OLIVIER DEHEURLES / JAMES WATSON

CLUSTERED EVENT-DRIVEN SERVICES ARCHITECTURE + DESIGN

In 2010 I came across a strange, new (to me!) architecture that the LMAX team used for their Foreign Exchange system. You might have heard about the Disruptor; it came out of this project. The core of our system is a clustered service which uses the Raft consensus algorithm to reliably replicate state between the different nodes and hosts our application logic. We will take a quick look at Raft and then at the benefits of this design compared to more "mainstream" architectures.

This architecture offers a clean separation of concerns between the infrastructure – which takes care of the concurrency, I/O and high availability aspects – and the application logic. The clean architecture is a great fit for domain-driven design. If you fancy building fast, resilient services without a database you should come to this talk. Our UIs and the backend systems are constantly sending messages between each other back and forth repeatedly in milliseconds.

The problem

Complex multi-threaded programs

- ⇒ Hard to reason about
- ⇒ Hard to debug

The Solution - LMAX Architecture

Blueprint for reactive services

Clean separation of concerns

- technical requirements
- Business logic

Keep the business logic as simple as possible

Very easy to debug

Dave Farley

The business logic runs on a single thread in this architecture.

Our journey to the LMAX Architecture

- Stage 1
 - Simple Model
 - Easy To Debug
- Stage 2
 - Transparent fault tolerance
 - Clustering with consistent replication
- Stage 3
 - Durability without a database

Deterministic execution in a distributed event system

Determinism Given an initial state and a command, a deterministic model will always produce the same output state and side-effect(s) State N + Command State N+1 + Side effect(s)

Single threaded, isn't that slow? No!

10K ops/sec: quite easy to achieve with sensible code

100K ops/sec: some profiling required

1M+ ops/sec:

- Optimised data structures
- Low complexity algorithms O(1), O(log(N))
- Minimise allocation

We add the timestamp of the pickup time to the message

Service Anatomy

Fault Tolerance & State Replication

Distributed consensus problem

Durability

Replay all commands up to latest Services is guaranteed to get back in the same state due to deterministic logic Log Service A: \$100 B: \$300

Managing the log

Problem: the size of the log affects recovery time

Not a problem if

- Log grows slowly
- Your model has short lifetime

Otherwise consider snapshotting or other forms of compaction

We take the model in memory and serialize it to save it

Other use-cases

- Online games
 - MMO
 - Gambling
- Ticketing system
- Consistent Databases / Caches
- Many more..

Wrapping up

- Demonstrated the simplicity of this approach
- Widely applicable
- Deserves more attention!
- Learn more
 - LMAX Architecture https://goo.gl/q1iSCB
 - Raft paper and website https://raft.github.io/
 - The Log https://goo.gl/m4iWqn
 - White paper http://weareadaptive.com/blog