IB Analysis & Topology

Ishan Nath, Michaelmas 2022

Based on Lectures by Dr. Paul Russell

October 25, 2022

Page 1 CONTENTS

Contents

Ι	\mathbf{G}	eneralizing Continuity and Convergence	2	
1	Thr	ree Examples of Convergence	2	
	1.1	Convergence in \mathbb{R}	2	
		Convergence in \mathbb{R}^2		
	1.3	Convergence of Functions	4	
	1.4	Application to Power Series	8	
	1.5	Uniform Continuity	11	
2	Metric Spaces			
	2.1	Definitions and Examples	14	
		Completeness		
Index			24	

Part I

Generalizing Continuity and Convergence

1 Three Examples of Convergence

1.1 Convergence in \mathbb{R}

Let (x_n) be a sequence in \mathbb{R} and $x \in \mathbb{R}$. We say (x_n) converges to x, and write $x_n \to x$, if for all $\varepsilon > 0$, there exists N such that for all $n \geq N$, $|x_n - x| < \varepsilon$.

In \mathbb{R} , one useful fact is the **triangle inequality** $-|a+b| \leq |a| + |b|$. We also have two key theorems:

Theorem 1.1 (Bolzano-Weierstrass Theorem).

A bounded sequence in \mathbb{R} must have a convergent subsequence.

Recall that a sequence (x_n) in \mathbb{R} is **Cauchy** if for all $\varepsilon > 0$, there exists N, such that for all $m, n \geq N$, $|x_m - x_n| < \varepsilon$. It is easy to show every convergent sequence is Cauchy. We also have the following:

Theorem 1.2 (General Principle of Convergence).

Any Cauchy sequence in \mathbb{R} converges.

This can be proven by Bolzano-Weierstrass theorem.

1.2 Convergence in \mathbb{R}^2

Let (z_n) be a sequence in \mathbb{R}^2 , and $z \in \mathbb{R}^2$. We wish to define $(z_n) \to z$.

In \mathbb{R} , we used the norm |x|. In \mathbb{R}^2 , if we have z=(x,y), then we can say $||z||=\sqrt{x^2+y^2}$. This also satisfies the triangle inequality $-||a+b|| \leq ||a|| + ||b||$.

Definition 1.1. Let (z_n) be a sequence in \mathbb{R}^2 , and $z \in \mathbb{R}^2$. We say that (z_n) **converges** to z, and write $z_n \to z$, if for all $\varepsilon > 0$, there exists N such that for all $n \geq N$, $||z_n - z|| < \varepsilon$.

Equivalently, $z_n \to z$ if and only if $||z_n - z|| \to 0$.

Lemma 1.1. If (z_n) , (w_n) are sequences in \mathbb{R}^2 with $z_n \to z$, $w_n \to w$. Then $z_n + w_n \to z + w$.

Proof:

$$||(z_n + w_n) - (z + w)|| \le ||z_n - z|| + ||w_n - w|| \to 0 + 0 = 0.$$

In fact, given convergence in \mathbb{R} , convergence in \mathbb{R}^2 is easy.

Proposition 1.1. Let (z_n) be a sequence in \mathbb{R}^2 and let $z \in \mathbb{R}^2$. Write $z_n = (x_n, y_n)$ and z = (x, y). Then $z_n \to z$ if and only if $x_n \to x$ and $y_n \to y$.

Proof:

First, note $|x_n - x|, |y_n - y| \le ||z_n - z||$, so $||z_n - z|| \to 0$ implies $|x_n - x|, |y_n - y| \to 0$.

Now, if
$$|x_n - x|, |y_n - y| \to 0$$
, then $||z_n - z|| = \sqrt{|x_n - x|^2 + |y_n - y|^2} \to 0$.

Definition 1.2. A sequence (z_n) in \mathbb{R}^2 is **bounded** if there exists $M \in \mathbb{R}$ such that for all $n, ||z_n|| \leq M$.

Theorem 1.3 (Bolzano-Weierstrass in \mathbb{R}^2).

A bounded sequence in \mathbb{R}^2 must have a convergent subsequence.

Proof: Let (z_n) be a bounded subsequence in \mathbb{R}^2 . Write $z_n = (x_n, y_n)$. Now $|x_n|, |y_n| \leq ||z_n||$, so x_n, y_n are bounded in \mathbb{R} .

By Bolzano-Weierstrass, x_n has a convergent subsequence, say $x_{n_j} \to x \in \mathbb{R}$. Similarly (y_{n_j}) is bounded, so it has a convergent subsequence $y_{n_{j_k}} \to y$. Since we know $x_{n_{j_k}} \to x$, $z_{n_{j_k}} \to z = (x, y)$.

Definition 1.3. A sequence $(z_n) \in \mathbb{R}^2$ is **Cauchy** if for all $\varepsilon > 0$, there exists N such that for all $m, n \geq N$, $||z_m - z_n|| < \varepsilon$.

It is easy to show a convergent sequence in \mathbb{R}^2 is Cauchy.

Theorem 1.4 (General Principle of Convergence for \mathbb{R}^2).

Any Cauchy sequence in \mathbb{R}^2 converges.

Proof: Let (z_n) be a Cauchy sequence in \mathbb{R}^2 . Write $z_n = (x_n, y_n)$. For all $m, n, |x_m - x_n| \leq ||z_m - z_n||$, so (x_n) is a Cauchy sequence in \mathbb{R} , thus it converges in \mathbb{R} . Similarly, (y_n) converges in \mathbb{R} , so (z_n) converges.

1.3 Convergence of Functions

Let $X \subset \mathbb{R}$. Let $f_n : X \to \mathbb{R}$, and let $f : X \to \mathbb{R}$. What does it mean for (f_n) to converge to f?

Definition 1.4. Say (f_n) converges pointwise to f, and we write $f_n \to f$ pointwise, if for all $x \in X$, $f_n(x) \to f(x)$ as $n \to \infty$.

Although this is simple and easy to check, it doesn't preserve some 'nice' properties that we want.

Example 1.1. In all three examples, X = [0, 1], and $f_n \to f$ pointwise.

1. We will construct f_n continuous, but f not. Take

$$f_n(x) = \begin{cases} nx & x \le \frac{1}{n}, \\ 1 & x \ge \frac{1}{n}. \end{cases}, f = \begin{cases} 0 & x = 0, \\ 1 & x > 0. \end{cases}$$

Then $(f_n) \to f$ pointwise, but f is not continuous.

2. We will construct f_n Riemann integrable, but f not. Take the function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q}, \\ 0 & x \notin \mathbb{Q}. \end{cases}$$

Enumerate the rationals in [0,1] as q_1, q_2, \ldots For $n \geq 1$, set

$$f_n(x) = \begin{cases} 1 & x = q_1, \dots, q_n, \\ 0 & \text{otherwise.} \end{cases}$$

3. We will construct f_n Riemann integrable, f Riemann integrable, but the integrals do not converge. Take f(x) = 0 for all x. We construct f_n with integral 1, such as

$$f_n(x) = \begin{cases} n & 0 < x < \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

We consider another definition of convergence.

Definition 1.5 (Uniform Convergence). Let $X \subset \mathbb{R}$, $f_n : X \to \mathbb{R}$, $f : X \to \mathbb{R}$. We say (f_n) converges uniformly to f, and write $f_n \to f$ uniformly, if for all $\varepsilon > 0$, there exists N, such that for all $x \in X$ and all $n \ge N$, $|f_n(x) - f(x)| < \varepsilon$.

In particular, $f_n \to f$ uniformly implies $f_n \to f$ pointwise.

Equivalently, $f_n \to f$ uniformly if for sufficiently large n, $f_n - f$ is bounded, and

$$\sup_{x \in X} |f_n(x) - f(x)| \to 0.$$

Theorem 1.5. Let $X \subset \mathbb{R}$, $f_n : X \to \mathbb{R}$ be continuous, and let $f_n \to f : X \to \mathbb{R}$ uniformly. Then f is continuous.

Proof: Let $x \in X$, and pick $\varepsilon > 0$. As $f_n \to f$ uniformly, we can find N such that for all $n \geq N$ and $\in X$,

$$|f_n(y) - f(y)| < \varepsilon.$$

In particular, we may take n = N. As f_N is continuous, we can find $\delta > 0$ such that for all $y \in X$,

$$|y - x| < \delta \implies |f_N(y) - f_N(x)| < \varepsilon.$$

Now let $y \in X$ with $|y - x| < \delta$. Then

$$|f(y) - f(x)| \le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

But 3ε can be made arbitrarily small, so f is continuous.

Remark. This is often called a ' 3ε proof' (or a ' $\varepsilon/3$ proof').

Theorem 1.6. Let $f_n:[a,b]\to\mathbb{R}$ be integrable and let $f_n\to f:[a,b]\to\mathbb{R}$ uniformly. Then f is integrable and

$$\int_{a}^{b} f_{n} \to \int_{a}^{b} f$$

as $n \to \infty$.

Proof: As $f_n \to f$ uniformly, we can pick n sufficiently large such that $f_n - f$ is bounded. Also f_n is bounded, so by the triangle inequality $f = (f - f_n) + f_n$ is bounded.

Let $\varepsilon > 0$. As $f_n \to f$ uniformly, there is some N such that for all $n \geq N$ and $x \in [a, b]$, we have $|f_n(x) - f(x)| < \varepsilon$. By Riemann's criterion, there is some dissection \mathcal{D} of [a, b] for which

$$S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) < \varepsilon.$$

Let $\mathcal{D} = \{x_0, x_1, \dots, x_k\}$, where $a = x_0 < x_1 < \dots < x_k = b$. Now,

$$S(f, \mathcal{D}) = \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$$

$$\leq \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} (f_N(x) + \varepsilon)$$

$$= \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f_N(x) + \sum_{i=1}^{k} (x_i - x_{i-1}) \varepsilon$$

$$= S(f_N, \mathcal{D}) + (b - a) \varepsilon.$$

Similarly, $s(f, \mathcal{D}) \ge s(f_N, \mathcal{D} - (b - a)\varepsilon$, so

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) < S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) + 2(b-a)\varepsilon < (2(b-a)+1)\varepsilon..$$

But this can be made arbitrarily small, so by Riemann's criterion, f is integrable over [a, b].

Now for any n sufficiently large such that $f_n - f$ is bounded,

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| = \left| \int_{a}^{b} (f_{n} - f) \right|$$

$$\leq \int_{a}^{b} |f_{n} - f|$$

$$\leq (b - a) \sup_{x \in [a, b]} |f_{n}(x) - f(x)| \to 0$$

as $n \to \infty$ since $f_n \to f$ uniformly.

Unfortunately, uniform convergence cannot preserve all properties.

Example 1.2. Take $f_n: [-1,1] \to \mathbb{R}$, where each f_n is differentiable and $f_n \to f$ uniformly, but f is not differentiable. Take

$$f_n = \sqrt{\left(\frac{1}{n} + x^2\right)}.$$

Then f_n is differentiable, and also uniformly converges to f(x) = |x|. But f is not differentiable.

In fact, we need uniform convergence of the **derivatives**.

Theorem 1.7. Let $f_n:(u,v)\mapsto\mathbb{R}$ with $f_n\to f:(u,v)\to\mathbb{R}$ pointwise. Suppose further that each f_n is continuously differentiable and that $f'_n\to g:(u,v)\to\mathbb{R}$ uniformly. Then f is differentiable with f'=g.

Proof: Fix $a \in (u, v)$. Let $x \in (u, v)$. By FTC, we have each f'_n is integrable over [a, x] and

$$\int_a^x f_n' = f_n(x) - f_n(a).$$

But $f'_n \to g$ uniformly, so by theorem 5, g is integrable over [a, x] and

$$\int_{a}^{x} g = \lim_{n \to \infty} \int_{a}^{x} f'_{n}(x) = f(x) - f(a).$$

So we have shown that for all $x \in (u, v)$,

$$f(x) = f(a) + \int_{a}^{x} g.$$

By theorem 4, g is continuous so by FTC, f is differentiable with f' = g.

Remark. It would have sufficed to assume that $f_n(x) \to f(x)$ for a single value of x

Definition 1.6. Let $X \subset \mathbb{R}$ and let $f_n : X \to \mathbb{R}$ for each $n \geq 1$. We say (f_n) is **uniformly Cauchy** if for all $\varepsilon > 0$, there exists N such that for all $m, n \geq N$ and for all $x \in X$,

$$|f_m(x) - f_n(x)| < \varepsilon.$$

It is easy to show that a uniformly convergent sequence is uniformly Cauchy.

Theorem 1.8 (General Principle of Uniform Convergence). Let (f_n) be a uniformly Cauchy sequence of functions $X \to \mathbb{R}$. Then (f_n) is uniformly convergent.

Proof: Let $x \in X$, and $\varepsilon > 0$. Then there exists N, such that for all $m, n \geq N$ and for all $y \in X$, $|f_m(y) - f_n(y)| < \varepsilon$. In particular, $|f_m(x) - f_n(x)| < \varepsilon$, so $(f_n(x))$ is a Cauchy sequence in \mathbb{R} , so by GPC, it converges pointwise, say $f_n(x) \to f(x)$ as $n \to \infty$.

Let $\varepsilon > 0$. Then we can find an N such that for all $m, n \geq N$ and all $y \in X$, $|f_m(y) - f_n(y)| < \varepsilon$. Fixing y, m and letting $n \to \infty$, $|f_m(y) - f(y)| \leq \varepsilon$. But since y is arbitrary, this shows $f_n \to f$ uniformly.

We will also try to take Bolzano-Weierstrass over to the space of functions.

Definition 1.7. Let $X \subset \mathbb{R}$ and let $f_n : X \to \mathbb{R}$ for each $n \geq 1$. We say (f_n) is **pointwise bounded** if for all x, there exists M such that for all n, $|f_n(x)| \leq M$.

We say (f_n) is **uniformly bounded** if there exists M, such that for all x and n, $|f_n(x)| \leq M$.

We would like a uniform Bolzano-Weierstrass, saying if (f_n) is a uniformly bounded sequence of functions, then it has a uniformly convergent subsequence. But this is not true.

Example 1.3. Take $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 1 & x = n, \\ 0 & x \neq n \end{cases}.$$

Then (f_n) is uniformly bounded, but if $m \neq n$, then $f_m(m) = 1$ and $f_n(m) = 0$, so $|f_m(m) - f_n(m)| = 1$, hence (f_n) are not uniformly Cauchy, so cannot be uniformly convergent.

1.4 Application to Power Series

Recall that if $\sum a_n x^n$ is a real power of series with radius of convergence R > 0, then we can differentiate and integrate it term-by-term within (-R, R).

Definition 1.8. Let $f_n: X \to \mathbb{R}$ for each $n \geq 0$. We say that the series

$$\sum_{n=0}^{\infty} f_n$$

converges uniformly if the sequence of partial sums (F_n) does, where $F_n = f_0 + f_1 + \cdots + f_n$.

If we can prove that $\sum a_n x^n$ is uniformly convergent, then we can apply earlier theorems to show differentiability. However this is not quite true, for example take

$$\sum_{n=0}^{\infty} x^n.$$

However, we do have another approach. We can show that if 0 < r < R, then we do have uniform convergence on (-r, r), and then given $x \in (-R, R)$, we can choose |x| < r < R and use the above to show all the properties we want. This is known as the **local uniform convergence of power series**.

Lemma 1.2. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Let 0 < r < R. Then $\sum a_n x^n$ converges uniformly on (-r, r).

Proof: Define $f, f_m : (-r, r) \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad f_m(x) = \sum_{n=0}^{m} a_n x^n.$$

Recall that $\sum a_n x^n$ converges absolutely for all x with |x| < R. Let $x \in (-r, r)$. Then

$$|f(x) - f_m(x)| = \left| \sum_{n=m+1}^{\infty} a_n x^n \right|$$

$$\leq \sum_{n=m+1}^{\infty} |a_n| |x|^n \leq \sum_{n=m+1}^{\infty} |a_n| r^n,$$

which converges by absolute convergence at r. hence if m is sufficiently large, $f - f_m$ is bounded and

$$\sup_{x \in (-r,r)} |f(x) - f_m(x)| \le \sum_{n=m+1}^{\infty} |a_n| r^n \to 0$$

as $m \to \infty$.

Theorem 1.9. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0.

Define $f:(-R,R)\to\mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Then,

- (i) f is continuous;
- (ii) For any $x \in (-R, R)$, f is integrable over [0, x] with

$$\int_0^x = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Proof: Let $x \in (-R, R)$. Pick r such that |x| < r < R. By the above lemma, $\sum a_n y^n$ converges uniformly on (-r, r). But the partial sum functions are all continuous on (-r, r), hence $f|_{(-r,r)}$ is continuous. Thus f is a continuous function on (-R, R).

Moreover, $[0, x] \subset (-r, r)$ so we also have $\sum a_n y^n$ converges uniformly on [0, x]. Each partial sum on [0, x] is a polynomial, so can be integrated with

$$\int_0^x \sum_{n=0}^m a_n y^n \, \mathrm{d}y = \sum_{n=0}^m \int_0^x a_n y^n \, \mathrm{d}y = \sum_{n=0}^m \frac{a_n}{n+1} x^{n+1}.$$

Thus, f is integrable over [0, x] with

$$\int_0^x f = \lim_{m \to \infty} \int_0^x \sum_{n=0}^m a_n y^n \, \mathrm{d}y = \lim_{m \to \infty} \sum_{n=0}^m \frac{a_n}{n+1} x^{n+1} = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

For differentiation, we need the following lemma:

Lemma 1.3. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Then the power series $\sum na_n x^{n-1}$ has radius of convergence at least R.

Proof: Let $x \in \mathbb{R}$, 0 < |x| < R. Pick w with |x| < w < R. Then $\sum a_n w^n$ is absolutely convergent, so $a_n w^n \to 0$. Therefore, there exists M such that $|a_n w^n| \le M$ for all n. For each n,

$$|na_nx^{n-1}| = |a_nw^n| \left| \frac{x}{w} \right|^n \frac{1}{|x|} n.$$

Fix n, let $\alpha = |x/w| < 1$, and let c = M/|x|, a constant. Then $|na_nx^{n-1}| \le cn\alpha^n$. By comparison test, it suffices to show $\sum n\alpha^n$ converges. Note

$$\left| \frac{(n+1)\alpha^{n+1}}{n\alpha^n} \right| = \left(1 + \frac{1}{n} \right) \alpha \to \alpha < 1$$

as $n \to \infty$, so this converges by the ratio test.

Theorem 1.10. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Let $f: (-R, R) \to \mathbb{R}$ be defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Then f is differentiable and for all $x \in (-R, R)$,

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Proof: Let $x \in (-R, R)$. Pick r with |x| < r < R. Then $\sum a_n y^n$ converges uniformly on (-r, r). Moreover, the power series $\sum na_n y^{n-1}$ had radius of convergence at least R, and so also converges uniformly on (-r, r).

The partial sum functions $f_m(y)$ are polynomials, so are differentiable with

$$f'_m(y) = \sum_{n=1}^m n a_n y^{n-1}.$$

we now have f'_m converging uniformly on (-r,r) to the function

$$g(y) = \sum_{n=1}^{\infty} n a_n y^{n-1}.$$

Hence, $f|_{(-r,r)}$ is differentiable and for all $y \in (-r,r)$, f'(y) = g(y). In particular, f is differentiable at x with f'(x) = g(x). This gives f is a differentiable function on (-R,R) with derivative g as desired.

1.5 Uniform Continuity

Let $X \subset \mathbb{R}$. Let $f: X \mapsto \mathbb{R}$. Recall that f is **continuous** if for all $\varepsilon > 0$ and for all $x \in X$, there exists $\delta > 0$, such that for all $y \in X$ with $|x - y| < \delta$, we have

$$|f(x) - f(y)| < \varepsilon$$
.

Definition 1.9. We say f is **uniformly continuous** if for all $\varepsilon > 0$, there exists $\delta > 0$, such that for all $x, y \in X$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

Remark. Clearly if f is uniformly continuous, then f is continuous. The converse is not true.

Example 1.4. Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Then f is continuous as it is a polynomial. Suppose $\delta > 0$. Then,

$$f(x+\delta) - f(x) = (x+\delta)^2 - x^2 = 2\delta x + \delta^2 \to \infty$$

as $x \to \infty$. So the condition fails for $\varepsilon = 1$.

Even on the bounded interval (0,1), take f(x) = 1/x. This is clearly continuous, but cannot be uniformly continuous as it approaches infinity as x approaches 0.

Theorem 1.11. A continuous real-valued function on a closed bounded interval is uniformly continuous.

Proof: Let $f:[a,b] \to \mathbb{R}$, and suppose f is continuous but not uniformly continuous. Then we can find an $\varepsilon > 0$ such that, for all $\delta > 0$, there exist $x, y \in [a,b]$ with $|x-y| < \delta$ but $|f(x)-f(y)| \ge \varepsilon$. In particular, take $\delta = 1/n$.

Thus, we can find sequence $(x_n), (y_n)$ in [a, b] with $|x_n - y_n| < 1/n$ but $|f(x_n) - f(y_n)| \ge \varepsilon$. The sequence (x_n) is bounded, so by Bolzano-Weierstrass it has a convergent subsequence $x_{n_i} \to x$. Since [a, b] is closed, $x \in [a, b]$.

Then $x_{n_j} - y_{n_j} \to 0$, so also $y_{n_j} \to x$. But f is continuous at x, so there exists $\delta > 0$ such that for all $y \in [a,b]$, $|y-x| < \delta$ implies $|f(y)-f(x)| < \varepsilon/2$. Take such a δ . As $x_{n_j} \to x$, we can find J_1 such that $j \geq J_1$ implies $|x_{n_j} - x| < \delta$. Similarly, we can find J_2 such that for $j \geq J_2$, $|y_{n_j} - x| < \delta$. Let $j = \max\{J_1, J_2\}$. Then we have $|f(x_{n_j}) - f(x)|, |f(y_{n_j}) - f(x)| < \varepsilon/2$. But by triangle inequality,

$$|f(x_{n_j}) - f(y_{n_j})| \le |f(x_{n_j}) - f(x)| + |f(x) - f(y_{n_j})| < \varepsilon,$$

a contradiction.

Corollary 1.1. A continuous real-valued function on a closed bounded interval is bounded.

Proof: Let $f:[a,b] \mapsto \mathbb{R}$ be continuous, and so uniformly continuous. Then we can find $\delta > 0$ such that for all $x,y \in [a,b], |x-y| < \delta$ implies |f(x)-f(y)| < 1. Let $M = \lceil (b-a)/\delta \rceil$. Then for any $x \in [a,b]$, we can find $a = x_0 \le x_1 \le \ldots \le x_M = x$, with $|x_i - x_{i-1}| < \delta$. Then we have

$$|f(x)| \le |f(a)| + \sum_{i=1}^{M} |f(x_i) - f(x_{i-1})| < |f(a)| + M.$$

Corollary 1.2. A continuous real-valued function on a closed bounded interval is integrable.

Proof: Let $f:[a,b] \to \mathbb{R}$ be continuous, and so uniformly continuous. Let $\varepsilon > 0$. Then we can find $\delta > 0$ such that for all $x, y \in [a,b]$, $|x-y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$. Let $\mathcal{D} = \{x_0 < x_1 < \ldots < x_n\}$ be a dissection such that $x_i - x_{i-1} < \delta$, and $i \in \{1, \ldots, n\}$. Then for any $u, v \in [x_{i-1}, x_i]$, we have $|u-v| < \delta$, so $|f(u) - f(v)| < \varepsilon$. Hence

$$\sup_{x \in [x_{i-1}, x_i]} f(x) - \inf_{x \in [x_{i-1}, x_i]} f(x) \le \varepsilon.$$

This gives

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) \le \sum_{i=1}^{n} (x_i - x_{i-1})\varepsilon = \varepsilon(b - a).$$

But this can be made arbitrarily small, so by Riemann's criterion, f is integrable over [a, b].

2 Metric Spaces

2.1 Definitions and Examples

Our goal is to generalize the idea of convergence. This requires a notion of distance.

We have seen in \mathbb{R} , we have a norm |x-y|, in \mathbb{R}^2 we have ||x-y||, and in function space, we can take

$$\sup_{x \in X} |f(x) - g(x)|.$$

We have seen that the triangle inequality is very useful, so we wish to preserve this property.

Definition 2.1. A **metric space** is a set X endowed with a **metric** d, i.e. a function $d: X^2 \to \mathbb{R}$, satisfying:

- (i) $d(x,y) \ge 0$ for all $x,y \in X$, with equality if and only if x=y;
- (ii) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, yz \in X$.

We could define a metric space as an ordered pair (X, d), but usually it is obvious what d is, so we often refer to the metric space as the set X.

Example 2.1.

- (i) If $X = \mathbb{R}$, we have the usual metric d(x, y) = |x y|.
- (ii) If $X = \mathbb{R}^n$, we can take the Euclidean metric

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

(iii) Uniform convergence might not work. We wish to take $d(f,g) = \sup |f-g|$, but this might not exist if f-g is unbounded. However, with the appropriate subspace of functions, we can take this metric. Let $Y \subset \mathbb{R}$, and take

$$X = B(Y) = \{f : Y \to \mathbb{R} \mid f \text{ bounded}\},\$$

with the uniform metric

$$d(f,g) = \sup_{x \in Y} |f(x) - g(x)|.$$

We can check the triangle inequality: if $f,g,h\in B(Y),$ then for all $x\in Y,$

$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)| \le d(f, g) + d(g, h).$$

Taking the sup over all $x \in Y$, we get

$$d(f,h) \le d(f,g) + d(g,h).$$

Remark. Suppose (X, d) is a metric space and $Y \subset X$. Then $d|_Y$ is a metric on Y. We say Y with this metric is a **subspace** of X.

Example 2.2.

- (i) We can take $\mathbb{Q}, \mathbb{Z}, \mathbb{N}, [0, 1]$ as subspaces of \mathbb{R} .
- (ii) A continuous function on a bounded interval is bounded, so $\mathcal{C}([a,b])$ is a subspace of B([a,b]), with the uniform metric.
- (iii) We can take the empty metric space $X = \emptyset$ with the empty metric.

Moreover, we can define different metrics on the same set.

Example 2.3.

(i) We can take the l_1 metric on \mathbb{R}^n :

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

(ii) We can also take the l_{∞} metric on \mathbb{R}^n :

$$d(x,y) = \max_{i} |x_i - y_i|.$$

(iii) On C([a,b]), we can define the L_1 metric

$$d(f,g) = \int_a^b |f - g|.$$

(iv) If $X = \mathbb{C}$, we can define a metric

$$d(z, w) = \begin{cases} 0 & z = w, \\ |z| + |w| & z \neq w. \end{cases}$$

We can check that the triangle inequalitys. This is known as the British Rail metric or SNCF metric.

(v) Let X be any set. Define a metric d on X by

$$d(x,y) = \begin{cases} 0 & x = y, \\ 1 & x \neq y. \end{cases}$$

This is called the discrete metric on X.

(vi) Let $X = \mathbb{Z}$. Let p be a prime. The p-adic metric on \mathbb{Z} is the metric d defined by

$$d(x,y) = \begin{cases} 0 & x = y, \\ p^{-a} & p^{a} || x - y. \end{cases}$$

We show the triangle quality holds. If any of x, y, z are the same, this is easy, so assume all of x, y, z are distinct. Let $x - y = p^a m$, $y - z = p^b n$. Then if $a \le b$, we have

$$x - z = (x - y) + (y - z) = p^{a}(m + p^{b-a}n).$$

Hence $p^a \mid x - z$, so $d(x, z) \le p^{-a}$.

Definition 2.2. Let (X,d) be a metric space. Let (x_n) be a sequence in X and let $x \in X$. We say (x_n) **converges** to x, and write $x_n \to x$, if for all $\varepsilon > 0$, there exists N such that for all $n \ge N$,

$$d(x_n, x) < \varepsilon.$$

Equivalently $x_n \to x$ if and only if $d(x_n, x) \to 0$ in \mathbb{R} .

Proposition 2.1. Limits are unique. That is, if (X, d) is a metric space, (x_n) is a sequence in X, $x, y \in X$ with $x_n \to x$ and $x_n \to y$, then x = y.

Proof: For each n,

$$d(x,y) \le d(x,x_n) + d(x_n,y) \le d(x_n,x) + d(x_n,y)$$

\$\to 0 + 0 = 0.\$

So $d(x,y) \to 0$ as $n \to \infty$. But d(x,y) is constant, so d(x,y) = 0. So x = y.

Remark.

- 1. This justifies talking about the limit of a convergent sequence in a metric space, and writing $x = \lim x_n$.
- 2. Constant sequences and eventually constant sequences converge.
- 3. Suppose (X, d) is a metric space and Y is a subspace of X. Suppose (x_n) is a sequence in Y which converges in Y to x. Then (x_n) also converges in X to x.

However the converse is false: take the reals, then $1/n \to 0$. But if we consider the subspace $\mathbb{R}\setminus\{0\}$, then (1/n) is a sequence, but does not converge in $\mathbb{R}\setminus\{0\}$.

Example 2.4. Let d be the Euclidean metric on \mathbb{R}^n . Then we have $x_n \to x$ if and only if the sequence converges in each coordinate in the usual way in \mathbb{R} . Let's consider other metrics, such as the uniform metric

$$d_{\infty}(x,y) = \max_{i} |x_i - y_i|, \text{ then}$$

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \le \sqrt{\sum_{i=1}^{n} d_{\infty}(x,y)^2}.$$

So $d(x,y) \leq \sqrt{n} d_{\infty}(x,y)$. But also $d_{\infty}(x,y) \leq d(x,y)$. So for (x_n) in \mathbb{R}^n ,

$$d(x_n, x) \to 0 \iff d_{\infty}(x_n, x) \to 0.$$

So the same sequences converge in (\mathbb{R}^n, d) and $(\mathbb{R}^n, d_{\infty})$. Similarly, for

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$
, then

$$d_{\infty}(x,y) \le d_1(x,y) \le n d_{\infty}(x,y).$$

Consider $X = \mathcal{C}([0,1])$. Let d_{∞} be the uniform metric on X, so

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|, \text{ so}$$

$$f_n \to f \text{ in } (X, d_\infty) \iff d_\infty(f_n, f) \to 0$$

$$\iff \sup_{x \in [0,1]} |f_n(x) - f(x)| \to 0 \iff f_n \to f \text{ uniformly.}$$

Similarly we can take the L_1 metric

$$d_1(f,g) = \int_0^1 |f - g|$$
, then

$$d_1(f,g) = \int_0^1 |f - g| \le \int_0^1 d_{\infty}(f,g) = d_{\infty}(f,g).$$

So we can prove $f_n \to f$ in (X, d_∞) implies $f_n \to f$ in (X, d_1) . But the converse is not true, from our previous examples on uniform convergence.

We can also take (X, d) a discrete metric. Consider a convergence sequence $x_n \to x$. Then letting $\varepsilon = 1$, the definition of convergence says for all $n \ge N$, $d(x_n, x) < 1$, so $x_n = x$. Thus (x_n) is eventually constant. So in a discrete metric, (x_n) converges if and only if (x_n) is eventually constant.

Definition 2.3. Let (X,d) and (Y,e) be metric spaces, and let $f:X\to Y$.

(i) Let $a \in X$ and $b \in Y$. We say $f(x) \to b$ as $x \to a$ if for all $\varepsilon > 0$, there exists $\delta > 0$, such that for all $x \in X$,

$$0 < d(x, a) < \delta \implies e(f(x), b) < \varepsilon$$
.

- (ii) Let $a \in X$. We say f is **continuous** if $f(x) \to f(a)$ as $x \to a$.
- (iii) If for all $a \in X$, f is continuous, then we say f is a continuous function.
- (iv) We say f is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in X$,

$$d(x,y) < \delta \implies e(f(x),f(y)) < \varepsilon.$$

(v) Suppose $W \subset X$. We say f is continuous on W (resp. uniformly continuous on W) if the function $f|_W$ is continuous (resp. uniformly continuous), as a function $W \to Y$.

Remark.

1. We don't have a nice rephrasing of (i) in terms of concepts in the reals: we want something like

$$e(f(x),b) \to 0$$
 as $d(x,a) \to 0$,

but this is meaningless.V

- 2. (i) says nothing about what happens at the point a itself. For example, $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = \delta_{0x}$ tends to 0 as $x \to 0$. If we have f continuous, then d(x, a) = 0 implies e(f(x), f(a)) = 0, so we may take $0 \le d(x, a) < \delta$.
- 3. We can rewrite (v): f is continuous on W if and only if $f|_W$ is a continuous function if and only if for all $a \in W$ and $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in W$,

$$d(x, a) < \delta \implies e(f(x), f(a)) < \varepsilon$$
.

In particular, note that this only considers points in W. For example,

$$f(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & x \notin [0, 1] \end{cases}$$

is continuous on [0,1], but not continuous at 0 or 1.

Proposition 2.2. Let (X,d), (Y,e) be metric spaces. Let $f: X \to Y$ and $a \in X$. Then f is continuous at a if and only if whenever (x_n) is a sequence in X with $x_n \to a$, then $f(x_n) \to f(a)$.

Proof: Suppose f is continuous at a. Let (x_n) be a sequence in X with $x_n \to a$. Let $\varepsilon > 0$. As f is continuous at a we can find $\delta > 0$ such that for all $x \in X$, $d(x, a) < \delta$ implies $e(f(x), f(a)) < \varepsilon$.

As $x_n \to x$, we can find N such that for all $n \ge N$, $d(x_n, a) < \delta$. Hence, for $n \ge N$, $e(f(x), f(a)) < \varepsilon$. This gives $f(x_n) \to f(a)$.

Now suppose f is not continuous at a. Then there is some $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in X$ with $d(x,a) < \delta$ but $e(f(x), f(a0) \ge \varepsilon$. Take $\delta_n = 1/n$, to obtain a sequence (x_n) with $d(x_n, a) < 1/n$ but $(f(x_n), f(a)) \ge \varepsilon$. Hence $x_n \to a$ but $f(x_n) \not\to f(a)$.

Proposition 2.3. Let (W,c), (X,d), (Y,e) be metric spaces. Let $f:W\to X$, $g:X\to Y$ and let $a\in W$. Suppose f is continuous at a and g is continuous at f(a). Then $g\circ f$ is continuous at a.

Proof: Let (x_n) be a sequence in W with $x_n \to a$. Then, $f(x_n) \to f(a)$, and so also $g(f(x_n)) \to g(f(a))$. So $g \circ f$ is continuous at a.

Example 2.5.

- 1. Consider $\mathbb{R} \to \mathbb{R}$ with the usual metric. This is the same metric as defined for \mathbb{R} only. We know many continuous function on $f : \mathbb{R} \to \mathbb{R}$, such as polynomials, trigonometric functions, exponential functions, etc.
- 2. Constant functions are continuous. Also if X is any metric space and $f: X \to X$ by f(x) = x for all $x \in X$ (the identity function) is continuous.
- 3. Consider \mathbb{R}^n with the EUclidean metric and \mathbb{R} with the usual metric. The projection maps $\pi_i : \mathbb{R}^n \to \mathbb{R}$ given by $\pi_i(x) = x_i$ are continuous. Let's denote a sequence in \mathbb{R}^n by $(x^{(m)})_{m\geq 1}$. We known that $x^{(m)} \to x$ if and only if for each $i, x_i^{(m)} \to x_i$. Hence π_i is continuous.

Similarly, suppose $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$, and let $f : \mathbb{R} \to \mathbb{R}^n$ by $f(x) = (f_1(x), \ldots, f_n(x))$. Then f is continuous at a point if and only if all of f_1, \ldots, f_n are.

Using these facts, we can show that $f(x, y, z) = (e^{-x} \sin y, 2x \cos z)$ is continuous.

- 4. Recall that if we have the Euclidean metric, the l_1 metric or the l_{∞} metric on \mathbb{R}^n , then convergent sequences are the same in each case. So continuous functions $X \to \mathbb{R}^n$ or $\mathbb{R}^n \to Y$ are the same with each of these metrics.
- 5. Let (X, d) be a discrete metric space and let (Y, e) be any metric space. Then all functions $f: X \to Y$ are continuous. Suppose $a \in X$ and (x_n) is a sequence in X with $x_n \to a$. Then (x_n) is eventually constant, so $f(x_n) \to f(a)$.

2.2 Completeness

We saw a version of the general principle of convergence held in each of the three examples we considered. We try to extend this to all metric spaces:

Definition 2.4. Let (X, d) be a metric space and let (x_n) be a sequence in X. We say (x_n) is **Cauchy** if for all $\varepsilon > 0$, then there exists N such that for all $m, n \geq N$, $d(x_m, d_n) < \varepsilon$.

It is easy to show that if (x_n) is convergent, then (x_n) is Cauchy, but the converse is not true in general.

For example, let $X = \mathbb{R} \setminus \{0\}$, and let $x_n = 1/n$. Then the (x_n) do not converge, but are Cauchy as they are Cauchy in \mathbb{R} .

Similarly, we can consider \mathbb{Q} , then this does not satisfy the general principle of convergence.

Definition 2.5. Let (X, d) be a metric space. We say X is **complete** if every Cauchy sequence in X converges.

Example 2.6.

- 1. $\mathbb{R} \setminus \{0\}$ and \mathbb{Q} are not complete.
- 2. \mathbb{R} with the usual metric is complete.
- 3. The general principle of convergence for \mathbb{R}^n say \mathbb{R}^n with the Euclidean metric is complete.
- 4. If $x \subset \mathbb{R}$ and $B(X) = \{f : X \to \mathbb{R} \mid f \text{ is bounded}\}$ with the uniform norm, then B(X) is complete. Indeed, let (f_n) be a Cauchy sequence in B(X). Then (f_n) is uniformly Cauchy, so by the general principle of uniform convergence, it is uniformly convergent, so $f_n \to f$ uniformly for some $f: X \to \mathbb{R}$.

This gives $f_n - f$ is bounded for n sufficiently large. Take such an n, and then since f_n bounded, $f = f_n - (f_n - f)$ implies f is bounded, so $f \in B(X)$. Finally, $f_n \to f$ uniformly implies $d(f_n, f) \to 0$, so $f_n \to f$ in (B(X), d).

Remark. This is a typical example of a proof that a given space (X, d) is complete:

- (i) Take (x_n) Cauchy in X.
- (ii) Construct a limit object where it seems $(x_n) \to x$.
- (iii) Show $x \in X$.
- (iv) Show $x_n \to x$ in the metric space (X, d).

It is important to do things in this order, as we cannot talk about $d(x_n, x)$ until

we known $x \in X$.

5. If [a,b] is a closed interval, then $\mathcal{C}([a,b])$ with the uniform norm d is complete. Indeed, let (f_n) be Cauchy in $\mathcal{C}([a,b])$. Then since $\mathcal{C}([a,b]) \subset B([a,b])$, and B([a,b]) is complete, then $f_n \to f$ for some $f \in B([a,b])$. Each function is continuous, and $f_n \to f$ uniformly, so f is continuous, giving $f \in \mathcal{C}([a,b])$. Finally, $f_n \to f$ uniformly gives $d(f_n, f) \to 0$.

Definition 2.6. Let (X, d) be a metric space and $Y \subset X$. We say Y is **closed** if whenever (x_n) is a sequence in Y with $x_n \to x \in X$, then $x \in Y$.

Proposition 2.4. A closed subset of a complete metric space is complete.

Remark. This makes sense: if $Y \subset X$, then Y itself is a metric space as a subspace of X, so we can say Y is complete.

Proof: Let (X,d) be a metric space and $Y \subset X$ with X complete and Y closed.

- (i) Let (x_n) be a Cauchy sequence in Y.
- (ii) Now (x_n) is a Cauchy sequence in X, so by completeness, $x_n \to x$ for some $x \in X$.
- (iii) $Y \subset X$ is closed, so $x \in Y$.
- (iv) Finally, we have for each $x_n \in Y$, $x \in Y$, and $x_n \to x$ in X, so $d(x_n, x) \to 0$, giving $x_n \to x$ in Y.
 - 6. Define

$$l_1 = \left\{ (x_n)_{n \ge 1} \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n=1}^{\infty} |x_n| \text{ converges} \right\}.$$

We can define a metric d on l_1 by

$$d((x_n), (y_n)) = \sum_{n=1}^{\infty} |x_n - y_n|.$$

Then since $\sum |x_n|$, $\sum |y_n|$ converge and $|x_n - y_n| \leq |x_n| + |y_n|$, by comparison test $\sum |x_n - y_n|$ converges, so d is well-defined. It is easy to check that d is a metric. Then (l_1, d) is complete. Indeed, let $(x^{(n)})$ be a Cauchy sequence in l_1 , so $(x_i^{(n)})$ is a sequence in \mathbb{R} .

Then for each i, $(x_i^{(n)})$ is a Cauchy sequence in \mathbb{R} , since if $y, z \in l_1$, then $|y_i - z_i| \leq d(y, z)$. But \mathbb{R} is complete, so we can find $x_i \in \mathbb{R}$ with $x_i^{(n)} \to x_i$ as $n \to \infty$. Let $x = (x_1, x_2, x_3, \ldots,) \in \mathbb{R}^{\mathbb{N}}$.

We next show that $x \in l_1$. Given $y \in l_1$, define

$$\sigma(y)\sum_{i=1}^{\infty}|y_i|,$$

i.e. $\sigma(y) = d(y, \bar{0})$, where $\bar{0}$ is the constant zero sequence. Now we have, for any m, n,

$$\sigma(x^{(m)}) = d(x^{(m)}, z) \le d(x^{(m)}, x^{(n)}) + d(x^{(n)}, \bar{0}) = d(x^{(m)}, x^{(n)}) + \sigma(x^{(n)}).$$

This gives $\sigma(x^{(m)}) - \sigma(x^{(n)}) \leq d(x^{(m)}, x^{(n)})$. Similarly, we can swap around m, n, to give $|\sigma(x^{(m)}) - \sigma(x^{(n)})| \leq d(x^{(m)}, x^{(n)})$, so $(\sigma(x^{(m)}))$ is a Cauchy sequence in \mathbb{R} , and so converges to K. Now we claim for any $I \in \mathbb{N}$,

$$\sum_{i=1}^{I} |x_i| \le K + 2.$$

Indeed, as $\sigma(x^{(n)}) \to K$ as $n \to \infty$, we can find N_1 such that for all $n \ge N_1$,

$$\sum_{i=1}^{I} |x_i^{(n)}| \le \sum_{i=1}^{\infty} |x_i^{(n)}| \le K + 1.$$

For all $i \in \{1, 2, ..., I\}$, we have $x_i^{(n)} \to x$, so we can find N_2 such that for all $n \ge N_2$ and $i \in \{1, 2, ..., I\}$ we have $|x_i^{(n)} - x_i| < 1/I$. Letting $n = \max N_1, N_2$, we have

$$\sum_{i=1}^{I} |x_i| \le \sum_{i=1}^{I} |x_i^{(n)}| + \sum_{i=1}^{I} |x_i^{(n)} - x_i| \le K + 1 + 1 = K + 2.$$

Since the partial sums $\sum |x_i|$ are increasing and bounded above, they converge.

Finally, we need to check $x^{(n)} \to x$ as $n \to \infty$ in l_1 , i.e. $d(x^{(n)}, x) \to 0$.

Index

Bolzano-Weierstrass theorem, 2 local uniform convergence of power series, 9 Cauchy sequence, 2 Cauchy sequence in general metric metric, 14 space, 21 metric space, 14 closed, 22 complete, 21 pointwise bounded, 8 continuity, 11 pointwise convergence, 4 continuity in metric spaces, 18 projection maps, 20 convergence in \mathbb{R} , 2 subspace, 15 convergence in metric spaces, 16 triangle inequality, 2 discrete metric, 16 Euclidean metric, 14 uniform continuity, 12 uniform convergence, 5 general principle of convergence, 2 uniform convergence of series, 9 general principle of uniform uniformly bounded, 8 convergence, 8 uniformly Cauchy, 7 identity function, 20 usual metric, 14