Тұрақтылар

Авогадро саны, N_A	$6.022 imes 10^{23}$ моль $^{-1}$
Элементар заряд, <i>е</i>	$1.602 \times 10^{-19} \mathrm{K} \pi$
Әмбебап газ тұрақтысы, R	$8.314\mathrm{Дж}\mathrm{моль^{-1}}\mathrm{K^{-1}}$
Фарадей тұрақтысы, F	$96485\mathrm{K}$ л моль $^{-1}$
Планк тұрақтысы, <i>h</i>	$6.626 imes 10^{-34}$ Дж с
Кельвиндегі температура (К)	$T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$
Ангстрем, Å	$1\times 10^{-10}\mathrm{m}$
пико, п	$1 \text{mM} = 1 \times 10^{-12} \text{M}$
нано, н	$1 \text{ HM} = 1 \times 10^{-9} \text{ M}$
микро, мк	$1 \text{мкм} = 1 \times 10^{-6} \text{м}$

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01										5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc -	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57- 71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po -	85 At -	86 Rn -
87 Fr -	88 Ra -	89- 103	104 Rf -	105 Db -	106 Sg	107 Bh	108 Hs -	109 Mt -	110 Ds -	111 Rg -	112 Cn -	113 Nh -	114 Fl -	115 Mc -	116 Lv -	117 Ts -	118 Og -

57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	Sm	⁶³ Eu	⁶⁴ Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	69 Tm	⁷⁰ Yb	71 Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89 Ac -	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np -	94 Pu -	95 Am -	96 Cm -	97 Bk -	98 Cf -	99 Es -	100 Fm -	101 Md -	102 No	103 Lr -

Мазмұны

№1 Есеп. Название крутой задачи (11%)

3

№1 Есеп. Название крутой задачи

Автор: Авторов А.

1.1	1.2	1.3	1.4	Барлығы	Үлесі(%)
1	2	3	3	9	11

1.1 (1 ұпай)

Есть два органических вещества с молекулярной формулой C_2H_6O — этанол и диметиловый эфир. Из них только в первом есть гидроксо-группа, поэтому ответ — H_3C-CH_2-OH (1 **ұпай)**.

1.2 (2 ұпай)

Используем формулу:

$$Mv_{rms}^2 = 3RT$$

Выразим T:

$$T = \frac{Mv_{rms}^2}{3R}$$

Подставим значения, и получим ответ:

$$T = \frac{4 \times 10^{-3} \text{ кг моль}^{-1} \times (3.5 \times 10^6 \text{ м c}^{-1})^2}{3 \times 8.314 \text{ Лж моль}^{-1} \text{ K}^{-1}} = 561 \text{ K (2 ұпай)}$$

1.3 (3 ұпай)

Используем формулу, которая связывает изменение в температуре замерзания растворителя и моляльность растворенного вещества:

$$\Delta T_f = -ik_f m$$

Сахар имеет формулу $C_{12}H_{22}O_{11}$ и для него фактор Вант-Гоффа, i, равен единице. k_f равна $1.86 \,\mathrm{kr}\,^{\circ}\mathrm{C}$ моль $^{-1}$ для воды.

$$m = \frac{-1.3\,^{\circ}\text{C}}{-1.86\,\text{кr}\,^{\circ}\text{C моль}^{-1}} = 0.70\,\text{моль}\,\text{кr}^{-1}$$

Отсюда можно найти количество сахара в граммах:

$$m_{
m caxap}$$
 = 0.70 моль кг $^{-1}$ $imes$ 0.100 кг $imes$ 486 г моль $^{-1}$ = 34 г (3 ұпай)

1.4 (3 ұпай)

$$r_0 = k \cdot [CO]_0^m \cdot [Cl_2]_0^n$$

$$r_1 = k \cdot [CO]_1^m \cdot [Cl_2]_0^n$$

$$\frac{r_0}{r_1} = \left(\frac{[CO]_0}{[CO]_1}\right)^m = \left(\frac{1}{2}\right)^m = \frac{1}{2}$$

$$m = 1$$

Ответ: порядок реакции по угарному газу равен одному (3 ұпай).