Типовой расчет

выполнил ст. гр. ***** Петров Ю.А.

Задача №11

Вариант ХХ

1 Условие

По выборке двумерной случайной величины:

- вычислить оценку коэффициента корреляции;
- прлверить гипотезу об отсутствии корреляционной зависимости ($\alpha = 0.05$);
- вычислить параметры линии регрессии α_0 и α_1 ;
- построить диаграмму рассеивания и линию регрессии;

Исходные данные для варианта XX приведены в таблице 1.

Таблица 1 – Двумерная выборка

(-0.68; -0.26)	(-4.03; -2.32)	(-0.72; 0.47)	(1.25; 0.82)	(1.27; -0.81)
(-3.57; 0.46)	(3.00; -2.85)	(-2.19; 2.71)	(-4.72; 0.48)	(4.38; 2.77)
(1.16; 2.37)	(-1.04; 2.03)	(-0.63; 1.74)	(-0.07; -0.30)	(-1.55; 1.85)
(1.57; -0.10)	(-0.27; -0.84)	(-1.92; -0.17)	(-0.80; -0.27)	(-0.30; 3.87)
(-2.51; -1.20)	(0.21; 0.36)	(2.99; 2.78)	(2.26; 2.43)	(1.95; 0.79)
(3.27; 0.62)	(-0.40; 2.71)	(-0.53; 1.01)	(0.16; 2.11)	(3.07; 0.47)
(-0.87; -2.17)	(2.41; -0.85)	(-0.52; -1.54)	(0.99; -0.26)	(0.57; 1.41)
(1.47; -0.41)	(5.76; -1.11)	(-1.16; 0.95)	(-1.22; -3.60)	(3.13; 2.46)
(0.90; 0.79)	(0.77; -3.32)	(-0.80; -1.46)	(1.48; -0.69)	(0.18; 0.25)
(2.08; 2.50)	(-0.99; -2.73)	(-1.33; 1.70)	(-2.36; -2.75)	(-1.82; -2.29)

2 Решение

2.1 Вычисление точечных оценок параметров двумерной выборки

Вычислим оценки математических ожиданий по каждой переменной.

$$m_X^* = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i,$$
 $m_Y^* = \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i,$ (1) $m_X^* = 0.1856,$ $m_Y^* = 0.2122.$

Вычислим оценки дисперсий по каждой переменной.

$$D_X^* = S_0^2(x) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2,$$

$$D_Y^* = S_0^2(y) = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2,$$
(2)

$$D_X^* = 4.4893, \ D_Y^* = 3.3579.$$

Вычислим оценку корреляционного момента:

$$K_{XY}^* = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}),$$

$$K_{XY}^* = 0.7663.$$
(3)

Найдем оценку коэффициента корреляции:

$$R_{XY}^* = \frac{K_{XY}^*}{\sqrt{S_0^2(x) \cdot S_0^2(y)}},$$

$$R_{XY}^* = \frac{0.7663}{\sqrt{4.4893 \cdot 3.3579}} = 0.1974.$$
(4)

2.2 Вычисление интервальной оценки коэффициента корреляции

Вычислим интервальную оценку коэффициента корреляции с надёжностью $\gamma=0.95$ по следующей формуле:

$$I_{\gamma}(R_{XY}) = \left[\frac{e^{2a} - 1}{e^{2a} + 1}; \frac{e^{2b} - 1}{e^{2b} + 1}\right]. \tag{5}$$

Для этого в таблице функции Лапласа найдем значение, равное $\frac{\gamma}{2}=0.475$ и определим значение аргумента, ему соответствующее:

$$z_{0.95} = arg\Phi(0.475) = 1.96.$$

Для вычисления интервальной оценки коэффициента корреляции найдем вспомогательные значения a,b по следующим формулам:

$$a = 0.5 \cdot ln \left(\frac{1 + R_{XY}^*}{1 - R_{XY}^*} \right) - \frac{z_{\gamma}}{\sqrt{n - 3}},$$

$$b = 0.5 \cdot ln \left(\frac{1 + R_{XY}^*}{1 - R_{XY}^*} \right) + \frac{z_{\gamma}}{\sqrt{n - 3}},$$
(6)

$$a = -0.0859, \ b = 0.4859.$$

Таким образом, доверительный интервал для коэффициента корреляции имеет вид:

$$I_{\gamma}(R_{XY}) = \left[\frac{e^{2a} - 1}{e^{2a} + 1}; \frac{e^{2b} - 1}{e^{2b} + 1}\right],$$

$$I_{\gamma}(R_{XY}) = [-0.0857; 0.4509]$$
(7)

2.3 Проверка гипотезы об отсутствии корреляционной зависимости

Выдвинем двухальтернативную гипотезу об отсутствии корреляционной зависимости между величинами X и Y:

- $-H_0-R_{XY}=0$: между величинами X и Y корреляционная зависимость отсутствует;
- $-H_1-R_{XY} \neq 0$: между величинами X и Y существует корреляционная зависимость.

Так как объем выборки велик ($n \ge 50$), то вычислим значение критерия по формуле:

$$Z = \frac{|R_{XY}^*| \cdot \sqrt{n}}{1 - (R_{XY}^*)^2},\tag{8}$$

$$Z = 1.4236.$$

Определим значение Z_{α} из таблицы функции Лапласа ($\alpha=0.05$):

$$Z_{0.05} = 1.96.$$

Вывод: так как $Z=1.4236 < notation > Z_{0.05}$, то гипотеза H_0 об отсутствии корреляционной зависимости между величинами X и Y принимается (отклоняется).

2.4 Построение линии регрессии

Уравнение линии регрессии имеет следующий вид:

$$\overline{y}(x) = a_0^* + a_1^* x, \tag{9}$$

где $a_1^* = \frac{K_{XY}^*}{S_0^2(x)}, \ a_0^* = \overline{y} - a_1^* \cdot \overline{x}$ — коэффициенты линии регрессии.

Найдем значения a_1^*, a_0^* :

$$a_1^* = 0.1707, \ a_0^* = 0.1805$$

Таким образом, линия регрессии примет вид:

$$\overline{y}(x) = 0.1805 + 0.1707 \cdot x \tag{10}$$

График линии регрессии изображен на рисунке 1.

Рисунок 1 – График линии регрессии для двумерной случайной величины