Transfer Learning for Metamodeling Nested Simulation in VA Contracts

Outline

- 1. Introduction to Nested Simulation
- 2. Challenges in VA Contract Valuation
- 3. Metamodeling Approach
- 4. Transfer Learning Fundamentals
- 5. Application to VA Contracts
- 6. Experimental Results
- 7. Conclusions

Introduction to Nested Simulation

- Nested simulation: A computational approach involving two layers of simulations
 - Outer scenarios: Represent possible future states
 - Inner scenarios: Estimate conditional expectations (e.g., losses) at each outer scenario
- Applications: Risk management, dynamic hedging, and regulatory compliance
- Challenge: Computational intensity due to multiple layers of simulations

Variable Annuity (VA) Contracts

- Financial products offering investment returns with insurance guarantees
- Complex financial instruments with long-term horizons
 - Guaranteed minimum maturity benefits (GMMB)
 - Guaranteed minimum accumulation benefits (GMAB)
 - Guaranteed minimum withdrawal benefits (GMWB)

Computational Challenges for Simulating VA Contracts

- Nested simulation for VA contracts is computationally intensive:
 - Thousands of outer scenarios
 - Hundreds/thousands of inner scenarios per outer scenario
 - Complex contract features and market dynamics
- Real-world impact: Delays in risk assessment and decision-making

Metamodeling Approach

- **Metamodel**: A model that approximates the relationship between inputs and outputs of a complex simulation
- Goal: Replace expensive inner simulations with a fast approximation
- Benefits:
 - Significant reduction in computational time
 - Enables more frequent risk assessments
 - Supports real-time decision making (?)

Traditional Metamodeling Approaches

- Multiple linear regression
- Quadratic polynomial regression
- Feedforward neural networks
- Recurrent neural networks
- Long short-term memory (LSTM) networks

Limitation:

 Each new VA contract or valuation date requires building a new metamodel from scratch

Transfer Learning: Fundamentals

• Core idea: Knowledge gained from solving one problem can be applied to a different but related problem

Advantages:

- Reduces training data requirements
- Accelerates learning process
- Improves model performance

Neural Networks & Transfer Learning

Transfer Learning: Approaches

- Feature-based Transfer: Extract and transfer knowledge at feature representation level
 - Example: Domain adaptation via feature alignment (Tzeng et al., 2017)
- Instance-based Transfer: Reweight source domain instances for target domain relevance
 - Example: TrAdaBoost for cross-domain classification (Dai et al., 2007)
- Parameter-based Transfer: Share and fine-tune model parameters between domains
 - Example: Pre-trained neural networks in computer vision (Yosinski et al., 2014)

Mathematical Formulation of Transfer Learning

In supervised learning, a domain \mathcal{D} consists of:

- ullet Feature space ${\mathcal X}$
- ullet Marginal probability distribution F

A **task** \mathcal{T} consists of:

- ullet Label space ${\mathcal Y}$
- ullet Predictive function $f:\mathcal{X} o \mathcal{Y}$

Transfer Learning Framework

- ullet Source domain: $\mathcal{D}_{\mathrm{So}} = \{\mathcal{X}_{\mathrm{So}}, F_{\mathrm{So}}(\mathbf{X})\}$
- ullet Source task: $\mathcal{T}_{\mathrm{So}} = \{\mathcal{Y}_{\mathrm{So}}, f_{\mathrm{So}}(\cdot)\}$
- ullet Target domain: ${\mathcal D}_{\mathrm{Ta}} = \{ {\mathcal X}_{\mathrm{Ta}}, F_{\mathrm{Ta}}(\cdot) \}$
- ullet Target task: $\mathcal{T}_{\mathrm{Ta}} = \{\mathcal{Y}_{\mathrm{Ta}}, f_{\mathrm{Ta}}(\cdot)\}$

In our context of metamodeling nested simulation for VA contracts:

- ullet $\mathcal{X}_{\mathrm{So}}$ and $\mathcal{X}_{\mathrm{Ta}}$ include input features derived from the outer simulation
- ullet $F_{
 m So}$ and $F_{
 m Ta}$ are the outer simulation model that simulates the outer scenarios
- ullet ${\cal Y}_{
 m So}$ and ${\cal Y}_{
 m Ta}$ include the VA contract losses
- ullet $f_{
 m So}$ and $f_{
 m Ta}$ are the true contract losses that we want to approximate

Relating to Previous Work

In the previous chapter, we have $\mathcal{D}_{\mathrm{So}}=\mathcal{D}_{\mathrm{Ta}}$ and $\mathcal{T}_{\mathrm{So}}=\mathcal{T}_{\mathrm{Ta}}$.

- We trained the LSTM network on a simulation dataset
- We used the same LSTM network to approximate the contract losses on the same data generating process

However, as new contract features are introduced, we want to transfer previous knowledge when

- we have limited simulation budget (data is scarce)
- we want to save the cost of building a new metamodel from scratch

Transfer Learning Implementation

Goal: Improve learning when $\mathcal{D}_{\mathrm{So}}
eq \mathcal{D}_{\mathrm{Ta}}$ or $\mathcal{T}_{\mathrm{So}}
eq \mathcal{T}_{\mathrm{Ta}}$

- 1. Train source model $f_{ ext{So}}(\cdot; heta_{ ext{So}})$ on dataset $\mathcal{D}_{ ext{So}}=\{(X_{ ext{So}}^{(i)},L_{ ext{So}}^{(i)})\}_{i=1}^{M_{ ext{So}}}$
- 2. Transfer knowledge by initializing target model with $heta_{
 m So}$
- 3. Fine-tune $f_{\mathrm{Ta}}(\cdot; \theta_{\mathrm{Ta}})$ on target domain $\mathcal{D}_{\mathrm{Ta}}$

Fine-tuning Algorithm for LSTM Metamodels in VA Hedging

Input:

ullet Source dataset: $\mathcal{D}_{\mathrm{So}} = \{(X_{\mathrm{So}}^{(i)}, L_{\mathrm{So}}^{(i)})\}_{i=1}^{M_{\mathrm{So}}}$, Target dataset: $\mathcal{D}_{\mathrm{Ta}} = \{(X_{\mathrm{Ta}}^{(i)}, L_{\mathrm{Ta}}^{(i)})\}_{i=1}^{M_{\mathrm{Ta}}}$

Algorithm:

1. Train source LSTM metamodel $f_{\mathrm{So}}(\cdot; \theta_{\mathrm{So}})$ on $\mathcal{D}_{\mathrm{So}}$:

$$heta_{
m So} = rg \min_{ heta} rac{1}{M_{
m So}} \sum_{i=1}^{M_{
m So}} (f_{
m So}(X_{
m So}^{(i)}; heta) - L_{
m So}^{(i)})^2.$$

- 2. Initialize target model: $\theta_{\mathrm{Ta}} \leftarrow \theta_{\mathrm{So}}$.
- 3. Fine-tune $f_{\mathrm{Ta}}(\cdot; \theta_{\mathrm{Ta}})$ on $\mathcal{D}_{\mathrm{Ta}}$:

$$heta_{
m Ta} = rg \min_{ heta} rac{1}{M_{
m Ta}} \sum_{i=1}^{M_{
m Ta}} (f_{
m Ta}(X_{
m Ta}^{(i)}; heta) - L_{
m Ta}^{(i)})^2.$$

Layer Freezing

Input:

ullet Source dataset: ${\cal D}_{
m So} = \{(X_{
m So}^{(i)},L_{
m So}^{(i)})\}_{i=1}^{M_{
m So}}$, Target dataset: ${\cal D}_{
m Ta} = \{(X_{
m Ta}^{(i)},L_{
m Ta}^{(i)})\}_{i=1}^{M_{
m Ta}}$

Algorithm:

- 1. Train source model $f_{\mathrm{So}}(\cdot; heta_{\mathrm{So}})$ on $\mathcal{D}_{\mathrm{So}}$
- 2. Initialize $\theta_{\mathrm{Ta}} \leftarrow \theta_{\mathrm{So}}$
- 3. Freeze LSTM layers in $heta_{\mathrm{Ta}}$
- 4. Fine-tune unfrozen layers of $f_{\mathrm{Ta}}(\cdot; heta_{\mathrm{Ta}})$ on $\mathcal{D}_{\mathrm{Ta}}$

Output: Adapted model $f_{\mathrm{Ta}}(\cdot; heta_{\mathrm{Ta}})$ with frozen LSTM layers

Note: Choice of layers to freeze depends on similarity between source and target tasks

Transfer Learning for VA Contracts

Key insight: Different VA contracts share underlying financial and mathematical structures

Application approaches:

- Transfer between different contract types
- Transfer between different valuation dates
- Transfer between different market conditions

VA Contracts and Asset Models

Contract	Asset Model	Lapse	$M_{ m So}$	$M_{ m Ta}$
GMMB	GBM	No	50,000	N/A
GMMB	RS-GBM	No	50,000	2,000
GMMB	RS-GBM	Static	50,000	2,000
GMMB	RS-GBM	Dynamic	50,000	2,000
GMWB	RS-GBM	Dynamic	N/A	2,000

All training data is generated by the standard procedure with 100 inner replications.

Learning Lapse Features

From No Lapse to Static Lapse

Learning Curves: Without Transfer Learning

Figure 1: The effect of number of training samples on the performance of the metamodel

• Left: 50000 samples; right: 2000 samples

Learning Curves: With Transfer Learning

Figure 2: The effect of transfer learning on limited training samples

• Left: fine-tuning; right: layer freezing

Experimental Setup

- Source domain: VA contract with specific features/parameters
- Target domain: New VA contract or same contract with different features
- Architecture: LSTM-based metamodel
- Transfer approach: Pre-trained weights from source model

Learning Dynamic Lapse

The Effect of Similarity between Source and Target

Learning Curves: Learning Dynamic Lapse

Figure 3: The effect of similarity between source and target on the convergence speed

• Left: from No Lapse; right: from Static Lapse

Results: Accuracy Comparison

Lapse Type	Extensive	Fine-tuning	Layer Freezing	Without TL
No Lapse	N/A	0.4894	0.3361	N/A
Static Lapse	N/A	0.0794	0.0763	N/A
Dynamic Lapse	0.0587	N/A	N/A	0.2950

Table 1: Comparison of different TL methods on GMMB contracts (best MSE values)

Learning Curves: Effect of Similarity

Figure 4: The effect of similarity between source and target on the convergence speed

• Left: from No Lapse; right: from Static Lapse

Transfer Knowledge to other Contract Types

From GMMB to GMWB Contract

Learning Curves: Transfer Knowledge to other Contract Types

Figure 5: Learning curves of GMWB contracts

• Left: 50000 samples; right: 2000 samples

Learning Curves: Effect of Similarity

Figure 6: Comparison of different TL methods on GMWB contracts

• Left: fine-tuning; right: layer freezing

Performance Comparison (GMMB → GMWB)

Model	Training MSE	True MSE
Without TL	0.3588	0.4188
Fine Tuning	0.1690	0.1780
Layer Freezing	0.1828	0.2295
Extensive Training	0.0853	0.0726

- Fine-tuning outperforms layer freezing for dissimilar tasks
- Both TL methods better than training from scratch
- Extensive training still superior with abundant data

Practical Implementation

- Framework: TensorFlow/PyTorch implementation
- Workflow:
 - i. Train base model on source contract
 - ii. Freeze early layers
 - iii. Fine-tune later layers on target contract
 - iv. Deploy for production use

PyTorch is recommended.

- It is more flexible and easier to customize
- It is more intuitive and easier to understand
- It is more efficient and easier to debug

Multi-task Learning

- LSTM layers shared across multiple tasks
- Task-specific fully connected layers
- Objective: Minimize sum of loss functions across all tasks

Multi-task Learning Framework

Input: Set of K tasks $\{\mathcal{T}_k\}_{k=1}^K$ with datasets $\mathcal{D}_k = \{(X_k^{(i)}, L_k^{(i)})\}_{i=1}^{M_k}$, shared parameters θ_0 , and task-specific parameters θ_k for each task k

Algorithm:

1. Train the multi-head LSTM metamodel on all K tasks simultaneously by minimizing the multi-task loss function:

$$\min_{ heta_0, \{ heta_k\}_{k=1}^K} \sum_{k=1}^K rac{1}{M_k} \sum_{i=1}^{M_k} \left(f_i(X_k^{(i)}; heta_0, heta_k) - L_k^{(i)}
ight)^2$$

2. Update both the shared parameters θ_0 and task-specific parameters $\{\theta_k\}_{k=1}^K$ simultaneously using backpropagation and gradient descent with learning rate α

Output: Trained multi-task LSTM metamodel $f(\cdot; \theta_0, \{\theta_k\}_{k=1}^K)$ for all K tasks

Multi-task Learning: GMMB and GMWB

Figure 5: Multi-task learning of GMMB and GMWB

• Left: total MSE; right: individual MSE

Multi-task Learning: GMMB and GMWB

Figure 6: Training without multi-task learning

• Left: GMMB; right: GMWB

Challenges & Limitations

- Determining optimal layer freezing strategy
- Handling significantly different contract structures
- Quantifying uncertainty in transfer learning predictions
- Regulatory acceptance of black-box approaches

Conclusions

- Transfer learning significantly improves metamodeling for VA contracts:
 - Faster training convergence
 - Better prediction accuracy
 - Reduced computational requirements
- Enables more frequent risk assessments and faster decision-making

Future Directions

- Incorporating domain knowledge into transfer process
- Extension to other insurance and financial products
- Multi-task learning with more than two tasks