

01

MOTIVATIONS

02

METHODOLOGY

03

EXPERIMENTS

04

RESULTS ANALYSIS

05

CONCLUSION

Recommendations on Digital Libraries + Search Engines

POOR RECOMMENDER SYSTEM LIMITED PAPER DATASETS

WHAT ARE THE PROBLEMS

INCORRECT SEARCH KEYWORDS UNFAMILIAR SCIENTIFIC DOMAINS

WORKFLOW

CONVERT WEIGHT **WEB PDF INTO KEYWORDS SCRAPING BY DOMAIN** TXT **RESULTS USERS AUTOPHRASE:** SEARCH **UPLOAD BY SELECTED EXTRACT KEYWORDS PAPERS KEYWORDS**

AUTOPHRASE

TECHNIQUE 1

Robust Positive-Only Distant Training

TECHNIQUE 2

POS-Guided Phrasal Segmentation

APPLY WEIGHT

Weighted Quality = Quality * Domain Quality

WEB SCRAPING

WEBSITE OUTLOOK

Auto Library

CLIMENTS

ENTER AN URL:

https://arxiv.org/pdf/1702.04-

UPLOAD A LOCAL FILE:

Choose File No file chosen

Upload

+ 2102.11333.pdf

[TKDE'18]Automated

Phrase Mining from
Massive Text Corpora.pdf

- + 1702.04457v1.pdf
- MetaPAD.pdf
- AutoNER.pdf
- [SIGMOD'15]Mining Quality
 Phrases from Massive Text Corpora.pdf

AUTOLIBRARY

BLOG

CODE CONTACT US

Welcome to AutoLibrary!

To address the difficulty of manually extracting keywords from papers and poor recommender system for related work of other websites, we built a website called AutoLibrary where users could use it as their personal digital library to save their documents and could find similar papers for each input scientific paper.

Brief Introduction

While the user inputs a paper and specifies a domain, we first use AutoPhrase to extract quality phrases from the input paper. AutoPhrase is a phrase mining method created by Jingbo Shang. It minimizes the required human effort of other phrase mining methods and improves the result by using two new techniques. The first technique is Robust Positive-Only Distant Training and the second one is POS-Guided Phrasal Segmentation. Since it is hard to ensure the significance of quality phrases generated from a single paper to both the paper and its domain, we build a dataset that contains the quality phrases of different domains by running AutoPhrases on corpora of each domain. After applying weight to the AutoPhrase results of a single document with our pre-obtained domain-specific phrases, we can rank the phrases again and filter out domain's unimportant phrases. Then by searching for keywords with the highest quality scores on Semantic Scholar, AutoLibrary scrap and display the search result on its website. AutoLibrary also allows users to customize their search, such as manually adding keywords and changing the selection of keywords. It might also store users' searching history in their local machine so that they could quickly look back to papers that they read as well as their search result.

EXPERIMENTS

Compare & Contrast with Similar Web Applications

AutoLibrary

Jstor

Webtools

MonkeyLearn

AutoLibrary vs. Webtools

5 Papers Published by Professor Shang

	-		
Article	Publish Year	Domain	
CrossWeigh	2019	Computer Science	
AutoPhrase	2018	Computer Science	
LM-LSTM-CRF	2018	Computer Science	
AutoNER	2018	Computer Science	
SetExpan	2017	Computer Science	

RESULT ANALYSIS

Papers With:

Overlapped Topics

+

Different Topics

Top 10 Quality Phrases from 5 Papers

Rank	CrossWeigh	AutoPhrase	LM-LSTM-CRF	AutoNER	SetExpan
1	natural language processing	knowledge base	neural networks	natural language	bipartite graph
2	natural language	information extraction	pos tagging	domain specific	skip gram
3	computational linguistics	domain specific	bi Istm	named entity	ranked lists
4	cross validation	text corpora	sequence labeling	distant supervision	semantic drift
5	named entity recognition	keyphrase extraction	word embedding	Istm crf	text corpora
6	pos tagging	pos tagger	transfer learning	ablation experiments	texas
7	Istm crf	natural language	language model	distantly supervised	coarse grained
8	chicago	massive text corpora	word embeddings	ncbi	california
9	japan	cn	lstm crf	ner	skip grams
10	f1	auc	conditional random	ram	ranked list

DISTRIBUTION CHANGE

Accuracy Compared to Manual Labeling

	Accuracy				
Article	Quality Score > 0.5	Quality Score > 0.6	Quality Score > 0.7		
CrossWeigh	0.6429	1.0	1.0		
AutoPhrase	0.7800	0.8571	1.0		
LM-LSTM-CRF	0.8889	0.9231	1.0		
AutoNER	0.8333	1.0	1.0		
SetExpan	0.6296	0.8889	1.0		

THANKS

Feel free to use our projects: https://yichunren.pythonanywhere.com/autolibrary

