${\it Logik~und~diskrete~Strukturen} \\ {\it Wintersemester~2022/2023}$

Abgabe: 21.11.21, 10:00 Besprechung: KW47

PD Dr. Elmar Langetepe Christine Dahn Joshua Könen Institut für Informatik

Übungszettel 5

Aufgabe 5.1: Deterministische endliche Automaten

(4+4 Punkte)

Gegeben sind die folgende Sprachen über dem Alphabet $\Sigma = \{0, 1\}$:

- a) Die Sprache aller Wörter, die maximal viermal die 1 enthalten.
- b) Die Sprache aller Wörter, bei denen keine zwei 0 hintereinanderstehen.

Geben Sie für die Sprachen in a) und b) jeweils einen DFA an (bitte alle Komponenten angeben). Es genügt, für die Zustandsüberführungsfunktion einen Übergangsgraphen anzugeben. Bedenken Sie, dass $\delta \colon Q \times \Sigma \longrightarrow Q$ eine Funktion ist, also jedes Tupel aus $Q \times \Sigma$ auf einen Zustand abbildet.

Aufgabe 5.2: DFA und begrenzte Endzustände

(4+4 Punkte)

Im folgenden sei $k \in \mathbb{N}$ eine beliebige aber feste Zahl. Wir definieren $L^{=k} := \{0,1\}^k$ als die Menge aller Wörter der Länge **genau** k über dem Alphabet $\{0,1\}$ und $L^{\leq k} := \{w \in \{0,1\}^* \mid |w| \leq k\}$ als die Menge aller Wörter der Länge **höchstens** k über dem Alphabet $\{0,1\}$.

- a) Sei $L_1 \subseteq L^{=k}$ eine beliebige Sprache, welche nur Wörter der Länge genau k beinhaltet. Zeigen Sie, dass es einen DFA M gibt, der L_1 entscheidet und höchstens einen akzeptierenden Zustand besitzt.
- b) Geben Sie im folgenden eine Zahl $k \in \mathbb{N}$ und eine Sprache $L_2 \subseteq L^{\leq k}$ an, so dass
 - i) die Sprache L_2 regulär ist und
 - ii) kein DFA mit höchstens einem akzeptierenden Zustand existiert, welcher L_2 entscheidet.

Beweisen Sie, dass ihre Sprache beide Kriterien erfüllt.