1.11 Třída co- \mathcal{NP}

- **1.11.1** Pozorování. Je-li jazyk L ve třídě \mathcal{P} , pak i jeho doplněk \overline{L} patří do třídy \mathcal{P} . Obdobné tvrzení se pro jazyky třídy \mathcal{NP} neumí dokázat.
- **1.11.2 Definice.** Jazyk L patří do třídy co- \mathcal{NP} , jestliže jeho doplněk patří do třídy \mathcal{NP} .

1.11.3 Příklady.

- Jazyk USAT, který je doplňkem jazyka SAT splnitelných booleovských formulí, leží ve třídě co – NP. (Jazyk USAT se skládá ze všech nesplnitelných booleovských formulí a ze všech slov, které neodpovídají booleovské formuli.)
- Jazyk TAUT, který se skládá ze všech slov odpovídajících tautologii výrokové logiky, patří do třídy $co \mathcal{NP}$.
- 1.11.4 Otázka, zda co- $\mathcal{NP} = \mathcal{NP}$, je otevřená.
- **1.11.5** Tvrzení. co- $\mathcal{NP} = \mathcal{NP}$ právě tehdy, když existuje \mathcal{NP} úplný jazyk, jehož doplněk je ve třídě \mathcal{NP} .

1.12 Třídy PSPACE a NPSPACE

- **1.12.1** Je dán Turingův stroj M (deterministický nebo nedeterministický). Připomeňme, že M pracuje s paměťovou složitostí p(n) právě tehdy, když pro každé slovo délky n nepoužije paměťovou buňku větší než p(n).
- **1.12.2** Třída $\mathcal{P}SPACE$. Jazyk L patří do třídy $\mathcal{P}SPACE$ právě tehdy, když existuje deterministický Turingův stroj M, který přijímá jazyk L a pracuje s polynomiální paměťovou složitostí.

1.12.3 Tvrzení. Platí

$$\mathcal{P} \subseteq \mathcal{P}SPACE$$
.

1.12.4 Třída $\mathcal{NP}SPACE$. Jazyk L patří do třídy $\mathcal{NP}SPACE$ právě tehdy, když existuje nedeterministický Turingův stroj M, který přijímá jazyk L a pracuje s polynomiální paměťovou složitostí.

1.12.5 Tvrzení. Platí

$\mathcal{NP} \subset \mathcal{NPSPACE}$.

1.12.6 Věta. Je dán Turingův stroj M (deterministický nebo nedeterministický), který přijímá jazyk L s paměťovou složitostí p(n) (kde p je nějaký polynom). Pak existuje konstanta c taková, že M přijme slovo w délky n po nejvýše $c^{p(n)+1}$ krocích.

Marie Demlová: Teorie algoritmů Před. 9: 15/4/2014

1.12.7 Myšlenka důkazu věty 1.12.6. Konstantu c volíme tak, abychom měli zajištěno, že Turingův stroj M má při práci se vstupem délky n méně než $c^{p(n)+1}$ různých konfigurací. Zajímají nás totiž pouze takové výpočty, ve kterých se konfigurace neopakují. Označme t počet páskových symbolů Turingova stroje M a označme s počet stavů m. Pak m má p(n) s $t^{p(n)}$ různých konfigurací.

Položme c=t+s. Z binomické věty vyplývá, že

$$c^{p(n)+1} = (t+s)^{p(n)+1} = t^{p(n)+1} + p(n) t^{p(n)} s + \dots$$

Odtud $c^{p(n)+1} \ge p(n) t^{p(n)} s$.

- **1.12.8** Věta. Je-li jazyk L ve třídě $\mathcal{P}SPACE$ ($\mathcal{NP}SPACE$)), pak L je rozhodován deterministickým (nedeterministickým) Turingovým strojem M s polynomiální paměťovou složitostí, který se vždy zastaví po nejvýše $c^{q(n)}$ krocích, kde q(n) je vhodný polynom a c konstanta.
- **1.12.9** Myšlenka důkazy věty 1.12.8. Předpokládejme, že $L \in \mathcal{P}SPACE$. Pak existuje Turingův stroj M_1 , který přijímá jazyk L s paměťovou složitostí p(n) (p(n) je vhodný polynom). Víme (z věty 1.12.6), že existuje konstanta c taková, že Turingův stroj M_1 potřebuje nejvýše $c^{p(n)+1}$ kroků.

Vytvoříme Turingův stroj M_2 , který bude mít dvě pásky: první páska bude simulovat M_1 , druhá bude počítat kroky na první pásce. Jestliže počet kroků překročí $c^{p(n)+1}$, Turingův stroj M_2 se neúspěsně zastaví.

Hledaný Turingův stroj M je Turingův stroj s jednou páskou, který simuluje Turingův stroj M_2 . Turingův stroj M pracuje v s časovou složitostí $\mathcal{O}(c^{2p(n)})$, tedy v maximálně d $c^{2p(n)}$ krocích. Nyní stačí položit $q(n) = 2p(n) + \log_c d$ nebo jakýkoli polynom větší.

1.12.10 Savitchova věta. Platí

$$PSPACE = \mathcal{NP}SPACE.$$

1.12.11 Nástin myšlenky důkazu Savitchovy věty. Zřejmě $\mathcal{P}SPACE \subseteq \mathcal{NP}SPACE$. Důkaz opačné inkluze $\mathcal{NP}SPACE \subseteq \mathcal{P}SPACE$ spočívá v tom, že jsme schopni nedeterministický Turingův stroj pracující s paměťovou složitostí p(n) simulovat deterministickým Turingovým strojem, který pracuje s paměťovou složitostí $\mathcal{O}([p(n)]^2)$.

Je dán nedeterministický Turingův stroj M, který přijímá jazyk L s polynomiální paměťovou složitostí p(n). Konstrukce deterministického Turingova stroje přijímajícího stejný jazyk jako M s polynomiální paměťovou složitostí je založena na rekursivní proceduře dostup(I,J,m), kde I a J jsou konfigurace a m je číslo. Výstup procedury dostup(I,J,m) je buď 1, jestliže Turingův stroj se z konfigurace I do konfigurace J dostane v nejvýše m krocích, 0 v opačném případě. Procedura dostup(I,J,m) pro každou konfiguraci K rekursivně zavolá procedury dostup(I,K,m/2) a dostup(K,J,m/2).

Pro vstup w voláme proceduru $dostup(I_0, J, m)$, kde I_0 je počáteční konfigurace M, J je přijímající konfigurace M a $m = c^{p(n)+1}$ (c je konstanta z 1.12.6). Dá se dokázat, že pro vykonání procedury dostup(I, J, m) deterministickým Turingovým strojem stačí paměťová složitost $\mathcal{O}([h(n)]^2)$, kde h(n) je vhodný polynom. (Uvědomte si, že nám nezáleží na tom, jak dlouho deterministický Turingův stroj pracuje, zajímáme se pouze o paměťové nároky.)

1.12.12 Důsledek. Platí

 $\mathcal{P}\subseteq\mathcal{NP}\subseteq\mathcal{P}SPACE.$