Problem 1: Truth Tables

1.)

p	q	r	$(p \land q)$	$\neg r$	$(p \land q) \lor \neg r$
True	True	True	True	False	True
True	True	False	True	True	True
True	False	True	False	False	False
True	False	False	False	True	True
False	True	True	False	False	False
False	True	False	False	True	True
False	False	True	False	False	False
False	False	False	False	True	True

2.)

p	q	r	S	$\neg (p \lor q)$	$(r \oplus s)$	$\neg (p \lor q) \land (r \oplus s)$
Т	T	Т	Т	F	F	F
Т	Т	Т	F	F	Т	F
Т	T	F	T	F	Т	F
Т	T	F	F	F	F	F
Т	F	Т	T	F	F	F
Т	F	Т	F	F	Т	F
Т	F	F	T	F	Т	F
Т	F	F	F	F	F	F
F	T	T	T	F	F	F
F	T	T	F	F	Т	F
F	T	F	T	F	Т	F
F	T	F	F	F	F	F
F	F	T	T	Т	F	F
F	F	T	F	Т	Т	Т
F	F	F	Т	Т	Т	Т
F	F	F	F	Т	F	F

3.)

q	r	S	p	$(q \oplus r)$	$(q \oplus r) \wedge s$	$[(q \oplus r) \land s] \to p$
Т	T	T	T	F	F	Т
Т	T	T	F	F	F	Т
Т	Т	F	Т	F	F	Т
Т	Т	F	F	F	F	Т
Т	F	T	T	Т	Т	Т
Т	F	T	F	Т	Т	F
Т	F	F	T	Т	F	Т
Т	F	F	F	Т	F	T
F	T	T	T	Т	Т	Т
F	T	T	F	T	Т	F
F	T	F	T	Т	F	T
F	Т	F	F	Т	F	Т

F	F	Т	Т	F	F	T
F	F	Т	F	F	F	Т
F	F	F	Т	F	F	Т
F	F	F	F	F	F	Т

Problem 2: Boolean Algebraic Laws

1.)
$$[(p \rightarrow q) \lor (p \rightarrow r)] \leftrightarrow [p \rightarrow (q \lor r)]$$

 $[(\neg p \lor q) \lor (p \to r)]$ Implication

 $[(\neg p \lor q) \lor (\neg p \lor r)]$ Implication

 $[\neg p \lor (q \lor r)]$ Distributivity

 $[p \rightarrow (q \lor r)]$ Implication

2.)
$$\neg [\neg (p \land q) \land (p \lor q)] \leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)]$$

 $[\neg\neg(p \land q) \lor \neg(p \lor q)]$ De Morgan's

 $[\neg\neg(p \land q) \lor (\neg p \land \neg q)]$ De Morgan's

 $[(p \land q) \lor (\neg p \land \neg q)]$ Double Negation/Complement

 $[m \lor (\neg p \land \neg q)] \qquad m = (p \land q)$

 $[(m \lor \neg p) \land (m \lor \neg q)]$ Distributivity

 $[(\neg p \lor m) \land (\neg q \lor m)]$ Commutativity

 $[(\neg p \lor (p \land q)) \land (\neg q \lor (p \land q))] \qquad (p \land q) = m$

 $[(\neg p \lor p) \land (\neg p \lor q) \land (\neg q \lor (p \land q))]$ Distributivity

 $[(\neg p \lor p) \land (\neg p \lor q) \land (\neg q \lor p) \land (\neg q \lor q)]$ Distributivity

 $[T \land (\neg p \lor q) \land (\neg q \lor p) \land (\neg q \lor q)]$ Negation\Inverse

 $[T \land (\neg p \lor q) \land (\neg q \lor p) \land T]$ Negation\Inverse

 $[T \land (p \rightarrow q) \land (\neg q \lor p) \land T]$ Implication

 $[T \land (p \to q) \land (q \to p) \land T]$ Implication

 $[(p \to q) \land (q \to p) \land T]$ Identity

 $[(p \to q) \land (q \to p)]$ Identity

Problem 3: Disproof

$$[(p \land q) \to r] \leftrightarrow [(p \to r) \land (q \to r)]$$

$$[(pT \land qF) \rightarrow rT] \leftrightarrow [(pT \rightarrow rF) \land (qF \rightarrow rT)] \qquad (p = T) (q = F), (r = T)$$

$$(p = T) (q = F), (r = T)$$

$$[F \rightarrow rT] \leftrightarrow [(pT \rightarrow rF) \land (qF \rightarrow rT)]$$

$$(pT \wedge qF) = F$$

$$[T] \leftrightarrow [(pT \rightarrow rF) \land (qF \rightarrow rT)]$$

$$[F \rightarrow rT] = T$$

$$[T] \leftrightarrow [(T \land (qF \rightarrow rT))]$$

$$(pT \rightarrow rF) = T$$

$$[T] \leftrightarrow [T \land F]$$

$$(qF \rightarrow rT) = F$$

$$T \leftrightarrow F$$

$$[T \wedge F]$$

$$T \leftrightarrow F = False$$

Problem 4: Inference – Verbal

Premise 1.)
$$\neg r \lor \neg f \rightarrow s \land d$$

Premise 2.)
$$s \rightarrow t$$

Premise 3.)
$$\neg t$$

Conclude r

 $\neg t$

$$(s \rightarrow t) \land \neg t$$

 $\neg s$

$$\neg r \lor \neg f \to (F \land d)$$

$$\neg r \lor \neg f \to F$$

$$\neg (r \land f) \rightarrow F$$

 $(r \wedge f)$

r

Premise 3

Premise 3 + Premise 2

Modus Tollens

Premise $1 + \neg s$

Domination

De Morgan's

Contradiction

Conjunctive Simplification

Problem 5: Inference - Symbolic

Premise 1.)
$$(p \land t) \rightarrow (r \lor s)$$

Premise 2.)
$$q \rightarrow (u \land t)$$

Premise 3.)
$$u \rightarrow p$$

Premise 4.)
$$\neg s$$

Conclude that $q \rightarrow r$

 $\neg s$

$$(p \land t) \rightarrow (r \lor s) \land \neg s$$

$$(p \land t) \rightarrow (s \lor r) \land \neg s$$

$$(p \wedge t) \rightarrow r$$

$$\neg (p \wedge t) \vee r$$

$$(\neg p \lor \neg t) \lor r$$

$$\neg p \lor (\neg t \lor r)$$

$$p \to (\neg t \vee r)$$

$$(u \rightarrow p) \land p \rightarrow (\neg t \lor r)$$

$$u \rightarrow (\neg t \lor r)$$

$$q \rightarrow (u \land t)$$

$$\neg q \lor (u \land t)$$

$$(\neg q \lor u) \land (\neg q \lor t)$$

$$(q \rightarrow u) \land (\neg q \lor t)$$

$$(q \rightarrow u) \land (q \rightarrow t)$$

$$q \rightarrow u$$

$$(q \rightarrow u) \land (u \rightarrow (\neg t \lor r)) \rightarrow q \rightarrow (\neg t \lor r)$$

$$q \to (\neg t \vee r)$$

$$q \rightarrow (r \lor \neg t)$$

$$q \rightarrow r$$

Premise 4

Premise 1+ Premise 4

Commutativity

Disjunctive Syllogism

Implication

De Morgan's

Associativity

Implication

Premise 3

Syllogism

Premise 2

Implication

Distributivity

Implication

Implication

Conjunctive Simplification

 $u \rightarrow (\neg t \lor r)$

Syllogism

Commutativity

Identity