§4 随机变量的独立性

- 一、随机变量的独立性
- 二、离散型随机变量的独立性

三、连续型随机变量的独立性

§4 随机变量的独立性

一、随机变量的独立性

设(X, Y)是二维随机变量,其联合分布函数为F(x, y),又随机变量X的分布函数为 $F_X(x)$,随机变量Y的分布函数为 $F_Y(y)$.如果对于任意的x,y,有

$$F(x, y) = F_X(x) \cdot F_Y(y)$$

则称 X, Y是相互独立的随机变量.

说明

§4 随机变量的独立性

(1). 由于

$$F(x, y) = P\{X \le x, Y \le y\}$$

以及
$$F_X(x) = P\{X \le x\}$$
, $F_Y(y) = P\{Y \le y\}$

可知,随机变量X与Y相互独立,实际上是指:

对于任意的x, y, 随机事件 $\{X \le x\} \quad = \{Y \le y\}$

相互独立.

说明

§4 随机变量的独立性

(2). 如果随机变量X与Y相互独立,则由

$$F(x, y) = F_X(x)F_Y(y)$$

可知,

二维随机变量 (X, Y) 的联合分布函数 F(x, y) 可由其边缘分布函数 $F_X(x)$ 与 $F_Y(y)$ 唯一确定.

例 1

§4 随机变量的独立性

设二维随机变量(X, Y)的联合分布函数为

$$F(x, y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$\left(-\infty < x < +\infty, -\infty < y < +\infty\right)$$

试判断X与Y是否相互独立?

解:

X的边缘分布函数为

例 1 (续)

§4 随机变量的独立性

$$F_X(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \quad (x \in (-\infty, +\infty))$$

Y 的边缘分布函数为

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$\left(y \in (-\infty, +\infty) \right)$$

例 1 (续)

§4 随机变量的独立性

所以,对于任意的实数x,y,有

$$F(x, y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \cdot \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$= F_X(x) F_Y(y)$$

所以X与Y是相互独立的随机变量.

二、离散型随机变量的独立性

§4 随机变量的独立性

设
$$(X, Y)$$
是二维离散型随机变量,其联合分布律为
$$p_{ij} = P\{X = x_i, Y = y_j\} \qquad (i, j = 1, 2, \cdots)$$

又随机变量X的分布律为

$$p_{i} = P\{X = x_i\}$$
 $(i = 1, 2, \dots)$

随机变量Y的分布律为

$$p_{.j} = P\{Y = y_j\}$$
 $(j = 1, 2, ...)$

如果对于任意的i, j $p_{ij} = p_{i\cdot} p_{\cdot j}$

则称X, Y是相互独立的随机变量.

⑤ 返回主目录

联合分	布律	以及边缘分布律表		§4 随机变量的独立性	
$\setminus v$					
X	\mathcal{Y}_{1}	\mathcal{Y}_2	\mathcal{Y}_j		P_i
$x_{\!\scriptscriptstyle m l}$	P_1	P_{12}	P_{i}		P _t
x_2	P_{21}	P_{22}	P_{2j}		P_2
:	÷	:	÷		:
\mathcal{X}_{i}	P_{i1}	P_{i2}	P_{ij}		P_i
:	:	:	:		•
p_{ij}	p_1	p_{2}	p_{ij}		

☆ 返回主目录

例 2

§4 随机变量的独立性

设二维离散型随机变量(X, Y)的联合分布律为

Y	1	2	3
1	_1 _6	_1 9	1 18
2	1 3	O	B

试确定常数 α , β 使得随机变量X与Y相互独立 .

解:

由表,可得随机变量X与Y的边缘分布律为

例 2 (续)

§4 随机变量的独立性

X	1	2	3	p_{i}
1	<u>1</u> 6	<u>1</u> 9	1 18	<u>1</u> 3
2	$\frac{1}{3}$	α	β	$\frac{1}{3}+\alpha+\beta$
$p_{\cdot j}$	1/2	$\frac{1}{9}+\alpha$	$\frac{1}{18}$ + β	

如果随机变量X与Y相互独立,则有

$$p_{ij} = p_{i} \cdot p_{\cdot j}$$
 ($i = 1, 2; j = 1, 2, 3$)

由此得

例 2 (续)

§4 随机变量的独立性

$$\frac{1}{9} = P\{X = 1, Y = 2\} = P\{X = 1\}P\{Y = 2\} = \frac{1}{3} \cdot \left(\frac{1}{9} + \alpha\right)$$

由此得 $\alpha = \frac{2}{9}$;

又由

$$\frac{1}{18} = P\{X = 1, Y = 3\} = P\{X = 1\}P\{Y = 3\} = \frac{1}{3} \cdot \left(\frac{1}{18} + \beta\right)$$

由此得
$$\beta = \frac{1}{9}$$
.

而当 $\alpha = \frac{2}{9}$, $\beta = \frac{1}{9}$ 时,联合分布律及边缘分布律为

<u> 返回主目录</u>

例 2 (续)

§4 随机变量的独立性

	1	2	3	R
1	_1_6	_1_9	_1 1 8	_1_3
2	_1_3	29	_1_9	<u>2</u> 3
B	_1_2	_1_3	_1_6	

可以验证,此时有

$$p_{ij} = p_{i} \cdot p_{\cdot j}$$
 ($i = 1, 2; j = 1, 2, 3$)

因此当
$$\alpha = \frac{2}{9}$$
, $\beta = \frac{1}{9}$ 时, $X = 5$ 相互独立

⑤ 返回主目录

例 3

§4 随机变量的独立性

将两个球等可能地放入编号为1,2,3的三个盒子中.

令:X:放入1号盒中的球数;

Y: 放入 2 号盒中的球数.

试判断随机变量X与Y是否相互独立?

 $\mathbf{M}: X$ 的可能取值为 0 , 1 , 2 ;

Y的可能取值为 0,1,2.

X与Y的联合分布律及边缘分布律为

例 3 (续)

§4 随机变量的独立性

Y	0	1	2	$p_{i\cdot}$
0	<u>1</u> 9	<u>2</u> 9	<u>1</u> 9	$\frac{4}{9} = p_{0.}$
1	<u>2</u> 9	<u>2</u> 9	0	$\frac{4}{9} = p_{1.}$
2	<u>1</u> 9	0	0	$\frac{1}{9} = p_2.$
$p_{\cdot j}$	$\frac{4}{9} = p_{.0}$	$\frac{4}{9} = p_{.1}$	$\frac{1}{9} = p_{.2}$	
	1	()	() 4	1

$$P\{X=1, Y=2\}=0 \neq P\{X=1\}P\{Y=2\}=\frac{4}{9}\cdot\frac{1}{9}$$

随机变量 X 与 Y 不独立.

⑥ 返回主目录

三、连续型随机变量的独立性

§4 随机变量的独立性

设(X, Y)是二维连续型随机变量,其联合密度函数为f(x, y),又随机变量X的边缘密度函数为 $f_X(x)$,随机变量Y的边 缘密度函数为 $f_Y(y)$,如果对于几乎所有的x,y 有,

$$f(x, y) = f_X(x) f_Y(y)$$

则称 X, Y是相互独立的随机变量.

特别地,上式对 f(x, y)的所有连续点(x, y)必须成立.

<u> 返回主目录</u>

说明

§4 随机变量的独立性

这里所谓的"对几乎所 有的x, y"是指:

那些使得等式

$$f(x, y) = f_X(x) f_Y(y)$$

不成立的全体点(x, y)所成集合的"面积"为 0

例 4

§4 随机变量的独立性

设二维随机变量(X, Y)的密度函数为

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy & 0 \le x \le 1, 0 \le y \le 2\\ 0 & \text{ 其它} \end{cases}$$

试判断随机变量 X与Y是否相互独立?

 \mathbf{M} : $\mathbf{a}_{0 \leq x \leq 1}$ 时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{2} \left(x^2 + \frac{1}{3}xy\right) dy = 2x^2 + \frac{2}{3}x$$

例 4 (续)

§4 随机变量的独立性

所以,随机变量X的密度函数为

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x & 0 \le x \le 1 \\ 0 & \text{其它} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} \left(x^2 + \frac{1}{3}xy\right) dx = \frac{1}{3} + \frac{1}{6}y$$

所以,随机变量Y的密度函数为

例 4 (续)

§4 随机变量的独立性

$$f_{Y}(y) = \begin{cases} \frac{1}{3} + \frac{1}{6}y & 0 \le y \le 2\\ 0 & \text{其它} \end{cases}$$

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x & 0 \le x \le 1 \\ 0 & \text{ 其它} \end{cases}$$

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy & 0 \le x \le 1, 0 \le y \le 2\\ 0 &$$
其它

由于当0 < x < 1, 0 < y < 2时,

$$f(x, y) \neq f_X(x)f_Y(y)$$

所以,随机变量X与Y不独立。

例 2

设二维连续型随机变量(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} be^{-(x+y)} & 0 < x < 1, 0 < y < +\infty \\ 0 & 其它 \end{cases}$$

试求:(1).常数b; (2) X及Y的边缘密度函数

(3) X与Y是否独立?

解: (1).由密度函数的性质,得

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy$$
$$= \int_{0}^{+\infty} e^{-y} dy \int_{0}^{1} be^{-x} dx = b(1 - e^{-1})$$

⑤ 返回主目录

所以,
$$b = \frac{1}{1 - e^{-1}}$$

例 2 (续)
$$f(x,y) = \begin{cases} \frac{1}{1-e^{-1}} e^{-(x+y)} & 0 < x < 1,0 < y \\ 1 - e^{-1} & 1 \end{cases}$$

(2) . 当0 < x < 1 时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{0}^{+\infty} \frac{1}{1 - e^{-1}} e^{-(x+y)} dy = \frac{1}{1 - e^{-1}} e^{-x}$$

所以,X的边缘密度函数为

$$f_X(x) = \begin{cases} \frac{1}{1 - e^{-1}} e^{-x} & 0 < x < 1 \\ 0 & x \le 0 \text{ or } x = 1 \end{cases}$$

返回主目录

当y > 0时,

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} \frac{1}{1 - e^{-1}} e^{-(x+y)} dx = e^{-y}$$

所以,Y的边缘密度函数为

$$f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

(3)
$$f_X(x)f_Y(y) = f(x, y) \quad \forall x, y$$

所以,X与Y独立

⑤ 返回主目录

例 5 (正态随机变量的独立性)

§4 随机变量的独立性

设二维随机变量 $(X, Y) \sim N(\mu, \mu, \sigma^2, \sigma^2, r)$

则(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}$$

$$\cdot \exp \left\{ -\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

又随机变量X的边缘密度函数为

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad (-\infty < x < +\infty)$$

返回主目录

例 5 (续)

§4 随机变量的独立性

随机变量Y的边缘密度函数为

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}} \qquad (-\infty < y < +\infty)$$

所以,当r=0时,(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$= f_X(x) \cdot f_Y(y)$$

这表明,随机变量X与Y相互独立;

例 5 (续)

§4 随机变量的独立性

反之,如果随机变量X = Y相互独立,则对任意的 实数x, y, 有

$$f(x, y) = f_X(x) \cdot f_Y(y)$$

特别地,我们有

$$f(\mu_1, \mu_2) = f_X(\mu_1) \cdot f_Y(\mu_2)$$

即,

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} = \frac{1}{\sqrt{2\pi}\sigma_1} \cdot \frac{1}{\sqrt{2\pi}\sigma_2}$$

例 5 (续)

§4 随机变量的独立性

由此得,r=0.

综上所述,我们有以下重要结论:

二维正态随机变量 $(X,Y) \sim N(\mu,\mu,\sigma_1^2,\sigma_2^2,r)$ 相互独立的充分必要条件为:

r=0.

例 6

§4 随机变量的独立性

甲、乙两人约定在某地相会,假定每人的到达时间是相互独立的,且均服从中午12时到下午1时的均匀分布。试求先到者需等待10分钟以内的概率。

解:设甲于12时X分到达,设乙于12时Y分到达,则随机变量X与Y相互独立,且都服从区间[0,60]

上的均匀分布 . $f_X(x) = \begin{cases} \frac{1}{60} & 0 \le x \le 60 \\ 0 & \text{其他} \end{cases}$

所以,(X, Y)的联合密度函数为

例 6 (续)

§4 随机变量的独立性

$$f(x, y) = \begin{cases} \frac{1}{3600} & 0 \le x \le 60, 0 \le y \le 60 \\ 0 & \text{ 其它} \end{cases}$$

设: $A = \left\{$ 先到者等待时间不超过10分钟 $\right\}$

则有,
$$A = \{|X - Y| \le 10\}$$

满足上述条件的点为图中直线

$$x - y = 10$$

与直线

$$x - y = -10$$

之间的部分.

例 6 (续)

所以,所求概率为

$$P(A) = P\{|X - Y| \le 10\}$$

$$= \iint_{|x - y| \le 10} f(x, y) dx dy$$

§4 随机变量的独立性

$$=\frac{3600-50\times50}{3600}=\frac{11}{36}$$

例7(Buffon 投针问题)

§4 随机变量的独立性

平面上画有等距离为a的一些平行线,向此平面上任意投一根长度为L(L < a)的针,试求该针与任一平行行直线相交的概率.

解:

设:X:针的中心到最近一条

平行线的距离;

 φ : 针与X所在投影线的夹角.

例 7 (续)

§4 随机变量的独立性

则随机变量 X 服从区间 $\left[0, \frac{a}{2}\right]$ 上的均匀分布;

随机变量 φ 服从区间 $[0,\pi]$ 上的均匀分布;

并且随机变量X与 φ 相互独立.

所以二维随机变量 (X, φ) 的联合密度函数为

$$f(x, \varphi) = \begin{cases} \frac{2}{\pi a} & 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi \\ 0 &$$
其它

例 7
(续)
 设:
$$A = \{ \text{ 针与任一直线相交} \}$$

 以 $A = \{ \frac{X}{\sin \varphi} < \frac{L}{2} \} = \{ X < \frac{L}{2} \sin \varphi \}$
 所以,
$$x = \frac{a}{2}$$

$$x = \frac{l}{2} \sin \varphi$$

⑤ 返回主目录

说明

§4 随机变量的独立性

由本题的答案

$$P(A) = \frac{2L}{\pi a}$$

我们有圆周率 π 的近似计算公式:

$$\pi = \frac{2L}{a} \cdot \frac{1}{P(A)}$$

若我们投针N次,其中有n次与平行线相交,则以

 $\frac{n}{N}$ 作为P(A)的近似值代入上式,得

$$\pi \approx \frac{2L}{a} \cdot \frac{N}{n}$$

说明

§4 随机变量的独立性

历史上,确有些学者做过此项实验,下表就是一些有关资料 (其中把 a 折算为 1):

实验者	年 份	针长	投掷次数	相交次数	π 的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218.5	3.1554
De Morgan	1860	1.0	600	382.5	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1759

说明

§4 随机变量的独立性

上述的计算方法就是一种概率方法,它概括起来就是:首先建立一个概率模型,它与我们感兴趣的某些量(如上面的常数 π)有关。

然后设计适当的随机试验,并通过这个试验的结果来确定这些量.

现在,随着计算机的发展,已按上述思路建立起一 类新的计算方法——Monte - Carlo方法.

n维随机变量的独立性

§4 随机变量的独立性

设 (X_1, X_2, \dots, X_n) 是n维随机变量,其联合分布函数为 $F(x_1, x_2, \dots, x_n)$,又随机变量 X_i 的分布函数为 $F_{X_i}(x_i)$, $(i=1, 2, \dots, n)$. 如果对于任意的n维实数组 (x_1, x_2, \dots, x_n) ,有 $F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$ 则称 X_1 , X_2 , \dots , X_n 是相互独立的随机变量 .

n维随机变量的独立性

§4 随机变量的独立性

注意

- 1. 若 X_1 , X_2 , \cdots , X_n 相互独立,则其中任意k个 X_{i_1} , X_{i_2} , \cdots , X_{i_k} 也相互独立。
- 2. 若 X,Y 独立, f(x),g(y) 是连续函数,则 f(X),g(Y) 也独立。

 p_{84-86} 4, 17, 18.