Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r,ℓ) -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \ldots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

3. fázis

	r	a	Ь	C
f_0	0	∞	∞	∞
f_1	0	∞	-2	∞
f_2	0	-1	-2	2
f_3	0	-2	-2	2

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r,ℓ) -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Emj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

3. fázis

	r	a	Ь	C
f_0	0	∞	∞	∞
f_1	0	∞	-2	∞
f_2	0	-1	-2	2
f_3	0	-2	-2	2

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}, r \in V$. Output: $dist_{\ell}(r, v)$ $\forall v \in V$ Működés: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után. OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Allítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r,v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

 $f_2(v) = dist_{\ell}(r, v)$ ha $\exists \le 2$ -élű legrövidebb rv-út. ...

 $f_{n-1}(v) = dist_{\ell}(r, v)$ ha $\exists \leq (n-1)$ -élű legrövidebb rv-út.

Tehát $f_{n-1}(v) = dist_{\ell}(r, v) \ \forall v \in V$.

3. fázis

	r	a	b	C
f_0	0	∞	∞	∞
f_1	0	∞	-2	∞
f_2	0	-1	-2	2
f_3	0	-2	-2	2

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{M\"{u}k\"{o}d\acute{e}s}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émj, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják.

Biz: A Dijkstra esethez hasonló. Tetsz. v csúcsból visszafelé követve az végső értékeket beállító éleket $f_{n-1}(v)$ hosszúságú rv-utat találunk.

3. fázis

	r	a	Ь	C
f_0	0	∞	∞	∞
f_1	0	∞	-2	∞
f_2	0	-1	-2	2
f_3	0	-2	-2	2

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \ldots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émj, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják.

"Lépésszámanalízis": Ha a |V(G)| = n és |E(G)| = m, akkor minden fázisban $\leq m$ émj, ami $konst \cdot m$ lépés. Ez összesen $\leq konst \cdot (n-1) \cdot m \leq konst \cdot n^3$ lépés, az algoritmus hatékony.

Tfh G = (V, E), $\ell : E \to \mathbb{R}$ és $V = \{v_1, v_2, \dots, v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan $v_i v_j$ -út hosszát, aminek belső csúcsai csak v_1, v_2, \dots, v_k lehetnek.

Megf: (1) $d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$.

(3) Ha ℓ konzervatív, akkor tetsz. i, j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Biz: Tekintsünk egy $d^{(k+1)}(i,j)$ -t meghatározó P utat.

I. eset: $v_{k+1} \notin P$. Ekkor $d^{(k+1)}(i,j) = d^{(k)}(i,j)$, és $d^{(k+1)}(i,j) \le d^{(k)}(i,k+1) + d^{(k)}(k+1,j)$.

II. eset: $v_{k+1} \in P$. Ekkor $d^{(k+1)}(i,j) \le d^{(k)}(i,j)$, és $d^{(k+1)}(i,j) = d^{(k)}(i,k+1) + d^{(k)}(k+1,j)$.

Mindkét esetben helyes a képlet.

Tfh G = (V, E), $\ell : E \to \mathbb{R}$ és $V = \{v_1, v_2, \dots, v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan $v_i v_j$ -út hosszát, aminek belső csúcsai csak v_1, v_2, \dots, v_k lehetnek.

Megf: (1) $d^{(n)}(i,j) = dist_{\ell}(v_i,v_j)$. (2) $d^{(0)}(i,i) = 0$, $v_iv_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_iv_j)$, különben $d^{(0)}(i,j) = \infty$. (3) Ha ℓ konzervatív, akkor tetsz. i,j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j),d^{(k)}(i,k+1)+d^{(k)}(k+1,j)\}$ teljesül. Floyd-algoritmus: Input: G = (V,E), konzervatív $\ell : E \to \mathbb{R}$. Output: $dist_{\ell}(u,v) \ \forall u,v \in V \ \underline{\text{Működés}}$: $d^{(0)}$ felírása (2) alapján. Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

OUTPUT: $d^{(n)}(u, v) = dist_{\ell}(u, v) \ \forall u, v \in V$.

$d^{(1)}$	v_1	v_2	<i>V</i> ₃	V4
v_1	0	3	∞	∞
V ₂	∞	0	∞	-4
V3	-2	1	0	-2
V4	∞	∞	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \forall u, v \in V$ Működés: $d^{(0)}$ felírása (2) alapján.

Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

OUTPUT: $d^{(n)}(u, v) = dist_{\ell}(u, v) \ \forall u, v \in V$.

$d^{(3)}$	v_1	v ₂	<i>V</i> ₃	V4
v_1	0	3	∞	-1
v ₂	∞	0	∞	-4
<i>V</i> 3	-2	1	0	-3
V4	2	5	4	0

$d^{(4)}$	v_1	v ₂	<i>v</i> ₃	<i>V</i> 4
v_1	0	3	3	-1
v ₂	-2	0	0	-4
V3	-2	1	0	-3
V ₄	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{Működés}$: $d^{(0)}$ felírása (2) alapján.

Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

OUTPUT: $d^{(n)}(u, v) = dist_{\ell}(u, v) \ \forall u, v \in V$.

"Lépésszámanalízis": A $d^{(0)}$ felírása $konst \cdot n^2$ lépés. Minden fázis $konst' \cdot n^2$. Mivel összesen n fázis van, a lépésszám legfeljebb $konst'' \cdot n^3$ lépés, az algoritmus hatékony.

Ford vs Floyd: Konzervatív hosszfüggvényre működnek helyesen. Mindkét algoritmus talál bizonyítékot, ha ℓ nem konzervatív. (!!) A Ford csak egy gyökérből, a Floyd bmely két csúcs között talál legrövidebb utat. (!!)

A Ford ritka gráfokra jelentősen olcsóbb, sok él esetén a Floyd nem sokkal drágább.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megj: A BFS konkrét megvalósításában szükség van arra, hogy az elért csúcsokat úgy tároljuk, hogy könnyű legyen kiválasztani az elért csúcsok közül a legkorábban elértet. Erre egy célszerű adatstruktúra a sor (avagy FIFO lista). Ha a BFS megvalósításában ezt az adatstruktúrát veremre (más néven LIFO listára) cseréljük, akkor a DFS egy megvalósítása adódik.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Biz: v-t u-ból értük el, ezért m(u) < m(v). A v elérésekor u és v elért állapotúak. A DFS szerint v-t u előtt fejezzük be. \square

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Biz: u-ból v-be faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Biz: v-ből u-ba faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).

Biz: m(u) < m(v) esetén a DFS miatt v az u leszármazottja lenne. Ezért m(u) > m(v).Ha u-t a v befejezése előtt érnénk el, akkor u a v leszármazottja lenne. Ezért az alábbi sorrendben történik u és v evolúciója: v elérése, v befejezése, u elérése, u befejezése.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.

Biz: Indirekt. Ha uv keresztél, akkor (4) miatt m(u) > m(v), továbbá vu is keresztél, ezért m(v) > m(u). Ellentmondás.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Biz: A DFS fa visszaélhez tartozó alapköre a G egy irányított köre.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.
- (7) Ha DFS után nincs visszaél, akkor G-ben nincs irányított kör.

Biz: Bmely irányított körnek van olyan uv éle, amire b(u) < b(v).

Ez az él csak visszaél lehet.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Ha ugyanis lenne az így megirányított gráfban irányított kör, akkor az élei mentén a számok végig növekednének, ami lehetetlen.

Azt fogjuk igazolni, hogy a fenti példa minden DAG-ot leír.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** (G) irányított gráf DAG $) \iff (V(G)$ -nek \exists top. sorrendje).

Biz: Tfh ∃ top. sorrend. Láttuk, hogy G ekkor DAG. ✓

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \ldots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek }\exists \text{ top. sorrendje}).$ **Biz:** Most tfh G DAG, és futtassunk rajta egy DFS-t. Láttuk,

hogy a DFS után nem lesz visszaél, ezért minden uv irányított élre b(u) > b(v) teljesül. Ezért a csúcsok befejezési sorrendjének megfordítása a G csúcsainak egy topologikus sorrendje.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel**: (G irányított gráf DAG) \iff (V(G)-nek \exists top. sorrendje). Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G egy irányított köre, így G nem DAG. Ha pedig nincs visszaél, akkor a fordított befejezési sorrend a G egy topologikus sorrendje, G tehát DAG. Megi: DAG-ban topologikus sorrendet forráskeresések és

forrástörlések alkalmazásával is találhatunk.

Leghosszabb út keresése

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is? Otlet: Az $\ell'(uv) = -\ell(uv)$ élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni. Gond: A módszerünk csak konzervatív élhosszokra működik. Irányítatlan gráfon ez nemnegatív élhosszokat jelent, ezért ez az ötlet itt nem segít. Irányított esetben nem baj a negatív élhossz, feltéve, hogy G DAG. Ekkor Ford, Floyd bármelyike használható. Jó hír: Van egy még gyorsabb módszer: a dinamikus programozás. Ennek segítségével tetsz. G DAG minden v csúcsához ki tudjuk számítani a v-be vezető leghosszabb utat. (Sőt! ...) **Leghosszabb út DAG-ban** Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: $\max\{\ell(P): P \ v\text{-be vezető út}\}\ \text{minden } v\in V \ \text{csúcsra}.$ Működés: $1 \mid V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása. 2 i = 1, 2, ..., n: $f(v_i) = \max\{\max\{f(v_i) + \ell(v_i v_i) : v_i v_i \in E\}, 0\}$ Output: $f(v) \forall v \in V$

Leghosszabb út keresése

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$.

Output: $\max\{\ell(P): P \ v\text{-be vezető út}\}\ \text{minden } v\in V \ \text{csúcsra}.$

Működés: $1 V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 i = 1, 2, ..., n: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Helyesség: Ha a v_i -be vezető leghosszabb út utolsó előtti csúcsa v_i , akkor $f(v_i) = f(v_i) + \ell(v_i v_i)$.

Megj: Ha a fenti algoritmusban minden csúcsra megjelöljük az f(v) értéket beállító élt (éleket), akkor a megjelölt élek minden v csúcsba megadnak egy leghosszabb utat. Sőt: minden v-be vezető leghosszabb megkapható így.

Kínzó kérdés: Van bármi értelme leghosszabb utakat keresni?

A PERT probléma

Egy a, b, . . . tevékenységekből álló projektet kell végrehajtanunk.

Precedenciafeltételek: bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \ge 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf: (1) Ha G nem DAG, akkor a projekt nem hajtható végre. (2) Ha G DAG, akkor minden v tevékenység legkorábbi kezdési

időpontja a v-be vezető leghosszabb út hossza.

Köv: A PERT probléma megoldása nem más, mint a G DAG minden csúcsára az oda vezető leghosszabb út meghatározása.

Terminológia: G leghosszabb útja kritikus út, amiből több is lehet. Kritikus út csúcsai a kritikus tevékenységek.

Megf: Ha egy kritikus tevékenység nem kezdődik el a lehető legkorábbi időpontban, akkor az egész projekt végrehajtása csúszik.