Лекция 2. Эргодическая теорема I

Эргодические системы, теорема Биркгофа-Хинчина

Рассматриваются системы вида $(G,(X,\mathcal{B},\mu),T^t)$, с конечной мерой $\mu(X)=1$. Ограничимся также только дискретным временем \mathbb{Z} .

Определение 1. T называется эргодическим, если $\forall A \in \mathcal{B} : 0 < \mu(A) < \mu(X), TA \neq A \pmod{0}$.

Это значит, что в X нет разбиения на два инвариантных множества A,B ненулевой меры. Действие называется эргодическим, если T^t эргодчино для любого t.

Теорема 1 (Эргодическая теорема Биркгофа-Хинчина). Если T — эргодическое, то $\forall x \in X$, ограниченной измеримой $f \in L^{\infty}(X)$ выполнено

$$\frac{1}{n} \sum_{0}^{n-1} f(T^k x) \to const = \int_{X} f d\mu$$

Определение 2. T называется *перемешивающим* ($T \in Mix$), если

$$\forall A, B \in \mathcal{B} : \mu(T^k A \cap B) \to \mu(A)\mu(B)$$

.

Определение 3. T называется *слабо перемешивающим* ($T \in WMix$), если

$$\forall A, B \in \mathcal{B} \,\exists \{k_j\}_1^\infty : \mu(T_j^k A \cap B) \to \mu(A)\mu(B)$$

.

2 Оператор Купмана

Определение 4. Оператор Купмана $\hat{T}: f(x) \mapsto f(Tx)$.

Для недискретного времени это будет представлением группы времени. Изучение свойств этого линейного оператора приводит к так называемой спектральной теории.

Замечание. Можно переформулировать все три данных определения:

- Эргодичность: $\hat{T}f_0 = f_0 \Rightarrow f_0 = const.$
- Перемешивание: $\langle T^k f, g \rangle \to 0$, $\int f d\mu = \int g d\mu = 0$. Иначе, $\hat{T}^k \to \Theta = P_{\{const\}}$ (ортопроектор на константу).

• $WCl(\{\hat{T}^k\}) \ni \Theta$.

Теорема 2. $T \in Mix \Rightarrow T - \mathit{эргодическое}.$

Доказательство. От противного: пусть $\exists \xi \neq const \hat{T} \xi = \xi$. $\xi_0 = \xi - \Theta \xi = \xi - \mathbb{E} \xi = \xi - \overline{\xi} \ (\Theta: f(x) \mapsto (x \to \int f d\mu)$. Обозначение Θ похоже на 0, неслучайно: $\Theta A = A\Theta = \Theta$).

$$\Theta\xi_0=0, \int \xi_0 d\mu=0, \xi_0 \neq const. \left\langle T^k\xi_0, \xi_0 \right\rangle \to 0, \text{ но } \left\langle T^k\xi_0, \xi_0 \right\rangle = \left\langle \xi_0, \xi_0 \right\rangle > 0,$$
 противоречие. \square

3 Семинарская часть

Упражнение 1. Показать, что $[0;1] \cong [0;1] \times [0;1]$ как пространства с мерой, то есть построить измеримую биекцию, сохраняющую меру.

Определение 5. Преобразование пекаря: $A \mid B \to \frac{B}{A}$.

Формула для преобразования пекаря в двоичном коде очень простая: $\dots y_2y_1x_1x_2\dots\Rightarrow\dots y_2y_1x_1x_2x_3\dots$, почти как левый сдвиг для случайных процессов.

Определение 6. Подкова Смейла: $(x,y) \mapsto (\frac{x}{3},3y) \pmod{1}$.

Определение 7. Сдвиг Бернулли: $\mathbb{A} = \{0,1\}, p = (p_0,p_1), p_0 + p_1 = 1.$ $\Sigma_2 = \mathbb{A}^{\mathbb{Z}} = \{x : \mathbb{Z} \to \mathbb{A}\}.$ Тогда для слова $w \colon P([w]) = p_0^{\#\text{нулей в w}} p_1^{\#\text{единиц в w}}.$

Упражнение 2. Найти инвариантное множество для подковы Смейла. Показать, что канторовское множество изоморфно [0;1] как пространство с мерой.

Упражнение 3. Попробовать устранить «негладкость» преобразования пекаря и «сингулярность подковы Смейла».

Упражнение 4 (**). $T \in Mix \Leftrightarrow \forall A \in \mathcal{B} \to \mu(T^kA \cap A) \to \mu(A)^2$.