

Sarvajanik College of Engineering and Technology

GUJARAT TECHNOLOGICAL UNIVERSITY SURAT

Report on-

"Heart Rate and SpO2 Monitoring System"

Under the subject of-SENSOR AND TRANSDUCER

B. E. II, Semester – VI (Electronics & Communication Branch)

Sr. No.	Name of the Student	Enrollment no.
1.	Kenil Faldu	200420111003
2.	Ruchit Sheta	200420111006
3.	Sarangi Kotadiya	200420111014

Neeta Chapatwala (Faculty Guide)

Dimple Bhanabhagvanwala (Faculty Guide)

INTRODUCTION

- Blood oxygen monitoring, heart rate monitoring, and temperature monitoring are all important in healthcare.
- Blood oxygen monitoring involves measuring the oxygen saturation level in a person's blood, which is a critical indicator of respiratory function.
- Heart rate monitoring involves measuring the number of times a person's heart beats per minute, which is a critical indicator of cardiovascular function.
- All Two monitoring techniques can help diagnose and monitor a
 wide range of medical conditions, and are important tools for
 healthcare professionals in providing effective treatment and
 care to patients.

SYSTEM COMPONENTS

- ESP 8266
- MAX 30102
- OLED DISPLAY (0.98 INCHES)
- BREADBOARD
- JUMPER WIRES

ESP 8266

- The ESP8266, which is a low-cost Wi-Fi module that is commonly used in Internet of Things (IoT) projects.
- The ESP8266 has a built-in Wi-Fi module and can be programmed using the Arduino IDE, With its small size, low power consumption, and Wi-Fi connectivity.
- The ESP8266 is an ideal choice for projects that require remote monitoring and control, such as home automation, smart appliances, and environmental sensing.

I2C PROTOCOL

- I²C (I2C, IIC) is a serial 2-wire bus for communicating with various devices.
- ESP8266 chip does not have hardware I²C, so module uses software I²C driver. It can be set up on any GPIO pins including GPIO16
- This module supports :Master mode Multiple buses (up to 10) with different speeds on each bus Standard(Slow, 100kHz), Fast(400kHz)
- MAX 30102 supports up to fast (400kHz) I2C communication.
- MAX 30102 Sensor has I2C address 0x57.
- OLED has I2C address 0x3C

MAX 30102

- Operating voltage: 1.8V to 5.5V
- Integrated photodiode and LED driver

- Low-power operation: 600 nA standby current, 4.4 mA active current
- Two LEDs for emitting light and one photodetector for measuring light intensity
- Digital output (I2C interface)
- Adjustable LED brightness for different skin tones and ambient light conditions

- Operating temperature range: -40°C to +85°C
- Size: 5mm x 6.4mm x 1.5mm

MAX 30102

Pin Description

- VIN This pin is used to supply power to the sensor. This sensor powered on at 3.3-5V.
- SCL This is the I2C serial clock pin.
- SDA This is the I2C serial data pin
- INT This is the active low interrupt pin.

 It is pulled HIGH by the onboard resistor but when an interrupt occurs it goes LOW until the interrupt clears.
- IRD IR LED Cathode and LED Driver Connection Point
- RD Red LED Cathode and LED Driver Connection Point
- GNDThis is used for supplying ground to this sensor and it is connected to the source ground pin.

OLCD DISPLAY

- 0.96-inch (1x1) inch display makes this one of our smaller versions;
- perfect for small projects, wearables, and other portables.
- It has a low, low 0.06W power consumption in regular working conditions.

Specifications:

• Display Size: 0.96 inch

• Dimension: 26.3x26.1 mm

• Display area: 21.7x10.9 mm

• Display Driver IC: SSD1315

• Resolution: 128x64

• Port: IIC Operating

• Voltage: 3.3-5V

• Display color : Blue, White (Optional)

CIRCUIT DIAGRAM

ADVANTAGES

- Early Detection of Medical Conditions: Monitoring blood oxygen levels and heart rate can help detect medical conditions early, allowing for prompt diagnosis and treatment.
- Non-Invasive: Blood oxygen and heart rate monitoring can be done non-invasively, which means there is no need for needles or other invasive procedures
- monitor blood oxygen levels and heart rate using wireless devices. This allows for continuous monitoring of patients in real-time, even when they are away from the hospital or clinic.
- Cost-Effective

DISADVANTAGES

- False Readings: Monitoring systems may occasionally provide inaccurate or false readings, which can lead to incorrect diagnoses and treatment plans.
- Technical Difficulties: Technical issues such as device malfunctions or software errors can cause monitoring systems to fail or provide incorrect data.
- Privacy Concerns: Wireless monitoring systems may raise privacy concerns, as they transmit sensitive patient information over the internet or other networks.

APPLICATIONS

- Medical Settings: In hospitals and clinics, blood oxygen and heart rate monitoring systems are commonly used to monitor patients with respiratory and cardiovascular diseases.
- Sports and Fitness: Athletes and fitness enthusiasts use blood oxygen and heart rate monitoring systems to track their performance and training progress.
- Aviation and Aerospace
- Military and Defense

REFERENCES

- https://www.mouser.com/ProductDetail/Analog-Devices-Maxim-Integrated/MAXM86161EFD+T?qs=XeJtXLiO41T6hWnBlrpJ0 w%3D%3D
- https://iotdesignpro.com/articles/esp32-data-logging-to-google-sheets-with-google-scripts
- https://chat.openai.com/

