
Nyongha, AT	1939
Tyongha, 711	1/3/
Okamura, M	1903
Ono, H	
Onozaki, T	
Orejarena, S	
Ottavioli, J	1991
Özkan, AMG	
Padmashree, KV	1961
Patel, RP	
Piozzi, F	1969
Piras, A	1995
Pompimon, W	1931
Porcedda, S	
Pramod, K	1999
Pu, JX	1873
Pumsalid, K	1931
Purnanand, S	1947
Rajeswara Rao, BR	1047
Rajput, DK	194/
Ramedani, E	
Rao, RR	
Raskin, I	1860
Rastian, Z	1935
,	

Rov	virosa, J	1859
Sae	koo, J	1921
San	tiago, GMP	1077
San	itos, CMP	19/7
C-1	1. 11	1001
Sch	wob, IL	1981
Sec	hi, B	1985
	atore, F	
	, Y	
	ıbina, LK	
Silc	chenko, AS	1877
Slu	sarewicz, P	1853
Sm	ith, PJ	1869
Sot	o-Delgado, J	1859
Ste	panov, VG	1877
	nik, VA	
	DH	
Su,	, HD	1007
Sui	і, пр	10/3
т.		1025
1 aj	bakhsh, S	1935
Taj	uddin, SZ,	1965
	isuchat, H	
Thu	ıl, ST	1945
Usa	i, M	1985
V.	as, HNH	1077
vei	as, finh	19//
Wa	ng, J	1007
we	i, Q	1007
	n, MH	
Wu	, SH	1941
37.	o, WL	1072
Xin	ı, X	1889
	naguchi, M	
	ng, FL	
Yas	smeen, S	1899
Yos	shida, H	1903
You	usefi, F	1935
	CC	
	НН	
Vu.	L	1007
ı u,		1065
Y US	soff, MM	1905
7	ndi, K	1025
Zan Z-	iui, ix	1733
Zar	netti, S	1933
Zha	ng, HB	1873
Zha	10, W	1873
Zha	10, Y	1873
Zhı	ı, K	1853

Rigano, D1969

2010 Vol. 5 No. 12 1847 - 1851

Anticonvulsant Activity of the Linalool Enantiomers and Racemate: Investigation of Chiral Influence

Damião P. de Sousa^a*, Franklin F. F. Nóbrega^b, Camila C. M. P. Santos^b and Reinaldo N. de Almeida^b

^aDepartamento de Fisiologia/Universidade Federal de Sergipe, Aracaju, Sergipe, Brazil, CEP 49100–000

^bLaboratório de Tecnologia Farmacêutica/Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil, Caixa Postal 5009, CEP 58051–970

damiao desousa@yahoo.com.br

Received: May 21st, 2010; Accepted: October 4th, 2010

The anticonvulsant activity of the racemate and enantiomers of linalool have been evaluated. Pretreatment of the mice with (S)-(+)-, (R)-(-)- and rac-linalool increased the latency of convulsions significantly in the PTZ model. Only rac-linalool had an effect at the dose of 200 mg/kg. The enantiomers and their racemic mixture were effective in inhibiting the convulsant effect of PTZ at the dose of 300 mg/kg. The linalools presented pharmacological activity close to that of diazepam. In the PIC seizure model, (R)-(-)-linalool and rac-linalool presented activity at the dose of 200 mg/kg, but the rac-linalool was more potent than (R)-(-)-linalool; (S)-(+)-linalool had no effect at this dose. On the other hand, at the dose of 300 mg/kg this enantiomer was effective, but less potent than (R)-(-)-linalool and rac-linalool. In the MES model, linalools decreased the convulsion time of the mice in the doses of 200 and 300 mg/kg. rac-Linalool presented maximum effect at 300 mg/kg. Surprisingly, it increased significantly the convulsion time at a dose of 100 mg/kg. Using the parameter of tonic hind convulsions, only (R)-(-)-linalool produced protection from tonic extension at the dose of 200 mg/kg. When the (+)- and (-)-enantiomers, and rac-linalool were administered at the dose of 300 mg/kg they were also effective in preventing tonic convulsions induced by transcorneal electroshock in the animals. The (+)- and (-)-forms were equipotent and the rac-linalool was more effective than phenytoin. We have demonstrated that the two enantiomers have similar qualitative anticonvulsant activity, but show different potencies.

Keywords: epileptic seizure, anticonvulsant activity, terpenes, essential oils, structure-activity relationship.

In folk medicine as well as in phytotherapy, essential oils have been utilized as therapeutic agents to treat many diseases. They are used, for example, as sedatives, relaxants, and anticonvulsants [1,2]. Many essential oils possess a great variety of pharmacological activities, such as anxiolytic [3], anticonvulsant[2], and antinociceptive [4]. Evidence for the effects of their components on animal behavior has been supplied. Compounds such as linalool [5], α -terpineol [6], and citronellol [7] have anticonvulsant activity, while (+)-limonene [8] and (+)-pulegone [9] show analgesic properties, and isopulegol present an anxiolytic-like effect [10]. The monoterpene derivatives also have been shown to have several effects on the central nervous system (CNS), including antinociceptive [11], sedative [12], and antidepressant [13] activity.

A significant number of herbal medications and dietary supplements are used for treating patients with neurological and psychiatric complaints. Some of these products may be anticonvulsant and thus of possible benefit to patients with epilepsy. There are many studies that report the antiseizure activity of a nonallopathic preparation with animal models of epilepsy. Several of these medications are prepared with plants that contain linalool [14].

Linalool (3,7-dimethyl-1,6-octadien-3-ol), one of the most common terpene alcohols (found in rosewood, linaloe, and lavender), exists in two enantiomeric forms [1,14]. (*R*)-(-)-linalool (licareol) occurs in many essential oils, such as orange blossom flower and lavender flower and has a fine fresh floral odor-character. (*S*)-(+)-Linalool (coriandrol) occurs in coriander fruits and has a more herbal, floral odor-note [15-17]. Linalool is a fragrance ingredient used in many fragrance products as well as in non-cosmetic materials, such as household cleaners and detergents [18].

Pharmacological assessment of chiral compounds in an early research phase can lead to the selection of a single isomer for development. This selection process can maximize the potential for specific activity and minimize the potential for side-effects. For various reasons, however, many racemates have been developed and for these compounds the pharmacological picture is considerably more complex than that of the single enantiomer. Therefore, in the present paper, we studied the anticonvulsant properties of (S)-(+)-, (R)-(-)- and rac-linalool in three animal models of convulsion exploring differences between the enantiomers and racemic mixture with respect to their pharmacological effects.

Because the linalool enantiomers are common in many plant species, and are used in cosmetic, non-cosmetic, and pharmaceutical preparations, as well as in the food industry [19-21], it is interesting and important to know the effects and the enantioselectivity of the convulsion receptors in relation to these monoterpenes. Chiral recognition by receptors and enzymes is well demonstrated in biochemical, pharmaceutical, and chemosensory research. We report in this comparative study the findings of the central effects of (S)-(+)-, (R)-(-)- and rac-linalool on the behavioral parameters of these anticonvulsant drugs in mice.

We first investigated the anticonvulsant activity involved in the PTZ-induced seizures model. The administration of PTZ caused clonic convulsions in mice. As shown in Figure 1, pretreatment of the mice with (S)-(+)-, (R)-(-)- and rac-linalool increased the latency of convulsions significantly. Only rac-linalool (p<0.05) had an effect at the dose of 200 mg/kg [F(3.27) = 3.747; P = 0.02]. This indicates that the largest potency of the rac-linalool is determined by the synergistic action of its constituents. When the enantiomers and their racemic mixture were administered at the dose of 300 mg/kg they were also effective in inhibiting the convulsant effect of PTZ [F(3.23) = 14.55; P < 0.0001]. The linalools presented pharmacological activity close to that of diazepam (p<0.001), a standard anticonvulsant drug. PTZ is the prototype agent in the class of systemic convulsants, and is used as a screening test for anticonvulsants. Generally, compounds with anticonvulsant activity in petit mal epilepsy are effective in the PTZ-induced seizure model [22-24]. So (S)-(+)-, (R)-(-)- and raclinalool may be useful in petit mal epilepsy.

The anticonvulsant activity was also evaluated in the PIC seizure model. (R)-(-)-Linalool and rac-linalool presented activity at the dose of 200 mg/kg (Figure 2), but the rac-linalool (p<0.001) was more potent than (R)-(-)-linalool (p<0.05). (S)-(+)-Linalool had no effect at this dose. On the other hand, at the dose of 300 mg/kg [F(3.28) = 27.23; P < 0.0001], this enantiomer was effective (p<0.01) but less potent than (R)-(-)-linalool

Figure 1: Effects of (S)-(+)-, (R)-(-)- and *rac*-linalool on PTZ-induced seizure in mice. Values are the latency of convulsions. Values are presented as mean \pm S.E.M. for 8 mice; *p<0.05, **p<0.01, when compared with vehicle (control), one-way ANOVA, followed by Tukey's test

Figure 2: Effects of (*S*)-(+)-, (*R*)-(-)- and *rac*-linalool on PIC-induced seizure in mice. Values are the latency of convulsions. Values are presented as mean \pm S.E.M. for 8 mice; *p<0.05, **p<0.01, ***p<0.001, when compared with vehicle (control), one-way ANOVA, followed by Tukey's test.

(p<0.001) and rac-linalool (p<0.001). Again, a synergistic action was observed. The present result also shows that the chiral center at carbon 3 in the linalool molecule is important in the interaction with the receptor. The molecule with the R-configuration hydroxy group at carbon 3 is clearly more bioactive than the molecule with the S configuration. PIC seizure is a popular systemic convulsant model and is known to be a GABA antagonist exerting its effect by binding to the picrotoxin binding site, which is closely related to the chloride ionophore in the GABA_A receptor complex. Classical anticonvulsants such as carbamazepine, phenytoin and DZP have a protective effect against PIC-induced seizures [25].

In another model, MES seizure, (S)-(+)-linalool (p<0.001), (R)-(-)-linalool (p<0.001), and rac-linalool (p<0.001) decreased the convulsion time of the mice in the doses of 200 [F(3.28) = 21.40; P<0.0001] and 300 mg/kg; rac-Linalool presented maximum effect at 300 mg/kg. Surprisingly, it also increased significantly the convulsion time at the dose of 100 mg/kg [F(3,28) = 100.5; P<0.0001] (Figure 3). Using the parameter of tonic hind convulsions, only (R)-(-)-linalool produced protection from tonic extension of about 62.5% (p<0.05) at the dose of 200 mg/kg.

Figure 3: Effect of (S)-(+)-, (R)-(-)- and rac-linalool on the convulsion time induced by electroconvulsive shock. The bars indicate mean \pm S.E.M. (n=8). Statistically significant differences *p<0.05, **p<0.001 with respect to control according to one-way ANOVA, followed by Tukey's test.

Figure 4: Effects of (S)-(+)-, (R)-(-)- and rac-linalool on tonic convulsions induced by electroconvulsive shock. The bars indicate percentage values. Statistically significant differences at *p<0.05, **p<0.01, ***p<0.001 (Fisher's exact test).

When the (+)- and (-)-enantiomers, and rac-linalool were administered at the dose of 300 mg/kg they were also effective in preventing tonic convulsions induced by transcorneal electroshock in the animals, producing 62.5% (p<0.05), 62.5% (p<0.05), and 100% (p<0.001) protection, respectively. The (+)- and (-)-forms were equipotent and the rac-linalool was more effective than phenytoin [75.0% (p<0.01)], a standard anticonvulsant drug (Figure 4). Again the influence of the stereogenic center at carbon 3 and the synergistic action was shown. The MES method is arguably the best-studied and most useful animal model of seizures. Drugs able to inhibit MES seizures in mice are considered to be candidate therapies for primary and secondarily generalized tonic-clonic epilepsies [22].

Chirality has been used to see whether more specific agents can be found for subsets of GABA-receptors. A higher affinity for these receptors results in a better pharmacological profile of the drug. The PTZ and PIC seizure models showed the involvement of the GABA-receptor in the anticonvulsant activity of (S)-(+)-, (R)-(-)- and rac-linalool [26]. It has been reported that linalool also acts on glutamatergic transmission. This monoterpene significantly reduces potassium-stimulated glutamate release, as well as glutamate uptake, but not

interfering with basal glutamate release [27]. It also inhibited and delayed the behavioral expression of PTZ-kindling, but did not modify the PTZ-kindling-induced increase in L-[3H]glutamate binding [28]. Therefore, linalool acts through different mechanisms of action to inhibit the action of various convulsant agents.

The pharmacological differences between linalool enantiomers have been observed on physiological parameters of stress [29] and sedative effect in humans [17]. The chiral influence of other optically active monoterpenes on behavior experimental models also was demonstrated [9,30]. Interestingly, the combined results showed that (S)-(+)-, (R)-(-)- and rac-linalool inhibit not only the action of pentylenetetrazol and picrotoxin (chemical-convulsions), but also protect the mice against MES-induced seizures. This feature may be of interest when one thinks of a good candidate for a drug designed to cause neuroprotection in response to various pro-convulsive agents. The MES and PTZ procedures are of predictive relevance regarding the clinical spectrum of activity of the investigated compounds [31].

In conclusion, we have found that (S)-(+)-, (R)-(-)- and rac-linalool may be effective in blocking generalized tonic-clonic partial and generalized clonic seizures. Our data also demonstrate that the two enantiomers have similar qualitative anticonvulsant activity, but differ in their potencies. The administration of a single enantiomer appears to offer no advantage over the racemic mixture.

Experimental

Chemicals: Pentylenetetrazol (PTZ), phenytoin (PHT), picrotoxin (PIC), Tween 80 and diazepam (DZP) were purchased from Sigma Chemical Co. (USA). (R)-(-)-Linalool $\left[\alpha\right]_{D}^{23} = -16.2^{\circ}$ (c 4.2, CHCl₃) and rac-linalool were purchased from Sigma Aldrich Chemical Co. (USA) and Dierberger (Brazil), respectively. (S)-(+)g) was isolated Linalool (1.23)by column chromatography on silica gel (n-hexane/ethyl acetate, 9 : 1 v/v) from Coriandrum sativum L. oil (3.15 g) [17]. (S)-(+)-Linalool $[\alpha]_D^{23} = +13.6^\circ$ (c 2.7, CHCl₃) was identified on the basis of chromatographic (TLC) behavior, optical rotation, and spectroscopic data (¹H and ¹³C NMR and IR). These assignments agreed with literature values [32] and data of (R)-(-)-linalool. All drugs were injected intraperitoneally (ip).

Animals: Adult, male, 3 month old, albino Swiss mice weighing 24–30 g, were used throughout this study. The animals were randomly housed in appropriate cages at 21±1°C on a 12 h light cycle with free access to food (Purina – Brazil) and tap water. This study used 360

animals that were placed in groups, each of eight animals. All animals were acclimatized before the experiments and the behavioral observations were conducted between 08:00 and 13:00 h. Experimental protocols and procedures were approved by the Laboratório de Tecnologia Farmacêutica Animal Care and Use Committee (CEPA/LTF-UFPB #1205/06).

Statistical analysis: The behavioral data obtained were evaluated by one-way analysis of variance (ANOVA) followed by Tukey's Test. The incidence of clonic or tonic convulsions were evaluated by Fisher's exact test. Differences were considered to be statistically significant when p < 0.05.

Pentylenetetrazol (PTZ)-induced convulsions: Mice were divided into 5 groups (n = 8). The control and positive control groups received 5% Tween 80 and diazepam (4 mg/kg), respectively. The remaining groups received an injection of (S)-(+)-linalool, (R)-(-)-linalool or rac-linalool at doses of 100, 200 and 300 mg/kg. Thirty min after drug administration, the mice were treated with PTZ (ip) at a dose of 60 mg/kg and observed for at least 15 min to detect the occurrence of the first episode of forelimb clonus [33].

Picrotoxin (PIC)-induced convulsion: Animals were divided into 5 groups (n = 8). The first group served as a control and received saline with one drop of Tween 80, while the second group was given diazepam (4 mg/kg, ip). The remaining groups received an injection of (S)-(+)-linalool, (R)-(-)-linalool or rac-linalool (100,

200 and 300 mg/kg, ip). After 30 min of administration, the mice were challenged with picrotoxin at a dose of 8 mg/kg (ip). Immediately after the picrotoxin injection, mice were individually placed in plastic boxes and observed for the onset of clonic seizures [34].

Maximal electroshock (MES)-induced convulsion: The maximal electroshock (MES) protocol to produce convulsions characterized by tonic hindlimb extension was used [33]. Electroconvulsive shock (130V, 150 Hz, for 0.5 s) was delivered through auricular electrodes (ECT UNIT 7801 - Ugo Basile). Mice were divided into 5 groups (n = 8). The first group served as a control and received saline with one drop of Tween 80, while the second group was treated with phenytoin (25 mg/kg, ip) and the other groups received an injection of (S)-(+)linalool, (R)-(-)-linalool or rac-linalool (100, 200 and 300 mg/kg, ip). After 30 min all groups received the electroconvulsive shock. The convulsion time (s) and percentage of animals showing tonic convulsions, characterized by the presence of tonic hind limb extension, was carefully observed. The animals that did not exhibit tonic hindlimb extension were considered protected [35]. Phenytoin and saline were used as positive and negative controls, respectively.

Acknowledgments - This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio a Pesquisa e Inovação Tecnológica do Estado de Sergipe (FAPITEC). We thank the Dierberger (Brazil) for the donation of *rac*-linalool and *Coriandrum sativum* L. oil.

References

- [1] Lawless J. (2002) The Encyclopedia of Essential Oils. Thorsons, London. 35-145.
- [2] Almeida RN, Motta SC, Leite JR. (2003) Óleos essenciais com propriedades anticonvulsivantes. *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, 2, 3–6.
- [3] Umezu T, Ito H, Nagano K, Yamakoshi M, Oouchi H, Sakaniwa M, Morita M. (2002) Anticonflict effects of rose oil and identification of its active constituents. *Life Science*, 72, 91–102.
- [4] De Almeida RN, Navarro DS, Barbosa-Filho JM. (2001) Plants with central analgesic activity. *Phytomedicine*, 8, 310–322.
- [5] Elisabetsky E, Coelho de Souza GP, Santos MAC, Siqueira IR, Amador TA. (1995) Sedative properties of linalool. *Fitoterapia*, 66, 407–414.
- [6] De Sousa DP, Quintans JL, Almeida RN. (2007) Evolution of the anticonvulsant activity of α-terpineol. *Pharmaceutical Biology*, 45, 69-70.
- [7] De Sousa DP, Gonçalves JCR, Quintans-Júnior L, Cruz JS, Araújo DAM, De Almeida RN. (2006) Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. *Neuroscience Letters*, 401, 231–235.
- [8] Amaral JF, Pequeno MR, Neto MRA, Neto PFT, Moura BA, Melo CTV, Araújo FLO, De Sousa DP, Vasconcelos SMM, Sousa FCF. (2007) Antinociceptive effect of the monoterpene R-(+)-limonene in mice. *Biological & Pharmaceutical Bulletin*, 30, 1217-1220.
- [9] De Sousa DP, Júnior EVM, Oliveira FS, Almeida RN, Nunes XP, Barbosa-Filho JM. (2007) Antinociceptive activity of structural analogues of rotundifolone: structure-activity relationship. *Zeitschrift für Naturforschung C A Journal of Biosciences*, 62, 39-42.
- [10] Silva MIG, Neto MRA, Neto PFT, Moura BA, Amaral JF, De Sousa DP, Vasconcelos SMM, Sousa FCF. (2007) Central nervous system activity of acute administration of isopulegol. *Pharmacology Biochemistry & Behavior*, 88, 141-147.
- [11] De Sousa DP, Raphael E, Brocksom U, Brocksom TJ. (2004) Antinociceptive profile of 2-phenylselenenyl-1,8-cineole in mice. *Biological & Pharmaceutical Bulletin*, 27, 910–911.

- [12] De Sousa DP, Oliveira FS, de Almeida RN. (2006) Evaluation of the central activity of hydroxydihydrocarvone. *Biological & Pharmaceutical Bulletin*, 29, 811–812.
- [13] De Sousa DP, Schefer RR, Brocksom U, Brocksom TJ. (2006) Synthesis and antidepressant evaluation of three *para*-benzoquinone mono-oximes and their oxy derivatives. *Molecules*, 11, 148–155.
- [14] Tyagi A, Delanty N. (2003) Herbal remedies, dietary supplements, and seizures. Epilepsia, 44, 228-235.
- [15] Casabianca H, Graff JB, Faugier V, Fleig F, Grenier CJ. (1998) Enantiomeric distribution studies of linalool and linalyl acetate: a powerful tool for authenticity control of essential oils. *Journal of High Resolution Chromatography & Chromatography*, 21, 107-112.
- [16] Borg-Karlson A, Unelius CR, Valterova I, Nilsson LA. (1996) Floral fragrance chemistry in the early flowering shrub *Daphne mezereum*. *Phytochemistry*, 41, 1477-1483.
- [17] Sugawara Y, Hara C, Tamura K, Fujii T, Nakamura K, Masujima T, Aoki T. (1998) Sedative effects on humans of inhalation of essential oil of linalool: sensory evaluation and physiological measurements using optically active linalools. *Analytica Chimica Acta*, 365, 293-299.
- [18] Letizia CS, Cocchiara J, Lalko J, Api AM. (2003) Fragrance material review on linalool. Food and Chemical Toxicology, 41, 943-964.
- [19] Heuberger E, Ilmberger J, Hartter E, Buchbauer G. (2008) Physiological and behavioral effects of 1,8 cineol and (±)-linalool: A comparison of inhalation and massage aromatherapy. *Natural Product Communications*, 3, 1103-1110.
- [20] Kamatou GPP, Viljoen AM. (2008) Linalool A review of a biologically active compound of commercial importance. *Natural Product Communications*, 3, 1183-1192.
- [21] Duman AD, Telci I, Dayisoylu KS, Digrak M, Demirtas I, Alma MH. (2010) Evaluation of bioactivity of linalool-rich essential oils from *Ocimum basilucum* and *Coriandrum sativum* varieties. *Natural Product Communications*, 5, 969-974.
- [22] Fisher RS. (1989) Animal models of the epilepsies. *Brain Research Reviews*, 14, 245–278.
- [23] Chebib M, Johnston GAR. (2000) GABA-activated ligand gated ion channels: Medicinal chemistry and molecular biology. *Journal of Medicinal Chemistry*, 43, 1427–1447.
- [24] Vida JA. (1995) Anticonvulsants. In *Principles of medicinal chemistry*. Foye WO, Lemke TL, Williams DA. (Eds), Williams and Wilkins, London. 182–198.
- [25] Deyn PPD, D'Hooge R, Marescau B, Pei Y. (1992) Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. *Epilepsy Research*, 12, 87–110.
- [26] Crossley R. (1995) Chirality and the biological activity of drugs. CRC Press, Boca Raton. 55-65.
- [27] Silva Brum LF, Emanuelli T, Souza DO, Elisabetsky E. (2004) Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes. *Neurochemical Research*, 26, 191-194.
- [28] Elisabetsky E, Brum LF, Souza DO. (1999) Anticonvulsant properties of linalool in glutamate-related seizure models. *Phytomedicine*, *6*, 107-113.
- [29] Hörfel M, Krist S, Buchbauer G. (2006) Chirality influences the effects of linalool on physiological parameters of stress. *Planta Medica*, 72, 1188-1192.
- [30] De Sousa DP, Nobrega FFF, Almeida RN. (2007) Influence of the chirality of (*R*)-(-)- and (*S*)-(+)-carvone in the central nervous system: A comparative study. *Chirality*, 19, 264-268.
- [31] Rogawski MA, Porter RJ. (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. *Pharmacological Reviews*, 42, 223–286.
- [32] Kubeczka K-H, Formácek V. (2002) Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR Spectroscopy. Wiley, Chichester. 411.
- [33] Swinyard EA, Woodhead JH, White HS, Franklin MR. (1989) Experimental selection, quantification and evaluation of anticonvulsants. In *Antiepileptic drugs*. Levy RH, Dreyfuss FE, Mattson RM, Meldrum BS, Penry JK (Eds), Raven Press, New York 85
- [34] Bum EN, Schmutz M, Meyer C, Rakotonirina A, Bopelet M, Portet C, Jeker A, Rakotonirina SV, Olpe HR, Herrling P. (2001) Anticonvulsant properties of the methanolic extract of *Cyperus articulatus* (Cyperaceae). *Journal of Ethnopharmacology*, 76, 145–150.
- [35] Oliveira FA, Almeida RN, Sousa MFV, Barbosa-Filho JM, Diniz SA, Medeiros IA. (2001) Anticonvulsant properties of *N*-salicyloyltryptamine in mice. *Pharmacology Biochemistry & Behavior*, 68, 199–202.

2010 Vol. 5 No. 12 1853 - 1858

Kinetic Analysis of Genipin Degradation in Aqueous Solution

Paul Slusarewicz*,*, Keng Zhua and Tom Hedmana,b

^aOrthopeutics, L.P., 111 Cooperative Way, Suite 210, Georgetown, Texas 78626, USA

^bBiomedical Engineering Department, Texas A&M University, College Station, Texas, USA

pslusarewicz@orthopeutics.com

Received: February 19th, 2010; Accepted: September 23rd, 2010

Degradation of genipin (GP), a low toxicity natural protein crosslinking agent, in aqueous solution was monitored by HPLC at various pH levels. Degradation of GP was consistent with a mechanism consisting of a first order reaction with a reversible first step. Formation of the intermediate was slowest at more neutral pHs while formation of the irreversible product was correlated to increasing alkalinity. Degradation at all pHs was enhanced by the presence of phosphate ions. Degradation of GP most likely proceeds via the reversible opening of the dihydropyran ring by water followed by irreversible polymerization of the intermediate. Degraded solutions containing no detectable GP or intermediate, however, are still capable of crosslinking proteins.

Keywords: Genipin, crosslinking, degradation, kinetics.

Genipin (GP), whose structure is depicted in Figure 1, is the aglycone of geniposide [1,2], an iridoid glycoside that is a major component of the fruit of the gardenia plant, *Gardenia jasmindides* Ellis. GP is a potent and yet relatively non-toxic [3,4] crosslinker of proteins [5] and has elicited a great deal of interest in areas as diverse as tissue engineering [4,6], biomechanics [7,8], forensics [9] and leather tanning [10]. In addition, GP may be a promising therapeutic for the treatment of type-2 diabetes [11]. Although a complete chemical synthesis of GP has been reported [12], the process is not commercially viable and GP is still produced from plant-derived geniposide by enzymatic deglycosylation [13].

Figure 1: Structure of Genipin.

In order for GP to be utilized in both pharmacological and non-pharmacological applications, some information on the stability of GP in aqueous solution would be valuable as a basis for the design of both products with acceptable shelf lives and crosslinking reaction schemes. Although it has been reported that GP is particularly labile under both acidic [1] and alkaline conditions [14,15], its degradation kinetics have never

been studied in detail. This paper reports on the stability of GP in aqueous solution.

When GP was incubated at 24°C and pH 9 it degraded rapidly (Figure 2), but did not appear to obey the first order rate law since the correlation coefficient obtained from an exponential fit (Figure 2, broken line) was only 0.9952. The first order equation approximated the data obtained at later time points but deviated substantially in the earlier samplings.

A number of possible reaction mechanisms might better describe this data, including that of a sequential reaction with a reversible first step as depicted in Equation 1.

$$GP \underset{k_2}{\overset{k_1}{\rightleftharpoons}} GP^* \xrightarrow{k_3} X \tag{1}$$

In this reaction GP is converted into a hypothetical intermediate (GP*) which can either reform GP or be degraded to a second product (X) in an irreversible step. The kinetics of such a reaction are governed by three kinetic constants; k_1 for the conversion of GP to GP*, k_2 for the reversion of GP* to GP and k_3 for the breakdown of GP* to X.

This reaction is described mathematically by equations 2-6, and thus the concentration of the three molecules in this reaction scheme can be determined using equations

2, 3 and 4 respectively [16], which express the concentration of each molecule at time t with respect to the starting GP concentration ([GP] $_0$) and the three rate constants.

$$[GP]_{t} = [GP]_{0} \left(\left[\frac{\gamma_{1} - k_{2} - k_{3}}{\gamma_{1} - \gamma_{2}} \right] e^{-\gamma_{1}.t} + \left[\frac{k_{2} + k_{3} - \gamma_{2}}{\gamma_{1} - \gamma_{2}} \right] e^{-\gamma_{2}.t} \right)$$

$$[GP^{*}]_{t} = \frac{k_{1} [GP]_{0}}{\gamma_{1} - \gamma_{2}} \left(e^{-\gamma_{2}.t} - e^{-\gamma_{1}.t} \right)$$
(2)

$$[X]_t = k_1 k_3 [GP]_0 \left(\left[\frac{1}{\gamma_2 (\gamma_1 - \gamma_2)} \right] e^{-\gamma_2 \cdot t} + \left[\frac{1}{\gamma_1 (\gamma_1 - \gamma_2)} \right] e^{-\gamma_1 \cdot t} + \frac{1}{\gamma_1 \gamma_2} \right)$$
(4)

Where:

$$\gamma_1^2 - (k_1 + k_2 + k_3)\gamma_1 + k_1k_3 = 0$$
 (5)

$$\gamma_2 = \frac{\kappa_1 \kappa_3}{\gamma_1} \tag{6}$$

To determine rate constant values, data was fitted iteratively to Equation 2 using Octave software. This produced an accurate fit (R^2 =0.99994) with values of 0.52, 1.24 and 0.99 hr⁻¹ for k_1 , k_2 and k_3 respectively (Figure 2, solid line), suggesting that Equation 2 is a more accurate description of GP degradation than simple first-order decay. A wavelength scan of the degraded GP sample did not reveal the presence of new light-absorbing species in the 200-900 nm range and so subsequent experiments were limited to measuring the disappearance of GP and not the appearance of GP* or X.

Figure 2: Degradation of GP at pH 9. GP was incubated at 24°C and pH 9 and analyzed for GP content at regular intervals by HPLC. Data were fitted exponentially (First Order) or to Equation 2 (Sequential).

GP degradation was strongly influenced by pH and was more rapid under alkaline conditions (Figure 3). Interestingly, however, while stability increased with increasing acidity from pH 9 to 6, stability at pH 4 and 5 appeared to be comparable to that at pH 7. These experiments were repeated several times at each pH and the average value of each rate constant and the half-life ($t_{1/2}$) of GP under each condition were determined (Table 1). These data suggested that this effect was due to a relative increase in the k_1 rate constant at pH 4 and 5 relative to pH 6 and that the apparent decrease in stability observed under the more acidic conditions was due to a more rapid establishment of the GP/GP*

Figure 3: Degradation of GP at various pHs. GP solutions at various pHs were incubated at 24°C and pH 9 and analyzed for GP content at regular intervals by HPLC. Data were fitted using Equation 2.

Table 1: Summary of experimentally determined rate constants (in hour⁻¹) and calculated half-lives (in hours).

pН	n	\mathbf{k}_1	\mathbf{k}_2	k ₃	t _{1/2}	t* _½
4	4	0.033	0.126	0.005	443.2	650.7
5	4	0.039	0.113	0.006	293.1	494.4
6	3	0.017	0.116	0.046	139.8	162.7
7	4	0.029	0.138	0.056	77.9	97.1
8	3	0.105	0.468	0.273	16.9	20.8
9	3	0.491	1.406	1.196	2.9	3.8

equilibrium and not to irreversible degradation. In fact, the k₃ constant decreased substantially at pH 4 and 5, suggesting that irreversible degradation might indeed be slower under the more acidic conditions.

Figure 4: Calculated long-term GP degradation curves. Using experimentally determined rate constants (Table 1), the degradation of GP at various pHs was modeled and plotted using Equation 2.

The experimentally determined values for the three constants were used to plot theoretical curves for the degradation of GP at the various pHs (Figure 4). This indeed showed that at longer time scales GP was more stable at pH 4 and 5, due to the reduction in the magnitude of k_3 . This also demonstrates that the concentration of GP at any given time point does not truly reflect the stability of GP since GP* can reform GP instead of being permanently converted to X. It is therefore the sum of [GP] and [GP*] that determines the amount of irreversible degradation that has occurred.

Figure 5: Calculated long-term permanent GP degradation curves. Since GP* is not a permanent breakdown product of GP, the actual breakdown was calculated by determining the loss of both GP and GP* over time using experimentally determined rate constants (Table 1) and Equations 2 and 3.

The concentration of GP + GP* was calculated at various time points to obtain curves (Figure 5) and half-lives (Table 1) that describe the true irreversible degradation of GP and demonstrate a clear and direct correlation between pH and GP stability from pH 4 to 9.

It was previously shown that GP crosslinking is enhanced by the presence of phosphate ions [17]. It was therefore investigated whether they could also affect stability. GP was incubated in the presence or absence of phosphate at pH 7, 8 or 9 and its degradation monitored. In it's presence degradation was still consistent with the mechanism of Equation 1 ($R^2 > 0.999$ in all cases), but was more rapid in all cases. In general, phosphate increased the magnitude of each rate constant by approximately 1.5 to 3-fold, resulting in decreases in half-lives of 45-70% (Table 2). There was no apparent correlation between the changes in the rate constants or half-lives and pH.

Table 2: Summary of experimentally determined rate constants (hour-1) and calculated half lives (in hours) in the presence of phosphate ions.

рН	\mathbf{k}_1	k ₂	k ₃	t _{1/2}	t*½
7	0.10	0.38	0.12	26.3	35.6
8	0.24	0.83	0.34	9.2	12.4
9	0.91	2.03	2.50	1.3	1.7

As expected, GP stability increased when a sample was frozen and stored at -20° C (Figure 6). The degradation was still consistent with the mechanism of Equation 1, although the fit was not as close as in previous experiments ($R^2 = 0.998$). This was probably due to experimental errors from the use of an external calibration standard to quantify GP concentration at each time point since this experiment was conducted over a period of 4 months and not in a single run. The values for k_1 , k_2 and k_3 determined from this experiment were 0.667, 1.110, and 4.849x10-3 hr⁻¹ respectively under these conditions. When compared to the average

Figure 6: Degradation of GP at -20°C. GP was incubated at -20°C and pH 9 and analyzed for GP content at regular intervals by HPLC. Data were fitted to Equation 2.

values obtained from identical samples stored at 24°C (Table 2), the k_1 and k_2 rate constants decreased by only 0.36- and 0.82-fold respectively at -20°C. The k_3 constant, however, appeared to be substantially more sensitive to temperature and was reduced 515-fold. These decreases in rate constant increased the apparent half-life of GP under these conditions from 1.3 hours for an equivalent sample stored at 24°C to 124 hours, a 96-fold increase. The actual GP half life (i.e. GP+GP*), however, increased 221-fold from 1.7 hours at 24°C to 382 hours.

GP reaction with amines is thought to occur via a nucleophilic attack by the free N-electron pair on the olefinic carbon of the dihydropyran ring [18,19], resulting in ring opening and reclosure to incorporate the amine nitrogen. Crosslinking then proceeds via polymerization. It has also been suggested that since GP contains a cyclic hemi-acetal in its dihydropyran ring it may be susceptible to reversible attack and opening by water [20] to form aldehydes (Figure 7). Breaking of the dihydropyran ring in alkaline solution has been confirmed experimentally by Mi and colleagues, who also demonstrated that ring-opened GP is capable of polymerization by aldol condensation [14]. However, while Mi et al reported that ring opening and subsequent polymerization occurs only at very high pH levels (i.e. 13.6), our data suggests otherwise. Closer inspection of their data, in fact, shows that the absorbance at 240nm of GP solutions prepared at different pHs follows the order 7.4>5>1.2>9, i.e. similar to the "apparent" GP stability observed here. Possibly the degradation of GP at lower pH was previously overlooked due to the extremely high degradation/polymerization rate observed at pH 13.6.

Figure 7: The proposed reversible ring-opening reactions of genipin in aqueous solution.

Figure 8: Protein crosslinking by GP. Samples of bovine annulus tissue were incubated with various concentrations of GP and then subjected to proteolysis. The extent of proteolysis, and hence crosslinking, was monitored by measuring the release of hydroxyproline-containing peptides from the insoluble tissue matrix.

While this paper [14] does not report the incubation times used before spectral analysis, the authors do state: "Because polymerization of genipin at strong base (pH 13.6) was quick (the color of aqueous genipin changed from transparent to brownish immediately), its intermediate reaction could only be examined at a lower temperature." It is therefore possible that the intermediates and products of degradation were not observed previously because their formation rate at lower pHs was too slow to allow their detection upon subsequent analysis. In fact, given sufficient time, the "browning" of GP solutions was observed at all pHs reported here, including at pH4 at -20°C after 6 months (data not shown). The data therefore, suggest that GP degradation by reversible ring opening and subsequent polymerization is a phenomenon that occurs at all pH levels, albeit with dramatically different kinetics.

While the chemical identities of both GP* and X have not been determined, in light of these previous studies, it seems likely that GP* represents the open-ring structure of GP while X represents the first irreversible product of the polymerization process. It should be noted that our data are also consistent with a mechanism where GP is converted to GP* via multiple reversible steps through one or more additional intermediates. In such an instance, our k_1 and k_2 rate constants would describe a simplification of a more complex equilibrium, but would nevertheless be valid.

Interestingly, the GP sample that had been stored at -20°C for 131 days was still capable of crosslinking proteins even though it contained no detectable GP (Figure 6). The resistance of insoluble protein matrices to enzymatic proteolysis increases with the extent of crosslinking [21], due to the increased number of scission events required to release soluble peptide fragments and a decrease in the steric accessibility of the protease to its substrate. Such a protease protection assay was used to indirectly measure the ability of GP to crosslink the insoluble collagenous tissue of the annulus fibrosis of bovine spinal discs.

Treatment of tissue with a fresh solution of 0.25 mM GP resulted in a 93% decrease in the proteolysis of the tissue. The 131-day sample originally containing a 10 mM solution of GP was diluted 40-fold to produce the equivalent of a 0.25 mM solution. While this sample contained no GP by HPLC it was still capable of decreasing proteolysis by 67%.

Since the concentration of GP in the 131-day sample was below the detection limits of our assay, the levels of both GP and GP* were calculated using Equations 2 and 3 and the experimentally determined values for the three rate constants. The GP content of the sample was 21 μM while the GP* concentration was 12 μM, giving a total of 33 µM. Since the sample was diluted 40-fold prior to use, the final concentration of GP and the reversible intermediate in the crosslinking reaction was therefore less than 1 µM. The crosslinking activity of low concentrations of fresh GP was then determined under the same conditions (Figure 8) and, at the lowest concentration tested (25 µM), GP was only able to retard proteolysis by 13% compared to the 67% by the aged, <1 µM sample. This suggests that X and/or further downstream products are still capable of crosslinking proteins leading to the speculation that X corresponds to polymers of ring-opened genipin reported previously [14], and crosslinking is due to the reaction of aldehydes present in the polymer termini with the protein.

Experimental

Genipin was purchased from Challenge Bioproducts Co., Ltd. (Taiwan). All other reagents were purchased from Sigma.

HPLC Analysis: Analysis of GP was an adaptation of previous methods [3,22,23] and conducted using a Hewlett Packard Series 1050 HPLC and an Agilent Extend C-18 column fitted with a guard cartridge. The column was equilibrated in 40% methanol/0.1% perchloric acid and run isocratically in the same buffer.

For short-term kinetic studies, $50~\mu L$ of a solution of freshly prepared 1 mM GP in buffer was injected onto the column. The sample was incubated at $24^{\circ}C$ and further $50~\mu L$ aliquots injected and analyzed at regular intervals thereafter. The magnitude of the intervals was determined by the rate of GP degradation under the given conditions. The samples were run for 10~minutes at 1~mL/min and absorbance was monitored at 240~nm. GP eluted at approximate 6.7~minutes. Peak integration was performed using Chemstation version A.09 software at default settings. Data were normalized by dividing by the peak area of the t=0~sample.

Buffers were selected to contain no amines, which could react with GP and thus complicate results. All buffers used in the pH studies were 100 mM sodium acetate (pH 4), sodium cacodylate (pH 5), MES (pH 6), MOPS (pH 7), and EPPS (pH 8 and 9). In experiments containing phosphates, the appropriate buffers were supplemented with 100 mM sodium triphosphate.

A long term -20°C stability experiment was conducted with a 10 mM solution of GP in 100 mM EPPS/ 100 mM sodium triphosphate, pH 9. A sample of the solution was diluted 10-fold with water and analyzed as described above while the remainder was divided into aliquots and frozen at -20°C. An aliquot was thawed, diluted and analyzed at regular intervals over 4 months. In addition, before each GP analysis, a 50 μL aliquot of freshly prepared 0.5 mM uracil in water was also analyzed using the GP method as a calibration standard. The peak area of each GP peak was normalized by dividing by the area of the uracil peak produced on the

same day of analysis and then by the normalized peak area of the t=0 sample.

Half-lives were calculated iteratively using an algorithm programmed into custom Visual Basic script to determine the time at which the concentration of either GP or GP+GP* equaled 0.5.

Tissue Crosslinking: Crosslinking and analysis of bovine annulus tissue by GP was conducted as described previously [24]. Crosslinking was conducted on 20-25 mg of homogenized bovine annulus fibrosis per duplicate sample at 37°C for 1 hour with shaking in the presence of 0.5 mL of crosslinking solution. Crosslinking solutions consisted of either various concentrations of fresh GP in 100 mM EPPS/100 mM sodium triphosphate pH 9 or a 1/40 dilution into the same buffer of degraded 10 mM GP.

Acknowledgments - This work was supported by the National Institutes of Health (2R44AR055014-02A1).

References

- [1] Djerassi C, Eisenbraun EJ, Finnegan RA, Gilbert B. (1960) Naturally Occurring Oxygen Heterocyclics. IX. Isolation and Characterization of Genipin. *Journal of Organic Chemistry*, 25, 2174-2177.
- [2] Djerassi C, Nakano T, Zalkow LH, Eisenbraun EJ, Shoolery JN. (1961) Terpenoids. XLVII. The Structure of Genipin. *Journal of Organic Chemistry*, 26, 1192-1206.
- [3] Hou YC, Tsai SY, Lai PY, Chen YS, Chao PD. (2008) Metabolism and pharmacokinetics of genipin and geniposide in rats. *Food and Chemical Toxicology*, 46, 2764-2769.
- [4] Huang LL, Sung HW, Tsai CC, Huang DM. (1998) Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. *Journal of Biomedical Materials Research A*, 42, 568-576.
- [5] Fujikawa S, Fukui Y, Koga K. (1988) Genipin, a new type of protein crosslinking reagent from gardenia fruits. *Agricultural and Biological Chemistry*, 52, 869-870.
- [6] Sung HW, Chang WH, Ma CY, Lee MH. (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. *Journal of Biomedical Materials Research A*, 64, 427-438.
- [7] Hedman TP, Saito H, Vo C, Chuang SY. (2006) Exogenous cross-linking increases the stability of spinal motion segments. *Spine*, 31, 480-485.
- [8] Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. (1999) Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. *Journal of Biomedical Materials Research A*, 47, 116-126.
- [9] Levinton-Shamuilov G, Cohen Y, Azoury M, Chaikovsky A, Almog J. (2005) Genipin, a novel fingerprint reagent with colorimetric and fluorogenic activity, part II: optimization, scope and limitations. *Journal of Forensic Science*, 50, 1367-1371.
- [10] Ding K, Taylor MM, Brown EM. (2008) Tanning effects of aluminum-genipin or -vegetable tannin combinations. *Journal of the American Leather Chemists Association*, 103, 377-382.
- [11] Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, Porco JA, Jr., Lowell BB. (2006) Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. *Cell Metabolism*, 3, 417-427.
- [12] Buchi G, Gubler B, Schneider S, Wild J. (1967) The total synthesis of raecemic genipin. *Journal of the American Chemical Society*, 89, 2776-2777.
- [13] Zhou T, Zhao W, Fan G, Chai Y, Wu Y. (2007) Isolation and purification of iridoid glycosides from Gardenia jasminoides Ellis by isocratic reversed-phase two-dimensional preparative high-performance liquid chromatography with column switch technology. *Journal of Chromatography B*, 858, 296-301.
- [14] Mi FL, Shyu SS, Peng CK. (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. *Journal of Polymer Science A*, 43, 1985-2000.
- [15] Mi FL, Sung HW, Shyu SS. (2000) Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. *Journal of Polymer Science A*, 38, 2804-2814.

- [16] Halpern AM, McBane GC. (2006) Experimental physical chemistry. W. H. Freeman, New York, NY.
- [17] Slusarewicz P, Zhu K, Kirking B, Toungate J, Hedman T. (2010) Optimization of Protein Crosslinking Formulations for the Treatment of Degenerative Disc Disease. *Spine*. In Press.
- [18] Touyama R, Inoue K, Takeda Y, Yatsuzuka M, Ikumoto T, Moritome N, Shingu T, Yokoi T, Inouye H. (1994) Studies on the blue pigments produced from genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. *Chemical and Pharmaceutical Bulletin*, 42, 1571-1578.
- [19] Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H. (1994) Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. *Chemical and Pharmaceutical Bulletin*, 42, 668-673.
- [20] Oshima T, Sagara K, Yoshida T, Tong YY, Zhang GD, Chen YH. (1988) Determination of geniposide, gardenoside, geniposidic acid and genipin-1β-gentiobioside in Gardenia jasminoides by high-performance liquid chromatography. *Journal of Chromatography*, 455, 410-414.
- [21] Vasudev SC, Chandy T. (1997) Effect of alternative crosslinking techniques on the enzymatic degradation of bovine pericardia and their calcification. *Journal of Biomedical Materials Research A*, 35, 357-369.
- [22] Yamano T, Tsujimoto Y, Noda T, Shimizu M, Ohmori M, Morita S, Yamada A. (1990) Hepatotoxicity of geniposide in rats. *Food and Chemical Toxicology*, 28, 515-519.
- [23] Ueno K, Takeda Y, Iwasaki Y, Yoshizaki F. (2001) Simultaneous estimation of geniposide and genipin in mouse plasma using high-performance liquid chromatography. *Analytical Sciences*, 17, 1237-1239.
- [24] Slusarewicz P, Zhu K, Hedman TP. (2010) Kinetic Characterization and Comparison of Various Protein Crosslinking Reagents for Matrix Modification. *Journal of Materials Science: Materials in Medicine*, 21, 1175-1181.

2010 Vol. 5 No. 12 1859 - 1864

Microbial Transformation of Marine Halogenated Sesquiterpenes

Aurelio San Martin^{a*}, Juana Rovirosa^a, Alvaro Carrasco^a, Silvia Orejarena^a, Jorge Soto-Delgado^a, Renato Contreras^a and M. Cristina Chamy^b

^aUniversidad de Chile, Facultad de Ciencias, Casilla 653, Santiago, Chile

aurelio@uchile.cl

Received: June 27th, 2009; Accepted: November 12th, 2010

The sesquiterpene pacifenol is one of the main constituents of the red alga *Laurencia claviformis*. Earlier work on the semisynthetic derivatives of pacifenol afforded a series of halogenated sesquiterpenes. The aim of the present work was to obtain new hydroxylated derivatives of halogenated sesquiterpenes by means of microbial transformation using *Aspergillus níger*, *Gibberella fujikuroi* and *Mucor plumbeus*. The best results were obtained with *M. plumbeus*. The microbiological transformation by *M. plumbeus* of pacifenol, and two semisynthetic derivatives, is described. The structures of the new compounds obtained were determined by spectroscopic means.

Keywords: Laurencia claviformis, Mucor plumbeus, biotransformation, pacifenol, pacifidiene.

Biotransformation is an important tool in the structural modification of organic compounds, especially natural products, due to its significant regio and stereoselectivies [1-3].

Filamentous fungi have frequently been used to catalyze selective hydroxylation reactions that are usually difficult to achieve by chemical means [2]. This study looks at the microbial hydroxylation of pacifenol and its derivatives 2 and 3, using the fungal microorganisms *Aspergillus níger*, *Gibberella fujikuroi* and *Mucor plumbeus*. From screening experiments, *M. plumbeus* was selected as the best yielding microorganism and incubations with this (6 days, 27° C, 0.5 g/L) afforded, after extraction, compounds 4-9.

Pacifenol (1), from the red alga *Laurencia claviformis* [4], when treated with *p*-toluenesulfonic acid, yielded pacifidiene (2). However, when pacifenol was treated with sodium hydride, compound 3 was obtained [5].

A previous study described the microbiological transformation of pacifenol by the fungus *Penicillium brevicompactum* [6]. Continuing these studies, we report here results obtained from incubations with *M. plumbeus* of pacifenol and two semi-synthetic pacifenol derivatives (2 and 3).

Figure 1: Compounds obtained from the biotransformation from pacifienol ${\bf 1}$ and the semisynthetic derivatives ${\bf 2}$ and ${\bf 3}$.

The fermentations were carried out for a period of 6 days. The combined broth and mycelium were extracted with ethyl acetate, and then separated into neutral and acid fractions.

^bDepto de Ouímica, Universidad Andrés Bello, Avda Los Fresnos 52, Viña del Mar, Chile

In the biotransformation of pacifenol with *M. plumbeus* two metabolites that were not present in a control fermentation were detected by TLC. The ethyl acetate extract of the medium was purified by chromatography to yield the biotransformation products **4** and **5**.

Metabolite **4**, obtained in good yield, was identified by comparing the physical and spectroscopic data with those of the product obtained in the biotransformation of pacifenol with *P. brevicompactum* [6].

Comparison of the 1H NMR spectra of compound 5 and the substrate 1 showed the disappearance of a double doublet due to H-2 in compound 1 and the appearance of a broad doublet at δ_H 5.81, corresponding to the presence of a tri-substituted double bond in compound 5; also, the signal of the methyl (Me-12) geminal to a chlorine atom at δ_H 1.72 in 1 was shifted downfield to δ_H 1.85 in 5.

The position of the tri-substituted double bond was inferred from the following correlations observed in the 2D experiments and COSY and TOCSY. The HMBC interaction of the H-1 resonance at δ_H 4.76 (C-1, δ_C 75.0) with the olefinic carbon at δ_C 136.3, and also the correlation between Me-12 at δ_H 1.85 with the olefinic carbons at δ_C 136.3 and 126.7 ppm, and with the methine carbon bearing the bromine atom at δ_C 67.9, indicate the presence of the $C_2\text{-}C_3$ double bond. Furthermore, a COSY experiment revealed correlation between a broad doublet at δ_H 5.81 and a methyl at 1.85 ppm. A TOCSY spectrum, when the signal at δ_H 5.81 is irradiated, showed correlations with the signal at δ_H 4.76 and with the methyl at 1.85 ppm. Consequently, structure 5 was assigned to this compound.

The biotransformation of pacifidiene (2) with M. plumbeus gave the metabolites 1 and 6. The molecular formula, $C_{15}H_{20}Br_2O_2$, of compound 6 was established based on ^{13}C NMR, DEPT and MS [m/z: 392]. This formula suggests that oxygen was introduced in 2 in place of the chlorine atom. Comparison of the ^{1}H NMR spectra of 2 and 6 showed only minor differences in the chemical shift corresponding to the geminal methyl to the heteroatom (chlorine in 2, δ_H 1.73 and oxygen in 6, δ_H 1.26).

As in the compound obtained from the biotransformation of pacifenol with *P. brevicompactum*, the hydroxyl group at C-3 is axial (exo face of the molecule) [6]. So, compound **6** is shown to be 3-hydroxydechloropacifidiene.

From the microbiological transformation of compound 3, two products, 7 and 8, were obtained, the structures

of which were established unambiguously by NMR spectroscopy. Another compound (9) was obtained, but only in small quantities such that only a ¹H NMR spectrum was recorded.

The ¹H NMR spectrum of compound 7 exhibited a downfield CH signal at δ_H 4.23 (brs, H-2). This observation suggested the introduction of an OH group at one of the CH₂ groups, i.e C-2 or C-5. The assignments of all the protons were accomplished by interpretation of the HMQC spectrum. The position for the newly introduced OH group at C-2 was inferred on the basis of HMBC couplings of the protons resonating at δ_H 1.93 (Me-15) and 4.40 (H-C-1) with the newly hydroxylated methine C-atom at δ_C 75.3 (H-C(2)). The orientation of the OH group at C-2 was inferred from the NOESY correlations of H β -C(2) with H β -C(5), Me-15 and with Me-13: $H\alpha$ –C(1) has correlation only with H α -C(5). Also, there are correlations between the methyl at δ 0.98 (Me-13) with Me-15 (δ 1.93) and $H\beta-C(5)$; between Me-12 with $H\alpha-C(5)$ and Me-14 $(\delta 1.34)$. Other correlations observed are between Me-14 with H β -C(5) and H α -C(5); between H-9 with Me-12 and between H-8 with Me-12 and Me-14; $H\alpha$ –C(5) with Me-14 and $H\alpha$ –C(1); and H β –C(5) with Me-13, $H\beta$ –C(2) and Me-14. The stereochemistry of pacifenol was assigned by X-ray-diffraction, and as compound 3 is a synthetic derivative of pacifenol, the stereochemistry of this compound is assumed to be the same as that of pacifenol. Furthermore, the coupling constant between H-1 and H-2 (J_{1,2}=1.9Hz) indicates that the H-2 must be β and, therefore, the hydroxyl group must be pseudo-equatorial at the exoface of the molecule, which is appropriate for this hydroxylation.

In order to confirm the spectroscopic data, a DFT/GIAO approach has been used to calculate the ¹H and ¹³C chemical shifts. This methodology has been used for NMR assignments in several natural products [7-9]. The combined approach of extensive spectroscopic analysis and quantum mechanical methods has been used for the reassignment of structures [10], and can be very helpful to either confirm or discard both rigid and molecular structures [11.12]. Recently Bassarello et al. [13] have used this methodology to derive the stereo structures of unknown compounds by comparing the experimental NMR spectroscopic data with the corresponding calculated spectra all the possible stereo isomers. In addition, quantum calculations mechanical of proton-proton and proton-carbon J coupling constants have proposed as useful tools to assign the relative configurations of chiral organic compounds. This approach provides results that were in good agreement with the experimental data [14,15]. When heavy atoms

Figure 2: Deviation from calculated and observed ¹³C NMR chemical shift for both configurations in C2 for configurations (a) and (b) of compound 7.

are present in the structure, some spin-orbit (SO) coupling may be operative [16]. This effect has been discussed by Braddock *et al.* [10]. These authors report that the use of the extended basis set do not produce a great change in the chemical shift. They recommended that an average correction of ca. -3 ppm for bromine attached to a sp³ carbon [17] was adequate to empirically reproduce the experimental chemical shift.

Proton-proton $J_{\rm H,H}$ coupling constants were calculated at the mPW1PW91/6-31G(d,p) level of theory for compound 7 and optimized at the mPW1PW91/6-31G(d) level. The resultant structure for compound 7 is shown in Figure 2. The differences between theoretical and experimental values $\Delta \delta = |\delta_{\rm exp} - \delta_{\rm calc}|$ show a measure of the dispersion between the theoretical and experimental chemical shift values for compound 7b. The coupling constants for protons H-1 and H-2 were calculated for both configurations. The values for $^3J_{\rm H-H}$ for the protons at C-2 and C-1 are 8.21 Hz for isomer (a) and 1.92 Hz for isomer (b), respectively.

In summary, our results show that GIAO/DFT calculations on the optimized structure at the mPW1PW91/6-31G(d,p) level of theory provide excellent results that are in agreement with experimental values for 13 C chemical shifts and in fair agreement with experimental proton–proton $^{3}J_{\rm H,H}$ coupling constants. The theoretical results confirm and support the experimentally derived assignments of compound 7.

Compound 7 was treated with Jones' reagent to obtain compound 7c, the 1H NMR spectrum of which was very similar to that of compound 7, with the disappearance of the H-atom geminal to the OH group at δ 4.23, and the appearance in the ^{13}C NMR spectrum of a signal due to an oxo group at δ_C 191.5. The assignments of all the H-C atoms were accomplished by interpretation of the

HMQC spectrum. The position of the carbonyl group was inferred on the basis of HMBC couplings, i.e. the H-C-1 proton at δ_H 4.75 correlates with C-6 (δ 54.1), C-7 (δ 75.0) and C-2 (δ 191.5). Me-15 (δ 2.00) correlates with C-3 (δ 135.4), with C-4 (δ 146.5) and with C-2 (δ 191.5)

The least polar compound isolated (8) had a molecular formula $C_{15}H_{20}O_3Br_2$, and possessed one more oxygen atom than substrate 3. Its 1H NMR spectrum was very similar to that of 3 except that the signal of a methyl group (Me-15) at δ_H 2.01 had been replaced by that of a hydroxymethylene group, two signals, forming an AB system, at δ_H 4.32 and 4.27 (J = 16 Hz). Thus, structure 8 was assigned to this compound.

The most polar substance isolated in the incubation of **3** was the triol **9**. The two novel alcoholic groups introduced in the molecule were located at C-2 and C-15, in accordance with the ¹H NMR spectrum. Thus the resonance of H-2 was similar to that of compound **7** and the resonance for the hydroxymethylene in C-15 was similar to that of compound **8**. The quantity available was insufficient to obtain a ¹³C NMR spectrum.

Experimental

General experimental procedures: IR spectra were obtained using a Perkin-Elmer Spectrum BX FT-IR spectrometer. 1 H and 13 C NMR spectra were recorded in CDCl₃ at 400.13 and 100 MHz, respectively, with a Bruker AMX2-400 spectrometer. Chemical shifts are given in δ (ppm). Mass spectra were taken at 70 eV (probe) with a Micromass Autospec spectrometer. Semipreparative HPLC was carried out with a Beckman System Gold 125P. Dry column chromatography was performed on Merck 0.02-0.063 mm silica gel.

Computational details: Geometry optimization was performed using the mPW1PW91[18] exchange-correlation function, together with the standard 6-31G(d) basis set [19]. The ¹H and ¹³C NMR chemical shifts were calculated using the GIAO (Gauge Invariant Atomic Orbitals) method [20] at this level of theory. Relative chemical shift and coupling constants were estimated by using the corresponding TMS shielding calculated at the same level of theory. Spin-spin coupling calculations were performed taking into account the contributions of the following interactions: Fermi contact (FC), paramagnetic spin-orbit (PSO), diamagnetic spin-orbit (DSO), and spin-dipole (SD). All calculations were carried out with the Gaussian 03 suite of programs [21].

Substrate 1 was isolated from *Laurencia claviformis*, an alga that grows on the coast of Easter Island. Substrate

2 was obtained by treating compound 1 with *p*-toluene sulfonic acid and compound 3 was obtained after the reaction of pacifenol with NaH in THF [5].

Incubation and isolation procedures: Mucor plumbeus was grown in shaking culture at 25°C for 2 days in 65-75 conical flasks (250 mL), each containing sterile medium (50 mL) [6]. The substrate was dissolved in EtOH (13-15 mL) and distributed equally between the flasks, and the incubation was allowed to continue for 6 days. The broth was separated from the mycelium by filtration, and both were extracted with EtOAc. The extracts were combined and chromatographed on silica gel using as eluent a light petroleum-EtOAc gradient. Some mixtures were resolved by HPLC on an Ultrasphere silica gel 5 μm column (1× 25 cm), eluting with mixtures of isocratic *n*-hexane-EtOAc at 3 mL/min.

Biotransformation of pacifenol (1): The incubation of 1 (300 mg) afforded, from the neutral fraction, starting material 1 (45 mg), 4 (100 mg), and 5 (27 mg).

Compound 5

¹H NMR (δ, 400 MHz): 6.09 (1H, d, J = 9.9 Hz, H-9), 5.81 (1H, brd, J = 2.3 Hz, H-2), 5.48 (1H, d, J = 9.9 Hz, H-8), 4.76 (1H, d, J = 2.3 Hz, H-1), 4.21 (1H, dd, J = 5.0, 4.7 Hz, H-4), 2.07 (1H, dd, J = 4.7, 15.3 Hz, H-5), 2.03 (1H, dd, J = 5.0, 15.3 Hz, H-5'), 1.85 (3H, brs, Me-15), 1.44 (3H, s, Me-14), 1.11 (3H, s, Me-12), 1.09 (3H, s, Me-13).

¹³C NMR (δ, 100 MHz, CDCl₃): 75.0 (CH, C-1), 136.3 (CH, C-2), 126.7 (C, C-3), 67.9 (CH, C-4), 29.5 (CH₂, C-5), 55.4 (C, C-6), 77.2 (C, C-7), 134.0 (CH, C-8), 132.5 (CH, C-9), 100.3 (C, C-10), 51.9 (C, C-11), 24.7 (CH₃, C-12), 21.9 (CH₃, C-13), 25.1 (CH₃, C-14), 20.7 (CH₃, C-15).

EIMS (70 eV) m/z (%, rel.int): 392 [M - H₂O]⁺(20), 313 [M - H₂O- 79 Br]⁺(100), 312 [M - H₂O - Br]⁺(20), 311 [M - H₂O- 81 Br]⁺(90), 295(10).

Biotransformation of pacifidiene (2): The incubation of 2 (300 mg) afforded, from the neutral fraction, starting material 2 (60 mg), 6 (86 mg), and 1 (27 mg).

Compound 6

¹H NMR (δ, 400 MHz): 5.87 (1H, d, J = 9.9 Hz, H-9), 5.58 (1H, d, J = 9.9 Hz, H-8), 5.1 and 5.0 (1H each, brs, H-14 and H-14'), 4.48 (1H, d, J = 6.1 Hz, H-4), 4.07 (1H, dd, J = 4.7, 14.2 Hz, H-1), 2.66 (1H, dd, J = 4.7, 14.0 Hz, H-2), 2.20 (1H, dd, J = 6.1, 11.8 Hz, H-5a), 1.72 (1H, d, J = 11.8 Hz, H-5e), 1.26 (3H, brs, Me-15), 1.15 (3H, s, Me-12), 1.03 (3H, s, Me-13)
¹³C NMR (δ, 100 MHz, CDCl₃): 77.9 (CH, C-1), 43.1

¹³C NMR (δ, 100 MHz, CDCl₃): 77.9 (CH, C-1), 43.1 (CH₂, C-2), 75.2 (C, C-3), 61.5 (CH, C-4). 32.8 (CH₂,

C-5), 53.8 (C, C-6), 147.0 (C, C-7), 133.0 (CH, C-8), 130.1(CH, C-9), 100.3 (C, C-10), 50.5 (C, C-11), 23.3 (CH₃, C-12), 20.1 (CH₃, C-13), 114.7 (CH₂, C-14), 29.7 (CH₃, C-15).

MS (EI, 70 eV) m/z (%, rel.int): 392 [M - H₂O]⁺ (20), 313 [M - H₂O- 79 Br]⁺ (100), 312 [M - H₂O - Br]⁺ (20), 311 [M - H₂O- 81 Br]⁺ (90), 295 (10).

Biotransformation of compound 3: The incubation of **3** (260 mg) afforded, from the neutral fraction, starting material **3** (50 mg), **7** (120 mg), **8** (35 mg) and **9** (1 mg).

Compound 7

¹H NMR (δ, 400 MHz): 6.06 (1H, d, J = 9.8 Hz, H-9), 5.42 (1H, d, J = 9.8 Hz, H-8), 4.40 (1H, d, J = 1.9 Hz, H-1), 4.23 (1H, brs, H-2), 2.93 (1H, d, J = 18 Hz, H-5), 2.48 (1H, d, J = 18 Hz, H-5°), 1.93 (3H, s, Me-15), 1.34 (3H, s, Me-14), 1.08 (3H, s, Me-12), 0.98 (3H, s, Me-13).

¹³C NMR (δ, 100 MHz, CDCl₃): 83.1 (CH, C-1), 75.3 (CH, C-2), 121.7 (C, C-3), 132.5 (C, C-4). 35.3 (CH₂, C-5), 54.0 (C, C-6), 75.1 (C, C-7), 133.8 (CH, C-8), 132.8(CH, C-9), 99.4 (C, C-10), 52.4 (C, C-11), 21.3 (CH₃, C-12), 25.1 (CH₃, C-13), 24.3 (CH₃, C-14), 20.1 (CH₃, C-15).

MS (EI, 70 eV): m/z (%, rel.int.) = 409.96 [M⁺ + 2] (0.45), 407.96 [M]⁺ (1.2), 405.96 [M - 2]⁺ (0.7), 391.95 [M + 2-H₂O]⁺ (2.1), 389.97 [M -H₂O]⁺ (3.0), 387.97 [M⁺ - 2-H₂O]⁺ (1.7), 329.06 [M-⁷⁹Br]⁺ (18.7), 327.06 [M-⁸¹Br]⁺ (18.9), 311.04 [390-⁷⁹Br] (28.6), 309.05 [390-⁸¹Br] (26.5), 283.05 (18.5), 281.05 (12.9), 265.04 (4.7), 229.13 (11.3), 219.14 (11.2), 212.99 (10.1), 211.01 (12.0), 201.13 (19.8), 201.01 (56.0), 200.0 (26.3), 199.01 (61.7), 198.0 (24.7), 196.99 (9.1), 187.11 (13.7), 186.1 (15.0), 184.12 (19.6), 173.13 (13.9), 149.09 (11.7), 149.02 (10.7), 147.07 (14.8), 143.08 (10.5), 141.06 (9.4), 135.08 (17.7), 134.96 (10.3), 120.08 (100), 119.07 (46.6), 105.06 (29.1) 91.05 (65.2), 85.02 (45.1).

Compound 7c: To a solution of compound 7 (30 mg, 0.074 mmol) in acetone (3 mL) cooled to 0°C was added Jones' reagent (2.67 g CrO₃, 2.3 mL H₂SO₄, dilute to 10 mL with water), dropwise, until disappearance of the starting material, as monitored by TLC. The reaction was quenched by the addition of iso-propanol, followed by saturated NaHCO₃. The solution was extracted 3 times with EtOAc and the combined organic layers were washed with water, dried over MgSO₄, and filtered. The solvent was removed *in vacuo* and the residue was chromatographed on silica gel using as eluent a light petroleum-EtOAc gradient obtaining 7c.

¹H NMR (δ, 400 MHz): 6.17 (1H, d, J = 9.8 Hz, H-9), 5.40 (1H, d, J = 9.8 Hz, H-8), 4.75 (1H, s, H-1), 3.33 (1H, ddd, J = 2.5, 5.1, 19.6 Hz, H-5), 2.87 (1H,

dd, J = 1.7, 19.6 Hz, H-5'), 2.00 (3H, s, Me-15), 1.45 (3H, s, Me-14), 1.14 (3H, s, Me-12), 0.98 (3H, s, Me-13).

¹³C NMR (δ, 100 MHz, CDCl₃): 77.7 (CH, C-1), 191.5 (C, C-2), 135.4 (C, C-3), 146.5 (C, C-4). 36.7 (CH₂, C-5), 54.1 (C, C-6), 75.0 (C, C-7), 134.3 (CH, C-8), 132.8 (CH, C-9), 98.2 (C, C-10), 53.0 (C, C-11), 20.7 (CH₃, C-12), 24.7 (CH₃, C-13), 24.9 (CH₃, C-14), 15.7 (CH₃, C-15).

Compound 8

¹H NMR (δ, 400 MHz): 6.11 (1H, d, *J* = 9.8 Hz, H-9), 5.44 (1H, d, *J* = 9.8 Hz, H-8), 4.69 (1H, dd, *J* = 4.0, 8.0 Hz, H-1), 4.32 (1H, d, *J* = 16 Hz, H-15), 4.27 (1H, d, *J* = 16 Hz, H-15'), 2.97 (1H, d, *J* = 18.0 Hz, H-5), 2.95 (2H, dd, *J* = 8.0, 10.0 Hz, H-2), 2.65 (1H, d *J* = 18.0 Hz, H-5'), 2.63 (2H, dd, *J* = 4.0, 10.0 Hz, H-2'), 1.44 (3H, s, Me-14), 1.16 (3H, s, Me-12), 1.15 (3H, s, Me-13).

¹³C NMR (δ, 100 MHz, CDCl₃): 74.7 (CH, C-1), 35.1 (C, C-2), 119.1 (C, C-3), 132.8 (C, C-4). 36.7 (CH₂, C-5), 53.7 (C, C-6), 76.3 (C, C-7), 133.7 (CH, C-8), 133.2 (CH, C-9), 100.2 (C, C-10), 52.8 (C, C-11), 22.3 (CH₃, C-12), 24.8 (CH₃, C-13), 25.1 (CH₃, C-14), 65.8 (CH₂, C-15).

MS (EI, 70 eV): m/z (%, rel.int.) = 391.95 [M + 2-H₂O]⁺ (8.9), 389.95 [M -H₂O]⁺ (17.7), 387.95 [M⁺ - 2-H₂O]⁺ (9.2), 329.05 [M-⁷⁹Br]⁺ (2.2), 327.06 [M-⁸¹Br]⁺ (2.9), 311.04 [390-⁷⁹Br] (41.4), 309.05 [390-⁸¹Br] (41.0), 229.03 (16.5), 227.00 (15.6), 214.99 (14.3), 212.99 (19.7), 211.00 (10.0), 201.00 (15.8), 200.00 (53.3), 199.00 (20.9), 198.00 (50.9), 196.99 (10.2), 190.95 (19.8), 188.95 (19.3), 184.12 (22.1), 183.11 (15.5), 171.11 (14.2), 169.10 (16.9), 149.01 (55.1), 147.07 (9.9), 143.08 (13.5), 141.06 (10.4), 135.07 (14.3), 134.06 (22.1), 133.09 (35.4), 132.08 (19.8), 121.09 (19.7), 120.08 (26.1), 119.07 (51.0), 115.05 (23.1), 91.05 (88.3), 57.07 (100).

Compound 9

¹H NMR (δ, 400 MHz): 6.02 (1H, d, J = 9.8 Hz, H-9), 5.41 (1H, d, J = 9.8 Hz, H-8), 4.66 (1H, brs, H-1), 4.53 (1H, d, J = 12.7 Hz, H-15), 4.47 (1H, brs, H-2), 4.35 (1H, d, J = 12.7 Hz, H-15'), 2.97 (1H, brd, J = 18.2 Hz, H-5), 2.60 (1H, d, J = 18.2 Hz, H-5'), 1.39 (3H, s, Me-14), 1.08 (3H, s, Me-12), 1.02 (3H, s, Me-13).

Acknowledgement - Financial support from Proyecto Anillo ACT-38, and Proyecto CSIC-UCHILE (02/2007-2008).

References

- [1] Riva S. (2001) Biocatalytic modification of natural products. *Current Opinion in Chemical Biology*, 5, 106-111; (b) Mahato SB, Garai S. (1997) Advances in microbial steroid biotransformation. *Steroids*, 62, 332-345.
- [2] Urlacher V, Schmid, RD. (2002) Biotransformations using prokaryotic P450 monooxygenases. Current Opinion in Biotechnology, 13, 557-564.
- [3] Bhatti HN, Zubair M, Rasool N, Hassan Z, Ahmad VU. (2009) Microbial transformation of sesquiterpenoids. *Natural Product Communications*, 4, 1155-1168.
- [4] Rovirosa J, Astudillo L., Sanchez I, Palacios Y, San Martin A. (1989) Metabolitos secundarios de *Laurencia claviformis* de la Isla de Pascua. Actividad antimicrobiana de pacifenol, prepacifenol y deoxiprepacifenol. *Boletin de la Sociedad Chilena de Química*, 34, 147-152.
- [5] San Martin A, Rovirosa J, Darias J, Astudillo L. (1996) Semisintesis y actividad biológica de derivados del sesquiterpeno pacifenol. *Boletin de la Sociedad Chilena de Química*, 41, 403-408.
- [6] San Martin A., Rovirosa J, Astudillo L, Sepúlveda B, Ruiz D, San Martin C. (2008) Biotransformation of the marine sesquiterpene pacifenol by a facultative marine fungus. *Natural Product Research*, 22, 1627-1632.
- [7] Casanovas J, Namba AM, da Silva CR, Alemán C. (2005) DFT–GIAO study of aryltetralin lignan lactones: Conformational analyses and chemical shifts calculations. *Bioorganic Chemistry*, 33, 484-492.
- [8] Bifulco G, Gómez-Paloma L, Riccio R. (2003) Configurational analysis of the natural product passifloricin A by quantum mechanical ¹³C NMR GIAO chemical shift calculations *Tetrahedron Letters*, *44*, 7137-7141.
- [9] da Silva GVJ, Cunha-Neto A. (2005) Calculated NMR as a tool for structural elucidation of jungianol and mutisianthol. *Tetrahedron*, 61, 7763-7767.
- [10] Braddock DC, Rzepa HS. (2008) Structural reassignment of obtusallenes V, VI, and VII by GIAO-based density functional prediction. *Journal of Natural Products*, 71, 728-730.
- [11] Plaza A, Piacente S, Perrone A, Hamed A, Pizza C, Bifulco G. (2004) Stemmosides C and D, two novel unusual pregnane glycosides from *Solenostemma argel*: structural elucidation and configurational study by a combined NMR-quantum mechanical strategy. *Tetrahedron*, 60, 12201-12209.
- [12] Cimino P, Duca D, Gómez-Paloma L, Riccio R., Bifulco G. (2004) Comparison of different theory models and basis sets in the calculation of ¹³C NMR chemical shifts of natural products. *Magnetic Resonance in Chemistry*, 42, S26-S33.

- [13] Bassarello C, Zampella A, Monti MC, Gómez-Paloma L, Dauria MV, Riccio R, Bifulco G. (2006) Quantum mechanical calculation of coupling constants in the configurational analysis of flexible systems: Determination of the configuration of callipeltin A. *European Journal of Organic Chemistry*, 3, 604-609.
- [14] Bifulco G, Bassarello C, Riccio R, Gómez-Paloma L. (2004) Quantum mechanical calculations of NMR J coupling values in the determination of relative configuration in organic compounds. *Organic Letters*, 6, 1025-1028.
- [15] Cimino P, Bifulco G, Evidente A, Abouzeid M, Riccio R, Gómez-Paloma L. (2002) Extension of the J-based configuration analysis to multiple conformer equilibria: An application to sapinofuranone A. *Organic Letters*, 4, 2779-2782.
- [16] Kaupp M, Malkina O, Malkin V. G. (1997) Interpretation of ¹³C NMR chemical shifts in halomethyl cations. On the importance of spin-orbit coupling and electron correlation. *Chemical Physics Letters*, 265, 55–59.
- [17] Malkina OL., Schimmelpfennig B, Kaupp M, Hess BA, Chandra P, Wahlgren U, Malkin VG. (1998) Spin–orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? *Chemical Physics Letters*, 296, 93–104.
- [18] Adamo C, Barone V. (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. *The Journal of Chemical Physics*, 108, 664-675.
- [19] Hehre WJ, Radom L, Schleyer PR, Pople JA. (1986) In Ab initio Molecular Orbital Theory, Wiley: New York.
- [20] Wolinski K, Hilton JF, Pulay P. (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. *Journal of the American Chemical Society*, 112, 8251-8260.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr. Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, B. Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2004) Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford CT.

2010 Vol. 5 No. 12 1865 - 1868

Two New Guaianolides from Amberboa ramosa

Muhammad Ibrahim, Rehan Khan and Abdul Malik*

International Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi–75270, Pakistan

abdul.malik@iccs.edu

Received: February 2nd, 2010; Accepted: September 27th, 2010

Two new sesquiterpene lactones named amberbins A (1) and B (2), have been isolated from the ethyl acetate soluble fraction of *Amberboa ramosa*, together with jaseocidine (3), crysoeriol (4) and 3β ,8 α -dihydroxy-11 α -methyl-1 α H,5 α H,6 β H, 7 α H,11 β H-guai-10(14), 4(15)-dien-6,12-olide (5). The structures of the isolated compounds have been elucidated on the basis of their spectroscopic data.

Keywords: Amberboa ramosa, guaianolides, amberbins A and B.

The genus Amberboa belongs to the family Compositeae and comprises six species. A. ramosa is an annual herbaceous plant, mainly found in Pakistan and India, with tonic, aperient, febrifuge, deobstruent, cytotoxic and antibacterial properties [1]. butyrylcholinesterase inhibitory activity of the chloroform soluble fraction has also been reported [2]. A literature survey revealed that triterpenoids, flavonoids, steroids and sesquiterpene lactones have previously been reported from this species [1,3]. The chemotaxanomic and ethnopharmacological significance of the genus Amberboa prompted us to reinvestigate the constituents of A. ramosa. As a result, we herein report the isolation and structural elucidation of two new sesquiterpene lactones named as amberbins A (1) and B (2), respectively. In addition, the previously reported compounds, jaseocidine (3) [2], crysoeriol (4) [4] and 3β ,8 α -dihydroxy-11 α -methyl-1 α H,5 α H,6 β H, $7\alpha H$, 11 β H-guai-10(14), 4(15)-dien-6,12-olide (5) [2] have been isolated and characterized.

Amberbin A (1) was isolated as white crystals. The HREI-MS exhibited an [M $^+$] peak at m/z 308.3681 corresponding to the molecular formula $C_{17}H_{24}O_5$ (calcd. for $C_{17}H_{24}O_5$, 308.3693), which indicated six degrees of unsaturation. Further prominent peaks at m/z 290, 265, 250 and 247 represented the losses of [M-H₂O] $^+$, [M-COCH₃] $^+$, [M-COCH₃-CH₃] $^+$ and [M-COCH₃-H₂O] $^+$, respectively. The IR spectrum showed characteristic absorption of hydroxyl (3447 cm $^{-1}$), γ-lactone (1755 cm $^{-1}$), ester (1735 cm $^{-1}$) and C=C (1656 cm $^{-1}$). The UV absorption maxima at 197 and

Figure 1: Structures of amberbins A (1) and B (2).

205 nm were typical of a γ -lactone [5]. Further spectral data showed close agreement with a guaianolide-type sesquiterpene [3,6-7].

The ¹H NMR spectrum showed signal for a trisubstituted double bond at δ_H 5.08. It also showed signals for oxymethine protons at $\delta_{\rm H}$ 5.08 (ddd, J = 8.3, 6.0, 5.5 Hz) and 4.33 (dd, J = 10.0, 9.0 Hz). The latter was assigned to the proton geminal to the lactone oxygen atom. The larger coupling constant allowed us to assign β and axial orientation, which is characteristic of all guaianolides of the genera Amberboa and Ixeris [8]. The spectrum showed ¹H-¹H correlations with the vicinal protons at $\delta_{\rm H}$ 2.78 (dd, J = 9.0, 8.5 Hz) and $\delta_{\rm H}$ 2.59 (ddd, J = 10.0, 9.5, 8.5 Hz), which could subsequently be assigned to H-5 and H-7, respectively. The larger coupling constants suggested a trans-diaxial disposition among H-5, H-6 (β) and H-7, providing conclusive evidence for an α orientation of both H-5 and H-7 [8].

Table 1: 1 H (400 MHz) and 13 C NMR (100 MHz) spectroscopic data for amberbins A (1) and B (2) (CD₃OD, δ in ppm).

Po		1	Ρ _ι		2
Positions	δ_{C}	$\delta_{\rm H}$ multiplicity (<i>J</i> in Hz)	Positions	$\delta_{\rm C}$	$\delta_{\rm H}$ multiplicity (<i>J</i> in Hz)
1	55.5	2.71 ddd (9.0, 8.5, 8.0)	1	53.0	2.81 ddd (9.0, 8.5, 8.0)
2	34.0	2.26 dd (8.0, 7.0) 2.37 dd (9.0, 5.0)	2	34.0	2.36 dd (8.0, 7.0) 2.22 dd (9.0, 5.0)
3	127.1	5.50 m	3	126.8	5.46 m
4	143.8	-	4	144.0	-
5	52.7	2.78 dd (9.0, 8.5)	5	55.0	2.95 dd (9.0, 8.5)
6	82.1	4.33 dd (10.0, 9.0)	6	82.3	4.20 dd (10.0, 9.0)
7	54.4	2.59 ddd (10.0, 9.5, 8.3)	7	52.3	2.87 ddd (10.0, 9.5, 8.3)
8	75.5	5.08 ddd (8.3, 6.0, 5.5)	8	75.4	5.08 ddd (8.3, 6.0, 5.5)
9	44.2	1.77 dd (12.3, 5.5) 2.34 dd (12.3, 6.0)	9	42.8	1.87 dd (12.3, 5.5) 2.39 dd (12.3, 6.0)
10	73.4	-	10	81.1	-
11	42.64	2.34 dq (9.5, 5.8)	11	42.1	2.52 dq (9.5, 5.8)
12	172.1	-	12	172.1	-
13	15.8	1.23 d (6.9)	13	15.7	1.23 d (6.9)
14	29.5	1.16 s	14	26.1	1.26 s
15	21.2	2.06 s	15	17.7	1.8 s
16	180.8	-	16	181.0	-
17	17.4	1.83 s	17	21.3	2.06 s
			1'	98.4	4.54 d (7.5)
			2'	78.2	3.38 m
			3′	71.8	3.28 m
			4'	75.5	3.17 m
			5′	77.7	3.23 m
			6′	62.9	3.82 dd (2.1, 12.0) 3.6 dd (6.0, 12.0)

The coupling pattern of the proton signals for H-1 and H-9 supported the guaianolide structure [9]. The entire sequence of protons attached to the guaianolide skeleton was established by ¹H-¹H COSY and spin decoupling experiments. Irradiation of the H-5 proton at $\delta_{\rm H}$ 2.78 simplified the double doublet of H-6 at δ_{H} 4.33 into a doublet and the doublet of double doublets of H-1 into a double doublet. Irradiation of H-7 at $\delta_{\rm H}$ 2.59 simplified the doublet of quartets at δ_H 2.34 into a quartet. Irradiation of H-11 at δ_H 2.34 simplified the doublet of the methyl group at δ_H 1.23 into a singlet, confirming the presence of a methyl group at C-11. Irradiation of H-3 at $\delta_{\rm H}$ 5.50 turned the double doublets at $\delta_{\rm H}$ 2.26 $(H-2\alpha)$ and 2.37 $(H-2\beta)$ into doublets. The signal at $\delta_{\rm H}$ 2.06 could be assigned to methyl protons at C-4 and further confirmed by 2J and 3J correlations with C-4 $(\delta_C \ 143.8), \ C-3 \ (\delta_C \ 127.1)$ and $C-5 \ (\delta_C \ 52.7)$. The O-acetyl group was assigned to C-8 on the basis of the HMBC spectrum, in which H-8 at δ 5.08 showed an interaction with C-16 (δ_C 180.8). The hydroxyl group could be assigned to C-10 based on its downfield shift compared with the unsubstituted guaianolides and supported by HMBC, in which the methyl protons at C-14 ($\delta_{\rm C}$ 1.16) showed 2J and 3J correlations with C-10 $(\delta_{\rm C} 73.4)$, C-9 $(\delta_{\rm C} 44.2)$ and C-1 $(\delta_{\rm C} 55.5)$.

Figure-2. Important HMBC () and NOESY (correlations of amberbins A (1) and B (2).

The ^{13}C NMR and DEPT spectra showed 17 signals comprising four methyl, two methylene, seven methine and four quaternary carbons. The low frequency region showed four signals at δ_C 180.8, 172.1, 143.8 and 127.1, which could be assigned to $\emph{O}\text{-}acetyl$, lactone ester and trisubstituted olefinic carbons. One oxygenated quaternary and two oxygenated methine carbons resonated at δ_C 73.4, 82.1 and 75.5, respectively. The position of substituents could be confirmed by HMQC, HMBC and COSY experiments.

The relative stereochemistry at various chiral centers of amberbin A was assigned through NOESY experiments [10-11] [Figure-2], which revealed trans/anti/cis-fusion of the α -methyl- γ -lactone moiety, the seven membered ring at C-7 and the five membered ring at C-5 and C-1. Interaction was shown between H-1 at δ_H 2.71, H-5 at $\delta_{\rm H}$ 2.78 and H-7 at $\delta_{\rm H}$ 2.59, confirming a 1,5-cis-fused guaianoloide. H-1 also showed interaction with H-2 α . The α -orientation of the acetate group at C-8 could also be deduced through NOESY interactions between H-8 at δ_H 5.08, H-6 at δ_H 4.33 and H-11 at δ_H 2.34.The methyl protons attached to C-10 showed correlation with H-8 at $\delta_{\rm H}$ 4.33 revealing its β -orientaion. On the basis of this evidence, the structure of amberbin A (1) could be assigned as 8α -acetoxy- 10α -hydroxy- $1\alpha H, 5\alpha H, 6\beta H, 7\alpha H, 11\beta H, 11\alpha$ -methylguaia-3-enolide (Figure 1).

Amberin B (2) was isolated as white crystals. The HRESI-MS exhibited a pseudomolecular [M-H] peak at m/z 469.2068 corresponding to the molecular formula $C_{23}H_{33}O_{10}$ (calcd. for $C_{23}H_{33}O_{10}$; 469.2074). The EIMS showed a $[M-162]^+$ peak at m/z 308, followed by further fragments at m/z 265 [M-162-COCH₃]⁺ and 250 [M-162-COCH₃-Me]⁺. The IR and UV spectra were similar to those of 1. The ¹³C NMR and DEPT spectra were also similar to those of 1, except for the additional signals of a hexose moiety at δ_C 98.4 (C-1'), 78.2 (C-2'), 71.8 (C-3'), 75.5 (C-4'), 77.7 (C-5') & 62.9 (C-6'), as well as the downfield shift of C-10 by 7.7 ppm revealing its presence at C-10. The ¹H NMR spectrum was also similar to that of 1 except for the presence of additional signals due to a hexose moiety, including the anomeric proton at δ_H 4.54 (d, J = 7.5 Hz), the

oxymethine protons between δ_{H} 3.17-3.38 and oxymethylene protons at $\delta_{\rm H}$ 3.82 (dd, J = 2.1, 12.0 Hz) and 3.60 (dd, J = 6.0, 12.0 Hz). The position of the hexose moiety at C-10 could further be confirmed by HMBC experiments showing ^{3}J correlation of the anomeric proton at δ_H 4.54 with C-10 (δ_C 81.1). The larger coupling constant of the anomeric proton allowed us to assign a β -configuration to the sugar moiety. Acid hydrolysis provided D-glucose, which could be identified through the sign of its optical rotation and retention time of its TMS ether by GC. The NOESY correlations were exactly the same as those of 1. Thus, the structure of amberbin B could be assigned 8α -acetoxy- 10α -O-(β -D-glucopyranosyl)- 1α H, 5α H, 6β H, 7α H, 11β H, 11α -methylguaia-3-enolide (2).

Experimental

General: Melting points were determined on a Buchi melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-360 polarimeter. The IR spectra were recorded on a JASCO 302-A spectrophotometer with KBr discs. The UV spectra were recorded on a Hitachi UV-3200 spectrophotometer. EIMS and HREI-MS spectra were recorded on JEOL JMS-HX-110 and Varian MAT-311-A mass spectrometers. The HRESI-MS was recorded on a Jeol JMS 600H instrument. The NMR spectra were recorded on a Bruker Avance DRX 400 NMR spectrometer. Chemical shifts are given on the δ scale and referenced to TMS at 0 ppm for proton and carbon. Coupling constants (J) are in Hertz. Silica gel 230-400 mesh (E. Merck, Darmstadt, Germany) was used for column chromatography.

Plant material: The whole plant of Amberboa ramosa Jafri (Compositae) was collected in June 2002, from Karachi (Pakistan) and identified by Dr Surraiya Khatoon, Plant Taxonomist, Department of Botany, University of Karachi, where a voucher specimen (no. KU 312 b) has been deposited.

Extraction and isolation: The shade dried plant material (22 kg) was extracted with methanol at room temperature 3 times. The solvent was evaporated under reduced pressure and the residue (217 g) was suspended in H₂O, then partitioned with *n*-hexane, CHCl₃, EtOAc and *n*-BuOH.

Column chromatography of the EtOAc soluble fraction (90 g) over silica gel and elution with *n*-hexane/EtOAc in increasing order of polarity afforded 4 major fractions A [n-hexane/EtOAc (8:2)], B [n-hexane/ EtOAc (6.5:3.5)], C [*n*-hexane/EtOAc (5.5:4.5)] and D [*n*-hexane/EtOAc (4:6)], respectively.

Fraction B was chromatographed over silica gel, eluting with mixtures of *n*-hexane/EtOAc in increasing order of polarity to afford sub-fractions B_A [n-hexane/EtOAc (7:3)], B_B [n-hexane/EtOAc (6:4)] and B_C [n-hexane/ EtOAc (6.5:3.5)]. Fraction B_A on further chromatography over silica gel and elution with n-hexane/EtOAc (6.5:3.5) yielded compound **3** (9 mg). Chromatography of fraction B_C and elution with *n*-hexane/EtOAc (6:4) furnished compound 4 (11.5 mg).

Fraction C was chromatographed over silica gel and eluted with mixtures of n-hexane/EtOAc to provide two sub-fractions C_A [n-hexane/EtOAc (4.5:5.5)] and C_B [n-hexane/EtOAc (4:6)]. Fraction C_B on further chromatography over silica gel and elution with *n*-hexane/EtOAc (7:3) afforded compound **5** (10 mg).

Fraction D was chromatographed over silica gel and eluted with mixtures of EtOAc/MeOH in increasing order of polarity to obtain compound 1 [EtOAc/MeOH (9:1)] (11 mg) and compound **2** [EtOAc/MeOH (7:3)] (13 mg), respectively.

Amberbin A $[8\alpha$ -acetoxy- 10α -hydroxy- 1α H, 5α H, 6β H, 7α H, 11β H, 11α -methylguaia-3-enolide] (1)

White crystals.

MP: 130-132°C.

 $[\alpha]_D^{20}$: +33 (*c* 0.02, CHCl₃).

IR (KBr) v_{max}: 3447, 1775, 1735, 1656 cm⁻¹.

UV (MeOH) λ_{max} : 197 and 205 nm.

¹H NMR: Table 1. ¹³C NMR: Table 1.

HMBC: Figure 2.

EIMS (70 ev) m/z (rel. int. %) 308 [M]⁺ (12).

HREI-MS m/z [M^{+}] calcd. for C₁₇H₂₄O₅; 308.3693:

found 308.3698.

Amberbin B [8 α -acetoxy-10 α -O-(β -D-glucopyranosyl) $-1\alpha H, 5\alpha H, 6\beta H, 7\alpha H, 11\beta H, 11\alpha$ -methylguaia-3enolide (2)

White crystals.

MP: 137-139°C.

 $[\alpha]^{20}_{D}$: +51.1 (c 0.02, CHCl₃).

IR (KBr) v_{max}: 1740, 3600, 1779 and 1649 cm⁻¹.

¹H NMR: Table 1.

¹³C NMR: Table 1.

HRESI-MS: m/z $[M-H]^-$ calcd. for $C_{23}H_{33}O_{10}$;

469.2074: found 469.2068.

Acid hydrolysis of amberbin B (2): Amberbin B (2) (2 mg) in MeOH (3 mL) containing 1 N HCl (3 mL) was refluxed for 4 h, concentrated under reduced pressure, diluted with water (7 mL) and extracted with ethyl acetate. The residue recovered from the organic phase was a mixture of aglycone products, which could

not be worked up due to paucity of material. The aqueous phase was concentrated and D-glucose was identified by its optical rotation $\left[\alpha\right]^{20}_{D} = +50.6$ and by comparing retention times of its TMS ether (α -anomer

3.7 min, β-anomer 5.1 min) with a standard sample by gas chromatography (GC). Preparation of the TMS ether and its subsequent GC was carried out according to the reported protocol [12].

References

- [1] Akhtar N, Malik A, Afza N, Badar Y. (1993) Cycloartane-type triterpenes from *Amberboa ramosa*. *Journal of Natural Products*, 56, 295-299.
- [2] Khan SB, Haq A, Perveen S, Afza N, Malik A, Ahmad SN, Shah MR, Chaudhary MI. (2005) Butyrycholinesterase inhibitory guaianolides from *Amberboa ramosa*. *Archive of Pharmacal Research*, 28, 172-176.
- [3] Harrison DA, Kulshreshtha DA. (1984) Chemical constituents of *Amberboa ramosa*. Fitoterapia, 55, 189-192.
- [4] Forgacs P, Desconclois JF, Dubeck J. (1981) Flavones and sesquiterpene lactones of *Volutarella divaricata*. *Planta Medica*, 42, 284-287.
- [5] Tan AS, Berridge VM. (2000) Superoxide produced by activated neutrophiles efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a sample colorimetric assay for measuring respiratory burst assay activation and for screening anti-inflammatory agents. *Journal of Immunological Methods*, 238, 50-68.
- [6] Menichini F, Benedetto R.DI, Monache FD. (1996) A terpene epoxide and a guaianolide from *Ptilostemmon gnaphaloides*. *Phytochemistry*, 41, 1377-1379.
- [7] Alberto Marco J, Juan FS, Remedios A, Rustaiyan A, Habib Z. (1993) Bisabolene derivatives and sesquiterpene lactones from *Cousainia* species. *Phytochemistry*, 32, 395-400.
- [8] Mamoru S, Toshio M, Seigo F. (1986) Sesquiterpene lactones from *Ixeris dentata* Nakai, *Chemical and Pharmaceutical Bulletin*, 34, 4170-4176.
- [9] Youssef DTA. (1998) Sesquiterpene lactones of Centauria scoparia. Phytochemistry, 49, 1733-1737.
- [10] Zdero C, Bohlmann F. (1990) Glaucolides, fulvenoguaianilides and other sesquiterpene lactones from *Pentzia* species. *Phytochemistry*, 29, 189-194.
- [11] Khan SB, Afza N, Malik A, Haq A, Ahmad Z. (2004) Structure determination of ramosin, a guaianolide, by NMR spectroscopy. *Magnetic Resonance in Chemistry*, 42, 1063-1065.
- [12] Hara S, Okabe H, Mihashi K. (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl) thiazolidine-4(*R*)-carboxylates. *Chemical and Pharmaceutical Bulletin*, 35, 501-506.

2010 Vol. 5 No. 12 1869 - 1872

Antiplasmodial and Cytotoxic Activities of Drimane Sesquiterpenes from *Canella winterana*

Mary H. Grace^a, Carmen Lategan^b, Flaubert Mbeunkui^a, Rocky Graziose^c, Peter J. Smith^b, Ilya Raskin^c and Mary Ann Lila^a*

^aPlants for Human Health Institute, Department of Food Bioprocessing & Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA

^bDepartment of Medicine, Division of Pharmacology, University of Cape Town, Observatory 7925, Cape Town, South Africa

^cSEBS, Rutgers University Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA

maryann lila@ncsu.edu

Received: August 7th, 2010; Accepted: October 6th, 2010

The hexane extract from the leaves of *Canella winterana* exhibited strong activity against the chloroquine sensitive (CQS) strain of *Plasmodium falciparum* (D10) in vitro (IC₅₀ 2.53 µg/mL). Bioassay guided fractionation of this extract has led to the isolation of 5 drimane-type sesquiterpenoids: 9-epideoxymuzigadial, 9-deoxymuzigadial, muzigadial, $3-\beta$ -acetoxypolygodial and the newly isolated hemiacetal, named muzigodiol, with IC₅₀-values of 1.01, 2.19, 0.31, 2.77 and 7.43 µg/mL, respectively. The first four compounds were tested for their cytotoxicity using Chinese Hamster Ovarian (CHO) cells, where they showed IC₅₀-values of 1.82, 33.69, 1.18, and 58.31 µg/mL, respectively. A structure-activity relationship is discussed.

Keywords: Canella winterana, antimalarial, antiplasmodial, cytotoxicity, drimane sesquiterpenes.

Malaria is one of the most important health problems in tropical and subtropical regions of the world [1a]. One of the main factors contributing to the escalating prevalence and distribution of malaria is the emergence and spread of drug-resistant parasites highlighting a need for the discovery and development of novel, affordable antimalarial treatments.

Drug discovery based on results from in vitro antiplasmodial bioassays, i.e., bioassay-guided isolation, has revealed many active constituents from plant origins [1b]. Canella is one of five genera (Canella, Cinnamosa, Pleodendron, Warburgia and Capsicocordendron or Cinnamodendron) of the family Canellaceae. All plants belonging to this family are characterized by their high content of drimane-type sesquiterpenoid dialdehydes, which are considered chemosystematic markers of the Canellaceae [1c]. One of the species belonging to this family, Cinnamosma fragrans Baill, is traditionally used in the east and central parts of Madagascar for the treatment of malaria symptoms [2]

As a part of a large project seeking new antimalarial lead compounds, we investigated the antiplasmodial activity of *Canella winterana* (L.) Gaertin leaves. *C.*

winterana is a small tree that grows in the subtropical areas of the Florida Keys, and throughout the Caribbean region. The bark is used as a spice similar to true cinnamon, giving rise to the common name "wild cinnamon" [3]. The plant is known as a rich source of drimane sesquiterpenoids with unsaturated 1, 4-dialdehyde functionality. Most of these compounds have a very hot taste and are known for their antifeedant [4a], molluscicidal [4b] and antimicrobial activities [4c]. Several drimane sesquiterpene compounds have been reported for this plant [5a-5c]. C. winterana was originally screened by Spencer and co-workers during the World War II era [6a] in an effort to identify candidates with antimalarial activity. Their results showed that water extracts from stems showed very high quinine equivalent activity when administered orally to Plasmodium gallinaceum sporozoite infected chicks. However, further characterization of the active principles was not conducted.

In order to determine the antiplasmodial principles in *C. winterana* leaves, we followed an isolation scheme which, at every step, monitored and assessed the antiplasmodial activity of the resulting fractions. Dried powdered leaves were extracted sequentially with

Figure 1: Structures of compounds 1-5.

n-hexane, ethyl acetate and methanol. The n-hexane and ethyl acetate extracts were found to be active with IC₅₀ values of 2.53 and 5.30 μ g/mL, respectively. HPLC and TLC of both n-hexane and ethyl acetate extracts indicated close similarity of their main components (data not shown). The n-hexane extract was subjected to further fractionation, which led to the isolation of five structurally related compounds of the drimane sesquiterpene class of compounds (1-5, Figure 1).

Compounds 1 and 2 were identified as 9-epideoxymuzigadial and its stereoisomer, 9-deoxymuzigadial, respectively. Both compounds have been previously reported for C. winterana [5b,5c]. Compound 3, which represented the major compound in the *n*-hexane extract (~ 8.5%), was identified as muzigadial. Muzigadial was first isolated from Warburgia ugandensis [4a], and then from C. winterana and fully identified through X-ray crystallography and given another name "canellal" [5a]. Compound 4 was identified as 3β-acetoxypolygodial [5c]. Although compounds 1-4 have been previously reported in C. winterana for their antimicrobial and phytotoxic properties [5a,6b], this is the first report to assign their antiplasmodial activity. Compound 5 was purified by repeated TLC to afford white crystalline material. The ¹H and ¹³C NMR spectra, unlike compounds 1-4, lacked the downfield signals for the aldehydic functionality. This led us to suspect cyclization to form the hemiacetal. The study of the ¹H, ¹³C, COSY, NOSEY, HMQC and HMBC NMR spectra and with the aid of the HR MS, 5 was identified as the hemiacetal derivative of muzigadial and given the name muzigodiol (5, Figure 1). This is the first time that this compound has been isolated from either C. winterana or any other natural resource. The hemiacetal of muzigadial was previously prepared by fermentation of muzigadial with certain microbial cultures. In the same study, the same compound was prepared synthetically by the reaction of muzigadial with diisobutylaluminum hydride [6c].

Although the acetals are reported as natural products, they were often considered artifacts. This usually occurs by reactions of bioactive compounds when extracted with alcohols [6d]. Since we did not use methanol for

Table 1: IC₅₀-values with standard deviations of compounds **1-5** isolated from *C. winterana* and tested *in vitro* for antiplasmodial activity and cytotoxicity.

Compound	D10	СНО	SI
	$IC_{50} (\mu g/mL)$	$IC_{50} (\mu g/mL)$	
	(n=3)	(n=3)	
1	1.01 ± 0.06	1.82 ± 0.11	1.8
2	2.19 ± 0.08	33.96 ± 4.18	15.5
3	0.31 ± 0.02	1.18 ± 0.09	3.8
4	2.77 ± 0.15	58.31 ± 0.21	20.7
5	7.43 ± 0.60	Not tested	-
Chloroquine (n=4)	$18.58 \pm 0.33 \text{ ng/mL}$	-	-
Emetine (n=9)	=	0.08 (n=3)	

D10: *P. falciparum* strain D10, CHO: Chinese Hamster Ovarian cell line, $n = Number of replicates, SI (Selectivity index) = <math>IC_{50}$ CHO/ IC_{50} D10.

extraction, and the leaves were collected fresh and directly freeze-dried, we confirm that the hemiacetal form is a natural metabolite of this plant.

Results of the *in vitro* antiplasmodial activity of the five purified sesquiterpenoids 1-5 (Table 1) showed that muzigadial (3) was the most potent sesquiterpene against the chloroquine-sensitive strain of *P. falciparum* (D10) with an IC₅₀-value of 0.31 μ g. muzigadial (2) and 9-epideoxymuzigadial (1) showed antiplasmodial activity of 2.19 and 1.01 µg/mL, respectively. Comparing the structures of compounds 1-3 (Figure 1), we could see that muzigadial (3) has an additional hydroxyl group at position 9. This indicated that the hydroxyl substitution at this position increased the antiplasmodial activity of muzigadial by about 7 and 3 fold compared with its deoxy compounds 1 & 2, respectively. Muzigadial has been reported as one of the strongest antimicrobial drimane sesquiterpenes isolated from the Warburgia genus [4c].

Interestingly, it was found that 9-epideoxymuzigadial (1) showed higher activity than its isomer 9-deoxymuzigadial (2) (\sim 2 fold), indicating that the α -orientation of the aldehyde group in 9-deoxy drimane sesquiterpenes is favorable for antiplasmodial activity. 3β-Acetoxypolygodial (4) showed antiplasmodial activity with an IC₅₀ of 2.77 µg/mL which is comparable with 9-deoxymuzigadial (IC₅₀ 2.19 μg/mL). Compound **4** has the same configuration of the aldehydic groups as compound 2, but they differ in ring A methyl group arrangement, and the β-acetoxy substitution at C-3 (see Figure 1), which indicated that the substitution and arrangement of positions 3 and 4 in ring A did not affect the antiplasmodial activity. This finding supports the reported literature for the phytotoxic activity of sesquiterpenes from *C. winterana* [6b].

Muzigodiol (5), the hemiacetal cyclic form of muzigadial was the least active antiplasmodial compound with an IC $_{50}$ of 7.43 μ g/mL. The diminished activity compared with muzigadial indicated the importance of the 1, 4 dialdehydic groups for the

antiplasmodial activity. This finding was different from the published results for the phytotoxic activity of sesquiterpenes from *C. winterana*, where they found that compounds with masked aldehydic groups still retained the tested activity [6b].

The isolated sesquiterpenes **1-5** were also tested for cytotoxicity to test their selective antiplasmodial activity reflected by their selectivity index (IC₅₀ CHO/IC₅₀ D10) (see Table 1). Muzigadial showed a high cytotoxicity (IC₅₀ 1.18 μ g/mL, SI 3.8), indicating nonspecific activity. Interestingly, the 9-deoxymuzigadial (**2**) was much less toxic than its stereoisomer 9-epideoxymuzigadial (**1**) (IC₅₀ 33.96 and 1.82 μ g/mL, SI 15.5 and 1.8, respectively). 3- β -Acetoxypolygodial (**4**) was the least toxic compound to the CHO cells (IC₅₀ 58.31 μ g/mL, SI 20.7), indicating that the 3 β -acetoxy substitution with 4 dimethyl arrangement has a significant effect in reducing the toxicity of this dialdehyde sesquiterpene.

The stereochemistry and the presence of a substituent may modulate the reactivity and bioactivity of the unsaturated dialdehydes considerably. It was reported that polygodial, a drimane sesquiterpene analogous to 9-deoxymuzigadial with 4 dimethyl groups, is known to react with primary amines under biomimetic conditions to form pyrroles, a reaction that has been proposed to be responsible for the bioactivity of polygodial. It was found that its 9-epimer was less bioactive, and did not undergo the same reaction because the formation of a pyrrole is less favored due to the larger distance between the aldehyde carbons [7a].

We conclude that the presence of these very reactive compounds is responsible for the biological activities of this plant and related plants containing the same type of compounds. The major component identified in this plant was muzigadial (3). Although muzigadial showed very strong in vitro antiplasmodial activity, its potential for development as an antimalarial drug is limited due to its inherent cytotoxicity and lack of selectivity. This is often the case with antimalarial compounds identified from plants [1b]. 9-Deoxymuzigadial (2) and 3β-acetoxypolygodial (4) showed less antiplasmodial activity than muzigadial, but they were less toxic to the CHO cells. The three compounds (2-4) represent hits that could potentially be subjected to more detailed analysis. These compounds could also be used as scaffolds to generate leads with enhanced antiplasmodial activity, reduced cytotoxicity and improved bioavailability using different medicinal chemistry approaches to the dialdehyde reactive sites of the molecule.

Experimental

Plant material: Leaves from *C. winterana* were collected from Coral Gables, Fairchild Tropical Botanical Garden, Florida in October 2008 and identified by Dr Lena Struwe (Rutgers University). A voucher specimen (RG # 6) was deposited in the Chrysler Herbarium (CHRB) at Rutgers University, New Brunswick, NJ. The leaves were freeze-dried and stored at room temperature until extraction.

Extraction and bioassay-guided fractionation: Dried powdered leaves (200 g) were successively extracted with n-hexane (3 X 1L), ethyl acetate (3 x 1L) and methanol (3 x 1L) at room temperature. The solvents were evaporated to afford 13.4 g, 4.75 g and 17.5 g, respectively. The n-hexane extract (11.5 g) was subjected to flash chromatography using silica gel G 60 (Merck, 70-230 mesh, 2.5 x 30 cm). Gradient elution was performed using *n*-hexane with increasing amounts of ethyl acetate from 10 to 100%. Twelve fractions, 500 mL each, were collected and bioassayed for their antiplasmodial activity. Active fractions were subjected to further fractionation using flash chromatography and elution with varying solvent gradients of *n*-hexane-ethyl acetate. Separation was monitored by TLC (benzeneethyl acetate 8:2, visualization with vanillin/H₂SO₄), as well as HPLC-UV. Fractionation was guided by antiplasmodial testing to concentrate on isolating and purifying only compounds which showed activity. Fraction 2 (5.13 g), eluted with 20% ethyl acetate in *n*-hexane, was further fractionated to afford 9-epideoxymuzigadial (1, 120 mg) [5c] and 9-deoxymuzigadial (2, 200 mg) [5b]. Fraction 3 (0.5 g), eluted with 30% ethyl acetate in n-hexane was further fractionated using CC and crystallization (diethyl ether) to afford another quantity of 9-deoxymuzigadial (2, 150 mg), muzigadial (3, 90 mg) [5c] and 3β-acetoxypolygodial (4, 150 mg) [5c] in pure form. Fraction 4 (2.4 g) was subjected to crystallization from *n*-hexane-diethyl ether. Crystals were washed with ice cold diethyl ether to afford a larger quantity of muzigadial (3, 890 mg). Fraction 5 (0.58 g) was fractionated using CC and purified by preparative TLC to afford additional quantity of 4, (50 mg), and muzigodiol (5, 22 mg) [6b].

In vitro antiplasmodial activity: A chloroquine-sensitive strain (D10) of Plasmodium falciparum was continuously cultured according to a modified method [7b], and parasite lactate dehydrogenase (pLDH) activity was used to measure parasite viability [8a]. The in vitro assays were performed as previously described [8b]. Chloroquine diphosphate (Sigma) served as the positive control and was made up in double distilled water and serially diluted in medium to the required concentrations. Crude extracts, fractions and purified compounds were prepared to 2 mg/mL stock solution in

10% DMSO. Stock solutions were stored at -20°C. Further dilutions were prepared on the day of the experiment. A full dose-response was performed for all compounds to determine the concentration inhibiting 50% of the parasite growth (IC₅₀-value). Test samples were tested at a starting concentration of 100 µg/mL, which was then serially diluted 2-fold in complete medium to give 10 concentrations, with the lowest one being 0.2 µg/mL. The same dilution technique was used for all samples. CQ was tested at a starting concentration of 1000 ng/mL. Muzigadial was tested at a starting concentration of 10 µg/mL. The highest concentration of solvent to which the parasites were exposed had no measurable effect on the parasite viability. Test samples were tested in triplicate on one occasion. The IC50-values were obtained using a nonlinear dose-response curve fitting analysis via Graph Pad Prism v.4.0 software.

In vitro *cytotoxicity assay:* Active fractions and pure compounds were tested for *in vitro* cytotoxicity against a Chinese Hamster Ovarian (CHO) cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [8c]. The CHO cells were cultured in Dulbecos Modified Eagles Medium (DMEM): Hams F-12 medium (1:1) supplemented with

10% heat-inactivated fetal calf serum (FCS) and gentamycin (0.05 µg/mL). Sample preparation was the same as for antiplasmodial testing. The highest concentration of solvent to which the cells were exposed had no measurable effect on cell viability. Emetine dihydrochloride (Sigma) was used as the positive control in all cases. The initial test concentration of emetine was 100 µg/mL, which was serially diluted in complete medium with 10-fold dilutions to give 6 concentrations, the lowest being 0.001 µg/mL. The same dilution technique was applied to all test samples with an initial concentration of 100 µg/mL to give 5 concentrations, with the lowest being 0.01 µg/ mL. The concentration of test samples that inhibited 50% of the cells (IC₅₀ values) was obtained from dose-response curves, using a non-linear doseresponse curve fitting analyses via GraphPad Prism v. 4 software.

Acknowledgments - This work was financially supported by Medicine for Malaria Venture. The NMR instruments used in this work are located at the North Carolina Research Campus Core Laboratory facility in the David H. Murdock Research Institute, Kannapolis, NC.

References

- [1] (a) W.H.O. (2008). World Malaria Report; (b) Schwikkard S, van Heerden FR. (2002) Antimalarial activity of plant metabolites. *Natural Product Reports*, 19, 675-692; (c) Bastos JK, Kaplan MAC, Gottlieb OR. (1999) Drimane-type sesquiterpenoids as chemosystematic markers of Canellaceae. *Journal of the Brazilian Chemical Society*, 10, 136-139.
- [2] Randrianarivelojosia M, Rasidimanana VT, Rabarison H, Cheplogoi PK, Ratsimbason M, Mulholland DA, Mauclère, P (2003) Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. *Malaria Journal*, 2, 1-9.
- [3] USDA Germplasm Resources Information Network (GRIN), http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?8848.
- [4] (a) Kubo I, Miura I, Pettei MJ, Lee YW, Pilkiewicz F, Nakanishi K. (1977) Muzigadial and warburganal, potent antifungal antiyeast, and African army worm antifeedant agents. *Tetrahedron Letters*, 52, 4553–4556; (b) Nakanishi K, Kubo I. (1977) Studies on warburganal, muzigadial and related compounds. *Israel Journal of Chemistry*, 16, 28-31; (c) Taniguchi M, Adachi T, Oi S, Kimura A, Katsumura S, Isoe S, Kubo I. (1984) Structure-activity relationship of the *Warburgia* sesquiterpene dialdehydes. *Agricultural and Biological Chemistry*, 48, 73-78.
- [5] (a) El-Feraly F. (1978) X-ray crystal structure of canellal, a novel antimicrobial sesquiterpene from *Canella winterana*. *Journal of the Chemical Society, Chemical Communications*, 75-76; (b) Al-Said MS, El-Khawaja SM, El-Feraly FS, Hufford CD. (1990) 9-Deoxy drimane sesquiterpenes from *Canella winterana*. *Phytochemistry*, 29, 975-977; (c) Ying BP, Peiser G, Ji YY, Mathias K, Tutko D, Hwang YS. (1995) Phytotoxic sesquiterpenoids from *Canella winterana*. *Phytochemistry*, 38, 909-915.
- (a) Spencer CF, Koniuszy FR, Rogers EF, Shavel J, Kaczka EA, Kuehl FA, Phillips RF, Walti A, Folkers K. (1947) Survey of plants for antimalarial activity. *Lloydia*, 10, 145-174; (b) Ying BP, Peiser JD, Ji YY, Mathias KM, Karasina F, Hwang YS. (1995). Structure-activity relationships of phytotoxic sesquiterpenoids from *Canella winterana*. *Journal of Agriculture and Food Chemistry*, 43, 826-829; (c) Jurgens TM, Hufford CD, Clark AM (1992) The metabolism of muzigadial by microorganisms. *Xenobiotica*, 22, 569-577; (d) Taniguchi M, Kubo I. (1993) Ethnobotanical drug discovery based on medicine men's trials in the African Savanna: Screening of East African plants for antimicrobial activity. *Journal of Natural Products*, 56, 1539-1546.
- [7] (a) Cimino G, Sodano G, Spinella A. (1987) Correlation of the reactivity of 1,4-dialdehydes with methylamine in biomimetic conditions to their hot taste: Covalent binding to primary amines as a molecular mechanism in hot taste receptors. *Tetrahedron*, 43, 5401 5410; (b) Trager W, Jensen JB. (1976) Human malaria parasites in continuous culture. *Science*, 193, 673-675.
- [8] Makler MT. (1993) Parasite lactate dehydrogenase as an assay for *Plasmodium falciparum* drug sensitivity. *The American Society of Tropical Medicine and Hygiene*, 48, 739-741; (b) Clarkson C, Campbell WE, Smith P. (2003) *In vitro* antiplasmodial activity of abietane and totarane diterpenes isolated from *Harpagophytum procumbens* (devil's claw). *Planta Medica*, 69, 720-724; (c) Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *Journal of Immunological Methods*, 65, 55-63.

2010 Vol. 5 No. 12 1873 - 1876

Three New 18-Oxygenated *ent*-Kaurane Diterpenoids from *Isodon leucophyllus*

Hai Bo Zhang^{a,b}, Jian Xin Pu^{a,*}, Yong Zhao^a, Fei He^a, Wei Zhao^a, Li Guang Lou^c, Wei Lie Xiao^a and Han Dong Sun^{a,*}

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China

pujianxin@mail.kib.ac.cn or hdsun@mail.kib.ac.cn

Received: May 21st, 2010; Accepted: September 26th, 2010

Three new 18-oxygenated *ent*-kaurane diterpenoids, isoleuconins A-C (1–3) and ten known diterpenoids were isolated from the aerial parts of *Isodon leucophyllus*. The structures were elucidated by 1D and 2D NMR spectroscopic analysis. All of the compounds were evaluated for their cytotoxicity. Rabdokunmin A (13) showed significant cytotoxicity against HT-29 cells, with an IC₅₀ value of $6.2 \mu M$.

Keywords: Isodon leucophyllus, Labiatae, ent-kaurane, diterpenoid, cytotoxicity.

Isodon leucophyllus (Dunn) Kudo (Labiatae/Lamiaceae) is a small shrub mainly distributed in the western districts of Sichuan Province and the north-western regions of Yunnan Province, People's Republic of China [1]. Previous research reported the isolation of 28 diterpenoids (C-20 nonoxygenated and 7, 20-epoxy ent-kaurane), 6 flavones and one derivative of ionone [2a-2e]. In continuation of our research for new diterpenoids with antitumor activities, we have reinvestigated the aerial parts of I. leucophyllus, collected in Shangri-La County, Yunnan Province. As a result, along with 10 known diterpenoids (rabdoloxin A (4) [3a], isoscoparin I (5) [3b], 4-epi-henryine (6) [3c], rabdokunmin C (7) [3d], rabdokunmin E (8) [3d], rabdoinflexin B (9) [3e], excisanin A (10) [3f], phyllostachysin H (11) [3g], rabdoloxin B (12) [3a, and rabdokunmin A (13) [3d]), three new 18-oxygenated ent-kaurane diterpenoids [isoleuconins A-C (1-3)] were isolated from *I. leucophyllus*.

Isoleuconin A (1), exhibited a pseudomolecular ion peak (*m/z* 389.1947 [M+Na]⁺, calcd 389.1940), corresponding to the molecular formula C₂₀H₃₀O₆, with six degrees of unsaturation. The IR spectrum revealed the presence of hydroxyl, carbonyl, and *exo*-methylene groups in according with the absorptions at 3373, 1697 and 898 cm⁻¹, respectively. Analyses of the ¹H, ¹³C and DEPT NMR data (Table 1) provided evidence that 1 possessed one *exo*-methylene group, one carbonyl

group, two tertiary methyls, five methylenes (including one oxygenated), seven methines (including four oxygenated), and four quaternary carbons. On the basis of the characteristic signals of three methines ($\delta_{\rm C}$ 44.4, 62.1, and 53.6 assigned to C-5, 9, and 13), three quaternary carbons ($\delta_{\rm C}$ 37.3, 51.4, 39.5 assigned to C-4, 8 and 10), two methyls ($\delta_{\rm C}$ 17.4, 18.0 assigned to C-19 and 20), and an oxygenated methylene ($\delta_{\rm C}$ 70.1, assigned to C-18), together with the *exo*-methylene group ($\delta_{\rm C}$ 149.2 s, 113.6 t, elucidated as C-16 and 17), we presumed that 1 should be an *ent*-kaur-16-ene diterpenoid.

Chemical shift values of some typical carbon signals of 1 were similar to those of the known compound 4 [3a]. The main difference between them was that the conjugated carbonyl group at C-15 of 4 was reduced to a secondary hydroxyl group in 1. HMBC correlations H-15/C-8, H-15/C-9, H-15/C-7, and H-15/C-16, and the related ¹H-¹H COSY correlations H-15/H₂-17 confirmed the above deduction. ROESY correlations H-15/H-13 α , $H-15/H-7\beta$ indicated that the hydroxyl group located at C-15 adopted a β -orientation, as shown in Figure 1. The signal for C-9 (δ_C 70.1) in 4 shifted upfield to δ_C 62.1 (C-9) in 1, caused by the γ -steric compression effect between HO-15 and H-9 β . That could also support the view that HO-15 in 1 was β -oriented. Consequently, compound 1 was elucidated as $7\alpha,12\alpha,14\beta,15\beta,18$ pentahydroxy-ent-kaur-16-en-11-one, to which the name isoleuconin A was given.

^bGraduate University of Chinese Academy of Sciences, Beijing 100039, China

^cShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Table 1: ¹H and ¹³C NMR spectroscopic data of isoleuconins A–C (1–3) (δ in ppm, J in Hz, recorded at 400 MHz and 100 MHz, respectively).

No. —	1ª	•	2 ^b	<u> </u>	3 ^b	
NO.	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$
1α	1.48° (d, 13.2)	39.1 t	2.2° (m)	40.9 t	1.91 (d, 13.0)	39.5 t
1β	0.97^{c} (m)		1.59 (m)		1.07° (m)	
2α	1.40 (m)	17.3 t	1.71 (m)	18.5 t	1.70^{c} (m)	18.5 t
2β	1.35° (m)		1.50 (m)		1.50° (m)	
3α	1.02^{c} (m)	34.0 t	1.32 (d, 12.7)	35.6 t	1.39 (m)	35.7 t
3β	1.32° (m)		1.82° (m)		1.81° (m)	
4		37.3 s		38.3 s		38.1 s
5β	1.17 (s, overlap)	44.4 d	1.96 (d, 12.0)	46.7 d	1.80^{e} (m)	49.0 d
6α.	1.61 (m)	28.5 t	2.22° (m)	30.8 t	1.45° (m)	18.5 t
6β	1.68 (m)		2.49 (d, 9.4)		1.85° (m)	
7α		73.2 d		76.4 d	2.61 (d, 13.8)	26.7 t
7β	3.60 (dd, 4.0, 11.2)		4.53 (m)		2.21 (d, 13.8)	
8		51.4 s		54.7 s		57.5 s
9β	2.15 (s)	62.1 d	3.30 (s)	64.5 d	2.18 (s)	66.9 d
10		39.5 s		40.1 s		38.9 s
11β		210.3 s		211.4 s	4.28 (s)	64.9 d
12α		78.4 d		74.9 d	2.34 (m)	41.7 d
12β	3.48 (d, 3.1)		4.50 (s)		2.43 (m)	
13α	2.69 (br. d)	53.6 d	2.85 (d, 5.6)	54.6 d	3.36 (s)	46.4 d
14α	5.07 (br. s)	71.2 d	6.10 (s)	74.3 d	4.90 (s)	73.4 d
15	4.94 (br. s)	72.9 d	5.57 (m)	73.8 d		209.2 s
16α		149.2 s	3.35° (m)	35.0 d		150.6 s
17a	5.10 (br.s)	113.6 t	1.22 (d, 7.7)	11.3 q	5.35 (s)	112.8 t
17b	5.24 (br.s)			_	6.22 (s)	
18a	2.81 (d _{AB} , 11.3)	70.1 t	3.34° (m)	71.3 t	3.32 (m)	71.4 t
18b	3.26 (d _{AB} , 11.3)		3.66 (d, 10.3)		3.62 (m)	
19α	0.59 (s)	17.4 q	0.85 (s)	18.2 q	0.80 (s)	18.0 q
20α	1.13 (s)	18.0 q	1.78 (s)	19.3 q	1.08° (s)	18.5 q

a: in CDCl₃+CD₃OD, b: in C₅D₅N, c: revealed by HSQC correlations.

Figure 1: Key HMBC and ROSEY correlations for 1.

Isoleuconin B (2) was obtained as a grey amorphous powder. The HR-ESI-MS gave a pseudomolecular ion peak (m/z 391.2109 [M+Na]⁺, calcd 391.2096), corresponding to the molecular formula $C_{20}H_{32}O_{6}$, with five degrees of unsaturation. The IR spectrum revealed the presence of hydroxyl and carbonyl groups with absorptions at 3386 and 1698 cm⁻¹, respectively. The absorption for *exo*-methylene disappeared in the IR spectrum of 2. Typical carbon signals of three methines ($\delta_{\rm C}$ 46.7, 64.5, 54.6 assigned as C-5, 9, and 13), three quaternary carbons ($\delta_{\rm C}$ 38.3, 54.7, 40.1 assigned as C-4, 8 and 10), two methyls ($\delta_{\rm C}$ 18.2, 19.3 assigned as C-19 and 20), and an oxygenated methylene ($\delta_{\rm C}$ 71.3, assigned as C-18) indicated that 2 also should be an

ent- kaurane diterpenoid. Carefully comparing the 13 C NMR data of compound **2** with those of **1**, we found that the *exo*-methylene of compound **1** was reduced to a methyl ($\delta_{\rm C}$ 11.3, q, assigned as C-17) in compound **2**. HMBC correlations H₃-17/C-16, H₃-17/C-13, and H₃-17/C-15, and $^{\rm 1}$ H- $^{\rm 1}$ H COSY correlations H₃-17/H-16, H-15/H-16, and H-16/H-13 proved the above elucidation. ROESY correlations H₃-17/H-12 β and H-16 α /H-13 α revealed that the methyl located at C-16 adopted the β -orientation. Thus, the structure of compound **2** was established as 7α ,12 α ,14 β ,15 β ,18-pentahydroxy-16 β -methyl-*ent*-kaur-11-one, to which the name isoleuconin B was assigned.

The molecular formula for isoleuconin C (3) was established as $C_{20}H_{30}O_4$ on the basis of HR-ESI-MS data (m/z 357.2040 [M+Na]+, calcd 357.2041). The IR spectrum revealed the presence of hydroxyl, carbonyl, and *exo*-methylene from absorptions at 3371, 1713, 1648, and 928 cm⁻¹, respectively. Analyses of the ¹H-, ¹³C- and DEPT-NMR data (Table 1) provided evidence that 3 possessed one conjugated carbonyl group (δ_C 209.2 assigned to C-15), one *exo*-methylene (δ_C 150.6,

Figure 2: Key HMBC and ROSEY correlations for 3.

112.8, assigned to C-16 and 17), two oxygenated methines (δ_C 64.9, 73.4, assigned to C-11 and 14), one oxygenated methylene (δ_C 71.4 assigned to C-18) and other typical carbon signals of an ent-kaurane diterpenoid. HMBC correlations H₂-17/C-16, H₂-17/C-13, and H₂-17/C-15 indicated that the exo-methylene was located at C-16 and conjugated with the carbonyl group (C-15). HMBC correlations H-11/C-8, H-11/C-10, and H-11/C-13, and H-14/C-16, H-14/C-15 disclosed that C-11 and C-14 were substituted by two hydroxyl groups, which was confirmed by ¹H-¹H COSY correlations H-11/H-12/H-13/H-14 and H-11/HO-11, H-14/HO-14. ROESY correlations H-14/H-20, H-14/H-13α, and H-14/H-12 α revealed that H-14 adopted an α -orientation, as shown in Figure 2. ROESY correlations H-11/H-9 β and H-11/H-12 β revealed that H-11 adopted a β-orientation. HMBC correlations H-18/C-3 and H-18/ C-4 indicated that C-18 was substituted by one hydroxyl group. Like compound 1, this substitution also could be proved by the upfield shifted carbon signals (δ_C 35.7, C-3; $\delta_{\rm C}$ 49.0, C-5) caused by the γ -steric compression effect between HO-18 and H-3 β and H-5 β in 3 compared with those signals (δ_C 41.8, C-3; δ_C 53.2, C-5) of compound 12. Therefore, the structure of compound 3 was determined as $11\alpha,14\beta,18$ -trihydroxyent-kaur-16-en-15-one, and named as isoleuconin C.

Compounds 1–13 were evaluated for their cytotoxic activities against SK-OV-3, BEL-7402 and HT-29 cell lines, using the sulforhodamine B (SRB) method with adriamycin as the positive control [3h]. As may be seen from Table 2, compound 3 exhibited weak activities against SK-OV-3 and BEL-7402 cell lines, while compounds 1 and 2 were found to be inactive against all of these cells. Their analogue 4 exhibited weak inhibitory effects against two kinds of cell lines; more importantly, another analogue, 6, showed significant activity against these cell lines. Carefully comparing the structure of 6 with that of 4, we found that the α -hydroxyl group C-12 of compound 4 disappeared in compound 6. The above results disclosed that in the diterpenoids with a structure like 1, the α -hydroxy group located at C-12 weakened the cytotoxicity of the ent-kaurane diterpenoid. On the other hand, in diterpenoid with a structure like 12 and 13, esterification with the hydroxyl group located at C-14 could

Table 2: Cytotoxicity bioassay result ^a for compounds **1-13**.

		•	
Compd	SK-OV-3	BEL-7402	HT-29
1	>100	>100	>100
2	>100	>100	>100
3	38.0	40.8	82.8
4	38.9	98.9	35.7
5	>100	>100	>100
6	8.6	23.5	6.6
7	55.3	71.3	74.7
8	>100	>100	>100
9	40.0	46.7	29.7
10	>100	30.2	6.2
11	17.1	24.0	17.0
12	9.9	32.8	6.6
13	7.4	26.2	6.2
ADR	0.17	0.067	0.092

 $^{\overline{a}}$ Results are expressed as IC₅₀ values in μ M. Cell lines: SK-OV-3 (human ovarian cancer cell line); BEL-7402 (human lung cancer cell line); HT-29 (human colon cancer cell line).

improve the cytotoxicity. The above results further proved that the cyclopentanone conjugated with an *exo*-methylene is the active center of *ent*-kauranoids. [3i]

Experimental

General: Optical rotations, Perkin-Elmer Model 241 polarimeter; UV, Shimadzu UV-2401 PC UV-VIS spectrophotometer; IR, Bio-Rad Fts-135 spectrophotometer; MS, VG Auto spec-3000 spectrometer or Finnigan MAT 90; NMR, Bruker AV-400 or DRX-500 instrument.

Plant material: Aerial parts of *Isodon leucophyllus* (Dunn) Kudo were collected and air dried in Shangri-La county of Yunnan Province in August, 2004. The identity of the plant material was verified by Prof. Xi-Wen Li, and a voucher specimen was deposited in the Herbarium of the Kunming Institute of Botany.

Extraction and isolation: Powdered aerial parts of I. leucophyllus (1.8 kg) were extracted with 70% aq. acetone (3×6 L) at RT for 3 days each time. The extract was evaporated in vacuo to remove acetone, then partitioned between H₂O and EtOAc. The EtOAc extract (78 g) was decolored with MCI gel, and then chromatographed over a silica gel column (650g, 100-200 mesh. Oingdao marine chemical factory), eluted with a gradient solvent system [CHCl₃-CH₃COCH₃ (1:0, 9:1, 8:2, 7:3, 2:1, 1:1, 0:1)] to afford fractions A-G, monitoring by TLC (volume of each collection was 1000 mL). Fraction E (2:1, 5 g) was submitted to chromatography over a RP-18 column (100 g, 40-63 μm, Merck Company) eluted with 30%→100% MeOH– H₂O to give fractions E1-E7, monitoring by TLC (volume of each collection was 250 mL). Fraction E4 (590 mg) was chromatographed over a silica gel column (200-300 mesh, 20 g) eluted with a gradient solvent system of CHCl₃-CH₃OH (60:1→10:1) to afford a mixture of 2 diterpenoids (volume of each collection was 50 mL), which were purified by semi-preparative HPLC (Agilent 1100, Zorbax SB-C18, 9.4 ×250 mm,72% MeOH- H_2O , $\lambda_{max} = 210$ nm) to yield compound 1 (46 mg) and compound 2 (14 mg). Fraction E2 (105 mg) was subjected to a silica gel CC, eluting

with a gradient solvent system [CHCl3-CH3OH $(40:1\rightarrow 5:1)$] to afford a mixture of diterpenoids, which was purified by semi-preparative HPLC (45% MeOH-H2O, $\lambda_{max} = 210$ nm) to obtain compound 5 (45 mg). Fraction C (8:2, 11 g) was submitted to CC over a RP-18 column (200 g, 40-63 μm, Merck Company, $30\% \rightarrow 100\%$ MeOH-H₂O) to give fractions C1-C5. monitoring by TLC (volume of each collection was 250 mL). In the sixth, seventh and eighth bottles of elution solvent belonging to fraction C1, compound 4 (3.1 g) was separated as needle crystals. The mother liquid of compound 4 was subjected to RP-18 CC (100 g, 40- $63\mu m$, Merck Company, $30\% \rightarrow 100\%$ MeOH–H₂O) to obtain compounds 6 (434 mg) and 13 (78 mg). Fraction C2 (2.3 g) was subjected to silica gel CC (200-300 mesh, 40g) eluting with a gradient solvent system of light petroleum-CH₃COCH₃ (1:0 to 0:1, volume of each collection was 50 mL). Compound 9 (509 mg) was separated out as needle crystals from the first bottle of fraction C2. Compound 7 (3.1 mg) and compound 8 (1.7 mg) were isolated by semi-preparative HPLC (40% MeOH-H₂O, 45% MeOH-H₂O, $\lambda_{max} = 230$ nm) from the fourth and fifth bottle of elution solvent. The tenth bottle (23 mg) of the above elution was subjected to RP-18 CC (5 g, 40-63 µm, Merck Company, 30%→100% MeOH-H₂O) to obtain a mixture mainly contained two diterpenoids. The mixture was separated by semi-preparative HPLC (24% ACN-H₂O, $\lambda_{max} = 230$ nm) to obtain compound 10 (5 mg) and one unpurified diterpenoid, and then purified by semi-preparative HPLC (38% MeOH-H₂O, λ_{max} = 230 nm) to obtain compound 3 (3 mg). Compound 11 (4.0 mg) was isolated from fraction F (1:1) after continued CC on RP-18, and then purified by semi-preparative HPLC (42% MeOH– H_2O , $\lambda_{max} = 238$ nm). Compound 12 (2.4 g) separated as granular crystals from the EtOAc extract when dissolved in acetone.

Isoleuconin A (1)

Grey tablet-like crystals $[\alpha]_D^{23.6}$: +52.0 (c = 12.60 mg/mL, MeOH). IR (KBr): 3373, 2930, 2873, 1697, 1455, 898, cm⁻¹. UV λ_{max} (MeOH) nm (log ε): 204 (3.66). ¹H and ¹³C NMR: Table 1. HR-ESI MS: m/z [M+Na]⁺, calculated for C₂₀H₃₀O₆Na (calcd. 389.1940); found: 389.1947.

Isoleuconin B (2)

Grey powder $[\alpha]_D^{23.8}$: +12.0 (c = 5.82 mg/mL, MeOH). IR (KBr): 3386, 2931, 2874, 1697, 1453 cm⁻¹. UV λ_{max} (MeOH) nm (log ε): 203 (3.23). ¹H and ¹³C NMR: Table 1. HR-ESI MS: m/z [M+Na]⁺, calculated for $C_{20}H_{32}O_6Na$ (calcd. 391.2096); found: 391.2109.

Isoleuconin C (3)

White powder $[\alpha]_D^{18.9}$: -76.0 (c=0.79 mg/mL, MeOH). IR (KBr): 3443, 3371, 2935, 2855, 1713, 1648, 928 cm⁻¹. UV λ_{max} (MeOH) nm (log ε): 236 (3.81). ¹H and ¹³C NMR: Table 1. HR-ESI MS: m/z [M+Na]⁺, calculated for $C_{20}H_{30}O_4Na$ (calcd. 357.2041); found: 357.2040.

Acknowledgments - This work was supported financially by the NSFC (Nos. 30772637 to H.-D. Sun and 30830119 to S.-J. Chen), the NSFC-Joint Foundation of Yunnan Province (No. U0832602 to H.-D. S.), the Major State Basic Research Development Program of China (No. 2009CB522300 and 2009CB940900), the Natural Science Foundation of Yunnan Province (No. 2008CD162), and the Science and Technology Program of Yunnan Province (No. 2008IF010).

References

- [1] Wu ZY, Li XW, Xuan SJ. (1977) Flora Republicae Popularis Sinicae. Volume 66, Science Publishing House, Beijing. 457-458.
- [2] (a) Liao X, Peng SL, Ding LS. (1997) Chemical constituents of Rabdosia leucophylla. Acta Botanica Sinica, 39, 1073-1077; (b) Liao X, Ding LS, Peng SL. (1998) ent-Kaurane diterpenoids from Rabdosia leucophylla. Phytochemistry, 47, 247-250; (c) Chen SN, Lin ZW, Qin GW, Sun HD. (1999) Diterpenoids from Isodon leucophyllus. Planta Medica, 65, 472-474; (d) Zhao AH, Xiang W, Na Z, Wang ZY, Qin GW, Sun HD. (2004) Cytotoxic ent-kauranoids from Isodon leucophyllus. Journal of Asian Natural Products Research, 6, 145-150; (e) Zhao AH, Peng LY, Wang ZY, Sun HD. (2003) An ionone derivative from Isodon leucophyllus. Acta Botanica Yunnanica, 25, 503-506.
- (a) Sun HD, Lin ZW, Shen XY, Takeda Y, Fujita T. (1991) ent-Kaurene diterpenoids from Rabdosia loxothyrsa. Phytochemistry, 30, 603-606; (b) Zhao Y, Pu JX, Huang SX, Wu YL, Sun HD. (2009) ent-Kaurene diterpenoids from Isodon scoparius. Journal of Natural Products, 72, 125-129; (c) Zhou BN, Chen JB, Wang CY, Blaskó G, Cordell GA. (1989) 4-Epi-henryine A, A diterpene from Rabdosia henryi. Phytochemistry, 28, 3536-3538; (d) Zhang HJ, Sun HD. (1989) Diterpenoids from Rabdosia kunmingensis. Phytochemistry, 28, 3405-3409; (e) Wang ZQ, Node M, Xu FM, Hu HP, Fuji K. Terpenoids LIV. (1989) The structures of rabdoinflexins A and B, new diterpenoids from Rabdosia inflexa (Thunb.) Hara. Chemical & Pharmaceutical Bulletin, 37, 2683-2686; (f) Sun HD, Sun XC, Lin ZW, Xu YL, Minami Y, Marunaka T, Fujita T. (1981) New diterpenoids from Rabdosia excise. Chemistry Letters, 6, 753-756; (g) Li X, Xiao WL, Pu JX, Ban LL, Shen YH, Weng ZY, Li SH, Sun HD. (2006) Cytotoxic ent-kaurene diterpenoids from Isodon phyllostachys Phytochemistry, 67, 1336-1340; (h) Monks A, Scudiero D, Skehan P, Shoemaker R. (1991) Feasibility of a high flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83, 757-766; (i) Fujita E, Nagao Y, Node M, Kaneko K. (1976) Antitumor activity of the Isodon diterpenoids: structural requirements for the activity. Cellular and Molecular Life Sciences, 32, 203-206.

2010 Vol. 5 No. 12 1877 - 1880

Immunomodulatory Action of Monosulfated Triterpene Glycosides from the Sea Cucumber *Cucumaria okhotensis*: Stimulation of Activity of Mouse Peritoneal Macrophages

Dmitry L. Aminin^a, Alexandra S. Silchenko^a, Sergey A. Avilov^a, Vadim G. Stepanov^b and Vladimir I. Kalinin^{a,*}

kalininv@piboc.dvo.ru

Received: April 13th, 2010; Accepted: September 24th, 2010

Six monosulfated triterpene glycosides, frondoside A_1 (1), okhotoside B_1 (2), okhotoside A_1 -1 (3), frondoside A (4), okhotoside A_2 -1 (5) and cucumarioside A_2 -5 (6), isolated from *Cucumaria okhotensis* Levin et Stepanov, stimulate spreading and lysosomal activity of mouse macrophages and ROS-formation in the macrophages. The highest macrophage spreading and stimulation of their lysosomal activity was induced by glycosides 1, 4 and 6. All glycosides similarly stimulate ROS formation in macrophages, but glycoside 2 caused minimal stimulation.

Keywords: triterpene glycosides, Cucumaria okhotensis, macrophages, ROS formation, spreading, lysosomal activity.

Triterpene glycosides of sea cucumbers possess a wide spectrum of biological activity caused by their membranolytic action [1]. During recent decades their immonomodulatory activity in subtoxic doses has attracted attention. Monosulfated glycosides from the sea cucumbers *Cucumaria japonica* [2–5] and *C. frondosa* [6] stimulate mammalian cell immunity while their activity is effective in doses significantly less than the cytotoxic ones against immune cells [7].

Recently it was found that populations of *C. japonica* in the northern parts of the Sea of Japan and Sea of Okhotsk, including the shallow waters of the Kamchatka Peninsula and North Kuril Islands, really are a series of endemic species that differ from *C. japonica* by several features, including composition of triterpene glycosides [8,9]. Because monosulfated glycosides from *C. japonica* are used for the preparation of immunostimulants [5], it is of interest to investigate the immunostimulatory activity of the glycosides isolated recently from the newly described *C. okhotensis* Levin et Stepanov, found near the southwestern shore of Kamchatka Peninsula [10].

The structures of the studied monosulfated glycosides from *C. okhotensis* are presented in Figure 1. Glycosides

1 and 4 were also isolated from *C. frondosa* [11,12], and glycoside 6 from *C. conicospermium* [13]. Because the immunomodulatory action of frondoside A (4) has been studied previously [6], we used it as a positive control. To study immunomodulatory activity we chose spreading and lysosomal activity of mouse macrophages, and the formation of reactive oxygen species (ROS) in them.

Macrophage adhesion onto an extracellular matrix, followed by their spreading, is necessary to follow their functional activity. These indexes reflect the initial stage of phagocytosis and macrophage ability for phagocytosis. It is accompanied by changes in macrophage geometric parameters, including cell area and perimeter. The cell may elongate and change shape because of the formation of lamellae and fillopodia [14,15].

All the studied glycosides induced an increase of all these indexes on the fourth day after intraperitoneal injection. Macrophages of mice administrated with frondoside A (4) had larger geometrical parameters and their shape was more differentiated because of an increase in spreading, elongation, and formation of lamellae and fillopodia compared with macrophages of mice from the control group.

^aPacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation

^bKamchatka Department of the Pacific Institute of Geography, Petropavlovsk-Kamchatsky, 683000, Russian Federation

Figure 1: Chemical structures of monosulfated triterpene glycosides from *Cucumaria okhotensis*: $1 - \text{frondoside A}_1$ [9,11]; $2 - \text{okhotoside B}_1$ [9]; $3 - \text{okhotoside A}_1$ [8]; $4 - \text{frondoside A}_2$ [8]; $5 - \text{okhotoside A}_2$ [8]; $6 - \text{cucumarioside A}_2$ [9,13].

Table 1: Effect of triterpene glycosides on peritoneal macrophage spreading. The glycosides were administrated by intraperitoneal injection of 0.5 mL at a dose of 0.2 μ g/mouse. On the fourth day the mice were killed by pervisceral dislocation followed by isolation of macrophages that were then stained with the fluorescent probe 5-carboxyfluorescein diacetate and analyzed. The data are presented as m \pm se (n=100); *- p < 0.05.

Substance	Geometric parameters of macrophages, pixels							
	Cell area	Perimeter	Maximal chord	Shape				
Control	92.163 ± 13.111	80.698 ± 9.484	11.050 ± 1.094	0.189 ± 0.016				
Fr A ₁ (1)	$239.315 \pm 25.444*$	104.849 ±7.578*	21.284 ± 1.465*	$0.245 \pm 0.012*$				
Okh B ₁ (2)	107.989 ± 15.989	120.333 ± 8.621*	14.774 ±0.863*	$0.075 \pm 0.003*$				
Okh A ₁ -1 (3)	154.146 ± 18.282*	$142.343 \pm 12.40*$	19.214 ± 1.452*	$0.106 \pm 0.007*$				
Fr A (4)	250.125 ± 33.284*	$128.659 \pm 12.240*$	22.472 ± 1.611*	0.210 ± 0.011 *				
Okh A ₂ -1 (5)	157.138 ± 22.937*	88.400 ± 8.956	17.493 ± 1.064*	$0.285 \pm 0.011*$				
Cucu A ₂ -5 (6)	229.608 ± 39.828*	$125.411 \pm 16.941*$	$22.592 \pm 2.453*$	0.206 ± 0.014				

Almost all the studied glycosides induced statistically significant increases in cell area, perimeter, maximal chord and integral index of cell shape at an injection dose of 0.2 μ g/mouse. Quantitative estimation of the influence of the glycosides on macrophage spreading is presented in Table 1. The most effective glycosides were frondoside A_1 (1), frondoside A (4) and cucumarioside A_2 -5 (6). These substances activate spreading 2–2.5 fold greater than the control. Frondoside A was more active than frondoside A_1 and cucumarioside A_2 -5.

Lysomal activity is one of the important markers of physiological and biochemical macrophage status. Almost all the studied glycosides induced a statistically significant increase in lysosomal activity of peritoneal macrophages on the fourth day after a single intraperitoneal injection of 0.2 μ g/mouse. The most effective glycosides were frondoside A₁ (1), frondoside A (4) and cucumarioside A₂-5 (6). These compounds activated lysosomal activity approximately 1.5–2.5 times greater than that of control cells (Figure 2). The most active glycoside was frondoside A, whereas the activity of glycoside 6 was similar to that of glycoside 1.

Figure 2: Influence of triterpene glycosides on lysosomal activity of mouse peritoneal macrophages. Glycosides were administrated by intraperitoneal injection of 0.5 mL at a dose 0.2 μ g/mouse. On the fourth day the mice were killed by pervisceral dislocation followed by isolation of macrophages. The lysosomes were stained with acridine orange and analyzed. The data are presented as $m \pm se$ (n=100); *- p < 0.05.

The ability to generate ROS, singlet oxygen, hydrogen peroxide and the products of their interaction with each other, and NO, the so called "oxidative burst", is

important for the ability of macrophages to kill ingested microorganisms.

Almost all the studied glycosides induced statistically significant increases of ROS formation in peritoneal macrophages isolated from mice on the fourth day after a single intraperitoneal injection at a dose of $0.2 \mu g/mouse$ (Figure 3). All the glycosides activated lysosomal activity 1.3-1.8 folds greater than control cells. Okhotoside B_1 (2) showed minimal activity.

Hence all the studied monosulfated glycosides isolated from *Cucumaria okhotensis* showed immunostimulatory activity of mouse macrophages, as indicated by an increase in macrophage spreading, their lysosomal activity and ROS-formation. This indicates that *C. okhotensis* can be used as a source for immunostimulant preparations.

The activity of the studied glycosides was changed depending on their structure, but not significantly. Glycosides 4 and 5 having a fifth terminal monosacharide unit (xylose) were more active than their corresponding tetrasaccharide analogs 1 and 2.

Figure 3: Influence of triterpene glycosides on the ROS-formation in peritoneal mouse macrophages. The glycosides were administrated by intraperitoneal injection of 0.5 mL at a dose of 0.2 μ g/mouse. On the fourth day the mice were killed by pervisceral dislocation followed by isolation of macrophages. The cells were stained with dihydrorhodamine 123 probe and analyzed. The data are presented as $m \pm se$ (n=100); *- p < 0.05.

Experimental

Triterpene glycosides: The glycosides were isolated from *Cucumaria okhotensis* using common procedures of hydrophobic chromatography of the extracts on teflon powder Polichrom-1, followed by chromatography on a Si gel column and HPLC [8,9]. Structures and purity of individual isolated frondoside A_1 (1), okhotoside B_1 (2), okhotoside A_1 -1 (3), frondoside A_1 -1 (5) and cucumarioside A_2 -5 (6) were confirmed by 13 C NMR

spectra [8,9]. Individual substances were dissolved in sterile distilled water at a concentration of 1 mg/mL (initial concentration). Forty μL initial glycoside solution were added to 960 μL of distilled water to produce a solution of 40 $\mu g/mL$. Ten μL of this solution was added to 990 μL of distilled water to obtain the final concentration of 0.4 μg /mL. The final concentration was used for injection into mice.

Determination of immunomodulatory activity: CBA mice (female, 20 g) were used for in vivo testing. The glycosides were intraperitoneally injected (0.5 mL of a glycoside solution in distilled water) at a final glycoside dose of 0.2 µg/mouse. The control mice were injected with distilled water. On the fourth day after injection the mice were killed by pervisceral dislocation and peritoneal macrophages were isolated by standard procedures. The estimation of immunomodulatory activity was carried out by staining and localization of lysosome in macrohages, determination of reactive oxygen species (ROS) formation in macrophages, and determination of macrophage spreading on an extracellular matrix. Molecular fluorescent probes followed by cell imaging analysis were used. Mice peritoneal liquor (250 µL) containing macrophages was placed onto a microscope cover slip and incubated for 1 h at 37°C. After macrophage adhesion, the cover slip was washed twice with phosphate buffered saline (PBS, pH 7.5). Then 250 µL of a solution of the fluorescent probe was added to the cell monolayer in drops and the cells were incubated at 37°C. To determine macrophage lysosomal activity, a solution of acridine orange (Calbiochem, 100 µg/mL in PBS) was applied and the cells were incubated for 30 min. To estimate ROS formation, a solution of dihydrorhodamine 123 (Sigma, 100 ng/mL in PBS containing 0.5 mM of sodium azide) was used. The cells were incubated for 10 min. To estimate macrophage spreading, a solution of 5-carboxyfluorescein diacetate (Molecular Probes, 50 μg/mL in PBS) was applied. The cells were incubated for 60 min. The cell monolayer was washed twice with PBS. Cover slips were placed on the stage of a fluorescent scanning device composed on the base of an inverted microscope Axiovert 200 (Zeiss, Germany). A luminiscent 75 W Optosource xenon arc lamp and a DAC-controlled monochromator Optoscan (Cairn Research Ltd., UK) were used as light sources for inducing fluorescence at $\lambda ex = 488$ nm; a HO FITC filter-block (Chroma Technology Corp., USA) and Fluar 40×/1.3 oil objective lens (Zeiss, Germany) were used to visualize cell fluorescence. Cell fluorescence images were recorded using a Hamamatsu Orca-ER monochrome C4742-95 digital video (Hamamatsu Photonics K.K., Japan) and an IBMcompatible computer having a Fireware data interface.

The intensity of fluorescence of 100 randomly chosen cell images was estimated using an AQM Advance 6 computer program (Kinetic Imaging Ltd., UK) and calculated along with average intensity of fluorescence for each cell, in pixels. Geometric cell parameters (area, perimeter, maximal chord and shape) were also estimated. Each experiment was repeated in triplicate. Average value, standard error, standard deviation and p-values were calculated and plotted on the chart using a SigmaPlot 3.02 computer program (Jandel Scientific, USA).

Acknowledgements – The authors acknowledge the financial support of a Grant of Presidium of the Russian Academy of Science "Basic Researches for Medicine", the President of the Russian Federation Program for Support of the Leading Scientific Schools Grant No. 3531.2010.4 and the Russian Government Contract No. 02.740.11.0777. The authors very much appreciated the help of Professor John M. Lawrence, University of South Florida (Tampa, FL) for correction of the manuscript.

- [1] Kalinin VI, Aminin DL, Avilov SA, Silchenko AS, Stonik VA. (2008) Triterpene glycosides from sea cucuembers (Holothurioidae, Echinodermata), biological activities and functions. In: *Studies in Natural Product Chemistry (Bioactive Natural Products)*, Vol. 35. Atta-ur-Rahman (Ed.), Elsevier Science Publisher, Amsterdam, 135–196.
- [2] Aminin DL, Agafonova IG, Berdyshev EV, Isachenko EG, Avilov SA, Stonik VA. (2001) Immunomodulatory properties of cucumariosides from the edible Far-Eastern holothurian *Cucumaria japonica*. *Journal of Medicinal Food*, 4, 127–135.
- [3] Agafonova IG, Aminin DL, Avilov SA, Stonik VA. (2003) Influence of cucumariosides upon intracellular [Ca²⁺]_j and lysosomal activity of macrophages. *Journal of Agricultural and Food Chemistry*, *51*, 6982–6986.
- [4] Aminin DL, Koy C, Dmitrenok PS, Muller-Hilke B, Koczan D, Arbogast B, Silchenko AS, Kalinin VI, Avilov SA, Stonik VA, Collin PD, Thiersen H-J, Deinzer ML, Glocker MO. (2009) Immunomodulatory effects of holothurian triterpene glycosides on mammalian splenocytes determined by mass spectrometric proteome analysis. *Journal of Proteomics*, 72, 886–906.
- [5] Aminin DL, Pinegin BV, Pichugina LV, Zaporozhets TS, Agafonova IG, Boguslavsky VM, Silchenko AS, Avilov SA, Stonik VA. (2006) Immunomodulatory properties of cumaside. *International Immunopharmacology*, 6, 1070–1082.
- [6] Aminin DL, Agafonova IG, Kalinin VI, Silchenko AS, Avilov SA, Stonik VA, Colin PD, Woodward C. (2008) Immunomodulatory properties of frondoside A, a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber *Cucumaria frondosa*. *Journal of Medicinal Food*, 11, 443–453.
- [7] Aminin DL, Silchenko AS, Avilov SA, Stepanov VG, Kalinin VI. (2009) Cytotoxic action of triterpene glycosides from sea cucumbers from the genus *Cucumaria* on mouse spleen lymphocytes. Inhibition of nonspecific esterase. *Natural Product Communications*, 4, 773–776.
- [8] Silchenko AS, Avilov SA, Kalinin VI, Stonik VA, Kalinovsky AI, Dmitrenok PS, Stepanov VG. (2007) Monosulfated triterpene glycosides from *Cucumaria okhotensis* Levin et Stepanov new sea cucumber species from the Sea of Okhotsk. *Bioorganicheskaya Khimiya*, 33, 81–90.
- [9] Silchenko AS, Avilov SA, Kalinin VI, Kalinovsky AI, Dmitrenok PS, Fedorov SN, Stepanov VG, Dong Z, Stonik VA. (2008) Constituents of the sea cucumber *Cucumaria okhotensis*. Structures of okhotosides B₁–B₃ and cytotoxic activities of some glycosides from this species. *Journal of Natural Products*, 71, 351–356.
- [10] Levin VS. (2003) *Cucumaria okhotensis* a new species of holothurians (Echinodermata: Holothurioidea) from the Sea of Okhotsk. *Biologiya Morya*, 29, 202–205.
- [11] Avilov SA, Kalinin VI, Drozdova OA, Kalinovsky AI, Stonik VA, Gudimova EN. (1993) Triterpene glycosides from the sea cucumber *Cucumaria frondosa*. *Khimiya Prirodnyh Soedinenii*, 2, 49–52.
- [12] Girard M, Belanger J, ApSimon JW, Garneau F-X, Harvey C, Brisson J-R. Frondoside A. (1990) A novel triterpene glycoside from the holothurian *Cucumaria frondosa*. *Canadian Journal of Chemistry*, 68, 11–18.
- [13] Avilov SA, Antonov AS, Silchenko AS, Kalinin VI, Kalinovsky AI, Dmitrenok PS, Stonik VA, Riguera R, Jimenes C. (2003) Triterpene glycosides from the Far Eastern sea cucumber *Cucumaria conicospermium*. *Journal of Natural Products*, 66, 910–916.
- [14] Mosser DM, Edwards JP. (2008) Exploring the full spectrum of macrophage activation. *Nature Reviews in Immunology*, 8, 958–969.
- [15] Martinez FO, Sica A, Mantovani A, Locati M. (2008) Macrophage activation and polarization. *Frontiers in Bioscience*, 13, 453–461.

2010 Vol. 5 No. 12 1881 - 1884

Three New Aaptamines from the Marine Sponge *Aaptos* sp. and Their Proapoptotic Properties

Larisa K. Shubina, Tatyana N. Makarieva, Sergey A. Dyshlovoy, Sergey N. Fedorov, Pavel S. Dmitrenok and Valentin A. Stonik*

Laboratory of Chemistry MaNaPro, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 Vladivostok, Russia

stonik@piboc.dvo.ru

Received: September 5th, 2010; Accepted: October 11th, 2010

Three new aaptamine-type alkaloids, 2,3-dihydro-2,3-dioxoaaptamine (1), 6-(*N*-morpholinyl)-4,5-dihydro-5-oxodemethyl(oxy)aaptamine (2) and 3-(methylamino)demethyl(oxy)aaptamine (3), along with known aaptamines were isolated from the sponge *Aaptos* sp. Their structures were determined on the basis of detailed analysis of their 1D and 2D NMR spectroscopic and mass spectral data. The isolated compounds induced apoptosis in human leukemia THP-1 cells.

Keywords: aaptamine, benzo[de][1,6]-naphthyridine alkaloids, marine sponge, apoptosis, NMR.

The genus Aaptos comprises about 20 species of sponges that are mostly known as a rich source of benzo[de][1,6]-naphthyridine alkaloids (aaptamines) possessing antioxidant [1], antiviral [2], antimicrobial [3], antifungal [4], antiparasitic [5], cytotoxic [3a,3b,6], and other activities [7]. The various and interesting bioactivities of these compounds have raised a high interest in their syntheses and the preparation of derivatives [7]. During our search for anticancer metabolites from marine organisms [8-10], we recently isolated a new aaptamine derivative [10] from the Vietnamese sponge Aaptos sp. In this paper we report the results of a study on another collection of a sponge belonging to the same genus which has resulted in the isolation of three new benzo[de][1,6]-naphthyridine alkaloids, namely 2,3dihydro-2,3-dioxoaaptamine (1), 6-(N-morpholinyl)-4,5-dihidro-5-oxo-demethyl(oxy) aaptamine (2) and 3-(methylamino)demethyl(oxy)aaptamine (3), along with the known 3-(phenethylamino)demethyl-(oxy)aaptamine (4) [11], 3-(isopentylamino)-demethyl(oxy)aaptamine (5) [11], demethyl(oxy)-aaptamine (6) [3a] and aaptamine (7) [12].

Compound 1 was obtained as a yellow amorphous solid, the molecular formula for which was established as $C_{13}H_{10}N_2O_4$ from the $[M + Na]^+$ ion at m/z 281.0544 (calcd for $C_{13}H_{10}N_2O_4Na$, 281.0546) and $[M + H]^+$ ion at m/z 259.0727 (calcd for $C_{13}H_{11}N_2O_4$, 259.0726) in the HRESIMS (positive ion mode). The ¹H NMR spectrum of 1 exhibited two doublets of coupled protons at δ 8.73 and 8.07 (each 1H, d, J=5.4 Hz), one isolated

singlet at δ 7.30 and singlets for two methoxyl groups at δ 4.04 and 4.09 (each 3H), which are characteristic for aaptamines [3b]. The signal of the exchangeable proton at δ 11.4 (1H, br.s) in the ¹H NMR spectrum recorded in DMSO- d_6 , together with the IR absorption at 3375 cm⁻¹ suggested the presence of a NH group.

Careful analysis of the 13 C NMR data, and the HSQC, HMBC and 1D NOE correlations (Table 1) allowed us to establish the modified aaptamine core and attribute proton signals to the 5, 6 and 7 positions. Among all the carbon signals of 1, two quaternary oxygenated carbons at δ 178.8 and 158.4 did not show any HMBC correlation with protons. These signals have been assigned to the C-3 keto group and C-2 amide carbonyl by comparison of 13 C NMR data of N-1 – C-3 fragment

		1							2			
Position	$\delta_{\rm H}^{a}$ (mult, J in Hz)	δ_C^b	HME	BC (H→C)		1D NOE	$\delta_{\rm H}^{\rm a}$ (mult, J in Hz)	δ_C^b	HME	BC (H→C)		1D NOE
			J^2	J^3	J^4				J^2	J^3	J^4	
1	11.4 br.s ^c											
2		158.4					8.61 d (5.4)	149.1	3	3a, 9a	9b	H3
2 3		178.8					7.34 d (5.4)	112.1	2	9b	9a	H2
3a		145.7						145.1 ^d	3			
4							10.18 br.s ^c					
5	8.73 d (5.4)	146.1	6	3a, 6a	9b	H6		162.4				
6	8.07 d (5.4)	126.4	5, 6a	7, 9b	9a	H5, H7		143.9				
6a		136.9						122.5				
7	7.30 s	102.3	8	6, 9, 9b	9a	H6, 8-OMe	7.18 s	109.2	8	6, 9, 9b	9a	H2', 8-OMe
8		158.9				ŕ		154.8				•
9		139.4						178.9				
9a		125.8						142.6 ^d				
9b		116.9						116.5				
1'												
2'							3.70 m	54.3	3'	6, 5'		H3', H7
3'							3.88 m	68.9	2'	4'		H7, H2'
4'							3.88 m	68.9	5'	3'		H5 [']
5'							3.70 m	54.3	4'	6, 2'		H3'
8-OMe	4.09 s	57.0		8		Н7	3.97 s	56.5	8	,		H7
9-OMe	4.04 s	62.2		9								

Table 1: ¹H and ¹³C NMR spectroscopic data for **1** and **2** in CD₃OD.

with literature data for known bis indol alkaloids containing an unusual α-keto enamide functionality [13] and aaptanone, having a rare oxygenated 1,6-naphthyridine core [14]. This suggestion was in agreement with IR data (two carbonyl bands at 1697 and 1714 cm⁻¹) and an ESI MS/MS experiment, where MS/MS fragmentation of the [M+H]⁺ ion gave a daughter ion at *m/z* 187 indicative of the loss of a C₂H₂NO₂ fragment. Thus the structure of 1 was determined as 2,3-dihydro-2,3-dioxoaaptamine, the first naturally occurring 2,3-disubstituted aaptamine alkaloid. Earlier, compound 1 was obtained during attempts at the synthesis of aaptamine [15].

The molecular formula of 2 was determined as $C_{16}H_{15}N_3O_4$ from the HRESIMS ions for $[M+H]^+$ at m/z 314.1129 (calcd for $C_{16}H_{16}N_3O_4$, 314.1135) and $[M + Na]^+$ at m/z 336.0949 (calcd for $C_{16}H_{15}N_3O_4Na$, 336.0954). In the ¹H NMR spectrum, signals observed at δ 8.61 and 7.34 (each 1H, d, J=5.4 Hz), along with the singlet at 7.18 (1H, s), were characteristic of the aaptamine alkaloids, suggesting the benzo[de][1,6]naphthyridine skeleton. Signals for one methoxyl group at δ 3.97 (3H, s) in the ¹H NMR spectrum and a carbonyl group at δ 178.9 in the ¹³C NMR spectrum were similar to the characteristic 8-OMe and C-9 carbonyl signals observed in demethyl(oxy)aaptamine [3a]. Detailed analysis of the 1D and 2D NMR spectra (Table 1) allowed us to establish a modified demethyl(oxy)-aaptamine core substituted at C-5 and C-6, and confirm the position of aromatic protons at C-2, C-3 and C-7. In addition, signals for four methylene groups at δ 3.70 (4H, m) and 3.88 (4H, m) in the 1 H NMR spectrum and δ 54.3 and 68.9 in the ¹³C NMR spectrum resembled signals for the morpholinyl fragment in 3-(N-morpholinyl)-9-demethyl(oxy)aaptamine [10]. The ¹H-¹H COSY correlations from H₂-2' to H₂-3' and

from H₂-4' to H₂-5', as well as HMBC correlations H-2'/C-3', C-5' and H-3'/C-2', C-4' confirmed the presence of a morpholinyl fragment in the structure. Furthermore, HMBC correlations from H-2' and H-5'to C-6 and NOE interactions between H-2', H-3' and H-7 indicated attachment of this fragment to the benzo[de][1,6]-naphthyridine part at C-6. The ¹H NMR spectrum recorded in DMSO-d₆ shows a signal for an exchangeable proton at δ 10.18 (1H, br.s). The quaternary carbon at δ 162.4 did not show any correlations in the HMBC spectrum and was assigned to the amide carbonyl carbon. This supposition was in agreement with the IR absorption band at 1716 cm⁻¹ and literature data [14]. Thus, the structure of 2 was determined as 6-(N-morpholinyl)-4, 5-dihydro-5-oxodemethyl(oxy)aaptamine.

Only few substituted morpholine derivatives have so far been isolated from marine sources [16]. The first morpholinyl fragment in an aaptamine-type alkaloid was recently reported in another collection of *Aaptos* sp [10].

Alkaloid **3** was obtained as an orange amorphous solid and its molecular formula was established to be $C_{13}H_{11}N_3O_2$ from the $[M+Na]^+$ ion at m/z 264.0768 (calcd for $C_{13}H_{11}N_3O_2Na$, 264.0743) in the HRESIMS (positive ion mode). ¹H and ¹³C NMR data of **3** (Table 2) were similar to those of **4** and **5** [11] showing the same C-3 substituted benzo[de][1,6]-naphthyridine moiety. The difference was in the NMR signals of a substituent. A methylamino group at C-3 was deduced from signals at δ 3.22 (3H, s) in the ¹H NMR (CD₃OD) and δ 29.6 in the ¹³C NMR spectra. The 1H multiplet at δ 7.0 in the ¹H NMR spectrum recorded in CDCl₃ and its 1H-1H COSY correlation with H-2', as well as the IR absorption band at 3400 cm⁻¹ confirmed the presence of NH. Again, the J³ HMBC correlation from H₃-2' to

^a Measured at 700 MHz, ^bat 175 MHz. Assignments were confirmed from HSQC, HMBC and NOE data. c In DMSO-d₆, d Interchangeable signals.

Table 2: ¹H and ¹³C NMR spectroscopic data for **3** in CD₃OD.

Position	$\delta_{\rm H}^{a} (J \text{ in Hz})$	δ_C^{b}	HN	IBC (H→0	C)	1D NOE
			J^2	J^3	J^4	
2	8.30 s	130.5	3	3a, 9a	9b	
3		147.9				
3a		137.1				
5	8.83 d (4.5)	152.3	6	3a, 6a	9b	H6
6	7.70 d (4.9)	124.0	5	7, 9b	3a, 9a	H5, H7
6a		137.5				
7	6.99 s	108.6	8	6, 9, 9b	9a	H6, 8-OMe
8		158.8				
9		177.2				
9a		134.1				
9b		119.2				
1'	7.00m ^c					
N-Me	3.22 s	29.6		3	2	
8-OMe	3.97 s	56.7	8		7	H7

^a Measured at 700 MHz, ^bat 175 MHz. Assignments were confirmed by HSQC, HMBC and NOE data. ^c In CDCl₃

C-3 confirmed the connection of the methylamino substituent to the benzo [de][1,6]-naphthyridine moiety at C-3. Based on these data, the structure of **3** was assigned as 3-(methylamino)-demethyl(oxy)aaptamine.

We have studied the apoptosis inducing activity of alkaloids 1-7 and isoaaptamine. The substances were found to induce a dose-dependent apoptosis of human leukemia THP-1 cells. Isoaaptamine was shown to be the most active inducer of apoptosis (34% of early and 62% of late apoptosis at 12.5 μ M concentration), whereas alkaloids 2 and 5 were the least active (89% and 80% of total apoptosis at 320 and 400 μ M concentration, respectively). By comparison of the activity of compounds 3 (40% of early and 56% of late apoptosis at 208 μ M concentration) and 5 (38% of early and 42% of late apoptosis at 400 μ M concentration), it was concluded that the apoptosis inducing activity of the substances studied decreased with an increase of the side chain length at position 3.

Experimental

General: NMR, Bruker Avance III-700 spectrometer; IR, Bruker Vector 22 spectrophotometer; UV, UV-1601 spectrophotometer (Shimadzu); HREIMS, AMD-604S (Intectra, Germany) mass spectrometer. Low pressure column liquid chromatography was performed using Polichrom-1 (powder Teflon, Biolar, Latvia) and silica gel KSK (50-100 μm, Sorbpolimer, Russia). HPLC was performed using a Shimadzu LC-10 AD instrument equipped with an UV-Vis detector and a Develosil ODS-UG-5A (250×4.6 mm) column.

Animal material: The Aaptos sp. was collected by scuba during the scientific cruise of R/V "Academic Oparin" in June 2007, in Vang Fong Bay, Vietnam, at a depth of 5-10 m, and identified by Dr Krasokhin V.B. A voucher specimen (PIBOC #O34-064) is kept in the marine invertebrate collection of the Pacific Institute of Bioorganic Chemistry (Vladivostok, Russia).

Extraction and isolation: Animal material (400 g, dry weight) was cut and extracted with EtOH immediately after collection (3 x 3 L). The EtOH extract, after evaporation in vacuo, was redissolved in EtOH-H2O (5:1) and extracted with *n*-hexane. The EtOH-H₂O layer after evaporation was subjected to CC on Polychrom-1 using H₂O with increasing amounts of EtOH as eluents. The fractions eluted with 10% EtOH (5 g) were further chromatographed on a silica gel column using chloroform with increasing amounts of EtOH as eluent to obtain 3 fractions: 1a (50 mg), 1b (250 mg) and 1c (330 mg), containing aaptamine-type alkaloids. Reversed-phase chromatography (Develosil ODS-UG-5, CH₃CN/H₂O, 20%→60%, 25 min, 1 mL/min, 280 nm) of fraction 1a afforded the new compounds 1 (1 mg), 2 (0.5 mg) and 3 (1 mg), together with the known 3-(phenethylamino)demethyl(oxy)aaptamine (6 0.0015% dry weight) and 3-(isopentylamino)demethyl (oxy)aaptamine (5 mg, 0.0012% dry weight). Repeated chromatography of fractions 1b and 1c using silica gel CC (CHCl₃/EtOH, 7:1) resulted in the isolation of 9demethyl(oxy)aaptamine (70 mg, 0.018% dry weight), and aaptamine (80 mg, 0.02% dry weight).

2,3-Dihydro-2,3-dioxoaaptamine (1)

 $0.001~\mathrm{g}$ (0.00025% dry weight), crimson amorphous solid.

IR (CHCl₃): 3375 (br), 1714, 1697, 1602, 1305 cm⁻¹. UV/Vis λ_{max} (EtOH) nm (log ε): 280 (3.7), 376 (3.07), 447 (3.03)

¹H and ¹³C NMR (CD₃OD): Table 1.

HRMS-ESI: m/z [M+H]⁺ calcd for $C_{13}H_{11}N_2O_4$ 259.0726; found: 259.0727.

6-(*N*-Morpholinyl)-4,5-dihydro-5-oxo-demethyl(oxy) aaptamine (2)

0.0005 g (0.00012% dry weight), yellow amorphous solid

IR (CHCl₃): 3400 (br), 1716, 1652, 1602 cm⁻¹.

UV/Vis λ_{max} (EtOH) nm (log ε): 241 (1.55), 286 (1.27), 487 (1.20).

¹H and ¹³C NMR (CD₃OD): Table 1.

HRMS-ESI: m/z [M+H]⁺ calcd for $C_{16}H_{16}N_3O_4$, m/z 314.1135; found: 314.1129.

3-(Methylamino)demethyl(oxy)aaptamine (3)

 $0.001~{\rm g}$ (0.00025% dry weight), orange amorphous solid.

IR (CHCl₃): 3400, 1683, 1274 cm⁻¹.

UV/Vis λ_{max} (EtOH) nm (log ε): 246 (3.84), 280 (3.64), 411 (3.39), 497 (3.63) .

¹H and ¹³C NMR (CD₃OD): Table 2.

HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₃H₁₁N₃O₂Na, m/z 264.0743; found: 264.0768.

Cell culture: Human monocytic leukemia THP-1 cell line was obtained from the American Type Culture Collection (Rockville, MD, USA) and cultured at 37°C and 5% CO₂ in RPMI containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin.

Apoptosis assay: Early and late apoptosis induced by aaptamine and its derivatives in THP-1 cells was analyzed by flow cytometry using the Becton Dickinson FACSCalibur (BD Biosciences, San Jose, CA, USA) and PE Annexin V Apoptosis Detection Kit (BD Biosciences, San Diego, CA, USA) according to the manufacturer's protocol. Briefly, the onset of early and late apoptosis was analyzed using Phycoerythrin (PE), Annexin V and 7-amino-Actinomycin (7-AAD) double staining. THP-1 cells in a 6-well plate, 2×10⁵ cells/well, in 10% RPMI were treated with various concentrations

of the substances for 24 h. After incubation, cells were washed with PBS by centrifugation at 1000 rpm (170 rcf) for 5 min, and processed for detection of apoptosis. A total of 1×10^5 - 2×10^5 cells were resuspended in 500 μ L of $1\times$ binding buffer. Then, 5 μ L of PE Annexin V and 5 μ L of 7-AAD were added, and the cells were incubated at room temperature for 15 min in the dark and analyzed by flow cytometry.

Acknowledgments - Financial support was provided by the Program of Presidium of RAS "Molecular and Cell Biology" Grant 3531.2010.4 for Support of the Leading Russian Science Schools, FEB RAS Grants 09-III-A-05-146 and 10-III-B-05-018. The authors are grateful to Dr Krasokhin V.B., PIBOC, for identification of the sponge and Vietnamese colleagues from the Institute of Oceanography, Nha Trang, Vietnam for their kind help in the collection of the sponge.

- [1] Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG. (2003) Marine natural products as novel antioxidant prototypes. *Journal of Natural Products*, 66, 605-608.
- [2] Souza TML, Abrantes JL, Epifanio RDA, Fontes CFL, Frugulhetti ICPP. (2007) The alkaloid 4-methylaaptamine isolated from the sponge *Aaptos aaptos* impairs herpes simplex virus type 1 penetration and immediate-early protein synthesis. *Planta Medica*, 73, 200-205.
- [3] (a) Nakamura H, Kobayashi J, Ohizumi H, Hirata Y. (1987) Aaptamines. Novel benzo[de][1.6]naphthyridines from the Okinawan marine sponge, *Aaptos aaptos. Journal of the Chemical Society, Perkin Transactions 1, 14,* 173–176; (b) Calcut L, Longeon A, Mourabit A, Guyot M, Bourguet-Kondracki ML. (2003) Novel alkaloids of the aaptamine class from an Indonesian marine sponge of the genus *Xestopongia. Tetrahedron, 59,* 6539-6544; (c) Pettit GR, Hoffmann H, Herald DL, McNulty J, Murphy A, Higgs KC, Hamel E, Lewin NE, Pearce LV, Blumberg PM, Pettit RK, Knight JC. (2004) Antineoplastic agents 491. Synthetic conversion of aaptamine to isoaaptamine, 9-demethylaaptamine, and 4-methylaaptamine. *Journal of Organic Chemistry, 69,* 2251-2256.
- [4] Pettit GR, Hoffmann H, Herald DL, Blumberg PM, Hamel E, Schmidt JM, Chang Y, Pettit RK, Lewin NE, Pearce LV. (2004) Antineoplastic agents. 499. Synthesis of hystatin 2 and related 1H-benzo[de][1,6]-naphthyridinium salts from aaptamine. *Journal of Medicinal Chemistry*, 47, 1775-1782.
- [5] Gul W, Hammond NL, Yousaf M, Bowling JJ, Schinazi RF, Wirtz SS, Andrews GDC, Cuevas C, Hamann MT. (2006) Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity. *Bioorganic & Medicinal Chemistry*, 14, 8495-8505.
- [6] Fedoreev SA, Prokofeva NG, Denisenko VA, Rebachuk NM. (1988) Cytotoxic activities of aaptamines from marine sponges of the family Suberitidae. *Khimiko-Farmatsevticheskii Zhurnal*, 24, 943-947 (in Russian).
- [7] Larghi EL, Bohn ML, Kaufman TS. (2009) Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. *Tetrahedron*, 65, 4257-4282.
- [8] Fedorov SN, Makarieva TN, Guzii AG, Shubina LK, Kwak JY, Stonik VA. (2009) Marine two-headed sphingolipid–like compound rhizochalin inhibits EGF-induced transformation of JB6 P⁺ Cl 41 cells. *Lipids*, 44, 777-785.
- [9] Shubina LK, Fedorov SN, Kalinovsky AI, Dmitrenok AS, Jin JO, Song MG, Kwak JY, Stonik VA. (2007) Four new chamigrane sesquiterpenoids from the opistobranch mollusk *Aplysia dactylomela*. *Russian Chemical Bulletin*, 56, 2109-2114.
- [10] Shubina LK, Kalinovsky AI, Fedorov SN, Radchenko OS, Denisenko VA, Dmitrenok PS, Dyshlovoy SA, Krasokhin VB, Stonik VA. (2009) Aaptamine alkaloids from the Vietnamese sponge *Aaptos* sp. *Natural Product Communications*, *4*, 1085-1088.
- [11] Shaari K, Ling KC, Rashid ZM, Jean TP, Abas F, Raof SM, Zainal Z, Lajis NH, Mohamad H, Ali AM. (2009) Cytotoxic aaptamines from Malaysian *Aaptos aaptos. Marine Drugs*, 7, 1-8.
- [12] Nakamura H, Kobayashi J, Ohizumi H. (1982) Isolation and structure of aaptamine, a novel heteroaromatic substance possessing α-blocking activity from the sea sponge *Aaptos aaptos. Tetrahedron Letters*, 23, 5555–5558.
- [13] Bokesch HR, Pannell LK, McKee TC, Boyd MR. (2000) Coscinamides A, B and C, three new bis indole alkaloids from the marine sponge *Coscinoderma* sp. *Tetrahedron Letters*, 41, 6305-6308.
- [14] Utkina NK, Denisenko VA, Pushilin MA. (2009) Aaptanone, a novel zwitterionic metabolite of the aaptamine class with an oxygenated 1,6-naphthyridine core from the Vietnamese marine sponge *Aaptos aaptos Tetrahedron Letters*, 50, 2580-2582.
- [15] Balczewski P, Kieran M, Mallon J, Street JD, Joule JA. (1990) A synthesis of aaptamine from 6,7-dimethoxy-1-methylisoquinoline. *Journal of the Chemical Society, Perkin Transactions* 1, 11, 3193–3198.
- [16] Wijtmans R, Vink MKS, Schoemaker HE, Delft FL, Blaauw RH, Rutje FPJT. (2004) Biological relevance and synthesis of C-substituted morpholine derivatives. *Synthesis*, 641-662.

2010 Vol. 5 No. 12 1885 - 1888

Isolation and Characterization of Crotosparsamide, a New Cyclic Nonapeptide from *Croton sparsiflorus*

Rashad Mehmood and Abdul Malik*

International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

abdul.malik@iccs.edu

Received: October 8th, 2010; Accepted: October 16th, 2010

Crotosparsamide (1), a new cyclic nonapeptide, has been isolated from the *n*-butanol soluble sub-fraction of *Croton* sparsiflorus along with *p*-hydroxy methylcinnamate and kaempferol, which are reported for the first time from this species. Their structures were determined by chemical and spectral studies including ESIMS, and 1D and 2D NMR spectroscopic data.

Keywords: Croton sparsiflorus, Euphorbiaceae, cyclic peptide, crotosparsamide.

Cyclic peptides have been isolated from marine and micro organisms [1] as well as from higher plants [2] of the families Caryophyllaceae [3,4], Labiatae [5,6], Linaceae [7], Annonaceae [8], Amaranthaceae [9] and Euphorbiaceae [10,11]. Plant cyclopeptides [12,13] are cyclic compounds formed with the peptide bonds of 2-37 protein or non-protein amino acids, mainly L-amino acids. From higher plants, cyclolinopeptide A was the first Caryophyllaceae-type cyclopeptide isolated from the seeds of Linum usitatissimum. The structure was determined in 1959 [7]. The cyclopeptides are divided into two classes, five subclasses and eight types [2] on the basis of their structure and distribution in plants. Highly functionalized natural cyclic peptides are being used as therapeutic agents. Many of these bioactive cyclic peptides contain tryptophan residues such as diazonamides, complestatin and celogentins. These peptides are extensively modified through incorporation of an oxygen functionality into the amino acid residues and/or oxidative cross-linking of the indole group of the tryptophan side chain [14].

The aim of our research was to isolate and identify bioactive and structurally novel compounds from *Croton* species. The genus *Croton* is an important genus of Euphorbiaceae comprising 1300 species growing as trees, shrubs and herbs in tropical and subtropical regions of both hemispheres [15]. *C. sparsiflorus* (syn. *C. bonplandianus*) is a shrub growing in sandy clay soil in Asia and South America [16]. A literature survey revealed that a number of alkaloids have so far been reported from this plant [17,18]. The

Figure 1: Structure of crotosparsamide (1).

chemotaxonomic and ethnopharmacological importance of the genus *Croton* prompted us to carry out further phytochemical studies on *C. sparsiflorus*. As a result, we herein report the isolation and structural elucidation of a new cyclic peptide named, crotosparsamide (1) (Figure 1), along with *p*-hydroxy methylcinnamate (2) and kaempferol (3), reported for the first time from this species.

The 80% ethanolic extract of the whole plant of *C. sparsiflorus* was suspended in water and extracted successively with *n*-hexane, dichloromethane, ethyl acetate, *n*-butanol, and water. Column chromatographic techniques applied to the *n*-butanol soluble fraction led to the isolation of a cyclic nonapeptide, which was named crotosparsamide (1). The ethyl acetate soluble

Table 1: ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD) spectroscopic data of crotosparsamide (1).

Residue	δ_{C}	δ_{H} [multi, (Hz)]	¹ H- ¹ H COSY	¹ H- ¹³ C HMBC	¹ H- ¹ H NOESY
Gly ¹					
C=O	172.2				
C^{α}	44.3	4.02^a (d, 8.5 Hz)	3.58	174.7, 172.2	3.58
		3.58 ^a (d, 8.5 Hz)	4.02	174.7, 172.2	4.02
Leu ²					
C=O	174.8				
C^{α}	53.1	4.64 (d, 8.5 Hz)	1.77, 1.41	174.8, 172.2 41.7	1.71, 1.41
C^{β}	41.7	1.77 (m)	4.64, 1.71,1.41	174.8, 53.1, 25.1, 24.0	1.41, 1.00, 0.98
		1.41 (m)	4.64, 1.71,1.41	174.8, 53.1, 25.1, 23.7	4.64, 1.77, 0.98
C^{γ}	25.1	1.71(h, 6.0 Hz)	1.77, 1.0, 0.98	41.7, 24.0, 23.7	4.64, 1.00, 0.98
C^{γ} C^{δ}	24.0	1.00 (d, 6.0 Hz)	1.71	41.7, 25.1	1.77, 1.71, 0.98
C^{δ}	23.7	0.98 (d, 6.0 Hz)	1.71	41.7, 25.1, 24.0	1.77, 1.41, 1.00
Leu³	20.7	0.50 (a, 0.0 112)	1., 1	11.7, 20.1, 2	1.77, 1.11, 1.00
C=O	174.6				
C^{α}	51.9	4.62 (d, 8.0 Hz)	1.95, 1.37	174.8, 174.6, 40.7, 25.8	1.60, 1.37
C^{β}	40.7	1.95 (m)	4.62, 1.60, 1.37	174.6, 51.9, 25.8	1.37, 0.96
	40.7	1.37(m)	4.62, 1.60, 1.37	174.6, 51.9, 25.8	4.62, 1.95, 0.92
C^{γ}	25.8				
$egin{array}{ccc} C^\delta & & & & \\ C^\delta & & & & \\ & & & & \end{array}$		1.60 (h, 6.0 Hz)	1.95, 0.96, 0.92	40.7, 21.9, 21.6	4.62, 0.96, 0.92
Cδ'	21.6	0.92 (d, 6.0 Hz)	1.60	40.7, 25.8, 21.9	1.60, 0.92
C ^a	21.9	0.96 (d, 6.0 Hz)	1.60	40.7, 25.8	1.95, 1.60, 0.92
Gly ⁴					
C=O	170.9				
C^{α}	43.8	3.90 (d, 8.5 Hz)	3.78	174.6, 170.9	3.78
-		3.78 (d, 8.5 Hz)	3.90	174.6, 170.9	3.90
Val ⁵					
C=O	175.2				
C^{α}	63.8	3.65 (d, 7.5 Hz)	2.06	175.2, 170.9, 30.4, 19.9, 19.3	2.06, 1.06, 0.99
C^{β}	30.4	2.06 (m)	3.65, 1.06, 0.99	175.2, 63.8, 19.9, 19.3	3.65, 1.06, 0.99
\mathbf{C}^{γ}	19.9	1.06 (d, 6.5 Hz)	2.06	63.8, 30.4, 19.3	3.65, 2.06
$C^{\gamma'}$	19.3	0.99 (d, 6.5 Hz)	2.06	63.8, 30.4, 19.9	3.65, 2.06
Asn ⁶		(4, 010)	_,,,	,,,	,
C=O	173.7				
C^{α}	52.6	4.52 (t, 7.5 Hz)	3.00, 2.87	175.2, 174.4, 173.7, 36.6	3.00, 2.87
C^{β}	36.6	3.00 (dd, 7.5, 8.5 Hz)	4.52, 2.87	175.4, 52.6	7.51, 4.52, 2.87
C	30.0	2.87 (dd, 7.5, 8.5 Hz)	4.52, 3.00	175.4, 52.6	7.05, 4.52, 3.00
γC=O	175.4	2.67 (dd, 7.5, 6.5 Hz)	4.32, 3.00	173.4, 32.0	7.03, 4.32, 3.00
NH ₂	173.4	7.51	7.05, 3.00, 2.87	175.4, 36.6	7.05, 3.00
NH2			, ,	*	
G1 7		7.05	7.51, 3.00, 2.87	175.4, 36.6	7.51, 2.87
Gly ⁷	151.6				
C=O	171.6				
C^{α}	44.1	4.03^a (d, 8.5 Hz)	3.59	173.7, 171.6	3.59
		4.59^a (d, 8.5 Hz)	4.03	173.7, 171.6	4.03
Ala ⁸					
C=O	173.4				
C^{α}	50.8	3.96(q, 7.5Hz)	1.31	173.4, 171.6, 16.6	1.31
C^{β}	16.6	1.31 (d, 7.5 Hz)	3.96	173.4, 50.8	3.96
Phe ⁹					
C=O	174.7				
C^{α}	58.4	4.29 (t, 8.0 Hz)	3.18	174.7, 173.3, 37.4, 138.1	3.18
C^{β}	37.4	3.18 (d, 8.0 Hz)	4.29	174.7, 138.1, 130.4, 58.4	4.29
Ph: C-1	138.1	(4, 0.0 112)	,	, 150.1, 150.1, 50.1	/
C-2,C-6	130.4	7.30 (d, 6.0 Hz)	7.26	138.1, 129.6, 128.0, 37.4	7.26
C-2,C-0 C-3,C-5	129.6	7.26 (m)	7.30, 7.22	130.4,128.0, 138.1	7.30, 7.22
C-3,C-5 C-4					
U-4	128.0	7.22 (m)	7.26	130.4, 129.6	7.26

^a Signals partially obscured.

fraction provided p-hydroxy methylcinnamate (2), and kaempferol (3).

Crotosparsamide (1) was obtained as white crystals (MeOH), mp 309°C, $\left[\alpha\right]^{25}_{D}$ -48 (c 0.02, MeOH). The UV spectrum (MeOH) showed bands at 204 and 193 nm, while the IR spectrum showed absorptions at 3306 (HN), 1665 (amide), and 1606-1400 cm⁻¹ (aromatic moiety). The HR-ESI-MS showed the $\left[M+H\right]^{+}$ peak at m/z 829.4521 consistent with the formula $C_{39}H_{61}O_{10}N_{10}$. The ^{1}H NMR spectrum showed two N-H signals at 8 7.51 and 7.05, which were coupled with each other

and each gave HMBC correlations to a methylene carbon signal at δ 36.6. This indicated the presence of an $-NH_2$ group. The ^{13}C NMR spectrum showed 10 carbonyl signals (δ 170.9-175.4) and 9 carbon resonances in the region of δ 43.8–63.8. The DEPT ^{13}C NMR spectrum revealed that six of them represent methine and three methylene carbons. All these data suggested that 1 was a peptide consisting of nine amino acids, out of which three are glycine and another asparagine. The 1H and ^{13}C NMR spectra of 1 also showed signals indicating the presence of a monosubstituted benzene ring, suggesting the presence of a

phenylalanine moiety. The ¹H-¹H COSY spectrum along with HMQC and HMBC spectra allowed the determination of the amino acids leucine, valine and alanine besides glycine, asparagine and phenylalanine. Since the molecular formula showed 15 double bond equivalents, it was evident that compound 1 is a cyclic nonapeptide. The sequence of amino acids was determined by the extensive use of a combination of $^{1}\text{H-}^{1}\text{H}$ COSY, NOESY and HMBC. In the HMBC correlations, all the α -carbons showed $^{1,3}J$ correlations with the carbonyls of the adjacent amino acid, as shown in Table 1. The sequence of amino acids in 1 was further confirmed by the evidence of peptide fragments in the ESI-MS-MS at m/z 275 (Phe-Ala-Gly), m/z 489 (Phe-Ala-Gly-Asn-Val), m/z 545 (Phe-Ala-Gly-Asn-Val-Gly), m/z 659 (Phe-Ala-Gly-Asn-Val-Gly-Leu), and m/z 771 (Phe-Ala-Gly-Asn-Val-Gly-Leu-Leu). On the basis of the above evidence the amino acid sequence in 1 was determined as cyclo (-Gly¹-Leu²-Leu³-Gly⁴-Val⁵-Asn⁶-Gly⁷-Ala⁸-Phe⁹-) (Figure 1). The absolute configurations of the amino acids of 1 were shown to be all L, by comparison of the chromatograms from GC analysis of suitably derivatized L- and D-amino acid standards with those obtained from the acid hydrolyzate of the peptide [19]. This finding is consistent with the observation that all cyclic peptides isolated to date from the Euphorbiaceae family consist exclusively of L-amino acids [10,11].

The known compounds *p*-hydroxy methylcinnamate (2) and kaempferol (3) were also isolated from the ethyl acetate soluble fraction and identified by comparison of physical and NMR data with those in the literature [20,21].

Experimental

General experiment procedures: Column chromatography was carried out using silica gel (230-400 mesh, E. Merck, Darmstadt, Germany), Diaion HP-20 ion exchange resin (Nippon Rensui Co., Mitsubishi Chemical Corporation, Tokyo, Japan) and Sephadex LH-20 (25-100 µ, Amersham Biosciences Limited, Stockholm, Sweden). TLC was performed using precoated silica gel F₂₅₄ plates and detection was achieved at 254 and 366 nm, and by spraying with ceric sulfate in 10% H₂SO₄ and ninhydrin [2]. The UV spectra were recorded on a Hitachi UV-3200 spectrophotometer, while the IR spectra were recorded as KBr pellets on a Jasco 302-A spectrometer. Optical rotation was recorded on a Jasco P-2000 polarimeter. Mass spectra were measured in electron spray ionization mode (LRESIMS, HRESIMS and ESI-MS-MS) on QSTAR XL spectrometers and ions are given in m/z (%). Melting points were determined on a Gallenkemp apparatus and are uncorrected. The ¹H, ¹³C and 2D (¹H-¹H COSY, HMQC, HMBC, NOESY) NMR spectra were recorded on a Bruker AMX-400 spectrometer in CD₃OD using standard pulse sequence. Chemical shifts are reported in ppm (δ), relative to tetramethylsilane used as an internal standard, and scalar coupling are reported in Hz. GC analyses were carried out using a Shimadzu GC-17A Gas Chromatograph.

Plant material: The whole plant of *Croton sparsiflorus* Morong (18 kg) was collected in 2005 from Karachi district, province of Sindh, and identified by Prof. Dr Surraiya Kahtoon, Plant Taxonomist, Department of Botany, University of Karachi, where a voucher specimen (No. 4309 KUH) has been deposited in the herbarium.

Extraction and isolation: The freshly collected whole plant material of C. sparsiflorus (18 Kg) was shade dried, cut into small pieces, and extracted with 80% ethanol (3 x 20 L, 10 days each) at room temperature. The combined ethanolic extract was evaporated under reduced pressure at rt. to yield a residue (300 g), which was suspended in water and successively extracted with *n*-hexane (50 g), CH₂Cl₂ (10 g), EtOAc (6 g), *n*-BuOH (14 g) and water (220 g). The *n*-butanol soluble fraction was subjected to CC over diaion HP-20, eluting with water, water-methanol and methanol in decreasing order of polarity. The fraction obtained with water-methanol (1:1) was re-chromatographed over Sephadex LH-20 and eluted with mixture of CHCl₃-MeOH in increasing order of polarity. The fractions eluted with 15% CHCl₃/ MeOH provided a semi-pure compound, which was rechromatographed over silica gel and eluted with CH₂Cl₂: MeOH (9.0:1.0) to afford crotosparsamide (1) (12 mg).

The ethyl acetate soluble fraction was subjected to CC over silica gel and divided into 8 sub-fractions by eluting with *n*-hexane, *n*-hexane-CH₂Cl₂, and CH₂Cl₂-MeOH in increasing order of polarity. The fractions eluted with *n*-hexane: CH₂Cl₂ (2.0:8.0) were re-chromatographed over silica gel and eluted with the same solvent system to afford compound **2** (10 mg). The fractions eluted with CH₂Cl₂ were triturated with dry acetone, and the residue was re-chromatographed over silica gel, eluting with CH₂Cl₂: MeOH (9.9:0.1) to afford compound **3** (20 mg) as a yellow amorphous powder.

Crotosparsamide (1)

White crystals (MeOH). MP: 309°C. [α]²⁵_D: -48 (c 0.02, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 204 (1.9), 193 (6.0).

IR (KBr) v_{max} cm⁻¹: 3306, 1665, 1606, 1540, 1248. ¹H and ¹³C NMR: Table 1.

LRESIMS *m/z*: 829 [M+H]⁺.

HRESIMS m/z: 829.4521 (calcd for $C_{39}H_{61}O_{10}N_{10}$, 829.4500).

Acid hydrolysis of 1: A solution (1 mg) of 1 was heated with 6 N HCl (2 mL) at 110°C for 10 h. The solution was concentrated to dryness and the residue esterified with 4 N HCl and methanol by heating at 100°C for 20 min. After cooling, the residue was dissolved in 200 μL of trifluoroacetic anhydride/ethyl trifluoroacetate (1:1) and heated for 15 min at 115°C. The obtained solution was concentrated to dryness, the residue dissolved in toluene and subjected to gas chromatography (Chirasil-

L-Val capillary column) with H_2 as carrier gas at a flow rate maintained at 1.5 mL/min and an oven temperature increasing from 60° C to 180° C at a rate of 4° C/min. The retention times were noted of the peaks corresponding to the eluted amino acid derivatives. Similarly, derivatized D- and L-amino acid standards were subjected to GC analysis under identical conditions and the retention times obtained for the derivatives were as follows: D- and L-alanine: 4.65 and 5.40 min; D- and L-valine: 8.34 and 9.24 min; D- and L-leucine: 11.11 and 12.58 min; D- and L-asparagine: 14.51 and 14.71 min; and D- and L-phenylalanine: 21.15 and 21.75 min. Comparison of data indicated that all the amino acids of the peptide have the L-configuration.

- [1] Fusetani N, Matsunaga S. (1993) Bioactive sponge peptides. *Chemical Reviews*, 93, 1793-1806.
- [2] Tan N-H, Zhou J. (2006) Plant cyclopeptides. Chemical Reviews, 106, 840-890.
- [3] Morita H, Yun YS, Takeya K, Itokawa H, Yamada K. (1995) Cyclic peptides from higher plants. 18. Segetalins B, C and D, three new cyclic peptides from *Vaccaria segetalis*. *Tetrahedron*, 15, 6003-6014.
- [4] Morita H, Kayashita T, Uchida A, Takeya K. (1997) Cyclic peptides from higher plants. 33. Delavayins A-C, three new cyclic peptides from *Stellaria delavayi*. *Journal of Natural Products*, 60, 212-215.
- [5] Morita H, Gonda A, Takeya K, Itokawa H. (1996) Cyclic peptides from higher plants. 29. Cycloleonuripeptides from *Leonurus heterophyllus*. *Bioorganic and Medicinal Chemistry Letters*, 26, 767-770.
- [6] Morita H, Gonda A, Takeya K, Itokawa H, Hirano T, Oka K, Shirota O. (1997) Cyclic peptides from higher plants. 41. Solution state conformation of an immunosuppressive cyclic dodecapeptide, cycloleonurinin. *Tetrahedron*, 53, 7469-7478.
- [7] Morita H, Shishido A, Matsumoto T, Itokawa H, Takeya K. (1999) Cyclic peptides from higher plants. 45. Cyclolinopeptides B E, new cyclic peptides from *Linum usitatissimum*. *Tetrahedron*, 55, 967-976.
- [8] Wélé A, Zhang Y, Ndoye I, Brouard J-P, Pousset J-L, Bodo B. (2004) A cytotoxic cyclic heptapeptide from the seeds of *Annona cherimola*. *Journal of Natural Products*, 67, 1577-1579.
- [9] Morita H, Suzuki J. (2004) Celogenamide A, a new cyclic peptide from the seeds of *Celosia argentea*. *Journal of Natural Products*, 67, 1628-1630.
- [10] Baraguey C, Blond A, Correia I, Pousset JL, Bodo B, Auvin-Guette C. (2000) Mahafacyclin A, a cyclic heptapeptide from *Jatropha mahafalensis* exhibiting β-bulge conformation. *Tetrahedron Letters*, 41, 325-329.
- [11] Quintyne-Walcott S, Maxwell AR, Reynolds WF. (2007) Crotogossamide, a cyclic nonapeptide from the latex of *Croton gossypifolius*. *Journal of Natural Products*, 70, 1374-1376.
- [12] Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H. (1997) Macrocyclic peptide alkaloids from plants. In: *The Alkaloids*. Cordell GA (Ed.), Academic Press, New York, 49, 301-387.
- [13] Craik DJ, Simonsen S, Daly NL. (2002) The cyclotides: novel macrocyclic peptides as scaffolds in drug design. *Current Opinion in Drug Discovery and Development*, 5, 251-260.
- [14] Yeun AKL, Hutton CA. (2006) Preparation of cyclic peptide alkaloids containing functionalized tryptophan residues. *Natural Product Communications*, 1, 907-918.
- [15] Salatino A, Maria L, Salatino F, Negri G. (2007) Traditional uses, chemistry and pharmacology of *Croton* species (Euphorbiaceae). *Journal of Brazilian Chemical Society*, 18, 11-33.
- [16] Nasir E, Ali SI. (1986) Euphorbiaceae. Flora of Pakistan. Shamim Printing Press, Karachi, No. 172, 43-44.
- [17] Bhakuni DS, Satish S, Dhar MM. (1970) The alkaloids of Croton sparsiflorus. Phytochemistry, 9, 2573-2580.
- [18] Chatterjee A, Majumder PL, Mukherjee R, Saha SK, Talapatra SK. (1965) Structure of sparsiflorine, an alkaloid of *Croton sparsiflorus*. *Tetrahedron Letters*, 1539-1544.
- [19] Frank H, Nicholson GJ, Bayer E. (1978) Enantiomer labeling, a method for the quantitative analysis of amino acids. *Journal of Chromatography*, 167, 187-196.
- [20] Silva AMS, Alkorta I, Algureo J, Silva VLM. (2001) A ¹³C study of the structure of four cinnamic acids and their methyl esters. *Journal of Molecular Structure*, *595*, 1-6.
- [21] Hadizadeh F, Khalili N, Hosseinzadeh H, Khair-Aldine R. (2003) Kaempferol from saffron petals. *Iranian Journal of Pharmaceutical Research*, 251-252.

2010 Vol. 5 No. 12 1889 - 1891

Two New Lavandulyl Flavonoids from Sophora flavescens

Dan Liu¹, Xiulan Xin^{2,*}, Dong-hai Su², Junying Liu², Qing Wei², Bo Li² and Jian Cui^{3,*}

¹School of Science, Dalian Nationalities University, Dalian 116600, China

liudan@dlnu.edu.cn; cuijian 9393@ yahoo.com.cn

Received: May 12th 2010; Accepted: October 14th, 2010

Two novel lavandulyl flavonoids, (2S)-7-methoxyl-4",5"-dihydroxynorkurarinone (1) and (2S)-6"-hydroxynorkurarinone-7-O-D-galactoside (2), were isolated from the rhizome of *Sophora flavescens*. Their structures were elucidated by spectral methods, including 2D NMR spectroscopy. Both compounds showed cytotoxic activity against Hela cells, with 2 being more active than 1.

Keywords: *Sophora flavescens* Ait, lavandulyl flavanone, (2*S*)-7-methoxyl-4["],5["]-dihydroxy norkurarinone, (2*S*)-6["]-hydroxy-norkurarinone-7-*O*-β-D-galactoside, cytotoxicity.

The root of Sophora flavescens Ait (family Papilionaceae) is a well-known Chinese herbal medicine (Chinese name "Ku-Shen") used to treat gastric disturbance and eczema, and as an antifebrile and anthelmintic [1]. The major constituents are quinolizidine alkaloids and flavonoids Pharmacological research was focused on lavandulvl flavonoids, which have significant cytotoxicity [8] and are glycosidase inhibitors [9]. This paper reports the isolation and characterization of two minor lavandulyl flavanones from the MeOH extract of S. flavescens.

Compound 1 was obtained as yellow powder. Its HR-ESIMS provided a molecular ion [M-H] at m/z 471.1957 (calcd. 471.2019), suggesting a molecular formula of C₂₆H₃₂O₈. In the ¹H NMR spectrum, four aromatic protons, and three methyl and one methoxy groups were observed. The aromatic protons at δ 6.46 (d, J = 2.5 Hz), 6.43 (dd, J = 2.5, 9.0 Hz) and 7.38 (d, 3.45)J = 9.0Hz) formed an ABX spin system. In addition, 5-OH was observed at δ 12.17, due to the hydrogenbonding effect. The ¹³C NMR spectrum of 1 indicated five oxygenated aromatic carbons at δ 162.4, 162.7, 161.9, 156.9 and 156.2, and a carbonyl carbon at δ 198.0. The splitting patterns of the B ring in the ¹H NMR spectrum and the chemical shifts in the ¹³C NMR spectrum indicated that two oxygen-bearing groups were located on the B-ring of 1. In the HMBC

Figure 1: The structures of compounds 1 and 2.

spectrum, H-5 $^{'}$ (δ 6.43) correlated with C-1 $^{'}$ (δ 117.6), C-6 (δ 128.3) and C-4 (δ 156.2), while the carbon at δ 156.9 (C-2) correlated with the aromatic protons at δ 6.46 (d, J = 2.5 Hz) and δ 7.38 (d, J = 9.0 Hz), suggesting oxygen groups at C-2 and C-4. The methoxy group was located at C-7, due to the HMBC correlation of its protons (δ 3.10) with C-7. The H-1 protons at δ 2.59 and δ 2.67 showed long range correlations with the carbon signals at δ 107.4 (C-8) and δ161.9 (C-9). Furthermore, the aromatic proton at δ 6.00 correlated with C-7 (δ 162.7) and C-5 (δ 162.4), suggesting that a lavandulyl skeleton is located at C-8 of the A ring. In addition, the HMBC correlations of the carbon at δ 74.5 with the six protons at δ 1.03 (Me-6 and 7) and δ 3.22 (H-4), and HMBC correlations of C-4" (δ 77.4) with H-6"/H-7", H-3" and H-2, implied that hydroxyl groups were present at C-4 and C-5" of the lavandulyl group. The circular dichroism (CD) spectrum of 1 showed a negative absorption at

²Beijing Vocational College of Electronic Science and Technology, Beijing 100029, China

³Center University for Nationalities, Chinese Minority Traditional Medical Center, Beijing 10081, China

Table 1: 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectroscopic data of 1 and 2 (DMSO- d_6).

No.	Compound 1		Compound 2				
_	Н	С	Н	С			
2	5.64 (dd, J = 3.0, 13.0 Hz)	75.1	5.85 (dd, J = 3.0, 13.0 Hz)	75.0			
3	2.76 (m) 3.04 (m)	42.4	2.82 (m) 2.92 (m)	43.2			
4		198.0		197.7			
5	12.17 (s)	162.4	12.2 (s)	162.7			
6	6.00 (s)	95.9	6.00 (s)	96.0			
7		162.7		165.3			
8		107.4		107.5			
9		161.9		161.9			
10		102.9		102.9			
1'		119.6		120.8			
2'		156.9		159.0			
3'	6.46 (d, J = 2.5 Hz)	103.3	6.77 (d, J = 2.5 Hz)	104.3			
4'		156.2		155.9			
5'	6.43 (dd, J = 2.5, 9.0 Hz)	109.6	6.64 (dd, J = 2.5, 8.5 Hz)	110.1			
6'	7.38 (d, J = 9.0 Hz)	128.3	7.49 (d, J = 8.5 Hz)	127.7			
1"	2.67 m 2.59 m	28.3	2.62 m 2.51 m	27.6			
2"	2.89 m	44.1	2.49 m	47.4			
3"	1.36 m 1.55 m	34.0	2.13 m 1.96 m	31.1			
4"	3.22 m	77.4	5.24 (brt, J = 6.0, 6.5 Hz)	124.2			
5"		74.5		136.2			
6"	1.03 (s)	20.1	3.79 (brs)	68.2			
7"	1.03 (s)	20.0	1.45 (s)	13.6			
8"		148.6		148.7			
9"	4.67 brs 4.65 brs	111.6	4.60 brs	111.1			
10"	1.65 s	18.6	1.66 s	19.1			
7-ОМе	3.10 s	48.8					
Glu-1			4.82 (d, J = 7.0 Hz)	102.8			
2			3.45 (m)	74.3			
3			3.50 (m)	77.5			
4			3.41 (m)	71.0			
5				77.4			
6			3.89 (m) 3.71 (m)	62.4			

286 nm and a positive absorption at 310 nm, due to the $n\rightarrow\pi^*$ transition of flavanone, indicating that the absolute configuration of C-2 was *S*. Based on the above analysis, **1** was characterized as (2*S*)-7-methoxy-4",5"-dihydroxynorkurarinone.

Compound **2** was obtained as yellow powder. The molecular formula of **2** was determined to be $C_{31}H_{38}O_{12}$ from the high-resolution ESI-MS *pseudo*-molecular ion [M-H]⁻ at m/z 601.2189 (calcd. 601.2285). This evidence suggested that a sugar residue may be linked

to a flavonoid moiety. Similar to compound 1, the ¹H NMR spectrum showed aromatic proton signals at δ 6.77 (d, J = 2.5 Hz), 6.64 (dd, J = 2.5, 8.5Hz) and 7.49 (d, J = 8.5 Hz) forming an ABX spin system, suggesting that two oxygen atoms were attached to C-2 and C-4 of **2**. The hydrogen-bonded 5-OH of **2** was observed at δ 12.2. In the HMBC spectrum, the proton at δ 2.62 (H-1) correlated with the carbon signals of C-2 (δ 47.4), C-8 (δ 107.5) and C-9 (δ 161.9), indicating that a group with a lavandulyl skeleton is located at C-8 of the A ring. The HMBC correlation of the proton at δ 3.79 with the carbon signals at δ 136.2 (C-5) and δ 13.6 (C-7) suggested that a hydroxyl group is present at C-6 of the lavandulyl skeleton. The carbon signals at δ 102.8, 74.3, 77.5, 71.0, 77.4 and 62.4 indicated the presence of a hexose [6,7]. By acid hydrolysis and thin-layer chromatography using reference samples, the sugar was identified as D-galactose. In the HMBC spectrum, the proton at δ 4.82 correlated with the carbon signal at δ 165.3 (C-7), showing that the β-D-galactopyranose moiety was at C-7. In the CD spectrum, a positive absorption at 310 nm, and a negative absorption at 291 nm were observed, indicating that the absolute configuration of C-2 was also S. Based on the above data, compound 2 was characterized as (2S)-6hydroxynorkurarinone-7-*O*-β-D-galactopyranoside.

Compounds 1 and 2 showed cytotoxic activity against Hela cell with IC_{50} values of 51.2 and 9.5 μ mol/L, respectively, which implied that the introduction of a sugar into the skeleton of a lavandulyl flavonoid increases the cytotoxicity.

Experimental

General experimental procedure: IR spectra were recorded in KBr pellets on a NEXUS-470 FTIR (Nicolet) spectrophotometer. ¹H NMR and ¹³C NMR spectra were measured with an INOVA-500 spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) in DMSO-*d*₆ with TMS as internal standard. Optical rotations were obtained with a Perkin-Elmer 243B polarimeter. TLC analyses were performed on silica gel G. All chemicals were purchased from Beijing Chemical Factory. Silica gels were produced by Qingdao Haiyang Chemical Group Co., China.

Extraction and isolation: The dried roots of S. flavescens Ait were collected from Hebei Province, China. A voucher specimen was identified by Prof. X.L. Xin, and deposited at the School of Science, Dalian Nationalities University, China. The dried roots (5 Kg) were extracted by refluxing with MeOH 3 times. After removal of MeOH, water (1 L) was added to the residue and partitioned with equal volumes of light petroleum, EtOAc and n-BuOH, successively, three times with

each solvent. The EtOAc layer (90 g) was concentrated in vacuo and the residue subjected to silica gel CC. eluting with CHCl₃/CH₃OH (100:1-1:1) in a gradient manner. Eight fractions were obtained; fraction V (5.2 g) was purified over Sephadex LH-20 and by preparative HPLC (Ultimate 3000 HPLC system, YMC-ODS column (5um, Ø10×250mm)) with CH₃OH- H_2O , 45:55 (v/v) to afford compounds 1 (6 mg) and 2 (5 mg), respectively.

Acid hydrolysis: Acid hydrolysis of compound 2 was carried out by refluxing 2 mg in 5 mL of 6% aqueous HCl for 3 h. The reaction mixture was extracted with 30 mL EtOAc to obtain the aglycone, which was separated by TLC using EtOAc-H₂O-MeOH-HOAc (13: 3: 3: 4): sugars were detected using thymol in H₂SO₄ (0.5 g thymol in 95 mL EtOH and 5 mL H₂SO₄), followed by heating at 120°C for 10 min.

(2S)-7-Methoxyl-4", 5"-dihydroxy norkurarinone (1) Yellow powder (MeOH).

 $[\alpha]_{\rm D}^{22}$: -16 (c 0.3, MeOH).

CD (MeOH): $[\theta]_{310} + 8051$, $[\theta]_{286} - 18056$.

IR (KBr) v_{max} (cm⁻¹): 3300, 2950, 1750, 1625, 1170.

¹H NMR and ¹³C NMR: Table 1.

HR-ESIMS: m/z = 471.1957 [M-H]⁻ (calcd. 471.2019).

(2S)-6"-Hydroxynorkurarinone-7-O-β-D-galactoside **(2)**

Yellow powder (MeOH).

 $[\alpha]_{D}^{22}$: -58 (*c* 0.2, MeOH).

CD (MeOH): $[\theta]_{310}$ +5606, $[\theta]_{291}$ -13218. IR (KBr) v_{max} (cm⁻¹): 3375, 2930, 1700, 1653, 1170.

¹H NMR and ¹³C NMR: Table 1.

HR-ESIMS: m/z = 601.2189 [M-H] (calcd. 601.2285).

Bioassay: Hela cells were maintained in RPMI-1640 medium with 10% (v/v) fetal bovine serum and cultured in 96 well microtiter plates. Appropriate dilutions of 1 and 2 were added and the cells cultured at 37°C in 5% CO₂ for 72 h. The MTT method was used to evaluate the survival rates of the cancer cells [12]. The concentration of test compound that gave 50% inhibition of cell growth was expressed as the IC₅₀ value. Results were expressed as the mean value of triplicate determinations.

Acknowledgments - We thank Chang-jiang Scholars and Innovative Research Team in University (No. IRT0871) and PHR for financial support.

- Ma XC, Xin XL, Liu KX, Han J, Wang BR, Guo DA. (2008) Simultaneous determination of nine major flavonoids in Sophora [1] flavescens by RP-LC. Chromatographia, 68, 471-474.
- Woo ER, Kwak JH, Kim HJ. (1998) A new prenylated flavonol from the roots of Sophora flavescens. Journal of Natural Products, [2] 61, 1552-1554.
- Ma XC, Xin XL, Zhang BJ, Li FY, Liu KX, Guo DA. (2008) Structural determination of flavonoides from Sophora flavescens. [3] Magneic Resonance in Chemistry, 46, 903-907.
- Kuroyanagi M, Arakawa T, Hirayama Y. (1999) Antibacterial and antiandrogen flavonoids from Sophora flavescens. Journal of [4] Natural Products, 62, 1595-1599.
- Ding PL, Chen DF, Bastow KF. (2004) Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helvetica [5] Chimica Acta, 87, 2574-2580.
- [6] Ko WG, Kang TH, Kim NY. (2000) Lavandulyl flavonoids; a new class of in vitro apoptogenic agents from Sophora flavescens. *Toxicology in vitro*, *14*, 429-433.
- De Naeyer A, Vanden Berghe W, Pocock V. (2004) Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl [7] flavanone from the roots of Sophora flavescens. Journal of Natural Products, 67, 1829-1832.
- [8] Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, Miyamoto T, Higuchi R, Kim YC, (2000) Cytotoxic lavandulyl flavanones from Sophora flavescens. Journal of Natural Products, 63, 680-681.
- Hyun SK, Lee WH, Jeong M, Kim Y, Choi JS. (2008) Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora [9] flavescens on tyrosinase and melanin synthesis. Biological & Pharmaceutical Bulletin, 31, 154-158.
- Braca A, Bader A, Siciliano T, Tommasi ND. (2008) Secondary metabolites from Paromnychia argentea. Magnetic Resonance in [10] Chemistry, 46, 88-93.
- Teng RW, Xie HY, Li HZ, Liu XK, Wang DZ, Yang CR. (2002) Two new acetylated flavonoid glycosides from Morina nepalensis [11] var. alba Hand.-Mazz. Magneic Resonance in Chemistry, 40, 415-420.
- Ma XC, Cui J, Zheng J, Guo DA. (2007) Microbial transformation of three bufadienolides by Penicillum aurentigriseum and its [12] application for metabolite identification in rats. Journal of Molecular Catalysis B: Enzymatic, 48, 42-50.

2010 Vol. 5 No. 12 1893 - 1898

Biotransformation of Naringenin to Eriodictyol by Saccharomyces cerevisiea Functionally Expressing Flavonoid 3' Hydroxylase

Ilef Limem-Ben Amor^{a,b}, Alain Hehn^d, Emmanuel Guedon^c, Kamel Ghedira^b, Jean-Marc Engasser^a, Leila Chekir-Ghedrira^{b*} and Mohamed Ghoul^a

^aLaboratoire d'ingénierie des biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172, F-54505, Vandoeuvre-lès-Nancy, France

^bLaboratoire de Biologie cellulaire et moléculaire, Faculté de Médecine Dentaire, Avenue Avicenne, 5019 Monastir, Tunisia

^cLaboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172, F-54505 Vandoeuvre-lès-Nancy, France

^dLaboratoire Agronomie et Environnement, Nancy-Université, INRA, 2 avenue de la Forêt de Haye, B.P. 172, F-54505 Vandoeuvre-lès-Nancy, France

leila.chekir@laposte.net

Received: March 29th, 2010; Accepted: October 4th, 2010

To increase the biological activities of flavonoids and to enhance their stability and solubility by functionalization reactions (polymerization, esterification, alkylation, glycosylation and acylation), an increase in the number of hydroxyl groups in these molecules is needed. Hydroxylation reactions may be achieved using either chemical or enzymatic methods, the latter being more highly specific than the former. In our study, the flavonoid 3' hydroxylase (F3'H) from *Gerbera hybrid*, functionally expressed in *Saccharomyces cerevisiae*, was used to hydroxylate naringenin (the first flavonoid core synthesized in plants). Furthermore, we studied factors that may affect naringenin hydroxylation by recombinant cell-like yeast growth on selective or rich media and plasmid stability.

The whole recombinant cells hydroxylated naringenin at position 3' to give eriodictyol. In a selective media, the yeast failed to grow to high cell densities (maximum 5 g/L), but the plasmid stability was nearly 90 %, and naringenin hydroxylation reached 100 %. In a rich complex media, the biomass reached 10 g/L, but the yield of naringenin hydroxylation reached only 71 %, and the plasmid stability decreased. When yeast functionally expressing F3'H from *Gerbera hybrid* was used, in a selective media, 200 mg/L of eriodictyol from naringenin was produced.

Keywords: flavonoid, F3'H from *Gerbera hybrid*, hydroxylation, plasmid stability.

Flavonoids are secondary metabolites found in plants [1], in which their roles are as diverse as their structures, contributing to plant protection from environmental aggression [2,3]. In addition, flavonoids have potential benefits to human health [4], but the major hurdles of their formulation are their low solubility and stability. In order to take advantage of their beneficial properties, functionalization reactions (polymerisation, esterification, alkylation, glycosylation and acylation) have been suggested by several authors as a promising route. However, these reactions need free hydroxyl groups in aglycons or in glycosides to react with functional groups. Through hydroxylation, the basic flavonoid backbone can serve as useful starting materials for the development of new drugs.

However, the ability to generate either regioselective or stereoselective compounds through chemical hydroxylation presents a major obstacle for the development of new pharmaceuticals. Fortunately, biological hydroxylation using either enzymes or transgenic microbes has the ability to overcome this problem. Enzymatic hydroxylation reactions have been achieved, in particular with either flavonoid hydroxylase (FH) directly extracted from plants or from recombinant Escherichia coli or Saccharomyces cerevisiae functionally (Table 1) expressing FHs [5,6,12]. In the present study, the 3' hydroxylation of naringenin was evaluated using the microsomal fraction and whole recombinant yeast expressing the F3'H from Gerbera hybrid. Also we investigate the effect of media

Table 1: Origin of flavonoid hydroxylation enzyme functionally expressed in recombinant cells.

Flavanone 3 hydroxylase	Flavonoid 3'hydroxylase	Flavonoid 3'5' hydroxylase
Malus domestica cv. M9 [6]	Brassica napus [12]	
Ammi majus, Anethum graveolens,	Callistephus chinensis line '01', Osteospermum	Callistephus chinensis line '01', Osteospermum hybrid cv.
Pimpinella anisum [7]	hybrid line '082', Gerbera hybrid line 'D1',	'Bamba', Pericallis cruenta cv. 'Blue Bicolor' [5]
Petunia hybrida [8-10]	Hieracium pilosella [5], Sorghum [13]	Verbena temari, Butterfly pea [18]
Petroselinum crispum cv. Italian Giant	Torenia hybrida [14], Gentian [15]	Catharanthus roseus, Petunia hybrida [19]
plants [11]	Arabidopsis thaliana [16], Petunia hybrida [17]	

Table 2: Effect of microsome extraction pressure on naringenin bioconversion yield and protein quantity.

	Manual extraction	French press extraction					
	Manual extraction	500 bars	750 bars	1000 bars	1500 bars	2000 bars	
Protein (g/L)	0.25	0.34	0.78	0.89	1.05	1.25	
Naringenin bioconversion yield (%)*	100	66	90	97	83	85	

^{*:} Relative to the activity of microsomes extracted manually (100%). The quantity of proteins used for the reaction of naringenin hydroxylation was standardized to 0.25 g/L

culture on naringenin bioconversion, yeast growth and plasmid stability.

Indeed, the functional expression of Gerbera hybrid F3'H has been previously studied by Seitz et al. [5]; the ORF of isolated cDNA is constituted by 1539 base pairs: the encoded protein has a specific activity of 5.63 pkat/mg. The recombinant activity has been explored using the microsomal fraction to convert naringenin to eriodictyol [5]. Generally, the preparation of the microsomal fraction is done manually. In order to facilitate the microsome extraction procedure, we have used a modified extraction method based on the use of a constant disruption system. As can be seen in Table 2, the increase of extraction pressure was accompanied with an increase of protein yield and a decrease in naringenin bioconversion yield. A pressure of 750 and 1000 bars gave nearly the same bioconversion yield as that obtained with manual extraction, but the protein content of the microsomal fraction was more important. Whereas 500, 1500 and 2000 bars gave no amelioration of naringenin bioconversion, this may be attributed to insufficient extraction pressure (500 bars) or to the deleterious effect of pressure on enzyme structure and activity (1500 and 2000 bars). Manual extraction gave the best ratio for bioconversion/ protein quantity, but the use of a constant disruption system is easier and a comfortable tool, since it permits characterization of the naringenin bioconversion reaction and enzyme constants.

Whole cells and purified enzymes are both used as biocatalysts, but the former presents the advantages of simplicity, convenient manipulation and low costs, while enzyme purification is tedious and expensive. Moreover, the purification of enzymes could lead to significant loss of activity and cofactors such as NADPH, usually required for enzymes like F3'H [5,12-17]. Consequently, in order to probe the whole cell activity, 1 g/L of recombinant yeast was incubated with naringenin as substrate. In the course of the incubation,

Figure 1 (A): Eriodictyol production by recombinant *S. cerevisiea* expressing the F3'H of *G. hybrid* in the presence of various concentrations of naringenin. (■): 2025 mg/L, (-): 675 mg/L, (△): 225 mg/L, (■): 100 mg/L, (◆): 50 mg/L. (B): Growth curve of the recombinant *S. cerevisiea* expressing the F3'H of *G. hybrid* (means of growth curves of the recombinant yeast strain with different concentrations of naringenin (0, 50, 100, 225, 675 and 2025 mg/L) with standard deviation).

the initial naringenin concentration (100 mg/L) started to decrease and a new product appeared (data not shown). The new product was identified as eriodictyol (LC/MS). Thus, the whole recombinant yeast can be used to hydroxylate naringenin.

In order to investigate the maximum bioconversion ability of *S. cerevisiae* strain harbouring F3'H, the naringenin was added to the culture media at final concentrations of 50, 100, 225, 675 and 2025 mg/L; product formation and residual substrate concentrations against incubation time were plotted (Figure 1). We analysed the yeast growth and the naringenin biotransformation kinetics with *S. cerevisiae* expressing F3'H. In *S. cerevisiae* strain harbouring F3'H, recombinant protein production was induced by galactose in the YPL medium, as described in the experimental section. The growth of the recombinant

strain was not affected by the naringenin concentration (Figure 1). The bioconversion kinetic and growth were slow for the first 10 hours; the biomass was doubled, and 33 to 50 mg/L of naringenin was converted to eriodictyol. Within 10 to 33 hours of the exponential growth phase, the biomass was multiplied by 5 (when compared with the initial biomass) and the growth was associated with the bioconversion kinetic, both of which progress faster than during the first 10 hours after induction. Nearly 200 mg/L of eriodictyol were synthesized from 225, 675 and 2025 mg/L of naringenin. Within 33 to 54 h, the stationary growth phase was attained and only an extra 5 mg/L of eriodictyol, at a maximum, was formed (Figure 1).

It is clear that increasing naringenin concentrations enhanced the production yield and bioconversion kinetic but there is a limit of saturation (of substrate bioconversion). It is not necessary to increase naringenin concentration over 225 mg/L because the bioconversion yield decreases 3 and 9 folds when compared to a total bioconversion (for 675 and 2025 mg/L of naringenin, respectively).

The bioconversion yield is influenced by the initial naringenin concentration and also by the culture media composition. The latter dictates the growth rate of the recombinant yeast, the cell yield, the plasmid stability and naringenin bioconversion. Consequently, we tested, in parallel, the effect of culture conditions on the factors cited above.

Two stage culture modes were used: (i) a growth phase to form the initial biomass and (ii) an induction phase. We tested two culture media; a minimal medium without uracil (to select recombinant yeast harboring plasmid) and a rich medium. We combined these two media, as indicated in Table 3. As can be seen in Table 3, independently of the media used to prepare the inoculums, when the induction was done in YPL rich medium, the biomass production was nearly 10 g/L compared with 5 g/L in SC minimal medium. Despite the use of the same quantity of carbon source and the same initial biomass (adjusted to 1 g/L), biomass production was not the same, indicating that minimal

medium presents a limitation in its saline, vitamin or nitrogen composition.

Within 33 hours of induction, it was notable that SC-SC and YPL-SC two stage culture modes gave the same maximum bioconversion yield (100%), but in SC-YPL and YPL-YPL culture mode the bioconversion yield did not exceed 71% (Table 3). This indicates the importance of induction media in the conversion reaction. Indeed, SC minimal media exert a selection pressure to stabilize the plasmid in cells, and consequently, the F3H expression is maintained to a high level allowing the production of the maximum amount of eriodictyol (100 mg/L of naringenin were totally converted to eriodictyol). As can be shown in Figure 2, after 30 hours of induction, only 58 % of cells in YPL medium contain plasmid, while in SC medium, 90 % of the yeast contains plasmid. We noticed that during the exponential phase, between 6 and 24 hours, the fraction of plasmid free cells increased. This phenomenon may be due to the acceleration of cell division. However, in the stationary phase, this fraction decreased, probably because the media components become limiting and only cells containing the recombinant plasmid can survive uracil limitation.

Over-viewing our work, we have successfully produced eriodictyol, a 3'hydroxylated flavonoid from naringenin, by using a whole cell activity. Recombinant *S. cerevisiea* harboring F3'H from *Gerbera hybrid* was used as a selective single step for high-yield hydroxylation to replace a series of chemical synthetic reactions that suffers from drawbacks of simultaneous formation of diverse by-products and low isolated yield.

Contrary to the works reported in Table 1, we have used another easy method for microsome (containing the F3'H) extraction, to test enzymatic activity. The use of a cell disruption system at 750 and 1000 bars gave nearly the same naringenin bioconversion yield as that of the classic manual extraction. Moreover, in the present study, we demonstrated that it is not necessary to extract enzyme to achieve the hydroxylation reaction. The whole recombinant *S. cerevisiea* cell expressing flavonoid hydroxylases can hydroxylate naringenin and

Table 3: Effect of culture mode on growth of the recombinant yeast strain and eriodictyol production.SC: selective medium, YPL: rich medium.

Medium used to two stage culture mode		Biomasse (g/L)	Eriodicty ol (mg/L)								
Inoculum	Induction and		Time	after ind	uction of	recomb	inant hy	droxylas	se synthe	sis (h)	
media	bioconversion media	()	5.5			1	22		33	
SC min	SC min	1	0	1.5	17.5	2.1	47.6	4.4	90.4	5.1	100
YPL	SC IIIII	1	0	1.1	30.7	2.2	85.3	4.7	94	4.8	100
SC min	YPL	1	0	1.5	12	2.5	36.8	8	71.2	8.3	71
YPL		1	0	1.7	20	3.7	61.1	8.9	70.4	9.9	71

Figure 2: Effect of culture media on the percentage of plasmid containing cells. SC: selective medium, YPL: rich medium.

other flavonoids (like apigenin ;data not shown)). As substrate concentration increased, the naringenin bioconversion yield decreased and goes much slower. This may be ascribed to a substrate saturation phenomenon, low substrate solubility in aqueous medium, low substrate penetration to cells, and limitation in medium composition... Special techniques, such as two-phase biocatalysis and cell immobilization and/or permeabilization could be used to increase the concentration tolerance of this reaction [20].

Naringenin bioconversion to eriodictyol depends on the production of the recombinant F3'H enzyme. Synthesis of the cloned gene product is influenced by genetic and environmental factors, including plasmid stability, cell growth rate and medium composition. We have tested four two stage culture modes using two culture media: the SC minimal and YPL rich medium. We found that the naringenin bioconversion yield depends on the media used to induce the recombinant F3'H production, independently of the medium used to form the initial yeast biomass. SC minimal medium used as an inductor gave the best bioconversion/biomass ratio; 20 mg of eriodictyol per g of recombinant yeast (dry weight). when compared with the YPL rich complex medium. The induction in this latter case gave a ratio of 7.1 mg of eriodictyol per g of recombinant yeast. In addition, culture in the minimal medium offers the advantage of maintaining high plasmid stability. Thus, the decrease of naringenin bioconversion, in rich media, may be correlated to plasmid instability. It is notable (Figure 2) that the fraction of plasmid-carrying cells decreased during the exponential growth phase, but increased during the stationary phase. This phenomenon may be ascribed to the death rate difference between the plasmid-free and plasmid carrying cells caused by starvation in the stationary phase. Indeed, the high segregational instability of recombinant S. cerevisiae is primarily caused by asymmetric cell division, which can lead to the formation of 9 to 43 buds per cell [21]. In contrast to binary cell division in E. coli, budding results in an unequal distribution of plasmids among daughter cells, leading to an increased probability of plasmid-free cell emergence, especially in

the exponential growth phase. In theory, plasmid-free cells respond to environmental changes much quicker than plasmid carrying cells. Plasmid-free cells may grow faster than plasmid carrying cells when there is plenty of growth substrate, but they also may lyse or die faster upon depletion of growth substrate (uracil). Thus, pulse addition of growth substrate at an appropriate time interval, with a significant starvation period between two consecutive feedings during feedbatch fermentation may have positive effects on stabilizing plasmid and enhancing protein production [22]. Other various operating strategies have been proposed to address the problem of competitive plasmid instability recombinant yeast. These include cycling growth rate changes, cycling of substrate levels, cycling dissolved oxygen tension, dilution rate cycling, and autoselection systems [23].

Our work represents the first report of using recombinant yeast whole cell activity to achieve a single flavonoid hydroxylation step. Yan et al [24] have reported the use of whole cells expressing multiple enzymes to produce eriodictyol from caffeic acid. Their recombinant system produced 6.5 mg/L of eriodictyol from 180 mg/L of caffeic acid. In the present work, we produced 200 mg/L of eriodictyol from 225 mg/L of naringenin. Consequently, eriodictyol formation is 24 orders of magnitude higher than that reported [24]. This work opens up alternative routes for the production of additional hydroxylated flavonoid structures from other non-hydroxylated flavonoid precursors, recombinant S. cerevisiea cells and by engineering substrate specificity of the F3'H by using site directed mutagenesis, laboratory evolution or chimeragenesis engineering improved redox partners [25]. Generally, the relatively poor stability of P450 monooxygenases, such as F3'H, still impede the technical application of these enzymes. Immobilization of enzyme or recombinant permeabilized yeast has proven useful for in vitro biotransformations [26]. A combination of chemical, physical and biological approaches will contribute to the production of polyhydroxylated flavonoid structures needed for functionalization reactions, like glycosylation [4,27], acylation [4], methylation [4,28], and sulfation [4,29].

Experimental

Plasmid and cell transformation: The F3'H from *Gerbera hybrid* was generously given by Pr. Christian Seitz (Technical University Munich, Germany) in yeast plasmid pYES2.1/V5-His-TOPOZ® [5]. The *Saccharomyces cerevisiea* INVSc1 strain was purchased from Invitrogen, (Paisley, UK). The yeast transformation was carried out according to the manufacture's prescription. Chemicals used in this study were purchased from Sigma Chemicals (St. Louis, (USA).

Hydroxylation reaction by microsomes extracted from S. cerevisiea expressing Gerbera hybrid F3'H: Microsomes were prepared as described by Pompon et al. [30]. Ten mL of the minimal growth medium (SC minimal composed of 20 g glucose, 1.92 g yeast synthetic drop-out media without uracil, and 6.7 g yeast nitrogen base without amino acids in 1L of distilled water) were inoculated with the recombinant yeast and grown to stationary phase. Cells were harvested by centrifugation (3000 rpm for 5 min), then used to inoculate 250 mL of rich induction medium composed of 20 g/L galactose. 10 g/L peptone and 10 g/L yeast extract (YPL) and incubated overnight at 28°C, with shaking at 200 rpm. Cells were harvested by centrifugation at 7000 g for 10 min at 4°C. The cell pellet was washed with TEK buffer (10 mM Tris-HCL (pH=7.5), 1 mM EDTA and 100 mM KCl). After centrifugation, cells were suspended in 50 mL TESB buffer (50 mM Tris-HCl (pH=7.5), 1 mM EDTA, 0.6 mM sorbitol, 1% BSA and 20 mM β-mercaptoethanol). The cell suspension was passed through either a constant cell disruption system or disrupted manually, as described [30]. Five extraction pressures were applied: 500, 750, 1000, 1500 and 2000 bars. The suspension was centrifuged at 10000 g for 15 min at 4°C. The supernatant was recovered and the microsomes precipitated with MgCl₂ (125 mM) for 30 min at 4°C. Microsomes were then recovered by centrifugation for 20 min at 15000 rpm at 4°C and suspended in 3 mL cold TEG (50 mM Tris-HCL (pH=7.5), 1 mM EDTA, 30% glycerol). Protein quantification was determined by the bicinchoninic acid method [31].

Determination of naringenin hydroxylation product by whole cells of *S. cerevisiea* expressing F3'H: Ten mL of culture grown to stationary phase in SC minimal medium was used to inoculate 100 mL of a rich induction medium. Naringenin was added at a concentration of 100 mg/L and the mixture was incubated on a shaker at 28°C for 55 h. 750 μL of supernatant was collected and mixed with 250 μL of acetonitrile. Identification of the hydroxylation products was monitored using HPLC and LC/MS analysis.

Effect of substrate concentration on bioconversion kinetics with *S. cerevisiea* expressing F3'H: Thirty mL of culture grown to stationary phase in SC minimal medium was used to inoculate 250 mL of SC minimal medium. Cells were harvested by centrifugation at 3000 rpm for 5 min before their transfer to SC medium, with different concentrations (50, 100, 225, 675 and 2025 mg/L) of the substrate. The mixture was incubated on a shaker at 28°C for 55 h. 750 μL of the supernatant was collected and mixed with 250 μL of acetonitrile. Quantification of the metabolites and parent material was monitored using HPLC.

Determination of the appropriate culture modes for growth of the recombinant Saccharomyces cerevisiea and naringenin bioconversion: A single colony of recombinant yeast strain was placed in 30 mL of (20%) glucose supplemented SC minimal media or in YPL rich medium and incubated at 28°C till stationary phase. The culture was centrifuged for 3 min at 5000 rpm and the pellet suspended in (20%) galactose supplemented fresh minimal (SC) or complex media (YPL). This gives four types of culture, as seen in Table 3. Naringenin was added to a final concentration of 100 mg/L and its transformation was assessed for 34 h.

Analytical method: Cell density was measured by the dry cell weight method. For determining dry cell weight, 10 mL of sample was spun in a pre-weighed centrifuge tube, at 5000 rpm for 5 min. The cell pellet was washed with deionized water and dried at 100°C for 24 h. The tube was weighed along with the dried pellet and used to calculate the dry weight of the sample. Total cell concentration was determined by measuring the optical density at 600 nm (OD_{600nm}). One unit of OD_{600nm} was found to be equivalent to about 0.45 g/L dried cell weight. The percentage of plasmidcontaining cells was determined by the replica-plating technique. The percentage of plasmid stability was calculated as the ratio of the number of plasmidcontaining cells forming the clones in selective plates (SC min) to the total number of cells growing on non selective YPL medium (including plamid-free and plasmid-containing cells). Cell samples were diluted to make the colony counts within the range of 30-300. All plate counts were taken from the average of at least 3 replicates.

HPLC analysis: A Thermo Finnigan (San Jose, CA, USA) HPLC apparatus equipped with an U.V. 6000 LP detector was used. For analytical scale, the mobile phase consisted of water and acetonitrile and was programmed as follows; 10% acetonitrile from 0 min to12 min, then a linear gradient was used starting from 40% acetonitrile to 60% at 17 min, followed by 8 min of a constant eluant of 10% acetonitrile. The flow rate was 1 mL/min; detection wavelength 296 nm; column temperature 28°C.

Acknowledgments - The authors would like to thank the 'Ministère Tunisien de l'Enseignement Supérieur etde la Recherche Scientifique' and the 'Institut Français de Coopération' for the financial support of this study. Furthermore, the authors would like to thank Professor Christian Seitz (Technical University Munich, Germany) for giving them the plasmid pYES2.1/V5-His-TOPOZ® harboring the f3'h cDNA from Gerbera hybrid.

- [1] Schultes RE. (1978) The kingdom of plants. In *Medicines from the Earth*, Thomson WA. (Ed.), McGraw-Hill Book Co, New York, NY. 208.
- [2] Dixon RA, Steele CL. (1999) Flavonoids and isoflavonoids-a gold mine for metabolic engineering. *Trends in Plant Science*, 4, 394-400.
- [3] Winkel-Shirly B. (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology and biotechnology. *Plant Physiology*, 126, 485-493.
- [4] Bohm BA. (1998) Flavonoid functions in nature. In *Introduction to Flavonoids. Chemistry and Biochemistry of Organic Natural Products*, 2, Harwood Academic Publishers, Amsterdam. 339-364.
- [5] Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G. (2006) Cloning, functional identification and s equence analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase cDNAs reveals independent evolution of flavonoid 3',5'-hydroxylase in the Asteraceae family. *Plant Molecular Biology*, 61, 365-381.
- [6] Halbwirth H, Fischer TC, Schlangen K, Rademacher W, Schleifer KJ, Forkmann G, Stich K (2006) Screening for inhibitors of 2-oxoglutarate-dependent dioxygenases: Flavanone 3β-hydroxylase and flavonol synthase. *Plant Science*, 171, 194-205.
- [7] Gebhardt Y, Witte S, Forkmann G, Lukacin R, Marten U, Martens S. (2005) Molecular evolution of flavonoid dioxygenases in the family Apiaceae. *Phytochemistry*, 66, 1273-1284.
- [8] Wellmann F, Matern U, Lukacin R. (2004) Significance of C-terminal sequence elements for Petunia flavanone3 β-hydroxylase activity. *FEBS Letters*, *561*, 149-154.
- [9] Turnbull JJ, Nakajima J, Welford R, Yamazaki M, Saito K, Schofield CJ. (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis anthocyanidin synthase, flavonol synthase, and flavanone 3 hydroxylase. *Journal of Biological Chemistry*, 279, 1206-1216.
- [10] Lukacin R, Groning I, Schiltz E, Britsch L, Matern U. (2000) Purification of recombinant flavanone 3β-hydroxylase from *Petunia hybrida* and assignment of the primary site of proteolytic degradation. *Archives of Biochemistry and Biophysics*, 375, 364-370.
- [11] Martens S, Forkmann G, Britsch L, Wellmanna F, Matern U, Lukacin R. (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. *FEBS Letters*. 544, 93-98.
- [12] Xu BB, Li JN, Zhanga XK, Wanga R, Xie LL, Chai YR. (2007) Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from *Brassica napus. Journal of Plant Physiology*, 164, 350-363.
- [13] Boddu J, Svabek C, Sekhon R, Gevens A, Nicholson RL, Jones AD, Pedersen JF, Gustine DL, Chopra S. (2004) Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins. *Physiology and Molecular Plant Pathology*, 65, 101-113.
- [14] Ueyama Y, Suzuki KI, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y. (2002). Molecular and biochemical characterization of torenia flavonoid 3'-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. *Plant Science*, 163, 253-63.
- [15] Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. (2006) Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. *Molecular Breeding*, 17, 91-99.
- [16] Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. (2000) Identification of the *Arabidopsis thaliana* flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. *Journal of Biological Chemistry*, 381, 749-753.
- [17] Brugliera F, Barri-Rewell G, Holton TA, Mason JG. (1999) Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of *Petunia hybrida*. *Plant Journal*, 19, 441-451.
- [18] Togami J, Tamura M, Ishiguro K, Hirose C, Okuhara H, Ueyama Y, Nakamura N, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Suzuki K, Fukui Y, Kusumi T, Tanaka Y. (2006) Molecular characterization of the flavonoid biosynthesis of *Verbena hybrida* and the functional analysis of verbena and *Clitoria ternatea* F3'5'H genes in transgenic verbena. *Plant Biotechnology*, 23, 5-11.
- [19] Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J. (1999) Flavonoid hydroxylase from *Catharanthus roseus*: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. *Plant Journal*, **19**, 83-93.
- [20] Loughlin WA. (2000) Biotransformation in organic synthesis. *Bioresource Technology*, 74, 49-62.
- [21] Reed G. (1980) Yeasts. In: Prescott and Dunn's Industrial Microbiology. The AVI Publishing Company Inc., New York 15-43.
- [22] Cheng C, Huang YL, Yang ST. (1997) A novel feeding strategy for enhanced plasmid stability and protein production in recombinant yeast feedbatch fermentation. *Biotechnology Bioengineering*, 56, 23-31.
- [23] Gupta JC, Mukherjee KJ. (2002) Stability studies of recombinant *Saccharomyces cerevisiae* in the presence of varying selection pressure. *Biotechnology Bioengineering*, 78, 475-488.
- Yan Y, Kohli A, Koffas MAG. (2005) Biosynthesis of natural flavanones in *Saccharomyces cerevisiae*. Applied Environnmental Microbiology, 71, 5610–5613.
- [25] Bernhardt R, (2006) Cytochromes P450 as versatile biocatalysts. *Journal of Biotechnology*, 124, 128-145.
- Urlacher VB, Lutz-Wahl S, Schmid RD. (2004) Microbial P450 enzymes in biotechnology. *Applied Microbiology Biotechnology*, 64, 317-325.
- [27] Ko JH, Kim BG, Joong-Hoon A. (2006) Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiology Letters, 258, 263-268.
- [28] Kim BG, Shin KH, Youngshim L, Hor-Gil H, Yoongho L, Joong-Hoon A. (1990) Multiple regiospecific methylations of a flavonoid by plant *O*-methyltransferases expressed in *E. coli. Biotechnology Letters*, 38, 794-796.
- [29] Koizumi M, Shimizu M, Kobashi K. (1990) Enzymatic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. *Chemistry and Pharmaceutical Bulletin*, 38, 794-796.
- [30] Pompon D, Benedicte L, Forkmann G. (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods in Enzymology. 272, 51-64.
- [31] Nguyen RT, Rodger Harvey H. (1994) A rapid micro-scale method for the extraction and analysis of protein in marine samples. *Marine Chemistry*, 45, 1-14.

2010 Vol. 5 No. 12 1899 - 1901

Two New 3-C-Carboxylated Flavones from the Rhizomes of Caragana conferta

Rehan Khan^a, Abdul Malik^{a,*}, Shazia Yasmeen^b and Nighat Afza^b

^aInternational Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

^bPharmaceutical Research Centre, PCSIR Laboratories Complex Karachi, Karachi- 75280, Pakistan

abdul.malik@iccs.edu

Received: February 12th, 2010; Accepted: September 27th, 2010

Confertins A (1) and B (2), new 3-C-carboxylated flavones, have been isolated from the ethyl acetate soluble fraction of the rhizomes of *Caragana conferta*. Their structures have been assigned on the basis of spectroscopic studies.

Keywords: Caragana conferta, 3-C-carboxylated flavones, confetins A and B.

The genus *Caragana* belongs to the family Fabaceae and comprises over 80 species out of which ten have so far been identified in Pakistan [1]. Some of these are used for the treatment of hypertension, irregular menstruation, and fatigue. The extracts and compounds from the genus have antitumor, antivirus, anti-inflammation, hypertensive, sedative, acetylcholinesterase inhibitory, and immunosuppressant activities [2].

C. conferta is mainly found in the Ziarat, Gilgit and Kashmir valleys of Pakistan at an altitude of 7000-12000 feet above sea level [1]. A literature survey revealed that one isoflavone and two 4-hydroxyisoflavones have so far been reported from this species [3,4]. The ethnopharmacologial and chemotaxonomic importance of Caragana species prompted us to carry out phytochemical studies on the rhizomes of C. conferta. Herein we report the isolation and structural elucidation of two new 3-C-carboxylated flavones named as confertin A (1) and confertin B (2), respectively.

Confertin A (1) was obtained as light yellow needles, mp 184°C. The infrared (IR) spectrum showed absorption bands for hydroxyl (3450 cm⁻¹), conjugated ester (1700 cm⁻¹), conjugated ketone C=O (1660 cm⁻¹), aromatic (1545 cm⁻¹) and OCH₃ (1250 cm⁻¹) functionalities. The UV spectrum showed absorptions bands at 265, 295 and 330 nm, which are characteristic of a C-3-substituted flavone-type skeleton [5]. Addition of AlCl₃ and NaOAc resulted in bathochromic shifts of 30 nm and 12 nm, respectively, indicating a free phenolic group at both C-7 and C-5, respectively [6]. The high resolution electron

Compound 1. R = HCompound 2. $R = COCH_3$

impact mass spectrum (HREI-MS) of **1** exhibited the $[M]^+$ peak at m/z 356.0513 (Calcd. for $C_{19}H_{16}O_7$: 356.0584) with twelve degrees of unsaturation.

The broad-band decoupled (BB) and DEPT ¹³C-NMR spectra of 1 showed 19 signals, comprising two methyl, six methine, one methylene and ten quaternary carbons. The signals at δ 182.5 (C-4) and 162.4 (C-1") were due to the conjugated carbonyl and ester moieties, while the conjugated olefinic carbons resonated at δ 152.0 and 123.5, respectively. The methoxyl group gave a signal at δ 55.7, while oxygenated aromatic carbons appeared at δ 166.7, 163.3 and 161.2. In the HREI-MS the peak at m/z 311.2661 (C₁₇H₁₁O₆) resulted from the loss of an ethoxyl group. The retro Diels-Alder (RDA) fragments A^{+} at m/z 152.1041 (C₇H₄O₄) and B^{+} at m/z 205.2221 (C₁₂H₁₃O₃) revealed the presence of two hydroxyl groups in ring A and one methoxyl and ethyl ester groups in rings B and C. The daughter ion fragments at m/z 124.0941 (C₆H₄O₃) and m/z 132.1591 (C₉H₉O) resulted from the loss of CO and an ethoxyl carbonyl group from the fragments A⁺ and B⁺ respectively (Scheme 1) [7]; the latter ion peak provided evidence

HO A B
$$\frac{1}{3}$$
 O OMe $\frac{1}{2}$ OMe $\frac{1}{$

for the presence of an ethoxy carbonyl group at C-3. Further evidence was provided by the carbon signals at δ 123.5 (C-3), δ 152.0 (C-2) and δ 182.5 (C-4), and the absence of a proton signal for H-3 in the 1H and ^{13}C NMR spectra, confirming the presence of an ethyl ester group at C-3.

Scheme 1

The ¹H NMR spectrum showed a chelated hydroxyl group at δ 12.40 as a singlet and meta coupled protons of ring-A at δ 6.23 (d, J = 1.6 Hz) and 6.34 (d, J = 1.6 Hz), thereby confirming the presence of hydroxyl groups at C-5 and C-7, respectively. Protons for a methoxyl group resonated at δ 3.75. Its presence at C-4' was confirmed by the protons of ring-B showing an AA' BB' pattern at δ 6.94 (d, J = 8.8 Hz) and 7.20 (d, J = 8.4 Hz). The presence of an ethoxyl group was revealed by a typical two-proton quartet at δ 4.20 and a three-proton triplet at δ 1.03. The position of the methoxyl group at C-4' was further confirmed by HMBC correlations in which the methoxyl protons at δ 3.75 showed ^{3}J correlations with C-4' (δ 55.7). Irradiation of these protons at δ 3.75 caused strong NOE enhancement of neighboring protons at C-3 and C-5. The NMR assignments were facilitated by ¹H-¹H COSY and HMQC experiments. The positions of the substituents were further authenticated through HMBC

Figure- 2. Important HMBC correlations of confertin A (1)

Table 1: 1 H- and 13 C-NMR data (CDCl₃) of compounds **1** and **2** at 400 and 100 MHz, respectively; δ in ppm, J in Hz. Assignments were confirmed by COSY, HMQC and HMBC experiments.

	1		2	
Position	$\delta_{\rm H} (J = {\rm Hz})$	$\delta_{\rm C}$	$\delta_{\rm H} (J = {\rm Hz})$	$\delta_{\rm C}$
2	-	152.0	-	149.2
3	-	123.5	-	110.2
4	-	182.5	-	175.7
5	-	163.3	-	150.7
6	6.23 (d, J = 1.6)	105.0	6.48 (d, J = 2.0)	109.7
7	-	166.7	-	162.7
8	6.34 (d, J = 1.6)	94.9	6.72 (d, J = 2.0)	101.1
9	-	158.5	-	158.1
10	-	100.5	-	123.2
1"	-	162.4	-	161.8
2"	4.13 (q)	63.4	4.07 (q)	62.3
3"	1.03 (t)	13.8	0.92 (t)	13.4
1'	-	125.0	-	126.0
2'	6.94 (d, J = 8.8)	132.1	7.09 (d, J = 8.4)	131.0
3'	7.20 (d, J = 8.4)	114.5	6.87 (d, J = 8.8)	113.6
4'	-	161.2	-	159.6
5'	7.20 (d, J = 8.4)	114.5	6.87 (d, J = 8.8)	113.6
6'	6.94 (d, J = 8.8)	132.1	7.09 (d, J = 8.4)	131.0
4'-OCH ₃	3.75 (s)	55.7	3.75 (s)	55.2
7-CO	-	-	-	169.9
7-CH ₃	-	-	2.30 (s)	21.0

a) Arbitrary C-atom numbering.

correlations (Figure 2). The structure of confertin A (1) could, therefore, be assigned as ethyl 5, 7-dihydroxy-2-(4-methoxyphenyl)-4-oxo-4*H*-chromene-3-carboxylate.

Confertin B (2) was also obtained as light yellow needles, mp 186°C. The IR and UV spectra were similar to those of 1. However, a bathochromic shift of 28 nm was observed with AlCl₃, but no such shift was observed with NaOAc, indicating the absence of a phenolic group at C-7. The HREI-MS showed an $[M]^+$ ion at m/z 398.3630 corresponding to the molecular formula $C_{21}H_{18}O_8$ (Calcd. for $C_{21}H_{18}O_8$: 398.3670).

The BB and DEPT ¹³C NMR spectra of compound **2** showed twenty-one carbon signals comprising three methyl, six methine, one methylene and eleven quaternary carbons. The spectrum was similar to that of **1** with additional signals for an acetyl group (δ 169.9 and δ 21.0). The ¹H NMR spectrum was also similar to that of **1**, with an additional signal for an acetyl group at δ 2.30 (COC H_3). The signal for the chelated hydroxyl group at C-5 was observed at δ 12.3 as a singlet. Compound **2** is therefore, the acetylated derivative of **1**. The UV spectrum indicated acetylation of the phenolic group at C-7. The HMBC correlations were in complete agreement with the assigned structure of confertin B (**2**) as ethyl 7-(acetyloxy)-5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromene-3-carboxylate.

This is the first report of the natural occurrence of 3-C-carboxylated flavones, although these type of compounds have previously been synthesized [8].

Experimental

General: Melting points were determined on a Gallenkamp apparatus and are uncorrected. ¹H- and ¹³Ctwo-dimensional correlation spectra and spectroscopy (COSY, NOSEY, HMQC, and HMBC) were recorded on a Bruker AV-400 spectrometer (400 MHz for ¹H- and 300 MHz for ¹³C-NMR) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) are shown in ppm relative to TMS. The UV spectra were obtained on a Hitachi UV-3200 spectrophotometer. The IR spectra were recorded on a JASCO 302-A spectrometer in CHCl₃. Thin layer chromatography (TLC) was carried out on pre-coated silica gel 60G F₂₅₄ plates (20 x 20 cm, 0.2 mm layer thickness, E. Merck, Darmstadt, Germany) and visualized under UV light (254 nm) and also by spraying with ceric sulfate reagent. Silica gel 230-400 mesh (E. Merck. Darmstadt, Germany) was used for column chromatography. The HREI-MS were recorded on a JEOL JMS-HX-110 mass spectrometer.

Plant material: Rhizomes of Caragana conferta Benth were collected from Gilgit valley (Pakistan) and identified by a Senior Scientist of the National Agriculture Research Center (NARC), Islamabad Pakistan. A voucher specimen has been deposited in the herbarium of the Department of Botany, University of Karachi (voucher no 319).

Extraction and isolation: The air-dried powdered rhizomes (12 kg) were extracted with MeOH (3 x 25 L) at room temperature. The combined extract was evaporated to yield the residue (250 g), which was divided into *n*-hexane (50 g), ethyl acetate (EtOAc) (120 g) and water (80 g) soluble sub-fractions. The EtOAc fraction was subjected to column chromatography (CC) over silica gel, eluting with mixtures of *n*-hexane and EtOAc in increasing order of polarity to obtain 3 major fractions, A, B and C. Fraction A obtained from

n-hexane/EtOAc (4:6) was again chromatographed over silica gel using *n*-hexane/EtOAc (8:2) as eluent to afford two successive fractions A_A and A_B. CC of the sub fraction A_A gave the compound 1 (20 mg) through elution with *n*-hexane/EtOAc (5:5), while elution with *n*-hexane/EtOAc (6:4) provided compound 2 (11 mg). Fractions B and C could not be worked up due to paucity of material.

Confertin A (1)

Light yellow needles.

MP: 184°C

IR (KBr) v_{max} cm⁻¹: 3450 (OH), 1700 (ester), 1660 (conjugated ketone), 1545 (aromatic C=C), and 1250 cm⁻¹ (OCH₃).

UV (CHCl₃) λ_{max} (log ε): 330 (4.43), 295 (3.99) and 265 nm (4.73).

¹H and ¹³C NMR: Table 1

HREI-MS: m/z 356.0584 ($C_{19}H_{16}O_7$), 311.2661 ($C_{17}H_{11}O_6$), 205.2221 ($C_{12}H_{13}O_3$), 152.1041 ($C_7H_4O_4$), 132.1591 (C_9H_9O), 124.0941 ($C_6H_4O_3$).

Confertin B (2)

Light yellow needles.

MP: 186°C.

IR (KBr) v_{max} cm⁻¹: 3440, 1700-1720 (ester), 1660 (conjugated ketone), 1540 (aromatic C=C), and 1252 cm⁻¹ (OCH₃).

UV λ_{max} (log ε): 332 (4.12), 294 (3.85) and 267 nm (4.50)

¹H and ¹³C NMR: Table 1.

HREI-MS: m/z 398.3630 (Calcd. for $C_{21}H_{18}O_8$: 398.3670).

Acknowledgement - The authors gratefully acknowledge the Higher Education Commission of Pakistan for financial support.

- [1] Nasir E, Ali SI. (1977) Papilionaceae. Flora of West Pakistan, Department of Botany, University of Karachi, Ferozesons Publishers, Karachi, No.100, 98-103.
- [2] Ye-Gao C, Ying L, William NS. (2008) Chemical composition of the essential oil of *Caragana sinica* flowers. *Chemistry of Natural Compounds*, 44, 537-538.
- [3] Khan R, Malik A, Adhikari A, Qadir MI, Chaudhary MI. (2009) Conferols A and B, new anti-inflammatory 4-hydroxyisoflavones from *Caragana conferta*. *Chemical and Pharmaceutical Bulletin*, 57, 415-417.
- [4] Khan R, Fatima I, Ahmad N, Malik A. (2008) Caragin, a new isoflavone from Caragana conferta. Journal of Asian Natural Product Research, 10, 823-825.
- [5] Syah YM, Achmad SA, Ghisalberti EL, Hakim EH, Mujahidin D. (2004) Two new cytotoxic isoprenylated flavones, artoindonesianins U and V, from the heartwood of *Artocarpus champeden*. *Fitoterapia*, 75, 134-140.
- [6] Markham KR, Mabry TJ. (1975) The Flavonoids Part 1. Academic Press, New York. 45-77.
- [7] Painuly P, Tandon S. (1983) Two 3-C-methylflavone glycosides from Eugenia kurzii. Phytochemistry, 22, 243-245
- [8] Cushman M, Nagarathnam D. (1991) Cytotoxicities of some flavonoid analogues. Journal of Natural Products, 54, 1656-1660.

2010 Vol. 5 No. 12 1903 - 1906

Kaempferol Glycosides in the Flowers of Carnation and their Contribution to the Creamy White Flower Color

Tsukasa Iwashina^a*, Masa-atsu Yamaguchi^b, Masayoshi Nakayama^c, Takashi Onozaki^c, Hiroyuki Yoshida^d, Shuji Kawanobu^b, Hiroshi Ono^c and Masachika Okamura^f

iwashina@kahaku.go.jp

Received: June 30th, 2010; Accepted: September 30th, 2010

Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, ¹H and ¹³C NMR spectra as kaempferol 3-*O*-neohesperidoside, kaempferol 3-*O*-sophoroside and kaempferol 3-*O*-glucosyl-(1→2)-[rhamnosyl-(1→6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-*O*-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

Keywords: carnation, creamy white flower, flavonols, kaempferol 3-O-glycosides.

Anthocyanin flower pigments of carnations have been reported for some pink, red, red-purple and mauve cultivars. Pelargonidin 3-O-glycoside was found in salmon and red cultivars, pelargonidin 3,5-di-Oglycoside in pink, cyanidin 3-O-glycoside in lavender and crimson, and cyanidin 3,5-di-O-glycoside in lavender and magenta ones [1,2]. In 1986, Terahara et al. reported that the major anthocyanins in pink and red carnations were pelargonidin and cyanidin 3-Oglucosides acylated with malic acid [3], and isolated pelargonidin and cvanidin $3-O-(6''-O-\text{malyl-}\beta$ glucopyranosides) from the red cultivar 'Scania' and the purplish-red one 'Nina' [4]. Recently, cyclic 5-3 malyl pelargonidin and cyanidin were also identified from deeper colored cultivars [5,6]. The yellow color in the petals of carnations is due to the accumulation of a chalcone, chalcononaringein 2'-O-glucoside (i.e., isosalipurposide) [7-9]. Some flavonoids also have co-pigmentation effects, which influence coloration by interaction with anthocyanins. Information of flavonoid structures is important to understand the coloration mechanism in carnation flowers. Recently,

C-glycosylflavone, isovitexin 7-O-(6''-malylglucoside) and two flavonols, kaempferol 3-O-glucosyl-(1 \rightarrow 2)-[rhamnosyl-(1 \rightarrow 6)-glucoside] and kaempferol 3-O-(6''-malylglucosyl)-(1 \rightarrow 2)-[rhamnosyl-(1 \rightarrow 6)-glucoside] were isolated from the petals of transgenic carnation cultivars 'Moondust' and 'Moon shadow' [10]. Of their flavonoids, it was proved that isovitexin 7-O-(6''-malylglucoside) exhibits the strongest co-pigment effect.

In previous studies, only cyanic cultivars were investigated. As the first step of our study, acyanic cultivars were investigated seeking compounds whose occurrence in carnation flowers has not yet been reported. We selected a white flower cultivar 'White Wink' and a cream one 'Honey Moon' and detected three kaempferol 3-O-glycosides. In addition, the flavonoid contents of some white flower lines were compared to determine the contribution of kaempferol glycosides, including those identified here, to the creamy tone coloration of carnation flowers.

^aDepartment of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan

^bDepartment of Horticulture, Minami-Kyushu University, Takanabe, Miyazaki 884-0003, Japan

^cNational Institute of Floricultural Science, Tsukuba, Ibaraki 305-8519, Japan

^dJapan Tobacco Inc., Oyama, Tochigi 323-0808, Japan

^eNational Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan

^fKirin Agribio Company, Ltd., 3377 Sarutsuka, Soutome, Sakura-city, Tochigi 329-1414, Japan

In this survey, three flavonoids (1 - 3) were obtained as pale yellow powders from the petals of D. caryophyllus 'Honey Moon' and 'White Wink'. Acid hydrolysis of these liberated kaempferol as the aglycone, and glucose and rhamnose (1 and 3), and glucose alone (2) as the sugars. In the UV spectra, the bathochromic shift of band I by addition of NaOMe, with an increase in the intensity relative to the spectrum of the MeOH solution, showed the presence of free 4'-hydroxyl and substituted 3-hydroxyl groups [11]. Moreover, though band I bathochromically shifted on the addition of AlCl₃, there was no hypsochromic shift on addition of HCl, showing the presence of a monohydroxyl group in ring B, and a free 5-hydroxyl group. The appearance of an accompanying peak on NaOMe addition, and a bathochromic shift of band II on addition of NaOAc showed the presence of a free 7-hydroxyl group. Thus, it was proved that the sugars are attached at the 3-hydroxyl position of their glycosides. Finally, flavonoids 1 and 2 were identified as kaempferol 3-O-neohesperidoside and kaempferol 3-O-sophoroside by ESIMS, and ¹H and ¹³C NMR, respectively. In flavonoid 3, the shifts of 3-O-glucosyl C-2 (δ 82.9) and C-6 (δ 66.5) were recognized from the ¹³C NMR spectra. The attachment of rhamnose to the 6-position and another glucose to the 2-position of 3-O-glucose were determined by the presence of HMBC and/or NOESY signals. Thus, flavonoids 3 was completely identified as kaempferol 3-O- β -glucopyranosyl- $(1\rightarrow 2)$ -O-[α -rhamnopyranosyl-($1\rightarrow 6$)-O- β -glucopyranoside] (kaempferol 3-*O*-2^G-glucosylrutinoside).

The kaempferol glycoside content of a nearly pure white line 'MB3' was compared with those of five common white cultivars or lines, 'White Sim', 'Bridal White', 'Annabel', 'Milky Way' and 'BD2349-08' (Table 1). Three kaempferol glycosides, i.e. 3-*O*-neohesperidoside (1), 3-*O*-sophoroside (2) and 3-*O*-(2^G-glucosylrutinoside) (3) were detected in the flowers of the cultivars except for 'White Sim', which contained flavonoids 1 and 3 alone. The fourth kaempferol glycoside (4), which was not isolated from the flowers of 'White Wink' and 'Honey Moon', was found in all

the cultivars except for 'White Sim'. However, it could not be characterized. Although the major glycoside was different in each of the cultivars, the total kaempferol contents of the five creamy white cultivars or line were from 5.9 (BD2349-08) to 20.9 (White Sim) times higher than that of the nearly pure white line 'MB3'.

Kaempferol 3-O-neohesperidoside has been isolated from the leaves of Nerisyrenia linearifolia and N. gracilis (Cruciferae) [12]. Recently, kaempferol 3-Osophoroside has been isolated from the purple flowers of Gladiolus cultivar 'Ariake' as a co-pigment, together with kaempferol 3-O-rutinoside and guercetin 3-Orutinoside [13]. Kaempferol 3-O-2^G-glucosylrutinoside has been reported from Hosta ventricola (Liliaceae) [14]. In carnation, they have been reported from the flowers [15,16], roots and stems [17] of common cultivars. The basic structure of these glycosides was characterized as kaempferol 3-O-glucoside, with additional sugar moieties at the 2 and/or 6-positions of the 3-O-glucose. White carnation cultivars have been divided into three flower flavonoid types, i.e. flavonoidlacking cultivars, naringenin accumulating cultivars, and kaempferol accumulating cultivars [18]. Moreover, it was shown that the flavonoid biosynthesis pathway is blocked before chalcone synthesis in flavonoid-lacking cultivars, whereas it is blocked at the flavanone-3hydroxylase step in naringenin accumulating cultivars [19]. However, flavonoid identification had been not performed at the glycosylation level. In this experiment, it was shown that four kaempferol glycosides are involved, i.e. 3-O-neohesperidoside, 3-O-sophoroside, 3-O-(2^G-glucosylrutinoside) and an unknown glycoside. Although quercetin glycosides produce pale yellow colors, in the case of yellow Clematis species and cultivars, kaempferol glycosides do not apparently act as yellow pigments [20, 21]. In carnation, however, creamy white flowers contained over five times higher levels of kaempferol glycosides than a nearly pure white flower. The presence of such amounts of kaempferol glycosides surely contributes to the creamy tone in the white flowers of carnations.

Table 1: Quantitative HPLC analysis of the flowers of six white carnation cultivars and lines.

Cultivars/lines	Colors	1*	2	3	4	Total
MB3	pure white	0.2 ± 0.1	0.1 ± 0.0	0.5 ± 0.3	0.1 ± 0.1	0.9 (1.0)
White Sim	white		10.4 ± 0.4	8.4 ± 0.3		18.8 (20.9)
Bridal White	white	2.5 ± 0.2	3.1 ± 0.1	2.4 ± 0.1	4.1 ± 0.2	12.1 (13.4)
Annabel	white	0.3 ± 0.0	0.5 ± 0.0	4.3 ± 0.4	1.5 ± 0.1	6.6 (7.3)
Milky Way	white	1.3 ± 0.1	0.7 ± 0.0	4.5 ± 0.3	2.0 ± 0.6	8.5 (9.4)
BD2349-08	white	0.9 ± 0.1	0.5 ± 0.0	2.5 ± 0.1	1.4 ± 0.1	5.3 (5.9)

Each 1 g fresh petals was extracted with 6 mL 10% HOAc in MeOH.

^{1 =} kaempferol 3-O-neohesperidoside, 2 = kaempferol 3-O-sophoroside, 3 = kaempferol 3-O-(2^G-glucosylrutinoside) and 4 = unknown kaempferol glycoside.

^{*} Calculated from the absorption coefficient of authentic quercetin 3-O-rutioside (µmol/g fresh weight).

^{() =} Relative amounts of total flavonoids as peak area of pure white line 'MB3' is 1.00.

Experimental

General: Prep. HPLC was performed on a Wakosil II 5C18 AR Prep (I.D. 20×250 mm) with a flow-rate of 9 mL/min and by monitoring absorbance at 360 nm. The solvent system used included linear gradient elution for 25 min using 25-50% of solvent B (0.5% TFA, 10% formic acid, 40% MeCN) in solvent A (0.5% TFA, 10% formic acid). Paper chromatography was performed using solvent systems: BAW (n-BuOH/HOAc/H₂O = 4:1:5, upper phase), BEW (n-BuOH/EtOH/ H_2 O = 4:1:2.2), 15% HOAc and 5% HOAc for flavonol glycosides; BAW, BEW and Forestal (HOAc/HCl/H2O = 30:3:10) for flavonol aglycones; and BBPW (n-BuOH/benzene/pyridine/H₂O = 5:1:3:3) and BTPW (n-BuOH/toluene/pyridine/H₂O = 5:1:3:3) for glycosidic sugars. UV spectral analysis and acid hydrolysis were performed according to published procedures [11]. The ESIMS were analyzed on a TSQ system (Thermo Quest, San Jose, CA, USA). 1D and 2D NMR spectra were measured on a Bruker AVANCE 800.

Plant materials: The flowers of two carnation cultivars 'White Wink' and 'Honey Moon' were used for flavonoid isolation. They were cultivated in Japan by Tobacco Inc., Co. Ltd., Oyama, Tochigi, Japan. A nearly white line 'MB3' and four white cultivars or lines, 'Bridal White', 'Annabel', 'Milky Way' and 'BD2349-08' were cultivated by Kirin Agribio Co., Ltd. The other white cultivar 'White Sim' was cultivated by the National Institute of Floricultural Science, National Agriculture and Bio-oriented Research Organization, Tsukuba, Ibaraki, Japan. Live specimens are growing in the nurseries mentioned above.

Extraction and isolation: Dry petals (each 200 g) of 'Honey Moon' and 'White wink' were extracted with 80% MeOH for 2 days at room temperature. After concentration in vacuo, the residue was dissolved in a small volume of 10% MeOH and applied to a Sephadex LH-20 column and eluted with 70% EtOH. The fractions containing the flavonoids were concentrated and purified by prep. HPLC. The isolated flavonoids were concentrated to dryness and freeze dried.

Kaempferol 3-*O*-neohesperidoside (1)

Although UV and ¹H NMR spectroscopic data of flavonoid **1** have been published [12], ¹³C NMR data have not been reported previously.

¹³C NMR (150 MHz, DMSO- d_6 + TFA-d = 9:1): (kaempferol) δ 156.9 (C-2), 133.3 (C-3), 177.9 (C-4), 160.3 (C-5), 98.9 (C-6), 164.5 (C-7), 94.1 (C-8), 156.7 (C-9), 104.6 (C-10), 121.5 (C-1'), 131.2 (C-2'), 115.5 (C-3'), 159.4 (C-4'), 115.5 (C-5'), 131.2 (C-6'); (3-glucose) δ 99.1 (C-1), 78.1 (C-2), 77.7 (C-3), 69.7

(C-4), 77.9 (C-5), 61.2 (C-6); (rhamnose) δ 101.1 (C-1), 71.0 (C-2), 70.6 (C-3), 72.3 (C-4), 68.5 (C-5), 17.7 (C-6).

ESIMS: m/z 611.1604 [M+H]⁺ (base, calcd. for $C_{27}H_{30}O_{16}$, 611.1607); m/z 633.1426 [M+Na]⁺ (base, calcd. for $C_{27}H_{30}O_{16}Na$, 633.1426).

Kaempferol 3-O-sophoroside (2)

UV, ¹H and ¹³C NMR spectroscopic data have been reported by Budzianowski [14].

Kaempferol 3-*O*-β-glucopyranosyl- $(1\rightarrow 2)$ -[rhamnopyranosyl- $(1\rightarrow 6)$ -glucopyranoside] (3)

PC (Rf): 0.26 (BAW), 0.36 (BEW), 0.66 (15%HOAc), 0.60 (5%HOAc); UV (365 nm) – dark purple, UV/NH₃ – dark greenish yellow.

UV λmax nm (MeOH): 267, 345. +NaOMe: 281, 325, 404 (inc.). +AlCl₃: 274, 304, 353, 396. +AlCl₃/HCl: 275, 302, 346, 393. +NaOAc: 274, 307, 384. +NaOAc/H₃BO₃: 266, 352.

¹H NMR (800 MHz, DMSO- d_6 + TFA-d = 9:1): δ 7.99 (2H, dd, J = 2.0 and 8.9 Hz, H-2′,6′), 6.90 (2H, dd, J = 2.1 and 8.9 Hz, H-3′,5′), 6.40 (1H, d, J = 2.1 Hz, H-8), 6.19 (1H, d, J = 2.1 Hz, H-6), 5.55 (1H, d, J = 7.1 Hz, 3-glucosyl H-1), 4.59 (1H, d, J = 7.9 Hz, t-glucosyl H-1), 4.32 (1H, d, J = 1.3 Hz, rhamnosyl H-1), 0.93 (3H, d, J = 6.2 Hz, rhamnosyl Me).

¹³C NMR (150 MHz, DMSO- d_6 + TFA-d = 9:1): (kaempferol) δ 156.9 (C-2), 133.4 (C-3), 178.0 (C-4), 161.6 (C-5), 98.8 (C-6), 164.4 (C-7), 94.2 (C-8), 157.0 (C-9), 104.6 (C-10), 121.5 (C-1'), 131.5 (C-2'), 115.7 (C-3'), 160.3 (C-4'), 115.7 (C-5'), 131.5 (C-6'); (3-glucose) δ 99.1 (C-1), 82.9 (C-2), 76.9 (C-3), 70.0 (C-4), 76.1 (C-5), 66.5 (C-6); (*t*-glucose) δ 104.5 (C-1), 74.8 (C-2), 77.0 (C-3), 70.0 (C-4), 77.5 (C-5), 61.3 (C-6); (rhamnose) δ 100.9 (C-1), 70.8 (C-2), 71.0 (C-3), 72.3 (C-4), 68.7 (C-5), 18.0 (C-6).

Analysis of flavonoid contents: White petals of 'Bridal White', 'Annabel', 'Milky Way' 'BD2349-08' and 'White Sim' were extracted with 10% HOAc in MeOH. The extracts were analyzed by HPLC using an HP1100 system with photodiode array detector (Agilent Technologies-Yokokawa Analytical Systems, Tokyo, Japan) and an Inertsil ODS-2 column (4.6 mm x 250 mm, GL science, Tokyo, Japan) combined with an Inertsil ODS-2 guard column at 40°C with a flow rate of 0.8 mL/min. Absorption spectra were monitored at 240-580 nm. A linear gradient of 10-50% of solvent B (1.5% H₃PO₄, 40% MeCN, 50% HOAc) in solvent A (1.5% H₃PO₄) was run for 40 mins. Flavonoids were identified and quantified based on absorption spectra and the absorption at 360 nm.

- [1] Geissman TA, Mehlquist GAL. (1947) Inheritance in the carnation, *Dianthus caryophyllus* IV. The chemistry of flower color variation, *I. Genetics*, 32, 410-433.
- [2] Geissman TA, Hinreiner EH, Jorgensen EC. (1955) Inheritance in the carnation, *Dianthus caryophyllus* V. The chemistry of flower color variation, II. *Genetics*, 40, 93-97.
- [3] Terahara N, Takeda K, Harborne JB, Self R, Yamaguchi M. (1986) Anthocyanins acylated with malic acid in *Dianthus caryophyllus* and *D. deltoides. Phytochemistry*, 25, 1715-1717.
- [4] Terahara N, Yamaguchi M. (1986) ¹H NMR spectral analysis of the malylated anthocyanins from *Dianthus. Phytochemistry*, 25, 2906-2907.
- [5] Bloor SJ. (1998) A macrocyclic anthocyanin from red/mauve carnation flowers. *Phytochemistry*, 49, 225-228.
- [6] Nakayama M, Koshioka M, Yoshida H, Kan Y, Fukui Y, Koike A, Yamaguchi M. (2000) Cyclic malyl anthocyanins in *Dianthus caryophyllus*. *Phytochemistry*, 55, 937-939.
- [7] Harborne JB. (1966) Comparative biochemistry of flavonoids I. Distribution of chalcone and aurone pigments in plants. *Phytochemistry*, 5, 111-115.
- [8] Forkmann G, Dangelmayr B. (1980) Genetic control of chalcone isomerase activity in flowers of *Dianthus caryophyllus*. *Biochemical Genetics*, 18, 519-527.
- [9] Yoshida H, Itoh Y, Ozeki Y, Iwashina T, Yamaguchi M. (2004) Variation in chalcononaringenin 2'-O-glucoside content in the petal of carnations (*Dianthus caryophyllus*) bearing yellow flowers. *Scientia Horticulturae*, 99, 175-186.
- [10] Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K. (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3',5'-hydroxylase gene. *Phytochemistry*, 63, 15-23.
- [11] Mabry TJ, Markham KR, Thomas MB. (1970) The Systematic Identification of Flavonoids. Springer, Berlin.
- [12] Bacon JD, Mabry TJ. (1975) Flavonol 3-O-neohesperidosides of Nerisyrenia linearifolia and N. gracilis. Phytochemistry, 14, 295-296.
- [13] Takemura T, Takatsu Y, Kasumi M, Marubashi W, Iwashina T. (2006) Flavonoids and their distribution patterns in the flowers of *Gladiolus* cultivars. *Acta Horticulturae*, 673, 487-493.
- [14] Budzianowski J. (1990) Kaempferol glycosides from Hosta ventricola. Phytochemistry, 29, 3643-3647.
- [15] Galeotii F, Barile E, Curir P, Dolci M, Lanzotti V. (2008) Flavonoids from carnation (*Dianthus caryophyllus*) and their antifungal activity. *Phytochemistry Letters*, 1, 44-48.
- [16] Galeotii F, Barile E, Lanzotti V, Dolci M, Curir P. (2008) Quantification of major flavonoids in carnation tissues (*Dianthus caryopyllus*) as a tool for cultivar discrimination. *Zeitschrift für Naturforschung*, 63c, 161-168.
- [17] Curir P, Dolci M, Galeotti F. (2005) A phytoalexin-like flavonol involved in the carnation (*Dianthus caryophyllus*)-Fusalium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153, 65-67.
- [18] Onozaki T, Mato M, Shibata M, Ikeda H. (1999) Differences in flower color and pigment composition among white carnation (*Dianthus caryophyllus* L.) cultivars. *Scientia Horticalturae*, 82, 103-111.
- [19] Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Yoshimoto Y, Ikeda H, Yoshida H, Shibata M. (2000) Flavonoid biosynthesis in white-flowerd Sim carnations (*Dianthus caryophyllus*). *Scientia Horticalturae*, 84, 333-347.
- [20] Hashimoto M, Iwashina T, Kitajima J, Matsumoto S. (2008) Flavonol glycosides from *Clematis* cultivars and taxa, and their contribution to yellow and white flower colors. *Bulletin of the National Museum of Nature and Science, Series B* 34, 127-134.
- [21] Iwashina T, Hashimoto M, Matsumoto S. (2008) Flavonol glycosides from yellow *Clematis* cultivars as flower pigments. *Polyphenols Communications*, 169-170.
- [15] Galeotii F, Barile E, Curir P, Dolci M, Lanzotti V. (2008) Flavonoids from carnation (*Dianthus caryophyllus*) and their antifungal activity. *Phytochemistry Letters*, 1, 44-48.

2010 Vol. 5 No. 12 1907 - 1912

Factors Influencing Glabridin Stability

Mingzhang Ao^a, Yue Shi^a, Yongming Cui^b, Wentao Guo^a, Jing Wang^a and Longjiang Yu^a*

^aInstitute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China

^bInstitute of Environment Science, Wuhan University of Science and Engineering, 430073 1 FangZhi Road, Wuhan, China

faniyue@foxmail.com

Received: July 21st, 2010; Accepted: October 19th, 2010

Glabridin, a polyphenolic isoflavan of *Glycyrrhiza glabra*, has shown a variety of pharmaceutical properties. We have previously studied the isolation of glabridin using macroporous resin and found that it is partially degraded, giving a dark color. To illustrate the degradation of glabridin, the present work studied the stability of glabridin under various conditions. Licorice extract containing about 20% glabridin, obtained from *G. glabra* by silica gel column chromatography, was used in the stability study. Seven different factors (temperature, illumination, humidity, pH, solvent, oxygen, and oxidant) were studied and content changes were determined through HPLC analysis. Except for oxygen, all the above factors had an effect on the stability of glabridin, with illumination being the main one. Moreover, the interactions between temperature and pH, temperature and humidity, and illumination and pH can promote the degradation of glabridin. In conclusion, we suggest that a dark, dry and airtight environment provides the optimized condition for the long-term storage of glabridin.

Keywords: Glabridin, stability, illumination, solvent.

Glabridin is a polyphenolic isoflavan found in the hydrophobic extract of Glycyrrhiza glabra [1]. Recent studies have shown that glabridin has a wide range of pharmacological effects, including antioxidant, antimicrobial, anti-inflammatory, and anti-gastric ulcer activities, as well as inhibitory effects on the formation of melanin and low density lipoprotein [2–5]. Due to its many applications, interest in glabridin has intensified. However, its isolation is complicated because of its low content and high decomposition rate in the preparation process [6,7]. Up to now, there are no reports referring to the stability of glabridin. Temperature, illumination, humidity, oxidant, oxygen, pH and solvent are known to be effective factors which may influence the stability of various compounds. Thus, in our study, licorice extract containing a high proportion of glabridin was first obtained from G. glabra. This was then used to determine the effects of the seven parameters on the stability of glabridin, from which a rational protocol for its preparation and preservation was proposed.

An extract of licorice root was treated by silica gel chromatography [6,7]. The glabridin concentration of the resulting brown product was then determined by an HPLC method [8]. Under optimized chromatographic conditions, the peak of glabridin could easily be distinguished from other co-eluting compounds.

Figure 1: Structure of glabridin.

The calibration curve was obtained through the least-square method, which is widely used in linear analysis. The established linear regression equation was: Y=1154.9X-33.101, where Y is the peak area of glabridin and X the concentration of each injection. The correlation coefficient (R^2) was 0.9967 for glabridin. S_y , was 13.202, while b was 1154.9. Thus, the LOD and LOQ within the linearity of 0.9967 were 0.034 mg/mL and 0.114 mg/mL, respectively.

Intra-day and inter-day precisions were measured by repeated injections of standard glabridin on the same and three different days [8]. The relative standard deviation (RSD) values for both situations were 2.02% and 2.48%, respectively, which were considered to be acceptable. Linear analyses at four other wavelengths (210, 254, 310 and 377 nm) were also carried out to investigate the specificity of the HPLC method. The concentration of glabridin was 0.72, 0.72, 0.73, 0.75

Figure 2: Degradation of glabridin at different pHs.

and 0.67 mg/mL at the above wavelengths, respectively, with a RSD value of 3.7%, which indicated that the established HPLC method could be used for the stability study of glabridin.

The effects of temperature, illumination, humidity, oxidant, oxygen, pH and solvent on the chemical stability of glabridin were assessed. The stability of glabridin at pH values of 1.0, 3.0, 5.0, 7.0, 10.0 and 13.0 were evaluated. In acid and neutral solutions the compound was mainly stable, whereas in alkaline solutions it underwent severe degradation within 24 hours. At pH 13.0, degradation was 71.0% (Figure 2). Friedman [9] reported that the susceptibility of plant phenolic compounds to pH strongly depended on their structure. Glabridin, with two hydroxyl substituents at positions 2' and 4', can exhibit a low degree of ionization. Under alkaline conditions, a neutralization reaction may be aroused leading to the degradation of glabridin and other flavones [9].

Thermal stability of glabridin (pH 8.0) was studied at 4, 25, 40, 60, 80 and 100°C. The interaction between pH and temperature was carried out as well. Glabridin exhibited great stability below 60°C at a specific pH, while it started to degrade moderately after 5 hours above 60°C (Figure 3). The results were in agreement with earlier studies on other kinds of isoflavonoid [10]. Meanwhile, the close relationship between the pH of the solvent and the stability of glabridin at high temperature

Figure 3: Degradation of glabridin at different temperatures.

is shown in Figure 4. Glabridin at pH 5 remained almost stable, whereas at pH 1, 3, 7 and 10 it degraded significantly at 100°C. Stintzing [11] found that the thermal degradation of isoflavonoids was highly dependent on their substitution pattern and solvent pH. A molecule with hydroxyl groups at positions 7 and 4' was more stable under high temperature compared with ones with other substituents at these positions. Glabridin, with a hydroxyl substituent at position 4' and one side ring on ring A, showed stability under high temperature in our study. The effect of the side ring remains to be demonstrated.

The optical stability of glabridin was examined in the dark, natural light and ultraviolet light (Figure 5). Glabridin remained almost unchanged in the dark after 24 h, while it was remarkably unstable in both natural and ultraviolet light after 8 h, the contents being reduced by 26.3% and 54.1%, respectively. It was obvious that the light degradation of glabridin was closely correlated with the exposure time to light and the type of light source. We speculated that the light degradation was promoted by the absorbed energy from photons. Since the energy of ultraviolet light was more powerful than that of natural light, glabridin degraded more in the former conditions [12]. Interaction between pH and illumination was also carried out. Glabridin in acid (pH 1) and alkaline (pH 13) solutions was more unstable than when in neutral solution (pH 7), indicating the synergistic effect between the pH of the solvent and light.

Figure 4: Degradation of glabridin at different pHs at 100°C.

Table 1: Average content of glabridin in seven solvents during 45 days.

	Methanol	Ethanol	Acetone	Ethyl acetate	Methylene dichloride	Chloroform	Propylene glycol
Content (µg/mL)	30.0±0.6	29.9±1.0	31.5±3.7	31.6±3.9	8.7±1.6	8.9±0.6	30.0±0.9
RSD	2.3%	4.3%	3.2%	4.1%	26.2%	8.9%	3.6%

Table 2: Degradation rate of glabridin at different pHs under ultraviolet light.

Degradation rate	pH 1	pH 7	pH 13	Stock solution
8 h	16.4%	13.1%	16.8%	13.1%
16 h	50.6%	28.0%	49.7%	19.1%

Table 3: Degradation of glabridin at different relative humidities and different temperatures.

Degradation rate	75% at 60°C	75% at 25°C	90% at 60°C	90% at 25°C
5 th day	14.2%	5.9%	13.7%	8.3%
10 th day	22.9%	12.7%	22.2%	14.9%

Figure 5: Degradation of glabridin under light.

Glabridin examined in seven different organic solvents demonstrated varying stability (Table 1). It was apparent that the stability was dependent on the properties of the solvents. Methanol was the most suitable for glabridin, followed by acetone under the same conditions. On the contrary, glabridin was equally unstable in methylene dichloride and chloroform. The reason why the solvent could affect the stability of phenolic compounds was because of its ionizability, relative volatility and dissolved oxygen. In the present study, the solvents were first degassed to create lowoxygen conditions. The solvents can be divided into two groups, protonic and nonprotonic [13]. An analogous dissociation to water was observed in organic solvents and was described as the pKa value. For glabridin dissolved in protonic solvents with higher pKa values. the solvation effect between solvents and glabridin was easily initiated. Nevertheless, when dissolved in nonprotonic solvents with lower pKa values, solvation energies were too negative to start a solvation effect. It was concluded that glabridin with two hydroxyl substituents on the benzene ring was more unstable in protonic solvents because of the solvation effect [13], which was inconsistent with our results. We presumed that it was the relative volatility of the solvents rather than the ionizability that caused the degradation of glabridin, which remains to be confirmed in a further study.

Figure 6: Degradation of glabridin with different concentrations of H_2O_2 (1: Contrast; 2: Stock solution with water; 3: 5% H_2O_2 ; 4:10% H_2O_2 ; 5: 20% H_2O_2 ; 6: 30% H_2O_2).

The effect of oxygen and H_2O_2 was carried out at room temperature. Glabridin displayed different stabilities under these two conditions. As shown in Figure 6, the stability of glabridin in H_2O_2 was concentration dependent, while the content of glabridin remained unchanged after exposure to air in the dark (data not shown). Glabridin was reported to possess the ability to scavenge oxygen free radicals, which may explain its content change in H_2O_2 . We supposed that the stability of glabridin was relevant to the type of free radical [14].

The degradation of glabridin was positively related to relative humidity and treatment time (Figure 7). The interaction between humidity and temperature indicated that a high temperature can promote the degradation of glabridin at the same relative humidity. In our oxidant study, glabridin in CH₃OH/H₂O (80/20) also degraded after several days. We have mentioned that the stability of glabridin was in part correlated with the ionizability of the solvent. From the results above, it seemed that water was one of the factors that had an impact on the stability of glabridin for its strong ionizing ability. Thus we suggest that glabridin should be kept in a dry environment during storage.

Figure 7: Degradation of glabridin at different humidities.

In conclusion, the results from this study show that the stability of glabridin in licorice extract depends on illumination, temperature, pH, solvent, humidity and oxidant, of which illumination is the main factor. Interaction effects between temperature and pH, illumination and pH, and temperature and humidity increased the degradation rate of glabridin. To minimize degradation, we suggest that pure glabridin and licorice extract should be stored in a dark, dry and airtight environment. A suitable solvent is recommended, high temperature should be avoided, and pH should be carefully controlled in the isolation process. However, it is worth noting that oxygen can promote a variety of reactions. Our studies showed that the direct impact of oxygen on the stability of glabridin was weak, but the interactions it may cause with other factors still need to be investigated. Thus the presence of oxygen should be avoided both in the preservation and isolation of glabridin to reduce its degradation.

Experimental

Apparatus: HPLC determinations were performed on Agilent 1200 Series (Agilent Technologies Inc., America) equipment, consisting of an Iso pump, UV detector and Man Injection. UV Penetration Reflection Analysis Instrument (Beijing Institute of New Technology, China) was used for photolysis treatment. Thermo analysis was performed on a 101A-1BY Infrared Radiation Electric Oven (Hangzhou LanTian Chemical Instrument Plant, China). A 320-S Acidometer (Mettler Toledo, Switzerland) was used in the adjustment of the pKa of the test solutions.

Chemicals: Glabridin (>97%) was purchased from National Vaccine & Serum Institute of China. The solvents used for extraction and chromatographic isolation were of analytical grade. Ultrapure water was prepared using the MRR-2(D) ultrapure water production system (Hangzhou Repure Ltd. China). Other solvents were of high-performance liquid chromatography (HPLC) grade.

Isolation of glabridin: Powdered roots of *Glycyrrhiza glabra* (provided by Xinjiang Production and Construction Corps) were extracted in acetone (1:5, w/v) at room temperature for 24 h. After solvent evaporation, the brown crude extract was extracted in chloroform (1:3, w/v) to obtain the hydrophobic constituents. This fraction (after evaporation) was separated on a silica gel column with CH₂Cl₂, 2% CH₂Cl₂/CH₃OH, 5% CH₂Cl₂/ CH₃OH and 10% CH₂Cl₂/CH₃OH. The fractions collected were first examined through HPLC and the fraction of 5% CH₂Cl₂/CH₃OH containing glabridin was subsequently used for the stability study.

HPLC analysis: HPLC separation was performed on a Kromasil C18 reverse-phase column (5 μm particle size, 150 x 4.6 mm i.d.) with a flow rate of 1.0 mL/min and column temperature of 25°C. A mixture of methanol—water containing 0.2% acetic acid (70/30, v/v) was used as the mobile phase, which was filtered through a 0.45 μm membrane and degassed by sonication. The column effluent was monitored at 282 nm with UV detection. Prior to HPLC analysis, all the standards and extracts were filtered through a 0.45 μm syringe membrane filter.

Calibration curve: The linearity of the HPLC method was established by triplicate injections of standard glabridin in the range of 0.125–0.625 mg/mL. The linear regression curve was obtained using the least-squares method with the peak area (*Y*-axis) of glabridin as the dependent variable and the concentration (*X*-axis) of each injection as the independent variable.

Validation of the HPLC method: The precision was measured by means of intra-day and inter-day repeatability. Intra-day precision was obtained by 6 injections of standard glabridin on the same day, while inter-day precision was established by 3 repeated injections on days 1, 2 and 3 at the same concentration. The specificity of the method was evaluated through linear analysis at 5 different wavelengths (210, 254, 282, 310 and 377 nm). A linear regression curve was obtained through the least-squares method. The concentration of glabridin was subsequently determined at the above 5 wavelengths. The RSD value of concentration was used to evaluate the purity of the glabridin peak. Limit of detection (LOD) and limit of quantification (LOQ) were determined through the following equation: LOD= $3S_{y, x}/b$ and LOQ= $10S_{y, x}/b$, where $S_{v,x}$ is the standard deviation of the Y value distribution and b is the slope of regression equation.

Statistical analysis: All data were recorded as means \pm standard deviation of either duplicate or triplicate measurements. Analyses of variance (ANOVA) and

significance differences between the means were performed through SPSS 7.0 for Windows. Relative standard deviation (RSD) was also calculated to evaluate the stability.

Chemical stability evaluations: In this study, seven factors involved in glabridin stability were studied. The 5% CH₂Cl₂/CH₃OH eluent was evaporated to obtain a brown solid extract, which was dissolved in methanol to a final concentration of 0.5 mg/mL (stock solution) and used in the following experiments.

The thermal stability of glabridin was studied at 4, 25, 40, 60, 80 and 100°C. Capped glass bottles with 10 mg extract were stored in an oven (fridge for 4°C) at different temperatures for 1, 2, 3, 5, 7, 9 and 24 h, respectively. The extract was then dissolved in 5 mL methanol and filtered through a 0.45 μ m syringe membrane filter before HPLC analysis. Each temperature group was repeated 3 times.

For the optical stability study, an aliquot (10 mL) of the stock solution was placed in an open container and treated in the dark, natural light and ultraviolet light, respectively, for 8, 16 and 24 h [12]. The gross weight of each sample was determined at the beginning. Before HPLC analysis, the gross weight of each sample was adjusted to its initial value to avoid the influence of solvent evaporation. The analysis of each group was repeated 3 times.

 $\rm H_2O_2$ of varying concentration (5%, 10%, 20% and 30%) was used in the study of the oxidant effect on stability of glabridin. Sample solutions were prepared by mixing a stock solution with different concentrations of $\rm H_2O_2$ (4:1, v/v) and storing in a well-capped bottle to avoid solvent evaporation. Meanwhile, water and methanol were added to the stock solution (1:4, v/v) to contrast with groups 1 and 2, respectively. All samples were kept in the dark at room temperature for 14 days. Each group was repeated 3 times.

The effect of pH on chemical stability of glabridin was studied at 6 different levels (1.0, 3.0, 5.0, 7.0, 10.0 and 13.0) at room temperature [9]. Sodium hydroxide solution, sodium chloride solution and hydrochloric acid solution were prepared and then mixed with stock solution (500 μ g/mL) at a ratio of 9:1. Sample solutions were kept in the dark at room temperature for 24 h. Each group was repeated 2 times.

The solvent effect on the stability of glabridin was carried out in 7 different organic solvents (methanol, ethanol, acetone, ethyl acetate, chloroform, methylene dichloride and propylene glycol). Licorice extract (25 mg) was dissolved in 100 mL of solvent, degassed and kept hermetically sealed at room temperature in the dark. An aliquot (20 μ L) of the sample solution was periodically removed and subjected to HPLC analysis on days 0, 7, 12, 19, 25, 32, 35 and 42.

The effect of humidity was studied at relative humidities of 75% and 90%. A constant humidity environment was established in desiccators with supersaturated solutions. In our study, NaCl and KNO₃ were used to set up the constant humidity environment of 75% and 90%, respectively. Licorice extract (10 mg) was transferred into an open container and placed in the desiccators. The treated extracts were then dissolved in 5 mL methanol and subjected to HPLC analysis on days 5 and 10. Each group was repeated twice.

A control group with stock solution was kept hermetically sealed in the dark. The experimental group with stock solution was exposed to air in the dark. After 24 h, the contents of glabridin in both groups were determined. The effect of oxygen was characterized by the content change.

Moreover, the interaction effects between temperature and pH, illumination and pH, and temperature and humidity were studied. The effect of pH on thermal stability was studied at 5 different pHs (1.0, 3.0, 5.0, 7.0 and 10.0) at 100°C [9]. The content of glabridin was determined after 3, 6, 9 and 12 h. The optical stability of glabridin at different pHs (1.0, 7.0 and 13.0) was studied under UV light [12]. Stock solution (10 mL) was filled into an open container and treated under UV light for 8 and 16 h, respectively. The effect of humidity on thermal stability was carried out at relative humidities of 75% and 90% at 60°C. Licorice extract (10 mg) was transferred into an open container and placed in the desiccators. The treated extracts were then dissolved in 5 mL methanol and subjected to HPLC analysis on days 5 and 10. Each group was repeated twice.

Acknowledgments – Authors thank the Xinjiang Production and Construction Corps for providing plant materials.

References

[1] Rauchensteiner F, Matsumura Y, Yamamoto Y, Yamaji S, Tani T. (2005) Analysis and comparison of Radix Glycyrrhizae (licorice) from Europe and China by capillary-zone electrophoresis (CZE). *Journal of Pharmaceutical and Biomedical Analysis*, 38, 594–600.

- [2] Chin YW, Jung HA, Liu Y, Su BN, Castoro JA, Keller WJ, Pereira MA, Kinghorn AD. (2007) Anti-oxidant constituents of the roots and stolons of licorice (*Glycyrrhiza glabra*). *Journal of Agriculture and Food Chemistry*, 55, 4691–4697.
- [3] Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K, Kumar JK, Rahujia N, Luqman S, Sisodia BS, Saikia D, Darokar MP, Khanuja SPS. (2008) Antimicrobial potential of *Glycyrrhiza glabra* roots. *Journal of Ethnopharmacology*, 116, 377–380.
- [4] Fuhrman B, Volkova N, Kaplan M, Presser D, Attias J, Hayek T, Aviram M. (2002) Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: Increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure. *Applied Nutritional Investigation*, 18, 268–273.
- [5] Yokata T, Nishio H, Kubota Y, Mizoguchi M. (1998) The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. *Pigment Cell Research*, 11, 355–361.
- [6] Tian ML, Yan HY, Row KH. (2008) Extraction of glycyrrhizic acid and glabridin from licorice. *International Journal of Molecular Sciences*, 9, 571–577.
- [7] Ma SY, Muhebuli A, Bahargul K. (2007) Study on the preparation technology of isoflavon glabridin from *Glycyrrhiza glabra* L. *Journal of Xinjiang Medical University*, 30, 692–694.
- [8] Shanker K, Fatima A, Negi AS, Gupta VK, Darokar MP, Gupta MM, Khanuja SPS. (2007) RP-HPLC Method for the Quantitation of Glabridin in Yashti-madhu (*Glycyrrhiza Glabra*). *Chromatographia*, 65, 771–774.
- [9] Friedman M, Jürgens HS. (2000) Effect of pH on the stability of plant phenolic compounds. *Journal of Agriculture & Food Chemistry*, 48, 2101–2110.
- [10] Meng ZF, Guo XF, Jiang Y. (2008) Study on stability of flavonoids from *Paulownia tomentosa* Steud flower. *Chinese Journal of Spectroscopy Laboratory*, 25, 655–658.
- [11] Stintzing FC, Hoffmann M, Carle R. (2006) Thermal degradation kinetics of isoflavone aglycones from soy and red clover. *Molecular Nutrition & Food Research*, 50, 373–377.
- [12] Chen D, Xia CT. (2006) Comparison of photic decompositions among natural anthocyanin pigments. *Journal of Tongji University* (Medical Science), 27, 13–16.
- [13] Tian YQ, Xu HH. (2004) Stability of azadirachtin in different solvents. Chinese Journal of Pesticides, 43, 453–455.
- [14] Madsen HL, Andersen CM, Jorgensen LV, Skibsted LH. (2000) Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. *European Food Research and Technology*, 211, 240-246.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1913 - 1916

Effect of Different Strains of *Agrobacterium rhizogenes* and Nature of Explants on *Plumbago indica* Hairy Root Culture with Special Emphasis on Root Biomass and Plumbagin Production

Moumita Gangopadhyay^{a, *}, Saikat Dewanjee^b, Somnath Bhattacharyya^c and Sabita Bhattacharya^a

moumita gangopadhyay@yahoo.co.uk

Received: July 21st 2010; Accepted: October 11th, 2010

The aim of the present study was to determine the effect of three strains of *Agrobacterium rhizogenes* (ATCC 15834, A₄ and LBA 9402) and the nature of explants (leaf and stem) on hairy root induction, growth and plumbagin production in *Plumbago indica*. The first appearance of hairy roots, the transformation frequency, dry root biomass and plumbagin accumulation were found to be maximum in hairy roots induced in leaf explants infected with *A. rhizogenes* ATCC 15834 as compared with the other two bacterial strains. The hairy roots generated from stem explants infected with all three strains were not found to be productive in terms of the selected parameters. Finally, the insertion of the *rolB* gene of *A. rhizogenes* ATCC 15834 in hairy roots of *P. indica* derived from leaf explants was confirmed by PCR analysis.

Keywords: Agrobacterium rhizogenes, hairy root, Plumbago indica, plumbagin.

Plumbago indica Linn. (Family: Plumbaginaceae) is a rich source of a therapeutically active, root specific metabolite, plumbagin. This has been reported to possess filaricidal, anticancer, antimicrobial, and antifertility activity [1-4]. During the past few decades, several attempts have been made to scale up production of plumbagin in vitro by suspension culture [5] and cell culture [6], but low product yield coupled with instability necessitates improvement for better commercial exploitation. Thus, it is necessary to scale up the production of plumbagin without hampering the natural flora through modern biotechnological applications.

Hairy root culture offers a valuable source of root derived phytochemicals [7]. *Agrobacterium rhizogenes*, a Gram negative soil grown bacterium, is the causative agent of hairy root formation in dicotyledonous plants. Hairy root cultures are capable of unlimited growth and produce superior yields of root specific plant secondary metabolites. In the present study, it was aimed to determine the effect of three different strains

of *A. rhizogenes* (ATCC 15834, A₄ and LBA 9402) and the nature of the explants (leaf and stem) on hairy root induction, growth and plumbagin accumulation.

Three strains of *A. rhizogenes* were utilized to infect leaf and stem explants of *P. indica*. A virulent strain of *A. rhizogenes* was selected on the basis of transformation frequency, appearance of hairy roots in minimum time, root biomass and plumbagin accumulation. The transformation frequency was found to be highest when *P. indica* leaf explant was infected with *A. rhizogenese* ATCC 15834 (Figure 1). Similarly, the appearance of hairy roots was best observed (6.6 ± 0.5^{th}) day) when *P. indica* leaf explants were infected with *A. rhizogenese* ATCC 15834 (Figure 1). The highest dry root biomass and plumbagin contents were found when *P. indica* leaf explant was infected with *A. rhizogenese* ATCC 15834 (Figure 2).

A. rhizogenes ATCC 15834-induced hairy roots of *P. indica*, emerging from leaf lamina at the exponential phase, are shown in Figures 3 A-B.

^aMedicinal Plant Laboratory, Department of Botany, Bose Institute, 93/1 APC Road, Kolkata 700009, India

^bDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India

^cDepartment of Genetics, Bidhan Chandra Krishi Visyavidyalaya, Mohonpur, Nadia 741252, India

Figure 1: Effect of different strains of *A. rhizogenes* on the hairy root formation from *P. indica* hairy roots derived from leaf and stem explants.

Figure 2: Effect of different strains of *A. rhizogenes* on the hairy root biomass and plumbagin production from *P. indica* hairy roots derived from leaf and stem explants.

Figure 3: *A. rhizogenes* ATCC 15834 induced *P. indica* hairy roots emerging from leaf lamina (A) and at exponential phase of growth medium (B).

The best results in term of hairy root generation, root biomass and plumbagin content, were generated from leaf explants of *P. indica* infected with *A. rhizogenes* ATCC 15834. These were, therefore, subjected to polymerase chain reaction (PCR) analysis for confirmation of *rolB* insertion. The presence of the *rolB* gene (*A. rhizogenese* ATCC 15834 strain) in the genomic DNA from randomly selected hairy root clones derived from leaf and stem explants was tested by PCR

amplification using *rolB* forward and reverse primers. All the selected hairy root clones showed amplification of the 780 bp fragment (*rolB*) and the DNA isolated from non-transformed roots gave no such amplification.

In the present study, the effect of different strains of A. rhizogenes (ATCC 15834, A₄ and LBA 9402) and the nature of the explants (leaf and stem) on hairy root induction, growth and plumbagin production in P. indica have been investigated. The strain specificity observed in the present study agrees with the hypothesis that the ability for infection of a given species by different A. rhizogenes strains is different [8,9]. It was also observed that the nature of the explants had a significant effect on hairy root culture and metabolite production. It is believed that transformation by A. rhizogenes is species specific and strongly depends on the bacterial strains and culture conditions [10,11]. The effectiveness of ATCC 15834 in hairy root culture and secondary metabolite production has been previously documented for other species [7,12]. Due to the better performance of ATCC 15834 than the other two strains, it will be used for subsequent experiments.

Experimental

Bacterial culture: Three different strains of *A. rhizogenes* viz. ATCC 15834 (pRi 15834), A₄ (pRi A₄) and LBA 9402 (pRi 1855) were used in the experiments. *A. rhizogenes* ATCC 15834 (pRi 15834) strain was maintained in solid *Agrobacterium* broth (AB) medium [13]. *A. rhizogenes* A₄ (pRi A₄) and LBA 9402 (pRi 1855) strains were maintained in Yeast-Mannitol Broth (YMB) medium [14].

Induction and establishment of hairy roots: Bacterial (A. rhizogenes strains viz. ATCC 15834, A_4 and LB 9402) infection was made artificially to the stem and leaf explants of *in vitro* grown axenic *P. indica* plants by wounding the surface tissue with the needle of a loaded syringe, showing absorbance (A_{600}) 0.5.

Frequency of successful transformation and time (days) taken for first appearance of hairy roots from leaf and stem explants with the 3 *A. rhizogenes* strains were recorded. Developing fresh hairy roots arising from the infected explants were cut at the tips and transferred to the MS solid medium (gelled with 0.8% agar) containing 3% sucrose supplemented with cefotaxime (cefotaxime sodium, ALKEM, India) to eliminate bacteria from the culture. Vigorously growing hairy roots free from bacterial contamination were selected from the young root tips and were transferred to 250 mL Erlenmeyer flasks containing 50 mL liquid Murashige, Skoog (MS) medium [15], pH 5.6, with 3% sucrose, on an orbital shaker at 70 rpm and maintained

under darkness at $25 \pm 2^{\circ}$ C. Dry root biomass (g) was measured by drying a weighed amount of fresh root, obtained during the exponential phase of root culture, in an oven at 60° C for 4 h.

Quantification of plumbagin by high performance liquid chromatography: Standard plumbagin (Sigma Aldrich, USA) solution for HPLC was prepared by dissolving in HPLC methanol (1µg µL⁻¹) and kept at 4^oC as a stock solution. Before use, a working solution was freshly prepared (50 µg mL⁻¹). Hairy root tissue was crushed with 50% (v/v) methanol and the homogenized root material was centrifuged at 10000 g for 20 mins. The supernatant was collected and filtered. The filtered sample was transferred to a PhenomenexTM (Torrance, USA) C₁₈ column (Luna, 4 µm, 250 x 4.6 mm) using a JASCO HPLC (Tokyo, Japan) system equipped with a PU-2080 PlusTM pump and a PU-2075 PlusTM UV-VIS detector. For the mobile phase, an isocratic linear solvent system of acetonitrile and water (80: 20, v/v) with a flow rate of 1 mL min⁻¹ for 15 min was used to elute the plumbagin. The chromatogram was monitored at a wave length of 410 nm and analyzed on a Microsoft TM Windows 2000TM platform with DataApex Clarity TM software (Prague, Czech Republic). Identification of plumbagin was performed on the basis of retention time and chromatographic behavior in comparison with an authentic standard.

Confirmation of rolB gene in hairy roots: The transformed root nature of two randomly selected hairy root clones derived from leaf explants of *P. indica* infected with *A. rhizogenes* ATCC 15834 was checked by detecting the *rol* B gene in their genomes by PCR analysis. For extraction of genomic DNA from hairy root clones and non-transformed *in vitro* root clones (negative control) the procedure of mini preparation of

plant genomic DNA was used [16]. Plasmid DNA from *A. rhizogenes* ATCC 15834 was isolated by the alkaline lyses method [17], which served as a positive control. The primer sequences (Bangalore Genie, India) used to amplify a 780 bp fragment of the *rolB* gene of the isolated DNA samples were: 5'-ATG GAT CCG AAA TTG CTATTC CTT CCA CGA-3'- Forward primer and 3'-TTA GGC TTC TTT CTT CAG GTT TAC TGCAGC-5' - Reverse primer.

A 25 μ L volume of reaction mixture used consisted of 20 ng (2 μ L) of template DNA, 100 ng (1 μ L) of forward and reverse primer; 1 μ L (2.5 mM) dNTPs; 0.5 μ L (0.5 U) Taq DNA polymerase; 2.5 μ L 10X Taq buffer, and 17 μ L H₂O. PCR amplification was programmed at an initial denaturation step at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for 45 sec, annealing at 55°C for 45 sec and extension at 72°C for 1 min, followed by final extension for 10 min at 72°C. Amplified products were separated by electrophoresis analyzed along with a 100 bp DNA ladder (Bangalore Genie, India) on a 1.5% agarose gel stained with ethidium bromide with 1% Tris borate EDTA (TBA) as running buffer.

Data analysis: All sets of experiments were carried out in triplicate and the data were analyzed statistically using SPSS software (10.0.5, 1999, SPSS Inc). Variability in data was expressed as the mean \pm standard errors.

Acknowledgments - The authors thank Dr Adinpunya Mitra, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India and Prof Sumita Jha at the Department of Botany, Calcutta University, Kolkata, India for their generous gifts of *A. rhizogenes* strain LBA 9402 and A₄, respectively.

- [1] Mathew N, Paily KP, Vanamil AP, Balaraman KK. (2002) Macrofilaricidal activity of the plant *Plumbago indica/ rosea in vitro*. Drug Development Research, 56, 33-39.
- [2] Hazra B, Sarkar R, Bhattacharya S, Ghosh PK, Chel G, Dinda B. (2008) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma and *Leishmania denovani* promastigotes *in vitro*. *Phytopathology Research*, 16, 133-137.
- [3] Didry N, Dubrevil L, Pinkas M. (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. *Die Pharmazie*, 49, 681-683.
- [4] Bhargava SK. (1984) Effect of plumbagin on reproductive function on male dog. *Indian Journal of Experimental Biology*, 22, 153-156.
- [5] Nahalka, J, Blanarik P, Gemeiner P, Matusova, E, Partlova I. (1996) Production of plumbagin by cell suspension culture of *Drosophyllum lusitanicum* Lin. *Journal of Biotechnology*, 49, 153-161.
- [6] Komaraiah P, Kavi Kishor PB, Ramkrishna SV. (2001) Production of plumbagin from cell culture of *Plumbago rosea* L. *Biotechnology Letter*, 23, 1269-1272.
- [7] Ionkova I. (2007) Biotechnological approaches for the production of lignans. *Pharmacognosy Reviews*, 1, 57-68.
- [8] Zehra M, Banerjee S, Naqavi AA, Kumar S. (1998) Variation in the growth and alkaloid production capability of the hairy root of *Hyoscyamus albus*, *H. muticus* and their somatic hybrid. *Plant Science*, 136, 93-99.

- [9] Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM. (1992) Tropane alkaloid production in root cultures of *Datura stramonium*. *In vitro* cell development. *Biologia Plantarum*, 28, 67-72.
- [10] Giri A, Narasu ML. (2000) Transgenic hairy roots: recent trends and applications. Biotechnology Advances, 18, 1-22.
- [11] Akramian M, Tabatabaei SMF, Mirmasoumi M. (2008) Virulence of different strains of *Agrobacterium rhizogenes* on genetic transformation of four *Hyoscyamus* species. *American-Eurasian Journal of Agricultural & Environmental Sciences*, 3, 759-763.
- [12] Ionkova I, Fuss E. (2009) Influence of different strains of *Agrobacterium rhizogenes* on induction of hairy roots and lignan production in *Linum tauricum* ssp. *tauricum*. *Pharmacognosy Magazine*, 4, 14-18.
- [13] Wise AA, Liu Z, Binns AN. (2008). Culture and maintenance of *Agrobacterium* strains. In *Agrobacterium protocols*, Vol 1, Kan Wang (Ed.). Humana Press, New Jersey. 3-14
- [14] Hooykaas PJJ, Klapwjik PM, Nuti MP, Schilperoort RA, Rorsch A. (1977) Transfer of the *A. tumefaciens* Ti plasmid to avirulent *Agrobacteria* and *Rhizobium ex planta*. *Journal of General Microbiology*, 98, 477-484.
- [15] Murashige T, Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiologia Plantarum*, 15, 473-497.
- [16] Dellaporta SL, Woods J, Hicks JB. (1993) A plant DNA mini preparation: version 2. Plant Molecular Biology Reporter, 1, 19-22.
- [17] Sambrook J, Russell DW. (2001) *In vitro* amplification of DNA by the polymerase chain reaction. In *Molecular cloning: a laboratory manual*, Vol 2. Sambrook J (Ed.). Cold Spring Harbor Laboratory Press, New York, 8.1-8.113.

Natural Product Communications

2010 Vol. 5 No. 12 1917 - 1920

Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived *Streptomyces* sp. B6219 [1]

Muna Ali Abdalla^a, Elisabeth Helmke^b and Hartmut Laatsch^{a,*}

^aInstitute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany

^bAlfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, D-2757, Bremerhaven, Germany

hlaatsc@gwdg.de

Received: August 27th, 2010; Accepted: October 21st, 2010

From a marine-derived streptomycete, a new bioactive angucyclinone, fujianmycin C (1), has been isolated along with five known, metabolites fujianmycins A (2) and B (3), ochromycinone (4), ochromycinone methyl ether (5), and tetrangulol methyl ether (6). The structure elucidation of fujianmycin C (1) was performed by detailed analysis of data such as ¹H, ¹³C, ¹H, ¹H COSY, HSQC, HMBC and NOESY spectra. Fujianmycin C (1) exhibited antibacterial activity against *Streptomyces viridochromogenes* (Tü57).

Keywords: marine streptomycetes, angucyclinones, fujianmycin C.

Fujianmycins [2] are members of the angucyclinone family. Currently, more than 40 derivatives of the latter are known. They are the third class of quinone antibiotics after the tetracyclines and anthracyclines [3]. Most of them are found as free aglycones, and all are oxygenated at C-4. While the related linear anthracyclinones usually have low pharmaceutical activities, the angucyclinones show pronounced antibacterial activity, such as inhibiting prolyl-endopeptidases of *Flavobacterium meningosepticum* non-competitively (IC $_{50} = 8.9$ μ M) [4], and enhancing the cytotoxicity of colchicine. Of special interest is the inhibition of mycobacteria [5] and of *Helicobacter pylori* [6,7]. Both angucyclines/angucyclinones and anthracyclines have been isolated from various streptomycete strains.

Extracts obtained from the marine derived *Streptomyces* sp. B6219 exhibited antibacterial activity against *Streptomyces viridochromogenes* (Tü57), *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*. An unselective antitumor activity against six cancer cell lines was found with average IC₅₀ and IC₇₀ values of 17.0 and 36.0 μg/mL, respectively [8].

The strain B6219 was cultivated on M_2^+ medium (50% seawater) and incubated on a linear shaker for 8 days. Both culture filtrate and mycelium were extracted with either XAD-16 resin or ethyl acetate, respectively.

Separation by chromatographic techniques (see experimental part) afforded fujianmycins A (2) and B (3), ochromycinone (4), ochromycinone methyl ether (5), tetrangulol methyl ether (6) and a new member of the angucyclinone family, fujianmycin C (1).

5: R = Me

Fujianmycin C (1) and the other compounds were obtained as yellow needle crystals. On TLC they showed a UV absorbing band, which turned to yellow

with anisaldehyde/sulfuric acid spray reagent. Compounds **2** and **4** turned to violet with 2N NaOH indicating a *peri*-hydroxy quinone moiety, while the other compounds did not react. Due to this behavior and their similar UV/vis and NMR spectra, a group of related quinones was expected.

In the 1 H NMR spectrum of **1**, two doublets and a triplet of three adjacent aromatic protons and an AB system of two further protons in the *ortho* position in another ring appeared; the patterns were confirmed by COSY data. In the aliphatic region, a methoxy singlet at δ 3.95, two methylene groups at δ 3.82/3.75 (CH₂-13) and 2.99/2.77 (CH₂-2) and two methine signals at δ 4.75 (H-4) and δ 2.37 (H-3) were visible. The 13 C NMR spectrum displayed 20 signals, a ketone carbonyl, two quinone carbonyls, twelve sp^2 and five sp^3 carbon signals.

The CI mass spectrum afforded a *pseudo*molecular ion at m/z 353 [M + H]⁺, and the HRESIMS of **1** delivered the formula $C_{20}H_{16}O_6$. A quinone nucleus was predicted based of the UV/vis data, the presence of carbonyl signals at δ 182.7 and 185.4 and the positive test for *peri*-hydroxy groups in the related components **2** and **4**.

The triplet of H-10 showed HMBC correlations with C-8 and 11a. The doublet at δ 7.66 (H-11) displayed a correlation with a quinone carbonyl and must be in a *peri*-position relative to the latter (C-8 or C-11). Further correlations (Figure 1) confirmed the methoxy group in the same ring, so that it must occupy the opposite *peri*-position (C-11 or C-8). Proton H-6 correlated with the second quinone carbonyl (C-7) and must be in a *peri*-position of a second ring on the same side as the methoxy group. Further HMBC and COSY correlations completed the angucyclinone skeleton, as drawn in Figure 1. Compound 1 is the new 13-hydroxyfujian-mycin B and was named fujianmycin C. To date, it seems to be the second hydroxymethyl-angucyclinone after YM-181741 [9,10].

The relative configuration at C-3 and C-4 was supposed to be the same *trans* orientation as for fujianmycins A (2) and B (3). Force field calculations resulted in a *bis*-axial orientation of the hydrogens H-3 and H-4, which required a coupling constant of $J_{\text{H-3,4}} \sim 10$ Hz. This agrees well with the experimental value of 9.3 Hz for H-4. The small NOE between 3-H and 4-H seemed to indicate their *cis* orientation, but this was also observed for fujianmycin B (3) and was therefore neglected. As the observed optical rotation of 1 (+18°, MeOH) was nearly the same as for 2 (+17°, CHCl₃) and as their biosyntheses are certainly closely related, a (3*S*,4*S*) configuration can be assumed.

Figure 1: Selected H,H COSY (\longrightarrow) and HMBC (\rightarrow) correlations of 1.

Fujianmycin C (1) showed weak antibacterial activity against *Streptomyces viridochromogenes* Tü 57, causing inhibition zones of 14 mm at 40 μ g/ disk, but was not cytotoxic.

Further components were identified as fujianmycins A (2) [11] and B (3), ochromycinone (4) [12], ochromycinone methyl ether (5), and tetrangulol methyl ether (6) [13] by interpretation of their NMR spectroscopic data by means of AntiBase [14]. These compounds were responsible for the cytotoxicity of the crude extract and contributed also to its antibacterial properties. It is obvious that all these compounds have a close biosynthetic relationship.

Experimental

General experimental procedures: see ref. [15]. $R_{\rm f}$ values were measured on Polygram SIL G/UV₂₅₄ TLC cards from Macherey-Nagel & Co. (Düren, Germany) with CH₂Cl₂/5% MeOH.

Taxonomy of Streptomyces sp. B6219: Strain B6219 was derived from sediment of a mangrove forest in Galapagos and was isolated on casein peptone agar [16] containing 50% of natural seawater. The reference culture of B6219 is kept on yeast extract-malt extract agar in the Collection of Marine Actinomycetes at the Alfred-Wegener-Institute for Polar and Marine Research in Bremerhaven.

The almost complete 16S rRNA gene sequence of strain B6219 was deposited in GenBank under the accession no. HQ419059. The sequence is 99 % similar to that of the type strain *Streptomyces griseorubiginosus* (accession no. AJ781339).

The substrate mycelium is brown. Spores are light grey. Spore chains are straight to flexuous (*Rectiflexibiles*). The surface of spores is smooth to warty. Melanin pigment is produced on peptone-yeast extract-iron agar and tyrosine agar [17]. Optimum growth temperature is at about 30°C. The strain neither reproduces at 4°C nor at 45°C. The strain does not develop in media with 7% or higher seawater salinity. Starch and chitin are degraded, casein is not hydrolyzed [18]. The strain is

nitrate reductase positive. For a photograph, see supplementary material Figure S1.

Fermentation, extraction and isolation: The marine derived *Streptomyces* sp. B6219 was cultivated on M₂⁺ medium (10 g malt extract, 4 g glucose, 4 g yeast extract per L, 50% seawater) for 8 days and extracted with ethyl acetate (mycelium) and XAD-16 resin (filtrate), respectively, as described for related strains [19]. The resulting yellow brownish combined crude extract (6.43 defatted using cyclohexane was chromatographed on a silica gel column using CH₂Cl₂/MeOH (gradient 0 to 10 % MeOH) to deliver 4 fractions FI-FIV. Fraction FII was purified on Sephadex LH-20 using MeOH to afford 2 sub-fractions. FIIa was subsequently purified using PTLC (CH₂Cl₂/5% MeOH) and again Sephadex LH-20 using MeOH to afford fujianmycin C (1, 1.90 mg, $R_f = 0.38$), while FIIb after purification on Sephadex LH-20 afforded fujianmycin A (2, 6.4 mg, $R_f = 0.43$) and ochromycinone (4, 1.41 mg, $R_f = 0.36$). Separation of FIII on silica gel (CH₂Cl₂/MeOH gradient 0 to 10 % MeOH) and Sephadex LH-20 delivered 2 sub-fractions: FIIIa afforded on PTLC (CH₂Cl₂/5% MeOH) fujianmycin B (3, 8.0 mg, $R_f = 0.33$; spectra see supplementary material), while FIIIb was purified on Sephadex LH-20 to deliver ochromycinone methyl ether (5, 1.4 mg, $R_{\rm f}$ = 0.40). FIV delivered, in a similar way, tetrangulol methyl ether (6, 1.0 mg, $R_f = 0.30$).

Fujianmycin C (1)

Yellow needles

*R*_f: 0.38 (CH₂Cl₂-MeOH, 95:5).

 $[\alpha]_{D}^{20}$: +18° (*c* 0.1, CH₃OH).

UV/VIS: λ_{max} (log ε) = (MeOH): 225 (4.41), 256 (4.46), 375 (3.87).

¹H NMR (300 MHz, CD₃OD): δ 8.33 (1H, d, J = 8.2 Hz, H-6), 8.04 (1H, d, J = 8.2 Hz, H-5), 7.79 (1H, t, J = 8.4, 7.6 Hz, H-10), 7.66 (1H, d, J = 7.6 Hz, H-11), 7.51 (1H, d, J = 8.5 Hz, H-9), 4.75 (1H, d, J = 9.3 Hz, H-4), 3.95 (3H, s, 8-OCH₃), 3.82, 3.95 (2H, ABX, J = 10.9, 5.5, 4.6 Hz, CH₂-13), 2.99, 2.77 (2H, ABX, J = 16.2, 6.3, 10.4 Hz, CH₂-2), 2.37 (1H, m, H-3).

¹³C NMR (125 MHz, CD₃OD): δ 200.0 (C_q -1), 185.4 (C_q -12), 182.7 (C_q -7), 161.5 (C_q -8), 153.6 (C_q -4a), 138.6 (C_q -11a), 137.0 (CH-10), 136.7 (C_q -12b), 135.3 (C_q -12a), 135.1 (C_q -6a), 132.3 (CH-5), 130.7 (CH-6), 121.5 (C_q -7a), 120.2 (CH-11), 119.1 (CH-9), 69.4 (CH-4), 63.3 (CH₂-13), 56.9 (8-OCH₃), 46.4 (CH-3), 41.0 (CH₂-2).

CIMS: m/z (%) 353 [M + H]⁺ (100).

HRESIMS: m/z 353 [M + H]⁺ calcd for C₂₀H₁₇O₆: 353.10196; found: 353.10205.

Acknowledgments - The authors would like to thank Mr R. Machinek and Dr H. Frauendorf for the NMR and mass spectra, and F. Lissy and A. Kohl for technical assistance. MAA thanks the German Academic Exchange Services (DAAD) for a PhD grant.

- [1] Article No. XLIV on marine bacteria. For part XLIII, see: Shaaban KA, Helmke E, Kelter G, Fiebig HH, Laatsch H. Marine Bacteria, XLIII: Glucopiericidin C: A cytotoxic piericidin glucoside antibiotic produced by a marine *Streptomyces* isolate. *Journal of Antibiotics*, in print October 2010.
- [2] Rickards RW, Wu JP. (1985) Fujianmycins A and B, new benz[a]anthraquinone antibiotics from a *Streptomyces* species. *Journal of Antibiotics*, 38, 513-515.
- [3] Valderrama JA, Colonelli P, Vásquez D, González MF, Rodríguez JA, Theoduloz C. (2008) Studies on quinones. Part 44: Novel angucyclinone *N*-heterocyclic analogues endowed with antitumoral activity. *Bioorganic and Medicinal Chemistry*, 16, 10172-10181.
- [4] Brinkman LC, Robert LF, Seaton PJ. (1993) Isolation and synthesis of benz[a]anthraquinones related to antitumor agent PD 116740. *Journal of Natural Products*, 56, 374-380.
- [5] Kimura KI, Kanou F, Koshino H, Uramoto M, Yoshihama M. (1997) SNA-8073-B, a new isotetracenone antibiotic, inhibits prolyl endopeptidase. I. Fermentation, isolation and biological properties. *Journal of Antibiotics*, *50*, 291-296.
- [6] Hayakawa Y, Ha SC, Kim YJ, Furihata K, Seto H. (1991) Hatomarubigins A, B, C and D new isotetracenone antibiotics effective against multi drug-resistant tumor cells. *Journal of Antibiotics*, 44, 1179-1186.
- [7] Nemoto A, Tanaka Y, Karasaki Y, Komaki H, Yazawa K, Mikami Y, Tojo T, Kadowaki K, Tsuda M, Kadowaki K. (1997) Brasiliquinones A, B and C, new benz[a]anthraquinone antibiotic from *Nocardia brasiliensis* I producing strain, isolation and biological activities of the antibiotics. *Journal of Antibiotics*, 50, 18-21.
- [8] GXF 251L (poorly differentiated gastric adeno ca), GXF 529L (large cell lung ca), MAXF 401 NL (mammary adeno ca), MEXF 462 NL (amelanotic melanoma), RXF 486L (renal, poorly differentiated hypernephroma), UXF 1138L (poorly differentiated endometrium carcinosarcoma): We thank Prof. H.-H. Fiebig, Oncotest GmbH, Freiburg, Germany, for performing the tests.
- [9] Taniguchi M, Nagai K, Watanabe M, Niimura N, Suzuki KI, Tanaka A. (2002) YM-181741, A novel benz[a]anthraquinone antibiotic with anti-Helicobacter pylori activity from Streptomyces sp. Journal of Antibiotics, 55, 30-35.
- [10] Abdelfattah M, Maskey RP, Asolkar RN, Grün-Wollny I, Laatsch H. (2003) Seitomycin: Isolation, structure elucidation and biological activity of a new angucycline antibiotic from a terrestrial Streptomycete. *Journal of Antibiotics*, 56, 539-542.

- [11] Fotso S, Mahmud T, Zabriskie TM, Santosa DA, Sulastri, PJ. (2008) Angucyclinones from an Indonesian *Streptomyces* sp. *Journal of Natural Products*, 71, 61-65.
- [12] Bowie J, Johnson AW. (1967) The structure of ochromycinone. *Tetrahedron Letters*, 8, 1449-1452.
- [13] Grabley S, Hammann P, Hütter K, Kluge H, Thiericke R, Wink J, Zeeck A. (1991) SM 196 A and B, novel biologically active angucyclinones from *Streptomyces* sp. *Journal of Antibiotics*, 44, 670-673.
- [14] Laatsch H. AntiBase (2010) A data base for rapid dereplication and structure determination of microbial natural products, Wiley-VCH, Weinheim, Germany; see also http://www.user.gwdg.de/~ucoc/laatsch/AntiBase.htm
- [15] Jumpathong J, Abdalla MA, Lumyong S, Laatsch H. (2010) Stemphol galactoside, a new stemphol derivative isolated from the tropical endophytic fungus *Gaeumannomyces amomi. Natural Product Communications*, 5, 567-570.
- [16] Weyland H. (1981) Distribution of actinomycetes on the sea floor. Zentralblatt für Bakteriologie, Supplement, 11, 185-193.
- [17] Shirling EB, Gottlieb D. (1966) Methods for characterization of *Streptomyces* species. *International Journal of Systematic Bacteriology*, 16, 313-340.
- [18] Helmke E, Weyland H. (1984) *Rhodococcus marinonascens* sp. nov., an actinomycete from the sea. *International Journal of Systematic Bacteriology*, 34, 127-138.
- [19] Rahman H, Shaaban M, Shaaban KA, Saleem M, Helmke E, Grün-Wollny I, Laatsch H. (2009) An imidazopyridinone and further metabolites from Streptomycetes. *Natural Product Communications*, 4, 965-970.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1921 - 1926

Dioscorealide B from the Traditional Thai Medicine Hua-Khao-Yen Induces Apoptosis in MCF-7 Human Breast Cancer Cells via Modulation of Bax, Bak and Bcl-2 Protein Expression

Jiraporn Saekoo^a, Potchanapond Graidist^a, Wilairat Leeanansaksiri^{b, c}, Chavaboon Dechsukum^{d,e} and Arunporn Itharat^{f,*}

^aDepartment of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hadyai, Songkla, 90110, Thailand

^bSchool of Microbiology, ^cStem Cell Therapy and Transplantation Research Group Institute of Science, Suranaree University of Technology, Muang, Nakornrajchaseema, 30000, Thailand

^dSchool of Pathology, ^eGene Therapy and Application Research Group, Institute of Medicine, Suranaree University of Technology, Muang, Nakornrajchaseema, 30000, Thailand

^fDepartment of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumtanee, 12120, Thailand

iarunporn@yahoo.com

Received: August 7th, 2010; Accepted: October 1st, 2010

Dioscorealide B is a pharmacologically active compound from the rhizome of the Thai medicinal plant *Dioscorea membranacea*. Here, we demonstrated that *in vitro* treatment of dioscorealide B resulted in a cytotoxic effect on MCF-7 human breast cancer cells ($IC_{50} = 2.82 \mu M$). To determine whether this compound induces apoptosis in MCF-7, the Annexin V assay was performed. The data showed that the number of apoptotic cells were increased 7–12 folds over that of the control cells after treatment with various concentrations of dioscorealide B (3, 6 and 12 μM) for 24 hours. Dioscorealide B-induced apoptosis was associated with modulation of the multidomain Bcl-2 family members Bax, Bak and Bcl-2. After treatment with 3 μM dioscorealide B, acceleration of the level of proapoptotic proteins Bax and Bak were observed at 6 hours and 12 hours, respectively, while the decrease in the expression of antiapoptotic protein Bcl-2 was observed 3 hours after the treatment. These effects of dioscorealide B might result in the activation of caspase-8, -9 and -7, which lead to apoptosis in MCF-7 cells. Taken together, the results of this study provide evidence that dioscorealide B possesses an antitumor property against human breast cancer cells and thus provide the molecular basis for the further development of dioscorealide B as a novel chemotherapeutic agent for breast cancer treatment.

Keywords: Dioscorealide B, apoptosis, Bcl-2, MCF-7.

Breast cancer is the most common cancer in women worldwide, comprising 16% of all female cancers. It is estimated that 519,000 women died in 2004 due to this disease, and although it is thought to be a problem of the developed world, a majority (69%) of all breast cancer deaths occurs in developing countries [1]. The American Cancer Society estimated that 192,370 new cases of invasive breast cancer would be diagnosed in women in the U.S. and about 40,170 breast cancer deaths were expected in 2009 [2]. These statistics accentuate the immediate need for improvements in detection, diagnosis, and treatment of this disease. Breast cancer is currently controlled through surgery

and/or radiotherapy, and is frequently supported by adjuvant chemo- or hormonal therapies. However, these classical treatments are impeded by unwanted side effects and, most importantly, the development of tumor resistance. The medicinal use of naturally occurring substances or natural agents then becomes an alternative for the patients suffering from cancer [3,4].

Dioscorealide B (Figure 1) is a pharmacologically active compound from the ethanol extract of *Dioscorea membranacea* Pierre (Dioscoreaceae), a plant known in Thailand as "Hua-Khao-Yen", which is used in Thai traditional medicines as an ingredient in several

Figure 1: Chemical structure of dioscorealide B

preparations, including those used in the treatments of lymphopathy, dermopathy, venereal diseases, leprosy, bacterial infections and cancers [5–7]. Previous study revealed that dioscorealide B, one of the isolated compounds from *D. membranacea*, has cytotoxic activity against MCF-7 human breast cancer cells and has been shown to serve as an anti-proliferative and selective cytotoxic agent. The compound selectively inhibited the proliferation of breast cancer cell line (MCF-7), without being significantly cytotoxic towards non-malignant cells (SVK) [8]. In the present study, some mechanisms related to apoptosis, which might underlie the antiproliferation activity of dioscorealide B, have been investigated.

In this study, the cytotoxic effect of dioscorealide B on MCF-7 was determined by SRB assay. Dioscorealide B showed a cytotoxic effect on MCF-7 with an IC₅₀ value of $2.82 \pm 0.36~\mu M$ (Figure 2), whereas vinblastine, the positive control, had a stronger cytotoxic effect with anIC₅₀ value of 1.65 ± 0.13 nM. This result confirmed that dioscorealide B was able to inhibit *in vitro* growth of MCF-7.

Figure 2: The antiproliferative effect of dioscorealide B on MCF-7 cells. MCF-7 cells were incubated with various concentrations of dioscorealide B. After 72 hours, cell proliferation was determined by SRB assay. Results are expressed as percent of viable cells in the studied group as compared with those in the control group. (*p < 0.05 and **p < 0.01)

Cancer is an aberrant net accumulation of atypical cells which can arise from an excess of proliferation, an insufficiency of apoptosis, or a combination of the two [9]. Increased frequency of apoptosis could result in cell loss in tumors and promote tumor regression. In cancer

treatment, a major recent focus is on activating the apoptotic program in the cell [10], and there is evidence that many anticancer agents cause tumor cell death via the mechanisms of apoptosis [11-13]. Thus, we extended our study to examine whether the anti-tumor property against breast cancer cells is mediated through apoptosis induction after dioscorealide B treatment. MCF-7 cells were stained with Annexin V-FITC and PI, and then subsequently analyzed by flow cytometry. This assay is based on the translocation of phosphatidylserine from the inner leaflet of the plasma membrane to the cell surface in the early apoptotic cells. MCF-7 cells were challenged with dioscorealide B at 3, 6 and 12 µM for 24 h. We found that dioscorealide B significantly induced apoptosis in a dose-dependent manner compared with control cells. The numbers of apoptotic cells in MCF-7 were increased to 7.02, 11.87 and 12.17 fold after 3, 6 and 12 µM dioscorealide B treatment, respectively (Figure 3B).

annexin-V fluorescein isothiocyanate and propidium iodide double staining (An/PI). Breast cancer cells were treated with either dioscorealide B or vehicle (control) for 24 h. Apoptotic cells were detected as An+/PI- cells, while viable cells were An-/PI cells and necrotic cells were PI+. Panel 3 A, representative dot plots after five days of dioscorealide B exposure. Panel 3 B, the fold increase of apoptotic cells compared with control was determined from three experiments (mean \pm SD). Statistical analysis on log transformed data; asterisks indicate ANOVA p < 0.05 versus corresponding control.

Caspases are members of a family of cysteine proteases that play a crucial role in the apoptotic pathway [14,15]. There are two major mechanisms that initiate the caspase cascade: the extrinsic, involving caspase-8; and the intrinsic pathway, involving caspase-9 as the apical caspase, which leads to the proteolytic activation of effector caspases, including caspase-3 and -7, which cleave the cellular substrate, resulting in cell death [16,17]. The extrinsic pathway is triggered by the interaction between a death ligand, such as TNF or FasL, and its cognate receptor, TNF-R or Fas (CD95), inducing the trimerization of the receptors, which recruit adaptor proteins such as FADD and procaspase-8, leading to the activation of caspase-8 [18,19]. The intrinsic pathway is regulated by the Bcl-2 family of proteins, including proapoptotic members such as Bax and Bak, and anti-apoptotic members such as Bcl-2 and Bcl-X_L [20-22]. In response to apoptotic signals, proapoptotic Bcl-2 family members translocate to and alter the permeability of the mitochondrial membrane [23]. These proteins are thought to either form channels in the outer mitochondrial membrane or to alter the activity of existing channels, leading to changes in the mitochondrial membrane potential and cytochrome c release. Cytochrome c then interacts with Apaf-1 and procaspase-9, which in turn activates caspase-9 [24,25].

To gain insights into the mechanism of apoptosis induction in MCF-7, the effect of dioscorealide B treatment on levels of Bcl-2 family proteins by western blotting was studied and the results are shown in Figure 4. Following treatment with 3 μ M of dioscorealide B, the formation of anti-apoptotic protein Bcl-2 was down-regulated after three hours, whereas the expression of proapoptotic protein Bax was upregulated after six hours. The dioscorealide B treatment also caused an increase in the protein level of Bak, as observed at twelve hours.

Figure 4: Immunoblotting for Bax, Bak and Bcl-2 using lysates from MCF-7 cells treated with 3 μ M dioscorealide B for the indicated time periods. The blots were stripped and reprobed with anti-actin antibody to normalize for differences in protein loading.

Next, we examined whether the caspases are involved in dioscorealide B-induced apoptosis. Immunoblot analyses of lysates obtained from MCF-7 cells treated with dioscorealide B at 3 µM were examined and results are shown in Figure 5. The cleaved form of caspase-7 increased after three hours and procaspase-7 was totally cleaved after twenty-four hours of treatment, suggesting that this compound induces the activation of caspase-7. Dioscorealide B increased the activity of caspase-7 activity in a dose- and time-dependent manner, as demonstrated in Figures 6 and 7. After incubation with 3 uM of dioscorealide B, the caspase-7 activity significantly increased to 230% at six hours. The effect of dioscorealide B on caspase-8 and caspase-9 activities is shown in Figure 8. Our findings revealed that activation of caspase-9 significantly increased after treatment of the cells with dioscorealide B, starting from three hours of exposure time, but caspase-8 activity showed a significant elevation after only one hour of treatment.

Figure 5: Western Blot analysis of apoptotic proteins in dioscorealide B treated cells. Proteins from MCF-7 cells treated with 3 μ M of dioscorealide B for the indicated times were resolved on 12% SDS-PAGE and subjected to Western Blotting analysis with antibodies against caspase-7 and actin.

Figure 6: The effect of induction of caspase-7 activity by dioscorealide B in MCF-7 breast cancer carcinomas. MCF-7 cells were treated with 1.5, 3, 6 and $12 \mu M$ of dioscorealide B for 3 h. The data represent the mean value of 3 replications from 2 independent experiments.

In a further experiment, the effect of caspase inhibitors on dioscorealide B-induced apoptosis was studied. In MCF-7, cells were pretreated with either 50 μ M of the caspase-8 inhibitor Z-IETD-FMK or the caspase-9 inhibitor Z-LEHD-FMK for 3 h prior to treatment with 3 μ M of dioscorealide B. As shown in

Figure 7: The activation of caspase-7 in MCF-7 by dioscorealide B. MCF-7 cells were incubated with 3 μ M of dioscorealide B for the indicated times. The data represent the mean value of 3 replications from 2 independent experiments. Asterisks indicate ANOVA p < 0.05 versus corresponding control.

Figure 8: The activation of caspase-8 and caspase-9 in MCF-7 by dioscorealide B. MCF-7 cells were incubated with 3 μ M of dioscorealide B for the indicated times. Asterisks indicate ANOVA significance p < 0.05 versus corresponding control.

Figure 9, pretreatment of MCF-7 cells with either the caspase-8 inhibitor or the caspase-9 inhibitor significantly decreased the caspase-7 activity. These results suggested that this bioactive compound might be involved in both intrinsic and extrinsic apoptotic pathways. This observation further supports the fact that induction of apoptosis in MCF-7 cells by dioscorealide B is mediated through reduction of antiapoptotic protein Bcl-2 expression and induction of proapoptotic protein Bax and Bak expression, leading to the activation of caspase-9 and -7, respectively. However, mechanism of diosocorealide B in the extrinsic pathway needs to be refined. The role of the TNF superfamily such as Fas, Fas ligand, TNF-R1 and TNF- α might be investigated in the further study. In this study, we found that dioscorealide B caused an increase in both caspase-8 and -9 activities. Bid, a BH3 domain-containing proapoptotic Bcl-2 family member, might be involved in dioscorealide B-induced apoptosis. Bid is a specific proximal substrate of caspase-8 in the Fas apoptotic

Figure 9: The effect of caspase-8 and -9 inhibitor on dioscorealide B-induced apoptosis. MCF-7 cells were pre-incubated with Z-IETD-FMK (50 μ M) for 3 h before challenge with 3 μ M dioscorealide B. After 6 h of treatment, caspase-7 activity was measured by caspase-Glo® assay. Each value is the mean \pm SD of 3 determinations. The asterisk indicates a significant difference between control and dioscorealide B-treated cells, as analyzed by ANOVA p < 0.05.

signaling pathway. While full-length BID is localized in truncated BID (tBID) translocates mitochondria and, therefore, transduces apoptotic cytoplasmic signals from the membrane mitochondria. tBID induces first the clustering of mitochondria around the nuclei and release of cytochrome c independent of caspase activity, and then the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation in a caspasedependent fashion [26].

In conclusion, for the first time, the mechanisms of dioscorealide B against breast cancer were elucidated. The results of the present study indicated that dioscorealide B treatment decreased the expression of antiapoptotic protein Bcl-2 and increased the expression of proapoptotic proteins Bax and Bak, which leads to the activation of caspase-9 and -7, respectively. These studies thus provide the molecular basis for the further development of dioscorealide B as a novel chemotherapeutic agent for breast cancer treatment.

Experimental

Materials: Reagents were purchased from the following suppliers: Dulbecco's modified Eagle's medium (DMEM), fetal bovine serum (FBS) penicillin/streptomycin from Gibco BRL (Gaithersburg, MD, USA), anti-□-actin antibody from Sigma-Aldrich Co. (St. Louis, MO, USA); antibodies against Bak and caspase-7 from from Cell Signaling (Beverly, MA, USA); antibody against Bcl-2 from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-Bax antibody from US biological (Massachusetts, USA), Annexin V-FITC and propidium iodide (PI) from BD

Pharmingen (Franklin Lake, NJ, USA), Caspase-Glo® assay from Promega (Madison, WI), caspase-8 inhibitor (Z-IETD-FMK) and caspase-9 inhibitor (Z-LEHD-FMK) from Calbiochem (Darmstadt, Germany).

Plant materials: The rhizomes of *D. membranacea* Pierre (Dioscoreaceae) were collected from Pa-tue, Chumporn, Thailand. Authentication of plant materials was carried out at the herbarium of the Department of Forestry, Bangkok, Thailand where the herbarium voucher (SKP A062041305) is kept. Specimens are also kept in the herbarium of the Southern Center of Thai Medicinal Plants at the Faculty of Pharmaceutical Science, Prince of Songkla University, Songkhla, Thailand.

Isolation of dioscorealide B: Dioscorealide B was isolated following the method previously described and agreed in all respects as regards reported chromatographic and spectral data [8].

Cell culture conditions: MCF-7 human breast cancer cell line was kindly provided by Dr P. Twentyman and Dr P. Rabbitts of MRC Clinical Oncology & Radiotherapeutics Unit, Cambridge, UK. Cells were cultured in monolayers in DMEM supplemented with 10% heat-inactivated fetal bovine serum, $100~\mu g/mL$ penicillin, and $100~\mu g/mL$ streptomycin and maintained at 37° C in a humidified atmosphere of 5% CO₂.

SRB assay: The cytotoxicity assay was carried out using the sulforhodamine B (SRB) assay [8,27]. Briefly, 3,000 of MCF-7 cells were plated per well in 96-well culture plates kept in an incubator at 37°C. After overnight incubation, the cells were treated without or with dioscorealide B 0.03, 0.15, 0.3, 1.5, 3, 15, 30, 150 μ M, with 6 replications. The cells were incubated for 72 h and then the medium was removed and washed. The survival percentage was measured colorimetrically using the SRB assay, and IC₅₀ values were calculated by means of the Prism program. Cells incubated with regular cell culture media with 0.2% DMSO were used as a negative control and vinblastine sulfate as a positive control.

Annexin V– FITC assay: Induction of apoptosis by dioscorealide B treatment was measured by an Annexin V–FITC apoptosis detection kit, following the manufacture's instructions. Briefly, MCF-7 cells $(1\times10^6$ cells) were seeded in 12-well plates and treated with dioscorealide B at 3, 6 and 12 μ M. After 24 h, cells were collected, washed with cold PBS twice, gently

resuspended in 100 µl of staining solution (containing annexin V, fluorescein and propidium iodide in a HEPES buffer). After incubation at room temperature for 15 min, cells were analyzed by flow cytometry. Annexin V binds to those cells that express phosphotidylserine on the outer layer of the cell, and propidium iodide stains the cellular DNA of those cells with a compromised cell membrane. This allows for the discrimination of live cells (unstained with either fluorochrome) from apoptotic cells (stained only with annexin V) and necrotic cells (stained with both annexin V and propidium iodide).

Caspase-7, -8 and -9 activity assay: The Caspase-Glo[®]-3/7, -8 and -9 assays were used to measure caspase-3/7, caspase-8 and caspase-9 activity. Briefly, 10^4 cells were cultured in 96-well plates and treated with dioscorealide B (3, 6 or $12 \mu M$). After the incubation period, caspase-Glo® reagent was added to each well according to the manufacturer's instructions. Plates were mixed on a plate shaker for 30 secs and incubated at room temperature for 1 h. Luminescence was measured using a luminometer. The assay was performed in triplicate.

Western blotting: After treatment, cells were washed with ice-cold PBS and lysed with SDS lysis buffer. The protein concentration of the supernatant was determined by the Bradford method. The lysates were subjected to electrophoresis on a 12% SDS-polyacrylamide gel and then transferred to a PVDF membrane. After the membrane was blocked in Tris-buffer saline (TBST) containing 0.05% Tween 20 and 5% nonfat powdered milk, the membranes were incubated with primary antibodies specific for Bax, Bak, Bcl-2 and caspase-7. After washing 3 times with TBST for 10 min each, the membrane was incubated with horseradish peroxidaselabeled secondary antibody for 1 h. The membranes were washed again, and detection was performed using the enhanced chemiluminescence blotting detection system (Amersham, USA).

Statistics: Data were expressed as means \pm SEM. Statistical comparisons of the results were made using analysis of variance (ANOVA) and a P value less than 0.05 was considered significant.

Acknowledgments – We would like to thank Professor Dr Kovit Patanapunyasat who taught us the use of the flow cytometry technique, and Prince of Songkla University, Thammasart University and Suranaree University of Technology for financial support.

References

[1] World Health Organization. (2008) The global burden of disease: 2004 update. WHO, Switzerland. [http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf]

- [2] American Cancer Society. (2009) Cancer Facts & Figures 2009. American Cancer Society, Inc, Atlanta USA. [http://www.can]cer.org/downloads/STT/500809web.pdf]
- [3] Chabner BA. (1991) Anti-cancer drugs. In: DeVita VT Jr, Hellman S, Rosenberg AS (eds). Cancer: Principles and Practice, 4th ed. Lippincott, Philadelphia USA. 325-417.
- [4] Mans DRA, Da Rocha AB, Schwartsmann G. (2000) Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. *The Oncologist*, 5, 185–198.
- [5] Itharat A. (1998) Wisdom of Southern Thai traditional doctors Prince of Songkla University, Songkla Thailand.
- [6] Itharat A. (1999) Identification and specification of Khao- yen-neua and Khao-yen Tai from traditional doctors in Thailand. Prince of Songkla University, Songkla Thailand.
- [7] Itharat A, Houghton PJ, Eno-Amooquaye E, Burke PJ, Sampson JH, Raman A. (2004) *In vitro* cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. *Journal of Ethnopharmacology*, 90, 33–38.
- [8] Itharat A, Plubrukarn A, Kongsaeree P, Bui T, Keawpradub N, Houghton PJ. (2003) Dioscorealides and dioscoreanone, novel cytotoxic naphthofuranoxepins, and 1,4-phenanthraquinone from *Dioscorea membranacea* Pierre. *Organic Letters*, 5, 2879–2882.
- [9] Singh SV, Zeng Y, Xiao D, Vogel VG, Nelson JB, Dhir R, Tripathi Y. (2005) Caspase-dependent apoptosis induction by guggulsterone, a constituent of Ayurvedic medicinal plant *Commiphora mukul*, in PC-3 human prostate cancer cells is mediated by Bax and Bak. *Molecular Cancer Therapeutics*, 4, 1747–1754.
- [10] Hetts SW. (1998) To die or not to die: An overview of apoptosis and its role in disease. JAMA, 279, 300–307.
- [11] Fan S, Cherney B, Reinhold W, Rucker K, O'Connor PM. (1998) Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. *Clinical Cancer Research*, 4, 1047–1054.
- [12] Hannun AY. (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood, 89, 1845–1853.
- [13] Irene M, Thomas E, Alex A. (2005) Targeting apoptosis pathways in cancer therapy. CA: A Cancer Journal for Clinicians, 55, 178–194.
- [14] Kerr JFR, Wyllie AH, Currie AR. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *British Journal of Cancer*, 26, 239–257.
- [15] Cryns V, Yuan J. (1998) Proteases to die for. Genes & Development, 12, 1551–1570.
- [16] Yin XM, Dong Z. (2003) Essentials of apoptosis: A guide for basic and clinical research. Humana Press Inc., New Jersey USA.
- [17] Salvesen GS, Dixit VM. (1997) Caspases: Intracellular signaling by proteolysis. *Cell*, 9, 443–446.
- [18] Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM. (1997) The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. *Cancer Research*, *57*, 3823–3829.
- [19] Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. (1998) DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. *Molecular Cell*, 1, 543–551.
- [20] Reed JC. (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. *Seminars in Hematology*, 34, 9–19.
- [21] Pastorino JG, Chen ST, Tafani M, Farber JL. (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. *The Journal of Biological Chemistry*, 273, 7770–7775.
- [22] Chao DT, Korsmeyer SJ. (1998) Bcl-2 family: regulators of cell death. Annual Review of Immunology, 16, 395–419.
- [23] Adams JM, Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322–1326.
- [24] Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. *Nature*, *348*, 334–336.
- [25] Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. (2000) Distinct pathways for stimulation of cytochrome c release by etoposide. *Journal Biological Chemistry*, 275, 32438–32443.
- [26] Li H, Zhu H, Xu C, Yuan J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. *Cell.* 94, 491–501.
- [27] Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. (1990) New colorimetric cytotoxicity assay for anticancer drug screening. *Journal of National Cancer Institute*, 82, 1107–1112.

Natural Product Communications

2010 Vol. 5 No. 12 1927 - 1930

Inhibition of Protein Tyrosine Phosphatase 1β by Hispidin Derivatives Isolated from the Fruiting Body of *Phellinus linteus*

Yeon Sil Lee^a, Il-Jun Kang^b, Moo Ho Won^c, Jae-Yong Lee^{d,e}, Jin Kyu Kim^e and Soon Sung Lim^{b,e,*}

^aCenter for Efficacy Assessment and Development of Functional Foods and Drugs, Regional Innovation Center, Hallym University, Chuncheon, 200-702, Gangwon-do, South Korea

limss@hallym.ac.kr

Received: October 4th, 2010; Accepted: October 20th, 2010

Protein tyrosine phosphatase 1β (PTP1 β) acts as a negative regulator of insulin signaling. Selective inhibition of PTP1 β has served as a potential drug target for the treatment of type 2 diabetes mellitus. We evaluated the inhibitory effect of *Phellinus linteus* against PTP1 β as part of our ongoing search for natural therapeutic and preventive agents for diabetes mellitus. Fractions of the *P. linteus* extract were found to exhibit significant inhibitory activities against PTP1 β . In an attempt to identify bioactive components, we isolated, from the most active ethyl acetate fraction, five hispidin derivatives (phelligridimer A, davallialactone, hypholomine B, interfungins A, and inoscavin A) and four phenolic compounds (protocatechuic acid, protocatechualdehyde, caffeic acid, and ellagic acid). The chemical structures of these compounds were elucidated from spectroscopic evidence and by comparison with published data. All the compounds strongly inhibited PTP1 β activity in an *in vitro* assay; their IC50 values ranged from 9.0 \pm 0.01 to 58.2 \pm 0.3 μ M. Our results indicated that the hispidin skeleton may be an important moiety for inhibitory activity of the above compounds against PTP1 β . Thus, hispidin derivatives could be a potent new class of natural PTP1 β inhibitors.

Keywords: *Phellinus linteus*, hispidin, protein tyrosine phosphatase 1β, diabetes.

Protein tyrosine phosphatases (PTPs) are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. Together tvrosine kinases, PTPs regulate phosphorylation state of many important signaling molecules, such as members of the MAP kinase family. Among them, protein tyrosine phosphatase 1B (PTP1B) plays a critical role in the signal transduction of both the insulin and leptin pathway [1,2]. This role has been demonstrated for the dephosphorylated insulin receptor and other proteins in intact cells and thus, PTP1B can act as a negative regulator of the insulin signaling pathway [3]. Also, the deletion of the PTP1B gene in mice has been reported to induce marked insulin sensitivity and prolonged the autophosphorylation of the insulin receptor [4]. PTP-1ß inhibitors would increase insulin sensitivity by blocking the PTP1B-mediated

negative regulation of the insulin signaling pathway [5]. Therefore, PTP1B has emerged as a novel target for the treatment of diabetes and obesity, with numerous compounds having been developed as PTP1 β inhibitors [6]. Small molecule inhibitors of PTP-1 β , such as oxalamides, benzoic acid, and phenoxyacetic acids were reported [7]. Of them, only ertiprotafib progressed to clinical trials prior to discontinuation at phase II due to insufficient efficacy, coupled with unwanted side effects [8]. Although several types of PTP1 β inhibitors have been reported, they have low selectivity and poor pharmacokinetic properties; therefore, new types of PTP1 β inhibitors with improved pharmacological properties are still being sought.

Phellinus linteus (Berkeley & M. A. Curtis), an orange colored mushroom in the family Hymenochaetaceae,

^bDepartment of Food Science and Nutrition Hallym University, Chuncheon 200-702, Gangwon-do, South Korea

^cDepartment of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, Gangwon-do, South Korea

^dDepartment of Biochemistry, College of Medicine, Hallym University, Chuncheon, 200-702, Gangwon-do, South Korea

^eInstitute of Natural Medicine, Hallym University, Chuncheon, 200-702, Gangwon-do, South Korea

Table 1: Inhibitory effects on PTP1 β of MeOH extract and its fractions isolated from the fruiting body of *P. linteus*.

Fractions	PTP1β inhibitory activity ^a (μg/mL)
MeOH Extract	23.4 ± 1.9
<i>n</i> -hexane fr.	-
Methylene chloride fr.	-
Ethylacetate fr.	17.2 ± 0.8
n-BuOH fr.	35.9 ± 2.1
Water fr	-

 a IC $_{50}$ values were determined by regression analyses and are expressed as mean \pm SD of 3 replicates.

has been used in oriental countries for centuries to prevent ailments such as gastrointestinal dysfunction, diarrhea, hemorrhage, inflammation, and cancer [9]. Although they produce a large and diverse variety of secondary metabolites, polysaccharides have been considered to be responsible for their biological effect. β -Glucans derived from P. linteus act as an effective immunomodulator, exhibit a wide range of antitumor activity and have been shown to prevent metastasis [10]. Also, polysaccharide of P. linteus has been reported to be effective for diabetes in non-obese diabetic mouse [11].

A recent investigation of the chemical constituents of the genera *Inonotus* and *Phellinus* resulted in isolation of hispidin derivatives with a novel carbon skeleton, such as phellifuropyranone A [12], phellinusfurans A and B [13], phellinone [14], phellinsin A [15], inoscavins A–D and methylinoscavin A-D [16,17], phelligridins A–G [18–20] and interfungins A–C [21]. However, there have been few studies on the biological activities of these compounds. In our recent study, hispidin derivatives from *P. linteus* exerted potent antioxidant effects, as well as marked inhibitory effects on rat lens aldose reductase and advanced glycation end product formation, corresponding to high values of total phenolic content and total flavonoid content [22,23].

While screening for PTP1 β inhibitors from natural resources, the MeOH extract of the fruiting body of *P. linteus* was found to inhibit PTP1 β activity at a concentration of 16.3 µg/mL; this led us to investigate the PTP1 β inhibitory components from this plant. In this paper, we report the isolation and structural elucidation of active principles with an inhibitory activity against PTP1 β .

To identify the active principles, we performed bioassay-guided fractionation and purification by using repeated column chromatography, which resulted in 5 hispidin derivatives and 4 phenolic compounds (Figure 1). The isolated compounds were identified by analysis of their NMR and MS data as phelligridimer A (1), davallialactone (2), hypholomine B (3), interfungin A (4) and inoscavin A (5), as well as hispidin (6), protocatechuic acid (7), protocatechualdehyde (8), caffeic acid (9), and ellagic acid (10), In addition, these

Figure 1: Chemical structures of the compounds isolated from *P. linteus*. 1: phelligridimer A; 2: davallialactone; 3: hypholomine B; 4: interfungin A: 5: inoscavin A.

data were compared with those found in the literature [24–27]. The inhibitory activities of the isolated compounds against PTP1 β were measured using *p*-nitrophenyl phosphate (*p*NPP) as the substrate; the results are summarized in Table 2. The known PTP1 β inhibitor, ursolic acid (IC₅₀ = 3.9 ± 0.3 μ M), was used as a positive control. The isolated compounds 1–10 dose-dependently inhibited the PTP1 β activity with IC₅₀ values ranging from 9.0 ± 0.6 to 58.2 ± 3.4 μ M.

The hispidin derivatives 1–6 were found to show greater inhibitory activities against PTP1\beta than the phenolic compounds 7–10. Of the hispidin derivatives, compounds 1 and 3 with a hispidin moiety exhibited a greater inhibitory activity against PTP1B than compounds 2, 4, and 5, which have a hispolon moiety. As shown in Table 2, the inhibitory effects of the hispidin derivatives were enhanced when a hispidin dimer or tetramer was formed. Among the hispidin derivatives, compound 1, a hispidin tetramer, exhibited the highest inhibitory activity against PTP1B with an IC₅₀ of $8.9 \pm 0.6 \,\mu\text{M}$. This result indicates that compound 1 is approximately 2- to 3-fold more effective than other hispidin derivatives. Compounds 1-6 are highly oxygenated and functionalized aromatic compounds that possess the unique basic structural unit, namely, 6-[2-(3,4-dihydroxyphenyl)ethenyl]-4hydroxy-2H-pyran-2-one (hispidin, 6). It has been reported that compound 3, which has an unusual structure with 2,3-dihydro-4-H-furo[3,2-c]pyran-4-one, may be biosynthesized by oxidative coupling of two hispidin mediates, while compound 1 may be sequentially or simultaneously formed by oxidative coupling of four hispidin mediates and/or by oxidative coupling of two hypholomine B molecules [24].

Table 2: Inhibitory effects of compounds isolated from the fruiting body of *P. linteus* on PTP1 β .

Compounds	Concentration	Inhibition	IC ₅₀ (μM)
•	(µM)	(%)	
Phelligridimer A (1)	10	56	8.9 ± 0.6
	5	29	
	1	9	
Davallialactone (2)	25	51	24.2 ± 1.0
	10	26	
	2.5	11	
Hypholomine B (3)	25	91	12.9 ± 0.9
• • • • • • • • • • • • • • • • • • • •	10	42	
	2.5	12	
Interfungins A (4)	25	59	20.1 ± 1.7
,	10	32	
	2.5	12	
Inoscavin A (5)	50	95	27.3 ± 2.1
	25	46	
	10	15	
Hispidin (6)	50	80	33.6 ± 3.8
,	25	32	
	10	10	
Protocatechuic acid (7)	100	88	52.9 ± 3.6
	50	48	
	10	15	
Protocatechualdehyde (8)	100	82	58.6 ± 3.4
, ,	50	42	
	10	14	
Caffeic acid (9)	100	93	44.5 ± 2.5
	50	52	
	10	25	
Ellagic acid (10)	50	88	26.2 ± 1.9
	25	49	
	10	23	
Ursolic acid ^b	5	65	3.9 ± 0.3
	2.5	30	
	1	10	

 $^{a}IC_{50}$ values were determined by regression analyses and are expressed as mean \pm SD of 3 replicates. b Positive control.

Compounds 2 and 5 are known to be biosynthesized by rearrangement of compound 4, which is biosynthesized by the condensation of hispidin and 6-(3,4-dihydroxyphenyl)-4-hydroxy-3,5-hexadiene-2-one (hispolon) [21]. This suggests that a dihydrofuro[3.2c]pyran-4-one moiety is formed by a cyclization linkage between the A and B rings via an oxygen-bridge that might increase the inhibitory activity against PTP1β. Phelligridins H and I have an unprecedented carbon skeleton (pyrano-[4,3-c]isochromen-4-one) as the structural element. A previous study reported inhibitory activity of these 2 derivatives from P. igniarius against PTP1β [20]. Although the structure-activity relationships of the hispidin derivatives were not thoroughly investigated, the dihydrofuro[3,2-c]pyran-4-one moiety appeared to correlate with the inhibitory activity against PTP1\(\beta \). The hispolon moiety might be responsible for a loss of PTP1B activity. Thus, the inhibitory activities of the hispidin derivatives might provide valuable information regarding the structure -activity relationship for the development of novel PTP1β inhibitors.

Experimental

Plant materials: The fresh fruiting bodies of *P. linteus* were provided by Samsung Herb Medicine Co., Ltd.,

Chuncheon, Korea and the voucher specimen (No. RIC-021) was deposited at the Regional Innovation Center, Hallym University, Republic of Korea.

Chemicals and equipment: ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 400 spectrometer. Sephadex LH 20 (GE Healthcare Bio-Science AB, Sweden) and cosmosil 75C18-OPN (Nacalai tesque, Kyoto, Japan) were used as column packing material. PTP1β (human, recombinant) drug discovery kit was purchased from BIOMOL[®] International Inc. (USA).

Isolation and identification: The lyophilized fruiting bodies of P. linteus (1 kg) were extracted 3 times with MeOH for 5 h. After removal of MeOH under reduced pressure, a dark brown residue (50 g, 5%) was obtained. This was suspended in water and then partitioned sequentially with n-hexane (8 g, 0.8%), methylene chloride (4.9 g, 0.5%), ethylacetate (EtOAc, 22 g, 2.2%), *n*-butanol (14.1 g, 1.4%), and water (1 g, 0.1%). Sequential fractionation indicated that the EtOAcsoluble fraction showed PTP1B inhibitory activity. Therefore, this fraction was chromatographed over Sephadex LH 20 eluting with MeOH. Among the 8 pools (Fr.1-Fr.8), combined by their HPLC profiles, Fr. 7 was found to have the highest activity. Mixed frs. 5, 7, and 8 was subjected to Lichroprep® RP-18 CC using a stepwise gradient of AcCN-H₂O (1:4 to 4.5:5.5) to afford compounds 1-6. Fractions 1-3 were each purified by reversed phase HPLC using an isocratic solvent system of 15% AcCN to isolate compounds 7-9, respectively. Compound 10 was obtained as crude crystals from Fr. 4, which was further purified by HPLC using an isocratic solvent system of 20% AcCN. The structures of 1-10 were identified by comparison of observed spectroscopic data with published values.

Assay for PTP1\beta inhibitory activity: The PTP 1\beta tyrosine phosphatase drug discovery kit is a colorimetric, non-radioactive assay designed to measure the phosphatase activity of purified PTP1ß [28]. The enzyme activity was measured by using IR5 phosphopeptide (Insulin Receptor B residues 1142-1153, pY-114) as a substrate. To each 96-well (final volume: 125 μL) was added 75 μM IR5 substrate and PTP1B (2.5 ng/well) in a buffer containing 100 mM MES (pH 6.0), 0.3 M NaCl, 2 mM EDTA, 2 mM dithiothreitol (DTT) and 0.1% NP-40 with or without test compounds. Following incubation at 37°C for 30 min, the reaction was terminated with BIOMOL REDTM reagent. The amount of produced p-nitrophenol was estimated by measuring the absorbance at 620 nm. The non-enzymatic hydrolysis of IR5 substrate was corrected by measuring the increase in absorbance at 620 nm obtained in the absence of PTP1ß enzyme.

Acknowledgements – The authors would like to thank Mrs Soo-Kyung Lee for her technical help in this study. This work was supported by the Priority Research

Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094074).

- [1] Byon JCH, Kusari AB, Kusari J. (1998) Protein-tyrosine phosphatase-1β acts as a negative regulator of insulin signal transduction. **Molecular** *and Cellular Biochemistry*, 182, 101-108.
- [2] Johnson TO, Ermolieff J, Jirousek MR. (2002) Protein tyrosine phosphatase 1β inhibitors for diabetes. *Nature Reviews Drug Discovery*, 1, 696-709.
- [3] Liu G, Trevillyan JM. (2002) Protein tyrosine phosphatase 1β as a target for the treatment of impaired glucose tolerance and type II diabetes. *Current Opinion in Investigational Drugs*, *3*, 1608-1616.
- [4] Tobin JF, Tam S. (2002) Recent advances in the development of small molecule inhibitors of PTP1β for the treatment of insulin resistance and type 2 diabetes. *Current Opinion in Drug Discovery and Development*, 5, 500-512.
- [5] Taylor SD, Hill B. (2004) Recent advances in protein tyrosine phosphatase 1β inhibitors. *Expert Opinion on Investigational Drugs*, 13, 199-214.
- [6] Pei Z, Liu G, Lubben TH, Szczepankiewicz BG. (2004) Inhibition of protein tyrosine phosphatase 1β as a potential treatment of diabetes and obesity. *Current Pharmaceutical Design*, 10, 3481-3504
- [7] Zhang S, Shang ZY. (2007) PTP1β as a drug target: recent developments in PTP1B inhibitor discovery. *Drug Discovery Today*, 12, 373-381
- [8] Cho SY, Ahn JH, Ha JD, Kang SK, Baek JY, Han SS, Shin EY, Kim SS, Kim KR, Cheon HG, Choi JK. (2003) Protein tyrosine phosphatase 1β inhibitors: Heterocyclic carboxylic acids. *Bulletin of the Korean Chemical Society*, 24, 1455-1464.
- [9] Zhu T, Kim SH, Chen CY. (2008) A medicinal mushroom: Phellinus linteus. Current Medicinal Chemistry, 15, 1330-1335.
- [10] Kim HG, Yoon DH, Lee WH, Han SK, Shrestha B, Kim CH, Lim MH, Chang W, Lim S, Choi S, Song WO, Sung JM, Hwang KC, Kim TW. (2007) *Phellinus linteus* inhibits inflammatory mediators by suppressing redox-based NF-KappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. *Journal of Ethnopharmacology*, 114, 307-315.
- [11] Kim HM, Kang JS, Kim JY, Park SK, Kim HS, Lee YJ, Yun J, Hong JT, Kim Y, Han SB. (2010) Evaluation of antidiabetic activity of polysaccharide isolated from *Phellinus linteus* in non-obese diabetic mouse. *International Immunopharmacology*, 10, 72-78.
- [12] Kojima K, Ohno T, Inoue M, Mizukami H, Nagatsu A. (2008) Phellifuropyranone A: a new furopyranone compound isolated from fruit bodies of wild *Phellinus linteus*. *Chemical & Pharmaceutical Bulletin*, 56, 173-175.
- [13] Min BS, Yun BS, Lee HK, Jung HJ, Jung HA, Choi JS. (2006) Two novel furan derivatives from *Phellinus linteus* with anti-complement activity. *Bioorganic & Medicinal Chemistry Letters*, 16, 3255-3257.
- Yeo WH, Hwang EI, So SH, Lee SM. (2007) Phellinone, a new furanone derivative from the *Phellinus linteus* KT&G PL-2. *Archives of Pharmacal Research*, 30, 924-926.
- [15] Hwang EI, Kim JR, Jeong TS, Lee S, Rho MC, Kim SU. (2006) Phellinsin A from *Phellinus* sp. PL3 exhibits antioxidant activities. *Planta Medica*, 72, 572-575.
- [16] Lee IK, Sook SJ, Kim WK, Yun BS. (2006) Hispidin derivatives from the mushroom *Inonotus xeranticus* and their antioxidant activity. *Journal of Natural Products*, 69, 299-301.
- [17] Lee IK, Yun BS. (2006) Hispidin analogs from the mushroom *Inonotus xeranticus* and their free radical scavenging activity. *Bioorganic & Medicinal Chemistry Letters*, 16, 2376-2379.
- [18] Mo S, Wang S, Zhou G, Yang Y, Li Y, Chen X, Shi J. (2004) Phelligridins C-F: cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus *Phellinus igniarius*. *Journal of Natural Products*, 67, 823-828.
- [19] Wang Y, Mo SY, Wang SJ, Li S, Yang YC, Shi JG. (2005) A unique highly oxygenated pyrano[4,3-c][2]benzopyran-1,6-dione derivative with antioxidant and cytotoxic activities from the fungus *Phellinus igniarius*. *Organic Letters*, 7, 1675-1678.
- [20] Wang Y, Shang XY, Wang SJ, Mo SY, Li S, Yang YC, Te F, Shi GG, He L. (2007) Structures, biogenesis, and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the fungus *Phellinus igniarius*. *Journal of Natural Products*, 70, 296-299.
- [21] Lee IK, Yun BS. (2007) Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms *Inonotus* and *Phellinus*. *Bioorganic & Medicinal Chemistry Letters*, 15, 3309-3314.
- [22] Lee YS, Kang YH, Jung JY, Lee S, Ohuchi K, Shin KH, Kang IJ, Park JH, Shin H K, Lim SS. (2008) Protein glycation inhibitors from the fruiting body of *Phellinus linteus*. *Biological & Pharmaceutical Bulletin*, 31, 1968-1972.
- [23] Lee YS, Kang YH, Jung JY, Kang IJ, Han SN, Chung JS, Shin HK, Lim SS. (2008) Inhibitory constituents of aldose reductase in the fruiting body of *Phellinus linteus*. *Biological & Pharmaceutical Bulletin*, 31, 765-768.
- [24] Wang Y, Wang SJ, Mo SY, Li S, Yang YC. Shi JG. (2005) Phelligridimer A, a highly oxygenated and unsaturated 26-membered macrocyclic metabolite with antioxidant activity from the fungus *Phellinu igniarius*. *Organic Letters*, 7, 4733-4736.
- [25] Cui CB, Tezuka Y, Kikuchi T, Nakano H, Tamaki T, Park JH. (1990) Recent advances in protein tyrosine phosphatase 1β inhibitors. *Chemical & Pharmaceutical Bulletin*, 38, 3218-3225.
- [26] Fiasson JL, Gluchoff-Fiasson K, Steglich W. (1977) Pigments and fluorescent compounds from *Hypholoma fasciculare* (Agaricales). *Chemische Berichte*, 110, 1047-1057.
- [27] Kim JP, Yun BS, Shim YK, Yoo ID. (1999) Inoscavin A, a new free radical scavenger from the mushroom *Inonotus xeranticus*. *Tetrahedron Letters*, 40, 6643-6644.
- [28] Han YM, Oh H, Na M, Kim BS, Oh WK, Kim BY, Jeong DG, Ryu SE, Sok DE, Ahn J. (2005) PTP1β inhibitory effect of abietane diterpenes isolated from *Salvia miltiorrhiza*. *Biological & Pharmaceutical Bulletin*, 28, 1795-1797.

Natural Product Communications

2010 Vol. 5 No. 12 1931 - 1934

A New Azafluorenone from the Roots of *Polyalthia cerasoides* and its Biological Activity

Kanchana Pumsalid^a, Haruthai Thaisuchat^a, Chatchanok Loetchutinat^b, Narong Nuntasaen^c, Puttinan Meepowpan^d and Wilart Pompimon^{a*}

^aLaboratory of Natural Products, Faculty of Science and Center for Innovation in Chemistry, Lampang Rajabhat University, 52100 Lampang, Thailand

^bLaboratory of Physical Chemistry, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, 50200 Chiang Mai, Thailand

^cThe Forest Herbarium, Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, 10900 Bangkok, Thailand

^dDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Chiang Mai University, 50300 Chiang Mai, Thailand

Wilart_p@hotmail.com

Received: July 1st, 2010; Accepted: October 19th, 2010

Chromatographic separation of the ethyl acetate extract of roots of *Polyalthia cerasoides* has led to the isolation of the new compound, 6,8-dihydroxy-7-methoxy-1-methyl-azafluorenone. This compound exhibited potent cytotoxic activities with IC₅₀ values in the range of 2.64-3.58 μg.mL⁻¹ for A549, GLC4 and GLC4/Adr cells, but was not recognized by ABCC1/MRP1 protein. The compound also showed very strong inhibition of *M. tuberculosis* using a broth microdilution method, with an MIC value of 0.78 μg.mL⁻¹, which was equal to that of ofloxacin, one of the four antibiotic drugs used as a positive control.

Keywords: Polyalthia cerasoides, Annonaceae, azafluorenone, antimycobacterial activity, cytotoxicity.

Polyalthia cerasoides (Roxb.) Bedd. (Annonaceae) is a medium-sized tree up to 5-15 meters tall, occurring mainly in Asiatic and Oceanic areas such as Burma (Myanmar), South China, India, Indochina, Thailand, and Laos (Khammouan) [1a, 1b].phytochemical studies of various parts of *P. cerasoides* have resulted in the characterization of a benzofuran derivative [2a], oxoprotoberberine alkaloids [2b], dimeric aporphine alkaloids, a sesquiterpene, an isoquinoline alkaloid and triynoic acid [2c], and phytosterols [2d]. The constituents of Polyalthia species have shown remarkable antibacterial [2e], antifungal [3a], cytotoxic [3b], and antimalarial [2e] properties. In traditional Thai medicine, P. cerasoides is used for the treatment of tuberculosis. Based on already known preliminary data from bioassay-guided fractionation, we undertook further cytotoxicity studies of the crude *n*-hexane, ethyl acetate, acetone and methanol extracts. We present here the results obtained from testing the ethyl acetate extract for cytotoxic activity. From this extract, a new azafluorenone was isolated and examined for its antimycobacterial activity.

6, 8-Dihydroxy-7-methoxy-1-methyl-azafluorenone

NOE experiments

Figure 1: Chemical structure and NOE experiments.

The new azafluorenone was isolated as yellow needle crystals from ethanol (mp 200.9-202.7°C). In the ESIMS, the molecular weight was indicated by the HRAPCIMS peak at m/z 257 [M $^+$], in combination with the measurement of the [M+H] $^+$ ion at m/z 258.0764 (cald. 258.0761 for C₁₄H₁₂NO₄). The presence of a hydroxyl group was suggested in the mass spectrum by a fragment ion base peak at m/z 239 (100) due to the direct loss of an 18 a.m.u. water unit from the C₁₄H₁₂NO₄ $^+$ ion. In addition, the fragment ions at m/z 242 (M $^+$ -Me) and 224 (M $^+$ -Me-H₂O) in the mass spectrum indicated the presence of an OMe group in the position next to the OH group. As a unique group of alkaloids, azafluorenones

Carbon	δ ¹³ C (DEPT)	δ^{1} H (J Hz)	HMBC correlation	COSY correlation
1	147.41 (C)	-	H-1CH ₃ , H-3	-
2	124.16 (CH)	6.80 (1H, d, 5.53)	H-1CH ₃ , H-2, H-3	H-3, H-1CH ₃
3	150.80 (CH)	8.16 (1H, d, 5.53)	H-2	H-2
4	-	-	-	-
4a	166.35 (C)	-	H-3, H-5	-
5	104.30 (CH)	6.87 (1H, s))	-	-
5a	125.35 (C)	-	-	-
6	151.89 (C)	-	H-5	-
7	139.13 (C)	-	H-7OCH ₃ , H-5	-
8	145.92 (C)	-	-	-
8a	119.75 (C)	-	H-5	-
9	191.58 (C=O)	-	H-1CH ₃	-
9a	129.72 (C)	-	H-1CH ₃ , H-2	-
1-CH ₃	17.09 (CH ₃)	2.56 (3H, s)	<u>-</u>	H-2
7-OCH ₃	60.94 (OCH ₃)	4.13 (3H, s)	-	-

Table 1: ¹³C NMR and ¹H NMR spectroscopic data of the azafluorenone and ¹H-¹³C and ¹H-¹H correlations exhibited in the 2D NMR spectra in CDCl₃.

show a characteristic UV spectrum; the substituted onychines (1-methyl-4-azafluorenone) give two absorption bands in the UV spectrum (MeOH); band I at 207 nm (2.35) and band II at 269 nm (2.48) that exhibit $\pi \rightarrow \pi^*$ of an aromatic unit together with a double bond, and $n \rightarrow \pi^*$ from a conjugated carbonyl chromosphore. In the IR spectrum, absorption bands attributable to hydroxyl (3526 cm⁻¹ and 3329 cm⁻¹) and the carbonyl of an unsaturated ketone (1701 cm⁻¹) were observed. In addition, a C-O stretching vibration occurs at 1350 cm⁻¹ indicating an ether moiety.

The ¹H NMR spectrum displayed only three unique signals: three aromatic [δ_H 6.80, d, J = 5.53 Hz; 6.87, s, and 8.16, d, J = 5.53 Hz)], one methoxy resonance $(\delta_H 4.13, s)$ and one C-methyl signal $(\delta_H 2.56, s)$. All the direct proton-carbon connectivities were assigned following HMQC analysis. Using COSY, ¹H-¹H coupling constants and HMBC correlations, a trisubstitued pyridine moiety was readily established. HMBC correlations from protons of the methyl group at $\delta_{\rm H}$ 2.56 (1-Me) to three carbons of the pyridine unit $[\delta_{C} 147.41(C-1), 129.72 (C-9a), and 124.16 (C-2)]$ indicated its para-position relative to the pyridine ring system. An additional weak HMBC correlation from this methyl group to a carbon at δ_C 191.58 (C-9) suggested that the carbonyl functionality was attached ortho to the methyl moiety. Moreover, three carbon signals of the pyridine ring at δ_C 166.35 (C-4a), 147.41 (C-1) and 124.1(C-2) were HMBC correlated with the proton signals at δ_H 8.16 (H-3), 6.87 (H-5) and 8.16 (H-2). The one aromatic proton at δ_H 6.87 (s) exhibited HMBC correlations to three quaternary carbons $[\delta_C \ 151.89 \ (C-6), \ 139.13 \ (C-7), \ and \ 119.75 \ (C-8a)],$ three of which emerged to be connected to an oxygen heteroatom on account of their ¹³C chemical shifts. The HMBC spectrum of this compound, which provided reciprocity from δ_{H} 4.13 (7-OMe) to the carbon at δ_C 139.13, clearly showed that the methoxy group was located on an aromatic ring. An additional strong HMBC correlation from proton $\delta_{\rm H}$ 6.87 (5-H) to a carbon at δ_C 139.13 suggested that a methoxy group was located

at the C-7 position. Moreover, a series of NOE experiments were carried out in order to assign the methoxy group at position 7. Enhancements were observed in the pyridine ring, but not in the phenolic ring (Figure 1). Based on the above data, the compound was identified as 6,8-dihydroxy-7-methoxy-1-methyl-azafluorenone, an onychine analogue not previously reported.

The inhibition effects of P. cerasoides root extracts were investigated using the MTT assay. The IC₅₀ value was determined against three human lung cancer cell lines. Of the four extracts, the ethyl acetate one exhibited the highest antiproliferative activity with IC₅₀ values of 2.7, 4.3 and 3.4 µg.mL⁻¹ for A549, GLC4 and GLC4/Adr cells, respectively (Table 2). Strong growth inhibitory activity was also found for the *n*-hexane and acetone extracts with IC₅₀ values in the range from 3.5 to 11.4 µg.mL⁻¹; the methanol extract was only weakly active. The ethyl acetate extract was, therefore, considered for subsequently purification and the new active compound, 6,8-dihydroxy-7-methoxy-1-methylazafluorenone, was isolated. This compound showed inhibitory activity against the three cancer cell lines equal to or higher than that of the ethyl acetate extract. The IC₅₀ values of the crude extracts and the pure compound showed similar values against both GLC4 and GLC4/Adr cells. It is proposed that neither the crude extracts nor the pure compound are recognized by ABCC1/MRP1 protein.

The new compound was also examined for its efficacy against *M. tuberculosis* using a broth microdilution method. It demonstrated very strong inhibition, with a MIC value of 0.78 μg/mL, equal to that of ofloxacin, one of four antibiotic drugs used as positive controls. This antimycobacterial activity is consistent with a previous report for compounds isolated from *P. cerasoides* roots [2c]. Three compounds isolated from seeds exhibited antiproliferative action against the CACO-2 cell line, and two phytosterols showed antimutagenic activity [2d]. It has been reported that some extracts of this plant have antimalarial [2c] and antioxidant potential [4a].

D	$\%IC_{50} (\mu g.mL^{-1})$						MIC (μg.mL ⁻¹)
P. cerasoides (roots)	A549		GLC4		GLC4/Adr		H ₃₇ Ra
	Mean	SD	Mean	SD	Mean	SD	3/144
n-Hexane extract	11.4	0.3	4.9	4.2	3.5	2.3	-
Ethyl acetate extract	2.7	0.8	4.3	3.4	3.4	1.6	-
Acetone extract	10.7	1.3	7.4	4.7	7.3	1.8	-
Methanol extract	14.4	0.4	45.5	16.0	28.7	5.7	-
6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone	2.6	0.2	2.9	0.7	3.6	1.0	0.78

Table 2: Antiproliferative, anti-Mycobacterium tuberculosis, and H₃₇Ra effects.

Experimental

General experimental procedures: IR, Shimadzu 8900 FTIR spectrophotometer; Melting point, Büchi 322 micromelting point apparatus; NMR (1D and 2D), Brüker DPX 400 spectrometer; ESIMS (positive mode), Finnigan LC-Q Advantage Thermoquest spectrometer equipped with Xcalibur software; HRMS, Finnigan INCOS 50 and Brüker Daltonics (micro TOF); CC, Silica gel 60 (Merck, 70-230 mesh); TLC analysis on Si gel GF₂₅₄ precoated plates with UV detection.

Plant material: Roots of *P. cerasoides* were collected in Amnartcharoen Province, Thailand, in March 2009. A voucher specimen (BKF no. 151499) has been deposited at the Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand.

Extraction and isolation: Air-dried powdered roots (5 kg) were successively defatted with *n*-hexane, WP0455 (18 L x 3 days x 7 times) and then sequentially extracted at room temperature with ethyl acetate, WP0456 (18 L x 3 days x 7 times), acetone, WP0457 (18 L x 3 days x 6 times), and methanol, WP0458 (18 L x 3 days x 6 times), followed by filtration. The filtrates were combined and evaporated to drvness under reduced pressure to afford 14.1, 45.6, 144.0 and 359.5 g of residues, respectively. Based on the bioassay results (carried out by our collaborators from Chiang Mai University of Thailand), the ethyl acetate extract was chosen for further study. This (45.6 g) was subjected to a coarse separation by silica gel CC (400 g), eluting with various proportions of ethyl acetate-n-hexane, followed by an increasing amount of methanol in ethyl acetate, and finally with methanol. Fractions (1000 mL each) were collected and combined on the basis of TLC behavior. The solvents were evaporated to dryness to afford 7 fractions $(F_1 - F_7)$. Fraction F_3 (2.27 g), eluted by 10% ethyl acetate-n-hexane, was obtained as a semisolid. Further separation was achieved by CC over silica gel (100 g), eluting with *n*-hexane, followed by an increasing amount of methanol in ethyl acetate, and finally with methanol. Fractions were collected and combined before the solvents were removed under reducing pressure to afford subfractions $A_1 - A_2$. Subfraction A2 (0.87 g), was separated by CC over silica gel to yield a yellow solid subfraction B_2 (0.38 g). This was recrystallized from ethanol to give purified yellow needles (0.38 g) of azafluorenone.

6, 8-Dihydroxy-7-methoxy-1-methyl-azafluorenone

MP: 200.9-202.7°C.

IR (KBr): 3329, 1701, 1350 cm⁻¹. ¹H and ¹³C NMR (CDCl₃): Table 1.

HRAPCIMS: m/z 257 [M⁺].

Cell lines and culture conditions: The crude extracts and the pure compound were tested on 3 cancer cell lines {non small cell lung cancer (A549), adriamycinsensitive small cell lung cancer (GLC4), and adriamycin-resistant small cell lung cancer (GLC4/Adr) expressing ABCC1/MRP1 [4b,4c]}. All were cultivated in RPMI-1640 medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in a 37°C incubator under 5% CO₂.

Anti-proliferation assay: The cellular viability of cell A549 was determined using the sulforhodamine B (SRB) method. The sulforhodamine B assay is used for cell density determination, based on the measurement of cellular protein content. The cellular viability of cell lines GLC4 and GLC4/Adr were determined by using the conventional MTT-colorimetric method. Cells were incubated under cell culture conditions with various concentrations of pure compound up to 62.5 µg.mL⁻¹ and crude extracts up to 250 µg.mL⁻¹ for 72 h; the cells without either crude extracts or pure compound served as a blank. At 72 h, 50 µL of MTT (2.5 mg.mL⁻¹) was added to each well. The culture plates were gently shaken and incubated for 4 h. MTT in solution was converted to blue formazan crystals by mitochondrial succinate dehydrogenase of the living cells. The formazan crystals formed within the cells were solubilized with 50 µL DMSO and shaken well. The obtical density (OD) of the blue formazan chromophore was determined at 550 nm in an automated plate reader [4d]. The cytotoxic parameter was expressed as the concentration of compound in which the cellular proliferation was inhibited by 50% (%IC₅₀). The percentage of cell-growth inhibition (%IC) was calculated using the formula:

% IC =
$$\frac{(C72 - S72)}{(C72 - C0)}$$
 x 100

C0 is the OD value representing the initial cell amount of non treated cells (control), C72 is the OD value representing the cell amount of the control at 72 h and S72 is the OD value representing the cell amount of the treated cells at 72 h

Anti-Mycobacterium tuberculosis, $H_{37}Ra$: Green fluorescent protein (GFP) expressing Mycobacterium tuberculosis strain H37Ra was established by Changsen et al. [4e]. $H_{37}Ra$ gfp was cultivated on 7H10 agar containing 30 $\mu g.mL^{-1}$ kanamycin at 37°C for either 4 weeks or until growth was observed. Starter cultures were prepared by fully looping 2-3 single colonies into 7H9 broth supplemented with 0.2% v/v glycerol, 0.1 % w/v casitone, 0.05% v/v Tween 80, 10% v/v Middlebrook OADC enrichment solution (BD Biosciences) and 30 μg.mL⁻¹ kanamycin. The mixture was then incubated at 37°C in a 200 rpm shaker incubator until the optical density (OD) at 550 nm was between 0.5 and 1. For batch cultivation, the starter cultures were transferred at the rate of 1/10 volume to the 7H9 broth and incubated at 37°C in a 200 rpm incubator until the OD550 nm shaker approximately 0.5 to 1. The cells were pelleted, washed and suspended in PBS buffer, and then sonicated 8 times for 15 secs each. The sonicated samples were then aliquoted and frozen at -80°C for up to 2 to 3 months prior to use. Titer stocks were determined by the colony forming unit (cfu) assay and the seeding density for anti-TB assay was optimized by serial dilutions. The dilution that grew at logarithmic phase on day 7 was used as an optimal bacterial seeding density. For assay in a 384-well format, the seeding was approximately

 $2x10^4$ to $1x10^5$ cfu/mL/well. The assay was performed in duplicate, each well containing 5 μ L of test sample serially diluted in 5% dimethyl sulfoxide, followed by 45 μ L of cell suspension prepared as described above. Plates were incubated at 37°C for 7 days and the fluorescence signals were measured using a SpectraMax M5 microplate reader (Molecular Devices, USA) in the bottom-reading mode at the excitation and emission wavelengths of 485 nm and 535 nm. Fluorescence signals on day zero were used as background, which was used to subtract the signals on day 7. The percentage growth inhibition was calculated from the mean of the fluorescence unit of cells treated with sample (FUT) and untreated cells (FUC), according to the following equation:

% Inhibition = $[1-(FUT/FUC)] \times 100$

The lowest drug concentration that inhibits cell growth by 90% is reported as the Minimum Inhibitory Concentration (MIC). Rifampicin, streptomycin, isoniazid and ofloxacin were used as positive controls, and 0.5% DMSO as a negative control.

Acknowledgements - We gratefully acknowledge the Center for Innovation in Chemistry and the Thailand Research Fund and the Commission on Higher Education (Grant No. MRG5080217) for financial support and the Center of Excellent for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University.

- [1] (a) Gardner S, Sidisunthorn P, Anusarnsunthorn V. (2000) A field guide to forest trees of northern Thailand. Kobfai Publishing Project. Bangkok. Thailand. http://www.biotik.org/laos/species/p/polce/polce_en.html; (b) Sam HV, Nanthavong K, Keßler PJA. (2004) Trees of Laos and Vietnam. Blumea, 49, 201-349.
- [2] (a) Zafra-Polo MC, González MC, Tormo JR, Estornell E, Cortes D. (1996) Polyalthidin: New prenylated benzopyran inhibitor of the mammalian mitochondrial respiratory chain. *Journal of Natural Products*, 59, 913-916; (b) González MC, Zafra-Polo MC, Blázquez MPA, Serrano A, Cortes D. (1997) Cerasodine and cerasonine: New oxoprotoberberine alkaloids from *Polyalthia cerasoides*. *Journal of Natural Products*, 60, 108-110; (c) Kanokmedhakul S, Kanokmedhakul K, Lekphrom R. (2007) Bioactive constituents of the roots of *Polyalthia cerasoides*. *Journal of Natural Products*, 70, 1536-1538; (d) Ravikumar YS, Mahadevan KM, Manjunatha H, Satyanarayana ND. (2010) Antiproliferative, apoptotic and antimutagenic activity of isolated compounds from *Polyalthia cerasoides* seeds. *Phytomedicine*, 17, 513-518; (e) Tegos G, Stermitz FR, Lomovskaya O, Lewis K. (2002) Multidrug pump inhibitor uncover remarkable activity of plant antimicrobials. *Antimicrobial Agents and Chemotherapy*, 46, 3133-3141.
- [3] (a) De Boer HJ, Kool A, Broberg A, Mzirov WR, Hedberg I, Levenfors JJ. (2005) Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. *Journal of Ethnopharmacology*, 96, 461-469; (b) Chen CY, Chang FR, Shih YC. (2000) Cytotoxic constituents of *Polyalthia longifolia* var *pendula*. *Journal of Natural Products*, 63, 1475-1478.
- [4] (a) Duduku K, Rosalam S, Rajesh N. (2010) A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing. (In Press); (b) Loe DW, Deeley RG, Cole SPC. (1996) Biology of the multidrug resistance-associated protein, mrp. European Journal of Cancer, 32, 945-957; (c) Juranka PF, Zastawny RL, Ling V. (1989) P-glycoprotein: Multidrug-resistance and a superfamily of membrane- associated transport proteins. Journal of FASEB, 3, 2583-2592; (d) Ravikumar YS, Mahadevan KM, Kumaraswamy MN, Vaidya YP, Manjunatha H, Kumar VS. (2008) Antioxidant, cytotoxic and genotoxic evaluation of alcoholic extract of Polyalthia cerasoides (Roxb.) Bedd. Environmental Toxicology and Pharmacology, 26, 142-146; (e) Changsen C, Franzblau SG, Palittapongarnpim P. (2003) Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrobial Agents and Chemotherapy, 47, 3682-3687.

Natural Product Communications

2010 Vol. 5 No. 12 1935 - 1938

Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line

Keivan Zandi^a*, Elissa Ramedani^a, Khosro Mohammadi^c, Saeed Tajbakhsh^d, Iman Deilami^a, Zahra Rastian^a, Moradali Fouladvand^a, Forough Yousefi^a and Fatemeh Farshadpour^a

^aThe Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran

zandi@bpums.ac.ir, keivanzandi@yahoo.com

Received: May 22nd, 2010; Accepted: September 28th, 2010

Antiviral drug resistance is one of the most common problems in medicine, and, therefore, finding new antiviral agents, especially from natural resources, seems to be necessary. This study was designed to assay the antiviral activity of curcumin and its new derivatives like gallium-curcumin and Cu-curcumin on replication of HSV-1 in cell culture. The research was performed as an *in vitro* study in which the antiviral activity of different concentrations of three substances including curcumin, Gallium-curcumin and Cu-curcumin were tested on HSV-1. The cytotoxicity of the tested compounds was also evaluated on the Vero cell line.

The CC_{50} values for curcumin, gallium-curcumin and Cu-curcumin were 484.2 μ g/mL, 255.8 μ g/mL and 326.6 μ g/mL, respectively, and the respective IC₅₀ values 33.0 μ g/mL, 13.9 μ g/mL and 23.1 μ g/mL. The calculated SI values were 14.6, 18.4 and 14.1, respectively. The results showed that curcumin and its new derivatives have remarkable antiviral effects on HSV-1 in cell culture.

Keywords: Herpes simplex virus type 1 (HSV-1), curcumin, gallium-curcumin, Cu-curcumin, cell culture.

Viral diseases have always been a major health problem and scientists have continually tried to find new antiviral compounds. Cold sores, one of these viral diseases, are caused by herpes simplex virus type 1 (HSV-1), which is a DNA virus of the herpesviridae family [1].

Most complications caused by HSV-1 are self-limited, but HSV-1 can establish lifelong latent infection in sensory ganglia and some factors will cause the reactivation of the virus [2]. Herpes simplex virus-1 infection is common worldwide, with 45% to 98% of the world population being infected in different populations [1,2]. Due to the high prevalence of HSV-1 infections, several antiviral drugs have been developed for the treatment of HSV-1 infections, but many of them show severe side effects and are unable to cure the infections completely. Nearly all clinically effective antiviral drugs are nucleoside analogues. However,

following a long period of their use, drug resistance has emerged [3]. Therefore, finding novel anti HSV-1 agents with low side effects is necessary. It has been suggested that natural products from plants can exhibit anti HSV-1 activities. Such natural products need to be isolated and screened for their potential to act as antiviral compounds [4]. One of these natural antiviral agents is curcumin, a major antioxidant compound and a principal constituent of the spice turmeric (*Curcuma longa*) [5], a native plant from south India and Indonesia. This spice has been used for hundreds of years for flavoring and coloring of many kinds of foods and is also used as a food preservative [6,7].

Regarding the use of turmeric in Indian and Chinese traditional medicine many scientists are interested to reveal the therapeutic and biological functions of this compound. Curcumin can affect the metabolism of cells and organisms [8]. Also, it has anti-tumor, antioxidant,

^bTropical Infectious Disease Research Center, Department of Medical Microbiology, Bushehr University of Medical Sciences, Bushehr, Iran

^cThe Persian Gulf University, Faculty of Sciences, Department of Chemistry, Bushehr, Iran

^dThe Persian Gulf Tropical and Infectious Disease Research Center, Bushehr University of Medical Sciences, Bushehr, Iran

Table 1: Inhibition of HSV-1 related cytopathic effect (CPE) by using different concentrations of curcumin. Each value represents the mean of four replicate assays

Concentration (µg/mL) CPE Inhibition (%)	
12 0	
18 10	
24 30	
30 40	
36 55	
42 75	
48 90	
54 100	

antiinflammatory, antiviral and anti-infectious properties [6,9-12]. Although various antiviral effects of curcumin have been reported, more studies are necessary to develop it as an alternative antiviral drug for HSV-1 treatment or for providing a template for the synthesis of new anti HSV-1 agents [13].

In this study, we evaluated the *in vitro* anti-HSV-1 activity of curcumin and its novel derivatives gallium-curcumin and Cu-curcumin. Based on our knowledge, there has been no study of the antiviral activity of these last two compounds.

The cytotoxicities of curcumin, gallium-curcumin and Cu-curcumin on Vero cells were determined by calculation of their CC₅₀ values as 484.2, 255.8 and 326.6 µg/mL, respectively. Regarding the collected data for the antiviral activity of curcumin (Table 1), galliumcurcumin (Table 2), and Cu-curcumin (Table 3) against HSV-1 in cell culture, the IC₅₀ values of these compounds, calculated using STATA software, were 33.0, 13.9 and 23.1 µg/mL, respectively. As shown in Tables 1, 2 and 3, 12 µg/mL of curcumin, 4 µg/mL gallium-curcumin and 8 µg/mL of Cu-curcumin could not prevent CPE presentation, which is related to HSV-1 replication in cell culture. However, 54 µg/mL of curcumin, 30 µg/mL of gallium-curcumin and 42 µg/mL of Cu-curcumin totally prevented viral CPE presentation.

Table 2: Inhibition of HSV-1 related cytopathic effect (CPE) by using different concentrations of gallium-curcumin. Each value represents the mean of four replicate assays.

Concentration (µg/mL)	CPE Inhibition (%)
4	0
8	30
12	55
18	75
24	90
30	100

Based on our knowledge, no research has been reported up to now on the activity of the new derivatives of curcumin, Cu-curcumin and gallium-curcumin against viruses, especially HSV-1.

Antibacterial activities of curcumin and curcuminoids have been reported [14]. Curcumin has also been shown

to inhibit the growth of several types of viruses and malignant cells [15]. Curcumin can inhibit the expression of immediate early genes of HSV-1 [8], and also inhibit the activity of HIV-1 integrase, which is necessary for replication of this virus [16].

Table 3: Inhibition of HSV-1 related cytopathic effect (CPE) by using different concentrations of Cu-curcumin. Each value represents the mean of four replicate assays.

Concentration (µg/mL)	CPE Inhibition (%)
8	0
12	10
18	40
24	60
30	75
36	90
42	100

Various derivatives related to curcumin were synthesized and tested as inhibitors of the replication cycle of some viruses [17]. Synthetic modification of antiviral agents in order to improve either their antiviral activity or pharmacological properties is of interest [18]. Therefore, two new complexes, Cu-curcumin and gallium-curcumin, were chosen for the present study.

In this study, the CC_{50} values obtained showed that the cytotoxicity of curcumin is less than those of its new derivatives gallium- and copper-curcumins. Based on the differences in the CC_{50} values of gallium-curcumin and Cu-curcumin it could be concluded that the gallium compound was more cytotoxic than the copper one to Vero cells.

In most studies, DMSO showed antiviral and cytotoxic effects *in vitro* on different cell types [19]. Thus we tested the probable DMSO cytotoxic and virucidal effects in the current study. The concentration of DMSO used in our study was less than 2%, which is the lowest concentration for an antiviral effect; therefore we ignored the effect of DMSO in our study.

Based on the data obtained, it could be concluded that curcumin and its new derivatives exhibited *in vitro* anti-HSV-1 activities. Such agents could be developed either as anti HSV-1 compounds or provide a template for the synthesis of new anti HSV-1 agents. Our results can be considered as an early step in elucidating the molecular basis of the antiviral activities of curcumin. Future research is necessary to determine the possible *in vivo* anti-HSV-1 activity of curcumin and its related derivatives. Also, the mechanism(s) of action of these compounds should be revealed in future studies.

Experimental

Cell and virus: The African green monkey kidney cell line (Vero) was used as an appropriate cell line for

HSV-1 propagation. The cells were cultured using Dulbecco minimum essential medium (Gibco) containing 10% fetal bovine serum (Gibco). The antiviral activity assay was carried out on the KOS strain of HSV-1. The virus was propagated in Vero cells and the titer of propagated viral stock was firmed as TCID 50 mL⁻¹ by using Karber's method. After titration, viral stock was dispensed in sterile tubes, which were stored at -70°C until the date of use.

Preparation of curcumin and its derivatives: Curcumin was purchased from Sigma, and the curcumin derivatives were prepared as previously described [20]. Dimethyl sulfoxide (DMSO) was used as the solvent for curcumin and its derivatives.

Cytotoxicity assay: Cytotoxicity values of all compounds were determined by culturing Vero cells for 96 h in the presence of increasing amounts of each substance. Three wells for each concentration of each compound were used. Viable cells were determined by the trypan blue exclusion test. Results were plotted as a dose response curve and 50% cell growth inhibitory concentration (CC_{50}) was obtained by using STATA modeling software.

Antiviral activity assay: The cytopathic inhibiton assay was used to determine the semi-quantitative antiviral activity of each test compound. Briefly, Vero cells were grown in a 96-well cell culture microplate (2×10³ cells/well). The cultured plates were incubated at 37°C in the presence of 5% CO₂ until the cells showed 80% confluency. Subsequently, the culture medium was removed from each well and 100 TCID₅₀ of virus suspension and different concentrations of curcumin and its derivatives from minimal to maximal noncytotoxic concentrations were added to each well of the

cell culture microplate. For each concentration of curcumin and its derivatives 4 wells were chosen.

For the virus control, 100 TCID₅₀ with the highest amount of DMSO which did not show cytotoxicity were added to 4 wells. Also, in each microplate, 4 wells were treated with DMSO without virus as a negative control for virus. In addition, 4 wells of each row were treated with the highest level of each curcumin based compound which did not previously exhibit cytotoxicity.

The plates were incubated at 37° C in a humidified CO_2 atmosphere (5% CO_2) and were investigated every day for cytopathic effect (CPE) presentation up to 5 days post infection.

The degree of inhibition was expressed as percent yield of virus control (% virus control = CPE experimental group/CPE virus control \times 100). The concentration of each compound which reduced 50% of CPE presentation with respect to virus control was estimated from graphic plots defined as 50% inhibited concentration (IC₅₀) expressed in μ g per mL by using STATA modeling software. The selectivity index (SI) was measured from the ratio of CC₅₀/IC₅₀ [21,22].

Statistical analysis: The STATA statistical analysis package was used for curve plotting in order to calculate IC_{50} and CC_{50} values.

Acknowledgments - The authors would like to thank DrvIraj Nabipour for his invaluable comments and Mr Rahim Tahmasebi for the statistical analysis of the data. Also, we express our gratitude to the Research Deputy of Bushehr University of Medical Sciences for the financial aid and funding.

- [1] Fatahzadeh M, Schwartz RA. (2007) Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management. *Journal of American Academic Dermatology*, 57, 737-763.
- [2] Xiang YF, Pei Y, Wang YF. (2008) Current status of natural products from plants as anti-herpes simplex virus-1 agents. *Virologica Sinica*, 23, 305-314.
- [3] Ziyaeyan M, Alborzi A, Japoni A. (2007) Frequency of acyclovir-resistant herpes simplex viruses isolated from the general immunocompetent population and patients with acquired immunodeficiency syndrome. *International Journal of Dermatology*, 46, 1263-1266.
- [4] Grabley S, Thiericke R. (2002) Drug discovery from nature, Springer, Berlin. 3-37.
- [5] Sahelian R. Curcumin supplement extract review of health benefits, side effects and research studies, right dosag. Available at: http://www.inutritionals.com/store/index.php?1=product-detail&p=138.
- [6] Lotempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R. (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. *Clinical Cancer Research*, 11, 6994-7002.
- [7] Mandal V, Dewanjee S, Sahu R, Mandal SC. (2009) Design and optimization of ultrasound assisted extraction of curcumin as an effective alternative for conventional solid liquid extraction of natural products. *Natural Product Communications*, 4, 95-100.
- [8] Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. (2008) Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of P300/CBP histone acetyltransferase activity. Virology, 373, 239-247.

- [9] Wang D, Huang W, Shi Q, Hong C, Cheng Y, Ma Z, Qu H. (2008) Isolation and cytotoxic activity of compounds from the root tuber of *Curcuma wenyujin*. *Natural Product Communications*, 3, 861-864.
- [10] Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M. (2005) Chemopreventive and therapeutic effects of curcumin. *Cancer Letters*, 223, 181-190.
- [11] Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. (2006) Some biological properties of curcumin: A review. *Natural Product Communications*, 1, 509-521.
- [12] Kim JH, Son JK, Chang HW, Jahng Y, Kim Y, Na M, Lee SH. (2008) Inhibition of mushroom tyrosinase and melanogenesis B16 mouse melanoma cells by components isolated from *Curcuma longa*. *Natural Product Communications*, 3, 1655-1658.
- [13] Ninger LJ, ELS (2008) Curcumin shows promice against cold sore virus. *LE Magazine*, in the news. Available at: http://www.lef.org/magazine/mag2008/dec 2008-In-The-News-01.htm.
- [14] Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, Asayesh G. (2008) Antibacterial activity of indium curcumin and indium diacetylcurcumin. *African Journal of Biotechnology*, 7, 3832-3835.
- [15] Syng-ai C, Kumari AL, Khar A. (2004) Effect of curcumin on normal and tumor cells: Role of glutathione and bel-2. *Molecular Cancer Therapy*, 3, 1101-1108.
- [16] Mazumder A, Krishnamachari R, Weinstein J, Kohn KW, Pommier Y. (1995) Inhibition of human immunodeficiency virus type-1 integrase by curcumin. *Biochemical Pharmacology*, 49, 1165-1170.
- [17] La Colla P, Tramontano E, Musiu C, Marongiu ME, Novellino E, Greco G, Massa S. (1998) Curcumin-like derivatives with potent activity against HIV-1 integrase: synthesis, biological evaluation and molecular modeling. Eleventh International Conference on Antiviral Research. *Antiviral Research*, 37, A57.
- [18] Dubey SK, Sharma AK, Narian U, Misra K, Pati U. (2007) Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. *European Journal of Medicinal Chemistry*, 43, 1837-1846.
- [19] Aguilar JS, Roy D, Ghazal P, Wagner EK. (2002) Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection *in vitro* acting at different stages with positive cooperativity. Application of micro-array analysis. *BMC Infectious Disease*, 2, 1-10.
- [20] Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C. (2005) Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medical applications. *Journal of Inorganic Biochemistry*, 99, 2217-2225.
- [21] Kudi AC, Myrint SH. (1999) Antiviral activities on some Nigerian medical plants extracts. *Journal of Ethnopharmacology*, 68, 289-294.
- [22] Kujumgier A, Tsevtkova I, Serkedjieva J, Bankova V, Christor R, Popov S. (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic regions. *Journal of Ethnopharmacology*, 64, 235-240.

Natural Product Communications

2010 Vol. 5 No. 12 1939 - 1940

Hyloglyceride and Hylodiglyceride: Two New Glyceride Derivatives from *Hylodendron gabunensis*

Awazi Tengu Nyongha^a, Hidayat Hussain^{b,*}, Etienne Dongo^{a,*}, Ishtiaq Ahmed^b and Karsten Krohn^b

^aDepartment of Organic Chemistry, Faculty of Science, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon

^bDepartment of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany

Hidayat110@gmail.com

Received: August 31st, 2010; Accepted: October 11th, 2010

Phytochemical investigation of *Hylodendron gabunensis* resulted in the isolation of two new glyceride derivatives, hyloglyceride (1) and hylodiglyceride (2). The structures of the two new compounds were determined by comprehensive analysis of their 1D and 2D NMR spectroscopic, and HREIMS data. One known compound was also isolated and identified as β -sitosterol.

Keywords: *Hylodendron gabunensis*, Fabaceae, glyceride derivatives, hyloglyceride, hylodiglyceride.

The African continent is one of the continents endowed with the richest biodiversity in the world, with an avalanche of plants used as foods, herbs and health foods, and for therapeutic purposes [1]. In the course of phytochemical studies of medicinal plants from Africa [2], we investigated Hylodendron gabunensis Taub. (Fabaceae). Previous studies of this species resulted in the isolation of two apiitol derivatives [3]. We now report on the structure elucidation of two new glyceride derivatives, namely, hyloglyceride hylodiglyceride (2) (Figure 1), together with the known compound β-sitosterol [4] from H. gabunensis. Glycerides and diglyceride derivatives have been reported from plants, endophytic fungi and marine organisms [5].

Hyloglyceride (1) was obtained as white powder. Its molecular formula was assigned as $C_{34}H_{68}NO_4$ on the basis of the ion at m/z 540.5110 [M]⁺ in the HREIMS, and 1H and ^{13}C NMR spectral analyses. The IR spectrum revealed absorption bands for an hydroxyl group at 3420 cm⁻¹ and C=O at 1733 cm⁻¹. The ^{13}C (DEPT) and 1H NMR spectra of 1 showed signals for a fatty acid moiety [δ 14.0 (q), 22.6 (t), 24.8 (t), 29.2 (t), 32.8 (t), 34.1 (t), 174.3 (s), δ 0.85 (3H, t, J = 6.4 Hz), 1.27 (br s, n x CH₂), 1.60 (2H, m), 2.33 (2H, t, J = 7.5 Hz)], two oxymethylene [δ_C 63.2, 65.1; δ_H 4.40 (1H, dd, J = 11.2, 3.5 Hz), 4.37 (1H, dd, J = 11.2, 5.5 Hz), 3.70 (1H, dd, J = 11.2, 3.5 Hz), 3.60 (1H, dd, J = 11.2, 3.5 Hz)], and one oxymethine [δ 70.2, δ 3.92 (1H, m)].

Figure 1: Structure of hyloglyceride (1) and hylodiglyceride (2) isolated from *H. gabunensis*.

These data suggested that 1 was a fatty acid-1-glyceride [5]; this was supported by the HMBC spectrum, which showed correlations of H-1 and H-3a with C-2, and H-1, H-2 with C-3, indicating the presence of an asymmetrically substituted glycerol moiety. Furthermore, correlations of H-1, H-2', and H-3' with C-1' indicated that the acyl of the fatty acid moiety was attached to C-1. According to the molecular weight obtained from the HREIMS, the fatty acid moiety should be hentriacontanoic acid. Based on the literature which reported that glyceride analogue exhibiting +ve optical rotation had an absolute configuration of 2S, [5a,6] the structure of 1 was elucidated as (2S)-1-O-hentriacontanoyl glycerol (Figure 1).

Hylodiglyceride (2) was found to have a molecular formula of $C_{23}H_{44}O_8$ from the molecular ion peak at m/z 448.3030 [M]⁺ in the HREIMS. The IR spectrum revealed absorption bands for an hydroxyl group at 3420 cm⁻¹ and C=O at 1730 cm⁻¹. The ¹H and ¹³C NMR spectra of 2 were similar to those of compound 1 (see

Experimental), with differences observed in the fatty acid. A methyl group seen in $1 \{\delta_C 14.0, t; \delta_H 0.85 (t, J = 6.4 \text{ Hz}\}$ is missing in 2 and replaced by another glycerol moiety, as observed from the ^1H and ^{13}C NMR spectra. The ^1H and ^{13}C NMR spectra showed peaks for half of the molecule. According to the HREIMS, the difatty acid moiety should be heptadecanedioic acid. Based on these findings, hylodiglyceride was established as 2 (Figure 1).

Experimental

General experimental procedures: Optical rotation was recorded on a Perkin–Elmer 241 MC polarimeter at the sodium D-line. IR spectra were obtained from a Nicolet-510P spectrophotometer; v_{max} in cm⁻¹. EIMS and HREIMS were carried out using a MAT 8200 and Micromass LCT mass spectrometers. The ¹H NMR spectra were recorded on a Bruker AMX-500 instrument using TMS as an internal reference.

Plant material: The bark of *H. gabunensis* was collected at Mont Elounden 11- Yaounde, in the central region of Cameroon, in December 2007, and identified by Dr Nole Tsabang, Ministry of Scientific Research. A voucher specimen (N° 9336) has been deposited at the National Herbarium, Yaounde, Cameroon

Extraction and isolation: Dried and powdered bark (12.0 kg) of H. gabunensis was extracted with EtOAc at room temperature for 48 h and then filtered. The filtrate was concentrated under vacuum to give 200 g of crude residue. The ethyl acetate-fraction (200 g) was then subjected to CC (silica gel, n-hexane, n-hexane-EtOAc, EtOAc and EtOAc-MeOH, in order of increasing polarity), yielding 7 fractions (F_1 to F_7). Fraction F_7 was eluted with a mixture of CH_2Cl_2 , CH_2Cl_2 -MeOH (order of increasing polarity) yielding hylodiglyceride (2, 9.0 mg). Fraction F_5 [n-hexane-EtOAc (8.0:2.0)] was similarly subjected to CC, yielded hyloglyceride

(1, 11.0 mg). Finally, fraction F_2 gave β -sitosterol (7 mg) [n-hexane-EtOAc (8.5:1.5)].

Hyloglyceride (1)

Colorless powder.

MP: 64-66°C.

 $[\alpha]_D^{20}$: +6.2 (*c* 0.25, CH₂Cl₂).

IR ν_{max} (CH₂Cl₂): 3420, 2920, 2850, 1733, 1469, 1389, 1180 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 0.85 (3H, t, J = 6.4 Hz, Me-31'), 1.27 (54H, br s, H-4' to H-30'), 1.60 (2H, m, H-3'), 2.33 (2H, t, J = 7.5 Hz, H-2'), 3.60 (1H, dd, J = 11.2, 3.5 Hz), 3.70 (1H, dd, J = 11.2, 3.5 Hz), 4.37 (1H, dd, J = 11.2, 5.5 Hz), 3.92 (1H, m), 4.40 (1H, dd, J = 11.2, 3.5 Hz).

¹³C NMR (125 MHz, CDCl₃): δ 14.0 (CH₃, C-31'), 22.6 (CH₂, C-29'), 24.8 (CH₂, C-3'), 29.2 (CH₂, C-4' to C-28'), 32.8 (CH₂, C-30'), 34.1 (CH₂, C-2'), 63.3 (CH₂, C-3), 65.2 (CH₂, C-1), 70.2 (CH₂, C-2), 174.3 (C, C-1'). HREIMS: m/z 540.5110 [M]⁺ (calcd. 540.5118 for C₃₄H₆₈NO₄).

Hylodiglyceride (2)

Colorless powder.

MP: 87°C.

 $[\alpha]_D^{20}$: +10.2 (*c* 0.20, CH₂Cl₂).

IR ν_{max} (CH₂Cl₂): 3420, 2920, 2850, 1730, 1469, 1389, 1180 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 1.27 (br s, H-4' to H-8'), 1.60 (2H, m, H-3'), 2.33 (2H, t, J = 7.5 Hz, H-2'), 3.60 (1H, dd, J = 11.2, 3.5 Hz), 3.70 (1H, dd, J = 11.2, 3.5 Hz), 4.37 (1H, dd, J = 11.2, 5.5 Hz), 3.92 (1H, m), 4.40 (1H, dd, J = 11.2, 3.5 Hz).

¹³C NMR (125 MHz, CDCl₃): δ 24.9 (CH₂, C-3'), 29.7 (CH₂, C-4' to C-8'), 34.2 (CH₂, C-2'), 63.3 (CH₂, C-3), 65.2 (CH₂, C-1), 70.3 (CH₂, C-2), 174.3 (C, C-1'). HREIMS: m/z 448.3030 [M]⁺ (calcd. 448.3036 for C₂₃H₄₄O₈).

- [1] Farombi EO. (2003) African indigenous plants with chemotherapeutic potentials and biotechnological approach to the production of bioactive prophylactic agents. *African Journal of Biotechnology*, 2, 662-671.
- [2] (a) Wansi JD, Hussain H, Kouam SF, Specht S, Sarite SR, Hoerauf A, Krohn K. (2010) Antiplasmodial activities of furoquinoline alkaloids from *Teclea afzelii* Engl. *Phytotherarpy Research*, 24, 775-777.; (b) Tsassi VB, Hussain H, Kouam SF, Meffo BY, Dongo E, Schulz B, Green IR, Krohn K. (2010) Antimicrobial coumarins from the stem bark of *Afraegle paniculata*. *Natural Product Communications*, 5, 559-561.
- [3] Takada K, Bermingham A, O'Keefe BR, Wamiru A, Beutler JA, Le Grice, SFJ, Lloyd J, Gustafson KR, McMahon JB. (2007) An HIV RNase H inhibitory 1,3,4,5-tetragalloylapiitol from the African plant *Hylodendron gabunensis*. *Journal of Natural Products*, 70, 1647-1649.
- [4] Rubinstein I, Goad LJ, Clague ADH. (1976) The 220 MHz NMR spectra of phytosterols. *Phytochemistry*, 15, 195-200.
- [5] (a) Qi SH, Zhang S, Huang JS, Xiao ZH, Wu J, Long LJ. (2004) Glycerol derivatives and sterols from Sargassum parvivesiculosum. Chemical & Pharmaceutical Bulletin, 52, 986-988.; (b) Yang H, Jiang B, Hou AJ, Lin ZW, Sun HD. (2000) Colebroside A, a new diglucoside of fatty acid esters of glycerin from Clerodendrum colebrookianum. Journal of Asian Natural Product Research, 2, 177-185; (c) Ali MS, Saleem M, Ahmad VU, Shameel S. (2001) Phyto and glycerol derivatives from the marine green alga Codium iyengarii of the Karachi Coast (Arabian Sea). Zeitschrift für Naturforschung, 56B, 837-841.
- [6] Dharma RK, Trevor GR, Donald MS. (1985) Synthesis and polymorphism of 3-acyl-sn-glycerols. *Biochemistry*, 24, 519-525.

Natural Product Communications

2010 Vol. 5 No. 12 1941 - 1944

Chemical Composition and Bioactivities of the Marine Alga *Isochrysis galbana* from Taiwan

Chi-Cheng Yu^a, Hsiao-Wei Chen^b, Mao-Jing Chen^b, Yu-Ching Chang^b, Shih-Chang Chien^c, Yueh-Hsiung Kuo^d, Feng-Ling Yang^e, Shih-Hsiung Wu^e, Jie Chen^f, Hsiao-Hui Yu^f and Louis Kuop-Ping Chao^{f*}

lkpchao@yahoo.com.tw; kuoping@mail.com.edu.tw

Received: August 27th, 2010; Accepted: October 6th, 2010

The present study investigated the chemical composition of *Isochrysis galbana* Parke, a marine microalga which is widely used as a feedstock in aquaculture. From gas chromatography/mass spectrometric analysis the mono-sugar compositions of *I. galbana* were 2.1% fucose, 2.5% rhamnose, 2.7% arabinose, 8.5% xylose, 15.7% mannose, 32.7% galactose and 35.8% glucose. The polysaccharides of *I. galbana* were able to induce prointerleukin-1β (pro-IL-1β) protein expression within murine macrophages. Furthermore, five kinds of chlorophyll and one sterol were separated from the ethanolic extracts, including pheophorbide-a, ethyl pheophorbide-a, 10*S*-10-hydroxypheophytin-a, 10*R*-10-hydroxypheophytin-a, (13²-*R*)-pheophytin-a, and brassicasterol. In addition, the major soluble components of the ethanol/*n*-hexane extract were 9-octadecenoic acid (*E*) (38.4%), hexadecanoic acid (23.3%), tetradecanoic acid (15.7%), and octadecanoic acid (7.2%), but only a few polyunsaturated fatty acids were found, such as 9,12,15-octadecatrienoic acid (1.9%), 9,12-octadecadienoic acid (*Z*,*Z*) (3.4%), and docosahexaenoic acid (0.2%). This is the first occasion that polysaccharides from *I. galbana* have been demonstrated to exert immunomodulatory properties by the induction of IL-1 within macrophages.

Keywords: *Isochrysis galbana*, extracts, chemical compositions, polysaccharides, bioactivity, pro-IL-1β.

Marine microalgal biomasses play an important role as primary producers in the animal food chain. Isochrysis galbana Parke, a golden-brown flagellate marine microalga, is widely used as an aquaculture feed for young fish and in bivalve hatcheries because it is rich in polyunsaturated fatty acids (PUFA) [1]. Many studies have focused on the relationship between fatty acids and algal growth [2-4]. In addition, because of the high content of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), I. galbana is recognized for its beneficial effects on human health, and is considered to be a good substitute for fish oil in the human diet. The purpose of the present study was to analyze the chemical composition of *I. galbana*, including *n*-hexane/ethanol extracts; ethanol extracts; total carbon, hydrogen, oxygen, nitrogen and sulfur; and total polysaccharides.

First we analyzed the ratio of carbon, hydrogen, oxygen, nitrogen, sulfur and ash in *I. galbana* cultured in the laboratory. Based on dry weight, the values obtained were: C (56.3%), H (7.5%), O (20.3%), N (6.25%), S (1.0%) and ash (8.6%). *I. galbana* also yielded a high content of *n*-hexane/ethanol (1/1) and ethanol extractive (21.7% and 38.2%, respectively).

Sixteen fatty acids were identified. These are given in Table 1, where all compounds are listed in order of their elution from the DB-5HT column. The major fatty acid was 9-octadecenoic acid (E) (38.4% of total), followed by hexadecanoic acid (23.3%), tetradecanoic acid (15.7%), octadecanoic acid (7.2%), and 9-octadecenoic acid (Z) (3.2%). The composition of fatty acids in *I. galbana* found in this study differs from the results of

^aGreenlink Biotech Inc., Taipei 111, Taiwan

^bChemistry and Environment Labs., Taiwan Power Research Institute. 84, Da-ani Rd., Shulin, Taipei country 238, Taiwan

^cSchool of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan

^dTsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung 404, Taiwan

^eInstitute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan

^fDepartment of Cosmeceutics, China Medical University, Taichung 404, Taiwan

Table 1: Chemical composition of *I. galbana* ethanol/n-hexane extractive.

Compound ID	RT a	Conc. (%)	Identification b
Tetradecanoic acid, methyl ester	14.51	15.7	MS, KI, ST
Pentadecanoic acid, methyl ester	16.52	0.8	MS, KI, ST
11,14,17-Eicosatrienoic acid, methyl ester	17.76	0.1	MS, KI
(Z)-9-Hexadecenoic acid, methyl ester	18.04	2.5	MS, KI
Hexadecanoic acid, methyl ester	18.50	23.3	MS, KI, ST
Heptadecanoic acid, methyl ester	20.53	0.2	MS, KI, ST
9,12,15-Octadecatrienoic acid, methyl ester,	21.22	1.9	MS, KI, ST
9,12-Octadecadienoic acid (Z,Z) -, methyl ester	21.54	3.4	MS, KI
9-Octadecenoic acid (E)-, methyl ester	21.66	38.4	MS, KI, ST
9-Octadecenoic acid (Z)-, methyl ester	21.77	3.2	MS, KI,ST
Octadecanoic acid, methyl ester	22.16	7.2	MS, KI, ST
Arachidonic acid, ethyl ester	24.30	0.09	MS, KI
Heneicosanoic acid, methyl ester	27.14	0.1	MS, KI
4,7,10,13,16,19-Docosahexaenoic acid, methyl ester, (all- <i>Z</i>)-	27.40	0.2	MS, KI
Docosanoic acid, methyl ester	28.67	2.8	MS, KI
Total saturated		50.1	
Total monoenoic		44.1	
Total PUFA		5.8	

^a Retention time on a DB-5 HT column with reference to *n*-alkanes.

an earlier study, which showed higher DHA (22:6n-3) (7.91%) [5].

Also, some differences were found from the study by Lin *et al.*, who determined DHA to be a major fatty acid at every growth phase [4]. It is interesting that we found a few fatty acids, such as pentadecanoic acid, heptadecanoic acid, and heneicosanoic acid, which had not been previously found [4]. This could be a result of different growth conditions.

Few existing studies have focused on the variety of pigments from *I. galbana*. Herein we have separated and identified the pigments from 1.65 g of an ethanolic extract of *I. galbana*. At least five chlorophyll compounds (Figure 1) were found including (13^2-R) -pheophytin-a (1.5 mg; RT = 8.03 min), pheophorbide-a (1 mg; RT = 15.82 min), 10R-10-hydroxypheophytin-a (3 mg; RT = 22.54 min), 10S-10-hydroxypheophytin-a (1 mg; RT = 23.51 min), and ethyl pheophorbide-a (4 mg; RT = 34.92 min). We also found brassicasterol (2 mg; RT = 15.10 min).

In 1981, Volkman *et al.* [6] were the first to report that 24-methyl-22-dehydrocholesterol is the dominant sterol in *I. galbana* [6]. Our experimental results were similar. Park *et al.* [7] demonstrated that autotrophically grown *I. galbana* contains three major sterols (24-oxocholesterol acetate, ergost-5-en-3-ol, and cholest-5-en-24-1, 3-(acetyloxy)-,3-ol), with 24-methylcholesta-5,22-dien-3-ol as a minor sterol [7]. They found that the total sterol content clearly decreased during dark culture, with such decreases being particularly evident in two major sterols, 24-oxocholesterol acetate and ergost-5-en-3-ol.

Our study showed that the monosaccharide composition of a polysaccharide (IP) from *I. galbana* was 2.07%

Figure 1: The chemical structure of (1) pheophorbide-a; (2) ethyl pheophorbide-a; (3) (13²-*R*)-pheophytin-a; (4) 10*R*-10-hydroxypheophytin-a; (5) 10*S*-10-hydroxypheophytin-a; (6) brassicasterol.

Figure 2: Effect of *Isochrysis* polysaccharide (IP) on cell viability. J774A.1 macrophages $(5 \times 10^3/\text{well})$ were treated with IP or DMSO (control) for 24 h, followed by incubation with MTT reagent. Absorbance (A550-A690) was measured by spectrophotometry. Data are expressed as mean \pm SE from three separate experiments.

fucose, 2.50% rhamnose, 2.72% arabinose, 8.49% xylose, 15.70% mannose, 32.73% galactose and 35.79% glucose. No cytotoxic effect was observed after J774A.1 cells were treated with various concentrations of IP for a period of 24 hours, as measured by MTT assay (Figure 2).

It is well known that IL-1β is secreted mainly from activated macrophages; this could activate other immune cells and modulate immune responses. An IP-induced IL-1β precursor, pro-IL-1β, was detected in whole cell lysates after IP stimulation by means of Western-blotting analysis. In this time course study, the expression of pro-IL-1β protein within IP-stimulated cells was detected at six hours post-stimulation. In addition, the expression of pro-IL-1β increased with increasing IP concentrations in a dose-dependent manner. Such results demonstrate that IP stimulates pro-IL-1β expression, a result that would appear to be similar to the ability of polysaccharides isolated from the algae *Rhizoclonium riparium* (Roth) Harvey and *Chlorella pyrenoidosa* Chick to stimulate pro-IL-1β expression within murine macrophages [8,9].

^b MS, NIST and Wiley library spectra, and the literature; RI, retention index; ST, authentic standard compounds.

Fabregas *et al.* found that endocellular extracts of *I. galbana* clearly inhibited viral hemorrhagic septicemia virus (VHSV) replication at a dose of 20 μg/mL, and that *I. galbana* contained sulfated soluble exopolysaccharides [10].

Experimental

Algal culture and collection: I. galbana used in this study was obtained from the Tungkang Biotechnology Research Center, Fisheries Research Institute, Republic of China. Purified I. galbana CCMP 1324 (0.9 L, 680 nm, OD 1.10) was inoculated and cultured in Walne's medium [9]. This included nutrient, vitamin and trace metal solutions in a 10 L PET tank containing 8.1 L seawater autoclaved at 120°C for 20 min, to which was added 9.0 mL of nutrient solution and 0.9 mL of vitamin solution. The culture medium was agitated gently by bubbling air with a flow rate of 4.7 L/min and a culture time of 7 d. Continuous illumination at an irradiance of 5900 lx was provided by fluorescent lamps. The culture medium was then centrifuged (Himac CR22-GII, Hitachi. Japan) continuously at 12000 rpm at 25°C. After lyophilization the yield of alga was 0.1 g/L (dry weight) culture medium.

Total C, H, O, N, S: Total carbon, hydrogen, oxygen, nitrogen and sulfur contents were determined by CHN elemental analysis. Freeze-dried samples (15 g each) were combusted in a 2400 CHN/O elemental analyzer (Perkin-Elmer, Waltham MA, USA) [11].

Extraction and composition of n-hexane/ethanol extracts of I. galbana: Ten grams of sample was extracted in a Soxhlet apparatus with *n*-hexane: ethanol (95% v/v) (50:50) for 48 h. The solution was rotaryevaporated at 65 °C to provide a hydro-ethanolic extractive (HAE) (2.175 g). The HAE (0.5 g) was trimethylsilylated with Sylon HTP (HMDS/TMCS/ pyridine, 3:1:9) trimethylsilylation reagent (Supelco, Bellefonte PA, USA). The final derivatives were kept in n-hexane for gas chromatography-mass spectrometric (GC-MS) analysis. A Hewlett-Packard HP 6890 gas chromatograph equipped with a DB-5HT fused silica capillary column (30 m x 0.25 mm x 0.25 µm film thickness; Agilent Technologies, Santa Clara CA, USA) and a FID detector were used for quantitative determination of the components. The oven temperature was programmed as follows: 100°C for 2 min, rising to 275°C at 5°C/min; injector temperature, 270°C; carrier gas, He with a flow rate of 1 mL/min; detector temperature, 250°C; split ratio 50.1:1. One μL sample was injected. Identification of the oil components was based on their retention indices and MS results. The GC analysis parameters listed above and the MS were obtained (full scan mode; scan time, 0.3 s; mass range, MHz 30–500) in the electron impact (EI) mode at 70 eV.

Extraction, purification and identification of ethanolic extracts of I. galbana: Dry alga (5 g) was treated with ethanol (95% v/v for 10 d, repeated 3 times) at room temperature. Then the extract was concentrated to provide the ethanolic extract (AE). AE (1.65 g) was applied to a silica gel column (Si 60) and eluted with acetone/nhexane to give 43 sub-fractions. Each eluted fraction was 150 mL. The chlorophyll compounds were purified by preparative HPLC (KNAUER RI detector 2400, pump 100; KNAUER, Germany) on a Merck (Germany) Hibar Fertigsaule RT column Si 60 (25 cm length, 1 cm i.d., 5.0 μm). The separation conditions were as follows: flow rate 4 mL/min; mobile phase, acetone/n-hexane = 1/9. The sterol was separated by a Phenomenex Luna silica (2) column (25 cm length, 1 cm i.d., 5.0 µm) under the following conditions: flow rate 4 mL/min; mobile phase, acetone/n-hexane = 1/15. The structures of the compounds were confirmed by comparison of physical and spectral data (including optical rotation, EIMS, ¹H NMR) with previously reported values.

Extraction of polysaccharides from I. galbana: Five grams dry alga was extracted with *n*-hexane/ethanol. The extractive was ground into a fine powder, and then suspended in 100 mL distilled water. After autoclaving at 121°C for 30 min, the extract was filtered through a 0.2 μm membrane. The extract was then vacuum-concentrated at 50°C, giving a final volume of 30 mL to which 5 volumes of 95% ethanol was added slowly at 4°C. Then the mixture was centrifuged to produce a precipitate of ca. 1.910 g, dry wt. Sixty mg of the precipitate was treated further with 3 mg proteinase K for removal of the peptide part, and dialyzed against H₂O (Spectra/Por® membrane, molecular weight cutoff 1,000 Da), resulting in 17.5 mg polysaccharide [*I. galbana* (IP)].

Sugar composition analysis: Sugar composition was determined by GC-MS. The polysaccharide content of *I. galbana* was determined by methanolysis with 0.5 M methanolic HCl at 80°C for 16 h, and trimethylsilylation with Sylon HTP. The final trimethylsilylated (TMS) derivatives were kept in *n*-hexane for GC-MS analysis [12]. Carbohydrate analysis was done with inositol as the internal standard; integrated peak area was used to establish the relative amounts of the constituents. Compounds were identified by comparing of their mass spectrometric fragmentation patterns with those of authentic standards, and the quantity of compounds was obtained by integrating the peak area of the spectra.

Microculture tetrazolium (MTT) assay for cell viability: J774A.1 macrophages were seeded in 96-well plates at a density of 5×10^3 cells/well. Cells were incubated with IP for 24 h. Cell viability was determined using colorimetric MTT assays.

Cell cultures: Murine J774A.1 macrophages were obtained from the American Type Culture Collection (ATCC) (Rockville MD, USA). All cells were propagated in RPMI-1640 medium supplemented with 10% heatinactivated FCS and 2 mM L-glutamine (Life Technologies, Carlsbad CA, USA), and cultured in a 37°C, 5% CO₂ incubator [8,9].

Western blotting: Whole cell lysates were separated by 12% SDS-PAGE and electrotransferred to a PVDF membrane. The membrane was incubated in blocking solution (5% nonfat milk in PBS with 0.1% Tween 20) at room temperature for 1 h. The membrane was then incubated with anti-IL-1β antibody at room temperature for 2 h. After washing 3 times in PBS with 0.1% Tween 20, the membrane was incubated with an HRP-conjugated secondary antibody directed against the primary antibody. The membrane was developed by an enhanced chemiluminescence Western-blotting detection system

(DuPont NEN® Research Products, Boston MA, USA) according to the manufacturer's instructions [8,9].

Statistical analysis: All values are given as mean \pm SE. Data analysis involved one-way ANOVA with subsequent Scheffé test.

Acknowledgment - This work was supported by a grant from the Taiwan Power Research Institute (contract/grant numbers TPC-546-2517-9802, NSC 96-2116-M-039-001-MY3 and NSC 98-3114-B-001-001) Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH99-TD-B-111-004) and Taiwan Department of Health Clinical Trial Research Center of Excellence (DOH 99-TD-B-111-004) and of Health Cancer Research Center of Excellence (DOH-99-TD-C-111-005) for financial support.

- [1] Wikfors GH, Ferris GE, Smith BC. (1992) The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam, *Mercenaria mercenaria* (L.). *Aquaculture*, 108, 135-154.
- [2] Sánchez S, Martínez M, Espinola F. (2000) Biomass production and biochemical variability of the marine microalga *Isochrysis galbana* in relation to culture medium. *Biochemical Engineering Journal*, 6, 13-18.
- [3] Pernet F, Tremblay R, Demers E, Roussy M. (2003) Variation of lipid class and fatty acid composition of *Chaetoceros muelleri* and *Isochrysis* sp. grown in a semicontinuous system. *Aquaculture*, 221, 393–406.
- [4] Lin YH, Chang FL, Tsao CY, Leu JY. (2007) Influence of growth phase and nutrient source on fatty acid composition of *Isochrysis galbana* CCMP 1324 in a batch photoreactor. *Biochemical Engineering Journal*, 37, 166-176.
- [5] Cho JY, Jin HJ, Lim HJ, Whyte JNC, Hong YK. (1999) Growth activation of the microalga *Isochrysis galbana* by the aqueous extract of the seaweed *Monostroma nitidum*. *Journal of Applied Phycology*, 10, 561-567.
- [6] Volkman JK, Smith DJ, Eglinton G, Forsberg TEV, Corner. EDS (1981) Sterol and fatty acid composition of four marine Haptophycean algae. *Journal of the Marine Biological Association of the United Kingdom*, 61, 509-527.
- [7] Park DW, Jo Q, Lim HJ, Véron B. (2002) Sterol composition of dark-grown *Isochrysis galbana* and its implication in the seed production of Pacific oyster, *Crassostrea gigas. Journal of Applied Phycology*, 14, 351-355.
- [8] Hsu HY, Hua KF, Su YC, Chu LC, Su SC, Chiu HW, Wong CH, Chen ST, Shieh CW, Yang SS, Chen YM, Chao LK. (2006) Study on regulation of cytokine gene expression in macrophages with an alkali-soluble polysaccharide of *Rhizoclonium riparium* alga. *Journal of Agricultural and Food Chemistry*, 54, 3558-3565.
- [9] Hsu HY, Jeyashoke N, Yeh CH, Song YJ, Hua KF, Chao LK. (2010) Immunostimulatory bioactivity of algal polysaccharides from *Chlorella pyrenoidosa* activates macrophages via Toll-like receptor 4. *Journal of Agricultural and Food Chemistry*, 58, 927-936
- [10] Fabegas J, García D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM. (1999) *In vitro* inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. *Antiviral Research*, 44, 67-73.
- [11] Barbarino E, Lourenço SO. (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. *Journal of Applied Phycology*, 17, 447-460.
- [12] Yang FL, Lu CP, Chen CS, Chen MY, Hsiao HL, Su Y, Tsay SS, Zou W, Wu SH. (2004) Structural determination of the polar glycoglycerolipids from thermophilic bacteria *Meiothermus taiwanensis*. *European Journal of Biochemistry/FEBS J*, 271, 4545-4551.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1945 - 1946

An Efficient Protocol for High-frequency Direct Multiple Shoot Regeneration from Internodes of Peppermint (Mentha x piperita)

Sanjog T. Thul* and Arun K. Kukreja

Central Institute of Medicinal and Aromatic Plants (CSIR), Lucknow-226015, UP, India

sanjay.thul@gmail.com; akkukreja53@yahoo.com

Received: July 29th, 2010; Accepted: September 24th, 2010

A simple, repeatable and efficient protocol for direct multiple shoot regeneration from internodal explants has been defined in peppermint (*Mentha x piperita* var. Indus). *In vitro* regenerated shoots of peppermint were excised into 4 to 8 mm long internodes and cultured on Murashige and Skoog's medium supplemented with different cytokinins. In the hormonal assay, 3.0 mg L⁻¹ zeatin or 6-isopentenyl adenine independently supplemented to half strength MS medium exhibited multiple shoot regeneration, while thiaduzorn (0.1-3.0 mg L⁻¹) showed no morphogenetic effect. A maximum of 85% *in vitro* cultured explants showed multiple shoot formation with an average of 7 shoots per explant on MS medium supplemented with zeatin. Multiple shoots were initiated within three weeks of cultivation. Internodes with regenerated multiple shoots were transferred to half - strength MS medium without supplementing with any plant growth hormone for shoot elongation and rhizogenesis. Rooted plants acclimatized and grew to maturity under glasshouse conditions. The plantlets developed were phenotypically identical to the parent plant and exhibited 96 % survival.

Keywords: Mentha x piperita, plant growth hormones, internodes, multiple shoot regeneration, cytokinins.

Peppermint (*Mentha piperita* L.), an allopolyploid (2n=72) and a natural hybrid of *M. aquatica* x *M. spicata* is cultivated in India and subtropical regions. Its essential oil is valued commercially as an additive to food products, cosmetics and pharmaceuticals [1]. *M. piperita* var. Indus [2] produces high menthofuran (27.2%) and pulegone (15.4%) levels in its essential oil. In the present investigation, we report a simple and efficient method of direct multiple shoot regeneration and formation of complete plantlets from internodal segments of *M. piperita* var. Indus without the production of a callus phase.

Effect of cytokinins on multiple shoot induction: Multiple shoot induction in internodal segments was observed within 3 weeks on half strength MS medium, while a comparatively low regeneration response was observed in full strength MS medium. Of the three cytokinins (Z, 2-iP and TDZ) tested (0.1-3.0 mg L⁻¹), Z at higher levels (>1.0 mg L⁻¹) and 2-iP at all levels (0.1-3.0 mg L⁻¹) tested exhibited the highest (85%) multiple shoot regeneration response (Table 1) and an average of 7 shoots/explant were obtained with Z (3.0 mg L⁻¹), while a comparatively low response (55%) was observed with 2-iP (3.0 mg L⁻¹). None of the explants showed regeneration in medium supplemented with

Table 1: Effect of cytokinins on morphogenetic response in M. piperita.

Cytokinin	Morphogenetic response (%)				
(mgl ^{-l})	Z	TDZ	2-iP		
0.0	_	_	_		
0.1	_	_	R (25)		
0.5	_	R (35)	R (50)		
1.0	MS (25)	_	R (40)		
2.0	MS (35)	_	MS (35)		
3.0	MS (85)	-	MS (50)		

MS - multiple shoots; R - rooting; — no response; figure in parentheses denotes percentage of cultures showing morphogenetic response

TDZ at any of the levels tested. This is contrary to the earlier reports where regeneration of plantlets in the presence of TDZ has been reported [3-5]. Coconut water (25%), along with either TDZ or BA or 2-iP were evaluated for their effect on organogenesis. Amongst these cytokinins, TDZ was found to be the most effective for inducing shoot formation in peppermint (Mentha x piperita) leaf explants [4]. These results are in contrast to our present study in which none of the concentrations of TDZ tested induced regeneration. This indicated that the TDZ levels tested alone may not be able to induce multiple shoot induction. Occasionally TDZ and 2-iP at certain low levels also showed root initiation in cultured explants, but shoot regeneration was not observed along with the rooting (Table 1). Leaf disks and petioles of M. citrata

Ehrh., *M. piperita* cv. Black mitcham, *M. spicata* L. and *M. gracilis* Sole ex Baker also exhibited high multiple shoot regeneration responses with 2iP [6], as has also been observed in the present study. Coconut water in the MS medium supplemented with 4.5 μM TDZ has been found to affect adventitious shoot formation in callus of *Mentha x gracilis* [3]. Excision of the growing shoots at each sub-culture passage further enhanced the elongation of dormant buds formed during the initial shoot formation.

Shoot elongation and root induction: The half strength MS medium was found to be more effective for rapid and healthy growth of explants. Shoot elongation and rhizogenesis were much more rapid and significant in half strength MS medium in contrast to MS full strength. Although Z and 2-iP stimulated multiple shoot formation, they slowed down the development and elongation of shoots. Simultaneous shoot elongation and rooting was observed in nodal explants and therefore, single shoots separated from multiple shoot clumps were sub-cultured in growth hormone free half strength MS medium. The observed effects of shoot elongation and root initiation on medium devoid of hormones support the reported work [7]. About 90-95% of the single shoots elongated and formed roots within three weeks.

Recovery of plantlets: Of the plantlets transferred to glasshouse conditions, 96% showed survival and grew to maturity. No phenotypic variation was observed among the control (sucker grown parent plants) and *in vitro* raised plants. This study thus demonstrated a simple and efficient protocol for direct multiple shoot regeneration and production of true-to-type plants that could be adapted for study of transgenic *M. piperita*.

Experimental

Establishment of aseptic cultures: Nodal segments were collected from healthy young plants from the National Gene Bank at CIMAP, Lucknow. These were surface sterilized and inoculated on half strength MS medium [8] under reported culture conditions [9].

Shoot induction and multiplication: Internodal segments (4 to 8 mm in size) from pre-cultured mother stocks were placed on half strength MS medium supplemented either with zeatin (Z), thidiazuron (TDZ) or N6-2(2-isopentyl) adenine (2-iP) at 0.1, 0.5, 1.0, 2.0 and 3.0 mg L⁻¹ levels. Full and half strength MS basal media were tested to define optimal concentration of cytokinins for multiple shoot induction. Ten replicates of each level of all the 3 cytokinins were used and the experiment was repeated twice. Multiple shoots were separated and sub-cultured on fresh cytokinin free half strength MS medium for further shoot elongation and rooting.

Acclimatization of plantlets: The rooted shoots measuring 4-6 cm in length with 5-7 leaves were taken from the culture vessel, washed gently under running tap water and kept in a culture tube containing water for 5-7 days. After this hardening phase, plants were transferred to plastic trays containing soil and vermicompost mixture (2:1) and acclimatized in a glass house under normal day length conditions.

Acknowledgements - The authors are thankful to the Director, CIMAP, Lucknow and the Council of Scientific and Industrial Research (CSIR), India for providing necessary facilities to carry out the work.

- [1] Banthorpe DV. (1996) *Mentha* species (mints): *In vitro* culture and production of lower terpenoids and pigments. In *Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants DC*, Vol. 37, Bajaj YPS (Ed.). Springer-Verlag, Berlin. 202-225.
- [2] Khanuja SPS, Patra NK, Shasany AK, Kumar B, Gupta S, Gupta MK, Upadhyay RK, Priya TP, Singh AK, Darokar MP, Singh AK, Tomar VKS, Bahl JR, Lal RK, Naqvi AA. (2005) High menthofuran chemotype 'CIM-Indus' of *Mentha x piperita*. *Journal of Medicinal and Aromatic Plant Sciences*, 27, 721-726.
- [3] Wang X, Gao Z, Wang Y, Bressan RA, Weller SC, Li X. (2009) Highly efficient *in vitro* adventitious shoot regeneration of peppermint (*Mentha* x *piperita* L.) using internodal explants. *In Vitro Cellular Developmental Biology-Plant*, 45, 435-440.
- [4] Niu X, Lin K, Hasegawa PM, Bressan RA, Weller SC. (1998) Transgenic peppermint (*Mentha* x *piperita* L.) plants obtained by cocultivation with *Agrobacterium tumefaciens*. *Plant Cell Reports*, 17, 165-171.
- [5] Krasnyanski S, May RA, Loskutov A, Ball TM, Sink KC. (1999) Transformation of the limonene synthase gene into peppermint (*Mentha piperita* L.) and preliminary studies on the essential oil profiles of single transgenic plants. *Theoretical and Applied Genetics*, 99, 676–682.
- [6] Berry C, Van Eck JM, Kitto EL. (1997) *In vitro* irradiation and regeneration in mints. *Journal of Herbs, Spices and Medicinal Plants*, 4, 17-26.
- [7] Diemer F, Jullien F, Faure O, Moja S, Colson M, Matthys-Rochon E, Caissard JC. (1998) High efficiency transformation of peppermint (*Mentha x piperita* L.) with *Agrobacterium tumefaciens*. *Plant Science*, 136, 101-108.
- [8] Murashige T, Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiologia Plantarum*, 15, 473–497.
- [9] Kukreja AK. (1996) Micropropagation and shoot regeneration from leaf and nodal explants of peppermint (*Mentha piperita* L.). *Journal of Spices and Aromatic Crops*, 5, 111-119.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1947 - 1950

Essential Oil Yield and Chemical Composition Changes During Leaf Ontogeny of Palmarosa (*Cymbopogon martinii* var. *motia*)

Bhaskaruni R. Rajeswara Rao*, Dharmendra K. Rajput, Rajendra P. Patel and Somasi Purnanand

Central Institute of Medicinal and Aromatic Plants Research Center, Boduppal, Uppal (PO), Hyderabad 500 039, India

brrraol@rediffmail.com

Received: September 20th, 2010; Accepted: October 11th, 2010

Changes in leaf biomass yield, essential oil yield, and chemical composition were investigated during leaf ontogeny of palmarosa { $Cymbopogon\ martinii\ (Roxb.)$ } Wats. var. $motia\ Burk.$, family Poaceae}. Eleven leaves representing different developmental stages, serially numbered from the apex to the base of the plant were utilized for the study. Leaf biomass yield increased up to the eighth leaf. Essential oil recovery increased up to the third leaf; thereafter it decreased. Minimum essential oil recovery was observed in the eleventh leaf. Essential oil yield/leaf increased up to the sixth leaf. Essential oil yield and concentrations of linalool, α -terpineol, geranyl isobutyrate and geraniol were relatively higher in the essential oils of mature, older leaves. Essential oil recovery, and percentages of myrcene, β -caryophyllene, geranyl acetate, (E,Z) farnesol and geranyl hexanoate were higher in the essential oils of young, expanding leaves.

Keywords: palmarosa, *Cymbopogon martinii* var. *motia*, leaf ontogeny, leaf biomass yield, essential oil yield, essential oil composition, geraniol.

Palmarosa {Cymbopogon martinii (Roxb.) Wats. var. motia Burk., family Poaceae} essential oil finds extensive use in perfumery (soaps, cosmetics, rose-like perfumes), flavoring (tobacco, food products, nonalcoholic beverages), aromatherapy, and in medicine (stiff joints, lumbago, skin diseases) [1]. The major constituents of the essential oil are linalool, geranyl acetate and geraniol. Leaves and inflorescences are the chief sources of essential oil. Leaf sheath [1], seeds [2], and stalks [3] also possess essential oil. In the aromatic crops lemongrass (Cymbopogon flexuosus) [4], citronella (Cymbopogon winterianus) [5], rose-scented geranium (Pelargonium species) [6], sage (Salvia officinalis) [7], clove (Eugenia caryophyllata) [8], and peppermint (Mentha x piperita) [9] changes in essential oil yield and composition were reported during leaf ontogeny. In the present study, we describe in detail, the changes in leaf growth, biomass yield, essential oil recovery, essential oil yield, and essential oil composition during palmarosa leaf development.

Leaf area increased significantly up to the sixth leaf due to increases in leaf length and width (Table 1). Earlier formed, older leaves reached smaller sizes than the latter formed young leaves; a similar pattern was observed in rose-scented geranium [6]. Leaf biomass yield increased significantly up to the eighth leaf due to increase in leaf size. There was a significant decrease in biomass yield of the eleventh leaf in comparison with the ninth leaf, due to its smaller size and loss of moisture. In spite of the smaller leaf sizes, the biomass yields of the ninth and tenth leaves were at par with that of the eighth leaf. Decrease in biomass yield with advancement of leaf age was reported in lemongrass [4], and citronella [5].

The essential oil recovery increased significantly up to the third leaf, declined up to the seventh leaf, but with no further significant decrease up to the tenth leaf. The eleventh leaf recorded the lowest essential oil recovery. Young, expanding leaves exhibited higher recovery due to high biosynthetic activity [5,9,10], rapid formation of oil glands, and accumulation of essential oil in them [9,10]. The relationship between oil gland density, and leaf oil recovery was demonstrated in rose-scented geranium [6], and mints [11,12]. Crop responses to the relationship between leaf age, and essential oil recovery varied. In lemongrass, and citronella, the essential oil recovery increased in young, expanding leaves, and decreased with leaf age [4,5]. In rose-scented geranium,

Table 1: Length, width, area, yield, essential oil recovery, and essential oil yield of palmarosa leaves.

Leaf number	Leaf length (cm)	Leaf width (cm)	Leaf area (cm ²)	Leaf yield (mg/leaf)	Oil recovery (mL/100 g)	Oil yield (µL/leaf)
1	8.92	0.34	3.03	29.0	1.26	0.36
2	12.75	0.59	7.52	54.0	1.44	0.78
3	16.96	0.90	15.26	88.8	1.64	1.46
4	22.41	1.16	25.99	172.2	1.47	2.53
5	28.96	1.31	37.94	267.3	1.35	3.61
6	34.50	1.24	42.78	376.8	1.28	4.82
7	34.99	1.21	42.34	450.7	1.10	4.96
8	34.69	1.04	36.08	513.0	0.99	5.08
9	33.87	0.85	28.79	501.3	0.98	4.91
10	29.65	0.74	21.94	493.8	0.91	4.49
11	21.32	0.55	11.73	468.5	0.82	3.84
$LSD^{a} (P=0.05)$	2.85	0.09	4.25	26.0	0.17	0.53

^aLSD = least significant difference

Table 2: Percentage composition of essential oils of palmarosa leaves.

Leaf number	Myrcene	Linalool	β-Caryophyllene	α-Terpineol	Geranyl acetate	Geranyl isobutyrate	Geraniol	(E,Z) Farnesol	Geranyl hexanoate
1	0.18	1.04	0.60	0.26	3.76 ^a	0.09	85.24 ^b	2.75 ^a	2.38 ^a
2	0.12	0.99^{b}	0.75	0.31	3.32	0.10	86.31	2.73	1.75
3	0.12	1.34	0.78^{a}	0.20^{b}	2.48	0.09	88.22	2.55	1.54
4	0.14	1.30	0.56	0.24	1.52	0.08^{b}	90.05	2.42	1.52
5	0.14	1.72	0.48	0.27	1.21	0.17	91.30	2.33	1.35
6	0.32^{a}	1.96 ^a	0.43	0.35	0.90	0.16	91.44	2.30	1.33
7	0.20	1.86	0.53	0.45	0.59	0.16	92.18	2.23	1.26
8	0.13	1.64	0.53	0.56^{a}	0.42	0.18	92.09	2.24	1.24
9	0.11^{b}	1.67	0.51	0.38	0.40	0.16	92.60	2.21	1.18
10	0.12	1.52	0.36^{b}	0.27	0.39	0.19^{a}	93.25 ^a	2.15	1.08
11	0.13	1.64	0.38	0.42	0.33 ^b	0.18	92.03	2.14^{b}	1.07 ^b
LSD ^c (P=0.05)	0.02	0.20	0.16	0.17	0.21	0.03	0.81	0.06	0.11

^aHighest concentrations recorded in the leaves of different ages; ^bLowest percentages observed in the leaves of different ages; ^cLSD = least significant difference

the essential oil recovery decreased with leaf age [6], whereas in peppermint, after an initial increase in the young leaves, it remained constant with increasing leaf age [9].

Nine constituents of the essential oils, accounting for 96.3-99.5%, were identified and are listed in Table 2. All the leaves produced essential oils of good quality with high levels of geraniol, the principal component of palmarosa essential oil, for which it is internationally traded. The leaves were, however, distinct in possessing the maximum (first, third, sixth, eighth, and tenth leaves), and the minimum (first, second, third, fourth, ninth, tenth, and eleventh leaves) concentrations of individual compounds. The percentages of myrcene, β -caryophyllene, geranyl acetate, (E,Z) farnesol, and geranyl hexanoate were comparatively higher in young leaves, and declined with leaf age. Mature, older leaves had relatively greater amounts of linalool, α-terpineol, geranyl isobutyrate, and geraniol. The accumulation of specific essential oil constituents in leaves of different ages is a function of relative abundance and activity of the enzymes responsible for their synthesis [10,13-15]. The relationship between levels and activities of the enzymes and accumulation of specific constituents in leaves of different ages has been demonstrated in lemongrass [13]. Essential oil composition variation in leaves of different ages was reported in lemongrass [4],

citronella [5], rose-scented geranium [6], sage [7], clove [8], and mints [9,11,16]. To the best of our knowledge, this is the first report on chemical profile changes in palmarosa leaf essential oils during leaf ontogeny.

Experimental

Leaf sample collection: Palmarosa cultivar Trishna was cultivated in the research farm of the Central Institute of Medicinal and Aromatic Plants Research Center, Hyderabad, India, following standard cultivation practices. The rainy season encourages luxuriant growth and produces high biomass and essential oil yields of palmarosa [17]. The present study was conducted during the rainy season when the crop was ready for harvest. Uniformly growing, healthy palmarosa plants were selected at random. Leaves were numbered serially (from one to eleven) from the apex proceeding downwards to the base of the plant. The first leaf on the inflorescence was the youngest, and the eleventh leaf, the oldest. Two hundred leaves of each developmental stage were collected in 3 replicates (11 leaves X 200 each X 3 replications = 6600 leaves in total). The fresh weights were recorded separately for all the leaves and presented as biomass yield. A separate set of 100 leaves each was collected for leaf area estimation. Leaf lengths and leaf widths were measured. Leaf areas (length X width) were computed.

Essential oil isolation: Leaf samples, in triplicate (11 leaves X 3 replications = 33 samples) were distilled in a Clevenger-type glass apparatus for 3 h. The essential oil samples were dried over anhydrous sodium sulfate and stored in a refrigerator in sealed vials until analysis. Essential oil recovery (mL/100 g biomass) and yield (biomass yield X essential oil recovery) were calculated.

GC analysis: GC analyses were carried out using a Varian Star 3400CX GC fitted with a flame ionization detector (FID) and an electronic integrator. Separation of the compounds was achieved employing a Supelcowax-10 capillary column (30 m X 0.25 mm X 0.25 µm film thickness) coated with carbowax 20 M (polyethylene glycol). Nitrogen was the carrier gas at 1 mL/min flow rate. The column temperature program was: 80°C (2 min) to 220°C (5 min) at 7°C/min ramp rate. The injector and the detector temperatures were 200°C and 240°C, respectively. Samples (0.1 μL) were injected with a 1:50 split ratio. Retention indices were generated with a standard solution of *n*-alkanes (C₈-C₂₃). Peak areas and retention times were measured by an electronic integrator. The relative amounts of individual compounds were computed from GC peak areas without FID response factor correction.

GC/MS analysis: GC-MS analyses were performed on a Hewlett–Packard 5890 GC coupled to a HP-5970 mass selective detector (MSD) and quadrupole EI mass analyzer. A HP-1 column (coated with methyl silicone)

(25 m X 0.25 mm X 0.25 μ m film thickness) was used as the stationary phase. Helium was the carrier gas at 1 mL/min flow rate. Temperature was programmed from 60° to 220°C at 5°C/min ramp rate. The injector and the GC-MS interface temperatures were maintained at 250°C and 280°C, respectively. Mass spectra were recorded over 40–400 amu range at one span/s with 70 eV ionization energy and EI mode of ionization. The ion source and the detector temperatures were maintained at 250°C and 150°C, respectively. The samples (0.1 μ L) were injected with a 1:50 split ratio.

Identification of constituents: Essential oil components were identified by comparing the retention times of the GC peaks with standard compounds run under identical conditions, by comparison of retention indices with published literature [18,19], and by comparison of MS with those reported in the literature [20,21], and stored in NIST and Wiley libraries.

Statistical analysis: The data were statistically analyzed employing analysis of variance technique [22]. The significance of differences between treatment variance and error variance was tested with variance (F) ratio. Least significant difference (LSD) values at 5% probability level (P=0.05) were calculated by multiplying standard error of difference (SEd) values with tabulated t values.

Acknowledgements – The authors are beholden to the Director, CIMAP, Lucknow for facilities.

- [1] Rajeswara Rao BR, Rajput DK, Patel RP. (2009) Essential oil profiles of different parts of palmarosa (*Cymbopogon martinii* (Roxb.) Wats. var. *motia* Burk). *Journal of Essential Oil Research*, 21, 23-25.
- [2] Mallavarapu GR, Rajeswara Rao BR, Kaul PN, Ramesh S, Bhattacharya AK. (1998) Volatile constituents of the essential oils of the seeds and the herb of palmarosa (*Cymbopogon martinii* (Roxb.) Wats. var. *motia* Burk.). *Flavour and Fragrance Journal*, 13, 167-169.
- [3] Akhila A, Tyagi BR, Naqvi A. (1984) Variation of essential oil constituents in *Cymbopogon martini* Wats. (var. *motia*) at different stages of plant growth. *Indian Perfumer*, 28, 126-128.
- [4] Singh N, Luthra R, Sangwan RS. (1989) Effect of leaf position and age on the essential oil quantity and quality in lemongrass (*Cymbopogon flexuosus*). *Planta Medica*, 55, 254-256.
- [5] Luthra R, Singh N, Sharma S. (1991) Changes in monoterpene content accompanying development of *Cymbopogon winterianus* Jowitt. leaves. *Journal of Essential Oil Research*, 3, 349-354.
- [6] Rajeswara Rao BR, Bhattacharya AK, Kaul PN, Chand S, Ramesh S. (1993) Changes in profiles of essential oils of rose-scented geranium (*Pelargonium* sp.) during leaf ontogeny. *Journal of Essential Oil Research*, 5, 301-304.
- [7] Croteau R, Felton M, Karp F, Kjonaas R. (1981) Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiology, 67, 820-824.
- [8] Gopalakrishnan N, Narayanan CS. (1988) Composition of clove leaf oil during leaf growth. *Indian Perfumer*, 32, 130-132.
- [9] Gershenzon J, McConkey ME, Croteau RB. (2000) Regulation of monoterpene accumulation in leaves of peppermint. *Plant Physiology*, 122, 205-213.
- [10] Ganjewala D, Luthra R. (2010) Essential oil biosynthesis and regulation in the genus *Cymbopogon*. *Natural Product Communications*, 5, 163-172.
- [11] Maffei M, Gallino M, Sacco T. (1986) Glandular trichomes and essential oils of developing leaves in *Mentha viridis lavanduliodora*. *Planta Medica*, 52, 187-193.

- [12] Turner GW, Gershenzon J, Croteau RB. (2000) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiology, 124, 655-663.
- [13] Ganjewala D, Luthra R. (2009) Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (*Cymbopogon flexuosus* Nees ex Steud.) mutant cv. GRL-1 leaves. *Zeitschrift für Naturforschung C*, 64, 251-259.
- [14] Singh NS, Sangwan RS, Luthra R, Thakur RS. (1993) Geraniol dehydrogenase: a determinant of essential oil quality in lemongrass. *Planta Medica*, 59, 168-170.
- [15] Banthorpe DV, Ekundayo O, Mann J, Turnbull KW. (1975) Biosynthesis of monoterpenes from ¹⁴C-labelled acetate and CO₂. *Phytochemistry*, 14, 707-715.
- [16] Adzet T, Ponz R, Wolf E, Schulte E. (1992) Content and composition of *Mentha officinalis* oil in relation to leaf position and harvest time. *Planta Medica*, 58, 562-564.
- [17] Rajeswara Rao BR, Rajput DK. (2007) Effect of planting technique and number of irrigations on biomass and essential oil yields of palmarosa (*Cymbopogon martinii* (Roxb.) Wats. var. *motia* Burk.). *Journal of Medicinal and Aromatic Plant Sciences*, 29 (4) Part A, 177-181.
- [18] Davies NW. (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20M phases. *Journal of Chromatography*, 503, 1-24.
- [19] Jennings W, Shibamoto T. (1980) Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic Press, New York, London.
- [20] Adams RP. (1989) Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press, New York, London.
- [21] Masada Y. (1976) Analysis of Essential Oils by Gas Chromatography and Mass Spectroscopy. Halsted Press, Wiley, New York.
- [22] Panse VG, Sukhatme PV. (1978) Statistical Methods for Agricultural Workers. Indian Council of Agricultural Research, New Delhi, India.

2010 Vol. 5 No. 12 1951 - 1954

Essential Oil Composition of Four Endemic *Ferulago* **Species Growing in Turkey**

Ceyda Sibel Kılıç^{a*}, Ayşe Mine Gençler Özkan^a, Betül Demirci^b, Maksut Coşkun^a and Kemal Hüsnü Can Başer^{b,*}

^aAnkara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 06100 Tandoğan, Ankara, Turkey

^bAnadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskişehir, Turkey

erdurak@pharmacy.ankara.edu.tr

Received: September 17th, 2010; Accepted: October 16th, 2010

The essential oils from aerial parts of *Ferulago pachyloba* (Fenzl) Boiss., *F. platycarpa* Boiss. & Bal., *F. isaurica* Peşmen, and *F. longistylis* Boiss. (Apiaceae) were obtained by hydrodistillation and analyzed by GC and GC-MS. The highest oil yield (1.50%) was obtained from *F. pachyloba* followed by *F. longistylis* (0.16%), *F. isaurica* (0.08%) and *F. platycarpa* (0.07%). Fifty-three compounds were identified in the oil of *F. pachyloba* with (Z)- β -ocimene (25.7%) and α -pinene (9.8%) as main constituents; sixty-seven in the oil of *F. platycarpa* with 2,3,6-trimethylbenzaldehyde (29.8%) and *cis*-chrysanthenyl acetate (24.2%) as main components; seventy-eight in the oil of *F. isaurica* with nonacosane (25.5%) and hexadecanoic acid (14.8%) as main constituents; and fifty-nine in the oil of *F. longistylis* with 2,3,6-trimethylbenzaldehyde (32.7%) and bornyl acetate (12.6%) as main components. Quantitative and qualitative differences in the oil compositions of these four species were observed.

Keywords: Ferulago pachyloba, F. platycarpa, F. isaurica, F. longistylis, Apiaceae, essential oil composition, GC analysis, GC-MS analysis.

Ferulago W. Koch. is a perennial genus of the Apiaceae family represented by nearly forty species, thirty-two of which exist in the flora of Turkey, seventeen being endemic. This suggests that the gene centre for this genus is Anatolia [1-7]. The species of this genus are known as kuzukemirdi, kuzukişnişi, kuzubaşı, çakşırotu, cağşır, asaotu and kişniş in different regions of Turkey.

Ferulago species have been used since antiquity for the treatment of intestinal worms, hemorrhoids and as a sedative, tonic and digestive. Moreover, they are used against ulcers, snake bites, spleen diseases and headache [8]. It has also been reported that gums obtained from the incision of the roots of some species are used as seasoning and as a carminative [9]. However, the plants are mainly known as aphrodisiacs and as a preferred fodder to increase animal productivity [10].

Ferulago species have been reported to contain flavonoids, quinones, coumarin esters, sesquiterpenes, coumarins, furanocoumarins and aromatic compounds [11-17]. The genus is rich in essential oil and several species have been studied; *F. angulata* (Schlecht.) Boiss., *F. asparagifolia* Boiss., *F. galbanifera* (Mill.)

W. D. J. Koch, F. humilis Boiss., F. sandrasica Pesmen et Quézel, F. aucheri Boiss., F. confusa Velen, F. idaea Özhatay et E. Akalın, F. macrosciadia Boiss. et Bal., F. mughlae Pesmen, F. silaifolia (Boiss.) Boiss, F. bernardii L. Tomkovich & M. Pimenov. F. carduchorum Boiss. et Hausskn., F. contracta Boiss. et Hausskn, F. isaurica Pesmen, F. syriaca Boiss., F. nodosa (L.) Boiss., F. thyrsiflora (Sm.) W. D. J. Koch, F. phialocarpa Rech. f. et Riedl, F. sylvatica (Besser) Reichb., F. thirkeana (Boiss.) Boiss., F. trachycarpa Boiss., F. longistylis Boiss. The major constituents of the oils of these foregoing species were β -ocimene. α -pinene, α - and β -phellandrene, limonene, myrcene and p-cymene [18]. The aim of this paper is to present and compare the chemical composition of the essential oils of four endemic Ferulago species; F. pachyloba, F. platycarpa, F. isaurica and F. longistvlis growing in Turkey. Gas chromatographic (GC) and gas chromatographic-mass spectroscopic (GC-MS) analysis helped us to establish the composition and the relationship of the essential oil constituents. To the best of our knowledge, this is the first report on the chemical analysis of F. pachyloba and F. platycarpa. The identified constituents are presented in Table 2.

Table 1: Collection data for the investigated *Ferulago* species.

Code	Ferulago species	Specimen		Collection date	
		Herbarium	Herbarium altitude		(%)
		Number			
A	F. pachyloba	$GAZI^{\Phi}$	Niğde, Aladağlar,	August	1.5
			around Demirkazık,	2007	
			rocky slopes, 2600 m		
В	F. platycarpa	AEF*	Nevşehir, Üçhisar,	July	0.07
		23173	Gemil Mount,	2004	
			northern slopes, 1450		
			m		
C	F. isaurica	AEF 22957	Alanya – Antalya	September	0.08
			road, 6 km after	2002	
			Derince turn, rocky		
			slopes, 1110 m		
D	F. longistylis	AEF	Erzincan, Sakaltutan	July	0.16
		23795	Pass, roadsides,	2006	
			2000 m		

Therbarium of Gazi University Faculty of Arts and Sciences

A total of fifty-three compounds representing 96.6% of the oil were identified in the essential oil of F. pachyloba. (Z)-β-ocimene. α-pinene. sabinene and δ-cadinene were the major components, amounting to 25.7%, 9.8%, 6.3% and 5.6%, respectively. The analysis of F. platycarpa resulted in the identification of sixtyseven volatile compounds representing 94.1% of the oil. 2,3,6-Trimethylbenzaldehyde at 29.8% was the most abundant compound in the volatile oil, followed by cis-chrysanthenyl acetate (24.2%), nonacosane (7.7%) and α-pinene (4.2%). Seventy-eight compounds were characterized in the oil of F. isaurica representing 86.3% of the oil. The major constituents were nonacosane (25.5%), hexadecanoic acid (14.8%), bornyl acetate (5.3%) and terpinen-4-ol (4.6%). Fifty-nine compounds, representing 92.5% of the oil, were identified in the oil of F. longistylis with 2,3,6trimethylbenzaldehyde (32.7%), bornyl acetate (12.6%), p-cymene (11.9%) and cis-chrysanthenyl acetate (4.2%), as main components.

Considering the different groups of compounds, monoterpene hydrocarbons contributed most to the oils obtained from F. pachyloba (57.7%) and F. longistylis (22.4%), whereas oxygenated monoterpenes formed the main portion of the oils of F. platycarpa (33.1%) and F. isaurica (18.0%). Comparison of the main constituents of these four species (Table 2) shows that each species has a different set of dominant compounds. However, previous studies of the oils of Ferulago species [18] revealed that the three compounds detected in high percentages in this study, namely (Z)- β -ocimene, α -pinene and p-cymene have also been detected as major components in many other species. Erdurak et al. reported the essential oil contents of the fruit and root of F. isaurica [19] in 2006. The oils

obtained from the different parts of this species did not show much qualitative resemblance. The major constituents detected, namely α -pinene, limonene, and myrcene in the fruit, and terpinolene and myrcene in the root were not identified in the oil from the aerial parts of *F. isaurica*. Analysis of the fruit oil of *F. longistylis* conducted in 2008 showed 2,3,6-trimethylbenzaldehyde and bornyl acetate as the major compounds, in accordance with the results obtained for the aerial parts of the same species in this study [18].

Chemical profiling of the volatiles may be useful in taxonomical classification. The results presented in this study confirm some specific features of the oil composition of *Ferulago* species in Turkey and contribute to a better knowledge of this genus.

Experimental

Plant materials: Aerial parts of 4 *Ferulago* species were collected by the authors from their natural habitats in different localities of Turkey by random sampling from a single established population, as shown in Table 1; the plants were identified by Prof. Dr. Hayri Duman and voucher specimens were deposited in GAZI and in AEF.

Essential oil isolation: Air dried aerial parts of plants (50 g) were subjected hydrodistillation for 3 h using a Clevenger-type apparatus according to the method recommended in the European Pharmacopoeia [20]. The obtained oils were dried over anhydrous sodium sulfate and stored in sealed vials at +4°C in the dark until analyzed and tested. All oils were pleasant smelling, transparent with a faint yellow color.

GC/MS analysis: GC-MS analysis was carried out with an Agilent 5975 GC-MSD system. An Innowax FSC column (60 m x 0.25 mm, 0.25 μm film thickness) was used with helium as carrier gas (0.8 mL/min). The GC oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, and kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C/min. The split ratio was adjusted at 40:1. The injector temperature was set at 250°C. Mass spectra were recorded at 70 eV. The mass range was from m/z 35 to 450.

GC analysis: The GC analysis was carried out using an Agilent 6890N GC system. The FID detector temperature was 300°C. To obtain the same elution order with GC/MS, simultaneous autoinjection was used on a duplicate column applying the same operational conditions. Relative percentage amounts of the separated compounds were calculated from FID chromatograms.

^{*} Herbarium of Ankara University Faculty of Pharmacy

[¥] Yields are given on moisture free basis

Table 2: Composition of the essential oils of A: *Ferulago pachyloba*, B: *F. platycarpa*, C: *F. isaurica*, and D: *F. longistylis*.

RRI	Compound	A (%)	B (%)	C (%)	D (%)
1032	α-Pinene	9.8	4.2	-	3.5
1035	α-Thujene	0.3	0.1	-	0.1
1076	Camphene	0.8	0.2	-	0.2
1118	β-Pinene	0.6	0.3	-	0.2
1132	Sabinene	6.3	1.6	-	0.4
1159	δ-3-Carene	3.0	-	-	-
1174	Myrcene	1.9	1.7	-	1.4
1176	α-Phellandrene	0.5	-	-	-
1195	Dehydro-1,8-cineole	0.1	-	tr	-
1203	Limonene	2.2	0.6	0.9	0.5
1218	β-Phellandrene	0.2	0.1	-	0.1
1246	(Z)-β-Ocimene	25.7	0.2	-	2.3
1255	γ-Terpinene	3.1	0.3	0.3	1.4
1266	(E)-β-Ocimene	1.9	0.4	-	0.4
1280	<i>p</i> -Cymene	1.2	1.5	0.2	11.9
1286	Isoterpinolene	0.2	-	-	-
1290	Terpinolene	1.2	-	0.2	-
1294	1,2,4-Trimethyl benzene	-	0.8	-	1.8
1355	1,2,3-Trimethyl benzene	-	0.3	-	0.7
1382	cis-Alloocimene	0.2	-	-	-
1429	Perillen	-	0.1	-	-
1439	γ-Campholene aldehyde	-	0.1	-	0.1
1441	(E)-2-Octenal	-	0.1	-	-
1446	2,6-Dimethyl-1,3(E),5(Z),7-				
	octatetraene	0.1	-	-	-
1452	α , p -Dimethylstyrene	-	0.1	0.2	0.2
1476	(Z)-β-Ocimene epoxide	_	tr	-	0.1
1479	δ–Elemene	_	0.1	_	-
1492	Cyclosativene	_	0.1	tr	_
1497	α-Copaene	0.2	0.2	0.3	tr
1499	α-Copaene α-Campholene aldehyde	-	0.6	0.1	0.7
1528	α-Bourbonene	-	-	0.1	-
1535		0.1	0.1	0.1	0.2
	β-Bourbonene		0.1		
1553	Linalool	-	0.1	0.7	-
1562	Octanol	-	0.1	tr	-
1571	trans-p-Menth-2-en-1-ol	-	0.1	0.3	tr
1582	cis-Chrysanthenyl acetate	- 0.1	24.2	-	4.2
1586	Pinocarvone	0.1	-	- 0.1	-
1589	β-Ylangene	-	-	0.1	-
1591	Bornyl acetate	0.9	2.1	5.3	12.6
1597	β-Copaene	tr	-	0.1	-
1600	β–Elemene	0.6	0.2	1.2	-
1611	Terpinen-4-ol	-	1.3	4.6	0.4
1612	β-Caryophyllene	4.4	-	-	0.3
1639	trans-p-Mentha-2,8-dien-1-ol	-	-	0.3	-
1639	Cadina-3,5-diene	0.1	-	-	-
1645	cis-Verbenyl acetate	-	-	-	0.3
1648	Myrtenal	-	0.3	0.1	0.2
1650	γ–Elemene	-	-	-	-
1661	trans-Pinocarvyl acetate	0.3	0.9	-	1.0
1670	trans-Pinocarveol	-	0.7	0.4	0.4
1678	cis-p-Mentha-2,8-dien-1-ol	-	-	0.1	-
1683	trans-Verbenol	-	0.7	0.2	-
1687	α-Humulene	0.6	-	0.2	-
1700	p-Mentha-1,8-dien-4-ol	-	-	0.8	-
	(=Limonen-4-ol)				
1704	Myrtenyl acetate	0.1	-	-	-
1704	γ-Muurolene	0.2	-	-	-
1706	α-Terpineol	-	-	0.5	-
1719	Borneol	-	0.1	0.3	0.3
1725	Verbenone	-	0.1	tr	0.1
1726	Germacrene D	1.9	-	1.7	-
1738	p-Mentha-1,5-dien-8-ol	-	-	-	0.7
1740	α–Muurolene	0.8	-	-	_
1741	β–Bisabolene	-	_	_	_
1742	β–Selinene	_	0.3	_	_
1744	α-Selinene	-	tr	0.2	-
1751	Carvone	1.2	0.1	0.7	-
1755	Bicyclogermacrene cis-Piperitol	1.2	-	0.2	-
	CIS-PINERIIOI	-	tr	0.2	-
1758				0.0	0.2
1758 1763 1764	Naphthalene cis-Chrysanthenol	-	0.7	0.2	0.3

1772	2.0 1	<i>5 (</i>		0.2	
1773	δ-Cadinene	5.6	-	0.3	-
1776	γ-Cadinene	1.2	-	0.2	-
1785	7-epi-α-Selinene	0.2	-	-	-
1786	ar-Curcumene	_	0.1	_	0.4
					0.4
1797	<i>p</i> -Methyl acetophenone	-	-	0.1	-
1799	Cadina-1,4-diene (=Cubenene)	0.1	-	-	-
1804	Myrtenol	-	0.2	0.1	-
1811	trans-p-Mentha-1(7),8-dien-2-ol	-	-	0.3	-
1827	(E,E)-2,4-Decadienal	-	0.1	0.1	0.1
1838	(E)-β-Damascenone	-		0.1	
1845	trans-Carveol	-	0.4	0.9	0.3
1857	Geraniol	-	-	0.3	-
1864	p-Cymen-8-ol	-	0.3	0.8	0.4
1868	(E)-Geranyl acetone	_	0.1	0.4	0.1
1882	cis-Carveol			0.2	0.1
		-	-		-
1896	cis-p-Mentha-1(7),8-diene-2-ol	-	-	0.1	-
1900	epi-Cubebol	0.5	-	-	-
1925	2,3,4-Trimethyl benzaldehyde	-	1.5	-	3.1
1941	α-Calacorene	0.1	-	0.1	_
1945					
	1,5-Epoxy-salvial(4)14-ene	-	-	-	0.1
1957	Cubebol	0.6	-	-	-
1958	(E) - β -Ionone	-	-	0.1	-
1973	Dodecanol	-	0.1	-	_
2008	Caryophyllene oxide	0.5	-	1.7	0.2
2019	2,3,6-Trimethylbenzaldehyde				32.7
		-	29.8	0.7	
2037	Salvial-4(14)-en-1-one	-	-	0.3	0.1
2050	(E)-Nerolidol	-	-	0.5	-
2069	Germacrene D-4β-ol	5.3	-	-	-
2071	Humulene epoxide-II	-	0.1	0.2	0.1
	-				
2073	p-Mentha-1,4-dien-7-ol	-	-	0.1	-
2080	Cubenol	0.2	-	-	-
2088	1-epi-Cubenol	0.2	-	-	-
2100	Heneicosane	-	0.1	-	-
2103	Guaiol	0.6	_	-	_
2122					
	Hedycaryol	1.9	-	-	-
2130	Salviadienol	-	-	0.3	0.2
2131	Hexahydrofarnesyl acetone	-	0.3	0.8	-
2144	Spathulenol	1.1	0.7	0.9	-
2148	(Z)-3-Hexen-1-yl benzoate	_	_	_	0.9
2179	Tetradecanol	_	0.2	0.3	
					-
2187	T-Cadinol	1.8	-	-	-
2200	Docosane	-	0.1	-	-
2209	T-Muurolol	1.5	-	-	-
2219	Dimyrcene II-a	-	0.1	0.7	_
2226	Methyl hexadecanoate	_	tr	0.3	_
2250	α-Eudesmol	0.2	-	-	-
2255	α-Cadinol	4.2	-	tr	-
2269	Guaia-6,10(14)-dien-4β-ol	-	12	0.3	-
2269	Dimyrcene II-b	_	_	0.4	_
	2				
2278	Torilenol	-	tr	0.4	-
2296	Myristicine	-	-	3.4	-
2300	Tricosane	-	0.2	0.6	0.1
2324	Caryophylla-2(12),6(13)-dien-				
	5α-ol (=Caryophylladienol II)	-	-	0.5	0.3
2369	Eudesma-4(15),7-dien-1β-ol			1.1	0.3
		-	-		
2384	Hexadecanol	-	-	-	0.2
2384	Farnesyl acetone	-	-	1.0	-
2392	Caryophylla-2(12),6-dien-5β-ol				
	(=Caryophyllenol II)	_	-	_	0.4
2500	Pentacosane	_	0.7	0.7	
2500			0.7	0.7	0.2
2622	Phytol	tr	0.4	3.9	0.2
2655	Benzyl benzoate	-	-	0.6	0.7
2670	Tetradecanoic acid	-	0.1	0.6	tr
2700	Heptacosane	_	-	0.6	tr
2822	Pentadecanoic acid	_	tr	tr	tr
		-			
2900	Nonacosane	-	7.7	25.5	2.7
2931	Hexadecanoic acid	-	3.9	14.8	1.7
	Monoterpene Hydrocarbons	57.7	11.2	1.4	22.4
	Oxygenated Monoterpenes	2.9	33.1	18	21.9
	Sesquiterpene Hydrocarbones	17.3	1.1	5.0	0.9
		18.6	2.0	7.2	1.7
	Oxygenated Sesquiterpenes				
	Diterpenes	-	0.5	5. 0	0.2
	Fatty acid	-	4.0	15.4	1.7
	Others	0.1	42.2	34.3	43.7
	Identified compounds	53.0	67. 0	78. 0	59.0
	Total	96.6	94.1	86.3	92.5
		70.0	/7.1	30.3	14.5

Identification of components: Identification of the essential oil components was carried out either by comparison of their relative retention times with those of authentic samples or by comparison of their relative retention index (RRI) with a series of *n*-alkanes. Computer matching against commercial (Wiley GC/MS

Library, Adams Library, MassFinder 2.1 Library) [21,22], and in-house "Başer Library of Essential Oil Constituents" built up from genuine compounds and components of known oils, as well as MS literature data [23-25], was used for the identification.

- Davis PH. (Ed.) (1972) Flora of Turkey and the East Aegean Islands, University Press, Edinburgh, Vol 4, pp. 462-464.
- [2] Akalın E. (1999) Pharmaceutical botanical investigation of *Ferulago* species growing in Western Turkey, Ph.D. Thesis, Istanbul University, Istanbul.
- [3] Davis PH, Mill RR, Tan K. (1988) Ferulago W. Koch. In Flora of Turkey and the East Aegean Islands. Davis PH, Mill RR, Tan K. (Eds), Vol. 10, Edinburgh University Press, Edinburgh, pp.152-153.
- [4] Özhatay N, Akalın E. (2000) A new Ferulago W. Koch (Umbelliferae) from NW Turkey. Botanical Journal of Linnean Society, 133, 535-542.
- [5] Akalın E, Pimenov MG. (2004) Ferulago trojana (Umbelliferae), a new species from Western Turkey. Botanical Journal of the Linnean Society, 146, 499-504.
- [6] Kandemir A, Hedge IC. (2007) An anomalous new Ferulago (Apiaceae) from Eastern Turkey, Willdenowia, 37, 273-276.
- [7] Erdemoğlu N, Akalın E, Akgöç M, Çıkrıkçı S, Bilsel G. (2008) Comparison of seeds oil of *Ferulago trachycarpa* Boiss. different localities with respect to fatty acids. *Records of Natural Products*, 2, 13-18.
- [8] Demetzos C, Perdetzoglou D, Gazouli M, Tan K, Economakis C. (2000) Chemical analysis and antimicrobial studies on three species of *Ferulago* from Greece. *Planta Medica*, 66, 560-563.
- [9] Boulus L. (1983) Medicinal plants of North-Africa MI. Algonae, Michigan, USA. 183.
- [10] Baytop T. (1999) Therapy with medicinal plants in Turkey past and present. 2nd Ed., Nobel Tip Basimevi, Istanbul, Turkey. 348-349.
- [11] Miski M, Moubasher HA, Mabry TJ. (1990) Sesquiterpene aryl esters from Ferulago antiochia. Phytochemistry, 29, 881-886.
- [12] Doğanca S, Ulubelen A, Tuzlacı E. (1991) 1-Acetylhydroquinone 4-galactoside from Ferulago aucheri. Phytochemistry, 30, 2803-2805.
- [13] Doğanca S, Tuzlacı E, Ulubelen A. (1992) Constituents of Ferulago asparagifolia. Fitoterapia, 63, 552-552.
- [14] Giuseppe R, Cannizzo S, Amico V, Bizzini M, Piatelli M. (1994) Chemical constituents of *Ferulago nodosa. Journal of Natural Products*, 57, 1731-1733.
- [15] Jiménez B, Concepción Grande M, Anaya J, Torres P, Grande M. (2000) Coumarins from Ferulago capillaris and F. brachyloba. Phytochemistry, 53, 1025-1031.
- [16] Erdurak Kılıç CS, Coşkun M. (2006) Felamedin and prantschimgin content of chloroform fractions of *Ferulago isaurica* and *F. syriaca* growing in Turkey. *Chemistry of Natural Compounds*, 42, 351-352.
- [17] Erdurak Kılıç CS, Okada Y, Coşkun M, Okuyama T. (2006) New furanocoumarins isolated from the roots of *Ferulago isaurica* Peşmen growing in Turkey. *Heterocycles*, 69, 481-486.
- [18] Gençler Özkan AM, Demirci B, Demirci F, Başer KHC. (2008) Composition and antimicrobial activity of essential oil of *Ferulago longistylis* Boiss. fruits. *Journal of Essential Oil Research*, 20, 569-573.
- [19] Erdurak CS, Coskun M, Demirci B, Baser KHC. (2006) Composition of the essential oil of fruits and roots of *Ferulago isaurica* Pesmen and *F. syriaca* Boiss. (Umbelliferae) from Turkey. *Flavour and Fragrance Journal*, 21, 118-121.
- [20] European Pharmacopoeia, (2005) Council of Europe, Vol. 1, 5th Ed., Strasbourg, p.217.
- [21] McLafferty FW, Stauffer DB. (1989) The Wiley/NBS registry of mass spectral data. J Wiley and Sons, New York.
- [22] Joulain D, König WA, Hochmuth DH. (2001) Terpenoids and related constituents of essential oils. Library of MassFinder 2.1, Hamburg, Germany.
- [23] Joulain D, König WA. (1998) The atlas of spectra data of sesquiterpene hydrocarbons, EB-Verlag, Hamburg.
- [24] ESO 2000. (1999) The complete database of essential oils, Boelens Aroma Chemical Information Service, the Netherlands.
- [25] Jennings WG, Shibamoto T. (1980) Quantitative analysis of flavor and fragrance volatiles by glass capillary GC, Academic Press, New York.

2010 Vol. 5 No. 12 1955 - 1958

Essential Oils of *Daucus carota* subsp. *carota* of Tunisia Obtained by Supercritical Carbon Dioxide Extraction

Hanen Marzouki^{a,b}, Abdelhamid Khaldi^b, Danilo Falconieri^c, Alessandra Piras^d, Bruno Marongiu^d, Paola Molicotti^e and Stefania Zanetti^e

^aLaboratoire de Botanique et de Biologie Végétal, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisia

hanen marzouki7@yahoo.fr

Received: February 22nd, 2010; Accepted: October 1st, 2010

The essential oils and supercritical CO_2 extracts of wild *Daucus carota* L. subsp. *carota* from two different sites in Tunisia were investigated. The main components of the essential oil of the flowering and mature umbels with seeds from Sejnane were eudesm-7(11)-en-4-ol (8.2 - 8.5%), carotol (3.5 - 5.2%), sabinene (12.0 -14.5%), α -selinene (7.4 - 8.6) and 11- α -(H)-himachal-4-en-1- β -ol (12.7 - 17.4%), whereas the oils from Tunis were predominantly composed of elemicin (31.5 - 35.3%) and carotol (48.0 - 55.7%). The antimicrobial activity of the essential oils were assayed by using the broth dilution method on *Escherichia coli* ATCC 35218 and *Staphylococcus aureus* ATCC 43300, and clinical strains of *Candida albicans* and *C. tropicalis* 1011 RM. The MIC values obtained were all > 2.5% (v/v).

Keywords: Daucus carota L. subsp. carota, essential oil, supercritical CO₂, antibacterial activity, antifungal activity.

Daucus carota L. subsp. carota (Apiaceae) is native to Europe, Asia and Africa. Traditional medicine uses D. carota extracts for hepatic and renal insufficiency as well as for skin disorders, for example burns and furunculous [1]. Extracts of the wild plants are known to be antioxidative and iron-chelative. Ahmed et al., from the roots of wild D. carota subsp. carota, isolated three new sesquiterpene daucane derivatives and four known compounds that showed antifungal activity [2]. Also, the methanol extract of the seeds showed antibacterial activity [3]

Carrot seed essential oil is widely used as a flavor ingredient in many foods and as a fragrance in perfumes, cosmetics and soaps. Claimed biological properties of the oil include antimicrobial, hepatocellular regenerator, general tonic and stimulant, cholesterol regulator, and cicatrisant. The essential oil from the aerial parts of the plant showed particular activity against Gram-positive bacteria, but the activity of the oils from different organs of the plant were not

the same, decreasing in the sequence, mature umbel oils > herb oil > flowering umbel oils [4]. The part of the plant, the stage of development as well as the geographical origin can influence significantly the composition of the oils obtained from this species. From literature data it can be seen that leaf, stem, and blooming umbel oils are dominated by monoterpenes and/or sesquiterpenes [5-6]. Oils isolated from umbels or seeds were dominated by sesquiterpenes and phenylpropanoids, β -bisabolene and β -asarone or by (E)-methylisoeugenol accompanied by α -pinene and elemicin.

Considerable variations were also found depending on geographical area, especially in the composition of the seed oils. Góra *et al.* [7] and Staniszewska and Kula, [8] showed that oils from Poland were dominated by either sabinene and α -pinene or sabinene, α -pinene and geranyl acetate. Similar results were reported by Mockute and Nivinskiene [9] for Lithuanian carrot seed essential oil. However, carrot seed oil from Turkey was

^bInstitut National de Recherche en Génie Rural Eaux et Forêts de Tunis, INRGREF, Tunis, Tunisia

^cIstituto Tecnico Industriale "M.Giua", via Montecassino, Pirri, Cagliari, Italy

^dDipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy

^eDipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università di Sassari, viale San Pietro 47b, 07100 Sassari, Italy

reported to contain a high content of carotol (67%) and daucene (9%) [10]. Also Glisic *et al.* [1] found in the supercritical extract from seed of carrot from Serbia, carotol as the principal component (30%). For commercial carrot seed oil, which includes oils of all the subspecies of *D. carota*, four compositions can be distinguished. Three of these are dominated by sabinene (32–60%) and either geranyl acetate (32–77%) or carotol (23–77.5%), and the fourth contains these compounds with an identical ratio [6]. The aim of the present work was to investigate the compositions of the volatile oils of *D. carota* subsp. *carota* growing wild in Tunisia at two different sites (Sejnane and Tunis). Carbon dioxide supercritical extracts (SFE) were also produced and their compositions investigated.

D. carota subsp. *carota* essential oil of ripe umbels (with mature seeds) was obtained in yields of 1.0% and 2.0% for HD and SFE, respectively. Thirty-six identified compounds made up 93.2-97.3% of the oil (Table 1).

The oil from mature umbels with seeds from Sejnane (sample1) was composed of sesquiterpene hydrocarbons (36.1-37.2%) and oxygenated sesquiterpenes (29.2-35.9%). The main components were carotol (3.5-5.2%), β -bisabolene (5.5-7.6), α -selinene (7.4-8.6%), eudesm-7(11)-en-4-ol (8.2-8.5%), sabinene (12.0-14.5%) and $11-\alpha$ -(H)-himachal-4-en-1- β -ol (12.7-17.4%). However, the oil from the mature umbels with seeds from the second site (sample 2) was of the carotol chemotype (48.0-55.7%), with the second main constituent being elemicin (31.5-35.3%). This oil is predominantly composed of oxygenated sesquiterpenes (48-55.7%) and phenylpropanoids (31.5-35.3%). This latter sample did not contain any oxygenated monoterpenes.

It is interesting to note that phenylpropanoids represented 31.5% of the oil in sample 2, but only 4.7 % of sample 1 (data of HD extract). Similar results were reported by Maxia et al. [18], who found that the umbels with seed oils obtained from plants of D. carota ssp. carota from Italy contained 15.2% of phenylpropanoids, which was nearly five times that found in oils obtained from plants growing in Portugal (3.4%). 11α-H-himachal-4-ene-1β-ol and eudesm-7(11)-en-4-ol, the main compounds identified in the extracts from site 1 were not identified in the extracts obtained from site 2. The same components were found in the oil from Sardinia [18]. These differences could have several reasons, such as climate, soil or other geographical factors [19], but also to genetic differences probably responsible for the chemical variability in the carrot oil.

Table1: Retention index (RI) and chromatographic area percentages of compounds found in *Daucus carota* subsp. *carota* essential oils from site 1 (A1=HD and B1=SFE) and site 2 (A2=HD and B2=SFE).

			D.1		D.A.
RI	Compound	A1	B1	A2	B2
937	α-Pinene a,b,c	1.0	0.5	1.4	0.4
977	Sabinene a,b,c	14.5	12.0	1.7	0.5
980	β-Pinene a,b,c	2.7	2.0	1.0	0.3
992	Myrcene a,b,c	0.6	0.2	0.2	-
1019	α-Terpinene a,b	0.6	-	0.2	-
1027	<i>p</i> -Cymene a,b,c	0.5	- 0.1	-	-
1031	Limonene a,b,c	0.4	0.1	0.4	0.5
1061	γ-Terpinene ^{a,b,c}	0.7	-	-	-
1141	cis-Sabinol a,b	0.5	-	-	-
1178	Terpinen-4-ol a,b,c	1.2	0.2	-	-
1191	α-Terpineol a,b	0.4	-	-	-
1286	Bornyl-acetate a,b,c	0.5		-	-
1351	α-Longipinene a,b	1.3	1.4	1.3	0.8
1376	α-Copaene a,b	0.2	1.9	0.2	-
1380	β-Cubebene a,b	0.2	0.3	0.1	-
1391	β-Elemene ^{a,b}	0.8	0.9	0.2	-
1404	Methyleugenol a,b,c	0.7	0.5	-	-
1415	<i>cis</i> -α-Bergamotene ^{a,b}	0.3	-	-	-
1418	(E)-Caryophyllene a,b,c	0.4	0.4	2.2	1.4
1437	trans-α-Bergamotene a,b	3.8	0.2	0.2	-
1445	(Z)-β-Farnesene a,b	4.5	5.0	2.6	1.6
1453	α-Humulene ^{a,b,c}	1.3	1.5	-	-
1458	(<i>E</i>)-β-Farnesene a,b	2.9	3.5	-	-
1480	γ-Muurolene ^{a,b}	1.2	2.0	-	-
1485	Bicyclogermacrene a,b	2.4	0.2	-	-
1493	δ-Selinene a,b	1.0	1.2	-	-
1498	α-Selinene ^{a,b}	7.4	8.6	-	-
1509	β-Bisabolene ^{a,b}	5.5	7.6	-	-
1513	Elemecin ^{a,b}	1.4	1.6	31.5	35.3
1524	$E(\alpha)$ -Bisabolene ^{a,b}	1.8	1.9	0.4	0.5
1556	Germenene B a,b	0.6	0.6	0.3	0.3
1559	Carotol a,b	3.5	5.2	48.0	55.7
1630	11-α-(H)-Himacal-4-en-1-β-ol ^{a,b}	12.7	17.4	-	-
1653	α-Cadinol a,b	1.8	2.3	-	-
1682	α-Asarone ^{a,b}	1.6	2.6	-	-
1694	Eudesm-7(11)-en-4-ol a,b	8.2	8.5	-	-
Monoter	rpene hydrocarbons	21.0	14.8	4.9	1.7
Oxygen	containing monoterpenes	2.6	0.2	-	-
Sesquite	rpene hydrocarbons	36.1	37.2	7.5	4.6
Oxygen	containing sesquiterpenes	29.2	35.9	48.0	55.7
Phenylp	ropanoids	4.7	5.1	31.5	35.3
Total id	entified	93.6	93.2	91.9	97.3

Identification has been realized by comparing mass spectra (a), retention indices (b), and injection of authentic compound (c).

Extracts obtained by SFE revealed quantitative differences in their composition when compared with those of distilled essential oils. For example, SFE extract contains lower amounts of monoterpenes (15 vs. 23.6% and 1.7 vs. 4.9%) and higher amounts of phenyl-propanoids (5.1 vs. 4.7% and 35.3 vs. 31.5%).

Hydrodistillation induces migration of volatile compounds from the inside of the secretory structures to the surface, followed by their subsequent evaporation. Therefore, low molecular weight compounds are easily taken from the vegetable matrix while supercritical CO₂ emulates an organic solvent, improving the extraction of high molecular weight compounds. No differences were noted in the compositions of SFE extracts with changing extraction times.

The MIC and MCC values of the D. carota oil, both samples, obtained by the microdilution method were > 2.5 (v/v) against all the test microorganisms. The values for the Italian and Portuguese carrot oils varied depending on the fungal species investigated. C. neoformans and dermatophyte strains showed more sensitivity to these oils than Candida and Aspergillus strains [9]. On the other hand, Jabrane et al. [20] found that flower and root oils of Tunisian D. carota ssp. maritimus had a significant and broad spectrum of activity against Gram-positive and Gram-negative bacteria, the flower oil being more effective than the root oil against E. coli (ESLb). Conversely, the root oil was found to be more active than the flower oil towards S. aureus (reference and environmental strains). An essential oil is usually a complex mixture of different components and so it is difficult to reduce the antimicrobial effect of the total oil to either one or a few active principles. It cannot be ignored that, in addition to the main compounds, minor compounds could be making a significant contribution to the oil activity [21].

Experimental

Plant material: Umbels of *Daucus carota* L. subsp. *carota* were collected from two different sites in Tunisia from two different bioclimatic zones: Sejnane (humid) (samples 1) and Tunis (sub-humid) (samples 2). Voucher specimens (numbers: COI00033068 and CAG 625) were deposited at the Herbarium of the Department of Botany of the University of Tunis. Vegetal material was air-dried in a hot air-drier at 40°C with forced ventilation for 2 days. Before utilization, the plant material was ground with a Malavasi mill (Bologna, Italy) taking care to avoid overheating.

Hydrodistillation: Hydrodistillation (HD) was performed in a circulatory Clevenger-type apparatus according to the procedure described in the European Pharmacopoeia [11] for 4 h.

SFE extraction: Supercritical CO₂ (purity 99% - Air Liquide Italia, Cagliari, Italy) extractions were performed according Marongiu et al. [12] in a laboratory apparatus equipped with a 320 cm³ extraction vessel and two separator vessels of 300 and 200 cm³, respectively connected in series. Experiments were carried out at 90 bar and 40°C in the extraction section. In the first separator, the temperature was set at -10°C and the pressure at the same value as that of the extraction section. The second separator was set at 15 bar and 10°C. Extractions were carried out in a semi batch mode, with batch charging of vegetable matter and continuous flow of solvent. About 180 g of material were charged in each run.

GC/MS analysis: An Agilent Technologies Inc. gas chromatograph (Santa Clara, CA, USA) model 6890N was employed for analysis of the essential oils. It was equipped with a split-splitless injector, an autosampler Agilent model 7683 and an Agilent HP5 fused silica column; 5% phenyl-methylpolysiloxane, 30 m × 0.25 mm i.d., film thickness 0.25 um. GC conditions used were: programmed heating from 60 to 280°C at 3°C/min, followed by 30 min under isothermal conditions. The injector was maintained at 250°C. Helium was the carrier gas at 1.0 mL/min; the sample (1 µL) was injected in the split mode (1:20). The GC was fitted with a quadrupole mass spectrometer (MS, Agilent model 5973 detector). MS conditions were as follows: ionization energy 70 eV, electronic impact ion source temperature 200°C, quadrupole temperature 100°C, scan rate 1.6 scan/sec, mass range 50-500 u. The software adopted to handle MS and chromatograms was a ChemStation NIST 02 [13] and LIBR (TP) [14]. Mass Spectra Libraries were used as references. Samples were run in chloroform with a dilution ratio of 1:100. Compounds were identified by matching their MS and retention index with those reported in the literature [15]. Moreover, whenever possible, identification was confirmed by injection of an authentic sample of the compound. A quantitative analysis of each oil component (expressed in percentages) was carried out by peak area normalization measurement. The response factors were estimates using standard compounds having the same molecular weight as the compound families that constitute the essential oil (hydrocarbon and oxygenated monoterpenes, hydrocarbon and oxygenated sesquiterpenes).

Antimicrobial activity: The organisms tested in this study were as follow: Escherichia coli (ATCC 35218), Staphylococcus aureus (ATCC 43300), Candida albicans (clinical strain) and C. tropicalis (1011 RM) (clinical strain). Bacteria were cultured overnight in Luria-Bertani Broth (LB) and fungi in Sabouraud Dextrose Agar plates. Minimal inhibitory concentration (MIC) values were determined as the lowest essential oil concentration that inhibits visible growth of the isolates after 24-48 h incubation at 37°C. It was measured with the broth dilution method (microdilution using 96-well microplates) [16,17]. Nine different concentrations of each essential oil from 2.5%, v/v to 0.001%, v/v with 10% Tween 80 were used. The bacterial and fungal cultures were diluted with LB broth and RPMI medium, respectively, to obtain 1.0x10⁸ CFU/mL (0.5 MacFarland).

Minimal cidal concentration (MCC) values were determined as the lowest essential oil concentration that kills both bacteria and fungi. It was measured with the

broth dilution method starting from the MIC as the lowest concentration to the maximum one (2.5% v/v). Positive and negative controls were also included.

Acknowledgments - We thank M. Mabrouk Grami from the 'Institut National de Recherche en Génie Rural Eaux et Forêts de Tunis' for sample collection.

- [1] Glisic SB, Misic DR, Stamenic MD, Zizovic IT, Asanin RM, Skala DU. (2007) Supercritical carbon dioxide extraction of carrot fruit essential oil: Chemical composition and antimicrobial activity. *Food Chemistry*, 105, 346–352.
- [2] Ahmed AA, Bishr MM, El-Shanawany MA, Attia EZ, Ross SA, Pare PW. (2005) Rare trisubstituted sesquiterpenes daucanes from the wild *Daucus carota*. *Phytochemistry*, 66, 1680-1684.
- [3] Kumarasamy Y, Nahar L, Byres M, Delazar A, Sarker SD. (2005) The assessment of biological activities associated with the major constituents of the methanol extract of wild carrot (*Daucus carota* L.) seeds. *Journal of Herbal Pharmacotherapy*, 5, 61-72.
- [4] Staniszewska M, Kula J, Wieczorkiewicz M, Kusewicz D. (2005) Essential oils of wild and cultivated carrots-the chemical composition and antimicrobial activity. *Journal of Essential Oil Research*, 17, 579-583.
- [5] Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, Costa J, Casanova J, Bolla JM, Berti L. (2007) (E)-Methylisoeugenol and elemicin: Antibacterial components of *Daucus carota* L. essential oil against *Campylobacter jejuni*. *Journal of Agricultural and Food Chemistry*, 55, 7332-7336.
- [6] Gonny M, Bradesi P, Casanova J. (2004) Identification of the components of the essential oil from wild corsican *Daucus carota* L using 13C NMR spectroscopy. *Flavour and Fragrance Journal*, 19, 424-433.
- [7] Góra J, Lis A, Kula J, Staniszewska M, Woloszyn A. (2002) Chemical composition variability of essential oils in the ontogenesis of some plants. *Flavour and Fragrance Journal*, 17, 445-451.
- [8] Staniszewska M, Kula J. (2001) Composition of the essential oil from wild carrot umbels (*Daucus carota* L. ssp. *carota*) growing in Poland. *Journal of Essential Oil Research*, 13, 439-441.
- [9] Mockute D, Nivinskiene O. (2004) The sabinene chemotype of essential oil of seeds of *Daucus carota* L. ssp. *carota* growing wild in Lithuania. *Journal of Essential Oil Research*, 16, 277-281.
- [10] Ozcan M, Chalchat JC. (2007) Chemical composition of carrot seeds cultivated in Turkey: characterized of the seed oil and essential oil. *Grasas y aceites*, 58, 359-363.
- [11] Council of Europe. European Pharmacopoeia, 3rd ed., Strasbourg (1997) 121-122
- [12] Marongiu B, Piras A, Porcedda S, Scorciapino A (2005) Chemical composition of the essential oil and supercritical CO₂ extract of *Commiphora myrrha* (Nees) Engl. and of *Acorus calamus. Journal of Agricultural and Food Chemistry*, 53, 7939–7943.
- [13] NIST/EPA/NIH (2002) Mass spectral library; National Institute of Standard and Technology, Gaithersburg.
- [14] Adams RP. (2004) *Identification of essential oil components by gas chromatography / mass spectroscopy*. Allured Publishing Corporation, Carol Stream, Illinois, USA.
- [15] Joulain D, Konig WA. (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E. B. Verlag Hamburg, Hamburg,
- [16] Deriu A, Zanetti S, Sechi LA, Marongiu B, Piras A, Porcedda S, Tuveri E. (2008) Antimicrobial activity of *Inula helenium* L. essential oil against Gram-positive and Gram-negative bacteria and *Candida* spp.. *International Journal of Antimicrobial Agents*, 31, 588-590.
- [17] Carson CF, Hammer KA, Riley TV (1995) Broth microdilution method for determining the susceptibility of *Escherichia coli* and *Staphylococcus aureus* to the essential oil of *Melaleuca alternifolia* (tea tree oil). *Microbios*, 82, 181-185.
- [18] Maxia A, Marongiu B, Piras A, Porcedda S, Tuveri E, Gonçalves MJ, Cavaleiro C, Salgueiro L (2009) Supercritical extraction and biological assays of essential oils from *Daucus carota* subsp. *carota* growing wild on the Mediterranean coast and on the Atlantic coast. *Fitoterapia*, 80, 57–61.
- [19] Sartorelli P, Marquioreto AD, Amaral-Baroli A, Lima MEL, Moreno PRH (**2007**) Chemical composition and antimicrobial activity of the essential oils from two species of eucalyptus. *Phytotherapy Research*, **21**, 231–233.
- [20] Jabrane A, Ben Jannet H, Harzallah-Skhiri F, Mastoui M, Casanova J, Mighri Z. (2009) Flower and root oils of the Tunisian *Daucus carota* L. ssp. *maritimus* (Apiaceae): Integrated analyses by GC, GC/MS, and ¹³C-NMR spectroscopy, and *in vitro* antibacterial activity. *Chemistry & Biodiversity*, 6, 881-889.
- [21] Bouzouita N, Kachouni F, Hamdi M, Chaabouni MM. (2003) Antimicrobial activity of essential oil from Tunisian essential oils from Tunisian aromatic plants. *Flavour and Fragrance Journal*, 18, 380–383.

2010 Vol. 5 No. 12 1959 - 1960

Oil Constituents of *Artemisia nilagirica* var. *septentrionalis* Growing at Different Altitudes

Flora Haider, Narendra Kumar, Ali Arif Naqvi and Guru Das Bagchi*

Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, India

gdbagchi 5@rediffmail.com

Received: March 18th, 2010; Accepted: October 19th, 2010

Oils of *Artemisia nilagirica* var. *septentrionalis* plants growing at different altitudes in Himachal Pradesh, India were hydro-distilled and analyzed by GC-GC/MS. The major constituents of the oil show variation with changes in altitude. At lower, middle and higher altitudes, the major constituents of the oil were caryophyllene oxide (28.6%), borneol (35.8%) and camphor (46.9%), respectively. The percentages of α -humulene and *trans*- β -guaiene also increased, but the percentage of sabinene, *trans*-sabinene hydrate, 4-terpineol, caryophyllene oxide and humulene epoxide-II decreased with an increase in altitude. The characteristic compounds observed in the plants from lower altitudes were 2-hexene-1-ol, β -thujone, thujanol, myrtenol and linalyl acetate, while the higher altitude plants were characterized by the presence of α -pinene, limonene, linalool, γ -gurijunene, germacrene-D and farnesol.

Keywords: Artemisia nilagirica var. septentrionalis, Asteraceae, essential oil constituents.

Artemisia nilagirica var. septentrionalis Pamp., syn A. vulgaris L. (Family Asteraceae), plants are distributed mostly in the Western Himalayas. The plants produce a light yellow oil. [1]. A. nilagirica is used in traditional medicine as a tonic and in the treatment of bronchial troubles [2]. An ointment of A. nilagirica oil has been reported as an antifungal agent against dermatomycosis [3,4]. An insecticidal principle, capillin, has also been isolated from the petroleum extract of A. nilagirica [5].

The essential oil of A. nilagirica is reported to contain camphor, β-eudesmol, 1,8-cineole and borneol [6]. Recently, the composition of the essential oil of A. nilagirica var. septentrionalis has been reported [7]. In the present study, the oil obtained from A. nilagirica var. septentrionalis plants growing at different altitudes in Himachal Pradesh were analyzed by GC-GC/MS and thirty-four constituents were identified. In the Shimla, Mandi and Manali samples, the oil yield was 0.25%, 0.56% and 1.0%, respectively. The identified constituents in the oils totaled 23, 17 and 24, constituting 76%, 83% and 93% of the total oil, respectively. At the lower altitudes of Mandi, caryophyllene oxide (28.6%) was the major constituent of the oil followed by methanoazulene (10.9%) and borneol (4.5%). At the middle altitude of Manali, borneol (35.8%) became the major constituent of the oil followed by methanoazulene (14.7%) and

caryophyllene oxide (13.4%). However, at the higher altitude of Shimla, the major oil constituents were quite different. In this case camphor (46.9%) was the major constituent followed by β-caryophyllene (13.3%) and α-humulene (9.7%). The characteristic constituents identified in the oil of plants collected from Mandi were 2-hexene-1-ol, β-thujone, thujanol, myrtenol and linalyl acetate, which were not identified in the oils from the other places. Oil obtained from the plants collected from Manali had only three characteristic constituents, which were α-phellandrene, β-phellandrene and α-thujone. The Shimla materials contained a maximum of seven characteristic constituents in its oil, which were α -pinene, β -pinene, limonene, linalool, γ gurjunene, germacrene D and farnesol. However, eleven constituents were observed to be common in all the examined samples; these were sabinene, trans-sabinene hydrate, camphor, borneol, β-elemene, β-caryophyllene, α-humulene, trans-β-guaiene, caryophyllene oxide, methanoazulene and humulene epoxide-II.

It is interesting to note that some of the compounds, such as α -humulene and trans β -guaiene, increase in quantity with an increase of altitude, while constituents like sabinene, trans-sabinene hydrate, 4-terpineol, caryophyllene oxide and humulene epoxide-II increase in quantity with a decrease in altitude. Although the oil of A. nilagirica var. septentrionalis has been analyzed during different growth stages in the plants that were

Table 1: Effect of altitude on the oil constituents of *Artemisia nilagirica* var. *septentrionalis*.

Constituents	RI	% oil constituents (dry weight)				
		Mandi (1044 m)	Manali (2050 m)	Shimla (2210 m)		
2-Hexene-1-ol	854	2.6	-	-		
α-Pinene	939	_	_	0.6		
Camphene	953	0.2	-	0.5		
Sabinene	967	4.4	0.1	0.1		
β-Pinene	981	-	-	1.1		
β-Myrcene	987	-	0.3	0.1		
α-Phellandrene	1105	-	0.7	-		
Limonene	1021	-	-	0.9		
p-Cymene	1026	0.7	-	0.2		
β-Phellandrene	1031	-	0.2	_		
1,8-Cineole	1035	2.7	-	0.5		
cis-Sabinene hydrate	1063	1.3	6.8	-		
α-Thujone	1089	-	0.1	-		
Linalool	1099	-	-	0.2		
trans-Sabinene hydrate	1100	1.1	4.0	0.5		
Chrysanthenone	1106	0.9	-	0.7		
β-Thujone	1114	0.5	-	-		
β-Fencyl alcohol	1117	0.4	-	1.3		
Camphor	1144	2.0	0.2	46.9		
Thujanol	1166	2.0	-	-		
Borneol	1168	4.5	35.8	0.6		
4-Terpineol	1175	2.2	0.8	-		
Myrtenol	1194	0.7	-	-		
Linalyl acetate	1257	1.3	-	-		
β-Elemene	1390	3.0	1.1	1.5		
β-Caryophyllene	1420	2.3	0.8	13.3		
α-Humulene	1456	0.4	0.4	9.7		
γ-Gurjunene	1473	-	-	3.6		
Germacrene D	1484	-	-	2.6		
trans β-Guaiene	1500	0.6	2.1	2.8		
Caryophyllene oxide	1579	28.6	13.4	0.5		
Methanoazulene	1587	10.9	14.7	2.8		
Humulene epoxide II	1606	2.6	1.2	1.2		
Farnesol	1697			0.7		
Oil yield		0.56%	1.0%	0.25%		

domesticated under sub-tropical north Indian conditions [7], the present study suggests that the yield of oil is low at lower altitude, but increases when the plants grow at higher altitudes. Interestingly, several constituents like *p*-cymene, β -fenchyl alcohol, γ -gurjunene, *trans*- β -guaiene, humulene epoxide-II and farnesol, which were observed in the natural plants, were not observed in the domesticated plants. In sub-tropical conditions, the domesticated plants also developed constituents like

 γ -terpinene, bornyl acetate, δ -cadinene and β -eudesmol, which were not observed in the naturally growing plants. However, the major oil constituents in the vegetative plants remained camphor and β -caryophyllene, but the quantity of camphor reduced drastically in the domesticated plants, while that of β -caryophyllene remained almost the same [7].

Experimental

Plant material: Leaves from mature plants of *Artemisia nilagirica* var. *septentrionalis*, before flowering, were collected from different altitudes in Himachal Pradesh such as Shimla (2210 m), Mandi (1044 m) and Manali (2050 m) in June 2005. Plants were deposited in the CIMAP Herbarium, Lucknow. Collected samples were dried in the shade and 100 g of accurately weighed leaves were subjected to hydro-distillation in a Clevenger type apparatus for 5 h to obtain light yellow oil.

GC-GC/MS analysis: GC of essential oils was carried out using a Perkin Elmer AUTO-XL GC, capillary column PE-5 (50 m x 0.32 mm x 0.25 μ film thickness) with the oven temperature programmed from 100°-280°C at 3°/min with an initial hold of 2 min. Injector and detector temperatures were maintained at 220°C and 300°C, respectively. Hydrogen at 10 psi was used as a carrier gas, with a split ratio of 1:50. The GC/ MS analysis was carried out in EI mode using a Perkin Elmer Auto XL/ Tubo Mass instrument with the same column and under identical analytical conditions. Helium at 10 psi was used as a carrier gas with a split ratio 1:20. Mass spectral data were analyzed using NIST and Wiley library information.

Acknowledgements - The authors are thankful to the Director, CIMAP, Lucknow for facilities and encouragement during the work.

- [1] Sharma BM, Kachroo P. (1981) Flora of Jammu and plants of neighbourhood. Bishan Singh Mahendra Pal Singh, Dehradoon, India. 195-196.
- [2] Rao RR. (1994) An overview of the ethnobotany of the Nagas of Nagaland in North-East India, Fourth International Congress of Ethnobiology, 17-21 Nov, NBRI, Lucknow.
- [3] Kishore N, Dubey NK. (1988) Fungitoxicity of some higher plants against *Trichophyton rubrum* and *Epidermophyton floccosum*. *Indian Journal of Pharmaceutical Sciences*, 50, 323-325.
- [4] Kishore N, Dubey NK, Chansouria JPN. (2001) Antimycotic activity of the essential oil of *Artemisia nilagirica*. *Flavour & Fragrance Journal*, 16, 61-63.
- [5] Banerji A, Luthria DL, Kokate SD. (1990) Toxicity of capillin, the insecticidal principle of *Artemisia nilagirica Clarke. Indian Journal of Experimental Biology*, 28, 588-589.
- [6] Uniyal GC, Singh AK, Shah NC, Naqvi AA. (1985) Volatile constituents of Artemisia nilagirica. Planta Medica, 51, 457-458.
- [7] Haider F, Naqvi AA, Bagchi GD. (2007) Oil constituents of *Artemisia nilagirica* var. *septentrionalis* during different growth phases at subtropical conditions of North Indian plains. *Journal of Essential Oil Research*, 19, 5-7.

2010 Vol. 5 No. 12 1961 - 1964

Volatile Oil Composition of *Pogostemon heyneanus* and Comparison of its Composition with Patchouli Oil

Ramar Murugan^{a*}, Gopal Rao Mallavarapu^b, Kyathsandra Venkataramaiah Padmashree^a, Ramachandra Raghavendra Rao^c and Christus Livingstone^d

^aFoundation for Revitalisation of Local Health Traditions, 74/2, Jarakabande Kaval, Via Yelahanka, Bangalore 560106, India

ramarmurugan@yahoo.com

Received: August 11th, 2010; Accepted: October 6th, 2010

The volatile oil of the leaves of *Pogostemon heyneanus* Benth. (Lamiaceae) was analyzed by GC and GC-MS. Twenty-six components representing 96.0% of the oil were identified. The major components of the oil were acetophenone (51.0%), β -pinene (5.3%), (*E*)-nerolidol (5.4%), and patchouli alcohol (14.0%). Comparison of the compositions of the oils of *P. heyneanus* and *P. cablin* (Blanco) Benth. (Patchouli oil) showed wide variation between them. Though 13 sesquiterpenes and oxygenated sesquiterpenes were detected in both oils, their concentrations in the oils differed widely. Acetophenone, benzoyl acetone and (*E*)-nerolidol present in the oil of *P. heyneanus* were not detected in patchouli oil.

Keywords: Pogostemon heyneanus, Pogostemon cablin, essential oil composition, acetophenone, patchouli alcohol.

Pogostemon Desf. (Lamiaceae) is an aromatic genus, globally represented by 97 species and in India, it has 54 species [1]. P. heyneanus Benth., otherwise called 'Indian Patchouli', is reported to occur in India, Indonesia, Malaysia and Sri Lanka [2,3]. However, it is believed to be indigenous to southern India and Sri Lanka [3]. The plant is a strongly aromatic, sparsely pubescent shrub which grows wild in moist, partially shady places in semi-evergreen and evergreen forests. Several years ago, this species was cultivated in a limited area in Java and the essential oil was distilled. Hence, it is also known as 'Java patchouli'. As the odor of the oil was quite different from that of true patchouli oil i.e. P. cablin oil, the production of the oil was discontinued [4].

While there are several reports on the composition of the essential oil of patchouli *i.e.* P. cablin [5-16], there are only three records of the composition of the oil of P. heyneanus [17-19]. Venturella [17] investigated the essential oil of P. heyneanus var. patchouli Pellet. grown in the Palermo Botanical Garden and reported β -pinene, limonene, borneol, β -patchoulene, α -guaiene,

norpatchoulenol and patchoulol as the major components of the oil. Maia and Andrade [18] reported that the oil of P. heyneanus from the Amazon contained, as its major constituents, patchouli alcohol, α-guaiene, aromadendrene and δ-guaiene (α-bulnesene). Recently, Souza-Filho et al [19] analyzed the essential oil of P. heyneanus and reported patchuoli alcohol, α-bulnesene, α-guaiene, seychellene, α-patchoulene as the principal components. We have analyzed by GC and GC-MS, the essential oils of P. heyneanus collected from the Courtallum hills of the southern Western Ghats in Tamil Nadu, India and true patchouli (P. cablin), which was procured from the Central Institute of Medicinal and Aromatic Plants, Resource Centre, Bangalore. The compositions of these two oils are compared in this paper.

Hydrodistillation of the dried leaves of *P. heyneanus* yielded 0.8% of a yellow colored essential oil. GC analysis showed more than fifty peaks. GC-MS analysis and GC retention indices of the peaks enabled the identification of 26 components representing 96.0% of the oil. The identified compounds are listed in Table 1

^bA-602, Renaissance Temple Bells, Opp. ISKCON Temple, Yeshwantpur, Bangalore 560022, India

^cCentral Institute of Medicinal and Aromatic Plants, Resource Centre, Allalasandra, Bangalore 560065, India

^dDepartment of Botany, Madras Christian College, Tambaram, Chennai 600052, India

in the order of elution from a GC column. The major components of the oil were acetophenone (51.0%), β-pinene (5.3%), (E)-nerolidol (5.4%), and patchouli alcohol (14.0%). The oil contained monoterpenes (11.8%),oxygenated monoterpenes (1.2%),sesquiterpenes (8.4%), oxygenated sesquiterpenes (20.3%), benzenoid compounds (54.1%) and aliphatic compounds (0.2%). As P. heyneanus is often confused with P. cablin and is often referred to as Indian or Java patchouli, the composition of the oil of *P. heyneanus* was compared with that of patchouli oil. The major components of patchouli oil are α -guaiene, seychellene, α-patchoulene, α-bulnesene and patchouli alcohol. The minor components, such as norpatchoulenol, nortetrapatchoulol and α-cedrenal, and the main component patchouli alcohol were reported to be responsible for the characteristic odor of patchouli oil [13]. Though some constituents, mainly sesquiterpenes and oxygenated sesquiterpenes, were found in both the oils, there are considerable and significant differences between the two oils. The compounds, namely, acetophenone, benzoyl acetone and (E)-nerolidol, found in the essential oil of P. heyneanus were not detected in that of P. cablin. Patchouli oil contained higher amounts of patchouli alcohol, α-guaiene, sevchellene, α-patchoulene, aciphyllene, α-bulnesene, carvophyllene oxide and pogostol than the oil of P. heyneanus. The compounds, namely, cycloseychellene, δ-patchoulene, norpatchoulenol, nortetrapatchoulol, patchoulenone, (E,E)-farnesol and pogostone found in patchouli oil were not detected in the oil of *P. heyneanus*. Patchouli oil has a pleasant and lasting aroma, whereas that of P. heyneanus has a strong pungent odor. Thus, the oil of P. hevneanus is quite different from patchouli oil in composition and odor.

The oil of P. heyneanus in the present study is quite different in composition from that of the earlier studies. Venturella [17] reported the essential oil composition of P. heyneanus var. patchouli, but this name is synonymous with P. cablin, as mentioned in Flora Malesiana [3]. Hence, the species investigated by Venturella was the true patchouli plant and not P. heyneanus. Although several compounds reported in the oil of this plant were also present in the oil of P. cablin, a high concentration of monoterpenes, and a low concentration of the sesquiterpenes, α -bulnesene and patchouli alcohol showed that the composition of this oil was somewhat abnormal. Another noteworthy feature was the presence of a high concentration of norpatchoulenol (9.0%).

The composition of the oil of P. heyneanus from the Amazon was similar to that of patchouli oil, with large amounts of patchouli alcohol, α -guaiene,

Table 1: Composition of the essential oils of *Pogostemon heyneanus* and *P. cablin*.

r. cabun.			0/	
Commonado	DI÷		a %	Detection
Compounds	RI*	Pogostemon heyneanus	Pogostemon cablin	Detection
α-Pinene	940	2.4	tr	GC, MS
Camphene	953	tr		GC, MS
1-Octen-3-ol	975		0.1	GC, MS
3-Octanone	976	0.2		GC, MS
β-Pinene	979	5.3	tr	GC, MS
Limonene	1030	4.0	tr	GC, MS
Acetophenone	1068	51.0		GC, MS
Terpinolene	1090	0.1		GC, MS
Linalool	1098	0.2	tr	GC, MS
α-Terpineol	1189	1.0		GC, MS
Methyl salicylate	1191		tr	GC, MS
δ-Elemene	1341		0.8	GC, MS
β-Patchoulene	1385		1.8	GC, MS
β-Elemene	1388		0.8	GC, MS
Benzoyl acetone ti	1391	3.1		MS
Cyperene	1395	tr		GC, MS
Cycloseychellene ti	1411		0.5	MS
(E)-Caryophyllene	1420	2.0	3.0	GC, MS
(E) - α -Bergamotene	1435	tr		GC, MS
α-Guaiene	1441	1.7	9.6	GC, MS
Seychellene	1452	1.5	5.8	GC, MS
α-Humulene	1458	0.3	0.6	GC, MS
α-Patchoulene	1465	1.5) (1	GC, MS
γ-Patchoulene			} 6.1	MS
Germacrene D	1482	tr	0.1	GC, MS
δ-Patchoulene ti	1490		0.4	MS
Aciphyllene	1500	0.4	2.4	GC, MS
α-Bulnesene	1507	0.7	13.3	GC, MS
7-epi-α-Selinene	1524	0.1	tr	GC, MS
α-Guaiene epoxide	1540		tr	GC, MS
(E)-Nerolidol	1557	5.4		GC, MS
Norpatchoulenol	1567		1.2	GC, MS
α-Bulnesene epoxide	1576	0.1	0.5	GC, MS
Caryophyllene oxide	1588	0.3	1.1	GC, MS
Nortetrapatchoulol	1600		0.2	GC, MS
Pogostol	1667	0.7	6.2	GC, MS
Patchouli alcohol	1679	14.0	38.3	GC, MS
Pogostone	1702		2.1	GC, MS
(E,E)-Farnesol	1722		0.3	GC, MS
Patchoulenone ti	1728		0.4	MS
		96.0	95.6	

* RI = Retention index on OV-5 Column; tr = < 0.1%; ti = Tentative identification.

aromadendrene and δ -guaiene. Aromadendrene is, however, not reported to be a constituent of patchouli oil. Furthermore, the wild occurrence of *P. hevneanus* in the Amazon has not been reported and the species investigated by Maia and Andrade [18] may be P. cablin, as they mentioned it as patchouli plant. Souza-Filho et al [19] analyzed the essential oil of P. heyneanus from Brazil and the composition of this oil was similar to that of the oil of P. cablin. Furthermore, the Brazilian vernacular name 'oriza', given to P. heyneanus in this study, actually refers to P. cablin [20]. Hence the Pogostemon species investigated by Souza-Filho et al [19] may have been P. cablin. Thus, the composition of the oil of *P. heyneanus* in the present study is quite different from the earlier reports. The high concentration of the aromatic ketone, acetophenone in the oil is noteworthy. Earlier, this compound was reported as a minor compound in the oils of Cistus ladaniferus L. (Labdanum oil) [21,22],

Trifolium repens L. [23], Elsholzia ciliata (Thunb.) Hyl. [24], Garcinia dulcis Kurz. [25], Rhodiola rosea L. [26] and in a few Hypericum species [27,28].

Of the 97 species in the genus Pogostemon distributed throughout the world, so far, P. cablin is the only species commercially exploited and cultivated for producing patchouli oil, which is widely used in perfumery. Recently, the essential oils of two other Pogostemon species namely, P. benghalensis (P. plectranthoides) [29] and P. travancoricus [30] were investigated and these oils were found to be rich in sesquiterpenes and oxygenated sesquiterpenes. However, the oil of *P. heyneanus* is unique in having as its main constituent acetophenone, which was not reported in the oils of the above mentioned *Pogostemon* species.

Experimental

Plant material: Leaf material of *P. heyneanus* was collected from Courtallum hills, Tirunelveli district, Tamil Nadu, India. The voucher specimens (*R. Murugan* 33) have been deposited in the Herbaria of Madras Christian College (MCCH), Chennai and Foundation for Revitalisation of Local Health Traditions (FRLH), Bangalore, India. The plant was identified by the first author. The identity of the plant specimen was confirmed by matching it with the Type specimen [*Macrae* 1532 (K-isotype)].

Extraction of oil: The leaf sample of *P. heyneanus*, after drying in the shade for 2 weeks, was hydrodistilled in a Clevenger type apparatus for 8 h. The pale yellow oil was collected, dried over anhydrous sodium sulfate and stored in a refrigerator. The oil content was 0.8% (dry weight basis). The true patchouli oil was procured from the Central Institute of Medicinal and Aromatic Plants, Resource Centre, Bangalore.

Analysis of oil: GC analysis of the essential oil samples was carried out on a Shimadzu GC-2014 Gas Chromatograph using a non-polar, OV-5 column (30 m x 0.25 mm x 0.25 µm film thickness, coated with 5% diphenyl - 95% dimethyl polysiloxane). Helium was used as carrier gas at a linear velocity of 30 cm/sec. and a pressure of 93.6 kPa. The flow rate was 1 mL/min. Temperature programme: $60^{\circ}\text{C} - 240^{\circ}\text{C}$ at the rate of 3⁰C/min. Samples of 1 μL dissolved in *n*-hexane were injected. Split ratio used was 1:60. A Shimadzu GC-MS (17A / QP5050) was used, fitted with a CP-Sil 5 CB column (30 m x 0.25 mm x 1 um film thickness coated with 100% dimethyl polysiloxane). Helium was used as carrier gas at a linear velocity of 45 cm/sec. and a pressure of 64.5 kPa. The flow rate was 1 mL/min. Temperature programme: $60^{\circ}\text{C} - 250^{\circ}\text{C}$ at the rate of 5°C/min. Samples of 1 µL dissolved in *n*-hexane were injected. Split ratio used was 1:60. MS were recorded at 70eV with a mass range of m/z 40-500. Identification of the components was achieved by comparison of the retention indices (RI) of the GC peaks with those of compounds reported in the literature [6,31,32] and by comparison of the MS of the peaks with those of compounds reported in the literature [9,31,32]. Peak area percentages were obtained from GC-FID responses without the use of an internal standard of correction factors.

Acknowledgments - The authors are thankful to the Principal Chief Conservator of Forests, Chennai, Tamil Nadu for granting permission to collect leaf samples. We are grateful to Prof. A. Srikrishna, Department of Organic Chemistry, Indian Institute of Science, Bangalore for GC-MS analysis. We also thank the Director, Royal Botanic Gardens, Kew, London for providing the type specimens.

- [1] Murugan R, Livingstone C. (2010) *Pogostemon raghavendranii* (Lamiaceae), a new species from Anamalai hills, India. *Rheedea*, 20, 21-24.
- [2] Bhatti GR, Ingrouille M. (1997) Systematics of *Pogostemon* (Labiatae). *Bulletin of the Natural History Museum London (Botany*), 27, 77-147.
- [3] Heng H. (1978) Labiatae. In *Flora Malesiana*. Van Steenis CGGJ (Ed.). Sijthoff & Noordhoff, the Netherlands, Series-1, 8, 351-356.
- [4] Guenther E. (1949) The Essential oils, 3. D. Von Nostrand and Co. Inc., New York. 552-575.
- [5] Akhila A, Nigam MC. (1984) GC/MS analysis of the essential oil of *Pogostemon cablin* (patchouli oil). *Fitoterapia*, 55, 363-365.
- [6] Bure CM, Sellier NM. (2004) Analysis of the essential oil of Indonesian Patchouli (*Pogostemon cablin Benth.*) using GC/MS(EI/CI). *Journal of Essential Oil Research*, 16, 17-19.
- [7] Dung NX, Leclercq PA, Thai TH, Moi LD. (1989) Chemical composition of patchouli oil of Vietnam. *Journal of Essential Oil Research*, 1, 99-100.
- [8] Guan L, Quan LH, Cong PZ. (1992) Study on chemical constituents of volatile oil from *Pogostemon cablin* (Blanco) Benth. *Natural Product Research and Development*, 4, 34-37.

- [9] Hu LF, Li SP, Cao H, Liu JJ, Yang FQ, Wang YT. (2006) GC-MS fingerprint of *Pogostemon cablin* in China. *Journal of Pharmaceutical and Biomedical Analysis*, 42, 200-206.
- [10] Lawrence BM. (1981) Progress in essential oils. *Perfumer & Flavorist*, 6, 73-76.
- [11] Lawrence BM. (1990) Progress in essential oils. *Perfumer & Flavorist*, 15, 75-77.
- [12] Lawrence BM. (1994) Progress in essential oils: Alkaloids in patchouli oil. *Perfumer & Flavorist*, 19, 21-22.
- [13] Lawrence BM. (1995) Progress in essential oils. *Perfumer & Flavorist*, 20, 72-73.
- [14] Lawrence BM. (1996) Progress in essential oils. *Perfumer & Flavorist*, 21, 52-62.
- [15] Lawrence BM. (2002) Progress in essential oils. *Perfumer & Flavorist*, 27, 65-69.
- [16] Lawrence BM. (2007) Progress in essential oils. *Perfumer & Flavorist*, 32, 48-56.
- [17] Venturella F. (1995) The essential oil of *Pogostemon heyneanus* Benth. var. *patchouli* Pellet. (Lamiaceae) cultivated in the Palermo Botanical Garden. *Quaderni di Botanica Ambientale e Applicata*, 6, 81-82.
- [18] Maia JGS, Andrade EHA. (2009) Database of the Amazon aromatic plants and essential oils. Quimica Nova, 12, 595-622.
- [19] Souza-Filho APS, Vasconcelos MAM, Zoghbi MGB, Cunha RL. (2009) Potentially allelopathic effects of the essential oils of *Piper hispidinervium C. DC.* and *Pogostemon heyneanus* Benth. on weeds. *Acta Amazonica*, 39, 389-396.
- [20] Rodrigues E. (2006) Plants and animals utilized as medicines in the Jau National Park (JNP), Brazilian Amazon. *Phytotherapy Research*, 20, 378-391.
- [21] Mariotti JP, Tomi F, Cassanova J, Costa J, Bernadini AF. (1997) Composition of the essential oil of *Cistus ladaniferus* L. cultivated in Corsica (France). *Flavour and Fragrance Journal*, 12, 147-151.
- [22] Weycrstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H. (1998) Constituents of commercial Labdanam oil. *Flavour and Fragrance Journal*, 13, 295-318.
- [23] Buchbauer G, Jirovetz L, Nikiforov A. (1996) Comparative investigation of essential clover flower oils from Australia using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry and gas chromatography-olfactometry. *Journal of Agricultural Food Chemistry*, 44, 1827-1828.
- [24] Korolyuk EA, Konig W, Tkachev AV. (2002) Composition of essential oil of *Elsholtzia ciliata* (Thunb.) Hyl. from the Novosibirsk region, Russia. *Chemistry of Plant Raw Materials*, 1, 31–36.
- [25] Pino J, Marbot R, Rosado A, Vazquez C. (2003) Volatile constitutes of fruits of *Garcinia dulcis* Kurz. from Cuba. *Flavour & Fragrance Journal*, 18, 271-274.
- [26] Sanduin S, Adams RP, Koenig W. (2007) Comparative study of the essential oil of *Rhodiola rosea* L. from Mongolia. *Journal of Essential Oil Research*, 19, 215-217.
- [27] Baser KHC, Ozek T, Nuriddinov HR, Demirci AB. (2002) Essential oil of two *Hypericum* species from Uzbekistan. *Chemistry of Natural Compounds*, 38, 54.
- [28] Betul D, Husnu CB, Sara LC, Ikhlas AK. (2005) Analysis of the volatile constituents of Asian *Hypericum* L. (Clusiaceae, Hyperidoideae) species. *Journal of Essential Oil Research*, 17, 659-663.
- [29] Chanotiya CS, Yadav A, Singh AK, Mathela CS. (2007) Composition of the leaf and inflorescence essential oil of *Pogostemon benghalensis* Burm.f. from Kumaon. *Natural Product Communications*, 2, 941-944.
- [30] Sundaresan V, Singh SP, Shasany AK, Darokar MP, Kalra A, Naqvi AA. (2009) Composition and comparison of essential oils of *Pogostemon cablin* (Blanco) Benth. (Patchouli) and *Pogostemon travancoricus* Bedd. var. *travancoricus*. *Journal of Essential Oil Research*, 21, 220-222.
- [31] Adams RP. (1995) Identification of essential oil components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, IL.
- [32] Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M. (2006) The diverse sesquiterpene profile of patchouli, *Pogostemon cablin*, is correlated with a limited number of sesquiterpene synthases. *Archives of Biochemistry and Biophysics*, 454, 123-136.

2010 Vol. 5 No. 12 1965 - 1968

Chemical Composition of Volatile Oils of *Aquilaria malaccensis* (Thymelaeaceae) from Malaysia

Saiful Nizam Tajuddin and Mashitah M. Yusoff*

Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia

mashitah@ump.edu.my

This paper is dedicated to Professor KHC Başer on occasion of his 60th birthday.

Received: September 20th, 2010; Accepted: October 20th, 2010

Volatile oils of *Aquilaria malaccensis* Benth. (Thymelaeaceae) from Malaysia were obtained by hydrodistillation and subjected to detailed GC-FID and GC/MS analyses to determine possible similarities and differences in their chemical composition in comparison with the commercial oil. A total of thirty-one compounds were identified compared with twenty-nine identified in the commercial oil. The major compounds identified were 4-phenyl-2-butanone (32.1%), jinkoh-eremol (6.5%) and α -guaiene (5.8%), while the major compounds in the commercial oil were α -guaiene (10.3%), caryophellene oxide (8.6%), and eudesmol (3.2%). The results of the present study showed that more than nine sesquiterpene hydrocarbons were present, which is more than previously reported. Analysis also showed that the number of oxygenated sesquiterpenes in this study were much less than previously reported. Among the compounds detected were α -guaiene, β -agarofuran, α -bulnesene, jinkoh-eremol, kusunol, selina-3,11-dien-9-one, oxo-agarospirol and guaia-1(10),11-dien-15,2-olide.

Keywords: Aquilaria malaccensis Benth., volatile oil, sesquiterpene, gas chromatography-flame ionization detector, gas chromatography-mass spectrometry.

Agarwood originates from north-eastern India, Bhutan and parts of south-east Asia, especially Vietnam, Cambodia, Philippines, Malaysia, Indonesia, and Papua New Guinea. Agarwood has had a very long history of use in folk medicine as incense and as an aromatic oil. Agarwood oil, also known as oud, aloeswood oil, eagleswood, kiara and gaharu, is a natural oil obtained from the fragrant resin of several species of *Aquilaria* (Thymelaeaceae) including *A. malaccensis* Benth. (syn. *Aquilaria agallocha*) and *A. crassna. A. malaccensis* is included in Appendix II of the Convention on International Trade in Endangered Species (CITES) and is listed as endangered by the Malaysian government [1-3].

In Malaysia, rural villagers and indigenous peoples depend on *A. malaccensis* harvesting to supplement household income. The species has been introduced as a potential income-generating crop to be planted alongside vegetable farms in agroforestry programs during the Ninth Malaysian Plan (2006-2010). The Peninsular Malaysia Forestry Department is striving to develop a uniform grading system for the fragrant resin

and volatile oil which until now is being carried out by most traders by visual inspection and smell.

Agarwood oil has been reported to contain sesquiterpenoids of the eremophilane, spirovetivane, eudesmane, nor-guaiane and prezizaane types, and 2-(2-phenylethyl) chromone derivatives [4-11]. In the present study, we report on the chemical composition of the volatile oils of *A. malaccensis* from Malaysia obtained by hydrodistillation and subjected to detailed GC-FID and GC/MS analyses. GC-FID and GC-MS are the most common analytical methods to-date for compound identification in volatile oils [12]. The chemical composition of the laboratory prepared and commercially obtained oils are compared with the compounds previously reported in agarwood volatile oils [10,11].

The agarwood volatile oil obtained via hydrodistillation (0.2% yield based on dry weight) was dark green. The commercial oil, however, was brown. The general chemical profiles of the oil samples, their chemical composition and retention indices are summarized in

Table 1: Chemical composition of volatile oils of agarwood.

		Hydrodist	tilled	Nor Azah <i>et</i>	Ishihara <i>et al</i> . [11]			
Compounds	DB-1	Lab.	Commercial	al. [12]	Sample I	Sample II	Sample III	Identification
Monoterpene hydrocarbons					1	- 11	111	
Benzaldehyde	935	3.3						RI,MS
2-Hydroxy-benzaldehyde	1003	0.6						RI,MS
Acetophenone	1066	0.7						RI,MS
4-Phenyl-2-butanone	1210	32.1	3.4	5.8				RI,MS
Sesquiterpene hydrocarbons								ŕ
β-Maaliene	1414	0.4	0.7					RI,MS
α-Guaiene	1440	5.8	10.3	0.7	0.1	0.1		RI,MS
Aromadendrene	1443	5.0	0.6	0.7	0.1	0.1		RI,MS
γ-Gurjunene	1472	0.7	1					RI,MS
β-Agarofuran	1474		0.5	2.0	0.3	0.2	0.1	RI,MS
β-Selinene	1486	4.9						RI,MS
α-Muurolene	1496	3.4	0.7					RI,MS
γ-Guaiene	1499	1.5	0.8					RI,MS
α-Bulnesene	1503	1.3	1		0.2	0.2		RI,MS
Ornigan atod a carguitam an ar								
Oxygenated sesquiterpenes α-Elemol	1530		3.3					RI,MS
nor-Ketoagarofuran	1555		5.5		0.1	0.1	0.1	RI,MS
Epoxybulnesene	1572				0.1	0.1	0.1	RI,MS
Caryophellene oxide	1600	0.9	8.6		0.1			RI
Guaiol	1603	0.6	1.2					RI
Humulene epoxide II	1606	1.7	2.3					RI
1,5-Epoxy-nor-ketoguaiene	1614	1.1	0.6		0.1			RI,MS
10- <i>Epi</i> -γ-eudesmol	1619	1.6	0.8	9.0	0.1			RI,MS
Agarospirol	1631	0.9	1.4	5.5			0.1	RI,MS
Epi - α -cadinol	1640	0.,	2.9	0.0			0.1	RI
Jinkoh-eremol	1643	6.5	0.5	7.7	0.4	0.7	0.8	RI
Kusunol	1650	1	0.6		1.7	1	1	RI
α-Eudesmol	1652	0.7	0.9					RI,MS
Bulnesol	1664	1.5	0.6					RI, MS
Dehydrojinkoh-eremol	1673	1.4	1.2				0.1	RI,MS
<i>Epi</i> -α-bisabolol	1678	1.5	1					RI
α-Bisabolol	1683	1.8	0.5					RI
Selina-3,11-dien-9-one	1687	1.3	0.5		0.9	2.1	0.2	RI.MS
Rotundone	1703	0.5			0.2	0.1		RI,MS
Selina-3,11-dien-9-ol	1721				1.2	2.8	0.4	RI,MS
Selina-4,11-dien-14-oic acid	1728				0.6			RI,MS
Selina-3,11-dien-9-al	1735				0.7	0.6	0.8	RI,MS
9,11-Eremophiladien-8-one	1740				1.1	1.2	0.3	RI,MS
Selina-3,11-dien-14-ol	1750				1.2	1.5	0.4	RI,MS
Guaia-1(10),11-dien-9-one	1752				0.1			RI,MS
Selina-4,11-dien-14-al	1758				0.8	0.6	0.4	RI,MS
Guaia-1(10),11-dien-15-ol	1770				0.6	1.2		RI,MS
Selina,3,11-dien-14-oic acid	1775				0.9	0.2		RI,MS
Sinenofuranol	1776						0.2	RI,MS
Dihydrokaranone	1799				1	0.7	0.2	RI,MS
Guaia-1(10), 11-dien-15-al	1806	1.7			3.4	2.5	0.4	RI,MS
Guaia-1(10), 11-dien-15-oic acid	1811	0.6			4.7			RI,MS
Karanone	1812		1.1		0.1	0.1		RI,MS
Oxo-agarospirol	1822	0.3	0.8		1.6	1.4	5.3	RI,MS
Eudesmol	1880	2.1	3.2		1.0	0.2		RI, MS
2-Hydroxyguaia-1(10),11-dien-15-oic acid	1932	4.0			1.8	0.3		RI,MS
n-Hexadecanoic acid	1950	4.2			0.0			RI
9-Hydroxyselina-4,11-dien-14-oic acid	1948		6.5		0.8	0.5	0.2	RI,MS
Guaia-1(10),11-dien-15,2-olide	2019		0.5		0.5	0.5	0.2	RI,MS
Others								
2-(2-Phenylethyl) chromone	2296				16.1	17.2	23.6	RI,MS
2(2-(4-Methoxyphenyl)ethyl) chromone	2545				21.2	24.5	33	RI,MS
6-Methoxy-2-(2-4-methoxy-phenyl) chromone	2949				2.0	3.2	3.7	RI,MS

¹Component are listed in order of their relative content > 0.1 %; ²RI, linear retention indices were determined relative to the retention times on a DB-1 column of a homologous series of C_8 - C_{20} n-alkanes. ³Identification: MS, by comparison of the MS with those of the NIST98 library (>90% matching from the library).

Table 1. Over twenty-five compounds were identified in both the laboratory and commercial samples. The laboratory sample was found to contain 42.4% monoterpene compounds, 20.8% hydrocarbon sesquiterpenes and 36.8% oxygenated sesquiterpenes. The commercial oil contained less monoterpene (5.0 %) compared with the laboratory sample, but more sesquiterpene hydrocarbons (22.9%) and oxygenated sesquiterpenes at 72.1%. One possible explanation for the lower content of monoterpenes in the commercial oil could be vaporization during the prolonged extraction time of 3 days. The percentage of sesquiterpene hydrocarbons was essentially equal for both the laboratory sample and the commercial oil.

The major compounds identified in the laboratory sample were 4-phenyl-2-butanone (32.1%), jinkoheremol (6.5%), and α -guaiene (5.8%). The commercial oil contained several major compounds, namely α -guaiene (10.3%) caryophellene oxide (8.6%) and eudesmol (3.2%).

Previously reported data [10] on solvent extracted agarwood oil from Vietnam, which ranged in color from green to brown and purple and labelled I, II and III, respectively, are included for comparison. Also included are findings from a recent report indicating 4-phenyl-2-butanone, β -agarofuran, α -agarofuran, agarospirol and 10-epi- γ -eudesmol, which were detected in hydrodistilled oils from Peninsular Malaysia [11].

Based on the data obtained from the present study and previous reports [10,11], several compounds in A. malaccensis oil can be classified as marker compounds, namely α -guaiene, β -agarofuran, α -bulnesene, jinkoheremol, kusunol, selina-3,11-dien-9-one, oxoagarospirol and guaia-1(10),11-dien-15,2-olide.

Experimental

Plant material: Aquilaria malaccensis infected wood from Kelantan Forest (Malaysia) and a sample of commercial oil were procured in September 2008 from

Mazlan Mohamed, an agarwood trader certified by the Forestry Department, Malaysia.

Isolation procedure: Fresh, air dried woods were dried further in an oven at 40°C for 24 h. This was followed by 3 days of soaking in water prior to hydrodistillation in a Pyrex glass Clevenger type apparatus for 12 h. The oils were taken up in *n*-hexane, dried over anhydrous sodium sulfate, purged with nitrogen gas (N₂), and then stored at 4°C in glass amber vials prior to analysis. The commercial oil was isolated by the trader from 25 kg air dried wood chips in a large scale Clevenger-type steel apparatus.

GC-FID and GC-MS analyses: Chemical analyses of agarwood oil were undertaken by gas chromatographyionization detector (GC-FID) flame and chromatography-mass spectrometry (GC-MS). An Agilent 7890 gas chromatograph coupled to a 5973 quadruple mass spectrometer equipped with a DB-1 capillary column (30m x 0.25 mm, film thickness 0.25 um) and a selective mass detector was used for GC-MS detection: an electron ionization system was set with an ionization energy of 70eV. Helium was the carrier gas, set at a flow rate of 1.0 mL/min. Injector and ion source temperatures were both set at 230°C. Injection volume was 1 µL (split ratio 20:1) and the oven temperature was programmed from 50°C to 230°C at 3°C/min.

Identification of components: The components were identified on the basis of comparison of their retention indices and mass spectra with published data [13], and by matching with the National Institute of Standards Technology (NIST) libraries. Retention indices were calculated using a homologous series of *n*-alkanes (C8-C22).

Acknowledgement - Financial support by the Ministry of Science Technology & Innovation, Malaysia (Science Fund no. 02-01-16 SF 0005) to Universiti Malaysia Pahang is gratefully acknowledged. The authors thank Rosmaria Mohamed Mokhtar (Universiti Malaysia Pahang) for technical assistance.

- [1] Barden A, Awang A, Mulliken T, Song M. (2007) Heart of the matter: Agarwood use and trade and CITES implementation for *Aquilaria malaccensis*. *A TRAFFIC Network Report*. TRAFFIC International, Cambridge, United Kingdom, 1-60.
- [2] Ng LT, Chang YS, Kadir AA. (1997) A review on agar (Gaharu) producing Aquilaria species. Journal of Tropical Forest Products, 2, 72-285.
- [3] Qi SY. (1995) Aquilaria species: In vitro culture and the production of Eaglewood (Agarwood). Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants VIII (Bajaj YPS, Ed). Springer-Verlag, Berlin, Heidelberg. 36-46.
- [4] Yoneda K, Yamagata E, Nakanishi T, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. (1984) Sesquiterpenoids in two different kinds of agarwood. *Phytochemistry*, 3, 2068-2069.

- [5] Nakanishi T, Yamagata E, Yoneda K, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. (1984) Three fragrant sesquiterpenes of agarwood. *Phytochemistry*, 23, 2066-2067.
- [6] Isihara M, Tsuneya T, Suga M, Uneyama K. (1991) Three sesquiterpenes from agarwood. *Phytochemistry*, 30, 563-566.
- [7] Nakanishi T, Yamagata E, Yoneda K, Miura I. (1981) Jinkohol, prezizane sesquiterpene alcohols from agarwood. *Phytochemistry*, 20, 1597-1599.
- [8] Isihara M, Tsuneya T, Suga M, Uneyama K. (1991) Guaiane sesquiterpenes from agarwood. *Phytochemistry*, 30, 3343-3347.
- [9] Yaacob K, Joulain D. (2000) Volatile constituents from the infected wood of *Aquilaria malaccensis* Benth. *Sains Malaysiana*, 29, 196-200.
- [10] Ishihara M, Tsuneya T. (1993) Components of the volatile concentrate of agarwood. Journal of Essential Oil Research, 5, 283-289.
- [11] Nor Azah MA, Chang YS, Mailina J, Abu Said A, Abd Majid J, Saidatul Husni S, Nor Hasnida H, Nik Yasmin Y (2008) Comparison of chemical profiles of selected gaharu oils from Peninsular Malaysia, *The Malaysian Journal of Analytical Sciences*, 12, 338–340.
- [12] Marriot PJ, Shellie R, Cornwell C. (2001) Gas chromatographic technologies for the analysis of essential oils. *Journal of Chromatography A*, 936, 1-22.
- [13] Joulain D, Konig AW, Verlag EB. (1998) The Atlas of Spectral Data of Sesquiterpene Hydrocarbons, Hamburg. 658pp.

2010 Vol. 5 No. 12 1969 - 1976

Chemical Composition and Phytotoxic Effects of Essential Oils from Four *Teucrium* Species

Laura De Martino^a, Carmen Formisano^b, Emilia Mancini^a, Vincenzo De Feo^{a,*}, Franco Piozzi^b, Daniela Rigano^b and Felice Senatore^b

^aDipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno, Italy

^bDipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, I-80131 Napoli, Italy

defeo@unisa.it

Received: March 29th, 2010; Accepted: September 27th, 2010

The essential oils of four *Teucrium* species were studied and 131 components, in all, were identified. All oils were rich in sesquiterpenes (50.0-61.9%). Caryophyllene and caryophyllene oxide were the main components of *Teucrium arduini*; germacrene D, δ-cadinene and γ-cadinene predominated in *Teucrium maghrebinum*. Carvacrol and caryophyllene predominated in *Teucrium polium* ssp. *capitatum*, while carvacrol, caryophyllene oxide and caryophyllene were the most abundant components in *Teucrium montbretii* ssp. *heliotropiifolium*. The germination of radish and garden cress was less sensitive to the four essential oils. The radicle elongation, above all, of radish was significantly inhibited by all oils, in particular by the essential oil of *T. arduini*, at the highest doses tested. Among the main components of the oils, monoterpenes resulted the more active compounds.

Keywords: Teucrium arduini, Teucrium maghrebinum, Teucrium polium ssp. capitatum, Teucrium montbretii ssp. heliotropiifolium, essential oils, monoterpenes, radicle elongation, radish, garden cress.

Teucrium is a genus of perennial plants which belongs to the Lamiaceae family: is represented by more than 340 species, distributed mainly in the Mediterranean basin [1]. An unusual feature of this genus compared with other members of Lamiaceae is that the flowers completely lack the upper lip of the corolla. As in other Lamiaceae, the aerial organs of *Teucrium* spp. are covered by an indumentum of glandular and non-glandular trichomes. Plants of this genus are well known in traditional medicine as antispasmodics, diuretics, antidiabetics [2], tonics, diaphoretics, analgesics antiphlogistics, antirheumatics, antiseptics, antihelmintics, carminatives, flavouring [4] and as well as antipyretic and stimulant agents [5].

The genus *Teucrium* is one of the richest sources of diterpenes with a neoclerodane skeleton. More than 220 diterpenes have been described to date, many of which are particularly interesting because of their ecological role as antifeedants against different species of insects and of their role in the medicinal properties of the plants [6]. So far, essential oils have been also reported from the aerial parts of several *Teucrium* species [7-10].

Teucrium arduini L. is an endemic Illyric Balcan species; it is a semi-woody, branchy, erect or ascending, dwarf shrub, 10–40 cm (rarely up to 60 cm) high. Whitish flowers form simple, very dense, up to 16 cm long inflorescences. T. arduini grows on calcareous rocky slopes at altitudes between 0 and 1600 m a.s.l. Previous papers reported the biological activities of leaf and flower infusions of this species [11] and the composition of the essential oil [12,13].

T. maghrebinum Greuter et Burdet is a species growing in Algeria and Morocco. The plant is called locally "kayatat el gerah" and is used in traditional medicine to treat burns and fevers, as well as an antimicrobial agent [14]. The chemical composition of its essential oil has been reported [8].

Teucrium montbretii Benth. ssp. heliotropiifolium (Barbey) Davis is an evergreen dwarf (5–20 cm high) semishrub–chasmophyte with lignified branches, opposite and ovate leaves. The different subspecies of *T. montbretii* show different qualitative contents of neoclerodane diterpenoids [6]; the essential oil of this species was also analyzed [9].

Table 1: Essential oil composition of T arduini (Ar), T. maghrebinum (Ma), T. montbretti ssp. heliotropiifolium (Mo) and T. polium ssp. capitatum (Po).

Component	KIª	KI ^b	Identification ^c	Ar% ^d	Ma% ^d	Mo% ^d	Po% ^d
Monoterpene hydrocarbons					8.9		1.2
α-Thujene	930	1014	LRI, MS		0.2		0.2
α-Pinene	938	1075	LRI, MS, Co-GC		1.6		0.2
Camphene	953	1076	LRI, MS, Co-GC		0.3		
Sabinene	973	1132	LRI, MS				0.3
β-Pinene	978	1118	LRI, MS, Co-GC		1.9		
Myrcene	993	1174	LRI, MS, Co-GC		0.5		t
α-Terpinene	1012	1189	LRI, MS, Co-GC				-
p-Cymene	1025	1278	LRI, MS, Co-GC				0.5
Limonene	1030	1203	LRI, MS, Co-GC		4.4		0.5
(Z)-β-Ocimene	1038	1245	LRI, MS				
							4.5.0
Oxygenated monoterpenes	1062	1.450	I DI MG	2.8	6.7	3.1	15.0
cis-Linalool oxide, furanoid	1062	1450	LRI, MS			0.1	0.5
cis-Sabinene hydrate	1063	1555	LRI, MS				0.2
trans-Linalool oxide, furanoid	1076	1478	LRI, MS			0.1	0.1
trans-Sabinene hydrate	1093	1474	LRI, MS				0.1
Linalool	1098	1553	LRI, MS, Co-GC	1.6	1.3	2.7	1.0
α-Campholenal	1128	1497	LRI, MS		0.4		
cis-Sabinol	1135	1789	LRI, MS				1.7
Nopinone	1136	1597	LRI, MS		0.1		0.2
cis-Verbenol	1144	1667	LRI, MS		0.4		2.0
Sabina ketone	1155	1652	LRI, MS				0.4
Pinocarvone	1165	1587	LRI, MS		0.6		0.1
Borneol	1167	1719	LRI, MS, Co-GC	1			0.1
Umbellulone	1175	1656	LRI, MS				0.3
Ferpineol-4	1176	1611	LRI, MS, Co-GC	-	0.4		0.5
x-Terpineol	1170	1706	LRI, MS, Co-GC	+	0.6	0.2	0.5
Myrtenal	1193	1648	LRI, MS, Co-GC		t	0.2	t
Myrtenol		1812	LRI, MS		ι		
<u>, </u>	1196				0.2		1.2
cis-Verbenone	1204	1723	LRI, MS		0.3		4.0
rans-Carveol	1217	1845	LRI, MS		0.1		
3-Cyclocitral	1223	1629	LRI, MS		t		0.1
cis-Carveol	1226	1878	LRI, MS				0.6
Cumin aldehyde	1232	1804	LRI, MS				0.1
Carvone	1241	1750	LRI, MS		2.5		0.3
p-Menth-9-en-1-ol	1291	1945	LRI, MS	1.2			
p-Cymen-7-ol	1293	2067	LRI, MS				1.5
Sesquiterpene hydrocarbons				30.8	51.5	29.4	33.9
δ-Elemene	1335	1476	LRI, MS		0.6		
α-Longipinene	1351		LRI, MS				0.1
α-Cubebene	1352	1466	LRI. MS	t	0.8	0.4	
Cyclosativene	1363	1492	LRI, MS	-			
α-Ylangene	1372	1493	LRI, MS			0.3	
· ·	1377	1503	LRI, MS	0.6	0.8	0.6	1.0
α-Copaene				0.7		0.0	
3-Cubebene	1382	1547	LRI, MS		2.5	1.0	0.1
3-Bourbonene	1385	1535	LRI, MS	1.2	1.0	1.8	0.5
3-Elemene	1387	1598	LRI, MS	0.2			0.2
a-Elemene	1396	4 #	LRI, MS			0.2	
a-Gurjunene	1408	1529	LRI, MS				1.2
z-Funebrene	1409	1510	LRI, MS		1		0.2
Caryophyllene	1415	1612	LRI, MS, Co-GC	10.0	4.9	8.2	10.1
Aromadendrene	1422	1628	LRI, MS	0.2	0.6		0.2
3-Gurjunene (Calarene)	1423	1632	LRI, MS		0.3		0.3
epi-Bicyclosesquiphellandrene	1424		LRI, MS	0.6			0.7
3-Cedrene	1430	1638	LRI, MS			0.9	
-Elemene	1436	1650	LRI, MS	0.8	0.1		0.1
3-Humulene	1437	1674	LRI, MS		t		0.3
	1157			t	0.3		0.1
E)-B-Farnesene	1452	1673	LRI, MS	L L	0.5		
		1673 1689	LRI, MS	3.1	0.9	2.8	3.4
χ-Humulene	1452 1455		LRI, MS				3.4 0.4
x-Humulene allo-Aromadendrene	1452 1455 1463	1689 1661	LRI, MS LRI, MS	3.1 1.9	0.9 0.5	2.8	0.4
x-Humulene ullo-Aromadendrene Germacrene D	1452 1455 1463 1477	1689 1661 1726	LRI, MS LRI, MS LRI, MS	3.1 1.9 5.8	0.9 0.5 14.3	2.8 3.7	
x-Humulene allo-Aromadendrene Germacrene D v-Muurolene	1452 1455 1463 1477 1478	1689 1661 1726 1704	LRI, MS LRI, MS LRI, MS LRI, MS	3.1 1.9 5.8 1.0	0.9 0.5 14.3 0.3	2.8	0.4
x-Humulene allo-Aromadendrene Germacrene D y-Muurolene E)-β-Ionone	1452 1455 1463 1477 1478 1482	1689 1661 1726 1704 1957	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC	3.1 1.9 5.8	0.9 0.5 14.3	2.8 3.7	0.4 3.9
x-Humulene allo-Aromadendrene Germacrene D y-Muurolene E)-β-Ionone ur-Curcumene	1452 1455 1463 1477 1478 1482 1483	1689 1661 1726 1704 1957 1784	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC LRI, MS	3.1 1.9 5.8 1.0 1.4	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0	0.4 3.9 0.2
x-Humulene nllo-Aromadendrene Germacrene D r-Muurolene E-β-Ionone n-Curcumene a-Amorphene	1452 1455 1463 1477 1478 1482 1483 1487	1689 1661 1726 1704 1957 1784 1679	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC LRI, MS LRI, MS	3.1 1.9 5.8 1.0	0.9 0.5 14.3 0.3	2.8 3.7	0.4 3.9 0.2 2.5
x-Humulene nllo-Aromadendrene Germacrene D n-Muurolene E)-β-Ionone n-Curcumene n-Amorphene eis-β-Guaiene	1452 1455 1463 1477 1478 1482 1483 1487 1490	1689 1661 1726 1704 1957 1784 1679 1694	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC LRI, MS LRI, MS LRI, MS	3.1 1.9 5.8 1.0 1.4	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0	0.4 3.9 0.2 2.5 1.5
x-Humulene tillo-Aromadendrene Germacrene DMuurolene E)-β-Ionone tr-Curcumene t-Amorphene tis-β-Guaiene /alencene	1452 1455 1463 1477 1478 1482 1483 1487 1490	1689 1661 1726 1704 1957 1784 1679 1694 1741	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS	3.1 1.9 5.8 1.0 1.4	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0 0.5	0.4 3.9 0.2 2.5 1.5 0.2
x-Humulene tillo-Aromadendrene Germacrene DMuurolene E)-β-Ionone tr-Curcumene t-Amorphene tis-β-Guaiene Valencene Bicyclosesquiphellandrene	1452 1455 1463 1477 1478 1482 1483 1487 1490 1494	1689 1661 1726 1704 1957 1784 1679 1694 1741 1626	LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS LRI, MS, Co-GC LRI, MS	3.1 1.9 5.8 1.0 1.4 0.2	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0	0.4 3.9 0.2 2.5 1.5 0.2 0.1
x-Humulene nllo-Aromadendrene Germacrene D y-Muurolene E)-β-Ionone n-Curcumene x-Amorphene zis-β-Guaiene Valencene Bicyclosesquiphellandrene Bicyclogermacrene	1452 1455 1463 1477 1478 1482 1483 1487 1490 1494 1491	1689 1661 1726 1704 1957 1784 1679 1694 1741 1626 1756	LRI, MS	3.1 1.9 5.8 1.0 1.4 0.2	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0 0.5 0.5	0.4 3.9 0.2 2.5 1.5 0.2 0.1 0.7
x-Humulene nllo-Aromadendrene Germacrene D r-Muurolene E)-β-Ionone nr-Curcumene n-Amorphene ris-β-Guaiene valencene Bicyclosesquiphellandrene Bicyclogermacrene n-Muurolene	1452 1455 1463 1477 1478 1482 1483 1487 1490 1494 1491 1492 1503	1689 1661 1726 1704 1957 1784 1679 1694 1741 1626 1756 1740	LRI, MS	3.1 1.9 5.8 1.0 1.4 0.2 0.2 1.9 0.5	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0 0.5	0.4 3.9 0.2 2.5 1.5 0.2 0.1 0.7
(E)-β-Farnesene α-Humulene allo-Aromadendrene Germacrene D γ-Muurolene (E)-β-Ionone ar-Curcumene α-Amorphene cis-β-Guaiene Valencene Bicyclosesquiphellandrene Bicyclogermacrene α-Muurolene γ-Cadinene	1452 1455 1463 1477 1478 1482 1483 1487 1490 1494 1491	1689 1661 1726 1704 1957 1784 1679 1694 1741 1626 1756	LRI, MS	3.1 1.9 5.8 1.0 1.4 0.2	0.9 0.5 14.3 0.3 0.5	2.8 3.7 1.0 0.5 0.5	0.4 3.9 0.2 2.5 1.5 0.2 0.1 0.7

							Table1 (contd.)
Cadina-1,4-diene	1538	1799	LRI, MS		0.9		0.2
α-Calacorene	1541	1942	LRI, MS		0.3	0.2	0.2
Germacrene B	1554	1856	LRI, MS	t			0.6
Cadalene	1677	2256	LRI, MS		0.4	0.7	1.6
Oxygenated sesquiterpenes				21.4	10.4	20.6	21.3
1-endo-Bourbonanol	1520		LRI, MS	21.4	10.1	0.5	21.0
Ledol	1565	2057	LRI, MS	0.8		1.7	
(E)-Nerolidol	1566	2050	LRI, MS		1.4		
Longipinanol	1572		,		t		
Germacrene D 4-ol	1577	2069	LRI, MS				3.0
Spathulenol	1578	2150	LRI, MS, Co-GC	5.8	1.8		0.1
Caryophyllene oxide	1580	2008	LRI, MS, Co-GC	7.7	4.0	8.8	5.0
Globulol	1588	2098	LRI, MS				0.2
Viridiflorol	1591	2104	LRI, MS	0.7		2.0	
Widdrol	1600		LRI, MS			1.4	0.1
Humulene epoxide II	1605	2071	LRI, MS			0.9	1.3
Cedrenol	1606	2133	LRI, MS	4.8		0.1	0.1
Torreyol	1645		LRI, MS				6.5
α-Cadinol	1649	2255	LRI, MS		1.9	0.7	4.0
Caryophyllenol II	1650	2396	LRI, MS			3.2	0.1
(E)-Isoelemicin	1659	2403	LRI, MS	1.6		0.5	0.2
Patchoulol	1664	-	LRI, MS			0.5	
Germacrone	1685	2210	LRI, MS		t		0.2
α-Bisabolol	1686	2219	LRI, MS	t	0.8		0.3
(Z,E)-Farnesol	1689	2276	LRI, MS	_	0.5	0.0	0.2
Vulgarol B	1691		LRI, MS			0.8	0.2
$cis(Z)$ - α -Bisabolene-epoxide	1698		LRI, MS	_			0.2
Phenolic compounds				2.5	3.6	14.3	10.3
Thymol	1290	2198	LRI, MS, Co-GC	0.2			0.1
Carvacrol	1297	2239	LRI, MS, Co-GC			13.5	9.6
4-Vinyl guaiacol	1312	2180	LRI, MS	1.8	2.0		0.1
Eugenol	1353	2186	LRI, MS, Co-GC	0.5	1.6	0.8	0.5
			, ,				
Hydrocarbons				10.2	4.3	6.8	6.5
α-Ionene	1208		LRI, MS			0.2	
Heptadecane	1700	1700	LRI, MS, Co-GC		0.2		0.1
Pentacosane	2500	2500	LRI, MS	1.0	0.8	1.9	0.7
Hexacosane	2600	2600	LRI, MS	0.2	0.2		
Heptacosane	2700	2700	LRI, MS	4.0	1.5	1.7	1.9
Octacosane	2800	2800	LRI, MS	0.6	0.1	0.5	
Nonacosane	2900	2900	LRI, MS	2.8	1.0	1.2	2.5
Triacontane	3000	3000	LRI, MS	0.4	t		0.1
Hentriacontane	3100	3100	LRI, MS	1.2	0.5	1.3	1.2
Fatty acids				9.7	2.6	13.1	0.6
Hexadecanoic acid	1957	2931	LRI, MS, Co-GC	9.3	1.8	10.7	0.1
Heptadecanoic acid	2054	2975	LRI, MS, Co-GC	0.1			
(Z)-9-Octadecenoic acid	2115	24.55	LRI, MS, Co-GC	0.1	0.5		
(Z,Z)-9,12-Octadecadienoic acid	2122	3157	LRI, MS, Co-GC	0.2	0.6	2.4	0.5
Octadecanoic acid	2172	3402	LRI, MS, Co-GC	0.2	0.2		_
Others		-	-	1.2	1.3	2.9	1.0
1-Octen-3-ol	977	1425	LRI, MS	0.5	0.3	0.1	0.1
Octan-3-ol	992	1394	LRI, MS, Co-GC	0.5	0.3	U.1	U.1
2-Pentylfuran	1002	1244	LRI, MS, Co-GC	t	0.4		+
Dihydroedulan I	1296	1444	LRI, MS	0.4	0.1		+
Dihydroactinidiolide	1486	2354	LRI, MS	0.7	0.5	1.6	+
13-epi-Manoyl oxide	1963	2388	LRI, MS	+	0.5	0.7	+
Manoyl oxide	1994		LRI, MS	1	1	0.5	0.1
Kaurene	2048	2399	LRI, MS	1	1		0.8
Squalene	2829		LRI, MS	0.3			
•			Í	-			
Carbonylic compounds				7.6	4.7	3.2	2.6
(E)-2-Hexenal	854	1231	LRI, MS		t		
Benzaldehyde	963	1543	LRI, MS, Co-GC		0.2		
1-Octen-3-one	975	1312	LRI, MS		0.3		
Acetophenone	1036	1645	LRI, MS			0.1	
Phenylacetaldehyde	1048	1663	LRI, MS, Co-GC	0.1	0.4	0.1	0.1
p-Methoxyacetophenone	1302	1797	LRI, MS, Co-GC	2.3			1.5
(E)-β-Damascenone	1380	1835	LRI, MS	1.1	1.0	0.4	0.2
(E)-α-Ionone	1419		LRI, MS, Co-GC	0.3			
Hexahydrofarnesylacetone	1845	2131	LRI, MS	3.8	2.8	2.6	0.8
					7		

Hexahydrofarnesylacetone
Total amount of compounds

a: Kovats retention index on HP-5 MS column; b: Kovats retention index on HP Innowax; c: LRI linear retention index; MS identification based on comparison of mass spectra; Co-GC retention time identical to authentic compounds; d: t = trace<0.05.

Teucrium polium L. ssp. capitatum (L.) Arcangeli (syn. Teucrium capitatum L.) is widespread diffused in the dry and stony places of Greece and almost all Mediterranean countries [15]. It is a perennial and prostrate species with white-tobright pink flowers, crenate leaves and ramified indumentum. This plant is used in folk medicine to treat diabetes and intestinal troubles. Aerial part extracts were known for their anti-inflammatory, antibacterial, antihypertensive, hypoglycemic, hypolipidemic, anorexic and antioxidant activities [9]. The species has been reported for its neo-clerodane diterpenoids and essential oils [16].

In continuation of our studies on the possible phytotoxic activity of essential oils from plants collected in the Mediterranean area [9,17-18], we analyzed the chemical composition of the essential oils of four different species of *Teucrium* and carried out *in vitro* experiments in order to verify the possible effects of the essential oils and of their main components on germination and initial radicle elongation of *Raphanus sativus* L. (radish) and *Lepidium sativum* L. (garden cress).

In the four oils, 131 compounds in all were identified (Table 1): 53 for oil of *T. arduini* (86.2% of the total oil), 71 for *T. maghrebinum* (94.0% of the oil), 51 for *T. montbretii* (93.4% of the oil) and 89 for *T. polium* (92.4% of the oil). The components are listed in Table 1 according to their retention indices on HP-5 column and are classified on the basis of their chemical structures into 9 classes.

The oil of *T. arduini* comprised mainly sesquiterpenes (52.2%), particularly sesquiterpene hydrocarbons (30.8%). In particular, 21 sesquiterpene hydrocarbons were present in the oil, with a prevalence of caryophyllene (10.0%), germacrene D (5.8%) and α-humulene (3.1%). In particular, 7 oxygenated sesquiterpenoids were present in the oil, being the main constituents caryophyllene oxide (7.7%), spathulenol (5.8%) and cedrenol (4.8%). Hydrocarbons were quite abundant (10.2%) and were constituted by almost heptacosane (4.0%) and nonacosane (2.8%). Fatty acids (9.7%) were represented by hexadecanoic acid (9.3%), while hexahydrofarnesylacetone (3.8%) was the main constituent among carbonylic compounds (7.6%). Blazevic and coworkers [12] and Kovacevic and coworkers [13] analyzed the essential oil composition of this species: in the both cases, β-caryophyllene and germacrene D were the main compounds, as in the our samples.

In the oil of *T. maghrebinum* the most abundant compounds were germacrene D (14.3%), δ -cadinene (13.5%) and γ -cadinene (7.5%). On the whole, the oil was constituted mainly by sesquiterpenes (61.9%) and

monoterpenes (15.6%). Sesquiterpene hydrocarbons (51.5%)prevailed over oxvgen containing sesquiterpenes (10.4%). Twenty-three sesquiterpene hydrocarbons were present in the oil, with a prevalence of germacrene D (14.3%), δ -cadinene (13.5%), γ-cadinene (7.5%) and caryophyllene (4.9%). Among 8 oxygen containing sesquiterpenes, the most abundant was caryophyllene oxide (4.0%). Among monoterpenes, 6 hydrocarbons accounted for the 8.9% of the total oil, with limonene (4.4%) as the main compound, while carvone (2.5%) prevailed among the 12 oxygen containing monoterpenes. The composition of essential oil of T. maghrebinum, growing in Algeria, was studied by Formisano and coworkers [8]: germacrene D, δ-cadinene and γ-cadinene were the most abundant compounds.

The oils from *T. montbretii* and *T. polium* from Greece were previously analyzed by us [9]; for the present study the aerial parts of the plants have been collected again in the same place and the GC and GC-MS analyses have been repeated on the new samples. Table 1 shows that results obtained in the present study are similar to those of the previously studies [9], even if the percentages of some components are slightly different.

In the essential oil of *T. montbretii*, the main fraction was constituted by sesquiterpenes (50.0%). Among these, sesquiterpene hydrocarbons (29.4%) prevailed on oxygen containing sesquiterpenes (20.6%). In the first fraction caryophyllene (8.2%), germacrene D (3.7%), allo-aromadendrene (2.8%) and α -humulene (2.8%) predominated, while among the 11 oxygen containing sesquiterpenes the most abundant compounds were caryophyllene oxide (8.8%) and caryophyllenol II (3.2%). The phenols were quite abundant (14.3%) and were constituted almost entirely by carvacrol (13.5%). Fatty acids (13.1%) were mainly represented by hexadecanoic acid (10.7%), while linalool (2.7%) was the main constituent of oxygenate monoterpenes (3.1%). The composition of the oil of T. montbretii confirmed literature data [9], in which the main fraction was constituted by sesquiterpenes.

As in the other oils studied, in the oil of *T. polium* sesquiterpenes constituted also the main fraction and accounted for the 55.2% of the total oil with a prevalence of sesquiterpene hydrocarbons (33.9%) over oxygen containing sesquiterpenes (21.3%). Among the 30 sesquiterpene hydrocarbons, caryophyllene (10.1%), germacrene D (3.9%), α -humulene (3.4%), δ -cadinene (3.1%) and α -amorphene (2.5%) were the most abundant. In the other fraction, torreyol (6.5%), caryophyllene oxide (5.0%) and α -cadinol (4.0%) prevailed. Monoterpenes contributed for the 16.2% of the oil with a predominance of oxygen containing

monoterpenes (15.0%), particularly *cis*-verbenone (4.0%) and *cis*-verbenol (2.0%).

The phenolic compounds (10.3%) were represented almost entirely by carvacrol (9.6%). The chemical analysis of the essential oil of *T. polium* was also reported by Antunes and coworkers [19] and Cozzani and coworkers [20] with different compositions.

The four essential oils were evaluated for their phytotoxic activity against germination and initial radicle elongation (Table 2) of radish and garden cress, two species usually utilized in biological assays [21]. Also the main components of these oils were assayed for the same activity (Table 3).

The oils affected the germination and the radicle elongation of radish and garden cress in a distinct way. Radicle elongation seemed to be more affected in comparison to germination. The germination of radish did not appeared sensitive to the four essential oils: only the essential oil of T. polium, at a dose of 1.25 µg/mL, significantly inhibited the germination of radish. The germination of garden cress did not appeared sensitive to the four essential oils, too: only the essential oil of T. arduini, at the highest dose tested, significantly inhibited the germination of garden cress. The radicle elongation of radish was significantly inhibited by the all oils: particularly, the essential oil of *T. arduini*, at the highest doses tested, inhibited the radicle elongation of radish, and in minor measure, of garden cress. The essential oil of T. montbretii inhibited only the radicle elongation of radish, at the dose of 1.25 µg/mL.

The main components, both monoterpenes and sesquiterpenes, were also assayed against germination and radicle elongation of two seeds at four concentrations (10⁻³-10⁻⁶). Monoterpenes resulted the more active compounds: in fact, limonene was the most active compound, at the highest doses assayed, against both germination and radicle elongation of radish; also carvacrol is very active in inhibiting radicle elongation of garden cress.

Among sesquiterpenes, *allo*-aromadendrene, at 10⁻⁴ M, inhibited, in a significative way, only the germination of garden cress; caryophyllene, at the lowest dose, inhibited significantly only the germination of radish. On the other hand, caryophyllene oxide promoted the germination of this seed. Radicle elongation of the seeds was never affected.

In previous papers, Kordali and coworkers [22] reported that limonene and β -pinene inhibited seed germination of *Chenopodium album*. Also linalool completely inhibited seed germination of *Cassia occidentalis*.

Kordali and coworkers also reported phytotoxic activity of carvacrol [23].

The different degrees of biological activity could be related to the composition of the essential oils: in particular, the presence of monoterpenoids [18] could explain the biological activity. Although mechanisms of essential oil action against germination is still unclear, it reported that volatile oils, monoterpenoids and also sesquiterpenoids inhibit cell division and induce structural breaks and decomposition in roots [18.24]. In a previous paper, we demonstrated that essential oils of different species of Salvia, rich in sesquiterpenoid compounds, showed a good antigerminative activity, both in vitro and in vivo [18]. So, both monoterpenoids and sesquiterpenoids appear to be involved in allelopathic effects: some monoterpenoids, as citronellol, linalool, α-pinene and limonene, are potent inhibitors of seed germination and radicle elongation; moreover, sesquiterpenoid compounds, as β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxy-calamenene and 5-methoxycalamenene were recently shown to inhibit the seedling growth of associated native vegetation, and thus possibly help in successful invasion in the introduced sites [18,25].

Experimental

Plant material: Aerial parts of *T. arduini* and *T. maghrebinum* were cultivated in the Orto Botanico "G. E. Ghirardi", University of Milano, Toscolano (Garda Lake, Italy). Seeds were provided by the Jardin des Plantes, Paris. Plant materials were collected in June 2009, at the full flowering stage. Aerial parts of *T. montbretii* ssp. *heliotropiifolium* were collected in June 2009, at Spoa, on the Karpathos Island of Greece. Aerial parts of *T. polium* ssp. *capitatum* were collected in June 2009, at Gournes, about 15 km east of Heraklion, Crete.

Chemicals: allo-Aromadendrene, β-pinene, carvacrol, caryophyllene, caryophyllene oxide, limonene and linalool were purchased from Sigma-Aldrich Co. (Milan, Italy).

Isolation of the essential oils: The air-dried samples were ground in a Waring blender and then subjected to hydrodistillation for 3 h using *n*-hexane as a solvent. The extracts were dried over anhydrous sodium sulphate and then stored in sealed vials, at 20°C, ready for the GC and GC-MS analyses. The hydrodistillation yielded 0.5%, 0.9%, 0.7% and 0.8% of pale yellow oil (on a dry mass basis) for *T. arduini*, *T. maghrebinum*, *T. polium* ssp. *capitatum* and *T. montbretii* ssp. *heliotropiifolium* respectively.

Table 2: Biological activities of essential oils of T. arduin (Ar), T. maghrebinum (Ma), T. monthretii ssp. heliotropiifolium (Mo) and T. polium ssp. capitatum (Po) against germination and initial radicle elongation of radish and garden cress, 120 h after sowing. Results are shown as mean \pm standard deviation (SD) of

three experiments.

	Raphanus sativus									
		Germin	ated seeds			Radicle elon	gation (cm)			
Doses	Ar	Ma	Мо	Po	Ar	Ma	Мо	Po		
Control	6.2±1.2	6.2±1.2	6.2±1.2	6.2±1.2	0.5±0.3	0.5±0.3	0.5±0.3	0.5±0.3		
2.5 μg/mL	6.0±1.0	3.7±3.2	6.7 ± 0.6	5.7±0.6	0.3±0.2*	0.4±0.2	0.4 ± 0.3	0.4±0.2		
1.25 μg/mL	5.3±1.5	5.7±1.2	6.7 ± 1.2	3.7±0.6*	0.3±0.2*	0.4±0.2	$0.4 \pm 0.2*$	0.4±0.2		
0.625 μg/mL	4.7±0.6	7.0±1.0	5.0 ± 0.0	5.7±1.5	0.3±0.2*	0.5±0.3	0.4 ± 0.2	0.3±0.2*		
0.25 μg/mL	6.3±1.2	5.3±0.6	4.7 ± 3.1	4.7±0.6	0.4±0.2	0.4±0.2	0.5 ± 0.3	0.6±0.3		
0.125 μg/mL	4.0±1.7	5.0±1.0	5.3 ± 1.2	4.3±1.2	0.4±0.1	0.4±0.3	0.4 ± 0.2	0.5±0.3		
0.06 μg/mL	4.3±1.2	6.3±0.6	5.0 ± 1.0	5.0±1.0	0.3±0.2	0.2±0.2***	0.4 ± 0.2	0.5±0.2		
			1	Lepidium sativi	ım					
		Germin	ated seeds			Radicle elon	gation (cm)			
Doses	Ar	Ma	Мо	Po	Ar	Ма	Мо	Po		
Control	9.2±0.8	9.2±0.8	9.2±0.8	9.2±0.8	2.2±1.2	2.2±1.2	2.2±1.2	2.2±1.2		
2.5 μg/mL	7.7±0.6*	9.3±0.6	9.3±0.6	9.3±0.6	1.7±1.0*	2.3±1.0	2.2±0.9	2.5±0.9		
1.25 μg/mL	8.0±1.0	9.3±0.6	9.7±0.6	9.0±1.7	2.4±1.0	1.9±0.9	2.2±1.1	1.9±1.1		
0.625 μg/mL	8.0±2.0	9.3±0.6	9.3±0.6	9.3±0.6	2.3±1.2	2.4±1.0	2.5±0.9	2.2±1.0		
0.25 μg/mL	10.0±0.0	8.3±0.6	9.0±1.0	8.3±1.2	2.2±1.1	2.1±1.1	2.4±1.3	1.8±0.9*		
0.125 μg/mL	9.0±1.0	8.0±0.0	9.0±1.0	9.7±0.6	2.3±0.9	1.9±1.0	2.2±0.9	2.7±1.2		
0.06 μg/mL	8.7±2.3	9.3±0.6	9.0±1.0	9.3±1.2	2.4±1.1	1.7±1.2*	2.1±1.1	2.3±1.1		

Note: *p < 0.05; ** p<0.01; ***p<0.001 vs. control.

Table 3: Biological activities of main constituents of essential oils of T. arduini, T. maghrebinum, T. montbretii ssp. heliotropiifolium and T. polium ssp. capitatum against germination and initial radicle elongation of radish and garden cress, 120 h after sowing. Results are shown as mean \pm standard deviation (SD) of three experiments.

		Raphanus sativus								
		Germin	ated seed		R	adicle elongat	tion (cm)			
	[10 ⁻³]	[10 ⁻⁴]	[10 ⁻⁵]	[10 ⁻⁶]	[10 ⁻³]	[10 ⁻⁴]	[10 ⁻⁵]	$[10^{-6}]$		
Control	9.0±0.6	9.0±0.6	9.0±0.6	9.0±0.6	7.8±2.0	7.8±2.0	7.8±2.0	7.8±2.0		
β-Pinene	8.7±0.0	8.0±0.0	9.4±1.4	8.0±2.1	5.6±0.6	6.5±0.9	5.6±0.6	6.1±0.8		
Limonene	5.1±1.4**	5.8±2.8*	6.2±4.9	8.3±2.1	3.9±0.4**	3.9±0.5**	8.2±1.1	6.1±0.7		
Linalool	7.2±1.4	7.6±2.1	7.0±2.1	8.7±2.8	6.7±1.1	6.5±0.7	5.2±0.7	6.7±0.6		
Carvacrol	7.6±0.7	9.4±1.4	9.1±2.1	8.3±3.5	7.8±1.0	8.7±1.3	8.7±1.3	9.5±1.6		
allo-Aromadendrene	9.0±0.0	9.0±0.0	9.7±0.6	9.7±0.6	8.6±4.5	9.2±5.0	8.6±5.4	8.5±4.5		
Caryophyllene	9.7±0.6	8.3±0.6	9.0±1.0	7.7±0.6*	9.4±4.7	10.9±4.6	9.1±5.0	7.8±6.3		
Caryophyllene oxide	7.7±1.5	9.0±1.0	10.0±0.0*	10.0±0.0*	8.7±5.1	9.1±5.1	8.5±5.3	7.6±4.9		
	Lepidium sativum									
		Germin	ated seed			Radicle elongation (cm)				
	$[10^{-3}]$	$[10^{-4}]$	$[10^{-5}]$	[10 ⁻⁶]	$[10^{-3}]$	$[10^{-4}]$	$[10^{-5}]$	$[10^{-6}]$		
Control	9.2±0.4	9.2±0.4	9.2±0.4	9.2±0.4	8.1±1.1	8.1±1.1	8.1±1.1	8.1±1.1		
β-Pinene	9.6±0.0	9.6±0.0	9.6±0.0	9.6±0.0	8.5±0.8	8.5±0.8	7.2±0.8	7.7±0.8		
Limonene	7.3±3.5*	9.6±0.0	9.3±0.7	8.3±1.4*	7.7±0.8	5.5±0.9	6.4±0.6	5.1±0.8		
Linalool	8.9±0.0	8.6±0.7	8.3±1.4	9.3±0.7	6.8±0.7	8.5±0.9	6.0±0.7	7.2±0.8		
Carvacrol	8.6±0.7	8.9±0.0	9.6±0.0	8.5±1.4	2.5±0.3***	7.2±0.8	7.7±0.8	8.9±0.7		
allo-Aromadendrene	9.3±1.2	8.3±0.6*	9.0±0.0	9.7±0.5	8.2±2.6	8.3±3.4	7.0±3.8	7.7±3.4		
Caryophyllene	9.7±0.6	9.5±0.7	8.3±1.5	9.7±0.6	6.2±2.9	7.0±3.4	7.9±3.7	8.8±2.8		
Caryophyllene oxide	9.0±0.0	8.7±0.6	8.5±2.1	9.7±0.6	7.3±2.4	7.2±3.6	7.9±1.4	7.5±2.8		

Note: p < 0.05; ** p < 0.01; ***p < 0.001 vs. control.

GC and GC/MS analyses: GC analyses were carried out on a Hewlett Packard Sigma 115 gas chromatograph equipped with FID and a HP 5MS fused silica capillary column (30 m x 0.25 mm i.d.; film thickness: 0.25 μm). Column temperature: 40°C, with 5 min initial hold, and then to 260°C at 2°C/min, 260°C (20 min); injection mode splitless (1 μL of a 1:1000 *n*-pentane solution). Injector and detector temperatures were 250°C and 290°C, respectively. Analysis was also run by using a fused silica HP Innowax polyethylenglycol capillary column (50 m x 0.20 mm, i.d.; 0.25 μm film thickness). In both cases, carrier gas was He, with flow rate of 1 mL/min. GC-MS analyses were performed on an

Agilent 6850 Ser. II apparatus, fitted with a fused silica DB-5 capillary column (30 m x 0.25 mm i.d.; 0.33 μ m film thickness), coupled to an Agilent Mass Selective Detector MSD 5973; ionization energy 70 eV; electron multiplier voltage 2,000 V. Mass spectra were scanned in the range 40-500 amu, scan time 5 scans/s. Gas chromatographic conditions were as reported above; transfer line temperature, 295°C.

Identification of components: Most constituents were identified by gas chromatography by comparison of their linear retention indices (LRI) with either those of the literature [26,27] or with those of authentic

compounds available in our laboratories. The linear retention indices were determined in relation to a homologous series of n-alkanes (C_8 - C_{28}) under the same operating conditions. Further identification was made by comparison of their mass spectra on both columns with either those stored in NIST 02 and Wiley 275 libraries or with mass spectra from the literature [26,28] and a home made library. Components relative concentrations were obtained by peak area normalization. No response factors were calculated.

Biological assay: A bioassay based on germination and subsequent radicle growth was used to study phytotoxic effects of the essential oils of *T arduini*, *T. maghrebinum*, *T. montbretii* ssp. heliotropiifolium and *T. polium* ssp. capitatum on seeds of Raphanus sativus L. cv. "Saxa" (radish), and Lepidium sativum L. (cress). Seeds of *L. sativum* and *R. sativus* were purchased from Blumen srl, Piacenza, Italy. The seeds were surfacesterilized in 95% ethanol for 15 s and sown in Petri dishes (Ø=90 mm), containing five layers of Whatman

filter paper, impregnated with 7 mL of distilled water (control) or 7 mL of tested solution of the essential oil at the different assayed doses. The germination conditions were 20 ± 1 °C, with natural photoperiod. The essential oils, in water–acetone mixture (99.5:0.5), were assayed at the doses of 2.5, 1.25, 0.625, 0.25, 0.125 and 0.062 µg/mL. The pure compounds, dissolved in water-acetone mixture (99.5:0.5), were assayed at the concentrations of 10⁻⁶ M, 10⁻⁵ M, 10⁻⁴ M, and 10⁻³ M. Controls performed with water-acetone mixture alone showed no appreciable differences in comparison with controls in water alone. Seed germination was observed directly in Petri dishes, each 24 h. Seed was considered germinated when the protrusion of the radicle became evident [29]. After 120 h (on the fifth day), the effects on radical elongation were measured in centimeters. Each determination was repeated three times, using Petri dishes containing 10 seeds each. Data are expressed as the mean \pm SD of both germination and radical elongation. The Student's t test of independence was applied [30].

- [1] Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Webb DA. (1976) Flora Europaea. Vol 3. Cambridge University Press, Cambridge. 129-135.
- [2] Gharaibeh MN, Elayan HH, Salhab AS. (1988) Hypoglycaemic effects of *Teucrium polium. Journal of Ethnopharmacology*, 24, 93-99.
- [3] Calis I, Bedir E, Wright AD, Sticher O. (1996) Neoclerodane diterpenoids from *Teucrium chamaedrys* subsp. *syspirense*. *Journal of Natural Products*, 59, 457-460.
- [4] Gharaibeh MN, Elayan HH, Salhab AS. (1989) Anorexic effect of *Teucrium polium* in rats. *International Journal of Pharmacognosy*, 27, 201-210.
- [5] Sundaresan PR, Slavoff SA, Grundel E, White KD, Mazzola E, Koblenz D, Rader JI. (2006) Isolation and characterisation of selected germander diterpenoids from authenticated *Teucrium chamaedrys* and *T. canadense* by HPLC, HPLC–MS and NMR. *Phytochemical Analysis*, 17, 243-250.
- [6] Piozzi F, Bruno M, Rosselli S, Maggio A. (2005) Advances on the chemistry of furano-diterpenoids from *Teucrium* genus. *Heterocycles*, 65, 1221-1234.
- [7] Saroglou V, Arfan M, Shabir A, Hadjipavlou-Litina D, Skaltsa H. (2007) Composition and antioxidant activity of the essential oil of *Teucrium royleanum* Wall. ex Benth. growing in Pakistan. *Flavour and Fragrance Journal*, 22, 154-157.
- [8] Formisano C, Rigano D, Senatore F, Al-Hillo MRY, Piozzi F, Rosselli S. (2009) Analysis of essential oil from *Teucrium maghrebinum* Greuter et Burdet growing wild in Algeria. *Natural Product Communications*, 4, 411-414.
- [9] Menichini F, Conforti F, Rigano D, Formisano C, Piozzi F, Senatore F. (2009) Phytochemical composition, anti-inflammatory and antitumour activities of four *Teucrium* essential oils from Greece. *Food Chemistry*, 115, 679-686.
- [10] Abdulkhader H, Nirmal P, Al-Saidi S. (2006) The composition and antimicrobial activity of the essential oil of *Teucrium stocksianum* subsp. *stocksianum* leaf from Oman. *Natural Product Communications*, 1, 195-199.
- [11] Šamec D, Gruz J, Strnad M, Kremer D, Kosalec I, Jurišić Grubešić R, Karlović K, Lucic A, Piljac-Zěgarac J. (2010) Antioxidant and antimicrobial properties of *Teucrium arduini* L. (Lamiaceae) flower and leaf infusions (*Teucrium arduini* L. antioxidant capacity). Food and Chemical Toxicology, 48, 113-119.
- [12] Blazevic N, Kalodera Z, Petricic J, Plazibat M. (1992) Essential oil content and composition of *Teucrium arduini* L. *Journal of Essential Oil Research*, 4, 223-225.
- [13] Kovacevic NN, Lakusic BS, Ristic MS. (2001) Composition of the essential oils of seven *Teucrium* species from Serbia and Montenegro. *Journal of Essential Oil Research*, 13, 163-165.
- [14] Bruno M, Bondi ML, Rosselli S, Piozzi F, Al-Hillo MRY, Lamara K, Ladjel, S. (2000) Neoclerodane diterpenoids from *Teucrium maghrebinum*. *Journal of Natural Products*, 63, 1029-1031.
- [15] Vokou D, Bessiere JM. (1985) Volatile constituents of Teucrium polium. Journal of Natural Products, 48, 498-499.

- [16] Boulila A, Béjaoui A, Messaoud C, Boussaid M. (2008) Variation of volatiles in Tunisian populations of *Teucrium polium* L. (Lamiaceae). *Chemistry & Biodiversity*, 5, 1389-1400.
- [17] Mancini E, Apostolides AN, De Martino L, De Feo V, Formisano C, Rigano D, Senatore F. (2009) Chemical composition and phytotoxic effects of essential oils of *Salvia hierosolymitana* Boiss. and *Salvia multicaulis* Vahl. var. *simplicifolia* Boiss. growing wild in Lebanon. *Molecules*, 14, 4725-4736.
- [18] De Martino L, Roscigno G, Mancini E, De Falco E, De Feo V. (2010) Chemical composition and antigerminative activity of the essential oils from five *Salvia* species. *Molecules*, 15, 735-746.
- [19] Antunes T, Sevinate-Pinto I, Barroso JG, Cavaleiro C, Salgueiro LR. (2004) Micromorphology of trichomes and composition of essential oil of *Teucrium capitatum*. Flavour and Fragrance Journal, 19, 336-340.
- [20] Cozzani S, Muselli A, Desjobert J-M, Bernardini A-F, Tomi F, Casanova J. (2005) Chemical composition of essential oil of *Teucrium polium* subsp. *capitatum* (L.) from Corsica. *Flavour and Fragrance Journal*, 20, 436-441.
- [21] Mancini E, Arnold NA, De Feo V, Formisano C, Rigano D, Piozzi F, Senatore F. (2009) Phytotoxic effects of essential oils of *Nepeta curviflora* Boiss. and *Nepeta nuda* L. subsp. *albiflora* growing wild in Lebanon. *Journal of Plant Interactions*, 4, 253-259.
- [22] Kordali S, Cakir A, Sutay S. (2007) Inhibitory effects of monoterpenes on seed germination and seedling growth. *Zeitschrift fuer Naturforschung, C: Journal of Biosciences*, 62, 207-214.
- [23] Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E. (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish *Origanum acutidens* and its three components, carvacrol, thymol and *p*-cymene. *Bioresource Technology*, 99, 8788-8795.
- [24] Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. (2005) Allelopathic effects of volatile monoterpenoids produced by *Salvia leucophylla*: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of *Brassica campestris* seedlings. *Journal of Chemical Ecology*, 31, 1187-1203.
- [25] Ens EJ, Bremner JB, French K, Korth J. (2008) Identification of volatile compounds released by roots of an invasive plant, bitou bush (*Chrysanthemoides monilifera* spp. *rotundata*), and their inhibition of native seedling growth. *Biological Invasions*, 11, 275–287.
- [26] Jennings W, Shibamoto T. (1980) Qualitative analysis of flavour and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York, NY, USA.
- [27] Davies NW. (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. *Journal of Chromatography*, 503, 1-24.
- [28] Adams RP. (2007) Identification of essential oil components by Gas Chromatography/Mass Spectrometry, 4th Ed. Allured Publishing, Carol Stream, IL, USA.
- [29] Bewley D, Black M. (1985) Seeds: Physiology of Development and Germination. Plenum Press, New York.
- [30] Sokal RR, Rohlf FJ. (1981) Biometry. 2nd Ed. WH Freeman and Company, New York, USA.

2010 Vol. 5 No. 12 1977 - 1980

Chemical Constituents and Larvicidal Activity of *Hymenaea* courbaril Fruit Peel

José Cláudio D. Aguiar^a, Gilvandete M. P. Santiago^{b,c*}, Patrícia L. Lavor^c, Helenicy N. H. Veras^c, Yana S. Ferreira^c, Michele A. A. Lima^b, Ângela M. C. Arriaga^b, Telma L. G. Lemos^b, Jefferson Q. Lima^d, Hugo C. R. de Jesus^c, Péricles B. Alves^c and Raimundo Braz-Filho^f

^aSecretaria de Saúde e Ação Social - Prefeitura Municipal de Sobral – Rua Viriato de Medeiros 1205, CEP62011-060, Sobral, CE, Brazil

^bDepartamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, CEP 60451-970, Fortaleza, CE, Brazil

^cDepartamento de Farmácia, Universidade Federal do Ceará, Rua Capitão Francisco Pedro 1210, CEP 60430-370, Fortaleza, CE, Brazil

^dInstituto Federal de Educação, Ciência e Tecnologia do Ceará, Curso de Engenharia Ambiental, CEP 63040-000, Juazeiro do Norte, CE, Brazil

^eDepartamento de Química, Universidade Federal de Sergipe, CEP 49100-000, São Cristóvão, SE, Brazil

^fFAPERJ/UENF/UFRRJ, Av. Alberto Lamego, No. 2000, CCT-LCQUI-UENF, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil

gil@ufc.br

Received: May 7th, 2010; Accepted: October 15th, 2010

The chemical compositions of the essential oils from the peel of ripe and unripe fruits of *Hymenaea courbaril* L., obtained by hydrodistillation, were analyzed by GC and GC-MS. The main constituents of the essential oil from the peel of the ripe fruits were the sesquiterpenes α -copaene (11.1%), spathulenol (10.1%) and β -selinene (8.2%), while germacrene-D (31.9%), β -caryophyllene (27.1%) and bicyclogermacrene (6.5%) were the major compounds in the oil from unripe fruits. The essential oils were tested against *Aedes aegypti* larvae and showed LC₅₀ values of 14.8 \pm 0.4 μ g/mL and 28.4 \pm 0.3 μ g/mL for the ripe and unripe fruit peel oils, respectively. From the peel of the ripe fruits, the diterpenes zanzibaric acid and isoozic acid were isolated, along with the sesquiterpene caryolane-1,9 β -diol. To the best of our knowledge, this is the first report of this sesquiterpene in the genus. The structures of all compounds isolated were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR) and by comparison with literature spectral data.

Keywords: Hymenaea courbaril, Caesalpinoideae, sesquiterpenes, diterpenes, Aedes aegypti.

The genus *Hymenaea* (Caesalpinoideae) comprises 14 species [1] and is widely distributed from Central to South America, mainly in the Amazon basin [2]. *H. courbaril* L., known popularly as "jatobá", is useful for its timber and has been employed in folk medicine as an anodyne, antiseptic, astringent, expectorant, laxative, purgative, sedative, stimulant, tonic, and vermifuge [3]. *Enantio*-labdanoic and *enantio*-halimane type diterpenes have been isolated from *H. courbaril* [2,4-12], but there is no report of essential oils.

Interest in the control of Aedes aegypti lies in the fact that it acts as a vector of dengue and dengue

hemorrhagic fever. Dengue is an endemic disease in most of the countries of the Americas and, over the past twenty years, has shown sustained cycles of outbreaks, every 3 to 5 years, and outbreaks are re-emerging in Brazil [13]. There are no effective vaccines, and vector control is the only way to minimize the transmission of the virus. Plant products have been used against the vectors, and plant-derived products can act as larvicides [14]. Essential oils from plants like *Lippia* species [15] and *Croton zehntneri* [16], and various extracts and compounds [17,18] have been documented for larvicidal activity towards *Aedes aegypti*.

Table 1: Volatile components identified in the essential oils from ripe (oil A) and unripe fruit peel (oil B) of *H. courbaril*.

Compound	RI	Oil A	Oil B
		(%)	(%)
δ-Elemene	1333	-	0.1
α-Cubebene	1342	1.7	0.4
α-Ylangene	1364	0.5	0.1
α-Copaene	1371	11.1	4.2
β-Elemene	1384	5.0	-
7 <i>-epi-</i> Sesquithujene	1386	-	0.8
Cyperene	1401	-	0.1
β-Caryophyllene	1414	2.0	27.1
β-Copaene	1424	0.6	0.1
α-trans-Bergamotene	1431	-	0.9
Aromadrendrene	1432	1.6	_
(Z)-β-Farnesene	1439	-	1.2
cis-Muurola-3,5-diene	1447	_	0.1
α-Humulene	1450	0.3	4.2
Allo-Aromadrendene	1454	0.6	0.5
γ-Muurolene	1469	7.9	-
Amorpha-4,7(11)-diene	1475	0.3	
trans-Cadina-1(6),4-diene	1475	-	2.3
Germacrene-D	1482	_	31.9
β-Selinene	1488	8.2	0.6
δ-Selinene	1490	5.7	-
trans-Muurola-4(14),5-diene	1491	-	0.8
Bicyclogermacrene	1494	_	6.5
γ-Cadinene	1507	2.7	1.1
δ-Amorphene	1512	5.3	0.3
trans-Calamenene	1515	1.1	-
δ-Cadinene	1516	-	3.3
trans-Cadina-1,4-diene	1530	_	0.2
α-Cadinene	1534	_	0.2
α-Calacorene	1535	1.1	-
Germacrene-B	1553	1.8	1.7
Spathulenol	1572	10.1	0.9
Caryophyllene oxide	1577	6.9	2.1
β-Copaen-4α-ol	1583	1.2	-
Globulol	1583	-	0.2
Salvial-4(14)-en-1-one	1587	1.8	-
Humulene epoxide II	1604	1.3	0.3
1-epi-Cubenol	1622	1.3	0.2
Camphoric acid	1631	0.8	-
<i>epi</i> -αMuurolol	1637	1.1	-
αMuurolol	1641	0.7	-
Selin-11-en4α-ol	1641	1.8	-
			- 0.0
α-Cadinol	1653	0.4	0.8
(Z)-14-Hydroxy-caryophyllene	1664 1668	0.4	-
Mustakone		0.9	-
Amorpha-4,9-dien-2-ol	1684	0.4	- 0.1
Levomenol Ovuganeted aggregaternance	1887	20.6	0.1
Oxygenated sesquiterpenes		28.6	4.6
Non-oxygenated sesquiterpenes		57.5	88.7
Total		86.1	93.3

As part of a continuous research program on plants from northeast Brazil, this work describes the isolation of the diterpenes zanzibaric acid and isoozic acid, and the sesquiterpene caryolane-1,9β-diol from the peel of the ripe fruits of *H. courbaril*, and the chemical composition of the essential oils from the peel of both ripe and unripe fruits of *H. courbaril*, as well as the evaluation of these oils for their larvicidal activity against *A. aegypti*.

Successive chromatographic treatments of the *n*-hexane extract of the air-dried, ripe, fruit peel of *H. courbaril* afforded the *ent*-labdane diterpene zanzibaric acid [19] and the sesquiterpene caryolane-1,9 β -diol [20]; from the ethyl acetate extract, the diterpene isoozic acid was isolated [21].

The chemical composition of the essential oils from the peel of the ripe and unripe fruits of *H. courbaril*, including retention index (RI) values listed in order of elution from the DB-5MS column, and the percentage relative to each constituent is presented in Table 1. From the two analyzed oil samples, a total of 47 compounds were identified, all of which were sesquiterpenes, representing 86.1% and 93.3% of the oils. α -Copaene (11.1%), spathulenol (10.1%), β selinene (8.2%), y-muurolene (7.9%) and caryophyllene oxide (6.9%) were the major constituents identified in the essential oil from ripe fruit peel (oil A), while germacrene D (31.9%), β-caryophyllene (27.1%), bicyclogermacrene (6.5%), α -humulene (4.2%), and α -copaene (4.2%) were the prevalent compounds in the essential oil from unripe fruit peel (oil B).

The larvicidal potential of the essential oils was evaluated against *A. aegypti* larvae. The essential oil from the ripe fruit peel (oil A) showed stronger larvicidal activity against third-instar *A. aegypti* larvae (LC₅₀ 14.8 \pm 0.4 µg/mL) than the oil from unripe fruit peel (oil B; LC₅₀ 28.4 \pm 0.3 µg/mL); this can be justified by the higher concentration of oxygenated sesquiterpenes (28.6%), mainly spathulenol [22], present in the essential oil from mature fruit peel (oil A). *O,O'*-(Thiodi-4,1-phenylene)bis(*O,O*-dimethyl phosphorothioate (Temephos®) was used as a positive control (LC₅₀ 1.4 \pm 0.2 µg/mL).

This study showed the efficacy of the essential oils from the peels of ripe and unripe fruits of H. courbaril against A. aegypti larvae. Furthermore, it may represent a contribution to mosquito control. The isolation of caryolane-1,9 β -diol represents the first report of this sesquiterpene in the genus.

Experimental

Plant material: Fruits of *H. courbaril* were collected in 2007 in Crato County, State of Ceará, northeast Brazil. A voucher specimem (#EAC41026) is deposited at the Herbário Prisco Bezerra, Departamento de Biologia, Universidade Federal do Ceará, Brazil.

Extraction of essential oils: The ripe (636 g) and unripe fruit peels (940 g) of *H. courbaril* were triturated and subjected to hydrodistillation in a Clevenger-type apparatus for 2 h to afford 0.27 g (0.042%) and 0.67 g

(0.071%) of pale yellow oils, respectively. The yields (w/w) were calculated based on the fresh weight of the plant materials. The isolated oils, after drying over anhydrous sodium sulfate (0.20 g) and filtration, were stored in sealed glass vials and maintained under refrigeration before analysis.

Analytical conditions: The essential oils were analyzed by GC/MS on a Shimadzu QP5050A (Shimadzu Corporation, Kyoto, Japan) system equipped with a AOC-20i autosampler under the following conditions: J&W Scientific DB-5MS fused silica capillary column (30 m x 0.25 mm i.d., x 0.25 µm film thickness, composed of 5%-phenyl-95%-methylpolysiloxane) operating in EI mode at 70 eV. Helium (99.999%) was used as the carrier gas at a constant flow of 1.2 mL/min. The injection volume was 0.5 µL (split ratio of 1:100). the injector temperature 250°C and the ion-source temperature 280°C. The oven temperature was programmed from 50°C (isothermal for 1.5 min), with an increase of 4°C/min to 200°C, then 10°C/min to 300°C, ending with a 10 min isothermal period at 300°C. Mass spectra were taken at 70 eV with a scan interval of 0.5 s and fragments from 40 to 500 Da.

Quantitative analysis of the chemical constituents was performed by flame ionization gas chromatography (FID), using a Shimadzu GC-17A (Shimadzu Corporation, Kyoto, Japan) instrument, under the following operational conditions: capillary ZB-5M5 column (5%-phenyl-arylene-95%- methylpolysiloxane fused silica capillary column 30 m x 0.25 mm i.d. x 0.25 µm film thickness), under the same conditions

reported for the GC-MS. Quantification of each constituent was estimated by area normalization (%). Compound concentrations were calculated from the GC peak areas and they were arranged in order of GC elution.

Identification of individual components of the essential oils was performed by computerized matching of the acquired MS with those stored in NIST21 and NIST22 mass spectral library of the GC/MS data system. Retention indices (RI) for all compounds were determined according to literature [23] for each constituent, as previously described [24].

Larvicidal bioassay: Aliquots of the essential oils tested (12.5 to 500 μg/mL) were placed in a beaker (50 mL) and dissolved in DMSO/H₂O 1.5% (20 mL). Fifty instar III larvae of *Aedes aegypti* were delivered to each beaker. After 24 h at room temperature, the number of dead larvae was counted and the lethal percentage calculated. A control using DMSO/H₂O 1.5% was carried out in parallel. For each sample, 3 independent experiments were run [25].

Acknowledgments - The authors thank the Brazilian agencies CNPq, CAPES, FUNCAP, PRONEX for fellowships and financial support, and Laboratório de Entomologia, Núcleo de Endemias da Secretaria de Saúde do Estado do Ceará, Brazil, where the bioassays were performed.

- [1] Melo MGG, Mendonça MS, Mendes AMS. (2004) Análise morfológica de sementes, germinação e plântulas de jatobá (*Hymenaea intermedia* Ducke var. *adenotricha* (Ducke) Lee & Lang.) (Leguminosae- Caesalpinioideae). *Acta Amazônica*, 34, 9-14.
- [2] Nogueira RT, Shepherd GJ, Laverde Jr A, Marsaioli AJ, Imamura PM. (2001) Clerodane-type diterpenes from the seed pods of *Hymenaea courbaril* var. *stilbocarpa*. *Phytochemistry*, 58, 1153-1157.
- [3] Duke JA, Wain KK. Medicinal plants of the world: http://www.hort.purdue.edu/newcrop/duke_energy/Hymenaea_courbaril.html.
- [4] Nakano T, Djerassi C. (1961) Terpenoids. XLVI. Copalic acid. Journal of Organic Chemistry, 26, 167-173.
- [5] Cunningham A, Martin SS, Langenheim JH. (1973) Resin acids from two Amazonian species of *Hymenaea*. *Phytochemistry*, 12, 633-635.
- [6] Cunningham A, Martin SS, Langenheim JH. (1974) Labd-13-en-8-ol-15-oic acid in the trunk resin of amazonian Hymenaea courbaril. Phytochemistry, 13, 294-295.
- [7] Marsaioli AJ, Leitão Filho HF, Campelo JP. (1975) Diterpenes in the bark of Hymenaea courbaril. Phytochemistry, 14, 1882-1883.
- [8] Imamura PM, Marsaioli, AJ, Barata LES, Rúveda EA. (1977) ¹³C NMR spectral analysis of eperuane diterpenes. *Phytochemistry*, 16, 1842-1844.
- [9] Khoo SF, Oehlschlager AC. (1973) Structure and stereochemistry of the diterpenes of *Hymenaea courbaril* (Caesalpinioideae) seed pod resin.. *Tetrahedron*, 29, 3379-3388.
- [10] Nogueira RT, Giacomini RA, Shepherd GJ, Imamura PM. (2002) A new *ent*-clerodane diterpene from *Hymenaea courbaril* var. *altissima. Journal of the Brazilian Chemical Society*, 13, 389-391.
- [11] Nogueira RT, Queiroz SCN, Imamura PM. (2002) Semi-preparative HPLC separation of terpenoids from the seed pods of *Hymenaea courbaril* var. *stilbocarpa*. *Journal of Liquid Chromatography & Related Technologies*, 25, 59-67.

- [12] Abdel-Kader M, Berger JM, Slebodnick C, Hoch J, Malone S, Wisse JH, Werkhoven MCM, Mamber S, Kingston DGI. (2002) Isolation and absolute configuration of *ent*-halimane diterpenoids from *Hymenaea courbaril* from Suriname rain forest. *Journal of Natural Products*, 65, 11-15.
- [13] Sá RA, Santos NDL, Da Silva CSB, Napoleão TH, Gomes FS, Cavada BS, Coelho LCBB, Navarro DMAF, Bieber LW, Paiva PMG. (2009) Larvicidal activity of lectins from *Myracrodruon urundeuva* on *Aedes aegypti. Comparative Biochemistry and Physiology, Part C*, 149, 300-306.
- [14] Murugan K, Murugan P, Noortheen A. (2007) Larvicidal and repellent potencial of *Albizzia amara* Boivin and *Ocimum basilicum* Linn against dengue vector, *Aedes aegypti* (Insecta: Diptera: Culicidae)., *Bioresource Technology*, 98, 198-201.
- [15] Santiago GMP, Lemos TLG, Pessoa ODL, Arriaga AMC, Matos FJA, Lima MAS, Santos HS, Lima MCL, Barbosa FG, Luciano JHS, Silveira ER, De Menezes GHA. (2006) Larvicidal activity against *Aedes aegypti* L. (Diptera: Culicidae) of essential oils of *Lippia* species from Brazil. *Natural Product Communications*, 1, 573-576.
- [16] Santos HS, Santiago GMP, De Oliveira JPP, Arriaga AMC, Marques DD, Lemos TLG (2007) Chemical composition and larvicidal activity against *Aedes aegypti* of essential oils from *Croton zehntneri*. *Natural Product Communications*, 2, 1233-1236.
- [17] Siddiqui BS, Ali SK, Ali ST, Naqvi SNH, Tariq RM (2009) Variation of major limonoids in *Azadirachta indica* fruits at different ripening stages and toxicity against *Aedes aegypti*. *Natural Product Communications*, 4, 473-476.
- [18] Arriaga AMC, Lima JQ, Vasconcelos JN, De Oliveira MCF, Lemos TLG, Fonseca AM, Malcher GT, Santiago GMP, Mafezoli J, Braz-Filho R (2009) Antioxidant and larvicidal activities of *Tephrosia egregia* Sandw against *Aedes aegypti. Natural Product Communications*, 4, 529-530.
- [19] Imamura PM, Miranda PCML, Giacomini RA. (2004) A complete ¹H and ¹³C NMR data assignment for the diterpene methyl (-)-zanzibarate by 2D spectroscopy and NOE experiments. *Magnetic Resonance in Chemistry*, 42, 561-563.
- [20] Heymann H, Tezuka Y, Kikuchi T, Supriyatna S. (1994) Constituents of *Sindora sumatrana* Miq. I. Isolation and NMR spectral analysis of sesquiterpenes from the dried pods. *Chemical & Pharmaceutical Bulletin*, 42, 138-146.
- [21] Martins D, Hamerski L, Alvarenga SAV, Roque NF. (1999) Labdane dimers from Xylopia aromatica. Phytochemistry, 51, 813-817.
- [22] Feitosa EMA, Arriaga AMC, Santiago GMP, De Lemos TLG, De Oliveira MCF, Vasconcelos JN, Lima JQ, Malcher GT, Do Nascimento RF, Braz-Filho R. (2009) Chemical composition and larvicidal activity of *Rollinia leptopetala* (Annonaceae). *Journal of the Brazilian Chemical Society*, 20, 375-378.
- [23] Van Den Dool H, Kratz PD. (1963) A generalization of the retention index system including linear temperature programmed gasliquid partition chromatography. *Journal of Chromatography*, 11, 463-471.
- [24] Adams RP. (2007) *Identification of essential oil components by gas chromatography/mass spectroscopy*. Allured Publishing Corporation, Illinois, 1-804.
- [25] Oliveira MF, Lemos TLG, Mattos MC, Segundo TA, Santiago GMP, Braz-Filho R. (2002) New enamines derivatives of lapachol and biological activity. *Anais da Academia Brasileira de Ciências*, 74, 211-221.

2010 Vol. 5 No. 12 1981 - 1984

Caryophyllene Oxide-rich Essential Oils of Lithuanian Artemisia campestris ssp. campestris and Their Toxicity

Asta Judzentiene^{a,*}, Jurga Budiene^a, Rita Butkiene^a, Eugenija Kupcinskiene^b, Isabelle Laffont-Schwob^c and Véronique Masotti^c

^aCenter for Physical Sciences and Technology, Institute of Chemistry, A. Gostauto 9, LT-01108, Vilnius, Lithuania

^bVytautas Magnus University, Faculty of Nature Sciences, Department of Biology, Vileikos 8, LT- 44404, Kaunas, Lithuania

^cUniversity of Provence, Institut Méditerranéen d'Ecologie et de Paléoécologie, UMR-IMEP-CNRS-IRD 6116, Equipe BBE, Case 97, 3 place Victor Hugo, 13331 Marseille Cedex 3, France

judzent@ktl.mii.lt

Received: March 10th, 2010; Accepted: October 5th, 2010

The chemical composition of the essential oils of aerial parts of *Artemisia campestris* ssp. *campestris*, collected from ten different locations in Lithuania is detailed in this paper. The major component in all the oils was caryophyllene oxide (8.5-38.8%), whereas compounds with the caryophyllane skeleton ranged from 10.2 to 44.5%. Other representative constituents were germacrene D (\leq 15.0%), humulene epoxide II (\leq 8.1%), β -ylangene (\leq 7.7%), spathulenol (\leq 6.8%), β -caryophyllene (\leq 6.2%), junenol (\leq 6.1%) and α - or β -pinene (\leq 5.5%). Eighty-seven compounds were identified, comprising 73.6-92.3% of the oils. The chemical composition was highly variable depending on the sample location.

Toxicity of A. campestris oils was determined using the brine shrimp (Artemia sp.) assay. LC_{50} values ranging to 20 μ g/mL were obtained for three of the oils after 24 hours of exposure. Data of this test revealed that A. campestris ssp. campestris essential oils with dominant caryophyllene oxide are notably toxic.

Keywords: *Artemisia campestris* ssp. *campestris*, essential oil, toxicity, brine shrimp lethality test, β-caryophyllene, caryophyllene oxide, β-elemene, β-ylangene, humulene epoxide II, junenol.

Artemisia (with up to 500 species) is one of the largest and most widely distributed genus of the Asteraceae. A. campestris (tribe Anthemideae, Dracunculus section), commonly known as field wormwood or field sagewort, is a perennial plant that is found in temperate regions throughout the northern hemisphere. Field wormwood, common for most parts of Europe, prefers open sites in light (sandy) and medium (loamy) soils. The species is polymorphous and is divided into several subspecies and forms. The plant is known as a medicinal herb with anthelmintic, antiseptic, cholagogue, deobstruent, emmenagogue, stomachic and tonic properties.

Flavonoids and terpenoids are the main secondary metabolites of the genus *Artemisia* [1]. Previous studies of the chemical composition of essential oils of *A. campestris* from different countries gave contrasting results (Table 1, [2-13]). However, the authors worked on plant material from various locations with many environmental variables, and in some of these studies,

the plant parts used were not clearly specified and/or the subspecies was not indicated. Moreover, even for the same subspecies, i.e. *A. campestris* ssp. *glutinosa*, oil compositions varied from one study to another [2-5,12]. In addition, variation in the essential oil composition may occur depending on the phenological stage. This parameter was not always specified in the previous reports.

Furthermore, the literature shows the lack of research concerning the ethno-pharmacology, volatile oil composition and antibacterial activity of *A. campestris* from Lithuania. Thus the aim of this study was to determine the chemical composition and toxicity of the essential oils from the aerial parts of *A. campestris* ssp. *campestris* from various Lithuanian locations. All samples were collected at the full flowering to compare oil compositions of plants at the same phenological stage.

A. campestris Place of origin Organ Extract Main components, (%) Reference subspecies not specified EO ar-curcumene, caryophyllene oxide, p-cymene, β-pinene and Italy ssp. glutinosa germacrene D β-pinene (6.9-57.2), germacrene D (0.4-28.6), bicyclogermacrene 3 ssp. glutinosa flowers and Italy leaves (1.0-14.5) and myrcene (1.7-11.2) ssp. glutinosa aerial parts EO γ -terpinene (\leq 46.5), capillene (33.1), 1-phenyl-2,4-pentadiyne France 4 (≤ 29.7) and spathulenol (≤ 11.3) EO (Z,E)-farnesol (10.3), cedrol (5.4) and verbenone (3.8) 5 aerial parts Algeria ssp. glutinosa even if ns ssp. campestris aerial parts EO α-pinene (\leq 16.5), β-pinene (\leq 10.7), caryophyllene oxide (\leq 18.2), North west Italy 1,6 and borealis spathulenol (\leq 18.7), epi-cubenol (\leq 14.2) and 1,8-cineole (\leq 19.2) EO β-pinene (17.8), cadin-4-en-7-ol (16.4), γ-terpinene (8.7), 7 aerial parts? Portugal ssp. maritima Archangelis* (Z)-β-ocimene (7.4), aromadendrene (6.7)EO β-pinene (24.0-49.8), α-pinene (5.9-12.5), p-cymene (3.4-9.4), Southern Tunisia 8 limonene (4.9-9.3), spathulenol (1.2-8.9), γ -terpinene (2.0-6.5), eudesmol (1.0-6.4) and (Z)- β -ocimene (0.2-5.5) vapor α-pinene (41.0), β-pinene (29.7), limonene (6.4) and sabinene (4.5) Southern Ural ns leaf EO β-pinene (24.2-27.9), p-cymene (17.4-22.3) and α-pinene (4.1-11.0) South eastern Tunisia 10 ns aerial parts EO spathulenol (9.2), β-pinene (9.1), α-pinene (3.4), limonene (2.5), Serbia 11 ns germacrene D (3.3), 4-hydroxy-9-epi-β-caryophyllene (3.0) var. glutinosa aerial parts EO β -pinene (41.0), p-cymene (9.9), α-terpinene (7.9), limonene (6.5) Southern Tunisia 12 and myrcene (4.1) Gay ex Bess EO α-pinene (23.9, 23.0, 29.2) and spathulenol (23.9, 15.8, 29.2) in the 13 flowers, leaves and stems, flower, leaf and stem oils, respectively; bicyclogermacrene (12.0) in separately the flower and β -pinene (12.6) in the leaf oil

Table 1: Major constituents (%) of *Artemisia campestris* essential oils from various countries, according to the literature.

EO-essential oils, ns-name of subspecies not indicated, * also referred to as Artemisia crithmifolia L.

1. Chemical composition of Lithuanian Artemisia campestris essential oils: The composition of the essential oils of A. campestris collected from 10 populations in different parts of Lithuania (east, west and south of the country) and rich in caryophyllene oxide is presented in Table 2. The major component in all the oils was caryophyllene oxide (8.5-38.8%), while the amount of compounds with a caryophyllane skeleton (caryophyllene, its oxide and caryophylla4(12),8(13)-dien- 5α -ol) ranged from 10.2 to 44.5%.

In four samples (A, E, F and K) out of ten, germacrene D (9.4-15.0%) was the second main constituent. In the other six oils, four compounds were identified as the second principal component, i.e. caryophyllene (5.7-6.2% in oil samples H and J), β -pinene (4.9% in sample C), spathulenol (5.7-6.8% in B and D) and humulene epoxide II (8.1% in G).

The third most dominant components were found to be α - or β -pinene (4.5-5.5% in A, C and D), β -ylangene (7.7% in sample E), germacrene D (4.9-7.5% in G, H and J), humulene epoxide II (5.3% in B), junenol (6.1% in F) and β -elemene (6.8% in K). Caryophyllene oxide, germacrene D, α - or β -pinene and spathulenol have been previously determined in appreciable amounts in field wormwood oils from other countries (Table 1), while humulene epoxide II, junenol, β -elemene and

β-ylangene have not been mentioned before among the main constituents of these oils. Bicyclogermacrene was only determined in minor amounts in this study, while it was a major constituent (up to 14.5%) in *A. campestris* oils from Italy and Iran [3,13].

Eighty-seven identified constituents (one of them tentatively) comprised 73.6-92.3% of the total oils. Chemical analysis showed a multi-component composition of the essential oils of Lithuanian field wormwood. The main fraction was sesquiterpenoids (49.9-79.3%), where amounts of sesquiterpene hydrocarbons and oxygenated sesquiterpenes varied from 16.1 to 51.2% and from 25.0 to 52.6%, respectively. Monoterpene hydrocarbons accounted for only 5.4-19.7%.

2. Toxic activity of *A. campestris* essential oils against *Artemia* sp. nauplii: Three oils obtained from the studied plant materials were chosen for tests of toxic activity. The test showed that lethality (LC₅₀) of brine shrimp larvae was 15-20 μ g/mL (16.8, 19.5 and 14.9 μ g/mL for samples A, H and K, respectively). The essential oils of *A. campestris* containing 12.1%, 22.1% and 10.2% of caryophyllene oxide, and 9.4%, 5.8% and 9.9% of germacrene D, respectively were toxic enough to kill the shrimps, despite the fact that the extremely toxic ketones (such as α - and β -thujone or artemisia

Table 2: Main constituents (with quantity over 5%) of essential oils, rich in caryophyllene oxide, of Artemisia campestris from Lithuania (2003-2007).

Compound	RI ^a	Α	В	С	D	Е	F	G	Н	J	K	Interval
α-Pinene	939	5.3	t	4.5	4.0	6.8	1.1	5.6	1.3	1.5	0.7	t-6.8
β-Pinene	975	3.9	4.3	4.9	5.5	2.3	0.5	0.3	0.2	t	0.3	t-5.5
cis-Pinane	986	1.0	3.6	0.8	1.5	1.2	1.5	6.0	3.3	3.2	1.9	0.8-6.0
β-Elemene	1391	3.2	t	0.3	0.9	0.7	1.3		0.7	0.1	6.8	0-6.8
β-Caryophyllene	1419	3.0	2.0	2.7	1.7	1.6	2.8	6.1	6.2	5.7	4.9	1.6-6.2
β-Ylangene	1420	1.8	1.0	1.5	0.7	7.7	3.1		1.0		6.0	0-7.7
γ-Curcumene+Acoradiene	1480		5.7			4.6	0.8	5.1	1.5	3.1		0-5.7
Germacrene D	1485	9.4	3.5	3.8	3.7	10.1	15.0	7.5	5.8	4.9	9.9	3.5-15.0
Spathulenol	1578	0.9	6.8	4.5	5.7							0-6.8
Caryophyllene oxide	1583	12.1	19.7	14.5	8.5	16.0	18.7	22.0	22.1	38.8	10.2	8.5-38.8
Humulene epoxide II	1608	3.7	5.3	0.7	2.5	2.9	5.2	8.1	5.6	4.1	2.4	0.7-8.1
Junenol	1619	1.6		1.4			6.1	2.9	0.8		4.6	0-6.1
Sum of main constituents (%)		45.9	51.9	39.6	34.7	53.9	56.1	63.6	48.5	61.4	47.7	34.7-63.6
Total (^b including all compounds with quantity ≤5.0%)		75.2	73.6	79.3	80.1	81.2	85.4	92.3	84.3	81.0	92.0	73.6-92.3
Compounds with caryophyllane skeleton b		15.4	21.7	17.2	11.8	17.6	21.5	30.0	28.3	44.5	15.1	11.8-44.5
Monoterpene hydrocarbons b		17.1	9.7	15.6	19.7	15.9	5.4	13.3	10.8	8.1	6.8	5.4-19.7
Sesquiterpene hydrocarbons b		27.2	16.1	24.7	21.1	34.1	33.0	31.4	25.7	18.4	51.2	16.1-51.2
Oxygenated sesquiterpenes b		25.0	42.2	33.2	28.8	26.6	40.8	39.3	40.4	52.6	28.1	25.0-52.6

A-K indicate harvesting localities, in eastern Lithuania: Trakai district, Streva (A, 2003) and Vilnius district, Vievis (B, 2007); in western Lithuania: Palanga city, Sventoji (C, 2005), Klaipeda district, Plikiai (D, 2005), Palanga city, Butinge (E, 2007), Silute district, Pagegiai (F, 2007), Klaipeda district, Karkle (G, 2007), Kretinga city (H, 2007), Klaipeda city (J, 2007) and in south Lithuania: Druskininkai city, Latezeris (K, 2007).

*RI- retention index on nonpolar column DB-5; t-traces (≤0.05%).

0-0.5%: α -thujene, camphene, sabinene, p-cymene, 6-camphenone, allo-ocimene, neo-allo-ocimene, trans-verbenol, camphor, verbenone, α -cubebene, citronellyl acetate, neryl acetate, geranyl acetate, β -bourbonene, aromadendrene, cis-muurola-4(14),4-diene, α -cadinene, nonadecane and eicosane;

up to 1.5%: α-terpinene, β-phellandrene, (Z)-β-ocimene, benzene acetaldehyde, (E)-β-ocimene, γ -terpinene, terpinene, linalool, α-campholenal, *trans*-pinocarveol, terpinen-4-ol, α-terpineol, myrtenol, 4(Z)-decen-1-ol, *trans*-sabinyl acetate, terpinyl acetate, α -curcumene, bicyclogermacrene, γ -cadinene, *trans*-cadina-1(2),4-diene, α -calacorene, β -copaen-4- α -ol, *trans*- β -elemenone, *epi*- α -muurolol and phytol;

lower than 3.0%: 1,3-dimethyl benzene, myrcene, γ-terpineol, δ-elemene, α -copaene, (E)- β -ionone, α -zingiberene, trans- β -guaiene, α -muurolene, (E, E)- α -farnesene, δ-cadinene, (E)-nerolidol, caryophylla-4(12),8(13)-dien-5 α -ol, germacra-4(15),5,10(14)-trien-1- α -ol and (6R, 7R)-bisabolone;

up to 5.0%: limonene, bornyl acetate, β-copaene, (Z)-β-farnesene, α -humulene, (E)-β-farnesene, β-selinene, trans-muurola-4(14),5-diene, (Z)-nerolidol, unknown 1, salvial-4(14)-en-1-one, epi- α -cadinol and 3-thujopsanone.

Unknown 1(RI-1580): M⁺ 220, 107(100), 135(69), 91(57), 41(37), 79(34), 69 (21), 119(21), 204(16).

ketone) characteristic for *Artemisia* species, were not detected in the investigated oils. The strong toxicity of *A. campestris* evaluated by us can justify why the plant is used in Lithuanian folk medicine, but not as a food or spice.

According to the literature data [14-16], essential oils of other plant species possessing caryophyllene oxide as a major constituent are toxic. Volatile oils of *Acroptilon repens*, containing 36.6% of caryopyllene oxide and 10% of caryophyllene inhibited the growth of Grampositive bacteria [14]. This sesquiterpene oxide is toxic to ants and inhibits growth of ant-associated fungi [15]. The toxicity of essential oils isolated from *Artemisia* species and containing caryophyllene oxide as a major component showed a high mortality to granary weevil [16]. However, not only compounds present in the greatest proportions are responsible for the total oil activity. The influence of the less abundant constituents and synergetic effects might also be considered.

Experimental

Plant material and oil isolation: The aerial parts (~20 cm, 15-100g) of individuals from various *A. campestris* ssp. *campestris* populations were collected at full

flowering stage in July-August (2003, 2005 and 2007) from ten different localities in Lithuania. Voucher specimens were deposited in the herbaria of the Institute of Botany (BILAS), Vilnius and Vytautas Magnus University, and Kaunas Botanical Garden, and their numbers are: A-68906, B-68919, C-68913, D-68914, E-SS 657, F-SS 658, G-SS 659, H-68918, J-68911 and K-SS 660. Plant material was dried at room temperature (20-25°C). Essential oils of the airdried aerial parts (leaves and inflorescences) were prepared by hydrodistillation for 2 h using a Clevenger-type apparatus and a mixture of *n*-pentane and diethyl ether (1:1) as a collecting solvent. Pure oils of yellow-grey color were obtained from 80-100g of dry material. Yields ranged from 0.03 to 0.08 %, v/w on a dry mass basis.

GC-MS analysis: Analyses were performed using an HP 5890 chromatograph interfaced to an HP 5971 mass spectrometer (ionization voltage 70 eV, scan time 0.6 s, scan range 35-400 Da) and equipped with a capillary column DB-5 (50 m \times 0.32 mm i. d., film thickness 0.25 μ m). The oven temperature was held at 60°C for 2 min, then programmed from 60 to 160°C at a rate of 5°C/min, held for 1 min, then increased to 250°C at a

^bCompounds with quantity ≤5.0%:

rate 10°C/min and finally isothermal at 250°C for 3 min, using He as a carrier gas (1.0 mL/min), split 1:40. Injector and detector temperatures were 250°C. Qualitative analysis was based on a comparison of retention times, indexes and MS with the corresponding data in the literature [17], by co-injection of some terpene references, and from computer MS libraries (Wiley and NBS 54K).

Toxicity test: Toxicity of 3 of the *A. campestris* oils (A, H and K, plant material from different parts of Lithuania) was tested *in vivo*, using brine shrimp *Artemia* sp. (larvae) [18]. The eggs of the shrimps hatch within 48 h to provide larvae (nauplii) in sea water

(31g/L sea salt) at 20-25°C. Then, different concentrations of field wormwood essential oils dissolved in dimethyl sulfoxide (DMSO) were added, and survivors were counted after 24 h. Lethality (LC $_{50}$) of nauplii was calculated (n=4, with 95% confidence interval). A control test was done with DMSO.

Acknowledgements – The work has been performed in the "Gilibert" programme and supported by the Lithuanian State Science and Studies Foundation (Contract No. V-05/2007 (V-07025) and V-08/2008 (V-08033). A. Judzentiene is grateful to the Embassy of France in Lithuania for a French government grant (EGIDE, No. 484214F).

- [1] Wright CW. (Ed) (2002) Artemisia. Taylor & Francis, London, N. York.
- [2] De Pascual-Teresa J, Bellido IS, Gonzalez MS, Alberdi MR, Muriel MR, Hernandez JM. (1981) Essential oil of *Artemisia campestris* Linnaeus, subspecies *glutinosa*. *Rivista Italiana EPPOS*, 63, 205-208.
- [3] Bellomaria B, Valentini G, Biondi E. (2001) Chemotaxonomy of *Artemisia variabilis* Ten. and *A. campestris* L. ssp. *glutinosa* (Ten.) Brig. et Cavill. (Asteraceae) from Italy. *Journal of Essential Oil Research*, 13, 90-94.
- [4] Juteau F, Masotti V, Bessière JM, Viano J. (2002) Compositional characteristics of the essential oil of *Artemisia campestris* var. *glutinosa. Biochemical Systematics and Ecology*, 30, 1065-1070.
- [5] Dob T, Dahmane D, Berramdane T, Chelghoum C. (2005) Chemical composition of the essential oil of *Artemisia campestris* L. from Algeria. *Pharmaceutical Biology*, 43, 512-514.
- [6] Mucciarelli M, Caramiello R, Maffei M, Chialva F. (1995) Essential oils from some *Artemisia* species growing spontaneously in North-West Italy. *Flavour and Fragrance Journal*, 10, 25-32.
- [7] Silvestre AJD, Silva AMS, Almeida LMPM, Pereira CCL, Cavaleiro JAS. (1999) The essential oil of *Artemisia campestris* L. subsp. *maritima* Arcangelis. *Acta Horticulturea*, 500, 93-96.
- [8] Akrout A, Chemli R, Simmonds M, Kite G, Hammami M, Chreif I. (2003) Seasonal variation of the essential oil of *Artemisia campestris* L. *Journal of Essential Oil Research*, 15, 333-336.
- [9] Khalilov LM, Paramonov EA, Khalilova AZ, Odinokov VN, Muldashev AA, Baltaev UA, Dzhemilev UM. (2001) Identification and biological activity of volatile organic compounds emitted by plants and insects. IV. Composition of vapor isolated from certain species of *Artemisia* plants. *Chemistry of Natural Compounds*, 37, 339-342.
- [10] Akrout A, Chemli R, Chreif I, Hammami M. (2001) Analysis of the essential oil of *Artemisia campestris L. Flavour and Fragrance Journal*, 16, 337-339.
- [11] Chalchat JC, Cabassu P, Petrovic SD, Maksimovic ZA, Gorunovic MS. (2003) Composition of essential oil of *Artemisia campestris* L. from Serbia. *Journal of Essential Oil Research*, 15, 251-253.
- [12] Neffati A, Skandrani I, Ben Sghaier M, Bouhlel I, Kilani S, Ghedira K, Neffati M, Chraief I, Hammami M, Chekir-Ghedira L. (2008) Chemical composition, mutagenic and antimutagenic activities of essential oils from (Tunisian) *Artemisia campestris* and *Artemisia herba-alba. Journal of Essential Oil Research*, 20, 471-477.
- [13] Kazemi M, Tabatabaei-Anaraki M, Rustaiyan A, Motevalizadeh A, Masoudi S. (2009) Chemical composition of the essential oils obtained from the flower, leaf and stem of *Artemisia campestris* L. from Iran. *Journal of Essential Oil Research*, 21, 197-199.
- [14] Norouzi-Arasi H, Yavari I, Chalabian F, Kiarostami V, Ghaffarzadeh F, Nasirian A. (2006) Chemical constituents and antimicrobial activities of the essential oil of *Acroptilon repens* (L.) DC. *Flavour and Fragrance Journal*, 21, 247-249.
- [15] Howard JJ, Cazin JJr, Wiemer DF. (1988) Toxicity of terpenoid deterrents to the leaf-cutting ant *Atta cephalotes* and its mutualistic fungus. *Journal of Chemical Ecology*, 14, 59-69.
- [16] Kordali S, Aslan I, Calmasur O, Cakir A. (2006) Toxicity of essential oils isolated from three *Artemisia* species and some of their major components to granary weevil, *Sitophilus granarius* (L.) (*Coleoptera: Curculionidae*). *Industrial Crops and Products*, 23, 162-170.
- [17] Adams RP. (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured, Carol Stream, IL.
- [18] McLaughlin JL, Rogers LL, Anderson JE. (1998) The use of biological assays to evaluate botanicals. *Drug Information Journal*, 32, 513-524.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1985 - 1989

Comparison of Antibacterial Activity of Natural and Hydroformylated Essential Oil of *Thymus capitatus* Growing Wild in North Sardinia with Commercial *Thymus* Essential Oils

Marianna Usaia,*, Marzia Foddaia, Barbara Sechib, Claudia Juliano and Mauro Marchettib

^aDipartimento di Scienze del Farmaco, Università degli Studi di Sassari, via Muroni 23/a, 07100 Sassari, Italy

^bIstituto di Chimica Biomolecolare, CNR, sede di Sassari, Traversa la Crucca 3, 07040 Li Punti, Sassari, Italy

dsfusai@uniss.it

Received: May 20th, 2010; Accepted: September 23rd, 2010

Thymus capitatus growing wild in Sardinia showed different essential oil composition if grown surrounding Cagliari than in north Sardinia. Here we verify the composition and antimicrobial activity of the oil to make it suitable for the cosmetic and confectionery industries. With the aim of improving the scent and the antimicrobical activity of *T. capitatus* essential oil, a hydroformylation reaction was carried out to transform the unsaturated components of the oil into the corresponding aldehydes. The essential oil of *T. capitatus* exhibited a significant antibacterial activity (MIC 0.125-0.5 mg/mL), and was also found effective on *C. albicans* (MIC 0.125 mg/mL). After hydroformylation, several new irregular terpenoid aldehydes were detected. The perfume of the new terpenic-like aldehydes is very agreeable and, therefore, the acceptability of the aroma is remarkably improved, but the antimicrobial activity was not increased.

Keywords: Thymus capitatus, essential oil, hydroformylation, antibacterial activity, carvacrol.

The family *Lamiaceae* shows an intraspecific biodiversity resulting in the heterogeneous composition of the essential oil produced by various species, which is based on genetic polymorphism, but which is also influenced by environmental conditions. In the genus *Thymus*, for example, many species present intraspecific chemotypes [1]. Wild *Thymus* species growing in Sardinia include only two chemotypes, thymol and carvacrol [2-5], which are present only with two species: *T. catharinae* Camarda (ex *T. herba-barona* Loisel) and *T. capitatus* (L.) Hoffmanns & Link [6,7].

T. capitatus (synonyms Satureja capitata L., Coridothymus capitatus Rchb. and Thymbra capitata (L.) Cav.) is a characteristic species of Lamiaceae growing wild in the Mediterranean basin. In Italy, it is present in the South of the Italian peninsula (Abruzzo, Molise, Campania, Puglia, Basilicata, Calabria) and in the two biggest islands, Sicily and Sardinia. In Sardinia, T. capitatus is present only in a few calcareous northern areas (in few villages around Sassari) and in southern zones surrounding Cagliari. The composition and

activity of its essential oil have been studied by several researchers [8-12]. *T. capitatus* essential oil has been used since ancient times in pharmaceutics, for food flavoring, cosmetics and perfumery [13].

Thymus species have been studied for their composition and biological activity, but few studies on T. capitatus growing wild in Sardinia are present in the literature, but they indicate that the essential oil from *T. capitatus* growing wild around Cagliari has an essential oil composition [3] that is very different from that of plants growing in north Sardinia [2]. The aim of the present study was the characterization of T. capitatus essential oil in order to determine whether its composition and antimicrobial activity made it suitable for the cosmetic. fragrance and confectionery industries. Moreover, the essential oil underwent a hydroformylation reaction catalyzed by rhodium complexes to transform unsaturated terpenes into oxygenated compounds (aldehydes), with the aim of giving the essential oil a more pleasant smell and improving its antimicrobial activity.

Essential oil of T. capitatus obtained from plants growing wild in a large station located in north Sardinia was analyzed using GC and GC/MS; 36 constituents were identified, with a percentage of identification near to 100%. To be sure that the essential oil composition of the plants from this station remained constant with time, we monitored the essential oil composition for 3 years before the present analyses (Table 1). As shown in Table 1, the major constituent of the oil is carvacrol. Between 2005-2007 there were no substantial differences, at least in the main constituents, but big differences were found in samples collected in 2008. The first three collections were made at the time of maximum blooming (May-June in normal climatic conditions), while the 2008 harvest was made at the beginning of July, during a very dry summer following a prolonged period of drought.

The biggest detectable differences were the presence of 3.8% α -thujene, 1.5% α -pinene, the doubling of the β -myrcene content, and the presence of 8.6% p-cymene. Remarkable was the increase of γ -terpinene (6.9%) and the dramatic decrease in carvacrol, that varied from 83% to 57%. These differences may partially be due to the major concentration of α -pinene and p-cymene; the different environmental conditions were in favor of the presence of compounds like α -thujene and 1-octen-3-ol.

It is known that T. capitatus essential oil is highly effective against bacteria and fungi [2]. With the aim of increasing the efficiency of the antimicrobial activity and to improve the odor of Thymus oil we submitted it to a hydroformylation reaction. Because of the unsaturated terpenes present in the oil, the hydroformylation process should furnish a modified oil containing new terpenic-like aldehydes capable of increasing the antimicrobial performance. Table 2 compares the original *T. capitatus* essential oil with the hydroformylated one. After hydroformylation, we found several new irregular terpenoid aldehydes in the modified oil (Table 2). As a consequence of these modifications, the acceptability of the oil's smell was remarkably enhanced due to the new terpenic-like aldehydes; however, the antimicrobial characteristics of the oil did not improve.

The original essential oil was hydroformylated. The modified essential oil was washed and hydrodistilled to obtain the new, pure, modified essential oil. Comparing the analytical data of the original and modified oils, it was evident that the most important variations were: α -thujene, which was present in good percentage in the original oil, but lost about 2% as a result of hydroformylation; compounds like camphene, *trans*-pinene, 1-octen-3-ol, α -phellandrene, β -myrcene,

Table 1: Quantitative and qualitative composition of *Thymus capitatus* essential oil.

	1	Tomitatus	Tomitatus	Tonnitatus	Tonnitatus
Constituents	K.I.	T.capitatus (2005)	T.capitatus (2006)	T.capitatus (2007)	T.capitatus (2008)
α-Thujene	931	(2003)	(2000)		3.8
α-Pinene	939				1.5
Camphene	953	tr			0.3
Heptanol	969	tr	1.7	1.6	0.3
1-Octen-3-ol	978		1./	1.0	1.3
β-Pinene	980	0.1			1.3
3-Octanone	988	0.1	0.6	0.7	
β-Myrcene	991	1.6	1.6	1.7	3.7
3-Octanol	993	0.2	0.4	0.4	0.4
α-Phellandrene	1005	0.2	0.4	0.4	0.4
Δ ³ -Carene		0.2		0.3	0.3
	1011				
Δ ⁴ -Carene		0.7	0.8	0.8	2.2
<i>p</i> -Cymene	1026	4.5	4.9	5.0	8.6
β-Phellandrene	1031				1.0
1-8-Cineole	1033	0.4	0.2	0.2	tr
α-Ocimene	1050				0.1
γ-Terpinene	1062	2.6	3.4	3.2	6.9
cis-Sabinene-	1068				0.1
hydrate					
Terpinolene	1088				0.3
trans-Sabinene-	1097	0.5	0.7	0.7	
hydrate	4000				4.0
Linalool	1098	1.3	1.2	1.2	1.9
Exo-Fenchol	1117				0.1
Borneol	1165	0.1			0.7
Nonanol	1171				0.7
Terpinen-4-ol	1177	0.5	1.3	1.2	2.1
Dihydro carveol	1192				0.5
Nerol	1228				0.1
Neral	1240	0.2			
Carvone	1242	tr			0.2
Thymol	1290	0.1			tr
Carvacrol	1298	83.5	81.2	81.0	57.0
β-Caryophyllene	1418	1.6	1.5	1.4	3.5
α-Caryophyllene	1454				0.2
β-Bisabolene	1509				0.1
Caryophyllene	1581	0.3			0.5
oxide					
undentified	ļ	0.1	0.2	0.5	1.0
Total		99.2	100	98.7	97.2

β-caryophyllene and linalool were detected only in the original essential oil because these compounds were hydroformylated and transformed into the corresponding aldehydes; 3-octanol and Δ^3 -carene were present in all samples and did not vary significantly in their concentrations; and carvacrol, which showed little variation, probably due to the experimental steps. On the other hand, there are some compounds that are present only in the hydroformylated oils, as for instance the terpinen-4-ol isomer: 4-methyl-1-(1-methylethyl)-3-cyclohexen-1-ol and 3-7-dimethyl-7-octenal. Most of them derive from hydroformylation, but also some isomerization reactions were detected during the oil modification process.

The antimicrobial activity screening was carried out on the *Thymus* essential oils and their main components, respectively, in comparison with chlorhexidine gluconate. The essential oil of *T. capitatus* exhibited a significant antibacterial activity (MIC 0.125-0.5 mg/mL), qualitatively similar to but higher than those of oils of other species of *Thymus*; Gram-positive strains

Table 2: Constituents of original essential oil of *Thymus capitatus* and hydroformylated redistilled oil.

Constituents	K.I.	T. capitatus (2008) (original oil)	T. capitatus (2008) hydroformylated (redistilled)
α-Thujene	931	3.8	1.5
α–Pinene	939	1.5	1.9
Camphene	953	0.3	0.1
2,6-dimethyl-3-Octene	nd		0.1
3,7-dimethyl 2-Octene	nd		0.1
trans-Pinene	973	0.1	
1-Octen-3-ol	978	1.3	
β-Pinene	980		0.2
isolimonene	983		0.1
p-Menth-3-ene	986		1.6
β-Myrcene	991	3.7	
3-Octanol	993	0.3	0.4
2,6-Dimethyl-2-trans-6-Octadiene	nd		0.3
α-Phellandrene	1005	0.5	
Δ^3 -Carene	1011	0.2	
Δ^4 -Carene	n.d.	2.2	2.4
o-Cymene	1022	8.6	2.4
β-Phellandrene	1022	1.0	
α-Ocimene	1051	0.1	
	1062	6.9	6.9
γ-Terpinene cis- Sabinene-hydrate	1062	0.1	6.9
Terpinolene	1088	0.3	0.3
Linalool	1098	1.8	
exo-Fenchol	1117	0.1	
Citronellal	1153		0.4
Borneol	1165	0.7	0.9
Terpinen-4-ol	1177	2.1	2.3
4-Methyl-(1-methylethyl)-3- Cyclohexen-1-ol	n.d		3.5
Dihydrocarveol	1192	0.5	0.2
3-7 dimethyl-7-Octanal	n.d		1.7
Nerol	1228	0.1	
Carvone	1242	0.2	
Thymol	1290	tr	0.8
Carvacrol	1298	57.0	54.7
Carvacrol acetate	1371		0.2
γ–Caryophyllene	1404		0.5
β-Caryophyllene	1418	3.5	0.1
α-Caryophyllene	1454	0.2	
α– neo-Clovene	1454		1.2
β-Bisabolene	1509	0.1	
α-Caryophyllene oxide	1581	0.5	0.7
Hexadecene	1593		0.2
1-Cyclohexylheptene	1637		0.1
Heptadecane	1700		0.5
undentified		1.0	1.9
Total		99.5	85.8

were more sensitive that the Gram-negative bacteria examined. T. capitatus oil was also found effective on C. albicans, with a MIC of 0.125 mg/mL. Under the same experimental conditions, chlorhexidine gluconate showed remarkable antimicrobial activity (MIC 0.001-0.016 mg/mL) against all strains tested. Hydroformylation decreased the antimicrobial activity of T. capitatus oil; the MICs of the hydroformylated product were 0.25 mg/mL for S. aureus and S. epidermidis, 0.5 mg/mL for E.coli and >0.5 mg/mL for Ps. aeruginosa. As regards the antimicrobial activity of the main oil components, carvacrol showed good inhibitory activity against bacterial strains and Candida (MIC values 0.062-0.500 mg/mL), whereas linalool, terpinen-4-ol and β-myrcene did not exhibit any antimicrobial activity at concentrations up to 0.500 mg/mL.

Figure 1: Percentages of surviving microorganisms after different exposure times and inhibiting concentrations of essential oil of *T. capitatus*. The percentages are the averages of three experiments.

Figure 1 shows the inactivation kinetics of the killing of standardized inocula of *S. aureus*, *E. coli* and *C. albicans* by inhibitory concentrations of *T. capitatus* oil (0.250 mg/mL for *E. coli*, and 0.125 mg/mL for *S. aureus* and *C. albicans*).

Experimental

Plant materials: Samples of wild Thymus capitatus (L.) Hoffmanns. & Link) were collected in 4 consecutive years, in San Michele in Plaiano, one of the largest stations existing around Sassari (north Sardinia). The plants were identified by M. Usai. Voucher specimens have been deposited at the Herbarium S.A.S.S.A. (cumulative identification number: 1078) of the Department of Scienze del Farmaco, University of Sassari. The aerial parts of the plants were randomly collected in June during the blooming period.

Oil distillation and yield: Fresh plant material (5 Kg) was separately hydrodistilled using a Clevenger-type apparatus, according to the Italian Official Pharmacopoeia X [14]. The obtained oil was light yellow. Three replicate samples were distilled simultaneously. Oil floating to the water surface was collected by draining away water, dried over anhydrous sodium sulfate and stored at -20°C (under nitrogen atmosphere) until analyzed. The yield was up to 1.1%.

GC oil analyses: Three replicates of each sample were analyzed by using a Hewlett-Packard Model 5890A GC equipped with a flame ionization detector and fitted with a 60 m x 0.25 mm thickness 0.25μm AT-5 fused silica capillary column (Alltech). Injection port and detector temperatures were 280°C. The column temperature was programmed from 50°C to 135°C at 5°C/min (1 min), 5°C/min to 225°C (5 min), 5°C/min to 260°C and then held for 10 min. The samples (0.2 μL each), analyzed without dilution (using 2,6-dimethyl-

phenol as internal standard), were injected using a split/splitless automatic injector HP 7673 and with helium as carrier gas. Measurements of peak areas were performed with a HP workstation; the threshold was set at 0, peak width at 0.02. The quantification of each compound was expressed as the absolute weight percentage using internal standard and response factors. The detector response factors (RFs) were determined for key components relative to 2,6-dimethylphenol and assigned to other components on the basis of functional group and/or structural similarity, since oxygenated compounds have lower detectability by F.I.D. than hydrocarbons [15] The standards purity was checked by GC. Several response factor solutions were prepared that consisted of only 4 or 5 components (plus 2,6dimethylphenol) to prevent interference due to trace impurities.

GC/MS: GC/MS analyses were carried out with a Hewlett Packard G1800B-GCD system using the same conditions and column described above. The column was connected with the ion source of the mass spectrometer. Mass units were monitored from 10 to 450 at 70 eV. The identification of the components was made by comparison of their retention time with respect to *n*-alkanes (C6-C22). The MS and retention indices (RI) were compared with those of commercial (NIST 98 and WILEY) and home-made library MS built up from authentic samples (analytical standards from Aldrich and Fluka; purity > 97%) and MS literature data [16-21]. The percentage composition of the oil was obtained by the normalization method from the GC peak areas, using correction factors.

Evaluation of antibacterial activity: The antibacterial activity of the essential oils (Thymus capitatus, both unmodified and hydroformylated, T. vulgaris and T. serpillum) and standard compounds (carvacrol, linalool, β-myrcene and terpinen-4-ol) was determined as minimum inhibitory concentration (MIC) against a panel of bacterial strains, by using chlorhexidine gluconate as reference antimicrobial substance. Microorganisms examined included both Gram-positive (Staphylococcus aureus ATCC 25923, CultiLoops® Oxoid, Basingstoke, UK; S. epidermidis 155U and Propionibacterium acnes ATCC 6919, supplied by LCG Promochem, Middlesex, UK) and Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853; CultiLoops® Oxoid). MICs were determined by using an agar dilution technique, except for P. acnes, which was examined by a broth dilution technique. Oils and standards were dissolved at 10% w/v in PEG 200 (Sigma); preliminary tests with this vehicle were performed to ensure that no microorganism inhibition occurred at the used concentrations.

For the agar dilution technique, two-fold serial dilutions of the solutions (0.5 mg/mL to 0.0031 mg/mL) were prepared in triplicate in molten Mueller Hinton Agar (Oxoid) at 45°C and poured into 50 mm Petri dishes. Each dish was inoculated with about 1 x 10⁴ bacteria. applied as a spot of about 5 mm in diameter; after 18-24 h of incubation at 35°C, MICs were recorded as the lowest concentrations which completely inhibited bacterial growth. MICs against P. acnes were determined by preparing two-fold serial dilutions (0.5 mg/mL to 0.0031 mg/mL) in triplicate in Brain Heart Infusion (Oxoid) and pouring them into microtiter 96-well plates; each well was inoculated with about 1 x 10⁴ bacteria. MICs were recorded after 72 h of anaerobic incubation (Gas Generating Kit, Anaerobic System BR 038B, Oxoid) as the lowest concentrations which completely inhibited bacterial growth.

Evaluation of antifungal activity: The above mentioned essential oils and standard compounds were also tested against Candida albicans ATCC 10231 in an agar dilution test similar to that one previously described for bacteria, by using Sabouraud Dextrose Agar (Oxoid). Agar plates were inoculated with about 10⁴ yeast cells from an overnight culture and incubated at 25°C. After 18-24 h, MICs were recorded as the lowest concentrations able to inhibit completely fungal growth.

Killing time test: The exposure times required by inhibitory concentrations of *T. capitatus* essential oil to kill an appropriate microbial inoculum were determined according to a previously described technique [5]. Assays were carried out on E. coli ATCC 25922 and C. albicans ATCC 10231. Briefly, microorganisms in the logarithmic phase of growth were centrifuged at 1200 g for 15 min, washed in phosphate buffered saline (PBS, pH 7.3) and resuspended in an appropriate volume of essential oil in the same buffer (at a concentration of oil corresponding to the MIC for the tested microorganism) at a density of $5x10^5-1x10^6$ c.f.u./mL. A control suspension (bacterial in PBS at the same density) was included in each experiment. At time zero and after 5, 10 and 15 mins, 0.5 mL of each suspension was removed, subjected to serial tenfold dilutions in PBS and inoculated onto either MHA or SDA plates. The number of viable microorganisms at each time was evaluated by counting colonies after incubation for 24 h at 35°C, and was expressed as the percentage of the control.

Hydroformylation of Thymus capitatus essential oil: [22-24]. All chemicals were purchased from commercial sources and used as received, unless otherwise indicated. Dicarbonylrhodiumacetilacetonate $[Rh(CO)_2(acac)]$ 98% (acacH = acetylacetonate) and triphenylphosphine (PPh₃) were purchased from Sigma-

Aldrich. Hydroformylation experiments were carried out in homemade autoclaves with magnetic stirring. To prevent direct contact with stainless steel, the reaction solution was kept in a glass vessel and the autoclave cap was glass-covered. The reaction products were identified by GC/MS.

In a typical experiment, $Rh(CO)_2(acac)$ (0.02 mmol), PPh₃ (0.04 mmol), and essential oil (3.7 g) were transferred under nitrogen into the autoclave, which was pressurized to 50 bar total pressure (CO/H₂ = 1/1), heated (80°C) and stirred with a magnetic stirrer. After carrying out the reaction for 24 h and cooling at room temperature, the excess CO and H₂ were slowly vented. The essential oil was redistilled in steam to avoid

contamination from the catalyst and analyzed using a Hewlett Packard gas-chromatograph, Mod. G1800 B GCD System, equipped with an Alltech ATTM-5 column (60 m x 0.25 mm x 0.25 μm) and a MS EI detector operating at 70 eV. The components were identified as previously reported and by accurate interpretation of MS.

Acknowledgment - The financial support from the Italian Ministry for Education, University and Research, General Management for International Research is gratefully acknowledged Grant FAR University of Sassari.

- [1] Senatore, F. (1996) Influence of harvesting time on yield and composition of the essential oil of a thyme (*Thymus pulegioides* L.) growing wild in Campania (southern Italy). *Journal of Agriculture and Food Chemistry*, 44, 1327-1332.
- [2] Arras G, Usai M. (2001) Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: chemical analysis of *Thymus capitatus* oil and its effect in subatmospheric pressure conditions. *Journal of Food Protection*, 64, 1025-1029.
- [3] Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F. (1999) *In-vitro* antimicrobial activity and chemical composition of Sardinian *Thymus* essential oils. *Letters in Applied Microbiology*, 29, 130-135.
- [4] De Gioannis B, Marongiu B, Porcedda S. (2001) Isolation of *Thymus herba-barona* volatiles by supercritical extraction. *Journal of Essential Oil Research*, 13, 240–244.
- [5] Juliano CA, Mattana A, Usai M. (2000) Composition and *in vitro* antimicrobial activity of the essential oil of *Thymus herbabarona* Loisel, growing wild in Sardinia. *Journal of Essential Oil Research*, 12, 516-522.
- [6] Pignatti S. (1982) Flora D'Italia. Edagricole, Bologna. Vol. II. 488.
- [7] Camarda I, Valsecchi F, (1990) Piccoli arbusti, liane e suffrutici spontanei della Sardegna. Carlo Delfino, Sassari. 211.
- [8] Solinas V, Gessa C, Falchi Delitala L. (1981) High-performance liquid chromatographic analysis of carvacrol and thymol in the essential oil of *Thymus capitatus*. *Journal of Chromatography A*, 219, 332-337.
- [9] Arras G, Grella GE. (1992) Wild thyme, *Thymus capitatus*, essential oil seasonal changes and antimycotic activity. *The Journal of Horticultural Science and Biotechnology*, 67, 197-202.
- [10] Arras G, Piga A, D'Hallewin G. (1994) Effectiveness of *Thymus capitatus* aerosol application at subatmospheric pressure to control green mold on 'Avana' mandarin fruit. *Acta Horticulturae (ISHS) International Symposium on Postharvest Treatment of Horticultural Crops*, 368, 382-386.
- [11] Arras G, Agabbio M, Piga A, D'hallewin G. (1995) Fungicide effect of volatile compounds of *Thymus capitatus* essential oil. *Acta Horticulturae*, 379, 593-600.
- [12] Usai M. (2005) Le piante spontanee della Sardegna: *Thymus capitatus* (L.) Hoffmanns. et Link e *Salvia desoleana* Atzei e Picci preziosi contenitori di principi biologicamente attivi. *Natural1*, 47,72-74.
- [13] Atzei AD. (2003) Le piante nella tradizione popolare della Sardegna. Carlo Delfino, Sassari. 219.
- [14] Farmacopea Ufficiale Italiana. (1999) 10th Ed., Droghe vegetali e preparazioni. Istituto Poligrafico e Zecca dello Stato. Roma.
- [15] Dugo G, Licandro G, Crotoneo A, Dugo G. (1983) Sulla genuinità delle essenze agrumarie. Nota I. Caratterizzazione di essenze di limone Siciliane. Essenze e Derivati Agrumari, 53, 173-217.
- [16] Adams RP. (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. U.S.A. IL, Allured Pub. Corp., Carol Stream.
- [17] Davies NW. (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. *Journal of Chromatography A*, 503, 1-24.
- [18] Heller SR, Milne GWA. (1983) EPA/NIH mass spectral data base. Washington, DC, U.S. Government Printing Office.
- [19] Jennings WG, Shibamoto T. (1980) Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. New York, Academic Press.
- [20] McLafferty FW, Stauffer DB. (1989) The Wiley NBS registry of mass spectral data. John Wiley and Sons, New York.
- [21] Stenhagen E, Abrahamsson S, McLafferty FW. (1974) Registry of mass spectral data. John Wiley and Sons, New York.
- [22] Marchetti M, Sechi B, Usai M. (2004) Idroformilazione di oli essenziali: un metodo di valorizzazione di essenze agrumarie di scarto. La *Chimica e L' Industria*, 86, 52-56.
- [23] Paganelli S, Spano L, Marchetti M, Piccolo O. (2005) Synthesis of fragrances through safrole and isosafrole hydroformylation. *La Chimica e L'Industria*, *87*, 94-98.
- [24] Paganelli S, Ciappa A, Marchetti M, Scrivanti A, Matteoli U. (2006) Hydroformylation of *m*-diisopropenylbenzene and 1-isopropyl-3-isopropenylbenzene for the preparation of the fragrance Florhydral[®]. *Journal of Molecular. Catalysis A: Chemical*, 247, 138-144.

NPC

Natural Product Communications

2010 Vol. 5 No. 12 1991 - 1994

Composition and Chemical Variability of the Leaf Oil from Corsican *Juniperus thurifera*. Integrated Analysis by GC(RI), GC-MS and ¹³C NMR

Josephine Ottavioli, Joseph Casanova and Ange Bighelli*

Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France

ange.bighelli@univ-corse.fr

Received: July 27th, 2010; Accepted: October 7th, 2010

The composition of 16 samples of leaf oil from Corsican *Juniperus thurifera* was investigated by integrated techniques, GC, GC-MS and 13 C NMR. K-means partitioning and PCA analysis of the data allowed the definition of a main group (14 samples) dominated by limonene (mean = 52.2%, SD = 6.4) and α -pinene (mean = 7.2%, SD = 3.8). Limonene and β -elemol (up to 19.7%) were identified as the major components of two atypic samples.

Keywords: *Juniperus thurifera*, limonene, β-elemol, PCA, ¹³C NMR, Corsica.

The genus Juniperus, consisting of 67 species and 34 varieties, is divided into three sections: Carvocedrus (one species: J. drupacea Labill.), Juniperus (= Oxycedrus Spach with 10 species) and Sabina (Miller) Spach (56 species). J. thurifera L., a member of the Sabina section, is constituted of two varieties: var. thurifera (from southern Europe, Spain and France) and var. africana (from North Africa, Morocco). RAPDs showed that the Moroccan plants (var. africana) were barely distinct from var. thurifera [1]. According to Adams [1], J. thurifera var thurifera has several synonyms, of which J. hispanica Mill., J. sabinoides Endl., J. bonatiana Vis., J. cinerea Carriere, J. thurifera L. var gallica Coincy, J. gallica (Coincy) Rouy, Sabina foetidissima (Willd.) Antoine, S. thurifera (L.) Antoine, and S. pseudothurifera Antoine are retained.

J. thurifera var thurifera is a dioecious species. It is a pyramidal tree, up to 20 m high, which grows in the mountains of central Spain, the Spanish and French Pyrenees and French Alps [1]. In Corsica, it is found on both faces of Monte Cinto, the highest mountain of the island, in Niolu and Asco valley [2,3].

The essential oil of *J. thurifera* is obtained by hydrodistillation of leaves, berries and wood. A few studies have reported on the isolation and characterization of sesquiterpenes from the wood oil [4,5]. However, the chemical composition of the essential oils from leaves, berries and wood has been

studied less frequently. Only one paper reported the composition of a sample of wood oil, dominated by sesquiterpenes: cedrol (41%), thujopsene (20%), widdrol (16%) and α -cedrene (12%) [6]. Two berry oil samples were characterized by a high content of limonene (88.5% and 84.3%) [7,8]. Concerning the leaf oil, Adams [9, 10] studied the composition of various samples from Morocco, Spain and France. Limonene dominated the composition of the samples from Spain (28.8-61.8%), the Pyrenees (53.0 and 75.1%) and France (French Alps, 52.1%; Corsica, 60.6%). Some samples contained appreciable amounts of linalool (up to 13.4%) and linally acetate (up to 13.7%). In contrast, Morrocan oils contained sabinene as the major component in three samples (37.4-45.8%). The composition of the fourth sample was dominated by α-pinene (17.1%), elemol (14.7%) and sabinene (12.2%). It could be pointed out that δ -2-carene was totally absent in the samples of the variety Africana, while it accounted for 0.9-4.4% in the samples of the variety thurifera.

The aim of this study was to characterize *J. thurifera* var *thurifera* growing wild in a restricted area in Corsica through the composition of its leaf oil. Leaves were collected from 16 individual trees growing in two locations covering the geographic range of *J. thurifera* in Corsica. The yield of the essential oil isolated by water distillation and calculated from fresh material, varied substantially from sample to sample (0.16-0.89%).

Table 1: Volatile components of the leaf oil from Corsican *Juniperus thurifera* L: average (A) and standard deviation (SD) for samples of the main group, atypical composition of samples 3 and 6.

	Compound*]	RI	M	lain group		Sa	mple	Identification
	-	BP-1	BP-20	A % (S.D)	Min %	Max %	No. 3 %	No. 6 %	mode
1	α-Pinene	930	1020	7.2 (3.8)	1.9	15.6	2.1	2.4	RI, MS ¹³ C NMR
2	Sabinene	963	1108	0.3 (0.1)	0.0	0.5	0.1	3.3	RI, MS ¹³ C NMR
3	β-Pinene	969	1105	0.5 (0.3)	0.1	1.0	0.2	0.2	RI, MS ¹³ C NMR
4	Myrcene	979	1155	3.0 (0.3)	2.5	3.4	1.0	2.2	RI, MS ¹³ C NMR
5	δ-2-Carene	994	1125	2.0 (0.9)	0.6	4.3	1.0	1.8	RI, MS ¹³ C NMR
6	δ-3-Carene	1004	1142	4.9 (2.9)	0.2	9.6	3.4	2.2	RI, MS ¹³ C NMR
7	<i>p</i> -Cymene	1010	1263	0.1(0.0)	0.1	0.2	0.1	0.1	RI, MS
8	Limonene	1022	1201	52.2 (6.4)	43.7	67.0	29.7	40.6	RI, MS 13C NMR
9	Terpinolene	1077	1275	2.3 (1.2)	0.9	4.9	0.3	0.9	RI, MS ¹³ C NMR
10	Linalool	1081	1544	5.2 (3.7)	0.8	12.8	2.0	2.4	RI, MS 13C NMR
11	1,2-trans-Limonene oxide	1120	1456	0.2(0.2)	0.0	0.7	0.1	0.1	RI, MS ¹³ C NMR
12	Borneol	1148	1698	0.2(0.2)	0.0	0.6	-	0.4	RI, MS
13	p-Cymene-8-ol	1158	1803	0.4(0.2)	0.1	0.9	0.3	0.1	RI. MS
14	Terpinen-4-ol	1161	1598	0.3 (0.1)	0.2	0.5	0.1	1.5	RI, MS ¹³ C NMR
15	α-Terpineol	1170	1694	0.7 (0.4)	0.1	1.3	0.8	0.9	RI, MS 13C NMR
16	Myrtenol	1180	1789	0.2 (0.0)	0.1	0.2	0.2	-	RI, MS
17	trans-Carveol	1196	1830	0.3 (0.1)	0.1	0.4	0.3	0.5	RI, MS ¹³ C NMR
18	Citronellol	1208	1761	0.2 (0.2)	0.0	0.9	0.3	-	RI, MS 13C NMR
19	Pulegone	1215	1647	0.2 (0.1)	0.0	0.4	0.4	-	RI, MS ¹³ C NMR
20	Piperitone	1225	1729	2.6 (2.1)	0.4	8.5	1.1	1.7	RI, MS 13C NMR
21	Geraniol	1231	1844	0.4 (0.2)	0.1	0.6	0.5	0.4	RI, MS ¹³ C NMR
22	Linalyl acetate	1240	1553	1.3 (0.9)	0.3	2.9	1.0	1.2	RI, MS ¹³ C NMR
23	Bornyl acetate	1269	1575	0.2 (0.2)	0.1	0.7	0.2	0.2	RI, MS ¹³ C NMR
24	α -Terpinyl acetate	1333	1681	0.9 (0.4)	0.3	1.6	1.1	1.0	RI, MS ¹³ C NMR
25	Neryl acetate	1341	1725	0.1 (0.1)	0.0	0.3	0.2	0.2	RI, MS ¹³ C NMR
26	Geranyl acetate	1359	1748	0.2 (0.1)	0.0	0.5	0.4	0.3	RI, MS ¹³ C NMR
27	$trans-\alpha$ —Bergamotene	1417	1580	0.1 (0.1)	0.0	0.4	0.2	0.1	RI, MS
28	Bicyclogermacrene	1491	1727	0.1 (0.1)	0.0	0.3	0.2	0.2	RI, MS
29	γ-Cadinene	1505	1752	0.2 (0.2)	0.0	0.6	0.3	0.2	RI, MS
30	δ-Cadinene	1513	1740	0.5 (0.3)	0.0	0.9	0.5	1.0	RI, MS ¹³ C NMR
31	β–Elemol	1535	2079	2.5 (2.6)	0.5	10.2	19.7	13.6	RI, MS ¹³ C NMR
32	Cedrol	1597	2021	0.6 (0.8)	0.0	2.8	6.9	0.7	RI, MS ¹³ C NMR
33	γ-Eudesmol	1620	2163	0.3 (0.1)	0.2	0.9	1.8	0.9	RI, MS ¹³ C NMR
34	β-Eudesmol	1638	2225	0.6 (0.3)	0.0	2.5	3.8	3.0	RI, MS ¹³ C NMR
35	α-Eudesmol	1641	2216	0.8 (0.4)	0.0	2.8	2.2	0.3	RI, MS ¹³ C NMR
J.J	W-Dudesiii0i	1071	2210	0.0 (0.4)	0.4	2.0	4.4	V.J	ICI, IVID CIVINIC

^{*}Order of elution and percentages are given from apolar column. ¹³C NMR (italics) indicate that the corresponding component has been identified by NMR in a chromatography fraction.

Figure 1: PCA of 16 leaf oil samples of Corsican J. thurifera.

Thirty-five components (26 monoterpenes and 9 sesquiterpenes), accounting for 84.2-99.4% of the whole composition of the samples, were identified (Table 1) using a combination of analytical techniques: GC, GC-MS and 13 C NMR spectroscopy. The composition of the samples varied substantially. Limonene (29.7-67.0%), β -elemol (0.5-19.7%), α -pinene (1.9-15.6%), linalol (0.8-12.8%), δ -3-carene (0.2-9.6%), and piperitone (0.4-8.5%) were the major constituents. Other monoterpenes, terpinolene (0.3-4.9%), δ -2-carene

(0.6-4.3%), myrcene (1.0-3.4%), linalyl acetate (0.3-2.9%), α -terpinyl acetate (0.3-1.6%), terpineol-4 (0.1-1.5%) and α -terpineol (0.1-1.3%), as well as two sesquiterpenes, α -eudesmol (0.2-2.8%) and γ -eudesmol (0.2-1.8%) were present in moderate amounts. The contents of cedrol and β -eudesmol reached 6.9% and 3.8%, respectively, in one sample.

The 16 compositions were submitted to statistical analysis. Principal Components Analysis (PCA)

Figure 2: Major components of the main group (A = average, SD = standard deviation) and of the two atypic samples 3 and 6.

(Figure 1) and k-means partitioning were performed on all the terpene data, with individual compounds expressed as a percentage. Although the compositions of the individual samples varied substantially, it was not possible to distinguish groups within the essential oil samples. Therefore, we constituted one major group (14 samples) and differentiated two atypical compositions (Figure 2). For that reason, in Table 1 we reported the mean composition of the 14 samples of the main group, as well as the highest and the lowest values for each component, and the compositions of the two atypic samples n° 3 and n° 6.

All the leaf oil samples of *J. thurifera* var. *thurifera* from Corsica of the main group exhibited limonene as the major component, with a mean value of 52.2% (SD = 6.4) (Table 1, Figure 2). The similarity to oil samples from Spain, the Pyrenees and French Alps is particularly observed for some compositions which afforded α -pinene as the second major component. The sample from Corsica reported by Adams [10] belongs to that group. However, several samples contained fair amounts of δ -3-carene (up to 9.6%) and β -elemol (0.5-5.7% and 10.2% in sample 4), both of these components being scarce in the *J. thurifera* var. *thurifera* leaf oils reported in the literature (0.0-0.8% and 0.3-3.2%). The samples of that group differed drastically from the sabinene-rich oils from Morocco [9,10].

The content of limonene in the two atypical samples was less (40.6 and 29.7%). Conversely, in those samples, β -elemol accounted for 13.6 and 19.7% and the content of cedrol reached 6.9%. It could be pointed out that similar contents of β -elemol and cedrol (14.7 and 4.4%, respectively), were reported in one sample of *J. thurifera* var. a *fricana* from Morocco, which also contained α -pinene (17.1%) and sabinene (12.2%) as major components [10].

Experimental

Plant material: Leaves from 16 mature trees of *J. thurifera* were collected from 2 locations in Corsica: Asco (1-6) and Niolu (7-16) during March to April 2007.

Essential oil isolation and fractionation: Leaves of individual trees (55-393 g) were hydrodistilled in a Clevenger-type apparatus for 4 h. In order to carry out a detailed analysis, one oil sample (1.3 g) was fractionated by flash chromatography (column: 18 mm id; silica gel, 200-500 μm, 26 g) and 4 fractions (F1-F4) were eluted with a mixture of solvents of increasing polarity (*n*-pentane:diethyl oxide, 100:0 to 50:50): *n*-pentane, F1, (200 mL, 456 mg); *n*-pentane: Et₂O, 95:5, F2 (200 mL, 52 mg), *n*-pentane:Et₂O, 90:10, F3 (200 mL, 20 mg), *n*-pentane:Et₂O, 50:50, F4 (200 mL, 188 mg). The 4 fractions were analysed by GC(RI) and ¹³C NMR.

Analytical GC: GC analyses were carried out using a Perkin-Elmer Autosystem GC apparatus equipped with 2 flame ionisation detectors, and fused-silica capillary columns (50 m x 0.22 mm i.d., film thickness 0.25 μ m), BP-1 (polydimethylsiloxane) and BP-20 (polyethyleneglycol). Oven temperature was programmed from 60°C to 220°C at 2°C/min and then held isothermal (20 min); detector temperature, 250°C; injector temperature, 250°C (injection mode, split, 1/60); carrier gas, helium (0.8 mL/min). Injected volume: 0.5 μ L of a solution of 50 μ L of the mixture (oil or chromatographic fraction) diluted in 350 μ L of CCl₄.

GC-MS analysis: GC-MS analyses were carried out using a Perkin-Elmer TurboMass detector (quadrupole), directly coupled to a Perkin-Elmer Autosystem XL, equipped with a fused-silica capillary column (60 m x 0.22 mm i.d., film thickness 0.25 μm), Rtx-1 (polydimethylsiloxane). Carrier gas, helium at 1 mL/min; split, 1/80; injection volume, 0.2 μL; injector temperature, 250°C; oven temperature programmed

from 60°C to 230°C at 2°C/min and then held isothermal (45 min). Ion source temperature, 150°C; energy ionisation, 70 eV; EI MS were acquired over the mass range 35-350 Da.

13C NMR analysis: ¹³C NMR spectra of 5 selected samples and the chromatographic fractions were recorded on a Bruker 400 Avance Fourier Transform spectrometer operating at 100.13 MHz for ¹³C, equipped with a 5 mm probe, in deuterochloroform, with all shifts referred to internal tetramethylsilane (TMS). ¹³C NMR spectra were recorded with the following parameters: pulse width = 4 μs (flip angle 45°); acquisition time = 2.7 s for 128K data table with a spectral width of 25,000 Hz (250 ppm); CPD mode decoupling; digital resolution = 0.183 Hz/pt. The number of accumulated scans was 3,000 for each sample (around 50 mg of the oil or chromatographic fraction in 0.5 mL CDCl₃).

Identification of components: All 16 samples were submitted to GC(RI) analysis. Among them, 2 samples (N° 11, 15) selected on the basis of their chromatographic profile, were analysed by GC-MS. Five samples (N° 1, 3, 4, 7, 8) were analyzed by ¹³C NMR spectroscopy. Identification of the components

was based: (i) on comparison of their GC retention indices (RI) on polar and apolar columns, determined relative to the retention times of a series of n-alkanes with linear interpolation with those of authentic compounds, and literature data [11]; (ii) on computer matching against laboratory-made (CPN University of Corsica) and commercial mass spectral libraries [12-15] and (iii) by ¹³C NMR spectroscopy, following the methodology developed and computerised in our laboratories, using home-made software and spectral data library [16-18]. Most of the components were identified by comparison of their spectral data (MS and ¹³C NMR) with those of reference compounds compiled in our laboratory-made spectral data library. In order to confirm the identification of minor components suggested by MS analysis, all the chromatographic fractions obtained from one oil sample (Experimental, second paragraph) were analysed by GC(RI) and ¹³C NMR spectroscopy.

Acknowledgments - The authors are indebted to the Collectivité Territoriale de Corse (CTC-ADEC) for a research grant (JO) and to the INTERREG 3A program Corsica-Sardinia-Tuscany for partial financial support. Thanks to Pr. J. Costa (Laboratory CPN, Univ. Corsica) who placed the GC-MS equipment at our disposal.

- [1] Adams RP. (2008) Junipers of the World: The genus Juniperus. 2nd Edition, Trafford Publishing Co., Vancouver.
- [2] Gamisans J, Gruber M. (1979) La végétation du Niolu (Corse). Ecologie Mediterranéenne, 4, 141-156.
- [3] Conrad M. (1986) Essai sur la répartition de *Juniperus thurifera* L. en Corse, en 1985. *Le monde des plantes*, 423-424, 1-2.
- [4] Barrero AF, Alvarez-Manzaneda E, Lara A. (1996) Novel tricyclic sesquiterpenes from *J. thurifera* chemical confirmation of duprezianane skeleton. *Tetrahedron*, *37*, 3757-3760.
- [5] Barrero AF, Quílez del Moral J, Lara A. (2000) Sesquiterpenes from *Juniperus thurifera* L. stereochemistry in unusual cedrane and duprezianane series. *Tetrahedron*, 56, 3717-3723.
- [6] Barrero A.F., Quilez del Moral JF, Lara A, Mar Herrador M. (2005) Antimicrobial activity of sesquiterpenes from the essential oil of *J. thurifera* Wood. *Planta Medica*, 71, 67-71.
- [7] De Pascual Teresa J, Barrero AF, Feliciano AS, Caballero MC. (1980) Componentes de las arcestidas de "Juniperus thurifera", Linnaeus aceite esencial. Rivista italiana EPPOS, 6, 116-120.
- [8] Guerra Hernandez E, Lopez Martinez MDC, Garcia Villanova R. (1987) Determination by gas chromatography of terpenes in the berries of the species *J. oxycedrus* L. *J. thurifera* and *J. sabina* L. *Journal of Chromatography*, 396, 416-420.
- [9] Adams RP. (1999) Systematics of multi-seeded eastern hemisphere *Juniperus* based on leaf essential oils and RAPD DNA fingerprinting. *Biochemical Systematic and Ecology*, 27, 709-725.
- [10] Adams RP, Mumba LE, James SA, Pandey RN, Gauquelin T, Badry W. (2003) Geographic variation in the leaf oils and DNA fingersprints (RAPDs) of *Juniperus thurifera* L. from Morocco and Europe. *Journal of Essential Oil Research*, 15, 148-154.
- [11] Joulain D, König WA. (1998) The atlas of spectral data of sesquiterpene hydrocarbons. Verlag EB, Hamburg.
- [12] McLafferty FW, Stauffer DB. (1994) Wiley Registry of Mass Spectral Data. 6th edition. Mass Spectrometry Library Search System Bench-Top/PBM, version 3.10d, Palisade, Newfield.
- [13] National Institute of Standards and Technology (1999) *PC Version 1.7 of The NIST/EPA/NIH mass spectral library*. Perkin-Elmer Corporation, Norwalk, CT.
- [14] König WA, Hochmuth DH, Joulain D. (2001) Terpenoids and Related Constituents of Essential Oils. Library of MassFinder 2.1. Institute of Organic Chemistry, Hamburg.
- [15] Adams RP. (2007) Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. 4th edition. Allured, Carol Stream, IL.
- [16] Tomi F, Bradesi P, Bighelli A, Casanova J. (1995) Computer-aided identification of individual components of essential oil using carbon-13 NMR spectroscopy. *Journal of Magnetic Resonance Analysis*, 1, 25-34.
- [17] Rezzi S, Bighelli A, Castola V, Casanova J. (2002) Direct identification and quantitative determination of acidic and neutral diterpenes using ¹³C-NMR spectroscopy. *Applied Spectroscopy*, *56*, 312-317.
- [18] Gonny M, Bradesi P, Casanova J. (2004) Identification of the components of the essential oil from wild Corsican *Daucus carota* L. using ¹³C-NMR spectroscopy. *Flavour and Fragrance Journal*, 19, 424-433.

2010 Vol. 5 No. 12 1995 - 1998

Combined Analysis by GC (RI), GC-MS and ¹³C NMR of the Supercritical Fluid Extract of *Abies alba* Twigs

Emilie Duquesnoy¹, Bruno Marongiu², Vincent Castola^{1*}, Alessandra Piras², Silvia Porcedda² and Joseph Casanova¹

¹Université de Corse-CNRS, UMR 6134 SPE, Laboratoire « Chimie et Biomasse », Route des Sanguinaires, 20 000 Ajaccio, France

²Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche, Cittadella Universitaria di Monserrato, SS 554, km 4, 500 09042 Cagliari, Italy

vincent.castola@univ-corse.fr

Received: February 11th, 2010; Accepted: September 29th, 2010

Two samples (leaves and twigs) of *Abies alba* Miller from Corsica were extracted using supercritical CO₂ and their chemical compositions were compared with those of the essential oils obtained from the same batch of plant material. In total 45 components were identified using combined analysis by GC (RI), GC-MS and ¹³C NMR. It was observed that the contents of monoterpenes (mainly represented by limonene, α-pinene and camphene) were significantly lower in the supercritical fluid extract (SFE) than in the essential oil (EO). Conversely, the proportions of sesquiterpenes were much higher in CO₂ extracts than in essential oils (around 30% *vs* 4%). *Cis*-abienol, a diterpene alcohol, was identified only in SFE, and the proportions of this constituent (7.5% and 17.3%) were determined using quantitative ¹³C NMR since it was under estimated using the standard conditions of GC.

Keywords: *Abies alba* Miller, essential oil, supercritical fluid extract, ¹³C NMR spectroscopy, gas chromatography, mass spectrometry, *cis*-abienol.

The silver fir (Abies alba Miller, family Pinaceae) is widely distributed in many European mountain forests (for example in France, Germany and Poland). In Corsica, the south-western limit of its area of distribution, it constitutes pure fir forests as well as mixed forests with other conifers, particularly Pinus nigra ssp. laricio [1]. Twigs of A. alba produce by either vapour or water distillation an essential oil (EO) whose chemical composition is well documented. Most of the studies concerned plants from the centre and south of Europe (Poland [2], Germany [3], Austria [4], France [5], Montenegro [6], Serbia [7] and Greece [8]). All the investigated samples were characterised by the predominence of limonene (34-55%, Germany [3], Austria [4], France [5], Greece [8]), or β-pinene (20-33%, Montenegro [6], Serbia [7]). Other important components were camphene (15-17%) [4,6,7], α -pinene (11-17%) [5-7] and bornyl acetate (9-14%) [6,7].

Recently, we analysed 53 oil samples from twigs of *A. alba* collected in all the Corsican forests where the tree is growing wild [9]. The results were submitted to chemometric analysis (K-mean's clustering and

Principal Component Analysis) and two groups were distinguished within the oil samples depending on the content of limonene [9].

Extraction by means of carbon dioxide, in the supercritical state, is a good technique for the production of flavors and fragrances from vegetable matter. The extensive use of compressed carbon dioxide to extract either volatiles or aroma substances destined for human nutrition and for the pharmaceutical industry is due to its chemical and physical properties. It is safe, non-toxic, non-combustible, inexpensive and its critical temperature and pressure are not high (31.06 °C; 7.38 MPa) [10]. The aim of the present work was to determine the yield and the chemical composition of the supercritical fluid extract (SFE) of twigs of *A. alba* and to compare them with those of the essential oil obtained by hydrodistillation of the same batch material.

Two samples, each belonging to a cluster previously defined [9], were submitted to supercritical CO₂ extraction and hydrodistillation and their chemical compositions were compared (Table 1). The four oil

Table 1: Compounds identified in the supercritical CO2 extracts and the essential oils of leaves and twigs of Abies alba.

				Samp	le 1	Sam	ple 2	
				SFE	EO	SFE	EO	
	Constituents	Ir a	Ir p	%	%	%	%	Identification
1	Santene	884	984	tr	3.6	0.1	3.0	RI, MS, ¹³ C NMR
2	Tricyclene	925	1020	0.3	2.1	0.5	2.1	RI, MS, ¹³ C NMR
3	α-Pinene	935	1032	3.4	18.0	2.6	11.4	RI, MS, ¹³ C NMR
4	Camphene	948	1079	1.9	13.7	3.9	15.7	RI, MS, ¹³ C NMR
5	β-Pinene	975	1120	0.4	1.3	2.7	8.1	RI, MS, ¹³ C NMR
6	Myrcène	984	1170	0.4	1.2	0.3	0.9	RI, MS, ¹³ C NMR
7	α-Phellandrene	998	1175	-	-	-	0.2	RI, MS
8	<i>p</i> -Cymene	1013	1270	-	0.1	-	0.1	RI, MS
9	Limonene*	1025	1209	17.7	43.5	5.6	15.6	RI, MS, ¹³ C NMR
0	β-Phellandrene*	1025	1219	0.1	0.2	7.0	14.4	RI, MS, ¹³ C NMR
1	γ-Terpinene	1049	1254	-	0.1	-	0.1	RI, MS
2	Terpinolene	1081	1291	0.1	0.4	0.1	0.5	RI, MS, ¹³ C NMR
3	Linalool	1083	1555	-	-	-	0.4	RI, MS
4	Citronellal	1134	1489	-	0.2	-	0.2	RI, MS
5	Borneol	1153	1713	-	0.1	0.9	1.0	RI, MS, ¹³ C NMR
6	α-Terpineol	1173	1709	-	0.7	-	1.2	RI, MS, ¹³ C NMR
7	Decanal	1188	1498	-	-	0.1	0.1	RI, MS
8	Citronellol	1212	-	-	0.3	0.1	0.2	RI, MS
9	Geraniol	1237	1858	-	0.1	0.3	0.2	RI, MS
20	Linalyl acetate	1243	1564	-	-	0.4	0.1	RI, MS
1	Bornyl acetate	1274	1589	1	1.4	8.1	9.9	RI, MS, ¹³ C NMR
22	Citronellyl acetate	1337	1670	0.7	1.2	1.1	1.1	RI, MS, ¹³ C NMR
23	α-Longipinene	1359	1475	2.3	0.5	2.3	-	RI, MS, 13 C NMR
24	Geranyl acetate	1364	1766	-	0.2	1.7	2.0	RI, MS, 13 C NMR
25	Dodecanal	1392	1718	-	0.2	1.2	0.4	RI, MS, 13 C NMR
26	Longifolene	1413	1575	1.3	0.4	1.7	-	RI, MS, 13 C NMR
27	(<i>E</i>)-β-Caryophyllene	1425	1604	5.6	1.5	6.3	0.8	RI, MS, 13 C NMR
28	Himachala-2,4-diene	1430	1611	2.6	-	2.4	-	RI, MS, 13 C NMR
29	α-Himachalene	1455	1650	0.7	-	0.9	-	RI, MS, 13 C NMR
30	α-Humulene	1458	1678	2.2	0.7	2.1	0.4	RI, MS, 13 C NMR
31	γ-Curcumene	1472	1685	0.4	-	1.0	-	RI, MS, 13 C NMR
32	γ-Himachalene	1477	1706	0.8	-	0.2		RI, MS, 13 C NMR
3	Germacrene D	1479	-	-	-	-	0.2	RI, MS
34	γ-Humulene	1485	1732	2.0	-	1.6	0.1	RI, MS, ¹³ C NMR
35	β-Selinene	1489	1726	3.8	-	5.2	-	RI, MS, 13 C NMR
	α-Selinene	1498	1732	0.7	-	1.1	-	RI, MS, 13 C NMR
38	β-Himachalene	1503	1732	1.3	-	0.9	0.1	RI, MS, ¹³ C NMR
	γ-Cadinene	1506	1766	1.4	_	0.3	_	RI, MS, ¹³ C NMR
	β-Sesquiphellandrene	1511	_	_	0.8	-	0.1	RI, MS, ¹³ C NMR
	δ-Cadinene	1517	1766	1.8	-	0.7	0.1	RI, MS, ¹³ C NMR
	ar-Himachalene	1530	1729	0.4	-	0.7	-	RI, MS, ¹³ C NMR
	Longiborneol	1594	2162	_	0.2	2.6	0.7	RI, MS, ¹³ C NMR
	τ-Cadinol	1639		_	-	-	0.3	RI, MS
	Manoyl oxide	1999	_	-	tr	0.2	-	RI, MS
	cis-Abienol	2112	-	17.3#	-	7.5#	-	RI, MS, ¹³ C NMR
	Total			70.4	92.7	74.2	91.9	
	Monoterpenes			25.8	88.4	35.2	88.4	
	Sesquiterpenes			27.3	4.1	30.0	3.0	
	Diterpenes			17.3	-	7.7	-	
	Acyclic non terpenic compounds			_	0.2	1.3	0.5	

^a Order of elution from apolar column (BP-1). The percentages are those obtained from the apolar column corrected after quantification of *cis*-abienol using ¹³C NMR (correcting factors 0.875 for sample 1 and 0.947 for sample 2). *: percentages measured on polar column. #: percentage measured by ¹³C NMR.

samples were analyzed by GC, in combination with retention indices, GC-MS and ¹³C NMR spectroscopy. As previously reported [9], qualitative analysis of both EO was easily achieved by combination of GC (RI), GC-MS and ¹³C NMR and quantitative analysis was performed by GC (FID). Conversely, in the SFE, GC-MS and ¹³C NMR revealed the occurrence of *cis*-abienol, a diterpene alcohol, bearing the labdane skeleton (Figure 1). The quantitative determination of that alcohol was more accurately achieved using ¹³C NMR spectroscopy.

Quantitative determination of cis-abienol by ¹³C NMR spectroscopy. Concerning cis-abienol, we observed a bad correlation between the mean intensity of the carbon signals of this compound in both ¹³C NMR spectra and the percentages measured by GC, the content of the compound being substantially under estimated. In order to overcome this problem, we carried out a quantitative determination of cis-abienol using ¹³C NMR spectroscopy. Quantification of cisabienol in the SFE was achieved using standard quantitative conditions with respect to a fixed amount of diglyme chosen as internal standard. The pulse sequence in the inverse gated decoupling technique used a pulse angle of 90° and a total recycling time (T_R) of 20s, corresponding to 5 x T_1 of the longest T_1 of the protonated carbons of cis-abienol and of diglyme. Using this experimental procedure, the content of *cis*-abienol in SFE was estimated at 17.3% and 7.5%, respectively, instead of 12.5% and 5.3% evaluated by GC.

Composition of the SFE of *Abies alba* and comparison with EO. Individual components of the SFE and EO of *A. alba*, their retention indices on two columns of different polarities, their relative percentages and the mode of identification are reported in Table 1.

Taking into account the quantitative determination of *cis*-abienol by ¹³C NMR, the percentages of the other constituents of the SFE, measured by GC (FID), were modified applying a correcting factor of 0.875 and 0.947 for SFE samples 1 and 2, respectively. The two essential oils exhibited quite different compositions; each sample belonged to one of the two groups previously defined [9].

Indeed, in the first oil sample, the main constituent was limonene (43.5%) accompanied by α -pinene (18.0%) and camphene (13.7%), while the second oil sample contained various monoterpene hydrocarbons in appreciable amounts [camphene (15.7%), limonene (15.6%), β -phellandrene (14.4%), α -pinene (11.4%) and bornyl acetate (9.9%)].

Figure 1: Structure and spectroscopic data (chemical shifts δ^{13} C and longitudinal relaxation times T_1) of *cis*-abienol.

C	$\delta^{13}C$	T_1
1	40.08	1.3
2	18.58	1.3
3	41.81	1.2
4	33.27	1.2
5	56.06	2.6
6	20.25	1.2
7	43.95	1.3
8	74.24	4.8
9	62.16	1.7
10	38.93	3.7
11	23.09	1.7
12	133.83	3.5
13	130.83	4.9
14	133.57	2.6
15	113.74	2.7
16	19.89	3.1
17	24.44	2.3
18	33.46	1.7
19	21.55	1.9
20	15.42	3.4
	· ·	

Comparison of the compositions of the SFE and EO led to the observation of noticeable differences:

- i) in both SFE samples, the proportions of monoterpene hydrocarbons, such as limonene (17.5 and 5.6%), α -pinene (3.4 and 2.6%) and camphene (1.9% and 3.9%), are significantly less important than in the EO. Moreover, in sample 2, β -phellandrene accounted for 7.0% of the SFE νs 14.4% in the EO.
- ii) The proportions of the sesquiterpene hydrocarbons, such as α -longipinene, longifolene, (E)- β -caryophyllene, and α -humulene varied from 1.3% to 6.3% in the two SFE, while they accounted for less than 1.5% in the EO. Moreover, 11 sesquiterpene hydrocarbons, belonging mainly to the selinane, cadinane and himachalane families, were found only in the SFE, with proportions ranging from 0.2% to 5.2%. Therefore, the identified sesquiterpenes accounted for 27.3% and 30.0% in the SFE of sample 1 and sample 2 vs 4.1% and 3.0% in the corresponding EO.
- iii) Finally, *cis*-abienol (Figure 1) was found only in the two SFE, in which it accounted for 17.3% and 7.5%.

Experimental

Plant material and extractions: The twigs of *Abies alba* Mill. were collected from 2 trees in the forest of Aitone (Corsica) in July 2006. Hydrodistillation and supercritical CO₂ extraction were carried out from the same batches of air-dried material using a laboratory apparatus described in previous papers [9,11,12]. Hydrodistillation yielded 0.65% and 0.74% for samples 1 and 2, respectively, and supercritical CO₂ extraction yielded 0.30% for both samples.

Spectroscopic analysis: GC (FID), GC-MS and ¹³C NMR analyses were performed as previously reported [9]. Quantitative determination of *cis*-abienol was carried out by ¹³C NMR using the standard inverse gated decoupling sequence with the following

parameters: pulse width = 8 μs (flip angle 90°); acquisition time = 2.7 s for 128K data table with a spectral width of 25000 Hz (250 ppm); total recycling time T_R =20 s.

The longitudinal relaxation delays of the ^{13}C nuclei (T_1 values) were determined by the inversion-recovery method, using the standard sequence: $180^{\circ}\text{-}\tau\text{-}90^{\circ}\text{-}D_1$, with a relaxation delay D_1 of 20s. Each delay of inversion (τ) was thus taken into account for the computation of the corresponding T_1 using the function $I_p{=}I_0{+}p.e^{\tau/T1}$

Identification of components: Identification of the individual components was based: (i) by comparison of their GC retention indices (RI) on polar and apolar columns, determined relative to the retention times of a series of *n*-alkanes with linear interpolation with those of authentic compounds or literature data [13]; (ii) on

computer matching against laboratory-made (Laboratoire CNP, University of Corsica) and commercial mass spectral libraries [14a-14c] and by comparison of spectra with literature data [13,15,16a], and (iii) by ¹³C NMR spectroscopy, following the methodology developed and computerised in our laboratories, using home-made software and spectral data library [16b,16c].

Acknowledgments - The authors are indebted to the Collectivité Territoriale de Corse (CTC), the French Agency for Environment and Energy Management (ADEME) for a research grant (ED) and to the European Community (program INTERREG IIIA) for partial financial support. Thanks to Pr. J. Costa (Laboratoire CPN, University of Corsica) who placed the GC-MS equipement at our disposal.

- [1] Gamisans J. (2000) La végétation de la Corse; (Ed). Edisud, Aix-en-Provence, 1-391.
- [2] Joñczyk J. (1970) Badanie olejku lotnego z cetyny jodły pospolitej, *Abies alba* Miller. II. Badanie monoterpenowych frakcji olejku. *Acta Poloniea Pharmaceutica*, 27, 155-162.
- [3] Scheffer JC, Koedam A, Gijbels MJ. (1976) Trace components of essential oils isolated by combined liquid-solid and gas-liquid chromatography. Part 1. Monoterpene hydrocarbons in the essential needle oil of *Abies alba* Mill. *Pharmaceutisch Weekblad*, 111, 1309-1315.
- [4] Kubeczka KH, Schultze W. (1987) Biology and chemistry of conifer oils. Flavour and Fragrance Journal, 2, 137-148.
- [5] Chalchat JC, Garry RP, Michet A. (1986) Huiles essentielles de résineux d'Auvergne: pin sylvestre, épicéa, sapin pectiné et de Vancouver, Douglas. *Parfums Cosmétiques et Arômes*, 69, 55-58.
- [6] Chalchat JC, Sidibe L, Maksimovic ZA, Petrovic SD, Gorunovic MS. (2001) Essential oil of *Abies alba* Mill., Pinaceae, from the pilot production in Montenegro. *Journal of Essential Oil Research*, 13, 288-289.
- [7] Roussis V, Couladis M, Tzakou O, Loukis A, Petrakis PV, Dukic NM, Jancic R. (2000) A comparative study on the needle volatile constituents of three *Abies* species grown in south Balkans. *Journal of Essential Oil Research*, 12, 41-46.
- [8] Koukos PK, Papadopoulou KI, Papagiannopoulos AD, Patiaka D. (2001) The essential oils of the twigs of some conifers grown in Greece. *Holz als Roh- und Werkstoff*, 58, 437-438.
- [9] Duquesnoy E, Castola V, Casanova J. (2007) Composition and chemical variability of the twig oil of *Abies alba* Miller from Corsica. *Flavour and Fragrance Journal*, 22, 293-299.
- [10] Angus S, Armstrong B, De Reuck KM, Altunin VV, Gadeskii OG, Chapela GA, Rowlinson JS. (1983) *International Thermodynamic Tables of the Fluid State, Carbon Dioxide*, Pergamon Press, Oxford.
- [11] Castola V, Marongiu B, Bighelli A, Floris C, Laï A, Casanova J. (2005) Extractives of cork (*Quercus suber L.*): Chemical composition of dichloromethane and supercritical CO₂ extracts. *Industrial Crops and Products*, 21, 71-79.
- [12] Caredda A, Marongiu B, Porcedda S, Soro C. (2002) Supercritical carbon dioxide extraction and characterization of *Laurus nobilis* essential oil. *Journal of Agricultural Food Chemistry*, 51, 1492-1496.
- [13] Joulain D, König WA. (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E B-Verlag: Hamburg.
- [14] (a) McLafferty FW, Stauffer DB. (1994) Wiley Registry of Mass Spectral Data. 6th edn. Mass Spectrometry Library Search System Bench-Top/PBM, version 3.10d. Palisade: Newfield; (b) National Institute of Standards and Technology (1999) PC Version 1.7 of the NIST/EPA/NIH mass spectral library. Perkin-Elmer Corp.: Norwalk, Connecticut; (c) König WA, Hochmuth DH, Joulain D. (2001) Terpenoids and Related Constituents of Essential Oils. Library of MassFinder 2.1, Institute of Organic Chemistry: Hamburg.
- [15] McLafferty FW, Stauffer DB. (1988) The Wiley/NBS Registry of Mass Spectral Data 4th edn. Wiley-Interscience: New York.
- [16] (a) Adams RP. (2007) *Identification of essential oil components by gas chromatography/mass spectroscopy*. Allured Publishing Corporation: Carol Stream, Illinois; (b) Tomi F, Bradesi P, Bighelli A, Casanova J. (1995) Computer-aided identification of individual components of essential oils using carbon-13 NMR spectroscopy. *Journal of Magnetic Resonance Analysis*, 1, 25-34; (c) Rezzi S, Bighelli A, Castola V, Casanova J. (2002) Direct identification and quantitative determination of acidic and neutral diterpenes using ¹³C NMR spectroscopy. Application to the analysis of oleoresin of *Pinus nigra*. *Applied Spectroscopy*, 56, 312-317.

2010 Vol. 5 No. 12 1999 - 2006

Eugenol: A Natural Compound with Versatile Pharmacological Actions

Kannissery Pramod^a, Shahid H. Ansari^b and Javed Ali^{a*}

^aDepartment of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi – 110 062, India

^bDepartment of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi – 110 062, India

javedaali@yahoo.com

Received: March 30th, 2010; Accepted: October 22nd, 2010

Eugenol, the major constituent of clove oil, has been widely used for its anesthetic and analgesic action in dentistry. Eugenol exhibits pharmacological effects on almost all systems and our aim is to review the research work that has identified these pharmacological actions. Eugenol possesses significant antioxidant, anti-inflammatory and cardiovascular properties, in addition to analgesic and local anesthetic activity. The metabolism and pharmacokinetics of the compound in humans have been studied. Eugenol has also been used as a penetration enhancer. The compound is a very promising candidate for versatile applications, and the design of new drugs based on the pharmacological effects of eugenol could be beneficial.

Keywords: eugenol, clove oil, pharmacological actions.

Clove (Syzygium aromaticum, Myrtaceae) oil contains eugenol, an oily liquid that has proven analgesic and antiseptic properties [1]. Eugenol (C₁₀H₁₂O₂; 2methoxy-4-(2-propenyl) phenol), is an allyl chainsubstituted guaiacol. It is a clear, pale yellow, oily liquid which is slightly soluble in water and soluble in organic solvents. In dental plasters, fillings, and cements either clove oil or eugenol have been used for their topical analgesic properties. In addition to these indications it is used as a local antiseptic and anesthetic. Both clove and eugenol are also used in the fragrance and flavoring industries [2]. In the last few decades, a large number of pharmacological studies on the effects eugenol on the immune, reproductive, cardiovascular, gastric, central nervous, and urinary systems have been reported, as well as the effects on blood biochemistry [3]. Clove essential oil possesses anti-inflammatory, cytotoxic, insect repellent and anesthetic properties in addition to its established antimicrobial, antioxidant, antifungal and antiviral activities [2].

Analgesic activity: Kurian and coworkers studied the antinociceptive ability of eugenol (100 mg/kg) in several mouse models of pain and found that the effect was more pronounced in the inflammatory phase than the neurogenic phase [4]. Eugenol can alleviate

neuropathic pain [5]. Guenette *et al.*, in their study in male Sprague-Dawley rats, showed that eugenol, at a dose of 40 mg/kg, is capable of prolonging reaction time to thermal stimuli [6]. All these results suggested the possible use of eugenol as an analgesic agent.

Antioxidant effect: The potential use of eugenol as a therapeutic antioxidant has been demonstrated by the studies of Nagababu and coworkers [7]. In their study, the formation of thiobarbituric acid reactive substances (TBARS) was decreased by eugenol at concentrations of 4-15 µM. Tests with compounds that are reactive with the hydroxyl radical in the presence of eugenol showed that it competes with these reactive compounds for this radical and thus could protect skin damage by UV-light [8]. The antioxidant effect of eugenol-grafted chitosan hydrogel has also been reported [9]. Eugenol can cause significant suppression of lipid peroxidation and low density lipoprotein oxidation. Eugenol-like compounds significantly reduce copper-dependent oxidation of low density lipoprotein, and lipid peroxidation and autooxidation of Fe²⁺ [10]. Electron spin resonance spectroscopic studies by Fujisawa and coworkers showed that eugenol (18.50 mU per 100 µM sol) significantly scavenged reactive oxygen species [11]. Ogata et al. found that the antioxidant action of eugenol (62.5 - 250 μ M) is mediated through the

inhibition of lipid peroxidation at the level of initiation [12]. Vidhya and coworkers investigated the short and long term antioxidant activities of eugenol (1000 mg/ kg) on rat intestine and observed that the compound helps in the removal of toxic materials from the intestine as it caused the induction of glutathione-Stransferases [13]. Antioxidants and free radical scavengers like eugenol have also been monitored as agents for preventing the progress of Parkinson disease. A study demonstrated that eugenol (0.1 - 1.0 µM/kg) inhibits lipid peroxidation and thereby suppresses 6hvdroxvdopamine-induced dopamine depression thereby suggesting its potential use in Parkinson disease [14]. The antioxidant activity of eugenol is comparable with that of butylated hydroxyanisole and butylated hydroxytoluene [15]. Although many in vitro studies have been carried out on the antioxidant activity of eugenol, there have been insufficient in vivo studies.

Protective effect: Eugenol modulates both the NMDA receptor and superoxide radical and thus seems to provide protection against ischemic injury. Eugenol can attenuate NMDA induced acute neurotoxicity and decrease xanthine/xanthine oxidase produced oxidative neuronal injury [16]. Eugenol (10.7 mg/kg/day) has been found to show an in vivo antioxidant property and a better inducing effect on phase II enzymes which counteract the metabolizing enzyme reduction caused by carbon tetrachloride [17]. In vitro studies on liver microsomal monooxygenase activities and carbon tetrachloride (CCl₄)-induced lipid peroxidation have shown that eugenol inhibits both [18]. The in vivo studies by the same researchers also showed a protective effect of eugenol at doses of 5 and 25 mg/kg against CCI4 induced hepatotoxicity. The methanolic extract of leaves of Ocimum suave (Lamiaceae), which contains eugenol as a major constituent [19], has shown gastric cytoprotective and anti-ulcer effects in experimental Wistar rats [20]. Eugenol pre-treatment (10-100 mg/kg) reduces both the number of gastric ulcers and the gravity of lesions induced by ulcerogenic agents like platelet activating factor and ethanol [21]. The mechanism of the gastroprotective action of eugenol has been established by the studies of Morsy and Fouad [22]. Gastric mucosal lesions, gastric acid outputs and pepsin activity in male Sprague-Dawley rats were markedly reduced by a single oral dose of eugenol (100 mg/kg), used as a pretreatment one hour before indomethacin injection. This pretreatment resulted in a marked increase in mucin concentration, suppression of the rise in gastric malondialdehyde and total nitrite, and attenuation of the decrease in reduced glutathione. It was further confirmed that the protective action of eugenol is through opening of ATP-sensitive potassium channels and not through the transient receptor potential vanilloid

1. The DNA-protective activity of eugenol has been observed by Yogalakshmi and coworkers in thioacetamide-induced liver injury in rats at a dose of 10.7 mg/kg/day [23]. Eugenol imparts a dose dependent protection against nicotine-induced superoxide mediated oxidative damage at a concentration range of 1-20 μg/mL [24].

Anesthetic action: A randomized, single-blind study was carried out in 73 subjects to evaluate the topical anesthetic action of clove oil in comparison with benzocaine [1]. The pain scores between the clove gel and the benzocaine groups were not significantly different, but were significantly lower than those of the placebo groups. The study showed that clove gel is a cheap and easily available topical anesthetic which could be used as an alternative to benzocaine gel in dentistry. A reversible, dose dependent anesthesia has also been reported after eugenol administration (5 - 60)mg/kg, iv) in male Sprague-Dawley rats [5]. A clinical study was conducted in 100 adult patients to study the effect of eugenol as an intravenous anesthetic. However, they concluded that it is not advisable to use eugenol except in special circumstances as the incidence of development of venous thrombosis around the site of injection was high [25]. The possible use of eugenol as a local anesthetic has also been demonstrated by the studies of Park and coworkers, who suggested its suitability for non-dental anesthesia as well [26].

Antibacterial, antifungal and antiviral activities: The activity has been studied of Eugenia aromaticum on several microorganisms and parasites, including pathogenic bacteria, and herpes simplex and hepatitis C viruses [27]. Burt and coworkers studied the antibacterial activity of clove bud oil and found it to be effective [28]. Eugenol is active against Neisseria gonorrhoeae, with a minimum inhibitory concentration of 85-256 mg/L [29]. Moreover, eugenol shows synergistic effects with antibiotics against Gramnegative bacteria [30]. Mytle and coworkers have demonstrated the ability of clove oil to inhibit the growth Listeria monocytogenes. A 1% concentration was sufficient for the inhibition of growth at 5°C and 15°C [31]. Eugenol was found to be active against sessile cells in Candida albicans biofilms [32]. The compound showed fungicidal activity in vitro for exponentially growing Candida albicans. mechanism of this action was found to be through envelope damage [33]. In the *in vivo* study, treatment with eugenol caused a significant reduction in the colony count number in an immunosuppressed rat model of oral candidiasis in comparison with the untreated control group [34]. Chami and coworkers also evaluated eugenol in an immunosuppressed rat model of vaginal candidiasis for its efficacy in the prophylaxis

and treatment of this condition [35]. Eugenol has been demonstrated to have activity against *Penicillium* (100 mg/L), *Aspergillus* (100-140 mg/L) and *Fusarium* species (140-140 mg/L) also [36].

Eugenol can cause damage to viral envelopes of freshly formed virons and can cause inhibition of viral replication at the initial stage [37]. The anti-viral activity of eugenol, clove flower bud extract and clove essential oil against *Herpes simplex* virus has been carried out [37]. Direct inactivation of viruses and inhibition of intracellular and extracellular viruses after replication were observed with eugenol. In another study for antiviral activity against HSV-1 and HSV-2 viruses [38], 50% inhibitory concentration values were 25.6 μ g/mL and 16.2 μ g/mL for HSV-1 and HSV-2, respectively. Eugenol demonstrated a synergistic action with acyclovir against *in vitro* replication of herpes virus. Topical eugenol therapy was observed to suppress herpes virus induced keratitis in mouse.

Anticonvulsant activity: Zelger and coworkers investigated the anticonvulsant activity of phenyleugenol, benzyleugenol and phenylethyleugenol, which are synthetic derivatives of eugenol [39]. All three compounds showed significant anticonvulsant activity in the maximal electroshock seizure test. Phenyleugenol and benzyleugenol were found to have a high therapeutic index. All these studies indicated that eugenol could be taken as a lead molecule in the development of novel anticonvulsant drugs.

Anti-inflammatory action: Eugenol inhibits cycloxygenase and thus inhibits prostaglandin H synthase [40]. This can be the result of its competition with arachidonic acid. Eugenol is able to resist the release of proinflammatory mediators like interleukin-1β, tumor necrosis factor-α and prostaglandin E2 from macrophages and is thus useful for acute inflamed dental pulps and apical periodontitis as an antiinflammatory agent [41]. Eugenol can also inhibit cycloxygenase-2 in macrophages. Eugenol caused reduction of both paw and joint swelling in arthritis induced male Sprague-Dawley rats at a dose of 33 mg/kg [42]. An in vivo study by Rodrigues and coworkers on the effect of an hydroalcoholic extract of clove on pro-inflammatory cytokines production by macrophages of mice showed that clove oil (200 mg/kg) caused cytokine inhibition due to the presence of eugenol, which imparts an anti-inflammatory activity [43]. The *in vivo* anti-inflammatory activity of eugenol in lipopolysaccharide induced lung injury has been demonstrated on administration of 160 mg/kg, ip [44].

Penetration enhancement: The utility of clove oil (82.6% eugenol) as a penetration enhancer has been

demonstrated by Shen and coworkers [45]. Permeation enhancement was found to be significant both in vivo and in vitro. The in vivo effect observed was comparatively weaker than that observed in vitro. A marked increase in drug flux was observed with clove oil in *in vivo* percutaneous absorption studies in rabbit. All the results suggested the potential ability of clove oil, of which eugenol is the major active component, as a penetration enhancer in transdermal drug delivery systems [45]. In vitro evaluation of penetration enhancers, including eugenol, has been conducted by Mutalik and coworkers using mouse skin [46]. In their study, eugenol was also found to increase skin retention and solubility of glibenclamide and glipizide. Zhao and coworkers studied the in vitro penetration enhancement effect of eugenol on percutaneous absorption of a drug through porcine epidermis [47]. The study showed that eugenol was able to enhance markedly the permeability coefficient of tamoxifen with respect to the control group. The study also found that lipid extraction and increased partitioning of the tamoxifen to the stratum corneum is responsible for the observed permeability enhancement action of eugenol.

Cardiovascular actions: Eugenol (0.2 – 20 µmol) reversible vasodilator dose-dependent, produces responses that are partially dependent on the endothelium [48]. Sensch and coworkers showed that eugenol (60 – 600 μmol/L) exerted negative inotropic effects in heart muscle of Guinea-pig [49]. The effect was found to be comparable with that of nifedipine, a calcium channel blocker. Eugenol (0.006 – 6 mM) causes hypotensive effects in hypertensive rats due to vascular relaxation [50]. The blocking of voltagesensitive and receptor-operated channels by eugenol is responsible for its smooth muscle relaxant effect and these actions are mediated through endothelialgenerated nitric oxide [51]. Choudhary and coworkers observed eugenol to counteract isoproterenol-induced cardiac hypertrophy [52]. They conducted their study in male Wister rats using a dose of 1 mg/kg twice daily. They showed that serum calcineurin activity in vitro was suppressed by eugenol, and isoproterenol-induced oxidative stress and apoptosis were reduced. Eugenol was also found to increase cardiac calcineurin and protein kinase C activity in ventricular tissue to normal values.

Anticancer activity: Significant induction of activity of glutathione S-transferase by eugenol was observed in liver and small intestine [53]. Miyazawa and coworkers showed that due to the presence of a C-4 hydroxy group in their structure, *trans*-isoeugenol and eugenol had significant suppressive effects on the SOS-inducing activity of chemical mutagens such as furylfuramide [54]. The antimutagenic effects of a eugenol derivative,

dehydroeugenol, have also been demonstrated by the same authors. Studies have demonstrated that eugenol provides protection from chemical induced skin cancer [55, 56].

Other pharmacological actions: An antigenotoxic effect of eugenol was studied in humans by Rompelberg and coworkers [57], but no evidence was observed for these effects. Tajuddin and coworkers investigated the effect of a 50% ethanolic extract of clove on sexual function improvement in male Swiss mice (500 mg/kg) and observed an enhanced sexual behavior of the mice [58].

Molecular mechanisms and biochemical changes: Eugenol showed inhibition of high-voltage-activated calcium channel currents in both capsaicin-sensitive and capsaicin-insensitive dental primary afferent neurons [59]. However, the action of eugenol was unaffected by capsazepine. This suggested that the action is not mediated by transient receptor potential vanilloid 1 activation. N-type calcium currents were inhibited by eugenol in the cell line C2D7. The study showed that high-voltage-activated calcium channel inhibition in dental primary afferent neurons by eugenol is responsible for its dental analgesic action. The mechanism of anesthetic action of eugenol by inhibition of sodium channel currents has been established by the whole-cell patch-clamp method in rat dental primary afferent neurons [60]. Capsaicin-sensitive capsaicin-insensitive neurons are both inhibited by eugenol and its irritable action is possibly due to the inhibition of voltage-gated K⁺ currents [61]. Yang and coworkers showed that eugenol produces its effects in the sensory nerve endings in the teeth through vanilloid receptor 1, at least partially [62].

The analgesic effect of eugenol is probably due to the inhibition of Ca(V)2.3 calcium channels. A study by Chung and coworkers showed that the mechanism of inhibition of Ca(V)2.3 calcium channels by eugenol is not involved through transient receptor potential vanilloid 1 and thus appeared to be distinctly different from that of capsaicin [63]. Both capsaicin receptor mediated and capsaicin receptor independent pathways are involved in the activation of Ca²⁺ channels by eugenol [64]. Eugenol has the ability to inhibit proinflammatory mediators like nitric oxide synthase, lipoxygenase and cyclooxygenase. Eugenol exerts its analgesia by inhibition of Na⁺ currents and the inhibition is independent of the stimulus frequency [65]. Inotropic effects of eugenol have been investigated in rat left ventricular papillary muscles by Damiani and coworkers [66]. The contraction force was depressed without affecting the contractile machinery. Complete blockade of inward Ca²⁺ current was observed with 0.5

mM of eugenol. Xu and coworkers explained that the transient receptor potential vanilloid 3 is expressed by eugenol. It is a warm-sensitive Ca²⁺-permeable cation channel in the skin, tongue and nose [67].

Eugenol has been reported to potentiate the GABA response. The compound's ability to potentiate GABAA receptors can modulate neural transmission in the brain just like, for example, benzodiazepine and barbiturate [68]. Salah and coworkers showed that eugenol causes effects such as relaxation of rat ileal strip, reduced intestinal transit in rats, and the potentiation of the diarrhea inducing effect of castor oil [69]. They suggested that all these effects are mediated through Ca²⁺ channel modulation. Eugenol accelerates inactivation of the Ca²⁺ current in isolated canine and human ventricular cardiomyocytes [70].

Metabolism and pharmacokinetics: Fischer and coworkers investigated the metabolism of eugenol in male and female healthy volunteers [71]. The study revealed that eugenol is rapidly absorbed and metabolized after oral administration. It is almost completely excreted in the urine within 24 hours. Only less than 0.1% of the administered dose was excreted unmetabolized in urine. Eugenol was found in the urine in the form of conjugates and metabolites. Among the metabolite conjugates, 55% consisted of eugenolglucuronide and sulfate. The epoxide-diol pathway, allylic oxidation, synthesis of a thiophenol and a substituted propionic acid, and migration of the double bond were also found to be other routes of eugenol metabolism in humans. A study was made by Guénette and coworkers of the pharmacokinetic parameters of eugenol using non-compartmental analysis after gavage administration in male Sprague-Dawley rats in a dose of 40 mg/kg [6]. Plasma $T_{1/2}$ of eugenol was found to be 14.0 hours and blood $T_{1/2}$ was 18.3 hours. Glucuronide and sulfate conjugates of eugenol in urine after eugenol administration were also identified in male Sprague-Dawley rats [5].

Toxicity: The prooxidant activity of eugenol may be responsible for its toxicity [72]. An *in vitro* study by Medeiros and coworkers demonstrated that the binding of lysine to eugenol might lead to protein inactivation and consequently to its toxicity [73]. The insecticidal activity of eugenol also has been reported [2].

A summary is given in Table 1 of the various research carried out to demonstrate the different pharmacological activities of eugenol and clove oil. Further research is required to collect more information about the pharmacological effects of eugenol, and also to find new areas of therapeutic applications. A detailed knowledge of eugenol pharmacology could be utilized

 Table 1: Pharmacological studies of eugenol and clove oil.

Activity studied	Experimental	Effect (Dose/Concentration)	Ref.
EUGENOL			
Analgesic	Mice Male Sprague-Dawley rats	Significant antinociceptive effect (100 mg/kg) Prolonged reaction time (40 mg/kg)	[4] [6]
Antioxidant	Microsomal mixed function oxidase mediated peroxidation	Decreased TBARS, inhibition of oxygen uptake, monooxygenase activity inhibition (4-15 µM)	[7]
	LDL oxidation	Suppressed oxidation (1.5 μM)	[10]
	Lipid peroxidation	Significant suppression (0.05 – 0.15 mM)	[10]
	Reactive oxygen scavenging activity	Significant activity (18.50 mU/100 µM sol)	[11]
	Free radical reaction	Inhibited lipid peroxidation at propagation step (62.5 – 250 µM)	[12]
	Rat intestine	Induced glutathione-S-transferases (1000 mg/kg)	[13]
	Lipid peroxidation	Inhibited (0.1 -1.0 μM/kg)	[14]
	DPPH scavenging activity	Activity similar to BHA & BHT (20 μg/mL)	[15]
	Hydroxyl radical scavenging	Activity greater than quercetin (0.6 μg/mL)	[15]
Protective	NMDA neurotoxicity	Prevented acute neuronal swelling and reduced neuronal death (100- 300 µM)	[16]
	Carbon tetrachloride intoxicated rat liver	Counteracted metabolic enzyme reduction (10.7 mg/kg/day)	[17]
	Liver monoxygenase activity & Carbon tetrachloride induced lipid peroxidation	Inhibition (5 & 25 mg/kg)	[18]
	Induced gastric lesions in rat	Reduced number and severity of ulcers observed (10-100 mg/kg)	[21]
	Induced ulcer in male Sprague-Dawley rats	Gastroprotective action (100 mg/kg)	[22]
	Adult male Wistar rats	Curtailed thioacetamide (TA)-induced hepatic injury (10.7 mg/kg/day)	[23]
	Nicotine-induced oxidative damage	Dose dependent protection (1-20 µg/mL)	[24]
Anesthetic	Randomized, single-blind study	Activity similar to benzocaine	[1]
	Male Sprague-Dawley rats	Reversible & dose dependent activity (5- 60 mg/kg)	[5]
Antibacterial, Antifungal	Candida albicans biofilms	Active against sessile cells (20-2000 mg/L)	[32]
& Antiviral	Candida albicans	Antifungal activity by envelope damage (0.2 %)	[33]
	Oral candidiasis in immunosuppressed rats	Significant reduction in the colony counts (0.5 mL, 24 mM)	[34]
	Vaginal candidiasis in immunosuppressed rats	Reduction in the colony counts of <i>Candida albicans</i> (20 mg/kg/day)	[35]
	Penicillium species	Growth inhibition (100 mg/L)	[36]
	Aspergillus species	Growth inhibition (100-140 mg/L)	[36]
	Fusarium species	Growth inhibition (140-150 mg/L)	[36]
	Anti-herpes simplex virus	Active against HSV-1 and HSV-2 viruses (16.2 and 25.6 µg/mL)	[38]
Anticonvulsant	Maximal electroshock seizure test	Synthetic eugenol derivatives showed significant activity	[39]
Anti-inflammatory	Prostaglandin H synthase inhibition	Inhibited cycloxygenase (100-200 μM)	[40]
•	Human macrophages	Resisted the release of proinflammatory mediators & inhibited cycloxygenase-2	[41]
	Male Sprague-Dawley rats	Reduced both paw and joint swelling in induced arthritis (33 mg/kg)	[42]
	Mice	Reduced lipopolysaccharide induced lung inflammation (160 mg/kg, ip)	[44]
Penetration enhancer	In vitro evaluation in mouse skin	Increased drug flux (5 %)	[46]
	In vitro penetration through porcine epidermis	Significant enhancement of permeability coefficient of drug (5 %)	[47]
Cardiovascular	Rat mesenteric vascular bed	Dose-dependent, reversible vasodilatation (0.2 – 20 μmol)	[48]
	Guinea-pig heart muscle	Potassium current inhibition (60 – 600 μmol/L)	[49]
	Hypertensive rats	Vascular relaxation (0.006 – 6 mM)	[50]
	Smooth muscle relaxant effect	Action mediated through endothelial-generated nitric oxide (300 μM)	[51]
	Isoproterenol-induced cardiac hypertrophy in	Oxidative stress and apoptosis were reduced (1 mg/kg twice daily)	[52]
Anticancer	Mice	Protection against chemically induced skin cancer (30 μL)	[55]
	Swiss mice	Restriction of skin carcinogenesis at dysplastic stage (1.25 mg/kg)	[56]
CLOVE OIL			
Antioxidant	DPPH scavenging activity	Activity similar to BHA & BHT (0.5 µg/mL)	[15]
	Hydroxyl radical scavenging	Active more than quercetin (0.2 μg/mL)	[15]
	Lipid peroxidation	Active more than BHT	[15]
Anti-inflammatory	Mice	Caused cytokine inhibition (200 mg/kg)	[43]
Penetration enhancer	Excised rabbit abdominal skin	Significant increase in drug flux (1-3 %)	[45]
	In vivo percutaneous absorption in rabbit	Increase in drug flux (1-3 %)	[45]
Anticancer	Antimutagenic activity against MNNG, 4NQO, AfB ₁ and Trp-P-1.	Suppressive effect on mutagens (ethyl acetate extract)	[54]
	X-7 r		[58]

to consider eugenol as a lead molecule for the development of new drugs [74] with enhanced therapeutic efficacy.

Acknowledgements – Mr. Pramod K (Ph.D. Scholar) would like to thank the National Medical Library, New Delhi, India, for providing library facilities.

- [1] Rapp C. (2007) Clove oil as effective as topical anesthetic. *HerbalGram*, 74, 26.
- [2] Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. (2007) The chemical composition and biological activity of clove essential oil, *Eugenia caryophyllata (Syzigium aromaticum* L. Myrtaceae): a short review. *Phytotherapy Research*, 21, 501-506.
- Prakash P, Gupta N. (2005) Therapeutic uses of *Ocimum sanctum* Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. *Indian Journal of Physiology and Pharmacology*, 49, 125-131.
- [4] Kurian R, Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL. (2006) Effect of eugenol on animal models of nociception. *Indian Journal of Pharmacology*, 38, 341-345.
- [5] Guenette SA, Beaudry F, Marier JF, Vachon P. (2006) Pharmacokinetics and anesthetic activity of eugenol in male Sprague–Dawley rats. *Journal of Veterinary Pharmacology and Therapeutics*, 29, 265-270.
- [6] Guenette SA, Ross A, Marier JF, Beaudry F, Vachon P. (2007) Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. *European Journal of Pharmacology*, 562, 60-67.
- [7] Nagababu E, Lakshmaiah N. (1994) Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol. *Free Radical Research*, 20, 253-266.
- [8] Taira J, Ikemoto T, Yoneya T, Hagi A, Murakami A, Makino K. (1992) Essential oil phenyl propanoids. Useful as OH scavengers? *Free Radical Research*, 16, 197-204.
- [9] Jung BO, Chung SJ, Lee SB. (2006) Preparation and characterization of eugenol-grafted chitosan hydrogels and their antioxidant activities. *Journal of Applied Polymer Science*, 99, 3500-3506.
- [10] Masae ITO, Keiko M, Masataka Y. (2005) Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. *Food and Chemical Toxicology*, 43, 461-466.
- [11] Fujisawa S, Atsumi T, Kadoma Y, Sakagami H. (2002) Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. *Toxicology*, 177, 39-54.
- [12] Ogata M, Hoshi M, Urano S, Endo T. (2000) Antioxidant activity of eugenol and related monomeric and dimeric compounds. *Chemical and Pharmaceutical Bulletin*, 48, 1467-1469.
- [13] Vidhya N, Devaraj SN. (1999) Antioxidant effect of eugenol in rat intestine. *Indian Journal of Experimental Biology*, 37, 1192-1195.
- [14] Kabuto H, Tada M, Kohno M. (2007) Eugenol [2-methoxy-4-(2-propenyl)phenol] prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. *Biological and Pharmaceutical Bulletin*, 30, 423-427.
- [15] Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. (2006) Chemical composition and antioxidant properties of clove leaf essential oil. *Journal of Agricultural and Food Chemistry*, 54, 6303-6307.
- [16] Wie MB, Won MH, Lee KH, Shin JH, Lee JC, Suh HW, Song DK, Kim YH. (1997) Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. *Neuroscience Letters*, 225, 93-96..
- [17] Kumaravelu P, Dakshinamoorthy DP, Subramaniam S, Devaraj H, Devaraj NS. (1995) Effect of eugenol on drug-metabolizing enzymes of carbon tetrachloride-intoxicated rat liver. *Biochemical Pharmacology*, 49, 1703-1707.
- [18] Nagababu E, Sesikeran B, Lakshmaiah N. (1995) The protective effects of eugenol on carbon tetrachloride induced hepatotoxicity in rats. *Free Radical Research*, 23, 617-627.
- [19] Ntezurubanza L, Scheffer JJC, Svendsen AB. (2008) Composition of the essential oils of *Ocimum urticifolium* (Lamiaceae) chemotypes grown in Rwanda. *Botanical Journal of the Linnean Society*, 96, 97–104.
- [20] Tan PV, Nyasse B, Dimo T, Mezui C. (2002) Gastric cytoprotective anti-ulcer effects of the leaf methanol extract of *Ocimum suave* (Lamiaceae) in rats. *Journal of Ethnopharmacology*, 82, 69-74.
- [21] Capasso R, Pinto L, Vuotto ML, Di Carlo G. (2000) Preventive effect of eugenol on PAF- and ethanol-induced gastric mucosal damage. *Fitoterapia*, 71, S131–S137.
- [22] Morsy MA, Fouad AA. (2008) Mechanisms of gastroprotective effect of eugenol in indomethacin-induced ulcer in rats. *Phytotherapy Research*, 22, 1361–1366.
- [23] Yogalakshmi B, Viswanathan P, Anuradha CV. (2010) Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. *Toxicology*, 268, 204-212.
- [24] Kar Mahapatra S, Chakraborty SP, Majumdar S, Bag BG, Roy S. (2009) Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages *in vitro*. *European Journal of Pharmacology*, 623, 132-140.

- [25] Right DA, Payne JP. (1962) A clinical Study of Intravenous Anaesthesia with a Eugenol Derivative, G.29.505. *British Journal of Anaesthesia*, 34, 379-385.
- [26] Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. (2009) Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. *Pain*, 144, 84-94.
- [27] El-Zemity SR, Radwan MA, Mohamed SAE, Sherby S M. (2008) Antibacterial screening of some essential oils, monoterpenoids and novel N-methyl carbamates based on monoterpenoids against Agrobacterium tumefaciens and Erwinia carotovora. Archives of Phytopathology and Plant Protection, 41, 451-461.
- [28] Burt SA, Reinders RD. (2003) Antibacterial activity of selected plant essential oils against *Escherichia coli* O157:H7. *Letters in Applied Microbiology*, 36, 162–167.
- [29] Shokeen P, Bala M, Singh M, Tandon V. (2008) *In vitro* activity of eugenol, an active component from Ocimum sanctum, against multiresistant and susceptible strains of *Neisseria gonorrhoeae*. *International Journal of Antimicrobial Agents*, 32, 174-179.
- [30] Hemaiswarya S, Doble M. (2009) Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. *Phytomedicine*, 16, 997-1005.
- [31] Mytle N, Anderson GL, Doyle MP, Smith MA. (2006) Antimicrobial activity of clove (*Syzgium aromaticum*) oil in inhibiting *Listeria monocytogenes* on chicken frankfurters. *Food Control*, 17, 102–107.
- [32] He M, Du M, Fan M, Bian Z. (2007) In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia, 163, 137-143.
- [33] Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A. (2005) Study of anticandidal activity of carvacrol and eugenol *in vitro* and *in vivo. Oral Microbiology and Immunology*, 20, 106-111.
- [34] Chami N, Chami F, Bennis S, Trouillas J, Remmal A. (2004) Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. *Brazilian Journal of Infectious Diseases*, 8, 217-226.
- [35] Chami F, Chami N, Bennis S, Trouillas J, Remmal A. (2004) Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. *Journal of Antimicrobial Chemotherapy*, 54, 909-914.
- [36] Campaniello D, Corbo MR, Sinigaglia M. (2010) Antifungal activity of eugenol against *Penicillium*, *Aspergillus*, and *Fusarium* species. *Journal of Food Protection*, 73, 1124-1128.
- [37] Tragoolpua Y, Jatisatienr A. (2007) Anti-herpes simplex virus activities of *Eugenia caryophyllus* (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol. *Phytotherapy Research*, 21, 1153–1158.
- [38] Benencia F, Courrèges MC. (2000) *In vitro* and *in vivo* activity of eugenol on human herpesvirus. *Phytotherapy Research*, 14, 495–500.
- [39] Zelger KRD, Zelger JL, Carlini EA. (1983) New anticonvulsants derived from 4-allyl-2-methoxyphenol (eugenol): comparison with common antiepileptics in mice. *Pharmacology*, 27, 40-49.
- [40] Thompson D, Eling T. (1989) Mechanism of inhibition of prostaglandin H synthase by eugenol and other phenolic peroxidase substrates. *Molecular Pharmacology*, 36, 809-817
- [41] Lee YY, Hung SL, Pai SF, Lee YH, Yang SF. (2007) Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages. *Journal of Endodontics*, 33, 698-702.
- [42] Sharma JN, Srivastava KC, Gan EK. (1994) Suppressive effects of eugenol and ginger oil on arthritic rats. *Pharmacology*, 49, 314-318.
- [43] Rodrigues TG, Fernandes A, Sousa JPB, Bastos JK, Sforcin J M. (2009) *In vitro* and *in vivo* effects of clove on pro-inflammatory cytokines production by macrophages. *Natural Product Research*, 23, 319-326.
- [44] Magalhães CB, Riva DR, DePaula LJ, Brando-Lima A, Koatz VL, Leal-Cardoso JH, Zin WA, Faffe DS. (2010) *In vivo* anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury. *Journal of Applied Physiology*, 108, 845-851.
- [45] Shen Q, Li W, Li W. (2007) The effect of clove oil on the transdermal delivery of Ibuprofen in the rabbit by *in vitro* and *in vivo* methods. *Drug Development and Industrial Pharmacy*, 33, 1369-1374.
- [46] Mutalik S, Udupa N. (2003) Effect of some penetration enhancers on the permeation of glibenclamide and glipizide through mouse skin. *Pharmazie*, 58, 891-894.
- [47] Zhao K, Singh J. (1998) Mechanisms of percutaneous absorption of tamoxifen by terpenes: eugenol, D-limonene and menthone. Journal of Controlled Release, 55, 253-260.
- [48] Criddle DN, Madeira SV, De Moura RS. (2003) Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed. *Journal of Pharmacy and Pharmacology*, 55, 359-365.
- [49] Sensch O, Vierling W, Brandt W, Reiter M. (2000) Effects of inhibition of calcium and potassium currents in Guinea-pig cardiac contraction: comparison of beta caryophyllene oxide, eugenol, and nifedipine. *British Journal of Pharmacology*, 131, 1089-1096.
- [50] Interaminense LF, Jucá DM, Magalhães PJ, Leal-Cardoso JH, Duarte GP, Lahlou S. (2007) Pharmacological evidence of calcium-channel blockade by essential oil of *Ocimum gratissimum* and its main constituent, eugenol, in isolated aortic rings from DOCA-salt hypertensive rats. *Fundamental and Clinical Pharmacology*, 21, 497-506.

- [51] Damiani CEN, Rossoni LV, Vassallo DV. (2003) Vasorelaxant effects of eugenol on rat thoracic aorta. *Vascular Pharmacology*, 40, 59-66.
- [52] Choudhary R, Mishra KP, Subramanyam C. (2006) Prevention of isoproterenol-induced cardiac hypertrophy by eugenol, an antioxidant. *Indian Journal of Clinical Biochemistry*, 21, 107-113.
- [53] Zheng GQ, Kenney PM, Lam LKT. (1992) Sesquiterpenes from clove (*Eugenia caryophyllata*) as potential anticarcinogenic agents. *Journal of Natural Products*, 55, 999-1003.
- [54] Miyazawa M, Hisama M. (2003) Antimutagenic activity of phenylpropanoids from clove (Syzygium aromaticum). Journal of Agricultural and Food Chemistry, 51, 6413-6422.
- [55] Kaur G, Athar M, Alam MS. (2010) Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. *Molecular Carcinogenesis*, 49, 290-301.
- [56] Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. (2010) Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. *Journal of Dermatological Science*, 59, 31-39.
- [57] Rompelberg C, Vogels J, de Vogel N, Rozier GB, Stenhuis WH, Bogaards J, Verhagen H. (1996) Effect of short-term dietary administration of eugenol in humans. *Human & Experimental Toxicology*, 15, 129-135.
- [58] Tajuddin, Ahmad S, Latif A, Qasmi IA. (2003) Aphrodisiac activity of 50% ethanolic extracts of *Myristica fragrans* Houtt. (nutmeg) and *Syzygium aromaticum* (L) Merr. & Perry. (clove) in male mice: a comparative study. *BMC Complementary and Alternative Medicine*, 20, 3-6.
- [59] Lee MH, Yeon KY, Park CK, Li HY, Fang Z, Kim MS, Choi SY, Lee SJ, Lee S, Park K, Lee JH, Kim JS, Oh SB. (2005) Eugenol inhibits calcium currents in dental afferent neurons. *Journal of Dental Research*, 84, 848-851.
- [60] Park CK, Li HY, Yeon KY, Jung SJ, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB. (2006) Eugenol inhibits sodium currents in dental afferent neurons. *Journal of Dental Research*, 85, 900-904.
- [61] Li HY, Park CK, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB. (2007) Eugenol inhibits K⁺ currents in trigeminal ganglion neurons. *Journal of Dental Research*, 86, 898-902.
- [62] Yang BH Piao ZG, Kim YB, Lee CH, Lee JK, Park K, Kim JS, Oh SB. (2003) Activation of vanilloid receptor 1 (VR1) by eugenol. *Journal of Dental Research*, 82, 781-785.
- [63] Chung G, Rhee JN, Jung SJ, Kim JS, Oh SB. (2008) Modulation of CaV2.3 calcium channel currents by eugenol. *Journal of Dental Research*, 87, 137-141.
- [64] Ohkubo T, Kitamura K. (1997) Eugenol activates Ca²⁺-permeable currents in rat dorsal root ganglion cells. *Journal of Dental Research*, 76, 1737-1744.
- [65] Cho JS, Kim TH, Lim JM, Song JH. (2008) Effects of eugenol on Na(+) currents in rat dorsal root ganglion neurons. *Brain Research*, 1243, 53-62.
- [66] Damiani CE, Moreira CM, Zhang HT, Creazzo TL, Vassallo DV. (2004) Effects of eugenol, an essential oil, on the mechanical and electrical activities of cardiac muscle. *Journal of Cardiovascular Pharmacology*, 44, 688-695.
- [67] Xu H, Delling M, Jun JC, Clapham DE. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. *Nature Neuroscience*, 9, 628-635.
- [68] Aoshima H, Hamamoto K. (1999) Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. *Bioscience, Biotechnology, and Biochemistry,* 63, 743-748.
- [69] Salah AM, Gathumbi J, Vierling W. (2002) Inhibition of intestinal motility by methanol extracts of *Hibiscus sabdariffa* L. *Phytotherapy Research*, 16, 283-285.
- [70] Magyar J, Szentandrássy N, Bányász T, Fülöp L, Varró A, Nánási PP. (2004) Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. *European Journal of Pharmacology*, 487, 29-36.
- [71] Fischer IU, Unruh GEV, Dengler HJ. (1990) The metabolism of eugenol in man. Xenobiotica, 20, 209-222.
- [72] Atsumi T, Fujisawa S, Tonosaki K. (2005) A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. *Toxicology in vitro*, 19, 1025-1033.
- [73] Medeiros MHG, Dimascio P, Pinto AP, Vargas RR, Bechara EJH. (1996) Horseradish peroxidase-catalyzed conjugation of eugenol with basic amino acids. *Free Radical Research*, 25, 5-12.
- [74] Awasthi PK, Dixit SC, Dixit N, Sinha AK. (2008) Eugenol derivatives as future potential drugs. *Journal of Pharmacy Research*, 1, 215-220.

2010 Volume 5

Natural Product Communications 5 (1-12) 1-2008 (2010)

ISSN 1934-578X (print) ISSN 1555-9475 (online)

EDITOR-IN-CHIEF

DR. PAWAN K AGRAWAL

Natural Product Inc. 7963, Anderson Park Lane Westerville, Ohio 43081. USA agrawal@naturalproduct.us

EDITORS

PROFESSOR ALESSANDRA BRACA

Dipartimento di Chimica Bioorganicae Biofarmacia, Universita di Pisa, via Bonanno 33, 56126 Pisa, Italy

braca@farm.unipi.it

PROFESSOR DEAN GUO

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences. Peking University, Beijing 100083, China gda5958@163.com

PROFESSOR J. ALBERTO MARCO

Departamento de Quimica Organica Universidade de Valencia. E-46100 Burjassot, Valencia, Spain alberto.marco@uv.es

PROFESSOR YOSHIHIRO MIMAKI

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE

Department of Chemistry University of Wollongong Wollongong, New South Wales, 2522, Australia spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE

Department of Chemistry, Texas Christian University Forts Worth, TX 76129, USA m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER

Department of Chemistry The University of Alabama in Huntsville Huntsville, AL 35809, USA wsetzer@chemistrv.uah.edu

PROFESSOR YASUHIRO TEZUKA

Institute of Natural Medicine Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan tezuka@inm.u-tovama.ac.jp

PROFESSOR DAVID E. THURSTON

Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy. University of London, 29-39 Brunswick Square, London WCIN 1AX, UK david.thurston@pharmacy.ac.uk

HONORARY EDITOR

PROFESSOR GERALD BLUNDEN

The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT U.K. axuf64@dsl.pipex.com

ADVISORY BOARD

Prof. Berhanu M. Abegaz Gaborone, Botswana Prof. Viqar Uddin Ahmad Karachi, Pakistan

Prof. Øyvind M. Andersen Bergen, Norway

Prof. Giovanni Appendino Novara, Italy

Prof. Yoshinori Asakawa Tokushima, Japan Prof. Lee Banting Portsmouth, U.K. Prof. Julie Banerji Kolkata, India Prof. Anna R. Bilia

Florence, Italy Prof. Maurizio Bruno

Palermo, Italy Prof. Josep Coll Barcelona, Spain Prof. Geoffrey Cordell Chicago, IL, USA

Prof. Cristina Gracia-Viguera

Murcia, Spain

Prof. Duvvuru Gunasekar

Tirupati, India

Prof. A.A. Leslie Gunatilaka

Tucson, AZ, USA Prof. Kurt Hostettmann Lausanne, Switzerland

Prof. Martin A. Iglesias Arteaga

Mexico, D. F, Mexico Prof. Jerzy Jaroszewski Copenhagen, Denmark Prof. Leopold Jirovetz Vienna, Austria

Prof. Teodoro Kaufman Rosario, Argentina

Prof. Norbert De Kimpe

Prof. Karsten Krohn Paderborn, Germany Prof. Hartmut Laatsch Gottingen, Germany

Prof. Marie Lacaille-Dubois

Dijon, France

Prof. Shoei-Sheng Lee Taipei, Taiwan Prof. Francisco Macias

Cadiz, Spain Prof. Imre Mathe Szeged, Hungary Prof. Joseph Michael Johannesburg, South Africa

Prof. Ermino Murano Trieste, Italy

Prof. M. Soledade C. Pedras

Saskatoon, Cnada Prof. Luc Pieters Antwerp, Belgium Prof. Om Prakash Manhattan, KS, USA Prof. Peter Proksch Düsseldorf, Germany

Prof. Phila Raharivelomanana Tahiti, French Plynesia Prof. Satyajit Sarker Wolverhampton, UK

Prof. Monique Simmonds Richmond, UK Prof. Valentin Stonik Vladivostok, Russia Prof. Winston F. Tinto Barbados, West Indies

Prof. Karen Valant-Vetschera

Vienna, Austria Prof. Peter G. Waterman Lismore, Australia

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2010 subscription price: US\$1,695 (Print, ISSN# 1934-578X); US\$1,695 (Web edition, ISSN# 1555-9475); US\$2,095 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.

Volume **5** (1-12) **2010** Contents

Number 1

Two New Furanoeremophilane Sesquiterpenoids from <i>Ligularia oligonema</i> Hajime Nagano, Mika Matsushima, Hiroka Yamada, Ryo Hanai, Xun Gong and Chiaki Kuroda	1
Synthesis and Stereochemistry of Occidenol, a 4,5-Dihydro-oxipin-containing Sesquiterpene: a Pericyclic	•
Approach John N. Marx and Abdulaziz Ajlouni	5
A New Dolabrane-type Diterpene from <i>Ceriops tagal</i> Xiao-Wei Ouyang, Xia-Chang Wang, Qing-Xi Yue and Li-Hong Hu	9
Structure and Absolute Configuration of a Diterpenoid from Castanea mollissima Hui-Yuan Gao, Xiao-Bo Wang, Rong-Gang Xi, Bo-Hang Sun, Jian Huang and Li-Jun Wu	13
Canthin-6-one Alkaloids and a Tirucallanoid from <i>Eurycoma longifolia</i> and Their Cytotoxic Activity against a Human HT-1080 Fibrosarcoma Cell Line	
Katsunori Miyake, Yasuhiro Tezuka, Suresh Awale, Feng Li and Shigetoshi Kadota	17
Qualitative and Quantitative Analysis of the Main Constituents of Radix Ilicis Pubescentis by LC-Coupled with DAD and ESI-MS Detection	
Wen-Yuan Liu, Feng Feng, Cheng-Xia Yu and Ning Xie	23
New Anti-inflammatory Sterols from the Red Sea Sponges Scalarispongia aqabaensis and Callyspongia siphonella	
Diaa T. A. Youssef, Amany K. Ibrahim, Sherief I. Khalifa, Mostafa K. Mesbah, Alejandro M. S. Mayer and Rob W. M. van Soest	27
Plakinamine L: A New Steroidal Alkaloid from the Marine Sponge Corticium sp.	
Maurice Aknin, Amira Rudi, Yoel Kashman, Jean Vacelet and Emile M. Gaydou	33
A New Alkaloid and Flavonoids from the Aerial Parts of <i>Euphorbia guyoniana</i> Tarek Boudiar, Lakhal Hichem, A. Khalfallah, Ahmed Kabouche, Zahia Kabouche, Igniacio Brouard, Jaime Bermejo and Christian Bruneau	35
Apigenin Di- and Trirhamnoside from Asplenium normale in Malaysia Tsukasa Iwashina, Sadamu Matsumoto, Junichi Kitajima, Takehisa Nakamura, Goro Kokubugata, Monica Suleiman and Idoris M. Said	39
A New Prenylated Flavanoid with Antibacterial Activity from Propolis Collected in Egypt Ashraf El-Bassuony and Sameh AbouZid	43
Reverse phase-HPLC Method for Determination of Marker Compounds in NP-1, an Anti-osteoporotic	
Plant Product from <i>Butea monosperma</i> Varsha Gupta, Anil Kumar Dwivedi, Dinesh Kumar Yadav, Manmeet Kumar and Rakesh Maurya	47
Influence of the Extraction Method on the Yield of Flavonoids and Phenolics from Sideritis spp.	
(Pirin Mountain tea) Kalina Alipieva, Jasmina Petreska, Ángel Gil-Izquierdo, Marina Stefova, Ljuba Evstatieva and Vassya Bankova	51
A New Phenolic and a New Lignan from the Roots of <i>Juniperus chinensis</i> Chi-I Chang, Chiy-Rong Chen, Wen-Ching Chen, Chao-Lin Kuo and Yueh-Hsiung Kuo	55
Flavones from the Stem of <i>Andrographis paniculata</i> Nees Parvataneni Radhika, Yejella Rajendra Prasad and Koduru Rajya Lakshmi	59
Antioxidant Effects of Glechoma hederacea as a Food Additive Mirjana Milovanovic, Dusan Zivkovic and Biljana Vucelic-Radovic	61
Ocimum basilicum L.: Phenolic Profile and Antioxidant-related Activity H.J. Damien Dorman and Raimo Hiltunen	65
Variation in Antioxidant Activity of Extracts of Acacia confusa of Different Ages Yu-Tang Tung and Shang-Tzen Chang	73
4'-O-Methylglycosylation of Curcumin by <i>Beauveria bassiana</i> Jia Zeng, Nan Yang, Xiu-Min Li, Paul J. Shami and Jixun Zhan	77

The Biotransformation of Aromatic Amino Acids by <i>Phoma macrostoma</i> Yevgeniya Tyagunova and John L. Sorensen	81
Lipoxygenase Inhibitory Activity of 6-Pentadecanylsalicylic Acid without Prooxidant Effect	
Isao Kubo, Tae Joung Ha and Kuniyoshi Shimizu Capsaicinoids in the Hottest Pepper Bhut Jolokia and its Antioxidant and Antiinflammatory Activities	85
Yunbao Liu and Muraleedharan Ĝ. Nair	91
Anti-diabetes Constituents in Leaves of Smallanthus sonchifolius Xiang Zheng, He Fan, Kang Ting-Guo, Dou De-Qiang, Gai Kuo, Shi Yu-Yuan, Kim Young-Ho and Dong Feng	95
Phytotoxic Chlorophyll Derivatives from <i>Petrorhagia velutina</i> (Guss.) Ball et Heyw Leaves Brigida D'Abrosca, Monica Scognamiglio, Nikolaos Tsafantakis, Antonio Fiorentino and Pietro Monaco	99
Inhibitory Effects of Indirubin Derivatives on the Growth of HL-60 Leukemia Cells Nguyen Manh Cuong, Bui Huu Tai, Dang Hoang Hoan, Tran Thu Huong, Young Ho Kim, Jae-Hee Hyun and Hee-Kyoung Kang	103
The Role of Secreting Structures Position on the Leaf Volatile Organic Compounds of <i>Hypericum androsaemum</i> Claudia Giuliani, Roberto Maria Pellegrino, Bruno Tirillini and Laura Maleci Bini	107
Solvent-free Microwave Extraction of Essential Oils from Laurus nobilis and Melissa officinalis: Comparison with Conventional Hydro-distillation and Ultrasound Extraction Burcu Uysal, Fazli Sozmen and Birsen S. Buyuktas	111
Chemotypes of Pistacia atlantica Leaf Essential Oils from Algeria	
Nadhir Gourine, Isabelle Bombarda, Mohamed Yousfi and Emile M. Gaydou Misidentification of Tansy, <i>Tanacetum macrophyllum</i> , as Yarrow, <i>Achillea grandifolia</i> : a Health Risk or Benefit? Niko S. Radulović, Polina D. Blagojević, Danielle Skropeta, Aleksandra R. Zarubica, Bojan K. Zlatković and Radosav M. Palić	115
Essential Oil Composition of Achillea clusiana from Bulgaria	120
Antoaneta Trendafilova, Milka Todorova and Antonina Vitkova Composition of Essential Oil of Aerial Parts of Chamomilla suaveolens from Estonia	129
Anne Orav, Janne Sepp, Tiiu Kailas, Mati Müürisepp, Elmar Arak and Ain Raal Effects of Essential Oils on the Growth of Giardia lamblia Trophozoites	133
Marisa Machado, Maria do Céu Sousa, Lígia Salgueiro and Carlos Cavaleiro	137
Anxiolytic Effect and Tissue Distribution of Inhaled Alpinia zerumbet Essential Oil in Mice Tadaaki Satou, Shio Murakami, Mariko Matsuura, Shinichiro Hayashi and Kazuo Koike	143
Biological Activities of <i>Bellis perennis</i> Volatiles and Extracts Neslihan Kavalcıoğlu, Leyla Açık, Fatih Demirci, Betül Demirci, Hülya Demir and K. Hüsnü Can Başer	147
Antiproliferative Effects of Volatile Oils from <i>Centipeda minima</i> on Human Nasopharyngeal Cancer CNE Cells Miaoxian Su, Peng Wu, Yaolan Li and Hau Yin Chung	151
Stimulating Effect of Aromatherapy Massage with Jasmine Oil Tapanee Hongratanaworakit	157
Review/Account	
Essential Oil Biosynthesis and Regulation in the Genus <i>Cymbopogon</i> Deepak Ganjewala and Rajesh Luthra	163
Number 2	
Antimosquito and Antimicrobial Clerodanoids and a Chlorobenzenoid from <i>Tessmannia</i> species Charles Kihampa, Mayunga H.H. Nkunya, Cosam C. Joseph, Stephen M. Magesa, Ahmed Hassanali, Matthias Heydenreich and Erich Kleinpeter	175
Two New Terpenoids from <i>Trichilia quadrijuga</i> (Meliaceae) Virginia F. Rodrigues, Hadria M. Carmo, Raimundo Braz Filho, Leda Mathias and Ivo J. Curcino Vieira	179
Effect of Miconazole and Terbinafine on Artemisinin Content of Shooty Teratoma of Artemisia annua	
Rinki Jain and Vinod Kumar Dixit A New Triterpenoid Saponin from the Stem Bark of Pometia pinnata	185
Faryal Vali Mohammad, Viqar Uddin Ahmad, Mushtaq Noorwala and Nordin HJ.Lajis 27-Hydroxyoleanolic Acid Type Triterpenoid Saponins from <i>Anemone raddeana</i> rhizome	191
Li Fan, Jin-Cai Lu, Jiao Xue, Song Gao, Bei-Bei Xu, Bai-Yi Cao and Jing-Jing Zhang	197
Steroids from the South China Sea Gorgonian Subergorgia suberosa Shu-Hua Qi, Cheng-Hai Gao, Pei-Yuan Qian and Si Zhang	201
Auroside, a Xylosyl-sterol, and Patusterol A and B, two Hydroxylated Sterols, from two Soft Corals <i>Eleutherobia aurea</i> and <i>Lobophytum patulum</i> Dina Yeffet, Amira Rudi, Sharon Ketzinel, Yehuda Benayahu and Yoel Kashman	205

Qi Hong, David E. Minter, Scott G. Franzblau, Mohammad Arfan, Hazrat Amin and Manfred G. Reinecke	211
Phenolic Derivatives with an Irregular Sesquiterpenyl Side Chain from <i>Macaranga pruinosa</i> Yana M. Syah and Emilio L. Ghisalberti	219
Hexaoxygenated Flavonoids from <i>Pteroxygonum giraldii</i> Yanhong Gao, Yanfang Su, Shilun Yan, Zhenhai Wu, Xiao Zhang, Tianqi Wang and Xiumei Gao	223
Comparative Study of the Antioxidant Activities of Eleven Salvia Species Gábor Janicsák, István Zupkó, Imre Máthé and Judit Hohmann	227
Dibenzocyclooctadiene Lignans from Fructus Schisandrae Chinensis Improve Glucose Uptake in vitro Jing Zhang, Lei Ling Shi and Yi Nan Zheng	231
Honokiol and Magnolol Production by <i>in vitro</i> Micropropagated Plants of <i>Magnolia dealbata</i> , an Endangered Endemic Mexican Species	
Fabiola Domínguez, Marco Chávez, María Luisa Garduño-Ramírez, Víctor M. Chávez-Ávila, Martín Mata and Francisco Cruz-Sosa	235
Design, Synthesis and Biological Evaluation of Novel Spin-Labeled Derivatives of Podophyllotoxin Jia-qiang Zhang, Zhi-wei Zhang, Ling Hui and Xuan Tian	241
Secondary Metabolites of the Phytopathogen <i>Peronophythora litchi</i> Haihui Xie, Yaoguang Liang, Jinghua Xue, Qiaolin Xu, Yueming Jiang and Xiaoyi Wei	245
Bioassay-guided Isolation of Antibacterial and Cytotoxic Compounds from the Mesophilic Actinomycete M-33-5 Mustafa Urgen, Fatma Kocabaş, Ayşe Nalbantsoy, Esin Hameş Kocabas, Ataç Uzel and Erdal Bedir	249
Aristolactams, 1-(2-C-Methyl-β-D-ribofuranosyl)-uracil and Other Bioactive Constituents of <i>Toussaintia orientalis</i> Josiah O. Odalo, Cosam C. Joseph, Mayunga H.H. Nkunya, Isabel Sattler, Corinna Lange, Gollmick Friedrich, Hans-Martin Dahse and Ute Möllman	253
Salaramides A and B; Two α-Oxoamides Isolated from the Marine Sponge Hippospongia sp. (Porifera,	233
Dictyoceratida) Julia Bensemhoun, Amira Rudi, Yoel Kashman, Emile M. Gaydou, Jean Vacelet and Maurice Aknin	259
Antioxidant Activity and Total Phenolic Content of 24 Lamiaceae Species Growing in Iran Omidreza Firuzi, Katayoun Javidnia, Maryam Gholami, Mohammad Soltani and Ramin Miri	261
Preparation and Characterization of 5'-Phosphodiesterase from Barley Malt Rootlets Jie Hua and Ke-long Huang	265
Volatiles of <i>Callicarpa macrophylla</i> : A Rich Source of Selinene Isomers Anil K. Singh, Chandan S. Chanotiya, Anju Yadav and Alok Kalra	269
Volatile Components of Aerial Parts of <i>Centaurea nigrescens</i> and <i>C. stenolepis</i> Growing Wild in the Balkans Carmen Formisano, Felice Senatore, Svetlana Bancheva, Maurizio Bruno, Antonella Maggio and Sergio Rosselli	273
Compositional Variability in Essential Oil from Different Parts of <i>Alpinia speciosa</i> from India Rajendra C. Padalia, Chandan S. Chanotiya and V. Sundaresan	279
Composition at Different Development Stages of the Essential Oil of Four Achillea Species Grown in Iran Majid Azizi, Remigius Chizzola, Askar Ghani and Fatemeh Oroojalian	283
Characterization of Some Italian Ornamental Thyme by Their Aroma Alessandra Bertoli, Szilvia Sárosi, Jenő Bernáth and Luisa Pistelli	291
Characterization of <i>Szovitsia callicarpa</i> Volatile Constituents Obtained by Micro- and Hydrodistillation Betül Demirci, Nurgün Küçükboyacı, Nezaket Adıgüzel, K. Hüsnü Can Başer and Fatih Demirci	297
Biological Activity of Essential Oils from <i>Aloysia polystachya</i> and <i>Aloysia citriodora</i> (Verbenaceae) against the Soybean Pest <i>Nezara viridula</i> (Hemiptera: Pentatomidae)	201
Jorge O. Werdin González, María M. Gutiérrez, Ana P. Murray and Adriana A. Ferrero Essential Oil from the Underground Parts of <i>Laserpitium zernyi</i> : Potential Source of α-Bisabolol and its	301
Antimicrobial Activity Višnja Popović, Silvana Petrović, Milica Pavlović, Marina Milenković, Maria Couladis, Olga Tzakou, Šemija Duraki and Marjan Niketić	307
Chemical Composition and Antibacterial Activity of the Essential Oil from Fruits of <i>Bursera tomentosa</i> José Moreno, Rosa Aparicio, Judith Velasco, Luis B Rojas, Alfredo Usubillaga and Marcó Lue-Merú	311
Composition and Antioxidant Activity of <i>Inula crithmoides</i> Essential Oil Grown in Central Italy (Marche Region) Laura Giamperi, Anahi Bucchini, Daniele Fraternale, Salvatore Genovese, Massimo Curini and Donata Ricci	315
Foeniculum vulgare Essential Oils: Chemical Composition, Antioxidant and Antimicrobial Activities Maria Graça Miguel, Cláudia Cruz, Leonor Faleiro, Mariana T. F. Simões, Ana Cristina Figueiredo, José G. Barroso and Luis G. Pedro	319
Chemical Variability, Antifungal and Antioxidant Activity of <i>Eucalyptus camaldulensis</i> Essential Oil from Sardinia Andrea Barra, Valentina Coroneo, Sandro Dessi, Paolo Cabras and Alberto Angioni	329

Composition and Anti-Wood-Decay Fungal Activities of the Leaf Essential oil of <i>Machilus philippinensis</i> from Taiwan Chen Lung He, Kuang Ping Hey, Fugang I Chen Wong, Chei Wi Lin and Yu Cheng Su	337
Chen-Lung Ho, Kuang-Ping Hsu, Eugene I-Chen Wang, Chai-Yi Lin and Yu-Chang Su Composition, Cytotoxicity and Antioxidant Activity of the Essential Oil of <i>Dracocephalum surmandinum</i> from Iran	
Ali Sonboli, Mohammad Ali Esmaeili, Abbas Gholipour and Mohammad Reza Kanani Antifungal Activities of Ocimum sanctum Essential Oil and its Lead Molecules	341
Amber Khan, Aijaz Ahmad, Nikhat Manzoor and Luqman A. Khan	345
Number 3	
(R)-(-)-Linalyl Acetate and (S)-(-)-Germacrene D from the Leaves of Mexican Bursera linanoe Koji Noge, Nobuhiro Shimizu and Judith X. Becerra	351
Three New Insecticidal Sesquiterpene Polyol Esters from <i>Celastrus angulatus</i> Shaopeng Wei, Minchang Wang, Zhiqin Ji, Baojun Shi, Shengkun Li and Jiwen Zhang	355
Triterpenoids from Aerial Parts of Glochidion eriocarpum	
Vu Kim Thu, Phan Van Kiem, Pham Hai Yen, Nguyen Xuan Nhiem, Nguyen Huu Tung, Nguyen Xuan Cuong, Chau Van Minh, Hoang Thanh Huong, Trinh Van Lau, Ngo Thi Thuan and Young Ho Kim	361
Identification of Sakurasosaponin as a Cytotoxic Principle from <i>Jacquinia flammea</i> Alberto Sánchez-Medina, Luis M. Peña-Rodríguez, Filogonio May-Pat, Gloria Karagianis, Peter G. Waterman, Anthony I. Mallet and Solomon Habtemariam	365
Vasoconstrictor and Inotropic Effects Induced by the Root Bark Extracts of Anthocleista schweinfurthii	303
Nadège Kabamba Ngombe, Dibungi T. Kalenda, Joëlle Quetin-Leclercq and Nicole Morel	369
Hydroxylation of Diosgenin by Absidia coerulea Ying Zhao, Ling-Mei Sun, Xiao-Ning Wang, Tao Shen, Mei Ji and Hong-Xiang Lou	373
Dibromotyrosine and Histamine Derivatives from the Tropical Marine Sponge <i>Aplysina</i> sp. Elena A. Santalova, Vladimir A. Denisenko and Valentin A. Stonik	377
In vitro Inhibitory Activities of Lauraceae Aporphine Alkaloids Ericsson David Coy Barrera and Luis Enrique Cuca Suárez	383
Leishmanicidal activity of racemic ± 8-[(4-Amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-	
[3,4-dichlorophenoxy]quinoline Angélica P. Isaac-Márquez, James D. McChesney, N.P. Dammika Nanayakara, Abhay R. Satoskar and Claudio M. Lezama-Dávila	387
Insecticidal, Mutagenic and Genotoxic Evaluation of Annonaceous Acetogenins Olga Álvarez Colom, Analia Salvatore, Eduardo Willink, Roxana Ordóñez, María I. Isla, Adriana Neske and Alicia Bardón	391
Water-retentive and Anti-inflammatory Properties of Organic and Inorganic Substances from Korean Sea Mud Jung-Hyun Kim, Jeongmi Lee, Hyang-Bok Lee, Jeong Hyun Shin and Eun-Ki Kim	395
A Phenethyl bromo ester from Citharexylum fruticosum Seru Ganapaty, Desaraju Venkata Rao and Steve Thomas Pannakal	399
New 2-(2-Phenylethyl)chromone Derivatives from the Seeds of <i>Cucumis melo</i> L var. <i>reticulatus</i> Sabrin R. M. Ibrahim	403
Phenolic Compounds in Different Barley Varieties: Identification by Tandem Mass Spectrometry (QStar) and	403
NMR; Quantification by Liquid Chromatography Triple Quadrupole-Linear Ion Trap Mass Spectrometry (Q-Trap) Kamilla Klausen, Anne G. Mortensen, Bente Laursen, Kim F. Haselmann, Birthe Møller Jespersen and Inge S. Fomsgaard	407
Effect of Cleome arabica Leaf Extract Treated by Naringinase on Human Neutrophil Chemotaxis Hamama Bouriche and Juegen Arnhold	415
Two New Carthamosides from <i>Carthamus oxycantha</i> Zahid Hassan, Viqar Uddin Ahmad, Javid Hussain, Aqib Zahoor, Imran Nafees Siddiqui, Nasir Rasool and Muhammad Zubair	419
A New Lignan Dimer from <i>Mallotus philippensis</i> Nguyen Thi Mai, Nguyen Xuan Cuong, Nguyen Phuong Thao, Nguyen Hoai Nam, Nguyen Huu Khoi, Chau Van Minh, Yvan Vander Heyden, Ngo Thi Thuan, Nguyen Van Tuyen, Joëlle Quetin-Leclercq and Phan Van Kiem	423
Tectone, a New Antihyperglycemic Anthraquinone from <i>Tectona grandis</i> Leaves Nivedita Shukla, Manmeet Kumar, Akanksha, Ghufran Ahmad, Neha Rahuja, Amar B. Singh, Arvind K. Srivastava, Siron M. Rajendran and Rakesh Maurya	427
A Semi-quantitative FIA-ESI-MS Method for the Rapid Screening of <i>Hypericum perforatum</i> Crude Extracts Anna Piovan, Raffaella Filippini and Rosy Caniato	431
Free and Bound Cinnamic Acid Derivatives in Corsica Sweet Blond Oranges Eric Carrera, Mohamed Vall Ould El Kebir, Camille Jacquemond, François Luro, Yves Lozano and Emile M. Gaydou	435
Antioxidants from Tropical Herbs Rasyidah Razah and Azlina Abdul Aziz	441

The Antitumor and Immunostimulating Activities of Water Soluble Polysaccharides from Radix Acontit,	
Radix Aconiti Lateralis and Radix Aconiti Kusnezoffii Tingting Gao, Hongtao Bi, Shuai Ma and Jingmei Lu	447
Seasonal Variation in the Leaf Essential Oil Composition of <i>Zanthoxylum clava-herculis</i> growing in Huntsville,	
Alabama Lauren C. Eiter, Henry Fadamiro and William N. Setzer	457
Supercritical CO ₂ Extraction of Essential Oils from Chamaecyparis obtusa	
Yinzhe Jin, Dandan Han, Minglei Tian and Kyung-Ho Row Variability of the Essential Oil Content and Composition of Chamomile (<i>Matricaria recutita</i> L.) affected by	461
Weather Conditions	
Beáta Gosztola, Szilvia Sárosi and Éva Németh	465
Acaricidal Activity against <i>Tetranychus urticae</i> and Chemical Composition of Peel Essential Oils of Three Citrus Species Cultivated in NE Brazil	
Claudio Pereira Araújo Júnior, Claudio Augusto Gomes da Camara, Ilzenayde Araújo Neves, Nicolle de Carvalho Ribeiro, Cristianne Araújo Gomes, Marcílio Martins de Moraes and Priscilla de Sousa Botelho	471
Essential Oil Composition, Antioxidant Capacity and Antifungal Activity of <i>Piper divaricatum</i> Joyce Kelly R. da Silva, Eloísa Helena A. Andrade, Elsie F. Guimarães and José Guilherme S. Maia	477
Chemical Composition, Toxicity and Larvicidal Activity of the Essential Oil from the Whole Plant of Acalypha segetalis from South-West Nigeria	
Sherifat A. Aboaba, Olapeju O. Aiyelaagbe and Olusegun Ekundayo	481
<u>Review/Account</u>	
Toxicity of Non-protein Amino Acids to Humans and Domestic Animals Peter B. Nunn, E. Arthur Bell (the late), Alison A. Watson and Robert J. Nash	485
	403
Number 4	
Novel Bisabolane Sesquiterpenes from the Marine-derived Fungus Verticillium tenerum Celso Almeida, Somaia Elsaedi, Stefan Kehraus and Gabriele M. König	507
Sesquiterpene Lactones from <i>Inula oculus-christi</i> Mahmoud Mosaddegh, Maryam Hamzeloo Moghadam, Saeedeh Ghafari, Farzaneh Naghibi, Seyed Nasser Ostad and Roger W. Read	511
Biotransformation of α-Cedrol and Caryophyllene Oxide by the Fungus Neurospora crassa	
Ismail Kiran, Zeynep Durceylan, Neşe Kirimer, K. Hüsnü Can Başer, Yoshiaki Noma and Fatih Demirci	515
Two New Diterpene Phenols from <i>Calocedrus decurrans</i> Sheeba Veluthoor, Shujun Li, Rick G. Kelsey, Marc C. Dolan, Nicholas A. Panella and Joe Karchesy	519
Vitamin E Ameliorates High Dose trans-Dehydrocrotonin-Associated Hepatic Damage in Mice Alana Fontales Lima Rabelo, Marjorie Moreira Guedes, Adriana da Rocha Tomé, Patricia Rodrigues Lima, Maria Americia Marial Silvaria Barina da Savar Lina America da Silvar Controlla. Elfaira Almarida Savar	
Maria Aparecida Maciel, Silveria Regina de Sousa Lira, Ana Carla da Silva Carvalho, Flávia Almeida Santos and Vietla Satyanarayana Rao	523
A Pentacyclic Triterpene from Litchi chinensis	520
Imran Malik, Viqar Uddin Ahmad, Shazia Anjum and Fatima. Z. Basha Ellagitannins from Geranium potentillaefolium and G. bellum	529
Juan A. Gayosso-De-Lucio, J. Martín Torres-Valencia, Carlos M. Cerda-García-Rojas and Pedro Joseph-Nathan	531
The Quantitative Effects of Temperature and Light Intensity on Phenolics Accumulation in St. John's Wort (Hypericum perforatum) Mehmet Seeket Odekes, Needet Comes, Circuit Circle, Ielite Bediviene Veldimense Jenulis and Lindes Ivenevales.	<i>535</i>
Mehmet Serhat Odabas, Needet Camas, Cuneyt Cirak, Jolita Radušiene, Valdimaras Janulis and Liudas Ivanauskas Chemical Analysis of the Principal Flavonoids of Radix Hedysari by HPLC	535
Yi Liu, Yuying Zhao, Hubiao Chen, Bin Wang and Qingying Zhang	541
Chemical Composition and Bioactivity of <i>Pleiogynium timorense</i> (Anacardiaceae) Eman Al Sayed, Olli Martiskainen, Jari Sinkkonen, Kalevi Pihlaja, Nahla Ayoub, Abd-El Naser Singab and Mohamed El-Azizi	545
A Chromone from Seseli praecox (Apiaceae) Marco Leonti, Laura Casu, Maria Novella Solinas, Filippo Cottiglia, Pierluigi Caboni, Costantino Floris, Juerg Gertsch	.
and Anna Rita Saba Determination of Chromones in Dysonhylla stallata by HPI C: Method Davelonment, Validation and Comparison	551
Determination of Chromones in <i>Dysophylla stellata</i> by HPLC: Method Development, Validation and Comparison of Different Extraction Methods Raju Gautam, Amit Srivastava and Sanjay M. Jachak	555
Antimicrobial Coumarins from the Stem Bark of Afraegle paniculata	
Valerie Beatrice Tsassi, Hidayat Hussain, Bouberte Yemele Meffo, Simeon F. Kouam, Etienne Dongo, Barbara Schulz, Ivan R. Green and Karsten Krohn	559

A Novel Glycoside from <i>Acanthus hirsutus</i> (Acanthaceae) Seval Çapanlar, Nazlı Böke, İhsan Yaşa and Süheyla Kırmızıgül	563
Stemphol Galactoside, a New Stemphol Derivative Isolated from the Tropical Endophytic Fungus	300
Gaeumannomyces amomi Juangjun Jumpathong, Muna Ali Abdalla, Saisamorn Lumyong and Hartmut Laatsch	567
Suppression of Nitric Oxide Implicated in the Protective Effect of Echinacoside on H ₂ O ₂ -Induced PC12 Cell Injury Rong Kuang, Yiguo Sun and Xiaoxiang Zheng	571
Chemical Changes during Fermentation of <i>Abhayarishta</i> and its Standardization by HPLC-DAD Uma Ranjan Lal, Shailendra Mani Tripathi, Sanjay M. Jachak, Kamlesh Kumar Bhutani and Inder Pal Singh	575
Betaine Yields from Marine Algal Species Utilized in the Preparation of Seaweed Extracts Used in Agriculture Gerald Blunden, Peter F. Morse, Imre Mathe, Judit Hohmann, Alan T. Critchley and Stephen Morrell	581
Differentiation of Symphytum Species Using RAPD and Seed Fatty Acid Patterns Tamer Özcan	587
New Angucyclines and Antimicrobial Diketopiperazines from the Marine Mollusk-Derived Actinomycete Saccharothrix espanaensis An 113 Nataliya I. Kalinovskaya, Anatoly I. Kalinovsky, Lyudmila A. Romanenko, Pavel S. Dmitrenok and Tatyana A. Kuznetsova	597
Cellulose of <i>Salicornia brachiata</i> Naresh D Sanandiya, Kamalesh Prasad, Ramavatar Meena and Arup K Siddhanta	603
In vivo Release of Lectins from the Green Alga Ulva fasciata Pablo Djabayan-Djibeyan, Roslyn Gibbs and Brian Carpenter	607
Essential Oil from Leaves of <i>Lippia dulcis</i> Grown in Colombia Bárbara Moreno-Murillo, Clara Quijano-Célis, Arturo Romero R. and Jorge A. Pino	613
Analysis of Chemical Constituents of the Volatile Oil from Leaves of Solanum bicolor Alida Pérez Colmenares, Luis B. Rojas, Eilen Arias, Juan Carmona Arzola and Alfredo Usubillaga	615
Compositions and <i>in vitro</i> Anticancer activities of the Leaf and Fruit Oils of <i>Litsea cubeba</i> from Taiwan Chen-Lung Ho, Ou Jie-Ping, Yao-Chi Liu, Chien-Ping Hung, Ming-Chih Tsai, Pei-Chun Liao, Eugene I-Chen Wang, Yi-Lin Chen and Yu-Chang Su	617
GC-MS Analysis, Antibacterial Activity and Genotoxic Property of <i>Erigeron mucronatus</i> Essential Oil Bahlul Z. Awen, C. Ramachandra Unnithan, Subban Ravi and Akoni J. Lakshmanan	621
Nepetalactone Content and Antibacterial Activity of the Essential Oils from Different Parts of Nepeta persica Ali Shafaghat and Khodamali Oji	625
Chemical Composition and Antiradical Activity of the Essential Oil from Satureja intricata, S. obovata and their Hybrid Satureja x delpozoi María J. Jordán, P. Sánchez-Gómez, Juan F. Jiménez, María Quílez and José A. Sotomayor	629
A Chemical Marker Proposal for the <i>Lantana</i> genus: Composition of the Essential Oils from the Leaves of <i>Lantana radula</i> and <i>L. canescens</i>	02)
José G. Sena Filho, Haroudo S. Xavier, José M. Barbosa Filho and Jennifer M. Duringer	635
Comparison of the Volatile Constituents of <i>Elsholtzia fruiticosa</i> Extracted by Hydrodistillation, Supercritical Fluid Extraction and Head Space Analysis	<i>C</i> 41
Rikki Saini, Shailja Guleria, Vijay K. Kaul, Brij Lal, Garikapati D. Kiran Babu and Bikram Singh The Effect of Essential Oil Formulations for Potato Sprout Suppression	641
Moses S. Owolabi, Labunmi Lajide, Matthew O. Oladimeji and William N. Setzer	645
Review/Account	
Phytochemicals and Biological Activities of Gentiana Species Jun-Li Yang, Lei-Lei Liu and Yan-Ping Shi	649
Number 5	
A new Bisabolane Derivative of <i>Leontopodium andersonii</i> Stefan Schwaiger, Stefanie Hehenberger, Ernst P. Ellmerer and Hermann Stuppner	667
Eudesmanolides and Methyl Ester Derivatives from <i>Dimerostemma arnottii</i> Sérgio Ricardo Ambrosio, Ricardo Stefani, Vladimir Constantino Gomes Heleno, Márcio Antônio de Menezes, Antonio Gilberto Ferreira, Paulo Gustavo Barboni Dantas Nascimento, Mara Angelina Galvão Magenta and Fernando Batista Da Costa	669
Acid Rearrangment of Epoxy-germacranolides and Absolute Configuration of 1β,10α-Epoxy-salonitenolide Sergio Rosselli, Antonella Maria Maggio, Rosa Angela Raccuglia, Susan L. Morris-Natschke, Kenneth F. Bastow,	
Kuo-Hsiung Lee and Maurizio Bruno Sesquiterpenes Lactones and Flavonoids from Eremanthus argenteus (Asteraceae)	675
Humberto Takeshi Sakamoto, Eugênio Paceli Laudares, Antônio Eduardo Miller Crotti, Norberto Peporine Lopes, Walter Vichnewski, João Luis Callegari Lopes and Vladimir Constantino Gomes Heleno	681

Constituents of Calamintha ashei: Effects on Florida Sandhill Species	
Marios A. Menelaou, Hidelisa P. Henandez, Francisco A. Macías, Jeffrey D. Weidenhamer, G. Bruce Williamson, Frank R. Fronczek, Helga D. Fischer and Nikolaus H. Fischer	685
Biotransformation of Sesquiterpenoids from Liverworts by Fungi and Mammals	
Yoshinori Asakawa, Toshihiro Hashimoto and Yoshiaki Noma Identification and Functional Characterization of a new Sunflower Germacrene A Synthase (HaGAS3)	695
Jens Göpfert, Anna-Katharina Bülow and Otmar Spring	709
Anticancer Activity of Andrographolide Semisynthetic Derivatives Vidya Menon and Sujata Bhat	717
Prenylated Pterocarpanes from <i>Erythrina melanacantha</i> Wera Hauschild, Patrick B. Chalo Mutiso and Claus M. Passreiter	721
Natural Products from <i>Scorzonera aristata</i> (Asteraceae) Manuela Jehle, Johanna Bano, Ernst P. Ellmerer and Christian Zidorn	725
Protective Effect on Human Lymphocytes of Some Flavonoids Isolated from Two Achillea Species	723
Ivana Aljančić, Miroslava Stanković, Vele Tešević, Ljubodrag Vujisić, Vlatka Vajs and Slobodan Milosavljević	729
Effects of Caffeoylquinic Acid Derivatives and C-Flavonoid from Lychnophora ericoides on in vitro Inflammatory Mediator Production	
Michel David dos Santos, Guanjie Chen, Maria Camila Almeida, Denis Melo Soares, Glória Emília Petto de Souza, Norberto Peporine Lopes and R. Clark Lantz	733
LC-MS-MS Identification and Determination of the Flavone-C-Glucoside Vicenin-2 in Rat Plasma Samples Following Intraperitoneal Administration of Lychnophora Extract	
Valquiria A. Polisel Jabor, Denis Melo Soares, Andrea Diniz, Glória Emilia Petto de Souza and Norberto Peporine Lopes	741
A New Bianthracene C-arabinopyranoside from Senna septemtrionalis Gizachew Alemayehu, Legesse Adane and Berhanu M. Abegaz	747
An antiproliferative xanthone of Symphonia pauciflora from the Madagascar rainforest	
Ende Pan, Shugeng Cao, Peggy J. Brodie, James S. Miller, Rolland Rakotodrajaona, Fidy Ratovoson, Chris Birkinshaw, Rabodo Andriantsiferana, Vincent E. Rasamison and David G. I. Kingston	751
Computer-aided Structure Elucidation of Neolignans	701
Mara B. Costantin, Marcelo J. P. Ferreira, Gilberto V. Rodrigues and Vicente P. Emerenciano	755
New Improvements in Automatic Structure Elucidation Using the LSD (Logic for Structure Determination) and the SISTEMAT Expert Systems	
Bertrand Plainchont, Jean-Marc Nuzillard, Gilberto V. Rodrigues, Marcelo J. P. Ferreira, Marcus T. Scotti and Vicente P. Emerenciano	763
A New ent-Labdane Diterpene Glycoside from the Leaves of Casearia sylvestris Wei Wang, Zulfiqar Ali, Xing-Cong Li and Ikhlas A. Khan	771
Triterpene Saponins from the Fruits of <i>Phytolacca rugosa</i> (Phytolaccaeae) Elier Galarraga M., Anne-Claire Mitaine-Offer, Juan Manuel Amaro-Luis, Tomofumi Miyamoto, Laurent Pouységu, Stéphane Quideau, Luis B. Rojas and Marie-Aleth Lacaille-Dubois	775
Preliminary Investigation of Naringenin Hydroxylation with Recombinant E. coli Expressing Plant Flavonoid	
Hydroxylation Gene Ilef Limem-Ben Amor, Nidhal Salem, Emmanuel Guedon, Jean-Marc Engasser, Leila Chekir-Ghedrira and Mohamed Ghoul	777
Rapid Analysis of the Main Components of the Total Glycosides of <i>Ranunculus japonicus</i> by UPLC/Q-TOF-MS Wen Rui, Hongyuan Chen, Yuzhi Tan, Yanmei Zhong and Yifan Feng	783
Constituents of <i>Da-Cheng-Qi</i> Decoction and its Parent Herbal Medicines Determined by LC-MS/MS Fengguo Xu, Ying Liu, Rui Song, Haijuan Dong and Zunjian Zhang	789
Pharmacokinetic Comparison in Rats of Six Bioactive Compounds between Da-Cheng-Qi Decoction and its	
Parent Herbal Medicines Fengguo Xu, Ying Liu, Haijuan Dong, Rui Song and Zunjian Zhang	795
Structure Determination of Two New Monocillin I Derivatives	004
Jixun Zhan, E. M. Kithsiri Wijeratne and A. A. Leslie Gunatilaka Isolation of Salvianolic acid A, a Minor Phenolic Carboxylic Acid of Salvia miltiorrhiza	801
Luyang Lu, Hao Zhang, Yu Qian and Yuan Yuan	805
Antimicrobial Activity of the Dichloromethane Extract from <i>in vitro</i> Cultured Roots of <i>Morinda royoc</i> and Its Main Constituents	
Janetsy Borroto, Ricardo Salazar, Alejandro Pérez, Yemeys Quiros, Martha Hernandez, Noemí Waksman and	
Reinaldo Trujillo Beauvericin from the Endophytic Fungus, Fusarium redolens, Isolated from Dioscorea zingiberensis and Its	809
Antibacterial Activity	_
Lijian Xu, Jihua Wang, Jianglin Zhao, Peiqin Li, Tijiang Shan, Jingguo Wang, Xiaolin Li and Ligang Zhou	811

Phenyl Alkynes Rich Essential Oil of <i>Artemisia capillaris</i> Rakesh K. Joshi, Rajendra C. Padalia and Chandra S. Mathela	815
Essential Oil Composition of the Different Parts of <i>Eryngium aquifolium</i> from Spain Jesús Palá-Paúl, Jaime Usano-Alemany, Joseph J. Brophy, María J. Pérez-Alonso and Ana-Cristina Soria	817
Essential Oil Content and Composition, Nutrient and Mycorrhizal Status of Some Aromatic and Medicinal Plants of Northern Greece	000
Nikitas Karagiannidis, Hellen Panou-Filotheou, Diamando Lazari, Ioannis Ipsilantis and Christina Karagiannidou Composition and Antimicrobial Activity of the Essential Oils from Flowers of Senecio othonnae, S. racemosus	823
and <i>S. nemorensis</i> Osman Üçüncü, Nuran Kahriman, Salih Terzioğlu, Şengül Alpay Karaoğlu and Nurettin Yaylı	831
Chemical Composition and Antimicrobial Activity of Essential Oils of Genista ulicina and G. vepres	051
Takia Lograda, Adel Nadjib Chaker, Jean Claude Chalchat, Messaoud Ramdani, Hafsa Silini, Gilles Figueredo and Pierre Chalard	835
Number 6	
α-Glucosidase Inhibitory Constituents of Linaria kurdica subsp. eriocalyx İrfan Aydoğdu, Figen Zihnioğlu, Tamer Karayildirim, Derya Gülcemal, Özgen Alankuş-Çalışkan and Erdal Bedir	841
Synthesis and Insecticidal Activities of New Ether-Derivatives of Celangulin-V Jiwen Zhang, Zhaonong Hu, Hua Yang and Wenjun Wu	845
New Sesquiterpene Lactone and Other Constituents from <i>Centaurea sulphurea</i> (Asteraceae) Hichem Lakhal, Tarek Boudiar, Ahmed Kabouche, Zahia Kabouche, Rachid Touzani and Christian Bruneau	849
Protective Effects of Isoatriplicolide Tiglate from <i>Paulownia coreana</i> against Glutamate-induced Neurotoxicity in Primary Cultured Rat Cortical Cells	
Ill-Min Chung, Eun-Hye Kim, Hyun-Seok Jeon and Hyung-In Moon	851
Antimicrobial and Antiparasitic Abietane Diterpenoids from the Roots of Clerodendrum eriophyllum Francis Machumi, Volodymyr Samoylenko, Abiy Yenesew, Solomon Derese, Jacob O. Midiwo, Frank T. Wiggers, Melissa R. Jacob, Babu L. Tekwani, Shabana I. Khan, Larry A. Walker and Ilias Muhammad	853
Tetranortriterpenoids from <i>Spathelia sorbifolia</i> (Rutaceae) Denise S. Simpson, Stewart McLean, William F. Reynolds and Helen Jacobs	859
A Validated Method for Standardization of the Bark of <i>Clerodendron serratum</i> Arunava Gantait, Payel Roy, Neelesh Kumar Nema, Pradip Kumar Dutta and Pulok Kumar Mukherjee	863
Activity of Extracts and Procesterol from <i>Calotropis gigantea</i> against <i>Entamoeba histolytica</i> Shailendra Singh, Neelam Bharti, Manoj Chugh, Fehmida Naqvi and Amir Azam	867
Ampullosine, a new Isoquinoline Alkaloid from Sepedonium ampullosporum (Ascomycetes) Dang Ngoc Quang, Jürgen Schmidt, Andrea Porzel, Ludger Wessjohann, Mark Haid and Norbert Arnold	869
HPLC - DAD Analysis of Lycorine in Amaryllidaceae Species Gulen Irem Kaya, Derya Cicek, Buket Sarıkaya, Mustafa Ali Onur and Nehir Unver Somer	873
Simultaneous HPLC Determination of Three Bioactive Alkaloids in the Asian Medicinal Plant Stephania rotunda Sothavireak Bory, Sok-Siya Bun, Béatrice Baghdikian, Fathi Mabrouki, Sun Kaing Cheng, Riad Elias, Hot Bun and	055
Evelyne Ollivier Impact of Cruciferous Phytoalexins on the Detoxification of Brassilexin by the Blackleg Fungus Pathogenic to	877
Brown Mustard M. Soledade C. Pedras and Ryan B. Snitynsky	883
Flavonoids from <i>Erythrina vogelii</i> (Fabaceae) of Cameroon Muhammad Imran Ali, Zeeshan Ahmed, Alain Francois Kamdem Waffo and Muhammad Shaiq Ali	889
HPLC/DAD Comparison of Sixteen Bioactive Components Between <i>Da-Cheng-Qi</i> Decoction and its Parent Herbal Medicines	
Fengguo Xu, Ying Liu, Rui Song, Haijuan Dong and Zunjian Zhang	893
Secondary Metabolites of <i>Hypericum confertum</i> and their Possible Chemotaxonomic Significance Cüneyt Çırak, Jolita Radušienė, Valdimaras Janulis and Liudas Ivanauskas	897
Antioxidant Effects of Secondary Metabolites from <i>Geranium psilostemon</i> Didem Şöhretoğlu, Suna Atasayar Sabuncuoğlu, M. Koray Sakar, Hilal Özgüneş and Olov Sterner	899
Bioactive Isoflavones from <i>Dalbergia vacciniifolia</i> (Fabaceae) Ester Innocent, Joseph J. Magadula, Charles Kihampa and Matthias Heydenreich	903
RP-HPLC Analysis and Antidiabetic Activity of Swertia paniculata	
Jagmohan S. Negi, Pramod Singh, Geeta Joshi née Pant and Mohan S. M. Rawat Antioxidants from the Leaves of Cinnamomum kotoense	907
Kuo-Chen Cheng, Man-Chun Hsueh, Hou-Chien Chang, Alan Yueh-Luen Lee, Hui-Min Wang and Chung-Yi Chen	911

Chemical Constituents and Antimicrobial Activities of Canthium horridum Biao Yang, Guangying Chen, Xiaoping Song, Zhong Chen, Xinming Song and Jing Wang	913
Colon Targeted Curcumin Delivery Using Guar Gum Edwin J. Elias, Singhal Anil, Showkat Ahmad and Anwar Daud	915
Formadienoate-A and B: Two New Long Chained Feruloyl Esters from <i>Clerodendrum formicarum</i> (Lamiaceae) of Cameroon	
Muhammad Shaiq Ali, Zeeshan Ahmed, Muhammad Imran Ali and Joseph Ngoupayo	919
Free-radical Scavenging Activity of some European Polyporales Kateřina Macáková, Lubomír Opletal, Miroslav Polášek and Věra Samková	923
<i>In vitro</i> Plant Regeneration from Callus of <i>Citrus x monstruosa</i> (Pompia), an Endemic Citrus of Sardinia Daniele Fraternale, Laura Giamperi, Anahi Bucchini, Pierpaolo Cara and Donata Ricci	927
Purification and Biochemical Characterization of Alkaline Serine Protease from <i>Caesalpinia bonducella</i> Hidayatullah Khan, Irshad Ali, Arif-ullah Khan, Mushtaq Ahmed, Zamarud Shah, Ahmad Saeed, Rubina Naz, Mohamad Rais Mustafa and Atiya Abbasi	931
Composition of the Essential Oil of <i>Argania spinosa</i> (Sapotaceae) Fruit Pulp Hicham Harhar, Said Gharby, Mohamed Ghanmi, Hanae El Monfalouti, Dominique Guillaume and Zoubida Charrouf	935
The Volatile Constituents of <i>Salvia leucantha</i> Luis B. Rojas, Tomas Visbal, Marielba Morillo, Yndra Cordero de Rojas, Juan Carmona Arzola and Alfredo Usubillaga	937
Terpenoid Composition of the Essential Oils of Teucrium royleanum and T. quadrifarium	
Lalit Mohan, Charu C. Pant, Anand B. Melkani and Vasu Dev Influence of Some Environmental Factors on the Essential Oil Variability of <i>Thymus migricus</i>	939
Alireza Yavari, Vahideh Nazeri, Fatemeh Sefidkon and Mohammad Esmail Hassani	943
Chemical Investigations of Essential Oils from Endemic Cupressaceae Trees from New Caledonia Nicolas Lebouvier, Chantal Menut, Edouard Hnawia, Audrey Illinger, Pierre Cabalion and Mohammed Nour	949
Comparative Composition of Four Essential Oils of Oregano Used in Algerian and Jordanian Folk medicine Djemaa Berrehal, Tarek Boudiar, Lakhal Hichem, Assia Khalfallah, Ahmed Kabouche, Ahmad Al-Freihat, Alireza Ghannadi, Ebrahim Sajjadi, Mitra Mehrabani, Jawad Safaei-Ghomi and Zahia Kabouche	957
Chemical Composition and Biological Activities of <i>Santiria trimera</i> (Burseraceae) Essential Oils from Gabon Raphaël Bikanga, Thomas Makani, Huguette Agnaniet, Louis Clément Obame, Fatouma Mohamed Abdoul-Latif, Jacques Lebibi and Chantal Menut	961
Chemical Composition and Larvicidal Activity of Eugenia triquetra Essential Oil from Venezuelan Andes Flor D. Mora, Jorge L. Avila, Luis B. Rojas, Rosslyn Ramírez, Alfredo Usubillaga, Samuel Segnini, Juan Carmona and Bladimiro Silva	965
Evaluation of Bioactivity of Linalool-rich Essential Oils from <i>Ocimum basilucum</i> and <i>Coriandrum sativum</i> Varieties Ahmet D. Duman, Isa Telci, Kenan S. Dayisoylu, Metin Digrak, İbrahim Demirtas and Mehmet H. Alma	969
Constituents, Antileishmanial Activity and Toxicity Profile of Volatile Oil from Berries of <i>Croton macrostachyus</i> Yinebeb Tariku, Ariaya Hymete, Asrat Hailu and Jens Rohloff	975
Free Radical Scavenging and Antibacterial Activities, and GC/MS Analysis of Essential oils from Different Parts of <i>Falcaria vulgaris</i> from Two Regions	
Ali Shafaghat	981
The Effects of Maturity on Chilli Pepper Volatile Components Determined by SDE, GC-MS and HPLC Rong Liu, Ke Xiong, Xiongze Dai, Li Wang, Zhimin Liu and Wentong Xue	985
Number 7	
A DFT Analysis of Thermal Decomposition Reactions Important to Natural Products William N. Setzer	993
Novel Terpenoids from the New Zealand Liverworts <i>Jamesoniella colorata</i> and <i>Bazzania novae-zelandiae</i> Masao Toyota, Ikuko Omatsu, Fumi Sakata, John Braggins and Yoshinori Asakawa	999
Two New C ₂₀ -Diterpenoid Alkaloids from <i>Delphinium anthriscifolium</i> var. <i>savatieri</i> Xiao-Yu Liu, Lei Song, Qiao-Hong Chen, and Feng-Peng Wang	1005
Cytotoxic Activity of Quassinoids from <i>Eurycoma longifolia</i> Katsunori Miyake, Feng Li, Yasuhiro Tezuka, Suresh Awale and Shigetoshi Kadota	1009
Antifungal Activity of Saponin-rich Extracts of <i>Phytolacca dioica</i> and of the Sapogenins Obtained through Hydrolysis Melina Di Liberto, Laura Svetaz, Ricardo L. E. Furlán, Susana A. Zacchino, Carla Delporte, Marco A. Novoa, Marcelo Asencio and Bruce K. Cassels	1013
New Lupane-type Triterpenoid Saponins from Leaves of <i>Oplopanax horridus</i> (Devil's Club) Pei-Pei Liu, Mo Li, Ting-Guo Kang, De-Qiang Dou and David C Smith	1019

Triterpene Saponins from <i>Cyclamen persicum</i> Ghezala Mihci-Gaidi, David Pertuit, Tomofumi Miyamoto, Jean-François Mirjolet, Olivier Duchamp,	
Anne-Claire Mitaine-Offer and Marie-Aleth Lacaille-Dubois	1023
Cytotoxic Pentacyclic Triterpenoids from Combretum oliviforme Xiao-Peng Wu, Chang-Ri Han, Guang-Ying Chen, Yuan Yuan and Jian-Ying Xie	1027
Preparative Separation of Four Major Bufadienolides from the Chinese Traditional Medicine, Chansu, Using High-Speed Counter-Current Chromatography Xiu Lan Xin, Junying Liu, Xiao Chi Ma, Qing Wei, Li Lv, Chang Yuan Wang, Ji Hong Yao and Jian Cui	1031
Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Eschscholzia californica</i> (Papaveraceae) Lucie Cahlíková, Kateřina Macáková, Jiří Kuneš, Milan Kurfürst, Lubomír Opletal, Josef Cvačka, Jakub Chlebek and	1031
Gerald Blunden	1035
In Vitro Testing for Genotoxicity of Indigo Naturalis Assessed by Micronucleus Test Luca Dominici, Barbara Cerbone, Milena Villarini, Cristina Fatigoni and Massimo Moretti	1039
Metabolites from <i>Withania aristata</i> with Potential Phytotoxic Activity Gabriel G. Llanos, Rosa M. Varela, Ignacio A. Jiménez, José M. G. Molinillo, Francisco A. Macías and Isabel L. Bazzocchi	1043
Bioassay-guided Isolation and Quantification of the α-Glucosidase Inhibitory Compound, Glycyrrhisoflavone, from Glycyrrhiza uralensis Wei Li Songnoi Li Lin Lin Hong Rei Ving Hong Rei Verge Veike	1049
Wei Li, Songpei Li, Lin Lin, Hong Bai, YingHua Wang, Hiroyoshi Kato, Yoshihisa Asada, Qingbo Zhang and Kazuo Koike Xanthones, Biflavanones and Triterpenes from <i>Pentadesma grandifolia</i> (Clusiaceae): Structural Determination	1049
and Bioactivity Grace Leontine Nwabouloun Djoufack, Karin M. Valant-Vetschera, Johann Schinnerl, Lothar Brecker, Eberhard Lorbeer and Wolfgang Robien	1055
Gmelinoside I, a New Flavonol Glycoside from <i>Limonium gmelinii</i> Zhanar A. Kozhamkulova, Mohamed M. Radwan, Galiya E. Zhusupova, Zharilkasin Zh. Abilov, Saniya N. Rahadilova and Samir A. Ross	1061
2-Arylbenzofuran Neolignans from the Bark of <i>Nectandra purpurascens</i> (Lauraceae) Jaime Rios-Motta and Eliseo Avella	1063
Coumarins from Seseli hartvigii Lin Zhang, Alev Tosun, Masaki Baba, Yoshihito Okada, Lijun Wu and Toru Okuyama	1067
Spartinoxide, a New Enantiomer of A82775C with Inhibitory Activity Toward HLE from the Marine-derived	
Fungus <i>Phaeosphaeria spartinae</i> Mahmoud Fahmi Elsebai, Stefan Kehraus, Michael Gütschow and Gabriele M. König	1071
The First Total Synthesis of Aspergillusol A, an α-Glucosidase Inhibitor Nisar Ullah and Shamsuddeen A. Haladu	1077
The Effect of a Phytosphingosine-like Substance Isolated from <i>Asterina pectinifera</i> on Involucrin Expression in Mite Antigen-Stimulated HaCaT Cells	1001
Gui Hyang Choi, Fazli Wahid and You Young Kim Chemical Composition of Fatty Acid and Unsaponifiable Fractions of Leaves, Stems and Roots of	1081
Arbutus unedo and in vitro Antimicrobial Activity of Unsaponifiable Extracts Mohamed Amine Dib, Julien Paolini, Mourad Bendahou, Laurent Varesi, Hocine Allali, Jean-Marie Desjobert, Boufeldja Tabti and Jean Costa	1085
Poly[3-(3,4-dihydroxyphenyl)glyceric Acid] from <i>Anchusa italica</i> Roots Vakhtang Barbakadze, Lali Gogilashvili, Lela Amiranashvili, Maia Merlani, Karen Mulkijanyan, Manana Churadze, Antonio Salgado and Bezhan Chankvetadze	1091
New Metabolite from <i>Viburnum dilatatum</i> Bin Wu, Xing Zeng and Yufeng Zhang	1097
Two New Glycosides from <i>Conyza bonariensis</i> Aqib Zahoor, Imran Nafees Siddiqui, Afsar Khan, Viqar Uddin Ahmad, Amir Ahmed, Zahid Hassan, Saleha Suleman Khan and Shazia Iqbal	1099
K ⁺ _{ATP} Channels-Independent Analgesic Action of <i>Crotalus durissus cumanensis</i> venom Ticiana Praciano Pereira, Adriana Rolim Campos, Luzia Kalyne A. M. Leal, Taiana Magalhães Pierdoná, Marcos H. Toyama, and Helena Serra Azul Monteiro andAlice Maria Costa Martins	1103
Isothymol in Ajowan Essential Oil Chahrazed Bekhechi, Jean Brice Boti, Fewzia Atik Bekkara, Djamel Eddine Abdelouahid, Joseph Casanova and Félix Tomi	1107
GC-MS Analysis of the Essential Oils of Ripe Fruits, Roots and Flowering Aerial Parts of Elaeoselinum asclepium subsp. meoides growing in Sicily	
Ammar Bader, Pier Luigi Cioni and Guido Flamini	1111
Chemical Composition of the Essential Oil of Leaves and Roots of <i>Ottoa oenanthoides</i> (Apiaceae) from Mérida, Venezuela	
Janne Roias, Alexis Buitrago, Luis B. Roias, Antonio Morales and Shirley Baldovino	1115

Volatile Profiles of Artemisia alba from Contrasting Serpentine and Calcareous Habitats Niko Radulović and Polina Blagojević	1117
Volatile Constituents of Two Rare Subspecies of <i>Thymus praecox</i> Danijela Vidic, Sanja Ćavar, Marija Edita Šolić and Milka Maksimović	1123
Antiproliferative and Cytotoxic Effects on Malignant Melanoma Cells of Essential Oils from the Aerial Parts of Genista sessilifolia and G. tinctoria	
Daniela Rigano, Alessandra Russo, Carmen Formisano, Venera Cardile and Felice Senatore	1127
Chemical Composition and Antibacterial Activity of the Essential Oil of <i>Retrohpyllum rospigliosii</i> Fruits from Colombia Clara E. Quijano-Celis, Mauricio Gaviria, Consuelo Vanegas-López, Ina Ontiveros, Leonardo Echeverri, Gustavo Morales and Jorge A. Pino	1133
Essential Oil Composition and Insecticidal Activity of <i>Blumea perrottetiana</i> Growing in Southwestern Nigeria Moses S. Owolabi, Labunmi Lajide, Heather E. Villanueva and William N. Setzer	1135
Chemical Composition, Antibacterial and Antioxidant Activity of the Essential Oil of <i>Bupleurum longiradiatum</i> Baojun Shi, Wei Liu, Shao-peng Wei and Wen-jun Wu	1139
Composition and Antimicrobial and Anti-wood-decay Fungal Activities of the Leaf Essential Oils of Machilus pseudolongifolia from Taiwan Chan Lang Han Prince Hang Ping Hang Fungal Chan Wang Wei Chile Dang and Via Chang Su	1142
Chen-Lung Ho, Pei-Chun Liao, Kuang-Ping Hsu, Eugene I-Chen Wang, Wei-Chih Dong and Yu-Chang Su Review/Account	1143
Key Enzymes of Triterpenoid Saponin Biosynthesis and the Induction of Their Activities and Gene	
Expressions in Plants Chang Ling Zhao, Xiu Ming Cui, Yan Ping Chen and Quan Liang	1147
Number 8	
Phytochemical Investigation of <i>Verbesina turbacensis</i> Kunth: Trypanosome Cysteine Protease Inhibition by	
(-)-Bornyl Esters Ifedayo V. Ogungbe, Rebecca A. Crouch, William A. Haber and William N. Setzer	1161
Anti-herpetic Activities of Chemical Components from the Brazilian Red Alga <i>Plocamium brasiliense</i> Wilton José Ferreira, Rodrigo Amaro, Diana Negrão Cavalcanti, Claudia Moraes de Rezende, Viveca Antonia Giongo Galvão da Silva, Juliana Eymara Barbosa, Izabel Christina Nunes de Palmer Paixão and Valéria Laneuville Teixeira	1167
Chemical Constituents of the Soft Coral Sarcophyton infundibuliforme from the South China Sea Xue-Ping Sun, Chang-Yun Wang, Chang-Lun Shao, Liang Li, Xiu-Bao Li, Min Chen and Pei-Yuan Qian	1171
Metabolites from the Fungus <i>Phoma</i> sp. 7210, Associated with <i>Aizoon canariense</i> Jingqiu Dai, Hidayat Hussain, Siegfried Dräger, Barbara Schulz, Tibor Kurtán, Gennaro Pescitelli, Ulrich Flörke and	11/1
Karsten Krohn Tritomones from Protium habetatum Pesin	1175
Triterpenes from <i>Protium hebetatum</i> Resin Delcio Dias Marques, Ilmar Bernardo Graebner, Telma Leda Gomes de Lemos, Luciana Lucas Machado, Jõao Carlos Costa Assunção and Francisco José Queiroz Monte	1181
Cytotoxicity of 9,11-Dehydroergosterol Peroxide Isolated from <i>Ganoderma lucidum</i> and its Target-related Proteins Ya-Jun Cui, Shu-Hong Guan, Li-Xing Feng, Xiao-Yi Song, Chao Ma, Chun-Ru Cheng, Wen-Bo Wang, Wan-Ying Wu, Qing-Xi Yue, Xuan Liu and De-An Guo	1183
Polar Alkaloids from the Caribbean Marine Sponge Niphates digitalis Fill L. Posselado, Indith Mondiala, Abilia Loguna Clare Nagunires and Olivian P. Thomas	1107
Erik L. Regalado, Judith Mendiola, Abilio Laguna, Clara Nogueiras and Olivier P. Thomas A Short Stereoselective Synthesis of Racemic 2-Epicalvine Basem A. Moosa and Shaikh A. Ali	1187 1191
Cytochrome P450 3A4 Inhibitory Activity Studies within the Lycorine series of Alkaloids	
James McNulty, Jerald J. Nair, Mohini Singh, Denis J. Crankshaw, Alison C. Holloway and Jaume Bastida Analysis of Amaryllidaceae Alkaloids from <i>Zephyranthes robusta</i> by GC-MS and Their Cholinesterase Activity	1195
Lucie Cahlíková, Andrea Kulhánková, Klára Urbanová, Irena Valterová, Kateřina Macáková and Jiří Kuneš Stereochemistry and NMR Data Assignment of Cyclopeptide Alkaloids from Zizyphus oxyphylla	1201
Muhammad Nisar, Waqar Ahmad Kaleem, Achyut Adhikari, Zulfiqar Ali, Nusrat Hussain, Inamullah Khan, Mughal Qayum and M. Iqbal Choudhary	1205
Geranylated Flavonols from <i>Macaranga rhizinoides</i> Mulyadi Tanjung, Didin Mujahidin, Euis H. Hakim, Ahmad Darmawan and Yana M. Syah	1209
A New Biflavonyloxymethane from <i>Pongamia pinnata</i> Anindita Ghosh, Suvra Mandal, Avijit Banerji and Julie Banerji	1213
Anti-inflammatory and Gastroprotective Properties of Hypericum richeri Oil Extracts	
Gordana Zdunić Dejan Gođevac Marina Milenković Katarina Šavikin, Nebojša Menković and Silvana Petrović	1215

Production of Flavonoids in Organogenic Cultures of Alpinia zerumbet	
Cristiane P. Victório, Rosani do Carmo de O. Arruda, Celso Luiz S. Lage and Ricardo M. Kuster	1219
Phenolic Compounds in Leaves of <i>Alchornea triplinervia</i> : Anatomical Localization, Mutagenicity, and Antibacterial Activity Tamara R. Calvo, Diego Demarco, Fabio V. Santos, Helen P. Moraes, Taís M. Bauab, Eliana A. Varanda,	
Ilce M. S. Cólus and Wagner Vilegas	1225
Phytotoxic Activity of Flavonoids from <i>Dicranostyles ampla</i> Amaya Castro, Charles L. Cantrell, Amber L. Hale and Stephen O. Duke	1233
Flavonoids of <i>Enhydra fluctuans</i> Exhibit Anticancer Activity against Ehrlich's Ascites Carcinoma in Mice Santanu Sannigrahi, Upal Kanti Mazumder, Arijit Mondal, Dilipkumar Pal, Silpi Lipsa Mishra and Souvik Roy	1239
Liquiritigenin Derivatives and Their Hepatotoprotective Activity Rashmi Gaur, Sunil Kumar, Priyanka Trivedi, Rajendra Singh Bhakuni, Dnyaneshwar Umrao Bawankule, Anirban Pal and Karuna Shanker	1243
Podophyllotoxin Derivatives Show Activity Against <i>Brontispa longissima</i> Larvae Jing Zhang, Ying-Qian Liu, Liu Yang and Gang Feng	1247
Anthraquinones from the Roots of <i>Prismatomeris tetrandra</i> Cun-Li Zhang, Hua Guan, Peng-Zhou Xi, Tao Deng and Jin-Ming Gao	1251
Inhibitory Effects of Black Pepper (<i>Piper nigrum</i>) Extracts and Compounds on Human Tumor Cell Proliferation, Cyclooxygenase Enzymes, Lipid Peroxidation and Nuclear Transcription Factor-kappa-B Yunbao Liu, Vivek R. Yadev, Bharat B. Aggarwal and Muraleedharan G. Nair	1253
Cinnamoylphenethylamine ¹ H-NMR Chemical Shifts: A Concise Reference for Ubiquitous Compounds Hans A. Pedersen, Stine K. Steffensen and Carsten Christophersen	1259
Pro-coagulant Activity of Phenolic Acids Isolated from <i>Blumea riparia</i> Li Huang, Cuiwu Lin, Aiyuan Li, Baoyao Wei, Jianwen Teng and Lue Li	1263
Vascular Effects of a Sulfated Polysaccharide from the Red Marine Alga Solieria filiformis Ana Maria S. Assreuy, Grazielle C. Pontes, Natália V. F. C. Rodrigues, Daniel M. Gomes, Paulo A. Xavier, Glacio S. Araujo, Alexandre H. Sampaio, Benildo S. Cavada, Maria G. Pereira and Wladimir R. L. Farias	1267
Encapsulation and Regeneration of <i>in vitro</i> Derived <i>Zephyranthes grandiflora</i> : an Effective Way for Exchange of Germplasm	
Moumita Gangopadhyay, Saikat Dewanjee, Dipjyoti Chakraborty and Sabita Bhattacharya Comparison of Aqueous Plant Extracts Before and After Fermentation with <i>Lactobacillus paracasei</i> LS-2 on	1273
Cytokine Induction and Antioxidant Activity Heeson Chon, Gyeomheon Kim and Sungkwon Kim	1277
Volatile Compounds from <i>Tagetes pusilla</i> (Asteraceae) Collected from the Venezuela Andes Diolimar Buitrago, Luis B. Rojas, Janne Rojas and Antonio Morales	1283
Volatile Components of Two Endemic Species from the Apuan Alps (Tuscany, Italy), <i>Centaurea arachnoidea</i> and <i>C. montis-borlae</i> (Asteraceae)	
Lucia Viegi, Mirko Boracchia, Roberto Cecotti and Aldo Tava	1285
Composition of Essential Oil from Seeds and Cones of <i>Abies alba</i> Anna Wajs, Justyna Urbańska, Ewa Zaleśkiewicz and Radosław Bonikowski	1291
Comparative Analysis of Essential Oil Components of Two <i>Pinus</i> Species from Taibai Mountain in China Yuan Zhang and Zhezhi Wang	1295
Antimicrobial Activity and Volatile Constituents of the Essential Oil of <i>Pulsatilla albana</i> from Iran Ali Shafaghat	1299
Chemical Composition and Antimicrobial Activity of the Essential Oils from <i>Cleome spinosa</i> Megil J. McNeil, Roy B. R. Porter, Lawrence A.D. Williams and Lois Rainford	1301
Virucidal Activity and Chemical Composition of Essential Oils from Aromatic Plants of Central West Argentina Cybele C. García, Eliana G. Acosta, Ana C. Carro, María C. Fernández Belmonte, Renata Bomben, Claudia B. Duschatzky, Marina Perotti, Carola Schuff and Elsa B. Damonte	1307
Neolitsea sericea Essential Oil Attenuates LPS-induced Inflammation in RAW 264.7 Macrophages by Suppressing NF-кВ and MAPK Activation	
Weon-Jong Yoon, Ji-Young Moon, Ji-Yong Kang, Gi-Ok Kim, Nam Ho Lee and Chang-Gu Hyun Qualitative Analysis of the Smoke-Stream of Different Kinds of Incense by SPME/GC-MS	1311
Antonietta Lombardozzi, Morela Strano, Manuela Cortese, Massimo Ricciutelli, Sauro Vittori and Filippo Maggi	1317
Essential Oil Composition and <i>in vivo</i> Volatiles Emission by Different Parts of <i>Coleostephus myconis</i> Capitula Guido Flamini, Pier Luigi Cioni, Simonetta Maccioni and Rosa Baldini Professional Planticianal Positional Professional City of Property of Countries	1321
Pesticide and Plasticizer Residues in Citrus Essential Oils from Different Countries Giuseppa Di Bella, Vincenzo Lo Turco, Rossana Rando, Gabriella Arena, Donatella Pollicino, Rosario Rocco Luppino and Giacomo Dugo	1325

Review/Account

Applying New Science for Old Medicines: Targeting Leukocyte-Endothelial Adhesions by Antiinflammatory Herbal Drugs	
Solomon Habtemariam	1329
Number 9	
Microbial Transformation of (-)-Nopol Benzyl Ether: Direct Dihydroxylation of Benzene Ring	
Yoshiaki Noma and Yoshinori Asakawa	1339
Structure-Activity Relationships of Sandalwood Odorants: Synthesis of a New Campholene Derivative Iris Stappen, Joris Höfinghoff, Gerhard Buchbauer and Peter Wolschann	1343
Chemical Composition, Olfactory Evaluation and Antimicrobial Activity of Selected Essential Oils and Absolutes from Morocco	
Juergen Wanner, Erich Schmidt, Stefanie Bail, Leopold Jirovetz, Gerhard Buchbauer, Velizar Gochev, Tanya Girova, Teodora Atanasova and Albena Stoyanova	1349
Chemical Composition and Antimicrobial Activity of Cumin Oil (<i>Cuminum cyminum</i> , Apiaceae) Juergen Wanner, Stefanie Bail, Leopold Jirovetz, Gerhard Buchbauer, Erich Schmidt, Velizar Gochev, Tanya Girova,	
Teodora Atanasova and Albena Stoyanova	1355
Chemical Composition and Antibacterial Activity of Selected Essential Oils and Some of Their Main compounds Juergen Wanner, Erich Schmidt, Stefanie Bail, Leopold Jirovetz, Gerhard Buchbauer, Velizar Gochev, Tanya Girova,	
Teodora Atanasova and Albena Stoyanova	1359
Antimicrobial Activities of Single Aroma Compounds	
Erich Schmidt, Stefanie Bail, Susanne Mirjam Friedl, Leopold Jirovetz, Gerhard Buchbauer, Jürgen Wanner, Zapryana Denkova, Alexander Slavchev, Albena Stoyanova and Margit Geissler	1365
Essential Oil Composition, Antimicrobial and Cytotoxic Activities of Two Endemic Stachys cretica Subspecies	
(Lamiaceae) from Turkey Tuba Şerbetçi, Betül Demirci, Çağla Bozkurt Güzel, Şükran Kültür, Mine Ergüven and Kemal Hüsnü Can Başer	1369
Volatile Components of Selected Liverworts, and Cytotoxic, Radical Scavenging and Antimicrobial	
Activities of Their Crude Extracts Ismiarni Komala, Takuya Ito, Yasuyuki Yagi, Fumihiro Nagashima and Yoshinori Asakawa	1375
Pharmacological Interactions of Essential Oil Constituents on the Viability of Micro-organisms	
Robyn Lynne Van Zyl, Sammy Tsietsi Seatlholo, Sandy Freda Van Vuuren and Alvaro Viljoen	1381
Antimicrobial Properties of Volatile Phenylpropanes Alexander Pauli and Karl-Heinz Kubeczka	1387
Potential Interaction between the Volatile and Non-volatile Fractions on the <i>In vitro</i> Antimicrobial Activity of	
Three South African <i>Pelargonium</i> (Geraniaceae) Species Jacqueline Y. Lalli, Alvaro M. Viljoen and Sandy F. Van Vuuren	1395
Encapsulation of Essential Oils within a Polymeric Liposomal Formulation for Enhancement of Antimicrobial	
Efficacy Sandy F. van Vuuren, Lisa C. du Toit, Ashleigh Parry, Viness Pillay and Yahya E. Choonara	1401
Eupatorium capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity	
Nurhayat Tabanca, Ulrich R. Bernier, Maia Tsikolia, James J. Becnel, Blair Sampson, Chris Werle, Betül Demirci, Kemal Hüsnü Can Başer, Eugene K. Blythe, Cecil Pounders and David E. Wedge	1409
Raman Optical Activity: A Powerful Technique to Investigate Essential Oil Components	
Malgorzata Baranska and Katarzyna Chruszcz-Lipska	1417
Microdistillation and Analysis of Volatiles from Eight Ornamental Salvia Taxa Nurhayat Tabanca, Betul Demirci, Jimmy L. Turner, Cecil Pounders, Fatih Demirci, Kemal Hüsnü Can Başer and	
David E. Wedge	1421
Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction Techniques for Antibacterial Volatile Compounds from the Fruits of <i>Seseli libanotis</i>	
Krystyna Skalicka-Wozniak, Renata Los, Kazimierz Glowniak and Anna Malm	1427
Volatile Fraction of Lavender and Bitter Fennel Infusion Extracts Christine Tschiggerl and Franz Bucar	1431
Can Glandular Hair Density be a Breeding Marker for <i>Origanum vulgare</i> subsp. <i>hirtum</i> with High	
Essential Oil Content? Krisztina Szabó, Szilvia Sárosi, Beatrix Cserháti and Antal Ferenczy	1437
The Influence of Essential Oils on Human Vigilance	
Eva Heuberger and Josef Ilmberger	1441

Comparison of Liquid-Liquid Partition, HS-SPME and Static HS GC/MS Analysis for the Quantification of (-)-Linalool in Human Whole Blood Samples Susanne Mirjam Friedl, Katharina Oedendorfer, Simone Kitzer, Gottfried Reznicek, Guenther Sladek and Eva Heuberger	1447
Salvia officinalis L.: Composition and Antioxidant-related Activities of a Crude Extract and Selected Sub-fractions Müberra Koşar, H.J. Damien Dorman, K. Hüsnü Can Başer and Raimo Hiltunen	1453
Developing and Characterizing a Mouse Model of Hepatotoxicity Using Oral Pyrrolizidine Alkaloid (Monocrotaline) Administration, with Potentiation of the Liver Injury by Co-administration of LPS Mohamed Sadek Abdel-Bakky, Mohamed A. Hammad, Larry A. Walker and Mohammad K. Ashfaq	1457
Xenobiotic Biotransformation of 4-Methoxy- <i>N</i> -methyl-2-quinolone, Isolated from <i>Zanthoxylum monophyllum</i> Raquel Rodríguez-Guzmán, Mohamed M. Radwan, Charles L. Burandt, John S. Williamson and Samir A. Ross	1463
<u>Review/Account</u>	
Volatiles from <i>Thymbra</i> and <i>Thymus</i> species of the Western Mediterranean Basin, Portugal and Macaronesia A. Cristina Figueiredo, José G. Barroso and Luis G. Pedro	1465
Essential Oil Composition of Wild Growing Apiaceae from Europe and the Mediterranean Remigius Chizzola	1477
Essential Oil and Volatile Components of the Genus <i>Hypericum</i> (Hypericaceae) Sara L. Crockett	1493
Terpene Bioconversion – How Does its Future Look?	
Ulrich Krings and Ralf Guenter Berger	1507
Number 10	
Antibacterial and Antifungal Screening of <i>Centaurium pulchellum</i> Crude Extracts and Main Secoiridoid Compounds Branislav Šiler, Danijela Mišić, Jasmina Nestorović, Tijana Banjanac, Jasmina Glamočlija, Marina Soković and Ana Ćirić	1525
A New Sesquiterpene and other Constituents from Saussurea lappa Root Jin-ao Duan, Pengfei Hou, Yuping Tang, Pei Liu, Shulan Su and Hanqing Liu	1531
Terpenoids from <i>Turraeanthus</i> species Juliette Catherine Vardamides, Valerie Tedjon Sielinou, Sergi Herve Akone, Augustin Ephrem Nkengfack and Berhanu M. Abegaz	1535
Bioactive Clerodane Diterpenes from Roots of <i>Carex distachya</i> Antonio Fiorentino, Brigida D'Abrosca, Severina Pacifico, Angelina Izzo, Grazia D'Angelo and Pietro Monaco	1539
An Unusual Bisnor-clerodane Diterpenoid from <i>Polyalthia simiarum</i> Selina Kabir, Mohammad S. Rahman, A. M. Sarwaruddin Chowdhury, Choudhury M. Hasan and Mohammad A. Rashid	1543
Anti-inflammatory Mechanisms of Compounds from <i>Curcuma mangga</i> Rhizomes using RAW264.7 Macrophage Cells Kanidta Kaewkroek, Chatchai Wattanapiromsakul and Supinya Tewtrakul	1547
Analysis of MS/MS Fragmentation of Taxoids Kouhei Morikawa, Ken Tanaka, Feng Li, Suresh Awale, Yasuhiro Tezuka, Takahiro Nobukawa and Shigetoshi Kadota	1551
New Triterpene Glycosides from <i>Camptosorus sibiricus</i> Ning Li, Wan Xiao, Bailing Hou and Xian Li	1557
New Hopane Triterpenes and Antioxidant Constituents from <i>Potentilla fulgens</i> Vikas Jaitak, Vijay K. Kaul, Himlata, Neeraj Kumar, Bikram Singh, Jyoti Dhar and Om P. Sharma	1561
Cytotoxic Evaluation of Semisynthetic Ester and Amide Derivatives of Oleanolic Acid Shikha Gupta, Komal Kalani, Mohit Saxena, Santosh K. Srivastava, Satyam K. Agrawal, Nitasha Suri and Ajit K. Saxena	1567
Two Ring-A-Aromatized Bile Acids from the Marine Sponge <i>Sollasella moretonensis</i> Zhenyu Lu, Ryan M. Van Wagoner, Mary Kay Harper, John N. A. Hooper and Chris M. Ireland	1571
Asporyergosterol, A New Steroid from an Algicolous Isolate of Aspergillus oryzae Ming-Feng Qiao, Nai-Yun Ji, Xiang-Hong Liu, Fang Li and Qin-Zhao Xue	1575
Two Minor Phytoecdysteroids of the Plant Silene viridiflora Nilufar Zokirzhonovna Mamadalieva, Abdulaziz Adilhanovich Janibekov, Jean-Pierre Girault and René Lafont	1579
7-O-Methylvariecolortide A, a New Spirocyclic Diketopiperazine Alkaloid from a Marine Mangrove Derived	
Endophytic Fungus, Eurotium rubrum Dong-Li Li, Xiao-Ming Li, Peter Proksch and Bin-Gui Wang	1583
Cytotoxic Thiocarbamate Derivatives of Boldine Franz A. Thomet, Pablo Pinyol, Joan Villena, Luis J. Espinoza and Patricio G. Reveco	1587
Synthesis and Bioactivity of β-Carboline Derivatives Shengkun Li, Bing Yang, Qianliang Zhang, Jiwen Zhang, JunruWang and Wenjun Wu	1591
Two Acylated Flavonoid Glycosides from the Leaves of <i>Quercus dentata</i> Ling-Li Wang, Mei-Xiang Jiang, Sui-Xu Xu, Qi-Shi Sun, Guang-Yao Zeng and Ying-Jun Zhou	1597

Cytotoxicity of Constituents from Mexican Propolis Against a Panel of Six Different Cancer Cell Lines Feng Li, Suresh Awale, Yasuhiro Tezuka and Shigetoshi Kadota	1601
Antihepatotoxic and Antioxidant Activities of Methanol Extract and Isolated Compounds from <i>Ficus chlamydocarpa</i> Jean Hubert Donfack, Christophe Colombe Fotso Simo, Bathelemy Ngameni, Angèle N. Tchana, Philip G. Kerr, Paola Vita Finzi, Giovanni Vidari, Silvana Giardina, Daniela Buonocore, Bonaventure T. Ngadjui, Paul F. Moundipa and Fulvio Marzatico	1607
Anthocyanin-Rich Black Currant Extract Suppresses the Growth of Human Hepatocellular Carcinoma Cells Anupam Bishayee, Erzsébet Háznagy-Radnai, Thomas Mbimba, Péter Sipos, Paolo Morazzoni, Altaf S. Darvesh, Deepak Bhatia and Judit Hohmann	1613
New Coumarin-Hemiterpene Ether Glucosides and a Structurally Related Phenylpropanoic Acid Derivative from <i>Artemisia armeniaca</i> Mahdi Mojarrab, Abbas Delazar, Matthias Hamburger and Olivier Potterat	1619
Synthesis of Fluorescent Analogues of the Anticancer Natural Products 4-Hydroxyphenylmethylene Hydantoin and δ-Tocotrienol	1623
Mudit Mudit, Fathy A. Behery, Vikram B. Wali, Paul W. Sylvester and Khalid A. El Sayed Two Pairs of Enantiomeric Neolignans from Lobelia chinensis Jian-Xin Chen, Shen-Hui Huang, Lei Wang, Wei-Li Han, Ying Wang, Dong-Mei Zhang and Wen-Cai Ye	1627
Evaluation and Discrimination of Cortex <i>Magnoliae officinalis</i> Produced in Zhejiang Province (Wen-Hou-Po) by UPLC-DAD-TOF-MS Fingerprint	
Lin Wang, Ke Yuan, Wei-Wu Yu and Jing Wang	1631
Phenolic Compounds from <i>Eucalyptus gomphocephala</i> with Potential Cytotoxic and Antioxidant Activities Eman Al-Sayed, Olli Martiskainen, Małgorzata Bobrowska-Hägerstrand, Jari Sinkkonen, Kid Törnquist, Kalevi Pihlaja, Nahla Ayoub and Abdel-Nasser Singab	1639
Nutritional Value of the Chilean Seaweeds <i>Cryptonemia obovata</i> and <i>Rhodymenia corallina</i> Jaime Ortiz, Juan Vivanco, Paula Jiménez, Moisés Leiva, Leslie Ramírez and Andrés Bustamante	1643
Volatile Components of <i>Centaurea bracteata</i> and <i>C. pannonica</i> subsp. <i>pannonica</i> growing wild in Croatia Carmen Formisano, Felice Senatore, Svetlana Bancheva, Maurizio Bruno, Antonella Maggio and Sergio Rosselli	1649
Biodiversity of Volatile Organic Compounds from Five French Ferns Françoise Fons, Didier Froissard, Jean-Marie Bessière, Bruno Buatois and Sylvie Rapior	1655
Composition and Chemical Variability of Leaf Oil of Myrtus communis from North-Eastern Algeria Amel Bouzabata, Faffani Boussaha, Joseph Casanova and Félix Tomi Chamical Composition and Antimiorphial Activity of Essential Oils from Cautagras agreement and Criscos	1659
Chemical Composition and Antimicrobial Activity of Essential Oils from Centaurea pannonica and C. jacea Tanja Milošević, Catherine Argyropoulou, Slavica Solujić, Dragana Murat-Spahić and Helen Skaltsa GC/MS Analysis and Antimicrobial Activity of the Essential Oil of Fresh Leaves of Eucalytus globulus, and	1663
Leaves and Stems of Smyrnium olusatrum from Constantine (Algeria) Habiba Daroui-Mokaddem, Ahmed Kabouche, Mabrouka Bouacha, Boudjemaa Soumati, Aida El-Azzouny, Christian Bruneau and Zahia Kabouche	1669
Chemical Composition and Antifungal Activity of Essential Oils of <i>Thuja sutchuenensis</i> , a Critically Endangered SpeciesEndemic to China Huaping Lei, Yonggang Wang, Chang Su, Fengyin Liang, Weiwei Su, Mamie Hui, Pangchui Shaw and Yulong Luo	1673
Composition and Antifungal Activities of the Leaf Essential oil of <i>Litsea coreana</i> from Taiwan Chen-Lung Ho, Kuang-Ping Hsu, Yen-Hsueh Tseng, Pei-Chun Liao, Eugene I-Chen Wang, Narumon Jeyashoke, Tzu-Chao Chien, Wei-Chih Dong and Yu-Chang Su	1677
Essential Oil Polymorphism of Wild Growing Hungarian Thyme (<i>Thymus pannonicus</i>) Populations in the Carpathian Basin Zsuzsanna Pluhár, Szilvia Sárosi, Adrienn Pintér and Hella Simkó	1681
Review/Account	
Naturally Occurring Diarylheptanoids Haining Lv and Gaimei She	1687
Number 11	
Alkalina Dhagabataga (ALD) Enhancing Inidaid Clusosidas from the Indonesian Medicinal Dlant Device: Investiga	
Alkaline Phosphatase (ALP) Enhancing Iridoid Glucosides from the Indonesian Medicinal Plant Barleria lupulina Retno Widyowati, Yasuhiro Tezuka, Tatsurou Miyahara, Suresh Awale and Shigetoshi Kadota Two New Sesquiterpenes from Sarcandra glabra	1711
Do Thi Oanh, Pham Thanh Ky, Nguyen Thi Bich Hang, Pham Hai Yen, Tran Hong Hanh, Nguyen Xuan Cuong, Dang Vu Luong, Chau Van Minh and Phan Van Kiem	1717
New Acyclic Diterpenic Acids from Yacon (Smallanthus sonchifolius) Leaves María I. Mercado, María V. Coll Aráoz, Alfredo Grau and César A. N. Catalán	1721

4-Deacetylbaccatin III: a Proposed Biosynthetic Precursor of Paclitaxel from the Bark of <i>Taxus wallichiana</i> Muhammad Nisar, Mughal Qayum, Achyut Adhikari, Inamullah Khan, Waqar Ahamad Kaleem, Zulfiqar Ali and M. Iqbal Choudhary	1727
Chemical Composition of Natural Colophony from <i>Pinus brutia</i> and Comparison with Synthetic Colophony Ahmet C. Gören, Gökhan Bilsel, Alp Hakan Öztürk and Gülaçtı Topçu	1729
Straightforward Approach to the Discrimination of $(4R)$ - and $(4S)$ - β -Isocryptoxanthin from a Conformationally Insensitive CD Band	
Shinzo Hosoi, Takeyuki Tanaka, Yukiteru Katsumoto, Takashi Maoka, Toshio Fujiwara, Masayuki Yamashita and Manabu Node	1733
Two New Steroidal Saponins, Hylodoside A and Novaeguinoside Y, from the Starfish Leptasterias hylodes reticulata and Culcita novaeguineae (Juvenile) Eleonora V. Levina, Anatoly I. Kalinovsky, Pavel S. Dmitrenok, Ekaterina A. Martyyas and Valentin A. Stonik	1737
New Steroidal Alkaloids from <i>Solanum hypomalacophyllum</i> Alida Pérez Colmenares, Libia Alarcón, Luis B. Rojas, Anne-Claire Mitaine-Offer, Laurent Pouységu, Stéphane Quideau, Thomas Paululat, Alfredo Usubillaga and Marie-Aleth Lacaille-Dubois	1743
Alkaloidal Constituents of <i>Tinospora crispa</i> M. Iqbal Choudhary, Muhammad Ismail, Zulfiqar Ali, Khozirah Shaari, Nordin H. Lajis and Atta-ur-Rahman	1747
Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Chelidonium majus</i> (Papaveraceae) Lucie Cahlíková, Lubomír Opletal, Milan Kurfürst, Kateřina Macáková, Andrea Kulhánková and Anna Hošťálková	1751
Identification of <i>Glycyrrhiza</i> Species by Direct Analysis in Real Time Mass Spectrometry Eriko Fukuda, Masaki Baba, Noriaki Iwasaki, Yoshihiro Uesawa, Kazunori Arifuku, Osamu Kamo, Koji Tsubono and Yoshihito Okada	1755
DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds Cheng-Dong Zheng, Gang Li, Hu-Qiang Li, Xiao-Jing Xu, Jin-Ming Gao and An-Ling Zhang	1759
RP-HPLC Analysis of <i>Jirakadyarishta</i> and Chemical Changes during Fermentation Uma Ranjan Lal, Shailendra Mani Tripathi, Sanjay M. Jachak, Kamlesh Kumar Bhutani and Inder Pal Singh	1767
Isoflavones from the Mangrove Endophytic Fungus <i>Fusarium</i> sp. (ZZF41) Zhongjing Huang, Jianxiang Yang, Zhigang She and Yongcheng Lin	1771
HPLC/DAD/MS and Antioxidant Activity of Isoflavone-Based Food Supplements Annalisa Romani, Pamela Vignolini, Annalisa Tanini, Barbara Pampaloni and Daniela Heimler	1775
A New Biisoflavonoid from the Roots of <i>Erythrina variegata</i> Hitoshi Tanaka, Masaru Sudo, Miyuki Hirata, Hideo Etoh, Masaru Sato, Ryozo Yamaguchi, Eiji Sakai, Ih-Sheng Chen and Toshio Fukai	1781
Chemical Constituents of <i>Nepeta distans</i> Javid Hussain, Nausheen Bukhari, Hidayat Hussain, Najeeb U Rehman and Syed Murtaza Hussain	1785
Two new Diarylheptanoids from <i>Alnus nitida</i> Imran N. Siddiqui, Viqar U. Ahmad, Aqib Zahoor, Amir Ahmed, Saleha S. Khan, Afsar Khan and Zahid Hassan	1787
(-)-Sclerotiorin from an Unidentified Marine Fungus as an Anti-meiotic and Anti-fungal Agent Li Bao, Zhenyu Xu, Shu-bin Niu, Michio Namikoshi, Hisayoshi Kobayashi and Hong-wei Liu	1789
Mitregenin, a New Annonaceous Acetogenin from <i>Mitrephora maingayi</i> Qiang Zhang, Ying-Tong Di, Hong-Ping He, Shun-Lin Li and Xiao-Jiang Hao	1793
Pycnangloside: A New Cerebroside from Bark of <i>Pycnanthus angolensis</i> Valérie Béatrice Tsaassi, Hidayat Hussain, Hélène Tamboue, Etienne Dongo, Simeon F. Kouam and Karsten Krohn	1795
Long Argan Fruit Drying Time is Detrimental for Argan Oil Quality Hicham Harhar, Saïd Gharby, Badr Eddine Kartah, Hanae El Monfalouti, Zoubida Charrouf and Dom Guillaume	1799
Volatiles from Steam-distilled Leaves of Some Plant Species from Madagascar and New Zealand and Evaluation of Their Biological Activity Rosaria Costa, Francesco Pizzimenti, Francesca Marotta, P. Dugo, Luca Santi and Luigi Mondello	1803
Volatile Constituents of Different Parts of Smyrnium olusatrum from Greece Fotini Papaioannou, Aikaterini Koutsaviti and Olga Tzakou	1809
Volatile Constituents of Senecio pterophorus (African Daisy) DC. from South Africa Oladipupo A. Lawal and Adebola O. Oyedeji	1811
Essential Oil Constituents and Biological Activities of <i>Peristrophe bicalyculata</i> and <i>Borreria verticillata</i> Isiaka A. Ogunwande, Tameka M. Walker, Anita Bansal, William N. Setzer and Emmanuel E. Essien	1815
Insecticidal Activity Against <i>Bemisia tabaci</i> Biotype B of Peel Essential Oil of <i>Citrus sinensis</i> var. pear and <i>Citrus aurantium</i> Cultivated in Northeast Brazil	
Nicolle de Carvalho Ribeiro, Claudio Augusto Gomes da Camara, Flávia de Souza Born and Herbert Álvaro Abreu de Siqueira	1819
Composition and Antimicrobial Activity of the Leaf and Twig Oils of <i>Litsea mushaensis</i> and <i>L. linii</i> from Taiwan Chen-Lung Ho, Eugene I-Chen Wang, Yen-Hsueh Tseng, Pei-Chun Liao, Chien-Nan Lin, Ju-Ching Chou and Yu-Chang Su	1823

Jorge A. Pino	1829
Essential Oil of Galinsoga parviflora Leaves from Colombia	
Jorge A. Pino, Mauricio Gaviria, Juana Quevedo-Vega, Laura García-Lesmes and Clara E. Quijano-Celis	1831
Essential Oil Composition of Three Australian Endemic Species of <i>Darwinia</i> (Myrtaceae) Joseph J. Brophy, Robert J. Goldsack, Jesús Palá-Paúl, Lachlan M. Copeland and Erich V. Lassak	1833
Chemistry and Biological Activity of Essential Oils from <i>Piper claussenianum</i> (Piperaceae) André M. Marques, Anna Léa S. Barreto, Eber M. Batista, José Alexandre da R. Curvelo, Leosvaldo S. M. Velozo, Davyson de L. Moreira, Elsie F. Guimarães, Rosângela Maria A. Soares and Maria Auxiliadora C. Kaplan	1837
Antioxidant Activity and Chemical Composition of Essential Oil from Atriplex undulata	
Silvana A. Rodriguez and Ana P. Murray	1841
Number 12	
Anticonvulsant Activity of the Linalool Enantiomers and Racemate: Investigation of Chiral Influence Damião P. de Sousa, Franklin F. F. Nóbrega, Camila C. M. P. Santos and Reinaldo N. de Almeida	1847
Kinetic Analysis of Genipin Degradation in Aqueous Solution Paul Slusarewicz, Keng Zhu and Tom Hedman	1853
Microbial Transformation of Marine Halogenated Sesquiterpenes	
Aurelio San Martin, Juana Rovirosa, Alvaro Carrasco, Silvia Orejarena, Jorge Soto-Delgado, Renato Contreras and M. Cristina Chamy	1859
Two New Guaianolides from Amberboa ramosa	
Muhammad Ibrahim, Rehan Khan and Abdul Malik	1865
Antiplasmodial and Cytotoxic Activities of Drimane Sesquiterpenes from Canella winterana Mary H. Grace, Carmen Lategan, Flaubert Mbeunkui, Rocky Graziose, Peter J. Smith, Ilya Raskin and Mary Ann Lila	1869
Three New 18-Oxygenated <i>ent</i> -Kaurane Diterpenoids from <i>Isodon leucophyllus</i> Hai Bo Zhang, Jian Xin Pu, Yong Zhao, Fei He, Wei Zhao, Li Guang Lou, Wei Lie Xiao and Han Dong Sun	1873
Immunomodulatory Action of Monosulfated Triterpene Glycosides from the Sea Cucumber Cucumaria	
okhotensis: Stimulation of Activity of Mouse Peritoneal Macrophages	1877
Dmitry L. Aminin, Alexandra S. Silchenko, Sergey A. Avilov, Vadim G. Stepanov and Vladimir I. Kalinin Three New Aaptamines from the Marine Sponge <i>Aaptos</i> sp. and Their Proapoptotic Properties	10//
Larisa K. Shubina, Tatyana N. Makarieva, Sergey A. Dyshlovoy, Sergey N. Fedorov, Pavel S. Dmitrenok and Valentin A. Stonik	1881
Isolation and Characterization of Crotosparsamide, a New Cyclic Nonapeptide from <i>Croton sparsiflorus</i> Rashad Mehmood and Abdul Malik	1885
Two New Lavandulyl Flavonoids from <i>Sophora flavescens</i> Dan Liu, Xiulan Xin, Dong-hai Su, Junying Liu, Qing Wei, Bo Li and Jian Cui	1889
Biotransformation of Naringenin to Eriodictyol by Saccharomyces cerevisiea Functionally Expressing Flavonoid 3' Hydroxylase	
Ilef Limem-Ben Amor, Alain Hehn, Emmanuel Guedon, Kamel Ghedira, Jean-Marc Engasser, Leila Chekir-Ghedrira and Mohamed Ghoul	1893
Two New 3-C-Carboxylated Flavones from the Rhizomes of Caragana conferta Rehan Khan, Abdul Malik, Shazia Yasmeen and Nighat Afza	1899
Kaempferol Glycosides in the Flowers of Carnation and their Contribution to the Creamy White Flower Color	
Tsukasa Iwashina, Masa-atsu Yamaguchi, Masayoshi Nakayama, Takashi Onozaki, Hiroyuki Yoshida, Shuji Kawanobu, Hiroshi Ono and Masachika Okamura	1903
Factors Influencing Glabridin Stability Mingzhang Ao, Yue Shi, Yongming Cui, Wentao Guo, Jing Wang and Longjiang Yu	1907
Effect of Different Strains of Agrobacterium rhizogenes and Nature of Explants on Plumbago indica Hairy Root Culture with Special Emphasis on Root Biomass and Plumbagin Production Moumita Gangopadhyay, Saikat Dewanjee, Somnath Bhattacharyya and Sabita Bhattacharya	1913
Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived Streptomyces sp. B6219 Muna Ali Abdalla, Elisabeth Helmke and Hartmut Laatsch	1917
Dioscorealide B from the Traditional Thai Medicine Hua-Khao-Yen Induces Apoptosis in MCF-7 Human	
Breast Cancer Cells via Modulation of Bax, Bak and Bcl-2 Protein Expression Jiraporn Saekoo, Potchanapond Graidist, Wilairat Leeanansaksiri, Chavaboon Dechsukum and Arunporn Itharat	1921
Inhibition of Protein Tyrosine Phosphatase 1β by Hispidin Derivatives Isolated from the Fruiting Body of <i>Phellinus linteus</i>	
Yeon Sil Lee, Il-Jun Kang, Moo Ho Won, Jae-Yong Lee, Jin Kyu Kim and Soon Sung Lim	1927

A New Azafluorenone from the Roots of <i>Polyalthia cerasoides</i> and its Biological Activity Kanchana Pumsalid, Haruthai Thaisuchat, Chatchanok Loetchutinat, Narong Nuntasaen, Puttinan Meepowpan and	1001
Wilart Pompimon	1931
Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line Keivan Zandi, Elissa Ramedani, Khosro Mohammadi, Saeed Tajbakhsh, Iman Deilami, Zahra Rastian, Moradali Fouladvand, Forough Yousefi and Fatemeh Farshadpour	1935
Hyloglyceride and Hylodiglyceride: Two New Glyceride Derivatives from <i>Hylodendron gabunensis</i> Awazi Tengu Nyongha, Hidayat Hussain, Etienne Dongo, Ishtiaq Ahmed and Karsten Krohn	1939
Chemical Composition and Bioactivities of the Marine Alga <i>Isochrysis galbana</i> from Taiwan Chi-Cheng Yu, Hsiao-Wei Chen, Mao-Jing Chen, Yu-Ching Chang, Shih-Chang Chien, Yueh-Hsiung Kuo, Feng-Ling Yang, Shih-Hsiung Wu, Jie Chen, Hsiao-Hui Yu and Louis Kuop-Ping Chao	1941
An Efficient Protocol for High-frequency Direct Multiple Shoot Regeneration from Internodes of Peppermint	
(Mentha x piperita) Sanjog T. Thul and Arun K. Kukreja	1945
Essential Oil Yield and Chemical Composition Changes During Leaf Ontogeny of Palmarosa	
(Cymbopogon martinii var. motia) Bhaskaruni R. Rajeswara Rao, Dharmendra K. Rajput, Rajendra P. Patel and Somasi Purnanand	1947
Essential Oil Composition of Four Endemic <i>Ferulago</i> Species Growing in Turkey Ceyda Sibel Kılıç, Ayşe Mine Gençler Özkan, Betül Demirci, Maksut Coşkun and Kemal Hüsnü Can Başer	1951
Essential Oils of <i>Daucus carota</i> subsp. <i>carota</i> of Tunisia Obtained by Supercritical Carbon Dioxide Extraction Hanen Marzouki, Abdelhamid Khaldi, Danilo Falconieri, Alessandra Piras, Bruno Marongiu, Paola Molicotti and Stefania Zanetti	1955
Oil Constituents of Artemisia nilagirica var. septentrionalis Growing at Different Altitudes	1933
Flora Haider, Narendra Kumar, Ali Arif Naqvi and Guru Das Bagchi	1959
Volatile Oil Composition of <i>Pogostemon heyneanus</i> and Comparison of its Composition with Patchouli Oil Ramar Murugan, Gopal Rao Mallavarapu, Kyathsandra Venkataramaiah Padmashree, Ramachandra Raghavendra Rao and Christus Livingstone	1961
Chemical Composition of Volatile Oils of <i>Aquilaria malaccensis</i> (Thymelaeaceae) from Malaysia Saiful Nizam Tajuddin and Mashitah M. Yusoff	1965
Chemical Composition and Phytotoxic Effects of Essential Oils from Four <i>Teucrium</i> Species Laura De Martino, Carmen Formisano, Emilia Mancini, Vincenzo De Feo, Franco Piozzi, Daniela Rigano and Felice Senatore	1969
Chemical Constituents and Larvicidal Activity of <i>Hymenaea courbaril</i> Fruit Peel José Cláudio D. Aguiar, Gilvandete M. P. Santiago, Patrícia L. Lavor, Helenicy N. H. Veras, Yana S. Ferreira,	
Michele A. A. Lima, Ângela M. C. Arriaga, Telma L. G. Lemos, Jefferson Q. Lima, Hugo C. R. de Jesus, Péricles B. Alves and Raimundo Braz-Filho	1977
Caryophyllene Oxide-rich Essential Oils of Lithuanian Artemisia campestris ssp. campestris and Their Toxicity	
Asta Judzentiene, Jurga Budiene, Rita Butkiene, Eugenija Kupcinskiene, Isabelle Laffont-Schwob and Véronique Masotti	1981
Comparison of Antibacterial Activity of Natural and Hydroformylated Essential Oil of <i>Thymus capitatus</i> Growing Wild in North Sardinia with Commercial <i>Thymus</i> Essential Oils	
Marianna Usai, Marzia Foddai, Barbara Sechi, Claudia Juliano and Mauro Marchetti	1985
Composition and Chemical Variability of the Leaf Oil from Corsican <i>Juniperus thurifera</i> Integrated Analysis by GC(RI), GC-MS and ¹³ C NMR	
Josephine Ottavioli, Joseph Casanova and Ange Bighelli	1991
Combined Analysis by GC (RI), GC-MS and ¹³ C NMR of the Supercritical Fluid Extract of <i>Abies alba</i> Twigs Emilie Duquesnoy, Bruno Marongiu, Vincent Castola, Alessandra Piras, Silvia Porcedda and Joseph Casanova	1995
Review/Account	
Eugenol: A Natural Compound with Versatile Pharmacological Actions Kannissery Pramod, Shahid H. Ansari and Javed Ali	1999

Volume **5** (1-12) 2010

Abbasi, A931	Ansari, SH1999
Abdalla, MA567,1917	Ao, M
Abdel-Bakky, MS1457	Aparicio, R311
Abdelouahid, DE1107	Arak, E
Abdoul-Latif, FM961	Aráoz, MVC1721
Abegaz, BM747,1535	Araujo, GS1267
Abilov, ZZ1061	Arbola, JC615,937
Aboaba, SA481	Arena, G
AbouZid, S43	Arfan, M211
Abrosca, BD99	Argyropoulou, C1663
Açık, L147	Arias, E
Acosta, EG1307	Arifuku, K
Adane, L747	Arnhold, J415
Adhikari, A1205,1727	Arnold, N
Adıgüzel, N297	Arriaga, AMC 1977
Afsar Khan, A1099	Arruda, RCO1219
Afza, N1899	Asada, Y1049
Aggarwal, BB1253	Asakawa, Y 695,999,1339,1375
Agnaniet, H961	Asencio, M1013
Agrawal, SK1567	Ashfaq, MK1457
Aguiar, JCD1977	Assreuy, AMS1267
Ahmad, A345	Assunção, JCC 1181
Ahmad, G427	Atanasova, T 1349,1355,1359
Ahmad, S915	Atta-ur-Rahman 1747
Ahmad, VU1099,1787	Avella, E 1063
Ahmad, VU 191,419,529	Avila, JL965
Ahmed, A1099,1787	Ávila, VMC235
Ahmed, I1939	Avilov, SA1877
Ahmed, M931	Awale, S 17,1009,1551,1601,1711
Ahmed, Z889,919	Awen, BZ621
Aiyelaagbe, OO481	Aydoğdu, I 841
Ajlouni, A5	Ayoub, N545,1639
Akanksha,427	Azam, A 867
Aknin, M33,259	Aziz, AA441
Akone, SH1535	Azizi, M283
Alankuş-Çalışkan, Ö841	Azizi, ME 545
Alarcón, L1743	
Alemany, JU817	Baba, M 1067,1755
Alemayehu, G747	Babu, GDK641
Al-Freihat, A957	Bader, A1111
Ali, I931,1999	Bagchi, GD
Ali, MI889,919	Baghdikian, B 877
Ali, MS889,919	Bai, H 1049
Ali, SA1191	Bail, S1349,1355,1359,1365
Ali, Z771,1727,1747,1205	Baldini, R
Alipieva, K51	Baldovino, S
Aljančić', I729	Bancheva, S273,1649
Allali, H1085	Banerji, A1213
Alma, MH969	Banerji, J
Almeida, C507	Banjanac, T 1525
Almeida, MC733	Bankova, V51
Alonso, MJP817	Bano, J
Al-Sayed, E1639	Bansal, A
Alves, PB1977	Bao, L
Amaro, R1167	Baranska, M
Ambrosio, SR669	Barbakadze, V
Amin, H	Barbosa, JE
Aminin, DL	Bardón, A
Amiranashvili, L	Barra, A
Amor, ILB777,1893	Barrera, EDC
Andrade, EHA	Barroso, JG
Andriantsiferana, R	Başer, KHC 147,297,515,1369
Angioni, A	Başer, KHC 1409,1421,1453,1951
Anil, S	Basha, FZ
Anjum, S529	Bassuony, AE

Ansari, SH	1999
Ao, M	
Aparicio, R	311
Arak. E	133
Aráoz, MVC	1721
Araujo, GS	1267
Arbola, JC	615 937
Arena, G	1325
Arfan, M	
Argyropoulou, C	1662
Arias, E	013
Arifuku, K	
Arnhold, J	415
Arnold, N	869
Arriaga, AMC	1977
Arruda, RCO	1219
Asada, Y	1049
Asakawa, Y 695,999,13	39,1375
Asencio, M	1013
Ashfaq, MK	
Assreuy, AMS	1267
Assunção, JCC	1181
Atanasova, T 1349,13	155 1359
Atta-ur-Rahman	1747
Avella, E	1063
Avila, JL	065
Ávila, VMC	225
Avilar CA	1077
Avilov, SA	18//
Awale, S 17,1009,1551,16	
Awen, BZ	
Aydoğdu, I	841
Ayoub, N5	545,1639
Azam, A	
Aziz, AA	441
Azizi, M	283
Azizi, ME	545
Baba, M10	067,1755
Babu, GDK	641
Bader, A	1111
Bagchi, GD	1959
Baghdikian, B	877
Bai, H	
Bail, S1349,1355,13	59 1365
Baldini, R	1321
Baldovino S	1115
Baldovino, SBancheva, S	72 1640
Banerji, A	1212
Danierji, A	1213
Banerji, J Banjanac, T Bankova, V	1213
Banjanac, I	1525
Bankova, V	51
Bano, J	
Bansal, A	1815
Bansal, A Bao, L	1815 1789
Bansal, A Bao, L Baranska, M	1815 1789 1417
Bansal, A	1815 1789 1417
Bansal, A Bao, L Baranska, M Barbakadze, V Barbosa, JE	1815 1789 1417 1091 1167
Bansal, A Bao, L Baranska, M Barbakadze, V Barbosa, JE	1815 1789 1417 1091 1167
Bansal, A	1815 1789 1417 1091 1167 391
Bansal, A	1815 1789 1417 1091 1167 391 329
Bansal, A	1815 1789 1417 1091 1167 391 329 383 319,1465 515,1369 453,1951

Bastow, KF	0/3
Bauab, TM	.1225
Bawankule, DU	
Bazzocchi, IL	.1043
Becerra, JX	351
Becnel, JJ	.1409
Bedir, E24	9,841
Behery, FA	.1623
Bekhechi, C	.1107
Bekkara, FA	.1107
Bell, EA	485
Bella, GD	.1325
Belmonte, MCF	.1307
Benayahu, Y	205
Bendahou, M	.1085
Bensemhoun, J	259
Berger, RG	
Bermejo, J	
Bernáth, J	291
Bernier, UR	1409
Berrehal, D	957
Bertoli, A	291
Bessière, JM	1655
Bhakuni, RS	1243
Bharti, N	
Bhat, S	
Bhatia, D	1613
Phottochorus S 1272	1013
Bhattacharya, S1273 Bhattacharyya, S	1013
Bhutani, KK57	5 177
Bi, H	117
Bighelli, A	
Digilelli, A	.1991
Bikanga, R	1720
Bilsel, G	.1729
Bilsel, G	.1729
Bilsel, G Bini, LM Birkinshaw, C	.1729 107 751
Bilsel, G Bini, LM Birkinshaw, C	.1729 107 751
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P.	.1729 107 751 .1613
Bilsel, G	.1729 107 751 .1613 .1117 121
Bilsel, G	.1729 107 751 .1613 .1117 121 ,1035
Bilsel, G	.1729 107 751 .1613 .1117 121 ,1035 .1409
Bilsel, G	.1729 107 751 .1613 .1117 121 ,1035 .1409 563
Bilsel, G	.1729 107 751 .1613 .1117 121 ,1035 .1409 563 115
Bilsel, G Bini, LM Birkinshaw, C Bishayee, A Blagojević, P Blagojević, PD Blunden, G Blythe, EK Böke, N Bombarda, I Bomben, R	.1729 107 751 .1613 .1117 121 ,1035 .1409 563 115
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD. Blunden, G. Biythe, EK Böke, N. Bombarda, I. Bomben, R. Bonikowski, R.	.1729 107 751 .1613 .1117 121 ,1035 .1409 563 115 .1307 .1291
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	.1729107751 .1613 .1117121 ,10351409563115 .1307 .1291 .1285
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G. Blythe, EK Böke, N. Bombarda, I. Bomben, R. Bonikowski, R. Boracchia, M. Born, FS Borroto, J.	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819 809
Bilsel, G	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819 809
Bilsel, G Bini, LM Birkinshaw, C Bishayee, A Blagojević, P Blagojević, PD Blunden, G Bike, N Bombarda, I Bomben, R Bonikowski, R Boracchia, M Born, FS Borroto, J Bory, S Botelho, PDS	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819 809 877
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD. Blunden, G. Böke, N. Bombarda, I. Bomben, R. Bonikowski, R. Boracchia, M. Born, FS. Borroto, J. Boyles Botelho, PDS. Boti, JB.	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819 809 877
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	.1729 107 751 .1613 .1117 121 ,1035 1409 563 115 .1307 .1291 .1285 .1819 809 877 471 .1107
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, P.D. Blunden, G	1729 1731 1613 1117 121 1035 1409 563 115 1307 1291 809 877 471 1107
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	1729 107 751 .1613 .1117 121 .1035 .1409 563 115 .1307 .1291 .1285 .1819 809 877 471 .1107 .11669 9,957
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G. Bilythe, EK Böke, N. Bombarda, I. Bomben, R. Bonikowski, R. Boracchia, M. Born, FS. Borroto, J. Bory, S. Botelho, PDS Boti, JB. Bouacha, M. Boudiar, T. Bouriche, H. Boussaha, F.	1729 107 751 .1613 .1117 121 .1409 563 115 .1307 .1291 .1285 .1819 809 877 471 .11107 471 .11669 .9,957
Bilsel, G Bini, LM Birkinshaw, C Bishayee, A Blagojević, P Blagojević, PD Blunden, G Böke, N Bombarda, I Bombern, R Bonikowski, R Boracchia, M Born, FS Borroto, J Bory, S Botelho, PDS Boti, JB Bouacha, M Boudiar, T Boussaha, F Bousabata, A Bouzabata, A	.1729107
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD. Blunden, G. Böke, N. Bombarda, I. Bomben, R. Bonikowski, R. Boracchia, M. Born, FS. Borroto, J. Bory, S. Botelho, PDS. Boti, JB. Bouacha, M. Boudiar, T. Boussaha, F. Bouzabata, A. Braggins, J.	.1729107
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD. Blunden, G. Böke, N. Bombarda, I. Bomben, R. Bonikowski, R. Boracchia, M. Born, FS. Borroto, J. Bory, S. Botelho, PDS. Botil, JB. Bouacha, M. Boudiar, T. Bousaha, F. Bousabata, A. Braggins, J. Brecker, L.	.17291079
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, P.D. Blunden, G	.17291079172917291731121121121130712911291129129129129147141541
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, P. Blunden, G	.1729107717291730173017511819809877471 .1.107415415415
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	.17291077172917291730
Bilsel, G Bini, LM Birkinshaw, C Bishayee, A Blagojević, P Blagojević, PD Blunden, G Böke, N Bombarda, I Bombern, R Bonikowski, R Boracchia, M Born, FS Borroto, J Bory, S Botelho, PDS Boti, JB Bouacha, M Boudiar, T Bousaha, F Bouzabata, A Braggins, J Brecker, L Brodie, PJ Brophy, JJ Brophy, JJ Brouard, I Bruneau, C BS818 Blagojević, P Blania, L Brodie, PJ Brohy, JJ Brouard, I Bruneau, C BS818 Blagojević, P Blasojević, P Blasojević, P Blagojević, P Blasojević, P Blagojević, P Blagojević, P Blagojević, P Blasojević, P Blagojević, P Blagojević, P Blasojević, P Blagojević, P Blagojević, P Blasojević, P Blagojević, P Blagojev	.1729 .1077 751 .1613 .1117 121 .1035 .1409 563 115 .1307 .1291 .1285 .1317 415 417 415 417 415 417
Bilsel, G. Bini, LM Birkinshaw, C. Bishayee, A. Blagojević, P. Blagojević, PD Blunden, G	.17291079

	1255
Buchbauer, G 1343,1349 Buchbauer, G 1359	1265
Buchbauer, G1339	1001
Budiene, J	1981
Buitrago, A	
Buitrago, D	1283
Bukhari, N	
Bülow, AK	
Bun, H	877
Bun, S-S	877
Buonocore, D	1607
Burandt, CL	1463
Bustamante, A	
Butkiene, R	
Buyuktas, BS	
Dayaktas, Bo	111
Cabalion,	040
Cabanion,	949
Caboni, P	551
Cabras, P	
Cahlíková, L 1035,1201	
Calvo, TR	1225
Camara, CAG	1819
Camara, CAGD	471
Camas, N	. 535
Campos, AR	1103
Caniato, R	
Cantrell, CL	
Cao, BY	197
Cao, S	/51
Çapanlar, S	563
Cara, P	
Cardile, V	1127
Carmo, HM	179
Carmona, J	965
Carpenter, B	
Carrasco, A	607 1859
Carrasco, A	607 1859 435
Carrasco, A	607 1859 435 1307
Carrasco, A	607 1859 435 1307
Carrasco, A	607 1859 435 1307 523
Carrasco, A	607 1859 435 1307 523 ,1995
Carrasco, A	607 1859 435 1307 523 ,1995 1013
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137 1123 1285 613
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137 1123 1285 613
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 1267 1167 137 1123 1285 613
Carrasco, A	607 1859 435 1307 523 11995 1013 11995 1233 551 1721 11267 11123 11285 613 1039 835
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 1233 551 1721 11267 137 11285 613 1039 835 1273
Carrasco, A	607 1859 435 1307 523 3,1995 1013 1995 1233 551 1721 11267 137 1123 613 11285 613 1273 835
Carrasco, A	607 1859 435 1307 523 11995 1013 11995 1233 551 1721 1167 137 1123 1285 613 1285 613 1273 835 835
Carrasco, A	607 1859 435 1307 523 ,1995 1013 11995 11233 551 11721 11267 11123 11285 613 1039 835 835 1859
Carrasco, A	607 1859 435 1307 523 11995 1013 1995 11233 551 1721 1267 137 11285 613 1039 835 1273 835 835 835
Carrasco, A	607 1859 435 1307 523 11995 1013 1995 1233 551 1721 1267 137 11285 613 1039 835 1273 835 835 835 835 835 835
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 11233 551 11721 11267 1167 137 1123 1285 613 1039 835 1273 835 1859 835 1859 835
Carrasco, A	607 1859 435 1307 523 1995 1013 1995 11721 11721 1167 137 1123 1285 613 835 1859 835 1859 835 1859 835
Carrasco, A	607 1859 435 1307 523 ,1995 1013 1995 11233 551 11267 1167 1123 11285 613 1039 835 1273 835 1859 835 835
Carrasco, A	607 1859 435 435 435 435 436 436 436 436 521 1721 1267 137 1237 1
Carrasco, A	607 1859 435 435 435 435 436 436 436 436 521 1721 1267 137 1237 1

Charrouf, Z	935.1799	Darvesh, AS	1613	Essien, EE	1815	Ghani, A	283
Chávez, M		Daud, A		Etoh, H		Ghanmi, M	
Chen, CR		Dávila, CML		Evstatieva, L	51	Ghannadi, A	
Chen, C-Y	911	Dayisoylu, KS	969	ŕ		Gharby, S	935,1799
Chen, G		de Almeida, RN		Fadamiro, H	457	Ghedira, K	1893
Chen, G-Y	1027	de Jesus, HCR		Falconieri, D	1955	Ghedrira, LC	777,1893
Chen, H		de Lemos, TLG		Faleiro, L	319	Ghisalberti, EL	219
Chen, HW	1941	de Rezende, CM		Fan, H	95	Gholami, M	
Chen, IS		de Sousa, DP		Fan, L		Gholipour, A	
Chen, J		Dechsukum, C		Farias, WRL		Ghosh, A	
Chen, JX		Deilami, I		Farshadpour, F		Ghoul, M	
Chen, M		Delazar, A		Fatigoni, C		Giamperi, L	
Chen, MJ		Delporte, C		Fedorov, SN		Giardina, S	
Chen, Q-H		Demarco, D		Feng, D		Gibbs, R	
Chen, WC		Demir, H		Feng, F		Girault, JP	
Chen, YL		Demirci, B		Feng, G		Girova, T1	
Chen, YP		Demirci, B 1369,140		Feng, L-X		Giuliani, C	
Chen, Z		Demirci, F 147,2		Feng, Y		Glamočlija, J	
Cheng, C-R		Demirtas, I		Feo, VD		Glowniak, K	
Cheng, K-C		Deng, T		Ferenczy, A		Gochev, V1	
Cheng, SK		Denisenko, VA		Ferreira, AG		Gođevac, D	
Chien, SC		Denkova, Z		Ferreira, MJP		Gogilashvili, L	
Chien, TC		Derese, S		Ferreira, WJ		Goldsack, RJ	
Chizzola, R		Desjobert, JM		Ferreira, YS		Gomes, CA	
Chlebek, J		Dessi, S		Ferrero, AA		Gomes, DM	
,		Dessi, S				Gómes, PS	
Chon U				Figueiredo, AC		,	
Chon, H		Dewanjee, S		Figueredo, G		Gong, X	
,		Dhar, J		Filho, JGS		González, JOW	
Chou, JC		Dib, MA		Filho, JMB		Göpfert, J	
Choudhary, MI 12		Digrak, M		Filho, RB	,	Gören, AC	
Chowdhury, AMS		Diniz, A		Filippini, R		Gosztola, B	
Christophersen, C		Dixit, VK		Filotheou, HP		Gourine, N	
Chruszcz-Lipska, K		Djibeyan, PD		Finzi, PV		Grace, MH	
Chugh, M		Djoufack, GLN		Fiorentino, A		Graebner, IB	
Chung, HY		Dmitrenok, PS 59		Firuzi, O		Graidist, P	
Chung, I-M		Dolan, MC		Fischer, HD		Grau, A	
Churadze, M		Domínguez, F		Fischer, NH		Graziose, R	
Cicek, D		Dominici, L		Flamini, G		Green, IR	
Cioni, PL		Donfack, JH		Floris, C		Guan, H	
Cirak, C		Dong, H		Flörke, U		Guan, S-H	
Ćirić, A		Dong, W-C		Foddai, M		Guedes, MM	
Colmenares, AP		Dong, WC		Fomsgaard, IS		Guedon, E	
Colom, OA		Dongo, E55		Fons, F		Guillaume, D	
Contreras, R		Dorman, HJD		Formisano, C. 273,11		Guimarães, EF	477,1837
Copeland, LM		Dou, D-Q		Fouladvand, M		Gülcemal, D	
Coroneo, V		Dräger, S		Franzblau, SG		Guleria, S	
Cortese, M		du Toit, LC		Fraternale, D	,	Gunatilaka, AAL	
Coşkun, M		Duan, J		Friedl, SM		Guo, D-A	
Costa, FBD		Dubois, MAL		Friedrich, G		Guo, KT	
Costa, J		Duchamp, O		Froissard, D		Guo, W	
Costa, R	1803	Dugo, G	1325	Fronczek, FR	685	Gupta, S	1567
Costantin, MB	755	Dugo, P	1803	Fujiwara, T	1733	Gupta, V	
Cottiglia, F	551	Duke, SO	1233	Fukai, T	1781	Gutiérrez, MM	301
Couladis, M	307	Duman, AD	969	Fukuda, E	1755	Gütschow, M	1071
Crankshaw, DJ	1195	Duquesnoy, E	1995	Furlán, RLE	1013	Güzel, CB	1369
Critchley, AT	581	Duraki, S	307				
Crockett, SL	1493	Durceylan, Z	515	Galarraga, ME	775	На, ТЈ	85
Crotti, AEM	681	Duringer, JM	635	Ganapaty, S	399	Haber, WA	1161
Crouch, RA	1161	Duschatzky, CB	1307	Gangopadhyay, M	1273,1913	Habtemariam, S	365,1329
Cruz, C	319	Dutta, PK	863	Ganjewala, D	163	Hägerstrand, MB	1639
Cserháti, B	1437	Dwivedi, AK	47	Gantait, A	863	Haid, M	869
Cui, J	1031,1889	Dyshlovoy, SA	1881	Gao, CH	201	Haider, F	1959
Cui, XM	1147			Gao, HY	13	Hailu, A	975
Cui, Y	1907	Echeverri, L	1133	Gao, J-M	1251	Hakim, EH	1209
Cui, Y-J	1183	Eiter, LC	457	Gao, JM	1759	Haladu, SA	1077
Cuong, NM	103	Ekundayo, O	481	Gao, S	197	Hale, AL	1233
Cuong, NX	. 361,423,1717	El Monfalouti, H	935	Gao, T	447	Hamburger, M	1619
Curini, M		El Sayed, KA		Gao, X	223	Hammad, MA	
Cvačka, J		El-Azzouny, A		Gao, Y		Han, C-R	
		Elias, EJ		García, CC		Han, D	
D'Abrosca, B	1539	Elias, R		García-Lesmes, L		Han, WL	
D'Angelo, G		Ellmerer, EP		Gaur, R		Hanai, R	
		Elsaedi, S		Gautam, R		Hang, NTB	
da Silva, VAGG		Elsebai, MF		Gaviria, M		Hanh, TH	
		Emerenciano, VP		Gaydou, EM33		Hao, XJ	
Dahse, HM	1175	Ellicicidio, vi					
				Geissler, M		Harhar, H	935.1799
Dahse, HM Dai, J Dai, X	985	Engasser, JM	777,1893	Geissler, M	1365	Harhar, H	
Dahse, HM Dai, J	985 1307		777,1893 1369		1365		1571

Hashimoto, T695
Hassan, Z 419,1099,1787
Hassanali, A175
Hassani, ME
Hauschild, W
Háznagy-Radnai, E1613
He, F1873
He, HP1793
Hedman, T
Hehenberger, S
Heimler, D
Heleno, VCG669,681
Helmke, E1917
Henandez, HP685
Hernandez, M809 Heuberger, E1441,1447
Heyden, YV423
Heydenreich, M175,903
Hichem, L
Hiltunen, R
Hirata, M
Hnawia, E
Ho, C-L1143
Ho, CL 337,617,1677,1823
Ho, KY
Hoan, DH
Höfinghoff, J1343 Hohmann, J227,581,1613
Holloway, AC1195
Hong, Q211
Hongratanaworakit, T157
Hooper, JNA
Hošťálková, A1751
Hou, B
Hou, P1531
Hsu, K-P1143
11 1/0
Hsu, KP337,1677
Hsu, KP337,1677 Hsueh, M-C911
Hsu, KP337,1677
Hsu, KP
Hsu, KP. 337,1677 Hsueh, M-C 911 Hu, LH 9 Hu, Z 845 Hua, J 265 Huang, J 13
Hsu, KP. 337,1677 Hsueh, M-C 911 Hu, LH 9 Hu, Z 845 Hua, J 265 Huang, J 13 Huang, KL 265
Hsu, KP. 337,1677 Hsueh, M-C 911 Hu, LH 9 Hu, Z 845 Hua, J 265 Huang, J 13 Huang, KI 265 Huang, KI 265 Huang, L 1263
Hsu, KP
Hsu, KP
Hsu, KP. 337,1677 Hsueh, M-C 911 Hu, LH 9 Hu, Z 845 Huang, J 265 Huang, KL 265 Huang, KL 1263 Huang, SH 1627 Huang, Z 1771 Hui, L 241 Hui, M 1673
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP
Hsu, KP

Iwashina, T1903
Iwashina, T
Izquierdo, AG
Jabor, VAP741
Jachak, SM 555,575,1767 Jacob, MR
Jacobs, H
Jacquemond, C435
Jain, R
Jaitak, V
Janicsák, G227
Janulis, V
Javidnia, K
Jeon, H-S
Jespersen, BM 407
Jeyashoke, N
Ji, M
Ji, Z
Jiang, MX1597
Jiang, Y
Jiménez, JF
Jiménez, P 1643
Jin, Y
Jirovetz, L 1349,1355,1359,1365 Jordán, MJ
Joseph, CC
Joshi, RK 815
Judzentiene, A
Juliano, C
Júnior, CPA471
Kabir, S1543
Vahayaha A 25 940 057 1660
Kabouche, A35,849,957,1669 Kabouche, Z35,849,957,1669
Kabouche, Z35,849,957,1669 Kadota, S.17,1009,1551,1601,1771
Kabouche, Z35,849,957,1669 Kadota, S.17,1009,1551,1601,1771 Kaewkroek, K1547
Kabouche, Z35,849,957,1669 Kadota, S .17,1009,1551,1601,1771 Kaewkroek, K1547 Kahriman, N831
Kabouche, Z35,849,957,1669 Kadota, S. 17,1009,1551,1601,1771 Kaewkroek, K
Kabouche, Z35,849,957,1669 Kadota, S. 17,1009,1551,1601,1771 Kaewkroek, K
Kabouche, Z35,849,957,1669 Kadota, S. 17,1009,1551,1601,1771 Kaewkroek, K
Kabouche, Z 35,849,957,1669 Kadota, S 17,1009,1551,1601,1771 Kaewkroek, K 1547 Kahriman, N 831 Kailas, T 133 Kalani, K 1567 Kaleem, WA 1205,1727 Kalenda, DT 369 Kalinin, VI 1877 Kalinovskava, NI 597
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z
Kabouche, Z

Khalfallah, A3:	3,931
Khalifa, SI345,931,	27
Khan, A345,931, Khan, H	1787
Khan, I1205,	1727
Khan, IA	771
Khan, LA	345
Khan, R1865,	1899
Khan. SI	853
Khan SS 1099	1787
Khoi, NH361,423, Kiem, PV361,423, Kihampa, C17:	423
Kiem, PV361,423,	1717
Kılıç, CS173	5,903
Kinç, CS Kim, E-H	951
Kim, EK	395
Kim, G	1277
Kim, G-O	
Kim, JH	395
Kim, JK	1927
Kim, S	1277
Kim, YH103	3,361
Kim, YY Kingston, DGI	751
Kiran, I	515
Kirimer, N	515
Kırmızıgül, S	563
Kitajima, J	39
Kitzer, S	1447
Klausen, K	407
Kleinpeter, E	175
Kobayashi, H Kocabas, EH	240
Kocabaş, F	249
Koike, K143,	1049
Kokubugata, G	39
Komala, I	1375
König, GM507,	1071
Koşar, M559,	1453
Kouam, SF559,	1795
Koutsaviti, A	1809
Kozhamkulova, ZA	1061
Kozhamkulova, ZA Krings, U Krohn K 559 1175 1795	1061 1503 1939
Kozhamkulova, ZA Krings, U Krohn K 559 1175 1795	1061 1503 1939
Kozhamkulova, ZA Krings, U Krohn, K 559,1175,1795, Kuang, R Kubeczka, KH	1061 1503 1939 571 1387
Kozhamkulova, ZA Krings, U Krohn, K 559,1175,1795, Kuang, R Kubeczka, KH	1061 1503 1939 571 1387
Kozhamkulova, ZA Krings, U Krohn, K 559,1175,1795, Kuang, R Kubeczka, KH Kubo, I Kücükboyacı, N	1061 1503 1939 571 1387 85 297
Kozhamkulova, ZA Krings, U Krohn, K 559,1175,1795, Kuang, R Kubeczka, KH Kubo, I Küçükboyacı, N Kukreja, AK	1061 1503 1939 571 1387 85 297 1945
Kozhamkulova, ZA Krings, U Krohn, K 559,1175,1795, Kuang, R Kubeczka, KH Kübo, I Küçükboyacı, N Kukreja, AK Kulhánková, A	1061 1503 1939 571 1387 85 297 1945 1751
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55
Kozhamkulova, ZA	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 95
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 95 1941
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 1941 55
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 751 1369 7,427 1959 11243 1201 55 95 1941 55
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 95 1941 55 1951 1951
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 95 1941 55 1951 1951
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1941 55 1981 1751 1175 1219 597
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1941 55 1981 1751 1175 1219 597
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 1945 297 1945 1751 1369 1243 1201 55 1941 1751 1 1175 1219 597 1717
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 1945 297 1945 1751 1369 1243 1201 55 1941 1175 1981 1751 1 1175 1219 597 1717
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1751 1369 7,427 1959 1243 1201 55 1981 1751 1175 1981 1751 1175 1219 597 1717
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 1571 1387 1579 1243 1201 1775 1175 1175 1175 1743 1579 1219
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1,751 1369 7,427 1959 1243 1201 55 1981 1751 1175 1175 1177 1177 1917 1717 1917 1717 1918
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 85 297 1945 1,751 1959 1,243 1201 55 1981 1751 1 1175 1219 1717 1743 1579 1187 1519 1187 1187
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939 571 1387 1945 297 1945 751 1369 1243 1201 55 1941 1 1175 1219 597 1717 1717 1717 1717 1717 1717 1717 1
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939571 138785297 1945 1751 1369 17427 1959 1243 1201 155 194155 1981 1175 1219597 1717 1743 1579 1219 1187 1219 118711 1175 1219597 1717191
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939571 138785297 1945 1751 1369 7,427 1959 1243 120155 194155 1981 1175 1219597 1717 1743 1579 1219 1187 1135 1135 1135 1135 1135 1135 1135 113
Kozhamkulova, ZA Krings, U Krohn, K	1061 1503 1939571 138785297 1945 1751 1369 7,427 1959 1243 1201 15595 1981 1751 1219597 1717 1917 1219 1187 1135 1579 1219 1187 1135 1747191849621

Lal, UR575,	1767
Lalli, JY	1395
Lange, C	253
Lange, C	722
Lantz, RC	
Lassak, EV	1833
Lategan, C	1869
Lau, TV	361
Laudares, EP	. 681
Laursen, B	. 407
Lavor, PL	
Lawal, OA	
Lazari, D	. 823
Leal, LKAM	1103
Lebibi, J	
Lebouvier, N	. 949
Leclercq, JQ369	,423
Lee, AYL	911
Lee, HB	205
Lee, J	. 395
Lee, JY	
Lee, KH	
Lee, NH	1311
Lee, YS	1927
Leeanansaksiri, W	1021
Lecanansaksin, w	1921
Lei, H	1673
Leiva, M	1643
Lemos, TLG	
Leonti, M	. 551
Levina, EV	1737
Li, S	
Li, A	1263
Li, B	1889
Li, DL	
Li, DL	1505
Li, F 17,1009,1551,1575,	
Li, G	1759
Li, HQ	1759
1: 1 1171	1262
Li, L1171,	
Li, M	1019
Li, N	1557
23 , 2 ,	100,
I; D	Q11
Li, P	. 811
Li, S	5,519
Li, S	5,519 1793
Li, S	5,519 1793
Li, S	5,519 1793 1049
Li, S	5,519 1793 1049 1557
Li, S	5,519 1793 1049 1557 1171
Li, S	5,519 1793 1049 1557 1171 771
Li, S	5,519 1793 1049 1557 1171 771
Li, S	5,519 1793 1049 1557 1171 . 771 1583
Li, S	5,519 1793 1049 1557 1171 771 1583 151
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823 1013
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823 1013 1869
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823 1013 1869
Li, S	5,519 1793 1049 1557 1171 . 771 1583 . 151 1673 1147 . 245 1143 1823 1013 1869 1927
Li, S	5,519 1793 1049 1557 1171 . 771 1583 . 151 1673 1147 . 245 1143 1013 11823 1013 11869 1927 1977
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1013 1869 1927 1977
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1013 1869 1927 1977 1977 523
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1013 1869 1927 1977 1977 523
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1013 11869 1927 1977 1977 523 11263
Li, S	5,519 1793 1049 1557 1171 1583 151 1673 1147 245 1143 11823 1013 11869 1927 1977 1977 523 1263 11823
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823 11869 1927 1977 523 1263 1823 337
Li, S	5,519 1793 1049 1557 1171 771 1583 151 1673 1147 245 1143 1823 11869 1927 1977 523 1263 1823 337
Li, S	5,519 1793 1049 1557 1171 . 771 1583 . 151 1673 1147 . 245 1143 1823 1183 1197 1977 . 523 1263 1823
Li, S	5,519 1793 1049 1557 1171 1.771 1583 1.151 1147 1.245 1143 1823 1013 1869 1927 1977 1977 1977 1973 11263 11823 11823 1183 1193 1194 1197 1197 1197 1197 1197 1197 1197
Li, S	5,519 1793 1049 1557 1171 1583 . 151 1673 1147 . 245 1143 1823 1013 1869 1927 1977 1977 1977 1973 11823 11823 1183 11869 11927 1977 1977 1977 1977 1977 1977 19
Li, S	5,519 1793 1049 1557 1171 1583 . 151 1673 1147 . 245 1143 1823 1823 1823 1823 . 337 1977 . 523 1823 . 337 1049 1771
Li, S	5,519 1793 1049 1557 1171 1583 . 151 1673 1147 . 245 1143 1823 1823 1823 1823 . 337 1977 . 523 1823 . 337 1049 1771
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .,151 1673 1147 .,245 1143 1013 1869 1927 1977 .,523 1263 1823 .,337 1049 1771 1,523 1889 1789
Li, S	5,519 1793 1049 1557 1171 .771 1583 .151 1673 1147 .245 1143 1823 1013 1823 1927 1977 .523 1823 .337 1049 1771 .523 1849 1771 1771 1782 1783 1784 1784 1784 1785 1785 1786 1787 1787 1787 1787 1787 1787 1787
Li, S	5,519 1793 1049 11757 1171 . 771 1583 . 151 1673 11673 1143 1823 1013 1889 1927 1977 . 523 1263 1373 1494 1771
Li, S	5,519 1793 1049 11757 1171 . 771 1583 . 151 1673 11673 1143 1823 1013 1889 1927 1977 . 523 1263 1373 1494 1771
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 11673 1143 1823 1013 1823 11927 1977 .523 1263 1823 137 1049 1771 .523 1889 1789 1789 1789 1789 1789 1789 1789
Li, S	5,519 1793 1049 1557 1171 1583 . 151 1673 1147 . 245 1143 1013 1823 1013 1823 1927 1977 . 523 1263 1823 337 1049 1771
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1823 1013 1849 1927 11977 .523 1263 1823 1823 1823 1823 1823 1849 1879 1879 1889 1891 1891 1891 1891 189
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1823 1013 1849 1927 11977 .523 1263 1823 1823 1823 1823 1823 1849 1879 1879 1889 1891 1891 1891 1891 189
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1823 1013 1869 1927 1977 523 1263 1823 1823 1823 1823 1823 1823 1823 182
Li, S	5,519 1793 1049 1557 1171 . 771 1583 . 151 1673 1147 . 245 1143 1013 11869 1927 1977 . 523 1263 1823 . 337 1049 1771 1. 523 1889 1789 1789 1789 1889 1789 1889 1889
Li, S	5,519 1793 1049 11557 1171 . 771 1583 . 151 1673 11673 1143 1823 1013 1823 11927 1977 . 523 1263 1823 337 1049 1771 . 523 1889 . 649 1531 1019 . 985 . 985
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1013 1823 1013 1823 1927 1977 .523 1263 1823 .337 1771 .523 1889 1771 .523 1889 1789 1031 11889 1031 11889 1189 1189 1189 1189 1189 1189 1
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1013 1823 1013 1849 1927 1977 1977 .523 1263 1823 .337 1049 1771 .523 1889 1771 1049 1771 .985 .1139 .985 .1139 .1139 .1139 .1149
Li, S	5,519 1793 1049 1557 1171 1,771 1583 .151 1673 1147 .245 1143 1013 1823 1013 1849 1927 1977 1977 .523 1263 1823 .337 1049 1771 .523 1889 1771 1049 1771 .985 .1139 .985 .1139 .1139 .1139 .1149
Li, S	5,519 1793 1049 1557 1171 1711 1583 . 151 1673 1147 . 245 1143 1823 1013 1823 1013 1827 1927 1977 . 523 1824 1825 1826 1827 1828 1829 1829 1829 1839 1849 18

Liu, YC	3 1 1		
Liu, Y-Q		Omatsu, I	877
		Ono, H	
Livingstone, C		Onozaki, T	
Llanos, GG		Ontiveros, I	
Loetchutinat, C		Onur, MA	
Lograda, T		Opletal, L	
Lombardozzi, A		Orav, A	
Lopes, JLC		Ordóñez, R	
Lopes, NP	613	Orejarena, S	1859
Lorbeer, E	1841	Oroojalian, F	283
Los, R	301	Ortiz, J	1643
Lou, HX	1961	Ostad, SN	511
Lou, LG	931	Ottavioli, J	1991
Lozano, Y		Ouyang, XW	9
Lu, J		Owolabi, MS	
Lu, JC		Oyedeji, AO	,
Lu, L	1	Özcan, T	
Lu, Z		Özgüneş, H	
Lucio, JAGD		Özkan, AMG	
,			
Luis, JMA		Öztürk, AH	1/29
Lumyong, S		D : 5 C	1.520
Luo, Y		Pacifico, S	
Luong, DV		Padalia, RC	,
Luppino, RR		Padmashree, KV.	
Luro, F	423	Paixão, ICNP	
Luthra, R	1789	Pal, A	1243
Lv, H	387	Pal, D	1239
Lv, L	1959	Palá-Paúl, J	1833
Mesbah, MK27 Naqvi, F	867	Palić, RM	121
Ma, C		Pampaloni, B	
Ma, S		Pan. E	751
Ma, XC		Panella, NA	519
Mabrouki, F		Pannakal, ST	
Macáková, K 923,1035,1201,1751 Milosavljević, S		Pant, CC	
Maccioni, S		Pant, G	
Machado, LL		Paolini, J	
,		· ·	
Machado, M		Papaioannou, F	
Machumi, F		Parry, A	
Macías, FA		Passreiter, CM	
Maciel, MA		Pat, FM	
Magadula, JJ		Patel, RP	
Magenta, MAG		Paúl, JP	
Magesa, SM		Pauli, A	1387
Maggi, F	369	Paululat, T	
Maggio, A	919	Pavlović, M	307
Maggio, AM	361	Pedersen, HA	1259
Mai, NT	307	Pedras, MSC	883
Maia, JGS	05,1727	Pedro, LG	319,1465
Makani, T	1789	Pellegrino, RM	
Makarieva, TN		Pereira, MG	
Maksimović, M		Pereira, TP	
Malik, A		Pérez, A	
Malik, I		Perotti, M	
		· ·	
* *		Pertuit, D	
, , , , , , , , , , , , , , , , , , , ,		Pescitelli, G	
Malm, A		Petreska, J	
Mamadalieva, NZ		Petrović, S	
Mancini, E		Pierdoná, TM	
Mandal, S		Pihlaja, K	,
Manzoor, N		Pillay, V	
Maoka, T		Ping, OJ	
Marchetti, M	1931	Pino, JA 61	3,1131,1829,1831
Marongiu, B	763	Pintér, A	1681
Marotta, F	1939	Pinyol, P	1587
Marques, DD		Piovan, A	431
Márquez, API	1717	Piozzi, F	
Martin, AS		Piras, A	
Martino, LD		Pistelli, L	
Martins, AMC		Pizzimenti, F	
Martiskainen, O		Plainchont, B	
Martyyas, EA		Pluhár, Z	
Marx, JN		Polášek, M	
		Pollicino, D	
Marzouki, H		Pompimon, W	
Masotti, V		Pontes, GC	
Mata, M		Popović, V	
Máthé, I		Porcedda, S	
Mathela, CS	645	Porter, RBR	1301

D 1 A	9.60
Porzel, A	
Potterat, O	
Pounders, C	1409,1421
Pouységu, L	.775,1743
Pramod, K	1999
Prasad, K	603
Prasad, YR	50
Dealeash D	1502
Proksch, P	
Pu, JX	
Pumsalid, K	
Purnanand, S	1947
Qayum, M	1205.1727
Qi, SH	
Qian, P-Y	1171
Qiaii, F-1	201
Qian, PY	201
Qian, Y	
Qiang, DD	95
Qiao, M-F	1575
Quang, DN	
Quevedo-Vega, J	1831
Quideau, S	775 1743
Quijano-Celis, CE	1122 1021
Quijano-Cens, CE	1133,1831
Quílez, M	629
Quiros, Y	809
Raal, A	133
Rabelo, AFL	523
Raccuglia, RA	
Radhika, P	
Radovic, BV	61
Dadulassić N	1117
Radulović, N	111/
Radulović, NS	121
Radušiene, J	535,897
Radwan, MM	
Rahadilova, SN	1061
Rahman, MS	
Rahuja, N	
Rainford, L	
Rajendran, SM	1301
D D DD	427
Rajeswara Rao, BR	1947
Rajeswara Rao, BR Rajput, DK	1947 1947
Rajeswara Rao, BR Rajput, DK Rakotodrajaona, R	1947 1947 751
Rajeswara Rao, BR Rajput, DK	1947 1947 751
Rajeswara Rao, BR Rajput, DK Rakotodrajaona, R Ramdani, M	1947 1947 751 835
Rajeswara Rao, BR Rajput, DK Rakotodrajaona, R Ramdani, M Ramedani, E	1947 751 835 1935
Rajeswara Rao, BR Rajput, DK. Rakotodrajaona, R Ramdani, M. Ramedani, E. Ramírez, L	1947 751 835 1935 1643
Rajeswara Rao, BR Rajput, DK Rakotodrajaona, R Ramdani, M Ramédani, E Ramírez, L Ramírez, MLG	1947 751 835 1935 1643
Rajeswara Rao, BR	1947 1947 835 1935 1643 235 965
Rajeswara Rao, BR	1947 1947 751 835 1935 1643 235 965 955
Rajeswara Rao, BR	1947 1947 751 835 1935 1643 235 965 1325 399
Rajeswara Rao, BR	
Rajeswara Rao, BR	1947 1947 751 835 1935 1643 235 965 1325 399 1961 523 1655 751 1543 1869
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	1947 1947 751 835 1935 1643 235 965 1325 399 399 1961 523 1655 751 1543 1869 419 419 419 552 751 1935 751 1935
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	
Rajeswara Rao, BR	1947 1947 1947 751 835 1935 1643 235 965 1325 399 1961 523 1655 751 1869 419 1935 751 621 1187 1785 1785 211 1587 859
Rajeswara Rao, BR	1947 1947 1947 751 835 1935 1643 235 965 1325 1325 1655 751 1543 1869 419 1935 751 1187 1785 211 211 211 2147
Rajeswara Rao, BR	

Rodríguez, LMP	365
Rodríguez, SA	1841
Rohloff, J	975
Rojas, CMCG	531
Rojas, J1115	,1283
Rojas, LB1115,1283 Rojas, LB331,615,775,93	,1743
Rojas, YC	
Romanenko, LA	597
Romani, A	1775
Romero, RA	
Ross, SA	1649
Rovirosa, J	1859
Row, KH	461
Roy, P	863
Rudi, A	
Rui, W	
Russo, A	1127
Saba, AR	551
Sabuncuoğlu, SA	899
Saeed, A	931
Saekoo, J	1921
Safaei-Ghomi, J Said, IM	
Saini, R	641
Sajjadi, E	957
Sakai, E	1781
Sakamoto, HT Sakar, MK	
Sakata, F	999
Salazar, R	809
Salem, N	
Salgado, ASalgueiro, L	137
Salvatore, A	391
Samková, V	923
Samoylenko, V Sampaio, AH	853
Sampson, B	1409
Sanandiya, ND	603
Sannigrahi, S Santalova, EA	1239
Santi, L	
Santiago, GMP	1977
Santos, CMP	1847
Santos, FA	
Santos, FVSantos, MDD	
Sarıkaya, B	873
Sárosi, S291,465,1437	,1681
Sato, M Satoskar, AR	
Satou, T	
Sattler, I	253
Šavikin, K	
Saxena, AK Saxena, M	
Sayed, EA	
Schinnerl, J	1055
Schmidt, E 1349,1355,1359	,1365
Schmidt, J SchufF, C	1307
Schulz. B 559.	.1175
Schwaiger, S	667
Schwob, IL	1981
Scognamiglio, MScotti, MT	99
Seatlholo, ST	1381
Sechi, B	1985
Sefidkon, F	943
Segnini, S Senatore, F 273,1127,1649	965 1969
Sepp, J	133
Serbetci T	1369
Setzer, WN457,645,993	,1135

etzer, WN1161,	1015
etzer, w.n1161,	1813
haari, K	1/4/
hafaghat, A625,981,	
hah, Z	931
hami, PJ	
han, T	811
hanker, K	1243
hao, C-L	1171
harma, OP	1561
haw, P	1672
he, G	108/
he, Z	1771
hen, T	373
hengkun Li, S	1591
hi, B355,	1139
hi, LL	231
hi, Y	1907
hi, YP	649
himizu, K	85
himizu, N	
hin, JH	205
nin, Jri	393
hubina, LK	1881
hukla, N	427
iddhanta, AK	603
iddiqui, IN419,1099,	1787
ielinou, VT	1535
ilchenko, AS	1877
iler, B	
ilini, H	
ilva, B	055
ilva, JKRD	
imkó, H	
imo, CCF	1607
imões, MTF	319
impson, DS	859
ingab, AEN	545
ingab, AN	
ingh, AB	
ingh, AK	269
ingh, B641,	1561
Singh, B641, Singh, IP575,	1561 1767
ingh, B	1561 1767 1195
ingh, B	1561 1767 1195 907
ingh, B	1561 1767 1195 907
ingh, B	1561 1767 1195 907 867 1639
ingh, B	1561 1767 1195 907 867 1639 1613
ingh, B	1561 1767 1195 907 867 1639 1613
ingh, B	1561 1767 1195 907 867 1639 1613 1819
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883 3,741
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883 3,741
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883 3,741 1837
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883 3,741 1837
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 1869 883 3,741 1837 27
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1345 1853 1019 1869 883 3,741 1837 27
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 121 1447 1365 1853 3,741 1883 3,741 1883 1883 1883 1883 1883 1883 1883 18
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1883 1019 1889 1.883 3,741 1837 27 899 1525 899
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1883 1019 1889 27 899 1525 893 551
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 1.121 1447 1365 1853 1019 883 3.741 1837 27 899 1525 11123
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 883 3,741 1837 27 899 1525 11123 551 261 1663 873
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1365 1853 1019 1869 883 3,741 1837 27 899 1525 1123 551 1663 873
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 121 14447 1365 1853 1019 1899 3,741 1837 29 1525 1525 1525 1525 1526 1663 334 1663 341 1664 341 1
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 121 14447 1365 1853 1019 1899 3,741 1837 29 1525 1525 1525 1525 1526 1663 334 1663 341 1664 341 1
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 14447 1365 1853 1019 1889 27 899 1525 11123 261 11663 873 341 10005 5.893 5.9913
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 14447 1365 1853 1019 1889 27 899 1525 11123 261 11663 873 341 10005 5.893 5.9913
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 883 3,741 1837 27 899 1525 11123 551 1261 1663 873 341 11005 5,893 5,893 5,993 1183
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 883 3,741 1837 27 899 1525 11123 873 341 1005 5,893 81
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 121 1447 1365 1853 261 1883 3,741 1887 27 27 27 27 289 1525 11123 341 11005 5,893 913 11183 341 11005 5,893 913 11183
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 1853 121 1447 1365 1883 3,741 1837 27 261 1663 21 1123 261 1663 27 1123 261 1663 27 1123 289 1123 261 1663 27 1663 27 1663 27 1663 27 1663 289 1663 290 1663 290 1663 290 1663 290 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291 1663 291
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1365 1853 1019 1883 3,741 1837 27 899 1123 551 261 1663 341 1005 5,893 913 1183 817 285 1183
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 11663 121 1447 1365 1883 1019 1889 1.821 27 899 1525 261 1163 87 27 899 1525 341 1100 87 341 85 85
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 883 3,741 1837 27 899 1525 11123 873 341 1005 883 873 811 1887 235 1887 811 811 817 235 1889 1889
ingh, B	1561 1767 1195 907 867 1639 1613 1819 1427 1663 121 1447 1365 1853 1019 883 3,741 1837 27 899 1525 11123 873 341 1005 5,893 3,913 11183 817 235 1887 235 1887 235 1887 235

Spring, O	. 709
Srivastava, A	. 555
Srivastava, AK Srivastava, SK	. 427 1567
Stanković, M	. 729
Stappen, I	1343
Stefani, R	. 669
Steffensen, SK Stefova, M	
Stepanov, VG	1877
Sterner, O	. 899
Stonik, VA	1881
Strano, M	1317
Stuppner, H	. 667
Su, C	
Su, DH	
Su, S	1531
Su, W	1673
Su, Y	. 223
Suárez, LEC	
Sudo, M	1781
Suleiman, M	
Sun, BH	
Sun, LM	. 373
Sun, QS	
Sun, X-P	1171 571
Sundaresan, V	. 279
Suri, N	1567
Svetaz, L	1013
Syah, YM219, Sylvester, PW	1623
Szabó, K	1437
Tabanca, N 1409,	1 4 2 1
	1421
Tahti B	1085
Tabti, B	. 103
Tai, BH	. 103
Tai, BH Tajbakhsh, S Tajuddin, SZ,	. 103 1935 1965
Tai, BH	. 103 1935 1965 1795
Tai, BH	. 103 1935 1965 1795 . 783 1781
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1733
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1733 1531 1775
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1733 1531 1775 1209
Tai, BH. Tajbakhsh, S. Tajuddin, SZ, Tamboue, H. Tan, Y. Tanaka, H. Tanaka, K. Tanaka, T. Tang, Y. Tanini, A. Tanjung, M. Tariku, Y.	. 103 1935 1965 1795 . 783 1781 1551 1733 1531 1775 1209 . 975
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1733 1531 1775 1209 . 975 1285 1607
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1733 1531 1775 1209 . 975 1285 1607 1167
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1773 1531 1775 1209 . 975 1285 1607 1167 . 853
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1775 1209 . 975 1285 1607 1167 . 853 . 969
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1775 1209 . 975 1285 1607 1167 . 853 . 969 1263 . 831
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1775 1209 . 975 1285 1607 1167 . 853 . 969 1263 . 831 . 729
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 1775 1209 . 975 1285 1607 1167 . 853 . 969 1263 . 831 . 729
Tai, BH. Tajbakhsh, S. Tajuddin, SZ, Tamboue, H. Tan, Y. Tanaka, H. Tanaka, K. Tanaka, T. Tang, Y. Tanini, A. Tanjung, M. Tariku, Y. Tava, A. Tchana, AN Teixeira, VL. Tekwani, BL Telci, I. Teng, J. Terzioğlu, S. Tešević, V. Tewtrakul, S. Tezuka, Y 17,1009,1551,1601, Thaisuchat, H.	. 103 1935 1965 1795 . 783 1781 1551 1773 1531 1775 1209 . 975 1285 1167 . 853 . 896 1263 . 831 . 729 1547 1711
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 11733 1531 1775 1209 . 975 1285 1607 1167 . 853 . 831 . 729 1547 1711 1931 . 423
Tai, BH	. 103 1935 1965 1795 . 783 1781 1551 11733 11775 1209 . 975 1167 . 853 . 969 1263 . 831 . 729 1547 1711 1931 . 423 1187
Tai, BH	. 103 1935 1965 1795 . 783 1781 1753 1531 1775 1209 . 975 1285 1607 1167 . 853 . 831 . 729 1547 1711 1931 . 423 1187 1587 . 361
Tai, BH	. 103 1935 1965 17955 17955 1783 1781 1531 1531 1575 1209 975 1285 1607 1167 . 853 . 869 1263 . 831 . 831 . 831 . 842 . 844 . 844
Tai, BH. Tajbakhsh, S. Tajuddin, SZ, Tamboue, H. Tan, Y. Tanaka, H. Tanaka, K. Tanaka, T. Tang, Y. Tanini, A. Tanjung, M. Tariku, Y. Tava, A. Tchana, AN Teixeira, VL. Tekwani, BL Telci, I. Teng, J. Terzioğlu, S. Tešević, V. Tewtrakul, S. Tezuka, Y 17,1009,1551,1601, Thaisuchat, H. Thao, NP. Thomas, OP. Thomet, FA. Thu, VK. Thuan, NT. 361 Thul, ST.	. 103 1935 1965 17955 1785 1783 1781 1531 1531 1575 1209 975 1167 . 853 . 969 1263 . 831 1711 1931 . 423 1187 . 361 . 423 1187
Tai, BH	. 103 1935 17955 17955 17957 1783 1781 11775 11209 . 975 11285 11607 1167 . 853 . 831 . 729 11547 1711 1193 1187 1187 1187 1187 1187 1187 1187 118
Tai, BH	. 103 1935 1965 1795 1783 1781 1551 1775 11775 1285 1107 1167 . 853 . 831 . 729 1187 1711 1931 . 423 1187 1587 . 423 1945 . 461 . 241 . 107
Tai, BH	. 103 1935 1965 17955 17955 1783 1781 11775 1209 975 1285 1607 1167 1167 1833 . 831 . 729 1547 1711 1931 1,423 1187 1,423 1194 1,423
Tai, BH. Tajbakhsh, S. Tajuddin, SZ, Tamboue, H. Tan, Y. Tanaka, H. Tanaka, K. Tanaka, T. Tang, Y. Tanini, A. Tanjung, M. Tariku, Y. Tava, A. Tchana, AN. Teixeira, VL. Tekwani, BL. Telci, I. Teng, J. Terzioğlu, S. Tešević, V. Tewtrakul, S. Tezuka, Y 17,1009,1551,1601, Thaisuchat, H. Thao, NP. Thomas, OP. Thomet, FA Thu, VK. Thuan, NT. Tinin, M. Tian, X. Tirillini, B. Todorova, M. Tomé, ADR. Tomi, Y. Tamboue, H. Tomi, ST. Tion, M. Tomé, ADR. Tomi, F. Tion, Times, Time	. 103 1935 1965 1795 1795 1783 1781 1551 1773 1531 11775 1285 1607 1167 . 853 . 831 . 729 1263 . 831 . 729 11547 . 361 1187 1187 1587 . 361 . 946 . 94
Tai, BH	. 103 1935 17955 17955 17957 1783 1781 117755 1285 11077 . 8533 . 831 . 729 1263 . 831 . 729 11547 1711 1193 1187 1187 1187 1187 1187 1187 1187 118
Tai, BH. Tajbakhsh, S. Tajuddin, SZ, Tamboue, H. Tan, Y. Tanaka, H. Tanaka, K. Tanaka, T. Tang, Y. Tanini, A. Tanjung, M. Tariku, Y. Tava, A. Tchana, AN. Teixeira, VL. Tekwani, BL. Telci, I. Teng, J. Terzioğlu, S. Tešević, V. Tewtrakul, S. Tezuka, Y 17,1009,1551,1601, Thaisuchat, H. Thao, NP. Thomas, OP. Thomet, FA Thu, VK. Thuan, NT. Tinin, M. Tian, X. Tirillini, B. Todorova, M. Tomé, ADR. Tomi, Y. Tamboue, H. Tomi, ST. Tion, M. Tomé, ADR. Tomi, F. Tion, Times, Time	. 103 1935 1965 17955 17955 1783 1781 11775 1209 . 975 1285 1607 1167 . 853 . 831 . 729 11547 1711 11931 . 423 1187 . 361 . 423 11945 . 523 . 621 . 62

Tosun, A	1067	Viljoen, A	1381,1395	Wu, B	1097
Touzani, R		Villanueva, HE		Wu, L	
Toyama, MH	1103	Villarini, M		Wu, LJ	
Toyota, M		Villena, J		Wu, P	
Trendafilova, A		Visual, T		Wu, SH	
Tripathi, SM		Vitkova, A		Wu, W	
Trivedi, P		Vittori, S		Wu, W-Y	
Trujillo, R		Vivanco, J		Wu, X-P	
Tsaassi, VB		Vujisić, L		Wu, Z	
Tsafantakis, N		v ujisie, 12		** u, Z	223
Tsai, MC		Waffo, AFK	999	Xavier, HS	635
Tsassi, VB		Wahid, F		Xavier, PA	
		Wajs, A		Xi, P-Z	
Tschiggerl, C					
Tseng, YH		Waksman, N		Xi, RG	
Tsikolia, M		Wali, VB		Xiao, W	
Tsubono, K		Walker, LA		Xiao, WL	
Tung, NH		Walker, TM		Xie, H	
Tung, YT		Wang, B		Xie, J-Y	
Turco, VL		Wang, BG	1583	Xie, N	
Turner, JL		Wang, CY		Xin, X	
Tuyen, NV		Wang, C-Y		Xin, XL	
Tyagunova, Y		Wang, EIC		Xiong, K	
Tzakou, O	307,1809	Wang, EIC		Xu, BB	
		Wang, F-P		Xu, F	789,795,893
Uçüncü, O	831	Wang, H-M	911	Xu, L	811
Uesawa, Y		Wang, J		Xu, Q	
Ullah, N	1077	Wang, J811	,913,1591,1631	Xu, SX	1597
Unnithan, CR	621	Wang, L	.985,1627,1631	Xu, XJ	1759
Urbanová, K	1201	Wang, LL	1597	Xu, Z	1789
Urbańska, J	1291	Wang, M	355	Xue, J	197,245
Urgen, M	249	Wang, T	223	Xue, Q-Z	1575
Usai, M		Wang, W	771	Xue, W	985
Usubillaga, A 31	1,615,937,965	Wang, W-B	1183		
Usubillaga, A		Wang, XB	13	Yadav, A	269
Uysal, B		Wang, XC		Yadav, DK	
Uzel, A		Wang, XN		Yadev, VR	
,		Wang, Y		Yagi, Y	
Vacelet, J	33.259	Wang, YH		Yamada, H	
Vajs, V		Wang, Z		Yamaguchi, M	
Valant-Vetschera, KN		Wanner, J 1349,		Yamaguchi, R	
Valencia, JMT		Waterman, PG		Yamashita, M	
Valterová, I		Watson, AA		Yan, S	
Van Vuuren, SF 13		Wattanapiromsakul,		Yang, B	1591
Van Wagoner, RM		Wedge, DE		Yang, B	913
Van Zyl, RL		Wei, B		Yang, FL	
Vanegas-López, C		Wei, Q			845
		Wei, Q		Yang, J	
Varanda, EA		Wei, S		Yang, JL	
Vardamides, JC		Wei, X		Yang, L	
Varela, RM		Wei, A Weidenhamer, JD		<i>U</i>	
Varesi, L	1083			Yang, N	
Velasco, J		Werle, C		Yao, JH	
Velozo, LSM		Wessjohann, L		Yaşa, I	
Veluthoor, S		Widyowati, R		Yasmeen, S	
Veras, HNH		Wiggers, FT		Yavari, A	
Vichnewski, W		Wijeratne, EMK		Yaylı, N	
Victório, CP		Williams, LAD		Ye, WC	
Vidari, G		Williamson, GB		Yeffet, D	
Vidic, D		Williamson, JS		Yen, PH	
Viegi, L		Willink, E		Yenesew, A	
Vieira, IJC	179	Wolschann, P	1343	Yoon, W-J	
Vignolini, P	1775	Won, MH	1927	Yoshida, H	1903

	` ,
1067	Viljoen, A1381,1395
849	Villanueva, HE1135
1103	Villarini, M
999	
	Villena, J
129	Visual, T
575,1767	Vitkova, A
1243	Vittori, S
809	Vivanco, J
1795	Vujisić, L729
99	
617	Waffo, AFK 889
559	Wahid, F 1081
1431	Wajs, A1291
1677,1823	Waksman, N
1409	Wali, VB1623
1755	Walker, LA853,1457
361	Walker, TM
73	Wang, B
1325	Wang, BG
1421	Wang, CY
423	Wang, C-Y
81	Wang, EIC337,617,1143
307,1809	Wang, EIC1677,1823
	Wang, F-P1005
831	Wang, H-M911
1755	Wang, J1907
1077	Wang, J811,913,1591,1631
621	Wang, L985,1627,1631
1201	Wang, LL1597
1291	Wang, M
249	Wang, T
1985	Wang, W
15,937,965	Wang, W-B
1743	Wang, XB
111	Wang, XC
249	Wang, XN
	Wang, Y 1627,1673
33,259	Wang, YH1049
729	Wang, Z1295
1055	Wanner, J 1349,1355,1359,1365
531	Waterman, PG365
1201	Watson, AA485
,1395,1401	Wattanapiromsakul, C 1547
1571	Wedge, DE1409,1421
1381	Wei, B1263
1133	Wei, Q 1031
1225	Wei, Q
1535	Wei, S
1043	
	Wei, X
1085	Weidenhamer, JD685
311	Werle, C
1837	Wessjohann, L
519	Widyowati, R 1711
1977	Wiggers, FT 853
681	Wijeratne, EMK 801
1219	Williams, LAD1301
1607	Williamson, GB 685
1123	Williamson, JS 1463
1285	Willink, E391
179	Wolschann, P
1775	Won, MH

Wu, B	1007
Wu, D	10 <i>7 </i> 1067
Wu, L	100/
Wu, LJ	13
Wu, P	151
Wu, SH	
Wu, W845,1139,	1591
Wu, W-Y	1183
Wu, X-P	1027
Wu, Z	223
Xavier, HS	635
Xavier, PA	1267
Xi, P-Z	
Xi, RG	13
Xiao, W	1557
Xiao, WL	1977
Xie, H	
Xie, J-Y	243 1027
Xie, N	1027
Xin, X	
Xin, XL	
Xiong, K	985
Xu, BB	197
Xu, F789,795	,893
Xu, L	811
Xu, Q	245
Xu, SX	
Xu, XJ	1759
Xu, Z	1789
Xue, J197	245
Xue. O-Z	,215 1575
Xue, Q-Z	1575
Xue, Q-ZXue, W	1575 985
Xue, Q-ZXue, W	1575 985
Xue, Q-Z Xue, W Yadav, A	1575 985 269
Xue, Q-Z Xue, W Yadav, A Yadav, DK	1575 985 269 47
Xue, Q-Z Xue, W Yadav, A Yadav, DK. Yadev, VR.	1575 985 269 47 1253
Xue, Q-Z	1575 985 269 47 1253 1375
Xue, Q-Z	1575 985 269 47 1253 1375 1
Xue, Q-Z	1575 985 269 47 1253 1375 1
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1733
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1733 223
Xue, Q-Z	1575 985 47 1253 1375 1 1903 1781 1733 223 1591
Xue, Q-Z	1575 985 47 1253 1375 1 1903 1781 1733 223 1591 913
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1733 223 1591 913
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1733 223 1591 913
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1773 223 11591 913 1941 845
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1733 223 1591 913 1941 845 1771 649
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamaguchi, R. Yamashita, M. Yan, S. Yang, B. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, J. Yang, L.	1575 985 269 47 1253 1375 1 1903 1781 1773 223 11591 913 11941 845 1771 649
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamaguchi, R. Yamashita, M. Yan, S. Yang, B. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, L. Yang, N.	1575 985 269 47 1253 1375 1 1903 1781 1773 223 1591 913 1771 649 11247 77
Xue, Q-Z	1575 985 269 47 11253 11375 1 11903 11781 11733 223 11591 913 11771 649 11247 77
Xue, Q-Z	1575 985 269 47 11253 11375 1 11903 11781 11733 223 11591 913 11771 649 11247 77
Xue, Q-Z	1575 985 269 47 11253 11375 1 11903 11781 11733 223 11591 913 11941 649 11247 77 11031 563
Xue, Q-Z	1575 985 269 47 1253 1375 1 1903 1781 1773 223 1591 913 1941 649 11247 77 11031 563 11899
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamashita, M. Yan, S. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, L. Yang, N. Yao, JH. Yas, I. Yasmeen, S. Yavari, A. Yavari, N.	1575 985 269 47 11253 11375 1 1903 11781 11733 223 11941 845 11771 77 11031 563 1899 943 831
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamashita, M. Yan, S. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, L. Yang, N. Yao, JH. Yas, I. Yasmeen, S. Yavari, A. Yavari, N.	1575 985 269 47 11253 11375 1 1903 11781 11733 223 11941 845 11771 77 11031 563 1899 943 831
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamashita, M. Yan, S. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, J. Yang, J. Yang, J. Yang, J. Yang, I. Yasa, I. Yaswari, A. Yayuli, N. Ye, WC.	1575 985 269 47 1253 1375 1 1903 1781 1773 223 1591 913 11941 649 77 11031 563 943 77
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamashita, M. Yann, S. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, J. Yang, J. Yang, J. Yang, J. Yang, I. Yang, I. Yang, I. Yang, I. Yang, I. Yang, N. Yao, JH. Yasa, I. Yaswari, A. Yavali, N. Ye, WC. Yeffet, D.	1575 985 269 47 1253 11375 1 11781 11733 223 11591 913 11941 563 11899 563 11899 831 11627 205
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamaguchi, R. Yamashita, M Yan, S. Yang, B. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, J. Yang, L. Yang, N. Yasa, I. Yasmeen, S. Yavari, A. Yayli, N. Ye, WC. Yeffet, D. Yadava, VR.	1575 985 269 47 1253 1375 11 1903 11781 11733 223 1591 455 455 455 455 563 1899 943 845 943 943 943 845 77
Xue, Q-Z. Xue, W. Yadav, A. Yadav, DK. Yadev, VR. Yagi, Y. Yamada, H. Yamaguchi, M. Yamashita, M. Yann, S. Yang, B. Yang, FL. Yang, H. Yang, J. Yang, J. Yang, J. Yang, J. Yang, J. Yang, I. Yang, I. Yang, I. Yang, I. Yang, I. Yang, N. Yao, JH. Yasa, I. Yaswari, A. Yavali, N. Ye, WC. Yeffet, D.	1575 985 269 47 1253 1375 11 1903 11781 11733 223 11591 47 1031 47 1031 563 11899 943 205 205 205

	1935
Yousfi, M	. 115
Youssef, DTA	27
Yu, CC	
Yu, CX	
Yu, HH	
Yu, L	
Yu, WW	
Yuan, KYuan, SY	1631
Yuan, SY	95
Yuan, Y 805,	1027
Yue, Q-X	1183
Yue, QX Yunbao Liu, Y Yusoff, MM	9
Yunbao Liu. Y	1253
Yusoff MM	1965
Zacchino, SA	1012
Zalcinio, SA	1707
Zanoor, A 419,1099,	1/8/
Zaleśkiewicz, E	1291
Zandi, K	1935
Zanetti, S	1955
Zarubica, AR	. 121
Zdunić, G	1215
Zeng, GY	1597
Zeng, J	
Zeng, X	1007
Zhan, J	7 0 0 1
Zhang, AL	
Zhang, C-L	1251
Zhang, DM	
Zhang, H	. 805
Zhang, HB	1873
7hone I 221 255 045 1247	
Znang, J 231,333,843,124/.	1591
Zhang, J 231,333,843,1247, Zhang. JJ	1591 . 197
Zhang, JJ	. 197
Zhang, JJZhang. JO	. 197 . 241
Zhang, JJZhang. JO	. 197 . 241
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q541,1049,1591	. 197 . 241 1067 1793
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q	. 197 . 241 1067 1793 . 201
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q	. 197 . 241 1067 1793 . 201
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q541,1049,1591 Zhang, S Zhang, X Zhang, Y 1097	. 197 . 241 1067 1793 . 201 . 223 1295
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z	197 241 1067 1793 201 223 1295 5,893
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q541,1049,1591 Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z	197 241 1067 1793 201 223 1295 5,893 241
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z	197 241 1067 1793 201 223 1295 5,893 241
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J	197 241 1067 1793 201 223 1295 5,893 241 1147 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J	197 241 1067 1793 201 223 1295 5,893 241 1147 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J	197 241 1067 1793 201 223 1295 5,893 241 1147 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y	197 241 1067 1793 201 223 1295 5,893 241 1147 811 1873 1873
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, CD	197 241 1067 1793 201 223 1295 5,893 241 1147 811 1873 1873
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, Z Zhao, GL Zhao, J Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, W Zhao, Y Zhao, W Zhao, W Zhao, W Zhao, W Zhao, Y Zhao, W Zhao,	197 241 1067 1793 201 223 1295 5,893 241 1147 811 1873 1759 5,571
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, Z Zhao, GL Zhao, J Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, Y Zhao, W Zhao, W Zhao, Y Zhao, W Zhao, W Zhao, W Zhao, W Zhao, Y Zhao, W Zhao,	197 241 1067 1793 201 223 1295 5,893 241 1147 811 1873 1759 5,571
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhang, CD Zheng, Z Zheng, Z Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y	197 241 1067 1793 201 223 1295 5,893 241 1147 811 1873 1759 5,571 231
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhang, CD Zheng, Z Zheng, X Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1759 5,571 . 231
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1759 5,571 . 231 . 783 . 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1759 5,571 . 231 . 783 . 811
Zhang, JJ Zhang, JQ Zhang, Q Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhou, L Zhou, Y Zhou, L Zhou, L Zhou, Y Zhu, K Zhusupova, GE	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1873 . 231 783 231
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, GE Zidorn, C	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1873 . 231 . 783 . 811 1597 1853 1061
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, GE Zidorn, C	. 197 . 241 1067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1873 . 231 . 783 . 811 1597 1853 1061
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, GL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, G Zhang, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, G Zidnnioglu, F	. 1977 . 241 11067 1793 . 201 1295 5,893 . 241 1147 . 811 1873 1759 5,571 . 231 . 783 . 811 1597 . 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, GL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, G Zhang, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, G Zidnnioglu, F	. 1977 . 241 11067 1793 . 201 1295 5,893 . 241 1147 . 811 1873 1759 5,571 . 231 . 783 . 811 1597 . 811
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, L Zhang, Q Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, CL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, S Zheng, Z Zheng, Z Zheng, Z Zheng, Z Zheng, X Zheng, CD Zheng, X Zheng, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, GE Zidorn, C Zihnioğlu, F Zivkovic, D Zlatković, BK	. 1977 . 241 11067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1873 231 783 811 1597 1853 1061
Zhang, JJ Zhang, JQ Zhang, L Zhang, Q Zhang, C Zhang, S Zhang, S Zhang, X Zhang, Y Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhang, Z Zhao, GL Zhao, J Zhao, W Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, Y Zhao, G Zhang, Y Zhou, L Zhou, Y Zhou, L Zhou, Y Zhu, K Zhusupova, G Zidnnioglu, F	. 1977 . 241 11067 1793 . 201 . 223 1295 5,893 . 241 1147 . 811 1873 1873 811 1597 1853 841 1

Volume **5** (1-12) 2010

Keywords Index

A549 cells 717 Aaptamine 1881 Abĥayarishta 575 Abies alba 1291,1995 Abietane diterpenoids 853 Abietic acid 1729 Absidia coerulea 373

Absolute configuration 675,1733 Absolutes 1349

ABTS+ radical scavenging 441

Acacia confuse 73 Acalypha segetalis 481 Acanthaceae 59,563,1722 Acanthus hirsutus 563 Acaricidal activity 471 Acetate-MVA pathway 163 Acetophenone 1961

1β-Acetoxy-furanoeudesm-4(15)-ene 1809 Acetylcholinesterase 1035,1201,1751

Achillea 283 Achillea clusiana 129 Achillea grandifolia 121

Aconitum 447 Actinomycete 249,597

Activity assay 137 Acyclic diterpenes 1721

Acylated flavonoid glycoside 1597 Adhesion molecules 1329

Aedes aegypti 1409 Aedes aegypti 1977 Afraegle paniculata 559 Agrobacterium rhizogenes 1913 Ajowan 1107

Alchornea triplinervia 1225 Aleyrodidae 1819 Algeria 835,1659

Alkaline phosphatase 1711 Alkaloids 17,35,877,1195,1743

Alkyl glycoside 1099 Allelopathy 685 Allium cepa 391 Allosylantirrhinoside 841 4-Allylanisole 1283 Alnus nitida 1787 ALT 1457 Aloysia citriodora 301 Aloysia polystachya 301

Alpinia speciosa 279 Alpinia zerumbet 143

Alzheimer's disease 1035,1751 Amaryllidaceae 1195,1201 Amaryllidaceae alkaloids 873

Amberbin A 1865 Amberbin B 1865 Amberboa ramose 1865

Ambrosanoli-10(14)-en-11,12-diol 179

Amino acids 81,1643

Amino-dihydroimidazo-pyrimidinone 377

Aminoquinolines 387 Ammoïdes verticillata 1107 Ampullosine 869 Anacardiaceae 545 Anchusa italica 1091

Andrographis paniculata 59, 717

Andrographolide 717 Anemone raddeana 197 Angucyclines 597 Angucyclinones 1917 Annonaceae 1931 Annonaceae 253,1543 Annonaceous acetogenin 1783 Anofinic acid 1071

Anthocleista schweinfurthii 369 Anthocyanin 1613 Anthraquinones 427,747,1251 Anthriscifolmines 1005 Anti osteoporotiC 47 Antibacterial 43,621,809,1387

Antibacterial activity 311,515,625,811,981, 1133, 1255, 1359,1427,1525,1781, 1985,1995

Anticancer 1239,1253,1623 Anticancer activities 617 Anticoagulant 1267 Anticonvulsant activity 1847 Antidepressive activity 431 Antidiabetic activity 907 Antifungal 329,809,1387,1789

Antifungal activity 477,869,1013,1525,1673,

1677,1955

Antihepatotoxic effect 1607 Antihyperglycemic 427 Antihyperglycemic drug 1077 Anti-inflammation 395

Antiinflammatory 253,415,545,1253 Anti-inflammatory activity 27,1215

Anti-larval 201 Antileishmanial 853 Antileishmanial activity 975 Antimalarial 853,1869 Antimalarial activity 1187 Anti-meiotic 1789

Antimicrobial 1369,1493,1803,1815 Antimicrobial 147,403,853,961, Antimicrobial activities 835,913

Antimicrobial activity 249,307,559,563,1085, 1139,1143,1301,1349, 1355,1365,1395,1663,

1823,1831

Antimicrobials 175,253 Anti-mosquitoes 175 Antimycobacterial activity 1931

Antioxidant 147,227,241,315,477,545,899,

Antioxidant activity 73,329,341,441,563, 629,1139, 1301,1339,1543,1561, 1607,1841

Antioxidant status 1213 Antioxidants 61,65,261,1453 Antiplasmodial 1869 Antiproliferative 253 Antiproliferative activity 751 Anti-radical 1759 Antiradical activity 1775 Antirrhide 841

Antirrhinoside 841 Antitumor 241,717 Antitumor activity 447 Antitumor compounds 531 Antiviral against HSV-1 1167

Anti-wood-decay fungal activity 337,1143,

1677,1823

Anxiolytic effect 143 Aphidicolin 1175

Apiaceae 297,307,817,1107,1111,1477,

1669,1951

Apigenin 7-O-dirhamnoside 39

Apigenin 7-O-dirhamnoside-4'-O-rhamnoside

Apigenin-7-O-[galacturonide (1→4)-Oglucoside] 1767

Aplysina 377 Apocarotenoids 1043 Apoptosis 151,571,1881,1921 Aporphine alkaloids 383,1747 Apuan Alps 1285

Aquilaria malaccensis 1965 Arbutus unedo 1085 Argan tree 935

Argania spinosa 935,1799

Arishta 575 Aristolactams 253 Aromatherapy 1441

Aromatic and medicinal plants 823

Aromatic glycoside 1099 Artemisia afra 1401 Artemisia alba 1117 Artemisia annua 185 Artemisia armeniaca 1619

Artemisia campestris ssp. campestris 1981

Artemisia capillaris 815,1277

Artemisia nilagirica var. septentrionalis 1959

Artemisinin 185 2-Arylbenzofuran 1063 Ascaridole 121 Ascophyllum nodosum 581 Aspergillus 1463

Aspergillus cellulosae 695 Aspergillus niger 695,1339 Aspergillus oryzae 1575 Aspergillusol A 1077 Aspleniaceae 39 Asplenium normale 39 Asporyergosterol 1575

Asteraceae 1,95,273,419,621,669,681,709, 725,849,1099,1283,1285,1321,1619,1649,

1811,1831,1959 Asterina pectinifera 1081 Asterosaponins 1737 Atriplex undulate 1841 Autonomic arousal 157 Avurveda 575

Azafluorenone 1931

Bacteria 1381

Baicalein glycosides 1239 Barleria lupulina 1711 Barley 407

Barley malt rootlet 265 Basil 65,969

Bcl-2 1921

Beauveria bassiana 77,801 Beauvericin 811 Behavioral arousal 157 Bellis perennis 147

benzo[de][1,6]-naphthyridine alkaloids 1881

Betaines 581

Betulaceae 1787 Canthin-6-one 17 Cinnamoylphenethylamine 1259 **BHT 729** Canthium horridum 913 Cinobufagin 1031 Bianthracene-C-arabinopyranoside 747 Capillene 815 Cinobufotalin 1031 Caprifoliaceae 1097 Circular dichroism 1733 Bianthracenes 747 I3,II8-Biapigenin 1215 Caprolactam 1061 cis-Abienol 1995 Biflavanones 1055\ Capsaicin 91 cis-Ocimene 311 Capsaicinoids 1253 Biflavonyloxymethane 1213 Citharexylum fruticosum 399 Caragana conferta 1899 Biisoflavonoid 1781 Citral 163,617 Bilariciresinol 423 β-Carboline alkaloids 1591 Citrus aurantium 471 Citrus essential oils 1325 Binaringenin 1055 Carbonyl ene reaction 993 Bioactivity 649,1055,1171,1591,1941 3-C-carboxylated flavones 1899 Citrus sinensis 435 Bioassay-guided isolation 811 Carex distachya 1539 Citrus sinensis var. Mimo 471 Bioassays 1329 Carnation 1903 Citrus sinensis var. Pêra 471 Bioconversion 1507 Carotenoid 1733 Citrus x monstruosa 927 Biodiversity 1111 Carthamosides 419 Cleomaceae 1301 Biological activity 297,319,969,1061,1375,1737 Carthamus oxyacantha 419 Cleome spinosa 1301 Biorational pesticides 845 Carvacrol 957,1985 Clerodane 1539 Biosynthesis 1147 Clerodane diterpenoids 999,1543 β-Caryophyllene 613,939,961,1365,1815, Biotransformation 81,373,515,695,1339, Clerodendron serratum 863 1829,1981 1463,1507,1859 Caryophyllene oxide 273,515,1365,1649,1981 Clerodendrum eriophyllum 853 Bisabolane derivative 667 Clerodendrum formicarum 919 Casearia sylvestris 1771 α-Bisabolol 307.465 Clovamide 1259 Castanea mollissima 13 Clove oil 1999 Bisabolol-oxide A 465 CAT 899 Bisabolol-oxide B 465 CBMN 729 Clusiaceae 751 Cluster analysis 943 Biseryvarin A 1781 Cedarwood oil 1359 Bitter orange 1819 CNE 151 α-Cedrol 515 ¹³C NMR 763,1107,1687,1991,1995 Black currant 1613 67/548/CEE Directive 1317 Blood 1263 Celastraceae 845 Coagulant 1263 Coleostephus myconis 1321 Colon cancer 915 Blumea perrottetiana 1135 Celastrus angulatus 355 Blumea riparia 1263 Cell adhesion 1329 Boldine 1587 Cell culture 1935 Colophony 1729 Cell viability 1127 Bonellia 365 Combretum oliviforme 1027 Boraginaceae 1091 Cellulose 603 Commiphora myrrha 1359 Bornyl acetate 937 cembrane diterpenoid 1171 Comparative evaluation 641 Bornyl esters 1161 Centaurea arachnoidea 1285 Competitive inhibitor 85 Borreria verticillata 1815 Centaurea bracteata 1649 Compositae 511,1531 Botanicals 65,1453 Computer assisted structure elucidation 763 Centaurea jacea 1663 Computer-aided analysis 755 Brassicaceae 883 Centaurea montis-borlae 1285 Brassilexin 883 Centaurea Nigrescens 273 Cone 1291 Centaurea pannonica subsp. Pannonica 1649 Centaurea pannonica 1663 Confetin A 1899 Brassinin 883 Confetin B 1899 Breeding 1437 Brine shrimp lethality test 245,1981 Centaurea Stenolepis 273 Conformational analysis 1733 Brontispa longissima 1247 Centaurea sulphurea 849 Contact toxicity 301 Bryophytes 999 Conyza bonariensis 1099 Centaurium pulchellum 1525 Bufalin 1031 Centipeda minima 151 α-Copaene 613 Bupleurum longiradiatum 1139 Cepharanthine 877 Coriander 969 Bursera delpechiana 351 Ceratitis capitata 391 Corsica 1991 Bursera linanoe 351 Cerebroside 1795 Cortex Magnoliae officinalis 795,1893,1631 Bursera tomentosa 311 Ceriops tagal, 9 Corticium sp. 33 Burseraceae 311,351,961,1181 Chá de Bugre 771 Coumarin 559,1067,1619 Chamaecyparis obtuse 461 Butyrylcholinesterase 1035,1751 COX-2 383 Chamazulene 465 Creamy white flower 1903 C20-diterpenoid alkaloids 1005 Chamomilla recutita 465 Crosslinking 1853 Cabreuva oil 1359 Chamomilla suaveolens 133 Crotalus durissus cumanensis venom 1103 δ-Cadinene 613 Chansu 1031 Croton macrostachvus 975 α-Cadinol 337,515,1143,1823 Chelidonium majus 1751 Croton sparsiflorus 1885 τ-Cadinol 337,1677,1823 Chemical compositions 1941 Crotosparsamide 1885 Chemical markers 635,939 Cryptonemia obovata 1643 Caesalpinia bonducella 931 Crystallography 511 Caesalpiniaceae 175 Chemical variation 329 Caesalpinoideae 1977 Chemiluminescence 923 Cucumaria okhotensis 1877 Caffeic acid 227,435 Chemosyndrom 465 Cucumis melo 403 Caffeic acid derivatives 725 Chemosystematics 725 Cucurbitaceae 403 Caffeic acid-derived polymer 1091 Chemotaxis 415 Cu-curcumin 1935 Chemotaxonomic marker 1091 Caffeoylquinic acids 733 Cultivar 291 Calamintha ashei 685 Chemotype 115,465,943,1681 Cuminic aldehydes 1355 Chenopodiaceae 603,1841 Cuminum cyminum 1767 Callicarpa macrophylla 269 Cunninghamella 1463 Chenopodium ambrosioides 645 Callitris neocaledonica 949 Callitris sulcata 949 Chiclero's ulcer 387 Cupressaceace 55,461,519,949 Chirality 1417 Callus 235 Curcuma mangga 1547 Chloranthaceae 1717 Curcumin 77,915,1935 Callus culture 927 Chlorobenzenoid 175 Curzerene 1669,1809 Callyspongia siphonella 27 Calocedrus decurrans 519 Chromenes 211 Cutaneous leishmaniasis 387 Chromones 551,555,859 Cyanidin 1613 Calotropis gigantean 867 Cvanidin-3-*O*-rutinoside 1613 Cichorieae 725 Camalexin 883 1,8-Cineole 279,283,457,617,935,1421, Camphor 283,935,1417 Cyclamen persicum 1023

1659,1669,1815

Cinnamic acid 1365

Cinnamomum camphora 1803

Cinnamomum kotoense 911

Camptosorus sibiricus 1557

Canonical correlation analysis 943

Canella winterana 1869

Candida 345

Cyclamiretin A 1023

Cyclic peptide 1885

Cyclization 675

Gallium-curcumin 1935

Keywords

2D NMR 763

Cyclo-(D-leucyl-trans-4-hydroxy-L-proline) Dolabrane 9 Eugenol 345,477,1999 DPPH 261,545,729,923,1561,1639,1759 Eupatorium capillifolium 1409 Euphorbia guyoniana 35 Euphorbiaceae 35,215,361,423,481,1209,1885 Cyclo-(L-leucyl-trans-4-hydroxy-L-proline) Dracocephalum surmandinum 341 Drimane sesquiterpenes 999,1869 Cyclo-(L-phenylalanyl-cis-4-hydroxy-D-Drying time 1799 Eurotium rubrum 1583 proline) 597 Eurycoma longifolia 17,1009 Dumortiera hirsute 1375 Cycloartane glycosides 1557 Dysophylla stellata 555 exo-Fenchyl acetate 279 Cyclooxygenase enzyme 91 Expert systems 763 Cyclopeptide alkaloids 1205 ECH 571 Expression 1329 Cyclophosphamide 447 Echinacoside 571 Extract screening 431 Cymbopogon 163 Egonic acid 1063 Extractive rate 893 Egyptian propolis 43 Cymbopogon martinii var. motia 1947 Extracts 1395,1941 Cytochrome P450 3A4 1195 Ehrlich's ascites carcinoma 1239 Cytochrome P450 695 Cytokines 733 Elaeoselinum asclepium subsp. Meoides 1111 F3'H from Gerbera hybrid 1893 Fabaceae 721,747,889,903,1213,1939 Electrospray ionization 1551 Cytokinins 1945 Fagaceae 1597 β-Elemene 1981 Cytotoxic activity 249,341,1027,1167,1183, 1187,1369,1557,1587 β-Elemol 1991 Falcaria vulgaris 981 Fatty acid 587,1085 Eleutherobia aurea 205 Cytotoxicity Ellagitannins 531 Fatty acids 1643,1663 Cytotoxicity 9,33,201,253, 365,373,551,675, Fermentation 1277,1767 Elsholtzia fruiticosa 641 903,975,1009,1023, 1567,1601,1613,1771, Enantiomers 1417,1623 Ferns 1655 1815,1869,1873,1889.1931 Ferric reducing activity 441 Encapsulation 1273 Da-Cheng-Qi decoction 789,795,893 endo-Fenchyl acetate 279 Ferulago isaurica 1951 Endophyte 1175 Dalbergia vacciniifolia 903 Ferulago longistylis 1951 Ferulago pachyloba 1951 Ferulago platycarpa1951 DART-MS 1755 Endophytic fungus 567,811,1575,1583 Darwinia fascicularis ssp. fascicularis 1833 Enhydra fluctuans 1239 Darwinia peduncularis 1833 Entamoeba histolytica 867 Ferulic acid 435 Darwinia procera 1833 FIA-ESI-MS 431 ent-Clerodanoids 175 Daucus carota 1955 Ficus chlamydocarpa 1607 ent-Kaurane 1873 Davanone 1365 Filicinic acid 1655 ent-Labdane diterpenoid 771 4'-Deacetylgriseusin A 249 Fingerprint 1631 **Environment 465** 4-Deacetylbaccatin III 1727 Fir 1291 Environmental factors 943 Flacourtiaceae 771 (E)-2-Decenal 1655 epi-Calocedrin 55 Deglycosylation 415 Flavanone 3 hydroxylase 777 Épicalvine 1191 Degradation 1853 Flavanone glycoside 1899 Epicuticular wax 1721 Dehydroxyisoflavones 903 Flavone 399,1213 Epileptic seizure 1847 9,11-Dehydroergosterol peroxide 1183 Flavone glycosides 39,841 Epimerization 1055 Flavonoid 1893 Delphinidin 1613 epi-β-Santalol 1343 Delphinium anthriscifolium var. savatieri 1005 Flavonoid C-glycoside 741 Époxygermacranolides 675 Dendrolasin 269 Flavonoid glycosides 223.783 Eremanthus argenteus 681 Flavonoid hydroxylation 777 Dengue virus 1307 Ergolide 511 Densitometry 863 Flavonoids 35,59,65,223,541,685,725,729,849 Erigeron mucronatus 621 Density functional theory 993 Erigeside E 1099 1219,1225,1233,1601,1607,1759 2-Deoxy-2-ribose 1639 Flavonol 215,1209 Erigeside F 1099 Flavonols 415,1061,1903 2-Deoxypolypodine B-3-β-D-glucoside 1579 Eryngium aquifolium 817 Detoxification 883 Erythrina melanacantha ssp. Melanacantha 721 Flower heads 129 Fluorescent labeling 1623 Devil's Club 1019 Erythrina variegate 1781 Foeniculum vulgare 1431 Diabetes 1927 Erythrina vogelii 889 Diarylheptanoids 1687,1787 Escherichia coli 249,777 Foeniculum vulgare 319 Dibenzocyclooctadiene lignans 231 Dicranostyles ampla 1233 Food additive 61 Eschscholzia californica 1035 Food chain 485 **ESIMS 1737** Forensic chemistry 1317 Different developmental stage 1673 ESI-MS/MS 1639 Different growth ages 73 Essential cumin oil 1355 Formadienoate-A 919 Essential oil 115,121,129,133,137,143,163, 269.279,283,291,301,307,311,315,319,329, Dihydroagarofuran derivatives 845 Formadienoate-B 919 Formulations 645 Dihydrocapsaicin 91 Fragmentation 1551 Dihydroflavonol 215 337,341,457,471,481,613,615,625,629,815, Dihydromyricetin 1233 817.823.831.835.8937.939.957.961.965.969. Fragrance 1441 Dihydrooxipin 2 975,981,1107,1111,1115,1117,1123,1127,1133, FRAP 261 Free radical scavenging 65,1453 Dihydroxymethyleneamino propanoic acid 259 1135,1139,1143,1161,1283,1285,1291,1295, Free radicals 1607 3β,4β-Dihydroxypregnan-16-one 179 1299,1301,1307,1311,1321,1349,1427,1431, 6,8-di-*C*-β-glucosylapigenin 741 Dihydro-β-agarofuran 355 1437,1465,1477,1493,1663,1669,1673,1677, 1681,1809,1811,1815,1819,1823,1829,1831, Free-radical scavengers 923 Fructus Aurantii Immaturus 795,893 Fruit dehulling 1799 1833,1837,18411951,1955,1981,1985,1995,1961 Diketopiperazine alkaloid 1583 Frullania 1375 Diketopiperazines 597 Essential oil composition 1947 Fucus serratus 581 Dimerostemma 669 Essential oil constituent 1381,1959 Fujianmycin C 1917 Essential oil interaction 1395 Dimerostemma arnottii 669 Fumigant toxicity 301 Dimethoxy-p-cymene 1135 Essential oil yield 1947 Fungal secondary metabolites 1175 Dimethyl-S-trans-marmin 559 Essential oils 111,461,645,949,1401,1847,1969 Dioscorea zingiberensis 811 Ethyl-amino-imidazolyl-propylcarbamate 377 Fungi 81 Furanoeremophil-1-one 1809 Dioscorealide B 1921 6-Ethoxydihydrochelerythrine1751 Furanoeremophilane 1 Diosgenin 373 6-Ethoxydihydrosanguinarine 1751 Furocoumarin 551 Direct analysis in real time-MS 1755 Etiolated wheat coleoptile bioassay 1043 Fusarium redolens 811 Discriminant analysis 1631 Eucalyptus camaldulensis 329 Fusarium sp. 1771 Diterpenes 519,1535,1977 Eucalyptus globules 1401,1669 Diterpenic resin acids 1729 Eucalyptus gomphocephala 1639 Diterpenoid 13,1873 Eudesmanes 669,1717 Gaeumannomyces amomi 567 Diversity 1681 Gaillardin 511 Eudesmanolides 675 Galinsoga parviflora 1831 DNA damage 1127 β-Eudesmol 273,1143,1677,1823

Eugenia triquetra 965

Ganoderma lucidum 1183 Hepatotoxicity 519,1457 in vitro Regeneration 927 Garden cress 1969 HepG₂ 1613 in vivo Functional characterization 709 HepG2 cells 1039 in vivo Volatile emission 1321 Gas chromatography mass spectrometry 1995 Herbal medicines 431,523,1329 Gas chromatography-flame ionization detector Incense 1317 Herbs 65,441,1453 Gas chromatography-mass spectrometry 1965 Herpes simplex virus 1307 Gastroprotective activity 1215 Herpes simplex virus type 1 1935 Heterosiphonia japonica 1575 GC 147,297,1107,1111 Indirubin 103 GC analysis 1951 Hexadecanoic acid 1649 GC/MS 147,641,985,1085,1201,1285, Hexahydrofarnesyl acetone 273 Induction 1147 (Z)-3-Hexenal 1421 1421.1441 GC-FID 831 (Z)-3-Hexen-1-ol 1829 GC-MS 143,291,297,457,461,621,831,1123, Hibiscus tiliaceus 1583 Inos 571 1317,1427,1431,1649 Hierarchical cluster analysis 1631 GC-MS analysis 107,1951 High performance liquid chromatography Gene expression 1147 1081,1453 Genetic engineering 1507 Hippospongia 259 Insecticide 1135 Hirsutusoide 563 Genipin 1853 Genista sessilifolia 1127 Hispidin 1927 Interaction 1381 Genista tinctoria 1127 Histochemistry 107 Internodes 1945 Genista ulicina 835 HL-60 103 Genista vepres 835 HMBA 1071 Genisteae 835 Honokiol 235 Genotoxicity 621,1039 HPLC 47,95,435,541,555,897,985,1049 Involucrin 1081 Gentiana 649 HPLC analysis 419 Gentianaceae 369 HPLC/DAD 893 Iridoids 841 HPLC-DAD 877 Geraniaceae 899 Geraniol 163,1947 HPLC-MS/MS 789 Geranium 899 HPLC-PDA-ESI/MS/MS 545 HPTLC 863 Geranium bellum 531 Geranium potentillaefolium 531 HSCCC 1031 Geranyl acetate 163 HSV-1 1935 Geranylnerol derivatives 1721 Human cancer cell lines 1567 Human leukocyte elastase (HLE) 1071 Germacranolides 675 Germacrene 1117 Human monocytic leukemia (THP-1) cell line (S)-(-)-Germacrene D 351 Germacrene A synthase 709 Human parasitosis 137 Isothymol 1107 Germacrene-D 311,817,939 Human whole blood 1441 Italy 1285 Giardia lamblia 137 Humic acid 395 Glabranol A 1717 Humic substances 395 Glabranol B 1717 α-Humulene 1961 Humulene epoxide II 1981 Glabridin 1907 Glandular hair 1437 Hydration 801 Glandular trichome 709 Hydrodistillation 111,291,297,461,641 Junenol 1981 Hydroformylation 1985 Glechoma hederacea 61 Junin virus 1307 Hydrolysis 801 Glibenclamide 1103 Hydroxybutenolide 859 Globulol 1669 Glochidion eriocarpum 361 Glochieriol 361 Hydroxycinnamic acids 435 Hydroxydimethoxycyclohexenone 245 Glochieriosides C-E 361 Hydroxy-hydroxyphenyl-propionamide 245 20-Hydroxyecdysone 20,22-monoacetonide-25β-Glucan 407 acetate 1579 Glucose uptake 231 4-Hydroxy-2-isopropylphenyl)ethanoic acid 55 α-Glucosidase 1049 10α-Hydroxyl-artemisinic acid 1531 α -Glucosidase inhibitor 1077 Hydroxylation 1893 Glutamate-induced toxicity 851 Hydroxyl radical 923 Kinetics 1953 Glyceride derivatives 1939 5-hydroxymethyl furfural 575 Glycoalkaloids 1743 27-Hydroxyoleanolic acid 197 Glycyrrhisoflavone 1049 Hylodendron gabunensis 1939 Labdane 1535 Glycyrrhiza glabra 1243 Glycyrrhiza inflate 1755 Hylodiglyceride 1939 Glycyrrhiza uralensis 1049\ Hyloglyceride 1939 Hymenaea courbaril 1977 Gmelinoside I 1061 Hyperforin 897 Griseusin A 249 Hypericaceae 107,1493 Guaianolides 1865 Hypericins 897 Guar gum 915 Hypericum 1493 Guttiferone 751 Hypericum androsaemum 107 H/D-exchange 1055 HaCaT cell 1081 Hypericum confertum 897 Landik 1711 Hypericum perforatum 431,535 Lantana 635 Hypericum richeri 1215 Hairy root 1913 Hypoglycemic 545 Halophyte 603 Headspace 1123 IFRA 1317 HeLa cells 1639

IL-1β 1457

Illumination 1907

in vitro Culture 927

Imidazole alkaloids 377

Immunomodulation 447

Immunosuppression 447

Heliantheae 669

Hemostasis 1263

Helianthus annuus 709 Hemolytic activity 975

Hepatoprotective 1243

Hepatocellular carcinoma 1613

Incorporation of ¹⁴C leucine 607 Indigo naturalis 1039 Indigofera tinctoria 1039 Indirubin-3'-oxime 103 Inflammation 415,1311 Infrageneric classification 897 Inotropic action 369 Insect repellent 935 Insecticidal activity 355,1247,1301 Integrated bioprocesses 1507 Inula crithmoides 315 Inula oculus-christi 511 in-vitro Drug release 915 Iridoid glucosides 1711 Iron ion chelating ability 1775 Irregular sesquiterpenyl group 215 Isoatriplicolide tiglate 851 Isochrysis galbana 1941 β-Isocryptoxanthin 1733 . Isodon leucophyllus 1873 Isoflavone 1771,1795 Isoliquiritigenin 1243 Isonymphaeol-D 43 isoquinoline alkaloids 869,1035,1751 Jacquinia flammea 365 Jasminum sambac 157 Jiamizioside E 1097 Jirakadyarishta 1767 Juniper berries oil 1359 Juniperus asheii 1359 Juniperus chinensis 55 Juniperus communis 1359 Juniperus thurifera 1991 Kaempferol 1597 Kaempferol 3-O-glycosides 1903 α-Kessyl acetate 297 Key enzyme, activity 1147 Kumatakenin 1063 Labiatae 555,1465,1873 Lachnophyllum cumulene 621 Lactic acid bacteria 1277 Lactone glycosides 783 Lamiaceae 65,261,341,625,641,685,919,937, 939,943,957,1465,1785 Laminaria digitata 581 Laminaria hyperborean 581 Lantana camara 1567 Lantana canescens 635 Lantana radula 635 Larvicidal activity 477,481,965 Laserpitium zernyi 307 Lauraceae 337,383,1053,1143,1677,1823 Laurencia claviformis 1859 Laurus nobilis 111 lavandulyl flavanone 1889 Lavendula angustifolia 1431

Oxygenated monoterpenes 943

Mallotophilippen 211 Mallotus philippensis 423

Layer-by-layer self-deposition 1401 Mallotus philippinensis 211 Myrtaceae 965,1639,1669,1833 LC/ESI-SRM 869 Mangrove endophytic fungus 1771 Myrtenyl acetate 1833 Mangrove plant 1583 LC-DAD 23 Myrtus communis 1659 LC-ESI-MS 23 Marchantia 1375 LC-MS/MS 1551 Marine alga 607 N-Acetylcysteine 519 LC-MS-MS 741 Marine fungus 507,1789 Nasopharyngeal carcinoma 151 Leaf biomass yield 1947 Marine natural product 1571 Natrii Sulfas 795,893 Natural flavors 1507 Leaf ontogeny 1947 marine sponge 1881 Leaves 115 Marine sponge 259,1187 Natural products 81,137,485,507 Lectins 607 Marine streptomycetes 1917 n-Decanal 1677 Leguminosae 1781 Marker compounds 47 Nectandra purpurascens 1063\ Leishmania amazonensis 1837 Massage aromatherapy 157 Neocallitropsis pancheri 949 Mastigophora diclados 1375 Neolignans 755,1063,1627 Leishmania mexicana 387 Matricaria suaveolens 133 MC3T3-E1 cells 1711 Neolitsea sericea 1311 Leishmanicidal activity 387 Neophytadiene 481 Leontopodium andersonii 667 MCF-7 1921 Leptospermum scoparium 1803 Nepatanol 1785 Leptosphaeria maculans 883 Melaleuca alternifolia 1401 Nepeta distans 1785 Nepeta persica 625 Leukemia 103 Melanoma cells 1127 Libanotis pyrenaica 1427 Meliaceae 179 Nepetalactone 625 Licochalcone A 1755 Melissa officinalis 111 Nerolidol 1365 Menispermaceae 1747 Licorice 1049 (E)-Nerolidol 1655,1837 Neuroprotective 851 Light intensity 535 Mentha x piperita 1945 Lignan 423,1623 Menthofurans 685 Neurospora crassa 515 Ligularia oligonema 1 Menthol 1417 Neutrophil 415 Limonene 457,965,981,1291,1421,1811,1991 Menthone 1299 New Zealand 1803 MEP pathway 163 Limonium gmelinii 1061 N-formylasimilobine 2-O-β-D-glucopyranoside Limonoid 859 Metformin 427 1747 Linalool 345,859,965,969,1123,1441,1837 Methicillin resistant Staphylococcus aureus NF-κB 571 Niphates digitalis 1187 Nitidone A 1787 Linalyl acetate 1123 249,1781 (R)-(-)-Linalyl acetate 351 Method validation 23,863,877 Linaria kurdica subsp. Eriocalyx 841 2-Methoxy-8-methyl-naphthalene-1,4-dione Nitodone B 1787 Nitric oxide 1547 Linariin 841 4-Methoxyquinolone 1463 Linarin 841 Nitrone cycloaddition 1191 Lindenane 1717 Methyl eugenol 345,477 Nitroxides 241 Linoleic acid 85 Methylethyl-trimethyl benzene 315 NMR 191,205,259,407,419,529,551,667,755, 1259,1539,1737,1881 NMR analysis 99 4'-O-Methylglycosylation 77 Lipid Peroxidation 91 Lipopolysaccharide 1457 Methyl-ribofuranosyl-uracil 253 NMR data assignment 1205 Liposomes 1401 Miconazole 185 Lipoxygenase 85 Microbial biotransformation 77 n-Nonane 311 Lippia 635 NO 571 Microdistillation 297,1421 Lippia dulcis 613 Micronucleus test 1039 Nociception 1103 Lippia multiflora 645 Micropropagation 235 Nonacosane 1649 Liquiritigenin 1243 Microwave assisted extraction 51 Non-protein amino acid 485 Litchi chinensis 529 Mite antigen 1081 Non-volatile 1395 (-)-Nopol benzyl ether 1339 Mitregenin 1783 Litsea coreana 1677 Litsea cubeba 617 Mitrephora maingayi 1783 Novel oil 587 Mixture analysis 1755 Litsea linii 1823 Nuclear factor-Kb 1311 Litsea mushaensis 1823 Modeling 535 Nuclear transcription factor-kappa-B 1253 Modified Mosher's method. Liverworts 999 Nucleobases 1187 Lobelia chinensis 1627 Mollioside 13 Nucleosides 1187 Lobophytum patulum 205 Mollissin 13 Obtusilactone A 911 Long chained feruloyl esters 919 Monocillin I 801 Occidenol 5 Longifolene 1365 Monocrotaline 1457 Occidentalol 5 5-LOX 383 Monoterpene 1167 Ocimum basilicum 65 LSD 763 Monoterpenes 1969 Ocotea macrophylla 383 Lup-12,20(29)-diene-3,27-diol 519 1-Octen-3-ol 1421,1655 Morinda royoc 809 Lutein 1043 Morindone 809 Oil extracts 1215 Luteolin-4'-O-glucoside-7-O-galacturonide 1767 Morocco 1349 Oil quality 1799 Oil yield 1117 Lychnophora ericoides 733 Mosquito control 1409 Oleanolic acid 191,863 Lycorine 873,1195 Mouse 143 lysosomal activity 1877 mRNA expression 1547 Oleanolic acid derivatives 1567 MRSA 1463,1781 Olfactory stimulation 1441 MS 407,1111 MS/MS 783 Oplopanax horridus 1019 Macapruinosins A-C 215 Macaranga pruinosa 215 Orange fruit cultivars 435 Macaranga rhizinoides 1209 MTPA esters 801 Organogenesis 927 Macarhizinoidin A 1209 MTT assay 511 Organ-specific accumulation 1055 Macarhizinoidin B 1209 Mucor plumbeus 1859 Origanum glandulosum 957 Origanum syriacum var. syriacum 957 Macaronesia 1465 Mud 395 Multi-components 795 Origanum vulgare subsp. Hirtum 1437 Maceration 51 Machilus philippinensis 337 Multiple shoot regeneration 1945 Ormenis multicaulis 1349 Machilus pseudolongifolia 1143 Mushrooms 923 Ottoa oenanthoides 1115 Macrophages 1877 Mutagenicity 1225 Ovicidal activity 301 Mycobacterium tuberculosis 211 Madagascar 1803 Oxoamides 259 Magnolia dealbata 235 Mycorrhiza 823 (-)-4-oxonopol 1339 Magnolia officinalis 1631 Myrcene 1811 (-)-4-oxonopol-2',4'-dihydroxybenzyl ether Magnolidaceae 235 Myricitin-3-O-α-rhamnoside 1233 1339 Magnolol 235 Myristicaceae 1795 2-Oxo-14,15-bisnor-3,11E-kolavadien-13-one

Myrocarpus fastigiatus 1359

Myrrh oil 1359

Pacifenol 1859 Pacifidiene 1859 Palm oil 1623 Palmarosa 1947 Palustric acid 1729 Pancratium maritimum 873 Papaveraceae 1035,1751 Patchouli alcohol 1961 Paulownia coreana 851

PCA 1991

p-Coumaric acid 435 p-Cymene 1811,315,957 p-Cymene derivatives 519 Peak origination 789 Pelargonium 1349 Pelargonium 1395 Pelargonium absolute 1349

6-Pentadecanylsalicylic acid 85 Pentadesma 1055 Pentagalloyl glucose 899 Pepper 985 Perilla aldehydes 341

Peristrophe bicalyculata 1815 Peronophythora litchi 245 Pesticides 1325

Petrorhagia velutina 99

PGE₂ 733

Phaeosphaeria spartinae 1071 Pharmacokinetics 1441 Pharmacokinetics 795 pharmacological actions 1999 α-Phellandrene 1811 Phellinus linteus 1927 Phenethyl bromo ester 399

Phenolic acid derivatives 1601 Phenolic acids 407,1263 Phenolic amide 1259 Phenolic compounds 1759 Phenolic constituents 897 Phenolic content 73 Phenolic glycoside 1097 Phenolics 535,575,1639 Phenyl alkynes 815

2-Phenylethanal 1655

Phenyl propanoic acid derivative 1619 Phenylethanoid glycoside 563 Phenylethyl-chromones 403 Phenylmethylene hydantoin 1623 Phenylpentadiyne 815

Phenylpropanes 1387

Phenylpropanoid glycerides 1601

Pheophorbides 99 Pheophytin 99 Phloroglucinols 211 Phoma lingam 883 Phoma macrostoma 81 Phoma sp. 1175 Phosphodiesterase 265 Photoinduced phytotoxicity 99 Photooxidation 859

Phtytoceuticals 319 Phyllocladene isomer 817 5,7'-Physcion-physcion-10'-C-άarabinopyranoside 747 Physiological activity 1687 Phytoalexin 883

Phytoecdysteroids 1579 Phytol 1815 Phytolacca rugosa 775 Phytolaccaceae 775 Phytolaccagenin 1013 Phytosphingosine 1081 Phytotoxicity 1043,1233,1539

Pictet reaction 1591 Pineapple weed 133 Pinene 965,1417

 α -Pinene 143,481,961,981,1659,1729,1833

Pinus 1729

Pinus armandii 1295

Pinus tabulaeformis 1295 Piper claussenianum 1837 Piper divaricatum 477 Piperaceae 477,1837 Piperidines 1191

Piperine 1253 Piperitenone 1299 Pistacia atlantica 115 Plakinamine 33 plant growth hormones 1945

Plant metabolites 391 Plant pathogens bioautography 1409

Plant product NP-1 47 Plasmid stability 1893 Plasticizers 1325 Platelet aggregation 383 Pleiogynium timorense 545 Pleurothvrium cinereum 383 Plocamium brasiliense 1167

Plumbagin 1913 Plumbaginaceae 1061 Plumbago indica 1913 PM-ATPase 345 Podocarpaceae 1133 Podophyllotoxin 1247 Podophyllotoxin 241 Pogostemon cablin 1961 Pogostemon heyneanus 1961\

Poly[3-(3,4-dihydroxyphenyl)glyceric acid]

Poly[oxy-1-carboxy-2-(3,4-dihydroxy-

phenyl)ethylene]. Polyalthia cerasoides 1931 Polyalthia simiarum 1543 Polygonaceae 223

Polyhydroxysteroid glycosides 1737

Polymer-coating 1401 Polyphenolic content 441 Polyphenols 227,435,733 Polyporales 923 Polysaccharide 447,1941 Pometia pinnata 191 Pompia 927

Pongamia pinnata 1213 Porella perrottetiana 1375

Porifera 259 Portugal 1465 Potato sprouting 645 Potentene A 1561 Potentene B 1561 Potentilla fulgens 1561 Prenylated flavonoids 43,721,889 Primulaceae 1023

Principal component analysis 115 Prismatomeris tetrandra 1251 Proanthocyanidin 407 Proanthocyanidin content 73

Procesterol 867 Antiamoebic activity 867

Procoagulant 1263 pro-IL-1β 1941 Propolis 1601 Prostaglandin E₂ 1547

protein tyrosine phosphatase 1β 1927

Proteomic 1183 Protium hebetatum 1181 Pteridophytes 1655 Pterocarpanes 721 Pteroxygonum giraldii 223 Pulchellin C 511 Pulegone 1299

Pulsatilla albana 1299 Purification and characterization of protease 931

p-Vinyl guiacol 273 Pycnangloside 1795 Pycnanthus anglonensis 1795 Pyrolytic syn elimination 993 Pyrrolizidine alkaloids 1457

QSAR 1387

Quality control 23 Quantification 555

Quantitative analysis 541,1775,1803 Quantitative determination 907

Quassinoids 1009 Quercetagetin 61 Quercetin 1215 Quercus dentata 1597

Radical scavenging activity 515

Radicle elongation 1969

Radish 1969

Radix et Rhizoma Rhei 795,893 Radix Hedysari 541 Radix ilicis pubescentis 23 Ranunculaceae 197,1299 Ranunculus japonicus 783

RAPD 587 Raphanus sativus 99 Rat plasma 741 Ravensara aromatica 1803

Red alga 1575

Red blood cells 1035,1751 Red marine alga 1267 Red Sea sponges 27,1623 Repellence 301 Resibufogenin 1031 Reticuline 1035 Retro-aldol reaction 993 Retro-electrocyclic 5

Retrophyllum rospigliosii 1133 Rhodesain 1161 Rhodymenia coralline 1643

Ribonucleotides 265 Ribus nigrum 1613

Ring-A-aromatized bile acids 1571

ROA 1417 Root 1531 ROS formation 1877 Rosa x centifolia 1349 Rosasceae 1561 Rosmarinic acid 227,1453 Rosmarinus officinalis 1349

Rottlerin 211 RP-HPLC 907 Rubiaceae 1251 Rutaceae 457,559 Rutin 1219

Sabinene 1669,1811

Saccharomyces cerevisiae 709 Saccharothrix espanaensis An 113 597

Sage 1453

Sakurososaponin 365 Salicornia brachiata 603 Salmonella typhimurium 391 Salvia 227,1421

Salvia leucantha 937 Salvia miltiorrhiza 805 Salvia officinalis 1453 Salvianolic acid A 805 Salvianolic acid B 805 Sandalwood odor 1343 β-Santalol 1343 Santiria trimera 961 Sapindaceae 191,529 Saponins 365,1013 Sapotaceae 935 Sarcandra glabra 1717

Sarcophyton infundibuliforme 1171

Satureja intrincata 629 Satureja obovata 629 Satureja x delpozoi 629 Saussurea lappa 1531 Scalarispongia aqabaensis 27 Schisandra chinensis 231 (-)-Sclerotiorin 1789 Scopoletin 315

Scorzonerinae 725

Keywords Scrophulariaceae 841 Seasonal variation 457 Seaweed extracts 581 Seaweeds 1643 Secoiridoid glycosides 1525 Secokaurane 13 Secondary metabolites 649 Secretory structures 1225 Seed 587,1291 Selectivity index 975 α -Selinene 269 β-Selinene 269 Semisynthetic derivatives 717 Senecio nemorensis 831 Senecio othonnae 831 Senecio pterophorus 1811 Senecio racemosus 831 Senna septemtrionalis 747 Separation 805 Sepedonium 869 Serine protease 931 serjanic acid 775 Serpentinophyte 1117 Sesamin 911 Seseli hartvigii 1067 Seseli libanotis 1427 Seseli praecox 551 Sesquicineol 817

Sesquiterpene 5,667,1531,1717,1965 Sesquiterpene lactone 151, 669,681,849,851,

Sesquiterpene synthase 709 Sesquiterpenes 685,1663,1681,1977

Sesquiterpenoids 1,695 SFE 641 SFME 111 Shelf life 1799 Sideritis 51 Silene viridiflora 1579 Simaroubaceae 17 Similarity analysis 1631 Sinapic acid 435 SISTEMAT 755,763 Smallanthaditerpenic acid 95

Smallanthus sonchifolius 95,1721 Smyrnium olusatrum 1669,1809 SOD 899

Sodium alginate 1273 Soft corals 205,1171 Solananceae 615,1743 Solanum 615,1743

Solanum bicolor 615 $Solanum\ hypomala cophyllum\ 1743$

Solanum tuberosum 645 Solid cultures 245

Solid-state CD / TDDFT calculations 1175

Solieria filiformis 1267 Sollasella moretonensis 1571 Solvent 1907

Solvent-free microwave extraction 111

Sophora flavescens 1889 Southern green stink bug 301 Soy extracts 1775 Spartinoxide 1071 Spathelia sorbifolia 859 Spathulenol 273 SPE 1431

Spectroscopic characterization 919 SPME 291,1317,1427

Sponge 377,1571 Spreading 1877 Stability 1907

Stachys cretica ssp. Lesbiaca 1369

Stachys cretica ssp. Trapezuntica 1369 Standardization 575,1329

Starfish 1737 Stathmin 1183. Static headspace 291,1441

Stemphol galactoside 567

Stephania rotunda 877 Stephanitis pyrioides 1409 Stereochemistry 1067 Stereoselective synthesis 1191

Sternbergia 873 Steroid 201,1795 Steroidal alkaloid 33 Sterol synthesis inhibitor 185

Sterols 205 Stilbene 215 Stimulating effect 157 Strawberry anthracnose 1409 Strawberry tree 1085 Streptomyces griseus 249 Streptozotocin 427 Stress 1441

Structure-activity relationships 1247,1567,1601,1759,1847 Structure-odor relationships 1343

Subergorgia suberosa 201

Sucrose 1273

Sulfated polysaccharide 1267 Supercritical CO₂ 461,1955 Supercritical fluid extract 1995

Superoxide 545,1639 Sustained attention 1441 Sweet orange 1819 Swertia paniculata 907 Sylvestin 771

Symphonia pauciflora 751 Symphytum 587 Synergism 1381 Synseeds 1273 Synthesis 1587 Szovitsia callicarpa 297 Tagalsin O 9 Tagetes pusilla 1283 Tanacetum macrophyllum 121

Taxaceae 1727 Taxoids 1551 Taxonomy 587 Taxus wallichiana 1727 T-cadinol 1321 Tectona grandis 427 Temperature 535 TEO 345 Terbinafine 185 Terpene 1417,1785 Terpenes 1291,1507,1847 Terpenoids 129,179,999,1375 γ-Terpinene 815,1833 Terpinen-4-ol 279

α-Terpineol Tessmannia martiniana var martiniana 175 Tessmannia martiniana var pauloi 175

Tetrahydropalmatine 877 Tetranortriterpenoids 859 Tetranychus urticae 471 Teucrium arduini 1969 Teucrium maghrebinum 1969

Teucrium montbretii ssp. Heliotropiifolium

Teucrium polium ssp. Capitatum 1969

Teucrium quadrifarium 939 Teucrium royleanum 939 Theophrastaceae 365 Thiocarbamates 1587 Thuja sutchuenensis 1673 α-Thujone 121,283 *Thymbra* 1465 Thyme 1681 Thymol 957,1681 Thymol methyl ether 1409

Thymus 1465

Thymus capitatus 1985 Thymus migricus 943 Thymus pannonicus 1681

Thymus praecox ssp. polytrichus 1123 Thymus praecox ssp. skorpilii 1123

Thymus vulgaris 291 Tinospora crispa 1747 Tirucallane 1181 Tirucallanoid 17 Tissue cultures 1219 Tissue distribution 143 Tocopherols 1643 δ-Tocotrienol 1623 Total glycosides 783 Total phenol 261 Total phenolics 923,1775 Total synthesis 1077 Toussaintia orientalis 253 Toxicity 481,485,1981

Toxin 485

Traditional Chinese medicine 789

trans-Anethole 1283 trans-Dehydrocrotonin 519 Translucent glands 107 trans-Pinocarveol 1669 Tricalysioside U 771 Trichilia quadrijuga 179 Trichome density 1437 Trigalloyl glucose 899 Trigonelline 581 Triterpene 529

triterpene glycosides 1877 Triterpene saponins 775,1023 Triterpenes 1055,1181,1561 Triterpenoid 1027

Triterpenoid saponin 191,361,1019 Triterpenoid saponins 197,1147 Trypanosomiasis 1161 Turnera ulmifolia 1829 Turneraceae 1829

Turraeanthus longipes 1535 Turraeanthus mannii 1535 Type 2 diabetes mellitus 231

Tyrosol 81

U-937 733 Ultrasound-assisted extraction 51,111

Ulva fasciata 607 Umbelliferae 981,1809 Unsaponifiable fraction 1085 UPLC/Q-TOF 783 UPLC-DAD-TOF-MS 1631

Validation 555 Vasoconstriction 369 Vasodilatation 1267 Verbenaceae 269,613,853 Verbenone 1417

Verbesina turbacensis 1161 Vernonieae 681 Verticillium tenerum 507 Verticinol A 507 Verticinol B 507 Viburnum dilatatum 1097 Vicenin-2 733,741 Virucidal activity 1307

Vitamin E 519 VOC 1655 Vogeol 889 Vogliiol 889 Volatile 985,1381

Volatile components 273,1649 Volatile oil 151,1965

Volatile organic compounds 107,1655 Volatiles 147,1291,1427,1465,1493

Water retention 395 Wen-Hou-Po 1631 Western Mediterranean 1465 Whitefly 1819

wild Moroccan chamomile 1349

Withania aristata 1043

Xanthones 751,907,1055

XRD 603 Xylopinine 877

Yacon 95,1721 Yeast 1381 Yield variations 581 β-Ylangene 1981

Zanthoxylum clava-herculis 457 Zephyranthes grandiflora 1273 Zephyranthes robusta 1201 Zhejiang Province 1631 Zingiberaceae 279,1219 α-Zingiberene 1815 Zizyphus oxyphylla 1205

Manuscripts in Press Volume 5, Number 12 (2010)

Essential Oil Composition of Vismia macrophylla Leaves (Guttiferae)

Janne Rojas, Alexis Buitrago, Luis Rojas and Antonio Morales

Traditional Medicine in Syria: Folk Medicine in Aleppo Governorate

Amal Alachkar, Ahmad Jaddouh, Muhammad Salem Elsheikh, Anna Rita Bilia and Franco Francesco Vincieri

Chemical Variability of Essential Oils in Natural Populations of *Cupressus dupreziana*

Messaoud Ramdani, Takia Lograda, Pierre Chalard, Jean Claude Chalchat and Gilles Figueredo

Antimicrobial Activities of Indole Alkaloids from Tabernaemontana catharinensis

Maria Rita Furquini Medeiros Luiz Afonso de Melo Prado Vanessa Colnaghi, Sérgio Souza Figueiredo Juliana Coppede Juliana Martins, Giovana Maria Lanchoti Fiori, Nilce Maria Martinez-Rossi, Rene Oliveira Beleboni, Silvia Helena Taleb Contini, Paulo Sérgio Pereira and Ana Lúcia Fachin

Composition of a Monoterpenoid-rich Essential Oil from the Rhizome of Zingiber officinale from North Western Himalayas

Suphla Gupta, Pankaj Pandotra, Gandhi Ram, Rajneesh Anand, Ajai Prakash Gupta, Mohd. Kashif Husain, Yashbir Singh Bedi and Gopal Rao Mallavarapu

Authentication of Chinese Crude Drug Gecko by DNA Barcoding

Hai-Feng Gu,Yun Xia, Rui Peng, Bang-Hui Mo, Li Li and Xiao-Mao Zeng

Oxyresveratrol Protects Against DNA Damage Induced by Photosensitized Riboflavin

Manussanunt Chatsumpun, Taksina Chuanasa, Boonchoo Sritularak and Kittisak Likhitwitayawuid

Comparative Biochemical Characterization of 5'-Phosphodiesterase and Phosphomonoesterase from Barley Malt Sprouts

Suncica Beluhan and Vladimir Maric

Chemical Composition of the Essential Oil of Croton gossypiifolius from Venezuela

Alírica I. Suárez, Marly Oropeza, Luís Vásquez, Stephen Tillett and Reinaldo S. Compagnone

Terpenoid Compositions and Antioxidant Activities of Two Indian Valerian Oils from the Khasi Hills of North-east India Jayashankar Das, Ashiho A. Mao and Pratap J. Handique

Volatile Constituents of Festuca nigrescens, Phleum alpinum and Poa alpina from N.W. Italian Alpine Pastures

Aldo Tava, Roberto Cecotti, Maris Grecchi, Luca Falchero, Mauro Coppa and Giampiero Lombardi

Asima
foetidnol: a New Sesquiterpenoid Coumarin from the Gum Resin of
 $\it Ferula~assa-foetida$

Debasish Bandyopadhyay, Manas Banerjee, Subrata Laskar and Bidyut Basak

Comparison of *Eucalyptus cinerea* Essential Oils Produced by Hydrodistillation and Supercritical Carbon Dioxide Extraction Tavleen S. Mann, Garikapati D. Kiran Babu, Shailja Guleria and Bikram Singh

Leaf Essential Oil of *Manekia naranjoana* (Piperaceae) from Costa Rica and its Cytotoxic Activity

Carlos Chaverri, Cecilia Díaz and José F. Cicció

The Essential Oil of *Artemisia scoparia* from Tajikistan is Dominated by Phenyldiacetylenes

Farrukh S. Sharapov and William N. Setzer

Bioactive Isocoumarins from a Terrestrial *Streptomyces* sp. ANK302

Dhafer Saber Zinad, Khaled A. Shaaban, Muna Ali Abdalla, Md. Tofazzal Islam, Anja Schüffler and Hartmut Laatsch

Chemical Composition of Essential Oil of *Senecio coincyi*, an Endemic Species of the Central Iberian Peninsula

Carlos Arrabal, Felipe Martínez García, María Paz Arraiza and Silvia Guerrero García

Composition, Antioxidant and Antimicrobial Activities of the Seed Essential Oil of *Calocedrus formosana* from Taiwan Chen-Lung Ho, Eugene I-Chen Wang, Pei-Chun Liao and Yu-Chang Su

New Stress Metabolite from *Bulbophyllum kwangtungense* Jianbo Chen, Huifang Zhang, Li Chen and Bin Wu

In vitro Antioxidant Activities of Maillard Reaction Products Produced in the Steaming Process of Polygonum multiflorum Root

Zhenli Liu, Yuanyan Liu, Zhimao Chao, Zhiqian Song, Chun Wang and Aiping Lu

Quinone Reductase Inducing Activity of the Dichloromethane /Ethanol Extract of the Roots of *Pulsatilla chinensis*

Dan Wang, Ling Han and Zengjun Guo

Targets of Red Grapes: Oxidative Damage of DNA and Leukaemia Cells

Jaouad Anter, Noriluz de Abreu-Abreu, Zahira Fernández-Bedmar, Myriam Villatoro-Pulido, Ángeles Alonso-Moraga and Andrés Muñoz-Serrano

5-Methoxyaristololactam I, the First Natural 5-Substituted Aristololactam from *Asarum ichangense*

Bai-Bo Xie, Ming-Ying Shang, Kuo-Hsiung Lee, Xuan Wang, Katsuko Komatsu and Shao-Qing Cai

A New Eudesmane Sesquiterpene from Pluchea arguta

Nikhat Saba, Rasheeda Khatoon, Viqar Uddin Ahmad and Saleha Suleman Khan

Chemical Composition of the Essential Oil from *Carramboa littlei* (Asteraceae)

Yndra Cordero de Rojas, Luis B. Rojas and Alfredo Usubillaga

2-Undecanone Rich Leaf Essential Oil from Zanthoxylum armatum

Deepa Bisht and Chandan S. Chanotiya

Inhibition of Protein Tyrosine Phosphatase 1β by Hispidin Derivatives Isolated from the Fruiting Body of <i>Phellinus linteus</i>	
Yeon Sil Lee, Il-Jun Kang, Moo Ho Won, Jae-Yong Lee, Jin Kyu Kim and Soon Sung Lim	1927
A New Azafluorenone from the Roots of <i>Polyalthia cerasoides</i> and its Biological Activity Kanchana Pumsalid, Haruthai Thaisuchat, Chatchanok Loetchutinat, Narong Nuntasaen, Puttinan Meepowpan and Wilart Pompimon	1931
Evaluation of Antiviral Activities of Curcumin Derivatives against HSV-1 in Vero Cell Line Keivan Zandi, Elissa Ramedani, Khosro Mohammadi, Saeed Tajbakhsh, Iman Deilami, Zahra Rastian, Moradali Fouladvand, Forough Yousefi and Fatemeh Farshadpour	1935
Hyloglyceride and Hylodiglyceride: Two New Glyceride Derivatives from <i>Hylodendron gabunensis</i> Awazi Tengu Nyongha, Hidayat Hussain, Etienne Dongo, Ishtiaq Ahmed and Karsten Krohn	1939
Chemical Composition and Bioactivities of the Marine Alga <i>Isochrysis galbana</i> from Taiwan Chi-Cheng Yu, Hsiao-Wei Chen, Mao-Jing Chen, Yu-Ching Chang, Shih-Chang Chien, Yueh-Hsiung Kuo, Feng-Ling Yang, Shih-Hsiung Wu, Jie Chen, Hsiao-Hui Yu and Louis Kuop-Ping Chao	1941
An Efficient Protocol for High-frequency Direct Multiple Shoot Regeneration from Internodes of Peppermint (<i>Mentha x piperita</i>) Sanjog T. Thul and Arun K. Kukreja	1945
Essential Oil Yield and Chemical Composition Changes During Leaf Ontogeny of Palmarosa	
(Cymbopogon martinii var. motia) Bhaskaruni R. Rajeswara Rao, Dharmendra K. Rajput, Rajendra P. Patel and Somasi Purnanand	1947
Essential Oil Composition of Four Endemic Ferulago Species Growing in Turkey Ceyda Sibel Kılıç, Ayşe Mine Gençler Özkan, Betül Demirci, Maksut Coşkun and Kemal Hüsnü Can Başer	1951
Essential Oils of <i>Daucus carota</i> subsp. <i>carota</i> of Tunisia Obtained by Supercritical Carbon Dioxide	
Extraction Hanen Marzouki, Abdelhamid Khaldi, Danilo Falconieri, Alessandra Piras, Bruno Marongiu, Paola Molicotti and Stefania Zanetti	1955
Oil Constituents of <i>Artemisia nilagirica</i> var. <i>septentrionalis</i> Growing at Different Altitudes Flora Haider, Narendra Kumar, Ali Arif Naqvi and Guru Das Bagchi	1959
Volatile Oil Composition of <i>Pogostemon heyneanus</i> and Comparison of its Composition with Patchouli Oil Ramar Murugan, Gopal Rao Mallavarapu, Kyathsandra Venkataramaiah Padmashree, Ramachandra Raghavendra Rao and Christus Livingstone	1961
Chemical Composition of Volatile Oils of <i>Aquilaria malaccensis</i> (Thymelaeaceae) from Malaysia Saiful Nizam Tajuddin and Mashitah M. Yusoff	1965
Chemical Composition and Phytotoxic Effects of Essential Oils from Four <i>Teucrium</i> Species Laura De Martino, Carmen Formisano, Emilia Mancini, Vincenzo De Feo, Franco Piozzi, Daniela Rigano and Felice Senatore	1969
Chemical Constituents and Larvicidal Activity of Hymenaea courbaril Fruit Peel José Cláudio D. Aguiar, Gilvandete M. P. Santiago, Patrícia L. Lavor, Helenicy N. H. Veras, Yana S. Ferreira, Michele A. A. Lima, Ângela M. C. Arriaga, Telma L. G. Lemos, Jefferson Q. Lima, Hugo C. R. de Jesus, Péricles B. Alves and Raimundo Braz-Filho	1977
Caryophyllene Oxide-rich Essential Oils of Lithuanian <i>Artemisia campestris</i> ssp. <i>campestris</i> and Their Toxicity Asta Judzentiene, Jurga Budiene, Rita Butkiene, Eugenija Kupcinskiene, Isabelle Laffont-Schwob and Véronique Masotti	1981
Comparison of Antibacterial Activity of Natural and Hydroformylated Essential Oil of <i>Thymus capitatus</i> Growing Wild in North Sardinia with Commercial <i>Thymus</i> Essential Oils Marianna Usai, Marzia Foddai, Barbara Sechi, Claudia Juliano and Mauro Marchetti	1985
Composition and Chemical Variability of the Leaf Oil from Corsican <i>Juniperus thurifera</i> Integrated Analysis by GC(RI), GC-MS and ¹³ C NMR Josephine Ottavioli, Joseph Casanova and Ange Bighelli	1991
Combined Analysis by GC (RI), GC-MS and ¹³ C NMR of the Supercritical Fluid Extract of <i>Abies alba</i> Twigs Emilie Duquesnoy, Bruno Marongiu, Vincent Castola, Alessandra Piras, Silvia Porcedda and Joseph Casanova	1995
Review/Account	
Eugenol: A Natural Compound with Versatile Pharmacological Actions Kannissery Pramod, Shahid H. Ansari and Javed Ali	1999

Volume 5, Number 12

Contents

<u>Original Paper</u>	<u>Page</u>
Anticonvulsant Activity of the Linalool Enantiomers and Racemate: Investigation of Chiral Influence Damião P. de Sousa, Franklin F. F. Nóbrega, Camila C. M. P. Santos and Reinaldo N. de Almeida	1847
Kinetic Analysis of Genipin Degradation in Aqueous Solution Paul Slusarewicz, Keng Zhu and Tom Hedman	1853
Microbial Transformation of Marine Halogenated Sesquiterpenes Aurelio San Martin, Juana Rovirosa, Alvaro Carrasco, Silvia Orejarena, Jorge Soto-Delgado, Renato Contreras and M. Cristina Chamy	1859
Two New Guaianolides from Amberboa ramosa Muhammad Ibrahim, Rehan Khan and Abdul Malik	1865
Antiplasmodial and Cytotoxic Activities of Drimane Sesquiterpenes from <i>Canella winterana</i> Mary H. Grace, Carmen Lategan, Flaubert Mbeunkui, Rocky Graziose, Peter J. Smith, Ilya Raskin and Mary Ann Lila	1869
Three New 18-Oxygenated <i>ent</i> -Kaurane Diterpenoids from <i>Isodon leucophyllus</i> Hai Bo Zhang, Jian Xin Pu, Yong Zhao, Fei He, Wei Zhao, Li Guang Lou, Wei Lie Xiao and Han Dong Sun	1873
Immunomodulatory Action of Monosulfated Triterpene Glycosides from the Sea Cucumber Cucumaria okhotensis: Stimulation of Activity of Mouse Peritoneal Macrophages Dmitry L. Aminin, Alexandra S. Silchenko, Sergey A. Avilov, Vadim G. Stepanov and Vladimir I. Kalinin/ERSIT	1877
Three New Aaptamines from the Marine Sponge <i>Aaptos</i> sp. and Their Proapoptotic Properties Larisa K. Shubina, Tatyana N. Makarieva, Sergey A. Dyshlovoy, Sergey N. Fedorov, Pavel S. Dmitrenok and Valentin A. Stonik	1881
Isolation and Characterization of Crotosparsamide, a New Cyclic Nonapeptide from <i>Croton sparsiflorus</i> Rashad Mehmood and Abdul Malik	1885
Two New Lavandulyl Flavonoids from Sophora flavescens Dan Liu, Xiulan Xin, Dong-hai Su, Junying Liu, Qing Wei, Bo Li and Jian Cui	1889
Biotransformation of Naringenin to Eriodictyol by Saccharomyces cerevisiea Functionally Expressing Flavonoid 3' Hydroxylase Ilef Limem-Ben Amor, Alain Hehn, Emmanuel Guedon, Kamel Ghedira, Jean-Marc Engasser, Leila Chekir-Ghedrira and Mohamed Ghoul	1893
Two New 3-C-Carboxylated Flavones from the Rhizomes of Caragana conferta Rehan Khan, Abdul Malik, Shazia Yasmeen and Nighat Afza	1899
Kaempferol Glycosides in the Flowers of Carnation and their Contribution to the Creamy White Flower Color Tsukasa Iwashina, Masa-atsu Yamaguchi, Masayoshi Nakayama, Takashi Onozaki, Hiroyuki Yoshida, Shuji Kawanobu, Hiroshi Ono and Masachika Okamura	1903
Factors Influencing Glabridin Stability Mingzhang Ao, Yue Shi, Yongming Cui, Wentao Guo, Jing Wang and Longjiang Yu	1907
Effect of Different Strains of Agrobacterium rhizogenes and Nature of Explants on Plumbago indica Hairy Root Culture with Special Emphasis on Root Biomass and Plumbagin Production Moumita Gangopadhyay, Saikat Dewanjee, Somnath Bhattacharyya and Sabita Bhattacharya	1913
Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived <i>Streptomyces</i> sp. B6219 Muna Ali Abdalla, Elisabeth Helmke and Hartmut Laatsch	1917
Dioscorealide B from the Traditional Thai Medicine Hua-Khao-Yen Induces Apoptosis in MCF-7 Human Breast Cancer Cells via Modulation of Bax, Bak and Bcl-2 Protein Expression Jiraporn Saekoo, Potchanapond Graidist, Wilairat Leeanansaksiri, Chavaboon Dechsukum and Arunporn Itharat	1921

Continued inside backcover