

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Introduction

 Part of being an intelligent agent involves being able to infer implicit facts based on known or assumed ones.

Example: Stacking Blocks

- Suppose four blocks are arranged as follows:
 - block A is below block B
 - block B is below block C
 - block D is below block C
- Is block A below block C?

- Humans develop this ability through experience. Our goal is to instil artificial agents with the same ability.
- Without reasoning, we would have to explicitly remember every fact we've learned.

Representation versus Reasoning

- To achieve this ability, we do two things:
 - Represent (encode) known statements in our brain.
 - Reason (infer) new statements from the known ones.
- Thus, to achieve this ability artificially, we need to do things:
 - ① Develop a **formal languages** to represent statements (this chapter).
 - Develop a reasoning mechanism for the formal system (next chapter).
- There are many formal languages and reasoning mechanisms we could use.
- We will consider a representation called first-order logic (FOL), and a reasoning mechanism called resolution.

Informal Languages versus Formal Languages

- Before studying any specifics, it is worth considering what the purpose of formal language is.
- Roughly speaking, the intent is to develop a "language" of sorts but with strict rules to avoid any ambiguity.
- Example: Ambiguity in English
 - What is the appropriate response to the request, "call me an ambulance,"?
 - "okay."
 - "uh...you're an ambulance...".
- The ambiguity arises from the fact that, in English (and other languages), there are multiple interpretations of many words/phrases.

Formal Languages: Syntax and Semantics

- To avoid such ambiguity, a formal language must define the notion used to build its statements, as well as a system for interpreting those statements.
- The notion is called the syntax and the interpretations are the semantics.
- So, a formal language needs to provide syntax and a way to introduce semantics.
 However, it does not provide the semantics themselves.

Propositional Logic: Syntax

- To clarify the difference between syntax and semantics, let us first consider a simpler formal language called **propositional logic** (PL).
- PL syntax consists of the following components:
 - **1 binary variables**, where each variable is, by definition, a **formula**.
 - E.g., x.
- A PL **vocabulary** is set, V of (binary) variables.

Propositional Logic: Syntax

- For any $v \in \mathcal{V}$ variable, the expression v is called an atomic \mathcal{V} -formula.
- ullet Non-atomic ${\cal V}$ -formulae are defined recursively as follows:
 - **negation**: $\neg f$, where f is any \mathcal{V} -formula.
 - **disjunction**: $f_1 \vee f_2$, where f_1 and f_2 are \mathcal{V} -formulae.
 - **conjunction**: $f_1 \wedge f_2$, where f_1 and f_2 are \mathcal{V} -formulae.
 - **implication**: $f_1 \rightarrow f_2$, where f_1 and f_2 are \mathcal{V} -formulae.

PL Semantics

- The semantics for PL variables come from a **truth assigner**, $\mathcal{T}: \mathcal{V} \to \{\top, \bot\}$.
- We define an **extended truth assigner**, $\tilde{\tau}$, for all V-formulae, f, f_1, f_2 , as follows:
 - $\tilde{\tau}(x) = \tau(x)$, for any $x \in \mathcal{V}$
 - $\tilde{\tau}(\neg f) = \top$ iff $\tau(f) = \bot$
 - $\tilde{\tau}(f_1 \vee f_2) = \top$ iff $\tilde{\tau}(f_1) = \top$ or $\tilde{\tau}(f_2) = \top$
 - $ilde{ au}(f_1 \wedge f_2) = op ext{ iff } ilde{ au}(f_1) = op ext{ and } ilde{ au}(f_2) = op ext{ }$
 - $\tilde{\tau}(f_1 \to f_2) = \top$ iff $\tilde{\tau}(\neg f_1) = \top$ or $\tilde{\tau}(f_2) = \top$.

First-Order Logic: Syntax

- FOL syntax consists of the following components:
 - **①** variables, where each variable is, by definition, a term.
 - E.g., x.
 - functions, which each map many terms to a single term.
 - E.g., below(x), which returns the block directly below x.
 - 3 predicates, which each map many terms to true/false.
 - E.g., isBelow(x, y), which returns whether y is below x or not.
- An FOL **vocabulary** is a triple, $\mathcal{L} = (\mathcal{V}, \mathcal{F}, \mathcal{P})$, where \mathcal{V}, \mathcal{F} , and \mathcal{P} are sets of variables, functions, and predicates, respectively.

FOL Syntax: Atomic Formulae

- Let \mathcal{L} be a vocabulary.
- For any *n*-ary \mathcal{L} -predicate P, and \mathcal{L} -terms, t_1, \ldots, t_n , the expression, $P(t_1, \ldots, t_n)$ is called an atomic \mathcal{L} -formula.
 - E.g., isAbove(x, below(y)).
- Atomic formula represents the most fundamental statements.

FOL Syntax: Non-Atomic Formulae

- Non-atomic \mathcal{L} -formulae are defined recursively as follows:
 - **negation**: $\neg f$, where f is any \mathcal{L} -formula.
 - **disjunction**: $f_1 \vee f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **conjunction**: $f_1 \wedge f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **implication**: $f_1 \rightarrow f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **existential**: $\exists x f$, where x is a variable and f is any \mathcal{L} -formula.
 - **universal**: $\forall x f$, where x is a variable and f is any \mathcal{L} -formula.

- In FOL, the semantics are provided by what we refer to as a model. The model,
 M, consists of the following components:
 - \blacksquare a **domain of discourse**, M, which is a set of relevant elementary objects.
 - E.g., $M = \{A, B, C, D\}$, representing the blocks.
 - **2** specializations of functions, $f^{\mathcal{M}}: \mathcal{M}^n \to \mathcal{M}$, for each *n*-ary function, f, so that $f^{\mathcal{M}}$ assigns f for the domain of discourse.
 - E.g., $above^{\mathcal{M}}(A) = B$, $above^{\mathcal{M}}(B) = C$, $above^{\mathcal{M}}(C) = C$, $above^{\mathcal{M}}(D) = D$.
 - **3 specializations of predicates**, $p^{\mathcal{M}} \subseteq M^n$, for each *n*-ary predicate, *p*, so that $p(t_1, \ldots, t_n)$ is true if and only if $(t_1, \ldots, t_n) \in p^{\mathcal{M}}$.
 - E.g., isBelow^M = {(B, A), (C, B), (B, D)}.

FOL Semantics

- In PL, variables are meant to represented Boolean expressions.
- In FOL, variables (and terms in general), are meant to represent objects in a universe defined by some model, \mathcal{M} :
 - atomic formulae represent fundamental properties and relations that hold about those elements.
 - other formulae represent complex assertions whose truth values depend on the atomic formulae within them.

FOL Variable Assignments

- To do this, we need to bind the variables in V, with elements in the domain of discourse, M:
 - We define an **assignment function**, $\sigma: \mathcal{V} \to M$, so that $\sigma(x)$ is the element in the universe represented by the variable x.
 - To bind any \mathcal{L} -terms, we recursively define an **extended assignment function**, $\bar{\sigma}$ so that $\bar{\sigma}(x) = \sigma(x)$ and $\bar{\sigma}(f(t_1, \ldots, t_n)) = f^{\mathcal{M}}(\bar{\sigma}(t_1), \ldots, \bar{\sigma}(t_n))$.

FOL Modelling Example: Vocabulary

Example: Stacking Blocks

- Suppose we have a vocabulary, \mathcal{L} , with the functions
 - below(x), the block directly below x (or x if none)
 - above(x), the block directly above x (or x if none)

and predicates

- isBelow(x, y), y is below x
- isAbove(x, y), y is above x

FOL Modelling Example: Model and Assignments

Example: Stacking Blocks

- A model, M, for the situation shown is:
 - $M = \{A, B, C, D\}.$
 - isBelow $\mathcal{M} = \{ \langle B, A \rangle, \langle C, B \rangle, \langle B, D \rangle \}$
 - isAbove $\mathcal{M} = \{ \langle A, B \rangle, \langle B, C \rangle, \langle D, B \}$
 - below^{\mathcal{M}}(A) = A, below^{\mathcal{M}}(B) = A, below^{\mathcal{M}}(C) = B, below^{\mathcal{M}}(D) = D
 - above $^{\mathcal{M}}(A) = B$, above $^{\mathcal{M}}(B) = C$, above $^{\mathcal{M}}(C) = C$, above $^{\mathcal{M}}(D) = D$
- Suppose we let
 - $V = \{v_1, \ldots, v_4\}$
 - $\sigma(v_1) = D, \sigma(v_2) = C, \sigma(v_3) = B, \sigma(v_4) = A$

FOL Modelling Example: Model and Assignments

Example: Stacking Blocks

 We can compute the value of an L-term like below(below(v₂)) as:

$$ar{\sigma} \left(\mathrm{below}(\mathrm{below}(v_2)) \right) = \mathrm{below}^{\mathcal{M}} \left(ar{\sigma}(\mathrm{below}(v_2)) \right)$$

$$= \mathrm{below}^{\mathcal{M}} \left(\mathrm{below}^{\mathcal{M}} (ar{\sigma}(v_2)) \right)$$

$$= \mathrm{below}^{\mathcal{M}} \left(\mathrm{below}^{\mathcal{M}} (\sigma(v_2)) \right)$$

$$= \mathrm{below}^{\mathcal{M}} \left(\mathrm{below}^{\mathcal{M}} (C) \right)$$

$$= \mathrm{below}^{\mathcal{M}} \left(B \right)$$

$$= A$$

Notice that the value depends on both $\mathcal M$ and $\sigma.$

FOL Satisfiability

- We write $\mathcal{M} \models f[\sigma]$ to denote that \mathcal{M} satisfies the formula, f, under σ . It is defined recursively as follows:
 - $\mathcal{M} \models P(t_1, \ldots, t_n)[\sigma]$ if and only if $\langle \bar{\sigma}(t_1), \ldots, \bar{\sigma}(t_n) \rangle \in \mathcal{P}^{\mathcal{M}}$
 - $\mathcal{M} \vDash (t_1 = t_2)[\sigma]$ if and only if $\bar{\sigma}(t_1) = \bar{\sigma}(t_2)$
 - $\mathcal{M} \models \neg f[\sigma]$ if and only if $\mathcal{M} \not\models f[\sigma]$
 - $\mathcal{M} \vDash (f_1 \lor f_2)[\sigma]$ if and only if $\mathcal{M} \vDash f_1[\sigma]$ or $\mathcal{M} \vDash f_2[\sigma]$
 - $\mathcal{M} \vDash (f_1 \land f_2)[\sigma]$ if and only if $\mathcal{M} \vDash f_1[\sigma]$ and $\mathcal{M} \vDash f_2[\sigma]$
 - $\mathcal{M} \vDash (\forall x f)[\sigma]$ if and only if $\mathcal{M} \vDash f[\sigma[x, m]]$ for all $m \in M$
 - $\mathcal{M} \models (\exists x f)[\sigma]$ if and only if $\mathcal{M} \models f[\sigma[x, m]]$ for some $m \in M$
- Here $\sigma[x, m]$ is defined assuming x is fixed and so that

$$\sigma[x, m](y) = \begin{cases} \sigma(y), y \neq x \\ m, y = x \end{cases}$$

FOL Modelling Example: Determining Satisfiability of Formulae

Example: Stacking Blocks

• We can determine whether \mathcal{M} satisfies an \mathcal{L} -formula like $\exists v$ is Above $(v, \text{below}(\text{below}(v_2)))$ under σ by checking whether \mathcal{M} satisfies it under $\sigma[v, m]$ for some $m \in \mathcal{M}$:

$$\mathsf{isAbove}^{\mathcal{M}}\left(\bar{\sigma}[v,m](v),\bar{\sigma}(\mathsf{below}(\mathsf{below}(v_2)))\right)$$

= $\mathsf{isAbove}^{\mathcal{M}}(m,A)$

There is no $m \in M$ such that $\langle m, A \rangle \in \text{isAbove}^{\mathcal{M}}$ and so the original statement is not satisfied by \mathcal{M} under σ .

- An occurrence of a variable, x, in an FOL formula, f, is **bound** if and only if it is in a sub-formula of the form $\forall xf'$ or $\exists xf'$. Otherwise, x is **free**.
- Bound variables cannot be assigned fixed values and thus, the validity of formulae containing only bound variables is independent of σ .
- Such formulae are called sentences.
- Formally, for any sentence, s, and assignments σ and σ' , we have

$$\mathcal{M} \vDash s[\sigma]$$
 if and only if $\mathcal{M} \vDash S[\sigma']$.

• Thus, for any sentence, s, we simply write $\mathcal{M} \models s$ to denote that \mathcal{M} satisfies s.

Example: Stacking Blocks

- We saw that a model, \mathcal{M} , for the situation shown is:
 - $M = \{A, B, C, D\}.$
 - isBelow $\mathcal{M} = \{ \langle B, A \rangle, \langle C, B \rangle, \langle B, D \rangle \}$
 - isAbove^{\mathcal{M}} = { $\langle A, B \rangle$, $\langle B, C \rangle$, $\langle D, B \rangle$
 - below^{\mathcal{M}}(A) = A, below^{\mathcal{M}}(B) = A, below^{\mathcal{M}}(C) = B, below^{\mathcal{M}}(D) = D
 - above $^{\mathcal{M}}(A) = B$, above $^{\mathcal{M}}(B) = C$, above $^{\mathcal{M}}(C) = C$, above $^{\mathcal{M}}(D) = D$
- The sentence, ∀x∀y (isBelow(x, y) → isAbove(y, x)) is satisfied by M.

FOL Satisfiability

- Let Φ be a set of sentences.
- We say \mathcal{M} satisfies Φ , denoted $\mathcal{M} \models \Phi$ iff $\mathcal{M} \models s$ for every sentence, $s \in \Phi$.
- We say that Φ is **satisfiable** if there exists some model \mathcal{M} such that $\mathcal{M} \models \Phi$.