MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim Final, Pergjigje

Stefan Kohl

1. A konvergjojne seritet e meposhtme? – Nese seritet konvergjojne, gjeni vleren e tyre. (Shembull: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.)

1.
$$\sum_{n=1}^{\infty} \frac{1}{2^{20}n}$$

3.
$$\sum_{n=0}^{\infty} \frac{3^n}{n!}$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

2.
$$\sum_{n=0}^{\infty} \frac{1}{3^n}$$

3.
$$\sum_{n=0}^{\infty} \frac{3^n}{n!}$$
 5. $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$
4. $\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{m=0}^{\infty} \frac{4^m}{m!} \right)^n$ 6. $\sum_{n=0}^{\infty} n! \cdot \sin(n\pi)$

6.
$$\sum_{n=0}^{\infty} n! \cdot \sin(n\pi)$$

(12 pike)

Pergjigja: Ne kemi

1.
$$\sum_{n=1}^{\infty} \frac{1}{2^{20}n} = \frac{1}{2^{20}} \sum_{n=1}^{\infty} \frac{1}{n}$$
, pra seria divergion,

$$2. \ \sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{3}{2},$$

3.
$$\sum_{n=0}^{\infty} \frac{3^n}{n!} = e^3$$
,

4.
$$\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{m=0}^{\infty} \frac{4^m}{m!} \right)^n = e^{e^4}$$
,

5.
$$\sum_{n=1}^{\infty} \frac{1}{n^2+n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$
, dhe

6.
$$\sum_{n=0}^{\infty} n! \cdot \sin(n\pi) = \sum_{n=0}^{\infty} 0 = 0.$$

2. Gjeni funksione $f, g : \mathbb{R} \to \mathbb{R}$ te vazhdueshme te tille qe

1.
$$f(1) > 1$$
 dhe $\forall x \in \mathbb{R}$ $f(2x) = f(x)^2$,

2.
$$g^{-1}(0) = \{n\pi \mid n \in \mathbb{Z}\}.$$

(4 pike)

Pergjigja: Shembuj jane $f(x) = e^x$ dhe $g(x) = \sin(x)$.

3. Tregoni qe bashkesia e funksioneve $f: \mathbb{R} \to \mathbb{R}$ te cilet jane e diferencueshem ne cdo $x \in \mathbb{R}$ eshte e panumerueshem. (4 pike)

Pergjigja: Ne kemi nje bijeksion $\varphi: c \mapsto (f_c: x \mapsto c)$ nga bashkesine e numrave real ne bashkesine e funksioneve konstant. Tani pohimi eshte i vertet sepse ne dijme se bashkesia e numrave real eshte e panumerueshem dhe se te gjithe funksionet konstant jane e diferencueshem ne cdo $x \in \mathbb{R}$.

4. Per cdo $n \in \mathbb{N}$, le te jete $f_n : \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $x \mapsto x^{\frac{1}{n}}$. A konvergjon vargu e funksioneve (f_n) ? Nese po, gjeni funksionin $f := \lim_{n \to \infty} f_n$. A eshte konvergjenca uniforme, apo vetem pikesore? (4 pike)

Pergjigja: Vargu konvergjon, dhe limiti i tij eshte funksioni

$$f: \mathbb{R}_0^+ \to \mathbb{R}_0^+, x \mapsto \begin{cases} 0 & \text{nese } x = 0, \\ 1 & \text{nese } x > 0. \end{cases}$$

1

Konvergjenca nuk eshte uniforme sepse funksionet f_n nuk jane te kufizuar.

5. Gjeni variacionet total $V_0^{\pi}(x \mapsto \sin x)$, $V_{-1}^1(x \mapsto x^2)$, $V_0^{\ln(2)}(x \mapsto e^x)$ dhe $V_0^{e^4}(x \mapsto e^x)$. (4 pike)

Pergjigja: Ne kemi $V_0^{\pi}(x \mapsto \sin x) = 2$, $V_{-1}^1(x \mapsto x^2) = 2$, $V_0^{\ln(2)}(x \mapsto e^x) = 1$ dhe $V_0^{e^4}(x \mapsto e^x) = e^{e^4} - 1$.

- 6. Vertetoni apo gjeni kundershembuj:
 - 1. Cdo funksion i cili eshte i diferencueshem ne cdo $x \in \mathbb{R}$ eshte i kufizuar.
 - 2. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte bijektiv eshte i vazhdueshem ne cdo $x \in \mathbb{R}$.
 - 3. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte i vazhdueshem ne cdo $x \in \mathbb{R}$ eshte injektiv.
 - 4. Cdo funksion $f:\mathbb{R}\to\mathbb{R}$ i vazhdueshem i cili eshte bijektiv eshte i diferencueshem ne cdo $x\in\mathbb{R}$
 - 5. Le te jete $f: \mathbb{R} \to \mathbb{R}$ nje funksion i cili eshte i vazhdueshem ne cdo $x \in \mathbb{R}$. Nese ne kemi $\forall x \in \mathbb{R}$ $f(x) \in \mathbb{Q}$, funksioni f eshte gjithmon konstant.
 - 6. Nese nje varg (a_n) ka nje pike e akumulimit, edhe bashkesia $\{a_n \mid n \in \mathbb{N}\}$ ka te pakten nje pike e akumulimit.

(12 pike)

Pergjigja: Ne kemi

- 1. Kundershembull: f(x) = x.
- 2. Kundershembull:

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} 1-x & \text{nese } x \in [0,1], \\ x & \text{nese } x \in \mathbb{R} \setminus [0,1]. \end{cases}$$

- 3. Kundershembull: $f(x) = x^2$.
- 4. Kundershembull:

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} x & \text{nese } x < 0 \\ 2x & \text{nese } x \geqslant 0. \end{cases}$$

- 5. Vertetim: Supozojme se ne kemi nje funksion $f: \mathbb{R} \to \mathbb{R}$ i vazhdueshem i cili merr vetem vlerat racional dhe i cili nuk eshte konstant. Le te jete $a,b \in \mathbb{R}$ te tille qe $f(a) \neq f(b)$. Zgjidhim nje numer irracional c neper f(a) dhe f(b). Tani funksioni $g: x \mapsto f(x) c$ eshte i vazhdueshem, dhe ka nje rrenje, sepse nje nga vlerat g(a) dhe g(b) eshte pozitiv dhe nje tjeter eshte negativ. Le te jete x_0 rrenja e funksionit g. Pastaj $f(x_0) = c$ eshte irracional, pra nje funksion te tille nuk egziston.
- 6. Kundershembull: vargu (a_n) me $a_n = 0$ ka 0 si nje pike e akumulimit, por bashkesia $\{a_n \mid n \in \mathbb{N}\} = \{0\}$ eshte e fundem, pra nuk ka nje pike e akumulimit.

2