第十二届全国大学生数学竞赛决赛 (数学类高年级组) 试题与参考答案

一、填空题 (本题 20 分, 每小题 5 分)

1、设
$$\Omega:(x-2)^2+(y-3)^2+(z-4)^2\leq 1$$
,则积分
$$\iiint_{\Omega}\left(x^2+2y^2+3z^2\right)\mathrm{d}\,x\,\mathrm{d}\,y\,\mathrm{d}\,z=\underline{\qquad}.$$

【参考答案】: $\frac{1424\pi}{15}$

2、设
$$x_n = \sum_{k=1}^n rac{e^{k^2}}{k}, y_n = \int_0^n e^{x^2} \, \mathrm{d}\, x$$
,则 $\lim_{n o \infty} rac{x_n}{y_n} =$ ______.

【参考答案】: 2

3、矩阵
$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
的 Jordan 标准型为_____.

4、设 A 为 2021 阶对称矩阵,A 的每一行均为 $1,2,\cdots,2021$ 的一个排列,则 A 的迹 $\operatorname{tr} A = \underline{\hspace{1cm}}$

【参考答案】: 1011×2021

- 二、 (15 分) 给定yOz平面上的圆 $C: y=\sqrt{3}+\cos\theta, z=1+\sin\theta(\theta\in[0,2\pi])$.
- 1、求C绕z轴旋转所得到的环面S的隐式方程.

2、设 $z_0 \geq 0$,以 $M\left(0,0,z_0\right)$ 为顶点的两个锥面 S_1 和 S_2 的半顶角之差为 π / 3 ,且均与环面 S 相切(每条母线都与环面相切),求 z_0 和 S_1,S_2 的隐式方程.

【参考解答】:1、由yOz平面的圆C的参数方程消去参数 θ 可得

$$C: egin{cases} (y-\sqrt{3})^2 + (z-1)^2 = 1 \ x = 0 \end{cases}$$

由此可得绕z轴旋转获得的环面S的方程

$$\left(\pm\sqrt{x^2+y^2}-\sqrt{3}\right)^2+(z-1)^2=1$$

化简得到

$$S: \left(x^2 + y^2 + (z-1)^2 + 2\right)^2 = 12\left(x^2 + y^2\right).$$

2、记圆C的圆心坐标为 $O^{'}(0,\sqrt{3},1),M$ 的坐标为(0,0,t),M与圆C的两个切点坐标分别为A,B,则由两个圆锥半顶角之差为 $\frac{\pi}{3}$ 可得 $\angle O^{'}MA=\angle O^{'}MB=\frac{\pi}{6}$,进而通过解三角形可得t=0或t=2.

当 t=0 时,得 M(0,0,0) ,此时切点坐标为 $Aigg(0,rac{\sqrt{3}}{2},rac{3}{2}igg), B(0,\sqrt{3},0)$,锥面 S_1 的母

线即为直线 MA ,其方程为 $L_1: egin{cases} x=0 \ \sqrt{3}y-z=0 \end{cases}$, S_1 即为 L_1 绕 z 轴所得旋转面,其方程

为 $S_1:z=\sqrt{3ig(x^2+y^2ig)}$. 锥面 S_2 的母线即为直线 MB ,其方程为 $L_2:ig\{x=0,\ z=0,\ z=0,\$ 即为 L_2 绕z 轴所得旋转面,其方程为 $S_2:z=0$.

当 t=2 时,得 M(0,0,2) ,此时切点坐标为 $Aigg(0,rac{\sqrt{3}}{2},rac{1}{2}igg), B(0,\sqrt{3},2)$,两条母线的方程分别为

$$L_{1}^{'}:egin{cases} x=0 \ \sqrt{3}y+z-2=0 \end{cases}$$
 π $L_{2}^{'}:egin{cases} x=0 \ z=2 \end{cases}$

对应的锥面方程为

$$S_{1}^{'}:z=2-\sqrt{3ig(x^{2}+y^{2}ig)}$$
 for $S_{2}^{'}:z=2$

三、(15 分) 设 n 阶复方阵 A_1, \cdots, A_{2n} 均相似于对角阵, \mathbb{C}^n 表示复 n 维列向量空间. 证明:

1、 $\mathbb{C}^n=\ker A_k\oplus\operatorname{Im} A_k$. 这里

$$\ker A_k = \left\{ lpha | \, A_k lpha = 0, lpha \in \mathbb{C}^n \,
ight\}, \ \ \operatorname{Im} A_k = \left\{ \left. A_k eta | \, eta \in \mathbb{C}^n \,
ight\} (k=1,...,2n).$$

2、 若对所有的 k < j 皆有 $A_k A_j = 0 (k,j=1,2,\cdots,2n)$,则 A_1,\cdots,A_{2n} 中至少有 n 个矩阵为零矩阵.

【参考解答】:由 A_k 可复对角|化可知,存在可逆矩阵 $P_k = \left(p_1^{(k)}, \cdots, p_n^{(k)}\right)$ 使得

$$A_k P_k = ext{diag}ig(\lambda_1^{(k)}, \cdots, \lambda_n^{(k)}ig) P_k$$

不妨设 $p_1^{(k)},\cdots,p_t^{(k)}$ 为关于特征值 0 的特征向量, $p_{t+1}^{(k)},\cdots,p_n^{(k)}$ 为关于特征值 $\lambda\neq 0$ 的特征向量.于是,

$$\begin{split} & \ker A_k = \operatorname{span} \left\{ p_1^{(k)}, \cdots, p_t^{(k)} \right\}, \\ & \operatorname{Im} A_k = \operatorname{span} \left\{ p_{t+1}^{(k)}, \cdots, p_n^{(k)} \right\}. \end{split}$$

这里若 A_k 不以 0 为特征值时, $\ker A_k = 0$.

事实上,若 $\dim \ker A_k > t$,则特征值 0 的代数重数> t,矛盾. 从而有

$$\ker A_k = \operatorname{span}\left\{\,p_1^{(k)}, \cdots, p_t^{(k)}\,\right\}$$

另一方面, $orall y \in \mathbb{C}^n, y$ 可写成 $y = a_1 p_1^{(k)} + \cdots + a_n p_n^{(k)}$,结果

$$Ay = a_{t+1}\lambda_{t+1}^{(k)}p_{t+1}^{(k)} + \dots + a_n\lambda_n^{(k)}p_n^{(k)} \in \operatorname{span}\left\{p_{t+1}^{(k)}, \dots, p_n^{(k)}\right\}.$$

从而有 $\operatorname{Im} A_k = \operatorname{span} \left\{ p_{t+1}^{(k)}, \cdots, p_n^{(k)}
ight\}$,故有

$$\mathbb{C}^n = \ker A_{\iota_n} \oplus \operatorname{Im} A_{\iota_n}$$

现由条件 $A_1A_2=0$ 得 $\operatorname{Im}A_2\subseteq\ker A_1$,进而有

$$\mathbb{C}^n = (\ker A_1 \cap \ker A_2) \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1.$$

事实上,由 $\mathbb{C}^n=\ker A_2\oplus\operatorname{Im} A_2$ 可知, $\forall u\in\ker A_1, u=u_1+u_2$,其中 $u_1\in\ker A_2, u_2\in\operatorname{Im} A_2.$

又由 $\operatorname{Im} A_2 \subseteq \ker A_1$ 得

$$u_1 = (u - u_2) \in \ker A_2 \cap \ker A_1$$
.

结果 $\ker A_1$ 有直和分解:

$$\ker A_1 = \big(\ker A_2 \cap \ker A_1\big) \oplus \operatorname{Im} A_2$$

于是 $\mathbb{C}^n = (\ker A_1 \cap \ker A_2) \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1$.

利用 $A_1A_3=0,A_2A_3=0$ 及 $\mathbb{C}^n=\ker A_3\oplus \operatorname{Im} A_3$, 重复前述对 $\ker A_1$ 进行分解的过程又可得

$$\ker A_2 \cap \ker A_1 = (\ker A_3 \cap \ker A_2 \cap \ker A_1) \oplus \operatorname{Im} A_3$$

从而有

$$\mathbb{C}^n = (\ker A_1 \cap \ker A_2 \cap \ker A_3) \oplus \operatorname{Im} A_3 \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1$$

最后有

$$\mathbb{C}^n = \left(\ker A_1 \cap \dots \cap \ker A_{2n}\right) \oplus \operatorname{Im} A_1 \oplus \dots \oplus \operatorname{Im} A_{2n}$$

两边取维数得

$$n=\dim \bigl(\text{ ker } A_1\cap \cdots \cap \text{ ker } A_{2n}\bigr) + \operatorname{rank} A_1 + \cdots + \operatorname{rank} A_{2n}$$

因此 $\mathbf{rank}\ A_1,\cdots,\mathbf{rank}\ A_{2n}$ 中至少有 n 个为 0,即 A_1,\cdots,A_{2n} 中至少有 n 个矩阵为零矩阵. 证毕.

四、 $(20 \, \mathbf{f})$ 称实函数 f 满足条件(P) : 若 f 在 [0,1] 上非负连续,

$$f(1) > f(0) = 0, \int_0^1 \frac{1}{f(x)} \mathrm{d} \, x = +\infty$$
 ,

且对任何
$$x_1,x_2\in[0,1]$$
 成立 $f\bigg(\frac{x_1+x_2}{2}\bigg)\geq \frac{f\left(x_1\right)+f\left(x_2\right)}{2}.$

1、令c>0,对于 $f_1(x)=cx$ 和 $f_2(x)=\sqrt{x}$,分别验证 f_1,f_2 是否满足条件 $\left(P
ight)$,并计算 $\lim_{x o 0^+}\left(f_1(x)-xf_1'(x)
ight)^me^{f_1'(x)}$ 和 $\lim_{x o 0^+}\left(f_2(x)-xf_2'(x)
ight)^me^{f_2'(x)}$.

2、证明: $\forall m \geq 1$,存在满足条件(P)的函数 f 以及趋于零的正数列 $\left\{x_n\right\}$,使得 f 在每一点 x_n 可导,且 $\lim_{n \to +\infty} \left(f\left(x_n\right) - x_n f'\left(x_n\right)\right)^m e^{f'\left(x_n\right)} = +\infty$.

【参考解答】: 注意到
$$f(x) - xf'(x) = -x^2 \left(\frac{f(x)}{x}\right)'$$
 .

1、易见 f_1, f_2 都在[0,1]上非负连续, $f_1(1) > f_1(0) = 0, f_2(1) > f_2(0) = 0$. 对于

$$x>0,f_{1}^{'}(x)=c,f_{1}^{''}(x)=0,f_{2}^{'}(x)=rac{1}{2}x^{-1/2},f_{2}^{''}(x)=-rac{1}{4}x^{-3/2}$$
 .

因此, f_1, f_2 均是[0,1]上的凹函数. 由于

$$\int_0^1 \frac{1}{f_1(x)} \, \mathrm{d} \, x = +\infty, \int_0^1 \frac{1}{f_2(x)} \, \mathrm{d} \, x < +\infty$$

所以 f_1 满足条件(P)而 f_2 不满足条件(P).

另一方面
$$f_1(x)-xf_1^{'}(x)\equiv 0$$
,因此,

$$\lim_{x \to 0^+} \left(f_1(x) - x f_1'(x) \right)^m e^{f_1'(x)} = 0.$$

$$\overline{\mathbb{I}}\lim_{x o 0^+} \left(f_2(x) - x f_2^{'}(x)
ight)^m e^{f_1^{'}(x)} = \lim_{x o 0^+} \left(rac{\sqrt{x}}{2}
ight)^m e^{rac{1}{2\sqrt{x}}} = +\infty\,.$$

2、从 1 的结果得到提示,我们用类似函数 \sqrt{x} 与 cx 的函数来构造想要的例子.注意到对于(0,1]中严格单调下降并趋于零的点列 $\left\{a_n\right\}$,当函数 f 的图像为依次连接 $\left(a_n,\sqrt{a_n}\right)$ 的折线且 f(0)=0 时,条件(P) 成立.

于是,我们可以尝试寻找这样一列 $\left\{a_n\right\}$ 以及 $x_n\in\left(a_{n+1},a_n\right)$ 以满足题目的要求。 具体地,取 $a_0=1,x_n\in\left(a_{n+1},a_n\right)$ 待定。我们给出 f 的表达式如下:

$$f(x) = \begin{cases} \sqrt{a_{n+1}} + k_n \left(x - a_{n+1}\right), & x \in \left(a_{n+1}, a_n\right]; n \geq 0 \\ 0, & x = 0 \end{cases}$$

其中
$$k_n = rac{\sqrt{a_n} - \sqrt{a_{n+1}}}{a_n - a_{n+1}} = rac{1}{\sqrt{a_n} + \sqrt{a_{n+1}}}.$$

注意到

$$\int_{a_{n+1}}^{a_n} \frac{1}{f(x)} \, \mathrm{d} \, x = \frac{1}{2k_n} \ln \frac{a_n}{a_{n+1}} \geq \frac{\sqrt{a_n}}{2} \ln \frac{a_n}{a_{n+1}}$$

取
$$a_{n+1} = a_n e^{-rac{2}{n\sqrt{a_n}}}$$
,即有 $0 < a_{n+1} < a_n$,且 $\int_{a_{n+1}}^{a_n} rac{1}{f(x)} \mathrm{d}\, x \geq rac{1}{n}.$

另一方面,在
$$\left(a_{n+1},a_n
ight)$$
内, $f'(x)=k_n\geq rac{1}{2\sqrt{a_n}}$,

$$f(x) - xf'(x) = rac{\sqrt{a_n}\sqrt{a_{n+1}}}{\sqrt{a_n} + \sqrt{a_{n+1}}} \geq rac{\sqrt{a_n}e^{-rac{1}{n\sqrt{a_n}}}}{2}$$

因此,任取 $x_n \in (a_{n+1}, a_n)$,均有

$$\lim_{n o +\infty}ig(fig(x_nig)-x_nf'ig(x_nig)ig)^m\,e^{f'ig(x_nig)}\geq \lim_{n o +\infty}\Bigg(rac{\sqrt{a_n}e^{-rac{1}{n\sqrt{a_n}}}}{2}\Bigg)^m\,e^{rac{1}{2\sqrt{a_n}}}=+\infty$$

因此 $\lim_{n \to +\infty} \left(f\left(x_n\right) - x_n f'\left(x_n\right) \right)^m e^{f'\left(x_n\right)} = +\infty$.

五、(10 分)设 $\left\{f_n(x)\right\}_{n\geq 1}$ 是 \mathbb{R} 上可测函数列, $f_n^2, f^2 \in \mathcal{L}(\mathbb{R}) (\forall n\geq 1)$,且对 $\mathcal{L}-a.e.x\in \mathbb{R}, \lim_{n\to\infty} f_n(x)=f\left(x\right)$.若

$$\lim_{n o\infty}\int_{\mathbb{R}}ig|f_n(x)ig|^2\,\mathrm{d}\,m=\int_{\mathbb{R}}\!|f(x)|^2\,\,\mathrm{d}\,m$$
 ,

 $\mathop{\mathbb{I}\!\!\!\!/} \lim_{n\to\infty} \int_{\mathbb{R}} \left| f_n(x) - f(x) \right|^2 \mathrm{d}\, m = 0.$

【参考证明】:【思路一】因为 $f^2\in\mathcal{L}(\mathbb{R})$,所以 $orallarepsilon>0,\exists\,n_arepsilon$ 及 $\delta>0$ 使得

$$\int_{\left. \mathbb{R}\setminus\left[-n_{arepsilon},n_{arepsilon}
ight] }\mid f(x)\mid^{2}\,\mathrm{d}\,m$$

且对任何可测集 $E\subseteq\mathbb{R}$,当 $mE<\delta$ 时,有

$$\int_E |f(x)|^2 dm < \varepsilon.$$

又 $f_n(x) \to f(x)(n \to \infty)\mathcal{L} - a.e.x \in \mathbb{R}$. 由叶果诺夫定理,存在可测子集 $E_\varepsilon \subseteq \left[-n_\varepsilon, n_\varepsilon\right]$ 使得 $mE_\varepsilon < \delta, \left\{f_n(x)\right\}_{n \geq 1}$ 在 $\left[-n_\varepsilon, n_\varepsilon\right] \setminus E_\varepsilon$ 上一致收政到f(x).

令
$$E_{_{1}}=\left[-n_{_{arepsilon}},n_{_{arepsilon}}
ight]\setminus-E_{_{arepsilon}}$$
,有

$$\int_{E_n} ig| f_n(x) - f(x) ig|^2 \, \mathrm{d} \, m o 0, \ \ n o \infty$$

且

$$\int_{E_1} ig| f_n(x) ig|^2 \, \mathrm{d} \, m o \int_{E_1} |f(x)|^2 \, \, \mathrm{d} \, m, \; \; n o \infty$$

事实上,

$$f_n(x) \to f(x) (n \to \infty, x \in E_1, mE_1 < \infty),$$

则 $\forall \varepsilon > 0, \exists N \geq 1, \forall n \geq N$ 以及 $x \in E_1$,成立

$$\left|f_n(x) \to f(x)\right| < \varepsilon, \int_{E_1} \left|f_n(x) - f(x)\right|^2 \mathrm{d}\, m \le \varepsilon^2 \cdot m E_1,$$

故

$$\lim_{n\to\infty}\int_{E_1}\bigl|f_n(x)-f(x)\bigr|^2\,\mathrm{d}\,m=0.$$

又

$$\left| \left| \int_{E_1} \left| f_n(x) \right|^2 \mathrm{d}\, m \right|^{\frac{1}{2}} - \left| \int_{E_1} \left| f(x) \right|^2 \, \mathrm{d}\, m \right|^{\frac{1}{2}} \right| \leq \left| \int_{E_1} \left| f_n(x) - f(x) \right|^2 \mathrm{d}\, m \right|^{\frac{1}{2}}$$

得

$$\lim_{n o\infty}\int_{E_1}ig|f_n(x)ig|^2\,\mathrm{d}\,m=\int_{E_1}ig|f(x)\mid^2\,\mathrm{d}\,m.$$

又因为

$$\lim_{n o\infty}\int_{\mathbb{R}}ig|f_n(x)ig|^2\,\mathrm{d}\,m=\int_{\mathbb{R}}|f(x)|^2\,\,\mathrm{d}\,m$$

从而

$$\lim_{n o\infty}\int_{E_1^c}ig|f_n(x)ig|^2\,\mathrm{d}\,m=\int_{E_1^c}ig|f(x)\mid^2\,\mathrm{d}\,m.$$

注意到
$$E_1^c = \left(\mathbb{R} \setminus \left[-n_{arepsilon}, n_{arepsilon}
ight]
ight)igcup_{E_{arepsilon}}, mE_{arepsilon} < \delta$$
,得 $\prod_{n o \infty} \int ig|f_n(x) - f(x)ig|^2 \,\mathrm{d}\, m$ $\leq \lim_{n o \infty} \int_{E_1} ig|f_n(x) - f(x)ig|^2 \,\mathrm{d}\, m + 2\int_{E_1^c} |f(x)|^2 \,\,\mathrm{d}\, m$

 $< 8\varepsilon$

由 ε 的任意性,得

$$\lim_{n\to\infty} \int \left| f_n(x) - f(x) \right|^2 \mathrm{d}\, m = 0.$$

【思路二】记 $f_0=f$. 由假设得 $\left\{\int_{\mathbb{R}}f_n^2(x)\,\mathrm{d}\,m
ight\}_{n\geq 0}$ 有界. 设S 为它的一个上界. 任取 $g\in L^2(\mathbb{R})$,我们要证

$$\lim_{n o\infty}\int_{\mathbb{R}}f_n(x)g(x)\,\mathrm{d}\,m\,=\,\lim_{n o\infty}\int_{\mathbb{R}}f_n(x)g(x)\,\mathrm{d}\,m$$

先令 $g\in C_c(\mathbb{R})$,其中 $C_c(\mathbb{R})$ 表示 \mathbb{R} 上有紧支集的连续函数全体.任取 A>0 以及 M>0 使得 $\sup g\subseteq [-A,A]$.记 $E\equiv E_A=[-A,A]$,则

$$mEig(ig|f_nig|>Mig)\leq rac{1}{M^2}\int_Eig|f_n(x)ig|^2\,\mathrm{d}\,m\leq rac{S}{M^2}$$

于是

$$egin{aligned} \left| \int_E f_n(x) g(x) \, \mathrm{d} \, m - \int_E f(x) g(x) \, \mathrm{d} \, m
ight| \ & \leq rac{2S}{M} \|g\|_{\infty} + \left| \int_E g ilde{f}_{n,M} \, \mathrm{d} \, m - \int_E g ilde{f}_{0,M} \, \mathrm{d} \, m
ight| \end{aligned}$$

其中

$$ilde{f}_{n,M}(x) = egin{cases} f_n(x), & ig|f_n(x)ig| \leq M \ M, & f_n(x) > M \ -M, & f_n(x) < -M \end{cases}$$

注意到 $ilde{f}_{n,M}
ightarrow f_{0,M}(x), a.e.x \in \mathbb{R}$,结合控制收敛定理,我们有

$$\overline{\lim_{n o\infty}} \left| \int_E f_n(x) g(x) \,\mathrm{d}\, m - \int_E f(x) g(x) \,\mathrm{d}\, m
ight| \leq rac{2S}{M} \|g\|_\infty$$

于是由M>0的任意性可得

$$\lim_{n o \infty} \int_E f_n(x) g(x) \, \mathrm{d} \, m = \int_E f(x) g(x) \, \mathrm{d} \, m.$$

注意到 $\sup g\subseteq [-A,A]$,即(1)对于 $g\in C_c(\mathbb{R})$ 成立.

由 $C_c(\mathbb{R})$ 在 $L^2(\mathbb{R})$ 中的稠密性可得对任何 $g \in L^2(\mathbb{R}), (1)$ 成立. 最后得到

$$\begin{split} &\lim_{n\to\infty} \int_{\mathbb{R}} \left| f_n(x) - f(x) \right|^2 \mathrm{d}\, m \\ &= \lim_{n\to\infty} \int_{\mathbb{R}} \left(f_n^2(x) + f^2(x) - 2f_n(x)f(x) \right) \mathrm{d}\, m \\ &= \int_{\mathbb{R}} \left(f^2(x) + f^2(x) - 2f(x)f(x) \right) \mathrm{d}\, m = 0. \end{split}$$

六、(10 分) 设函数列 $\left\{f_n(z)\right\}$ 在区域 G 上解析,且在 G 中内闭一致收敛于函数 f(z). 证明:

1、若 f(z)不恒为零, l是 G 内可求长的简单闭曲线,其内部属于 G,且不经过 f(z) 的零点,则存在正整数 N,使得当 $n \geq N$ 时,在 l 的内部 $f_n(z)$ 和 f(z) 有相同个数的零点;

2、若 $\{f_n(z)\}$ 在区域G内还是单叶的,f(z)不为常数,则f(z)在G内单叶解析.

【参考证明】:1、由 Weierstrass 定理, f(z)在G内解析.因 f(z)在l上不为零,所以 $\min_{z\in l}\mid f(z)\mid=m>0$.

又 $ig\{f_n(z)ig\}$ 在 l 上一致收敛到 f(z),存在正整数 N ,使得当 $n \geq N$ 时,在 l 上有 $ig|f_n(z)-f(z)ig| < m$

即当 $n\geq N$ 时,在 l 上有 $\left|f_n(z)-f(z)\right|<\left|f(z)\right|$. 由 Rouche 定理,在 l 的内部, $f_n(z)$ 和 f(z) 有相同个数的零点.

2、反证法. 若 f(z)在 G 内不是单叶的,那么在 G 内至少存在两点 z_1 和 z_2 $\left(z_1 \neq z_2\right)$ 使得 $f\left(z_1\right) = f\left(z_2\right)$. 令 $F_n(z) = f_n(z) - f(z_1)$,则 $\left\{F_n(z)\right\}$ 在 G 内闭一致收敛于不恒为零的解析函数 $F(z) = f(z) - f\left(z_1\right)$.

在G内分别以 z_1,z_2 为心,作不交且外离的两个小圆

$$C_1:\left|z-z_1
ight|=r_1$$
 $\pi C_2:\left|z-z_1
ight|=r_2$.

由第 1 部分结论,存在正整数 N ,使当 $n\geq N$ 时, $F_n(z)$ 在 C_1 与 C_2 的内部与 F(z)有相同个数的零点,即在 C_1 与 C_2 内分别存在 z_1^* 与 z_2^* ,使

$$f\!\left(z_1^*
ight) = f_n\!\left(z_2^*
ight) = f_n\!\left(z_1
ight).$$

这与 $f_n(z)$ 在G内单叶矛盾.

七、(10分)设R为有单位元的交换环,R[x]是R上的一元多项式环,

$$f(x)=a_0+a_1x+\cdots+a_nx^n\in R[x].$$

证明: f(x) 在环R[x] 中可逆当且仅当 a_0 在R中可逆且 a_1,\ldots,a_n 均为R中的幂零元.

【参考证明】:先证充分性. 由于 a_0 可逆, 记

$$b_i = a_0^{-1}a_i, 1 \le i \le n, g(x) = b_1x + \dots + b_nx^n.$$

则有 $f(x) = a_0(1+g(x))$. 对任意 $1 \leq i \leq n, a_i$ 幂零,故存在正整数 m_i 使得

 $a_i^{m_i}=0$. 令 $N=\max\left\{m_1,\cdots,m_n
ight\}$,则有 $a_i^N=0$,从而 $b_i^N=a_0^{-N}a_i^N=0$.由于

$$g(x)^{nN} = \left(b_1 x + \dots + b_n x^n\right)^{nN}$$

展开式中任一项系数形如

$$rac{(nN)!}{k_1!\cdots k_n!}b_1^{k_1}\cdots b_n^{k_n}$$

其中 $0 \le k_1, \cdots, k_n \le nN$ 且 $k_1+\cdots+k_n=nN$,从而必存在某个 k_j 使 得 $k_i \ge N.$ 由此 $b_i^{k_j}=0$,从而 $g(x)^{nN}=0$.于是

$$\begin{split} f(x) \cdot a_0^{-1} \Big(-g(x) + g(x)^2 - \dots + (-1)^{nN-1} g(x)^{nN-1} \Big) \\ &= 1 + (-1)^{nN-1} g(x)^{nN} = 1 \end{split}$$

所以f(x)在R[x]中可逆.

为证明必要性,首先证明如下论断:若 $a\in R$ 不是幂零元,则存在R的素理想P使得 $a\not\in P$. 事实上,考虑集合

$$S = \left\{I | I \in R \text{ 的理想且} I \cap \left\{a, a^2, \cdots
ight\} = \varnothing
ight\}.$$

由于a 不是幂零元,显然 R 的零理想 $(0)\in S$,因此 S 非空.S 按照集合的包含关系成为一个偏序集,任取 S 的一个链(全序子集) $T=\left\{I_{\alpha}|\ \alpha\in J\right\}$,其中 J 为指标集.令 $A=\bigcup_{\alpha\in J}I_{\alpha}$,则 A 是 R 的理想且 $A\cap\left\{a,a^2,\cdots\right\}=\varnothing$,即 $A\in S$.显 然 A 为链 T

的上界,根据 Zorn 引理,偏序集S 有极大元P. 显然 $a \not\in P$,下面证明P 为R 的素理想.反之,若存在 $u,v \in R \setminus P$,但是 $uv \in P$. 由 P 的极大性,理想 (u)+P 和 (v)+P 均不在 S 中,从而存在正整数 s 和 t 使得 $a^s \in (u)+P$, $a^t \in (v)+P$.设 $a^s = uy+p_1, a^t = vz+p_2$,其中 $y,z \in R, p_1, p_2 \in P$,则有

$$a^{s+t} = (uy + p_1)(vz + p_2) = (uv)yz + (uy)p_2 + p_1(vz) + p_1p_2,$$

由 $uv, p_1, p_2 \in P$ 得到 $a^{s+t} \in P$,与 $P \in S$ 矛盾.

下面证明必要性. 由于 f(x) 可逆, 故存在 $h(x) \in R[x]$ 使得 f(x)h(x) = 1.

设h(x)的常数项为 h_0 ,从而 $a_0h_0=1$,故 a_0 在R中可逆. 任取R的一个素理想P,对于 $a\in R$,用 \bar{a} 表示a 在自然同态 $\eta:R\to \bar{R}=R$ / P 下的像,即

$$\overline{a} = \eta(a) = a + P$$
.

记 $\overline{f}(x)=\overline{a_0}+\overline{a_1}x+\cdots+\overline{a_n}x^n\in \overline{R}[x]$ 为 f(x) 在自然同态 η 下诱导出来的像,由 f(x)h(x)=1 可得 $\overline{f}(x)\overline{h}(x)=\overline{1}$,所以 $\overline{f}(x)$ 在 $\overline{R}[x]$ 中可逆. 由于 P 为素理想, \overline{R} 为整环,即 $\overline{f}(x)$ 是整环上的可逆多项式,所以 $\overline{f}(x)=\overline{a_0}$ 为 \overline{R} 中的可逆元,从而对于任意 $1\leq i\leq n$ 有 $\overline{a_i}=\overline{0}$,即 $a_i\in P$,故 a_i 包含在 R 的所有素理想中,所以 a_i 为幂零元.

八、(10 分) 设S: r = (x, y, h(x, y)) 为三维欧氏空间中的光滑曲面,h(x, y) 是关于x, y 的光滑函数.

1、求S 的平均曲率的表达式.

2、设S 为极小曲面,当h(x,y)=f(x)+g(y)时,求h(x,y)的表达式,其中函数f,g均为光滑函数.

【参考解答】: 1、经计算可得

$$egin{aligned} r_x &= ig(1,0,h_xig), r_y &= ig(0,1,h_yig), \ r_{xx} &= ig(0,0,h_{xx}ig), r_{xy} &= ig(0,0,h_{xy}ig), r_{yy} &= ig(0,0,h_{yy}ig). \end{aligned}$$

经计算可得S 的单位法向量

$$ec{n} = rac{ec{r}_x imes ec{r}_y}{\left|ec{r}_x imes ec{r}_y
ight|} = rac{1}{\sqrt{1+h_x^2+h_y^2}}ig(-h_x,-h_y,1ig)$$

以及S的第一基本形式系数和第二基本形式的系数

$$egin{aligned} E &= r_x \cdot r_x = 1 + h_x^2, F = r_x \cdot r_y = h_x h_y, G = r_y \cdot r_y = 1 + h_y^2, \ L &= r_{xx} \cdot n = rac{h_{xx}}{\sqrt{1 + h_x^2 + h_y^2}}, M = r_{xy} \cdot n = rac{h_{xy}}{\sqrt{1 + h_x^2 + h_y^2}}, \ N &= r_{yy} \cdot n = rac{h_{yy}}{\sqrt{1 + h_x^2 + h_y^2}} \end{aligned}$$

于是,可得S 的平均曲率

$$egin{aligned} H &= rac{LG - 2FM + EN}{2ig(EG - F^2ig)} \ &= rac{h_{xx}ig(1 + h_y^2ig) - 2h_xh_yh_{xy} + h_{yy}ig(1 + h_x^2ig)}{2ig(1 + h_x^2 + h_y^2ig)^{rac{2}{3}}} \end{aligned}$$

2、当h(x,y)=f(x)+g(y)时,我们有 $h_x=f^{'}(x), h_y=g^{'}(y), h_{xx}=f^{''}(x), \ h_{xy}=0, h_{yy}=g^{''}(y)$

于是,我们有

$$H=rac{f^{\prime\prime}(x)\Big(1+ig(g^\prime(y)ig)^2\Big)+g^{\prime\prime}(y)\Big(1+ig(f^\prime(x)ig)^2\Big)}{2\Big(1+ig(f^\prime(x)ig)^2+ig(g^\prime(y)ig)^2\Big)^{rac{2}{3}}}$$

当S 为极小曲面,即 $H \equiv 0$ 时,得到

$$f^{\prime\prime}(x)\Big(1+ig(g^\prime(y)ig)^2\Big)+g^{\prime\prime}(y)\Big(1+ig(f^\prime(x)ig)^2\Big)=0,$$

即

$$\frac{f^{\prime\prime}(x)}{1+\big(f^\prime(x)\big)^2}=-\frac{g^{\prime\prime}(y)}{1+\big(g^\prime(y)\big)^2}$$

根据 (1), 我们设

$$\frac{f''(x)}{1 + \left(f'(x)\right)^2} = c$$

其中c为常数. 求解上述方程我们得到

$$f(x) = -rac{1}{c} \ln \cos(cx+d),$$
 $g(y) = rac{1}{c} \ln \cos(cy+b),$

其中 d, b 是常数. 于是得到

$$h(x,y) = \frac{1}{c} \ln \frac{\cos(cy+b)}{\cos(cx+d)}.$$

当c = 0时,我们得到f''(x) = g''(y) = 0. 此时,我们有

$$f(x) = a_1 x + b_1, g(y) = a_2 y + b_2,$$

其中 a_1, a_2, b_1, b_2 都是常数. 于是, $h(x, y) = a_1 x + a_2 y + b_1 + b_2$.

九、(10 分) 设有一列盒子,已知第k个盒子中有k个球,其中 1 个是红球,另外k-1 个是白球. 现从前n 个盒子中各取一球,记 S_n 表示取出的n 个球中红球的个数. 证明:

- 1、 $\frac{S_n}{\ln(n)}$ 依概率收敛于 1;
- 2、 $rac{S_n \ln(n)}{\sqrt{\ln(n)}}$ 依分布收敛于标准正态分布N(0,1);
- 3、对任意 $r>0,\lim_{n o\infty} E\Biggl(rac{ig|S_n-\ln(n)ig|^r}{\ln^r(n)+ig|S_n-\ln(n)ig|^r}\Biggr)=0.$

【参考证明】: 1、对于k = 1, 2, ..., n,记

$$X_k = \begin{cases} 1, & \text{从第}k$$
个盒子中取出红球
0, & 从第 k 个盒子中取出白球

则 X_k 独立且服从 0-1 分布 $Bigg(1,rac{1}{k}igg)$,并且 $S_n=\sum_{k=1}^n X_k$. 只需证明,对任意 $\, arepsilon>0,$

$$\left|P\left(\left|rac{S_n}{\ln(n)}-1
ight|\geq arepsilon
ight)
ightarrow 0 (n
ightarrow \infty).$$

事实上

$$\begin{split} P\bigg(\bigg|\frac{S_n}{\ln(n)} - 1\bigg| &\geq \varepsilon\bigg) = P\big(\big|S_n - \ln(n)\big| \geq \varepsilon \ln(n)\big) \\ &\leq \frac{E\big(S_n - \ln(n)\big)^2}{\varepsilon^2 \ln^2(n)} = \frac{\operatorname{Var}\big(S_n\big) + \big(ES_n - \ln(n)\big)^2}{\varepsilon^2 \ln^2(n)} \\ &\operatorname{Var}\big(S_n\big) = \sum_{k=1}^n \bigg(\frac{1}{k} - \frac{1}{k^2}\bigg) \leq \sum_{k=1}^n \frac{1}{k} \end{split}$$

并且
$$ES_n = \sum_{k=1}^n \frac{1}{k}$$
. 注意 $\ln(n) + \frac{1}{n} \leq \sum_{k=1}^n \frac{1}{k} \leq \ln(n) + 1$ 蕴含
$$\lim_{n \to \infty} \frac{1}{\ln(n)} \sum_{k=1}^n \frac{1}{k} = 1, \ln(n) + \frac{1}{n} \leq ES_n \leq \ln(n) + 1$$

所以

$$\lim_{n o\infty}rac{\mathrm{Var}ig(S_nig)}{\ln^2(n)}=0, \lim_{n o\infty}rac{ig(ES_n-\ln(n)ig)^2}{\ln^2(n)}=0.$$
故 $Pigg(igg|rac{S_n}{\ln(n)}-1igg|\geqarepsilonigg) o 0$.

2、注意
$$rac{S_n-\ln(n)}{\sqrt{\ln(n)}}=rac{S_n-ES_n}{\sqrt{\ln(n)}}+rac{ES_n-\ln(n)}{\sqrt{\ln(n)}}$$
. 由 $\ln(n)+rac{1}{n}\leq ES_n\leq \ln(n)+1$

知
$$\lim_{n o \infty} rac{ES_n - \ln(n)}{\sqrt{\ln(n)}} = 0$$
.故应用 $rac{ ext{Var}ig(S_nig)}{\ln(n)} o 1$,只需证明 $rac{S_n - ES_n}{\sqrt{ ext{Var}ig(S_nig)}}$ 依分布收敛

于标准正态分布N(0,1).

【思路一】验证李雅普诺夫 (Lyapunov) 条件成立, 即当 $n o \infty$ 时

$$rac{1}{ig(\operatorname{Var}ig(S_nig)ig)^2} {\sum_{k=1}^n} Eig(X_k - EX_kig)^4
ightarrow 0$$

事实上,由于

$$\sum_{k=1}^{n} E \left(X_k - E X_k \right)^4 = \sum_{k=1}^{n} \left\{ \left(1 - \frac{1}{k} \right)^4 \frac{1}{k} + \frac{1}{k^4} \left(1 - \frac{1}{k} \right) \right\} \leq \sum_{k=1}^{n} \frac{2}{k},$$

且
$$\frac{\operatorname{Var}\left(S_{n}\right)}{\ln(n)} \to 1$$
,所以

$$\lim_{n o\infty}rac{1}{ig(\mathrm{Var}ig(S_nig)ig)^2} {\sum_{k=1}^n} Eig(X_k-EX_kig)^4 = 0.$$

【思路二】验证下列林德贝格 (Lindeberg) 条件成立,即对任意 au>0,当 $n\to\infty$ 时,

$$\left\|rac{1}{ ext{Var}ig(S_nig)}\!\!\sum_{k=1}^n\!E\left\{ig(X_k-EX_kig)^{\!2}\,I\!\left(\left|X_k-EX_k
ight|\geq au\sqrt{ ext{Var}ig(S_nig)}
ight)
ight\}
ightarrow0$$

或

$$rac{1}{Varig(S_nig)}\!\!\sum_{k=1}^n\!\int_{ig|x-EX_kig|\geq au\sqrt{Varig(S_nig)}}\!ig(x-EX_kig)^{\!2}\,\mathrm{d}\,F_k(x)
ightarrow 0$$

其中 $F_k(x) = P(X_k \le x)$.

事实上,由于 $\mathrm{Var} \left(S_n \right) o \infty$,所以当 n 较大时,对

$$1 \leq k \leq n, I\left(\left|X_k - EX_k\right| \geq au\sqrt{\operatorname{Var}\left(S_n
ight)}
ight) = 0$$

故

$$rac{1}{ ext{Var}ig(S_nig)}\!\sum_{k=1}^n E\left\{ig(X_k-EX_kig)^2 Iig(ig|X_k-EX_kig)\geq au\sqrt{ ext{Var}ig(S_nig)}ig)
ight\} o 0$$

3、注意
$$Eigg(rac{ig|S_n-\ln(n)ig|^r}{\ln^r(n)+ig|S_n-\ln(n)ig|^r}igg)=Eigg(rac{igg|rac{S_n}{\ln(n)}-1igg|^r}{1+igg|rac{S_n}{\ln(n)}-1igg|^r}igg)$$
. 由 1 小题知,对任意

$$arepsilon > 0 \,, \, \left. P \left(\left| rac{S_n}{\ln(n)} - 1
ight| \geq arepsilon
ight)
ightarrow 0 \,.$$

记
$$rac{S_n}{\ln(n)}-1$$
 的分布函数为 $F_n(x)=Pigg(rac{S_n}{\ln(n)}-1\leq xigg)$.由于函数 $g(x)=rac{\mid x\mid^r}{1+\mid x\mid^r}$

在 $[0,\infty)$ 上是单调非降函数,所以

$$egin{aligned} E\left(rac{\left|rac{S_n}{\ln(n)}-1
ight|^r}{1+\left|rac{S_n}{\ln(n)}-1
ight|^r}
ight) &= \int_{-\infty}^{\infty}rac{\mid x\mid^r}{1+\mid x\mid^r}\mathrm{d}\,F_n(x) \ &= (\int_{|x|\leqarepsilon}+\int_{|x|>arepsilon})rac{\mid x\mid^r}{1+\mid x\mid^r}\mathrm{d}\,F_n(x) \leq rac{arepsilon^r}{1+arepsilon^r}+\int_{|x|>arepsilon}\mathrm{d}F_n(x) \ &= rac{arepsilon^r}{1+arepsilon^r}+Pigg(\left|rac{S_n}{\ln(n)}-1
ight|>arepsilonigg). \end{aligned}$$

于是由 ε 的任意性,得

$$\lim_{n o\infty} E\Bigg(rac{ig|S_n-\ln(n)ig|^r}{\ln^r(n)+ig|S_n-\ln(n)ig|^r}\Bigg) o 0.$$

十、(10分)考虑求解常微分方程初值问题

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的下列数值格式:

$$y_n + a_1 y_{n-1} + a_2 y_{n-2} = h (b_0 f_n + b_1 f_{n-1} + b_2 f_{n-2}),$$

其中 a_1,a_2,b_0,b_1,b_2 为常数, $f_j=f\left(x_j,y_j\right), j=n-2,n-1,n.$

- 1、确定常数 a_1,a_2,b_0,b_1,b_2 ,使得上述数值格式具有尽可能高阶的精度;
- 2、分析上一步得到的数值格式的稳定性与收敛性.

【参考解答】:定义算子L如下:

$$\begin{split} L(y(x)) &:= y(x) + a_1 y(x-h) + a_2 y(x-2h) \\ &- h \big(b_0 y'(x) + b_1 y'(x-h) + b_2 y'(x-2h) \big). \end{split}$$

将y,y'在x处做 Taylor 展开可以得到:

$$\begin{split} L(y(x)) &= y(x) + a_1 \left(\sum_{j=0}^k \frac{(-h)^j}{j!} y^{(j)}(x) + \frac{(-h)^{k+1}}{(k+1)!} y^{(k+1)} \left(\xi_1 \right) \right) \\ &+ a_2 \left(\sum_{j=0}^k \frac{(-2h)^j}{j!} y^{(j)}(x) + \frac{(-2h)^{k+1}}{(k+1)!} y^{(k+1)} \left(\xi_2 \right) \right) \\ &- b_0 h y'(x) - b_1 h \left(\sum_{j=0}^{k-1} \frac{(-h)^j}{j!} y^{(j+1)}(x) + \frac{(-h)^k}{k!} y^{(k+1)} \left(\eta_1 \right) \right) \\ &- b_2 h \left(\sum_{j=0}^{k-1} \frac{(-2h)^j}{j!} y^{(j+1)}(x) + \frac{(-2h)^k}{k!} y^{(k+1)} \left(\eta_2 \right) \right) \\ &= \left(1 + a_1 + a_2 \right) y(x) - \left(a_1 + 2a_2 + b_0 + b_1 + b_2 \right) h y'(x) \\ &+ \sum_{j=2}^k \left(a_1 + 2^j a_2 + j b_1 + 2^{j-1} j b_2 \right) \frac{(-h)^j}{j!} y^{(j)}(x) + O\left(h^{k+1} \right) \\ &\coloneqq \sum_{j=0}^k d_j(-h)^j / j! y^{(j)}(x) + O\left(h^{k+1} \right). \end{split}$$

其中

$$\begin{split} d_0 &\coloneqq 1 + a_1 + a_2, \quad d_1 \coloneqq a_1 + 2a_2 + b_0 + b_1 + b_2, \\ d_j &\coloneqq a_1 + 2^j a_2 + j b_1 + 2^{j-1} j b_2 = 0, \quad j = 2, 3, 4 \\ & \Leftrightarrow d_0 = d_1 = d_2 = d_3 = d_4 = 0 \,, \; \text{MFA} \\ & a_1 = 0, \, a_2 = -1, \, b_0 = 1 \, / \, 3, \, b_1 = 4 \, / \, 3, b_2 = 1 \, / \, 3 \end{split}$$

此时 $d_5 = 4/3 \neq 0$. 因此格式的最高精度是 4 阶,所求格式为:

$$oxed{y_n-y_{n-2}=rac{1}{3}ig(f_n+4f_{n-1}+f_{n-2}ig)}$$

2、对上述格式,令 $p(z)=z^2-1, q(z)=\frac{1}{3}\big(z^2+4z+1\big).$ p(z)=0 的两个根土1的模长为 1,且均为单根,故格式稳定。另一方面, p(1)=0且 p'(1)=q(1)=2,因此格式相容,进而收敛.