Polar Questions

- 1. A particle moves in a plane so that its position at any time $\theta, 0 \le \theta \le 8$, is given by the polar equation $r(\theta) = 5(1 + \cos \theta)$. When does the particle's distance from the origin change from decreasing to increasing?
 - A) $\theta = 0$ only
 - B) $\theta = \pi$ only
 - C) $\theta = 2\pi$ only
 - D) $\theta = 0$ and $\theta = \pi$
 - E) $\theta = \pi$ and $\theta = 2\pi$
- 2. The area of the region enclosed by the polar curve $r = \cos 2\theta$ for $0 \le \theta \le \frac{\pi}{2}$ is
 - A) $\frac{\pi}{2}$
 - B) $\bar{\pi}$

 - C) $\frac{\pi}{8}$ D) $\frac{\pi}{4}$ E) 1
- 3. The area of one leaf of the rose $r = \sin 3\theta$ is

 - A) $\frac{\pi}{12}$ B) $\frac{\pi}{6}$ C) $\frac{\pi}{4}$ D) $\frac{\pi}{3}$ E) $\frac{\pi}{2}$
- 4. The area outside r = 1 and inside $r = 1 + \sin \theta$ is
 - A) $2 + \pi$

 - B) $2 + \frac{\pi}{8}$ C) $2 + \frac{\pi}{4}$ D) $2 \frac{\pi}{4}$ E) $2 \frac{\pi}{2}$
- 5. The total area of the region enclosed by the polar graph of $r = \cos 3\theta$ is

 - A) $\frac{\pi}{12}$ B) $\frac{\pi}{6}$ C) $\frac{\pi}{4}$ D) $\frac{\pi}{3}$
- 6. The area of the region enclosed by the polar curve $r = \sin \theta$ for $0 \le \theta \le \pi$ equals
 - A) 1
 - B) $\frac{\pi}{2}$
 - $C) \frac{2}{4}$

- D) $\frac{\pi}{8}$ E) π
- 7. Which of the following gives the area of the region enclosed by the graph of the polar curve $r = 1 + \cos \theta$?

 - A) $\int_0^{\pi} (1 + \cos^2 \theta) d\theta$ B) $\int_0^{\pi} (1 + \cos \theta)^2 d\theta$ C) $\int_0^{2\pi} (1 + \cos \theta) d\theta$ D) $\int_0^{2\pi} (1 + \cos \theta)^2 d\theta$ E) $\frac{1}{2} \int_0^{2\pi} (1 + \cos^2 \theta) d\theta$
- 8. The area of the region enclosed by the polar curve $r = 2(\cos \theta + \sin \theta)$ is
 - A) 1
 - B) 2
 - C) π
 - D) 2π
 - E) 4π
- 9. If the function $r = f(\theta)$ is continuous and nonnegative for $0 \le \alpha \le \theta \le \theta$ $\beta \leq 2\pi$, then the area enclosed by the polar curve $r = f(\theta)$ and the lines $\theta = \alpha$ and $\theta = \beta$ is given by

 - A) $\frac{1}{2} \int_{\alpha}^{\beta} f(\theta^{2}) d\theta$ B) $\frac{1}{2} \int_{\alpha}^{\beta} f(\theta) d\theta$ C) $\frac{1}{2} \int_{\alpha}^{\beta} \theta f(\theta^{2})$ D) $\frac{1}{2} \int_{\alpha}^{\beta} \theta f(\theta) d\theta$ E) $\frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^{2} d\theta$
- 10. Which of the following integrals gives the total area of the region shared by both polar curves $r = 2\cos\theta$ and $r = 2\sin\theta$
 - A) $2\int_{0}^{\frac{\pi}{4}}\sin^{2}\theta d\theta$ A) $4\int_{0}^{\frac{\pi}{4}}\sin^{2}\theta d\theta$ A) $2\int_{0}^{\frac{\pi}{2}}\sin^{2}\theta d\theta$ A) $4\int_{0}^{\frac{\pi}{4}}\cos^{2}\theta d\theta$ A) $2\int_{0}^{\frac{\pi}{4}}\left(\cos^{2}\theta-\sin^{2}\theta\right)d\theta$