$$(\omega s(2 \sin x))'$$

$$= -(\sin (2 \sin x)) \times (2 \sin x)'$$

= 114
$$\sin(6x)$$
 $\sin(\cos(6x))$
when $x = \frac{\pi}{2}$

Hw 9

#3
$$f'(x) = 40 x(x^2-4)$$

$$\chi-2<0$$

$$\chi$$
 < 0

$$=) \left(\frac{1}{(x)} < 0 \right)$$

$$\chi - 2 < 0$$

$$f'(x) = 15x + 8$$

 $f'(x)$ is always the

Differentiating cu. Let. x.
$$f'(y) \frac{dy}{dx} = 1$$

$$= \frac{1}{2x} = \frac{1}{1(4)} = \frac{1}{154+8}$$

$$f'(x) = 3x - 8x - 1$$

$$f'(x) = 0 \Rightarrow x = \frac{8 \pm \sqrt{64 + 12}}{6}$$

$$= \frac{8 \pm \sqrt{75}}{6}$$

$$= \frac{8 \pm 2\sqrt{19}}{6} = \frac{4 \pm \sqrt{19}}{3}$$

$$\frac{1}{3}(x) = \left(x - \frac{4+\sqrt{19}}{3}\right) \left(x + \frac{\sqrt{19}}{3}\right)$$

If $\chi = \frac{4+\sqrt{19}}{3}$, $f(\chi) > 0$ f is encewary

 $\frac{1}{3} = \frac{4 + \sqrt{9}}{3} = \frac{4 + \sqrt{9}}$

If $\chi < \frac{4-\sqrt{19}}{3}$ $f(\chi) > 0$ f(x) in clamy

f has max at $\chi = \frac{4-\sqrt{19}}{3}$ (it is called a local max)

t has min at $x = \frac{4+J19}{3}$ (local min)

There is no absolute min or max since $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ 4 $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.