

Public Key Encryption, Key Encapsulation Mechanisms, Digital Signatures

Applied Cryptography - Spring 2024

Simona Samardjiska

April 8, 2024

Institute for Computing and Information Sciences Radboud University

Summary

Last time:

- Public Key Cryptography a Recap
- Security of PKC
- Security of Public Key Encryption

Today:

- Security of Public Key Encryption (contd.)
- Key Encapsulation Mechanisms
- Digital Signatures from trapdoor permutations

Security of Public Key Encryption (PKE)

Baseline security: indistinguishability under chosen-plaintext attacks (IND-CPA)

A PKE scheme Π is called IND-CPA-secure if any PPT adversary ${\cal A}$ has only negligible advantage

$$\mathsf{Adv} = \mathsf{Pr}\left(\mathsf{Exp}^{\mathsf{ind-cpa}}_{\mathsf{\Pi}(1^k)}(\mathcal{A}) = 1
ight) - 1/2 = \mathit{negl}(k)\,.$$

in the following $\operatorname{Exp}^{\operatorname{ind-cpa}}_{\Pi(1^k)}(\mathcal{A})$ game (experiment):

Challenger		Adversary
$(pk, sk) \leftarrow KGen()$	pk	
	\leftarrow M_i	M_i for number of i -s
	$Enc(pk, M_i)$	
$b \stackrel{\$}{\leftarrow} \{0,1\}$	(M_0^*, M_1^*)	M_0^*, M_1^*
$C \leftarrow Enc(pk, M_b^*)$		
	<b'< td=""><td><i>b</i>′</td></b'<>	<i>b</i> ′
Return 1 iff $b = b'$ other	erwise 0.	

An IND-CPA secure PKE - generic construction

Y computational problem (YC):

Let $S = \mathbb{Z}_p^*$ with generator g_1 , and let $g_2 = g_1^s$. Let $T(x) = x^s$ be a trapdoor function.

Given: \mathbb{Z}_p^* , g_1 , g_2 , g_1^a

Find: g_2^a

Claim: YC is hard if CDH holds. (Prove for homework by contradiction!)

- Remark: The YC problem can be defined much more general! (no need for it here)
- ullet We further need a cryptographic hash function $G:S o\{0,1\}^\ell$ modelled as a random oracle

Construction of Π_0 :

KGen: $(pk, sk) \leftarrow KGen(1^k)$ where $g_2 = g_1^{sk}$ and $pk = (\mathbb{Z}_p^*, g_1, g_2)$. Further $T(x) = x^{sk}$

Enc: Choose $R \stackrel{\$}{\leftarrow} S$ and compute $\kappa = G(g_2^R)$

$$(C_1, C_2) \leftarrow \operatorname{Enc}(M, R) = (g_1^R, \kappa \oplus M)$$

Dec: Compute $\kappa = G(T(C_1))$ and output $M' \leftarrow \kappa \oplus C_2$

An IND-CPA secure PKE - generic construction

IND-CPA security: If the YC problem is hard then Π_0 is IND-CPA secure in the random oracle model (ROM).

Sketch of proof: Suppose \mathcal{A} has non-negligible advantage against Π_0 in an IND-CPA game (can (t,ϵ) break it). We construct simulator \mathcal{B} that breaks the YC problem with non-negligible probability. Setup: \mathcal{B} is given a YC instance $(\mathbb{Z}_p^*, g_1, g_2, g_1^a)$. His goal is to find g_2^a (but he does not know s). \mathcal{B} sets $\mathsf{pk} = (\mathbb{Z}_p^*, g_1, g_2)$ as the public key that \mathcal{A} attacks in an IND-CPA game against Π_0 .

G-queries: In the IND-CPA game, \mathcal{A} asks for encryptions of messages $\Rightarrow \mathcal{A}$ makes hash queries to G

- \mathcal{B} simulates G by maintaining a list G_L of queries (Q, κ)
- i-th query Q_i : If Q_i in list, answer with (Q_i, κ_i) ; if not, pick randomly κ_i and add (Q_i, κ_i) to list
- Crucial observation: If G is set as random oracle, κ is random and independent of Q, and unknown to A, if it does not query the random oracle
- Idea of proof: Adversary has NO advantage in guessing the encrypted message without making a particular query Q^* challenge query

An IND-CPA secure PKE - generic construction

Sketch of proof, contd.:

- The challenge ciphertext C^* can be seen as encryption of M_b iff $\kappa^* = G(g_2^a)$ (see def. of Π_0)
- If adversary $\mathcal A$ has not queried $Q^*=g^a_a$, then $\kappa^*\oplus M_b$ is OTP encryption with unknown key κ^*
- ullet \Rightarrow ${\cal A}$ has no advantage in guessing M_b
- $\Rightarrow \mathcal{A}$ must have queried the challenge query $Q^* = g_2^a$
- \Rightarrow (Q^*, κ^*) must be in the list G_L

Guess: \mathcal{A} outputs a guess in the IND-CPA game

Output: \mathcal{B} randomly selects an element (Q_{i^*}, κ_{i^*}) from G_L and outputs Q_{i^*}

- Advantage of breaking YC: ϵ/q_G , q_G number of queries to G and ϵ advantage of ${\cal A}$ against Π_0
- Cost: $t + T_s$, T_s cost of simulation
- ullet \Rightarrow The adversary ${\cal B}$ $(t+T_s,\epsilon/q_G)$ solves YC

From IND-CPA to IND-CCA PKE - generic construction

Fujisaki-Okamoto first transform: Let $\Pi = (KGen, Enc, Dec)$ be IND-CPA secure PKE.

We define the transformed $\Pi' = (KGen', Enc^H, Dec^H)$ as:

- KGen'(1^k) just runs KGen(1^k)
- We need $H: \{0,1\}^* \to \{0,1\}^\ell$
- Enc^H : Choose $R \xleftarrow{\$} \{0,1\}^{k_0}$ and compute $C \leftarrow \operatorname{Enc}^H(M,R) = \operatorname{Enc}(M||R,H(M||R))$
- Dec^H : Compute $M'||R' = \operatorname{Dec}(C)$ and output M' if $\operatorname{Enc}^H(M',R') = C$, and \bot otherwise

IND-CC2 security: If $\Pi = (KGen, Enc, Dec)$ is IND-CPA secure PKE (+ another standard property) then $\Pi' = (KGen', Enc^H, Dec^H)$ is IND-CCA2 secure in the random oracle model.

Some remarks:

- reduction loss of q_{H^-} number of queries to oracle H
- Needs IND-CPA of starting scheme quite strong to begin with
- We need conversions from weaker security guarantees

In practice ...

- · Public key encryption typically not used in practice
- Typically: transport symmetric key using public key crypto, then encrypt traffic using symmetric crypto
- But ... Recall the problems of small messages in textbook RSA
- Solution (Shoup): Hash the message after decryption and then use as a symmetric key

Hybrid scheme: Key Encapsulation Mechanism (KEM) + Data Encapsulation Mechanism (DEM)

- KEM definition and security similar to PKE
- DEM basically symmetric key encryption (definition and security)

Key Encapsulation Mechanism (KEM) – definition

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Key Encapsulation Mechanism (KEM) $\Pi =$ (KGen, Encaps, Decaps) consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encapsulation algorithm (probabilistic): Takes random $r \in \mathcal{R}$ and outputs $(K, C) \leftarrow \mathsf{Encaps}(\mathsf{pk}, M, r)$. C is said to be the encapsulation of key $K \in \mathcal{K}$.
- Decapsulation algorithm (deterministic): Takes as input a secret key sk and encapsulation C, and outputs either a key $K' = \text{Decaps}(\text{sk}, C) \in \mathcal{K}$ or $\bot \notin \mathcal{K}$ to indicate an invalid encapsulation.

Correctness: For all $K \in \mathcal{K}$

$$Pr[\mathsf{Decaps}(\mathsf{sk}, C) = K : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{KGen}(1^{\lambda}), C \leftarrow \mathsf{Encaps}(\mathsf{pk}, r)] \geqslant 1 - \delta$$

for a decryption error δ .

Security of Key Encapsulation Mechanism (KEM)

A KEM scheme KEM is called IND-CCA2-secure if any PPT algorithm ${\cal A}$ has only negligible advantage

$$\mathsf{Adv} = \mathsf{Pr}\left(\mathsf{Exp}^{\mathsf{ind-cca}}_{\mathsf{KEM}(1^k)}(\mathcal{A}) = 1\right) - 1/2 = \mathsf{negl}(k)\,.$$

in the following $Exp_{KEM(1^k)}^{ind-cca}(A)$ game (experiment):

Fujisaki Okamoto second transform (KEM version)

Fujisaki and Okamoto proposed another transform (in this course we call it second)

requires only very weak notion of OW-CPA security of PKE

A probabilistic encryption scheme (KGen, Enc, Dec) is said to be **one-way** (OW-CPA) if the probability that a polynomial time attacker A can invert a ciphertext C = Enc(M; pk) obtained by encrypting a random message M, is negligible

- transform originally proposed for IND-CCA2 security of PKE
- here we look at KEM version (Dent 2003) from probabilistic OW-CPA PKE
 - version exists from deterministic PKE, and different security properties of the PKE
- ullet We need $H:\{0,1\}^*
 ightarrow \{0,1\}^k$ and key derivation function KDF
 - both modelled as random oracles
 - in practice caution about their instantiations

Fujisaki Okamoto second transform (KEM version)

FO-KEM: Let (KGen_E, Enc, Dec) be OW-CPA secure PKE.

We define $FO_{KEM} = (KGen, Encaps, Decaps)$ as:

- KGen(1^k) just runs KGen_E(1^k)
- Encaps:
 - Choose $X \stackrel{\$}{\leftarrow} \mathcal{M}$, set R = H(X) and compute $C \leftarrow \text{Enc}(X, R)$ (make deterministic)
 - Set K = KDF(X) and output (K, C)
- Decaps:
 - Set $X \leftarrow \text{Dec}(C)$. If $X = \bot$, output \bot and halt.
 - Set R = H(X)
 - Check $C \stackrel{?}{=} \operatorname{Enc}(X, R)$. If not, output \perp and halt. (re-encryption)
 - Set K = KDF(X) and output (K, C)

IND-CCA2 security:

If (KGen_E, Enc, Dec) is OW-CPA secure PKE, then FO-KEM is IND-CCA2 secure in the ROM.

Other transforms and standards

- Other generic transforms exist: REACT, GEM [OP01]
- Recently, a unified framework [HHK17] puts all of them under FO-transforms
- FO transforms very relevant for modern cryptosystems (post-quantum cryptosystems)
- to be standardized via Kyber (now ML-KEM, draft standard out in '23), but other schemes expected in the near future

Other existing standards today:

- RSA-OAEP (NIST.SP.800-56Br2)
 - Bellare and Rogaway, 1994
 - · very complex, initial proof wrong
 - provably secure under the RSA assumption (It is hard to find x, given $y = x^e \pmod{N}$, e and e).
- RSA-KEM (ISO/IEC18033-2)
 - Shoup
 - provably secure under the RSA assumption

Digital signatures

In our everyday scenario

- Alice signs a message using her private key
 - for example in an authenticated key exchange
- Bob verifies the signature using Alice's public key and the message

- What does Eve want to do/achieve?
 - Forge a signature!
 - Ultimate goal: Recover private key! Then forge signature for ALL messages!
 - Excellent: Forge signature for ANY message!
 - Also good: Forge signature for SOME message she chooses!
 - Satisfactory: Forge signature for **ONE** gibberish message!

Digital Signatures (DSs) – definition

Given security parameter $\lambda \in \mathbb{N}$ and message space $\mathcal{M} \subseteq \{0,1\}^*$, a digital signature scheme $DSs = (\mathsf{KGen},\mathsf{Sign},\mathsf{Vf})$ consists of three PPT algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Signing algorithm (probabilistic): Takes $M \in \mathcal{M}$ and secret key sk and outputs a signature $\sigma \leftarrow \operatorname{Sign}(\operatorname{sk}, M)$
- Verification algorithm (deterministic): Takes as input a public key pk, message M, and signature σ and outputs $Accept \leftarrow Vf(pk, M, \sigma)$ if σ is a valid signature of M under the public key pk or \bot otherwise.

Correctness: For all $(pk, sk) \leftarrow \mathsf{KGen}(1^{\lambda})$ and all $M \in \mathcal{M}$:

$$Vf(pk, M, Sign(sk, M)) = Accept$$

- Passive attacker observes none/some/many signatures of messages
- Active attacker can craft messages to send to signing oracle to be signed!

Security of Digital Signatures (DSs)

Standard security: Existential unforgeability under adaptive chosen message attacks (EUF-CMA)

A Digital Signature scheme Dss is called EUF-CMA-secure if any PPT algorithm $\mathcal A$ has only negligible success probability

$$\operatorname{Succ}^{\operatorname{\mathsf{euf-cma}}}_{\mathsf{DSs}(1^k)}(\mathcal{A}) = \operatorname{\mathsf{Pr}}\left[\mathsf{Exp}^{\operatorname{\mathsf{euf-cma}}}_{\mathsf{DSs}(1^k)}(\mathcal{A}) = \operatorname{\mathsf{Accept}}\right].$$

in the following $Exp_{DSs(1^k)}^{euf-cma}(A)$ game (experiment):

Challenger		Adversary
$(pk, sk) \leftarrow KGen()$		
	<i>Μ_i</i>	M_i for number of i -s
	$\xrightarrow{Sign(sk,M_i)}$,
	⟨ (M*, σ*)	M^*, σ^*
Return 1 iff Vf(pk, M , σ) otherwise 0.) = Accept	

An example walkthrough - RSA signatures

Textbook RSA signature (directly from RSA encryption algorithm):

Textbook RSA:

KeyGen:

- **1** Choose two primes p, q s.t. $|p| \approx |q|$
- **2** Compute N = pq and $\phi(N) = (p-1)(q-1)$
- **3** Choose a random $e < \phi(N)$, s.t. $gcd(e, \phi(N)) = 1$
- **4** Compute d such that $ed = 1 \pmod{\phi(N)}$
- **6** Output public key pk = (N, e) and private key sk = d

Sign:

Given message M, compute signature by $\sigma \leftarrow M^d \pmod{N}$

Verify:

To verify the message - signature pair (M, σ) compute $M' \leftarrow \sigma^e \pmod{N}$ If M' = M output Accept

An example walkthrough - forgeries on RSA signatures

Trivial existential forgery attack:

- Eve knows only the public key (N, e)
- Eve chooses random $\sigma \in \mathbb{Z}_N$, and calculates $M = \sigma^e$
 - (M, σ) is a valid signature pair!
- Does not even require access to signing oracle! (Key Only Attack (KOA))
- Not specific only to textbook RSA, but to any scheme whose verification algorithm can efficiently compute the message *M* from the signature *σ*

Chosen message universal forgery attack:

- To forge a message M that is composite i.e. $M = M_1 M_2 \pmod{N}$:
- Eve asks for the signatures σ_1 and σ_2 of M_1 ad M_2
- $(M, \sigma_1 \sigma_2)$ is a **valid signature pair** because of multiplicativity!
- Not specific only to textbook RSA, but to any scheme that is multiplicative

$$Sign(M_1) \cdot Sign(M_2) = Sign(M_1 \cdot M_2)$$

An example walkthrough - forgeries on RSA signatures

Solution?

- Make sure the two properties not satisfied
 - ullet message M efficiently computable from the signature σ
 - multiplicativity
- Simple hashing should suffice, right?
 - ullet at the time (\sim 20 years ago) MD5 or SHA1
 - Take $\mu(M) = H(M)$ for H a hash function of length 128 or 160 bits
 - basis of the ISO/IEC 9796 standard, that employs a more complicated padding scheme
 - $\mu(M) = ComplicatedPadding(H(M))$
- As you might expect, there is an attack!
 - we look at a simplified version

An example walkthrough - forgeries on RSA signatures

Attack on ISO/IEC 9796:[Coron, Naccache, Stern, 1999] (extension of Desmedt-Odlyzko attack)

Setup:

- Given public key pk = (N, e) and function $\mu(M) = H(M)$ where H(M) is short (128 or 160 bits)
- A positive integer b is ℓ -smooth if all its prime factors are smaller than ℓ .
 - Probability that SHA-1 digest is 2^{24} -smooth is 2^{-19} , so quite feasible to find smooth digests
- Let $\{p_1, p_2, \dots, p_t\}$ be the set of the first t primes
 - We will consider p_t -smooth numbers, which can be expressed as

$$b=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t}$$

An example walkthrough - Attack on ISO/IEC 9796 (CNS99)

The attack:

- Find t+1 messages $M_1, M_2, \ldots, M_{t+1}$ such that all $\mu(M_1), \mu(M_2), \ldots, \mu(M_{t+1})$ are smooth
- They can all be expressed as:
- Consider only the vectors of the exponents (mod e)

$$\mu(M_{1}) = p_{1}^{\alpha_{1}^{(1)}} p_{2}^{\alpha_{2}^{(1)}} \dots p_{t}^{\alpha_{t}^{(1)}} \qquad \longrightarrow \qquad v_{1} = \left(\alpha_{1}^{(1)} \; (\mathsf{mod} \; e), \; \alpha_{2}^{(1)} \; (\mathsf{mod} \; e), \dots, \; \alpha_{t}^{(1)} \; (\mathsf{mod} \; e)\right)$$

$$\mu(M_{2}) = p_{1}^{\alpha_{1}^{(2)}} p_{2}^{\alpha_{2}^{(2)}} \dots p_{t}^{\alpha_{t}^{(2)}} \qquad \longrightarrow \qquad v_{2} = \left(\alpha_{1}^{(2)} \; (\mathsf{mod} \; e), \; \alpha_{2}^{(2)} \; (\mathsf{mod} \; e), \dots, \; \alpha_{t}^{(2)} \; (\mathsf{mod} \; e)\right)$$

$$\dots$$

$$\mu(M_{t+1}) = p_{1}^{\alpha_{1}^{(t+1)}} p_{2}^{\alpha_{2}^{(t+1)}} \dots p_{t}^{\alpha_{t}^{(t+1)}} \qquad \longrightarrow \qquad v_{t+1} = \left(\alpha_{1}^{(t+1)} \; (\mathsf{mod} \; e), \; \alpha_{2}^{(t+1)} \; (\mathsf{mod} \; e), \dots, \; \alpha_{t}^{(t+1)} \; (\mathsf{mod} \; e)\right)$$

Crucial observation:

- We have t + 1 vectors in a space of dimension t
- ⇒ They must be linearly dependent!

An example walkthrough - Attack on ISO/IEC 9796 (CNS99)

The attack contd.:

- Suppose we want to forge a signature σ_{t+1} on the message M_{t+1}
- The vectors are linearly dependent ⇒ one of the vectors can be expressed as a linear combination
 of the others

$$\Rightarrow v_{t+1} = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_t v_t \pmod{e}$$

$$\Rightarrow v_{t+1} = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_t v_t + \gamma e, \text{ for some vector } \gamma$$

• Then for *i*-th coordinate of $v_{t+1} = \left(\alpha_1^{(t+1)} \pmod{e}, \ \alpha_2^{(t+1)} \pmod{e}, \ldots, \ \alpha_t^{(t+1)} \pmod{e}\right)$:

$$\begin{array}{lcl} \alpha_{i}^{(t+1)} & = & \beta_{1}\alpha_{i}^{(1)} + \beta_{2}\alpha_{i}^{(2)} + \dots + \beta_{t}\alpha_{i}^{(t)} + \gamma_{i}e \\ p_{i}^{\alpha_{i}^{(t+1)}} & = & p_{i}^{\beta_{1}\alpha_{i}^{(1)}} \cdot p_{i}^{\beta_{2}\alpha_{i}^{(2)}} \cdot \dots \cdot p_{i}^{\beta_{t}\alpha_{i}^{(t)}} \cdot p_{i}^{\gamma_{i}e} \end{array}$$

• And then combined:

$$\prod_{i=1}^t p_i^{\alpha_i^{(t+1)}} = \prod_{i=1}^t p_i^{\beta_1 \alpha_i^{(1)}} \cdot \prod_{i=1}^t p_i^{\beta_2 \alpha_i^{(2)}} \cdot \cdots \cdot \prod_{i=1}^t p_i^{\beta_t \alpha_i^{(t)}} \cdot \prod_{i=1}^t p_i^{\gamma_i e}$$

• Finally:

$$\mu(M_{t+1}) = \mu(M_1)^{\beta_1} \cdot \mu(M_2)^{\beta_2} \cdot \cdots \cdot \mu(M_t)^{\beta_t} \cdot \prod_{i=1}^t p_i^{\gamma_i e}$$

An example walkthrough - Attack on ISO/IEC 9796 (CNS99)

The attack contd.:

- Suppose we want to forge a signature σ_{t+1} on the message M_{t+1}
- From previous slide:

$$\mu(M_{t+1}) = \mu(M_1)^{\beta_1} \cdot \mu(M_2)^{\beta_2} \cdot \cdots \cdot \mu(M_t)^{\beta_t} \cdot \prod_{i=1}^t p_i^{\gamma_i e}$$

- Ask for signatures $\sigma_1, \ldots, \sigma_t$ of the messages M_1, \ldots, M_t
- Compute $\beta_1, \ldots, \beta_t, \gamma$ using linear algebra
- Compute $\prod_{i=1}^t \sigma_i^{\beta_i} \cdot \prod_{i=1}^t p_i^{\gamma_i} \dots Why?$
- Since $\sigma_i = \mu(M_i)^d \pmod{N}$:

$$\prod_{i=1}^{t} \sigma_{i}^{\beta_{i}} \cdot \prod_{i=1}^{t} \rho_{i}^{\gamma_{i}} = \prod_{i=1}^{t} \mu(M_{i})^{d\beta_{i}} \prod_{i=1}^{t} \rho_{i}^{\gamma_{i}ed} \pmod{N}
= \left(\prod_{i=1}^{t} \mu(M_{i})^{\beta_{i}}\right)^{d} \left(\prod_{i=1}^{t} \rho_{i}^{\gamma_{i}e}\right)^{d} \pmod{N}
= \mu(M_{t+1})^{d} \pmod{N}$$

• Voila! We have a forged signature $\sigma_{t+1} = \mu(M_{t+1})^d \pmod{N}$ of M_{t+1}

An EUF-CMA secure DSs - generic construction FDH

Trapdoor (one-way) permutation:

 \mathcal{T} is a trapdoor permutation if it is easy to compute $\mathcal{T}(pk, x) = \pi(x)$ for any x in the domain D, but **given** b from the range R it is **computationally hard to find** $a \in D$, such that

$$\mathcal{T}(\mathsf{pk}, a) = b$$

without the knowledge of a trapdoor sk.

When the trapdoor is known, $a = \mathcal{T}(sk, b) = \pi^{-1}(b)$ is easy to compute.

We further need:

ullet a **Full Domain Hash** function $FDH:\{0,1\}^* o D$ modelled as a random oracle

Construction of FDH DSs:

KGen: $(pk, sk) \leftarrow KGen(1^k)$ and trapdoor permutation \mathcal{T}

Sign: Compute y = FDH(M) and calculate signature $\sigma = T(sk, y)$

Vf: Given message and signature pair (M, σ) , compute $y' = \mathcal{T}(pk, \sigma)$ and output $y' \stackrel{?}{=} FDH(M)$

An EUF-CMA secure DSs - RSA-FDH

Construction of RSA-FDH DSs:

KeyGen:

- **1** Choose two primes p, q s.t. $|p| \approx |q|$
- **2** Compute N = pq and $\phi(N) = (p-1)(q-1)$
- **3** Choose a random $e < \phi(N)$, s.t. $gcd(e, \phi(N)) = 1$
- **4** Compute d such that $ed = 1 \pmod{\phi(N)}$
- **6** Output public key pk = (N, e) and private key sk = d

Sign: Given message M, compute signature by $\sigma \leftarrow FDH(M)^d \pmod{N}$

Verify: To verify the message - signature pair (M, σ) compute $h' \leftarrow \sigma^e \pmod{N}$

If
$$h' = FDH(M)$$
 output Accept

RSA trapdoor permutation:

$$\mathcal{T}(pk, x) = \pi(x) = x^e \pmod{N}$$
 and $\mathcal{T}(sk, y) = y^d \pmod{N}$.

It is computationally hard to find $\pi^{-1}(y)$ without the knowledge of d if the RSA assumption holds.

RSA assumption: It is hard to find x, given $y = x^e \pmod{N}$, e and N.

An EUF-CMA secure DSs - RSA-FDH

EUF-CMA security: If the RSA assumption holds then RSA-FDH DSs is EUF-CMA secure in the random oracle model (ROM).

Sketch of proof: Suppose \mathcal{A} (the forger) has non-negligible advantage against DSs in an EUF-CMA game (can (t,ϵ) break it). We construct simulator \mathcal{B} (the inverter) that inverts the trapdoor permutation \mathcal{T} with non-negligible probability.

Setup: \mathcal{B} is given an RSA instance (N, e, y) where $y \in \mathbb{Z}_N^*$. His goal is to find $x = \pi^{-1}(y)$. \mathcal{B} sets pk = (N, e) as the public key that \mathcal{A} attacks.

FDH-queries: \mathcal{A} asks for signatures of messages $\Rightarrow \mathcal{A}$ makes hash queries to *FDH*

- \mathcal{B} simulates *FDH* by maintaining a list *FDH*_L of queries (M_i, r_i, h_i)
- *i*-th query M_i : If M_i in list, answer with h_i ; if not, pick randomly $r_i \in \mathbb{Z}_N^*$, set $h_i = r_i^e \pmod{N}$ with probability p and $h_i = y \cdot r_i^e \pmod{N}$ with probability 1 p. Add (M_i, r_i, h_i) to list FDH_L .

Signature-queries: \mathcal{A} asks for signatures of messages

• When \mathcal{A} queries M: \mathcal{A} has already queried the hash oracle FDH, so $M=M_i$ is in the list, for some i. If $h_i=r_i^e\pmod{N}$, then \mathcal{B} returns r_i as the signature. Otherwise, outputs \bot and halts (it has failed to invert the trapdoor).

An EUF-CMA secure DSs - RSA-FDH

Sketch of proof, contd.:

Forgery: \mathcal{A} outputs a forgery (M^*, σ^*) . We assume that \mathcal{A} has queried the FDH oracle for M^* , i.e. it is in the list FDH_L for some i. (If not, \mathcal{B} just makes the query itself.)

- If σ^* is valid, then $\sigma^* = h_i^d$
- Then, for $h_i = y \cdot r_i^e \pmod{N}$ we have: $\sigma^* = h_i^d = y^d \cdot r_i \pmod{N}$, so $y^d = \sigma^*/r_i$

Output: If $h_i = y \cdot r_i^e \pmod{N}$, the \mathcal{B} outputs σ^*/r_i as the inverse of y. Otherwise, outputs \bot and halts.

Analysis: Probability that \mathcal{B} outputs something (different from \perp):

- ullet ${\cal B}$ answers all signature queries: $p^{q_{sig}}$, where q_{sig} number of signature queries
- then ${\cal B}$ outputs inverse of y: 1-p
- Total $\alpha(p) = p^{q_{sig}}(1-p)$, maximum obtained for $p_{max} = 1 \frac{1}{q_{cir}+1}$ (**How?**)
- Success probability: $\epsilon' = \alpha(p_{max})\epsilon = (1 \frac{1}{q_{sig}+1})^{q_{sig}+1} \frac{1}{q_{sig}}\epsilon \to \frac{1}{e \cdot q_{sig}}\epsilon$
- Cost: $t + T_s$, T_s cost of simulation
- \Rightarrow The adversary $\mathcal{B}\left(t+T_{s},\epsilon/eq_{sig}\right)$ inverts the RSA trapdoor

Use of RSA signatures in practice

- ullet Difference is mainly in the function μ
- Focus on resistance to multiplicative forgery (but choices many times ad-hoc)

Ad-Hoc Designs:

ISO 9796-1, ISO 9796-2

- Ad-hoc padding scheme (no proof) $(\mu(M) = 6a||m[1]||Hash(m)||bc$ in ISO 9796-2)
- Broken by extension of Desmedt-Odlyzko attack [CNS99] (see previous slides)
- Amended several times: increase of hash length

ANSI X 9. 31 (Digital Signatures Using Reversible PKC for the Financial Services Industry, 1998)

- Ad-hoc padding scheme (no proof) $(\mu(M) = 6bbb...bbba||Hash(M)||3xcc)$
- Several other standards: IEEE P 1363, ISO/IEC 14888 -3, US NIST FIPS 186 -1

PKCS #1 v1.5

- Ad-hoc padding scheme (no proof) $(\mu(M) = 0001 ff...ff00 || Hash.Alg.ID || Hash(M))$
- IEEE P 1363a, RSA tokens, Gemalto tokens, ID cards, certificates

Use of RSA signatures in practice

Provably secure Designs:

RSA-FDH (Bellare and Rogaway, ACM CCS '93)

- Provably secure in the ROM (see proof in previous slides)
- deterministic
- Standards: IEEE P1363a

RSA-PSS (Probabilistic signature scheme - Bellare and Rogaway, Eurocrypt'96)

- Provably secure in the ROM tight reduction from RSA problem
- randomized version of RSA-FDH
- $\mu(M) = 00 || Hash(salt, M) || G(Hash(salt, M)) \oplus [salt || 00...00]$
- Standards: IEEE P1363a and PKCS#1 v2.1

Practical threats

Is that all?

- RSA signatures are used a lot!
- Easy to implement, with very fast verification algorithm
- Easy to implement wrongly
- Major design feature: Signature from trapdoor permutation
- The rest of the landscape? Signatures from other trapdoor permutations?
- Luckily no!

Modern signature designs:

- Fiat-Shamir signatures
 - Schnorr signatures, many modern post-quantum signatures
 - Similarities with DSA, ECDSA
- Hash-based signatures
- We will talk about these in the next lectures...

Summary

Today:

- Key Encapsulation Mechanisms
- Digital Signatures from trapdoor permutations
- Security of Public Key Encryption (contd.)

Next time:

- Commitment schemes
- Zero-Knowledge protocols
- Sigma protocols and identification schemes
- Fiat-Shamir transform