Team 17: Test Plan

12/3/2020 Rev. A

Richard Atherton, Hector Soto, Aldo Zamora, Alejandro Rios

ECE 411

Portland State University

Objectives

Listed are a combination of acceptance, integration, and module/unit tests, with detailed test cases which can be used during a live demonstration to a client. Those outlined tests in this document which are not detailed are meant to be used to ensure functionality of individual modules and module interaction prior to a live demonstration.

Outline of Test Cases

- 1) Unit/Module Test
 - a) Motor running smoothly (power applied from fixture)
 - b) DC amplifier switching on and off correctly (fixture to provide square wave to transistor gate)
- 2) Integration Test
 - a) Disc with no hole punches
 - b) Disc with all holes punched
 - c) Motor at default tempo
 - d) Motor at minimum tempo
 - e) Motor at max tempo
 - f) Motor at default tempo and with volume sweep from minimum to maximum
 - g) Torque delivered to motor with 6 1.5v batteries
 - h) Torque delivered to motor with 1 9v battery
 - i) Function of circuit with fresh battery (9.5v)
 - i) Battery to be used decided after tests 2g-h
 - j) Function of circuit with low battery (~8.0v)
 - i) Battery to be used decided after tests 2g-h
- 3) Acceptance Test
 - a) Default tempo with variation in volume
 - b) Increased tempo

Test Cases Detailed

- 1) Default Tempo with Variation in Volume (Test 3a)
 - a) Black box test
 - b) Equipment needed: Completely built binary disk reader, with disk configuration chosen at random, freshly charged battery for disk player
 - c) Actions:

S	Action	Expected Result	Р	F	N	Comment
t			а	а	/	
е			S	i	Α	
р			S	I		

1	Load disk			
2	Turn on Device	Device on in paused state		
3	Press play	Disk rotates and sound generated		
4	Move volume to min	Sound decreases to zero		
5	Sweep volume linearly to max	Sound increases linearly to max volume		

2) Increased Tempo (Test 3b)

- a) Black box test
- b) Equipment needed: Completely built binary disk reader, with disk configuration chosen at random, freshly charged battery for disk player
- c) Actions:

S t e p	Action	Expected Result	P a s s	F a	N / A	Comment
1	Load disk					
2	Turn on Device	Device on in paused state				
3	Press play	Disk rotates and sound generated				
4	Press speed up (2x)	Playback speed increases above default				

Resources

- A human with baseline average hearing and an understanding of circuit theory, code debugging, test equipment, and problem solving equivalent to a fairly gifted 4th year electrical engineering student.
- Complete binary disk reader, with disk set to random state.
- 6 fresh 1.5v batteries and 1 fresh 9v battery for binary disk reader.
- Oscilloscope (either USB or stand-alone device), function generator (square waves required from 200 to 1000Hz), power supply (for testing different voltage inputs, must supply at least 9.5v 1a).

References

Requirements Document (Rev. A, 10/25/2020):

https://github.com/Hector-S/ECE411-Practicum/blob/main/Documentation/Product%20Design% 20Specification/Team17 PDS.pdf

Final Circuit Schematic (Rev. C, 12/5/2020):

https://github.com/Hector-S/ECE411-Practicum/blob/main/Schematics/Final%20Project%20Schematic.pdf

Grading Rubric:

http://web.cecs.pdx.edu/~faustm/capstone/forms/TestPlanRubric.pdf