Lesson Plan SI Session #8 August 23, 2017

SI Leader: Eason Chang

Course: Math 18 Academic Quarter: Summer Session 2 2017 Instructor: Professor Drimbe

Topics Covered: Transformation and Midterm Review

Opener Activity:

5:05pm - 5:10pm

- Midterm Review, brainstorm on what topics and type of problems may show up on the exam and talk to each other.

Activity 1

5:10pm - 5:30pm

Practice Problem 1a:

Problem 2 (4 pts). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly dependent.

Practice Problem 1a Solutions:

Solution: We want to show that there are constants k_i , not all zero, for which $k_1T(\mathbf{v_1}) + k_2T(\mathbf{v_2}) + k_3T(\mathbf{v_3}) = \mathbf{0}$.

Let c_i be numbers, not all zero, such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$. Then because T is linear,

$$c_1T(\mathbf{v_1}) + c_2T(\mathbf{v_2}) + c_3T(\mathbf{v_3}) = T(c_1\mathbf{v_1}) + T(c_2\mathbf{v_2}) + T(c_3\mathbf{v_3})$$

$$= T(c_1\mathbf{v_1} + c_2\mathbf{v_2} + c_3\mathbf{v_3})$$

$$= T(\mathbf{0})$$

$$= T(\mathbf{00})$$

$$= 0T(\mathbf{0})$$

$$= \mathbf{0}$$

showing that the $T(\mathbf{v_i})$ s are linearly independent (with $k_i = c_i$).

Practice problem 1b:

3. (10 points) Let $n \geq 1$ and $T: \mathbb{R}^3 \to \mathbb{R}^n$ be an arbitrary linear transformation. Consider the following vectors

$$v_1 = egin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}, v_2 = egin{bmatrix} -2 \ 0 \ 1 \end{bmatrix}, v_3 = egin{bmatrix} 4 \ 4 \ 1 \end{bmatrix}$$

Show that $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent. (hint: what can you say about the vectors $\{v_1, v_2, v_3\}$?)

Practice Problem solution 1b:

can be transformed by a sequence of elementary row operations to the matrix

Practice problem 1c: Find A-1

$$\begin{bmatrix}
 1 & -2 & 1 \\
 4 & -7 & 3 \\
 -2 & 6 & -4
 \end{bmatrix}$$

Solution to practice problem 1c:

$$[A \quad I] = \begin{bmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 4 & -7 & 3 & 0 & 1 & 0 \\ -2 & 6 & -4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -4 & 1 & 0 \\ 0 & 2 & -2 & 2 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -4 & 1 & 0 \\ 0 & 0 & 0 & 10 & -2 & 1 \end{bmatrix}$$
. The matrix A is not invertible.

Activity 2

5:30pm - 5:45pm

Midterm Review

Practice Problem 2a:

4. (10 points) Let A and B two $n \times n$ matrices with the property that A and BA^2 are invertibles. Prove that B is also an invertible matrix.

Solution to Practice Problem 2a:

Practice Problem 2b:

1. Consider the matrix

$$A = \begin{bmatrix} 2 & 3 & -1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & -3 & 1 & 1 \end{bmatrix}$$

(a) (5 points) Find the reduced echelon form of A.

Solution to Practice Problem 2b:

Divide row 1 by
$$2\left(R_1=\frac{R_1}{2}\right)$$
:

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 & 1 \\ 1 & -3 & 1 & 1 \end{bmatrix}$$

Subtract row 1 from row 2 ($R_2=R_2-R_1$):

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & -3 & 1 & 1 \end{bmatrix}$$

Subtract row 1 from row 3 ($R_3 = R_3 - R_1$):

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{9}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

Make zeros in column 2 except entry at row 2, column 2 (pivot entry).

Add row 2 multiplied by 3 to row 1 ($R_1 = R_1 + (3) R_2$):

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{9}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

Subtract row 2 multiplied by 9 from row 3
$$(R_3 = R_3 - (9)R_2)$$
:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -3 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$$
Subtract row 3 from row 1 $(R_1 = R_1 - R_3)$:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$$
Answer: $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$

Practice Problem 2c:

2. (10 points) Let
$$S = \{\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \begin{bmatrix} -3\\4\\2 \end{bmatrix} \}$$
. Determine whether S is linearly independent and if it spans \mathbb{R}^3 .

Solution to Practice Problem 2c:

1	2	1
-2	1	2
-3	4	2

can be transformed by a sequence of elementary row operations to the matrix

Linear independent => spans R3

Closure- Survey/ Feedback

5:45pm-5:50pm

- Wrap-up:
- Please share with the group one thing you gained understanding of through the session today.
- Make a note to yourself/ write down anything you need to review/ do more practice problems on.
- Survey/ Feedback:
 - 1. How fun was the session? (1-10)
 - 2. How useful was the session? (1-10)
 - 3. Would you come back? (yes or no)
 - 4. Optional: Comments (pace of the activity), questions, concerns, suggestions, feedback on the back or wherever

Please recommend SI to your friends/ peers if you found the session useful! Thanks for coming and have a great day :)

PLANNING THE SI SESSION

Session Date of Course:	& Day of Week:				
Course:					
Course Instructor:					
Warm-up/	Content to cover:	Collaborative Learning Technique	Strategy to be used:		
Opening: (2-4 min.)					
Please provide document(s)	e a DETAILED BREAKI	DOWN of warm-up activity (OR attach corresponding		
Cool-	Content to cover:	Collaborative Learning	Strategy to be used:		
down/		Technique			
Closing: (2-4 min.)					
Please provide document(s)	e a DETAILED BREAKI	DOWN of cool-down activity	OR attach corresponding		
Workout:	Content to cover:	Collaborative Learning	Strategy(ies) to be		
(44-46		Technique(s)	used:		
min.)					
down/ Closing: (2-4 min.) Please provide document(s) Workout:	e a DETAILED BREAKI	Technique DOWN of cool-down activity Collaborative Learning	OR attach correspon		

Please provide a **DETAILED BREAKDOWN** of workout activity **OR** attach corresponding

Page 47

document(s)