

Obsah

- Definice SDR
- Prostředky číslicového zpracování signálu
- Rekonfigurovatelná rádiová část
- Srovnání softwarového rádia s klasickým
- Aplikace

Definice softwarového rádia (softwarově definované rádio)

- Softwarové rádio je rádiové zařízení, ve kterém je rozhoduj číslicového zpracování signálu realizována programově v programovatelných obvodech
- Je vybaveno konfigurovatelnými rádiovými bloky

Prostředky číslicového zpracování signálu

- Procesory a signálové procesory CPU
- Paralelní procesory GPU a APU
- FPGA
- SoC

Zpracování signálu procesorem

- Zpracování je řízeno programem
- Instrukce se provádí sekvenčně

Možnosti zvýšit výkon

- 1. Zvýšení rychlosti vykonávání programu
- 2. Paralelní zpracování
 - Task parallelism schopnost řešit dvě a více úloh najednou
 - Data parallelism schopnost vykonávat jednu úlohu nad několika různými množinami dat

Task parallelism

Schopnost řešit dvě a více úloh najednou

Data parallelism

 Schopnost vykonávat jednu úlohu nad několika růz množinami dat

CPU - Central Processing Unit

- Jedno nebo několik výpočetních jader
- Každé jádro vykonává své samostatné instrukce

=

Task parallelism

Architektura GPU

SP Streaming processor

IU Instruction unit

SFU Special function unit

SM Hare memory

MP Multiprocessor

Streaming procesory v rámci Multiprocesoru vykonávají stejné instrukce nad různou množinou dat =

Data parallelism

Několik multiprocesorů

=

Task parallelism

Nevhodná úloha pro data parallelism

ASIC – Application-specific integrated circuit

- Algoritmus vykonáván jednoúčelovým obvodem
- Nejvyšší výpočetní výkon
- Nelze programovat, algoritmus implementován hardwarově
- Struktura se definuje v HDL
 (Hardware Description Language)
 výsledný kód se pak překládá do
 logického obvodu. Obvod se pak
 vyrobí ve formě integrovaného
 obvodu

FPGA - Field-programmable gate array

- Podobné vlastnosti jako ASIC
- Strukturu ob du lze programovat pomocí konfiguračního souboru
- Struktura se definuje v HDL
 (Hardware Description Language)
 výsledný kód se pak překládá do
 logického obvodu. Obvod se pak
 nakonfiguruje do FPGA
- Někdy se používají vyšší vývojové nástroje

Snímek 13

A2 strukturu

Autor; 26. 11. 2014

FPGA Logické bloky

Logické buňky

- Realizace libovolné logické funkce několika (4 – 7) proměnných
- Jeden nebo několik registrů D
- Rychlý přenos pro realizaci sčítaček a násobiček

Sčítačky, násobičky a DSP

Další bloky FPGA

- Bloky pro generování a distribuci hodinového signálu
- Bloková paměť
- Distribuovaná paměť
- Řadič DDR paměti
- Řadič PCle
- Řadič Ethernet

Soft procesory pro FPGA

- Xilinx
 - MicroBlaze32 bit Risc
 - PicoBlaze jednoduchý řadič řízený programem
- Altera
 - Nios
- ARM
 - Cortex M1

System on chip SoC

Kombinace FPGA a procesoru na jednom chipu

SoC Zynq firmy Xilinx

Postup vývoje programu pro FPGA

Příklad FPGA pro mobilní zařízení

iCE40 firmy LATTICE

- FPGA malé velikosti 0,4 8 K LUT
- Ultra nízká spotřeba
- Určeno do chytrých mobilních zařízení
 - Interface, senzory,...
 - Přijímač GPS do hodinek

Rozdíly v programování CPU, GPU, FPGA

	CPU	GPU	FPGA
Programovací jazyk	C/C++	OpenCL Cuda	HDL (VHDL, Verilog)
Algoritmická správnost	Programátor	Programátor	Programátor
Paralelizace výpočtů	CPU	Programátor vektorizací výpočtů	Programátor návrhem struktury systému
Časování	Výrobce	Výrobce	Programátor

Rekonfiguroatelné rádiové části

- Přijímačem s přímým zesílením,
- Superheterodynním přijímačem,
- Přijímačem s přímou konverzí do základního pásma

Přijímač s přímým zesílením

- Selektivní zesilovač + ADC
 - obtížná přeladitelnost
 - problém se selektivitou
- Aplikace
 - Pevné nízké kmoitočty
 - LORAN C

Superheterodynní přijímač

- Kmitočtová konverze
- Výborná přeladitelnost
- Vysoká selektivita

Přijímač s přímou konverzí do základního pásma

- Lze realizovat na chipu bez externích filtrů
- Přeladitelnot a změna propustného pásma v širokém rozsahu
- Nevýhody
 - průniky signálu lokálního oscilátoru do vstupních obvodů přijímače,
 - problém se šumem 1/f u zesilovačů v základním pásmu.

Integrovaný transceiver LMS6002D

Integrovaný transceiver LMS6002D

- Přijímač s přímou konverzí do základního pásma
- Kmitočtový rozsah 0,3 3,8 GHz
- Programovatelná šířka pásma

1.5; 1.75; 2.5; 2,75; 3; 3.84; 5; 5.5; 6; 7; 8.75; 10; 12; 14; 20 a 28 MHz

- 12 bit A/D převodník max. 40 MHz
- Řízení zisku 60 dB
- Výkon vysílače max. 6 dBm
- Spotřeba příjem 700 mW, vysílání 900 mW

Aplikace

- WCDMA/HSPA, LTE, GSM, CDMA 2000, IEEE 802,16
- DVB-T, DAB, GPS, GNSS, ...

Srovnání SDR s klasickým rádiem

FPGA versus ASIC

- velikost chipu
- zpoždění kritické cesty
- dynamická spotřeba
- náklady

FPGA versus ASIC

Stejná šířka hradla FPGA a ASIC

Velikost chipu

Typ obvodu	Poměr FPGA /	
	ASIC	
Logika	35	
Logika a DSP	25	
Logika a paměť	33	
Logika, paměť, DSP	18	

Zpoždění kritické cesty

Typ obvodu	Poměr FPGA /	
	ASIC	
Logika	3,4	
Logika a DSP	3,5	
Logika a paměť	3,5	
Logika, paměť, DSP	3,0	

Dynamická spotřeba

Typ obvodu	Poměr FPGA /	
	ASIC	
Logika	14	
Logika a DSP	12	
Logika a paměť	14	
Logika, paměť, DSP	7,1	

Celkové náklady na projekt

Množství vyrobených chipů

Fixní náklady na ASIC v závislosti na šířce hradla

Porovnání jednoúčelového a konfigurovatelného rádiového bloku

LMS6002D

Spotřeba 700 mW v režimu příjmu

 MAX 2769 jednoúčelový obvod pro GPS přijímač

Spotřeba 40 mW

Aplikace SDR

- Měřící přístroje
- Speciální a vojenská technika
- Vědecké přístroje
- Výuka
- Amatéři

Komerční přijímač GPS L1

Požadavky

- Miniaturní rozměry a hmotnost
- Ultra nízká spotřeba
- Co nejvyšší přesnost
- Schopnost pracovat v obtížných podmínkách z hlediska příjmu signálu
- Nízká cena
- Velké množství aplikací, trh miliony kusů ročně
- ASIC technologie

Požadavky na GPS L1 pro družici CubeSat

CubeSat

- Piko družice o objemu rozměrech 100x100x100 mm
- Výkon solárních panelů cca. 1 W
- Přímá viditelnost navigačních družic
- Žádné odrazné plochy
- Velká rychlost a výška
- Radiace

piNAV L1 přijímač pro CubeSat

Požadavky na přijímač

- Minimální spotřeba (zlomek výkonové bilance družice)
- Schopnost spolehlivě navigovat na LEO oběžné dráze
- Velikost trhu desítky kusů/rok

Srovnání komerčního GPS přijímače a přijímače piNAV L1

Vlastnost	Komerční přijímač	piNAV
Technologie	ASIC	Softwarové rádio
Velikost	16 x 16 x 6 mm	75 x 35 x 12 mm
Hmotnost	5 g	47 g
Spotřeba	95 mW	120 mW
Počet kanálů	66	15
Akviziční jednotka	Ano	Ne
Vysoká citlivost	Ano	Ne
Potlačení rušení v GPS pásmu	Ano	Ne
Schopnost pracovat na LEO dráze	Ne	Do rychlosti 9 km/s a výšky 10 000 km
Cena vývoje	???	180 000 Kč + 1200 hod