

Ebola virus sequencing protocol

Nanopore | amplicon | native barcoding

Document: ARTIC-EBOV-seqSOP-fr-v2.0.0

Oreation Date: 2019-12-06

Revision Date: 2019-12-06

Forked from: doi:10.1038/nprot.2017.066

Author: Luke Meredith, Josh Quick

Licence: Creative Commons Attribution 4.0 International License

Overview: Le protocole suivant est adapté de la méthode présentée dans Quick et al. (2017) *Nature Protocols* **12:** 1261–1276 doi:10.1038/nprot.2017.066 et traite des amorces, de la préparation et purification des amplicons, puis utilise un protocole tube-unique pour ligaturer la librairie avant de séquencer sur minION.

Ce document fait partie de la collection sur le protocole de séquençage du virus Ebola par Nanopore :

http://artic.network/ebov/

Documents:

Plan des amorces Ebola:

https://github.com/artic-network/primer-schemes/tree/master/ZaireEbola/V3 2

Protocole de séquençage du virus Ebola par Nanopore :

http://artic.network/ebov/ebov-seq-sop.html 2

Ebola virus Nanopore sequencing kit-list:

http://artic.network/ebov/ebov-seq-kit.html 2

Funded by the Wellcome Trust

Collaborators Award 206298/Z/17/Z --- ARTIC network (artic.network)

Préparation

Equipements nécessaires :

- 2 Hotte portative de préparation d'acides nucléiques ou équivalent
- 1 vortex 12V
- 1 Centrifugeuse portable Sprout
- 1 Pipette Eppendorf P1000
- 1 Pipette Eppendorf P100
- 1 Pipette Eppendorf P10
- 1 Support convertible de tubes 1.5mL/0.6mL
- 1 Fluoromètre Quantus
- 1 Machine miniPCR.
- 1 Bloc chauffant
- 1 Support magnétique

Consommables nécessaires :

Reverse Transcriptase SuperScript IV

Q5 Hot Start High-Fidelity 2X Master Mix

Amorces Ebola Zaire V3

NEBNext Ultra II End Repair/dA-Tailing Module

Blunt/TA Ligase Master Mix

Aline PCRCLEAN DX 50ml

Nanopore Ligation Sequencing Kit 1D

Nanopore Native Barcoding Expansion Kit

Nanopore R9.4.1 Flow cell

Tubes Eppendorf 1.5mL

Barettes de 8-tubes 0.2mL

Tubes Falcon 50mL

Tubes PCR 0.5ml

Système QuantiFluor ONE dsDNA

Eau Nuclease-free

Ethanol à 70%

Cônes de pipette P1000

Cônes de pipette P100

Cônes de pipette P10 long (long-reach)

Papier absorbant

Conteneurs de déchets médicaux tranchants

Recommandations de sécurité, de confinement et de contamination

Robe de laboratoire hydrophobe à nouer dans le dos

Gants

Stérilisateurs à lumière UV

Lingettes de décontamination MediPal

Réactifs DNAway and RNAse Zap

Protocole

Partie 1 : Synthèse d'ADNc avec la reverse transcriptase Superscript IV

NOTE SUR LA PRÉPARATION DE LA HOTTE: Pour prévenir les contaminations croisées de l'échantillon ou d'autres réactifs, cette étape doit être effectuée dans la HOTTE DE PRÉPARATION D'ÉCHANTILLONS, qui est préstérilisée aux UV et traitée avec des lingettes MediPal, et les réactifs DNAway et RNAseZap. Nettoyer la hotte avec chacun des produits séquentiellement, avec 5 minutes de séchage entre passages. Les pipettes doivent aussi être traitées de la même manière, et exposées aux UV pendant 30 minutes entre chaque préparation de librairies.

1. Préparer la réaction suivante :

50μM hexamères aléatoires (random hexamers) 1μL

 $\begin{array}{ll} \mbox{10mM dNTPs mix (10mM chacun)} & \mbox{1}\mu\mbox{L} \\ \mbox{Matrice RNA} & \mbox{11}\mu\mbox{L} \\ \mbox{TOTAL} & \mbox{12}\mu\mbox{L} \end{array}$

NOTE: L'ARN viral d'origine d'un échantillon clinique doit être compris entre un Ct de 18 à 35. Si le Ct est entre 12 et 15, alors diluer l'échantillon d'un facteur 100 dans l'eau; si le Ct est entre 15 et 18, alors diluer d'un facteur 10 dans l'eau. Cette dilution réduira le risque d'une inhibition de la PCR.

- 1. Mélanger doucement (éviter de vortexer) puis centrifuger brièvement le tube pour assurer un contact maximum avec le thermocycleur.
- 2. Incuber la réaction comme suit :

Dénaturation 65°C 5 mins Hybridation des amorces Glace 1 min

3. Ajouter ce qui suit à la matrice ADN hybridée :

Tampon (Buffer) SSIV 4μL

100mM DTT 1µL
RNaseOUT RNase Inhibitor 1µL
SSIV Reverse Transcriptase 1µL
TOTAL 20µL

- 4. Mélanger doucement (éviter de vortexer) puis centrifuger brièvement le tube pour assurer un contact maximum avec le thermocycleur.
- 5. Incuber la réaction comme suit :

Extension 42°C 90 mins Inactivation 70°C 10 mins

6. L'ADNc est maintenant prêt pour la synthèse des amplicons.

Partie 2 : Préparation des amplicons d'Ebola

NOTE SUR LA PRÉPARATION DE LA HOTTE: Pour prévenir les contaminations croisées de l'échantillon ou d'autres réactifs, cette étape doit être effectuée dans la HOTTE DE MASTERMIX, qui est pré-stérilisée aux UV et traitée avec des lingettes MediPal, et les réactifs DNAway et RNAseZap. Nettoyer la hotte avec chacun des produits séquentiellement, avec 5 minutes de séchage entre passages. Les pipettes doivent aussi être traitées de la même manière, et exposées aux UV pendant 30 minutes entre chaque préparation de librairies.

Dilution des amorces et préparation

- 1. Les amorces Ebola de ce protocole ont été préparées grâce à Primal Scheme ☑ et génèrent des amplicons chevauchant de 400 nt. Les noms des amorces et leur dilution est listée dans le tableau suivant.
- 2. Les amorces doivent être préparée et aliquotées AVANT LE DÉPART dans une ENCEINTE PCR STÉRILE. Les amorces ou les réactifs de PCR ne doivent JAMAIS être placés près des matrices ou des amplicons avant usage.
- 3. Resuspendre les amorces lyophilisées à une concentration de 100µM chacun.
- 4. Générer les stocks de pool d'amorces en ajoutant 5μL de chaque paire d'amorces dans un tube Eppendorf de 1.5mL étiquetée "Pool 1, 100μΜ" ou "Pool 2, 100μΜ". Le volume total doit être de 505μL pour le Pool 1 et 530μL pour le Pool 2. Ceci est un stock de chaque pool d'amorces à une concentration de 10X.
- 5. Diluer d'un facteur 10 ce pool d'amorces dans de l'eau de grade moléculaire pour générer les stocks d'amorces à 10µM. Il est recommandé que plusieurs aliquots de chaque pool d'amorces soient préparés afin de tenir compte des risques de dégradation ou de contamination.

Nom	Séquence	Nom Séquence		Mélange	[Stock]
Ebov-10- Pan_1_LEFT	TGTGTGCGAATAACTATGAG- GAAGA	Ebov-10- Pan_1_RIGHT	TTTCCAATGTTTTACCCCAAGCTTT	1	100μΜ
		Ebov-10- Pan_1_RIGHT_alt1	TTTCCAATGCTTTACCCCAAGCTTT	1	100μΜ
		Ebov-10- Pan_1_RIGHT_alt2	TTTCCAATGTTTTACCCCAAGTTTT	1	100μΜ
Ebov-10- Pan_2_LEFT	CAAGCAAGATTGAGAATTAACCT- TGGT	Ebov-10- Pan_2_RIGHT	ATCTCCCTGGTACGCATGATGA	2	100μΜ
Ebov-10- Pan_2_LEFT_alt1	CAAGCAAGATTGAGAATTAACCT- TGAT	Ebov-10- Pan_2_RIGHT_alt1	ATCTCCTTGGTACGCATGATGA	2	100μΜ
Ebov-10- Pan_3_LEFT	GGCCTTTGAAGCAGGTGTTGAT	Ebov-10- Pan_3_RIGHT	TCAGTCCTTGCTCTGCATGTAC	1	100μΜ
Ebov-10- Pan_4_LEFT	CCTTTGCAAGTCTATTCCTTCCGA	Ebov-10- Pan_4_RIGHT	CTGAGTGCAGCCTTAAAGGAGT	2	100μΜ
Ebov-10- Pan_4_LEFT_alt1	CTTTTGCAAGTCTATTCCTTCCGA			2	100μΜ
Ebov-10- Pan_5_LEFT	AGTTCGTCTCCATCCTCTTGCA	Ebov-10- Pan_5_RIGHT	CTGGAAGCTGATTTCGTTCTTTTCT	1	100μΜ
Ebov-10- Pan_6_LEFT	GAGTCTCGCGAACTTGACCATC	Ebov-10- Pan_6_RIGHT	TCCTCGTCGTCCTCGTCTAGAT	2	100μΜ
Ebov-10- Pan_6_LEFT_alt1	GAATCTCGCGAACTTGACCATC	Ebov-10- Pan_6_RIGHT_alt1	TCCTCATCGTCCTCGTCTAGAT	2	100μΜ
Ebov-10- Pan_7_LEFT	AGCTACGGCGAATACCAGAGTT	Ebov-10- Pan_7_RIGHT	GTCCCTGTCCTGCTCTTCATCA	1	100μΜ
		Ebov-10- Pan_7_RIGHT_alt1	GTCCCTGTCCTGTTCTTCATCA	1	100µM
		Ebov-10- Pan_7_RIGHT_alt2	GTCCCTGTCCTGTTCTTCATCG	1	100μΜ
Ebov-10- Pan_8_LEFT	TTAACGAAGAGGCAGACCCACT	Ebov-10- Pan_8_RIGHT	TTCCTCTTCAAGGGAGTCTGGA	2	100μΜ
Ebov-10- Pan_8_LEFT_alt1	TCAACGAAGAGGCAGACCCACT	Ebov-10- Pan_8_RIGHT_alt1	TTCCTCTTCAAGGGAGTCCGGA	2	100μΜ
Ebov-10- Pan_9_LEFT	GTGACAACACCCAGTCAGAACA	Ebov-10- Pan_9_RIGHT	TCTTCCTGTTTTCGTTCCTTGACT	1	100μΜ
Ebov-10- Pan_9_LEFT_alt1	GTGACAACACCCAGCCAGAACA	Ebov-10- Pan_9_RIGHT_alt1	TCTTCCTGTTTGCGTTCCTTGACT	1	100μΜ
		Ebov-10- Pan_9_RIGHT_alt2	TCTTCCTGTTTGCGTTTCTTGACT	1	100μΜ
Ebov-10- Pan_10_LEFT	ACAATGGGATGATTCAACCGACA	Ebov-10- Pan_10_RIGHT	TCGAGTGCTAGAGAATTCAATTGACG	2	100μΜ
Ebov-10- Pan_10_LEFT_alt1	ATAATGGGATGATTTAACCGACA			2	100μΜ
Ebov-10- Pan_11_LEFT	ACCTACTAGCCTGCCCAACATT	Ebov-10- Pan_11_RIGHT	AATTGGGTCCGTTTGGGTTTGA	1	100μΜ
Ebov-10- Pan_11_LEFT_alt1	ACCTACTAGCCTACCCAACATT	Ebov-10- Pan_11_RIGHT_alt1	AATTGGATCCGTTTGGGTTTGA	1	100μΜ
Ebov-10- Pan_12_LEFT	CCCAAATGCAACAAACGAAGCC	Ebov-10- Pan_12_RIGHT	TCAATCTTACCCCGAATCGCAC	2	100μΜ
Ebov-10- Pan_12_LEFT_alt1	CCCAAATGCAACAAACAAAGCC	Ebov-10- Pan_12_RIGHT_alt1	TCAATCTTACCCCGAATTGCAC	2	100μΜ
Ebov-10- Pan_13_LEFT	TATTGGGCCGAACATGGTCAAC	Ebov-10- Pan_13_RIGHT	TGACAGGTGGAGCAGCATCTTG	1	100μΜ
Ebov-10- Pan_13_LEFT_alt1	TATTGGGCTGAACATGGTCAAC			1	100μΜ
Ebov-10- Pan_14_LEFT	CATTCATGCTGAGTTCCAGGCC	Ebov-10- Pan_14_RIGHT	GCGAGATATGAACAATTTTATCTTG-GTCG	2	100μΜ
		Ebov-10- Pan_14_RIGHT_alt1	GCGAGATAAGGACAATTTTATCTTG-GTCG	2	100μΜ
		Ebov-10- Pan_14_RIGHT_alt2	GCGAGATAAGAACAATTTTATCTTG-GTCG	2	100μΜ
Ebov-10- Pan_15_LEFT	TGAGTATCAGCCCTGGATAATA- TAAGTCA	Ebov-10- Pan_15_RIGHT	TCGATGGAGTGTCCCCATTGAC	1	100μΜ
Ebov-10- Pan_15_LEFT_alt1	TGAGTATCAGCCCTAGATAATA- TAAGTCA	Ebov-10- Pan_15_RIGHT_alt1	TCGATGGAGTGTCTCCATTGAC	1	100μΜ

Nom	Séquence	Nom	Séquence	Mélange	[Stock]
Ebov-10- Pan_16_LEFT	GCAACAGCAATACAGGCTTCCT	Ebov-10- Pan_16_RIGHT	GAAAGCCTGGTTTCCAATTCGC	2	100μΜ
Ebov-10- Pan_16_LEFT_alt1	GCAACAACAATACAGGCTTCCT	Ebov-10- Pan_16_RIGHT_alt1	GAAGGCCTGGTTTCCAATTCGC	2	100μΜ
Ebov-10- Pan_17_LEFT	CCACTTGTCAGAGTCAATCGGC	Ebov-10- Pan_17_RIGHT	GTTTCTGGCACTTCGATTCCCA	1	100μΜ
		Ebov-10- Pan_17_RIGHT_alt1	GTTTCTGGCACTTCGATACCCA	1	100μΜ
Ebov-10- Pan_18_LEFT	AAAATCCAAGCAATAAT- GACTTCACTCC	Ebov-10- Pan_18_RIGHT	TTGATCAATTAAAAGT- GTCTCCTCTAATGG	2	100μΜ
		Ebov-10- Pan_18_RIGHT_alt1	TCGAT- CAATTTAAAGTATCTCCTCTAATGG	2	100μΜ
		Ebov-10- Pan_18_RIGHT_alt2	TTGATCAAT- TAAAAGTATCTCCTCTAATAG	2	100μΜ
Ebov-10- Pan_19_LEFT	AGATCCAGTTTTATAGAATCTTCT-CAGGGA	Ebov-10- Pan_19_RIGHT	AGAAGGGCAATGTCTGTACTTGG	1	100μΜ
Ebov-10- Pan_19_LEFT_alt1	AGATCCAGTTTTACAGAATCTTCT-CAGGGA	Ebov-10- Pan_19_RIGHT_alt1	AGAAGGGCGATGTCTGTGCTTGG	1	100μΜ
Ebov-10- Pan_20_LEFT	AGCCAGTGTGACTTGGATTGGA	Ebov-10- Pan_20_RIGHT	AGTTTGTCGACATCACTAACCTGT	2	100μΜ
		Ebov-10- Pan_20_RIGHT_alt1	AGTTTGTCGACATCACTAACTTGT	2	100μΜ
Ebov-10- Pan_21_LEFT	AGAACATTTTCCATCCCACTTGGA	Ebov-10- Pan_21_RIGHT	AAGCACCCTCTTTATGGAAGGC	1	100μΜ
		Ebov-10- Pan_21_RIGHT_alt1	AAGCACCCTCTTTGTGGAAGGC	1	100μΜ
Ebov-10- Pan_22_LEFT	TGCCGGTATGTGCACAAAGTAT	Ebov-10- Pan_22_RIGHT	ATATATTGTCTCATTCAGCTGGAGCA	2	100μΜ
Ebov-10- Pan_23_LEFT	CGAGGTTGACAATTTGACCTACGT	Ebov-10- Pan_23_RIGHT	GCAAGGGTTGTTAGATGCGACA	1	100μΜ
		Ebov-10- Pan_23_RIGHT_alt1	GCAAGGGTTGTCAGATGCGACA	1	100μΜ
Ebov-10- Pan_24_LEFT	TGCAATGGTTCAAGTGCACAGT	Ebov-10- Pan_24_RIGHT	CTGGCACTCTCTTCTCCGGTAT	2	100μΜ
Ebov-10- Pan_24_LEFT_alt1	TGCAATGGTTCAAGTGCACAAT			2	100μΜ
Ebov-10- Pan_25_LEFT	ACCACAACAAGTCCCCAAAACC	Ebov-10- Pan_25_RIGHT	TAGCTCAGTTGTGGCTCTCAGG	1	100μΜ
		Ebov-10- Pan_25_RIGHT_alt1	TAGCTCGGTTGTGGCTCTCAGG	1	100μΜ
Ebov-10- Pan_26_LEFT	ATCTGTGGGTTGAGACAGCTGG	Ebov-10- Pan_26_RIGHT	GCTTTTCCATGAAGCAATCTGAAGA	2	100μΜ
Ebov-10- Pan_26_LEFT_alt1	ATCTGTGGATTGAGGCAGCTGG	Ebov-10- Pan_26_RIGHT_alt1	GCTTTGCCATGAAGCAATCTGAAGA	2	100μΜ
Ebov-10- Pan_26_LEFT_alt2	ATCTGTGGGTTGAGGCAGCTGG			2	100μΜ
Ebov-10- Pan_27_LEFT	TGGAGTTACAGGCGTTATAAT- TGCA	Ebov-10- Pan_27_RIGHT	AAAGGCTTCTTTCCCTTGTCACT	1	100μΜ
Ebov-10- Pan_28_LEFT	TCATCCTTGATTCTACAATCAT-GACAGT	Ebov-10- Pan_28_RIGHT	AGGTGCTGGAGGAACTGTTAATG	2	100μΜ
Ebov-10- Pan_28_LEFT_alt1	TCATCCTTGATTCTACAAT- CATAACAGT			2	100μΜ
Ebov-10- Pan_29_LEFT	GAGTACCGTCAATCAAGGAGCG	Ebov-10- Pan_29_RIGHT	CACAGCACATAGAGTCAACAATGC	1	100μΜ
Ebov-10- Pan_30_LEFT	GATCAAGACGGCAGAACACTGG	Ebov-10- Pan_30_RIGHT	ATCAGACCATGAGCATGTCCCC	2	100μΜ
Ebov-10- Pan_31_LEFT	CTGCTGTCGTTGTTTCAGGGTT	Ebov-10- Pan_31_RIGHT	ATGGGATGGATCGTTGCTACCT	1	100μΜ
		Ebov-10- Pan_31_RIGHT_alt1	ATGGGATGGATCGTTGCTGCCT	1	100μΜ
		Ebov-10- Pan_31_RIGHT_alt2	ATGAGATGGATCGTTGCTACCT	1	100μΜ
Ebov-10- Pan_32_LEFT	GCCAAGCATACCTCTTGCACAA	Ebov-10- Pan_32_RIGHT	TGGACTACCCTGAAATAGTACTTTGC	2	100μΜ

Nom	Séquence	Nom	Séquence	Mélange	[Stock]
Ebov-10- Pan_33_LEFT	TGCGGAGGTCT- GATAAGAATAAACC	Ebov-10- Pan_33_RIGHT	TTCAACCTTGAAACCTTGCGCT	1	100µM
		Ebov-10- Pan_33_RIGHT_alt1	TTCAACTTTGAAACCTTGCGCT	1	100μΜ
Ebov-10- Pan_34_LEFT	GCTGAAAAGAAGCT- TACCTACAACG	Ebov-10- Pan_34_RIGHT	TCCTTGTCATTGACCATGCAGG	2	100μΜ
Ebov-10- Pan_34_LEFT_alt1	GTTGAAAAAAG- GCCTACCTACAACG			2	100μΜ
Ebov-10- Pan_34_LEFT_alt2	GCTGAAAAGAAGC - CCACCTACAACG			2	100μΜ
Ebov-10- Pan_35_LEFT	GTGACTCACAAAGGAATGGCCC	Ebov-10- Pan_35_RIGHT	ACAATCCGTTGTAGTTCACGACA	1	100μΜ
		Ebov-10- Pan_35_RIGHT_alt1	ACAACCCGTTGTAGTTCACGACA	1	100μΜ
Ebov-10- Pan_36_LEFT	TGCTGTCGTTGATTCGATCCAA	Ebov-10- Pan_36_RIGHT	AGCAGAGATGTCAAGATAACTAT- TGAGT	2	100μΜ
Ebov-10- Pan_37_LEFT	ACACGAATGCAAAGTTTGATTCT- TGA	Ebov-10- Pan_37_RIGHT	TGAAACCTAACACATGTGACCTGC	1	100μΜ
		Ebov-10- Pan_37_RIGHT_alt1	TGAAACCTAACACACGTGACCTGC	1	100µM
Ebov-10- Pan_38_LEFT	CCCTCAAACAA- GAGATTCCAAGACA	Ebov-10- Pan_38_RIGHT	ACAGTTGCGTAGTTGCGGATTA	2	100μΜ
Ebov-10- Pan_38_LEFT_alt1	CCCTCAAATAA- GAGATTCCAAGACA			2	100μΜ
Ebov-10- Pan_38_LEFT_alt2	TCCTCAAATAA- GAGATTCCAAGACA			2	100μΜ
Ebov-10- Pan_39_LEFT	ACCTAGTCACTAGAGCTTGCGG	Ebov-10- Pan_39_RIGHT	ACATTTGATGTAAAAATTCATTGC- CCTG	1	100μΜ
Ebov-10- Pan_40_LEFT	GTGGGTGCTCAAGAAGACTGTG	Ebov-10- Pan_40_RIGHT	TGAGATTAGAGTTGTGT- TGAATCGACA	2	100μΜ
Ebov-10- Pan_40_LEFT_alt1	GTGGGTGCTCAAGAGGACTGTG	Ebov-10- Pan_40_RIGHT_alt1	TGAGATTAGAGTCGTGT- TGAATCGACA	2	100µM
Ebov-10- Pan_41_LEFT	AAGAAGCGGTTCAAGGGCATAC	Ebov-10- Pan_41_RIGHT	CTATGGAATTCACGGATCTTTTGAGC	1	100μΜ
Ebov-10- Pan_41_LEFT_alt1	AAGAAGCAGTTCAAGGGCATAC	Ebov-10- Pan_41_RIGHT_alt1	CTATGGAATTCACGGATCTTTTGATC	1	100μΜ
Ebov-10- Pan_42_LEFT	TGCATTTAGCTGTAAATCACAC- CCT	Ebov-10- Pan_42_RIGHT	AATCATTGGCAACGGAGGGAAT	2	100µM
		Ebov-10- Pan_42_RIGHT_alt1	AATCATTGGCAACGGGGGGAAT	2	100µM
Ebov-10- Pan_43_LEFT	GTCAAGGATCTTGGTACAGTGT- TACT	Ebov-10- Pan_43_RIGHT	TGAGAAAGAAAAGTTCCGATATTGT- GGT	1	100µM
Ebov-10- Pan_43_LEFT_alt1		Ebov-10- Pan_43_RIGHT_alt1	TGAGAAAGAAAAATTCCGGTATTGT- GGT	1	100µM
Ebov-10- Pan_43_LEFT_alt2	GTCAAGGGTCTTGGTACAGTGT- TACT	Ebov-10- Pan_43_RIGHT_alt2	TGAGAAAGAAAAATTCCGATATTGT- GGT	1	100μΜ
Ebov-10- Pan_44_LEFT	TTGAGAAT- GTTCTTTCCTACGCACA	Ebov-10- Pan_44_RIGHT	ACGGTTGCAATATTCTATAAAAGGT-GC	2	100μΜ
	TTGAGAAT- GTTCTTTCCTACGCGCA	Ebov-10- Pan_44_RIGHT_alt1	ACGGTTGCAATATTCGATAAAAGGT-GC	2	100μΜ
		Ebov-10- Pan_44_RIGHT_alt2	ACGGTTACAATATTCTATAAAAGGT-GC	2	100μΜ
Ebov-10- Pan_45_LEFT	CCACAGTTAGAGGGAGTAGCTTTG	Ebov-10- Pan_45_RIGHT	GCTCGTCTGCGTCAGTCTCTAA	1	100μΜ
Ebov-10- Pan_45_LEFT_alt1	CCACAGTTAGAGGGAGTAGTTTTG			1	100μΜ
Ebov-10- Pan_46_LEFT	AAGTTACGCTCAGCTGTGATGG	Ebov-10- Pan_46_RIGHT	ATGGAAAGCTGCGGTTATCCTG	2	100μΜ
Ebov-10- Pan_47_LEFT	TAGGCACTGCTTTTGAGCGATC	Ebov-10- Pan_47_RIGHT	CACAAAGTCAATGGCAGTGCAG	1	100μΜ
Ebov-10- Pan_47_LEFT_alt1	TAGGCACCGCTTTTGAGCGGTC			1	100μΜ
Ebov-10- Pan_47_LEFT_alt2	TAGGCACTGCTTTTGAACGATC			1	100μΜ

Nom	Séquence	Nom	Séquence	Mélange	[Stock]
Ebov-10- Pan_48_LEFT	TCTCCGAATGATTGAGATGGAT- GATT	Ebov-10- Pan_48_RIGHT	CTCAGTCTGTCCAAAACCGGTG	2	100µM
Ebov-10- Pan_48_LEFT_alt1	TCTCCGAATGATTGGGATGGAT- GATT			2	100μΜ
Ebov-10- Pan_49_LEFT	GATATCTTTTCACGCACGCCGA	Ebov-10- Pan_49_RIGHT	CCACCTGGTTGCTTTGCATTTG	1	100µM
Ebov-10- Pan_49_LEFT_alt1	GATATCTTTTCACGCACGCCCA	Ebov-10- Pan_49_RIGHT_alt1	CCACCAGGTTGCTTTGCATTTG	1	100μΜ
Ebov-10- Pan_50_LEFT	TCAAAGTGTTTTGGCTGAAACCCT	Ebov-10- Pan_50_RIGHT	TCCTGAGTAATGTGAAGGGGTCA	2	100µM
Ebov-10- Pan_50_LEFT_alt1	TCAAAGTGGTTTGGCTGAAACCCT	Ebov-10- Pan_50_RIGHT_alt1	TCCTGAGTAATGTGAAGGAGTCA	2	100µM
Ebov-10- Pan_51_LEFT	AACAGTGACTTGCTAATAAAAC- CATTTTTG	Ebov-10- Pan_51_RIGHT	AAATACTGAGCTGGTACTTCCCG	1	100µM
Ebov-10- Pan_51_LEFT_alt1	AACAGTGACTTGCTAATAAAGC- CATTTTTG			1	100µM
Ebov-10- Pan_51_LEFT_alt2	AACAGTGATTTGCTAATAAAAC- CATTTTTG			1	100μΜ
Ebov-10- Pan_52_LEFT	AATCGTGCTCACCTTCATCTAACT	Ebov-10- Pan_52_RIGHT	CCCAAAACTGTACAGAAGTCCTATCT	2	100μΜ
Ebov-10- Pan_53_LEFT	ACAGACCCAATTAGCAGTGGAGA	Ebov-10- Pan_53_RIGHT	ACAATTGTTCCGCGATTAAT- TATCCAT	1	100µM
Ebov-10- Pan_53_LEFT_alt1	ACAGACCCAATTAGCAGCGGAGA	Ebov-10- Pan_53_RIGHT_alt1	ACAATTGTTCCGCGATTAAT- TATCCACT	1	100µM
Ebov-10- Pan_54_LEFT	TCTCAGATGCGGCCAGGTTATT	Ebov-10- Pan_54_RIGHT	TGACCATCACTGTTGTTTGTGCT	2	100μΜ
Ebov-10- Pan_54_LEFT_alt1	TCTCAGATGCGGCCAGATTATT			2	100μΜ
Ebov-10- Pan_55_LEFT	TGGAGGAGCAGACAGAAACA	Ebov-10- Pan_55_RIGHT	ATGACGTTAATTGGCGTGTCCC	1	100μΜ
Ebov-10- Pan_55_LEFT_alt1	TGGAGGAGCAGGCACAGAAACA	Ebov-10- Pan_55_RIGHT_alt1	ATGACGTCAATTGGCGTGTCCC	1	100µM
Ebov-10- Pan_55_LEFT_alt2	TGGAGAAGCAGGCACAGAAACA	Ebov-10- Pan_55_RIGHT_alt2	ATGACGTTAATTGGCGCGTCCC	1	100µM
Ebov-10- Pan_56_LEFT	CTCACACCGTCTAGTCCTACCT	Ebov-10- Pan_56_RIGHT	TTTGACATAACAGGTAGAAGCATCCT	2	100μΜ
Ebov-10- Pan_56_LEFT_alt1	CTCGCACCGTCTAGTCCTACCT			2	100µM
Ebov-10- Pan_56_LEFT_alt2	CTCACATCGTCTAGTCCTACCT			2	100μΜ
Ebov-10- Pan_57_LEFT	ACACGCTAGCTACTGAGTCCAG	Ebov-10- Pan_57_RIGHT	ATTGGCTTAATTAAATAACCAGTG-GCA	1	100µM
Ebov-10- Pan_58_LEFT	TGAAAGCAGTGGTCCTTAAAGTCT	Ebov-10- Pan_58_RIGHT	TGCTCTAAGATGTGCTAAGTGCTG	2	100µM
		Ebov-10- Pan_58_RIGHT_alt1	TGCTCTAAGATGTGCCAAGTGCTG	2	100µM
Ebov-10- Pan_59_LEFT	CGTCGATTCAAAAAGAGGTCCACT	Ebov-10- Pan_59_RIGHT	TCAGAAGCCCTGTCAGCCTTTC	1	100µM
Ebov-10- Pan_60_LEFT	AGATTGCAATTGT- GAAGAACGTTTCT	Ebov-10- Pan_60_RIGHT	AGAGTGCAGAGTTTATTATGTTGCGT	2	100μΜ
Ebov-10- Pan_61_LEFT	TCACAATGCAGCATGTGTGACA	Ebov-10- Pan_61_RIGHT	AGGTATTTCTGATTTTACAGTCCT-GCC	1	100µM
		Ebov-10- Pan_61_RIGHT_alt1	AGGTATTTATGATTTTACAGTCCT-GCC	1	100µM
		Ebov-10- Pan_61_RIGHT_alt2	AGGTATTTCTGATTTTACAGTCAT-GCC	1	100µM
Ebov-10- Pan_62_LEFT	CCTGTCAGATGGAATAGT- GTTTTGGT	Ebov-10- Pan_62_RIGHT	AATTTTTGTGTGCGACCATTTTTCC	2	100μΜ

NOTE: Les amorces doivent être utilisées à une concentration finale de 0.015µM par amorce. Ainsi, Pool 1 contient 101 amorces: il est donc nécessaire d'ajouter 3.8µL du Pool 1 à 10µM pour chaque réaction de 25µL. Le pool 2 contient 106 amorces: il est donc nécessaire d'ajouter 4.0µL du Pool 2 à 10µM pour chaque réaction de 25µL. Pour d'autres approches, ajuster le volume de manière appropriée.

1. Préparer les réactions de PCR comme suit dans des tubes PCR à paroi fine de 0.5 mL ou des barettes :

Réactif	Pool 1	Pool 2
NEB Q5 Polymerase 2X MasterMix	12.5µL	12.5µL
Pool d'amorces 1 ou 2 (10µM)	3.8µL	4.0µL
Eau	6.2µL	6.0µL
TOTAL	22.5µL	22.5µL

NOTE : Cette étape doit être faite dans la HOTTE MASTERMIX ; l'ADNc ne doit jamais être emmenée près de cette hotte mastermix.

- 1. Dans la HOTTE MATRICE ajouter 2.5µL d'ADNc à chaque réaction Pool1 et Pool2 et bien mélanger.
- 2. Centrifuger brièvement les tubes pour enlever le contenu des couvercles.
- 3. Préparer les conditions de PCR comme suit :

Étape	Temperature	Temps	Cycles	
Activation par la chaleur	98°C	30 secondes	1	
Dénaturation	98°C	15 secondes	25-35	
Hybridation	65°C	300 secondes	25-35	
Maintien	4°C	Indéfini	1	

NOTE : Le nombre de cycle doit être de 25 pour des Ct compris entre 18 et 21 jusqu'à un maximum de 35 cycles pour Ct 35.

- 1. Purifier les amplicons en utilisant le protocole suivant dans la HOTTE MATRICE :
 - a. Combiner entièrement le contenu des réactions de PCR "Pool1" et "Pool2" pour chaque échantillon biologique dans un seul tube Eppendorf 1.5mL.
 - b. Mélanger délicatement, éviter de vortexer.
 - c. S'assurer que les billes Aline sont bien resuspendues en mélangeant vigoureusement avant d'ajouter à l'échantillon. Le mélange doit être d'une couleur brune homogène.
 - d. Ajouter un volume équivalent de billes Aline dans le tube et mélanger délicatement soit en pipettant ou en tapotant avec le doigt. Le volume total doit d'environ 50µL, donc ajouter 50µL de billes.
 - e. Centrifuger brièvement les tubes pour enlever les billes du couvercle ou des parois du tube.
 - f. Incuber 5 mins à température ambiante.
 - g. Placer sur un support magnétique et incuber 2 minutes ou jusqu'à ce que les billes aient formée un culot contre l'aimant et que la solution soit complètement transparente.
 - h. Enlever et jeter avec précaution la solution, en faisant attention de ne pas toucher le culot de billes.
 - i. Ajouter 200µL d'éthanol 70% à température ambiante au culot.

- j. Enlever et jeter avec précaution l'éthanol, en faisant attention de ne pas toucher le culot de billes.
- k. Répeter les étapes 9 à 10 pour laver à nouveau le culot.
- I. Centrifuger brièvement le culot et enlever avec précaution autant d'éthanol que possible en utilisant un cône de 10µL.
- m. Laisser le culot sécher 1 minute, en éviter de trop le déssecher (si le culot commencer à craqueler, alors il est trop sec).
- n. Resuspendre le culot dans $30\mu L$ d'eau, et incuber pour 2 mins.
- o. Placer sur un support magnétique et AVEC PRÉCAUTION enlever l'eau et la transférer dans un tube Eppendorf de 1.5mL propre. ASSUREZ-VOUS qu'aucune bille ne soit transférée dans ce tube. Dans certains cas, une brève centrifugation peut être utile pour culotter les billes résiduelles.
- p. Quantifier les mélanges d'amplicons en utilisant le protocole ONE dsDNA du fluoromètre Quantus

Partie 3 : Quantification Quantus des mélanges d'amplicons

1. Préparer le nombre requis de tubes 0.5mL.

NOTE: N'utiliser que des tubes PCR à paroi fine et transparente de 0.5mL.

- 1. Annoter le couvercle des tubes. Ne pas annoter les côtés du tube, cela pourrait interférer avec la lecture de l'échantillon.
- 2. Ajouter 199µL de la solution "ONE dsDNA dye" à chaque tube.
- 3. Ajouter 1µL de chaque échantillon au tube correspondant.

NOTE: Utiliser une pipette P2 pour plus de précision.

- 1. Mélanger chaque échantillon vigoureusement en vortexant pendant 3-5 secondes.
- 2. Laisser les tubes incuber à température ambiante pendant 2 minutes avant de continuer.
- 3. Sur l'écran d'accueil du fluoromètre Quantus, sélectionner Protocol, puis ONE DNA comme type d'analyse.

NOTE: Si vous avez déjà effectué une calibration pour l'analyse sélectionnée, vous pouvez continuer, il n'y a pas besoin de faire des calibrations répétées lors de l'utilisation de la solution ONE DNA pré-diluée. **Si vous souhaitez utiliser une calibration précédente, continuez à l'étape 11**. Dans le cas contraire, continuez avec l'étape 8.

- 1. Ajouter 200µL de solution "ONE dsDNA Dye" à deux tubes de 0.5mL.
- 2. Ajouter 1µL d'ADN Lambda standard à 400 ng/µL fourni avec le kit dans l'un des deux tubes. Ces deux tubes sont respectivement le blanc et le standard requis pour effectuer la procédure de calibration à un point.
- 3. Sélectionner Calibrate, puis ONE DNA et placer le blanc dans le lecteur puis sélectionner Read Blank. Ensuite placer le standard dans le lecteur et sélectionner Read Std.
- 4. Sur l'écran d'accueil, naviguer sur Sample Volume et régler sur 1µL puis sur Units et régler sur ng/µL.
- Placer le premier échantillon dans le lecteur et fermer le couvercle. La concentration est lue automatiquement lors de sa fermeture.
- 6. Répéter l'étape 12 jusqu'à ce que tous les échantillons aient été lus.
- 7. La valeur affichée à l'écran est la concentration d'ADN double-brin. **Consigner avec soin tous les résultats** dans un tableur ou un cahier de laboratoire.

Partie 4: Barcoding et ligation des adapteurs: protocole en tube unique

NOTE: Ceci est un protocole en tube unique pour la préparation de librairies avec ligation de barcode natifs. Nous n'avons observé aucune réduction de performance par rapport aux librairies standards, et peut même être plus rapide si l'on utilise le module Ultra II® ligation, qui est compatible avec le module Ultra II® end repair/dA-tailing en retirant une étape de purification. Si vous avez le temps, on recommande de doubler les temps d'incubation en bleue. Si vous êtes pressés, les temps indiqués en rouge sont un bon compromis entre vitesse et efficacité.

1. Préparer la réaction de préparation d'extrémité (End Prep) suivante pour chaque échantillon biologique :

ADN (20 ng) 16.7µL

Ultra II End Prep Reaction Buffer 2.3µL

Ultra II End Prep Enzyme Mix 1µL

Total 20µL

NOTE: La quantité d'amplicons peut varier de 10-50ng, mais pas au-delà: le molarité de l'ADN serait trop élevée pour un barcoding efficace. Il faut avoir 6 échantillons par chaque librairie barcode natif pour avoir suffisamment de matériel à la fin.

- 1. Incuber à température ambiante pendant 20 mins puis à 65°C pendant 10 mins.
- 2. Placer sur glace pendant 30 secondes.
- 3. Ajouter directement aux réactions précédentes :

NBXX barcode 2.5µL

Ultra II Ligation Master Mix 22.5µL

Ligation Enhancer 0.7µL

Total 45.7µL

NOTE: N'utiliser qu'UN SEUL barcode par échantillon biologique.

1. Incuber à température ambiante pendant 30 mins, 70°C pendant 10 mins puis placer sur glace.

NOTE: Cette étape vise à inactiver l'ADN ligase pour éviter des croisements entre barcodes.

- 1. Mélanger tous les fragments barcodés ensemble dans un tube Eppendorf 1.5mL propre.
- 2. Ajouter 45.7µL de billes Aline par échantillon.
- 3. Incuber 5 mins.
- 4. Placer sur un support magnétique et incuber 2 minutes ou jusqu'à transparence.
- 5. Enlever la solution.
- 6. Ajouter 200µL d'éthanol à 70%, toujours sur le support magnétique.
- 7. Enlever et jeter l'éthanol sans toucher le culot.
- 8. Répéter les étapes 11 et 12.

- 9. Centrifuger brièvement et enlever l'éthanol 70% résiduel puis sécher à l'air libre pendant 1 min.
- 10. Resuspendre dans 31µL de tampon EB.
- 11. Incuber hors du support magnétique pendant 2 minutes.
- 12. Replacer sur le support magnétique.
- 13. Attendre que la solution devienne transparente puis transférer la solution dans un tube Eppendorf propre de 1.5mL.
- 14. Retirer 1µL et mesurer la concentration par Quantus comme décrit au-dessus.
- 15. Préparer la réaction de ligation d'adaptateur suivante :

Mélanges purifiés de pool d'amplicons (~60ng)30μLNEBNext Quick Ligation Reaction Buffer (5X)10μLAMII adapter mix5μLQuick T4 DNA Ligase5μLVolume total50μL

- 16. Incuber à température ambiante pendant 30 mins.
- 17. Ajouter 50µL de billes Aline.
- 18. Incuber pendant 5 mins.
- 19. Placer sur un support magnétique jusqu'à transparence.
- 20. Retirer le surnageant.
- 21. Ajouter 200µL de SFB et resuspendre en tapotant avec le doigt.

ATTENTION: Ne pas utiliser d'éthanol à 80%.

- 1. Placer sur le support magnétique jusqu'à transparence.
- 2. Retirer le surnageant.
- 3. Répéter le lavage au SFB.
- 4. Centrifuger brièvement et retirer le SFB résiduel.
- 5. Ajouter 15µL de tampon EB et resuspendre en tapotant avec le doigt.
- 6. Incuber à température ambiante pour 2 mins.
- 7. Placer sur le support magnétique.
- 8. Transférer avec précaution dans un tube Eppendorf 1.5mL propre.
- 9. Retirer 1µL et mesurer la concentration avec le fluoromètre Quantus comme décrit au-dessus.

NOTE : Les librairies peuvent être stockées à 4°C si nécessaire, mais pour un meilleur résultat, il est préférable de continuer immédiatement avec le séquençage.

Partie 5 : Amorçage et chargement sur la flowcell SpotON

- 1. Dégeler les réactifs suivants à température ambiante avant de les placer sur glace:
 - Sequencing buffer (SQB) [tampon séquençage]
 - Loading beads (LB) [les billes pour le chargement de la flowcell]
 - Flush buffer (FLB) [tampon pour purger a flowcell]
 - Flush tether (FLT)
- 2. Ajouter 30µL de FLT au tube de FLB et bien mélanger.
- 3. Retourner le couvercle de la flowcell et faire glisser le couvercle du port d'amorçage au sens des aiguilles d'une montre pour que le port d'amorçage devienne visible.

ATTENTION : Cette étape doit être faite avec précaution. La matrice des pores doit être constamment couverte par un tampon. Retirer plus que 20-30µL risque d'endommager les pores.

- 1. Après avoir ouvert le port d'amorçage, vérifier s'il n'y a pas de petites bulles d'air sous le couvercle. Aspirer un petit volume pour enlever toute bulle (quelques µLs):
 - Régler une pipette P1000 sur 200µL
 - Insérer le cône dans le port d'amorçage
 - Tourner la molette de la pipette jusqu'à ce que le cadran indique 220-230μL, ou jusqu'à ce que vous voyez un petit volume de tampon entrer dans le cône.
- 2. Placer 800µL du FLB+FLT dans la flowcell par le port d'amorçage, utilisant la méthode décrite à l'étape 5. Éviter d'introduire des bulles d'air.
- 3. Attendre 5 minutes.
- 4. Dans un nouveau tube Eppendorf propre, préparer la dilution de la librairie pour le séquençage :

Réactif	Volume
SQB	37.5µL
LB	25.5µL
Librairie (~30ng)	12µL
Total	75µL

- 5. Soulever doucement le couvercle du port d'échantillon SpotON pour rendre le port accessible.
- 6. Placer 200µL du mix d'amorçage dans le port d'amorçage (**PAS** le port d'échantillon SpotON), en évitant l'introduction de bulles d'air.
- 7. Mélanger doucement la librairie préparée en pipettant de haut et en bas avant de charger la flowcell.
- 8. Au goutte à goutte, ajouter 75µL de la librairie préparée sur la flowcell par le port d'échantillon SpotON. S'assurer que chaque goutte est bien aspirée dans le port avant ajouter la goutte suivante.
- 9. Replacer doucement le couvercle du port d'échantillon SpotON, en s'assurant que le bouchon entre bien dans le port SpotON. Fermer le port d'amorçage et replacer le couvercle du MinION.
- 10. Double-cliquer sur l'icone MinKNOW sur le bureau pour ouvrir l'interface graphique MinKNOW.
- 11. Si votre MinION été déconnectée de l'ordinateur, le re-connecter maintenant.
- 12. Choisir le type de flowcell dans la boîte de sélection :
 - FL0-MIN106 : R9.4.1 flowcell
- 13. Marquer la flowcell comme Selected .
- 14. Cliquer sur le bouton New Experiment en bas à gauche de l'interface graphique.
- 15. Dans l'écran popup, sélectionner les paramètres pour votre expérience dans les onglets individuels :

Experiment

Nommer le run dans le champ expérience, laisser le champ de l'échantillon vide.

• Kit

Selectionner LSK109 comme il n'y a pas d'option pour le kit de barcoding natif (NBD104)

Run Options

Définir la durée du run de sequançage, d'ordinaire 1-2 heures.

Basecalling

Laisser "basecalling" allumé et vérifier que le "HAC" (high accuracy model) est selectionné.

Output

Le nombre de fichiers que MinKNOW écrira dans un seul dossier. Par défaut réglé sur 4000.

- 16. Cliquer sur Start run.
- 17. Laisser le script se dérouler jusqu'au bout.
- 18. La page Experiment du MinKNOW indiquera la progression du script ; ceci est accessible par l'onglet Experiment qui apparaîtra en haut à droite de l'écran.
- 19. Surveillez le panneau Message du côté droit pour les erreurs.