Interstellar Extinction Towards OB Stars in the W3 Giant Molecular Cloud

Jessica Campbell Supervised by Prof. Peter Martin

Dust in the interstellar medium

causes dimming and reddening of background sources

Mie Theory of scattered light

can explain this with scattering and absorption off dust1

^{*} not actually spherical

The Interstellar Extinction Curve

describes the amount of scattering and absorption with \(\lambda \)

The CCM Model

characterizes extinction with a single parameter RVA

Intrinsic Colours of OB Stars ~ 0;

can directly measure the line-of-sight extinction curve*

^{*} caveat: IR excesses, emission/absorption lines etc. can bias extinction measurements

What is the empirical relationship between Av and t for de-reddening astrophysical observations in the molecular ISM via the W3 giant molecular cloud?

between extinction (A_V) and dust optical depth (τ)

l

Expanding upon the OB stellar population for improving A_V/T

STAR FORMATION IN W3 AND W4: DISCOVERY OF 135 POSSIBLY EMBEDDED NEAR-INFRARED STARS Debra Meloy Elmegreen The Mount Wilson and Las Campanas Observatories, Carnegie Institution of Washington

Received 1980 February 19; accepted 1980 March 26

Pan-STARRS

2MASS

2MASS (J-H) vs (H-K) colour-colour diagram

Wavenumber $[1/\mu m]$

Wavenumber $[1/\mu m]$

References

- 1. Mie, G. 1908, Annalen der Physik, 330, 377
- 2. Hollenbach, D.J., Werner, M.W., & Salpeter, E.E. 1971, ApJ, 163, 165
- Kiminki, M.M., Kim, J.S., Bagley, M.B., Sherry, W.H., & Rieke, G.H. 2015, ApJ, 813, 42
- 4. Draine, B. 2003, Annual Review of Astronomy & Astrophysics, 41, 241
- 5. Cardelli, J.A., Clayton, G.C., & Mathis, J.S. 1989, ApJ, 345, 245
- 6. Bohlin, R.C., Savage, B.D., & Drake, J.F. 1978, ApJ, 224, 132