

MOLECULAR DYNAMICS ANALYSIS OF PALMITIC ACID IN DEEP EUTECTIC SOLVENTS OF BETAINE AND GLYCEROL

Arry Yanuar, Yongki, Kamarza Mulia

Introduction

- Free fatty acid is fatty acid which is obtained from fat hydrolisis.
- Free fatty acid is one of quality indicator from crude palm oil.
- Crude palm oil according to SNI 01-2901-2006 not allowed to contain more than 5% free fatty acid
- Palmitic acid is free fatty acid that is dominant in crude palm oil (cooking oil).

Palmitic Acid

- Palmitic acid (CH₃(CH₂)₁₄COOH) also called
 Hexadecanoic acid
- □ Solid form at room temperature, melt at 63,1° C.

Introduction(2)

- Green chemistry technology currently is an important topic on chemistry study.
- One of green chemistry technology that is currently studied is trying to replace current harsh organic solvent with ionic liquid solvents.

Introduction(3)

- Deep Eutectic Solvents(DES) is a mixture of ionic liquid solvents which forms is liquid at room temperature. (Abbott et al., 2003)
- The solvent's compound, usually, have a solid form at room temperature.
- After the compounds mixed they will be in liquid form and will be stable for a long time.
- It's mainly because of the formation of hydrogen bond between the molecule. (Abbott et al., 2004)
- Deep eutectic solvents which used organic compounds as the ingredients is called Natural Deep Eutectic Solvents/NADES.

Eutectic Solvents Phase Diagram

Betaine

- Betaine, also called Betaine anhydrate or Trimethylglycine (TMG).
- Is a metabolyte which obtained naturally.
- On Ionic Liquid, Betaine works as ammonium quartener salt.

Glycerol

- Glycerol is organic compound that is liquid, without smell and color.
- This compound is stable and has a high boiling point.
- On ionic liquid, glycerol works as hydrogen bond donor (HBD)

Introduction(4)

- Direct experiment in laboratory without in silico study will waste much time, effort, and expense.
- In the effort to shorten the experiment time in laboratory we do method of virtual simulation with the aid of computer (molecular dynamic simulation).

Introduction(5)

- Molecular dynamic is a computer simulation of physical atom or molecule movement (Alder, 1959.)
- Molecular dynamic simulation have been performed since 1960s, but for ionic liquid it was performed in 2001.
- Molecular dynamic simulation can give information about total energy, RDF, density, hydrogen bond, diffusion coefficient, etc.

Problem description

- Which composition of Betaine, Glycerol will create most stable mixture?
- Is palmitic acid can interact with the mixed solvent?

Research Goal

- Perform simulation of Betaine and Glycerol as Deep Eutectic Solvent (DES).
- Determine the best composition of Deep Eutectic Solvents (DES)
- Understanding interaction of Palmitic Acid in mixed solvent.

Work Scheme

Tools

- Hardware: A set of computer with specification:
 RAM 32 GB, Intel dual eight core Xeon E5620
 Processor, GPU NVIDIA GeForce GTX 780. NBCR Cluster.
- Software: Linux 12.04 LTS, GaussView and Gaussian09W, Packmol, OpenBabel, AmberTools 13, Amber 11, UCSF Chimera, MarvinSketch, Avogadro, PuTTY, dan VMD.

Source

- 3D structure of Palmitic Acid
- 3D structure of NADES solvent (Betaine and Glycerol)

Working Methods

- Preparation
- Molecular Dynamic Simulation
- Analysis

Molecule Composition

	Composition						
Compound	1:1	1:1 + Palmitic Acid	1:2	1:2 + Palmitic Acid	2:3	2:3 + Palmitic Acid	
Betaine	100	100	50	50	100	100	
Glycerol	100	100	100	100	150	150	
Palmitic Acid	-	10	-	20	-	20	

Comparison of Simulation Time with CPU and GPU

Simulaton process	Average of simulation time (ns/day)	CPU time (s) or (hr)
Processor (Intel Xeon E5620) 1 Processor	0,94	276016 , 46 (76.67)
GPU (Nvidia GeForce GTX780)	84,45	4092 , 38 (1.14)

GPU and NBCR Cluster (approx timing)

```
    o 
    arryyanuar — farm@alkaloid: ~/users/yongki2/renades22/step1/step2/step...

 NSTEP = 3936000 TIME(PS) = 38936.000 TEMP(NSTEP) = 3
                                                                                                                            -3490.3278
                                                                                               3142.5376
 Etot
                                                            EKtot =
                            1154.7913 ANGLE =
 BOND
                                                                                               1914.5436
                                                                                                                        NSTEP = 3000000
                                                                                                                                                                   TIME(PS) =
                                                                                                                                                                                                   3000.000 \text{ TEMP(K)} =
                                                                                                                                                                                                                                                 302.28 PRESS =
                                                                                                                                                                                                                                                                                                    5.9
                      182.7723 1-4 EEL =
 1-4 NB =
                                                                                               -363.7660
                                                                                                                        Etot
                                                                                                                                                       1059.9545
                                                                                                                                                                                 EKtot
                                                                                                                                                                                                                   1811.0510
                                                                                                                                                                                                                                            EPtot
                                                                                                                                                                                                                                                                                      -751.0965
 EELEC = -7895.8000 EHBOND =
                                                                                                 0.0000
                                                                                                                                                                                                   = 1029.2429
                                                                                                                        BOND =
                                                                                                                                                         687.2689 ANGLE
                                                                                                                                                                                                                                            DIHED
                                                                                                                                                                                                                                                                                        409.1389
 EKCMT =
                       184.6645 VIRIAL =
                                                                                                 210.8993
                                                                                                                                                      159.5813 1-4 EEL =
                                                                                                                                                                                                         2321.0190
                                                                                                                        1-4 \text{ NB} =
                                                                                                                                                                                                                                            VDWAALS
                                                                                                                                                                                                                                                                                      -267.7134
                                                                                                                                                     -5089.6340 EHBOND =
                                                                                                                        EELEC =
                                                                                                                                                                                                                          0.0000
                                                                                                                                                                                                                                            RESTRAINT =
                                                                                                                                                                                                                                                                                             0.0000
                                                                                                                                             102.6996 VIRIAL =
                                                                                                                        EKCMT =
                                                                                                                                                                                                                        -4.3792 VOLUME
                                                                                                                                                                                                                                                                                 838932,2023
   Current Timing Info
                                                                                                                                                                                                                                             Density
                                                                                                                                                                                                                                                                                             0.0240
                                                                                                                        Ewald error estimate:
                                                                                                                                                                              0.1592E-05
   Total steps: 4000000 | Completed:
                                                                                                  3936000
                                                                                                                            Final Performance Info:
   Average timings for last 69000 steps:
             Elapsed(s) =
                                            61.27 \text{ Per Step(ms)} =
                                                                                                                                   Average timings for last
                                                                                                                                                                                                   6000 steps:
                                            97.30 seconds/ns =
                      ns/day =
                                                                                                                                             Elapsed(s) = 94.52 \text{ Per Step(ms)} =
                                                                                                                                                                                                                                                 15.75
                                                                                                                                                      ns/day =
                                                                                                                                                                                        5.48 seconds/ns = 15753.05
   Average timings for all steps:
             Elapsed(s) = 3494.25 \text{ Per Step(ms)} =
                                                                                                                                   Average timings for all steps:
                      ns/day = 97.32 seconds/ns =
                                                                                                                                             Elapsed(s) = 46807.93 \text{ Per Step(ms)} =
                                                                                                                                                                                                                                                 15.60
                                                                                                                                                      ns/day =
                                                                                                                                                                                        5.54 seconds/ns =
                                                                                                                      mdinfo (END)
```

Data Analysis

- Analyze Density and Total Energy
- 2. After the system stabilized then perform analysis of RDF and hydrogen bond

Visual Appearance (Demo)

Composition 1:1

Composition 1:1 + Palmitic Acid

Visual Appearance (Demo)

Composition 1:2

Composition 1:2 + Palmitic Acid

Visual Appearance (Demo)

Composition 2:3

Composition 2:3 + Palmitic Acid

Density Table & Total Energy Analysis

Composition (Betain : Glycerol)	Average Density(cc/mol)	Average Total Energy (kkal/mol)
1:1	1,32252	203,341
1:1 + Palmitic Acid	1,25608	504,757
1:2	1,3189	2125,29
1:2 + Palmitic Acid	1,17843	2634,13
2:3	1,28559	2293,35
2:3 + Palmitic Acid	1,22091	2778,4

Radial Distribution Function

- □ Radial Distribution Function (RDF) is a correlation function of a pair, which describe how, average, atoms each other in a radial system. (Côté, Smith & Lindan, 2001).
- Mathematically defined as $g(r)=n(r)/(\rho 4\pi r 12 \Delta r)$

Radial Distribution Function (2)

- Radial Distribution Function obtained from trajectory when the graphic is already stabilised.
- Radial Distribution Function can be used as one of indicator for bond between atoms.
- This is because RDF counts the probability of an atom to find another atom in certain distance.

The Number of Atom Analyzed

RDF only analyzed at atoms which have potency to bonded, which is O atom on Betaine, H1, H7 and H8 atoms on Glycerol and O2 and H32 atoms on Palmitic Acid

RDF and Hydrogen Bond Analysis (hypothesis)

Fungsi Distribusi Radial Atom O1 Betain terhadap Atom H Gliserol Fungsi Distribusi Radial Atom H Gliserol terhadap Atom O1 Betain Komposisi 1:1 Komposisi 1:1 + Asam Palmitat GLY_H1:BET_O1 BET_O1:GLY_H1 BET_O1:GLY_H7 GLY_H7:BET_O1 BET_O1:GLY_H8 GLY_H8:BET_O1 1.5 1.5 <u>(j</u> 0.5 0.5 10 15 r (Angstrom) r (Angstrom) Fungsi Distribusi Radial Atom H Gliserol terhadap Atom O2 Betain Fungsi Distribusi Radial Atom O2 Betain terhadap Atom H Gliserol Komposisi 1:1 + Asam Palmitat Komposisi 1:1 BET_O2:GLY_H1 GLY_H1:BET_O2 BET_O2:GLY_H7 GLY_H7:BET_O2 GLY_H8:BET_O2 BET_O2:GLY_H8 1.5 1.5 g(r) 0.5 0.5 15 r (Angstrom) r (Angstrom)

Fungsi Distribusi Radial Atom H Gliserol terhadap Atom O2 Asam Palmitat Fungsi Distribusi Radial Atom H Gliserol terhadap Atom O2 Asam Palmitat Komposisi 1:2 + Asam Palmitat Komposisi 1:1 + Asam Palmitat GLY_H1:PAC_O2 GLY_H7:PAC_O2 GLY_H8:PAC_O2 GLY_H1:PAC_O2 GLY_H7:PAC_O2 GLY_H8:PAC_O2 1.5 1.5 g(r) (r) 0.5 0.5 10 10 15 20 15 r(Angstrom) r (Angstrom) Fungsi Distribusi Radial Atom O2 Asam Palmitat terhadap Atom H Gliserol Komposisi 2:3 + Asam Palmitat PAC_O2:GLY_H1 PAC_O2:GLY_H7 PAC_O2:GLY_H8 1.5 (F) 0.5 10 5 15

r (Angstrom)

Hydrogen Bond Table

	H7 with O Betaine		H1 with O Betaine		H8 with O Betaine		H32 Palmitic Acid with O Betain	
Composition	Amount of Bond	Maximum Occupancy (%)	Amount of Bond	Maximum Occupancy (%)	Amount of Bond	Maximum Occupancy (%)	Amount of Bond	Maximum Occupancy (%)
1:1	55	56,44	40	52,42	67	51,67	-	-
1:1	74	41,35	78	41,84	92	39,20	6	17,38
+ Palmitic Acid								
1:2	46	39,65	61	35,95	61	33,24	-	-
1:2	37	29,94	36	49,46	45	40,63	6	25,89
+ Palmitic Acid								
2:3	70	56,59	84	50,86	87	49,44	-	-
2:3 + Palmitic Acid	59	43,04	67	51,07	82	49,86	7	13,32

Hydrogen Bonds between Betaine and Glycerol (simulation result)

$$H_3C$$
 H_3C
 H_3C

Hydrogen Bonds between Glycerol, Betaine and Palmitic Acid (simulation result)

Conclusion

- □ The best mixture obtained are 1:2 dan 2:3
- Palmitic Acid can make hydrogen bonds with the solvent mixture between Betaine and Glycerol.
- Hydrogen Bond is formed also in mixture of Betaine and Glycerol and with Palmitic Acid.
- Palmitic Acid increase mixing process of Betaine and Glycerol.

Reference

- Wang, S., Zhang, Y., Wang, J., (2014). Solubility Measurement and Modeling for Betaine in Different Pure Solvents. J. Chem. Eng. 59, 2511-2516.
- Shamsuri, A.A., Abdullah, D.K., (2010). Ionic Liquids: Preparations and Limitations. Makara, Sains, Vol.14, No 2, 101-106.
- Dai et al., (2013). Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Analytica Chimica Acta. 766, 61-68.
- Computational Collaboration Project No 5. The Radial Distribution Function. Diakses pada 20 Januari 2015, dari
 http://www.ccp5.ac.uk/DL POLY/Democritus/Theory/rdf.html

Reference (2)

- Case, D.A., Lim, C., Tutorial: A room-temperature ionic liquid. Diakses pada 20 Januari 2015, dari
 http://ambermd.org/tutorials/advanced/tutorial15/Tutorial2.xhtml
- Case, D. A., et al. (2010). Amber 11 User's Manual. San Fransisco: University of California.
- Bin, Yu. (2014). Glycerol. Synlett: Spotlight 461. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Zhengzhou University.
- Smith, E.L. et al. (2014). Deep Eutectic Solvents (DES) and Their Applications. Chem. Rev. 114, 11060-11082

THANK YOU