Fórmulas para estimar los caudales máximos efluentes de ruptura de represas brasileñas en el siglo XXI

Carolina Icho¹, Rodolfo Scarati²

¹Candidato a Ms, Escuela de Ingeniería, Universidad de Sao Paulo, carolina.icho@usp.br

²Profesor Asociado, Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Universidad de São Paulo, scarati @usp.br

Resumen

Para predecir la inundación resultante después de la ruptura de una presa se han desarrollado muchos enfoques computacionales y empíricos a lo largo de la historia. Todos ellos incluyen una cierta cantidad de parámetros y están destinados a ayudar a los ingenieros con estimaciones rápidas y planificación de estudios más detallados. En este artículo, nuestro objetivo es evaluar las diferentes fórmulas empíricas propuestas por investigadores del área para estimar el caudal pico efluente de ruptura de represas y comparar los resultados de dos estudios de casos diferentes, el desbordamiento y la ruptura por Piping de las represas Jurumirim y Chavantes. Además, se implementó el software HEC-RAS como referencia para calcular los caudales pico efluentes. Debido a la gran cantidad de fórmulas disponibles, se empleó un análisis estadístico para evaluar y clasificar los resultados. Finalmente, se discutirá la pertinencia y rango de aplicación de las fórmulas.

Introducción

Para minimizar las pérdidas asociadas con la ruptura de una represa, la Política Nacional de Seguridad de Represas de Brasil desde 2010 exige la elaboración de un Plan de Riesgo (ANA, 2010) que incluye la estimación de los impactos potenciales de la ruptura de una represa y el correspondiente Plan de Acción de Emergencia (PAE) cuyo objetivo es reducir las pérdidas humanas, de infraestructura y de biodiversidad. El PAE contiene información como los mapas de inundación y los procedimientos a realizar en casos de emergencia (Lauriano, 2009). Estos se estiman a partir de la previsión y cálculo de niveles máximos de inundación, velocidades de agua y caudales máximos resultantes de los escenarios de ruptura. Para garantizar la seguridad de las estructuras hidráulicas, la normativa brasileña exige una actualización constante del Manual de Seguridad de Presas (ANA, 2016) que describe el procedimiento de inspección de seguridad de presas. De esta manera, es sumamente importante la necesidad de desarrollar herramientas útiles y prácticas para clasificar la amenaza, planificar acciones de emergencia, mapear y evaluar los riesgos potenciales (Graham, 1998). Una de estas herramientas es la modelización del flujo de efluentes de la ruptura de una presa, mediante enfoques empíricos, matemáticos y computacionales. El modelado computacional utiliza modelos matemáticos y numéricos que predigan los fenómenos hidráulicos e hidrológicos.

Un modelo computacional bien conocido es el software HEC-RAS (Brunner, 1995) por ser una herramienta gratuita y simplificada ya que requiere pocos datos de entrada y puede presentar un panorama sintetizado de los estudios unidimensionales de flujo constante, del flujo inestable unidimensional y bidimensional, de los cálculos de transporte de sedimentos/lecho móvil y modelado de temperatura y calidad del agua para una completa red de cauces naturales y/o artificiales. Además, es gratuito y funciona con pequeñas simplificaciones de la ecuación de Saint Venant, que usa el método implícito de diferencias finitas proporcionando un alto grado de precisión y confiabilidad (Mbajiorgu, 2017).

De este modo, se utilizará el software HEC-RAS para evaluar y comparar el desempeño de diversas fórmulas empírico-prácticas propuestas por investigadores en el área a fin de estimar el caudal máximo efluente de la ruptura de una represa por Piping y Overtopping en una situación de emergencia. Consecuentemente, el objetivo de este proyecto es identificar fórmulas prácticas y comparar sus resultados con un enfoque más sofisticado utilizando dos casos de estudio: Las represas Jurumirim y Chavantes, dos unidades hidroeléctricas ubicadas en el estado de São Paulo, Brasil.

Material y Métodos

Se seleccionaron diversas fórmulas para estimar el caudal pico efluente de ruptura (Tabla 1) cuyos parámetros se registraron a partir de los planos de diseño de las estructuras de estudio (Figura 1) y (Figura 2) y reportes de estudio de ruptura de represas (FCTH, 2003).

Author	Formula	Depends on
Plence (2008) ¹	$Qp = 0.784 \times Hw^{2448}$	Hw
Pierce (200f) ²	$Qp = 2.325 \times Ln(Hw)^{6.401}$	Hw
Plence (2008)*	$Qp = 0.00919 \times V^{0.785}$	V
Singh and Snorrason (1984)	$Qp = 1.776 \times V^{0.67}$	v
U. S. Bureau of Reclamation (1982) Enveloped Equation	$\mathrm{Qp} = 19.1 \times \mathrm{hw}^{1.03}$	hw
Soil Conservation Service (1981) apud Wahl (2008)	$\mathrm{Q}p = 16.6 \times \mathrm{hw^{3.05}}$	hw
Singh and Snorrason (1984) ²	$Qp=13.4\times H^{1.09}$	н
Singh and Snomason (1984) ³	$Q\mathbf{p} = 1.776 \times V^{0.47}$	v
Costa (1985) ^a	$Qp = 1.122 \times V^{0.57}$	v
Evans (1986)	$0p = 0.72 \times V^{4.03}$	V
Lou (1981) apud Faria (2019)	$\mathrm{Qp} = 7.683 \times \mathrm{H}^{\mathrm{LWO}}$	н
Fraehlich (1995b)	$Qp = 0.607 \times V^{0.215} \times hw^{1.24}$	V, Itw
MacDonald and Langridge - Monopolis (1984)	$Qp = 1.154 \times (V \times hw)^{0.412}$	V. Frw
MacConald and Langridge - Monopolis (1984) Enveloped equation	$Qp = 3.85 \times (V \times hw)^{0.411}$	V, hw
Hagen(1982)*	$Qp = 0.54 \times (V \times H)^{0.5}$	V, H
Hagen[1982] [‡]	$Qp = 1.205 \times (H \times V)^{0.40}$	V.H
Vertedor de saleira espessa - Singh (1996) apud Faria (2019)	$Qp = 1.7 \times b \times h^{\frac{b}{2}}$	lich
Costa [1985] ²	$Op = 0.981 \times (S \times H)^{0.42}$	5.H
Costa (1985) Envolved Equation	$0p = 2.634 \times (S \times H)^{0.44}$	5,8
Wetmore e Fread (1981) apud Farte (2019)	$Qp = 1.7 \times Bt \times \left\{ \frac{1.94 \times \frac{As}{Bb}}{Tp + \left[\frac{1.94 \times As}{Bb \times \sqrt{H}} \right]} \right\}^3$	As,H
Xu and Zhang (2009)	$\frac{Qp}{\sqrt{g \times V^{5/3}}} = 0.175 \times \left(\frac{H}{Hr}\right)^{0.190} \times \left(\frac{V^{1/3}}{hw}\right)^{-1.274} \times e^{56}$	V.H.Hw
Mohamed (2001) ⁴	$Qp = 0.98 \times A \times \sqrt{2 \times g \times (Hw - Hp)} \qquad \text{(disalphing)}$	A.Hw.Hp
Apud NRCS (2005)	$Qp = 65 \times Hw^{1.05}$ $Qp = 1.1 \times Br^{1.45}$	Hw, V,Ab
Saint Venant apud Faria (2019)	$Qp = \frac{8}{27} \times h \times \sqrt{g} \times Y_{musto}^{\frac{3}{2}}$	fo,Hw,hmin-op
Mohamed (2001)	$Qp = 3 \times b \times (Hw - Hc)^{1.5}$	b,Hw,Hc
Macchione (2008)*	$Qp = \left(\frac{1}{2} \times g\right)^{1/2} \times \left(\frac{4}{5} \times (Hw - Y)\right)^{5/2} \times \tan(\beta)$	Pfw,B,m,H
Macchione(2008) ²	$Qp = \left(\frac{1}{2} \times g\right)^{1/2} \times (Hw(Hw - 2Y))^{1/2} \times (Hw - Y)^{-1/2} \times \tan(\beta)$	-

Tabla 1. Fórmulas para estimar el caudal pico efluente de una ruptura de represa. Fuente: Autor

En primer lugar, se utilizó el software HEC-RAS (Figura 1) con la información de cada caso simulado (Tabla 2) y (Tabla 3) que variando la geometría de su brecha, las condiciones de contorno, en la elevación inicial de Pipping, WS inicial en algunos casos, la elevación del área inundada por la ruptura y tiempo de formación de la brecha. Así mismo, fue necesario adoptar una brecha equivalente de forma simétrica trapezoidal o triangular para que pueda ser registrado en el software.

	Jurumirin	Dam					71				furn	mirio	Dam					_			_
	imulation	1	12	3	14	5	Sin	nulation	-6	-5	2010	6	50	-11	12	13	14	15	16	-170	18
Center Sta	ition of the breach	5035	14000	1110	-	3035	Common formación realizable de Child de	on of the breach	and the same of	3035	3035	3035	3035	3035	3035	-	3035	-	1110	1110	1110
	n Longitudinal Width	25	68	260	25	68	CONTRACTOR OF THE PARTY OF THE	Longitudinal Width	25	25	25	25	25	25	25	68	25	68	260	260	260
	ottom Elevation	533	539	554	533	539		tom Elevation	533	533	533	533	533	533	533		533	539	554	554	554
	t Side Stope	6.4	6.4	8	6.4	6.4	100000	Side Slope	5.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	8	В	8
	M Side Slope	2.7	2.7	- 11	2.7	2.7		Side Slope	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	8	8	8
Breach	Weir Coefficient	1.44			100000000000000000000000000000000000000	24	Sec.	2.7	21	201	21		2.7	4.7	43	.0	- 0	D			
Breach Formation Time (hrs) 7.35		managed and the second	Veir Coefficient	2.2		-				1.44	- 14			1-1-1							
Failure Mode Piping		the state of the s	nation Time (hrs)	7.17	7.27	7.17	7.27	7.27				7.17	7.17	7,17	7.17	7.17					
Piping Coefficient 0.5			re Mode	Directopping																	
Initial i	Piping Elevation	550 550 554 568 568		Trigge	r Failure at	WS Elev															
Trigger Failure at WS Elev		Sta	rting WS	548	568	568	568	568	568	568	568	568	568	568	568	568					
Starting WS 568				Top of D	am Elevation	570	570	570	570	570	570	570	570	570	570	570	570	570			
Top of Dam Elevation			570			Breach Bottom Elevation		539	539	539	539	539	539	539	539	539	539	539	539	539	
Breach Bottom Elevation 533		Pogl Eleve	stion at Failure	568	570	568	570	570	570	568	568	568	568	568	568	568					
Pool Elevation at Failure 568		Pool Vols	rne at Failure	7750000																	
Pool Vo	olume at Failure		-3	10000	0		Dam C	Dam Crest Width 6													
Dam	Crest Width			6			the state of the state of the state of	Jam Face Z1 (H:V)													
Slope of US	Dam Face Z1 (H:V)			6.4			-		0												
Slape of US	Dam Face Z2 (H:V)			2.7			State 20 20 20 20 20 20 20 20 20 20 20 20 20							_							
Lor	rth Fill Type	91	Fine II	amoga	neou	17	-	Fine Homogeneous													
- 1	Dam Type	0	oncret	te - fac	ed da	mi i	Da	Concrete - faced dam													
Den	n Erodibility	High	High	High	High	High.	Dam	Erodibility			-		-		High					-	
	05/jan			800	1000000	-	-	05/ian	800		1000				-					-	_
- 3	04/jan			800			100 V/S-	06/jan	800	800	A STORY SHOWN	Mark Street	1500	property for a	-		Participation of	1200	-	1200	-
Boundary	07/jan			800			Boundary	07/jan	800	800	1500		2000	-		_	-	1500			_
conditions	08/jan			800			conditions	08/jan	800	800	1800	200	2500	34.4.4	77.47		-	1800		1800	1800
	09/jan			800				09/jan	800	800	2000	2000	3000	2000	3000	800	2000	2000	800	2,000	2000
. 0	10/jan			800				10/jan	800	800	2500	2500	3800	2500	3800	800	2500	2500	800	2500	2500

Tabla 2. Datos de entrada de la Represa Jurumirim en el software HEC-RAS. **Fuente:** Autor

l e	Chavantes Dam	-	GED-Aug				
Sin	nulation	1	2				
Center Stati	133	315					
Final Bottom I	Longitudinal Width	- 5	00				
Final Bot	tom Elevation	- 4	10				
Left 3	side Slope	2					
Right	Side Slape	3					
Breach W	eir Coefficient	1.44					
Breach Form	nation Time (hrs)	10	.86				
Faille	ire Mode	Pip	going				
Piping	Coefficient	0,5					
Initial Pip	oing Elevation	421	473.5				
Trigge	r Failure at	WS	WS Elev				
Sta	rting WS	474					
Top of D	479.5						
Breach Bo	ttom Elevation	391.8					
Pool Eleve	ition at Failure	474					
Pool Volu	ime at Failure	8800000					
Dam C	rest Width	11					
Slope of US C	am Face Z1 (H:V)	0.9					
Slope of US C	Xam Face Z2 (H:V)	0.9					
Earth	Non- homogeneous or Rockfill						
	m Type	20.011	with				
Dam	Erodibility	_	igh				
	05/jan	35	500				
Name of the	06/jan	3500					
Boundary	07/jan	_	500				
conditions	08/jan	35	500				
	09/jan	3500					
	10/jan	3500					

	Chava	ntes Da	m	77	_	11					
Sim	nulation	3	4	5	6	7					
Center Stati	on of the breach	1315									
Final Bottom I	ongitudinal Width	500									
Final Bott	tom Elevation	410									
Left S	Side Slope	2									
Right	Side Slope	3									
Breach W	eir Coefficient	1.44									
Breach Forn	nation Time (hrs)	11.12	11.12	11.12	11.19	11.19					
Failu	ire Mode	Overtopping									
Trigge	r Failure at		- 1	NS Elev	V.						
Star	rting WS	474									
Top of D	479.6										
Breach Bo	391.8										
Pool Eleva	474	474.5	474	474	475.5						
Pool Volu	ime at Fallure	9500000									
Dam C	rest Width	11									
Slope of US D	am Face Z1 (H:V)	0.9									
Slope of US D	am Face Z2 (H:V)	0.9									
Earth	Fill Type	Non-homogeneous or Rockfill									
Da	m Type	Dam with corewall									
Dam	Erodibility	High									
	05/jan	3500	3500	5000	5000	5000					
	06/jan	3500	3500	8000	8000	8000					
Boundary	07/jan	3500	3500	10000	10000	10000					
conditions	08/jan	3500	3500	12000	12000	12000					
Serve to leave to the	09/jan	3500	3500	20000	20000	20000					
	10/jan	3500	3500	35000	35000	35000					

Tabla 3. Datos de entrada de la Presa Chavantes en el software HEC-RAS. **Fuente:** Autor

Figura 1. Implementación del software HEC-RAS en la represa Chavantes y la represa Jurumirim.

Figura 2. Vista de planta y corte de la represa Chavantes. Fuente: FCTH (2003)

Figura 3. Plano transversal de la represa de concreto Jurumirim. Fuente: FCTH (2003)

Resultados y discusión

El software HEC-RAS nos brindó información sobre el caudal y volumen máximo en 5 casos de ruptura de Piping y 13 casos de ruptura por Overtopping simulados en la Represa Jurumirim (Figura 4). También se analizaron dos casos de ruptura por Piping y 5 casos de ruptura por rebosamiento en la presa Chavantes (Figura 5).

Figura 4. Caudal máximo efluente de ruptura de la represa Jurumirim. Fuente: Autor

Figura 5. Caudal máximo efluente de ruptura de la represa Chavantes. **Fuente:** Autor

Estos resultados se compararon con los resultados generados a partir de las fórmulas propuestas por los autores mencionados. Podemos observar el siguiente cuadro comparativo del caso 7 con ruptura por Overtopping en la represa de Jurumirim. En este caso, el caudal calculado por el software HEC-RAS es igual a 39871,1 m3/s (Figura 6).

Figura 6. Cuadro comparativo de los caudales máximos efluentes de ruptura de brecha calculados por el software HecRas (gris oscuro) y por las fórmulas propuestas (gris claro). **Fuente:** Autor

Se calculó y clasificó el grado de incertidumbre entre los resultados proporcionados en cada caso de la represa Jurumirim y de la represa Chavantes usando el software HEC-RAS y los generados por las fórmulas propuestas (Figura 7) y (Figura 8). Podemos ver que muy pocas fórmulas son capaces de predecir resultados cercanos a los que obtuvieron HEC-RAS independientemente de la cantidad de parámetros considerados lo que nos permite postular que la correcta selección de la información a utilizar con las fórmulas es más importante que la parametrización detallada.

Figura 7. Grado de incertidumbre entre los resultados proporcionados en cada caso por el software HEC-RAS y los generados por las fórmulas propuestas en la represa Jurumirim. **Fuente:** Autor

Figura 8. Grado de incertidumbre entre los resultados proporcionados en cada caso por el software HEC-RAS y los generados por las fórmulas propuestas en la represa Chavantes. **Fuente:** Autor

El caso 12 (Ruptura por desborde en la presa Jurumirim) y el caso 5 (Ruptura por Overtopping en la represa Chavantes) no fueron considerados en el análisis debido a sus resultados inconsistentes o por la imposibilidad de ser simulados en el software HEC-RAS. Tomando en consideración que el número de casos restantes es válido y confiable, se puede seleccionar de 3 a 5 fórmulas que realmente se aproximen más a los resultados del software HEC-RAS simulado en ruptura por Piping y Overtopping.

Según Wahl (2004), las predicciones del flujo máximo tienen incertidumbres de alrededor del 50 % al 100 % en el orden de magnitud, excepto la ecuación del flujo máximo de Froehlich que tiene una incertidumbre de alrededor del 33 % de orden de magnitud. Afirmación que fue parcialmente verificada debido a que los valores resultantes de este estudio tienen un rango de 10% -50%. Además, el propuesto por Froehlich es el más preciso que se ha analizado.

Se usó un análisis de regresión lineal múltiple para desarrollar una ecuación que prediga el flujo de salida máximo de la ruptura de represa de terraplén (Froehlich, 1995b). Aunque inicialmente la fórmula propuesta por Froehlich y Macchione fue analizada para este material de represas, tambien tienen un buen desempeño cuando se comparan con los resultados de las simulaciones realizadas en la represa Jurumirim usando el software Hec Ras.

Por otro lado, Pierce amplió la base de datos de brechas en terraplenes con 44 estudios de casos, lo que generó una base de datos de 87 casos. Se realizaron análisis de regresión lineal, lineal compuesto, curvilíneo y multivariable en la base de datos compuesta para desarrollar las mejores relaciones de ajuste y envolvente que correlacionan la altura del agua detrás de la presa (H), el volumen de agua detrás de la presa (V), el factor de presa (HV), la altura agua detrás de la presa (H), el volumen de agua detrás de la presa (V) y pico de descarga Qp (Pierce, 2010).

Por otro lado, respecto al Hidrograma con Decaimiento Parabólico que representa el tiempo de vaciado de manera más paulatina que la triangular y más consistente en represas de tierra pues los tramos de descenso buscan representar un decaimiento aproximadamente exponencial (Faria, 2019).

Finalmente, en base a los resultados obtenidos, casos analizados y literatura del tema se recomienda el uso de las fórmulas propuestas por Froehlich (1995b) y Singh (1996) para represas de concreto y la fórmula de Pierce (2008) para represas de tierra. En segunda instancia, se recomienda utilizar las fórmulas postuladas por Mohamed (2001) para represas de concreto, las propuestas por MacDonald Envelope (1984) y Evans (1986) para represas de tierra.

Adicionalmente, se encontraron fórmulas para el cálculo de otras variables de ruptura (Tabla 4). Podemos observar que existe un amplio panorama de estudio que podría ser analizado en el futuro abriendo paso a más investigaciones sobre el tema.

Secretary and the	Amount of	"n" input variables								
Variable to calculate	formulas.	n=1	n=2	n=3	med	n=5	nn6	ne7		
Peak Flow	26	11	7	4	1	2	1.	.0		
Breach formation time	В	3	4	0	0	0	1	0		
Volume eroded	2	0	2	0	0	0	0	0		
Breach area	4	.0	0	3	1	0	0	0		
Average breach width	1	. 0 .	0	1	0	0	.0	0		
Erosion rate	- 6	.0	0	0	2	0	1	. 3		
Breach width as a function of time	4	. 0	0	0	1	1	2	0		
Breach height as a function of time	1	0	0	0	1	0	0	0		
Bate of water depletion	5	0	0	0	1	1	2	1		

Tabla 4. Clasificación de las fórmulas para el cálculo de variables de ruptura. Fuente: Autor

Conclusiones

Este artículo resume las contribuciones más importantes para predecir el caudal de ruptura de una represa a partir de una revisión histórica de las fórmulas postuladas y comparación de los resultados obtenidos de un modelo computacional. Es por ello que se revisó la literatura del tema donde se encontraron más de 50 formulaciones.

En general, en la represa Jurumirim, las fórmulas más precisas en todos los casos son las fórmulas propuestas por Froehlich (1995B) y Singh (1996). En segundo lugar, la fórmula propuesta por Mohamed (2001) es precisa en la mayoría de los casos analizados. En tercer lugar, se cumplen en algunos casos las fórmulas propuestas por el U.S. Army corps of Engineering, por Macchione, por Costa (1985) 2 y por MacDonald (1984).

En cambio, en el caso de la presa Chavantes, la fórmula más precisa en todos los casos es la propuesta por Pierce (2008). En segundo lugar, la fórmula propuesta por Evans (1986) y la ecuación Enveloped de MacDonald (1984) que cumple en la mayoría de los casos analizados. En tercer lugar, en algunos casos de ruptura por Piping se cumplen las fórmulas de Xu y Zhang (2009), Costa (1985) ecuación de evoltoria, Hagen (1982) y MacDonald (1984).

Se encontraron limitaciones en algunas ecuaciones homogéneas debido a una limitada descripción de los parámetros que suelen se difusas para el usuario final. Incluso, las simulaciones 1D HEC-RAS también pueden criticarse en términos de precisión por la limitada representación simétrica de la brecha, flujos de alta concentración de sedimentos, etc.