Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

Cuarta prueba (segundo parcial) - 1 de diciembre de 2016. Duración: 3,5 horas

N° de parcial	Nombre y apellido	Cédula

Ejercicio 1. (15 puntos) (Ejercicio 1 del segundo parcial del curso semipresencial de 2015)

- a. Probar que 2 es raíz primitiva módulo 53.
- **b**. Hallar todos los $x \in \mathbb{Z}$ tales que $x^{19} \equiv 32 \pmod{53}$.
- c. Archibaldo y Baldomero quieren pactar una clave común empleando el protocolo Diffie-Hellman. Para ésto fijan el primo p=53 y la raíz primitiva g=2. Archibaldo selecciona el número m=28 y le remite el número 49 a Baldomero. Éste selecciona el número n=5. ¿Cuál es la clave común k que acordaron Archibaldo y Baldomero?

Ejercicio 2. (20 puntos)

- a. Calcular el número de raíces primitivas en U(29).
- b. Encontrar todas las raíces primitvas de U(29). (Sugerencia: Calcular 2^n (mód 29), para todo $0 \le n \le 14$, para facilitar los cálculos posteriores.)
- c. Ordenar en forma creciente las raíces primitivas halladas en el ítem anterior: $r_1 \leq r_2 \leq r_3 \leq r_4 \leq r_5 \leq \dots$ Luego escribir la secuencia: $r_1r_50r_9r_3r_1r_7$. Finalmente traducir usando la numeración de los símbolos:

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

d. Utilizando el método de Vigenère **decodificar** el siguiente texto, usando la palabra clave hallada en el ítem anterior:

$OZ_LPTSOKMS_BUCBRSNCG$

Ejercicio 3. (10 puntos) Describir el "Método de Fermat" de ataque al RSA, y demostrar la validez del algoritmo planteado.