Building Your First scikit-learn Solution

EXPLORING SCIKIT-LEARN FOR MACHINE LEARNING

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

scikit-learn for data and ML modeling

Relationship with NumPy, SciPy, Pandas, and Matplotlib

Algorithms for supervised and unsupervised learning

Contrast with TensorFlow, Keras, and other deep learning frameworks

Prerequisites and Course Outline

Prerequisites

Basic Python programming
Intended to be first ML course
No ML knowledge required

Course Outline

Introduction to ML and scikit-learn

ML workflow with scikit-learn

Building simple ML models for regression and classification

Introducing Machine Learning

A machine learning algorithm is an algorithm that is able to learn from data

Machine Learning

Find patterns

Make intelligent decisions

Machine Learning

Emails on a server

Spam or Ham?

Trash or Inbox

Machine Learning

Images represented as pixels

Identify edges, colors, and shapes

A photo of a little girl

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, and move with fish

Rule-based Binary Classifier

Experts Know What Rules to Apply

Data Used to Train Model Parameters

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

Corpus

Classification algorithm

Traditional and Representational Machine Learning

Corpus

Classification algorithm

Specific Algorithm Which Learns From Data

Corpus

Classification algorithm

Choice of Algorithm Determined by Experts

Corpus

Classification algorithm

Features Determined by Experts

Corpus

Classification algorithm

Traditional ML Models

Regression models: Linear, Lasso, Ridge, SVR

Classification models: Naive Bayes, SVMs, Decision trees, Random forests

Dimensionality Reduction: Manifold learning, factor analysis

Clustering: K-means, DBSCAN, Spectral clustering

Traditional ML Models

Have a fundamental algorithmic structure to solve problems

The algorithm is fed data which trains the algorithms parameters

Called model parameters

Traditional ML Models

Build a tree structure to classify instances

Fit a line or a curve on data to make predictions

Apply probabilities on input data to get output probabilities

"Traditional" ML-based systems rely on experts to decide what features to pay attention to - and how

Representation ML Models

Also used to solve classification, regression, clustering, and dimensionality reduction

Learn significant features from the underlying data

Deep learning models such as neural networks

"Representation" ML-based systems figure out by themselves what features to pay attention to - and how

What Is a Neural Network?

Deep Learning

Algorithms that learn what features matter

Neural Networks

The most common class of deep learning algorithms

Neurons

Simple building blocks that actually "learn"

Neural Networks

Corpus

Layers in a neural network

ML-based classifier

Neural Networks

Corpus

Each layer consists of individual interconnected neurons

ML-based classifier

Each Layer Extracts Information from Data

Traditional vs. Deep Learning Models

Traditional ML Models

Features used in models explicitly chosen by domain experts

Structured data such as numbers and probabilities

Classification, regression, clustering, and dimensionality reduction

Deep Learning ML Models

Features used in models implicitly chosen by model itself

Unstructured data such as images and movies

Classification, regression, clustering, and dimensionality reduction

Traditional vs. Deep Learning Models

Traditional ML Models

Wide range of problem-specific solution techniques

Each solution technique adopts characteristic approach

User has more insight into mechanics and internals of models

scikit-learn

Deep Learning ML Models

Neural networks by far the most common solution technique

All solution techniques rely on neurons and interconnections between them

Black-box models that are hard to question or reverse-engineer

TensorFlow, Keras, PyTorch

The Niche of scikit-learn in Machine Learning

scikit-learn - easy-to-use, very comprehensive and efficient Python library for traditional ML models

scikit-learn

Developed as a Google summer of code project in 2007

Currently has 30+ active contributors

Sponsored by INRIA, Google, Tinyclues, and the Python Software Foundation

Attractions of scikit-learn

Easy-to-use Comprehensive Efficient

Attractions of scikit-learn

Ease of Use

Estimator API for consistent interface

Estimators for all kinds of models

Create a model object

Fit to training data

Predict for new data

Pipelines for complex operations

Attractions of scikit-learn

Support for Complete ML Workflow

All common families of models supported

Data pre-processing, cleaning, feature selection, and extraction

Model validation and evaluation

Completeness

Regression, classification, clustering, dimensionality reduction

Feature extraction and selection using statistical and dimensionality reduction

Data pre-processing

Data generation

- Swiss rolls, S-curves

Cross-validation to evaluate models

Hyperparameter tuning

Attractions of scikit-learn

Efficiency

Highly optimized implementations
Built on SciPy, hence scikit prefix
Interoperates with all common
Python libraries for data science

Efficiency

NumPy: Base n-dimensional array package

SciPy: Fundamental library for scientific computing

Matplotlib: Comprehensive 2D/3D plotting

Sympy: Symbolic mathematics

Pandas: Data structures and analysis

Foundational Libraries for scikit-learn

NumPy: Base n-dimensional array package

SciPy: Fundamental library for scientific computing

Matplotlib: Comprehensive 2D/3D plotting

Sympy: Symbolic mathematics

Pandas: Data structures and analysis

Demo

Exploring the scikit-learn webpage

Exploring documentation, packages, and libraries

Supervised and Unsupervised Learning

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

ML-based Binary Classifier

x Variables

The attributes that the ML algorithm focuses on are called features

Each data point is a list or vector of such features

Thus, the input into an ML algorithm is a feature vector

Feature vectors are usually called the x variables

y Variables

The attributes that the ML algorithm tries to predict are called labels

Types of labels

- Categorical (classification)
- Continuous (regression)

Labels are usually called the y variables

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

Linear regression involves finding the "best fit" line via a training process

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

f(x) = doSomethingReallyComplicated(x)

ML algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Unsupervised learning does not have:

- y variables
- A labeled corpus

Supervised Learning

Input variable x and output variable y

Learn the mapping function y = f(x)

Approximate the mapping function so for new values of x we can predict y

Use existing dataset to correct our mapping function approximation

Unsupervised Learning

Only have input data x - no output data

Model the underlying structure to learn more about data

Algorithms self-discover the patterns and structure in the data

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Dimensionality Reduction

Identify significant factors that drive data e.g. PCA

Demo

Installing scikit-learn and its dependencies on your local machine

Summary

scikit-learn for data and ML modeling

Relationship with NumPy, SciPy, Pandas, and Matplotlib

Algorithms for supervised and unsupervised learning

Contrast with TensorFlow, Keras, and other deep learning frameworks