ANNOUNCEMENTS

• Homework 3 will be out on Monday/Tuesday next week:

The worst homework grade will be removed for the final score.

- Quiz 5: Today, last 10 minutes of class.
 - Material: "Paradoxes" chapter from Logicomix
 - You will get 2 attempts, but locked questions after answering.

PROOF BY CONTRADICTION

Meta – Theorem

Let Γ be a set of premises

Meta-Corollary

$$\Gamma, \neg \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \alpha$$

$$(a)\Gamma, \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \neg \alpha$$

$$(b)\Gamma, \neg \alpha \vdash \alpha \implies \Gamma \vdash \alpha$$

USING PROOF BY CONTRADICTION

Theorem 6 $\alpha \to \beta, \neg \beta \vdash \neg \alpha$ (Modus Tollens)

Proof Assume $\alpha \to \beta, \neg \beta, \neg \neg \alpha$

$1.\alpha \rightarrow \beta$	P
$2.\neg \beta$	P
$3.\neg\neg\alpha$	P
4.lpha	Thm 4, 3
5.eta	MP1,4

You get a contradiction with lines 2 and 5

USING PROOF BY CONTRADICTION (2)

Theorem 7
$$\alpha \to \beta, \neg \alpha \to \beta \vdash \beta$$
Proof Assume $\alpha \to \beta, \neg \alpha \to \beta, \neg \beta$

$$1.\alpha \to \beta$$

$$2.\neg \beta$$

$$3.\neg \alpha \to \beta$$

$$4.\neg \alpha$$

$$5.\beta$$

$$MP 3, 4$$

You get a contradiction with lines 2 and 5

USING PROOF BY CONTRADICTION (3)

Theorem 8 $\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$

Proof Assume $\alpha, \neg \beta, \alpha \rightarrow \beta$

You get a contradiction with lines 4 and 5

Notation for Tautology

 $\models \alpha$ is the notation indicating α is a tautology

EXAMPLE OF TAUTOLOGY NOTATION

$$\models p \rightarrow p$$

$$\begin{array}{c|c} p & p \rightarrow p \\ \hline 0 & 1 \\ 1 & 1 \\ \end{array}$$

TAUTOLOGICAL CONSEQUENCE

A proposition q is a tautological consequence of propositions $p_1, p_2, dots, p_n$ if and only if every row of a joint truth table that assigns "T" to all propositions p_1, p_2, \ldots, p_n also assigns "T" to q OR there is no row that assigns "T" to all propositions p_i

Notation

$$p_1, p_2, \ldots, p_n \models q$$

SOUNDNESS

Everything that we prove is true

$$\vdash \alpha \implies \models \alpha$$

$$p_1, p_2, \dots, p_n \vdash \alpha \implies p_1, p_2, \dots, p_n \models \alpha$$

The axioms A1, A2, A3 are tautologies and Modus Ponens is closed under tautologies (i.e., the derivation is also a tautology)

COMPLETENESS OF PROPOSITIONAL LOGIC (NOT TO BE CONFUSED WITH INCOMPLETENESS THEOREM OF GÖDEL: GÖDEL'S RESULT IS FOR ARITHMETIC, HERE WE TALK ONLY ABOUT PROPOSITIONAL LOGIC)

Completeness: Everything that is true, can be proven

$$\models \alpha \implies \vdash \alpha$$

$$p_1, p_2, \dots, p_n \models \alpha \implies p_1, p_2, \dots, p_n \vdash \alpha$$