实验二十七:交流电桥

朱寅杰 1600017721

2018年3月30日

实验中使用的 ZX-96 型电阻箱,其允差为0.1 Ω档 2%,1 Ω档 0.5%,10 Ω及以上档 0.1%。电感箱允差为 2%。电容箱 100nF 档允差为 0.5%,10nF 档允差为 0.65%,1nF 档允差为 2%,0.1nF 档允差为 5%。

27.1 测量电容器的电容与损耗电阻

电路图如书上图 27.2 所示。测量时信号源频率选用 $\omega/2\pi = 999.35 \, \mathrm{Hz}$ 。

测量纸卷电容器时,取 $R_1=R_2=600\,\Omega$,电桥平衡时, $C_0=228.0\,\mathrm{nF}$, $R_0=2.6\,\Omega$,中间电表读数为 $0.29\,\mathrm{mV}$ 。那么电容和损耗电阻就分别是 $228.0\,\mathrm{nF}$ 和 $2.6\,\Omega$,损耗 $\tan\delta=R_CC\omega=3.722\times10^{-3}$ 。

 $600\,\Omega$ 的电阻箱允差为千分之一, $228.0\,\mathrm{nF}$ 的电容箱的允差为 $1.29\,\mathrm{nF}$, $2.6\,\Omega$ 的电阻箱的允差为 $0.022\,\Omega$ 。于是电容测量值的相对不确定度为 $\sqrt{2(0.1\%)^2+(1.29/228)^2}/\sqrt{3}=3.37\times10^{-3}$,故电容测量值为 $(228.0\pm0.8)\,\mathrm{nF}$;电阻测量值的相对不确定度为 $\sqrt{2(0.1\%)^2+(0.022/2.6)^2}/\sqrt{3}=4.95\times10^{-3}$,故电阻测量值为 $(2.600\pm0.001)\,\Omega$ 。损耗角的相对不确定度也由此算出为 3.605×10^{-3} ,损耗角为 $\tan\delta=(3.722\pm0.013)\times10^{-3}$ 。

测量电解电容器时,取 $R_1=500\,\Omega$, $R_2=5\,\mathrm{k}\Omega$,电桥平衡时, $C_0=668.0\,\mathrm{nF}$, $R_0=32.1\,\Omega$,中间电表读数为0.06 mV。那么电容和损耗电阻就分别是6680 nF和3.21 Ω ,损耗 $\tan\delta=R_CC\omega=0.1346$ 。

 $500\,\Omega$ 和 5k 的电阻箱允差为千分之一, $668.0\,\mathrm{nF}$ 的电容箱的允差为 $3.55\,\mathrm{nF}$, $32.1\,\Omega$ 的电阻箱的允差为 $0.042\,\Omega$ 。于是电容测量值的相对不确定度为 $\sqrt{2(0.1\%)^2+(3.55/668.0)^2}/\sqrt{3}=3.18\times10^{-3}$,故电容测量值为 $(6.68\pm0.02)\,\mathrm{\mu F}$;电阻测量值的相对不确定度为 $\sqrt{2(0.1\%)^2+(0.042/32.1)^2}/\sqrt{3}=1.11\times10^{-3}$,故电阻测量值为 $(3.210\pm0.006)\,\Omega$ 。 损耗角的相对不确定度也由此算出为 3.363×10^{-3} ,损耗角为 $\tan\delta=0.1346\pm0.0005$ 。

27.2 测量电感器的电感与电阻

先用麦克斯韦桥测,电路图如书上图 27-4 所示。 $L_0=6\,\mathrm{mH}$, $R_{L0}=4.57\,\Omega$, $R_1=4800\,\Omega$ 。电桥平衡时 $R_2=4784.2\,\Omega$, $R_0=16.4\,\Omega$,电表读数为0.99 mV。故电感测量值为 $L_x=L_0R_1/R_2=6.0198\,\mathrm{mH}$,电阻为 $R_L=21.039\,\Omega$ 。

计算不确定度,电感箱允差为 2%; R_1 和 R_2 都很大,允差直接按千分之一估计。合成允差时,千分之一比起百分之二忽略不计,因此电感测量值的不确定度即为 $2\%/\sqrt{3}=1.155\times 10^{-2}$,写作 $L_x=(6.02\pm0.07)\,\mathrm{mH}$ 。 $16.4\,\Omega$ 的允差为 $0.048\,\Omega$,合成允差得到 R_L 的相对不确定度为 1.55×10^{-3} ,因此写作 $R_L=(21.04\pm0.03)\,\Omega$ 。

再用麦克斯韦-维恩桥测,电路图如书上图 27-3 所示。 $R_1=R_2=100\,\Omega$,电桥平衡时 $R_0=469.7\,\Omega$, $C_0=601.9\,\mathrm{nF}$,电表读数 $0.16\,\mathrm{mV}$ 。故电感测量值为 $L_x=C_0R_1R_2=6.019\,\mathrm{mH}$,电阻测量值为 $R_L=R_1R_2/R_0=21.29\,\Omega$ 。

计算不确定度, R_1 与 R_2 允差按千分之一计, R_0 的允差有0.519 Ω , C_0 的允差有3.065 nF。因此 $L_x=(6.02\pm0.02)\,\mathrm{mH}$, $R_L=(21.29\pm0.02)\,\Omega$ 。 $Q=\omega C_0R_0=1.775\pm0.005$ 。

实验时二者收敛速度差不多。

27.3 测量磁环的电感与电阻

测量的样品是 11 号磁环, $D=8.56\,\mathrm{cm}$, $S=2.00\,\mathrm{cm}^2$,共计 160 匝。使用麦克斯韦-维恩桥(图 27-3)进行测量, $R_1=R_2=100\,\Omega$ 。数据记录见下表。

f/kHz	0.1	0.4	0.7	1	2	3	5	7	9	10
R_0/Ω	6102.6	4701.6	4081.6	3707.7	3036.8	2465.8	1999.8	1957.8	1689.7	1772.6
C_0/nF	71.0	33.5	24.2	19.9	12.6	11.6	8.9	5.7	5.6	4.2
L/mH	0.710	0.335	0.242	0.199	0.126	0.116	0.089	0.057	0.056	0.042
R_L/Ω	1.63865	2.12694	2.45002	2.69709	3.29294	4.05548	5.0005	5.10777	5.91821	5.64143
\overline{Q}	0.27224	0.39585	0.43443	0.46359	0.48084	0.53916	0.55915	0.49082	0.53508	0.46778
μ	29.67578	14.00195	10.11484	8.31758	5.26641	4.84844	3.71992	2.38242	2.34062	1.75547

(a) 线圈磁导率(与电感成正比)随频率的变化。

(b) 线圈的电阻与 Q 值随频率的变化。实线为 Q 值,虚线为电阻。

27.4 思考题

电桥中间的电表示数正比于 $|Z_1Z_4-Z_2Z_3|$ 。在麦克斯韦-维恩桥中, Z_2Z_3 是一个已知的纯电阻,调节 R_0 和 C_0 改变 Z_4 的实部和虚部即可。简单的数学计算表明控制两个参量中其中一个而改变另一个, Z_4 会在复平面中过原点的一个圆上移动,这个圆与坐标轴相切(控制 R_0 不变则与实轴相切,控制 C_0 不变则与虚轴相切)。反复迭代调节,每次都使得 Z_4 距离目标点最近就行。