PROJECT

2025년 01월 27일 월요일

영화 개봉 계절 예측기

스마트팩토리혁신을 위한 AI 솔루션 개발자 양성과정

목차 LIST

01 서론

주제 선정 및 배경, 목표

사용데이터 출처

일정 및 개발환경

02 데이터 전처리

활용데이터

자료 정제 및 병합

상관분석 및 그룹화, 시각화

O3 Deep Neural Network 분석

DNN

04 예측 시스템 구현

fastAPI

05 결론

연구의 결과 및 시사점

01 주제 선정 및 배경

영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측

- 영화 산업은 관객의 선호와 트렌드 변화에 민감
- 계절과 영화 장르에 따른 관객수 간의 관계 증명
- 영화 제작 및 마케팅 전략 수립에 있어 데이터 필요

O1 吴丑

- 영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측영화 평점, 개봉일, 장르 데이터를 분석하여 트렌드를 시각화
- 딥러닝 모델을 통해 계절별 인기 장르를 예측
- 분석 결과를 통해 영화 제작 및 마케팅 전략 수립에 필요한 인사이트 제공

01 프로젝트 진행과정 WORK FLOW

STEP 01

데이터 수집

STEP 02

데이터 전처리

STEP 03

DNN

STEP 04

모델 사용 및 🕨

STEP 05

웹 구현

1월 13일, 14일 데이터 수집 및 평점 웹 크롤링 15일 ~ 17일 데이터 전처리 및 그래프, 시각화 17일 ~ 22일 계절, 관객수 DNN학습

22일 ~ 23일 모델 예측, 사용 그래프 23일 ~ 24일 웹 구현

01 프로젝트 진행과정 WORK FLOW

01 데이터 사용출처

KOFIC 영화진흥위원회: https://www.kofic.or.kr/kofic/business/main/main.do

01 데이터 사용 출처

naver: https://www.naver.com (영화 평점)

웹 크롤링

```
def naver_crawling_grade(grade_non_list, file_path):
   dv = webdriver.Chrome()
   dv.get('http://www.naver.com')
   time.sleep(3)
   el = dv.find_element(By.CSS_SELECTOR, 'input#query')
   try
       movie = pd.read_csv(file_path)
   except
       movie = pd.DataFrame({'MOVIE_NM': movie_title})
   for title in grade_non_list :
       el.clear()
       el.send_keys('영화 {} 평점'.format(title))
       el.send_keys(Keys.ENTER)
       time.sleep(3)
       try
           grades = dv.find_element(By.CSS_SELECTOR, 'span.area_star_number')
           grade = grades.text
           grade = round(float(grade), 2)
       except :
           grade = np.nan
       movie.loc[movie['MOVIE_NM']==title, '네이버_평점'] = grade
       el = dv.find_element(By.CSS_SELECTOR, 'input#nx_query')
   dv.close()
   movie.to_csv(file_path, index=False, encoding='utf-8')
   print(f"네이버 평점 업데이트 완료! {file_path}에 저장되었습니다.")
```

01 데이터 사용 출처

cine21: http://www.cine21.com (영화 평점)

웹 크롤링

```
def cene21_crawling_grade(grade_non_list, file_path):
   dv = webdriver.Chrome()
   dv.get('http://www.cine21.com/')
   time.sleep(1.5)
   el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
   try
       movie = pd.read csv(file path)
   except :
       movie = pd.DataFrame({'MOVIE_NM': movie_title})
   for title in grade_non_list :
       el.clear()
       el.send_keys('{}',format(title))
       el.send_keys(Keys,ENTER)
       time.sleep(1.5)
       try:
           grades = dv.find_element(By.CSS_SELECTOR, 'span.num')
           grade = grades.text
           grade = round(float(grade), 2)
       except :
           grade = np.nan
       movie.loc[movie['MOVIE_NM']==title, '씨네21_평점'] = grade
       el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
   dv.close()
   movie.to_csv(file_path, index=False, encoding='utf-8')
   print(f"씨네21 평점 업데이트 완료! {file path}에 저장되었습니다.")
```

01 개발환경

OS

Windows 10 Pro

Language

Python 3.10.9

IDE

Anacomda jyputer notebook(데이터정제 및 병합, 그룹화, ML&DL 분석), PyCharm Community 2024.3.1(ML&이 분석 및 웹 구현)

Open Source

Tensorflow 2.10, Pandas 1.5.3, Numpy 1.24.4, Seaborn 0.12.2, Selenium 4.27.1, Sklearn 1.2.1, Matplotlib 3.7.0,

Framework

fastAPI 0.115.7, Jinja2 3.1.5, Python-multipart 0.0.20, uvicorn 0.34.0,

02 자료 정제 및 통합

```
RangeIndex: 6043 entries, 0 to 6042
Data columns (total 18 columns):
                           Non-Null Count Dtype
     Column
                           6043 non-null
                                           int64
     MOVIE_NM
                           6043 non-nul I
                                           object
                                           object
    DRCTR NM
                           5173 non-nul I
                           2364 non-null
    MAKR NM
                                           object
                           3197 non-nul I
    INCME_CMPNY_NM
                                           object
    DISTB CMPNY NM
                           6043 non-null
                                           object
    OPN_DE
                                           object
                           6041 non-null
                                           object
    MOVIE TY NM
                           6043 non-null
    MOVIE STLE NM
                           6043 non-null
                                           object
    NLTY_NM
                           6043 non-null
                                           object
 10 TOT_SCRN_CO
                                           object
                           5638 non-null
 11 SALES_PRICE
                           2053 non-nul I
                                           object
 12 YIEWNG_NMPR_CO
                           4188 non-nul I
                                           object
 13 SEOUL_SALES_PRICE
                           2612 non-null
                                           object
 14 SEOUL_VIEWNG_NMPR_CO 4548 non-null
                                           object
 15 GENRE_NM
                           6029 non-null
                                           object
 16 GRAD_NM
                                           object
                           6043 non-null
 17 MOVIE_SDIV_NM
                           6043 non-nul l
                                           object
```

<class 'pandas.core.frame.DataFrame'>

dtypes: int64(1), object(17) memory usage: 849.9+ KB

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6024 entries, O to 6042
Data columns (total 11 columns):
             Non-Null Count Dtype
    Column
    영화제목
                 6024 non-null
                                object
    유통회사명
                  6024 non-null
                                 object
                 6024 non-null
                                object
    개봉월
                6024 non-null
                               object
    총스크린수
                  6024 non-null
                                float64
    관람객수
                 6024 non-null
                                float64
               6024 non-null
                              object
               6024 non-null
                              obiect
    네이버_평점
                  6024 non-null
                                float64
                 6024 non-null
                                float64
                 6024 non-null
                                 float64
dtypes: float64(5), object(6)
memory usage: 564.8+ KB
```

데이터 전처리 전 6043 rows

데이터 전처리 후 6024 rows

02 자료 정제 및 통합

```
# 결축치 처리 ['총스크린수'] = movies['총스크린수 중위수으로 대체
movies['총스크린수'] = movies['총스크린수'].str.replace(',','').astype(np.float32)
median_screen_count = movies['총스크린수'].median()
movies['총스크린수'] = movies['총스크린수'].fillna(median_screen_count)
movies.info()

# 결축치 처리 ['광르']['개봉월']을 사용하여 ['관람인원수']['네이버_평집']['씨네21_평집']평균으로 대체
movies['관람객수'] = movies['관람객수'].str.replace(',','').astype(np.float32)
movies_visitors = movies.groupby(['장르', '개봉월'])['관람객수'].mean().unstack()
# movies_visitors
naver_mean = movies.groupby(['장르', '개봉월'])['네이버_평집'].mean().unstack()
# naver_mean
cine_mean = movies.groupby(['장르', '개봉월'])['씨네21_평집'].mean().unstack()
# cine_mean
```

```
def fillna_mean(row):
    row = row.copy()
    visitors = row['관람객수']
    ngrade = row['네이버_평점']
    cgrade = row['씨네21_평점']
    genre = row['장르']
    month = row['개봉월']

if pd.isna(visitors):
    row['관람객수'] = movies_visitors.loc[genre, month]
    if pd.isna(ngrade):
        row['네이버_평점'] = naver_mean.loc[genre, month]
    if pd.isna(cgrade):
        row['씨네21_평점'] = cine_mean.loc[genre, month]
    return row
```

```
# mean median 적용후 나머지 결측치 drop
movies.loc[movies['관람객수'].isna()] # 결측치 처리후 결측치 1
movies.loc[movies['네이버_평점'].isna()] # 결측치 처리후 결측치 10
movies.loc[movies['씨네21_평점'].isna()] # 결측치 처리후 결측치 38
movies = movies.dropna(subset=['관람객수', '네이버_평점', '씨네21_평점'])
movies.info()
```

```
# ['네이버_평점'], ['씨네21_평점'] 평균으로 평점 column만들기
movies['평균평점'] = (movies['네이버_평점']+movies['씨네21_평점']) /2
movies.info()
```


데이터 증강(SMOTE) 전

데이터 증강

smote = SMOTE(random_state=38, k_neighbors=2)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)

데이터 증강(SMOTE) 후

데이터 증강(SMOTE) 전

데이터 증강(SMOTE) 후

관객수 등급 예측 DNN

Model:	"sequent	ial_	11"
--------	----------	------	-----

Layer (type)	Output Sha	pe	Param #
dense_55 (Dense)	(None, 128)	640
dropout_22 (Dropout)	(None, 128)	0
dense_56 (Dense)	(None, 256)	33024
dense_57 (Dense)	(None, 64)		16448
dropout_23 (Dropout)	(None, 64)		0
dense_58 (Dense)	(None, 64)		4160
dense_59 (Dense)	(None, 4)		260

Total params: 54,532 Trainable params: 54,532 Non-trainable params: 0

관객 수 3등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] Y =관객수_등급

3등급 데이터로 학습 시 정확도: 56.33%

f1 score 결과 값	f1 score: 0.5578330983980071
분류분석 성능 지표	낮은 관객 수 그룹 중간 그룹 높은 관객 수 그룹 낮은 관객 수 그룹 175 95 101
	중간 그룹 84 203 140 높은 관객 수 그룹 23 81 303

관객 수 5등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] Y =관객수_등급

5등급 데이터로 학습 시 정확도: 41.50%

accuracy : 41.50 %

93 65				29 53
29	23	73	72	54
11	10	33	153	65
7	9	14	35	155
	93 65 29	93 15 65 33 29 23 11 10	93 15 35 65 33 37 29 23 73 11 10 33	65 33 37 53 29 23 73 72 11 10 33 153

관객 수 3등급으로 분할 학습 결과

관객 수 5등급으로 분할 학습 결과

04 fastAPI

① 독립변수

장르 : select option으로 20개의 장르가 나열

오픈 스크린 수 : 영화 개봉전 스크린수 (예상)

예측 관람객 수: 손익분기점 기준으로 (예상)

관람 등급: select option으로 4개의 등급이 나열

② 종속변수

예측된 계절: 독립변수 입력 기준으로 영화 개봉 계절 예측

05 결론

연구 결과

고개 소이 <u>사</u> 그리 소이 과게	스크린 수와 관객 수 사이의 상관계수 0.4 양의 상관관계
관객 수와 스크린 수의 관계	스크린 수가 증가할수록 관객 수가 증가
트건 가 그 티서	드라마와 애니메이션은 개봉작 수가 가장 많아 대중적인 장르로 보임
특정 장르 분석	사극 장르는 개봉작 수는 적지만 평균 관객 수가 높음
	여름 (7~8월) 시즌에는 관객 수 증가 경향이 보임
개봉 시기 트렌드 	11월과 연말에 개봉작이 집중

05 결론

시사점 및 개선방안

CIIOICI 기HL 거리: 스리	계절별 트렌드와 장르 선호도를 분석하여 맞춤형 영화 제작 및 마케팅 전략 마련
데이터 기반 전략 수립	관객 집중도가 높은 장르 (사극)와 시기(11월, 연말)를 활용한 배급 전략 최적화
디기니 경기 하유	딥러닝 예측 결과를 기반으로 개봉 시기와 장르 선정에 대한 의사 결정 강화
딥러닝 결과 활용	데이터 증폭을 통해 모델의 정확도와 신뢰도 개선
	데이터 양 확대 및 새로운 변수 생성으로 예측 정확도를 높이는 연구 필요
추가 연구 및 개선 방안	트렌드 영화 ,지역별 영화 관람 패턴 등 외부 데이터를 결합하여 보다 풍부한 인사이트 도출 가능

THANK YOU

감사합니다