4. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

- 1. μ und ν seien Maße auf dem Ring \Re . Zeigen Sie
 - (a) $(\mu + \nu)^* = \mu^* + \nu^*$,
 - (b) $\mathfrak{M}_{\mu^*} \cap \mathfrak{M}_{\nu^*} \subseteq \mathfrak{M}_{\mu^* + \nu^*}$.
- 2. Welche der folgenden Funktionen sind äußere Maße?

 - $\begin{aligned} &\text{(a)} \ \ \mu^*(A) = \left\{ \begin{aligned} &0 & \text{für } A = \emptyset, \\ &1 & \text{sonst.} \end{aligned} \right. \\ &\text{(b)} \ \ \mu^*(A) = \left\{ \begin{aligned} &0 & \text{für } \operatorname{card}(A) <= \aleph_0, \\ &\infty & \text{für } \operatorname{card}(A) > \aleph_0 \end{aligned} \right. .$
 - (c) $\mu^*(A) = \begin{cases} 0 & \text{für } |A| < \infty, \\ 1 & \text{sonst.} \end{cases}$
 - (d) $\mu^*(A) = \begin{cases} \frac{|A|}{|A|+10} & \text{falls } |A| < \infty, \\ 1 & \text{sonst.} \end{cases}$

Bestimmen Sie zu den äußeren Maßen jeweils die Systeme der messbaren Mengen.

3. Auf dem Semiring

$$\mathfrak{T} = \{\emptyset, \{1, 2\}, \{3, 4\}, \{5\}\}\$$

über $\Omega = \{1, 2, 3, 4, 5\}$ ist durch $\mu(\emptyset) = \mu(\{1, 2\}) = 0, \ \mu(\{3, 4\}) = 2,$ $\mu(\{5\}) = 1$ ein Maß definiert. Bestimmen Sie seine Fortsetzung auf den erzeugten Ring, das erzeugte äußere Maß μ^* und das System der μ^* messbaren Mengen.

4. $\mathfrak C$ sei ein beliebiges Mengensystem mit $\emptyset \in \mathfrak C$, $f:\mathfrak C \to [0,\infty]$ eine beliebige Funktion mit $f(\emptyset) = 0$.

Zeigen Sie, dass

$$\mu^*(A) = \inf\{\sum_{n \in \mathbb{N}} f(B_n) : B_n \in \mathfrak{C}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n\}$$

eine äußere Maßfunktion ist.

5. $(\mu_i^*, i \in I)$ sei eine Familie von äußeren Maßen. Zeigen Sie, dass

$$\mu^* = \sup_{i \in I} \mu_i^*$$

ebenfalls ein äußeres Maß ist.

6. Für $A \subseteq \mathbb{R}$ und $\epsilon > 0, 0 < \alpha < 1$ setzen wir

$$d(A)=\sup\{|x-y|:x,y\in A\},$$

$$\mu_{\alpha,\epsilon}^*(A) = \inf\{\sum_{n \in \mathbb{N}} d(B_n)^{\alpha} : B_n \subseteq \mathbb{R}, d(B_n) < \epsilon, A \subseteq \bigcup_{n \in \mathbb{N}} B_n\}.$$

$$\mu_{\alpha}^*(A) = \lim_{\epsilon \to 0} \mu_{\alpha,\epsilon}^*(A) = \sup_{\epsilon > 0} \mu_{\alpha,\epsilon}^*(A).$$

Zeigen Sie, dass dadurch äußere Maße definiert sind, und dass für $\alpha < \beta$ aus $\mu_{\alpha}^*(A) < \infty$ $\mu_{\beta}^*(A) = 0$ folgt. Die zugehörigen Maße μ_{α} heißen die α -dimensionalen Hausdorffmaße. Sie sind für $\alpha < 1$ nicht sigmaendlich.

- 7. Ω_1 und Ω_2 seien zwei nichtleere Mengen und $f:\Omega_1\to\Omega_2$ eine Funktion.
 - (a) Zeigen Sie für $A \subseteq \Omega_2$: $f(f^{-1}(A)) = A \cap f(\Omega_1)$.
 - (b) μ_2^* sei ein äußeres Maß über Ω_2 . Zeigen Sie, dass durch

$$\mu_1^*(A) = \mu_2^*(f(A))$$

ein äußeres Maß über Ω_1 definiert wird, und dass $f^{-1}(A)$ μ_1^* -messbar ist, wenn A μ_2^* -messbar ist.