Ответы к коллоквиуму по курсу

"Математический анализ"

(1-ый семестр 2015/2016 учебного года, специальность "Информатика")

Обозначение поточечной сходимости ФП:

$$f_n(x) \stackrel{X}{\to} f(x)$$
 или $f_n(x) \stackrel{X}{\to} .$ (1)

Определение (1) на $(\varepsilon - \delta)$ -языке:

для
$$\forall \varepsilon > 0$$
 и для $\forall fix \ x \in X \ \exists \ \nu = \nu(x, \varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon$. (2)

Обозначение равномерной сходимости ФП:

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x)$$
 или $f_n(x) \stackrel{X}{\rightrightarrows}$. (3)

Определение (3) на $(\varepsilon - \delta)$ -языке:

для
$$\forall \varepsilon > 0 \; \exists \; \nu = \nu(\varepsilon) \in \mathbb{R} \; | \; для \; \forall \; x \in X \; и \; для \; \forall \; n \geqslant \nu \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon.$$
 (4)

Краткий план:

- 1. Формулировка: +.
- 2. Доказательство:

$$\Longrightarrow : |f_n(x) - f(x)| \leqslant \varepsilon \Rightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon \Rightarrow 0 \leqslant r_n \leqslant \varepsilon, \text{ r.e. } r_n \xrightarrow[n \to \infty]{} 0.$$

$$\Leftarrow$$
: написать (4), вписав r_n т.е. $|f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon$.

3. Замечания: достаточные условия равномерной (неравномерной) сходимости $\Phi\Pi$.

$$|f_n(x) - f(x)| \le a_n$$
, где (a_n) - б.м.п $\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x_n) \xrightarrow[n \to \infty]{} 0.$

1 Супремальный критерий равномерной сходимости функциональных последовательностей ($\Phi\Pi$) и замечания к нему

Теорема (Супремальный критерий равномерной сходимости $\Phi\Pi$).

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x) \Leftrightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0.$$
 (5)

$$\begin{split} r_n &= \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon, \text{ т.e.} \\ \text{для } \forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \in \mathbb{R} \ | \ \text{для } \forall \ n \geqslant \nu \Rightarrow 0 \leqslant r_n \leqslant \varepsilon, \text{ т.e. } r_n \xrightarrow[n \to \infty]{} 0. \end{split}$$

(⇐) Пусть выполнена правая часть (5), тогда

для
$$\forall \varepsilon > 0 \; \exists \; \nu = \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; x \in X \Rightarrow \Rightarrow |f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon.$

Таким образом, имеем (4), где ν зависит от $\forall \varepsilon > 0$ и не зависит от конкретного элемента множества X.

Замечания:

- 1. Если известно, что для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |f_n(x) f(x)| \leqslant a_n$, где (a_n) б.м.п, то тогда имеем (3). Сформулированное утверждение даёт мажоритарный признак (достаточное условие) равномерной сходимости $\Phi\Pi$.
- 2. Если

$$\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x_n) \xrightarrow[n \to \infty]{} 0,$$

то тогда равномерной сходимости нет, т.е. $f_n(x) \not\stackrel{X}{\Rightarrow} f(x)$. Это даёт достаточное условие (признак) неравномерной сходимости $\Phi\Pi$.

Определение ФП частичных сумм ФР:

$$S_n(x) = u_1(x) + u_2(x) + \ldots + u_n(x) = \sum_{k=1}^n u_k(x),$$

Обозначение поточечной сходимости ФР:

$$\sum u_n(x) \xrightarrow{X} S(x) \text{ или } \sum u_n(x) \xrightarrow{X} . \tag{6}$$

Из необходимого условия сходимости ЧР, имеем:

$$u_n(x) \stackrel{X}{\to} 0$$
 (7)

Обозначение равномерной сходимости ФР:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} S(x) \text{ или } \sum u_n(x) \stackrel{X}{\rightrightarrows}. \tag{8}$$

Критерий Коши равномерной сходимости ФР:

$$(8) \Leftrightarrow \operatorname{для} \, \forall \, \varepsilon > 0 \, \exists \, \nu = \nu(\varepsilon) \in \mathbb{R} \, | \, \operatorname{для} \, \forall \, x \in X \, \operatorname{и} \, \operatorname{для} \, \forall \, n \geqslant \nu \, \operatorname{и} \, \operatorname{для} \, \forall \, m \in \mathbb{N} \Rightarrow |S_{n+m}(x) - S_n(x)| = \left| \sum_{k=n+1}^{n+m} u_k(x) \right| \leqslant \varepsilon.$$

Критерий Коши сходимости ЧР:

$$\sum a_n \operatorname{сходится} \Leftrightarrow \operatorname{для} \forall \varepsilon > 0 \exists \nu \in \mathbb{R} : \operatorname{для} \forall n \geqslant \nu \quad \operatorname{и} \operatorname{для} \forall m \in \mathbb{N} \Rightarrow |S_{n+m} - S_n| = \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon. \tag{10}$$

ЧП (a_n) является cxodящейся числовой мажорантой для $\Phi P \sum u_n(x)$, если:

1. ЧР
$$\sum a_n$$
 сходится, (11)

2. для
$$\forall n \in \mathbb{N}$$
 и для $\forall x \in X \Rightarrow |u_n(x)| \leqslant a_n$. (12)

2 Мажорантный признак Вейерштрасса равномерной сходимости функционального ряда (ФР) и замечания к нему

Теорема (мажорантный признак Вейерштрасса равномерной сходимости ΦP).

Если Φ Р имеет на X сходяющуюся числовую мажоранту, то он равномерно сходится на X.

Краткий план:

- 1. Формулировка: из названия (мажорантный признак РСФР).
- 2. Доказательство (расписать оба пункта определения сходящейся числовой мажоранты):

$$1: \sum a_n$$
 сходится: $\Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon$.

2:
$$|u_n(x)| \leqslant a_n \Rightarrow \left| \sum_{k=n+1}^{n+m} u_k(x) \right| \leqslant \varepsilon$$
.

3. Замечания: достаточное условие + функция мажоранты.

оценить
$$|u_n(x)|$$
 сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$.

если
$$\exists v_n(x) \geqslant 0 : |u_n(x)| \leqslant v_n(x)$$
 для $\forall n \in \mathbb{N}$ и для $\forall x \in X$ и $\sum v_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Доказательство с использованием критерия Коши сходимости ЧР (10) и критерия Коши равномерной сходимости ФР (9):

Т.к. $\sum a_n$ сходится, то

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; m \in \mathbb{N} \Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon.$ (13)

Если для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |u_n(x)| \leqslant a_n$, то для частичных сумм $\Phi P \sum u_n(x)$ имеем:

$$|S_{m+n}(x) - S_n(x)| = \left| \sum_{k=n+1}^{n+m} u_k(x) \right| \leqslant \sum_{k=n+1}^{n+m} |u_k(x)| \leqslant \sum_{k=n+1}^{n+m} a_k = \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon, \text{ это для } \forall \ n \geqslant \nu = \nu(\varepsilon) \text{ и для } \forall \ m \in \mathbb{N},$$
что в силу (9) даёт (8).

Замечания:

- 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости Φ P. На практике сходящуюся числовую мажоранту (a_n) либо находят с помощью соответствующих оценок $|u_n(x)|$ сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$. В последнем случае получаем наиболее точную мажоранту, но в случае расходимости $\sum a_n$ даже для этой самой точной мажоранты ничего о равномерной сходимости Φ P сказать нельзя, т.е. требуются дополнительные исследования.
- 2. Обобщая признак Вейерштрасса, где используется сходимость числовой мажоранты, признак равомерной сходимости ФР, используют функцию мажоранты, а именно:

если
$$\exists \ v_n(x) \geqslant 0 \ |$$
 во-первых, $\sum v_n(x) \stackrel{X}{\Longrightarrow}$, и, во-вторых, $|u_n(x)| \leqslant v_n(x)$ для $\forall \ n \in \mathbb{N}$ и для $\forall \ x \in X$, то тогда для Φ Р $\sum u_n(x)$ имеем (8).

Краткий план:

- 1. Формулировка: из названия (как и Дирихле для рядов).
- 2. Доказательство:

оценка Абеля, взятая с 2-кой для надёжности.

оценить $|b_{n+1}|$ и $|b_{n+m}|$ по $\widetilde{\varepsilon}=rac{arepsilon}{6\cdot c}$

def равномерной сходимости для $\sum a_n(x)b_n(x)$.

3. Замечания: как и для рядов $(\sum (-1)^n b_n(x) \stackrel{X}{\rightrightarrows}$, Лейбница \approx единица).

3 Признак Дирихле равномерной сходимости ФР и следствие из него (признак Лейбница равномерной сходимости ФР)

Теорема (Признак Дирихле равномерной сходимости ΦP).

Пусть для $\Phi\Pi$ $a_n(x)$ частичные суммы $\sum a_n(x)$ ограничены в совокупности (равномерно на X), т.е.

для
$$\forall x \in X$$
 и для $\forall n \in \mathbb{N} \Rightarrow |a_1(x) + a_2(x) + \ldots + a_n(x)| \leqslant c,$ (14)

где c = const > 0, не зависит ни от n, ни от x. Если $\forall fix \ x \in X \Rightarrow b_n(x)$ - $\Phi\Pi$ является монотонной, то в случае

$$b_n(x) \stackrel{X}{\Longrightarrow} 0,$$
 (15)

имеем $\sum a_n(x)b_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Монотонная последовательность $(b_n(x))$ для $\forall fix \ x \in X$ позволяет так же, как и в ЧР, использовать на основе (14) оценку Абеля:

$$\left| \sum_{k=n+1}^{n+m} a_k(x) b_k(x) \right| \le 2c \left(|b_{n+1}(x)| + 2 |b_{n+m}(x)| \right). \tag{16}$$

Если выполняется (15), то тогда имеем:

для $\forall \ \varepsilon > 0$ по числу $\tilde{\varepsilon} = \frac{\varepsilon}{6c} > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu(\varepsilon)$ и для $\forall \ m \in \mathbb{N}$ и для $\forall \ x \in X \Rightarrow |b_{n+1}(x)| \leqslant \tilde{\varepsilon}$ и $|b_{n+m}(x)| \leqslant \tilde{\varepsilon}$,

поэтому для частичных сумм $S_n(x) = \sum_{k=1}^n a_k(x)b_k(x)$ в силу (16) для $\forall n \geqslant \nu(\varepsilon)$ и для $\forall m \in \mathbb{N}$ и для $\forall x \in X$ имеем:

$$|S_{n+m}(x)-S_n(x)|=\left|\sum_{k=n+1}^{n+m}a_k(m)b_k(x)\right|\leqslant 2\cdot c\cdot (ilde{arepsilon}+2 ilde{arepsilon})=6\cdot c\cdot ilde{arepsilon}=arepsilon.$$
 Отсюда по критерию Коши равномерной сходимости

$$\Phi$$
Р следует, что $\sum a_n(x)b_n(x) \stackrel{X}{\rightrightarrows}$.

Следствие (Признак Лейбница равномерной сходимости ΦP).

Если $\forall \ fix \ x \in X$ последовательность $(b_n(x))$ является монотонной, то в случае $b_n(x) \stackrel{X}{\rightrightarrows} 0 \Rightarrow \sum (-1)^n b_n(x) \stackrel{X}{\rightrightarrows}$.

 \mathcal{A} оказательство. Следует из того, что в условии теоремы $a_n=(-1)^n$ не зависит от x, причём

$$\left|\sum_{k=1}^n a_k \right| \leqslant 1 = const,$$
для $\forall \ n \in \mathbb{N}.$

Для обозначения поточечной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\to} . \tag{17}$$

Краткий план:

- 1. Формулировка: oДuuu один знак, Дuuu непрерывны, Дuuu непрерывны.
- 2. Доказательство:

3 свойства остатка ряда $R_n(x) = S(x) - S_n(x)$: Fun UFO (Fun UFO — функция непрерывна, Fun UFO — функциональная последовательность убывает, Fun UFO — функция к 0).

дм у пво (де Морган, упрощение, принцип выбора, x_0)

противоречие с последним свойством остатка.

 $R_m(x_{nk}) \geqslant R_{nk}(x_{nk}) > \varepsilon_0 \Rightarrow [$ переходя к пределу $] \Rightarrow R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{nk}) \geqslant \varepsilon_0$, что противоречит последнему из свойств остатка.

3. Теорема: то же самое, только вместо сохранения одного знака члены $\Phi\Pi$ будут монотонны.

по доказанному признаку, задав ΦP как $u_n(x) = f_n(x) - f_{n-1}(x)$.

4 Признак Дини равномерной сходимости ΦP и следствие из него (теорема Дини для $\Phi \Pi$)

Теорема (Признак Дини равномерной сходимости ΦP). Пусть

- 1. Члены $\Phi P \sum u_n(x)$ непрерывны и сохраняют один и тот же знак на X = [a,b], для $\forall n \in \mathbb{N}.$
- 2. $\sum u_n(x) \stackrel{X}{\to} S(x)$.

Тогда, если $S(x) = \sum_{n=1}^{\infty} u_n(x)$ - непрерывная функция на [a,b], т.е. $S(x) \in C([a,b])$, то $\sum u_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Рассмотрим на X = [a, b] остатки ряда $R_n(x) = u_{n+1}(x) + \ldots = S(x) - S_n(x)$. Нетрудно видеть, что выполняются следующие свойства:

- 1. для $\forall fix \ n \in \mathbb{N} \Rightarrow R_n(x)$ непрерывная функция на [a,b] как разность двух непрерывных функций.
- 2. для $\forall \ fix \ x \in X \Rightarrow \Phi\Pi \ (R_n(x))$ убывает в случае, когда $\forall \ u_n(x) > 0$, т.к. $R_n(x) = u_n(x) + R_{n+1}(x) \geqslant R_{n+1}(x)$, для $\forall \ n \in \mathbb{N}$.
- 3. Т.к. имеет место (17), то для $\forall fix \ x \in X \Rightarrow R_n(x) \stackrel{X}{\to} 0.$

Докажем от противного. Предположим, что рассматриваемая положительная поточечная сходимость на X ΦP не является равномерной сходимостью на X.

Тогда по правилу де Моргана имеем: $\exists \ \varepsilon_0 > 0 \ | \ для \ \forall \ \nu \in \mathbb{R} \ \exists \ n(\nu) \geqslant 0 \ \text{и} \ \exists \ x(\nu) \in X \ | \ R_{n\nu}(x_\nu) > \varepsilon_0$. Для простоты будем считать, что $\exists \ x_n \in X \ | \ R_n(x_n) > \varepsilon_0$. По принципу выбора из ограниченной последовательности x_n можно выбрать сходящуюся подпоследовательность, т.е. $x_{n_k} \underset{n_k \to \infty}{\longrightarrow} x_0$, при этом в силу использования X = [a,b] - компакт, получаем, что $x_0 \in X$. Если зафиксируем $m \in \mathbb{N}$, то для $\forall \ n_k \geqslant m \Rightarrow R_{n_k}(x_{n_k}) > \varepsilon_0$, по свойствам остатка будем иметь, что $R_m(x_{n_k}) \geqslant R_{n_k}(x_{n_k}) > \varepsilon_0$. В неравенстве $R_m(x_{n_k}) > \varepsilon_0$, переходя к пределу при $n_k \to \infty$ для $\forall \ m \in \mathbb{N}$, получаем в силу непрерывности $R_n(x) : R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{n_k}) \geqslant \varepsilon_0$, что противоречит последнему из свойств остатка, а именно

 $R_m(x_0) \stackrel{X}{\longrightarrow} 0$ при $m \to \infty$, поэтому из нашего предположения следует, что выполняется $R_m(x_0) \not\to 0$, противоречие, т.е. выполняется $\sum u_n(x) \stackrel{X}{\rightrightarrows}$.

Мы рассмотрели случай положительного ΦP , отрицательный рассматривается аналогично.

Следствие ($\mathit{Teopema}\ \mathcal{A}\mathit{uhu}\ \mathit{dлs}\ \Phi\Pi$).

Если для ФП $f_n(x), n \in \mathbb{N}$ на X = [a,b] выполняются свойства:

- 1. для $\forall f_n(x) \in C([a,b])$ и для $\forall fix \ x \in X \Rightarrow f_n(x)$ монотонна.
- 2. $f_n(x) \xrightarrow{X} f(x)$. Тогда, если $f(x) \in C([a,b])$, то $f_n(x) \stackrel{X}{\rightrightarrows}$.

Доказательство. следует из того, что члены рассматриваемой $\Phi\Pi$ $f_n(x)$ можно рассматривать как частичные суммы соответствующего Φ P с общим членом

$$\begin{cases} u_n(x) = f_n(x) - f_{n-1}(x), \\ f_0(x) = 0. \end{cases}$$
 (18)

Действительно, $S_n(x) = (f_1(x) - f_0(x)) + (f_2(x) - f_1(x)) + \ldots + (f_{n-1}(x) - f_{n-2}(x)) + (f_n(x) - f_{n-1}(x)) = f_n(x) - f_0(x) = f_n(x)$, для $\forall n \in \mathbb{N}$.

 \dot{A} далее к этому $\Phi P \sum u_n(x)$ применяется теорема Дини равномерной сходимости ΦP .

Пусть x_0 - предельная точка множества сходимости $X \subset \mathbb{R}$ для $\Phi P \sum u_n(x)$. Будем говорить, что в $\sum u_n(x)$ возможен почленный предельный переход $x \to x_0$, если

$$\exists \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x), \tag{19}$$

причём получившийся в левой части (19) ЧР является сходящимся.

В частности, если $x_0 \in X$ и $\forall u_n(x)$ непрерывен в некоторой окрестности точки x_0 , и значит, для $\forall n \in \mathbb{N} \exists \lim_{x \to x_0} u_n(x) = u_n(x_0)$, то в случае выполнения (19) для суммы S(x) ФР $\sum u_n(x)$ при $x \to x_0$ имеем:

$$\exists \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x) = \sum_{n=1}^{\infty} u_n(x_0) = S(x_0), \tag{20}$$

что соответствует непрерывности S(x) в точке $x_0 \in X$.

5 Теорема о непрерывности суммы равномерно сходящегося ФР и замечания к ней

Краткий план:

- $1. \, \Phi$ ормулировка: по названию $+ \,$ каждый член ряда $\,$ непрерывная функция.
- 2. Доказательство (Зейдель = $3 \cdot \varepsilon$):

Пишем, что нужно обосновать для $\forall x_0 \in X$, при этом нужно использовать односторонние пределы для концевых значений.

Рассматриваем приращение суммы $\Delta S(x_0)$.

Рассматриваем три разности частичной суммы и полной суммы (с x_0 и $x_0 + \Delta x$).

Подставляем 3 разности (1+3-2) и получаем непрерывность по M-лемме.

Теорема (о непрерывности суммы равномерно сходящегося ΦP).

Если все члены $u_n(x), n \in \mathbb{N}$, $\Phi P \sum u_n(x)$ непрерывны на X = [a, b], то в случае равномерной сходимости этого ряда на [a, b] его сумма S(x) будет непрерывной функцией на [a, b].

Доказательство. Требуется обосновать (20) для $\forall x_0 \in [a,b]$, причём в случае концевых значений $x_0 = a, x_0 = b$ будем использовать соответствующие односторонние пределы, т.е. рассматривать одностороннюю непрерывность.

Для $fix \ x_0 \in [a,b]$ придадим произвольные приращения $\Delta x \in \mathbb{R} \mid (x_0 + \Delta x) \in [a,b]$ и рассмотрим соответствующие приращения суммы $\Phi P \sum u_n(x)$:

$$\Delta S(x_0) = S(x_0 + \Delta x) - S(x_0).$$

Из равномерной сходимости $\Phi P \sum u_n(x)$ на $X = [a,b] \Rightarrow$ для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu, \$ и для $\forall \ x \in [a,b]$ для частичных сумм $S_n(x) = u_1(x) + u_2(x) + \ldots + u_n(x)$ ряда $\sum u_n(x)$ имеем: $|S_n(x) - S(x)| \leqslant \varepsilon$.

Отсюда, в частности, для $x=x_0\in X$ и $x=x_0+\Delta x\in X$ \Rightarrow

$$\begin{cases} |S_n(x_0) - S(x_0)| \leqslant \varepsilon, \\ |S_n(x_0 + \Delta x) - S(x_0 + \Delta x)| \leqslant \varepsilon. \end{cases}$$
 (21)

Далее из непрерывности $\forall u_n(x)$ в $x_0 \in [a,b]$ следует непрерывность частичных сумм в x_0 (как конечных сумм непрерывных функций).

В силу этого, для $\forall \varepsilon > 0 \exists \delta > 0$: для $\forall |\Delta x| \leqslant \delta \Rightarrow$

$$\Rightarrow |S_n(x_0 + \Delta x) - S_n(x_0)| \leqslant \varepsilon. \tag{22}$$

Таким образом, в силу (21), (22) имеем: для $\forall \varepsilon > 0$, выбирая $n \geqslant \nu$ и рассматривая $\forall |\Delta x| \leqslant \delta$, имеем:

$$|\Delta S(x_0)| = |S_n(x_0) - S(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le$$

$$\leq |S_n(x_0) - S(x_0)| + |S_n(x_0 + \Delta x) - S_n(x_0)| + |S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \leq \varepsilon + \varepsilon + \varepsilon = 3 \cdot \varepsilon.$$

Поэтому получаем: для $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \$ для $\forall \ |\Delta x| \leqslant \delta \Rightarrow |\Delta S(x_0)| \leqslant M \cdot \varepsilon, M = const = 3 > 0.$

Отсюда по М-лемме для $\Phi 1\Pi$ следует, что $\Delta S(x_0) \underset{\Delta x \to 0}{\to} 0$, что на языке приращений равносильно (20). При этом, т.к. из равномерной сходимости следует поточечная сходимость, ЧР в правой части (20) будет сходящимся.

Замечания:

- 1. Доказанную теорему часто называют теоремой Стокса-Зейделя или теоремой Стокса-Зайделя.
- 2. В условии доказанной теоремы равномерную сходимость можно заменить для произвольного множества $X \subset \mathbb{R}$ на локальную равномерную сходимость.

6 Теорема о почленном интегрировании равномерно сходящегося ФР

Краткий план:

1. Очевидно, что S(x) - непрерывна, поэтому интегрируема

2. Рассмотрим частичные суммы
$$T_n = \sum_{k=1}^n \int\limits_a^b u_k(x) dx$$
.

3. Рассмотрим разницу
$$\left|T_n-\int\limits_a^bS(x)\right|$$
 и т.к. $|S(x)-S_n(x)|\leqslant \varepsilon$ получим $\int\limits_a^b(S(x)-S_n(x))\leqslant M\varepsilon$

4. Доказываем по М-лемме о сходимости ЧП.

Теорема (о почленном интегрировании равномерно сходящихся ΦP).

Если $\forall u_n(x) \in C([a,b]),$

для $n \in \mathbb{N}$, то в случае, когда $\sum u_n(x) \stackrel{[a,b]}{\rightrightarrows}$, возможно почленное интегрирование этого ряда на [a,b], т.е.

$$\exists \int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x)dx. \tag{23}$$

Доказательство. На основании теоремы о непрерывности суммы равномерно сходящихся ΦP получим, что сумма ряда $S(x) = \sum_{n=1}^{\infty} u_n(x)$ будет непрерывна на [a,b], а значит, интегрируема на [a,b].

Используя частичные суммы для $\sum u_n(x)$, рассмотрим частичные суммы $T_n = \int_0^b S_n(x) dx =$

$$= \int\limits_{a}^{b} \sum_{k=1}^{n} u_{k}(x) dx = \sum_{k=1}^{n} \int\limits_{a}^{b} u_{k}(x) dx$$
 для ЧР правой части (23).

Требуется доказать, что $\lim_{n\to\infty} T_n = \int_{-\infty}^{b} S(x) dx$.

Из равномерной сходимости $\sum u_n(x)^a$ на [a,b] получим, что для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ |$ для $\forall \ n \geqslant \nu$ и для $\forall \ x \in [a,b] \Rightarrow$

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \varepsilon$$
 (24)

Отсюда получаем, что $\left| \int\limits_a^b S(x) dx - T_n \right| = \left| \int\limits_a^b S(x) dx - \int\limits_a^b S_n(x) dx \right| = \left| \int\limits_a^b (S(x) - S_n(x)) dx \right| \leqslant$ $\leqslant \int\limits_a^b \left| S(x) - S_n(x) \right| dx \leqslant \int\limits_a^b \varepsilon dx = M\varepsilon, \text{ где } M = b - a = const \geqslant 0.$

Таким образом, для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ | \$ для $\forall \ n \geqslant \nu \Rightarrow \left| \int\limits_a^b S(x) dx - T_n \right| \leqslant M \varepsilon$, поэтому по М-лемме сходимости ЧП следует, что

 $\exists \lim_{n \to \infty} T_n = \int_{-\infty}^{b} S(x) dx = \int_{-\infty}^{b} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx,$

что равносильно (23).

7 Теорема о почленном дифференцировании ФР

Краткий план:

- 1. $\sum u'_{n}(x)$ можно почленно интегрировать.
- 2. Берём интеграл с переменным верхним пределом (т.е. на [a; x]).
- 3. Выражаем S(x), дифференцируем по теореме Барроу.

Теорема (о почленном дифференцировании ΦP).

Пусть ФР $\sum u_n(x)$ на X = [a, b] удовлетворяет условиям:

- 1. $\sum u_n(x) \stackrel{X}{\rightarrow}$,
- 2. $\exists u'_n(x)$, непрерывная для $\forall n \in \mathbb{N}, x \in X$.

Тогда, если

$$\sum u_n^{'}(x) \stackrel{X}{\rightrightarrows} \tag{25}$$

то рассматриваемый $\Phi P \sum u_n(x)$ можно почленно дифференцировать на [a,b], т.е.

$$\exists \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{k=1}^{\infty} u_k'(x), \text{для } \forall x \in X.$$
 (26)

Доказательство. В силу (25), по условию 2 рассматриваемой теоремы получаем, что по теореме об интегрировании $\Phi P \sum u_n'(t)$ можно почленно интегрировать на $\forall [a,x] \subset [a,b]$, т.е.

$$\exists \int_{a}^{x} \left(\sum_{n=1}^{\infty} u'_{n}(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t) dt = \sum_{n=1}^{\infty} [u_{n}(t)]_{t=a}^{t=x} = \sum_{n=1}^{\infty} (u_{n}(x) - u_{n}(a)).$$

Отсюда в силу условия 1 (поточечная сходимость для $\sum u_n(x)$) получаем, что

$$\exists \ S(x) = \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} u_n(a) + \int_{-1}^{x} \sum_{n=1}^{\infty} u'_n(t) dt.$$

Используя далее *теорему Барроу* о дифференцировании интеграла с переменным верхним пределом от непрерывной подынтегральной функции, получаем:

$$\exists \ S^{'}(x) = \left(const\right)^{'} + \left(\int\limits_{a}^{x} \left(\sum\limits_{n=1}^{\infty} u_{n}^{'}(t)\right) dt\right)_{x}^{'} = \sum\limits_{n=1}^{\infty} u_{n}^{'}(x),$$

что соответствует (26).

Под степенным рядом будем подразумевать ФР вида

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$
 (27)

где fix $x_0 \in \mathbb{R}$ - центр для CтP, а $\forall a_n \in \mathbb{R}$ - соответствующая числовая последовательность (коэффициенты CmP).

Теорема Абеля о сходимости степенного ряда (СтР) и замечание к ней. 8

Краткий план:

- 1. Абеля сходится абсолютно, признак сравнения ЧР.
- 2. Сходящаяся ЧП является ограниченной (т.е. ограничен каждый её член)
- 3. Рассматриваем это условие для x_1 , получаем верхнюю границу для a_n .
- 4. Затем аналогично рассматриваем условие для x, ограничивая сверху Mq^n .

Теорема Абеля (о сходимости степенных рядов).

Если СтР (27) сходится при $x = x_1 \neq x_0$, то он будет сходится абсолютно для любого x, где

$$|x - x_0| < |x_1 - x_0|. (28)$$

Доказательство. Из сходимости при $x=x_1$, т.е. ряда $\sum_{n=0}^{\infty}a_n(x_1-x_0)^n$ следует в силу необходимого условия сходимости ЧР, что $a_n(x_1-x_0)^n \xrightarrow[n\to\infty]{n\to\infty} 0$, а т.к. \forall сходящаяся ЧП является ограниченной, то $\exists M = \text{const} > 0 : |a_n(x_1 - x_0)^n| \leqslant M,$ для $\forall n \in \mathbb{N}$, т. е.

$$|a_n| \leqslant \frac{M}{|x_1 - x_0|^n}. (29)$$

Для $\forall x$, удовлетворяющего (28), в силу (29) получаем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \stackrel{(29)}{\leqslant} \frac{M |x-x_0|^n}{|x_1-x_0|^n} = Mq^n$$
, где $q = \frac{|x-x_0|}{|x_1-x_0|} \in [0;1[$.

Таким образом, мы получили сходящуюся мажоранту, ибо ряд $\sum_{n=0}^{\infty} Mq^n = M \sum_{n=0}^{\infty} q^n$ сходится при $q \in [0;1[$. По признаку сравнения сходимости ЧР имеем, что для $\forall \, x$, удовлетворяющего (28), ряд (27) будет сходиться.

Замечание.

Из полученных выше результатов следует, что если рассмотреть множество X_0 всех x, удовлетворяющих (28), то имеем, что $X_0 \subset X$, т.е. X_0 - некоторое подмножество множества X сходимости для (27).

9 Формула Даламбера для вычисления радиуса сходимости СтР.

Краткий план:

- 1. Рассматриваем $x \in]-R + x_0; x_0 + R[(x \neq x_0)].$
- 2. Подставляем в теорему Даламбера для ЧР (a_{n+1}/a_n) .
- 3. Рассматриваем два случая: d < 1 и d > 1.

Теорема (формула Даламбера для вычисления радиуса сходимости CmP).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{30}$$

то для радиуса сходимости ряда (27) имеем:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|. \tag{31}$$

Доказательство.

Без ограничения общности будем считать, что в (27) $\forall a_n \neq 0$. Т.к. СтР (27) сходится при $x = x_0$, то рассмотрим случай $x \neq x_0$.

Если $x \in I = \begin{bmatrix} x_0 - R \ ; \ x_0 + R \end{bmatrix}$, где $R \geqslant 0$, то по признаку Даламбера сходимости ЧР для (27) имеем:

$$\exists \ d = \lim_{n \to \infty} \frac{\left| a_{n+1} (x - x_0)^{n+1} \right|}{\left| a_n (x - x_0)^n \right|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \stackrel{\text{(31)}}{=} \frac{|x - x_0|}{R}.$$

В силу того, что $x \in I$ и, значит, $|x - x_0| < R$, получаем, что d < 1 и СтР (27) будет сходящимся. Если d > 1, т.е. $|x - x_0| > R$, то (27) расходится. Таким образом, (31) будет радиусом сходимости для (27).

10 Формула Коши для вычисления радиуса сходимости СтР и замечания к ней.

Краткий план:

- 1. Рассмотрим $x \neq x_0$
- 2. Применяем теорему Коши для ЧР
- 3. Рассматриваем два случая: k < 1 и k > 1.

Теорема (формула Коши для вычисления радиуса сходимости СтР).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \sqrt[n]{|a_n|},\tag{32}$$

то для радиуса сходимости ряда (27) имеем:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$
(33)

Доказательство проведём по тойже схеме, что и в предыдущей теореме.

T.к. случай $x=x_0$ тривиален (в данной точке ряд всегда сходится), то рассмотрим случай $x \neq x_0$.

По признаку Коши сходимости ЧР для (27) получаем:

$$\exists \ k = \lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} \stackrel{(33)}{=} \frac{|x - x_0|}{R}.$$

Если k < 1, т. е. $|x - x_0| < R$, то СтР (27) сходится.

Если k > 1, т. е. $|x - x_0| > R$, то СтР (27) расходится.

Таким образом, в силу определения, величина (33) будет радиусом сходимости для (27).

Замечания:

- 1. В силу связи между признаками Даламбера и Коши сходимости ЧР, в случае, когда предел (31) не существует (ни конечный, ни бесконечный), предел (33) может существовать, и в этом смысле формула Коши (33) предпочтительнее, чем (31).
- 2. Можно показать, что в случае, когда в (33) нет ни конечного, ни бесконечного предела, радиус сходимости для (27) всегда можно вычислить по формуле Коши-Адамара, использующей понятие верхнего предела последовательности:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$
 (34)

Под верхним пределом последовательности подразумевается верхняя грань (supremum) множества конечных пределов всех сходящихся подпоследовательностей рассматриваемой последовательности.

11 Теорема о локальной равномерной сходимости СтР, замечания к ней и следствие из неё (о равенстве степенных рядов).

Краткий план:

- 1. Рассматриваем произвольный отрезок из интеравала сходимости.
- 2. Делаем отрезок симметричным относительно x_0 .
- 3. Ограничиваем члены СтР сверху: $a_n r^n$.
- 4. Применяем ообобщённый признак Коши (супремум пределов)

Следствие о равенстве СтР:

Краткий план:

- 1. Приравниваем сумму двух рядов
- 2. Подставляем x_0 , получаем равенство $a_0 = b_0$
- 3. Делим остаток на $(x x_0)$
- 4. Предел $x \to x_0$, получаем равенство $a_1 = b_1$. Goto 2.

Теорема (о локальной равномерной сходимости СтР).

Если СтР (27) имеет ненулевой радиус сходимости, то этот ряд (27) сходится равномерно на любом отрезке из интервала сходимости данного ряда.

Доказательство

Рассмотрим $\forall [a,b] \subset I = \left[x_0 - R \; ; \; x_0 + R \right[,$ где R > 0 - радиус сходимости СтР (27). Имеем:

$$x_0 - R < a < b < x_0 + R \Rightarrow -R < a - x_0 < b - x_0 < R \Rightarrow \begin{cases} |a - x_0| < R, \\ |b - x_0| < R. \end{cases}$$
(35)

Полагая $r=\max\left\{ \ \left|a-x_{0}\right|,\ \left|b-x_{0}\right|\
ight\} ,$ в силу (35) получаем:

$$0 \leqslant r < R. \tag{36}$$

Отсюда для $\forall x \in [a, b]$ получаем:

$$|x - x_0| \le \max \left\{ |a - x_0|, |b - x_0| \right\} = r,$$

поэтому для $\forall n \in \mathbb{N}_0$ имеем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \leqslant |a_n| r^n = c_n$$
 - мажоранта.

Применяя к ряду c_n обобщённый признак Коши сходимости ЧР, получаем:

$$\exists \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} r^n = r \cdot \underbrace{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}_{\stackrel{1}{=}} \stackrel{(34)}{=} \frac{r}{R} \stackrel{(36)}{<} 1,$$

а значит, ряд $\sum c_n$ сходится.

Таким образом, мы получили равномерно сходящуюся числовую мажоранту, и поэтому, по мажорантному признаку Вейерштрасса для Φ P, рассматриваемый CtP (27) будет равномерно сходиться на \forall $[a,b] \subset I$.

Замечания:

- 1. Из доказанной теоремы следует, что любой СтР сходится локально равномерно на интервале своей сходимости.
- 2. Применяя теорему Стокса-Зейделя для Φ Р и учитывая, что в (27) все слагаемые являются непрерывными функциями на I, в силу локальной равномерной сходимости (27) на I, внутри интервала сходимости сумма любого CtP (27) будет являться непрерывной функцией.

Следствие (о равенстве СтР).

Если для СтР (27) с непрерывной суммой S(x) есть степенной ряд $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ с соответствующей суммой T(x), причём T(x) = S(x) в некоторой окрестности центра разложения x_0 , то тогда и сами СтР совпадают, т.е. $a_n = b_n$, для $\forall n \in \mathbb{N}_0$.

Доказательство. Пусть имеем, что

$$S(x) = a_0 + a_1(x - x_0) + \dots = b_0 + b_1(x - x_0) + \dots = T(x).$$

В силу непрерывности S(x) и T(x) в соответствующей окрестности точки x_0 при $x \to x_0$, получаем:

$$a_0=\lim_{x o x_0}S(x)=\lim_{x o x_0}T(x)=b_0,$$
 отсюда
$$a_1(x-x_0)+a_2(x-x_0)^2+\ldots=b_1(x-x_0)+b_2(x-x_0)^2+\ldots.$$

Таким образом, для $\forall \ x \neq x_0$ имеем:

$$a_1 + a_2(x - x_0) + \ldots = b_1 + b_2(x - x_0) + \ldots$$

Используя опять соответствующую окрестность точки x_0 , при $x \to x_0$, получим, что $a_1 = b_1$ и так далее (по ММИ).

12 Теорема о дифференцировании СтР, замечания и следствие из неё.

Краткий план:

- 1. Слагаемые непрерывно дифференцируемы + имеем поточечную сходимость CtP, поэтому сумма CtP будет непрерывно дифференцируемой.
- 2. Считаем радиус по обобщённой теореме Коши (формула Коши-Адамара)

Следствие

Краткий план:

1. Просто дифференцируем и замечаем схожесть с рядом Тейлора.

Теорема (о дифференцировании CmP).

Сумма СтР (27) внутри его интервала сходимости является непрерывно дифференцируемой функцией, причём у продифференцированного СтР будет тот же радиус (а, значит, и интервал) сходимости, что и у исходного ряда (27).

Доказательство. По теореме о почленном дифференцировании ΦP и замечанию к ней достаточно показать, что возможно почленное дифференцирование (27) на \forall отрезке $[a,b] \subset I =]$ $x_0 - R$; $x_0 + R$ [.

- 1. В (27) слагаемые $u_n(x) = a_n(x-x_0)^n$, $n \in \mathbb{N}_0$ являются непрерывно дифференцируемыми функциями для $\forall \, x \in [a;b]$ т.к. $\exists \, u_n'(x) = na_n(x-x_0)^{n-1}$ непрерывная на [a;b].
- 2. Так как \forall CTP (27) сходится поточечно внутри своего интервала сходимости, то $\sum_{x=0}^{\infty} u_n(x) \xrightarrow{\text{для } \forall \ [a;b] \subset I} S(x).$

Осталось показать, что продифференцированный СтР

$$\sum_{n=0}^{\infty} u'_n(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x - x_0)^n \stackrel{[a;b]}{\Rightarrow} .$$

Используя формулу Коши-Адамара, имеем:

$$\widetilde{R} = \frac{1}{\frac{\lim_{n \to \infty} \sqrt[n]{(n+1)|a_{n+1}|}}{\lim_{n \to \infty} \sqrt[n]{(n+1)|a_{n+1}|}}} = \frac{1}{\frac{\lim_{n \to \infty} \left(\sqrt[n]{n+1} \sqrt[n]{|a_{n+1}|}\right)}} = \begin{bmatrix} \sqrt[n]{n+1} \xrightarrow{n \to \infty} 1, \\ \sqrt[n]{|a_{n+1}|} = \left(\sqrt[n+1]{|a_{n+1}|}\right)^{\frac{n+1}{n}} \end{bmatrix} = \frac{1}{\frac{1}{R}} = R.$$

Значит, у исходного и продифференцированного рядов один и тот же радиус, а, значит, и интервал, сходимости. Тогда, в силу того, что \forall CTP сходится локально равномерно, получаем, что $\sum\limits_{n=0}^{\infty}u_n'(x)\stackrel{[a;b]}{\rightrightarrows}S'(x)$.

Причём, в силу непрерывности слагаемых, S(x) будет непрерывно дифференцируема на $\forall [a;b] \subset I$, а, значит, и для $\forall x \in I$.

Замечания:

- 1. Применяя последовательно дифференцирование к СтР (27), получим по ММИ, что сумма ряда (27) будет бесконечное число раз дифференцируемой функцией.
- 2. Можно показать, что дифференцирование CTP хоть и сохраняет интервал сходимости, но в общем случае не улучшает его множество сходимости в том смысле, что если, например, исходный ряд (27) сходится на каком-то из концов интервала I $(x = x_0 \pm R)$, то продифференцированный ряд уже может расходиться на этом конце.

Следствие

Если на интервале $I=]x_0-R$; x_0+R [бесконечно дифференцируемая функция f(x) представляется в виде $f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n$, для $\forall~x\in I$, то для неё CTP (27) будет являться соответствующим рядом Тейлора в окрестности точки x_0 , т. е. для $\forall~a_n=\frac{f^{(n)}(x_0)}{n!},~n\in\mathbb{N}_0$.

Доказательство. Действительно, дифференцируя почленно n раз равенство

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + \dots$$

в силу доказанной теоремы получим:

$$\exists f^{(n)}(x) = n! \cdot a_n + (n+1) \cdot n \cdot \dots \cdot 2 \cdot a_{n+1}(x-x_0) + \dots$$

Отсюда при $x \to x_0$ имеем:

$$n! \cdot a_n = \lim_{x \to x_0} f^{(n)}(x) = f^{(n)}(x_0) \quad \Leftrightarrow \quad a_n = \frac{f^{(n)}(x_0)}{n!},$$

т.е. $\forall a_n$ - коэффициент в разложении в ряд Тейлора.

НИ-1 (линейность, аддитивность, монотонность). Рассмотрим f(x), определённую для $\forall x \in [a; +\infty[$. Предположим, что для $\forall A > a \Rightarrow f \in \mathbb{R}([a, A])$, т.е.

$$\exists \Phi(A) = \int_{a}^{A} f(x)dx \in \mathbb{R}.$$
 (37)

Предел функции (37) при $A \to +\infty$ называется НИ-1, обозначаемый:

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx = \lim_{A \to +\infty} \Phi(A) = \Phi(+\infty).$$
 (38)

Интеграл (37) сходится \Leftrightarrow в (38) $\Phi(+\infty) \in \mathbb{R}$. В этом случае конечную величину $\Phi(+\infty)$ принимают за значение (38). Геометрически, если f(x) неотрицательная непрерывная для $\forall x \geqslant a$ функция, то в случае сходимости (38) его значение соответствует площади неограниченной фигуры между Ox и графиками функции.

НИ-2 (линейность, аддитивность, монотонность). Пусть f(x) определена для $\forall x \in [a,b[$ и неограничена в левосторонней окрестности точки b, т.е. $f(b-0) = \infty$. Если f(x) интегрируема на $\forall [a,c] \subset [a,b[$, то для $\forall \varepsilon \exists]0,b-a[\Rightarrow$

$$\exists I(\varepsilon) = \int_{a}^{b-\varepsilon} f(x)dx. \tag{39}$$

В этом случае НИ-2 от f(x) по [a,b[называют величину:

$$I_0 = \lim_{\varepsilon \to +0} I(\varepsilon) \stackrel{(39)}{=} \lim_{\varepsilon \to +0} \int_{0}^{b-\varepsilon} f(x)dx = \int_{0}^{b-0} f(x)dx. \tag{40}$$

В дальнейшем для простоты вместо (40) для НИ-2 будем просто писать

$$I_0 = \int_a^b f(x)dx. \tag{41}$$

НИ-2 (41) считается сходящимся ⇔ предел (40) конечен.

13 Теорема о замене переменной в несобственных интегралах (НИ) и замечание к ней.

Краткий план:

- 1. Применяем теорему о замене переменных в ОИ на произвольном подотрезке $[\alpha; \gamma]$.
- 2. Переходим к пределу $\gamma \to \beta 0$.

Теорема (о замене переменных в НИ).

Будем одновременно рассматривать как НИ-1, так и НИ-2.

Пусть f(x) определена для $\forall x \in [a; b[$, где либо $b = +\infty$ (НИ-1), либо $f(b-0) = \infty$ (НИ-2).

Если функция $x(t) = \phi(t)$ - непрерывно дифференцируема для $\forall \ t \in [\alpha; \beta[$ и строго монотонна, то в случае, когда:

$$\begin{cases} \phi(\alpha) = a, \\ \phi(\beta - 0) = b. \end{cases}$$
, интеграл $\int\limits_a^b f(x) dx$, где $b = +\infty$ (НИ-1) либо $f(b - 0) = \infty$ (НИ-2), сходится тогда и только тогда, когда сходится интеграл

$$\int_{-\beta}^{\beta} f(\phi(t))\phi'(t)dt. \tag{42}$$

При этом справедлива формула замены переменных в НИ:

$$\int_{a=\phi(\alpha)}^{b} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x|_{a=\phi(\alpha)}^{b=\phi(\beta-0)} \end{bmatrix} = \int_{a=\phi(\alpha)}^{\beta} f(\phi(t))\phi'(t)dt, \tag{43}$$

причём в правой части (43) может стоять как некоторый НИ, так и обычный интеграл Римана.

Доказательство. Следует из соответствующей теоремы о замене переменных в ОИ (интеграле Римана).

Для доказательства, выбирая для $\forall \gamma \in [\alpha; \beta[$, в силу строгой монотонности $\phi(t)$, получаем что $c = \phi(\gamma) \in [a; b[$. При этом для $\forall c \in [a; b[$ $\exists ! \gamma \in [\alpha; \beta[$.

Тогда по теореме о замене переменных в ОИ имеем:

$$\int_{a}^{c} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x|_{a=\phi(\alpha)}^{c} \Rightarrow \exists ! \ \gamma \in [\alpha; \beta[\ | \ c = \phi(\gamma) \Rightarrow t|_{\alpha}^{\gamma}. \end{bmatrix} = \int_{\alpha}^{\gamma} f(\phi(t))\phi'(t)dt.$$

Отсюда, переходя к пределу и учитывая, что $\gamma \to \beta - 0 \Rightarrow c \to b - 0$, получаем (43).

Замечание.

Для НИ-2 вида $\int_{a}^{b-0} f(x)dx$ после замены переменных имеем:

$$t = \left. rac{1}{b-x}
ight|_{rac{1}{b-x}>0}^{+\infty}, \ {
m a}$$
 для $\left. x
ight|_a^{b-0},$

отсюда получаем:
$$x=b-\frac{1}{t}\Rightarrow dx=\frac{dt}{t^2}\Rightarrow\int\limits_a^bf(x)dx=\int\limits_{\frac{1}{t}}^{+\infty}\frac{f(b-\frac{1}{t})}{t^2}dt.$$

Тем самым мы *свели HИ-2* κ *соответствующему HИ-1*, дальнейшее исследование которого, например, на сходимость, можно проводить с помощью полученных ранее условий сходимости HИ-1.

Аналогично, как и теорема о замене переменных в НИ-2, обосновываются формулы двойной подстановки (аналог формулы Ньютона-Лейбница) и метод интегрирования по частям для НИ-2 и НИ-1.

14 Формула двойной подстановки для НИ и интегрирование по частям в НИ.

Краткий план:

- 1. Рассматриваем частичную первообразную $F_0(x) = \int\limits_{x_0}^x f(t)dt$
- 2. По теореме Барроу можно продифференцировать интеграл.
- 3. Рассматриваем произвольную первообразную F(x) и замечаем, что $F(x) = F(x_0) + c_0$
- 4. x = a, x = b 0
- 5. Выражаем общий интеграл и получаем нужную формулу. При этом проблемным в формуле будет только F(b-0). Т.е. интеграл сходится \Leftrightarrow сходится F(b-0).

Интегрирование по частям

Краткий план:

1. По формулам двойной подстановки и интегрирования по чатям для НИ.

Теорема (Формула Ньютона-Лейбница для НИ.).

Пусть для f(x), определённой для $\forall x \in [a,b[$, где $b=+\infty$ или $f(b-0)=\infty$ существует непрерывно дифференцируемая первообразная F(x), т.е. $\exists F'(x)=f(x)$, для $\forall x \in [a,b[$. Тогда имеем:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{c \to +\infty \\ c \to b = 0}} \int_{a}^{c} f(x)dx = \lim_{\substack{c \to b = 0}} \left[F(x) \right]_{a}^{c} =$$

$$= \lim_{\substack{c \to b = 0}} (F(c) - F(a)) = F(b - 0) - F(a) = \left[F(x) \right]_{a}^{b = 0}.$$

При этом используемый интеграл сходится тогда и только тогда, когда значения $F(b-0), F(+\infty)$ конечны.

Доказательство. Для $fix\ x_0\in [a,b[$ рассмотрим $F_0(x)=\int\limits_{x_0}^x f(t)dt$ - одну из первообразных для f(x), т.к. по теореме

Барроу $\exists \ F_0^{'}(x) = f(x)$. Рассмотрим $\forall \ F(x)$ - первообразную f(x) на [a,b[. Тогда $\exists \ c_0 = const \mid F(x) = F_0(x) + c_0$, т.е. $F(x) - c_0 = F_0(x) = \int_{-x}^{x} f(t) dt$. Полагая здесь x := a, x := b - 0, имеем:

$$\begin{cases} F(a) - c_0 = \int_{x_0}^{a} f(t)dt, \\ F(b - 0) - c_0 = \int_{x_0}^{b - 0} f(t)dt. \end{cases} \Rightarrow (F(b - 0) - c_0) - (F(a) - c_0) = \int_{x_0}^{b - 0} f(t)dt - \int_{x_0}^{a} f(t)dt = \int_{x_0}^{b - 0} f(t)dt + \int_{a}^{x_0} f(t)dt = \int_{a}^{b - 0} f(t)d$$

$$\int\limits_a^b f(t)dt$$
 сходится $\Leftrightarrow F(b-0)$, т.к. $F(a)=const\in\mathbb{R}.$

Замечание.

На практике формулы двойной подстановки используются в том же виде, что и для ОИ: $\int\limits_a^b f(x)dx = \left[\int\limits_a^b f(x)dx\right]_a^b.$

Теорема (Интегрирование по частям в НИ.).

Пусть u=u(x), v=v(x) непрерывно дифференцируемы на $\forall \ x \in [a;b[,$ где $b=+\infty$ или $f(b-0)=\infty.$

Если существует конечный предел $\lim_{\substack{x \to b - 0 \\ (x \to +\infty)}} u(x)v(x) = u(b-0)v(b-0) \in \mathbb{R}$, то тогда в случае сходимости одного из использованных ниже интегралов, получаем:

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

Доказательство. По формулам двойной подстановки для НИ и интегрирования по частям в ОИ:

$$\begin{split} &\int_{a}^{b-0} u(x)dv(x) = \left[\int u(x)v^{'}(x)dx\right]_{a}^{b-0} = \left[u(x)v(x) - \int v(x)du(x)\right]_{a}^{b-0} = \left[u(b-0)v(b-0) \in \mathbb{R}\right] = \\ &= \left(u(b-0)v(b-0) - \int v(b-0)u^{'}(b-0)db\right) - \left(v(a)u(a) - \int v(a)u^{'}(a)da\right) = \\ &= \left[u(x)v(x)\right]_{a}^{b-0} - \left[\int v(x)u^{'}(x)dx\right]_{a}^{b-0} = \left[v(x)u(x)\right]_{a}^{b-0} - \int v(x)du(x). \end{split}$$

Замечание.

На практике удобнее использовать:

$$\int_{a}^{b} u dv = \left[uv \right]_{a}^{b} - \int_{a}^{b} v du.$$

Функцию $\phi(x)$, определённую на X будем называть pавномерным частным pределом f(x,y) при $y \to y_0$, если

для
$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) > 0 \; | \;$$
для $\forall \; x \in X \;$ и для $\forall \; y \in Y \;$ из $0 < |y - y_0| \leqslant \delta \;$ следует $|f(x,y) - \phi(x)| \leqslant \varepsilon.$ (44)

В этом случае будем писать

$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \phi(x). \tag{45}$$

15 Признак существования равномерного частного предела для непрерывных $\Phi 2\Pi$.

Краткий план:

- 1. Теорема Кантора для ФНП (что-то вроде Коши для ЧР).
- 2. Хитрая замена нужных х.

Теорема (признак равномерной сходимости $\Phi 2\Pi$).

Если функция f(x,y) непрерывна на прямоугольнике $[a,b] \times [c,d]$, являющимся компактом в \mathbb{R}^2 , и $y_0 \in [c,d]$, то имеем:

$$f(x,y) \xrightarrow[y \to y_0, y_0 \in [c,d]]{[a,b]} f(x,y_0). \tag{46}$$

Доказательство. Из теоремы Кантора для ФНП получаем, что рассматриваемая f(x,y) будет равномерно непрерывна для $\forall x \in [a,b]$ и для $\forall y \in [c,d]$, т.е.:

для
$$\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon) > 0$$
: для $\forall \, \widetilde{x}, \bar{x} \in [a,b]$ и для $\forall \, \widetilde{y}, \bar{y} \in Y$ из
$$\begin{cases} 0 < |\widetilde{x} - \bar{x}| \leqslant \delta, \\ 0 < |\widetilde{y} - \bar{y}| \leqslant \delta. \end{cases} \Rightarrow |f(\widetilde{x}, \widetilde{y}) - f(\bar{x}, \bar{y})| \leqslant \varepsilon.$$

Полагая здесь: $\begin{cases} \widetilde{x}=\bar{x}=x\in[a,b],\\ \widetilde{y}=y\in[c,d],\\ \bar{y}=y_0\in[c,d]. \end{cases},$ получаем:

для
$$\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0$$
: для $\forall \ y \in [c,d]$ из $|y-y_0| \leqslant \delta(\varepsilon)$, для $\forall \ x \in [a,b] \Rightarrow |f(x,y)-f(x,y_0)| \leqslant \varepsilon$.

Т.к. здесь $\delta = \delta(\varepsilon) > 0$ не зависит от $x \in [a, b]$, то получаем (45), где $\phi(x) = f(x, y_0)$, что соответствует (46).

Критерий Гейне равномерной сходимости $\Phi 2\Pi$ и замечания к нему. 16

Краткий план:

- 1. Доказываем в обе стороны!
- $(2. \Leftrightarrow)$ по определению.
- 3. \iff Из равномерной сходимости $f(x,y_n)$ и критерия Гейне для $\Phi 1\Pi$ следует поточечная сходимость f(x,y).
- 4. Предполагаем, что нету равномерной сходимости и применяем правило Де Моргана.
- 5. Для каждого $\delta = \frac{1}{n}$ выбираем $x_n = x(\delta)$ и $y_n = y(\delta)$.
- 6. Подставляем x_n в определение поточечной сходимости.
- 7. Докидываем туда же y_n , получаем противоречие т.к. одновременно должно выполняться $blabla \leqslant \varepsilon_0$ и $blabla > \varepsilon_0$.

Теорема (критерий Гейне равномерной сходимости $\Phi 2\Pi$).

 $f(x,y)\stackrel{X}{\Longrightarrow} \phi(x)\Leftrightarrow$ для $\forall \ y_n\in Y, y_n\to y_0, y_n\neq y_0,$ где y_0 - предельная точка для множества Y, выполнялось:

$$\Phi\Pi \ g_n(x) = f(x, y_n) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \phi(x) \tag{47}$$

Доказательство. (\Rightarrow) . Пусть выполняется (45), тогда для $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 :$ для $\forall \ y \in Y$ из $0 < |y - y_0| \leqslant \delta$, для $\forall x \in X \Rightarrow |f(x,y) - \phi(x)| \leqslant \varepsilon.$

Рассматривая \forall последовательность Гейне $(y_n) \in Y$, в пределах точки y_0 по найденному ранее $\delta > 0 \; \exists \; \nu \in \mathbb{R}$ такое, что для $\forall n \geqslant \nu \Rightarrow |y_n - y_0| \leqslant \delta$.

Окончательно получаем: для $\forall \ \varepsilon > 0 \ \exists \ \nu \in \mathbb{R}$ такое, что для $\forall \ n \geqslant \nu$, для $\forall \ x \in X \Rightarrow$ $\Rightarrow |y_n - y_0| \leqslant \delta \Rightarrow |f(x, y_n) - \phi(x)| \leqslant \varepsilon$, т.е. имеем (47).

 \Leftarrow). Пусть для $\forall (y_n) \in Y$ в предельной точке выполнено (47). Тогда в силу того, что из равномерной сходимости $g_n(x)=f(x,y_n)$ следует поточечная сходимость $\Phi\Pi$ $g_n(x)$, получаем, что $g_n(x)\xrightarrow[n\to\infty]{X}\phi(x)$.

Поэтому в силу критерия Гейне существования предела $\Phi 1\Pi$ получаем, что:

$$f(x, y_0) = g_n(x) \xrightarrow[n \to \infty]{X} \phi(x) \Rightarrow f(x, y) \xrightarrow[y \to y_0]{X} \phi(x).$$

Предположим, что имеем поточечную сходимость, но равномерной сходимости нет, т.е. получаем:

$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \phi(x).$$

Тогда по правилу де Моргана, имеем:

 $\exists \ arepsilon_0 > 0$ такое, что для $\forall \ \delta > 0 \ \exists \ y(\delta) \in Y, \exists \ x(\delta) \in X$ такое, что из $0 < |y(\delta) - y_0| \leqslant \delta \Rightarrow$

$$\Rightarrow |f(x(\delta), y(\delta)) - \phi(x(\delta))| > \varepsilon_0. \tag{48}$$

Выбирая для простоты $\delta = \frac{1}{n} \xrightarrow[n \to \infty]{} +0$, получаем, что $\begin{cases} \exists \ x_n = x \left(\frac{1}{n}\right) \in X, \\ \exists \ y_n = y \left(\frac{1}{n}\right) \in Y. \end{cases}$

 $0<|y_n-y_0|\leqslant \delta\Rightarrow |f(x_n,y_n)-\phi(x_n)|> \varepsilon_0.$ Используя условие $f(x_n,y)\xrightarrow[y\to y_0]{X}\phi(x_n)$, для найденного $\varepsilon_0>0$ получаем:

$$\exists \delta_0 > 0$$
 такая, что для $\forall y \in Y$ из $0 < |y - y_0| \leqslant \delta_0 \Rightarrow |f(x_n, y) - \phi(x_n)| \leqslant \varepsilon_0$.

Подставляя $y=y_n$, получаем $0<|y_n-y_0|\leqslant \delta_0\Rightarrow |f(x_n,y_n)-\phi(x_n)|\leqslant \varepsilon_0.$ Выбирая теперь $\nu=\frac{1}{\delta_0}\in\mathbb{R},\;$ для $\forall\;n\geqslant\nu\Rightarrow 0<|y_n-y_0|\leqslant\frac{1}{n}\leqslant\frac{1}{\nu}.$ Отсюда в силу (48) при $\delta=\frac{1}{n}>0$ получаем, что для $\forall n \geqslant \nu$ выполняется $|f(x_n, y_n) - \phi(x_n)| > \varepsilon_0$. Противоречие

Замечания:

1. Доказанная теорема позволяет из соответствующих свойств ФП получить аналогичные свойства для равномерно сходящихся Ф2П, в том числе сформулированный ранее супремальный критерий равномерной сходимости Ф2П и критерий Коши для равномерной сходимости Ф2П. Кроме того, в силу теоремы Дини для ФП имеем соответствующую теорему Дини для равномерной сходимости Ф2П.

Теорема (Дини для равномерной сходимости $\Phi 2\Pi$).

Пусть для \forall fix $y \in Y$, f(x,y) непрерывна по $x \in [a,b] = X$, причём при монотонной сходимости $y \to y_0$ ($y \uparrow y_0$ либо $y \downarrow y_0$) соответственно получаем f(x,y) монотонно сходится к $\phi(x)$ ($f(x,y) \uparrow \downarrow \phi(x)$). Тогда, если предельная функция $\phi(x) = \lim_{y \to y_0} f(x,y)$ непрерывна на X = [a,b], то кроме поточечной сходимости будем иметь равномерную сходимость (45).

2. Аналогично получаем теорему Стокса-Зейделя для Ф2П.

Теорема (Стокса-Зейделя).

Пусть для \forall fix $y \in Y, f(x,y)$ непрерывна по $x \in [a,b] = X$. Тогда, если $f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$, где y_0 - предельная точка для Y, то предельная функция $\phi(x)$ будет непрерывной на [a,b].

Предположим, что f(x,y) определена для $\forall y \in Y$ и для $\forall x \in [a,b]$, причём при $\forall fix y \in Y$ f(x,y) интегрируема по $x \in [a,b]$. В этом случае:

$$\exists F(y) = \int_{a}^{b} f(x, y) dx, y \in Y.$$
 (49)

(49) - интеграл Римана (собственный), зависящий от параметра $y \in Y$.

В дальнейшем интеграл вида (49) будем кратко называть СИЗОП.

17 Теорема о предельном переходе в собственных интегралах, зависящих от параметра (СИЗОП) и замечания к ней.

Краткий план:

1. Рассматриваем разность двух интегралов, и показываем, что она $\leqslant M\varepsilon$.

Теорема (о предельном переходе в СИЗОП).

Пусть определён СИЗОП (49). Тогда, в случае $f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$, где, как и в определении СИЗОП (49), предполагая интегрируемость f(x,y) по x, получаем:

$$\exists \lim_{y \to y_0} \int_0^b f(x, y) dx = \int_0^b \phi(x) dx = \int_0^b \lim_{y \to y_0} f(x, y) dx.$$
 (50)

Доказательство. В силу (45) имеем (44), откуда для $I = \int\limits_a^b \phi(x) dx$, получаем:

$$|F(y) - I| \stackrel{(49)}{=} \left| \int_a^b (f(x, y) - \phi(x)) \, dx \right| \leqslant \int_a^b |f(x, y) - \phi(x)| \, dx \stackrel{(44)}{\leqslant} \int_a^b \varepsilon dx = \varepsilon (b - a).$$

Таким образом, получаем, что $\exists \ M=b-a=const>0$ такое, что для $\forall \ \varepsilon>0 \ \exists \ \delta>0$ такая, что для $\forall \ y\in Y$ из $0<|y-y_0|\leqslant \delta\Rightarrow |F(y)-I|\leqslant M\varepsilon$.

Откуда по M-лемме для сходимости $\Phi 1\Pi$, получаем: $F(y) \xrightarrow[y \to y_0]{} I$, т.е. имеем (50).

Замечания:

- 1. При доказательстве теоремы неявно предполагалось, что $\phi(x) \in \mathbb{R}([a,b])$. Это условие выполняется в силу критерия Гейне существования равномерного частного предела и соответствующего условия интегрируемости $\Phi 1\Pi$.
- 2. Используя теорему Дини для $\Phi 2\Pi$, в силу доказанной теоремы, получаем, что если для $\forall \ fix \ y \in Y \Rightarrow f(x,y)$ непрерывна и, значит, интегрируема на X = [a,b], то в случае, когда f(x,y) монотонна по y на Y = [c,d] получаем, что при выполнении условия поточечной сходимости:

$$f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x),$$

то имеем для $\forall y_0 \in [c,d] \Rightarrow (50)$.

3. Если f(x,y) непрерывна для $\forall x \in [a,b]$ и для $\forall y \in [c,d]$, тогда справедливо (50), где $\phi(x) = f(x,y_0)$, для $\forall fix y_0 \in [c,d]$.

В частности, при указанных условиях СИЗОП (49) является непрерывной функцией на $Y \in [c,d]$, т.к.

$$\exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx = \int_a^b f(x, y_0) dx = F(y_0),$$

что равносильно непрерывности (49) в любой точке $y_0 \in [c,d]$, причём на концах отрезка рассматривается односторонняя непрерывность.

18 Теорема о почленном дифференцировании СИЗОП.

Краткий план:

- 1. Рассматриваем G(y) = интеграл от $f'_u(x,y)$ на [a;b].
- $2. \ G(y)$ непрерывно дифференцируема, а значит интегрируема. Берём интеграл на [c;y].
- 3. Меняем порядок интегрирования, и берём интеграл, получаем первообразную.
- 4. По теореме Барроу берём производную.

Теорема (о почленном дифференцировании СИЗОП).

Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$ и для неё:

$$\exists \frac{\partial f(x,y)}{\partial y}$$
 — непрерывна на $[a,b] \times [c,d]$.

Тогда СИЗОП (49) будет непрерывно дифференцируемой функцией на [c,d], для которой производная вычисляется по правилу Лейбница:

$$F'(y) = \left(\int_{a}^{b} f(x,y)dx\right)_{y}' = \int_{a}^{b} f_{y}'(x,y)dx = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y}dx.$$
 (51)

Доказательство. Для доказательства воспользуемся теоремой об интегрируемости СИЗОП. Рассмотрим функцию

$$G(y) = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y} dx.$$
 (52)

В силу полученных ранее результатов, СИЗОП (52) корректно определён и является непрерывно дифференцируемой функцией на [c,d]. Поэтому функция G(y) для $\forall fix \ y \in \]c,d[$ будет интегрируемой на [c,y]. А значит, получаем:

$$\exists \int_{c}^{y} G(t)dt \stackrel{(52)}{=} \int_{c}^{y} \left(\int_{a}^{b} \frac{\partial f(x,t)}{\partial t} dx \right) dt.$$

Отсюда, меняя порядок интегрирования, в силу теоремы о почленном интегрировании СИЗОП, имеем:

$$\int_{a}^{y} G(t)dt = \int_{a}^{b} \left(\int_{a}^{y} \frac{\partial f(x,t)}{\partial t} dt \right) dx = \int_{a}^{b} \left[f(x,t) \right]_{t=c}^{t=y} dx = \int_{a}^{b} \left(f(x,y) - f(x,c) \right) dx \stackrel{(49)}{=} F(y) - c_0,$$

где
$$c_0 = \int_a^b f(x,c)dx = const.$$

Отсюда получаем, что $F(y) = c_0 + \int_0^y G(t)dt$.

Используя теорему Барроу о дифференцировании интегралов с переменным верхним пределом, получаем:

$$\exists \ F^{'}(y) = (c_0)_y^{'} + \left(\int\limits_c^y G(t)dt\right)_y^{'} = 0 + G(y) \stackrel{(52)}{=} \int\limits_a^b \frac{\partial f(x,y)}{\partial y} dx, \text{ что даёт (51)}.$$

1. Пусть f(x,y) определена для $\forall x \in [a; +\infty[$ и $\forall y \in Y \subset \mathbb{R}$. Если \forall fix $y \in Y \Rightarrow$

$$\int_{a}^{+\infty} f(x,y) = dx \xrightarrow{y} . \tag{53}$$

Тогда будет корректно определена функция:

$$F(y) = \int_{a}^{+\infty} f(x, y) dx, y \in Y.$$
 (54)

2. Пусть НИЗОП (54) сходится на $Y \subset \mathbb{R}$. Если y_0 - предельная точка Y и выполняется

$$f(x,y) \xrightarrow{[a;+\infty[} \phi(x),$$

то будем говорить, что в данном НИЗОП допустим предельный переход, если

$$\exists \lim_{y \to y_0} \int_a^{+\infty} f(x,y) dx = \int_a^{+\infty} \lim_{y \to y_0} f(x,y) dx = \int_a^{+\infty} \phi(x) dx.$$
 (55)

19 Теорема о предельном переходе в несобственных интегралах, зависящих от параметра (НИЗОП), следствие из неё и замечание к ней.

Краткий план:

- 1. Раскладываем на сумму ФР
- 2. применяем теорему о предельном переходе в СИЗОП.

Теорема (O предельном преходе в $HИЗО\Pi$).

Пусть для \forall fix $y \in Y \Rightarrow f(x,y)$ непрерывна для $\forall x \geqslant a$ и для предельной точки $y_0 \in Y$ имеем

$$f(x,y) \stackrel{\forall [a;A]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$$
, где $\forall A > a$. (56)

Если $\int\limits_a^{+\infty} f(x,y) dx \stackrel{Y}{\Rightarrow}$, то тогда возможен предельный переход (55).

Доказательство. Воспользуемся теоремой о предельном переходе в функциональном ряду, для чего, беря произвольную последовательность $(A_n) \uparrow +\infty$, по критерию Гейне существования конечного предела функции для (54) получаем

$$\exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{+\infty} f(x,y) dx = \left[\int_a^{+\infty} = \lim_{An \to +\infty} \left(\int_{A_0}^{A_1} + \int_{A_1}^{A_2} + \dots + \int_{A_{n-1}}^{A_n} \right) = \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} f(x,y) dx \right] =$$

$$= \lim_{y \to y_0} \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} f(x,y) dx = \left[f(x,y) \xrightarrow[y \to y_0]{\exists A_{n-1}, A_n} \phi(x), \text{ из } (56) \Rightarrow u_n(y) = \int_{A_{n-1}}^{A_n} f(x,y) dx \xrightarrow{Y} \right] =$$

$$= \sum_{n=1}^{\infty} \lim_{y \to y_0} \int_{A_{n-1}}^{A_n} f(x,y) dx = \left[\text{По теореме о предельном переходе в СИЗОП} \right] =$$

$$= \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} \lim_{y \to y_0} f(x,y) dx = \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} \phi(x) dx = \lim_{A_n \to +\infty} \left(\int_{A_0=a}^{A_1} + \int_{A_1}^{A_2} + \dots + \int_{A_{n-1}}^{A_n} \right) =$$

$$= \lim_{A_n \to +\infty} \int_a^{A_n} \phi(x) dx = \int_a^{+\infty} \phi(x) dx,$$

т.е. имеем (55).

Следствие (О непрерывности НИЗОП).

Пусть f(x,y) непрерывная для $\forall x \in [a; +\infty[$ и для $\forall y \in [c;d] \subset \mathbb{R}$. Если интеграл

$$\int_{-\infty}^{+\infty} f(x,y) dx \stackrel{[c;d]}{\Rightarrow}$$

то НИЗОП (54) - непрерывная функция на [c;d], т.е.

для
$$\forall y_0 \in [c;d] \Rightarrow \exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int\limits_a^{+\infty} f(x,y) dx = \int\limits_a^{+\infty} f(x,y) dx = F(y_0).$$

Доказательство. Из непрерывности f(x,y) на $[a;+\infty[\times [c;d]]$ следует, что

для
$$\forall$$
 fix $A\geqslant a\Rightarrow f(x,y)\stackrel{[a;A]}{\underset{y\to y_0}{\rightrightarrows}}f(x,y)=\phi(x)$ (для \forall fix $y_0\in[c;d]$)

Далее, используя доказательство теоремы в силу (55)

$$\exists \lim_{y \to y_0} F(y) = \int_{a}^{A} \phi(x) dx \int_{a}^{+\infty} f(x, y_0) dx = F(y_0),$$

что и требовалось доказать.

Замечание.

Доказанная теорема и следствие справедливы и в отсутствии равномерной сходимости для рассматриваемого НИ- 30Π , если он сходится локально равномерно на Y,

для
$$\forall \ [\alpha;\beta] \subset Y \Rightarrow \int\limits_{a}^{+\infty} f(x,y) dx \stackrel{[\alpha;\beta]}{\Rightarrow}$$

Это связано с тем, что свойство непрерывности функции на множестве определено в любой точке из этого множества. Поэтому, выбирая \forall fix $y_0 \in Y$ и заключая его в соответствующий отрезок $y_0 \in [\alpha; \beta] \subset Y$, в случае локальной равномерной сходимости получаем, например, что (54) будет непрерывна на $[\alpha; \beta]$, а значит, в точке y_0 . А исходя из этого, получаем непрерывность (54) на всём Y.

Теорема (о предельном переходе в НИЗОП-2).

Пусть f(x,y) определена на $[a,b[\times Y\$ и для $\forall\ fix\ y\in Y$ непрерывна по X=[a,b[. Если для $\forall\ \varepsilon\in]0,b-a[\Rightarrow f(x,y)\overset{[\alpha;\,\beta-\varepsilon]}{\underset{y\to y_o}{\Rightarrow}}\phi(x)$, где y_0 - предельная точка для множества Y, то тогда $\int\limits_{y}^{b}f(x,y)\overset{Y}{\Rightarrow}$. Для НИЗОП-2 вида

$$F(y) = \int_{a}^{b-0} f(x,y)dx,$$

имеем:

$$\exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \phi(x) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx.$$

20 Теорема об интегрировании НИЗОП и замечания к ней.

Краткий план:

1. Рассматриваем последовательность $(A_n) \uparrow$

Теорема (Об интегрировании НИЗОП).

Пусть f(x,y) непрерывная на декартовом произведении $[a;+\infty[\times [c;d]$. Если интеграл

$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c;d]}{\Rightarrow},$$

то тогда НИЗОП (54) является интегрируемой на [c;d] функцией, для которой

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} dy \int_{a}^{+\infty} f(x,y)dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,y)dy$$

$$(57)$$

Доказательство. По той же схема, что и в предыдущей теореме, рассмотрим произвольную последовательность $(A_n) \uparrow +\infty (A_0=a)$ и используем критерий Гейне на основании теоремы о почленном интегрировании СИЗОП, получаем:

$$\exists \int\limits_{c}^{d} F(y) dy = \int\limits_{c}^{d} \left(\sum_{n=1}^{\infty} \int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \right) dy = \left[\begin{array}{c} u_{n}(y) = \int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \text{ непрерывна на } [c;d] \\ \sum_{n=1}^{\infty} u_{n}(y) = \int\limits_{a}^{+\infty} f(x,y) \stackrel{[c;d]}{\Rightarrow} \end{array} \right] =$$

$$= \int\limits_{c}^{d} \sum_{n=1}^{\infty} u_{n}(y) dy = \sum_{n=1}^{\infty} \int\limits_{c}^{d} u_{n}(y) dy = \sum_{n=1}^{\infty} \int\limits_{c}^{d} \left(\int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \right) dy = \sum_{n=1}^{\infty} \int\limits_{A_{n-1}}^{A_{n}} \left(\int\limits_{c}^{d} f(x,y) dx \right) dy =$$

$$= \lim_{A_{n} \to +\infty} \left(\int\limits_{A_{0} = a}^{A_{1}} + \int\limits_{A_{1}}^{A_{2}} + \dots + \int\limits_{A_{n-1}}^{A_{n}} \right) = \lim_{A_{n} \to +\infty} \int\limits_{a}^{A_{n}} \left(\int\limits_{c}^{d} f(x,y) dx \right) dy = \int\limits_{a}^{+\infty} dx \int\limits_{c}^{d} f(x,y) dy$$

Замечания:

1. Доказанная теорема справедлива не только для случае $x \in [a; +\infty[$, $y \in [c; d]$, но и для случая $x \in [a; +\infty[$, $y \in [c; d]$, при условии, что дополнительно ко всем условиям указанной теоремы выполняется, что точка x = a не является точкой разрыва второго рода для g(x, y), т.е.

$$\exists \lim_{x \to a+0} f(x, y) \in \mathbb{R}$$

В этом случае, доопределяя функцию f(x,y) в точке x=a, т.е. рассматривая функцию

$$g(x,y) = \begin{cases} f(x,y), x > a, y \in [c;d] \\ \lim_{x \to a+0} f(x,y), y \in [c;d] \end{cases}$$

Получаем её непрерывность в точке x = a справа. А далее, учитывая, что рассмотренные интегралы от f(x,y) и g(x,y) совпадают используя доказанную теорему.

2. Можно показать, что наряду с интегрируемым НИЗОП по конечному промежутку возможно его почленное интегрирование по бесконечному промежутку $[c; +\infty[$, если

(а)
$$f(x,y)$$
 непрерывна на $[a; +\infty[\times [c; +\infty[$

(6)
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c;+\infty[}{\Rightarrow}, \int_{a}^{+\infty} f(x,y)dx \stackrel{[a;+\infty[}{\Rightarrow}$$

3.
$$\exists \int\limits_{c}^{+\infty} dy \int\limits_{a}^{+\infty} f(x,y) dx = \int\limits_{a}^{+\infty} dx \int\limits_{c}^{+\infty} f(x,y) dy$$
) - существуют повторные интегралы.

Теорема (об интегрировании НИЗОП-2).

Если f(x,y) непрерывна на [a,b[imes[c,d] и $\int\limits_a^b f(x,y)dx=\overset{[c;d[}{\Rightarrow}$, то тогда для НИЗОП-2:

$$F(y) = \int_{a}^{b-0} f(x,y)dx,$$

имеем:

$$\exists \int_{c}^{d} F(y)dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy$$

21 Теорема о почленном дифференцировании НИЗОП и замечание к ней.

Краткий план:

- 1. Записываем интеграл от интеграла от производной.
- 2. Меняем порядок интегрирования.
- 3. По теореме Барроу доводим до логического завершения.

Теорема (O почленном дифференцировании $HИ3O\Pi$).

Пусть f(x,y) - непрерывна на $[a;+\infty[$ \times [c;d] , и для неё \exists $f'_y(x,y)$ - непрерывная на $[a;+\infty[$ \times [c;d] . Тогда если

1.
$$\int_{a}^{+\infty} f(x,y)dx \xrightarrow{[c;d]}$$

$$2. \int_{a}^{+\infty} f_y'(x,y) dx \stackrel{[c;d]}{\Rightarrow},$$

то тогда НИЗОП (54) - функция почленно дифференцируема на $[a; +\infty[$, и её производная вычисляется по правилу Лейбница:

$$\exists F'(y) \stackrel{(54)}{=} \left(\int_{a}^{+\infty} f(x,y) dx \right)'_{y} = \int_{a}^{+\infty} f'_{y}(x,y) dx$$

Доказательство. Для \forall fix $y \in [c;d]$ корректно определяем СИЗОП

$$\Phi(y) = \int_{c}^{y} \left(\int_{a}^{+\infty} f'_{y}(x, t) dx \right) dt$$

В силу выполнения всех условий почленного интегрирования СИЗОП можем изменить порядок интегрирования

$$\Phi(y) = \int_{a}^{+\infty} \left(\int_{c}^{y} f_{y}'(x,t) \right) dx = \int_{a}^{+\infty} \left[f(x,t) \right]_{t=c}^{t=y} dx = \int_{a}^{+\infty} \left(\int_{c}^{y} f(x,y) - f(x,c) \right) dx = \int_{a}^{+\infty} f(x,y) dx - \int_{c}^{+\infty} f(x,c) dx = F(y) - F(c)$$

Отсюда, используя теорему Барроу о дифференцировании интеграла с переменным верхним пределом имеем

$$\exists F'(y) = (\Phi(y) + F(c))'_{y} = \left(\int_{c}^{y} \left(\int_{a}^{+\infty} f'_{y}(x, t)dt\right) dx\right)'_{y} =$$
$$= \left[\int_{0}^{+\infty} f'_{y}(x, t)dx\right]_{t=y} = \int_{a}^{+\infty} f'_{y}(x, y)dx \Leftrightarrow (21)$$

Замечание.

Так же, как и в условии непрерывности НИЗОП в доказательстве теоремы о почленном дифференцировании вместо равномерной сходимости рассмотрим НИЗОП используя локальную равномерную сходимость соответствующего НИЗОП.

Теорема (о дифференцировании НИЗОП-2).

Если f(x,y) определена на $[a,b[\times Y \text{ и для } \forall fix \ y \in Y \text{ непрерывна на } [a,b[\text{ по } x. Если \ \exists f_y^{'}(x,y) \text{ непрерывная на } [a,b[\times Y \text{ и } \int_a^b f(x,y)dx \xrightarrow{Y}, \text{ а } \int_a^b f_y^{'}(x,y) \xrightarrow{Y}, \text{ то тогда справедливо правило Лейбница дифференцирования НИЗОП-2 вида:}$

$$F(y) = \int_{a}^{b-0} f(x,y)dx,$$

имеем:

$$\left(\int_{a}^{b} f(x,y)dx\right)'_{y} = \int_{a}^{b} f'_{y}(x,y)dx$$

Интегралом Дирихле называется НИ-1:

$$I = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$
 (58)

22 Вычисление интеграла Дирихле и его обобщения.

В данном случае $\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \in \mathbb{R}$, поэтому x = 0 - точка устранимого разрыва, и интеграл (58) представляет собой HИ-1:

$$I = \int\limits_{0}^{1} \frac{\sin x}{x} dx + \int\limits_{1}^{+\infty} \frac{\sin x}{x} dx$$
 сходится как интеграл Римана Дирихле для НИ-1

В данном случае сходимость будет условной.

Для получения значения (58) рассмотрим при fix a > 0 HИЗОП-1:

$$\begin{cases} F(y) = \int_{0}^{+\infty} e^{-ax} \cos(xy) \, dx, \\ y = [0; +\infty[. \end{cases}$$
 (59)

В (59) подынтегральная функция $f(x,y)=e^{-ax}\cos(xy)$, во-первых, является непрерывной для $\forall x\geqslant 0$ и $\forall y\geqslant 0$, а, во-вторых, в силу неравенства $|f(x,y)|=e^{-ax}|\cos(xy)|\leqslant e^{-ax}=\varphi(x)$, где $\int\limits_0^{+\infty}\varphi(x)\;dx=\left[-e^{-ax}\frac{1}{a}\right]_0^{+\infty}=\frac{1}{a}\in\mathbb{R}$ - сходится, по мажорантному признаку Вейерштрасса получаем, что $F(y)\stackrel{[0;+\infty[}{\Rightarrow}]}{\Rightarrow}$.

В связи с этим, возможно почленное интегрирование этого НИЗОП, например, по $y \in [0;1]$. Имеем:

$$\exists G(a) = \int_{0}^{1} F(y) \, dy \stackrel{(59)}{=} \int_{0}^{1} dy \int_{0}^{+\infty} e^{-ax} \cos(xy) \, dx = \int_{0}^{+\infty} dx \int_{0}^{1} e^{-ax} \cos(xy) \, dy =$$

$$= \int_{0}^{+\infty} \left[e^{-ax} \cdot \frac{\sin(xy)}{x} \right]_{y=0}^{y=1} dx = \int_{0}^{+\infty} e^{-ax} \cdot \frac{\sin x}{x} \, dx.$$

С другой стороны, интеграл вида (59) был вычислен нами ранее, и для него было получено значение

$$F(y) = \left[$$
Демидович, № 1828 $\right] = \left[\frac{y \sin(xy) - a \cos xy}{a^2 + y^2} e^{-ax} \right]_{x=0}^{x=+\infty} = \frac{a}{a^2 + y^2}, \ \forall \ \text{fix} \ a > 0.$

Таким образом:

$$G(a) = \int_{0}^{1} F(y) \ dy = \int_{0}^{1} \frac{a \ dy}{a^{2} + y^{2}} = \left[\operatorname{arctg} \frac{y}{a} \right]_{0}^{1} = \operatorname{arctg} \frac{1}{a}, \ a > 0.$$

Ранее на основании признака Абеля было показано, что $G(a) = \int\limits_0^{+\infty} e^{-ax} \frac{\sin x}{x} dx \stackrel{a \in [0; +\infty[}{\Rightarrow}].$

А так как в данном случае $g(x,a)=e^{-ax}\frac{\sin x}{x}$ - непрерывна для $\forall \ x\neq 0, \ \forall \ a\in\mathbb{R}$ и выполняется $g(x,a)\xrightarrow[x\to+0]{}1\in\mathbb{R},$ то G(a) будет непрерывна для НИЗОП-2 как функция от $a\geqslant 0$. В связи с этим:

$$\lim_{a \to +0} G(a) = G(0) = \int_{0}^{+\infty} e^{-ax} \frac{\sin x}{x} dx \bigg|_{a=0}^{+\infty} \int_{0}^{+\infty} \frac{\sin x}{x} dx = I,$$

$$I = \lim_{a \to +0} G(a) = \lim_{a \to +0} \left(\arctan \frac{1}{a} \right) = \frac{\pi}{2} \Rightarrow (58).$$

Следствие (обобщение интеграла Дирихле).

Для $\forall b \in \mathbb{R}$ существует интеграл

$$\int_{0}^{+\infty} \frac{\sin(bx)}{x} dx = \frac{\pi}{2} \operatorname{sgn} b = \begin{cases} \frac{\pi}{2}, & b > 0, \\ 0, & b = 0, \\ -\frac{\pi}{2}, & b < 0. \end{cases}$$
 (60)

Доказательство. Действительно, если b>0, то, делая замену t=bx $\Big|_0^{+\infty},$ получим:

$$\int_{0}^{+\infty} \frac{\sin bx}{x} dx = \int_{0}^{+\infty} \frac{\sin t}{\left(\frac{t}{b}\right)} \cdot \frac{dt}{b} = \int_{0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

Если же b < 0, то аналогичным образом получаем:

$$\int_{0}^{+\infty} \frac{\sin bx}{x} dx = -\int_{0}^{+\infty} \frac{\sin(-bx)}{x} dx \stackrel{-b > 0}{=} -\frac{\pi}{2}.$$

Случай b=0 проверяется непосредственной подстановкой.

Интегралами Фруллани будем называть интегралы вида

$$\Phi(a;b) = \int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx,$$
(61)

где a, b = const > 0.

В зависимости от свойств подынтегральной функции в (61), рассмотрим три основные формулы для вычисления интеграла Фруллани. Для этого нам понадобится с следующая

23 Лемма Фруллани.

Краткий план:

- 1. Замена t = ax.
- 2. Замена $z = t/\alpha$.

Лемма Фруллани.

Если для функции f(x), определённой для $\forall x > 0$, функция $\frac{f(x)}{x}$ интегрируема на любом конечном промежутке из $]0; +\infty[$, то тогда для $\forall a, b, \alpha, \beta = \text{const} > 0$ верно равенство

$$\int_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} dx = \int_{\alpha}^{b} \frac{f(\alpha x) - f(\beta x)}{x} dx \tag{62}$$

Доказательство.

Используя аддитивность интеграла Римана, после соответствующей замены имеем:

$$\begin{split} &\int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} dx = \int\limits_{\alpha}^{\beta} \frac{f(ax)}{x} dx - \int\limits_{\alpha}^{\beta} \frac{f(bx)}{x} dx = \begin{bmatrix} 1 \end{pmatrix} \underbrace{t = ax \begin{vmatrix} \beta a \\ \alpha a \end{vmatrix}}_{\alpha a} = \int\limits_{\alpha a}^{\beta a} \frac{f(t)}{\frac{t}{a}} \cdot \frac{dt}{a} - \int\limits_{\alpha b}^{\beta b} \frac{f(t)}{\frac{t}{b}} \cdot \frac{dt}{b} = \int\limits_{\alpha a}^{\beta a} \frac{f(t)}{t} dt - \int\limits_{\alpha b}^{\beta b} \frac{f(t)}{t} dt = \left(\int\limits_{\alpha a}^{\alpha b} + \int\limits_{\alpha b}^{\beta a} \right) - \left(\int\limits_{\alpha b}^{\beta a} + \int\limits_{\beta a}^{\beta b} \right) = \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt + \int\limits_{\beta$$

24 Первая теорема Фруллани.

Краткий план:

- 1. Раскладываем на два интеграла по лемме Фруллани.
- 2. По теореме о среднем для ОИ получаем подобие формулы из условия.
- 3. Переходим к пределу в формуле.

Первая теорема Фруллани. Если f(x) непрерывна для $\forall \, x \geqslant 0$ и $\exists \, f(+\infty) \in \mathbb{R}$, то

$$\Phi(a,b) = \left(f(0) - f(+\infty)\right) \ln\left(\frac{b}{a}\right). \tag{63}$$

Доказательство. В силу леммы Фруллани для (61), имеем:

$$\begin{split} &\Phi(a,b) = \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} \ dx \stackrel{\text{(62)}}{=} \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{a}^{b} \frac{f(\alpha x) - f(\beta x)}{x} \ dx = \\ &= \lim_{\alpha \to +0} \int\limits_{a}^{b} \frac{f(\alpha x)}{x} \ dx - \lim_{\beta \to +\infty} \int\limits_{a}^{b} \frac{f(\beta x)}{x} \ dx = \\ &= \left[\begin{array}{c} \text{По теореме о среднем для ОИ:} \\ 1) \ \exists \ c_1 \in [a;b] \Rightarrow \int\limits_{a}^{b} \frac{f(\alpha x)}{x} \ dx = f(\alpha c_1) \int\limits_{a}^{b} \frac{dx}{x} = f(\alpha c_1) \ln \frac{b}{a} \\ 2) \ \exists \ c_2 \in [a;b] \Rightarrow \int\limits_{a}^{b} \frac{f(\beta x)}{x} \ dx = f(\beta c_2) \int\limits_{a}^{b} \frac{dx}{x} = f(\beta c_2) \ln \frac{b}{a} \\ = \left[\begin{array}{c} 1) \ \alpha a \leqslant \alpha c_1 \leqslant \alpha b \Rightarrow \left[\alpha \to +0, \ \alpha c_1 \to 0\right] \Rightarrow f(\alpha c_1) \xrightarrow[\beta \to +\infty]{} f(0) \\ 2) \ \beta a \leqslant \beta c_2 \leqslant \beta b \Rightarrow \left[\beta \to +\infty, \ \beta c_2 \to \infty\right] \Rightarrow f(\beta c_2) \xrightarrow[\beta \to +\infty]{} f(+\infty) \\ \end{array} \right] = \left(\begin{array}{c} f(0) - f(+\infty) \right) \ln \frac{b}{a}. \end{split}$$

25 Вторая теорема Фруллани.

Краткий план:

- 1. Раскладываем на два интеграла по лемме Фруллани.
- 2. По теореме о среднем для ОИ получаем подобие формулы из условия.
- 3. Переходим к пределу в формуле.

Вторая теорема Фруллани.

Пусть
$$f(x)$$
 непрерывна для $\forall \, x \geqslant 0$ и $\forall \, A > 0 \Rightarrow \exists \int\limits_A^{+\infty} \frac{f(x)}{x} dx \in \mathbb{R}$ - сходится.
Тогда:
$$\Phi(a,b) \stackrel{(61)}{=} f(0) \ln \frac{b}{a}. \tag{64}$$

Доказательство. Действуя как в первой теореме Фруллани, получим:

$$\begin{split} &\Phi(a,b) \stackrel{(61)}{=} \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} \; dx = \ldots = \lim_{\alpha \to +0} \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt - \lim_{\beta \to +\infty} \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \\ &= \begin{bmatrix} 1) \; \exists \; c \in [\alpha a; \alpha b] \; : \; \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt = f(c) \int\limits_{\alpha a}^{\alpha b} \frac{dt}{t} = f(c) \ln \frac{b}{a} \\ 2) \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{A>0}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{A>0}^{\beta a} \frac{f(t)}{t} dt \xrightarrow[\beta \to +\infty]{} \int\limits_{A>0}^{+\infty} \frac{f(t)}{t} dt - \int\limits_{CXOДИТСЯ}^{+\infty} \frac{f(t)}{t} dt = 0 \end{bmatrix} = \\ &= \lim_{\alpha \to +0} f(c) \ln \frac{b}{a} = \left[\alpha a \leqslant c \leqslant \alpha b \Rightarrow c \xrightarrow[\alpha \to +0]{} 0 \right] = f(0) \ln \frac{b}{a}. \end{split}$$

26 Третья теорема Фруллани.

Краткий план:

- 1. Рассматриваем новую функцию $f_0(t) = f(1/t)$, доопределяем её в нуле.
- 2. Вычисляем $\Phi(a_0; b_0)$.
- 3. Показваем, что $\Phi(a_0; b_0) = \Phi(a; b)$

Третья теорема Фруллани.

Пусть f(x) непрерывна для $\forall \ x>0$ и $\exists \ f(+\infty)\in \mathbb{R}.$

Тогда, если для $\forall \ A>0 \Rightarrow \int\limits_0^A \frac{f(x)}{x} dx$ сходится, то

$$\Phi(a,b) \stackrel{(61)}{=} -f(+\infty) \ln \frac{b}{a}. \tag{65}$$

Доказательство. Рассмотрим $f_0(t)=f\left(\frac{1}{t}\right)$, непрерывную для $\forall\; t>0.$

Во-первых, $\exists f_0(+0) = \lim_{t \to +0} f\left(\frac{1}{t}\right) = f(+\infty) \in \mathbb{R}$, поэтому f_0 можно доопределить в точке t=0, приняв $f_0(0) = f_0(+0) = f(+\infty) \in \mathbb{R}$.

Во-вторых, для полученной непрерывной $f_0(t)$ для $\forall A_0 > 0 \Rightarrow \exists \int\limits_{A_0}^{+\infty} \frac{f_0(t)}{t} dt = \begin{bmatrix} t = \frac{1}{x} \\ A = \frac{1}{A_0} > 0 \end{bmatrix} = \int\limits_0^A \frac{f(x)}{x} dx \in \mathbb{R}$ сходится.

Таким образом, в силу второй теоремы Фруллани, имеем:

$$\Phi(a_0, b_0) = \begin{bmatrix} a_0 = \frac{1}{a} > 0 \\ b_0 = \frac{1}{b} > 0 \end{bmatrix} = f_0(0) \cdot \ln \frac{b_0}{a_0} = f(+\infty) \ln \left(\frac{\left(\frac{1}{b}\right)}{\left(\frac{1}{a}\right)} \right) = -f(+\infty) \ln \frac{b}{a}.$$

С другой стороны, получаем:

$$\Phi_{0}(a_{0}, b_{0}) = \int_{0}^{+\infty} \frac{f_{0}(a_{0}t) - f_{0}(b_{0}t)}{t} dt = \int_{0}^{+\infty} \left(f_{0}\left(\frac{a}{t}\right) - f_{0}\left(\frac{b}{t}\right) \right) \cdot \frac{1}{t} dt = \left[t = \frac{1}{x}\right] = \dots = \int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx \stackrel{\text{(61)}}{=} \Phi(a, b).$$

Таким образом, $\Phi(a,b) = -f(+\infty) \ln \frac{b}{a}$.

27 Г-функция Эйлера и её основные свойства

Эйлеровым интегралом II рода или Г-функцией Эйлера называется НИЗОП

$$\Gamma(a) = \int_{0}^{+\infty} e^{-x} x^{a-1} dx. \tag{66}$$

(90) является НИЗОП смешанного типа. Для исследования его на поточечную сходимость отделим возможные особенности x=0 и $x=+\infty$ следующим образом

$$\Gamma(a) = \int_{0}^{1} e^{-x} x^{a-1} dx + \int_{1}^{+\infty} e^{-x} x^{a-1} dx.$$
 (67)

Для подынтегральной функции $f(x,a) = e^{-x}x^{a-1}$ в (91) имеем

- 1. $f(x,a) \underset{x\to+0}{\sim} x^{a-1} = \frac{1}{x^{1-a}}$. Поэтому по степенному признаку сходимости НИ-2 получаем, что первое слагаемое в (91) сходится тогда и только тогда, когда $1-a < 1 \Leftrightarrow a > 0$.
- 2. Учитывая, что экспонента при $x \to +\infty$ растёт быстрее любой степенной функции и значит, например

$$\frac{x^{a+1}}{e^x} \xrightarrow[x \to +\infty]{\forall a \in \mathbb{R}} 0.$$

$$|f(x,a)| = \left(\frac{x^{a+1}}{e^x}\right) \cdot \frac{1}{x^2} \leqslant \frac{\text{const}}{x^2} = \phi(x).$$

Поэтому сходится интеграл

$$\int_{1}^{+\infty} \phi(x)dx = \int_{1}^{+\infty} \frac{\text{const}}{x^2} dx \quad (a > 2 > 1)$$

Поэтому по признаку сравнения для НИ-1 второе слагаемое в (91) будет сходиться для $\forall a \in \mathbb{R}$.

Значит, множеством поточечной сходимости для функции в (90) будет интервал $]0; +\infty[$.

Используя правило Вейерштрасса равномерной сходимости НИЗОП-2 можно показать, что в своей области поточечной сходимости $\Gamma(a)$ сходится локально равномерно, т.е.

$$\forall \ [a_0; b_0] \subset]0; +\infty[\Rightarrow \Gamma(a) \stackrel{[a_0; b_0]}{\Rightarrow}$$

Отсюда, в силу теоремы о непрерывности НИЗОП, получаем, что $\Gamma(a)$ - непрерывная $\forall a>0$. Кроме того, учитывая, что

$$\forall \ [a_0; b_0] \subset]0; +\infty[\Rightarrow \int\limits_0^{+\infty} f_a'(x, a) dx = \int\limits_0^{+\infty} e^{-x} x^{a-1} \ln x dx \stackrel{[a_0; b_0] \subset [0; +\infty[}{\Rightarrow}$$

Получаем, что в силу непрерывности f(x,a) и $f'_a(x,a)$ Г-функция (90) будет непрерывно дифференцируемой для $\forall a>0$, причём, в силу правила Лейбница, имеем:

$$\exists \Gamma'(a) = \int_{0}^{+\infty} (e^{-x}x^{a-1})'_{a} dx = \int_{0}^{+\infty} e^{-x}x^{a-1} \ln x dx.$$

Отсюда, учитывая, что

$$\forall m \in \mathbb{N} \Rightarrow \int\limits_{0}^{+\infty} \left(e^{-x} x^{a-1} \right)_{a}^{(m)} dx = \int\limits_{0}^{+\infty} e^{-x} x^{a-1} \ln^{m} x dx \stackrel{[a_0; b_0]}{\Rightarrow}$$

Получаем, что $\Gamma(a)$ бесконечное число раз непрерывно дифференцируема $\forall a>0$, причём

$$\forall m \in \mathbb{N} \Rightarrow \Gamma^{(m)}(a) = \int_{0}^{+\infty} e^{-x} x^{a-1} \ln^{m} x dx.$$

Используя интегрирование по частям $\forall a > 0$, имеем:

$$\Gamma(a) = \int\limits_0^{+\infty} e^{-x} d\left(\frac{x^a}{a}\right) = \left[\underbrace{\frac{x^a e^{-x}}{a}}_{=0}\right]_0^{+\infty} - \int\limits_0^{+\infty} \frac{x^a}{a} d\left(e^{-x}\right) = \frac{1}{a} \int\limits_0^{+\infty} e^{-x} x^{(a+1)-1} dx = \frac{\Gamma(a+1)}{a}.$$

В результате имеем формулу понижения аргумента для Г-функции:

$$\Gamma(a+1) = a\Gamma(a), \forall a > 0. \tag{68}$$

Из этой формулы для $a=n\in\mathbb{N}$ получаем обобщение факториала на действительный случай:

$$\Gamma(n+1) = n\Gamma(n) = n!\Gamma(1).$$

$$\Gamma(1) = \int_{0}^{+\infty} e^{-x} dx = \left[-e^{-x} \right]_{0}^{+\infty} = 1.$$

$$\Gamma(n+1) = n!, \forall n \in \mathbb{N}_{0}.$$
(69)

Используя интеграл Эйлера-Пуассона имеем

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{+\infty} e^{-x} x^{-\frac{1}{2}} dx = \left[x = t^{2}\right] = 2 \int_{0}^{+\infty} e^{-t^{2}} dt = 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

Отсюда, в силу формулы понижения аргумента (68), получаем значение функции для полуцелых значений аргумента:

$$\forall n \in \mathbb{N} \Rightarrow \Gamma\left(n + \frac{1}{2}\right) = \left(n + \frac{1}{2}\right)\Gamma\left(n - \frac{1}{2}\right) = \dots = \frac{2n - 1}{2} \cdot \frac{2n - 3}{2} \cdot \dots \cdot \Gamma\left(\frac{1}{2}\right) = \frac{(2n - 1)!!}{2^n}\sqrt{\pi}$$

$$\Gamma\left(n + \frac{1}{2}\right) = \frac{(2n - 1)!!}{2^n}\sqrt{\pi}, \forall n \in \mathbb{N}$$

$$(70)$$

Полученные формулы понижения аргумента позволяют свести вычисление значения $\Gamma(a)$, a>0 к вычислению при $a\in [0;1[$.

Используя интеграл Эйлера-Пуассона, получим формулу дополнения для Γ -функции. Для $\forall a \in [0;1]$ имеем

$$\begin{split} &\Gamma(a)\Gamma(1-a) = \left(\int\limits_{0}^{+\infty} e^{-t}t^{a-1}dt\right) \left(\int\limits_{0}^{+\infty} e^{-y}y^{-a}dy\right) = \int\limits_{0}^{+\infty} \int\limits_{0}^{+\infty} e^{-t-y}t^{a-1}y^{-a}dtdy = \\ &= \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-t-y}t^{a-1}y^{-a}dt\right) dy = \left[\begin{array}{c} y = \text{fix} \\ t = xy|_{0}^{+\infty} \\ dt = ydx \end{array}\right] = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-xy-y}x^{a-1}y^{a-1}y^{-a}ydx\right) dy = \\ &= \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-y(x+1)}x^{a-1}dx\right) dy = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-y(x+1)}x^{a-1}dy\right) dx = \int\limits_{0}^{+\infty} \left[-\frac{x^{a-1}}{x+1}e^{-y(x+1)}\right]_{y=0}^{y=+\infty} dx = \\ &= \int\limits_{0}^{+\infty} \frac{x^{a-1}}{x+1} dx = E(a) = \frac{\pi}{\sin \pi a}. \end{split}$$

Получаем формулу дополнения для Г-функции

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin \pi a}, 0 < a < 1 \tag{71}$$

Формулы (71) и (68) позволяют свести вычисление для a>0 к вычислению для $a\in\left]0;\frac{1}{2}\right]$. Из (71) в частности при $a=\frac{1}{2}$ получаем

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{72}$$

В свою очередь, используя (72), можно ещё раз вычислить интеграл Эйлера-Пуассона.

28 В-функция Эйлера и её основные свойства.

Эйлеровым интегралом I рода или B-функцией Эйлера называется $HИЗО\Pi$ -2 следующего вида:

$$B(a;b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx,$$
(73)

где a, b - некоторые константы.

Для исследования (73) на сходимость, отделяя возможные особенности, имеем:

$$B(a,b) = \int_{0}^{\frac{1}{2}} x^{a-1} (1-x)^{b-1} dx + \int_{\frac{1}{2}}^{1} x^{a-1} (1-x)^{b-1} dx.$$

Для подынтегральной функции $f(x) = x^{a-1}(1-x)^{b-1}$ в точках x=0 и x=1 получаем:

1.
$$x = 0$$
: $f(x) \underset{x \to +0}{\sim} x^{a-1} = \frac{1}{x^{1-a}}$.

Отсюда видно, что первое слагаемое будет сходиться при $1-a < 1 \Leftrightarrow a > 0$.

2.
$$x = 1$$
: $f(x) \underset{x \to 1-0}{\sim} (1-x)^{b-1} = \frac{1}{(1-x)^{1-b}}$.

Аналогичным образом имеем условие сходимости второго слагаемого: $1 - b < 1 \Leftrightarrow b > 0$.

Таким образом, областью сходимости для В-функции Эйлера будет $\begin{cases} a>0, \\ b>0. \end{cases}$

В дальнейшем нам понадобится представление В-функции не в виде НИЗОП-2, а в виде НИЗОП смешанного типа. Для этого введём замену $x=\frac{t}{1+t}$ \Rightarrow $t=\frac{x}{1-x}\Big|_0^{+\infty}$. $dx=\frac{dt}{(1+t)^2}$. Имеем:

$$B(a,b) \stackrel{(73)}{=} \int_{0}^{+\infty} \left(\frac{t}{1+t}\right)^{a-1} \left(1 - \frac{t}{1+t}\right)^{b-1} \frac{dt}{(1+t)^2} = \int_{0}^{+\infty} \frac{t^{a-1}}{(1+t)^{a+b}} dt.$$
 (74)

Отсюда, учитывая, что В-функция симметрична относительно своих переменных, т. е.

$$B(a,b) \stackrel{(73)}{=} \left[x = 1 - y \right] = \int_{0}^{1} (1-y)^{a-1} y^{b-1} dy = \left[y \leftrightarrow x \right] = \int_{0}^{1} x^{b-1} (1-x)^{a-1} dx = B(b,a),$$

получаем НИЗОП смешанного типа:

$$B(a,b) = \int_{0}^{+\infty} \frac{t^{b-1} dt}{(1+t)^{a+b}}.$$
 (75)

Теорема (связь между B- и Γ - функциями).

Для любых a, b > 0 имеем:

$$B(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}.$$
 (76)

Доказательство. Используя определения В- и Г- функций и представление (74), получаем:

$$\begin{split} &B(a,b) \cdot \Gamma(a+b) = \left(\int\limits_{0}^{+\infty} \frac{t^{a-1}}{(1+t)^{a+b}} \; dt \right) \cdot \left(\int\limits_{0}^{+\infty} e^{-x} x^{a+b-1} \; dx \right) = \\ &= \int\limits_{0}^{+\infty} \int\limits_{0}^{+\infty} \frac{e^{-x} x^{a+b-1} t^{a-1}}{(1+t)^{a+b}} \; dx \; dt = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} \frac{e^{-x} x^{a+b-1} t^{a-1}}{(1+t)^{a+b}} \; dx \right) dt = \\ &= \left[x = (1+t)y \Rightarrow dx = (1+t)dy \right] = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} \frac{e^{-(1+t)y} \left((1+t)y \right)^{a+b-1} t^{a-1}}{(1+t)^{a+b}} \; (1+t) \; dy \right) dt = \\ &= \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-(1+t)y} y^{a+b-1} t^{a-1} \; dy \right) dt = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-(1+t)y} y^{a+b-1} t^{a-1} \; dt \right) dy = \\ &= \left[t = \frac{y = \text{fix}}{y} \Rightarrow dt = \frac{dz}{y} \right] = \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-(y+z)} y^{b-1} z^{a-1} \; dz \right) dy = \int\limits_{0}^{+\infty} \int\limits_{0}^{+\infty} \left(e^{-y} y^{b-1} \right) \left(e^{-z} z^{a-1} \right) dy \; dz = \\ &= \int\limits_{0}^{+\infty} \left(\int\limits_{0}^{+\infty} e^{-y} y^{b-1} dy \right) e^{-z} z^{a-1} \; dz = \Gamma(b) \int\limits_{0}^{+\infty} e^{-z} z^{a-1} \; dz = \Gamma(a) \cdot \Gamma(b) \Rightarrow (76). \end{split}$$

Замечание.

Из (76) на основании соответствующих свойств Г-функций получаем аналогичные свойства В-функций:

1. Симметричность:

$$\begin{cases}
B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}, \\
B(b,a) = \frac{\Gamma(b)\Gamma(a)}{\Gamma(b+a)}
\end{cases} \Rightarrow \begin{cases}
B(a,b) = B(b,a), \\
\forall a,b > 0
\end{cases}$$
(77)

2. Формулы понижения аргумента:

$$B(a+1,b) = \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a \Gamma(a) \Gamma(b)}{(a+b) \Gamma(a+b)} = \frac{a}{a+b} B(a,b), \quad \forall \ a > 0, b > 0,$$

$$B(a,b+1) = \frac{b}{a+b} B(a,b), \quad \forall \ a > 0, b > 0.$$

3. Значения В-функции при натуральном значении одного из аргументов:

$$B(n+1,b) = \frac{n}{b+n} B(n,b) = \frac{n(n-1)}{(b+n)(b+n-1)} B(n-1,b) = \dots =$$

$$= \frac{n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1}{(b+n) \cdot (b+n-1) \cdot \dots \cdot (b+2) \cdot (b+1)} B(1,b).$$

Отсюда, учитывая, что $B(1,b) \stackrel{(73)}{=} \int\limits_0^1 (1-x)^{b-1} dx = \left[-\frac{(1-x)^b}{b} \right]_0^1 \stackrel{b\geq 0}{=} \frac{1}{b}$, получаем:

$$B(n+1,b) = \frac{n!}{b(b+1)\dots(b+n)}, \ b > 0, \ n \in \mathbb{N}.$$
 (78)

Аналогично, в силу симметрии, для $\forall m \in \mathbb{N}$:

$$B(a, m+1) = \frac{m!}{a(a+1)\dots(a+m)}, \quad a > 0.$$
(79)

Из (78) и (79), при $a=n\in\mathbb{N}$ и $b=m\in\mathbb{N}$, имеем формулу для вычисления значения В-функции с натуральными аргументами:

$$B(n+1,m+1) = \frac{n!}{m(m+1)\dots(m+n)} = \frac{m!}{n(n+1)\dots(n+m)} = \frac{m! \ n!}{(m+n+1)!} \ . \tag{80}$$

Непосредственной проверкой убеждаемся, что (80) верно не только в случае, когда $n, m \in \mathbb{N}$, но и при $n, m \in \mathbb{N}_0$.

4. Вычисление значения В-функции, когда оба аргумента - полуцелые числа:

$$\forall n, m \in \mathbb{N} \Rightarrow B\left(n + \frac{1}{2}, m + \frac{1}{2}\right) = \frac{\Gamma(n + \frac{1}{2})\Gamma(m + \frac{1}{2})}{\Gamma(n + m + 1)} = \begin{bmatrix} \Gamma\left(k + \frac{1}{2}\right) = \frac{(2k - 1)!!}{2^k}\sqrt{\pi} \\ \Gamma(n + m + 1) = (n + m)! \\ \forall k \in \mathbb{N} \end{bmatrix} = \frac{(2n - 1)!!(2m - 1)!!}{(n + m)! \cdot 2^{n + m}} \cdot \pi.$$
(81)

5. Формула дополнения для В-функции:

$$\forall a \in]0;1[\Rightarrow B(a,1-a) = \frac{\Gamma(a)\Gamma(1-a)}{\Gamma(a+1-a)} = \frac{\left(\frac{\pi}{\sin \pi a}\right)}{\Gamma(1)} = \frac{\pi}{\sin \pi a}.$$
 (82)

Отсюда, в частности, для $n=\frac{1}{2}$ имеем:

$$B\left(\frac{1}{2}, \ \frac{1}{2}\right) = \frac{\pi}{\sin\frac{\pi}{2}} = \pi.$$

29 Теорема об ортогональности основной тригонометрической системы, следствие из неё и замечание к ней.

Система функций

$$1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx, \dots - \tag{83}$$

основная тригонометрическая система (ОТС). Функции (83) имеют общий \mathbb{R}_+ период, равный $T_0 = 2\pi$. **Теорема** (Об ортогональности ОТС).

Система функций (83) ортогональна на $[-\pi;\pi]$.

Доказательство. $\forall k, m \in \mathbb{N}_0, k \neq m$ имеем:

1.
$$<\cos kx, \cos mx> = \int_{-\pi}^{\pi} \underbrace{\cos kx \cos mx}_{\text{чётная}} dx = = 2 \int_{0}^{\pi} \frac{1}{2} (\cos(k-m)x + \cos(k+m)x) dx =$$

$$= \left[\frac{\sin(k-m)x}{k-m} + \frac{\sin(k+m)x}{k+m} \right]_{0}^{\pi} = \left[\sin \pi n = 0, \forall n \in \mathbb{Z} \right] = 0,$$

T.e. $\cos kx \perp \cos mx, \forall k \neq m$.

2.
$$<\cos kx, \sin mx> = \int_{-\pi}^{\pi} \underbrace{\cos kx \sin mx}_{\text{нечётная}} dx = 0$$

T.e. $\cos kx \perp \sin mx, \forall k \neq m$.

3.
$$<\sin kx, \sin mx> = \int_{-\pi}^{\pi} \underbrace{\sin kx \sin mx}_{\text{Чётная}} dx = 2 \int_{0}^{\pi} \frac{1}{2} (\cos(k-m)x - \cos(k+m)x) dx =$$

$$= \left[\frac{\sin(k-m)x}{k-m} - \frac{\sin(k+m)x}{k+m} \right]_{0}^{\pi} = \left[\sin \pi n = 0, \forall n \in \mathbb{Z} \right] = 0,$$

T.e. $\sin kx \perp \sin mx, \forall k \neq m$

Следствие.

Ортогональной ОТС (83) соответствует ортонормированная тригонометрическая система на $[-\pi;\pi]$:

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}, \dots$$
 (84)

Доказательство. Следует из того, что

$$||1|| = \left(\int_{-\pi}^{\pi} 1^2 dx\right)^{\frac{1}{2}} = \sqrt{2\pi};$$

$$||\cos kx|| = \left(\int_{-\pi}^{\pi} \cos^2 kx^2 dx\right)^{\frac{1}{2}} = \left(2\int_{0}^{\pi} \frac{1 + \cos 2kx}{2} dx\right)^{\frac{1}{2}} = \left(\left[x + \frac{\sin 2kx}{2k}\right]\right)^{\frac{1}{2}} = \sqrt{\pi};$$

$$||\sin kx|| = \left(\int_{-\pi}^{\pi} \sin^2 kx^2 dx\right)^{\frac{1}{2}} = \left(2\int_{0}^{\pi} \frac{1 - \cos 2kx}{2} dx\right)^{\frac{1}{2}} = \left(\left[x - \frac{\sin 2kx}{2k}\right]\right)^{\frac{1}{2}} = \sqrt{\pi};$$

Поэтому в силу доказанной выше теоремы система (84) будет не только ортогональной на $[-\pi;\pi]$, но и ортонормированной на $[-\pi;\pi]$, т.к. норма любой функции из (84) равна 1.

Замечания:

1. Т.к. $T_0 = 2\pi > 0$ - общий период функций (83), то на основании леммы об интеграле от интегрируемой периодической функции, рассмотренном на промежутке длины периода, получаем, что ОТС ортогональна на любом отрезке $[a; a+2\pi]$, fix $a \in \mathbb{R}$. В доказанной теореме для удобства было взято $a=-\pi$.

2. Наряду с ортогональной (83) и ортонормированной (84) рассмотрим также обобщённую тригонометрическую систему

$$1, \cos\frac{\pi x}{l}, \sin\frac{\pi x}{l}, \dots, \cos\frac{\pi nx}{l}, \sin\frac{\pi nx}{l}, \dots$$
(85)

у функций которой общий период T=2l>0. (85) также будет ортогональной на любом отрезке $[a;a+2\pi]$, fix $a\in\mathbb{R}$ и ей будет соответствовать следующая обобщённая ортонормированная система

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{l}}\cos\frac{\pi x}{\sqrt{\pi}}, \frac{1}{\sqrt{l}}\sin\frac{\pi x}{\sqrt{\pi}}, \dots \frac{1}{\sqrt{l}}\cos\frac{\pi n x}{\sqrt{\pi}}, \frac{1}{\sqrt{l}}\sin, \frac{\pi n x}{\sqrt{\pi}}, \dots$$
(86)

30 Теорема о тригонометрическом многочлене наименьшего отклонения.

$$T_n(x) = \frac{A_0}{2} + \sum_{k=1}^n (A_k \cos kx + B_k \sin kx). \tag{87}$$

$$A_m = \frac{1}{\pi} \int_{-\pi}^{\pi} T_n(x) \cos mx dx, m = \overline{0, n}; \tag{88}$$

$$B_m = \frac{1}{\pi} \int_{-\pi}^{\pi} T_n(x) \sin mx dx, m = \overline{1, n}; \tag{89}$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} T_n^2(x) dx = \frac{A_0^2}{2} + \sum_{k=1}^{n} (A_k^2 + B_k^2). \tag{90}$$

$$\Delta = ||f(x) - T_n(x)|| = \left(\int_{-\pi}^{\pi} (f(x) - T_n(x))^2 dx\right)^{\frac{1}{2}}$$
(91)

Теорема (О ТМ наименьшего отклонения).

Среди ТМ (87) фиксированной степени $\leq n$ многочлен Фурье для f(x) на $[-\pi;\pi]$ - многочлен

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \tag{92}$$

коэффициенты которого вычисляются по формулам

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx dx, m = \overline{0, n}; \tag{93}$$

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx dx, m = \overline{1, n}; \tag{94}$$

(95)

Доказательство. Рассматривая произвольный тригонометрический многочлен (87) fix степени $\leq n$ и используя формулы (88), (89), (90), для отклонения (91) имеем

$$\Delta = (||f(x) - T_n(x)||) = \int_{-\pi}^{\pi} (f(x) - T_n(x))^2 dx = \int_{-\pi}^{\pi} f^2(x) dx - 2 \int_{-\pi}^{\pi} f(x) T_n(x) dx + \int_{-\pi}^{\pi} T_n^2(x) dx =$$

$$= \int_{-\pi}^{\pi} f^2(x) dx - 2 \left(\frac{A_0}{2} \int_{-\pi}^{\pi} f(x) dx + \sum_{k=1}^{n} \left(A_k \int_{-\pi}^{\pi} f(x) \cos kx dx + B_k \int_{-\pi}^{\pi} f(x) \sin kx dx \right) \right) + \pi \left(\frac{A_0^2}{2} + \sum_{k=1}^{n} (A_k^2 + B_k^2) \right) =$$

$$= \int_{-\pi}^{\pi} f^2(x) dx - 2\pi \left(\frac{a_0 A_0}{2} + \sum_{k=1}^{n} (a_k A_k + b_k B_k) \right) + \pi \left(\frac{A_0^2}{2} + \sum_{k=1}^{n} (A_k^2 + B_k^2) \right) =$$

$$= \int_{-\pi}^{\pi} f^2(x) dx + \frac{\pi}{2} \left(A_0^2 - a_0 A_0 + 2 \sum_{k=1}^{n} (A_k^2 - 2a_k A_k) \right) + \pi \sum_{k=1}^{n} (B_k^2 - 2b_k B_k) =$$

$$= \int_{-\pi}^{\pi} f^2(x) dx + \frac{\pi}{2} (A_0 - a_0)^2 + \pi \sum_{k=1}^{n} (A_k - a_k)^2 + \pi \sum_{k=1}^{n} (B_k - b_k)^2 - \frac{\pi}{2} \left(a_0^2 + 2 \sum_{k=1}^{n} a_k^2 + 2 \sum_{k=1}^{n} b_k^2 \right) \geqslant$$

$$\geqslant \left[\forall A_k \in \mathbb{R}, k = \overline{0, n}, \\ \forall B_k \in \mathbb{R}, k = \overline{1, n}, \right] \geqslant \int_{-\pi}^{\pi} f^2(x) dx - \pi \left(a_0^2 + 2 \sum_{k=1}^{n} a_k^2 + 2 \sum_{k=1}^{n} b_k^2 \right).$$

RHS не зависит от выбора $T_n(x)$ и минимум достигается при

$$\forall A_k = a_k, k = \overline{0, n},$$
$$\forall B_k = b_k, k = \overline{1, n},$$

31 Формула Дирихле для интегралов Фурье (И.Ф.) и следствие из неё.

$$\int_{-\infty}^{\infty} |f(x)| \, dx \tag{96}$$

Рассмотрим $\forall A>0$ при фиксированном $x\in\mathbb{R}$

$$F(A,x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos y(t-x) dt$$
 (97)

$$\Phi(x) = \lim_{A \to +\infty} F(A, x). \tag{98}$$

Теорема (Формула Дирихле для интегралов Фурье).

При условной сходимости (96) для (97) справедлива формула Дирихле

$$F(A,x) = \frac{1}{\pi} \int_{0}^{+\infty} (f(x-u) + f(x+u)) \frac{\sin Au}{u} du.$$
 (99)

Доказательство. В силу сходимости (96) в (97) возможно изменение порядка интегрирования, в силу которого имеем

$$F(A,x) = \lim_{B \to +\infty} \frac{1}{\pi} \int_{0}^{A} \left(\int_{-B}^{B} f(t) \cos y(t-x) dt \right) dy.$$

Здесь предельный переход для внешнего интеграла подразумевается в смысле v.p. НИЗОП. В результате получим

$$F(A,x) = \lim_{B \to +\infty} \frac{1}{\pi} \int_{-B}^{B} \left(\int_{0}^{A} f(t) \cos y(t-x) dy \right) dt = \lim_{B \to +\infty} \frac{1}{\pi} \int_{-B}^{B} \left[f(t) \frac{\sin y(t-x)}{t-x} \right]_{0}^{A} dt =$$

$$= \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{\sin A(t-x)}{t-x} dt = \left[t-x=v \right]_{-\infty}^{+\infty} = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(x+v) \frac{\sin Av}{v} dv = \frac{1}{\pi} \left(\int_{-\infty}^{0} + \int_{0}^{+\infty} dv \right) =$$

$$= \left[\frac{1}{2} \int_{0}^{u} -v \Big|_{0}^{0}, dv = -du \Big|_{0}^{+\infty}, dv = du \right] = \frac{1}{\pi} \left(-\int_{+\infty}^{0} f(x-u) \frac{\sin A(-u)}{-u} du + \int_{0}^{+\infty} f(x+u) \frac{\sin Au}{u} du \right) =$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} (f(x-u) + f(x+u)) \frac{\sin Au}{u} du.$$

Следствие.

В силу представления (99) из (98) для ИФ получаем

$$\Phi(x) = \lim_{A \to +\infty} \frac{1}{\pi} \int_{0}^{+\infty} \frac{f(x-u) + f(x+u)}{u} \sin Au du. \tag{100}$$

32 Теорема о поточечной сходимости И.Ф. Следствие из неё и замечание к ней.

$$a(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos y t dt, \tag{101}$$

$$b(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin y t dt, \tag{102}$$

Из теоремы Римана-Лебега: для кусочно-непрерывной функции g(t) и абсолютно интегрируемой на $[a; +\infty[$ имеем

$$\lim_{A \to +\infty} \int_{a}^{+\infty} g(t) \sin At = 0 \tag{103}$$

Теорема (O поточечной $cxodumocmu\ M\Phi$).

Если f(x) - абсолютно интегрируема на \mathbb{R} , т.е. сходится (96), то в случае, когда для

$$x_0 \in \mathbb{R} \Rightarrow S_0 \in \mathbb{R} |\exists \lim_{t \to +0} \left(\frac{f(x_0 + t)}{t} + \frac{f(x_0 - t) - 2s_0}{t} \right) \in \mathbb{R}, \tag{104}$$

то тогда в точке x_0 для ИФ имеем $\Phi(x_0) = S_0$

Доказательство. Для A>0 воспользуемся обобщением интеграла Дирихле из котором следует

$$\frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin At}{t} dt = 1. \tag{105}$$

Из (105) для (97) в точке $x=x_0$ получаем

$$\begin{split} &F(A,x_0) - S_0 = \frac{1}{\pi} \int\limits_0^{+\infty} \frac{f(x_0 - u) + f(x_0 + u)}{u} \sin Au du - \frac{2S_0}{\pi} \int\limits_0^{+\infty} \frac{\sin Au}{u} du = \\ &= \frac{1}{\pi} \int\limits_0^{+\infty} \frac{f(x_0 - u) + f(x_0 + u) - 2S_0}{u} \sin Au du = \begin{bmatrix} g(u) = \frac{f(x_0 - u) + f(x_0 + u) - 2S_0}{u} \\ &\exists g(+0) = \lim_{u \to +0} g(u) \in \mathbb{R} \end{bmatrix} = \\ &= \int\limits_0^{+\infty} g(u) \sin Au du = \begin{bmatrix} \text{Теорема Римана-Лебега} \end{bmatrix} \xrightarrow[A \to +\infty]{} 0, \end{split}$$

поэтому

$$F(A, x_0) \xrightarrow[A \to +\infty]{} S_0 \Rightarrow \Phi(x_0) = \lim_{A \to +\infty} F(A, x_0) = S_0.$$

Следствие.

Для кусочно-непрерывной абсолютно интегрируемой на \mathbb{R} функции f(x), имеем кусочно-непрерывную производную на любом конечном промежутке, её интеграл Фурье в любой точке $x_0 \in \mathbb{R}$ сходится к

$$\Phi(x_0) = \frac{f(x_0 - 0) + f(x_0 + 0)}{2}.$$

Доказательство. Для доказательства достаточно взять

$$S_0 = \frac{f(x_0 - 0) + f(x_0 + 0)}{2},$$

а тогда

$$\frac{f(x_0-t)+f(x_0+t)-2S_0}{t} = \frac{f(x_0-t)-f(x_0-0)}{t} + \frac{f(x_0+t)-f(x_0+0)}{t} \xrightarrow[t \to +0]{} f'_+(x_0+0) - f'_-(x_0-0) \in \mathbb{R},$$

т.е. выполняется условие (103), а тогда по доказанной теореме

$$\Phi(x_0) = S_0 = \frac{f(x_0 - 0) + f(x_0 + 0)}{2}$$

Замечание.

Если $x \in \mathbb{R}$ - точка непрерывности для f, т.е. $f(x_0 - 0) = f(x) = f(x_0 + 0)$, то тогда при выполнении остальных соответствующих условий доказанной теоремы получаем для интеграла Φ урье

$$\Phi(x) = \frac{f(x_0 - 0) + f(x_0 + 0)}{2} = f(x), \text{ r.e.}$$

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} (a(y) \cos xy + b(y) \sin xy) dy,$$

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} (a(y)\cos xy + b(y)\sin xy)dy,$$

где $a(y),\,b(y)$ вычисляется по формулам (101), (102).

33 Комплексная форма И.Ф. Преобразование Фурье и его свойства.

Пусть выполнены для f(x) все условия теоремы о её представлении в виде интеграла Фурье. Тогда

$$f(x) = \Phi(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \cos y(t-x) dt.$$

В дальнейшем все соответствующие НИ-1 будем рассматривать в смысле v.p. В этом случае

$$\forall B > 0 \Rightarrow \int_{-B}^{B} dy \int_{-\infty}^{+\infty} f(t) \sin y(t-x) dt = 0.$$

А отсюда при

$$B \to +\infty v.p.$$

$$\int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \sin y(t-x) dt = 0.$$

В дальнейшем v.p. будем опускать. Поэтому, используя мнимую единицу $i(i^2=-1)$, получаем

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \cos y(t-x) dt + \frac{i}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \sin y(t-x) dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) (\cos y(t-x) + i \sin y(t-x)) dt = \left[e^{i\phi} = \cos \phi + i \sin \phi \right] =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) (\cos y(t-x) + i \sin y(t-x)) dt = \left[e^{i\phi} = \cos \phi + i \sin \phi \right] =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} e^{iy(t-x)} f(t) dt. \tag{106}$$

(106) даёт комплексную форму ИФ из которой следует

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(e^{-ixy} \int_{-\infty}^{+\infty} e^{iyt} f(t) dt \right) dy =$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ixy} F(y) dy$$
(107)

где

$$F(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{iyt} f(t)dt.$$
 (108)

(108) - преобразование Фурье функции f(t), которое может быть не только действительным, но и комплексно-значным для $t \in \mathbb{R}$. Сам (108) подразумевается в смысле v.p.

Функция F(y) в (108) - образ f(x) при преобразовании Фурье, сама f(x) - первообразная для (108). Его можно восстановить по формуле (107), где интеграл также поразумевается в смысле v.p.. (107) - обратное преобразование Фурье.

Можно показать, что преобразование Фурье (108) обладает следующими свойствами

1. Линейность: Если f(x) и g(x) имеют преобразования Фурье F(y) и G(y), то тогда

$$\forall \mu, \lambda \in \mathbb{R} \Rightarrow h(x) = \lambda f(x) + \mu g(x)$$

имеет преобразовение Фурье $H(y) = \lambda F(y) + \mu G(y)$.

По ММИ это свойство обобщается на любое число слогаемых.

- 2. $F(y) \xrightarrow[y \to \infty]{} 0.$ Доказательство следует из теоремы Римана-Лебега.
- 3. Если f(x) непрерывна для $\forall x \in \mathbb{R}$, то F(y) также будет непрерывна.

4. Если для f(x) наряду с её прФ F(y) существует прФ для xf(x)-S(y), то тогда в случае выполнения (96) и сходимости $\int\limits_{-\infty}^{+\infty}|xf(x)|\,dx$ при выполнении условий сходимости ИФ получим, что F'(y) будет прФ функции (ixf(x)). Доказательство следует из теоремы о почленном дифференцировании НИЗОП и правила Лейбница дифференцирования НИЗОП, т.к. для интеграла $\int\limits_{-\infty}^{+\infty}itf(t)e^{iyt}d$ имеем сходящуюся мажоранту

$$\int\limits_{-\infty}^{+\infty}\left|itf(t)e^{iyt}\right|dt=\left[\left|e^{iyt}\right|=1\right]=\int\limits_{-\infty}^{+\infty}\left|tf(t)\right|dt$$
 - сходится,

а поэтому будет сходится равномерно, а тогда

$$\exists F'(y) = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{+\infty} f(t)e^{iyt}dt \right)_y' = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left(f(t)e^{iyt} \right)_y' dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} itf(t)e^{iyt}dt - \frac{1$$

преобразование Фурье функции ixf(x).

При соответствующих условиях это свойство по ММИ обобщается: $\forall k \in \mathbb{N} \Rightarrow F^{(k)}(y)$ - пр Φ функции $(ix)^k f(x)$. На основании свойств можно использовать пр Φ для вычисления соответствующих интегралов и решения дифференциальных и интегральных уравнений и их систем.

34 И.Ф. для чётных и нечётных функций. Синус- и косинус-преобразование Фурье.

Пусть f(x) чётна на \mathbb{R} , тогда

$$a(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos yt dt = \frac{2}{\pi} \int_{0}^{+\infty} f(t) \cos yt dt$$
 (109)

$$b(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin yt dt = 0.$$
 (110)

При выполнении соответствующих условий в силу теоремы о поточечной сходимости И Φ и в случае непрерывности f(x) имеем

$$f(x) = \Phi(x) = \int_{0}^{+\infty} a(y)\cos xy dy. \tag{111}$$

В соответствии с (109) - (111) для f(x), определённой для $x \in]0; +\infty[$ её соs-преобразованием Фурье называется

$$\Phi_c(y) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \cos y t dt, \qquad (112)$$

а тогда в силу (111) сама f(x) будет восстанавливаема на x>0 по своему соs-преобразованию (113) по формуле

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \Phi_c(y) \cos xy dy. \tag{113}$$

Аналогично, если f(x) - нечётна на \mathbb{R} , то

$$a(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos y t dt = 0, \tag{114}$$

$$b(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin yt dt = \frac{2}{\pi} \int_{0}^{+\infty} f(t) \sin yt dt.$$
 (115)

(116)

Отсюда, при выполнении соответствующего условия на непрерывность f(x) получаем

$$f(x) = \Phi(x) = \int_{0}^{+\infty} b(y) \sin xy dy. \tag{117}$$

В соответствии с (114) - (117) для f(x), определённой для x>0 её sin-преобразованием Фурье называется

$$\Phi_x(y) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \sin y t dt, \tag{118}$$

а сама f(x) для x > 0 в силу (114) - (117) восстанавливается по формуле

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \Phi_s(y) \sin xy dy, \tag{119}$$

В этом случае для f(x), определённой для x>0 строим их чётные (нечётные) продолжения

$$f_{\text{\tiny TH}}(x) = f(|x|), x \in \mathbb{R},$$

$$f_{\text{\tiny Heq}}(x) = f(|x|) \operatorname{sgn} x, x \in \mathbb{R},$$

а полученные для этих функций интегралы Фурье назовём соответствующими интегралами Фурье по cos и sin.

Так же, как и общее $np\Phi$, \sin и \cos $np\Phi$ могут использоваться для вычисления интегралов, решения дифференциальных и интегральных уравнений.

35 Критерий сходимости комплексных последовательностей $(K.\Pi.)$ и замечание к нему.

$$\forall \varepsilon > 0, \exists \nu_{\varepsilon} | \forall n \geqslant \nu_{\varepsilon} \Rightarrow |z_n - z_0| \leqslant \varepsilon. \tag{120}$$

Теорема (Критерий сходимости КП).

$$z_n = x_n + iy_n \xrightarrow[n \to \infty]{} z_0 = x_0 + iy_0 \Leftrightarrow \tag{121}$$

$$x_n \xrightarrow[n \to \infty]{} x_0, y_n \xrightarrow[n \to \infty]{} y_0, x_n, x_0 - \operatorname{Re} z_n, z_0; y_n, y_0 - \operatorname{Im} z_n, z_0;$$
(122)

Доказательство. 🖨 Пусть выполняется (120), тогда, учитывая

$$|x_n - x_0| \le \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = |z_n - z_0|,$$

 $|y_n - y_0| \le \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = |z_n - z_0|,$

в силу (120) имеем

$$\forall \varepsilon > 0 \exists \nu_{\varepsilon} \in \mathbb{R} | \forall n \geqslant \nu_{\varepsilon} \Rightarrow |x_n - x_0| \leqslant \varepsilon, |y_n - y_0| \leqslant \varepsilon,$$

т.е. имеем (122)

$$\iff$$
 $\forall \varepsilon > 0$ по $\widetilde{\varepsilon} = \frac{\varepsilon}{\sqrt{2}} > 0$ в силу (122) имеем

$$\exists \nu_1 \in \mathbb{R} | \forall n \geqslant \nu_1 \Rightarrow |x_n - x_0| \leqslant \widetilde{\varepsilon}, \\ \exists \nu_2 \in \mathbb{R} | \forall n \geqslant \nu_2 \Rightarrow |y_n - y_0| \leqslant \widetilde{\varepsilon},$$

Отсюда, выбирая $\nu = \max \{\nu_1, \nu_2\}, \forall n \geqslant \nu \Rightarrow$

$$|x_n - x_0| \leqslant \widetilde{\varepsilon} = \frac{\varepsilon}{\sqrt{2}},$$

$$|y_n - y_0| \leqslant \widetilde{\varepsilon} = \frac{\varepsilon}{\sqrt{2}},$$

$$|z_n - z_0| = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} \leqslant \sqrt{\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2}} = \varepsilon.$$

Замечания:

- 1. Критерий сходимости КП сводит исследование этих последовательностей на сходимость к исследованию двух действительных последовательностей из действительной и мнимой частей рассматриваемой КП. В связи с этим большинство свойств действительных последовательностей автоматически переносятся на КП. В то же время не все свойства действительных последовательностей, связанные с неравенствами, выполняются для КП. Это обусловлено тем, что, в отличие от множества ℝ, которое можно упорядочить, в множестве ℂ нельзя ввести отношение порядка между числами, удовлетворяющее всем аксиомам порядка, поэтому, например, для КП не рассматривается предельный переход в неравенствах, и, в частности, не используют теорему о пределе сжатой последовательности, а также определяется понятие монотонности КП.
- 2. Предел линейной комбинации, произведения и частного.

36 Принцип выбора для К.П. и замечание к нему.

Краткий план:

- 1. Замечаем, что (x_n) и (y_n) ограничены.
- 2. Выбираем сходящуюся подпоследовательность (x_{m_k}) .
- 3. Выбираем сходящуюся подпоследовательность (y_{n_k}) , (n_k) подпоследовательность (m_k) .

Теорема (Принципе выбора для $K\Pi$).

Если КП $(z_n), n \in \mathbb{N}$, ограниченна, т.е. $\exists M = \mathrm{const} \geqslant 0 | |z_n| \leqslant M, \forall n \in \mathbb{N}$, то из (z_n) можно выбрать сходящуюся подпоследовательность

$$z_{n_k} \xrightarrow[n_k \to \infty]{} z_0 \in \mathbb{C}, 1 \leqslant n_1 < n_2 < \dots < n_k < \dots$$
 (123)

Доказательство. Заметим, что для действительной последовательности $x_n=\operatorname{Re} z_n\in\mathbb{R},\,y_n=\operatorname{Im} z_n\in\mathbb{R}$ в силу неравенств

$$|x_n| \leqslant \sqrt{x_n^2 + y_n^2} = |z_n|, |y_n| \leqslant \sqrt{x_n^2 + y_n^2} = |z_n|,$$

из ограниченности (z_n) следует ограниченность (x_n) и (y_n) , а тогда в силу принципа выбора для действительной последовательности, например, из ограниченной действительной последовательности (x_n) можно выбрать сходящуюся подпоследовательность

$$\widetilde{x}_{m_k} \xrightarrow[m_k \to \infty]{} x_0 \in \mathbb{R}, 1 \leqslant m_1 < m_2 < \ldots < m_k < \ldots$$

Далее, в соответствии с полученными индексами $m_k \in \mathbb{N}$ из ограниченной подпоследовательности (y_{m_k}) можно выбрать некоторую сходящуюся подпоследовательность $\widetilde{y}_{n_k} \xrightarrow[n_k \to \infty]{} y_0 \in \mathbb{R}, (n_k)$ - подпоследовательность индексов (m_k) , $1 \le n_1 < n_2 < \dots$

В свою очередь, для полученных индексов подпоследовательность (\widetilde{x}_{n_k}) будет некоторой подпоследовательностью последовательности (\widetilde{x}_{m_k}) и поэтому $\widetilde{x}_{n_k} \xrightarrow[n_k \to \infty]{} x_0 \in \mathbb{R}$.

Таким образом, у ограниченной КП $(z_n)=(x_n+iy_n)$ нашлась сходящаяся подпоследовательность $z_{n_k}=\widetilde{x}_{n_k}+i\widetilde{y}_{n_k}\to x_0+iy_0=z_0\in\mathbb{C}.$

Замечание.

На основании принципа выбора для $K\Pi$ по той же схеме, что и для действительных последовательностей, доказывается $\kappa pumepuŭ~Kouu~cxoдumoctu~K\Pi$:

 (z_n) сходится $\Leftrightarrow (z_n)$ фундаментальна, т.е.

$$\forall \varepsilon > 0 \exists \nu_{\varepsilon} \in \mathbb{R} | \forall m, n \geqslant \nu_{\varepsilon} \Rightarrow |z_n - z_m| \leqslant \varepsilon \tag{124}$$

Отсюда, по правилу Де Моргана получаем, что последовательность (z_n) будет расходится \Leftrightarrow

$$\exists \varepsilon_0 > 0 | \forall \nu \in \mathbb{R}, \exists m_0, n_0 \geqslant 0 \Rightarrow |z_{n_0} - z_{m_0}| > \varepsilon_0 \tag{125}$$

37 Критерий абсолютной сходимости комплексных числовых рядов.

Краткий план:

1. \Leftrightarrow Ограничиваем $|x_n|$ и $|y_n|$ сверху $|z_n|$.

2. \iff Ограничиваем $|z_n|$ сверху $|x_n|+|y_n|$

Теорема (Критерий абсолютной сходимости КР).

 $\sum z_n$ сходится абсолютно \Leftrightarrow одновременно сходятся абсолютно действительные ряды $\sum \operatorname{Re} z_n$ и $\sum \operatorname{Im} z_n$.

Доказательство. $\Longrightarrow \sum z_n$ сходится абсолютно, т.е. сходится $\sum |z_n|$. Учитывая, что

$$\begin{cases} x_n = \text{Re } z_n, \\ y_n = \text{Im } z_n, \end{cases} \Rightarrow \begin{cases} |x_n| \leqslant \sqrt{x_n^2 + y_n^2} = |z_n|, \\ |y_n| \leqslant \sqrt{x_n^2 + y_n^2} = |z_n|, \end{cases}$$

На основании признака сравнения сходимости положительных ЧР $\Rightarrow \sum |x_n|$ и $\sum |y_n|$ сходятся. Т.е. $\sum x_n = \sum \operatorname{Re} z_n$ и $\sum y_n = \sum \operatorname{Im} z_n$ сходятся абсолютно.

 $\stackrel{\frown}{\iff}$ Пусть сходятся абсолютно $\sum x_n = \sum \operatorname{Re} z_n$ и $\sum y_n = \sum \operatorname{Im} z_n$. Тогда в силу неравенства для

$$z_n = x_n + iy_n, |z_n| = \sqrt{x_n^2 + y_n^2} = \sqrt{(x_n + y_n)^2 - 2|x_n||y_n|} \leqslant |x_n| + |y_n|,$$

в силу сходимости

$$\sum (|x_n| + |y_n|) = \sum |x_n| + \sum |y_n|,$$

на основании признака сравнения сходимости положительных рядов получаем, что $\sum |z_n|$ сходится, а значит, $\sum z_n$ сходится абсолютно.

38 Линейная ФКП и её свойства.

Краткий план:

1. $\omega_1 = az$.

2. $\omega_2 = z + b$.

3. $\omega = az + b$.

Линейным будем называть отображение вида $\omega = f(z) = az + b$, где $a,b = \mathrm{const} \in \mathbb{C}$. Если a = 0, то $\omega = b = \mathrm{const}$ - постоянная Φ KП.

Пусть $a \neq 0$, тогда для рассм
триваемой линейной ФКП будет существовать обратная функция

$$z = f^{-1}(\omega) = \frac{1}{a}\omega - \frac{b}{a} = a_0\omega + b_0,$$
 $a_0 = \frac{1}{a} \neq 0, b_0 = -\frac{b}{a},$

т.е. опять имеем линейное отображение, поэтому в этом случае любая область D плоскости (Z) при линейном отображении взаимно однозначно будет отображаться в некоторую область плоскости ω .

Для более подробного изучения линейных Φ KП, соответствующих отображению при $a \neq 0$, рассмотрим частные случаи:

1. $\omega_1=az, a\neq 0$. Представим $a\in\mathbb{C}$ в экспоненциальном виде

$$a = re^{i\alpha}, r = |a| > 0, \alpha = \arg a \in [-\pi, \pi],$$

получаем $\omega_1 = re^{i\alpha}z \Rightarrow$

$$|\omega_1| = |r| |e^{i\alpha}| |z| = |z| r,$$

 $\operatorname{Arg} \omega_1 = \operatorname{arg} r e^{i\alpha} + \operatorname{Arg} z = \alpha + \operatorname{Arg} z.$

Эти равенства показывают:

- (a) С помощью ω_1 происходит преобразование подобия с коэффициентом k=r (расширение, если r>1 и сжатие, если $r\leqslant 1$).
- (б) Для $\phi = \arg z \Rightarrow \psi = \operatorname{Arg} \omega_1 = \alpha + \phi$, что соответствует повороту на угол α .
- 2. $\omega_2 = z + b$. В данном случае геометрически точка (z) переходит в точку ω_2 с помощью параллельного переноса на вектор, соответствующий числу $b \in \mathbb{C}$.
- 3. Общий случай: $\omega = az + b = a(z + \frac{b}{a})$. Получаем:
 - (a) Параллельный перенос $\omega_0 = z + b_0, b_0 = \frac{b}{a}.$
 - (б) $\omega = a\omega_0$ растяжение (сжатие) и поворот.

При указанных операциях линейная ФКП осуществляет преобразование подобия плоских фигур.

39 Дробно-линейная ФКП и её свойства.

Краткий план:

- 1. Любое дробно-линейное преобразование состоит из последовательного выполнения следующих операций: параллельный перенос -> инверсия->преобразование подобия -> параллельный перенос
- 2. Композицию двух дробно-линейных преобразований можно представить в виде умножения матриц с коэффициентами.

Рассмотрим отображение $\omega=f(z)=\frac{az+b}{cz+d}; a,b,c,d=\mathrm{const}\in\mathbb{C},$ причём $c\neq 0$ или $d\neq 0.$ Если у нас $c=0,d\neq 0,$ то $\omega=\frac{a}{d}z+\frac{b}{d}$ - уже рассмотренная линейная ФКП.

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

В случае $\Delta=0$ получаем пропорциональность строк рассматриваемого определителя, а из этого следует пропорциональность числителя и знаменателя дробно-линейной функции, в силу чего $\omega=\mathrm{const}\in\mathbb{C},$ что также было рассмотрено.

Пусть теперь $c \neq 0$ и $\Delta \neq 0$. После элементарных преобразование имеем

$$\omega = \frac{a}{c} - \frac{\Delta}{c^2 \left(z + \frac{d}{c}\right)}.$$

В связи в этим дробно-линейную Φ КП можно рассматривать как последовательность (композицию) простых дробно-линейных Φ КП:

- 1. $\omega_1 = z$ идентичное отображение.
- 2. $\omega_2 = \omega_1 + z_0 = z + z_0, z_0 = \frac{d}{c}$ параллельный перенос на радиус-вектор, соответствующий $z_0 \in \mathbb{C}$.
- 3. $\omega_3 = \frac{1}{\omega_2} = \frac{1}{z + \frac{d}{c}}$ инверсия (симметрия относительно единичной окружности).
- 4. $\omega_4=p\omega_3=-\frac{\Delta}{^2(z+\frac{d}{c})},\,p=-\frac{\Delta}{^2}\in\mathbb{C}$ преобразование подобия с помощью растяжения (сжатия) и поворота.
- 5. $\omega_5 = \omega_4 + \omega_0 = \frac{a}{c} \frac{\Delta}{c^2(z+\frac{d}{2})}$, $\omega_0 = \frac{a}{c}$ параллельный перенос на радиус-вектор, соответствующий числу ω_0 .

Из указанных преобразований новым является лишь инверсия относительно окружности.

Говорят, что точки z и ω находятся в инверсии между собой относительно окружности $|z-z_0|=R$, если $|OZ|\,|OW|=R^2$. Инверсия также называется симметричной относительно рассмотренной окружности радиуса >0. Для нашего преобразования $\omega_3=\frac{1}{\omega_2}$ имеем

$$\omega_3\omega_2=1\Rightarrow |\omega_3|\,|\omega_2|=1,$$

т.е. точки ω_2 и ω_3 симметричны относительно единичной окружности с центром в начале координат, т.е. находятся в инверсии.

Таким образом, любое дробно-линейное преобразование состоит из последовательного выполнения параллельного переноса, растяжения (сжатия), поворота и инверсии, при условии, что $c \neq 0$ и $\Delta \neq 0$. При этих ограничениях можно показать, что обратная к дробно-линейной функция также будет соответствующей дробно-линейной функцией. Кроме того, при $\Delta \neq 0$ множество всех дробно-линейных преобразований (в том числе линейных) относительно композиции преобразований изоморфно множеству невырожденных матриц второго порядка, с комбинацией коэффициентов относительно их умножения, т.е. для

$$\begin{split} \widetilde{\omega} &= \frac{a_1z + b_1}{c_1z + d_1}, & \overline{\omega} &= \frac{a_2z + b_2}{c_2z + d_2} \\ \Delta_1 &= \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} \neq 0, & \Delta_2 &= \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} \neq 0, \\ \widetilde{\omega}(\overline{\omega}) &= \frac{a_1\overline{\omega} + b_1}{c_1\overline{\omega} + d_1} &= \frac{a_0z + b_0}{c_0z + d_0}, & \text{ где } \begin{bmatrix} a_0 & b_0 \\ c_0 & d_0 \end{bmatrix} &= \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \end{split}$$

Кроме того, можно показать, что любое дробно-линейное (а следовательно и линейное) преобразование обладает круговым свойством. При этих преобразованиях окружность в широком смысле слова (т.е. либо окружность конечного радиуса, либо прямая как окружность бесконечного радиуса) переходит в окружность в широком смысле слова. При

этом при линейном отображении всегда обычная окружность переходит в обычную окружность, а обычная прямая - в обычную прямую, а при обобщённом дробно-линейном преобразовании возможны все варианты. Обоснование основывается на том, что существует единственная дробно-линейная функция, которая 3 различные заданные точки z_1, z_2, z_3 плоскости (z) переводит в указанном порядке в 3 заданные точки $\omega_1, \omega_2, \omega_3$ плоскости (ω) .

Это дробно-линейное преобразование можно найти из соотношения

$$\frac{\omega - \omega_1}{\omega - \omega_2} \cdot \frac{\omega_3 - \omega_2}{\omega_3 - \omega_1} = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1} \tag{126}$$

В (126) точки могут быть как конечными, так и бесконечными, при этом все разности с бесконечными точками заменяются на 1.

40 Степенная ФКП с натуральным показателем и её свойства.

Краткий план:

- 1. Используем экспоненциальное представление.
- 2. Подробно расписываем случай n=2.

 $\omega = f(z) = z^n, n \in \mathbb{N}$. Случай $n = 1 \Leftrightarrow w = z$ - идентичное преобразование, которое уже было рассмотрено. Поэтому будет считать, что $n \geqslant 2$. Тогда, используя экспоненциальное представление $z = |z| e^{i\phi}, \phi = \arg z$, имеем

$$\omega = |z|^n e^{in\phi}, |\omega| = |z|^n, \operatorname{Arg} \omega = n\phi + 2\pi k, k \in \mathbb{Z}.$$

В связи с этим, если, например, мы в z рассмотрим сектор, ограниченный лучами $\phi = \alpha$ и $\phi = \beta$, то в результате в $\textcircled{\omega}$ получим сектор, ограниченный лучами $\psi = n\alpha + 2\pi m$ и $\delta = n\beta + 2\pi l$, поэтому исходный угол $\beta - \alpha$ меду первоначальным лучом в z перейдёт в угол $\delta - \psi = n(\beta - \alpha) + 2\pi p, p \in \mathbb{Z}$. Произошло увеличение этого угла в n раз.

Для определённости рассмотрим частный случай n=2, т.е.

$$\omega = z^2 \Rightarrow |\omega| = |z|^2$$
, Arg $\omega = 2 \arg z + 2\pi k$, $k \in \mathbb{Z}$.

$$1. \ \arg z \in \ \left]0; \frac{\pi}{2}\right[\ \Rightarrow \arg \omega \in \]2\pi k; \pi + 2\pi k[\,.$$

2.
$$\arg z = \frac{\pi}{2} \Rightarrow \operatorname{Arg} \omega = \pi + 2\pi k$$
.

3.
$$\arg z \in \left] \frac{\pi}{2}; \pi \right[\Rightarrow \omega \in \left] \pi + 2\pi k; 2\pi + 2\pi k \right[.$$

в общем случае при $n\geqslant 2$ обратную функцию к $\omega=t^n$ определяют через решение уравнения $t^n=a\in\mathbb{C}.$ Если $a\neq 0,$

$$t = |a|^{\frac{1}{n}} \left(\frac{\cos(\phi + 2\pi k)}{n} + i \frac{\sin(\phi + 2\pi k)}{n} \right),$$

$$\phi = \arg \omega \in [-\pi; \pi].$$

Здесь получаем n различных значений, если вместо k брать любые n последовательных целых чисел.

В связи с этим обратная к ω записывается в виде $\omega = \sqrt[n]{z}$, и она оказывается здесь многозначной (имеет n ветвей).

41 Экспоненциальная ФКП. Гиперболическая и тригонометрическая ФКП.

Краткий план:

- 1. Любое дробно-линейное преобразование состоит из последовательного выполнения следующих операций: параллельный перенос -> инверсия->преобразование подобия -> параллельный перенос
- 2. Композицию двух дробно-линейных преобразований можно представить в виде умножения матриц с коэффициентами.

Для $z=x+iy; x,y\in\mathbb{R}$ экспоненциальная ФКП определяется как

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

Используя соответствующие свойства тригонометрических о показательных действительных функций, нетрудно получить, что $\forall z_1,z_2\in\mathbb{C}\Rightarrow e^{z_1}e^{z_2}=e^{z_1+z_2},\ e^{\frac{z_1}{z_2}}=e^{z_1-z_2},$ отсюда, в частности, имеем $e^0=1,\frac{1}{e^z}=e^{-z}.$ В отличие от действительной экспоненты, комплексная экспонента является уже периодической функцией с чисто мнимым периодом $T=2\pi i,$ т.к.

$$\forall k \in \mathbb{Z} \Rightarrow e^{z+2\pi ki} = e^z e^{2\pi ki} = e^z (\cos 2\pi k + i \sin 2\pi k) = e^z.$$

Отсюда получаем, что $e^{2\pi i}=1$. Непосредственно вычисляя также получаем $e^{\frac{i\pi}{2}}=i, e^{\pi i}=-1$. На основании комплексной экспоненты вводятся комплексные гиперболические функции

$$\begin{cases} \operatorname{ch} z = \frac{e^z + e^{-z}}{2} \\ \operatorname{sh} z = \frac{e^z - e^{-z}}{2} \end{cases}$$

Непосредственно вычисляя для них получаем

- 1. $\cosh^2 z \sinh^2 z = 1$;
- 2. $\cosh^2 z + \sinh^2 z = \cosh 2z$;
- 3. $\operatorname{sh} 2z = 2 \operatorname{sh} z \operatorname{ch} z$:

Из sh и ch определяем

 ${
m C}$ помощью комплексной экспоненты вводится также тригонометрическая $\Phi {
m K}\Pi$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \operatorname{ch}(iz),$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = -i\operatorname{sh}(iz),$$

$$\operatorname{tg} z = \frac{\sin z}{\cos z} = -i\operatorname{th}(iz),$$

$$\operatorname{ctg} z = \frac{\cos z}{\sin z} = i\operatorname{cth}(iz).$$

В данном случае, если в z=x+iy взять $y=0,x\in\mathbb{R}$, то тригонометрические ФКП совпадают с действительными тригонометрическими функциями. В связи с этим большинство тригонометрических формул для действительных тригонометрических функций (кроме связанных с неравенствами) будут справедливы для тригонометрических ФКП, например

$$\cos^2 z + \sin^2 z = 1,$$

$$1 + \operatorname{tg}^2 z = \frac{1}{\cos^2 z},$$

$$\cos 2z = \cos^2 z - \sin^2 z,$$

$$\sin 2z = 2\sin z \cos z.$$

В данном случае тригонометрические Φ КП являются неограниченными функциями, в отличие от, например, действительных сов и sin.

Например

$$\cos(i\ln 2) = \operatorname{ch}(-\ln 2) = \frac{e^{\ln 2} + e^{-\ln 2}}{2} = \frac{2 + \frac{1}{2}}{2} = \frac{5}{4} \notin [-1; 1]$$

42 Логарифмическая $\Phi K \Pi$ и общая степенная $\Phi K \Pi$.

Краткий план:

1. z = x + iy, $\omega = u + iv$. Выражаем u, v.

2. Расписываем
$$\operatorname{Ln}\left(\frac{z_1}{z_2}\right)$$
 и $\operatorname{Ln}\left(z_1z_2\right)$.

- 3. Общая степенная функция $z^{\alpha} \stackrel{z \neq 0}{=} e^{\alpha \ln z}$.
- 4. Общая показательная функция $a^z = e^{z \ln a}$.

Логарифмическая Φ КП $\omega=$ Ln z определяется как решение уравнения $e^{\omega}=z,$ для получения явной формулы для решения этого уравнения запишем

$$\begin{split} z &= x + iy, \omega = u + iv; x, y, v, u \in \mathbb{R}. \\ e^{u + iv} &= x + iy \Rightarrow e^{u}(\cos v + i\sin v) = x + iy \Rightarrow \\ &\Rightarrow \begin{cases} e^{u}\cos v = x, \\ e^{u}\sin v = y, \end{cases} \end{split}$$

1.
$$x^2 + y^2 = e^{2u}(\cos^2 v + \sin^2 v) = e^{2u} \Rightarrow u = \frac{1}{2}\ln(x^2 + y^2) = \ln\sqrt{x^2 + y^2} = \ln|z|, z \neq 0.$$

$$2. \begin{cases} \cos v = \frac{x}{e^u} = \frac{x}{\sqrt{x^2 + y^2}}, \\ \sin v = \frac{y}{e^u} = \frac{y}{\sqrt{x^2 + y^2}}, \end{cases}$$
 поэтому, используя $\phi = \arg z$ и учитывая, что $\cos \phi = \frac{\operatorname{Re} z}{|z|}$, $\sin \phi = \frac{\operatorname{Im} z}{|z|}$, получаем
$$\begin{cases} \cos v = \cos \phi \\ \sin v = \sin \phi \end{cases} \Rightarrow v = \phi + 2\pi k, k \in \mathbb{Z}.$$

$$\forall z \neq 0 \Rightarrow \operatorname{Ln} z = u + iv = \ln|z| + i(\phi + 2\pi k) = \ln|z| + i(\arg z + 2\pi k), k \in \mathbb{Z}.$$

Логарифм ФКП - многозначная функция. Для неё ветвь, соответствующая k=0 - главное значение $\operatorname{Ln} z, z \neq 0$, и обозначается $\operatorname{ln} z = \operatorname{ln} |z| + i \operatorname{arg} z$. Используя форм. действия над множествами, в силу определения $\operatorname{Ln} z$ имеем

$$\forall z_1, z_2 \neq 0, \operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2,$$
$$\operatorname{Ln}\left(\frac{z_1}{z_2}\right) = \operatorname{Ln} z_1 - \operatorname{Ln} z_2.$$

В общем случае имеем

$$\operatorname{Ln} 1 = 2\pi k i, k \in \mathbb{Z}, k = 0 \Rightarrow \operatorname{Ln} 1 = 0.$$

Аналогично $\operatorname{Ln}(-1) = i\pi(2k+1), k \in \mathbb{Z}.$

Используя экспоненциальную и логарифмическую ФКП, по аналогии с основным логарифмическим тождеством для действительных функций, в общем случае для $a,b\in\mathbb{C}, a\neq 0$ полагают $a^b=e^{b\ln a}$. На основании этого определения общая степенная функция $z^{\alpha}\stackrel{z\neq 0}{=}e^{\alpha\ln z}$ и общая показательная функция $a^z=e^{z\ln a}$, которая, вообще говоря, многозначна.

43 Обратные гиперболические и тригонометрические ФКП.

1. Обратный гиперболический sin.

 $\omega = \operatorname{Arsh} z$ определяется как все решения уравнения относительно z

$$z = \operatorname{sh} \omega = \frac{e^{\omega} - e^{-\omega}}{2} \Leftrightarrow e^{2\omega} - 2ze^{\omega} - 1 = 0 \Leftrightarrow$$
$$\Leftrightarrow e^{\omega} = z \pm \sqrt{z^2 + 1} \Leftrightarrow \omega = \operatorname{Ln}\left(z \pm \sqrt{z^2 + 1}\right).$$
$$\operatorname{Arsh} z = \operatorname{Ln}\left(z \pm \sqrt{z^2 + 1}\right).$$

2. Обратный гиперболический сов.

 $\omega = \operatorname{Arch} z$ определяется в как все решения уравнения $z = \operatorname{ch} \omega$ относительно z. Имеем

$$z = \operatorname{ch} \omega = \frac{e^{\omega} + e^{-\omega}}{2} \Leftrightarrow e^{2\omega} - 2ze^{\omega} + 1 = 0 \Leftrightarrow$$
$$\Leftrightarrow e^{\omega} = z \pm \sqrt{z^2 - 1}, \omega = \operatorname{Ln}\left(z \pm \sqrt{z^2 - 1}\right).$$
$$\operatorname{Arch} z = \operatorname{Ln}\left(z \pm \sqrt{z^2 - 1}\right)$$

3. Обратный гиперболический tg.

 $\omega=\operatorname{Arth} z$ определяется как все решения относительно z уравнения $\operatorname{th}\omega=z.$ Имеем

$$z = \operatorname{th} \omega = \frac{e^{2\omega} - 1}{e^{2\omega} + 1} \Leftrightarrow$$

$$\Leftrightarrow e^{2\omega} = \frac{1+z}{1-z}, \omega = \frac{1}{2} \operatorname{Ln} \left(\frac{1+z}{1-z} \right).$$

$$\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \left(\frac{1+z}{1-z} \right), z \neq \pm 1.$$

4. Обратный гиперболический ctg.

 $\omega=\operatorname{Arcth} z$ определяется как все решения относительно zуравнения $\operatorname{cth} \omega=z.$ Имеем

$$z = \operatorname{cth} \omega = \frac{e^{2\omega} + 1}{e^{2\omega} - 1} \Leftrightarrow$$
$$\Leftrightarrow e^{2\omega} = \frac{z + 1}{z - 1}, \omega = \frac{1}{2} \operatorname{Ln} \left(\frac{z + 1}{z - 1} \right).$$
$$\operatorname{Arcth} z = \frac{1}{2} \operatorname{Ln} \left(\frac{z + 1}{z - 1} \right), z \neq \pm 1.$$

5. Комплексный arcsin.

 $\omega = \operatorname{Arcsin} z$ определяется как все решения относительно z уравнения $\sin \omega = z$. Имеем

$$z = \sin \omega = \frac{e^{i\omega} - e^{-i\omega}}{2i} \Leftrightarrow e^{2i\omega} - 2ize^{i\omega} - 1 = 0 \Leftrightarrow$$
$$\Leftrightarrow e^{i\omega} = iz \pm \sqrt{1 - z^2}, \omega = -i\operatorname{Ln}\left(iz \pm \sqrt{1 - z^2}\right).$$
Arcsin $z = -i\operatorname{Ln}\left(iz \pm \sqrt{1 - z^2}\right).$

6. Комплексный arccos.

 $\omega = \operatorname{Arccos} z$ определяется как все решения относительно z уравнения $\cos \omega = z$. Имеем

$$\begin{split} z &= \cos \omega = \frac{e^{i\omega} + e^{-i\omega}}{2} \Leftrightarrow e^{2i\omega} - 2ze^{i\omega} + 1 = 0 \Leftrightarrow \\ &\Leftrightarrow e^{i\omega} = z \pm \sqrt{z^2 - 1}, \omega = -i\operatorname{Ln}\left(z \pm \sqrt{z^2 - 1}\right). \\ &\operatorname{Arccos} z = -i\operatorname{Ln}\left(z \pm \sqrt{z^2 - 1}\right). \end{split}$$

7. Комплексный arctg.

 $\omega=\operatorname{Arctg} z$ определяется как все решения относительно zуравнения $\operatorname{tg}\omega=z.$ Имеем

$$\begin{split} z &= \operatorname{tg} \omega = \frac{e^{2i\omega} - 1}{i(e^{2i\omega} + 1)} \Leftrightarrow \\ &\Leftrightarrow e^{2i\omega} = \frac{1 + iz}{1 - iz}, \omega = -\frac{i}{2} \operatorname{Ln} \left(\frac{1 + iz}{1 - iz} \right). \\ \operatorname{Arctg} z &= -\frac{i}{2} \operatorname{Ln} \left(\frac{1 + iz}{1 - iz} \right), z \neq \pm i. \end{split}$$

8. Комплексный arcctg.

 $\omega=\operatorname{Arcctg} z$ определяется как все решения относительно z уравнения $\operatorname{ctg} \omega=z.$ Имеем

$$\begin{split} z &= \operatorname{ctg} \omega = \frac{i(e^{2i\omega} + 1)}{e^{2i\omega} - 1} \Leftrightarrow \\ &\Leftrightarrow e^{2i\omega} = \frac{z+i}{z-i}, \omega = -\frac{i}{2} \operatorname{Ln} \left(\frac{z+i}{z-i} \right). \\ &\operatorname{Arcctg} z = -\frac{i}{2} \operatorname{Ln} \left(\frac{z+i}{z-i} \right), z \neq \pm i. \end{split}$$

Замечание.

Исходя из общей формулы для обратных гиперболических и тригонометрических ФКП вводятся главные значения этих ФКП $arsh\ z$, $arch\ z$ и т.д. При этом из полученных функций выбираются выражения, которые для соответствующих действительных значений переменной z дают то же, что и ранее рассмотренные обратные гиперболические и тригонометрические функции, при этом, кроме формальной замены общего комплексного логарифма в полученных функциях на главное значение логарифма, иногда приходится вводить некоторые постоянные поправки, вид которых зависит от выбора главного значения аргумента ($arg\ z\in]-\pi;\pi]$ или $arg\ z\in [0;2\pi[$).

44 Сходящаяся и непрерывная ФКП. Критерий непрерывности ФКП.

Рассмотрим ФКП $\omega - f(z)$ с областью определения $D \subset \mathbb{C}$. Пусть точка z_0 - предельная для D, т.е. либо внутренняя, либо граничная. Число $p \in \mathbb{C}$ называется пределом f(z) в точке z_0 , если

$$\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 | \forall z \in D, 0 < |z - z_0| < \delta_{\varepsilon} \Rightarrow |f(z) - p| < \varepsilon \tag{127}$$

В этом случае говорят, что функция f(z) сходится к $p \in \mathbb{C}, z \to z_0$ и пишут $f(z) \xrightarrow[z \to z_0]{} p$, или $\lim_{z \to z_0} f(z) = p$. На языке окрестностей имеем

$$f(z) \xrightarrow[z \to z_0]{} p \in \mathbb{C} \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 | \forall z \in D \cap \overline{B_\delta}(z_0) \Rightarrow f(z) \in \overline{B_\varepsilon}(p)$$

Теорема (*Критерий сходимости* $\Phi K\Pi$).

Если для Φ КП $\omega=f(z),z=x+iy,x=\operatorname{Re}z,y=\operatorname{Im}z,$ или $\omega=u+iv,u=u(x,y)=\operatorname{Re}f(z),v=v(x,y)=\operatorname{Im}f(z),$ то

$$f(z) \xrightarrow[z \to z_0]{} p \in \mathbb{C} \Leftrightarrow \begin{cases} \exists \lim_{x \to x_0} u(x, y) = u_0 = \operatorname{Re} p, \\ y \to y_0 \\ \exists \lim_{x \to x_0} v(x, y) = v_0 = \operatorname{Im} p, \\ x \to x_0 \\ y \to y_0 \end{cases}$$

$$(128)$$

Доказательство. По той же схеме, как и в критерии сходимости КП.

Пусть z_0 - внетренняя точка для $D=D(f)\subset\mathbb{C}$. Говорят, что $\omega=f(z)$ непрерывна в точке $z_0\in D$, если $\exists\lim_{z\to z_0}f(z)=f(z_0)$. Аналогично определяется нерерывность в граничной точке $z_0\in D$ (односторонняя непрерывность). На языке окрестности имеем:

$$f(z)$$
 непрерывна в $z_0 \in D \Leftrightarrow$
 $\Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 | \forall z \in \overline{B}_{\delta}(z_0) \Rightarrow f(z) \in \overline{B}_{\varepsilon}(f(z_0)).$

Теорема (*Критерий непрерывности* $\Phi K\Pi$).

 $\omega = f(z)$ непрерывная в точке $z_0 \in D \Leftrightarrow u(x,y) = \operatorname{Re} f(z), v(x,y) = \operatorname{Im} f(z)$ непрерывны в $M_0(x_0,y_0)$, где $x_0 = \operatorname{Re} z_0, y_0 = \operatorname{Im} z_0$.

Доказательство. Следует их критерия сходимости ФКП.

45 Дифференцируемые ФКП. Критерий Коши-Римана дифференцируемости ФКП и замечания к нему.

Для получения условия дифференцируемости ФКП через её действительную $u=\mathrm{Re}\,f(z)$ и мнимую $v=\mathrm{Im}\,f(z)$ части будем использовать условие Коши-Римана

$$\Big\{u = u(x, y), v = v(x, y),$$

считаются удовлетворяющими условию Коши-Римана, если у них существуют соответствующие производные первого порядка, для которых выполняется

$$\begin{cases} u_x' = v_y' \\ u_y' = -v_x' \end{cases}$$
 (129)

Теорема (Критерий Коши-Римана дифференцируемости ФКП).

 Φ КП f(z) = u + iv дифференцируема в области $G \subset D(f) \Leftrightarrow u = \text{Re}\, f(z), v = \text{Im}\, f(z)$ удовлетворяют условию Коши-Римана (129).

Доказательство. \Longrightarrow Пусть f(z) - дифференцируема в G. Тогда $\forall z \in G \Rightarrow \exists f'(z) \in \mathbb{C}$, т.е.

$$\exists \lim_{\Delta z \to 0} \frac{\Delta f(z)}{\Delta z} = \left[f = u + iv, \Delta f = \Delta u + i\Delta v, \Delta u = u(x + \Delta x, y + \Delta y) - u(x, y), \Delta v = v(x + \Delta x, y + \Delta y) - v(x, y) \right] = f'(z) \in \mathbb{C}.$$

В силу любого допустимого $\Delta z = \Delta x + i \Delta y$ при $\Delta z \to 0 \Rightarrow \Delta x \to 0, \Delta y \to 0$, а тогда из того, что для $\Phi 2\Pi$ из существования двойного предела следует существование соответствующих частных пределов, при использовании приращений вдоль координатных осей получаем

1.
$$\Delta y = 0, \Delta x \to 0 \Rightarrow f'(z) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y) + i(v(x + \Delta x, y) - v(x, y))}{\Delta x} = u'_x + iv'_x$$

$$2. \ \Delta x = 0, \Delta y \rightarrow 0 \Rightarrow f'(z) = \lim_{\Delta y \rightarrow 0} \frac{u(x,y+\Delta y) - u(x,y) + i(v(x,y+\Delta y) - v(x,y))}{i\Delta y} = v_y' - iu_y'.$$

 $f(z)=u_x^\prime+iv_x^\prime=v_y^\prime-iu_y^\prime.$ Из равенства получаем

$$\begin{cases} u'_x = v'_y \\ u'_y = -v'_x \end{cases} \Leftrightarrow (129)$$

 \Leftarrow Для простоты будем считать, что для $\Phi 2\Pi$

$$\begin{cases} u = \operatorname{Re} f(z), \\ v = \operatorname{Im} f(z), \end{cases}$$

существуют не только частные производные, удовлетворяющие (129), но и что эти производные непрерывны, т.е. используемые функции непрерывно дифференцируемы, а тогда соответствующие их приращения записываются в виде

$$\begin{split} \Delta u(x,y) &= u(x+\Delta x,y+\Delta y) - u(x,y) = u_x'\Delta x + u_y'\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) \\ \Delta v(x,y) &= v(x+\Delta x,y+\Delta y) - v(x,y) = v_x'\Delta x + v_y'\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) \end{split}$$

Отсюда, для

$$\begin{split} &\Delta f(z) = f(z+\Delta z) - f(z) = \Delta u + i\Delta v \Rightarrow \\ &\Rightarrow \Delta f(z) = u_x' \Delta x + u_y' \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) + i\left(v_x' \Delta x + v_y' \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})\right) = \\ &= (u_x' + iv_x') \Delta x + (u_y' + iv_y') \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = \begin{bmatrix} u_x' = v_y' \\ u_y' = -v_x' \end{bmatrix} = \\ &= (v_y' + iv_x') \Delta x + (-v_x' + iv_y') \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = \\ &= (\Delta x + i\Delta y)v_y' + (i\Delta x - \Delta y)v_x' + o(\sqrt{\Delta x^2 + \Delta y^2}) = \\ &= (\Delta x + i\Delta y)v_y' + i(i\Delta x + i\Delta y)v_x' + o(\sqrt{\Delta x^2 + \Delta y^2}) = \\ &= (\Delta x + i\Delta y)(v_y' + iv_x') + o(\sqrt{\Delta x^2 + \Delta y^2}) = \begin{bmatrix} \Delta x + i\Delta y = \Delta z, \\ |\Delta z| = \sqrt{\Delta x^2 + \Delta y^2} \end{bmatrix} = (v_y' + iv_x')\Delta z + \gamma, \text{ где } \gamma = o(|\Delta z|), \Delta \to 0. \end{split}$$

Имеем

$$\left|\frac{\gamma}{\Delta z}\right| \stackrel{\Delta z \neq 0}{=} \left|\frac{o(|\Delta z|)}{|\Delta z|}\right| \xrightarrow{\Delta z \to 0} 0, \text{ r.e. } \gamma = o(\Delta z), \Delta z \to 0.$$

Из полученного представления $\Delta f(z) = (v'_y + i v'_x) \Delta z + o(\Delta z), \Delta z \to 0$, получаем в силу определения дифференцируемость f(z). Её производную, в частности, можно вычислить по формуле $f'(z) = v'_y + i v'_x$.

Замечания:

- 1. При обосновании достаточности существенную роль играло предположение о непрерывной дифференцируемости $u=\operatorname{Re} f(z)$ и $v=\operatorname{Im} f(z)$. В общем случае можно показать, что это предположение излишне, но тогда доказательство значительно усложняется.
- 2. Если у нас f(z) дифференцируема в $G \subset D(f)$, то f(z) будет бесконечное число раз дифференцируема в G, т.е. $\exists f'(z)$.. для Φ КП и существование всех остальных производных высших порядков.
- 3. Из доказательства теоремы и условия Коши-Римана (129) следует, что производную Φ КП можно вычислить через её действительную и мнимую части, используя одну из формул

$$f'(z) = u'_x + iv'_x = u'_x - iu'_y = v'_y + iv'_x = v'_y - iu'_y.$$

46 Интеграл ФКП и его вычисление через КРИ-2.

Определение интеграла Φ КП проводится по той же схеме, что и определение КРИ-2 для действительных функций. Рассмотрим в плоскости (z) некоторый ориентированный путь l:

$$z = z(t) = x(t) + iy(t), t|_{\alpha}^{\beta},$$

где движение происходит от $z_{\alpha}=x(\alpha)+iy(\alpha)$ до $z_{\beta}=x(\beta)+iy(\beta)$, т.е. от $A(x(\alpha),y(\alpha))$ до $B(x(\beta),y(\beta))$. В соответствии с ориентацией рассмотрим произвольное разбиение $l=\overline{AB}$ на n частей точками $z_0=A,z_1,\ldots,z_{n-1},z_n=B$. В результате l разбивается на части $l_k=\overline{z_{k-1}z_k},k=\overline{1,n}$. Исходя из рассмотренного разбиения $P=\{z_k\},k=\overline{0,n}$ примем $d=\max_{k=\overline{1,n}}|\Delta z_k|$, $\Delta z_k-z_{k-1},k=\overline{1,n}$. Выбирая произвольным образом множество отмеченных точек $Q=\{M_k\}$,

 $\forall M_k \in l_k, k = \overline{1,n}$, составим интегральную сумму для f(z), определённую для $\forall z \in l$:

$$\sigma = \sum_{k=1}^{\infty} f(M_k) \Delta z_k. \tag{131}$$

 $\Phi \mathrm{K}\Pi\ f(z)$ считается интегрируемой на l,если

$$\exists I = \lim_{d \to 0} \sigma \in \mathbb{C}, \text{ r.e. } \forall \varepsilon > 0 \\ \exists \delta_{\varepsilon} > 0 \\ |\forall \{P,Q\}, d = \text{diam } P \leqslant \delta_{\varepsilon} \Rightarrow |\sigma - I| \leqslant \varepsilon.$$

В этом случае конечное число I, не зависящее ни от P, ни от Q, называется значением интеграла от f(z) по кривой l и обозначается $I = \int_{-\infty}^{\infty} f(z) dz$.

Для вычисления интеграла ФКП через действительный КРИ-2 рассмотрим

$$u = \operatorname{Re} f(z), v = \operatorname{Im} f(z), x = \operatorname{Re} y = \operatorname{Im} z,$$

тогда в соответствии с используемым разбиением $P = \{z_k\}$, с отмеченными точками $Q = \{M_k\}$ при параметризации

$$l = \begin{cases} x = x(t), \\ y = y(t) \end{cases}, t|_{\alpha}^{\beta},$$

получим некоторое разбиение $\{t_k\}$ промежутка с концами α и β , в силу которых $x_k = x(t_k), y_k = y(t_k), M_k(x(t_k), y(t_k))$. В соответствии с этим

$$f(M_k) = u(M_k) + iv(M_k) = u(x(t_k), y(t_k)) + iv(x(t_k), y(t_k)).$$

В результате для интегральной суммы имеем

$$\sigma = \sum_{k=1}^{\infty} f(M_k) \Delta z_k = \left[\Delta z_k = \Delta x_k + i \Delta y_k, f(M_k) = u(M_k) + i v(M_k) \right] = \sum_{k=1}^{n} (u(M_k) + i v(M_k)) (\Delta x_k + i \Delta y_k) = \sum_{k=1}^{n} (u(M_k) \Delta x_k - v(M_k) \Delta y_k) + i \sum_{k=1}^{n} (v(M_k) \Delta x_k + u(M_k) \Delta y_k).$$

Любая из полученных сумм представляет собой соответствующую интегральную сумму для КРИ вида $\int\limits_{l} P dx + Q dy$, где в первом случае

$$\begin{cases} P = u, \\ Q = -v, \end{cases}$$

а во втором

$$\begin{cases} P = v, \\ Q = u, \end{cases}$$

В результате получаем

$$\int_{I} f(z)dz = \lim_{d \to 0} \sigma = \int_{I} (udx - vdy) + i \int_{I} vdx + udy$$
(132)

Данное выражение сводит вычисление интеграла Φ КП к вычислению соответствующего действительного КРИ-2, при этом, если l задана параметрически, то получаем выражение интеграла Φ КП через интеграл от КЗ Φ

$$\int_{l} f(z)dz = \int_{\alpha}^{\beta} (u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t))dt + i \int_{\alpha}^{\beta} (v(x(t), y(t))x'(t) - u(x(t), y(t))x'(t))dt$$
(133)

Нетрудно видеть, что формула (133) соответствует формуле формальной замены переменных в интеграле ФКП

$$\int_{l} f(z)dz = \int_{\alpha}^{\beta} (u+iv)(dx+idy) = \int_{\alpha}^{\beta} (udx-vdy) + i \int_{\alpha}^{\beta} (vdx+udy) \Leftrightarrow (133).$$

47 Интеграл от аналитической Φ КП. Интегральная теорема Коши и замечание к ней.

ФКП f(z) называется аналитической в точке $z_0 \in D(f)$, если

$$\exists B(z_0) \subset D(f) | \forall z \in B(z_0) \Rightarrow f'(z) \in \mathbb{C},$$

т.е. f(z) дифференцируема в некоторой окрестности точки z_0 . Функцию f(z), аналитическую в любой точке множества $G \subset D(f)$ будем называть аналитической в G.

Теорема (Интегральная теорема Коши).

Пусть f(z) - аналитическая в односвязной области $G \subset D(f)$, причём f'(z) непрерывна в G, тогда для произвольного кусочно-непрерывного замкнутого контура

 $l \subset G \Rightarrow \oint_l f(z)dz = 0.$ (134)

Доказательство. Пусть $u=\mathrm{Re}\,f(z),v=\mathrm{Im}\,f(z),$ тогда по формуле вычисления интеграла ФКП через КРИ-2 для $I=\oint f(z)dz$ имеем: $I=I_1+iI_2,$ где

$$I_1 = \oint_l u dx - v dy,$$

$$I_2 = \oint_l v dx + u dy.$$

Из существования f'(z) непрерывной в G следует, что u=u(x,y) и v=v(x,y) непрерывно дифференцируемы. Воспользуемся теоремой о независимости КРИ-2 от пути интегрирования:

1. P = u, Q = -v. В силу условия Коши-Римана имеем

$$P'_{y} = u'_{y} = -v'_{x} = Q'_{x} \Rightarrow I_{1} = \oint_{I} Pdx + Qdy = 0.$$

2. Аналогично для P=v, Q=u в силу условия Коши-Римана получаем

$$P'_y = v'_y = u'_x = Q'_x \Rightarrow I_2 = \oint_I P dx + Q dy = 0.$$

Отсюда следует $I = I_1 + iI_2 = 0$.

Замечания:

- 1. Можно показать, что интегральная формула Коши верна и при менее ограничивающих условиях на f(z) достаточно потребовать лишь дифференцируемости f(z) на G, но при этом строгое доказательство значительно усложняется.
- 2. Если f(z) аналитическая в G и непрерывная в $\overline{G} = G \cup \sigma G$, то в случае, когда $l = \sigma G$ кусочно-гладкий контур, интегральная теорема Коши верна и для этого контура, т.е. $\oint_C f(z)dz = 0$.
- 3. Интегральная теорема Коши естественным образом обобщается на случай многосвязной области G, но при этом под границей l для такой многосвязной области G подразумевается её полная граница, соответствующим образом ориентированная.

48 Независимость от пути интегрирования интеграла от аналитической ФКП.

Следствие (независимость интеграла от аналитической $\Phi K\Pi$ от пути интегрирования).

Если f(z) - аналитическая в G, то $\forall z_1, z_2 \in G$ и любых кусочно-гладких путей $l_1 \subset G, l_2 \subset G$ с началом в z_1 и концом в z_2 (ориентированных от z_1 к z_2) имеем

$$\int_{l_1} f(z)dz = \int_{l_2} f(z)dz.$$

Доказательство. Рассмотрим $l_1^+ = \overrightarrow{z_1}\overrightarrow{z_2},\ l_2^- = \overrightarrow{z_1}\overrightarrow{z_2}$ и составим замкнутый кусочно-гладкий путь $l = l_1^+ \cup l_2^-$, проходящий через точки $z_1, z_2 \in \mathbb{C}$. Тогда по интегральной теореме Коши получаем

$$\int\limits_{l}f(z)dz=0 \Rightarrow \int\limits_{l_{1}^{+}\cap l_{2}^{-}}f(z)dz=0 \Rightarrow \int\limits_{l_{1}^{+}}f(z)dz+\int\limits_{l_{2}^{-}}f(z)dz=0 \Rightarrow \int\limits_{l_{1}^{+}}f(z)dz=-\int\limits_{l_{2}^{-}}f(z)dz \Rightarrow \int\limits_{l_{1}^{+}}f(z)dz=\int\limits_{l_{2}^{+}}f(z)dz$$

В дальнейшем для ФКП $f(z), z \in G$, дифференцируемую функцию $F(z), z \in G$, будем называть первообразной на G, если $\forall z \in G \Rightarrow F'(z) = f(z)$.

49 Теорема о существовании первообразной аналитической ФКП.

В дальнейшем для ФКП $f(z), z \in G$, дифференцируемую функцию $F(z), z \in G$, будем называть первообразной на G, если $\forall z \in G \Rightarrow F'(z) = f(z)$.

Теорема (о существовании первообразной для аналитической $\Phi K\Pi$).

Для аналитической на G функции f(z) всегда существует в G хотя бы одна первообразная F(z), в качестве которой можно взять, например, интеграл с переменным верхним пределом

$$F(z) = \int_{z_0}^{z} f(t)dt,$$
(135)

при этом в G интегрирование проводится по кусочно-гладкому контуру $\forall \overrightarrow{z_0z} \subset G$, где $z_0 \in G$ - фиксированная точка.

Доказательство. Из интегральной формулы Коши следует, что $F(z) = \int\limits_{l=\overline{z_0}\overline{z}} f(t)dt$ корректно определена в силу того, что значение для (135) не зависит от пути $l \subset G$, соединяющего $z_0, z \in G$.

Придавая точке $z \in G$ произвольное приращение $\Delta z \in \mathbb{C}$ т.ч. $z + \Delta z \in G$, имем

$$\Delta F(z) = F(z + \Delta z) - F(z) = \int_{\overline{z_0, z + \Delta z}} f(t)dt - \int_{\overline{z_0}z} f(t)dt = \int_{z}^{z + \Delta z} f(t)dt.$$

Отсюда $\forall \Delta z \neq 0$ имеем

$$\left|\frac{\Delta F(z)}{\Delta z} - f(z)\right| = \left|\frac{1}{\Delta z}\int\limits_{z}^{z+\Delta z} f(t)dt - \frac{f(z)}{\Delta z}\int\limits_{z}^{z+\Delta z} dt\right| = \frac{1}{|\Delta z|}\left|\int\limits_{z}^{z+\Delta z} (f(t) - f(z))dt\right| \leqslant \frac{1}{|\Delta z|}\left|\int\limits_{z}^{z+\Delta z} |f(t) - f(z)| \, |dt|\right|.$$

Далее, заключая путь $l_0 = \overline{z, z + \Delta z}$ в соответствующий компакт $G_0 \in G$, в силу теоремы Кантора получаем, что непрерывная f(t) будет равномерно непрерывна на компакте G_0 , а значит и на l_0 , т.е.

$$\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 | \forall t, z \in G_0, |t - z| \leqslant \delta \Rightarrow |f(t) - f(z)| \leqslant \varepsilon,$$

поэтому для любого допустимого $\Delta z \neq 0$,

$$|\Delta z|\leqslant \delta \Rightarrow \left|\frac{\Delta F(z)}{\Delta z}-f(z)\right|\leqslant \frac{1}{|\Delta z|}\left|\int\limits_{z}^{z+\Delta z}\varepsilon\,|dt|\right|=\frac{\varepsilon}{|\Delta z|}\left|\int\limits_{z}^{z+\Delta z}|dt|\right|=\left[l_{0}=\left[z;z+\Delta z\right],L_{0}=$$
Длина $l_{0}=|\Delta z|\right]\leqslant \frac{\varepsilon}{|\Delta z|}\left|\Delta z\right|=\varepsilon.$

Отсюда в силу произвольности $\varepsilon > 0$ получаем

$$\left| \frac{\Delta F(z)}{\Delta z} - f(z) \right| \xrightarrow{\Delta z \to 0} 0, \text{ r.e. } \left(\frac{\Delta F(z)}{\Delta z} - f(z) \right) \xrightarrow{\Delta z \to 0} 0 \Rightarrow$$
$$\Rightarrow \exists F'(z) = \lim_{\Delta z \to 0} \frac{\Delta F(z)}{\Delta z} = f(z),$$

т.е. (135) является одной из первообразных для f(z) в G.

50 Следствие об общем виде первообразной для аналитической ФКП и замечания к нему.

Следствие (Об общем виде первообразной для аналитической $\Phi K\Pi$).

Для аналитической в односвязной области G функции f(z) любая её первообразная $\Phi(z)$ в G отличается от первообразной (135) на соответствующую константу $c_0 = \mathrm{const} \in \mathbb{C}$, т.е.

$$\Phi(z) = F(z) + c_0 \tag{136}$$

Доказательство. Рассмотрим критерий постоянства аналитической ФКП. Покажем, что если для аналитической ФКП в $G(H(z)) \Rightarrow H'(z) = 0, \forall z \in G$, то H(z) = const. Пусть $u = \text{Re}\,H(z), \ v = \text{Im}\,H(z)$, тогда отсюда из формулы $H'(z) = u'x + iv'_x$, имеем

$$u'_x + iv'_x = 0 \Rightarrow \begin{cases} u'_x = 0, \\ v'_x = 0, \end{cases}$$

Отсюда, используя интегральное условие Коши-Римана для дифференцируемой ФКП имеем

$$v_y' = u_x' = 0, u_y' = -v_x' = 0,$$

поэтому

$$\begin{cases} u'_x = 0, \\ u'_y = 0, \end{cases} \Rightarrow u = \text{const} = c_1 \in \mathbb{R}, \forall (x, y), \\ \begin{cases} v'_x = 0, \\ v'_y = 0, \end{cases} \Rightarrow v = \text{const} = c_2 \in \mathbb{R}, \forall (x, y), \end{cases}$$

Значит

$$H(z) = u + iv = c_1 + ic_2 = c_0 = \operatorname{const} \in \mathbb{C}.$$

Применяя доказанное к $H(z) = \Phi(z) - F(z)$, где

$$\Phi'(z) = f(z), F'(z) = f(z), \forall z \in G \Rightarrow H'(z) = \Phi'(z) - F'(z) = f(z) - f(z) = 0$$
, T.E. $H(z) = c_0 = \text{const} \Rightarrow \Phi(z) - F(z) = c_0 \Rightarrow \Phi(z) = F(z) + c_0$.

Замечания:

1. Из доказанного следствия так же, как и для действительного интеграла, имеем следующий аналог формулы Ньютона-Лейбница (двойной подстановки) для интеграла от аналитической ФКП: если f(z) аналитичекская в G, то

$$\forall z_1, z_2 \in G \Rightarrow \int_{z_1}^{z_2} f(z)dz = \Phi(z_2) - \Phi(z_1) = \left[\Phi(z)\right]_{z_1}^{z_2},$$

где $\Phi(z)$ - одна из первообразных для аналитической f(z) в G.

Доказательство. По той же схеме, что и для действительного ОИ.

2. Как и для действительного ОИ, обосновывается формула интегрирования по частям для интеграла от аналитической Φ K Π : если f(z) и g(z) аналитические в G, то

$$\forall z_1, z_2 \in G \Rightarrow \int\limits_{z_1}^{z_2} f(z)g'(z)dz = \int\limits_{z_1}^{z_2} f(z)dg(z) = \left[f(z)g(z)\right]_{z_1}^{z_2} - \int\limits_{z_1}^{z_2} g(z)df(z) = \left[f(z)g(z)\right]_{z_1}^{z_2} - \int\limits_{z_1}^{z_2} g(z)f'(z)dz.$$

co

51 Интегральная формула Коши.

Теорема (Интегральная формула Коши).

Пусть f(z) аналитическая в односвязной области $D \subset \mathbb{C}$, а $l \subset D$ - простой замкнутый контур, ограниченный некоторой замкнутой областью (компактом) $D_0 \subset D$, тогда

$$\forall z_0 \in D_0 \Rightarrow f(z_0) = \oint_{l=\sigma D_0} \frac{f(t)}{t - z_0} dt \tag{137}$$

Доказательство. Для простоты ограничим внутреннюю точку $z_0 \in D_0 \subset D$ кругом $K_r = \{|t - z_0| = r | t \in D_0\}$, целиком лежащим в D_0 . Используя интегральную теорему Коши, нетрудно показать, что

$$I = \frac{1}{2\pi i} \oint_{l} \frac{f(t)}{t - z_0} dt = \frac{1}{2\pi i} \oint_{\sigma K_{\tau}} \frac{f(t)}{t - z_0} dt.$$
 (138)

Рассмотрим $G = D - K_r$, тогда

$$\forall t \in G \Rightarrow t - z_0 \neq 0 \Rightarrow F(t) = \frac{f(t)}{t - z_0}$$

- аналитическая в G, поэтому по интегральной теореме Коши

$$\oint_{\sigma G} F(t)dt = 0 \Rightarrow \int_{l_0^-} F(t)dt - \int_{l_1^+} F(t)dt = 0 \Rightarrow I = \oint_{l_1^+} \frac{f(t)}{t - z_0}dt = -\int_{l_0^-} \frac{f(t)}{t - z_0} = \int_{l_0^+} F(t)dt \Rightarrow (138).$$

Используя важный пример из предыдущей лекции имеем

$$|I - f(z_0)| = \left| \frac{1}{2\pi i} \oint_{\sigma K_r} \frac{f(t)}{t - z_0} dt - \frac{f(z_0)}{2\pi i} \oint_{\sigma K_r} \frac{dt}{t - z_0} \right| = \frac{1}{2\pi} \left| \oint_{t - z_0|=r} \frac{f(t) - f(z_0)}{t - z_0} dt \right| \le$$

$$\le \frac{1}{2\pi} \left| \oint_{t - z_0|=r} \frac{|f(t) - f(z_0)|}{|t - z_0|} |dt| \right| = \left[|t - z_0| = r \right] = \frac{1}{2\pi} \oint_{|t - z_0|=r} \frac{|f(t) - f(z_0)|}{r} |dt|.$$

Учитывая, что $G_0 = \{|t-z_0| \leqslant r| t \in G\}$ является компактом, а для f(t) имеем непрерывность на G_0 . По теореме Кантора для ФКП получаем, что f(t) равномерно непрерывна на $l_r = \{|t-z_0| = r| t \in G\}$, поэтому

$$\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 | \forall t, z_0 \in G, |t - z_0| \leqslant \delta \Rightarrow |f(t) - f(z_0)| \leqslant \varepsilon.$$

Выбирая $\delta>0$ достаточно малым, так, чтобы $\delta\leqslant r$, получим, что

$$\forall t \in l_r \Rightarrow |f(t) - f(z_0)| \leqslant \varepsilon, \text{ отсюда}$$

$$\forall \varepsilon > 0 \Rightarrow |I - f(z_0)| \leqslant \frac{1}{2\pi} \oint\limits_{l_r} \frac{|f(t) - f(z_0)|}{r} \, |dt| \leqslant \frac{\varepsilon}{2\pi r} \oint\limits_{l_r} |dt| = \frac{\varepsilon}{2\pi r} \, \text{Длина } l_r = \frac{\varepsilon}{2\pi r} 2\pi r = \varepsilon,$$

поэтому в силу произвольности $\varepsilon > 0$ получаем, что $I = f(z_0)$, т.е. приходим к интегральной формуле Коши (137). \square

52 Теорема о дифференцировании ИЗОП ФКП и замечание к ней.

Из интегральной формулы Коши следует

$$\int_{\partial D} \frac{f(t)}{t-z} dt = \begin{cases} 2\pi i f(z), z \in D, \\ 0, z \notin D, \end{cases}$$

В данном случае имеем ИЗОП от ФКП вида

$$F(z) = \int_{I} \phi(t, z)dt, \tag{139}$$

где $z \in D$ в плоскости (z), а l - некоторая линия в плоскости (t).

В зависимости от свойств подинтегральной функции в (139) исследуем соответствующие свойства ИЗОП (139). **Теорема** ($O \partial u \phi \phi e penuupo e anuu ИЗОП <math>\Phi K\Pi$).

Пусть для $\forall t \in l$ функция $\phi(t,z)$ - аналитическая по $z \in G \subset \mathbb{C}$ - область, причём у $\phi(t,z)$ её производная $\frac{\partial \phi(t,z)}{\partial z}$ непрерывна, как по $z \in G$, так и по $t \in l$.

$$F'(z) = \int_{I} \frac{\partial \phi(t, z)}{\partial z} dt.$$
 (140)

Доказательство. Рассмотрим

$$x = \operatorname{Re} z, y = \operatorname{Im} z, \tau = \operatorname{Re} t, s = \operatorname{Im} t, u = \operatorname{Re} \phi(t, z), v = \operatorname{Im} \phi(t, z),$$

по формуле вычисления интеграла ФКП через КРИ-2 имеем

$$F(z) = \left[z = x + iy, t = \tau + is, \phi = u(\tau, s, x, y) + iv(\tau, s, x, y)\right] = \int\limits_{l} (u + iv)(d\tau + ids) = \ldots = H(x, y) + iR(x, y),$$
 Где $H(x, y) = \int\limits_{l} ud\tau - vds, R(x, y) = \int\limits_{l} vd\tau + uds.$

Для обоснования аналитичности F(z) нужно показать, что функции

$$\begin{cases} H = H(x, y), \\ R = R(x, y), \end{cases}$$

удовлетворяют условию Коши-Римана

$$\begin{cases} H'_x = R'_y, \\ H'_y = -R'_x. \end{cases}$$

Нетрудно видеть, что интегральное представление от H(x,y) и R(x,y) позволяет использовать теорему о почленном дифференцировании ИЗОП, записанную через КРИ-2.

В силу этого имеем по правилу Лейбница дфференцирования ИЗОП

1.
$$\exists H_x' = \int\limits_t u_x' d\tau - v_x' ds; \exists R_y' = \int\limits_t v_y' d\tau + u_y' ds.$$
 В силу аналитичности $\phi(t,s)$ имеем

$$\left\{ u'_x = v'_y, v'_x = -u'_y, \quad \text{ r.e. } H'_x = \begin{bmatrix} u'_x = v'_x \\ u'_y = -v'_x \end{bmatrix} = \int_{\Gamma} v'_y d\tau + u'_y ds = R'_y. \right\}$$

$$2. \ \exists H_y' = \int\limits_{\cdot} u_y' d\tau - v_y' ds = \begin{bmatrix} u_y' = -v_x' \\ v_y' = u_x' \end{bmatrix} = -\int\limits_{\cdot} v_x' d\tau + u_x' ds = -R_x'.$$

Т.к. для F(z) = H + iR выполняется усовие Коши-Римана, то эта Φ КП аналитична, при этом для её производной получаем

$$F'(z) = H'_x + iR'_x = \int\limits_I u'_x d\tau - v'_x ds + i \int\limits_I v'_x d\tau + u'_x ds = \dots = \int\limits_I \frac{\partial \phi(t,z)}{\partial z} dt.$$

Замечание.

При выводе (140) предполагалось, что линия l - ограничена. Доказательство сохраняется и когда l неоограниченна, т.е. когда (139) - НИЗОП ФКП. В этом случае также справедлива формула (140).

53 Теорема об интегральном представлении производных ФКП и замечания к ней.

Теорема (Об интегральном представлении производных $\Phi K\Pi$).

Пусть f(z) аналитическая в односвязной области D с кусочно-гладкой границей $l = \partial D$. Если f(z) непрерывна в \overline{D} , то f(z) бесконечное число раз дифференцируема в D, и при этом

$$\forall z \in D \Rightarrow f^{(n)}(z) = \frac{1}{2\pi i} \oint_{t} \frac{f(t)}{(t-z)^{n+1}} dt, n \in \mathbb{N}_{0}, \tag{141}$$

Доказательство. При $n=0\ (141)$ соответствует интегральной формуле Коши

$$\begin{cases} f(z) = \frac{1}{2\pi i} \oint_{l} \phi(t, z) dt, \\ \phi(t, z) = \frac{f(t)}{t - z}, t \in l, z \in D, \end{cases}$$
 (142)

Если зафиксировать t и заключить точку $z \in D$ в соответствующий компакт $G \subset D$ с кусочно-гладкой границей $l_0 = \partial G$, то $\forall t \in l_0, \forall z \in G \Rightarrow t-z \neq 0$, поэтому функция $\phi(t,z)$ в (142) аналитична по $z \in G$, для её производной имеем

$$\frac{\partial \phi(t,z)}{\partial z} = \left(\frac{f(t)}{t-z}\right)_z' = \frac{f(t)}{(t-z)^2}.$$

Далее, по формуле Коши для многосвязной области имеем

$$f(z) \stackrel{(142)}{=} \frac{1}{2\pi i} \oint_{\substack{l=\partial D}} \phi(t,z)dt = \dots = \frac{1}{2\pi i} \oint_{\substack{l\alpha=\partial G}} \phi(t,z)dt.$$

Отсюда, в силу теоремы о дифференцировании ИЗОП ФКП, получаем

$$\exists f'(z) = \frac{1}{2\pi i} \oint_{l_0} \frac{\partial \phi(t, z)}{\partial z} dt = \frac{1}{2\pi i} \oint_{l_0} \frac{f(t)}{(t - z)^2} dt$$

Применяя снова формулу Коши для многосвязной области получаем

$$f'(z) = \frac{1}{2\pi i} \oint_{t} \frac{f(t)}{(t-z)^2} dt,$$

т.е. формула (141) верна для n=1. Далее, по индукции, доказывается справедливость (141) для $\forall n \in \mathbb{N}_0$.

Замечания:

- 1. Обоснование формулы (141) показывает, что если f(z) аналитическая в D, то она бесконечное число раз дифференцируема в любой внутренней точке из D.
- 2. Формула (141) справедлива также для многосвязной области D, при этом за l берётся полная граница для D.
- 3. Как и интегральную формулу Коши, на практике формулу (141) переписывают в виде

$$\oint_{l} \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} \frac{2\pi i}{n!} f^{(n)}(z_0), z \in D, \\ 0, z \notin D, \end{cases}$$

и используют для вычисления соответствующего интеграла ФКП.

Теорема Мореры и замечание к ней. 54

В качестве приложения интегрального представления производных аналитической ФКП докажем теорему Мореры, являющуюся в некотором смысле обратной к интегральной формуле Коши.

Теорема (Mopepu).

Если f(z) - непрерывная в односвязной области $D \subset \mathbb{C}$ и для любого замкнутого кусочно-гладкого контура

$$l \subset D \Rightarrow \oint_{l} f(z)dz = 0,$$
 (143)

то тогда f(z) аналитическая в D.

Доказательство. Фиксируя $z_0 \in D, \forall z \in D$ рассмотрим функцию $\Phi(z) = \oint_{\overline{z_0} \overline{z}} f(t) dt$. В силу условия (143) получаем, что $\Phi(z)$ корректно определена в том смысле, что не зависит от пути интегрирования $l_0 = \overline{z_0} \overline{z} \subset D$ и соединяет z_0 и z.

Действительно, рассмотрим $l_1 = \overrightarrow{z_0 z}$ и $l_2 = \overrightarrow{z_0 z}$ - различные пути и построим замкнутый контур $l_2^+ \cup l_1^-$, имеем

$$\oint\limits_{l_{1}^{-}\cup l_{2}^{+}}f(t)dt=\int\limits_{l_{2}^{+}}+\int\limits_{l_{1}^{-}}=0\Rightarrow\int\limits_{l_{2}^{+}}f(t)dt=-\int\limits_{l_{1}^{-}}f(t)dt=\int\limits_{l_{1}^{+}}f(t)dt.$$

В связи с этим мы можем рассматривать $\Phi(z)$ как $\tilde{\int} f(t)dt$, так же, как и в теореме о существовании первообразной для аналитической Φ KП, для непрерывной f(z) получаем

$$\exists \Phi'(z) = \left(\int_{z_0}^{z} f(t)dt\right)'_{z} = f(z),$$

Таким образом, f(z) - производная аналитической Φ KП, а т.к. любая аналитическая Φ KП бесконечное число раз дифференцируема, то f(z) - тоже бесконечное число раз дифференцируема, а значит $f'(z) = \Phi''(z)$, т.е. f(z) - аналитическая в D.

55 Теорема о разложении $\Phi K \Pi$ в степенной ряд и замечания к ней.

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n = c_0 + c_1 (z - z_0) + \dots + c_n (z - z_0)^n + \dots$$
(144)

Теорема (O разложении $\Phi K\Pi$ в CmP).

Если f(z) - аналитическая в односвязной области D, то тогда f(z) разлагается в СтР (144) внутри круга $K_R = \{|z-z_0| < R|z \in D\} \subset D$, где $R = \min_{t \in \partial D} d(z_0, z)$ - наименьшее расстояние от центра разложения z_0 до ближайшей граничной точки в D для f(z).

Доказательство. Рассмотрим

$$\forall \text{ fix } z \in K_B, l_B = \partial K_B = \{|z - z_0| = R | z \in D\},\$$

тогда полагаем

$$q = \left| \frac{z - t}{t - z_0} \right|, z \in K_R, t \in l_R \Rightarrow 0 \leqslant q < 1.$$

Используя разложение

$$\frac{1}{t-z} = \frac{1}{(t-z_0) - (z-z_0)} = \frac{1}{(t-z_0)(1 - \frac{z-z_0}{t-z_0})} = \sum_{k=0}^{\infty} \frac{(z-z_0)^k}{(t-z_0)^{k+1}},$$

и учитывая, что после домножения на f(t) получим равномерно сходящийся ряд, почленно проинтегрировав который получаем

$$\oint_{l_R} \frac{f(t)}{t - z} dt = \sum_{k=0}^{\infty} \oint_{l_R} \frac{f(t)dt}{(t - z_0)^{k+1}} (z - z_0)^k.$$

Отсюда, в силу интегральной формулы Коши и интегрального представления производной аналитической Φ K Π , имеем

$$f(z) = \frac{1}{2\pi i} \oint_{l_B} \frac{f(t)}{t - z} dt = \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k,$$

т.е. получаем разложение в СтР, являющийся рядом Тейлора.

Замечания:

1. Если f(z) разлагается в СтР (144) с центром z_0 , то радиус сходимости R это расстояние от z_0 до ближайшей особой точки для f(z), что соответствует максимальному кругу аналитичности.

- 2. Доказанная теорема показывает, что в ??? в СтР и дифференцируемости ???.
- 3. по аналогии с действительными разложениями получим соответствующие разложения в CтP для некоторых ФКП

(a)
$$(1+z)^{\alpha} = e^{\alpha \ln(1+z)} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} z^n;$$

(6)
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C};$$

(B)
$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}z^n}{n}, |z| < 1, z \neq -1;$$

(r)
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, z \in \mathbb{C};$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, z \in \mathbb{C};$$

(д)
$$\operatorname{sh} z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, z \in \mathbb{C};$$

$$\operatorname{ch} z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, z \in \mathbb{C};$$

56 Теорема о разложении ФКП в ряд Лорана.

Теорема (о разложении $\Phi K\Pi$ в ряд Лорана).

Если f(z) - аналитичная внутри некоторого кольца $r < |z - z_0| < R$ с центром z_0 , то тогда f(z) разлагается в соответствующий ряд Лорана в этом кольце, причём

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n,$$
(145)

где

$$c_n = \frac{1}{2\pi i} \oint \frac{f(t)}{(t - z_0)^{n+1}} dt, n \in \mathbb{Z},$$
 (146)

а l - произвольный замкнутый кусочно-гладкий контур в рассматриваемом кольце. Разложение (145) единственно.

Доказательство. Для \forall fix $z, r < |z - z_0| < R$, рассмотрим $r < r_1 < |z - z_0| < R$, $l = l_1^- \cup l_2^+$, где $l_1 : |t - z_0| = R_1$ и $l_2 : |t - z_0| = R_2$ Из интегральной формулы Коши следует представление

$$f(z) = \frac{1}{2\pi i} \oint_{l} \frac{f(t)}{(t-z)} dt = \frac{1}{2\pi i} \left(\int_{l_{2}^{+}} \frac{f(t)}{t-z} dt - \int_{l_{1}^{+}} \frac{f(t)}{t-z} dt \right).$$

1. Если $|z - z_0| < R_1 < R$, то

$$I_{1} = \frac{1}{2\pi i} \oint_{|t-z_{0}|=R_{1}} \frac{f(t)}{t-z} dt = \begin{bmatrix} \frac{1}{t-z} = \frac{1}{(t-z_{0}) - (z-z_{0})} = \frac{1}{(t-z_{0})} \left(1 - \frac{z-z_{0}}{t-z_{0}}\right), \\ q = \frac{z-z_{0}}{t-z_{0}}, |q| = \frac{|z-z_{0}|}{|t-z_{0}|} < \frac{R_{1}}{|t-z_{0}|} = 1 \end{bmatrix} = \frac{1}{2\pi i} \oint_{|t-z_{0}|=R_{1}} \frac{f(t)}{t-z} \sum_{n=0}^{\infty} \left(\frac{z-z_{0}}{t-z_{0}}\right)^{n} dt = \sum_{n=0}^{\infty} (z-z_{0})^{n} \frac{1}{2\pi i} \oint_{|t-z_{0}|=R_{1}} \frac{f(t)}{(t-z)^{n+1}} dt = \sum_{n=0}^{\infty} c_{n} (z-z_{0})^{n},$$

где c_n вычисляется по формуле (146) для $n \in \mathbb{N}_0$.

2. Пусть $r < r_1 < |z - z_0|$. Тогда

$$I_{2} = \frac{1}{2\pi i} \oint_{|t-z_{0}|=r_{1}} \frac{f(t)}{t-z} dt = \begin{bmatrix} \frac{1}{t-z} = \frac{1}{(t-z_{0}) - (z-z_{0})} = \frac{1}{(z-z_{0}) \left(1 - \frac{t-z_{0}}{z-z_{0}}\right)}, \\ q = \frac{t-z_{0}}{z-z_{0}} \Rightarrow q = \frac{|t-z_{0}|}{|z-z_{0}|} < \frac{|t-z_{0}|}{r_{1}} = 1 \end{bmatrix} = -\sum_{k=1}^{\infty} \frac{1}{(z-z_{0})^{k}} \frac{1}{2\pi i} \oint_{|t-z_{0}|=R_{1}} (t-z_{0})^{k-1} f(t) dt = -\sum_{k=1}^{\infty} \frac{c_{-k}}{(z-z_{0})^{k}},$$

где

$$c_{-k} = \frac{1}{2\pi i} \oint_{l_1^-} (t - z_0)^{k-1} f(t) dt, k \in \mathbb{N}.$$

Заменяя формально -k=n имеем

$$c_n = \frac{1}{2\pi i} \oint_{l_1^-} (t - z_0)^{-n-1} f(t) dt = \frac{1}{2\pi i} \oint_{l_1^-} \frac{f(t)}{(t - z_0)^{n+1}} dt, n \in \{-1, -2, -3, \ldots\}.$$

Таким образом, коэффициенты c_n также вычисляются по формуле (146) и для n < 0.

Отметим, что несмотря на то, что в доказательстве для вычисления коэффициентов (146) используются разные контуры, из интегральной теоремы Коши следует, что эти формулы можно использовать в виде (146) с некоторым общим контуром l, при этом

$$f(z) = I_1 - I_2 = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n} \Leftrightarrow (145).$$

Единственность:

Предположим, что наряду с (145) имеется разложение
$$f(z) = \sum_{n=-\infty}^{+\infty} d_n (z-z_0)^n$$
. Тогда из равенств $\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$

 $\sum_{n=-\infty}^{+\infty} d_n (z-z_0)^n$, после умножения на $(z-z_0)^{-m-1}$ и соответствующего почленного интегрирования, получим:

$$\sum_{n=-\infty}^{+\infty} c_n \frac{1}{2\pi i} \underbrace{\oint_{l} \frac{dz}{(z-z_0)^{m-n+1}}}_{=0, m-n \neq 0.} = \sum_{n=-\infty}^{+\infty} d_n \frac{1}{2\pi i} \underbrace{\oint_{l} \frac{dz}{(z-z_0)^{m-n+1}}}_{=0, m-n \neq 0.}$$

Для n=m следует:

$$0 + c_m \frac{1}{2\pi i} \underbrace{\oint\limits_{l} \frac{dz}{z - z_0}}_{=2\pi i} + 0 = 0 + d_m \frac{1}{2\pi i} \underbrace{\oint\limits_{l} \frac{dz}{z - z_0}}_{=2\pi i} + 0 \Rightarrow c_m = d_m, \forall \ m \in \mathbb{Z}.$$