

SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41565-018-0130-2

In the format provided by the authors and unedited.

Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat

Jieming Li^{1,7}, Alexander Johnson-Buck^{1,2,3,4,7}, Yuhe Renee Yang^{5,6}, William M. Shih^{2,3,4}, Hao Yan^{5,6} and Nils G. Walter¹

¹Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. ²Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA. ³Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. ⁴Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. ⁵Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA. ⁶School of Molecular Sciences, Arizona State University, Tempe, AZ, USA. ⁷These authors contributed equally: Jieming Li, Alexander Johnson-Buck. *e-mail: nwalter@umich.edu

SUPPLEMENTARY INFORMATION

Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat

[†]These authors contributed equally to this work

^{*}nwalter@umich.edu

Supplementary Note 1

Kinetic Modelling of Walker Stepping in a 3-Foothold System

Stepping by a walker with toehold domain length $a \in \{5, 6, 7, 8\}$ and branch migration domain length $b \in \{6, 13, 9, 10\}$ 20) was numerically simulated at single-base resolution according the reaction scheme shown in Supplementary Fig. 5a, using a version of the Gillespie algorithm¹ implemented in MATLAB. The scheme shown in Supplementary Fig. 5a depicts a system with b = 13; different values of b will result in a different number of states B_{β} , where $\beta \in$ $\{0,1...b\}$ indicates the number of base pairs that have been displaced in the branch migration process. States S_1 , S_2 , and S_1 represent states in which the walker is bound only to foothold F_1 , F_2 , or F_1 , respectively. Thus, each reaction scheme has 2(b+1)+3=2b+5 total states, indicated by $i \in \{1, 2...2b+5\}$.

The simulation algorithm consists of the following steps:

- 1. Choose a random starting state $i \in \{1, 2...2b+5\}$
- 2. Calculate the wait time Δt until the next reaction by drawing a random number from the exponential distribution with mean value τ_i calculated as

$$\tau_i = \frac{1}{k_{i \to i+1} + k_{i \to i-1}} \tag{1}$$

where $k_{i\rightarrow i+1}$ and $k_{i\rightarrow i-1}$ are the rate constants for transition to state i+1 and i-1, respectively.

3. Determine the probability
$$P_{i \to i+1}$$
 of a transition to state $i+1$ according to
$$P_{i \to i+1} = \frac{k_{i \to i+1}}{k_{i \to i+1} + k_{i \to i-1}}$$
 (2)

- 4. Choose a random number \mathbf{p} from a uniform distribution over the interval [0,1]; if $p \le P_{i \to i+1}$, transition to state i+1; otherwise, transition to state i-1.
- 5. Repeat steps 2-4 until the simulation end time is reached.

Each type of walker was simulated for a total of 1000 seconds of simulation time, and its stepping lifetime estimated as the total simulation time divided by the number of times the trajectory crossed between S_{I+2} and $S_{2+I'}$. Note that a trajectory can enter the middle state with toehold a dissociated (e.g., state i = 16 in Supplementary Fig. 5a) without taking a step to the next foothold; it may instead (with 50% probability in our initial model) return to its original foothold, in which case the event will not be counted as a step. Note also that we make the simplifying assumption that toeholds can only dissociate from the terminal states, e.g., B_0 and B_{13} for b = 13.

Rate constants were chosen as follows. The second-order binding rate constant for toeholds of all lengths was estimated as 3.0×10⁶ M⁻¹s⁻¹ on the basis of prior single-molecule¹ and ensemble^{2,3} measurements and theoretical treatments of toehold-mediated strand displacement. The local effective concentration of the toehold was estimated as ~100 μM by analogy to a similar system studied previously by smFRET⁴, implying that the pseudo-first order rate constant of toehold binding $k'_{bind} = (3.0 \times 10^6 \, M^{-1} s^{-1})(10^{-4} M) = 300 \, s^{-1}$. A branch migration rate constant of $k_{hm} = 10000 \, s^{-1}$ was chosen to reflect literature on the rate of three-way branch migration in DNA^{3,5}; this also provided a close match between the timescales of the autocorrelation function of the state number in simulations of walker $W_{8 13 8}$ (Supplementary Fig. 5b) and the cross-correlation function in single-molecule FRET measurements of walker $W_{8_13_8}$ on a 2-Foothold DNA tile (12 ms; see Figure 1). Based on previous estimations that initiation of branch migration incurs a penalty of 2 kcal/mol (in addition to a free energy barrier of ~5.3 kcal/mol for branch migration itself)³, initiation of branch migration was assigned an approximately 7-fold slower rate constant of $k_{bmi} = 1400 \, s^{-1}$. Finally, as a starting point, rate constants of dissociation for short oligonucleotides reported by Dupuis *et al.*¹ were used to construct the approximate empirical relationship $k_{dissoc} = (3 \times 10^6 \, s^{-1}) e^{-2.031a}$, which was used to calculate k_{dissoc} for different values of a.

Given the approximate nature of this model, and the lack of any explicit treatment of the geometry or dynamics of the footholds and substrate, it recapitulates the experimentally observed stepping behaviour surprisingly well (Supplementary Fig. 5c), predicting the predominance of hybrid states S_{I+2} and $S_{2+I'}$ for all walkers, and qualitatively predicting that stepping rate will increase as the toehold length is decreased. Moreover, the stepping rates predicted for 8- and 7-nt toeholds are quantitatively similar to the experimental values (Supplementary Fig. 5d). However, there is a significant discrepancy with the experimentally determined stepping rate for $W_{6 \ I3 \ 6}$ and $W_{5 \ I3 \ 5}$, which are much slower than our model predicts, suggesting that an influence other than toehold dissociation is limiting the apparent stepping rate of $W_{5,13,5}$ in our smFRET measurements. For instance, binding of the dissociated toehold D_A to foothold $F_{I'}$ may be slower than to foothold F_{I} , e.g., due to a slightly different distance between F_2 and $F_{I'}$ compared to that between F_1 and F_2 . This is consistent with the fact that the high-FRET states for all walkers in the $W_{x 13 x}$ series exhibit significantly longer median lifetimes than the low-FRET states (Figure 2n). In this interpretation, the fact that the asymmetry between lifetimes in the high- and low-FRET states increases as the toehold length is decreased from 8 to 5 nucleotides might be due to the progressive shortening of the walker-foothold duplex as the size of the toehold is decreased (while the toehold sequence of the foothold does not change in length, an increasing fraction of it becomes single-stranded as the walker toehold decreases in length, resulting in a conformation that is predicted to be more coiled up and resistant to extension for entropic reasons⁶, and hence a shorter overall reach for the walker). Thus, as the walker-foothold duplex and the walker's reach shorten, the hypothesized asymmetry between the F_1 - F_2 and F_2 - F_1 ' distances may exert a stronger influence on stepping kinetics. Such an asymmetry is plausible, given that strand polarity considerations predict that footholds F_1 and F_2 emerge from the tile surface in orientations pointing somewhat toward one another, whereas foothold F_{I} is predicted to emerge pointing somewhat away from F_2 (Supplementary Fig. 5). Intriguingly, the DNA origami scaffold results in a reversal of the FRET state bias compared to the DNA tile (compare Fig. 2n and Supplementary Fig. 9g), suggesting that biases can indeed be imposed by subtle structural details of the scaffold.

To explore the potential of biased binding of one toehold over the other to reproduce the slower-than-expected apparent stepping rates of $W_{6_13_6}$ and $W_{5_13_5}$ in our smFRET analysis, we introduced a preference for binding one of the footholds (F_1 ') over the other (F_1) that varied as a function of toehold length. In these simulations, the rate constant for binding F_1 , k_{bind} , F_1 , was obtained by dividing the rate constant for binding F_1 ' (k_{bind} , F_1 ') by a parameter r that was dependent on toehold length: k_{bind} , F_1 = k_{bind} , F_1 , where r = 1, 1.5, 3, and 10 for $W_{6_13_6}$, $W_{6_13_6}$, $W_{6_13_6}$, $W_{6_13_6}$, $W_{6_13_6}$, respectively (to reflect the increased bias in FRET dwell time as the toehold length decreases). To simulate the time resolution of most of our smFRET measurements, trajectories were binned in 100 ms intervals, with each bin consisting of a time-weighted average of all states occurring in that time interval. This had the effect of reducing or eliminating very brief dwell times, giving the appearance of longer average dwell times (Supplementary Fig. 5e). Finally, the trajectories were fit by hidden Markov modelling in the same manner as our experimental smFRET data to determine the apparent stepping lifetime. Intriguingly, the same deviation from an exponential dependence on toehold length is observed as for our experimental data (Supplementary Fig. 5d), suggesting that at least part of the reason the apparent stepping rates of $W_{6_13_6}$ and $W_{5_13_5}$ are slower than expected is the combination of FRET bias and limited time resolution.

The simulations also predict that stepping rate will decrease linearly as **b** increases (Supplementary Fig. 5f), since the walker's toehold can only dissociate from its complement in a small fraction of branch migration states (in our

simplified model, only from the very terminal states B_{θ} and B_{b}). As the number of branch migration states increases, the fraction of these states compatible with toehold dissociation, and hence stepping, will decrease. However, this is in direct contradiction with the experimental results shown in Fig. 2o, which suggest *slower* stepping for b > 1 shortest than for longer D_{B} . Again, we interpret this discrepancy as arising from aspects of tile geometry – such as the match between the length of the walker-foothold duplex and the foothold spacing, with consequences for local effective concentrations and tension within single-stranded components of the system – that are not captured by our kinetic model, and are at present difficult to determine experimentally with sufficient accuracy to be useful in the model.

Supplementary Fig. 1 | Design of cartwheeling walker and DNA tile. a, 2-Foothold system foothold strands F_1 and F_2 are 5' and 3' extensions of ssDNA strands within the 4-helix tile (grey cylinders). b, 3-Foothold system with F_1 ' having same sequence as F_1 . c, The walker W is a single-stranded DNA oligonucleotide comprising a 13-nucleotide branch migration domain D_B (coloured black) flanked by two 5- to 8-nucleotide toehold domains D_A (coloured red) and D_C (coloured orange) with distinct sequences.

Supplementary Fig. 2 | 5% Native PAGE characterization of 2-Foothold and 3-Foothold DNA tile systems. a, 5% native PAGE with SYBR Green stain of different tile constructs used in the paper. b, Fluorescence gel characterization of Cy3-labeled tile. The number above each lane (6, 13, 20) represents the number of nucleotides in the middle domain (\overline{D}_B) of each foothold strand.

Supplementary Fig. 3 | **DNA sequence design for 4HX tile with** 2-Foothold. **a,** The structure incorporates two ssDNAs as the two footholds, F1 (5'-CAATACCCCTACGGTCACTTC) and F2 (CCCTCATTCAATACCCCTACG-3'). The distance between 2 footholds are designed to be 7 nm and facing the same side of 4HX tile. **b,** Computer modelling (Tiamat) of DNA nanostructure and the detailed sequence and labelling strategy of T1 and T2. Cy3 dye is labelled at 5' of F1 with 2 T bases as spacer. For both F1 and F2, A single-stranded 3T spacer was added between the foothold and the tile to allow for flexibility.

Supplementary Fig. 4 | Evidence of rapid FRET dynamics for $W_{5_13_5}$, $W_{6_13_6}$, $W_{7_13_7}$ on 2-Foothold DNA tile. Rapid anti-correlated fluctuations in Cy3 (blue) and Cy5 (red) fluorescence intensity for a single walker-tile complex, suggestive of branch migration in hybrid state S_{1+2} .

Supplementary Fig. 5 | Monte Carlo simulation of cartwheeling DNA walkers in a 3-foothold system. a, Scheme for kinetic modelling of 3-foothold system (b = 13 nucleotides in the depicted scheme). See Supplementary Note 1 for details regarding the model. **b**, (top) Representative portion of a simulated trajectory of $W_{8 \ 13 \ 8}$ in a 3foothold system, zoomed in to show the rapid fluctuations among branch migration states. State values in this plot are binned to a time resolution of 16 ms to match the time resolution of donor-acceptor anticorrelation measurements (see Fig. 1, main text). (bottom) Exponential fit to the normalized autocorrelation function of the time-binned trajectory shown at the top. The lifetime of the exponential fit is 12.1 ms (95% confidence interval: [9.6, 14.6 ms]). c, Representative state vs. time trajectories for simulated walkers with b = 13 and toehold length a varying from 5 to 8 nucleotides. Rapid fluctuations among branch migration intermediates are punctuated by rare toehold dissociation and stepping events, which become more frequent as a decreases. d, Mean stepping dwell time of simulated trajectories (black filled circles) with b = 13 and varying a, as compared to the experimentally determined values (red squares) and simulated trajectories incorporating a toehold length-dependent bias towards one FRET state (blue diamonds). e, Simulated trajectory of W_{5} 13 5 with a 10-fold bias towards binding one foothold (black), along with a time-binned version of the same trajectory (red). The time binning in the red trajectory is 100 ms, to match the time resolution of smFRET measurements. f, Mean stepping dwell time of simulated trajectories with varying **b** and constant a (=6). The trend is well fit by a linear function ($R^2 > 0.99$).

Supplementary Fig. 6 | **DNA sequence design for 4HX tile with** *3-Foothold.* **a,** The structure incorporates 3 ssDNAs as the three footholds, F1, F1' (5'-CAATACCCCTACGGTCACTTC) and F2 (CCCTCATTCAATACCCCTACG-3'). The distance between each two footholds are designed to be 7 m and facing the same side of 4HX tile. **b,** Computer modelling (Tiamat) of DNA nanostructure and the designed sequence of footholds F1, F1' and F2. Cy3 dye is labelled at 5' of F1 with 2 T bases as spacer. For all three footholds, a single-stranded 3T spacer was added between the foothold and the tile to induce flexibility.

W_{6_20_6} 5'-AGTGACTCCGTATCCATGACGTGAGAAATGAGtt-Cy5-3'
W_{6_6_6} 5'-AGTGACTGATCTGAATGAGtt-Cy5-3'

Supplementary Fig. 7 | Single-molecule FRET characterization of $W_{6_20_6}$ and $W_{6_6_6}$ on 3-Foothold DNA tile. Representative smFRET trajectories of $W_{6_20_6}$ and $W_{6_6_6}$ on 3-Foothold DNA tile are shown with Cy3 fluorescence in blue and Cy5 fluorescence in red. Zoomed-in trajectories (upper-right corner of each panel) show FRET transitions for 25-s segments in greater detail. Transition occupancy density plots (TODPs, lower-right corner of each panel) show the most frequently observed FRET transitions across all molecules.

Supplementary Fig. 8| Simulated distributions and distances to nearest neighbour footholds on 2D surfaces. a, Representative 200 nm \times 200 nm region showing randomly distributed footholds F_1 and F_2 . b, Histogram of predicted distances to nearest-neighbour footholds of the opposite type within a $(1000 \text{ nm})^2$ region containing 8350 randomly distributed copies each of F_1 and F_2 . Foothold positions are assumed to be independent of all other footholds.

Supplementary Fig. 9 | Single-molecule FRET characterization of $W_{6_13_6}$ on 3-Foothold DNA origami. a, caDNAno scaffold routing diagram for 3-Foothold DNA origami, showing positions of footholds and biotins used for anchoring to the imaging surface for TIRF. b, Cartoon schematics of 3-Foothold DNA origami, including a side view of foothold and biotin positions (top) and a perspective view of the underlying nanostructure (bottom). The distance between adjacent footholds is predicted to be ~10.5 nm. c, TEM characterization of 3-Foothold DNA origami. d, A representative single-molecule FRET trajectory of $W_{6_13_6}$ on 3-Foothold DNA origami. Cy3 fluorescence is shown in blue, while Cy5 fluorescence is shown in red. e, Zoomed-in trajectories showing FRET transitions for 25-s segments in d. f, Transition occupancy density plots (TODPs) illustrating the most common FRET transitions. g, Box-and-whisker plot of stepping kinetics in the high- and low-FRET states for $W_{6_13_6}$ on 3-Foothold DNA Origami.

Supplementary Fig. 10 | Representative 2D particle tracking trajectories of $W_{6_13_6}$ on surface coated with F_1 and F_2 . One frame was acquired every 30 s.

Supplementary Fig. 11 |MSD comparison for $W_{8_13_8}$. a, Square displacement for all trajectories (353 molecules). The extremely fast-moving outlier trajectory is highlighted in red. b, MSD comparison between all trajectories (n = 353 trajectories, yellow line), without the single fast-moving trajectory (n = 352 trajectories, blue line) and without the second fastest moving trajectory (n=351 trajectories, grey line). Dotted lines indicate linear regression fits to the data, resulting in calculated 2D diffusion coefficient estimates of 2.2 nm²/s (yellow line), 0.7 nm²/s (blue line), and 0.5 nm²/s (grey line). Thus, removal of the fastest-moving trajectory reduces the apparent diffusion coefficient >3-fold, suggesting that this particle is diffusing by a different mechanism and justifying its removal from the MSD calculation. However, removal of the second-fastest trajectory only reduces the apparent diffusion coefficient by a factor of <0.3, so we conservatively include it in MSD calculations. c, Square displacement for all remaining trajectories after the fastest-moving outlier (red in a) has been removed. d, Square displacement for all remaining trajectories after the second-fastest-moving outlier (blue in a and c) is also removed.

Supplementary Fig. 12| Position distribution of $W_{6_13_6}$ on a surface bearing only one foothold type (F_1) during 10 min of single-particle tracking. No walking is expected to occur on this control surface. **a**, 2D histogram showing the distribution of apparent x-y positions of all walkers (n=107) relative to their starting positions (0,0) over 10 min of observation. **b**, **c**, Histograms of walker coordinates in the x-(**b**) and y-(**c**) directions. The standard deviations of these coordinates ($\sigma_x = 16.4$ nm, $\sigma_y = 15.2$ nm) represent the approximate precision of localization in particle tracking experiments.

Supplementary Table 1 \mid Staple sequences for the 3-Foothold DNA origami design

Name	Sequence (5'→3')
Oligo0	AGGTTTAGTACCGCCATGAGTTTCGTCACCAGTTTTCCAATC
Oligo1	GTATAAACAGTTAATGTGCGAATAATATTTTTTTTCCAATC
Oligo2	CAGGAGGTTGAGGCAGAGGGAGTTAAAGGCCGTTTTCCAATC
Oligo3	TTCATCGGCATTTTCGTACACTAAAACACTCATTTTCCAATC
Oligo4	TTATTCATTAAAGGTGATGAACGGTGTACAGATTTTCCAATC
Oligo5	TACGCAGTATGTTAGCTCATTGTGAATTACCTTTTTCCAATC
Oligo6	GATAACCCACAGAATGAGGCATAGTAAGAGCTTTTCCAATC
Oligo7	GTTACAAAATAAACAGAGTTCAGAAAACGAGATTTTCCAATC
Oligo8	TAGCAAGCAAATCAGATACCTTTAATTGCTCCTTTTCCAATC
Oligo9	ATCAACAATAGATAAGCATTTCGCAAATGGTCTTTTCCAATC
Oligo10	TAAAGCCAACGCTCAATTATGACCCTGTAATATTTTCCAATC
Oligo11	CAAGACAAGAACGCGAATGCCGGAGAGGGTATTTTCCAATC
Oligo 12	CTGTAAATCGTCGCTATAAACGTTAATATTTTTTTTCCAATC
	ATTGCTTTGAATACCATGGGATAGGTCACGTTTTTTTCCAATC
Oligo13	TTCATCAATAATCCGTGCGGCCTCTTCGCTTTTCCAATC
Oligo14	
Oligo15	TCAATAGATAATACATTGGCTAGTACCCGTATTTTTCCAATC
Oligo16	CACCGCCTGCAACAGCCCGCTTTCCAGTCGGGTTTTCCAATC
Oligo17	AGGGACATTCTGGCCACAGCAGGCGAAAATCCTTTTCCAATC
Oligo18	TACAAACTACAACGCCTATCACCGTACTCAGGTTATCCATTC
Oligo19	TTCACGTTGAAAATCTTTGAGTAACAGTGCCCTTATCCATTC
Oligo20	CTTTTGCGGGATCGTCCCGCCGCCAGCATTGATTATCCATTC
Oligo21	TCTTTGACCCCCAGCGCAGACTGTAGCGCGTTTTATCCATTC
Oligo22	CCAGGCGCATAGGCTGTAAATATTGACGGAAATTATCCATTC
Oligo23	TATGCGATTTTAAGAAGATTAAGACTCCTTATTTATCCATTC
Oligo24	AACACTATCATAACCCGCGCTAATATCAGAGATTATCCATTC
Oligo25	ATGACCATAAATCAAAAGAGCCTAATTTGCCATTATCCATTC
Oligo26	TTTTGATAAGAGGTCATCATTACCGCGCCCAATTATCCATTC
Oligo27	AATAACCTGTTTAGCTCAGAACGCGCCTGTTTTTATCCATTC
Oligo28	CTTTTGCGGGAGAGCCAAATTCTTACCAGTATTATCCATTC
Oligo29	GCTATTTTTGAGAGATGATGCAAATCCAATCGTTATCCATTC
Oligo30	GTTAAAATTCGCATTAGTGAATAACCTTGCTTTTATCCATTC
Oligo31	GGTGTAGATGGGCGCAATAACGGATTCGCCTGTTATCCATTC
Oligo32	TATTACGCCAGCTGGCTATCAGATGATGGCAATTATCCATTC
Oligo33	AAGGATCCCCGGGTACTAATAGATTAGAGCCGTTATCCATTC
Oligo34	AAACCTGTCGTGCCAGAGGCGGTCAGTATTAATTATCCATTC
Oligo35	TGTTTGATGGTGGTTCCACGACCAGTAATAAATTATCCATTC
Oligo36	CCCTCAGAACCGCCACAAGCCCAATAGGAACCTTTTCATACC
Oligo37	GGAACCTATTATTCTGAGTGAGAATAGAAAGGTTTTCATACC
Oligo38	TTGATATTCACAAACAATAACCGATATATTCGTTTTCATACC
Oligo39	TTAGCGTTTGCCATCTGCACCAACCTAAAACGTTTTCATACC
Oligo40	CGACTTGAGCCATTTGAACCGAACTGACCAACTTTTCATACC
Oligo41	ATACATAAAGGTGGCATGGGCTTGAGATGGTTTTTTCATACC
Oligo42	AATAAGAGCAAGAAACAATGCAGATACATAACTTTTCATACC
Oligo43	CAATCCAAATAAGAAAATTCATTGAATCCCCCTTTTCATACC
Oligo44	CGGTATTCTAAGAACGAAGCAAACTCCAACAGTTTTCATACC
Oligo45	ATAATATCCCATCCTAGAACGAGTAGATTTAGTTTTCATACC
Oligo46	GAGAATCGCCATATTTGCATAAAGCTAAATCGTTTTCATACC
Oligo47	ATATATTTTAGTTAATTATGATATTCAACCGTTTTTCATACC
Oligo48	TTAGAATCCTTGAAAAAGGAAGATTGTATAAGTTTTCATACC
Oligo49	CAGAGGCGAATTATTCTCCGTGGGAACAAACGTTTTCATACC
Oligo50	TACTTCTGAATAATGGCAGGCTGCGCAACTGTTTTTCATACC
Oligo51	TATTAGACTTTACAAACGAGGCAAGTCCGCTATTTTCATACC
Oligo52	AGCAGCAAATGAAAAATAACTCACATTAATTGTTTTCATACC
Oligo53	TTCTGACCTGAAAGCGGTTGCAGCAAGCGGTCTTTTCATACC
Oligo54	CATGTACCGTAACACCCCTCAGAACCGCCATTTTCATCAC
Oligo55	AACAACTAAAGGAATCCCCCTGCCTATTTCATCAC
Oligo56	GTCGCTGAGGCTCAGACGATTGCTTTCATCAC
Oligo57	AAAGAGGCAAAAGAAGTCATAGCCCCCTTATTTCATCAC
Jugodi	1 / UNICHOSO UU UNCHUNGTO MAGOODOOTTATTITOATOAO

Oligo58 TTTGAAAGAGGACAGAATTATCACCGTCACTTTTCATCAC Oligo59 TAATTTCAACTTTAAAAACGTAGAAAATACTTTTCATCAC Oligo60 GCCAAAAGGAATTACTGAGTTAAGCCCAATTTTTCATCAC Oligo61 TCAAATGCTTTAAACCCATATTATTTATCCTTTTCATCAC Oligo62 GTCAGGATTAGAGAGTATAGAAGGCTTATCTTTTCATCAC Oligo63 TTTGACCATTAGATATCCTGAACAAGAAAATTTTCATCAC Oligo64 GTTGTACCAAAAACACAGTAGGGCTTAATTTTTCATCAC Oligo65 TCTAGCTGATAAATTAGAAAACTTTTTCAATTTTCATCAC Oligo66 CAAATATTTAAATTGTTAATTAATTTTCCCTTTTCATCAC Oligo67 GCGGATTGACCGTAAAGTTACAAAATCGCGTTTTCATCAC Oligo68 TGGGAAGGCGATCGTGATTGTTTGGATTATTTTCATCAC Oligo69 GCGACCGTATACGCATTGAGGATTTAGAAGTTTTCATCAC Oligo70 CGTTGCGCTCACTGCGCCACGCTGAGAGCCTTTTCATCAC Oligo71 CACGCTGGTTTGCCCACAGAGATAGAACCCTTTTCATCAC Oligo72 ATAAGTGCCGTCGAGAGCGTAACGATCTAAAGTTTTCTACAC Oligo73 GATGATACAGGAGTGTTTGTATCGGTTTATCATTTTCTACAC Oligo74 CCTCAGAGCCACCACCAGGGTAGCAACGGCTATTTTCTACAC AGCAGCACCGTAATCAAGATTTGTATCATCGCTTTTCTACAC Oligo75 Oligo76 GCGCCAAAGACAAAGAACCGGATATTCATTATTTTCTACAC Oligo77 AAACCGAGGAAACGCAAGAAAATCTACGTTATTTTCTACAC Oligo78 ACGGGAGAATTAACTGAGCGAGAGGCTTTTGCTTTTCTACAC Oligo79 GCTACAATTTTATCCTGAAGCAAAGCGGATTGTTTTCTACAC Oligo80 CGCACTCATCGAGAACAATATAATGCTGTAGCTTTTCTACAC Oligo81 AGTAATTCTGTCCAGATGGCATCAATTCTACTTTTTCTACAC Oligo82 GAATCATAATTACTAGGAACCCTCATATATTTTTTTCTACAC Oligo83 TTTTAACCTCCGGCTTTCTGGAGCAAACAAGATTTTCTACAC Oligo84 TGAATTACCTTTTTTAAATAGGAACGCCATCATTTTCTACAC Oligo85 CGTCAGATGAATATACCGACGACAGTATCGGCTTTTCTACAC Oligo86 AACAAAGAAACCACCATGGGTAACGCCAGGGTTTTTCTACAC Oligo87 AGGAATTGAGGAAGGTGTTTCCTGTGTGAAATTTTTCTACAC Oligo88 CATTAAAAATACCGAAGAGGCGGTTTGCGTATTTTTCTACAC Oligo89 CTCAATCGTCTGAAATGAATAGCCCGAGATAGTTTTCTACAC Oligo90 TTTTGTCGTCTTTCCCTCAGTACCAGGCGGTTATCTTCCA Oligo91 GCTTGCTTTCGAGGTTCATACATGGCTTTTTTATCTTCCA Oligo92 CAGAGGCTTTGAGGACCTCAGAACCGCCACTTATCTTCCA Oligo93 CTGATAAATTGTGTCAATGAAACCATCGATTTATCTTCCA Oligo94 CCCAAATCAACGTAATCATATGGTTTACCATTATCTTCCA Oligo95 ATAAAACGAACTAACAAAGTTACCAGAAGGTTATCTTCCA Oligo96 AAAAGAAGTTTTGCCAGGGAAGCGCATTAGTTATCTTCCA Oligo97 CATCAAAAAGATTAAGCTATTTTGCACCCATTATCTTCCA Oligo98 TCAACATGTTTTAAATATTAAACCAAGTACTTATCTTCCA Oligo99 AATAGTAGTAGCATTACCGACAAAAGGTAATTATCTTCCA Oligo100 TAAATGCAATGCCTGTAAGAATAAACACCGTTATCTTCCA Oligo101 GAATCGATGAACGGTTCTGAGAGACTACCTTTATCTTCCA Oligo102 AAAATAATTCGCGTCTTTAACAATTTCATTTTATCTTCCA Oligo103 CTCAGGAAGATCGCAGATTTTCAGGTTTAATTATCTTCCA Oligo104 TTTCCCAGTCACGACATTATCATTTTGCGGTTATCTTCCA Oligo105 TGTTATCCGCTCACAAAATCAACAGTTGAATTATCTTCCA Oligo106 TGGGCGCCAGGGTGGGCCCTAAAACATCGCTTATCTTCCA Oligo107 GGTTGAGTGTTCACCTACATTTTGACGTTATCTTCCA Oligo108 GATTAGCGGGGTTTTGAGACGTTAGTAAATGATTTTACCCAT Oligo109 ACCGTTCCAGTAAGCGGAATTTCTTAAACAGCTTTTACCCAT Oligo110 CCCTCAGAGCCGCCACCTAAAGACTTTTTCATTTTTACCCAT Oligo111 GGCCGGAAACGTCACCGAAATCCGCGACCTGCTTTTACCCAT Oligo112 ACAATCAATAGAAAATCAAAGCTGCTCATTCATTTTACCCAT Oligo113 AAGCAGATAGCCGAACGGAACAACATTATTACTTTTACCCAT Oligo114 AGAATAACATAAAAACAGAGGGGGTAATAGTATTTTACCCAT Oligo115 TAAATCAAGATTAGTTGAGGAAGCCCGAAAGATTTTACCCAT Oligo116 TCATTCCAAGAACGGGTATGCAACTAAAGTACTTTTACCCAT Oligo117 TAAGAGAATATAAAGTAACATCCAATAAATCATTTTACCCAT Oligo118 TAAATAAGGCGTTAAAAGTAATGTGTAGGTAATTTTACCCAT Oligo119 TTATCAAAATCATAGGAATCGTAAAACTAGCATTTTACCCAT

0.11	
Oligo120	AACAAAATTAATTACATGGCCTTCCTGTAGCCTTTTACCCAT
Oligo121	ATAAAGAAATTGCGTACTCCAGCCAGCTTTCCTTTTACCCAT
Oligo122	TAAAAGTTTGAGTAACGTTGTAAAACGACGGCTTTTACCCAT
Oligo123	TATCTGGTCAGTTGGCATTCCACACACATACTTTTACCCAT
Oligo124	AATGCGCGAACTGATATTTTCTTTTCACCAGTTTTACCCAT
Oligo125	AAACGCTCATGGAAATCAGTTTGGAACAAGAGTTTTACCCAT
Oligo126	ATTTTCTGTATGGGATTCAAGAGAAGGATTAGTTTACTCACT
	TTGATACCGATAGTTGCGCAGTCTCTGAATTTTTTACTCACT
Oligo127	
Oligo128	GAGGAAGTTTCCATTAACCACCGGAACCGCCTTTTACTCACT
Oligo129	TCCATGTTACTTAGCCCCATTACCATTAGCAATTTACTCACT
Oligo130	GTGAATAAGGCTTGCCATAAGTTTATTTTGTCTTTACTCACT
Oligo131	AGGTAGAAAGATTCATCCTTTTTAAGAAAAGTTTTACTCACT
Oligo132	AAATGTTTAGACTGGAAGCAGCCTTTACAGAGTTTACTCACT
Oligo133	CTTCAAATATCGCGTTGGAGGTTTTGAAGCCTTTTACTCACT
Oligo134	GGTGTCTGGAAGTTTCCGGCTGTCTTTCCTTATTTACTCACT
Oligo135	TACAGGCAAGGCAAAGATTTTCGAGCCAGTAATTTACTCACT
Oligo136	AGATTCAAAAGGGTGAAATACCGACCGTGTGATTTACTCACT
	TGTCAATCATATGTACAGAGTCAATAGTGAATTTACTCACT
Oligo137	
Oligo138	AGCTTTCATCAACATTAAACAAACATCAAGAATTTACTCACT
Oligo139	GGCACCGCTTCTGGTGCACGTAAAACAGAATTTACTCACT
Oligo140	CAGTGCCAAGCTTGCACGAACGTTATTAATTTTTACTCACT
Oligo141	GAGCCGGAAGCATAAATCAAACCCTCAATCAATTTACTCACT
Oligo142	TGAGACGGCAACAGCATGGCTATTAGTCTTTTTTACTCACT
Oligo143	TCCACTATTAAAGAACGCCATTGCAACAGGAATTTACTCACT
Oligo144	AGAGGCTGAGACTCCTTTGCTAAACAACTT
Oligo145	AGCCAGAATGGAAAGCGCCGACAATGACAA
Oligo146	ACCGGAACCAGAGCCAACGGGTAAAATACG
Oligo147	AAATCACCAGTAGCAGGAACGAGGCGCAGA
Oligo148	CAAAGACACCACGGACTGACGAGAAACACC
Oligo149	CTATCTTACCGAAGCCAGTTGAGATTTAGG
Oligo150	GTCAAAAATGAAAATTAGCGTCCAATACTG
Oligo151	ACCTCCCGACTTGCGTTAATTCGAGCTTCA
Oligo152	AAACCAATCAATAATATTCCATATAACAGT
Oligo153	AATTTAGGCAGAGGCAATTAGCAAAATTAA
Oligo154	AATTTAATGGTTTGAGAAAGGCCGGAGACA
Oligo155	ATTAAGACGCTGAGACCCGGTTGATAATCA
Oligo156	CAAAAGAAGATGATGAGCGAGTA
Oligo157	CATATCAAAATTATTCCGGAAACCAGGCAA
Oligo 157 Oligo 158	
	ATTAAATCCTTTGCCTGCAGGTCGAC
Oligo159	GCTGAACCTCAAATAGTGTAAAGCCTGGGG
Oligo160	AGACAATATTTTGATGATTGCCCTTCACC
Oligo161	ACAATATTACCGCCAGTGGACTCATATCCA
Oligo162	CATTTTCAGGGATAGCCCTCAGAGCCACCC
Oligo163	TCAACAGTTTCAGCGGAAACATGAAAGTATTA
Oligo164	CAACCATCGCCCACGCAATAAATCCTCATTAA
Oligo165	TAATGCCACTACGAAGTTTCATAATCAAAATC
Oligo166	CGGTCAATCATAAGGGGGAATTAGAGCCAGCA
Oligo167	AGAACGAGTAGTAAATACATATAAAAGAAACG
Oligo 168	AATACCACATTCAACTAATGAAATAGCAATAG
Oligo 169	CGGAATCGTCATAATGAATTAGCATTAG
Oligo170	AAGCGAACCAGACCGGCGAGGCGTTTTAGCGA
Oligo171	TGATTCCCAATTCTGCATTTACGAGCATGTAG
Oligo172	GCAATAAAGCCTCAGAAACAACGCCAACATGT
Oligo173	GTCAAATCACCATCAATTCATCTTCTGACCTA
Oligo174	GAAAAGCCCCAAAAACCATAGCGATAGCTTAG
Oligo175	ACAACCCGTCGGATTCATTTCAATTACCTGAG
Oligo176	AGCGCCATTCGCCATTAAGGGTTAGAACCTAC
Oligo177	TCTAGACCTTTGATAGCAATTCGACAACTCGT
Oligo178	TGCCTAATGAGTGAGCTCTAAAGCATCACCTT
Oligo179	GCCTGGCCCTGAGAGATAAGAATACGTGGCAC
Oligo 180	AGCCCGGAATAGGTGTGCATTCCACAGTTTCACTACT
Oligo 180 Oligo 181	AACGGGGTCAGTGCCCCAAAAAAAAGGCTCTTTCACTACT
Giigo ro i	ACCOCCIONGIGOCCONNANAAAGCICIIICACIACI

01: 400	
Oligo182	GAACCACCAGAGACCCTCAGCAGCGAATTTCACTACT
Oligo183	GTTTGCCTTTAGCGTATTATACCAAGCGCGTTTCACTACT
Oligo184	TTGAGGGAGGGAAGGGCTGACCTTCATCAATTTCACTACT
Oligo185	CAAAAGAACTGGCATCTGGCTCATTATACCTTTCACTACT
Oligo186	TCAGAGGGTAATTGATCGTTTACCAGACGATTTCACTACT
Oligo187	AACGAGCGTCTTTCCAATCAGGTCTTTACCTTTCACTACT
Oligo188	TTTTCATCGTAGGAATTTTTGCGGATGGCTTTTCACTACT
Oligo189	CATGTTCAGCTAATGATATTTTCATTTGGGTTTCACTACT
Oligo190	ATCATATGCGTTATACTTTATTTCAACGCATTTCACTACT
Oligo191	CTATATGTAAATGCTCTACAAAGGCTATCATTTCACTACT
Oligo192	AATCAATATATGTGAAATTTTTGTTAAATCTTTCACTACT
Oligo193	ACATCGGGAGAAACATCGTAACCGTGCATCTTTCACTACT
Oligo194	CATCATATTCCTGATGAAAGGGGGATGTGCTTTCACTACT
Oligo195	AGGAGCACTAACAACCGAGCTCGAATTCGTTTTCACTACT
Oligo 193	
Oligo196	GATAAAACAGAGGTGCTGCATTAATGAATCTTTCACTACT
Oligo197	CAGATTCACCAGTCACGAAAATCGGCAAAATTTTCACTACT
Oligo198	ACAGCCCTCATAGTTAGGGTTGATATAAGTATTTTTTAACCC
Oligo199	CAAAAGGAGCCTTTAAACTGGTAATAAGTTTTTTTTTAACCC
Oligo200	AGACAGCATCGGAACGCTCAGAGCCGCCACCATTTTTAACCC
Oligo201	AAACAAAGTACAACGGGTAGCGACAGAATCAATTTTTAACCC
Oligo202	GAGTAATCTTGACAAGGGCGACATTCAACCGATTTTTAACCC
Oligo203	AGTCAGGACGTTGGGAATAATAACGGAATACCTTTTTAACCC
Oligo204	CGATAAAAACCAAAATAACACCCTGAACAAAGTTTTTAACCC
Oligo205	CTGACTATTATAGTCAGAATCTTACCAACGCTTTTTTAACCC
Oligo206	TAGAGCTTAATTGCTGAAGCAAGCCGTTTTTATTTTTAACCC
Oligo207	GCGCGAGCTGAAAAGGCGACGACAATAAACAATTTTTAACCC
Oligo208	AGGATAAAAATTTTTAAAAAAAGCCTGTTTAGTTTTTTAACCC
Oligo209	GGTCATTGCCTGAGAGAGGTTGGGTTATATAATTTTTAACCC
Oligo210	AGCTCATTTTTTAACCATGGAAACAGTACATATTTTTAACCC
Oligo211	TGCCAGTTTGAGGGGAAGTAACAGTACCTTTTTTTTTAACCC
Oligo212	TGCAAGGCGATTAAGTGAAGGAGCGGAATTATTTTTTAACCC
Oligo213	AATCATGGTCATAGCTTATCTAAAATATCTTTTTTTAACCC
Oligo214	GGCCAACGCGCGGGACGAACCACCAGCAGAATTTTTAACCC
Oligo215	CCCTTATAAATCAAAAGGATTATTTACATTGGTTTTTAACCC
Oligo228	ATTACGCCTGAGGGACGACGACAGGAACAAAGGTGACTGCTTCTAC
Oligo229	GGGAAGGGAGATCGCACTCCAGCCGAGCGAGTGGGACGCTCATTTTCA
Oligo230	CGCCATTTTCTGGTGCCGGAAACCTGTAGCACAAGACCATGCTTTG
Oligo231	ACTAGCATAGCCCCAAAAACAGGAAACGCCATCCATCGTTTTCTATC
Oligo232	AACAAGAGATATTTAAATTGTAAATGTTAAATTCGGGACAAGTCTCTC
Oligo233	CCTGTGTGTACGAGCCGGAAGCATGTTTTTCT
Oligo234	ATGGTCATACGACGTTGTAAAACGTCTTCGCTACGACGGCCCCTAAT
Oligo235	CTCGAATGGTGCCTAATGAGTGAGAGGCGG
Oligo236	ATCCCCGGCTTGCATGCCTGCAGGCAACTGTTAGCCTGCACAGACAG
Oligo237	TAGTACCCTTGCGTTGCGCTCACTAGCTGCAT
Oligo238	CCGTATAGATAGCGAGGCAAGTAGGCAAAGACTACATGTATCTCGA
Oligo239	AATCACCAAAAAACATTATGACCCAGCTAAAT
Oligo240	AGGCCGGAGTTCTAGCTGATAAATATCGTAAAGAGAGTGACAGATGT
Oligo241	TCAAAAGGAGAGCCTTTATTTCAAAATTA
Oligo242	ATGTGTAGTAGCTATTTTTGAGAGCTGGAGCAACCTGGCCTGCGTATC
Oligo243	ACACAACAAATTGTTTCCACATACGACAAAC
Oligo244	CCAGGGTGAAAGTGTAAAGCCTGGTCGTAATCCTGCTTCCCTACGCT
Oligo245	TTTGCGTATTGGGCGGTTGCAGCAAGCGGTGTTGAGTGTTGTTCC
Oligo246	GCGCGGGAGCTAACTCACATTAAGTATAAGGCAAATTCAGATGACTC
Oligo247	TAATGAATCGGCCAACCAGCAGGCGAAAATCCCCTTATAAATCAAAAG
Oligo248	TCGTGCCGCCCGCTTTCCAGTCGCTAGCGAGTGCAGAAAGGCTGTC
Oligo249	CGGTTGTAGAAACCTGCAAATGGTCAATAACCGAAGGCACATACAT
Oligo250	GAGCATAATGTAATACTTTTGCGGGGTGAGAAGCCGCCCAACTGAGG
Oligo251	AGCAATAAAGCCTCACATTTGGGGCGCGAGATTAAACGGGTAAAA
Oligo252	AGAATTAGCAACGCAAGGATAAAACCTGAGTAGGTGCATAAACGCAAC
Oligo253	CATACAGGCAAAATTCTACTAATAGTAAGGACTAAAGACTTTT
Oligo254	CTGATTGCCCTTCACCCCACTATTAAAGAACG
Oligo255	TAACGCCATATCATAACCCTCGTTAAAACGAGAGGTCTGGACGCTACA

Oliganie	AACTAATCCACATACACTCCAACTTATCTCTACCCCCCATTCACCCTA
Oligo256	AACTAATGCAGATACACTCCAACTTATGTGTACGGCGGATTGACCGTA
Oligo257	AGGAATAAAACCAAAATAGCGAGAATCCCCTCGATGTTAGTTCGTC
Oligo258	TCATCAGTTGAGATTTAAGAGTTGTGGACTAGAACAACCCGTCGGATT
Oligo259	TTACAGGTAAGTTTTGCCAGAGGGCCAATACTGGATACTCTTGGTTC
Oligo260	AACGGAACAACATTACCCGCTTGATATGAACAGCTTTCATCAACA
Oligo261	GTTAATAATGAATAAGGCTTGCCCACAAAGCTCCATGGGCGTCCCTAC
Oligo262	GGGAAGAAAATCTACACCTGTGCGGAGCAAGCAAAAATAATTCGCGT
Oligo263	ACCAGTCAACGAGTAGTAAATTGAACCGGATAGTGGTGATGGCAGA
Oligo264	AGAACTGGCTCATTATTCCCAGGACCACGATTCAGCTCATTTTTTAAC
Oligo265	AATGACCATATAGTCAGAAGCAAAATGGCTTAAAGCCTGGGTTAAAAA
Oligo266	CAGTTCAGTACCAGACGACATAACCACATTC
Oligo267	CTCAAATAGATTAAGAGGAAGCTGCTCCTTTCAATTCTGTAGCACG
Oligo268	TATTCATTGAGGCTTTTGCAAAAGAGAAAGAT
Oligo269	GCGGAATCATCGCGTTTTAATTCGCCAACAGGGGCGGATGATTAGTG
Oligo270	ATAGCGTGGTAATAGTAAAATGAACGAACT
Oligo271	GCTCATTCCAGACGGTCAATCATACTTAGCCGTTGATTATGGAATCGA
Oligo272	TCAACGTATGACGAGAAACACCAGAGGACGTT
	TATTCATCAACTTTGAAAGAGGTGTGTCGAGCTACGTCAATGAACC
Oligo273	
Oligo274	CTTGACAAGGGCTTGAGATGGTTTCGATTTTA
Oligo275	GAGCTTAATTAAATATGCAACTAAACAAGAGTGCCTGGCCCTGAGAGA
Oligo276	TTGATAAGTTTCATTCCATATAGAGATAGGCCACGCTGGTTTGCCC
Oligo277	TCAGGATTTCTGCGAACGAGTAGAGCAAAATCTGTTTGATGGTGGTT
Oligo278	GAACGAGGACCTAAAACGAAAGAGGCCACTACTGTTTAGCTATATTTT
Oligo279	AATCCGCAAACACTCATCTTTGAAGTTTCCCTGAAAAGGTGGCATC
Oligo312	ATGGGATACGTGCATCTGCCAGTTAGCTGGCG
Oligo313	CTCCGTGGTATCGGCCTCAGGACGATCGGT
Oligo314_T2	TTAAATGTAGCTTTCCGGCACCGCCGCCATTCtttttCCCTCATTCAATACCCCTACG
Oligo315	CTGGCCTTGGTTGATAATCAGAAAGTCAATCA
Oligo316	CAATAGGAGATTGTATAAGCAAAATCGATG
Oligo317	AAAGGGGCAGGGTTTTCCCAGTCAGCTGTTT
Oligo318_T1'	CAATACCCCTACGGTCACTTCttttttGCGGGCCACGGCCAGTGCCAAGGTACCGAG
Oligo319	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC
Oligo319 Oligo320_T1_Cy3	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCttttttTATGTACCAATATGATATTCAACCGACAGTCA
Oligo319 Oligo320_T1_Cy3 Oligo321	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCttttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACCCCCATGGTCGAGATACATGTAGTGAACCAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACACACTCTTGTAGAAG
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTTCATAT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGCGGGTTGCATCAAAAGCTTTAAATTTTGTGATGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGCCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGACTTCAAATGTCATAAATTTTGAATGGAT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo349 Oligo350	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGACTTCAAATGTCATAAATTTTGAATGGAT GCAAACTAGCTTCAAAGCGAACTAGACTGGTTTTAAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGGCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGACTTCAAAATGTCATAAATTTTGAATGGAT GCAAACTAGCTTCAAAAGCGAACTAGACTGGTTTTAAACCCATGTTAAAACCCATGTTAAAACCCATGTTAAAACCCATGTTAAAACCCATGATTAAACCCATGATTAAACCCAACATTTTTGGAAGATCCATAAACCCATGATTAAACCCATGATTAAAACCCATGATTAAACCCAACATTTTTGGAAGATCCATAAACCCAACTTTTAAACCCAACACCTCAAACCCAACTTTTTT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351 Oligo351 Oligo351	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /SCy3/CAATACCCCTACGGTCACTTCHHIITATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CCAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGGCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGACTTCAAAATGTCATAAATTTTGAATGGAT GCAAACTAGCTTCAAAGCGAACTAGACTGGTTTTAGATGAA CCATGTTAAGGGAACCGAACTGACTACCCAAATTTTTGGAAGAT TGATAAATACAGATGAACGGTGTAAGAGTTATTTTTTTTT
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351 Oligo351 Oligo352 Oligo352 Oligo353	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /SCy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGCAGACTACCACACACA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351 Oligo351 Oligo352 Oligo353 Oligo353 Oligo353	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCHHHTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACATCAGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTACATCAGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATCTGCACACACA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351 Oligo351 Oligo352 Oligo352 Oligo353	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /SCy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGCAGACTACCACACACA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo349 Oligo350 Oligo351 Oligo351 Oligo352 Oligo353 Oligo353 Oligo353	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCHHHTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACATCAGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTACATCAGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATCTGCACACACA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo350 Oligo351 Oligo351 Oligo352 Oligo353 Oligo353 Oligo355 Oligo355	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGCTCGATTCCATAATCAAGACAGCCTTTCTTGCACCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTGCTACGACTAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACACTCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACACACCACAAAAAAAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo350 Oligo351 Oligo352 Oligo355	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGCCGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACATACATCTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGTCTTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGACTTCAAAAGCTTTAAATTTTGAATGGAT GCAAACTAGCTTCAAAAGCCTACACAAATTTTTGAATGGAT GCAAACTAGCTTCAAAAGCGAACTAGACTGGTTTTTGATAAA CCATGTTAAGGGAACCGAACTGACTACCCAAATTTTTTGAATGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo350 Oligo351 Oligo352 Oligo355 Oligo355 Oligo355 Oligo357 Oligo357 Oligo357	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTAACATCAGAATAAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTCCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGCGGATTGCATCAAAAGCTTTAAATTTTGAATGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo350 Oligo351 Oligo352 Oligo355 Oligo355 Oligo355 Oligo355 Oligo357 Oligo360 Oligo360	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGCGGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCCGGTATAGGAAAAGATTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACAATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAATACATCGAATTAGGG TCACTCTCGTAGGGACCCCATGGTCGAGAATACATCGAATTAGGG TCACTCACAACATAAGTTGGAGACACCACACACACACACA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo350 Oligo351 Oligo351 Oligo355 Oligo355 Oligo355 Oligo355 Oligo357 Oligo360 Oligo361 Oligo362	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTACATCGAATTAGGG TCACTCTCGTAGGGACCCCATGGTCGAGAATACATCGAATTAGGG TCACTCTCGTAGGGACCCCATGGTCGAGAATACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACCGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTTCCCCGAAATCGTGGTCTTGGTTCAATAT AGGTCAGGGAGAGCTTCAAAAGCTTTAAATTTTGGAAGA CCTTTAATCCGAAAGACTTCAAATGTCATAAATTTTGAATGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo349 Oligo350 Oligo351 Oligo352 Oligo355 Oligo355 Oligo355 Oligo355 Oligo355 Oligo357 Oligo360 Oligo361 Oligo362 Oligo363	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /SCy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGCGGCGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCCCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACACTCGAATTAGGG TCACTCTCGTAGGGACCCCCATGGTCGAGAACACACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGAACACCACCACTAACATCTG CAGTCACCTACACATAAGTTGGAGAACACCACCACTAACATCTG CAACCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATTGTTTCATAT AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA TTTTGCGGGGCGGATTGCACCAAAAGCTTTAAATTTTGTGATGAA CCTTTAATCCGAAAGCATCAAATGTCATAAATTTTGAATGAA
Oligo319 Oligo320_T1_Cy3 Oligo321 Oligo324 Oligo325 Oligo326 Oligo327 Oligo328 Oligo329 Oligo330 Oligo331 Oligo332 Oligo333 Oligo334 Oligo335 Oligo348 Oligo350 Oligo351 Oligo351 Oligo355 Oligo355 Oligo355 Oligo355 Oligo357 Oligo360 Oligo361 Oligo362	AGGCTGCGTCGACTCTAGACCTTTCGCATGGC /5Cy3/CAATACCCCTACGGTCACTTCtttttTATGTACCAATATGATATTCAACCGACAGTCA AACGGTATAATGCCGGAGAGGGGTAAAGAT GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT GAGTATCCGCTGTCTGTGCAGGCTGACGAACTACATCGAATTAGGG TCACTCTCGTAGGGACGCCCATGGTCGAGAACTACATCGAATTAGGG TCACTCTCGTAGGGACCCCATGGTCGAGAATACATCGAATTAGGG TCACTCTCGTAGGGACCCCATGGTCGAGAATACATCTG CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACCGCCATAC CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT AGGTCAGGGAGAGACTTTCCCCGAAATCGTGGTCTTGGTTCAATAT AGGTCAGGGAGAGCTTCAAAAGCTTTAAATTTTGGAAGA CCTTTAATCCGAAAGACTTCAAATGTCATAAATTTTGAATGAA

Oligo366	AATAGCCCACAGTTGATTCCCAATAGAGAGTAttttt/3bio/
Oligo367	GAAATCGTTTAGTTTGACCATTGACCGGAAttttt/3bio/
Oligo368	TACGTAATGCAAAAGAATACACTAGACCTGCTttttt/3bio/
Oligo369	TCATGAGGACCCCCAGCGATTATATCATCGCCttttt/3bio/

Supplementary References

- 1. Dupuis, N. F., Holmstrom, E. D. & Nesbitt, D. J. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices. *Biophys. J.* **105**, 756–766 (2013).
- 2. Zhang, D. Y. & Winfree, E. Control of DNA Strand Displacement Kinetics Using Toehold Exchange. *J. Am. Chem. Soc.* **131**, 17303–17314 (2009).
- 3. Srinivas, N. *et al.* On the biophysics and kinetics of toehold-mediated DNA strand displacement. *Nucleic Acids Res.* **41**, 10641–10658 (2013).
- 4. Fu, J. *et al.* Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. *Nat. Nanotechnol.* **9,** 531–536 (2014).
- 5. Panyutin, I. G. & Hsieh, P. The kinetics of spontaneous DNA branch migration. *Proc. Natl. Acad. Sci.* **91**, 2021–2025 (1994).
- 6. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. *Science* **271**, 795–799 (1996).