Machine Learning -A – February 11, 2020

Time limit: 2 hours.

Last Name		First Name		Matricola	
	·		, ,	name of exam, CFU, and lso if you are an Erasmus	

EXERCISE A1

- 1. Explain the difference between regression and classification.
- 2. Provide a mathematical formulation of linear regression.
- 3. Provide an example of a linear regression model that overfits a dataset of your choice, and discuss how this can be mitigated.

EXERCISE A2

- 1. Define mathematically the problem solved by logistic regression
- 2. Consider the following dataset and the sigmoid function:

x_1	x_2	x_3	t
0	0	1	1
1	2	3	1
4	4	1	0

Which one among the following solutions fits the data better? Why?

$$\vec{w}_1^T = (1, 0, -1)$$
 $\vec{w}_2^T = (-1, -1, 2)$

A plot of the sigmoid function is reported above. You do not need to compute explicit values of the model.

EXERCISE B1

- 1. Give a short explanation of the *kernel trick/kernel substitution*. What is the necessary condition for applying the kernel trick?
- 2. Provide an example of its application. In detail:
 - draw a suitable dataset for binary classification in 2D;
 - discuss which kernel you would use for this dataset;
 - show graphically a possible solution of such a kernel-based model.

EXERCISE B2

Consider the structure of a recurrent neural network (RNN):

- 1. Design a generic RNN model (or give the relative formula).
- 2. Explain the concept of 'unfolding' (or 'unrolling') an RNN.
- 3. For what type of input would you use an RNN? Describe a specific use case of your choice providing details both for the input and output of the RNN.

EXERCISE C1

- 1. Describe the difference between supervised learning and reinforcement learning with a formal definition of the two problems.
- 2. Describe the full observability property of Markov Decision Processes and its relation with non-deterministic outcomes of actions.

EXERCISE C2

- 1. Describe the K-means algorithm in a formal way (i.e., with precise mathematical formulas and equations), including: input and output of the algorithm, its main steps, and the termination condition.
- 2. Draw a suitable 2-D data set for K-means.
- 3. Simulate the execution of K-means in such 2-D data, showing at least three steps of the algorithm and the final output.