

Mathématiques

Classe: BAC

Chapitre: Fonctions Exponentielles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(S) 25 min

5 pts

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{e^x}{e^x + 1}$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Étudier les variation de f.
- 2. Montrer que $A(0, \frac{1}{2})$ est un centre de symétrie pour \mathcal{C}_f .
- 3. Déterminer l'équation de la tangente T au point A.
- 4. Soit $g(x) = \frac{1}{4}x + \frac{1}{2} f(x)$.
 - (a) Montrer que $\forall x \in \mathbb{R}$ on a : $g'(x) = \frac{(e^x 1)^2}{4(1 + e^x)^2}$.
 - (b) Dresser le tableau de variation de g.
 - (c) Déduire le signe de g(x) pour tout réel x.
 - (d) Déterminer la position relative de \mathscr{C}_f et T. Que représente le point A pour \mathscr{C}_f .
- 5. Tracer T et \mathcal{C}_f .

Exercice 2:

(S) 30 min

6 pts

(I) Soit la fonction f définie sur $[-2,+\infty[$ par $f(x)=(ax+b)e^{-x}+1$ avec a et b deux réels.

 \mathcal{C}_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .(unité 1cm) Déterminer a et b tel que le point A(-1,1) un point de la courbe où la tangente à pour coefficient directeur (e).

(II) Soit la fonction \not définie sur $[-2,+\infty[$ par $f(x)=(-x-1)e^{-x}+1$ avec a et b deux réels.

 \mathcal{C}_g sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .(unité 1cm).

- 1. Montrer que $\lim_{x\to +\infty} g(x)=1$. Interpréter le résultat graphiquement.
- 2. Dresser le tableau de variation de g.
- 3. Montrer que \mathscr{C}_g admet un point d'inflexion I qu'on déterminera.

- 4. Déterminer l'équation de la tangente à \mathscr{C}_g au point I.
- 5. Tracer Cg.
- 6. Soit H la fonction définie sur $[-2, +\infty[$ par $H(x) = (\alpha x + \beta)e^{-x}$ avec α et β deux réels.
 - (a) Déterminer α et β pour que H soit une primitive de $x \mapsto g(x) 1$.
 - (b) Déduire une primitive de g qui s'annule en 0.
- (III) Soit la fonction k définie sur $[-2, +\infty[$ par $k(x) = g(x^2)$.
 - 1. Déterminer k'(x).
 - 2. Dresser le tableau de variation de k.

Exercice 3:

(5) 35 min

7 pts

- (I) Soit la fonction g définie sur \mathbb{R} par : $g(x) = 1 xe^x$.
 - 1. Calculer $\lim_{x \to -\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$
 - 2. Étudier g et dresser son tableau de variation.
 - 3. (a) Montrer que l'équation g(x) = 0 admet une unique solution α sur l'intervalle $[-1;+\infty[$.
 - (b) Vérifier que $0,5 < \alpha < 0,6$, puis déduire le signe de g(x) sur \mathbb{R} .
- (II) Soit f définie sur $]-\infty;2]$ par : $f(x)=(x-1)e^x-x-1$. \mathcal{C}_f sa courbe représentative dans un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$.
 - 1. Calculer $\lim_{x \to -\infty} f(x)$
 - 2. (a) Montrer que pour tout $x \in]-\infty;2]$ on a : f'(x) = -g(x)
 - (b) Déduire le signe de f'(x) et dresser son tableau de variation.
 - 3. Montrer que $f(\alpha) = -\frac{\alpha^2 + 1}{\alpha}$ puis donner un encadrement de $f(\alpha)$ à 10^{-2} près.
 - 4. (a) Montrer que $\Delta: y = -x 1$ est une droite asymptote oblique à \mathcal{C}_f au voisinage de $(-\infty)$.
 - (b) Étudier la position relative de Δ et \mathscr{C}_f .
 - 5. (a) Montrer que l'équation f(x)=0 admet deux solutions x_1 et x_2 tel que : $-1,6 < x_1 < -1,5$ et $1,5 < x_2 < 1,6$.
 - (b) Tracer Δ et \mathscr{C}_f .
- 6. Soit h la fonction définie sur \mathbb{R} par : $h(x) = (ax + b)e^x$.
 - (a) Déterminer les deux réels a et b de tel sorte que h soit une fonction primitive de $x \mapsto xe^x$ sur \mathbb{R} .
 - (b) Déduire une fonction primitive de g sur \mathbb{R} .

Exercice 4:

(S) 35 min

7 pts

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{x}{x + e^{-x}}$.

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

- 1. Soit g la fonction définie sur \mathbb{R} par $g(x) = e^{-x} + x 1$.
 - (a) Dresser le tableau de variation de g.
 - (b) Montrer que pour tout réel $x, g(x) \ge 0$.
- 2. (a) Montrer que $\lim_{x\to +\infty} f(x) = 1$ et $\lim_{x\to -\infty} f(x) = 0$. Interpréter graphiquement les résultats.
 - (b) Montrer que pour tout réel x, $f'(x) = \frac{(x+1)e^{-x}}{(x+e^{-x})^2}$.
 - (c) Dresser le tableau de variation de f.
- 3. (a) Montrer que la droite T: y = x est la tangente à $\mathscr C$ au point O.
 - (b) Vérifier que $x f(x) = \frac{x g(x)}{g(x) + 1}$.
 - (c) En déduire la position relative de \mathscr{C} et T.
- 4. Dans l'annexe ci-jointe on a tracé la courbe représentative de la fonction u définie sur $]-\infty$, 0] par : $u(x)=\frac{1}{x+e^{-x}}$.
 - (a) Construire le point $A\left(-1,\frac{1}{1-e}\right)$, ainsi que la tangente à $\mathscr C$ au point A.
 - (b) Tracer \mathscr{C} et T.
- 5. Soit h la restriction de f à l'intervalle $[-1, +\infty[$.
 - (a) Montrer que h admet une fonction réciproque h^{-1} définie sur $\left[\frac{1}{1-e},+\infty\right[$.
 - (b) Tracer dans le même repère la courbe de h^{-1} .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000