PIPELINE IMPLEMENTATION OF A PROCESSOR

RISC Processor (MPIS 32)

- 32-bit General Purpose Registers (GPRs), R0 to R31
 - **R0** is constant; cannot be written.
- Special Purpose 32-bit register, **Program Counter (PC)**
- Memory Word size is 32-bits

Instruction Sets:

1. Load and Store

```
LW R2, 124(R8) //R2 = Mem[R8+124]
SW R5, -10(R25) //Mem[R25 - 10] = R5
```

2. Arithmetic and Logic Instructions (Only Register Operands)

```
ADD R1, R2, R3 //R1 = R2 + R3

ADD R1, R2, R0 //R1 = R2 + 0 (Moving)

SUB, AND, OR, MUL, SLT (Set Less Than)

SLT R5, R11, R12 //IF R11 < R12, R5 = 1; else R5 = 0
```

3. Arithmetic and Logic Instructions (Immediate Operand)

4. Branch Instructions

BEQZ R1, Loop //Branch to loop if R1 = 0 BNEQZ R1, Label //Branch to label if R5! = 0

5. JUMP Instruction

J Loop //Branch to Loop unconditionally

6. Miscellaneous Instructions

HLT //Halt execution

<u>Instructions</u>	Op-Code
ADD	000000
SUB	000001
AND	000010
OR	000011
SLT	000100
MUL	000101
HLT	111111

R-Type Instruction Encoding

31 26	25 21	20 16	15 11	10 6	5 0
opcode	rs	rt	rd	0	0

Example

SUB R5, R12, R25					
000001	01100	11001	00101	00000 000000	
SUB	R12	R25	R5	Unused	
= 05992800 (in HEX)					

I-Type Instruction Encoding

31 26	25 21	20 16	15 0
opcode	rs	rt	Immediate Data

Examples

LW	R20, 84(R	9)			
001000	01001	10100	000000001010100		
LW	R9	R20	Offset		
= 21340	= 21340054 (in HEX)				

<u>Instructions</u>	Op-Code
LW	001000
SW	001001
ADDI	001010
SUBI	001011
SLTI	001100
BNEQZ	001101
BEQZ	001110

BEQZ	R25, Label		
001110	11001	00000	уууууууууууууу
LW	R25	unused	Offset
= 3b20Y	YYY (in HEX)		

J-Type Instruction Encoding

31 26	25 0
opcode	Immediate Data

<u>Instruction</u>	Op-Code
J	010000

//J-type Instructions are not Implemented Here

MPIS 32 Instruction Cycle

I. IF : Instruction Fetch

II. ID : Instruction Decode / Resistor Fetch

III. EX : Execution/Effective Address Calculation

IV. MEM : Memory Access/Branch Completion

V. WB : Register Write-back

ADD R2, R5, R10

ADDI R2, R5, 110

IF	IR	← Mem [PC];
	NPC	← PC+1;
ID	А	← Reg[rs];
טו	В	← Reg[rt];
EX	ALUOut	← A + B;
MEM	PC	← NPC ;
WB	Reg[rd]	← ALUOut ;

IF	IR	← Mem [PC];	
	NPC	← PC + 1;	
ID	А	← Reg[rs];	
ID	lmm	\leftarrow (IR ₁₅) ¹⁶ ## IR ₁₅₀	
EX	ALUOut	← A + Imm;	
MEM	PC	← NPC ;	
WB	Reg[rt]	← ALUOut ;	

LW R2, 200(R6)

SW R2, R5, 110

IE	IR	← Mem [PC] ;	IF	IR	← Mem [PC];
IF	NPC	← PC + 1;	IF	NPC	← PC + 1;
10	А	← Reg[rs];	A	А	← Reg[rs];
ID	lmm	\leftarrow (IR ₁₅) ¹⁶ ## IR ₁₅₀	ID	В	← Reg[rt];
EX	ALUOut	← A + Imm;		lmm	\leftarrow (IR ₁₅) ¹⁶ ## IR ₁₅₀
	PC	← NPC ;	EX	ALUOut	← A + Imm ;
MEM	LMD	← Mem[ALUOut];	N A E N A	PC	← NPC ;
WB	Reg[rt]	← LMD;	MEM	Mem[ALUOut]	← B;
'			WB		

BEQZ R3, Label

ır	IR	← Mem [PC];
IF	NPC	← PC + 1;
ID	А	← Reg[rs];
טו	lmm	\leftarrow (IR ₁₅) ¹⁶ ## IR ₁₅₀
EX	ALUOut	← NPC + Imm;
	cond	← (A = = 0);
MEM	PC	← NPC;
	If(cond) PC	← ALUOut ;
WB		

Data Path (MIPS32 Non-Pipelined Design)

Data Path (MIPS32 Pipelined Design)

IF Stage

ID Stage

EX Stage

MEM Stage

WB Stage

Data Path (MIPS32 Pipelined Design)

