Matrix Algebra for Econometrics and Statistics

GARTH TARR 2011

Fundamentals Quadratic Forms Systems Sums Applications Code

Matrix fundamentals

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

- A matrix is a rectangular array of numbers.
- Size: (rows)×(columns). E.g. the size of \mathbf{A} is 2×3 .
- The size of a matrix is also known as the dimension.
- The element in the ith row and jth column of ${\bf A}$ is referred to as a_{ij} .
- The matrix **A** can also be written as $\mathbf{A} = (a_{ij})$.

Matrix addition and subtraction

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

Definition (Matrix Addition and Subtraction)

Dimensions must match:

$$(r \times c) \pm (r \times c) \Longrightarrow (r \times c)$$

• ${f A}$ and ${f B}$ are both 2×3 matrices, so

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$

• More generally we write:

$$\mathbf{A} \pm \mathbf{B} = (a_{ij}) \pm (b_{ij}).$$

Matrix multiplication

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \\ d_{31} & d_{32} \end{bmatrix}$$

Definition (Matrix Multiplication)

• Inner dimensions need to match:

$$(r \times c) \times (c \times p) \Longrightarrow (r \times p)$$

• A is a 2×3 and D is a 3×2 matrix, so the inner dimensions match and we have: $C = A \times D =$

$$\begin{bmatrix} a_{11}d_{11} + a_{12}d_{21} + a_{13}d_{31} & a_{11}d_{12} + a_{12}d_{22} + a_{13}d_{32} \\ a_{21}d_{11} + a_{22}d_{21} + a_{23}d_{31} & a_{21}d_{12} + a_{22}d_{22} + a_{23}d_{32} \end{bmatrix}$$

• Look at the pattern in the terms above.

Matrix multiplication

Determinant

Definition (General Formula)

- Let $C = (c_{ij})$ be an $n \times n$ square matrix.
- Define a cofactor matrix, C_{ij} , be the determinant of the square matrix of order (n-1) obtained from ${\bf C}$ by removing row i and column j multiplied by $(-1)^{i+j}$.
- For fixed i, i.e. focusing on one row: $\det(\mathbf{C}) = \sum_{j=1}^{n} c_{ij} C_{ij}$.
- For fixed j, i.e. focusing on one column: $\det(\mathbf{C}) = \sum_{j=1}^{n} c_{ij} C_{ij}$.
- Note that this is a recursive formula.

▶ More

• The trick is to pick a row (or column) with a lot of zeros (or better yet, use a computer)!

2×2 determinant

Apply the general formula to a 2×2 matrix: $\mathbf{C}=\begin{bmatrix}c_{11} & c_{12}\\c_{21} & c_{22}\end{bmatrix}$.

- Keep the first row fixed, i.e. set i = 1.
- General formula when i=1 and n=2: $\det(\mathbf{C})=\sum_{j=1}^{2}c_{1j}C_{1j}$
- When j=1, C_{11} is one cofactor matrix of ${\bf C}$, i.e. the determinant after removing the first row and first column of ${\bf C}$ multiplied by $(-1)^{i+j}=(-1)^2$. So

$$C_{11} = (-1)^2 \det(c_{22}) = c_{22}$$

as c_{22} is a scalar and the determinant of a scalar is itself.

- $C_{12} = (-1)^3 \det(c_{21}) = -c_{21}$ as c_{21} is a scalar and the determinant of a scalar is itself.
- Put it all together and you get the familiar result:

$$\det(\mathbf{C}) = c_{11}C_{11} + c_{12}C_{12} = c_{11}c_{22} - c_{12}c_{21}$$

3×3 determinant

$$\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

• Keep the first row fixed, i.e. set i=1. General formula when i=1 and n=3:

$$\det(\mathbf{B}) = \sum_{j=1}^{3} b_{1j} B_{1j} = b_{11} B_{11} + b_{12} B_{12} + b_{13} B_{13}$$

- For example, B_{12} is the determinant of the matrix you get after removing the first row and second column of ${f B}$ multiplied by $(-1)^{i+j}=(-1)^{1+2}=-1$: $B_{12}=-\begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix}$.
- $\det(\mathbf{B}) = b_{11} \begin{vmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{vmatrix} b_{12} \begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix} + b_{13} \begin{vmatrix} b_{21} & b_{22} \\ b_{31} & b_{32} \end{vmatrix}$

Sarrus' scheme for the determinant of a 3×3

• French mathematician: Pierre Frédéric Sarrus (1798-1861)

$$\det(\mathbf{B}) = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix}$$

$$= b_{11} \begin{vmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{vmatrix} - b_{12} \begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix} + b_{13} \begin{vmatrix} b_{21} & b_{22} \\ b_{31} & b_{32} \end{vmatrix}$$

$$= (b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32})$$

$$- (b_{13}b_{22}b_{31} + b_{11}b_{23}b_{32} + b_{12}b_{21}b_{33})$$

Write the first two columns of the matrix again to the right of the original matrix. Multiply the diagonals together and then add or subtract.

Determinant as an area

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$

• For a 2×2 matrix, $\det(\mathbf{A})$ is the oriented area¹ of the parallelogram with vertices at $\mathbf{0} = (0,0)$, $\mathbf{a} = (x_1,y_1)$, $\mathbf{a} + \mathbf{b} = (x_1 + x_2, y_1 + y_2)$, and $\mathbf{b} = (x_2, y_2)$.

 In a sense, the determinant "summarises" the information in the matrix.

¹The oriented area is the same as the usual area, except that it is negative when the vertices are listed in clockwise order.

Fundamentals Quadratic Forms Systems Sums Applications Code

Identity matrix

Definition (Identity matrix)

• A square matrix, I, with ones on the main diagonal and zeros everywhere else:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

- Sometimes you see \mathbf{I}_r which indicates that it is an $r \times r$ identity matrix.
- If the size of **I** is not specified, it is assumed to be "conformable", i.e. as big as necessary.

Fundamentals Quadratic Forms Systems Sums Applications Code

Identity matrix

- An identity matrix is the matrix analogue of the number 1.
- If you multiply any matrix (or vector) with a conformable identity matrix the result will be the same matrix (or vector).

Example (2×2)

$$\mathbf{AI} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} \times 1 + a_{12} \times 0 & a_{11} \times 0 + a_{12} \times 1 \\ a_{21} \times 1 + a_{22} \times 0 & a_{21} \times 0 + a_{22} \times 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \mathbf{A}.$$

Inverse

Definition (Inverse)

- Requires a square matrix i.e. dimensions: $r \times r$
- ullet For a 2 imes 2 matrix, $\mathbf{A}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$,

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

• More generally, a square matrix A is invertible or nonsingular if there exists another matrix $\mathbf B$ such that

$$AB = BA = I$$
.

• If this occurs then ${\bf B}$ is uniquely determined by ${\bf A}$ and is denoted ${\bf A}^{-1}$, i.e. ${\bf A}{\bf A}^{-1}={\bf I}$.

Vectors

Vectors are matrices with only one row or column. For example, the column vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Definition (Transpose Operator)

Turns columns into rows (and vice versa):

$$\mathbf{x}' = \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

Example (Sum of Squares)

$$\mathbf{x}'\mathbf{x} = \sum_{i=1}^{n} x_i^2$$

Transpose

Say we have some $m \times n$ matrix:

$$\mathbf{A} = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Definition (Transpose Operator)

• Flips the rows and columns of a matrix:

$$\mathbf{A}' = (a_{ji})$$

- The subscripts gets swapped.
- \mathbf{A}' is a $n \times m$ matrix: the columns in \mathbf{A} are the rows in \mathbf{A}' .

Fundamentals Quadratic Forms Systems Sums Applications Code

Symmetry

Definition (Square Matrix)

A matrix, ${\bf P}$ is square if it has the same number of rows as columns. I.e.

$$\dim(\mathbf{P}) = n \times n$$

for some $n \ge 1$.

Definition (Symmetric Matrix)

A square matrix, \mathbf{P} is symmetric if it is equal to its transpose:

$$P = P'$$

Fundamentals Quadratic Forms Systems Sums Applications Code

Idempotent

Definition (Idempotent)

A square matrix, ${\bf P}$ is idempotent if when multiplied by itself, yields itself. I.e.

$$\mathbf{PP} = \mathbf{P}$$
.

- 1. When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent, i.e. $\mathbf{M} = \mathbf{I} \mathbf{P}$ is idempotent.
- 2. The trace of an idempotent matrix is equal to the rank.
- 3. $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is an idempotent matrix.

Order of operations

- Matrix multiplication is non-commutative, i.e. the order of multiplication is important: $\mathbf{AB} \neq \mathbf{BA}$.
- Matrix multiplication is associative, i.e. as long as the order stays the same, (AB)C = A(BC).
- A(B+C) = AB + AC
- $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$

Example

Let **A** be a $k \times k$ matrix and **x** and **c** be $k \times 1$ vectors:

$$\mathbf{A}\mathbf{x} = \mathbf{c}$$
 $\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{c}$ (PRE-multiply both sides by \mathbf{A}^{-1})
$$\mathbf{I}\mathbf{x} = \mathbf{A}^{-1}\mathbf{c}$$

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{c}$$

Note: $\mathbf{A}^{-1}\mathbf{c} \neq \mathbf{c}\mathbf{A}^{-1}$

Matrix Differentiation

If $m{\beta}$ and ${\bf a}$ are both $k \times 1$ vectors then, $\frac{\partial {m{\beta}}'{\bf a}}{\partial {m{\beta}}} = {\bf a}$

Proof.

$$\frac{\partial}{\partial \boldsymbol{\beta}} (\boldsymbol{\beta}' \mathbf{a}) = \frac{\partial}{\partial \boldsymbol{\beta}} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k)$$

$$= \begin{bmatrix} \frac{\partial}{\partial \beta_1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k) \\ \frac{\partial}{\partial \beta_2} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k) \\ \vdots \\ \frac{\partial}{\partial \beta_k} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k) \end{bmatrix}$$

$$= \mathbf{a}$$

Matrix Differentiation

Let β be a $k \times 1$ vector and \mathbf{A} be a $k \times k$ symmetric matrix then

$$\frac{\partial \boldsymbol{\beta}' \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} = 2 \mathbf{A} \boldsymbol{\beta}.$$

Proof.

By means of proof, say $m{\beta}=egin{pmatrix} eta_1\\ eta_2 \end{pmatrix}$ and $\mathbf{A}=egin{pmatrix} a_{11} & a_{12}\\ a_{12} & a_{22} \end{pmatrix}$, then

$$\frac{\partial}{\partial \boldsymbol{\beta}} (\boldsymbol{\beta}' \mathbf{A} \boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta}} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22})
= \begin{bmatrix} \frac{\partial}{\partial \beta_1} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22}) \\ \frac{\partial}{\partial \beta_2} (\beta_1^2 a_{11} + 2a_{12}\beta_1 \beta_2 + \beta_2^2 a_{22}) \end{bmatrix}
= \begin{bmatrix} 2\beta_1 a_{11} + 2a_{12}\beta_2 \\ 2\beta_1 a_{12} + 2a_{22}\beta_2 \end{bmatrix}
= 2\mathbf{A} \boldsymbol{\beta}$$

Matrix Differentiation

Let β be a $k \times 1$ vector and \mathbf{A} be a $n \times k$ matrix then $\frac{\partial \mathbf{A} \beta}{\partial \beta'} = \mathbf{A}$.

Proof.

By means of proof, say $m{eta}=egin{pmatrix} eta_1\\ eta_2 \end{pmatrix}$ and $\mathbf{A}=egin{pmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{pmatrix}$, then

$$\frac{\partial}{\partial \boldsymbol{\beta'}} (\mathbf{A}\boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta'}} \begin{bmatrix} a_{11}\beta_1 + a_{12}\beta_2 \\ a_{21}\beta_1 + a_{22}\beta_2 \end{bmatrix} \\
= \begin{bmatrix} \left[\frac{\partial}{\partial \beta_1} & \frac{\partial}{\partial \beta_2} \right] (a_{11}\beta_1 + a_{12}\beta_2) \\ \left[\frac{\partial}{\partial \beta_1} & \frac{\partial}{\partial \beta_2} \right] (a_{21}\beta_1 + a_{22}\beta_2) \end{bmatrix} \\
= \begin{bmatrix} \frac{\partial}{\partial \beta_1} (a_{11}\beta_1 + a_{12}\beta_2) & \frac{\partial}{\partial \beta_2} (a_{11}\beta_1 + a_{12}\beta_2) \\ \frac{\partial}{\partial \beta_1} (a_{21}\beta_1 + a_{22}\beta_2) & \frac{\partial}{\partial \beta_2} (a_{21}\beta_1 + a_{22}\beta_2) \end{bmatrix} \\
= \mathbf{A}.$$

Rank

- The rank of a matrix A is the maximal number of linearly independent rows or columns of A.
- A family of vectors is linearly independent if none of them can be written as a linear combination of finitely many other vectors in the collection.

Example (Dummy variable trap)

 \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are independent but $\mathbf{v}_4 = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3$.

Fundamentals Quadratic Forms Systems Sums Applications Code

Rank

- The maximum rank of an $m \times n$ matrix is $\min(m, n)$.
- A full rank matrix is one that has the largest possible rank,
 i.e. the rank is equal to either the number of rows or columns (whichever is smaller).
- In the case of an $n \times n$ square matrix \mathbf{A} , then \mathbf{A} is invertible if and only if \mathbf{A} has rank n (that is, \mathbf{A} has full rank).
- For some $n \times k$ matrix, \mathbf{X} , $\operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{X}'\mathbf{X})$
- This is why the dummy variable trap exists, you need to drop
 one of the dummy categories otherwise X is not of full rank
 and therefore you cannot find the inverse of X'X.

Trace

Definition

The trace of an $n \times n$ matrix **A** is the sum of the elements on the main diagonal: $\operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} + \ldots + a_{nn} = \sum_{i=1}^{n} a_{ii}$.

Properties

- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
- $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$
- If ${\bf A}$ is an $m \times n$ matrix and ${\bf B}$ is an $n \times m$ matrix then ${\rm tr}({\bf A}{\bf B}) = {\rm tr}({\bf B}{\bf A})$
- More generally, for conformable matrices:

$$tr(\mathbf{ABC}) = tr(\mathbf{CAB}) = tr(\mathbf{BCA})$$

BUT: $tr(\mathbf{ABC}) \neq tr(\mathbf{ACB})$. You can only move from the front to the back (or back to the front)!

Eigenvalues

• An eigenvalue λ and an eigenvector $\mathbf{x} \neq \mathbf{0}$ of a square matrix \mathbf{A} is defined as

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

• Since the eigenvector ${\bf x}$ is different from the zero vector (i.e. ${\bf x} \neq {\bf 0})$ the following is valid:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \implies \det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

- We know $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ because:
 - if $(\mathbf{A} \lambda \mathbf{I})^{-1}$ existed, we could just pre multiply both sides by $(\mathbf{A} \lambda \mathbf{I})^{-1}$ and get the solution $\mathbf{x} = \mathbf{0}$.
 - but we have assumed $\mathbf{x} \neq \mathbf{0}$ so we require that $(\mathbf{A} \lambda \mathbf{I})$ is NOT invertible which implies² that $\det(\mathbf{A} \lambda \mathbf{I}) = 0$.
- To find the eigenvalues, we can solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$.

²A matrix is invertible if and only if the determinant is non-zero

Eigenvalues

Example (Finding eigenvalues)

Say $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. We can find the eigenvalues of \mathbf{A} by solving

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$\det\left(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0$$

$$\begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)(2 - \lambda) - 1 \times 1 = 0$$

$$\lambda^2 - 4\lambda + 3 = 0$$

$$(\lambda - 1)(\lambda - 3) = 0$$

The eigenvalues are the roots of this quadratic: $\lambda = 1$ and $\lambda = 3$.

Fundamentals Quadratic Forms Systems Sums Applications

Why do we care about eigenvalues?

- An $n \times n$ matrix \mathbf{A} is positive definite if all eigenvalues of \mathbf{A} , $\lambda_1, \lambda_2, \ldots, \lambda_n$ are positive.
- A matrix is negative-definite, negative-semidefinite, or positive-semidefinite if and only if all of its eigenvalues are negative, non-positive, or non-negative, respectively.
- The eigenvectors corresponding to different eigenvalues are linearly independent. So if a $n \times n$ matrix has n nonzero eigenvalues, it is of full rank.
- The trace of a matrix is the sum of the eigenvectors: $tr(\mathbf{A}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n$.

the determinant of a matrix is the product of the

◆ Trace

- The determinant of a matrix is the product of the eigenvectors: $\det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- The eigenvectors and eigenvalues of the covariance matrix of a data set data are also used in principal component analysis (similar to factor analysis).

Useful rules

- $\bullet (\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
- $\det(\mathbf{A}) = \det(\mathbf{A}')$
- $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$
- $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$
- AI = A and xI = x
- If β and \mathbf{a} are both $k \times 1$ vectors, $\frac{\partial \beta' \mathbf{a}}{\partial \beta} = \mathbf{a}$
- If **A** is a $n \times k$ matrix, $\frac{\partial \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}'} = \mathbf{A}$
- If ${f A}$ is a $k \times k$ symmetric matrix, $\frac{\partial {m eta}' {f A} {m eta}}{\partial {m eta}} = 2 {f A} {m eta}$
- If \mathbf{A} is a $k \times k$ (not necessarily symmetric) matrix, $\frac{\partial \boldsymbol{\beta}' \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} = (\mathbf{A} + \mathbf{A}') \boldsymbol{\beta}$

Quadratic forms

ullet A quadratic form on \mathbb{R}^n is a real-valued function of the form

$$Q(x_1, \dots, x_n) = \sum_{i \le j} a_{ij} x_i x_j.$$

- E.g. in \mathbb{R}^2 we have $Q(x_1, x_2) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2$.
- Quadratic forms can be represented by a symmetric matrix A such that:

$$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

• E.g. if $\mathbf{x} = (x_1, x_2)'$ then

$$Q(\mathbf{x}) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} \\ \frac{1}{2}a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a_{11}x_1^2 + \frac{1}{2}(a_{12} + a_{21})x_1x_2 + a_{22}x_2^2$$

but **A** is symmetric, i.e. $a_{12} = a_{21}$, so we can write,

$$= a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2.$$

lamentals Quadratic Forms Systems Sums Applications

Quadratic forms

If $\mathbf{x} \in \mathbb{R}^3$, i.e. $\mathbf{x} = (x_1, x_2, x_3)'$ then the general three dimensional quadratic form is:

$$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

$$= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2} a_{12} & \frac{1}{2} a_{13} \\ \frac{1}{2} a_{12} & a_{22} & \frac{1}{2} a_{23} \\ \frac{1}{2} a_{13} & \frac{1}{2} a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3.$$

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as $\mathbf{x}'\mathbf{x}$ and quadratic forms are $\mathbf{x}'\mathbf{A}\mathbf{x}$. Quadratic forms are like generalised and weighted sum of squares. Note that if $\mathbf{A}=\mathbf{I}$ then we recover the sums of squares exactly.

ndamentals Quadratic Forms Systems Sums Applications Code

Definiteness of quadratic forms

- A quadratic form always takes on the value zero at the point ${\bf x}={\bf 0}.$ This is not an interesting result!
- For example, if $\mathbf{x} \in \mathbb{R}$, i.e. $\mathbf{x} = x_1$ then the general quadratic form is ax_1^2 which equals zero when $x_1 = 0$.
- Its distinguishing characteristic is the set of values it takes when $\mathbf{x} \neq \mathbf{0}.$
- ullet We want to know if ${f x}={f 0}$ is a max, min or neither.
- Example: when $\mathbf{x} \in \mathbb{R}$, i.e. the quadratic form is ax_1^2 ,
 - a>0 means $ax^2\geq 0$ and equals 0 only when x=0. Such a form is called positive definite; x=0 is a global minimiser.
 - a<0 means $ax^2\leq 0$ and equals 0 only when x=0. Such a form is called negative definite; x=0 is a global maximiser.

Positive definite

If
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 then $Q_1(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 + x_2^2$.

- Q_1 is greater than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $(x_1, x_2) \neq (0, 0)$.
- The point $\mathbf{x} = \mathbf{0}$ is a global minimum.
- Q_1 is called positive definite.

Figure 1: $Q_1(x_1, x_2) = x_1^2 + x_2^2$

Negative definite

If
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 then $Q_2(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = -x_1^2 - x_2^2$.
• Q_2 is less than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $(x_1, x_2) \neq (0, 0)$.

- The point x = 0 is a global maximum.
- Q₂ is called negative definite.

Figure 2: $Q_2(x_1, x_2) = -x_1^2 - x_2^2$

Indefinite

If
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 then $Q_3(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 - x_2^2$.

- ullet Q_3 can be take both positive and negative values.
- E.g. $Q_3(1,0) = +1$ and $Q_3(0,1) = -1$.
- Q_3 is called indefinite.

Figure 3: $Q_3(x_1, x_2) = x_1^2 - x_2^2$

If $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ then $Q_4(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 + 2x_1x_2 + x_2^2$.

- Q_4 is always ≥ 0 but does equal zero at some $\mathbf{x} \neq \mathbf{0}$.
- E.g. $Q_4(10, -10) = 0$.
- Q_4 is called positive semidefinite.

Figure 4: $Q_4(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$

Negative semidefinite

If
$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$
 then $Q_5(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = -(x_1 + x_2)^2$.

- ullet Q_4 is always ≤ 0 but does equal zero at some ${f x}
 eq {f 0}$
- E.g. $Q_5(10, -10) = 0$
- Q_5 is called negative semidefinite.

Figure 5: $Q_5(x_1, x_2) = -(x_1 + x_2)^2$

damentals Quadratic Forms Systems Sums Applications Co

Definite symmetric matrices

A symmetric matrix, \mathbf{A} , is called positive definite, positive semidefinite, negative definite, etc. according to the definiteness of the corresponding quadratic form $Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$.

Definition

Let A be a $n \times n$ symmetric matrix, then A is

- 1. positive definite if $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 2. positive semidefinite if $\mathbf{x}'\mathbf{A}\mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 3. negative definite if $\mathbf{x}'\mathbf{A}\mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 4. negative semidefinite if $\mathbf{x}'\mathbf{A}\mathbf{x} \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 5. indefinite if $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for some $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n and < 0 for some other \mathbf{x} in \mathbb{R}^n
- We can check the definiteness of a matrix by show that one of these definitions holds as in the example
- You can find the eigenvalues to check definiteness

damentals **Quadratic Forms** Systems Sums Applications

How else to check for definiteness?

You can check the sign of the sequence of determinants of the leading principal minors:

Positive Definite

An $n \times n$ matrix $\mathbf M$ is positive definite if all the following matrices have a positive determinant:

- the top left 1×1 corner of M (1st order principal minor)
- the top left 2×2 corner of ${\bf M}$ (2nd order principal minor)

M itself.

In other words, all of the leading principal minors are positive.

Negative Definite

A matrix is negative definite if all kth order leading principal minors are negative when k is odd and positive when k is even.

Why do we care about definiteness?

Useful for establishing if a (multivariate) function has a maximum, minimum or neither at a critical point.

• If we have a function, f(x), we can show that a minimum exists at a critical point, i.e. when f'(x) = 0, if f''(x) > 0.

Example $(f(x) = 2x^2)$

- f'(x) = 4x
- $f'(x) = 0 \implies x = 0$
- $f''(x) = 4 > 0 \implies \min \max x = 0$.

lamentals **Quadratic Forms** Systems Sums Applications

Why do we care about definiteness?

- In the special case of a univariate function f''(x) is a 1×1 Hessian matrix and showing that f''(x) > 0 is equivalent to showing that the Hessian is positive definite.
- If we have a bivariate function f(x,y) we find critical points when the first order partial derivatives are equal to zero:
 - 1. Find the first order derivatives and set them equal to zero
 - 2. Solve simultaneously to find critical points
- We can check if max or min or neither using the Hessian matrix, H, the matrix of second order partial derivatives:

$$\mathbf{H} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

- 1. (If necessary) evaluate the Hessian at a critical point
- 2. Check if H is positive or negative definite:
 Check definiteness
 - $|\mathbf{H}| > 0$ and $f_{xx} > 0 \implies$ positive definite \implies minimum
 - ullet $|\mathbf{H}|>0$ and $f_{xx}<0$ \Longrightarrow negative definite \Longrightarrow maximum
- 3. Repeat for all critical points

ndamentals Quadratic Forms Systems Sums Applications Co

Why do we care about definiteness?

- If we find the second order conditions and show that it is a
 positive definite matrix then we have shown that we have a
 minimum.
- Positive definite matrices are non-singular, i.e. we can invert them. So if we can show $\mathbf{X}'\mathbf{X}$ is positive definiteness, we can find $[\mathbf{X}'\mathbf{X}]^{-1}$.
- Application: showing that the Ordinary Least Squares (OLS)
 minimises the sum of squared residuals.

Matrices as systems of equations

• A system of equations:

$$y_1 = x_{11}b_1 + x_{12}b_2 + \dots + x_{1k}b_k$$

$$y_2 = x_{21}b_1 + x_{22}b_2 + \dots + x_{2k}b_k$$

$$\vdots$$

$$y_n = x_{n1}b_1 + x_{n2}b_2 + \dots + x_{nk}b_k$$

The matrix form:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}.$$

Matrices as systems of equations

ullet More succinctly: $\mathbf{y} = \mathbf{X}\mathbf{b}$ where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}; \quad \mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ik} \end{bmatrix}$$

for $i = 1, 2, \ldots, n$ and

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} = \begin{bmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \\ \vdots \\ \mathbf{x}'_n \end{bmatrix}.$$

• \mathbf{x}_i is the "covariate vector" for the *i*th observation.

Matrices as systems of equations

ullet We can write $\mathbf{y} = \mathbf{X}\mathbf{b}$ as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \mathbf{b}.$$

 Returning to the original system, we can write each individual equation using vectors:

$$y_1 = \mathbf{x}_1' \mathbf{b}$$

$$y_2 = \mathbf{x}_2' \mathbf{b}$$

$$\vdots$$

$$y_n = \mathbf{x}_n' \mathbf{b}$$

Mixing matrices, vectors and summation notation

Often we want to find X'u or X'X. A convenient way to write this is as a sum of vectors. Say we have a 3×2 matrix X:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \mathbf{x}_3' \end{bmatrix}; \quad \mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \end{bmatrix}; \text{ and } \quad \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

We can write,

$$\mathbf{X'u} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}u_1 + x_{21}u_2 + x_{31}u_3 \\ x_{12}u_1 + x_{22}u_2 + x_{32}u_3 \end{bmatrix}$$
$$= \mathbf{x}_1 u_1 + \mathbf{x}_2 u_2 + \mathbf{x}_3 u_3$$
$$= \sum_{i=1}^{3} \mathbf{x}_i u_i$$

Mixing matrices, vectors and summation notation

In a similar fashion, you can also show that $\mathbf{X}'\mathbf{X} = \sum_{i=1}^{3} \mathbf{x}_i \mathbf{x}_i'$.

$$\mathbf{X'X} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \mathbf{x}_3' \end{bmatrix}$$
$$= \mathbf{x}_1 \mathbf{x}_1' + \mathbf{x}_2 \mathbf{x}_2' + \mathbf{x}_3 \mathbf{x}_3'$$
$$= \sum_{i=1}^3 \mathbf{x}_i \mathbf{x}_i'$$

ndamentals Quadratic Forms Systems Sums Applications Code

Application: variance-covariance matrix

- For the univariate case, $var(Y) = \mathbb{E}([Y \mu]^2)$.
- In the multivariate case $\mathbf Y$ is a vector of n random variables.
- Without loss of generality, assume ${f Y}$ has mean zero, i.e. ${\mathbb E}({f Y})={m \mu}={f 0}.$ Then,

$$\operatorname{cov}(\mathbf{Y}, \mathbf{Y}) = \operatorname{var}(\mathbf{Y}) = \mathbb{E}\left(\left[\mathbf{Y} - \boldsymbol{\mu}\right]\left[\mathbf{Y} - \boldsymbol{\mu}\right]'\right)$$

$$= \mathbb{E}\left(\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix}\right)$$

$$= \mathbb{E}\begin{bmatrix} Y_1^2 & Y_1Y_2 & \cdots & Y_1Y_n \\ Y_2Y_1 & Y_2^2 & \cdots & Y_2Y_n \\ \vdots & \vdots & & \vdots \\ Y_nY_1 & Y_nY_2 & \cdots & Y_n^2 \end{bmatrix}$$

Application: variance-covariance matrix

• Hence, we have a variance-covariance matrix:

$$\operatorname{var}(\mathbf{Y}) = \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots & \operatorname{cov}(Y_1, Y_n) \\ \operatorname{cov}(Y_2, Y_1) & \operatorname{var}(Y_2) & \cdots & \operatorname{cov}(Y_2, Y_n) \\ \vdots & \vdots & & \vdots \\ \operatorname{cov}(Y_n, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots & \operatorname{var}(Y_n) \end{bmatrix}.$$

 What if we weight the random variables with a vector of constants, a?

$$\begin{aligned} \operatorname{var}(\mathbf{a}'\mathbf{Y}) &= \mathbb{E}\left([\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu}][\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu}]'\right) \\ &= \mathbb{E}\left(\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}](\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}])'\right) \\ &= \mathbb{E}\left(\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}][\mathbf{Y} - \boldsymbol{\mu}]'\mathbf{a}\right) \\ &= \mathbf{a}'\mathbb{E}\left([\mathbf{Y} - \boldsymbol{\mu}][\mathbf{Y} - \boldsymbol{\mu}]'\right)\mathbf{a} \\ &= \mathbf{a}'\operatorname{var}(\mathbf{Y})\mathbf{a} \end{aligned}$$

Application: variance of sums of random variables

Let $\mathbf{Y}=(Y_1,Y_2)'$ be a vector of random variables and $\mathbf{a}=(a_1,a_2)'$ be some constants,

$$\mathbf{a}'\mathbf{Y} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = a_1Y_1 + a_2Y_2$$

Now, $var(a_1Y_1 + a_2Y_2) = var(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'var(\mathbf{Y})\mathbf{a}$ where

$$\operatorname{var}(\mathbf{Y}) = \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) \\ \operatorname{cov}(Y_1, Y_2) & \operatorname{var}(Y_2) \end{bmatrix},$$

is the (symmetric) variance-covariance matrix.

$$\operatorname{var}(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'\operatorname{var}(\mathbf{Y})\mathbf{a}$$

$$= \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) \\ \operatorname{cov}(Y_1, Y_2) & \operatorname{var}(Y_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$= a_1^2\operatorname{var}(Y_1) + a_2^2\operatorname{var}(Y_2) + 2a_1a_2\operatorname{cov}(Y_1, Y_2)$$

Application: Given a linear model $y = X\beta + u$ derive the OLS estimator $\hat{\beta}$. Show that $\hat{\beta}$ achieves a minimum.

• The OLS estimator $\boldsymbol{\beta}$ minimises the sum of squared residuals, $\mathbf{u}'\mathbf{u} = \sum_{i=1}^n u_i^2$ where $\mathbf{u} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$ or $u_i = y_i - \mathbf{x}_i'\boldsymbol{\beta}$.

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 = (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$
$$= \mathbf{y}' \mathbf{y} - 2\mathbf{y}' \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\beta}' \mathbf{X}' \mathbf{X} \boldsymbol{\beta}.$$

• Take the first derivative of $S(\beta)$ and set it equal to zero:

$$\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0 \implies \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}.$$

• Assuming ${\bf X}$ (and therefore ${\bf X}'{\bf X}$) is of full rank (so is ${\bf X}'{\bf X}$ invertible) we get,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Application: Given a linear model $y = X\beta + u$ derive the OLS estimator $\hat{\beta}$. Show that $\hat{\beta}$ achieves a minimum.

• For a minimum we need to use the second order conditions:

$$\frac{\partial^2 S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = 2\mathbf{X}'\mathbf{X}.$$

• The solution will be a minimum if X'X is a positive definite matrix. Let q = c'X'Xc for some $c \neq 0$. Then

$$q = \mathbf{v}'\mathbf{v} = \sum_{i=1}^n v_i^2$$
, where $\mathbf{v} = \mathbf{X}\mathbf{c}$.

- Unless $\mathbf{v} = \mathbf{0}$, q is positive. But, if $\mathbf{v} = \mathbf{0}$ then \mathbf{v} or \mathbf{c} would be a linear combination of the columns of \mathbf{X} that equals $\mathbf{0}$ which contradicts the assumption that \mathbf{X} has full rank.
- Since c is arbitrary, q is positive for every $c \neq 0$ which establishes that X'X is positive definite.
- Therefore, if X has full rank, then the least squares solution $\hat{\beta}$ is unique and minimises the sum of squared residuals.

det(A)

inv(A)

A + B

A * B

Α,

det(A)

solve(A)

A + B

A %*% B

t(A)

 $det(\mathbf{A})$

 \mathbf{A}^{-1}

A + B

AB

A'

Matrix Operations

Operation	R	Matlab
eigenvalues & eigenvectors	eigen(A)	[V,E] = eig(A)
covariance matrix of ${f X}$	var(X) or cov(X)	cov(X)
estimate of $\mathrm{rank}(\mathbf{A})$	qr(A)\$rank	rank(A)
$r imes r$ identity matrix, \mathbf{I}_r	diag(1,r)	eye(r)

ndamentals Quadratic Forms Systems Sums Applications Code

Matlab Code

```
Figure 1

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,x.^2 + y.^2)

ylabel('x_2')

xlabel('x_1')

zlabel('Q_1(x_1,x_2)')
```

```
Figure 2

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,-x.^2 - y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_2(x_1,x_2)')
```

ndamentals Quadratic Forms Systems Sums Applications Code

Matlab Code

```
Figure 3

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,x.^2 - y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_3(x_1,x_2)')
```

```
Figure 4

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,x.^2 + 2.*x.*y + y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_4(x_1,x_2)')
```

Matlab Code

```
Figure 5

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,-(x+y).^2)

ylabel('x_2')

xlabel('x_1')

zlabel('Q_5(x_1,x_2)')
```