CALCULO AVANZADO / MATEMATICA AVANZADA

TIPOS DE SUCESIONES

SUCESIONES MONOTONAS.

Una clase muy especial de sucesiones son las llamadas sucesiones monótonas que se definen así:

a) Creciente: $a_1 < a_2 < a_3 < a_4 < \cdots \ a_{n-1} < a_n$ b) Decreciente: $a_1 > a_2 > a_3 > a_4 > \cdots \ a_{n-1} > a_n$ c) No decreciente: $a_1 \le a_2 \le a_3 \le a_4 \le \cdots \ a_{n-1} \le a_n$ d) No creciente: $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots \ a_{n-1} \ge a_n$

Ejemplo: Determine qué tipo de sucesión monótona se presenta en cada caso:

i) 4, 6, 8, 10, ... (Monótona creciente)

ii) 5, 5, 4, 4, 3, 3, 3, ... (Monótona no creciente)

iii) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ (Monótona decreciente)

iv) $-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \dots$ (No es monótona)

SUCESIONES ACOTADAS.

Definición 1: Se dice que la sucesión $\{a_n\}$ esta acotada superiormente si existe un numero M tal que $a_n \leq M \ \forall \ n$

Definición 2: Se dice que la sucesión $\{a_n\}$ esta acotada inferiormente si existe un numero m tal que $a_n \ge m \ \forall \ n$

Definición 3: Se dice que la sucesión $\{a_n\}$ esta acotada, si lo es superior e inferiormente. En otras palabras, la sucesión $\{a_n\}$ esta acotada si existe un numero B tal que: $|a_n| \le B$ o bien que $-B \le a_n \le B \ \forall \ n$

*Nota: $\forall n$ se interpreta como "para todo valor de n"

Ejemplos:

1. ¿Será la sucesión $\{n\}$ acotada?

Al desarrollar la sucesión se obtiene que: $\{n\} = 1, 2, 3, 4, ...$

Eso significa que los valores de la sucesión comienzan en 1 y terminaran en infinito.

Por lo tanto, <u>se concluye que esta acotada inferiormente en 1 (valor mas pequeño que tomara toda la sucesión) pero no hay "limite" superior.</u>

 $1 \le n < \infty$ o también podemos escribirlo como: $0 < n < \infty$

2. Determine donde esta acotada la sucesión $\left\{\frac{n}{n+1}\right\}$

Al desarrollar la sucesión se obtiene que: $\left\{\frac{n}{n+1}\right\} = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$

Este desarrollo solamente nos indica que comienza en ½ pero ira aumentando poco a poco, por lo que debemos analizar si tendrá un límite superior en algún momento, con ello podemos determinar en qué valor converge.

$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right) = 1$$

Por lo que los términos de la sucesión estarán entre $\frac{1}{2}$ y 1, así que <u>se concluye que esta acotada inferiormente en $\frac{1}{2}$ y superiormente en 1.</u>

$$1/2 \le \frac{n}{n+1} < 1$$
 o también podemos escribirlo como: $0 < \frac{n}{n+1} < 1$

SUCESIONES PARTICULARES.

Como su nombre lo dice son sucesiones que tienen peculiaridades en comparación con las sucesiones vistas con anterioridad. Entre ellas se encuentran:

1. La sucesión de Fibonacci debe cumplir:

$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2} \ \forall \ n \ge 3$

Y está definida por: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

*Se recomienda que el estudiante elabore un cuadro donde puede evaluar y verificar que la sucesión iterada da como resultado la sucesión anterior.

2. La sucesión $\{r^n\}$ es convergente cuando $-1 < r \le 1$

Ya que:
$$\lim_{n \to \infty} r^n = \begin{cases} 0, & para - 1 < r < 1 \\ 1, & para r = 1 \end{cases}$$

- 3. Sí $\lim_{n\to\infty}|a_n|=0$, entonces Sí $\lim_{n\to\infty}a_n=0$
- 4. Por la definición del número e la sucesión $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ converge, ya que $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$

*Se recomienda que el estudiante realice los límites de los numerales 2 y 4 para comprobar dichas particularidades.