Laboratorio di Fisica 1 R11: Calorimetro ad azoto liquido

Gruppo 15: Bergamaschi Riccardo, Graiani Elia, Moglia Simone

14/05/2024 - 21/05/2024

Sommario

Mediante un calorimetro ad azoto liquido, il gruppo di lavoro ha misurato i calori specifici di quattro campioni; preliminarmente, è stato necessario determinare il calore latente di vaporizzazione dell'azoto.

0 Materiali e strumenti di misura utilizzati

Strumento di misura		Soglia	Portata	Sensibilità	
Amperometro		0.001 A	N./A.	0.001 A	
Voltmetro		$0.01{ m V}$	N./A.	0.01 V	
Cronometro		$0.01\mathrm{s}$	$99.99\mathrm{s}$	$0.01\mathrm{s}$	
Bilancia di precisione		$0.01\mathrm{g}$	4000.00 g	0.01 g	
Altro	Descrizione/Note				
Calorimetro	Quasi adiabatico, dotato di un tappo con un foro centrale per potervi immergere i materiali e permettere la fuoriuscita dell'azoto gassoso.				
Azoto liquido	Contenuto nel calorimetro				
Resistenza	Fissata all'interno del tappo, fornisce calore all'azoto liquido.				
Videocamera	Utilizzata per acquisire i dati mostrati dal cronometro e della bilancia di precisione contemporaneamente.				
Generatore	Fornisce corrente elettrica al circuito, composto dal- l'amperometro (collegato in serie) e da voltmetro e re- sistenza (collegati in parallelo).				
Quattro campioni metallici	Li chiameremo $\Xi, \Delta, \aleph, \nabla$.				

1 Misurazione del calore latente di vaporizzazione dell'azoto

1.1 Esperienza e procedimento di misura

- 1. Posto il calorimetro sopra alla bilancia di precisione, avviamo l'acquisizione del filmato.
- 2. Dopo almeno una decina di secondi, accendiamo il generatore in modo da fornire calore all'azoto per mezzo della resistenza.
- 3. Passato circa un minuto, spegniamo il generatore per interrompere lo scambio di calore e dopo almeno un'altra decina di secondi terminiamo la registrazione del filmato.
- 4. Ripetiamo lo stesso procedimento, ma inserendo un tappo non ermetico nel foro centrale del tappo del calorimetro, in modo da evitare la fuoriuscita di azoto gassoso.

1.2 Analisi dei dati raccolti e conclusioni

Essendo l'azoto a temperatura di ebollizione, possiamo esprimere la quantità di calore assorbito (δQ) in un intervallo di tempo Δt in funzione della massa di azoto evaporata $(-\Delta m)$:

$$\delta Q = -\lambda_{\rm vap} \Delta m$$

dove la costante $\lambda_{\rm vap}$ è detta "calore latente di vaporizzazione".

Tuttavia, possiamo assumere che δQ sia pari al calore sviluppato dalla resistenza per effetto Joule. Assumendo le dispersioni di energia trascurabili, vale:

$$\delta Q = \mathcal{P} \cdot \Delta t = i \cdot \Delta V \cdot \Delta t$$

Si avrà allora:

$$\lambda_{vap} = \frac{i \cdot \Delta V \cdot \Delta t}{-\Delta m} = \frac{i \cdot \Delta V}{-\gamma}$$
 con $\gamma = \frac{\Delta m}{\Delta t}$.

Grazie al filmato possiamo graficare la variazione della massa in funzione del tempo e, successivamente, costruire tre distinte rette di regressione.

2 Misurazione dei calori specifici dei campioni

2.1 Esperienza e procedimento di misura

- 1. Posto il calorimetro sopra alla bilancia di precisione, avviamo la cattura del filmato.
- 2. Dopo circa una decina di secondi (non è rilevante per la riuscita dell'esperienza), accendiamo il generatore in modo da fornire calore all'azoto per mezzo della resistenza.

- 3. Passato un tempo sufficiente, spegniamo la resistenza e dopo un'altra decina di secondi terminiamo la registrazione video.
- 4. Ripetiamo lo stesso procedimento, ma insererndo un tappo non ermetico nel foro centrale del tappo del calorimetro, in modo da evitare la fuoriuscita di azoto gassoso.

2.2 Analisi dei dati raccolti e conclusioni

Scegliamo un sistema di riferimento cilindrico, con origine all'intersezione fra l'asse di rotazione e il piano, ad esso perpendicolare, contenente il centro di massa, versore \hat{r} parallelo a \vec{g} e versore \hat{k} diretto lungo l'asse di rotazione del sistema.

La posizione del centro di massa del pendolo fisico sarà allora descritta da $\vec{r}_{\rm CM} = (r_{\rm CM}, \theta, z)$ con z = 0, dove θ è lo spostamento angolare rispetto alla posizione di equilibrio.

Vale la seconda equazione cardinale della dinamica:

$$\sum \tau_z^{\text{ext}} = \dot{L}_z = I_z^{\text{tot}} \ddot{\theta}$$

Nota. In questa sezione abbiamo trascurato la presenza di attriti, ma chiaramente gli attriti ci sono e il moto è smorzato. Nella sezione successiva tratteremo proprio questo fenomeno, determinando, alla luce dei dati raccolti, quanto influisca sul valore di g.

Poiché l'unica forza esterna al sistema che compie un momento lungo \hat{k} è la forza peso, si ha:

$$\sum \vec{\tau}_z^{\,\rm ext} = \vec{r}_{\rm CM} \times M \vec{g} = -Mg \, r_{\rm CM} \sin(\theta) \hat{k}. \label{eq:tau_cm}$$

L'equazione differenziale che descrive il moto del centro di massa del pendolo fisico sarà allora:

$$\ddot{\theta} = -\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}} \sin(\theta)$$

È possibile semplificare il modello fisico approssimando $\sin(\theta) \simeq \theta$. Il gruppo di lavoro ha ritenuto valida questa operazione solo quando

$$|\theta_0 - \sin(\theta_0)| < \delta\theta$$

Essendo, nel nostro caso, $\delta\theta=0.02\,\mathrm{rad},$ abbiamo scelto $\theta_0^\mathrm{max}=0.49\,\mathrm{rad}.$ Infatti:

$$0.49 \,\mathrm{rad} - \sin(0.49 \,\mathrm{rad}) \simeq 0.019 \,\mathrm{rad}$$
 $0.50 \,\mathrm{rad} - \sin(0.50 \,\mathrm{rad}) \simeq 0.021 \,\mathrm{rad}$

Prima di prendere ogni misura, il gruppo di lavoro si è assicurato che θ_0 soddisfacesse abbondantemente la condizione $|\theta_0| < |\theta_0^{\max}|$.

L'equazione differenziale semplificata è allora:

$$\ddot{\theta} = -\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}} \theta$$

Questa equazione descrive un moto armonico. Le soluzioni sono infatti del tipo:

$$\theta(t) = \theta_0 \cos(\omega t) \quad \text{dove} \quad \omega = \sqrt{\frac{Mg\,r_{\text{CM}}}{I_z^{\text{tot}}}} \quad \text{è detta "pulsazione"}.$$

Possiamo tuttavia facilmente esprimere ω in funzione del periodo T del moto oscillatorio, più semplice da calcolare dai dati acquisiti. Vale infatti:

$$\omega = \frac{2\pi}{T} \qquad \text{e quindi} \qquad \frac{I_z^{\text{tot}}}{Mr_{\text{CM}}} = g \frac{T^2}{4\pi^2}$$

La formula utilizzata per il calcolo di $I_z^{\rm tot}$ riflette la composizione del sistema, sfruttando la proprietà additiva del momento d'inerzia:

$$I_z^{\rm tot} = I_{z, {\rm rotore}} + I_{z, {\rm asta}} + \sum_{\gamma \in \Gamma} I_{z, \gamma}$$

Chiaramente, per calcolare i momenti d'inerzia rispetto all'asse di rotazione è necessario applicare il teorema di Huygens-Steiner a quelli calcolati sui rispettivi centri di massa¹:

$$\begin{split} I_{z,\text{asta}} &= I_{\text{CM},\text{asta}} + m_{\text{asta}} \left(\frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2}\right)^2 \\ \\ I_{z,(i,d)} &= I_{\text{CM},i} + m_i \left(d + \frac{h_i - \varnothing_{\text{rotore}}}{2}\right)^2 \quad \forall (i,d) \in \Gamma \end{split}$$

Per calcolare il termine $Mr_{\rm CM}$, si osservi che, per la definizione di posizione del centro di massa, la massa totale si semplifica:

$$Mr_{\text{CM}} = M \cdot \frac{1}{M} \left(m_{\text{rotore}} \cdot 0 + m_{\text{asta}} r_{\text{CM,asta}} + \sum_{(i,d) \in \Gamma} m_i r_{\text{CM},i} \right)$$
$$= m_{\text{asta}} \left(\frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2} \right) + \sum_{(i,d) \in \Gamma} m_i \left(d + \frac{h_i - \varnothing_{\text{rotore}}}{2} \right)$$

Di seguito riportiamo le misure, dirette e indirette, utilizzate per il calcolo dei momenti d'inerzia²:

$$I_{\text{CM,asta}} = \frac{1}{12} m_{\text{asta}} L_{\text{asta}}^2 \qquad \quad I_{\text{CM},i} = \frac{1}{16} m_i \left((d_i^{\text{ext}})^2 + (d_i^{\text{int}})^2 \right) + \frac{1}{12} m_i h_i^2 \quad \forall i \in \{A,B,C\}$$

¹Questi ultimi sono stati calcolati mediante le seguenti formule:

 $^{^2}L_{\rm asta}$ è la lunghezza della parte dell'asta che sporge all'esterno del rotore.

Oggetto	L (cm)	Ø (mm)	m (g)	$I_{\rm CM} \ (10^{-5}{\rm kgm^2})$
Asta	60.0 ± 0.1	5.94 ± 0.01	45.82 ± 0.01	568.5 ± 1.5
Rotore	N./A.	13.41 ± 0.01	$22.4 \pm 0.1^*$	$0.058 \pm 0.001^*$

i	m_i (g)	$d_i^{\mathrm{ext}} \ (\mathrm{mm})$	$d_i^{\mathrm{int}} \ (\mathrm{mm})$	h_i (mm)	$I_{\mathrm{CM},i}~(\mathrm{mgm^2})$
A	115.95 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.93 ± 0.01	10.62 ± 0.03
В	115.86 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.89 ± 0.01	10.59 ± 0.03
С	71.46 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	12.08 ± 0.01	5.047 ± 0.018

 $^{[*] \} Valori \ dati$

Il periodo dell'oscillazione è stato misurato individuando N+1 zeri consecutivi di $\theta(t)$, diciamo $\{t_0,t_1,\ldots,t_N\}$. Allora, poiché tra uno zero e l'altro corre metà periodo, è possibile calcolare T in questo modo: $T=\frac{2}{N}(t_N-t_0)$

Il gruppo di lavoro ha scelto N di volta in volta, in modo tale che fosse proporzionale al numero di oscillazioni compiute dal pendolo prima di fermarsi. Complessivamente, N ha assunto valori da 30 a 180.

Come descritto sopra, il gruppo di lavoro ha calcolato, per ogni configurazione Γ , i valori di $\frac{I_{\rm con}^{\rm tot}}{M^2_{\rm CM}}$ e $\frac{T^2}{4\pi^2}$, riportati nel grafico seguente. Come è possibile osservare dalla relazione che le lega, la dipendenza tra

Come è possibile osservare dalla relazione che le lega, la dipendenza tra queste due grandezze è lineare: questo ci permette di determinare il valore di g come coefficiente angolare di una retta di regressione.

Figura 1: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

- Intercetta = (0.003 ± 0.005) m
- Coefficiente angolare $g = (9.68 \pm 0.13) \text{ m/s}^2$

I risultati della regressione lineare sono chiaramente compatibili con i valori attesi. Infatti:

- Secondo il modello fisico utilizzato, l'intercetta dovrebbe essere nulla; in effetti, (0.003 ± 0.005) m è compatibile con 0 m.
- Il valore di g atteso è 9.806 m/s²; si può osservare facilmente che il valore misurato, (9.68 ± 0.13) m/s², è compatibile con esso.

Possiamo pertanto concludere che l'esperienza ha avuto successo: mediante l'apparato sperimentale abbiamo ottenuto una misura di g compatibile con quella attesa.

2.3 Misura dello smorzamento

In questa sezione, illustreremo come il gruppo di lavoro abbia valutato lo smorzamento del moto e quanto questo sia significativo, prendendo come esempio la configurazione $\Gamma = \{\}$, dove il pendolo fisico è composto solamente da asta e rotore, senza l'aggiunta di cilindri.

Il gruppo di lavoro ha effettuato gli stessi passaggi per tutte le altre configurazioni: i risultati saranno messi in evidenza alla fine della sezione.

Sempre applicando la seconda equazione cardinale della dinamica, è facile ricavare l'equazione differenziale che caratterizza il moto del sistema sotto l'effetto delle forze di attrito. Approssimando, come prima, $\sin(\theta) \simeq \theta$, si ottiene:

$$\ddot{\theta} = -2\lambda \dot{\theta} - \frac{Mg \, r_{\rm CM}}{I_{\star}^{\rm tot}} \theta$$

dove λ è una costante legata allo smorzamento del moto. Le soluzioni di questa equazione differenziale sono infatti della forma:

$$\theta(t) = \theta_0 \cos(\omega t) e^{-\lambda t}$$

dove la pulsazione del moto, ω , è data da:

$$\omega^2 = \omega_0^2 - \lambda^2$$
 con $\omega_0 = \sqrt{\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}}}.$

Figura 2: Parte dei dati di un'acquisizione di $\theta(t)$ con $\Gamma = \{\}$, come raccolti dal sensore di rotazione, riportati su una larga scala temporale. Si può chiaramente notare lo smorzamento del moto.

Per stimare λ , il gruppo di lavoro ha proceduto come segue:

- 1. Per prima cosa, abbiamo individuato i massimi dei nostri dati, ovvero gli insiemi di punti della forma $\{t_i, t_{i+1}, \dots, t_j\} \times \{\theta_k\}$ tali che $\theta(t_{i-1}) < \theta_k > \theta(t_{j+1})$.
- 2. Per ogni massimo, ne abbiamo calcolato il punto medio, prendendo come $\delta t_{\rm picco}$ la semidispersione $\frac{1}{2}(t_j t_i) + \delta t$.
- 3. Infine, abbiamo graficato i punti così trovati su scala logaritmica e abbiamo effettuato una regressione lineare (pesata³) sulle nuove ordinate. Il coefficiente angolare di tale regressione dovrebbe essere proprio $-\lambda$.

 $^{^3\}delta$ ln $|\theta|$, infatti, varia molto, nonostante $\delta|\theta|$ sia costante: ciò è conseguenza della propagazione degli errori. È inoltre possibile osservarlo nella Figura 2.

4. Abbiamo ripetuto i tre punti precedenti sugli stessi dati, con θ cambiato di segno: così facendo, ai massimi si sostituiscono i minimi e tutto il resto dell'analisi è analoga. Per ogni configurazione abbiamo pertanto ottenuto due diversi valori di λ : λ_{\min} e λ_{\max} . Abbiamo scelto di porre $\lambda = \frac{1}{2}(\lambda_{\min} + \lambda_{\max})$.

Figura 3: $\ln |\theta(t)|$ di massimi e minimi, su scala logaritmica (per $\Gamma = \{\}$). Sono riportate anche le barre di errore sull'ordinata. In rosso, la retta di regressione lineare e in rosa la sua regione di incertezza.

Poiché l'obiettivo è calcolare g, la correzione da effettuare sul periodo, per tenere conto dell'attrito, è la seguente:

$$T_0^2 = \frac{4\pi^2}{\omega_0^2} = \frac{4\pi^2}{\omega^2 + \lambda^2} = \frac{4\pi^2}{\frac{4\pi^2}{T^2} + \lambda^2} = \frac{1}{\frac{1}{T^2} + \frac{\lambda^2}{4\pi^2}}$$

Effettuata questa correzione per ogni configurazione Γ , si può allora costruire nuovamente una retta di regressione, analogamente a quanto fatto nella sezione precedente. La relazione fra le grandezze misurate, ricordiamo, è lineare:

$$\frac{I_z^{\text{tot}}}{Mr_{\text{CM}}} = g \frac{T_0^2}{4\pi^2}$$

Riportiamo di seguito il grafico della nuova regressione, unitamente ai risultati ottenuti.

Figura 4: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

I risultati della regressione lineare sono i seguenti:

- Intercetta = (0.003 ± 0.005) m
- Coefficiente angolare $q = (9.68 \pm 0.13) \text{ m/s}^2$

Come è possibile osservare comparando questi risultati a quelli precedentemente ottenuti, il valore di g risultante è rimasto essenzialmente invariato (al netto della sua incertezza).

In conclusione, possiamo affermare ragionevolmente che, rispetto alla sensibilità degli strumenti di misura, il contributo dell'attrito è trascurabile.