# Capítulo 1

Análise Exploratória de Dados

## Introdução

A finalidade da Análise Exploratória de Dados (AED) é examinar os dados previamente à aplicação de qualquer técnica estatística. Desta forma o analista consegue um entendimento básico de seus dados e das relações existentes entre as variáveis analisadas.

Após a coleta e a digitação de dados em um banco de dados apropriado, o próximo passo é a análise descritiva. Esta etapa é fundamental, pois uma análise descritiva detalhada permite ao pesquisador familiarizar-se com os dados, organizá-los e sintetizá-los de forma a obter as informações necessárias do conjunto de dados para responder as questões que estão sendo estudadas.

### **Etapas da AED**

Para realizar uma AED recomenda-se seguir as seguintes etapas:

- preparar os dados para serem acessíveis a qualquer técnica estatística;
- realizar um exame gráfico da natureza das variáveis individuais a analizar e uma análise descritiva que permita quantificar alguns aspectos gráficos dos dados;
- realizar um exame gráfico das relações entre as variáveis analisadas e uma análise descritiva que quantifique o grau de inter-relação entre elas;
- identificar os possíveis casos atípicos (outliers);
- avaliar, se for necesário, a presença de dados ausentes (missing);
- avaliar, se for necesário, algumas suposições básicas, como normalidade, lineariedade e homocedasticidade.

## Etapas da AED

A AED extrai informações de um conjunto de dados sem o peso das suposições de um modelo probabilístico. As técnicas gráficas desempenham um importante papel nesta forma de abordagem.

Para que a AED possa ser compreendida, a seguir mostramos a estratégia de análise da Estatística Clássica, Estatística Bayesiana e estas duas são confrontadas com a Análise Exploratória de Dados.

## Etapas da AED

| Abordagem                                            | Estratégia                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Estatística Clássica<br>Estatística Bayesiana<br>EDA | $\begin{array}{c} \text{Problema} \rightarrow \text{Dados} \rightarrow \text{Modelo} \rightarrow \text{Análise} \\ \text{Problema} \rightarrow \text{Dados} \rightarrow \text{Modelo} \text{ Priori} \rightarrow \text{Análise} \\ \text{Problema} \rightarrow \text{Dados} \rightarrow \text{Análise} \rightarrow \text{Modelo} \end{array}$ |  |

De acordo com o quadro acima, diferentemente do que é feito na Estatística Clássica e Estatística Bayesiana, na Análise Exploratória de Dados não há a imposição de um modelo aos dados, mas sim um trabalho de mineração nos dados que pode eventualmente indicar qual o melhor modelo.

A AED vai além do uso descritivo da estatística, procura olhar de forma mais profunda os dados, sem resumir muito a quantidade de informações.

#### **Técnicas Gráficas e Resumos Numéricos**

Os gráficos constituem uma das formas mais eficientes de apresentação de dados. Um gráfico é, essencialmente, uma figura constituída a partir de uma tabela, pois é quase sempre possível localizar um dado tabulado num gráfico.

Enquanto as tabelas fornecem uma idéia mais precisa e possibilitam um tratamento mais rigoroso aos dados, os gráficos são mais indicados em situações cujo objetivo é dar uma visão mais rápida e fácil das variáveis às quais se referem os dados.

Portanto, a qualidade na representação gráfica deve ser pautada na **clareza**, **simplicidade e autoexplicação**. As técnicas gráficas desempenham um papel fundamental na AED.

#### Escalas de Mensuração

As técnicas a serem utilizadas dependem da natureza de mensuração das variáveis de interesse:

- Nominal: as variáveis são medidas em classes discretas, mas não é possível estabelecer ordem.
- Ordinal: as variáveis são medidas em classes discretas entre as quais é possível definir uma ordem, segundo uma relação descritível mas não quantificável.
- Intervalar: as variáveis assumem valores quantitativos, não possuem zero absoluto, i.e. não possuem uma medida de ausência de atributo.
- Razão: as variáveis assumem valores quantitativos, cuja relação exata entre estes é possível definir porque esta escala possui um zero absoluto.

### Escalas de Mensuração

O tipo da análise que pode ser realizado depende da escala de medida da variável analizada. Na tabela a seguir se sugerem as representações gráficas e resumos descritivos numéricos mais recomendáveis para realizar essa análise.

| Escala de<br>medida                                                   | Representações<br>Gráficas             | Medidas de<br>tendência central | Medidas de<br>dispersão   |
|-----------------------------------------------------------------------|----------------------------------------|---------------------------------|---------------------------|
| Diagrama de barras<br>Nominal Diagrama de linhas<br>Diagrama de pizza |                                        | Moda                            |                           |
| Ordinal Boxplot                                                       |                                        | Mediana                         | Intervalo Interquartílico |
| Intervalo                                                             | Histogramas<br>Polígono de frequências | Média                           | Desvio padrão             |
| Razão                                                                 |                                        | Média Geométrica                | Coeficiente de Variação   |

## Tipos de variáveis

#### Variável:

Qualquer característica associada a uma população

#### Classificação:

- Qualitativa: são aquelas que apresentam como possíveis realizações uma qualidade ou atributo do indivíduo pesquisado
  - Nominal: sexo, cor dos olhos
  - Ordinal: classe social, grau de instrução
- Quantitativa: são aquelas que apresentam como possíveis realizações números resultantes de uma contagem ou mensuração
  - Contínua: peso, altura
  - Discreta: número de filhos, número de carros



#### Variáveis Quantitativas

**Medidas de posição:** valor ao redor do qual os dados estão distribuídos.

- Máximo (max): a maior observação
- Mínimo (min): a menor observação
- Moda (Mo): é o valor (ou atributo) que ocorre com maior frequência.
- Média  $(\bar{X})$ : soma de todos os valores da variável dividida pelo número de observações.
- Mediana (Me): valor que deixa 50% das observações à sua esquerda
- Quartis: divide um conjunto de valores dispostos em forma crescente em quatro partes.
  - Primeiro Quartil (Q1): valor que deixa 25% das observações à sua esquerda.
  - Terceiro Quartil (Q3): valor que deixa 75% das observações à sua esquerda.



#### Variáveis Quantitativas

**Medidas de Dispersão:** A finalidade é encontrar um valor que resuma a variabilidade de um conjunto de dados

- Amplitude: diferença entre o valor máximo e o valor mínimo
- Intervalo-Interquartil: É a diferença entre o terceiro quartil e o primeiro quartil, ou seja, Q3 - Q1
- Variância: média dos quadrados dos desvios em relação à média aritmética
- Desvio Padrão: mede a variabilidade independente do núemro de observações e com a mesma unidade de medida da média
- Coeficiente de Variação: mede a variabilidade numaescala percentual independente da unidade de medida ou da ordem de grandeza da variável

$$CV = \frac{s}{\overline{X}}100\%$$



#### Exame Gráfico dos Dados

#### Distribuição:

Histograma, ramo-e-folhas

#### Relação entre as variáveis:

Diagrama de dispersão

#### Diferenças entre grupos:

Box-plot (observações atípicas podem aparecer somente após agrupamento)

#### Descrição dos dados

É importante conhecer e saber construir os principais tipos de tabelas, gráficos e medidas resumo para realizar uma boa análise descritiva dos dados. Cada ferramenta fornece um tipo de informação e o seu uso depende, em geral, do tipo de variável que está sendo investigada.

| variável qualitativa*                                                   | variável quantitativa                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tabela de frequências<br>gráfico de barras<br>diagrama circular (pizza) | medidas de posição: média, mediana, moda medidas de dispersão: variância, desvio-padrão, amplitude, coeficiente de variação tabela de frequências histograma boxplot gráfico de linha ou sequência polígono de frequências |
|                                                                         | ing An ana adam adam                                                                                                                                                                                                       |

<sup>\*</sup>Esta abordagem também pode ser interessante para as variáveis quantitativas discretas.

# Tabela de frequências

Como o nome indica, conterá os valores da variável e suas respectivas contagens, as quais são denominadas frequências absolutas ou simplesmente, frequências.

No caso de variáveis qualitativas ou quantitativas discretas, a tabela de frequência consiste em listar os valores possíveis da variável, numéricos ou não, e fazer a contagem na tabela de dados brutos do número de suas ocorrências.

A frequência do valor i será representada por  $n_i$ , a frequência total por n e a frequência relativa por  $h_i = h_i/n$ .

# Tabela de frequências

Para variáveis cujos valores possuem ordenação natural (qualitativas ordinais e quantitativas em geral), faz sentido incluirmos também uma coluna contendo as frequências acumuladas  $N_i$  e  $H_i$ , obtidas pela soma das frequências de todos os valores da variável, menores ou iguais ao valor considerado.

No caso das variáveis quantitativas contínuas, que podem assumir infinitos valores diferentes, a tabela de frequência precissa de classes ou faixas de valores e contamos o número de ocorrências em cada faixa.

Apesar de não adotarmos nenhuma regra formal para estabelecer as faixas, utilizaremos em geral, de 5 a 8 faixas com mesma amplitude. Eventualmente, faixas de tamanho desigual podem ser convenientes para representar valores nas extremidades da tabela.

# Tabela de frequências

| Classes            | Intervalos      | Frequência<br>absoluta | Frequência<br>relativa  | Frequência<br>absoluta<br>acumulada | Frequência<br>relativa<br>acumulada              |
|--------------------|-----------------|------------------------|-------------------------|-------------------------------------|--------------------------------------------------|
| С                  | $(LI_i - LS_i)$ | n <sub>i</sub>         | hį                      | N <sub>i</sub>                      | H <sub>i</sub>                                   |
| C <sub>1</sub>     | $(LI_1 - LS_1)$ | n <sub>1</sub>         | $h_1 = \frac{n_1}{n_1}$ | $N_1 = n_1$                         | $H_1 = \frac{N_1}{n} = h_1$                      |
|                    |                 |                        | "                       |                                     |                                                  |
| $c_j$              | $(LI_j-LS_j)$   | nj                     | $h_j = \frac{n_j}{n}$   | $N_j = n_1 + n_2 + \ldots + n_j$    | $H_j = \frac{N_j}{n} = h_1 + h_2 + \ldots + h_j$ |
| <br>C <sub>k</sub> | $(LI_k - LS_k)$ | n <sub>k</sub>         | $h_k = \frac{n_k}{n}$   | $N_k = n$                           | $H_k = 1$                                        |

# Medidas de posição no caso de dados agrupados

 Média: Sejam y<sub>1</sub>, y<sub>2</sub>,..., y<sub>k</sub> os pontos médios de cada intevalo de classe de uma distribuição de frequência de k classes

$$\bar{Y} = \frac{\sum_{j=1}^{k} n_i y_i}{n}$$

Mediana:

$$Me = LI_j = c(\frac{(n/2) - N_{j-1}}{n_j})$$

Moda:

$$Mo = LI_j + c(\frac{n_j - n_{j-1}}{(n_j - n_{j-1}) + (n_j - n_{j+1})})$$

#### **Exemplo**

Adaptado do dataset *Household Expenditures* (Aitchison, 1986): Gastos domiciliares de 38 domicílios (HK\$) em quatro grupos de despesas:

- Moradia, gás, luz, etc
- Alimentação, incluindo bebidas e tabaco
- 3 Outros bens, incluindo vestuário e bens duráveis
- Servicos, incluindo transporte e veículos

#### Dataset:

- sex: sexo do chefe da família (male/female)
- children: número de filhos (adaptado por Marcelo Lauretto)
- housing, foodstuffs, othergoods, services: gastos mensais em cada grupo de despesas

#### Gráfico de barras

Para construir um gráfico de barras, representamos os valores da variável no eixo das abscissas e suas frequências ou porcentagens no eixo das ordenadas. Para cada valor da variável desenhamos uma barra com altura correspondendo à sua frequência ou porcentagem.

Este tipo de gráfico é interessante para as variáveis qualitativas ordinais ou quantitativas discretas, pois permite investigar a presença de tendência nos dados.

#### **Gráfico de Barras**



Figura: Número de filhos por sexo do chefe de familia

## **Diagrama Circular**

Para construir um diagrama circular ou gráfico de pizza, repartimos um disco em setores circulares correspondentes às porcentagens de cada valor (calculadas multiplicando-se a frequência relativa por 100). Este tipo de gráfico adapta-se muito bem para as variáveis qualitativas nominais.

# **Diagrama Circular**



Figura: Esq: Percentual de domicílios por sexo do chefe de familia;

Dir: Percentual de domicílios por número de filhos

# Diagrama Circular



**Figura:** Percentuais de domicílios por número de filhos (segmentação por sexo)

#### Histograma

O histograma consiste em retângulos contíguos com base nas faixas de valores da variável e com área igual à frequência relativa da respectiva faixa. Desta forma, a altura de cada retângulo é denominada densidade de frequência ou simplesmente densidade definida pelo quociente da área pela amplitude da faixa.

Alguns autores utilizam a frequência absoluta ou a porcentagem na construção do histograma, o que pode ocasionar distorções (e, consequentemente, más interpretações) quando amplitudes diferentes são utilizadas nas faixas.

# Histograma



#### **Boxplot**

Para construí-lo, desenhamos uma caixa com o nível superior dado pelo terceiro quartil (Q3) e o nível inferior pelo primeiro quartil (Q1). A mediana (Q2) é representada por um traço no interior da caixa e segmentos de reta são colocados da caixa até os valores máximo e mínimo, que não sejam observações discrepantes.

O critério para decidir se uma observação é discrepante pode variar; chamaremos de discrepante os valores maiores do que Q3+1,5\*(Q3-Q1) ou menores do que Q1-1,5\*(Q3-Q1).

O Boxplot fornece informações sobre posição, dispersão, assimetria, caudas e valores discrepantes.

# **Boxplot**



Figura: Consumos domiciliares por grupo de despesa, em escala natural (esq) e logarítmica (dir)

# Gráfico de linha ou sequência

Adequados para apresentar observações medidas ao longo do tempo, enfatizando sua tendência ou periodicidade.



# Polígono de frequências

Semelhante ao histograma, mas construído a partir dos pontos médios das classes.



## Diagrama de dispersão

Adequado para descrever o comportamento conjunto de duas variáveis quantitativas. Cada ponto do gráfico representa um par de valores observados.

