

About This Document

This purpose of this document is to provide steps on how to setup the evaluation (EV) board.

Revision History

Date	Revision	Description
08-Jul-2018	PCB V1.1	Initial release
21-Nov-2018	Bottom PCB V2	Update bottom PCB V2
22-Nov-2018	Document Preview A	Initial release

Convention

① WARNING	Indicates a hazard with a medium or low level of risk that, if not avoided, could result in minor or moderate injury.
☆ TIP	Indicates a tip that may help you solve a problem or save time.
□ NOTE	Provides additional information to emphasize or supplement important points of the main text.

www.sonix.com.tw 1 SEVB-18ZA

Table of Contents

Con	ventio	n	. 1
Tab	le of C	Contents	. 2
List	of Fig	ures	. 3
1	Overv	riewriew	. 4
2	Interfa	ace Connectors	. 7
	2.1	Introduction	. 7
	2.2	AC Adapter Connector and BAT Connector	. 7
		2.2.1 Circuit Diagrams	. 9
	2.3	J-Link Connector	10
		2.3.1 Circuit Diagram	11
	2.4	CIS/Y Sensor Connector	11
		2.4.1 Circuit Diagram	12
	2.5	NAND Flash/SD Card Connector	13
		2.5.1 Circuit Diagram	14
	2.6	SDIO/SD Slot	14
		2.6.1 Circuit Diagram	15
	2.7	EHCI Host Connector (USB_H)	15
		2.7.1 Circuit Diagram	16
	2.8	USB Device Connector (USB_D)	16
		2.8.1 Circuit Diagram	17
	2.9	Reset Key/ISO WKP Key	17
		2.9.1 Circuit Diagram	18
	2.10	UART/Debug Connector	18
		2.10.1 Circuit Diagram	19
	2.11	SPI Flash Connector	20
		2.11.1 Circuit Diagram	20
	2.12	TFT/8080 Connector	21
		2.12.1 Circuit Diagram	21
	2.13	I ² S Connector	22
		2.13.1 Circuit Diagram	22
	2.14	SAR ADC/PWM Connector	23
		2.14.1 Circuit Diagram	23
3	Conn	ector Pin Assignments	24
	3.1	J-Link Connector (J2)	24
	3.2	CIS Connector (CN5)	
	3.3	SD Card0/l ² C Connector (J5)	25
	3.4	SPI Flash Connector (J8)	25
	3.5	TFT/8080 Connector (J4)	
	3.6	I ² S Connector (J9)	
	3.7	SAR ADC/PWM Connector (J13)	
	3.8	GPIO Pin Assignments	27
4	Lavou	of Overview	26

List of Figures

Figure 1–1	Top View of SNC7320_EV_Board_Top-Vx.x	
Figure 1–2	Top View of SNC7320_EV_Board_Bottom-Vx.x	5
Figure 1–3	Top View of SNC7320_Debug_Board_Vx.x	
Figure 2–1	AC Adapter Connector of Bottom Board	
Figure 2–2	Battery Connector of Top Board	8
Figure 2–3	Circuit Diagram of AC Adapter Connector	9
Figure 2–4	Circuit Diagram of Battery Connector	9
Figure 2–5	J-Link Connector of Top Board	10
Figure 2–6	J-Link Connector of Bottom Board	10
Figure 2–7	Circuit Diagram of JTAG	11
Figure 2–8	CIS Connector	11
Figure 2–9	Y Sensor Connector	
Figure 2–10	Circuit Diagram of the CIS Connector	
Figure 2–11	Circuit Diagram of the Y Sensor Connector	12
Figure 2–12	NAND Flash Connector	13
Figure 2–13	SD Card Connector	13
Figure 2–14	Circuit Diagram of the NAND Flash/SD Card Connector	14
Figure 2–15	SDIO/SD Slot and SD CS/WP Pin	14
Figure 2–16	Circuit Diagram of the SDIO/SD Connector	15
Figure 2–17	EHCI Host Connectors	15
Figure 2–18	Circuit Diagram of the USB Host and WiFi Module	16
Figure 2–19	USB Device Connector	
Figure 2–20	Circuit Diagram of a USB Device	17
Figure 2–21	RESET and ISO WKP	
Figure 2–22	Circuit Diagram of RESET and ISO WKP	18
Figure 2–23	UART Connector of Top Board	18
Figure 2–24	UART Connector of Bottom Board	19
Figure 2–25	Circuit Diagram of UART/Debug	19
Figure 2–26	SPI Flash Connector	
Figure 2–27	Circuit Diagram of SPI Flash Connector	20
Figure 2–28	TFT/8080 Connector	
Figure 2–29	Circuit Diagram of the 8/16/18-bit RGB and 8080 TFT	
Figure 2–30	I ² S Connector	
Figure 2–31	Circuit Diagram of the I ² S Connector	
Figure 2–32	SAR ADC/PWM Connector	23
Figure 2–33	Circuit Diagram of the SAR ADC/PWM Connector	
Figure 4–1	Top View of the 7320_EV_Board_Top-Vx.x	
Figure 4–2	Bottom View of the 7320_EV_Board_Top-Vx.x	
Figure 4–3	Top View of the 7320_EV_Board_ Bottom-Vx.x	
Figure 4–4	Top View of the 7320_EV_Board_ Bottom-Vx.x	31

Overview

The evaluation board of the SNC7320 Series consists of:

- SNC7320_EV_Board_Top-Vx.x¹: Top board
- SNC7320_EV_Board_Bottom-Vx.x: Bottom board
- SNC7320_Debug_Board_Vx.x: Debug board

Top view of each board and the names of the components are provided below.

Figure 1-1 Top View of SNC7320_EV_Board_Top-Vx.x

Names of the components corresponding to the numbers on the figure above are:

- Battery Connector Debug IF Connector
- 3. CMOS Image Sensor (CIS)
- 4. Y Sensor
- Hardware Reset Key
- SD Card CD/WP Pin 6.
- 7. ISO Wakeup Key
- SDIO/SD Connector 8.
- SPI F Flash Connector 9.
- USB Host (EHCI) Connector 10.
- Micro-USB Device Connector

www.sonix.com.tw SEVB-18ZA

 $^{^{1}}$ x = a variable number; may change as the version gets updated.

Top View of SNC7320_EV_Board_Bottom-Vx.x Figure 1-2

Names of the components corresponding to the numbers on the figure above are:

- Power-7.5V AC adapter
- LED x4 2.
- Key x4 3.
- 4. TFT/8080 Connector
- SD Card/NAND Flash/GPIO3 Connector Audio Connectors: 1²S 0–3, 1²C 1–2 5.
- 6.
- SAR0/PWM Interface 7.
- 8. I²C Interface Connector
- 9. I²S4 Interface
- SNC7320_EV_Board_Top-Vx.x Connector 10.
- RF Board Interface 11.
- SPI0 Interface Connector 12.
- Debug IF Connector SPI1 Interface Connector 13.
- 14.
- 15. RF Board Interface
- SD Card/NAND Flash/TFT Connector 16.

Figure 1–3 Top View of SNC7320_Debug_Board_Vx.x

Names of the components corresponding to the numbers on the figure above are:

1. UART Interface Connector

- 2. JTAG Emulator Connector
- Debug IF to connect the Debug IF pin of SNC7320_EV_Board_Bottom-V $\underline{x}.\underline{x}$ and SNC7320_EV_Board_Top-V $\underline{x}.\underline{x}$

6 SEVB-18ZA www.sonix.com.tw

Evaluation Board Manual

2 Interface Connectors

- 2.1 Introduction
- 2.2 AC Adapter Connector and BAT Connector
- 2.3 J-Link Connector
- 2.4 CIS/Y Sensor Connector
- 2.5 NAND Flash/SD Card
- 2.6 SDIO/SD Slot
- 2.7 EHCI Host Connector (USB_H)
- 2.8 USB Device Connector (USB_D)
- 2.9 Reset Key/ISO WKP Key
- 2.10 UART/Debug
- 2.11 SPI Flash Connector
- 2.12 TFT/8080 Connector
- 2.13 I²S Connector
- 2.14 SAR ADC/PWM Connector

2.1 Introduction

The SNC7320_EV_Board_Top-Vx.x and the SNC7320_EV_Board_Bottom-Vx.x are a full function development system. They provide various interfaces such as CIS, SD card, NOR/NAND flash, SRAM, 8080 LCM, TFT LCD, Audio (I²S), USB (device or host), SAR ADC, SPI, I²C, UART, and ...etc. for development of wide range of applications. The subsections below explain how to use each connector and provide circuit diagrams thereof.

2.2 AC Adapter Connector and BAT Connector

There are two power processes on SNC7320 EVB. Their relative of power domain on SNC7320_EV_Board_Bottom-V*x.x* and SNC7320_EV_Board_Top-V*x.x* can depart into two cases below.

Case 1: Use the AC adapter connector (J2) of the bottom board to supply power to the EVB. The bottom board converts the voltage from 7.5V to 5V with a 7805 regulator, and supplies 5V power to the top board. The top board converts the 5V power to 3.3V and provides 3.3V power to the bottom board and the peripherals connected to it.

Figure 2–1 AC Adapter Connector of Bottom Board

Case 2: Use a battery to supply power to the EVB via connector J2 of the bottom board. The supplies 3.3V power to the peripherals connected to the bottom board after the top board converting power from 5V to 3.3V.

Figure 2–2 Battery Connector of Top Board

www.sonix.com.tw 8 SEVB-18ZA

2.2.1 Circuit Diagrams

Figure 2–3 Circuit Diagram of AC Adapter Connector

Figure 2–4 Circuit Diagram of Battery Connector

□ NOTE

When using the SNC7320 EV Board, remember to short JP1 for the power supply of the IC and peripherals.

2.3 J-Link Connector

Case 1: When the bottom board is not attached, connect the debug board to the top board with connector J9. The connector J2 is the connector for J-Link.

Figure 2–5 J-Link Connector of Top Board

Case 2: When the top and bottom boards are both attached, connect the debug board to the bottom board with connector J12. The connector J2 is the connector for the J-Link.

Figure 2-6 J-Link Connector of Bottom Board

www.sonix.com.tw 10 SEVB-18ZA

2.3.1 Circuit Diagram

Figure 2-7 Circuit Diagram of JTAG

2.4 CIS/Y Sensor Connector

Connector CN5 of the top board connects the CIS interface. Since the CIS uses I^2C to initialize the CIS sensor, the connector CN5 includes an I^2C interface.

Figure 2–8 CIS Connector

The connector CN6 of the top board connects the Y sensor interface.

Figure 2–9 Y Sensor Connector

2.4.1 Circuit Diagram

Figure 2-10 Circuit Diagram of the CIS Connector

Figure 2–11 Circuit Diagram of the Y Sensor Connector

www.sonix.com.tw 12 SEVB-18ZA

2.5 NAND Flash/SD Card Connector

Connector J5 is for the NAND flash/SD card interface.

Figure 2–12 NAND Flash Connector

Figure 2–13 SD Card Connector

□ NOTE

When using the SD card, remember to shorten J6 to SDC mode for proper functioning.

2.5.1 Circuit Diagram

Figure 2–14 Circuit Diagram of the NAND Flash/SD Card Connector

2.6 SDIO/SD Slot

The slot shown in the figure below is the slot of the SDIO/SD (CN4) on the top board. $\,$ J1 is the SD CD/WP pin.

Figure 2–15 SDIO/SD Slot and SD CS/WP Pin

2.6.1 Circuit Diagram

Figure 2–16 Circuit Diagram of the SDIO/SD Connector

2.7 EHCI Host Connector (USB_H)

The connectors Host 1 (CN2) and Host 2 (CN3) are for the USB EHCI, also known as USB_H.

Figure 2-17 EHCI Host Connectors

□ NOTE

When using the USB host module, remember to short JP3 for proper functioning. Connect JP4 to 5V.

2.7.1 Circuit Diagram

Figure 2–18 Circuit Diagram of the USB Host and WiFi Module

2.8 USB Device Connector (USB_D)

The connector (CN1) is the plug in for a USB device, also known as USB_D.

Figure 2–19 USB Device Connector

2.8.1 Circuit Diagram

Figure 2-20 Circuit Diagram of a USB Device

2.9 Reset Key/ISO WKP Key

The reset key of the top board is an external hardware reset of the chip. The ISO WKP key is the external hardware wake up of the chip.

Figure 2-21 RESET and ISO WKP

2.9.1 Circuit Diagram

Figure 2-22 Circuit Diagram of RESET and ISO WKP

2.10 UART/Debug Connector

Connector J9 of the top board and connector J12 of the bottom board connects the debug board. CN1 is for the UART.

Figure 2–23 UART Connector of Top Board

Figure 2–24 UART Connector of Bottom Board

2.10.1 Circuit Diagram

UART/Debug

Figure 2–25 Circuit Diagram of UART/Debug

2.11 SPI Flash Connector

Connector J8 of the top board is the SPI flash connector as shown in the figure below.

Figure 2-26 SPI Flash Connector

2.11.1 Circuit Diagram

Figure 2–27 Circuit Diagram of SPI Flash Connector

2.12 TFT/8080 Connector

Connector J4 is the TFT/8080 connector as shown in the figure below.

Figure 2-28 TFT/8080 Connector

□ NOTE

When using the TFT module, remember to Connect JP4 to 3.3V and JP2 to TFT_PWR.

2.12.1 Circuit Diagram

8/16/18 bits RGB/8080 TFT

Figure 2–29 Circuit Diagram of the 8/16/18-bit RGB and 8080 TFT

www.sonix.com.tw 21 SEVB-18ZA

2.13 I²S Connector

Connector J9 is the I²S connector as shown in the figure below.

Figure 2–30 I²S Connector

2.13.1 Circuit Diagram

Figure 2–31 Circuit Diagram of the I²S Connector

2.14 SAR ADC/PWM Connector

Connector J13 is SAR ADC/PWM connector as shown in the figure below.

Figure 2–32 SAR ADC/PWM Connector

2.14.1 Circuit Diagram

SAR ADC/PWM

Figure 2–33 Circuit Diagram of the SAR ADC/PWM Connector

3 **Connector Pin Assignments**

- 3.1 J-Link Connector (J2)
- 3.2 CIS Connector (CN5)
 3.3 SD Card0/l²C Connector (J5)
 3.4 SPI Flash Connector (J8)
- 3.5 TFT/8080 Connector (J4)
- 3.6 I²S Connector (J9)
- 3.7 SAR ADC/PWM Connector (J13)
- 3.8 GPIO Pin Assignments

3.1 J-Link Connector (J2)

Pin No.	Pin Name
1	VDD_33V
2	VDD_33V
3	NC
4	NC
5	NC
6	DGND
7	SWD_DT
8	DGND
9	SWD_CK
10	DGND
11	NC

Pin No.	Pin Name
12	DGND
13	SWO
14	DGND
15	RTSB
16	DGND
17	NC
18	DGND
19	NC
20	DGND

3.2 CIS Connector (CN5)

Pin No.	Pin Name
1	NC
2	GND
3	P0.1
4	3.3V
5	P0.0
6	3.3V
7	P1.2
8	GND
9	P1.3
10	NC
11	3.3V
12	P1.13

Pin No.	Pin Name
13	P1.4
14	P1.12
15	GND
16	P1.11
17	P1.5
18	P1.10
19	P1.6
20	P1.9
21	P1.7
22	P1.8
23	NC
24	NC

Pin	CIS	SD Card	I ² C	NF
P0_0	I2C_SCK	-	I2C_SCK	_
P0_1	I2C_SDA	-	I2C_SDA	-
P0_15	-	-		NF_CS
P1_0	ı	-	ı	NF_RB
P1_1	-	-		NF_ALE
P1_2	CIS_VSYNC	-	ı	NF_WE
P1_3	CIS_HSYNC	ı	I	NF_RE
P1_4	CIS_MCLK	SD_CLK#0		NF_WP
P1_5	CSI_PLCK	SD_CMD#0	ı	NF_CLE
P1_6	D0	SD_D0#0	-	NF_D0

Pin	CIS	SD Card	I ² C	NF
P1_7	D1	SD_D1#0	_	NF_D1
P1_8	D2	SD_D2#0	_	NF_D2
P1_9	D3	SD_D3#0	-	NF_D3
P1_10	D4	-	_	NF_D4
P1_11	D5	-	-	NF_D5
P1_12	D6	-	-	NF_D6
P1_13	D7	_	_	NF_D7

3.3 SD Card0/l²C Connector (J5)

Pin No.	Pin Name
1	P0_4
2	P0_5
3	SPIIF_CS
4	VDD_33V
5	P1_12
6	P1_13
7	P1_10
8	P1_11
9	P1_8
10	P1_9
11	VDD_33V
12	VDD_33V
13	P1_6
14	P1 7

Pin No.	Pin Name
15	SPIIF_MISO
16	SPIIF_SCK
17	P1_2
18	P1_5
19	P1_4
20	P1_3
21	P0_1/GND
22	P0_0
23	VDD_33V
24	GND
25	SD_CD/GND
26	VDD_33V
27	SPIIF_MOSI
28	SD_WP

Pin	CIS	SD Card	l ² C	NF
P0_0	I2C_SCK	-	I2C_SCK	-
P0_1	I2C_SDA	-	I2C_SDA	ı
P0_15	-	_		NF_CS
P1_0	ı	-	ı	NF_RB
P1_1	ı	-	ı	NF_ALE
P1_2	CIS_VSYNC	_		NF_WE
P1_3	CIS_HSYNC	_	_	NF_RE
P1_4	CIS_MCLK	SD_CLK#0	_	NF_WP
P1_5	CSI_PLCK	SD_CMD#0	_	NF_CLE
P1_6	D0	SD_D0#0	_	NF_D0
P1_7	D1	SD_D1#0	-	NF_D1
P1_8	D2	SD_D2#0	_	NF_D2
P1_9	D3	SD_D3#0	-	NF_D3
P1_10	D4	_	_	NF_D4
P1_11	D5	_	-	NF_D5
P1_12	D6	_	-	NF_D6
P1_13	D7	_	-	NF_D7

3.4 SPI Flash Connector (J8)

Pin No.	Pin	SPI Flash
1	P0_13	ED3/HOLD
2	P0_10	MISO
3	P0_8	CS
4	P0_11	MOSI
5	P0_9	SCK
6	P0_12	ED2/WP
7	VDD_33V	VDD
8	DGND	GND

3.5 TFT/8080 Connector (J4)

Pin Name
P3_15
SPIIF_MOSI
P3_14
GND
P3_13
VDD_33V
P3_12
GND
P2_5
P2_6
P2_7
P2_4
SPIIF_SCK
SPIIF_MISO
P2_9
P2_8
VDD_33V
VDD_33V
P2_11
P2_10
P2_13
P2_12
P2_15
P2_14

Pin No.	Pin Name
25	VDD_33V/P4_4
26	SPIIF_CS
27	P0_5
28	P0_4
29	GND
30	P3_2
31	VDD_33V
32	GND
33	GND
34	VDD_33V
35	GND
36	GND
37	P3_4
38	P3_5
39	P3_6
40	P3_3
41	P3_0
42	P3_1
43	P3_8
44	P3_7
45	VDD_33V
46	GND
47	P3_10
48	P3_9

D'	TET/0000	ODI
Pin	TFT/8080	SPI
P0_4	AINO_1	_
P0_5	AINO_2	_
P0_6	=	-
P0_7	_	_
P0_9	-	-
P0_10	-	-
P0_13	_	_
P0_14	_	SPI_CS
P0_15	_	SPI_CLK
P1_0	_	SPI_MISO
P1_1	_	SPI_MOSI
P2_4	HSYNC/LCM_RE	_
P2_5	VSYNC/LCM_WE	_
P2_6	DE/LCM_CS	_
P2_7	DCLK/EA0	_
P2_8	ED0	_
P2_9	ED1	_
P2_10	ED2	_
P2_11	ED3	
P2_12	ED4	-
P2_13	ED5	_
P2_14	ED6	_
P2_15	ED7	_
P3_0	ED8	_
P3_1	ED9	_
P3_2	ED10	_
P3_3	ED11	_
P3_4	ED12	_
P3_5	ED13	_
P3_6	ED14	_
P3_7	ED15	_

Pin	TFT/8080	SPI
P3_8	ED16	-
P3_9	ED17	-

3.6 I²S Connector (J9)

Pin No.	Pin Name	l ² S
1	P2_0	SDOUT
2	P1_14	MCLK
3	P2_1	BCLK
4	P1_15	SDIN
5	P2_2	WS
6	P2_3	P2_3
7	VDD_33V	VDD
8	GND	GND

3.7 SAR ADC/PWM Connector (J13)

Pin No.	Pin Name	SAR_ADC	
1	P0_4	AINO_0 (SAR0)	(CT32B0_PWMIO#21)
2	P0_5	AINO_1 (SAR0)	(CT32B0_PWMIO#20)
3	P0_6	AINO_2 (SAR0)	(CT32B0_PWMIO#19)
4	P0_7	AINO_3 (SAR0)	(CT32B0_PWMIO#18)
5	P4_2	AINO_4 (SAR0)	CT32B0_PWMIO#5
6	P4_3	AINO_5 (SAR0)	CT32B0_PWMIO#4
7	GND	GND	
8	VDD_33V	VDD	

3.8 GPIO Pin Assignments

Pin No.	Pin Name	
P0_0	J5_Pin22, J10_Pin1, CN5_Pin5	
P0_1	JP1_Pin3, J10_Pin2, CN5_Pin3	
P0_2	J9_Pin2, J12_Pin2	
P0_3	J9_Pin3, J12_Pin3	
P0_4	J4_Pin28, J5_Pin1, J13_Pin1	
P0_5	J4_Pin27, J5_Pin2, J13_Pin2	
P0_6	JP3_Pin1, JP14_Pin1, J13_Pin3	
P0_7	J13_Pin4	
P0_8	J8_Pin3, J19_Pin13, J23_Pin13	
P0_9	J8_Pin5, J19_Pin11, J23_Pin11	
P0_10	J8_Pin2, J19_Pin9, J23_Pin9	
P0_11	J8_Pin4, J19_Pin7, J23_Pin7	
P0_12	J8_Pin6, J19_Pin5, J23_Pin5	
P0_13	J8_Pin1, J19_Pin3, J23_Pin3	
P0_14	J4_Pin26, J5_Pin3	
P0_15	J4_Pin12, J5_Pin16	
P1_0	J4_Pin14, J5_Pin15	
P1_1	J4_Pin2, J5_Pin27	
P1_2	J5_Pin17	
P1_3	J5_Pin20	
P1_4	J5_Pin19, J23_Pin14	
P1_5	J5_Pin18, J19_Pin12, J23_Pin12	
P1_6	J5_Pin13, J19_Pin10, J23_Pin10	
P1_7	J5_Pin14, J19_Pin8, J23_Pin8	
P1_8	J5_Pin9, J19_Pin6, J23_Pin6	
P1_9	J5_Pin10, J19_Pin4, J23_Pin4	
P1_10	J5_Pin7, J19_Pin2, J23_Pin2	

Pin No.	Pin Name
P1_11	J5_Pin8
P1_12	J5_Pin5
P1_13	J5_Pin6
P1_14	J9_Pin2
P1_15	J9_Pin4
P2_0	J9_Pin1
P2_1	J9_Pin3
P2_2	J9_Pin5
P2_3	J9_Pin6
P2_4	J4_Pin12
P2_5	J4_Pin9
P2_6	J4_Pin10
P2_7	J4_Pin11
P2_8	J4_Pin16
P2_9	J4_Pin15
P2_10	J4_Pin20
P2_11	J4_Pin19
P2_12	J4_Pin22
P2_13	J4_Pin21
P2_14	J4_Pin24
P2_15	J4_Pin23
P3_0	J4_Pin41, J11_Pin13
P3_1	J4_Pin42, J11_Pin14
P3_2	J4_Pin30, J11_Pin2
P3_3	J4_Pin40, J11_Pin12
P3_4	J4_Pin37, J11_Pin9
P3_5	J4_Pin38, J11_Pin10

Pin No.	Pin Name
P3_6	J4_Pin39, J11_Pin11
P3_7	J4_Pin44, J11_Pin16
P3_8	J4_Pin43, J11_Pin15
P3_9	J4_Pin48, J11_Pin20
P3_10	J4_Pin47, J11_Pin19
P3_11	J11_Pin22
P3_12	J11_Pin21, J18_Pin7, J22_Pin7
P3_13	J11_Pin24, J18_Pin6, J22_Pin6
P3_14	J11_Pin23, J18_Pin5, J22_Pin5
P3_15	J4_Pin1, J11_Pin26, J18_Pin4,
	J22_Pin4
P4_0	J11_Pin27, J18_Pin3, J22_Pin3
P4_1	J11_Pin28, J18_Pin2, J22_Pin2
P4_2	J13_Pin5

SONIX TECHNOLOGY CO., LTD.

Pin No.	Pin Name
P4_3	J13_Pin6
P4_4	JP2_Pin1
P4_5	J12_Pin6
P4_6	J12_Pin4
P4_7	J12_Pin3
P4_8	J7_Pin7, J8_Pin7, J25 Pin1
P4_9	J7_Pin8, J8_Pin8, J25 Pin2
P4_10	J7_Pin9, J8_Pin9
P4_11	J7_Pin10, J8_Pin10
P4_12	J7_Pin11, J8_Pin11
P4_13	J7_Pin12, J8_Pin12
P4_14	J7_Pin13, J8_Pin13
P4_15	J7_Pin14, J8_Pin14

4 Layout Overview

Figure 4–1 to Figure 4–2 show top and bottom view of the top EVB.

Figure 4–1 Top View of the 7320_EV_Board_Top-Vx.x

Figure 4–2 Bottom View of the 7320_EV_Board_Top-Vx.x

Figure 4–3 to Figure 4–4 show top and bottom view of the bottom EVB.

Figure 4–3 Top View of the 7320_EV_Board_ Bottom-Vx.x

www.sonix.com.tw 30 SEVB-18ZA

Figure 4–4 Top View of the 7320_EV_Board_ Bottom-Vx.x

TERMS AND CONDITIONS

- 1. <u>Content</u>: SONiX Technology Co. Ltd. ("SONiX") provides the information in this document as a convenient reference for its customers who use its products. While SONiX takes care to prepare this information, it may contain typographical errors or outdated technical information as SONiX will continue to update its integrated chip products with enhancements, improvements and other changes to better serve the needs of its customers. This document covers products offered in Taiwan and may not reflect the products offered in other countries. Users of this document should inquire of the appropriate SONiX representative to obtain the latest relevant information concerning the product(s) in question before placing their order. All SONiX's products are sold subject to SONiX's terms and conditions of sale that are supplied at the time of order.
- 2. No Warranty: The information contained herein is presented only as a reference for product use. Unless expressly set forth otherwise, SONiX does not warrant or represent that any license, either express or implied, is granted by this document relating to any combination, machine, or process in which SONiX products are used (or to be used). Information in this document regarding third-party products is not a license for use of such products, or a warranty or endorsement thereof. No license to any intellectual property is granted by this document, whether express or implied, by estoppel or otherwise. Absent a written signed agreement or except as provided in the relevant terms and conditions of sale for the products, and to the maximum extent allowable by law, (1) SONIX ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION, AND LOSS OF DATA, AND (2) SONIX DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- 3. <u>Customers' Use</u>: SONIX ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGNS OR APPLICATIONS of the products covered by the document. While from time to time SONIX may be asked to assist users of its products, SONIX assumes no liability for assistance with, or the design of, users' own application of SONIX's products, including but not limited to: (a) determining the appropriateness of the use of SONIX products in the desired design or application; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or other referenced documents; and (c) validating all operating parameters for such designs and applications. Finally, SONIX products shall not be used for, or incorporated into, any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- 4. Improper & Unintended Use: SONIX'S PRODUCTS ARE NOT INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY OR RELIABILITY, OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE, OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the military or aerospace industry, medical equipment, equipment used for automobiles, trains, ships, and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators, and escalators, devices related to electric power, and equipment used in finance-related fields. Further, only those products that SONIX has specifically designated as "military grade" are designed and intended for use in military or aerospace applications or environments. Users acknowledge and agree that any military or aerospace use of SONIX products that have not been so designated is solely at the user's risk, and that the user is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
- 5. <u>Confidentiality</u>: The information contained herein is confidential and only for the intended customer, and may not be used, disclosed or published without the prior written consent of Sonix.

SONIX Technology

Headquarter

10F-1, No.36, Taiyuan Street, Zhubei City, Hsinchu, Taiwan Tel: +886-3-5600-888

Fax: +886-3-5600-889

http://www.sonix.com.tw/masterpage-en

Japan Office

Kobayashi bldg. 2F, 4-8-27, Kudanminami, Chiyodaku, Tokyo,

102-0074, Japan Tel: +81-3-6272-6070 Fax: +81-3-6272-6165 jpsales@sonix.com.tw

Shenzhen Office

High Tech Industrial Park, Shenzhen, China Tel: +86-755-2671-9666

Fax: +86-755-2671-9786

mkt@sonix.com.tw | sales@sonix.com.tw

United States Representative

Tim Lightbody
Tel: +1-714-330-9877
usa@sonix.com.tw

Taipei Office

15F-2, No.171, Song Ted Road,

Taipei, Taiwan

Tel: +886-2-2759-1980 Fax: +886-2-2759-8180

mkt@sonix.com.tw | sales@sonix.com.tw

Hong Kong Office

Unit 2603, 26/F CCT Telecom Building, No. 11, Wo Shing Street, Fo Tan, New Territories, Hong Kong

Tel: +852-2723-8086 Fax: +852-2723-9179 hk@sonix.com.tw

Chengdu Office

Tian Fu Software Park, Cheng Du City, China Tel: +86-28-8533-1818 Fax: +86-28-8533-1816

mkt@sonix.com.tw | sales@sonix.com.tw