Section V.0

Observation V.0.1 Several properties of the real numbers, such as commutivity:

$$x + y = y + x$$

also hold for Eudlicean vectors with multiple components:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Activity V.0.2 (~20 min) Consider each of the following properties of the real numbers \mathbb{R}^1 . Label each property as valid if the property also holds for two-dimensional Euclidean vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^2$ and scalars $a, b \in \mathbb{R}$, and invalid if it does not.

1.
$$\vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}}$$
.

2.
$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$$
.

3. There exists some \vec{z} where $\vec{v} + \vec{z} = \vec{v}$.

4. There exists some $-\vec{\mathbf{v}}$ where $\vec{\mathbf{v}} + (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.

5. If $\vec{\mathbf{u}} \neq \vec{\mathbf{v}}$, then $\frac{1}{2}(\vec{\mathbf{u}} + \vec{\mathbf{v}})$ is the only vector equally distant from both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$

6.
$$a(b\vec{\mathbf{v}}) = (ab)\vec{\mathbf{v}}$$
.

7.
$$1\vec{\mathbf{v}} = \vec{\mathbf{v}}$$
.

8. If $\vec{\mathbf{u}} \neq \vec{\mathbf{0}}$, then there exists some scalar c such that $c\vec{\mathbf{u}} = \vec{\mathbf{v}}$.

9.
$$a(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = a\vec{\mathbf{u}} + a\vec{\mathbf{v}}$$
.

10.
$$(a+b)\vec{\mathbf{v}} = a\vec{\mathbf{v}} + b\vec{\mathbf{v}}$$
.

Definition V.0.3 A vector space V is any collection of mathematical objects with associated addition \oplus and scalar multiplication \odot operations that satisfy the following properties. Let $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ belong to V, and let a, b be scalar numbers.

•
$$\vec{\mathbf{u}} \oplus (\vec{\mathbf{v}} \oplus \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) \oplus \vec{\mathbf{w}}.$$

$$\bullet \ \vec{\mathbf{u}} \oplus \vec{\mathbf{v}} = \vec{\mathbf{v}} \oplus \vec{\mathbf{u}}.$$

• There exists some
$$\vec{z}$$
 where $\vec{v} \oplus \vec{z} = \vec{v}$.

• There exists some
$$-\vec{\mathbf{v}}$$
 where $\vec{\mathbf{v}} \oplus (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.

•
$$a \odot (b \odot \vec{\mathbf{v}}) = (ab) \odot \vec{\mathbf{v}}.$$

•
$$1 \odot \vec{\mathbf{v}} = \vec{\mathbf{v}}$$
.

•
$$a \odot (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) = a \odot \vec{\mathbf{u}} \oplus a \odot \vec{\mathbf{v}}$$
.

•
$$(a+b)\odot \vec{\mathbf{v}} = a\vec{\mathbf{v}} \oplus b\vec{\mathbf{v}}.$$

Every Euclidean vector space

$$\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \middle| x_1, x_2, \dots, x_n \in \mathbb{R} \right\}$$

satisfies all eight requirements for the usual definitions of addition and scalar multiplication, but we will also study other types of vector spaces.