ARITHOGEOMETIC MEAN

JUSTIN SCARFY

Given any elliptic curve E with Weistrauß equation

$$y^2 = x(x+r)(x+s),$$

assume neither r nor r is real and nonnegative.

Let $L \subset \mathbb{C}$ be the lattice with period $\omega = \frac{dx}{2y}$, and let $\Phi : \mathbb{C}/L \xrightarrow{\cong} E(\mathbb{C})$ be isomorphism with $\Phi^{-1}(\omega) = dz$, where z is parameter on \mathbb{C} .

Now write $L=\mathbb{Z}\gamma+\mathbb{Z}\delta$ where $\gamma=\int_0^\infty\omega\in\mathbb{R}$, we know that $\Phi[0,\gamma]\subseteq E(\mathbb{R})$ with $\Phi(0)=\infty$, and so $\Phi(\gamma/2)=(0,0)$.

Other points of order two are (-r,0) and (-s,0), so we assume $\Phi(\delta/2)=(-r,0)$ and $\Phi(\delta/2+\gamma/2)=(-s,0)$, $\Big(\text{OR } \Phi(\delta/2)=(-s,0) \text{ and } \Phi(\delta/2+\gamma/2)=(-r,0) \Big).$

Let Λ be the lattice $\mathbb{Z}\gamma + \mathbb{Z}\delta \subseteq \mathbb{C}$. Invariant under complex conjugation (why?), and hence corresponds to a real elliptic curve. Find Weistrauß equation

$$v^2 = u(u+R)(u+S)$$

and an isomorphism $\Psi: \mathbb{C}/\Lambda \xrightarrow{\cong} F(\mathbb{C})$ (why F here?). Constant c in $\Psi^{-1}(\frac{du}{2v}) = c\,dz$ E-mail address: scarfy@ugrad.math.ubc.ca