The Name of the Title is Hope

XINSHI WANG, Carnegie Mellon University 18847C, USA HANLU XU, Carnegie Mellon University 18847C, USA

As data centers become increasingly prevalent, their energy consumption and the consequent carbon emissions have emerged as a global concern. Data centers demand substantial electricity, particularly those supporting complex computations and large-scale data processing tasks, such as social networking services. These services are often numerous independent microservices, offering high flexibility and scalability. This work explores the possibility of deploying the microservices constituting a social network onto bare-metal servers in geo-distributed data centers to minimize carbon emissions as much as possible without impacting Quality of Service (QoS) significantly. Through simulations and real deployment tests, we demonstrated that it is possible to reduce the carbon emissions produced in a year by xx% in exchange of xx% decrease in latency, xx% decrease in throughput, and xx% decrease in availability.

CCS Concepts: • Computer systems organization \rightarrow Embedded and cyber-physical systems; • Software and its engineering \rightarrow General programming languages; • Networks \rightarrow Network resources allocation; • Applied computing \rightarrow Environmental science; • Hardware \rightarrow Environmentally sustainable computing.

Additional Key Words and Phrases: Carbon Emission, Computer Systems, Cross Datacenter Scheduling, Microservices, Sustainablity

ACM Reference Format:

1 INTRODUCTION

In recent years, the digital revolution has dramatically increased the demand for data center services, leading to a surge in energy consumption and associated carbon emissions. Data centers are crucial for storing, managing, and processing vast amounts of data, supporting everything from cloud computing to social networking services. However, they are also among the most energy-intensive facilities, contributing significantly to global carbon emissions. It is estimated that by 2030, the data center industry could account for 8% of global carbon emissions, highlighting the urgent need for sustainable practices within this sector (Cao et al., 2021).

Major technology companies, including Google and Facebook, have recognized the environmental impact of their data centers and committed to achieving carbon neutrality in their operations. These commitments represent a significant shift towards sustainability in the technology sector, focusing on reducing carbon footprints through the adoption of renewable energy sources and more efficient energy management practices. For instance, Google has pledged to operate on carbon-free energy 24/7 by 2030, a commitment that requires innovative approaches to energy management and operational flexibility (Lehnhoff et al., 2021).

Authors' addresses: Xinshi Wang, Carnegie Mellon University 18847C, Pittsburgh, USA; Hanlu Xu, Carnegie Mellon University 18847C, Pittsburgh, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

@ 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM 2476-1249/2018/8-ART111

This paper explores the possibility of reducing carbon emissions in data centers without significantly impacting the Quality of Service (QoS). We focus on a social network application sourced from the DeathstarBench Suite, examining how geo-distributed data center deployment strategies can minimize carbon emissions. By leveraging the different energy sources powering these data centers, particularly renewable energy, we aim to assess the potential reductions in carbon emissions achievable under various deployment scenarios. Our work contributes to the broader discourse on sustainable computing, providing insights into how data centers can operate more environmentally friendly while maintaining high levels of service availability and performance.

Our investigation is set against the backdrop of increasing efforts to mitigate the environmental impact of digital infrastructure. As data centers become increasingly pivotal to our digital lives, the imperative to address their environmental footprint grows stronger. By examining the interplay between data center operations and carbon emissions, we hope to offer valuable perspectives on achieving more sustainable data center practices across the industry.

For more insights and related work on carbon-neutral strategies and their implementation in large-scale data centers, refer to the comprehensive surveys by Cao et al. (2021), which discuss both policy instruments and technological methodologies towards carbon neutrality in data centers, highlighting current efforts by industry leaders such as Google and Facebook.

2 RELATED WORK

In recent years, researchers have recognized the significant part data centers play in carbon emission and started looking for solutions. A lot of studies prove that it is possible to reduce data center carbon emission by migrating workloads from fossil-fuel-heavy data centers to low-carbon ones that utilize renewable energy [23, 45].

Several researches were carried out aimed at providing a guide to workloads scheduling and orchestration across geo-distributed data centers. One popular direction is to build mathematical models to compute a scheduling recommendation by optimizing metrics in terms of emission and energy consumption [28, 29], while little attention is paid to the QoS. GA-Par measures data transmission latency, but the focus of this framework is application security on the cloud instead of performance metrics with more effects on user experience [44]. Stratus is a graph-based system that uses Voronoi partitions to determine which data centre requests should be routed to [12]. It makes trade-off among latency, carbon emissions and electricity cost when making a scheduling decision. One downside of this work is that the researchers did not use application benchmarks or examine the QoS of real-world applications.

There are also a few studies about the impacts of cross-datacenter scheduling on QoS. A group of researchers evaluated the performance of microservices using metrics of CPU usage and 99%-ile latency in the situation where some microservices of the applications are migrated to remote data centers when the local done does not have enough resources. They utilized three open-sourced microservice benchmarks of the DeathStarBench, SocialNetwork, MediaService, and HotelReservation for the experiment. What microservices of the applications should be migrated to a remote data center in order to mitigate the performance reduce is demonstrated in the work as well [38].

3 TEMPLATE OVERVIEW

As noted in the introduction, the "acmart" document class can be used to prepare many different kinds of documentation — a dual-anonymous initial submission of a full-length technical paper, a two-page SIGGRAPH Emerging Technologies abstract, a "camera-ready" journal article, a SIGCHI Extended Abstract, and more — all by selecting the appropriate *template style* and *template parameters*.

This document will explain the major features of the document class. For further information, the Lagranger's Guide is available from https://www.acm.org/publications/proceedings-template.

3.1 Template Styles

The primary parameter given to the "acmart" document class is the *template style* which corresponds to the kind of publication or SIG publishing the work. This parameter is enclosed in square brackets and is a part of the documentclass command:

\documentclass[STYLE]{acmart}

Journals use one of three template styles. All but three ACM journals use the acmsmall template style:

- acmsmall: The default journal template style.
- acmlarge: Used by JOCCH and TAP.
- acmtog: Used by TOG.

The majority of conference proceedings documentation will use the acmconf template style.

- acmconf: The default proceedings template style.
- sigchi: Used for SIGCHI conference articles.
- sigchi-a: Used for SIGCHI "Extended Abstract" articles.
- sigplan: Used for SIGPLAN conference articles.

3.2 Template Parameters

In addition to specifying the *template style* to be used in formatting your work, there are a number of *template parameters* which modify some part of the applied template style. A complete list of these parameters can be found in the <code>BTeX</code> User's Guide.

Frequently-used parameters, or combinations of parameters, include:

- anonymous, review: Suitable for a "dual-anonymous" conference submission. Anonymizes the work and includes line numbers. Use with the \acmSubmissionID command to print the submission's unique ID on each page of the work.
- authorversion: Produces a version of the work suitable for posting by the author.
- screen: Produces colored hyperlinks.

This document uses the following string as the first command in the source file:

\documentclass[acmlarge]{acmart}

4 MODIFICATIONS

Modifying the template — including but not limited to: adjusting margins, typeface sizes, line spacing, paragraph and list definitions, and the use of the $\$ vspace command to manually adjust the vertical spacing between elements of your work — is not allowed.

Your document will be returned to you for revision if modifications are discovered.

5 TYPEFACES

The "acmart" document class requires the use of the "Libertine" typeface family. Your TeX installation should include this set of packages. Please do not substitute other typefaces. The "lmodern" and "ltimes" packages should not be used, as they will override the built-in typeface families.

6 TITLE INFORMATION

The title of your work should use capital letters appropriately - https://capitalizemytitle.com/ has useful rules for capitalization. Use the title command to define the title of your work. If your work has a subtitle, define it with the subtitle command. Do not insert line breaks in your title.

If your title is lengthy, you must define a short version to be used in the page headers, to prevent overlapping text. The title command has a "short title" parameter:

\title[short title]{full title}

7 AUTHORS AND AFFILIATIONS

Each author must be defined separately for accurate metadata identification. Multiple authors may share one affiliation. Authors' names should not be abbreviated; use full first names wherever possible. Include authors' e-mail addresses whenever possible.

Grouping authors' names or e-mail addresses, or providing an "e-mail alias," as shown below, is not acceptable:

\author{Brooke Aster, David Mehldau}
\email{dave, judy, steve@university.edu}
\email{firstname.lastname@phillips.org}

The authornote and authornotemark commands allow a note to apply to multiple authors — for example, if the first two authors of an article contributed equally to the work.

If your author list is lengthy, you must define a shortened version of the list of authors to be used in the page headers, to prevent overlapping text. The following command should be placed just after the last \author{} definition:

\renewcommand{\shortauthors}{McCartney, et al.}

Omitting this command will force the use of a concatenated list of all of the authors' names, which may result in overlapping text in the page headers.

The article template's documentation, available at https://www.acm.org/publications/proceedings-template, has a complete explanation of these commands and tips for their effective use.

Note that authors' addresses are mandatory for journal articles.

8 RIGHTS INFORMATION

Authors of any work published by ACM will need to complete a rights form. Depending on the kind of work, and the rights management choice made by the author, this may be copyright transfer, permission, license, or an OA (open access) agreement.

Regardless of the rights management choice, the author will receive a copy of the completed rights form once it has been submitted. This form contains Lage commands that must be copied into the source document. When the document source is compiled, these commands and their parameters add formatted text to several areas of the final document:

- the "ACM Reference Format" text on the first page.
- the "rights management" text on the first page.
- the conference information in the page header(s).

Rights information is unique to the work; if you are preparing several works for an event, make sure to use the correct set of commands with each of the works.

The ACM Reference Format text is required for all articles over one page in length, and is optional for one-page articles (abstracts).

9 CCS CONCEPTS AND USER-DEFINED KEYWORDS

Two elements of the "acmart" document class provide powerful taxonomic tools for you to help readers find your work in an online search.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Non-English or Math Frequency Comments 1 in 1,000 For Swedish names 1 in 5 Common in math π \$ 4 in 5 Used in business Ψ^2 1 in 40,000 Unexplained usage

Table 1. Frequency of Special Characters

The ACM Computing Classification System - https://www.acm.org/publications/class-2012 - is a set of classifiers and concepts that describe the computing discipline. Authors can select entries from this classification system, via https://dl.acm.org/ccs/ccs.cfm, and generate the commands to be included in the LTFX source.

User-defined keywords are a comma-separated list of words and phrases of the authors' choosing, providing a more flexible way of describing the research being presented.

CCS concepts and user-defined keywords are required for for all articles over two pages in length, and are optional for one- and two-page articles (or abstracts).

SECTIONING COMMANDS

Your work should use standard LTFX sectioning commands: section, subsection, subsubsection, and paragraph. They should be numbered; do not remove the numbering from the commands.

Simulating a sectioning command by setting the first word or words of a paragraph in boldface or italicized text is not allowed.

11 TABLES

The "acmart" document class includes the "booktabs" package — https://ctan.org/pkg/booktabs — for preparing high-quality tables.

Table captions are placed *above* the table.

Because tables cannot be split across pages, the best placement for them is typically the top of the page nearest their initial cite. To ensure this proper "floating" placement of tables, use the environment table to enclose the table's contents and the table caption. The contents of the table itself must go in the tabular environment, to be aligned properly in rows and columns, with the desired horizontal and vertical rules. Again, detailed instructions on tabular material are found in the LATEX User's Guide.

Immediately following this sentence is the point at which Table 1 is included in the input file; compare the placement of the table here with the table in the printed output of this document.

To set a wider table, which takes up the whole width of the page's live area, use the environment table* to enclose the table's contents and the table caption. As with a single-column table, this wide table will "float" to a location deemed more desirable. Immediately following this sentence is the point at which Table 2 is included in the input file; again, it is instructive to compare the placement of the table here with the table in the printed output of this document.

Always use midrule to separate table header rows from data rows, and use it only for this purpose. This enables assistive technologies to recognise table headers and support their users in navigating tables more easily.

12 MATH EQUATIONS

You may want to display math equations in three distinct styles: inline, numbered or non-numbered display. Each of the three are discussed in the next sections.

Table 2. Some Typical Commands

Command	A Number	Comments
\author	100	Author
\table	300	For tables
\table*	400	For wider tables

12.1 Inline (In-text) Equations

A formula that appears in the running text is called an inline or in-text formula. It is produced by the **math** environment, which can be invoked with the usual \begin . . . \end construction or with the short form \$\\$\times \cdot \text{.}\$. . \$\\$. You can use any of the symbols and structures, from \$\alpha\$ to \$\alpha\$, available in \text{LTEX} [26]; this section will simply show a few examples of in-text equations in context. Notice how this equation: $\lim_{n\to\infty} x = 0$, set here in in-line math style, looks slightly different when set in display style. (See next section).

12.2 Display Equations

A numbered display equation—one set off by vertical space from the text and centered horizontally—is produced by the **equation** environment. An unnumbered display equation is produced by the **displaymath** environment.

Again, in either environment, you can use any of the symbols and structures available in LaTeX; this section will just give a couple of examples of display equations in context. First, consider the equation, shown as an inline equation above:

$$\lim_{n \to \infty} x = 0 \tag{1}$$

Notice how it is formatted somewhat differently in the **displaymath** environment. Now, we'll enter an unnumbered equation:

$$\sum_{i=0}^{\infty} x + 1$$

and follow it with another numbered equation:

$$\sum_{i=0}^{\infty} x_i = \int_0^{\pi+2} f$$
 (2)

just to demonstrate LTFX's able handling of numbering.

13 FIGURES

The "figure" environment should be used for figures. One or more images can be placed within a figure. If your figure contains third-party material, you must clearly identify it as such, as shown in the example below.

Your figures should contain a caption which describes the figure to the reader.

Figure captions are placed *below* the figure.

Every figure should also have a figure description unless it is purely decorative. These descriptions convey what's in the image to someone who cannot see it. They are also used by search engine crawlers for indexing images, and when images cannot be loaded.

A figure description must be unformatted plain text less than 2000 characters long (including spaces). **Figure descriptions should not repeat the figure caption – their purpose is to capture important information that is not already provided in the caption or the main text of the paper.** For figures that convey important and complex new information, a short text description may not be adequate. More complex alternative descriptions

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Fig. 1. 1907 Franklin Model D roadster. Photograph by Harris & Ewing, Inc. [Public domain], via Wikimedia Commons. (https://goo.gl/VLCRBB).

can be placed in an appendix and referenced in a short figure description. For example, provide a data table capturing the information in a bar chart, or a structured list representing a graph. For additional information regarding how best to write figure descriptions and why doing this is so important, please see https://www.acm.org/publications/taps/describing-figures/.

13.1 The "Teaser Figure"

A "teaser figure" is an image, or set of images in one figure, that are placed after all author and affiliation information, and before the body of the article, spanning the page. If you wish to have such a figure in your article, place the command immediately before the \maketitle command:

\begin{teaserfigure}
\includegraphics[width=\textwidth]{sampleteaser}
\caption{figure caption}

\Description{figure description}
\end{teaserfigure}

14 CITATIONS AND BIBLIOGRAPHIES

The use of **The**X for the preparation and formatting of one's references is strongly recommended. Authors' names should be complete — use full first names ("Donald E. Knuth") not initials ("D. E. Knuth") — and the salient identifying features of a reference should be included: title, year, volume, number, pages, article DOI, etc.

The bibliography is included in your source document with these two commands, placed just before the \end{document} command:

```
\bibliographystyle{ACM-Reference-Format}
\bibliography{bibfile}
```

where "bibfile" is the name, without the ".bib" suffix, of the TeX file.

Citations and references are numbered by default. A small number of ACM publications have citations and references formatted in the "author year" style; for these exceptions, please include this command in the **preamble** (before the command "\begin{document}") of your FTEX source:

\citestyle{acmauthoryear}

Some examples. A paginated journal article [9], an enumerated journal article [10], a reference to an entire issue [8], a monograph (whole book) [25], a monograph/whole book in a series (see 2a in spec. document) [18], a divisible-book such as an anthology or compilation [13] followed by the same example, however we only output the series if the volume number is given [14] (so Editor00a's series should NOT be present since it has no vol. no.), a chapter in a divisible book [40], a chapter in a divisible book in a series [11], a multi-volume work as book [24], a couple of articles in a proceedings (of a conference, symposium, workshop for example) (paginated proceedings article) [2, 16], a proceedings article with all possible elements [39], an example of an enumerated proceedings article [15], an informally published work [17], a couple of preprints [5, 6], a doctoral dissertation [7], a master's thesis: [3], an online document / world wide web resource [1, 32, 41], a video game (Case 1) [31] and (Case 2) [30] and [27] and (Case 3) a patent [37], work accepted for publication [34], 'YYYYb'-test for prolific author [35] and [36]. Other cites might contain 'duplicate' DOI and URLs (some SIAM articles) [22]. Boris / Barbara Beeton: multi-volume works as books [20] and [19]. A couple of citations with DOIs: [21, 22]. Online citations: [41–43]. Artifacts: [33] and [4].

15 ACKNOWLEDGMENTS

Identification of funding sources and other support, and thanks to individuals and groups that assisted in the research and the preparation of the work should be included in an acknowledgment section, which is placed just before the reference section in your document.

This section has a special environment:

```
\begin{acks}
...
\end{acks}
```

so that the information contained therein can be more easily collected during the article metadata extraction phase, and to ensure consistency in the spelling of the section heading.

Authors should not prepare this section as a numbered or unnumbered \section; please use the "acks" environment.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

16 APPENDICES

If your work needs an appendix, add it before the "\end{document}" command at the conclusion of your source document.

Start the appendix with the "appendix" command:

\appendix

and note that in the appendix, sections are lettered, not numbered. This document has two appendices, demonstrating the section and subsection identification method.

17 MULTI-LANGUAGE PAPERS

Papers may be written in languages other than English or include titles, subtitles, keywords and abstracts in different languages (as a rule, a paper in a language other than English should include an English title and an English abstract). Use language=... for every language used in the paper. The last language indicated is the main language of the paper. For example, a French paper with additional titles and abstracts in English and German may start with the following command

\documentclass[sigconf, language=english, language=german, language=french]{acmart}

The title, subtitle, keywords and abstract will be typeset in the main language of the paper. The commands \translatedXXX, XXX begin title, subtitle and keywords, can be used to set these elements in the other languages. The environment translatedabstract is used to set the translation of the abstract. These commands and environment have a mandatory first argument: the language of the second argument. See sample-sigconf-i13n.tex file for examples of their usage.

18 SIGCHI EXTENDED ABSTRACTS

The "sigchi-a" template style (available only in Lagard and not in Word) produces a landscape-orientation formatted article, with a wide left margin. Three environments are available for use with the "sigchi-a" template style, and produce formatted output in the margin:

- sidebar: Place formatted text in the margin.
- marginfigure: Place a figure in the margin.
- margintable: Place a table in the margin.

ACKNOWLEDGMENTS

To Robert, for the bagels and explaining CMYK and color spaces.

REFERENCES

- [1] Rafal Ablamowicz and Bertfried Fauser. 2007. CLIFFORD: a Maple 11 Package for Clifford Algebra Computations, version 11. Retrieved February 28, 2008 from http://math.tntech.edu/rafal/cliff11/index.html
- [2] Sten Andler. 1979. Predicate Path expressions. In Proceedings of the 6th. ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages (POPL '79). ACM Press, New York, NY, 226–236. https://doi.org/10.1145/567752.567774
- [3] David A. Anisi. 2003. Optimal Motion Control of a Ground Vehicle. Master's thesis. Royal Institute of Technology (KTH), Stockholm, Sweden.
- [4] Sam Anzaroot and Andrew McCallum. 2013. UMass Citation Field Extraction Dataset. Retrieved May 27, 2019 from http://www.iesl.cs. umass.edu/data/data-umasscitationfield
- [5] Sam Anzaroot, Alexandre Passos, David Belanger, and Andrew McCallum. 2014. Learning Soft Linear Constraints with Application to Citation Field Extraction. arXiv:1403.1349

- [6] Lutz Bornmann, K. Brad Wray, and Robin Haunschild. 2019. Citation concept analysis (CCA)—A new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by two exemplary case studies including classic books by Thomas S. Kuhn and Karl R. Popper. arXiv:1905.12410 [cs.DL]
- [7] Kenneth L. Clarkson. 1985. Algorithms for Closest-Point Problems (Computational Geometry). Ph. D. Dissertation. Stanford University, Palo Alto, CA. UMI Order Number: AAT 8506171.
- [8] Jacques Cohen (Ed.). 1996. Special issue: Digital Libraries. Commun. ACM 39, 11 (Nov. 1996).
- [9] Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalances among conjunctive aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. https://doi.org/10.1145/1219092.1219093
- [10] Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalances among conjunctive aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. https://doi.org/10.1145/1219092.1219093
- [11] Bruce P. Douglass, David Harel, and Mark B. Trakhtenbrot. 1998. Statecarts in use: structured analysis and object-orientation. In Lectures on Embedded Systems, Grzegorz Rozenberg and Frits W. Vaandrager (Eds.). Lecture Notes in Computer Science, Vol. 1494. Springer-Verlag, London, 368–394. https://doi.org/10.1007/3-540-65193-4_29
- [12] J. Doyle, R. Shorten, and D. O'Mahony. 2013. Stratus: Load Balancing the Cloud for Carbon Emissions Control. *IEEE Transactions on Cloud Computing* 1, 1 (August 2013), 1–1. https://doi.org/10.1109/TCC.2013.49
- [13] Ian Editor (Ed.). 2007. The title of book one (1st. ed.). The name of the series one, Vol. 9. University of Chicago Press, Chicago. https://doi.org/10.1007/3-540-09237-4
- [14] Ian Editor (Ed.). 2008. The title of book two (2nd. ed.). University of Chicago Press, Chicago, Chapter 100. https://doi.org/10.1007/3-540-09237-4
- [15] Matthew Van Gundy, Davide Balzarotti, and Giovanni Vigna. 2007. Catch me, if you can: Evading network signatures with web-based polymorphic worms. In *Proceedings of the first USENIX workshop on Offensive Technologies (WOOT '07)*. USENIX Association, Berkley, CA, Article 7, 9 pages.
- [16] Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. 1993. Maintaining Discrete Probability Distributions Optimally. In Proceedings of the 20th International Colloquium on Automata, Languages and Programming (Lecture Notes in Computer Science, Vol. 700). Springer-Verlag, Berlin. 253–264.
- [17] David Harel. 1978. LOGICS of Programs: AXIOMATICS and DESCRIPTIVE POWER. MIT Research Lab Technical Report TR-200. Massachusetts Institute of Technology, Cambridge, MA.
- [18] David Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science, Vol. 68. Springer-Verlag, New York, NY. https://doi.org/10.1007/3-540-09237-4
- [19] Lars Hörmander. 1985. *The analysis of linear partial differential operators. III.* Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 275. Springer-Verlag, Berlin, Germany. viii+525 pages. Pseudodifferential operators.
- [20] Lars Hörmander. 1985. The analysis of linear partial differential operators. IV. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 275. Springer-Verlag, Berlin, Germany. vii+352 pages. Fourier integral operators.
- [21] IEEE 2004. IEEE TCSC Executive Committee. In Proceedings of the IEEE International Conference on Web Services (ICWS '04). IEEE Computer Society, Washington, DC, USA, 21–22. https://doi.org/10.1109/ICWS.2004.64
- [22] Markus Kirschmer and John Voight. 2010. Algorithmic Enumeration of Ideal Classes for Quaternion Orders. SIAM J. Comput. 39, 5 (Jan. 2010), 1714–1747. https://doi.org/10.1137/080734467
- [23] Bran Knowles. 2021. ACM TechBrief: Computing and Climate Change. ACM Tech Brief. ACM Technology Policy Council.
- [24] Donald E. Knuth. 1997. The Art of Computer Programming, Vol. 1: Fundamental Algorithms (3rd. ed.). Addison Wesley Longman Publishing Co., Inc.
- [25] David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.). Wiley, New York, NY.
- [26] Leslie Lamport. 1986. Lamport.
- [27] Newton Lee. 2005. Interview with Bill Kinder: January 13, 2005. Video. Comput. Entertain. 3, 1, Article 4 (Jan.-March 2005). https://doi.org/10.1145/1057270.1057278
- [28] Julia Lindberg, Yasmine Abdennadher, Jiaqi Chen, Bernard C. Lesieutre, and Line Roald. 2021. A Guide to Reducing Carbon Emissions through Data Center Geographical Load Shifting. In *Proceedings of the Twelfth ACM International Conference on Future Energy Systems* (e-Energy '21). ACM, Virtual Event, Italy, 430–436. https://doi.org/10.1145/3447555.3466582
- [29] Zhenhua Liu, Yuan Chen†, Cullen Bash†, Adam Wierman, Daniel Gmach†, Zhikui Wang†, Manish Marwah†, and Chris Hyser. 2012.
 Renewable and Cooling Aware Workload Management for Sustainable Data Centers. In ACM SIGMETRICS Performance Evaluation Review. Vol. 40. ACM, New York, NY, 175–186. https://doi.org/10.1145/2318857.2254779
- [30] Dave Novak. 2003. Solder man. Video. In ACM SIGGRAPH 2003 Video Review on Animation theater Program: Part I Vol. 145 (July 27-27, 2003). ACM Press, New York, NY, 4. https://doi.org/99.9999/woot07-S422 http://video.google.com/videoplay?docid=6528042696351994555

- [31] Barack Obama. 2008. A more perfect union. Video. Retrieved March 21, 2008 from http://video.google.com/videoplay?docid=6528042696351994555
- [32] Poker-Edge.Com. 2006. Stats and Analysis. Retrieved June 7, 2006 from http://www.poker-edge.com/stats.php
- [33] R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- [34] Bernard Rous. 2008. The Enabling of Digital Libraries. Digital Libraries 12, 3, Article 5 (July 2008). To appear.
- [35] Mehdi Saeedi, Morteza Saheb Zamani, and Mehdi Sedighi. 2010. A library-based synthesis methodology for reversible logic. *Microelectron.* 7. 41, 4 (April 2010), 185–194.
- [36] Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. 2010. Synthesis of Reversible Circuit Using Cycle-Based Approach. J. Emerg. Technol. Comput. Syst. 6, 4 (Dec. 2010).
- [37] Joseph Scientist. 2009. The fountain of youth. Patent No. 12345, Filed July 1st., 2008, Issued Aug. 9th., 2009.
- [38] Jiuchen Shi, Jiawen Wang, Kaihua Fu, Quan Chen, Deze Zeng, and Minyi Guo. 2022. QoS-awareness of Microservices with Excessive Loads via Inter-Datacenter Scheduling. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 324–334. https://doi.org/10.1109/IPDPS53621.2022.00039
- [39] Stan W. Smith. 2010. An experiment in bibliographic mark-up: Parsing metadata for XML export. In *Proceedings of the 3rd. annual workshop on Librarians and Computers (LAC '10, Vol. 3)*, Reginald N. Smythe and Alexander Noble (Eds.). Paparazzi Press, Milan Italy, 422–431. https://doi.org/99.9999/woot07-S422
- [40] Asad Z. Spector. 1990. Achieving application requirements. In *Distributed Systems* (2nd. ed.), Sape Mullender (Ed.). ACM Press, New York, NY, 19–33. https://doi.org/10.1145/90417.90738
- [41] Harry Thornburg. 2001. Introduction to Bayesian Statistics. Retrieved March 2, 2005 from http://ccrma.stanford.edu/~jos/bayes/bayes.html
- [42] TUG 2017. Institutional members of the TFX Users Group. Retrieved May 27, 2017 from http://wwtug.org/instmem.html
- [43] Boris Veytsman. 2017. acmart—Class for typesetting publications of ACM. Retrieved May 27, 2017 from http://www.ctan.org/pkg/acmart
- [44] Zhenyu Wen, Tao Lin, Renyu Yang, Shouling Ji, Rajiv Ranjan, Alexander Romanovsky, Changting Lin, and Jie Xu. 2019. GA-Par: Dependable Microservice Orchestration Framework for Geo-Distributed Clouds. *IEEE Transactions on Parallel and Distributed Systems* 31, 1 (July 2019), 129–143. https://doi.org/10.1109/TPDS.2019.2929389
- [45] Jiajia Zheng, Andrew A. Chien, and Sangwon Suh. 2020. Mitigating Curtailment and Carbon Emissions through Load Migration between Data Centers. Joule 4, 10 (2020), 2208–2222. https://doi.org/10.1016/j.joule.2020.08.001

A RESEARCH METHODS

A.1 Part One

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi malesuada, quam in pulvinar varius, metus nunc fermentum urna, id sollicitudin purus odio sit amet enim. Aliquam ullamcorper eu ipsum vel mollis. Curabitur quis dictum nisl. Phasellus vel semper risus, et lacinia dolor. Integer ultricies commodo sem nec semper.

A.2 Part Two

Etiam commodo feugiat nisl pulvinar pellentesque. Etiam auctor sodales ligula, non varius nibh pulvinar semper. Suspendisse nec lectus non ipsum convallis congue hendrerit vitae sapien. Donec at laoreet eros. Vivamus non purus placerat, scelerisque diam eu, cursus ante. Etiam aliquam tortor auctor efficitur mattis.

B ONLINE RESOURCES

Nam id fermentum dui. Suspendisse sagittis tortor a nulla mollis, in pulvinar ex pretium. Sed interdum orci quis metus euismod, et sagittis enim maximus. Vestibulum gravida massa ut felis suscipit congue. Quisque mattis elit a risus ultrices commodo venenatis eget dui. Etiam sagittis eleifend elementum.

Nam interdum magna at lectus dignissim, ac dignissim lorem rhoncus. Maecenas eu arcu ac neque placerat aliquam. Nunc pulvinar massa et mattis lacinia.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009