Black-Scholes-Merton and the Greeks

Ross Bennett

July 8, 2014

Abstract

The purpose of this vignette is to demonstrate the Black-Scholes-Merton pricing formulas and the "Greeks" as outlined in Chapter 4 and Chapter 5 of Valuation and Risk Models.

Contents

1	Black-Scholes-Merton Pricing Formulas 1.1 Properties	1
2	Implied Volatilities	5
3	Dividends	5
4	The Greek Letters	6
	4.1 Delta	6
	4.2 Theta	10
	4.3 Gamma	12
	4.4 Vega	14
	4.5 Rho	
	4.6 Portfolio Insurance	

1 Black-Scholes-Merton Pricing Formulas

This section focuses on the application of the Black-Scholes-Merton pricing formulas for European call and put options. For derivation and theoretical background, the reader is encouraged to to study Chapter 4 of Valuation and Risk Models.

The Black-Scholes-Merton pricing formulas for European call and put options are

Call

$$c = S_0 N(d_1) - K e^{-rT} N(d_2)$$

Put

$$p = Ke^{-rT}N(-d_2) - S_0N(-d_1)$$

where

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

$$S_0 \quad \text{is the underlying stock price at } t = 0$$

$$K \quad \text{is the strike price}$$

$$r \quad \text{is the risk free rate}$$

$$T \quad \text{is the time to maturity in years}$$

$$\sigma \quad \text{is the volatility of the stock}$$

N(.) is the cumulative distribution function for a standard normal distribution

1.1 Properties

For a call option, as the underlying price, S_0 , becomes very large, the option will almost surely be exercised. The price of the call then becomes

$$S_0 - Ke^{-rT}$$

Call price as S_0 becomes very large


```
\# Demonstrate the property of the Black-Scholes-Merton formula for a call
# option as the volatility approaches 0
sigma \leftarrow seq(0.2, 0, -0.01)
eu.call <- optionSpec(style = "european",</pre>
                       type = "call",
                       S0 = 100,
                       K = 100,
                       maturity = 1,
                       r = 0.1,
                       volatility = sigma)
call <- optionValue(option = eu.call, method = "Black-Scholes")</pre>
\# S_0 - K * e^{-r} T
100 - 100 * exp(-0.1 * 1)
## [1] 9.516
plot(sigma, call, ylab="Call Price", xlab="Volatility",
     main="Call price as volatility approaches 0", type = "1")
```

Call price as volatility approaches 0

Example 4.6: The stock price 6 months for the expiration of an option is \$42, the exercise price of the option is \$40, the risk-free interest rate is 10% per annum, and the volatility is 20% per annum.

```
## [1] 4.759

# Price the European put option
eu.put <- eu.call
eu.put$type <- "put"
put <- optionValue(option = eu.put, method = "Black-Scholes")
put
## [1] 0.8086</pre>
```

2 Implied Volatilities

The volatility the stock price is not directly observable and must be implied by option prices in the market. Here we calculate the implied volatility of a European call option with a price of \$1.875 and $S_0 = 21$, K = 20, r = 0.1, and T = 0.25.

3 Dividends

Example 4.9: Consider a European call option on a stock when there are ex-dividend dates in two months and five months. The dividend on each ex-dividend date is expected to be \$0.50. The current share price is \$40, the exercise price is \$40, and the stock price volatility is 30% per annum, the risk-free rate of interest is 9% per annum, and the time to maturity is 6 months. Here we compute the value of a European call option with known dividends.

```
# Consider a European call option on a stock when there are
# \exp-dividend dates in two months and five months. The dividend
# on each \exp-dividend date is expected to be \$\(\int 0.50\). The current
# share price is \$\(\int 40\), the exercise price is \$\(\int 40\), and the stock
# price volatility is 30\% per annum, the risk-free rate of
# interest is 9\% per annum, and the time to maturity is 6 months.

# Subtract the present value of the dividends from the underlying price
$$\S0 < - 40 - (0.5 * \exp(-0.09 * 2 / 12) + 0.5 * \exp(-0.09 * 5 / 12))$
```

4 The Greek Letters

This section introduces what is referred to as the "Greeks" for European options using the Black-Scholes-Merton formulas. The Greeks measure risk in a position in an option or portfolio of options.

Here we create option specifications for call and put options that will be used in the following sections.

```
# Specify European call and put options where the current stock price is
# £49, the strike price is £50, the risk-free rate is 5%, the time to
# maturity is 20 weeks, and the volatility is 20%.
eu.call <- optionSpec(style = "european",</pre>
                      type = "call",
                      S0 = 49,
                      K = 50,
                      maturity = 20/52,
                      r = 0.05,
                      volatility = 0.2)
eu.put <- optionSpec(style = "european",</pre>
                      type = "put",
                      S0 = 49,
                      K = 50,
                      maturity = 20/52,
                      r = 0.05,
                      volatility = 0.2)
```

4.1 Delta

The delta (Δ) of an option is defined as the rate of change of the option price with respect to the price of te underlying asset.

The delta of a European option is given as

$$\Delta(call) = N(d_1)$$

$$\Delta(put) = N(d_1) - 1$$

```
# Compute the delta of the European call option
computeGreeks(eu.call, "delta")
## [1] 0.5216
```

Delta of call

Delta of put

Delta of call

The delta of a portfolio of options is simply the sum of the delta's of the individual options.

$$\Delta_P = \sum_{i=1}^n w_i \Delta_i$$

Suppose a financial instituion has the following three positions in options on a stock.

- 1. A long position in 100,000 call options with the strike price of \$55 and an expiration date in 3 months. The delta of each option is 0.533.
- 2. A short position in 200,000 call options with stick price of \$56 and an expiration date in 2 months. The delta of each option is 0.468.
- 3. A short position in 50,000 options with strike price of \$56 and an expiration date in 2 months. The delta of each option is -0.508.

The delta of the portfolio is

```
100000 * 0.533 - 200000 * 0.468 - 50000 * -0.508
## [1] -14900
```

This means that the portfolio can be made delta neutral by purchasing 14,900 shares of the underlying stock.

4.2 Theta

The theta (Θ) of an option is defined as the rate of change of the value of the option with respect to the passage of time with all else remaining equal.

The theta of a European option is given as

$$\Theta(call) = -\frac{S_0 N'(d_1)\sigma}{2\sqrt{T}} - rKe^{-rT}N(d_2)$$

$$\Theta(put) = \frac{S_0 N'(d_1)\sigma}{2\sqrt{T}} + rKe^{-rT}N(-d_2)$$

where N'(.) is the probability density function for a standard normal distribution.

```
# Compute the theta of the European call option
computeGreeks(eu.call, "theta")
## [1] -4.305
```

Theta of call

Theta of call

4.3 Gamma

The gamma (Γ) of an option is defined as the rate of change of the delta of the option with respect to the price of the underlying asset.

The gamma of a European option is given as

$$\Gamma = \frac{N'(d_1)}{S_0 \sigma \sqrt{T}}$$

Note that the gamma for a European put option is equal to the gamma of a European call option.

```
# Compute the gamma of the European call option
computeGreeks(eu.call, "gamma")
## [1] 0.06554
```

Gamma of call

Gamma of call

4.4 Vega

The vega (ν) of an option is defined as the rate of change of the value of the option with respect to the volatility of the underlying asset.

The vega of a European option is given as

$$\nu = S_0 \sqrt{T} N'(d_1)$$

Note that the vega for a European put option is equal to the vega of a European call option.

```
# Compute the vega of a European call option
computeGreeks(eu.call, "vega")
## [1] 12.11
```

Vega of call

Vega of call

4.5 Rho

The rho (ρ) of an option is defined as the rate of change of the value of the option with respect to the risk-free interest rate.

The rho of a European option is given as

$$\rho(call) = KTe^{-rT}N(d_2)$$

$$\rho(put) = -KTe^{-rT}N(-d_2)$$

```
# Compute the rho of the European call option
computeGreeks(eu.call, "rho")
## [1] 8.907
```

Rho of call

Rho of call

4.6 Portfolio Insurance

Example 5.9: A portfolio with worth \$90 million. To protect against market downturns the managers of the portfolio require a 6-month European put option on the portfolio with a strike price of \$87 million. The risk-free rate is 9% per annum, the dividend yield is 3% per annum, and the volatility of the portfolio is 20% per annum. The S&P 500 index stands at 900. As the portfolio is considered to mimic the S&P 500 fairly closely, one alternative is to buy 1000 put options on the S&P 500 with a strike price of 870. Another option is to create the option synthetically. In this case, $S_0 = 90$ million, K = 87 million, r = 0.09, q = 0.03, $\sigma = 0.25$, and T = 0.5.

The delta of the synthetic option is -0.3215. This means that 32.15% of the portfolio should be sold to match the delta of the synthetic option.