3 pages

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_howard

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M
- Theta $\frac{1}{2} \le \theta \le 1$
- Epsilon

Output parameters:

- Price
- Delta

The algorithm of Howard has been introduced by Howard in [1].

```
/*Memory Allocation*/
```

/*Time Step*/

Define the time step $k = \frac{T}{M}$.

/*Space localisation*/

Define the integration domain D = [-l, l] using the probabilistic estimate there.

/*Space Step*/

Define the space step $h = \frac{2l}{N}$.

/*Peclet Condition*/

If $|r - \delta|/\sigma^2$ is not small, then a more stable finite difference approximation is used. cf there.

3 pages 2

/*Lhs factor of theta scheme*/

Initialize the matrix M^h issued from the discretization of the operator A in the case of Dirichlet Boundary conditions. cf there.

/*Rhs factor of theta scheme*/

Initialize the matrix N issued from the θ -scheme method in the cases of Dirichlet Boundary conditions. there

/*Terminal values*/

After a logarithmic transformation, put the value of the payoff into a vector P which will be used to save the option value.

/*Finite difference Cycle*/

At any time step, we have to solve the linear complementarity problem cf. there.

```
/*Init Control*/
We initializate the control pp.
/*Howard cycle*/
```

We solve the linear complementarity problem using the Howard algorithm, which consists in constructing a convergent sequence u^p whose limit is u.

Let epsilon > 0 be given.

- Step 1 Let u^k be given, we compute $i \to pp^k[i] = argmin(M^{pp}u^k(i) f^{pp}[i])$ where pp = 0 or 1 (the domain is divided into 2 regions: the continuation region and the exercice region), M^0 is the matrix M^h issued from the discretization of the operator A, $M^1 = Id$, $f^0 = R$, $f^1 = Obst$.
- **Step 2** We solve the linear system $M^{pp^k}u=G^{pp^k}$ by the Gauss factorization. It gives u^{k+1} .

The stopping criteria is

$$||u^{k+1} - u^k||_{\infty} < epsilon.$$
 (1)

```
/*Price*/
/*Delta*/
/*Memory Desallocation*/
```

3 pages

References

[1] Howard, R.A.: Dynamic Programming and Markov Process. (MIT Press. 1960) ${\color{red}1}$