Notes

Author

January 29, 2024

$$\Delta(\hat{\gamma})^2 = \lambda \frac{\partial \gamma}{\partial t}$$

Now consider a topological space (X, τ) where τ is the discrete topology τ_{discrete} . This is something that has some words here and there are some words that are like I can type here asd asd asd asd asd asd and some math like the square root of π is equal to the integral from $-\infty$ to ∞ of the Gaussian function (in full form).

Theorem 1. $\tau_{discrete}$ has n elements and |G| is $\langle a \rangle$

Proof. The proof is quite simple actually.

Definition 1. A topology is a set τ and set X so that the following axioms hold:

O1: Closed

O2: Null set in X

Example 1. The trivial topology is just the set $\tau = \{\emptyset, X\}$