1 Definições Elementares

Começamos nosso estudo definindo o que são pontos periódicos e pontos eventualmente periódicos. Esses pontos desempenham um papel central no estudos de Sistemas Dinâmicos.

Definição 1.1. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto periódico com período n, se $f^n(p) = p$. Se $f^k(p) \ne p$ para todo $1 \le k < n$, então n é chamado de período principal. Em particular, se n = 1, dizemos que p é um ponto fixo.

Definição 1.2. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto eventualmente periódico com período n, se existe m > 1 tal que $f^k(p) = f^{k+n}(p)$ para todo $k \ge m$. Em particular, se n = 1, dizemos que p é um ponto eventualmente fixo.

Definição 1.3. Sejam $f: X \to X$ uma função e $x \in X$. A *órbita de x* é o conjunto $O(x) = \{x, f(x), f^2(x), \dots\}.$

Definição 1.4. Sejam $f: X \to X$ uma função, p um ponto periódico período n e $x \in X$. Dizemos que x tende assintoticamente para p se $\lim_{k\to\infty} f^{kn}(x) = p$. O conjunto dos pontos que tendem assintoticamente para p, denotado por $W^s(p)$, é chamado chamado de conjunto estável de p. Dizemos que x tende assintoticamente para infinito se $\lim_{k\to\infty} |f^k(x)| = \infty$. O conjunto dos pontos que tendem assintoticamente para infinito, denotado por $W^s(\infty)$, é chamado de conjunto estável do infinito.

A Proposição abaixo nos mostra que os conjuntos estáveis de dois pontos periódicos distintos possuem intersecção vazia

Proposição 1.5. Sejam $f: X \to X$ uma função e p_1 , p_2 pontos periódicos distintos. Então $W^s(p_1) \cap W^s(p_2) = \emptyset$.

Demonstração. Sejam n_1 , n_2 os períodos de p_1 , p_2 , respectivamente. Suponha que exista $x \in W^s(p_1) \cap W^s(p_2)$. Sabemos que $|f^{kn_1}(x) - p_1| \longrightarrow 0$ e $|f^{kn_2}(x) - p_2| \longrightarrow 0$, quando $k \longrightarrow \infty$. Desse modo, dado $\varepsilon > 0$ existe $N \ge 1$ tal que $|f^{kn_1}(x) - p_1| < \frac{\varepsilon}{2}$ e $|f^{kn_2}(x) - p_2| < \frac{\varepsilon}{2}$ para todo k > N. Portanto, $|p_1 - p_2| = |p_1 - f^{kn_1n_2}(x) + f^{kn_1n_2}(x) - p_2| \le |f^{kn_2n_1}(x) - p_1| + |f^{kn_1n_2}(x) - p_2| < \varepsilon$. Temos então que p = q, pois ε é arbitrário. Absurdo.

O objetivo do estudo de Sistemas Dinâmicos é entender a natureza das órbitas, identificando pontos periódicos, eventualmente periódicos, que tendem assintoticamente, etc.

2 Implicações da Diferenciabilidade

Nessa seção, estudaremos as implicações da diferenciabilidade na dinâmica de uma função real. Caso não seja dito o contrário, I representará um intervalo fechado de \mathbb{R} .

Proposição 2.1. Seja $f: I \to \mathbb{R}$ uma função contínua. Se $f(I) \subset I$ ou $f(I) \supset I$, então f possui ponto fixo.

Demonstração. Seja I=[a,b]. Suponha que $f(I)\subset I$. Considere a função contínua g(x)=f(x)-x definida em I. Como $f(a),f(b)\in I$, temos que $g(a)=f(a)-a\geq 0$ e $g(b)=f(b)-b\leq 0$. Pelo Teorema do Valor Intermediário, existe $p\in I$ tal que g(p)=f(p)-p=0. Desse modo, p é ponto fixo de f.

Suponha que $f(I) \supset I$. Por definição, existem $c, d \in I$ tais que f(c) = a ef(d) = b. Considere a função contínua g(x) = f(x) - x definida em I. Temos que $g(c) = a - c \le 0$ e $g(d) = b - d \ge 0$. Pelo Teorema do Valor Intermediário, existe $p \in I$ tal que g(p) = f(p) - p = 0. Desse modo, p é ponto fixo de f.

Teorema 2.2. Seja $f: I \to I$ uma função diferenciável. Se |f'(x)| < 1 para todo $x \in I$, então f admite um único ponto fixo e |f(x) - f(y)| < |x - y| para todo $x, y \in I$ distintos.

Demonstração. Sejam $x, y \in I$, x < y. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que f(x) - f(y) = f'(c)(x - y). Portanto, |f(x) - f(y)| = |f'(c)||x - y| < |x - y|.

Pela Proposição 2.1, f admite um ponto fixo p. Suponha que exista um ponto fixo q diferente de p. Então, pela primeira parte da demonstração, |p-q|=|f(p)-f(q)|<|p-q|. Absurdo.

Introduziremos agora a noção de ponto hiperbólico para uma função diferenciável e logo após provaremos um resultado que ajuda a compreender a dinâmica da função em uma vizinhança desses pontos.

Definição 2.3. Sejam $f: I \to I$ uma função diferenciável e p um ponto periódico com período principal n. Dizemos que p é um ponto hiperbólico se $|(f^n)'(p)| \neq 1$. Se $|(f^n)'(p)| > 1$, dizemos que p é um ponto atrator e se $|(f^n)'(p)| < 1$, dizemos que p é um ponto repulsor. Dizemos que p é um ponto não hiperbólico se $|(f^n)'(p)| = 1$.

O Teorema abaixo ajuda a compreender o porquê dos nomes atrator e repulsor para um ponto hiperbólico.

Teorema 2.4. Sejam $f: I \to I$ uma função C^1 e p um ponto periódico com período principal n. Se p é um ponto hiperbólico atrator, existe uma vizinhança de p contida em $W^s(p)$. Se p é um ponto hiperbólico repulsor, existe uma vizinhança U de p tal que, se $x \in U$ e $x \neq p$, $f^{kn}(x) \notin U$ para algum $k \geq 1$.

Demonstração. Suponha que p é um ponto hiperbólico atrator. Como f' é contínua, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \le \lambda < 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Pelo Teorema do Valor Médio, se $x \in U$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| \le \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| \le \lambda^k |x - p|$. Desse modo, $f^{kn}(x) \longrightarrow p$ quando $k \longrightarrow \infty$.

Suponha que p é ponto hiperbólico repulsor. De maneira análoga, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \ge \lambda > 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Fixado $x \in (p - \varepsilon, p + \varepsilon)$, $x \ne p$, suponha que $f^{kn}(x) \in (p - \varepsilon, p + \varepsilon)$ para todo $k \ge 1$. Pelo Teorema do Valor Médio, $|f^{kn}(x) - p| \ge \lambda^k |x - p|$ para todo $k \ge 1$. Absurdo, pois $\lambda^k |x - p| \longrightarrow \infty$ quando $k \longrightarrow \infty$.

Observação. A segunda parte do teorema afirma que existe uma vizinhança de p tal que todo ponto diferente de p nessa vizinhança é movida para fora dela após um número de iterações da f. Observe o ponto pode voltar para vizinhança após mais iterações da f, justamente por sabermos que o valor da derivada é maior que um apenas nessa vizinhança.

3 Família Quadrática I: Estudo inicial

Nosso objetivo será estudar, durante essa seção e as próximas, é estudar a dinâmica da família de funções $F_{\mu}: \mathbb{R} \to \mathbb{R}$ dadas por $F_{\mu}(x) = \mu x(1-x)$, onde $\mu > 0$. Tal família é chamada de família quadrática. Quando não houver ambiguidade, escreveremos F ao invés de F_{μ} . Nessa seção estudaremos a dinâmica de F quando $1 < \mu < 3$.

Proposição 3.1. 1.
$$F(1) = F(0) = 0$$
 e $F(\frac{1}{\mu}) = F(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

- 2. Se $\mu > 1$ então $0 < p_{\mu} < 1$.
- 3. O vértice da parábola é o ponto $(\frac{1}{2}, \frac{\mu}{4})$.

Demonstração. Apenas aplicação direta das definições.

Proposição 3.2. Se
$$\mu > 1$$
, então $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Demonstração. Se x < 0, a sequência $x, F(x), F^2(x), \ldots$ é estritamente decrescente pois F(x) < x. Se $(F^n(x))_n \longrightarrow x_0$ quando $n \longrightarrow \infty$, a continuidade de F implica que $(F^{n+1}(x))_n \longrightarrow F(x_0) < x_0$. Absurdo. Portanto, $(F^n(x))_n \longrightarrow -\infty$ quando $n \longrightarrow \infty$. Como F(x) < 0 para todo x > 1, concluímos que $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Pelo Proposição anterior, conhecemos a dinâmica da F, quando $\mu > 1$, nos pontos menores que zero e maiores que um. Portanto, nos resta estudar a dinâmica de F restrita ao intervalo [0,1].

Proposição 3.3. Se $1 < \mu < 3$, então

- 1. 0 é um ponto repulsor e p_{μ} é um ponto atrator.
- 2. $\lim_{n\to\infty} F^n(x) = p_\mu \text{ para todo } x \in (0,1).$

Demonstração. A primeira parte é verdadeira pois $|F'(0)| = \mu > 1$ e $|F'(p_{\mu})| = |2-\mu| < 1$, quando $1 < \mu < 3$.

Desse modo, pelas Proposições anteriores, conhecemos completamente a dinâmica de F quando $1 < \mu < 3$: $W^s(0) = \{0,1\}$, $W^s(p_\mu) = (0,1)$ e $W^s(\infty) = (-\infty,0) \cup (1,\infty)$.

4 Família Quadrática II: Conjuntos de Cantor e Caos

Analisaremos nessa seção a dinâmica de F quando $\mu > 4$. Para entendê-la, estudaremos o que são conjuntos de Cantor e o conceito de caos.

Observamos inicialmente que $F(\frac{1}{2}) = \frac{\mu}{4} > 1$ quando $\mu > 4$, ou seja, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de F. Em vista da Proposição 3.2, a dinâmica de F em tais pontos é determinada, pois pertencem ao conjunto $W^s(\infty)$. De modo mais geral, se um ponto de [0,1] não permanece [0,1] após um número finito de iterações, então ele pertence ao conjunto $W^s(\infty)$.

Desse modo, considere o conjunto $\Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1]\}$, que é formado pelos pontos que permanecem em [0,1] após n iterações de F, e considere o conjunto $\Lambda = \cap \Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1] \text{ para todo } n \geq 1\}$, que é formado pelos pontos que permanecem para sempre em [0,1] por iterações de F. Observe que, por definição, $\Lambda_n \supset \Lambda_{n+1}$ para todo $n \geq 1$.

Nos resta, portanto, estudar a dinâmica de F restrita ao conjunto Λ . A Proposição a seguir nos ajuda a começar compreender a natureza de Λ .

Proposição 4.1. Se $\mu > 4$, então

1.
$$\Lambda_1 = [0, x_1] \cup [x_2, 1]$$
, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

- 2. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 3. Se I é um dos 2^n intervalos fechados disjuntos que formam Λ_n , então $F^n: I \to [0, 1]$ é bijetora.

Demonstração. Analisando F' observamos que F é estritamente crescente no intervalo $[0, \frac{1}{2}]$ e estritamente decrescente no intervalo $[\frac{1}{2}, 1]$. Como F(0) = F(1) = 0 e $F(\frac{1}{2}) > 1$, o Teorema do Valor Intermediário garante que existem x_1 e x_2 tais que $F(x_1) = F(x_2) = 1$. Os valores de x_1 e x_2 são encontrados resolvendo a equação de segundo grau $\mu x(1-x) = 1$. Logo, $F([0, x_1]) = F([x_2, 1]) = [0, 1]$ e F(x) > 1 para todo $x \in (x_1, x_2)$. Portanto, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e o item 1 está demonstrado.

A demonstração dos itens 2 e 3 será feita por indução. Pela primeira parte dessa demonstração, Λ_1 é a união de $2^1 = 2$ intervalos fechados disjuntos e F restrita é cada um desses intervalos é uma bijeção com o intervalo [0,1].

Suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos de modo que F^{k-1} : $[a,b] \to [0,1]$ é bijetora para todo intervalo [a,b] que forma Λ_{k-1} . Sendo F^{k-1} bijetora, $(F^{k-1})'(x) > 0$ ou $(F^{k-1})'(x) < 0$ para todo $x \in [a,b]$. Como as demonstrações para os dois casos são análogas, supomos que $(F^{k-1})'(x) > 0$.

Como F^{k-1} é estritamente crescente, o Teorema do Valor Intermediário afirma que existem únicos $\overline{x_1}, \overline{x_2} \in [a, b]$ tais que

(a)
$$a < \overline{x_1} < \overline{x_2} < b$$
,

(b)
$$F^{k-1}([a, \overline{x_1}]) = [0, x_1],$$

(c)
$$F^{k-1}((\overline{x_1}, \overline{x_2})) = (x_1, x_2)$$
 e

(d)
$$F^{k-1}([\overline{x_2}, 1]) = [x_2, 1].$$

Desse modo, $F^k([a, \overline{x_1}]) = F([0, x_1]) = [0, 1]$ e, analogamente, $F^k([\overline{x_2}, 1]) = [0, 1]$. Além disso, $(F^k)'([a, \overline{x_1}]) = F'(F^{k-1}([a, \overline{x_1}]))(F^{k-1})'([a, \overline{x_1}]) = F'([0, x_1])(F^{k-1})'([a, \overline{x_1}]) > 0$ e, analogamente, $(F^k)'([\overline{x_2}, 1]) = F'([x_2, 1])(F^{k-1})'([\overline{x_2}, 1]) < 0$. Logo, F^k é uma bijeção entre $[a, \overline{x_1}]$ e [0, 1] e entre $[\overline{x_2}, 1]$ e [0, 1].

Portanto, a partir de cada intervalo fechado de Λ_{k-1} , construímos dois novos intervalos fechados disjuntos tais que F^k restrita em cada um desses intervalos é um bijeção com [0,1] e, dessa maneira, esses intervalos estão contidos em Λ_k . Desse modo, se Λ_{k-1} é formado por 2^{k-1} intervalos, então Λ_k é formado por $2 \cdot 2^{k-1} = 2^k$ intervalos fechados disjuntos. Assim, o resultado está provado.

Vamos agora definir o que é um conjunto de Cantor para prosseguir entendendo a natureza de Λ .

Definição 4.2 (Conjunto de Cantor). Um conjunto $\Gamma \subset \mathbb{R}$ não vazio é um *conjunto de Cantor* se

- 1. Γ é fechado e limitado.
- 2. Γ não possui intervalos.
- 3. Todo ponto de Γ é um ponto de acumulação de Γ .

No restante dessa seção, restringiremos nossa atenção para o caso $\mu>2+\sqrt{5}$, para facilitar as demonstrações.

Lema 4.3. Se $\mu > 2 + \sqrt{5}$, então existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$. Além disso, o tamanho de cada intervalo fechado em Λ_n é menor que $\frac{1}{\lambda^n}$.

Demonstração. Para provar a primeira parte, observamos inicialmente que $\mu^2 - 4\mu > 1$ quando $\mu > 2 + \sqrt{5}$. Desse modo, $F'(x_1) = \sqrt{\mu^2 - 4\mu} > 1$ e $F'(x_2) = -\sqrt{\mu^2 - 4\mu} < -1$, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

Observamos também que F' é estritamente decrescente, pois $F''(x) = -2\mu < 0$. Portanto, $F'(x) \ge F'(x_1) > 1$ para todo $x \in [0, x_1]$ e $F'(x) \le F'(x_2) < -1$ para todo $x \in [x_2, 1]$. De acordo com a Proposição 4.1, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e, desse modo, |F'(x)| > 1 para todo $x \in \Lambda_1$. Sendo F' contínua e Λ_1 compacto, existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.

Ainda de acordo com a Proposição 4.1, Λ_n é formado pela união de 2^n intervalos disjuntos. Seja [a,b] um desses intervalos. Se $c \in [a,b]$, em particular $c \in \Lambda_1$ e, portanto, $(F^n)'(c) = F'(F^{n-1}(c))F'(F^{n-2}(c))\dots F'(c) > \lambda^n$. Pelo Teorema do Valor Médio, existe $c \in [a,b]$ tal que $|F^n(b) - F^n(a)| = |(F^n)'(c)||b-a| > \lambda^n|b-a|$. Como $F^n : [a,b] \to [0,1]$ é um bijeção, temos que $|F^n(b) - F^n(a)| = 1$. Desse modo, $|b-a| < \frac{1}{\lambda^n}$ e a segunda parte está provada.

Teorema 4.4. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração. Λ é não vazio pois $0 \in \Lambda$, é limitado pois $\Lambda_1 \in [0,1]$ e é fechado pois é intersecção de conjuntos fechados.

Agora, suponha que Λ contém algum intervalo. Então, existem $x, y \in I$, x < y, tais que $[x, y] \subset \Lambda$. Seja k tal que $\frac{1}{\lambda^k} < |x-y|$. Em particular, $[x, y] \subset \Lambda_k$. Mas, de acordo com o Lema 4.3, os intervalos de Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$. Absurdo e, portanto, Λ não possui intervalos.

Por fim, observe que, se x é um ponto extremo de algum intervalo de Λ_n , então $x \in \Lambda$ pois $F^{n+1}(x) = 0$. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Em particular, $x \in \Lambda_k$ e, portanto, x é elemento de algum intervalo cujo tamanho é menor que ε , de acordo com o Lema 4.3. Portanto, existe $y \in \Lambda$ ponto extremo do intervalo que contém x tal que $|x - y| < \varepsilon$. Como ε é arbitrário, concluímos que x é um ponto de acumulação de Λ . \square

Com o Lema 4.3, também podemos mostrar que o conjunto de pontos periódicos de F é denso quando $\mu > 2 + \sqrt{5}$.

Proposição 4.5. Se $\mu > 2 + \sqrt{5}$, então o conjunto de pontos periódicos de $F : \Lambda \to \Lambda$ é denso em Λ .

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 4.3, o intervalo fechado $I \subset \Lambda_k$ que contém x possui tamanho menor que ε . Pela Proposição 4.1, $F^k : I \to [0,1]$ é bijetora. Como $F^k(I) \supset I$, a Proposição 2.1 afirma que existe $y \in I$ tal que $F^k(y) = y$. Observando que $y \in \Lambda$ e $|x - y| < \varepsilon$, o resultado está provado.

No restante da seção, definiremos o que é uma função topologicamente transitiva, o que é uma função que depende sensivelmente das condições iniciais e, por fim, o que é uma função caótica. Vamos também mostrar F possui cada uma dessas propriedades quando $\mu > 2 + \sqrt{5}$.

Definição 4.6. Seja $f: D \to D$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in D$ e $\varepsilon > 0$, existem $z \in D$ e $k \ge 1$ tais que $|z - x| < \varepsilon$ e $|f^k(z) - y| < \varepsilon$.

Intuitivamente, f é uma função topologicamente transitiva se para todo par de conjuntos abertos existe um ponto de um dos conjuntos que é levado para o outro conjunto após um número finito de iterações da f.

Proposição 4.7. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é topologicamente transitiva.

Demonstração. Sejam $x, y \in \Lambda$ e $\varepsilon > 0$. Existe $k \geq 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 4.3, o tamanho de cada intervalo fechado em Λ_k é menor que $\frac{1}{\lambda^k}$ e, portanto, menor que ε . Como $x \in \Lambda_k$, existe um intervalo $[a,b] \subset \Lambda_k$ que contém x. Pela Proposição 4.1, $F^k : [a,b] \to [0,1]$ é bijetora e, pelo Teorema do Valor Intermediário, existe $z \in [a,b]$ tal que $F^k(z) = y$. Observando que $z \in \Lambda$, concluímos que F é topologicamente transitiva.

Definição 4.8. Seja $f: D \to D$ uma função. Dizemos que f depende sensivelmente das condições iniciais se para algum $\delta > 0$, dados $x \in D$ e $\varepsilon > 0$, existem $y \in D$ e $k \ge 1$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição 4.9. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$ e $\varepsilon > 0$. Existe $k \ge 1$ tal que $\frac{1}{\lambda^k}$. Como na demonstração da Proposição anterior, seja I o intervalo fechado contido em Λ_k que contém x e cujo tamanho é menor que ε . Como $F^k: I \to [0,1]$ é um bijeção, então $F^k(a) = 0$ e $F^k(b) = 1$, onde a e b são pontos extremos de I. Como $F(\frac{1}{2}) > 1$ e $x \in \Lambda$, segue que $F^k(x) \in [0,\frac{1}{2}) \cup (\frac{1}{2},1]$. Se $F^k(x) \in [0,\frac{1}{2})$, então $|F^k(x) - F^k(b)| = |F^k(x) - 1| > \frac{1}{2}$ e se $F^k(x) \in (\frac{1}{2},1]$, então $|F^k(x) - F^k(a)| = |F^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, temos o resultado para $\delta = \frac{1}{2}$.

Definição 4.10. Seja $f: D \to D$ uma função. Dizemos que f é caótica se

- 1. O conjunto de pontos periódicos de f é denso.
- 2. f é topologicamente transitiva.
- 3. f depende sensivelmente das condições iniciais.

Teorema 4.11. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é caótica.

Demonstração. O resultado segue das Proposições 4.5, 4.7 e 4.9.

Observação. Os Teoremas 4.4 e 4.11 são válidos para $4 < \mu \le 2 + \sqrt{5}$, porém a demonstração é mais complicada.