Lecture 1: Probability Measure and Random Variables

Tianpei Xie

Jul. 19th., 2015

Contents

1	\mathbf{Pro}	bability Measure	2
	1.1	Definitions	2
	1.2	Dynkin's π - λ System	٥
2	Rar	ndom Variables	6
	2.1	Pre-image	6
	2.2	Measurable Functions as Random Variable	7
		Measurability and Limits	
	2.4	σ -Algebra Generated by Random Variables	10
3	Probability Measures on Product Spaces		12
	3.1	Product Spaces	12
	3.2	Probability Measure on Product Spaces	13

1 Probability Measure

1.1 Definitions

- **Definition** [Resnick, 2013, Billingsley, 2008] A *probability space* is a triple $(\Omega, \mathcal{F}, \mathcal{P})$ where
 - 1. Ω is <u>the sample space</u> corresponding to **outcomes** of some (perhaps hypothetical) experiment.
 - 2. \mathscr{F} is the σ -algebra of subsets of Ω . These subsets are called *events*.
 - 3. \mathcal{P} is a <u>probability measure</u>; that is, \mathcal{P} is a function with domain \mathscr{F} and range [0,1] such that
 - (a) **Non-Negative**: $\mathcal{P}(A) \geq 0$ for all $A \in \mathcal{F}$.
 - (b) Countably Additive: If $\{A_n\} \subset \mathscr{F}$ are disjoint, then

$$\mathcal{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathcal{P}\left(A_n\right).$$

- (c) **Finiteness**: $\mathcal{P}(\Omega) = 1$.
- Proposition 1.1 The following properties are important
 - 1. Complements: $\mathcal{P}(A^c) = 1 \mathcal{P}(A)$;
 - 2. $\mathcal{P}(\emptyset) = 0$;
 - 3. Finite subadditivity: for any collection of $\{A_k : 1 \leq k \leq n\} \subset \mathscr{F}$,

$$\mathcal{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mathcal{P}(A_{k});$$

- 4. Monotonicity: If $A \subset B$, then $\mathcal{P}(A) \leq \mathcal{P}(B)$;
- 5. Countably Subadditivity: for any collection of $\{A_k : k \geq 1\} \subset \mathscr{F}$,

$$\mathcal{P}\left(\bigcup_{k=1}^{\infty} A_k\right) \leq \sum_{k=1}^{\infty} \mathcal{P}(A_k);$$

- Remark [Billingsley, 2008]
 - 1. Ω is called the *sample space*, and a point $\omega \in \Omega$ is referred as a *sample point*.
 - 2. Each sample point is associated with an outcome of some experiment. It can be interpreted as a *trigger* from which an experiments start; or a *probe* from which an observation is made.
 - 3. The σ -algebra \mathscr{F} encodes all possible information conveyed in outcomes of all possible experiments. A measureable set $E \in \mathscr{F}$ is called an *event*. In terms of this, \mathscr{F} is the collection of all possible events associated with all experiments.

2

- 4. Each event is associated with a measure of "possibility volume", which is a probability measure of that event.
- Proposition 1.2 (Monotone Continuity) [Resnick, 2013, Billingsley, 2008]
 - If $A_n \uparrow A$, for $A_n \in \mathscr{F}$, then $\mathcal{P}(A_n) \uparrow \mathcal{P}(A)$;
 - If $A_n \downarrow A$, for $A_n \in \mathscr{F}$, then $\mathcal{P}(A_n) \downarrow \mathcal{P}(A)$;

Proof: – Suppose $A_1 \subset A_2 \cdots$ and $A = \bigcup_{n=1}^{\infty} A_n$, so $\lim_{n \to \infty} \uparrow A_n = A$. Define $\{B_k\} \subset \mathscr{F}$ such that

$$B_1 = A_1$$

 $B_k = A_k - A_{k-1}; \quad k > 1.$

So

$$B_i \cap B_j = \emptyset$$
; and $\bigcup_{k=1}^n B_k = \bigcup_{k=1}^n A_k = A_n$.

Therefore,

$$\mathcal{P}(A) = \mathcal{P}\left(\bigcup_{k \ge 1} A_k\right)$$

$$= \mathcal{P}\left(\bigcup_{k \ge 1} B_k\right)$$

$$= \sum_{k=1}^{\infty} \mathcal{P}(B_k) = \lim_{n \to \infty} \uparrow \sum_{k=1}^{n} \mathcal{P}(B_k)$$

$$= \lim_{n \to \infty} \uparrow \mathcal{P}\left(\bigcup_{k=1}^{n} B_k\right)$$

$$= \lim_{n \to \infty} \uparrow \mathcal{P}(A_n).$$

For the second part, it is similar.

• Proposition 1.3 (Fatou Lemma) [Resnick, 2013, Billingsley, 2008]

$$\mathcal{P}\left(\liminf_{n\to\infty} A_n\right) \leq \liminf_{n\to\infty} \mathcal{P}(A_n)$$

$$\leq \limsup_{n\to\infty} \mathcal{P}(A_n)$$

$$\leq \mathcal{P}\left(\limsup_{n\to\infty} A_n\right).$$

Proof: See that

$$\mathcal{P}\left(\liminf_{n\to\infty}A_n\right) = \mathcal{P}\left(\lim_{k\to\infty}\uparrow\left\{\bigcap_{n\geq k}A_n\right\}\right)$$

$$= \lim_{k\to\infty}\uparrow\mathcal{P}\left(\bigcap_{n\geq k}A_n\right) \quad \text{(by monotone continuity)}$$

$$\leq \liminf_{k\to\infty}\mathcal{P}\left(A_k\right) \quad \text{(by monotonicity } \mathcal{P}(\bigcap_{n\geq k}A_n)\leq \mathcal{P}(A_k)\text{)}$$

$$\leq \limsup_{k\to\infty}\mathcal{P}(A_k) \quad \text{(by definition)}$$

$$\leq \lim_{k\to\infty}\downarrow\mathcal{P}\left(\bigcup_{n\geq k}A_n\right) \quad \text{(by monotonicity } \mathcal{P}(\bigcup_{n\geq k}A_n)\geq \mathcal{P}(A_k)\text{)}$$

$$= \mathcal{P}\left(\lim_{k\to\infty}\downarrow\left\{\bigcup_{n\geq k}A_n\right\}\right) \quad \text{(by monotone continuity)}$$

$$= \mathcal{P}\left(\limsup_{n\to\infty}A_n\right) \quad \blacksquare$$

• **Definition** Let $\Omega = \mathbb{R}$, and suppose \mathcal{P} is a probability measure on \mathbb{R} . Define $F : \mathbb{R} \to [0,1]$ by

$$F(x) = \mathcal{P}((-\infty, x]), \ x \in \mathbb{R}.$$

F satisfies the following conditions

- 1. F is **right continuous**,
- 2. F is monotone non-decreasing,
- 3. F has **limits** at $\pm \infty$

$$F(+\infty) := \lim_{x \to +\infty} F(x) = 1$$
$$F(-\infty) := \lim_{x \to -\infty} F(x) = 0$$

The function F defined above is called a <u>(probability) distribution function</u>. We abbreviate distribution function by df.

Definition (Outer Regularity) [Folland, 2013]
 Let μ be a Borel measure on X and E a Borel subset of X. The measure μ is called outer regular on E if

$$\mu(E) = \inf \{ \mu(U) : U \supseteq E, U \text{ is open} \}$$

Definition (Inner Regularity) [Folland, 2013]
 Let μ be a Borel measure on X and E a Borel subset of X. The measure μ is called inner regular on E if

$$\mu(E) = \sup \{ \mu(C) : C \subseteq E, C \text{ is compact} \}$$

- **Definition** If μ is outer and inner regular on all Borel sets, μ is called regular.
- Remark Baire measure is equivalent to a regular Borel measure (Randon measure) in the context of compact space X.
- Definition (Radon Measure) [Folland, 2013] A Radon measure μ on X is a Borel measure that is
 - 1. **finite** on all **compact** sets; i.e. for any **compact** subset $K \subseteq X$,

$$\mu(K) < \infty$$
.

2. outer regular on all Borel sets; i.e. for any Borel set E

$$\mu(E) = \inf \{ \mu(U) : E \subseteq U, U \text{ is open} \}.$$

3. inner regular on all open sets; i.e. for any open set E

$$\mu(E) = \sup \{ \mu(C) : C \subseteq E, C \text{ is compact and Borel} \}.$$

1.2 Dynkin's π - λ System

• Remark ($Beyond \sigma$ -Algebra)

A σ -algebra is a collection of subsets of Ω satisfying certain closure properties, namely **closure** under **complementation** and **countable** union. We will have need of collections of sets satisfying **different** closure axioms. We define a structure $\mathscr G$ to be a collection of subsets of Ω satisfying certain specified closure axioms.

- **Definition** [Resnick, 2013, Billingsley, 2008]
 - 1. $\underline{\pi\text{-system}}$ (\mathscr{G} is a π -system, if it is **closed** under **finite** intersections: $A, B \in \mathscr{G}$ implies $A \cap B \in \mathscr{G}$).
 - 2. $\underline{\lambda}$ -system (synonyms: σ -additive class, Dynkin class): \mathscr{G} contains Ω and is closed under the formation of complements and of finite and countable disjoint unions:
 - (a) $\Omega \in \mathscr{G}$.
 - (b) $A \in \mathcal{G}$ then $A^c = \Omega \setminus A \in \mathcal{G}$
 - (c) $A_1, A_2, \ldots \in \mathscr{G}$ and $A_n \cap A_m = \emptyset$ for $m \neq n$ imply

$$\bigcup_{n=1}^{\infty} A_n \in \mathscr{G}.$$

Because of the *disjointness condition* in (3), the definition of λ -system is **weaker** (more inclusive) than that of σ -algebra. Although a σ -algebra is a λ -system, the **reverse** is not true.

• Lemma 1.4 [Resnick, 2013, Billingsley, 2008]
A class that is both a π-system and a λ-system is a σ-algebra.

• Many *uniqueness arguments* depend on the following theorem:

Theorem 1.5 (*Dynkin's* π - λ *Theorem*) [Resnick, 2013, Billingsley, 2008]

- 1. If \mathscr{P} is a π -system and \mathscr{G} is a λ -system, then $\mathscr{P} \subseteq \mathscr{G}$ implies $\sigma(\mathscr{P}) \subseteq \mathscr{G}$.
- 2. If \mathscr{P} is a π -system

$$\sigma(\mathscr{P}) = \mathscr{G}(\mathscr{P}),$$

that is, the minimal σ -field over \mathscr{P} equals the minimal λ -system over \mathscr{P} .

- **Remark** *Dynkin's theorem* is a remarkably flexible device for performing set inductions which is ideally suited to probability theory.
- Corollary 1.6 (Uniquness Condition of Probability Measure) [Resnick, 2013, Billingsley, 2008]

Suppose that \mathcal{P}_1 and \mathcal{P}_2 are probability measures on $\sigma(\mathscr{P})$, where \mathscr{P} is a π -system. If \mathcal{P}_1 and \mathcal{P}_2 agree on \mathscr{P} , then they agree on $\sigma(\mathscr{P})$.

• The following shows that probability measure on \mathbb{R} is uniquely determined by its distribution function.

Corollary 1.7 [Resnick, 2013, Billingsley, 2008]

Let $\Omega = \mathbb{R}$. Let $\mathcal{P}_1, \mathcal{P}_2$ be two probability measures on $(\mathbb{R}, \mathscr{F}(\mathbb{R}))$ such that their **distribution** functions are equal:

$$F_1(x) = \mathcal{P}_1((-\infty, x]) = F_2(x) = \mathcal{P}_2((-\infty, x]), \quad \forall x \in \mathbb{R}.$$

Then

$$\mathcal{P}_1 \equiv \mathcal{P}_2$$

on $\mathscr{F}(\mathbb{R})$.

• Definition (Monotone Classes)

A class \mathcal{M} of subsets of Ω is <u>monotone</u> if it is **closed** under the formation of **monotone** unions and intersections:

- 1. $A_1, A_2, \ldots \in \mathcal{M}$ and $A_n \uparrow A$ imply $A \in \mathcal{M}$;
- 2. $A_1, A_2, \ldots \in \mathcal{M}$ and $A_n \downarrow A$ imply $A \in \mathcal{M}$.
- Theorem 1.8 (Halmos's Monotone Class Theorem) [Resnick, 2013] If \mathscr{F}_0 is a field and \mathscr{M} is a monotone class, then $\mathscr{F}_0 \subseteq \mathscr{M}$ implies $\sigma(\mathscr{F}_0) \subseteq \mathscr{M}$.

2 Random Variables

2.1 Pre-image

• Remark Suppose Ω and Ω' are two sets. Frequently $\Omega' = \mathbb{R}$. Suppose

$$X:\Omega\to\Omega'$$

meaning X is a function with domain Ω and range Ω' . Then X determines a **preimage**

$$X^{-1}: 2^{\Omega'} \to 2^{\Omega}$$

defined by

$$X^{-1}(A') = \{ \omega \in \Omega : X(\omega) \in A' \}$$

for $A' \subseteq \Omega'$. X^{-1} preserves complementation, union and intersections.

- Proposition 2.1 (σ -Algebra Preserved by Preimage) [Resnick, 2013] If \mathscr{B} is a σ -algebra of subsets of Ω' , then $X^{-1}(\mathscr{B})$ is a σ -algebra of subsets of Ω .
- Proposition 2.2 [Resnick, 2013] If \mathscr{C} is a collection of subsets in Ω' , then

$$X^{-1}\left(\sigma(\mathscr{C})\right) = \sigma\left(X^{-1}(\mathscr{C})\right),$$

that is, the pre-image of the σ -algebra generated by $\mathscr C$ in Ω' is the same as the σ -algebra generated by pre-image of $\mathscr C$.

2.2 Measurable Functions as Random Variable

• Definition (Random Element and Random Variables) Given (Ω, \mathscr{F}) and (Ω', \mathscr{B}) are two measureable space, a map $X : \Omega \to \Omega'$ is a measurable map $(\text{or } (\mathscr{F}/\mathscr{B}) \text{ measurable})$ if

$$X^{-1}(\mathscr{B}) \subset \mathscr{F}.$$

X is called a **random element** in Ω' , and denoted as

$$X\in \mathscr{F}/\mathscr{B},$$
 or $X:(\Omega,\mathscr{F})\to (\Omega',\mathscr{B})$

If $(\Omega', \mathcal{B}) = (\mathbb{R}, \mathcal{B})$, $\mathcal{B} = \mathcal{B}(\mathbb{R})$ is Borel σ -algebra on \mathbb{R} , X is called a random variable.

• Definition (Distribution of Random Variable)

Given the probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and suppose $X : (\Omega, \mathcal{F}) \to (\Omega', \mathcal{B})$ is measurable, then the set function

$$\mathcal{P}_X \equiv \mathcal{P} \circ X^{-1}$$

 $\Rightarrow \mathcal{P}_X(B) = \mathcal{P}(X^{-1}(B)) \text{ for all } B \in \mathscr{B}$

is called the *induced probability* or the distribution for random variable X.

Given random variable X, we obtain an induced probability space $(\Omega', \mathcal{B}, \mathcal{P}_X)$ on the image set.

• Remark (Pushforward Measure)

Definition For a *continous* map $T: \mathcal{X} \to \mathcal{Y}$, the *push-forward operator* is defined as $T_{\#}: \mathcal{M}(\mathcal{X}) \to \mathcal{M}(\mathcal{Y})$ that satisfies

$$(T_{\#}\alpha)(B) := \alpha(\{\boldsymbol{x} : T(\boldsymbol{x}) \in B \subset \mathcal{Y}\}) = \alpha(T^{-1}(B))$$

where the <u>push-forward measure</u> $\beta := T_{\#}\alpha \in \mathcal{M}(\mathcal{Y})$ of some $\alpha \in \mathcal{M}(\mathcal{X})$, $T^{-1}(\cdot)$ is the pre-image of T, and $\mathcal{M}(\mathcal{X})$ is the set of **Radon measures** on the space \mathcal{X} .

Thus the distribution of random variable X is the pushforward measure of \mathcal{P} by random map X:

$$\mathcal{P}_X = X_{\#}\mathcal{P}.$$

• Remark Usually we write

$$\mathcal{P} \circ X^{-1}(B) = \mathcal{P}(\{\omega : X(\omega) \in B\}) = \mathcal{P}(X \in B)$$

If X is a random variable, \mathcal{P}_X is an induced probability measure on \mathbb{R} :

$$\mathcal{P} \circ X^{-1}((-\infty, x]) = \mathcal{P}(X \le x)$$

- Remark [Billingsley, 2008]
 - We can interpret each random variable $X:\Omega\to\mathbb{R}$ as the result of a *random experiment* whose *outcome measurement* is a real number. When the experiment design is complete, the random variable as a \mathscr{F} -measureable function is fixed, and the outcome for each run is associated with a specific *sample point* $\omega\in\Omega$.
 - The σ -algebra generated by a random variable X, $\sigma(X)$, encodes **all possible information** conveyed by the **outcome** of experiment X. In communication, where X is the message, all information of the message can be encoded in $\sigma(X)$. The set $[X \in A] \equiv \{\omega : X(\omega) \in A\} \in \sigma(X)$ incorporates all possible realizations whose outcomes lie in A.
 - Moreover, $\sigma(X) \subset \mathscr{F}$ provides a specific structure in \mathscr{F} that is induced by the given random variable X. Here, $\sigma(X) \subset \sigma(X,Z)$ indicates that the there is, in general, finer information structure contained in experiments yielding multiple outcome $(X(\omega), Z(\omega)), \omega \in \Omega$ than those yielding a simple outcome $X(\omega)$. Finer means more detailed information is available to be explored.
 - In terms of this, the overall σ -algebra \mathscr{F} just encode all possible information conveyed by any feasible experiments.
 - The distribution of random variable as an induced probability measure $\mathcal{P} \equiv \mathbb{P} \circ X^{-1}$ is then a measure of all possible outcomes in real \mathbb{R} , which is generated by experiments of X. Here \mathbb{P} is a probability measure of event in sample space.

Note that the induced probability space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{P})$ contained all information regarding the random experiment. It allow as to "forget" the original space $(\Omega, \mathcal{F}, \mathbb{P})$.

- Sometime, we can specify a fixed sample point $\omega \in \Omega$ from a given outcome of the experiment X, then for any *event* $E \in \sigma(X)$, we can reveal whether or not $\omega \in E$, but still have no information about the event itself.
- Proposition 2.3 (Test for Measurability)[Resnick, 2013] Suppose

$$X:\Omega\to\Omega'$$

where (Ω, \mathcal{F}) , and (Ω', \mathcal{B}) are two measurable spaces. Suppose \mathscr{C} generates \mathscr{B} ; that is

$$\mathscr{B} = \sigma(\mathscr{C}).$$

Then X is measurable if and only if

$$X^{-1}(\mathscr{C}) \subset \mathscr{B}$$
.

• Corollary 2.4 (Special Case of Random Variables) [Resnick, 2013] The real valued function

$$X:\Omega\to\mathbb{R}$$

is a random variable if and only if

$$X^{-1}((-\infty,\lambda]) = [X \le \lambda] \in \mathcal{B}, \quad \forall \lambda \in \mathbb{R}.$$

2.3 Measurability and Limits

• Proposition 2.5 [Resnick, 2013]

Let X_1, X_2, \ldots be random variables defined on (Ω, \mathcal{F}) . Then

- $-\inf_{n\geq 1} X_n$ and $\sup_{n\geq 1} X_n$ are random variables;
- $\liminf_{n\to\infty} X_n$ and $\limsup_{n\to\infty} X_n$ are random variables;
- If $\lim_{n\to} X_n(\omega)$ exists for all ω , then $\lim_{n\to} X_n$ is a random variable;
- The set on which $\{X_n : n \geq 1\}$ has a limit is measureable; that is,

$$\left\{\omega : \lim_{n \to \infty} X_n(\omega) \ exists\right\} \in \mathscr{F}.$$

Proof: – Given that $X_k \in \mathcal{F}/\mathcal{B}$, $k \geq 1$, the event

$$\left\{\omega: \inf_{n\to\infty} X_n(\omega) \in (-\infty,\lambda]\right\} = \bigcup_{n\geq 1} \left\{\omega: X_n(\omega) \in (-\infty,\lambda]\right\} \in \mathscr{F}, \text{ for any } \lambda \in \mathbb{R}$$

since
$$\{\omega: X_n(\omega) \in (-\infty, \lambda]\} \in \mathscr{F}$$
.

Also

$$\left\{\omega: \sup_{n\to\infty} X_n(\omega) \in (-\infty, \lambda]\right\} = \bigcap_{n\geq 1} \left\{\omega: X_n(\omega) \in (-\infty, \lambda]\right\} \in \mathscr{F}, \text{ for any } \lambda \in \mathbb{R}.$$

- The event

$$\left\{\omega : \liminf_{n \to \infty} X_n(\omega) \in (-\infty, \lambda]\right\} = \left\{\omega : \sup_{k \ge 1} \inf_{n \ge k} X_n(\omega) \in (-\infty, \lambda]\right\}$$
$$= \bigcap_{k \ge 1} \bigcup_{n \ge k} \left\{\omega : X_n(\omega) \in (-\infty, \lambda]\right\} \in \mathscr{F}, \text{ for any } \lambda \in \mathbb{R}.$$

Similarly,

$$\left\{\omega: \limsup_{n \to \infty} X_n(\omega) \in (-\infty, \lambda]\right\} = \left\{\omega: \inf_{k \ge 1} \sup_{n \ge k} X_n(\omega) \in (-\infty, \lambda]\right\}$$
$$= \bigcup_{k \ge 1} \bigcap_{n \ge k} \left\{\omega: X_n(\omega) \in (-\infty, \lambda]\right\} \in \mathscr{F}, \text{ for any } \lambda \in \mathbb{R}$$

- If $\lim_{n\to} X_n(\omega)$ exists for all ω , then

$$\lim_{n \to \infty} X_n = \limsup_{n \to \infty} X_n = \liminf_{n \to \infty} X_n,$$

which is a random variable.

- Consider the complement

$$\begin{split} \left\{\omega \ : \ \lim_{n \to } X_n(\omega) \ \text{exists} \right\}^c &= \left\{\omega \ : \ \limsup_{n \to \infty} X_n(\omega) > \liminf_{n \to \infty} X_n(\omega) \right\} \\ &= \bigcup_{r \in \mathcal{Q}} \left\{\omega \ : \ \limsup_{n \to \infty} X_n(\omega) > r \geq \liminf_{n \to \infty} X_n(\omega) \right\} \\ &= \bigcup_{r \in \mathcal{Q}} \left(\left[\left\{\omega \ : \ \limsup_{n \to \infty} X_n(\omega) \leq r \right\}^c \right] \bigcap \left[\left\{\omega \ : \ \liminf_{n \to \infty} X_n(\omega) \leq r \right\} \right] \right) \\ &= \bigcup_{r \in \mathcal{Q}} \bigcap_{k \geq 1} \left(\bigcup_{n \geq k} \left\{X_n(\omega) > r \right\} \cap \bigcup_{n \geq k} \left\{X_n(\omega) \leq r \right\} \right) \\ &\in \mathscr{F}, \end{split}$$

since $\limsup_{n\to\infty} X_n$, $\liminf_{n\to\infty} X_n$ are both measureable.

2.4 σ -Algebra Generated by Random Variables

• Definition $(\sigma$ -Algebra Generated by Random Variable) Let $X:(\Omega,\mathscr{F})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ be a random variable. The σ -algebra generated by random variable, denoted $\sigma(X)$, is defined as

$$\sigma(X) = X^{-1}(\mathcal{B}(\mathbb{R})).$$

Another equivalent description of $\sigma(X)$ is

$$\sigma(X) := \{ [X \in A], A \in \mathcal{B}(\mathbb{R}) \},$$

where

$$[X \in A] \equiv X^{-1}(A) = \{ \omega \in \Omega : X(\omega) \in A \}.$$

Remark (σ(X) = Information about X in Probability Space)
 This is the σ-algebra generated by information about X, which is a way of isolating that information in the probability space that pertains to X.

• Definition (σ -Algebra Generated by Random Element) Suppose

$$X:(\Omega,\mathscr{F})\to(\Omega',\mathscr{B})$$

is a random element. Then we define

$$\sigma(X) = X^{-1}(\mathscr{B}).$$

as σ -algebra generated by random element.

- Remark (Measurable with respect to Sub σ -Algebra) $\mathscr{F}' \subset \mathscr{F}$, we say X is measureable with respect to \mathscr{F}' , written $X \in \mathscr{F}'$ if and only if $\sigma(X) \subset \mathscr{F}'$.
- Definition (Smallest σ -Algebra Containing $\sigma(X_t)$) Let $X_t: (\Omega, \mathscr{F}) \to (\Omega', \mathscr{B})$ for each t in some index set T, then denote

$$\sigma(X_t, t \in T) = \bigvee_{t \in T} \sigma(X_t)$$

the smallest σ -algebra containing all $\sigma(X_t)$.

• Remark (Increasing Family of σ-Algebras in Stochastic Process)
In stochastic process theory, we frequently keep track of potential information that can be revealed to us by observing the evolution of a stochastic process by an increasing family of σ-algebras.

If $\{X_n, n \geq 1\}$ is a *(discrete time) stochastic process*, we may define

$$\mathscr{F}_n := \sigma(X_1, \dots, X_n), \quad n \ge 1.$$

Thus, $\mathscr{F}_n \subset \mathscr{F}_{n+1}$ and we think of \mathscr{F}_n as the *information potentially available at* time n. This is a way of cataloguing what information is contained in the probability model. **Properties** of the stochastic process are sometimes expressed in terms of $\{\mathscr{F}_n, n \geq 1\}$.

For instance, one formulation of **the Markov property** is that the conditional distribution of X_{n+1} given \mathscr{F}_n is the **same** as the conditional distribution of X_{n+1} given X_n .

$$\mathcal{P}(X_{n+1}|\mathscr{F}_n) = \mathcal{P}(X_{n+1}|X_n)$$

• Proposition 2.6 [Resnick, 2013] Suppose X is a random variable and $\mathscr C$ is a class of subsets of $\mathbb R$. such that

$$\sigma(\mathscr{C}) = \mathcal{B}(\mathbb{R}).$$

Then

$$\sigma(X) = \sigma\left([X \in B] : B \in \mathscr{C}\right).$$

A special case of this result is

$$\sigma(X) = \sigma\left([X \leq \lambda], \lambda \in \mathbb{R}\right).$$

- Example The followings are $\sigma(X)$ from some special random variables:
 - 1. For constant function $X(\omega) = a \in \mathbb{R}$ for all ω , then generated σ -algebra

$$\sigma(X) = \{\emptyset, \Omega\}.$$

2. For *indicator function* $X(\omega) = \mathbb{1} \{ \omega \in A \}$, the generated σ -algebra

$$\sigma(X) = \{\emptyset, A, A^c, \Omega\}.$$

Since $X^{-1}(1) = A$, and $X^{-1}(0) = A^c$, so $X^{-1}(B) = \emptyset$, $\{0,1\} \cap B = \emptyset$ and $X^{-1}(B) = \Omega$, $\{0,1\} \subset B$; similarly, $X^{-1}(B) = A$, $\{0,1\} \cap B = \{1\}$ and $X^{-1}(B) = A^c$, $\{0,1\} \cap B = \{0\}$.

3. If $(X_1, X_2, ...)$ is a **stochastic process**, then

$$\mathscr{F}_n \equiv \sigma(X_1, \dots, X_n)$$

is the σ -algebra generated by collection of subsets (n-dimensional cylinder sets)

$$\{\omega: (X_1(\omega), \dots, X_n(\omega)) \in A'\} \in \mathscr{F}, \text{ for } A' \in \mathcal{B}(\mathbb{R}^n).$$

This collects all information from 0 to n. See that

$$\sigma(X_1,\ldots,X_n)\subset\sigma(X_1,\ldots,X_n,X_{n+1})$$
.

3 Probability Measures on Product Spaces

3.1 Product Spaces

• Definition (Product Space) Let Ω_1 , Ω_2 be two sets. Define the product space

$$\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \omega_i \in \Omega_i, i = 1, 2\}$$

and define the coordinate or projection maps by (i = 1, 2)

$$\pi_i: \Omega_1 \times \Omega_2 \to \Omega_i$$
$$(\omega_1, \omega_2) \mapsto \omega_i$$

so that If $A \subset \Omega_1 \times \Omega_2$ define

$$A_{\omega_1} = \{ \omega_2 : (\omega_1, \omega_2) \in A \} = \pi_2(A) \subset \Omega_2$$

$$A_{\omega_2} = \{ \omega_1 : (\omega_1, \omega_2) \in A \} = \pi_1(A) \subset \Omega_1.$$

 A_{ω_i} is called the section of A at ω_i .

• Definition (Function on Product Space)

Now suppose we have a function X with **domain** $\Omega_1 \times \Omega_2$ and range equal to some set S. It does no harm to think of S as a metric space. Define **the section of the function** X as

$$X_{\omega_1}(\omega_2) = X(\omega_1, \omega_2)$$

so
$$X_{\omega_1} \circ \pi_2 = X$$
 for

$$X_{\omega_1}:\Omega_2\to S.$$

We think of ω_1 as **fixed** and **the section** is a function of varying ω_2 . Call X_{ω_1} the section of X at ω_1 .

• Lemma 3.1 (Sectioning Sets) [Resnick, 2013] Sections of measurable sets are measurable. If $A \in \mathscr{F}_1 \times \mathscr{F}_2$, then for all $\omega_1 \in \Omega_1$

$$A_{\omega_1} \in \mathscr{F}_2$$
.

• Corollary 3.2 [Resnick, 2013] Sections of measurable functions are measurable. That is, if

$$X: (\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2) \to (S, \mathscr{S})$$

then

$$X_{\omega_1}$$
 is \mathscr{F}_2 -measurable.

3.2 Probability Measure on Product Spaces

• Definition (Transition Function / Transition Kernel) Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. A map

$$K:\Omega_1\times\mathscr{F}_2\to[0,1]$$

is called <u>a transition function</u> (or transition kernel) if it satisfies the following conditions:

- 1. for each ω_1 , $K(\omega_1, \cdot)$ is a **probability measure** on \mathscr{F}_2 , and
- 2. for each $A_2 \in \mathscr{F}_2$, $K(\cdot, A_2)$ is a $\mathscr{F}_1/\mathcal{B}([0,1])$ -measurable function.
- Proposition 3.3 (Joint Probability from Transition Kernel) [Resnick, 2013] Let \mathcal{P}_1 be a probability measure on \mathscr{F}_1 , and suppose

$$K: \Omega_1 \times \mathscr{F}_2 \to [0,1]$$

is a transition function. Then K and \mathcal{P}_1 uniquely determine a probability on $\mathscr{F}_1 \times \mathscr{F}_2$ via the formula

$$\mathcal{P}(A_1 \times A_2) = \int_{A_1} K(\omega_1, A_2) \mathcal{P}_1(d\omega_1)$$

for all $A_1 \times A_2 \in \mathscr{F}_1 \times \mathscr{F}_2$. This probability measure on product space $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2)$ is called **the joint probability**.

• Proposition 3.4 (Marginal Random Variable) [Resnick, 2013] Let \mathcal{P}_1 be a probability measure on $(\Omega_1, \mathscr{F}_1)$ and suppose $K: \Omega_1 \times \mathscr{F}_2 \to [0,1]$ is a transition kernel. Define \mathcal{P} on $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2)$ by

$$\mathcal{P}(A_1 \times A_2) = \int_{A_1} K(\omega_1, A_2) \mathcal{P}_1(d\omega_1).$$

Assume

$$X: (\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

and furthermore suppose $X \geq 0$ or $X \in L^1(\mathcal{P})$ is **integrable**. Then

$$Y(\omega_1) = \int_{\Omega_2} K(\omega_1, d\omega_2) X_{\omega_1}(\omega_2).$$

has the properties

- 1. Y is well defined.
- 2. Y is \mathcal{F}_1 -measurable.
- 3. $Y \ge 0$ or $Y \in L^1(\mathcal{P}_1)$ is integrable,

and furthermore

$$\int_{\Omega_1 \times \Omega_2} X d\mathcal{P} = \int_{\Omega_1} Y(\omega_1) \mathcal{P}_1(d\omega_1) = \int_{\Omega_1} \left[\int_{\Omega_2} K(\omega_1, d\omega_2) X_{\omega_1}(\omega_2) \right] \mathcal{P}_1(d\omega_1).$$

• Theorem 3.5 (Fubini Theorem) [Resnick, 2013] Let $\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2$ be product measure. If X is $(\mathscr{F}_1 \times \mathscr{F}_2)$ -measurable and is either nonnegative or integrable with respect to \mathcal{P} , then

$$\begin{split} \int_{\Omega_1 \times \Omega_2} X d\mathcal{P} &= \int_{\Omega_1} \left[\int_{\Omega_2} X_{\omega_1}(\omega_2) \mathcal{P}_2(d\omega_2) \right] \mathcal{P}_1(d\omega_1) \\ &= \int_{\Omega_2} \left[\int_{\Omega_1} X_{\omega_2}(\omega_1) \mathcal{P}_1(d\omega_1) \right] \mathcal{P}_2(d\omega_2). \end{split}$$

References

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.