

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
5 July 2001 (05.07.2001)

PCT

(10) International Publication Number
WO 01/48183 A2

(51) International Patent Classification?: C12N 15/00

(74) Agent: BAYLISS, Geoffrey, Cyril; Boult Wade Tennant,
Verulam Gardens, 70 Gray's Inn Road, London WC1X
8BT (GB).

(21) International Application Number: PCT/EP00/13149

(22) International Filing Date:
22 December 2000 (22.12.2000)(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, CZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GI, GM, IIR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.(30) Priority Data:
9930691.2 24 December 1999 (24.12.1999) GB(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:
Without international search report and to be republished
upon receipt of that report.(75) Inventors/Applicants (for US only): PLAETINCK,
Geert [BE/BE]; Pontstraat 16, B-9820 Merelbeke (BE).
MORTIER, Katherine [BE/BE]; Paddenhoek 20, B-9830
St.-Martens Latem (BE). LISSENS, Ann [BE/BE]; Tiens-
esteenveldweg 137, B-3010 Kessel-Lo (BE). BOGAERT,
Thierry [BE/BE]; Wolvendreef 26g, B-8500 Kortrijk
(BE).For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

A2

WO 01/48183

(54) Title: IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA INHIBITION

(57) Abstract: There are described ways of improving the efficiency of double stranded RNA inhibition as a method of inhibiting gene expression in nematode worms such as *C. elegans*. In particular, the invention relates to the finding that changes in the genetic background of *C. elegans* result in increased sensitivity to double-stranded RNA inhibition.

IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA
INHIBITION

The present invention is concerned with ways of
5 improving the efficiency of double stranded RNA
inhibition as a method of inhibiting gene expression
in nematode worms such as *C. elegans*. In particular,
the invention relates to the finding that the
susceptibility of nematode worms such as *C. elegans* to
10 double stranded RNA inhibition is affected by changes
in the genetic background of the worms.

It has recently been described in *Nature* Vol 391,
pp.806-811, February 98, that introducing double
stranded RNA into a cell results in potent and
15 specific interference with expression of endogenous
genes in the cell, which interference is substantially
more effective than providing either RNA strand
individually as proposed in antisense technology. This
specific reduction of the activity
20 of the gene was also found to occur in the nematode
worm *Caenorhabditis elegans* (*C. elegans*) when the RNA
was introduced into the genome or body cavity of the
worm.

The present inventors have utilized the double
25 stranded RNA inhibition technique and applied it
further to devise novel and inventive methods of (i)
assigning functions to genes or DNA fragments which
have been sequenced in various projects, such as, for
example, the human genome project and which have yet
30 to be accorded a particular function, and (ii)
identifying DNA responsible for conferring a
particular phenotype. Such methods are described in
the applicant's co-pending application number WO
00/01846. Processes for introducing RNA into a living
35 cell, either *in vivo* or *ex vivo*, in order to inhibit
expression of a target gene in that cell are

additionally described in WO 99/32619.

Several different experimental approaches can be used to introduce double-stranded RNA into nematode worms in order to achieve RNA interference *in vivo*.

5 One of the most straightforward approaches is simple injection of double-stranded RNA into a body cavity. A more elegant solution is to feed the nematodes on food organisms, generally bacteria, which express a double stranded RNA of the appropriate sequence,

10 corresponding to a region of the target gene.

The present inventors have now determined that the phenomenon of RNA interference in nematodes following ingestion of food organisms capable of expressing double-stranded RNA is dependent both on 15 the nature of the food organism and on the genetic background of the nematodes themselves. These findings may be exploited to provided improved methods of double-stranded RNA inhibition.

20 Therefore, according to a first aspect of the present invention there is provided a method of inhibiting expression of a target gene in a nematode worm comprising feeding to said nematode worm a food organism which is capable of producing a double-stranded RNA structure having a nucleotide sequence 25 substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the nematode has a non wild-type genetic background selected to provide increased sensitivity to RNA interference as compared to wild 30 type.

35 *Caenorhabditis elegans* is the preferred nematode worm for use in the method of the invention although the method could be carried out with other nematodes and in particular with other microscopic nematodes, preferably microscopic nematodes belonging to the genus *Caenorhabditis*. As used herein the term "microscopic" nematode encompasses nematodes of

approximately the same size as *C. elegans*, being of the order 1mm long in the adult stage. Microscopic nematodes of this approximate size can easily be grown in the wells of a multi-well plate of the type 5 generally used in the art to perform mid- to high-throughput screening.

It is an essential feature of this aspect of the invention that the nematode has a non wild-type 10 genetic background which confers greater sensitivity to RNA interference phenomena (abbreviated herein to RNAi) as compared to the equivalent wild type 15 nematodes. As illustrated in the accompanying examples, introduction of double-stranded RNA (abbreviated herein to dsRNA) into a non wild-type strain according to the invention results in greater inhibition of expression of the target gene.

Depending on the nature of the target gene, this greater level of inhibition may be detectable at the phenotypic level as a more pronounced phenotype.

20 The nematode having non wild-type genetic background may, advantageously, be a mutant strain. Mutations which have the effect of increasing 25 susceptibility of the nematode to RNAi may, for example, affect the stability of dsRNA or the kinetics of dsRNA turnover within cells of the worm or the rate 30 of uptake of dsRNA synthesised by a food organism. Suitable mutant strains include mutant strains exhibiting knock-out or loss-of-function mutations in one or more genes encoding proteins involved in RNA synthesis, RNA degradation or the regulation of these processes.

In one preferred embodiment, the nematode is a 35 mutant strain, more preferably a mutant *C. elegans*, which exhibits reduced activity of one or more nucleases compared to wild-type. Suitable strains include mutant strains exhibiting knock-out or loss-of-function mutations in one or more genes encoding

nucleases, such as RNases. A particularly preferred example is the *nuc-1* strain. This mutant *C. elegans* strain is known *per se* in the art.

In a second preferred embodiment, the nematode is 5 a mutant strain, more preferably a mutant *C. elegans*, which exhibits increased gut uptake compared to wild-type. Particularly preferred examples of such strains are the so-called *C. elegans* gun mutants described herein. In a still further embodiment, the nematode 10 may be a transgenic worm comprising one or more transgenes which increase gut uptake relative to wild-type.

The term "increased gut uptake" as used herein is taken to mean increased uptake of foreign particles 15 from the gut lumen and may encompass both increased gut permeability and increased gut molecular transport compared to wild-type *C. elegans*.

C. elegans feeds by taking in liquid containing its food (e.g. bacteria). It then spits out the 20 liquid, crushes the food particles and internalises them into the gut lumen. This process is performed by the muscles of the pharynx. The process of taking up liquid and subsequently spitting it out is called pharyngeal pumping. Once the food particles have been 25 internalised via pharyngeal pumping their contents must cross the gut itself in order to reach target sites in the worm. There are multiple factors which effect the uptake of compounds from the gut lumen to the surrounding tissues. These include the action of 30 multi-drug resistance proteins, multi-drug resistance related proteins and the P450 cytochromes as well as other enzymes and mechanisms available for transport of molecules through the gut wall.

C. elegans mutants which exhibit increased uptake 35 of foreign molecules through the gut may be obtained from the *C. elegans* mutant collection at the *C.*

elegans Genetic Center, University of Minnesota, St Paul, Minnesota, or may be generated by standard methods. Such methods are described by Anderson in Methods in Cell Biology, Vol 48, "C. elegans: Modern 5 biological analysis of an organism" Pages 31 to 58. Several selection rounds of the PCR technique can be performed to select a mutant worm with a deletion in a desired gene. Alternatively, a population of worms could be subjected to random mutagenesis and worms 10 exhibiting the desired characteristic of increased gut uptake selected using a phenotypic screen, such as the dye uptake method described herein.

As an alternative to mutation, transgenic worms may be generated with the appropriate characteristics. 15 Methods of preparing transgenic worms are well known in the art and are particularly described by Craig Mello and Andrew Fire, Methods in Cell Biology, Vol 48, Ed. H.F. Epstein and D.C. Shakes, Academic Press, pages 452-480.

20 Worms exhibiting the desired characteristics of increased gut uptake can be identified using a test devised by the inventors based on uptake of a marker precursor molecule which is cleaved by the action of enzymes present in the gut lumen to generate a marker 25 molecule which produces a detectable signal, such as fluorescence. A suitable marker precursor molecule is the fluorescent dye precursor BCECF-AM available from Molecular Probes (Europe BV), Netherlands. This dye only becomes fluorescent when cleaved by esterases and 30 maintained at a pH above 6. The pH of the gut lumen is usually 5 or below. Thus, any BCECF-AM taken up through the pharynx into the gut lumen is not 35 fluorescent until cleaved and the cleaved portion has entered the cells surrounding the lumen which are at a higher pH. Thus, this dye is able to quickly identify mutant or otherwise modified worms which have increased gut transport or permeability. There is a

gradual increase in fluorescence in the tissues surrounding the gut while the gut lumen remains dark. The fluorescence can be detected at an excitation wavelength of 485 nm and an emission wavelength of 530
5 nm.

Specific examples of gun mutant strains isolated using this procedure which may be used in the method of the invention are strains bg77, bg84, bg85 and bg86, although it is to be understood that the
10 invention is in no way limited to the use of these specific strains. The *C. elegans* gun mutant strain bg85 was deposited on 23 December 1999 at the BCCM/LMG culture collection, Laboratorium Voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium under accession number LMBP 5334CB. The
15 phrase "the bg85 mutation" as used herein refers to the specific mutation(s) present in the bg85 strain which is/are responsible for conferring the gun phenotype.

It is also within the scope of the invention to use a non wild-type nematode strain, preferable a *C. elegans* strain, having multiple mutations which affect sensitivity to RNAi. A preferred type of multiple mutant is one having at least one mutation which
20 results in reduced nuclease activity compared to wild type and at least one mutation which results in increased gut uptake compared to wild type. An example of such a mutant is a *C. elegans* strain having the *nuc-1* mutation and at least one further gun
25 mutation. As exemplified herein, double mutants having the *nuc-1* mutation and a gun mutation exhibit enhanced sensitivity to RNAi as compared to either *nuc-1* or gun single mutants.

For the avoidance of doubt, where particular
30 characteristics or properties of nematode worms are described herein by relative terms such as "enhanced"

or "increased" or "decreased" this should be taken to mean enhanced, increased or decreased relative to wild-type nematodes. In the case of *C. elegans*, wild-type is defined as the N2 Bristol strain which is well known to workers in the *C. elegans* field and has been extremely well characterised (see Methods in Cell Biology, Volume 48, *Caenorhabditis elegans: Modern biological analysis of an organism*, ed. by Henry F. Epstein and Diane C. Shakes, 1995 Academic Press; The nematode *Caenorhabditis elegans*, ed. by William Wood and the community of *C. elegans* researchers., 1988, Cold Spring Harbor Laboratory Press; *C. elegans II*, ed. by Donald L. Riddle, Thomas Blumenthal, Barbara J. Meyer and James R. Priess, 1997, Cold Spring Harbor Laboratory Press). The N2 strain can be obtained from the *C. elegans* Genetic Center, University of Minnesota, St Paul, Minnesota, USA.

The food organism for use in the above aspect of the invention is preferably a bacterium such as, for example, a strain of *E.coli*. It will, however, be appreciated that any other type of food organism on which nematodes feed and which is capable of producing dsRNA could be used. The food organism may be genetically modified to express a double-stranded RNA of the appropriate sequence, as will be understood with reference to the examples included herein. One convenient way in which this may be achieved in a bacterial food organism is by transforming the bacterium with a vector comprising a promoter or promoters positioned to drive transcription of a DNA sequence to RNA capable of forming a double-stranded structure. Examples of such vectors will be further described below.

The actual step of feeding the food organism to the nematode may be carried out according to procedures known in the art, see WO 00/01846.

Typically the feeding of the food organisms to the nematodes is performed on standard agar plates commonly used for culturing *C. elegans* in the laboratory. However, the step of feeding the food 5 organism to the nematodes may also be carried out in liquid culture, for example in the wells of 96-well microtitre assay plates.

The inventors have further observed that variations in the food organism can result in enhanced 10 *in vivo* RNAi when the food organism is ingested by a nematode worm.

Accordingly, in a further aspect the invention provides a method of inhibiting expression of a target gene in a nematode worm comprising feeding to said 15 nematode worm a food organism capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the food organism carries a 20 modification selected to provide increased expression or persistence of the doubled-stranded RNA compared to a food organism which does not carry the modification.

The modification present in the food organism can be any modification which results in increased 25 expression of the dsRNA or in increased persistence of the dsRNA. Suitable modifications might include mutations within the bacterial chromosome which affect RNA stability and/or degradation or mutations which have a direct effect on the rate of transcription. In 30 a preferred embodiment, the food organism is an RNase III minus *E. coli* strain, or any other RNase negative strain.

According to a still further aspect of the invention there is provided a method of inhibiting 35 expression of a target gene in a nematode worm comprising introduction of a DNA capable of producing a double-stranded RNA structure having a nucleotide

sequence substantially identical to a portion of said target gene in said nematode, wherein the nematode is one which exhibits increased gut uptake compared to wild type.

5 In addition to exhibiting increased sensitivity to RNAi following feeding with food organisms capable of expressing a dsRNA, nematodes which exhibit increase gut uptake as described herein also show increased uptake of DNA molecules capable of producing
10 double-stranded RNA structures following ingestion into a nematode.

In a preferred embodiment, the DNA is in the form of a vector comprising a promoter or promoters orientated to relative to a sequence of DNA such that
15 they are capable of driving transcription of the said DNA to make RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to the promoter or promoters.

Several different arrangements of promoters may
20 be used in such a vector. In a first arrangement a DNA fragment corresponding to a region of the target gene is flanked by two opposable polymerase-specific promoters which are preferably identical.

Transcription from the opposable promoters produces
25 two complementary RNA strands which can anneal to form an RNA duplex. The plasmid pGN1 described herein is an example of a vector comprising two opposable T7 promoters flanking a multiple cloning site for insertion of a DNA fragment of the appropriate
30 sequence, corresponding to a region of a target gene. pGN8 is an example of a vector derived from pGN1 containing a fragment of the *C. elegans* unc-22 gene. In an alternative arrangement, DNA fragments corresponding to a region of the target gene may be
35 placed both in the sense and the antisense orientation downstream of a single promoter. In this case, the sense/antisense fragments are co-transcribed to

generate a single RNA strand which is self-complementary and can therefore form an RNA duplex.

In both of the above arrangements, the polymerase-specific T3, T7 and SP6 promoters, all of 5 which are well known in the art, are useful for driving transcription of the RNA. Expression from these promoters is dependent on expression of the cognate polymerase. Advantageously, the nematode itself may be adapted to express the appropriate 10 polymerase. Expression of the polymerase may be general and constitutive, but could also be regulated under a tissue-specific promoter, an inducible promoter, a temporally regulated promoter or a promoter having a combination of such characteristics. 15 Transgenic *C. elegans* strains harboring a transgene encoding the desired polymerase under the control of an appropriately-regulated promoter can be constructed according to methods known *per se* in the art and described, for example, by Craig Mello and Andrew Fire 20 in Methods in Cell Biology, Vol 48, Ed. H. F. Epstein and D. C. Shakes, Academic Press, pp 452-480.

The advantage of adapting the nematode to express the required polymerase is that it is possible to control inhibition of expression of the target gene in 25 a tissue-specific and/or temporally specific manner by placing expression of the polymerase under the control of an appropriately regulated promoter.

Introduction of DNA into nematodes in accordance with the method of the invention can be achieved using 30 a variety of techniques, for example by direct injection into a body cavity or by soaking the worms in a solution containing the DNA. If the DNA is in the form of a vector as described herein, e.g. a plasmid harboring a cloned DNA fragment between two flanking 35 T7 promoters, then dsRNA corresponding to this DNA fragment will be formed in the nematode resulting in down regulation of the corresponding gene. The

introduced DNA can form an extrachromosomal array, which array might result in a more catalytic knock-out or reduction of function phenotype. The DNA might also become integrated into the genome of the nematode, 5 resulting in the same catalytic knock out or reduction of function phenotype, but which is stably transmittable.

In each aspect of the invention, the double-stranded RNA structure may be formed by two separate 10 complementary RNA strands or a single self-complementary strand, as described above. Inhibition of target gene expression is sequence-specific in that only nucleotide sequences corresponding to the duplex region of the dsRNA structure are targeted for 15 inhibition.

It is preferred to use dsRNA comprising a nucleotide sequence identical to a portion of the target gene, although RNA sequences with minor 20 variations such as insertions, deletions and single base substitutions may also be used and are effective for inhibition. It will be readily apparent that 100% sequence identity between the dsRNA and a portion of the target gene is not absolutely required for inhibition and the phrase "substantially identical" as 25 used herein is to be interpreted accordingly.

Generally sequences which are substantially identical will share at least 90%, preferably at least 95% and more preferably at least 98% nucleic acid sequence 30 identity. Sequence identity may be conveniently calculated based on an optimal alignment, for example using the BLAST program accessible at www.ncbi.nlm.nih.gov.

The invention will be further understood with reference to the following non-limiting Examples, 35 together with the accompanying Figures in which:

Figure 1 is a plasmid map of the vector pGN1

containing opposable T7 promoters flanking a multiple cloning site and an ampicillin resistance marker.

5 Figure 2 is a plasmid map of the vector pGN8 (a genomic fragment of the *C. elegans* unc-22 gene cloned in pGN1).

10 Figure 3 is a plasmid map of the vector pGN29 containing two T7 promoters and two T7 terminators flanking *Bst*XI sites. This vector permits cloning of DNA fragments linked to *Bst*XI adaptors.

15 Figure 4 is a plasmid map of the vector pGN39 containing two T7 promoters and two T7 terminators flanking attR recombination sites (based on the Gateway™ cloning system of Life Technologies, Inc).

20 Figure 5 is a plasmid map of the vector pGX22 (a fragment of the *C. elegans* gene C04H5.6 cloned in pGN29).

25 Figure 6 is a plasmid map of the vector pGX52 (a fragment of the *C. elegans* gene K11D9.2b cloned in pGN29).

Figure 7 is a plasmid map of the vector pGX104 (a fragment of the *C. elegans* gene Y57G11C.15 cloned in pGN29).

30 Figure 8 is a plasmid map of the vector pGZ8 (a fragment of the *C. elegans* gene T25G3.2 cloned in pGN39).

35 Figure 9 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in liquid culture were fed with *E. coli* containing the

- 13 -

plasmid pGX22.

Figure 10 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 5 liquid culture were fed with *E. coli* containing the plasmid pGX52.

Figure 11 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 10 liquid culture were fed with *E. coli* containing the plasmid pGXGZ8.

Figure 12 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 15 liquid culture were fed with *E. coli* containing the plasmid pGX104

Example 1

Influence of genetic background on the efficiency of RNAi in *C. elegans*.

5 **Introduction**

Various different *C. elegans* strains were fed with different bacteria, to test the possibility of RNAi by feeding *C. elegans* with bacteria that produce dsRNA.

10 The possibility of DNA delivery and dsRNA delivery has previously been envisaged by using different bacterial strains. In this experiment the importance of the *C. elegans* strain as receptor of the dsRNA is also shown.

15 For this experiment the following *E. coli* strains were used:

1. MC1061: F-*araD139* Δ (*ara-leu*)7696 *galE15* *galK16* Δ (*lac*)*X74* *rpsL* (*Str*^r) *hsdR2* (*r*_k⁻ *m*_k⁺) *mcrA* *mcrB1*
 - regular host for various plasmids,
 - Wertman et al., (1986) Gene 49:253-262,
 - Raleigh et al., (1989) in Current Protocols in Molecular Biology eds. Ausubel et al, Publishing associates and Wiley Interscience; New York. Unit 1.4.
- 25 2. B21(DE3): F- *ompT(lon)* *hsdS_B* (*r*_B⁻,*m*_B⁻); an *E. coli* B strain) with DE3, a λ prophage carrying the T7 RNA polymerase gene.
 - regular host for IPTG inducible T7 polymerase expression,
 - Studier et al. (1990) Meth. Enzymol. 185:60-89
- 30 3. HT115 (DE3): F- *mcrA* *mcrB* IN(*rrnD-rrnE*) 1 λ -*rnc14::tr10* (DE3 lysogen: *lacUV5* promoter-T7polymerase)
 - host for IPTG inducible T7 polymerase

- 15 -

expression,
- RNaseIII-,
- Fire A, Carnegie Institution, Baltimore, MD,
Pers. Comm.

5

For this experiment the following *C. elegans* strains were used:

1. *C. elegans* N2: regular WT laboratory strain
- 10 2. *C. elegans* *nuc-1*(e1393): *C. elegans* strain with a reduced endonuclease activity (>95%); condensed chromatin persists after programmed cell death; ingested (bacterial) DNA in the intestinal lumen 15 is not degraded. Several alleles are described: e1392 (strong allele: has been used for the experiments described below); n887 (resembles e1392) and n334 (weaker allele)
 - Stanfield et al. (1998) East Coast Worm meeting abstract 171,
 - Anonymous, Worm Breeder's Gazette 1(1):17b
 - Hevelone et al. (1988) Biochem. Genet. 26:447-461
 - Ellis et al., Worm breeder's Gazette 7(2):44
 - Babu, Worm Breeder's gazette 1(2):10
 - Driscoll, (1996) Brain Pathol. 6:411-425
 - Ellis et al., (1991) Genetics 129:79-94

For this experiment the following plasmids were used:

30 pGN1: A vector encoding for ampicillin resistance, harbouring a multiple cloning site between two convergent T7 promoters.

pGN8: pGN1 containing a genomic fragment of *unc-22*.

35 Decreased *unc-22* expression via RNAi results in a "twitching" phenotype in *C. elegans*.

Experimental conditions

12-well micro-titer plates were filled with approximately 2 ml of NGM agar per well (1 litre of NGM agar: 15g Agar, 1g peptone, 3g NaCl, 1ml 5 cholesterol solution (5 mg/ml in EtOH), with sterile addition after autoclaving of 9.5 ml 0.1M CaCl₂, 9.5 ml 0.1 ml MgSO₄, 25 ml 1M KH₂PO₄/K₂HPO₄ buffer pH 6 and 5 ml nystatin solution (dissolved 10 mg/ml in 1:1 EtOH:CH₃COONH₄ 7.5 M).

10

The dried plates were spotted with approximately 50 µl of an overnight culture of bacteria. When IPTG induction was required, 50 µl of a 10 mM stock solution of IPTG was dropped on top of the bacteria lawn, and incubated at 37°C for approximately 4 hours. Individual nematodes at the L4 growth stage were then placed in single wells. In each well 4 nematodes, and the plates were further incubated at 20°C for 6 days to allow offspring to be formed. The F1 offspring of 15 the seeded nematodes were tested for the twitching 20 phenotype.

Results

Table 1: Percentage of the offspring that show the twitching phenotype

	MC1061	N2	<i>nuc-1</i>
5	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	0%	0%
	pGN8 + IPTG	0%	0%
10	BL21 (DE3)		
	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	20% (+)	>90% (++)
	pGN8 + IPTG	20% (+)	>90% (++±)
15	HT115 (DE3)		
	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	50% (+±)	>90% (++)
	pGN8 + IPTG	80% (++)	>90% (+++)
20			

%: percentage twitchers

+: weak twitching

++: twitching

+++: strong twitching

25

Conclusions

The experiment with *E. coli* MC1061 shows that no twitching could be observed in this experiment.

30

Neither the N2 nematodes nor the *nuc-1* nematodes showed any twitchers. This is to be expected as *E. coli* MC1061 does not produce any T7 RNA polymerase, and hence the unc-22 fragment cloned in pGN8 is not

expressed as dsRNA.

The experiment with *E. coli* strain BL21(DE3) and nematode strain N2 shows expected results. BL21(DE3) harbouring plasmid pGN1 does not result in any twitching as the pGN1 vector is an empty vector. BL21 (DE3) harbouring PGN8 results in the expression of unc-22 dsRNA. When this dsRNA is fed to the N2 nematode (indirectly by feeding with the bacteria that produce the dsRNA), this results in a twitching phenotype, indicating that the dsRNA is able to pass the gut barrier and is able to perform its interfering activity.

Surprisingly the RNAi effect of the unc-22 dsRNA was even more pronounced in *C. elegans* strain *nuc-1* than in the wild type N2 strain. Although one may expect that the *nuc-1* mutation results in the non-degradation or at least in a slower degradation of DNA, as the NUC-1 protein is known to be involved in DNase activity, we clearly observe an enhancement of the RNAi induced phenotype in *C. elegans* with a *nuc-1* background. The *nuc-1* mutation has not been cloned yet, but it has been described that the gene is involved in nuclease activity, and more particularly DNase activity. If the NUC-1 protein is a nuclease, it may also have activity on nuclease activity on dsRNA, which would explain the enhanced RNAi phenotype. The *nuc-1* gene product may be a nuclease, or a regulator of nuclease activity. As the mode of action of RNAi is still not understood, it is also possible that the NUC-1 protein is interfering in the mode of action of RNAi. This would explain why a *nuc-1* mutant is more sensitive to RNAi.

35

The experiment with the *E.coli* strain HT115 (DE3)

confirms the experiments with the BL21(DE3) strain. The RNA interference observed with the unc-22 dsRNA is even higher. In comparison with strain BL21(DE3) this could be expected, as HT115(DE3) is a RNase III minus 5 strain, and hence is expected to produce larger amounts of dsRNA, resulting in more prominent RNAi. This indicates further that the RNAi observed in this experiment is the result of the dsRNA produced by the bacteria fed to the *C. elegans*. Feeding *C. elegans* 10 *nuc-1* with HT115(DE3) harbouring pGN8 also results in higher RNA interference phenotype than feeding the same bacteria to *C. elegans* wild-type strain N2. Once again this indicates that improved RNAi can be realised using a nuclease negative *C. elegans* and more 15 particularly with a with the *C. elegans nuc-1* (e1392) strain.

Summary

RNA interference can be achieved in *C. elegans* by 20 feeding the worms with bacteria that produce dsRNA. The efficiency of this RNA interference is dependent both on the *E. coli* strain and on the genetic background of the *C. elegans* strain. The higher the level of dsRNA production in the *E. coli*, the more 25 RNAi is observed. This can be realised by using efficient RNA expression systems such as T7 RNA polymerase and RNAase negative strains, such as RNaseIII minus stains. In this example the level of dsRNA production varied: HT115(DE3)>BL21(DE3)>MC1061. 30 RNA interference is high in *C. elegans* strains that are nuclease negative, or that are influenced in their nuclease activity. This can be realised by using a mutant strain such as *C. elegans nuc-1*. 35 In this example the sensitivity to RNAi varied: *C. elegans nuc-1* >> *C. elegans N2*

Example 2

Improved RNAi by feeding dsRNA producing bacteria in selected *C. elegans* strains-Comparison of the *nuc-1* strain with several mutants which show improved gut uptake. (designated herein 'gun' mutants). Strains bg77, bg78, bg83, bg84, bg85, bg86, bg87, bg88 and bg89 are typical gun mutant *C. elegans* strains isolated using selection for increased gut uptake (gun phenotype) with the marker dye BCECF-AM.

10

Experimental conditions:

- 12-well micro-titer plates were filled with approximately 2ml of NGM agar (containing 1ml/l of ampicillin (100 μ g/ml) and 5 ml of 100mM stock IPTG) per well
- the dried plates were spotted with 25 μ l of an overnight culture of bacteria (BL21DE3/HT115DE3) containing the plasmids pGN1 (T7prom-T7prom) or pGN8 (T7prom-unc-22-T7prom)
- 15 - individual nematodes at the L4 growth stage were then placed in single wells, one nematode per well
- the plates were incubated at 20°C for 6 days to allow offspring to be formed
- 20 - the adult F1 offspring of the seeded nematodes were tested for the twitching phenotype
- 25

Results:

Table 2:

	20°C/6d	pGN1 HT115DE3	pGN8 BL2DE3	pGN8 HT115DE3	
5	N2	0	1	1	
	<i>nuc-1</i>	0	1-2	3	
	<i>bg77</i>	0	1-2	23	
	<i>bg78</i>	0	1	1-2	
10	<i>bg83</i>	0	1	1	
	<i>bg84</i>	0	1-2	8	
	<i>bg85</i>	0	1	2-3	
	<i>bg86</i>	0	1	2-3	
	<i>bg87</i>	0	1	1	
	<i>bg88</i>	0	1	1	
15	<i>bg89</i>	0	1	1	

figure legend:

0 = no twitching
 20 1 = no to weak phenotype
 2 = clear phenotype
 3 = strong phenotype

25 **Conclusions**

- bacterial strain HT115(DE3) shows a better RNAi sensitivity than bacterial strain BL21(DE3)
- the *nuc-1* *C. elegans* strain is a better strain than the Wild-type N2 strain for RNAi sensitivity
- 30 - various gun mutants (improved gut uptake mutants) and more particularly the gun mutant strains *bg77*, *bg84*, *bg85*, *bg86* show improved sensitivity to RNAi compared to Wild-type.

A double mutant *C. elegans* strain (nuc-1/gun) shows even greater sensitivity to RNAi compared to wild-type:

5 Double mutants were constructed to test the prediction that gun/nuc mutants would even show more enhanced RNAi sensitivity. As an example, the crossing strategy with gun strain bg85 is shown, similar crosses can be conducted with other gun strains, such
10 as bg77, bg84 and bg86.

P0 cross: gun(bg85) x WT males

F1 cross: nuc-1 x gun(bg85)/+ males

15 F2 cross: nuc-1 x gun(bg85)/+; nuc-1/0 males (50%)
nuc-1 x +/+; nuc-1/0 males (50%)

20 F3 single: gun(bg85)/+; nuc-1 hermaphrodites (25%)
+/+; nuc-1 hermaphrodites (75%)

F4 single: gun(bg85); nuc-1 (1/4 of every 4th
plate high staining with BCECF)

25 F5 retest: gun(bg85); nuc-1 (100% progeny of F4
singled high staining with BCECF)

30 To select for the gun phenotype, the fluorescence precursor BCECF-AM is used (obtainable from Molecular probes). The precursor BCECF-AM is cleaved by esterases present in the gut of the worm to generate the dye BCECF which is fluorescent at pH values above 6. This allows selection for worms that have a gun phenotype. BCECF-AM is taken up through the pharynx
35 into the gut lumen and is not fluorescent until it has been cleaved, and the BCECF portion has entered the

cells surrounding the lumen. Wild-type worms will show slower or no increase in BCECF fluorescence.

5 **Example 3**

Improved RNAi feeding in liquid culture using *nuc-1*(e1393) *C. elegans*.

Introduction

10 N2 and *nuc-1* *C.elegans* strains were fed with bacteria producing dsRNAs that give lethal phenotypes via RNAi. For this example RNAi was performed in liquid culture instead of on agar plates. We show here for a number of genes that the RNAi effect is more penetrant using 15 the *nuc-1* strain than the N2 strain, and that RNAi can be performed in liquid.

For this experiment the following *E.coli* strains were used:

20 1. HT115 (DE3): F- *mcrA mcrB* *IN(rrnD-rrnE)* 1 λ -
 rnc14::tr10 (DE3 lysogen: lacUV5 promoter -T7
 polymerase)
 - host for IPTG inducible T7 polymerase expression
25 - RNaseIII-
 - Fire A, Carnegie Institution, Baltimore, MD,
 Pers. Comm.

For this experiment, following *C. elegans* strains were 30 used:

1. *C. elegans* N2: regular WT laboratory strain
2. *C. elegans* *nuc-1*(e1393): *C. elegans* strain with a 35 reduced endonuclease activity (>95%); condensed chromatin persists after programmed cell death;

ingested (bacterial) DNA in the intestinal lumen is not degraded. Several alleles are described: e1392 (strong allele: has been used for the experiments described below); n887 (resembles e1392) and n334 (weaker allele)

5

- Stanfield et al. (1998) East Coast Worm meeting abstract 171
- Anonymous, Worm Breeder's Gazette 1(1):17b
- Hevelone et al. (1988) Biochem. Genet. 26:447-461
- 10 - Ellis et al., Worm breeder's Gazette 7(2):44
- Babu, Worm Breeder's gazette 1(2):10
- Driscoll, (1996) Brain Pathol. 6:411-425
- Ellis et al., (1991) Genetics 129:79-94

15

For this experiment, the following plasmids that all give lethal phenotypes in *C. elegans* via RNAi were used:

20

pGX22: a vector encoding ampicillin resistance, containing a genomic fragment of cosmid C04H5.6 corresponding to a member of the RNA helicase family.

25

pGX52: a vector encoding ampicillin resistance, containing a genomic fragment of cosmid K11D9.2b corresponding to sarco/endoplasmic Ca^{2+} ATPase also known as SERCA.

30

pGZ18: a vector encoding ampicillin resistance, containing a genomic fragment of cosmid T25G3.2 corresponding to a chitin like synthase gene.

35

pGX104: a vector encoding ampicillin resistance, containing a genomic fragment of cosmid Y57G11C.15 corresponding to sec-61, a transport protein.

Experimental conditions

- 1 ml overnight cultures of HT115 (DE3) bacteria containing the plasmids pGX22, pGX52, pGZ18 or pGX104 respectively were pelleted and resuspended
5 in S-complete medium, containing 1ml/l of ampicillin (100 µg/ml) and 1ml/l of 1000mM IPTG.

- 10 µl of this bacterial solution was transferred to a 96-well microtiter plate already filled with
10 100 µl S-complete containing 1ml/l of ampicillin (100 µg/ml) and 1ml/l of 1000mM IPTG.

- 3 nematodes at the L1 growth stage of N2 and
15 nuc-1 strain were then placed in single wells, 3 L1's per well. Per experimental set up, 16 wells were used (n=16).

- the plates were incubated at 25°C for 5 days to allow offspring to be formed.
20

- the plates were visually checked and the following phenotypes could be scored per individual well:
25 **no effect:** L1's developed to adults and gave normal offspring.

no F1 offspring: L1's developed to adults and gave no offspring.
30 **acute lethal:** original L1 did not mature and died.

Results

35 The results of this experiment are illustrated graphically in Figures 9 to 12. Data are expressed as

- 26 -

a percentage of the total (n=16) on the y-axis for both N2 and *nuc-1* strains.

Conclusions

5 The following genes were tested in this liquid RNAi assay:

- C04H5.6: an RNA helicase. RNAi of this gene interferes with the generation of offspring.
- 10 - SERCA: a sarco/endoplasmic Ca^{2+} ATPase. A strong RNAi phenotype causes an acute lethal phenotype. A less penetrant RNAi effect results in loss of offspring.
- T25G3.2: a chitin like synthase gene. RNAi of this gene causes dead eggs.
- 15 - sec-61: a transport protein. A strong RNAi phenotype causes an acute lethal phenotype. A less penetrant RNAi effect results in loss of offspring.
- 20 - RNAi can be performed under liquid conditions.

As in the previous examples this set of experiments shows that the *nuc-1* *C. elegans* strain is more sensitive to RNAi than the wild-type N2 strain. This 25 is most clear for less penetrant phenotypes such as SERCA and chitin synthase. For strong RNAi phenotypes like the helicase and Sec-61 the difference between the N2 wild-type strain and the *nuc-1* stain is less pronounced.

30

Example 4**Cloning of pGX22, pGX52, pGZ18 and pGX104 for RNAi**

A set of primers for each gene was designed on the basis of sequence data available in the publicly

5 accessible *C. elegans* sequence database (Acedb).

The cosmid names relate to:

1. **C04H5.6**=member of RNA helicase
- 10 2. **K11D9.2b**=SERCA
3. **Y57G11C.15**=transport protein sec-61
4. **T25G3.2**=chitin synthase like

The following primer sequences were designed:

15

1. **C04H5.6F** 5'-TGCTCAGAGAGTTCTAACGAACC-3'
C04H5.6R 5'-CAATGTTAGTTGCTAGGACCACCTG-3'
- 20 2. **K11D9.2bF** 5'-CAGCCGATCTCCGTCTTGTG-3'
K11D9.2bR 5'-CCGAGGGCAAGACAACGAAG-3'
3. **Y57G11C.15F** 5'-ACCGTGGTACTCTTATGGAGCTCG-3'
Y57G11C.15R 5'-TGCAGTGGATTGGGTCTTCG-3'
- 25 4. **T25G3.2F**
5'-GGGGACAAGTTGTACAAAAAAGCAGGCTATGCCAAGTACATGTCGATTGCG-3'

T25G3.2R

5'-GGGGACCACCTTGTACAAGAAAGCTGGGTTGGAGAACGATTCCGAGAGTTG-3'

30

PCR was performed on genomic DNA of N2 strain *C. elegans* to give PCR products of the following sizes:

35 1326bp for C04H5.6
1213bp for K11D9.2b

1024bp for Y57G11C.15

1115bp for T25G3.2

5 The PCR fragments of C04H5.6, K11D9.2b and Y57G11C.15
were linked to *Bst*XI adaptors (Invitrogen) and then
cloned into the pGN29 vector cut with *Bst*XI. pGN29
contains two T7 promoters and two T7 terminators
flanking a cloning site which is adapted for
facilitated cloning of PCR fragments, comprising a
10 stuffer DNA flanked by two *Bst*XI sites (see schematic
Figure 3). The resulting plasmids were designated
pGX22 (C04H5.6), pGX52 (K11D9.2b) and pGX104
(Y57G11C.15).

15 The PCR fragment of T25G3.2 was cloned into pGN39 via
recombination sites based on the GATEWAY™ cloning
system (Life Technologies, Inc). pGN39 contains two
T7 promoters and two T7 terminators flanking a cloning
site which facilitates "High Throughput" cloning based
20 on homologous recombination rather than restriction
enzyme digestion and ligation. As shown schematically
in Figure 4, the cloning site comprises attR1 and
attR2 recombination sites from bacteriophage lambda
flanking a gene which is lethal to *E. coli*, in this
25 case the ccdB gene. This cloning site is derived from
the Gateway™ cloning system commercially available
from Life Technologies, Inc. The Gateway™ cloning
system has been extensively described by Hartley et
al. in WO 96/40724 (PCT/US96/10082).

Example 5

Selecting *C. elegans* mutations for increased gut uptake (gun) using marker dye BCECF-AM and *unc-31* as background.

5

The screen was performed in *unc-31*(e928) mutant background, to ensure high amounts of dye in the gut lumen, since *unc-31* mutations show constitutive pharyngeal pumping. The dye (BCECF-AM: 2',7' bis (2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester), obtained from Molecular Probes, is cleaved by intracellular esterases. Fluorescence accumulates in the gut cells upon passage through the apical gut membrane.

15

Mutagenesis

Day 1: *unc-31* L4 staged worms were mutagenised with EMS (final concentration 50 mM) for 4 hours

Day 2: P0 was divided over several large agar plates

Day 6: F1's were collected and dropped on large plates. The number of eggs the F1's layed were checked every hour and de F1's were removed when 10-20 eggs per F1 were counted

25

Day 10: F2 adults were collected and screened with BCECF-AM. Mutations with increased staining of the gut cells after 15-30 minutes exposure to the dye were selected and singled on small agar plates.

30

About 50 initial positives gave progeny which was retested with BCECF-AM (2x) and leucine CMB (1x) 9 of the 50 strains were kept (2 strains : 3 times positive, 7 other strains : twice positive)

35

Table 3: Isolation of mutations for increased staining with BCECF-AM

5	Total P0	Total F1	Total F2	screened chromosomes	number of strains isolated
	(counted)	(estimated)	(calculated)	(estimated)	(counted)
	2251	55618	222472	100000	9

Outcrossing, backcrossing and double construction

10 1. backcrossing *unc-31; gun* --> *unc-31; gun*
 - *unc-31; gun* x WT males
 - singled 2x5 WT hermaphrodites F1s (*unc-31/+; gun/+*)
 - singled 50 WT hermaphrodites F2s (1/4 homozygous)
 - select strains segregating 1/4 unc
 15 - stain unc strains with BCECF-AM
 - from positive strains pick unc homozygous
 - retest 100 % unc strains with BCECF-AM
 - kept 1 strain (backcrossed)

20 2. *unc-31* background was crossed out-->+; *gun*
 - *unc-31; gun* x WT males
 - singled 2x5 WT hermaphrodites F1s (*unc-31/+; gun/+*)
 - singled 50 WT hermaphrodites F2s (1/4 homozygous)
 - select strains which did not segregate unc F3s
 25 anymore
 - stain non unc strains with BCECF-AM
 - 7 positive strains were retested with BCECF-AM and finally 1 was selected and kept (outcrossed)

30 3. +; *gun* (1x outcrossed) were 2 times backcrossed-->+; *gun* (3x backcrossed)
 - *gun* x WT males
 - WT hermaphrodites x F1 males (*gun/+*)
 - singled 10 WT hermaphrodites F2s (3/4 heterozygous)
 35 - singled 50 WT hermaphrodites F3s (1/8 homozygous)

- 31 -

- stain strains with BCECF-AM- retested positives with BCECF-AM and finally 1 was selected and kept

4. *gun* (3x backcrossed) were crossed with *nuc-1*(X)

5 mutant--> *gun*; *nuc-1*

- *gun* x WT males

- *nuc-1* x *gun*/+ males

- *nuc-1* x *gun*/+; *nuc-1*/0 or +/+, *nuc-1*/0 males

- singled 10 WT hermaphrodite progeny (*nuc-1*

10 homozygous, ½ heterozygous *gun*)

- singled 40 WT hermaphrodite progeny (1/8 homozygous *gun*)

- stain strains with BCECF-AM

- retested positives with BCECF-AM and finally 1 was

15 selected and kept

Table 6: Strains derived from *gun* mutations

20	<i>gun</i>	<i>unc-31</i> ; <i>gun</i>		<i>unc-31</i> ; <i>gun</i>		+; <i>gun</i>			<i>gun</i> ; <i>nuc-1</i>
		original isolate		backcrossed (1x)		outcrossed (1x)		3x b.c.	from 3x b.c.
	allele number	isolation number	strain number	isolation number	strain number	isolation number	strain number	strain number	strain number
	bg77	31.4	UG 510	31.4.46.1	UG 556	31.4.34	UG 563	UG 674	UG 777
25	bg78	37.5	UG 511	37.5.46.4	UG 557	37.5.15	UG 564	UG 675	-
	bg83	10.2	UG 543	10.2.11	UG 600	10.2.21	UG 586	UG 676	-
	bg84	7.2	UG 544	7.2.10	UG 601	7.2.15	UG 589	UG 677	UG 774
	bg85	11.5	UG 545	11.5.29.2	UG 602	2x b.c.	UG 717		UG 775
	bg86	42.1	UG 546	42.1.4.5	UG 603	42.1.18	UG 587	UG 678	UG 776
30	bg87	7.1	UG 547	7.1.8.3	UG 604	7.1.22	UG 585	UG 679	-
	bg88	5.3	UG 548	5.3.9	UG 605	5.3.18	UG 584	UG 680	-
	bg89	23.4	UG 549	23.4.13.5	UG 606	23.4.3	UG 588	UG 671	-

SEQUENCE LISTING:

SEQ ID NO: 1 complete sequence of pGN1

5 SEQ ID NO: 2 complete sequence of pGN8

SEQ ID NO: 3 complete sequence of pGN29

10 SEQ ID NO: 4 complete sequence of pGN39

SEQ ID NO: 5 complete sequence of pGX22

SEQ ID NO: 6 complete sequence of pGX52

15 SEQ ID NO: 7 complete sequence of pGX104

SEQ ID NO: 8 complete sequence of pGZ8

SEQ ID NO: 9 primer C04H5.6F

20 SEQ ID NO: 10 primer C04H5.6R

SEQ ID NO: 11 primer K11D9.2bF

25 \ SEQ ID NO: 12 primer K11D9.2bR

SEQ ID NO: 13 primer Y57G11C.15F

SEQ ID NO: 14 primer Y57G11C.15R

30 SEQ ID NO: 15 primer T25G3.2F

SEQ ID NO: 16 primer T25G3.2R

Claims:

1. A method of inhibiting expression of a target gene in a nematode worm comprising feeding to 5 said nematode worm a food organism which is capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the nematode 10 has a non wild-type genetic background selected to provide increased sensitivity to RNA interference as compared to wild type.

2. A method as claimed in claim 1 wherein the 15 nematode is a microscopic nematode.

3. A method as claimed in claim 2 wherein the nematode is from the genus *Caenorhabditis*.

20 4. A method as claimed in claim 3 wherein the nematode is *C. elegans*.

25 5. A method as claimed in any one of claims 1 to 4 wherein the nematode has a mutant genetic background.

30 6. A method as claimed in claim 5 wherein the nematode is a mutant strain which exhibits reduced activity of one or more nucleases compared to wild type.

7. A method as claimed in claim 6 wherein the nematode is *C. elegans* strain *nuc-1*.

35 8. A method as claimed in claim 5 wherein the nematode is a mutant strain which exhibits increased

gut uptake compared to wild type.

9. A method as claimed in claim 8 wherein the nematode is mutant *C. elegans* strain bg85.

5

10. A method as claimed in claim 5 wherein the nematode is a mutant strain having at least one mutation which results in reduced nuclease activity compared to wild type and at least one mutation which 10 results in increased gut uptake compared to wild type.

11. A method as claimed in claim 10 wherein the nematode is a mutant *C. elegans* strain having the *nuc-1* mutation and the bg85 mutation.

15

12. A method as claimed in any one of the preceding claims wherein the food organism has been engineered to express a double-stranded RNA.

20

13. A method as claimed in any one of the preceding claims wherein the food organism is a bacterium.

25

14. A method as claimed in claim 13 wherein the food organism is *E. coli*.

30

15. A method as claimed in any one of the preceding claims wherein the food organism has been genetically modified to express a double-stranded RNA having a nucleotide sequence substantially identical to a portion of said target gene.

35

16. A method as claimed in claim 15 wherein the food organism contains a DNA vector, the vector comprising a promoter or promoters orientated relative to a DNA sequence such that they are capable of

initiating transcription of said DNA sequence to RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to said promoter or promoters.

5

17. A method as claimed in claim 25 wherein the vector comprises two promoters flanking the DNA sequence.

10

18. A method as claimed in claim 26 wherein the two promoters are identical.

15

19. A method as claimed in claim 25 wherein the vector comprises a single promoter and further comprises said DNA sequence in a sense and an antisense orientation relative to said promoter.

20

20. A method as claimed in any one of claims 16 to 20 wherein the nematode or the food organism is adapted to express an RNA polymerase capable of initiating transcription from said promoter or promoters.

25

21. A method as claimed in any one of claims 16 to 20 wherein the RNA polymerase is T7, T3 or SP6 polymerase.

30

22. A method as claimed in any one of claims 1 to 21 wherein the step of feeding said food organism to said nematode worm is carried out in liquid culture.

35

23. A method of inhibiting expression of a target gene in a nematode worm comprising feeding to said nematode worm a food organism capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a

portion of said target gene following ingestion of the food organism by the nematode, wherein the food organism carries a modification selected to provide increased expression or persistence of the doubled-stranded RNA compared to a food organism which does not carry the modification.

24. A method as claimed in claim 23 wherein the food organism is a bacterium.

10

25. A method as claimed in claim 24 wherein the bacterium is an *E. coli* strain.

15 26. A method as claimed in claim 25 wherein the *E. coli* strain is an RNase III minus strain or any other RNase negative strain.

20 27. A method as claimed in any one of claims 23 to 26 wherein the step of feeding said food organism to said nematode worm is carried out in liquid culture.

25 28. A method of inhibiting expression of a target gene in a nematode worm comprising introduction of a DNA capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene in said nematode, wherein the nematode is one which exhibits increased gut uptake compared to wild type.

30

29. A method as claimed in claim 28 wherein the nematode is a microscopic nematode.

35 30. A method as claimed in claim 29 wherein the nematode is from the genus *Caenorhabditis*.

31. A method as claimed in claim 30 wherein the

nematode is *C. elegans*.

32. A method as claimed in any one of claims 28 to 31 wherein the nematode has a mutant genetic
5 background.

33. A method as claimed in claim 32 wherein the nematode is mutant *C. elegans* strain bg85.

10 34. A method as claimed in any one of claims 28 to 33 wherein the DNA capable of producing a double-stranded RNA structure is a vector comprising a promoter or promoters orientated relative to a DNA sequence such that they are capable of initiating
15 transcription of said DNA sequence to RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to said promoter or promoters.

20 35. A method as claimed in claim 34 wherein the vector comprises two promoters flanking the DNA sequence.

25 36. A method as claimed in claim 35 wherein the two promoters are identical.

30 37. A method as claimed in claim 34 wherein the vector comprises a single promoter and further comprises said DNA sequence in a sense and an antisense orientation relative to said promoter.

35 38. A method as claimed in any one of claims 34 to 37 wherein the nematode is adapted to express an RNA polymerase capable of initiating transcription from said promoter or promoters.

39. A method as claimed in any one of claims 34

to 38 wherein the RNA polymerase is T7, T3 or SP6 polymerase.

FIG. 1

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

FIG. 8.

FIG. 9.

FIG. 10.

FIG. 11.

FIG. 12.

1
SEQUENCE LISTING

<110> DEVGEM NV

<120> IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA INHIBITION

<130> SCB/53711/001

<140>

<141>

<160> 14

<170> PatentIn Ver. 2.0

<210> 1

<211> 3216

<212> DNA

<213> Artificial Sequence

220

<223> Description of Artificial Sequence: Plasmid pGN1

<400> 1

gagtgccacca tatgcgtgt gaaataccgc acagatgcgt aaggagaaaa taccgcata 60
ggcggaaattt taaaacgttaa tattttgtta aaattcgcgt taaatatttgc 120
tcattttta accaataggc cgaaatcggc aaaatccctt ataaatcaaa agaatagacc 180
gagatagggt tgagtgtgt tccagttgg aacaagagtc cactattaaa gaacgtggac 240
tccaaacgtca aaggcgaaaa aaccgtctat cagggcgatg gcccactacg tgaaccatca 300
cccaaattcaa gtttttgcg gtcgagggtc cgtaaaagctc taaatcgaa ccctaaaggg 360
agcccccgat ttagagcttg acggggaaaag ccggcgaacg tggcgagaaa ggaagggaaag 420
aaagcgaaag gagcgggcgc tagggcgctg gcaagtgtag cggtcacgct ggcgtaaacc 480
accacacccg cgcgccttaa tgcgcgccta cagggcgctg ccattcgcca ttcaggctgc 540
gcaactgttg ggaaggcgca tcgggtcgccc cctttcgctt attacggccag ctggcgaaag 600
ggggatgtgc tgcaggcgaa ttaagttggg taacgcccagg gttttcccgag tcacgacgtt 660
gtaaaacgac ggcagtgaa ttgttaatacg actcactata gggcgaattc gagctcggt 720
cccggggatc ctctagagtc gaaagcttct cgcctatag tgagtcgtat tacagcttga 780
gtattctata gtgtcaccta aatagcttgg cgtaatcatg gtcatacgctg tttctgtgt 840
gaaattgtta tccgctcaca attccacaca acatacgagc cggaaagcata aagtgtaaag 900
cctgggggtc ctaatgagtg agctaactca cattaattgc gttgcgtca ctgcccgc 960
tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaaacgc gccccggagag 1020
gcgggttgcg tattgggcgc tcttcgcctt cctcgctcac tgactcgctg cgctcggtc 1080
ttcggctgcg gcgagcggta tcagctact caaaggcggt aatacggta tccacagaat 1140
caggggataa cgcgaggaaag aacatgtgag caaaaggcca gaaaaaggcc aggaaccgt 1200
aaaaggccgc gttgctggcg ttttcgata ggctccgcgg ccctgacgag catcacaaaa 1260
atcgacgctc aagtcaagagg tggcgaaacc cgacaggact ataaagatac caggcgttc 1320
ccccctggaaag ctccctcggt cgctctcctg ttccgaccct gccgcttacc ggatacctgt 1380
ccgcctttct cccttcggga agcgtggcgc ttttcatag ctcacgctgt aggtatctca 1440
gttcgggtgt a ggtcggtcg tccaaagctgg gctgtgtgca cgaacccccc gttcagcccg 1500
accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 1560
cgccactggc agcagccact ggtAACAGGA ttacgagac gaggatgtt ggcgggtgtca 1620
cagagttttt gaagtgggtgg cctaactacg gctacactag aaggacagta tttgttatct 1680
gcgcctctgtc gaagccagg accttcggaa aaagagtgg tagctcttgc tccggcaaac 1740
aaaccaccgc tggtagcggt ggtttttttt tttgcaagca gcatattacg cgcagaaaaaa 1800
aaggatctca agaagatctt ttgatctttt ctacgggggtc tgacgctcag tggaaacgaaa 1860
actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatcctt 1920
taaattaaaa atgaagttttt aaatcaatct aaagtatata tggatggact tggctgtgaca 1980

2

gttaccaatg	cttaatcagt	gaggcaccta	tctcagcgat	ctgtctattt	cgttcatcca	2040
tagttgcctg	actccccgtc	gtgttagataa	ctacgatacg	ggagggctta	ccatctggcc	2100
ccagtgtgc	aatgataaccg	cgagaccac	gctcaccggc	tccagattta	tcagcaataa	2160
accagccagc	cggaaaggcc	gagcgcagaa	gtggctctgc	aactttatcc	gcctccatcc	2220
agtctattaa	tttttgcgg	gaagctagag	taagtagttc	gccagttaat	agtttgcgca	2280
acgttgttgg	cattgtaca	ggcatcggttgc	tgtcacgctc	gtcggtttgt	atggcttcat	2340
tcagctccgg	ttcccaacga	tcaaggcgag	ttacatgatc	ccccatgttg	tgcaaaaaaag	2400
cggtagctc	cttcggtct	ccgatcggttgc	tcagaagtaa	gttggccgca	gtgttatcac	2460
tcatggttat	ggcagcactg	cataatttcc	ttactgtcat	gccatccgta	agatgctttt	2520
ctgtgactgg	ttagtactca	accaagtcat	tctgagaata	ccgcgccccgg	cgaccggagtt	2580
gctcttgc	ggcgtcaata	cgggataata	gttatgaca	tagcagaact	ttaaaagtgc	2640
tcatcattgg	aaaacgttct	tcggggcgaa	aactctcaag	gatcttaccg	ctgtttagat	2700
ccagttcgat	gtaacccact	cgtgcaccca	actgatcttc	agcatctttt	actttcacca	2760
gcgttctgg	gtgagcaaaa	acaggaaggc	aaaatgcgc	aaaaaaggga	ataagggcga	2820
cacggaaatg	ttgaatactc	atactcttc	ttttcaata	ttattgaagc	atttatcagg	2880
gttattgtct	catgagcgga	tacatatttgc	aatgtattta	aaaaaataaa	caaatagggg	2940
ttccgcgcac	atttccccga	aaagtgcac	ctgacgtcta	agaaaaccatt	attatcatga	3000
cattaaccta	taaaaatagg	cgtatcacga	ggccctttcg	tctcgcgcgt	ttcggtgatg	3060
acggtgaaaa	cctctgacac	atgcagctcc	cggagacgggt	cacagcttgt	ctgtaaagcgg	3120
atgccgggag	cagacaagcc	cgtcaggcg	cgtcagcgggg	tgttggcg	tgtcggggct	3180
ggcttaacta	tgccggcatca	gagcagatttgc	tactga			3216

<210> 2
<211> 4620
<212> DNA
<213> Artif

<220>
<223> Description of Artificial Sequence: Plasmid pGN8

```

<400> 2
gatccgaatc tccatgtctg ttaacagcct tgacacggaa tttatattca tgcccttgag 60
tcaaattcgctc aacgtggaaag ttggtatcct tgctctctcc gcaaggagtc catctgccag 120
tggcagcattc ttgctttca atgacatagt gactgatttc agctcctcca tcatcttctg 180
gttcccttcca tgcagaatca catccatcct tgacaatatt agtgacatcg agaggtccac 240
gtgggcttga tggatgatca agaacagtaa cttcacttc agcagtgtca gttccattct 300
cgttctctgc ttgatgata taggttcttg tatccgaacg caaagcttc ttacatgga 360
atttagttttc ggcgtttca ttgttcaact tcatacgatc atcagattcg actgggttcc 420
cttcgaaagt ccaagtaatt gttggagttg gttcaccact gactggaaatg ttcaatgaga 480
agtcttgcc agccttgacc ttgattttttt gaatcgagtt acgatcgatg actgggttcc 540
ctataattta attcaatgtat tatttagtaat tgatttagac tcttaccatt tctagcctt 600
gcaacagctg atgctgatc agatggatct cccaaatcctg cttgttctt ggcacggatt 660
ctgaattcgt actttgatcc ttcccttgaga tttccaaacag tagcattcgt ttgtccagct 720
ggaacatgag caacgtcatt ccagaatggc gagaactcgt cttcatctc aacaacgtat 780
tcctcgattt gggcaccacc gtcgtttgtt ggtggcttcc attcaaggc aacatgatcc 840
ttatcccaat cagaatttc aggagcattt gtcttcttg gcttgcataa tggatcttgc 900
gcaagtgtgg ttccgaaggt ctccaaatggc tcggactctc cttcagcatt gacggcagcg 960
acacggaaact gaaaatcaaa atgtttagg caatttaggtt caagattaaa aaattctcac 1020
tttatattca tgcctcaggaa taagaccgtc aacaacagct gtatgtttt cttccagcgac 1080
ctttgcagct ggaacccatc ttccacttgc agtacgtac ttttcgatca catagtttt 1140
aatttggaaata cttccatcat catctggtgc acgccaattc aaagtgcacat gatcaccatg 1200
aacatcgaa acatctaattt gaccattttgg agaaagttggc ttgtctgaaa attttaaaata 1260
taaccaaattt aatttggaaatc aactaatgtc cacaataaac attgatcttta acagttgtt 1320
catcttctcc atttgcattt acagcttgc tagtggaaatg tccactgtct ccacgttcca 1380
tttgcattca aaccagctt gattggattt ctgggttattc aagcttctcg ccctatagt 1440
agtcgttattt cagtttgatc attctatagt gtacacctaaa tagcttggcg taatcatgtt 1500
catagctgtt tccctgtgtga aattgttattc cgctcacaat tccacacaac atacgagccg 1560
aaagcataaa gtgtaaagcc tggggtgccct aatgagtgag ctaactcaca ttaatttgcgt 1620

```

tgccgtcaact gcccgtttc cagtcggaa acctgtcgta ccagctgcat taatgaatcg 1680
gccaacgcgc gggagagggc gtttgcgta ttggcgctc ttccgcttc tcgctactg 1740
actcgctcgcg ctgggtcggt cggctgcgc gagcggtatc agctcaacta aaggcggtaa 1800
tacggttatc cacagaatca gggataacg cagggaaagaa catgtgagca aaaggccagc 1860
aaaaggccag gaaccgtaaa aaggccgcgt tgctggcggt tttcgatagg ctccgcccc 1920
ctgacgagca tcacaaaaat cgacgtcaaa gtcagaggtg gcaaaccg acaggactat 1980
aaagatacca gggtttccc cctggaaagct ccctcgtcg ctctcctgtt cggaccctgc 2040
cgcttaccgg atacctgtcc gccttctcc cttcgggaaag cgtggcgctt tctcatagct 2100
cacgctgttag gtatctcagt aaccccccgt tcagccgcac cgacttatacg ggtatgttagg cttcggttgc 2160
ggacagtttggat tggatctgc gcttgcgttcc accaccgtg gtagcggtgg ttttttggat tgcaagcagc 2220
agattacgcg cagaaaaaaa acgctcgtg gaacgaaaac tcttcaccta gatcccttta aattaaaaat 2280
tacggatccatc agttaacttgc gtctgacagt gtcttattcg ttcatccata agatctcaag aagatcctt 2340
agggttacc atctggcccc cagatttatac agcaataaaac ctttatccgc ctccatccag ctttgcgttcc gatcttgc 2400
cagttaatag tttgcgcaac ctttgcgttcc gttgttgcgttcc gttgttgcgttcc gttgttgcgttcc 2460
cggttggat ggcttcatttcc ccatgttgcg caaaaaaagcg tttgcgttcc gttgttgcgttcc gttgttgcgttcc 2520
tggccgcagt gttatcactc catccgttaag atgttttctc gttgttgcgttcc gttgttgcgttcc gttgttgcgttcc 2580
gcgccccggc accgagttgc gttgttgcgttcc gttgttgcgttcc gttgttgcgttcc gttgttgcgttcc 2640
gcagaacttt aaaagtgtc tcttaccgcgt gttgagatcc catcttttac tttcaccaggc aaaagggaat aaggcgacaa ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 2700
attgaagcat ttatcagggtt aaaaataaca aataggggtt aaccattat tatacatgaca tccgcgttcc ggtgaaaacc ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 2760
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 2820
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 2880
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 2940
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3000
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3060
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3120
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3180
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3240
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3300
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3360
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3420
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3480
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3540
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3600
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3660
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3720
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3780
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3840
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3900
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 3960
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4020
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4080
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4140
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4200
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4260
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4320
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4380
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4440
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4500
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4560
ttttaaccat aggccgaaat gggttgagtg ttgttccagt gtcggatccgtt gttgaaata accatatgcg gtgtggatccgtt attgtaaacg ttaatatttt ttttgcgttcc gttgttgcgttcc gttgttgcgttcc 4620

<210> 3

<211> 4756

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX22

<400> 3

tgctcagaga gtttctcaac gaacccgatt tggctagtta tagtaattt ttagaacatt 60
 tacaaaaaca gaaaaaaaaac caaacattca ggattttgtt ttttaattaa gaaaaaaaaatc 120
 gatcgctctt aaattttat caatacttcg aataaaccga aaaaaaaaaacg aaaaaaaaaatc 180
 ctgtttccag tgtaatgatg attgacgagg ctcacgaacg tactctacac acggatattc 240
 tattcggtt agtcaaagat attgcaagat tccgaaagga tttgaagctt ctcatcttt 300
 ctgcaacact tgacgctgaa aagttctcca gtttcttcgca cgacgctccg attttccgaa 360
 ttccgggacg cagattcccg gtggacattt actatacaca ggctccgaa gcggaactacg 420
 tcgacgcggc tatacgtcaca attatgcaga ttcacttgac ccagccactt cccggcgata 480
 ttttggatt tctgactggt caggaagaaa tcgaaactgt acaggaagca cttatggAAC 540
 ggtcgaaagc actgggatcg aagattaagg agcttattcc gctgccggtt tatgcgaatt 600
 tgcccagtga ttgcaggcg aagattttcg agccaacgccc gaaagatgcg agaaaggtag 660
 attttctta caaattttttt ccaaaaaaaaaa atccgagaaa aatctacaaa atttcaggca 720
 aaaactgtt cattttatttc ctaacttagtt ttttagcaaa cgtttagatt taacaaaact 780
 gaacaaattt gaagttttcc aattttaaaaa ataaatgtt cggaaagttt attgaaaaat 840
 ctgaaatttgc tatacctctcg tatacgcaaa aaaaacactt taaaaaatgc tctgttcttt 900
 gaaaatttct aactgaaaaa atttggaaatt tctgaaaattt gtgataattt tataaaaattt 960
 tatagaaaat gtaagcattc cagaaaaataa tcaaaaaattt cgagaaaaattt ctgaaaaaat 1020
 ccagaaatataa taacagaaaaa aaaatctttt gaaacatctg aaaattaaaaa taaattgaat 1080
 ttacatttttt ttttttggga ttcccttaaa atcactatgaa atttaccact aaattttttt 1140
 caaaaaaaaattt ttttttaat ttcaaaagaaaa aagcaaagaa tttttaaaataa tcaaaaaagt 1200
 caaatttggt tcggtgaatt tttaaaataa cattttcaag ataattttaa gttaatcaaa 1260
 acattccacg catttcttagt ttcccaaattt tctctaaattt tcagggtgtc ctagcaacta 1320
 acattggccag cacaatggat ctcgaggat cttccatacc taccagtctc ggcctgcag 1380
 gtcgcggccg cgactctcta gacgctgtaa cttaactagca taacccttg ggcctctaa 1440
 acgggtcttg aggggtttt tgagcttctc gcccataagt gagtcgtatt acagctttag 1500
 tattctatag tgcacactaa atagcttggc gtaatcatgg tcatactgtt ttcctgtgt 1560
 aaatttggat cgcctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc 1620
 ctgggggtgcc taatgagtga gctaactcac attaatttgcg ttgcgtctac tggccgttt 1680
 ccagtcggga aacctgtcg gccagctgca ttaatgaatc ggcacacgca cggggagagg 1740
 cggttgcgtt attgggcgtt cttccgcgtt ctcgctcact gactcgctgc gtcggcgtt 1800
 tcggctgcgg cgagcggat cagctcactt aaaggcggta atacggttat ccacagaatc 1860
 aggggataac gcagggaaaga acatgtgagc aaaaggccag caaaaggccca ggaaccgtaa 1920
 aaaggccggc tgctggcgat ttttgcata gtcggccccc cctgcggcgc atcacaaaaa 1980
 tcgacgctca agtcagagggt ggcggaaaccc gacaggacta taaagatacc aggcgtttcc 2040
 ccctggaaaccc tccctcggtc gctctccgtt tccgaccctt cgcgttaccg gatacctgtc 2100
 cgccttctc cttcggggaa gcgtggcgct ttctcatagc tcacgctgtt ggtatctcag 2160
 ttccgtttag gtcgttgcgtt ccaagctggg ctgtgtgcac gaaccccccgg ttcagcccg 2220
 cccgtcgccc ttatccggta actatcgct ttagtccaaac cccgttaagac acgacttatac 2280
 gcaactggca gcagccactg gtaacaggat tagcagagcg aggtatgttag gcggtgtac 2340
 agagtcttg aagtggtggc ctaactacgg ctacactaga aggacagtat ttggtatctg 2400
 cgctctgtcg aagccagtta cttccggaaa aagagttgtt agctcttgcgtt ccggcaaaaca 2460
 aaccacccgtt ggtacgggtt gttttttgtt ttgcacggcag cagattacgc gcagaaaaaaa 2520
 aggatctcaa gaagatcctt tgatcttttacggatccgggtct gacgctcgtt ggaacgaaaa 2580
 ctcacgttaa gggattttgg tcatgagattt atcaaaaaagg atcttcaccc agatcctttt 2640
 aaattttttt tgaagttttt aatcaatcta aagtatataat gatgaaactt ggtctgacag 2700
 ttaccaatgc ttaatcgatg aggacacccat ctcagcgatc tgcgttatttc gttcatccat 2760
 agttgcctga ctccccgtcg tgcgtatataac tacgatatacg gagggtttac catctggccc 2820
 cagtgtcgca atgataccgc gagacccacg ctcacccggctt ccagattttat cagcaataaa 2880
 ccagccagcc ggaaggccggc agcgcagaag tggctctgca actttatccg cctccatcca 2940
 gtcttataat tggccgggg aagcttagagt aagtagttcg ccagttataa gtttgcgca 3000
 cgttggcgtt attgctacag gcatcggtt gtcacgctcg tcgttggta tggcttcatt 3060
 cagctccgggt tcccaacgtt caaggcgagt tacatgatcc cccatgttgcgtt gcaaaaaagc 3120
 ggttagctcc tccggcttc cgcgttgcgtt cagaagtaa gtttgcgca gtttatcact 3180
 catggttatg gcaagcactgc ataattctct tactgtcatg ccatccgtaa gatgttttc 3240
 tgcgtactggt gaggactcaaa ccaagtcattt ctgagaatac cgcgcggccgac gaccgagttt 3300
 ctcttgcggc ggcgtcaatac gggataatag tgcgtatgcattt agcagaactt taaaagtgtt 3360

catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc tggttagatc 3420
 cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatcttta ctttcaccag 3480
 cgtttctggg tgagcaaaaaa caggaaggca aaatgccga aaaaaggaa taagggcgac 3540
 acggaaatgt tgaatactca tactcttctt tttcaatat tattgaagca tttatcaggg 3600
 ttattgtctc atgagcggat acatattga atgtatattag aaaaataaaac aaatagggt 3660
 tccgcgcaca ttccccgaa aagtgccacc tgacgtctaa gaaaccatta ttatcatgac 3720
 attaacctat aaaaataggc gtatcacgag gccccttcgt ctcgcgcgtt tcggtgatga 3780
 cggtaaaaac ctctgacaca tgcagctccc ggagacggtc acagcttgc tctaagcgaa 3840
 tgccgggagc agacaagccc gtcagggcgc gtcagcgggt gttggcgggt gtcggggctg 3900
 gcttaactat gccgcacatcag agcagattgt actgagagtg caccatatgc ggtgtgaaat 3960
 accgcacaga tgcgttaaggaa gaaaataccg catcaggcga aattgtaaac gttaatattt 4020
 tgtaaaaatt cgcgttaaat atttgttaaa tcaagtcatt ttttaaccaa taggcccggaa 4080
 tcggcaaaat cccttataaaa tcaaaaagaat agaccgagat agggttgagt gttgttccag 4140
 tttggacaaa gagtccacta ttaaaaacg tggactccaa cgtcaaaggg cgaaaaacccg 4200
 tctatcaggc cgatggcccctt ctacgtgaac catcaccctaa atcaagttt ttgcggcgtca 4260
 ggtgcgttaa agctctaaat cggaaacccta aagggagccc ccgatttaga gcttgacggg 4320
 gaaaggccggc gaacgtggcg agaaaggaag gaaagaaagc gaaaggagcg ggcgttaggg 4380
 cgctgcaag ttagcgggtc acgctgcgcg taaccaccac accccgcgcg cttaatgcgc 4440
 cgctacaggc cgctgtccatt cggcatttcag gtcgcgcac tggtggaaag ggcgtatcg 4500
 gccccctct tcgctattac gccagctggc gaaagggggaa tggctgcac ggcgattaaag 4560
 ttgggttaacg ccagggtttt cccagtcacg acgttgtaaa acgacggcca gtgaattgtt 4620
 atacgactca ctatagggcg aattcaaaaaa acccctcaag acccggttag agggccccaag 4680
 gggttatgtct agtgaattct gcagggtacc cggggatcct ctagagatcc ctcgacctcg 4740
 agatccatttgc tgctgg 4756

<210> 4

<211> 4643

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX52

<400> 4
 gagtgcacca tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcacatca 60
 ggcgaatttgc taaaacgttaa tattttgtta aatttcgcgt taaatatttgc ttaaatatcg 120
 tcattttta accaataggc cggaaatcgcc aaaaatccctt ataaatcaaa agaatagacc 180
 gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa gaacgtggac 240
 tccaaacgtca aaggcgaaaaa aaccgtctat caggcgcgtg gcccactacg tgaaccatca 300
 cccaaatcaa gtttttgcg gtcgagggtgc cgtaaagctc taaatcgaa ccctaaagg 360
 agcccccgat ttagagcttgc acggggaaag cccggcgaacg tggcgagaaaa ggaagggaaag 420
 aaagcgaaaaa ggcggggcgc tagggcgctg gcaagtgttag cggtcacgct ggcgttaacc 480
 accacaccccg cccgcgttaa tgcgcgceta caggcgcgtt ccattcgcca ttcaggctgc 540
 gcaactgttgc gaaaggcgca tcgggtcgccc cctcttcgtt attacgcac gtcggcggaaag 600
 ggggatgtgc tgcaggcgca ttaagggtgg taacgcggcagg gttttcccgat tcacgacgtt 660
 gtaaaaacgc ggcgcgtgaa ttgttaatacg actcaatata gggcgaattc aaaaaacccc 720
 tcaagaccccg ttagaggccc ccaagggtt atgttagtgc attctgcagg gtacccgggg 780
 atcctctaga gatccctcga cctcgagatc cattgtgtgc gcaaggccgatc tccgtcttgt 840
 gaagatctac tccaccacca tccgtatcga tcaagtccatc ctcaccggag aatctgtgtc 900
 tgttatcaag cacaccgact ctgtgccaga tccacgcgtt gtttaaccagg acaagaagaa 960
 ttgtctgttc tcgggaaacca atgtcgcatc tggaaaggct cgtggaaatcg tcttcggac 1020
 cggattgacc actgaaatcg gaaagatccg taccgaaatcg gctgagaccg agaatgagaa 1080
 gacaccactt caacagaagt tggacgaaatcg cggagagccaa ctttccaaagg ttatctctgt 1140
 tatttcgtt gctgtttggg ctatcaacat tggacatttc aacgatcccg ctcacggcgtt 1200
 atcatgggtt aaggggagccaa tctactactt caaaatcgcc gttgctttgc cctgcgtgc 1260
 tattccagaa gacttcccg ctgtcatcaccacgtgcctt gcccctcgaa ctcgcccgtat 1320
 ggccaagaag aacgcttatttgc taagatccct tccatccgtc gaaacttgc gatgcacatc 1380
 tgttatctgc tctgacaaga ctggaaactctt caccaccaac cagatgtgtc tgcgttgc 1440

gttcatcgct ggacaagctt ctggagacaa catcaacttc accgagttcg ccatctccgg 1500
 atccacctac gagccagtcg gaaaggttc caccaatgga cgtgaaatca acccagctgc 1560
 tggagaattc gaatcaactca ccgagttggc catgatctgc gctatgtca atgattcatc 1620
 tggatattac aatgagacca agaagatcta cgagaaaagtgc ggagaagcca ctgaaaactgc 1680
 tcttatcggtt cttcgctgaga agatgaatgt tttcggaacc tcgaaagccg gactttcacc 1740
 aaaggagctc ggaggagttt gcaaccgtgt catccaacaa aaatggaaga aggagttcac 1800
 actcgagttc tcccgtgatc gtaaatccat gtccgcctac tgcttcccag cttccggagg 1860
 atctggagcc aagatgttcg tgaaggggagc cccagaagga gttctcgaa gatgcaccca 1920
 cgtcagagtt aacggacaaa aggttccact cacctctgcc atgactcaga agattgttg 1980
 ccaatgcgtg caatacggaa ccggaaagaga taccctcgat tgcgttgcggc tcggccagca 2040
 caatgatct cgagggatct tccatcacca ccagttctgc gcctgcaggt cgcggccgcg 2100
 actctctaga cgcgtaaagct tactagcata acccccttggg gcctctaaac ggggtctttag 2160
 gggtttttg agcttctcgcc cctatagtga gtcgttattac agctttagta ttctatagt 2220
 tcacctaataat agcttggcgt aatcatggtc atagctgttt cctgtgtgaa attgttatcc 2280
 gctcacaatt ccacacaaca tacgagccgg aagcataaaag tgtaaagcct ggggtgccta 2340
 atgagtgagc taactcacat taattcggtt ggcgtcactg cccgcttcc agtgcggaaa 2400
 cctgtcgcc cagctgcatt aatgaatcggtt ccaacgcgcg gggagaggcg gtttgcgtat 2460
 tggcgctct tccgcttccct cgctcaactga ctgcgtgcgc tcgggtcgatc ggctgcggcg 2520
 agcggatctca gctcaactcaa aggccgttaat acggttatccc acagaatcag gggataacgc 2580
 agggaaagaac atgtgagcaa aaggccagca aaggccagg aaccgtaaaaa aggccgcgtt 2640
 gctggcgttt ttgcgttaggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 2700
 tcagaggtgg cgaaaccccgaa caggactata aagataccag gcgttcccc ctggaaagctc 2760
 cctcgccgc tctcctgttc cgaccctgccc gcttaccggaa tacctgtccg cctttctccc 2820
 ttcgggaagc gtggcgcttt ctcatagctc acgctgttagg tatctcagtt cgggttaggt 2880
 cgttcgtcc aagctgggtt gtgtgcacga accccccgtt cagccgcacc gctgcgcctt 2940
 atccgtaac tatacgatctt agtccaaaccc gtaaagacac gacttatacgca cactggcagc 3000
 agccactggta aacaggattta gcaagacgcg gtagtgcgtt ggtgtctacag agttcttggaa 3060
 gtgggtggcct aactacggctt acactagaag gacagtattt ggtatctgcg ctctgctgaa 3120
 gccaggattacc ttccggaaaaaa gagttggtag ctcttgcattt ggcacaaacaaa ccaccgctgg 3180
 tagcgtgtgtt tttttgtttt gcaagcagca gattacgcgc agaaaaaaaag gatctcaaga 3240
 agatccttttgc atcttttctca cggggctcga cgctcagtttgg aacgaaaactt cactttaagg 3300
 gattttggcgtt atgagattat caaaaaggat ttccacccatg atcctttttaa attaaaaatg 3360
 aagttttaaa tcaatctaaat gatatatgaa gtaaacttgg tctgcacagtt accaatgcctt 3420
 aatcgttagtgc gcaccttatct cagcgtatctg tctatttcgt tcattccatg ttgcctgact 3480
 ccccgccgtg tagataacta cgatacgggaa gggcttacca tctggccccc gtgtgtcaat 3540
 gataccgcga gaccacgcgtt caccggctcc agattttatca gcaataaaacc acccagccgg 3600
 aaggcccgag cgcagaagtg gtcctgcacac ttatccggcc tccatccagt ctattaaatg 3660
 ttgcggggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcacacg ttgttggcat 3720
 tgctcaggc atcggtgtt caccgtcgatc gtttggtagt gcttcattca gctccgggtc 3780
 ccaacgatca aggccaggat catgatcccc catgttgc aaaaaaagccgg ttagctccctt 3840
 cggtcctccg atcggtgtca gaagtaagtt ggcgcgcgtt ttatcactca tggttatggc 3900
 agcactgcattt aattctcttta ctgtcatgc atccgtaaatg tgctttctg tgactgggtg 3960
 gtactcaacc aagtcttccat gagaataccg ccggccggcgc ccggatgtt cttggccggc 4020
 gtcaatacgg gataatagtgt tatgacatag cagaacttta aaagtgcgtca tcattggaaa 4080
 acgttctcg gggcgaaaac tctcaaggat cttaccgtgtt tgagatcca gttcgatgtt 4140
 acccactcgatc gaccccaact gatcttcagc atcttttactt ttcaccagcg tttctgggtg 4200
 agcaaaaaaca ggaaggcaaa atgcccggaaa aaaggaaata agggcgcacac gaaaaatgtt 4260
 aataactcata ctcttcctttt ttcaatattttt ttaaaggattt tatcagggtt attgtctcat 4320
 gagcggatcatatattttttttt gatattttttttt aataaaacaa ataggggttc cgcgcacattt 4380
 tccccggaaaaa gtgccaccttgc acgtctaaga aaccattattt atcatgacat taacctataa 4440
 aaataggcgatc atcagcgggc ctttcgtt cgcgcgtttc ggtgtatgcg gtgaaaactt 4500
 ctgacacatg cagctcccgagc acgttcac agcttgcgtt taagcggatg ccggggagcag 4560
 acaagccgtt cagggcgtt cagcgggtt tggcgggtt cggggctggc ttaactatgc 4620
 ggcacatcagag cagattgtac tga 4643

<210> 5

<211> 4454

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX104

<400> 5

gagtgccacca tatgcgggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcata 60
ggcgaattt taaaacgttaa tattttgtta aaattcgcgt taaatatttgc 120
tcattttta accaataggc cggaaatcggc aaaatccctt ataaatcaaa agaatagacc 180
gagatagggt ttagtgggt tccagtttgg aacaagagtc cactattaaa gaacgtggac 240
tccaaacgtca aaggcgaaa aaccgtctat cagggcgatg gcccactacg tgaaccatca 300
cccaaatcaa gtttttgcg gtcgaggtgc cgtaaagctc taaatcgaa ccctaaaggg 360
agcccccgat ttagagctt acggggaaag ccggcgaacg tggcgagaaa ggaagggaaag 420
aaagcgaaaag gacggggcgc tagggcgctg gcaagtgtag cggtcacgct gcgcgttaacc 480
accacacccg ccgcgtttaa tgcgcgcgt cagggcgctg ccattcgcca ttcaggctgc 540
gcaactgttg ggaagggcga tcggtgcggg cctttcgctt attacgcccag ctggcgaaag 600
ggggatgtgc tgcaaggcga ttaagtttggg taacgcccagg gtttcccag tcacgacgtt 660
gtaaaacgac ggccagtggaa ttgtataacg actcactata gggcgaattt aaaaaacccc 720
tcaagacccg ttagagggcc ccaaggggtt atgctagtga attctgcagg gtacccgggg 780
atccctctaga gatccctcgat cctcgagatc cattgtgtc gaccgtggta ctcttatgg 840
gctcggaatc tcgccaatcg tcacttctgg acttatactg caacttctcg ccggagccaa 900
gatcatcgaa gtccgagaca caccaaagga ccgtgtctt ttcaacggag cccagaaatg 960
taagccaaa agtgtgtgtt ttcaatctct aatttttggaa cttttcagtg ttccgtatgg 1020
tcatcactgt tggacaagctt attgtctacg tcatgtccgg actctacgga gagccatcg 1080
aaatcgggagc tggaaatctgtt ctcccttatcg tcgtccaaact cgttattgccc ggtctcatcg 1140
tcctccctctt cgacgagctt ctccaaaagg gatatggtctt cggatccgga atttctctt 1200
tcattgcccac caacatctgt gaaaccatttgc tctggaaaggc attctccccg gcaacaatga 1260
acacccggacg tggaaaccggag ttcaaggagcc cctgttccat tctttccat ctcttgc 1320
cccgctccga caaggtccgtt gcccctcgat aggctttctt cctgttccat cttccaaact 1380
tgatgaactt gatggctact ttccctcgat ttgcgggtggg tatctacttc caaggattcc 1440
gtgtcgaccc cccaaatcaag tctgtccctgtt accgtggaca atacagcagc taccacaatca 1500
agctcttcta caccctcaac attccaatca tccttcaatc tgctctcgat tccaaactct 1560
acgttatctc tcagggtttgtt tgcatctcgat tagtaccgtt agatgtttat ctcttcttag 1620
agggtcaagt tggccgagaa attttttggat ttcatctca tgcgtatgg aaaatgttta 1680
ttttcagat gtcggccggaa aagtccggat gaaacttctt catcaacactt ctccgtac 1740
ggtccgataa caccggatatac agaagtcacc caactggaggc actctgtac tatcttctac 1800
caccagatc tcttggacac atcttgcag acccaatcca ctgcaccagg acaatggatc 1860
tcgagggtat ttccatcacctt accagttctg cgcctgcagg tgcggccgc gactctctag 1920
acgcgtaaatc ttactagcat aacccttgg ggcctctaaa cgggtcttga ggggtttttt 1980
gagcttcgtc ccctatagtg agtcgttatac cagcttgagt attctatagtg gtcacctaaa 2040
tagttggcg taatcatgtt catagcttttgc tccgtgtga aattgttatac cgctcacaat 2100
tccacacaac atacgagccg gaagcataaa gtgtaaagcc tgggggtgcct aatgagttag 2160
ctaactcaca ttatttgcgt tgcgtctact gcccgcctt cagtcggaa acctgtcg 2220
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggttgcgtta ttggggcgtc 2280
ttccgcttcc tcgctactg actcgctcgat ctcgggtcgat cggctcgccg gagcggtatc 2340
agctcaactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 2400
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg 2460
tttcgatagg ctccggccccc ctgacgagca tcacaaaaat cgacgcctaa gtcaaggggt 2520
gcaaaacccg acaggactat aaagataccg ggcgtttccc cctggaaagct ccctcg 2580
ctctccgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc ctccggaaag 2640
cggtggcgat tctcatagct cacgctgttag gtatctcgtt cgggtgttagg tgcttcgtc 2700
caagctgggc tgggtgcacg aaccggccgt tcagccccgac cgctgcgcct tatccggtaa 2760
ctatcgctt gaggccaacc cggtaaagaca cgacttatacg ccactggcag cagccactgg 2820
taacaggatt agcagagcga ggtatgttagg cggtgtacca gagttcttgc agtgggtggcc 2880
taactacggc tacactagaa ggacagtttgc tggatctgc gctctgtac acccaggctg gtagcggtgg 3000
cttcggaaaa agagttggta gctcttgcgtt cggcaaaacaa accaccgcgt 3060
ttttttgtt tgcaaggcagc agattacgctg cagaaaaaaa ggatctcaag aagatccctt 3060
gatctttctt acggggctgt acgctcgtt acgctcgtt gacqaaaaac tcacgttaag ggatttgg 3120

catagagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagtttaa 3180
 atcaatctaa agtataatag agtaaacttg gtctgacagt taccaatgct taatcagtg 3240
 ggcacctata tcagcgatct gtcttattcg ttcattccata gttgcctgac tccccgtcg 3300
 gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 3360
 agaccacgc tcaccggctc cagatttac agcaataaac cagccagccg gaagggccga 3420
 ggcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccgg 3480
 agctagagta agtagttcg cagttaatag tttgcgcac gttgttggca ttgctacagg 3540
 catcggtg tcacgctcg cgtttgtat gccttcattc agctccgg 3600
 aaggcgagtt acatgatccc ccattgtgt caaaaaagcg gttagctct tcggcctcc 3660
 gatcgttgc aagaagtaagt tggccgcagt gttatcactc atggttatgg cagcaactgca 3720
 taattctt actgtcatgc catccgtaag atgctttct gtgactgg 3780
 caagtcatc tgagaatacc gcgcggcg accgagttgc tcttgcgg 3840
 ggataatagt gtatgacata gcagaacttt aaaagtgc 3900
 gggcgaaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 3960
 tgcacccaaac tgatcttcag catctttac tttcaccagc gtttctgg 4020
 aggaaggcaa aatgcgc 4080
 actcttcattt ttcaatatt attgaagcat ttatcaggtt tattgtctca tgagcggata 4140
 catatttcaa tttatattt 4200
 agtgcaccc 4260
 tatcacgagg cccttcg 4320
 gcagctcccg gagacgg 4380
 tcagggcgc 4440
 gcagattgt 4454
 ctga

<210> 6

<211> 4701

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGZ18

<400> 6

acccagctt cttgtacaaa gtggatctt ttccagcaca atggatctcg agggatctc 60
 catabctacc agttctgcgc ctgcagg 120
 ctagcataac cccttggggc ctctaaacgg gtcttgg 180
 tatagtgagt cgtattacag cttgagtatt ctatagtgc acctaaatag cttggcgtaa 240
 tcatggcat agctgtttcc tttgtgaaat tttatccgc tcacaattcc acacaacata 300
 cgagccggaa gcataaaatgt taaaggctgg ggtgcctaactt 360
 attgcgttgc gctca 420
 tgaatcgcc aacgcgcggg gagaggcggt ttgcgtattt 480
 ctcactgact cgctgcgc 540
 gcggtataatc gtttatccac agaatacagg 600
 ggccagcaaa aggccaggaa ccgtaaaaag gcccgcgtgc tggcg 660
 cgcgcgcgc acgagcatca caaaaatcga cgctca 720
 ggactataaa gataccaggc gtttccctt ggaagctccc tcgtgcgc 780
 accctgcgc ttaccggata cctgtccgc tttctccctt 840
 catagctcac gctgttaggtt tctcagttcg gtgttagtcg ttcgc 900
 gtgcacgaac cccccgttca gcccgcgc tgcgcctt 960
 tccaaccggg taagacacga cttatgc 1020
 agagcgagg 1080
 atgttaggcg 1140
 actagaagga cagtattttg 1200
 gttgttagct ttgtatccgg 1260
 aagcagcaga ttacgcgc 1320
 gggctgacg 1380
 ctcagtggaa 1440
 aaaagatct tcaccttagat cttttaat 1500
 atatatgagt aaacttggc tgacagttac 1540
 ggcgcgttca gataactacg

atacgggagg gcttaccatc tggcccaagt gctgcaatga taccgcgaga cccacgctca 1560
 cccgcctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtgt 1620
 cctgcaacctt tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaat 1680
 agttcgccag ttaatagttt gcgcaacgtt gttggcattt ctacaggcat cgtgggtgtca 1740
 cgctcgctgt ttggtatggc ttcatccagc tccgggttccc aacgatcaag gcgagttaca 1800
 ttagccccca tgggtgc当地aaaagcggtt agtccttcg gtcctccgat cgttgtcaga 1860
 agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact 1920
 gtcatgccat ccgtaaagatg cttttctgtg actgggtgagt actcaaccaa gtcattctga 1980
 gaataccgcg cccggcgacc gagttgtct tgccggcgt caatacggga taatagtgt 2040
 tgacatagca gaactttaaa agtgctcatac attggaaaac gttctcggg gcgaaaactc 2100
 tcaaggatct taccgctgtt gagatccagt tcgatgttaac ccactcgtgc accccaactga 2160
 tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaat 2220
 gccgcaaaaa agggataaag ggcgacacgg aatgttggaa tactcataact cttcctttt 2280
 caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt 2340
 atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaaagt gccacctgac 2400
 gtctaagaaa ccattattat catgacattt acctataaaa ataggcgat caccggccc 2460
 tttcgtctcg cgcgttccg tgatgacggt gaaaacctt gacacatgca gctccggag 2520
 acggtcacag cttgtctgtt agcggatgcc gggagcagac aagccgtca gggcgcgtca 2580
 gccccgttgc gccccgttgc gggctggctt aactatgcgg catcagagca gattgtactg 2640
 agagtgcacc atatgcgggt tgaaataccg cacagatgcg taaggagaaa ataccgcac 2700
 aggcaaaattt gtaaacgttta atattttgtt aaaattcgcg taaaatattt gtaaatcag 2760
 ctcatttttt aaccaatagg ccgaaatccg caaaatccct tataaatcaa aagaatagac 2820
 cgagataggg ttgagtgttgc ttccagtttgc gaacaagagt ccactattaa agaacgtgaa 2880
 ctccaaacgtc aaagggcgaa aaaccgtcta tcagggcgat gcccactac gtgaaccatc 2940
 acccaaatac agtttttgc ggtcgagggt cctaaatcgat cccctaaagg 3000
 gagcccccgaa tttagagctt gacggggaaa gccggcgaac gtggcgagaa aggaaggggaa 3060
 gaaagcgaaa ggagcgggcg cttagggcgat gcaagtgtt gcggtcacgc tgcgcgttaac 3120
 caccacaccc gccgcgttta atgcggcgat acagggcgcg tccatcgcc attcaggctg 3180
 cgcaactgtt gggaaaggcgc atcgggtgcgg gcctcttcgc tattacgcca gctggcgaaa 3240
 ggggatgttgc ctgcaaggcgc attaagttgg gtaacgcccgg gttttccca gtcacgacgt 3300
 tgtaaaacgaa cggccagtga attgtatatac gactcactat agggcgaatt caaaaaaaaacc 3360
 ctcgaagaccc gtttagagggc cccaaagggt tatgtctatg aatttcgcag ggtacccggg 3420
 gatccctctag agatccctcg acctcgagat ccattgtgtt gaaaaagcctt tgcagggtctg 3480
 gcaaggccacg tttgggtgggt gcgaccatcc tccaaaatca acaagttgtt aaaaaaaaaacg 3540
 aggctatgcc aagtatcatgt cgattgcgtt cgcgttgcgtt atgtggctg ttttagtgc 3600
 taccaggcgtt caaatttttc tcgagagtgc gtttttacat tcccttcatac tccgtattac 3660
 gacaattttc agtgggtctc gtcctacat ctctttcatat tgcacaatgc gtcggaaatct 3720
 tcccttcgttgc tgcattgttcaatccaaaatc aatttcacgaa tattatccat ggtgtcgat 3780
 tcccttcatac tatttcatttcatc acatatgtgtt ccctactt atatttcgtc atcaatctca 3840
 acgttatcac gtggggaaact cgtgaagctg tcgctaaaggc aacgggacaa aagacgaaaa 3900
 aagcccttat ggaacaattt atagacagag tgattgtat tggaaaaag ggattcagat 3960
 taatcgttg tcgggagaag aaggaacatgc aagagagacg agagaaaaatg gaaaagaaaa 4020
 tgcagagaat ggagctagcc ttgagaagta ttgaggttgc tttaactttt agaaatgtgaa 4080
 aattaataat ttatttcag agtgggtccgc acgtgaagaaa aatttcgtat gcaacagagg 4140
 agaaggagaa acgtgaagaaa gaaactcaaa ctgcagattt tccgatttgc gagaacgtag 4200
 agaagactca aaaagagatt cagaaggcaa accgttatgtt gtggatgaca agtcatagct 4260
 tgaaagtttg tgaacgagga aaactgaaaaa gtgcggaaaaa gttttctgg aacgagctca 4320
 tcaatgcata tctgaaaccgc atcaagacgc cggccgtca aatggaaagcc gtcggccgaa 4380
 gattggcttc tctacgaaat cagattgtt tcactatttct tctcgatata tctcttctt 4440
 ctcttcgttccat tttttgttcat cagaacacca aaaatgtgtt cagcatcaag ttctcgccaa 4500
 tcagtaagca atattacattt tatgtgtcaat tcaaaaaattt tgttttttt ttctagaaaa 4560
 cttccgatgg acgaaaatgtt atgagatgac tggacaatac gaggaaaacgg atgaaccatt 4620
 aaaaatagat ccacttggaa tggaaattgt tgttttccctt ctaattatttc tttttgttca 4680
 aactctcgaa atgcttctcc a 4701

<210> 7

<211> 25

<212> DNA

10

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide primer C04H5.6F

<400> 7

tgctcagaga gtttctcaac gaacc

25

<210> 8

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Oligonucleotide
primer C04H5.6R

<400> 8

caatgttagt tgcttaggacc acctg

25

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Oligonucleotide
primer K11D9.2bF

<400> 9

cagccgatct ccgtcttgtg

20

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Oligonucleotide
primer K11D9.2bR

<400> 10

ccgagggcaa gacaacgaag

20

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Oligonucleotide
primer Y57G11C.15F

<400> 11

accgtggtagt tcttatggag ctcg

24

<210> 12

11

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer Y57G11C.15R

<400> 12
tgcaagtggat tgggtcttcg

20

<210> 13
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer T25G3.2F

<400> 13
ggggacaagt ttgtacaaaa aaggcaggcta tgccaagtagc atgtcgattt cg

52

<210> 14
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer T25G3.2R

<400> 14
ggggaccact ttgtacaaga aagctgggtt ggagaagcat tccgagagtt tg

52