SRK/KW/14/6915

rtmnuonline.com

Faculty of Engineering & Technology First Semester B.E. (CBS) Examination ENGINEERING PHYSICS

Paper-2

rtmnuonline.com

Time-Two Hours]

[Maximum Marks—40

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Solve FOUR questions as follows:

Que. No. - 1 OR Que. No. - 2

Que. No. - 3 OR Que. No. - 4

Que. No. - 5 OR Que. No. - 6

Que. No. - 7 OR Que. No. - 8

- (3) Assume suitable data wherever necessary.
- (4) Diagrams should be given wherever necessary.
- (5) Illustrate your answers wherever necessary with the help of neat sketches.
- (6) Use of non-programmable calculator is permitted.

rtmnuonline.com

List of Constants:

Planck's constant $h = 6.625 \times 10^{-34} J.S$

Mass of electron $m = 9.11 \times 10^{-31} \text{ Kg}$

Electron charge $e = 1.602 \times 10^{-19} C$

rtmnuonline.com

Avogadro's No. $N_A = 6.023 \times 10^{26}$ atoms/Kmole Mass of α particle = 6.64×10^{-27} Kg Charge of α particle = 3.2×10^{-19} C.

- (a) State the expression for Compton shift. Explain in brief the existence of modified component in Compton scattering.
 - (b) Prove that a free electron can not absorb a photon.

(c) Incident radiation of wavelength 1.087A° is scattered from a scatterer at an angle of 30°. Calculate the wavelength of scattered photon and kinetic energy of recoil electron. rtmnuonline.com 2+2

OR

(a) Give an account of Davisson and Germer experiment to show the wave like character of a beam of electron.

b) Show that deBroglie wavelength for an electron is $\frac{12 \cdot 26}{\sqrt{V}}$ where V is the accelerating potential. 3

- (c) Calculate the wavelength associated with a stone of mass 50 gms moving with speed of 50 m/s and an electron with kinetic energy of 100 eV.
- (a) Define (i) Phase velocity (ii) Group velocity. Obtain the relationship between group velocity and phase velocity. Give the significance of the result. 2+3

400

	rtmnuonline.com			
(b)	Using the following data show that an electron can	6.	(a)	Define - (i) Space lattice
(0)	not exist inside the nucleus. Given: Radius of nucleus		12.	(ii) Unit cell rtmnuonline.com
	= 10 ⁻¹⁴ m. Maximum Kinetic energy of an electron			(iii) Coordination Number. 3
i Singa	in an atom = 4 meV .		(b)	What are Miller Indices ? Draw separately the planes
(c)	State Heisenberg uncertainty principle. 2			(100), (011) and (211) 1+3
	OR rtmnuonline.com		(c)	An X-ray beam of wavelength 1.5 Ao is diffracted
(a)	A particle is confined in one dimensional potential well of infinite depth. Use Schrodinger wave equation to obtain energy states of a particle inside the well.		93	by (110) planes of Nickel crystal. The first order diffraction is obtained at an angle of 27.6. Determine the lattice constant of unit cell of Nickel having FCC structure.
(b)	What is physical significance of ψ? 3	7.	(a)	Explain the formation of depletion region in a p-n
(c)	Find the lowest three energy of an electron confined			Junction diode. rtmnuonline.com 4
()	to move in a one dimensional box of length 5A°.		(b)	Draw energy band diagram for N-type semiconductor at O°K and T°K.
(a)	Deduce the relation between the interplaner distance d and Miller indices of the plane of cubic crystal.		(c)	Calculate fraction of electron in conduction band of diamond at 27°C; if band gap is 5.6 eV wide. 3
	4	58		OR
(b)	Find atomic radius, packing fraction and void space	8.	(a)	Explain Hall Effect. Obtain an expression for Hall
	for simple cubic crystal structure.		12	Coefficient. 1+3
(c)	The density of copper is 8980 Kg/m ³ and unit cell dimension is 3.61 A°. Atomic weight of copper = 63.54.	10	(b)	Draw energy band diagram for p-n-p transistor when biased in common base mode and in unbiased mode.

Contd. MLV-6441 MLV-6441

rtmnuonline.com

Determine crystal structure and atomic radius.

OR

5.

rtmnuonline.com

Explain drift current and diffusion current.