4.3.7 (d) An integer is divisible by 5 if and only if its units digit is 0 or 5.

Let $N \in \mathbb{Z}$ be an integer of the form $N = a_m 10^m + \cdots + a_1 10 + a_0 = a_m 2^m \cdot 5^m + \cdots + a_1 2 \cdot 5$ with each $0 \le a_i < 10$. Notice that every term other than a_0 is divisible by 5 as it is some multiple of 5, i.e. $a_i 10^i \equiv 0 \pmod{5}$ for $1 \le i \le m$. So, $5 \mid N$ if and only if $5 \mid a_0$. Now a_0 is divisible by 5 if and only if $a_0 = 5$ or 0. Thus an integer N is divisible by 5 if and only if its units digit is 0 or 5.

4.3.11 Assuming that 495 divides 273x49y5, obtain the digits of x and y.

Suppose that 495 divides 273x49y5. So 495n = 273x49y5 for some $n \in \mathbb{Z}$. Then notice that $495 \equiv 0 \pmod{9}$ and $495 \equiv 0 \pmod{11}$ since $4+9+5=9\cdot 2$ and 5-9+4=0. Since $n \in \mathbb{Z}$, we have $495n \equiv 0 \pmod{9}$ and $495n \equiv 0 \pmod{11}$, i.e.

$$273x49y5 \equiv 0 \pmod{9}$$
 and $273x49y5 \equiv 0 \pmod{11}$.

From this we know that

$$2+7+3+x+4+9+y+5=30+x+y \equiv 3+x+y \equiv 0 \pmod{9}$$

and

$$5 - y + 9 - 4 + x - 3 + 7 - 2 = 12 - y + x \equiv 1 - y + x \equiv 0 \pmod{11}$$
.

Then $x + y \equiv 6 \equiv 15 \pmod{9}$ and $y - x \equiv 1 \pmod{11}$. Note: $x, y \in \{0, 1, 2, \dots, 9\}$. Solving the system of linear equations x + y = 15 and y - x = 1 gives that x = 7 and y = 8.

4.3.16 Show that 2^n divides an integer N if and only if 2^n divides the number made up of the last n digits of N.

Let $N \in \mathbb{Z}$ so that $N = a_{n+i}10^{n+i} + \cdots + a^n10^n + \cdots + a_110 + a_0$ where $n \ge 0$ and $i \ge 0$. If 2^n divides the last n digits of N, then

$$2^n \mid a_{n-1}10^{n-1} + \dots + a_110 + a_0.$$

Notice that

$$a_{n+i}10^{n+i} + \dots + a_n10^n = 10^n(a_{n+i}10^i + \dots + a_n) = 2^n5^n(a_{n+i}10^i + \dots + a_n).$$

So $2^n \mid (a_{n+i}10^{n+i} + \dots + a_n10^n)$. Thus $2^n \mid a_{n+i}10^{n+i} + \dots + a_n10^n + \dots + a_n10^n + \dots + a_n10^n$.

Now suppose that $2^n \mid N$. Notice that $2^n \mid a_{n+i}10^{n+i} + \cdots + a_n10^n$ since

$$2^{n}5^{n}(a_{n+i}10^{i}+\cdots+a_{n})=a_{n+i}10^{n+i}+\cdots+a_{n}10^{n}.$$

Then

$$2^{n} \mid N - (a_{n+i}10^{n+i} + \dots + a_{n}10^{n}) = a_{n-1}10^{n-1} + \dots + a_{1}10 + a_{0}.$$

So 2^n divides the last n digits of N.

4.3.28 When printing the ISBN $a_1a_2...a_9$, two unequal digits were transposed. Show that the check digits detected this error.

Suppose we have some ISBN number $a_1 a_2 \cdots a_9$. Then we can write $a_1 a_2 \cdots a_j a_{i+1} \cdots a_i a_{j+1} \cdots a_9$ where a_i and a_j were transposed and not equal with $1 \le i < j \le 9$. We know that

$$a_1 + 2 \cdot a_2 + \dots + i \cdot a_i + (i+1) \cdot a_{i+1} + \dots + j \cdot a_j + \dots + 9 \cdot a_9 \equiv a_{10} \pmod{11}$$
.

Assume for the sake of contradiction that the check digits did not detect the error in the transposition. Then

$$a_1 + 2 \cdot a_2 + \dots + i \cdot a_i + (i+1) \cdot a_{i+1} + \dots + i \cdot a_i + \dots + 9 \cdot a_9 \equiv a_{10} \pmod{11}$$
.

So $a_1 + 2 \cdot a_2 + \cdots + i \cdot a_i + (i+1) \cdot a_{i+1} + \cdots + j \cdot a_j + \cdots + 9 \cdot a_9$ $\equiv a_1 + 2 \cdot a_2 + \cdots + i \cdot a_j + (i+1) \cdot a_{i+1} + \cdots + j \cdot a_i + \cdots + 9 \cdot a_9 \pmod{11}.$ This implies that

$$i \cdot a_i + j \cdot a_j \equiv i \cdot a_j + j \cdot a_i \pmod{11}$$
.

Simplifying more gives that

$$(j-i) \cdot a_j \equiv (j-i)a_i \pmod{11}.$$

Because 0 < j - i < 9 and gcd(j - i, 11) = 1, it follows that $a_j \equiv a_i \pmod{11}$. Since both a_i and a_j are less than 11 and not negative, it follows that $a_i = a_j$, a contradiction. Thus the check digits detected the error.