Analiza 3 - definicije, trditve in izreki

Oskar Vavtar 2020/21

Kazalo

1	PAI	RAMETRIČNO PODANE KRIVULJE	3
2		\mathbf{DSKVE} Ploskve v \mathbb{R}^3	4
3	INTEGRALI S PARAMETROM		6
	3.1	Izlimitirani integrali s parametrom	6
	3.2	Dvojni in dvakratni integrali	7
	3.3	Integriranje in odvajanje integralov s parametrom	9
	3.4	Eulerjeva funkcija Γ	10

1 PARAMETRIČNO PODANE KRIVULJE

Trditev 1.1. Če je \vec{r} odvedljiva vektorska funkcija (njene komponente x, y in z so odvedljive funkcije spremenljivke t), potem je

$$\dot{\vec{r}}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0))$$

tangentni vektor na krivuljo $t \mapsto \vec{r}(t)$ v točki $\vec{r}(t_0)$, če velja $\dot{\vec{r}}(t_0) \neq 0$.

Trditev 1.2. Če je \vec{r} zvezno odvedljiva vektorska funkcija na intervalu [a, b] (za a < b), je potem dolžina krivulje, ki jo določa, enaka

$$s = \int_a^b \|\dot{\vec{r}}(t)\| dt.$$

To velja tudi za funkcijo, ki so le *odsekoma zvezne*. Opazimo tudi, da je zgornja dolžina neodvisna od parametrizacije krivulje.

Trditev 1.3. Naj bo \vec{r} zvezno odvedljiva vektorska funkcija, definirana na intervalu [a,b] (za a < b) in naj bo $\psi : [a,b] \to [\alpha,\beta]$ zvezno odvedljiva bijekcija, tako da $t = \psi(\tau)$ preteče interval [a,b], ko τ preteče interval $[\alpha,\beta]$ (za $\alpha < \beta$). Potem je

$$\int_a^b \|\dot{\vec{r}}(t)\|dt = \int_\alpha^\beta \|\frac{d}{d\tau}\vec{r}(\psi(\tau))\|d\tau.$$

2 PLOSKVE

2.1 Ploskve v \mathbb{R}^3

Definicija 2.1 (Ploskev). Podmnožica $P \subseteq \mathbb{R}^3$ je *ploskev*, če za vsako točko $\vec{r} \in P$ obstaja taka okolica $H \subseteq \mathbb{R}^3$, da je $P \cap H$ graf kake zvezno odvedljive funkcije $\phi: D \to \mathbb{R}$, definirane na kaki *odprti* podmnožici $D \subseteq \mathbb{R}^2$.

To pomeni, da se na $P \cap H$ ena od koordinat x, y, z da enolično izraziti kot funkcija preostalih, torej da je $P \cap H$ ene od oblik:

$$P \cap H = \{(x, y, \phi(x, y)) \mid (x, y) \in D\},\$$

$$P \cap H = \{(x, \phi(x, z), y) \mid (x, z) \in D\},\$$

$$P \cap H = \{(\phi(y, z), y, z) \mid (y, z) \in D\}.$$

Trditev 2.1 (Izrek o implicitni funkciji). Naj bo $g: \mathbb{R}^3 \to \mathbb{R}$ zvezno odvedljiva funkcija in privzemimo, da je množica $P = g^{-1}(0)$ neprazna. Če je

$$\nabla g(\vec{r}) \neq 0$$

za $\forall \vec{r} \in P$ je P ploskev.

Enačba oblike $\vec{r} = \vec{r}(t)$ $(t \in [a, b] \subseteq \mathbb{R}, a < b)$ predstavlja krivuljo v \mathbb{R}^3 . Privzeli bomo, da je pri tem \vec{r} zvezno odvedljiva funkcija spremenljivke t. Taka krivulja leži na ploskvi $P = g^{-1}(0)$ natanko tedaj, ko je $g(\vec{r}(t)) = 0$ za $\forall t \in [a, b]$. Ko to enakost odvajamo po t, dobimo

$$\nabla q(\vec{r}(t)) \cdot \dot{\vec{r}}(t) = 0.$$

Ta enakost pomeni, da je vektor $\nabla g(\vec{r}(t))$ pravokoten na tangentni vektor $\dot{\vec{r}}(t)$ krivulje v točki $\vec{r}(t)$.

Če sedaj izberemo poljubno točko \vec{r}_0 na ploskvi P in opazujemo vse krivulje na ploskvi P, ki gredo skozi točko \vec{r}_0 (vsaka taka krivulja $\vec{r} = \vec{r}(t)$ zadošča pogoju $\vec{r}(t_0) = \vec{r}_0$ za kak t_0), vidimo, da je vektor $\nabla g(\vec{r}_0)$ pravokoten na tangentni vektor $\vec{r}(t_0)$ vsake take krivulje.

To pomeni, da mora biti vektor $\nabla g(\vec{r}_0)$ pravokoten na ploskev P. To velja za vsako točko $\vec{r}_0 \in P$.

Definicija 2.2 (Normalni vektor). Vektor $\nabla g(\vec{r})$ imenujemo normalni vektor na ploskev $P=g^{-1}(0)$ v točki $\vec{r}\in P$. Ravnino $T_{\vec{r}}P$ z normalnim vektorjem $\nabla g(\vec{r})$ skozi točko \vec{r} na ploskvi P pa imenujemo tangentna ravnina na ploskev P v točki \vec{r} .

Tangentna ravnina na P skozi točko \vec{r} je torej vzporedna vsem tangentnim vektorjem v točki \vec{r} na krivulje skozi \vec{r} na ploskvi P.

3 INTEGRALI S PARAMETROM

Definicija 3.1 (Integral s parametrom). Naj bo f zvezna funkcija dveh spremenljivk, definirana na pravokotniku $P = [a, b] \times [c, d]$ (a < b, c < d). Integral

$$F(y) = \int_{a}^{b} f(x, y)dx \tag{1}$$

je funkcija spremenljivke y. Tak integral imenujemo $integral\ s\ parametrom\ y.$

Trditev 3.1. Če je f zvezna funkcija na pravokotniku $P = [a, b] \times [c, d]$, je funkcija F (definirana z (1)) zvezna na intervalu P.

Izrek 3.1. Naj bo f zvezna na pravokotniku $P = [a, b] \times [c, d]$ in privzemimo, da obstaja parcialni odvod $\frac{\partial f}{\partial y}$, ki naj bo zvezen na P. Potem je funkcija F (podana z (1)) odvedljiva in velja

$$F'(y) = \frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$
 (2)

3.1 Izlimitirani integrali s parametrom

Definicija 3.2. Integral $F(y) = \int_a^\infty f(x,y) dx$ je enakomerno konvergenten za $y \in S \subseteq \mathbb{R}$, če za $\forall \varepsilon > 0 \ \exists M \in \mathbb{R}$, da za $\forall b \geq M$ in $\forall y \in S$ velja

$$\left| \int_{b}^{\infty} f(x, y) dx \right| < \varepsilon.$$

Za razliko od navadne konvergence mora tukaj obstajati tak M, ki je istočasno ustrezen za $\forall y \in S$, torej je $M = M_{\varepsilon}$ odvisen le od ε , ne pa tudi od y. Pri navadni konvergenci bi bil veljalo $M = M_{\varepsilon,y}$.

Trditev 3.2. Če je f zvezna funkcija na pasu $P = [a, \infty) \times [c, d]$ in integral

$$F(y) = \int_{a}^{\infty} f(x, y) dx$$

enakomerno konvergenten za $y \in [c, d]$, je F zvezna funkcija na [c, d].

3.2 Dvojni in dvakratni integrali

Definicija 3.3. Naj bo $P = [a, b] \times [c, d]$ in $f : P \to \mathbb{R}$ funkcija. Delitev $D_{[a,b]}$ intervala [a,b] je določena z zaporedjem točk

$$a = x_0 < x_1 < \ldots < x_m = b.$$

Delitev $D_{[a,b]}$ skupaj s poljubno delitvijo $D_{[c,d]}$ intervala [c,d],določeno z

$$c = y_0 < y_1 < \ldots < y_n = d,$$

določa neko delitev pravokotnika P na manjpe pravokotnike

$$P_{i,j} = [x_{i-1}, x_i] \times [y_{i-1}, y_i], (i = 1, ..., m; j = 1, ..., n).$$

Naj bo

$$m_{i,j} = \inf_{(x,y) \in P_{i,j}} f(x,y),$$

$$M_{i,j} = \sup_{(x,y)\in P_{i,j}} f(x,y).$$

Z $\Delta_{i,j}p=\Delta_ix\cdot\Delta_jy=(x_i-x_{i-1})(y_j-y_{j-1})$ označimo ploščino pravokotnika $P_{i,j}.$ Vsoto

$$\underline{S}_D = \sum_{i=1}^m \sum_{j=1}^n m_{i,j} \Delta_{i,j} p$$

imenujemo spodnja, vsoto

$$\overline{S}_D = \sum_{i=1}^m \sum_{j=1}^n M_{i,j} \Delta_{i,j} p$$

pa zgornja Riemannova vsota funkcije f pri delitvi D.

Lema 1. Če je N nadaljevanje delitve D pravokotnika P, za spodnje in zgornje Riemannove vsote poljubne omejene funkcije $f: P \to \mathbb{R}$ velja

$$\underline{S}_N \ge \underline{S}_D$$
 in $\overline{S}_N \le \overline{S}_D$.

Definicija 3.4. Omejena funkcija $f: P \to \mathbb{R}$ je na pravokotniku P integrabilna v $Riemannovem \ smislu$, če velja

$$\underline{S} = \overline{S},$$

kjer je \underline{S} supermum njenih spodnjih, \overline{S} pa infimum njenih zgornjih Riemannovih vsot. Tedaj skupno vrednost $S=\overline{S}$ označimo kot

$$\iint_P f(x,y)dp,$$

kjer pomeni dp = dxdy ploščinski element, in jo imenujemo dvojni integral funkcije f po pravokotniku P.

Izrek 3.2. Zvezna funkcija f na pravokotniku $P = [a, b] \times [c, d]$ je integrabilna in velja

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \iint_{P} f(x, y) dp = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy. \tag{3}$$

Enak zaključek velja tudi za funkcijo f, ki ni nujno zvezna, če je N množica njenih točk nezveznosti taka, da jo za $\forall \varepsilon > 0$ lahko pokrijemo s kakim zaporedjem pravokotnikov, katerih vsota ploščin je pod ε . Tedaj pravimo, da ima N mero 0.

Posledica. Za funkcijo f, ki je na pravokotniku P integrabilna v Riemannovem smislu, konvergirajo Riemannove vsote S proti $\iint_P f(x,y)dp$, ko gredo velikosti delilnih pravokotnikov (njihove diagonale) proti 0.

Natančneje: za $\forall \varepsilon > 0 \; \exists \delta > 0$, da je

$$\left| S - \iint_P f(x, y) dp \right| < \varepsilon$$

za vsako Riemannovo vsoto funkcije f pri vsaki delitvi pravokotnika P, kjer si dolžine diagonal pod δ .

3.3 Integriranje in odvajanje integralov s parametrom

Izrek 3.3. Naj bo f zvezna na pasu $[a, \infty) \times [c, d]$. Če je integral $\int_a^\infty f(x, y) dx$ enakomerno konvergenten za $y \in [c, d]$, potem je

$$\int_{c}^{d} \int_{a}^{\infty} f(x, y) dx \ dy = \int_{a}^{\infty} \int_{c}^{d} f(x, y) dy \ dx.$$

Izrek 3.4. Naj bosta f in $\frac{\partial f}{\partial y}$ zvezni na pasu $[a,\infty)\times[c,d]$, naj bo integral

$$F(y) = \int_{a}^{\infty} f(x, y) dx$$

konvergenten za $y \in [c, d]$ in naj bo integral

$$\int_{a}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$$

enakomerno konvergenten na [c,d]. Potem je F odvedljiva funkcija in velja

$$F'(y) = \frac{d}{dy} \int_{a}^{\infty} f(x, y) dx = \int_{a}^{\infty} \frac{\partial f}{\partial y}(x, y) dx.$$

Izrek 3.5 (Kriterij za ugotavljanje enakomerne konvergence).

Integral $\int_a^\infty f(x,y)dx=F(y)$ je enakomerno konvergenten na S natanko tedaj, ko za $\forall \varepsilon>0$ $\exists N\in\mathbb{R},$ da za poljubna $d>b\geq N$ in za $\forall y\in S$ velja

$$\left| \int_{b}^{d} f(x, y) dx \right| < \varepsilon.$$

Posledica. Če je $|f(x,y)| \leq g(x,y)$ za $\forall (x,y) \in [a,\infty) \times [c,d]$ in je integral $\int_a^b g(x,y)dx$ enakomerno konvergenten na [c,d], je enakomerno konvergenten tudi integral $\int_a^b f(x,y)dx$.

Izrek 3.6 (2. izrek o povprečju). Naj bo f integrabilna, g pa nenegativna padajoča (odvedljiva) funkcija na intervalu [a, b]. Potem $\exists \xi \in [a, b]$, da je

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx.$$

3.4 Eulerjeva funkcija Γ

Definicija 3.5 (Funkcija Γ). Na poltraku x > 0 je funkcija Γ definirana z

$$\Gamma(x) = \int_0^\infty t^{t-1} e^{-t} dt. \tag{4}$$

Trditev 3.3 (Rekurzivna formula). Za $\forall x > 0$ velja

$$\Gamma(x+1) = x\Gamma(x).$$

Posledica. $\Gamma(n+1) = n!$ za $\forall n \in \mathbb{N}$

To nam namiguje, naj definiramo

$$x! := \Gamma(x+1)$$
 za $\forall n \in \mathbb{N}$.

Rekurzivna formula nam omogoča, da razširimo definicijsko območje funkcije Γ . Če je namreč $x \in (-1,0)$, je $x+1 \in (0,1)$, zato je vrednost $\Gamma(x+1)$ že definiramo in lahko postavimo

$$\Gamma := \frac{\Gamma(x+1)}{x}.$$

S ponavljanjem rekurzivne formule dobimo

$$\Gamma(x) = \frac{\Gamma(x+n)}{x(x+1)\dots(x+n-1)}.$$
 (5)

Za $\forall x \in \mathbb{R}$, ki ni negativno celo število ali 0, lahko izberemo tak najmanjši $n \in \mathbb{N}$, da je (x+n) > 0; tedaj je vrednost $\Gamma(x+n)$ že definirana in lahko $\Gamma(x)$ definiramo s formulo (5).

Definicija 3.6. Funkcija beta je definirana kot

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad (x > 0, y > 0).$$
 (6)

Lahko se je prepričati, da je integral v (6) konvergenten, če je x>0 in y>0.

Z vpeljavo nove integracijske spremenljivke $t=\sin^2\varphi$ lahko definicijo funkcije Bzapišemo tudi kot

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1} \varphi \cos^{2y-1} \varphi d\varphi. \tag{7}$$

Trditev 3.4. Za poljubna pozitivna x, y je

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \tag{8}$$