Transformation pipelines

A transformation pipeline is a a sequence (sometimes called a *pipeline*) of independent transformations T_1, T_2, \ldots, T_t

$$egin{aligned} ilde{\mathbf{x}}_{(1)} &= T_1(\mathbf{x}) \ ilde{\mathbf{x}}_{(2)} &= T_2(ilde{\mathbf{x}}_{(1)}) \ dots \ ilde{\mathbf{x}}_{(l+1)} &= T_{(l+1)}(ilde{\mathbf{x}}_{(l)}) \end{aligned}$$

The final transformed $\tilde{\mathbf{x}}$ can be implemented as a function T that is the composition of each transformation function

$$ilde{\mathbf{x}} = T(\mathbf{x}) = T_t(\ T_{t-1}(\dots T_1(\mathbf{x})\dots)\)$$

Pipelines in sklearn

sklearn has created a generic architecture called Pipeline to simplify this for you.

This module is **not meant to be a tutorial**, only to highlight a very convenient tool in sklearn.

<u>Here (https://scikit-learn.org/stable/modules/compose.html)</u> is a link to sklearn 's manual.

Let's illustrate with a two-step sequence of transformations on numeric features

- Missing data imputation
 - If feature j is missing for example i ($\mathbf{x}_{j}^{(i)}$ not defined)
 - ${\color{red} \blacksquare}$ Replace it with the median (over all m examples) of ${\bf x}_j$
- Add a second order polynomial feature to each example

Here is some illustrative code

Illustrative code: this cell is NOT executable from sklearn import pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import PolynomialFeatures # Create transformers polynomial_features = PolynomialFeatures(2) imputed_features = SimpleImputer(strategy='median') # Put the transformers into a Pipeline num_pipe = pipeline.Pipeline([("imputer", imputed_features), ("polynomial_features", polynomial_features),]

Each individual transformation has a fit and transform method, just like a model (e.g., LinearRegression)

- fit on the transformation SimpleImputer(strategy='median') computes the median value of each feature
 - \blacksquare Computes $\Theta_{transform}$, the parameters of this transformation
- transform applies the transformation, after it has been fit
 - creates $\tilde{\mathbf{x}}$ from \mathbf{x}

The Pipeline num_pipe defines a sequence of transformations

- Each element of the Pipeline is a tuple
 - name of the transformation (for your convenience in referencing it)
 - the transformer

The Pipeline also has methods fit and transform

- fit on a Pipeline applies fit to each component transformation in turn
- transform on a Pipeline applies transform to each component transformation in turn

The Pipeline is thus a composition of the individual transformations

$$ilde{\mathbf{x}} = T(\mathbf{x}) = T_t(\ T_{t-1}(\dots T_1(\mathbf{x})\dots)\)$$

Model objects as part of a pipeline

Observe that transformers and models both respond to the fit and transform methods.

This means that you can include a model as the final element of a Pipeline!

```
# Illustrative code: this cell is NOT executable from sklearn import datasets, linear_model linear_regression = linear_model.LinearRegression() full_pipe = pipeline.Pipeline([("imputer", imputed_features), ("polynomial_features", polynomial_features), ("model", linear_regression)]
```

You can fit the transformations and the model in one step

• full_pipe.fit(X, y)

In addition to being a concise and convenient notation, pipelines with models as final elements

- Can be used in Cross Validation to avoid "cheating"
- The cross validation code passes in *only* the folds that are the training examples

Example: Pipeline with model as final element

Let's apply a Pipeline to solve an example encountered in a previous module

- Linear Regression model
- With a second order feature added

Let's get the data again:

The PolynomialFeatures(2) transformer

- Replace each ${\bf x}$ With 3 features: ${\bf x}^0, {\bf x}^1, {\bf x}^2$

That is: it creates an "intercept" dummy ($\mathbf{x}^0 == 1$) plus first and second order features.

A pipeline successively applies transformations, with the result of transformation (i-1) fed as input to transformation i.

Let's look "inside" the pipeline at the stages, and apply them manually.

```
In [6]: # Examine the "stages" of the pipeline
    print("Input shape: {shp}".format(shp=X_test.reshape(-1,1).shape) )

# First stage: Create First and Second Order polynomial features
    (label_0, model_0) = poly_model.steps[0]
    transf_0 = model_0.transform(X_test.reshape(-1,1))
    print("{lab:s} returns shape: {shp}".format(lab=label_0, shp=transf_0.shape) )

# Second stage: Linear Regression
    (label_1, model_1) = poly_model.steps[1]
    transf_1 = model_1.predict( transf_0 )
    print("{lab:s} returns shape: {shp}".format(lab=label_1, shp=transf_1.shape) )

Input shape: (10, 1)
    polynomialfeatures returns shape: (10, 3)
    linearregression returns shape: (10, 1)
```

```
In [7]: # Prediction based on test set
    y_pred = poly_model.predict(X_test.reshape(-1,1))

# In and out of sample scores
    print("Score (train): ", poly_model.score(X_train.reshape(-1,1), y_train))
    print("Score (test): ", poly_model.score(X_test.reshape(-1,1), y_test))

Score (train): 1.0
Score (test): 1.0
```

```
In [8]: # Plot the results
# Create a figure
fig, axs = plt.subplots(1,2, figsize=(12,6))

_= axs[0].scatter(X_train,y_train)

xfit = np.linspace( X_train[:,0].min(), X_train[:,0].max()).reshape(-1,1)
yfit = poly_model.predict(xfit)
_= axs[0].plot(xfit, yfit);
_= axs[0].set_title("Train")

_ = axs[1].scatter(X_test, y_test, color="blue")
_ = axs[1].scatter(X_test, y_pred, color="red")

_ = axs[1].plot(xfit, yfit)
_ = axs[1].set_title("Test")

print("R-squared score (test): {:.2f}".format(r2_score(y_test, y_pred)) )

# Hide the figure for now, will show it in the next slide
plt.close(fig)
```

R-squared score (test): 1.00

In [9]: fig

Out[9]:

<u>Here's (external/PythonDataScienceHandbook/notebooks/05.04-Feature-Engineering.ipynb#Feature-Pipelines)</u> a slightly longer pipeline from VanderPlas.

- Imputer to deal with misssing values
- PolynomialFeatures(degree=2)
- LinearRegression()

Nested Pipelines

A Pipeline responds to the same methods (fit, transform) as its elements.

This means that a Pipeline can also be used as a *nested* element of an outer Pipeline.

This is very convenient: we will illustrate this in our detailed example for Classification.

Advanced Pipelines

An issue with Pipelines is that each transformation is applied to *all* the features in an example.

But some transformations need to be applied to selected features

- Can't apply numeric transformations to non-numeric data, and vice-versa
- May want to apply a particular transformation to only a subset of features

sklearn facilitates this by

- Allowing you to create "filters" that restrict features to a subset
- Applying one pipeline per subset
- Creating a union of transformed features at the end

FeatureUnion

sklearn allows you to create complex Pipelines with the FeatureUnion Pipeline

- "glue together" the features of separate Pipelines. For example
 - Create one pipeline to be applied only to numeric features
 - Create one pipeline to be applied only to non-numeric features

Here is some illustrative code:

num_pipeline = Pipeline([("select_numeric", DataFrameSelector(["Age", "SibSp", "Parch", "Fare"])), ("imputer", SimpleImputer(strategy="median")),]) cat_pipeline = Pipeline([("select_cat", DataFrameSelector(["Pclass", "Sex", "Embarked"])), ("imputer", MostFrequentImputer()), ("cat_encoder", OneHotEncoder(sparse=False)),]) from sklearn.pipeline import FeatureUnion preprocess_pipeline = FeatureUnion(transformer_list=[("num_pipeline", num_pipeline), ("cat_pipeline", cat_pipeline),])

The first element in each pipeline (DataFrameSelector)

• restricts each example to a selected subset of features

So the numeric and categorical pipelines above transform disjoint groups of features.

The FeatureUnion concatenates (along the horizontal axis) the result of the separate transformations.

ColumnTransformer

There is an *experimental* Pipeline object in sklearn called Column Transformers, that is a simplification of the FeatureUnion paradigm

- No need to filter the features with DataFrameSelector
 - just provide a list of feature names
- No need to use `FeatureUnion'

This object only works for collections of examples in which we can access features by name

• Panda DataFrames!

Here is some illustrative code

```
cat_features = ["Sex", "Pclass"] cat_transformers= Pipeline(steps=[ ('imputer', MostFrequentImputer()),
  ('sex_encoder', SexToInt())]) cat_pipeline = ColumnTransformer( transformers=[ ("categorical",
  cat_transformers, cat_features)])
```

Creating your own transformations

In addition to supplying a number of built-in transformers, sklearn let's use build your own.

- Create an object that is subclass of the types used by built-in transformer
- Provide your own implementation of fit and transform

Here's a transformation for imputation of missing values using the most frequent value as the substitute.

 Similar in function to the built-in SimpleImputer(strategy="most_frequent")

Example

We will use Pipelines in our Classification task.

```
In [11]: print("Done")
```

Done