

Protocolos de Acesso ao Meio

Fundamentos de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA, 2018/2019

Topologias de rede

- Existem 4 topologias básicas:
 - Bus
 - Estrela
 - Anel
 - Malha
- Estas topologias podem ser físicas ou lógicas
 - Podem existir diferentes topologias a diferentes níveis.

Teia (Mesh)

- Vantagens
 - Disponibilidade de recursos
- Desvantagens
 - Rede complexa e difícil de gerir
 - Número de ligações cresce proporcionalmente a N²

N nós na rede

Bus

Vantagens

- É fácil ligar um computador ou periférico a um Bus
- Requer menos cabos que uma topologia em estrela
- Simples e económica

Desvantagens

- Toda a rede fica inactiva se existe uma ruptura no cabo principal
- São necessários terminadores em ambos os extremos do cabo principal
- Difícil identificar a origem de um problema se a rede inteira deixar de funcionar

Exemplo

Ethernet em cabo coaxial

Topologia em Anel

- Mecanismo de acesso ao meio próprio (MAC)
- Garantias de tempo de resposta
- Simples de controlar
- Mecanismos de protecção para falhas no anel
- Topologia física incómoda e rede complexa

Estrela

Vantagens

- Fácil de instalar
- Não existem quebras na rede quando se ligam ou desligam terminais
- Fácil detecção de falhas e remoção dos elementos com anomalias

Desvantagens

- Baseada num elemento central (hub ou concentrador) que se indisponível faz com que os nós aí ligados fiquem incomunicáveis
- Requer mais cabo que a topologia em Bus
- Mais caro que a topologia de Bus pelo custo dos concentradores

Exemplo

Ethernet UTP

Árvore

(hierarquia de estrelas)

Vantagens

 Ligações ponto-a-ponto para ligação a segmentos individuais

Desvantagens

- O comprimento de cada segmento é limitado pelo tipo de cabo utilizado
- Se o cabo principal falha todo o segmento falha
- Mais difícil de configurar e cablar que as outras topologias

Ligações Partilhadas

Ligações partilhadas - múltiplos emissores e receptores todos ligados ao mesmo meio de transmissão

Coordenar o acesso ao meio dos mútiplos nós emissores e receptores – acesso múltiplo

ALOHA

- As estações transmitem e recebem em canais separados
- As estações transmitem sempre que têm um pacote pronto, independentemente do estado do canal
- Resolução de colisões:
 - O receptor envia ao emissor uma confirmação de que o pacote foi correctamente recebido (ACK)
 - O emissor retransmite o pacote num instante de tempo futuro se não receber uma confirmação durante um período de tempo pré-definido (timeout)
 - O timeout tem de ser superior ao atraso de propagação de ida-e-volta (round-trip delay)
- O tempo de retransmissão é aleatório para minimizar a repetição da colisão

Ilustração do ALOHA

utilização máxima – 18%

Aloha - desempenho

- Se g designar a taxa (total) de pacotes oferecidos ao canal (offered load), então $g > \lambda$, devido às retransmissões que ocorrem em virtude das colisões
- Considere-se a chegada de um pacote (novo ou velho) no instante t. A transmissão deste pacote terá sucesso se nenhum outro pacote chegar ao canal no intervalo (t-T, t+T). Este período de duração 2T é designado por período vulnerável.
- Fracção de tempo em que o canal é utilizado em transmissões com sucesso, que se designa por utilização (throughput), é $S = gTe^{-2gT}$ = Ge^{-2G}
- Onde G=gT é o tráfego oferecido normalizado, isto é, o número médio de pacotes oferecidos por tempo de transmissão.
- O valor máximo é Smax = $1/2e \approx 0.184$ e ocorre em G = 0.5.

CSMA (Carrier Sense Multiple Access)

- As estações transmitem e recebem no mesmo canal
- As estações **escutam o meio antes de transmitir**; só transmitem se o meio for detectado livre
- O número de colisões é minimizado
- Podem ocorrer colisões porque as estações estão a alguma distância umas das outras

CSMA/CD (CSMA with Collision Detection) (I)

• As estações quando detectam uma colisão param de transmitir

A estação A detecta o meio livre e inicia a sua transmissão

A estação B pretende transmitir mas não o faz porque detecta o meio ocupado; a estação C inicia a transmissão

CSMA/CD (II)

C detecta a colisão e pára de transmitir

A detecta a colisão e pára de transmitir

CSMA/CD (III)

Garantir que todas as estações emissoras detectam colisões ⇒

tempo mínimo de transmissão de um pacote > round-trip delay

CSMA-CD - desempenho

A utilização do CSMA/CD é

$$S \underset{N \to \infty}{\longrightarrow} \frac{1}{1 + 3.44a}$$

 $a = \tau/T$, T – tempo de transmissão de um pacote (tempo útil)

• a<1

CSMA-CD - desempenho

- Aumento de tráfego de entrada
 - Aumento de tráfego transmitido, mas...
 - Aumento das colisões

- Acesso ao meio em anel com um testemunho (token)
- Não havendo dados para transmitir no anel, as estações fazem circular o testemunho.
- Quando uma estação fica com uma trama pronta para transmitir, espera pela recepção do testemunho, retira o token do anel e envia então o pacote.
- Como o token deixou de circular, as outras estações não podem transmitir. Deste modo não existirão colisões. O pacote dará uma volta inteira ao anel e será retirado pela estação emissora.
- Ao chegar, a informação passa para o destino e o token é colocado vazio no anel.

- Nas redes Token Ring existe uma estação responsável pela monitorização do anel – active monitor
- Tramas que circulam indefinidamente:
 - O monitor coloca bit M a 1 e retira do anel tramas com bit M a 1.
- Tokens perdidos:
 - O monitor mantém um temporizador, refrescado cada vez que é recebida trama ou token; quando o temporizador expira é inserido novo token no anel.
- Manutenção do monitor:
 - O monitor envia periodicamente trama active-monitor-present.
 - Cada estação mantém um temporizador, refrescado cada vez que é recebida uma trama deste tipo.
 - Quando os temporizadores expiram entra-se num processo de eleição de novo monitor; o novo monitor será a estação activa com maior endereço.

- Mensagem, quando copiada pelo destino, tem uma flag que é modificada para mostrar que a mensagem foi 'lida'
- Entrada e saída do token e das mensagens

• Transmissão de datagramas IP multicast sobre redes token ring: mapeamento de endereços IP multicast para os endereços MAC Token- Ring correspondentes

Token Ring versus Ethernet

Desvantagens Token-Ring

- Necessidade de procedimentos de manutenção do *token*: tem de ser designada uma estação (i) para garantir que só existe um *token* no anel e (ii) para reinserir um *token* no anel se necessário
- Com tráfego reduzido, as estações têm de esperar pelo token até poderem transmitir
- Na Ethernet, com tráfego reduzido, a transmissão pode ser imediata

Vantagens Token-Ring

- Com tráfego elevado, o anel funciona segundo uma disciplina do tipo round-robin, garantindo eficiência e equidade
- Na Ethernet, com tráfego elevado, a utilização do meio é ineficiente devido ao elevado número de colisões

Wireless Networks

Wired vs Wireless differences

- A and C sense the channel empty simultaneously
 - > Send traffic at the same time
- Ethernet: sender can detect collision
- Wireless: radios cannot detect collision (work in half-duplex)
 - Full-duplex: both can transmit and receive information between each other simultaneously

Half-duplex: transmission and reception of information must happen alternatively.
 While one point is transmitting, the other must only receive (avoid self-

interference)

Wireless MAC

- Wired MACs
 - Typical: CSMA/CD
 - Medium is free \rightarrow send
 - Listen to sense collision
- What about wireless?
 - Signal power reduces with the square distance
 - Sender can apply CS and CD, but collisions occur in the receiver!
 - > Sender may not listen the collisoon (CD does not work)
 - CS may not work either with hidden nodes

Hidden nodes

• Hidden terminals

- A and C do not ear each other
- Collision in B, if A and C send at the same time
- Nor A nor C understand that collision occured

Solution

- Detect collisions in the receiver
- "virtual carrier sensing": sender asks the receiver if he is receiving traffic;
 in the case of absense of answer, he assumes that the channel is busy

Exposed nodes

- Exposed terminals
 - B sends to A; C wants to send to D
 - C senses the network and discovers that the medium is occupied
 - D is not in the range of B and A is not in the range of C,
 so the traffic could be transmitted
 - A and D are exposed terminals
- The transmissions could be done in parallel with no collision

MACA: Multiple Access with Collision Avoidance

- MACA: avoids collisions using signalling packets
 - RTS (request to send)
 - A small packet is sent before transmitting
 - CTS (clear to send)
 - Receiver provides the right to transmit, when it is able to receive
- Signaling packets (RTS/CTS) contain
 - Sender address
 - Receiver address
 - Packet length (to be transmitted)
- Used in networks scenario with a large amount of traffic/collisions

MACA: Hidden Nodes

- MACA and hidden nodes
 - A, C \rightarrow B (?)
 - A --RTS \rightarrow B
 - B CTS \rightarrow A
 - C ears CTS of B

C waits for the period announced in A transmission

MACA: Exposed Nodes

- MACA and exposed nodes
 - B \rightarrow A, C \rightarrow D(?)
 - BRTS \rightarrow A
 - A CTS \rightarrow B
 - C ears RTS of B
 - C does not ear CTS of A
 - $CRTS \rightarrow D$

MAC reliability

- Wireless connections are very prone to errors
 - Transport is not reliable
- Solution: use acknowledgements
 - When A receives DATA from B, answers with ACK.
 - If B does not receive ACK, B retransmits
 - C and D will not transmit until the ACK (to avoid collisions)
 - Total expected duration (including ACK) is included in the RTS/CTS packets

