

Data Visulization using matplotlib

- An introduction to matplotlib
- Anatomy of a figure
 - What is a figure?
 - What is an axis?
- Attributes of a plot in matplotlib
- Several axes in the same figure using subplots
- Common plot types for data visualization
 - Simple plot, Scatter plot, Pie chart, Bar plot, Histogram, boxplot
- Matplotlib for Pandas data frames

Matplotlib

- Matplotlib is a Python package for data visualization on NumPy arrays.
- It can be also used with Pandas data frames (sometimes it is not that efficient).
- pyplot is an API for data visualization tools in matplotlib:

import matplotlib.pyplot as plt

Anatomy of a Figure in Matplotlib

- A figure is the basic object for plotting data in Python. When we plot data on a graph, that graph will be drawn on a figure.
- An axes object is a region within the figure with the data space. A given figure can contain multiple axes, but a given axes object can only be in one figure.

Attributes of a Plot in Matplotlib

Color (c or color)

character	color	
ʻb'	blue	
ʻg'	green	
'r'	red	
'c'	cyan	
'm'	magenta	
ʻy'	yellow	
'k'	black	
'w'	white	

https://www.rapidtables.com/web/color/RGB Color.html

Color	Color Name	Hex Code #RRGGBB	Decimal Code R,G,B
	maroon	#800000	(128,0,0)
	dark red	#8B0000	(139,0,0)
	brown	#A52A2A	(165,42,42)
	firebrick	#B22222	(178,34,34)
	crimson	#DC143C	(220,20,60)
	red	#FF0000	(255,0,0)
	tomato	#FF6347	(255,99,71)
	coral	#FF7F50	(255,127,80)
	indian red	#CD5C5C	(205,92,92)
	light coral	#F08080	(240,128,128)
	dark salmon	#E9967A	(233,150,122)
	salmon	#FA8072	(250,128,114)
	light salmon	#FFA07A	(255,160,122)
	orange red	#FF4500	(255,69,0)
	dark orange	#FF8C00	(255,140,0)
	orange	#FFA500	(255,165,0)
	gold	#FFD700	(255,215,0)

Attributes of a Plot in Matplotlib

Line style (<u>linestyle</u>): see the list at https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html

- Line width (linewidth): Sets the line width in points
- Opacity (alpha): Opacity scale in 0 and 1.0 range.
- Label (label): Label for a specific draw in the legend

Attributes of a Plot in Matplotlib

Marker (marker, see the list at https://matplotlib.org/stable/api/markers_api.html), marker size (markersize), marker face (markerfacecolor) and edge color (markeredgecolor):

Annotating an Axes

- Title (plt.title): a string specifying the title for an axis in a figure
- Label of x-axis (plt.xlabel): a string specifying the label for x-axis
- Label of y-axis (plt.ylabel): a string specifying the label for y-axis
- Limits of x-axis (plt.xlim): list of two scalars
- Limits of y-axis (plt.ylim): list of two scalars
- Setting the grids on (plt.grid): True or False
- The legend (plt.legend)

Questions?

Multiple Axes in the same Figure using Subplots

Using the subplots command, we can create multiple axes within a figure.

Useful Plots in Matplotlib

- Scatter plot
- Pie Chart
- Bar plot
- Histogram
- Boxplot

Scatter Plot

- Scatter plots are useful for:
 - Correlation Detection: Scatter plots are ideal for detecting and showing the correlation between two variables.
 - Outlier Identification: They are also useful for spotting outliers or anomalies in data.
 - ❖ Data Distribution Clarity: Scatter plots can give a general idea of whether data points are tightly grouped or dispersed, which indicates the degree of variance within the data.

Pie Charts

- A pie chart is a circular graph where the circle is divided into sectors or slices.
- Pie charts are useful for displaying the percentage or the proportion of different categories in categorical data.

Bar Plots

Bar plots are excellent for comparing different groups.

Histograms

- A histogram displays the frequency of data points within specified ranges (known as 'bins'). It is generally used for:
 - ❖ Data Distribution Insight: Histograms are used to get a sense of the distribution of a numerical dataset.
 - Identifying Patterns: They are useful for identifying patterns, outliers, and the spread of the data.
 - Comparing Data Sets: Histograms can also be used to compare the distributions of multiple data sets.

Boxplots

- Boxplot visually shows the distribution of numerical data and its skewness through displaying the data quartiles and averages. It is usually used for:
 - Outlier Identification: Box plots are great for spotting outliers and data variability.
 - Comparison of Distributions: They are useful for comparing the distribution of data across different categories.
 - Concise Data Representation: Box plots can summarize a large amount of data in a visually digestible way.

Questions?

