Extra Notes-Big Data

7 Aug 2023

Data-at-rest

SQL, NoSQL databases
Folders and files
Logs and crash reports
Dump files
Extracts, backups

Either data transfer or migration

Data-in-motion

Games, videos, CCTVs, IoT, sensors/actuators

Router (HA), buffers

Data-at-rest (batch)

SQL, NoSQL databases
Folders and files
Logs and crash reports
Dump files
Extracts, backups

Azure/AWS/GCP

SQL migration tools

Azure- DataFactory GCP- DataFlow

Data-in-motion (stream)

Games, videos, CCTVs, IoT, sensors/actuators

Router (HA), buffers

on prem- Kafka, Storm Azure- IoT Hub or events hub GCP- Pub/Sub and DataFlow AWS- SQS, SNS, EventBridge

Lambda

Kappa

Beam = Batch + stEAM

Kappa

Beam = Batch + stEAM

Option 1

Transformation

Native
Spark/Hadoop/Kafka/Hive
/Hbase/Sqoop/Zookeeper
- everything APACHE OSS
(HDInsight)

Only cloud-enabled Spark without anything else (Databricks)

Data warehousing SQL / Spark (Synapse Analytics)

No-code transformations (Data Factory)

Intro to ML

This green line- this is ML!
ML is a BOUNDARY, an equation that can either propagate or classify

You can tell me \$\$ for any age Y = mx + c

Rich and Poor People Y1 > mx + c

Y2 < mx + c

2-D

3-D

Terminology

- TENSOR- flow of data
 - 0 dimension tensors -> SCALARS-> data not flowing anywhere!
 - 1 dimension tensors-> VECTORS-> data flowing in a direction!
 - 2 dimension tensors-> MATRICES -> data flowing in 2 directions (PLANE)
 - 3 dimension tensors-> CUBES -> Array of matrices
 - N dimension tensors
 - Tesseracts!
 - Higher dimensions can see lower dimensions
 - Lower dimension cannot visualize the higher dimensions
 - A bacteria which lives in a $^\sim$ 2D (tending to 2-D in our perspective- as flat as possible)- no understanding of what a human looks like- and even inside a human
 - BUT THE MOMENT WE INCREASE A DIMENSION- you see data like a never before- a new perspective to the DATA- and problems typically become much easier
 - https://www.youtube.com/watch?v=3liCbRZPrZA

Image

- Space imaging- bandwidths we could not even see!
 - Infrared imaging technique medical science, underwater, satellite and spaces (y) -> where y -> [0,255]
 - Once infrared is collect-> Z-Scoring -> data normalization on a scale that humans can see!

- Image is a 2-D array of pixels, where each pixel is built of (R, G, B)
 - Pixel-> (0,0,0) (255,255,255)
 - 2 types:
 - Light colors- if all light colors combine -> WHITE
 - Solid colors if all solid colors combine -> BLACK

Z-Score

Innermost circle radius- standard deviation (sigma)
Centre – average value (mu)

Z-Score =. How far away are you from center? And what's It's ratio with standard deviation?

=. Any given point X,

$$Z\text{-score} = \frac{mu - x}{sigma}$$

Z-SCORE EXAMPLE

Age	Money	,	AgeNorm	MoneyNorm	mu1	50.8888889	sigma1	41.6906598
, igc	ivioney		Age Worth	Wiencywerm	mu i	30.000003	Sigilial	41.0300330
	0	1000	1.220630453	0.33446663	mu2	1114471318	sigma2	3332082236
	10	1E+10	0.980768573	-2.6666595				
	100	150	-1.17798834	0.33446689				
	25	6666666	0.620975754	0.33246618				
	25	99999	0.620975754	0.33443692				
		33333	0.020373731	0.00 1 10052				
	26	23423232	0.596989566	0.32743732				
	72	23232	-0.50637508	0.33445996				
	99	4354	-1.15400215	0.33446562				
		.55 1	2.25 .00213	5.55 . 10502				
	101	23232	-1.20197453	0.33445996				

Max-abs scaling

• Formula:

Max Abs Scalaing =
$$\frac{data - min}{max - min}$$

Scaling for images =
$$\frac{pixel - 0}{255 - 0}$$