Chapter 20 Carboxylic Acids

Chapter Objectives

- •Describe the physical and spectroscopic properties of carboxylic acids based on their structure and bonding.
- •Explain why carboxylic acids are more acidic than other organic functional groups
- Describe the major reactions of carboxylic acids
- Predict the products of reactions of carboxylic acids
- Draw curved arrow mechanisms for the core reactions of carboxylic acids
- Design multistep syntheses that start from carboxylic acids

Roadmap

- 20.1-20.5: Properties of carboxylic acids (supplemental videos)
- 20.6: Synthesis of carboxylic acids
- 20.7-20.11: Reactions of carboxylic acids
- Carboxylic acids combine the electrophilic chemistry of ketones with the leaving group ability of alcohols and bonus acidity

Skip: 20.9B, 20.11B

20.1: Nomenclature of carboxylic acids

See Panopto video

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Formic = ant, formic acid makes fire ant bites burn

Malic acid (Latin for apples), found in apples

Citric acid, found in citrus fruits

Carbonic acid

In equilibrium with CO₂, water

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Carbonic acid roughly as acidic as most carboxylic acids
 - pKa = 3.6 based on "pure" liquid carbonic acid
 - pKa = 6.4 taking into account how little CO₂ actually turns into carbonic acid

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Blood buffers

- For humans, normal blood is between pH 7.35-7.45
- pH maintained with bicarbonate/carbonic acid/CO₂ buffer
- pH controlled by breathing and kidneys
- Holding breath → higher [CO₂] → more acidic blood

20.5: Fatty Acids and Soaps

Fatty acid – long chain carboxylic acid, nonpolar

Soap – alkali salt of fatty acid

$$CH_3(CH_2)_{16}$$
— C — O — Na^4

sodium stearate
(a soap)

Detergent – similar to soap, but doesn't have to be a carboxylate

sodium 4-dodecyl-1-benzenesulfonate (a synthetic detergent)

Micelles

Large carboxylic acids have polar and nonpolar portions

Bubbles form to "protect" the nonpolar (hydrophobic)

portions from the polar water

nonpolar tails

Similar chemistry in cell membrane lipid bilayers

20.6: Synthesis of carboxylic acids

Oxidation of 1° alcohols (10.7) and aldehydes (19.14)

$$\begin{array}{c|c} OH & CrO_3 \\ \hline \end{array}$$

Oxidation of alkyl benzenes (17.5)

R-MgX or R-Li with carbon dioxide

- Grignard + CO₂ → Carboxylic acid (no side chain leaving group)
- Initially makes carboxylate, acidic workup gives neutral carboxylic acid

Chem 241

20.7-8: Reactions of carboxylic acids

- Nucleophile attacks C=O carbon
- Electrophile attacked by O- ion
- Decarboxylation

Fischer Ester Synthesis

O

$$C$$
—OH + CH_3OH H_2SO_4 C —OC H_3 + H_2O
methanol
benzoic acid (large excess; methyl benzoate (an ester; 85–95% yield)

 Reaction is reversible, equilibrium favors both ester and carboxylic acid roughly evenly

Carboxylic acids as bases

- Carboxylic acids are very weak bases
- Requires very strong acid sulfuric acid
- Same logic as protonating ketones/aldehydes to activate them (chapter 17)

Mechanism for esterification (both directions)

Esterification under basic conditions

 Basic nucleophile + carboxylic acid → carboxylate (acid-base reaction)

Instead, make carboxylic acid the nucleophile

Weak base, E2 doesn't compete

20.9: Synthesis of Acid Chlorides

Carboxylic acid + SOCl₂ → Acid chloride

$$\begin{array}{c} O \\ \parallel \\ CH_3CH_2CH_2C - OH + SOCl_2 \end{array} \longrightarrow \begin{array}{c} CH_3CH_2CH_2C - Cl + HCl + SO_2 \\ \text{butyric acid} \\ \text{chloride} \end{array}$$

Compare alcohol + SOCl₂ → alkyl chloride (10.4D)

Best way to make anhydrides is from acid chlorides
 (21.8) – skip 20.9B

20.10: Reduction of carboxylic acids

LiAlH₄ "double" reduces carboxylic acids to alcohols

$$2CH_{3}CH_{2}CHC - OH + LiAl_{4} \xrightarrow{\text{ether}} \xrightarrow{H_{3}O^{+}} 2CH_{3}CH_{2}CHC_{4} - OH$$

$$CH_{3} CH_{3}$$

2-methylbutanoic acid

2-methyl-1-butanol (83% yield)

- An aldehyde is a key mechanistic intermediate
- NaBH₄ is not reactive enough

4-formylbenzoic acid

4-(hydroxymethyl)benzoic acid (75% yield)

20.11 Decarboxylation of malonic acids and β-ketoacids

 Malonic acids and β-ketoacids show the normal reactions of carboxylic acids

Substituted malonic acid

In addition, they can also decarboxylate (lose CO₂)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

We will return to these reactions in Chapter 22

Mechanism of decarboxylation

- Concerted mechanism
- Both C=O groups participate

We saw enols during alkyne hydration (14.5)

Synthesis question

Hydrocarbons, alkyl halides or alcohols with 4 or fewer C atoms

Summary of Chapter 20

- Carboxylic acids have 2 major reactions
 - Acidity
 - Acyl substitution (incl. reduction)
- We can understand acidity trends based on induction and resonance
- We can understand acyl substitution based on ketone chemistry

 Acyl substitution will be important to other carboxylic acid derivatives (Chapter 21)

What questions do you have about Chapter 20?

Top

