IT585 Advanced Machine Learning Lab2 Understanding Hoeffding's Bound for Learning Theory

Instructions:

- 1. You have to code the solution in Google colab
- 2. You can use inbuilt libraries from python
- 3. Your plots, code, any insights, observations written as text should be submitted as one ipynb file to google classroom
 - 4. Deadline: January 29,2024 11:59 PM IST
 - 5. Name of your file should be: yourrollno lab2.ipynb

Run a computer simulation for flipping 1,000 fair coins. Flip each coin independently 10 times. Let's focus on 3 coins as follows: c_1 is the first coin flipped; $c_{\rm rand}$ is a coin you choose at random; $c_{\rm min}$ is the coin that had the minimum frequency of heads (pick the earlier one in case of a tie). Let ν_1 , $\nu_{\rm rand}$ and $\nu_{\rm min}$ be the fraction of heads you obtain for the respective three coins.

- (a) What is μ for the three coins selected?
- (b) Repeat this entire experiment a large number of times (e.g., 100,000 runs of the entire experiment) to get several instances of ν_1 , $\nu_{\rm rand}$ and $\nu_{\rm min}$ and plot the histograms of the distributions of ν_1 , $\nu_{\rm rand}$ and $\nu_{\rm min}$. Notice that which coins end up being $c_{\rm rand}$ and $c_{\rm min}$ may differ from one run to another.
- (c) Using (b), plot estimates for $\mathbb{P}[|\nu-\mu|>\epsilon]$ as a function of ϵ , together with the Hoeffding bound $2e^{-2\epsilon^2N}$ (on the same graph).
- (d) Which coins obey the Hoeffding bound, and which ones do not? Explain why.