Homework Assignment 3

Due March 29th by midnight.

SDS 384-11 Theoretical Statistics

- 1. We will use the Efron Stein inequality to obtain bounds of variances for separately convex functions whose partial derivatives exist. A separately convex function $f(x_1, \ldots, x_n)$ is a convex function of its i^{th} variable, when all else are held fixed.
 - (a) Let X_1, \ldots, X_n be independent random variables taking values in the interval [0,1] and let $f:[0,1]^n \to R$ be a separately convex function whose partial derivatives exist. Then $f(X) := f(X_1, \ldots, X_n)$ satisfies

$$var(f(X)) \le E[\|\nabla f(X)\|^2]$$

Hint: Recall that $var(Z) \leq \sum_i E(Z - E_i Z)^2 \leq \sum_i E(Z - Z_i)^2$, where $E_i[Z] = E[Z|X_{1:i-1}, X_{i+1:n}]$. Define $Z_i = \inf_x f(X_{1:i-1}, x, X_{i+1:n})$ and then use convexity of f.

(b) Let A be a $m \times n$ random matrix with independent entries $A_{ij} \in [0,1]$. Let

$$Z = \sqrt{\lambda_1(A^T A)} = \sqrt{\sup_{u \in R^n : ||u|| = 1} u^T A^T A u} = \sup_{u \in R^n : ||u|| = 1} ||Au||$$

Show that $var(Z) \leq 1$.

- 2. In this question we will look at the Gaussian Lipschitz theorem. Consider $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0,1)$
 - (a) Prove that the order statistics are 1-Lipschitz.
 - (b) Now show that, for large enough n,

$$c\sqrt{\log n} \le E[\max_{i} X_i] \le \sqrt{2\log n}$$

where c is some universal constant.

- i. For the upper bound, let $Y = \max_i X_i$. First show that $\exp(tE[Y]) \le \sum_i E \exp(tX_i)$. Now pick a t to get the right form.
- ii. For the lower bound, do the following steps.
 - A. Show that $E[Y] \ge \delta P(Y \ge \delta) + E[\min(Y, 0)]$
 - B. Now show that $E[\min(Y,0)] \geq E[\min(X_1,0)]$
 - C. Finally, relate $P(Y \ge \delta)$ to $P(X_1 \ge \delta)$ by using independence.
 - D. Now show that $P(X_1 \ge \delta) \ge \exp(-\delta^2/\sigma^2)/c$, for some universal constant c.

- E. Choose the parameter δ carefully to have $P(X_1 \geq \delta) \geq 1/n$, for large enough n.
- 3. In class we proved McDiarmid's inequality for bounded random variables. But now we will look at extensions for unbounded R.V's. Take a look at "Concentration in unbounded metric spaces and algorithmic stability" by Aryeh Kontorovich, https://arxiv.org/pdf/1309.1007.pdf. Reproduce the proof of theorem 1. The steps of this proof is very similar to the martingale based inequalities we looked at in class.
- 4. Consider an i.i.d. sample of size n from a discrete distribution parametrized by p_1, \ldots, p_{m-1} on m atoms. A common test for uniformity of the distribution is to look at the fraction of pairs that collide, or are equal. Call this statistic U.
 - (a) Is U a U statistic? When is it degenerate?
 - (b) What is the variance of U? Please give the exact answer, without approximation.
 - (c) For a hypothesis test, we will consider alternative distributions which have $p_i = \frac{1+a}{m}$ for half of the atoms in the distribution and $\frac{1-a}{m}$ for the other half $(0 \le a \le 1)$, for some a > 0. Assume that there are an even number of atoms.
 - i. What are the mean and variance of this statistic under the null?
 - ii. What are the mean and variance of this under the alternative?
 - iii. What is the asymptotic distribution of U under the null hypothesis that $p_i = 1/m$? Hint: you can use the fact that for $X_1, \ldots, X_N \stackrel{i.i.d}{\sim} multinomial(q_1, \ldots, q_k)$, $\sum_{i=1}^k (N_i Nq_i)^2/Nq_i \stackrel{d}{\to} \chi^2_{k-1}$.
 - iv. Under the alternative hypothesis, is it always the case that U has a limiting normal distribution? Can you give a sufficient condition on the sample size n so that this is true?