

RDA5802N/NS/NM

SINGLE-CHIP BROADCAST FM RADIO TUNER

Rev.2.0-Mar.2011

1 General Description

The RDA58 02N series is the newe st genera tion single-chip broadcast FM stereo radio tuner with fully integrated synthesizer, IF selectivity, R DS/RBDS and MPX decode r. The tuner uses the CMOS process, support multi-interface and require the least external component. The RDA580 2N series have three type package sizes, respective are RDA580 2N (QFN 4X4 mm, 24pins), RDA5802NS (QFN 3X3 mm, 20pins) and RDA5802NM (QFN 2X2 mm, 12pins). All these make it very suitable for portable devices.

The RDA5802N series has a power ful low-IF digital audio processor, this make it have o ptimum sound quality with varying reception conditions.

The RDA5802N series support frequency range is from 50MHz to 115MHz.

Figure 1-1. RDA 5802N Top View

1.1 Features

- CMOS single-chi fully-irtegrated FM tuner
- Low power cosumption
 - Total current cosumption lower than 20mA at 3.0V powersupply when under normalitudion
- Support wddwide frequency bath
 - > 50 -115MHz
- Supportflexiblechannel spaingmode
 - ➤ 100KHz, 20KHz, 50KHz and 25KHz
- Support RDS/RBDS
- Digital low-IF tuner
 - > Image -reject down-conveter
 - > High performance A/Converter
 - IF selectivity performed internally
- Fully integrated dgital frequency ynthesizer
 - Fully integrated on-chipRF and IFVCO
 - > Fully integrated on-chiploopfilter

- Autonomous seach tuning
- Support 32768KHzcrystaloscillator
- Digitalautogaincontro(AGC)
- Digitaladaptive roise carcellation
 - Mono/ste reoswitch
 - ➤ S oft mute
 - ➤ High cut
- Progra mmablede-emphasi (5075 μs)
- Receivesignalstrengthindicator(RSSI) and SNR

COM

- Bass boost
- Volume control and mute
- I ²S digital output interface
- Line-levelanalogoutput votage
- 32.768 KHz12M,24M,13M,216,19.2M,384MHz Reference clock
- Only support 2-wire bus interface

- Directly support 32Ω resistance loading
- IntegratedLDOregulator
 - > 1.8to 5.5V operationoltage
- Support QFN #4mm 24pins, QN 3X3mm 20pins and QFN 2x2mm 12insthreepackage types.

1.2 App lications

- Cellular handsets
- M P3, MP4 players
- Portable radios
- ● PDAs, Notebook

Table of Contents

1	General	Description	I
	1.1	Features	1
	1.2	Applications	2
Tab	le of Con	tents	3
2	Function	nal Description	4
	2.1	FM Receiver	4
	2.2	Synthesizer	4
	2.3	Power Supply	5
	2.4	RESET and Control Interface select	5
	2.5	Control Interface	5
	2.6	I ² S Audio Data Interface	5
	2.7	GPIO Outputs	
3	Electric	al Characteristics	6
4		Characteristics	
5		terface	
	5.1	I ² C Interface Timing	8
6	Register	Definition	9
9	Applica	tion DiagramRDA5802N Common Application :	19
	9.1	RDA5802N Common Application :	19
	9.1.1	Bill of Materials:	19
	9.2	RDA5802NS Common Application:	20
	9.2.1	Bill of Materials:	20
	9.3	RDA5802NM Common Application:	21
	9.3.1	Bill of Materials:	21
10	Physical	Dimension	22
11	PCB La	nd Pattern	25
12	Change	List	28
13	Notes:		28
14	Contact	Information	29

2 Functional Description

Figure 2-1. RDA5802N FM Tuner Block Diagram

2.1 FM Receiver

The receiver uses a digital low-IF architecture that avoids the difficulties a ssociated with direct conversion while delive ring lower solution cost and reduces complexity, and integrates a low noise amplifier (L. NA) supporting the FM broadcast b and (5 0 to 1 15MHz), a multi-phase image-reject mixer array, a programmable gain control (PGA), a high resolution analog-to-digital converters (ADCs), an audio DSP and a high-fidelity digital-to-analog converters (DACs).

The LNA has differential input ports (L NAP and LNAN) and supports any input port by set according registers bits (LNA_PORT_SEL[1:0]). It default input common mode voltage is GND.

The limiter prevents ove rloading and I imits the amount of intermod ulation products created by strong adjacent channels.

The multi-p hase mixe r array down converts the LNA output differential RF signal to low-IF, it also has im age-reject function and harmonic to nes rejection.

The PGA amplifies the mixer output IF signal and then digitized with ADCs.

The DSP core finishes the channel selection, FM demodulation, stereo MP X deco der and output audio signal. The MPX de coder can autonomous switch from stereo to mo no to limit the output noise.

The DACs convert digital audio signal to analog and change the volume at same time. The DACs has low-pass feature and -3dB frequency is about 30 KHz.

2.2 Sy nthesizer

The frequ ency synthesi zer gene rates the local oscillator signal which divide to multi-phase, then be used to downconve rt the RF input to a constant low intermedi ate freque ncy (IF). The synthesizer reference clock is 32.768 KHz.

The synthesizer freq uency is define d by bit s CHAN[9:0] with the ra nge fro m 5 0MHz to 115MHz.

2.3 Po wer Supply

The RDA58 02N integ rated one L DO which supplies po wer to the chi p. The external supply voltage range is 1.8-5.5 V.

2.4 RESET and Control Interface select

The RDA580 2N is RESE T it self Whe n VIO is Power up. A nd also support soft reset by trigge r 02H BIT1 from 0 to 1. The RDA5802N only support I²C control interface bus mode.

2.5 Con trol Interface

The RDA58 02N o nly sup ports I ²C co ntrol interface.

The I ²C int erface is compliant to I ²C Bus Specification 2.1. It include s two pins: SCLK and SDIO, A I²C interface transfer begins with START condition, a command byte and dat a bytes, each byte has a followed ACK (or NACK) bit, and ends with STOP condition. The command byte includes a 7-bit chip address (00 10000b) and a R/W bit. The ACK (or NACK) is always sent out by receiver. When in write tran sfer, data bytes is written out from MCU, and when in read tran sfer, data bytes is read out from RDA 5802N. There is no visible register address in I²C interface transfers. The I²C interface has a fixed start register address (0x02h for write transfer and 0x0Ah for read transfer), and an internal incremental address counter. If register address mee ts the end of r egister file, 0x3Ah, register address will wrap back to 0x00h. For write transfer, MCU pro grams registers from register 0x02h high byte, then register 0x02 h low byte, then register 0x03h high byte, till the last register. RDA5802N always gives out ACK after every byte,

and MCU gives out STOP condition when register programming is finished. For rea d transfer, after command byte from MCU, RDA58 02N sends out register 0x0Ah high byte, then register 0x0Ah low byte, then register 0x0Bh high byte, till receive s NACK from MCU. MCU gives out AC K for dat a bytes besi des last dat a byte. MCU gives out NACK for last data byte, and then RDA5802N will return the bu s to MCU, a nd MCU will give out STOP condition.

2.61 ²S Audio Data Interface

The RDA5802N supports I²S (Inter_IC Sound Bus) audio interfa ce. The interface is fully compliant with I²S bus specification. When setting I2SEN bit high, RDA5802N will output SCK, WS, SD signals from GPIO3, GPIO1, GPIO2 as I ²S master and transmitter, the sample are rate is 48Kbp s, 44.1kbps,32kbps..... RDA5802N also support as I²S slaver mode and transmitter, the sample rate is less than 100kbps.

2.7 GPIO Outputs

The RDA5802N has three GPIOs. The function of GPIOs could pro grammed with bits G PIO1[1:0], GPIO2[1:0], GPIO3[1:0] and I2SEN.

If I2SEN is s et to low , GPIO pins c ould be programmed to output low or high or high-Z, or be programmed to output interru pt a nd ste reo indicator with bits GPIO1[1:0], GPIO2[1:0], GPIO3[1:0]. GPIO2 coul d be programmed to output a low interrupt (interrupt will be gene rated only with interrupt enable bit STCIEN is set to high) when seek/tune process completes. GPIO3 could be programmed to output stereo indicator bit ST.

Constant low, high or high-Z functionality is available regardless of the state of VDD supplies or the ENABLE bit.

Figure 3-2 I2S Digital Audio Format

3 Electrical Characteristics

Table 3-1 **DC Electrical Specification (Recommended Operation Conditions):**

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
VDD	Supply Voltage	1.8 3.3 5	.5		V
VIO	Interface Supply Voltage	1.0	-	3.6	V
T _{amb}	Ambient Temperature	-20	27	+75	$^{\circ}$
V _{IL}	CMOS Low Level Input Voltage	0		0.3*VIO	V
V _{IH}	CMOS High Level Input Voltage	0.7*VIO		VIO	V
V _{TH}	CMOS Threshold Voltage		0.5*VIO		V

Table 3-2 **DC Electrical Specification (Absolute Maximum Ratings):**

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
VIO	Interface Supply Voltage	-0.5		+3.6	V
T _{amb}	Ambient Temperature	-40		+90	°C
I _{IN}	Input Current (1)	-10		+10	mA
V _{IN}	Input Voltage ⁽¹⁾ -0.3			VIO+0.3	V
V _{Ina}	LNA FM Input Level			+10	dBm

Notes:

1. For Pin: SCLK, SDIO

Table 3-3 **Power Consumption Specification**

(VDD = 3 V, VIO=3 V, T_A = 25 °C, unless otherwise specified)

College State of the College S										
SYMBOL	DESCRIPTION	CONDITION	TYP	UNIT						
I _{VDD}	Supply Current ⁽¹⁾	ENABLE=1 20		mA						
I_{VDD}	Supply Current ⁽²⁾	ENABLE=1 21		mA						
I _{VIO}	Interface Supply Current	SCLK and RCLK active	60	μΑ						
I _{PD}	Powerdown Current	ENABLE=0	5	μΑ						
I _{VIO}	Interface Powerdown Current	ENABLE=0	10	μΑ						
Notes: 1. For strong input signal condition										
1. For strong input signal condition										
2. For weak in	2 For weak input signal condition									

Notes:

- 1. For strong input signal condition
- 2. For weak input signal condition

4 Receiver **Characteristics**

Table 4-1 **Receiver Characteristics**

(VDD = 3 V,VIO=3 V, T_A = 25 °C, unless otherwise specified)

SYMBOL	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNIT
General spe	cifications						
F _{in}	FM Input Frequency Range	Adjust BAN	ID Register	50		115	MHz
			50MHz -		1.4	1.8	
			65MHz -		1.2	1.5	
	0	O/N 00-ID	88MHz -		1.2	1.5	\
V _{rf}	Sensitivity ^{1,2,3}	S/N=26dB	98MHz -		1.3	1.5	μV EMF
			108MHz	-	1.3	1.5	
			115MHz -		1.3	1.8	
IP3 _{in}	Input IP3 ⁴ AGCD=		1	80	-	-	dΒμV
α_{am}	AM Suppression ^{1,2}	m=	0.3	60	-	-	dB
S ₂₀₀	Adjacent Channel Selectivity	±200	OKHz	50	70	-	dB
S ₄₀₀	400KHz Selectivity	±400	OKHz	60	85	-	dB
V _{AFL} ; V _{AFR}	Audio L/R Output Voltage ^{1,2} (Pins LOUT and ROUT)	Volume [3:0] =1111		-	360	-	mV
C/NI	Maximum Signal to Noise		Mono ²	55	57	-	-ID
S/N	Ratio ^{1,2,3,5}		Stereo ⁶	53 55		-	dB
α_{SCS}	Stereo Channel Separation			35	-	-	dB
R _L	Audio Output Loading Resistance	Single-	ended 32	N-224 N2 N			Ω
TUD	Audio Total Harmonic	Volume[3:0]	R _{load} =1K Ω	- 0.15	KF	0.2	0/
THD	Distortion ^{1,3,6}	=1111	R _{load} =32 Ω	- 0.2		-	%
α _{AOI}	Audio Output L/R Imbalance ^{1,6}	000	328	582	-	0.05	dB
R _{mute}	Mute Attenuation Ratio ¹	Volume[3:0]=	:0000	60	-	-	dB
BW_{audio}	Audio Response ¹	1KHz=0dB	Low Freq ⁹	15	100	-	Hz
DVVaudio	Audio Response	± 3 dB point	High Freq	-	14	-	112
Pins LNAN,	LNAP, LOUT, ROUT and NC(2				ch.	COL	111
$V_{\text{com_rfin}}$	Pins LNA N/LNAP Input Common Mode Voltage	MMA	. CZ	M CC	0		V
V_{com}	Audio Output Common Mode Voltage ⁸	1.0			1.05	1.1	V
V _{com_nc}	Pins NC (22,23) Common Mode Voltage				Floating	V	

Notes:1. F_{in} =65 to 115MHz; F_{mod} =1KHz; de-emphasis=75 μ s; MONO=1; L=R unless noted otherwise;

2. Δf=22.5KHz; 3. B_{AF} = 300Hz to 15KHz, RBW <=10Hz;

5. P_{RF} =60dB_UV; 6. Δf =75KHz,fpilot=10% 8. At LOUT and ROUT pins

4. $|f_2-f_1|>1$ MHz, $f_0=2xf_1-f_2$, AGC disable, $F_{in}=76$ to 108MHz;

^{7.} Measured at V_{EMF} = 1 m V, f_{RF} = 65 to 108MHz 9. Adjustable

5 Serial Interface

5.11 ²C Interface Timing

Table 5-1 I²C Interface Timing Characteristics

(VDD = 3 V, VIO=3 V, T_A = 25 °C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Frequency	f _{scl}	0		-	400	KHz
SCLK High Time	t _{high}	0.6		-	-	μS
SCLK Low Time	t _{low}	1.3		-	-	μS
Setup Time for START Condition	t _{su:sta}	0.6		-	-	μS
Hold Time for START Condition	t _{hd:sta}	0.6		-	-	μS
Setup Time for STOP Condition	t _{su:sto}	0.6		-	-	μS
SDIO Input to SCLK↑ Setup	t _{su:dat}	100		-	-	ns
SDIO Input to SCLK↓ Hold	t _{hd:dat}	0		-	900	ns
STOP to START Time	t _{buf}	1.3		-	-	μS
SDIO Output Fall Time	t _{f:out}	20+	0.1C _b	- 250		ns
SDIO Input, SCLK Rise/Fall Time	$t_{r:in} / t_{f:in}$	20+	0.1C _b	- 300		ns
Input Spike Suppression	t _{sp}	142× 10		-	50	ns
SCLK, SDIO Capacitive Loading	Сь	-05	22	-	50	pF
Digital Input Pin Capacitance		-83320	202		5	pF

Figure 5-1. I²C Interface Write Timing Diagram

Figure 5-2. I²C Interface Read Timing Diagram

6 Register Definition

REG	BITS	NAME	FUNCTION	DEFAULT
00H	15:8	CHIPID[7:0]	Chip ID.	0x58
02H 15		DHIZ	Audio Output High-Z Disable.	0
			0 = High impedance; 1 = Normal operation	
14		DMUTE	Mute Disable.	0
13		MONO	0 = Mute; 1 = Normal operation Mono Select.	0
13		MONO	0 = Stereo; 1 = Force mono	
12		BASS	Bass Boost.	0
			0 = Disabled; 1 = Bass boost enabled	
	<mark>11</mark>	RCLK NON-CALIBRATE	0=RCLK clock is always supply	0
		MODE	1=RCLK clock is not always supply when FM work (when 1,	
			RDA5802N can't directly support -20 ℃ ~70 ℃	
			temperature. Only suppory ±20°C temperature swing from tune point)	
	10	RCLK DI RECT INPUT	1=RCLK clock use the directly input mode	0
	-	MODE		_
9		SEEKUP	Seek Up.	0
		OLLINOI	0 = Seek down; 1 = Seek up	
8		SEEK	Seek.	0
			0 = Disable stop seek; 1 = Enable	
			Seek begins in the direction specified by SEEKUP and ends	
			when a chan nel is foun d, o r the entire b and has b een	
			searched.	
			The SEEK bit is set low and the STC bit is set high when the seek operation completes.	
7		SKMODE	Seek Mode	0
-		G65 <u>-</u>	0 = wrap at the upper or lower band limit and continue seeking	
		产进出一	1 = stop seeking at the upper or lower band limit	
	6:4	CLK_MODE[2:0]	000=32.768kHz	000
	100		001=12Mhz	
	+	10 : 正:	404 24886-	
	H	7 M	010=13Mhz	
		- 151 1		(BEN 7)
		丰利[:	011=19.2Mhz	m
			CZW LOO	
		ppe ru + + D :	1 1 44 44 44	
	<mark>3</mark>	RDS_EN	RDS/RBDS enable	0
	_		If 1, rds/rbds enable	
	<mark>2</mark>	NEW_METHOD	New Demodulate Method Enable, can improve the receive	0
			sensitivity about 1dB.	
1		SOFT_RESET	Soft reset.	0
			If 0, not reset;	
			If 1, reset.	
	0	ENABLE	Power Up Enable.	0
			0 = Disabled; 1 = Enabled	

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Page 9 of 29

REG	BITS	NAME	FUNCTION	DEFAULT
03H 15:	6	CHAN[9:0]	Channel Select. BAND = 0	0x00
			Frequency = Channel Spacing (kHz) x CHAN+ 87.0 MHz	
			BAND = 1 or 2	
			Frequency =	
			Channel Spacing (kHz) x CHAN + 76.0 MHz	
			BAND = 3	
			Frequency =	
			Channel Spacing (kHz) x CHAN + 65.0 MHz	
			CHAN is updated after a seek operation.	
5		DIRECT MODE	Directly Control Mode, Only used when test.	0
4		TUNE	Tune	0
			0 = Disable	
			1 = Enable	
			The tune operation begins when the TUNE bit is set high. The	
			STC bit is set high when the tune operation completes.	
			The tune bit is reset to I ow aut omatically when the tune	
			operation completes	
3:2		BAND[1:0]	Band Select.	00
			00 = 87-108 MHz (US/Europe)	
			01 = 76-91 MHz (Japan)	
			10 = 76–108 MHz (world wide)	
			11 ¹ = 65 –76 MHz (East Europe) or 50-65MHz	
1:0		SPACE[1:0]	Channel Spacing.	00
			00 = 100 kHz	
			01 = 200 kHz	
			10 = 50kHz 11 = 25KHz	
04H	15	RDSIEN	RDS ready Interrupt Enable.	0
	725	11/ LL2 Nov -	0 = Disable Interrupt	
	111		1 = Enable Interrupt	
	1	10 = FE	Setting STCIEN = 1 will generate a low pulse on GPIO2 when	
	H	7. M.	the interrupt occurs.	
	14	STCIEN	Seek/Tune Complete Interrupt Enable.	0
		王机!	0 = Disable Interrupt	m
		-2	1 = Enable Interrupt	
			Setting STCIEN = 1 will generate a low pulse on GPIO2 when	
		http.	the interrupt occurs.	
	13	RBDS	1 = RBDS mode enable	0
			0 = RDS mode only	
	12	RDS_FIFO_EN	1 = RDS fifo mode enable.	0
11		DE	De-emphasis.	0
			0 = 75 μs; 1 = 50 μs	
10		RSVD	Reserved	

_

¹ If 0x07h_bit[9](band)=1, 65-76MHz; =0, 50-76MHz

REG	BITS	NAME	FUNCTION	DEFAULT
	9	SOFTMUTE_EN	If 1, softmute enable	1
8		AFCD	AFC disable.	0
			If 0, afc work;	
			If 1, afc disabled.	
7		RSVD	Reserved	
	6	I2S_ENABLED	I2S bus enable	0
			If 0, disabled;	
			If 1, enabled.	
5:4		GPIO3[1:0]	General Purpose I/O 3.	00
			00 = High impedance	
			01 = Mono/Stereo indicator (ST)	
			10 = Low	
			11 = High	
	3:2	GPIO2[1:0]	General Purpose I/O 2.	00
			00 = High impedance	
			01 = Interrupt (INT)	
			10 = Low	
			11 = High	
	1:0	GPIO1[1:0]	General Purpose I/O 1.	00
			00 = High impedance	
		. 12 -7 1	01 = Reserved	
	L	色湖市市加	10 = Low	
		11/1/2 422	11 = High	
05H	15	INT _MODE	If 0, generate 5ms interrupt;	1
	rt.	10 : 走。	If 1, interrupt last until read reg0CH action occurs.	
	<mark>14:13</mark>	SEEK_MODE[1:0]	RDA5802N Seek Mode Select	<mark>00</mark>
12		RSVD	Reserved	0
	<mark>11:8</mark>	SEEKTH[3:0] ²	Seek SNR threshold value:	<mark>1000</mark>
			Noise_th(dB) = 79 - seek_th	
	7:6	LNA_PORT_SEL[1:0]	LNA input port selection bit:	10
		110-1	00: no input	
			01: LNAN	
			10: LNAP	
			11: dual port input	
	5:4	RSVD	Resvered	00
3:0		VOLUME[3:0]	DAC Gain Control Bits (Volume).	1111
			0000=min; 1111=max	
			Volume scale is logarithmic	
			When 0000, output mute and output impedance is very large	
06H 15		RSVD	reserved	0
	<mark>14:13</mark>	OPEN_MODE[1:0]	Open reserved register mode.	00
	_		11=open behind registers writing function others: only open	
			behind registers reading function	
	12	I2S_MODE ³	If 0, master mode;	0
			If 1, slave mode.	
			<u> </u>	

_

 $^{^{2}\,}$ The default noise threshold is 71dB

³ This function is open when I2S_Enabled=1.

REG	BITS	NAME	FUNCTION	DEFAULT
11		SW_LR ³	Ws relation to I/r channel.	10
			If 0, ws=0 ->r, ws=1 ->l;	
			If 1, ws=0 ->I, ws=1 ->r.	
	10	SCLK_I_EDGE ³	When I2S enable	0
			If 0, use normal sclk internally;	
			If 1, inverte sclk internally.	
	9	DATA_SIGNED ³	If 0, I2S output unsigned 16-bit audio data.	0
			If 1, I2S output signed 16-bit audio data.	
	8	WS_I_EDGE ³	If 0, use normal ws internally;	0
		12 -50	If 1, inverte ws internally.	
~5	7:4	12S_SW_CNT[4:0] ³	4'b1000: WS_STEP_48;	0000
7	15 71	Only valid	4'b0111: WS_STEP=44.1kbps; 4'b0110: WS_STEP=32kbps;	
		in master mode	4'b0101: WS_STEP=24kbps; 4'b0100: WS_STEP=22.05kbps;	
	由	话:	4'b0011: WS_STEP=16kbps;	
	-		4'b0010: WS_STEP=12kbps; 4'b0001: WS_STEP=11.025kbps;	
		11 - 174 -	4'b0000: WS_STEP=8kbps;	17
3	=	SW_O_EDGE ³	If 1, invert ws output when as master.	0
2		SCLK_O_EDGE ³	If 1, invert sclk output when as master.	0
1		L_DELY ³	If 1, L channel data delay 1T.	0
0		R_DELY ³	If 1, R channel data delay 1T.	0
07H	15	RSVD	Reserved	0
	<mark>14:10</mark>	TH_SOFRBLEND[5:0]	Threshold for noise soft blend setting, unit 2dB	<mark>10000</mark>
	9	65M_50M MODE	Valid when band[1:0] = 2'b11 (0x03H_bit<3:2>)	1
			1 = 65~76 MHz;	
			0 = 50~76 MHz.	
8		RSVD	Reserved	0
	7:2	SEEK_TH_OLD4	Seek threshold for old seek mode, Valid when Seek_Mode=01	000000
	1	SOFTBLEND_EN	If 1, Softblend enable	1
	0	FREQ_MODE	If 1, then freq setting changed.	0
			Freq = 76000(or 87000) kHz + freq_direct (08H) kHz.	
0AH	<mark>15</mark>	RDSR	RDS ready	0
			0 = No RDS/RBDS group ready(default)	
			1 = New RDS/RBDS group ready	
14		STC	Seek/Tune Complete.	0
			0 = Not complete	
			1 = Complete	
			The seek/ tune complete flagis set when the seek or tune	
	42	CF	operation completes.	0
	13	SF	Seek Fail. 0 = Seek successful; 1 = Seek failure	0
			The seek fail flag is set when the seek operation fails to find a	
			channel with an RSSI level greater than SEEKTH[5:0].	

 $[\]frac{\text{4 }0x05\text{H_bit}[14\text{: }13], SEEK_MODE \ register} \text{ . Default value is }00; When = 01, will add the 5802E seek mode.}$

REG	BITS	NAME	FUNCTION	DEFAULT
			0 = RDS decoder not synchronized(default)	
			1 = RDS decoder synchronized	
			Available only in RDS Verbose mode	
11		BLK_E	When RDS enable:	0
			1 = Block E has been found	
			0 = no Block E has been found	
10		ST	Stereo Indicator.	1
			0 = Mono; 1 = Stereo	
			Stereo indication is available on GPIO3 by setting GPIO3[1:0]	
	9:0	READCHAN[9:0]	=01. Read Channel.	8'h00
	3.0	KLADCHAN[5.0]	BAND = 0	01100
			Frequency = C hannel S pacing (kHz) x RE ADCHAN[9:0]+	
			87.0 MHz	
			BAND = 1 or 2	
			Frequency = C hannel S pacing (kHz) x RE ADCHAN[9:0]+ 76.0 MHz	
			BAND = 3	
			Frequency = C hannel S pacing (kHz) x RE ADCHAN[9:0]+	
			65.0 MHz	
0BH	15:9	RSSI[6:0]	READCHAN[9:0] is updated after a tune or seek operation. RSSI.	0
OB.	10.5	1.00[0.0]	000000 = min	· ·
			111111= max	
			RSSI scale is logarithmic.	
	8	FM TRUE	1 = the current channel is a station	0
			0 = the current channel is not a station	
	7	FM_READY	1=ready	0
			0=not ready	
6:5		RSVD	Reserved	00
	4	ABCD_E	1= the block id of register 0cH,0dH,0eH,0fH is E	0
	126		0= the block id of register 0cH, 0dH, 0eH,0fH is A, B, C, D	
	3:2	BLERA[1:0]	Block Errors Level of RDS_D ATA_0, and is always read a s	00
	H	5 M	Errors Level of RDS BLOCK A (in RDS mode) or BLOCK E (in	
		- 471 1	RBDS mode when ABCD_E flag is 1)	
		手机:	00= 0 errors requiring correction	111
		201, 1000	01= 1~2 errors requiring correction	
		b++D:	10= 3~5 errors requiring correction	
		11000	11= 6+ errors or error in checkword, correction not possible.	
			Available only in RDS Verbose mode	
	1:0	BLERB[1:0]	Block Errors Level of RDS_DATA_1, and is always read as	00
			Errors Level of RDS BLOCK B (in RDS mode) or E (in RB DS	
			mode when ABCD_E flag is 1).	
			00= 0 errors requiring correction	
			01= 1~2 errors requiring correction	
	1	1	1	

REG	BITS	NAME	FUNCTION	DEFAULT
			10= 3~5 errors requiring correction	
			11= 6+ errors or error in checkword, correction not possible.	
			Available only in RDS Verbose mode	
0СН	15:0	RDSA[15:0]	BLOCK A (in RDS mode) or BLOCK E (in RBDS mode when	16'h5803
			ABCD_E flag is 1)	
0DH	15:0	RDSB[15:0]	BLOCK B (in RDS mode) or BLOCK E (in RBDS mode when	16'h5804
			ABCD_E flag is 1)	
0EH	15:0	RDSC[15:0]	BLOCK C (in RDS mode) or BLOCK E (in RBDS mode when	16'h5808
			ABCD_E flag is 1)	
0FH	15:0	RDSD[15:0]	BLOCK D (in RDS mode) or BLOCK E (in RBDS mode when	16'h5804
			ABCD_E flag is 1)	

8 Pins Description

8.1 RDA5802N Pins Description

Figure 8-1. RDA5802N Top View

Table 8-1 RDA5802N Pins Description

SYMBOL	PIN	DESCRIPTION
GND	1,3,5,6,7,8,14,17,24,25	Ground. Connect to ground plane on PCB
LNAN,LNAP	2,4	LNA dual input port.
SCLK	9	Clock input for serial control bus
SDIO	10	Data input/output for serial control bus
RCLK ===	13510	32.768KHz crystal oscillator and reference dock input
VIO	12/	Power supply for I/O
VDD 13,18	. d.	Power supply
ROUT,LOUT	15,16	Right/Left audio output
GPIO1,GPIO2,GPIO3	21,20,19	General purpose input/output
NC 22,23		No Connect

8.2 RDA5802NS Pins Description

Figure 8-2. RDA5802NS Top View

Table 8-2 RDA5802NS Pins Description

SYMBOL	PIN	DESCRIPTION
GND	2,4,5,11,14,20,21	Ground. Connect to ground plane on PCB
LNAN,LNAP	1,3	LNA dual input port.
SCLK	6	Clock input for serial control bus
SDIO	7	Data input/output for serial control bus
RCLK	0 8	32.768KHz crystal oscillator and reference clock input
VIO	9	Power supply for I/O
VDD 10	135	Power supply
ROUT,LOUT	12,13	Right/Left audio output
GPIO1,GPIO2,GPIO3	15,16,17	General purpose input/output
NC 📉	18,19	No Connect

8.3 RDA5802NM Pins Description

Figure 8-3. RDA5802NM Top View

Table 8-3 RDA5802NM Pins Description

SYMBOL	PIN	DESCRIPTION		
GND	10,12,13	Ground. Connect to ground plane on PCB		
LNAN,LNAP	1,2	LNA dual input port.		
SCLK	3	Clock input for serial control bus		
SDIO	部 中 治	Data input/output for serial control bus		
RCLK	5	32.768KHz crystal oscillator and reference clock input		
VIO	6	Power supply for I/O		
VDD 7	0122	Power supply		
ROUT,LOUT	8,9	Right/Left audio output		
GPIO2	O2 11 General purpose input/output			
GPIO2 THE General purpose input/output				

Table 8-4 Internal Pin Configuration

SYMBOL	PIN	DESCRIPTION
LNAN/LNAP	2/4(RDA5802N) 1/3 (RDA5802NS) 1/2 (RDA5802NM)	LNAP MN1 FMs
RCLK	11 (RDA5802N) 8 (RDA5802NS) 5 (RDA5802NM)	RCLK 5M 0x02h_bit<
SCLK/SDIO	9/10 (RDA5802N) 6/7 (RDA5802NS) 3/4 (RDA5802NM)	SDIO\SCLK Sin Sout
GPIO1/GPIO2/GPIO3	21/20/19(RDA5802N) 17/16/15(RDA5802NS) 11(RDA5802NM) ⁵	QPIO1/2/3 in Out

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Page 18 of 29

⁵ Only include GPIO2

9 Application **Diagram**

9.1 **RDA5802N Common Application:**

Notes:

- 1. J1: Common 32Ω Resistance Headphone;
- 2. U1: RDA5802N Chip;
- 3. V1: Power Supply (1.8~5.5V);
- 4. FM Choke (L3 and C3) for Audio Common and LNA Input Common;
- 5. Pins NC(22,23) can be Leaved floating;
- 6. Place C6 Close to 5802N pin13.
- 7. Ferrite F1/F2 should close to J1.

Figure 9-1. RDA5802N FM Tuner Application Diagram (TCXO Application)

Bill of Materials: 9.1.1

9.1.1 Bill of Materials:				
COMPONENT	VALUE	DESCRIPTION	SUPPLIER	
U1	RDA5802N	Broadcast FM Radio Tuner	RDA	
J1 ===	174	Common 32Ω Resistance Headphone	MOO	
L3/C3	100nH/24pF	LC Chock for LNA Input	Murata	
C4,C5	125µF	Audio AC Couple Capacitors	Murata	
C6	22nF	Power Supply Bypass Capacitor	Murata	
F1/F2	1.5K@100MHz	FM Band Ferrite	Murata	

802NS Common Application⁶: 9.2 RDA5

Notes:

- 1. J1: Common 32Ω Resistance Headphone:
- 2. U1: RDA5802NS Chip;
- 3. V1: Power Supply (1.8~5.5V);
- 4. FM Choke (L3 and C3) for Audio Common and LNA Input Common;
- 5. Pins NC(18,19), can be leaved floating or place capacitor C7/C8;
- 6. Place C6 Close to 5802NS pin10.
- 7. Ferrite F1/F2 should close to J1.

Figure 9-2. RDA5802NS FM Tuner Application Diagram (TCXO Application)

9.2.1 **Bill of Materials:**

0.2.1 Bill of Materials:			
COMPONENT	VALUE	DESCRIPTION	SUPPLIER
U1	RDA5802NS	Broadcast FM Radio Tuner	RDA
J1	E . 012	Common 32Ω Resistance Headphone	
L3/C3	100nH/24pF	LC Chock for LNA Input	Murata
C4,C5	125µF	Audio AC Couple Capacitors	Murata
C6	22nF	Power Supply Bypass Capacitor	Murata
F1/F2	1.5K@100MHz	FM Band Ferrite	Murata
C1 ⁷	1nF + O	AC Couple Capacitor	Murata
C7/C8 ⁸	0.22uF	Audio Couple Capacitors	Murata

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA. Page 20 of 29

⁶ Pin-to-pin compatible with RDA5820NS. RDA5820NS is the newest generation FM receive/transmit tuner.

⁷ C1 can be instead by 00hm resister if not need compatible with RDA5802NS

C7/C8 can be floating if not need compatible with RDA5820NS

9.3 RDA5 802NM Common Application:

Notes:

- 1. J1: Common 32Ω Resistance Headphone;
- 2. U1: RDA5802NM Chip;
- 3. V1: Power Supply (1.8~5.5V);
- 4. FM Choke (L3 and C3) for Audio Common and LNA Input Common;
- 5. Place C6 Close to 5802NM pin7.
- 6.Ferrite F1/F2 should close to J1.

Figure 9-3. RDA5802NM FM Tuner Application Diagram (TCXO Application)

9.3.1 Bill of Materials:

9.3.1 Bill of Materials:		一、共有限公司		
COMPONENT	VALUE	DESCRIPTION	SUPPLIER	
U1 3 5 1	RDA5802NM	Broadcast FM Radio Tuner	RDA	
J1		Common 32 Ω Resistance Headphone		
L3/C3	100nH/24pF	LC Chock for LNA Input	Murata	
C4,C5	125µF	Audio AC Couple Capacitors	Murata	
C6	22nF	Power Supply Bypass Capacitor	Murata	
F1/F2	1.5K@100MHz	FM Band Ferrite	Murata	
,	http:/	rivi band remite		

10 Ph ysical Dimension

10.1 RDA5802N Physical Dimension

Figure 10-1 illustrate s the p ackage det ails for the RDA58 02N. The package is lead-f ree and RoHS-compliant.

Figure 10-1. 24-Pin 4x4 Quad Flat No-Lead (QFN)

10.2 RDA5802NS Physical Dimension

Figure 10-2 illustrates the package details for the RDA5802NS. The package is lead-free and RoHS-compliant.

4 × e	<u>EE DE</u> TAIL"A"
20 19	WWw.
SEE DETAIL "A"	44.
BOTTOM VIEW	

	MIN	NOM	MAX
D	-15	3.00 BSC	
Œ	B BB.	3.00 BSC	
D2	1.60	1.65	1.70
E2	1.60	1.65	1.70
e	2205	0.40 BSC	
L	0.30	0.40	0.50
b	0.15	0.20	0.25
Α	0.80	0.85	0.90
A ⁻	0.00	0.02	0.05
A3	ofwr	0.203 ref	

Figure 10-2. 20-Pin 3x3 Quad Flat No-Lead (QFN)

10.3 RDA5802NM Physical Dimension

Figure 10-3 illustrates the package details for the RDA5802NM. The package is lead-free and RoHS-compliant.

TOP VIEW

* CONTROLLING DIMENSION : MM

SYMBOL	MILLIMETER			INCH		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α			0.90			0.035
A1			0.05			0.002
A2		0.65	0.70		0.026	0.028
A3	C	.20 R	EF.	C	800.0	REF.
ь	0.20	0.22	0.25	0.008	0.009	0.010
D	2.00 bsc		0.078 bsc			
D2	1.10	1.20	1.30	0.043	0.047	0.051
Е	2	.00 ь	sc	0.078 bsc		
E2	1.10	1.20	1.30	0.043	0.047	0.051
L	0.15	0.20	0.25	0.006	0.008	0.010
е	C	.40 b	sc	0.016 bsc		sc
R	0.060			0.002		
TOL	TOLERANCES OF FORM		M AND POSITION		NC	
aaa	0.10		0.004			
bbb	0.10		0.004			
ccc		0.05	5		0.002	

NOTES :

- 1.ALL DIMENSIONS ARE IN MILLIMETERS.
- 2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM)
- 3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.
- 4.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- 5.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- 6.PACKAGE WARPAGE MAX 0.08 mm.
- 7.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- 8.APPLIED ONLY TO TERMINALS.

Figure 10-3. 12-Pin 2x2 Quad Flat No-Lead (QFN)

11 PCB Land Pattern

Figure 18. Classification Reflow Profile

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3 °C/second max.	3 °C/second max.
$(T_{Smax} \text{ to } T_p)$	如此有明	[日公皇
Preheat	至微科双节	
-Temperature Min (T _{smin})	100 °C	150 °C
-Temperature Max (T _{smax})	100 °C	200 °C
-Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:	135106023.	
-Temperature (T _L)	183 °C	217°C
-Time (t _L)	60-150seconds	60-150 seconds
Peak /Classification Temperature(T _p)	See Table-II	See Table-III
Time within 5 °C of actual Peak Temperature (t _p)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/seconds max.
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Page 25 of 29

Table-I Classification Reflow Profiles

Package Thickness	Volume mm³ <350	Volume mm³ ≥350
<2.5mm	240 + 0/-5 °C	225 + 0/-5 °C
≥2.5mm	225 + 0/-5 ° C	225 + 0/-5 ° C

Table – II SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6mm	260 + 0 °C *	260 + 0 °C *	260 + 0 ° C *
1.6mm – 2.5mm	260 + 0 °C *	250 + 0 °C *	245 + 0 °C *
≥2.5mm	250 + 0 °C *	245 + 0 ° C *	245 + 0 °C *

^{*}Tolerance: The device manufacturer/supplier **shall** assure process compatibility up to and including the stated classification temperature(this mean Peak reflow temperature + 0 °C. For example 260+ 0 °C) at the rated MSL Level.

Table – III Pb-free Process – Package Classification Reflow Temperatures

- **Note 1:** All temperature refer topside of the package. Measured on the package body surface.
- Note 2: The profiling tolerance is + 0 ° C, X ° C (based on machine variation capability)whatever

 is required to control the p rofile process but at no time will it exceed 5 ° C. The producer assures process compatibility at the peak reflow profile temperatures defined in Table –III.
- **Note 3:** Package volume excludes external term inals(balls, bumps, lands, leads) and/or non integral heat sinks.
- **Note 4:** The maximum component temperature reached during reflow depends on package the thickness and volume. The use of convection reflow processes reduce s the thermal gradients b etween packages. Ho wever, thermal gradients due to difference s in thermal mass of SMD package may sill exist.
- Note 5: Components intended for use in a "lead-free" assembly proces s shall be evaluated using the "lead free" classification temperatures and profiles defined in Table-I II II whether or not lead free.

RoHS Compliant

The product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE), and are therefore considered RoHS compliant.

ESD Sensitivity

Integrated circuits are E SD sensitive and can be dam aged by statice lectricity. Proper ESD techniques should be used when handling these devices.

12 Change List

REV	DATE	AUTHER	CHANGE DESCRIPTION
V1.0	2011-02-09	Chun Zhao, Yanan Liu	Original Draft.
V1.1	2011-03-11	Chun Zhao, Yanan Liu	Correct Some Errors
V2.0	2011-03-24	Chun Zhao, Kai Wang	Add QFN4X4mm and QFN2X2mm Packages

13 Notes:

14 Cont act Information

RDA Microelectronics (Shanghai), Inc.

Suite 1108 Block A, e-Wing Center, 113 Zhichun Road Haidian District, Beijing

Tel: 86-10-62635360 Fax: 86-10-82612663 Postal Code: 100086

Suite 302 Building 2, 690 Bibo Road Pudong District, Shanghai

Tel: 86-21-50271108 Fax: 86-21-50271099 Postal Code: 201203

> RDX microelectronics

Copyright © RDA Microelectronics Inc. 2006. All rights are reserved.

Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

序机: 13510662515 http://www.czwtech.com