

Massive Disruption on How Information is Used

Deep Learning

Hundreds of variables; structured data (Gradient-Boosted Trees) : Thousands of factors; unstructured data (Deep Auto Encoders)

If credit card used >3 zip codes >\$5000 Then fraud

CAPABILITY OF MACHINE TO IMITATE INTELLIGENT BEHAVIOR

GPU DEEP LEARNING IS A NEW COMPUTING MODEL

Billions of Trillions of Operations
GPU train larger models, accelerate
time to market

Training

10s of billions of image, voice, video queries per day

GPU inference for fast response, maximize data center throughput

Data center inference

RISE OF NVIDIA GPU COMPUTING

40 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz,
F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

The Big Bang of Deep Learning

HOW GPU ACCELERATION WORKS

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning
Video Search
Real Time Translatio

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

NEURAL NETWORK COMPLEXITY IS EXPLODING

To Tackle Increasingly Complex Challenges

7 ExaFLOPS 60 Million Parameters

2015 - Microsoft ResNet Superhuman Image Recognition

20 ExaFLOPS 300 Million Parameters

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 ExaFLOPS 8700 Million Parameters

2017 - Google Neural Machine Translation Near Human Language Translation

CAMBRIAN EXPLOSION

WaveNet

Pooling

Dropout

CTC

Attention

Concat

TESLA V100 32GB TENSOR CORE GPU

World's Most Advanced Data Center GPU

5,120 CUDA cores

640 NEW Tensor cores

7.8 FP64 TFLOPS | 15.7 FP32 TFLOPS | 125 Tensor TFLOPS

20MB SM RF | 16MB Cache

32GB HBM2 @ 900GB/s | 300GB/s NVLink

TESLA PLATFORM ENABLES DRAMATIC REDUCTION IN TIME TO TRAIN

Relative Time to Train Improvements (ResNet-50)

PURPOSE-BUILT AI SUPERCOMPUTERS

NGC DL SOFTWARE STACK

POWERING THE DEEP LEARNING ECOSYSTEM

DGX-1 Al Supercomputer-in-a-Box

1 PFLOPS | 8x Tesla V100 32 GB | NVLink Hybrid Cube Mesh 2x Xeon | 8 TB RAID 0 | Quad IB 100Gbps, Dual 10GbE | 3U — 3500W

DESIGNED FOR THE DESK

The Only Supercomputer Designed for Your Office

500 TFLOPS (FP 16) 4 x TESLA V100 with NVLINK

Consuming only 1500W, it draws only 1/20th the power

Emitting only 1/10th the noise of other workstations

NVIDIA DATA CENTER PLATFORM

Single Platform Drives Utilization and Productivity

CUSTOMER USE CASES

Manufacturing

Knowledge Workers

CONSUMER INTERNET & INDUSTRY APPLICATIONS

SCIENTIFIC APPLICATIONS

VIRTUAL GRAPHICS

Creative &

Technical

APPS & **FRAMEWORKS**

CUDA-X & **NVIDIA SDKs**

CUDA & CORE LIBRARIES - cuBLAS | NCCL

TESLA GPUs & SYSTEMS

DGX SOFTWARE STACK

Fully Integrated Software Built on CUDA-X AI for Instant Productivity

Advantages:

Instant productivity with NVIDIA optimized Al software

Caffe, MXNet, PyTorch, RAPIDS, TensorFlow, TensorRT, and more

Performance optimized across the entire stack

Faster Time-to-Insight with pre-built, tested, and ready to run containers

Flexibility to use different versions of libraries like libc, cuDNN in each container

THE POWER TO RUN MULTIPLE FRAMEWORKS AT ONCE

Container Images portable across new driver versions

Containerized Applications

NVIDIA Docker

Linux Kernel + CUDA Driver

TESLA T4

WORLD'S MOST EFFICIENT GPU FOR MAINSTREAM SERVERS

320 Turing Tensor Cores
2,560 CUDA Cores
65 FP16 TFLOPS | 130 INT8 TOPS | 260 INT4 TOPS
16GB | 320GB/s
70 W

THE JETSON FAMILY

for AI at the Edge and Autonomous System designs

JETSON NANO 0.5 TFLOPS (FP16) JETSON TX2 series
1.3 TFLOPS (FP16)

JETSON Xavier NX 6 TFLOPS (FP16) 21 TOPS (INT8) JETSON AGX XAVIER series 11 TFLOPS (FP16) 32 TOPS (INT8)

5 - 10W 45mm x 70mm

7.5 - 15W* 50mm x 87mm

10 - 15W 45mm x 70mm

10 - 30W 100mm x 87mm

Al at the edge

Fully autonomous machines

Same software

NVIDIA EGX EDGE COMPUTING

TENSORRT

From Every Framework, Optimized For Each Target Platform

DEEPSTREAM SDK

JARVIS WORKFLOW OVERVIEW

Manager, Backend fulfillment

ISAAC SDK FOR ROBOTICS

RAPIDS IN DATA SCIENCE

ALGORITHMS

GPU-accelerated Scikit-Learn

.

Cross Validation

More to come!

Classification / Regression

Statistical Inference

Clustering

Decomposition & Dimensionality Reduction

Timeseries Forecasting

Recommendations

Decision Trees / Random Forests Linear Regression Logistic Regression K-Nearest Neighbors

Kalman Filtering Bayesian Inference

K-Means DBSCAN

Principal Components Singular Value Decomposition

ARIMA

Collaborative Filtering

BENCHMARKS

Benchmark

200GB CSV dataset; Data preparation includes joins, variable transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

TRADITIONAL DATA SCIENCE CLUSTER

Workload Profile:

Fannie Mae Mortgage Data:

- 192GB data set
- 16 years, 68 quarters
- 34.7 Million single family mortgage loans
- 1.85 Billion performance records
- XGBoost training set: 50 features

GPU-ACCELERATED MACHINE LEARNING CLUSTER

DGX-2 and RAPIDS for Predictive Analytics

1 DGX-2 | 10 kW

1/8 the Cost | 1/15 the Space

1/18 the Power

MORE INFORMATION

SIGNUP:

NVIDIA DEVELOPER FORUM - To keep you updated

http://developer.nvidia.com

