## 2019.11,22 力学11 中間試験問題 担当:伊藤孝寛、原田俊太

## 注意事項

- ○飲料書、ノート、配布資料等の持ち込みは認めない。
- ○解告用紙 2 枚ともに授業料目名 (力学 11)。 飲員名 (伊藤孝寛)。名前、学生香号、所属 (エ 1-マテなど) も記入すること。
- ○問題番号を必ず記入し、解告部分には<u>下線などを引き</u>探点の際確認がしやすいようにすること。
- ○解害用紙の裏も使用してよいが、その場合は<u>寒にも解答があることを表面に明記</u>すること。
- ○解答を得た道筋を明確に記載していない場合は点敷を与えない。
- ○30 分以内の週刻は受験を認める。なお受験者は試験終了まで返室を許可しない。

(\*問題文にない物理量を用いる必要がある場合は定義した上で用いること、)

問1. 右図のように、及さ1[m]の非常に軽くてなめらかな管の一端が原点のに固定され、管の中に質量 m [kg] の質点が入っている。この質点が、水平面内で点ののまわりで一定の角速度 ω[rad/s] で回転する管内になめらかに東郷された状態で運動をするとき、次の問いに答えよ。ただし、1 = 0 [s] において管はx軸上で、質点はx=a[m](a<1)において節止していたものとする。ここで、管とともに回転する軸をx 軸、管と垂直な軸をy 軸として、回転座標系において質点の運動を考えるものとする。</p>



- (1) 質点が x = 1 に達する時刻を t = 1, [s] とする. 1 < 1, [s] において質点が受ける力のベクトルをそれぞれ模式図に作図し、それぞれの力の名称を答えよ.
- (2) ɪ < ɪˌ [s] における質点の運動方程式を x' 椥, y' 柚方向に分けてそれぞれ答えよ.
- (3) / < /i>
  (3) / < /i>
  (3) / < /i>
  (5] における質点の位置を時刻 / [5] の関数として表せ、
- (4)1<1[s] において質点が管から受ける抗力 N[N] を求めよ。
- (5) 管の先端に質点がたどりつく時間 r=1,[s] を a, l, wを用いて表せ.
- (6) 管の先端にふたはないものとする。回転座標系で観測される / > / [s] における質点の運動を力学的見地から脱明せよ。また、そのとき静止座標系で観測される質点の運動についても合わせて説明せよ。
- 間2. 等加速度直線運動をする質量 m [kg] の質点がある. 時刻 t=0 [s] における質点の位置が  $t_0(x_0,0,0)$ , 加速度が a(0,a,0)となるように座標軸を設定した. 質点の初速度は 0 である. 以下の問いに答えよ.
  - (1) 時刻 t における質点の速度 v は (0, v, 0), 位置 t は  $(x_0, v, 0)$  のように表すことができるとする. このときの v および v を a と t を用いて表せ.
  - (2) 時刻  $\iota$  における質点の原点に対する角運動量 L ( $L_x$ ,  $L_y$ ,  $L_z$ ) を求めよ.
  - (3) 時刻 t における質点の位置 ro に対する角運動量 L' (Lx', Lv', Lz') を求めよ.
  - (4) 時刻  $\iota$  において質点に働く力の原点に対するモーメント $N(N_s, N_v, N_s)$  を求めよ、



問3. ばね定数k [N/m], 自然長L [m] のばねでつながれた質量 $m_1$  [kg],  $m_2$  [kg] の2つの質点A, B がある. 図のように時刻t=0 [s] においてばねを鉛直にして質点A を固定したところ質点B がぶら下がった状態で全体が静止した。このときのばねの自然長からの伸びは $m_2$ g/k [m] であった。時刻t=0 [s] における質点A の位置を原点として鉛直下向きにy 軸を設定する。時刻t=0 [s] に質点A の固定を静かに解除し、全体を落下させた。y 軸下向きにかかる重力加速度をg [m/s²] として、以下の問いに答えよ。



- (1) 質点 A, B の重心の位置を Y, 全体の質量 M とするとき, 重心の運動方程 式をむけ,
- (2) 重心の位置 Yを時刻1の関数として表せ、
- (3) 質点 A に対する質点 B の相対位置  $y=y_B-y_A$ , 換算質量  $\mu=m_1m_2/(m_1+m_2)$  とするとき, 質点 A に対する質点 B の相対運動の運動方程式を沓け.
- (4) 質点 A に対する質点 B の相対位置 y を時刻 t の関数として表せ、
- (5) 質点 A の位置 yAと質点 B の位置 yBを時刻1の関数として表せ.
- 間4. 内半径 b [m], 外半径 a [m], 質量 △M [kg] の一様な密度 ρ [kg/m³] をもつ球設から, 球殻の中心 O を通る z 軸上の点 (0, 0, 2) にある質量 m [kg] の質点に作用する万有引力を求める以下の 問いに答えよ. ただし, 万有引力定数は G [N m²/kg²] とする.



- (1) 球殻上の点 P(x, y, z) における微小領域  $dv[m^3]$  が質点から 受ける万有引力の z 成分  $dF_z[N]$  を  $G, m, \rho, Z, z, r^3, dv$  を用いて書け、ただし、点 P と質点の距離を r'[m] とする.
- (2) 球全体の積分は極座標 (r, θ, φ) を用いて以下の式で与えられる.

$$F_{z} = -Gm\rho \int \frac{Z - r\cos\theta}{r^{3}} r^{2} \sin\theta \, dr \, d\theta \, d\varphi \qquad \text{(1)}$$

この式の  $\theta$  項を消してF、を得るための積分をF、、F、および  $\phi$  に対する積分として書け、ただし、F、、F および  $\phi$  に対する積分範囲は示さなくても良い。

- (3)  $\theta = 0$  および  $\theta = \pi$  における r の値をそれぞれ  $r_1$  および  $r_2$  とするとき、 $F_4$  を得るための積分を r および  $\varphi$  に対する積分として書け、ただし、r および  $\varphi$  に対する積分範囲は示さなくても良い。
- (4) 球外に質点が存在するとき(3)の積分から質点が球殻から受ける万有引力のz成分F.を求めよ、
- (5) 球内に質点が存在するとき(3)の積分から質点が球殻から受ける万有引力の z成分 F.を求めよ、