Двигатель Стирлинга

Двигатель Стирлинга -- это двигатель внешнего сгорания, в котором рабочее тело в виде газа или жидкости движется в замкнутом объёме. Двигатель работает за счет периодического нагрева и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения давления. Двигатель Стирлинга может работать от любого источника тепла.

Цикл Стирлинга

Ключевой принцип двигателя Стирлинга состоит в том, что фиксированное количество газа герметизируется внутри двигателя. Цикл Стирлинга включает в себя ряд событий, которые изменяют давление газа внутри двигателя, заставляя его работать.

Существует несколько свойств газов, которые имеют решающее значение для работы двигателей Стирлинга:

- Если у вас есть фиксированное количество газа в фиксированном объеме пространства, и вы повышаете температуру этого газа, давление будет увеличиваться.
- Если у вас есть фиксированное количество газа, и вы сжимаете его (уменьшаете объем его пространства), температура этого газа будет увеличиваться.

В цикле Стирлинга четыре части:

- **1**. Тепло передается газу внутри нагретого цилиндра (слева), вызывая повышение давления. Это заставляет поршень двигаться вниз. Это та часть цикла Стирлинга, которая выполняет эту работу.
- 2. Левый поршень движется вверх, а правый вниз. Это выталкивает горячий газ в охлаждаемый цилиндр, который быстро охлаждает газ до температуры источника охлаждения, понижая его давление. Это облегчает сжатие газа в следующей части цикла.
- **3**. Поршень в охлаждаемом цилиндре (справа) начинает сжимать газ. Тепло, генерируемое этим сжатием, отводится источником охлаждения.
- **4**. Правый поршень движется вверх, а левый вниз. Это заставляет газ поступать в нагретый цилиндр, где он быстро нагревается, создавая давление, после чего цикл повторяется.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Принцип работы двигателя Стирлинга

Мотор преобразует энергию, получаемую от источника тепла в механическую силу. В рабочей камере находится воздух или газ. Одна часть рабочей камеры оснащена радиатором охлаждения или водяной рубашкой. Это необходимо для охлаждения воздушной массы находящейся в полости цилиндра. Вторая часть подвергается нагреву.

Работа двигателя осуществляется следующим образом:

- •Под действием высокой температуры воздуха в полости рабочей камеры нагревается и увеличивается в объеме. Увеличение объема воздуха воздействует на поршень, перемещая его в верхнюю мертвую точку;
- •Под воздействием радиатора или рубашки охлаждения воздушная масса охлаждается. Поршень возвращается в обратном направлении. После этого цикл повторяется.

Нагревание и охлаждение воздуха в рабочей камере осуществляется при помощи вытеснителя. Он смещает воздушную массу от горячей части цилиндра к холодной и наоборот. Вытеснитель занимает большую часть объема рабочей камеры.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:

•Двигатель «α – Стирлинг»:

Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

•Двигатель «β – Стирлинг»:

Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

•Двигатель «у – Стирлинг»:

Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Преимущества и недостатки двигателя Стирлинга

Двигатель Стирлинга внешнего сгорания имеет ряд достоинств и недостатков.

Преимущества

- Возможность работы на разном топливе. Для нормальной работы может быть использован абсолютно любой источник тепла. В некоторых случаях применяется солнечная энергия. Для этого солнечный свет концентрируется на поверхности цилиндра;
- Простота конструкции. В силовом агрегате нет большого количества комплектующих. Это делает мотор простым в эксплуатации и ремонте. Обслуживание двигателя может проводить человек, имеющий минимальные технические знания;
- Минимальный уровень шума. Двигатель Стирлинга при работе издает минимальный уровень шума. Это возможно благодаря отсутствию большого количества вращающихся деталей и воспламенения топлива в рабочей камере;
- Моторесурс. Минимальное количество комплектующих позволяет использовать мотор длительное время без ремонта и дополнительного обслуживания;
- Экологичность. При использовании источника тепла не загрязняющего окружающую среду мотор будет экологически чист.

Недостатки

• Большие габаритно массовые параметры. Для увеличения мощности необходимо использовать рабочую камеру и поршень большого диаметра. Это требует применения охлаждающего радиатора увеличенных размеров;

- Сложность в регулировке оборотов. Для регулировки частоты вращения коленчатого вала необходимо изменять показатели температуры;
- Необходимость в использовании жаропрочных материалов. Увеличение моторесурса возможно при применении материалов устойчивых к высоким температурам.

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

1) Солнечные электростанции

Данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади.

2) Транспортные средства такие как яхты, атомные подводные лодки, космические корабли.

Поскольку в этом случае вес и габариты двигателя не являются решающими факторами, именно надежность определяет его роль как идеального кандидата для преобразования тепловой энергии в механическую. Благодаря тому, что двигатель Стирлинга практически не нуждается в техническом обслуживании и регулировании, он может быть размещен в изолированной части корпуса, что важно в случае трудного доступа (на подводных лодках или космических кораблях).

3) Медицина

Его применяют в системах искусственного сердца. Источником энергии в таких системах, как правило, есть радиоизотопы.

