Mathieu Gautier

UMR INRA/CIRAD/IRD/SupAgro CBGP

6 septembre 2017

BAYPASS Overview

Comparisons of SNP allele frequencies across populations

- GSD: Genome-Scan for extremely Differentiated SNPs ("outliers")
- pGWAS: Genome-Wide Association analyses with population-specific covariates (e.g., Ecological Association)

Data

- For GSD/pGWAS : Population Allele Count (Read Count in the Pool–Seq mode)
- For pGWAS: Population Covariables (e.g., environmental variables, quantitative or categorical phenotypic characteristics)
- For pGWAS : Optional : : Map order to (roughly) account for LD via an Ising model in the pGWAS

Bayesian Hierarchical Model

Multivariate Gaussian distribution assumption for population allele frequencies

- Introduced by Coop et al. (2010) as a generalization of the univariate Gaussian model by Nicholson et al. (2002)
- Let α_{ij}^{\star} the (unobserved) "instrumental" freq. of the ref. allele at SNP i in pop j defined over the real line support and related to α_{ij} by :

```
 \begin{array}{ll} \bullet & \alpha_{ij} = \alpha_{ij}^{\star} & \text{if } \alpha_{ij}^{\star} \in (0,1) \\ \bullet & \alpha_{ij} = 0 & \text{if } \alpha_{ij}^{\star} < 0 \text{ (allele absent or "lost")} \\ \bullet & \alpha_{ij} = 1 & \text{if } \alpha_{ij}^{\star} > 1 \text{ (allele "fixed")} \end{array}
```

- Prior distribution for pop allele freq. vectors : $\alpha_i^{\star} = \left\{\alpha_{ij}^{\star}\right\}_{(1..J)}$ $\alpha_i^{\star} \sim \mathsf{N}_J\left(\pi_i\mathbb{1}; \pi_i(1-\pi_i)\Omega\right)$
 - 1 : identity vector of length *J* (number of pops.)
 - π_i : across pop. frequency (might be interpreted as the "ancestral" ref. allele frequency)
 - $oldsymbol{\Omega}$: scaled covariance $(J \times J)$ matrix of pop. allele frequency

 Ω captures the covariance structure of allele frequencies that originates from the population shared history (global effect of the demography)

Example of realized Ω

000

- Similar to the core BAYENV model (Coop et al., 2010) with additional extensions
 - Priors on a_{π} and b_{π} (instead of setting $a_{\pi} = b_{\pi} = 1$)
 - Less informative (e.g., singular) Wishart prior on Ω^{-1} (e.g., setting $\rho=1$ instead of $\rho=J$)

Definition (Guenther and Coop, 2013) and computation

- Let $\mathbf{X}_i \simeq$ vector of scaled pop. allele freq. $(\mathbf{X}_i = \Gamma^{-1} \frac{\alpha_i^* \pi_i}{\sqrt{\pi_i (1 \pi_i)}} \text{ with } \Omega = \Gamma^{-1} \Gamma)$
- $X^tX_i = Var(X_i) = \frac{(\alpha_i^* \pi_i)\Omega^{-1}(\alpha_i^* \pi_i)}{\pi_i(1 \pi_i)} (\simeq FLK \text{ by Bonhomme et al. (2010)})$

Calibration (How extreme to be outlier?)

- From the model : $X^tX \sim \chi^2(J)$ (i.e. $E(X^tX) = \frac{1}{2}Var(X^tX) = J$)
- From the MCMC samples : $E\left(\widehat{X^tX}\right) = J$ but $Var\left(\widehat{X^tX}\right) \ll 2J$
- Calibration by analysing PODs generated under the inference model
 - $\Omega^{\text{sim}} = \widehat{\Omega}$, $a_{\pi}^{\text{sim}} = \widehat{a_{\pi}}$ and $b_{\pi}^{\text{sim}} = \widehat{b_{\pi}}$ (see *simulate_baypass(*) R function)
- Normalizing transformation of the $\widehat{X^tX}$ (NEW and not extensively validated)
 - Based on Wilson-Hilferty transform of rescaled $\widehat{X^tX}$ (see *standardize.xtx()* R function)

Using X^tX to identify SNPs under selection

Key characteristics

- Robust to demographic history (via Ω)
- No prior information about population history needed (≠ Hierarchical island model)
- But...do not account for haplotype information (see HAPFLK)

Limitations...common to all indirect genome scan approaches

- Biological interpretations (underlying selective pressure?) require an annotated genome for the species of interest (or a closely related one)
- Highly prone to misleading story telling issues (e.g., Pavlidis et al., 2012).
- Experimental validation (if possible) ⇒ reverse ecology (e.g., Li et al., 2008)

GWAS with population-specific covariates

(Very) brief overview of approaches

- Historically presented with environmental variables
 ⇒ proxies for ecological pressure
- SAM (Joost et al., 2007): univariate logistic regression of pop. all. freq. with env. variable
 - \Rightarrow does not account for neutral all. freq. covariance
- BAYESCENV (de Villemereuil et al., 2015): association between residuals of a logistic regression of marker and pop specific F_{ST} (with marker and population specific effects) and the environmental variable
 - ⇒ basic modeling of the pop. structure (F-model)
- LFMM (Frichot et al.,2013): assess association via a mixed model with latent factors to account for population structure
- BAYENV (Coop et al.,2010) and <u>BAYPASS</u>: extent the previous model to include a "fixed" environmental effect.

The BAYPASS "standard" covariate model

- Similar to BAYENV model (Coop et al., 2010) with additional extensions
 - Priors on a_{π} , b_{π} and Ω^{-1} (see above)
 - β_{min} and β_{max} can be set by the user (by default $\beta_{min} = -0.3$ instead of -0.1 and $\beta_{max} = 0.3$ instead of 0.1)

Estimating the β_i 's and assessing association significance

- A) Via Importance Sampling (only requires samples drawn under the core model)
 - Direct estimate of the Bayes Factor $BF_{is} = 10log_{10}\left(\widehat{BF}\right)$ (in deciban units) comparing models with vs. without association (i.e. $\beta_i = 0$)

•
$$\widehat{\mu\left(\beta_{i}\right)}$$
 and $\widehat{\sigma\left(\beta_{i}\right)}$ \Rightarrow eBP_{is}= $-\log_{10}\left(1-2\left|0.5-\Phi\left(\frac{\widehat{\mu\left(\beta_{i}\right)}}{\widehat{\sigma\left(\beta_{i}\right)}}\right)\right|\right)$

- B) Via MCMC (covmcmc option)
 - Sampling from the posterior distribution of the β_i 's via MCMC
 - Posterior $\widehat{\mu}(\beta_i)$ and $\widehat{\sigma}(\beta_i) \Rightarrow \mathsf{eBP}_{\mathsf{mc}}$
- C) Via MCMC with the aux. variable model (auxmodel option)
 - $\beta_i = \delta_i \beta_i^\star : \delta_i = 1$ ($\delta_i = 0$) if the SNP is (not) associated ($\delta_i \sim \text{Ber}(P)$ allowing to integrate over the unknown prop. P of associated SNPs to deal with multiple testing issues).

•
$$\operatorname{BF}_{mc} = \frac{\operatorname{Post. odds}}{\operatorname{Prior odds}} = \frac{\operatorname{P}[\delta_i = 1 | data]}{[1 - \operatorname{P}(\delta_i = 1 | data)]} \times \frac{1 - \mathbb{E}[P]}{\mathbb{E}[P]}$$

In practice...

To sample or not to sample the β_i 's? (i.e., IS or MCMC?)

- When npop is small (e.g., ≤ 8 and/or pops are highly differentiated), AUX and STD models may be "unstable" (seemingly due to identifiability problems)
 - \Rightarrow BF_{is} (or eBP_{is}) should then be preferred.
- Specific recommendation regarding BFis (and eBPis)
 - Estimates rely on (Importance Sampling) approximations
 - Check consistency across several (e.g., 3-5) independent runs (-seed)
- When data are not limiting, sampling the β_i 's should be preferred
 - $\Rightarrow \underline{\mathsf{BF}_{\mathsf{mc}}} \; (\mathtt{-auxmodel}) \; \, \mathsf{or} \; \, \mathsf{eBP}_{\mathsf{mc}} \; (\mathtt{-covmcmc})$

Decision Rule

- Jeffreys' rule : $15 < BF < 20 \Rightarrow$ "very strong evidence"; $BF > 20 \Rightarrow$ "decisive evidence"
- Calibration with PODs (e.g., eBP_{is}, eBP_{mc} or BF_{is})
- BF_{mc} accounts for multiple testing issues
 AUX model ⇒ Model Averaging: P[δ_i = 1|data] = Posterior Inclusion Probability (PIP)

French cattle breeds example

The allele count data file (from Gautier et al., 2010)

- J = 18 (mostly) French cattle breeds I = 42,046 SNPs
- (partial) view of the allele count file: "bta.geno"

Covariate file

Ex. 18 cattle breeds and 2 covariates : Morpho. Score and Piebald pattern

- Best Practices
 - Scale the covariables (done by the -scalecov option)
 - Use PCA to decorrelate variables (analyze PC's="synthetic" scores)

Estimating Ω and XtX (+ BFis/eBPis if covariate file)

Command Lines (Both lead to the same estimates of XtX and Ω)

Running with default parameters (XtX only) :

```
i_baypass -npop 18 -gfile bta.geno -outprefix ana_core \
-nthreads 4 -pilotlength 500 -burnin 2500 > ana_core.log
```

ullet Running with default parameters (XtX + IS estimates of BF and eBP) :

```
i_baypass -npop 18 -gfile bta.geno -efile trait.dat -outprefix ana_covis \
    -nthreads 4 -pilotlength 500 -burnin 2500 > ana_covis.log
```

Some output files (with *=ana_core or *=ana_covis)

```
\widehat{\Omega} : *_mat_omega.out (and *_summary_lda_omega.out for more info.)
```

```
 \qquad \qquad \widehat{X^tX} \; (\mathsf{and} \; \widehat{\mathsf{BF}_{\mathsf{is}}}) \; : \; *\_{\mathsf{summary\_pi\_xtx.out}} \; (\mathsf{ana\_covis\_summary\_betai\_reg.out})
```

Calibrate the XtX after normalizing transform (in R)

```
xtx=read.table("ana_covis_summary_pi_xtx.out",h=T)$M_XtX
xtx.std=standardize.xtx(xtx,npop=18) ; thr.pval1ppm=min(xtx[xtx.std$xtx.pval.pos<0.001])
library(qvalue)
xtx.qval=qvalue(xtx.std$xtx.pval.pos) ; thr.FDR10pcent=min(xtx[xtx.qval$qvalue<0.1])</pre>
```


Calibration of the XtX (and BFis/eBPis if covariate file) with PODs

Generate a POD with R (e.g., 100,000 SNPs)

Analyze the POD (e.g., with covariate file)

```
i_baypass -npop 18 -gfile G.bta.pods -efile trait.dat -outprefix ana_pod \
-nthreads 4 -pilotlength 500 -burnin 2500 > ana_pod.log
```

Calibrate the statistics (e.g., with R)

For the XtX

```
xtx.pods=read.table("ana_pod_summary_pi_xtx.out",h=T)$M_XtX
xtx.threshold=quantile(xtx.pods,probs=c(0.0001,0.001,0.5,0.999,0.9999))
xtx.empval=empPvals(stat = xtx,stat0=xtx.pods) #With qvalue package
```

For the BFis

```
res.pods=read.table("ana_pod_summary_betai_reg.out",h=T)
bfis.pods=res.pods$BF.dB.[res.pods$COVARIABLE=1] #for the second covariable
bfis.threshold=quantile(bfis.pods,probs=c(0.999,0.9999))
bfis.empval=empPvals(stat = bfis.stat0=bfis.pods) #With gvalue package
```


Estimating BFmc

Running the AUX model :

```
i_baypass -npop 18 -gfile bta.geno -efile trait.dat \
-omegafile ana_covis_mat_omega.out -auxmodel \
-nthreads 4 -pilotlength 500 -burnin 2500 -outprefix ana_covaux > ana_covaux.log
```

Plotting results

```
res.aux=read.table("ana_covaux_summary_betai.out",h=T)
bfmc=res.aux$BF.dB.[res.aux$COVARIABLE==1] #for the second covariable
pip=res.aux$M_Delta[res.aux$COVARIABLE==2] #for the second covariable
```


Manhattan plots (piebald pattern)

Chromosome

Key features of BAYPASS

- Accurate estimation of Ω (\Leftrightarrow account for pop. demographic history) :
 - without any prior information
 - \Leftrightarrow improved estimation of the related statistics and decision criteria
- Implementation of complementary approaches :
 - covariate free (indirect) approaches (X^tX for genome scan for adaptive differentiation) with calibration procedure
 - association with pop. specific covariates
 - Different decision criteria (eBPis, BFis, eBPmc and BFmc)
 - the AUX model deals with multiple testing issues (and \sim allows to account for spatial dependency of markers but \sim smoothing approach)
- Flexible :
 - Computationnally efficient (e.g., parallel computing)
 - Accomodate PoolSeq data in a rigorous way
- For more details :
 - The most important option : -help
 - The manual: http://www1.montpellier.inra.fr/CBGP/software/baypass/

