Proposition 0.0.1

Let A be an open subset of \mathbb{R}^n , and let ω be a 1-form defined on A. For k-manifold $M \subseteq A$, the followings are equivalent:

- 1. $\mathcal{T}_{\vec{p}}(M) \subseteq \ker(\omega(\vec{p}))$ for all $\vec{p} \in M$
- 2. $\alpha^*\omega = 0$ for all coordinate patches α for M
- 3. $\int_C \omega = 0$ for all 1-manifold $C \subseteq M$.

Let ω be a 1-form defined on an open subset A of \mathbb{R}^n , for k-manifold $M \subseteq A$, M is called an integral manifold for ω provided that $\int_C \omega = 0$ for all 1-manifold $C \subseteq M$. Integral manifolds for ω are also integral manifold for $g\omega$ where g is a scalar function, because we have $\alpha^*(g\omega) = (\alpha^*g)(\alpha^*\omega)$.

Lemma 0.0.2

Let $f \in C^1(A, \mathbb{R})$ where A is an open subset of \mathbb{R}^n , with $df \neq 0$ on A. Then, for $c \in \mathbb{R}$, the level set $f^{-1}(c)$ is an (n-1)-manifold without boundary.

Corollary 0.0.2.1

Let $f \in C^1(A, \mathbb{R})$ where A is an open subset of \mathbb{R}^n , with $df \neq 0$ on A. Each level set of f is an integral manifold for df.

Let A be an open subset of \mathbb{R}^n , let $f:A\to\mathbb{C}$. $Y_\alpha\subseteq A$, we define $\int_{Y_\alpha}f\,dV=\int_{Y_\alpha}u\,dV+i\int_{Y_\alpha}v\,dV$. Let $A\subseteq\mathbb{R}^n$ be open, let $\omega:A\to\mathbb{C}^n_{row},\ \omega=\omega_1+i\omega_2$, be a \mathbb{C} -valued 1-form. $\int_{Y_\alpha}\omega:=(\int_{Y_\alpha}\omega_1)+(i\int_{Y_\alpha}\omega_2)$. Let A be an open subset of \mathbb{R}^n , let $f:A\to\mathbb{C}$ with f=u+iv for functions u and v. Define $D_jf:=D_ju+iD_jv$. If f=u+iv, then $f\,dz=(u+iv)(dx+idy)=(u+iv)dx+(iu-v)dy$. If the 1-form $f\,dz$ is closed, we have $D_1(if)=D_2(f)$, or the Cauchy-Riemann equation holds: $D_1u=D_2v$, $D_2u=-D_1v$. A function $f:\mathbb{C}\to\mathbb{C}$ is holomorphic provided that $f\,dz$ is closed, or the Cauchy-Riemann Equations hold for the function f.

Proposition 0.0.3

Let A be an open subset of \mathbb{R}^n , let $f: A \to \mathbb{C}$. we have $\left| \int_A f \right| \leq \int_A |f|$

Theorem 0.1

Let f be a holomorphic on open $A \subseteq \mathbb{C}$. If A is diffeomorphic to a convex set, then f dz is exact.

Corollary 0.1.1 (Cauchy Integral Theorem)

Given a holomorphic function f defined on an open subset A of \mathbb{C} , where A is diffeomorphic to a convex set, and given $\alpha:[a,b]\to A$ being a piecewise C^1 function with $\alpha(a)=\alpha(b)$, we have $\int_{Y_a} f \, dz = 0$.

Lemma 0.1.2

Let f and g be holomorphic functions. Then $f \cdot g$, $g \circ f$, $\frac{1}{g}$ and $\frac{f}{g}$ are holomorphic functions. If f is holomorphic diffeomorphism, then f^{-1} is holomorphic.

Theorem 0.2 (Cauchy Integral Theorem)

Let C_1 and C_2 be disjoint circles in $\mathbb C$ with C_2 lying inside C_1 , let A be an open set of points lying inside C_1 and outside of C_2 , let U be an open subset of $\mathbb C$ containing $A \cup C_1 \cup C_2$, and let f be a holomorphic function on U, then we have $\int_{C_1} f \, dz = \int_{C_2} f \, dz$

Corollary 0.2.1

Let U be an open subset of \mathbb{C} with some $z_0 \in U$, let f be a holomorphic function defined on $U \setminus \{z_0\}$, then for $K = \{z \in \mathbb{C} \mid ||z - z_0|| = r\} \subseteq U$, we have $\frac{1}{2\pi i} \int_K f \, dz$ being independent of r.

Definition 0.2.1.0.1

Let U be an open subset of $\mathbb C$ with some $z_0 \in U$, let f be a holomorphic function defined on $U \setminus \{z_0\}$, then for $K = \{z \in \mathbb C \mid ||z - z_0|| = r\} \subseteq U$. The residue of f dz at z_0 is $Res(f dz, z_0) := \frac{1}{2\pi i} \int_K f dz$

Theorem 0.3

Let U be an open subset of \mathbb{C} , let D be a closed disc in U with $z_0 \in Int(D)$, and let f be a holomorphic function defined on $U \setminus \{z_0\}$. We have $\int_{Bd(D)} f dz = 2\pi i \operatorname{Res}(f dz, z_0)$

Let g be a holomorphic function defined on an open subset U of \mathbb{C} with $z_0 \in U$. We have the following holds:

$$Res\left(\frac{g(z)}{z - z_0} dz, z_0\right) = \frac{1}{2\pi i} \int_{||z - z_0|| = r} \frac{g(z)}{z - z_0} dz = g(z_0)$$

Proposition 0.3.1 (ML-estimate in \mathbb{R}^n)

Let $Y_{\alpha} \subseteq \mathbb{R}^n$ be a parametrized 1-manifold parametrized by $\alpha : [a,b] \to Y_{\alpha}$. Let ω be a 1-form defined on an open subset of \mathbb{R}^n containing Y_{α} . Then $\left|\left|\int_{Y_{\alpha}}\omega\right|\right| \leq \left(\sup_{\vec{v}\in Y_{\alpha}}||\omega(\vec{v})||\right) \cdot length(Y_{\alpha})$

Theorem 0.4 (ML-estimate in \mathbb{C})

Let $Y_{\alpha} \subseteq \mathbb{C}$ be a parametrized 1-manifold parametrized by $\alpha : [a,b] \to Y_{\alpha}$. Let $f : A \to \mathbb{C}$ be a continuous function with $A \subseteq \mathbb{C}$ being an open and contains Y_{α} . Then $\left| \left| \int_{Y_{\alpha}} f \, dz \right| \right| \leq \left(\sup_{z \in Y_{\alpha}} |f(z)| \right) \cdot \operatorname{length}(Y_{\alpha})$

Definition 0.4.0.0.1

Let U be an open subset of \mathbb{C} , let $f: U \to \mathbb{C}$ be a function. f is said to be differentiable in real sense at $t \in U$ provided that $u: U \to \mathbb{R}$ $z \mapsto \Re(f(z))$ and $v: U \to \mathbb{R}$ $z \mapsto \Im(f(z))$ are both differentiable at t. Here we consider $\mathbb{C} \cong \mathbb{R}^2$ when evaluating the differentiability of u and v.

Definition 0.4.0.0.2

Let f be a function of C^1 type defined on U, where U is an open subset of \mathbb{C} . f is said to be complex differentiable, denoted as \mathbb{C} -differentiable, at $z_0 \in U$ provided that $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$. If f is \mathbb{C} -differentiable, $f'_{\mathbb{C}}(z_0) = \frac{\partial f}{\partial z}(z_0)$ is called the derivative of f at z_0 .

Theorem 0.5

Let f be a function defined on U, where U is an open subset of \mathbb{C} . The followings are equivalent:

- 1. f is holomorphic on U
- 2. f is of C^1 type on U, and $\frac{\partial f}{\partial \bar{z}} = 0$ 3. f is \mathbb{C} -differentiable at each point in U, and $f'_{\mathbb{C}}$ is continuous.

Corollary 0.5.1 (Differentiated Cauchy Integral Formula)

Let U be an open subset of \mathbb{C} , let $D \subseteq U$ be a closed disc with $z_0 \in Int(D)$, and let g be a holomorphic function defined on $U \setminus \{z_0\}$. Then we have:

$$g_{\mathbb{C}}^{(m)}(z_0) = \frac{m!}{2\pi i} \int_{z \in Bd(D)} \frac{g(z) dz}{(z - z_0)^{m+1}}$$

The function g is infinitely \mathbb{C} -differentiable. Here 0! = 1.

Theorem 0.6 (Taylor's Theorem)

Let $z_0 \in \mathbb{C}$, let f be a holomorphic function defined on an open subset Ω of \mathbb{C} that contains z_0 . For all $z \in \mathbb{C}$ that satisfies $|z-z_0| < \rho$ for some $d(z_0, Bd(\Omega)) > \rho > 0$, we have:

$$f(z) = \sum_{k=0}^{\infty} \frac{f_{\mathbb{C}}^{(k)}(z_0)}{k!} (z - z_0)^k$$

Here we denote $f^{(0)} := f$, 0! := 1, and $(z - z_0)^0 := 1$ for $z = z_0$.

Theorem 0.7

Let f be a holomorphic function defined on a open subset Ω of \mathbb{C} . Denote $E := \bigcap_{k=0}^{\infty} (f_{\mathbb{C}}^{(k)})^{-1}(0)$. If we have Ω being connected, then we have either $E = \emptyset$ or f(z) = 0 for all $z \in \Omega$.

Corollary 0.7.1

Let Ω be a connected open subset of $\mathbb C$ that contains z_0 , let f_1 and f_2 be holomorphic functions on Ω , with $f_1^{(k)}(z_0) = f_2^{(k)}(z_0)$ for all k. Then we have $f_1(z) = f_2(z)$ for all $z \in \Omega$.

Let Holo(A) denote the set of holomorphic functions defined on a set A. Let V be an open connected subset of \mathbb{C} , let U be a nonempty open proper subset of V. The restriction map from Holo(V) to Holo(U) is injective.

Theorem 0.8

For $z_0 \in \mathbb{C}$, consider the following power series $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$. If $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converges pointwise on $|z-z_0| < r$ for some r > 0. Then the function f is holomorphic on the set $\{z \in \mathbb{C} \mid |z-z_0| < r\}$.

Theorem 0.9

Let $z_0 \in \mathbb{C}$, let Ω be a connected open subset of \mathbb{C} that contains z_0 , let f be a holomorphic function defined on Ω and being not all zero on Ω . Then there exists $m \in \mathbb{N} \cup \{0\}$ such that, for $z \in \Omega$, $f(z) = (z - z_0)^m h(z)$ with some holomorphic function h defined on Ω and $h(z_0) \neq 0$.

In the settings of Theorem 0.9, m is called the order of f at z_0 , denoted as $\operatorname{ord}_{z_0} f := m$.

Corollary 0.9.1

Let $z_0 \in \mathbb{C}$, let Ω be a connected open subset of \mathbb{C} that contains z_0 , let f be a holomorphic function defined on Ω with $f(z) \neq 0$ for some $z \in \Omega$. Then there exists r > 0 such that $f(z) \neq 0$ for all $z \in \Omega$ that satisfies $0 < |z - z_0| < r$.

Corollary 0.9.2

Let K be a compact set that is contained in some connected open subset of \mathbb{C} , let f be a holomorphic function defined on Ω with $f(z) \neq 0$ for some $z \in \Omega$. Then $\#(K \cap f^{-1}(0)) < \infty$.

Corollary 0.9.3

Let f_1 and f_2 be holomorphic functions on an open connected subset Ω of $\mathbb C$ with $f_1=f_2$ on some infinite subset of a compact subset of Ω . Then $f_1 = f_2$ on Ω .

Corollary 0.9.3.1 (Persistence of Relations)

Let f_1 and f_2 be holomorphic functions defined on an open connected subset Ω of \mathbb{C} that satisfies $\Omega \cap \mathbb{R} \neq \emptyset$. If with $f_1(z) = f_2(z)$ for all $z \in \Omega \cap \mathbb{R}$, then we have $f_1 = f_2$ on Ω .

Definition 0.9.3.1.1

A sequence on functions (f_j) defined on $\Omega \subseteq \mathbb{C}$ is said to converge almost uniformly to a function f defined on Ω provided that the sequence (f_j) converges uniformly to f on each compact subset K of Ω .

Theorem 0.10 (Weierstrass Convergence Theorem)

The limit of a almost uniformly convergent sequence of holomorphic functions is holomorphic.

Definition 0.10.0.0.1

A k-tensor f defined on a vector space V is symmetric provided that $f(\vec{v}_1, \dots, \vec{v}_{i+1}, \vec{v}_i, \dots, \vec{v}_k) = f(\vec{v}_1, \dots, \vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_k)$ A k-tensor f defined on a vector space V is alternating provided that $f(\vec{v}_1, \dots, \vec{v}_{i+1}, \vec{v}_i, \dots, \vec{v}_k) = -f(\vec{v}_1, \dots, \vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_k)$

Theorem 0.11

Let V be an n-dimensional vector space with a basis $(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n)$. Let $I = (i_1, i_2, \cdots, i_k)$ be a k-tuple of integers from the set $\{1, 2, \cdots, n\}$. There exists a unique k-tensor Φ_I on V such that for every k-tuple $M = (m_1, m_2, \cdots, m_k)$ of integers from the set $\{1, 2, \cdots, n\}$, we have $\Phi_I(\vec{a}_{m_1}, \vec{a}_{m_2}, \cdots, \vec{a}_{m_k},) = 1$ if and only if I = M, and $\Phi_I(\vec{a}_{m_1}, \vec{a}_{m_2}, \cdots, \vec{a}_{m_k},) = 0$ otherwise. For $f \in \mathcal{L}^k(V)$, we have $f = \sum_I f(\vec{a}_I)\Phi_I$, where we write $\vec{a}_I := (\vec{a}_{m_1}, \vec{a}_{m_2}, \cdots, \vec{a}_{m_k},)$.

For $f \in \mathcal{L}^k(V)$ and $g \in \mathcal{L}^l(V)$, $f \otimes g : V^{k+l} \to \mathbb{R}$ $(\vec{v}_1, \vec{v}_2, \cdots \vec{v}_{k+l}) \mapsto f(\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k) \cdot g(\vec{v}_{k+1}, \vec{v}_{k+2}, \cdots, \vec{v}_{k+l})$ For $f \in \mathcal{L}^k(V)$, $h \in \mathcal{L}^m(V)$, and $g \in \mathcal{L}^l(V)$, and $c \in \mathbb{R}$, we have $(f \otimes g) \otimes h = f \otimes (g \otimes h)$, $(c \cdot f) \otimes g = c \cdot (f \otimes g) = f \otimes (c \cdot g)$, $(f + g) \otimes h = f \otimes h + g \otimes h$, $f \otimes (g + h) = f \otimes g + f \otimes h$.

Let V and W be vector spaces, let $T: V \to W$ be a linear transformation. For $f \in \mathcal{L}^k(W)$, and $\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \in V$, we define $T^*f: V^k \to \mathbb{R}$ $(\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k) \mapsto f(T(\vec{v}_1), T(\vec{v}_2), \cdots, T(\vec{v}_k))$. $T^*(f \otimes g) = T^*f \otimes T^*g$ for all $f, g \in \mathcal{L}^k(W)$. $(S \circ T)^*f = T^*(S^*f)$ for all $f \in \mathcal{L}^k(W)$

Theorem 0.12

Let V be a vector space, there exists a function $W: \mathcal{A}^k(V) \times \mathcal{A}^l(V) \to \mathcal{A}^{k+l}(V)$ $(f,g) \mapsto f \wedge g$ such that $f \wedge g \in \mathcal{A}^{k+l}(V)$ for $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and satisfies all of the followings:

- 1. For $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and $h \in \mathcal{A}^m(V)$, we have $f \wedge (g \wedge h) = (f \wedge g) \wedge h$
- 2. For $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and scalar c, we have $(c \cdot f) \land g = c \cdot (f \land g) = f \land (c \cdot g)$
- 3. For $f,g \in \mathcal{A}^k(V)$ and $h \in \mathcal{A}^l(V)$, we have $h \wedge (f+g) = h \wedge f + h \wedge g$, and $(f+g) \wedge h = f \wedge h + g \wedge h$
- 4. For $f \in \mathcal{A}^k(V)$ and $g \in \mathcal{A}^l(V)$, we have $g \wedge f = (-1)^{kl} \cdot f \wedge g$
- 5. Given a finite basis of V, let $(\Phi_i \mid 1 \leq i \leq n)$ be the corresponding dual basis for V^* , and let $(\Psi_I \mid I$ is an ascending k-tuple of integers in $\{1, 2, \dots, n\}$) be the corresponding family of elementary alternating tensors. For ascending k-tuple $I = (i_1, i_2, \dots, i_k)$ of integers in $\{1, 2, \dots, n\}$, we have $\Psi_I = \Phi_{i_1} \wedge \Phi_{i_2} \wedge \dots \wedge \Phi_{i_k}$.
- 6. Let $T: V \to W$ be a linear transformation with W being a vector space, let f and g be alternating tensors on W, then we have $T^*(f \land g) = T^*f \land T^*g$.

Let [I] denote the set of ascending k-tuples of integers from $\{1, 2, \dots, n\}$. A k-form defined on an open subset U of \mathbb{R}^n is a continuous function $\omega: U \to \mathcal{A}^k(\mathbb{R}^n)$ $\vec{x} \mapsto \sum_{I \in [I]} b_I(\vec{x}) \Psi_I$ where b_I are continuous functions from U to \mathbb{R} . The degree of a k-form is k, denoted as $\deg(\omega)$.

Let U be a subset of \mathbb{R}^n and let V be a subset of \mathbb{R}^l , let $\Phi: U \to V$ be a C^1 function, let ω be a k-form defined on V, then $\Phi^*\omega$ is a k-form defined on U given by $\Phi^*\omega: U \to \mathcal{A}^k(U)$ $\vec{x} \mapsto (D\Phi(\vec{x}))^*\omega(\Phi(\vec{x}))$ where we have $(D\Phi(\vec{x}))^*\omega(\Phi(\vec{x})): U^k \to \mathbb{R}$ $(\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_k) \mapsto \omega(\Phi(\vec{x}))(D\Phi(\vec{x})(\vec{u}_1), D\Phi(\vec{x})(\vec{u}_2), \cdots, D\Phi(\vec{x})(\vec{u}_k))$.

$$d\left(\alpha dx_1 + \beta dx_2\right) = \left(\frac{\partial \beta}{\partial x_1} - \frac{\partial \alpha}{\partial x_2}\right) dx_1 \wedge dx_2 \qquad d\left(\sum_j b_j(\vec{x}) dx_j\right) = \sum_{j < k} \left(\frac{\partial b_j}{\partial x_j} - \frac{\partial b_j}{\partial x_k}\right) dx_j \wedge dx_k$$

A k-form ω is sad to be closed provided that we have $d\omega = 0$.

Let U be a subset of \mathbb{R}^k that is open in either \mathbb{R}^k or \mathbb{H}^k , and let ω be a k-form defined on an open subset U of \mathbb{R}^k given by $\omega: U \to \mathcal{A}^k(\mathbb{R}^k)$ $\vec{x} \mapsto f(\vec{x}) \, dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$, with f being continuous function on U. Then $\int_U \omega \coloneqq \int_U f$ whenever $\int_U f$ exists. Let Y be a parametrized k-manifold in \mathbb{R}^n parametrized by $\alpha: U \to Y$, let ω be a k-form defined on open subset of \mathbb{R}^n containing Y, we define $\int_{Y_n} \omega \coloneqq \int_U \alpha^* \omega$.

Lemma 0.12.1

Let U be a subset of \mathbb{R}^l and let V be a subset of \mathbb{R}^n , let $\Phi: U \to V$ be a C^1 function, let ω be a k-form defined on V given by equation (W), we have $d(\Phi^*\omega) = \Phi^*d\omega$.

Let M be a k-manifold in \mathbb{R}^n . Given coordinate path $\alpha_i : U_i \to V_i$ on M for i = 0, 1, we say α_1, α_0 overlap if $V_0 \cap V_1 \neq \emptyset$. We say α_1, α_0 overlap positively provided that the transition function $\alpha_1^{-1} \circ \alpha_0$ is orientation preserving. Let M be a k-manifold in \mathbb{R}^n . M is said to be orientable provided that M can be covered by a collection of coordinate patches such that each pair of coordinate patches overlap positively, if they overlap at

all. M is said to be non-orientable if it cannot be covered by such collection of coordinate patches. Given a collection of coordinate patches covering M that overlap positively, adjoin to this collection all other coordinate patches on M that overlap these patches positively, denote such collection as O. O is called an orientation on M. A coordinate patch α on M is said to be orientation preserving provided that α overlaps any one of the coordinate patches in O positively. Otherwise α is said to be orientation reversing.

Let M be an oriented 1-manifold in \mathbb{R}^n . Choose a coordinate patch $\alpha_{\vec{p}}: U \to V$ on M about \vec{p} belonging to the given orientation of M, $\vec{T}: M \to \mathbb{R}^n \times \mathbb{R}^n$ $\vec{p} \mapsto (\vec{p}; \frac{D\alpha_{\vec{p}}(t_0)}{||D\alpha_{\vec{p}}(t_0)||})$, where $\alpha_{\vec{p}}(t_0) = \vec{p}$. \vec{T} is called the unit tangent field corresponding to the orientation of M.

Let M be an oriented (n-1)-manifold in \mathbb{R}^n , let $\vec{p} \in M$, let $\alpha : U \to V$ be a coordinate patch on M about \vec{p} belonging to the given orientation of M, denote $\alpha(\vec{x}) = \vec{p}$. Let $(\vec{p}; \vec{n}(\vec{p}))$ be a unit vector in the n-dimensional vector space $\mathcal{T}_{\vec{p}}(\mathbb{R}^n)$ that is orthogonal to the (n-1)-dimensional linear subspace $\mathcal{T}_{\vec{p}}(M)$ such that the matrix $[\vec{n}(\vec{p}) \quad D\alpha(\vec{x})]$ has positive determinant. $\vec{N} : M \mapsto \mathbb{R}^n \times \mathbb{R}^n \quad \vec{p} \mapsto (\vec{p}; \vec{n}(\vec{p}))$ is called the unit normal field to M corresponding to the orientation of M.

Let M be an n-manifold in \mathbb{R}^n . The natural orientation of M consists of all coordinate patches α on M for which $\det(D\alpha(\vec{x})) > 0$ for all \vec{x} in the definition of domain of α .

Let M be an orientable k-manifold with nonempty manifold boundary ∂M . If k is even, the corresponding induced orientation of ∂M is the orientation obtained by restricting coordinate patches belonging to O. If k is odd, the corresponding induced orientation of ∂M is the opposite of the orientation of ∂M obtained by restricting coordinate patches belonging to O.

Let M be an oriented k-manifold in \mathbb{R}^n , let $\alpha: U \to V$ be a coordinate patch on M belonging to the given orientation, with $\alpha(\vec{q}) = \vec{p} \in M$, let ω be a k-form defined on an open subset of \mathbb{R}^n containing M. We can write $\alpha^*\omega = f(\vec{x})\,dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$ for some 0-form f defined on the definition of domain of ω . ω is said to be positive for M at \vec{p} provided that $f(\vec{p}) > 0$, ω is said to be negative for M at \vec{p} provided that $f(\vec{p}) < 0$, and ω is said to be integral for M at \vec{p} provided that $f(\vec{p}) = 0$. M is integral manifold for ω provided that ω is integral for M at \vec{p} for all $\vec{p} \in M$.

Theorem 0.13 (Theorem 36.2 on Munkres)

Let M be a compact oriented k-manifold in \mathbb{R}^n , let ω be a k-form defined in a open subset of \mathbb{R}^n containing M, and let λ be the scalar function on M defined by $\lambda: M \to \mathbb{R}$ $\vec{p} \mapsto \omega(\vec{p})((\vec{p}; \vec{a}_1), (\vec{p}; \vec{a}_2), \cdots, (\vec{p}; \vec{a}_k))$ where, for $\vec{p} \in M$, the family $((\vec{p}; \vec{a}_1), (\vec{p}; \vec{a}_2), \cdots, (\vec{p}; \vec{a}_k))$ forms an orthonormal frame in the linear space $\mathcal{T}_{\vec{p}}(M)$ belonging to the given orientation of M. Then λ is continuous, and we have $\int_M \omega = \int_M \lambda \, dV$.

Lemma 0.13.1 (Lemma 25.2 on Munkres)

Let M be a compact k-manifold in \mathbb{R}^n of class C^r . Given a covering $\mathscr C$ of M by coordinate patches, there exists a finite collection of C^{∞} functions from \mathbb{R}^n to \mathbb{R} , denoted as $P = \{\phi_1, \phi_2, \cdots, \phi_l\}$, such for each $1 \leq i \leq l$, ϕ_i has compact support and there exists a coordinate patch $\alpha_i : U_i \to V_i$ in the collection $\mathscr C$ such that we have $supp(\phi_i) \cap M \subseteq V_i$, $\phi_i(\vec{x}) \geq 0$ for all $\vec{x} \in \mathbb{R}^n$, and $\sum_{i=1}^l \phi_i(\vec{x}) = 1$ for all $\vec{x} \in M$.

Definition 0.13.1.0.1

Let M be a compact oriented k-manifold in \mathbb{R}^n , along with orientation O on M. Take $\mathscr C$ to be a finite collection of coordinate patches in O that cover M, denoted as $C = \{\alpha_1, \alpha_2, \cdots, \alpha_N\}$. One can use partition of unity to write $\omega = \sum_{j=1}^N \omega_j$ such that the support of each ω_j is a subset of V_j , where V_j is the codomain of a coordinate patch $\alpha_j : U_j \to V_j$ in C. Here we define $\int_M \omega = \sum_{j=1}^N (\int_{(V_j)_{\alpha_j}} \omega_j)$

Theorem 0.14 (The Generalized Stokes' Theorem)

Let k > 1, let M be a compact oriented k-manifold in \mathbb{R}^n , with ∂M having the induced orientation if ∂M is not empty, let ω be a (k-1)-form defined in an open set of \mathbb{R}^n containing M, then we have $\int_M d\omega = \int_{\partial M} \omega$ if ∂M is not empty, and we have $\int_{\partial M} \omega = 0$ if ∂M is empty.

Exterior Calculus	Vector Calculus
Exterior derivative operator d	Del operator $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$
0-form k define on \mathbb{R}^2	Scalar field k of C^1 type defined on \mathbb{R}^2
1-forms $\omega = \alpha dx + \beta dy$	Vector field \vec{F}
2-forms $f dx \wedge dy$ defined on \mathbb{R}^2	Scalar field f
1-form ω wedged with 1-form η	Scalar field det $([\vec{F_1}\vec{F_2}])$ with $\vec{F_1}, \vec{F_2}$ being vector fields
$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$	Gradient of f , grad $(f) := \nabla f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$
$d(\alpha dx + \beta dy) = \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy$	Curl of \vec{F} , curl $(\vec{F}) \coloneqq \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right)$
$\int_{M_1} \omega$	$\int_{M_1} \left\langle \vec{F}, d\vec{l} \right angle = \int_{M_1} \left\langle \vec{F}, \vec{T} \right angle dV$
$\int_{M_1} df = \Delta_{M_1} f$	$\int_{M_1} \left\langle abla f, \vec{T} ight angle = \Delta_{M_1} f$
$\int_{M_2} f dx \wedge dy = \int_{M_2} f$	$\int_{M_2} f$
$\int_{M_2} f dx \wedge dy = \int_{M_2} f$ $\int_{\partial M_2} \omega = \int_{M_2} d\omega$	Circulation of \vec{F} along ∂M_2 , $\int_{M_2} \operatorname{curl}(\vec{F})$

¹ Here we define: $d\vec{l} := (dx, dy)$. Since we have $\vec{F}(\vec{x}) = (\alpha(\vec{x}), \beta(\vec{x}))$, so we have $d\vec{l} = \vec{T} dV$.

Lemma 0.14.1 (Lemma 38.1 on Munkres)

Let M be a compact oriented 1-manifold in \mathbb{R}^n , and let \vec{T} be the unit tangent vector to M corresponding to the given orientation of M. Let \vec{F} be a vector field defined in \mathbb{R}^n and let ω be the 1-form corresponds to \vec{F} . Then $\int_M \omega = \int_M \left\langle \vec{F}, \vec{T} \right\rangle dV$.

Let M be a compact oriented (n-1)-manifold in \mathbb{R}^n , and let \vec{N} be the corresponding unit normal vector field, let \vec{F} be a vector field defined on open $A \subseteq \mathbb{R}^n$ that contains M, and let ω be the (n-1)-form corresponds to \vec{F} , then $\int_M \omega = \int_M \left\langle \vec{F}, \vec{N} \right\rangle dV$.

Let M be a compact n-manifold in \mathbb{R}^n , oriented naturally, and let $\omega = h dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$ be an n-form defined on an open set of \mathbb{R}^n containing M, with h being the scalar field corresponds to ω , then $\int_M \omega = \int_M h dV$.

Theorem 0.15 (The Divergence Theorem)

Let M be a compact n-manifold in \mathbb{R}^n , let \vec{N} e the unit normal vector field to ∂M that points outwards from M, and let \vec{F} be a vector field defined on an open subset of \mathbb{R}^n containing M, then we have $\int_M \operatorname{div}(\vec{F}) \, dV = \int_{\partial M} \left\langle \vec{F}, \vec{N} \right\rangle \, dV$

Theorem 0.16 (Stokes' Theorem for 2-manifold in \mathbb{R}^3)

Let M be a compact oriented 2-manifold in \mathbb{R}^3 , let \vec{N} be a unit normal field to M corresponding to the orientation of M, and let \vec{F} be a vector field of C^{∞} type defined on an open subset of \mathbb{R}^3 containing M. If ∂M is empty, then $\int_M \left\langle \operatorname{curl}(\vec{F}), \vec{N} \right\rangle dV = 0$. If ∂M is nonempty, let \vec{T} be the unit tangent vector field to ∂M chosen such that $\vec{N}(\vec{p}) \times \vec{T}(\vec{p})$ points into M from $\vec{p} \in \partial M$, then $\int_M \left\langle \operatorname{curl}(\vec{F}), \vec{N} \right\rangle dV = \int_{\partial M} \left\langle \vec{F}, \vec{N} \right\rangle dV$

Proposition 0.16.1

Let ω be an alternating k-tensor with k being an odd number. For any alternating m-tensor $\hat{\omega}$, we have $\omega \wedge \hat{\omega} \wedge \omega = 0$.

Theorem 0.17 (Cauchy's Estimate)

Let $z_0 \in \mathbb{C}$ be given, let r > 0 be given, let f be a holomorphic function defined on $D = \{z \in \mathbb{C} \mid |z - z_0| < r\}$ with |f(z)| < M for all $z \in D$. Then we have $|f'_{\mathbb{C}}(z_0)| \le \frac{M}{r}$.

Theorem 0.18 (Liouville's Theorem)

Let f be a holomorphic function on \mathbb{C} . If $f(\mathbb{C})$ is a bounded set, then f is a constant function.

1-form ω	Integrating factor $B(x,y)$
$-\alpha(x)\beta(y)dx + dy$	$1/\beta(y)$
$-(\beta(x)y + \gamma(x)) dx + dy$	$\exp(-\int \beta(x) dx)$
$-\beta(y/x)dx + dy$	$1/(y - x\beta(y/x))$

Lemma 0.18.1

Let M be a nonempty compact orientable k-manifold in \mathbb{R}^n with nonempty manifold boundary ∂M . There exists an (k-1)-form of C^{∞} type defined on \mathbb{R}^n such that $\int_{\partial M} \omega \neq 0$.

Lemma 0.18.2

Let M be a k-manifold in \mathbb{R}^n with nonempty manifold boundary ∂M , and let ω be an (k-1)-form defined on an open subset of \mathbb{R}^n containing M. If $R: M \to \partial M$ is a C^1 retraction, then ∂M is integral for the (k-1)-form $\omega - R^*\omega$.

Lemma 0.18.3

Let M be a k-manifold in \mathbb{R}^n with nonempty manifold boundary ∂M . Let $R: M \to \partial M$ be a function of C^1 type and let η be a k-form defined on an open subset of \mathbb{R}^n containing ∂M , then M is an integral for $R^*\eta$.

Theorem 0.19 (Non-retraction Theorem)

Let M be a nonempty compact orientable k-manifold in \mathbb{R}^n . There is no retraction of C^1 type from M to ∂M .

Theorem 0.20 (Brouwer Fixed Point Theorem)

Let $B^n := \{\vec{x} \in \mathbb{R}^n \mid ||\vec{x}|| \le 1\}$ be the closed unit ball in \mathbb{R}^n . If $f : B^n \to B^n$ is a function of C^1 type, then there exists $\vec{x} \in B^n$ such that $f(\vec{x}) = \vec{x}$, and such \vec{x} is called a fixed point of f.

Theorem 0.21

Let B^n denote the closed unit ball in \mathbb{R}^n . If \vec{v} points inwards at all points \vec{p} on the boundary ∂B^n , then there is an equilibrium point in B^n .

Theorem 0.22 (Rectification Theorem)

Let $\vec{x}_0 \in A$ where A is an open subset of \mathbb{R}^n , let v be a vector field of C^{∞} type defined on A, with $v(\vec{x}_0) \neq \vec{0}$. Then there exists an open neighborhood U of \vec{x}_0 contained in A, and a C^{∞} -diffeomorphism $\alpha: U \to V$ such that $D\alpha(\vec{x})(v(\vec{x})) = \vec{e}_1$, where $\vec{e}_1 = (1, 0, 0, \dots, 0)$ is the first element in the standard basis of \mathbb{R}^n .

 $F: \mathbb{R}^{n+1} \to \mathbb{R}^n$ defined for $\vec{z} \in \mathbb{R}^n$, $t \in \mathbb{R}$, such that $D_{n+1}F(\vec{z},t) = v(F(\vec{z},t))$ and $F(\vec{z},0) = \vec{z}$. Denote $F^s(\vec{z},t) := F(\vec{z},t+s)$, then $D_{n+1}F^s(\vec{z},t) = v(F^s(\vec{z},t))$, and $F^s(\vec{z},0) = F(\vec{z},s)$, so we get $F(\vec{z},t+s) = F^s(\vec{z},t) = F(F(\vec{z},s),t)$. Then $g^t: \mathbb{R}^n \to \mathbb{R}^n$ $\vec{z} \mapsto F(\vec{z},t)$, has the property $g^{t+s}(\vec{z}) = g^t(g^s(\vec{z}))$ for $\vec{z} \in \mathbb{R}^n$, $t,s \in \mathbb{R}$, and g^0 being the identity transformation.

Theorem 0.23

Let M be a closed k-manifold without boundary in \mathbb{R}^n of C^{∞} class, let v be a vector field that is tangent to M at all $\vec{p} \in M$, that is, we have $v(\vec{p}) \in \mathcal{T}_{\vec{p}}(M)$ for all $\vec{p} \in M$. Then each $g^t|_M$ induced by v belongs to Diffeo(M).

Corollary 0.23.1

Let M be a compact k-manifold without boundary in \mathbb{R}^n of C^{∞} class, and let U be an open subset of \mathbb{R}^n containing M. For vector field $v \in C^2(U, \mathbb{R}^n)$ such that v is tangent to M, each $g^t|_M$ induced by v belongs to Diffeo(M), and there exists Lipchitz $\hat{v} \in C^2(\mathbb{R}^n, \mathbb{R}^n)$ such that $\hat{v} = v$ on some neighborhood of M, here the flow for \hat{v} along M is also a flow for v along M.

Theorem 0.24 (Hairy Billiard Ball Theorem)

Any tangential vector field of C^1 type defined on an even-dimensional sphere S^{2n} vanishes at some point \vec{p} in S^{2n} . There is no $v: S^{2n} \to \mathbb{R}^{2n+1} \setminus \{0\}$ with $\langle v(\vec{p}), \vec{p} \rangle = 0$ for all $\vec{p} \in S^{2n}$

Theorem 0.25

Let v be a C^1 inward-pointing vector field on B^n , then v must vanish some point on B^n .

Theorem 0.26 (Cauchy Integral Theorem)

Let M be a naturally oriented compact 2-manifold in \mathbb{C} , let $f \in C^1(M,\mathbb{C})$ be holomorphic on $M \setminus \partial M$, and let ∂M obtain the induced orientation from M. then we have $\int_{\partial M} f \, dz = 0$

Theorem 0.27 (Residue Theorem)

Let M be a compact 2-manifold in \mathbb{C} , let $E = \{z_1, z_2, \dots, z_k\} \subseteq M \setminus \partial M$, let $f \in C^1(M \setminus E, \mathbb{C})$ be holomorphic on $M \setminus (\partial M \cup E)$, then we have the following holds:

$$\int_{\partial M} f \, dz = 2\pi i \sum_{j=1}^{k} Res(f \, dz, z_j)$$

Theorem 0.28 (Rouche's Theorem)

Let M be a compact 2-manifold in Ω , where Ω is an open subset of \mathbb{C} , let f, h be holomorphic functions on Ω , with |h(x)| < |f(x)| for $x \in \partial M$, then the number of zeros of f + h in M is equal to the number of zeros of f in M.

Definition 0.28.0.0.1

Let $f: \mathbb{R} \to \mathbb{C}$ be a bounded function such that the set $\{x \in \mathbb{R} \mid f \text{ is discontinuous at } x\}$ has measure zero, and $ext \int_{\mathbb{R}} |f| < \infty$. The Fourier Transform of f, denoted as \hat{f} , is the function defined by $\hat{f}: \mathbb{R} \to \mathbb{R}$ $t \mapsto ext \int_{\mathbb{R}} f(x)e^{-ixt} dx$

Definition 0.28.0.0.2

Let M be compact oriented 1-manifold without boundary in $\mathbb{R}^2 \simeq \mathbb{C}$. We define $\mathbb{W}_M : \mathbb{C} \setminus M \to \mathbb{C}$ $z \mapsto \frac{1}{2\pi i} \int_{\zeta \in M} \frac{d\zeta}{\zeta - z}$

For compact 1-manifold $M \subseteq \mathbb{R}$, there exists $U \subseteq \mathbb{C}$ containing M such that $U \setminus M$ has two components L, R. Denote the winding number of $w \in L$ as $\mathbb{W}(L)$ and denote the winding number of $z \in R$ as $\mathbb{W}(R)$, we have: $\mathbb{W}(L) = \mathbb{W}(R) + 1$

Theorem 0.29 (Residue theorem for Winding Numbers)

Let M be a compact 1-manifold without boundary in \mathbb{C} , let K denote the union of the bounded components on $\mathbb{C} \setminus M$, let U be an open subset of \mathbb{C} containing $M \cup K$, let $\{z_1, z_2, \cdots, z_m\} \in U \setminus M$, and let f be a function being holomorphic on $U \setminus \{z_1, z_2, \cdots, z_m\}$, then we have:

$$\int_{M} f \, dz = 2\pi i \sum_{j=1}^{m} \mathbb{W}_{M}(z_{j}) \cdot Res(f \, dz, z_{j})$$

Let U be a subset of \mathbb{R}^k , let $f: U \to \mathbb{R}^n$ be a function. f is called an immersion provided that $Df(\vec{x})$ is injective for all $\vec{x} \in U$. f is called a submersion provided that $Df(\vec{x})$ is surjective for all $\vec{x} \in U$. For immersion $f: \mathbb{R} \to \mathbb{R}^2$. $\frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}} = \kappa_f = \text{curvature of } f$

Theorem 0.30

Let Ω be a compact 2-manifold in \mathbb{R}^2 , we have $area(\Omega) \leq \frac{1}{4\pi} \left(length(\partial\Omega)\right)^2$

Let A be an open subset of \mathbb{R}^k . A Riemannian metric G on A is a smooth function defined by: $G: A \to \operatorname{Pos}(k)$. Given $\psi \in C^2([a,b],A)$, we define the G-length of Y_{ψ} , or the length of Y_{ψ} in G metric, as $l_G(Y_{\psi}) := \int_a^b \sqrt{\psi'(t)^T \cdot G(\psi(t)) \cdot \psi'(t)} dt$

Theorem 0.31

Vertical segment and Arc in \mathbb{H}^2_+ of circle centered on x-axis minimize Poincare length among curves with the same end points.

Let A be an open subset of \mathbb{R}^n , $\Omega^k(A) := \{\omega \mid \omega \text{ is a } k\text{-form of } C^{\infty} \text{ type defined on } A\}$, $Cl^k(A) := \{\omega \in \Omega^k(A) \mid d\omega = 0\}$, $E^k(A) := \{d\eta \mid \eta \in \Omega^{k-1}(A)\}$, $H^k_{dR}(A) := Cl^k(A)/E^k(A)$

Theorem 0.32

Let E be a nonempty affine subset of \mathbb{R}^n , we have: $\dim(H_{dR}^k(\mathbb{R}\setminus E)) = \begin{cases} 1 & k = n - \dim(E) \text{ or } k = 0 \\ 0 & \text{otherwise} \end{cases}$ with an exception where $\dim(E) = n - 1$ and k = 0, in which case $\dim(H_{dR}^0(\mathbb{R}^n \setminus E)) = 2$.

Corollary 0.32.1

Let E_1 and E_2 be nonempty affine subsets of \mathbb{R}^n , and if $R^n \setminus E_1$ is diffeomorphic to $\mathbb{R}^n \setminus E_2$, then we have $\dim(E_1) = \dim(E_2)$.

Definition 0.32.1.0.1

Let M be a manifold in \mathbb{R}^n , and let U be an open subset of \mathbb{R}^n containing M such that M is closed in U. $\Omega^k(M) := \Omega^k(U)/\{\omega \in \Omega^k(U) \mid M \text{ is integral for } \omega\}$. Equivalently, $\Omega^k(M)$ is a set consisting of smooth ω defined on U that maps $\vec{p} \in M$ to $\omega(\vec{p}) \in \mathscr{A}^k(\mathcal{T}_{\vec{p}}(M))$.

Definition 0.32.1.0.2

For s-manifold M in \mathbb{R}^n , $Cl^k(M) := \ker(d_k)$, $E^k(M) := Im(d_{k-1}) \subseteq Cl^k(M)$, $H^k_{dR}(M) := Cl^k(M)/E^k(M)$

Theorem 0.33

Let M be a compact oriented s-manifold without boundary, $\dim(H^s_{dR}(M)) = \#\{\text{connected componenents of } M\} = \dim(H^0_{dR}(M))$

Theorem 0.34

Let M be a compact connected non-orientable s-manifold, we have $H_{dR}^s(M) = 0$.

Let M be a non-compact connected s-manifold, then $H_{dR}^s(M) = 0$.

Let M be a compact connected s-manifold with $\partial M \neq 0$, then $H_{dR}^s(M) = 0$.

Let M be a compact oriented s-manifold without boundary, then $H_{dR}^s(M) \neq 0$.

Definition 0.34.0.0.1

Consider an open subset A of \mathbb{R}^n , for ascending k-tuple I of integers in $\{1, 2, \dots, n\}$, let I' be the (n-k)-tuple complementary to I, we define the Hodge star operator * as the following:

$$*: \Omega^k(A) \to \Omega^{n-k}(A)$$

$$\left(\sum_{[I]} b_I(\vec{x}) dx_I\right) \mapsto \sum_{[I]} sgn(I, I') b_I(\vec{x}) dx_{I'}$$

Here the notation sgn(I, I') denotes $sgn(\sigma_{II'})$, where $\sigma_{II'}$ is a permutation that sorts the concatenated n-tuple (I, I').

Consider 1-form $\alpha dx + \beta dy + \gamma dz$, 2-form $\alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$.

- 1. $*(\alpha dx + \beta dy + \gamma dz) = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$
- 2. $*(\alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy) = \alpha dx + \beta dy + \gamma dz$

Lemma 0.34.1

For 0-form f and k-forms ω , l-form $\widetilde{\omega}$ defined on an open subset of \mathbb{R}^n , denote $\omega = \sum_{[I]} b_I(\vec{x}) dx_I$, $\widetilde{\omega} = \sum_{[J]} \widetilde{b}_J(\vec{x}) dx_J$.

$$*(f\omega) = f * \omega \qquad *(*(\omega)) = (-1)^{k(n-k)}\omega \qquad *(\omega_1 + \omega_2) = *(\omega_1) + *(\omega_2)$$

$$\omega \wedge *(\omega) = \sum_{[I]} b_I^2 dx_1 \wedge \cdots \wedge dx_n \qquad If \deg(\omega) = \deg(\widetilde{\omega}), \ then \ \omega \wedge *(\widetilde{\omega}) = \widetilde{\omega} \wedge *(\omega) = \sum_{[I]} b_I \widetilde{b}_I \ dx_1 \wedge \cdots \wedge dx_n$$

Theorem 0.35

Let A, B be open subsets of \mathbb{R}^n , if $\Phi : A \to B$ defines an orientation preserving isometry, then we have $\Phi^*(*(\omega)) = *(\Phi^*(\omega))$ holds for all k-forms ω defined on an open subset of \mathbb{R}^n containing B, with $k \leq n$.

Definition 0.35.0.0.1

Let A be an open subset of \mathbb{R}^n , $\Delta: \Omega^k(A) \to \Omega^k(A)$ $\omega \mapsto (-1)^{kn} * d * d\omega + (-1)^n d * d * \omega$

For k-form $\omega = \sum_I b_I dx_I$, we have $\Delta\left(\sum_I b_I dx_I\right) = \sum_I (\Delta b_I) dx_I$. For 0-form f, $\Delta f = 0 \iff d*df = 0 \iff \sum_i D_i D_j = 0$.

Lemma 0.35.1 (Green's First Identities)

Let M be a compact n-manifold in \mathbb{R}^n , let $f,g \in C^2(M,\mathbb{R})$, then we have:

$$\int_{M}f\,\Delta g=\int_{M}f*\Delta g=\int_{M}fd*dg=\int_{M}d(f\wedge*dg)-df\wedge*dg=\int_{\partial M}f\wedge*dg-\int_{M}df\wedge*dg==\int_{\partial M}f\wedge*dg-\int_{M}\langle df,\,dg\rangle$$

Corollary 0.35.1.1 (Green's Second Identity)

Let M be a compact n-manifold in \mathbb{R}^n , let $f,g\in C^2(M,\mathbb{R})$, then we have: $\int_M (f\Delta g-g\Delta f)=\int_{\partial M} (f*dg-g*df)$

For all
$$f \in C^2(\bar{B}_1(\vec{0}), \mathbb{R})$$
, with $n > 2$. We have $\arg_{||\vec{x}||=1} f = f(\vec{0}) + \frac{\int_{\bar{B}_1(\vec{0}) \setminus \{0\}} \left((||\vec{x}||^{2-n}-1)\Delta f \right)}{(n-2)V_{n-1}(S^{n-1})}$, $\arg_A f = \frac{\int_A f}{V(A)}$

Theorem 0.36 (Gauss' Mean Value Theorem)

Let $f \in C^2(A, \mathbb{R})$ where A is an open subset of \mathbb{R}^n , f is harmonic on A if and only if the mean value property holds for all closed balls in A: $avg_{||\vec{x}-\vec{x}_0||=r}f = f(\vec{x}_0)$. Here $\{\vec{x} \mid ||\vec{x}-\vec{x}_0|| \leq r\} \subseteq A$ is a closed ball of radius r centered at $\vec{x}_0 \in A$.

Corollary 0.36.1

Let $\vec{a} \in \mathbb{R}^n$, let $f \in C^2(\bar{B}_r(\vec{a}), \mathbb{R})$, then we get the followings:

- 1. If $\Delta f(\vec{x}) \geq 0$ for $\vec{x} \in \bar{B}_r(\vec{a})$, and $\exists \vec{p} \in \bar{B}_r(\vec{a})$ such that $\Delta f(\vec{p}) > 0$, then $avg_{\partial \bar{B}_r(\vec{a})} f > f(\vec{a})$
- 2. If $\Delta f(\vec{x}) \leq 0$ for $\vec{x} \in \bar{B}_r(\vec{a})$, and $\exists \vec{p} \in \bar{B}_r(\vec{a})$ such that $\Delta f(\vec{p}) < 0$, then $avg_{\partial \bar{B}_r(\vec{a})} f < f(\vec{a})$
- 3. If $\Delta f(\vec{x}) = 0$ for $\vec{x} \in \bar{B}_r(\vec{a})$, then $avg_{\partial \bar{B}_r(\vec{a})} f = f(\vec{a})$

Lemma 0.36.2

For k-forms μ, ζ defined on \mathbb{R}^4 , and 0-form f defined on \mathbb{R}^4 , we get $\circledast(f\mu) = f \circledast \mu$, $\circledast(\mu + \zeta) = \circledast\mu + \circledast\zeta$, $\circledast \circledast \mu = (-1)^{1+\deg(\mu)}\mu$

Definition 0.36.2.0.1

For k-form μ defined on \mathbb{R}^4 , we defined $\Box \mu$ as $\Box \mu := - \otimes d \otimes d\mu - d \otimes d \otimes \mu$

Theorem 0.37

Let $M \subseteq \mathbb{R}^n$ be an oriented k-manifold. There exists a k-form $\omega_{\vec{p}}$ defined on some open neighborhood of M with the property that ω is positive at every point of M.

Riemannian metric
$$G_f$$
 induced by f . Let $\alpha = 1 + (D_1 f)^2$, $\beta = D_1 f \cdot D_2 f$, $\gamma = 1 + (D_2 f)^2$. length $(Y_\eta) = \int_a^b \sqrt{\begin{bmatrix} x' & y' \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}}$

Theorem 0.38 (Borsuk-Ulam Theorem for Low-dimensional Smooth Case) For all $f \in C^1(S^2, \mathbb{R}^2)$, there exists some $\vec{x} \in S^2$ such that $f(-\vec{x}) = f(\vec{x})$.

$$\int_0^{2\pi} \sin^2(\theta) = \int_0^{2\pi} \cos^2(\theta) = \pi \qquad (-1)^{k+1} \int_M d\omega \wedge \eta = \int_M \omega \wedge d\eta \qquad \int u \, dv = uv - \int v \, du$$