Identification of structural problems using tweets

Data Mining 2019/2020 Matteo Suffredini

Context

Problem

Identify structural problem so that they can be solved promptly

Solution

Use tweets by selecting those that relate to structural problems

ROADMAP

obtain the best

classifier

rappresentation

Obtain tweets

Tool

GetOldTweet Library

Search

Position (LAT, LON, Range)

Keywords

Cleaning

Remove duplicates

Convert uppercase

Remove useless meta-informations

Text Elaboration

Tokenization

<lo>, <scarico>, <in>, <via>, <verdi>, <perde>

Stop-word filtering

<scarico>,<via>, <verdi>, <perde>

Stemming

<scaric>,<vi>,<verd>,<perd>

Stem filtering

Select F relevant words with positive IG (IDF assigned to words)

Feature rapresentation

X = [Xvi, Xscaric, Xfogn, Xacqu, Xrottur, Xriparazion, ...]F Xi = [wvi, 0, Wfogn, 0, 0, 0, ...]F

Validation

10 Stratified Cross Fold

2 seed

Classifier

Decision Tree SVM Multinomial NB K-NN Adaboost RandomForest

Metrics

Accuracy Precision Recall F-Score

Deal with unbalanced dataset

Evaluation example

The oversampling % and undersampling ratio have been varied together with the specific parameters of each classifier in order to obtain the best average f-score

Experiment 1 results

MultinomialNB

Over: 150% Under: 1:4

K-NN

Over: 50% Under: 1:4 k: 1

Adaboost

Over: 0% Under: 1:8

Random Forest

Over: 50% Under: 1:4

Decision Tree

Over: 0% Under: 1:5

SVM

Over: 50% Under: 1:5 Wstruct: 0,5

Selected Classifier

Decision Tree

Accuracy: $95,74 \pm 0,47$

F-Score: $45,52 \pm 4,93$

Precision: $42,30 \pm 4,71$

Recall: $51,36 \pm 7,12$

•••••	Structural	Non Structural	Tot
Structural	120	114	234
Non Structural	170	6256	6426
Tot	290	6370	6660

Resample per word

Tweets distribution per keyword

Experiment 2 results

K-NN k: 1

SVM

Wstruct: 0,6

Selected Classifier

10%

SVM

Accuracy: $72,47 \pm 4,82$

F-Score: $70,67 \pm 4,25$

Precision: $80,15 \pm 7,09$

Recall: $65,50 \pm 5,42$

•••••	Structural	Non Structural	Tot
Structural	140	74	214
Non Structural	44	170	214
Tot	184	244	428

Resample per word with constant Non Structural tweets

Tweets distribution per keyword

Experiment 3 results

Selected Classifier

SVM

Accuracy: $73,36 \pm 2,63$

F-Score: $63,48 \pm 4,03$

Precision: 64,89 ± 3,37

Recall: $63,55 \pm 6,15$

•••••	Structural	Non Structural	Tot
Structural	136	78	214
Non Structural	75	285	360
Tot	211	363	574

Experiment 2 vs 3

Test classifier build with all selected tweets with excluded tweets from original dataset

Accuracy: 78,50% Recall NS: 78,53% Recall S: 70,00%

Experiment 3

	S	NS	
S	8	2	10
NS	307	2726	3033
	315	2728	3043

Accuracy: 89,85% Recall NS: 89,88% Recall S: 80,00%

Comparison with heavy rainfall events

Event		Classific. Results		Re	eal	тот		
Data e Ora Inizio	Data e Ora Fine	Luogo	S	NS	S	NS	Keys	No Key
04/04/2015 12:45	04/04/2015 19:00	CECINA	0	5	0	5	5	146
8/24/15 3:00	8/24/15 7:00	PISA	1	1	1	1	2	93
10/27/15 9:00	10/28/15 15:30	PISA + CECINA	0	0	0	0	0	145
08/05/2016 09:00	08/05/2016 11:00	PISA	0	1	0	1	1	116
9/16/16 7:45	9/16/16 13:30	CECINA	0	4	0	4	4	113
10/14/16 13:00	10/14/16 21:00	PISA + CECINA	0	2	0	2	2	94
09/09/2017 20:00	09/10/2017 09:00	PISA + CECINA	0	2	0	2	2	112
9/18/17 12:30	9/19/17 9:30	CECINA	0	0	0	0	0	101
12/10/2017 09:00	12/11/2017 09:00	PISA	0	1	0	1	1	96
10/28/18 9:00	10/29/18 9:00	PISA + CECINA	0	1	0	1	1	94
2/17/18 14:45	2/18/18 7:30	PISA + CECINA	0	0	0	0	0	94
10/24/19 10:30	10/24/19 23:45	PISA	0	4	0	4	4	175
1/27/20 7:15	1/27/20 13:45	PISA + CECINA	0	1	0	1	1	212
10/29/19 9:00	10/30/19 9:00	PISA + CECINA	0	5	0	5	5	175
		тот	1	27	1	27	28	1766

Analysing a subset of the 1766 tweets, there do not seem to be any structural tweets not related to the words used for the search

Center: 43,5436 - 10,317 Radius: 37 km ≈ 23 mi

Tool

Structural Tweet visualization

Radius: 3mi ≈ 5Km

Output file

#Pisa: tassa di scopo	NonStructural	allagamento
@Sonjia85 inizio allagame	NonStructural	allagamento
#Vicopisano, la piazza	Structural	allagata
#viareggio	Structural	allagata
Pioggia grandine 9 gradi	Structural	allagata
Mezza Pisa allagata	Structural	allagata
Pisa allagata!!	Structural	allagata
sentire comparuzzoRinella	NonStructural	allagata
" @I_patrizia: #LePen «	NonStructural	allagato

GUI

Questions?

Thank you for listening