EchoKey Solar Meta-Layer (GaAs, Solcore) Mathematical Notes & Walkthrough (compact, derivation-first)

CC0 Public Domain

September 25, 2025

0. Goal & Setting

- **Objective:** Compare *Baseline* (no meta layer) vs. *Emergent* (coin → meta layer) on a single-junction GaAs device using real optics (TMM) + PDD transport.
- What the coin does: Generates a tabulated meta layer $(n(\lambda), k(\lambda), t)$ and effective transport/passivation targets $(S_f, S_b, \tau_n, \tau_p, \mu_n, \mu_p)$.
- Where gains come from: In our winning regime, $\gamma_k = 0$ (no added loss); efficiency improves via passivation $(S \downarrow)$ and lifetime $(\tau \uparrow)$; optics set to be benign via thickness near quarter wave.

1 Optics: absorption, reflection, and thickness

1.1 Parasitic absorption of a front meta layer

$$\alpha(\lambda) = \frac{4\pi k(\lambda)}{\lambda},$$
 $A_{\text{meta}}(\lambda) \approx 1 - e^{-\alpha(\lambda)t},$

Small-loss regime: $A_{\text{meta}}(\lambda) \approx \alpha(\lambda) t$ if $\alpha t \ll 1$.

Rule of thumb (near band edge, e.g. $\lambda \sim 800 \, \mathrm{nm}$): to keep parasitic loss below $\sim 1\%$, require $\alpha t \lesssim 0.01 \Rightarrow t \lesssim 0.01 \, \lambda/(4\pi k)$.

Examples at $\lambda = 800 \, \text{nm}$:

$$k = 0.02 \Rightarrow t_{\text{max}} \approx 32 \,\text{nm}, \qquad k = 0.005 \Rightarrow t_{\text{max}} \approx 127 \,\text{nm}.$$

1.2 Mild anti-reflection by thickness (with $k \approx 0$)

Quarter-wave heuristic (single layer, normal incidence):

$$t_{\lambda_0} pprox rac{\lambda_0}{4 \, n_{
m eff}(\lambda_0)}.$$

With $n_{\rm eff} \approx 2$ and $\lambda_0 \approx 700$ –900 nm, one obtains $t \approx 80$ –110 nm. Caveat: Without tailoring $n(\lambda)$ relative to adjacent layers, the AR effect is mild; thickness is tuned chiefly to not make things worse.

1.3 Transfer-matrix (TMM) skeleton

For a stack $\{n_j(\lambda), k_j(\lambda), t_j\}_{j=1}^L$, define $\tilde{n}_j = n_j + ik_j$, longitudinal wavevector $k_{z,j} = \frac{2\pi}{\lambda} \tilde{n}_j \cos \theta_j$ (Snell), and layer matrix

$$\mathbf{M}_{j} = \begin{pmatrix} \cos \delta_{j} & \frac{i}{q_{j}} \sin \delta_{j} \\ i q_{j} \sin \delta_{j} & \cos \delta_{j} \end{pmatrix}, \qquad \delta_{j} = k_{z,j} t_{j}, \quad q_{j} = \begin{cases} \frac{k_{z,j}}{\mu_{0} \omega} & \text{TE,} \\ \frac{\varepsilon_{0} \omega}{k_{z,j}} & \text{TM.} \end{cases}$$

Total transfer $\mathbf{M} = \prod_j \mathbf{M}_j$; from \mathbf{M} derive $R(\lambda)$, $T(\lambda)$, and $A(\lambda) = 1 - R - T$. The junction EQE is driven by field distribution and absorption inside the GaAs base.

2 Photogeneration $\rightarrow J_{\rm sc}$

2.1 Spectral current density

Let $\Phi(\lambda)$ be incident photon flux density [photons m⁻² s⁻¹ nm⁻¹], and $A_{\text{base}}(\lambda)$ the absorptance in the active base that leads to collected carriers with collection fraction $C(\lambda)$ (from PDD). Then

$$J_{\rm sc} = q \int_{\lambda_{\rm min}}^{\lambda_{\rm max}} \Phi(\lambda) A_{\rm base}(\lambda) C(\lambda) d\lambda.$$

Notes:

- The meta layer changes A_{base} via interference and parasitics; with $k \approx 0$, interference can wiggle J_{sc} by $\mathcal{O}(0.1\text{-}0.5)\,\text{mA}\,\text{cm}^{-2}$.
- Decreasing surface recombination increases $C(\lambda)$ near short wavelengths (front), modestly boosting J_{sc} .

3 Recombination, J_0 , and V_{oc}

3.1 One-diode skeleton for intuition

$$J(V) \approx J_{\rm ph} - J_0 \left(\exp \frac{V}{n_{\rm id} V_T} - 1 \right), \qquad V_T = \frac{k_B T}{q}.$$

Open-circuit voltage (neglecting series/shunt):

$$V_{oc} \approx n_{\rm id} V_T \ln \left(\frac{J_{\rm ph}}{J_0} + 1 \right) \simeq n_{\rm id} V_T \ln \frac{J_{\rm ph}}{J_0} \quad (J_{\rm ph} \gg J_0).$$

Key sensitivity: if an intervention scales $J_0 \to J_0/\rho$ ($\rho > 1$), then

$$\Delta V_{oc} \approx n_{\rm id} V_T \ln \rho.$$

At $T = 300 \,\mathrm{K}$, $V_T \approx 25.85 \,\mathrm{mV}$, $n_{\mathrm{id}} \in [1, 2]$. For $n_{\mathrm{id}} \approx 1.3$, $\rho = 3 \,\mathrm{gives} \,\Delta V_{oc} \approx 28 \,\mathrm{mV}$; $\rho = 10 \,\mathrm{gives} \approx 77 \,\mathrm{mV}$.

3.2 Effective lifetime and surface recombination

For a quasi-neutral region of thickness W,

$$\frac{1}{\tau_{\rm eff}} \approx \frac{1}{\tau_{\rm bulk}} + \frac{2S}{W}.$$

Heuristically $J_0 \propto 1/\tau_{\text{eff}}$. Thus improving passivation $(S \downarrow)$ and lifetime $(\tau_{\text{bulk}} \uparrow)$ reduces J_0 , increasing V_{oc} .

3.3 Diffusion lengths (PDD inputs)

$$D_{n,p} = \mu_{n,p} V_T, \qquad L_{n,p} = \sqrt{D_{n,p} \, \tau_{n,p}}.$$

Longer L enhances carrier collection and suppresses recombination currents that feed J_0 .

4 Fill factor (FF) approximations

Define $v_{oc} = \frac{V_{oc}}{n_{\rm id}V_T}$. A standard approximation (Green-like) yields

$$FF \approx \frac{v_{oc} - \ln(v_{oc} + 0.72)}{v_{oc} + 1}.$$

Thus improvements that raise V_{oc} (via $J_0 \downarrow$) also increase FF moderately, provided series resistance remains small.

5 Efficiency

$$\eta = \frac{V_{\mathrm{mpp}}J_{\mathrm{mpp}}}{P_{\mathrm{in}}} \approx \frac{V_{oc}J_{\mathrm{sc}}\,\mathrm{FF}}{P_{\mathrm{in}}},$$

with $P_{\rm in}$ the AM1.5G incident power density.

${f 6}\quad {f Coin} ightarrow {f Meta\ mapping\ (the\ knobs)}$

6.1 Optical map

 $\text{Gaussian taps in } k(\lambda): \ B_\ell(\lambda) = \exp\Big[-\tfrac{1}{2}\Big(\tfrac{\lambda-\lambda_\ell}{\sigma_\ell}\Big)^2\Big], \quad \Delta k(\lambda) = \gamma_k \sum_\ell w_\ell \frac{B_\ell(\lambda)}{\max_\lambda B_\ell(\lambda)},$

 $k_{\rm eff}(\lambda) = k_{\rm base}(\lambda) + \Delta k(\lambda), \qquad n_{\rm eff}(\lambda) \approx n_{\rm base}(\lambda) \quad (\text{here we keep } n \text{ fixed}),$

Thickness = t (nm scale), placed in front of the junction.

Winning regime (this project): $\gamma_k = 0$ (no added loss), $t \in [80, 100]$ nm set near quarter-wave to avoid reflection spikes.

6.2 Transport/passivation map (into PDD)

We apply effective targets to the junction materials/BCs (not just the decorative meta layer):

 $S_{\text{front}} \mapsto \text{PDD}$ front surface recombination parameter s_n (and/or s_p),

 $S_{\text{back}} \mapsto \text{PDD}$ back surface recombination parameter,

 $\tau_{n,p} \mapsto \text{junction GaAs layer lifetimes},$

 $\mu_{n,p} \mapsto \text{junction GaAs mobilities (mild FF tuning)}.$

Effect: $S \downarrow$ and $\tau \uparrow \Rightarrow J_0 \downarrow \Rightarrow V_{oc} \uparrow$ and FF \uparrow ; small $\Delta J_{sc} > 0$ if front surface losses were limiting EQE near short λ .

7 Sensitivity & back-of-envelope tradeoffs

7.1 V_{oc} vs. lifetime (log law)

If intervention scales $\tau \to \rho \tau$, roughly $J_0 \propto 1/\tau \Rightarrow \Delta V_{oc} \approx n_{\rm id} V_T \ln \rho$.

$$\rho = 2 \Rightarrow \Delta V_{oc} \approx 23 \,\mathrm{mV} \ (n_{\mathrm{id}} = 1.3), \quad \rho = 3 \Rightarrow 28 \,\mathrm{mV}, \quad \rho = 10 \Rightarrow 77 \,\mathrm{mV}.$$

7.2 V_{oc} vs. surface recombination

Using $\tau_{\text{eff}}^{-1} = \tau^{-1} + 2S/W$, decreasing S by factor σ gives

$$\tau'_{\text{eff}} pprox \frac{1}{\tau^{-1} + (2/W)(S/\sigma)} \quad \Rightarrow \quad \frac{\tau'_{\text{eff}}}{\tau_{\text{eff}}} pprox \frac{\tau^{-1} + 2S/W}{\tau^{-1} + (2/W)(S/\sigma)}.$$

Convert $\tau'_{\rm eff}/\tau_{\rm eff}$ to an effective ρ and plug into $\Delta V_{oc} \approx n_{\rm id} V_T \ln \rho$.

7.3 $J_{\rm sc}$ penalty from meta optics

If $k \approx 0$, main risk is heightened reflection at certain t. Small Δt (± 2 –5 nm) can recover $\mathcal{O}(0.1-0.3)\,\mathrm{mA\,cm^{-2}}$. If k>0, parasitic loss $\Delta J_{\mathrm{sc}}\sim q\int\Phi\,\Delta A_{\mathrm{meta}}\,\mathcal{C}\,d\lambda$ scales $\propto\gamma_k\,t$.

8 Putting it together (why the winning preset works)

- Optics benign: $\gamma_k = 0$ eliminates parasitic front absorption. Thickness $t \approx 95$ nm sits in a mild AR-ish valley; small $J_{\rm sc}$ dip is offset downstream.
- Passivation/lifetime: $S_{\rm front} \sim 100 \, {\rm cm/s}, \, S_{\rm back} \sim 250 \, {\rm cm/s}, \, \tau_{n,p} \sim 50 \, {\rm ns} \Rightarrow {\rm sizable} \, J_0 \downarrow \Rightarrow V_{oc} \uparrow {\rm by} \sim 40 \, {\rm mV} \, {\rm and} \, {\rm FF} \uparrow.$
- Net: Even with a modest $J_{\rm sc}$ reduction from interference, η rises by ~ 0.9 points.

9 Checks, constraints, realism

- Thickness: with $k \approx 0$, $t \in [70, 110]$ nm is safe; avoid $t \gg 120$ nm unless $k \ll 10^{-3}$.
- Passivation: $S_{\text{front}} \in [80 \,\text{cm/s}, 300 \,\text{cm/s}], S_{\text{back}} \in [200 \,\text{cm/s}, 600 \,\text{cm/s}]$ are strong but plausible.
- Lifetime: $\tau_{n,p} \in [20 \text{ ns}, 50 \text{ ns}]$ gives clear gains; beyond $\sim 50\text{--}80 \text{ ns}$ returns diminish unless re-optimizing doping/thickness.
- Mobilities: +10–25% helps FF a bit; do not expect large $\Delta \eta$ from μ alone.

10 Minimal reproducible pipeline math (what the code implements)

- 1. Coin \rightarrow meta: Build $k_{\text{eff}}(\lambda)$ by Gaussian taps with amplitude γ_k (here set to 0). Choose t.
- 2. **Optical registration:** Tabulate (n, k) for window (AlGaAs), Au back, and meta, all on the same λ -grid; feed to TMM.
- 3. **QE solve:** Get $A_{\text{base}}(\lambda)$ and $C(\lambda)$ from PDD; compute J_{sc} .
- 4. IV solve: Solve illuminated IV; in our Solcore build, sc.iv["IV"] is a (2, N) array with rows [V; J].
- 5. **Metrics:** Enforce conventional sign J(0) > 0; locate V_{oc} by zero-crossing; compute P(V) = VJ, MPP, FF, η .

11 Tiny back-pocket approximations

$$\begin{split} \Delta \eta &\approx \frac{\Delta V_{oc}}{V_{oc}} \, \eta + \frac{\Delta J_{\rm sc}}{J_{\rm sc}} \, \eta + \frac{\Delta \mathrm{FF}}{\mathrm{FF}} \, \eta, \\ \Delta V_{oc} &\approx n_{\rm id} V_T \ln \rho, \quad \rho \approx \frac{\tau_{\rm eff}'}{\tau_{\rm eff}}, \qquad \Delta J_{\rm sc} \simeq - \, q \int \Phi(\lambda) \, \Delta A_{\rm meta}(\lambda) \, \mathcal{C}(\lambda) \, d\lambda. \end{split}$$

12 Where the EchoKey Operators Enter (Explicit Map)

We annotate the solar meta-layer pipeline with the EchoKey-7 operators

to make clear where each operator acts and what object it transforms.

State, controls, and readouts

- State State: device stack & fields: tabulated $(n(\lambda), k(\lambda))$, layer set $\{t_j\}$, PDD material params $(\mu_{n,p}, \tau_{n,p})$, surface params $(S_{\text{front}}, S_{\text{back}})$, plus the AM1.5G source.
- Controls c (coin): JSON knobs

$$c = \{(\lambda_{\ell}, \sigma_{\ell}, w_{\ell})_{\ell=1}^{L}, \gamma_{k}, t, S_{f}, S_{b}, \tau_{n,p}, \mu_{n,p}\}.$$

• Readouts r: spectral/electrical metrics $r = \{R(\lambda), T(\lambda), A(\lambda), \text{ EQE}(\lambda), J_{\text{sc}}, V_{oc}, \text{FF}, \eta\}$.

Frac (Fractality): multiscale spectral taps in $k(\lambda)$

$$B_{\ell}(\lambda) = \exp\left[-\frac{1}{2}\left(\frac{\lambda - \lambda_{\ell}}{\sigma_{\ell}}\right)^{2}\right], \qquad \Delta k(\lambda) = \gamma_{k} \sum_{\ell=1}^{L} w_{\ell} \frac{B_{\ell}(\lambda)}{\max_{\lambda} B_{\ell}(\lambda)},$$

$$k_{\text{eff}}(\lambda) = k_{\text{base}}(\lambda) + \Delta k(\lambda), \qquad n_{\text{eff}}(\lambda) \approx n_{\text{base}}(\lambda).$$

Operator view: Frac maps the coin coefficients $(\lambda_{\ell}, \sigma_{\ell}, w_{\ell}, \gamma_k)$ to a multiscale superposition on the spectral axis. In our winning regime, $\gamma_k = 0$ so Frac is present but neutral (no added loss).

Ref (Refraction): layer/domain transform

Ref[State; t]: insert a front meta layer of thickness t with $(n_{\text{eff}}, k_{\text{eff}})$

and update the TMM stack matrices $\{\mathbf{M}_j\}$ accordingly. This realizes the domain change (new interface, phase $\delta = (2\pi/\lambda)\tilde{n}t$) that perturbs R, T, A and field distribution driving generation.

Syn (Synergy): optics \leftrightarrow transport coupling

$$\begin{split} & \text{(Optics)} \quad A_{\text{base}}(\lambda;t,n,k) \xrightarrow{\text{fields}} G(x,\lambda), \\ & \text{(Transport)} \quad (\mu_{n,p},\tau_{n,p},S_{\text{f}},S_{\text{b}}) \xrightarrow{\text{PDD}} \mathcal{C}(\lambda), \\ & \text{(Coupling)} \quad J_{\text{sc}} = q \int \Phi(\lambda) \, A_{\text{base}}(\lambda) \, \mathcal{C}(\lambda) \, d\lambda. \end{split}$$

Operator view: Syn is the bilinear composition sending optical absorptance and electrical collection into photocurrent.

Reg (Regression/Stability): effective recombination relaxation

We model passivation and bulk improvement as a relaxation of effective recombination channels:

$$\tau_{\rm eff}^{-1} = \tau_{\rm bulk}^{-1} + \frac{2S}{W}, \quad J_0 \propto \tau_{\rm eff}^{-1},$$

$$\Rightarrow \quad \Delta V_{oc} \approx n_{\rm id} V_T \ln \left(\frac{\tau_{\rm eff}'}{\tau_{\rm eff}} \right).$$

Operator view: Reg maps $(S_f, S_b, \tau_{n,p}, \mu_{n,p})$ to a more stable (lower J_0) junction.

Cyc (Cyclicity): spectral/optical periodic structure

Two uses:

- 1. Quarter-wave structure: $t \approx \lambda_0/(4n_{\rm eff})$ exploits periodicity in optical phase $\delta \mapsto \delta + 2\pi$ to land near a benign reflectance valley.
- 2. Spectral conditioning (optional): projector on band-edge bands, e.g. $\mathsf{Cyc}_{[\lambda_1,\lambda_2]}[f] = \mathbf{1}_{[\lambda_1,\lambda_2]}(\lambda)f(\lambda)$.

Rec (Recursion): fixed-point tuning loop (conceptual)

If we iterate the coin to hit a target (e.g. maximize η subject to constraints),

$$oldsymbol{c}_{k+1} = \mathsf{Rec}[oldsymbol{c}_k] \equiv \Pi_{\mathcal{C}} \Big(oldsymbol{c}_k + lpha \, \Phi' ig(oldsymbol{c}_k; \,\, \eta(\mathsf{State}(oldsymbol{c}_k)) \Big) \Big),$$

with $\Pi_{\mathcal{C}}$ a projection onto physically admissible controls and Φ' any ascent direction.

Out (Outliers): moderated impulses in control space

$$\operatorname{Out}[\mathbf{c}]: \operatorname{clip/floor} \{\gamma_k, t, S_f, S_b, \tau_{n,p}, \mu_{n,p}\}$$

to admissible intervals (e.g. $\gamma_k \ge 0$, $t \in [70, 110]$ nm for $k \approx 0$, $S_f \in [80, 300]$ cm/s, $\tau \in [20, 50]$ ns).

Composite view

$$\underbrace{\mathsf{Comp}}_{\mathsf{CycoRecoFracoRegoSynoRefoOut}} : c \ \longmapsto \ \mathsf{State}(c) \ \longmapsto \ r(\mathsf{State})$$

with the concrete evaluation order during one forward solve:

$$\boldsymbol{c} \xrightarrow{\mathsf{Out}} \boldsymbol{c}^{\mathsf{clipped}} \xrightarrow{\mathsf{Frac}} k_{\mathsf{eff}}(\lambda) \xrightarrow{\mathsf{Ref}} \mathsf{stack}(t,n,k) \xrightarrow{\mathsf{Cyc}} \mathsf{phase\text{-conditioned}} t \xrightarrow{\mathsf{Syn}} (J_{\mathsf{sc}}, \mathsf{QE}) \xrightarrow{\mathsf{Reg}} (J_0, V_{oc}, \mathsf{FF}) \rightsquigarrow \eta.$$

13 What not to expect (without $n(\lambda)$ control)

- Big $J_{\rm sc}$ boosts from a single front layer are unlikely unless $n(\lambda)$ is tuned as a true AR layer or multi-layer stack.
- With $k(\lambda)$ taps only, $\gamma_k > 0$ always risks $J_{\rm sc}$ loss; the best optical policy here was $\gamma_k = 0$ and careful t.

Appendix: Units & conversions

- $\Phi(\lambda)$ from Solcore may be returned per nm: convert as needed; power density $P_{\rm in} = \int E_{\gamma}(\lambda)\Phi(\lambda) d\lambda$, with $E_{\gamma}(\lambda) = hc/\lambda$.
- Mobilities: $\text{cm}^2/(\text{V s}) \leftrightarrow \text{m}^2/(\text{V s})$ via $1 \text{ cm}^2/(\text{V s}) = 10^{-4} \text{ m}^2/(\text{V s})$.
- Doping: $cm^{-3} \leftrightarrow m^{-3}$ via $1 cm^{-3} = 10^6 m^{-3}$.