Roll No.

H

TCS-401

B. Tech. (CS) (Fourth Semester) Mid Semester EXAMINATION, 2014

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: Two Hours]

[Maximum Marks : 60

- **Note:** (i) This question paper contains two Sections: Section A and Section B.
 - (ii) Answer all questions in Section A by choosing the correct option from multiple choices. Each question carries 2 marks.
 - (iii) Answer any *four* questions from Section B. Each question carries 12 marks.

Section-A

2-each

- 1. Attempt all multiple choice questions, choosing the correct option.
 - (i) If a number is correct to *n* significant digits, then the relative error is:
 - (a) $\frac{1}{2} 10^n$
 - (b) $\frac{1}{2} 10^{n-1}$
 - $(\varsigma) \leq \frac{1}{2} \, 10^{-n}$
 - (d) $<\frac{1}{2} 10^{n-1}$

F-34

P. T. O.

- (ii) The iterative formula to find \sqrt{N} is:
 - (a) $x_{n+1} = x_n (2 N x_n)$
 - (b) $x_{n+1} = x_n (2 + N x_n)$
 - (c) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$
 - (d) None of these
- (iii) The equation $x^7 3x^4 + 2x^3 1 = 0$ has:
 - (a) Four positive roots
 - (b) Three positive and four negative roots
 - (c) Three positive and four imaginary roots
 - (d) None of these
- (iv) The relation between the operator δ and E is :
 - (a) $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$
 - (b) $\delta = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$
 - (c) $\delta^2 = E^{\frac{1}{2}} E^{-\frac{1}{2}}$
 - (d) None of these
- (v) The value of Δ^2 (ab^x) is:
 - (a) $a(b-1)b^x$
 - (b) $a^2(b-1)b^x$
 - (c) $a(b-1)^2 b^x$
 - (d) None of these
- (vi) The rate of convergence of Newton-Raphson method is:
 - (a) 2
 - (b) 1·316
 - (c) 1.6
 - (d) None of these

ote: Attempt an

- (a) Using itera $x^3 + x^2$
- (b) Prove that
- 3. (a) Use Stirlin
 - (b) Find the
- 4. (a) Use Ne f(x) fi

(b) Find

F-34

Section-B

12 (6+6) each

Note: Attempt any four of the following questions.

- 2. (a) Using iteration method, find a root of the equation $x^3 + x^2 1 = 0$ correct to four decimal places.
 - (b) Prove that:

$$\mu^2 = \frac{\delta^2}{4} + 1$$

3. (a) Use Stirling formula to evaluate $f(1 \cdot 22)$ given:

f(x)		
8.403		
8.781		
9.129		
. 9.451		

- (b) Find the value of $(48)^{\frac{1}{3}}$, correct to three decimal places by Newton-Raphson method.
- 4. (a) Use Newton-divided difference formula to calculate f(x) from the following table:

	X 1	f(x)
	0	1
	1	14
HE D	2	14 15
181	4	5
	5	6 .
	6	19

(b) Find the missing values in the following table:

X	у
45	3
50	
45 50 55 60 65	2
60	
65	-2.4

- 5. (a) Find the absolute error if the number X = .00545828 is:
 - (i) Truncated to three decimal digits
 - (ii) Rounded off to three decimal digits
 - (b) The function $f(x) = \cos x$ can be expanded as:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Compute the number of terms required to estimate $\cos\left(\frac{\pi}{4}\right)$ so that the result is correct to at least two significant digits.

6. (a) Use Lagrange's formula to evaluate the value of f(4) given:

X	f(x)
0	-4
2	2
3	14
6	14 158

- (b) If $u = \frac{4 x^2 y^3}{z^4}$ and errors in x, y, z be 0.001, compute the relative maximum error in u when x = y = z = 1.
- 7. (a) From the following table, evaluate f(3.8) using Newton backward Interpolartion formula:

X	f(x)
0	1.00
1	1.50
2	2.20
3	3.10
4	4.60

(b) Find the root of the equation $x^3 - 5x - 7 = 0$ which lies between 2 and 3 by the method of false position.

TCS-401

240

F-34

Roll No.

1.

Time: