Technische Universität Berlin

Fakultät II – Institut für Mathematik Grigorieff, Penn-Karras WS 03/04 5.4.04

April – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studiengang:				
Falls Ihr Studiengang 40% Hausaufgab In welchem Semester haben Sie die err					
Neben einem handbeschriebenen A4 zugelassen.	Blatt mit No	tizen s	ind ke	ine Hil	fsmittel
Es sind keine Taschenrechner und H	landys zugela	assen.			
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge		_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechenaufgal	ben. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt 60 Min u	ıten.				
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 1			,	•	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 10 Punkte

Entscheiden Sie, welche der folgenden Integrale existieren. Im Falle der Existenz, berechnen Sie den Wert des Integrals. Im Falle der Nichtexistenz, geben Sie eine Begründung an.

(i)
$$\int_0^2 \frac{3dx}{x^2 + 3x}$$
, (ii) $\int_2^\infty \frac{3dx}{x^2 + 3x}$, (iii) $\int_0^\infty \frac{3dx}{x^2 + 3x}$.

2. Aufgabe 10 Punkte

Schreiben Sie die Funktion f(x) = x auf dem Intervall $[0, \pi]$ als eine Fourierreihe, die nur Cosinus-Terme enthält. Setzen Sie dazu die Funktion f(x) in geeigneter Weise auf ein größeres Intervall fort.

3. Aufgabe 10 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch

$$f(x,y) = (x+1)^2 + (y-1)^2$$
.

- a) Skizzieren Sie die Niveaumengen $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$ von f für c = 0, c = 1 und c = 2.
- **b)** Es sei $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 8\}$. Berechnen Sie das globale Maximum und das globale Minimum von f auf D.

4. Aufgabe 10 Punkte

Gegeben sei die Menge K im \mathbb{R}^3 ,

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z^2, \ 0 \le z \le 1\}.$$

Weiter sei ∂K die Oberfläche von K.

- a) Skizzieren Sie K.
- b) Berechnen Sie mit Hilfe des Gaußschen Integralsatzes das Oberflächenintegral

$$\iint_{\partial K} \vec{v} \cdot d\vec{O} .$$

Dabei zeige der Normalenvektor an ∂K aus K heraus, und das Vektorfeld \vec{v} sei gegeben durch

$$\vec{v}(x,y,z) = (x+y, x+z, y+z) .$$