Intro to Network Sheaves and Laplacians in Neural Networks

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Neural Network

What makes the Laplacian special?

Intro to Network Sheaves and Laplacians in Neural Networks

Geometry and Topology in Machine Learning Seminar

Aug 11th, 2025

Graph Laplacian:

pretations

- 1 Graph Laplacian: Two Interpretations
- 2 Network Sheaf Laplacian Two Inter-
 - Sheaf Neural Networks
 - What makes the Laplacian special?

Intro to Network Sheaves and Laplacians in Neural Networks

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian special? Let G = (V, E) be a finite (optional: weighted/directed) graph with |V| = n.

Graph Laplacian

The graph laplacian is defined as L = D - A, where A is the adjacency matrix

$$A_{ij} = \begin{cases} w_{ij} & \text{if } \{v_i, v_j\} \in E \text{ and weighted} \\ 1 & \text{if } \{v_i, v_j\} \in E \text{ and unweighted} \\ 0 & \text{otherwise} \end{cases}$$

 $w_{ij} = -w_{ji}$ if directed; otherwise $w_{ij} = w_{ji}$ and D is the degree matrix $D_{ii} = \sum_{j=1}^{n} A_{ij}$, $D_{ij} = 0$ for $i \neq j$

In practice, we directly use the normalized Laplacian

$$L_{\text{sym}} = I - D^{-1/2}AD^{-1/2}$$

Graph Laplacian: a discrete Laplacian

Intro to Network Sheaves and Laplacians in Neural Networks

GTMLS 2025

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Networks

What makes the Laplacian special? • The continuous Laplacian $\nabla^2 f$ measures how the gradient of f diverges capturing curvature.¹

 And the divergence measures the net rate at which a quantity flows in and out

 The graph Laplacian plays the same role for discrete data structured as nodes and edges.

¹Pictures from the blog article *The graph Laplacian*

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Sheat Neural Network

What makes the Laplacian special?

- On a graph, the analogue of a gradient is given by its edges: for an edge $e_k = (v_i, v_j) \in E$, the "gradient" is the difference in function values $g(e_k) = f(v_i) f(v_j)$
- For a graph G = (V, E), the incidence matrix $B \in \mathbb{R}^{|E| \times |V|}$ encodes edge-vertex relationships.
- Choose an arbitrary orientation for each edge e = (u, v):

$$B_{e,w} = \begin{cases} +1 & \text{if } w \text{ is the head of } e, \\ -1 & \text{if } w \text{ is the tail of } e, \\ 0 & \text{otherwise} \end{cases}$$

GTMLS 2025 Graph Laplacian: incidence matrix example

Intro to Network Sheaves and Laplacians in Neural Networks

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Neural Network

What makes the Laplacian special?

Entries correspond to edges

²Pictures from the blog article *The graph Laplacian*

Graph Laplacian: net rate as divergence

Intro to Network Sheaves and Laplacians in Neural Networks

Graph

GTMLS 2025

How can one get the total sum of flow-in and out at a certain vertex? How can matrix perform this summation? Consider the product of K and the transpose

 $\begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$ Laplacian: Two Interpretations

> The graph Laplacian $L = D - A = K^T K$ captures the net flow of each vertex, just like the continuous Laplacian measures divergence of gradient at a point. However, the expressivity of the graph Laplacian is inherently limited. To capture richer and more nuanced structure, we can instead consider the sheaf Laplacian. ³

7/26

³Pictures from the blog article *The graph Laplacian*

GTMLS 2025 Outline

Intro to Network Sheaves and Laplacians in Neural Networks

1 Graph Laplacian: Two Interpretations

Laplaciar Two Inte pretation

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian special? 2 Network Sheaf Laplacian

- 3 Sheaf Neural Networks
- 4 What makes the Laplacian special?

Graph
Laplacian
Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian Graph Laplacian assumes a single scalar space: all fibers $\mathcal{F}(v) = \mathbb{R}$ and restrictions are identities, so diffusion is "average your neighbors". But many tasks have local coordinates/types, then we can use nontrivial sheaves for transporting ⁴

- 3D meshes / geometry processing: node fibers are tangent planes; restrictions are parallel transport. Tasks: smoothing/denoising vector fields, texture/UV stitching.
- Multi-view vision / image stitching: fibers carry image features; restrictions are homographies $H \in GL(3)$. Tasks: panorama stitching, object reconstruction.
- Heterophily graphs: common fiber \mathbb{R}^d with relation-specific linear maps. Tasks: link prediction, typed message passing.

⁴the trivial sheaf case reduces to the standard graph Laplacian

Sheaf

Network Sheaf definition

Setup: Let X = (V, E) be a graph with oriented edges E. Let \mathcal{C} be a category (e.g., sets, groups, vector spaces).

Definition (Network Sheaf)

A network sheaf \mathcal{F} on X with values in \mathcal{C} consists of:

1 For each vertex $v \in V$, an object $\mathcal{F}(v) \in \mathcal{C}$, called the vertex stalk.

2 For each edge $e \in E$, an object $\mathcal{F}(e) \in \mathcal{C}$, called the edge

- stalk.
- 3 For each incidence $v \rightarrow e$, a restriction morphism $\mathcal{F}_{v\to e}:\mathcal{F}(v)\to\mathcal{F}(e)$ in \mathcal{C} .

Global Sections. A global section is an assignment $s_x \in \mathcal{F}(x)$ for all $x \in V \cup E$ such that for every edge e = (u, v):

$$\mathcal{F}_{u \to e}(s_u) = \mathcal{F}_{v \to e}(s_v)$$

The set of global sections is denoted $\Gamma(X,\mathcal{F})$ or $H^0(X;\mathcal{F})$.

Graph Laplacian Two Inter pretations

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian

5

⁵Picture from Neural Sheaf Diffusion

Setup: Let \mathcal{F} be a network sheaf of vector spaces⁶ on X = (V, E) with inner product on each stalk. The cochain spaces are

$$C^0(X;\mathcal{F}) = \prod_{v \in V} \mathcal{F}(v), \ C^1(X;\mathcal{F}) = \prod_{e \in E} \mathcal{F}(e)$$

Coboundary operator: For a 0-cochain $f = \{f_v\}$ and oriented edge e = (u, v),

$$(\delta f)_e = \mathcal{F}_{v \to e}(f_v) - \mathcal{F}_{u \to e}(f_u)$$

Definition (Sheaf Laplacian):

Given the adjoint δ^* (with respect to the induced inner products),

$$\Delta = \delta^* \delta : C^0(X; \mathcal{F}) \longrightarrow C^0(X; \mathcal{F})$$

⁶ for convenient, not a strict restriction

Networks

GTMLS 2025

What makes the Laplacian special?

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Sheaf Laplacian is a generalization of the graph Laplacian. We can represent it as a symmetric block matrix with blocks indexed by the vertices of the complex. The entries on the diagonal are

$$\Delta_{v,v}^0 = \sum_{v \le e} \mathcal{F}_{v \le e}^* \mathcal{F}_{v \le e}$$

and the entries on the off-diagonal are

$$\Delta_{u,v}^0 = -\mathcal{F}_{u \leq e}^* \, \mathcal{F}_{v \leq e}$$

Graph
Laplacian
Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian The sheaf Laplacian is just the generator, but using $\Delta_{\mathcal{F}}$ alone only yields a fixed one–step update $I-\alpha\Delta_{\mathcal{F}}$ or a minimization that easily degenerates. What we need for controlled propagation is a diffusion operator built from $\Delta_{\mathcal{F}}$. This provides explicit control of scale/time (t), an stability, and it can also be made learnable.

Networks

GTMLS 2025

Setup: Let (G, \mathcal{F}) be a cellular sheaf on a graph G = (V, E) with vector-space stalks $\mathcal{F}(v)$ and $\mathcal{F}(e)$, and restriction maps defining the co-boundary $\delta : C^0(G, \mathcal{F}) \to C^1(G, \mathcal{F})$.

Laplacian: Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Networks

What makes the Laplacian special?

Diffusion PDE:

$$\frac{\partial X(t)}{\partial t} = L_{\mathcal{F}}X(t)$$

where $L_{\mathcal{F}}$ = $\delta^{\mathsf{T}}\delta$ is the sheaf Laplacian.

The corresponding Euler discrete update is

$$X(t+1) = X(t) - L_{\mathcal{F}}X(t) = (I - L_{\mathcal{F}})X(t)$$

GTMLS 2025 Outline

Intro to Network Sheaves and Laplacians in Neural Networks

① Graph Laplacian: Two Interpretations

Laplacian Two Inter pretations

Network Sheaf Laplaciar

Sheaf Neural Networks

What makes the Laplacian special? Network Sheaf Laplacian

3 Sheaf Neural Networks

4 What makes the Laplacian special?

What makes the Laplacian special? **Setup:** Given a cellular sheaf \mathcal{F} on a graph X = (V, E) with vector-space stalks and restriction maps $\mathcal{F}_{v \to e} : \mathcal{F}(v) \to \mathcal{F}(e)$, the sheaf Laplacian is

$$L_{\mathcal{F}} = \delta^* \delta$$

where δ is the sheaf coboundary.

Core idea: Generalize graph neural networks (GNNs) by replacing the standard graph Laplacian with the sheaf Laplacian, allowing learnable restriction maps that encode heterogeneous local relations. It works for any message-passing models with the Laplacian included.

What makes the Laplacian Let $p,q\in\mathbb{N}$. Stack p input features as columns: $X\in C^0\otimes\mathbb{R}^p\cong\mathbb{R}^{nk\times p}$. Let $A\in\mathbb{R}^{p\times q}$ (feature mixing across channels) and $B\in\mathbb{R}^{k\times k}$ (within-stalk mixing). Write $I_n\otimes B$ for the block-diagonal map applying B at each vertex stalk, so $I_n\otimes B:C^0\to C^0$. Extend a nonlinearity $\rho:\mathbb{R}^k\to\mathbb{R}^k$ stalkwise to $\rho:C^0\to C^0$.

$$\mathrm{SheafConv}_{A,B}(X) \coloneqq \rho \Big(D_{\mathcal{F}} \big(I_n \otimes B \big) X A \Big) \in C^0 \otimes \mathbb{R}^q$$

where $D_{\mathcal{F}}(h) = I + hL_{\mathcal{F}} \approx e^{-hL_{\mathcal{F}}}$ is a discrete approximation of SDO when h is small. In practice, we can take $h = \frac{1}{d_{max}}$ ⁷

Note: the trivial sheaf case recovers a vanilla GCN layer

⁷Reference: Sheaf Neural Networks

Network Sheaf Laplacian

Sheaf Neural Networks

What makes the Laplacian special? **Motivation:** SNN directly uses a fixed kernel $D_{\mathcal{F}}$ that defined by the sheaf Laplacian $I-\frac{1}{d_{max}}L_{\mathcal{F}}$ in the learning progress. It's an approximation of a specific diffusion. But the actual propagation path could be much more complicated. To solve this question, we can replace fixed diffusion with learnable spectral filters. ⁸

Diffusion operator:

$$P_{\mathcal{F}} = I - \alpha \Delta_{\mathcal{F}}, \quad \alpha \in (0,1)$$
 learnable

⁸Reference: Neural Sheaf Diffusion

Networks

- ① Graph Laplacian: Two Interpretations
- aplacian:
 Cwo Inter- Network Sheaf Laplacian
 - 3 Sheaf Neural Networks
 - 4 What makes the Laplacian special?

What makes the Laplacian special?

Ubiquity: the same operator across physics

Intro to Network Sheaves and Laplacians in Neural Networks

What makes the

Laplacian special?

GTMLS 2025

The (negative) Laplacian on \mathbb{R}^n is $\text{Lap} = -\sum_{i=1}^n \partial_{x_i}^2$; on a Riemannian manifold (M, g) it is the Laplace-Beltrami = $-\text{div}_{g} \nabla_{g}$.

- Steady potential flows / electrostatics: harmonic potential u solves Lap(u) = 0
 - Heat diffusion:

 $\partial_t(u) = \kappa \operatorname{Lap}(u)$

Same operator, different physics ⇒ geometry of space controls flow, heat, waves, and probability. 9

- Waves (fixed boundary): $\partial_t^2(u) = c^2 \operatorname{Lap}(u)$
- Quantum (free particle): $i\bar{h}\,\partial_t(u) = -\frac{\bar{h}^2}{2\pi}\operatorname{Lap}(u)$

⁹Reference of the section: The Laplacian on a Riemannian Manifold

What makes the Laplacian special?

Euclidean invariances

commutes with translations and rotations: for any rigid motion T,

$$(\operatorname{Lap} f) \circ T = \operatorname{Lap} (f \circ T).$$

- Among linear, local, second-order operators with rotational invariance and no preferred location, the Laplacian is (up to scale) the canonical choice.
- On (M,g), the natural, metric-compatible choice is the Laplace–Beltrami = $-\mathrm{div}_q \nabla_q$, invariant under isometries
- Analytic characterizations: mean value property and maximum principle single out harmonic functions (Lapu = 0).

$$Lap \phi = \lambda \phi$$
 (with boundary conditions).

What makes the Laplacian special?

Time factors

Heat: $\alpha(t) = e^{-\lambda t}$ Wave: $\alpha(t) = e^{\pm i\sqrt{\lambda}t}$ Schr.: $\alpha(t) = e^{\pm i\lambda t}$

Modal expansions

 $u(x,t) = \sum_{k} c_k \, \alpha_k(t) \, \phi_k(x),$

where (λ_k, ϕ_k) are Laplacian eigenpairs adapted to the domain/metric.

Conclusion: dynamics reduce to geometry via the spectrum of Lap.

Graph Laplacian Two Inter pretations

Network Sheaf Laplacian

Neural Network

What makes the Laplacian special?

- The spectrum determines many global quantities (dimension, volume; with boundary: area, perimeter, Euler characteristic via heat coefficients).
- But in general one cannot uniquely recover the exact shape: there exist non-isometric isospectral manifolds/domains.
- Still, spectral data is a powerful geometric probe in analysis, PDE, graphics, and data science.

Why special?

The Laplacian is the unique symmetry-respecting, metric-native second-order operator whose spectrum bridges geometry and dynamics.

References I

Intro to Network Sheaves and Laplacians in Neural Networks

GTMLS 2025

Graph Laplacian: Two Interpretations

Network Sheaf Laplaciar

Sheat Neural Network

What makes the Laplacian special?

- Jakob Hansen and Thomas Gebhart. Sheaf Neural Networks. arXiv preprint arXiv:2012.06333, 2020.
- Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and Michael M. Bronstein.

 Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs.

 arXiv preprint arXiv:2202.04579, 2022.

 https://arxiv.org/abs/2202.04579
- Matthew N. Bernstein.
 The graph Laplacian.
 Blog post, published November 11, 2020. https://mbernste.github.io/posts/laplacian_matrix/

Graph Laplacian: Two Interpretations

Network Sheaf Laplacian

Sheaf Neural Network

What makes the Laplacian special?

Steven Rosenberg.

The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds.

London Mathematical Society Student Texts, vol. 31. Cambridge University Press, 1997.