Implementing digital systems in Simulink

Lab 4, DSP

Objective

Students should implement basic digital systems in the Simulink environment

Theoretical aspects

The following aspects shall be explained.

- 1. Introduction to Simulink
 - what it is
 - how to create models
 - settings needed for discrete models and simulation
- 2. Basic Simulink blocks for digital signal processing
 - mathematical operations: sum, product, gain
 - unit delays
 - input data: unit step, ramp etc
 - multimedia data: FromMultimediaFile, ToAudioSink
 - visualization: Scope
 - miscellaneous: Manual Switch, Switch
 - saving data to/from Matlab environment: ToWorkspace, FromWorkspace
- 3. Properties of discrete systems:
 - linearity:

$$H\{a \cdot x_1[n] + b \cdot x_2[n]\} = a \cdot H\{x_1[n]\} + b \cdot H\{x_2[n]\}$$

• time invariance:

$$H\{x[n-k]\} = y[n-k], \text{ where } y[n] = H\{x[n]\}$$

Exercises

1. Create a Simulink model to implement the following system H_1 :

$$y[n] = H_1\{x[n]\} = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

- the system should be implemented as a Subsystem block with one input and one output signal
- 2. Visualize the impulse response of the system
 - add a unit impulse as the input (hint: can be created from two unit ramp blocks, delayed)
 - add a Scope at the output to visualize the data
 - also save the data to workspace (ToWorkspace block) and plot the impulse response from the command line
- 3. Test linearity of this system by checking if the linearity equation holds
 - create multiple copies of the system inside the model (copy/paste)
 - use two randomly generated input vectors \mathbf{x} and \mathbf{y} , and two random constants \mathbf{a} and \mathbf{b}
 - check that the output of the system when the input is a*x + b*y is exactly equal to the weighted sum of the outputs applied separately to x and y
- 4. Test time-invariance in a similar way
 - the system will be applied to an input vector \mathbf{x} , and to \mathbf{x} prepended with a variable number of zeros (i.e. time delayed)
 - the outputs shall be checked if they verify the time invariance equation
- 5. Apply the system to the audio data (mp3 file) loaded with FromMultimediaFile and play the resulting output (ToAudioSink). How is the sound affected?
 - some tweaking of the parameters of the FromMultimediaFile block is needed, check with the teacher

Final questions

1. TBD