UNCLASSIFIED

AD _405 132 __

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

405 132

TECHNICAL MEMORANDUM

(TM Series)

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

This document was produced by SDC in performance of contract AF 19(628)-1648, Space Systems Division Program, for Space Systems Division, AFSC.

1604 Simulation Program Descriptions

Milestone 11

The Simulated Telemetry Data Generation Control Program (STGR)

bу

J. Ng

15 March 1963

Approved J. B. Munson

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not necessarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should be obtained in advance from the System Development Corporation.

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense. Open publication, wholly or in part, is prohibited without the prior approval of the System Development Corporation.

TABLE OF CONTENTS

		age
	·	
1.0	IDENTIFICATION	1
2.0	PURPOSE	1
3.0	USAGE	1
	3.1 Introduction	1 2
	3.2.1 Parameters	2 4
	3.3 Errors, Stops and Recovery Procedures	6
	3.3.1 Comment Printouts	6 7
	3.4 Output	7
	3.4.1 Output 1200 Bit Line	7 8
4.0	METHOD	10
	4.1 Algorithm #1"Step Function". 4.2 Algorithm #2"Steady State and Dynamic Functions". 4.3 Algorithm #3"Smoothing Function". 4.4 Algorithm #4"Switch Setting-Unequal Increment". 4.5 Algorithm #5"Switch Setting-Equal Increments". 4.6 Algorithm #6"Meter". 4.7 Noise Error.	11 12 14 14 15 16
5.0	RESTRICTIONS	17
	5.1 Hardware Components	17 17
6.0	TIMING	17
7.0	STORAGE REQUIREMENTS	17
8.0	VALIDATION TEST	17
	8 1 Description of Input Parameters	17

<u> </u>	age
8.1.1 Hardware Configurations Control (from SIPSA Card). 8.1.2 Input Control Cards	55 50 50
8.2 Expected Output from Test	22
9.0 REFERENCES	22
APPENDIX A - STGR Logic Flow	23
APPENDIX B - On-Line Printout of Input Cards	28

1

1.0 IDENTIFICATION

1.1 Title

STGR - Ident KO7, Mod. 03

1.2 Programmed

15 December 1962, J. Ng, System Development Corporation

1.3 Documented

5 February 1963, J. Ng, System Development Corporation

2.0 PURPOSE

The Simulated Telemetry Data Generation Control Program (STGR) has been designed to provide realistic telemetry data (Fixed Format and Event Items) under card input control. The simulated data will be packed in the same format as the Telemetry Report Message (Message Type #13). In the present version, only the FM/FM telemetry data is simulated. Additional capability to simulate PAM and PCM telemetry data (exclusive of special vehicle-specific payload telemetry) will be incorporated (if desirable) at a future date, when adequate information is available.

3.0 USAGE

3.1 Introduction

The STGR program is an integral part of the Simulated Input Preparation System for Augmentation (SIPSA). Simulated telemetry data is generated by Request Cards, containing identifying information and parameters necessary to define uniquely an operational telemetry mode. The output of this program is a simulated telemetry report message which can be used as a simulated input, via the "Simulated" tracking station 160-A Computer, to the Bird Buffer at the STA. (See Appendix A for STGR Logic Flow.)

3.2 Input

3.2.1 Parameters

a. Telemetry Mode Selection (Pl)

This parameter is a 4-digit octal number used to identify an operational telemetry mode.

b. Telemetry Item Specifications

A maximum number of three parameters must be specified to describe an "Event" item. If the item is to be reported as "Fixed Format", then only one parameter is necessary (P3). These parameters, in groups of three's, are repeated as often as the number of items are necessary for this mode. Each of these parameters are defined as follows:

1) "Event" Ident (P2)

This parameter is a 4-digit octal number, with the leading digit set to zero, to identify this "Event" item. If the item is to be reported as "Fixed Format", this parameter field must be blank.

2) Function Specification (P3)

This parameter is used by the STGR program to identify the appropriate function, utilized to generate telemetry data, and the associated algorithm applied to this data point. This parameter must be specified for each item. If the item is an "Event" item, the next parameter must be specified. If this parameter field is blank, the program will assume that there are no more items following.

3) "Event" Report (P4)

This parameter is used by the "Event" processing algorithm applied to this item. This field must start with a "T". "N". or "V", followed by an octal number, n, (where 1 < n < 7777). This octal number, n, is identified as time in seconds between reports, if preceded by "T"; as a "Threshold" value, if preceded by "N"; and as the number of bits repeated, if preceded by "V". This field must be punched if the item is an "Event" item.

c. Paper-Tape Option (I.O.S.) (P5)

If the pre-selected tracking station is the Indian Ocean Station, then the telemetry report will be punched on a 5-level paper tape and each report will be updated by the number of seconds specified by P5. Paper tape output is not dependent on station number.

The following table (Item Specification Table) should be helpful to the user when preparing input cards.

, 1

ITEM SPECIFICATION TABLE

FUNCTION		EVENT		FIXED FORMAT	DATA GENERATION	TYPE OF	MAX. NO.
P ₃	PROC. ALGORITHM	P2 IDENT	P4 CRITERIA	PROC. ALGORITHM	MODULE	DATA	OF BITS
XXS	1	OCTAL	N-n(N)	Not Used	Step	OCTAL	8
XXI	2	OCTAL	T-n(T)	2	Steady State	OCTAL	8
XXT	3	OCTAL	T-n(T)	3	Steady State	OCTAL	8
В	4	OCTAL	T-n(T)	14	Steady State	4-BIT BCD	4
C	5	OCTAL	T-n(T)	5	Steady State	4-BIT BCD	4
v	6	OCTAL	V-n(V)	Not Used	Constant	OCTAL	16
XXW	2	OCTAL	T-n(T)	2	Dynamic	OCTAL	8
XXW	3	OCTAL	T-n(T)	3	Dynamic	OCTAL	8

XX——This represents some number ranging from 0-9. The number identifies one of the ten variable patterns provided within each Data Generation Module. These variations will be presented in a table form under "Algorithm Method".

3.2.2 Input Function Card Format

The input parameters described above are input to the SIPSA system by punched cards. In addition, certain system control cards-are necessary (see Operating Instructions, Milestone 7, TM-(L)-734/022/00). A maximum of 44 input cards can be input to SIPSA to describe a telemetry mode. Each follower card must have a "plus" sign punched in Column 1. If the telemetry report is to be punched on paper tape (I.O.S.), then Column 80 of the first card must be punched with the time interval (in seconds) between reports (1-9). The input function card format is illustrated as follows:

Columns	Content	Description
1-8	SIMTLM	Telemetry Request function identification, left justified with trailing blanks.
12-15	P _l	Telemetry mode, octal number, right justified $(0 \le P_1 < 7777)$.
17 - 20) 33-36) 49-52) 65-68)	P ₂	"Event" item ident, octal number with a leading zero. If the item is "Fixed Format", this field must be blank.
22-24) 38-40) 54-56) 70-72)	P 3	Type of telemetry function. The last column of this field specifies the data generation module; the preceding decimal number (0-9) specifies one of the ten variations.
27-31) 43-47) 59-63) 75-79)	P _{l4}	This field must be punched if the item is an "Event" item. This field begins with a T, N, or V, followed by an octal number, $n,(1 < n < 7777)$.
80	P ₅	This column equals the time interval in seconds between reports, if paper tape output (5-level) is requested. P ₅ is specified only on the first card.

The input parameters P_2 , P_3 , and P_4 are repeated, if necessary, by follower cards with a "plus" sign in Column 1.

3.3 Errors, Stops and Recovery Procedures

In the process of generating telemetry data, the STGR program performs certain legality checks on the input parameters. If errors are detected, the program will stop. On-line printouts are provided with recovery procedures. There are two types of on-line printouts provided. The first type is a "Comment" printout, which is recoverable, and the second type is an "Error" printout, which is non-recoverable.

3.3.1 Comment Printouts

a. The following printout is provided when the program is ready to start punching paper tape. The message on the printer will read:

ENABLE PAPER TAPE PUNCH FOR TELEMETRY. CHECK TO BE SURE THE PAPER TAPE IS 5-LEVEL.....PUSH ON.

b. The following printout is provided when the program has finished punching paper tape for one pass. The message on the printer will read:

ALL TELEMETRY DATA HAS BEEN PUNCHED....PUSH ON.

c. The following printout is provided when the program has detected that one or more of the telemetry item specifications is out of sequence (i.e., a "Fixed Format" item is specified after an "Event" item). The message on the printer will read:

INPUT PARAMETER FOR TELEMETRY IS OUT OF SEQUENCE. HIT START TO CONTINUE.

Upon recovery, the telemetry item that is out of sequence will be corrected by the STGR program. If a "Fixed Format" item is found after an "Event" item, the program will place this "Fixed Format" item behind the last "Fixed Format" item in a sequence table.

3.3.2 Error Printouts

When an error is found on an input card (parameters punched in the wrong column or mispunched), one of the following two messages will be printed and the program stops with no recovery.

- a. THERE IS AN ERROR ON A TELEMETRY SPECIFICATION CARD. RETURN JOB TO PROGRAMMER FOR CORRECTION.
- b. There are illegal characters in a card field being converted to binary. If the card can be corrected, do so, then restart.

3.4 Output

Two types of output are provided by STGR. One type is to be transferred through the Digital Data Line; the other is punched on 5-level paper tape. The output of the first type is packed in the exact format as the telemetry report message and will be written on the SIMTAPE. The output of the second type is punched directly on 5-level paper tape from STGR for an entire pass or for a period of t_me specified on the "GENERATE" card, whichever is smaller. The two types of output format are presented in the following paragraph.

3.4.1 Output 1200 Bit Line

	47			0
SIMBUF		NUMBER OF	160A WORDS	
+1	7777	SS13	MMMM	XOTT
+2	TTTT	NNNN	NNNN	NNNN
:				
•				
:			•	
•	NNNN	XEEE	BBBB	CCCC
+n	вввв	cccc	CKSUM	

where:

7777	= New Message Header
SS	= Station Number
13	= Telemetry Message Code
M's	- Telemetry Mode
T's	System time, 6 most significant bits first, right justified, followed by 11 least signi- ficant bits in the next word, right justified.
x	<pre>= High-order bit=1 and second high-order bit=0 if event.</pre>
N's	= Fixed Format telemetry value
E's	= 10 least significant bits of associated system time (for simulation, all associated system time for event items will be equal).
B's	= Event ident with a leading zero.
C's	= Event value

= Arithmetic Complement Checksum for this message.

3.4.2 Output (5-Level Paper Tape)

The paper tape output will consist of the following:

a. Header Message

This is the Operational Telemetry Mode message sent to the Bird Buffer at the STA.

b. Telemetry Report Message

CKSUM

This is the message type #13 which is normally sent over the 1200 bps line.

c. Fade Message

This is the message sent to the STA when the vehicle fades or when the estimated time to track is zero.

Telemetry Report Header Message

H₁₁ - H_O = New Message Header (all 1's)

 $S_5 - S_0 = Station Number$

 $A_5 - A_0 = Message Code (001010=12)$

M₁₁ - M_O = Telemetry Mode

 C_{11} - C_{0} = Arithmetic Complement Checksum of the header message.

P's = Parity (odd)

Telemetry Report Message

H₁₁ - H₀ = New Message Header (all 1's)

 $S_5 - S_0 = Station Number$

 $A_5 - A_0 = Message Code (001011=13)$

M₁₁ - M₀ = Telemetry Mode

B's = Blanks (except B_{||}=C_{||}=l if message contains "Event" only)

 $T_{16} - T_{17} = 6$ most significant bits of system time, right justified.

 $T_{10} - T_{0} = 11$ least significant bits of system time, right justified.

N = Fixed Format telemetry items

C₁₁ = 1 (ident bit of "Event" associated system time)

 D_{Q} - $D_{\tilde{Q}}$ = 10 least significant bits of associated system time.

I₈ - I₀ = Event ident

E's = Event value

 K_{11} - K_{0} = Arithmetic Complement Checksum for one message

P's = Parity(odd)

Telemetry Report Fade Message

	K ₁₁	K.7	к ₃		H ₁₁	H ₇	H ₃	s ₅	s ₁	A ₃	R ₁₁	R ₇	R ₃	F ₁₁	F ₇	F ₃	
\	K 10	K ₆	K ₂ (15	blanks)-	H ₁₀	H ₆	H ₂	s ₄	so	A ₂	R ₁₀	R ₆	R ₂	F ₁₀	F 6	F ₂	
7	_K	-K ₅ -	K ₁		н	H ₅	н ₁	ัธิจ	$\overline{A_5}$	A	Ro	R ₅	\overline{R}_1	$\overline{\mathbb{F}_9}$	$\overline{\mathbf{F}_5}$	\mathbf{F}_{1}^{-}	
}			K														
<u>L</u>	P	P	<u>P</u>		P	P	p	P	P	P	p	P	P	P	P	P	

 $K_{11} - K_0 = Last$ message Arithmetic Complement Checksum

H₁₁ - H₀ = New Message Header (all 1's)

S₅ - S₀ = Station Number

 $A_5 - A_0 = Message Code (010000=20)$

 $R_{11} - R_{0} = Fade Message Ident (010000000011=2003)$

 \mathbf{F}_{11} - \mathbf{F}_{0} = Fade Message Arithmetic Complement Checksum

P's = Parity (odd)

4.0 METHOD

There are three main sub-modules in STGR that will generate raw telemetry data (8-bits). When these data points are plotted against time, they will represent three basic functions: Step Functions, Steady State, and Dynamic. To simulate the actual output from the TIM-Computer at the tracking station, six control subroutines are included. These subroutines will represent the six telemetry processing algorithms which are used to process raw FM/FM telemetry data at the tracking station. It is not the intention of this program to duplicate, exactly, the algorithms used at the tracking stations,

1

but to provide compressed data which, for program checkout purposes, appears to have been processed by these algorithms. A description of the methods employed to achieve this will be presented in the following paragraphs.

4.1 Algorithm #1--"Step Function"

This algorithm is applied only to "Event" item requests.

a. Input

- 1) Event Ident (P2)
- 2) Function Request XXS (P3)
- 3) Threshold Value (P4)

b. Procedure

Using P3, the variable pattern (XXS), a "Step Function" data point, X_1 , is generated, where X_1 is assumed to be the average value of the last four samples and the value is assumed to be within the noise level. The absolute difference is formed between the old and the new point. If this difference exceeds the threshold value (P4), then X_1 is the output and the old value will be replaced by X_1 . To help the user select the appropriate variable pattern for the Step Function, the following table should be used.

Equation: $X_i = b_i + (-1)^p \Delta b_i$ for K_i seconds (2 < X_i < 254)

xx	b _i	Δb _i	K _i	P*
0	125	8	10	0
1	135	10	20	0
2	145	12	30	0
3	155	14	40	0
4	165	16	50	0
5	125	18	60	1
6	135	20	70	1
7	145	22	80	1
8	155	24	90	1
9	165	26	100	1

where XX = Pattern variable specification in P3 (XXS). *P is updated by 1 every K_i seconds as t increases.

4.2 Algorithm #2--"Steady State and Dynamic Functions"

This algorithm can be applied to both "Event" and "Fixed Format" telemetry items.

a. Input

- 1) Event Ident (P2), if item is "Event".
- 2) Function Request XXL or XXW (P3).
- 3) Number of seconds between reports (P4), if item is "Event".

b. Procedure

Using P3, a data point, X_i , is generated (use the same assumptions as Algorithm #1). The value X_i will always be within the high and low calibration limits ($2 \le X_i \le 254$). If the item is to be reported as an "Event", then X_i is the output for the interval specified (P4). If the item is to be reported as "Fixed Format", then X_i is reported every second. The following equations and tables are used:

"Steady	State"	: :	K, =	at	+	ъ	-	(pak)
---------	--------	-----	------	----	---	---	---	-------

хх	a _i	b _i	X(min/max)	ĸ _i	P*
0	2	8	248 max	120 sec.	0
1	4	8	248 max	60 sec.	0
2	8	8	248 max	30 sec.	0
3	16	8	248 max	15 sec.	0
4	32	8	248 max	7 sec.	0
5	-2	248	8 min	120 sec.	0
6	-4	248	8 min	60 sec.	0
7	-8	248	8 min	30 вес.	0
8	-16	248	8 min	15 sec.	0
9	-32	248	8 min	7 sec.	0

where XX = Pattern variable specification in P3 (XXL) *P is updated by 1 for $X_i \ge 248$ or $X_i \le 8$ as t increases.

"Dynamic Function": X _i = a Sin (Kt) + b								
XX	a	^b i	X(max)	к				
0	118	128	248	1/2 1				
1	108	158	248	1/2 1				
2	98	128	248	1/2 1				
3	88	128	248	1/2 1				
14	78	128	248	1/2 ¶				
5	68	128	248	1/2 🎵				
6	58	128	5148	1/2 🎵				
7	48	128	248	1/2 1				
8	38	128	248	1/2				

where XX = Pattern variable specification in P3 (XXW)

248

1/2 1

128

4.3 Algorithm #3--"Smoothing Function"

Same as Algorithm #2.

28

4.4 Algorithm #4--"Switch Setting-Unequal Increment"

This algorithm is applied to both "Event" and "Fixed Format" telemetry items.

a. Input

- 1) Event Ident (P2), if item is "Event"
- 2) Function Request OOB (P3)
- 3) Number of seconds between reports (P4), if item is "Event".

b. Procedure

A "Steady State" data point, X_1 , is generated with noise. Then a switch-setting, Y_1 , is assigned to this point by the following criteria:

If $240 < X_1$, then switch-setting $Y_1 = 17$ (4 bits) $192 < X_1 < 240 \quad " \quad = 5$ $144 < X_1 < 144 \quad " \quad = 4$ $96 < X_1 < 144 \quad " \quad = 3$ $48 < X_1 < 96 \quad " \quad = 2$ $X_1 < 48 \quad " \quad = 1$

If this item is to be reported as a "Fixed Format" item, then Y_1 is the 4-bit BCD output.

If this item is to be reported as an "Event" item, then Y_i is compared against Y_i -1. If $Y_i \neq Y_i$ -1, then Y_i is reported and Y_i -1 is replaced by Y_i . If $Y_i = Y_i$ -1, then P^i 4 is tested to see if it is time for a periodic report. If it is, Y_i is reported.

4.5 Algorithm #5--"Switch Setting-Equal Increments"

Same as Algorithm #4, except that there are 10 switch settings instead of 5. The 10 switch settings are as follows:

If $240 < X_{i}$, then switch-setting $Y_{i} = 17$ $216 < X_{i} < 240$ " " = 9 $192 < X_{i} < 216$ " " = 8 $168 < X_{i} < 192$ " " = 7 $144 < X_{i} < 168$ " " = 6 $120 < X_{i} < 144$ " " = 5

The rest is the same as Algorithm #4.

4.6 Algorithm #6--"Meter"

Input

- 1. Event Ident (P2)
- 2. Function Request OOV (P3)
- 3. Bits repeated V0000 (P4)

This algorithm is applied only to the "Event" item on a continuous FM/FM channel. No method has been developed to simulate the bit pattern of this type of telemetry read-out. For the present time, the vehicle velocity value is used and the output is every second. The output value is split into two, 160-A words. The first word contains the most significant 8 bits and the second word contains the least significant 8 bits, both right justified.

4.7 Noise Error

Computations during the generation of simulated raw telemetry data are based on a set of mathematical equations resembling telemetry signals when plotted against time. However, actual telemetry data points, as would be input from the TDP to the Bird Buffer at the STA, contain noise. In order to simulate telemetry data more realistically, noise error is introduced into the raw data prior to processing.

The first step in the addition of noise error is by the generation of a random number ranging from 0 to 7. Then the result is selectively substituted into the three least significant bits of the data point.

5.0 RESTRICTIONS

5.1 Hardware Components

- a. 1604 Computer
- b. Paper tape punch (5-level paper tape) if paper tape output is requested.
- c. Three tape drives

5.2 Program Restriction

- a. The program assumes no "Out of limit" reports.
- b. There will be no on-line response to mode parameter changes.
- c. STGR can only be operated with the SIPSA system.
- d. Only 44 function input cards will be accepted.

6.0 TIMING

Operating time is a variable. The amount of time depends on the amount of data requested.

7.0 STORAGE REQUIREMENTS

UI REMENTS	Decimal	Octal
Main Program (STGR)	492	754
Tables and Constants	1527	2767
Total Storage Requirement	2019	3743

8.0 VALIDATION TEST

8.1 Description of Input Parameters

In order to check out completely the telemetry data generation

program (STGR), many parameter checkout tests were completed. Included in this document, as Appendix B, are some of the results extracted from the final validation checkout run. In this test, 12 "Fixed Format" telemetry items and 11 "Event" items were specified. All 6 algorithms were used for this run. The output result in each telemetry report message can be identified as message type #13. Each of the telemetry items in the report can be identified by the following table of input specification summary.

"METER" NO. OF BLTS REPEATED	1	ı	1									16		
"STEP FUNCTION" THRESHOLD IN OCTAL		1	l				8	4				1		
TIME BETWEEN REPORTS (SECONDS IN OCTAL)	•	•	•	2 sec.	3 sec.	⅓ sec.			5 sec.	lo sec.	12 sec.	1	5 sec.	5 sec.
NO. OF BITS IN TELEMETRY VALUE	8	8	η	8	8	8	8	8	8	8	8	16	†1	†
EVENT IDENT IN OCTAL	١	1	•	0111	0222	0333	1/1 /1/0	0555	9990	0777	0122	9190	7170	0727
TELEMETRY FUNCTION	Steady State	Dynamic	Switch Setting	*Steady State	ш	16	Step	Step	*Dynamic	н	H	"Meter"	Switch Setting	z
TYPE OF REPORT	Fixed Format	11 11		Event	=	æ	=		=	2	E.	11	11	ı,
ITEM NO.	1-4	5-10	21-11	13	17	15	16	17	18	19	50	21	83	ಜ

- 19 -

*There is no "out of limit" report from either Algorithm #2 or #3 for the "Event" items.

1.

8.1.1 Hardware Configurations Control (from SIPSA Card)

a. Input Control Cards: Card Reader

b. SIPSA System Master Tape: Tape Unit No. 1

c. SIMTAPE (final output): Tape Unit No. 5

d. Scratch tape (Utility): Tape Unit No. 3

e. On-line output: Printer

8.1.2 Input Control Cards

The following cards were used for the validation test:

a. *SIPSA (SIPSA System Calling Card)

This card specifies the following input conditions:

- 1) Input source = 0 (card reader)
- 2) Tape Unit No. 5 to record "simulated" data.
- 3) Test I.D. = TMCHCK (6-character)
- 4) Type of SIMTAPE = BB (Bird Buffer)

b. START (Initialization Card)

This card specifies the program initial conditions prior to generation of data.

- 1) Station Number = 5
- 2) CCC "spigot" for Telemetry Computer = B
- 3) CCC "spigot" for Tracking Computer = A
- 4) Vehicle Number = 2041
- 5) Revolution Number = 8
- 6) Vehicle & System Start Time = 0
- 7) Telemetry Mode = 1234

c. SIMTLM (Telemetry Data Request Cards)

There are six telemetry item specification cards (see Appendix B).

d. GENERATE (Duration Card)

This card specifies, in seconds, the duration of the run. The output is one TIM message per second. The number used is 100.

e. END-XMIT (End of Transmission)

This card will cause the SIPSA system to generate an "End-of-Pass" record.

f. STOP (SIMTAPE prepared)

This card terminates the SIPSA operation.

The above cards were arranged in the following sequence:

1

8.1.3 Running Procedure

- a. Input Cards placed in the Card Reader
- b. Tape Units Nos. 1, 3, and 5 ready
- c. Card-Reader & Printer ready
- d. Auto-load
- e. Repeat above test with paper tape output.

8.2 Expected Output from Test

- a. On-line printout indicating all cards read in.
- b. SIMTAPE prepared on Tape Unit No. 5.
- c. Total number of reports = 100.

9.0 REFERENCES

- a. TM-(L)-734/015/00, Computer Program Design Specifications for the Simulation of the Augmented SCF Environment at the STA and CPDC (Milestone 4), System Development Corporation, November 1962.
- b. N-(L)-19083/007/00*, Program Interfaces (FM/FM Telemetry Algorithms), System Development Corporation, December 1962.
- c. TM-(L)-949/000/00, Telemetry Data Flow for the Augmented SCF, System Development Corporation, January 1963.

^{*}An internal document not available to non-SDC personnel.

1

1-1

APPENDIX B

ON-LINE PRINTOUT OF INPUT CARDS

START	01	ΑВ	020	ר ב	800	123	և						
DIMIL	OI	2	020	·- ·	000		•						
SIMTLM	1234		OIT			02L			03T			04 L	
+			OlW			02W			03 W			04 W	
+			0.5W			06 w			00B			000	
+		0111	Oll	T0002	0222	0ST	T 0003	0333	03L	T 0004	0444	045	N0002
+		0555	05 S	N0004	0666	OlW	T0005	0777	02 W	T0010	0122	03 W	T0012
+		0616	00 V	V 0016	0717	00B	T 0005	0727	00 C	T 0005			
GENERATE	0100												
END-XMIT													
STOP													

A SIMULATED DATA TAPE HAS BEEN PREPARED. THE TAPE HAS BEEN REWOUND AND MARKED WITH AN END-OF-FILE.

BB TAPE PROCESSED BY DROPSA TAPE I.D. = TMCHCK

STATION	VEHICLE NO.	REVOLUTION NO.	PREPASS OPTION	TRK COMPUTER NO.	TLM COMPUTER NO.	TIM MODE
HULA	2041	8.0	0	1	2	1234

SITE-ON-LINE TIME MESSAGE

OCTAL

1.	7777	STATION
2.	0517	
3•	0000	System time
4.	0000	O SEC
5.	0000	CONTROL*STATUS
6.	7260	

OCTAL DUMP OF MESSAGE CONTAINING 26 WORDS

1.	2.	3•	4.	5.	6.	7.	8 .
7777	0513	1234	0000	0001	0301	2431	1230
9.	10.	11.	12.	13.	14.	15 .	16.
7611	4230	1601	4021	0400	4001	Օկկկ	0265
17.	18.	19 .	20.	21.	22.	23.	24.
0555	0151	0616	0000	0000	0717	0001	0727
25. 0001	26. 7010						

OCTAL DUMP OF MESSAGE CONTAINING 20 WORDS

1.	2.	3•	4.	5•	6.	7•	8.
7777	0513	1234	0000	0002	0421	4453	2231
9.	10.	11.	12.	13.	14.	15.	16.
4620	4510	6611	4221	0400	4002	0111	0021
17. 0616	18. 0000	19. 0000	20. 4541				

OCTAL DUMP OF MESSAGE CONTAINING 18 WORDS

1.	2.	3.	4.	5•	6.	7.	8.
7777	0513	1234	0000	0053	5427	3731	1232
9.	10.	11.	12.	13.	14.	15.	16.
5641	4631	4224	4322	2000	4053	0616	0000
17.	18 . 1006						

OCTAL DUMP OF MESSAGE CONTAINING 26 WORDS

1.	2.	3.	4.	5•	6.	7.	8.
7777	0513	1234	0000	0054	5627	5751	2233
9.	10.	11.	12 .	13.	14.	15.	16.
0254	5131	4631	4563	2400	4054	0111	0273
17 .	18 .	19 .	20 .	21.	22.	23 .	24.
0333	0351	0616	0000	0000	0717	0003	0727
	26. 6213						

OCTAL DUMP OF MESSAGE CONTAINING 26 WORDS

1.	2.	3.	4.	5•	6.	7.	8.
7777	0513	1234	0000	0055	5710	2411	3233
9.	10.	11 .	12.	13.	14 .	15.	16.
7661	5232	1631	4423	2400	4055	0222	0205
17 .	18.	19.	20.	21.	22 .	23.	24.
0666	0311	0616	0000	0000	0717	0003	0727
25 . 0005	26. 3604						

OCTAL DUMP OF MESSAGE CONTAINING 20 WORDS

1.	2.	3.	4.	5•	6 .	7•	8.
7777	0513	1234	0000	0056	6030	4433	4234
9.	10.	11.	12 .	13.	14.	15.	16.
0670	5512	6641	4623	2400	4056	0111	0301
17. 0616	18. 0000	19. 0000	20 . 5032				

- 31 -(Last Page)

OCTAL DUMP OF MESSAGE CONTAINING 20 WORDS

1.	2.	3.	4.	5.	6.	7.	8.
7777	0513	1234	0000	0127	3576	0711	3274
9.	10.	11.	12.	13.	14.	15.	16.
4701	5412	6245	4624	4000	4127	0222	0341
17. 0616	18. 0000	19. 0000	20. 6535				

OCTAL DUMP OF MESSAGE CONTAINING 24 WORDS

1.	2.	3.	4.	5•	6 .	7.	8.
7777	0513	1234	0000	0130	3636	4730	4314
9.	10 .	11.	12.	13.	14.	15.	16.
6701	5632	7641	4624	4000	4130	0111	0171
17.	18.	19 .	20.	21.	22.	23.	24 .
0333	0330	0777	0324	0616	0000	0000	3672

OCTAM DUMP OF MESSAGE CONTAINING 18 WORDS

1.	2.	3•	4.	4. 5. 6.	7.	8.	
7777	0513	1234	0000	0000 0131 3637 37	3751	5234	
9.	10 .	11.	12.	13.	14.	15.	16.
5701	5632	4244	4724	4000	4131	0616	0000
17. 0000	18. 2734						

OCTAL DUMP OF MESSAGE CONTAINING 30 WORDS

1.	2.	3•	4.	5.	6.	7.	8.
7777	0513	1234	0000	0132	4020	5411	6234
9.	10 .	11.	12.	13.	14.	15.	16 .
4304	5732	4641	4764	4000	4132	0111	0203
17.	18.	19.	20.	21.	22.	23.	24 .
0222	0011	0666	0341	0122	0310	0616	0000
	26. 0717						

DISTRIBUTION (EXTERNAL)

Space Systems Division (Contracting Agency)	PIR-E4 (GE-Box 8555)	
(contracting agency)	J.S. Brainard	
Maj. C. R. Bond (SSOCD)	R. J. Katucki	
Maj. N. D. LaVally (SSOX)	J. D. Selby	
Maj. N. D. havarry (bbox)	0. 2. 5023	
6594th Aerospace Test Wing (Contracting Agency)	PIR-E4 (GE-3198 Chestnut)	
(**************************************	J.F. Butler	
Lt. Col. A. W. Dill (TWRD) (10)	C. A. Cummings	
Lt. Col. M. S. McDowell (TWRU)	H. D. Gilman	
TWACS (20)		
	PIR-E4 (GE-Bethesda)	
PIR-El (Lockheed)		
·	W. L. Massey	
J.A. Boysen		
N. N. Epstein	PIR-E4 (GE-Box 8661)	
W. E. Moorman		
G. F. Taylor	F. T. Clark	
R. L. Vader	J. D. Rogers	
P. E. Williams	W. R. Weinrich	
DTD TO (Didles)	PIR-E5 (Aerospace)	
PIR-E2 (Philco)	FIR-E) (Aerospace)	
J. A. Bean	A. Bakst	
J. A. Isaacs	J. W. Bengston	
R. Morrison	R. V. Bigelow	
S. M. Stanley	R. O. Brandsberg	
	L. H. Garcia	
PIR-E3 (LFE)	G. J. Hansen	
	M. L. Luther	
n. F. Criley	T. R. Parkin	
K. B. Williams	E. E. Retzlaff	
	R. G. Stephenson	
PIR-E4 (GE-Santa Clara)	D. D. Stevenson	
• •	V. White	
D. Alexander	DTD D0 (M.23.5d.s.)	
ntn nl. (an allemants)	PIR-E8 (Mellonics)	
PIR-E4 (GE-Sumnyvale)	F Danield ner	(3)
T. Hammantdan	F. Druding	(3)
J. Farrentine		
N. Kirby		

NAM	Œ		ROOM
D.	Reilly		24121
	Robinson		24132
	Rockwell		24086
_			ola ol
	Schroeder		24124
	Scott		24110
	Seacat		Sunnyvale
	Seiden		22126
	Shapiro		24110
	Shoel		23007
	Skelton		22152
N.	Speer		24086
E.	Stone		24058
M.	Sweeney		25026
w.	Taber		22101
	Tennant		27029
			24088
Ċ.	Thompson Toche		24121
	Totschek		24120
	Tucker		22109
A.	Vorhaus		24076
M.	Weinstock		22131
s.	Weems		22109
G.	West		Sunnyvale
G.	P. West		22116
н.	Williams		22110
G.	Wilson		24124
M.	Winsor		22156
J.	Winter		24117
	Wise		22085
	Wong		Sunnyvale
c.	Zubris		24075
AF	CPL	(5)	14059

DISTRIBUTION (INTERNAL)

NAME		ROOM	<u>nai</u>	<u>vie</u>	ROOM
D. A1	llfree	24083	J.	Haake	22153
	ldana	22131	D.	Henley	22094
.,	lexander	22134	C.	H111	22101
	lperin	22153	J.	Hillhouse	22078
	rmstrong	24123	H.	Holzman	24065
21			G.	Hudson	24126
C. Be	ecerra	24082			
D. B:	iggar	24118	R.	Johnson	22125
R. B		23007			
L. B	renton	24103		Kastama	22076
B. B	urke	24086	M.	Katz	25014
R. B	urke	22158	F.	Kayser	24109
R. B	usch	22088		Keddy	24105
C. B	ustya	22134	D.	Key	23013
			R.	Keyes	24073
M. C	hampaign	22152	J.	Kneemeyer	22088
	hiodini	24091	R.	Knight	22119
	iaccia	24082	L.	Kolbo	22155
	lements	22109			
B, C	line	24127	J.	Laughlin	24073
	ogley	22156	J.	LaVine	24093
	onger	24088	H.	Lewis	23010
P. C	cooley	24086	J.	. Little	24088
D. C	rum	24105		Long	22156
			J.	. Lytton	24077
L. D	DeCuir	24053			_
W. I	Derango	24082	G.	. Madrid	22081
G. D	Dexter	25016	G.	. Mahon	24089
R. D	Disse	23014	J.	. Marioni	24076
G. I	Oobbs	22116	R.	. Marshall	55160
W. I	Oobrusky	24065		. Martin	24127
R. I	Dugas	22125	_	. McKeown	23013
			-	. Milanese	22155
R. E	Ellis	22131	J.	. Munson	22087
R. F	Bricksen	22113	G.	. Myers	22095
н. н	Feldstein	24128	P	. Nelson	24075
	Francis	25013	J	. Ng	22077
	Franks	24122	L	. Ngou	24127
	Frey	22078			
	Friedman	22122	М	. Olson	22161
	- 1 .	25026	*	Dadastt	24110
	Gardner	25026		Padgett	
	Gergen	25014		. Patin	Sunnyvale
1, (Greenwald	22094		. Persico	24083
			.1.	. Polk	24113

UNCLASSIFIED

System Development Corporation,
Santa Monica, California
1604 SIMULATION PROGRAM DESCRIPTIONS,
MILESTONE 11 THE SIMULATED TELEMETRY
DATA GENERATION CONTROL PROGRAM (STGR).
Scientific rept., TM(L)-734/024/00, by
J. Mg. 15 March 1963, 31p., 3 refs.
(Contract AF 19(628)-1648, Space Systems
Division Program, for Space Systems
Division, AFSC)

Unclassified report

DESCRIPTORS: Programming (Computers). Satellite Networks.

UNCLASSIFIED

Reports that the Simulated Telemetry Data Generation Control Program (STGR) has been designed to provide realistic telemetry data (Fixed Format and Event Items) under card input control. Also reports that the simulated data will be packed in the same format as the Telemetry Report Message (Message Type #13).

UNCLASSIFIED

UNCLASSIFIED