Linear Algebra

$\mathbb{R}^n = \begin{pmatrix} \text{set of all column vectors} \\ \text{with } n \text{ entries} \end{pmatrix}$

Column vectors can be added and multiplied by real numbers.

Linear transformation is a function

$$T: \mathbb{R}^n \to \mathbb{R}^m, \quad T(\mathbf{v}) = A\mathbf{v}$$

It satisfies:

- T(u + v) = T(u) + T(v)
- $T(c\mathbf{v}) = cT(\mathbf{v})$

Typical problem: given a vector **b** find all vectors **x** such that

$$T(\mathbf{x}) = \mathbf{b}$$

(i.e solve the equation Ax = b).

Fact: Such vectors *x* are of the form

$$\mathbf{x} = \mathbf{v}_0 + \mathbf{n}$$

where:

- \mathbf{v}_0 is some distinguished solution of $A\mathbf{x} = \mathbf{b}$;
- $n \in Nul(A)$ (i.e. n is a solution of Ax = 0).

Calculus

$$C^{\infty}(\mathbb{R}) = \begin{pmatrix} \text{set of all smooth} \\ \text{functions } f \colon \mathbb{R} \to \mathbb{R} \end{pmatrix}$$

Functions can be added and multiplied by real numbers.

Differentiation is a function

$$D \colon C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad D(f) = f'$$

It satisfies:

- D(f+g) = D(f) + D(g)
- D(cf) = cD(f)

Typical problem: given a function g find all functions f such that

$$D(f) = q$$

(i.e find antiderivatives of q).

Fact: Such functions *f* are of the form

$$f = F + C$$

where:

- F is some distinguished antiderivative of q;
- C is a constant function (i.e. C is a solution of D(f) = 0).

Definition

A (real) vector space is a set V together with two operations:

addition

$$\begin{array}{ccc}
V \times V \longrightarrow V \\
(\mathbf{u}, & \mathbf{v}) \longmapsto & \mathbf{u} + \mathbf{v}
\end{array}$$

• multiplication by scalars

$$\mathbb{R} \times V \longrightarrow V$$

$$(c, \mathbf{v}) \longmapsto c \cdot \mathbf{v}$$

Moreover the following conditions must be satisfied:

- 1) u + v = v + u
- 2) (u + v) + w = u + (v + w)
- 3) there is an element $\mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{u} = \mathbf{u}$ for any $\mathbf{u} \in V$
- 4) for any $\mathbf{u} \in V$ there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 5) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $6) \quad (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 7) (cd)u = c(du)
- 8) 1u = u

Elements of V are called *vectors*.

Theorem

If V is a vectors space then:

- 1) $c \cdot \mathbf{0} = \mathbf{0}$ where $c \in \mathbb{R}$ and $\mathbf{0} \in V$ is the zero vector;
- 2) $0 \cdot \mathbf{u} = \mathbf{0}$ where $0 \in \mathbb{R}$, $\mathbf{u} \in V$ and $\mathbf{0}$ is the zero vector;
- 3) $(-1) \cdot u = -u$

Examples of vector spaces.