Markov Chain Monte Carlo Methods

Juan F. Rubio-Ramírez

Emory University

"Bayesianism has obviously come a long way. It used to be that you could tell a Bayesian by his tendency to hold meetings in isolated parts of Spain and his obsession with coherence, self-interrogations, and other manifestations of paranoia. Things have changed..."

Peter Clifford (1993)

Our Goal

• We have a distribution:

$$X \sim f(X)$$

such that f > 0 and $\int f(x) dx < \infty$.

- How do we draw from it?
- We could use Importance Sampling...
- ...but we need to find a good source density.

Transition Kernels I

- The function P(x, A) is a transition kernel for $x \in \mathcal{X}$ and $A \in \mathcal{B}(\mathcal{X})$ (a Borel σ -field) such that:
 - 1. For all x, $P(x, \cdot)$ is a probability measure.
 - 2. For all A, $P(\cdot, A)$ is measurable.
- When \mathcal{X} is discrete, $P_{xy} = P(X_n = y \mid X_{n-1} = x)$.
- When \mathcal{X} is continuous,

$$P(X \in A \mid x) = \int_A P(x, x') \, dx'.$$

Transition Kernels II

- Clearly $P(x, \mathcal{X}) = 1$.
- It may be that $P(x, \{x\}) \neq 0$.
- Examples in economics: capital accumulation, job search, prices in financial markets, . . .

A Particular Transition Kernel

Define:

$$P(x, dy) = p(x, y) dy + r(x) \delta_{\{x\}}(dy)$$

or

$$P(x,A) = \int_{A} p(x,y) \, dy + r(x) \int_{A} \delta_{\{x\}}(dy) = \int_{A} p(x,y) \, dy + r(x) 1_{A}(x)$$

- 1. $p(x,y) \ge 0$, p(x,x) = 0.
- 2. $\delta_{\{x\}}(dy)$ is the Dirac delta.
- 3. P(x,x), the probability the chain stays at x, is r(x).
- 4. By construction:

$$r(x) = 1 - \int_{\mathcal{V}} p(x, y) \, dy.$$

Markov Chain

• Given a transition kernel P, a sequence X_0, X_1, \ldots is a Markov Chain if for any k

$$P(X_{k+1} \in A \mid x_0, ..., x_k) = P(X_{k+1} \in A \mid x_k) = \int_A P(x_k, dx).$$

• We focus on **time-homogeneous** chains: the distribution of $(X_{t_1}, \ldots, X_{t_k})$ given x_{t_0} is the same as that of $(X_{t_1-t_0}, \ldots, X_{t_k-t_0})$ given x_0 .

Chapman–Kolmogorov Equations

• For a time-homogeneous chain:

$$P^{m+n}(x,A) = \int_{\mathcal{X}} P^n(y,A) P^m(x,dy).$$

- Implies convolution formula: $P^{m+n} = P^m \star P^n$.
- Discrete case: this is a matrix product. Continuous case: *P* acts as an operator:

$$Ph(dy) = \int_{\mathcal{X}} P(x, dy)h(x) dx.$$

Two Important Questions in Markov Chains

Knowing P(x, B):

• Does there exist a fixed point π_s such that

$$\pi_s(B) = \int_{\mathcal{X}} P(x, B) \pi_s(dx)?$$

- If $P^1(x, dy) = P(x, dy)$, does $P^n(x, B) \to \pi_s(B)$ as $n \to \infty$?
- Reference: Meyn & Tweedie (1993), Markov Chains and Stochastic Stability.

MCMC Questions: Knowing π_s

• Does there exist a kernel P(x, B) such that

$$\pi_s(B) = \int_{\mathcal{X}} P(x, B) \pi_s(dx)?$$

- If $P^1(x, dy) = P(x, dy)$, does $P^n(x, B) \to \pi_s(B)$ as $n \to \infty$?
- Reference: Chib & Greenberg (1995), "Understanding the Metropolis—Hastings Algorithm."

Markov Chain Monte Carlo Methods

- An MCMC method simulates f(x) by producing an ergodic Markov Chain with invariant distribution f(x).
- We seek a chain such that if X^1, X^2, \dots, X^t are realizations,

$$X^t \to X \sim f(x)$$

as $t \to \infty$.

Turning the Theory Around

- ullet For equilibrium models: we know the kernel (policy functions) o find invariant distribution.
- For MCMC: we know the invariant distribution \rightarrow find a kernel that produces it.
- Question: How do we find such a transition kernel?

Roadmap

We search for a transition kernel that:

- 1. Has unique stationary distribution f(x).
- 2. Stays within that stationary distribution.
- 3. Converges to it.
- 4. Obeys a Law of Large Numbers.
- 5. Admits a Central Limit Theorem.

Searching for a Transition Kernel P(x, A)

- Let $P(x, dy) = p(x, y)dy + r(x)\delta_{\{x\}}(dy)$.
- If f(x)p(x,y) = f(y)p(y,x) (time reversibility), then

$$\int_A f(y) dy = \int_{\mathcal{X}} P(x, A) f(x) dx.$$

Proof Sketch

$$\int_{\mathcal{X}} P(x,A)f(x) dx = \int_{\mathcal{X}} \left[\int_{A} p(x,y) dy \right] f(x) dx + \int_{\mathcal{X}} r(x)\delta_{\{x\}}(A)f(x) dx$$

$$= \int_{A} \left[\int_{\mathcal{X}} p(x,y)f(x) dx \right] dy + \int_{A} r(x)f(x) dx$$

$$= \int_{A} \left[\int_{\mathcal{X}} p(y,x)f(y) dx \right] dy + \int_{A} r(x)f(x) dx$$

$$= \int_{A} (1 - r(y))f(y) dy + \int_{A} r(x)f(x) dx = \int_{A} f(y) dy.$$

Remarks

- The condition f(x)p(x,y) = f(y)p(y,x) ensures f is the invariant distribution.
- Time reversibility is the key property for MCMC algorithms.

Convergence

- We proved f is a fixed point of the kernel operator.
- We ask: does $P^m(x,A) \to \pi_s(A)$ as $m \to \infty$?
- Measured in total variation:

$$\frac{1}{2}\int \|P^m(x,y)-\pi_s(y)\|\,dy.$$

Sufficient Conditions for Convergence

If the kernel satisfies reversibility and:

- Irreducibility: any x can reach any A with positive probability.
- Aperiodicity: chain does not have periodic behavior.

Then $P^m(x,A) \to \pi_s(A)$. Transient ("burn-in") periods may appear in practice.

A Law of Large Numbers

If P(x, A) is irreducible and aperiodic with invariant distribution π_s :

- 1. π_s is unique.
- 2. For all integrable *h*:

$$\frac{1}{M}\sum_{i=1}^{M}h(x_i)\to\int h(x)\pi_s(dx),$$

i.e.

$$\widehat{h} o \mathit{Eh}.$$

Building our MCMC

We need a kernel P(x, A) such that:

- 1. Time reversible (f(x) invariant).
- 2. Irreducible (convergence + LLN).
- 3. Aperiodic (convergence + LLN).
- 4. Harris-recurrent and geometrically ergodic (CLT).

These are sufficient for validity of MCMC.

MCMC and Metropolis-Hastings

- The Metropolis–Hastings algorithm is the canonical MCMC method.
- Gibbs sampler is a special case.
- Many variants exist—be cautious!
- The frontier: Perfect Sampling.

On the Use of MCMC

- Motivation: draw from a posterior distribution.
- But MCMC applies more broadly:
 - 1. It can sample from any distribution, not necessarily Bayesian posteriors.
 - 2. It explores distributions and can be used for classical estimation as well.