

Predictive Modeling for Heart Attack Risk

Mohammad.H Nikkhah, Amir Hossein Yousefvand, Ali Akhavan Hosseini

Table of contents

01 Introduction

Problem and dataset explanation

02

Preprocessing

Data cleaning and more

03

Data Exploration

Visualization of data for further inference

04

Learning

Employing different M.L methods for risk prediction

05

Future Steps

Limits explanation and what to do next

01 Introduction

Cardiovascular diseases (CVDs)

- Leading cause of death globally
- Primary symptoms :
 - Heart attack
 - stroke

19,700,000

Estimated number of lives taken by CVDs each year

Heart Attack Prediction Dataset

Source

www.kaggle.com

Structure

25 features : 13 categorical, 12 ratio

Target

Heart Attack Risk (yes/no)

Heart Attack Prediction Dataset

 Demographic info: Age, Sex, BMI

• **Health conditions**: Blood pressure, Diabetes, etc.

• **Habits**: Smoking, Physical activity per day, etc.

• **Personal info**: Income, Family history, etc.

02 Preprocessing

Preprocessing

Data cleaning

Removing duplicated and invalid data

Label encoding

Encoding nominal and ordinal features accordingly

Train-test split

Data is splitted to train and test sets (66.7% / 33.3%).

Normalizing

Scaling data for better ML convergence speed

03 Data Exploration

Distribution of Heart Attack Risk

Healthy

People with no risk of heart attack.

64.2%

Social withdrawal

People with heart risk of heart attack

35.8%

Distribution of the target label.

Distribution of Gender

Male 69.7%

Female 30.3%

Proportion of men and women in the dataset

Famous well-being centers

South Korea

With 39.85% is the leading country

Nigeria

With 39.72% in second place

United States

With 39.52% in third place

0.39

0.38

- 0.34 형

0.33

- 0.32

Analyzing Features Linked to Heart Attack Risk

04 Learning

Learning

- Different classification models are employed.
- Validation techniques are used to assess the model performance.

Classification Models

Logistic Regression Descision Tree Random Forest

SVM classifier

KNN

Guassian Naïve Bayes

First trial

Model	Accuracy	Recall
Logistic regression	64%	100%
SVM	64%	100%
Adaboost	64%	97%
KNN	56%	50%

To find a correct and reliable model with higher accuracy, it is vital to tune the hyperparameters.

Second trial using grid search

Model	Accuracy	Recall
Logistic regression	65%	100%
SVM	64%	100%
Adaboost	64%	99%
KNN	61%	87%

Duplicated Information can be detrimental!

Model Learning with Dimension Reduction

Preprocessing

Cleaning dataset as before

Dimension reduction

Performing dimension reduction using PCA method

Learning

Learning process of different classification models

Validation

Stratified K-Fold

Model Evaluation

Second trial using PCA

Model	Accuracy	Recall
Logistic regression	65%	100%
SVM	65%	100%
Adaboost	64%	99%
KNN	61%	88%

Validation

 Using Stratified K-Fold, the accuracy and performance are assessed. Validation results show that the accuracy for each model is not biased towards the training data.

100%

Percentage of patients that are predicted correctly.

65%

Accuracy up until now

Why is the accuracy limited?

- Poor data quality
- Information is hidden → requires feature engineering
- Intrinsic difficulty of the problem → requires more data collection

05 Future Steps

Feature Engineering

Technical Knowledge

To ensure the discovery of useful features, it's crucial to gain technical medical knowledge about heart attacks or seek assistance from specialists.

EDA

More exploration is required to uncover relationships and patterns.

Resources

Dataset: Heart Attack Prediction

 https://www.kaggle.com/datasets/ m1relly/heart-attack-prediction

Mahcine Learning methods

<u>Dr.Abolghasemi, Dr.Tavassolipoor,</u>
 <u>Machine Learning lecture notes</u>

other resources:

World Health Organization:
 Cardiovascular diseases

Ourworldindata: Cardiovascular
 Diseases statistics

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u> and infographics & images by <u>Freepik</u>

