Theoretische Informatik

Manuel Strenge

Aplhabete

Mächtig was ist die Decke der Menge: Unendlich=sehr mächtig

Ein Alphabet ist eine endliche, nichtleere Menge von Symbolen

 $\{:),2\}$ -> alphabet

 $\{1,2,3\} -> alphabet$

 $\{1,2,3,\dots\}$ -> kein da nicht endlich

 $\{a,...,b\}$ -> alphabet

 ${a,a,a}-> ja$

- $\Sigma = \{a, b, c\}$ ist die Menge der drei Symbole a, b und c.
- $\Sigma = \{-, +, \cdot, :\}$ ist die Menge der Symbole für die Grundrechenarten.
- $\Sigma_{\mathsf{Bool}} = \{0,1\}$ ist das Boolesche Alphabet.
- lacksquare $\Sigma_{\mathsf{lat}} = \{a, b, c, \dots, z\}$ ist die Menge der lateinischen Kleinbuchstaben.
- N ist kein Alphabet (unendliche Mächtigkeit)

Wort

Ein Wort (Zeichenreihe, String) ist eine endliche Folge von Symbolen eines bestimmten Alphabets

- \underline{abc} ist ein Wort über dem Alphabet Σ_{lat} (oder über $\Sigma = \{a, b, c\}$).
- 100111 ist ein Wort über dem Alphabet $\{0,1\}$.

Leeres Wort

Das leere Wort ist ein Wort, das keine Symbole enthält. Es wird durch das Symbol ε dargestellt und ist ein Wort über jedem Alphabet.

Wörter

Die Länge eines Wortes w ist die Länge des Wortes als Folge, also die Anzahl der Symbole der Folge. Wir bezeichnen diese Länge mit |w|.

- |abc| = 3
- |100111| = 6
- $|\varepsilon| = 0$
- \blacksquare $|Informatik \ ist \ spannend| = 23 \ (Leerzeichen \ sind \ auch \ Symbole!)$

Definition (Häufigkeit eines Symbols in einem Wort)

 $|w|_x$ bezeichnet die absolute Häufigkeit eines Symbols x in einem Wortes w.

- $|abc|_a = 1$
- $|100111|_1 = 4$
- $|\varepsilon|_0 = 0$
- \blacksquare | Informatik ist spannend|_n = 4

Definition (Spiegelung eines Wort)

Mit w^R wird das Spiegelwort zu w bezeichnet.

$$w^R = (x_1, x_2...x_n)^R = x_n...x_2, x_1$$

Es gilt $|w|=|w^R|und|w|_x=|w^R|_xf$ ürallex $\in \Sigma$. Wenn w=wR gilt, dann bezeichnet man w als Palindrom.

- $(abc)^R = cba$
- $(100111)^R = 111001$

Definition (Teilwort)

Wir sagen, dass v ein Teilwort (Infix) von w ist, wenn man w als

$$w = xvy$$

für beliebige Wörter x und yüber \sum schreiben kann

Definition (echtes Teilwort)

Ein echtes Teilwort von w ist jedes Teilwort von w, das nicht identisch mit w ist (in diesem Falle ist x oder y nicht leer).

- \bullet ε , a, b, ab, abb, bb, abba, bba und ba sind die Teilwörter von abba.
- \blacksquare abba ist kein echtes Teilwort von abba (alle anderen ja).

In Programmiersprachen ist der Begriff substring gebräuchlich.

Präfix

Ein Wort v ist ein Präfix von w, wenn

w = xy

Ein echtes Präfix von w ist jedes Präfix von w, das nicht identisch mit w ist (in diesem Fall ist y leer).

- \bullet ε , a, ab, abb und abba sind die Präfixe von abba.
- abba ist kein echtes Präfix von abba (alle anderen ja).

Definition (Suffix)

Ein Wort v ist ein Suffix von w, wenn

w = xv

Ein echtes Suffix von w ist jedes Suffix von w, das nicht identisch mit w ist (in diesem Fall ist x leer).

- \blacksquare abba, bba, ba, a und ε sind die Suffixe von abba.
- \blacksquare abba ist kein echtes Suffix von abba (alle anderen ja).

Definition (Menge aller Wörter der Länge k)

Die Menge aller Wörter der Länge k
 über einem Alphabet \sum wird mit \sum^k bezeichnet.

- Für $\Sigma = \{a, b, c\}$ ist $\Sigma^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$.
- Für $\{0,1\}$ ist $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$.

Definition (Menge aller Wörter (Zeichenreihen))

Die Menge aller Wörter (Kleenesche Hülle) über einem Alphabet \sum wird mit \sum^* bezeichnet. $\sum + = \sum * \varepsilon$ ist die Menge aller nichtleeren Wörter (positive Hülle) über einem Alphabet \sum .

Regex definitionen ursprung von hier.

Für $\{0,1\}$ ist $\Sigma^* = \{\varepsilon,0,1,00,01,10,11,000,001,\ldots\}$. Wörter aus $\{0,1\}^*$ nennt man *Binärwörter*.

Eigenschaften

- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$
- $\Sigma^* = \Sigma^+ \cup \Sigma^0 = \Sigma^+ \cup \{\varepsilon\}$

Definition (Konkatenation)

Definition (Konkatenation) Seien x und y zwei beliebige Wörter. Dann steht

$$x \circ y = xy := (x_1, x_2...x_n, y_1, y_2...y_m)$$

für die Konkatenation (Verkettung) von x und y.

Seien x=01001 und y=110 zwei Wörter. Dann ist xy=01001110 die Konkatenation der Wörter x und y.

Definition (Wortpotenzen)

Sei x ein Wort über einem Alphabet \sum . Für alle $n \in N$ sind Wortpotenzen wie folgt definiert:

$$x^{0} := \varepsilon$$

$$x^{n+1} := x^{n} \circ x = x^{n}x$$

$$a^3 = a^2 a = a^1 a a = a^0 a a a = a a a$$

Definition (Sprache)

Eine Teilmenge $L \subseteq \sum^*$ von Wörtern über einem Alphabet \sum wird als Sprache über \sum bezeichnet.

- Deutsch ist eine Sprache über dem Alphabet der lateinischen Buchstaben, Leerzeichen, Kommata, Punkte . . .
- Programmiersprachen (wie C) sind Sprachen über dem Alphabet des ASCII-Zeichensatzes.
- $\{\varepsilon, 10, 01, 1100, 1010, 1001, 0110, 0011, \ldots\}$ ist die Sprache der Wörter über $\{0, 1\}$ mit der gleichen Anzahl von Nullen und Einsen.

Anmerkungen:

- Sprachen können aus unendlich vielen Wörtern bestehen.
- Wörter müssen aus einem festen, endlichen Alphabet gebildet werden.
- Wörter selber haben eine endliche Länge.

Definition (Konkatenation von Sprachen)

Sind $A \subset \sum^*$ und $B \subset \tau^*$ beliebige Sprachen, dann wird die Menge

$$AB=uv|u\in Aundv\in B$$

Die Sprachen A und B sind wie folgt gegeben:

- lacksquare A enthält alle Binärwörter, die mit 1 beginnen.
- B enthält alle Binärwörter, die mit 0 enden.

Welche der folgenden Wörter sind Elemente von AB?

Wie kann man die Elemente von AB einfach beschreiben?

AB = Menge der geraden Binärzahlen ohne Null

Reguläre Ausdrücke

Reguläre Ausdrücke sind Wörter, die Sprachen beschreiben, also eine Möglichkeit (gewisse) Sprachen endlich zu repräsentieren.

- Die Syntax der regulären Ausdrücke befasst sich mit der Frage, welche Form diese Wörter haben.
- In der Semantik der regulären Ausdrücke wird erklärt, wie man reguläre Ausdrücke als Sprachen interpretiert.

Gegeben: Das Wort 101 über dem Aphabet $\Sigma = \{0, 1, 2, ..., 9\}$

- Die Syntax beschreibt, wie die Symbole des Alphabets zu einem Wort angeordnet bzw. aneinandergereiht werden.
- Aus der Semantik geht hervor, was diese Zeichenreihe bedeutet: Z.B. die Zahl 101 im Zehnersystem, die Zahl 5 im Dualsystem oder einfach nur eine Folge von Symbolen usw.

Ein regulärer Ausdruck, der die Sprache aller Binärwörter der Länge 4 beschreibt:

$$\underbrace{(0|1)}_{0 \text{ oder } 1 \text{ nochmals dreimal}} \underbrace{(0|1)}_{\text{genug}} \underbrace{(0|1)}_{\text{genug}}$$

Ein passender regulärer Ausdruck ist also

Ein regulärer Ausdruck für die Sprache der Binärwörter, die das Teilwort 00 enthalten:

$$\underbrace{(0|1)^*}_{0 \text{ oder } 1 \text{ beliebig oft}} \underbrace{00}_{0 \text{ oder } 1 \text{ beliebig oft}} \underbrace{(0|1)^*}_{0 \text{ oder } 1 \text{ beliebig oft}}$$

Ein passender regulärer Ausdruck ist also

$$(0|1)^*00(0|1)^*$$

Definition (Reguläre Ausdrücke)

Es sei \sum ein beliebiges Alphabet. Die Sprache $RA\sum$ der regulären Ausdrücke über \sum ist wie folgt definiert:

- $\quad \blacksquare \ \varSigma \subset \mathsf{RA}_{\varSigma}$
- $\blacksquare R \in \mathsf{RA}_{\Sigma} \Rightarrow (R^*) \in \mathsf{RA}_{\Sigma}$
- $\blacksquare \ R,S \in \mathsf{RA}_{\varSigma} \Rightarrow (RS) \in \mathsf{RA}_{\varSigma}$
- $\blacksquare R, S \in \mathsf{RA}_{\Sigma} \Rightarrow (R|S) \in \mathsf{RA}_{\Sigma}$

Erläuterungen zur Definition

- Die Sonderzeichen ε und \varnothing sind reguläre Ausdrücke.
- Jedes Symbol aus dem Alphabet \sum ist auch ein regulärer Ausdruck über \sum .

- Ist R ein regulärer Ausdruck über Σ , dann ist auch (R^*) ein regulärer Ausdruck über Σ .
- Sind R und S reguläre Ausdrücke über \sum , dann sind auch (RS) und (R|S) Ausdrücke über \sum .

Eigenschaften und Konventionen:

■ Die Menge RA_{Σ} der regulären Ausdrücke über dem Alphabet Σ ist eine Sprache über dem Alphabet $\{\emptyset, \epsilon, *, (,), |\} \cup \Sigma$.

Elemente von RA $_{\Sigma}$ sind z.B. $\varnothing, \epsilon, a, a^*, a|b, aba, ...$

- Der Lesbarkeit halber werden "überflüssige" Klammern weggelassen.
- Damit reguläre Ausdrücke auch mit (teilweise) weggelassenen Klammen eindeutig lesbar bleiben, gilt folgende Rangfolge der Operatoren:
 - a) "*" vor "Konkatenation" und
 - b) "Konkatenation" vor "|".

Der Ausdruck $ab^*|c$ wird beispielsweise als $((a(b^*))|c)$ gelesen.

Einige reguläre Ausdrücke über dem Alphabet $\{a, b\}$.

- $\blacksquare a^*b$
- \blacksquare $(aa)^*b^*aba$
- $(a|(ab))^*$
- \blacksquare (ab)|(ba)
- a(b(ba))|b

Reguläre Sprachen

Satz (Rechenregeln für reguläre Ausdrücke)

- L(R|S) = L(S|R)
- L(R(ST)) = L((RS)T)
- L(R|(S|T)) = L((R|S)|T)
- L(R(S|T)) = L(RS|RT)
- $L((R^*)^*) = L(R^*)$
- L(R|R) = L(R)

Anwendungen von regulären Ausdrücken:

- Mustersuche in Texten
- Lexikalische Analyse (in Compilern); Erkennung von Schlüsselwörtern ("Token")
- Syntax Test (bei einer einfachen Syntax)

Endliche Automaten

Beispiel (Einstiegsaufgabe: Eintrittskarte Schwimmbad)

Kosten 2.- (mindestens), Automat akzeptiert 0.50, 1.- und 2.-

Ein endlicher Automat besteht aus (elementare Bausteine):

Zuständen

Eingabealphabet

0.50, 1.-,2.-

Übergangsfunktionen

Wie wird die Eingabe eingegeben? -> Der endliche Automat liest das Wort von links nach rechts

Wieviel Speicher steht zur Verfügung? Wie geht man mit dem Speicher um? -> Es gibt keinen Speicher. -> Variablen dürfen nicht benutzt werden. -> Der einzige (gespeicherte) Information ist der aktuelle Zustand.

Wie wird die Ausgabe bestimmt (und ausgegeben)? -> Die Ausgabe erfolgt über akzeptierende Zustände.

Definition (Endlicher Automat)

Ein (deterministischer) endlicher Automat (EA) ist ein Quintupel

$$M = (Q, \Sigma, \delta, q_0, F)$$

- endlichen Menge von Zuständen $Q = \{q_0, q_1, \dots, q_n\} (n \in \mathbb{N})$
- Eingabealphabet $\Sigma = \{a_1, a_2, \dots, a_m\} (m \in \mathbb{N})$
- Übergangsfunktion $\delta: Q \times N \to Q$
- Startzustand $q_0 \in Q$
- Menge der akzeptierenden Zustände $F \subseteq Q$

 $\delta(q,a)=p$ bedeutet: EA wechselt zu p, falls in q Symbol a gelesen wird.

 $A = (Q, \Sigma, \delta, q_0, F)$ mit

■ Zustandsmenge $Q = \{q_0, q_1, q_2, q_3, q_4\}$

lacksquare Eingabealphabet $\varSigma=\{a_1,a_2,a_3\}$

■ Startzustand q_0

 \blacksquare akzeptierende Zustände $F = \{q_4\}$

Eingabe Zustand a_1 a_2 a_3 q_0 q_1 q_2 q_4 ■ Übergangsfunktion δ : q_1 q_2 q_3 q_4 q_2 q_3 q_4 q_4 q_3 q_4 q_4 q_4 q_4 q_4 q_4 q_4

Sind NEAs mächtiger als DEAs?

Es gibt einen DEA, der die Sprache L akzeptiert.

vs

Es gibt einen NEA, der die Sprache L akzeptiert.

Jeder DEA ist ein NEA.

Teilmengenkonstruktion (siehe nächste Folie)

Beweiskonstruktion.

Sei $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ ein NEA

Der dazu äquivalente DEA $D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ wird konstruiert durch:

$$Q_D = \mathcal{P}\left(Q_N\right)$$

(Menge aller Teilmengen von Q_N)

$$F_D = \{ S \in Q_D \mid S \cap F_N \neq \emptyset \}$$

(alle Mengen aus \mathcal{Q}_D , die mindestens einen akzeptierenden Zustand aus \mathcal{F}_N enthalten.)

 $\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$ für $S \in Q_D$ und $a \in \Sigma$ (Menge aller Zustände von D, die von den Zuständen aus S durch Lesen von a erreichbar sind.)

NEAs mit ϵ -Übergängen