

We build Al systems that simulate the process of reasoning by using Logic Rules for Representation and Reasoning.

The Basics of Logic

A Knowledge Base contains sentences expressed using a representation language

x+y=4

Acceptable syntax in arithmetic representation.

x4y+=

Nonacceptable syntax in arithmetic representation.

x+y=4

means that when x and y are added, the result is 4.

M(α): All models in which sentence α is true \rightarrow All (x,y) values that satisfy x+y=4

Entailment

$$\alpha \models \beta$$

 α being true entails that β is also true.

Entailment

$$\alpha \models \beta$$

α being true entails that β is also true.

 α = No breeze in square [1,1] β = No pit in square [1,2]

No breeze in [1,1] entails no pit in [1,2] Also,

No breeze in [1,1] entails no pit in [2,1]

Propositional Logic

Propositional Logic is a representation language. It is used to represent sentences in a Knowledge Base. It has syntax and semantics.

Proposition Symbols

Represents one fact that can be True or False.

Symbol	Meaning
$W_{1,3}$	Wumpus in cell [1,3]
$P_{3,1}$	Pit in cell [3,1]
$B_{2,1}$	Breeze in cell [2,1]
$G_{2,3}$	Gold in cell [2,3]

Proposition Symbols

Represents one fact that can be True or False.

Symbol	Meaning
$W_{1,3}$	Wumpus in cell [1,3]
$P_{3,1}$	Pit in cell [3,1]
$B_{2,1}$	Breeze in cell [2,1]
$G_{2,3}$	Gold in cell [2,3]

One Propositional Symbol represents an atomic sentence. That's a simple fact about the world.

Logical Operators (Connectives):

Used to construct complex sentences from atomic sentences.

Symbol	Meaning		
V	OR (Disjunction)		
٨	AND (Conjunction)		
7	Not		
\Rightarrow	Implies		
\Leftrightarrow	If an only If		

Fig 7.2, Russell & Norvig's Textbook

Logical Operators (Connectives):

Used to construct complex sentences from atomic sentences.

Sentence	Meaning
$W_{1,3} \vee P_{3,1}$	Wumpus in cell [1,3] OR Pit in cell [3,1]
$W_{1,3} \wedge P_{3,1}$	Wumpus in cell [1,3] AND Pit in cell [3,1]
¬ W _{1,3}	Not Wumpus in cell [1,3]

4

3

Fig 7.2, Russell & Norvig's Textbook

Logical Operators (Connectives):

Premise ⇒ Conclusion

Antecedent ⇒ Consequence

$$W_{1,3} \Rightarrow \neg W_{2,2}$$

Wumpus in [1,3] Implies No Wumpus in [2,2]

Fig 7.2, Russell & Norvig's Textbook

Logical Operators (Connectives):

⇔ If and Only If

$$B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$$

There's a Breeze in [1, 1] If and Only If there's a Pit in [1,2] or there's a pit in [2,1].

Fig 7.2, Russell & Norvig's Textbook

Propositional Logic Semantics

Fig 7.2, Russell & Norvig's Textbook

Specify the truth of a sentence for a given model (values for the proposition symbols).

```
Sentence = P_{1,2} \lor (P_{2,2} \land P_{3,1})

m1 = \{P_{1,2} = False, P_{2,2} = False, P_{3,1} = True\}

m1 = False \ OR \ (False \ AND \ True)

= False \ OR \ False

= False
```

Propositional Logic Semantics

Fig 7.2, Russell & Norvig's Textbook

Five Semantic Rules for Complex Sentences:

- $\neg P$ is true iff P is false in m.
- $P \wedge Q$ is true iff both P and Q are true in m.
- $P \lor Q$ is true iff either P or Q is true in m.
- $P\Rightarrow Q$ is true unless P is true and Q is false in m.
- $P\Leftrightarrow Q$ is true iff P and Q are both true or both false in m.

Create a Knowledge Base for the Wumpus World using Propositional Logic

Fig 7.2, Russell & Norvig's Textbook

Step 1: Define Symbols

 $P_{x,\,y}$ is true if there is a pit in [x,y].

 $W_{x,\,y}$ is true if there is a wumpus in [x,y], dead or alive.

 $B_{x,y}$ is true if there is a breeze in [x,y].

 $S_{x,y}$ is true if there is a stench in [x,y].

 $L_{x,y}$ is true if the agent is in location [x,y].

4

3

Fig 7.2, Russell & Norvig's Textbook

Step 2: Express Knowledge using Symbols

Each Rule is labeled as R_i :

- There is no pit in [1,1]: $R_1: \neg P_{1,1}$.
- Include breeze percept for the first two squares:

$$R_2$$
: $\neg B_{1,1}$.

• A square is breezy IFF there is a pit in a neighboring cell: $R_3 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$

2

Fig 7.2, Russell & Norvig's Textbook

Check for entailments: KB

$$KB \models \alpha$$

These are the symbol in my KB:

$$egin{array}{c|c} B_{1,1} & P_{1,1} & P_{1,2} & P_{2,1} \end{array}$$

- I would like to find if the KB entails that there is, or isn't, a pit in locations [1,2] or [2,1].
- Check if the KB entails α , where α could refer to $P_{1,2}$ or $P_{2,1}$.

Fig 7.2, Russell & Norvig's Textbook

Check for entailments: $KB \models C$

- Create a Truth-Table for all symbols in KB.
- Set the values we know $B_{1,1} = False$, $P_{1,1} = False$.
- Consider all possible values for the symbols we don't know that we do not know: $P_{1,2}$, $P_{2,1}$

$B_{1,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	R_1	R_2	R_3
False	False	True	True			
False	False	True	False			
False	False	False	True			
False	False	False	False			

Fig 7.2, Russell & Norvig's Textbook

Check for entailments: $KB \models \alpha$

$$KB \models \alpha$$

Check if some values of $P_{1,2}$, $P_{2,1}$ satisfy all rules:

$$R_1: \neg P_{1,1}.$$

$$R_2$$
: $\neg B_{1,1}$.

$$R_3: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$

$B_{1,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	R_1	R_2	R_3
False	False	True	True	True	True	False
False	False	True	False	True	True	False
False	False	False	True	True	True	False
False	False	False	False	True	True	True

Fig 7.2, Russell & Norvig's Textbook

There is one case in which All Rules are Satisfied: $P_{1,2} = False$, $P_{2,1} = False$. Therefore, we infer that there is no Pit in either locations.

Let the agent move to [2,1].

Now repeat the same inference exercise to find out if there's a Pit in locations [2,2] and [3,1].

Fig 7.2, Russell & Norvig's Textbook

Step 2: Express Knowledge using Symbols

Each Rule is labeled as R_i :

• There are no pits in [1,1], [2,1]:

$$R_1: \neg P_{1,1}.$$
 $R_2: \neg P_{2,1}.$

Include breeze percept for the first two squares:

 $egin{array}{ll} R_4: &
eg B_{1,1}. \ R_5: & B_{2,1}. \end{array}$

A square is breezy IFF there is a pit in a neighboring cell:

$$R_3: \quad B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$$

2

Fig 7.2, Russell & Norvig's Textbook

Check for entailments: $KB \models$

$$KB \models \alpha$$

- Create a Truth-Table for all symbols in KB.
- Set the values we know
 - $B_{1,1} = False$,
 - $B_{2.1} = True$,
 - $P_{1.1} = False$,
 - $P_{2,1} = False$.
- Consider all possible values for the symbols we do not know: P_{3,1}, P_{2,2}

Fig 7.2, Russell & Norvig's Textbook

Check for entailments: $KB \models \alpha$

KB cannot entail whether [3,1] has a Pit or not, and whether [2,2] has a Pit or not!

Fig 7.2, Russell & Norvig's Textbook

Propositional Logic Inference tries to find if the KB entails a certain sentence a by checking if the value of a is True whenever the KB is True.

Propositional Logic provides means to represent logical facts about the world (KB), and inference methods to reason and infer new knowledge from current knowledge.