ARITHMETIQUE

Exercice 1:

Étant donnés cinq nombres entiers consécutifs, on trouve toujours parmi eux (vrai ou faux et pourquoi):

- 1. au moins deux multiples de 2.
- 2. au plus trois nombres pairs.
- 3. au moins deux multiples de 3.
- 4. exactement un multiple de 5.
- 5. au moins un multiple de 6.
- 6. au moins un nombre premier.

Allez à : Correction exercice 1 :

Exercice 2:

Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. 60 a plus de diviseurs (positifs) que 100.
- 2. 60 a moins de diviseurs (positifs) que 90.
- 3. 60 a moins de diviseurs (positifs) que 120.
- 4. si un entier divise 60, alors il divise 120.
- 5. si un entier strictement inférieur à 60 divise 60, alors il divise 90.
- 6. si un nombre premier divise 120, alors il divise 60.

Allez à : Correction exercice 2 :

Exercice 3:

On veut constituer la somme exacte de 59 euros seulement à l'aide de pièces de 2 euros et de billets de 5 euros. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. Il y a au plus 22 pièces de 2 euros.
- 2. Il peut y avoir exactement 10 pièces de 2 euros.
- 3. Il peut y avoir exactement 12 pièces de 2 euros.
- 4. Il peut y avoir un nombre pair de billets de 5 euros.
- 5. Il y a au moins un billet de 5 euros.

Allez à : Correction exercice 3 :

Exercice 4:

Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. Si un nombre est divisible par 9, alors il est divisible par 6.
- 2. Si un nombre est divisible par 100, alors il est divisible par 25.
- 3. Si un nombre est divisible par 2 et par 3, alors il est divisible par 12.
- 4. Si un nombre est divisible par 10 et par 12, alors il est divisible par 15.
- 5. Si un nombre est divisible par 6 et par 8, alors il est divisible par 48.
- 6. Le produit des entiers de 3 à 10 est divisible par 1000.
- 7. Le produit des entiers de 3 à 10 est divisible par 1600.
- 8. Si la somme des chiffres d'un entier en écriture décimale vaut 39, alors il est divisible par 3 mais pas par 9.
- 9. Si la somme des chiffres d'un entier en écriture décimale vaut 18, alors il est divisible par 6 et par 9.

Allez à : Correction exercice 4 :

Exercice 5:

Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. Si un entier est divisible par deux entiers, alors il est divisible par leur produit.
- 2. Si un entier est divisible par deux entiers premiers entre eux, alors il est divisible par leur produit.
- 3. Si un entier est divisible par deux entiers, alors il est divisible par leur PPCM.
- 4. Si un nombre divise le produit de deux entiers, alors il divise au moins un de ces deux entiers.
- 5. Si un nombre premier divise le produit de deux entiers, alors il divise au moins un de ces deux entiers.
- 6. Si un entier est divisible par deux entiers, alors il est divisible par leur somme.

- 7. Si un entier divise deux entiers, alors il divise leur somme.
- 8. Si deux entiers sont premiers entre eux, alors chacun d'eux est premier avec leur somme.
- 9. Si deux entiers sont premiers entre eux, alors chacun d'eux est premier avec leur produit.
- 10. Si deux entiers sont premiers entre eux, alors leur somme et leur produit sont premiers entre eux.

Allez à : Correction exercice 5 :

Exercice 6:

Soient a, b et d trois entiers. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. Si d divise a et b, alors d divise leur PGCD.
- 2. S'il existe deux entiers u et v tels que au + bv = d, alors d = PGCD(a, b).
- 3. S'il existe deux entiers u et v tels que au + bv = d, alors d divise PGCD(a, b).
- 4. S'il existe deux entiers u et v tels que au + bv = d, alors PGCD(a, b) divise d.
- 5. Si PGCD(a, b) divise d, alors il existe un couple d'entiers (u, v) unique, tel que au + bv = d.
- 6. L'entier d est un multiple de PGCD(a, b) si et seulement si il existe un couple d'entiers (u, v), tel que au + bv = d.

Allez à : Correction exercice 6 :

Exercice 7:

Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. Si un entier est congru à 0 modulo 6, alors il est divisible par 6.
- 2. Si le produit de deux entiers est congru à 0 modulo 6 alors l'un des deux est multiple de 6.
- 3. Si un entier est congru à 5 modulo 6 alors toutes ses puissances paires sont congrues à 1 modulo 6.
- 4. Si deux entiers sont congrus à 4 modulo 6, alors leur somme est congrue à 2 modulo 6.
- 5. Si deux entiers sont congrus à 4 modulo 6, alors leur produit est congru à 2 modulo 6.
- 6. Si un entier est congru à 4 modulo 6 alors toutes ses puissances sont aussi congrues à 4 modulo 6.

Allez à : Correction exercice 7 :

Exercice 8:

Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. Si le produit de deux entiers est congru à 0 modulo 5 alors l'un des deux est multiple de 5.
- 2. Si un entier est congru à 2 modulo 5 alors sa puissance quatrième est congrue à 1 modulo 5.
- 3. Si deux entiers sont congrus à 2 modulo 5, alors leur somme est congrue à 1 modulo 5.
- 4. Pour tout entier, non multiple de 5, il existe un entier tel que le produit des deux soit congru à 1 modulo 5.
- 5. Aucun entier n'est tel que son carré soit congru à -1 modulo 5.
- 6. Aucun entier n'est tel que son carré soit congru à 2 modulo 5.
- 7. La puissance quatrième d'un entier quelconque est toujours congrue à 1 modulo 5.
- 8. La puissance quatrième d'un entier non multiple de 5 est toujours congrue à 1 modulo 5.

Allez à : Correction exercice 8 :

Exercice 9:

Soit $n \in \mathbb{N}$ un entier.

- 1. Démontrer que si n n'est divisible par aucun entier inférieur ou égal à \sqrt{n} , alors n est premier.
- 2. Démontrer que les nombres n! + 2, n! + 3,...,n! + n ne sont pas premiers.
- 3. En déduire que pour tout n, il existe n entiers consécutifs non premiers.

Allez à : Correction exercice 9 :

Exercice 10:

Le premier janvier 2007 était un lundi. Calculer quel jour de la semaine sera le

- 1. 2 juillet 2007
- 2. 15 janvier 2008
- 3. 19 mars 2008 (attention, 2008 est une année bissextile)
- 4. 14 juillet 2010
- 5. 26 août 2011

Allez à : Correction exercice 10 :

Exercice 11:

On choisit un nombre entier, on le divise par 7 et on trouve un reste égal à 5. On divise à nouveau le quotient obtenu par 7, on trouve un reste égal à 3 et un quotient égal à 12. Quel était le nombre de départ ?

Allez à : Correction exercice 11 :

Exercice 12:

On donne l'égalité suivante.

$$96842 = 256 \times 375 + 842$$

Déterminer, sans effectuer la division, le quotient et le reste de la division euclidienne de 96842 par 256 et par 375.

Allez à : Correction exercice 12 :

Exercice 13:

On donne les deux égalités suivantes.

$$3379026 = 198765 \times 17 + 21$$
, $609806770 = 35870986 \times 17 + 8$

On s'intéresse au nombre entier $N=3379026\times 609806770$. Quel est le reste de la division euclidienne de N par 17 ?

Allez à : Correction exercice 13 :

Exercice 14:

Donner la décomposition en facteurs premiers des entiers suivants.

60; 360; 2400; 4675; 9828; 15200; 45864; 792792.

Allez à : Correction exercice 14 :

Exercice 15:

Déterminer le *PGCD* (2244,1089) et déterminer l'identité de Bézout correspondante.

Allez à : Correction exercice 15 :

Exercice 16:

On considère les couples d'entiers (a, b) suivants.

- a) a = 60, b = 84 Allez à correction a)
- b) a = 360, b = 240 Allez à la correction b)
- c) a = 160, b = 171 Allez à la correction 0
- d) a = 360, b = 345 Allez à la correction d)
- e) a = 325, b = 520 Allez à la correction e)
- f) a = 720, b = 252 Allez à la correction f)
- g) a = 955, b = 183 Allez à la correction 0
- h) a = 1665, b = 1035 Allez à la correction h)
- i) a = 18480, b = 9828 Allez à la correction i)

Pour chacun de ces couples :

- 1. Calculer *PGCD*(*a*, *b*) par l'algorithme d'Euclide.
- 2. En déduire une identité de Bézout.
- 3. Calculer PPCM(a, b).
- 4. Déterminer l'ensemble des couples (u, v) d'entiers relatifs tels que : au + bv = PGCD(a, b)
- 5. Donner la décomposition en facteurs premiers de *a* et *b*.
- 6. En déduire la décomposition en facteurs premiers de PGCD(a, b) et PPCM(a, b), et retrouver les résultats des questions 1 et 3.

Allez à : Correction exercice 16 :

Exercice 17:

1. Calculer le PGCD de 8303 et 2717 et donner l'identité de Bézout correspondante.

- 2. En déduire le PPCM de 8303 et 2717.
- 3. Calculer le PGCD de 1001 et 315 et donner l'identité de Bézout correspondante.
- 4. Déterminer le *PGCD* (2244,1089) et déterminer l'identité de Bézout correspondante.

Allez à : Correction exercice 17 :

Exercice 18:

Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ les équations suivantes :

- 1. 3x 5y = 13
- 2. 212x + 45y = 3
- 3. 42x + 45y = 4
- 4. 7x + 5y = 3

Allez à : Correction exercice 18 :

Exercice 19:

- 1. Donner, en le justifiant, le nombre de diviseurs positifs de 100^{100} .
- 2. Déterminer le reste de la division de 101^{101} par 3, et par 5, en déduire le reste de la division euclidienne de 101^{101} par 15.
- 3. Soit $n \in \mathbb{N}$ un entier naturel et p un nombre premier supérieur ou égal à 3. En utilisant un résultat du cours, montrer que si 0 < n < p alors p divise l'un des entiers $n^{\frac{p-1}{2}} 1$ et $n^{\frac{p-1}{2}} + 1$

Allez à : Correction exercice 19 :

Exercice 20:

Déterminer le nombre de diviseurs positifs de

$$N = 72^{10} \times 162^{50}$$

On pourra présenter le résultat sous forme d'un produit de nombre entier.

Allez à : Correction exercice 20 :

Exercice 21:

Quel est le plus petit entier naturel, qui divisé par 8, 15, 18 et 24 donne pour restes respectifs 7, 14, 17 et 23 ? Allez à : Correction exercice 21 :

Exercice 22:

Dans une UE de maths à l'université Claude Bernard, il y a entre 500 et 1000 inscrits. L'administration de l'université a remarqué qu'en les répartissant en groupes de 18, ou bien en groupes de 20, ou bien aussi en groupes de 24, il restait toujours 9 étudiants. Quel est le nombre d'inscrits ?

Allez à : Correction exercice 22 :

Exercice 23:

Soient a et b deux entiers tels que $1 \le a < b$.

- 1. Soient q_1 et r_1 (respectivement : q_2 et r_2) le quotient et le reste de la division euclidienne de a (respectivement : b) par b-a. Démontrer que $r_1=r_2$ et $q_2=q_1+1$.
- 2. On note q le quotient de la division euclidienne de b-1 par a. Soit n>0 un entier. Exprimer en fonction de q, r et n le quotient et le reste de la division euclidienne de ba^n-1 par a^{n+1} .
- 3. Soit d le PGCD de a et b. Déterminer le PGCD de A = 15a + 4b et B = 11a + 3b
- 4. Soit d le PGCD de a et b. Montrer que d = PGCD(a + b, PPCM(a, b)).
- 5. Démontrer que si d = 1 (a et b sont premiers entre eux), alors pour tous $m \in \mathbb{N}$ et $n \in \mathbb{N}$, a^m et b^n sont premiers entre eux.
- 6. En déduire que pour tout $n \in \mathbb{N}$, le *PGCD* de a^n et b^n est d^n .

Allez à : Correction exercice 23 :

Exercice 24:

Soient a, b et c trois entiers relatifs non nuls.

- 1. Montrer que $PGCD(ca, cb) = |c| \times PGCD(a, b)$.
- 2. Montrer que si PGCD(a, b) = 1 et si c divise a, alors PGCD(c, b) = 1.
- 3. Montrer que PGCD(a,bc) = 1 si et seulement si PGCD(a,b) = PGCD(a,c) = 1.
- 4. Montrer que si PGCD(b,c) = 1 alors $PGCD(a,bc) = PGCD(a,b) \times PGCD(a,c)$.

Allez à : Correction exercice 24 :

Exercice 25:

Soient $a \in \mathbb{N}$, $b \in \mathbb{N}$ deux entiers tels que 0 < a < b.

- 1. Démontrer que si a divise b, alors pour tout $n \in \mathbb{N}$, $n^a 1$ divise $n^b 1$.
- 2. Pour $n \in \mathbb{N}^*$, démontrer que le reste de la division euclidienne de $n^b 1$ par $n^a 1$ est $n^r 1$, où r est le reste de la division euclidienne de b par a.
- 3. Pour $n \in \mathbb{N}^*$, démontrer que le *PGCD* de $n^b 1$ et $n^a 1$ est $n^d 1$, où d est le *PGCD* de a et b.

Allez à : Correction exercice 25 :

Exercice 26:

Soit *n* un entier relatif. On pose a = 2n + 3 et b = 5n - 2.

- 1. Calculer 5a 2b. En déduire le *PGCD* de a et b en fonction de n.
- 2. Procéder de même pour exprimer en fonction de n le PGCD de 2n-1 et 9n+4.

Allez à : Correction exercice 26 :

Exercice 27:

Soient a = 2n + 1 et b = 5n + 1 deux entiers.

- 1. Déterminer deux entiers u et v tels que au + bv = 3
- 2. En déduire les valeurs possibles de d = PGCD(a, b)?
- 3. Montrer que si $n \equiv 1$ [3] alors d = 3, que vaut d sinon?

Allez à : Correction exercice 27 :

Exercice 28:

Soit $\in \mathbb{N}^*$, pour quelles valeurs les nombres 2n et 3n + 1 sont premiers entre eux?

Allez à : Correction exercice 28 :

Exercice 29:

- 1. Montrer que pour tout $n \in \mathbb{Z}$, les entiers 14n + 3 et 5n + 1 sont premiers entre eux
- 2. On considère l'équation (E) : 87x + 31y = 2 où x et y sont des entiers relatifs
 - 2.1. Montrer que 87 et 31 sont premiers entre eux.
 - 2.2. En déduire un couple $(u, v) \in \mathbb{Z}^2$ tels que 87u + 31v = 1, puis une solution (x_0, y_0) de (E)
 - 2.3. Déterminer l'ensemble des solutions de (E).

Allez à : Correction exercice 29 :

Exercice 30:

- 1. Déterminer les restes possibles de la division euclidienne du carré d'un nombre impair par 8.
- 2. Soit $n \in \mathbb{N}^*$ un entier pair. En déduire que l'équation

$$x^n + v^n = z^n$$

N'a pas de solution pour x, y et z impairs.

Allez à : Correction exercice 30 :

Exercice 31:

Déterminer le reste de la division euclidienne de 5¹⁰⁰⁰ par 7.

Allez à : Correction exercice 31 :

Exercice 32:

Montrer que pour tout $n \in \mathbb{N}$, l'entier $3^{n+3} - 4^{4n+2}$ est un multiple de 11.

Allez à : Correction exercice 32 :

Exercice 33:

Montrer que : 4^n est congru à 1 + 3n modulo 9. En déduire que $2^{2n} + 15n - 1$ est toujours divisible par 9.

Allez à : Correction exercice 33 :

Exercice 34:

- 1. Montrer par récurrence que pour $n \ge 0$, $a_n = 4^{2n+2} 1$ est un multiple de 15.
- 2. Soit $n \ge 0$, $b_n = 4^{2n+2} 15n 16$, calculer $b_{n+1} b_n$ et montrer que $b_{n+1} b_n$ est un multiple de $225 = 15 \times 15$.
- 3. Montrer que pour tout entier $n \ge 0$, b_n est un multiple de 225.

Allez à : Correction exercice 34 :

Exercice 35:

Montrer que pour tout $n \in \mathbb{N}$, $5^{n+2} + 3^{n+1}5^{2n}$ est divisible par 7.

Allez à : Correction exercice 35 :

Exercice 36:

On se propose de déterminer tous les couples $(m, n) \in \mathbb{N} \times \mathbb{N}$ solutions de l'équation : $2^m - 3^n = 1$.

- 1. Soit $k \in \mathbb{N}^*$.
 - a) Quel est le reste de la division euclidienne de 9^k par 8 ?
 - b) Déterminer les restes de la division euclidienne de $3^{2k} + 1$ par 8, puis de $3^{2k+1} + 1$ par 8
- 2. Soit $(m,n) \in \mathbb{N} \times \mathbb{N}$ un couple de solution, montrer à l'aide de 1°) que $m \leq 2$.
- 3. En déduire tous les couples $(m, n) \in \mathbb{N} \times \mathbb{N}$ d'entier naturels solutions de l'équation.

Allez à : Correction exercice 36 :

Exercice 37:

Montrer que 3 divise $a^3 - b^3$ si et seulement si 3 divise a - b.

Allez à : Correction exercice 37 :

Exercice 38:

Montrer que 7 divise $a^2 + b^2$ si et seulement si 7 divise a et b.

Allez à : Correction exercice 38 :

Exercice 39:

Déterminer toutes les solutions dans $\mathbb{Z} \times \mathbb{Z}$ de l'équation :

$$7x + 5y = 3$$

Allez à : Correction exercice 39 :

Exercice 40:

Résoudre dans \mathbb{Z} , $12x \equiv 5$ [35] Allez à : Correction exercice 40 :

Exercice 41:

- 1. Trouver une solution particulière de 13u + 5v = 3
- 2. Déterminer tous les couples d'entiers $(u, v) \in \mathbb{Z}^2$ tels que 13u + 5v = 3.
- 3. Déterminer les restes de la division euclidienne de 2^{2013} par 5 et par 13.
- 4. Déduire des deux questions qui précèdent le reste de la division euclidienne de 2²⁰¹³ par 65.

Allez à : Correction exercice 41 :

Exercice 42:

- (1) a. Déterminer le reste de la division de $N = 222^{333}$ par 7 et par 11.
 - b. Déterminer deux entiers u et v tels que 7u + 11v = 1.
 - c. En déduire le reste de la division de *N* par 77.
- (2) Toto veut faire don des livres de sa bibliothèque. Il en a plus de 10. S'il les répartit dans les cartons contenant 20 livres ou des cartons qui en contiennent 25, il lui reste toujours 7 livres. Quel est le nombre minimal de livres dans la bibliothèque de Toto?

Allez à : Correction exercice 42 :

Exercice 43:

- 1. Ecrire une identité de Bézout entre 99 et 56.
- 2. Résoudre le système

$$\begin{cases} x \equiv 2 & [56] \\ x \equiv 3 & [99] \end{cases}$$

Allez à : Correction exercice 43 :

Exercice 44:

Déterminer la plus petite solution positive du système :

$$\begin{cases} x \equiv 6 & [11] \\ x \equiv 3 & [13] \end{cases}$$

Allez à : Correction exercice 44 :

Exercice 45:

- 1. Déterminer toutes les solutions de 2u + 5v = 59
- 2. Donner tous les couples (u, v) tels que la somme de u pièces de 2 euros et de v billets de 5 euros égale à 59 euros.

Allez à : Correction exercice 45 :

Exercice 46:

- 1. Résoudre : $\begin{cases} 7x + 5y \equiv 2 & [8] \\ 5x + 4y \equiv 16 & [8] \end{cases}$ 2. Résoudre : $\begin{cases} 7x + 5y \equiv 2 & [9] \\ 5x + 4y \equiv 16 & [9] \end{cases}$

Allez à : Correction exercice 46

Exercice 47:

Résoudre dans Z les systèmes suivants :

1.

$$\begin{cases} n \equiv 1 \ [6] \\ n \equiv 5 \ [9] \end{cases}$$

2.

$$\begin{cases} n \equiv 3 \ [6] \\ n \equiv 6 \ [9] \end{cases}$$

Allez à : Correction exercice 47 :

Exercice 48:

Soit $p \ge 3$ un nombre premier

1. Quels sont les éléments $x \in \mathbb{Z}$ tels que : $x^2 \equiv 1$ [p]?

2. En déduire le théorème de Wilson : si p est premier alors (p-1)! + 1 est divisible par p.

Allez à : Correction exercice 48 :

Exercice 49:

On considère un entier $n \ge 3$.

- 1. Montrer que, quel que soit l'entier x, les carrés des nombres x et n-x sont congrus modulos n.
- 2. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble $\{0,1,...,n-1\}$ des restes modulo n, et c l'application de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$ qui a un reste associe son carré modulo n. Cette application est-elle injective ? surjective ?
- 3. Dresser la table des carrés modulo 7.
- 4. Montrer que l'équation $x^2 6xy + 2y^2 = 7003$ n'a pas de solutions (x, y) entière. (Exprimer le premier membre comme un carré modulo 7).

Allez à : Correction exercice 49 :

CORRECTIONS

Correction exercice 1:

- 1. Si n est pair, n + 2 et n + 4 sont pairs alors que n + 1 et n + 3 sont impairs. Si n est impair, n + 2 et n + 4 sont impairs alors que n + 1 et n + 3 sont pairs.
 - If y a deux ou trois nombres pairs parmi ces cinq entiers, donc au moins deux nombres pairs.
- 2. D'après 1°) il y a deux ou trois nombres impairs donc au plus trois.
- 3. D'après 1°) et 2°) il y a au moins deux multiples de trois.
- 4. Parmi cinq nombres consécutifs il y a au moins un multiple de cinq, notons le n + k, $k \in \{0,1,2,3,4\}$, le multiple de cinq suivant est n + k + 5 qui n'appartient pas à $\{n, n + 1, n + 2, n + 3, n + 4\}$, donc il y a exactement un multiple de cinq.
- 5. C'est faux, par exemple dans {1,2,3,4,5} il ni a pas de multiple de six.
- 6. C'est faux, par exemple dans {24,25,26,27,28} il n'y a pas de nombre premier.

Allez à : Exercice 1 :

Correction exercice 2:

1. $60 = 2^2 \times 3^1 \times 5^1$ donc les diviseurs positifs de 60 sont de la forme $2^i \times 3^j \times 5^k$ avec

$$(i, j, k) \in \{0,1,2\} \times \{0,1\} \times \{0,1\}$$

60 a donc $3 \times 2 \times 2 = 12$ diviseurs

 $100 = 2^2 \times 5^2$ donc les diviseurs positifs de 100 sont de la forme $2^i \times 5^j$ avec

$$(i,j) \in \{0,1,2\} \times \{0,1,2\}$$

100 a donc $3 \times 3 = 9$ diviseurs.

60 a plus de diviseurs positifs que 100.

2. $90 = 2^1 \times 3^2 \times 5^1$ donc les diviseurs positifs de 90 sont de la forme $2^i \times 3^j \times 5^k$ avec

$$(i, j, k) \in \{0,1\} \times \{0,1,2\} \times \{0,1\}$$

90 a donc $2 \times 3 \times 2 = 12$ diviseurs

60 a le même nombre de diviseurs positifs que 90, la réponse est donc vraie.

3. $120 = 2^3 \times 3^1 \times 5^1$ donc les diviseurs positifs de 120 sont de la forme $2^i \times 3^j \times 5^k$ avec

$$(i, j, k) \in \{0,1,2,3\} \times \{0,1\} \times \{0,1\}$$

120 a donc $4 \times 2 \times 2 = 16$ diviseurs

Donc 60 a moins de diviseurs positifs que 120.

Deuxième méthode : $120 = 2 \times 60$ donc les diviseurs de 60 sont aussi des diviseurs de 120, comme 120 est un diviseur de 120 mais pas de 60, 120 a plus de diviseurs que 60.

- 4. Soit n un diviseur de 60, il existe $k \in \mathbb{Z}$ tel que $60 = k \times n$ donc $120 = 2k \times n$ par conséquent n est un diviseur de 120.
- 5. C'est faux, 20 divise 60 et 20 ne divise pas 90.
- 6. Les diviseurs premiers de 120 sont 2, 3 et 5, ils divisent tous les trois 60.

Autre méthode:

 $120 = 2 \times 60$. 2 divise 60, et soit p > 2 un diviseur premier de 120, il existe $k \in \mathbb{Z}$ tel que $120 = p \times k$, alors $p \times k = 2 \times 60$, d'après le théorème de Gauss, $p|2 \times 60$ et p est premier avec 2 donc p divise 60.

Remarque : cette deuxième méthode est plus longue que la première mais dans d'autres circonstances cela peut s'avérer utile.

Allez à : Exercice 2 :

Correction exercice 3:

Première méthode théorique (indispensable à connaitre)

On cherche les solutions de 2u + 5v = 59 (1) avec $u \in \mathbb{N}$ (c'est le nombre de pièces de 2 euros) et $v \in \mathbb{N}$ (c'est le nombre de billets de 5 euros), comme 2 et 5 sont premier entre eux, il existe u_0 et v_0 tels que $2u_0 + 5v_0 = 1$, il existe une solution évidente $2 \times (-2) + 5 \times 1 = 1$, si ce n'est pas le cas on utilise l'algorithme d'Euclide. En multiplie par $59 : 2 \times (-118) + 5 \times 59 = 59$ (2),

En soustrayant (1) et (2) on trouve :

$$2(u+118) + 5(v-59) = 0 \Leftrightarrow 2(u+2) = -5(v-1)$$

2 est premier avec 5 et 2 divise -5(v-59), d'après le théorème de Gauss 2 divise -(v-59), donc il existe $k \in \mathbb{Z}$ tel que $-(v-59) = 2k \Leftrightarrow v = -2k+59$, on remplace -(v-59) = 2k dans 2(u+118) = -5(v-59), on trouve $2(u+118) = 5 \times 2k \Leftrightarrow u+118 = 5k \Leftrightarrow u=5k-118$, la réciproque est évidente.

Les solutions de (1) sont $\begin{cases} u = 5k - 118 \\ v = -2k + 59 \end{cases}$ avec $k \in \mathbb{Z}$.

Or $u \ge 0$ et $v \ge 0$.

$$\begin{cases} 5k - 118 \ge 0 \\ -2k + 59 \ge 0 \end{cases} \Leftrightarrow \begin{cases} k \ge \frac{118}{5} = 23 + \frac{3}{5} \\ k \le \frac{59}{2} = 29 + \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} k \ge 24 \\ k \le 29 \end{cases}$$

Chaque valeur de $k \in \{24,25,26,27,28,29\}$ donne une solution de l'équation (1) avec $u \ge 0$ et $v \ge 0$.

1. D'après les considérations ci-dessus

Prenons k = 29, $u = 5 \times 29 - 118 = 145 - 118 = 27$ et $v = -2 \times 29 + 59 = 1$ (Pour se rassurer $27 \times 2 + 5 = 59$) donc (27,1) est une solution avec 27 pièces de 2 euros. C'est faux.

- 2. Est-il possible que u = 10 ? Or u = 5k 118, cela entrainerait que $5k 118 = 10 \Leftrightarrow 5k = 128$, ce qui n'est pas possible.
- 3. Est-il possible que u=12 ? Or u=5k-118, cela qui est équivalent à $5k-118=12 \Leftrightarrow 5k=130 \Leftrightarrow k=26 \in \{24,25,26,27,28,29\}$, la réponse est oui.
- 4. Est-il possible que $v=2\times l$, $l\in\mathbb{N}$? Or v=-2k+59, cela entrainerait que $-2k+59=2l\Leftrightarrow 59=2(l+k)$, ce qui est impossible. La réponse est non.
- 5. Est-il possible que v = 0 ? Or v = -2k + 59, cela entrainerait que 2k = 59, ce qui est impossible, donc il y a au moins un billet de 5 euros.

Deuxième solution sans théorie

1. On cherche les solutions de 2u + 5v = 59, avec $u \in \mathbb{N}$ (c'est le nombre de pièces de 2 euros) et $v \in \mathbb{N}$ (c'est le nombre de billets de 5 euros).

 $5 + 2 \times 27 = 59$, donc un billet de 5 euros et 27 pièces de deux euros convient, « il y a au plus 22 pièces de deux euros » est faux.

- 2. $2 \times 10 + 5v = 59 \Leftrightarrow 5v = 39$, c'est impossible, il ne peut pas y avoir exactement 10 pièces de 2 euros.
- 3. $2 \times 12 + 5v = 59 \Leftrightarrow 5v = 35 \Leftrightarrow v = 7$, la réponse est oui.
- 4. v = 2l, $2u + 5v = 59 \Leftrightarrow 2u + 10l = 59$, ce qui est impossible car 59 est impair.
- 5. $v = 0 \Leftrightarrow 2u = 59$, c'est impossible.

Remarque : c'est plus simple ainsi, mais ne négligez pas la première méthode.

Allez à : Exercice 3 :

Correction exercice 4:

- 1. 9 est divisible par 9 mais pas par 6.
- 2. Soit *n* un nombre divisible par 100, donc il existe $k \in \mathbb{Z}$ tel que : $n = 100k = 25 \times 4k$ donc *n* est divisible par 25.
- 3. 6 est divisible par 2 et 3 mais pas par 12.
- 4. Soit *n* un nombre divisible par 10 et par 12, ilexiste $k \in \mathbb{Z}$ et $k' \in \mathbb{Z}$ tels que :

$$\begin{cases} n = 10k \\ n = 12k' \end{cases} \Rightarrow 10k = 12k' \Rightarrow 5k = 6k'$$

5 divise 6k' et 5 est premier avec 6, d'après le théorème de Gauss, 5 divise k', il existe $l \in \mathbb{Z}$ tel que k' = 5l, ce que l'on remplace dans n = 12k', $n = 12k' = 12 \times 5l = 4 \times 3 \times 5l = 15 \times 4l$, donc n est divisible par 15.

Autre méthode:

n est divisible par PPCM(10,12) = 60, par conséquent il existe $l' \in \mathbb{Z}$ tel que $n = 60l' = 15 \times 4l'$, donc n est divisible par 15.

- 5. 24 est divisible par 6 et 8 mais 24 n'est pas divisible par 48.
- 6. On pose $n = 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10$.

$$1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3$$

 $n = 3 \times 2^2 \times 5 \times (2 \times 3) \times 7 \times 2^3 \times 3^2 \times (2 \times 5) = 2^6 \times 3^4 \times 5^2 \times 7 = 2^3 \times 5^2 \times 3^4 \times 7$ $3^4 \times 7$ n'est pas divisible par 5 donc n n'est pas divisible par 1000.

7. $1600 = 16 \times 100 = 2^4 \times 4 \times 25 = 2^6 \times 5^2$

Donc $n = 1600 \times 3^4 \times 7$, n est un multiplie de 1600.

8. Soit N un entier dont l'écriture décimale est $a_n a_{n-1} \dots a_2 a_1 a_0$ alors

$$N = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_2 10^2 + a_1 10 + a_0 = \sum_{i=0}^{n} a_i 10^i$$

Exemple:

Si N = 2534 alors $N = 2000 + 500 + 30 + 4 = 2 \times 10^3 + 5 \times 10^2 + 3 \times 10 + 4$

L'énoncé ce traduit par :

$$a_n + a_{n-1} + \dots + a_2 + a_1 + a_0 = 39$$

On rappelle qu'un nombre est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3, et qu'un nombre est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9. 39 est divisible par 3 et pas par 9, d'où le résultat.

9. 18 est divisible par 6 et par 9 d'où le résultat.

Allez à : Exercice 4 :

Correction exercice 5 :

- 1. Faux, 12 est divisible par 4 et par 6 mais 12 n'est pas divisible par $4 \times 6 = 24$.
- 2. Soit n un entier divisible par p et q, (avec p et q premier entre eux) alors il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tels que :

$$\begin{cases} n = kp \\ n = lq \end{cases} \Rightarrow kp = lq$$

p divise lq et p est premier avec q, d'après le théorème de Gauss, p divise l, il existe $k' \in \mathbb{Z}$ tel que l = k'p, ce que l'on remplace dans n = lq, n = k'qp donc pq divise n.

3. Soit *n* divisible par *a* et par *b*, il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tels que n = ka et n = lb, soit d = PGCD(a, b), il existe $k' \in \mathbb{Z}$ et $l' \in \mathbb{Z}$ tels que a = k'd et b = l'd avec k' et l' premier entre eux.

$$\begin{cases} n = ka \\ n = lb \end{cases} \Rightarrow ka = lb \Rightarrow kk'd = ll'd \Rightarrow kk' = ll'$$

k' divise ll' et k' est premier avec l', d'après le théorème de Gauss k' divise l, il existe $k'' \in \mathbb{Z}$ tel que l = k'k'', ce que l'on remplace dans n = lb, alors n = k'k''b

Comme
$$ab = dm$$
 où $m = PPCM(a, b), m = \frac{ab}{d} = \frac{(k'd)b}{d} = k'b$, donc $n = k''(k'b) = k''m$

Ce qui montre bien que n est divisible par PPCM(a, b).

- 4. $12 = 2 \times 6$, 4 divise 12 mais 4 ne divise pas 2 et ne divise pas 6. C'est faux
- 5. Soit p un nombre premier qui divise n = ab, en décomposant a et b en produit de facteurs premiers on sent bien que la réponse est vraie, on va faire un peu mieux.

Supposons que p ne divise pas b, donc p et b sont premiers entre eux, or p divise ab, d'après le théorème de Gauss p divise a. Cela suffit pour prouver que p divise a ou que p divise b.

- 6. 12 est divisible par 2 et par 6 mais 12 n'est pas divise par 2 + 6 = 8.
- 7. Soient a, b et n trois entiers tels que n divise a et n divise b, il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tels que a = kn et b = ln, alors a + b = (k + l)n donc n divise a + b. La réponse est vraie.
- 8. Soient a et b deux entiers premiers entre eux, d'après l'identité de Bézout ils existent $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que : au + bv = 1, alors $au + bu bu + bv = 1 \Leftrightarrow (a + b)u + (-u + v)b = 1$ ce qui montre que a + b et b sont premiers entre eux, en inversant les rôle de a et b on montre de même que a + b et a sont premier entre eux.
- 9. C'est faux, 2 et 3 sont premiers entre eux mais aucun des deux n'est premier avec $2 \times 3 = 6$.
- 10. Soient a et b deux entiers premiers entre eux, d'après a est premier avec a + b et b est premier avec a + b, autrement dit les diviseurs premiers de a ne sont pas des diviseurs premiers de a + b, de même les diviseurs premiers de a ne sont pas des diviseurs premiers de a + b, donc les diviseurs premiers de ab (ce sont ceux de a et ceux de a) ne sont pas des diviseurs premiers de a + b, ce qui montre que ab et a + b sont premiers entre eux.

Autre méthode : On reprend 8°) et on pose c = a + b, il existe des entiers u, u', v et v' tels que :

$$\begin{cases} au + cv = 1 \\ bu' + cv' = 1 \end{cases} \Rightarrow (au + cv)(bu' + cv') = 1 \times 1 = 1 \Rightarrow abuu' + acuv' + bcvu' + c^2vv' = 1 \\ \Rightarrow ab(uu') + c(auv' + bvu' + cvv') = 1 \end{cases}$$

 $uu' \in \mathbb{Z}$, $auv' + bvu' + cvv' \in \mathbb{Z}$ d'après Bézout ab et c = a + b sont premiers entre eux.

Allez à : Exercice 5 :

Correction exercice 6:

1. Soit D = PGCD(a, b), d'après l'identité de Bézout il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tel que :

$$au + bv = D$$

Si d divise a et b alors il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tels que a = kd et b = ld, ce que l'on remplace dans l'identité ci-dessus

$$kdu + ldv = D \Leftrightarrow d(ku + lv) = D$$

Donc d divise D.

- 2. $8 \times 3 + (-4) \times 5 = 4$, mais 4 n'est pas le PGCD(3,5) = 1, c'est faux.
- 3. En reprenant l'exemple ci-dessus 4 ne divise pas 1 = PGCD(3,5), c'est faux.
- 4. On pose D = PGCD(a, b) il existe $a' \in \mathbb{Z}$ et $b' \in \mathbb{Z}$ tels que a = a'D et b = b'D avec a' et b' premier entre eux. Ce que l'on remplace dans au + bv = d

$$a'Du + b'Dv = d \Leftrightarrow D(a'u + b'v) = d$$

Donc *D* divise *d*. C'est vrai.

5. On pose D = PGCD(a, b) il existe $a' \in \mathbb{Z}$ et $b' \in \mathbb{Z}$ tels que a = a'D et b = b'D avec a' et b' premier entre eux. Si D divise d il existe $k_d \in \mathbb{Z}$ tel que $d = k_dD$

$$au + bv = d \Leftrightarrow a'Du + b'Dv = k_dD \Leftrightarrow a'u + b'v = k_d$$
 (1)

Comme a' et b' sont premiers entre eux, il existe $u_0 \in \mathbb{Z}$ et $v_0 \in \mathbb{Z}$ tel que ;

$$a'u_0 + b'v_0 = 1$$

En multipliant par k_d

$$a'k_du_0 + b'k_dv_0 = k_d \quad (2)$$

En soustrayant (1) et (2):

$$a'(u - k_d u_0) + b'(v - k_d v_0) = 0 \Leftrightarrow a'(u - k_d u_0) = -b'(v - k_d v_0)$$

a' divise $-b'(v-k_dv_0)$ et a' et b' sont premiers entre eux, d'après le théorème de Gauss, a' divise $v-k_dv_0$ donc il existe $k\in\mathbb{Z}$ tel que $v-k_dv_0=ka'\Leftrightarrow v=k_dv_0+ka'$, ce que l'on remplace dans $a'(u-k_du_0)=-b'(v-k_dv_0)\Leftrightarrow a'(u-k_du_0)=-b'ka'\Leftrightarrow u-k_du_0=-b'k\Leftrightarrow u=k_du_0-b'k$ La réciproque est évidente.

Tous les couples $(u, v) = (k_d u_0 - b'k, k_d v_0 + ka')$ $k \in \mathbb{Z}$ sont solutions de au + bv = d

Il y a une infinité de solutions.

Prenons un exemple pour « visualiser » les choses.

$$10 \times 30 + 14 \times (-21) = 6$$

 $10 \times 9 + 14 \times (-6) = 6$

C'est-à-dire
$$a = 10$$
, $b = 14$, $d = 6$, on a deux couples (u, v) ((30, -21) et (9, -6)) tels que : $10u + 14v = 6$

6. On pose D = PGCD(a, b).

Si d est un multiple de PGCD(a, b), il existe $k \in \mathbb{Z}$ tel que d = kD, or d'après l'identité de Bézout il existe $u' \in \mathbb{Z}$ et $v' \in \mathbb{Z}$ tels que au' + bv' = D, en multipliant cette égalité par k on trouve a(ku') + b(kv') = kD, on pose alors u = ku' et v = kv' ce qui donne au + bv = d, on a montré l'une des deux implications

Réciproque : s'il existe un couple d'entiers (u, v), tel que au + bv = d.

On utilise 4°) et alors D divise d, autrement dit d est un multiple de D = PGCD(a, b).

Allez à : Exercice 6 :

Correction exercice 7:

- 1. Soit n un entier congru à 0 modulo 6, il existe $k \in \mathbb{Z}$ tel que n = 0 + 6k = 6k, ce qui montre que 6 divise n (c'était vraiment évident).
- 2. $2 \times 3 = 6 \equiv 0$ [6] et pourtant ni 2, ni 3 ne sont congrus à 0 modulo 6.
- 3. Soit n un entier congru à 5 modulo 6, il existe $k \in \mathbb{Z}$ tel que n = 5 + 6k, alors

$$n = -1 + 6 + 6k = -1 + 6(k + 1)$$

Ce qui montre que n est congru à -1 modulo 6. (On peut affirmer ceci sans faire la démonstration cidessus).

Maintenant on va utiliser les propriétés des congruences

$$n \equiv -1 \ [6] \Rightarrow n^{2p} \equiv (-1)^{2p} \ [6] \equiv 1 \ [6]$$

C'est bien cela, les puissances paires de n sont congrus à -1 modulo 6.

- 4. Si $a \equiv 4$ [6] et $b \equiv 4$ [6] alors $a + b \equiv 4 + 4$ [6] $\equiv 8$ [6] $\equiv 2$ [6]
- 5. Si $a \equiv 4$ [6] et $b \equiv 4$ [6] alors $ab \equiv 4 \times 4$ [6] $\equiv 16$ [6] $\equiv 4$ [6] L'affirmation est fausse.
- 6. D'après le 5. $a^2 \equiv 4$ [6], puis par une récurrence très simple, $a^n \equiv 4$ [6]. L'affirmation est vraie.

Allez à : Exercice 7 :

Correction exercice 8:

- Soient a ∈ Z et b ∈ Z tels que ab ≡ 0 [5], il existe k ∈ Z tel que : ab = 5k
 Supposons que a ne soit pas un multiple de 5, 5 étant premier, a et 5 sont premiers entre eux, de plus 5 divise 5a, d'après le théorème de Gauss 5 divise b, autrement dit b est un multiple de 5. Cela suffit à montrer que a ou b est un multiple de 5.
- 2. Soit $a \in \mathbb{Z}$ tels que $a \equiv 2$ [5], $a^2 \equiv 2^2$ [5] $\equiv 4$ [5] $\equiv -1$ [5], $a^4 \equiv (-1)^2$ [5] $\equiv 1$ [5].
- 3. Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ tels que $a \equiv 2$ [5] et $b \equiv 2$ [5] alors $a + b \equiv 2 + 2$ [5] $\equiv 4$ [5], l'affirmation est fausse.
- 4. Soit $a \in \mathbb{Z}$ non multiple de 5, a et 5 sont premier entre eux, d'après l'identité de Bézout, il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que au + 5v = 1, on en déduit que au = 1 + 5(-v), autrement dit $au \equiv 1$ [5]. L'affirmation est vraie, pour tout $a \in \mathbb{Z}$ il existe $u \in \mathbb{Z}$ tel que : $au \equiv 1$ [5]
- 5. $3 \times 3 = 9 \equiv -1$ [5], l'affirmation est fausse.
- 6. $0^2 = 0 \equiv 0$ [5], $1^2 = 1 \equiv 1$ [5], $2^2 = 4 \equiv -1$ [5], $3^3 = 9 \equiv -1$ [5], $4^2 = 16 \equiv 1$ [5]. Pour les autres entiers, ils sont congrus soit à 0 [5], soit à 1 [5], soit à 2 [5], soit à 3 [5], soit à 4 [5], donc leur carré est congru à 0^2 [5], soit à 1^2 [5], soit 2^2 [5], soit à 3^2 [5], soit à 4^2 [5], par conséquent il n'y a pas d'entier dont le carré soit congru à 2 modulo 5.
- 7. C'est faux $0^4 = 0$ [5].
- 8. Au 6. on a vu que tous les entiers non multiples de 5 avait un carré congru à −1 ou 1. Dont le carré du carré (la puissance 4ième) est congru à 1 modulo 5.

Allez à : Exercice 8 :

Correction exercice 9:

1. La contraposée de cette proposition est : Si n n'est pas premier alors n est divisible par au moins un nombre inférieur ou égal à \sqrt{n} .

Démontrons cela.

n n'est pas premier, il existe $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que n = ab et $a \ge b$ (Si cela ne vous plait pas, on peut prendre $a \le b$), donc $n \ge b^2$, par conséquent $\sqrt{n} \ge b$.

- 2. n! + 2 est divisible par 2, n! + 3 est divisible par 3,..., n! + n est divisible par n, ces nombres ne sont pas premiers.
- 3. n! + 2, n! + 3,...,n! + n sont n 1 entiers consécutifs non premiers, ceci étant vrai pour tout $n \in \mathbb{N}$, il existe n entiers consécutifs non premiers. ((n + 1)! + 2, (n + 1)! + 3,...,(n + 1)! + (n + 1)).

Allez à : Exercice 9 :

Correction exercice 10:

Réfléchissons un peu avant de nous lancer dans les calculs. Il y a 7 jours par semaines, la congruence modulo 7 va nous rendre service.

Ensuite on va compter le nombre de jours entre le premier Janvier 2007 (ce jour là compris) et un jour quelconque.

Il y a $n_1 = 31$ jours en Janvier, $n_2 = 28$ (ou $n_2' = 29$ en Février 2008), $n_3 = 31$ jours en Mars,...

$$a = n_1 = n_3 = n_5 = n_7 = n_8 = n_{10} = n_{12} = 31 \equiv 3$$
 [7]
 $n_2 = 28 \equiv 0$ [7] ou $n'_2 = 29 \equiv 1$ [7]
 $b = n_4 = n_6 = n_9 = n_{11} = 30 \equiv 2$ [7]

Si on s'y prend de cette façon (ce n'est pas la seule façon de faire), si on tombe sur un nombre congru à 1 c'est un Lundi, si le nombre est congru à 2 c'est un Mardi, si le nombre est congru à 3 c'est un Mercredi, si le nombre est congru à 4 c'est un Jeudi, si le nombre est congru à 5 c'est un Vendredi, si le nombre est congru à 6 c'est un Dimanche.

- 1. Le nombre de jour entre le premier Janvier 2007 (ce jour là compris) et le 2 Juillet 2007 est : $N = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + 2 = 3a + n_2 + 2b + 2 \equiv 9 + 0 + 4 + 2$ [7] \equiv 13 [7] \equiv 1 [7] Le 2 Juillet 2007 était un Lundi.
- 2. Le nombre de jour entre le premier Janvier 2007 (ce jour là compris) et le 15 Janvier 2008 est : $N = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{10} + n_{11} + n_{12} + 15 = 7a + n_2 + 4b + 15$ $\equiv 0 \times 3 + 0 + 4 \times 2 + 1$ [7] $\equiv 2$ [7]

Le 15 Janvier 2008 était un Mardi.

3. Le nombre de jour entre le premier Janvier 2007 (ce jour là compris) et le 19 Mars 2008 est :

$$N = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{10} + n_{11} + n_{12} + n_1 + n'_2 + 19$$

= $8a + n_2 + n'_2 + 4b + 19 \equiv 1 \times 3 + +0 + 1 + 4 \times 2 + 5$ [7] $\equiv 3$ [7]

Le 19 Mars 2008 était un Mercredi.

4. Le nombre de jour entre le premier Janvier 2007 (ce jour là compris) et le 14 Juillet 2010 est : On va un peu raccourcir, du 1 Janvier 2007 au 31 Décembre 2009, cela fait 3 ans, dont une année bissextile.

$$N = 3(n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{10} + n_{11} + n_{12}) + 1 + n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + 14 = 3(7a + n_2 + 4b) + 1 + 3a + n_2 + 2b + 14 = 24a + 4n_2 + 14b + 15 \equiv 3 \times 3 + 4 \times 0 + 0 \times 2 + 1 \quad [7] \equiv 3 \quad [7]$$

Le 14 Juillet 2010 était un Mercredi.

5. Le nombre de jour entre le premier Janvier 2007 (ce jour là compris) et le 26 Août 2011 est : On va un peu raccourcir, du 1 Janvier 2007 au 31 Décembre 2010, cela fait 4 ans, dont une année bissextile.

$$N = 4(n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{10} + n_{11} + n_{12}) + 1 + n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + 26 = 4(7a + n_2 + 4b) + 1 + 4a + n_2 + 2b + 26 = 32a + 5n_2 + 18b + 27 \equiv 4 \times 3 + 5 \times 0 + 4 \times 2 + 6 \quad [7] \equiv 5 \quad [7]$$

Le 26 Août 2011 sera un Vendredi.

Allez à : Exercice 10 :

Correction exercice 11:

Soit n ce nombre, il existe $q \in \mathbb{N}$ tel que n = 7q + 5 et $q = 7 \times 12 + 3 = 87$ donc $n = 7 \times 87 + 5 = 611$

Allez à : Exercice 11 :

Correction exercice 12:

$$842 = 256 \times 3 + 74$$

Donc

$$96842 = 256 \times 375 + 3 \times 256 + 74 = 256 \times 378 + 74$$

Le reste de la division euclidienne de 96842 par 256 est 74.

$$842 = 375 \times 2 + 92$$

Donc

$$96842 = 256 \times 375 + 375 \times 2 + 92 = 375 \times 258 + 92$$

Le reste de la division euclidienne de 96842 par 375 est 92.

Allez à : Exercice 12 :

Correction exercice 13:

$$N = 3379026 \times 609806770 = (198765 \times 17 + 21) \times (35870986 \times 17 + 8)$$

$$= 198765 \times 17 \times 35870986 \times 17 + 198765 \times 17 \times 8 + 21 \times 35870986 \times 17 + 21$$

$$\times 8 = 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986) + 21 \times 8$$

$$= 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986) + (17 + 4)$$

$$\times 8$$

$$= 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986 + 8) + 4 \times 8$$

$$= 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986 + 8) + 32$$

$$= 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986 + 8) + 17 + 15$$

$$= 17 \times (198765 \times 17 \times 35870986 + 198765 \times 8 + 21 \times 35870986 + 8 + 1) + 15$$

Comme $0 \le 15 < 17$.

Le reste de la division euclidienne de *N* par 17 est 15.

Autre méthode

En utilisant les congruences modulo 17.

$$3379026 = 198765 \times 17 + 21 \equiv 21 \quad [17] \equiv 4 \quad [17]$$

 $609806770 = 35870986 \times 17 + 8 \equiv 8 \quad [17]$

Donc
$$N \equiv 4 \times 8 \quad [17] \equiv 32 \quad [17] \equiv 15 \quad [17]$$

Comme 0 < 15 < 17.

Le reste de la division euclidienne de *N* par 17 est 15.

Allez à : Exercice 13 :

Correction exercice 14:

La méthode classique veut que l'on regarde si 2 divise ce nombre, si la réponse est oui, on divise par 2 sinon on regarde si 3 divise ce nombre, si la réponse est oui on divise par 3, sinon on regarde si 5 divise ce nombre, etc...pour tous les nombres premiers jusqu'à la partie entière de la racine carrée de ce nombre.

$$60 = 2 \times 30 = 2^{2} \times 15 = 2^{2} \times 3 \times 5$$

$$360 = 2 \times 180 = 2^{2} \times 90 = 2^{3} \times 45 = 2^{3} \times 3 \times 15 = 2^{3} \times 3^{2} \times 5$$

$$2400 = 2 \times 1200 = 2^{2} \times 600 = 2^{3} \times 300 = 2^{4} \times 150 = 2^{5} \times 75 = 2^{5} \times 3 \times 25 = 2^{5} \times 3 \times 5^{2}$$

$$4675 = 5 \times 935 = 5^{2} \times 187 = 5^{2} \times 11 \times 17$$

$$9828 = 2 \times 4914 = 2^{2} \times 2457 = 2^{2} \times 3 \times 819 = 2^{2} \times 3^{2} \times 273 = 2^{2} \times 3^{3} \times 91$$

$$= 2^{2} \times 3^{3} \times 7 \times 13$$

$$15200 = 2 \times 7600 = 2^{2} \times 3800 = 2^{3} \times 1900 = 2^{4} \times 950 = 2^{5} \times 475 = 2^{5} \times 5 \times 95$$

$$= 2^{5} \times 5^{2} \times 19$$

$$45864 = 2 \times 22932 = 2^{2} \times 11466 = 2^{3} \times 5733 = 2^{3} \times 3 \times 1911 = 2^{3} \times 3^{2} \times 637$$

$$= 2^{3} \times 3^{2} \times 7 \times 91 = 2^{3} \times 3^{2} \times 7^{2} \times 13$$

$$792792$$

Cela risque d'être pénible si on utilise la méthode classique, on remarque que :

$$792792 = 792 \times 1001$$

$$1001 = 7 \times 143 = 7 \times 11 \times 13$$

$$792 = 2 \times 396 = 2^2 \times 198 = 2^3 \times 99 = 2^3 \times 3 \times 33 = 2^3 \times 3^2 \times 11$$

Donc

$$792792 = 7 \times 11 \times 13 \times 2^3 \times 3^2 \times 11 = 2^3 \times 3^2 \times 7 \times 11^2 \times 13$$

Allez à : Exercice 14 :

Correction exercice 15:

$$2244 = 2 \times 1089 + 66$$
, $1089 = 16 \times 66 + 33$ et $66 = 2 \times 33 + 0$
Donc $PGCD(2244,1089) = 33$ et $33 = 1089 - 16 \times 66 = 1089 - 16 \times (2244 - 2 \times 1089) = -16 \times 2244 + 33 \times 1089$

Allez à : Exercice 15 :

Correction exercice 16:

a)

$$84 = 1 \times 60 + 24$$

 $60 = 2 \times 24 + 12$
 $24 = 2 \times 12$
 $PGCD(84.60) = 12$

C'est le dernier reste non nul.

$$PPCM(84,60) = \frac{84 \times 60}{PGCD(84,60)} = \frac{84 \times 60}{12} = 420$$
$$12 = 60 - 2 \times 24 = 60 - 2 \times (84 - 1 \times 60) = -2 \times 84 + 3 \times 60$$

Une solution particulière de 60u + 84v = 12 est :

$$3 \times 60 + (-2) \times 84 = 12$$

On fait la soustraction de 60u + 84v = 12 avec $3 \times 60 + (-2) \times 84 = 12$

$$60(u-3) + 84(v+2) = 0 \Leftrightarrow 60(u-3) = -84(v+2) \Leftrightarrow 5(u-3) = -7(v+2)$$

5 divise -7(v+2) et 5 est premier avec 7, d'après le théorème de Gauss 5 divise -(v+2), par conséquent il existe $k \in \mathbb{Z}$ tel que $-(v+2) = 5k \Leftrightarrow v = -2 - 5k$, ce que l'on remplace dans 5(u-3) = -7(v+2), ce qui donne $5(u-3) = 7 \times 5k \Leftrightarrow u-3 = 7k \Leftrightarrow u=3+7k$.

Réciproque

 $60(u-3) + 84(v+2) = 60(3+7k-3) + 84(-2-5k+2) = 60 \times 7k - 84 \times 5k = 0$ L'ensemble des couples (u, v) recherchés sont :

$$(3+7k,-2-5k), k \in \mathbb{Z}$$

 $60 = 2^2 \times 3 \times 5 \quad et \quad 84 = 2^2 \times 3 \times 7$
 $PGCD(60,84) = 2^2 \times 3 = 12$
 $PPCM(60,84) = 2^2 \times 3 \times 5 \times 7 = 420$

Allez à : Exercice 16 : b)

$$360 = 1 \times 240 + 120$$

 $240 = 2 \times 120$
 $PGCD(360,240) = 120$

C'est le dernier reste non nul

$$PPCM(360,240) = \frac{360 \times 240}{120} = 720$$
$$120 = 1 \times 360 - 1 \times 240$$

Une solution particulière de 360u + 240v = 120 est $120 = 1 \times 360 - 1 \times 240$ On fait la soustraction 360u + 240v = 120 avec $1 \times 360 - 1 \times 240 = 120$

$$360(u-1) + 240(v+1) = 0 \Leftrightarrow 360(u-1) = -240(v+1) \Leftrightarrow 3(u-1) = -2(v+1)$$

3 divise -2(v+1) et 3 est premier avec 2, d'après le théorème de Gauss 3 divise -(v+1), par conséquent il existe $k \in \mathbb{Z}$ tel que $-(v+1) = 3k \Leftrightarrow v = -1 - 3k$, ce que l'on remplace dans 3(u-1) = -2(v+1), ce qui donne $3(u-1) = 2 \times 3k \Leftrightarrow u-1 = 2k \Leftrightarrow u = 1+2k$.

La réciproque est évidente (voir a)), l'ensemble des couples (u, v) recherchés sont :

$$(1+2k,-1-3k), k \in \mathbb{Z}$$

 $360 = 2^3 \times 3^2 \times 5$
 $240 = 2^4 \times 3 \times 5$
 $PGCD(360,240) = 2^3 \times 3 \times 5 = 120$
 $PPCM(360,240) = 2^4 \times 3^2 \times 5 = 720$

Allez à : Exercice 16 : c)

$$171 = 1 \times 160 + 11$$

$$160 = 14 \times 11 + 6$$

$$11 = 1 \times 6 + 5$$

$$6 = 1 \times 5 + 1$$

$$5 = 5 \times 1$$

$$PGCD(171,160) = 1$$

C'est le dernier reste non nul.

$$PPCM(171,160) = 171 \times 160 = 27360$$

$$1 = 6 - 1 \times 5 = 6 - 1 \times (11 - 1 \times 6) = -1 \times 11 + 2 \times 6 = -1 \times 11 + 2 \times (160 - 14 \times 11)$$

$$= 2 \times 160 - 29 \times 11 = 2 \times 160 - 29 \times (171 - 1 \times 160) = -29 \times 171 + 31 \times 160$$

$$-29 \times 171 + 31 \times 160 = 1$$

Une solution particulière de 160u + 171v = 1 est $31 \times 160 - 29 \times 171 = 1$.

On fait la soustraction de 160u + 171v = 1 par $31 \times 160 - 29 \times 171 = 1$

$$160(u-31) + 171(v+29) + 0 \Leftrightarrow 160(u-31) = -171(v+29)$$

160 divise -171(v+29) et 160 est premier avec 171, d'après le théorème de Gauss 160 divise -(v+29), il existe $k \in \mathbb{Z}$ tel que $-(v+29) = 160k \Leftrightarrow v = -29 - 160k$, ce que l'on remplace dans $160(u-31) = -171(v+29) \Leftrightarrow 160(u-31) = 171 \times 160k \Leftrightarrow u-31 = 171k \Leftrightarrow u = 31 + 171k$

La réciproque étant toujours aussi évidente, les couples (u, v) recherchés sont :

$$(31 + 171k, -29 - 160k), k \in \mathbb{Z}$$

 $171 = 3^2 \times 19$
 $160 = 2^5 \times 5$
 $PGCD(171,160) = 1$
 $PPCM(171,160) = 2^5 \times 3^2 \times 5 \times 19 = 27360$

Allez à : Exercice 16 : d)

$$360 = 1 \times 345 + 15$$

$$345 = 23 \times 15$$

$$PGCD(360,345) = 15$$

$$PPCM(360,345) = \frac{360 \times 345}{15} = 8280$$

$$15 = 1 \times 360 - 1 \times 345$$

Une solution particulière de 360u + 345v = 15 est $1 \times 360 - 1 \times 345 = 15$

On fait la soustraction de 360u + 345v = 15 par $1 \times 360 - 1 \times 345 = 15$

$$360(u-1) + 345(v+1) = 0 \Leftrightarrow 360(u-1) = -345(v+1) \Leftrightarrow 24(u-1) = -23(v+1)$$

24 divise -23(v+1) et 24 est premier avec 23, d'après le théorème de Gauss 24 divise -(v+1), il

existe $k \in \mathbb{Z}$ tel que – $(v + 1) = 24k \Leftrightarrow v = -1 - 24k$, ce que l'on remplace dans

$$24(u-1) = -23(v+1) \Leftrightarrow 24(u-1) = 23 \times 24k \Leftrightarrow u-1 = 23k \Leftrightarrow u = 1+23k$$

Comme d'habitude la réciproque est évidente, les couples (u, v) recherchés sont

$$(1+23k,-1-24k), k \in \mathbb{Z}$$

 $360 = 2^3 \times 3^2 \times 5$
 $345 = 3 \times 5 \times 23$
 $PGCD(360,345) = 3 \times 5 = 15$
 $PPCM(360,345) = 2^3 \times 3^2 \times 5 \times 23 = 8280$

Allez à : Exercice 16 :

e)

$$520 = 1 \times 325 + 195$$

$$325 = 1 \times 195 + 130$$

$$195 = 1 \times 130 + 65$$

$$130 = 2 \times 65$$

$$PGCD(520,325) = 65$$

$$PPCM(520,325) = \frac{520 \times 325}{65} = 2600$$

$$65 = 195 - 1 \times 130 = 195 - 1 \times (325 - 1 \times 195) = -1 \times 325 + 2 \times 195$$

$$= -1 \times 325 + 2 \times (520 - 1 \times 325) = 2 \times 520 - 3 \times 325$$

Une solution particulière de 325u + 520v = 65 est $-3 \times 325 + 2 \times 520 = 65$

On fait la soustraction de 325u + 520v = 65 par $-3 \times 325 + 2 \times 520 = 65$

$$325(u+3) + 520(v-2) = 0 \Leftrightarrow 325(u+3) = -520(v-2) \Leftrightarrow 5(u+3) = -8(v-2)$$

5 divise -8(v-2) et 5 est premier avec 8, d'après le théorème de Gauss 5 divise -(v-2), il existe $k \in \mathbb{Z}$ tel que $-(v-2) = 5k \Leftrightarrow v = 2 - 5k$, ce que l'on remplace dans

$$5(u+3) = -8(v-2) \Leftrightarrow 5(u+3) = 8 \times 5k \Leftrightarrow u+3 = 8k \Leftrightarrow u = -3+8k$$

Les couples recherchés sont

$$(-3+8k, 2-5k), k \in \mathbb{Z}$$

 $520 = 2^3 \times 5 \times 13$
 $325 = 5^2 \times 13$
 $PGCD(325,520) = 5 \times 13 = 65$
 $PPCM(325,520) = 2^3 \times 5^2 \times 13 = 2600$

Remarque : pour faire ce genre de calculs la calculatrice est totalement inutile, il suffit de bien s'y prendre et le calcul est on ne peut plus simple :

$$2^3 \times 5^2 \times 13 = (2 \times 5) \times (2 \times 5) \times 2 \times 13 = 10 \times 10 \times 26 = 2600$$

Cela se fait de tête!

Allez à : Exercice 16 : f)

$$720 = 2 \times 252 + 216$$

$$252 = 1 \times 216 + 36$$

$$216 = 6 \times 36$$

$$PGCD(720,252) = 36$$

$$PPCM(720,252) = \frac{720 \times 252}{36} = 5040$$

$$36 = 252 - 1 \times 216 = 252 - 1 \times (720 - 2 \times 252) = -1 \times 720 + 3 \times 252$$

Une solution particulière de 720u + 252v = 36 est $-1 \times 720 + 3 \times 252 = 36$

On fait la soustraction de 720u + 252v = 36 par $-1 \times 720 + 3 \times 252 = 36$

$$720(u+1) + 252(v-3) = 0 \Leftrightarrow 720(u+1) = -252(v-3) \Leftrightarrow 20(u+1) = -7(v-3)$$

20 divise -7(v-3) et 20 est premier avec -7(v-3), d'après le théorème de Gauss 20 divise

$$-(v-3)$$
, il existe $k \in \mathbb{Z}$ tel que $-(v-3) = 20k \Leftrightarrow v = 3-20k$, ce que l'on remplace dans

$$20(u+1) = -7(v-3) \Leftrightarrow 20(u+1) = 7 \times 20k \Leftrightarrow u+1 = 7k \Leftrightarrow u = -1 + 7k$$

Les couples (u, v) recherchés sont

$$(-1+7k, 3-20k), k \in \mathbb{Z}$$

$$720 = 2^4 \times 3^2 \times 5$$

$$252 = 2^2 \times 3^2 \times 7$$

$$PGCD(720,252) = 2^2 \times 3^2 = 36$$

$$PPCM(720,252) = 2^4 \times 3^2 \times 5 \times 7 = 5040$$

Allez à : Exercice 16 : g)

$$955 = 5 \times 183 + 40$$

$$183 = 4 \times 40 + 23$$

$$40 = 1 \times 23 + 17$$

$$23 = 1 \times 17 + 6$$

$$17 = 2 \times 6 + 5$$

$$6 = 1 \times 5 + 1$$

$$5 = 5 \times 1$$

$$PGCD(955,183) = 1$$

 $PPCM(955,183) = 955 \times 183 = 174765$

$$1 = 6 - 1 \times 5 = 6 - 1 \times (17 - 2 \times 6) = -1 \times 17 + 3 \times 6 = -1 \times 17 + 3 \times (23 - 1 \times 17)$$

$$= 3 \times 23 - 4 \times 17 = 3 \times 23 - 4 \times (40 - 1 \times 23) = -4 \times 40 + 7 \times 23$$

$$= -4 \times 40 + 7 \times (183 - 4 \times 40) = 7 \times 183 - 32 \times 40$$

$$= 7 \times 183 - 32 \times (955 - 5 \times 183) = -32 \times 955 + 167 \times 183$$

Une solution particulière de 955u + 183v = 1 est $-32 \times 955 + 167 \times 183 = 1$

On fait la soustraction de 955u + 183v = 1 par $-32 \times 955 + 167 \times 183 = 1$

$$955(u + 32) + 183(v - 167) = 0 \Leftrightarrow 955(u + 32) = -183(v - 167)$$

955 divise -183(v-167) et 955 est premier avec 183, d'après le théorème de Gauss 955 divise -(v-167), il existe $k \in \mathbb{Z}$ tel que $-(v-167) = 955k \Leftrightarrow v = 167 - 955k$, ce que l'on remplace dans

$$955(u + 32) = -183(v - 167) \Leftrightarrow 955(u + 32) = 183 \times 955k \Leftrightarrow u + 32 = 183k \Leftrightarrow u$$
$$= -32 + 183k$$

Les couples (u, v) recherchés sont

$$(-32 + 183k, 167 - 955k), k \in \mathbb{Z}$$

 $955 = 5 \times 191$

191 est premier mais ce n'est pas si évident, ce nombre n'est pas divise par 2, ni par 3, ni par 5, $\frac{191}{7} = 27,28$... donc ni par 7, $\frac{191}{11} = 17,36$... donc ni par 11, $\frac{191}{13} = 14,69$... donc ni par 13, $\frac{191}{17} = 11,23$... donc ni par 17 et là on s'arrête parce que 11,23 ... < 17 on a vu ce résultat, mais c'est assez intuitif, en effet si ce nombre était divisible par un nombre premier supérieur ou égal à 17 le résultat serait inférieur à 11,23 ... et du coup on s'en serait déjà rendu compte.

$$183 = 3 \times 61$$

61 est premier, c'est l'occasion de rappeler que tous les nombres inférieurs à 100 qui « ont l'air premier » (c'est-à-dire qui ne sont divisibles ni par 2, ni par 3, ni par 5, ni par 7 en étant inférieur à 77) sont premiers sauf 91 car $91 = 7 \times 13$.

$$PGCD(955,183) = 1$$

 $PGCD(955,183) = 3 \times 5 \times 61 \times 191 = 174765$

Là, il faut une machine.

Allez à : Exercice 16 : h)

$$1665 = 1 \times 1035 + 630$$
$$1035 = 1 \times 630 + 405$$
$$630 = 1 \times 405 + 225$$

```
405 = 1 \times 225 + 180
                                                  225 = 1 \times 180 + 45
                                                      180 = 4 \times 45
                                               PGCD(1665,1065) = 45
                                   PPCM(1665,1035) = \frac{1665 \times 1035}{1}
                45 = 225 - 1 \times 180 = 225 - 1 \times (405 - 1 \times 225) = -1 \times 405 + 2 \times 225
                                = -1 \times 405 + 2 \times (630 - 1 \times 405) = 2 \times 630 - 3 \times 405
                                = 2 \times 630 - 3 \times (1035 - 1 \times 630) = -3 \times 1035 + 5 \times 630
                                = -3 \times 1035 + 5 \times (1665 - 1 \times 1035) = 5 \times 1665 - 8 \times 1035
        Une solution particulière de 1665u + 1035v = 45 est 5 \times 1665 - 8 \times 1035 = 45
        On fait la soustraction de 1665u + 1035v = 45 par 5 \times 1665 - 8 \times 1035 = 45
      1665(u-5) + 1035(v+8) = 0 \Leftrightarrow 1665(u-5) = -1035(v+8) \Leftrightarrow 37(u-5) = -23(v+8)
        37 divise -23(v+8) et 37 est premier avec 23, d'après le théorème de Gauss 37 divise -(v+8) il
        existe k \in \mathbb{Z} tel que -(v+8) = 37k \Leftrightarrow v = -8 - 37k, ce que l'on remplace dans
            37(u-5) = -23(v+8) \Leftrightarrow 37(u-5) = 23 \times 37k \Leftrightarrow u-5 = 23k \Leftrightarrow u = 5+23k
        Les couples (u, v) recherchés sont
                                            (5+23k, -8-37k), k \in \mathbb{Z}
                                                  1665 = 3^2 \times 5 \times 37
                                                  1035 = 3^2 \times 5 \times 23
                                          PGCD(1665.1035) = 3^2 \times 5 = 45
                                 PPCM(1665,1035) = 3^2 \times 5 \times 23 \times 37 = 38295
Allez à : Exercice 16 :
   i)
        a = 18480, b = 9828
                                              18480 = 1 \times 9828 + 8652
                                               9828 = 1 \times 8652 + 1176
                                               8652 = 7 \times 1176 + 420
                                                1176 = 2 \times 420 + 336
                                                  420 = 1 \times 336 + 84
                                                      336 = 4 \times 84
                                               PGCD(18480.9828) = 84
                                PPCM(18480,9828) = \frac{18480 \times 9828}{2}
                                                                              = 2162160
           84 = 420 - 1 \times 336 = 420 - 1 \times (1176 - 2 \times 420) = -1 \times 1176 + 3 \times 420
                            = -1 \times 1176 + 3 \times (8652 - 7 \times 1176) = 3 \times 8652 - 22 \times 1176
                            = 3 \times 8652 - 22 \times (9828 - 1 \times 8652) = -22 \times 9828 + 25 \times 8652
                            = -22 \times 9828 + 25 \times (18480 - 1 \times 9828) = 25 \times 18480 - 47 \times 9828
        Une solution particulière de 18480u + 9828v = 84 est 25 \times 18480 - 47 \times 9828 = 84
        On fait la division de 18480u + 9828v = 84 par 25 \times 18480 - 47 \times 9828 = 84
                  18480(u-25) + 9828(v+47) = 0 \Leftrightarrow 18480(u-25) = -9828(v+47)
                                          \Leftrightarrow 220(u - 25) = -117(v + 47)
        220 divise -117(v + 47) et 220 est premier avec 117, d'après le théorème de Gauss 220 divise
        -(v+47), il existe k \in \mathbb{Z} tel que -(v+47) = 220k \Leftrightarrow v = -47 - 220k, ce que l'on remplace dans
                220(u-25) = -117(v+47) \Leftrightarrow 220(u-25) = 117 \times 220k \Leftrightarrow u-25 = 117k \Leftrightarrow u
                                = 25 + 117k
        Les couples (u, v) recherchés sont
                                          (25 + 117k, -47 - 220k), k \in \mathbb{Z}
                                            18480 = 2^4 \times 3 \times 5 \times 7 \times 11
                                               9828 = 2^2 \times 3^3 \times 7 \times 13
                                      PGCD(18480,9828) = 2^2 \times 3 \times 7 = 84
                         PPCM(18480,9828) = 2^4 \times 3^3 \times 5 \times 7 \times 11 \times 13 = 2162160
```

Allez à : Exercice 16 :

Correction exercice 17:

1. $8303 = 3 \times 2717 + 152$; $2717 = 17 \times 152 + 133$; $152 = 1 \times 133 + 19$; $133 = 7 \times 19 + 0$. $19 = 152 - 1 \times 133 = 152 - 1 \times (2717 - 17 \times 152) = -1 \times 2717 + 18 \times 152$ $= -1 \times 2717 + 18 \times (8303 - 3 \times 2717) = 18 \times 8303 - 55 \times 2717$

Et D = PGCD(8303,2717) = 19

- 2. $M = \frac{8303 \times 2717}{19} = 1187329$
- 3. $1001 = 3 \times 315 + 56$; $315 = 5 \times 56 + 35$; $56 = 1 \times 35 + 21$; $35 = 1 \times 21 + 14$; $21 = 1 \times 14 + 7$; $14 = 2 \times 7 + 0$.

$$7 = 21 - 1 \times 14 = 21 - 1 \times (35 - 1 \times 21) = -1 \times 35 + 2 \times 21 = -1 \times 35 + 2 \times (56 - 1 \times 35)$$
$$= 2 \times 56 - 3 \times 35 = 2 \times 56 - 3 \times (315 - 5 \times 56) = -3 \times 315 + 17 \times 56$$
$$= -3 \times 315 + 17 \times (1001 - 3 \times 315) = 17 \times 1001 - 54 \times 315$$

4. $2244 = 2 \times 1089 + 66$, $1089 = 16 \times 66 + 33$ et $66 = 2 \times 33 + 0$

Donc PGCD(2244,1089) = 33 et

$$33 = 1089 - 16 \times 66 = 1089 - 16 \times (2244 - 2 \times 1089) = -16 \times 2244 + 33 \times 1089$$

Allez à : Exercice 17 :

Correction exercice 18:

1. Une identité de Bézout entre 3 et 5 est $2 \times 3 - 5 = 1$, on multiplie cette égalité par 13 :

$$26 \times 3 - 13 \times 5 = 13$$

On soustrait 3x - 5y = 13 et $26 \times 3 - 13 \times 5 = 13$:

$$3(x-26) - 5(y-13) = 0 \Leftrightarrow 3(x-26) = 5(y-13)$$

D'après le théorème de Gauss, comme 3 divise 5(y-13) et que 3 et 5 sont premiers entre eux, 3 divise y-13, il existe donc $k \in \mathbb{Z}$ tel que : y-13=3k, d'où y=13+3k, on remplace cela dans 3(x-26)=5(y-13), cela donne $3(x-26)=5\times 3k \Leftrightarrow x-26=5k \Leftrightarrow x=26+5k$. Les solutions sont :

$$S = \{(26 + 5k, 13 + 3k), k \in \mathbb{Z}\}\$$

2. Il faut d'abord trouver une solution particulière de 212x + 45y = 3, pour cela on va écrire une équation de Bézout entre 212 et 45, ici c'est moins évident que dans le 1.

$$212 = 4 \times 45 + 32; 45 = 1 \times 32 + 13; 32 = 2 \times 13 + 6; 13 = 2 \times 6 + 1; 6 = 6 \times 1 + 0$$

$$1 = 13 - 2 \times 6 = 13 - 2 \times (32 - 2 \times 13) = -2 \times 32 + 5 \times 13 = -2 \times 32 + 5 \times (45 - 1 \times 32)$$

$$= 5 \times 45 - 7 \times 32 = 5 \times 45 - 7 \times (212 - 4 \times 45) = -7 \times 212 + 33 \times 45$$

On a $1 = -7 \times 212 + 33 \times 45$, on multiplie cette égalité par $3:3 = -21 \times 212 + 99 \times 45$

On soustrait cette égalité à 212x + 45y = 3, on trouve

$$(-21 - x) \times 212 + (99 - y) \times 45 = 0 \Leftrightarrow 45(99 - y) = 212(21 + x)$$

D'après le théorème de Gauss, comme 45 et 212 sont premiers entre eux et que 45 divise 212(21 + x), 45 divise 21 + x, il existe $k \in \mathbb{Z}$ tel que $21 + x = 45k \Leftrightarrow x = -21 + 45k$, on remplace cette égalité dans 45(99 - y) = 212(21 + x), on trouve alors que :

$$45(99 - y) = 212 \times 45k \Leftrightarrow 99 - y = 212k \Leftrightarrow y = -212k + 99$$

L'ensemble des solutions est $S = \{(-21 + 45k, 99 - 212k)\}$

3. $42 = 3 \times 14$ et $45 = 3 \times 15$ donc le (42,45) = 3 or 4 n'est pas un multiple de 3, donc il n'y a pas de solution.

4.

$$7 = 1 \times 5 + 2$$

 $5 = 2 \times 2 + 1$
 $2 = 2 \times 1 + 0$

Donc
$$1 = 5 - 2 \times 2 = 5 - 2 \times (7 - 1 \times 5) = -2 \times 7 + 3 \times 5$$

On multiplie cette égalité par $3:-6\times 7+9\times 5=3$. On soustrayant 7x+5y=3 et $-6\times 7+9\times 7$ 5 = 3 on trouve que : 7(x + 6) + 5(y - 9) = 0, ce qui équivaut à 7(x + 6) = -5(y - 9), d'après le théorème de Gauss, 7 divise 5(y-9) et $7 \land 5 = 1$ donc 7 divise y-9, il existe donc $k \in \mathbb{Z}$ tel que : y-9=7k, ce que je remplace dans 7(x+6)=-5(y-9) ce qui donne $7(x+6)=-5\times7k$, puis en simplifiant par 7 : x + 6 = -5k.

L'ensemble des solutions est $S = \{(-6 - 5k, 9 + 7k), k \in \mathbb{Z}\}\$

Allez à : Exercice 18 :

Correction exercice 19:

1.

$$100^{100} = (2^2 \times 5^2)^{100} = 2^{200} \times 5^{200}$$

Les diviseurs positifs de 1000000 sont de la forme $2^k 5^l$ avec $k \in \{0,1,...,200\}$ et $l \in \{0,1,...,200\}$, il y a donc $201 \times 201 = (200 + 1)^2 = 4000 + 400 + 1 = 40401$ diviseurs positifs.

2.
$$101 = 3 \times 33 + 2$$
 donc $101 \equiv 2$ [3]

$$101^{101} \equiv 2^{101} \ [3] \equiv (-1)^{101} \ [3] \equiv -1 \ [3] \equiv 2 \ [3]$$

 $0 \le 2 < 3$, donc le reste de la division euclidienne de 101^{101} par 3 est 2.

$$101 = 4 \times 25 + 1$$
 donc $101 \equiv 1$ [5]

$$101^{101} \equiv 1^{101} [5] \equiv 1 [5]$$

 $0 \le 1 < 5$, donc le reste de la division euclidienne de 101^{101} par 5 est 1.

Première méthode

On pose $N=101^{101}$, $N\equiv 2$ [3] et $N\equiv 1$ [5] donc il existe $k,l\in\mathbb{Z}$ tels que N=2+3k et N=1+

On trouve alors que

$$2 + 3k = 1 + 5l \Leftrightarrow 1 = 5l - 3k$$

Dont une solution particulière est 1 = 5(-1) - 3(-2)

En faisant la différence on trouve que

$$0 = 5(l+1) - 3(k+2) \Leftrightarrow 5(l+1) = 3(k+2)$$

Comme 5 divise 3(k + 2) et que 5 est premier avec 3, le théorème de Gauss permet d'affirmer que 5 divise k+2, il existe donc $u \in \mathbb{Z}$ tels que $k+2=5u \Leftrightarrow k=-2+5u$ (on peut chercher les valeurs que prends l mais cela ne sert à rien ici), ce que l'on remplace dans N = 2 + 3k = 2 + 3(-2 + 5u) =-4 + 15u

Attention -4 n'est pas le reste recherché, comme $N \equiv -4$ [15] $\equiv 11$ [15] le reste de la division de N par 15 est 11 car $0 \le 11 < 15$.

Deuxième méthode en utilisant le théorème des restes chinois

$$\begin{cases} N = 101^{101} \equiv 2 \text{ [3]} \\ N = 101^{101} \equiv 1 \text{ [5]} \\ M = 3 \times 5 = 15 \end{cases}$$

$$a_1 = 2, m_1 = 3 M_1 = \frac{15}{3} = 5, 5y_1 \equiv 1$$
 [3] admet une solution évidente $y_1 = 2$

$$a_1 = 2$$
, $m_1 = 3$ $M_1 = \frac{15}{3} = 5$, $5y_1 \equiv 1$ [3] admet une solution évidente $y_1 = 2$ $a_2 = 1$, $m_1 = 5$ $M_2 = \frac{15}{5} = 3$, $3y_2 \equiv 1$ [5] admet une solution évidente $y_2 = 2$

D'après le théorème il existe une unique solution

$$N \equiv a_1 M_1 y_1 + a_2 M_2 y_2$$
 $[M] \equiv 2 \times 5 \times 2 + 1 \times 3 \times 2$ $[15] \equiv 26$ $[15] \equiv 11$ $[15]$ $0 \le 11 < 15$ donc 11 est le reste de la division de 101^{101} par 15.

3.
$$\left(n^{\frac{p-1}{2}} - 1\right) \left(n^{\frac{p-1}{2}} + 1\right) = \left(n^{\frac{p-1}{2}}\right)^2 - 1 = n^{p-1} - 1 \equiv 0$$
 [p]

D'après le petit théorème de Fermat car p est premier et que n n'est pas un multiple de p. Donc pdivise $\left(n^{\frac{p-1}{2}} - 1\right) \left(n^{\frac{p-1}{2}} + 1\right)$.

Si $n^{\frac{p-1}{2}} - 1$ est un multiple de p c'est fini, p divise $n^{\frac{p-1}{2}} - 1$.

Sinon $n^{\frac{p-1}{2}}-1$ et p sont premiers entre eux et comme p divise $\left(n^{\frac{p-1}{2}}-1\right)\left(n^{\frac{p-1}{2}}+1\right)$, le théorème de Gauss permet d'affirmer que p divise $n^{\frac{p-1}{2}}+1$.

Cela montre que p divise l'un des entiers $n^{\frac{p-1}{2}} - 1$ et $n^{\frac{p-1}{2}} + 1$

Allez à : Exercice 19 :

Correction exercice 20:

$$N = (2^3 \times 3^2)^{10} \times (2 \times 3^4)^{50} = 2^{3 \times 10 + 50} \times 3^{2 \times 10 + 4 \times 50} = 2^{80} \times 3^{220}$$

Les diviseurs de N sont de la forme

$$2^k \times 3^l$$

Avec $k \in \{0,1,...,80\}$ et $l \in \{0,1,...,220\}$

Il y a donc $81 \times 211 = 17901$ diviseurs

Allez à : Exercice 20 :

Correction exercice 21:

Soit *n* un entier qui vérifie ces conditions :

$$n \equiv 7 \quad [8] \equiv -1 \quad [8]$$

 $n \equiv 14 \quad [15] \equiv -1 \quad [15]$
 $n \equiv 17 \quad [18] \equiv -1 \quad [18]$
 $n \equiv 23 \quad [24] \equiv -1 \quad [24]$

Il existe $k_1 \in \mathbb{N}, k_2 \in \mathbb{N}, k_3 \in \mathbb{N}$ et $k_4 \in \mathbb{N}$ tels que :

$$n = -1 + 8k_1$$

 $n = -1 + 15k_2$
 $n = -1 + 18k_3$
 $n = -1 + 24k_4$

On en déduit que : $8k_1 = 15k_2 = 18k_3 = 24k_4$ (1) $8k_1 = 15k_2$

8 est premier avec 15 et 8 divise $15k_2$, d'après le théorème de Gauss, 8 divise k_2 , il existe $u \in \mathbb{N}$ tel que $k_2 = 8u$, ce que l'on remplace dans $8k_1 = 15k_2$ et obtient que $k_1 = 15u$, la réciproque étant trivial.

On remplace dans (1): $15 \times 8u = 18k_3 = 24k_4$ (1')

Ce que l'on divise par $6:20u = 3k_3 = 4k_4$ (2)

$$20u=3k_3$$

J'abrège un peu, 3 et 20 sont premiers entre eux et d'après le théorème de Gauss il existe $v \in \mathbb{N}$ tel que : u = 3v et $k_3 = 20v$, cela entraine en particulier que $k_1 = 15 \times 3v = 45v$ et $k_2 = 8 \times 3v = 24v$.

On remplace dans (2): $20 \times 3v = 4k_4$ (2')

Ce que l'on divise par $4:15v=k_4$

On remplace k_1 , k_2 , k_3 et k_4 dans les expressions de n:

$$n = -1 + 8k_1 = -1 + 8 \times 45v = -1 + 360v$$

$$n = -1 + 15k_2 = -1 + 15 \times 24v = -1 + 360v$$

$$n = -1 + 18k_3 = -1 + 18 \times 20v = -1 + 360v$$

$$n = -1 + 24k_4 = -1 + 24 \times 15v = -1 + 360v$$

Le plus petit entier naturel qui vérifie les conditions ci-dessus est 359.

Allez à : Exercice 21 :

Correction exercice 22:

Soit *n* le nombre d'étudiants recherché.

Il existe $k_1 \in \mathbb{N}$, $k_2 \in \mathbb{N}$ et $k_3 \in \mathbb{N}$ tels que :

$$n = 9 + 18k_1$$

 $n = 9 + 20k_2$
 $n = 9 + 24k_3$

On en déduit que :

$$18k_1 = 20k_2 = 24k_3$$

Ce que l'on divise par 2 :

$$9k_1 = 10k_2 = 12k_3$$
 (1)

 $9k_1 = 10k_2$, comme 9 et 10 sont premiers entre eux et que 9 divise $10k_2$, le théorème de Gauss permet d'affirmer que 9 divise k_2 , il existe donc $u \in \mathbb{N}$ tel que $k_2 = 9u$, ce que l'on remplace dans $9k_1 = 10k_2$ pour trouver $k_1 = 10u$, la réciproque étant évidente.

On remplace dans (1): $90u = 12k_3$, ce que l'on divise par $6: 15u = 2k_3$. 15 est premier avec 2 et 15 divise $2k_3$, le théorème de Gauss permet d'affirmer que 15 divise k_3 , il existe $v \in \mathbb{N}$ tel que $k_3 = 15v$, ce que l'on remplace dans $90u = 12k_3$, d'où l'on déduit que $90u = 12 \times 15v$ entraine que u = 2v, la réciproque est toujours aussi évidente. Puis on remplace u = 2v dans $k_1 = 10u = 20v$, $k_2 = 9u = 18v$, on remple k_1 , k_2 et k_3 dans

$$n = 9 + 18k_1$$

 $n = 9 + 20k_2$
 $n = 9 + 24k_3$

Et on trouve à chaque fois n = 9 + 360v, la réciproque est évidente, il reste à trouver v tel que 500 < 9 + 360v < 1000

Ce qui équivaut à :

Il est à peu près clair que v = 2 (on rappelle que v est un entier)

Le nombre d'étudiants inscrits est $n = 9 + 2 \times 360 = 729$.

Dans cet exercice on ne s'intéresse pas au nombre d'étudiants présents sous peine de faire fonctionner son système lacrymal.

Allez à : Exercice 22 :

Correction exercice 23:

1. D'après l'énoncé

$$a = (b-a)q_1 + r_1, \quad 0 \le r_1 < b-a$$

 $b = (b-a)q_2 + r_2 \quad 0 \le r_2 < b-a \Rightarrow -(b-a) < -r_2 \le 0$

En faisant la différence entre ces deux équations :

$$b - a = ((b - a)q_2 + r_2) - ((b - a)q_1 + r_1) = (b - a)(q_2 - q_1) + r_2 - r_1$$

$$\Leftrightarrow (b - a)(1 - (q_2 - q_1)) = r_2 - r_1$$

Donc b-a divise r_2-r_1 , comme : $-(b-a) < r_2-r_1 < b-a$ en additionnant les inégalités $0 \le r_1 < b-a$ et $-(b-a) < -r_2 \le 0$

Le seul multiple de b-a strictement compris entre -(b-a) et b-a est 0, par conséquent $r_2-r_1=0$, ce que l'on remplace dans

$$(b-a)(1-(q_2-q_1))=r_2-r_1$$

Pour en déduire que $1 - (q_2 - q_1) = 0$, finalement

$$r_1 = r_2$$
 et $q_2 = q_1 + 1$

2. On pose

$$ba^{n} - 1 = q_{n}a^{n+1} + r_{n}$$
 avec $0 \le r_{n} < a^{n+1}$

D'après l'énoncé b-1=qa+r avec $0 \le r < a$ donc pour $n=0, q_0=q$ et $r_0=r$ Pour n=1:

$$ba - 1 = q_1a^2 + r_1$$

On va chercher q_1 et r_1 .

$$b-1 = qa + r \Leftrightarrow b = qa + r + 1 \\ ba - 1 = (qa + r + 1)a - 1 = qa^2 + (r + 1)a - 1 = qa^2 + ra + a - 1 \\ r < a \Leftrightarrow r \le a - 1 \Leftrightarrow ra + a - 1 \le (a - 1)a + a - 1 = a^2 - 1 \Rightarrow ra + a - 1 < a^2$$

Et $ra + a - 1 \ge a - 1 \ge 0$, cela montre que $r_1 = ra + a - 1$ est le reste de la division euclidienne de ba - 1 par a^2 car $0 \le ra + a - 1 < a^2$, en même temps on a montré que $q_1 = q$.

Pour un n quelconque :

En fait ce que l'on a fait ci-dessus ne va servir à rien, c'était juste pour voir ce qu'il se passait.

$$ba^{n} - 1 = (qa + r + 1)a^{n} - 1 = qa^{n+1} + (r+1)a^{n} - 1 = qa^{n+1} + ra^{n} + a^{n} - 1$$

$$r < a \Leftrightarrow r \le a - 1 \Leftrightarrow ra^{n} + a^{n} - 1 \le (a-1)a^{n} + a^{n} - 1 = a^{n+1} - 1 \Rightarrow ra^{n} + a^{n} - 1 < a^{n+1}$$
Et

$$ra^{n} + a^{n} - 1 \ge a^{n} - 1 \ge 0$$

Donc $r_n = ra^n + a^n - 1$ est le bon reste, et $q_n = q$. 3. d divise a et b donc d divise A = 15a + 4b, de même d divise B = 11a + 3b, par conséquent d divise PGCD(A, B).

$$\begin{array}{c}
L_1 \\
L_2 \\
B = 11a + 3b
\end{array} \Leftrightarrow \begin{array}{c}
L_1 \\
3L_1 - 4L_2 \\
3A - 4B = a
\end{array} \Leftrightarrow \begin{cases}
A = 15(3A - 4B) + 4b \\
a = 3A - 4B
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-44A + 60B = 4b \\
a = 3A - 4B
\end{cases} \Leftrightarrow \begin{cases}
b = -11A + 15B \\
a = 3A - 4B
\end{cases}$$

D = PGCD(A, B) divise A et B donc D divise a = 3A - 4B et b = -11A + 15B.

Ce qui implique PGCD(A, B) divise d.

PGCD(A, B) divise d et d divise PGCD(A, B), puisque que ces entiers sont positifs, entraine que :

$$d = PGCD(A, B)$$

4. Soient d = PGCD(a, b) et D = PGCD(a + b, PPCM(a, b)).

d divise a et d divise b donc d divise a + b, PPCM(a, b) est un multiple de a et de b donc d divise PPCM(a, b), par conséquent d divise PGCD(a + b, PPCM(a, b)).

d est le pgcd de a et b alors il existe a' et b' deux entiers premiers entre eux tels que a = da' et b = kb', d'autre part $PPCM(a, b) = \frac{ab}{a}$.

Rappel:

Soient a' et b' deux entiers premiers entre eux, la somme a' + b' et le produit a'b' sont premiers entre eux. Il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tel que :

$$u(a'+b') + va'b' = 1$$

En multipliant cette égalité par d, on trouve que :

$$ud(a'+b') + vda'b' = d \Rightarrow u(da'+db') + v\frac{da'db'}{d} = d \Rightarrow u(a+b) + v\frac{ab}{d} = d$$
$$\Rightarrow u(a+b) + vPPCM(a,b) = d$$

Donc D divise d, or on a vu plus haut que d divise D, ces deux nombres étant positifs ils sont égaux.

5. D'après Bézout II existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tel que :

$$11a + 12b = 1$$

Ce que l'on élève au carré

$$u^{2}a^{2} + 2uavb + v^{2}b^{2} = 1 \Leftrightarrow a(ua + 2uvb) + v^{2}b^{2} = 1$$

Cette dernière identité montre que a et b^2 sont premiers entre eux.

Supposons que a et b^m sont premiers entre eux. D'après Bézout II existe $u' \in \mathbb{Z}$ et $v' \in \mathbb{Z}$ tel que :

$$u'a + v'b^n = 1$$

Ce que l'on multiplie par ua + vb = 1

$$(ua + vb)(u'a + v'b^n) = 1 \times 1 \Leftrightarrow uu'a^2 + uav'b^n + vbu'a + vv'b^{n+1} = 1$$
$$\Leftrightarrow a(uu'a + uv'b^n + u'vb) + vv'b^{n+1} = 1$$

Ce qui montre que a et b^{n+1} sont premiers entre eux.

Il reste à dire que l'on a fait une démonstration par récurrence pour en déduire que :

 $\forall n \in \mathbb{N}, a \text{ et } b^n \text{ sont premiers entre eux.}$

On réutilise la démonstration ci-dessus en changeant a en b^n , b en a et n en m pour en déduire que : $\forall m \in \mathbb{N}, b^m \text{ et } a^n \text{ sont premiers entre eux.}$

6. Il existe $a' \in \mathbb{N}$ et $b' \in \mathbb{N}$ tels que a = da' et b = db' où a' et b' sont premiers entre eux. Donc $a^n = d^n a'^n$ et $b^n = d^n b'^n$, comme a'^n et b'^n sont premiers entre eux d'après la question précédente, d^n est le *PGCD* de a^n et b^n .

Allez à : Exercice 23 :

Correction exercice 24:

1. On pose d = PGCD(a, b). Il existe $a' \in \mathbb{Z}$ et $b' \in \mathbb{Z}$ tels que a = da' et b = db' où a' et b' sont premiers entre eux.

Si
$$c > 0$$
, $ac = (dc)a'$ et $bc = (dc)b'$, comme a' et b' sont premiers entre eux,

$$PGCD(ac,bc) = dc = |c|d$$

Si
$$c < 0$$
, $ac = (d(-c))(-a')$ et $bc = (d(-c))(-b')$, comme a' et b' sont premiers entre eux,

PGCD(ac,bc) = d(-c) = |c|dRemarque : le *PGCD* de deux entiers relatifs est un entier positif.

2. D'après Bézout II existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tel que :

$$ua + vb = 1$$

Comme c divise a, il existe $k \in \mathbb{Z}$ tel que : a = kc, ce que l'on remplace dans l'égalité ci-dessus.

$$ukc + vb = 1$$

Cela montre que c et b sont premiers entre eux.

3. Si PGCD(a,bc) = 1 alors d'après Bézout il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que :

$$ua + vbc = 1$$

Donc

$$ua + (vb)c = 1$$

C'est une identité de Bézout.

Ce qui montre que a et c sont premier entre eux, autrement dit PGCD(a,c) = 1.

De même

$$ua + (vc)b = 1$$

Ce qui montre que a et b sont premier entre eux, autrement dit PGCD(a,b) = 1.

On a montré l'implication de gauche à droite.

Réciproquement

Si
$$PGCD(a, b) = PGCD(a, c) = 1$$
.

il existe $u \in \mathbb{Z}$, $v \in \mathbb{Z}$, $u' \in \mathbb{Z}$ et $v' \in \mathbb{Z}$ tels que :

$$ua + vb = 1$$
 et $u'a + v'c = 1$

On multiplie ces deux égalités

$$(ua + vb)(u'a + v'c) = 1 \times 1 \Leftrightarrow uu'a^2 + uv'ac + vu'ba + vv'bc = 1$$

$$\Leftrightarrow a(uu'a + uv'c + vu'b) + (vv')bc = 1$$

C'est une identité de Bézout.

Ce qui montre que a et bc sont premiers entre eux, autrement dit PGCD(a,bc) = 1.

4. Montrer que si PGCD(b,c) = 1 alors $PGCD(a,bc) = PGCD(a,b) \times PGCD(a,c)$.

On pose
$$d = PGCD(a, bc)$$
, $d_1 = PGCD(a, b)$ et $d_2 = PGCD(a, c)$

Ecrivons les identités de Bézout suivantes :

Il existe des entiers u, v, u' et v' tels que :

$$ua + vb = d_1$$
 et $u'a + v'c = d_2$

En faisant le produit de deux identités

$$(ua + vb)(u'a + v'c) = d_1d_2 \Leftrightarrow uu'a^2 + uv'ac + vu'ba + vv'bc = d_1d_2$$

$$\Leftrightarrow a(uu'a + uv'c + vu'b) + (vv')bc = d_1d_2$$

C'est une identité de Bézout entre a et bc cela montre que d divise d_1d_2 .

Comme a et bc sont premiers entre eux il existe u et v deux entiers tels que :

$$ua + vbc = d$$

Donc

$$ua + (vb)c = d$$

C'est une identité de Bézout donc d_2 divise d.

De même d_1 divise d.

Attention on ne peut pas en déduire que d_1d_2 divise d, et puis il y a une hypothèse que nous n'avons pas utilisé, c'est le fait que b et c sont premiers entre eux.

Evidemment d_1 divise b et d_2 divise c donc il existe k et k', des entiers, tels que :

$$b = kd_1$$
 et $c = k'd_2$

Ecrivons une identité de Bézout entre b et c, il existe $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$ tels que :

$$ub + vc = 1 \Rightarrow ukd_1 + vk'd_2 = 1 \Rightarrow (uk)d_1 + (vk')d_2 = 1$$

D'où l'on déduit que d_1 et d_2 sont premiers entre eux.

On a déjà montré le résultat suivant :

Si d_1 divise d et d_2 divise d avec d_1 et d_2 premiers entre eux alors d_1d_2 divise d mais nous allons recommencer.

Il existe $\alpha \in \mathbb{Z}$ et $\beta \in \mathbb{Z}$ tels que $d = \alpha d_1 = \beta d_2$, comme d_1 et d_2 sont premier entre eux, le théorème de Gauss entraine que d_1 divise β , il existe donc $\gamma \in \mathbb{Z}$ tel que $\beta = \gamma d_1$, ce que l'on remplace dans $d = \beta d_2 = \gamma d_1 d_2$, ce qui montre bien que $d_1 d_2$ divise d.

d divise d_1d_2 et d_1d_2 divise d, ces deux nombres étant positifs, on en déduit que :

$$d = d_1 d_2 \Leftrightarrow PGCD(a, bc) = PGCD(a, b) \times PGCD(a, c)$$

Allez à : Exercice 24 :

Correction exercice 25:

1. Nous allons utiliser les congruences modulo $n^a - 1$.

Il existe $k \in \mathbb{N}^*$ tel que b = ka, alors

$$n^b - 1 = n^{ka} - 1 = (n^a)^k - 1 \equiv 1^k - 1 \quad [n^a - 1] \equiv 0 \quad [n^a - 1]$$

Ce qui montre que $n^b - 1$ est divise par $n^a - 1$.

(En effet il existe $K \in \mathbb{Z}$ tel que $n^b - 1 = 0 + K(n^a - 1)$).

2. D'après la division euclidienne de b par a, il existe un unique couple $(q, r) \in \mathbb{N} \times \{0, 1, 2, ..., a - 1\}$ tel que : b = aq + r.

Comme ci-dessus nous allons utiliser les congruences modulo $n^a - 1$.

$$n^b - 1 = n^{aq+r} - 1 = (n^a)^q n^r - 1 \equiv 1^q n^r - 1 \quad [n^a - 1] \equiv n^r - 1 \quad [n^a - 1]$$

il existe $k \in \mathbb{Z}$ tel que $n^b - 1 = n^r - 1 + k(n^a - 1)$.

Attention:

On ne peut pas encore conclure que $n^r - 1$ est le « bon » reste, il faut vérifier que celui-ci est compris entre 0 et $(n^a - 1) - 1$.

$$n^r > 0 \Rightarrow n^r \ge 1 \Rightarrow n^r - 1 \ge 0$$

$$r < a \Rightarrow n^r < n^a \Rightarrow n^r - 1 < n^a - 1$$

C'est bon le reste de la division euclidienne de $n^b - 1$ par $n^a - 1$ est $n^r - 1$.

3. On va utiliser l'algorithme d'Euclide

$$b = aq_1 + r_1 \quad 0 \le r_1 < a$$

$$a = r_1q_2 + r_2 \quad 0 \le r_2 < r_1$$

$$r_1 = r_2q_3 + r_3 \quad 0 \le r_3 < r_2$$

Jusqu'à

$$r_{n-2} = r_{n-1}q_n + r_n \quad 0 \le r_n < r_{n-1}$$

 $r_{n-1} = r_nq_{n+1}$

On rappelle que le dernier reste non nul est $d = PGCD(b, a) = r_n$.

D'après la question précédente il existe $Q_1, Q_2, ..., Q_{n+1}$ tels que :

$$n^{b} - 1 = (n^{a} - 1)Q_{1} + n^{r_{1}} - 1 \qquad 0 \le n^{r_{1}} - 1 < n^{a} - 1$$

$$n^{a} - 1 = (n^{r_{1}} - 1)Q_{2} + n^{r_{2}} - 1 \qquad 0 \le n^{r_{2}} - 1 < n^{r_{1}} - 1$$

$$n^{r_{1}} - 1 = (n^{r_{2}} - 1)Q_{3} + n^{r_{3}} - 1 \qquad 0 \le n^{r_{3}} - 1 < n^{r_{2}} - 1$$

Jusqu'à

$$n^{r_{n-2}} - 1 = (n^{r_{n-1}} - 1)Q_n + n^{r_n} - 1 \qquad 0 \le n^{r_n} - 1 < n^{r_{n-1}} - 1$$
$$n^{r_{n-1}} - 1 = (n^{r_{n-1}} - 1)Q_{n+1}$$

On rappelle que le dernier reste non nul est $PGCD(n^b - 1, n^a - 1) = n^{r_n} - 1 = n^d - 1$.

Allez à : Exercice 25 :

Correction exercice 26:

1.

$$5a - 2b = 5(2n + 3) - 2(5n - 2) = 19$$

Il s'agit d'une identité de Bézout, donc PGCD(a, b) divise 19, 19 étant premier, PGCD(a, b) vaut 1 ou 19 selon les valeurs de n. Il faut préciser ce premier résultat.

Cherchons une condition nécessaire et suffisante pour que PGCD(a, b) = 19.

Il existe alors $k \in \mathbb{Z}$ et $k' \in \mathbb{Z}$, k et k' premiers entre eux (cela ne servira à rien) tels que :

$$2n + 3 = 19k$$
 et $5n - 2 = 19k'$

Ce qui entraine que

$$(5n-2) - 2(2n+3) = 19k' - 2 \times 19k = 19(k'-2k) \Leftrightarrow n-8 = 19(k'-2k)$$

Cette combinaison linéaire est faite de façon à trouver n (plus une constante) dans l'expression de gauche.

Il existe $k'' \in \mathbb{Z}$ tel que $n = 8 + 19k'' \Leftrightarrow n \equiv 8$ [19]

Réciproque :

si n = 8 + 19k'' alors

$$a = 2(8 + 19k'') + 3 = 19 + 2 \times 19k'' = 19(1 + 2k'')$$

$$b = 5(8 + 19k'') - 2 = 38 + 5 \times 19k'' = 19(2 + 5k'')$$

Comme

$$-2(2+5k'')+5(1+2k'')=1$$

C'est une identité de Bézout qui montre que 2 + 5k'' et 1 + 2k'' sont premiers entre eux et que donc

$$PGCD(a, b) = 19$$

Conclusion:

$$n \equiv 8 \quad [19] \Leftrightarrow PGCD(a,b) = 19$$

Sinon

$$PGCD(a, b) = 1$$

2. On pose a = 2n - 1 et b = 9n + 4.

Pour éliminer les « n », on calcule :

$$9a - 2b = 9(2n - 1) - 2(9n + 4) = -17$$

Il s'agit d'une identité de Bézout, donc PGCD(a, b) divise 17, 17 étant premier, PGCD(a, b) vaut 1 ou 17 selon les valeurs de n. Il faut préciser ce premier résultat.

Cherchons une condition nécessaire et suffisante pour que PGCD(a, b) = 17.

Il existe alors $k \in \mathbb{Z}$ et $k' \in \mathbb{Z}$, k et k' premiers entre eux (cela ne servira à rien) tels que :

$$2n - 1 = 17k$$
 et $9n + 4 = 17k'$

Ce qui entraine que

$$-4(2n-1) + (9n+4) = 4 \times 17k + 17k' \Leftrightarrow n+8 = 17(4k+k')$$

Cette combinaison linéaire est faite de façon à trouver n (plus une constante) dans l'expression de gauche.

Il existe $k'' \in \mathbb{Z}$ tel que : $n = -8 + 17k'' \Leftrightarrow n \equiv -8$ [17] $\equiv 9$ [17]

Réciproque

Si n = -8 + 17k'' alors

$$a = 2(-8 + 17k'') - 1 = -17 + 2 \times 17k'' = 17(-1 + 2k'')$$

 $b = 9(-8 + 17k'') + 4 = -68 + 9 \times 17k'' = 17(-4 + 9k'')$

Comme

$$-9(-1+2k'')+2(-4+9k'')=1$$

C'est une identité de Bézout qui montre que -1 + 2k'' et -4 + 9k'' sont premiers entre eux et que donc

$$PGCD(a,b) = 17$$

Conclusion

$$n \equiv -8$$
 [17] $\Leftrightarrow PGCD(a, b) = 17$

Sinon

$$PGCD(a, b) = 1$$

Allez à : Exercice 26 :

Correction exercice 27:

- 1. 5a 2b = 5(2n + 1) 2(5n + 1) = 3
- 2. d divise 3, donc d = 1 ou d = 3.
- 3. Si $n \equiv 1$ [3], $a = 2n + 1 \equiv 3$ [3] $\equiv 0$ [3] donc 3 divise a et $b = 5n + 1 \equiv 6$ [3] $\equiv 0$ [3] donc 3 divise b. 3 est un diviseur commun à a et à b, donc $d \ge 3$, dans ce cas d = 3.

Si $n \equiv 0$ [3] alors $a = 2n + 1 \equiv 1$ [3] $\not\equiv 0$ [3] donc 3 ne divise pas a, 3 n'est pas un diviseur commun à a et à b, donc d = 1.

Si $n \equiv 2$ [3] alors $a = 2n + 1 \equiv 5$ [3] $\equiv 2$ [3] $\not\equiv 0$ [3] donc 3 ne divise pas a, 3 n'est pas un diviseur commun à a et à b, donc d = 1.

Allez à : Exercice 27 :

Correction exercice 28:

$$2 \times (3n + 1) - 3 \times 2n = 2$$

Le PGCD(3n + 1,2n) divise 2, donc il vaut 1 ou 2.

Regardons pour quelles valeurs de n ce PGCD vaut 2. Dans ce cas il existe a et b des entiers premiers entre eux tels que 3n + 1 = 2a et 2n = 2b, la deuxième conditions entraine que n = b, ce que l'on remplace dans $3n + 1 = 2a \Leftrightarrow 2a - 3b = 1$, une solution particulière de cette équation est a = -1 et b = -1.

On a

$$\begin{cases} 2a - 3b = 1 \\ 2 \times (-1) + 3 = 1 \end{cases}$$

En soustrayant la seconde ligne à la première

$$2(a+1) - 3(b+1) = 0 \Leftrightarrow 2(a+1) = 3(b+1)$$
 (*)

2 est premier avec 3 et 2 divise 3(b+1), d'après le théorème de Gauss, 2 divise b+1, il existe donc $k \in \mathbb{Z}$ tel que $b+1=2k \Leftrightarrow b=-1+2k$, ce que l'on remplace dans (*),

$$2(a+1) = 3 \times 2k \Leftrightarrow a = -1 + 3k$$

Puis on remplace l'une ou l'autre des valeurs de a ou de b dans 3n + 1 = 2a ou dans n = b pour trouver que

$$n = -1 + 2k$$

On peut toujours faire une réciproque

$$2 \times (3n+1) - 3 \times 2n = 2(3(-1+2k)+1) - 6(-1+2k) = 2(-3+6k+1) + 6 - 12k = 2$$

Cela marche

Conclusion si n = -1 + 2k (autrement dit si n est impair) PGCD(3n + 1,2n) = 2

Sinon PGCD(3n + 1,2n) = 1

Allez à : Exercice 28 :

Correction exercice 29:

1.

$$5(14n+3) - 14(5n+1) = 1$$

Est une identité de Bézout, 1 divise le PGCD de 14n + 3 et de 5n + 1 donc leur PGCD vaut 1, ils sont premiers entre eux.

2.

- 2.1. $87 = 14 \times 6 + 3$ et $31 = 5 \times 6 + 1$ d'après la première question, ils sont premiers entre eux.
- 2.2. D'après la première question

$$5(14 \times 6 + 3) - 14(5 \times 6 + 1) = 1 \Leftrightarrow 5 \times 87 + (-14) \times 31 = 1$$
 (1)

Donc (u, v) = (5, -14) convient.

Il suffit de multiplier (1) par 2.

$$10 \times 87 + (-28) \times 31 = 2$$

2.3.

$$L_1 \begin{cases} 87x + 31y = 2 \\ L_2 (10 \times 87 + (-28) \times 31 = 2 \end{cases}$$

$$L_1 - L_2: 87(x - 10) + 31(y + 28) = 0$$

$$87(x - 10) = 31(-y - 28) \quad (2)$$

87 et 31 sont premier entre eux et 87 divise 31(-y-28) donc 87 divise -y-28, il existe $k \in \mathbb{Z}$ tel que :

$$-y - 28 = 87k$$
 (3) $\Leftrightarrow y = -87k - 28$

On remplace (3) dans (2)

$$87(x-10) = 31 \times 87k \Leftrightarrow x-10 = 31k \Leftrightarrow x = 10 + 31k$$

La réciproque est évidente et l'ensemble des solutions est :

$$\{(10+31k, -28-87k), k \in \mathbb{Z}\}\$$

Allez à : Exercice 29 :

Correction exercice 30:

1.

$$1^2 = 1 \equiv 1 [8]$$

 $3^2 = 9 \equiv 1 [8]$
 $5^2 = 25 \equiv 1 [8]$
 $7^2 = 49 \equiv 1 [8]$

 $0 \le 1 < 8$ donc le reste de la division euclidienne du carré d'un nombre impair par 8 est 1.

2. $n = 2m, m \in \mathbb{N}^*$

$$x^{n} + y^{n} = (x^{2})^{m} + (y^{2})^{m} \equiv 1^{m} + 1^{m} [8] \equiv 2 [8]$$

 $z^{n} = (z^{2})^{m} \equiv 1^{m} [8] \equiv 1 [8]$

Donc l'équation n'a pas de solution.

Allez à : Exercice 30 :

Correction exercice 31:

D'après le petit théorème de Fermat $5^6 \equiv 1$ [7] car 7 est premier et 5 est premier avec 7.

$$1000 = 166 \times 6 + 4$$

Donc

$$5^{1000} = 5^{6 \times 166 + 4} = (5^6)^{166} \times 5^4 \equiv 1^{166} \times 5^4 \quad [7] \equiv 5^2 \times 5^2 \quad [7] \equiv 25 \times 25 \quad [7] \equiv 4 \times 4 \quad [7]$$

 $\equiv 16 \quad [7] \equiv 2 \quad [7]$

Comme $0 \le 2 < 7$, 2 est le reste de la division euclidienne de 5^{1000} par 7.

Allez à : Exercice 31 :

Correction exercice 32:

$$3^{n+3} - 4^{4n+2} = 3^3 \times 3^n - 4^2 \times (4^4)^n = 27 \times 3^n - 16 \times (16 \times 16)^n \equiv 5 \times 3^n - 5 \times (5 \times 5)^n \quad [11]$$
$$\equiv 5 \times 3^n - 5 \times 25^n \quad [11] \equiv 5 \times 3^n - 5 \times 3^n \quad [11] \equiv 0 \quad [11]$$

Donc $3^{n+3} - 4^{4n+2}$ est un multiple de 11.

Allez à : Exercice 32 :

Correction exercice 33:

$$4^{n} = (3+1)^{n} = \sum_{k=0}^{n} C_{n}^{k} 3^{k} = C_{n}^{0} + 3C_{n}^{1} + 3^{2}C_{n}^{2} + \dots + 3^{n}C_{n}^{n} = 1 + 3n + 3^{2}(C_{n}^{2} + \dots + 3^{n-2}C_{n}^{n})$$

$$= 1 + 3n + 9k$$

Donc 4^n est congru à 1 + 3n modulo 9.

$$2^{2n} + 15n - 1 = (2^2)^n + 15n - 1 = 4^n + 15n - 1 \equiv 1 + 3n + 15n - 1$$
 [9] $\equiv 18n$ [9] $\equiv 0$ [0] Donc $2^{2n} + 15n - 1$ est divisible par 9.

Allez à : Exercice 33 :

Correction exercice 34:

1. $a_0 = 4^2 - 1 = 16 - 1 = 15$ est un multiple de 15.

On appelle (H_n) : $n \ge 0$, $a_n = 4^{2n+2} - 1$ est un multiple de 15.

$$a_0 = 4^2 - 1 = 16 - 1 = 15$$
 est un multiple de 15. Donc (H_0) est vraie.

Si a_n est un multiple de 15, il existe $k_n \in \mathbb{N}$ tel que : $a_n = 4^{2n+2} - 1 = 15k_n$ alors

$$a_{n+1} = 4^{2(n+1)+2} - 1 = 4^{2n+2} \times 4^2 - 1 = 16 \times 4^{2n+2} - 1 = 16(15k_n + 1) - 1 = 16 \times 15k_n + 15$$
$$= 15(16k_n + 1)$$

Donc a_{n+1} est un multiple de 15.

Donc (H_n) entraine (H_{n+1}) .

Pour tout $n \ge 0$, $a_n = 4^{2n+2} - 1$ est un multiple de 15.

2.

$$b_{n+1} - b_n = 4^{2(n+1)+2} - 15(n+1) - 16 - [4^{2n+2} - 15n - 16]$$

$$= 4^{2n+4} - 15n - 15 - 4^{2n+2} + 15n + 16 = 4^{2n+2}(4^2 - 1) - 15 = 15 \times 4^{2n+2} - 15$$

$$= 15(4^{2n+2} - 1)$$

Or il existe k_n tel que $a_n = 4^{2n+2} - 1 = 15k_n$ donc $b_{n+1} - b_n = 15 \times 15k_n = 225k_n$

On en déduit que $b_{n+1} - b_n$ est un multiple de 225.

3. On pose (H_n) pour tout $n \ge 0$, b_n est un multiple de 225

 $b_0 = 4^{2 \times 0 + 2} - 15 \times 0 - 16 = 4^2 - 16 = 0$ est un multiple de 225, en effet $0 = 0 \times 225$, (H_0) est vraie.

S'il existe $k'_n \in \mathbb{N}$ tel que $b_n = 225k'_n$ alors $b_{n+1} - 225k'_n = 225k_n$ donc $b_{n+1} = 225(k_n + k'_n)$, ce qui signifie que b_{n+1} est un multiple de 225.

Donc (H_n) entraine (H_{n+1})

Pour tout $n \ge 0$, $b_n = 4^{2n+2} - 15n - 16$ est un multiple de 225.

Allez à : Exercice 34 :

Correction exercice 35:

$$5^{n+2} + 3^{n+1}5^{2n} = 5^2 \times 5^n + 3 \times 3^n \times (5^2)^n = 25 \times 5^n + 3 \times 3^n \times 25^n \quad [7]$$

$$\equiv 4 \times 5^n + 3 \times 3^n \times 4^n \quad [7] \equiv 4 \times 5^n + 3 \times 12^n \quad [7] \equiv 4 \times 5^n + 3 \times 5^n \quad [7]$$

$$\equiv 7 \times 5^n \quad [7] \equiv 0 \quad [7]$$

Donc pour tout $n \in \mathbb{N}$, $5^{n+2} + 3^{n+1}5^{2n}$ est divisible par 7.

Allez à : Exercice 35 :

Correction exercice 36:

1.

- a) $9^k \equiv 1^k$ [8] $\equiv 1$ [8], comme $0 \le 1 < 8$, le reste de la division euclidienne de 9^k par 8 est 1.
- b) $3^{2k} + 1 \equiv 9^k + 1$ [8] $\equiv 2$ [8], de même le reste de la division euclidienne de $3^{2k} + 1$ par 8 est 2. $3^{2k+1} + 1 = 3 \times 9^k + 1 \equiv 3 \times 1 + 1$ [8] $\equiv 4$ [8], le reste est alors 4.
- 2. Si n = 2k

$$2^m - 3^n = 1 \Rightarrow 2^m - 3^{2k} \equiv 1 \ [8] \Rightarrow 2^m - (3^2)^k \equiv 1 \ [8] \Rightarrow 2^m - (9)^k \equiv 1 \ [8] \Rightarrow 2^m - (1)^k \equiv 1 \ [8] \Rightarrow 2^m = 2 \ [8] \Rightarrow 2^m = 2 + 8l$$

avec $l \in \mathbb{N}$ donc $2^{m-1} = 1 + 4l$ or si $m \ge 2$, 2^{m-1} est paire et 1 + 4l est impaire, on en déduit que si n = 2k alors m < 2.

Si n = 2k + 1

$$2^{m} - 3^{n} = 1 \Rightarrow 2^{m} - 3^{2k+1} \equiv 1 \ [8] \Rightarrow 2^{m} - 3 \times (3^{2})^{k} \equiv 1 \ [8] \Rightarrow 2^{m} - 3 \times (9)^{k} \equiv 1 \ [8]$$

 $\Rightarrow 2^{m} - 3 \times (1)^{k} \equiv 1 \ [8] \Rightarrow 2^{m} \equiv 4 \ [8] \Rightarrow 2^{m} = 4 + 8l \Rightarrow 2^{m-2} = 1 + 2l$

avec $l \in \mathbb{N}$ donc $2^{m-2} = 1 + 2l$ or si $m \ge 3$, 2^{m-2} est paire et 1 + 2l est impaire, on en déduit que si n = 2k + 1 alors m < 3.

Que *n* soit pair ou impair $m \le 2$

3. If n'y a que trois cas possibles m = 0, m = 1 et m = 2.

Si
$$m = 0$$
 alors $2^m - 3^n = 1 \Leftrightarrow 1 - 3^n = 1 \Leftrightarrow 3^n = 0$ ce qui est impossible.

Si
$$m = 1$$
 alors $2^m - 3^n = 1 \Leftrightarrow 2 - 3^n = 1 \Leftrightarrow 3^n = 1 \Leftrightarrow n = 0$

Si
$$m = 2$$
 alors $2^m - 3^n = 1 \Leftrightarrow 4 - 3^n = 1 \Leftrightarrow 3^n = 3 \Leftrightarrow n = 1$

L'ensemble des solutions est :

$$S = \{(1,0), (2,1)\}$$

Allez à : Exercice 36 :

Correction exercice 37:

Comme 3 est premier,
$$a^3 \equiv a$$
 [3] et $b^3 \equiv b$ [3],
 $a^3 - b^3 \equiv 0$ [3] $\Leftrightarrow a - b \equiv 0$ [3]

Allez à : Exercice 37 :

Correction exercice 38:

7 divise $a^2 + b^2 \Leftrightarrow a^2 + b^2 \equiv 0$ [7]

n	0	1	2	3	4	5	6
n^2	0	1	4	2	2	4	1

La seule solution pour que la somme de deux des nombres (au carré) de la seconde ligne soit congru à 0 modulo 7 est que ces nombres (au carré) soit congru à 0 modulo 7, donc que ces nombres soit congrus à 0 modulo 7.

On a montré que si 7 divise $a^2 + b^2$ alors 7 divise a et b.

Réciproquement si 7 divise a et b alors 7 divise a^2 et b^2 donc $a^2 + b^2$.

Autre solution

Avec le petit théorème de Fermat, comme 7 est premier, pour $a \not\equiv 0$ [7], $a^6 \equiv 1$ [7] et pour $b \not\equiv 0$ [7], $b^6 \equiv 1$ [7].

Si
$$a \not\equiv 0$$
 [7] et $b \not\equiv 0$ [7],

$$(a^2 + b^2)^3 = a^6 + 3a^4b^2 + 3a^2b^4 + b^6 \equiv 1 + 3a^2b^2(a^2 + b^2) + 1 \ [7] \equiv 2 + 3a^2b^2(a^2 + b^2) \ [7]$$

Supposons que $a^2 + b^2 \equiv 0$ [7], l'égalité ci-dessus donne $0 \equiv 2$ [7], ce qui est faux donc

$$a^2 + b^2 \not\equiv 0 \quad [7]$$

La contraposée de Si $a \not\equiv 0$ [7] et $b \not\equiv 0$ [7] alors $a^2 + b^2 \not\equiv 0$ [7] est:

$$a^2 + b^2 \equiv 0$$
 [7] entraine $a \equiv 0$ [7] et $b \equiv 0$ [7].

La réciproque est évidente.

Allez à : Exercice 38 :

Correction exercice 39:

$$7 = 1 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

Donc
$$1 = 5 - 2 \times 2 = 5 - 2 \times (7 - 1 \times 5) = -2 \times 7 + 3 \times 5$$

On multiplie cette égalité par $3: -6 \times 7 + 9 \times 5 = 3$. On soustrayant 7x + 5y = 3 et $-6 \times 7 + 9 \times 5 = 3$ on trouve que : 7(x + 6) + 5(y - 9) = 0, ce qui équivaut à 7(x + 6) = -5(y - 9), d'après le théorème de Gauss, 7 divise 5(y - 9) et $7 \wedge 5 = 1$ donc 7 divise y - 9, il existe donc $k \in \mathbb{Z}$ tel que :

y-9=7k, ce que je remplace dans 7(x+6)=-5(y-9) ce qui donne $7(x+6)=-5\times 7k$, puis en simplifiant par 7:x+6=-5k.

L'ensemble des solution est $S = \{(-6 - 5k, 9 + 7k), k \in \mathbb{Z}\}$

Allez à : Exercice 39 :

Correction exercice 40:

$$12x \equiv 5 \ [35] \Leftrightarrow \exists k \in \mathbb{Z}, 12x = 5 + 35k \Leftrightarrow \exists k \in \mathbb{Z}, 12x - 35k = 5$$

$$35 = 2 \times 12 + 11$$
, $12 = 1 \times 11 + 1$ et $11 = 1 \times 11 + 0$

Donc
$$1 = 12 - 1 \times 11 = 12 - 1 \times (35 - 2 \times 11) = -1 \times 35 + 3 \times 12$$

Donc $3 \times 12 \equiv 1$ [35]

$$12x \equiv 5 \ [35] \Rightarrow 3 \times 12x \equiv 3 \times 5 \ [35] \Rightarrow x \equiv 15 \ [35]$$

Réciproque $12 \times 15 = 180 = 5 \times 35 + 5 \equiv 5$ [35]

L'ensemble des solutions est $S = \{15 + 35k, k \in \mathbb{Z}\}\$

Allez à : Exercice 40 :

Correction exercice 41:

1. On voit que $13 \times 2 - 5 \times 5 = 1$, en multipliant par 3 on trouve que

$$13 \times 6 - 5 \times 15 = 3$$

donc (6, -15) est une solution particulière.

2.

$$L_1 \begin{cases} 13u + 5v = 1 \\ L_2 \begin{cases} 13 \times 6 - 5 \times 15 = 1 \end{cases}$$

 $L_1 - L_2$ donne 13(u - 6) + 5(v + 15) = 0

Ce qui équivaut à

$$13(u-6) = -5(v+15)$$

13 divise -5(v+15) et 13 est premier avec 5, d'après le théorème de Gauss, 13 divise -(v+15), il existe donc $k \in \mathbb{Z}$ tel que

$$-(v + 15) = 13k \Leftrightarrow v = -15 - 13k$$

On remplace -(v + 15) = 13k dans 13(u - 6) = -5(v + 15), on obtient

$$13(u-6) = 5 \times 13k \Leftrightarrow u = 6 + 5k$$

La réciproque est évidente, donc l'ensemble des couples (u, v) vérifiant 13u + 5v = 3 est

$$\{(6+5k, -15-13k), k \in \mathbb{Z}\}\$$

3. Comme 5 premier, d'après le théorème de Fermat

$$2^4 \equiv 1 [5]$$

La division euclidienne de 2013 par 4 est $2013 = 4 \times 503 + 1$, donc

$$2^{2013} = 2^{4 \times 503 + 1} = (2^4)^{503} \times 2 \equiv 1^{503} \times 2 = [5] \equiv 2 = 2$$

 $0 \le 2 < 5$ donc 2 est le reste de la division euclidienne de 2^{2013} par 5

Comme 13 premier, d'après le théorème de Fermat

$$2^{12} \equiv 1 [13]$$

La division euclidienne de 2013 par 12 est $2013 = 12 \times 167 + 9$, donc

$$2^{2013} = 2^{12 \times 167 + 9} = (2^{12})^{167} \times 2^9 \equiv 1^{167} \times 2^9 [13] \equiv 2^4 \times 2^4 \times 2 [13] \equiv 16 \times 16 \times 2 [13]$$

$$\equiv 3 \times 3 \times 2 [13] \equiv 18 [13] \equiv 5 [13]$$

 $0 \le 5 < 13$ donc 5 est le reste de la division euclidienne de 2^{2013} par 13

4. D'après la question 3, il existe a et b des entiers tels que

$$2^{2013} = 5a + 2$$
 et $2^{2013} = 13b + 5$

En faisant la soustraction de la seconde égalité et de la première, on trouve que

$$0 = 13b - 5a + 3 \Leftrightarrow -13b + 5a = 3$$

D'après la question 2 les solutions de 13u + 5v = 3 sont

$$\{(6+5k, -15-13k), k \in \mathbb{Z}\}\$$

On pose a = v et b = -u donc

$$a = -15 - 13k$$
 et $b = -6 - 5k$

Ce que l'on remplace dans

$$2^{2013} = 5a + 2$$
 ou $2^{2013} = 13b + 5$
 $2^{2013} = 5(-15 - 13k) + 2 = -73 - 65k$

On cherche le reste de la division de 2^{2013} par 65, donc ce reste r, vérifie $0 \le r < 65$, on doit prendre k = -2, donc

$$r = -73 + 2 \times 65 = 57$$

Allez à : Exercice 41 :

Correction exercice 42:

(1) a.

 $222 = 2 \times 3 \times 37$ donc 7 et 222 sont premiers entre eux, 7 est premier, on peut appliquer le petit théorème de Fermat

$$222^6 \equiv 1 \ [7]$$

Puis on divise 333 par 6

$$333 = 6 \times 55 + 3$$

Par conséquent

$$222^{333} = 222^{6 \times 55 + 3} = (222^{6})^{55} \times 222^{3} \equiv 1^{55} \times 222^{3} [7] \equiv 222^{3} [7]$$

On divise 222 par 7

$$222 = 7 \times 31 + 5$$

 $222^{333} \equiv 222^3 \ [7] \equiv (7 \times 31 + 5)^3 \ [7] \equiv 5^3 \ [7] \equiv 25 \times 5 \ [7] \equiv 4 \times 5 \ [7] \equiv 6 \ [7]$

Comme $0 \le 6 < 7$, 6 est le reste de la division euclidienne de 222^{333} par 7.

 $222 = 2 \times 3 \times 37$ donc 11 et 222 sont premiers entre eux, 11 est premier, on peut appliquer le petit théorème de Fermat

$$222^{10} \equiv 1 \ [11]$$

Puis on divise 333 par 10

$$333 = 10 \times 33 + 3$$

Par conséquent

$$222^{333} = 222^{10 \times 33 + 3} = (222^{10})^{33} \times 222^3 \equiv 1^{33} \times 222^3 [7] \equiv 222^3 [7]$$

On divise 222 par 11

$$222 = 11 \times 20 + 2$$

$$222^{333} \equiv 222^3 \, [11] \equiv (11 \times 20 + 2)^3 \, [11] \equiv 2^3 \, [11] \equiv 8 \, [11]$$

Comme $0 \le 8 < 11$, 8 est le reste de la division euclidienne de 222^{333} par 11.

b. Il y a une solution évidente $7 \times (-3) + 11 \times 2 = 1$

c.

$$N \equiv 6 [7]$$
$$N \equiv 8 [11]$$

$$7 \times (-3) + 11 \times 2 = 1 \Rightarrow 11 \times 2 = 1 + 3 \times 7$$

D'après le théorème des restes chinois il existe un unique x modulo $77 = 7 \times 11$ tel que $N \equiv x$ [77]

$$x = 8 - 2 \times 11 \times 2 = 8 - 2 \times (1 + 3 \times 7) = -36 \equiv 41 [77]$$

Vérifie

$$x = 8 - 4 \times 11 \equiv 8$$
 [11] et $x = 6 - 6 \times 7 \equiv 6$ [7]

41 est la solution car $0 \le 41 < 77$.

Autre méthode

$$N = 6 + 7k$$
 et $N = 8 + 11l$

Donc

$$6 + 7k = 8 + 11l \Rightarrow 7k - 11l = 2$$

Or

$$7 \times (-3) + 11 \times 2 = 1 \Rightarrow 7 \times (-6) + 11 \times 4 = 2$$

En soustrayant ces deux égalités

$$7(k+6) - 11(l+4) = 0 \Rightarrow 7(k+6) = 11(l+4)$$

Comme 7 divise 11(l+4) et que 7 et 11 sont premiers entre eux, le théorème de Gauss permet d'affirmer que 7 divise l+4, il existe $n \in \mathbb{Z}$ tel que $l+4=7n \Rightarrow l=-4+7l$, ce que l'on remplace dans N=8+11l=8+11(-4+7l)=-36+77l=41+77(l-1)

41 est la solution car $0 \le 41 < 77$.

(2) On appelle N le nombre de livres de Toto, d'après l'énoncé

$$N \equiv 7 [20]$$
 et $N \equiv 7 [25]$

Il existe $k, l \in \mathbb{N}$ tels que N = 7 + 20k et N = 7 + 25l donc 20k = 25l, on simplifie par 5, par conséquent 4k = 5l, 4 et 5 sont premiers entre eux, 4 divise 5l, d'après le théorème de Gauss, 4 divise l, il existe $u \in \mathbb{N}$ tel que l = 4u. On en déduit que $N = 7 + 25 \times 4u$, u = 0 n'est pas solution car N < 10, u = 1 est la solution N = 7 + 100 = 107

Allez à : Exercice 42 :

Correction exercice 43:

1.

$$99 = 1 \times 56 + 43$$

$$56 = 1 \times 43 + 13$$

$$43 = 3 \times 13 + 4$$

$$13 = 3 \times 4 + 1$$

$$1 = 13 - 3 \times 4 = 13 - 3 \times (43 - 3 \times 13) = -3 \times 43 + 10 \times 13$$

$$= -3 \times 43 + 10 \times (56 - 1 \times 43) = 10 \times 56 - 13 \times 43$$

$$= 10 \times 56 - 13 \times (99 - 1 \times 56) = -13 \times 99 + 23 \times 56$$

$$1 = -13 \times 99 + 23 \times 56$$

2.

$$\begin{cases} x \equiv 2 & [56] \\ x \equiv 3 & [99] \end{cases} \Leftrightarrow \exists k, l \in \mathbb{Z}, \begin{cases} x = 2 + 56k \\ x = 3 + 99l \end{cases}$$

$$2 + 56k = 3 + 99l \Leftrightarrow -99l + 56k = 1$$
 L₁

Or

$$-13 \times 99 + 23 \times 56 = 1$$
 L_2

En faisant la soustraction entre L_1 et L_2

$$99(-l+13) + 56(k-23) = 0 \Leftrightarrow 56(k-l) = 99(l-13)$$

56 et 99 sont premiers entre eux et 56 divise 99(l-13), d'après le théorème de Gauss 56 divise l-13, il existe donc $a \in \mathbb{Z}$ tel que $l-13=56a \Leftrightarrow l=13+56a$, ce que l'on remplace dans x=3+99l

$$x = 3 + 99(13 + 56k) = 3 + 99 \times 13 + 99 \times 56k = 1290 + +5544k$$

Allez à : Exercice 43 :

Correction exercice 44:

On cherche une solution particulière de 13a + 11b = 1, ce qui est possible puisque $11 \land 13 = 1$

$$13 = 1 \times 11 + 2$$
, $11 = 5 \times 2 + 1$ et $2 = 2 \times 1 + 0$

Donc
$$1 = 11 - 5 \times 2 = 11 - 5 \times (13 - 1 \times 11) = -5 \times 13 + 6 \times 11$$

Comme 11 et 13 sont premiers entre eux, on peut appliquer le théorème des restes chinois.

On pose $M = 11 \times 13 = 143$, $M_1 = 13$, $M_2 = 11$, on cherche y_1 tel que

$$M_1 y_1 \equiv 1 \ [11] \Leftrightarrow 13 y_1 \equiv 1 \ [11]$$

Et y_2 tel que $M_2y_2 \equiv 1$ [13] $\Leftrightarrow 11y_2 \equiv 1$ [13], soit, en regardant l'égalité

 $1 = -5 \times 13 + 6 \times 11$, $y_1 = -5$ et $y_2 = 6$ conviennent. L'unique solution modulo 143 est :

$$x = 6 \times 13 \times (-5) + 3 \times 11 \times 6 \quad [143] \equiv 6 \times (-65 + 33) \quad [143] \equiv -6 \times 32 \quad [143]$$

 $\equiv -192 \quad [143]$

Les solutions dans \mathbb{Z} sont de la forme x = -186 + 143k, $k \in \mathbb{Z}$. La plus petite solution positive est :

$$x = -192 + 2 \times 143 = -192 + 286 = 94$$

Allez à : Exercice 44 :

Correction exercice 45:

1. On cherche les solutions de 2u + 5v = 59 (1) avec $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$, comme 2 et 5 sont premier entre eux, il existe u_0 et v_0 tels que $2u_0 + 5v_0 = 1$, il existe une solution évidente $2 \times (-2) + 5 \times 1 = 1$, si ce n'est pas le cas on utilise l'algorithme d'Euclide. En multiplie par $59 : 2 \times (-118) + 5 \times 59 = 59$ (2),

En soustrayant (1) et (2) on trouve :

$$2(u+118) + 5(v-59) = 0 \Leftrightarrow 2(u+2) = -5(v-1)$$

2 est premier avec 5 et 2 divise -5(v-59), d'après le théorème de Gauss 2 divise -(v-59), donc il existe $k \in \mathbb{Z}$ tel que $-(v-59)=2k \Leftrightarrow v=-2k+59$, on remplace -(v-59)=2k dans 2(u+118)=-5(v-59), on trouve $2(u+118)=5\times 2k \Leftrightarrow u+118=5k \Leftrightarrow u=5k-118$, la réciproque est évidente.

Les solutions de (1) sont $\begin{cases} u = 5k - 118 \\ v = -2k + 59 \end{cases}$ avec $k \in \mathbb{Z}$.

 $2. \quad \text{Or } u \ge 0 \text{ et } v \ge 0,$

$$\begin{cases} 5k - 118 \ge 0 \\ -2k + 59 \ge 0 \end{cases} \Leftrightarrow \begin{cases} k \ge \frac{118}{5} = 23 + \frac{3}{5} \\ k \le \frac{59}{2} = 29 + \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} k \ge 24 \\ k \le 29 \end{cases}$$

Chaque valeur de $k \in \{24,25,26,27,28,29\}$ donne une solution de l'équation (1) avec $u \ge 0$ et $v \ge 0$. Soit

$$\{(2,11), (7,9), (12,7), (17,5), (22,3), (27,1)\}$$

Allez à : Exercice 45 :

Correction exercice 46:

1.

$$\begin{cases} 7x + 5y \equiv 2 & [8] \\ 5x + 4y \equiv 16 & [8] \end{cases} \Leftrightarrow \begin{cases} -x + 5y \equiv 2 & [8] \\ 5x + 4y \equiv 0 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 5y - 2 & [8] \\ 5(5y - 2) + 4y \equiv 0 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 5y - 2 & [8] \\ 5(5y - 2) + 4y \equiv 0 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 5y - 2 & [8] \\ 29y + 4y \equiv 10 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 5y - 2 & [8] \\ y \equiv 2 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 10 - 2 & [8] \\ y \equiv 2 & [8] \end{cases} \Leftrightarrow \begin{cases} x \equiv 0 & [8] \\ y \equiv 2 & [8] \end{cases}$$

2.

$$\begin{cases} 7x + 5y \equiv 2 & [9] \\ 5x + 4y \equiv 16 & [9] \end{cases} \Leftrightarrow L_1 + L_2 \begin{cases} 7x + 5y \equiv 2 & [9] \\ 12x + 9y \equiv 18 & [9] \end{cases} \Leftrightarrow \begin{cases} 7x + 5y \equiv 2 & [9] \\ 3x \equiv 0 & [9] \end{cases} \Rightarrow \begin{cases} 2(7x + 5y) \equiv 2 \times 2 & [9] \\ 3x \equiv 0 & [9] \end{cases} \Rightarrow \begin{cases} 14x + 10y \equiv 4 & [9] \\ 3x \equiv 0 & [9] \end{cases} \Rightarrow \begin{cases} 5x + y \equiv 4 & [9] \\ 3x \equiv 0 & [9] \end{cases} \Rightarrow \begin{cases} -x + y \equiv 4 & [9] \\ 3x \equiv 0 & [9] \end{cases} \Rightarrow \begin{cases} y \equiv 4 + x & [9] \\ 3x \equiv 0 & [9] \end{cases}$$

On ne peut pas en déduire que $x \equiv 0$ [9], par exemple si $x \equiv 3$ [9], on a $3x \equiv 0$ [9] sans que $x \equiv 0$ [9].

$$3x \equiv 0$$
 [9] \Leftrightarrow il existe $k \in \mathbb{Z}$ tel que $3x = 9k \Leftrightarrow x = 3k \Leftrightarrow \begin{cases} x \equiv 0 & [9] \\ x \equiv 3 & [9] \\ x \equiv 6 & [9] \end{cases}$

Si $x \equiv 0$ [9] alors $y \equiv 4$ [9], si $x \equiv 3$ [9] alors $y \equiv 4 + 3$ [9] $\equiv 7$ [9], si $x \equiv 6$ [9] alors $y \equiv 4 + 6$ [9] $\equiv 10$ [9] $\equiv 1$ [9].

Pour la réciproque, on remplace les trois couples de solutions modulo 9, (0,4), (3,7) et (6,1) dans $\begin{cases} 7x + 5y \equiv 2 & [9] \\ 5x + 4y \equiv 16 & [9] \end{cases}$ pour constater que cela marche.

Allez à : Exercice 46 :

Correction exercice 47:

1.

$$\begin{cases} n \equiv 1 \ [6] \\ n \equiv 5 \ [9] \end{cases} \Leftrightarrow \exists (u, v) \in \mathbb{Z}^2, \begin{cases} n = 1 + 6u \\ n = 5 + 9v \end{cases}$$

Cela entraine que 1 + 6u = 5 + 9v, ce qui équivaut à 6u - 9v = 4, comme le PGCD de 6 et 9 est 3 et que 3 ne divise pas 4, il n'y a pas de solution.

2.

$$\begin{cases} n \equiv 3 \ [6] \\ n \equiv 6 \ [9] \end{cases} \Leftrightarrow \exists (u, v) \in \mathbb{Z}^2, \begin{cases} n = 3 + 6u \\ n = 6 + 9v \end{cases}$$

Cela entraine que 3 + 6u = 6 + 9v, ce qui équivaut à 6u - 9v = 3, soit encore 2u - 3v = 1Il existe une solution évidente, u = -1 et v = -1, autrement dit 2(-1) - 3(-1) = 1

$$\begin{cases} 2u - 3v = 1\\ 2(-1) - 3(-1) = 1 \end{cases}$$

On fait la soustraction de ces deux équations

$$2(u+1) - 3(v+1) = 0 \Leftrightarrow 2(u+1) = 3(v+1)$$
 (*)

2 divise 3(v+1) et 2 est premier avec 3 donc d'après le théorème de Gauss, 2 divise v+1, par conséquent il existe $k \in \mathbb{Z}$ tel que v+1=2k (ou v=-1+2k), ce que l'on remplace dans (*), ce qui donne $2(u+1)=3\times 2k$, en simplifiant par 2, u+1=3k (ou u=-1+3k).

La réciproque étant évidente

$$n = 3 + 6u = 3 + 6(-1 + 3k) = -3 + 18k, \quad k \in \mathbb{Z}$$

Si on avait prit n = 6 + 9v, on aurait trouvé le même ensemble de solution.

Allez à : Correction exercice 47 :

Correction exercice 48:

1.
$$x^2 \equiv 1$$
 $[p] \Leftrightarrow x^2 - 1 \equiv 0$ $[p] \Leftrightarrow (x - 1)(x + 1) \equiv 0$ $[p] \Leftrightarrow \text{il existe } k \in \mathbb{Z} \text{ tel que} :$
 $(x - 1)(x + 1) = kp$

Si x-1 n'est pas un multiple de p, x-1 est premier avec p, d'après le théorème de Gauss p divise $(x-1)(x+1)=(x-1)\big(x-(p-1)\big)$ entraine que p divise x+1 autrement dit $x\equiv -1$ [p] Sinon x-1 est un multiple de p, autrement dit $x\equiv 1$ [p]

L'ensemble des solutions est :

 $S = \{1 + kp, -1 + kp\} \text{ avec } k \in \mathbb{Z}.$

2. Soit a tel que $2 \le a \le p-2$, a est premier avec p donc il existe b et l tels que ab+pl=1, d'après Bézout, donc $ab \equiv 1$ [p], en rajoutant kp, $k \in \mathbb{Z}$, à b, on peut prendre $1 \le b \le p-1$ (les valeurs 0 et p ne sont pas possible), b ne peut pas prendre les valeurs 1 et $p-1 \equiv -1$ [p] car alors $ab \not\equiv \pm 1$ [p]. D'après la question 1°) $b \ne a$ car sinon a=1 ou $a=p-1 \equiv -1$ [p].

$$(p-1)! = 2 \times 3 \times ... \times (p-2) \times (p-1)$$

Dans le produit $2 \times 3 \times ... \times (p-2)$, il y a p-3 termes (nombre pair) constitué de $\frac{p-3}{2}$ couples du type ab tels que $ab \equiv 1$ [p], donc $2 \times 3 \times ... \times (p-2) \equiv 1$ [p], par conséquent

$$(p-1)! \equiv p-1 \ [p] \equiv -1 \ [p]$$

Allez à : Exercice 48 :

Correction exercice 49:

- 1. $(n-x)^2 = n^2 2nx + x^2 \equiv x^2$ [n]
- 2. Précisons un peu $\mathbb{Z}/n\mathbb{Z}$, si $m \in \mathbb{Z}$ d'après la division euclidienne, il existe un unique couple $(b,r) \in \mathbb{Z} \times \{0,1,...,n-1\}$ tel que m=bn+r, r est un reste donc un élément de $\mathbb{Z}/n\mathbb{Z}$.

Soit $r \in \{0,1,\ldots,n-1\}$, c(r) est le reste de la division de r^2 par n, donc $r^2 = bn + c(r)$ ce qui équivaut à $r^2 \equiv c(r)$ [n] et $c(r) \in \{0,1,\ldots,n-1\}$.

Comme $c(1) \equiv 1^2$ $[n] \equiv 1$ [n], on a $c(n-1) \equiv (n-1)^2$ $[n] \equiv 1^2$ $[n] \equiv c(1)$ [n]

Puisque $c(n-1) \in \{0,1,...,n-1\}$ et $c(1) \in \{0,1,...,n-1\}$ et que $c(n-1) \equiv c(1)$ [n], on a c(1) = c(n-1)

c(1) - c(n)

Et pourtant $1 \neq n - 1$, sauf si n = 2, mais $n \geq 3$.

Donc c n'est pas injective.

On utilise l'exercice 1, c n'est pas surjective. Sinon on refait une démonstration semblable.

3.

n	0	1	2	3	4	5	6
n^2	0	1	4	$9 \equiv 2 [7]$	$16 \equiv 2 [7]$	$25 \equiv 4 [7]$	$36 \equiv 1 \ [7]$

4.

 $x^2 - 6xy + 2y^2 = (x - 3y)^2 - 9y^2 + 2y^2 = (x - 3y)^2 + 7y^2 \equiv (x - 3y)^2$ (7] Et 7003 \equiv 3 [7], d'après le 3°) il n'y a pas de carré qui soit congru à 3 modulo 7 donc il n'y a pas de solution.

Allez à : Exercice 49 :