Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 2: Introduction to Cryptography" Date and time: 2020/08/08 15:05 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others

NOTES

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	11		
DES & AES	9		
Fields and Modular Arithmetics	22		
Hash Functions, Digital Signature and Cryptographic Protocols	14		
Public Key Cryptography	26		
Quantum Cryptography	8		
Sum	90		
Grade: .			
Date of the review of the exam: .			

Question 1: Basics [11 Points]

cryptograp						
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	<u>.</u>	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	Σ.	
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	
5 Points]	Describe an	example of	a social engin	eering attack	ζ.	

O	uestion	2:	DES	&	AES
v	ucsuon	╼•		u	

[9 Points]

Question 3: Fields and Modular Arithmetics

[22 Points]

[6 Points]	Name three fi	eids.			
[8 Points]	How is the m	ultiplication ma	thematically de	efined in a fin	ite field $GF[2^n]$:

(c)	[8 Points]	Compute ϕ	$p(n) = \mathbb{Z}_n^* $ f	for $n \in \{2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$, 10, 100 \}.$		

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [14 Points]

(a)	[10	Points]	Describe the birthday attack against a cryptographic hash function.

b)	[4 Points]	What is a certification authority?

0	uestion	5:	Public	Kev	Cryptogi	aphy
~					~ <i>,</i>	

[26 Points]

(b)	[8	Points]	(Cons	sider	the	elli	ptic	curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the points $P=(-1,\sqrt{2}), Q=(0,0)$ compute P+Q.

to the Plus	Given an ellipt s-operator.	ic curve. wh	at is the mivers	se cicinciii oi	$L = (x_p, y_p)$	wimiespe

	4.		^	$\boldsymbol{\alpha}$	4	1
U	uestion	6:	Quantum	Crvb	tograi	phy
•						

[8 Points]