

Application Serial No: 10/086,273
Attorney Docket No.: CET0006P1US
Response to Non-Final Office Action Dated: October 6, 2005

Appendix

B

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Rajendra R. Damle
 Assignee: Ceterus Networks, Inc.
 Title: Frame Structure and Method for Wavelength Concatenated Channel Framing
 Serial No.: Unassigned Filing Date: Herewith
 Examiner: Unassigned Group Art Unit: Unassigned
 Docket No.: CET0006C2US

Austin, Texas
September 8, 2004

COMMISSIONER FOR PATENTS
 P. O. BO 1450
 Washington, D. C. 20231

PRELIMINARY AMENDMENT AND REMARKS

Dear Sir:

The following Preliminary Amendment and Remarks are submitted for entry into the continuing application filed herewith (this application being a continuation from application serial number 10/086,273 (filed February 20, 2002). Further examination and consideration are requested.

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the listing of claims which begins on page 5 of this paper.

No Amendments to the Drawings are presented in this paper.

Remarks begin on page 15 of this paper.

COPY

Amendments to the Specification

Please replace the paragraph on page 1, lines 5-10 with the following amended paragraph:

This application is a continuation of U.S. Patent Application Serial No. 10/086,273, entitled "FRAME STRUCTURE AND METHOD FOR WAVELENGTH CONCATENATED CHANNEL FRAMING", filed February 20, 2002, and naming Rajendra R. Damle as the inventor, which, in turn, This application is a continuation-in-part of Patent Application Serial No. 10/074,264 [] ~~Attorney Docket Number M-9927 US []~~, entitled "TRANSPORT OF HIGH-BANDWIDTH DATASTREAMS OVER A NETWORK," filed on Feb. 12, 2002, and having R. Damle, Y. Lee, W. Szeto, R. Butler and H. M. Zadikian as inventors, which, in turn, claims priority from the following provisional patent applications under 35 U.S.C. §119(e):

Please delete the first full paragraph under the header "SUMMARY OF THE INVENTION," starting at the bottom of page 4. Please insert the following paragraphs following the header "SUMMARY OF THE INVENTION", in the location of deleted paragraphs:

The present invention provides a method, system, apparatus, and computer program product that provide a means for responding to a degradation condition of one or more sub-channels of a super-channel network link linking a network node with a remote network node.

Accordingly, one aspect of the present invention provides a method for receiving a degradation notification that a sub-channel of a connection to a remote node is degraded. This aspect of the present invention further provides a method for responding to the degradation notification by transmitting an empty payload on the sub-channel.

A further aspect of the present invention provides a method for analyzing for degradation a signal received on a sub-channel of a connection to a remote node. Upon a determination that the signal is degraded, informing the remote node that the sub-channel is experiencing degradation and analyzing subsequent signals received on the sub-channel

COPY

for correction of the degradation. The connection to the remote node comprises a plurality of sub-channels.

Another aspect of the present invention provides a system comprising first and second network nodes. The first network node is configured to perform analysis of a signal transmitted to that node by a second network node on a sub-channel, in order to determine whether the signal is degraded. If the signal is degraded, the first network node informs the second network node of the degradation of the sub-channel. The second network node is configured to respond to the degradation information by transmitting an empty payload to the first network node on the first sub-channel.

A further aspect of the present invention provides an apparatus comprising a means for receiving a degradation notification that a sub-channel of a connection to a remote node is degraded, and a means for responding to the degradation notification by transmitting an empty payload on the sub-channel.

Another aspect of the present invention provides an apparatus comprising a means for analyzing for degradation a signal received on a sub-channel of a connection to a remote node and a means, responsive to a degradation determination, for informing the remote node that the sub-channel is experiencing degradation and for analyzing subsequent signals received on the sub-channel for correction of degradation. The connection comprises a plurality of sub-channels.

A further aspect of the present invention provides a computer program product comprising signal bearing media bearing programming adapted to receive a degradation notification that a sub-channel of a connection to a remote node is degraded, and to transmit an empty payload on the sub-channel in response to the notification.

Another aspect of the present invention provides a computer program product comprising signal bearing media bearing programming adapted to analyze for degradation a signal received on a sub-channel of a connection to a remote node, and, upon a determination that the signal is degraded, to inform the remote node that the sub-channel is experiencing degradation and to analyze subsequent signals received on the sub-channel for correction of the degradation.

COPY

On page 58, please cancel the Abstract. Please replace the Abstract with the following:

A method, system, apparatus, and computer program product that provide a means for responding to a degradation condition of one or more sub-channels of a super-channel network link linking a network node with a remote network node is disclosed.

COPY

Amendments In the Claims

Please cancel claims 1-19. Please add claims 20-69 as follows:

1-19. (Cancelled)

20. (New) A method comprising:
receiving a degradation notification that a first sub-channel of a first connection to
a remote node is degraded; and
responding to the degradation notification by transmitting an empty payload on
the first sub-channel.

21. (New) The method of Claim 20, wherein the first connection with the remote
node comprises:
one or more sub-channels.

22. (New) The method of Claim 21 further comprising:
receiving a sub-channel bitmap comprising a status corresponding to each of the
one or more sub-channels, wherein
the status comprises one of
the degradation notification, and
notification that the sub-channel is not degraded.

23. (New) The method of Claim 20 further comprising:
transmitting a payload comprising data on a second sub-channel of a second
connection with the remote node, wherein
the payload comprising data would have been transmitted on the first sub-
channel but for the degradation.

24. (New) The method of Claim 20 further comprising:
receiving a non-degradation notification that the first sub-channel of the first
connection with the remote node is no longer degraded; and
responding to the non-degradation notification by transmitting a payload
comprising data on the first sub-channel.

COPY

25. (New) A method comprising:
analyzing for degradation a signal received on a first sub-channel of a first
connection to a remote node, wherein
the first connection comprises a plurality of sub-channels; and
upon a determination that the signal is degraded,
informing the remote node that the first sub-channel is experiencing
degradation, and
analyzing subsequent signals received on the first sub-channel for
correction of the degradation.

26. (New) The method of Claim 25 wherein the analyzing for degradation
comprises:

analyzing the signal for at least one of the following error conditions
a bit error rate (BER) greater than a threshold value,
a loss of signal (LOS),
a loss of frame (LOF),
a cyclic redundancy check (CRC) error, and
a remote defect.

27. (New) The method of Claim 26 further comprising:
determining the presence of a remote defect upon receiving an alarm indication
signal transmitted by the remote node.

28. (New) The method of Claim 26 further comprising:
setting an error condition field corresponding to an error condition present,
wherein
the error condition field corresponds to the first sub-channel.

29. (New) The method of Claim 25 wherein informing the remote node
comprises:

generating a bitmap, wherein
each bitmap bit corresponds to a sub-channel in the first connection,
each bitmap bit is cleared at initialization, and
for each degraded signal received, setting the bitmap bit corresponding to
the sub-channel on which the degraded signal was received.

COPY

30. (New) The method of Claim 29 wherein the informing the remote node further comprises:

transmitting the bitmap to the remote node.

31. (New) The method of Claim 29 wherein the analyzing subsequent signals received on the first sub-channel for correction of the degradation comprises:

receiving test signals on the first sub-channel comprising empty payloads;

analyzing the test signals for degradation;

upon a determination that the test signals are not degraded,

informing the remote node that the first sub-channel is not experiencing degradation.

32. (New) The method of Claim 31, wherein the informing the remote node that the first sub-channel is not experiencing degradation comprises:

clearing the bitmap bit corresponding to the first sub-channel; and

transmitting the bitmap to the remote node.

33. (New) The method of Claim 31 further comprising:

upon a determination that the test signals are not degraded,

clearing an error condition field corresponding to the first sub-channel.

34. (New) A system comprising:

a first network node configured to

perform analysis of a signal transmitted to the first network node on a first sub-channel by a second network node, wherein
the analysis determines whether the signal is degraded;

upon a determination that the signal transmitted on the first sub-channel is degraded, transmit to the second network node information regarding the degradation of the first sub-channel; and

a second network node configured to

in response to the information regarding the degradation of the first sub-channel, transmit an empty payload to the first network node on the first sub-channel.

COPY

35. (New) The system of Claim 34 further comprising:
a first connection coupling the first network node and the second network node,
wherein
the first connection comprises the first sub-channel.

36. (New) The system of Claim 35 wherein the first connection further
comprises:
a plurality of sub-channels.

37. (New) The system of Claim 36, wherein
the first network node is further configured to
generate a bitmap providing a status of each of the plurality of sub-
channels comprising the first connection.

38. (New) The system of Claim 37, wherein
the bitmap is comprised of information of the degradation of each sub-channel
comprising the first connection.

39. (New) The system of Claim 34, wherein
the first network node is further configured to
perform analysis of the empty payload to determine whether a signal
transmitted on the first sub-channel remains degraded.

40. (New) The system of Claim 39, wherein
the first network node is further configured to
upon a determination that the signal transmitted on the first sub-channel is
not degraded, transmit to the second network node information of
the status of the first sub-channel; and
the second network node is further configured to
in response to said information, transmit a payload comprising data to the
first network node on the first sub-channel.

41. (New) The system of Claim 34 further comprising:
a second connection coupling the first network node and the second network node,
wherein
the second connection comprises a ~~second sub-channel~~ and
the second network node further configured to

in response to the information regarding the degradation of the first sub-channel, redirect a payload containing data from the first sub-channel to the second sub-channel.

42. (New) An apparatus comprising:

means for receiving a degradation notification that a first sub-channel of a first connection to a remote node is degraded; and
means for responding to the degradation notification by transmitting an empty payload on the first sub-channel.

43. (New) The apparatus of Claim 42, wherein the first connection with the remote node comprises:

one or more sub-channels.

44. (New) The apparatus of Claim 43 further comprising:

means for receiving a sub-channel bitmap comprising a status corresponding to each of the one or more sub-channels, wherein
the status comprises one of
the degradation notification, and
notification that the sub-channel is not degraded.

45. (New) The apparatus of Claim 42 further comprising:

means for transmitting a payload comprising data on a second sub-channel of a second connection with the remote node, wherein
the payload comprising data would have been transmitted on the first sub-channel but for the degradation.

46. (New) The apparatus of Claim 42 further comprising:

means for receiving a non-degradation notification that the first sub-channel of the first connection with the remote node is no longer degraded; and
means for responding to the non-degradation notification by transmitting a payload comprising data on the first sub-channel.

COPY

47. (New) An apparatus comprising:

means for analyzing for degradation a signal received on a first sub-channel of a first connection to a remote node, wherein
the first connection comprises a plurality of sub-channels; and
means, responsive to a determination that the signal is degraded,
for informing the remote node that the first sub-channel is experiencing
degradation, and
for analyzing subsequent signals received on the first sub-channel for
correction of the degradation.

48. (New) The apparatus of Claim 47 wherein the means for analyzing for
degradation comprises:

means for analyzing the signal for at least one of the following error conditions
a bit error rate (BER) greater than a threshold value,
a loss of signal (LOS),
a loss of frame (LOF),
a cyclic redundancy check (CRC) error, and
a remote defect.

49. (New) The apparatus of Claim 48 further comprising:

means for determining the presence of a remote defect upon receiving an alarm
indication signal transmitted by the remote node.

50. (New) The apparatus of Claim 48 further comprising:

means for setting an error condition field corresponding to an error condition
present, wherein
the error condition field corresponds to the first sub-channel.

51. (New) The apparatus of Claim 47 wherein the means for informing the
remote node comprises:

means for generating a bitmap, wherein
each bitmap bit corresponds to a sub-channel in the first connection,
each bitmap bit is cleared at initialization, and
for each degraded signal received, a bitmap bit corresponding to the sub-
channel on which the degraded signal was received is set.

COPY

52. (New) The apparatus of Claim 51 wherein the means for informing the remote node further comprises:

means for transmitting the bitmap to the remote node.

53. (New) The apparatus of Claim 51 wherein the means for analyzing subsequent signals received on the first sub-channel for correction of the degradation comprises:

means for receiving test signals comprising empty payloads on the first sub-channel;

means for analyzing the test signals for degradation;

means, responsive to a determination that the test signals are not degraded, for informing the remote node that the first sub-channel is not experiencing degradation.

54. (New) The apparatus of Claim 53, wherein the means for informing the remote node that the first sub-channel is not experiencing degradation comprises:

means for clearing the bitmap bit corresponding to the first sub-channel; and

means for transmitting the bitmap to the remote node.

55. (New) The apparatus of Claim 53 further comprising:

means, responsive to a determination that the test signals are not degraded, for clearing an error condition field corresponding to the first sub-channel.

56. (New) A computer program product comprising:

signal bearing media bearing programming adapted to

receive a degradation notification that a first sub-channel of a first connection to a remote node is degraded, and

transmit an empty payload on the first sub-channel in response to the degradation notification.

57. (New) The computer program product of Claim 56, wherein the first connection with the remote node comprises:

one or more sub-channels.

COPY

58. (New) The computer program product of Claim 57 further comprising:
signal bearing media bearing programming further adapted to
receive a sub-channel bitmap comprising a status corresponding to each of
the one or more sub-channels, wherein
the status comprises one of
the degradation notification, and
notification that the sub-channel is not degraded.
59. (New) The computer program product of Claim 56 further comprising:
signal bearing media bearing programming further adapted to
transmit a payload comprising data on a second sub-channel of a second
connection with the remote node, wherein
the payload comprising data would have been transmitted on the
first sub-channel but for the degradation.
60. (New) The computer program product of Claim 56 further comprising:
signal bearing media bearing programming further adapted to
receive a non-degradation notification that the first sub-channel of the first
connection with the remote node is no longer degraded, and
transmit a payload comprising data on the first sub-channel in response to
the non-degradation notification.
61. (New) A computer program product comprising:
signal bearing media bearing programming adapted to
analyze for degradation a signal received on a first sub-channel of a first
connection to a remote node, wherein
the first connection comprises a plurality of sub-channels; and
upon a determination that the signal is degraded,
inform the remote node that the first sub-channel is experiencing
degradation, and
analyze subsequent signals received on the first sub-channel for
correction of the degradation.

COPY

62. (New) The computer program product of Claim 61 wherein the signal bearing media bearing programming adapted to analyze for degradation comprises:

signal bearing media bearing programming further adapted to
analyze the signal for at least one of the following error conditions
a bit error rate (BER) greater than a threshold value,
a loss of signal (LOS),
a loss of frame (LOF),
a cyclic redundancy check (CRC) error, and
a remote defect.

63. (New) The computer program product of Claim 62 further comprising:
signal bearing media bearing programming further adapted to
determine the presence of a remote defect upon receiving an alarm
indication signal transmitted by the remote node.

64. (New) The computer program product of Claim 62 further comprising:
signal bearing media bearing programming further adapted to
set an error condition field corresponding to an error condition present,
wherein
the error condition field corresponds to the first sub-channel.

65. (New) The computer program product of Claim 61 wherein the signal bearing media bearing programming adapted to inform the remote node comprises:
signal bearing media bearing programming further adapted to
generate a bitmap, wherein
each bitmap bit corresponds to a sub-channel in the first
connection,
each bitmap bit is cleared at initialization, and
for each degraded signal received, a bitmap bit corresponding to
the sub-channel on which the degraded signal was received
is set.

66. (New) The computer program product of Claim 65 wherein the signal bearing media bearing programming adapted to inform the remote node further comprises:

signal bearing media bearing programming further adapted to
transmit the bitmap to the remote node.

COPY

67. (New) The computer program product of Claim 65 wherein the signal bearing media bearing programming adapted to analyze subsequent signals received on the first sub-channel for correction of the degradation comprises:

signal bearing media bearing programming further adapted to
receive test signals on the first sub-channel comprising empty payloads;
analyze the test signals for degradation;
upon a determination that the test signals are not degraded,
inform the remote node that the first sub-channel is not
experiencing degradation.

68. (New) The computer program product of Claim 67, wherein the signal bearing media bearing programming adapted to inform the remote node that the first sub-channel is not experiencing degradation comprises:

signal bearing media bearing programming further adapted to
clear the bitmap bit corresponding to the first sub-channel; and
transmit the bitmap to the remote node.

69. (New) The computer program product of Claim 67 further comprising:
signal bearing media bearing programming further adapted to
clear an error condition field corresponding to the first sub-channel upon a
determination that the test signals are not degraded.

COPY

REMARKS

Claims 20-69 are pending. Original claims 1-19 have been canceled. New claims 20-69 have been added. The specification has been amended to reflect the fact that the present application is a continuation of application Serial Number 10/086,273 and its genealogy and to revise the summary and abstract. No new matter has been added.

Because no new matter has been added by these claims, Applicants respectfully submit that the above-referenced continuation application is entitled to claim the same priority date as that of parent application Serial Number 10/086,273, filed on February 20, 2002.

CONCLUSION

In view of the amendments and remarks set forth herein, the application and the claims therein are believed to be in condition for allowance without any further examination and a notice to that effect is solicited. Nonetheless, should any issues remain that might be subject to resolution through a telephonic interview, the Examiner is invited to telephone the undersigned at 512-439-5090.

EXPRESS MAIL LABEL NO:

EV 304739824 US

Respectfully submitted,

Jonathan N. Geld
Attorney for Applicant(s)
Reg. No. 44,702

COPY