Pseudofree Finite Group Actions on 4- Manifolds

@ 11SER - Kolkata Feb 27, 2025

 $(G = \mathbb{Z}_2 \times \mathbb{Z}_2)$

Theorem: Let M be a closed, connected and oriented 4-manifold with non-zero Euler Characteristic. 9f $\mathbb{Z}_2 \times \mathbb{Z}_2$ acts pseudofreely, locally linearly and homologically trivially on M, then $b_2'(M) = 2$, $H_1(M; \mathbb{Z}_{(2)}) = 0$ and M must have the intersection form of $S^2 \times S^2$.

- · p.l.h := pseudofree, locally linear and homologically trivial
- c.c.o := closed, connected and oriented manifold.
- · Unless mentioned otherwise, G-action will be p.l.h and
 M will be C.C.O.

Some results for Zp x Zp action, \$ = 2 prime.

Lemma 1: Let $G_1 = \mathbb{Z}_p \times \mathbb{Z}_p$, $p \ge 2$ prime.

If $G \cap M$ with $\chi(M) \neq 0$, then

(i) Go can't have a global fixed point.

and

(i) each of the $(\beta+1)$ -cyclic subgroups, $K \simeq \mathbb{Z}_p$ has $\mathcal{X}(M)$ many fixed points.

proof: i . Suppose, x & MG

. Pseudofree \Rightarrow x is isolated.

. V_x^4 is G_x invariant $Z_p \times Z_p = G_r$ acts freely on $\partial V_x^4 = 5^3$

contradiction - PA. Smith's-peond.

(i)
$$\mathbb{Z}_p \simeq \mathbb{K} \leq \mathbb{G}_r = \mathbb{Z}_p \times \mathbb{Z}_p$$
. Let $h \in \mathbb{K}$.

· Lefschetz number:

$$\Lambda_{h} = \sum_{i=0}^{\dim M} (-1)^{i} \mathcal{T}_{r} \left(\mathcal{H}^{\sharp}(h) : \mathcal{H}^{i}(M; \mathbb{Q}) \rightarrow \mathcal{H}^{i}(M; \mathbb{Q}) \right) \\
= \sum_{i=0}^{\dim M} (-1)^{i} \mathcal{T}_{r} \left(id_{\mathcal{H}^{i}(M; \mathbb{Q})} \right)$$

$$= \sum_{i=0}^{i} (-1)^{i} \operatorname{Tr} \left(id_{H^{i}(M; Q)} \right)$$

$$= \sum_{i=0}^{l} (-1)^{i} d_{im} H^{i}(M_{i} Q)$$

$$=$$
 $\chi(M)$.

A variant of Lefschetz fixed point theorem ([9], [39, p.225)
$$|M^{H}| = |M^{h}| = \chi(M^{h}) = \Lambda_{h} = \chi(M) > 0.$$

$$(h)=K) \text{ (P.free Mh is discrete, finite)}$$

* Theorem (Edmonds' Result, [9,10,32]); Let M be a closed, connected and oriented G-manifold of dimension n. Let Z be the singular set of the G-action. Then, we have the following

isomorphism

$$\left[\begin{array}{ccc}
H_{G_1}^{q}(M) & \cong & H_{G_1}^{q}(\Xi) \\
\end{array}\right], \quad \text{for} \quad q > dim M.$$

$$\sum = \bigcup_{\substack{k \in G \\ =}} M^{k} \qquad ; \quad k = Z_{p}.$$

[9]: Allan Edmonds, Aspects of Broup actions on M4, 1989.

[10]: — , Homologically Trivial group actions on 4-Man, 98

[32]: Michael McCooey, Symmetry group of 4-Manifolds, 2002

[39]: Tom Dieck, Transformation Groups, 1987

$$G_1 = \mathbb{Z}_p \times \mathbb{Z}_p$$
, p prime $\bigcap_{p \in h} M^4(cco)$

Lemma 2:
$$\dim_{F_p} H_{G_1}^q(M) = \begin{cases} 0, & q > 5 \text{ odd} \\ \frac{\chi(M)}{p}(p+1), & q > 5 \text{ even.} \end{cases}$$

proof:
$$\mathcal{E}$$
dmonds' result $\rightarrow H_{G_1}^{g}(M) \cong H_{G_1}^{g}(\Sigma)$, $q > 4$
So, $\dim H_{G_1}^{g}(M) = \dim H_{G_1}^{g}(\Sigma)$, $q > 4$.
$$= \dim H_{G_1}^{g}(G_1, H^0(\Sigma))$$

$$E_{2}^{\kappa,l}(\Sigma) = H^{\kappa}(G_{1}, H^{\lambda}(\Sigma))$$

$$= H^{\kappa}(G_{1}, H^{\delta}(\Sigma)) = E_{\infty}^{\kappa, 0}.$$

- · G does not have a global fixed point.
- . $x \notin M^K \cap M^H$. $K, H \leq G_ M^K$ has $\chi(M)$ many fixed points, which are permuted in $\chi(M)$ whits by G_K .

$$H^{\circ}(M^{\kappa}) = \bigoplus_{\chi(m)/p} \mathbb{Z}[G/\kappa].$$

= dim /+ (E) dim HG (M) = dim (H9 (G, H°(E)) $= \int_{-\infty}^{\beta+1} d_{im} H^{g}(G_{i}; (\mathbb{Z}[G_{i}/K_{i}])^{\chi(M)/\beta}).$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \frac{\chi(M)}{p} \sum_{i=1}^{p+1} \frac{q}{din!} \left(G_i, \mathbb{Z} \left[G_i | K_i \right] \right)$ $= \begin{cases} 0, & 1 \geq 5 \text{ odd} \\ \frac{\chi(M)}{p} & (p+1); & 9 > 5 \text{ even.} \end{cases}$ $G = \mathbb{Z}_p \times \mathbb{Z}_p$, $p \ge 2$ Ω , M^4 . 9n the integral Borel spectral seq. Lemma 3 $\dim E_{\infty}^{q-k, k} = 0$, for $q \ge 5$ odd. $(q \text{ odd}) = 0 \Rightarrow E_{\infty}^{q-\kappa, \kappa} = 0, q \geq s \text{ odd}.$

	9f G =	$\mathbb{Z}_2 \times \mathbb{Z}_2$, K <	G ₁ .	H*(K) = Z(u)/
	$\mathbb{Z}_2 \times \mathbb{Z}_2$	<a>>	< b >	<ab></ab>	/u\=2.
Res K.	u,	u	0	и	
	u_z	0	и	u	
	м	0	0	0	
	Resk:		→ H³(K)		
		<i>y</i> —	-5 O		
	u_1, u_2	£ En (6)	; µ ∈	£ 82 (bd).	
•	$d_2^{\kappa_1 l} = 0$				
	dz K, 1 :	H (G, H'(M	1)) —	H (G)	
	δ ₂	(H*(G) (S)	H'(M) }	=(+) H (G)	d ₂ (α _i) Δ
				= 0.	
\$ w	<i>‡</i> 0;	aw ∈ her o	$l_2^{0,4} = E_3^{0,4}$		

$$5'' \geqslant 3.$$

$$b_{2}' - 2b_{1}' + 2t_{1} + R' \leq 1.$$

$$\downarrow \geqslant 0 \quad \downarrow \geqslant 0$$

$$p = \lambda, \quad H_{G}^{0}(M) = \frac{3}{2} \chi(M), \quad , \quad q \geqslant 6 \text{ even}$$

$$= \frac{3}{2} \left(b_{2}' - 2b_{1}' + 2 \right)$$

$$\lambda_{1}' - \lambda_{1}' \quad \text{is even}.$$

$$\lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{1}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{1}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{1}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{1}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{1}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{1}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{2}' - \lambda_{2}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{2}' - \lambda_{2}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{2}' - \lambda_{2}' - \lambda_{2}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{2}' - \lambda_{2}' - \lambda_{2}' - \lambda_{2}' = 0 \quad \text{is even}.$$

$$\lambda_{2}' = \lambda_{2}' - \lambda_{2}$$