Logistic Regression

Classification

- Where y is a discrete value
 - Develop the logistic regression algorithm to determine what class a new input should fall into
- Classification problems
 - Email -> spam/not spam?
 - Online transactions -> fraudulent?
 - Tumor -> Malignant/benign
- Variable in these problems is Y
 - Y is either 0 or 1
 - 0 = negative class (absence of something)
 - 1 = positive class (presence of something)

- Start with binary class problems
 - Later look at multiclass classification problem, although this is just an extension of binary classification
- How do we develop a classification algorithm?
 - Tumor size vs malignancy (0 or 1)
 - We could use linear regression
 - Then threshold the classifier output (i.e. anything over some value is yes, else no)
 - In our example below linear regression with thresholding seems to work

- We can see above this does a reasonable job of stratifying the data points into one of two classes
 - But what if we had a single Yes with a very small tumor
 - This would lead to classifying all the existing yeses as nos
- Another issue with linear regression
 - We know Y is 0 or 1
 - Hypothesis can give values large than 1 or less than 0
- So, logistic regression generates a value where is always either 0 or 1
 - Logistic regression is a classification algorithm don't be confused

Hypothesis Representation

- What function is used to represent our hypothesis in classification
- We want our classifier to output values between 0 and 1
 - When using linear regression we did $h_{\theta}(x) = (\theta^T x)$
 - For classification hypothesis representation we do $h_{\theta}(x) = g((\theta^T x))$
 - Where we define g(z)
 - z is a real number
 - $g(z) = 1/(1 + e^{-z})$
 - This is the sigmoid function, or the logistic function
- If we combine these equations we can write out the hypothesis as

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T}x}}$$

- What does the sigmoid function look like
- Crosses 0.5 at the origin, then flattens out]
 - Asymptotes at 0 and 1

• Given this we need to fit θ to our data

Interpreting hypothesis output

- When our hypothesis $(h_{\theta}(x))$ outputs a number, we treat that value as the estimated probability that y=1 on input x
- Example
 - If X is a feature vector with $x_0 = 1$ (as always) and $x_1 = tumourSize$
 - $h_{\theta}(x) = 0.7$
 - Tells a patient they have a 70% chance of a tumor being malignant
- We can write this using the following notation
 - $h_{\theta}(x) = P(y=1|x;\theta)$
- What does this mean?
 - Probability that y=1, given x, parameterized by θ

 Since this is a binary classification task we know y = 0 or 1, So the following must be true

•
$$P(y=1|x;\theta) + P(y=0|x;\theta) = 1$$

•
$$P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Decision Boundary

- Gives a better sense of what the hypothesis function is computing
- Better understand of what the hypothesis function looks like
 - One way of using the sigmoid function is;
 When the probability of y being 1 is greater than 0.5 then we can predict y = 1
 - Else we predict y = 0
 - When is it exactly that $h_{\theta}(x)$ is greater than 0.5?
 - Look at sigmoid function
 - g(z) is greater than or equal to 0.5 when z is greater than or equal to 0

- So if z is positive, g(z) is greater than 0.5
 - $z = (\theta^T x)$
- So when
 - $\theta^{T} x >= 0$ Then $h_{\theta} >= 0.5$

- So what we've shown is that the hypothesis predicts y = 1 when $\theta^T x \ge 0$.
- The corollary of that when $\theta^T x \le 0$ then the hypothesis predicts y = 0
- Let's use this to better understand how the hypothesis makes its predictions

Decision Boundary

•
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

- So, for example
 - $\theta_0 = -3$; $\theta_1 = 1$; $\theta_2 = 1$
- So our parameter vector is a column vector with the above values
 - So, θ^T is a row vector = [-3,1,1]
- What does this mean?
 - The z here becomes $\theta^T x$
 - We predict "y = 1" if
 - $-3x_0 + 1x_1 + 1x_2 >= 0$
 - $-3 + \chi_1 + \chi_2 >= 0$
- We can also re-write this as
 - If $(x_1 + x_2 >= 3)$ then we predict y = 1
 - If we plot
 - $x_1 + x_2 = 3$ we graphically plot our **decision boundary**

Decision Boundary

- Means we have these two regions on the graph
 - Blue = false
 - Magenta = true
 - Line = decision boundary
 - Concretely, the straight line is the set of points where $h_{\theta}(x) = 0.5$ exactly
 - The decision boundary is a property of the hypothesis
 - Means we can create the boundary with the hypothesis and parameters without any data
 - Later, we use the data to determine the parameter values
 - i.e. y = 1 if
 - $5 x_1 > 0$
 - $5 > x_1$

Non linear Decision Boundaries

- Get logistic regression to fit a complex non-linear data set
 - Like polynomial regress add higher order terms
 - So say we have:

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

- We take the transpose of the θ vector times the input vector
 - Say θ^{T} was [-1,0,0,1,1] then we say;
 - Predict that "y = 1" *if*
 - $-1 + x_1^2 + x_2^2 >= 0$ or
 - $x_1^2 + x_2^2 >= 1$
 - If we plot $x_1^2 + x_2^2 = 1$
 - This gives us a circle with a radius of 1 around 0

- Mean we can build more complex decision boundaries by fitting complex parameters to this (relatively) simple hypothesis
- More complex decision boundaries?
 - By using higher order polynomial terms, we can get even more complex decision boundaries

Cost function for logistic regression

- Fit θ parameters
- Define the optimization object for the cost function we use the fit the parameters
 - Training set of m training examples
 - Each example has is n+1 length column vector

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

$$x_n$$

$$\mbox{m examples} \qquad x \in \left[\begin{array}{c} x_0 \\ x_1 \\ \dots \\ x_n \end{array} \right] \qquad x_0 = 1, y \in \{0,1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- This is the situation
 - Set of m training examples
 - Each example is a feature vector which is n+1 dimensional
 - $x_0 = 1$
 - $y \in \{0,1\}$
 - Hypothesis is based on parameters (θ)
 - Given the training set how do we chose/fit θ ?
- Linear regression uses the following function to determine θ

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

- Instead of writing the squared error term, we can write
 - If we define "cost()" as;
 - $cost(h_{\theta}(x^{i}), y) = 1/2(h_{\theta}(x^{i}) y^{i})^{2}$
 - Which evaluates to the cost for an individual example using the same measure as used in linear regression
 - We can redefine J(θ) as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

- Which, appropriately, is the sum of all the individual costs over the training data (i.e. the same as linear regression)
- To further simplify it we can get rid of the superscripts
 - So

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x), y)$$

- What does this actually mean?
 - This is the cost you want the learning algorithm to pay if the outcome is $h_{\theta}(x)$ and the actual outcome is y
 - If we use this function for logistic regression this is a **non-convex function** for parameter optimization
 - Could work....
- What do we mean by non convex?
 - We have some function $J(\theta)$ for determining the parameters
 - Our hypothesis function has a non-linearity (sigmoid function of $h_{\theta}(x)$)
 - This is a complicated non-linear function

- If you take $h_{\theta}(x)$ and plug it into the Cost() function, and them plug the Cost() function into J(θ) and plot J(θ) we find many local optimum -> non convex function
- Why is this a problem
 - Lots of local minima mean gradient descent may not find the global optimum
 may get stuck in a global minimum
- We would like a convex function so if you run gradient descent you converge to a global minimum

A convex logistic regression cost function

 To get around this we need a different, convex Cost() function which means we can apply gradient descent

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- This is our logistic regression cost function
 - This is the penalty the algorithm pays
 - Plot the function
- Plot y = 1
 - So $h_{\theta}(x)$ evaluates as $-\log(h_{\theta}(x))$

- So when we're right, cost function is 0
 - Else it slowly increases cost function as we become "more" wrong
 - X axis is what we predict
 - Y axis is the cost associated with that prediction
- This cost functions has some interesting properties
 - If y = 1 and $h_{\theta}(x) = 1$
 - If hypothesis predicts exactly 1 and thats exactly correct then that corresponds to 0 (exactly, not nearly 0)
 - As $h_{\theta}(x)$ goes to 0
 - Cost goes to infinity
 - This captures the intuition that if $h_{\theta}(x) = 0$ (predict $P(y=1|x; \theta) = 0$) but y = 1 this will penalize the learning algorithm with a massive cost
- What about if y = 0
- then cost is evaluated as $-\log(1 h_{\theta}(x))$
 - Just get inverse of the other function

- Now it goes to plus infinity as $h_{\theta}(x)$ goes to 1
- With our particular cost functions $J(\theta)$ is going to be convex and avoid local minimum

Simplified cost function and gradient descent

• The logistic regression function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})}_{i=1}$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Note:} y = 0 \text{ or } 1 \text{ always}$$

- This is the cost for a single example
 - For binary classification problems y is always 0 or 1
 - Because of this, we can have a simpler way to write the cost function
 - Rather than writing cost function on two lines/two cases
 - Can compress them into one equation more efficient
 - Can write cost function is
 - $cost(h_{\theta}(x),y) = -ylog(h_{\theta}(x)) (1-y)log(1-h_{\theta}(x))$
 - This equation is a more compact of the two cases above

- We know that there are only two possible cases
 - y = 1
 - Then our equation simplifies to
 - $-\log(h_{\theta}(x)) (0)\log(1 h_{\theta}(x))$
 - $-\log(h_{\theta}(x))$
 - Which is what we had before when y = 1
 - y = 0
 - Then our equation simplifies to
 - -(0)log(h₀(x)) (1)log(1 h₀(x))
 - = $-\log(1-h_{\theta}(x))$
 - Which is what we had before when y = 0

• So, in summary, our cost function for the θ parameters can be defined as

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

- Why do we chose this function when other cost functions exist? This
 cost function can be derived from statistics using the principle of
 maximum likelihood estimation
 - Note this does mean there's an underlying Gaussian assumption relating to the distribution of features
- Also has the nice property that it's convex

- To fit parameters θ :
 - Find parameters θ which minimize $J(\theta)$
 - This means we have a set of parameters to use in our model for future predictions
- Then, if we're given some new example with set of features x, we can take the θ which we generated, and output our prediction using

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- This result is
 - $p(y=1 | x; \theta)$
 - Probability y = 1, given x, parameterized by θ

How to minimize the logistic regression cost function

- Now we need to figure out how to minimize $J(\theta)$
 - Use gradient descent as before
 - Repeatedly update each parameter using a learning rate

```
Repeat \{ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \{ (simultaneously update all \theta_j)
```

- If you had *n* features, you would have an n+1 column vector for θ
- This equation is the same as the linear regression rule
 - The only difference is that our definition for the hypothesis has changed
- When implementing logistic regression with gradient descent, we have to update all the θ values (θ_0 to θ_n) simultaneously
 - Could use a for loop
 - Better would be a vectorized implementation

Multiclass classification problems

- Getting logistic regression for multiclass classification using one vs. all
- Multiclass more than yes or no (1 or 0)
 - Classification with multiple classes for assignment

- Given a dataset with three classes, how do we get a learning algorithm to work?
 - Use one vs. all classification make binary classification work for multiclass classification

Binary classification:

Multi-class classification:

- Split the training set into three separate binary classification problems
 - i.e. create a new fake training set
 - Triangle (1) vs crosses and squares (0) $h_{\theta}^{1}(x)$
 - $P(y=1 | x_1; \theta)$
 - Crosses (1) vs triangle and square (0) $h_{\theta}^{2}(x)$
 - $P(y=1 | x_2; \theta)$
 - Square (1) vs crosses and trangle (0) $h_{\theta}^{3}(x)$
 - $P(y=1 | x_3; \theta)$

Overall

- Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = I
- On a new input, x to make a prediction, pick the class i that maximizes the probability that $h_{\theta}^{(i)}(x) = 1$