

Compact Circuits for Efficient Möbius Transform

Subhadeep Banik

University of Lugano

3rd December 2023

Introduction: Solving an Equation System

- Given m eqns P_1, P_2, \ldots, P_m of n variables over GF(2) of max degree d.
 - \rightarrow Usually m=n, sometimes m>n
 - \rightarrow Each equation is a multivariate polynomial over GF(2)
 - \rightarrow The algebraic degree d is usually small.
 - \rightarrow Task: find a common root: $r \in \{0,1\}^n$ such that $P_i(r) = 0, \ \forall \ i$.
- Problem arises in many cryptographic contexts.
 - → Block ciphers with low multiplicative complexities like LowMC
 - \rightarrow Given single pt/ct: solving low degree polynomials.
 - \rightarrow Signature schemes like UOV.
 - \rightarrow Cryptanalysis: solving quadratic polynomials over GF(2).

Truth Tables

× ₀ × ₁ × ₂	P ₀	P ₁	P ₂	• • •	Pm	\bigvee_{P_i}	
000	0	1	1		0	1	_
001	1	0	0		1	1	
010	0	1	1		1	1	
011	1	1	0		0	1	
100	0	0	0		0	0	R
				•			
110	0	1	0	•	1	1	
111	0	1	1		0	1	
	'	1	•	•		•	

Root=100

Möbius Transform

Möbius Transform

- Given the algebraic equation of any n-variable Boolean function, how to evaluate it over all the 2^n points of its input domain (i.e. find truth table) ?
- Given truth table of a Boolean function how to deduce its algebraic equation ?
- Answer to both the above is Möbius Transform.
- It is a linear, involutive transform that does both the above.
- Requires $n \cdot 2^{n-1}$ bit-operations.

Möbius Transform

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

Salient Points

- Note we have lexicographical indexing.
- $t_6=1\Rightarrow 6=(110)_2\Rightarrow$ the ANF contains the $x_0x_1=x_0^1\cdot x_1^1\cdot x_2^0$ term.

Möbius Transform

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

Salient Points

- n stages and 2^{n-1} xors per stage.
- Involutive: the same operations on ANF will give back TT.

The Mathematics

- If $\vec{v} = [v_0, v_1, \dots, v_{2^n-1}]$ be the truth-table of f (note $v_i = f(i)$).
- If $\vec{u} = [u_0, u_1, \dots, u_{2^n-1}]$ be the ANF of f.
- Then it is well known that

$$\vec{v} = M_n \cdot \vec{u}$$

• Note $M=m_{ij}$ is such that

$$m_{ij} = 1$$
 if $j \leq i$ and 0 otherwise.

• Eg $100 \leq 101$, but $011 \nleq 100$ since 011 exceeds 100 in the last 2 bit-locations.

The Mathematics

- M_n is well studied in literature: Lower triangular + Involutive.
- Since $M_n = M_n^{-1}$, both $\vec{v} = M_n \cdot \vec{u}$ and $\vec{u} = M_n \cdot \vec{v}$ hold.
- Define $M_1=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then for all n>1, we have $M_n=M_1\otimes M_{n-1}$, where \otimes is the matrix tensor product.

$$M_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Exponential circuits: The circuit Expmob1

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

- Huge combinatorial circuit that stacks the stages one by one.
- Calculates in one single clock cycle: $n \cdot 2^{n-1}$ xor gates.

Degree Bound Functions

Polynomial number of Coeffciients

- ANF of Linear function: n+1 coefficients.
- ANF of Quadratic function: $\binom{n}{2} + n + 1$ coefficients.
- ANF of Degree d function: $\binom{n}{\downarrow d} = \sum_{i=0}^d \binom{n}{i}$ coefficients $\in O(n^d)$.
- Challenge: With a register of size $\binom{n}{\downarrow d}$, can we compute the transform?

Take a look back

Figure: Round based Circuit.

- First stage $A_0 \rightarrow \text{vectors } A_{\text{top}}$ and A_{bottom} .
- ullet A_{top} is actually ANF vector for $f(0,x_1,x_2)$ (in n-1 variables!!)
- ullet A_{bottom} is actually ANF vector for $f(1,x_1,x_2)$ (in n-1 variables!!)
- Recursively apply Möbius Transform to these smaller vectors

Möbius Transform with Polynomial Space [Din21]

Algorithm 1: Recursive Möbius Transform

Input: A_0 : The compressed ANF vector of a Boolean function f

```
Input: n: Number of variables, d: Algebraic degree
Output: The Truth table of f
/* Final step, i.e. leaf nodes of recursion tree */
if n=d then
    Use the formula B = M_n \cdot A_0 to output partial truth table B.
    /* Use either Expmob1/Expmob2 to do this */
end
else
    Declare an array T of size \binom{n-1}{\perp_d} bits.
    /* Compute the 2 operations of the butterfly layer */
    Store 1st butterfly output i.e. A_{top} in T (requires no xors).
    Call Möbius (T, n-1, d)
    Store 2nd butterfly output i.e. A_{\text{bottom}} in T (requires some xors).
    Call Möbius (T, n-1, d)
end
```

1

2

Möbius (A_0, n, d)

Recursion tree

Figure: Recursion tree for the Möbius Transform algorithm. The blue shaded component roughly represents one arm of the butterfly unit.

- The Tree requires Depth first Traversal
- In Software this requires context switches, every time we traverse one level down.
- Mapping to hardware non trivial.

Circuit Sketch Polymob1

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Primitive attempt to map algorithm to hw: can this work?
- ullet Each level needs own storage of size $\binom{n-i}{\downarrow d}$
- Let us see.

Circuit Sketch Polymob1

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- One reg of size $\binom{n}{\downarrow d}$ for A₀, but only one reg of size $\binom{n-1}{\downarrow d}$.
- ullet If level 2 stores A_{top} , it must preserve this till its entire left sub-tree is executed.
- Only then overwrite to A_{bottom}.

Circuit Sketch Polymob1

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Multiplexer select signals control the flow.
- ullet 3:1 multiplexer o Either preserve state or overwrite with $A_{\mathsf{top/bottom}}$
- However only 2:1 mux is sufficient.

• Every level sets one bit in the function argument.

17

• Let us label each ANF as A[depth]_{bits}

18

Simulation n = 5, d = 2

Convert to Set of Equations

t	$\ell = 0$	$\ell = 1$	$\ell = 2$	$\ell = 3$
0	0	0	0	0
1	0	$4 \cdot S[0]_0$	$2 \cdot S[1]_0$	$S[2]_0$
2	0	$4 \cdot S[0]_1$	$4 \cdot S[0]_0 + 2 \cdot S[1]_1$	$2 \cdot S[1]_0 + S[2]_1$
3	0	$4 \cdot S[0]_2$	$4 \cdot S[0]_1 + 2 \cdot S[1]_2$	$4 \cdot S[0]_0 + 2 \cdot S[1]_1 + S[2]_2$
4	0	$4 \cdot S[0]_3$	$4 \cdot S[0]_2 + 2 \cdot S[1]_3$	$4 \cdot S[0]_1 + 2 \cdot S[1]_2 + S[2]_3$
5	0	$4 \cdot S[0]_4$	$4 \cdot S[0]_3 + 2 \cdot S[1]_4$	$4 \cdot S[0]_2 + 2 \cdot S[1]_3 + S[2]_4$
6	0	$4 \cdot S[0]_5$	$4 \cdot S[0]_4 + 2 \cdot S[1]_5$	$4 \cdot S[0]_3 + 2 \cdot S[1]_4 + S[2]_5$
7	0	$4 \cdot S[0]_{6}$	$4 \cdot S[0]_5 + 2 \cdot S[1]_6$	$4 \cdot S[0]_4 + 2 \cdot S[1]_5 + S[2]_6$

- Left Column needs to be 0,1,2,3,...7
- ullet Solve the integer equation system: look for solutions in $\{0,1\}$

General Case (u:=n-d)

$$2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{0} \qquad = 1 \\ 2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{i} \qquad = i+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{0} \qquad + 2^{u-2} \cdot S[1]_{1} \qquad + \cdots + 2^{i} \cdot S[j]_{j} \qquad + \cdots \qquad + S[u-1]_{u-1} \qquad = u \\ 2^{u-1} \cdot S[0]_{1} \qquad + 2^{u-2} \cdot S[1]_{2} \qquad + \cdots + 2^{i} \cdot S[j]_{j+1} \qquad + \cdots \qquad + S[u-1]_{u} \qquad = u+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{2u-u-1} \qquad + 2^{u-2} \cdot S[1]_{2u-u} \qquad + \cdots + 2^{i} \cdot S[j]_{-i+2u-2} \qquad + \cdots \qquad + S[u-1]_{2u-2} \qquad = 2^{u}-1$$

- Solve the integer equation system: look for solutions in $\{0,1\}$
- Does Solution exist? Is solution implementable?

General Case (u:=n-d)

- Look at the *i*-th column shaded in green (note j = u 1 i)
- $S[j]_t$ is the i+1-th lsb of $(i+1), (i+2), \ldots$, i.e. the (i+1)-th lsb of t+i+1.

General Case (u:=n-d)

$$2 \cdot S[u-2]_0 \quad + S[u-1]_0 \quad = 1 \\ 2 \cdot S[u-2]_0 \quad + S[u-1]_1 \quad = 2 \\ \vdots \\ 2^i \cdot S[j]_0 \quad + \cdots \quad + S[u-1]_i \quad = i+1 \\ \vdots \\ 2^{u-1} \cdot S[0]_0 \quad + 2^{u-2} \cdot S[1]_1 \quad + \cdots + 2^i \cdot S[j]_j \quad + \cdots \quad + S[u-1]_{u-1} \quad = u \\ 2^{u-1} \cdot S[0]_1 \quad + 2^{u-2} \cdot S[1]_2 \quad + \cdots + 2^i \cdot S[j]_{j+1} \quad + \cdots \quad + S[u-1]_u \quad = u+1 \\ \vdots \\ 2^{u-1} \cdot S[0]_{2u-u-1} \quad + 2^{u-2} \cdot S[1]_{2u-u} \quad + \cdots + 2^i \cdot S[j]_{-i+2u-2} \quad + \cdots \quad + S[u-1]_{2u-2} \quad = 2^u-1$$

- A *u*-bit decimal up-counter for the variable *t*.
- A series of u incrementers to generate $t+1, t+2, \ldots, t+u$.

Urivers tá della Svizzera taliena

Circuit is implementable in logarithmic depth

Figure: Visual representation of the addition t + i + 1

- Having the whole incrementer circuit is unnecessary.
- We are only interested in (i+1)-th lsb of t+i+1.
- The expression is $x_i \oplus z_s \prod_{k=n_s+1}^{i-1} x_k$.
- \bullet Can be implemented using $2\log_2 u$ depth.

Polysolve1

Figure: Hardware Solver Polysolve1

- After OR-ing, Priority Encoder gives the location of 1st 0 in the table.
- The solver will extract one root per partial truth table.
- Note large critical path !!

Polysolve2

Figure: Hardware Solver Polysolve2

• Pipelining reduces the length of critical path.

Polysolve3

Example

If d=4, and the ${\bf OR}$ of the truth tables is $T_0=1011\ 1111\ 1111\ 0111$

- At $\tau = 0$ Penc outputs 0001
- Decoder op $D_0 = 0100\ 0000\ 0000\ 0000$
- $T_1 = T_0 \lor D_0 = 1111 \ 1111 \ 1111 \ 0111$
- $HW(T_1) = HW(T_0) + 1$, and is written back to **Reg2**.
- \bullet At $\tau=1$ Penc outputs next root 1100
- We have $D_1 = 0000 \ 0000 \ 0000 \ 1000$.
- \bullet $T_2 = T_1 \lor D_1 = 1111\ 1111\ 1111\ 1111$ which is now the all one string.

Energy Efficiency

Wasteful Computation

- Suppose we have 50 equations in 50 variables.
 - \rightarrow The common solution of 1st 10 equations is 100.
 - \to Evaluating Möbius Transform for the remaining equations \Rightarrow Evaluating 40 equations at 2^{50} points each.
 - \rightarrow Evaluating 40 equations at 10 points is sufficient !!!!
- We found energy efficient solution for this.
- The idea is to filter any common root of first 10 eqns using Dot-product circuit.

Tools

Circuit components

- Root expander: $RE(n,d):\{0,1\}^n \to \{0,1\}^{\binom{n}{\downarrow d}}$.
 - \rightarrow Eg.RE(4,3) over the vector $(x_0, x_1, x_2, x_3) = (1, 0, 1, 1)$

 - \rightarrow The expanded root **r**=1111 0001 110
 - ightarrow Total hardware overhead is $\binom{n}{\downarrow d} n$ **AND** gates.
- Dot-Product: Eg $f = 1 \oplus x_0 \oplus x_2 \oplus x_0 x_1 \oplus x_2 x_3$.
 - \rightarrow Vector Description **v**=1011 0001 001.
 - \rightarrow The dot-product $\mathbf{r} \cdot \mathbf{v} = 0$, equals f(r).
 - $\rightarrow \binom{n}{\downarrow d}$ **AND** gates and $\binom{n}{\downarrow d} 1$ **XOR**

Circuit

PolySolve3 instance with μ equations

Energy

Figure: Energy consumption for varying μ for n=m=20. The colored dashed lines show the energy consumed in the **Polysolve3** circuit for the corresponding equation systems.

SAKURA-X

Figure: SAKURA-X

Proof of Concept

- SAKURA-X mainly built for side-channel experiments, limited computational power.
- We could solve quadratic equations of upto 50 variables in 8 hours.
- ullet TODO o Implement on an FPGA cluster and solve upto 100 variables.

Conclusion

- Given m equations in n variables over GF(2).
- Asymptotically, all the solutions can be found using a circuit of area $\propto m \cdot n^{d+2}$.
- This is not energy-efficient however: Möbius Transform does a lot of redundant computations.
- Circuit for energy efficiency also proposed.

THANK YOU