Proprietà delle funzioni continue

Teorema degli zeri

$$f:[a,b] o \mathbb{R}$$
 continua in $[a,b]$ $f(a)\cdot f(b)<0 \implies \exists x_0\in (a,b): f(x_0)=0$

Metodo di bisezione

1. Calcolo

$$x_m=rac{b+a}{2}$$

- Se $f(x_m) = 0$: l'algoritmo si ferma
- Altrimenti valuto il segno:
 - Se $f(x_m) \cdot f(x_a) < 0$: f ammette soluzione in (a, x_m)
 - Altrimenti: f ammette soluzione in (x_m, b)
- 2. Itero il passo 1

Intersezione di funzioni

 $f,g:[a,b] o\mathbb{R}$ continue $f(a)>g(a),f(b)< g(b)\implies\exists x_0\in(a,b):f(x_0)=g(x_0)$ Applicazione del teorema degli zeri alla funzione f(x)-g(x)

Teorema dei valori intermedi

 $f:[a,b] o \mathbb{R}$ continua $\implies f$ assume tutti i valori compresi tra $\inf_{x\in[a,b]}f(x)$ e $\sup_{x\in[a,b]}f(x)$, ovvero

$$orall y \in (\inf_{x \in [a,b]} f(x), \sup_{x \in [a,b]} f(x)) \; \exists x \in [a,b] : f(x) = y$$

Massimo e minimo assoluto

 $f:D o\mathbb{R}$ continua

- ullet M si dice massimo assoluto di f in D se
 - $\forall x \in D \ f(x) \leq M$
 - $\exists x_0 \in D: f(x_0) = M$ detto punto di massimo
- m si dice minimo assoluto di f in D se
 - $\forall x \in D \ f(x) \geq m$
 - $\exists x_0 \in D: f(x_0) = m$ detto punto di minimo

Teorema di Weierstrass

 $f:[a,b] o \mathbb{R}$ continua $\implies \exists M,m$ massimo e minimo di f in [a,b] e f([a,b])=[m,M]