Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Reševanje PDE z metodo Galerkina

11. naloga pri Matematično-fizikalnem praktikumu

Avtor: Marko Urbanč (28191096) **Predavatelj:** prof. dr. Borut Paul Kerševan

Kazalo

1	Uvod	2
2	Naloga	2
3	Opis reševanja	2
4	Rezultati	2
5	Komentarji in izboljšave	2
Li	Literatura	

1 Uvod

Če poznamo lastne funkcije diferencialnega operatorja za določeno geometrijo, se reševanje parcialnih diferencialnih enačb včasih lahko prevede na razvoj po lastnih funkcijah. V tem primeru se lahko diferencialni operator zapiše kot matrika in enačbo potem rešujemo kot sistem linearnih enačb. Tega lahko računamo kot vemo in znamo. Zdaj smo to počeli že parkrat.

V našem primeru bo fizikalna inspiracija Navier-Stokesova enačba, ki je pravzaprav drugi Newtonov zakon za tekočine. Vendar pa je ta enačba zelo zapletena in je še vedno odprt problem, ali sploh obstajajo rešitve v splošnem. Zato se bomo omejili na preprostejši primer, kjer privzamemo, da imamo enakomeren laminaren tok nestisljive tekočine v dolgi ravni cevi pod vplivom stalnega tlačnega gradienta p'. V tem primeru se Navier-Stokesova enačba poenostavi na Poissonovo enačbo

$$\nabla^2 \vec{v} = -\frac{p'}{\eta} \,, \tag{1}$$

kjer je \vec{v} hitrost tekočine in η njena viskoznost. Enačbo rešujemo v notranjosti preseka cevi, medtem ko je ob stenah hitrost enaka nič. Za pretok velja Poiseuillov zakon

$$\Phi = \int_{S} v \, \mathrm{d}S = C \frac{p' S^2}{8\pi \eta} \,, \tag{2}$$

kjer je S presek cevi in C konstanta, ki je odvisna od oblike preseka. Konstanta znaša C=1 za krožni presek. V našem primeru pa bomo določili konstanto C pa polkrožni presek. Uvedemo nove spremenljivke $\xi=r/R$ in $u=v\eta/(p'R^2)$ in nato se problem glasi

$$\Delta u(\xi, \phi) = -1, \qquad u(1, \phi) = u(\xi, 0) = u(\xi, \pi) = 0,$$
 (3)

$$C = 8\pi \iint \frac{u(\xi, \phi)\xi \,\mathrm{d}\xi \,\mathrm{d}\phi}{(\pi/2)^2} \,. \tag{4}$$

Da se izognemo

- 2 Naloga
- 3 Opis reševanja
- 4 Rezultati
- 5 Komentarji in izboljšave

Literatura