TITANIC SURVIVAL PREDICTION

The objective of the dataset is to predict whether the passengers in the titanic ship were survived or not on the basis of some input values. The dataset contains 418 rows and 12 columns. PassengerId: Id of the passenger Survived: 0 = No; 1 = Yes Pclass: Passenger class Name: Name of the passenger Sex : Sex of the passenger Age : Age of the passenger SibSp : Siblings and Spouse Parch : Parents and Children Ticket : Ticket Number Fare: Passenger Fare Cabin: Cabin Embarked: Port of Embarkation

Import the libraries

import numpy as np import pandas as pd

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

Load the data

df=pd.read_csv('/content/titanic.csv')

\Rightarrow		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
	413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
	414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
	415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
	416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S

Data Exploration

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.829
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.000
4				,						•

df.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758
4									>

df.shape

(418, 12)

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):
                Non-Null Count Dtype
# Column
                 -----
    PassengerId 418 non-null
                                int64
0
1
    Survived
                418 non-null
                                int64
 2
    Pclass
                 418 non-null
                                int64
    Name
                 418 non-null
                                object
 4
    Sex
                 418 non-null
                                object
                 332 non-null
                                float64
    Age
    SibSp
                 418 non-null
                                int64
 6
                418 non-null
    Parch
                                int64
                418 non-null
417 non-null
8
    Ticket
                                object
                                float64
9
    Fare
10 Cabin
                 91 non-null
                                object
11 Embarked
                418 non-null
                                object
dtypes: float64(2), int64(5), object(5)
memory usage: 39.3+ KB
```

df.dtypes

```
PassengerId
                int64
Survived
                int64
Pclass
                int64
                object
Name
Sex
               object
Age
               float64
SibSp
                int64
Parch
                int64
Ticket
                object
               float64
Fare
Cabin
                object
Embarked
                object
dtype: object
```

df.columns

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

Data Preprocessing

df.drop_duplicates()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
C	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q

df.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0
dtype: int64	

df.drop(['PassengerId','Name','Ticket'],axis=1,inplace=True)
as

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	male	34.5	0	0	7.8292	NaN	Q
1	1	3	female	47.0	1	0	7.0000	NaN	S
2	0	2	male	62.0	0	0	9.6875	NaN	Q
3	0	3	male	27.0	0	0	8.6625	NaN	S
4	1	3	female	22.0	1	1	12.2875	NaN	S
413	0	3	male	NaN	0	0	8.0500	NaN	S
414	1	1	female	39.0	0	0	108.9000	C105	С
415	0	3	male	38.5	0	0	7.2500	NaN	S
416	0	3	male	NaN	0	0	8.0500	NaN	S
417	0	3	male	NaN	1	1	22.3583	NaN	С

418 rows × 9 columns

327 Cabin rows are missing values out of 418 rows. So here we can drop the column Cabin as it is irrelevant

df.drop(['Cabin'],axis=1,inplace=True)
df

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.5	0	0	7.8292	Q
1	1	3	female	47.0	1	0	7.0000	S
2	0	2	male	62.0	0	0	9.6875	Q
3	0	3	male	27.0	0	0	8.6625	S
4	1	3	female	22.0	1	1	12.2875	S
413	0	3	male	NaN	0	0	8.0500	S
414	1	1	female	39.0	0	0	108.9000	С
415	0	3	male	38.5	0	0	7.2500	S
416	0	3	male	NaN	0	0	8.0500	S
417	0	3	male	NaN	1	1	22.3583	С

418 rows × 8 columns

survived_count=df['Survived'].value_counts()
survived_count

```
0 266
1 152
```

Name: Survived, dtype: int64

```
mylabels=['not survived','survived']
plt.pie(survived_count,labels=mylabels,autopct="%1.1f%%")
plt.title('Survived_Status')
plt.legend(loc='upper right')
plt.show()
```

Survived_Status

sns.countplot(data=df,x='Sex',hue='Survived')

100

50

0 male

female

<Axes: xlabel='Sex', ylabel='count'>

from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()

df['Sex']=encoder.fit_transform(df['Sex'])

male female

df['Embarked']=encoder.fit_transform(df['Embarked'])

df

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	34.5	0	0	7.8292	1
1	1	3	0	47.0	1	0	7.0000	2
2	0	2	1	62.0	0	0	9.6875	1
3	0	3	1	27.0	0	0	8.6625	2
4	1	3	0	22.0	1	1	12.2875	2
413	0	3	1	NaN	0	0	8.0500	2
414	1	1	0	39.0	0	0	108.9000	0
415	0	3	1	38.5	0	0	7.2500	2
416	0	3	1	NaN	0	0	8.0500	2
417	0	3	1	NaN	1	1	22.3583	0

418 rows × 8 columns

We converted the column sex and embarked using label encoder. Sex column converted to, male = 1 and female = 0. Embarked column converted to, Q = 1, S = 2, C = 0.

sns.histplot(df['Age'])

Filling the column Age with mean of that column.

```
df['Age'].fillna(df['Age'].mean(),inplace=True)
sns.histplot(df['Fare'])
```


Filling the column Fare with median of that column.

```
df['Fare'].fillna(df['Fare'].median(),inplace=True)
```

```
df.isna().sum()

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64
```

${\tt df.dtypes}$

```
Survived
              int64
Pclass
              int64
              int64
Sex
            float64
Age
SibSp
              int64
Parch
              int64
Fare
            float64
Embarked
              int64
dtype: object
```

plt.hist(df['Age'])

sns.countplot(data=df,x='Pclass',hue='Survived')

<Axes: xlabel='Pclass', ylabel='count'>

sns.boxplot(data=df,x='Survived',y='Age')

<Axes: xlabel='Survived', ylabel='Age'>

Seperating x and y

```
x=df.drop(['Survived'],axis=1)
y=df['Survived']
```

Spliting x and y

```
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42)
```

Performing Normalization

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.fit_transform(x_train)
x_test=scaler.fit_transform(x_test)
```

Model creation using KNN

```
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier(n_neighbors=5)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
```

Model evaluation

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report,ConfusionMatrixDisplay,confusion_matrix
labels=['0','1']
print("accuracy score is",accuracy_score(y_test,y_pred))
print(classification_report(y_test,y_pred))
result=confusion_matrix(y_test,y_pred)
cmd=ConfusionMatrixDisplay(result,display_labels=labels)
cmd.plot()
print(result)
```

accuracy score is 0.9761904761904762

,	precision	recall	f1-score	support
0 1	0.98 0.97	0.99 0.95	0.98 0.96	85 41
accuracy macro avg weighted avg	0.98 0.98	0.97 0.98	0.98 0.97 0.98	126 126 126

KNN model gives 98% of accuracy.