The Completeness of SL Tree Proofs

LOGIC I Benjamin Brast-McKie October 12, 2023

The Proof

Completeness: Every unsatisfiable root has a closed tree: $\Gamma \vDash \bot \Rightarrow \Gamma \vdash \bot$.

Contrapositive: If there is no closed tree with root Γ , then Γ is satisfiable.

Lemma 6: For any tree X with root Γ , there is a complete tree X' with root Γ .

- Assume there is no closed tree with root Γ .
- Roots are trees, and so Γ has a complete tree X.
- So X is a complete open tree with a complete open branch \mathcal{B} .

Note: This result is purely syntactic.

Lemma 7: Every complete open branch in an SL tree is satisfiable.

- So \mathcal{B} is satisfiable, and so Γ is satisfiable.
- By contraposition, if $\Gamma \vDash \bot$, then $\Gamma \vdash \bot$.

Resolution

Let the *resolution* $Res(\varphi)$ provide an upper bound on the number of times that φ and its descendants could be resolved in an SL tree.

- 1. $Res(\varphi) = 0$ if φ is a literal.
- 2. For any SL sentences φ and ψ :
 - $\operatorname{Res}(\neg\neg\varphi) = \operatorname{Res}(\varphi) + 1$.
 - $\operatorname{Res}(\varphi \wedge \psi) = \operatorname{Res}(\varphi) + \operatorname{Res}(\psi) + 1$.
 - $\operatorname{Res}(\neg(\varphi \wedge \psi)) = \operatorname{Res}(\neg\varphi) + \operatorname{Res}(\neg\psi) + 1.$
 - $\operatorname{Res}(\varphi \vee \psi) = \operatorname{Res}(\varphi) + \operatorname{Res}(\psi) + 1$.
 - $\operatorname{Res}(\neg(\varphi \lor \psi)) = \operatorname{Res}(\neg\varphi) + \operatorname{Res}(\neg\psi) + 1.$
 - $\operatorname{Res}(\varphi \supset \psi) = \operatorname{Res}(\neg \varphi) + \operatorname{Res}(\psi) + 1$.
 - $\operatorname{Res}(\neg(\varphi\supset\psi))=\operatorname{Res}(\varphi)+\operatorname{Res}(\neg\psi)+1.$
 - $\operatorname{Res}(\varphi \equiv \psi) = \operatorname{Res}(\varphi) + \operatorname{Res}(\psi) + \operatorname{Res}(\neg \varphi) + \operatorname{Res}(\neg \psi) + 1.$
 - $\operatorname{Res}(\neg(\varphi \equiv \psi)) = \operatorname{Res}(\varphi) + \operatorname{Res}(\neg\psi) + \operatorname{Res}(\neg\varphi) + \operatorname{Res}(\psi) + 1.$

Resolution Set: Let [X] be the set of SL sentences that are resolvable in a branch of X.

Tree Resolution: Let $\operatorname{Res}(X) = \sum_{\varphi \in [X]} \operatorname{Res}(\varphi)$ be an upper bound on resolutions in X.

Supporting Lemmas

Lemma 4: Every SL tree *X* has a finite number of branches.

Lemma 5: For any SL tree *X* with root Γ and $\varphi \in [X]$, there is an SL tree *Y* with root Γ where Res(*Y*) < Res(*X*).

- Let *X* be an SL tree with root Γ where $\varphi \in [X]$.
- By *Lemma 4*, φ is resolvable in finitely many branches of *X*.
- So there is a tree Y with root Γ that resolves φ throughout X.
- So $\varphi \notin [Y]$ but the children of φ could be in [Y].

Case 1: Assume $\varphi = \neg \neg \psi$ where $\psi \in [Y]$ and $\psi \notin [X]$.

• So $Res(\psi) < Res(\varphi)$, and so Res(Y) < Res(X).

Case n: The other cases are similar.

Lemma 6

Proof: For any Γ -tree X, there is a complete Γ -tree X'.

Base: Assume *X* is a Γ-tree where Res(X) = 0.

• So every [X] is empty, so X is complete.

Hypothesis: Every Γ-tree X where $Res(X) \le n$ has a complete Γ-tree X'.

Induction: Let X be a Γ -tree where Res(X) = n + 1.

- Since Res(X) > 0, there is some $\varphi \in [X]$.
- By Lemma 5, there is some Γ -tree Y where Res(Y) < Res(X).
- By hypothesis, there is a complete Γ -tree Y'.

Conclusion: By strong induction, QED.

Finite Lemma

Proof: Every branch \mathcal{B} in an SL tree contains finitely many sentences.

Base: Assume \mathcal{B} belongs to an SL tree X where Length(X) = 0, so finite.

Hypothesis: Assume that every branch \mathcal{B} of an SL tree X of Length(X) = n has a finite number of sentences.

Induction: Assume that \mathcal{B}' belongs to an SL tree X' of Length(X) = n + 1.

- Let X be a tree where X' is the result of resolving a sentence in X.
- So Length(X) = n.

- By hypothesis, every branch \mathcal{B} of X has a finite number of branches.
- \mathcal{B}' includes at most two more sentences than any branch \mathcal{B} in X.
- Thus \mathcal{B}' has a finite number of sentences.

Lemma 7

Proof: Every complete open branch in an SL tree is satisfiable.

Assume: Let \mathcal{B} be a complete open branch in an SL tree.

- Let $\mathcal{I}(\varphi) = 1$ *iff* φ is a sentence letter in \mathcal{B} .
- By the *Finite Lemma*, we may assign sentences in \mathcal{B} a position number where the leaf is 0.

Base: Assume φ has position 0.

• Since \mathcal{B} is complete and open, φ is a literal.

Case 1: If φ is a sentence letter, $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{I}(\varphi) = 1$.

Case 2: Assume $\varphi = \neg \psi$ where ψ is a sentence letter.

- Since \mathcal{B} is open, ψ does not occur in \mathcal{B} .
- So $V_{\mathcal{I}}(\psi) = \mathcal{I}(\psi) = 0$, and so $V_{\mathcal{I}}(\varphi) = V_{\mathcal{I}}(\neg \psi) = 1$.

Hypothesis: $V_{\mathcal{I}}(\varphi) = 1$ for every φ with position $k \leq n$ in \mathcal{B} .

Induction: Assume φ has position n + 1 in \mathcal{B} .

Case 1: φ is a literal, so $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ as above.

Case 2: $\varphi = \neg \neg \psi$.

- Since \mathcal{B} is complete, ψ occurs in \mathcal{B} in position $k \leq n$.
- By hypothesis, $V_{\mathcal{I}}(\psi) = 1$, and so $V_{\mathcal{I}}(\varphi) = V_{\mathcal{I}}(\neg \neg \psi) = 1$.

Case 3: $\varphi = \psi \wedge \chi$.

Case 4: $\varphi = \neg(\psi \land \chi)$.

- Since \mathcal{B} is complete, $\neg \psi$, $\neg \chi$ occur in \mathcal{B} in positions $j, k \leq n$.
- By hypothesis, $\mathcal{V}_{\mathcal{I}}(\neg \psi) = 1$ or $\mathcal{V}_{\mathcal{I}}(\neg \chi) = 1$.
- So $V_{\mathcal{I}}(\psi) = 0$ or $V_{\mathcal{I}}(\chi) = 0$, and so $V_{\mathcal{I}}(\psi \wedge \chi) = 0$.
- Thus $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\neg(\psi \land \chi)) = 1$.

Case $n: \varphi = \neg(\psi \equiv \chi).$

- Since \mathcal{B} is complete, ψ and $\neg \chi$ occur in \mathcal{B} in positions $j, k \leq n$, or else $\neg \psi$ and χ occur in \mathcal{B} in positions $j, k \leq n$.
- By hypothesis, $V_{\mathcal{I}}(\psi) = V_{\mathcal{I}}(\neg \chi) = 1$ or $V_{\mathcal{I}}(\neg \psi) = V_{\mathcal{I}}(\chi) = 1$.
- In either case, $V_{\mathcal{I}}(\psi) \neq V_{\mathcal{I}}(\chi)$, and so $V_{\mathcal{I}}(\psi \equiv \chi) = 0$.
- Thus $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\neg(\psi \equiv \chi)) = 1$.