2023 Vill. Mat A2 – 7. gyakorlat

(Egyenletes konvergencia, hatványsorok)

1. Mi az (f_n) függvénysorozat f határfüggvénye és egyenletesen konvergens-e az I intervallumokon? Ha igen, és integrálhatók is, akkor számoljuk ki a $\lim \int_I f_n$ határértékeket!

$$\forall x \in I : r_n(x) = |f_n(x) - f(x)| \le a_n \to 0 \Rightarrow f_n \xrightarrow{u} f; \exists \varepsilon > 0, \exists (x_n) \in I^{\mathbf{N}} : r_n(x_n) \ge \varepsilon \Rightarrow f_n \xrightarrow{u} f; f_n \in \mathcal{C}(I) \& f_n \xrightarrow{u} f \Rightarrow f \in \mathcal{C}(I)$$

a)
$$f_n(x) = e^{-xn}$$
, $I = [0, \infty)$, $(0, \infty)$, $[p, \infty)$, $p > 0$; b) $f_n(x) = \frac{n^2 x^4}{n^2 x^2 + 1}$, $I = (-\infty, \infty)$, $(-1, 1)$

HF a)
$$f_n(x) = x^n$$
, $I = (-1,1]$, $(-1,1)$, $[-p,p]$, $0 ; b) $f_n(x) = \frac{n}{nx^2 + 1}$, $I = (0,\infty)$, $(1,\infty)$$

2. Hol konvergensek az alábbi hatványsorok és az adott intervallumon egyenletesen konvergensek-e?

Szükséges kritérium: $\sum_{k=0}^{n} f_k \xrightarrow{u} \sum f_n \Rightarrow f_n \xrightarrow{u} 0$

Weierstrass-féle M-próba: $\forall x \in I : |f_n(x)| \le M_n \to 0 \& \sum_{n=0}^{\infty} M_n \in \mathbf{R} \Rightarrow \sum_{k=0}^{n} f_k \xrightarrow{u} \sum_{I} f_n$

Leibniz-kritérium: $a_n \searrow 0 \& a_n > 0 \Rightarrow \sum_{n=0}^{\infty} (-1)^n a_n \in \mathbf{R}$

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
; $I = [-1, 1]$ b) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$; $I = [-p, p]$, $\mathbf{R}, 0 < p$

HF
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
; $I = [-1, 1), I = [-1, p], 0$

3. Mi az alábbi hatványsorok konvergenciasugara és konvergenciatartománya?

a)
$$\sum_{n=0}^{\infty} 2^n x^n$$
 b) $\sum_{n=0}^{\infty} \frac{x^n}{2n+1}$ c) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} (x-1)^n$

4. Fejtsük hatványsorba az alábbi függvényeket a u pont körül!

a)
$$\frac{1}{1+x^2}$$
, $u = 0$ b) $\frac{x^2}{1+x}$, $u = 0$ c) $\frac{1}{x}$, $u = 1$ d) $x^2 + 3$, $u = -1$

HF a) $\frac{x}{1-x^4}$, $u = 0$ b) $x^2 + 2x + 1$, $u = 1$

iMSc. Egyenletesen konvergens-e a (0,1) intervallumon a $\sum_{n=1}^{\infty} \frac{x^n}{n}$ sor? (Fogalmazzuk meg sorozatokkal, hogy mivel jellemezhető, hogy egy függvénysor nem egyenletesen konvergens. Felhasználhatjuk a Cauchy-kritériumot is: $\|\sum_{k=0}^{m} f_k - \sum_{k=0}^{n} f_k\| \to 0 \longleftrightarrow \sum f_n$ egy. konv., $m = 2^{N+1}$ és $n = 2^N$ jó ötlet szokott lenni.)