Week 3 Assignment

Name: Kesav Adithya Venkidusamy Course: DSC630 - Predictive Analytics

Instructor: Fadi Alsaleem

In this assignment, you will be using data on the Los Angeles Dodgers Major League Baseball (MLB) team located here: dodgers.csv. Use this data to make a recommendation to management on how to improve attendance. Tell a story with your analysis and clearly explain the steps you take to arrive at your conclusion. This is an open-ended question, and there is no one right answer. You are welcome to do additional research and/or use domain knowledge to assist your analysis, but clearly state any assumptions you make.

You can use R or Python to complete this assignment. Submit your code and output to the submission link. Make sure to add comments to all your code and to document your steps, process, and analysis.

1. Importing all the libraries required for this exercise

```
## Importing libraries required for this assignment
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import sklearn.metrics as metrics
from sklearn.linear_model import LinearRegression
import warnings
warnings.filterwarnings("ignore")
```

2. Load the Dataset into dataframe

```
In [5]:
## Load the House data into a dataframe
bb_df = pd.read_csv('dodgers-2022.csv')
bb_df.head(5)
```

Out[5]:		month	day	attend	day_of_week	opponent	temp	skies	day_night	сар	shirt	fireworks	bobb
	0	APR	10	56000	Tuesday	Pirates	67	Clear	Day	NO	NO	NO	
	1	APR	11	29729	Wednesday	Pirates	58	Cloudy	Night	NO	NO	NO	
	2	APR	12	28328	Thursday	Pirates	57	Cloudy	Night	NO	NO	NO	
	3	APR	13	31601	Friday	Padres	54	Cloudy	Night	NO	NO	YES	
	4	APR	14	46549	Saturday	Padres	57	Cloudy	Night	NO	NO	NO	
	4												•

```
## Printing number of rows and columns
In [6]:
         bb df.shape
Out[6]: (81, 12)
In [7]:
         ## Printing the dtype for each of the column
         bb_df.dtypes
Out[7]: month
                        object
                         int64
        day
                         int64
        attend
        day of week
                        object
        opponent
                        object
                         int64
        temp
                        object
        skies
        day_night
                        object
        cap
                        object
                        object
        shirt
                        object
        fireworks
        bobblehead
                        object
        dtype: object
In [8]:
         ## Looking at summary information about your data (total, mean, min, max, freq, unique,
         bb df.describe()
```

Out[8]: day attend temp **count** 81.000000 81.000000 81.000000 16.135802 41040.074074 73.148148 mean std 9.605666 8297.539460 8.317318 min 1.000000 24312.000000 54.000000 25% 8.000000 34493.000000 67.000000 15.000000 40284.000000 73.000000 **75**% 25.000000 46588.000000 79.000000

Visualizations

max 31.000000

```
In [9]:
    ### Histogram and normal probability plot
    plt.figure(figsize=(10,6))
    sns.distplot(bb_df['attend'], fit=norm);
    fig = plt.figure()
```

56000.000000 95.000000

<Figure size 432x288 with 0 Axes>

```
In [10]:
## Printing skewness and kurtosis
print("Skewness: %f" % bb_df['attend'].skew())
print("Kurtosis: %f" % bb_df['attend'].kurt())
```

Skewness: 0.137615 Kurtosis: -0.753389

Observation

Skewness:

- 1. Skewness is a measure of the asymmetry of a distribution. A distribution is asymmetrical when its left and right side are not mirror images. A distribution can have right (or positive), left (or negative), or zero skewness.
- 2. The value of skewness is 0.13716 which lies between -0.5 and 0.5 for the above plot. So, the distribution is approximately symmetric.

Kurtosis

- 1. Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution.
- 2. The value for Kurtosus is -0.753389 and is less than 3. So, the dataset has lighter tails than a normal distribution (less in the tails)

Correlation

Numerical Variables

```
In [11]:
    # To find the correlations between the variables/features, a correlation matrix of the
    # A correlation matrix is a tabular data representing the 'correlations' between pairs
    correlation_mat = bb_df.corr()
```

```
# Plotting heatmap using the correlation_mat created in the previous step
plt.figure(figsize=(8,6))
sns.heatmap(correlation_mat, annot = True)
plt.title('Pearson Correlation Matrix for Numerical Features', fontsize=12)
plt.show()
```


Observation

- 1. The above correlation matrix only shows the relationship between numerical or non-categorical variables present in the data set
- 2. Based on the above result, we see the attendance is postively correlated to the variable temperature. So, the increase in temperature results in increase in head count. This makes sense as people is interest to go out to see the match when temperature is good.
- 3. The day of the month is also positively correlated to the temperature. The people is somewhat less interested to go to the match during initial days of the month. However, they are interested to go during mid and end of the months.

Categorical Variables

```
In [12]: ## Option to display all the columns present in the dataframe
pd.set_option('display.max_columns', None)

In [13]: # To support the Spearman Correlation Matrix, create dummy variables for the object typ
catCols = ['month', 'day_of_week', 'opponent','skies','day_night', 'cap', 'shirt', 'fir
bb_cat_df = pd.get_dummies(bb_df, columns=catCols)
bb_cat_df.head(5)
Out[13]: day attend temp month_APR month_AUG month_JUL month_JUN month_MAY month_OCT month_IDIA.
```

	day	attend	temp	month_APR	month_AUG	month_JUL	month_JUN	month_MAY	month_OCT	n
0	10	56000	67	1	0	0	0	0	0	
1	11	29729	58	1	0	0	0	0	0	
2	12	28328	57	1	0	0	0	0	0	
3	13	31601	54	1	0	0	0	0	0	
4	14	46549	57	1	0	0	0	0	0	
										•

Out[15]:

In [15]:
Create a Spearman Correlation Matrix: Relationship between the categorical and non-ca
bb_cat_df.corr('spearman').style.background_gradient(cmap="Blues")

	day	attend	temp	month_APR	month_AUG	month_JUL	month_J
day	1.000000	0.063626	-0.123692	0.104875	-0.028569	-0.079586	0.108
attend	0.063626	1.000000	0.090628	-0.055739	0.101270	0.096614	0.314
temp	-0.123692	0.090628	1.000000	-0.495820	0.296848	0.012656	-0.132
month_APR	0.104875	-0.055739	-0.495820	1.000000	-0.198811	-0.173913	-0.147
month_AUG	-0.028569	0.101270	0.296848	-0.198811	1.000000	-0.198811	-0.168
month_JUL	-0.079586	0.096614	0.012656	-0.173913	-0.198811	1.000000	-0.147
month_JUN	0.108461	0.314192	-0.132964	-0.147442	-0.168550	-0.147442	1.000
month_MAY	0.153172	-0.223536	-0.337159	-0.222911	-0.254824	-0.222911	-0.188

	day	attend	temp	month_APR	month_AUG	month_JUL	month_J
month_OCT	-0.293820	-0.109043	0.268880	-0.081786	-0.093495	-0.081786	-0.069
month_SEP	-0.113057	-0.109991	0.527833	-0.173913	-0.198811	-0.173913	-0.147
day_of_week_Friday	0.134612	-0.030209	-0.167878	0.007013	0.051309	-0.087664	0.059
day_of_week_Monday	-0.119007	-0.325514	-0.024568	-0.076087	-0.019881	0.119565	-0.036
day_of_week_Saturday	0.083503	0.128028	-0.044672	0.007013	-0.035275	-0.087664	0.059
day_of_week_Sunday	0.035273	0.051787	0.237768	0.007013	-0.035275	0.007013	-0.047
day_of_week_Thursday	0.172376	-0.008776	0.014286	0.037438	0.009782	-0.106966	0.072
day_of_week_Tuesday	-0.090701	0.333736	-0.020895	0.007013	-0.035275	0.101690	-0.047
day_of_week_Wednesday	-0.165867	-0.167959	0.010423	0.021739	0.069584	0.021739	-0.036
opponent_Angels	-0.106335	0.204106	-0.184855	-0.081786	-0.093495	-0.081786	0.554
opponent_Astros	0.179090	-0.156575	-0.226868	-0.081786	-0.093495	-0.081786	-0.069
opponent_Braves	0.141313	-0.167758	-0.278683	0.470270	-0.093495	-0.081786	-0.069
opponent_Brewers	0.319518	-0.134038	-0.059812	-0.095050	-0.108657	-0.095050	-0.080
opponent_Cardinals	0.038556	0.015034	0.181659	-0.128262	-0.146625	-0.128262	-0.108
opponent_Cubs	-0.237854	0.109043	0.082625	-0.081786	0.411377	-0.081786	-0.069
opponent_Giants	-0.216080	-0.086529	0.196922	-0.147442	0.134840	-0.147442	-0.125
opponent_Marlins	0.159502	0.002796	0.032210	-0.081786	0.411377	-0.081786	-0.069
opponent_Mets	0.130490	0.248580	0.076901	-0.095050	-0.108657	0.065347	0.463
opponent_Nationals	0.225262	0.204106	-0.079824	0.470270	-0.093495	-0.081786	-0.069
opponent_Padres	-0.188335	0.038644	-0.010099	0.184302	-0.168550	0.184302	-0.125
opponent_Phillies	0.053167	-0.011184	-0.025208	-0.081786	-0.093495	0.470270	-0.069
opponent_Pirates	-0.131519	-0.082481	-0.273081	0.470270	-0.093495	-0.081786	-0.069
opponent_Reds	-0.264438	-0.030756	-0.092428	-0.081786	-0.093495	0.470270	-0.069
opponent_Rockies	-0.021860	-0.082328	0.161577	-0.147442	0.134840	-0.147442	-0.125
opponent_Snakes	0.052969	-0.089049	0.167468	-0.147442	0.134840	0.073721	-0.125
opponent_White Sox	0.029382	0.139799	-0.102230	-0.081786	-0.093495	-0.081786	0.554
skies_Clear	0.054252	0.144553	0.259024	-0.343251	0.188903	-0.097204	0.103
skies_Cloudy	-0.054252	-0.144553	-0.259024	0.343251	-0.188903	0.097204	-0.103
day_night_Day	0.052377	0.031944	0.249189	0.069584	0.018182	-0.019881	0.033
day_night_Night	-0.052377	-0.031944	-0.249189	-0.069584	-0.018182	0.019881	-0.033
cap_NO	0.194109	0.051039	-0.066466	0.066354	-0.128951	-0.157591	0.056
cap_YES	-0.194109	-0.051039	0.066466	-0.066354	0.128951	0.157591	-0.056
shirt_NO	0.037777	-0.139799	-0.011203	-0.102233	0.093495	0.081786	-0.138

	day	attend	temp	month_APR	month_AUG	month_JUL	month_J
shirt_YES	-0.037777	0.139799	0.011203	0.102233	-0.093495	-0.081786	0.138
fireworks_NO	-0.091546	-0.015361	0.178363	0.006808	-0.034245	0.006808	-0.046
fireworks_YES	0.091546	0.015361	-0.178363	-0.006808	0.034245	-0.006808	0.046
bobblehead_NO	-0.141919	-0.544860	-0.074884	0.063872	-0.089337	-0.139015	-0.089
bobblehead_YES	0.141919	0.544860	0.074884	-0.063872	0.089337	0.139015	0.089
◀							•

In [16]:

Check out all the variables correlationg with attend
Pearson correlation is used

df_correlations = bb_cat_df.corr().stack().reset_index().sort_values(0, ascending=False

df_correlations.loc[df_correlations['level_0'] == 'attend'].sort_values(0, ascending=False)

Out[16]:

	level_0	level_1	0
47	attend	attend	1.000000
91	attend	bobblehead_YES	0.581895
61	attend	day_of_week_Tuesday	0.355316
52	attend	month_JUN	0.295853
71	attend	opponent_Mets	0.236213
63	attend	opponent_Angels	0.207796
72	attend	opponent_Nationals	0.195667
80	attend	skies_Clear	0.150963
51	attend	month_JUL	0.143837
87	attend	shirt_YES	0.133269
79	attend	opponent_White Sox	0.127046
58	attend	day_of_week_Saturday	0.107788
48	attend	temp	0.098951
50	attend	month_AUG	0.098944
68	attend	opponent_Cubs	0.075310
59	attend	day_of_week_Sunday	0.065153
84	attend	cap_NO	0.055002
73	attend	opponent_Padres	0.045111
82	attend	day_night_Day	0.043544
46	attend	day	0.027093
74	attend	opponent_Phillies	0.020380
89	attend	fireworks_YES	0.002094

	level_0	level_1	0
88	attend	fireworks_NO	-0.002094
67	attend	opponent_Cardinals	-0.006967
70	attend	opponent_Marlins	-0.008912
76	attend	opponent_Reds	-0.009301
60	attend	day_of_week_Thursday	-0.019679
83	attend	day_night_Night	-0.043544
56	attend	day_of_week_Friday	-0.048948
85	attend	cap_YES	-0.055002
77	attend	opponent_Rockies	-0.060404
75	attend	opponent_Pirates	-0.071849
49	attend	month_APR	-0.073237
78	attend	opponent_Snakes	-0.073943
69	attend	opponent_Giants	-0.074763
54	attend	month_OCT	-0.103132
55	attend	month_SEP	-0.105443
86	attend	shirt_NO	-0.133269
64	attend	opponent_Astros	-0.134533
81	attend	skies_Cloudy	-0.150963
66	attend	opponent_Brewers	-0.157030
62	attend	day_of_week_Wednesday	-0.174723
65	attend	opponent_Braves	-0.209171
53	attend	month_MAY	-0.239471
57	attend	day_of_week_Monday	-0.307198
90	attend	bobblehead_NO	-0.581895

```
In [17]:
## Repeating the above step for spearman correlation
df_correlations = bb_cat_df.corr('spearman').stack().reset_index().sort_values(0, ascen
df_correlations.loc[df_correlations['level_0'] == 'attend'].sort_values(0, ascending=Fa
```

Out[17]:		level_0	level_1	0
	47	attend	attend	1.000000
	91	attend	bobblehead_YES	0.544860
	61	attend	day_of_week_Tuesday	0.333736
	52	attend	month_JUN	0.314192
	71	attend	opponent_Mets	0.248580

	level_0	level_1	0
72	attend	opponent_Nationals	0.204106
63	attend	opponent_Angels	0.204106
80	attend	skies_Clear	0.144553
79	attend	opponent_White Sox	0.139799
87	attend	shirt_YES	0.139799
58	attend	day_of_week_Saturday	0.128028
68	attend	opponent_Cubs	0.109043
50	attend	month_AUG	0.101270
51	attend	month_JUL	0.096614
48	attend	temp	0.090628
46	attend	day	0.063626
59	attend	day_of_week_Sunday	0.051787
84	attend	cap_NO	0.051039
73	attend	opponent_Padres	0.038644
82	attend	day_night_Day	0.031944
89	attend	fireworks_YES	0.015361
67	attend	opponent_Cardinals	0.015034
70	attend	opponent_Marlins	0.002796
60	attend	day_of_week_Thursday	-0.008776
74	attend	opponent_Phillies	-0.011184
88	attend	fireworks_NO	-0.015361
56	attend	day_of_week_Friday	-0.030209
76	attend	opponent_Reds	-0.030756
83	attend	day_night_Night	-0.031944
85	attend	cap_YES	-0.051039
49	attend	month_APR	-0.055739
77	attend	opponent_Rockies	-0.082328
75	attend	opponent_Pirates	-0.082481
69	attend	opponent_Giants	-0.086529
78	attend	opponent_Snakes	-0.089049
54	attend	month_OCT	-0.109043
55	attend	month_SEP	-0.109991
66	attend	opponent_Brewers	-0.134038

	level_0	level_1	0
86	attend	shirt_NO	-0.139799
81	attend	skies_Cloudy	-0.144553
64	attend	opponent_Astros	-0.156575
65	attend	opponent_Braves	-0.167758
62	attend	day_of_week_Wednesday	-0.167959
53	attend	month_MAY	-0.223536
57	attend	day_of_week_Monday	-0.325514
90	attend	bobblehead_NO	-0.544860

Difference between Pearson and Spearman Correlation

Pearson correlation evaluates the linear relationship between two continuous variables. Spearman correlation: Spearman correlation evaluates the monotonic relationship. The Spearman correlation coefficient is based on the ranked values for each variable rather than the raw data.

Observation

- 1. A positive correlation is a relationship between two variables that move in the same direction where as Negative correlation describes when two variables tend to move in opposite size and direction from one another
- 2. Based on Pearson and Spearman correlation results above, we see Attendance is highly postively correlated to: the months of June, July & August, Tuesday & Saturday games, games against the Angels, Cubs, Mets, Nationals & White Sox, games on clear sky days, and game days when free shirts and bobblehead are given out.
- 3. We also see Attedance is highly negatively correlated to: the months of April, May, September & October, Wednesday & Monday games, games against the Astros, Braves, Bruins, Pirates, Rockies & Snakes, games on cloudy days, and game days when no free shirts and no bobblehead are given out.

Linear Regression

0

10

67

```
In [43]: #Setting the value for X and Y
df = bb_cat_df.copy()
y = df['attend']
x = df.drop('attend',1)

In [45]: ## Showing the values for X
x.head()

Out[45]: day temp month_APR month_AUG month_JUL month_JUN month_MAY month_OCT month_SEP
```

0

0

0

0

0

0

```
day temp month_APR month_AUG month_JUL month_JUN month_MAY month_OCT month_SEP
                                  1
                                              0
                                                         0
                                                                     0
                                                                                  0
                                                                                              0
                                                                                                         0
          1
              11
                     58
          2
              12
                     57
                                              0
                                                         0
                                                                     0
                                                                                  0
                                                                                              0
                                                                                                         0
          3
              13
                                              0
                                                         0
                                                                     0
                                                                                  0
                                                                                              0
                                                                                                         0
                     54
                                              0
                                                         0
                                                                     0
                                                                                  0
                                                                                              0
                                                                                                         0
              14
                     57
                                  1
In [46]:
           ## Showing the value for y
           y.head()
Out[46]:
                56000
          0
          1
                29729
          2
               28328
          3
               31601
          4
               46549
          Name: attend, dtype: int64
In [47]:
           ## Splitting the dataframe for train and test
           x train, x test, y train, y test = train test split(x, y, test size = 0.3, random state
In [48]:
           ## Multiple Linear Regression
           mlr = LinearRegression()
           mlr.fit(x train, y train)
Out[48]:
          LinearRegression()
In [49]:
           #Intercept and Coefficient
           print("Intercept: ", mlr.intercept_)
           print("Coefficients:")
           list(zip(x, mlr.coef_))
          Intercept: 48020.11016548949
          Coefficients:
          [('day', 434.35500034172725),
Out[49]:
             'temp', -53.28702163131573),
           ('month_APR', -5162.524705009923),
           ('month_AUG', 3252.9679797869258),
           ('month_JUL', -3729.480132314525),
           ('month_JUN', 1766.7257588288967),
           ('month_MAY', -3893.9432535064734),
('month_OCT', 8168.6910535974175),
('month_SEP', -402.4367013821127),
           ('day_of_week_Friday', -13352.694193805713),
           ('day_of_week_Monday', -3978.0441943458077),
           ('day_of_week_Saturday', 5313.480535971895),
           ('day_of_week_Sunday', -554.366898942626),
           ('day_of_week_Thursday', 2490.2665931914357),
           ('day_of_week_Tuesday', 10399.836747377092),
           ('day_of_week_Wednesday', -318.4785894464325),
           ('opponent_Angels', 4135.503696219863),
           ('opponent_Astros', -3366.40592605868),
```

```
('opponent_Braves', -2421.77296295778),
           ('opponent_Brewers', -6672.283749237914),
           ('opponent_Cardinals', -2123.060283675282),
           ('opponent_Cubs', 7205.26440922086),
           ('opponent_Giants', -4713.739008370042),
           ('opponent_Marlins', -10059.067173755366),
           ('opponent Mets', -2415.750052827833),
           ('opponent_Nationals', 3409.813331805795),
           ('opponent_Padres', 7695.221367732398),
           ('opponent_Phillies', 4448.5225682102155),
           ('opponent_Pirates', 2382.7133774318963),
           ('opponent_Reds', 8256.53173182325),
           ('opponent_Rockies', -581.9926495306655),
           ('opponent_Snakes', -5226.47079146744),
           ('opponent_White Sox', 46.97211543675667),
           ('skies_Clear', 3254.075366371817),
           ('skies_Cloudy', -3254.075366371842), ('day_night_Day', 3642.870280917164),
            'day_night_Night', -3642.870280917142),
           ('cap_NO', 4624.466183277176),
           ('cap_YES', -4624.466183277177),
           ('shirt NO', -5253.564759752592),
           ('shirt YES', 5253.564759752595),
           ('fireworks_NO', -7190.400407900272),
           ('fireworks_YES', 7190.400407900244),
('bobblehead_NO', -2838.5185796062606),
           ('bobblehead YES', 2838.5185796062624)]
In [50]:
           #Prediction of test set
           y_pred_mlr= mlr.predict(x_test)
           #Predicted values
           print("Prediction for test set: {}".format(y pred mlr))
          Prediction for test set: [61112.14490535 50688.62495422 44441.81566532 49289.03661167
           42609.46252332 35508.12736722 36392.42139352 34985.92659206
           31947.84512894 45389.80584226 62754.08093432 50082.63692479
           37093.74548468 30701.01392035 32388.56614008 38632.25077381
           25695.74880189 45075.814302
                                          57797.75681378 23857.82578383
           30606.84261022 34062.68411605 47054.54832527 35442.43761246
           37055.79617209]
In [52]:
           #Actual value and the predicted value
           mlr_diff = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred_mlr})
           mlr diff.head()
Out[52]:
              Actual value Predicted value
          11
                   48753
                            61112.144905
```

```
77 35607 50688.624954
25 33306 44441.815665
5 38359 49289.036612
```

62 40284 42609.462523

```
In [53]: ## EValuating the model

meanAbErr = metrics.mean_absolute_error(y_test, y_pred_mlr)
meanSqErr = metrics.mean_squared_error(y_test, y_pred_mlr)
```

```
rootMeanSqErr = np.sqrt(metrics.mean_squared_error(y_test, y_pred_mlr))
print('R squared: {:.2f}'.format(mlr.score(x,y)*100))
print('Mean Absolute Error:', meanAbErr)
print('Mean Square Error:', meanSqErr)
print('Root Mean Square Error:', rootMeanSqErr)
```

R squared: 32.04

Mean Absolute Error: 9637.865409141375 Mean Square Error: 128425071.68335885 Root Mean Square Error: 11332.478620467758

Observation

- 1. R Square is the coefficient of determination. The value of R Square is 32.04, which indicates that 32.04% of the data fit the regression model.
- 2. Mean Absolute Error is the absolute difference between the actual or true values and the predicted values. The lower the value, the better is the model's performance. The mean Absolute Error is 9637.865 which is pretty bad as 0 indicates good value.
- 3. Mean Square Error is calculated by taking the average of the square of the difference between the original and predicted values of the data. The lower the value, the better is the model's performance. The mean square error obtained for this particular model is 128425071.636, which is pretty bad.
- 4. Root Mean Square Error is the standard deviation of the errors which occur when a prediction is made on a dataset. This is the same as Mean Squared Error, but the root of the value is considered while determining the accuracy of the model. The lower the value, the better is the model's performance. The root mean square error obtained for this particular model is 11332.47, which is pretty good.

Bascially, I ran the model on the raw data without removing outliers or performing any transformations. That may be the reason for the poor scores. Another reason for the poor score is due to volume of the data which is very less. I also noticed that coefficients are positive for the features those are positively correlated with Attendance and negative for negatively correlated with Attendance.

Recommendations

To increase attendance at LA Dodgers games, Dodgers management should specifically take the following recommendations into consideration:

- 1. Games played in the summer months and on clear sky days tend to be positively correlated with attendance, however management does not have control over these seasonality & weather factors. So the only recommendation is to schedule more games (if possible) in the summer months and on weeks with historically clear sky days in Los Angeles. And, schedule less games in the spring or fall seasons and historically cloudy weeks in Los Angeles.
- 2. Similarly, Games scheduled on Tuesday and Saturday tend to be positively correlated with attendance, while Wednesday & Monday games tend tend to be negatively correlated with attendance. Therefore, if the Dodgers management could schedule more games on Tuesdays & Saturdays, this could potentially increase attendance in the season.

- 3. Games played against the Angels, Cubs, Mets, Nationals & White Sox tend to be postively correlated with attendance. If it is possible to schedule more games against these teams (and less with Astros, Braves, Bruins, Pirates, Rockies & Snakes), that would have a greater chance of increasing Dodgers games attendance in the MLB season.
- 4. And finally, games where free t-shirts and bobbleheads are given out tend to be postively correlated with attendance, while games where no free t-shirts and bobbleheads are negatively correlated. Dodgers management should plan to give out more free t-shirts and Bobble heads if they want an increase the attendance for the season.

Tn	Г	٦	٠
ΤΠ	L	_	۰