本章提要

一、惠更斯-菲涅耳原理

波阵面上各点都可以看成子波波源,其后波场 中各点波的强度由各子波在该点的相干叠加决定.

二、夫琅禾费衍射

1. 单缝衍射:能用半波带法对衍射条纹的分布 规律进行解释.单色光垂直入射时,暗纹中心位置

$$a\sin \varphi = \pm k\lambda$$
 $k = 1, 2, 3, \cdots$

明纹中心位置

明条纹宽度

$$a\sin \varphi = \pm (2k+1)\frac{\lambda}{2}$$
 $k = 1,2,3,\cdots$

中央明纹 $-\lambda < a \sin \varphi < \lambda$

中央明纹半角宽度 $\varphi_0 = \frac{\lambda}{a}$,

线宽度
$$l_0 = 2 \cdot \frac{\lambda}{a} f$$

注意:中央明纹宽度是其他明纹宽度的两倍.

单缝衍射产生明暗条纹的条件与双缝干涉产 生明暗条纹的条件从公式上看,恰好相反,这是因 为两者的物理含义不同所致.

2. 圆孔衍射

艾里斑的半角宽度 $\theta_0 = 1.22 \frac{\lambda}{D}$,

分辨率
$$\frac{1}{\theta_0} = \frac{D}{1.22\lambda}$$

三、光栅衍射

光栅衍射图样是单缝衍射和多缝干涉的综合 效应.

垂直入射 $(a+b)\sin\varphi = \pm k\lambda$ $k=0,1,2,\cdots$

光栅方程:

斜入射 $(a+b)(\sin \varphi \pm \sin \theta) = \pm k\lambda$ $k = 0,1,2,\cdots$ 式中 φ 是衍射角(均取正),若 φ 与 θ 在法线同侧,上 式左边括号中 $\sin \theta$ 前的符号取正值;在异侧时 \sin θ 前的符号取负值.

缺级:当 φ 角同时满足单缝的暗纹公式和光栅 方程主极大时,将出现缺级现象. 缺级条件为

$$\frac{a+b}{a} = \frac{k}{k'}$$
 式中 k 为光栅明纹主极大级次, k' 为单缝衍射暗条

纹级次. 四、X射线衍射

布拉格公式

 $2d\sin\varphi = k\lambda$, $k = 1, 2, 3, \cdots$