1. Теоретический минимум

- 1. Классическое определение вероятности
- 2. Определение условной вероятности
- 3. Определение независимости случайных событий
- 4. Формула полной вероятности
- 5. Формула Байеса
- 6. Функция распределения случайной величины. Определение и свойства.
- 7. Функция плотности. Определение и свойства.
- 8. Математическое ожидание. Определения для дискретного и абсолютно непрерывного случаев. Свойства.
- 9. Дисперсия. Определение и свойства.
- 10. Законы распределений. Определение, E(X), Var(X):
 - а) Биномиальное распределение
 - б) Распределение Пуассона
 - в) Геометрическое распределение
 - г) Равномерное распределение
 - д) Экспоненциальное распределение

2. Задачный минимум

- 1. Пусть $\mathbb{P}(A) = 0.3, \mathbb{P}(B) = 0.4, \mathbb{P}(A \cap B) = 0.1.$ Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 2. Пусть $\mathbb{P}(A) = 0.5, \mathbb{P}(B) = 0.5, \mathbb{P}(A \cap B) = 0.25$. Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 3. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово КОРТ.

- 4. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово РОТА.
- 5. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что шар, взятый наугад из выбранной урны, окажется белым?
- 6. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что была выбрана первая урна, если шар, взятый наугад из выбранной урны, оказался белым?
- 7. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Найдите вероятность совершения ошибки при очередной банковской операции в этом отделе.
- 8. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Известно, что при очередной банковской операции была допущена ошибка. Найдите вероятность того, что ошибку допустил неопытный сотрудник.
- 9. Пусть случайная величина X имеет таблицу распределения:

X	-1	0	1
\mathbb{P}_X	0.25	c	0.25

Найдите

- а) константу c
- б) $\mathbb{P}(\{X \ge 0\})$
- B) $\mathbb{P}(\{X < -3\}])$
- r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
- д) функцию распределения случайной величины X
- е) имеет ли случайная величина X плотность распределения?
- 10. Пусть случайная величина X имеет таблицу распределения:

X	-1	0	1
\mathbb{P}_X	0.25	c	0.25

- a) константу c
- G) $\mathsf{E}(X)$
- в) $E(X^2)$
- r) Var(X)
- \mathbf{z}) $\mathbf{E}(|X|)$

11. Пусть случайная величина X имеет таблицу распределения:

$$egin{array}{ccccccc} X & -1 & 0 & 1 \\ \mathbb{P}_X & 0.25 & c & 0.5 \\ \end{array}$$

Найдите

- а) константу c
- б) $\mathbb{P}(\{X \ge 0\})$
- B) $\mathbb{P}(\{X < -3\}])$
- r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
- д) функцию распределения случайной величины X
- е) имеет ли случайная величина X плотность распределения?
- 12. Пусть случайная величина X имеет таблицу распределения:

$$egin{array}{ccccc} X & -1 & 0 & 1 \\ \mathbb{P}_X & 0.25 & c & 0.5 \\ \end{array}$$

- а) константу c
- G) $\mathsf{E}(X)$
- в) $E(X^2)$
- r) Var(X)
- д) E(|X|)
- 13. Пусть случайная величина X имеет биномиальное распределение с параметрами n=4 и $\mathbb{P}=\frac{3}{4}.$ Найдите
 - a) $\mathbb{P}(\{X=0\})$
 - б) $\mathbb{P}(\{X>0\})$
 - в) $\mathbb{P}(\{X < 0\})$
 - r) $\mathrm{E}(X)$
 - д) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина \boldsymbol{X}
- 14. Пусть случайная величина X имеет биномиальное распределение с параметрами n=5 и $\mathbb{P}=\frac{2}{5}.$ Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X>0\})$
 - в) $\mathbb{P}(\{X < 0\})$
 - r) $\mathrm{E}(X)$
 - $\mathbf{д}$) Var(X)

- e) наиболее вероятное значение, которое принимает случайная величина X
- 15. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda = 100$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - в) $\mathbb{P}(\{X < 0\})$
 - r) E(X)
 - \mathbf{g}) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина X
- 16. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda = 101$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - в) $\mathbb{P}(\{X < 0\})$
 - r) E(X)
 - \mathbf{g}) Var(X)
 - e) наиболее вероятное значение, которое принимает случайная величина X
- 17. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже выйдет хотя бы один человек.
- 18. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже не выйдет ни один человек.
- 19. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что в течение суток произойдет хотя бы один сбой.
- 20. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что за двое суток не произойдет ни одного сбоя.
- 21. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, & \text{при } x \in [-1;1] \\ 0, & \text{при } x \notin [-1;1] \end{cases}$$

- а) константу c
- б) $\mathbb{P}(\{X \leq 0\})$
- B) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$

д)
$$F_X(x)$$

22. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, \ \mbox{при} \ x \in [-1;1] \ 0, \ \mbox{при} \ x
otin [-1;1] \end{cases}$$

Найдите

- а) константу c
- б) E(X)
- в) $E(X^2)$
- Γ) Var(X)
- \mathbf{g}) $\mathbf{E}(|X|)$

23. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, \ \mathrm{при} \ x \in [0;1] \ 0, \ \mathrm{при} \ x
otin [0;1] \end{cases}$$

Найдите

- а) константу c
- б) $\mathbb{P}(\{X \leq \frac{1}{2}\})$
- B) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$
- д) $F_X(x)$

24. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, \ \mathrm{при} \ x \in [0;1] \ 0, \ \mathrm{при} \ x
otin [0;1] \end{cases}$$

- а) константу c
- б) $\mathrm{E}(X)$
- в) $E(X^2)$
- r) Var(X)
- д) $\mathrm{E}(\sqrt{X})$

Ответы

- 1. a) 0.25
 - б) 0.6
 - в) нет
- 2. a) 0.5
 - б) 0.75
 - в) нет
- 3. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$
- 4. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$
- 5. 0.5
- 6. 0.42
- 7. 0.028
- 8. $\frac{5}{7}$
- 9. a) 0.5
 - б) 0.75
 - в) 0
 - r) 0.5
- 10. a) 0.5
 - б) 0
 - в) 0.5
 - r) 0.5
 - д) 0.5
- 11. a) 0.25
 - б) 0.75
 - в) 0
 - r) 0.5
- 12. a) 0.25
 - б) 0.25
 - в) 0.75
 - r) 0.5
 - д) 0.75
- 13. a) $(\frac{1}{4})^4$

- б) $1 \left(\frac{1}{4}\right)^4$
- в) 0
- r) 3
- д) 0.75
- e) 2, 3
- 14. a) $(\frac{3}{5})^5$
 - б) $1 (\frac{3}{5})^5$
 - в) 0
 - r) 2
 - д) 1.2
 - e) 2
- 15. a) e^{-100}
 - б) $1 e^{-100}$
 - в) 0
 - г) 100
 - д) 100
- 16. a) e^{-101}
 - б) $1 e^{-101}$
 - в) 0
 - г) 101
 - д) 101
- 17. $1 \frac{8^5}{9^5}$
- 18. $\frac{8^5}{9^5}$
- 19. $1 e^{-3}$
- 20. e^{-3}
- 21. a) 0.5
 - б) 0.25
 - в) 0.125
 - r) 1
- 22. a) 0.5
 - б) 0.5
 - B) $\frac{1}{3}$
 - r) $\frac{1}{12}$

- д) 1
- 23. a) 2
 - б) 0.25
 - B) $\frac{3}{4}$
 - r) 1
- 24. a) 2
 - б) 0.5
 - в) 0.5
 - r) 0
 - д) 0.8