Университет ИТМО

Факультет Программной Инженерии и Компьютерной Техник

Вариант №3207

ЛАБОРАТОРНАЯ РАБОТА №3

По дисциплине

Основы Профессиональной Деятельности

Преподаватель:

Ткешелашвили Нино Мерабиевна

Выполнила:

Жолеу Алтынай

Группа: Р3132

Санкт-Петербург

2021

Задание:

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Выполнение:

Введит	е номер	вар	оианта	3207	
362: 363: 364:	0379 A000 E000		370: 371: 372:	F401 CE04 0400	
365: 366: 367:	E000 + AF40 0680	į 	373: 374: 375:	7EF1 F801 EEEF	
368: 369: 36A:	0500 EEFB AF05	į	376: 377: 378:	8364 CEF6 0100	
36B: 36C: 36D:	EEF8 AEF5 EEF5		379: 37A: 37B:	0A00 0901 0100	
36E: 36F:	AAF4 0480		37C: 37D:	8365 0E01	

1)Текст программы

Адрес	Код команды	Мнемон ика	Комментарии
362	0379	а	адрес первого элемента массива
363	A000	b	адрес текущего элемента массива
364	E000	С	Количество итераций цикла (количество элементов массива)

365	E000	R		результат подсчета				
366	AF40	LD #40	#40 -> AC	Загрузка в ячейку числа.				
367	0680	SWAB	AC7AC0 ↔ AC15AC8					
368	0500	ASL	AC15 ->C, 0 -> AC0					
369	EEFB	ST IP-5	AC -> 365					
36A	AF05	LD #05	#05 -> AC	Получение в 364 числа итераций цикла				
36B	EEF8	ST IP-8	AC -> 364					
36C	AEF5	LD IP-11	362 -> AC	Получение в 363 адреса первого				
36D	EEF5	ST IP-11	AC -> 363	элемента массива				
36E	AAF4	LD (IP-12)+	363 -> AC	Получение адреса следующего элемента массива в индексную ячейку для автоинкрементации				
36F	0480	ROR	AC0-> C, C ->AC15	Проверка на четность элемента массива, путем циклического сдвиго				
370	F401	BCS 01	IF C==1 THEN 372 -> IP	признака С. При четности элемента переход на адрес 376.				
371	CE04	JUMP 04	376 -> IP					
372	0400	ROL	AC ₁₅ -> C, C -> AC ₀					
373	7EF1	CMP IP-15	Установить флаги по результату AC-365	Сравнение 2-х элементов массива . Переход, если меньше . Если сравниваемый текущий нечетный массив оказался больше массива в				
374	F801	BLT O1	IF N⊕V==1 THEN IP+D+1 → IP(376)	ячейке результата 365, новое максимальное нечетное значение записывается на адрес-результат 365.				
375	EEEF	ST IP-17	AC -> 365					

376	8364	LOOP 364	M - 1 -> M; ЕСЛИ М <= 0, то IP + 1 -> IP	Проход по всем итерациям цикла
377	CEF6	JUMP IP-10	36E -> IP	
378	0100	HLT	Остановка	Выход из цикла
379	0A00	A[0]		
37A	0901	A[1]		
37В	0100	A[2]		
37C	8365	A[3]		
37D	0E01	A[4]		

2)Описание программы

- Назначение программы: программа находит максимальное нечетное число;
- □ Область представления и область допустимых значений исходных данных и результата:
 - → Область представления
 - 1) а, b 11-разрядное беззнаковое целое число: $[0, 2^{11}$ -1]
 - 2) R 16ти разрядные знаковые числа : $[-2^{15}, 2^{15}-1]$
 - 3) С КОЛИЧЕСТВО ЭЛЕМЕНТОВ МАССИВА: $[0, 2^7 1]$
 - 4) A[0],A[1],A[2],A[3],A[4] -16ти разрядные знаковые числа $[-2^{15},2^{15}-1]$
 - → Область допустимых значений

$$A[i] - [-2^{15}, 2^{15}-1]$$

$$R - [-2^{15}, 2^{15}-1]$$

a ε [0; 361] υ [379;7FF]

b ε [0; 361] υ [379;7FF]

если а ϵ [106;361] , то количество элементов [1, 362-а] если а ϵ [0;105] , [379;7FF] , то количество элементов [1, 28-1]

□ Расположение данных и программы в памяти БЭВМ:

Программа: 366 - 378

Элементы массива: 379 - 37D Адрес первого элемента: 362

Адрес текущего элемента массива: 363

Количество итераций цикла:364

Результат: 365

Таблица трассировки:

Выполня командс		Содержимое регистров процессора после выполнения команды								Ячейка, содержимое которой изменилось после выполнения команды	
Адрес	Код	IP	IP CR AR DR SP BR AC NZVC					Адрес	Новый Код		
366	AF40	367	AF40	366	0040	000	0040	0040	0000		
367	0680	368	0680	367	0680	000	0367	4000	0000		
368	0500	369	0500	368	4000	000	0368	8000	1010		
369	EEFB	36A	EEFB	365	8000	000	FFFB	8000	1010	365	8000
36A	AF03	36B	AF03	36A	0003	000	0003	0003	0000		
36B	EEF8	36C	EEF8	364	0003	000	FFF8	0003	0000	364	0003
36C	AEF5	36D	AEF5	362	0400	000	FFF5	0400	0000		
36D	EEF5	36E	EEF5	363	0400	000	FFF5	0400	0000	363	0400

36E	AAF4	36F	AAF4	400	0006	000	FFF4	0006	0000	363	0401
36F	0480	370	0480	36F	0480	000	036F	0003	0000		
370	F401	371	F401	370	F401	000	0370	0003	0000		
371	CE04	376	CE04	371	0376	000	0004	0003	0000		
376	8364	377	8364	364	0002	000	0001	0003	0000	364	0002
377	CEF6	36E	CEF6	377	036E	000	FFF6	0003	0000		
36E	AAF4	36F	AAF4	401	0005	000	FFF4	0005	0000	363	0402
36F	0480	370	0480	36F	0480	000	036F	0002	0011		
370	F401	372	F401	370	F401	000	0001	0002	0011		
372	0400	373	0400	372	0400	000	0372	0005	0000		
373	7EF1	374	7EF1	365	8000	000	FFF1	0005	1010		
374	F801	375	F801	374	F801	000	0374	0005	1010		
375	EEEF	376	EEEF	365	0005	000	FFEF	0005	1010	365	0005
376	8364	377	8364	364	0001	000	0000	0005	1010	364	0001
377	CEF6	36E	CEF6	377	036E	000	FFF6	0005	1010		
36E	AAF4	36F	AAF4	402	FFFD	000	FFF4	FFFD	1000	363	0403
36F	0480	370	0480	36F	0480	000	036F	7FFE	0011		
370	F401	372	F401	370	F401	000	0001	7FFE	0011		
372	0400	373	0400	372	0400	000	0372	FFFD	1010		
373	7EF1	374	7EF1	365	0005	000	FFF1	FFFD	1001		
374	F801	376	F801	374	F801	000	0001	FFFD	1001		
376	8364	378	8364	364	0000	000	FFFF	FFFD	1001	364	0000
378	0100	379	0100	378	0100	000	0378	FFFD	1001		

Вывод:

При выполнении данной лабораторной работы я изучила способ организации циклических программ в БЭВМ, команды, позволяющие управлять ходом выполнения программы, два вида адресации режимы адресации и индексные ячейки. Изученный материал применяется при написании различных программ, использующих циклы, а также программ, которые вычисляют значение формул, принимающих в качестве параметров значения элементов массива.