OTOMATİK KONTROL I SINAV FORMÜL KAĞIDI

2. Freakans Uzayında Modelleme

2.2 Laplace Dönüşümü Laplace transform theorems						
			Item no.		Theorem	Name
Laplace transform table			1.	$\mathscr{L}[f(t)] = F(s)$	$=\int_{0-}^{\infty}f(t)e^{-st}dt$	Definition
Item no.	f(t)	F(s)	2.	$\mathscr{L}[kf(t)]$		Linearity theorem
1.	δ(<i>t</i>)	1	3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$[F_1(s)] = F_1(s) + F_2(s)$	Linearity theorem
2.	u(t)	1	4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
2.	u(i)	S	5.	$\mathcal{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
3.	tu(t)	$\frac{1}{s^2}$	6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
4.	$t^n u(t)$	$\frac{n!}{s^n+1}$	7.	$\mathcal{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	8.		$= s^2 F(s) - s f(0-) - f'(0-)$	Differentiation theorem
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$				Differentiation theorem
7.	$\cos \omega t u(t)$	$\frac{\overline{s^2 + \omega^2}}{\frac{s}{s^2 + \omega^2}}$	9.	$\mathscr{L}\left[\frac{\sigma}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
		$S^2 + \omega^2$	10.	$\mathcal{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
			11.	$f(\infty)$	3	Final value theorem ¹
			12.	f(0+)	$=\lim_{s\to\infty}^{s\to0}sF(s)$	Initial value theorem ²

2.3 Transfer Fonksiyonu

$$a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \dots + a_0 c(t) = b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_0 r(t)$$

$$a_n s^n C(s) + a_{n-1} s^{n-1} C(s) + \dots + a_0 C(s) + \text{initial condition}$$

$$\text{terms involving } c(t) = b_m s^m R(s) + b_{m-1} s^{m-1} R(s) + \dots + b_0 R(s) + \text{initial condition}$$

$$\text{terms involving } r(t)$$

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0) C(s) = (b_m s^m + b_{m-1} s^{m-1} + \dots + b_0) R(s)$$

$$\frac{C(s)}{R(s)} = G(s) = \frac{(b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)}$$

$$C(s) = R(s) G(s)$$

2.4 Elektriksel Devrelerin Transfer Fonksiyonu

 TABLE 2.3
 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C\frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-_ Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) - V (volts), i(t) - A (amps), q(t) - Q (coulombs), C - F (farads), $R - \Omega$ (ohms), $G - \Omega$ (mhos), L - H (henries).

First, take the Laplace transform of the equations in the voltage-current column of Table 2.3 assuming zero initial conditions.

For the capacitor,
$$V(s) = \frac{1}{Cs}I(s)$$

For the resistor, V(s) = RI(s)

For the inductor, V(s) = LsI(s)

Now define the following transfer function:

Noninverting Operational Amplifier

2.5 Doğrusal Mekanik Sistemlerin Transfer Fonksiyonları

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

Component	Force-velocity	Force-displacement	Impedence $Z_M(s) = F(s)/X(s)$
Spring $x(t)$ $f(t)$ K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K

Taking the Laplace transform of the force-displacement column in Table 2.4, we obtain

for the spring,
$$F(s) = KX(s)$$

for the viscous damper, $F(s) = f_{\nu}sX(s)$

for the mass,
$$F(s) = Ms^2X(s)$$

 $f_v s$

If we define impedance for mechanical components as

$$Z_{M}(s) = \frac{F(s)}{X(s)}$$

$$F(s) = Z_{M}(s)X(s)$$

 $f(t) = M \frac{dv(t)}{dt} \qquad f(t) = M \frac{d^2x(t)}{dt^2} \qquad Ms$

Viscous damper

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

2.6 Dönen Mekanik Sistemlerin Transfer Fonksiyonları

Torque-angular velocity, torque-angular displacement, and impedance rotational relationships for springs viscous dampers, and inertia

Component	Torque-angular velocity	Torque-angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
Spring $T(t) \theta(t)$ K	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
Viscous $T(t)$ $\theta(t)$ damper D	$T(t) = D\omega(t)$	$T(t) = D\frac{d\theta(t)}{dt}$	Ds
Inertia $ \begin{array}{c} T(t) \theta(t) \\ \hline J \end{array} $	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js^2

Note: The following set of symbols and units is used throughout this book: T(t) – N-m (newton-meters), $\theta(t)$ – rad(radians), $\omega(t)$ – rad/s(radians/second), K – N-m/rad(newton- meters/radian), D – N-m-s/rad (newton- meters-seconds/radian). J – kg-m²(kilograms-meters² – newton-meters-seconds²/radian).

4.Zaman Cevabı

4.4 İkinci Mertebe Sistemlere Giriş c(t)1. Overdamped (Aşırı Sönümlü) responses Poles: ($\Delta > 0$) Two real at $-\sigma_1$, $-\sigma_2$ Undamped 2.0 $c(t) = K_1 e^{-\sigma_1 t} + K_2 e^{-\sigma_2 t}$ 1.8 2. Underdamped (Sönümlü) responses 1.6 Poles: (Δ < 0) Two complex at $-\sigma_d \pm j\omega_d$ 1.4 Under $c(t) = Ae^{-\sigma_d t}\cos(\omega_d t - \phi)$ damped 1.2 Critically 3. Undamped (Sönümsüz Sistem) responses 1.0 damped Poles: (Δ < 0) Two imaginary at $\pm j\omega_1$ 0.8 $c(t) = A\cos(\omega_1 t - \phi)$ 0.6 Overdamped 0.4 **4.** *Critically damped* (Kritik Sönümlü) *responses*

5. Karmaşık Sistemlerin Sadeleştirilmesi

- - Quadrantal and symmetrical about the origin ---

7.Kararlı Hal Hataları

7.2 Bütün Geri Besleme Sistemleri İçin Kararlı Durum Hatası

$$E(s) = R(s) - C(s)$$

$$E(s) = R(s) - C(s)$$

$$C(s) = R(s)T(s)$$

$$E(s) = R(s)[1 - T(s)]$$

$$T(s) = \frac{G(s)}{1 + G(s)} \text{ yazarsak } E(s) = \frac{R(s)}{1 + G(s)} \text{ olur }$$

$$e(\infty) = \lim_{s \to \infty} sR(s)[1 - T(s)]$$

$$e(\infty) = \lim_{s \to \infty} sR(s)$$

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Step Input

$$R(s) = 1/s$$

$$e(\infty) = e_{\mathsf{step}}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} |G(s)|}$$

Ramp Input

$$R(s) = 1/s^2$$

$$e(\infty) = e_{\mathrm{ramp}}(\infty) = \lim_{s \to 0} \frac{s\left(1/s^2\right)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

Parabolic Input

$$R(s) = 1/s^3$$

$$e(\infty) = e_{\text{parabola}}(\infty) = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

7.3 Statik Hata Sabitleri ve Sistem Tipleri

Static Error Constants

position constant, $K_p = \lim_{s \to 0} G(s)$

velocity constant, $K_v = \lim_{s \to 0} sG(s)$ (ramp)

acceleration constant, $K_a = \lim_{s \to 0} s^2 G(s)$ (parabolic)

System Type

		Type 0		Type 1		Type 2	
Input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
$\overline{\text{Step}, u(t)}$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{v}}$	$K_v = 0$	∞	$K_{\nu} = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_{\nu} = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

7.5 Bozulmalar için Kararlı Durum Hatası

$$E(s) = R(s) - C(s) \implies C(s) = R(s) - E(s)$$

$$C(s) = [E(s)G_1(s) + D(s)] G_2(s)$$

$$R(s) - E(s) = E(s)G_1(s)G_2(s) + D(s)G_2(s)$$

$$R(s) - D(s)G_2(s) = E(s) [G_1(s)G_2(s) + 1]$$

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)} R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

$$\begin{array}{l} e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s) - \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s) \\ = e_R(\infty) + e_D(\infty) \end{array}$$

$$e_R(\infty) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s)$$

$$e_D(\infty) = -\lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

$$D(s)=1/s$$
 yazılırsa $e_D(\infty)=0$ (step disturbance)

yazılırsa
$$e_D(\infty) = -rac{1}{\lim\limits_{s o 0}rac{1}{G_2(s)}+\lim\limits_{s o 0}G_1(s)}$$