2.5. Selang/Interval

Himpunan bagian dari bilangan Real yang merupakan himpunan takhingga dapat dinyatakan dalam bentuk selang. Misalkan a, $b \in \mathbf{R}$ dan a < b, maka

1) $(a,b) = \{x \in \mathbf{R} \mid a < x < b\}$ disebut selang buka.

$$(a,b) = \{x \in \mathbf{R} \mid a < x < b\}$$
 adalah terbatas

a dan b titik-titik ujung dari selang buka (a,b), tetapi a dan b tidak termasuk dalam selang.

2) $[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ disabut selang tutup.

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$
 adalah terbatas.

a dan b titik-titik ujung dari selang tutup [a,b], tetapi a dan b termasuk dalam selang.

3) $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$ disebut selang setengah buka.

$$(a,b] = \{x \in \mathbf{R} \mid a < x \le b\}$$
 adalah terbatas.

a dan b titik-titik ujung dari selang setengah buka (a,b], tetapi a *tidak pada selang* dan b *termasuk dalam selang*.

4) $[a,b) = \{x \in \mathbf{R} \mid a \le x < b\}$ disebut selang setengah buka.

$$[a,b) = \{x \in \mathbf{R} \mid a \le x < b\}$$
 adalah terbatas.

a dan b titik-titik ujung dari selang setengah buka [a,b), a *terletak dalam selang* sedangkan b *tidak pada selang*.

5) $(b,+\infty) = \{x \in \mathbb{R} \mid x > b\}$ disebut selang buka tak hingga

$$(b,+\infty) = \{x \in \mathbf{R} \mid x > b\}$$
 adalah tak terbatas.

$$(b,+\infty) = \{x \in \mathbf{R} \mid x > b\}$$
 merupakan sinar buka.

6) $(-\infty,a) = \{x \in \mathbf{R} \mid x < a\}$ disebut selang buka tak hingga $(-\infty,a) = \{x \in \mathbf{R} \mid x < a\} \text{ adalah tak terbatas}.$

 $(-\infty,a) = \{x \in \mathbf{R} \mid x < a\}$ merupakan sinar buka.

7) $[b,+\infty) = \{x \in \mathbf{R} \mid x \ge b\}$ disebut selang tutup tak hingga $[b,+\infty) = \{x \in \mathbf{R} \mid x \ge b\}$ adalah tak terbatas. $[b,+\infty) = \{x \in \mathbf{R} \mid x \ge b\}$ merupakan sinar tutup.

b merupakan titik pangkal dari sinar.

8) $(-\infty,b] = \{x \in \mathbf{R} \mid x \le b\}$ disebut selang tutup tak hingga $(-\infty,b] = \{x \in \mathbf{R} \mid x \le b\}$ adalah tak terbatas.

 $(-\infty,b] = \{x \in \mathbb{R} \mid x \le b\}$ merupakan sinar tutup.

b merupakan titik pangkal dari sinar.

9) $(-\infty.+\infty) = \mathbf{R}$ adalah tak terbatas.

10) $(a,a) = \{ \}$ adalah terbatas.

 $[a,a] = \{a\}$ adalah terbatas.

a termasuk dalam selang.

Selain selang di atas dikenal juga

$$[0,1] = \{ \mathbf{x} \in \mathbf{R} \mid 0 \le \mathbf{x} \le 1 \}$$

adalah selang satuan dan dilambangkan dengan I.

Interval-menyarang

Suatu barisan interval-interval $\, I \, , \, n \in A \,$ merupakan interval menyarang jika memenuhi hal berikut:

$$I_1 \ \supseteq I_2 \ \supseteq I_3 \ \supseteq ... \ \supseteq I_n \ \supseteq I_{n+1} \ \supseteq ...$$

Contoh 1:
$$I = [0, 1/n]$$

$$I_1 = [0, 1], I_2 = [0, 1/2], I_3 = [0, 1/3] \dots I_n = [0, 1/n]$$

Jelas I_n merupakan sarang interval, karena memenuhi $I_1\supseteq I_2\supseteq I_3\supseteq...\supseteq I_n\supseteq I_{n+1}\supseteq...$

Lebih lanjut
$$\bigcap_{n=1}^{\infty} I_n = \{0\}$$
 dan $\bigcup_{n=1}^{\infty} I_n = I_1$.

Contoh 2: I = (0, 1/n)

$$I_1 = (0, 1), I_2 = (0, 1/2), I_3 = (0, 1/3) \dots I_n = (0, 1/n)$$

Jelas I_n merupakan sarang interval, karena memenuhi

$$I_1 \ \supseteq I_2 \ \supseteq I_3 \ \supseteq ... \ \supseteq I_n \ \supseteq I_{n+1} \ \supseteq ...$$

Lebih lanjut
$$\bigcap_{n=1}^{\infty} I_n = \{ \} \text{ (why?) dan } \bigcup_{n=1}^{\infty} I_n = I_1 .$$

Sifat interval menyarang

Jika $I_n=[a_n\,,b_n]$ adalah sarang barisan dari interval-interval tertutup dan terbatas, maka terdapat bilangan $\xi\in\mathbf{R}$ sedemikian hingga $\xi\in I_n$ untuk setiap n elemen \mathbf{A} . Selanjutnya, jika panjang dari $I_n=b_n$ - a_n yang memenuhi inf. $\{b_n-a_n\mid n\in\mathbf{A}\}=0$, maka elemen sekutu dari ξ adalah tunggal.

Bukti:

Karena interval-interval adalah sarang interval, didapat hubungan $I_n \subseteq I$, $\forall n \in \mathbf{A}$ dan berlaku $a_n \leq b_1$, $\forall n \in \mathbf{A}$. Himpunan $\{a_n \mid n \in \mathbf{A}\}$ tak kosong (why?) dan terbatas atas, misal ξ merupakan supremumnya, sehingga dipenuhi $a \leq \xi \ \forall n \in \mathbf{A}$.

Claim $\xi \leq b_n$, $Vn \in \mathbf{A}$. Hal ini dapat dijelaskan dengan menunjukkan untuk nilai n tertentu b_n merupakan batas atas dari himpunan $\{a_k \mid k \in \mathbf{A}\}$.

Selanjutnya ditinjau dua kasus.

- i) jika $n \le k$, diperoleh $I_n \supseteq I_k$ yang mengakibatkan $a_k \le b_k \le b_n$.
- ii) jika k < n, diperoleh $I_k \supseteq I_n$ yang mengakibatkan $a_k \le a_n \le b_n$.

Dengan demikian, disimpulkan bahwa $a_k \leq b_n$; $\forall k \in \mathbf{A}$ dan b_n merupakan batas atas dari himpunan

$$\{a_k \mid k \in \mathbf{A}\}$$
. Oleh sebab itu, $x \le b$, $\forall n \in \mathbf{A}$.

Karena a \leq x \leq b , \forall n \in A, diperoleh x \in I , \forall n \in A.

Jika $h = \inf\{b \mid n \in A\}$ dan analog dengan cara di atas dapat ditunjukkan bahwa $a \le x$ $\forall n \in A \text{ dan } x \le h.$

Kenyataan menunjukkan bahwa

 $x \in I$, $\forall n \in A$ jika dan hanya jika $x \le x \le h$.

Sekarang, anggap bahwa inf $\{(b - a) \mid n \in A\} = 0$.

Maka untuk sebarang $\varepsilon > 0 \exists n \in A \ni 0 \le h - x \le b - a < \varepsilon$.

Menunjuk teorema sebelummya berarti h - x = 0 yang mengakibatkan h = x satu-satunya titik pada I , \forall n \in \mathbf{A} .

Titik Kumpul/Timbun (Cluster Points)

Definisi Titik $x \in \mathbf{R}$ adalah titik kumpul dari $S \subseteq \mathbf{R}$, jika $\forall \varepsilon$ persekitaran $V\varepsilon = (x-\varepsilon, x+\varepsilon)$ dari x memuat *paling sedikit satu titik* dari S *yang berbeda dengan x*.

Definisi ini dapat dinyatakan dengan

Suatu titik x merupakan titik kumpul dari $S \subseteq \mathbb{R}$, jika $\forall n \in \mathbb{A} \exists s \in S \ni 0 < |x - s| < 1/n$.

Contoh:

- 1. Jika S adalah himpunan buka (0,1), maka setiap titik pada interval tutup [0,1] merupakan titik kumpul dai S. ternyata bahwa 0 dan 1 yang bukan elemen S juga merupakan titik kumpulnya.
- 2. Himpunan terhingga tidak mempunyai titik kumpul (why). Himpunan tak terbatas S = A juga tidak mempunyai titik kumpul (why?).
- 3. Himpunan $S = \{1/n \mid n \in A\}$ hanya mempunyai satu titik kumpul yaitu 0 sedangkan tidak satu titikpun dalam S yang merupakan titik kumpulnya

Teorema Bolzano-Weierstrass. Setiap himpunan bagian dari **R** yang tak hingga dan terbatas paling sedikit mempunyai satu titik kumpul.

Bukti. Anggap S adalah himpunan terbatas dan tak hingga. Karena S terbatas maka ada interval tertutup dan terbatas $I_1 = [a,b]$ yang termuat S.

Pembuktian dimulai dengan cara membagi interval atas dua bagian yang sama secara berulang agar menghasilkan barisan sarang interval yang titik sekutunya merupakan titik timbun dari S.

Pertama-tama I₁ *dibagi dua* yang sama menjadi sub interval [a, ½ (a+b)] dan [½(a+b), b], nyatakan satu dari sub interval ini memuat titik-titik tak hingga dari S. Jika hal ini *tidak dipenuhi* menunjukkan bahwa S merupakan *gabungan dari dua himpunan terhingga* dan S himpunan terhingga.

Misalkan I_2 merupakan sub interval sedemikian hingga $S \cap I_2$ adalah tak hingga. Sekarang I_2 dibagi ats dua bagian yang sama seperti sebelumnya, dipilih satu dari sub interval baru misal I_3 sedemikian hingga $S \cap I_3$ adalah infinite set. Cara ini diteruskan hingga diperoleh $I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq ...$ dari sarang interval-interval yang terbatas sedemikian hingga panjang dari I_n adalah $I_n = (b\text{-}a)/2^{n\text{-}1}$ dan $S \cap I_n$ merupakan infinite set $\forall \ n \in A$.

Dengan menerapkan sifat sarang interval diperoleh suatu titik $x \in \bigcap_{n=1}^\infty I_n$. Tinggal menunjukkan bahwa x adalah titik kumpul dari S. Diberikan $\epsilon > 0$ dan $V\epsilon = (x-\epsilon, x+\epsilon)$ adalah ϵ neighborhood dari x, pilih $n \in A$ sedemikian hingga $(b-a)/2^{n-1} < \epsilon$. Karena $x \in I_n$ dan $I_n < \epsilon$, hal ini menunjukkan bahwa $I_n \subseteq V$ (Why?).

 $\label{eq:Karena} Karena\ I_n\ memuat\ titik-titik\ tak\ hingga\ dari\ S\ dan\ \ \epsilon\ neighborhood\ V\ memuat\ titik-titik\ tak\ hingga\ dari\ S\ yang\ berbeda\ dengan\ x,\ maka\ x\ adalah\ titik\ kumpul\ dari\ S\ .$

LATIHAN 2.5

- 1. Jika I = [a,b] dan I' = [a',b'] adalah interval-interval tertutup dan terbatas dalam \mathbf{R} , tunjukkan bahwa $I \subseteq I' \Leftrightarrow a \leq a'$ dan $b \leq b'$.
- 2. Misal I = [0, 1/n] untuk n \in **A**. Tunjukkan bahwa jika x > 0, maka x $\notin \bigcap_{n=1}^{\infty} I_n$.
- 3. Tunjukkan bahwa, jika $J_n = (0,1/n)$ untuk $n \in \mathbf{A}$, maka $\bigcap_{n=1}^{\infty} J_n = \emptyset$
- 4. Tunjukkan bahwa semua titik dalam [0,1] merupakan titik kumpul dari (0,1).
- 5. Tunjukkan secara rinci bahwa himpunan terhingga tidak mempunyai titik kumpul.

2.6. Himpunan Buka dan Tutup dalam R (Open and closed set in R).

Definisi 2.6.1

- i. Misal $G \subseteq \mathbf{R}$ dikatakan himpunan buka dalam \mathbf{R} jika $\forall \in G \exists$ persekitaran V dari $x \ni V \subset G$.
- ii. Misal $F \subseteq \mathbf{R}$ dikatakan himpunan tutup dalam \mathbf{R} jika komplemen $\mathbf{\ell}$ (F) = \mathbf{R} F adalah himpunan buka dalam \mathbf{R} .

Untuk menunjukkan bahwa $G \subseteq R$ adalah *himpunan buka* cukup dengan menunjukkan bahwa setiap titik dalam G mempunyai persekitaran ε yang termuat dalam G. Kenyataannya, G himpunan buka dalam G an G sehingga G bermuat dalam G bermu

 $F \subseteq \mathbf{R}$ adalah *himpunan tutup* cukup dengan menunjukkan bahwa setiap titik $y \notin F$ mempunyai persekitaran yang disjoint dengan F. Kenyataannya, F adalah himpunan tutup dalam **R** *jika dan hanya jika* terdapat $\varepsilon > 0$ sehingga $F \cap (y - \varepsilon, y + \varepsilon) = \phi$.

Contoh:

- a. Himpunan bilangan real $\mathbf{R} = (-\infty, +\infty)$ adalah himpuan buka.
- b. B = [0, 1) bukan himpunan buka (why?)
- c. C = [0,1] bukan himpunan buka (why?)
- d. C = [0,1] adalah himpunan tutup, sebab komplemen dari C adalah himpuan buka.
- e. Himpunan kosong merupakan himpunan buka, juga himpunan tutup (why?).

3.6.1. Sifat-sifat Himpunan Buka

- a. Gabungan dari sebarang koleksi dari himpunan bagian buka dalam \mathbf{R} adalah himpunan buka.
- b. Irisan dari koleksi terhingga dari himpunan buka adalah himpunan buka.

Bukti.

a. Misal { $G_{\lambda} \mid \lambda \in \Lambda$ } adalah famili dari himpunan-himpunan buka dalam \mathbf{R} dan misal G adalah gabungannya. Pandang $x \in G$. Berdasar definisi gabungan $x \in G\lambda_0$ untuk suatu $\lambda_0 \in \Lambda$. Karena $G\lambda_0$ himpunan buka , maka ada neighborhood V dari x sedemikian hingga $V \subseteq G\lambda_0$. Diketahui $G\lambda_0 \subseteq G$ dan $V \subseteq G$ serta x diambil sebarang elemen dari G, sehingga dapat disimpulkan bahwa G adalah himpunan buka. Dengan demikian gabungan dari koleksi himpunan buka

adalah himpunan buka.

b. Anggap G_1 dan G_2 adalah himpunan buka dan $G = G_1 \cap G_2$. Untuk membuktikan G adalah himpunan buka, pandang x adalah sebarang elemen dari G. Berdasar definisi irisan himpunan, $x \in G$ berarti $x \in G_1$ dan $x \in G_2$. Karena G_1 buka, maka ada $\varepsilon_1 > 0$ sedemikian hingga $(x - \varepsilon_1 , x + \varepsilon_1)$ termuat dalam G_1 (why?) Karena G_2 juga himpunan buka maka ada $\varepsilon_2 > 0$ sedemikian hingga $(x - \varepsilon_2 , x + \varepsilon_2)$ termuat dalam G_2 . Selanjutnya ambil $\varepsilon > 0$ yang paling kecil dari ε_1 dan ε_2 . Dengan demikian terdapat ε neighborhood dari x, yaitu $U = (x - \varepsilon , x + \varepsilon)$ yang memenuhi $U \subseteq G_1$ dan $U \subseteq G_2$. Dengan demikian dipenuhi $u \subseteq G_2$. Karena $u \in G_2$. Karena $u \in G_3$ dan memenuhi $u \in G_3$ maka disimpulkan bahwa $u \in G_3$ adalah himpunan buka di $u \in G_3$.

Tinggal menunjukkan apakah interseksi dari sebarang himpunan buka yang berhingga juga merupakan himpunan buka dan apakah interseksi dari himpunan buka yang tak hingga juga merupakan himpunan buka.

Corolarry 2.6.1:

- a. Interseksi dari sebarang koleksi himpunan tutup dalam R adalah himpunan tutup.
- b. Gabungan dari koleksi himpunan tutup yang terhingga dalam R adalah himpunan tutup.

 $\begin{aligned} \textbf{Bukti.} \ \text{Jika} \ \{ F\lambda \mid \lambda \in \Lambda \ \} \ \text{adalah famili dari himpunan tutup dalam} \ \textbf{R} dan \ F = \bigcap_{\lambda \in \Lambda} F\lambda \ , \\ \text{maka} \ \textbf{\ell} \ \ (F_\lambda) = \bigcup_{\lambda \in \Lambda} \ \textbf{\ell} \ \ (F_\lambda) \ \text{adalah gabungan dari himpunan-himpunan buka dalam} \ \textbf{R}. \ \text{Dengan} \\ \text{demikian} \ \textbf{\ell} \ \ (F_\lambda) \ \text{adalah himpunan buka dalam} \ \textbf{R}. \ \text{Berdasar teorema sebelumnya yaitu jika} \ \textbf{\ell} \ \ (F_\lambda) \\ \text{merupakan himpunan buka dalam} \ \textbf{R}, \ \text{maka} \ F \ \text{adalah} \ \text{himpunan tutup dalam} \ \textbf{R}. \end{aligned}$

Jadi, interseksi dari sebarang koleksi himpunan tutup dalam ${\bf R}$ adalah himpunan tutup.

a. Jika F₁, F₂, ..., Fn adalah himpunan-himpunan tutup dalam R, dan misal F = F₁ ∪ F₂ ∪ ... ∪ Fn. Dengan menerapkan identitas dari de Morgan, maka komplemen dari F adalah & (F) = & (F₁) ∩ & (F₂) ... ∩ & (Fn).
Karena & (Fi) adalah himpunan buka dan berdasar teorema sebelumnya, maka & (F) merupakan himpunan buka. Dengan demikian F adalah himpunan tutup.

Contoh-contoh:

- 1. Misal $G_n = (0, 1 + 1/n)$ untuk $n \in \mathbf{A}$, maka G_n adalah himpunan buka untuk setiap $n \in \mathbf{A}$. Tetapi irisan $G = \bigcap_{n=1}^{\infty} G_n$ adalah interval (0, 1] dalam \mathbf{R} yang tidak buka.
- 2. Misal $F_n = [1/n, 1]$ untuk $n \in \mathbf{A}$, maka F_n adalah himpunan tutup untuk setiap $n \in \mathbf{A}$. Tetapi gabungan

$$F = \bigcup_{n=1}^{\infty} F_n$$
 adalah interval (0, 1] dalam **R** yang tidak tutup.

Teorema 2.6.2. Himpunan bagian dari **R** adalah buka **jika dan hanya jika** gabungan dari interval-interval buka terpisah adalah terbilang.

Bukti. Anggap bahwa $G \neq \emptyset$ adalah himpunan buka dalam \mathbf{R} dan $x \in G$. Misal $A_x = \{a \in \mathbf{R} \mid (a,x]\} \subseteq G$ dan $B_x = \{b \in \mathbf{R} \mid [x,b)\} \subseteq G$. Karena G buka, maka A_x dan B_x tidak kosong (why?)

Jika himpunan $A_x\,$ terbatas bawah, ditentukan $a_x=\inf A_x$. Jika $A_x\,$ tak terbatas bawah, ditentukan $a_x=$ - ∞

Dalam kasus yang lain $a_x \neq G$. Jika himpunan B_x terbatas atas, ditentukan $b_x = \sup B_x$. Jika B_x tak terbatas atas, ditentukan $b_x = +\infty$. Dalam kasus yang lain $b_x \neq G$.

Sekarang didefinisikan $I_x = (a_x , b_x)$, jelas bahwa I_x adalah *interval buka* yang memuat x.

Klaim bahwa $I_x \subseteq G$, untuk menunjukkan bahwa $I_x \subseteq G$ dimisalkan $y \in I_x$ dan anggap bahwa y < x. Berdasar definisi dari a_x , maka terdapat $a' \in A$ dengan a' < y, hal ini menunjukkan bahwa $y \in (a', y] \subseteq G$. Dengan cara yang sama, jika $y \in I_x$ dan x < y maka ada $b' \in B_x$ dengan y < b' dan dipenuhi bahwa $y \in [x, b') \subseteq G$. Karena y sebarang elemen dari I_x , maka $I_x \subseteq G$. Karena x adalah sebarang elemen dari x0, disimpulkan bahwa x1, x2, x3.

Pada sisi lain, karena $\forall x \in G$ terdapat interval buka I_x dengan $x \in I_x \subseteq G$, juga $G \subseteq \bigcup_{x \in G} I_x$ akibatnya $G = \bigcup_{x \in G} I_x$.

Klaim bahwa jika x, y \in G dan x \neq y, maka $I_x = I_y$ atau $I_x \cap I_{y=} \phi$ Untuk membuktikannya anggap bahwa

 $z \in I_x \cap I_y$, yang memenuhi $a_x < z < b_y$ dan $a_y < z < b_x$. (Why?) Akan ditunjukkan

bahwa $a_x = a_y$, .Jika $a_x \neq a_y$, maka berdasar sifat Trichotomy (i) $a_x < a_y$ atau (ii) $a_y < a_x$. Dalam kasus (i) maka $a_y \in I_{x=(a_x,b_x)} \subseteq G$.

Hal ini menimbulkan kontradiksi dengan kenyataan bahwa $a_x \not\in G$. Karena haruslah $a_x = a_y$ dengan cara dan alasan yang sama diperoleh $b_x = b_y$. Kesimpulan yang diambil jika $I_x \cap 1_y \neq \phi$, maka $I_x = I_y$

Tinggal menunjukkan bahwa koleksi dari interval-interval yang berbeda $\{Ix: x \in G\}$ adalah terbilang. Untuk menunjukkannya diambil himpunan bilangan rasional $\mathbf{Q} = \{r_1, r_2, ..., r_n, ...\}$ Berdasar teorema kepadatan bahwa *setiap interval I_x* memuat bilangan-bilangan rasioanal; **dipilih** bilangan rasional dalam I_x dengan indeks n terkecil dalam \mathbf{Q} yaitu $r_{n(x)} \in \mathbf{Q}$ *sedemikian hingga* $I_{r n(x)} = I_{x}$, dan n(x) adalah indeks terkecil n sedemikian hingga $I_{m} = I_{x}$. Dengan demikian himpunan dari interval-interval yang berbeda I_{x} , $x \in G$ berkorespoindensi 1-1 dengan suatu himpunan bagian dalam \mathbf{A} (segmen awal dalam \mathbf{A}). Hal ini menunjukkan bahwa himpunan dari nterval-interval yang berbeda adalah terbilang/countable.

Teorema 2.6.3. Himpunan bagian dari R adalah te tutup jika dan hanya jika memuat semua titik kumpulnya.

Bukti. Misal F adalah suatu himpunan tertutup dalam R and misal x adalah suatu titik kumpul dalam F; akan ditunjukkan bahwa $x \in F$. Jika $x \notin \Phi$, maka x adalah elemen dari himpunan buka ℓ (F). Karena itu terdapat suatu persekitaran V dari x sedemikian hingga $x \in \ell$ (F). Akibatnya $x \in \ell$ hal ini menunjukkan suatu kontradiksi dengan asumsi bahwa $x \in \ell$ is suatu titik kumpul dalam F.

Akibatnya, misal F adalah suatu himpunan bagian dalam **R** memuat semua semua titik kumpulnya; selanjutnya ditunjukkan bahwa ℓ (F) adalah buka. Jika $y \in \ell$ (F), maka y bukan suatu titik kumpul dalam F.

Berdasar definisi dari titik kumpul terdapat suatu persekitaran $V\epsilon$ dari y yang tidak memuat satu titik dari F (kecuali y). Karena y ϵ (F), maka $V_{\epsilon} \subseteq \ell$ (F). Karena y sebarang elemen dari ℓ (F), dapat disimpulkan bahwa ℓ (F) adalah himpunan buka dalam \mathbf{R} . Oleh sebab itu F adalah himpunan tutup dalam \mathbf{R} .

LATIHAN 2.6

- 1. Jika $x \in (0,1)$ dan misal ε_x . Tunjukkan bahwa jika $|u-x| < \varepsilon_x$ maka $u \in (0,1)$.
- 2. Tunjukkan bahwa $(0,1] = \bigcap_{n=1}^{\infty} (0,1+1/n)$.
- 3. Jika G himpunan bukan dan $x \in G$. Tunjukkan bahwa A_x dan B_x adalah himpunan-himpunan tidak kosong! (Gunakan teorema 2.6.2)
- 4. Suatu titik $x \in \mathbf{R}$ dikatakan *titik dalam* dari $A \subseteq \mathbf{R}$ maka terdapat suatu persekitaran V dari x sedemikian hingga $V \subseteq A$. Tunjukkan bahwa $A \subseteq \mathbf{R}$ *adalah buka jika dan hanya jika* setiap titik dari A merupakan suatu titik dalam dari A.
- 5. Suatu titik x ∈ R dikatakan titik batas dari A⊆ R jika setiap persekitaran V dari x memuat titik-titik dari A dan titik-titik dari / (A). Tunjukkan bahwa himpunan A dan komplemennya (/ (A)) mempunya titik batas yang sama.
- 6. Tunjukkan bahwa suatu himpunan $G \subseteq \mathbf{R}$ adalah **buka** jika dan hanya jika tidak memuat sebarang titik batasnya.
- 7. Tunjukkan bahwa suatu himpunan $G \subseteq \mathbf{R}$ adalah **tertutup** jika dan hanya jika memuat semua titik-titik batasnya.
- 8. Jika A⊆ **R**, misal A° adalah **gabungan** dari semua himpunan-himpunan buka yang termuat dalam A. Himpunan A° disebut interior dari A. Tunjukkan bahwa A° suatu himpunan buka, yaitu himpunan buka terbesat yang termuat dalam A, dan titik z elemen A° jika dan hanya jika z merupakan suatu titik dalam dari A.
- 9. Misal A, B adalah himpunan-himpunan bagian dalam **R.** Tunjukkan bahwa $A^{\circ} \subseteq A$ dan $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}.$
- 10. Jika A⊆ **R**,, misal **A** adalah irisan dari semua himpunan tertutup yang memuat A; himpunan A disebut *closur/penutup/selimut* dari A. Tunjukkan bahwa A adalah himpunan tertutup, yaitu himpunan tertutup terkecil yang memuat AS, dan w adalah elemen dari A jika dan hanya jika suatu titik dalam atau titik batas dari A.