insured, turn the utili again, and regrind the nest half to insure having both sides alike.

marks upon the scale, as the drill is turned.

in order to make the requirements more clear.

II.-FORMULAS FOR STRENGTH OF FLAT PLATES.

I.-FORMULAS FOR STRENGTH OF FLAT PLATES

- 100								3
Author and Reference	Formulas as given by Author	Total Load W = PL ²	Unit Fiber Stress in Pounds per Square Inch f -	t2_	Thickness Plate in Inches t=	L2_	Clear Span Between Supported Edges L=	Uniform Load per Unit of Surface P=
Grashof, Trautwines C.E. Pocket Book 1906, Page 493-494	$f = \frac{CL^2P}{4t^2}$ $P = \frac{4ft^2}{CL^2}$	3.56 ft ²	0.28 W	0.28 W/f	0.53√ W	t.		
	C = 1.125		.0.28 PL2	0.28 PL2	0.53L\\frac{P}{f}	$3.56 \frac{ft^2}{P}$	1.89 ₹√ <u>f</u>	$3.56 \frac{ft^2}{L^2}$
J. B. Johnson, The Materials of Construction 1897, Page 93	t=0.61L√ P	2.67ft ²	0.375 W/	0.375 W/f	0.61 \(\frac{W}{f} \)			
			0,375 PL2	0.375 PL2	0.61L JP	$2.67 \frac{ft^2}{P}$	1.634 t \f	$2.67 \frac{ft^2}{L^2}$
Rankine, Civil Engineering, Page 543	Bending Moment M = WL 16	2.67ft2	0.375 W	0.375 W/f	0.61 \(\frac{\warmath{w}}{f} \)			
			0.375 PL2	0.375 PL2	0.61LJP	$2.67 \frac{ft^2}{P}$	$1.634 t \sqrt{\frac{f}{P}}$	$2.67 \frac{ft^2}{L^2}$
Wm.F.Fischer	$\frac{WL}{24} = \frac{fL \tilde{t}^2}{6}$ or $M = M_f$	4412	0.25 W	0.25 W/f	0.5√ W / _f			
			0.25 PL2	0.25 PL2	0.5L JP	4 122	$2i\sqrt{\frac{f}{P}}$	$4\frac{ft^2}{I^2}$

Compiled by William F. Fischer

Distributed	Author as Given as Given Author	in a	Book 1906, C-0.75	J.B.Johnson 1-9 PL2 The Materials f= 32 22	uction 73	Unwin, f = 12p	f Machine Design Page 73	Square at Cer	Author Figure Author Reference	Rankine, Civil Engineering, Page 543	Grashof, Trautwines C.E. Pocket Book, Page 493	5qui 2001	Grashot, Trautwines G.E. Pocket	Arrie 403
Over Unsup	or W=	5.33 ft2	la 2	3.6 / 12	Q+	P 4132		Flat Plate	Formulas as Giren by Author	Bending Moment M= 3WL	f = 3CW W = 4 f 2 2 C = 2	Square Flat Plate, Loaded at Center	f= 3CW 422 W= 4f22	
Unsupported 5	Unit Fiber Stress Pounds persq in. f=	a1875 W	0.1875 72	0.28 W	0.28 72	0.25 W	0.25 72	'	Central Load W=	0.9 ft2	0.667 ft2	Firm	0.762 ft2	
201/100	7.5	0.1875 W	a1875 PL2	0.28 W	0.28 7	0.25 W	0.25 PL2	Supported At.	Unit in E Fiber			a Conc		5
	Thickness of Plate Miches Z=	0.433 W	0.4331 17	0.53 W	0.531 1		0.51 1	+ All Four 1 Load W.	Unit-Stress in Extreme Fiber. Pounds per sq.Inch f=	1.125 W	N 5 1	Secured at all	1.31 W.	1 1
	7=7		5.33 ft2		3.6 ft2		4 112	Edges,	27	1.125 W	1.5 W	111 Four	1.31 W	
	Clear Span Between Supported Edges L=		2.317 F		1.89 £ \frac{f}{\rightarrow}		25 PT	Pappo7	Thic Ph In			Edges, W.		7
	Unitorm Load per Unit of Surface P=		5.33 472		3.6 472		4 122		Thickness Plate in Inches	1.06 m	1.23 m		1.144 W	

Compiled by William F. Pischer

III.-FORMULAS FOR STRENGTH OF FLAT PLATES.

	Flat Rectangular P Loaded with a Un				
Author and Reference	Formulas as Given by Author	Total Load W on Plate	Pressure on Plate per Unit of Area P=	Unit Stress in Extreme Fiber of Material f =	Thickness of Plate, Inches t=
Johnson, Materials of Construction.	$f = \frac{3P\ell^2}{4t^2}$	1.34 fLt ²		0.75 ·W?	0.866 \(\frac{\Wl}{fL} \)
L= 21 or greater	$t = \frac{l}{2} \sqrt{\frac{3P}{f}}$		1.34 f 2 	0.75 Pl2	0.866 i \frac{P}{f}
Johnson, Where	$f = \frac{3}{4} \cdot \frac{3Pl^2}{4t^2}$	1.8 fl 22		0.56 WI	0.75 \\ \frac{\text{W!}}{fL}
$L = l_2^{\frac{1}{2}}l$ about	$t = \frac{3}{4} l \sqrt{\frac{P}{f}}$		1.78 f t 2 12	0.56 Pl2	0.75 l \f
Rankinė,	$M = \frac{WL^4l}{8(L^4 + l^4)}$	1.34 \frac{ft^2(L^4+ l^4)}{\pmu^3 l}		0.75 WL37	0.866 \(\frac{WL^3}{f(L^4+)} \)
Engineering Page 543			1.34 $\frac{ft^2(L^4+l^4)}{L^4l^2}$	0.75 Rl2L4	0.866 L21 \f (L4
Grashot, Trautwines	$f = \frac{CPL^2l^2}{2t^2(L^2+l^2)}$	1.77 ft2(L2+ 22)		0.56 WLZ	$0.75 \sqrt{\frac{WLZ}{f(L^2 + Z)}}$
Pocket Book Page 493	C = 1.125		$1.77 \frac{ft^2(\dot{L}^2 + \dot{L}^2)}{L^2 l^2}$	$0.56 \frac{Pl^2 l^2}{l^2 (L^2 + l^2)}$	$0.75L1\sqrt{\frac{P}{f(L^2 + 1)}}$
Fischer	$\frac{P \ell^2 (2N+L)}{24} = \frac{f L \ell^2}{6}$	E/2 (%)	.1		
1.001101			4+L2 ² (2(2N+L)	Pl ² (2N+L) 4L t ²	0.51 P(2N+1)

Compiled by William F. Fischer

IV.-FORMULAS FOR STRENGTH OF FLAT PLATES.

	Unitormly Distr	ibuted Load W =	PLI.		
Author and Reference	Formulas as Given by Author	Total Load W on Plate =	Pressure on Plate per Unit of Area P=	Unit Stress in Extreme Fiber of Material f =	Thickness of Plate in Inches t =
Grashof, Trautwines	$f = \frac{CPL^2l^2}{2l^2(L^2 + l^2)}$	$2.67 \frac{f \tilde{t}^2 (L^2 + \tilde{l}^2)}{L \tilde{l}}$		$0.375 \frac{WL?}{\ell^2(L^2+l^2)}$	0.62 \(\frac{WLl}{f(L^2 + \frac{1}{l^2})}
C.E. Pocket Book, Page 493	C = 0.75		$2.67 \frac{f t^2 (L^2 + l^2)}{L^2 l^2}$	$0.375 \frac{PL^2 l^2}{t^2 (L^2 + l^2)}$	$0.62LI\sqrt{\frac{P}{f(L^2+l^2)}}$
Unwin, Elements of	$f = \frac{\rho_L^4 l^2}{2 l^2 (L^4 + l^4)}$	$2.\frac{f_{i}^{2}(L^{4}+l^{4})}{L^{3}!}$		0.5 WL3 [12(L4+ 14)	$0.7\sqrt{\frac{WL^{3}I}{f(L^{4}+I^{4})}}$
Machine Design, Page 93			$2. \frac{ft^2(L^4 + l^4)}{L^4 l^2}$	$0.5 \frac{PL^4 Z^2}{t^2(L^4 + Z^4)}$	$0.7L^2l\sqrt{\frac{P}{f(L^4+l^4)}}$
No as	eglecting End Bear a Simple Beam, U	rings Entirely Whe Initormly Loaded -	ere L = 21 or Great See Below.	er, and Treating	
Bending Moment	Resisting Moment $M_l = \frac{fL\bar{t}^2}{6}$ $W_l = \frac{fL\bar{t}^2}{6}$	2. <u>fLt²</u>		0.5 WI	0.7 \(\frac{\text{WI}}{fl} \)
$M = \frac{Wl}{l2}$ or $M = \frac{PLl^2}{l2}$			2. <u>ft²</u> /²	· 0.5 Pl²	0.71\frac{P}{f}
As W	ssuming 3/4 of Load here L=12 1 about, 1	d to be Carried at to Treated as a Simple	he Sides and 1/4 Ca le Beam) - See Below	rried at the Ends,	
$M = \frac{3}{4} \cdot \frac{Wl}{l2} \qquad$	$M_1 = \frac{f L_1^2}{6}$	2.67 <u>fLt²</u>		0.375 WI	0.62 \(\frac{\text{Wl}}{fL} \)
or $M = \frac{3}{4} \cdot \frac{PL \tilde{I}^2}{I2}$	$\frac{3Wl}{48} = \frac{fLl^2}{6}$		* 2.67 ft2	0.375 Pl2	0.621\frac{P}{f}

(L3) (4+14) P (4+14) (12) (12) (12) (12) (12) (13) (14) (14) (15) (15) (16)

55 8 85

\(\frac{1}{\text{t}}\)
\(\frac{1}{\text{t}}\)
\(\frac{1}{\text{t}}\)
\(\frac{1}{\text{t}}\)

+ Z⁴)

<u>!</u>

nch.