Analysis: Sherlock and Parentheses

View problem and solution walkthrough video

The problem translates to finding the maximum number of balanced non-empty substrings possible in a string, generated from the given number of left and right parentheses. A string S consisting only of characters (and/or) is balanced if:

- It is an empty string, or:
- It has the form (S), where S is a balanced string, or:
- It has the form S_1S_2 , where S_1 is a balanced string and S_2 is a balanced string.

Test Set 1

Naively, we can generate all the permutations of strings possible from $\mathbf L$ left parentheses (and $\mathbf R$ right parentheses). The time complexity of generating all the permutations will be in order of possible permutations i.e. $O(\frac{(\mathbf L+\mathbf R)!}{\mathbf L!\times \mathbf R!})$.

For counting the number of balanced non-empty substrings in a string, we can use a basic counter which increases by 1 for a left parenthesis (and decreases by 1 for a right parenthesis). While iterating a given string, if the value of the counter becomes negative before reaching the end, then this string cannot be a balanced string because it denotes the occurrence of right) parenthesis before it's matching left (paranthesis. If the counter is 0 at the end of the string, avoiding being negative throughout the string then it denotes a balanced string. We can do this check for all the substrings in a efficient way using a nested for loop, which results in a Time complexity of $O(N^2)$ where N is the length of the string:

```
int CountBalancedSubstrings(String S) {
  int N = S.length();
  int balanced_substrings = 0;
  for (int i = 0; i < N; i++) {
    int counter = 0;
    for (int j = i; j < N; j++) {
       if (S[j] == '(')
            counter++;
       else
            counter--;
       if (counter < 0) break;
       if (counter == 0) balanced_substrings++;
      }
  }
  return balanced_substrings;
}</pre>
```

So overall, we can generate all the permutations of the string, count the balanced substrings and return the maximum possible number of balanced non-empty substrings in $O(\frac{(\mathbf{L}+\mathbf{R})!}{\mathbf{L}!\times\mathbf{R}!}\times(\mathbf{L}+\mathbf{R})^2)$ Time complexity.

Test Set 2

We cannot generate all the possible permutations of strings as the solution would timeout. We cannot even count the number of balanced substrings in a string using our earlier $O(N^2)$ algorithm as N can go upto 10^5 .

We need to identify the optimal strategy to get the maximum number of balanced substrings. We can observe few things from our CountBalancedSubstrings algorithm:

- The counter should not become *negative* while iterating throughout the string.
- The number of balanced substrings we get is directly proportional to the number of times the counter becomes 0.

So this translates to the optimal strategy of arranging left parentheses (and right parentheses) like this () () () () () \dots

Now every left parenthesis requires a right parenthesis and vice versa for forming a balanced string. So we can say this pattern will follow till $2 \times N$ length where $N = min(\mathbf{L}, \mathbf{R})$, and the rest of the string would not be a part of any balanced substring as it would either include all left (parantheses or all right) parantheses.

Now in this pattern we can see that the first left parenthesis (forms a balanced substring with all the N right parentheses) ahead of it. Similarly, every left parenthesis (forms a balanced substring with all the right parentheses) ahead of it till $2 \times N$ length. So the total number of balanced non-empty substrings will be $1+2+3+4+\cdots+N=\frac{N\times(N+1)}{2}$

So for each test case, we can calculate N and then the maximum possible number of balanced non-empty substrings in O(1) Time and Space complexity.