

KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

ALGORITMŲ ANALIZĖ IR PAGRINDAI

3 LABORATORINIS DARBAS

LYGIAGRETUS PROGRAMAVIMAS

Atliko: IFF-6/11 gr. stud. Nerijus Dulkė

Tikrino: lekt. Tadas Kraujalis

KAUNAS 2018

1. Užduotys

- 1.1. Panaudojus pirmame inžineriniame projekte sudarytą paieškos (operatyvinėje atmintyje) algoritmą, realizuoti n elementų paiešką panaudojant lygiagretų programavimą. Eksperimentiškai palyginti n elementų paieškos vykdymo laikus, kai nenaudojamas lygiagretus programavimas ir naudojamas lygiagretus programavimas.
- 1.2. Panaudojus antrame inžineriniame projekte duotą rekurentinę formulę realizuoti jai algoritma tiesiogiai panaudojant rekursija bei lygiagretu programavima. Eksperimentiškai palyginti vykdymo laikus, kai nenaudojamas lygiagretus programavimas ir naudojamas lygiagretus programavimas.

Duota: A[,], B[,], C[,].

$$F(i,j) = \{F(i,j) = 0, \ kai \ j \le i + 2 \ min \{F(i,k) + F(k,j) + D(i,k,j), \ kitais \ atvejais$$

 $kur \ D(i,j,k) = A(i,j) + B(j,k) + C(k,j)$

2. Pirma užduotis

2.1.Rezultatai

BST search

10000000

Quantity | Time 1000000 | 00:00:00.6144882 2500000 | 00:00:01.6056552 5000000 | 00:00:02.6509235 7500000 | 00:00:04.0967731 10000000 | 00:00:05.5094779

BST parallel search

Quantity | Time 1000000 | 00:00:00.1171749 2500000 | 00:00:00.2683218 5000000 | 00:00:00.5362324 7500000 | 00:00:00.8042721

| 00:00:01.0762247

BST search

2.2.Išvados

Juodai raudoname paieškos medyje užpildytame 1000000 atsitiktinių skaičių vykdoma **n** elementų paieška. Grafike pavaizduota kiek laiko užtruko vykdyti paieška naudojant ir nenaudojant lygiagretų programavimą. Iš rezultatų matosi kad paiešką vykdant lygiagrečiai laiko sugaištama daug mažiau ir skirtumas tarp laikų auga.

3. Antra užduotis

3.1.Rezultatai

Test F	
Quantity	Time
1000	00:00:00.0000478
2500	00:00:00.0000822
5000	00:00:00.0000735
7500	00:00:00.0000051
10000	00:00:00.0018238
Test parall	el F
Test parall Quantity	el F Time
Quantity	Time
Quantity 1000	Time 00:00:00.0011674
Quantity 1000 2500	Time 00:00:00.0011674 00:00:00.0017015
Quantity 1000 2500 5000	Time 00:00:00.0011674 00:00:00.0017015 00:00:00.0026581

3.2.Išvados

Buvo sprendžiama aukščiau nurodyta F(i,j) lygtis, kai A,B ir C masyvų dydis yra **n**. Masyvai užpilodmi atsitiktiniais skaičiais, i ir j taip pat atsitiktiniai skaičiai. Sprendime naudojama rekursija. Dėl blogos lygties sąlygos arba blogai implementuoto sprendimo būdo, iš gautų rezultatų negalima išvesti aiškios išvados.