NATURAL DISASTER INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

PROJECT REPORT

Submitted by

TEAM ID: PNT2022TMID44913

TEAM LEAD: SOWNDHARYALAKSHMI(811019104036)
TEAM MEMBER: PRIYASOWMIYA(811019104029)
TEAM MEMBER: THARANI (811019104042)
TEAM MEMBER: NIRANJANA(811019104024)

TABLE OF CONTENTS

CHAPTER NO	TITL E			
1.	INTRODUCTION			
1.	T(TRODECTION)			
	PROJECT OVERVIEW PURPOSE			
2.	LITERATURE SURVEY			
	EXISTING PROBLEM			
	REFERENCES			
	PROBLEM STATEMENT			
2	DEFINITION THE ATTION A PROPOSED SOLUTION			
3.	IDEATION & PROPOSED SOLUTION			
	EMPATHY MAP			
	CANVAS IDEATION &			
	BRAINSTORMINGPROPOSED			
	SOLUTION			
	PROBLEM SOLUTION FIT			
4.	REQUIREMENT ANALYSIS			
	FUNCTIONAL REQUIREMENT			
	NON-FUNCTIONAL REQUIREMENTS			
5.	PROJECT DESIGN			
	DATA FLOW DIAGRAMS			
	SOLUTION & TECHNICAL			
	ARCHITECTUREUSER STORIES			
6.	PROJECT PLANNING & SCHEDULING			
	SPRINT PLANNING &			
	ESTIMATIONSPRINT DELIVERY			
	SCHEDULE			
	REPORTS FROM JIRA			
7.	CODING & SOLUTIONING			
	FEATURE 1			
	FEATURE 2			

8.	TESTING
	TEST CASES
	ACCEPTANCE TESTING
9.	RESULTS
	9.1 PERFORMANCE METRICS

10.	ADVANTAGES & DISADVANTAGES
11.	CONCLUSION
12.	FUTURE SCOPE
13.	APPENDIX 13.1 SOURCE CODE

INTRODUCTI

ON

Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre- trained model and the type of disaster is identified and showcased on the OpenCV window.

Purpose

The purpose of this project to detect the natural disaster and reduce, or avoid, the potential losses from hazards, assure prompt and appropriate assistance to victims of disaster, and achieve rapid and effective recovery

LITERATURE

SURVEY

TITLE: A Deep Learning Approach of Recognizing Natural Disasters on Images.

PROPOSED WORK

First, this work introduces to the research community a new dataset for the joint classification of natural disaster types and intensity. Moreover, this study primarilyaims to explore natural disasters recognition using a convolutional neural network and transfer learning. An open source tool is used for finding and removing the repeated images for analysis. Wildfire, Earthquake, Flood and Volcanic eruption are taken. In particular, this study attempts to build and train a lightweight convolutional neural network that

particular, this study attempts to build and train a lightweight convolutional neural network that can jointly recognize natural disaster types and intensity. Based on the intensity, it classifies as Severe, Moderate, Insignificant Lastly, this study attempts to measure the model performance using four performance measures; accuracy, precision, recall, and F1-Score.

TOOLS USED/ALGORITHM

- > Image Processing
- > Slope NDVI
- > Location API
- > Cloud Architecture
- > Google Earth Engine
- > K-Means and Classification Algorithm
- > RGB Scale

TECHNOLOGY: Artificial Intelligence

TITLE

Disaster Intensity-Based Selection of Training Samples for Remote Sensing

Building Damage Classification.

PROPOSED WORK

In this proposed work, two fully automatic procedures for the detection of

severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent non-damaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged

buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The

second procedure is

based on the use of two regularization parameters to define the support vectors. These

frameworks avoid the collection of labeled building samples via field surveys and/or visual

inspection of optical images, which requires a significant amount of time. The

performance of the proposed method is evaluated via application to three real cases. The

resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the resultcan be used for

the rapid allocation of affected buildings.

TOOLS USED/ALGORITHM

> Automatic labelling

> Building damage

> Multi regularization parameters

> Demand Parameter

> Support Vector Machine (SVM)

TECHNOLOGY: Machine Learning

TITLE

Hurricane Damage Detection using Machine Learning and Deep Learning

Techniques

PROPOSED WORK

In this proposed work, Disaster detection can be done through social mediaand

satellites. Images obtained from satellites are widely used since capturing and

processing of these images can be done in a shorter span of time. Satellite images helpto

recognize damage pattern caused by the disasters. The images from social media are also useful

since they provide information on an immediate basis. Since manual methods are errorprone,

deep learning and machine learning are used which used for detecting the damage caused by

disasters effectively.

TOOLS USED/ALGORITHM

> Social-media

> Satellite imagery

> Deep learning techniques

> CNN,VGG-16, ResNet

> Machine learning tecniques

> Support Vector Machine, Decision trees, random forest.

TECHNOLOGY: Machine Learning, Deep Learning

Existing Problem

Earlier we focus on post disaster relief and rehabilitation measures. Now the focus is shifted. As per sec.2(e) of DM Act 2005, Disaster Management means a coordination and integrated process of planning, organizing, coordinating, and implementing measures which are necessary or expedient for-

- (i) Prevention of danger or threat of any disaster
- (ii) Preparedness to deal with any disaster
- (iii) Prompt response to any threatening disaster situation or disaster
- (iv) Assessing the severity or magnitude of effects of any disaster
- (v) Evacuation, rescue, and relief
- (vi) Rehabilitation and reconstruction

References

- 1. Mignan, A.; Broccardo, M. Neural network applications in earthquake prediction(1994–2019): Meta-analytic and statistical insights on their limitations. Seism. Res.Lett. 2020, 91, 2330–2342. [CrossRef]
- 2. Tonini, M.; D'Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Studyof the Liguria Region in Italy. Geosciences 2020, 10, 105. [CrossRef]
- 3. Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [CrossRef]
- 4. Schlemper, J.; Caballero, J.; Hajnal, V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 2017, 37, 491–503. [CrossRef] [PubMed]
- 5. Tang, C.; Zhu, Q.; Wu, W.; Huang, W.; Hong, C.; Niu, X. PLANET: Improved convolutional neural networks with image enhancement for image classification. Math.Probl. Eng. 2020, 2020. [CrossRef]

Problem Statement Definition

People needs a way to classify and analyse the natural disaster so that they can prevent themselves from losses due to the disaster and millions of lives.

People and animals are facing so many issues like loss of life, property, resources and deterioration of the air quality due to the natural disaster. So we need to analyse and detect natural disaster and protect them from such disaster.

IDEATION & PROPOSED SOLUTION

Empathy Map Canvas

Ideation & Brainstorming

Proposed solution

S. No.	Parameter	Description	
1.	Problem Statement (Problem to be solved)	People needs a way to classify and analyse the Disaster priorly so that they can protect themselves from losses due to the Disaster and Millions of Lives.,	
2.	Idea/Solution description	This project uses Multi-layered Deep Convolutional Neural Network (pretrained) model to classify Natural Disaster and calculate the intensity of the Disaster	
3.	Novelty/Uniqueness	To reduce the issues due to imbalance structure of images, the model uses an integrated webcam to capture the video frame and test data is compared with pretrained data.	
4.	Social impact/Customer Satisfaction	By the Application, economic damage caused by Disaster can be reduced. Detection of Natural Disaster will become easier while using videos in Deep CNN instead of images.	
5.	Business Model (Revenue Model)	Multi-layered Deep Convolutional Neural Network Model.	
6.	Scalability of the Solution	Highly expandible, dependable, reliable, scalable and has robustnes	

Problem Solution Fit

Project Title: Natural Disasters Intensity Analysis and Classification using Artificial Intelligence

Project Design Phase-I - Solution Fit Template

Team ID:PNT2022TMID44913

1. CUSTOMER SEGMENT(S)

- Government
 - NDRF
 - Meteorologist
 - Climatologist
 - Seismologist
 - People who have affected by

6. CUSTOMER CONSTRAINTS

What constitutes prevent your customers from Launquiction or time their of couldinary i.e. specifing present budget, no cash, nelson is consection, e.e. presents.

- Cost
- Inaccessibility to the Internet
- Communication breakdown
- Limited resources
- Uncertain climate change

S. AVAILABLE SOLUTIONS

- By protecting forests and coral reads, we can lessen the likelihood of landsides, hurricanes, and rising sea levels. Neglecting other underlying issues that may be causing this event event ecognising the contrast between indirect and direct impacts outcomes that are precise and effective lessen severe harm.

2. JOBS-TO-BE-DONE / PROBLEMS

Although intensity is significant, it is not always simple to recognize it. It is difficult to identify the causes of natural disasters. For instance, earthquakes are difficult to detect but can be used to detect tsunamis. Although plate tectonic theory is supposed to be able to detect it, it is not always reliable.

9. PROBLEM ROOT CAUSE

J&P

ľК

atomers have to do it because of the change in

- Moon activities
- Plate Tectonic movement
- Global warming
- instability in the lower

tomer do to address the problem and get the job What both your customer as a baldross the photosmost per the po-(If Electly customer for high solar panel installer, colociate usage and benefits; indirectly associated outsomers spend free time on volusteering work (i.e.

- Discover the root reasons to be able to prevent it.
 Offering training programs for professional growth
 daining adoption skills and reconstructing one's life
 and career
 Avoid and neutralize the causes of calamity.
 Acquiring information about disaster relief
 gaining a better understanding about what to do and
 what not to do in the event of a disaster

If people who live in disaster-prone locations learned about the items that allow them to forecee danger before it occurs, they would buy them at any price. To be safe, other people will also want to peoples it.

4. EMOPTONS: BEFORE / ATPER

Even if their lives may have been idyllic before the socident, they may now be unhappy, frightened, furious, or afraid leviages they have lost their loved ones, their jobs, or their homes. Additionally, the undermines their confidence. However, if they are sware of its shead, even if they may be afraid, they will be confident and prepared to face and rehald.

To assist AI in tracking and foretelling the influence of diverse environmental conditions and their effects, we want to include reinforcement learning algorithms. This lets the rescue crew take quick and efficient action in addition to minimizing the

8. CHANNELS of BEHAVIOUR

ONLINE:

In an effort to learn more about the calamity or how to avoid it, they seek out technical assistance or professional action online.

If they are feeling down about the disortion, they ceek professional help.

They strive for more specific information regarding the dispatch's effects.

OFFLINE:

СĦ

REQUIREMENT ANALYSIS

Functional Requirement

FR No.	Functional Requirement(Epic)	Functional
		Requirement(Epic)
FR-1	Request Permission	
		Access permission from
		web camera.
FR-2	Disaster Detection	Based on the webcam
		image, natural disaster is
		classified.
FR-3	Accuracy	Since the training and
	,	testing images are huge,
		The accuracy is higher.
FR-4	Speed	The generation of results
		from the input Images are
		faster.
FR-5	Resolution	The resolution of the
		integrated web camera
		should be high enough to
		capturethe video frames
FR-6	User Interface	Maximizing the interactionin
		Web Designing Service.

Non-Functional Requirement

NFR. No.	NonFunctional Requirement	Description
NFR-1	Usability	User friendly and classify the
		disaster easily.
NFR-2	Security	The model is secure due to the
		cloud deployment models and
		also there is no login issue.
NFR-3	Reliability	Accurate prediction of the natural
		disaster and the website can also be
		fault tolerant.
NFR-4	Performance	It is shown that the model gives
NFK-4	Performance	It is shown that the model gives
		almost 95 Percent accuracy after
		continuous training.
NFR-5	Availability	The website will be made
		available for 24 hours.
NFR-6	Scalability	The website can run on web
		browsers like Googlechrome,
		Microsoft edge and also it can
		beextended to the NDRFand
		customers.

CHAPTER 5 PROJECT DESIGN

Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data to be enter and leaves the system, what changes the information, and where data is stored.

Data Flow Diagram for "Natural Disasters Intensity Analysis and Classification using Artificial Intelligence":

Flow Diagram

Solution & Technical Architecture

Solution Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goalsare to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software toproject stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram

Project Design Phase-II Technology Stack (Architecture & Stack)

Date	19 October 2022
Team ID	PNT2022TMID38512
Project Name	Natural Disasters Intensity Analysis And Classification Using Artificial Intelligence
Marks	4

Technical Architecture:

Components & Technologies:

S.No	Component	Description	Technology
<i>5.</i> 1110			
1.	User Interface	User interacts with application for the detection of any Natural disaster's intensity and classify which happened just before.	HTML, CSS, JavaScript, Django, Python.
2.	Disaster Detection	This function is used to detect, Decision Outcomes, the new trained data to perform tasksand solve new problems.	Decision trees, Regression, Convolutional Neural networks
3.	Evaluation system	It monitors that how Algorithm performs on data as well as during training.	Chi-Square, Confusion Matrix, etc.
4.	Input data	To interact with our model and give it problems to solve. Usually this takes the form of an API, auser interface, or a command line interface.	Application programminginterface, etc
5.	Data collection unit	Data is only useful if it's accessible, so itneeds to be stored ideally in a consistent structure and conveniently inone place.	IBM Cloud, SQLServer.
6.	Database management system	An organized collection of data stored in database, sothat it can be easily accessed and managed.	MySQL, DynamoDB etc.

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	An open source framework is a template for software development that is designed by a social network of software developers. These frameworks are free for public use and provide the foundation for building a software application.	Keras, Tensorflow.
2.	Authentication	This keep sour models secure and makes sure only those who havepermission can use them	Encryption and Decryption (OTP)
3.	Application interface	User uses mobile application andweb application to interact with model	Web Develop ment (HTML,C SS)
4.	Availability (both Online and Offlinework)	Its include both online and offline work. As good internet connection is need for online work to explore the software perfectly. Offline work includes the saved data to explore for later time	Caching, backend server.
5.	Regular Updates	The truly excellent software product needs a continuous process of improvements and updates. Maintain your server and make sure that your contentis always up-todate. Regularly update an app and enrich it with new features.	Waterfall Approach, Incremental Approach, Spiral Approach
6.	Personalization	Software has features like flexible fonts, backgrounds, settings, colour themes, etc. which make a software interface looks good and functional.	CSS

User Stories

Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria
Collection of dataset	USN-1	As a user, I can collect the datasetfor monitoring and analyzing	Enough data collected for training Model.
Home Page	USN-2	As a user, I can collect the datasetfor monitoring and analyzing	I can get the idea about the Application.
Intro page	USN-3	As a user, I want to about the introduction of Disaster in particular areas.	I can get idea about the disaster and where it occurs.
Open webcam	USN-4	As a user, I adapt with the webcamto analyze and classify the Disaster from video capturing	I can capture a videoor image of particular disaster to analyze and classify
Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	Model should be easy to use & working fine from the web app
Algorithm selection	USN-6	As a user, I can choose the required algorithm for specific analysis.	Selection must give the better accuracy and better output
Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	Training the model to classify and analyze the intensity
Detection and analysis of data	USN-8	As a user, I can detect and visualize the data effectively.	I can capture a videoor image of particular disaster to analyze and detect.
Model building	USN-9	As a user I can build with the web application.	Model should be predicting occurrence of the disaster and intensity level of disaster

Integrate the	USN-10	As a user, I can use Flask app to use	Model should be
web app with		model easily through web app.	easy to use and
the AI Model			working fine from
			the web app.
Model	USN-11	As an administrator, I can deploythe	Model's prediction
deployment		AI model in IBM Cloud.	should be available
			for users to make
			decision.

PROJECT PLANNING & SCHEDULING

Sprint planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points
Sprint-1	Collection of Dataset	USN-1	As a user, I can collect the dataset for monitoring and analysing.	5
Sprint-1	Home page	USN-2	As a user, I want to know to about the basics of frequently occurring Disasters.	5
Sprint-1	Intro page	USN-3	As a user, I want to about the introduction of Disaster in particular areas.	5
Sprint-1	Open webcam	USN-4	As a user, I adapt with the webcam to analyse and classify the Disaster from video capturing.	5
Sprint-2	Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	5
Sprint-2	Algorithm selection	USN-6	As a user, I can choose the required Algorithm for specific analysis.	5
Sprint-2	Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	10
Sprint-3	Detection and analysis of data	USN-8	As a user, I can detect and visualise the data effectively.	10

Sprint-3	Model building	USN-9	As a user, I can build with the web application	10
Sprint-4	Integrate the web app with the AI model	USN-10	As a user, I can use Flask app to use model easily through web app.	10
Sprint-4	Model deployment	USN-11	As an administrator, I can deploy the AI model in IBM Cloud.	10

Sprint Delivery schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 days	24 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 days	31 Oct 2022	20	05 Nov 2022
Sprint-3	20	6 days	07 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 days	14 Nov 2022	20	19 Nov 2022

Reports from Jira

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit(story points per day)

Average velocity = Sprint duration / velocity

=20/6

Burndown Chart

A burn down chart is a graphical representation of work left to doversus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

CODING & SOLUTIONING

Feature 1

The project focuses on the analysis of intensity of Disaster for giving precautionary measures for the people living in the Danger zone.

It focuses on classifying the type of Disaster which oftenly occurs in that particular zone.

Feature 2

The accuracy of the project is improved more better than the previously submitted models. The accuracy is improved by training and testing more images in the dataset.

TESTING

Test cases

Test	Component	Test Scenario	Expected Result	Actual	Status
Case ID				Result	
TC_001	Home Page	Verify user is able to see	Home page should	Working	Pass
		the Home page	Display	as	
				expected	
	Home Page	Verify the UI elementsin	Application shouldshow	Working	Pass
TC_002		Home page	below UI	as	
			elements: Home	expected	
			page button Intro		
			page buttonOpen		
			webcam button		
TC_003	Home Page	Verify user is able to see	Application shouldshow	Working	Pass
		the cards about Disaster	the cards	as	
			about Disaster.	expected	
TC_004	Home Page	Verify user is able to	Application should	Working	Pass
		navigate to the required	navigate to the Intro	as	
		page	page	expected	
TC_005	Intro Page	Verify user is able to see	Intro page should	Working	Pass
		the Intro page	display	as	
				expected	
TC_006	Intro Page	Verify the UI Elements in	Application shouldshow	Working	Pass
		Intropage	below UI	as	
			elements: Home	expected	
			page Intro page		
			Open webcam		
			button		
TC_007	Intro Page	Verify the user is able to	Application should	Working	Pass
		see the introduction of	show the sentences	as	
		the Disaster	about the Disaster	expected	

TC_008	Intro Page	Verify user is able to	Application should	Workingas	pass
		navigate to the required	navigate to the Open	expected	
		page	webcam page		
TC_009	Webcam	Verify user is able to	Webcam page is	Workingas	pass
	page	see the webcam page	displayed	expected	-
TC_010	Webcam	Verify the Emergency	Application should	Workingas	pass
	page	pull button is visible	show below UI	expected	
		while the webcam is	elements: a.		
		not connected	Emergency pull button		
TC_011	Webcam	Verify user is able to see	Application should	Workingas	pass
	page	the output window	detect the type of	expected	
			Disaster from the real		
			time video		

User Acceptance Testing

It is to briefly explain the test coverage and open issues of the natural disasters intensity analysis and classification using artificial intelligence project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugsat each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	2	3
Duplicate	1	0	0	0	1
External	0	0	0	0	0
Fixed	1	0	0	2	3
Not	0	0	0	3	0
Reproduce					

Skipped	0	0	0	1	1
Won't Fix	0	0	0	0	0
Totals	3	0	0	5	8

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested.

Section	Test Cases	Not Tested	Fail	Pass
Home Page	4	0	0	4
Intro Page	4	0	0	4
Open Webcam		0	0	3
	3			

RESULTS

Performance Metrics

The nature disaster intensity analysis and classification with test data and train data has been executed successfully. The model has been trained over 1000+ images and the model have an accuracy of nearly 99% and the model has been testedwiththe data which is separate from the trained data and has predicted the data well.

Output of application

HOME PAGE

INTRODUCTION PAGE

WEB CAM

DETECTION OF NATURE DISASTER

ADVANTAGES &

DISADVANTAGES

ADVANTAGES

- 1. The proposed model will be used as a real time natural disaster detection model and provide some upcoming predictions for future disasters.
- 2. The model is to detect and classify the type of disaster and The model have a high accuracy rate (99.33).
- 3. The model was used to prevent natural disasters in the future and model can be used to predict future disasters and take some action against heavy loss of human ecological systems and property.
- 4. The proposed system helps to reduce the impact of hazards occur duringnatural disaster. This provides an efficient way to warn and educate people about disaster prone areas.
 - 5. It will help us be prepared in times of disaster.

DISADVANTAGES

- 1. The resultant model unable to validate the model performance under uncontrolled conditions.
 - 2. The model cannot be used for various natural disaster

1 CONCLUSION

It focused how image from given dataset (trained dataset) infield and past data set used predict the pattern of different nature disaster using CNNmodel. In the system had applied different type of CNN compared the accuracy. The natural disaster in Indonesia frequently happened, due to the geographical position of the country. Thus, natural disasters mostly occurred as an impact of the natural condition. However, the weather and climate condition has also influenced and triggered the disasters

FUTURE

SCOPE

In the future, the research will be continued to obtain the data from all over the country, not only west java province, and with the use of more complete analysis, so that the government or related institution could make a better anticipation work as a mitigation effort.

APPENDIX

Inserting necessary libraries

import numpy as np #used for numerical analysis
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.models import Sequential #it is a plain stack of layers from
tensorflow.keras import layers #A layer consists of a tensor-in tensor-
outcomputation function
#Dense layer is the regular deeply connected neural network layer
from tensorflow.keras.layers import Dense,Flatten
#Faltten-used fot flattening the input or change the dimension
$from \ tensor flow. keras. layers \ import\ Conv2D, Max Pooling 2D\ \# \textbf{Convolutional layer}$
#MaxPooling2D-for downsampling the image
from keras.preprocessing.image import ImageDataGenerator
tensorflowversion
tensorflow.kerasversion
Image Data Augumentation
#setting parameter for Image Data agumentation to the training data
train_datagen =

```
ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
#Image Data agumentation to the testing data
test_datagen=ImageDataGenerator(rescale=1./255)
Loading our data and performing Data Augumentation
#performing data agumentation to train data
x train=train datagen.flow from directory(r'C:\Users\rajeshwari\Desktop\IBM
Project\dataset\train_set',target_size=(64, 64),batch_size=5,
                                color_mode='rgb',class_mode='categorical')
#performing data agumentation to test data
x test=test datagen.flow from directory(r'C:\Users\rajeshwari\Desktop\IBM
Project\dataset\test_set',target_size=(64, 64),batch_size=5,
                             color_mode='rgb',class_mode='categorical') print(x_train.class_indices)#checking
the number of classes
print(x_test.class_indices)#checking the number of classes
from collections import Counter asc
c(x_train .labels)
Creating the Model
```

Initializing the CNN

classifier = Sequential()

```
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool size=(2, 2))) classifier.add(Conv2D(32, (3, 3),
input_shape=(64, 64, 3), act
# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))
# input shape is going to be the pooled feature maps from the previous convolution
layer
classifier.add(MaxPooling2D(pool size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), input shape=(64, 64, 3), activation='relu'))
# Flattening the layers
classifier.add(Flatten())
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=4, activation='softmax'))# softmax for more than 2
classifier.summary() #summary of our model#
Compiling the Model
# Compiling the CNN
# categorical crossentropy for more than 2
classifier.compile(optimizer='adam', loss='categorical crossentropy',metrics=['accuracy'])
```

First convolution layer and poolingo

```
# Fitting the Model
classifier.fit generator(
generator=x_train,steps_per_epoch = len(x_train),
epochs=10, validation_data=x_test, validation_steps = len(x_test))# No of images in testset
# Saving the Model
classifier.save('disaster.h5')
model_json = classifier.to json()
with open("model-bw.json", "w") as json file:
json file.write(model json)
# Predicting Results
from tensorflow.keras.models import load_modelfrom
keras.preprocessing import image
model = load_model("disaster.h5") #loading the model for testing
img=image.load_img(r"C:\Users\vasanth\Desktop\IBMProject\dataset\test_set\Cyc
lone\921.jpg",grayscale=False,target_size= (64,64)) #loading of the image\n
x = image.img\_to\_array(img)#image to array\n'',
x = np.expand\_dims(x,axis = 0)#changing the shape\n'',
pred = model.predict_classes(x)#predicting the classes\n'',
```

pred

index=['Cyclone','Earthquake','Flood','Wildfire']

 $result \!\!=\!\! str(index[pred[0]]) \; result$

Links to find files, documents and result related to this project,

GitHub: https://github.com/IBM-EPBL/IBM-Project-8023-1658906361