บทที่ 8 เวกเตอร์(Vector)

<u>ปริมาณสเกลาร์และปริมาณเวกเตอร์</u>

ปริมาณสเกลาร์	ปริมาณเวกเตอร์
(Scalar quantity)	(Vector quantity)
คือ ปริมาณที่ มีเฉพาะขนาด แต ่	คือ ปริมาณที่ มีทั้งขนาด และ
<u>ไม่มีทิศทาง</u> เช่น มวล, ความ	<u>ทิศทาง</u> เช่น ระยะขจัด, แรง,
ร้อน, ความยาว, เวลา, อุณหภูมิ	ความเร็ว, ความเร่ง

ปริมาณเวกเตอร์หรือเรียกสั้นๆว่า**เวกเตอร์** เขียนแทนได้ด้วย<u>ส่วนของ</u> <u>เส้นตรงที่มีทิศทาง</u> (directed line segment) โดยที่

หางลูกศรแทนจุดเริ่มต้น (initial point)
หัวลูกศรแทนจุดปลาย (terminal point)
ความยาวของลูกศรแทนขนาดของเวกเตอร์
ทิศทางของลูกศรแทนทิศทางของเวคเตอร์
เวกเตอร์ที่มีจุดเริ่มต้นที่ O และจุดปลายที่ Pเขียนแทนด้วยสัญลักษณ์

ขนาด (magnitude หรือ length หรือ norm) ของเวกเตอร์เขียนแทน ด้วยสัญลักษณ์

<u>คุณสมบัติของเวคเตอร์</u>

1. เวกเตอร์ $\mathbf{A} = \mathbf{B}$ ก็ต่อเมื่อ เวกเตอร์ทั้งสองมี**ขนาด**เท่ากัน และมี **ทิศทาง**ไปทางเดียวกัน

2. เวกเตอร์ที่มี**ขนาด**เท่ากับ ${f A}$ แต่มี**ทิศทางตรงข้าม** จะเขียนแทนด้วย $-{f A}$ เรียกเวกเตอร์ลบ ${f A}$ หรือลบเวกเตอร์ ${f A}$ หรือนิเสธของ ${f A}$

3. ${\bf C}$ จะเป็นผลบวกของเวกเตอร์ ${\bf A}$ และ ${\bf B}$ ที่มีจุดเริ่มต้นที่จุดเริ่มต้น ของเวกเตอร์ ${\bf A}$ และมีจุดปลายที่จุดปลายของเวกเตอร์ ${\bf B}$ ภายหลัง จากที่วางเวกเตอร์ ${\bf B}$ โดยให้จุดเริ่มต้นของ ${\bf B}$ ทับกับจุดปลายของ

A

หรือใช้กฎของสี่เหลี่ยมด้านขนาน (parallelgram law) ที่มี ${f A}$ และ ${f B}$ เป็นด้านประชิด, เส้นทแยงมุมของสี่เหลี่ยมด้านขนานคือ ${f C}$

หมายเหตุ ถ้ามีหลายเวกเตอร์ วิธีแรกจะได้ผลลัพธ์เร็วกว่าวิธีที่ 2

4. $\mathbf{A} - \mathbf{B}$ คือผลต่างของเวกเตอร์ \mathbf{A} และ \mathbf{B} ซึ่งเมื่อบวกกับ \mathbf{B} แล้ว จะได้ \mathbf{A}

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

ถ้า $\mathbf{A} = \mathbf{B}$ แล้ว เวกเตอร์ผลลัพธ์จะเป็นเวกเตอร์ที่มีขนาดเป็นศูนย์ และมีทิศทางไม่แน่นอน ซึ่งเรียกว่า **เวกเตอร์ศูนย์** (zero vector หรือ null vector) เขียนแทนด้วยสัญลักษณ์ $\vec{\mathbf{0}}$ หรือ $\mathbf{0}$

- 5. ผลคูณของเวกเตอร์ ${f A}$ กับสเกลาร์ ${m m}$ จะได้ผลลัพธ์เป็นเวกเตอร์ ${m m}{f A}$ ที่ขนานกับ ${f A}$ และมีขนาดเป็น ${m m}$ เท่าของขนาดของ ${f A}$
 - ullet ถ้า m > 0 แสดงว่า $m {f A}$ มีทิศทางเดียวกับ ${f A}$
 - ullet ถ้า $m{<}0$ แสดงว่า $m{f A}$ มีทิศตรงข้ามกับ ${f A}$
 - ถ้า m=0 แสดงว่า $m\mathbf{A} = \mathbf{0}$

<u>คุณสมบัติทางพีชคณิตของเวกเตอร์</u>

ล้า ${f A}$, ${f B}$ และ ${f C}$ เป็นเวกเตอร์ใดๆในมิติเดียวกัน และ m, n เป็นส เกลาร์ใดๆ แล้ว

1.
$$A + B = B + A$$

(Commutative)

2.
$$(\mathbf{A}+\mathbf{B})+\mathbf{C} = \mathbf{A}+(\mathbf{B}+\mathbf{C})$$
 (Associative)

3.
$$A+0=0+A=A$$

4.
$$m\mathbf{A} = \mathbf{A}m$$

5.
$$m(n\mathbf{A}) = (mn)\mathbf{A}$$

6.
$$(m+n)\mathbf{A} = m\mathbf{A} + n\mathbf{A}$$

7.
$$m(\mathbf{A} + \mathbf{B}) = m\mathbf{A} + m\mathbf{B}$$

คุณสมบัติของ norm ของเวกเตอร์

1.
$$\|\mathbf{A}\| > 0$$
 และ $\|\mathbf{A}\| = 0$ ก็ต่อเมื่อ $\mathbf{A} = \mathbf{0}$

2.
$$||A|| = ||-A||$$

3.
$$||m\mathbf{A}|| = |m| ||\mathbf{A}||, m$$
 เป็นสเกลาร์ใดๆ

4.
$$\|\mathbf{A} - \mathbf{B}\| = \|\mathbf{B} - \mathbf{A}\|$$

5.
$$\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$$

เอกสารบระกอบการสอนวิชา MTH 102matics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

เวกเตอร์หนึ่งหน่วย(Unit Vector)

ถ้า ${f A}$ เป็นเวกเตอร์ซึ่ง $\|{f A}\|=1$ แล้วจะเรียก ${f A}$ ว่า **เวกเตอร์หนึ่ง** หน่วย(unit vector)

และถ้า ${f B}$ เป็นเวกเตอร์ใดๆ ซึ่งไม่ใช่เวกเตอร์ศูนย์(zero vector) แล้วเวกเตอร์หนึ่งหน่วยในทิศทางเดียวกับ ${f B}$ คือ ${f u}_{f B}=rac{{f B}}{||{f B}||}$

หมายเหตุ
$$\mathbf{u_B} = \frac{\mathbf{B}}{\|\mathbf{B}\|}$$
 เป็น *unit vector* ทิศทางเดียวกับ \mathbf{B} และ $\mathbf{u_B} = -\frac{\mathbf{B}}{\|\mathbf{B}\|}$ เป็น *unit vector* ทิศตรงข้ามกับ \mathbf{B}

<u> การหา unit vector</u> :

เนื่องจาก $\mathbf{u}_{\mathbf{B}}$ เป็น $unit\ vector\ ในทิศทางเดียวกับ\ <math>\mathbf{B}$ ดังนั้น

$$\|\mathbf{u}_{\mathbf{B}}\|=1$$
 และ $\mathbf{u}_{\mathbf{B}}=lpha\mathbf{B}$ สำหรับบางค่า $lpha>0$ $\therefore 1=\|\mathbf{u}_{\mathbf{B}}\|=\|lpha\mathbf{B}\|=|lpha|\,\|\mathbf{B}\|=lpha\|\mathbf{B}\|$ จะได้ว่า $lpha=rac{1}{\|\mathbf{B}\|}$ นั่นคือ $\mathbf{u}_{\mathbf{B}}=lpha\mathbf{B}=rac{\mathbf{B}}{\|\mathbf{B}\|}$

เวกเตอร์ในระบบพิกัดฉาก

ถ้า a,b และ c เป็นจำนวนจริงใดๆ แล้วเวกเตอร์ \mathbf{A} ที่มีจุดเริ่มต้นที่ จุดกำเนิด (0,0,0) และจุดสิ้นสุด ที่ (a,b,c) สามารถเขียนแทนได้ ในรูปส่วนประกอบ(component form) ดังนี้

$$\mathbf{A} = \langle a, b, c \rangle$$

กำหนดให้ $\mathbf{i}=\langle 1,0,0\rangle$, $\mathbf{j}=\langle 0,1,0\rangle$, $\mathbf{k}=\langle 0,0,1\rangle$ เป็น unit vector ในทิศทาง ox, oy และ oz ตามลำดับ

เรียกเวกเตอร์หนึ่งหน่วย \mathbf{i} , \mathbf{j} , \mathbf{k} นี้ว่า **เวกเตอร์ฐาน(basis vector)** ทุกๆเวคเตอร์ \mathbf{A} ในระบบพิกัดฉาก สามารถเขียนได้ในรูปผลบวกเชิง เส้น (linear combination) ของเวคเตอร์หนึ่งหน่วย \mathbf{i} , \mathbf{j} , \mathbf{k} ได้ดังนี้ $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$

โดยที่ A_1,A_2,A_3 เป็น components ของ ${\bf A}$ ในทิศทาง x,y และ z ตามลำดับ

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

ถ้า $P_1(x_1,y_1,z_1)$ และ $P_2(x_2,y_2,z_2)$ เป็นจุดในระบบพิกัดฉาก แล้วเวกเตอร์ที่กำหนดโดย $\overline{P_1P_2}$ จะอยู่ในรูป

$$(x_2-x_1)\mathbf{i}+(y_2-y_1)\mathbf{j}+(z_2-z_1)\mathbf{k}$$

<u>คุณสมบัติของเวกเตอร์ในระบบพิกัดฉาก</u>

ถ้า
$$\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$$
 และ $\mathbf{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$ แล้วจะได้ว่า

1.
$$\mathbf{A} = \mathbf{B}$$
 ก็ต่อเมื่อ $A_1 = B_1$, $A_2 = B_2$ และ $A_3 = B_3$

2.
$$\mathbf{A} \pm \mathbf{B} = (A_1 \pm B_1)\mathbf{i} + (A_2 \pm B_2)\mathbf{j} + (A_3 \pm B_3)\mathbf{k}$$

3.
$$m\mathbf{A} = mA_1\mathbf{i} + mA_2\mathbf{j} + mA_3\mathbf{k}$$
 เมื่อ m เป็นสเกลาร์

4.
$$\|\mathbf{A}\| = \sqrt{A_1^2 + A_2^2 + A_3^2}$$

ตัวอย่าง จงหาส่วนประกอบของเวคเตอร์ ${f A}$ เมื่อเวคเตอร์ ${f A}$ มีขนาด เท่ากับ 15.3 และมีทิศทางเดียวกันกับส่วนของเส้นตรง \overline{BC} ถ้า ${\cal B}$ และ ${\cal C}$ มีโคออร์ดิเนตอยู่ที่ $(1,\,2,\,-3)$ และ $(-1,\,0,\,3)$

	8-8
เอกสารประกอบการสอนวิชา MTH 102 Mathematics II	ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

เวกเตอร์ตำแหน่งและเวกเตอร์ขจัด

พิจารณาการเคลื่อนที่ของอนุภาคไปตามเส้นโค้ง

- 1. **เวกเตอร์ตำแหน่ง**(position vector) ของอนุภาคคือ เวกเตอร์ที่มี จุดเริ่มต้นที่จุดกำเนิด (0,0,0) และมีจุดสิ้นสุด (x,y,z) ณ ตำแหน่งที่อนุภาคอยู่ เขียนแทนได้ด้วย ${\bf r}=x{f i}+y{f j}+z{f k}$
- 2. **เวกเตอร์ขจัด**(displacement vector) ถ้าอนุภาคมีการเคลื่อนที่จาก ตำแหน่งเริ่มต้น (x_1,y_1,z_1) ไปยังตำแหน่งสุดท้าย (x_2,y_2,z_2) แล้วเวกเตอร์ขจัดของอนุภาคนี้คือ

$$(x_2-x_1)\mathbf{i}+(y_2-y_1)\mathbf{j}+(z_2-z_1)\mathbf{k}$$

หมายเหตุ ถ้าเวกเตอร์ตำแหน่งเริ่มต้น คือ $\mathbf{r}_1 = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$ และเวกเตอร์ตำแหน่งสุดท้าย คือ $\mathbf{r}_2 = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$ แล้วเวกเตอร์ขจัด คือ $\mathbf{r}_2 - \mathbf{r}_1$

<u>ตัวอย่าง</u> กำหนดให้จุด P(0,2,4) และ Q(-3,1,5) จงหา

- ก) เวกเตอร์ตำแหน่งของ P
- ข) เวกเตอร์ขจัดจาก P ไปยัง Q
- ค) ระยะขจัดระหว่าง P กับ Q
- ง) เวกเตอร์ขนาดเท่ากับ 10 ที่ขนานกับ \overline{PQ}

วิธีทำ

<u>ผลคูณระหว่างเวกเตอร์</u>

The Scalar Product (ผลคูณเชิงสเกลาร์)
 ผลคูณเชิงสเกลาร์ (scalar product) ของ 2 เวกเตอร์ A, B นิยาม
 โดย

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

เมื่อ heta เป็นมุมที่น้อยที่สุดระหว่าง ${f A}$ กับ ${f B}$ $(0{\le}{ heta}{\le}\pi)$

<u>หมายเหตุ</u>

- ผลคูณเชิงสเกลาร์ อาจเรียกว่า dot product หรือ inner product
- ผลคูณเชิงสเกลาร์ระหว่าง 2 เวกเตอร์ใดๆ มีค่าเป็นสเกลาร์ มิใช่ เวกเตอร์

ตัวอย่าง พิจารณาผลคูณเชิงสเกลาร์ของ ${f u}$ และ ${f v}$ ต่อไปนี้

<u>ตัวอย่าง</u> พิจารณาผลคูณเชิงสเกลาร์ของเวกเตอร์ต่อไปนี้

$$\mathbf{i} \cdot \mathbf{i} = 1$$
 $\mathbf{j} \cdot \mathbf{j} = 1$ $\mathbf{k} \cdot \mathbf{k} = 1$ $\mathbf{i} \cdot \mathbf{j} = 0$ $\mathbf{j} \cdot \mathbf{k} = 0$ $\mathbf{i} \cdot \mathbf{k} = 0$

<u>คุณสมบัติเบื้องต้นของผลคูณเชิงสเกลาร์</u>

1.
$$\mathbf{B} \cdot \mathbf{A} = \|\mathbf{B}\| \|\mathbf{A}\| \cos \theta = \mathbf{A} \cdot \mathbf{B}$$

$$OP'' + P'Q = OP'' + P''Q'$$

นั่นคือ $\mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} + \mathbf{C})$

3.
$$(\mathbf{A}+\mathbf{B})\cdot(\mathbf{C}+\mathbf{D})=\mathbf{A}\cdot\mathbf{C}+\mathbf{A}\cdot\mathbf{D}+\mathbf{B}\cdot\mathbf{C}+\mathbf{B}\cdot\mathbf{D}$$

 $(\mathbf{A}+\mathbf{B}+\ldots)\cdot(\mathbf{P}+\mathbf{Q}+\ldots)=\mathbf{A}\cdot\mathbf{P}+\mathbf{A}\cdot\mathbf{Q}+\ldots+\mathbf{B}\cdot\mathbf{P}+\mathbf{B}\cdot\mathbf{Q}+\ldots$

4. ถ้า ${f A}$ และ ${f B}$ ตั้งฉากซึ่งกันและกัน แล้ว

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \frac{\pi}{2} = 0$$

นั่นคือ ถ้า $\mathbf{A} \cdot \mathbf{B} = 0$ และ \mathbf{A} , \mathbf{B} ไม่ใช่ zero vector แล้ว \mathbf{A} และ \mathbf{B} ต้องตั้งฉากซึ่งกันและกัน

 $\mathbf{5}$. ถ้า \mathbf{A} และ \mathbf{B} ขนานกันแล้ว

$$\mathbf{A} \cdot \mathbf{B} = \begin{cases} ||\mathbf{A}|| ||\mathbf{B}|| \text{ เมื่อ } \mathbf{A} \text{ และ } \mathbf{B} \text{ มีทิศเดียวกัน} \\ -||\mathbf{A}|| ||\mathbf{B}|| \text{ เมื่อ } \mathbf{A} \text{ และ } \mathbf{B} \text{ มีทิศตรงข้ามกัน} \end{cases}$$

และถ้า
$$\mathbf{B} \! = \! \mathbf{A}$$
 แล้ว $\mathbf{A} \! \cdot \! \mathbf{A} \! = \! \left\| \mathbf{A} \right\|^2$

6.
$$\mathbf{A} \cdot (m\mathbf{B}) = (m\mathbf{A}) \cdot \mathbf{B} = m(\mathbf{A} \cdot \mathbf{B})$$
 เมื่อ m เป็น scalar ใดๆ

7.
$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$

 $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{i} = \mathbf{k} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = 0$ เพราะว่า \mathbf{i} , \mathbf{j} , \mathbf{k} ตั้งได้ ฉากซึ่งกันและกัน

ในกรณีที่ไม่ทราบมุมระหว่างเวกเตอร์ ค่าผลคูณเชิงสเกลาร์ของสองเวกเตอร์ ใดๆที่ไม่ใช่เวกเตอร์ศูนย์ $\mathbf{A}=\left\langle A_1,A_2,A_3 \right
angle$ และ $\mathbf{B}=\left\langle B_1,B_2,B_3 \right
angle$ หาได้จาก $\mathbf{A}\cdot\mathbf{B}=A_1B_1+A_2B_2+A_3B_3$

ตัวอย่าง เวกเตอร์ $\mathbf{u} = 10\mathbf{i} - 2\mathbf{j} - 7\mathbf{k}$ และ $\mathbf{v} = -4\mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$ เป็นเวกเตอร์ที่ตั้งฉากกันหรือไม่ **วิธีทำ**

ตัวอย่าง จงหาค่าของ c ที่ทำให้ $\mathbf{a} = 6\mathbf{i} + (c+3)\mathbf{j} - \mathbf{k}$ ตั้งฉากกับ $\mathbf{b} = 5\mathbf{i} - 2\mathbf{j} + c\mathbf{k}$ <u>วิธีทำ</u>

<u>มุมระหว่างเวคเตอร์</u>

ถ้า $\mathbf{A} \neq \mathbf{0}$, $\mathbf{B} \neq \mathbf{0}$ และ θ เป็นมุมระหว่าง \mathbf{A} กับ \mathbf{B} แล้วจะได้ว่า

$$\theta = \cos^{-1} \left(\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} \right)$$

ตัวอย่าง จงหามุมระหว่างเวกเตอร์ \mathbf{u} กับ \mathbf{v} เมื่อกำหนด $\mathbf{u}=2\mathbf{i}+2\mathbf{j}+\mathbf{k}$ และ $\mathbf{v}=-2\mathbf{i}-10\mathbf{j}+11\mathbf{k}$ วิธีทำ

มุมบอกทิศทางและโคไซน์บอกทิศทางของเวกเตอร์ (Direction angle and Direction cosine)

ให้ α, β, γ เป็นมุมระหว่างเวกเตอร์ $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ กับแกน x, y

และ z ตามลำดับ

จะเรียก $lpha,eta,\gamma$ ว่า**มุมบอกทิศทาง**

(direction angle) ของ ${f v}$

และเรียก $\cos \alpha$, $\cos \beta$, $\cos \gamma$

ว่า**โคไซน์บอกทิศทาง** (direction cosine) ของ ${f v}$ โดยที่

$$\cos\alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{\|\mathbf{v}\| \|\mathbf{i}\|} = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$

$$\cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{\|\mathbf{v}\| \|\mathbf{j}\|} = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$$
$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{\|\mathbf{v}\| \|\mathbf{k}\|} = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

หมายเหตุ 1)
$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

2) เวกเตอร์หนึ่งหน่วยที่มีทิศทางเดียวกับ \mathbf{v} คือ $\cos \alpha \, \mathbf{i} + \cos \beta \, \mathbf{j} + \cos \gamma \, \mathbf{k}$

ตัวอย่าง ให้ P(3,-2,5) และ Q(-4,1,7) จงหาโคไซน์ระบุทิศทาง ของเวกเตอร์ \overline{PQ} วิธีทำ

<u>เวกเตอร์ภาพฉาย</u> (Vector Projection)

 $Vector\ projection\ ของ\ B$ บนเวกเตอร์ $\mathbf{A} \neq \mathbf{0}$ คือ เวกเตอร์ที่ อยู่ในรูปผลคูณเชิงสเกลาร์ของ $scalar\ component\ ของ\ B$ ในทิศทาง ของ \mathbf{A} กับ $\frac{\mathbf{A}}{||\mathbf{A}||}$ เขียนแทนด้วย $proj_{\mathbf{A}}\mathbf{B}$ นั่นคือ

$$\operatorname{proj}_{\mathbf{A}}\mathbf{B} = \left(\mathbf{B} \cdot \frac{\mathbf{A}}{\|\mathbf{A}\|}\right) \frac{\mathbf{A}}{\|\mathbf{A}\|}$$

$$\operatorname{proj}_{\mathbf{A}}\mathbf{B} = -\left(\mathbf{B} \cdot \frac{\mathbf{A}}{\|\mathbf{A}\|}\right) \frac{\mathbf{A}}{\|\mathbf{A}\|}$$

Unit vector ในแนวภาพฉาย
B·unit vector ในแนวภาพฉาย

<u>หมายเหตุ</u>

- 1. $\|\mathbf{B}\|\cos\theta$ เป็น scalar component ของ \mathbf{B} ในทิศทางของ \mathbf{A} โดยที่ $\|\mathbf{B}\|\cos\theta = \mathbf{B}\cdot\frac{\mathbf{A}}{\|\mathbf{A}\|}$
- 2. จะเรียก $\left| \mathbf{B} \cdot \frac{\mathbf{A}}{\|\mathbf{A}\|} \right|$ ว่า scalar projection ของ \mathbf{B} บน \mathbf{A}

ข้อสังเกต

- 1. Vector projection เป็นเวคเตอร์
- 2. Scalar projection เป็นความยาวของภาพฉาย (ต้องไม่ติดลบ)

3. Scalar component อาจติดลบได้ ถ้ามุมระหว่าง ${f A}$ และ ${f B}$ เป็น มุมป้าน

กำหนดเวคเตอร์ ${f A}$ และ ${f B}$ ดังรูป ถ้า ${f A}={f i}+{f j}+{f k}$ และ ${f B}=6{f i}+2{f j}-2{f k}$ จงหา ${f B}_\perp$ และ ${f B}_{//}$

<u>ตัวอย่าง</u> กำหนดให้ $\mathbf{A} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ และ $\mathbf{B} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$

- 1) Scalar component ของ **B** บน **A**
- 2) Scalar projection ของ **B** บน **A**
- 3) Vector projection ของ **B** บน **A**
- 4) เวกเตอร์ภาพฉายของ ${f B}$ ที่ตั้งฉากกับ ${f A}$ วิธีทำ

● The Vector Product (ผลคูณเชิงเวกเตอร์)

ผลคูณเชิงเวกเตอร์ ($vector\ product$) ของ ${f A}$ และ ${f B}$ เขียนแทน ด้วยสัญลักษณ์ $\mathbf{A}{ imes}\mathbf{B}$ ซึ่งนิยามโดย

$$\mathbf{A} \times \mathbf{B} = ||\mathbf{A}|| \, ||\mathbf{B}|| \sin \theta \, \mathbf{n}$$
 (ผลลัพธ์เป็นเวคเตอร์)

เมื่อ θ เป็นมุมระหว่าง ${f A}$ กับ ${f B}$ $(0{\le}\theta{\le}\pi)$

 ${f n}$ เป็น $unit\ vector\ {f n}$ ่ตั้งฉากกับ ${f A}$ และ ${f B}$ ตามกฎมือขวา

คุณสมบัติของผลคูณเชิงเวกเตอร์

1. $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$ (ผลคูณเชิงเวคเตอร์ไม่มีคุณสมบัติการสลับที่)

- 2. $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{C})$
- 3. ถ้า \mathbf{A} และ \mathbf{B} ขนานกัน แล้ว $\mathbf{A} \times \mathbf{B} = \vec{0}$ ในทางกลับกัน ถ้า $\mathbf{A} imes \mathbf{B} = \vec{\mathbf{0}}$ โดยที่ $\mathbf{A}
 eq \vec{\mathbf{0}}$, $\mathbf{B}
 eq \vec{\mathbf{0}}$ แล้ว \mathbf{A} และ **B** ต้องขนานกัน
- 4. ถ้า \mathbf{A} และ \mathbf{B} ตั้งฉากกัน แล้ว $\mathbf{A} \times \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \sin 90^\circ \mathbf{n}$ เมือ ${f A}$, ${f B}$ และ ${f n}$ อยู่ในระบบกฎมือขว ${f j}$
- 5. $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$ $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}$

ภาควิชาคณิตศาสตร์ คณะวิทเ 🕏

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

$$\mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

<u>หมายเหตุ</u>

เราสามารถหา $vector\ product\ ของ\ \mathbf{A}=A_1\mathbf{i}+A_2\mathbf{j}+A_3\mathbf{k}$ และ $\mathbf{B}=B_1\mathbf{i}+B_2\mathbf{j}+B_3\mathbf{k}\ \text{ได้จาก}\ determinant}\ \text{ดังนี้}$

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

<u>ตัวอย่าง</u> กำหนดเวกเตอร์ $\mathbf{P} = 2\mathbf{i} - \mathbf{k}$, $\mathbf{Q} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ และ $\mathbf{R} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ จงหา

- 1) $(\mathbf{P}+\mathbf{Q})\times(\mathbf{P}-\mathbf{Q})$
- 2) $\sin heta$ เมื่อ heta เป็นมุมระหว่าง ${f Q}$ กับ ${f R}$
- 3) unit vector ที่ตั้งฉากกับทั้ง ${f Q}$ และ ${f R}$
- 4) component ของ ${f P}$ ในทิศทางของ ${f Q}$ วิธีทำ

8-21

Triple Product (ผลคูณของสามเวกเตอร์)

เวกเตอร์ \mathbf{A} , \mathbf{B} , \mathbf{C} มีผลคูณได้ 3 แบบ คือ $\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C})$ หรือ $(\mathbf{A}\cdot\mathbf{B})\mathbf{C}$ หรือ $\mathbf{A}\times(\mathbf{B}\times\mathbf{C})$

• Scalar triple product (ผลคูณเชิงสเกลาร์ของสามเวกเตอร์) การคูณ 3 เวกเตอร์ $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$, $\mathbf{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$ และ $\mathbf{C} = C_1 \mathbf{i} + C_2 \mathbf{j} + C_3 \mathbf{k}$ เข้าด้วยกันเพื่อให้ได้ผลลัพธ์เป็นสเกลาร์ ทำได้โดยใช้รูปผลคูณ

$$A \cdot (B \times C)$$

และจะหาค่า $\mathbf{A} \cdot (\mathbf{B} imes \mathbf{C})$ ได้ง่ายโดยใช้ดีเทอร์มิแนนท์ช่วยดังนี้

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

คุณสมบัติของ scalar triple product

- 1. $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$ (โดยการสลับ \mathbf{A} , \mathbf{B} , \mathbf{C} แบบอันดับเป็นวงกลม (cyclic order) ค่าผลคูณสเกลาร์ไม่ เปลี่ยนแปลง
- 2. เวคเตอร์ ${f A}$, ${f B}$ และ ${f C}$ จะอยู่บนระนาบเดียวกัน ก็ต่อเมื่อ ${f A}\cdot({f B} imes{f C})=0$

3. $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ อาจหมายถึง ปริมาตรของรูปทรงสี่เหลี่ยมด้านขนาน

(parallelopiped) ที่มี \mathbf{A} , \mathbf{B} , \mathbf{C} เป็นด้านประกอบ โดยจะมีค่าเป็น บวกถ้า \mathbf{A} , \mathbf{B} , \mathbf{C} เรียงตามกฎมือ ขวา

 $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0$ หมายความว่า ปริมาตรของรูปทรงสี่เหลี่ยมด้านขนาน มีค่าเป็นศูนย์ หรือรูปทรงนี้มีส่วนสูงเป็นศูนย์ นั่นคือ \mathbf{A} , \mathbf{B} , \mathbf{C} อยู่บน ระนาบเดียวกัน

 Vector triple product (ผลคูณเชิงเวกเตอร์ของสามเวกเตอร์)
 การคูณเวกเตอร์ 3 เวกเตอร์ A, B และ C เข้าด้วยกันเพื่อให้ได้ผล ลัพธ์เป็นเวคเตอร์ ทำได้โดยใช้รูปผลคูณดังนี้

$$(A \cdot B)C$$
 หรือ $A \times (B \times C)$

จากคุณสมบัติของ $vector\ product\$ ทำให้ทราบว่า $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ เป็น เวคเตอร์ที่ตั้งฉากกับ \mathbf{A} และตั้งฉากกับ $\mathbf{B} \times \mathbf{C}$ และเนื่องจาก $\mathbf{B} \times \mathbf{C}$ ตั้งฉากกับ \mathbf{B} และ \mathbf{C} ทำให้ได้ว่า $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ จะต้องอยู่บนระนาบ เดียวกันกับที่ \mathbf{B} และ \mathbf{C} อยู่

คุณสมบัติของ vector triple product

- 1. $(\mathbf{A} \cdot \mathbf{B})\mathbf{C} \neq \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$ (กฎการจัดหมู่ใช้ไม่ได้ในผลคูณแบบนี้)
- 2. $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) \neq (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$
- 3. $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$ Middle term's rule $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} (\mathbf{B} \cdot \mathbf{C})\mathbf{A}$ (กฎเทอมกลาง)

วิธีการจำ vector triple product จะเท่ากับเวกเตอร์ตัวกลางที่มีสัม ประสิทธ์เป็น scalar product ของอีก 2 เวกเตอร์ ลบด้วยเวกเตอร์ใน วงเล็บที่มีสัมประสิทธ์เป็น scalar product ของอีก 2 เวกเตอร์

Area and Volume (พื้นที่และปริมาตร)

• พ**ื้นที่ของสี่เหลี่ยมด้านขนาน**ที่มี **A** และ **B** เป็นด้านประกอบ

ullet พ**ื้นที่ของสามเหลี่ยม**ที่มี ${f A}$ และ ${f B}$ เป็นด้านประกอบ

พ.ท.
$$\Delta$$
 ที่มี ${f A}$ และ ${f B}$ เป็นด้าน
ประกอบ = $\frac{1}{2} || {f A} { imes} {f B} ||$

• **ปริมาตรของทรงสี่เหลี่ยมด้านขนาน**ที่มี **A**, **B** และ **C** เป็นด้าน ประกอบ

ปริมาตรของทรงสี่เหลี่ยมด้านขนานที่มี \mathbf{A} , \mathbf{B} และ \mathbf{C} เป็นด้านประกอบ = (พื้นที่ฐาน)(สูง) = $(\|\mathbf{B} \times \mathbf{C}\|) \left(\frac{|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|}{\|\mathbf{B} \times \mathbf{C}\|} \right)$ = $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$

<u>แบบฝึกหัด</u> ให้ $\mathbf{u} = \mathbf{i} - \mathbf{j} - 2\mathbf{k}$, $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$ และ $\mathbf{w} = \mathbf{i} - 3\mathbf{j} + \mathbf{k}$ จงหา

- 1) จงหาพื้นที่ของสี่เหลี่ยมด้านขนานที่มีด้านของสี่เหลี่ยมเป็น ${f u}$ และ ${f v}$
- 2) จงหาปริมาตรของกล่องสี่เหลี่ยมด้านขนานที่ประกอบจาก \mathbf{u} , \mathbf{v} และ \mathbf{w}

เส้นตรงในระบบพิกัดฉาก 3 มิติ

ให้ L เป็นเส้นตรงที่ผ่านจุด $P_0(x_0,y_0,z_0)$ และขนานกับเวกเตอร์

ดังนั้น สำหรับทุกๆ จุด P(x,y,z) ใดๆบนเส้นตรง L จะมีจำนวนจริง t ที่ทำให้

$$\overline{P_0P}=t\,{f v}$$
 (1) หรือ $\left\langle x{-}x_0,y{-}y_0,z{-}z_0
ight
angle =\left\langle ta,tb,tc
ight
angle$ ซึ่งจะได้

สมการของเส้นตรง L ที่ผ่านจุด $P_0(x_0,y_0,z_0)$ และขนานกับเวกเตอร์ $\mathbf{v}=a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$ ในรูปสมการอิงตัวแปรเสริม(parametric equation) คือ

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

หมายเหตุ

- 1) **v** เรียกว่า<u>เวกเตอร์บอกทิศทาง</u> (direction vector)ของเส้นตรง L และเรียก a, b, c ว่า <u>จำนวนบอกทิศทาง</u> (direction number)
- 2) จะเรียกสมการของเส้นตรง L ในรูปแบบ

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

โดยที่ a , b , c ไม่เป็นศูนย์ว่า <u>สมการสมมาตร</u>(symmetric equation) ของเส้นตรง L

แต่ถ้ามี a , b หรือ c บางตัวเป็นศูนย์ เช่น $c\!=\!0$ สมการสมมาตร ของเส้นตรง จะอยู่ในรูป

$$\frac{x-x_0}{a} = \frac{y-y_0}{b}$$
 และ $z-z_0$

3) จากสมการ (1) ถ้า ${f r}_0$ เป็นเวกเตอร์ตำแหน่งของจุด P_0 และ ${f r}$ เป็น เวกเตอร์ตำแหน่งของจุด P แล้วสมการเส้นตรง L ในรูปเวกเตอร์คือ ${f r}={f r}_0+t\,{f v}$

ตัวอย่าง จงหาสมการอิงตัวแปรเสริมของเส้นตรงที่ผ่านจุด (-3,1,5) และขนานกับเวกเตอร์ $\mathbf{v} = 4\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$ วิธีทำ

ตัวอย่าง จงหาสมการอิงตัวแปรเสริมของเส้นตรง L ที่ผ่านจุด A(-3,4,-8) และ B(10,2,-1) พร้อมทั้งพิจารณาว่าเส้นตรง L ตัด ระนาบพิกัด xy ที่จุดใด วิธีทำ

ตัวอย่าง ให้เส้นตรง L ผ่านจุด A(-1,2,3) และ B(0,1,2) จง พิจารณาว่า จุด C(1,1,5) และ D(-3,4,5) อยู่บนเส้นตรง L หรือไม่ วิธีทำ

ตัวอย่าง กำหนดสมการอิงตัวแปรเสริมของเส้นตรง $L_{\!\scriptscriptstyle 1}$ และ $L_{\!\scriptscriptstyle 2}$ ดังนี้

$$L_1: x = -1 + t, y = 2 - t, z = 2t$$

$$L_2: x=1-s, y=-2s, z=2+s$$

จงพิจารณาว่าเส้นตรง L_1 และ L_2 ขนานกัน/ตั้งฉาก/ตัดกัน หรือไม่

<u>วิธีทำ</u>

8-30

<u>ระยะทางระหว่างจุดกับเส้นตรง</u>

ให้เส้นตรง L ตัดผ่านจุด P(x,y,z) และขนานกับเวกเตอร์ ${f v}$

ระยะทางระหว่างจุด Q กับเส้นตรง $L=||\overline{PQ}||\sin\theta=\frac{||\overline{PQ}\times\mathbf{v}||}{||\mathbf{v}||}$

ตัวอย่าง ทรงกลมหนึ่งมีเส้นตรง L: x=1+3t , y=6-2t , z=4t เป็นเส้นสัมผัส ถ้าทรงกลมนี้มีจุดศูนย์กลางอยู่ที่ Q(2,3,-4) จงหารัศมี ของทรงกลม

วิธีทำ

สมการระนาบ

ระนาบ คือ เซตของจุด (x,y,z) ที่สอดคล้องกับสมการ

$$Ax + By + Cz + D = 0$$

พิจารณาระนาบที่ผ่านจุด $P_0(x_0,y_0,z_0)$ และตั้งฉากกับ เวกเตอร์ $\mathbf{N}=a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$

ให้ P(x,y,z) เป็นจุดใดๆบนระนาบ \mathbf{r}_0 เป็นเวกเตอร์ตำแหน่งของจุด P_0 \mathbf{r} เป็นเวกเตอร์ตำแหน่งของจุด P แล้วจะได้ว่าเวกเตอร์ขจัด $\mathbf{r}-\mathbf{r}_0$ (หรือ $\overline{P_0P}$) ตั้งฉากกับเวกเตอร์ \mathbf{N} ดังนั้น

$$\mathbf{N} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$
$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

หมายเหตุ สำหรับสมการระนาบ ax+by+cz+d=0 ถ้า a,b,c,d เป็นค่าคงที่ที่ไม่เท่ากับ 0 แล้ว จะมีเวกเตอร์ตั้งฉากเป็น $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$

ตัวอย่าง จงหาสมการของระนาบที่ตั้งฉากกับเวกเตอร์ $4\mathbf{i}+2\mathbf{j}-5\mathbf{k}$ และผ่านจุด (5,-4,10)

วิธีทำ ระนาบที่ผ่านจุด (x_0,y_0,z_0) และ \perp กับ $\mathbf{N}=a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$ จะมีรูปสมการเป็น $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

ตัวอย่าง จงหาสมการของระนาบที่ผ่านจุด A(4,2,3), B(3,1,-2) และ C(5,3,-6)

<u>วิธีทำ</u> หา normal vector ของระนาบได้จาก $\mathbf{N}=\overline{AC} imes\overline{AB}$

ตัวอย่าง จงหาจุดที่เส้นตรง $L: x = \frac{8}{3} + 2t$, y = -2t , z = 1 + t ตัดกับ ระนาบ 3x + 2y + 6z = 6 วิธีทำ

ตัวอย่าง จงหาสมการของระนาบที่ผ่านจุด A(2,3,1), ตั้งฉากกับ ระนาบ 3x-3y+2z=17 และตัดแกน x ที่พิกัด (4,0,0) วิธีทำ

ตัวอย่าง จงหาสมการของระนาบที่ผ่านจุด P(1,2,-1) และขนานกับ ระนาบที่ผ่านจุด A(1,-2,0), B(0,2,1) และ C(0,1,0) วิธีทำ

มุมและรอยตัดระหว่างระนาบ

• มุมระหว่างระนาบ จะมีค่าเท่ากับมุมระหว่าง normal vector ของ ระนาบทั้งสองกระทำกัน

ให้ \mathbf{N}_1 และ \mathbf{N}_2 เป็น normal vector ของระนาบ A และ B ตามลำดับ

heta เป็นมุมระหว่างระนาบ A และ B แล้วจะได้ว่า

$$\cos \theta = \frac{\mathbf{N}_1 \cdot \mathbf{N}_2}{\|\mathbf{N}_1\| \|\mathbf{N}_2\|}$$
$$\theta = \cos^{-1} \left(\frac{\mathbf{N}_1 \cdot \mathbf{N}_2}{\|\mathbf{N}_1\| \|\mathbf{N}_2\|} \right)$$

รอยตัดระหว่างระนาบ

ระนาบสองระนาบถ้าไม่ขนานกันจะต้องตัดกันเสมอ และรอยตัดของทั้งสอบระนาบจะเป็นเส้นตรงใน 3 มิติ และ $\mathbf{N}_1 imes \mathbf{N}_2$ จะเป็นเวกเตอร์ที่ขนานกับรอยตัดของระนาบทั้งสอง

ตัวอย่าง กำหนดสมการระนาบ

$$T_1: 2x-y+z-10=0$$

$$T_2: x+y+z-5 = \cdots 0$$

1) จงหามุมระหว่างระนาบ T_1 กับ T_2

2) จงหาสมการอิงตัวแปรเสริมของสมการเส้นตรงที่ผ่านจุด (1, 2, 3) และขนานกับรอยตัดของระนาบ T_1 กับ T_2

<u>วิธีทำ</u>

ตัวอย่าง จงหาสมการอิงตัวแปรเสริมของเส้นตรงที่เป็นรอยตัดระหว่าง ระนาบ 3x-6y-2z=15 กับ 2x+y-2z=5 วิธีทำ

<u>ระยะทางระหว่างจุดกับระนาบ</u>

<u>คำถาม</u>

ระยะทาง d จากจุด Q ไปยังระนาบ ให้ P เป็นจุดใดๆบนระนาบ A มีค่าเท่าใด?

<u>คำตอบ</u>

d =

<u>ตัวอย่าง</u> จงหาระยะทางระหว่างจุด Q(2,-3,4) กับระนาบ x + 2y + 2z = 13

ตัวอย่าง จงหาระยะทางระหว่างระนาบ 2x-3y+z=7 กับระนาบ 6x-9y+3z=9 วิธีทำ

แบบฝึกหัด 1

- 1. กำหนดเวกเตอร์ $\mathbf{u}=2\mathbf{i}-4\mathbf{j}+\sqrt{5}\mathbf{k}$ และ $\mathbf{v}=-2\mathbf{i}+4\mathbf{j}-\sqrt{5}\mathbf{k}$
 - a) จงหา $\mathbf{u} \cdot \mathbf{v}$, $\|\mathbf{u}\|$, $\|\mathbf{v}\|$
 - b) $\cos heta$ เมื่อ heta เป็นมุมระหว่าง ${f u}$ และ ${f v}$
 - c) scalar component ของ ${f v}$ ในทิศทางของ ${f u}$
 - d) vector projection ของ **v** บน **u**
- 2. จงหามุมระหว่างเวกเตอร์ $\mathbf{u} = \mathbf{i} + \sqrt{2}\mathbf{j} \sqrt{2}\mathbf{k}$ และ $\mathbf{v} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$

กำหนดเวคเตอร์ ${f A}$ และ ${f B}$ ดังรูป

ถ้า
$$\mathbf{A} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
 และ

$$\mathbf{B} = 8\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}$$

f A f จงหา $f B_{ot}$ และ $f B_{//}$

- 4. กำหนด $\mathbf{u}=\langle 2,-1,3
 angle$, $\mathbf{v}=\langle 0,1,7
 angle$ และ $\mathbf{w}=\langle 1,4,5
 angle$ จงหา
 - a) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$

b) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$

c) $\mathbf{u} \times (\mathbf{v} - 2\mathbf{w})$

d) $(\mathbf{u} \times \mathbf{v}) - 2\mathbf{w}$

e) $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{v} \times \mathbf{w})$

- f) $(\mathbf{v} \times \mathbf{w}) \times (\mathbf{u} \times \mathbf{v})$
- 5. กำหนด $\mathbf{u}=\langle 5,-1,1\rangle$, $\mathbf{v}=\langle 0,1,-5\rangle$ และ $\mathbf{w}=\langle -15,3,-3\rangle$ มีเวกเตอร์ใดบ้างที่ตั้งฉากกัน และเวกเตอร์ใดบ้างที่ขนานกัน
- 6. จงพิจารณาว่าเวกเตอร์ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ ที่กำหนดให้ อยู่บนระนาบเดียวกันหรือไม่

a)
$$\mathbf{u}=\langle 1,-2,1
angle$$
, $\mathbf{v}=\langle 3,0,-2
angle$ และ $\mathbf{w}=\langle 5,-4,0
angle$

b)
$$\mathbf{u}=\langle 4,-8,1
angle$$
, $\mathbf{v}=\langle 2,1,-2
angle$ และ $\mathbf{w}=\langle 3,-4,12
angle$

7. ให้ P(1,2,-1) , Q(3,-1,4) และ R(2,6,2) เป็นจุดยอดของ สี่เหลี่ยมด้านขนาน PQRS จงหาพิกัดของจุด S

เฉลยแบบฝึกหัด 1

1. a) -25, 5, 5 b) -1 c) -5 d)
$$\mathbf{v} = -2\mathbf{i} + 4\mathbf{j} - \sqrt{5}\mathbf{k}$$

2.
$$\cos^{-1} \left(\frac{-1}{\sqrt{15}} \right) \approx 1.83 \text{ rad}$$

3.
$$\mathbf{B}_{//} = \frac{14}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$

3.
$$\mathbf{B}_{//} = \frac{14}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$
 $\mathbf{B}_{\perp} = \frac{10}{3}\mathbf{i} - \frac{16}{3}\mathbf{j} - \frac{22}{3}\mathbf{k}$

แบบฝึกหัด 2

1. กำหนดเวกเตอร์

$$\vec{A} = \langle 1, 3 \rangle$$
 $\vec{B} = \langle -4, 0 \rangle$ $\vec{C} = \langle -2, 1, 4 \rangle$ $\vec{D} = \langle 4, -2, -8 \rangle$ $\vec{E} = \langle 2, -1, 1 \rangle$ $\vec{F} = \langle 1, 1, 2 \rangle$

$$\vec{C} = \langle -2, 1, 4 \rangle$$

$$\vec{D} = \langle 4, -2, -8 \rangle$$

$$\vec{E} = \langle 2, -1, 1 \rangle$$

$$\vec{F} = \langle 1, 1, 2 \rangle$$

จงหา

a)
$$\vec{B}$$
 $-2\vec{A}$

b)
$$||-2\vec{B}||\vec{C}+\vec{F}|$$

- c) เวกเตอร์ขนาด 4 หน่วยตามทิศทางของเวกเตอร์ \hat{D}
- d) เวกเตอร์คู่ใดบ้างที่ขนานกัน
- e) ถ้าจุดสิ้นสุดของ $ec{E}$ คือ (2,1,1) แล้วจุดเริ่มต้นของ $ec{E}$ คือพิกัดใด
- 2. กำหนดเวกเตอร์ให้

$$\vec{A} = \vec{i} - 4\vec{j} + 2\vec{k}$$

$$\vec{B} = -\vec{i} + \vec{j} - 3\vec{k}$$

$$C = 2j + 3k$$

$$\mathbf{D} = 3\mathbf{i} - 4\mathbf{k}$$

จงหา

a)
$$\|-\mathbf{D}\|(\vec{A}+\vec{B})\cdot\mathbf{D}$$

- b) มุมระหว่างเวกเตอร์ $ec{B}$ และ ${f C}$
- c) ปริมาตรของทรงสี่เหลี่ยมที่มีเวกเตอร์ $\vec{A}, \vec{B}, \mathbf{C}$ เป็นด้านประกอบ
- d) เวกเตอร์หนึ่งหน่วยที่ตั้งฉากกับ $ec{C}$ และ $ec{D}$
- 3. กำหนดจุดให้

$$P_1(1,3,-1)$$
 $P_2(2,0,4)$ $P_3(3,-1,-1)$ $P_4(-2,2,0)$ $P_5(7,-2,-1)$

จงตอบคำถามต่อไปนี้

- a) เวกเตอร์ $\overline{P_2P_3}$ ตั้งฉากกับเวกเตอร์ $\overline{P_1P_5}$ หรือไม่
- b) ถ้า $||k\overline{P_3P_2}|| = \sqrt{54}$ จงหาค่า k
- c) จงหาพื้นที่สามเหลี่ยมที่มีจุด P_1, P_2, P_3 เป็นจุดยอด
- d) จงหาสมการระนาบที่ผ่านจุด P_1, P_2, P_4
- e) จงหาสมการเส้นตรงที่ผ่านจุด P_5 และขนานกับเวกเตอร์ $\overline{P_5P_4}$
- 4. จงหาสมการเส้นตรงที่ผ่านจุด (-2,0,5) และขนานกับเส้นตรง $x=y+1,\ z=2$
- 5. จงหาสมการระนาบที่ผ่านจุด (-1,2,-5) และตั้งฉากกับระนาบ 2x-y+z=1 และระนาบ x+y-2z=3
- 6. เส้นตรง $\frac{x-4}{2} = \frac{y}{-1} = \frac{z+1}{-4}$ และระนาบ 3x+2y+z-7 = 0 ขนานกันหรือตั้งฉากกัน
- 7. จงหาระยะทางจากจุด (2,-3,4) ไปยังระนาบ x+2y+2z=13
- 8. จงหามุมระหว่างระนาบ 3x+6y+2z=5 กับ 4x-y-3z=8

<u>เฉลยแบ</u>บฝึกหัด 2

1. a)
$$\langle -6, 6 \rangle$$

b)
$$\langle -15, 9, 34 \rangle$$

1. a)
$$\langle -6,6 \rangle$$
 b) $\langle -15,9,34 \rangle$ c) $\frac{4}{\sqrt{84}} \langle 4,-2,-8 \rangle$

d)
$$\vec{C}$$
, \vec{D}

d)
$$\vec{C}, \vec{D}$$
 e) $(0,2,0)$

2. a) 20 b)
$$\theta = \cos^{-1} \left(\frac{-7}{\sqrt{143}} \right)$$

d)
$$\pm \frac{1}{\sqrt{181}} (-8\vec{i} + 9\vec{j} - 6\vec{k})$$

b)
$$k = \pm \sqrt{2}$$

3. a) ไม่ตั้งฉาก b)
$$k = \pm \sqrt{2}$$
 c) $\frac{1}{2}\sqrt{504}$

d)
$$x - 8y - 5z + 18 = 0$$

d)
$$x-8y-5z+18=0$$
 e) $\frac{x-7}{-9} = \frac{y+2}{4} = z+1$

4.
$$x+2 = v$$
. $z = 5$

4.
$$x+2 = y$$
, $z = 5$ 5. $x+5y+3z+6 = 0$

6. ขนานกัน 7. 3 8.
$$\frac{\pi}{2}$$

8.
$$\frac{\pi}{2}$$