Brayerson Hodellow and Corp. to toar
Probability model with parameter to have density
fx,210 (x,210) w.r.t. px (dx) pz (d2) Should variable Munisance Munisance
describble
$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)$
Define $t_{x10}(x \theta) = \int f_{x,210}(x,2 \theta) p_z(dz)$
Prior but $f_{\theta}(\theta) p_{\Theta}(d\theta)$ impresent "prior belief"
Define the posterior Libritation is a Regular Conditional Probability Dist
$r_{\Theta X}(A\theta X) = \frac{f_{X \Theta}f_{\Theta}(\theta)}{f_{X \Theta}(X \theta)f_{\Theta}(\theta)} r_{\Theta}(A\theta)$
$\int dx \Theta(x \theta) \int \Theta(\theta) r \Theta(d\theta) $
i.e. $\forall \times$, $polx(dol \times)$ is a probability and \forall monumable $A \times \rightarrow polx(beAlx)$
is Bord memorable. Remark Threesents whenever (X, X) is Berd-isomorphic. or X is Polish aparelle, complete active)
Russe The excite when (1)
and X is Boul or - algebra. What is Baye non Computation?
O Comput Boys Cytimate under some ton protesting
$\hat{A}_{\mathcal{O}} = \text{arg min} \left(L(t, 0) \right) \mathcal{O}(x(AU) \times I)$
When $\theta \in \mathbb{R}$ of $L(t,\theta) = (t-\theta)^2$ then $\hat{\theta}_{Byn} = \mathbb{E}_{\theta X}(\theta)$ $L(t,\theta) = (t-\theta)$ then $\hat{\theta}_{Byn} = \text{modifier}(t_{\theta X})$
L(t,0) = (t-0) then Obje = mining (TO(X))
(3) Credible inhaval: on integrable mange of the patrices, typically control around mean. (3) Prediction: Observation is X _{1:n} = 100000000000000000000000000000000000
1(X,,,,,,t) - 1(+(X)(t) / a printer to 1
4 Karring XI:n =
purous pr, pr. A B.F. is the retire of the postwerning probability of and would
" (M,) f (x 10) p 1 (20) - " euxlence" on "marjohal belatihood" under 11,
T(Ph) [f=(x10) f=(x0)
T(Ni) m prior below on Model b
Buyeren computation = 2000 MARASANS Numeral subsystem on graduations

Graphical Modely a reprint of conditional independence for on at of V.V.S XV = EXXV: UEV3
But A Buyer network on a hunched accepte graph (DAC) which naturation the following property: if p(v) is the what parents of vev (noon we with an ender w -> v), then
$f(xy) = \prod_{v \in V} f(x_v x_{p(v)})$
Det A Markon blanket of u eV is a set of node 6 s.b. given Xs, Xv is and product of MOXINGER on Xv I Xvisiaus 1 Xs.
on Xv1Xvisiava 1 Xs
In a Bayer network, the following is a Man box blanket for veV
plu) U children (v) U p(c)
Det A Maker Randon Field on undereded) graph G= (V, E) anti-tyry the flotal Mules property:
Det A Median Rondon Field on Lundredod) graph G= (V, E) satisfying the plotal Mulion property: for any partition V= V, U V2 UW s.t. W separator V, V2 (no odge luteren V, and V2) V Xv Xv
Dot A Gibbs Rendon Field is agriph G=(V, E) together with a set of "potentials" To indixed
by the elegen in Co. and that $f(x) = \frac{1}{Z_{G,Y}} \bigcap_{c = chis} Y_{c}(x_{c})$ $\Rightarrow pertition flo$
> portition th
Det A Locker myth is a bipostile graph the (120 the 15) with potential 1 to - or - 1)
$f(x_{V}) = \frac{1}{2\pi} \prod_{x \in F} \forall a (x_{2a}) $ $\lim_{x \to a} f(x_{2a}) $
Surjouri of a mov