# MA3210 (Analysis II)

Jia Cheng

September 2021

### 1 Definitions

Sets

 $\mathbb{N}=\mathbb{Z}^+$ 

# 2 Inequalities

- $\bullet ||a+b| \le |a| + |b|$
- $\bullet ||a| |b|| \le |a b|$
- $||a| |b|| = ||a| |-b|| \le |a+b|$

# 3 Techniques

**Infimum and supremum** Let A, B be 2 sets of real numbers. Given that  $\forall a \in A, \exists b \in B, a \leq b$  we want to show  $\sup A \leq \sup B$ . There are in general 2 ways to do this.

The direct way is to go from B to A. Take arbitrary  $a \in A$ , then  $\exists b \in B, a \leq b \leq \sup B$ . Then  $\sup B$  is an upper bound of A, hence  $\sup A \leq \sup B$ . We call this going from B to A in the sense that we produce  $\sup B$  before producing  $\sup A$  in our equations.

The other way goes in the reverse direction. Choose arbitrary  $\epsilon > 0$ , and by definition of supremum,  $\exists a \in A$ ,  $\sup A - \epsilon < a \le \sup A$ . Again, there is a b such that  $\sup A - \epsilon < a \le b \le \sup B$ . Hence  $\sup A - \epsilon < \sup B$ . Since  $\epsilon$  is arbitrary,  $\sup A \le \sup B$ .

Perhaps a better mnemonic for these 2 ways is that the first goes from the *not pointy* bit of the inequality sign to the *pointy* bit.

# 4 Theorem Listing

### 4.1 Inf and sup

Scalar properties Given a bounded set  $S \subset \mathbb{R}$ 

$$\inf(cS) = \begin{cases} c \inf(S) & \text{if } c > 0 \\ c \sup(S) & \text{if } c < 0 \end{cases}$$
$$\sup(cS) = \begin{cases} c \sup(S) & \text{if } c > 0 \\ c \inf(S) & \text{if } c < 0 \end{cases}$$

**sup-inf condition** Let S be a nonempty bounded subset of  $\mathbb{R}$  and K > 0 such that  $\forall s, t \in S, |s-t| \le K$ . Then  $\sup(S) - \inf(S) \le K$ .

## 4.2 Continuity

**Lipschitz property implies uniform continuity** Lipschitz property: There is a constant K, such that for all  $x, y, |f(x) - f(y)| \le K|x - y|$ . It is then trivial to derive uniform continuity.

#### 4.3 Differential Calculus

**Caratheodory's Theorem** Let  $f: I \to \mathbb{R}$ ,  $c \in I$ . Then f'(c) exists iff there is a function  $\phi: I \to \mathbb{R}$  such that  $\phi$  continuous at c and

$$\forall x \in I, f(x) - f(c) = \phi(x)(x - c)$$

When this is the case,  $\phi(c) = f'(c)$ .

**Inverse Function Lemma** Let  $f: I \to \mathbb{R}$  be strictly monotone and continuous on I. Let J = f(I) such that  $f^{-1}: J \to \mathbb{R}$  inverts f (technically, we need to restrict the codomain of f and  $f^{-1}$  to just their range). Suppose f differentiable at f and  $f'(f) \neq 0$ . Then let f and f and f and f are f and f and f and f are f and f and f are f are f and f are f are f and f are f are f are f are f are f and f are f are f are f are f and f are f are f are f and f are f are

$$(f^{-1})'(d) = \frac{1}{f'(f^{-1}(d))} = \frac{1}{f'(c)}$$

Taylor's Theorem

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

#### 4.4 Integral Calculus

Properties of Riemann Integral

- Linearity
- Order-preserving  $f \leq g \implies \int_a^b f \leq \int_a^b g$
- f integrable implies |f| integrable

• Triangle inequality

• Product of integrable functions is integrable

• Additive theorem:  $\int_a^b f = \int_a^c f + \int_c^b f$ 

#### **Fundamental Theorem of Calculus**

**FTC 2** If  $f:[a,b]\to\mathbb{R}$  is integrable and f continuous at  $c\in[a,b]$ , then

$$\frac{d}{dx} \int_{a}^{x} f|_{x=c} = f(c)$$

**FTC 1** If  $g:[a,b]\to\mathbb{R}$  differentiable on [a,b] and g' integrable on [a,b], then

$$\int_{a}^{b} g' = g(b) - g(a)$$

**Integration by parts** Suppose functions  $f, g : [a, b] \to \mathbb{R}$  are differentiable on [a, b], and  $f', g' \in R([a, b])$ . Then

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g$$

The antiderivative version: Given the same conditions, since  $f', g' \in R([a, b])$ , fg', f'g both integrable, in particular, their antiderivative exists. This allows us to write

$$\int fg' = fg - \int f'g$$

**Integration by substitution** Suppose  $\phi : [a, b] \to I$  is differentiable on [a, b] and  $\phi' \in R([a, b])$ . Suppose  $f : I \to \mathbb{R}$  continuous on I, then

$$\int_a^b f(\phi(t))\phi'(t) dt = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

Note: To do "inverse substitution", we can start from the right side and find a suitable  $\phi$  with the above mentioned characteristics. It doesn't need to be invertible, but we need to find a, b such that  $\phi(a), \phi(b)$  are the lower and upper limits on the RHS.

**Taylor's Theorem Integral Form** Let  $f:[a,b] \to \mathbb{R}$ . Suppose  $\forall x \in (a,b), f^{(n+1)}$  exists on [a,x] and  $f^{(n+1)} \in R([a,x])$ . Then,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t) (x-t)^n dt$$

**Equivalence Theorem** Let  $f:[a,b]\to\mathbb{R}$  be bounded. f is Darboux integrable iff f is Riemann integrable.

**Infinite Series** Suppose f is Riemann/Darboux integrable and we have a sequence of partitions  $(P_n)$  of [a,b] as well as accompanying choice functions  $\gamma_n$  such that  $\lim_{n\to\infty} ||P_n|| = 0$ . Then

$$\lim_{n \to \infty} S(f, P_n)(\gamma_n) = \lim_{||P|| \to 0} S(f, P)(\gamma) = \int_a^b f$$

Note that the  $\gamma_n$  are truly arbitrary, the important thing is that  $||P_n|| \to 0$ 

**6.11 Theorem** Suppose  $f \in \mathcal{R}(\alpha)$  on [a, b],  $m \le f \le M$ ,  $\phi$  is continuous on [m, M], and  $h(x) = \phi(f(x))$  on [a, b]. Then  $h \in \mathcal{R}(\alpha)$  on [a, b].

**Proof** Choose  $\varepsilon > 0$ . Since  $\phi$  is uniformly continuous on [m, M], there exists  $\delta > 0$  such that  $\delta < \varepsilon$  and  $|\phi(s) - \phi(t)| < \varepsilon$  if  $|s - t| \le \delta$  and  $s, t \in [m, M]$ .

Since  $f \in \mathcal{R}(\alpha)$ , there is a partition  $P = \{x_0, x_1, \dots, x_n\}$  of [a, b] such that

(18) 
$$U(P, f, \alpha) - L(P, f, \alpha) < \delta^2.$$

Let  $M_i$ ,  $m_i$  have the same meaning as in Definition 6.1, and let  $M_i^*$ ,  $m_i^*$  be the analogous numbers for h. Divide the numbers  $1, \ldots, n$  into two classes:  $i \in A$  if  $M_i - m_i < \delta$ ,  $i \in B$  if  $M_i - m_i \ge \delta$ .

For  $i \in A$ , our choice of  $\delta$  shows that  $M_i^* - m_i^* \le \varepsilon$ .

For  $i \in B$ ,  $M_i^* - m_i^* \le 2K$ , where  $K = \sup |\phi(t)|$ ,  $m \le t \le M$ . By (18), we have

(19) 
$$\delta \sum_{i \in B} \Delta \alpha_i \leq \sum_{i \in B} (M_i - m_i) \, \Delta \alpha_i < \delta^2$$

so that  $\sum_{i \in B} \Delta \alpha_i < \delta$ . It follows that

$$U(P, h, \alpha) - L(P, h, \alpha) = \sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i$$
  
$$\leq \varepsilon [\alpha(b) - \alpha(a)] + 2K\delta < \varepsilon [\alpha(b) - \alpha(a) + 2K].$$

#### 4.5 Series of functions

#### 4.6 Power series

Radius of convergence Lemma. Let  $\sum_n a_n (x-x_0)^n$  be convergent at  $x_1$ . Then  $|x-x_0| < |x_1-x_0|$  implies  $\sum_n a_n (x-x_0)^n$  converges absolutely.

- It is due to this lemma that we can speak of radius of convergence. Because of this lemma, radius of convergence as a concept can exist independently of the root test.
- However, the root test is a convenient way to find the radius of convergence since lim sup is guaranteed to exist.
- Additionally, the root test itself can be used to prove the above lemma.

• Finally, we also note that the above lemma and the ratio test are related since both of their proofs make use of the geometric series.

**Ratio test** Given  $\sum_n a_n$ , consider  $L_n = \left| \frac{a_{n+1}}{a_n} \right|$ 

- if  $\lim_{n\to\infty} L_n < 1$ , converges
- if  $\lim_{n\to\infty} L_n > 1$ , diverges
- if  $\lim_{n\to\infty} L_n = 1$ , indeterminate

#### Ratio test (variants)

- if  $\limsup_{n\to\infty} L_n < 1$ , converges
- if  $\liminf_{n\to\infty} L_n > 1$ , diverges
- if  $L_n \geq 1$  for all but finitely many n, diverges

Note: If  $L_n \geq 1$  for infinitely many n, the series can still converge.

**Property of limsup** Given that  $(a_n)$  converges,

$$\lim\sup_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \cdot \lim\sup_{n\to\infty} b_n$$

Uniform convergence of power series Let  $\sum_n a_n(x-x_0)^n$  have radius of convergence R>0. Then for any  $[a,b]\subseteq (x_0-R,x_0+R)$ , the series converges uniformly on [a,b].

This property of power series means we get some extent of uniform convergence for free.

**Differentiability of power series** Let  $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$  have radius of convergence R > 0. Then  $f \in C^{\infty}(x_0 - R, x_0 + R)$ . And  $\forall k \in \mathbb{Z}_0^+$ 

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n^{\underline{k}} (x - x_0)^{n-k}$$

on  $(x_0 - R, x_0 + R)$ . In particular, the radius of convergence of  $f^{(k)}$  is R, though the domain of convergence can be any of  $[x_0 - R, x_0 + R]$ ,  $[x_0 - R, x_0 + R]$ ,  $[x_0 - R, x_0 + R)$ ,  $[x_0 - R, x_0 + R]$ .

The proof is by taking the union over any  $[x_0 - r, x_0 + r], r < R$  to give differentiability over the entire  $(x_0 - R, x_0 + R)$ .

Note: Properties like continuity and differentiability can be generalized by union.

Uniqueness of power series Suppose a function f, there is a power series such that  $f(x) = \sum_n a_n(x-x_0)^n$  on  $(x_0-r,x_0+r)$ . Here, r must clearly be  $\leq$  radius of convergence R. Then,  $\forall k \in \mathbb{Z}_0^+$ 

$$f^{(k)}(x_0) = k^{\underline{k}} a_k = k! a_k$$

, that is,

$$a_k = \frac{f^{(k)}(x_0)}{k!}$$

Hence  $\sum_{n} a_n (x - x_0)^n = \sum_{n} b_n (x - x_0)^n$  on some on  $(x_0 - r, x_0 + r), r > 0$  implies  $\forall n, a_n = b_n$ .

**Summation by parts** Given sequences  $(b_n, c_n)$ . Let  $B_{n,m} = \sum_{m \le k \le n} b_k$ . Then,

$$\sum_{m \le k \le n} b_k c_k = B_{n,m} c_n + \sum_{m \le k \le n-1} B_{k,m} (c_k - c_{k+1})$$

This can be used to prove both Dirichlet's and Abel's test.

#### Corollary to Abel's Theorem Suppose

$$f(x) = \sum_{n} a_n (x - x_0)^n$$

on  $(x_0 - R, x_0 + R)$  and the power series converges at  $x = x_0 + R$ .

Here, we can view f as the closed form. Let g represent the power series. Abel's theorem says that g is defined on  $(x_0 - R, x_0 + R]$  and the convergence to g is uniform on  $[x_0, x_0 + R]$ . In particular, g is continuous at  $x_0 + R$ . Hence, we have,

$$g(x_0 + R) = \lim_{x \to (x_0 + R)^-} g(x) = \lim_{x \to (x_0 + R)^-} f(x)$$

If we extend f to  $(x_0 - R, x_0 + R]$  (assuming that the closed form f is defined at  $x_0 + R$ ), and supposing f is also continuous at  $x_0 + R$ , then we have  $g(x_0 + R) = f(x_0 + R)$ . This allows us to equate

$$f(x_0 + R) = g(x_0 + R) = \sum_n a_n R^n$$

Merten's Theorem Given  $(a_n), (b_n)$ , suppose  $\sum_n a_n$  converges absolutely and  $\sum_n b_n$  converges. Let  $c_n = \sum_{0 \le k \le n} a_k b_{n-k}$ . Then,

$$\sum_{n\geq 0} c_n = \sum_{n\geq 0} a_n \sum_{n\geq 0} b_n$$

Corollary. We adjust the starting indices of  $(a_n), (b_n)$ . Suppose  $\sum_{n \geq N_1} a_n$  converges absolutely and  $\sum_{n \geq N_2} b_n$  converges. Then,

$$\sum_{n>N_1+N_2} \sum_{N_1 < k < n-N_2} a_k b_{n-k} = \sum_{n>N_1} a_n \sum_{n>N_2} b_n$$

The proof is by defining  $a_k, k < N_1$  and  $b_k, k < N_2$  to be 0. Hence,

$$\sum_{n \geq N_1} a_n \sum_{n \geq N_2} b_n = \sum_{n \geq 0} \sum_{0 \leq k \leq n} a_k b_{n-k} a_k b_{n-k} [k \geq N_1] [n-k \geq N_2]$$

and observing that  $[k \ge N_1][n-k \ge N_2] = [k \ge N_1][n-k \ge N_2][k+n-k \ge N_1+N_2] = [k \ge N_1][n-k \ge N_2][n \ge N_1+N_2].$ 

Application. Consider a power series  $\sum_n a_n(x-x_0)^n$  with radius of convergence R. Then if  $x \in (x_0-R,x_0+R)$ ,  $\sum_n a_n(x-x_0)^n$  converges absolutely. This allows us to apply Merten's theorem when concerning products of power series.

**Analytic functions** A function f is analytic on (a, b) if

- 1.  $f \in C^{\infty}(a, b)$
- 2.  $\forall x_0 \in (a, b), f$  is equal to its Taylor series with basepoint at  $x_0$  in some neighborhood of  $x_0$ .

Lemma. If for a certain  $x_0 \in (a, b)$ , f equals to its Taylor series with basepoint at  $x_0$  over (a, b), then f is analytic on (a, b).

### 4.7 Special functions

Characterization of trig functions If  $g: \mathbb{R} \to \mathbb{R}$  has the property,  $\forall x \in \mathbb{R}$ 

$$g''(x) = -g(x)$$

, then  $g(x) = g(0)\cos(x) + g'(0)\sin(x)$ .

Characterization of exponential functions If E is a real function such that

$$E'(x) = E(x) \wedge E(0) = 1$$

on  $\mathbb{R}$ , then  $E = \exp$ .