TP558 - Tópicos avançados em Machine Learning: Squeeze and Excitation Networks

Brithany Michelle Oliva Chuquimia brithany.oliva@mtel.inatel.br

- Avanços em visão computacional: A visão computacional avançou significativamente graças às redes neurais convolucionais (CNNs).
- Efetividade das CNNs:
 São altamente eficazes
 em tarefas como
 classificação de imagens,
 detecção de objetos e
 segmentação semântica.

- Capacidade de aprendizado: As CNNs aprendem representações de imagens diretamente a partir dos dados.
- Operador fundamental:

 O operador de convolução é o bloco de construção chave das CNNs.

- **Pesquisa em visão computacional:** Focou-se em melhorar a captura de relações espaciais por meio de:
 - Arquiteturas mais profundas: Exemplo, redes ResNet, que aumentam a capacidade da rede para processar informações complexas.
 - Processos de múltiplas escalas: Exemplo, modelos Inception, que analisam imagens em diferentes níveis de detalhe.

- Relações entre canais: As relações espaciais são cruciais, mas as interações entre canais de características foram menos exploradas, segundo os autores do artigo.
- Proposta do artigo: Apresenta um novo bloco arquitetônico chamado Squeeze-and-Excitation (SE) para abordar a falta de exploração nas interdependências entre canais.
- Função do bloco SE: Permite que a rede identifique e priorize características mais informativas, recalibrando as respostas dos filtros para focar no relevante.

O que é uma Rede Neural Convolucional (CNN)?

- É um tipo de rede neural especializada em imagens.
- Ela não trata a imagem como uma longa lista de pixels, mas utiliza uma operação chamada convolução para escanear a imagem.
- Isso permite identificar padrões no espaço, como bordas, texturas ou formas, de maneira muito eficiente.

O Processo de Convolução:

- A transformação convolucional(F_{tr}) recebe uma entrada X e produz um conjunto de mapas de características U.
- O artigo descreve essa operação com a seguinte fórmula:

$$u_c = v_c * X = \sum_{s=1}^{C'} v_c^s * x^s$$

O Processo de Convolução:

$$u_c = v_c * X = \sum_{s=1}^{C'} v_c^s * x^s$$

- O ponto-chave aqui é que a saída (u_c) é obtida como a soma das convoluções através de todos os canais de entrada.
- Isso significa que a relação entre os canais é implícita e está vinculada à correlação espacial local do filtro.

Mecanismos de Atenção (Attention Mechanisms):

- O SE Block é inspirado no conceito de atenção
- A atenção, em geral, visa alocar recursos computacionais para os componentes mais informativos de um sinal.
- Em vez de atenção espacial (onde olhar), o SE Block implementa atenção em canais.

Spatial Attention

SE Block

Recalibração de Características:

- A ideia central é que a rede deve ser capaz de ajustar a importância de cada canal de características com base no contexto global da imagem.
- Os autores argumentam que, ao fazer isso, a rede pode dar mais atenção a informações úteis e suprimir as menos importantes, melhorando sua capacidade de representação.

Squeeze and Excitation:

- Squeeze (Compressão):
 - O objetivo da operação Squeeze é extrair uma representação global da informação contida em cada canal de características, agregando os valores espaciais de todo o mapa de características.
 - Isso é feito através de um Global Average Pooling (pooling médio global) aplicado a cada canal individualmente.

w = 6

Squeeze and Excitation:

- Squeeze (Compressão):
 - Global Average Pooling (GAP):
 Resume cada canal de recurso calculando a média de todos os seus valores. Cada canal é representado por um único número que reflete suas informações gerais, independentemente da posição dos padrões na imagem.

Squeeze (Compressão):

A Operação de Compressão(Squeeze):

$$z_c = F_{sq}(u_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j)$$

- z_c : É o c ésimo elemento do vetor de saída da compressão, z.
- u_c : É o c ésimo mapa de características da entrada.
- $H \times W$: São as dimensões espaciais do mapa de características.
- F_{sq} : Representa a operação de compressão.

Squeeze (Compressão):

A Operação de Compressão(Squeeze):

$$z_c = F_{sq}(u_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j)$$

- A operação "aplasta" a informação espacial (altura × largura) de cada canal em um único número.
- O resultado é um vetor z de dimensão C, onde cada elemento representa a atividade média global do respectivo canal.
- Este vetor serve como uma descrição compacta da resposta de cada canal ao input, capturando informações contextuais globais.

Squeeze (Compressão):

Por que isso é importante?

- Permite que o modelo tenha acesso à informação global do campo receptivo, mesmo que as convoluções locais só vejam partes da imagem.
- É como se cada canal fosse uma "lente" especializada (bordas, texturas, cores). O Squeeze pega todas as ativações desse canal espalhadas na imagem e faz um resumo em um único valor médio, representando a "força" ou presença global daquele padrão

Squeeze and Excitation:

- Excitation (excitação):
 - Tem como objetivo usar a informação global extraída pela operação de Squeeze para decidir quan importante é o canal y gera um peso numérico (entre 0 y 1) para esse canal.
 Posteriormente, este peso é usado para ajustar a força das características desse canal. Essa recalibração é feita através de um MLP (rede totalmente conectada) de duas camadas, que inclui um bottleneck para reduzir temporariamente a dimensão do vetor.

Squeeze and Excitation:

- Excitation (excitação):
 - Bottleneck: técnica que reduz temporariamente a dimensão de \mathcal{C} para \mathcal{C}/r , tornando a operação mais eficiente e permitindo que a rede aprenda relações compactas entre canais.

Excitation (excitação):

A Operação de Excitação(Excitation):

$$s = F_{ex}(z, W) = \sigma(W_2 \delta(W_1 z))$$

- s: \acute{E} o vetor de pesos de ativação, onde $s \in RC$.
- z: É o vetor de saída da operação de compressão.
- δ : É a função de ativação ReLU.O fator r é um parâmetro de redução que controla o tamanho da camada intermediária.
- σ : É a função de ativação Sigmoide, que garante que os pesos de saída estejam no intervalo [0,1].
- $W_1 \in \mathbb{R}^{\frac{c}{r} \times C}$ y W_2 $\mathbb{R}^{c \times \frac{c}{r}}$: São os pesos das duas camadas totalmente conectadas (o gargalo).

• Excitation (excitação):

Por que isso é importante?

• Permite que o modelo ajuste dinamicamente a importância de cada canal, focando nos mais relevantes e suprimindo os menos úteis, aumentando a precisão e eficiência da rede.

Scaling:

Finalmente, a saída do bloco SE é obtida multiplicando cada mapa de características u_c pelo seu peso de ativação correspondente s_c .

$$x_c = s_c \cdot u_c$$

• O resultado (x_c) é o mapa de características original, mas com seus valores "recalibrados" pela rede. Este mapa de características recalibrado pode ser passado para a próxima camada da rede, melhorando o fluxo de informação e o poder de representação da rede.

Exemplo intuitivo: Bloco SE como iluminação de cena

- Squeeze (Compressão)
 - Cada canal de destaque é como uma luminária em um ambiente que ilumina diferentes detalhes (bordas, texturas, cores).
 - O Squeeze mede a quantidade de luz que cada luminária contribui para todo o ambiente, resumindo sua intensidade total em um valor.

Exemplo intuitivo: Bloco SE como iluminação de cena

- Excitation (Excitação)
 - Usando esses valores, o
 Excitation decide quais
 lâmpadas são mais importantes
 para a cena atual.
 - Ele ajusta a intensidade de cada lâmpada: algumas ficam mais brilhantes, outras mais fracas.

Exemplo intuitivo: Bloco SE como iluminação de cena

- Recalibration / Scaling (Recalibração)
 - Por fim, cada lâmpada ilumina de acordo com sua intensidade recalibrada, destacando os elementos mais importantes do ambiente.
 - A cena final fica mais nítida e equilibrada, com detalhes relevantes mais bem destacados.

U

Contexto na rede

- O bloco SE é geralmente inserido após um conjunto de camadas convolucionais (por exemplo, depois de um bloco residual na ResNet).
- O objetivo é recalibrar dinamicamente a importância de cada canal de características antes de enviá-los para a próxima camada convolucional.

Operação Squeeze (Compressão)

- Entrada: Mapas de características da camada convolucional anterior, de tamanho H×W×C.
- Processo: Aplica-se o GAP nas dimensões espaciais (H×W), resumindo toda a informação de cada canal em um único valor.
- Saída: Vetor z de tamanho 1×1×C, representando a "atividade global" de cada canal.

Operação Excitation

- Entrada: Vetor z de 1×1×C gerado na etapa Squeeze.
- Processo:
 - Passa por uma pequena rede de duas camadas (MLP):
 - Camada 1 (redução): Reduz a dimensão de C → C/r com ativação ReLU (bottleneck).
 - Camada 2 (expansão): Restaura a dimensão para C com ativação Sigmoid, gerando pesos entre 0 e 1.
- Saída: Vetor s de 1×1×C, contendo os pesos de atenção de cada canal.

Operação Scale

• Entrada: Mapas de características originais e vetor de pesos s.

- Processo: Multiplicação elemento a elemento de cada canal pelo seu respectivo peso.
- Saída: Mapas de características recalibrados, prontos para serem processados pela próxima camada convolucional.

Treinamento e otimização

Treinamento conjunto

- Os blocos SE não são treinados isoladamente, ele aprende junto com toda a rede convolucional.
- Eles são integrados às redes convolucionais (como ResNet, Inception, etc.) e aprendem junto com todos os outros parâmetros da rede.

• Função de perda

- A mesma usada na tarefa principal.
- O bloco SE não adiciona uma perda extra, apenas recalibra canais de forma adaptativa.

Treinamento e otimização

• Integração com arquiteturas base

- O SE pode ser facilmente adicionado a redes já existentes sem alterar o método de treinamento.
- O aumento de custo computacional é mínimo e não exige técnicas de otimização especiais.

Vantagens e desvantagens

Vantagens:

- Melhora de desempenho: O bloco SE proporciona ganhos significativos em modelos de última geração com um custo computacional mínimo.
- Eficiência: O aumento da complexidade do modelo é muito leve.
- Plug-and-Play: É um bloco modular que pode ser facilmente integrado em arquiteturas existentes.
- Versatilidade: Os benefícios do bloco SE não se limitam a redes grandes; também melhoram o desempenho de arquiteturas leves como MobileNet e ShuffleNet.

Vantagens e desvantagens

Desvantagens/Limitações:

- Aumento de complexidade: Embora pequeno, ainda adiciona parâmetros e cálculos extras, o que pode ser crítico em dispositivos com recursos muito limitados.
- Foco apenas em canais: O SE considera a importância global de cada canal, mas ignora a dimensão espacial (não destaca regiões específicas da imagem).
- Treinamento ligeiramente mais lento: A adição das camadas extras no MLP aumenta o tempo de treinamento em comparação com a rede base.

Exemplo(s) de aplicação

Exemplo(s) de aplicação

Comparación del Módulo SE en Diversas Arquitecturas

	original		re-implementation			SENet		
	top-1 err.	top-5 err.	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [13]	24.7	7.8	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87
ResNet-101 [13]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [13]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [19]	22.2	-	22.11	5.90	4.24	21.10 _(1.01)	$5.49_{(0.41)}$	4.25
ResNeXt-101 [19]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
VGG-16 [11]	-	-	27.02	8.81	15.47	25.22 _(1.80)	$7.70_{(1.11)}$	15.48
BN-Inception [6]	25.2	7.82	25.38	7.89	2.03	$24.23_{(1.15)}$	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [21]	19.9 [†]	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

- Esta tabela apresenta uma avaliação detalhada do desempenho e da eficiência dos modelos ResNet, ResNeXt, VGG e Inception, com e sem a adição do módulo SE, no conjunto de dados ImageNet.
- Os resultados mostram melhorias consistentes, demonstrando que a inclusão do SENet aumenta o desempenho dos modelos com um custo computacional mínimo

Rendimiento y Complejidad en Redes Ligeras

	orig	ginal	re-implementation			SENet				
	top-1 err.	top-5 err.	top-1 err.	top-5 err.	MFLOPs	Params	top-1 err.	top-5 err.	MFLOPs	Params
MobileNet [64]	29.4	-	28.4	9.4	569	4.2M	25.3(3.1)	$7.7_{(1.7)}$	572	4.7M
ShuffleNet [65]	32.6	-	32.6	12.5	140	1.8M	$31.0_{(1.6)}$	$11.1_{(1.4)}$	142	2.4M

- Esta tabela compara o desempenho e a eficiência computacional dos modelos MobileNet e ShuffleNet com a adição do módulo SE, demonstrando sua efetividade e baixo custo em arquiteturas projetadas para serem rápidas e leves.
- Os resultados mostram que a inclusão do SENet torna esses modelos mais precisos sem um aumento significativo na complexidade.

Curvas de Trenamiento dos Modelos SE

- Este conjunto de gráficos mostra o processo de treinamento de diferentes modelos, evidenciando que a adição dos blocos SE resulta em uma convergência mais rápida e estável, alcançando taxas de erro menores tanto nos dados de treinamento quanto nos de validação.
- Visualmente, observa-se que os modelos SENet treinam de forma mais consistente e finalizam com erro mais baixo em relação aos modelos originais.

- Efecto do Módulo SE em Diversos Conjuntos de Dados
- Estas tabelas resumem a melhoria na taxa de erro em tarefas de classificação e detecção de objetos proporcionada pelo módulo SE em modelos aplicados a conjuntos de dados como CIFAR-10, CIFAR-100, Places365 e COCO.
- Elas demonstram a eficácia dos modelos SENet na classificação e detecção de objetos, evidenciando uma redução consistente do erro em diferentes conjuntos de dados

Classification error (%) on CIFAR-10.

_	original	SENet
ResNet-110 [14]	6.37	5.21
ResNet-164 [14]	5.46	4.39
WRN-16-8 [67]	4.27	3.88
Shake-Shake 26 2x96d [68] + Cutout [69]	2.56	2.12

Classification error (%) on CIFAR-100.

	original	SENet
ResNet-110 [14]	26.88	23.85
ResNet-164 [14]	24.33	21.31
WRN-16-8 [67]	20.43	19.14
Shake-Even 29 2x4x64d [68] + Cutout [69]	15.85	15.41

Single-crop error rates (%) on Places365 validation set.

	top-1 err.	top-5 err.
Places-365-CNN [72]	41.07	11.48
ResNet-152 (ours)	41.15	11.61
SE-ResNet-152	40.37	11.01

Faster R-CNN object detection results (%) on COCO minival set.

	AP@IoU=0.5	AP
ResNet-50	57.9	38.0
SE-ResNet-50	61.0	40.4
ResNet-101	60.1	39.9
SE-ResNet-101	62.7	41.9

- Desempenho dos Modelos SENet em ImageNet
- Estas tabelas apresentam as taxas de erro dos modelos SENet, destacando seu desempenho competitivo ou superior em comparação com outras arquiteturas de ponta, como Inception, DenseNet e NASNet, no conjunto de dados ImageNet.
- Elas mostram que os modelos SENet alcançam a menor taxa de erro no ImageNet, consolidando-os como líderes frente a outras arquiteturas avançadas.

Single-crop error rates (%) of state-of-the-art CNNs on ImageNet validation set with crop sizes 224×224 and 320×320 / 299×299 .

	224×224		$320 \times 320 / 299 \times 299$	
	top-1	top-5	top-1	top-5
<u></u>	err.	err.	err.	err.
ResNet-152 [13]	23.0	6.7	21.3	5.5
ResNet-200 [14]	21.7	5.8	20.1	4.8
Inception-v3 [20]	-	-	21.2	5.6
Inception-v4 [21]	-	-	20.0	5.0
Inception-ResNet-v2 [21]	-	-	19.9	4.9
ResNeXt-101 (64 \times 4d) [19]	20.4	5.3	19.1	4.4
DenseNet-264 [17]	22.15	6.12	-	-
Attention-92 [58]	-	-	19.5	4.8
PyramidNet-200 [77]	20.1	5.4	19.2	4.7
DPN-131 [16]	19.93	5.12	18.55	4.16
SENet-154	18.68	4.47	17.28	3.79

Comparison (%) with state-of-the-art CNNs on ImageNet validation set using larger crop sizes/additional training data. † This model was trained with a crop size of 320×320 .

	extra data	crop size	top-1 err.	top-5 err.
Very Deep PolyNet [78]	-	331	18.71	4.25
NASNet-A (6 @ 4032) [42]	-	331	17.3	3.8
PNASNet-5 (N=4,F=216) [35]	-	331	17.1	3.8
SENet-154 [†]	-	320	16.88	3.58
AmoebaNet-C [79]	-	331	16.5	3.5
ResNeXt-101 $32 \times 48d$ [80]	✓	224	14.6	2.4

Perguntas?

Referências

- Jie Hu, et al., "Squeeze-and-Excitation Networks", https://arxiv.org/pdf/1709.01507.
- Repositório do GitHub: https://github.com/hujie-frank/SENet

Links

• GitHub:

https://github.com/Mish0404/TP558/tree/main/Seminario Squeeze and Excitation%20 Networks

Quiz: <u>Squeeze and Excitation Networks</u>

Obrigado!