Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

Continuous-time/SDE formulation

 $dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t$

The forward diffusion process defined by an SDE

[Song et al 2021]

https://yang-song.net/blog/2021/score/

Continuous-time/SDE formulation

https://yang-song.net/blog/2021/score/

The forward diffusion process defined by an SDE

$$dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t$$

The reverse SDE

The reverse process satisfies a reverse-time SDE that can be derived from the forward SDE and the score of the marginal distribution, $\nabla_{x_t} \log q(x_t)$

$$dx_t = \left[-\frac{1}{2} \beta(t) x_t - \beta(t) \nabla_{x_t} \log q(x_t) \right] dt + \sqrt{\beta(t)} dw_t$$