Overview of GKR

Ilia Zavidnyi & Svetlana Ivanova

Mentored by Marshall Ball

Fix circuit $C:\{0,1\}^n \to \{0,1\}$ with size S and depth $d \leq S$.

Let $\mathbb H$ be extension field of $\mathbb G\mathbb F[2]$ s.t. :

$$max\{d, \log(S)\} \le |\mathbb{H}| \le \operatorname{poly}(d, \log(S))$$
 (1)

Let \mathbb{F} be an extension field s.t.:

$$|\mathbb{F}| \leq \operatorname{poly}(|\mathbb{H}|)$$
 (2)

Let m be an integer s.t.:

$$S \leq |\mathbb{H}|^m \leq \operatorname{poly}(S)$$
 (3)

Let $m' \leq m$ be an integer s.t.:

$$n \leq |\mathbb{H}|^{m'} \leq n \cdot \operatorname{poly}(d, \log(S))$$
 (4)

Finally, let $\delta \in \mathbb{N}$ be a degree parameter s.t.:

$$|\mathbb{H}| - 1 \le \delta \le |\mathbb{F}|$$
 (5)

W.L.O.G. we work with *layered* arithmetic circuit $C:\mathbb{F}^n o\mathbb{F}$ with *fan-in 2*

Layers are numbered from 0 to d where 0 is the output layer

We assume that all layers have the same size S.

! Any circuit can be made layered with at most quadratic increase in size

In particular, we add dummy gates to output layer to get circuit $C':\mathbb{F}^S o\mathbb{F}^S$ s.t.:

$$C'(x_1,\ldots,x_S) = (C(x_1,\ldots,x_S),0,\ldots,0)$$

We denote S gates of the i-th layer as $(g_{i,0},g_{i,1},\ldots,g_{i,S-1})$

Now we define $\mathrm{add}_i, \mathrm{mult}_i: \{0,1,\ldots,S-1\}^3 \to \{0,1\}$ as follows:

$$egin{aligned} ext{add}(i_1,i_2,i_3) &= egin{cases} 1 & ext{if } g_{i-1,j_1} = g_{i,j_2} + g_{i,j_3} \ 0 & ext{otherwise} \end{cases} \ ext{mult}(i_1,i_2,i_3) &= egin{cases} 1 & ext{if } g_{i-1,j_1} = g_{i,j_2} \cdot g_{i,j_3} \ 0 & ext{otherwise} \end{cases} \end{aligned}$$

Let $\widetilde{\mathrm{add}}_i, \widetilde{\mathrm{mult}}_i : \mathbb{F}^{3m} \to \mathbb{F}$ be extensions of $\mathrm{add}_i, \mathrm{mult}_i$ with degree $\leq \delta$ in each variable

During run of the protocol prover and verifier have access to the following oracle:

$$\mathcal{F} = \{\widetilde{\mathrm{add}_i}, \widetilde{\mathrm{mult}_i}\}_{orall i \in [d]}$$

! Note, that $\{\mathrm{add}_i, \mathrm{mult}_i\}_{orall i \in [d]}$ uniquly defines C unlike $\{\widetilde{\mathrm{add}_i}, \widetilde{\mathrm{mult}_i}\}_{orall i \in [d]}$

Now consider vector $v_i=(v_{i,0},v_{i,1},\ldots,v_{i,S-1})$ corresponding to values of the gates on layer i, which (with fixed $\alpha:\mathbb{H}^m\to[|\mathbb{H}^m|-1]$) can be views as:

$$V_i(j) = egin{cases} v_{i,j} & ext{if } lpha(j) \leq S-1 \ 0 & ext{otherwise} \end{cases}$$

With extension $\widetilde{V}_i:\mathbb{F}^m o\mathbb{F}$ with degree $\leq |\mathbb{H}|-1$ and computable in time $\leq |\mathbb{H}^m|\cdot\operatorname{poly}(|\mathbb{H}|,m)=\operatorname{poly}(\mathrm{S}).$

Prover ${\mathcal P}$ and verifier ${\mathcal V}$ given oracle access to ${\mathcal F}$, verifier sends an input $x\in\{0,1\}^S$

 ${\mathcal P}$ wants to prove C(x)=0 or equivalently $\widetilde{V}_i(0,\dots,0)=0$

On each iteration $0 \le i \le d$ protocol does the following:

$$egin{aligned} \widetilde{V}_{i-1}(z_{i-1}) = & r_{i-1} \ & ext{reduce} \ & \widetilde{V}_i(z_i) = & r_i \end{aligned}$$

Where the fact that $\widetilde{V}_d(z_d) = r_d$ verifier computes on his own in quasi-linear time

By definition of LDE, we have that for every $z \in \mathbb{F}^m$:

$$\widetilde{V}_{i-1}(z) = \sum_{p \in \mathbb{H}^m} \widetilde{eta}(z,p) \cdot \widetilde{V}_{i-1}(p)$$

While $\forall p \in \mathbb{H}^m$:

$${V}_{i-1}(p) = \sum_{\omega_1,\omega_2 \in \mathbb{H}^m} \widetilde{\operatorname{add}}_i(p,\omega_1,\omega_2) \cdot \left(\widetilde{V}_i(\omega_1) + \widetilde{V}_i(\omega_2)
ight) + \widetilde{\operatorname{mult}}_i(p,\omega_1,\omega_2) \cdot \widetilde{V}_i(\omega_1) \cdot \widetilde{V}_i(\omega_2)$$

Now, $\forall z \in \mathbb{F}^m$ let $f_z: \mathbb{F}^{3m} o \mathbb{F}$ be defined as:

$$f_z(p,\omega_1,\omega_2) = \widetilde{eta}(z,p) \cdot \left(\widetilde{\operatorname{add}}_i(p,\omega_1,\omega_2) \cdot \left(\widetilde{V}_i(\omega_1) + \widetilde{V}_i(\omega_2)
ight) + \widetilde{\operatorname{mult}}_i(p,\omega_1,\omega_2) \cdot \widetilde{V}_i(\omega_1) \cdot \widetilde{V}_i(\omega_2)
ight)$$

GKR protocol

$$\begin{split} \widetilde{\beta}(z,p) \cdot \left(\widetilde{\operatorname{add}}_i(p,\omega_1,\omega_2) \cdot \left(\widetilde{V}_i(\omega_1) + \widetilde{V}_i(\omega_2) \right) + \widetilde{\operatorname{mult}}_i(p,\omega_1,\omega_2) \cdot \widetilde{V}_i(\omega_1) \cdot \widetilde{V}_i(\omega_2) \right) \\ deg(\widetilde{\beta}) &\leq |\mathbb{H}| - 1, \text{ computation time } \leq \operatorname{poly}(|\mathbb{H}|,m); \\ deg(\widetilde{V}_i) &\leq |\mathbb{H}| - 1, \text{ computation time } \leq |\mathbb{H}|^m \cdot \operatorname{poly}(|\mathbb{H}|,m) = \operatorname{poly}(S)^{[3]}; \\ deg(\widetilde{\operatorname{add}}_i, \widetilde{\operatorname{mult}}_i) &\leq \delta \text{ in each its variable }^{[5]}, \text{ computation time } \leq \operatorname{poly}(\delta,m); \\ \operatorname{Altogether resulting at } deg(f_z) &\leq \delta + |\mathbb{H}| - 1 \leq 2\delta, \text{ computation time } \leq \operatorname{poly}(S). \end{split}$$

Now for every $z \in \mathbb{F}^m$,

$$\widetilde{V}_{i-1}(z) = \sum_{p,\omega_1,\omega_2 \in \mathbb{H}^m} f_{z-1}(p,\omega_1,\omega_2).$$

Thus, proving that $\widetilde{V}_{i-1}(z_{i-1}) = r_{i-1}$ is equivalent to proving that

$$r_{i-1} = \sum_{p,\omega_1,\omega_2 \in \mathbb{H}^m} f_{z-1}(p,\omega_1,\omega_2)$$

This is done by running the interactive sum-check protocol.

GKR protocol

At the end of sum-check verifier needs to compute $f_{z-1}(p,\omega_1,\omega_2)$ which is $\operatorname{poly}(S)$ hard due to \widetilde{V}_i .

Since \mathcal{V} can't handle such computations we require \mathcal{P} to compute $\widetilde{V}_i(\omega_1), \widetilde{V}_i(\omega_2)$ for us, which we also need to verify.

This is done via the following interactive process.

GKR protocol

1. Based on the fixed elements t_1 , $t_2\in\mathbb{F}$ known to the $\mathcal P$ and $\mathcal V$ they construct the linear function $\gamma:\mathbb{F}\to\mathbb{F}^m$, such that for every $i\in\{1,2\}$:

$$\gamma(t_i)=\omega_i$$

- 2. The prover $\mathcal P$ sends the function $f= ilde V_i\circ\gamma:\mathbb F o\mathbb F$ to the verifier $\mathcal V.$
- 3. Upon receiving a function $f:\mathbb{F}\to\mathbb{F}$ from the prover, the verifier $\mathcal V$ checks that f is a polynomial of degree at most $m\cdot(|\mathbb{H}|-1)$, and that $f(t_i)=v_i$ for $i\in\{1,2\}$. If these tests pass, then $\mathcal V$ chooses a random element $t\in\mathbb F$ and sends it to $\mathcal P$.
- 4. The prover and verifier continue to Phase i+1 with $z_i=\gamma(t)$ and $r_i=f(t)$.

GKR protocol. Final verification

After the d'th phase, the verifier $\mathcal V$ needs to verify on his own that $V_d(z_d)=r_d$. This amounts to computing a single point in the low-degree extension of the input x (with respect to $\mathbb F, \mathbb H, m'$). The verifier runs this computation on its own.