

Departamento de Matemática, Universidade de Aveiro

Cálculo II- C — 2º Teste (V1)

11 de junho de 2024 Duração: **2h00**

	N.º Mec.:			Nome:								
	(Declaro qu	e desisto	o:		N. folhas suple					ementares:		
	Questão [Cotação]	1 [60pts]	2 [15pts]	3a [15pts]	3b [10pts]	4a [15pts]	4b [15pts]	5 [20pts]	6a [10pts]	6b [20pts]	7 [20pts]	Classificação (valores)
		-		ar de co	ntinuar	uma res	-	ıma folh	a suple	mentar,	indique, 1	efetuados – no sítio assinalado
[60pts]	 Nas alíneas seguintes assinale com uma cruz a opção correta. A cotação a atribuir a cada resposta é a seguinte: (i) resposta correta: 10 pontos; (ii) resposta errada: -3 pontos; (iii) ausência de resposta ou resposta nula: 0 pontos. 											
	(a) A série de Fourier $\sum_{n=1}^{+\infty} \left(\frac{1}{n^3} \cos(nx) + \frac{(-1)^n}{n^2} \sin(nx) \right)$ converge em \mathbb{R} , absolutamente e uniformemente. absolutamente mas não uniformemente. uniformemente mas não absolutamente. nem absolutamente, nem uniformemente.											
	(b) Seja $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : y \ge x \land y > -x\}$. A fronteira de \mathcal{D} é:											
	(c)	Conside conjunto	re a fun o de níve	ição $f(x)$ el \mathcal{N}_k de	(x,y) = f?	x + 2y	definid	a em ℝ²	² e seja	$k \in \mathbb{R}$. O que	pode dizer sobre o
			ma reta plano de			$\frac{1}{2}.$ $x + 2y - \frac{1}{2}$	-k.				leclive m ido por z	$e = -\frac{1}{2}.$ $= k e x + 2y = k.$
		Sejam \mathcal{I} Se a der $\frac{\partial f}{\partial y}(a,b)$	rivada d	ireciona	al de f	no pont	\mathbb{R}^2 , f : to (a,b)	$\mathcal{D} ightarrow \mathbb{F}$ segund	R uma f o o veto	função or $U =$	de classe $\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$	C^1 e $(a,b) \in \mathcal{D}$. $\frac{1}{2}$ é igual a $\frac{1}{\sqrt{2}}$ e
		4				-4			$\frac{4}{\sqrt{2}}$			

	. Uma equação do plano tangente ao gráfico da função f no
ponto $P = (0, 1, 2)$ é: x - 3y - z = 5	
x - 3y - z = 5 $x - 3y - z = -5$	
onde $x(s,t) = s^4 + t^4$ e $y(s,t) = 3st$.	alar diferenciável em \mathbb{R}^2 e seja $z(s,t)=f(x(s,t),y(s,t)),$ Qual das seguintes expressões representa $\frac{\partial z}{\partial s}(-1,0)$?
	03
2. Sabendo que a série de potências $\sum_{n=1}^{+\infty} \frac{0}{n}$	$\frac{(x-1)^n}{n3^n}$ tem domínio de convergência $D_c=[-2,4[$ e
que $f(x) = \sum_{n=1}^{+\infty} \frac{(x-1)^n}{n3^n}$, determine, justi	ficando, o valor de $f'(2)$.

[15pts]

N° Mec:	Nome:
11 11201	

3. Seja g a função 2π -periódica, definida em $[-\pi,\pi]$ por $g(x)=\pi(1-2x^2)$.

[15pts]

(a) Justifique que a série de Fourier associada a g é uma série da forma

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx), \quad a_n \in \mathbb{R}$$

e determine o valor de a_0 .

							Ш
Continua	na	folha	sup	lemen	tar	No	L

[10pts]

(b) Calcule, justificando, a soma da série de Fourier de g no ponto $x=-3\pi.$

4. Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2+y^2}{x^4+y^2} & \text{se} \quad x \neq 0\\ \sin(y) & \text{se} \quad x = 0. \end{cases}$$

[15pts]	(a)	Averigue a existência de	$\lim_{(x,y)\to(0,0)}$	f(x,y) e, caso exista, indique o seu valo	r.

Continua na folha suplementar Nº

Continua na folha suplementar Nº

$\ln(x + g(x)) = e^{xg(x)}$	
para todo o $x \in I$. Determine $g'(0)$.	_
Continua na folha suplementar I	N°_
Continua na folha suplementar l f 6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y)=-y^2+2xy-2x^3+3$.	N°_
	N _o _
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	N_0
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	N _o _
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	N _o
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	N _o _
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	No
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	N _o
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	No
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	No
6. Seja f a função real definida em \mathbb{R}^2 por $f(x,y) = -y^2 + 2xy - 2x^3 + 3$.	No

20pts]	(b)	Averigue a natureza dos pontos críticos obtidos na alínea anterior.

[20pts]	7.	7. Determine os extremos globais da função f definida por $f(x,y)=2x-3y$ que pertencem a elipse de equação $x^2+\frac{3}{2}y^2=10$.							

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{c} u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	$ \ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

$\sec x = \frac{1}{\cos x}$	$sen(x \pm y) = sen x cos y \pm cos x sen y$ $cos(x \pm y) = cos x cos y \mp sen x sen y$	$\cos^2 x = \frac{1 + \cos(2x)}{2}$	$1 + tg^2 x = \sec^2 x$
$\cos x$ $\csc x = \frac{1}{\sin x}$		$ sen^2 x = \frac{1 - \cos(2x)}{2} $	_