$$|X'(t)| = (\omega s^{2}t, \sin^{2}t, 0)$$

$$|X'(t)| = (-3\omega s^{2}t, \sin^{2}t, -3\omega s^{2}t, 0)$$

$$|X''(t)| = (-3\omega s^{2}t,$$

$$k = \frac{9 \cos^2 t \sin^2 t}{[3|\sin t \cot t|]^3} = \frac{1}{3|\sin t \cot t|}$$

$$\frac{(\tilde{\chi} \times \tilde{\chi}') \cdot \tilde{\chi}}{\|\chi' \times \tilde{\chi}'\|^2} = (\tilde{\chi}, \tilde{\chi}', \tilde{\chi}')$$

$$\vec{n} = \frac{1}{k} \cdot \vec{t}$$

$$\vec{b} = \vec{t} \times \vec{n}$$

$$\frac{\dot{t} = k\vec{n}}{(\dot{b} = -7\vec{n})} = 0$$

$$\Rightarrow \underbrace{(t \cdot \dot{n} = \lambda)}_{b \cdot \dot{n} = \lambda} \Rightarrow \underbrace{(y)_{0}}_{c}$$

$$\frac{\partial = (\mathbf{n} \cdot \mathbf{t})' = \dot{\mathbf{n}} \cdot \dot{\mathbf{t}} + \dot{\mathbf{n}} \dot{\dot{\mathbf{t}}} = \frac{\dot{\mathbf{n}} \cdot \dot{\mathbf{t}}}{\mathbf{k} \cdot \mathbf{n} \dot{\dot{\mathbf{t}}} \mathbf{n}^2}$$

$$\Rightarrow (\lambda) - k$$

$$0 = (b \cdot n)' = \underbrace{b \cdot n}_{p} \cdot \underbrace{b \cdot n}_{p}$$

$$= -7 + v$$

$$\dot{t} = \begin{cases} kn \\ \dot{n} = -kt + 0 n + \tau b \end{cases}$$

$$\dot{b} = \begin{cases} -\tau n \end{cases}$$

$$\Rightarrow \frac{1}{ds} \begin{pmatrix} b \\ n \\ b \end{pmatrix} = \begin{pmatrix} 0 & k & 0 \\ -k & 0 & \frac{7}{2} \end{pmatrix} \begin{pmatrix} b \\ n \\ b \end{pmatrix}$$

differential equation

 $\frac{\dot{b} = -7n}{1}$

Frenet-Servet equation

Prop. Let y be a unit speed curve in IR3, (K= const.) (T=0)

Then & is a (part of) circle.

$$T=0=) (b=const)$$

$$\frac{d}{ds}(x+\overline{k}n)=t+\overline{k}(n)=t+\overline{k}(-\kappa t)=a$$

§ 3 Surfaces in 3-d

§3.1. What is a surface?

 $a: \mathbb{R}^2 \to \mathbb{R}^3$

Def 3.1.1 A surface patch is a smooth injective map (a). U -> 4R3, where (Uc(R2) is an open set

open set . 4 (No)6 U , = 8 kg , S.L. 4 n: 1/2-1/2 | < 5 => n G U.

Exam
$$a(0, \varphi) = (wsowy, wsosing, sino)$$

$$(o<\varphi<>z, -\frac{2}{z}$$

Def 6.1. > A surface patch $\tilde{a}: \tilde{U} \to \mathbb{R}^7$ is a reparametrization of a surface patch $a: U \to \mathbb{R}^3$ if there exists a bijective $\tilde{B}: U \to \tilde{U}$ is smooth, and $\tilde{\Phi}^{-1}: \tilde{U} \to U$ is also smooth.

(differmorphism). $\tilde{a}(\tilde{\Psi}(u,v)) = a(u,v)$, $\tilde{u}(u,v) \in U$.

$$(\hat{\mathbf{u}},\hat{\mathbf{v}}) = \mathbf{\bar{\psi}}(\mathbf{u},\mathbf{v}) , \quad \mathbf{u},\mathbf{v}) = \mathbf{\bar{\psi}}'(\hat{\mathbf{u}},\hat{\mathbf{v}})$$

$$\mathbf{J}(\mathbf{\bar{\psi}}) = \begin{pmatrix} \frac{\partial \hat{\mathbf{u}}}{\partial \mathbf{u}} & \frac{\partial \hat{\mathbf{u}}}{\partial \mathbf{v}} \\ \frac{\partial \hat{\mathbf{u}}}{\partial \mathbf{u}} & \frac{\partial \hat{\mathbf{u}}}{\partial \mathbf{v}} \end{pmatrix} , \quad \mathbf{J}(\mathbf{\bar{\psi}}') = \begin{pmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{u}} & \frac{\partial \mathbf{u}}{\partial \mathbf{v}} \\ \frac{\partial \mathbf{u}}{\partial \mathbf{u}} & \frac{\partial \hat{\mathbf{u}}}{\partial \mathbf{v}} \end{pmatrix} .$$

$J(\underline{v}) \cdot J(\underline{J}') = id.$

11/1/40

Def 62.1 Let 0: U > 1R' be smooth surface patch let SciR's
be its image, let pos. The Tangent space to S at p is the
set of all tangent vectors at p to smooth arrives through p.

Prop 10.2.2 the tangent spece to S out p is the subvector space of 1R's spanned by ou and or

$$\frac{Pf}{S(t)} = \frac{O(u(t), v(t))}{Ou(u(t), v(t))} \quad \frac{chean rule}{chean rule}$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

$$= \frac{O(u)}{Ou} + \frac{O(u(t))}{Ou} \quad G \quad O(u, o_u)$$

Def q. 1.3 A surface a: U > 1k² is regular if oux on \$0

An (u,v) 6 U.

(normal vactor of S.)

 $t = (a \alpha u + b \alpha v)$ $t \cdot \vec{N} = a \alpha u \cdot \vec{N} + b \alpha v \cdot \vec{N} = 0, \quad \forall b \in T_p S.$

Exam (generalized) Cylinder

 $\alpha_{u} = (f', g', o)$ $\alpha_{N} = (o, o, 1)$

manifold
$$3\frac{\pi}{4}$$
 = $(g', -f', 0)$ $\neq 0$

(a) $g'j^2 + if'j^2 \neq 0$.

(b) $g'j^2 + if'j^2 \neq 0$.

(c) $g'i \neq 0$

(d) $g'i \neq 0$

(e) $g'i \neq 0$

(for, $g(i)$

 $\Delta(u,v) = (f(y),g(u),(1)),$

(fu),g(u), v)

$$o_{n} = (f, g, 1)$$

$$v(f_{u}), g_{u}), o)$$

$$o_{u} \times o_{v} = \begin{cases} i & j & k \\ vf' & vg' & o \\ f & g & 1 \end{cases}$$

$$= v(g', -f', f'g - fg')$$

Exam

(i) allipsoid:
$$\frac{x}{p^2} \cdot \frac{y^2}{q^2} \cdot \frac{z^2}{r^2} = 1$$

ii), hyperboloid of one sheet

(iii) hyperboloid of two sheets,

(V) hyperbolic parabolic $\frac{x}{p_1} - \frac{y}{q}$. z 8

(PG) - PG)

Exam

Exercise y(u) = (0, f(u), g(u)) (a(u,v) = (f(u) car, f(u) sinv, g(u))

Exam

