Cwiczenia_1


```
# Zadanie 3: Generowanie punktów w okręgu

# Wygenerowanie 300 losowych wartości promienia r^2 w zakresie [0, 100]

r_squared <- runif(300, min = 0, max = 100)

# Wygenerowanie 300 losowych kątów w zakresie [0, 2\pi]

angles <- runif(300, min = 0, max = 2 * pi)

# Obliczenie współrzędnych x punktów na podstawie r i kąta

circle_x <- sqrt(r_squared) * cos(angles)

# Obliczenie współrzędnych y punktów na podstawie r i kąta

circle_y <- sqrt(r_squared) * sin(angles)

# Zadanie 4: Rysowanie okręgu z punktami

# Załadowanie biblioteki do analizy procesów punktowych

library(spatstat)
```

Warning: pakiet 'spatstat' został zbudowany w wersji R 4.4.1

Ładowanie wymaganego pakietu: spatstat.data

Warning: pakiet 'spatstat.data' został zbudowany w wersji R 4.4.2

Ładowanie wymaganego pakietu: spatstat.univar

Warning: pakiet 'spatstat.univar' został zbudowany w wersji R 4.4.2

spatstat.univar 3.1-1

Ładowanie wymaganego pakietu: spatstat.geom

Warning: pakiet 'spatstat.geom' został zbudowany w wersji R 4.4.1

spatstat.geom 3.3-3

Ładowanie wymaganego pakietu: spatstat.random

Warning: pakiet 'spatstat.random' został zbudowany w wersji R 4.4.1

spatstat.random 3.3-2

Ładowanie wymaganego pakietu: spatstat.explore

Warning: pakiet 'spatstat.explore' został zbudowany w wersji R 4.4.1

Ładowanie wymaganego pakietu: nlme

spatstat.explore 3.3-2

Ładowanie wymaganego pakietu: spatstat.model

Warning: pakiet 'spatstat.model' został zbudowany w wersji R 4.4.1

Ładowanie wymaganego pakietu: rpart

spatstat.model 3.3-2

Ładowanie wymaganego pakietu: spatstat.linnet

Warning: pakiet 'spatstat.linnet' został zbudowany w wersji R 4.4.1

spatstat.linnet 3.2-2

spatstat 3.2-1
For an introduction to spatstat, type 'beginner'

Rysowanie okręgu o promieniu 10
plot(disc(radius = 10, centre = c(0, 0)), main = "")
Nanoszenie wygenerowanych punktów na wykres
points(circle_x, circle_y)

Zadanie 5: Test losowości punktów
Utworzenie planarnego wzorca punktowego z punktów w okręgu o promieniu 10
planer_point_pattern <- ppp(circle_x, circle_y, window = disc(radius = 10, centre = c(0, 0)))</pre>

Wykonanie testu losowości na 3x3 podobszarach
test_result <- quadrat.test(planer_point_pattern, nx = 3, ny = 3)</pre>

Wyświetlenie wyników testu na wykresie
plot(test_result, main = "test results")

test results

Wyświetlenie wartości p-value testu
cat("Wartość p-value:", test_result\$p.value, "\n")

Wartość p-value: 0.4757801

Zadanie 6: Proces punktowy Poissona
Obliczenie intensywności lambda na podstawie liczby punktów i powierzchni koła
lambda <- 500 / (pi * 10^2)</pre>

Utworzenie okna w kształcie okręgu o promieniu 10
wzorzec <- disc(radius = 10, centre = c(0, 0))</pre>

Wygenerowanie jednorodnego procesu Poissona w zadanym oknie poisson_process <- rpoispp(lambda, win = wzorzec)

Rysowanie procesu punktowego Poissona
plot(poisson_process)

poisson_process

Liczenie liczby punktów w procesie
number_of_points <- npoints(poisson_process)</pre>

Wyświetlenie liczby punktów
cat("Liczba punktów:", number_of_points, "\n")

Liczba punktów: 469