

Projeto Interdisciplinar Big Data + ML

Titanic Problem aplicado à última eleição brasileira

- Pós Graduação em Ciência de Dados 2022.2
- IFSP Campinas
- Profa. Bianca Pedrosa <u>bpedrosa@ifsp.edu.br</u> Prof. Samuel Martins (Samuka) - @hisamuka
- Outubro de 2022
- aluno: Swift Yaguchi CP301665X

Proposta do Projeto - "Frame the Problem"

- Inspiração :
 - "Titanic Problem" na plataforma do Kaggle
- Titanic survival prediction:
 - dados dos passageiros do navio
 - >> características dos sobreviventes do naufrágio.
- Neste projeto:
 - dados de candidatos da eleição brasileira de 2022
 >> características dos candidatos eleitos.
- Objetivo: Desenvolver um modelo ML para previsão estimada de candidatos eleitos para legislativo federal e estadual

Arquitetura e Fluxo de Trabalho

- Desenvolvimento inicial do notebook Jupyterlab:
 - ambiente do Google Colab
 - ambiente local do meu computador.
- Carregado no AWS Cloud para finalização
 - Fluxo de trabalho ML no Sagemaker
 - Dados carregados em bucket
 S3
 - ETL de dados com AWS Glue
 - Queries com Athena

Get Data

Perfil dos candidatos (5.986KB zip)

Resultados de votação por município e por zona eleitoral

(830.299KB zip)

Get Data

Perfil dos candidatos (5.986KB zip)

Resultados de votação por municipio e por zona eleitoral (830.299KB zip)

Limpeza e Pré-processamento

- 13165 train
- 3292 test

RangeIndex: 13165 entries, 0 to 13164 Data columns (total 12 columns):

44	Column	Non-Null Count	Dtype
0	CD_CARGO	13165 non-null	int64
1	SQ_CANDIDATO	13165 non-null	int64
2	NR_IDADE_DATA_POSSE_x	13165 non-null	float64
3	CD_GENERO	13165 non-null	int64
4	CD_GRAU_INSTRUCAO	13165 non-null	int64
5	CD_ESTADO_CIVIL	13165 non-null	int64
6	CD_COR_RACA	13165 non-null	int64
7	CD_OCUPACAO	13165 non-null	int64
8	ST_REELEICAO_x	13165 non-null	int64
9	VR_BEM_CANDIDATO_x	13165 non-null	float64
10	QT_VOTOS_NOMINAIS_x	13165 non-null	int64
11	DS_SIT_TOT_TURNO	13165 non-null	int64
dtypes: float64(2), int64(10)			

RangeIndex: 3292 entries, 0 to 3291 Data columns (total 12 columns):

memory usage: 1.2 MB

```
Column
                           Non-Null Count Dtype
   CD CARGO
                           3292 non-null
                                           int64
   SQ CANDIDATO
                           3292 non-null
                                           int64
    NR_IDADE_DATA_POSSE_x
                          3292 non-null
                                           float64
   CD GENERO
                           3292 non-null
                                           int64
   CD_GRAU_INSTRUCAO
                           3292 non-null
                                           int64
   CD_ESTADO_CIVIL
                           3292 non-null
                                           int64
   CD_COR_RACA
                           3292 non-null
                                           int64
   CD OCUPACAO
                           3292 non-null
                                           int64
   ST_REELEICAO_x
                           3292 non-null
                                           int64
   VR BEM CANDIDATO x
                           3292 non-null
                                           float64
   QT_VOTOS_NOMINAIS_x
                           3292 non-null
                                           int64
11 DS_SIT_TOT_TURNO
                           3292 non-null
                                           int64
```

dtypes: float64(2), int64(10) memory usage: 308.8 KB

Get Data

Feature	Tipo	Descrição
CD_CARGO	Int64	Deputado Federal, Estadual, Senador
SQ_CANDIDATO	Int64	Nº de identificação única do candidato na base de dados
NR_IDADE_DATA_POSSE	float64	Idade do candidato no ano da posse, se eleito
CD_GENERO	Int64	Masculino, feminino, não declarado
CD_GRAU_INSTRUCAO	int64	Analfabeto, le e escreve, fundamental, médio, superior
CD_ESTADO_CIVIL	Int64	Solteiro, casado, viúvo, separado judicialmente, divorciado
CD_COR_RACA	Int64	Branca, preta, parda, amarela, indígena, não informado
CD_OCUPACAO	int64	Profissões diversas, inclusive vereador, deputado
ST_REELEICAO	Int64	0 não é candidato a reeleição, 1 é candidato a reeleição
VR_BEM_CANDIDATO	Float64	Valor declarado de patrimônio do candidato
QT_VOTOS_NOMINAIS	Int64	Nº de votos obtidos no 1º turno da eleição 2022
DS_SIT_TOT_TURNO (target feature)	Int64	1 – eleito, eleito por QE, eleito por média 0 – suplente, não eleito

Exploratory Data Analysis (EDA):

- Apenas 9,2% dos candidatos são eleitos
- Maior taxa de eleitos:
 - Candidatos à reeleição
 - Faixa de idade entre 40 e 60 anos, e são os mais eleitos
 - Brancos
 - Casados
 - Grau de instrução superior
 - Homens

Treinamento Machine Learning

Baseline

Cross Validation

[15]:

Resultado Emsemble Modeling:

Algorithm	CrossValerrors	CrossValMeans	
RandomForest	0.004876	0.959742	3
AdaBoost	0.005178	0.955260	2
DecisionTree	0.006755	0.948273	1
GradientBoosting	0.007205	0.948273	0
ExtraTrees	0.004164	0.946373	4
LinearDiscriminantAnalysis	0.006913	0.933840	8
KNeighboors	0.005036	0.918039	6
LogisticRegression	0.000344	0.907634	7
MultipleLayerPerceptron	0.001054	0.907330	5

Análise das variáveis

AdaBoosting, Random Forest e GradientBoosting

 Quantidade de votos nominais tem maior importância

Treinamento Machine Learning

Retirando variável : número de votos recebidos

Resultado Emsemble Modeling:

	CrossValMeans	CrossValerrors	Algorithm
8	0.933992	0.007103	LinearDiscriminantAnalysis
3	0.933385	0.006939	RandomForest
2	0.931865	0.005090	AdaBoost
4	0.928523	0.005194	ExtraTrees
7	0.907634	0.000344	LogisticRegression
5	0.907406	0.000963	MultipleLayerPerceptron
6	0.894493	0.003329	KNeighboors
1	0.886897	0.008041	DecisionTree
0	0.885378	0.007638	GradientBoosting

Análise das variáveis

'ST_REELEICAO_x' tem maior importância para todos

Em seguida:

AdaBoosting e Extra Trees:

VR_BEM_CANDIDATO com importância relativa maior que CD_OCUPACAO,

Random Forest e Gradient Boosting

> 0 contrário.

Treinamento Machine Learning

Estudo eliminando as variáveis:

- QT_VOTOS_NOMINAIS_x
- ST_REELEICAO_x

Resultado Emsemble Modeling:

[18]:		CrossValMeans	CrossValerrors	Algorithm
	3	0.926244	0.005791	RandomForest
	2	0.923890	0.006302	AdaBoost
	4	0.914319	0.004322	ExtraTrees
	7	0.907634	0.000344	LogisticRegression
	8	0.907254	0.000706	LinearDiscriminantAnalysis
	6	0.894493	0.003329	KNeighboors
	0	0.876795	0.008635	GradientBoosting
	1	0.873681	0.007695	DecisionTree
	5	0.663001	0.373544	MultipleLayerPerceptron

Análise das variáveis

AdaBoosting:

> VR_BEM_CANDIDATO

com importância relativa maior que CD_OCUPACAO,

Random Forest, Extra Trees e Gradient Boosting:

> 0 contrário.

Conclusão

Estudos	Candidatos Eleitos	Score de Acurácia
Baseline	242	0.9577764277035237
Eliminado variável - nº de votos recebidos	170	0.925577156743621
Eliminando as variáveis: - qt_votos_nominais - st_reeleicao	94	0.9170716889428918

Estudo adicional – ROC AOC

Resultado ROC-AOC Com ROC-AUC obtivemos melhoria na acurácia:

Estudo adicional – AWS Sagemaker

Estudo adicional – AWS Sagemaker

8.2 Preparação dos dados

['Proj_Int_2022.2/test/tse2022_test.csv', 'Proj_Int_2022.2/train/tse2022_trailidate.csv', 'bem_candidato_2022_BRASIL.csv', 'consulta_cand_2022_BRASIL.csv' 1-2022-11-28-03-55-02/output/model.tar.gz', 'sagemaker/sklearn-tse2022/tse202022_train.csv', 'scikitlearn-tse-2022-train-from-boto3/source.tar.gz', 'scikiz', 'test_df.csv/test_df.csv', 'train_df.csv/train_df.csv', 'votacao_candidat

```
file_data = 'votacao_candidato_munzona_2022_BRASIL_pre_merge13.csv'
response = s3.get_object(Bucket=data_bucket_name, Key=file_data)
response_body = response["Body"].read()
data = pd.read_csv(io.BytesIO(response_body), header=0, delimiter=",", low_m
```

8.7 Deploy do modelo

```
endpoint name = "sklearn-endpoint-" + datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
                     create endpoint_response = client.create endpoint(
                               EndpointName=endpoint name,
                               EndpointConfigName=endpoint config 1 name,
                     create_endpoint_response
t[16]: {'EndpointArn': 'arn:aws:sagemaker:us-east-1:887118459548:endpoint/sklearn-endpoint-2022-11-28-04-44-
                       'ResponseMetadata': {'RequestId': '546d0c7a-5db0-4bda-9fdd-1efb641d1461'.
                        'HTTPStatusCode': 200,
                         'HTTPHeaders': {'x-amzn-requestid': '546d0c7a-5db0-4bda-9fdd-1efb641d1461',
                           'content-type': 'application/x-amz-json-1.1',
                           'content-length': '104',
                           'date': 'Mon, 28 Nov 2022 04:44:01 GMT'},
                         'RetryAttempts': 0}}
                     describe_endpoint_response = client.describe_endpoint(EndpointName=endpoint_name)
                     while describe endpoint response["EndpointStatus"] == "Creating":
                               describe_endpoint_response = client.describe_endpoint(EndpointName=endpoint_name)
                               print(describe_endpoint_response["EndpointStatus"])
                              time.sleep(15)
                     describe endpoint response
                  Creating
                  Creating
                   Creating
                  Creating
                  Creating
                  Creating
                  Creating
                  Creating
                   InService
t[17]: {'EndpointName': 'sklearn-endpoint-2022-11-28-04-44-01',
                       EndpointArn': 'arn:aws:sagemaker:us-east-1:887118459548:endpoint/sklearn-endpoint-2022-11-28-04-44-
                      Industry Continuous Co
```

Estudo adicional – AWS Sagemaker

8.8 Clean-up