République tunisienne Ministère de l'éducation Commissariat régional de l'éducation - Tunis 2 2024 - 2025

Devoir de synthèse n°2 - Régional		
Epreuve :	Niveau : 2 ^{éme} année	
Sciences physiques	Section : Sciences	
Date: 11 / 03 / 2025	Durée : 2 h	

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à compléter et à rendre avec la copie.

CHIMIE (8points)

Exercice n°1 (4 points)

On donne: $M(Mg(OH)_2) = 58 \text{ g.mol}^{-1}$; $M(Zn(OH)_2) = 99.4 \text{ g.mol}^{-1}$.

On fait dissoudre, à une température θ , une masse m = 3,48 g d'hydroxyde de magnésium $Mg(OH)_2$ dans de l'eau distillée de manière à obtenir un volume $V_1 = 40 \text{ mL}$ d'une solution (S_1) .

L'hydroxyde de magnésium est un électrolyte fort.

L. 1	iyaroxyae ae magnesiam est an electrolyte fort.		
1)	Définir un électrolyte.	Αı	0,25
2)	a- Ecrire l'équation de la dissociation dans l'eau de Mg(OH) ₂ .	A ₂	0,25
	b- Calculer la concentration molaire C ₁ de la solution (S ₁).	A ₂	0,5
	c- En déduire la quantité de matière des ions OH dans cette solution.	A ₂	0,5
3)	A la solution précédente (S ₁), on verse un volume V ₂ d'une solution aqueuse (S ₂)		
	de chlorure de zinc ($\mathbf{Z}\mathbf{n}^{2+} + 2 \ \mathbf{C}\mathbf{l}^{-}$) de concentration molaire $\mathbf{C}_2 = 1 \ \mathbf{mol.L}^{-1}$, il se		
	forme un précipité de masse m = 2 g .		The state of the s
	a- Préciser la couleur du précipité formé et donner son nom.	A2	0,5
	b- Ecrire l'équation chimique de la réaction de précipitation.	A ₂	0,25
	c- Montrer que les ions OH sont en excès.	С	0,75
	d- Déduire la valeur de V ₂ .	A ₂	0,5
4)	On refait, à la même température θ , l'expérience précédente en partant cette foisci de 5 cm^3 de chacune de solutions précédentes d'hydroxyde de magnésium et de chlorure de zinc qu'on dilue 10 fois . Quand on mélange les deux solutions	A 2	0,5

Exercice n°2 (4 points)

diluées aucun précipité n'apparaît.

Interpréter cette observation.

On donne : $M(CaCO_3) = 100 \text{ g.moi}^{-1}$; $V_m = 24 \text{ L.moi}^{-1}$

On fait dissoudre un gaz (G) dans de l'eau distillée pour obtenir un volume V = 250 mL d'une solution aqueuse (S) de concentration molaire C = 0.2 mol.L⁻¹.

On soumet la solution aqueuse (S) obtenue aux deux tests suivants :

Test	Description	Observation
Test n°1	On ajoute quelques gouttes de BBT à un échantillon de cette solution (S).	Le BBT vire du vert au jaune
Test n°2	A un 2 ^{ème} échantillon de cette solution (S), on ajoute un excès d'une solution de nitrate d'argent AgNO ₃ .	On obtient un précipité blanc qui noircit avec la lumière.

1)	Définir un acide.	A ₁	0,25	
	a- Préciser les ions mis en évidence par les deux tests.	A2	0,5	
•	b- En déduire la formule et le nom de (G).	A ₂	0,5	
	c- Ecrire l'équation chimique de l'ionisation de (G) dans l'eau.	A ₂	0,25	
3)	On fait réagir un volume $V_1 = 100 \text{ mL}$ de la solution (S) sur un excès de carbonate			
	de calcium (CaCO₃) de masse m₀ = 10,6 g. Il se dégage un gaz.		۸.	İ
	a- Identifier le gaz dégagé et dire comment peut-on le mettre en évidence.	A 2	0,5	
	b- Ecrire l'équation chimique de la réaction qui a lieu.	A ₂	0,5	İ
	c- Calculer le volume V' de gaz dégagé.	A ₂	0,75	
	d- Déterminer la masse m₁ du carbonate de calcium (CaCO₃) restant.	A ₂	0,75	

PHYSIQUE (12 points)

On donne : $\|\ddot{g}\| = 10 \text{ N.Kg}^{-1}$.

Exercice n°1 (6.5 points)

Un solide (S) de masse m = 400 g est accroché à un ressort à spires non jointives de masse négligeable devant m et de raideur k . Le solide (S) est soumis à l'action d'un aimant droit dont l'axe fait un angle θ = 53,13° avec l'horizontal comme l'indique la figure 1 de la page 4/4. Le solide (S) est en équilibre sous l'action de trois forces :

- son poids P;
- la tension T du ressort;
- la force F exercé par l'aimant.

A l'équilibre l'allongement du ressort est $\Delta \ell$ = 3 cm.

1) a- Représenter, sur la figure 1 de la page 4/4, les forces qui s'exercent 0,75 A₂ sur le solide (S). b- Compléter les tableaux de la page 4/4, en mettant une croix (x) dans la case A_2 1,25 qui convient pour le tableau 1 et la force correspondante pour chaque système dans le tableau 2. 2) a- Ecrire la condition d'équilibre du solide (S). A₂ 0.5 b- Donner les caractéristiques des composantes de chaque force dans le repère 1,5 A_2 (xx', yy'). 3) a- Déterminer les valeurs de : a₁- la force É exercé par l'aimant ; 1 A_2 1 a2- la tension T du ressort. A_2 b- Déduire la valeur de la raideur k du ressort. 0.5

Epreuve : Sciences physiques - Niveau : 2ème année - Section : Sciences

Devoir de synthèse n°2 - Régional

Annexe à rendre avec la copie

Nom et prénom :

Tableau 1

Tableau 2

Système	Déformable	Indéformable
{(S) + ressort}		3
{(S) + terre}		

Système	{(S) + ressort}	{(S) + terre}
Force extérieure		
Force intérieure		

Exercice n°2 (5,5 points)

Une tige homogène OA, de longueur L = 40 cm et de masse m = 3 g, est attachée perpendiculairement à un ressort (R) de raideur K = 25 N.m⁻¹ en un point M. La tige peut tourner dans un plan vertical autour d'un axe (Δ) horizontal passant par son extrémité O. comme l'indique la figure 2 - a de la page 4/4.

On exerce au milieu de la portion CA, de la tige, une force \vec{F} de valeur $\|\vec{F}\| = 0,1$ N, perpendiculaire à la tige. Cette dernière dévie et prend une nouvelle position d'équilibre faisant un angle $\alpha = 8^{\circ}$ avec la verticale. La déviation est considérée faible de sorte que le ressort allongé reste pratiquement horizontal, comme l'indique la figure 2 - b de la page 4/4.

On donne : OM =10 cm et AC = 10 cm.

- 1) Représenter, sur la figure 2- b de la page 4/4, les forces extérieures qui s'exercent sur la tige OA.
- 2) a- Énoncer le théorème des moments.
 - **b-** Déterminer l'expression du moment de chacune des forces exercées sur la tige **OA** par rapport à l'axe de rotation (Δ).
 - c- Déterminer, en appliquant le théorème des moments à la tige OA en équilibre, la valeur de la tension du ressort ||T|| exercée sur la tige en M.
 - **d-** En déduire la valeur de l'allongement $\Delta \ell$ du ressort.

A ₂	0,75
A ₁	0,5
A ₂	1,75
С	2
A ₂	0,5

République tunisienne Ministère de l'éducation Commissariat régional de l'éducation - Tunis 2 2024 - 2025 Devoir de synthèse n°2 - Régional

Epreuve : Sciences physiques

Niveau : 2^{éme} année Section : Sciences

Date: 11 / 03 / 2025 Durée: 2 h

Corrigé et barème de notation

CHIMIE (8 points)

Exercice n°1 (4 points)

Question	Réponse	Barème
1)	Un électrolyte est un corps composé dont la solution aqueuse conduit mieux le courant électrique que l'eau pure.	0,25
2)a-	Mg(OH) ₂ → Mg ²⁺ + 2 OH ⁻	0,25
2)b-	$C_1 = \frac{m}{V_1 \cdot M(Mg(OH)_2)} = 1,5 \text{mol.L}^{-1}$	0,5
2)c-	$[OH^{-}] = 2C_1 \Rightarrow n(OH^{-}) = [OH^{-}].V_1 = 12.10^{-2} \text{ mol.}$	0,5
3)a-	Un précipité blanc gélatineux d'hydroxyde de zinc	0,5
3)b-	$Zn^{2+} + 2OH \rightarrow Zn(OH)_2$ (sd)	0,25
3)c-	$\frac{n(OH^{*})_{0}}{2} = 0.06 \text{ mol}; n(Zn(OH)_{2})_{formé} = \frac{m}{M(Zn(OH)_{2})} = 0.02 \text{ mol}$ $\frac{n(OH^{*})_{0}}{2} \neq n(Zn(OH)_{2})_{formé}$	0,75
3)d-	Les ions OH sont en excès. $n(Zn^{2+}) = n(Zn(OH)_2) = C_2V_2 = 2.10^{-2} \text{ mol}$ $n(Zn^{2+}) = C_2.V_2 \Rightarrow V_2 = \frac{n(Zn^{2+})}{C_2} = 20 \text{ mL}.$	0,5
4)	Aucun précipité n'apparaît pourtant les quantités de matière de réactifs sont les mêmes que dans l'expérience précédente (car suite à une dilution la quantité de matière reste inchangée) mais les concentrations sont différentes. ⇒La réaction de précipitation ne dépend pas des quantités de matière de réactifs mais de leurs concentrations.	0,5

Exercice n°2 (4 points)

Question	Réponse	Barème
1)	Un acide est un composé qui s'ionise dans l'eau avec formation d'ions hydronium H ₃ O ⁺ .	0,25
2)a-	Test n°1 : les ions hydronium H ₃ O ⁺ Test n°2 : les ions chlorure Cl ⁻	0,5
2)b-	HCI Chlorure d'hydrogène	0,5

2)c-	HCI + H ₂ O → H ₃ O+ + CI ⁻	0,25
3)a-	Le dioxyde de carbone Le gaz trouble l'eau de chaux	0,5
3)b-	2H ₃ O ⁺ + CaCO ₃ (sd) → CO ₂ (g) + Ca ²⁺ + 3H ₂ O	0,5
3)c-	$n(CO_2)_{\text{forme}} = \frac{n(H_3O^+)_0}{2} = \frac{C_1V_1}{2} = 0.01 \text{ mol}$ $V' = n(CO_2)_{\text{forme}} \cdot V_m = 0.24 \text{ L}$	0,75
3)d-	$m_1 = m_0 - n(CO_2)_{lormé} \cdot M(CaCO_3) = 9,6 g$	0,75

PHYSIQUE (12 points)

Exercice n°1 (6,5 points)

Question	Réponse			
1)a-	Schéma	0,75		
	Tableau 1 Tableau 2			
1)b-	Système Déformable Indéformable Système {(S) + ressort} {(S) + terr	e} 1,25		
	((S) + ressort) x Force extérieure \vec{p} , \vec{F} \vec{F} . \vec{T}			
	{(S) + terre} x Force intérieure Ţ P			
2)a-	P+T+F=0	0,5		
2)b-	$\vec{P} \begin{cases} 0 & \vec{T} \begin{cases} -\ \vec{T}\ & \vec{F} \ \hat{F} \ \cos \theta \\ -\ \vec{P}\ & 0 \end{cases} $	1,5		
3)a-	Suivant (y'y): $\ \ddot{F} \ \sin \theta - \ \dot{P} \ = 0$ $\Rightarrow \ \dot{F} \ = \frac{\ \dot{P} \ }{\sin \theta} = 5N$	1		
3)b-	Suivant (x'x) : F cosθ - T = 0 ⇒ T = F cosθ = 3 N			
3)c-	$k = \frac{\ \vec{T}\ }{\Delta t} = 100 \text{ N.m}^{-1}$	0,5		

∡xerci<mark>c</mark>e n°2 (5,5 points)

Question	Réponse	Barème
1)	Schéma	0,75
2)a-	Si un solide (S), mobile autour d'un axe (Δ) fixe par rapport à la Terre , est en équilibre, la somme des moments par rapport à cet axe de toutes les forces appliquées à ce solide est nulle.	0,5
2)b-	$M_{\vec{P}/\Delta} = -\ \vec{P}\ \frac{L}{2} \sin \alpha \; ; M_{\vec{T}/\Delta} = -\ \vec{T}\ OM \cos \alpha \; ; M_{\vec{P}/\Delta} = \ \vec{F}\ (OA - \frac{AC}{2})$ $M_{\vec{P}/\Delta} = 0 \text{ car sa droite d'action coupe l'axe de rotation}$	0,5x3 0,25
2)c-	En appliquant le théorème des moments $-\ \vec{P}\ \frac{L}{2} \sin \alpha + \ \vec{F}\ (OA - \frac{AC}{2}) - \ \vec{T}\ OM \cos \alpha = 0$ $\ \vec{T}\ = \frac{\ \vec{F}\ (OA - \frac{AC}{2}) - \ \vec{P}\ \frac{L}{2} \sin \alpha}{OM \cos \alpha} = 0,345N$	2
2)d-	$\Delta \ell = \frac{\parallel \vec{T} \parallel}{k} = 0.0138 \text{m}$	0,5