Assignment 3: Data Exploration

Miaojun Pang

Spring 2024

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Rename this file <FirstLast>_A03_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Assign a useful name to each code chunk and include ample comments with your code.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 7. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

TIP: If your code extends past the page when knit, tidy your code by manually inserting line breaks.

TIP: If your code fails to knit, check that no install.packages() or View() commands exist in your code.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse, lubridate), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

```
getwd()
```

[1] "C:/Users/mpang/OneDrive - Duke University/Desktop/Assignments"

```
setwd("/Users/mpang/OneDrive - Duke University/Desktop/Assignments")
library(tidyverse)
library(lubridate)
Neonics<-read.csv("/Users/mpang/OneDrive - Duke University/Desktop/Assignments/ECOTOX_Neonicotinoids_In
Litter<- read.csv("/Users/mpang/OneDrive - Duke University/Desktop/Assignments/NEON_NIWO_Litter_massdat</pre>
```

Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: Our interest in the ecotoxicology of neonicotinoids coud stem from several key reasons. For example, we may focus on the impact these substances hae on wildlife, especially non-target species, to gauge broader ecological effects.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: Woody debris is an important component of forest and river ecosystems because it plays a role in the carbon budget and nutrient cycling, is an energy source for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes to structure and roughness, which affects water flow and sediment.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: 1. SampleIDs and SampleBarcodes will be generates for each collection event and functional group within a sample. 2. Litter sampling is tatgeted to take place in 4 40m * 40m tower plots. 3. Target sampling frequency for elevated traps varies by vegetation present at the site, with frequent sampling 1 time every two weeks in deciduous forest sites during senescence, and in frequent year rould sampling 1 time every 1 to 2 months at evergreen sites.

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

dim(Neonics)

[1] 4623 30

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summary(Neonics\$Effect)

##	Accumulation	Avoidance	Behavior	Biochemistry
##	12	102	360	11
##	Cell(s)	Development	<pre>Enzyme(s)</pre>	Feeding behavior
##	9	136	62	255

##	Genetics	Growth	Histology	Hormone(s)
##	82	38	5	1
##	Immunological	Intoxication	Morphology	Mortality
##	16	12	22	1493
##	Physiology	Population	Reproduction	
##	7	1803	197	

Answer: The most common effects is Population, it has 1803 samples, it shows how the insects can be impact by the insecticide.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.[TIP: The sort() command can sort the output of the summary command...]

summary(Neonics\$Species.Common.Name)

##	Honey Bee	Parasitic Wasp
##	667	285
##	Buff Tailed Bumblebee	Carniolan Honey Bee
##	183	152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
##	75	69
##	European Dark Bee	Minute Pirate Bug
##	66	62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order
##	49	47
##	Snout Beetle Family, Weevil	Sevenspotted Lady Beetle
##	47	46
##	True Bug Order	Buff-tailed Bumblebee
##	45	39
##	Aphid Family	Cabbage Looper
##	38	38
##	Sweetpotato Whitefly	Braconid Wasp
##	37	33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27

## ##	Chalcid Wasp 25	Convergent Lady Beetle 25
##	Stingless Bee	Spider/Mite Class
##	25	24
##	Tobacco Flea Beetle	Citrus Leafminer
##	24	23
##	Ladybird Beetle	Mason Bee
##	23	22
##	Mosquito	Argentine Ant
##	22	21
##	Beetle	Flatheaded Appletree Borer
##	Hornod Oak Call Wagn	20 Leaf Beetle Family
##	Horned Oak Gall Wasp 20	Lear beetle ramily 20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
##	Codling Moth	Black-spotted Lady Beetle
##	19	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug	Mulberry Pyralid
##	18	18
##	Silkworm	Vedalia Beetle
##	18 Aranasid Spidar Ordan	18 Bee Order
##	Araneoid Spider Order 17	bee order 17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	17
##	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
##	16	16
##	Mite	Onion Thrip
##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
## ##	14 Ox Beetle	14 Red Scale Parasite
##	ox beetle	ned Scale rarasite
##	Spined Soldier Bug	Armoured Scale Family
##	spined soldior Bag	13
##	Diamondback Moth	Eulophid Wasp
##	13	13
##	Monarch Butterfly	Predatory Bug
##	13	13
##	Yellow Fever Mosquito	Braconid Parasitoid
##	13	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12

##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Spotless Ladybird Beetle	Glasshouse Potato Wasp
##	11	10
##	Lacewing	Southern House Mosquito
##	10	10
##	Two Spotted Lady Beetle	Ant Family
##	10	9
##	Apple Maggot	(Other)
##	9	670

sort(summary(Neonics\$Species.Common.Name))

##	Ant Family	Apple Maggot
##	9	9
##	Glasshouse Potato Wasp	Lacewing
##	10	10
##	Southern House Mosquito	Two Spotted Lady Beetle
##	10	10
##	Spotless Ladybird Beetle	Braconid Parasitoid
##	11	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Armoured Scale Family	Diamondback Moth
##	13	13
##	Eulophid Wasp	Monarch Butterfly
##	13	13
##	Predatory Bug	Yellow Fever Mosquito
##	13	13
##	Corn Earworm	Green Peach Aphid
##	14	14
##	House Fly	Ox Beetle
##	14	14
##	Red Scale Parasite	Spined Soldier Bug
##	14	14
##	Western Flower Thrips	Hemlock Woolly Adelgid Lady Beetle
##	15	16
##	Hemlock Wooly Adelgid	Mite
##	16	16
##	Onion Thrip	Araneoid Spider Order
##	16	17
##	Bee Order	Egg Parasitoid
##	17	17
##	Insect Class	Moth And Butterfly Order
##	17	17
##	Oystershell Scale Parasitoid	Black-spotted Lady Beetle
##	17	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
	•	•

##	18	18
##	Mirid Bug	Mulberry Pyralid
##	18	18
##	Silkworm	Vedalia Beetle
##	18	18
##	Codling Moth	Flatheaded Appletree Borer
##	19	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
##	Argentine Ant	Beetle
##	21	21
##	Mason Bee	Mosquito
##	22	22
##	Citrus Leafminer	Ladybird Beetle
##	23	23
##	Spider/Mite Class	Tobacco Flea Beetle
##	24	24
##	Chalcid Wasp	Convergent Lady Beetle
##	25	25
##	Stingless Bee	Ground Beetle Family
##	25	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ladybird Beetle Family
##	29	30
##	Parasitoid	Braconid Wasp
##	30	33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Sweetpotato Whitefly	Aphid Family
##	37	38
##	Cabbage Looper	Buff-tailed Bumblebee
##	38	39
##	True Bug Order	Sevenspotted Lady Beetle
##	45	46
##	Beetle Order	Snout Beetle Family, Weevil
##	47	47
##	Erythrina Gall Wasp	Parasitoid Wasp
##	49	51
##	Colorado Potato Beetle	Parastic Wasp
##	57	58
## ##	Asian Citrus Psyllid 60	Minute Pirate Bug 62
## ##	European Dark Bee 66	Wireworm 69
##		
##	Euonymus Scale 75	Asian Lady Beetle 76
##	Japanese Beetle	Italian Honeybee
##	Japanese Beetle 94	113
##	Bumble Bee	Carniolan Honey Bee
ππ	Dumble Dee	oarmioran noney bee

##	140	152
##	Buff Tailed Bumblebee	Parasitic Wasp
##	183	285
##	Honey Bee	(Other)
##	667	670

Answer: The Honey Bee is the most commonly studied species in the dataset, follow with the parasitic wasp. Also because of bees and other pollinators are vital to the food we need to survive.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. column in the dataset, and why is it not numeric?

```
class(Neonics$Conc.1.Type..Author.)

## [1] "factor"

class(Neonics$Test.Location)
```

[1] "factor"

Answer: The class is "factor", it is not numberic because it is catogorical data but has a limited number of different values.

Explore your data graphically (Neonics)

9. Using geom_freqpoly, generate a plot of the number of studies conducted by publication year.

```
ggplot(Neonics) + geom_freqpoly(aes(x=Publication.Year))
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics) + geom_freqpoly(aes(x=Publication.Year, color=Test.Location))
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: The most common test locations is Lab. It tended to increase over years, however, the peak time for Lab is 2015 and decrease sudden after 2015.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX_CodeAppendix for more information.

[TIP: Add theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) to the end of your plot command to rotate and align the X-axis labels...]

ggplot(Neonics,aes(x=Endpoint)) + geom_bar()

Answer: The most two common end points is NOEL and NOEL. NOEL is no observable effect level which means the highest does given without producing a significant effect compared to the control. However, the NOEL is lowest observable effect level, while the lowest does given the producing effects that were significantly different from the control.

Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

```
class(Litter$collectDate)

## [1] "factor"

Litter$collectDate <- as.Date(Litter$collectDate, format= "%T-%m-%d")

View(Litter)

unique(Litter$collectDate)</pre>
```

[1] NA

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

unique(Litter\$plotID)

```
## [1] NIWO_061 NIWO_064 NIWO_067 NIWO_040 NIWO_041 NIWO_063 NIWO_047 NIWO_051 ## [9] NIWO_058 NIWO_046 NIWO_062 NIWO_057 ## 12 Levels: NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 ... NIWO_067
```

summary(Litter\$plotID)

```
## NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 NIWO_058 NIWO_061 ## 20 19 18 15 14 8 16 17 ## NIWO_062 NIWO_063 NIWO_064 NIWO_067 ## 14 14 16 17
```

Answer: There are 12 unique plots in total at Niwot Ridge. The unique function shows the unique types and levels, however, the summary function shows the number of samples from different plot.

14. Create a bar graph of functional Group counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

ggplot(data = Litter)+ geom_violin(aes(x=dryMass, y=functionalGroup))

Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: Boxplot is a more effective visualization option than the violin plot because of the median in this case is very small, even close to zero in the functional group.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles tend to have the highest biomass at these sites.