Problems solved using LINDO.

Production Planning (tomatoes):

```
MAX = 0.082 * AW + 0.082 * BW + 0.066 * AJ + 0.066 * BJ + 0.074 * AP + 0.074 * BP;

AW - 3 * BW > 0;

3 * AJ - BJ > 0;

AW + BW < 14400000;

AJ + BJ < 1000000;

AP + BP < 20000000;

AW + AJ + AP < 600000;

BW + BJ + BP < 2400000;
```

Results:

Global optimal solution found. Objective value:

225200.0

5

Total solver iterations:

Variable	able Value Reduced Cost	
AW	525000.0	0.00000
BW	175000.0	0.00000
AJ	75000.00	0.00000
BJ	225000.0	0.00000
AP	0.00000	0.3200000E-01
BP	2000000.	0.00000
Row	Slack or Surplus	Dual Price
1	225200.0	1.000000
2	0.00000	-0.800000E-02
3	0.00000	-0.800000E-02
4	0.1370000E+08	0.00000
5	700000.0	0.00000
6	0.00000	0.1600000E-01
7	0.000000	0.900000E-01
8	0.000000	0.5800000E-01

- 1. Red Brand Canners should produce 525,000+175,000=700000/18=38,887 cases of canned whole, 75,000+225,000=300000/20=15,000 cases of tomato juice, and 2,000,000 cases of tomato paste. Net profit is 1.48*38887+1.32*15000+1.85*2,000,000=\$3,777,352.76.
- 2. Since dual price for row 7 is \$0.09, we determine that it is profitable for them to buy at least some of the additional Grade A lot. The sensitivity output:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
AW	0.8200000E-01	0.1546667	0.2133333E-01
BW	0.8200000E-01	0.4640000	0.2133333E-01

AJ	0.6600000E-01	0.2133333E-01	0.1546667
BJ	0.6600000E-01	0.142222E-01	0.5155556E-01
AP	0.7400000E-01	0.3200000E-01	INFINITY
BP	0.7400000E-01	INFINITY	0.1600000E-01

Righthand Side Ranges

Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
2	0.0	466666.7	600000.0
3	0.0	1400000.	200000.0
4	0.1440000E+08	INFINITY	0.1370000E+08
5	1000000.	INFINITY	700000.0
6	2000000.	200000.0	466666.7
7	600000.0	600000.0	466666.7
8	2400000.	466666.7	200000.0

From this we see that it is profitable for up to 600,000 lbs of Grade A tomatoes, so we recommend that they buy the entire lot of 80,000.

Dynamics of Toy Train:

```
MIN = y + 0.01 * z;
x1_1 - 1 > -y;
x1_1 - 1 < y;
u_2 - u_1 > -z;
u_2 - u_1 < z;
x1_2 - 2 > -y;
x1_2 - 2 < y;
u_3 - u_2 > -z;
u_3 - u_2 < z;
x1_3 - 3 > -y;
x1_3 - 3 < y;
u_4 - u_3 > -z;
u_4 - u_3 < z;
x1_4 - 4 > -y;
x1_4 - 4 < y;
u_5 - u_4 > -z;
u_5 - u_4 < z;
x1_1 = 0.048374 * u_1;
x1_2 = x1_1 + 0.95163 * x2_1 + 0.048374 * u_2;
x1_3 = x1_2 + 0.95163 * x2_2 + 0.048374 * u_3;
x1_4 = x1_3 + 0.95163 * x2_3 + 0.048374 * u_4;
x1_5 = 5;
x2_1 = 0.95163 * u_1;
x2_2 = 0.90484 * x2_1 + 0.95163 * u_2;
x2_3 = 0.90484 * x2_2 + 0.95163 * u_3;
x2_4 = 0.90484 * x2_3 + 0.95163 * u_4;
x2_5 = 0;
```

@FREE(u_1);
@FREE(u_2);
@FREE(u_3);
@FREE(u_4);
@FREE(u_5);

Results for c = 0.01:

Objective value:

0.8983354

Variable	Value	Reduced Cost
Y	0.8514394	0.00000
Z	4.689601	0.00000
X1_1	0.1485606	0.00000
U_2	-1.618517	0.00000
U_1	3.071084	0.00000
X1_2	2.851439	0.00000
U_3	-1.049907	0.00000
X1_3	3.851439	0.00000
U_4	0.000000	0.00000
X1_4	3.851439	0.00000
U_5	4.689601	0.00000
X2_1	2.922536	0.00000
X2_2	1.104198	0.00000
X2_3	0.000000	0.5025365E-03
X1_5	5.000000	0.00000
X2_4	0.000000	0.00000
X2_5	0.000000	0.00000

Results for c = 0.1:

Objective value:

0.9656577

Variable	Value	Reduced Cost
Y	0.9488806	0.000000
Z	0.1677710	0.000000
X1_1	0.5111943E-01	0.000000
U_2	0.8889833	0.000000
U_1	1.056754	0.000000
X1_2	1.051119	0.000000
U_3	0.7212123	0.000000
X1_3	2.756999	0.000000
U_4	0.5534413	0.000000
X1_4	4.948881	0.000000
U_5	0.7212123	0.000000
X2_1	1.005639	0.000000
X2_2	1.755926	0.000000
X2_3	2.275159	0.000000
X1_5	5.000000	0.000000
X2_4	2.585326	0.000000
X2_5	0.000000	0.000000

Results for c = 0.001:

Objective value:

0.8545683

Variable	Value	Reduced Cost
Y	0.8486068	0.00000
Z	5.961462	0.00000
X1_1	0.1513932	0.00000
U_2	-2.831823	0.00000
U_1	3.129639	0.00000
X1_2	2.848607	0.00000
U_3	0.3326581	0.00000
X1_3	2.864699	0.00000
U_4	-0.3010023	0.00000
X1_4	3.151393	0.00000
U_5	5.660460	0.000000
X2_1	2.978259	0.00000
X2_2	0.000000	0.1413404E-02
X2_3	0.3165674	0.00000
X1_5	5.000000	0.00000
X2_4	0.000000	0.00000
X2_5	0.000000	0.00000

Graph:

From the graph, it appears that the c=0.01 solution is the best compromise between accuracy and smoothness.

Regression Analysis:

1. Chebychev Norm $(p = \infty)$:

```
MIN = e;

B * 0 + a + e > 1;

B * 0 + a - e < 1;

B * 1.5 + a + e > 1.8;

B * 1.5 + a - e < 1.8;

B * 2.5 + a + e > 1.3;

B * 2.5 + a - e < 1.3;

B * 4.3 + a + e > 2.2;

B * 4.3 + a - e < 2.2;

B * 5.9 + a + e > 3.1;

B * 5.9 + a - e < 3.1;

B * 7.5 + a + e > 3.3;

B * 7.5 + a - e < 3.3;

B * 9.4 + a - e < 2.8;
```

Results:

Reduced Cost	Value	Variable
0.000000	0.5304348	E
0.000000	0.2173913	В
0.00000	1.286957	Α

Minimum Absolute Value (p = 1):

```
MIN = e1p + e1m + e2p + e2m + e3p + e3m + e4p + e4m + e5p + e5m + e6p + e6m + e7p + e7m;
B * 0 + a + e1p - e1m = 1;
B * 1.5 + a + e2p - e2m = 1.8;
B * 2.5 + a + e3p - e3m = 1.3;
B * 4.3 + a + e4p - e4m = 2.2;
B * 5.9 + a + e5p - e5m = 3.1;
B * 7.5 + a + e6p - e6m = 3.3;
B * 9.4 + a + e7p - e7m = 2.8;
```

Results:

Variable	Value	Reduced Cost	
E1P	0.000000	1.302326	
E1M	0.000000	0.6976744	
E2P	0.3813953	0.000000	
E2M	0.000000	2.000000	
E3P	0.000000	2.000000	
E3M	0.3976744	0.000000	
E4P	0.000000	1.697674	
E4M	0.000000	0.3023256	
E5P	0.4534884	0.000000	
E5M	0.000000	2.000000	
E6P	0.2069767	0.000000	
E6M	0.000000	2.000000	
E7P	0.000000	2.000000	
E7M	0.8232558	0.000000	
В	0.2790698	0.000000	
A	1.000000	0.000000	

For Least-Squares Analysis, after setting up the problem using the LINEST function, I get results: y = 0.2331x + 1.1787. Data graph:

2. All reduced costs are > 0, so solutions are unique.