8. Поверхности второго порядка

Поверхностью называется множество всех точек пространства, координаты которых в некоторой аффинной системе координат удовлетворяют некоторому уравнению F(x,y,z)=0.

Поверхность называется **алгебраической**, если F(x,y,z) есть многочлен. Тогда **порядком** такой поверхности называют степень этого многочлена.

Все поверхности первого порядка — плоскости. Произвольная поверхность второго порядка имеет уравнение $a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz+2a_{10}x+2a_{20}y+2a_{30}z+a_{00}=0$, где a_{ij} — числа, причем не все a_{ii} (i=1,2,3) равны нулю.

Чтобы изучать такие поверхности можно сводить эту задачу к задаче изучения кривых второго порядка на плоскости.

Теор 1. Пусть в прямоугольной системе координат O(i) \overrightarrow{j} \overrightarrow{k} поверхность γ задана уравнением F(x,y,z)=0. Линия пересечения поверхности γ с плоскостью z=h имеет уравнение F(x,y,h)=0 в системе координат O(i), где O(0,0,h).

Док-во. Допустим, что существует точка пересечения $M(x_1,y_1,z_1)$. Тогда $z_1=h$ и $F(x_1,y_1,h)=0$. Так как $x_1\overrightarrow{i}+y_1\overrightarrow{j}+h\overrightarrow{k}=\overrightarrow{OM}=\overrightarrow{OO'}+\overrightarrow{O'M}=h\overrightarrow{k}+\overrightarrow{O'M}$, то в $O'\overrightarrow{i}\overrightarrow{j}$ точка M имеет координаты (x_1,y_1) , которые удовлетворяют указанному уравнению.

Обратно. Если $M(x_1,y_1)$ в $O'\overrightarrow{i}\overrightarrow{j}$ и $F(x_1,y_1,h)=0$, то, аналогично, $\overrightarrow{OM}=\overrightarrow{OO'}+\overrightarrow{O'M}=h\overrightarrow{k}+x_1\overrightarrow{i}+y_1\overrightarrow{j}$ и M в $O\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$ имеет координаты (x_1,y_1,h) , которые удовлетворяют уравнению F(x,y,z)=0.

След 1. Пересечение поверхности второго порядка с плоскостью есть кривая второго порядка на этой плоскости.

8.1. Поверхность вращения

Пусть фиксирована некоторая прямая d (ось вращения). Поверхность, которая вместе с каждой своей точкой M содержит всю окружность, проходящую

через M в плоскости, перпендикулярной d, с центром на прямой d, называется **поверхностью вращения**.

Теор 2. В декартовой системе координат уравнение $x^2+y^2=f^2(z)$ есть уравнение поверхности вращения с осью вращения $\begin{cases} x=0, \\ y=0 \end{cases}$, образованной линией $\begin{cases} x=f(z), \\ y=0 \end{cases}$

Док-во. Пусть $M(x_1,y_1,z_1)$ принадлежит поверхности. Тогда в плоскости $z=z_1$ точка M принадлежит окружности радиуса $|f(z_1)|$, центр которой $O'(0,0,z_1)$. Поэтому $|\overline{O'M}|=|f(z_1)|$, т.е. $\sqrt{x_1^2+y_1^2}=|f(z_1)|$ и $x_1^2+y_1^2=f^2(z_1)$.

Обратно. Если M удовлетворяет уравнению, $x_1^2+y_1^2=f^2(z_1)$, то $\sqrt{x_1^2+y_1^2}=|f(z_1)|$, а значит расстояние $|\overline{O'M}|=|f(z_1)|$, т.е. M принадлежит окружности радиуса $|f(z_1)|$ в плоскости $z=z_1$.

8.2. Цилиндрические поверхности

Пусть дан ненулевой вектор \overrightarrow{p} . Поверхность, которая вместе с каждой своей точкой M содержит прямую (образующая), проходящую через M параллельно \overrightarrow{p} , называется **цилиндрической поверхностью**.

Теор 3. В декартовой системе координат уравнение F(x,y)=0 есть уравнение цилиндрической поверхности, образованной линией $\begin{cases} F(x,y)=0, \\ z=0 \end{cases}$, с образующими, параллельными $\overrightarrow{k}(0,0,1)$.

Док-во. Пусть $M(x_1,z_1,y_1)$ принадлежит поверхности. Тогда прямая через точку M, параллельная \overrightarrow{k} , содержится в поверхности. Эта прямая пересекает плоскость z=0 в точке $M_0(x_1,y_1,0)$, которая должна удовлетворять F(x,y)=0, что и требовалось.

Обратно. Пусть M удовлетворяет уравнению, $F(x_1,y_1)=0$. Прямая через точку M, параллельная \overrightarrow{k} , пересекает плоскость z=0 в точке $M_0(x_1,y_1,0)$.

§

 Но координаты M_0 удовлетворяют уравнению $\begin{cases} F(x,y)=0, \\ z=0 \end{cases}$ образующей линии.

8.3. Конические поверхности

Пусть дана точка M_0 . Поверхность, которая с каждой своей точкой M, отличной M_0 , содержит всю прямую M_0M , называется конической поверхно**стью** с вершиной M_0 .

Теор 4. В декартовой системе координат уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ есть уравнение конической поверхности с вершиной $M_0(0,0,0)$, образованной линией $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ z = c \neq 0 \end{cases}$

Док-во. Пусть $M(x_1,y_1,z_1) \neq M_0$ принадлежит поверхности. Прямая ${\cal M}_0 {\cal M}$ пересечет плоскость z=cв точке ${\cal M}_1(x_2,y_2,c)$, которая будет удовлетворять $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$ Векторы $\overrightarrow{M_0M}(x_1,y_1,z_1)$ и $\overrightarrow{M_0M_1}(x_2,y_2,)$ коллинеарны и отличны от нулевого. Поэтому $x_2 = tx_1$, $y_2 = ty_1$, $c = tz_1$ для некоторого $t \neq 0$. Следовательно, $z_1 \neq 0$ и $t = \frac{c}{z_1}$. Отсюда вычислим $x_2 = \frac{cx_1}{z_1}$, $y_2 = \frac{cy_1}{z_1}$ и подставим в $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Получаем нужное уравнение.

Обратно. Пусть $M(x_1,y_1,z_1)$ удовлетворяет уравнению. Если $z_1 \neq 0$, т.е. M не лежит в плоскости z=0, то прямая $M_0 M$ пересекает плоскость z=cв некоторой точке $M_1(x_2,y_2,c)$. Снова $\overrightarrow{M_0M}(x_1,y_1,z_1)$ и $\overrightarrow{M_0M_1}(x_2,y_2,)$ коллинеарны. Поэтому $x_2=tx_1$, $y_2=ty_1$, $c=tz_1$ для некоторого $t\neq 0$ и

$$x_2=rac{cx_1}{z_1},\,y_2=rac{cy_1}{z_1}.$$
 Отсюда $M_1\left(rac{cx_1}{z_1},rac{cy_1}{z_1},c
ight)$ удовлетворяет $egin{dcases} rac{x^2}{a^2}+rac{y^2}{b^2}=1,\ z=c \end{cases}$

прямая $M_0 M_1$ содержится в конусе, а значит и M тоже.

8.4. Эллипсоид

Эллипсоидом называется поверхность, которая в некоторой декартовой системе координат удовлетворяет уравнению $\frac{\bar{x^2}}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

8.5. Гиперболоид

Однополостным гиперболоидом называется поверхность, которая в некоторой декартовой системе координат определяется $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. **Двуполостным гиперболоидом** называется поверхность, которая в некоторой декартовой системе координат определяется $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$.

8.6. Параболоид

Эллиптическим параболоидом называется поверхность, которая в некоторой декартовой системе координат удовлетворяет уравнению $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$. **Гиперболическим параболоидом** называется поверхность, которая в некоторой декартовой системе координат определяется $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$.