Question Number	Answer		Mark
17a	Energy (supplied) to/per unit charge Or Work done (supplied) to/per unit charge Or The work done moving unit charge around the whole circuit	(1)	(1)
17bi	Use of sum of e.m.f. = sum of p.d. Or see $\mathcal{E} = V + Ir$ with correct substitutions	(1)	
	$r = 1.9 \times 10^{-2} \Omega$	(1)	
	Example of calculation		
	$\mathcal{E} = V + Ir$, 12.0 V = 11.81 V + (9.83 A) r. so $r = 0.0193 \Omega$		
			(2)
17bii	Plot V against I Determine the gradient Gradient is $-r$	(1) (1) (1)	
	OR Plot I against V Determine the gradient Gradient is $-(1/r)$	(1) (1) (1)	
	OR		
	Plot $(\mathcal{E} - V)$ against I Determine the gradient Gradient is r	(1) (1) (1)	
	Gradient is ,		(3)

	Total for question 17		10
			(4)
	Percentage of original value = $(13.4 \text{ W})/(15.5 \text{ W}) = 0.86$ (or 86%)		
	When $r = 0.50 \Omega$, $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.50 \Omega) = 1.64 \text{ A}$ Power of external resistor = $I^2 R = (1.64 \text{ A})^2 (5.0 \Omega) = 13.4 \text{ W}$		
	Initially $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.10 \Omega) = 1.76 \text{ A}$ Power of external resistor = $I^2 R = (1.76 \text{ A})^2 (5.0 \Omega) = 15.5 \text{ W}$		
	Example of calculation		
	Example of coloulation		
	(Candidates who use incorrect values of I, V or R in either power calculation for MP2 cannot be awarded MP3 or MP4)		
	Or Calculated value for 70% of initial power is less than the final power so student incorrect	(1)	
	less than 30% so student incorrect On Calculated value for 700% of initial power is less than the final power.		
	Or Calculated value for difference between initial and final power is		
	Calculated value for final power/initial power is greater than 70% of initial power so student incorrect		
	Or Calculates 70% of initial power	(1)	
	Divides final power by initial power Or Divides difference in power by initial power	(1)	
	Use of a power equation (to calculate Power dissipated in fixed resistor)	(1)	
	Or Calculates p.d. across fixed resistor using potential divider equation	(1)	
7c	Calculates circuit current using $I = \mathcal{E} / \text{Total } R$		