Metody Optymalizacji: Stochastyczny spadek wzdłuż gradientu (SGD) II

Wojciech Kotłowski

Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl

pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek 15:00-16:30 Slajdy dostępne pod adresem: http://www.cs.put.poznan.pl/wkotlowski/

09.12.2013

Spis treści

1 Stochastyczny gradient (SGD) – postać ogólna

2 Adaptacja stochastycznego gradientu

3 Przykład

Spis treści

1 Stochastyczny gradient (SGD) – postać ogólna

2 Adaptacja stochastycznego gradientu

3 Przykłac

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

■ *L* jest sumarycznym błędem na zbiorze uczącym.

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

- lacksquare L jest sumarycznym błędem na zbiorze uczącym.
- ℓ_i to błędy na poszczególnych obserwacjach.

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

- *L* jest sumarycznym błędem na zbiorze uczącym.
- ℓ_i to błędy na poszczególnych obserwacjach.
- lacksquare W metodach liniowych, ℓ_i zależy od $m{w}$ poprzez $m{w}^{ op}m{x}_i$:

$$\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = (y_i - v)^2$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = (y_i - v)^2$$

Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = |y_i - v|$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = (y_i - v)^2$$

Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = |y_i - v|$$

Klasyfikacja liniowa – regresja logistyczna:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\log \left(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i) \right)}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = \log \left(1 + e^{-y_i v} \right)$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = (y_i - v)^2$$

■ Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = |y_i - v|$$

Klasyfikacja liniowa – regresja logistyczna:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\log \left(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i) \right)}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = \log \left(1 + e^{-y_i v} \right)$$

Klasyfikacja liniowa – funkcja zawiasowa:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\left(1 - y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i\right)_{+}}_{\ell_i(\boldsymbol{w}) = \ell_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i)} \qquad \ell_i(v) = (1 - y_i v)_{+}$$

Minimalizacja funkcji $L(\boldsymbol{w})$:

Minimalizacja funkcji L(w):

 $oldsymbol{1}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$

Minimalizacja funkcji L(w):

- I Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}$.
- Dla $k = 1, 2, \dots$ aż do zbieżności

Minimalizacja funkcji L(w):

- f Zaczynamy od wybranego rozwiązania startowego, np. $m w_0 = m 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.

Minimalizacja funkcji L(w):

- ${f Z}$ aczynamy od wybranego rozwiązania startowego, np. ${m w}_0={f 0}.$
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \ldots, n\}$.
 - Wyznaczamy gradient funkcji ℓ_i w punkcie w_{k-1} , $\nabla_{\ell_i}(w_{k-1})$.

Minimalizacja funkcji L(w):

- f Zaczynamy od wybranego rozwiązania startowego, np. $m w_0 = m 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \ldots, n\}$.
 - Wyznaczamy gradient funkcji ℓ_i w punkcie w_{k-1} , $\nabla_{\ell_i}(w_{k-1})$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \nabla_{\ell_i}(\boldsymbol{w}_{k-1}),$$

lacktriangledown W metodach liniowych, ℓ_i zależy od $m{w}$ poprzez $m{w}^ op m{x}_i$: $\ell_i(m{w}) = \ell_i(m{w}^ op m{x}_i)$

W metodach liniowych, ℓ_i zależy od w poprzez $w^{\top}x_i$: $\ell_i(w) = \ell_i(w^{\top}x_i)$

• Wyznaczenie gradientu $abla_{\ell_i}(m{w})$ poprzez pochodną wewnętrzną:

$$\frac{\partial \ell_i(\boldsymbol{w})}{\partial w_k} = \frac{\partial \ell_i(\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k}$$

lacktriangle W metodach liniowych, ℓ_i zależy od $m{w}$ poprzez $m{w}^{ op} m{x}_i$: $\ell_i(m{w}) = \ell_i(m{w}^{ op} m{x}_i)$

lacktriangle Wyznaczenie gradientu $abla_{\ell_i}(oldsymbol{w})$ poprzez pochodną wewnętrzną:

$$\begin{split} \frac{\partial \ell_i(\boldsymbol{w})}{\partial w_k} &= \frac{\partial \ell_i(\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \\ &= \frac{\partial \ell_i(v)}{\partial v} \Big|_{v = \boldsymbol{w}^\top \boldsymbol{x}_i} \frac{\partial (\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \end{split}$$

lacktriangle W metodach liniowych, ℓ_i zależy od $m{w}$ poprzez $m{w}^ op m{x}_i$: $\ell_i(m{w}) = \ell_i(m{w}^ op m{x}_i)$

■ Wyznaczenie gradientu $\nabla_{\ell_i}(m{w})$ poprzez pochodną wewnętrzną:

$$\begin{split} \frac{\partial \ell_i(\boldsymbol{w})}{\partial w_k} &= \frac{\partial \ell_i(\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \\ &= \frac{\partial \ell_i(v)}{\partial v} \Big|_{v = \boldsymbol{w}^\top \boldsymbol{x}_i} \frac{\partial (\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \\ &= \frac{\partial \ell_i(v)}{\partial v} \Big|_{v = \boldsymbol{w}^\top \boldsymbol{x}_i} x_{ik}. \end{split}$$

■ W metodach liniowych, ℓ_i zależy od $m{w}$ poprzez $m{w}^{ op} m{x}_i$: $\ell_i(m{w}) = \ell_i(m{w}^{ op} m{x}_i)$

Wyznaczenie gradientu $abla_{\ell_i}(m{w})$ poprzez pochodną wewnętrzną:

$$\begin{split} \frac{\partial \ell_i(\boldsymbol{w})}{\partial w_k} &= \frac{\partial \ell_i(\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \\ &= \frac{\partial \ell_i(v)}{\partial v} \Big|_{v = \boldsymbol{w}^\top \boldsymbol{x}_i} \frac{\partial (\boldsymbol{w}^\top \boldsymbol{x}_i)}{\partial w_k} \\ &= \frac{\partial \ell_i(v)}{\partial v} \Big|_{v = \boldsymbol{w}^\top \boldsymbol{x}_i} x_{ik}. \end{split}$$

■ Jeśli oznaczymy $\ell_i'(\boldsymbol{w}^{\top}\boldsymbol{x}_i) := \frac{\partial \ell_i(v)}{\partial v}\Big|_{v=\boldsymbol{w}^{\top}\boldsymbol{x}_i}$, to gradient możemy zapisać jako:

$$abla_{\ell_i}(\boldsymbol{w}) = \ell_i'(\boldsymbol{w}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i$$

Stochastyczny spadek wzdłuż gradientu

Minimalizacja funkcji $L(\boldsymbol{w})$:

- f Zaczynamy od wybranego rozwiązania startowego, np. $m w_0 = m 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Wyznaczamy $\ell_i'(\boldsymbol{w}_{k-1}^{\top}\boldsymbol{x}_i)$, pochodną funkcji $\ell_i(v)$ w punkcie $v = \boldsymbol{w}_{k-1}^{\top}\boldsymbol{x}_i$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^\top \boldsymbol{x}_i) \boldsymbol{x}_i,$$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^\top \boldsymbol{x}_i) \boldsymbol{x}_i,$$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i,$$

Regresja liniowa – metoda najmniejszych kwadratów $\ell_i(v) = (y_i - v)^2$ $\ell_i'(v) = -2(y_i - v)$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^\top \boldsymbol{x}_i) \boldsymbol{x}_i,$$

- Regresja liniowa metoda najmniejszych kwadratów $\ell_i(v) = (y_i v)^2$ $\ell_i'(v) = -2(y_i v)$
- Regresja liniowa min. wartości bezwzględnych błędów $\ell_i(v) = |y_i v|$ $\ell_i'(v) = -\mathrm{sgn}(y_i v)$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^\top \boldsymbol{x}_i) \boldsymbol{x}_i,$$

- Regresja liniowa metoda najmniejszych kwadratów $\ell_i(v) = (y_i v)^2 \qquad \ell_i'(v) = -2(y_i v)$
- Regresja liniowa min. wartości bezwzględnych błędów $\ell_i(v) = |y_i v|$ $\ell_i'(v) = -\mathrm{sgn}(y_i v)$
- Klasyfikacja liniowa regresja logistyczna:

$$\ell_i(v) = \log(1 + e^{-y_i v})$$
 $\ell'_i(v) = -\frac{y_i}{1 + e^{y_i v}}$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \ell_i'(\boldsymbol{w}_{k-1}^\top \boldsymbol{x}_i) \boldsymbol{x}_i,$$

- Regresja liniowa metoda najmniejszych kwadratów $\ell_i(v) = (y_i v)^2$ $\ell_i'(v) = -2(y_i v)$
- Regresja liniowa min. wartości bezwzględnych błędów $\ell_i(v) = |y_i v|$ $\ell_i'(v) = -\mathrm{sgn}(y_i v)$
- Klasyfikacja liniowa regresja logistyczna:

$$\ell_i(v) = \log(1 + e^{-y_i v})$$
 $\ell'_i(v) = -\frac{y_i}{1 + e^{y_i v}}$

Klasyfikacja liniowa – funkcja zawiasowa:

$$\ell_i(v) = (1 - y_i v)_+$$
 $\ell_i'(v) = \begin{cases} 0 & \text{jeśli} \quad y_i v > 1 \\ -y_i & \text{jeśli} \quad y_i v \leq 1 \end{cases}$

SGD: Błąd kwadratowy

Minimalizacja funkcji L(w):

- f Zaczynamy od wybranego rozwiązania startowego, np. $m w_0 = m 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Modyfikuj wagi:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + 2\alpha_k(y_i - \boldsymbol{w}_{k-1}^{\top}\boldsymbol{x}_i)\boldsymbol{x}_i,$$

SGD: Błąd absolutny (wartość bezwzględna)

Minimalizacja funkcji L(w):

- I Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Modyfikuj wagi:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \operatorname{sgn}(y_i - \boldsymbol{w}_{k-1}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i,$$

SGD: Błąd logistyczny

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Modyfikuj wagi:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \frac{y_i}{1 + e^{y_i \boldsymbol{w}_{k-1}^{\top} \boldsymbol{x}_i}} \boldsymbol{x}_i,$$

SGD: Błąd zawiasowy

Minimalizacja funkcji $L(\boldsymbol{w})$:

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$
- f 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Jeśli $y_i \boldsymbol{w}_{k-1}^{\top} \boldsymbol{x}_i > 1$, nie modyfikujemy wag. W przeciwnym przypadku:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k y_i \boldsymbol{x}_i,$$

SGD: Błąd zawiasowy

Minimalizacja funkcji $L(\boldsymbol{w})$:

- f Zaczynamy od wybranego rozwiązania startowego, np. $m w_0 = m 0$.
- f 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Jeśli $y_i \boldsymbol{w}_{k-1}^{\top} \boldsymbol{x}_i > 1$, nie modyfikujemy wag. W przeciwnym przypadku:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k y_i \boldsymbol{x}_i,$$

gdzie α_k jest długością kroku.

⇒ Perceptron!

Spis treści

1 Stochastyczny gradient (SGD) – postać ogólna

2 Adaptacja stochastycznego gradientu

3 Przykład

■ Teoria mówi, że długość kroku powinna wynosić:

$$\alpha_k = O\left(\frac{1}{\sqrt{k}}\right),\,$$

aby algorytm zbiegł do rozwiązania optymalnego.

■ Teoria mówi, że długość kroku powinna wynosić:

$$\alpha_k = O\left(\frac{1}{\sqrt{k}}\right),\,$$

aby algorytm zbiegł do rozwiązania optymalnego.

■ Stała przy $O(\cdot)$ może zostać wyznaczona teoretycznie z analizy najgorszego przypadku: jeśli optymalne rozwiązanie w^* będzie ograniczone w sensie normy przez stałą W, tj. $\|w^*\| \leq W$, oraz mamy ograniczenie górne na normę wszystkich gradientów, $\|\nabla_{\ell_i}(w)\| \leq G$, to

$$\alpha_k = \frac{W}{G} \frac{1}{\sqrt{k}}.$$

■ Teoria mówi, że długość kroku powinna wynosić:

$$\alpha_k = O\left(\frac{1}{\sqrt{k}}\right),\,$$

aby algorytm zbiegł do rozwiązania optymalnego.

■ Stała przy $O(\cdot)$ może zostać wyznaczona teoretycznie z analizy najgorszego przypadku: jeśli optymalne rozwiązanie w^* będzie ograniczone w sensie normy przez stałą W, tj. $\|w^*\| \leq W$, oraz mamy ograniczenie górne na normę wszystkich gradientów, $\|\nabla_{\ell_i}(w)\| \leq G$, to

$$\alpha_k = \frac{W}{G} \frac{1}{\sqrt{k}}.$$

W praktyce dobiera się stałą sprawdzając jak algorytm zbiega na posiadanych danych.

■ Teoria mówi, że długość kroku powinna wynosić:

$$\alpha_k = O\left(\frac{1}{\sqrt{k}}\right),\,$$

aby algorytm zbiegł do rozwiązania optymalnego.

■ Stała przy $O(\cdot)$ może zostać wyznaczona teoretycznie z analizy najgorszego przypadku: jeśli optymalne rozwiązanie w^* będzie ograniczone w sensie normy przez stałą W, tj. $\|w^*\| \leq W$, oraz mamy ograniczenie górne na normę wszystkich gradientów, $\|\nabla_{\ell_i}(w)\| \leq G$, to

$$\alpha_k = \frac{W}{G} \frac{1}{\sqrt{k}}.$$

- W praktyce dobiera się stałą sprawdzając jak algorytm zbiega na posiadanych danych.
- W praktyce mała i stała szybkość uczenia, $\alpha_k = \mathrm{const}$, działa również bardzo dobrze.

Przykład: samochody

■ Dwie zmienne wejściowe: X_1 – cena (w PLN), X_2 – spalanie (w $l/100{\rm km}$)

- Dwie zmienne wejściowe: X_1 cena (w PLN), X_2 spalanie (w $l/100{\rm km}$)
- $\blacksquare \ X_1$ ma skalę rzędu 10^4-10^5 , X_2 rzędu 10^0-10^1 .

- Dwie zmienne wejściowe: X_1 cena (w PLN), X_2 spalanie (w $l/100{\rm km}$)
- \blacksquare X_1 ma skalę rzędu 10^4-10^5 , X_2 rzędu 10^0-10^1 .
- Krok wzdłuż gradientu $w_1 = w_0 \alpha_1 \ell_i'(w_0^\top x_i) x_i$ wyznaczy każdą z wag w_{1j} proporcjonalnie do x_{ij} .

- Dwie zmienne wejściowe: X_1 cena (w PLN), X_2 spalanie (w $l/100{\rm km}$)
- \blacksquare X_1 ma skalę rzędu 10^4-10^5 , X_2 rzędu 10^0-10^1 .
- Krok wzdłuż gradientu $w_1 = w_0 \alpha_1 \ell_i'(w_0^\top x_i) x_i$ wyznaczy każdą z wag w_{1j} proporcjonalnie do x_{ij} .

- Dwie zmienne wejściowe: X_1 cena (w PLN), X_2 spalanie (w $l/100{\rm km}$)
- \blacksquare X_1 ma skalę rzędu 10^4-10^5 , X_2 rzędu 10^0-10^1 .
- Krok wzdłuż gradientu $w_1 = w_0 \alpha_1 \ell_i'(w_0^\top x_i) x_i$ wyznaczy każdą z wag w_{1j} proporcjonalnie do x_{ij} .
- Czyli waga dla ceny będzie rzędu 10^4-10^5 , a waga dla spalania rzędu 10^0-10^1 .
- Przy kolejnej obserwacji, przemnożenie $\boldsymbol{w}_1^{\top}\boldsymbol{x}_i$ da sumę 2 składników o wielkości 10^8-10^{10} i 10^0-10^2 .

- Dwie zmienne wejściowe: X_1 cena (w PLN), X_2 spalanie (w $l/100{\rm km}$)
- X_1 ma skalę rzędu $10^4 10^5$, X_2 rzędu $10^0 10^1$.
- Krok wzdłuż gradientu $w_1 = w_0 \alpha_1 \ell_i'(w_0^\top x_i) x_i$ wyznaczy każdą z wag w_{1j} proporcjonalnie do x_{ij} .
- Czyli waga dla ceny będzie rzędu 10^4-10^5 , a waga dla spalania rzędu 10^0-10^1 .
- Przy kolejnej obserwacji, przemnożenie $\boldsymbol{w}_1^{\top}\boldsymbol{x}_i$ da sumę 2 składników o wielkości 10^8-10^{10} i 10^0-10^2 .
- Wnioski:
 - Zmienna o większej skali zdominuje zmienną o mniejszej skali,
 - Algorytm może się rozbiec.

W praktyce można znacznie polepszyć zbieżność algorytmu, sprowadzając zmienne wejściowe do tej samej skali.

W praktyce można znacznie polepszyć zbieżność algorytmu, sprowadzając zmienne wejściowe do tej samej skali.

Dwie metody sprowadzania do tej samej skali:

- Normalizacja zmiennych.
- Standaryzacja zmiennych.

Pomysł

Dla każdej zmiennej wejściowej X_j , najmniejszą wartość $x_{j,\min}$ zamień na 0, największą $x_{j,\max}$ na 1, a pozostałe wyznacz proporcjonalnie:

$$x_{ij} \mapsto \frac{x_{ij} - x_{j,\min}}{x_{j,\max} - x_{j,\min}}$$

Pomysł

Dla każdej zmiennej wejściowej X_j , najmniejszą wartość $x_{j,\min}$ zamień na 0, największą $x_{j,\max}$ na 1, a pozostałe wyznacz proporcjonalnie:

$$x_{ij} \mapsto \frac{x_{ij} - x_{j,\min}}{x_{j,\max} - x_{j,\min}}$$

Przykład

Wartości zmiennej: (1, 2, 3, 4, 8, 9, 11).

Pomysł

Dla każdej zmiennej wejściowej X_j , najmniejszą wartość $x_{j,\min}$ zamień na 0, największą $x_{j,\max}$ na 1, a pozostałe wyznacz proporcjonalnie:

$$x_{ij} \mapsto \frac{x_{ij} - x_{j,\min}}{x_{j,\max} - x_{j,\min}}$$

Przykład

Wartości zmiennej: (1, 2, 3, 4, 8, 9, 11).

Nowe wartości: (0, 0.1, 0.2, 0.3, 0.7, 0.8, 1).

Zalety

■ Wszystkie zmienne sprowadzone do wartości w skali od 0 do 1

Zalety

 \blacksquare Wszystkie zmienne sprowadzone do wartości w skali od 0 do 1

Wady

■ Metoda nie odporna na wartości odstające.

Zalety

 \blacksquare Wszystkie zmienne sprowadzone do wartości w skali od 0 do 1

Wady

Metoda nie odporna na wartości odstające.

Przykład

Wartości zmiennej: (0, 1, 2, 3, 100000).

Nowe wartości: (0, 0.00001, 0.00002, 0.00003, 1).

Pomysł

Dla każdej zmiennej wejściowej X_j , wyznacz wartość średnią i odchylenie standardowe

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \quad s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2},$$

a następnie zamień:

$$x_{ij} \mapsto \frac{x_{ij} - \bar{x}_j}{s_j}$$

Pomysł

Dla każdej zmiennej wejściowej X_j , wyznacz wartość średnią i odchylenie standardowe

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \quad s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2},$$

a następnie zamień:

$$x_{ij} \mapsto \frac{x_{ij} - \bar{x}_j}{s_j}$$

Przykład

Wartości zmiennej: (1, 2, 3, 4, 5).

Pomysł

Dla każdej zmiennej wejściowej X_j , wyznacz wartość średnią i odchylenie standardowe

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \quad s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2},$$

a następnie zamień:

$$x_{ij} \mapsto \frac{x_{ij} - \bar{x}_j}{s_j}$$

Przykład

Wartości zmiennej: (1, 2, 3, 4, 5).

Średnia: $\bar{x}=3$

Odchylenie: s = 1.581

Nowe wartości: (-1.265, -0.632, 0, 0.632, 1.265).

Zalety

- Wszystkie zmienne mają ten sam rozrzut (1) i średnią (0)
- Metoda znacznie odporniejsza na wartości odstające

Zalety

- Wszystkie zmienne mają ten sam rozrzut (1) i średnią (0)
- Metoda znacznie odporniejsza na wartości odstające

Wady

■ Problemy mogą się pojawić, gdy wszystkie wartości zmiennej są takie same (zerowe odchylenie standardowe)

Zalety

- Wszystkie zmienne mają ten sam rozrzut (1) i średnią (0)
- Metoda znacznie odporniejsza na wartości odstające

Wady

■ Problemy mogą się pojawić, gdy wszystkie wartości zmiennej są takie same (zerowe odchylenie standardowe)

W ogólności standaryzacja preferowana nad normalizację.

- Algorytm stochastycznego spadku wzdłuż gradientu może się w pewnych specyficznych przypadkach rozbiegać (wektor wag zaczyna niekontrolowanie wzrastać).
- Potrzebna jest wtedy tzw. renormalizacja wag.

- Algorytm stochastycznego spadku wzdłuż gradientu może się w pewnych specyficznych przypadkach rozbiegać (wektor wag zaczyna niekontrolowanie wzrastać).
- Potrzebna jest wtedy tzw. renormalizacja wag.
- Przyjmujemy pewną maksymalną normę wag W (np. W=10 powinno wystarczyć dla znormalizowanych danych).

- Algorytm stochastycznego spadku wzdłuż gradientu może się w pewnych specyficznych przypadkach rozbiegać (wektor wag zaczyna niekontrolowanie wzrastać).
- Potrzebna jest wtedy tzw. renormalizacja wag.
- Przyjmujemy pewną maksymalną normę wag W (np. W=10 powinno wystarczyć dla znormalizowanych danych).
- Jeśli kiedykolwiek $\|w_i\| > W$, to *renormalizujemy wagi* do wartości W:

$$oldsymbol{w}_i := rac{oldsymbol{w}_i}{\|oldsymbol{w}_i\|} W.$$

- Algorytm stochastycznego spadku wzdłuż gradientu może się w pewnych specyficznych przypadkach rozbiegać (wektor wag zaczyna niekontrolowanie wzrastać).
- Potrzebna jest wtedy tzw. renormalizacja wag.
- Przyjmujemy pewną maksymalną normę wag W (np. W=10 powinno wystarczyć dla znormalizowanych danych).
- Jeśli kiedykolwiek $\|w_i\| > W$, to *renormalizujemy wagi* do wartości W:

$$\boldsymbol{w}_i \coloneqq \frac{\boldsymbol{w}_i}{\|\boldsymbol{w}_i\|} W.$$

lacktriangle Jeśli dobrze dobierzemy W, ta procedura gwarantuje szybszą zbieżność, ma też charakter regularyzacji.

Spis treści

1 Stochastyczny gradient (SGD) – postać ogólna

2 Adaptacja stochastycznego gradientu

3 Przykład

Klasyfikacja dokumentów tekstowych

Zbiór danych: Reuters RCV1:

- Zbiór 810 000 dokumentów z Reuters News opublikowanych w latach 1996-1997
- Dla każdego dokumentu, przypisane kategorie tematyczne.

Tworzymy prosty problem binarnej klasyfikacji próbując przewidzieć czy dokument należy do kategorii *CCAT* (*Corporate/Industrial*).

Przykład dokumentu

```
<?xml version="1.0" encoding="iso-8859-1" ?>
<newsitem itemid="2330" id="root" date="1996-08-20" xml:lang="en">
<title>USA: Tylan stock jumps; weighs sale of company.</title>
<headline>Tylan stock jumps; weighs sale of company.</headline>
<dateline>SAN DIEGO</dateline>
<text>
The stock of Tylan General Inc. jumped Tuesday after the maker of
process-management equipment said it is exploring the sale of the
company and added that it has already received some inquiries from
potential buyers.
Tylan was up $2.50 to $12.75 in early trading on the Nasdaq market.
The company said it has set up a committee of directors to oversee
the sale and that Goldman, Sachs & amp; Co. has been retained as its
financial adviser.
</text>
<copyright>(c) Reuters Limited 1996</copyright>
<metadata>
<codes class="bip:countries:1.0">
<code code="USA"> </code>
</codes>
<codes class="bip:industries:1.0">
<code code="T34420"> </code>
</codes>
<codes class="bip:topics:1.0">
<code code="C15"> </code>
<code code="C152"> </code>
<code code="C18"> </code>
<code code="C181"> </code>
<code code="CCAT"> </code>
</codes>
<dc element="dc.publisher" value="Reuters Holdings Plc"/>
<dc element="dc.date.published" value="1996-08-20"/>
<dc element="dc.source" value="Reuters"/>
/ds alamant="ds amantam leastion" walve="CAN DIECO"/>
```

Reprezentacja bag-of-words

Zamiana dokumentów tekstowych na wektory zmiennych wejściowych:

- Każde słowo daje nową zmienną wejściową.
- Wartość zmiennej wejściowej j w dokumencie i jest niezerowa, jeśli słowo j pojawiło się w dokumencie i.
- Dodatkowe ważenie zmiennych (TF-IDF), odrzucanie tzw. stopwords, użycie słownika wyrazów bliskoznacznych, stemmera, lematyzatora, itp. (patrz wykład dr. Dembczyńskiego).

Reprezentacja bag-of-words

Zamiana dokumentów tekstowych na wektory zmiennych wejściowych:

- Każde słowo daje nową zmienną wejściową.
- Wartość zmiennej wejściowej j w dokumencie i jest niezerowa, jeśli słowo j pojawiło się w dokumencie i.
- Dodatkowe ważenie zmiennych (TF-IDF), odrzucanie tzw. stopwords, użycie słownika wyrazów bliskoznacznych, stemmera, lematyzatora, itp. (patrz wykład dr. Dembczyńskiego).

W naszym przypadku otrzymujemy łącznie prawie 50 000 cech wejściowych.

Eksperyment

Użycie dwóch rodzajów klasyfikatorów:

- Regresji logistycznej,
- Minimalizacja błędu 'zawiasowego' (nazywane też linear SVM).

Eksperyment

Użycie dwóch rodzajów klasyfikatorów:

- Regresji logistycznej,
- Minimalizacja błędu 'zawiasowego' (nazywane też linear SVM).

Porównanie różnych metod optymalizacji:

- Standardowa odmiana metody Newtona-Rapshona lub inna, działająca na całym zbiorze danych.
- Stochastyczny gradient.

Eksperyment

Użycie dwóch rodzajów klasyfikatorów:

- Regresji logistycznej,
- Minimalizacja błędu 'zawiasowego' (nazywane też linear SVM).

Porównanie różnych metod optymalizacji:

- Standardowa odmiana metody Newtona-Rapshona lub inna, działająca na całym zbiorze danych.
- Stochastyczny gradient.

Źródło: http://leon.bottou.org/projects/sgd

Wyniki

Błąd 'zawiasowy'

metoda	czas obliczeń	funkcja celu	błąd testowy
SVMLight (standard.)	23 642 sek	0.2275	6.02%
SVMPerf (standard.)	66 sek	0.2278	6.03%
SGD	1.4 sek	0.2275	6.02%

Błąd logistyczny

metoda	czas obliczeń	funkcja celu	błąd testowy
LibLinear (standard.)	30 sek	0.18907	5.68%
SGD	2.3 sek	0.18893	5.66%

Dalsze przykłady – błąd zawiasowy

Zbiór danych	#obserwacji	#cech	Czas LIBSVM	Czas SGD
Reuters	781 000	47 000	2.5 dnia	7sek
Translation	1 000 000	274 000	wiele dni	7sek
SuperTag	950 000	46 000	8h	1sek
Voicetone	579 000	88 000	10h	1sek

Wnioski

- Stochastyczny gradient jest jedną z najszybszych metod optymalizacji w analizie danych.
- Bardzo dobrze się skaluje, nie wymaga ładowania do pamięci całego zbioru danych.
- \blacksquare Wymaga ostrożności przy ustalaniu schematu zmian długości kroku α_k .

Koniec na dzisiaj :)