Aprendizado de Máquina

Arthur Kunzler Eduardo Ballico Guilherme Dornelles Giovane Milani Vinicius Boff

Introdução

- Modelo utilizando Redes Neurais profundas para Visão Computacional

- Identificação de veículos
 - Carro
 - Caminhão
 - Ônibus
 - Motocicleta

Referencial Teórico

- Base de ResNet
 - Tipo de Rede Convolucional
 - Evita "Vanishing gradient"
 - Utiliza blocos residuais entre os blocos de convolução presentes entre as camadas de ReLu, levando consigo um resíduo

Referencial Teórico

- ResNet-152
 - 152 camadas de convolução
 - Mais robusta
 - Testes de acurácia com outras arquiteturas ResNet, como 50 e 34
 - Performaram levemente abaixo ao que foi alcançado com a arquitetura 152.

Desenvolvimento

- Dataset utilizado e estrutura
 - dois datasets agrupados, chegando a cerca de 560 imagens
 - 140 imagens para cada classe
 - divisão aleatória de 80% para treinamento e 20% para teste

Corsa Amarelo

Desenvolvimento

- Técnicas de pré-processamento
 - Data Augmentation: rotação, inversão no eixo horizontal, alteração de perspectiva, coloração, saturação e zoom-out
 - Pipeline de transformações: aplica a cada época as transformações aleatoriamente em parte do dataset

transformações aplicadas

Desenvolvimento

- Parâmetros de treinamento
 - Épocas: tuning manual, treinar por mais de 12 épocas piora o modelo
 - Taxa de aprendizado: tuning manual (0.001)
 - Optimizers: Adam
 - Parada antecipada: interrompe o treinamento caso não melhore por 5 épocas seguidas

Resultados

- Acurácia alcançada (91,5%)
- Matriz de confusão e análise das classes
 - maior assertividade em motocicleta
 - confunde caminhão com ônibus, resultado coerente pela semelhança das características visuais
 - alguns outliers, classificou um carro como motocicleta

Limitações

Era: Carro Classificou: Moto Era: Carro Classificou: Caminhão Era: Moto

Classificou: Caminhão

Conclusão

- Modelo mostrou-se bem sucedido
 - Alta acurácia
 - Robustez em diversas situações
- Limitações citadas anteriormente
- Aplicabilidade de Redes Neurais em problemas do cotidiano

Referências

- 8.6. Residual Networks (ResNet) and ResNeXt Dive into Deep Learning 1.0.3 documentation. Disponível em: https://en.d2l.ai/chapter_convolutional-modern/resnet.html. Acesso em: 25 nov. 2024.
- SHARMA, T. Detailed Explanation of Residual Network(Resnet50) CNN Model. Disponível em: https://medium.com/@sharma.tanish096/detailed-explanation-of-residual-network-resnet50-cnn-model-106e0ab9fa9e.
- torchvision.transforms Torchvision master documentation. Disponível em:
 https://pytorch.org/vision/stable/transforms.html>.
- Wavelet Transforms. Disponível em: https://www.sciencedirect.com/topics/computer-science/wavelet-transforms. Acesso em 25 nov. 2024.

Datasets

- Vehicle Type Recognition. Disponível em: https://www.kaggle.com/datasets/kaggleashwin/vehicle-type-recognition. Acesso em: 12 nov. 2024.
- IBRAHIM, A. W. Cars Detection. Disponível em: https://www.kaggle.com/datasets/abdallahwagih/cars-detection. Acesso em: 20 nov. 2024.