Lecture 5

Model Compression

Tien-Fu Chen

Dept. of Computer Science and Information Engineering

National Chiao Tung Univ.

CNN is the most complicated computation

□ 90 % of the total computation time of CNN: convolutional layer

	AlexNet(Gops) VGG16(Gops)		
Convolutional layer	1.52	30.7	
Fully Connected layer	0.12	0.5	

Accelerating Convolution => Accelerating CNN

■ Why smaller model?

Relative Energy Cost **Relative Cost** Operation Energy [pJ] 32 bit int ADD 0.1 32 bit float ADD 0.9 9 32 bit Register File 1 10 32 bit int MULT 3.1 31 32 bit float MULT 3.7 37 32 bit SRAM Cache 5 50 32 bit DRAM Memory 6400

http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf

- 2

10

100

1000 10000

Network Compression and Speedup

- Network Pruning
- Parameter Sharing, Quantization and Binarization
- Pruning + Quantization + Encoding
- Low Rank Matrix/Tensor Factorization
 - Singular Value Decomposition (SVD)
- Knowledge Distillation
- Where to Compress:
 - Weights
 - Activations
 - Gradients

DL Systems and Realization

Lecture 5 - 3

Magnitude-based method: Iterative Pruning + Retraining

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Magnitude-based method: Iterative Pruning + Retraining (Algorithm)

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Prune the weights of which magnitudes are less than a threshold τ .
- 4. Train the network until a reasonable solution is obtained.
- 5. Iterate to step 3.

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

DL Systems and Realization

Lecture 5 - 5

Magnitude-based method: Iterative Pruning + Retraining (Experiment: Overall)

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	12X
LeNet-300-100 Pruned	1.59%	-	22K	128
LeNet-5 Ref	0.80%	-	431K	10V
LeNet-5 Pruned	0.77%	-	36K	12X
AlexNet Ref	42.78%	19.73%	61M	OV
AlexNet Pruned	42.77%	19.67%	6.7M	9X
VGG-16 Ref	31.50%	11.32%	138M	40V
VGG-16 Pruned	31.34%	10.88%	10.3M	13X

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Accuracy-pruning trade-off, effect of retraining and regularization

DL Systems and Realization

Lecture 5 - 7

Layer type vs. sensitivity

Irregular fine-grained vs. regular coarse grained pruning

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks. NIPS 2017 DL Systems and Realization Lecture 5 - 9

What granularity is best for model size (Alexnet)?

Quantization tests

DL Systems and Realization

Lecture 5 - 11

Weight Sharing – Training Quantization

Quantization

- Neural networks are typically trained in floating point format (FP32) mainly for representation of small gradients (used to update weights in back-propagation)
- □ For inference, lower-precision is enough

Benefits: reduce the area and energy cost fo storage &

computation

Rough energy & area cost for various operations in 45nm 0.9V Relative Area Cost Relative Energy Cost Area Operation: Energy (pJ) (µm2) 8bAdd 0.03 36 16b Add 0.05 67 32b Add 0.1 137 16b FPAdd 0.4 1360 32b FPAdd 0.9 4184 8b Mult 0.2 282 32b Mult 3.1 3495 16b FP Mult 1.1 1640 32b FP Mult 3.7 7700 32b SRAM Read (8KB) 5 N/A 32b DRAM Read 10 102 103 104 10 102 103

Mark Horowitz. "1.1 computing's energy problem (and what we can do about it)." ISSCC 2014.

DL Systems and Realization

Lecture 5 - 13

Various methods of number representations

(b) 8-bit dynamic fixed point examples

 $(-1)^s \times m \times 2$ Lecture 5 - 14

Binary Nets (1-bit)

- Binary Connect (BC)
 - Weights: {-1, 1}, Activations: 32-bit float
 - MAC -> addition / subtraction
 - Accuracy loss: 19% on AlexNet
- Binarized Neural Networks (BNN)
 - Weights: {-1, 1}, Activations: {-1, 1}
 - MAC -> XNOR
 - Accuracy loss: 29% on AlexNet

Can't quantize both weights & activations or suffers too much accuracy loss

Matthieu Courbariaux, et al. "Binaryconnect." & "Binarized neural networks." NIPS 2015 & 2016.

8-bit Quantization in TensorRT

- Linear, symmetric mapping between FP32 and INT8
 Tensor Values = FP32 scale factor * INT8 value + FP32 bias
- Utilize Kullback-Leibler (KL) divergence (relative entropy) to decide thresholds that minimize loss of information for activations of each layer
- Under 1% accuracy loss for most CNNs on ImageNet
- Doesn't require any additional fine-tuning or retraining

Szymon Migacz. "8-bit Inference with TensorRT." GTC 2017.

8-bit Quantization in TensorFlow

- For both training and inference
- TensorFlow Lite targets inference on mobile phones
- Google's gemmlowp library provides optimized 8-bit GEMM for ARM NEON

Benoit Jacob, et al. "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference." CVPR 2018.

DL Systems and Realization

Lecture 5 - 17

Recent Works on Quantization

Category	Method	Bits for weights	Bits for activations	Accuracy loss @AlexNet (%)	Need fine- tune/retrain
Dynamic fixed point	Ristretto	8	8	0.9	V
	ВС	1	32	19.2	V
	BNN	1	1	29.8	V
Low-bit	BWN	1*	32	0.8	V
LOW-DIT	XNOR-Net	1	1*	11	V
	TWN	2*	32	3.7	V
	TTQ	2*	32	0.6	v
Non-uniform	LogNet	5(conv), 4(fc)	4	3.2	V
Non-uniform	Weight Sharing	8(conv), 4(fc)	16	0	V
	TensorRT	8	8	0.03	x
Linear	TensorFlow	8	8	-	V
	V-Quant	4+16**	4+16**	< 1%	V
	Ours	4+8	4+8	< 1%	x

*fp32 for first and last layers

Ristretto: a quantization tool built on Caffe

DL Systems and Realization

Lecture 5 - 19

Ristretto quantization methods: fixed point, dynamic fixed point, minifloat

$$round(x) = \begin{cases} \lfloor x \rfloor, & \text{if } \lfloor x \rfloor \le x \le x + \frac{\epsilon}{2} \\ \lfloor x \rfloor + \epsilon, & \text{if } \lfloor x \rfloor + \frac{\epsilon}{2} < x \le x + \epsilon \end{cases}$$

Deterministic rounding

$$round(x) = \begin{cases} \lfloor x \rfloor, & \text{w.p. } 1 - \frac{x - \lfloor x \rfloor}{\epsilon} \\ \lfloor x \rfloor + \epsilon, & \text{w.p. } \frac{x - \lfloor x \rfloor}{\epsilon} \end{cases}$$

Stochastic rounding

Summary of Quantization results

Pod	uce Precision Method	bitwic	Accuracy loss vs.	
Red	uce Trecision Method	Weights	Activations	32-bit float (%)
Dynamic Fixed Point	w/o fine-tuning [121]	8	10	0.4
Dynamic Fixed Folit	w/ fine-tuning [122]	8	8	0.6
	BinaryConnect [127]	1	32 (float)	19.2
Reduce Weight	Binary Weight Network (BWN) [129]	1*	32 (float)	0.8
Reduce Weight	Ternary Weight Networks (TWN) [131]	2*	32 (float)	3.7
	Trained Ternary Quantization (TTQ) [132]	2*	32 (float)	0.6
	XNOR-Net [129]	1*	1*	11
	Binarized Neural Networks (BNN) [128]	1	1	29.8
Reduce Weight and Activation	DoReFa-Net [120]	1*	2*	7.63
	Quantized Neural Networks (QNN) [119]	1	2*	6.5
	HWGQ-Net [130]	1*	2*	5.2
Non linear Quantization	LogNet [135]	5 (conv), 4 (fc)	4	3.2
	Incremental Network Quantization (INQ) [136]	5	32 (float)	-0.2
Non-linear Quantization	Deep Compression [118]	8 (conv), 4 (fc)	16	0
	Deep Compression [116]	4 (conv), 2 (fc)	16	2.6

Network: Alexnet Dataset: Imagenet Accuracy measured: Top-5 error

From V. Sze, T.-J. Yang, Y.-H. Chen, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," arXiv, 2017.

DL Systems and Realization

Lecture 5 - 21

Huffman Coding

- □ Frequent weights: use less bits to represent
- □ Less frequent weights: use more bits to represent

Huffman encoding

DL Systems and Realization

Lecture 5 - 23

Pruning + Quantization + Encoding: Deep Compression

■ Weight pruning, quantization, and encoding are independent. We can use all three methods together for better compression ratio.

Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding (ICLR 2016).

Pruning + Quantization + Encoding: Deep Compression

Table 1: The compression pipeline can save $35 \times$ to $49 \times$ parameter storage with no loss of accuracy.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%		1070 KB	
LeNet-300-100 Compressed	1.58%		27 KB	40×
LeNet-5 Ref	0.80%	((* .)	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39×
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35×
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49×

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weight bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+Q+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
ip1	235K	8%	6	4.4	5	3.7	3.1%	2.32%
ip2	30K	9%	6	4.4	5	4.3	3.8%	3.04%
ip3	1K	26%	6	4.3	5	3.2	15.7%	12.70%
Total	266K	8%(12×)	6	5.1	5	3.7	3.1% (32×)	2.49% (40×

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weight bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+Q+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
conv1	0.5K	66%	8	7.2	5	1.5	78.5%	67.45%
conv2	25K	12%	8	7.2	5	3.9	6.0%	5.28%
ipl	400K	8%	5	4.5	5	4.5	2.7%	2.45%
ip2	5K	19%	5	5.2	5	3.7	6.9%	6.13%
Total	431K	8%(12×)	5.3	4.1	5	4.4	3.05% (33×)	2.55% (39×)

DL Systems and Realization

Low Rank Decomposition

Le

Low Rank Decomposition (cont'd)

SVD: approximate weight matrix (A) as $U\Sigma V^{T}$

$$A_{mxn} = U_{mxm} \Sigma_{mxn} V_{nxn}^T = U_{mxr} \Sigma_{rxr} V_{rxn}^T \approx U_{mxk} \Sigma_{kxk} V_{kxn}^T$$

$$mxn \qquad (m+n+1)r \qquad (m+n+1)k$$

Rank controls the trade-off between performance(speed, memory, power) and accuracy loss

Tucker Decomposition: 1. higher order extension of SVD

2. compress the convolutional layers

ND Lane, et al. "DeepX: A Software Accelerator for Low-Power Deep Learning." IPSN, 2016 Yong-Deok Kim, et al. "Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Application" ICLR, 2016

DL Systems and Realization

Lecture 5 - 27

Tucker Decomposition

- After training, perform low-rank approximation by applying tensor decomposition to weight kernel; then finetune weights for accuracy
- Can be applied to convolution and fully-connected layers
- □ Significantly reduce the resource cost (memory, latency, power) for inference

Y.-D. Kim, et, al. "Compression of deep convolutional neural networks for fast and low power mobile applications." ICLR, 2016.

Variable Rank Decomposed AlexNet

- Adjust the rank of each layer to fit hardware resources
- How do we find the optimal rank that can significantly reduce resource requirement without accuracy loss?

DL Systems and Realization

Lecture 5 - 29

Accuracy vs. Performance for Variable Rank Decomposed AlexNet on CIFAR-10

- Use grid search to enumerate all possible rank in one conv layer, and there exists optimal points
- For example, we need verify 384x256 combination in the biggest layer of AlexNet.
- We need a hyperparameters Planner that is more efficient than grid search to explore optimal CNN architectures

Benefits of pruning

[Han, Mao, Dally, ICLR 2016]

DL Systems and Realization

Lecture 5 - 31

Knowledge Distillation

Knowledge Distillation

DL Systems and Realization

Lecture 5 - 33