10

15

20

25

F=5

wherein R₆ is H, OH, alkyl, alkoyy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

 (\mathbf{I})

 R_2 and R_3 are independently ϕ r both H or halogen;

R₉ is halogen;

Z is independently selected from the group R_6 , halogen, OOH, OC(O) R_6 , = O, amine, azide, thio, mercaptoalkyl, alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, SC(O) R_6 , OS(O) R_6 , OS(O) R_6 , NHC(O) R_6 = NR $_4$ or NHR $_4$; and

R₄ is OH, alkyl, alkoxy, poly(ethylene glycol), alkenyl, aryl or arylalkyl. provided that:

when R_6 is propyl, R_2 is Br, R_3 is H or Br and R_9 is Br, then Z is other than H, OC(O)CH₃ or OH;

when R_6 is propyl, R_2 s Br, R_3 is H and R_9 is I, then Z is other than OC(O)CH₃ or OH;

when R_6 is propyl, R_7 is Br, R_3 is H and R_9 is Cl, then Z is other than OH:

when R_6 is propyl, R_2 is H, R_3 and R_9 are Br, then Z is other than H; and when R_6 is propyl, R_2 is Br, R_9 is Cl and Z is H, then R_3 is other than Cl.

2. A compound according to claim 1 of formula (Ia):

10

15

20

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

X is a halogen, OH, OOH, OC(O) \mathbb{R}_1 or =0;

R₂ and R₃ are independently or both hydrogen or halogen; and

R₉ is halogen, provided that:

when R_1 is propyl, R_2 is Br, R_3 is H or Br and R_9 is Br, then X is other than $OC(O)CH_3$ or OH;

when R_1 is propyl, R_2 is Br, R_3 is H and R_9 is I, then X is other than OC(O)CH₃ or OH;

when R_1 is propyl, R_2 is Br, R_3 is H, R_9 is Cl, then X is other than OH.

3. A compound according to claim 1 of formula (II):

$$R_2$$
 R_3
 R_9
(II)

wherein R_1 is hydrogen, unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic alkyl, alkoxy, oxoalkyl, alkenyl, aryl qr arylalkyl;

 R_2 and R_3 are independently or both hydrogen or halogen;

R₉ is halogen; and

R₄ is selected from the group halogen, amine, azide, hydroxyl, thiol, or any hydrophobic, hydrophilic of fluorophilic alkyl, alkoxy, mercaptoalkyl,

alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, $OC(O)R_1$, $SC(O)R_1$, $OS(O)R_1$, $OS(O)R_2$, $OS(O)R_2$, $OS(O)R_2$, $OS(O)R_3$, $OS(O)R_4$, $OS(O)R_3$, $OS(O)R_4$, OS(

when R_4 is propyl, R_2 is Br, R_3 is H or Br and R_9 is Br, then R_1 is other than H, OC(O)CH₃ or OH;

when R_4 is propyl, R_2 is Br, R_3 is H, R is I, then R_1 is other than $OC(O)CH_3$ or OH;

when R_4 is propyl, R_2 is Br, R_3 is H, R_9 is Cl, then R_1 is other that OH; when R_4 is propyl, R_2 is H, R_3 and R_9 are Br, then R_1 is other than H; when R_4 is propyl, R_2 is Br, R_3 and R_9 are Cl, then R_1 is other than H.

4. A compound according to claim 1 of formula (III):

$$R_2$$
 R_3
 R_5
 R_5
(III)

wherein R_2 and R_3 are independently or both hydrogen or halogen; R_5 is OH or the same as R_1 ;

 R_9 is halogen; and

R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic.

5. A compound according to claim 1 of formula (IV) or (V):

25

15

20

5

10

10

15

20

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen and

 R_8 is OH, NHR₁, NHC(X)NH₂, NHQ(X)NHR₁ (X=O, S, NR₁) or any R₁.

6. A method for forming a fimbrolide derivative, the method including reacting a fimbrolide with a halogenating agent and/or an oxygenating agent to form compounds with formula (Ia):

$$R_2$$
 R_3
 R_3
 R_3
 R_3
 R_4
 R_1

wherein R_1 is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

X is a halogen (X \neq F,Cl, Br or I), OH, OOH, OC(O)R₁ or =O); R₂ and R₃ are independently or both hydrogen or halogen;. and

R₉ is halogen.

- A method according to claim 6 wherein the halogenating agent is 7. selected from the group N-bromosuccinimide, N-chlorosuccinimide, Niodosuccinimide, bromine, cupric bromide, and phenyltrimethylammonium perbromide.
- A method according to claim 6 wherein the oxygenating agent is 8. selected from lead tetraacetate, Rose Bengal/oxygen gas, hydrogen peroxide/vanadium pentoxide, selenium dioxide, and 3-chloroperoxybenzoic acid.
- 9. A method for forming a fimbrolide derivative, the method including displacement and/or functionalisation of the halogen or oxygen substituent in the fimbrolide side chain by treating with a nucleophile or an electrophile to form compounds with formula (II):

$$R_{2}$$
 R_{3}
 R_{4}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}

wherein R_1 is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

R₄ is selected from the group halogen, amine, azide, hydroxyl, thiol, or any hydrophobic, hydrophilic of fluorophilic alkyl, alkoxy, mercaptoalkyl, alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, $OQ(O)R_1$, $SC(O)R_1$, $OS(O)R_1$, $OS(O)_2R_1$, $NHC(O)R_1$, OC(O)NHR₁, or =O provided that when R_4 is propyl, R_2 is Br, R_3 and R_9 are Cl, then R_1 is other than H.

5

10

20

25

ļ. a h

20

25

- 10. A method according to claim 9 wherein the nucleophile is selected from metal halides, water, organic metal carboxylate, organic alcohols, dimethyl sulfoxide, and organonitrile/acid catalyst, and silver triflate.
- 11. A method according to claim 9 wherein the electrophile is selected from organic acids, isocyanates, acid halides or active acylating agents such as carbonyl imidazoles or anhydrides (including activated hydrophilic PEG acids, PEG acid chlorides, PEG-oxycarbonylimidazoles and PEG-isocyanates) organic sulfonyl chlorides, and diethylaminosulfur trifluoride.
 - 12. A method for forming a fimbrolide derivative the method including reacting an hydroxyl substituent in the fimbrolide side chain with an oxidising agent to form a compound in accordance with formula (III):

wherein R_2 and R_3 are independently or both hydrogen or halogen;

R₅ is OH or the same as R₁;

R₉ is halogen; and

R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic.

13. A method according to claim 12 wherein the oxidising agents is selected from the group consisting of acid dichromate reagents in any form which may be free or polymer supported, chromium trioxide, manganese dioxide, potassium permanganate, selenium dioxide, ceric ammonium nitrate, ruthenium tetraoxide, and hot nitric acid.

10

15

14. A method according to claim 13 wherein the acid dichromate agent is selected from the group consisting of Jones reagent, pyridinium chlorochromate, pyridinium dichromate.

15. A method for forming a fimbrolide analogue derived from a compound of formula (III)

$$R_2$$
 R_3
 R_9
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

R₅ is OH or the same as $R_1/$;

R₉ is halogen; and

 R_1 is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic,

the method including feacting an aldehyde or ketone substituent in the fimbrolide side chain of the compound with an amine derivative to form a compound with formula (IV) or (V):

$$R_3$$
 R_9
 R_9

$$R_{2}$$
 R_{3}
 R_{9}
 R_{9}
 R_{1}

R2 and R3 are independently or both hydrogen or halogen;

R₉ is halogen and

R8 is OH, NHR₁, NHC(X)NH₂, NHC(X)NHR₁ (X=O, S, NR₁) or any R₁.

16. A method according to claim 15 wherein the amine derivative is selected from the group hydroxyl amine hydrochloride, alkyl and aryl hydrazines, alkyl or aryl amine optionally in the presence of a reducing agent.

17. A fimbrolide derivative produced by a method in accordance with any one of claims 6 to 16.

18. An oligomer or polymer formed by oligomerisation or polymerisation of a fimbrolide compound of the formula:

$$R_2$$
 R_3
 R_9
 R_9

10

15

20

5

wherein R₆ is H, OH, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;

 R_2 and R_3 are independently of both H or halogen;

R₉ is halogen;

Z is independently selected from the group R_6 , halogen, OOH, OC(O) R_6 , = O, amine, azide, thiol mercaptoalkyl, alkenyloxy, mercaptoaryl, aryloxy, mercaptoaryl, arylakyloxy, mercaptoarylakyl,

 $SC(O)R_6$, $OS(O)R_6$, $OS(O)_2R_6$, $NHC(O)R_6 = NR_4$ or NHR_4 ; and R_4 is OH, alkyl, alkoxy, poly(ethylene glycol), alkenyl, aryl or arylalkyl,

optionally with at least one other monomer.

19. A polymer according to claim 18 wherein the polymer is a homopolymer of the fimbrolide compound of claim 18.

of at least one fimbrolide compound in accordance with claim 18 and at least one other polymerisable monomers.

- 21 Use of a compound in accordance with any one of claims 1 to 5 or 17 as antimicrobial, antiseptic, microbacterial static and/or antifouling agent.
- 22. An antimicrobial, antiseptic and/or microbacterial static composition including at least one compound in accordance with claims 1 to 5 or 17; or an oligomer or polymer according to any one of claims 18 to 20.
 - 23. An antifouling composition including at least one compound in accordance with claims 1 to 5 or 17, or an oligomer or polymer according to any one of claims 18 to 20.
 - 24. A surface coating composition incorporating at least one compound according to any one of claims 1 to 5 for 17 or an oligomer or polymeraccording to any one of claims 18 to 20.

25. A compound of formula (VI):

wherein R_1 is alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic,

5

MATANTER SHEET

 R_2 and R_3 are independently or both hydrogen or halogen; and R_9 is halogen.

26. A compound according to claim 25 which is 4-Bromo-5-(bromomethylene)-3-(1-butenyl)-2(5H)-furanone.