Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\tau_{1}^{\#1}{}^{\alpha\beta} + ik \ \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$t_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$	$-2ik \ \sigma_{2}^{\#1}\alpha\beta == 0 \ -i (4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} $	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4\ i\ k^{\chi}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\varepsilon \partial_\chi \sigma^{\delta\varepsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

Quadratic (free) action $S = \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} + \frac{1}{2} \tau_1 (2 \mathcal{A}^{\alpha\prime} \mathcal{A}_{\beta}^{\ \ \ \ \ } - 4 \mathcal{A}_{\alpha}^{\ \ \ \ \ \ \ \ \ } \theta \partial_i f^{\alpha\prime} + 4 \mathcal{A}_{i,\theta}^{\ \ \ \ \ \ \ \ \ } \theta \partial_i f^{\alpha} - 2 \partial_i f^{\alpha\prime} \partial_\theta f^{\alpha\prime} + 4 \mathcal{A}_{i,\theta}^{\ \ \ \ \ \ \ \ } \partial_\theta f^{\beta} - 2 \partial_i f^{\alpha\prime} \partial_\theta f^{\alpha\prime} + 4 \mathcal{A}_{i,\theta}^{\ \ \ \ \ \ \ \ } \partial_\theta f^{\beta} - 2 \partial_\alpha f^{\alpha\prime} + \partial_\theta f^{\alpha\prime} + 4 \partial_\theta f^{\alpha\prime} + 2 \partial_\theta f^{\beta} - 2 \partial_\alpha f^{\beta} + 4 \partial_\theta f^{\alpha\prime} + 2 \partial_\theta f^{\alpha\prime}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}$	0	$\frac{2k^2}{(1+2k^2)^2}$	$ au_{0}^{\#1}$ †	- <u>i</u>	$\frac{1}{2} \sqrt{2} k$ $2 k^2)^2 t_1$		$\frac{2k^2}{2k^2}$		0)
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0	$ au_{0}^{\#2}$ †		0		0	C		
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$f_{1^{-}}^{#2}$ σ^{0} +	0	0	0	ikt_1	0	$-\frac{1}{t_1}$	
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1} \left - \right $	$^{\chi}f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
		<u>1</u>)	<u>2</u>		t T		t	$\mathcal{A}_{1}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	${\mathcal A}_{1^-\alpha}^{\#1}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
-	- 1	ı						$f_{1}^{\#1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	β_1	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	${\mathcal A}_{1}^{\#1}$	$k^2 r_1 - \frac{t_1}{2}$	•	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{#2} +^{\alpha}$	_	${\cal A}_1^{\#1} +^{lphaeta}$	$\mathcal{A}_{1}^{\#2}$ † lphaeta	$f_1^{\#1} + ^{lphaeta}$	$\mathcal{A}_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\mathcal{A}_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{lpha}$

 $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$

 $\sigma_2^{\#1}_{\alpha\beta\chi}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $au_2^{\#1}{}_{lphaeta}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

 $-2 k^2 t_1$

0

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$