Inteligencia Artificial
Evaluación Alternativa 1 - Teoría
23 de Noviembre, 2018 - Grupo 1

| Apellidos | : |
 | |
|-----------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Nombre: | |
 | |

Sólo se corregirán los ejercicios escritos a bolígrafo azul o bolígrafo negro

Ejercicio 1. Considera un perceptrón con factor de aprendizaje $\eta = 0.7$, pesos $w_0 = w_1 = w_2 = 0.5$ y un conjunto de entrenamiento $D = \{\langle (1,1), 0 \rangle, \langle (1,0), 1 \rangle, \langle (0,1), 0.5 \rangle\}$. Usar cuatro cifras decimales.

- (a) [0.5 ptos.] Calcula el error cuadrático cometido sobre ese conjunto de entrenamiento por el conjunto de pesos dado usando la función ReLU como función de activación.
- (b) [1 pto.] Realiza los cálculos necesarios para obtener la primera actualización del peso w_1 según el algoritmo de descenso por el gradiente usando la función sigmoide como función de activación.

Ejercicio 2. [1.5 ptos.] Considera una red neuronal con cuatro capas C_1, C_2, C_3 y C_4 , donde C_1 es la capa de entrada y C_4 es la capa de salida. La función de activación es la función **sigmoide** y todos los pesos iniciales son iguales a 0.5. La capa C_1 tiene 4 neuronas $\{n_1, n_2, n_3, n_4\}$. La capa C_2 tiene 3 neuronas $\{n_5, n_6, n_7\}$. La capa C_3 tiene 2 neuronas $\{n_8, n_9\}$. La capa C_4 tiene 1 neurona $\{n_{10}\}$. Calcular el error Δ_5 cometido en la neurona n_5 en un paso del algoritmo de retropropagación sobre el ejemplo $\langle (1, 1, 1, 1), 0 \rangle$.

Ejercicio 3. [1 pto.] Considera el siguiente conjunto de entrenamiento

Ej	$Atrib_1$	$Atrib_2$	Clasif
Ej_1	5	14	SI
Ej_2	11	50	NO
Ej_3	7	22	NO
Ej_4	9	34	NO
Ej_5	10	25	SI
Ej_6	13	70	SI
Ej_7	14	45	NO
Ej_8	15	94	NO

Aplica el algoritmo k-NN **con pesos** con k=7 y distancia euclídea para clasificar P=(2,10) explicando los pasos realizados e indicando **explícitamente** la salida del algoritmo.

Ejercicio 4. [1 pto.] Explica detalladamente cómo se calculan TODOS los hijos obtenidos a partir de estos cromosomas mediante la técnica de CRUCE BASADO EN ORDEN usada en algoritmos genéticos. Puedes usar como ejemplo los siguientes cromosomas

$$P_1 \equiv \langle 2 * 5 \ 1 \ 6 \ 4 \ 8 \ 7 * 3 \rangle$$
 $P_2 \equiv \langle 8 * 2 \ 7 \ 1 \ 6 \ 3 \ 4 * 5 \rangle$

donde los asteriscos marcan los puntos de corte.

Cuestión 1. [0.5 ptos.] En un problema de algoritmos genéticos, supongamos que tenemos una población de 10 individuos $\{i_1, i_2, \dots, i_{10}, \}$ con valores $F(i_1) = 2$, $F(i_2) = 7$, $F(i_3) = 1$, $F(i_4) = 4$, $F(i_5) = 6$, $F(i_6) = 2$, $F(i_7) = 7$, $F(i_8) = 1$, $F(i_9) = 4$, $F(i_{10}) = 6$. Aplica el método de selección proporcional a la valoración (explicando todos los pasos) considerando que los valores obtenidos aleatoriamente han sido 0.31, 0.77 y 0.12.

Cuestión 2. Considera el algortimo DBSCAN

- [0.5 ptos.] ¿Qué condiciones debe cumplir un punto para ser frontera, núcleo y ruido?
- [0.5 ptos.] Explica en qué consiste el algoritmo. Debes dar explícitamente la entrada, la salida y los pasos que deben darse para obtener el resultado.