PATENT ABSTRACTS OF JAPAN

(21) Application number: 01077590

(51) Intl. Cl.: G02B 26/02

(22) Application date: 28.03.89

(30) Priority:

(19)

(43) Date of application

15.10.90

publication:

(84) Designated contracting states:

(71) Applicant: MATSUSHITA ELECTRIC IND CO LTD

(72) Inventor: ATSUTA YASUSHI

NISHII KANJI

(74) Representative:

(54) SPACE OPTICAL MODULATOR

(57) Abstract:

PURPOSE: To eliminate scattering, etc., of light by providing a total reflection attenuating means for attenuating a total reflection in the reflecting surface by an energy absorption from an evanescent wave, and a total reflection attenuation control means for varying two-dimensionally the attenuation quantity of the total reflection.

CONSTITUTION: A light beam 22 to be modulated is brought to total reflection by the reflecting surface 21B and from an evanescent wave which oozes out to the opposite side, energy is absorbed partially and the total reflection is attenuated, and a spacial distribution of an amplitude variation is given to the reflected light beam 22 to be modulated. Also, between a transparent electrode 25 and all counter electrodes 28, a prescribed voltage is applied in advance, and a control light beam 24 is brought to image information on a photoconductive body layer 26. On the photoconductive body layer 26, an electric conductivity distribution is formed in accordance with an intensity distribution of the image formation, by which strength of a voltage applied to each of piezoelectric elements 27 is determined, a distribution of a mechanical displacement is generated, and it becomes a position variation of the counter electrode 28. The counter electrode 28 is used as a total reflection attenuating means, as well, the surface of the counter electrode 28 is worked to the same plane, and set roughly by spacers 32, 33, and a fine adjustment is executed by applying a voltage to piezoelectric

⑩ 日本国特許庁(JP)

① 特許出願公開

◎ 公 開 特 許 公 報 (A) 平2-254405

@Int. Cl. 5

識別記号

庁内整理番号

⑬公開 平成2年(1990)10月15日

G 02 B 26/02

8106-2H Α

審査請求 未請求 請求項の数 30 (全19頁)

⑤発明の名称

空間光変調器

願 平1-77590 创特

願 平1(1989)3月28日 29出

@発 明 者

H 裕 大阪府門真市大字門真1006番地 松下電器産業株式会社内

(2)発 明 者

西 井

史 完 治

大阪府門真市大字門真1006番地 松下電器産業株式会社内

の出 願 人

松下電器産業株式会社

大阪府門真市大字門真1006番地

74代 理 人 弁理士 粟野 重孝

埶

外1名

BA.

1、発明の名称

空間光変調器

- 2、 特許額求の範囲
- (1)被変調光が入射および出射し、光学定数の 制御されない均質な媒体と、前記媒体の界面にて 被変調光を全反射させる反射面と、前記反射面に おける全反射を、エパネッセント波からのエネル ギー吸収により減衰させる全反射減衰手段と、 前 記全反射の減衰量を2次元的に変化させる全反射 減衰制御手段を設けた空間光変調器。
- (2)被変調光が入射および出射し、光学定数の 制御されない均質な媒体と、前記媒体の界面にて 被変調光を全反射させる反射面と、前記反射面に おける全反射を、エパネッセント波からのエネル ギー吸収により予め形成した特定分布でのみ減衰 させる全反射減衰手段を設けた空間光変調器。
- (3) 請求1項または2において、全反射減衰手 段は反射面の反対側に表面ポラリトンを発生させ る金属膜、または金属体からなることを特徴とす

る空間光変調器。

- (4) 讃求項1または2において、全反射減衰手 段は反射面の反対側にエバネッセント波から被変 調光を透過する光透過体からなることを特徴とす る空間光変類器。
- (5) 請求項1において、全反射減衰手段は連続 的もしくは離散的に設け、 全反射減衰制御手段は 連続的もしくは離散的に配設したことを特徴とす る空間光変調器。
- (6) 請求項1または2において、全反射減衰制 御手段は全反射減衰量を反射面全体にわたって一 括して変化させることを特徴とする空間光変調器。 (7) 請求項1において、全反射減衰制御手段は 印加電圧により設定可変な電界強度によって全反 射核環盤を変化させることを特徴とする空間光変 料器。
- (8) 請求項1において、全反射減資制御手段は 反射面の反対方向から照射する制御光の強度に応 じて全反射減衰量を変化させることを特徴とする 空間光変調器。

(9) 関東項7または8において、全反射減衰制 御手段は所定の電圧が印加され制御光を入射させ 透明電極と、的記制御光の強度に応じて導電率を 変化させる光導伝体を備えることを特徴とする空間光変調器。

(10) 請求項7において、全反射核資制御手段 は電気信号により電界強度の2次元分布を設定可 能な無数電極を備えることを特徴とする空間光変 調器。

(11) 請求項1または6において、全反射減衰 制御手段は、機械的変位を発生させて全反射減衰 手段と全反射面との距離を変える変位発生手段を 備えることを特徴とする空間光変別器。

(12) 請求項11において、全反射核資制御手段は変位発生手段を挟んで配設した電極を有し、 前記電極の一方は反射面の反対側にあって、 表面 ポラリトンを発生させる全反射核資手段としたこ とを特徴とする空間光変調器。

(13) 請求項7、11または12において、変 位発生手段は緩効果型の圧電材料を特徴とする空

の強度増加に伴い全反射減衰量を減少させるもの であり、 前記制御光と同傾向のアナログ的強度分 布を有する被変調光を発生させることを特徴とす る空間光変調器。

(18) 請求項8において、全反射核資制如手段は、アナログ的強度分布をした制御光を入射させ、その強度増加に伴い全反射核資量を増加させるものであり、前記制御光と反転イメージのアナログ的強度分布の被変調光を発生させることを特徴とする空間光変調器。

(20) 請求項8において、全反射減衰制御手段 は、制御光の強度増加が所定値までは全反射減衰 量の減少を抑え、前記所定値を越えると全全反射減 衰量を急激に減少させ一定値に飽和させるもので あり、前記制御光を2値化した強度分布の被要調 光を発生させることを特徴とする空間光変制器。 (21) 請求項8において、全反射減衰制の強度 は、制御光の強度増加が所定値を越えると全反射減 量の増加を抑え、前記所定値を越えると全反射減 資量を急激に増加させ一定値に飽和させるもので 間光変調器。

(14) 請求項1において、全反射減衰制御手段 は全反射減衰の面積を連続的に変化させることを 特徴とする空間光変調器。

(15)請求項7、11、12または14において、変位発生手段に評価力によってたわませる可 換談を設けたことを特徴とする空間光変舞器。

(18)請求項7において、全反射減資制如手段は、電界によって屈折率を変化させる電気光学材料と、前記電気光学材料を挟んで配設した電極を有し、前記電極の一方は反射面の反対側にあって、表面ポラリトンを発生させるものであることを特徴とする空間光変調器。

(17) 請求項1または2において、均質な媒体は、異なる方向から複数の被変調光が入射および 出射する複数の入射面と出射面を有するn角種プリズム(nは4以上の偶数)、もしくはその一部 からなることを特徴とする空間光変調器。

(18) 請求項8において、全反射減資制御手段 アナログ的強度分布をした制御光を入射させ、そ

あり、 前記制御光を2値化反転した強度分布の被 変調光を発生させることを特徴とする空間光変調器。

(22) 請求項8において、全反射減資制如手段は、0.1に符号化されたディジタル的強度分布の制御光を入射させ、その強度が0のとき全反射減資量をほぼ最小とし、前記強度が1から0の間で前記全反射減資量を増加させ、前記強度が1のとき前記全反射減衰量をほぼ最大にするものであり、を設け、前記制御光の論理的否定に対応するディンタル的強度分布の被変弱光を発生させることを特徴とする空間光変調器。

(23)請求項8において、全反射減衰制御手段は、0,1に符号化されたディジタル的效度分布の制御光を複数(n)入射させ、その強度和が0からn-1のとき全反射減衰量をほぼ最大としてその減少を抑え、前記強度和がn-1からnの間で前記全反射減衰量を減少させ、前記強度和がnのとき前記全反射減衰量をほぼ最小にするものであり、前記制御光の論理機に対応するディジタル的

強度分布の被変弱光を発生させることを特徴とする空間光変調器。

(24) 謝求項8において、全反射減資制御手段は、0,1に符号化されたディジタル的強度分布の制御光を複数(n) 入射させ、その強度和が0からn-1のとき全反射減衰量をほぼ最小としてその増加を抑え、前記強度和がn-1からnの間で前記全反射減衰量を増加させ、前記強度和がnのとき前記全反射減衰量をほぼ最大にするものであり、前記制御光の否定的論理積に対応するでイジタル的強度分布の被変調光を発生させることを特徴とする空間光変調器。

(25) 講求項8において、全反射減資制御手段は、0,1に符号化されたディッタル的強度分布の制御光を複数(n) 入射させ、その強度和が0のとき全反射減資量をほぼ最大としてその減少を抑え、前記強度和が0から1の間で前記全反射減衰量を減少させ、前記強度和が1からnのとき前記全反射減衰量をほぼ最小にするものであり、前記

間光変調器。

(28) 調求項8において、 制御光強度に対する 全反射減衰量の増減方向と増減関値とを電気的に 変更可能な全反射減衰制御手段を設け、 前記変更 によって機能切り換えを行うことを特徴とする空間光変調器。

(29) 請求項8において、全反射減衰制御手段 にヒステリシス特性を有する変位発生手段を設け、 その非線形性により、制御光の強度増加に対する 全反射減衰量の変化の抑制、および/または全反 射減衰量の飽和を設定したことを特徴とする空間 光変調器。

(30) 湖東項8において、全反射減衰制御手段 に飽和特性を有する光導伝体を設け、その飽和特 性によって制御光の強度増加に対する全反射減衰 量の飽和を設定したことを特徴とする空間光変調

3、 発明の詳細な説明

産業上の利用分野

本発明は、光情報処理、光通信、光応用計測な

の被変調光を発生させることを特徴とする空間光 変調器。

(26) 調求項 8 において、全反射核資制四手段は、0,1 に符号化されたディッタル的強度分布の制御光を複数 (n) 入射させ、その強度和が0のとき全反射核資量をほぼ最小としてその増加を抑え、前記強度和が0から1の間で前記全反射核資量をほぼ最大にするものであり、前記全反射核資量をほぼ最大にするものであり、前記を分布の被変調光を発生させることを特徴とする空間光変調器。

(27) 翻求項8において、前記全反射減衰制御手段は、制御光の強度増加に伴い全反射減衰量を減少させるものであり、反射面から出射した被変調光を出力光と帰還光に損傷分割するピームスプリッタと、前記帰還光を前記全反射減衰制御手段に違いて照射させる導光手段を設け、前記制御光を取り去った後にその強度分布に対応する強度分布を前記出力光に発生させることを特徴とする空

どに用いられる空間光変調器に関する。

従来の技術

2次元情報を2次元のまま処理する並列光情報 処理において、空間光変調器が使用される。 第1 5 図は従来の空間光変調器の一例を示す模式側面 図である。 同図において、 1は入力画像であり、 2はそれを照らす照明光源、 3は結像レンズであ り、 入力画像2は、 ガラス基板4と透明電極5を 経て光導伝体層8上に結像される。 7 は結像光8 を遮断するフィルタ、 9は液晶、 10は透明電極、 11はガラス基板であり、透明電極5、10には 電圧が印加される。 光導伝体層8には入力画像1 の強度分布に応じた導電率分布が形成され、 それ によって液晶9に電位分布が印加され、電界効果、 動的散乱効果などの電気光学効果の分布を誘起す る。12は被変調光となるコヒーレント光であり、 ダイクロイックミラー13によって反射され、 被 晶を透過して電気光学効果により2次元的変調を 受けて、出射する。

このように従来の空間光変調器は、変調の空間

発明が解決しようとする課題

これら従来の空間光変調器においては、変調される光、 すなわち被変調光が被晶や電気光学結晶の内部に一旦入り、 偏光作用を受けて出てくる。 これは透過型だけでなく、 従来の反射型でも同様

させることにより、 波面を乱すことなく偏光作用 も介さず直接的に 2 次元的強度分布となる変調を 与えることができ、 しかも種々の変調機能、 論理 演算機能を有する空間光変調器を提供することを 目的とする。

護顧を解決するための手段

本発明の技術的な手段は、被変調光が入射および出射し、光学定数の制御されない均質な媒体と、前記媒体の界面にて被変調光を全反射させる反射面と、前記反射面における全反射を、エバネッセント波からのエネルギー吸収により減衰させる全反射減衰手段と、前記全反射の減衰量を2次元的に変化させる全反射減衰制御手段を設けることを特徴とする。

作用

本発明は、光学ガラスのような均質な媒体の界面において被変調光を全反射させ、全反射面の反対側に滲み出るエバネッセント被からの部分的エネルギー吸収により全反射を減衰させ、反射する被変調光に2次元的強度分布を与える。 被変調光

である。 液晶や電気光学結晶には複屈折性の空間 分布が作られ、屈折率は微視的には複雑に分布す るため、 均質で一様な光の透過媒体ではない。 難 散分布型であれば、 マトリックス状に配置された 透明電極も透過しなければならず、 均質性はさら に狙なわれる。

また当然、被晶や電気光学結晶は原理的に有限な厚みを必要とするが、このような均質でない数体に被変調光を透過させることにあり、個光作用を得る反面、それに伴って光の液面が乱される。つまり、散乱、ペックルノイズ、あるいが被している。このことが破して、からに従来の空間光のSNに間でを変調といった。さらに従来の空間光で変調器は、で変変では、で理単体で種々の論理流気を実現するといったのではなることも困難であった。

本発明はこのような点に鑑みて、 複屈折性が無く 屈折率の一様な均質媒体だけに被変調光を透過

は、 偏光作用を介さず直接的に 振幅変化の空間分布を与えられ、 均質な媒体だけを透過するため、 屈折率の作用で被面を乱されることはない。 従来の空間光変調器で被晶や電気光学結晶に被変乱、 スペックルノイズ、 あるいは 収差の高いを設力した、 乱ないない 要は無くせる。 また反射率を高くため 光の利用効率を高くてき、 付せて表面 ポラリトン などの作用により大き 使り付する であり、 高い 振幅変調度が得られ SN比の良好な空間光変調器を実現できる。

また、前記手段を組み合わせることによりアナログ的強度分布の制御光をもとに振幅変調、 面積 階調変調、 難散分布変調、 連続分布変調、 反転変 調、 2値化変額など種々の変調機能を可能とする。

さらに、ディジタル的強度分布の制御光をもとに否定、論理税、否定的論理税、論理和、否定的 論理和の並列減算を行う論理回路、あるいは双安 定機能を有する光メモリーとしての動作も可能と する。 また、制御光強度に対する全反射減衰量の地減 量、地減方向、地減関値を電気的に設定可能にす ることもでき、種々の機能切り換えの可能な多機 能空間光変調器をも実現できる。

実施例

以下、本発明の空間光変調器における実施例を 図面にもとづいて説明する。

第1図は本発明の空間変調器の第1の実施例の 模式側面図であり、 離散的に配設した全反射減衰 手段と、 反射面の反対方向から照射する制御光の 強度に応じて全反射減衰量を変化させる、 離散的 に配設した全反射減衰制御手段などを設ける。 そ して波面を乱すことなく個光作用も介さず直接的 に2次元的強度分布となる変調を与え、 しかも極 なの変調機能、 論理演算機能を有する空間光変調 器を実現するものである。 同図において、 21は 光学ガラスにて作られるブリズムであり、 被変調 光学ガラスにて作られるブリズムであり、 被変調 光22の入射面21k、 それを全反射させる反射面 218、 および出射面21cを有する。 被変調光2 2はレーザー光顔などによって作られるコヒーレ

3 と圧電素子30、31を設ける周辺部分にて連結される。

このような構成の第1の実施例において、 反射面21Bにて被変調光22を全反射させ、 反対側に 常み出るエパネッセント 彼からエネルギーを部分 的に吸収することにより全反射を減衰させ、 反射する被変調光22に振幅変化の空間分布を与えることを行う。

まず、そこで利用する基本的な物理現象について説明しておく。第2図は全反射におけるエバネッセント波からのエネルギー吸収のよる反射平変化(反射光強度変化)の例を示す特性図である。同図において、機軸に示すギャップ厚みとは、反射面の反対側に接近させたエネルギー吸収手段つまり全反射減衰手段と反射面との距離であり、P

特性にはFTR曲線とATR曲線で示されるように2種類ある。FTR曲線の特性はFrustrated Total Reflectionと呼ばれ、反射面の反対側からギャップ媒質よりも屈振率の高いガラスなどの光

ントな平行光束とし、 ここではTM放(機方向磁 界放)とする。 23は光学ガラスにて作られるガ ラス基板であり、 制御光24を入射させる。 制御 光24は、入力画像などによって作られる2次元 的強度分布を有するインコヒーレントな光束とす るが、コヒーレントな光束でもかまわない。 ガラ ス基板23には、透明電極25、光導伝体層28、 雅放的に配列された縦効果型の圧電業子27、 お よび圧電素子27の各々には対向電極28を設け る。 対向電極28の表面は反射面218と近接して 対向させ、透明電極25と対向電極28の間には 電源VIにて所定の電圧を印加する。 この対向電極 28への選圧は、 スイッチング手段29により個 別の印加も可能とする。また30、31も疑効果 型の圧電素子であり、反射面21Bの周囲に設け、 電源Vz、 Vaによって各々電圧を印加、制御可能 とする。32、33はスペーサとなる所定の厚み の膜であり、 反射面21Bと対向電極28との間の 基準ギャップ厚みを設定する。 そしてプリズム2 1とガラス基板23とは、このスペーサ32、3

透過物質をS点から接近させた際に、全反射状態がこわされ次第に透過光が発生し始め、P点の透過状態に移行する物理現象である。またATR曲線の特性はAttenuated Total Reflectionと呼ばれ、反射面の反対側から鎖、網、アルミなどの金属物質をS点から接近させた際に、表面ボラリトンの励起によるエネルギー吸収によって反射光が次第に放棄して極小値Q点に連し、再び全反射状態に移行する物理現象である。表面ボラリトンとは、電磁放と表面分極放である。表面ボラリトとはは、電磁放と表面分極放である。表面プラズモンボラリトンと呼ばれることもある。

下TR曲線では反射光の一部が透過光に換わるとみなせるが、 ATR曲線では反射光が減衰しているだけで透過光は無い。 どちらの特性 (反射率とギャップ厚みの関係) も、 光の改長、 偏光方向、入射角、 プリズムやギャップの屈折率、 吸収手段の材質 (誘電率、 屈折率) などによって詳細が決められる。 特にATR曲線はそれらの様成によっ

て種々の設定が可能であるが、Q点のギャップ厚み寸法は大体1~2μm程度になる。本発明ではこれらFTR曲線やATR曲線に関係する特定のパラメータを変化させ、反射光のエネルギーを部分的に吸収することにより、被変調光に2次元的強度分布を与えることを行う。

再び第1図に戻って、第1の実施例の説明を続ける。透明電極25と全ての対向電極28との間に一定の電圧を印加しておき、制御光24を光谱伝体層26上に結像させる。光谱伝体層26には結像の強度分布に応じて導電率分布が形成され、それによって圧電素子27の各々に加わる電圧、従って電界強度が決められ、機械的変位の分布を発生させ、それを対向電極28の位置変化とする。対向電極28は銀や網で形成する全反射減衰予め第2図のATR曲線横動のQ点に設定しておきる。このときのギャップ厚みの設定は、対向電極28の表でといてである。このときのギャップ厚みの設定は、対向電極28の表に設定し、圧電素子30、31に電圧を印加

少させる全反射減衰制如手段を設け、制御光と同傾向のアナログ的強度分布を有する被変調光を得ることが可能となる。 また制御光の強度増加に伴い全反射減衰量を増加させる全反射減衰制御手段を設け、制御光と反転イメージのアナログ的強度分布の被変調光を得ることが可能となる。

また本実施例では第1図において、制御光24 の強度分布に依らず、スイッチング素子29には の強度分布に依らず、スイッチング素子29には の強度分布に依らず、スイッチング素子29には の印は正電素子27各々の印加電圧を制御し、電きる。 第1図では圧電素子27各々には同一の電低のか のかった。 のかったの特性はらつきの補正を取りたけれるとしているが、各々異なる電圧に制御これを のかったのの特性はらつきの補正を取りたけれて であることもできる。また周囲に設けたけて であるの、31は、ギャップ厚みの微調整だけでまな く、圧電索子27によってらに一括して振幅変調を かけるといった使い かけるといった

さらに本実施例は、 0、 1に符号化された強度

して微調整を行う。 制御光24による圧電索子2 7の動作範囲が第2図のQR間もしくはQP間の 範囲の動きに対応するよう、 ゲインを設定してお くことにより、制御光24の強度に応じて全反射 の核袞量が変わる。 つまり制御光24の強度分布 に応じて、対向電極28は第2図Q点からR点ま たは P 点に向かって離散的に移動し、 2 次元的に ↑ 振幅変調された被変調光22の出射光22 Åを作り 出すことができる。また、ギャップ厚みを予め第 2 図のR点もしくはP点に設定しておき、 対向領 極28をQ点に向かって移動させた場合には、 制 御光24の強度分布を反転させた振幅変調を行う ことができる。 また第2図のFTR曲線のQP間 を利用して類似の変調を行うこともできる。 その 場合、対向電極25自身またはその上に着色フィ ルタなどの光を透過し吸収させる手段を全反射減 竞手段として施し、 P点から Q点に向かって、 あ るいはQ点からP点に向かって動作させる。 この ようにして、アナログ的強度分布をした制御光を 入射させ、その強度増加に伴い全反射放衰量を減

分布を有する光学的2次元ディジタル情報を並列 で論理演算する種々の論理回路として動作させる こともできる。 第3図 (a) は2値化回路と否定 回路、第3図(b)は論理積回路、否定的論理積 回路、論理和回路、否定論理和回路の動作説明に 用いる空間光変調器の模式側面図であり、 第1図 をさらに簡略化して描いてある。 第1図のプリズ 421とガラス基板23に挟まれる部分を、 第3 図では一括して制御暦34として示す。 第3図に おいて、入力光 X、 Y は制御層34に対して制御 光として作用させ、出力光乙は反射によって得ら れる被変調光である。出力光乙の入射光は強度が 2次元的に一定の光を用い、 その値を1とする。 また、入力光器の強度増加により出力光強度を増 加させて変調する方法を順方向制御と呼び、 入力 光义の強度増加により出力光強度を減少させて変 調する方法を逆方向制御と呼ぶことにする。

また第4図はここでの論理回路に使用する、 圧 電索子27(第1図)の変位-電界特性のヒステ リンス曲線を示す図であり、 同曲線は圧電材料や 構成によって設定でき、 電界の履歴と方向、 電界値によって変位すなわちギャップ厚みが決まる。本実施例ではギャップ厚みの初期値、 制御方向、印加電圧を所定の関係に設定して、 一つの構成で 穏々の論理演算機能をもつ空間変調器として動作させることができ、 次に回路機能別に説明する。 〔2値化回路〕

第3図(a)にて入力光 X の強度を出力光 Z に 2 値化する回路である。第2 図において、ギャップ厚みの初期値を Q 1 点として R 1 点(変位の飽和 点とする)まで順方向制御を行う。そのため第4 図における H 点を出発点として、 I、 J 点を経て 飽和するまで、入力光 X の強度増加に応じた負の 電界が加わるよう、予め電源 V 1(第1 図)にて 印加電圧の極性を設定しておく。印加電圧の値は I 点に対応する入力光 X の値が 0.5 となるよう、 定 に 対応する入力光 X の値が 1 となるよう设 定しておく。 さらにギャップ厚みの初期値が Q 1 点 に なるよう、 電源 V 2、 V 2(第1 図)にて 印加電 E を 設定しておく。このような状態から入力光 X

入力光X	0~0.5	0.5~1~
出力光乙	o	1

このようにして、制御光の強度増加が所定値までは全反射減衰量の減少を抑え、前記所定値を越えると全反射減衰量を急激に減少させ一定値に飽和させる全反射減衰制御手段を設け、制御光を2値化した強度分布の被変調光を得ることができる。 (否定回路)

第3図(a)にて強度的に2値化された入力光 Xの否定(ROT)を出力光2に得る回路であり、第 2図においてギャップ厚みの初期値をR,点として、 Q,点まで逆方向制御を行う。 Q,点は変位の飽和 点とする。 そのため第4図におけるK点を出発点 として、入力光 X の強度増加に応じた正の電界が 加わるよう、予め電源 V, (第1図) にて印加電圧 を設定しておく。印加電圧の値はL点に対応する 入力光 X の値が0.5となるよう、またM点に対応す の強度が 0 から増えるに従い、 光導伝体層 2 6 (第1図)の導電率が上がり、圧電素子28には負 の電界が加わって収縮し始め、ギャップ厚みが次 第に増大する。 しかしその量は、 第4図のヒステ リシス曲線によって最初は少なく、 1点を過ぎて から急激に増大し、 J点を過ぎて飽和する。 従っ て第2図のATR曲線ではQi点を出発してRi点 に到速する動作となり、第5図(a)のような入 力光Xと出力光Zとの強度の関係が得られる。 第 5図(a)において、H、I、J点は第4図のそ れに対応する。 出力光乙の強度は入力光 X = 0. 5まではほとんど0であるが、 この関値を越える とほぼ1が得られ、X=1以上では安定した1が 得られる。関値を設定する【】間は、第4図のヒ ステリシス曲線および第2図のATR曲線におい て、できるだけ急峻に立つ形の特性設定をすると よい。入力光Xと出力光2の関係を下記に示す。

る入力光Xの値が1となるよう設定しておく。 さ らにギャップ厚みの初期値がR:点となるよう、電 源 V₂,V₃ (第1図) にて印加電圧の極性を設定し ておく。 このような状態から入力光Xの強度が増 えるに従い、 光導伝体層26(第1図)の導電率が 上がり、 圧電素子26には正の電界が加わって伸長 し始め、 ギャップ厚みが次第に減少する。 しかし その量は第4図のヒステリシス曲線によって最初 は少なく、し点を過ぎてから急敵に増大し、M点 を過ぎて飽和する。 従って第2図のATR曲線では、 R | 点を出発してQ | 点に到達する動作となり、第 5 図 (b) のような入力光 X と出力光 Z との強度 の関係が得られる。 第5図(b)において、 K.L ,M点は第4図のそれに対応する。 出力光2の強度 は入力光X=0.5までは1であるが、X=1に近 づくにつれて0が得られ、否定の関係となる。 闕 値を設定するLM間は、 第4図のヒステリシス曲 級および第2図のATR曲線において、 できるだけ気 峻な形の特性設定をすれば、 否定的2値化回路と **しても機能させられる。 入力光又と出力光2の関**

係を下記に示す。

入力光X	0	1
出力光乙	1	0

第3図 (b) にて強度的に2値化された入力光X

度の関係が得られる。 第5 図 (c) において、 H, I, J点は第4 図に対応する。 出力光 Z の強度は入力光 X + Y = 1 まではほとんど O であるが、 X + Y = 2 に近づくにつれて 1 が得られ、 すなわち論理教の関係となる。

入力光义	0	0	1	1
出力光乙	0	0	0	1

このようにして、 0 、1 に符号化されたディジタル的強度分布の制御光を複数 (n) 入射させ、 その強度和が 0 から n - 1 のとき全反射減衰量をほぼ最大としてその減少を抑え、 強度和が n - 1 から n の間で全反射減衰量を減少させ、 強度和が n のとき全反射減衰量をほぼ最小にする全反射減衰制の論理機に対応するディックル的強度分布の被変調光を得ることができる。 (否定的論理検回路)

とYの論理稜(AND)を出力光2に得る回路であり、 第2図においてギャップ厚みの初期値をQi点とし てR」点まで頭方向制御を行う。R」点は変位の飽 和点とする。 そのため第4図におけるH点を出発 点として、入力光X、Yの強度和の増加に応じた負 の電界が加わるように予め電源V」(第1図)にて 印加電圧の極性を設定しておく。 印加電圧の値は 1点に対応する入力光X+Yの値が1となるよう、 また」点に対応する入力光Xの値が2となるよう 設定しておく。 さらにギャップ厚みの初期値がQ i点となるように電源 V 2 . V 2 (第1図) にて印加 電圧を設定する。 このような状態から入力光X+ Yが0から増えるに従い、 光導伝体層26 (第1図) の導電率が上がり、 圧電素子28には負の電界が加 わって収縮し始め、ギャップ厚みが次第に増大す る。しかしその量は第4図のヒステリシス曲線に よって最初は少なく「点を過ぎてから増大し、」 点を過ぎて飽和する。 従って第2図のATR曲線では ・点を出発してR・点に到達する動作となり、第 選 図 (c) のような入力光X+Yと出力光スとの強

第3図(b)にて強度的に2値化された入力光X とYの否定的論理積(NAND)を出力光2に得る回 路であり、 第2図においてギャップ厚みの初期値 をR・点として、 Q ・点(変位の飽和点とする)ま で逆方向制御を行う。 そのため第4図におけるK 点を出発点として、 入力光 🗶 , Y の強度和の増加に 応じた正の電界が加わるよう、予め電源 V ₁ (第1 図)にて印加電圧の極性を設定しておく。 印加電 圧の値は、 L点に対応する入力光X+Yの値が1 となるよう。またM点に対応する入力光Xの値が 2となるよう設定しておく。 さらにギャップ厚み の初期値がR」点となるように電源V₂,V。(第1 図)にて印加電圧を設定しておく。 このような状 態から入力光X+YがOから増えるに従い、 光導 伝体圏26 (第1図) の導電率が上がり、圧電索子 28には正の電界が加わって伸長し始め、 ギャッ プ厚みが次第に減少する。 しかしその登は第4図 のヒステリシス曲線によって最初は少なく、 L点 を過ぎてから増大し、 M 点を過ぎて飽和する。 従 って第2図のATR曲線ではRi点を出発してQi点に 到速する動作となり、第5図(d)のような入力光X+Yと出力光Zとの強度の関係が得られる。第5図(d)において、K,L,M点は第4図に対応する。出力光Zの強度は入力光X+Y=1まではほとんど1であるが、X+Y=2に近づくにつれて0が得られ、すなわち否定的論理積の関係となる。

入力光 X 入力光 Y	0	0	1 0	1
出力光乙	1	1	1	0

このようにして、 0、1 に符号化されたディッタル的強度分布の制御光を複数 (n) 入射させ、 その強度和が 0 から n-1 のとき全反射減衰量をほぼ最小としてその増加を抑え、強度和が n-1 から nの間で全反射減衰量を増加させ、 強度和が nのとき全反射減衰量をほぼ最大にする全反射減衰 別御手段を設け、 制御光の否定的論理機に対応するディッタル的強度分布の被変調光を得ることが

量は、第4図のヒステリシス曲線によって最初は少なく、「点を過ぎてから増大し、」点を過ぎて 飽和する。従って第2図のATR曲線ではQ₁点を 出発してR₁点に到達する動作となり、第5図(e) のような入力光X+Yと出力光2との強度の関係 が得られる。

第 5 図 (e) において、 H , I , J 点は第 4 図の それに対応する。 出力光 2 の強度は入力光 X + Y = 0 . 5 まではほとんど 0 であるが、 X + Y = 1 に 近づくにつれて 1 が得られ、 すなわち論理和の関係となる。

入力光 X 入力光 Y	0	0	1	1
出力光乙	0	1	1	1

このようにして、 0 , 1 に符号化されたディンタル的強度分布の制御光を複数 (n) 入射させ、 その強度和が 0 のとき全反射減資量をほば 殴大とし

できる。

(論理和回路)

第3図(b)にて強度的に2値化された入力光 XとYの論理和(OR)を出力光2に得る回路で あり、第2図においてギャップ厚みの初期値をQ 」点として、R」点(変位の飽和点とする)まで願 方向制御を行う。

そのため第4図におけるH点を出発点として、 入力光 X, Y の強度和の増加に応じた負の電界が 加わるように、予め電源 V , (第1図) にて印加電 圧の極性を設定しておく。印加電圧の値は、 I 点 に対応する入力光 X + Y の値が 0 . 5 となるように、 また J 点に対応する入力光 X の値が 1 となるよう に設定しておく。 さらに、 X + y プ厚みの 初期値 が Q , 点となるよう、電源 V_{x} , V_{y} (第1図) にて 印加電圧を設定しておく。

このような状態から入力光 X + Y が 0 から 増えるに従い、 光導伝体層 2 8 (第 1 図)の導電率が上がり、 圧電素子 2 8 には負の電界が加わって収縮し始めギャップ厚みが増大する。 しかし、 その

てその減少を抑え、強度和が 0 から 1 の間で全反射減衰量を減少させ、強度和が 1 から n のとき全反射減衰量をほぼ最小にする全反射減衰制御手段を設け、制御光の論理和に対応するディジタル的強度分布の被変調光を得ることができる。

〔否定的論理和回路〕 -

第3図(b)にて強度的に2値化された入力光 $X \succeq Y$ の否定的論理和(NAND)を出力光 Z に 得る回路であり、第2図においてギャップ厚みの 初期値を R_1 点として、 Q_1 点まで逆方向制御を行う。 Q_1 点は変位の飽和点とする。 そのため第4図における K 点を出発点として、入力光 X、 Y の強度和の増加に応じた正の電界が加わるよう、予め電源 V_1 (第1図)にて印加電圧の極性を設定しておく。印加電圧の値は、し点に対応する入力光 X + Y の値が 1 となるよう、また M 点に対応する入力光 X + Y の値が 1 となるよう、また M 点に対応する入力光 X の値が 1 となるよう、また X に X の値が X の X

このような状態から入力光X+Yが0から増え

るに従い、光導伝体暦26(第1図)の導電率が上がり、圧電素子26には正の電界が加わって伸長し始めギャップ厚みが減少する。しかしその量は、第4図のヒステリシス曲線によって最初は少なく、し点に速してから急激に増大し、M点以降で飽和する。従って第2図のATR曲線ではRi点を出発してQi点に到達する動作となり、第5図(1)のような入力光X+Yと出力光2との強度の関係が得られる。

第5図(『)において、 K. L. M点は第4図のそれに対応する。 出力光 Z の強度は入力光 X + Y = 0. 5 まではほとんど 1 であるが、 X + Y = 1 に近づくにつれて 0 が得られ、すなわち否定的論理 独の関係となる。

入力光义	0	0	1	1
出力光乙	1	0	0	0

位の飽和特性は必ずしも必要ない。 しかし、逆方向制御においては、ATR曲線では全反射減衰領域が限られるため、変位の飽和特性が必要である。

なお、本実施例では圧電素子の変位の飽和特性を利用したが、光導伝体層の導電率の飽和特性を用いても実現できる。もちろん印加電圧値による変位の制限を行ってもよい。 FTR曲線ではギャップ厚みが無くなれば、 自ずと変位が規制されるため飽和特性は必ずしも必要ない。またATR曲線では全反射減が限られるため、 順方向制御における動作の出発点Q点付近において、 入力光に対する不感手段が必要である。 本実施例では出発点をQ点からQ」点にずらすと共に、 圧電素子の非線形特性を用いたが、 光導伝体層に非線形特性、つまり入力光が少ないとき導電率変化も少なくなるような特性を与えてもよい。

また、入力光側から予めパイアス光を照射し、 その光量を可変するなどして、 順方向制御、 逆方 向制御における動作の出発点 (第4図のI,K点) を移動させ、 回路特性を所望に設定、 変化させる このようにして、 0. 1 に符号化されたディックル的強度分布の制御光を複数 (n) 入射させ、その強度和が 0 のとき全反射減衰量をほぼ最小としてその増加を抑え、強度和が 0 から 1 の間で全反射減衰量を増加させ、 強度和が 1 から n のとき全反射減衰量をほぼ最大にする全反射減衰制御手段を設け、 制御光の否定的論理和に対応するディックル的強度分布の被変調光を得ることができる。

こともできる。

第8図(a)は第1の実施例において、制御光 35、38の入射側にもプリズム37を用いた側 面図であり、制御暦38は後記する他の実施例で もかまわない。 第8図 (b) のように入射面と出 射面を複数有するn角錐プリズム39を被変調光 側、あるいは制御光側に設けることもできる。迷 光を生じなくするためnは4以上の偶数とすると よい。本発明の空間光変算器は反射型であるため、 強度の異なる被変調光(出力光)40を異なる方 向から複数入射させて、同時に同じ変調をかける という使い方ができる。 制御光 (入力光) 35、 36についても、パイアス光を異なる方向から入 射させるとか、2本以上の異なる複数光束で変調 をかけるという使い方もできる。 このように角錐 プリズムを使用することで、 より 3 次元回路的な 光路構成が可能となる。

第7図は第1の実施例において、被変異光42 を制御暦43の反対側に帰還させた側面図であり、 ・ 光双安定機能、函像メモリー機能を育する空間光 変調器として動作可能なことを示す。 第7図にお いて、制御暦42は後記する他の実施例でもかま わない。 44,45はブリズム部材であり、まず彼 変調光42はプリズム部材45の入射面451から 入射させた制御光 (入力光) 48によって変調を 受ける。制御周42の動作としてここだは先の2 値化回路の動作とし、 第2図のQR方向に願方向 制御を行う場合で説明する。 被変調光48の強度 を予め2としておくと、 制御光46の強度の関値 (例えば0.5)以上の所に対応する被変調光48 の強度が2となる。 制御光48は面45Bから入射 させてもかまわない。 次に被変調光42をプリズ ム部材44に投けたハーフミラー面44Åによって、 例えば1: 1に振幅分割し、半分を出力光47と して透過出射させ、残りを帰還光48として反射 帰還させる。 帰還光48は全反射を繰り返させる ことで、制御暦43の反対側434に像方向を一致 させて帰還させ、この帰還光48によって被変調 光42に変調を与える。 帰還光48は制御光48 同様な関値以上の2値(0、1)の強度分布を有

従って、従来の空間光変調器で液晶や電気光学結晶に被変調光が入り込むことによって生じていた、光の散乱、スペックルノイズ、あるいは収差の乱れといった悪影響は無くせる。また全反射現象を利用するため光の利用効率を高くでき、併せて表面ポラリトンなどの作用により大きな全反射減衰状態が可能であり、高い振幅変調度が得られるいたの食料な空間光変調器を実現できる。さら

する。従って制御光 4 8 を取り去っても、被変期 光 4 2 は元の制御光 4 8 の場合と同様の変調を受け続け、同様の出力光 4 7 が得られ続ける。 すなわち、双安定機能を有する画像メモリーを実現できる。 帰還光 4 8 はブリズム入射面 4 5 kから 4 8 kの方向に出射させ、迷光にならないようにする。

このようにして、 制御光の強度増加に伴い全反射 就養量を減少させる全反射該資制御手段と、 反射面から出射した被変調光を出力光と帰還光を全反射 被資制御手段に導いて照射させる 導光手段を設け、制御光を取り去った後にその強度分布に対応する 強度分布を出力光に得ることができる。 ここでいう対応とは必ずしも同じということではなく、 特定の関係で対応ずけられることも含める。

なお、本実施例の光変調の考え方を用いれば、空間光変調器としてだけでなく、 1 本の光束 (制御光)の総光量に応じて動作する単一の光変調器、光陽値素子、あるいは光双安定素子として構成でき、動作させられることはいうまでもない。

にアナログ的強度分布の制御光をもとに、振幅変 調、離散分布変調、反転変調、2値化変調など様 々の変調機能を可能とする。またディジタル的強 度分布の制御光をもとに、否定、論理様、否定的 論理積、論理和、否定的論理和の論理演算を行う 2次元論理回路機能を可能とする。 また光双安定 機能、画像メモリー機能を備えた空間光変調器が 実現できる。また電気的に設定可能な電界強度に よって全反射減衰量を変化させる全反射減衰制御 手段や、 全反射減衰量を一括して変化させる全反 射減衰制御手段によって、制御光強度に対する全 反射減衰量の増減量、増減方向、増減関値を電気 的に設定可能にすることもできる。 これにより機 能切り換えの可能な多機能空間光変調器を実現で きる。変調時や設定変更時のギャップ厚みの操作 範囲は0.5~1μm程度の微小量であり、 変位発 生手段にとっては比較的高速の動作が可能となる。

なお、本実施例は第1図のように、類散的に設けた圧電素子27の変位が完全に分離できるため ディッタル処理に適し、また透明電極25と光導 伝体暦28とは連続膜として配設するため、 制御 光の散乱を防止できることも効果として付け加え ておく。

第8図は本発明の空間変調器の第2の実施例を示す模式側面図である。連続的に配設した全反射減衰手段と、制御光の強度に応じて全反射減衰制御手段などを設ける。全反射減衰制御手段の変位発生手段として、都電力によってギャップ厚みを可変する構成の空間光変調器である。

同図において、51は光学ガラスにて作られるプリズムであり、52は被変調光となるコヒーレントな平行光束である。53は光学ガラスにて作られるガラス基板であり、制御光54を入射させる。ガラス基板53には、雅散的に配列した透明電極55、光導伝体層58、空隙57、およびSi基板などから作られる可技度58と銀や銅などで作った対向電極59を設ける。対向電極59は連続的に設け、プリズム51の反射面51Aと対向させる。60.61はスペーサとなる所定厚みの膜

反射滅 音条件を満足すれば、同一材料で一体化してもよい。また、ギャップを隔てて反射面5 1 Aに 鎖などの金属膜を設けておいても、第 2 図の A T R 曲線の特性が得られる。その構成は第 1 の実施 例では離散化した 理極間で短絡する恐れがあり難しいが、本実施例であれば適用できる。また可し 験 5 8 を電極として通電し、対向電極 5 9 の代わりに光透過吸収膜として、第 2 図のFTR 曲線を 用いて変調を行うこともできる。また、第 1 の実施 例に示したギャップ厚みを一括して制御する手段 (第 1 図の圧電素子 3 0 , 3 1)を本実施例にも 設けてもよい。

以上のような第2の実施例では、連続的に配設した全反射 減衰手段と、短数的に配設した全反射 減衰制御手段を設けて、確々の空間光変調器を実現できる。 機能に応じて、第1の実施例で説明したような確々の特性設定を行うが、いうまでもなく第1、第3、その他の実施例の構成と組み合わせることもできる。 特に本実施例は、変位発生手段として靜電力によってたわませる可視膜を設け

であり、プリズム51と対向電極59との間のギャップ厚みを設定する。 透明電極55と対向電極59の間には電源Vにて所定の電圧を印加するが、この対向電極59への電圧は、スイッチング手段62により個別の印加も可能とする。

このような構成において、反射面51Aにて被変 野光52を全反射させ、第1の実施例のようにエバネッセント放からエネルギーを部分的に吸収することにより、被変 野光52に振幅変化の空間分布を与えることを行う。すなわち、制御光54の強度分布に応じて光導伝体層58の導電率を変化させ、発生する静電力により可挽膜58と対向電極59の間のギャップ厚みを変化させる。そして第2図のATR曲線に従って全反射の減衰量を変化させ、被変 野光52に変 野を与えることができる。スイッチング手段82により、電気信号によって2次元的な振幅変 野が可能なことは第1の実施例と同様である。

なお、可撓膜58と対向電極59は膜強度と全

ることにより、たわみ形状を凹面や凸面にできる。 これにより離散化された各ドットの大きさを変え るような面積階調変調を光学的に与えることがで きるため、アナログ的画像の処理に適する。

第9図は本発明の第3の実施例を示す模式側面図であり、全反射減衰手段、全反射減衰制御手段とも連続的に設けた空間光変調器である。同図において、65はブリズムであり、66は被変調光となるコヒーレントな平行光束である。67はガラス基板であり、制御光88を入射させる。ガラス基板87には、連続的に設けた透明電極89、光導伝体層70、圧電材料層71、領や網などで作った対向電極72を設ける。対向電極72は、ブリズム85の反射面65Åとギャップを介して対向であり、ブリズム85と対向電極72との間であり、ブリズム85と対向電極72との間には電源Vにて所定の電圧を印加する。

このような構成において、 反射面 8 5 Aにて被変 別光 8 6 を全反射させ、 第 1 の実施例のようにェ パネッセント被からエネルギーを部分的に吸収することにより、被変異光 8 に版幅変化の空間分布を与えることを行う。すなわち、制御光 8 8 の強度分布に応じて光導伝体層 7 0 の 電容を変化させ、発生する電界により圧電材料層 7 1 に部分的変位を生じさせ、反射面 8 5 A と対向電極 7 2 の間のギャップ厚みを変化させる。そして第 2 図のA T R 曲線に従って、全反射の減費量を変化させ、疲変調光 6 8 に変調を与えることができる。また、第 1 の実施例に示したギャップ厚みを一括して制御する手段(第 1 図の圧電素子 3 0 , 3 1)を本実施例にも設けてもよい。

このような第3の実施例では、連続的に全反射 該實手段と反射核資制御手段を設けて、 健々の空間光変調器を実現できる。 いうまでもなく第1、 第3、 その他の実施例の構成と組み合わせること もできる。 特に本実施例は連続的に変位の分布を 形成できるため、連続分布変調を与えることがで き、アナログ的画像の処理に適する。

第10図は本発明の第4の実施例を示す模式側

手段は電界によって屈折率を変化させる電気光学 材料と、電気光学材料を挟んで配設した電極を設け、電極の一方は反射面の反対側にあって、 表面ポラリトンを発生させる全反射減衰手段としてでを問光変調器を実現できる。 本実施例はギャックを無くせるので構成が簡単になり、 また連続のに変質につかのである。 を続けることができている。

以下、本発明において制御光を用いない構成の空間光変舞器の実施例を幾つか示しておく。 第11回は本発明の第5の実施例を示す模式側面図である。同図において、88はブリズム、87は被変調光、88は絶縁性の基板、89は連続的に記録けた電極、90は電界強度に応じて作った対向電極等は、200年のアクのギャップを介により、反射面86kと所定のアクのギャップを介には電源Vにて所定の電圧を印加し、スイッチングには電源Vにて所定の電圧を印加し、スイッチング手段94により個別の印加を可能とする。 気射面

面図であり、ギャップを無くした空間光変調器で ある。同図において、77はプリズムであり、7 8は被変調光となるコヒーレントな平行光束であ る。 7 8 は制御光、 8 0 は連続的に設けた透明電 径、81は光導伝体層、82は電界強度に応じて 屈折率が変化する電気光学材料層、 83は銀や銅 などで作った対向電極である。 対向電極83は、 反射面771と所定の厚みの絶縁体層84を介して 対向させる。透明電極80と対向電極83との間 には電源Vにて所定の電圧を印加する。このよう な構成において、反射面77Åにて被変調光78を 全反射させ、 エパネッセント放からのエネルギー 吸収を部分的に変化することにより、 被変調光7 8に振幅変化の空間分布を与えることを行う。 す なわち、制御光79の強度分布に応じて光導伝体 周81の導電串を変化させ、 発生する電界により 電気光学材料層82に屈折率変化を生じさせる。 この場合、第2図のATR曲線が少しの屈折率変 化によって変化するという現象を利用する。

このような第4の実施例では、全反射減衰制御

8 8 Aにおいて被変調光 8 7 を全反射させ、エバネッセント被からのエネルギー吸収を部分的に変変調光 8 7 に変化 で変により、強度の一様な被変調光 8 7 に変に を行う。また、彼の でとを行う。また、グの はアナロル では でいることを行う。また、グのはアナロル での でいる できる。ないはアナロル できる。ないない できる。ないないでは 2 の実施例においる できる。ないないできる。ないないでもない。いうまでもなく 第 3 、 第 4 ないは 近の 実施例における 構成 の 一部を 適用、あるいは 近み合わせて 用いることもできる。

このように第5の実施例では、難散的な全反射 該賽手段(対向電極91)を設け、電気信号のみ によって制御する空間光変調器を実現できる。 基 板88に光透過の必要性がなく、透明電極や光沸 伝体圏も不要になるため、 材料や製造プロセスの 遠択幅が広がる。 また基板88を導電性金属とし 電極89と一体にすることなども可能となる。

第12図は本発明の第8の実施例を示す模式側 面図であり、 第5の実施例と同じく制御光を用い ない空間光変異器の別の実施例である。同図にお いて、98はプリズム、97は被変調光、98は 電界強度に応じて変位を発生する圧電材料基板、 89は難散的に設けた電極、 100は銀や銅など で作った対向電極である。 対向電極100は、ス ペーサ101,102により、反射面981と所定 の厚みのギャップを介して対向させる。 電極99 と対向電極100との間には電源Vにて所定の電 圧を印加し、スイッチング手段103により個別 の印加を可能とする。反射面881において被変調 光97を全反射させ、 エパネッセント放からのエ ネルギー吸収を部分的に変化することにより、 彼 変調光87に所望の強度分布を与えるなど、第5 の実施例と同様な使い方ができる。

このように第6の実施例では、連続的な全反射 該實手段(対向電極100)を設け、電気信号の みによって制御できる空間光変調器を実現できる。 透明電極や光導伝体層が不要になるため、 材料や

ト被からの部分的エネルギー吸収により、 被変弱 光107に特定の強度分布を与えられる。 また先 の印加電圧の制御により、 一括して特定の 2 次元 分布の振幅変調をかけるといった使い方もできる。

このような第7の実施例では、制御光や電気信号を用いることなく、基準パターンとするような特定の2次元パターンの振幅変調を与えることのできる空間光変調を実現できる。この変調パターンは微細加工技術を用いて、複雑な形状を作ることが可能である。また圧電素子110,111によりギャップ厚みを微調整し易いため、変調パターン108の交換も容易である。

第14図は本発明の第8の実施例を示す模式側面図であり、第7の実施例と同じく制御光や電気信号を用いない空間光変調器の別の実施例である。同図において、121はブリズム、122は被変調光、123は絶縁性の基板、124は銀や網などの薄膜で特定の分布を形成した変調パターン、125は銀や網などの対向金属、126.127は電界強度に応じて変位を発生する圧電素子であり、

製造プロセスの選択幅が広がる。 基板として圧電 材料基板 9 8を用いるなど簡素な構成が可能とな り、 圧電材料の代わりに電界によって屈折率の変 化する電気光学結晶の基板を使用することもでき

第13図は本発明の第7の実施例を示す模式側面図であり、制御光や電気信号を用いない空間光変調器である。同図において、108はブリズム、107は被変調光、108は絶縁性の基板である。109は凹凸による特定の分布を形成した変調パターンであり、銀や網などの金属か光透過吸収材料で作り、第2図のATR曲線、FTR曲線に従って所望の反射取分布が得られるよう、ギャップアの分布を形成する。110.111は短界強度に応じて変位を発生する圧電素子であり、電極112,113、および114.115によって電源V、V2の所定の電圧を印加する。スペーサ116,117により、反射面108人と所定の厚みのギャップを介して対向させる。反射面108人において被変調光107を全反射させ、エバネッセン

電極128.129および130,131によって 電源V、 V2の所定の電圧を印加する。 専電性の スペーサ132,133を介して、変調パターン1 24と対向金属124との間のギャップ厚みを所 定に形成する。 反射面121Aにおいて被変調光1 22を全反射させ、 エパネッセント液からの部分 的エネルギー吸収により、 被変調光122に特定 の強度分布を与えられる。

このような第8の実施例では、 制御光や電気信号を用いることなく、 基準パターンとするような特定の2次元パターンの振幅変調を与えることのできる空間光変調を実現できる。 本実施例では変調パターンはプリズム121に薄膜として形成でき、複雑な形状を作ることが可能である。

発明の効果

以上のように本発明の空間光変調器によれば、 従来の空間光変調器で被晶や電気光学結晶に被変 調光が入り込むことによって生じていた、 光の散 乱、 スペックルノイズ、 あるいは収差の乱れとい った悪影響は無くせる。 また、全反射現象を利用

4、 図面の簡単な説明

第1図は本発明の空間光変調器における第1の 実施例を示す模式側面図、第2図は全反射におけるエバネッセント波からのエネルギー吸収による 反射率変化を示す特性図、第3図(a)、(b) は第1の実施例を適用した論理回路の動作説明に

類器を示す模式側面図である。

21·プリズム、21B·・反射面、22·被変調 光、23・・ガラス基板、24・・制御光、25・・選 明電極、26・光導伝体層、27,30,31・圧 電素子、28・対向電極、29・・スイッチング手 段、 3 2 , 3 3 ‥スペーサ、 3 5 , 3 8 ‥ 制御光、 37・ブリズム、38・制御層、39・角錐ブリ ズム、40・・被変調光、42・・被変調光、43・・ 制御層、 44,45・プリズム部材、 441・ハー フミラー面、 48・制御光(入力光)、 47・出 力光、 4 8 ・・帰還光、 5 1 ・・プリズム、 5 2 ・・被 変調光、53・ガラス基板、54・制御光、55 ··透明電極、 5 8 ··光導伝体層、 5 7 ··空隙、 5 8 …可換膜、 5 9 …対向電極、 8 0 ,8 1 …スペー サ、 82・スイッチング手段、 85・・プリズム、 68・被変調光、87・ガラス基板、68・制御 光、 69 · 透明電極、 70 · 光導伝体層、 71 · · 圧電材料層、 72・対向電極、 73,74・スペー サ、 77・プリズム、 78・被変調光、 79・制 御光、80・透明電極、81・光導伝体層、82

用いる模式側面図、 第4図は第1の実施例による 論理回路における圧電素子の変位~電界特性を示 す特性図、第5図(a)から(f)は各論理回路 の動作における入力光と出力光の強度関係を示す 特性図、 第8図(a)は第1の実施例においてプ リズムの応用を示す模式側面図、 同じく (b) は 角錐プリズムの斜視図、 第7図は第1の実施例を 適用した光双安定機能、 画像メモリー機能を有す る空間光変調器を示す模式側面図、 第8図は本発 明の空間光変調器における第2の実施例を示す模 式側面図、第9図は本発明の空間光変調器におけ る第3の実施例を示す模式側面図、 第10図 は本 発明の空間光変調器における第4の実施例を示す 模式側面図、 第11図は本発明の空間光変調器に おける第5の実施例を示す模式側面図、第12図 は本発明の空間光変調器における第8の実施例を 示す模式側面図、 第13図は本発明の空間光変調 器における第7の実施例を示す模式側面図、第1 4 図は本発明の空間光変調器における第8 の実施 例を示す模式側面図、 第15図は従来の空間光変

・電気光学材料層、83・対向電極、84・絶縁体層、86・ブリズム、87・被変調光、88・基板、89・電極、90・圧電素子、91・対向電極、92,83・スペーサ、94・スイッチング手段、96・ブリズム、97・被変調光、98・圧電材料基板、99・電極、100・対向電極、101,102・スペーサ、103・スイッチング手段、106・ブリズム、107・被変調光、108・基板、109・変調パターン、110,111・圧電素子、112~115・電極、116,117・スペーサ、121・ブリズム、122・被変調光、123・基板、124・変調パターン、125・対向金属、126,127・圧電素子、128~131・電極、132,133・スペーサ。代理人の氏名 弁理士 栗野重孝 ほか1名

為) 図

2 2 2

as 3 🔯

ଅଅ 5 ସଥ

42 --- 被変調光 43 --- 制御唇 44.45 --- アリズム部材 44A --- ハ-フミラー面 46 --- 制御光(スカ光) 47 --- 出カ光 48 --- 帰電光

募 7 🖄

35.36 -- 制御先 37 -- プリズム 38 -- 副御唐 39 -- 角経プリズム 40 -- 被変調先

萬 6 월

(Q)

75. 8 <u>1</u>23

特開平2-254405 (18)

65 --- アリズム 65A --- 反射調子 66 --- 板変調光 67 --- ガラス基 68 --- 副一一 出版 69 --- 近期電体料 70 --- 光電射電板 71 --- 上記記 72 --- 対に 73 74 -- スペーサ

第10以

77 -- プリズム 77A -- 反射面 78 -- 夜射型 79 -- 制明电光 80 -- 选明电影 81 -- 光導伝体層 82 -- 電気光学材料層 83 -- 対向電磁 84 -- 絶縁体層

第892以

第 1 1 29

86 -- プリズム 86A -- 足射面 87 -- 坂変調光 88 -- 張変板 89 -- 電電素子 90 --- 上前電素子 91 -- 対のーナック手段 94 -- スイッナング手段 78 84 83 82 80 80

77

96 ---アリズム 96A ---反射面 97 ---被変調光 98 ---圧電材料基板 99 一電板 100 ---対向電板 101,102 ---スペーサ 103 ---スイッチング手段

幕 1 2 🖄

特開平2-254405 (19)

106 - アリズム 106A - 反射面 107 - 被交調光 108 - 基板 109 - 変調パターン 110.111 - 圧電素チ 112.113.114.115 - 電板 116.117 - スペーサ

蘇 1 3 🖾

幕 1 4 🖄

1 - スカ画像 2 - 照照線 3 - 結がラスで 4.11 - が明光ンス校 5.10 - 沈明 - 沈明 - 近明 - 元末 本 6 - 光 - 北 - 北 - 一 7 - - フィ - 像 先 9 - - ボ 本 12 - - 被 スクロイックミラー 13 - ダイクロイックミラー

第 1 5 図

