

## ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

# СТЕКЛО ОПТИЧЕСКОЕ БЕСЦВЕТНОЕ

МЕТОД ОПРЕДЕЛЕНИЯ ОПТИЧЕСКОЙ ОДНОРОДНОСТИ НА КОЛЛИМАТОРНОЙ УСТАНОВКЕ

**FOCT 3518-80** 

Издание официальное



### ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

#### Стекло оптическое бесцветное

## МЕТОД ОПРЕДЕЛЕНИЯ ОПТИЧЕСКОЙ ОДНОРОДНОСТИ НА КОЛЛИМАТОРНОЙ УСТАНОВКЕ

**FOCT** 3518-80

Colourless optical glass.

Method for determination of optical homogeneity on collimator

Взамен ГОСТ 3518—69

Постановлением Государственного комитета СССР по стандартам от 7 августа 1980 г. № 4123 срок введения установлен

c 01.01 1982 r.

#### Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на оптическое бесцветное стекло в заготовках и деталях и устанавливает метод определения оптической однородности на коллиматорной установке с помощью штриховых мир и точечных диафрагм.

#### 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Метод основан на определении предельных углов разрешения коллиматорной установки  $\phi$  с введенным в параллельный пучок лучей образцом стекла и  $\phi_0$  без образца стекла при длине волны  $\lambda=0,55$  мкм с помощью штриховых мир и вычислении отношения  $\frac{\phi}{\phi_0}$ , определяющего категории оптической однородности оптического стекла по ГОСТ 23136—78.

## 2. ОТБОР ОБРАЗЦОВ

- 2.1. Определение оптической однородности стекла следует про-изводить в заготовках и деталях, имеющих форму пластин.
- 2.2. Определение оптической однородности стекла заготовок и деталей, имеющих форму линз и призм, следует производить с помощью образцов для испытаний.
- 2.3. Образцы для испытаний следует изготовлять из стекла той же марки, что и стекло заготовок (деталей) и отжигать

вместе с ними. Перед отжигом образцы для испытаний должны быть закалены так, чтобы двойное лучепреломление было не менее указанного в табл. 1.

Таблица 1

| Оптический коэффициент напряжения стекла образца для испытаний, В·10 <sup>12</sup> Па <sup>-1</sup> | Двойное лучепреломление, нм/см.<br>не менее |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------|
| До 2,0                                                                                              | 35                                          |
| Св. 2,0 до 2,8                                                                                      | 55                                          |
| » 2,8                                                                                               | 80                                          |

- 2.3.1. Значения оптического коэффициента напряжения оптического бесцветного стекла различных марок по ГОСТ 13659—78.
- 2.4. Форма и размеры образцов для испытаний должны соответствовать указанным в табл. 2.

Таблица 2

| Форма заготовок<br>(деталей) | Характеристика образцов для испытаний |                                       |                                                                                 |  |
|------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|--|
|                              | Форма                                 | Толщина                               | Световое отверстие  Диаметр равен диаметру заготовки (детади)                   |  |
| Линза                        | Круглая пластина                      | Толщина заготовки<br>(детали)         |                                                                                 |  |
| Призма                       | Прямоугольная<br>пластина             | Равна длине<br>хода лучей в<br>призме | Каждая из сторон на 5% больше соответствующих сторон светового отверстия призмы |  |

- 2.5. Диаметр или наибольшая сторона светового отверстия заготовок, деталей и образцов для испытаний (далее образцов стекла) должны быть не более диаметра объектива коллиматора, но не менее 60 мм.
- 2.5.1. Допускается просмотр образцов стекла больших размеров, если для работы используются отдельные участки их с диаметром, не превышающим диаметр объектива коллиматора.
- 2.6. Клиновидность образцов стекла при работе с лампой накаливания без фильтра не должна быть более 2', с источником монохроматического излучения 1°.
- 2.7. Рабочие поверхности образцов стекла с показателем преломления до 1,65 должны быть шлифованными или полированными, более 1,65 — полированными.
- 2.7.1. Шероховатость шлифованных поверхностей для просмотра на соответствие 1-й категории оптической однородности должна быть  $Ra \le 0.63$  мкм на базовой длине 8,0 мм, на соответствии

2.7.2. Шероховатость полированных поверхностей должна быть Rz ≤ 0.05 мкм на базовой длине 0.8 мм по ГОСТ 2789—73.

2.7.3. Чистота полированных поверхностей должна быть не хуже PV по ГОСТ 11141—76.

2.8. Неплоскостность полированных рабочих поверхностей образцов стекла не должна быть более:

для 1-й категории оптической однородности — 1 интерференционной полосы при допуске на местные ошибки до 0,1 полосы;

для 2—5-й категорий оптической однородности — 5 интерференционных полос при допуске на местные ошибки до 0,5 полосы.

- 2.9. Образцы стекла со шлифованными поверхностями следует просматривать с накладными пластинами, смоченными иммерсионной жидкостью.
- 2.9.1. Накладные пластины должны быть изготовлены из оптического стекла, удовлетворяющего требованиям 1-й категории по оптической однородности, двойному лучепреломлению, бессвильности по ГОСТ 23136—78.
- 2.9.2. Клиновидность накладных пластин не должна быть более 1.
- 2.9.3. Неплоскостность поверхностей накладных пластин не должна быть более:
- 10 интерференционных полос при допуске на местные ошибки по 1 полосы для прикладываемых к шлифованным поверхностям образца стекла;

1 интерференционной полосы при допуске на местные ошибки до 0,1 полосы — для неприкладываемых.

2.9.4. Чистота полированных неприкладываемых поверхностей должна быть не хуже PV по ГОСТ 11141—76.

2.9.5. Накладные пластины, смоченные иммерсионной жидкостью и попарно приложенные друг к другу, не должны изменять наименьший угол разрешения коллиматорной установки и искажать дифракционное изображение точки.

2.9.6. Показатель преломления иммерсионной жидкости не должен отличаться от показателя преломления стекла  $n_{\rm e}$  образца более чем на  $2\cdot 10^{-3}$ .

оолее чем на 2.10-3.

Допускается использование иммерсионной жидкости с большей разницей показателей преломления, если результаты просмотра стекла будут соответствовать заданной категории оптической однородности.

Требования к иммерсионным жидкостям — по ГОСТ 5421—73.

#### 3. АППАРАТУРА И МАТЕРИАЛЫ

3.1. Для проведения измерений применяют: коллиматорную установку (см. чертеж);

набор штриховых мир по ГОСТ 15114—78; набор точечных диафрагм; иммерсионные жидкости;

спирто-эфирную смесь СЭ-90;

салфетки из батиста по ГОСТ 8474—72 или фланели по ГОСТ 7259—77.

#### Оптическая схема коллиматорной установки



I—источник света; 2—конденсор; 3—сменный фильтр или матовое стекло; 4—набор штриховых мир; 5—набор точечных днафрагм (4, 5—сменные); 6—объектив коллиматора; 7—диафрагма коллиматора; 8—образец стекла; 9—объектив зрительной трубы; 10—микроскоп

- 3.2. В качестве источника света должна применяться: электрическая лампа накаливания для оптических приборов типа СЦ61 (напряжение 8 В, мощность 20 Вт); ртутные лампы сверхвысокого давления типов ДРШ-100, ДРШ-250 и др.
- 3.3. В качестве фильтра следует использовать пластину толщиной 2 мм из стекла марок: 3C3, 3C10, 3C11 по ГОСТ 9411—75 или интерференционный фильтр с максимальным коэффициентом пропускания не менее 50% в интервале длин 0,53—0,56 мкм.

Фильтр следует применять в сочетании с лампой накаливания и другими источниками света для выделения излучения с максимумом в интервале длин волн 0,53—0,56 мкм.

- 3.4. Размеры штриховых мир набора и значения угловых расстояний между серединами соседних полос каждого элемента штриховых мир (далее угловой размер элемента штриховой миры) применительно к фокусному расстоянию объектива коллиматора по ГОСТ 15114—78. Штриховая мира должна быть установлена в фокальной плоскости объектива и равномерно освещена в соответствии с ГОСТ 23479—79.
- 3.4.1. Допускается использование штриховых мир другого контраста при контроле образцов стекла, к которым предъявляются повышенные требования по оптической однородности.
- 3.5. Точечные диафрагмы должны быть изготовлены из непрозрачного материала в форме пластин с отверстиями диаметром 0.007: 0.010: 0.020 и 0.100 мм.

Точечные диафрагмы следует использовать для оценки качества оптической системы коллиматорной установки и для контроля образцов стекла на соответствие 1-й категории оптической однородности.

3.6. Объективы коллиматора и зрительной трубы должны соответствовать следующим требованиям:

Дифракционное изображение точки в фокальной плоскости объектива должно состоять из круглого светлого пятна, окруженного концентричными с ним кольцами. Дифракционная картина не должна обнаруживать отклонения от круга, иметь разрывов и размытостей.

- 3.7. Диаметр переменной диафрагмы коллиматора в миллиметрах не должен отличаться от диаметра светового отверстия образна стекла более чем на 5 мм.
- 3.7.1. За диаметр светового отверстия образца стекла в форме прямоугольной пластины следует принимать размер меньшей стороны.
- 3.8. В качестве окуляра зрительной трубы следует использовать микроскоп с увеличением  $100^{\times}$ .
- 3.9. Теоретический угол разрешения коллиматорной установки  $\phi_0$  следует вычислять по формуле

$$\varphi_0 = \frac{K}{D}$$
,

где D — диаметр переменной диафрагмы коллиматора, мм, принимаемый равным диаметру светового отверстия образца стекла;

К — коэффициент, равный 120 с.мм.

3.10. Предельный угол разрешения коллиматорной установки  $\phi_1$  не должен отличаться от теоретического угла разрешения  $\phi_0$  более чем на угловой размер одного элемента миры, если  $\phi_0$  и  $\phi_1$  выражены в угловых размерах элементов миры.

Предельный угол разрешения коллиматорной установки — наименьший угол разрешения ее при диаметре диафрагмы коллиматора, выбранном в соответствии с п. 3.7.

Примечание. При определении категории оптической однородности образцов стекла вместо теоретического допускается пользоваться предельным углом разрешения коллиматорной установки.

3.11. Определение оптической однородности образцов стекла, предназначенных для работы в условиях двухкратного прохождения через них света, следует производить на коллиматорной установке с автоколлимационным окуляром или на автоколлимационной установке.

#### 4. ПОДГОТОВКА К ИЗМЕРЕНИЮ

4.1. Перед проведением измерений образцы стекла выдерживают в помещении, где производят измерения, в течение времени, достаточного для принятия ими температуры окружающего воздуха по всему объему.

Накладные пластины и иммерсионные жидкости при использовании должны иметь температуру, одинаковую с образцами стекла.

- 4.2. Источник света и фильтр выбирают в соответствии с требованиями пп. 2.6, 3.2, 3.3 в зависимости от освещенности и клиновидности образца стекла по признаку отсутствия хроматической абберации в изображении штриховой миры.
- 4.3. Переменную диафрагму коллиматора подбирают в зависимости от светового отверстия образца стекла в соответствии с требованиями п. 3.7.
- 4.4. Теоретический угол разрешения коллиматорной установки вычисляют по п. 3.9.
- 4.5. Для просмотра образцов стекла на соответствие их 1-й категории оптической однородности выбирают точечную диафрагму в соответствии с п. 3.5 такого диаметра, чтобы в микроскопе была видна дифракционная картина изображения точки, соответствующая п. 3.6.
- 4.7. Образцы стекла протирают спирто-эфирной смесью СЭ-90 или другими растворителями, применяемыми для чистки оптических деталей.

## 5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

- 5.1. Включают источник света.
- 5.2. Вводят штриховую миру в ход лучей оптической системы.
- 5.3. Изображение штриховой миры n в фокальной плоскости объектива зрительной трубы совмещают с центром поля зрения микроскопа. Микроскоп фокусируют до резкого изображения миры. Рассматривая ее изображение, находят предельно разрешаемый элемент  $i_1$ , полосы всех направлений которого различаются одновременно по всей длине.

5.4. Образец стекла устанавливают между объективами кол-

лиматорной установки.

5.5. Определяют предельно разрешаемый элемент миры *i* коллиматорной установки, в параллельный пучок лучей которой введен образец стекла в соответствии с п. 5.3 без перефокусировки микроскопа.

- 5.5.1. При просмотре образцов стекла на соответствие 3—5-й категориям оптической однородности допускаются незначительные абберации астигматизма, кома, размытости в изображении миры, если они не мешают различать полосы всех направлений предельно разрешаемого элемента без перефокусировки микроскопа.
- 5.6. При просмотре образцов стекла на соответствие их 1-й категории оптической однородности дальнейшая последовательность операций указана в пп. 5.6.1—5.6.3.
- 5.6.1. На место штриховой миры устанавливают точечную диафрагму, подобранную в соответствии с п. 4.5, и выводят образец

из хода лучей оптической системы.

- 5.6.2. Центр дифракционного изображения точечной диафрагмы в фокальной плоскости объектива зрительной трубы совмещают с центром поля зрения микроскопа. Микроскоп фокусируют до резжого изображения дифракционной картины точечной диафрагмы.
- 5.6.3. Дифракционное изображение точечной диафрагмы рассматривают с образцом стекла без перефокусировки микроскопа. Для образца стекла, соответствующего 1-й категории оптической однородности, дифракционное изображение точечной диафрагмы должно соответствовать требованиям п. 3.6.
- 5.7. Образцы стекла с размерами, определяемыми в п. 2.5.1, и в форме прямоугольных пластин измеряют в соответствии с пп. 5.1—5.6 по участкам, ограниченным световым диаметром переменной диафрагмы.

#### 6. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 6.1. По номеру разрешаемого элемента  $i_1$ , номеру миры n и значению фокусного расстояния объектива коллиматора по ГОСТ 15114-78 находят предельный угол разрешения  $\phi_1$  коллиматорной установки.
- 6.2. По номеру разрешаемого элемента *i*, номеру миры *n* и значению фокусного расстояния объектива коллиматора по ГОСТ 15114—78 находят предельный угол разрешения коллиматорной установки **ф**, в параллельный пучок которой введен образец стекла.

## Стр. 8 ГОСТ 3518-80

- 6.3. Вычисляют отношение  $\frac{\varphi}{\varphi_1}$  для образца стекла, округляя полученные числа до двух значащих цифр.
- 6.4. По значению  $\frac{\varphi}{\varphi_1}$  и качеству дифракционного изображения точечной диафрагмы или изображения штриховой миры (п. 5.5.1) определяют категорию оптической однородности стекла просматриваемого образца по ГОСТ 23136—78.

Редактор *Н. Б. Жуковская* Технический редактор *О. Н. Никитина* Корректор *Г. А. Юшина* 

Сдано в наб. 20.08.80 Подп. к печ. 10.10.80 0,75 п. л. 0,54 уч.-изд. л. Тир. 10000 Цена 3 коп.

## основные единицы си

|                           | Единица      |             |                     |  |  |  |
|---------------------------|--------------|-------------|---------------------|--|--|--|
| Величина                  | Наименование | Обозначение |                     |  |  |  |
|                           | цаименование | русское     | международное       |  |  |  |
| длина                     | метр         | · M         | m                   |  |  |  |
| MACCA                     | килограмм    | кг          | kg<br>s             |  |  |  |
| время                     | секунда      | c           |                     |  |  |  |
| СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА  | ампер        | A           | Α                   |  |  |  |
| ТЕРМОДИНАМИЧЕСКАЯ         |              |             |                     |  |  |  |
| ТЕМПЕРАТУРА               | кельвин      | K           | $\mathbf{K}$        |  |  |  |
| количество вещества       | моль         | ` моль      | $\mathbf{mol}$      |  |  |  |
| СИЛА СВЕТА                | кандела      | кд          | $\operatorname{cd}$ |  |  |  |
| дополнительные единицы си |              |             |                     |  |  |  |
| Плоский угол              | радиан       | . рад       | rad                 |  |  |  |
| Телесный угол             | стерадиан    | ср          | sr                  |  |  |  |

## производные единицы си,имеющие собственные наименования

| Величина                            | Единица           |             | Выражение производной единицы    |                                                       |
|-------------------------------------|-------------------|-------------|----------------------------------|-------------------------------------------------------|
|                                     | наименование      | обозначение | через другие<br>единицы СИ       | через основные<br>единицы СИ                          |
| Частота                             | герц              | Гц          | _                                | c-1                                                   |
| Сила                                | нотон             | н           |                                  | M·Kr·e−²                                              |
| Давление                            | паскаль           | Па          | <b>H</b> / <b>m</b> <sup>2</sup> | M <sup>-</sup> (·Kr·c <sup>-2</sup>                   |
| Энергия, работа, количество теплоты | джоуль            | Дж          | H-M                              | M 2 · K F · C - 2                                     |
| Мощность, поток энергии             | ватт              | Вт          | Дж/с                             | M <sup>2</sup> ·KΓ·C <sup>−3</sup>                    |
| Количество электричества,           |                   |             |                                  |                                                       |
| электрический заряд                 | кулон             | Кл          | A c                              | · c·A                                                 |
| Электрическое напряжение,           |                   |             |                                  |                                                       |
| электрический потенциал             | вольт             | В           | Br / A                           | M2 · Kr·c -3 · A-1                                    |
| Электрическая емкость               | фарад             | Φ           | Кл/В                             | M <sup>-2</sup> ·Kr <sup>1</sup> ·C ⁴ ·A <sup>2</sup> |
| Электрическое сопротивление         | ом                | Ом          | B/A                              | M <sup>2</sup> Kr · C → · A → 2                       |
| Электрическая проводимость          | сименс            | См          | A/B                              | M-2-Kr-1-C3-A2                                        |
| Поток магнитной индукции            | вебер             | Вб          | B·c                              | m²-kr-c-2 -A1                                         |
| Магнитная индукция                  | тесла             | Тл          | Вб / м²                          | Kr·c <sup>-2</sup> ·A <sup>-1</sup>                   |
| Индуктивность                       | генда             | Гн          | B6 / A                           | M <sup>2</sup> ·Kr·c <sup>-2</sup> ·A <sup>-2</sup>   |
| Световой поток                      | люмен             | лм          |                                  | кд∙ер )*                                              |
| Освещенность                        | люке              | лк          | ·                                | м-2 кдер                                              |
| Активность нуклида                  | бекке <b>рель</b> | Бĸ          | _                                | <b>c</b> −¹                                           |
| Доза излучения                      | грэй              | Гр          |                                  | M² · C−?                                              |

<sup>\*</sup> В эти два выражения входит, наравне с основными единицами СИ, дополёмтельная единица—стерадиав.