Ejercicios prácticos- CPU y Memoria

Ejercicio 1.- Realiza los siguientes **cálculos de tiempo de acceso a memoria** según la latencia / frecuencia dada en cada uno de los casos.

- a) Latencia 2 5 4 6 / Frecuencia 500MHz
- b) Latencia 8 7 7 6 / Frecuencia 125MHz
- c) Latencia 1 2 3 4 / Frecuencia 125KHz
- d) Latencia 4 3 4 8 / Frecuencia 0,25GHz
- e) Latencia 3 3 1 2/ Frecuencia 100000MHz
- f) Latencia 9 2 1 2 / Frecuencia 80MHz

Ejercicio 2.- Realiza los siguientes cálculos según el direccionamiento que se utilice y los datos expuestos en la memoria dada.

23	@1
12	@2
@1	@3
4	@4
3	@5
2	@6
@3	@7
12	@8
@2	@9
@ 9	@10

- Suma 3 4 (inmediato)
- Mul @2 @6 (directo absoluto)
- Res 3 1 (directo relativo a @5)
- Div 12 6 (inmediato)
- Res @1 @8 (directo absoluto)
- Res @7 @10 (indirecto)
- Res 6 0 (directo relativo a @2)
- Sum @10 @7 (indirecto)

Ejercicio 3.- Realiza los siguientes cálculos en orden secuencial según el direccionamiento que se utilice y los datos expuestos en la memoria dada. Actualiza los datos de la memoria según las operaciones que vayas realizando y la dirección donde se deba actualizar.

@1	17
@2	14
@3	21
@4	6
@5	2
@6	43
@7	50
@8	12
@9	@1
@10	@2
@11	@3
@12	@4
@13	@5
@14	@6
@15	@9
@16	@10
@17	@11
@18	@12
@19	@13
@20	@14

- Sum 7 6 @1 (inmediato)
- Res @1 @2 @3 (directo absoluto)
- Mul @18 @19 @4 (indirecto)
- Div @8 @4 @1 (directo absoluto)
- Mul @9 @10 @5 (indirecto)
- Res 2 3 @6 (relativo a @1)
- Sum 0 1 @8 (relativo a @6)

Ejercicio 3.- Calcula el ancho de banda de una memoria RAM de 64 bytes con una frecuencia de 360000KHz.

Ejercicio 4.- Calcula el ancho de banda de una memoria RAM DDR3 de 1024 bits sabiendo que por segundo se ejecutan 80000000 ciclos de reloj.