The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Midterm Examination - Fall 03/04

Answer ALL questions

Date: 5 November 2003 (Wed)

- 1. (5 marks) Let X_j , j = 1, ..., n be i.i.d. r.v.'s with p.d.f. f of the continuous type. If m is a median of f, calculate the probability that all X's exceed m. Also, calculate the probability $Pr(Y_n \le m)$, where Y_n is the nth order statistic of a random sample of size n.
- 2. (5 marks) Let X_1 , X_2 be a random sample from a distribution having the p.d.f. $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Find the distribution of $Z = X_1 / X_2$.
- 3. (5 marks) Let X_1 , ..., X_n , X_{n+1} be a random sample of size n+1, n>1, from a distribution which is $N(\mu, \sigma^2)$. Let $\overline{X} = \sum_{i=1}^{n} X_i / n$, and $S^2 = \sum_{i=1}^{n} (X_i \overline{X})^2 / n$. Find the constant c so that the statistic $c(\overline{X} X_{n+1})/S$ has a t distribution. If n=8, determine k such that $\Pr(\overline{X} kS < X_9 < \overline{X} + kS) = 0.80$.
- 4. (5 marks) Let Y_n be the n^{th} order statistic of a random sample of size n from a continuous-type uniform distribution on the interval $(0,\theta)$. Find c such that $\Pr(c\theta < Y_4 < \theta) = 0.95$. What then is a 95 per cent confidence interval for θ ?
- 5. (10 marks)
 - (a) Let X_1 , ..., X_n are independently uniformly distributed on $(0,\theta)$. Find the estimators from the method of moment and the method of maximum likelihood.
 - (b) Find the expectation and variance of the estimator from the method of moments.
 - (c) Find the expectation and variance of the estimator from the method of maximum likelihood.
 - (d) Hence or otherwise, construct two unbiased estimators of θ based on the two estimators in part (a).
 - (e) Compare the variances of the two unbiased estimates in (d) and comment briefly.

6. (10 marks)

Suppose that $(X_1, ..., X_n)$, n > 2, is a random sample from an exponential distribution with p.d.f. of the form

$$f(x;\lambda) = \lambda e^{-\lambda x}$$

where $\lambda \in (0, \infty)$.

- (a) Find the Cramer-Rao lower bound for estimating λ .
- (b) Find the expectation of the statistic $1/\overline{X}$. Hence or otherwise, find an unbiased estimator as a function of \overline{X} for λ .
- (c) Compare the variance of the unbiased estimator in part (b) with the Cramer-Rao lower bound.

***** END *****