Job No.: Apiti Shed - 1 Address: 101 Table Flat Rd, Apiti, New Zealand Latitude: -39.948308 Longitude: 175.912963 Elevation: 558 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0.74 KPa	Roof Snow Load	0.5 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	6.2 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	45.14 m/s
Wind Pressure	1.22 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 6.20 m Cpe = -0.9 pe = -0.99 KPa pnet = -0.99 KPa

For roof CP,e from 6.20 m To 12.40 m Cpe = -0.5 pe = -0.55 KPa pnet = -0.55 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 28.8 m $\,$ Cpe = 0.7 $\,$ pe = 0.77 $\,$ KPa $\,$ pnet = 1.14 $\,$ KPa

For side wall CP,e from 0 m To 6.20 m Cpe = pe = -0.72 KPa pnet = -0.72 KPa

Maximum Upward pressure used in roof member Design = 0.99 KPa

Maximum Downward pressure used in roof member Design = 0.59 KPa

Maximum Wall pressure used in Design = 1.14 KPa

Maximum Racking pressure used in Design = 1.1 KPa

Design Summary

Intermediate Design Sides

Intermediate Spacing = 2500 mm Intermediate Span = 5651 mm Try Intermediate 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

First Page

condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward = 1.00 S1 Downward = 13.93 S1 Upward = 1.10

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 5.69 Kn-m Capacity 16.8 Kn-m Passing Percentage 295.25 % V_{0.9D-WnUp} 4.03 Kn-m Capacity 48.24 Kn-m Passing Percentage 1197.02 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 51.38 mm Limit by Woolcock et al, 1999 Span/100 = 56.51 mm

Reactions

Maximum = 4.03 kn

Girt Design Front and Back

Girt's Spacing = 600 mm Girt's Span = 4800 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.36 S1 Downward =12.23 S1 Upward =28.24

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.97 Kn-m Capacity 1.11 Kn-m Passing Percentage 56.35 % Vo.9D-WnUp 1.64 Kn-m Capacity 13.75 Kn-m Passing Percentage 838.41 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 39.47 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm Sag during installation = 39.74 mm

Second page

Reactions

Maximum = 1.64 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward = 0.98

K8 Upward = 0.65

S1 Downward = 12.23

S1 Upward = 20.38

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$

1.16 Kn-m

Capacity

1.98 Kn-m

Passing Percentage

170.69 %

V_{0.9D-WnUp}

1.85 Kn-m

Capacity

13.75 Kn-m

Passing Percentage

743.24 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.29 mm

Limit by Woolcock et al. 1999 Span/100 = 25.00 mm

Sag during installation = 2.92 mm

Reactions

Maximum = 1.85 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 300 dia. at Floor Level)

Dry Use

Height 5100 mm

Area

64885 mm2

As

48663.8671875 mm2

Ix

Ιy

335197731 mm4 335197731 mm4 ZxZx

2331810 mm3 2331810 mm3

Lateral Restraint

5100 mm c/c

Loads

Total Area over Pole = 36 m^2

Dead	9.00 Kn	Live	9.00 Kn
Wind Down	21.24 Kn	Snow	18.00 Kn
Moment wind	37.96 Kn-m	Moment snow	5.49 Kn-m
Phi	0.8	K8	0.78
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	729.27 Kn	PhiMnx Wind	52.85 Kn-m	PhiVnx Wind	115.24 Kn
PhiNcx Dead	437.56 Kn	PhiMnx Dead	31.71 Kn-m	PhiVnx Dead	69.14 Kn
PhiNcx Snow	583.42 Kn	PhiMnx Snow	42.28 Kn-m	PhiVnx Snow	92.19 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.77 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.57 < 1 \text{ OK}$

Deflection at top under service lateral loads = 54.35 mm < 51.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
L=	2250 mm	Pile embedment length
f1 =	4650 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Moment Wind = 37.96 Kn-m Moment Snow = Kn-m

Pile Properties

Safety Factory 0.55

Hu = 14.71 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 40.60 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.93 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2250) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2250)

Skin Friction = 40.89 Kn

Weight of Pile + Pile Skin Friction = 44.82 Kn

Uplift on one Pile = 27.54 Kn

Uplift is ok