Modelos e Aplicações - Aula 9

Caio Lopes, Henrique Lecco

ICMC - USP

3 de agosto de 2020

Objetivos de hoje

Vamos falar um pouco sobre teoria de conjuntos. Os requisitos serão mínimos.

Objetivos de hoje

Vamos falar um pouco sobre teoria de conjuntos. Os requisitos serão mínimos.

Queremos alcançar a definição de ultraprodutos.

ZFC

Frequentemente, quando fazemos construções em matemática, estamos usando regras definidas por um conjunto de axiomas denominado *ZFC*.

São um conjunto de axiomas "popular" para se trabalhar a Teoria de Conjuntos.

ZFC

Frequentemente, quando fazemos construções em matemática, estamos usando regras definidas por um conjunto de axiomas denominado *ZFC*.

São um conjunto de axiomas "popular" para se trabalhar a Teoria de Conjuntos.

Exemplos de axiomas:

- Extensionalidade: $\forall x \forall y (x = y \leftrightarrow (\forall z (z \in x \leftrightarrow z \in y));$
- Fundação: $\forall x[\exists a(a \in x) \rightarrow \exists y(y \in x \land \neg \exists z(z \in y \land z \in x))];$
- Par: $\forall x \forall y \exists z ((x \in z) \land (y \in z));$

ZFC

Frequentemente, quando fazemos construções em matemática, estamos usando regras definidas por um conjunto de axiomas denominado *ZFC*.

São um conjunto de axiomas "popular" para se trabalhar a Teoria de Conjuntos.

Exemplos de axiomas:

- Extensionalidade: $\forall x \forall y (x = y \leftrightarrow (\forall z (z \in x \leftrightarrow z \in y));$
- Fundação: $\forall x[\exists a(a \in x) \rightarrow \exists y(y \in x \land \neg \exists z(z \in y \land z \in x))];$
- Par: $\forall x \forall y \exists z ((x \in z) \land (y \in z));$

Também há esquemas: conjuntos infinitos de sentenças com um certo formato, por exemplo, o da separação. Para cada fórmula do $\varphi(x)$, temos o axioma:

$$\forall z \exists y \forall x (x \in y \leftrightarrow (x \in z \land \varphi(x)))$$

Todo conjunto que construímos tem por base ZFC, isto é, seguimos as regras dessa teoria.

Dissemos que um modelo é um conjunto munido de uma interpretação. Esse "conjunto" é no sentido de *ZFC*.

Todo conjunto que construímos tem por base *ZFC*, isto é, seguimos as regras dessa teoria.

Dissemos que um modelo é um conjunto munido de uma interpretação. Esse "conjunto" é no sentido de *ZFC*.

Consistência tem um significado tanto sintático quanto semântico:

- Uma teoria T é consistente se e somente se não existe uma sentença φ tal que $T \vdash \varphi$ e $T \vdash \neg \varphi$.
- Uma teoria T é consistente se e somente se admite modelo.

Todo conjunto que construímos tem por base ZFC, isto é, seguimos as regras dessa teoria.

Dissemos que um modelo é um conjunto munido de uma interpretação. Esse "conjunto" é no sentido de *ZFC*.

Consistência tem um significado tanto sintático quanto semântico:

- Uma teoria T é consistente se e somente se não existe uma sentença φ tal que $T \vdash \varphi$ e $T \vdash \neg \varphi$.
- Uma teoria T é consistente se e somente se admite modelo.

Podemos usar $T \models \varphi$ no lugar de $T \vdash \varphi$ livremente, pelo Teorema da Completude.

Todo conjunto que construímos tem por base ZFC, isto é, seguimos as regras dessa teoria.

Dissemos que um modelo é um conjunto munido de uma interpretação. Esse "conjunto" é no sentido de *ZFC*.

Consistência tem um significado tanto sintático quanto semântico:

- Uma teoria T é consistente se e somente se não existe uma sentença φ tal que $T \vdash \varphi$ e $T \vdash \neg \varphi$.
- ullet Uma teoria T é consistente se e somente se admite modelo.

Podemos usar $T \models \varphi$ no lugar de $T \vdash \varphi$ livremente, pelo Teorema da Completude.

O que significa exibir um modelo para ZFC, então?

Incompletude

Se construirmos um conjunto que é modelo para ZFC a partir de ZFC, então teremos que:

$$ZFC \vdash Con(ZFC)$$

Isto é, ZFC prova a sua própria consistência.

Incompletude

Se construirmos um conjunto que é modelo para ZFC a partir de ZFC, então teremos que:

$$ZFC \vdash Con(ZFC)$$

Isto é, ZFC prova a sua própria consistência.

Mas o Segundo Teorema da Incompletude de Gödel diz precisamente que, se \mathcal{T} é uma teoria complexa o suficiente para descrever aritmética:

$$T \not\vdash Con(T)$$

Incompletude

Se construirmos um conjunto que é modelo para ZFC a partir de ZFC, então teremos que:

$$ZFC \vdash Con(ZFC)$$

Isto é, ZFC prova a sua própria consistência.

Mas o Segundo Teorema da Incompletude de Gödel diz precisamente que, se \mathcal{T} é uma teoria complexa o suficiente para descrever aritmética:

$$T \not\vdash Con(T)$$

Logo, não pode haver um conjunto que é modelo para *ZFC*. Informalmente, não existe um "conjunto de todos os conjuntos".

Mas isso não quer dizer que não usamos a Teoria de Modelos na Teoria de Conjuntos.

Três afirmações guiam, basicamente, como se trabalha com modelos para conjuntos:

Nem sempre precisamos de ZFC inteiro;

Mas isso não quer dizer que não usamos a Teoria de Modelos na Teoria de Conjuntos.

Três afirmações guiam, basicamente, como se trabalha com modelos para conjuntos:

- Nem sempre precisamos de ZFC inteiro;
- Podemos permitir que os modelos sejam "maiores" que conjuntos;

Mas isso não quer dizer que não usamos a Teoria de Modelos na Teoria de Conjuntos.

Três afirmações guiam, basicamente, como se trabalha com modelos para conjuntos:

- Nem sempre precisamos de ZFC inteiro;
- Podemos permitir que os modelos sejam "maiores" que conjuntos;
- O modelo pode não vir de ZFC.

Mas isso não quer dizer que não usamos a Teoria de Modelos na Teoria de Conjuntos.

Três afirmações guiam, basicamente, como se trabalha com modelos para conjuntos:

- Nem sempre precisamos de ZFC inteiro;
- Podemos permitir que os modelos sejam "maiores" que conjuntos;
- O modelo pode n\u00e3o vir de ZFC.

Vamos olhar para cada um desses casos.

Em algumas instâncias, preferimos usar termos como *coleção* ou *classe* em vez de conjuntos.

Nem sempre uma coleção de coisas é um conjunto.

Em algumas instâncias, preferimos usar termos como *coleção* ou *classe* em vez de conjuntos.

Nem sempre uma coleção de coisas é um conjunto.

Exemplo: ordinais.

Definição

Um ordinal é um conjunto transitivo e bem ordenado pelo \in

Em algumas instâncias, preferimos usar termos como *coleção* ou *classe* em vez de conjuntos.

Nem sempre uma coleção de coisas é um conjunto.

Exemplo: ordinais.

Definição

Um ordinal é um conjunto transitivo e bem ordenado pelo \in

• Transitivo: se $x \in y$ e $y \in z$, então $x \in z$;

Em algumas instâncias, preferimos usar termos como *coleção* ou *classe* em vez de conjuntos.

Nem sempre uma coleção de coisas é um conjunto.

Exemplo: ordinais.

Definição

Um ordinal é um conjunto transitivo e bem ordenado pelo \in

- Transitivo: se $x \in y$ e $y \in z$, então $x \in z$;
- Bem ordenado: todo subconjunto tem um elemento que pertence a todos os outros, mas ao qual nenhum pertence.

Em algumas instâncias, preferimos usar termos como *coleção* ou *classe* em vez de conjuntos.

Nem sempre uma coleção de coisas é um conjunto.

Exemplo: ordinais.

Definição

Um ordinal é um conjunto transitivo e bem ordenado pelo \in

- Transitivo: se $x \in y$ e $y \in z$, então $x \in z$;
- Bem ordenado: todo subconjunto tem um elemento que pertence a todos os outros, mas ao qual nenhum pertence.

Vamos mostrar que a coleção de todos os ordinais não é um conjunto.

O menor ordinal de todos é \varnothing . Além dele, existem dois tipos de ordinais:

O menor ordinal de todos é \varnothing .

Além dele, existem dois tipos de ordinais:

• Ordinais sucessores: se α é um ordinal, $\alpha \cup \{\alpha\}$ é um ordinal sucessor;

O menor ordinal de todos é \varnothing .

Além dele, existem dois tipos de ordinais:

- Ordinais sucessores: se α é um ordinal, $\alpha \cup \{\alpha\}$ é um ordinal sucessor;
- Ordinais limites: um ordinal α é limite quando não é sucessor. Um ordinal limite é a união de todos os ordinais menores que ele.

O menor ordinal de todos é \varnothing .

Além dele, existem dois tipos de ordinais:

- Ordinais sucessores: se α é um ordinal, $\alpha \cup \{\alpha\}$ é um ordinal sucessor;
- Ordinais limites: um ordinal α é limite quando não é sucessor. Um ordinal limite é a união de todos os ordinais menores que ele.

Ordinais são conjuntos do tipo $\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}...$

Esses correspondem a 0, 1, 2...

Chamamos de ω o conjunto de todos os ordinais finitos (os naturais).

Seja *Ord* a classe de todos os ordinais. Veja que *Ord* é transitivo e bem ordenado. Seja *Ord* a classe de todos os ordinais. Veja que *Ord* é transitivo e bem ordenado.

Se Ord for um conjunto, então será um ordinal. Nesse caso, $Ord \in Ord$, o que é um absurdo pelo axioma da fundação.

Ord é um exemplo do que chamamos de *classe própria*: uma classe que não é um conjunto.

Classes como modelos

Não podemos, então, falar do *conjunto de todos os conjuntos*. Mas se relaxarmos o requisito de que o universo de um modelo seja um conjunto e permitirmos classes próprias como modelos, então conseguiremos modelos para *ZFC*.

Classes como modelos

Não podemos, então, falar do *conjunto de todos os conjuntos*. Mas se relaxarmos o requisito de que o universo de um modelo seja um conjunto e permitirmos classes próprias como modelos, então conseguiremos modelos para *ZFC*.

Existem três construções mais comuns para se obter um universo para a Teoria de Modelos: V, L e H. Vamos tratar com mais especificidade de V e H.

Universo V

Considere $V_0 = \emptyset$.

Para cada ordinal α , defina V_{α} como:

- $\wp(V_{\alpha-1})$, se α é sucessor;
- $\bigcup_{\xi < \alpha} V_{\xi}$, se α é limite.

Universo V

Considere $V_0 = \emptyset$.

Para cada ordinal α , defina V_{α} como:

- $\wp(V_{\alpha-1})$, se α é sucessor;
- $\bigcup_{\xi < \alpha} V_{\xi}$, se α é limite.

Veja, então, que V_{κ} é o primeiro nível em que o ordinal κ está contido.

Por exemplo $2 \subset V_2$, mas $2 \not\subset V_1$.

Universo V

Considere $V_0 = \emptyset$.

Para cada ordinal α , defina V_{α} como:

- $\wp(V_{\alpha-1})$, se α é sucessor;
- $\bigcup_{\xi < \alpha} V_{\xi}$, se α é limite.

Veja, então, que V_{κ} é o primeiro nível em que o ordinal κ está contido.

Por exemplo $2 \subset V_2$, mas $2 \not\subset V_1$.

Veja, também, que, para todo ordinal $k \in \omega$, V_k é finito. Assim, todo conjunto que pertence a V_{ω} é finito.

ZFC, mas não inteiro

Na realidade, V_{ω} é um modelo para ZFC sem o axioma do infinito.

ZFC, mas não inteiro

Na realidade, V_{ω} é um modelo para ZFC sem o axioma do infinito. Além disso, é verdade que, substituindo o axioma do infinito em ZFC pela sua negação, a teoria que obtemos é equivalente a PA, os axiomas de Peano.

ZFC, mas não inteiro

Na realidade, V_{ω} é um modelo para ZFC sem o axioma do infinito. Além disso, é verdade que, substituindo o axioma do infinito em ZFC pela sua negação, a teoria que obtemos é equivalente a PA, os axiomas de Peano.

Esse é um exemplo de modelo (de fato, é um conjunto) para uma parte de *ZFC*. Retirando outros axiomas, podemos construir modelos diferentes.

ZFC, mas não inteiro

Na realidade, V_{ω} é um modelo para ZFC sem o axioma do infinito. Além disso, é verdade que, substituindo o axioma do infinito em ZFC pela sua negação, a teoria que obtemos é equivalente a PA, os axiomas de Peano.

Esse é um exemplo de modelo (de fato, é um conjunto) para uma parte de *ZFC*. Retirando outros axiomas, podemos construir modelos diferentes.

É o que conseguimos construindo o universo H: obtemos modelos para ZFC menos o axioma das partes (ZFC^-) .

Precisamos definir o fecho transitivo de um conjunto. Façamos isso indutivamente.

Precisamos definir o fecho transitivo de um conjunto. Façamos isso indutivamente.

- $x \in tr(x)$;
- Se $y \in tr(x)$ e $z \in y$, então $z \in tr(x)$.

Precisamos definir o fecho transitivo de um conjunto.

Façamos isso indutivamente.

- $x \in tr(x)$;
- Se $y \in tr(x)$ e $z \in y$, então $z \in tr(x)$.

Em outras palavras, tr(x) é o menor conjunto transitivo que contém x.

Precisamos definir o fecho transitivo de um conjunto.

Façamos isso indutivamente.

- $x \in tr(x)$;
- Se $y \in tr(x)$ e $z \in y$, então $z \in tr(x)$.

Em outras palavras, tr(x) é o menor conjunto transitivo que contém x.

Dizemos que um conjunto é "hereditariamente menor que κ " quando $tr(x) < \kappa$.

Dado um cardinal κ , dizemos que H_{κ} é a coleção de todos os conjuntos hereditariamente menores que κ .

Precisamos definir o fecho transitivo de um conjunto.

Façamos isso indutivamente.

- $x \in tr(x)$;
- Se $y \in tr(x)$ e $z \in y$, então $z \in tr(x)$.

Em outras palavras, tr(x) é o menor conjunto transitivo que contém x.

Dizemos que um conjunto é "hereditariamente menor que κ " quando $tr(x) < \kappa$.

Dado um cardinal κ , dizemos que H_{κ} é a coleção de todos os conjuntos hereditariamente menores que κ .

Essa coleção será um conjunto.

Precisamos definir o fecho transitivo de um conjunto.

Façamos isso indutivamente.

- $x \in tr(x)$;
- Se $y \in tr(x)$ e $z \in y$, então $z \in tr(x)$.

Em outras palavras, tr(x) é o menor conjunto transitivo que contém x.

Dizemos que um conjunto é "hereditariamente menor que κ " quando $tr(x) < \kappa$.

Dado um cardinal κ , dizemos que H_{κ} é a coleção de todos os conjuntos hereditariamente menores que κ .

Essa coleção será um conjunto.

No caso de κ ser um cardinal *regular*, então $H_{\kappa} \models ZFC^{-}$.

Veja que, com o Teorema de Löwenheim-Skolem, podemos ter um modelo enumerável que tem ordinais não enumeráveis!

Quando V e H se encontram

Podemos extrapolar essa construção e fazer $V=V_{\mathit{Ord}}$, obtendo uma classe que é modelo para a teoria de conjuntos.

Outra maneira é se conseguirmos cardinais que não podem ser descritos por ZFC.

Quando V e H se encontram

Podemos extrapolar essa construção e fazer $V=V_{\mathit{Ord}}$, obtendo uma classe que é modelo para a teoria de conjuntos.

Outra maneira é se conseguirmos cardinais que não podem ser descritos por *ZFC*.

Definição

Dizemos que um cardinal limite κ é fortemente inacessível quando é regular, não enumerável e, para todo $\lambda < \kappa$, $\wp(\lambda) < \kappa$.

Quando V e H se encontram

Podemos extrapolar essa construção e fazer $V=V_{\mathit{Ord}}$, obtendo uma classe que é modelo para a teoria de conjuntos.

Outra maneira é se conseguirmos cardinais que não podem ser descritos por ZFC.

Definição

Dizemos que um cardinal limite κ é fortemente inacessível quando é regular, não enumerável e, para todo $\lambda < \kappa$, $\wp(\lambda) < \kappa$.

Se κ é fortemente inacessível, então $V_{\kappa}=H_{\kappa}$ e ambos são modelos para ZFC.

Basta provar que $H_{\kappa} \models \text{PARTES}$.

Também é possível tomar um modelo existente de ZFC (em geral queremos que ele seja transitivo e enumerável) e estendê-lo para ganhar novas propriedades. Chamemos esse modelo de M.

Também é possível tomar um modelo existente de ZFC (em geral queremos que ele seja transitivo e enumerável) e estendê-lo para ganhar novas propriedades. Chamemos esse modelo de M.

Seja $\mathbb P$ um conjunto com uma relação \leq , transitiva e reflexiva (não necessariamente anti-simétrica), tal que para todo $p \in \mathbb P$ existem $r,s \leq p$ tais que não existe $q \leq r,s$.

Também é possível tomar um modelo existente de ZFC (em geral queremos que ele seja transitivo e enumerável) e estendê-lo para ganhar novas propriedades. Chamemos esse modelo de M.

Seja $\mathbb P$ um conjunto com uma relação \leq , transitiva e reflexiva (não necessariamente anti-simétrica), tal que para todo $p \in \mathbb P$ existem $r,s \leq p$ tais que não existe $q \leq r,s$.

Podemos tomar um conjunto especial G (que "caiu do céu") que contém os conjuntos "grandes", em algum sentido, de $\mathbb P$ e intersecta todos os subconjuntos densos de $\mathbb P$ (um subconjunto é denso se contém, para qualquer elemento de $\mathbb P$, um elemento menor).

Também é possível tomar um modelo existente de ZFC (em geral queremos que ele seja transitivo e enumerável) e estendê-lo para ganhar novas propriedades. Chamemos esse modelo de M.

Seja $\mathbb P$ um conjunto com uma relação \leq , transitiva e reflexiva (não necessariamente anti-simétrica), tal que para todo $p \in \mathbb P$ existem $r,s \leq p$ tais que não existe $q \leq r,s$.

Podemos tomar um conjunto especial G (que "caiu do céu") que contém os conjuntos "grandes", em algum sentido, de $\mathbb P$ e intersecta todos os subconjuntos densos de $\mathbb P$ (um subconjunto é denso se contém, para qualquer elemento de $\mathbb P$, um elemento menor).

O conjunto M[G], isto é, o modelo M com esse G que ganhamos de presente, será um modelo para ZFC e, dependendo da escolha de \mathbb{P} , podemos ter propriedades adicionais.

Observação

 ω_n é o *n*-ésimo cardinal não enumerável.

Observação

 ω_n é o *n*-ésimo cardinal não enumerável.

Então, com G nas condições descritas anteriormente, $M[G] \models \neg CH$, em que CH é a hipótese do contínuo.

Observação

 ω_n é o *n*-ésimo cardinal não enumerável.

Então, com G nas condições descritas anteriormente, $M[G] \models \neg CH$, em que CH é a hipótese do contínuo.

Dizemos que um conjunto (conjunto!) ${\mathbb P}$ como descrito é um forcing.

Observação

 ω_n é o *n*-ésimo cardinal não enumerável.

Então, com G nas condições descritas anteriormente, $M[G] \models \neg CH$, em que CH é a hipótese do contínuo.

Dizemos que um conjunto (conjunto!) \mathbb{P} como descrito é um *forcing*. Usamos forcing para obter resultados de consistência em relação a *ZFC*.

O conjunto G

O conjunto G é um ultrafiltro. O que isso significa?

O conjunto G

O conjunto G é um ultrafiltro. O que isso significa?

Definição

Dado um conjunto X munido de uma pré-ordem \leq , dizemos que $\mathcal{F} \subsetneq X$ é um filtro sobre X quando:

- f J é não vazio.
- ② Se $p \in \mathcal{F}$ e $p \leq q$, então $q \in \mathcal{F}$;
- **3** Dados $p, q \in \mathcal{F}$, existe $r \in \mathcal{F}$ tal que $r \leq p, q$.

Um bom exemplo de filtro é sobre uma coleção de subconjuntos ordenados pela inclusão:

 \mathcal{F} é filtro sobre $\wp(X)$ quando:

- \bullet $\mathcal{F} \neq \emptyset$;
- ② ∅ ∉ F;
- **3** Dados $A \in F$ e $B \in F$, então $A \cup B \in \mathcal{F}$;
- **9** Se $A, B \in \mathcal{F}$, então $A \cap B \in \mathcal{F}$.

Exemplos

Seja $\mathbb N$ com a ordem natural.

Dado $n \in \mathbb{N}$, o conjunto $\{x \in \mathbb{N} : n < x\}$ é um filtro sobre \mathbb{N} .

Exemplos

Seja $\mathbb N$ com a ordem natural.

Dado $n \in \mathbb{N}$, o conjunto $\{x \in \mathbb{N} : n < x\}$ é um filtro sobre \mathbb{N} .

Seja X um conjunto infinito qualquer. Considere $\wp(X)$ com a ordem da inclusão \subset .

O conjunto $\{A \subset X : X \setminus A \text{ \'e finito}\}$ \'e um filtro.

Exemplos

Seja $\mathbb N$ com a ordem natural.

Dado $n \in \mathbb{N}$, o conjunto $\{x \in \mathbb{N} : n < x\}$ é um filtro sobre \mathbb{N} .

Seja X um conjunto infinito qualquer. Considere $\wp(X)$ com a ordem da inclusão \subset .

O conjunto $\{A \subset X : X \setminus A \text{ \'e finito}\}$ \'e um filtro.

Seja X um espaço topológico e $x \in X$.

O conjunto das vizinhanças abertas de x é um filtro.

Filtros principais

O primeiro exemplo foi um tanto quanto particular. Trata-se de um filtro principal.

Filtros principais

O primeiro exemplo foi um tanto quanto particular. Trata-se de um filtro principal.

Dado um conjunto X parcialmente ordenado por uma pré-ordem \leq , um filtro $\mathcal F$ sobre X é dito principal se existe $a \in X$ tal que $\mathcal F = \{x \in X : a \leq x\}$

Ultrafiltros

Um ultrafiltro é um filtro maximal.

Ultrafiltros

Um ultrafiltro é um filtro maximal.

Seja \mathcal{U} um ultrafiltro sobre $\wp(X)$. Então, $A \in \mathcal{U} \Leftrightarrow X \setminus A \in \mathcal{U}$.

Ultrafiltros

Um ultrafiltro é um filtro maximal.

Seja \mathcal{U} um ultrafiltro sobre $\wp(X)$. Então, $A \in \mathcal{U} \Leftrightarrow X \setminus A \in \mathcal{U}$.

O Lema do Ultrafiltro é uma consequência do Lema de Zorn. São equivalentes:

- Lema de Zorn;
- Axioma da escolha;
- Axioma da boa ordem;
- Todo espa
 ço vetorial tem base.

Quase igualdade

Considere $\mathcal{F} = \{x \in \mathbb{N} : x > n\}$, para um dado n. Agora, considere a seguinte relação sobre $\mathbb{R}^{\mathbb{N}}$:

$$\langle x_i \rangle_{i \in \mathbb{N}} =^* \langle y_i \rangle_{i \in \mathbb{N}} \Leftrightarrow \forall i > n \ (x_i = y_i)$$

=* é uma relação de equivalência, mas não é a igualdade.

Quase igualdade

Considere $\mathcal{F} = \{x \in \mathbb{N} : x > n\}$, para um dado n. Agora, considere a seguinte relação sobre $\mathbb{R}^{\mathbb{N}}$:

$$\langle x_i \rangle_{i \in \mathbb{N}} =^* \langle y_i \rangle_{i \in \mathbb{N}} \Leftrightarrow \forall i > n \ (x_i = y_i)$$

=* é uma relação de equivalência, mas não é a igualdade.

A relação diz que duas sequências são "quase iguais"se são iguais para todo índice do filtro.

Outra maneira de fazer relações desse tipo é tomar um filtro sobre o conjunto das partes e definir que dois elementos estão relacionados se o conjunto dos índices em que são iguais está no filtro:

Seja
$$\mathcal{F}$$
 o conjunto $\bigcup\limits_{n\in\mathbb{N}}\{\{x\in\mathbb{N}\ :\ x\geq n\}\}.$

Defina sobre $\mathbb{R}^{\mathbb{N}}$ a relação:

$$\langle x_i \rangle_{i \in \mathbb{N}} =^* \langle y_i \rangle_{i \in \mathbb{N}} \Leftrightarrow \exists n \forall i \ (i > n \to x_i = y_i)$$

Outra maneira de fazer relações desse tipo é tomar um filtro sobre o conjunto das partes e definir que dois elementos estão relacionados se o conjunto dos índices em que são iguais está no filtro:

Seja
$$\mathcal{F}$$
 o conjunto $\bigcup_{n\in\mathbb{N}}\{\{x\in\mathbb{N}\ :\ x\geq n\}\}.$

Defina sobre $\mathbb{R}^{\mathbb{N}}$ a relação:

$$\langle x_i \rangle_{i \in \mathbb{N}} =^* \langle y_i \rangle_{i \in \mathbb{N}} \Leftrightarrow \exists n \forall i \ (i > n \to x_i = y_i)$$

Ou seja, duas sequências estão relacionadas se são iguais a partir de um certo ponto.

Por último, podemos tomar novamente as sequências de números reais e definir =* como sendo "iguais a menos de finitos pontos". Isso vai corresponder ao filtro de Fréchet (cofinito).

Por último, podemos tomar novamente as sequências de números reais e definir =* como sendo "iguais a menos de finitos pontos". Isso vai corresponder ao filtro de Fréchet (cofinito).

A partir de agora, quando falarmos "filtro sobre X", entenda-se um filtro sobre $\wp(X)$ com a ordem da inclusão.

Um exemplo de pré-ordem

Seja $\mathfrak F$ o conjunto das funções $\mathbb R \to \mathbb R$. Seja $\mathcal U$ um ultrafiltro sobre $\mathbb R$ (no caso, sobre $\wp(\mathbb R)$).

Defina $f \leq_{\mathcal{U}} g$ quando $\{x \in \mathbb{R} : f(x) \leq g(x)\} \in \mathcal{U}$.

Um exemplo de pré-ordem

Seja \mathfrak{F} o conjunto das funções $\mathbb{R} \to \mathbb{R}$. Seja \mathcal{U} um ultrafiltro sobre \mathbb{R} (no caso, sobre $\wp(\mathbb{R})$).

Defina $f \leq_{\mathcal{U}} g$ quando $\{x \in \mathbb{R} : f(x) \leq g(x)\} \in \mathcal{U}$.

Nesse caso, $f \leq_{\mathcal{U}} g$ e $g \leq_{\mathcal{U}}$ não implicam que f = g

Grafos completos (de novo, mas ainda não é a última vez)

Considere, para cada $n \in \omega$, o grafo K_n . Isto é, o grafo completo com n vértices.

Grafos completos (de novo, mas ainda não é a última vez)

Considere, para cada $n \in \omega$, o grafo K_n . Isto é, o grafo completo com n vértices.

Seja, agora,
$$G = \prod_{n \in \omega} K_n$$
.

Tome um ultrafiltro \mathcal{U} sobre \mathbb{N} .

Defina
$$\langle u_i \rangle_{i \in \omega} =_{\mathcal{U}} \langle v_i \rangle_{i \in \omega} \Leftrightarrow \{i \in \mathbb{N} : u_i = v_i\} \in \mathcal{U}$$

Seja \overline{G} o conjunto das classes de equivalência de G quocientado por $=_{\mathcal{U}}$.

Sejam \overline{u} e \overline{v} elementos de \overline{G} .

- \overline{u} e \overline{v} são iguais quando, tomando representantes de classe $\langle u_i \rangle_{i \in \omega}$ e $\langle v_i \rangle_{i \in \omega}$, o conjunto $\{i \in \omega : u_i = v_i\} \in \mathcal{U}$;
- \overline{u} e \overline{v} são diferentes quando, tomando representantes de classe $\langle u_i \rangle_{i \in \omega}$ e $\langle v_i \rangle_{i \in \omega}$, o conjunto $\{i \in \omega : u_i \neq v_i\} \in \mathcal{U}$.

Dizemos, então, que $E(\overline{u}, \overline{v})$ quando

$$\{i \in \omega : E(u_i, v_i)\} \in \mathcal{U}$$

Como os grafos são completos, $E(u_i, v_i) \Leftrightarrow u_i \neq v_i$.

Logo, $\{i \in \omega : E(u_i, v_i)\} = \{i \in \omega : u_i \neq v_i\}.$

Dizemos, então, que $E(\overline{u}, \overline{v})$ quando

$$\{i \in \omega : E(u_i, v_i)\} \in \mathcal{U}$$

Como os grafos são completos, $E(u_i, v_i) \Leftrightarrow u_i \neq v_i$.

Logo,
$$\{i \in \omega : E(u_i, v_i)\} = \{i \in \omega : u_i \neq v_i\}.$$

Assim, $E(\overline{u}, \overline{v}) \Leftrightarrow \overline{u} \neq_{\mathcal{U}} \overline{v}$.

Dizemos, então, que $E(\overline{u}, \overline{v})$ quando

$$\{i \in \omega : E(u_i, v_i)\} \in \mathcal{U}$$

Como os grafos são completos, $E(u_i, v_i) \Leftrightarrow u_i \neq v_i$.

Logo, $\{i \in \omega : E(u_i, v_i)\} = \{i \in \omega : u_i \neq v_i\}.$

Assim, $E(\overline{u}, \overline{v}) \Leftrightarrow \overline{u} \neq_{\mathcal{U}} \overline{v}$.

Isso faz de \overline{G} um grafo: na verdade, ele é o K_{ω} .

Definir modelos a partir de equivalências em ultrafiltros é o que chamamos de ultraprodutos.

Então, acima, vimos que K_{ω} é o ultraproduto dos K_i , para $i \in \omega$.

Ultrapotências

Usamos essa técnica para obter propriedades de cardinais grandes (fortemente inacessíves).

Da mesma maneira que \overline{G} era um grafo completo, se tomarmos κ um cardinal inacessível e um ultrafiltro $\mathcal U$ sobre κ , construímos o mergulho:

$$V o V^{\kappa} o M$$

com *M* um modelo transitivo para *ZFC*.

Ultrapotências

Usamos essa técnica para obter propriedades de cardinais grandes (fortemente inacessíves).

Da mesma maneira que \overline{G} era um grafo completo, se tomarmos κ um cardinal inacessível e um ultrafiltro $\mathcal U$ sobre κ , construímos o mergulho:

$$V \to V^{\kappa} \to M$$

com M um modelo transitivo para ZFC.

A função $i:V\to V^\kappa$ que leva cada x na função constante em x $n\~ao$ 'e a identidade e isso nos dá uma série de propriedades interessantes.

Na aula que vem, definiremos precisamente o que são ultraprodutos, verificaremos que são bem definidos e provaremos o Teorema da Compacidade.

Até amanhã!