Análise Matemática I - 2021.1

Felipe B. Pinto 61387 - MIEQB

18 de junho de 2021

Conteúdo

Ι	Background	3	2.2 Exemplo 2	7
II	Topologia Elementar na Reta		IV Sucessões	8
\mathbb{R}		4	1 Sucessão Monótona	8
1	Vizinhança V_{δ}	4	1.1 Decresente	8
2	Minorante	4	1.2 Crescente	8
3	Majorante	4	2 Sucessão Limitada	8
4	Infimo Inf	4	3 Sucessão Convergente	8
5	Supremo Sup	4	3.1 Exemplo	8
6	Minimo Min	4	4 Algebra de Limites	9
7	Maximo Max	4	4.1	9
8	Interior Int	4	4.2	9
9	Exterior Ext	5	4.3	9
10	Ponto de Acumulação	5	4.4	9
	Fronteira Fr	5	5 Lema geral das sucessões enqua-	
	Limitado	5	dradas	9
	Aberto	5	5.1 Exemplo: $u_{(n)} = \sin(n)/n$	9
	Fechado	5	6 Subsucessões	9
	Feixe \overline{X}	5	6.1 Subsucessão Convergente	9
			7 Sucessão de Cauchy	9
III	I Indução Matemática	6		10
1	Indução por Igualdade	6	V Limites	10
1 1		C	1 Lema geral das funções enquadradas	10
1.1 2	Exemplo	6 7	1.1 Exemplo: $u_{(n)} = \sin(n)/n$	10
2 1	Exemplo 1	7	${ m VI}$ Continuidade em ${\mathbb R}$	11

Programa

1. Topologia elementar da recta real

1.1. Pontos:

- Vizinhança de um ponto
- Ponto Interior e Exterior
- Ponto Isolado
- Ponto Aderente
- Ponto de Acumulação

1.2. Conjuntos:

- Aberto e Fechado
- Limitado
- Compacto

2. Indução Matemática e Sucessões

2.1. Princípio de Indução Matemática 2.2.

- Noção de Convergencia
- Limite de uma Sucessão
- Algebra de Limites
- Subsuscessões
- Sublimites
- Teoremas Fundamentais
- Sucessões de Cauchy

3. Limites e Continuidade em R

3.1. Limite de uma Função:

- Segundo Cauchy
- Segundo Heine
- Álgebra de Limites

3.2.

- Continuidade de uma função num ponto
- Prolongamento por Continuidade
- Teorema de Bolzano
- Teorema de Weierstrass
- Continuidade da função composta
- Continuidade da função inversa para a composição de funções

• Funções Inversas Clássicas

4. Calculo Diferencial em R

4.1.

- Definição de diferenciabilidade num ponto
- Interpretação geométrica
- Derivada de uma função
- Composta da Função inversa
- Derivada da Função inversa
- Teorema de Rolle
- Teorema de Lagrange
- Derivada e Monotonia
- Teorema de Darboux
- Teorema de Cauchy
- Regra de L'Hospital-Cauchy
- 4.2. Teorema de Taylor e Aplicações

5. Cálculo Integral em R

5.1. Primitivas:

- por Partes
- por Substituição
- de Funções Racionais
- de Funções Irracionais
- de Funções Transcendentes

5.2

- Integral de Riemann
- Teorema do valor médio
- Teorema Fundamental do Cálculo Integral
- Regra de Barrow
- Integração por partes
- Integração por substituição
- Aplicação ao cálculo de áreas

5.3. Integrais Impróprios

I | Background

II | Topologia Elementar na Reta $\mathbb R$

1 Vizinhança V_{δ}

$$V_{\delta}(x) = (x - \delta, x + \delta) \quad \delta \in \mathbb{R}$$

Pontos:

2 Minorante

 $m \in \text{Minorante}(X) \iff m \in \mathbb{R} \land x \ge m \ \forall x \in X$

4 Infimo Inf

(i) Standalone

$$Inf(X) = i \iff i \in \mathbb{R} \land x \ge m \ \forall x \in X \land \land \nexists y \in \mathbb{R} \backslash X : i < y < x \ \forall x \in X$$

(ii) Usando Vizinhança

$$Inf(X) = i \iff i \in \mathbb{R} \land x \ge i \ \forall \ x \in X \land V_{\delta}(i) \cap X \ne \emptyset$$

6 Minimo Min

(i) Standalone

$$Min(X) = m \iff m \in X \land m \le y \ \forall \ y \in m$$

(ii) Usando Minorante

$$Min(X) = m \iff m \in X \land m \in Minorante(X)$$

8 Interior Int

3 Majorante

 $m \in \text{Majorante}(X) \iff m \in \mathbb{R} \land x \leq m \ \forall x \in X$

5 Supremo Sup

(i) Standalone

$$Sup(X) = s \iff \\ \iff s \in \mathbb{R} \land x \le s \ \forall x \in X \land \\ \land \nexists y \in \mathbb{R} \backslash X : x < y < s$$

(ii) Usando Vizinhança

$$Sup(X) = s \iff \\ \iff s \in \mathbb{R} \land x \le s \ \forall x \in X \land V_{\delta}(s) \cap X \ne \emptyset$$

7 Maximo Max

(i) Standalone

$$Max(X) = m \iff m \in X \land m \ge y \ \forall \ y \in m$$

(ii) Usando Majorante

$$= \operatorname{Max}(X) = m \iff \\ \iff m \in X \land m \in \operatorname{Majorante}(X)$$

(i) Standalone

$$x \in \text{Int}(X) \iff$$

 $\iff \exists \, \delta > 0 : (x - \delta, x + \delta) \subseteq X$

(ii) Usando Vizinhança

$$x \in \operatorname{Int}(X) \iff V_{\delta}(x) \subseteq X$$

9 Exterior Ext

· /

10 Ponto de Acumulação

$$x$$
 é um ponto de acumulação de $X \iff V_{\delta}(x) \cap (X \setminus \{x\}) \neq \emptyset$

11 Fronteira Fr

$$f \in \operatorname{Fr}(X) \iff \\ \iff V_{\delta}(f) \cap X \neq \emptyset \land V_{\delta}(f) \cap \mathbb{R} \backslash X \neq \emptyset$$

Conjuntos:

12 Limitado

X é um conjunto limitado \iff \iff $\{m_1 \le x \le m_2 \mid \forall x \in X : m_1 \in \text{Minorante}(X), m_2 \in \text{Majorante}(X)\}$

13 Aberto

X é um conjunto aberto \iff X = Int(X)

15 Feixe \overline{X}

 $\bar{X} = \operatorname{Int}(X) \cup \operatorname{Fr}(X)$

(i) Standalone

$$x \in \operatorname{Ext}(X) \iff \\ \iff \exists \, \delta \in \mathbb{R} \backslash \{0\} : (x - \delta, x + \delta) \cap X = \emptyset$$

(ii) Usando Vizinhança

Fechado

X é um conjunto fechado \iff $X = Int(X) \cup Fr(X)$

14

$$x \in \operatorname{Ext}(X) \iff$$

 $\iff V_{\delta}(x) \cap X = \emptyset$

5

III | Indução Matemática

1 Indução por Igualdade

- Prove que é valido para algum n
- Prove que é valido para $n+1 \quad \forall \, n : \text{seja valido para n}$

Seja
$$V = \{P_{(n)} \mid \forall n \in \text{Dominio}\}$$

 $P_{(x)} \in V; P_{(x+1)} \in V$

1.1 Exemplo

$$\sum_{i=0}^n rac{1}{2^i} = 2 - rac{1}{2^n} \;\;\; orall \, n \in \mathbb{N}_0.$$

(i)
$$n = 0$$

$$\sum_{i=0}^{0} \frac{1}{2^i} = 1 = 2 - \frac{1}{2^0} = 2 - 1 = 1$$

(ii)
$$n = m + 1$$

$$\sum_{i=0}^{m+1} \frac{1}{2^i} = \sum_{i=0}^{m} \frac{1}{2^i} + \frac{1}{2^{m+1}} =$$

$$= 2 - \frac{1}{2^m} + \frac{1}{2^{m+1}} = 2 - \frac{1}{2^{m+1}}$$

2 Indução por Desigualdade

- Prove que é valido para algum n
- Prove que é valido para $n+1 \quad \forall n :$ seja valido para n

2.1 Exemplo 1

$$n \leq 2^{n-1} \quad \forall \, n \in \mathbb{N}$$

(i)
$$n = 1$$

$$1 \le 2^{1-1} = 1$$

(ii)
$$n = m + 1$$

$$m+1 \le 2^{m-1}+1 = \frac{2^m+2}{2} \le 2^{m+1-1} = 2^m \implies$$

 $\implies 2 \le 2^{m+1}-2^m = 2^m(2-1) = 2^m$

2.2 Exemplo 2

$$n^2 \leq 2^n \quad orall \, n \in \mathbb{N} \wedge n \geq 4$$

(i)
$$n = 4$$

$$4^2 < 2^4 = 4^2$$

(ii)
$$n = m + 1$$

$$(m+1)^2 = m^2 + 2m + 1 \le$$

 $\le 2^m + 2m + 1 \le 2 * 2^m = 2^{m+1} \implies$
 $\implies 2m + 1 \le 2^m;$

$$\begin{cases} m = 4 \implies 2 * 4 + 1 = 9 \le 2^4 = 16 \\ m = n + 1 \implies 2 * (n + 1) + 1 = 2 n + 1 + 2 \le 1 \\ \le 2^n + 2 \le 2 * 2^n = 2^{n+1} \implies 2 \le 2^n \end{cases}$$

IV | Sucessões

 $\overline{u_{(n)}:\mathbb{N} o\mathbb{R}}$

1 Sucessão Monótona

1.1 Decresente

 $u_{(n)} \ge u_{(n+1)} \quad \forall n \in \mathbb{N}$

2 Sucessão Limitada

$$u_{(n)}$$
 é limitada \iff $m_1 \le u_{(n)} \le m_2 \quad \forall n \in \mathbb{N}$

3 Sucessão Convergente

 $u_{(n)}$ converge para $l \in \mathbb{R} \iff$ $\iff \exists p \in \mathbb{N} : u_{(n)} \in V_{\delta}(l) \quad \forall n > p$

3.1 Exemplo

$$u_{(n)} = 1/\sqrt{2 n - 1}; \ u_{(n)} > 0; \ \delta = 1/10$$

 $\iff 0 < \frac{1}{\sqrt{2 \, n - 1}} < \frac{1}{10} \iff$ $\iff 0 < \frac{1}{2 \, n - 1} < \frac{1}{100}; \ 2 \, n - 1 > 100 \implies$ $\implies \lfloor 101/2 \rfloor < n$

1.2 Crescente

 $u_{(n)} \le u_{(n+1)} \quad \forall n \in \mathbb{N}$

Nota:

 $\overline{u_{(n)}} \in V_{\delta}(l) \iff |u_{(n)} - l| < \delta \iff$ $\iff l - \delta < u_{(n)} < l + \delta$

4 Algebra de Limites

4.1

 $egin{aligned} oldsymbol{u_{(n)}} & \blue{\mathbf{e}} & \mathbf{convergente} \iff \\ & \iff u_{(n)} \in V_{\epsilon}(l) \quad orall \ \epsilon > 0 \iff \\ & \iff l - \epsilon < u_{(n)} < l + \epsilon \iff \\ & \iff \exists \left\{ m_1, m_2 \right\} \subset \mathbb{R} : m_1 < u_{(n)} < m_2 \\ & \forall n \in \mathbb{N} \iff \\ & \iff oldsymbol{u_{(n)}} & \blue{\mathbf{e}} & \blue{\mathbf{limitada}} \end{aligned}$

4.2

 $egin{aligned} oldsymbol{u_{(n)}} & \circ oldsymbol{\mathrm{e}} & \mathrm{monotona} \ \mathbf{e} \ \lim \mathrm{imitada} \ \iff \ & (u_{(n)} < u_{(n+1)} \lor u_{(n)} > u_{(n+1)}) \land \\ & \land \exists \{m_1, m_2\} \subset \mathbb{R} : m_1 < u_{(n)} < m_2 \quad \forall \, n \in \mathbb{N} \ \implies \ & \exists \, \mathrm{Sup}(u_{(n)}) \in \mathbb{R} \backslash u_{(n)} \ \iff \ & \iff \ oldsymbol{u_{(n)}} \ \dot{\mathbf{e}} \ \mathrm{convergente} \end{aligned}$

5 Lema geral das sucessões enquadradas

$$\{u_{(n)}, v_{(n)}, w_{(n)}\} : \mathbb{N} \to \mathbb{R} \land$$

$$\land v_{(n)} \le u_{(n)} \le w_{(n)} \quad \forall n \in \mathbb{N} \land$$

$$\land \exists l \in \mathbb{R} : \{v_{(n)}, w_{(n)}\} \xrightarrow{\text{converge}} l \implies$$

$$\implies u_{(n)} \xrightarrow{\text{converge}} l$$

6 Subsucessões

6.1 Subsucessão Convergente

7 Sucessão de Cauchy

4.3

 $u_{(n)} ext{ e } v_{(n)} ext{ são convergentes} \land \ \land u_{(n)} \leq v_{(n)} \ \ orall \ n \in \mathbb{N} \implies \lim_{n o \infty} u_{(n)} \leq \lim_{n o \infty} v_{(n)}$

4.4

$$egin{aligned} u_{(n)} & lpha & \lim top a & \lim top a & 0 \implies \ \Longrightarrow & 0 \leq |u_{(n)} * v_{(n)}| = |u_{(n)}| * |v_{(n)}| \leq \ & \leq M * 0 = 0 \quad orall M \in \operatorname{Majorante}(u_n) \implies \ & \Longrightarrow u_{(n)} * v_{(n)}
ightarrow 0 \end{aligned}$$

5.1 Exemplo: $u_{(n)} = \sin(n)/n$

$$\frac{-1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}; \ \left\{ \frac{-1}{n}, \frac{1}{n} \right\} \to 0 \implies \frac{\sin(n)}{n} \to 0$$

V | Limites

1 Lema geral das funções enquadradas

1.1 Exemplo: $u_{(n)} = \sin(n)/n$

$$\frac{-1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}; \ \left\{ \frac{-1}{n}, \frac{1}{n} \right\} \to 0 \implies \frac{\sin(n)}{n} \to 0$$

$\mathbf{VI} \ | \ \mathbf{Continuidade} \ \mathbf{em} \ \mathbb{R}$