

Escuela Superior Politécnica del Litoral Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Guía de Laboratorio de Mecánica de Fluidos

PRÁCTICA #3:

A) FRICCIÓN DE FLUIDO EN TUBERÍA LISA

B) FRICCIÓN DE FLUIDO EN TUBERÍA CON RUGOSIDAD

C) RELACION DEL FACTOR DE FRICCIÓN Y NUMERO DE REYNOLDS

1.- Ecuaciones importantes

• Velocidad del fluido:

$$v = \frac{4Q}{1000\pi D^2}$$

Dónde:

Q: Tasa de flujo

D: diámetro de la tubería

• Numero de Reynolds

$$N_R = \frac{\rho v D}{\mu}$$

• Pérdida de Cabezal experimental H_{exp} [$m H_2 O$]:

$$H_{\rm exp} = h_1 - h_2$$

• Pérdida de Cabezal teórico H_{teo} [$m H_2 O$]:

$$H_{\text{teo}} = f \frac{L}{D} \frac{v^2}{2g}$$

• Para flujo turbulento en una tubería lisa, un ajuste de curva bien conocido para el factor de fricción viene dado por:

$$f = 0.316 N_R^{-0.25}$$

Conocida como la ecuación de Blasius.

2.- Tabla de datos e incertidumbre:

Parte A): Flujo Laminar

Longitud de la tubería $(L \pm \delta L)$: $0.50 \pm 0.05~m$

Diámetro nominal de la tubería $(D \pm \delta D)$: $3.0 \pm 0.1 \ mm$

Temperatura del experimento $(T \pm \delta T)$: 20 \pm 1 °C

Q(ml/s)	h_1 (mm)	h_2 (mm)
1.00	255	275
2.29	238	285
3.07	230	295
3.74	210	305
4.37	195	315
4.73	185	325
4.82	175	335
5.06	162	345
5.65	135	365
6.31	105	385

Tabla 1. Raw data del flujo laminar.

$\delta Q (ml/s)$	$\delta h_1 (mm)$	$\delta h_2 (mm)$
0.10	1	1

Tabla 2. Incertidumbres de los datos experimentales.

Parte B): Flujo Turbulento en tubería rugosa

Longitud de la tubería $(L \pm \delta L)$: $1.00 \pm 0.05~m$

Diámetro nominal de la tubería $(D \pm \delta D)$: $17.2 \pm 0.1 \ mm$

Temperatura del experimento $(T \pm \delta T)$: 20 \pm 1 °C

Rugosidad absoluta (ε): 0.46 mm

Q(l/s)	$h_1(m)$	$h_2(m)$
1.10	10.10	7.29
0.98	8.37	6.04
0.85	6.53	4.87
0.78	5.47	4.07
0.66	4.21	3.17
0.58	3.28	2.46
0.49	2.54	1.95
0.39	1.83	1.44
0.27	1.16	0.95
0.16	0.73	0.66
0.10	0.56	0.53

Tabla 3. Raw data del flujo turbulento.

$\delta Q (l/s)$	$\delta h_1(m)$	$\delta h_2(m)$
0.10	0.05	0.05

Tabla 4. Incertidumbres de los datos experimentales.

Parte C): Flujo Turbulento en tubería lisa

Longitud de la tubería $(L \pm \delta L)$: 320.0 \pm 0.5 m

Diámetro nominal de la tubería $(D \pm \delta D)$: 7.7 \pm 0.1 mm

Temperatura del experimento $(T \pm \delta T)$: 20 \pm 1 °C

Volumen para medición de caudal $(V \pm \delta V)$: $10.0 \pm 0.1 L$

t (s)	f_{exp}
43.00	0.0220
40.60	0.0213
39.13	0.0211
47.02	0.0219
51.59	0.0226
61.00	0.0233
85.00	0.0256
133.00	0.0284
43.00	0.0220

Tabla 5. Raw data del flujo turbulento.

$\delta t(s)$	
0.10	

Tabla 6. Incertidumbres de los datos experimentales.

3.- Cálculos requeridos:

Parte A) y B)

- Calcule la velocidad del flujo, el numero de Reynolds y el factor de fricción (Usando el diagrama de Moody) en unidades SI.
- Partiendo de la velocidad del flujo obtenida de manera experimental y el factor de fricción, obtener el valor de la pérdida de cabezal usando la forma general de la ecuación de Darcy-Weisbach. Compare los valores con los obtenidos experimentalmente.
- Calcule la respectiva incertidumbre para todos los cálculos, usando las incertidumbres dadas. Considere que los parámetros como densidad y viscosidad se consideraran como constantes por lo cual no tendrán incertidumbres.

Parte C)

- Calcule la velocidad del flujo y el numero de Reynolds en unidades SI.
- Calcule la respectiva incertidumbre para todos los cálculos, usando las incertidumbres dadas.
 Considere que los parámetros como densidad y viscosidad se consideraran como constantes por lo cual no tendrán incertidumbres.

4.- Gráficas requeridas:

Parte A) y B)

- Grafique en escala lineal la perdida de cabezal (experimental) versus velocidad ($H_{\rm exp}\ vs.\ v$) para la tubería estudiada. Presente la respectiva ecuación de la grafica, identifique el tipo de comportamiento de la ecuación (lineal, parabólica, exponencial, etc..).
- Grafique en escala logarítmica la perdida de cabezal (experimental) versus velocidad ($H_{\rm exp}\ vs.\ v$) para la tubería estudiada. Presente la respectiva ecuación de la grafica, identifique el tipo de comportamiento de la ecuación (lineal, parabólica, exponencial, etc..).
- Grafique en escala lineal la perdida de cabezal (experimental) versus velocidad al cuadrado $(H_{\rm exp}\ vs.\ v^2)$ para la tubería estudiada. Presente la respectiva ecuación de la grafica, identifique el tipo de comportamiento de la ecuación (lineal, parabólica, exponencial, etc..).

Parte C)

• Grafique en escala lineal el factor de fricción (experimental) versus numero de Reynolds $(f_{exp}\ vs.\ N_R)$ para la tubería estudiada. Presente la respectiva ecuación de la grafica, identifique el tipo de comportamiento de la ecuación (lineal, parabólica, exponencial, etc..).

Nota: Grafique las barras de error en cada gráfico (excepto en los gráficos logarítmicos).

5.- Análisis requerido:

- ¿Cual método de linealización es mas conveniente, el logarítmico o el de cambio de variable (v^2) ?
- ¿Las perdidas por cabezal en cada caso tienen relación con los valores teóricos obtenidos (use el porcentaje de error)?
- ¿Existe zona de transición en alguno de los casos estudios (A o B)? En caso de que sea así. ¿Cuál es el número de Reynolds crítico en este experimento (es decir, el número de Reynolds de transición del flujo laminar al flujo turbulento)?
- ¿Cuál es la dependencia de la pérdida de carga y la velocidad (o caudal) en las regiones de flujo laminar y turbulentas?
- ¿Cuál es la importancia de la temperatura en el experimento?
- ¿Qué procesos naturales afectan la rugosidad de la tubería?
- Suponiendo una relación de la forma $(f = K N_R^n)$, calcule los valores de K y n a partir del gráfico de datos experimentales que ha trazado en la parte C) y compárelos con los valores aceptados que se muestran en la sección Ecuaciones importantes (la ecuación de Blasius). ¿Cuál es el efecto acumulativo de los errores experimentales sobre los valores de K y n?

Nota: No deben responder estas preguntas en una sección, deben usarla para responder cada una en la parte de análisis de resultado.