

GEO5017 Machine Learning for the Built Environment

https://3d.bk.tudelft.nl/courses/geo5017/

Linear Regression

Liangliang Nan

https://3d.bk.tudelft.nl/liangliang/

Agenda

- Linear regression
- The closed-form solution
 - Simple linear regression
 - Polynomial regression
 - Multivariate linear regression
- Solve linear regression by optimization
 - Gradient descent

What is linear regression?

 Given a set of observed values of the independent (input) variables and the corresponding values of the dependent (output) variable, determine a relation between the independent variable(s) and a continuous output variable

Linear regression

Examples

Linear regression

• Examples

Prices of used cars: example data for regression

Price	Age	Distance	Weight
(US\$)	(years)	(km)	(pounds)
13500	23	46986	1165
13750	23	72937	1165
13950	24	41711	1165
14950	26	48000	1165
13750	30	38500	1170
12950	32	61000	1170
16900	27	94612	1245
18600	30	75889	1245
21500	27	19700	1185
12950	23	71138	1105

Linear regression

General approach

Regression function

$$y = f(x, \theta)$$

- Objective
 - Optimize θ such that the approximation error is minimized

$$E = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Example

Price =
$$a_0 + a_1 \cdot \text{Age} + a_2 \cdot \text{Distance} + a_3 \cdot \text{Weight}$$

 $x = \{\text{Age, Distance, Weight}\}$
 $\theta = \{a_0, a_1, a_2, a_3\}$

Prices of used cars: example data for regression

•	Price	Age	Distance	Weight
	(US\$)	(years)	(km)	(pounds)
-	13500	23	46986	1165
	13750	23	72937	1165
	13950	24	41711	1165
	14950	26	48000	1165
	13750	30	38500	1170
	12950	32	61000	1170
t	16900	27	94612	1245
	18600	30	75889	1245
	21500	27	19700	1185
_	12950	23	71138	1105

Different linear regression models

- Simple linear regression
 - Only one continuous independent variable

$$y = a + bx$$

- Polynomial regression
 - Only one continuous independent variable

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Multivariate linear regression
 - More than one independent variables

$$y = a_0 + a_1 x_1 + \dots + a_n x_n$$

Agenda

- Linear regression
- The closed-form solution

- Simple linear regression
- Polynomial regression
- Multivariate linear regression
- Solving linear regression using optimization techniques
 - Gradient descent

Simple linear regression

Ordinary least squares

$$y = \alpha + \beta x$$

x	x_1	x_2	•••	x_n
y	y_1	y_2		y_n

$$E = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} [y_i - (\alpha + \beta x_i)]^2$$

$$\sum_{i=1}^{n} y_i = n\alpha + \beta \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} x_i y_i = \alpha \sum_{i=1}^{n} x_i + \beta \sum_{i=1}^{n} x_i^2$$

Simple linear regression

Ordinary least squares

$$y = \alpha + \beta x$$

$$\beta = \frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}$$
$$\alpha = \bar{y} - \beta \bar{x}$$

$$\operatorname{Var}(x) = \frac{1}{n-1} \sum (x_i - \bar{x}_i)^2$$

$$\operatorname{Cov}(x, y) = \frac{1}{n-1} \sum (x_i - \bar{x}) (y_i - \bar{y})$$

$$\bar{x} = \frac{1}{n} \sum x_i$$

$$\bar{y} = \frac{1}{n} \sum y_i$$

Simple linear regression

Example

$$n = 5$$

$$\bar{x} = \frac{1}{5}(1.0 + 2.0 + 3.0 + 4.0 + 5.0) = 3.0$$

$$\bar{y} = \frac{1}{5}(1.00 + 2.00 + 1.30 + 3.75 + 2.25) = 2.06$$

$$Cov(x, y) = \frac{1}{4}[(1.0 - 3.0)(1.00 - 2.06) + \dots + (5.0 - 3.0)(2.25 - 2.06)] = 1.0625$$

$$Var(x) = \frac{1}{4}\left[(1.0 - 3.0)^2 + \dots + (5.0 - 3.0)^2\right] = 2.5$$

$$b = \frac{1.0625}{2.5} = 0.425$$

$$a = 2.06 - 0.425 \times 3.0 = 0.785$$

$$y = 0.785 + 0.425x$$

u	=	α	+	βx	,
9			- 1	Pa	

X	1.0	2.0	3.0	4.0	5.0
У	1.00	2.00	1.30	3.75	2.25

Model

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$$

\overline{x}	x_1	x_2	•••	x_n
y	y_1	y_2		y_n

- Ordinary least squares
 - Objective

$$E = \sum_{i=1}^{n} \left[y_i - \left(\alpha_0 + \alpha_1 x_i + \alpha_2 x_i^2 + \dots + \alpha_k x_i^k \right) \right]^2$$

Solution can be obtained by solving

$$\frac{\partial E}{\partial \alpha_i} = 0, \quad \forall i = 0, 1, \dots, k.$$

Ordinary least squares

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$$

$$\frac{\partial E}{\partial \alpha_i} = 0, \quad \forall i = 0, 1, \dots, k.$$

$$\sum y_i = \alpha_0 n + \alpha_1 \left(\sum x_i\right) + \dots + \alpha_k \left(\sum x_i^k\right)$$

$$\sum y_i x_i = \alpha_0 \left(\sum x_i\right) + \alpha_1 \left(\sum x_i^2\right) + \dots + \alpha_k \left(\sum x_i^{k+1}\right)$$

$$\sum y_i x_i^2 = \alpha_0 \left(\sum x_i^2\right) + \alpha_1 \left(\sum x_i^3\right) + \dots + \alpha_k \left(\sum x_i^{k+2}\right)$$

$$\sum y_i x_i^k = \alpha_0 \left(\sum x_i^k \right) + \alpha_1 \left(\sum x_i^{k+1} \right) + \dots + \alpha_k \left(\sum x_i^{2k} \right)$$

Ordinary least squares

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$$

$$\frac{\partial E}{\partial \alpha_i} = 0, \quad \forall i = 0, 1, \dots, k.$$

$$\sum y_i = \alpha_0 n + \alpha_1 \left(\sum x_i\right) + \dots + \alpha_k \left(\sum x_i^k\right)$$

$$\sum y_i x_i = \alpha_0 \left(\sum x_i\right) + \alpha_1 \left(\sum x_i^2\right) + \dots + \alpha_k \left(\sum x_i^{k+1}\right)$$

$$\sum y_i x_i^2 = \alpha_0 \left(\sum x_i^2\right) + \alpha_1 \left(\sum x_i^3\right) + \dots + \alpha_k \left(\sum x_i^{k+2}\right)$$
:

 $\sum y_i x_i^k = lpha_0 \left(\sum x_i^k
ight) + lpha_1 \left(\sum x_i^{k+1}
ight) + \dots + lpha_k \left(\sum x_i^{2k}
ight)$

$$ec{y} = Dec{lpha}$$
 $ec{y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight], \quad D = \left[egin{array}{cccc} 1 & x_1 & x_1^2 & \cdots & x_1^k \ 1 & x_2 & x_2^2 & \cdots & x_2^k \ dots & & & & \ 1 & x_n & x_n^2 & \cdots & x_n^k \end{array}
ight], ext{ and } ec{lpha} = \left[egin{array}{c} lpha_0 \ lpha_1 \ dots \ lpha_k \end{array}
ight]$

Ordinary least squares

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$$

$$\frac{\partial E}{\partial \alpha_i} = 0, \quad \forall i = 0, 1, \dots, k.$$

$$\sum y_i = \alpha_0 n + \alpha_1 \left(\sum x_i\right) + \dots + \alpha_k \left(\sum x_i^k\right)$$

$$\sum y_i x_i = \alpha_0 \left(\sum x_i \right) + \alpha_1 \left(\sum x_i^2 \right) + \dots + \alpha_k \left(\sum x_i^{k+1} \right)$$

$$\sum y_i x_i^2 = \alpha_0 \left(\sum x_i^2 \right) + \alpha_1 \left(\sum x_i^3 \right) + \dots + \alpha_k \left(\sum x_i^{k+2} \right)$$

$$\sum y_i x_i^k = lpha_0 \left(\sum x_i^k
ight) + lpha_1 \left(\sum x_i^{k+1}
ight) + \dots + lpha_k \left(\sum x_i^{2k}
ight)$$

$$\vec{\alpha} = (D^T D)^{-1} D^T \vec{y}$$

$$\vec{y} = D\vec{\alpha}$$

$$ec{y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight], \quad D = \left[egin{array}{cccc} 1 & x_1 & x_1^2 & \cdots & x_1^k \ 1 & x_2 & x_2^2 & \cdots & x_2^k \ dots & & & & \ 1 & x_n & x_n^2 & \cdots & x_n^k \end{array}
ight], ext{ and } ec{lpha} = \left[egin{array}{c} lpha_0 \ lpha_1 \ dots \ lpha_k \end{array}
ight]$$

Example

X	3.0	4.0	5.0	6.0	7.0
y	2.5	3.2	3.8	6.5	11.5

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

$$\sum y_i = n\alpha_0 + \alpha_1 \left(\sum x_i\right) + \alpha_2 \left(\sum x_i^2\right)$$

$$\sum y_i x_i = \alpha_0 \left(\sum x_i\right) + \alpha_1 \left(\sum x_i^2\right) + \alpha_2 \left(\sum x_i^3\right)$$

$$\sum y_i x_i^2 = \alpha_0 \left(\sum x_i^2\right) + \alpha_1 \left(\sum x_i^3\right) + \alpha_2 \left(\sum x_i^4\right)$$

$$27.5 = 5\alpha_0 + 25\alpha_1 + 135\alpha_2$$

$$158.8 = 25\alpha_0 + 135\alpha_1 + 775\alpha_2$$

$$966.2 = 135\alpha_0 + 775\alpha_1 + 4659\alpha_2$$

$$\alpha_0 = 12.4285714$$

$$\alpha_1 = -5.5128571$$

$$\alpha_2 = 0.7642857$$

 $y = 12.4285714 - 5.5128571x + 0.7642857x^2$

Example

X	3.0	4.0	5.0	6.0	7.0
y	2.5	3.2	3.8	6.5	11.5

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

$$\sum y_i = n\alpha_0 + \alpha_1 \left(\sum x_i\right) + \alpha_2 \left(\sum x_i^2\right)$$

$$\sum y_i x_i = \alpha_0 \left(\sum x_i\right) + \alpha_1 \left(\sum x_i^2\right) + \alpha_2 \left(\sum x_i^3\right)$$

$$\sum y_i x_i^2 = \alpha_0 \left(\sum x_i^2\right) + \alpha_1 \left(\sum x_i^3\right) + \alpha_2 \left(\sum x_i^4\right)$$

$$27.5 = 5\alpha_0 + 25\alpha_1 + 135\alpha_2$$

$$158.8 = 25\alpha_0 + 135\alpha_1 + 775\alpha_2$$

$$966.2 = 135\alpha_0 + 775\alpha_1 + 4659\alpha_2$$

$$\alpha_0 = 12.4285714$$

$$\alpha_1 = -5.5128571$$

$$\alpha_2 = 0.7642857$$

 $y = 12.4285714 - 5.5128571x + 0.7642857x^2$

Multivariate linear regression

Model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_N x_N$$

Ordinary least squares

Variables	Values (examples)				
variables	Example 1	Example 2		Example n	
x_1	x_{11}	x_{12}		x_{1n}	
x_1	x_{21}	x_{22}		x_{2n}	
•••					
x_N	x_{N1}	x_{N2}	•••	x_{Nn}	
y (outcomes)	y_1	y_2	•••	y_n	

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{N1} \\ 1 & x_{12} & x_{22} & \cdots & x_{N2} \\ \vdots & & & & \\ 1 & x_{1n} & x_{2n} & \cdots & x_{Nn} \end{bmatrix}, \text{ and } B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_N \end{bmatrix}$$

$$B = \left(X^T X\right)^{-1} X^T Y$$

Multivariate linear regression

Example

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

x_1	1	1	2	0
x_2	1	2	2	1
У	3.25	6.5	3.5	5.0

Multivariate linear regression

Example

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

• Example
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 $x_1 = 1 = 2 = 0$

$$B = (X^T X)^{-1} X^T Y$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$x_2 = 1 = 2 = 0$$

$$y = 3.25 = 6.5 = 3.5 = 5.0$$

$$Y = \begin{bmatrix} 3.25 \\ 6.5 \\ 3.5 \\ 5.0 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

$$y = 2.0625 - 2.3750x_1 + 3.2500x_2$$

$$X^T X = \left[\begin{array}{rrr} 4 & 4 & 6 \\ 4 & 6 & 7 \\ 6 & 7 & 10 \end{array} \right]$$

$$B = (X^T X)^{-1} X^T Y = \begin{bmatrix} 2.0025 \\ -2.3750 \\ 3.2500 \end{bmatrix}$$

Agenda

- Linear regression
- The closed-form solution
 - Simple linear regression
 - Polynomial regression
 - Multivariate linear regression
- Solve linear regression by optimization
 - Gradient descent

Solve linear regression by optimization

Linear regression

$$y = f(x, \theta)$$

- Objective function
 - Sum of squared error

$$\min \sum_{i=0}^{n} (y_i - \widehat{y}_i)^2$$

Solve linear regression by optimization

- Example
 - Objective function
 - Sum of squared error

$$E = \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

Solution

$$\min \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

Solve linear regression by optimization

- Example
 - Objective function
 - Sum of squared error

$$E = \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

Solution

$$\min \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

- Basic idea
 - o Take repeated steps in steepest descent direction until the lowest point is reached

- Function requirements
 - Differentiable

- Function requirements
 - Differentiable
 - Convex

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

- Function requirements
 - o Differentiable
 - Convex

- Function requirements
 - o Differentiable
 - Convex

Example
$$f(x) = x^2 - x + 3$$

$$\frac{df(x)}{dx} = 2x - 1, \quad \frac{d^2f(x)}{dx^2} = 2$$

The function has derivative everywhere The second derivative is always > 0

- Function requirements
 - o Differentiable
 - Convex

Example of a semi-convex function with a saddle point

Example
$$f(x) = x^4 - 2x^3 + 2$$

$$\frac{df(x)}{dx} = 4x^3 - 6x^2 = x^2(4x - 6)$$

$$\frac{d^2f(x)}{dx^2} = 12x^2 - 12x = 12x(x-1)$$

- for x < 0: function is convex
- for 0 < x < 1: function is concave
- for x > 1: function is convex again
- x=0: saddle point both first and second derivatives equal to zero

- Basic idea
 - Take repeated steps in steepest descent direction until the lowest point is reached
 - The opposite direction of the **gradient** (or approximate gradient) of the function at the current point

$$abla f(ec{p}) = \left[egin{array}{c} rac{\partial f}{\partial x_1}(ec{p}) \ dots \ rac{\partial f}{\partial x_n}(ec{p}) \end{array}
ight]$$

Gradient

Example

$$f(x,y) = 0.5x^2 + y^2$$

$$abla f(x,y) = \left[egin{array}{c} rac{\partial f}{\partial x}(x,y) \\ rac{\partial f}{\partial y}(x,y) \end{array}
ight] = \left[egin{array}{c} x \\ 2y \end{array}
ight]$$

The gradient at point p(10, 10)

$$abla f(10,10) = \left[egin{array}{c} 10 \ 20 \end{array}
ight]$$

- Main steps
 - 1) Start from an initial guess (or even randomly)
 - 2) Calculate the the gradient of the function at current point
 - 3) Make a scaled step in the opposite direction to the gradient

$$\vec{p}_{n+1} = \vec{p}_n - \eta \nabla f\left(\vec{p}_n\right)$$

- 1) Repeat 2) and 3) until one of the criteria is met
 - -) maximum number of iterations reached
 - -) step size (or the change of the function value) is smaller than a given tolerance

• Example: a 1D function

$$f(x) = x^2 - 4x + 1$$

$$\frac{df(x)}{dx} = 2x - 4$$

The first few steps

$$x_0 = 9,$$
 $f(9) = 46$
 $x_1 = 9 - 0.1 \times (2 \times 9 - 4) = 7.6,$ $f(7.6) = 28.36$
 $x_2 = 7.6 - 0.1 \times (2 \times 7.6 - 4) = 6.48,$ $f(6.48) = 17.07$
 $x_3 = 6.48 - 0.1 \times (2 \times 6.48 - 4) = 5.584,$ $f(5.584) = 9.845$

•••

$$x_{21} = 2.065, \quad f(2.065) = -2.996$$

 $x_{22} = 2.052, \quad f(2.052) = -2.997$

- Parameter update $\vec{p}_{n+1} = \vec{p}_n \eta \nabla f(\vec{p}_n)$
- Learning rate η : scales the gradient and thus controls the step size
 - Too small
 - Too slow to converge; may reach maximum iteration before convergence
 - Too big
 - May not converge to the optimal point (jump around) or even to diverge completely

Learning rate

- Use a fixed learning rate $\vec{p}_{n+1} = \vec{p}_n \eta \nabla f(\vec{p}_n)$
 - Try with a large value like 0.1
 - Try exponentially lower values: 0.01, 0.001, etc.

- Use a fixed learning rate $\vec{p}_{n+1} = \vec{p}_n \eta \nabla f(\vec{p}_n)$
 - Try with a large value like 0.1
 - Try exponentially lower values: 0.01, 0.001, etc.
- Use an adaptive learning rate
 - Start with a larger value
 - Gradual decrease it

- Challenges
 - Learning rate
 - Saddle points
- Global minimum is not guaranteed

Advanced methods

- Newton's method
 - Second-order derivative is used
 - Take a more direct route

Gradient descent

$$f(x_k+t) \approx f(x_k) + f'(x_k)t$$

Newton's method

$$f(x_k+t)pprox f(x_k)+f'(x_k)t+rac{1}{2}f''(x_k)t^2$$

Green: Gradient descent Red: Newton's method

Solve linear regression using GD

- Objective function
 - Always convex

$$f(a,b) = \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

What's next?

• Next lecture: Bayesian classification & logistic regression

