Lógica modal computacional

LTL – linear temporal logic

Carlos Areces & Raul Fervari

1er cuatrimestre de 2017 Córdoba, Argentina

• Pensemos en propiedades de sistemas reactivos.

- Pensemos en propiedades de sistemas reactivos.
- Algunas propiedades que interesan en un semáforo:
 - La luz verde y la roja nunca se prenden simultáneamente
 - Una vez en rojo, la luz se volvera verde luego de haber estado amarilla por algun tiempo.

- Pensemos en propiedades de sistemas reactivos.
- Algunas propiedades que interesan en un semáforo:
 - La luz verde y la roja nunca se prenden simultáneamente
 - Una vez en rojo, la luz se volvera verde luego de haber estado amarilla por algun tiempo.
- Dos tipos importantes de propiedades:

Safety: el sistema no ingresa en un estado inválido Liveness: el sistema siempre responde como debe

- Pensemos en propiedades de sistemas reactivos.
- Algunas propiedades que interesan en un semáforo:
 - La luz verde y la roja nunca se prenden simultáneamente
 - Una vez en rojo, la luz se volvera verde luego de haber estado amarilla por algun tiempo.
- Dos tipos importantes de propiedades:

Safety: el sistema no ingresa en un estado inválido Liveness: el sistema siempre responde como debe

• Otra forma de pensarlo:

Safety: alcanza con mirar ejecuciones finitas Liveness: no alcanza con mirar ejecuciones finitas

Propositional Linear Temporal Logics (PLTL)

Sintaxis

$$FORM ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid X\varphi \mid \varphi \cup \psi$$

Propositional Linear Temporal Logics (PLTL)

Sintaxis

$$FORM ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid X\varphi \mid \varphi \cup \psi$$

Los modelos son trazas

- Una traza es una secuencia infinita de estados del sistema.
- Es decir, $\sigma = s_0 s_1 s_2 \dots$ y cada s_i es una valuación prop.
- Se puede pensar como un modelo de Kripke con *R* lineal.

Propositional Linear Temporal Logics (PLTL)

Sintaxis

$$FORM ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid X\varphi \mid \varphi \cup \psi$$

Los modelos son trazas

- Una traza es una secuencia infinita de estados del sistema.
- Es decir, $\sigma = s_0 s_1 s_2 \dots$ y cada s_i es una valuación prop.
- Se puede pensar como un modelo de Kripke con *R* lineal.

Semántica

Sea $\sigma = s_0 s_1 s_2 \dots$ y llamemos $\sigma^i = s_i s_{i+1} \dots$ Definimos:

$$\sigma \models p \qquad \text{sii} \quad p \in s_0
\sigma \models \neg \varphi \qquad \text{sii} \quad \sigma \not\models \varphi
\sigma \models \varphi \land \psi \qquad \text{sii} \quad \sigma \models \varphi \text{ y } \sigma \models \psi
\sigma \models X\varphi \qquad \text{sii} \quad \sigma^1 \models \varphi
\sigma \models \varphi \not\downarrow \psi \qquad \text{sii} \quad \exists j \geq 0. (\sigma^j \models \psi \text{ y } (\forall 0 \leq k < j, \sigma^k \models \varphi))$$

• Operadores derivados:

$$F\varphi \equiv \top U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

• Operadores derivados:

$$F\varphi \equiv \top U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

- Vuelta al semáforo
 - La luz verde y la roja nunca se prenden simultáneamente

• Operadores derivados:

$$F\varphi \equiv \top U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

- Vuelta al semáforo
 - La luz verde y la roja nunca se prenden simultáneamente

$$\neg F(green \land red)$$

Operadores derivados:

$$F\varphi \equiv \top U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

- Vuelta al semáforo
 - La luz verde y la roja nunca se prenden simultáneamente

$$\neg F(green \land red)$$

• Una vez en rojo, la luz se volverá verde luego de haber estado amarilla por algún tiempo entre el rojo y el verde.

Operadores derivados:

$$F\varphi \equiv \top U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

- Vuelta al semáforo
 - La luz verde y la roja nunca se prenden simultáneamente

$$\neg F(green \land red)$$

 Una vez en rojo, la luz se volverá verde luego de haber estado amarilla por algún tiempo entre el rojo y el verde.

$$G(red \rightarrow (red \ U(yellow \land (yellow \ U \ green))))$$

Model-checking (de trazas) es model-checking

- Dada una traza σ y una fórmula φ , vale $\sigma \models \varphi$?
- En términos de IS, podemos pensarlo como un monitoreo.

Model-checking (de trazas) es model-checking

- Dada una traza σ y una fórmula φ , vale $\sigma \models \varphi$?
- En términos de IS, podemos pensarlo como un monitoreo.

Model-checking (en "verificación") no es model-checking!

- Sea $\mathcal M$ una abstracción de un sistema S (ie, un *modelo* de S)
- ullet Y sea φ una propiedad expresada en LTL.
- Verificar si \mathcal{M} cumple φ es comprobar si vale:

$$\sigma \models \varphi$$
, para toda traza (ejecución) σ de \mathcal{M}

Model-checking (de trazas) es model-checking

- Dada una traza σ y una fórmula φ , vale $\sigma \models \varphi$?
- En términos de IS, podemos pensarlo como un monitoreo.

Model-checking (en "verificación") no es model-checking!

- Sea $\mathcal M$ una abstracción de un sistema S (ie, un *modelo* de S)
- Y sea φ una propiedad expresada en LTL.
- Verificar si \mathcal{M} cumple φ es comprobar si vale:

$$\sigma \models \varphi$$
, para toda traza (ejecución) σ de \mathcal{M}

• Es decir, si vale $\mathcal{C} \models \varphi$ con $\mathcal{C} = \{ \sigma \mid \sigma \text{ es una traza de } \mathcal{M} \}.$

Model-checking (de trazas) es model-checking

- Dada una traza σ y una fórmula φ , vale $\sigma \models \varphi$?
- En términos de IS, podemos pensarlo como un monitoreo.

Model-checking (en "verificación") no es model-checking!

- Sea $\mathcal M$ una abstracción de un sistema S (ie, un *modelo* de S)
- Y sea φ una propiedad expresada en LTL.
- Verificar si $\mathcal M$ cumple φ es comprobar si vale:

$$\sigma \models \varphi$$
, para toda traza (ejecución) σ de \mathcal{M}

- Es decir, si vale $\mathcal{C} \models \varphi$ con $\mathcal{C} = \{ \sigma \mid \sigma \text{ es una traza de } \mathcal{M} \}$.
- ¡Esto es validez respecto a una clase de modelos!

• Podemos ver una traza como un *string* sobre alfabeto 2^{Prop}

- Podemos ver una traza como un *string* sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}

- Podemos ver una traza como un string sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}
- Y sea $\mathcal{L}(\varphi) = \{ \sigma \mid \sigma \models \varphi \}$, las trazas que satisfacen φ .

- Podemos ver una traza como un string sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}
- Y sea $\mathcal{L}(\varphi) = \{ \sigma \mid \sigma \models \varphi \}$, las trazas que satisfacen φ .
- Entonces, \mathcal{M} cumple la propiedad φ sii $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\varphi)$.

- Podemos ver una traza como un string sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}
- Y sea $\mathcal{L}(\varphi) = \{ \sigma \mid \sigma \models \varphi \}$, las trazas que satisfacen φ .
- Entonces, \mathcal{M} cumple la propiedad φ sii $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\varphi)$.
- O lo que es equivalente: $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\varphi)^c = \emptyset$

- Podemos ver una traza como un *string* sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}
- Y sea $\mathcal{L}(\varphi) = \{ \sigma \mid \sigma \models \varphi \}$, las trazas que satisfacen φ .
- Entonces, \mathcal{M} cumple la propiedad φ sii $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\varphi)$.
- O lo que es equivalente: $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\varphi)^c = \emptyset$
- ullet Si los representáramos con autómatas $A_{\mathcal{M}}$ y A_{arphi}
 - Podemos computar un autómata que acepta $\mathcal{L}(\mathcal{M})$ y $\mathcal{L}(\varphi)$
 - Y usar un algoritmo de alcanzabilidad para ver si su lenguaje es vacío
 - Son operaciones polinomiales en tamaño de los autómatas!

- Podemos ver una traza como un string sobre alfabeto 2^{Prop}
- Sea $\mathcal{L}(\mathcal{M})$ el conjunto de trazas que puede generar \mathcal{M}
- Y sea $\mathcal{L}(\varphi) = \{ \sigma \mid \sigma \models \varphi \}$, las trazas que satisfacen φ .
- Entonces, \mathcal{M} cumple la propiedad φ sii $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\varphi)$.
- O lo que es equivalente: $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\varphi)^c = \emptyset$
- ullet Si los representáramos con autómatas $A_{\mathcal{M}}$ y A_{arphi}

 - Y usar un algoritmo de alcanzabilidad para ver si su lenguaje es vacío
 - Son operaciones polinomiales en tamaño de los autómatas!
- Por propiedades de liveness, los strings deben ser infinitos
- Los autómatas "comunes" reconocen strings finitos

Repaso

Definición (FA)

- Un FA es una 5-tupla $A = \langle \Sigma, S, S_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales $(S_0 \neq \emptyset)$
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales

Repaso

Definición (FA)

- Un FA es una 5-tupla $A = \langle \Sigma, S, S_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales $(S_0 \neq \emptyset)$
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales
- *A* es un autómata finito *determinístico* (DFA) si, además:
 - $|S_0| = 1$
 - $|\rho(s,a)| \le 1$ para todo s y a

Repaso

Definición (FA)

- Un FA es una 5-tupla $A = \langle \Sigma, S, S_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales $(S_0 \neq \emptyset)$
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales
- *A* es un autómata finito *determinístico* (DFA) si, además:
 - $|S_0| = 1$
 - $|\rho(s,a)| \le 1$ para todo s y a

Definición (Corrida y aceptación)

- Una corrida de *A* sobre $w \in \Sigma^k$ es una $s \in S^k$ tal que:
 - **①** s_0 ∈ S_0
 - $2 s_{i+1} \in \rho(s_i, w_i)$

Repaso

Definición (FA)

- Un FA es una 5-tupla $A = \langle \Sigma, S, S_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales ($S_0 \neq \emptyset$)
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales
- *A* es un autómata finito *determinístico* (DFA) si, además:
 - $|S_0| = 1$
 - $|\rho(s,a)| \le 1$ para todo s y a

Definición (Corrida y aceptación)

- Una corrida de *A* sobre $w \in \Sigma^k$ es una $s \in S^k$ tal que:
 - **1** s_0 ∈ S_0
 - $s_{i+1} \in \rho(s_i, w_i)$
- *A* acepta w si una corrida de w en A, $s_0 \dots s_k$, cumple $s_k \in F$

Autómatas de Büchi (BA)

Un autómata para palabras infinitas

Definición (BA)

- Un BA es una 5-tupla $A = \langle \Sigma, S, s_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales $(S_0 \neq \emptyset)$
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales

Autómatas de Büchi (BA)

Un autómata para palabras infinitas

Definición (BA)

- Un BA es una 5-tupla $A = \langle \Sigma, S, s_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales ($S_0 \neq \emptyset$)
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales
- O sea...es igual! (ídem para determinístico DBA)

Autómatas de Büchi (BA)

Un autómata para palabras infinitas

Definición (BA)

- Un BA es una 5-tupla $A = \langle \Sigma, S, s_0, \rho, F \rangle$ donde
 - $\Sigma \neq \emptyset$ es el alfabeto (finito)
 - *S* es el conjunto de estados (finito)
 - $S_0 \subseteq S$ es el conjunto de estados iniciales ($S_0 \neq \emptyset$)
 - $\rho: S \times \Sigma \to 2^S$ es la función de transición
 - $F \subseteq S$ es el conjunto de estados finales
- O sea...es igual! (ídem para determinístico DBA)

Definición (Aceptación)

A acepta $w \in \Sigma^{\omega}$ si una corrida de w en A, $s \in S^{\omega}$, cumple:

$$inf(s) \cap F \neq \emptyset$$

donde $inf(s) = \{s_i \mid s_i \text{ ocurre infinitas veces en } s\}$

• Qué lenguaje reconoce A como AF?

• Qué lenguaje reconoce A como AF? $\mathcal{L}(A) = (0|1)^*1$

- Qué lenguaje reconoce A como AF? $\mathcal{L}(A) = (0|1)^*1$
- Qué lenguaje reconoce A como BA?

- Qué lenguaje reconoce A como AF? $\mathcal{L}(A) = (0|1)^*1$
- Qué lenguaje reconoce A como BA? $\mathcal{L}(A) = ((0|1)^*1)^{\omega}$, los strings con un número infinito de unos.

• Qué lenguaje reconoce A como FA?

• Qué lenguaje reconoce A como FA? $\mathcal{L}(A) = (0|1)^*1$

- Qué lenguaje reconoce A como FA? $\mathcal{L}(A) = (0|1)^*1$
- Qué lenguaje reconoce A como BA?

- Qué lenguaje reconoce A como FA? $\mathcal{L}(A) = (0|1)^*1$
- Qué lenguaje reconoce A como BA? $\mathcal{L}(A) = (0|1)^*1^\omega$, los strings con un número finito de ceros.

FA

- Cerrados por \cap , \cup
- Cerrados por .c

BA

• Cerrados por \cap y \cup

FA

- Cerrados por \cap , \cup
- Cerrados por .c

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)
- $\mathcal{L}(BA) \neq \mathcal{L}(DBA)$

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete

- Cerrados por \cap y \cup
- Cerrados por .c (no DBA)
- $\mathcal{L}(BA) \neq \mathcal{L}(DBA)$

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)
- $\mathcal{L}(BA) \neq \mathcal{L}(DBA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete
- Decidir si $\mathcal{L}(A) = \emptyset^c$ es PSPACE-complete

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)
- $\mathcal{L}(BA) \neq \mathcal{L}(DBA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete

FA

- Cerrados por \cap , \cup
- Cerrados por .c
- $\mathcal{L}(FA) = \mathcal{L}(DFA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete
- Decidir si $\mathcal{L}(A) = \emptyset^c$ es PSPACE-complete

- Cerrados por \cap y \cup
- Cerrados por · c (no DBA)
- $\mathcal{L}(BA) \neq \mathcal{L}(DBA)$
- Decidir si $\mathcal{L}(A) = \emptyset$ es NLOGSPACE-complete
- Decidir si $\mathcal{L}(A) = \emptyset^c$ es PSPACE-complete

El problema de emptyness de un BA

Teorema

Dado un BA $A = \langle \Sigma, S, S_0, \rho, F \rangle$, $\mathcal{L}(A) \neq \emptyset$ sii existen $s \in S_0$ y $t \in F$, tales que t es alcanzable desde s y t se alcanza a sí mismo.

El problema de emptyness de un BA

Teorema

Dado un BA $A = \langle \Sigma, S, S_0, \rho, F \rangle$, $\mathcal{L}(A) \neq \emptyset$ sii existen $s \in S_0$ y $t \in F$, tales que t es alcanzable desde s y t se alcanza a sí mismo.

Corolario

Dado un BA A, podemos determinar linealmente si $\mathcal{L}(A) = \emptyset$.

Demostración (Algoritmo)

- Descomponer el BA en Maximal Strongly Connected Components empezando desde $s \in S_0$ (Alg. de Tarjan)
- Chequear que al menos uno de los MSCC interseca *F* en forma no vacía
- Ambos pueden hacerse en tiempo lineal

Más flexibles pero igual de expresivos

Diferencias en las condiciones de aceptación

• $F \subseteq S$ (BA) vs. $F = \{F_1, \dots F_k\}$ con $F_i \subseteq S$ (GBA)

Más flexibles pero igual de expresivos

Diferencias en las condiciones de aceptación

- $F \subseteq S$ (BA) vs. $F = \{F_1, \dots F_k\}$ con $F_i \subseteq S$ (GBA)
- $\bullet\,$ En un GBA una corrida r es aceptada sii

$$inf(r) \cap F_i \neq \emptyset$$
 para todo $F_i \in F$

Más flexibles pero igual de expresivos

Diferencias en las condiciones de aceptación

- $F \subseteq S$ (BA) vs. $F = \{F_1, \dots F_k\}$ con $F_i \subseteq S$ (GBA)
- ullet En un GBA una corrida r es aceptada sii

$$inf(r) \cap F_i \neq \emptyset$$
 para todo $F_i \in F$

Teorema

Un GBA es polinomialmente transformable en BA equivalente

Más flexibles pero igual de expresivos

Diferencias en las condiciones de aceptación

- $F \subseteq S$ (BA) vs. $F = \{F_1, \dots F_k\}$ con $F_i \subseteq S$ (GBA)
- En un GBA una corrida *r* es aceptada sii

$$inf(r) \cap F_i \neq \emptyset$$
 para todo $F_i \in F$

Teorema

Un GBA es polinomialmente transformable en BA equivalente

Demostración (Idea)

- Si $F = \{F_1, \dots F_k\}$, tomar como estados $S \times \{1 \dots k\}$.
- Si $(s, a) \mapsto t$ y $s \in F_i$, $(\langle s, i \rangle, a) \mapsto \langle t, i+1 \mod k \rangle$.
- Si $(s, a) \mapsto t$ y $s \notin F_i$, $(\langle s, i \rangle, a) \mapsto \langle t, i \rangle$.
- $\bullet \ F' = F_k \times \{k\}$

De STS a autómatas

Definición (State Transition System – STS)

- Un STS es una tupla $\langle S, I, R, Label \rangle$ donde
 - *S* es un conjunto contable no vacío de estados,
 - $I \subseteq S$ es un conjunto de estados iniciales,
 - $R \subseteq S \times S$ es la relación de transición tal que $\forall s \in S.(\exists s' \in S.R(s,s'))$
 - Label : $S \rightarrow 2^{PROP}$ es una valuación que describe cada estado
- Se usan para describir o especificar sistemas

De STS a autómatas

Definición (State Transition System – STS)

- Un STS es una tupla $\langle S, I, R, Label \rangle$ donde
 - *S* es un conjunto contable no vacío de estados,
 - $I \subseteq S$ es un conjunto de estados iniciales,
 - $R \subseteq S \times S$ es la relación de transición tal que $\forall s \in S.(\exists s' \in S.R(s,s'))$
 - Label : $S \to 2^{PROP}$ es una valuación que describe cada estado
- Se usan para describir o especificar sistemas

BA asociado a un STS

- Sea $S = \langle S, I, R, Label \rangle$ un STS
- $\bullet\,$ Buscamos un BA A_S que acepte todas y sólo las trazas de S

De STS a autómatas

Definición (State Transition System – STS)

- Un STS es una tupla $\langle S, I, R, Label \rangle$ donde
 - *S* es un conjunto contable no vacío de estados,
 - $I \subseteq S$ es un conjunto de estados iniciales,
 - $R \subseteq S \times S$ es la relación de transición tal que $\forall s \in S.(\exists s' \in S.R(s,s'))$
 - Label : $S \rightarrow 2^{PROP}$ es una valuación que describe cada estado
- Se usan para describir o especificar sistemas

BA asociado a un STS

- Sea $S = \langle S, I, R, Label \rangle$ un STS
- ullet Buscamos un BA A_S que acepte todas y sólo las trazas de S
- Definimos $A_{\mathcal{M}} = \langle 2^{PROP}, S, I, \rho, S \rangle$ donde

$$\rho(u, a) = \{v \mid R(u, v) \text{ y } a = Label(u)\}$$

De fórmulas a autómatas

Cuál es la idea?

• Ojo, en las transiciones hay valuaciones!

De fórmulas a autómatas

Cuál es la idea?

- Ojo, en las transiciones hay valuaciones!
- Hay muchas traducciones posibles! Cuál es mejor?

De fórmulas a autómatas, un ejemplo Los ladrillos

Definición

 $Sub(\varphi)$ es la clausura de φ bajo subfórmulas y neg. simples.

Definición

 $Sub(\varphi)$ es la clausura de φ bajo subfórmulas y neg. simples.

Definición

Dadas σ y φ , satseq $(\sigma, \varphi) \in (2^{Sub(\varphi)})^{\omega}$ es la secuencia tal que:

satseq
$$(\sigma, \varphi) = \pi(\sigma, \varphi, 0)\pi(\sigma, \varphi, 1)\pi(\sigma, \varphi, 3)\dots$$

donde
$$\pi(\sigma, \varphi, i) = \{ \psi \in Sub(\varphi) \mid \sigma^i \models \psi \}$$

Otra vez los Hintikka sets

Otra vez los Hintikka sets

- 2 si $p \in Sub(\varphi)$, $p \in satseq(\sigma, \varphi, i)$ si
i $p \in \sigma[i]$

Otra vez los Hintikka sets

- \bullet si $p \in Sub(\varphi)$, $p \in satseq(\sigma, \varphi, i)$ sii $p \in \sigma[i]$

Otra vez los Hintikka sets

- $\textbf{②} \ \operatorname{si} p \in Sub(\varphi), p \in \operatorname{satseq}(\sigma,\varphi,i) \operatorname{sii} p \in \sigma[i]$
- $\ \, \textbf{ §} \ \, \textbf{ si } \varphi_1 \wedge \varphi_2 \in Sub(\varphi) \text{, } \varphi_1 \wedge \varphi_2 \in \textbf{satseq}(\sigma,\varphi,i) \textbf{ sii } \varphi_{1,2} \in \sigma$

Otra vez los Hintikka sets

- $\ \, \textbf{ si } p \in Sub(\varphi) \text{, } p \in \text{satseq}(\sigma,\varphi,i) \text{ sii } p \in \sigma[i]$
- $\ \, \textbf{Si}\,\,\varphi_1\wedge\varphi_2\in\textit{Sub}(\varphi), \varphi_1\wedge\varphi_2\in\textit{satseq}(\sigma,\varphi,i)\,\, \textbf{sii}\,\,\varphi_{1,2}\in\sigma$

Otra vez los Hintikka sets

- \bullet si $p \in Sub(\varphi)$, $p \in satseq(\sigma, \varphi, i)$ sii $p \in \sigma[i]$
- $\ \, \textbf{Si}\,\,\varphi_1\wedge\varphi_2\in\textit{Sub}(\varphi),\,\varphi_1\wedge\varphi_2\in\textit{satseq}(\sigma,\varphi,i)\,\,\textit{sii}\,\,\varphi_{1,2}\in\sigma$
- $\begin{array}{l} \textbf{ si } X\varphi \in Sub(\varphi)\text{, } X\varphi \in \operatorname{satseq}(\sigma,\varphi,i) \text{ sii} \\ \varphi \in \operatorname{satseq}(\sigma,\varphi,i+1) \end{array}$
- \bullet si $\varphi_1 \cup \varphi_2 \in Sub(\varphi)$, $\varphi_1 \cup \varphi_2 \in satseq(\sigma, \varphi, i)$ sii

Otra vez los Hintikka sets

- $② \ \operatorname{si} p \in Sub(\varphi), p \in \operatorname{satseq}(\sigma,\varphi,i) \ \operatorname{sii} p \in \sigma[i]$
- \bullet si $\varphi_1 \land \varphi_2 \in Sub(\varphi)$, $\varphi_1 \land \varphi_2 \in satseq(\sigma, \varphi, i)$ sii $\varphi_{1,2} \in \sigma$
- $\text{ \circ } \text{ si $X\varphi \in Sub(\varphi)$, $X\varphi \in \operatorname{satseq}(\sigma,\varphi,i)$ sii } \\ \varphi \in \operatorname{satseq}(\sigma,\varphi,i+1)$
- $\bullet \ \ \text{si} \ \varphi_1 \ U \ \varphi_2 \in Sub(\varphi), \ \varphi_1 \ U \ \varphi_2 \in \text{satseq}(\sigma,\varphi,i) \ \text{sii}$
 - $\varphi_2 \in \text{satseq}(\sigma, \varphi, i)$ ó $(\varphi_1 \in \text{satseq}(\sigma, \varphi, i) \text{ y}$ $\varphi_1 \text{ U } \varphi_2 \in \text{satseq}(\sigma, \varphi, i+1)), \text{ y}$

Otra vez los Hintikka sets

- \mathbf{S} si $X\varphi \in Sub(\varphi)$, $X\varphi \in satseq(\sigma, \varphi, i)$ sii $\varphi \in satseq(\sigma, \varphi, i + 1)$
- \bullet si $\varphi_1 U \varphi_2 \in Sub(\varphi)$, $\varphi_1 U \varphi_2 \in satseq(\sigma, \varphi, i)$ sii
 - $\varphi_2 \in \text{satseq}(\sigma, \varphi, i)$ ó $(\varphi_1 \in \text{satseq}(\sigma, \varphi, i) \text{ y}$ $\varphi_1 \ U \ \varphi_2 \in \text{satseq}(\sigma, \varphi, i + 1)), \text{ y}$
 - **2** existe $j \ge i$ tal que $\varphi_2 \in \text{satseq}(\sigma, \varphi, j)$

Otra vez los Hintikka sets

Supongamos que $\sigma \models \varphi$, entonces se cumple que...

- $\ \ \, \textbf{3} \ \, \textbf{3} \ \, \textbf{5} \ \, \textbf{5}$
- \bullet si $\varphi_1 \land \varphi_2 \in Sub(\varphi)$, $\varphi_1 \land \varphi_2 \in satseq(\sigma, \varphi, i)$ sii $\varphi_{1,2} \in \sigma$
- \bullet si $\neg \varphi \in Sub(\varphi)$, $\neg \varphi \in satseq(\sigma, \varphi, i)$ sii $\varphi \notin \sigma$
- si $X\varphi \in Sub(\varphi)$, $X\varphi \in satseq(\sigma, \varphi, i)$ sii $\varphi \in satseq(\sigma, \varphi, i + 1)$
- $\bullet \ \ \text{si} \ \varphi_1 \ \mathcal{U} \ \varphi_2 \in Sub(\varphi), \varphi_1 \ \mathcal{U} \ \varphi_2 \in \text{satseq}(\sigma,\varphi,i) \ \text{sii}$
 - $\varphi_2 \in \text{satseq}(\sigma, \varphi, i)$ ó $(\varphi_1 \in \text{satseq}(\sigma, \varphi, i) \text{ y}$ $\varphi_1 \ U \ \varphi_2 \in \text{satseq}(\sigma, \varphi, i + 1))$, y
 - existe $j \ge i$ tal que $\varphi_2 \in \text{satseq}(\sigma, \varphi, j)$

Definición (Hintikka set para LTL)

Decimos que $\alpha \subseteq Sub(\varphi)$ es un Hintikka set para φ si satisface las condiciones 1-4. $Hin(\varphi)$ son todos los Hintikka sets para φ .

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

$$A_{\varphi} = \langle 2^{PROP}, Hin(\varphi), S_0, \rho, \{F_1, \dots, F_k\} \rangle$$

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

$$A_{\varphi} = \langle 2^{PROP}, Hin(\varphi), S_0, \rho, \{F_1, \dots, F_k\} \rangle$$

•
$$S_0 = \{ \alpha \mid \alpha \in Hin(\varphi), \varphi \in \alpha \}$$

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

$$A_{\varphi} = \langle 2^{PROP}, Hin(\varphi), S_0, \rho, \{F_1, \dots, F_k\} \rangle$$

- $S_0 = \{ \alpha \mid \alpha \in Hin(\varphi), \varphi \in \alpha \}$
- $\bullet \ \rho(\alpha,s)=\emptyset \text{, si } s\not\subseteq \alpha$

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

$$A_{\varphi} = \langle 2^{PROP}, Hin(\varphi), S_0, \rho, \{F_1, \dots, F_k\} \rangle$$

- $S_0 = \{ \alpha \mid \alpha \in Hin(\varphi), \varphi \in \alpha \}$
- $\rho(\alpha, s) = \emptyset$, si $s \not\subseteq \alpha$
- $\rho(\alpha, s) = \{\alpha' \mid \alpha' \text{ cumple R1 y R2}\}, \text{ si } s \subseteq \alpha$ R1 $X\varphi \in \alpha \text{ sii } \varphi \in \alpha'$
 - R2 $\varphi_1 U \varphi_2 \in \alpha \sin \varphi_2 \in \alpha \text{ ó } (\varphi_1 \in \alpha \text{ y } \varphi_1 U \varphi_2 \in \alpha')$

Construcción del GBA

Idea

- Dado φ , vamos a construir un *GBA* A_{φ} tal que:
 - Acepta una traza σ sii $\sigma \models \varphi$
 - Una corrida que acepta σ , es una satseq (σ, φ)

$$A_{\varphi} = \langle 2^{PROP}, Hin(\varphi), S_0, \rho, \{F_1, \dots, F_k\} \rangle$$

- $S_0 = \{ \alpha \mid \alpha \in Hin(\varphi), \varphi \in \alpha \}$
- $\rho(\alpha, s) = \emptyset$, si $s \not\subseteq \alpha$
- $\rho(\alpha, s) = \{\alpha' \mid \alpha' \text{ cumple R1 y R2}\}, \text{ si } s \subseteq \alpha$ R1 $X\varphi \in \alpha \text{ sii } \varphi \in \alpha'$
 - R2 $\varphi_1 U \varphi_2 \in \alpha \text{ sii } \varphi_2 \in \alpha \text{ ó } (\varphi_1 \in \alpha y \varphi_1 U \varphi_2 \in \alpha')$
- $\{F_1, \dots, F_k\} = \{F_{\varphi_1 \cup U \varphi_2} \mid \varphi_1 \cup U \varphi_2 \in Sub(\varphi)\}$ • donde $F_{\varphi_1 \cup U \varphi_2} = \{\alpha \mid \varphi_1 \cup U \varphi_2 \notin \alpha \text{ o } \varphi_2 \in \alpha\}$