Transformers

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Questions

How to summarize what it means for an ML system to be trusted?

• Name one of the four major characteristics of a **trustworthy** ML system according to the book's opinion.

Explain what does it mean and why it matters

Questions

 Have you noticed any news, articles, policies, events that have implications in trustworthy deep learning in recent years?

Readings

- Readings are updated on the website (syllabus page)
- Readings:
 - Attention is All You Need
 - Generative pre-training
 - GNN Survey

- This lecture is not explicitly tested
 - But in future lectures we will assume knowledge of this when developing trustworthy components on top of Transformers

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers Applications

3. Graph Neural Networks

• Inputs from different domains can be seen as the general **sequence** of **tokens**

Domain	Sequence	Token	Structure
NLP	Sentence: [SOS, "Deep", "learning", "can", "empower", "sciences", EOS]	Word: "learning" Phrase: ["Deep", "learning"]	Sequential correlations
CV	Image:	Pixel Patch:	
Graph	Graph:	Node: Subgraph:	Adjacency

Standard Supervised Learning Setting

One (token) to One (token)

- Input is a single token (e.g., an image), and the output is its attribute (e.g., label) or another token.
- h = f(x), f() is the model to learn.

Many (tokens) to One

- Input is a sequence of tokens (e.g. a video with frames), and the output is its attribute (e.g. label) or another token.
- $h_1 = f(x_1)$
- To generate h_2 , we would like to incorporate both x_2 and the preceding frame x_1 and $h_2 = f(x_2, h_1)$. Here f() is shared across all timesteps

•
$$h_i = f(x_i, h_{i-1})$$

Current token

Previous token

- We can process a sequence of tokens $X = [x_1, x_2, ..., x_n]$ by applying a recurrence formula at every time step
- Recurrent neural networks

$$h_i = f_W(x_i, h_{i-1})$$
 \downarrow

new state

current
input

old state

ullet For example, $h_i=\sigma(W_\chi x_i+W_h h_{i-1}+b_h)$, and $y_i=\sigma(W_y h_i+b_y)$

A folded diagram of RNNs

Many (tokens) to Many

• The sequence is first encoded into a hidden representation, then gradually decoded by

the decoder.

Diagram of video style transfer

- One (token) to One (token)
- Many to One
 - Protein to property
 - Sentence to sentiment
 - Song to name
- One to Many
 - Image to caption (multiple words)
- Many to many
 - Translation: English to French
 - Time series: history to future
 - Graph autoregression

(many-to-one)

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

What are the issues and challenges of RNNs?

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

Problems of RNNs

- Sequential computation prevents parallelization
- Capacity of handling long sequences
- Mainly focusing on modeling recurrence
 - does not capture other correlations (hierarchical, long-range, polysemy....) well

$$h_i = f_W(x_i, h_{i-1}), y_i = f_Y(h_i)$$

$$y_i = \text{self-att}([x_i + p_i]_i)$$

Problems of RNNs

- 1. parallelization
- 2. long sequences
- 3. only recurrence

Solutions by Transformers

- 1. Parallel input: Input All tokens at the same time
- 2. Self-Attention: Enable attention in long-range
- 3. Positional Embeddings p_i : Model all possible correlations

Transformers — Overview

- Original paper: Attention is all you need [Vaswani et al., 2017].
- Key component: Multi-head self-attention
- Other components of a transformer layer: layer normalization, skip connection, positionwise feed-forward layer (FFN, or MLP)
- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Decoder-only (e.g GPT)
 - We will show an example later

Transformers — Overview

- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Many-to-one classification / regression
 - Sentiment classification, document classification ...
 - Word / Sentence embeddings for downstream tasks (e.g. recommender system)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Decoder-only (e.g GPT)
 - We will show an example later

Transformers — Overview

- Model usage: Pre-training followed by finetuning. The transfered model can be:
 - Encoder-only (e.g BERT)
 - Encoder-Decoder (e.g <u>BART</u>)
 - Many-to-many use cases
 - Summarization, translation, style transfer ...
 - Decoder-only (e.g OpenAl GPT)
 - One-to-many use cases
 - Image / text / code generation, dialogue systems ...
 - GPT-3/4 based apps

Transformers — Self-Attention (1/5)

Example:

Step 3: Update

Transformers — Self-Attention (2/5)

- Formally, given an input sequence $\pmb{X} = [\pmb{x_1}, \pmb{x_2}, ..., \pmb{x_n}] \in \mathbb{R}^{n \times d_X}$
- Step ①: Query $oldsymbol{Q} = oldsymbol{X} oldsymbol{W}_{oldsymbol{Q}}$, Key $oldsymbol{K} = oldsymbol{X} oldsymbol{W}_{oldsymbol{K}}$, Value $oldsymbol{V} = oldsymbol{X} oldsymbol{W}_{oldsymbol{V}}$
 - $W_K \in \mathbb{R}^{d_X \times d_K}$, and thus $K \in \mathbb{R}^{n \times d_K}$
 - We require d_K = d_Q , for simplicity, we set $d_K = d_Q = d_V \coloneqq d$

Transformers — Self-Attention (3/5)

- Step ②: Attention map Att = Softmax $\left(\frac{QK^T}{\sqrt{d}}\right) \in \mathbb{R}^{n \times n}$ (Softmax is col-wise)
 - The matrix multiplication QK^T performs dot-product for every possible pair of queries and keys, resulting in an attention map.
 - Normalization factor $1/\sqrt{d_K}$: performing dot-product over two vectors with variance σ^2 results in a scalar having d_K -times higher variance,
 - $q \sim N(0, \sigma^2), k \sim N(0, \sigma^2) \rightarrow \text{Var}\left(\sum_{i=1}^{d_K} q[i]k[i]\right) = \sigma^4 d_K$

Transformers — Self-Attention (4/5)

• Step (3): Updated value $V' = \operatorname{Att} V \in \mathbb{R}^{n \times d}$

Matrix product

Transformers — Self-Attention (5/5)

Putting all together

The computation complexity is quadratic to number of tokens

Transformers — Multi-Head Self-Attention

- There are usually multiple aspects that a token can attend to.
- We extend the attention to multiple heads, with multiple (Q, K, V) triplets on the same features.
 - The output of multi-head self-attention $O = \text{Concat}([V_1', V_2', ..., V_H'])W_O$
 - Learnable parameters in each attention layer: $W_{Q,i}$, $W_{K,i}$, $W_{V,i} \in R^{d_X \times d}$ for head i, $W_O \in R^{Hd \times d_O}$

Transformers — Layer (1)

- MHSA: multi-head self-attention
- Transformer layer: $X \to \mathbf{LayerNorm}(X + \mathbf{MHSA}(X))$
- Residual connections are added to
 - Enable smooth gradient flow in deep transformers
 - Keep the information of the original sequence.

What are some advantages or challenges when trying to explain Transformer-based modes?

Transformers — Layer (2)

- Transformer layer: $X \to \text{LayerNorm}(X + \text{MHSA}(X)) \to \text{LayerNorm}(X + \text{FFN}(X))$
- Layer Normalization is used to enable faster training with small regularization and keep features in similar magnitudes.
 - BatchNorm isn't applied because batch size is usually small in Transformers due to GPU memory constraints. Besides, BatchNorm has been shown to lead to worse performance in NLP.

• MLPs are added for "post-processing", and allow transformations on each sequence token.

Transformers —Encoder / Decoder

Transformers — Positional Encoding (3)

Cosine encoding

- $PE_{(pos,2i)} = \sin(pos/10000^{2i/d_X}), PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_X}).$
- $\omega_i = 1/10000^{2i/d_X}$.
- Relative distance: $PE_{(pos+k)}$ can be easily represented as a linear function of $PE_{(pos)}$ (show it).

Summary: Transformer Architecture

- Multi-Head Self-Attention (MHSA(X))
 - For head *i*
 - $Q_i = XW_{Q_i}$, $K_i = XW_{K_i}$, $V_i = XW_{V_i}$
 - Att_i = Softmax $\left(\frac{Q_i K_i^T}{\sqrt{d}}\right) \in \mathbb{R}^{n \times n}$
 - $V_i' = \text{Att}_i V_i \in \mathbb{R}^{n \times d}$
 - Concatenating all heads: $\mathbf{0} = \operatorname{Concat}([V_1', V_2', ..., V_H']) \mathbf{W_0}$
- X = LayerNorm(X + MHSA(X))
- X = LayerNorm(X + FFN(X))

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers Applications

3. Graph Transformers and Sparse Transformers

Why is Transformer a Popular Choice

- Resolves various challenges of RNN-based architectures
- Attention makes the architecture expressive and flexible for different application scenarios
- It is very amenable to self-supervised objectives
 - We can leverage the vast number of unsupervised examples to learn a general model
 - Can be fine-tuned for many downstream tasks
 - Can out-perform models that are only trained for a specific downstream task

Label Scarcity

- ML models are hungry to data, especially labeled data for supervised task.
- The fast development of computer vision largely benefits from ImageNet. It contains 14 million images hand-annotated by a team of researchers.
- This is often not possible for many domains. Most of time, it's easy to collect rich unlabeled data, but hard to obtain labeled data.
- Solution: Pre-training general-purpose language model on unlabeled large corpora (billions of characters) in self-supervised setting, then fine-tuning on smaller-scale tasks.

Pre-training and Fine-tuning

Transformers in NLP — BERT

BERT —Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

- Pre-training task (unsupervised): Masked Language Model (MLM)
 - First randomly masking m% tokens in the input sequence.
 - In BERT, 15% tokens are masked at random (replaced with the special [MASK] token)
 - Predicting masked tokens using remaining tokens.
 - Two modes: Unidirectional and Bidirectional.

Unidirectional [Radford et al., 2018]

Maximize Likelihood of "all" given "Att" and "is"

Bidirectional

 Maximize Likelihood of "all", given "Att", "is", "you", "need".

Transformers in NLP — RoBERTa

RoBERTa — Robustly Optimized BERT [Liu et al., 2019]

- Pretraining data: BooksCorpus (800 M words) [Zhu et al., 2015], English Wiki (2500 M words), CC-News, OpenWebText [Gokaslan and Cohen, 2019], Stories [Trinh and Le, 2018]
 - Partition the corpus into "sentences" with fixed length of 512 tokens.
- Hyperparameters in use (also commonly adopted in most NLP Transformers):
 - 12-Layer Encoder + 12-Layer Decoder
 (Pretrained Encoder is used more frequently in down-stream tasks)
 - Hidden dimension 768 = 12 (num of Heads) \times 64 (dim of Head)
 - Learning rate: Warmup then linear decay
 - Warmup: Gradually increasing the learning rate to a specific value in the first few epochs
 - Linear decay: Decreasing the learning rate by the same amount (decrement) every epoch.

Transformers in CV — ViT [Dosovitskiy et al., ICLR 2021]

• An image patch is treated as a word in this context, and an image is partitioned to 16×16 tokens.

- Pre-training is performed using image classification (supervised), with ImageNet-21k and JFT-300M
- Using self-supervised methods with masks for pre-training (like MLM in BERT) results in 2% better then training from scratch (in down-stream tasks), but 4% behind supervised pre-training,

Outline of Today's Lecture

1. Self-Attention and Transformers

2. Transformers Applications

3. Graph Neural Networks

Types of Networks and Graphs (1)

Networks (also known as Natural Graphs):

- Social networks:
 - **Society** is a collection of 7+ billion individuals
- Communication and transactions:
 - Electronic devices, phone calls, financial transactions
- Biomedicine:
 - Interactions between genes/proteins regulate life
- Brain connections:
 - Our thoughts are hidden in the connections between billions of neurons

Many Types of Data are Graphs (1)

Event Graphs

Food Webs

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

Many Types of Data are Graph (2)

Social Networks Economic Networks Communication Networks

Citation Networks

Image credit: Missoula Current News

Image credit: The Conversation

Internet

Networks of Neurons

Graph Machine Learning Tasks: Overview

- Node-level prediction
- Link-level prediction
- Graph-level prediction
- Graph generation
 - Generative model

Node Embeddings

 Intuition: Map nodes to d-dimensional embeddings (which are "representations" of nodes) such that similar nodes in the graph are embedded close together

How to learn the mapping function f?

Deep Graph Encoders (1)

 $ENC(\cdot)$ = multiple layers of non-linear transformations based on graph structures

Transformers — in the Language of Graphs (1)

Step 1 Mapping: Each node feature x_i is projected to q_i , k_i , v_i .

Attention computation: calculate the importance of neighbors

$$\alpha_{vu} = att\left(\mathbf{h}_v^{(l-1)}, \mathbf{h}_u^{(l-1)}\right)$$

Transformers — in the Language of Graphs (2)

Transformers

Step 2 Attention: Calculate the edge weights using q_i , k_j of the two endpoints node i and j as $e_{ij} = q_i^T k_j / \sqrt{d}$, then normalizing it by the neighbors of node i $\alpha_{ij} = \operatorname{softmax}_i(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in N_i} \exp(e_{ik})}$

Message computing: transform information of neighbor node to a message

$$\mathbf{m}_{u}^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$$
, $u \in N_{v}$

Transformers — in the Language of Graphs (3)

Transformers

Step 3 Update: Update each node feature according to its neighbors as

$$x_i' = \sum_{k \in N_i} \alpha_{ij} x_j$$

Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N_{v}} \mathbf{m}_{u}^{(l)} \right)$$

Transformers — in the Language of Graphs (4)

Summary: Comparison of Self-attention (SA) and Graph Attention Networks (GAT)

- Step 1 Mapping
 - SA: different weights for q, k, v. $q = w_q x$, $k = w_k x$, $v = w_v x$.
 - GAT: shared weights for q, k, v. q = wx, k = wx, v = wx.
- Step 2 Attention: SA uses dot-product attention, while (the original) GAT uses concatenation with MLP
 - Dot-product: $e_{ij} = q_i^T k_j / \sqrt{d}$
 - Concat: $e_{ij} = act(W [q_i||k_j])$, where c is a weight vector and act is the activation function like LeakyReLU

Graph Attention — in the Language of Transformer

- The above computations do not require the assumption of the complete graph.
 - We assume full connectivity, mostly because we do not want to miss any potential token correlations.
- Self-attention can be easily adapted to graph-structured input data where the token correlations are given by the adjacency matrix, by replacing the complete graph with the input graph.
 - Self-Att(X) = Softmax $\left(\frac{(\mathbf{W}_k X) (\mathbf{W}_q X)^T}{\sqrt{d}} \odot A_G \odot \mathbf{W}_E E\right) V$.
 - A_G is the adjacency matrix of the graph and E is the edge weights of the graph if any.
- The complexity is no longer $O(n^2d)$ but is linear to the edge number O(E)

Idea: Aggregate Neighbors (1)

 Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors (2)

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors (3)

• Intuition: Network neighborhood defines a computation graph

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, $oldsymbol{x}_u$
 - Layer-k embedding gets information from nodes that are k hops away

Neighborhood Aggregation (1)

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation (2)

 Basic approach: Average information from neighbors and apply a neural network

Setup

• Assume we have a graph G:

- *V* is the **vertex set**
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{d \times |V|}$ is a matrix of node features
- v: a node in V; N(v): the set of neighbors of v.
- Node features:
 - Social networks: User profile, User image
 - Biological networks: Gene expression profiles, gene functional information
 - When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

The Math: Deep Encoder

• Basic approach: Average neighbor messages and apply a neural network

