

Cursos: BCC e BSI

<u>Disciplinas:</u> (4634A) Inteligência Artificial e (4728A) Sistemas Inteligentes

Professora: Simone das Graças Domingues Prado

Lista de Exercícios sobre RNA

1. Considerando a seguinte relação de exemplos de resultados na tomada de decisão feita por um especialista de análise de crédito, defina a arquitetura do Perceptron.

Idade	Sexo	Casa	Carro	Casado	Renda	Resultado
18	M	N	S	N	1200	N
19	M	S	S	S	700	S
40	M	S	N	S	800	N
31	M	N	N	N	1100	S

Suponha as faixas de idade: 0 a 18; 19 a 29; 30 a 39 e mais de 40. Assim, você usará 2 neurônios:

[-1 -1] para idade entre 0 e 18; [1 -1] para idade de 19 a 29;

[-1 1] para idade entre 30 e 39; [1 1] para acima de 40 anos

Considere o sexo M = -1 e F = 1;

Considere a resposta Sim = 1 e $N\tilde{a}o = -1$

Considere as faixas de renda:

[-1 -1] para 0 a 599; [1 -1] para 600 a 1000 e

[-1 1] para mais de 1000.

Assim, a primeira linha da tabela acima ficará:

$$[-1 -1 -1 -1 -1 1 -1 -1 1] => -1$$

Use a taxa = 1; W = 0 e uma função step_{1:}
$$f(x) = \begin{cases} 1 & x \ge 1 \\ -1 & x < 1 \end{cases}$$

2. Suponha que você tenha de treinar uma rede neural de forma que ela identifique pelo nome o sexo da pessoa. Use Perceptron para resolver esse problema. Considere taxa de aprendizagem = 0,5

Nomes		H/M	
João Álvaro Mateus Marcela Amália Fernanda	[1-1 1 1] [1 1 1 1] [1 1-1 1] [-1-1-1 1] [-1 1-1 1] [1-1 1-1]	Homem Mulher	[1]

- 3. Suponha que você tenha de treinar uma rede neural para que ela aprenda a trabalhar com o operador AND e OR. Use Perceptron para resolver esse problema. Considere taxa de aprendizagem = 1.
- 4. Fazer uma RN aprender os exemplos de decisão sobre escolha de uma linguagem de programação para um projeto.

Comercial	Distribuída	Internet	Matemática	Tempo Real	Linguagem
1	-1	-1	1	-1	Delphi
S	S	n	S	S	C++
S	S	S	S	n	Java
n	n	S	n	S	Java
n	n	n	S	S	C++
n	S	S	n	n	Java

O problema do Restaurante. Dependendo das características, vamos esperar para jantar ou não.
Defina um Perceptron para aprender a decidir sobre o assunto.

Existe	Existe	É Sexta	Estou			Está	Foi feita	Tempo	
alternativa	área de	ou	com	Lotação	Preço	chovendo	Reserva	estimado	Esperar?
de	espera	Sábado	Fome					de	
restaurante								espera	
S	N	N	S	Pouca	\$\$\$	N	S	0-10	S
S	N	N	S	Cheia	\$	N	N	30-60	N
S	N	S	N	Cheia	\$\$\$	N	S	>60	N
N	S	N	S	Pouca	\$\$	S	S	0-10	S
N	N	N	S	Pouca	\$\$	S	S	0-10	S
N	S	S	N	Cheia	\$	S	N	>60	N
N	N	N	N	Nenhuma	\$	N	N	0-10	N

6. Considere os seguintes padrões de classificação de perfil baseado em três perguntas:

Entrevista			Perfis			
Bebe muito	É responsável	É saudável	jovem	esportista	estudioso	religioso
Não	Sim	Sim	Sim	Sim	Não	Sim
Sim	Não	Sim	Sim	Sim	Não	Não
Não	Sim	Não	Não	Não	Sim	Sim

Pede-se:

- a. Qual a arquitetura de uma RN Perceptron para realizar estas classificações (número de entradas, saídas)?
- b. Qual a matriz de pesos da RN? Considerando que a função de transferência é step0, a taxa de aprendizado é 1 e os pesos iniciais da matriz são zero.
- c. Como a rede, depois do aprendizado, classificaria alguém que as vezes bebe muito, é responsável mas não é saudável?

7. Considere os seguintes padrões de classificação de perfil baseado em perguntas:

	Entrevista		Perfil
Bebe muito	É responsável	É saudável	jovem
Não	Sim	Sim	Sim
Sim	Não	Sim	Sim
Não	Sim	Não	Não

8.

a) Qual a arquitetura de uma RN Perceptron para realizar estas classificações (nro de entradas, saídas)?

b) Qual a matriz de pesos da RN após o treinamento com esses três conjuntos de teste? Considerando que a taxa de aprendizado é 1 e os pesos iniciais da matriz são zero e a função de transferência é a abaixo:

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

8. Treinar uma rede Madaline com os dois primeiros pares de treinamento

Com f(x) igual a questão 01, Matrizes W e V como abaixo e tx aprendizagem=0.5

•	x1	x2	t		
	1	1	-1	W =	V =
	1	-1	1	0,05 0,2	0,5
	-1	1	1	0,2 0,1	0,5
	-1	-1	-1		