

Concept learning of parameterized quantum models from limited measurements

Po-Wei Huang arXiv:2408.05116 [quant-ph]

Slides adapted from Beng Yee Gan

Beng Yee Gan

Po-Wei Huang

Elies Gil-Fuster

Patrick Rebentrost

Power of quantum computers

Performance is benchmarked against classical computers.

Replacing (some) quantum with classical

Nat. Commun., 12(1), 2631 (2021).

Access to data makes classical machines more powerful.

Learning from limited measurements

Quantum models: $f_{\theta}(x) = \text{tr}(\rho_{\theta}(x)0)$ $\mathbb{E}_{\bar{v}}[\bar{y}|x]$

• Dataset: $(x_i, \overline{y}_i)_{i=1}^{N_1}$

Estimated with N_S shots

Results overview

Can we obtain provable guarantees of learning that exemplify the relationship between N_1 and N_s ?

Bias (w/o u)

Variance (w/o u)

Probabilistic concept learning

Probabilistic concept class

$$\mathcal{F} = \{ f(\mathbf{x}) = \mathbb{E}_y[y|\mathbf{x}] \}$$

$$\mathcal{D} = p(\mathbf{x})p(y|\mathbf{x})$$

Hypothesis class

$$\mathcal{H} = \{h_{\mathbf{w}}(\mathbf{x}), \mathbf{w} \in \mathbb{R}^D\}$$

Centre for Ouantum Technologies the entangled Computing lab

Learning task

- ightharpoonup Unknown $f \in \mathcal{F}$
- ➤ Goal:

$$\mathbb{E}_{x}[\ell(f(x),h_{w}(x))]$$

- \triangleright Since $x_1, x_2, \dots, x_{N_1} \sim \mathcal{D}$
- \triangleright We can only get: $\hat{R}(h_w)$

$$\frac{1}{N_1} \sum_{i=1}^{N_1} \ell(\bar{y}, h_{\boldsymbol{w}}(\boldsymbol{x_i}))$$

ightharpoonup Task: $\hat{R}(h_w) - R(h_{w^*}) \le \epsilon$

Getting data – the black box model

Family of PQC models: $\mathcal{F}_{U,O} = \{f_{\theta}(x) = \langle \mathbf{0} | U^{\dagger}(x,\theta)OU(x,\theta) | \mathbf{0} \rangle \}$

Which PQCs are learnable? How do we get the hypothesis class \mathcal{H} ?

Getting data – the grey box model

Family of PQC models: $\mathcal{F}_{U,O} = \{f_{\theta}(x) = \langle \mathbf{0} | U^{\dagger}(x, \theta) OU(x, \theta) | \mathbf{0} \rangle \}$

Which PQCs are learnable? No clear answer yet.

But we know some PQCs are learnable, and we know how to provide their classical surrogates.

Fourier representation of PQC

$$f_{\theta}(x) = c_{\omega_0}(\theta) + \sum_{i=1}^{|\Omega|-1} a_{\omega_i}(\theta) \cos(\langle \omega_i, x \rangle) + b_{\omega_i}(\theta) \sin(\langle \omega_i, x \rangle)$$

$$\mathcal{F}_{U,O} = \{ f_{\theta}(\mathbf{x}) = \langle \mathbf{w}_F(\theta), \boldsymbol{\phi}_F(\mathbf{x}) \rangle \}$$
$$\operatorname{tr}(\rho_{\theta}(\mathbf{x})O)$$

Classical machine learning models

PQC models:
$$f_{\theta}(x) \in [0,1]$$

$$\xi(x) = \langle w_F, \phi_F(x) \rangle - \langle w, \phi(x) \rangle$$

$$\xi(x) = \langle w_F, \phi_F(x) \rangle - \langle w, \phi(x) \rangle$$

$$\xi(x) \in [-M, M]$$

$$\mathbb{E}_x[\xi(x)^2] \leq \epsilon_1$$

Hypothesis class: $\mathcal{H} = \{h(x) = \langle w, \phi(x) \rangle\}$

$$\|\mathbf{w}\|_{2} \leq B, \|\mathbf{\phi}(\mathbf{x})\|_{2} \leq 1$$

Simplify hypothesis class:

- \triangleright Directly truncate $\Omega \rightarrow D$
- Random Fourier Features

Empirical risk minimization

PQC models: $f_{\theta}(x) \in [0,1]$

$$f_{\theta}(x) = \langle w, \phi(x) \rangle + \xi(x)$$

$$\phi(x) = \frac{1}{\sqrt{D}} \begin{pmatrix} 1 \\ \cos(\langle \boldsymbol{\omega}_1, \boldsymbol{x} \rangle) \\ \sin(\langle \boldsymbol{\omega}_1, \boldsymbol{x} \rangle) \\ \vdots \\ \cos(\langle \boldsymbol{\omega}_D, \boldsymbol{x} \rangle) \\ \sin(\langle \boldsymbol{\omega}_D, \boldsymbol{x} \rangle) \end{pmatrix}$$

$$\xi(\mathbf{x}) = \langle \mathbf{w}_F, \mathbf{\phi}_F(\mathbf{x}) \rangle - \langle \mathbf{w}, \mathbf{\phi}(\mathbf{x}) \rangle$$
$$\xi(\mathbf{x}) \in [-M, M]$$
$$\mathbb{E}_{\mathbf{x}}[\xi(\mathbf{x})^2] \le \epsilon_1$$

Minimize $\hat{R}(h)$ to achieve low R(h)

Hypothesis class: $\mathcal{H} = \{h(x) = \langle w, \phi(x) \rangle\}$

$$\mathbf{w}^* = \underset{\|\mathbf{w}\|_2 < B}{\text{arg min}} \ \frac{1}{N_1} \sum_{i=1}^{N_1} (\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_i) \rangle - y_i)^2$$

$$R(h_{\mathbf{w}^*}) = \mathbb{E}_{\mathbf{x}}[(h_{\mathbf{w}^*}(\mathbf{x}) - f_{\boldsymbol{\theta}}(\mathbf{x}))^2]$$

- > Constrained convex optimization
- > Kernel ridge regression with line search

Guarantees for empirical risk minimization

PQC models: $f_{\theta}(x) \in [0,1]$

$$f_{\theta}(x) = \langle w, \phi(x) \rangle + \xi(x)$$

$$\phi(x) = \frac{1}{\sqrt{D}} \begin{pmatrix} 1 \\ \cos(\langle \omega_1, x \rangle) \\ \sin(\langle \omega_1, x \rangle) \\ \vdots \\ \cos(\langle \omega_D, x \rangle) \\ \sin(\langle \omega_D, x \rangle) \end{pmatrix}$$

$$\xi(\mathbf{x}) = \langle \mathbf{w}_F, \mathbf{\phi}_F(\mathbf{x}) \rangle - \langle \mathbf{w}, \mathbf{\phi}(\mathbf{x}) \rangle$$
$$\xi(\mathbf{x}) \in [-M, M]$$
$$\mathbb{E}_{\mathbf{x}}[\xi(\mathbf{x})^2] \le \epsilon_1$$

Minimize $\hat{R}(h)$ to achieve low R(h)

Hypothesis class: $\mathcal{H} = \{h(x) = \langle w, \phi(x) \rangle\}$

Lemma 1:
$$R(h_{\boldsymbol{w}^*}) \leq \epsilon_1 + \tilde{\mathcal{O}}\left(D^2\sqrt{\frac{1}{N_1}}\right)$$

Amount of data to learn: $N_1 \in \mathcal{O}(D^4)$

- > Can we do better for the number of data?
- \triangleright No indication on number of shots N_S
- \triangleright Does a trade off between N_1 and N_S exist?

Classical machine learning models

PQC models:
$$f_{\theta}(x) \in [0,1]$$

$$f_{\theta}(x) = \langle w_F, \phi_F(x) \rangle = \langle w, \phi(x) \rangle + [\xi(x)]$$

$$\xi(x) = \langle w_F, \phi_F(x) \rangle - \langle w, \phi(x) \rangle$$

$$\xi(x) \in [-M, M]$$

$$\mathbb{E}_x[\xi(x)^2] \leq \epsilon_1$$

$$= u(\langle w, \phi(x) \rangle + \xi(x))$$

Hypothesis class:
$$\mathcal{H} = \{h(x) = u(\langle w, \phi(x) \rangle)\}$$

$$\|\mathbf{w}\|_{2} \leq B, \|\mathbf{\phi}(\mathbf{x})\|_{2} \leq 1$$

The learning algorithm

Algorithm 1: The learning algorithm

Input: Training data size N_1 , validation data size N_2 , number of measurement shots N_s , parameter setting of quantum model $\boldsymbol{\theta}$, distribution of input $p(\boldsymbol{x})$, non-decreasing L-Lipschitz function $u: \mathbb{R} \to \mathcal{Y}$, kernel function k corresponding to feature map $\boldsymbol{\phi}$, learning rate $\lambda > 0$, number of iterations T

1 Sample N_1 training data inputs $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_{N_1} \sim p(\boldsymbol{x})$.

Just think of it as kernelized gradient descent with a validation dataset.

oraning dataset $(\boldsymbol{\omega}_i, y_i)_{i=1}$

- **3** Repeat steps 1 and 2 to collect labelled validation data of size N_2 , $(\boldsymbol{p}_i, \bar{q}_j)_{i=1}^{N_2}$.
- 4 Initialize $\alpha^i := 0 \in \mathbb{R}^{N_1}$
- 5 for t = 1, ..., T do

6
$$h^t(\boldsymbol{x}) := u\left(\sum_{i=1}^{N_1} \alpha_i^t k(\boldsymbol{x}, \boldsymbol{x}_i)\right)$$

7 | for
$$i = 1, 2, ..., N_1$$
 do

$$\mathbf{8} \quad \begin{bmatrix} \alpha_i^{t-1}, \ldots, N_1 & \mathbf{0} \\ \alpha_i^{t+1} := \alpha_i^t + rac{\lambda}{N_1} (ar{y}_i - h^t(oldsymbol{x}_i)) \end{bmatrix}$$

Output: h^r where

$$r = \arg\min_{t \in \{1,\dots,T\}} \frac{1}{N_2} \sum_{j=1}^{N_2} (\bar{q}_j - h^t(\boldsymbol{p}_j))^2$$

Provable guarantee on concept learning

Apply gradient descent* on data to achieve low R(h).

Theorem 1:
$$R(h) \leq \tilde{\mathcal{O}}\left(\sqrt{\epsilon_1} + M\sqrt[4]{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1N_S}}\right)$$

Lemma 1:
$$R(h_{w^*}) \le \epsilon_1 + \tilde{\mathcal{O}}\left(\frac{D^2}{N_1}\right)$$

Provable guarantee on concept learning

Apply gradient descent* on data to achieve low R(h).

Theorem 1:
$$R(h) \leq \tilde{\mathcal{O}}\left(\sqrt{\epsilon_1} + M\sqrt[4]{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1N_s}}\right)$$

$$\mathbb{E}_x[\xi(x)^2] \leq \epsilon_1 \quad \xi(x) \in [-M,M]$$
 Quantum models cannot be learned without a (fairly) efficient and good classical approximation.
$$f_\theta(x) = \langle w_F, \phi_F(x) \rangle \quad h(x) = u(\langle w, \phi(x) \rangle)$$
 Bias from the model representation.

$$f_{\theta}(x) = \langle w_F, \phi_F(x) \rangle \qquad h(x) = u(\langle w, \phi(x) \rangle)$$

Asymmetrical effects of N_1 and N_S

Asymmetrical effects of N_1 and N_S

Learning PQC models with $N_S = 1$

Corollary 1:
$$R(h) \le \tilde{\mathcal{O}}\left(D\sqrt{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1N_S}}\right)$$
 $N_1 \to \infty$ $R(h) \le 0$

Assumed we have unlimited queries to quantum systems.

Access to quantum computers is expensive.

Hardware Provider	<u>QPU family</u>	Per-task price	Per-shot price
IonQ	Harmony	\$0.30000	\$0.01000
lonQ	Aria	\$0.30000	\$0.03000
IQM	Garnet	\$0.30000	\$0.00145
QuEra	Aquila	\$0.30000	\$0.01000
Rigetti	Aspen-M	\$0.30000	\$0.00035

Some hardware is more expensive than others.

Limit the total number of queries to quantum systems.

Total measurement budget: $N_{\rm tot} = N_1 \cdot (N_s + \gamma)$

Extra $\gamma \in \mathbb{R}^+$ for changing parameter settings

- $\gamma = 0$: $N_{\text{tot}} = N_1 \cdot N_s$
- $\gamma_{\text{Trapped Ions}} > \gamma_{\text{Superconducting}}$

Corollary 1:

$$R(h) \le \tilde{\mathcal{O}}\left(D\sqrt{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1N_S}}\right)$$

$$\frac{1}{N_{\text{tot}} = N_1 \cdot (N_S + \gamma)} \frac{1}{N_1} = \frac{N_S + \gamma}{N_{\text{tot}}}$$
Corollary 2:

$$R(h) \le \tilde{\mathcal{O}}\left(D\sqrt{\frac{N_S + \gamma}{N_{\text{tot}}}} + D\sqrt{\frac{N_S + \gamma}{N_{\text{tot}}N_S}}\right)$$

Role of the link function u

With link function

Without link function

$$h(x) = \underline{u}(\langle w, \phi(x) \rangle)$$

$$g(x) = \langle w, \phi(x) \rangle$$

u(x)

Bias-variance trade-off

Analyze the average R(h) over all possible training datasets

$$\mathbb{E}_{\mathcal{S}}[R(h_{\mathcal{S}})] = \mathbb{E}_{x}[\mathbf{Bias}_{\mathcal{S}}^{2}] + \mathbb{E}_{x}[\mathbf{Var}_{\mathcal{S}}]$$

Provable guarantee on concept learning

Apply gradient descent* on data to achieve low R(h).

Theorem 1:
$$R(h) \le \tilde{\mathcal{O}}\left(\sqrt{\epsilon_1} + M\sqrt[4]{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1}} + D\sqrt{\frac{1}{N_1N_s}}\right)$$

Bias Variance

Lemma 1:
$$R(h_{w^*}) \le \epsilon_1 + \tilde{\mathcal{O}}\left(D^2\sqrt{\frac{1}{N_1}}\right)$$

The link function limits the model complexity and forcibly compresses the variance upper bound.

Effects of shot noise on bias and variance

Analyze the average $R_{\text{expl}}(h)$ over all possible training datasets

$$\mathbb{E}_{\mathcal{S}}[R_{\text{expl}}(h_{\mathcal{S}})] = \mathbb{E}_{\mathbf{x}}[\mathbf{Bias}_{\mathcal{S}}^{2}] + \mathbb{E}_{\mathbf{x}}[\mathbf{Var}_{\mathcal{S}}]$$

Learning with and without the link function

Hypothesis class (with link function):

$$\mathcal{H}_d = \left\{ h_d(x) = u \left(\nu_0 + \sum_{\omega=1}^d \alpha_\omega \cos(\omega x) + \beta_\omega \sin(\omega x) \right) \right\}$$

Hypothesis class (without link function):

$$G_d = \left\{ g_d(x) = \nu_0 + \sum_{\omega=1}^d \alpha_\omega \cos(\omega x) + \beta_\omega \sin(\omega x) \right\}$$

Conclusion

Can we obtain provable guarantees of learning that exemplify the relationship between N_1 and N_s ?

arXiv:2408.05116 [quant-ph]

(1) Asymmetrical trade-offs between N_1 and N_s

(2) Gradient descent* can be made robust and provide tighter guarantees

