CTfP Challenges — Chapter 14: Representable Functors

Question 1. Show that the hom-functors map identity morphisms in $\mathscr C$ to corresponding identity functions in **Set**

Consider objects X,Y,Z along with morphisms $X \xrightarrow{f} Z$ and $Y \xrightarrow{h_0, h_1, \dots h_n} X$. By functoriality, we know that the Hom functor $\mathscr{C}(Y,-)$ maps the morphism f to some function from the homset $\mathscr{C}(Y,X)$ to the homset $\mathscr{C}(Y,Z)$. Specifically, this function will send each $h_n \in \mathscr{C}(Y,X)$ to $f \circ h_n \in \mathscr{C}(Y,Z)$. We can see this more clearly with a diagram:

Now suppose we set Z = X and $f = id_X$:

We now see that for all $Y \xrightarrow{h} X$ the function $\mathscr{C}(Y, \mathbf{id}_X)$ maps h to $\mathbf{id}_X \circ h$. By the definition of the identity morphism, $\mathbf{id}_X \circ h \equiv h$. Therefore, $\mathscr{C}(Y, \mathbf{id}_X)$ is precisely the identity function on the homset $\mathscr{C}(Y, X)$. A similar argument may be constructed for the contravariant case.

Question 2. Show that Maybe is not representable.

We can make an argument based on cardinality. Any isomorphism between sets must be bijective, and in order to form a bijection between two sets, they must have the same cardinality. For any type T with cardinality t, the type Maybe<T> will have cardinality t+1. Given any candidate representing type R, the function type R \to T will have cardinality t^r . This means that we must find some r such that $t^r=t+1$. Rearranging, we find that $r=\log_t(t+1)$. For t=1, we find r is undefined, for t=2, r=1.5849...—we will struggle to find a type with such cardinality! The function tends toward 1 as t approaches infinity, so we have no hope of finding an integer-valued result.

Question 3. Is the Reader functor representable?

Yes, since Reader maps two types A and B onto their function type A \rightarrow B, it is trivially representable.

Question 4. Using Stream representation, memoize a function that squares its argument.

(See accompanying F# script.)

Question 5. Show that tabulate and index for Stream are indeed the inverse of each other. (Hint: use induction.)

I don't think there's any way to do this other than the solution written here: http://danshiebler.com/2018-11-10-category-solutions/

Question 6. The functor: Pair a = Pair a a is representable. Can you guess the type that represents it? Implement tabulate and index.

We can make another cardinality argument. Given a type T with cardinality t, The type Pair<T>, has cardinality $t \times t$. This means that the function $R \to T$ must also have cardinality $t \times t$. Which means we must find a type with cardinality r such that $t^r = t \times t$. This is plainly 2, so we can easily choose Bool for R; however, we may wish to choose something with more descriptive values (such as fst and snd, car and cdr, or left and right), as any type of cardinality 2 will do the trick. Implementation is provided in the accompanying script.