

Índice

RESUMEN EJECUTIVO	3
1. OBJETIVOS 1.1. Objetivo general	5 5
2.3. Reclutamiento	6 6 6 10 12 12
3. METODOLOGÍA DE TRABAJO	18
3.1.1. Modelo Conceptual 3.1.2. Datos de entrada al modelo de evaluación de stock Descarte de la Pesquería de anchoveta y sardina común de la zona centro-sur. Supuestos para asesoría de septiembre 2021 (1er Hito CBA 2022): Supuestos para asesoría de marzo y julio 2021 (2do y 3er Hito CBA 2021): Supuestos para asesoría de septiembre 2021 (1er Hito CBA 2022): 3.1.3. Evaluación de stock 3.2. Objetivo específico 2: 3.2.1. Estatus 3.3. Objetivo específico 3: 3.3.1. Captura biológicamente aceptable (CBA) 3.3.2. Proyección del stock	18 20 22 23 24 26 38 41 41 48
4. RESULTADOS	50
4.1.1. Datos de entrada al modelo de evaluación de stock 4.1.2. Diagnóstico del modelo de evaluación de stock 4.2. Objetivo específico 2: 4.2.1. Indicadores del stock 4.2.2. Puntos Biológicos de Referencia (PBRs) 4.2.3. Estado de explotación 4.3. Objetivo específico 3: CBA 2021 Inicial (Asesoría de septiembre 2020) Primera revisión CBA 2021 (Asesoría de marzo 2021) Segunda revisión CBA 2021 (Asesoría de julio 2021) 4.3.2. Proyección del stock (Asesoría de septiembre 2020)	50 59 69 72 73 80 83 85 87

4.3.4. Proyección del stock (Asesoría de julio 2021)	
5. ANÁLISIS Y DISCUSIÓN DE RESULTADOS	94
6. REFERENCIAS BIBLIOGRÁFICAS	98

7. ANEXOS

ANEXO I. Datos y modelo de sardina común correspondiente a la asesoría de septiembre 2020 Y marzo 2021 (MAE0920 y MAE0321).

RESUMEN EJECUTIVO

El presente informe contiene la primera actualización del Estatus del año biológico 2020/21 y de la Captura Biológicamente Aceptable (CBA) del año calendario 2021 para la sardina común de la zona centro-sur con información actualizada a enero 2021: (1) Estadísticas de desembarques SERNAPESCA desde 1990/91 hasta 2019/20. (2) El porcentaje de descarte que considera un 4 % desde 2000/01 hasta el 2015/16, del 2 % descarte para los años 2016/17 - 2017/18 y 6 % para los años 2018/19 y 2019/20 y un 4 % para el año 2020/21. (3) Información de captura a la edad y pesos individuales a la edad provenientes del Programa de Seguimiento de las Principales Pesquerías Nacionales (Pesquerías Pelágicas) desde 1990/91 hasta 2019/20. (4) Series de biomasas acústicas de verano (desde el 2000 hasta el 2021) y otoño (desde el 2003 hasta el 2020) provenientes del programa de cruceros IFOP sobre Evaluación Hidroacústica del Reclutamiento de sardina común entre la Región de Valparaíso a Los Lagos. (5) publicaciones científicas y técnicas relacionadas con los parámetros del ciclo de vida (mortalidad natural y madurez).

En relación a los datos de entrada al modelo de evaluación de stock de sardina común, se observa que desde 2015 las biomasas acústicas de verano se mantienen en niveles en torno a los dos millones de toneladas, lo cual se reflejó en una estabilidad de las capturas en torno a las 330 mil toneladas. Las biomasas acústicas de otoño reflejan el efecto de la remoción ejercidas por la pesca y causas naturales, con biomasas en general menores a las estimadas en el crucero de verano en torno a 1,5 millones de toneladas. No obstante, para el año 2020 la biomasa estimada por el crucero acústico de verano se redujo a un millón de toneladas (54 % menor al 2019), la biomasa del crucero de otoño disminuye un 39 % respecto al 2019 y las capturas 2019/20 se redujeron un 9 % respecto al año previo. El desembarque 2020 está en torno a las 258.092 toneladas, equivalente a un 80 % de la CBA 2020 recomentada por el CCT_PP (321.307 toneladas). Para el año 2021, la biomasa total estimada por el crucero de enero retornó a los niveles observados entre el 2015 al 2019 (en torno a los 2 millones de t.), incrementando un 125 % respecto a lo estimado para el año 2020. En relación a la captura 2020/21 se asume una reducción del 24 % respecto del año biológico 2019/20, no obstante la captura 2020/21 es un supuesto que debe ser actualizado en la asesoría de julio 2021 con datos de desembarque del primer semestre 2021.

La pesquería de sardina común está sustentada entre un 60 %-70 % por la abundancia del grupo de edad cero (GE 0). Los resultados del crucero de verano 2019 y 2020 presentan una disminución en los niveles de abundancia de la fracción recluta, el estimado de biomasa total del crucero de verano 2019 es sostenido por la fracción adulta (edad 1+). Mientras que el estimado 2020 es sostenido por individuos de edad 2+. Esta disminución se confirma al actualizar la composición de edad de la flota 2018/19 y 2019/20 y del crucero de otoño 2019 y 2020. Por lo tanto, la disminución de la biomasa total 2020 estaría fuertemente relacionada a la reducción del número de individuos de los grupos de edad 0 y 1 principalmente. Los resultados del crucero de verano 2021 muestran un incremento significativo en los niveles de abundancia de la fracción recluta (94 % individuos de edad 0), a diferencia de los dos años previos, la biomasa total del crucero de verano 2021 es sostenido principalmente por la fracción recluta (edad 0), observandose una baja presencia de individuos adultos (edad 1+).

Las tendencias de las variables poblacionales muestran que los reclutamientos han mostrado importantes fluctuaciones interanuales y en su historia conocida se aprecian tres períodos relevantes, a) Rprom(1991-2007) con los niveles más bajos de reclutamientos (113 mil millones de peces), b) Rprom(2008-2012) con los más altos niveles de reclutamiento (405 mil millones de peces) y c) Rprom(2013- 2021) con reclutamientos medios en torno a 180 mil millones de peces. En relación a los tres períodos relevantes, el reclutamiento 2021 es un 128 % mayor al Rprom(1991-2007), un 36 % menor al Rprom(2008- 2012) y un 43 % mayor

al Rprom(2013-2021). El incremento del reclutamiento 2021 genera una recuperación en los niveles de biomasa total, encontrándose un 10 % sobre el promedio histórico de la serie (promedio 1991-2021 = 1,62 millones de t.). No obstante, producto de los bajos reclutamientos registrados durante los dos últimos años (2019 y 2020), junto a la disminución de la biomasa adulta (1+ años) el 2020, generaron una disminución significativa de la biomasa desovante esperada para el año biológico 2020/2021, siendo un 39 % menor al promedio histórico y un 55 % menor al promedio de los 9 años previos (período 2013-2021). Confirmándose, de este modo, el estatus 2020/21 proyectado en la asesoría de septiembre 2020. En consecuencia, la condición estimada en este estudio para el año 2020/2021 indica que la sardina común se encuentra en sobreexplotación (46 % bajo BD_{RMS}), con un 38 % de probabilidad de colapso y sin riesgo de sobrepesca. Cabe recordar que la asesoría actual (marzo 2021) cuenta con información parcial de la flota, por lo tanto, el estatus debe ser actualizado nuevamente con información de la flota y crucero de otoño para contar con un "estatus completo" en la asesoría de julio 2021.

Adicionalmente, en este estudio se analizó el efecto del retorno del reclutamiento 2021 a niveles favorables sobre el estatus proyectado hacia el 2021/22 bajo una mortalidad por pesca en torno al FRMS. Los resultados indican una recuperación del estatus para el año biológico 2021/22, retornando a una condición de plena-explotación con un 26% de probabilidad de sobre-explotación y un 3% de probabilidad de colapso, independiente del escenario de reclutamiento proyectado. Al parecer, esta recuperación podría estar relacionada a las condiciones ambientales favorables registradas hacia fines del 2020 e inicios del año 2021, donde se registró una condición fría, con gran cobertura espacial de ATSM negativas al norte de los 40°S y procesos de intensa surgencia costera, con elevadas concentraciones de clorofila-a en la costa, lo que se tradujo en una mayor disponibilidad de alimento (fitoplancton) para los reclutas de anchoveta y sardina común. Aunque el estatus para el año 2021/22 es promisorio, posiblemente generando expectativas sobre los niveles de excedentes pesqueros, debe considerarse referencial debido a su carácter de transitorio en espera de datos que confirmen el crecimiento de la población adulta.

El rango de Captura Biológicamente Aceptable (CBA) para el año calendario 2021 se obtiene bajo un criterio de explotación de F_{RMS}, sujeto a percentiles de probabilidad entre el 10 % y 50 % de sobrepasar dicho criterio. Se asume que el 70 % de la captura se obtendrá durante el primer semestre y que ocurrirá un 4 % de descarte. De este modo, la captura para el año 2021, descontando el 4 % de descarte y estimada bajo un escenario de reclutamientos bajos (período 1991-2007) se encuentre entre 225 mil t. y 261 mil toneladas. Bajo un escenario de reclutamientos altos (período 2008-2012), alcanza un rango entre 258 mil t. y 300 mil toneladas. Y bajo un escenario de reclutamientos recientes (período 2013-2021), entre 227 mil t. y 268 mil t.

1. OBJETIVOS

1.1. Objetivo general

Proveer la asesoría científica necesaria para la determinación del estado de explotación y la Captura Biológicamente Aceptable (CBA) que deberá llevar o mantener al Rendimiento Máximo Sostenible (RMS), la pesquería de sardina común de la Región de Valparaíso a la Región de Los Lagos, bajo condiciones de riesgo e incertidumbre, cuantificando las distintas fuentes e integrando la mejor información científica-técnica disponible.

1.2. Objetivos específicos

- Implementar procedimientos de evaluación de stock basados en protocolos científicos para la determinación del estatus de sardina común, con arreglo al nivel de información, conocimiento e incertidumbre correspondiente, conforme a los estándares actuales en ciencia pesquera.
- Establecer el estatus actualizado de sardina común, sobre la base de sus principales indicadores estandarizados de estado y flujo, propagando para estos efectos todas las fuentes de incertidumbre subyacente a la pesquería.
- 3. Determinar niveles de Captura Biológicamente Aceptable (CBA) que lleven y/o mantenga la pesquería en torno al Rendimiento Máximo Sostenible (RMS), a partir de un análisis de riesgo en condiciones de incertidumbre de no alcanzar los objetivos de conservación y sostenibilidad conforme lo establece la LGPA y contenidos en el Plan de Manejo y/o en el Programa de Recuperación respectivo, según corresponda.
- 4. Informar el avance del Programa de Mejoramiento Continuo de la Calidad en la Asesoría Científica (PMCCAC) realizado durante el presente estudio, respecto al cumplimiento de recomendaciones formuladas en procesos de RPEI y priorizadas por el CCT, cuando corresponda.

2. ANTECEDENTES

La sardina común (*Strangomera bentincki*) es una especie endémica de las aguas costeras de la zona centrosur de Chile. Una de las principales particularidades de este recurso es la enorme fluctuación interanual que puede ocurrir en la abundancia de su población, con una alta y variable mortalidad natural, lo que redunda en una alta variabilidad en los desembarques. Esta especie presenta un corto ciclo de vida (longevidad máxima de cuatro años), un rápido crecimiento con oscilaciones estacionales, alta fecundidad y elevada tasa de mortalidad natural. Además, cumple un importante rol trófico, generando fluctuaciones en la abundancia de otras especies producto de la importancia relativa y el grado de pesca objetivo ejercida sobre ella.

2.1. Distribución del recurso

La sardina común es reconocida junto con la anchoveta como especies netamente costeras (distribución longitudinal no supera las 30 millas náuticas de la costa), neríticas (habitan profundidades menores a los 70 ó 50 m, respectivamente), forman cardúmenes altamente densos y son especies fuertemente influenciadas por factores bióticos y abióticos (Aguayo & Soto 1978, Serra *et al.* 1978, Arrizaga & Veloso 1982, Cubillos & Arancibia 1993a, 1993b). La sardina común sostiene una importante actividad pesquera industrial y cerquera artesanal en el litoral de la zona centro-sur de Chile. La pesquería de sardina común, abarca las regiones de Valparaíso (33°S) y Los Lagos (42°S), siendo los principales puertos de desembarque: San Antonio en la Región de Valparaíso; Coronel, San Vicente y Talcahuano en la Región del Biobío; Corral en la Región de Los Ríos; Calbuco y Puerto Montt en la Región de Los Lagos (**Figura 1**). Los mayores desembarques se registran en un 90-95 % entre Valparaíso y Biobío (San Antonio, Talcahuano y Coronel). La actividad pesquera opera en profundidades que no sobrepasan los 50 m y en un margen costero en promedio próximo a las 30 millas náuticas desde la costa.

2.2. Unidades de stock

La unidad de stock corresponde al "grupo de peces que se mantiene temporal o espacialmente aislados unos de otros y que son genéticamente distintos, debido a su aislamiento reproductivo". Basados en esta definición Galleguillos *et al.* (1994) desarrollaron un estudio de identificación de stock de los recursos sardina común y anchoveta entre las regiones de Valparaíso y La Araucanía durante abril de 1995 y abril 1996 aplicando i) marcadores genéticos; ii) marcadores biológicos; iii) morfología corporal; iv) fauna parasitaria. Estos autores establecieron que no hay evidencias para adoptar la existencia de subunidades en el área de análisis. Consecuentemente con lo anterior y extendiendo el análisis a la región de Los Lagos, en este estudio se trabaja la hipótesis de una unidad de stock entre las regiones de Valparaíso a Los Lagos en donde se desarrolla la pesquería.

2.3. Pesquería

Durante la década de los noventa, la flota cerquera de la zona centro-sur incrementó significativamente las capturas de sardina común, observándose dos importantes máximos en el año 1991 y 1999 sobrepasando las 400 mil toneladas extraídas. Sin embargo, en los años 1993 y 1995 se registró un fuerte descenso probablemente debido a fallas sucesivas en los reclutamientos. Durante el período 1995 al 2000, la extracción de pequeños pelágicos estuvo marcada por condiciones ambientales "El Niño" 1997-1998 que se tradujo en alteraciones de las comunidades costeras pelágicas, especialmente sobre el jurel, observándose una alta e inusual presencia de ejemplares de tallas pequeñas en la pesquería centro-sur. Este hecho generó la

Figura 1. Distribución espacial de datos provenientes del muestreo biológico realizado por IFOP para el monitoreo de la pesquería de sardina común. La línea color café corresponde a la isóbata de los 200 m.

distorsión de los desembarques de sardina y anchoveta durante los años 1999-2001, impulsado por evadir multas y declarar menos jurel (Aranís 2011). Existen antecedentes que señalan que los desembarques del primer semestre 1999 y 2000 resultan ser muy altos para lo que en ese entonces se supone era la población de anchoveta y sardina común. Por lo tanto, la serie de desembarques anuales oficiales fue corregida por investigadores de IFOP, considerando los niveles de sub-reportes de jurel durante los años 1998 - 2001, que indican que del desembarque total informado como sardina común, menos del 27 % correspondía efectivamente a este recurso (**Figura 2**).

El año 2000 la pesquería es reconocida bajo régimen de plena explotación, por lo cual se aplica la medida de administración pesquera denominada Límite Máximo de Captura por Armador correspondiente a fijar Cuotas Globales Anuales de Captura. Durante el período 2001 - 2005, los desembarques se mantienen en torno a las 300 mil toneladas (**Figura 3**). A partir del 2005 comienza un período favorable para la condición de sardina común, ingresando a un proceso de expansión poblacional. Esta condición permite establecer las cuotas iniciales más altas de la serie (605 mil t), generando niveles de desembarque promedio en torno a las 700 mil toneladas durante el período 2006 - 2012. Los años 2001,2002, 2006, 2008, 2014 y 2017 a 2019, el desembarque artesanal superó los niveles de cuota establecidas. Durante el 2017 el desembarque artesanal superó en 60 mil toneladas el nivel de cuota establecida, el 2018 y 2019 fue superior en más de

Figura 2. Desembarques (t) oficiales y corregidos de sardina común centro-sur.

100 t, mientras que el desembarque industrial estuvo por debajo de la cuota establecida (Figura 3).

Figura 3. Relación de desembarques y cuotas anuales de sardina común por tipo de flota.

El desembarque de sardina común se ha caracterizado por presentar un comportamiento estacional, donde cerca del 76% de la captura total anual se obtiene al primer semestre de cada año, con máximos entre marzo y abril (**Figura 4**). Esta estacionalidad está altamente influenciada por el reclutamiento, lo que incide en un aumento de la abundancia y disponibilidad de agregaciones de alta densidad en zonas costeras. Producto de esta alta dependencia, la pesquería ha estado sustentada en más del 80% por ejemplares juveniles y reclutas (**Figura 5**). Esto se ve reflejado en una correlación positiva entre la biomasa acústica de enero (crucero de verano) que mide el pulso del reclutamiento anual y los desembarques registrados al primer semestre (**Figura 6**).

Figura 4. Capturas mensuales de sardina común realizadas entre 2007-2016, registradas por SERNAPESCA en la zona centro-sur.

Figura 5. Patrón histórico de la proporción de juveniles (<11,5 cm LT) presentes en los muestreos biológicos de sardina común en la flota total centro-sur.

Figura 6. Relación entre desembarques registrados durante el primer semestre de cada año versus la biomasa acústica de verano (enero) del mismo año.

2.3. Reclutamiento

Las áreas de reclutamiento se ubican principalmente frente a la Región del Biobío, concentrándose fundamentalmente al norte de Isla Mocha. Las condiciones ambientales que afectan a este proceso se vinculan con ciertas masas de agua, anomalías de las variables (Temperatura, Salinidad, Oxígeno disuelto, gradientes, etc.), intensidad de los vientos y el nivel de los procesos vinculados (índice de surgencia, índices de turbulencia, transporte de Ekman, etc) (Yáñez *et al.* 2005; Castillo *et al.* 2013).

En este sentido, Castillo *et al.* (2013) encontraron una relación negativa entre la densidad de anchoveta y sardina común de la zona centro-sur y el índice de turbulencia (del invierno anterior al reclutamiento), debido a la advección de huevos y larvas lejos de la costa. Además, la intensidad de la surgencia costera frente a Chile centro - sur experimenta una alta variabilidad interanual que está modulado por ENOS. El impacto de ENOS en el sistema de surgencia se relaciona principalmente con teleconexiones atmosféricas (Montecinos & Gómez, 2010). Gómez *et al.* (2012) encontraron que la surgencia impulsada por el viento y El Niño 3.4 se correlaciona significativamente con la clorofila y los reclutamientos. Además, identificaron que cuando la surgencia es débil la clorofila costera es baja, el reclutamiento es bajo y la tasa de supervivencia de reclutas es baja. De este modo, estos autores sugieren que la clorofila costera de primavera es un buen indicador de la abundancia de alimento de sardina común, afectando significativamente la supervivencia de pre-reclutas de sardina común y por consiguiente, la fuerza de los reclutamientos a finales de primavera. Otros autores han encontrado una relación inversa y significativa con la anomalía de la TSM y una relación positiva y significativa con la anomalía de la CHL, ya que se reconoce que la sardina común se alimenta preferentemente sobre presas de menor tamaño asociadas al fitoplancton (Arteaga *et al.* 2014, Cubillos & Arcos 2002, Van der Lingen *et al.* 2009).

Para evaluar la magnitud del reclutamiento anual se realiza la evaluación hidroacústica desde el año 2000, en enero de cada año donde se maximiza la presencia de juveniles de sardina común y anchoveta en la zona centro-sur. A partir del 2003 se replicó la prospección en otoño (mayo) para incrementar la certeza de la estimación haciendo un seguimiento de la evolución del proceso o para capturar un eventual segundo pulso, especialmente en anchoveta. De este modo, ha sido posible establecer una estacionalidad en la composición específica de las biomasas de estas dos especies, en verano la sardina domina respecto a la anchoveta mientras que en el otoño se presenta un incremento relativo de la anchoveta y una reducción en la sardina junto a cambios en su distribución geográfica (Castillo *et al.* 2013). La serie de biomasas se caracteriza por presentar una menor abundancia promedio durante el otoño respecto de las estimaciones de verano, producto de factores asociados a la pesca y a la menor disponibilidad que experimenta el recurso hacia mitad de año. Sin embargo, la distribución espacial de los últimos años se ha visto alterada producto de "El Niño" 2016, observándose una relación positiva, aunque no significativa, entre ambos cruceros (**Figura 7**).

Se ha observado una gran variabilidad interanual asociada a la fortaleza del pulso de reclutamiento de ambos recursos. A partir del 2005 la biomasa exhibe un importante aumento con un máximo histórico de 4,8 millones de toneladas el año 2008, el cual se mantiene hasta el verano del 2012 (3,8 millones de t). El período favorable de la sardina iniciado el 2005, coincide con el dominio en la zona de anomalías térmicas superficiales negativas, que se han presentado con intensidad variable (Castillo *et al.* 2012). Esta tendencia cambia el 2013 (1.133.477 t.) representando una reducción superior al 239 % en comparación al verano del 2012; 185 % en relación al 2011 y 131 % respecto al 2010. En relación a la abundancia de ejemplares menores a 11,5 cm sólo representó el 42,5 % del total, con un descenso significativo (63,9 %), respecto de los meses de enero y mayo del 2012, períodos en los cuales la participación de reclutas superó el 88 %. Esta condición se revierte el año 2014, con una importante recuperación de la biomasa total estimada en 3.079.434 t. y de la presencia de reclutas con una abundancia de ejemplares menores a 11,5 cm que

Figura 7. Relación entre la biomasa total del crucero acústico de otoño versus la biomasa total del crucero acústico de verano (enero) del mismo año para sardina común.

representó el 96,4 % del total (740 mil millones). Sin embargo, a partir del 2015 las biomasas acústicas se mantienen en torno a los 2 millones de toneladas y con disminución de la biomasa de reclutas en el año 2019. El crucero de verano 2020 estimó una dismunición de la biomasa total y de reclutas en torno al 50 % y 80 % respectivamente, respecto de las estimadas el año anterior, No obstante, se registra una recuperación de los niveles de biomasa total, retornando a niveles en torno a los 2 millones de toneladas (**Figura 8**).

Figura 8. Biomasa acústica total y de reclutas (<11,5 cm) de sardina común centro-sur.

2.4. Reproducción

Los peces pelágicos pequeños adaptan su ciclo reproductivo desovando en zonas protegidas y/o períodos del año favorables para la sobrevivencia y desarrollo de estadíos tempranos (Parrish *et al.* 1983, Hutchings *et al.* 1998, Cubillos *et al.* 2001). El área de desove de sardina común y anchoveta de las regiones de Valparaíso a Los Lagos, se ubica principalmente en la zona de Lebu-Corral, la cual correspondería a una zona de pre-reclutamiento/desove con un alto nivel de retención (**Figura 9**) producto de una alternancia entre convergencias costeras producidas por vientos norte que favorecerían la concentración y retención en la costa y vientos sur que promoverían el enriquecimiento de aguas costeras con eventos de surgencia de moderada intensidad (Cubillos *et al.* 2011, Parada *et al.* 2012, Soto-Mendosa *et al.* 2012).

La sardina común presenta un desove parcial o fraccionado, es decir, el total de ovocitos maduros producidos por una hembra son expulsados en grupos o modas sucesivas durante la temporada de desove, registrando actividad reproductiva a lo largo de todo el año, con un período de máxima actividad reproductiva centrada entre los meses de agosto y hasta octubre, período en que las condiciones oceanográficas exhiben una transición entre un régimen de convergencias costeras (transporte hacia la costa) y un régimen de surgencias moderadas que permiten la concentración y retención de huevos en la costa y la provisión de alimento para la supervivencia de las larvas. El período de inactividad o reposo reproductivo se registra durante los primeros meses del año (enero – mayo) y hacia fines de año (noviembre y diciembre) reflejado en los bajos valores del IGS y PHA mostrados en la **Figura 10**. A través del tiempo, este proceso ha tendido a focalizar su máxima actividad hacia primavera, centrando el desove entre agosto - noviembre. Por lo tanto, la estacionalidad del proceso reproductivo de esta especie no es estático temporalmente con una fecha de inicio, desarrollo y final predeterminado.

El proceso reproductivo ha sido de mayor extensión, magnitud y anticipación entre julio y principios de agosto durante los años 2011 y 2012 respecto del patrón histórico, explicando una mayor intensión reproductiva. Sin embargo, el año 2013 a 2016 el adelantamiento se observa hacia fines del mes de junio. La fluctuación de IGS y PHA indica que la época de desove se extendió entre junio y noviembre de 2013 al 2015, concentrándose la máxima actividad reproductiva en julio y octubre. Los cambios en la duración de los períodos de desove podrían estar relacionados con la calidad y cantidad de los alimentos en el verano anterior, que a su vez determina la energía disponible para la reproducción, afectando la calidad de la descendencia (Claramunt et al. 2013, Castro et al. 2009, 2010). En estos recursos se debe considerar también que la estación reproductiva se encuentra fuertemente influenciada por la longitud de las hembras, así, cambios en la estructura de talla determinan potencialmente cambios intra e interanuales en la duración e intensidad del proceso de desove.

2.6. Evaluación de stock

La evaluación de stock desarrollada por IFOP se encuentra en general acorde con los estándares internacionales vigentes. A su vez, las pesquerías han sido clasificados en grupos de calidad o *"Tiers"* conforme el nivel de conocimiento, cantidad y calidad de la información disponible que aporta la evaluación de stock. Se ha tomado en consideración las recomendaciones emanadas tanto desde los Comités Científico Técnicos como de los lineamientos entregados por el equipo de expertos nacionales e internacionales en el marco del proyecto "Revisión de los puntos biológicos de referencia (Rendimiento Máximo Sostenido) en las pesquerías nacionales" (Payá *et al.* 2014). En el desarrollo de (los) método(s) y modelo(s) empleados se consideran elementos de incertidumbre estructural basados en el nivel de conocimiento y de la información o datos disponible, así como la incertidumbre de estimación generada de su aplicación al conjunto de

Figura 9. Distribución de huevos recolectados en Cruceros de huevos (MPDH, 2003 - 2014) de sardina común en la Zona Centro-Sur de Chile. La línea café representa isobata de 200 m.

datos disponibles. Independientemente del nivel del estándar, en base al permanente proceso de mejora se recomendará la realización de estudios, cruceros, investigaciones, monitoreo y otras acciones conducentes a mejorar el estado de conocimiento del recurso en cuestión y la pesquería, con el fin de allanar las brechas de conocimiento e información conducentes a reducir los niveles de incertidumbre.

El stock de sardina común comenzó a ser evaluado con métodos estructurados por edad. La **Tabla 1** muestra las características que ha tenido la evolución en la modelación de dinámica poblacional en los últimos 18 años. En términos del lenguaje de programación, por más de 10 años, Excel y MATLAB fueron la plataforma en que se implementaron modelos de dinámica en edades en escala anual y semestral, con observaciones en tallas y edades. En el año 2010 se inició la migración de los modelos hacia el lenguaje ADMB (Fournier *et al.* 2012) con lo cual IFOP actualmente utiliza el mismo lenguaje que en la costa oeste de EE.UU, facilitando la revisión por pares desde esa región.

En base al modelo conceptual de la dinámica del stock de sardina común se sustenta el enfoque y modelo de evaluación, que permite asesorar al Comité Científico Técnico de Pesquerías de Pequeños Pelágicos (CCT-PP) en los análisis de la productividad del stock y de sus posibilidades de explotación, considerando los parámetros e indicadores estimados por el modelo de evaluación de sardina común con su incertidumbre asociada.

Figura 10. Variación promedio mensual del índice gonadosomático (IGS) y proporción de hembras activas (PHA) de las hembras de sardina común de la zona de San Antonio-Valdivia entre los años 2001 a 2016.

2.7. Captura Biológicamente Aceptable (CBA)

De acuerdo al ciclo de manejo histórico de esta pesquería, la recomendación de CBA comienza con el cálculo de la CBA inicial que permite al CCT-PP, establecer el estatus y recomendar el rango de CBA para el año siguiente. En enero de cada año, el crucero de evaluación hidroacústico permite estimar la abundancia y

Tabla 1. Evolución de los modelos de evaluación empleados en sardina común centro-sur.

Años	Modelo	Plataforma	Índices
<2000	Producción excedentaria	Excel	CPUE
2000-2005	Anual edad-estructurado (MAE)	MATLAB	CPUE RECLAS
	Anual edad-estructurado (MAE),		CPUE
2005-2010	Anual talla-estructurado (MAT),	MATLAB	RECLAS
	Semestral talla-estructurado (MST)		PELACES
2010-2012	Anual edad-estructurado (MAE) Semestral talla-estructurado (MST)	ADMB	RECLAS PELACES
2012-2013	Anual edad-estructurado (MAE)	ADMB	RECLAS PELACES MPH
2014-2020	Anual edad-estructurado (MAE)	ADMB	RECLAS PELACES

biomasa de reclutas (crucero de verano), esta información junto a datos provenientes de la pesquería (del año anterior) es utilizada para la primera revisión de la CBA. En marzo se inicia el período de extracción y en mayo se realiza el segundo crucero de evaluación acústica (crucero de otoño) para actualizar el estatus y revisar una vez más la CBA.

El año 2013 se realizó el establecimiento del nuevo Reglamento (D:S: N°77, Mayo 2013) dispuesto en la Ley General de Pesca y Acuicultura (LGPA) que establece que las pesquerías deberán alcanzar o mantenerse en torno del Rendimiento Máximo Sostenido (RMS) considerando las características biológicas de los recursos explotados. La nueva LGPA establece que el Comité Científico Técnico será quien recomiende el marco biológico de referencia, estatus de conservación biológica y rango de captura biológicamente aceptable (CBA). Este hecho coincide con la fuerte caída en el desembarque (232 mil t), disminuyendo un 73 % respecto al año 2012, producto de una falla del reclutamiento en el 2013.

En consecuencia, considerando la caída del reclutamiento 2013, el CTT-PP recomienda una CBA inicial 2014 (establecida en diciembre 2013) de 373 mil toneladas. En marzo del 2014, se re-calculó la CBA con la información entregada por el crucero de evaluación hidroacústica de enero, que arrojó un incremento de la biomasa acústica, permitiendo aumentar la CBA a 572 mil toneladas (t) para el mismo año. Del desembarque total registrado el 2014 (543 mil t) un 77 % fue capturado entre los meses de enero y junio.

Para el año 2015 se recomendó una CBA inicial de 323 mil t, en marzo del 2015 se re-calculó con información del crucero de enero 2015 que arrojó una disminución en la presencia de reclutas por lo tanto la CBA se incrementa levemente a 356 mil t. En junio 2015 se re-calcula nuevamente con información del crucero de mayo 2015 que arrojó un aumento de la biomasa acústica permitiendo un incremento en la CBA 2015 a 478 mil t. Del desembarque total registrado el 2015 (430 mil t) un 64 % fue capturado entre los meses de enero-junio.

Debido a la alta incertidumbre en el nivel del reclutamiento 2016, la CBA inicial 2016 recomendada por el CCT-PP bajo un enfoque precautorio fue de 286 mil t, la cual fue incrementada luego de la actualización con información del crucero de enero 2016 a 326 mil t. Sin embargo, los desembarques registrados para el año 2016 sólo alcanzaron las 275 mil toneladas, donde un 51 % fue capturado entre los meses de enero-junio (**Tabla 2**). Esta disminución en las capturas se asocia a la presencia del evento "El Niño 2015-2016" que afectaría a la distribución relativa del stock. Aranís *et al.* (2016) señalaron que el recurso no estaría accesible a la flota artesanal de la Región del Biobío provocando una baja importante en las capturas y rendimientos de pesca. Continuando con el enfoque precautorio, la recomendación para la CBA inicial 2017 fue de 273 mil toneladas, la cual fue incrementada luego de la actualización con información del crucero de verano 2017 a 310 mil t y luego con información del crucero de otoño 2017 a 336 mil t. Para el año 2018, la CBA inicial recomendada incorpora un 4 % de descarte y, por lo tanto, queda establecida en 296 mil t. Luego de la primera actualización de marzo se incrementa la cuota a 321 mil t. Para el año 2019 la CBA inicial recomendada incorpora un 2 % de descarte, estableciéndose en 274 mil t, la primera actualización de marzo se incrementa la cuota a 335 mil t y en agosto se incrementa a 337 mil t. Durante el 2019 se capturó un 95 % de la CBA recomendada en agosto 2019.

Para el año 2020 la CBA inicial recomendada incorpora un 2 % de descarte, estableciéndose en 321 mil t, considerando por primera vez una probabilidad de sobrepasar el objetivo de manejo del 40 % (lo general era utilizar un 30 % de probabilidad). En la primera y segunda actualización de marzo y julio los resultados de la evaluación de stock arrojaron menores estimados de captura debido a la disminución de los reclutamientos de los últimos años y de las biomasas registradas por los cruceros acústicos. Desde un punto de vista práctico y administrativo es imposible disminuir la cuota asignada, aunque se cuente con información actualizada y estimados de estatus y CBA más confliables, esto debido a que por lo general a mitad de año gran parte de la cuota ha sido consumida. Ante esta situación el CCT-PP ha recomendado mantener una situación de "statu quo" cada vez que se ha presentado una disminución de la CBA en el segundo y/o tercer hito del ciclo de manejo. No obstante, a junio del 2020 se ha capturado tan sólo 59 % de la CBA recomendada, lo general es que se captura sobre un 70 % el primer semestre del año. Esta reducción en los niveles de captura tienen al parecer tiene relación con la disminución de los niveles de biomasa de sardina común como a la condición de pandemia que ha disminuido el esfuerzo pesquero en la zona centro-sur de Chile.

Tabla 2. Capturas biológicamente aceptables recomendadas por el CCT-PP en las distintas etapas de establecimiento de CBA y estatus de sardina común y el Desembarque registrado.

Año	CBA inicial (miles de t.)	1era revisión CBA (miles de t.)	2da revisión CBA (miles de t.)	Desembarques (miles de t.)
2014	373	572	-	543
2015	323	356	478	430
2016	286	326	326	275
2017	273	310	336	335
2018	296	321	-	341
2019	274	335	337	318
2020	321	321	321	258
2021	201	251	-	-

3. METODOLOGÍA DE TRABAJO

3.1. Objetivo específico 1:

"Implementar procedimientos de evaluación de stock basados en protocolos científicos para la determinación del estatus de sardina común, con arreglo al nivel de información, conocimiento e incertidumbre correspondiente, conforme a los estándares actuales en ciencia pesquera."

3.1.1. Modelo Conceptual

La conceptualización del modelo biológico considera los siguientes componentes de la dinámica poblacional:

- Estructura geográfica: Se asume que la población de sardina común entre las Regiones de Valparaíso y Biobío constituye una unidad de stock. Se asume un stock homogéneo al interior de la unidad de pesquería, donde el conjunto de individuos está sujeto a la misma probabilidad de crecimiento y mortalidad, y donde la migración no es importante.
- Reproducción: Se asume que los individuos del stock tienen un evento reproductivo discreto, que se representa a comienzos de la estación reproductiva y que con propósitos prácticos ocurre en agosto.
- Reclutamiento: El reclutamiento ocurre a la forma de un pulso de abundancia en enero de cada año, 5 meses después del evento reproductivo.
- Tasa de mortalidad natural: La tasa de mortalidad natural se asume invariante y se considera M=1,0 por año para sardina común.
- Dinámica del crecimiento: El crecimiento intra-anual es recogido en dos matrices de pesos medios a la edad, las que corresponden respectivamente a las estimaciones a mitad de año (enero) luego de la asignación de la edad, y las estimaciones de pesos iniciales del año (julio).

El modelo de evaluación de stock de sardina común se basa en un análisis estadístico de la dinámica de estructuras de edad anual que incorpora información biológica y pesquera agregada en año biológico. La información que ingresa al modelo consiste en los desembarques totales obtenidos de los registros oficiales de SERNAPESCA los cuales son convertidos a temporada de pesca considerando la estacionalidad de la pesquería, los datos de composición de edad anual y pesos medios a la edad de la flota son proporcionados por el programa de monitoreo de las pesquerías de peces pelágicos, mientras que las evaluaciones hidroacústicas de verano y otoño proporcionan información de biomasa de reclutas en verano y biomasa vulnerable en otoño junto con sus respectivas composiciones de edad. En base a esta información el modelo estima las variables de estado representadas por la biomasa desovante (BD) y los niveles de mortalidad por pesca (F), que junto a los puntos biológicos de referencia (PBRs), permiten determinar el estatus y calcular la Captura Biológicamente Aceptable (CBA) (**Figura 11**).

En la implementación del procedimiento de evaluación de stock se utilizan protocolos científicos basados en la determinación de un sistema de niveles o "tiers" que permiten clasificar la información disponible de las especies y su pesquería, los cuales se han convertido en una herramienta de uso común en la asesoría orientada al manejo pesquero en la actualidad. Para estimar el RMS se utiliza la estrategia de niveles y de acuerdo con la clasificación del estándar de información se definen los PBR o "proxy" que serán usados para determinar el estatus del recurso. La definición de los procedimientos de cálculo de los PBR y del marco de referencia especie específicos se basan en el estudio "Revisión de los puntos Biológicos de referencia (Rendimiento Máximo Sostenible) en las pesquerías nacionales" (Paya et al. 2014), en cuyo primer taller, se desarrolló en conjunto con expertos internacionales, un sistema de tres niveles para derivar al RMS específico para las pesquerías en Chile (**Figura 12**). Además, para determinar el estatus de los recursos

Figura 11. Procedimiento de evaluación de stock de sardina común centro-sur.

selectos, se considera lo establecido por el Comité Científico Técnico de Pelágicos Pequeños (CCT-PP) sobre los requerimientos técnicos que define los estándares de análisis y evaluación para las pesquerías analizadas, conforme a los niveles de conocimiento, información y calidad de los datos disponibles para esos fines.

Figura 12. Sistema de niveles para la determinación de los PBRs de acuerdo a la cantidad, tipo y la calidad de la información disponible y métodos de evaluación de stock empleados en cada pesquería.

Al respecto, las anchovetas y sardinas son especies con una mortalidad natural (M) alta (viven durante un período máximo de 4-5 años), crecen rápido y maduran tempranamente. El reclutamiento está altamente influenciado por el ambiente. El modelo de evaluación de stock tiene una frecuencia temporal anual. Tanto el modelo y los datos son estructurados a la edad. Se considera una flota comercial en el modelo de evaluación y el patrón de selectividad es asumido constante a través de los años. El modelo de evaluación de stock no incluye una relación S-R, sino reclutamientos aleatorios. Estos antecedentes permiten clasificar a anchoveta y sardina común centro-sur en el Tier 1b.

3.1.2. Datos de entrada al modelo de evaluación de stock

A continuación, se detalla y fundamenta el conjunto de datos a emplear para la estimación de los índices de abundancia, así como su forma de utilización (ejemplo, indicadores absolutos o relativos). Además, se informa la incertidumbre asociada a los indicadores de abundancia propuestos para utilizar en la evaluación de sardina común.

Desembarques:

Corresponde a la extracción registrada en puerto, independiente de la zona de procedencia. Tiene valor en definir la importancia relativa de los distintos puertos de descarga, por lo tanto, es de mayor interés administrativo y/o comercial de la actividad. Su propósito es cuantificar los volúmenes, totales y por especie, que efectivamente se reciben en la descarga o desembarque. Las estadísticas oficiales de los desembarques son sistematizadas por el Servicio Nacional de Pesca, sobre una base mensual, por tipo de flota, puerto de desembarque y especie objetivo. Cabe señalar que en la pesquería pelágica el concepto de captura es igual al del desembarque más descarte. Para efecto de la evaluación se utiliza la totalidad del desembarque por especie que ocurre en la unidad de pesquería, comenzando la serie desde el año 1990 hasta 2020. La evaluación de stock es realizada en base al año biológico (de julio a junio de cada año), y la serie de desembarques anuales es convertida a temporada de pesca considerando la estacionalidad de la pesquería y la serie oficial de desembarques anuales antes descrita.

Sobre-reportes:

Existen algunos antecedentes que señalan que los desembarques del primer semestre de los años 1999 y 2000 resultan ser muy altos para lo que en ese entonces se supone era la población de anchoveta y sardina común. Arcos *et al.* (2004) postularon que las condiciones ambientales pre El Niño y El Niño produjeron una alteración en la distribución espacial de jurel, atrapando a los juveniles de la especie en la zona centro-sur, generando la distorsión de los desembarques en los pequeños pelágicos, impulsada por evadir multas y declarar menos jurel (Aranís, 2011). Basados en estos antecedentes, las series de desembarques anuales oficiales fueron corregidos por investigadores de IFOP. Se realizó un análisis preliminar utilizando la base de información de "Muestreo de Proporción de especies" de IFOP, para comparar los datos de composición de especies desembarcadas, la cual consiste en la selección de una muestra de la captura de un contenedor (caja o balde), llenado en distintos momentos del proceso de vaciado de la captura y luego se pesa y cuenta la fauna diferenciada por especie. Posteriormente, se determina la "intencionalidad" del viaje de pesca, basada en las proporciones de captura, tomando el criterio de especie objetivo a la que representa más del 50 % en peso de la muestra de proporción. En el caso de existir más de dos especies, se considera como objetivo la de mayor contribución, siendo clasificadas las restantes como fauna acompañante. Finalmente, se obtiene la composición original para jurel, sardina y anchoveta registrada de los desembarques, contrastado

con las proporciones re-estimadas obtenidas de los muestreos pelágicos que se practicaron en ese período (1998-2001).

Sub-reportes:

El año 2016 la Pontificia Universidad Católica de Chile desarrolló un proyecto orientado a la corrección de las capturas totales históricas de la pesquería de sardina común y anchoveta V-X Regiones (Proyecto CUI 2015-72-DAP-27) y recientemente IFOP realizó un estudio de remociones totales en la flota artesanal que opera con red de cerco entre la Región de Valparaíso y la Región de los Ríos orientando sus capturas a pequeños pelágicos (Vega *et al.* 2018). Para propósitos de la evaluación de stock, esta información será analizada en el transcurso de este proyecto, con el objeto definir la metodología a utilizar para la corrección de las capturas y de este modo disminuir la incertidumbre respecto al nivel real de captura de estos recursos.

Descarte:

La pesquería de sardina común y anchoveta centro-sur es efectuada mayoritariamente con cerco y destinada principalmente a la reducción, por lo tanto, tendrían bajas tasas de descarte. Sin embargo, la pesquería de carácter mixta de sardina común y anchoveta, junto con el dispar estado de explotación de cada recurso y con establecimiento de cuotas significativamente diferentes para cada uno, puede constituir un fuerte incentivo en los usuarios para descartar el recurso limitante y así poder completar la cuota de captura asignada al recurso principal.

Para abordar esta problemática, a partir del 2014 se desarrolló el Programa de Observadores Científicos que estudió el descarte y captura incidental de aves, mamíferos y tortugas marinas en las flotas cerqueras artesanales e industrial de peces pelágicos de sardina común (*Strangomera bentincki*), anchoveta (*Engraulis ringens*) y jurel (*Trachurus murphyi*) en la zona centro-sur, además de la zona norte de Chile (XV a II regiones). El levantamiento de información base para los análisis provino de la observación directa realizada a bordo por observadores científicos, en complemento con información entregada por los capitanes y patrones de pesca a través de una bitácora de autorreporte. En las bitácoras los capitanes registran la información de capturas totales por lance, los descartes, la pesca incidental y las causas del descarte.

A partir de esta información, Vega *et al.* (2017, 2018, 2019 y 2020) realizaron la estimación de captura total, estimación de descarte, proporción de captura retenida y descartada, determinación de causas de descarte, características biológicas de las especies objetivo y fauna acompañante, junto a información de captura de pesca incidental y mortalidad de aves, mamíferos y tortugas marinas en las flotas cerqueras artesanales e industriales en las diferentes zonas de operación. La estimación de capturas a bordo de embarcaciones cerqueras artesanales e industriales, se realizó mediante la estimación del patrón o capitán de pesca, a través de la lectura de equipos de detección, en conjunto con una estimación visual en el fin del virado de la operación de pesca, permitiendo la estimación del descarte, pues se realiza con la captura en el agua.

El Artículo 7°B ¹ de la actual Ley General de Pesca y Acuicultura (LGPA, N° 18.892) indica que no podrá realizarse el descarte de individuos de una especie objetivo, cualquiera sea su régimen de acceso, y su fauna acompañante, salvo que i) se haya fijado una cuota global anual de captura para la especie objetivo y, ii) en el proceso de establecimiento de la cuota global anual de captura se haya considerado el descarte.

En este sentido, Zúñiga & Quiroz (2017) expusieron algunas opciones para incorporar el descarte en el modelo de evaluación de stock, que potencialmente representan fuentes de mortalidad por pesca a la fecha

¹http://www.subpesca.cl/portal/616/articles-87217 documento.pdf

no documentada. Estos escenarios fueron revisados por el CCT-PP en la sesión de octubre 2017 (Acta 06/2017 ²) donde fue seleccionado el escenario 5 que considera un 4 % de descarte para el período 2000/01 - 2015/16 y un 2 % de descarte para los años siguientes años. En el actual informe (septiembre 2020) se actualiza con información del Programa de descarte 2019/20 (Vega *et al.* 2020) (**Tabla ??**).

Descarte de la Pesquería de anchoveta y sardina común de la zona centro-sur.

El programa del estudio del descarte para la pesquería de cerco de anchoveta y sardina común comenzó el año 2014, no obstante, para este estudio se cuenta con información semestral desde el año 2017 al 2019 sólo para la flota artesanal de la Región del Biobío y Los Ríos. La Región de Valparaíso sólo cuenta con información del primer semestre 2017 y La flota industrial no está operando sobre anchoveta y sardina, por lo tanto, no hay registros de descarte para esta flota (**Tabla 8 y 11, Figura 3 y 4**). Desde que terminó el programa de estudio del descarte (año 2017) se generó un conflicto en el sector artesanal negándose a seguir colaborando con el programa de monitoreo del descarte al prohibir del descarte y de la imputación conjunta entre sardina común y anchoveta de 1 es a 1. Desde el 2017, los pescadores no entregan las bitácoras de autoreporte y muchos no permiten que observadores científicos suban a sus embarcaciones. Esto generó una disminución significativa en la cobertura de muestreo de la flota artesanal, la cual ya es compleja de monitorear por su gran magnitud (más de tres mil viajes realizados durante el primer semestre sólo en la Región del Biobío, Figura 3e y 4e).

Adicionalmente, por temas de seguridad los observadores científicos no suben a embarcaciones menores a 15 metros de eslora. Estas embarcaciones pequeñas en general tienen una alta capacidad de acarreo, son poco fiscalizadas y monitoreadas, lo cual podría estar generando un sesgo en las estimaciones de captura total y descartada. Las bitácoras de autoreporte podrían ayudar a aumentar el porcentaje de cobertura de muestreo y si mejorara la colaboración del sector pesquero con el programa de monitoreo.

Las principales causas que incentivarían el descarte en la pesquería pelágica centro-sur tendrían relación con la aplicación de medidas administrativas. Al respecto, se identificaron las siguientes:

- 1. Exceder la capacidad de bodega: cuando esto sucede no se puede traspasar legalmente ni descartar (doble restricción). Una eventual solución para evitar dicho descarte podría ser traspasar el exceso de captura a otras embarcaciones. Subpesca señala que actualmente se está trabajando en una normativa que permita el traspaso de los excedentes del lance a otras embarcaciones. Esta normativa está pronto a salir y permitiría la reducción del descarte.
- 2. Captura de especies no autorizadas (sin permiso de pesca): para especies como lenguado de ojo chico, pejerrey de mar, merluza común y sierra. Subpesca señala que últimamente como parte de los planes de reducción del descarte en pesquerías de cerco, se han emitido resoluciones que abordan el permiso de desembarque de algunas especies que estaban prohibidas con una cuota o porcentaje de desembarque por viaje o mensual. Esta normativa también incentivaría la reducción del descarte.
- 3. Cierre de plantas: La instrucción de la planta cuando no recibirán el pescado es bien concreto, los pescadores tienen que botar la captura. Hay que buscar la forma de abordar que el cierre o saturación de plantas no genere descarte.
- 4. Exceder la cuota establecida:
- a) Zonas sin RAE generan carrera olímpica, lo que provoca exceder la cuota establecida y por lo tanto, causa descarte.

b) En pesquerías mixta, el descarte podría ser generado cuando uno de los recursos tiene una cuota baja (ejemplo, anchoveta). Sin embargo, en la zona centro-sur generaría la existencia de algún nivel de sobre-reporte de sardina u otra especie de fauna acompañante que es difícil de cuantificar.

Respecto a la estimación de capturas totales y descartada de anchoveta y sardina común, se observa un comportamiento estacional en la flota artesanal de la Región del Biobío y Los Ríos. Con mayores niveles de capturas registrados durante el primer semestre de cada año. Los mayores niveles de captura total y descartadas son realizados por la flota artesanal de la Región del Biobío, durante el primer semestre (**Tabla 8 y 11, Figuras 3b y 4b**). En la Región de Los Ríos el año 2019 ocurrieron dos eventos atípicos que generaron un aumento en la observación de captura descartada. El primero ocurrió cuando la planta de proceso de Corral dejó de recibir las capturas que llegaron a puerto por un par de días debido a problemas mecánicos. Las embarcaciones con pesca que no pudieron desembarcar debieron descartar la captura por la perdida de calidad del producto. El segundo evento especial fue una alta disponibilidad de recurso cerca del puerto de desembarque, lo que permitió incrementar el número de viajes muestreados, lo que sumado a lo anterior redundó en la observación de varios eventos de descarte (**Tabla 8 y 11, Figuras 3 y 4**).

Respecto al número de viajes totales, estos disminuyen durante el segundo semestre. El número de viajes totales realizados por la flota artesanal de la Región del Biobío es de 3799 durante el primer semestre y 1162 en el segundo semestre en promedio. La flota artesanal de la Región de Los Ríos realiza 583 viajes totales durante el primer semestre y 269 viajes totales durante el segundo semestre. No obstante el número de viajes muestreados por observadores científicos de la flota artesanal de la Región del Bíobio y Los Ríos está entre 15 a 30 por zona (**Tabla 8 y 11, Figura 3 y 4**). Por lo tanto, el porcentaje de cobertura de los viajes muestreados es bajo, es decir, menos del 5 % en la región del Biobío donde se registran los mayores niveles de capturas (**Tabla 8 y 11, Figura 3 y 4**).

Los modelos de evaluación de stock de anchoveta y sardina común de la zona centro-sur utilizan información en año biológico (Zúñiga et. al., 2021 a y b), por lo tanto, se requieren datos de descarte semestrales para la flota total para ser utilizados en la corrección del desembarque en año biológico (**Tabla 9 y 12**). Para los años en que no se cuente con información se utilizará un supuesto que fue acordado en la primera sesión del CCT-PP (Acta Nº1 2021, https://www.subpesca.cl/portal/616/articles-110238_documento.pdf) en 2 % para anchoveta y 4 % para sardina común. Estos porcentajes serán utilizados para corregir el desembarque cuando no se tenga información del descarte y para asumir un porcentaje de descarte proyectado para incorporar en la proyección de la CBA (**Tabla 10 y 13**). Los supuestos utilizados para anchoveta y sardina común se describen a continuación:

Supuestos para asesoría de septiembre 2021 (1er Hito CBA 2022):

- El supuesto 1 de descarte propuesto para la corrección del desembarque 2020/21 para flota total y zona total se obtiene del promedio de los años biológicos 2017/18 2019/20 (**Tabla 10**). -El supuesto 2 de descarte propuesto para la proyección de la CBA 2021/2022 y 2022/2023 para la flota total y zona total se obtiene del promedio de los años biológicos 2017/18 2019/20 (**Tabla 10**).
- b) Sardina común Centro-sur

El criterio experto utilizado en el caso de sardina común para definir el 4% se basa en el supuesto que el descarte disminuirá en los próximos años debido a cambios en algunas medidas de administración que se señalan a continuación: 1. Autorización para traspasar el exceso de captura a otras embarcaciones 2. Autorización para desembarcar especies no autorizadas 3. En las regiones que no tienen Reglamento de Observadores Científicos (ROC) (generar un mecanismo que permita evitar la carrera olimpica, que genera

descarte producto de pasarse en la cuota). 4. Disminución en la incertidumbre de estimación del descarte i. Mayor experiencia de observadores científicos de descarte ii. Mayor colaboración de usuarios con el proyecto de descarte iii. Implementación del Reglamento de Observadores Científicos

Supuestos para asesoría de marzo y julio 2021 (2do y 3er Hito CBA 2021):

■ El supuesto 1 de descarte propuesto para la corrección del desembarque 2020/21 para flota total y zona total se considera criterio experto del 4% (**Tabla 13**). -El supuesto 2 de descarte propuesto para la proyección de la CBA 2021/2022 para la flota total y zona total se considera criterio experto del 4% (**Tabla 13**).

Supuestos para asesoría de septiembre 2021 (1er Hito CBA 2022):

■ El supuesto 1 de descarte propuesto para la corrección del desembarque 2020/21 para flota total y zona total se considera criterio experto del 4 % (**Tabla 13**). -El supuesto 2 de descarte propuesto para la proyección de la CBA 2021/2022 y 2022/2023 para la flota total y zona total se considera criterio experto del 4 % (**Tabla 13**).

Seguimiento de la pesquería:

El monitoreo de la pesquería de sardina común entre las regiones de Valparaíso y Los Lagos es realizado por el Proyecto de Investigación Situación Pesquerías de Peces Pelágicos, que forma parte del Programa de Seguimiento de las Principales Pesquerías Nacionales y es encargado por la Subsecretaría de Pesca a IFOP. Este proyecto permite obtener indicadores como las estructuras de edad/talla y peso medio a la edad, entre otros:

Composición por edad/talla:

Denominada también como estructura de edad, corresponde a la expansión de la captura mediante la clave edad-talla determinada. Así esta composición corresponde a la matriz que representa la distribución de los ejemplares que están presentes en la captura, por grupo de edad y por estrato de tamaño, a través de un diseño de muestreo de otolitos estratificado por clase de tallas. A pesar de que se dispone de una composición por zona, trimestre y flota, para efecto de la evaluación se considera la estimación global para la unidad de pesquería y agregadas entre flotas, estando disponible una serie construida desde el año 1990 hasta junio 2020. Esta información es empleada en el proceso de evaluación de stock a objeto de evaluar los supuestos de la mortalidad por pesca diferenciada por grupos de edad, además de entregar señales de la fuerza de las clases anuales que han atravesado por la pesquería.

La estructura de tallas del desembarque o captura corresponde al número de ejemplares, por rango de talla, capturados por la flota. En términos generales, el diseño de muestreo asociado a la estructura de tallas del desembarque corresponde a un diseño en dos etapas, donde la primera son los viajes y la segunda los ejemplares. También y con menos frecuencia, se lleva a cabo un muestreo en tres etapas, es decir, un muestreo dentro de un viaje, lance y ejemplares. El indicador se obtiene por estratos de zona y mes inicialmente, a través de la ponderación de la estructura de talla con la captura diaria o temporal evaluada de las embarcaciones.

Pesos a la edad:

El crecimiento intra-anual de la sardina común es recogido en dos matrices de pesos medios a la edad, las que corresponden respectivamente a las estimaciones a mitad de año (enero) luego de la asignación de la edad, y las estimaciones de pesos iniciales del año (julio) calculadas en base a una media geométrica de la estimación actual y la del año anterior rezagado en un año de edad. El peso medio $(w_{(a,t)}^{med})$ es empleado para generar las estimaciones de desembarques y la biomasa del crucero de verano, mientras el peso inicial $(w_{(a,t)}^{ini})$ es utilizado en las estimaciones de biomasa total, desovante y biomasa del crucero de otoño. Dada la importancia de esta matriz de pesos medios para la definición del estatus de sardina común se realiza una revisión y corrección del método de estimación el cual es presentado como una mejora al caso base de la actual evaluación que consiste en los siguientes pasos.

Paso 1: Cálculo de pesos iniciales para el grupo de edad 0

$$w_{(0,t)}^{ini} = exp(ln(w_{(a,t)}^{med}) - 0.5*(ln(w_{(a+1,t+1)}^{med}) - ln(w_{(a,t)}^{med})))$$

Paso 2: Cálculo de pesos iniciales para grupos de edad 1 a 4

$$w_{(a,t)}^{ini} = vw_{(a-1,t-1)}^{med} * w_{(a,t)}^{med}$$

Cruceros de evaluación hidroacústica:

La historia de las evaluaciones hidroacústicas comenzó en la primavera de 1995, estableciéndose un programa sistemático desde 1999 realizándose cruceros de evaluación centrados en el periodo estival donde se maximiza la presencia de juveniles. A partir del 2003 se replicó la prospección en otoño para incrementar la certeza de la estimación haciendo un seguimiento de la evolución del proceso, estudiándose además, las asociaciones con las condiciones hidrográficas predominantes. De este modo, ha sido posible establecer una estacionalidad en la composición específica de las biomasas de estas dos especies, donde en verano la sardina domina respecto a la anchoveta, mientras que en el otoño se presenta un incremento relativo de la anchoveta y una reducción en la sardina junto a cambios en su distribución geográfica (Castillo *et al.* 2013).

En este contexto, el presente proyecto considera los resultados de dos cruceros de prospección, el primero a realizar en el verano (2000 - 2020), centrado en el máximo del reclutamiento (enero) y el segundo en otoño (2003-2020), a fin de hacer un seguimiento del evento de verano o capturar un eventual segundo pulso en el otoño (mayo), especialmente en anchoveta. La zona de evaluación hidroacústica corresponde a la delimitada entre los 33 °50'S y 41 °30'S en la cual se desarrolla la mayor parte de la pesquería. En el área de estudio se realizan transectas diurnas y replicas nocturnas y además, se realizan lances de pesca de media agua y de cerco. La estimación de la abundancia por estructura de talla se realiza en función de subzonas, las cuales son agrupadas de acuerdo a la similitud en las estructuras de tallas observadas. Para cada subzona, se agrupan los lances de pesca determinándose una estructura de tallas común. Se obtiene el aporte en talla y correspondiente peso, derivándose el TS y coeficiente de integración.

La estimación de la abundancia y biomasa de sardina común por subzona queda determinada por el área prospectada en cada subzona, el coeficiente de ecointegración a la talla y estimador de razón a la talla. Este último se estima por tres métodos: Hansen & Wolter, Bootstrap, y Variables Regionalizadas. Para transformar la abundancia en biomasa se utilizan los pesos medios a la talla obtenidos de la relación longitud-peso. Las biomasas estimadas a través de los cruceros hidroacústicos son empleadas en el proceso de evaluación de stock como índices de abundancia poblacional (proporcionales a la biomasa) de verano y otoño, respectivamente. La biomasa estimada por el modelo corresponde a aquella fracción de la población sujeta a la selectividad de los cruceros que son asumidos distintos entre verano y otoño, pero constantes en el tiempo.

La Composición de edad/talla del crucero, denominada también como estructura de edad, corresponde a la expansión de la abundancia mediante la clave edad-talla determinada. A partir de la abundancia en número estimada para cada talla en la evaluación hidroacústica, se expande la abundancia por grupos de edad, haciendo uso de la clave talla edad la cual obedece a la totalidad del área de estudio. La suma de la abundancia por subzona por intervalo de talla, permite construir la estimación total de abundancia para la zona de estudio. La estimación de esta clave talla-edad obedece a un diseño de muestreo estratificado por clase de tallas, dentro de las cuales es estimada una estructura de edad por talla. La abundancia en número por grupo de edad se construye a partir de la clave talla-edad anterior y la abundancia estimada por intervalo de talla. Se obtienen entonces matrices completas las que presentan explícitamente toda la estructura interna de la abundancia en número de individuos por clase de longitud y para cada grupo de edad.

A partir de mayo de 2003, se han realizado evaluaciones acústicas de ambos recursos a través de cruceros de otoño (PELACES). La estimación de abundancia y biomasa por grupo de talla es similar al procedimiento del crucero de verano. Sin embargo, algunos años de las evaluaciones acústicas de otoño, no son muy consistentes en términos del área cubierta y periodo del año en que se realizaban (mayo de 2003, marzo-abril, mayo-junio de 2005 y mayo-junio de 2015), por lo tanto, los cambios en abundancia de estos años podrían estar influenciadas por la disponibilidad del recurso más que por cambios reales en abundancia. En efecto, la época del año en que se realiza la prospección difiere entre años, con desfase de un mes. Asimismo, las áreas prospectadas son diferentes al crucero de verano, y el arte de pesca empleado en los lances también difiere, siendo en este periodo solo captura de cerco. Finalmente, no se dispone de lectura de edades para el periodo 2003 - 2006. De este modo, se realizó la eliminación de los datos de biomasa acústicas del crucero de otoño correspondientes a los años 2003, 2005 y 2015, además de la estructura de edad del año 2015 por las razones antes expuestas para el modelo base actual.

Parámetros de historia de vida:

Para la implementación del procedimiento de evaluación se recoge el conocimiento de estudios científicos y técnicos que reportan información asociada a los parámetros del ciclo vital de la especie, como la mortalidad natural, el crecimiento y madurez, entre otros. De esta forma, el proyecto tiene un rol de integración del conocimiento y utiliza los productos de todos los programas y proyectos de investigación para modelar la dinámica del recurso.

3.1.3. Evaluación de stock

Descripción del modelo base:

El modelo de evaluación de stock de sardina común se basa en el análisis estadístico de la dinámica de estructuras de edad anual y pesos medios a la edad estimados del muestreo de tallas de los desembarques (período 1990 - junio 2020) y de los cruceros acústicos de verano (RECLAS, desde 2001 - 2020) y otoño (PELACES, período desde 2007 hasta 2020), de los índices de biomasa de los cruceros acústicos (biomasa de reclutas en verano, período desde 2000 hasta 2020 y biomasa vulnerable en otoño, desde 2003 al 2020 y los desembarques totales (período 1990 - junio 2020), estos últimos convertidos a temporada de pesca considerando la estacionalidad de la pesquería. Las fuentes de información utilizados en la evaluación de sardina común se resumen en la **Tabla 3**. Adicionalmente, en la **Sección 3.3.1**. de este informe se detallan los datos y supuestos utilizados en las distintas etapas de estimación de la CBA 2021.

La población de sardina común centro-sur constituye una unidad de stock en la cual las variaciones se

explican por capturas, reclutamientos, mortalidad natural y por pesca, la información es agregada en año biológico de manera que los cruceros de verano (enero) representan la situación de la población a mitad del año y los de otoño, a la biomasa poco antes del término del período anual (mayo). Por otra parte, el peso a mitad del año biológico (peso medio) es empleado para generar las estimaciones tanto del crucero de verano como de los desembarques, mientras que el peso calculado a inicios del año biológico (inicios de julio) representaría el peso de la biomasa desovante que ocurre en agosto y los cruceros de otoño que ocurren en mayo (**Tabla 4**). En la actualidad el método ha sido empleado bajo un enfoque en edades agrupado en año biológico y que incorpora los siguientes elementos:

- Modelo de dinámica poblacional estructurada por edad (Tabla 5),
- Modelos de las observaciones y penalizaciones a priori que permiten relacionar el modelo de dinámica con las observaciones (Tabla 6),
- Identificación de la estructura del error a través de funciones de log-verosimilitud negativas (Tabla 7) y
- Proceso de estimación de los parámetros desconocidos del modelo de dinámica a través de un algoritmo que minimiza la función objetivo total, contrastando las observaciones con las estimaciones deducidas del modelo de dinámica (Tabla 8).

Tabla 3. Resumen de los datos e información de entrada al modelo de evaluación de stock de sardina común.

arques,
rdina común
el
Pesquerías
os stocks
ntre
rdina común de la
oyecto Investigación
elágicos
r

Tabla 4. Resumen de los principales supuestos del modelo de evaluación anual con información a la edad (MAE) asociados a los datos observados.

Datos observados	Símbolo	Supuestos
Desembarque total anual	Y_t	Representa a la captura total del período anual julio-junio
		(año biológico). Se considera continua al interior del año biológico.
		Desviación estándar supuesto como parte del error de observación
		$\sigma_f = 0,01$
Biomasa total del crucero de		
verano (RECLAS)	B_t^{cv}	Representa a la biomasa que ocurre a mitad del año biológico,
		$(dt^{cv}=0,5~{ m del}~{ m año}).{ m Desviación}~{ m est\'andar}~{ m supuesto}$
		como parte del error de observación $\sigma_{cv}=0,3.$
Biomasa total del crucero de		Representa a la biomasa poco antes del término del período anual, (mayo),
otoño (PELACES)	B_t^{co}	$(dt^{co}=0,83~{ m del}~{ m año}).$ Desviación estándar supuesto
		como parte del error de observación $\sigma_{co} = 0, 3$.
Proporción de la abundancia		
a la edad de la flota	$p_{(a,t)}^f$	Representa la distribución de los ejemplares que están presentes
		en la captura total por grupo de edad. Tamaño de muestra efectivo
		supuesto como parte del error de observación $n^f=8$.
Proporción de la abundancia		
a la edad del Crucero verano	$p_{(a,t)}^{cv}$	Representa la distribución de los ejemplares que están presentes
		en la captura del crucero de verano (enero) por grupo de edad.
		Tamaño de muestra efectivo supuesto como parte del error de
		observación $n^{cv}=9$.
Proporción de la abundancia		
a la edad del Crucero otoño	$p_{(a,t)}^{co}$	Representa la distribución de los ejemplares que están presentes
		en la captura del crucero de otoño (mayo) por grupo de edad.
		Tamaño de muestra efectivo supuesto como parte del error de
		observación $n^{co} = 7, 5$.
Peso medio anual	$w_{(a,t)}^{med}$	Es el peso medio empleado para generar estimaciones de biomasa
		acústica de verano y desembarques.
Peso medio a inicios del año	$w_{(a,t)}^{ini}$	Representa al Peso a inicios del año biológico (julio)
		Empleado para generar estimaciones de biomasa total, biomasa
		acústica de otoño y biomasa desovante.

Tabla 5. Dinámica básica del Modelo Anual con información en Edades (MAE).

Variable	Ecuación	Descripción		
Reclutamiento anual	$N_{(a=0,t)} = R_0 e^{(\varepsilon_t + 0.5\sigma_R^2)}$	El reclutamiento se asume a inicios de enero		
		de cada año.		
Población inicial	$N_{(a=0,t=1)} = R_0 e^{(-aM)}$	$\varepsilon N(0, \sigma_R^2)$		
	$N_{(a>0,t=1)} = N_{(0,a>0)}e^{(\varepsilon_{(a>0)}+0.5\sigma_R^2)}$	$lnR_0 \ U[a,b]$		
Abundancia	$N_{(a,t)} = N_{(a-1,t-1)}$	a es la edad y		
Sobrevivencia	$S_{(a-1,t-1)} S_{(a,t)} = exp(-Z_{(a,t)})$	$t ext{ es el año } a = [0, 1, 2, 3, 4]$		
Mortalidad total	$Z_{(a,t)} = M + F_t s_a^f$	F_t es el efecto anual de la mortalidad		
		por pesca. F_t tiene variaciones estocásticas entre		
		años y edades, pero estas quedan		
		representadas por el patrón de selectividad		
		edad-específica s_a^f invariable entre años y la		
		mortalidad por pesca anual F_t La mortalidad natural		
		es constante entre años y edades.		
Selectividad de la	$s_a^f = (1 + exp[-ln19\frac{(a - A_{(50)}^f)}{\Delta f}])^{-1}$	$A_{(50)}^f$ edad al 50 % de la flota		
flota		Δ^f rango entre la edad al 95 % y 50 %		
Biomasa total	$B_t = \sum_a N_{(a,t)} w_{(a,t)}^{ini}$	$w_{(a,t)}^{ini}$ es el peso medio a la edad (a)		
		y a inicios del año (t).		
Biomasa desovante	$BD_t = \sum_a N_{(a,t)} e^{(-dtZ_{(a,t)})} w_{(a,t)}^{ini} O_a$	dt es la fracción del año en la cual ocurre el		
		desove ($dt = 0, 16$).		
		$w_{(a,t)}^{ini}$ es el peso medio a la edad a		
		y a inicios del año $t. \ O_a$ es la ojiva de madurez sexual a la edad		

Tabla 6. Modelo de las observaciones del Modelo Anual con información en Edades (MAE).

Variable	Ecuación	Descripción
Captura estimada en número		
a la edad	$\hat{C}_{a,t} = \frac{F_{a,t}}{Z_{a,t}} N_{a,t} (1 - S_{a,t})$	$\hat{C}_{a,t}$ captura en número estimada
		a la edad a y en el año t
Desembarques en peso	$\hat{Y}_t = \sum_a \hat{C}_{a,t} w_{a,t}^{med}$	$w_{a,t}^{med}$ es el peso medio a la edad a y año t.
Proporción de la captura		
a la edad de la flota	$p_{a,t}^{f} = \frac{\hat{C}_{a,t}}{\sum_{a} C_{a,t}}$ $\hat{N}_{a,t}^{cv} = N_{a,t} e^{(-dt^{cv} Z_{a,t})} s_{a}^{cv}$	$\hat{C}_{a,t}$ Captura en número estimada a la edad.
Abundancia a la edad	$\hat{N}_{a,t}^{cv} = N_{a,t} e^{(-dt^{cv} Z_{a,t})} s_a^{cv}$	dt^{cv} es la fracción del año en la
disponible al crucero de		cual se realiza el crucero de
verano		verano, ($dt^{cv}=0,5$, enero).
Selectividad del crucero		
de verano	$s_a^{cv} = 1 + exp[-ln19((a - A_{50\%}^{cv})/dt^{cv}]^{(-1)}$	$A^{cv}_{50\%}$ edad al 50 %
		Δ^{cv} rango entre la edad al 95 % y 50 %
Biomasa acústica total		
del verano	$\hat{B}_t^{cv} = q^{cv} \sum_{a} \hat{N}_{a,t}^{cv} w_{a,t}^{med}$	$w_{a,t}^{med}$ es el peso medio a la edad a y año t.
		q^{cv} es la capturabilidad/
		disponibilidad del crucero de verano.
Proporción de la abundancia		
la edad del crucero de	$\hat{p}_{a,t}^{cv} = \frac{\hat{N}_{a,t}^{cv}}{\sum \hat{N}_{a,t}^{cv}}$	$\hat{N}_{a,t}^{cv}$ Abundancia estimada a la
verano	a	edad del crucero de verano
Abundancia a la edad		
disponible al crucero de	$N_{a,t}^{co} = N_{a,t}e^{(-dt^{co}Z_{a,t})}s_a^{co}$	dt^{co} es la fracción del año en la
otoño		cual se realiza el crucero de
		otoño ($dt^{co}=0,83$, mayo)
Selectividad del crucero	$s_a^{co} = 1 + exp[-ln19(a - A_{(50\%)}^{co})/dt^{co}]^{(-1)}$	$A^{co}_{50\%}$ edad al 50 %
de otoño	((((((((((((((((((((dt^{co} rango entre la edad al 95 % y 50 %
Biomasa acústica total	$\hat{B}_t^{co} = q^{co} \sum_{a} \hat{N}_{a,t}^{co} w_{a,t}^{ini}$	$w_{a,t}^{ini}$ es el peso medio a la edad (a)
del otoño		y a inicios del año biológico (t).
		q^{co} es la capturabilidad/ disponibilidad del
		crucero de otoño.
Proporción de la abundancia		
a la edad del crucero	$\hat{p}_{a,t}^{co} = \frac{N_{a,t}^{co}}{\sum_{i} N_{a,t}^{co}}$	$\hat{N}_{a,t}^{co}$ Abundancia estimada a la
de otoño		edad del crucero de otoño.

Tabla 7. Modelo de los errores del Modelo Anual con información en Edades (MAE).

Variable	Error	Ecuación	Descripción
Índice de abundancia			
crucero de verano	Lognormal	$-l(I^{cv}) = \frac{1}{2\sigma_{cv}^2} \sum_{t} (ln\hat{B}_t^{cv} - lnB_t^{cv})^2 + cte$	σ_{cv} es la desviación estándar del
		· ev	índice I^{cv} en escala logarítmica.
Índice de abundancia			
crucero de otoño	Lognormal	$-l(I^{co}) = \frac{1}{2\sigma_{co}^2} \sum_{t} (ln\hat{B}_t^{co} - lnB_t^{co})^2 + cte$	σ_{co} es la desviación estándar del
			índice I^{co} en escala logarítmica.
Desembarque	Lognormal	$-l(Y) = \frac{1}{2\sigma_f^2} \sum_t (ln\hat{Y}_t - lnY_t)^2 + cte$	σ_f es la desviación estándar del
		f	indice Y en escala logarítmica.
Proporción de la			9
captura a la edad de	Multinomial	$-l(p^f) = n^f p_{a,t}^f ln \hat{p}_{a,t}^f$	$p_{a,t}^f$ corresponde a la captura a la
la flota		, , , , , , , , , , , , , , , , , , , ,	edad de la flota. n^f es el tamaño de
			muestra efectivo.
Proporción de la			
abundancia a la	Multinomial	$-l(p^{cv}) = n^{cv} p_{a,t}^{cv} ln \hat{p}_{a,t}^{cv}$	$p_{a,t}^{cv}$ corresponde a la captura a la
edad del crucero de			edad del crucero de verano. n^{cv} es el
verano			tamaño de muestra efectivo.
Proporción de la			
abundancia a la	Multinomial	$-l(p^{co}) = n^{co} p_{a,t}^{co} ln \hat{p}_{a,t}^{co}$	$p_{a,t}^{co}$ corresponde a la captura a la
edad del crucero de			edad del crucero de otoño. n^{co} es el
otoño			tamaño de muestra efectivo.
Prior			
Desvíos del			
reclutamiento	Lognormal	$-l(R) = \frac{1}{2\sigma_R^2} \sum_t \varepsilon_t^2 + cte$	$arepsilon_t$ desvíos del reclutamiento
			σ_R es la desviación estándar de los
			reclutamientos
Capturabilidad de			
los cruceros	Lognormal	$-(q^{cv}) = \frac{1}{2\sigma_{q^{cv}}^2} ln(q^{cv})^2 + cte$	σ_q^{cv} es la desviación estándar de la
		$-(q^{co}) = \frac{1}{2\sigma_{q^{co}}^2} ln(q^{co})^2 + cte$	capturabilidad del crucero de verano.
		q	σ_q^{co} es la desviación estándar de la
			capturabilidad del crucero de otoño.
Mortalidad por pesca	Lognormal	$-l(F_{1991,1992}) = 1000 * ((logF_{1991} - \bar{F})^2 + (logF_{1992} - \bar{F})^2)$	En esos años hubo estimaciones
			muy bajas de reclutamiento y del
			stock desovante asociados con
			estos altos niveles de F1991,1992,
			producto de que para esos años
			existe poca información a parte de la
			estructura de edad para la captura.
			Por lo tanto, para corregir estos niveles
			de F se le agrega una penalización a la
			función objetivo
Función objetivo		$-l(I^{cv}) - l(I^{co}) - l(Y) - l(p^f) - l(p^{cv}) - l(p^{co}) - l(R) - l(q^c)$	$l(q^{co}) - l(q^{co}) - l(F_{1991,1992})$

Tabla 8. Parámetros y prioris empleadas en el Modelo Anual con información en Edades (MAE).

Parámetro	N de parámetros	Prior	Descripción
Mortalidad natural	1	M=1,0 (fijo)	La mortalidad natural se asume constante entre años y edades.
Mortalidad por pesca	31	$lnF \sim U[-6;1,6]$	F_t representa el efecto anual de la mortalidad por pesca.
Selectividad de la flota	2	$lnA_{50\%}^f \sim U[-1; 2]$ $ln\Delta^f \sim U[-4; 0, 6]$	Se asume el patrón de
Selectividad de los cruceros de verano	2	$lnA_{50\%}^{cv} \sim U[-1; 2]$ $ln\Delta^{cv} \sim U[-4; 0, 6]$	selectividad $S_a^{f,cv,co}$ edad específica invariable
Selectividad de los cruceros de otoño	2	$lnA_{50\%}^{co} \sim U[-1; 2]$ $ln\Delta^{co} \sim U[-4; 0, 6]$	entre años
Reclutamiento promedio	1	$lnR_0 \sim U[5; 20]$	R_0 corresponde al reclutamiento medio, el cual es considerado un parámetro desconocido a estimar, el que es multiplicado por una perturbación anual ε_t Adicionalmente, en la sección
Desvíos de reclutamiento $arepsilon_t$	31	$ln\varepsilon_t \sim N[0; \sigma_R^2]$	parámetros del código en ADMB se consideran initboundedvector
Estructura etaria inicial ε_t	5	$ln\varepsilon_a \sim N[0; \sigma_R^2]$	logdesvNo(1,nedades-1,10,10,optdevNo) initboundeddevvector logdesvRt(1,nanos,-10,10,optdevR)
Capturabilidad de los cruceros Desviación estándar de los desvíos de reclutamientos, estructura etaria inicial y capturabilidad de cruceros	2	$lnq^{cv} \sim N[0;\sigma_{q^{cv}}^2]$ (verano) $lnq^{co} \sim N[0;\sigma_{q^{co}}^2]$ (otoño) $\sigma_R = 0,6$ $\sigma_{q^{cv}} = 100.2(verano)$ $\sigma_{q^{co}} = 100.6(otoño)$	La capturabilidad del crucero de otoño y verano es un parámetro que puede ser estimado libremente por el modelo

Tamaños de muestra

De manera similar a los coeficientes de variación empleados para ponderar los índices de abundancia y desembarques entre sus estimadores de verosimilitud, el tamaño de muestra corresponde a una expresión proporcional a la incertidumbre que tienen las composiciones de tallas/edades de las capturas empleadas en la evaluación de stock.

De acuerdo a Francis (2011), los datos de composición de edad corresponderían a medidas indirectas de la escala poblacional ya que requiere conocer los mecanismos de selección de la pesquería y la estructura por edades de la población. Por lo tanto, son mucho menos informativos acerca del tamaño de la población y requiere supuestos fuertes para obtener esa información. A pesar de lo anterior, los datos de composición a la edad a menudo son más informativos que los índices de abundancia. Por lo tanto, es importante asegurarnos que la dinámica de la población esté influenciada por los datos más confiables. Un factor relevante es el ponderador asociado con las composiciones de edades de la flota y los cruceros acústicos de

verano y otoño. Estos ponderadores son asociados con el tamaño de muestra efectivo dado que la función de probabilidad empleada es multinomial.

En la asesoría realizada en marzo de 2017 (Zúñiga, 2017), se estimó un tamaño de muestra considerando las recomendaciones emanadas del workshop sobre ponderadores de las fuentes de información en evaluación de stock, realizados por Center for the Advancement of Population Assessment Methodology (CAPAM, 2015: https://www.nwfsc.noaa.Gov/news/features/data_source_workshop). Se compararon dos metodologías para estimar el tamaño de muestra para la flota y cruceros de verano y otoño, el método T.A 1.8, indicada por Francis (2011) y el proceso iterativo recomendado por McAllister & Ianelli (1997) considerándose el promedio armónico (**Tabla 9**).

Ambos procesos inician con un valor arbitrario de tamaños de muestra, comenzando con el valor empleado por defecto de la asesoría de septiembre 2016 (Canales & Zúñiga, 2016), nm=38 para la flota y nm=10 para el crucero de verano y nm=7,8 para el crucero de otoño, para luego de repetidos ajustes del modelo, llegar a valores estables que son los propuestos en esta evaluación de stock. A menudo es deseable verificar estas estimaciones cuando en el modelo se van integrando nuevas composiciones de edades/tallas o como estos valores pueden variar dependiendo de cambios en los supuestos del modelo.

Fuente	Estimador
McAllister & Ianelli (1997), donde p_a es la proporción de la captura a la edad	$\frac{\sum_{a} \hat{p}_{(y,a)} (1 - \hat{p}_{(y,a)})}{\sum_{a} (p_{(y,a)} - \hat{p}_{(y,a)})^{2}}$
Francis (2011), donde n1 es el tamaño de muestra	
inicial, O y E corresponden a la edad (a) promedio	$ n_1 var \left[\frac{(\bar{O}_y - \bar{E}_y)}{\sum_{\substack{a}} \frac{a^2 \hat{p}_{(y,a)} - \bar{E}_y^2}{n_1}} \right]^{-1} $
observada v estimada (TA 1.8)	

Tabla 9. Estimadores de tamaños de muestra empleados en el análisis.

Coeficiente de variación

Son empleados en los distintos índices de abundancia y capturas, miden el nivel de desviación que el analista supone tienen los datos respecto del valor central verdadero como parte del error de observación. El coeficiente de variación tiene relevancia en las estimaciones pues es inversamente proporcional con el peso que tiene una determinada fuente de datos en la verosimilitud total.

Comúnmente se asignan bajos niveles de incertidumbre a los desembarques y mayores a los cruceros, esto por el hecho que los desembarques son mediciones directamente asociadas con la mortalidad por pesca, mientras las estimaciones de biomasa de cruceros están sujetos a variados criterios y consideraciones en sus estimaciones de una población "no observable", lo que en definitiva insta a suponer que ellos tienen mayor incertidumbre y/o son tratados como medidas relativas de abundancia.

Al respecto, el peso relativo designado a la estimación de captura total al ajustar el modelo de evaluación fue debatido durante el taller de revisión por pares de sardina común, donde se consideró que la limitación sobre los F efectivamente utilizada fue débil (CV=10%). Se sugiere un CV =1% asumiendo que las capturas son conocidas exactamente (ver **Tabla 4**). Esto se justifica debido a que existe poca o ninguna información en los datos y estructura del modelo para estimar la captura total, el modelo se ajusta asumiendo que las capturas se conocen exactamente o con altos niveles de precisión. Bajo este supuesto, las estimaciones de

abundancia "N" del modelo y los parámetros de separabilidad permitirían determinar F anual. Sin embargo, para la ecuación de Baranov, no existe una solución analítica para los valores de F, por lo tanto, se deben tratar como parámetros estimables, pero altamente limitados (CV bajos) de tal manera que las capturas totales se puedan estimar de manera muy precisa.

En relación a las biomasas estimadas en los cruceros acústicos y cruceros de huevos, Francis (2011) propone la idea de aproximarse de manera gradual a una medida del error, comenzando con un suavizador de los datos, es decir, un análisis exploratorio que considere aquel coeficiente de variación teórico que resulta de aplicar el "mejor" modelo de tendencia central a los datos aislados. Este primer procedimiento no depende del modelo de evaluación de stock sino de la variabilidad de los datos. Este procedimiento fue aplicado a las biomasas estimadas en los cruceros acústicos y cruceros de huevos. Se ajustó polinomios locales propuesto por Cleveland (1992), mediante la función "loess" del paquete "modreg" en R Project. La estimación de la tendencia central de los cruceros generó valores de CV=0,73 para el crucero de verano y un CV=0,53 para el crucero de otoño.

En la revisión por pares de sardina se cuestionó este análisis, señalando que el supuesto en que se basa este enfoque es razonable para especies de larga vida donde el índice de abundancia está integrado a través de un número de cohortes. El alto CV estimado para el crucero de verano es producto principalmente de que las abundancias medidas son dominadas por los reclutamientos más recientes que son altamente variables. Además, considerar CVs tan altos evitaría su uso como índice de abundancia en la evaluación. Los CVs (estadísticos) estimados para los cruceros acústicos de verano y otoño en base a los estimados de varianza de biomasa por talla y zona reportados en los informes acústicos se encuentran en el orden de 15-20 % (**Tabla 10**). Sin embargo, el modelo base actual asume un CV = 0,3 para los cruceros acústicos de verano y otoño (ver **Tabla 4**).

Tabla 10. Estimaciones de las biomasas acústicas de verano y otoño y los CVs estadísticos estimados en cada uno de ellos.

Años	C. Verano (t)	CV%	C. Otoño (t)	CV%
2000	252.601	-	0	-
2001	567.819	16	0	-
2002	844.713	16	0	-
2003	477.998	16	173.520	-
2004	351.125	12	0	-
2005	339.783	15	1.456.880	-
2006	2.178.397	8	552.880	-
2007	2.134.042	14	188.675	13
2008	4.813.140	14	0	-
2009	1.555.620	20	991.730	11
2010	2.623.565	7	2.467.720	17
2011	3.216.857	11	1.416.034	29
2012	3.843.000	15	1.217.170	12
2013	1.133.480	10	2.296.490	20
2014	3.079.434	6	1.805.815	12
2015	1.972.148	21	2.440.448	25
2016	2.032.684	5	1.482.799	10
2017	2.025.002	15	1.565.315	17
		34		

Años	C. Verano (t)	CV%	C. Otoño (t)	CV%
2018	2.424.330	13	1.577.507	7
2019	2.275.425	5	1.421.176	8
2020	1.050.175	7	867.257	4
2021	2.363.380	4	1.100.020	7

Penalizaciones:

Con el objeto de obtener valores biológicamente aceptables, a menudo se emplean penalizaciones a ciertas estimaciones o parámetros. En el modelo de evaluación empleado hasta febrero de 2014, las estimaciones de las tasas de mortalidad por pesca en 1991 y 1992 son muy altas. El revisor de RPP señala que dichas estimaciones altas parecen ser incoherentes con la información disponible de la pesquería. En esos años hubo estimaciones muy bajas de reclutamiento y del stock desovante asociados con estos altos niveles de F, producto de que para esos años existe poca información aparte de la estructura de edad para la captura. Por lo tanto, para corregir estos niveles de F se le agrega una penalización a la función objetivo.

Selectividad:

El patrón de explotación de la flota es asintótico y se considera constante entre años tanto a nivel de parámetros de posición (edad al 50 % de explotación) como de dispersión (pendiente de la curvatura). Las justificaciones para este escenario se basan en la poca variabilidad que presentan las composiciones de edades de las capturas y en menor grado en los cruceros, como también a que en esta pesquería no se conocen procesos de escape significativos de individuos longevos fuera de la zona donde opera la pesquería. En el caso de los cruceros de verano y otoño, el patrón de explotación se supone igualmente logístico, pero se estiman independientemente de la flota.

Capturabilidad de los cruceros:

Se asume que tanto el crucero de verano como otoño representan una fracción de la biomasa disponible, lo que en otras palabras se traduce en que el índice de proporcionalidad o capturabilidad es estimado en el modelo sujeto a una distribución a priori, establecida sólo respecto del crucero de verano siguiendo una distribución lognormal con media 0 y error estándar 0,2. Lo anterior se justifica dado que el reclutamiento de la sardina común es menos extendido en el tiempo respecto de la anchoveta y se puede medir en un solo crucero, de manera que el crucero de verano reflejaría de mejor forma los niveles de la población dejando el crucero de otoño como índice relativo de los cambios en la fracción disponible para la flota (Castillo *com. pers.*).

Al respecto, en el taller de Revisión Por Pares (RPP) se discutió sobre los problemas asociados con la corrección de orilla, la composición de especies, frecuencia de tallas, cardúmenes no detectados y corrección de superficie y costa, etc, de los cruceros acústicos. Existe la posibilidad de dar lugar a estimaciones considerablemente menores o mayores que la abundancia real del recurso. En base a esto, Polacheck (2014), señala que no existe una razón a priori para asumir que "q" en un crucero debería ser más cercano a 1 que en el otro, ni que "q" para cualquiera de los cruceros es cercano a 1. Se sugiere asumir un prior no informativo como elección más apropiada para un caso base. De esta forma, en el modelo actual, la capturabilidad de los cruceros acústicos se asume con una distribución a priori lognormal con media 0 y error estándar 100, es decir, se remueve el efecto de esta distribución a priori.

Diagnóstico del modelo de evaluación de stock

Ajuste del modelo a los datos:

Corresponde a la presentación gráfica del ajuste del modelo a los datos observados y bondad de ajuste mediante diagrama QQ que permitirá evaluar si los valores estimados se apartan significativamente del supuesto inicial, esto es, que las observaciones con una muestra aleatoria de una distribución log-normal con media y varianza conocida. Si los datos se aproximan significativamente a la relación lineal implica entonces que el supuesto es adecuado para los datos analizados.

Análisis de residuos:

Se entregará los residuales frente a los valores predichos para ver si la varianza residual es constante, los residuales del modelo frente a las variables explicativas (año) para determinar si la varianza es homogénea entre los años, un histograma de los residuos para ver si hay normalidad y un diagrama applot de los residuos que indica linealidad.

Comparación con evaluaciones anteriores:

Se incluirá la comparación de resultados con versiones anteriores u otros modelos para evaluar la consistencia de la evaluación presente (análisis retrospectivo empírico). Sobre la base de estos análisis, se identificarán las oportunidades de mejoras en la implementación del procedimiento de evaluación, los vacíos de conocimiento y de información, entre otros.

Análisis retrospectivo:

El análisis retrospectivo es otro diagnóstico que implica correr el modelo eliminando años de datos sucesivos consecutivamente para estimar el sesgo del modelo (Cadrin & Vaughn 1997, Cadigan & Farrell 2005). Se realizó un análisis retrospectivo para probar la consistencia de cada escenario de sensibilidad antes señalado. Este análisis permitirá evaluar la robustez de cada escenario frente a nuevas piezas de información lo que también permitirá validar el escenario "caso base". Este análisis consiste en una validación cruzada de naturaleza sistemática en la que es removido secuencialmente el último año de información y se evalúa su impacto en las tendencias poblacionales. Este análisis permite determinar si hubo un patrón consistente de sobreestimación o subestimación en años sucesivos de la biomasa desovante y mortalidad por pesca utilizados en la determinación del estatus de sardina común.

Estadístico Rho: El estadístico rho de Mohn (1999) se ha utilizado comúnmente para medir el patrón retrospectivo. Corresponde a la suma de la diferencia relativa entre los valores de la serie de tiempo reducida estimada por el modelo y los mismos valores estimados de la serie de tiempo completa.

$$\rho = \sum_{y=1}^{npeels} \frac{X_{(Y-y,tip)} - X_{(Y-y,ref)}}{X_{(Y-y,ref)}}$$

Donde X corresponde a alguna variable de la evaluación de stock, tales como BD o F, "y" corresponde a los años, "npeels" es el número de años que son disminuidos de manera sucesiva, "Y" es el último año de la serie de tiempo completa, "tip" es la estimación terminal de la serie de tiempo reducida y "ref" es la serie de tiempo completa.

Este cálculo será cero cuando la serie de tiempo reducida se encuentre exactamente con la serie de tiempo completa, o cuando las diferencias entre la serie disminuida y la serie completa están en equilibrio tanto positivo como negativo. El rho de Mohn será grande, ya sea positivo o negativo, cuando hay un patrón consistente de cambio en la serie de tiempo reducida respecto a la serie completa.

Perfiles de verosimilitud:

Algunos autores señalan que uno de los mejores diagnósticos para evaluar la influencia de los datos en la dinámica estimada por la estructura del modelo es el perfil de verosimilitud de los componentes individuales de datos a través de un parámetro (por ejemplo, el reclutamiento promedio, que escala el reclutamiento) (Maunder 1998, Lee et al. 2014, Maunder & Starr 2003, Francis 2011, Francis 2014, Ichinokawaa et al. 2014). El uso de perfiles de verosimilitud respecto del parámetro que define la escala de la población es una técnica de reciente uso, y permite realizar un diagnóstico sobre la contribución marginal de cada fuente de datos en la evaluación de la población, así como identificar probables problemas de mala especificación del modelo (Lee et al. 2014, Wang et al. 2014).

En este trabajo se realiza un análisis de los perfiles de verosimilitud del parámetro que define la escala de la población del modelo MAE para la evaluación de sardina común, con el objeto de evaluar la influencia de las distintas piezas de información y desempeño del modelo. Se implementa una rutina computacional con el objeto de evaluar tanto el desempeño estadístico del modelo MAE como del nivel de información contenida en los datos respecto del parámetro que define la escala poblacional correspondiente al reclutamiento promedio de largo plazo (R₀), el que en el modelo es desconocido y estimado en el proceso de evaluación de stock.

Si las fuentes de datos son consistentes entre ellas, los respectivos perfiles debieran estar próximo entre sí, como también esperar que la diferencia de la log verosimilitud respecto del mínimo se eleve por sobre el criterio estadístico χ^2 =1,92. Valores por sobre este criterio indican que dicha fuente de datos contiene información significativa respecto del parámetro R₀. Asimismo, es esperable que la verosimilitud total y su curvatura esté más influenciada por los datos que por las penalizaciones o distribuciones a priori (supuestos).

3.2. Objetivo específico 2:

"Establecer el estatus actualizado de sardina común, sobre la base de sus principales indicadores estandarizados de estado y flujo, propagando para estos efectos todas las fuentes de incertidumbre subyacente a la pesquería."

3.2.1. Estatus

Indicadores del estado del stock:

El estado del recurso se establece en base a la posición relativa de la biomasa desovante y mortalidad por pesca relacionada a la explotación pesquera v/s Puntos Biológicos de Referencia (PBR) basados en el Rendimiento Máximo Sostenido (RMS). En el contexto de la Ley General de Pesca y Acuicultura (LGPA) se establece que las pesquerías deberán alcanzar o mantenerse en torno del RMS considerando las características biológicas de los recursos explotados. El RMS se produce cuando el stock desovante se reduce notablemente antes que el reclutamiento se vea impactado en promedio, para lo cual exige se estimen los siguientes PBRs:

- Biomasa desovante en el Rendimiento Máximo Sostenible (BD_{RMS}), bajo la cual el recurso califica en sobre-explotación.
- Mortalidad por Pesca en el Rendimiento Máximo Sostenible (F_{RMS}), sobre la cual el recurso califica en sobre-explotación.
- Biomasa desovante límite (B_{LIM}) bajo la cual una pesquería califica de agotada o colapsada.
- Mortalidad por Pesca límite (F_{LIM}) a partir de la cual el recurso califica en sobrepesca. Este estudio se basa en el Marco Biológico de Referencia establecido por el Comité Científico Técnico- Pesquerías de Pequeños Pelágicos (CCT-PP) en base a los avances realizados durante el 2013 y 2014 en la determinación de Puntos Biológicos de Referencia (PBR) y del Rendimiento Máximo Sostenido (RMS) del proyecto "Revisión y estimación de los PBR (Rendimiento Máximo Sostenido) para las principales pesquerías nacionales" (Payá et al. 2014), proyecto ejecutado por IFOP que contó con la consultoría de investigadores de prestigio internacional, con los cuales se realizaron tres talleres de trabajo, contando además con la participación de investigadores nacionales.

Puntos Biológicos de Referencia

Estimación de F_{RMS}:

Ante la incertidumbre en la relación stock-recluta de los pelágicos pequeños, la determinación de F_{RMS} está basado en el análisis de rendimiento por recluta de dinámica combinada (Beverton & Holt 1957) que describen el cambio de la biomasa de una cohorte o clase anual por efectos de la mortalidad natural y la pesca. La biomasa adulta o desovante por recluta (BDPR) es obtenida en función de la mortalidad por pesca (F), y en esta curva es factible identificar el nivel de referencia biológico 60 %BDPR que se supone debería minimizar el impacto de la pesca sobre el stock, permitiendo el escape en torno al 60 %, respecto del valor que existiría en ausencia de explotación pesquera (**Tabla 11**).

Tabla 11. Dinámica de la abundancia utilizado para estimar la biomasa desovante por recluta y su función objetivo para resolver el parámetro de F_{RMS} .

Variables	Ecuación	Descripción
		N_{a+1} es la abundancia en número
Abundancia a la edad	$N_{a+1} = N_{a-1}exp(-(s_{a-1}^f F + M))$	a la edad $a+1, s_{a-1}^f$ corresponde a la
		selectividad edad específica, M es la
	$N_{a_m} = \frac{N_{a-1} exp(-(s_{a-1}^f F + M))}{(1 - exp(-s_{a_m}^f F + M))}$	mortalidad natural y ${\cal F}$ la mortalidad por pesca.
Biomasa desovante	$BDPR_{F=0} = \sum_{a=0}^{t} N_a exp(-dtM) \bar{w}_a^{ini} O_a$	dt es la fracción del año donde ocurre
por recluta (BDPR)		el desove, O_a es la fracción de peces maduros a
	$BDPR_{F_{RMS}} = \sum_{a=0}^{t} N_a exp(-dt(s_a^f F_{RMS} + M)\bar{w}_a^{ini}O_a)$	la edad y $ar{w}_a^{ini}$ es el peso medio a la edad
		al inicio del año biológico.
	2222	
Función objetivo	$f = \left(\frac{BDPR_{F_{RMS}}}{BDPR_{F=0}} - 0,60\right)^2$	Utilizado para resolver el parámetro
	. =0	$F_{RMS} = 60 \% BDPR$

Estimación de BD₀, BD_{RMS} y BD_{LIM}:

A continuación, se describe el método recomendado por CCT-PP y que acoge lo propuesto en talleres de PBRs para calcular los puntos de referencia proxies BD₀, B_{RMS} y BD_{LIM}:

- (1) Encontrar un período histórico (de preferencia largo) en el que la Biomasa Desovante (BD) haya estado aproximadamente en un equilibrio dinámico (es decir, no un equilibrio determinista basado en la relación stock-recluta). La condición base sería tomar la serie temporal histórica completa, a menos que exista una razón clara para tomar algo distinto. Calcular el promedio de BD y la mediana de F estimadas de la evaluación de stock durante el período seleccionado. (nota: la razón para estimar el promedio de BD pero la mediana de F (Fmh) es porque la distribución de F se espera que sea cercana a la log-normal mientras que la distribución de BD se espera que sea cercana a la normal; además, el objetivo es encontrar valores únicos de F y BD que se podrían corresponder entre sí (aproximadamente) en equilibrio, por lo que la mediana de F, el cual disminuye efectivamente el peso de la influencia de los valores altos de F en la serie histórica, podría estar asociado a valores altos de BD en equilibrio (y la media a menudo tiende a ser mayor que la mediana).
- (2) Calcular el %BDPR (F_{mh}) y %BDPR (F_{RMS}).
- (3) Sustraer el 5% (=0,05) de %BDPR (Fmh) y %BDPR(F_{RMS}) para obtener una aproximación para el %BD (donde el %BD denota BD/BD₀) para el cual F_{mh} y F_{RMS} correspondiente. Como un ejemplo, si %BDPR(F_{mh}) = 0,35, el correspondiente %BD(F_{mh}) es 0,30, y si %BDPR(F_{RMS})=0,60, el correspondiente %BD(F_{RMS}) es 0,55.
- (4) La razón BD promedio / %BD (F_{mh}) entrega una estimación de BD₀, y forma la base para el cálculo de BD_{RMS} (paso 5) y BD_{LIM} (paso 6).
- (5) Cálculo de BD_{RMS} (proxy) como %BD(F_{RMS}) x BD promedio / %BD(F_{mh}).
- (6) Cálculo de BD_{LIM} (seleccionado como 27,5 %BD₀ para todos los stock de sardina y anchoveta) ó 50 %BD_{RMS}.

Diagrama de fases de explotación:

El estado del recurso se estableció en base a la posición relativa de la mortalidad por pesca y biomasa desovante versus los puntos biológicos de referencia basado en el rendimiento máximo sostenible (RMS),

tales como, F_{RMS} y BD_{RMS}. De este modo se obtienen los indicadores del estatus (F/F_{RMS} y BD/BD_{RMS}) que permiten construir un diagrama de fase, donde los puntos de referencia biológicos se muestran en las líneas verticales y horizontales en 1. Las líneas verticales indican la biomasa desovante en el rendimiento máximo sostenible (BD_{RMS}), bajo el cual el recurso califica en sobre-explotación y biomasa desovante límite (BD_{LIM}) bajo el cual una pesquería califica de agotada y/o colapsada y la línea horizontal el punto de referencia correspondiente a la mortalidad por pesca en el rendimiento máximo sostenible (F_{RMS}), sobre la cual el recurso califica en sobre-explotación. La **Figura 13** muestra el diagrama de fase definido por el CCT-PP para las pesquerías de pelágicos pequeños.

Figura 13. Diagrama de fase definido por el CCT-PP para las pesquerías de pelágicos pequeños.

El estado de la pesquería en Plena Explotación se define en la Ley de Pesca como "un nivel en el que el punto biológico ha alcanzado o está a su máximo rendimiento sostenido". Debido a la variabilidad natural en las condiciones ecológicas y ambientales, F_{RMS} no es estática, pero fluctuará alrededor de BD_{RMS}. Para reconocer esta variabilidad, una definición operativa para la región de Plena Explotación se define que se extiende a ambos lados de los puntos de referencia de RMS. Adicionalmente, el CCT-PP incorporó el concepto de sobrepesca, precisó algunas definiciones y se pronunció respecto a la zona de plena explotación, según consta en acta N°5 (11 al 14 de noviembre de 2014). Los aspectos más relevantes son los que a continuación se describen:

 Sobrepesca: Este Comité consideró necesario diferenciar al interior de la zona de sobreexplotación definida por la LGPA, el área de sobrepesca, con el objeto de aplicar las medidas de Administración más acordes con dicha condición. En tal sentido, la sobrepesca ocurriría cuando la mortalidad por

pesca F (variable de flujo y de control) exceda un valor considerado umbral o límite, que en este caso corresponde al valor superior en mortalidad por pesca (valor relativo al objetivo), de la zona de plena explotación.

- Sobreexplotado: En correspondencia con la definición anterior, la sobreexplotación ocurriría cuando la biomasa (variable de estado) cae bajo un valor umbral o límite, correspondiendo éste al valor inferior en biomasa (valor relativo al objetivo) de la zona de plena explotación.
- Rango de Plena Explotación: El CCT-PP recomendó por consenso los siguientes rangos que definen la condición de Plena Explotación de los recursos pelágicos, considerando los siguientes límites en biomasa y el correspondiente par ordenado en mortalidad por pesca:
 - a) Límite bajo el objetivo de manejo = 10 % Bajo BD_{RMS}: Este criterio tiene como propósito el establecimiento de una banda estrecha en torno al RMS, que genere un área no deseada pequeña que en lo posible sea menor o igual al área de incertidumbre total del sistema, donde la biomasa está bajo la biomasa objetivo y a su vez, la mortalidad por pesca es mayor a la mortalidad por pesca objetivo. En consecuencia, el CCT-PP considera las numerosas recomendaciones en ciencia pesquera, respecto al riesgo de llevar a los stocks a una condición de sobreexplotación cuando se utiliza el RMS como objetivo de manejo, utiliza el concepto conforme al marco legal vigente y simultáneamente lo deja operando en la práctica, como un punto biológico de referencia límite.
 - b) Límite sobre el objetivo de manejo =75 % BD₀ (o 35 % sobre BD_{RMS}): Para estos efectos el Comité rescató elementos del enfoque ecosistémico en especies de forraje, planteado recientemente por Pickitch *et al.* (2012).

3.3. Objetivo específico 3:

"Determinar niveles de Captura Biológicamente Aceptable (CBA) que lleven y/o mantenga la pesquería en torno al Rendimiento Máximo Sostenible (RMS), a partir de un análisis de riesgo en condiciones de incertidumbre de no alcanzar los objetivos de conservación y sostenibilidad conforme lo establece la LGPA y contenidos en el Plan de Manejo y/o en el Programa de Recuperación respectivo, según corresponda."

3.3.1. Captura biológicamente aceptable (CBA)

Descripción del proceso de cálculo de CBA para cada etapa del procedimiento de manejo:

La pesquería de sardina común ha sido manejada históricamente de manera monoespecífica, considerando la incertidumbre asociada a la evaluación de stock. El objetivo de conservación para ésta pesquería establece un nivel de biomasa reproductiva o desovante equivalente al 55 %BD₀ del stock desovante en estado virginal (sin explotación), con una estrategia de explotación que consiste en aplicar una tasa de explotación constante, equivalente a la mortalidad por pesca F que determina el 55 %BD0, definidas como F60 %BDPR establecido por el Comité Científico Técnico Pesquerías de Pequeños Pelágicos (CCT-PP) para resguardar la incertidumbre en el éxito de la clase anual que reclutaría a la pesquería (Informe Técnico CCT-PP N °01/2015 ³).

De acuerdo al ciclo de manejo histórico de esta pesquería (**Figura 14**), la recomendación de CBA comienza después de la veda reproductiva, donde se reporta la CBA inicial, y que permitirá al CCT-PP establecer el estatus y recomendar el rango de CBA para el año siguiente. En enero de cada año, el crucero de evaluación

³http://www.subpesca.cl/portal/616/articles-87217_documento.pdf

hidroacústico permite estimar la abundancia y biomasa de reclutas (crucero de verano, RECLAS), esta información junto a datos provenientes de la pesquería es utilizada para la primera revisión de la CBA. En marzo se inicia el período de extracción y en mayo se realiza el segundo crucero de evaluación acústica (crucero de otoño, PELACES) para actualizar el estatus y revisar una vez más la CBA.

La **Tabla 12** detalla la información disponible en cada etapa de cálculo de CBA 2021, destacando que en la primera etapa de estimación (CBA inicial) no se cuenta con información actualizada de los años biológicos 2020-2021 y 2021-2022, por lo tanto, la población debe ser proyectada dos años biológicos hacia el futuro (a inicios de julio de un año a junio del año siguiente) para realizar el cálculo de la CBA 2021 en año calendario. En la segunda etapa (1era revisión) contamos con información parcial del año biológico 2020-2021 y en la tercera etapa (2da revisión) con información casi completa del año biológico 2020-2021. Sin embargo, para realizar el cálculo de la CBA 2021 en año calendario, en ambas etapas es necesario proyectar un año biológico hacia el futuro (2021-2022).

Figura 14. Procedimiento de manejo actual para sardina común centro-sur.

El proceso de cálculo de la CBA 2021 para las tres etapas del ciclo de manejo de sardina común (**Tabla 13**) consistirá en los siguientes pasos:

Paso 1: Estimación de la captura proyectada (Yp_{RMS}) en año biológico aplicando los siguientes supuestos:

- Escenarios de reclutamiento proyectado
- Supuesto de pesos medios igual al promedio de los últimos 5 años de la serie
- Mortalidad por pesca igual a F_{RMS}

Paso 2: Estimación de la captura (Y_{RMS}) del año biológico actual aplicando los siguientes supuestos:

- Reclutamiento actualizado en asesoría de marzo o julio.
- Pesos medios igual al promedio de los últimos 5 años (asesoría de marzo) o pesos medios actualizados (asesoría de julio).
- Mortalidad por pesca equivalente al supuesto de captura igual a CBA inicial (asesoría de marzo) o mortalidad por pesca equivalente a la captura actualizada (asesoría de julio).

Tabla 12. nformación relevante para el cálculo de CBA 2021 en cada una de las etapas de estimación.

Datos de entrada	CBA INICIAL	1ERA REVISIÓN	2DA REVISIÓN
al modelo	Septiembre 2020	Marzo 2021	Julio 2021
Desembarques		Julio 1991- junio 2020 +	Julio 1991 -
	Julio 1991 - junio 2020	Supuesto de captura 2020/2021	preliminar a junio 2021
Biomasa acústica	2000 – 2020	2000 – 2021	2000 – 2021
Crucero de verano			
Biomasa acústica	2003 – 2020	2003 – 2020	2003 – 2021
Crucero de otoño			
Composición de	Julio 1991 - junio 2020	Julio 1991 - junio 2020	Julio 1991 - mayo 2021
edad Flota			
Composición de	2001 – 2020	2001 – 2021	2001 – 2021
edad Cruceros de verano			
Composición de	2007 – 2020	2007 – 2020	2007 – 2021
edad Cruceros de otoño			
		Julio 1990 - junio 2020	
Pesos medios	Julio 1991 - junio 2020	Promedio de los últimos 5 años	Julio 1990 - mayo 2021
a la edad		de la serie histórica para	
		julio 2020-junio 2021	
Madurez sexual	Constante	Constante	Constante
a la edad			
Mortalidad natural	Constante	Constante	Constante
Proyección del	2 años biológicos	1 año biológico	1 año biológico
reclutamiento	(años 2020/21 y 2021/22)	(año 2021/22)	(año 2021/22)

Paso 3: Estimación de la Captura Biológicamente Aceptable (CBA) en año calendario aplicando los siguentes supuestos.

- Proporción de captura semestral (ps1, primer semestre y ps2, segundo semestre).
- Probabilidad que la captura exceda el objetivo de manejo F_{RMS}=F60 %BDPR.
- Porcentaje de resguardo de la Captura al RMS.

Tabla 13. Métodos de estimación de la CBA 2021 para las tres etapas del ciclo de manejo de sardina común.

Mes de Asesoría	Etapas de cálculo	Métodos de estimación
Septiembre 2020	$CBA_{inicial}$	$p_{s1} * Yp_{RMS(t+1)} + p_{s2} * Yp_{RMS(t+2)}$
Marzo 2021	$CBA_{1eraRevisi\'on}$	$p_{s1} * Y_{RMS(t)} + p_{s2} * Y p_{RMS(t+1)}$
Julio 2021	$CBA_{2daRevisi\'on}$	$p_{s1} * Y_{RMS(t)} + p_{s2} * Y p_{RMS(t+1)}$

Paso 1: Captura proyectada (Yp_{RMS}) en año biológico aplicando F_{RMS}

Escenarios de proyección basada en distintos niveles de reclutamiento:

Se realiza un análisis de quiebres que consiste en un análisis estadístico que permite detectar cambios en la serie histórica de los reclutamientos estimados por el modelo de evaluación de stock. Para ello se realizó un análisis de cambios estructurales en series de tiempo (también conocido como detección de puntos de

quiebre) implementado en la librería "strucchange" del software R, https://cran.r-project.org/web/packages/strucchange/strucchange.pdf.

```
library(strucchange)
bp.nile <- breakpoints(Reclutamientos ~ 1)
fm1 <- lm(Reclutamientos ~ breakfactor(bp.nile, breaks = 2))
puntos_quiebres<-fitted(fm1)</pre>
```

La **Figura 15** muestra tres niveles de reclutamiento detectados por el análisis de quiebres de la serie histórica: a) un escenario desfavorable que consiste en el reclutamiento promedio del período 1991-2007 (113 mil millones de ind.), b) un escenario favorable que corresponde al promedio de los reclutamientos del período 2008 - 2012 (405 mil millones de ind.) y un escenario que representa el período reciente entre el 2013-2021 (180 mil millones de ind.).

Figura 15. Análisis de quiebres de la serie histórica de los reclutamientos de sardina común.

Supuesto de pesos medios a la edad utilizado en la proyección :

En relación a los pesos medios a la edad utilizados en la proyección del stock y cálculo de CBA, se utiliza el promedio de los últimos 5 años (**Figura 16**). Este supuesto fue acordado con el CCT-PP en la sesión 02/2019 ⁴.

⁴http://www.subpesca.cl/portal/616/articles-105403 documento.pdf

Figura 16. a) Variabilidad de los pesos medios de cada grupo de edad (edad 0 a 4) y b) comparación del supuesto de pesos medios igual al promedio histórico vs peso promedio de los últimos 5 años de la serie.

Los pasos siguientes son proyectar la población para la estimación de la Captura en número y peso con una estrategia de explotación que consiste en aplicar una tasa de explotación constante, equivalente a la mortalidad por pesca F_{RMS} en año biológico (**Tabla 14**).

Tabla 14. Proceso de estimación de la Captura (Yp_{RMS}) proyectada en año biológico aplicando F_{RMS} .

Descripción	Ecuación
Condición de partida para la proyección	$N_p = N_{na ilde{n}os}, S_p = S_{na ilde{n}os}$
Escenario de reclutamientos:R reclutamiento promedio de los años iniciales entre los años 1991-2007, n es el número de años iniciales	$Rp_{(a=0)} = \frac{\sum_{n_{(1991-2007)}}^{R_{(1991-2007)}}}{n_{(1991-2007)}}$
Escenario de reclutamiento:R reclutamiento promedio entre los años 2008-2012, n es el número de años del período	$Rp_{(a=0)} = \frac{\sum_{n_{(2008-2012)}}^{R_{(2008-2012)}}}{n_{(2008-2012)}}$
Escenario de reclutamientos:R reclutamiento promedio entre los años 2013 - año actual, n es el número de años del período	$Rp_{(a=0)} = \frac{\sum_{n_{(2013-a\ oactual)}}^{R_{(2013-a\ oactual)}}}{n_{(2013-a\ oactual)}}$
Mortalidad por pesca y total al RMS	$F_{RMS} = sel_{naños} F60(,$ $Z_{RMS} = F_{RMS} + M, Sp = exp(-Z_{RMS})$
Dinámica de la abundancia proyectada	$Np_{(a=0)} = Rp, Np_{(a+1)} = Np_{(a-1)}S_p,$ $Np_{(a=4)} = Np_{(a-1)}S_p + Np_{(a=4)}S_p$
Captura en número proyectada	$Cp_{RMS} = F_{RMS}/Z_{RMS} * Np(1 - exp(-Z_{RMS}))$
Captura en peso proyectada	$Yp_{RMS} = \sum Cp_{RMS} * w_{5a\bar{n}os}^{med}$

Donde, $N_{naar{n}os}$ es la abundancia a la edad del último año de evaluación, $S_{naar{n}os}$ es la sobrevivencia del último año de evaluación, R_p corresponde al reclutamiento proyectado al año t, sel_naños es la selectividad edad específica del último año de evaluación, F_{60} corresponde a la mortalidad por pesca que determina el 55 %BD0 establecido por el (CCT-PP), Z_{RMS} es la mortalidad total al RMS, M es la mortalidad natural, $Np_{(a=0)}$ es el reclutamiento proyectado, $Np_{(a+1)}$ es

la abundancia en número a la edad a+1, Cp_{RMS} es la captura proyectada en número, Yp_{RMS} es la captura en peso proyectada y $w_{5a\bar{n}os}^{med}$ corresponde al peso promedio de los últimos 5 años.

Paso 2: Captura del año actual (Y_{RMS}) aplicando F_{RMS}:

Esta captura es estimada en la 1era y 2da revisión de CBA (asesorías de marzo y julio), cuando se cuenta con información del año biológico actualizado con las biomasas acústicas de los cruceros de verano y otoño respectivamente y otras fuentes de información.

Captura en número del año biológico actual $C_{RMS}=rac{F_{RMS}}{Z_{RMS}}N_{na\~nos}(1-exp(-Z_{RMS}))$

Captura en peso del año biológico actual $Y_{RMS} = \sum C_{RMS} w_{5a\bar{n}os}^{med}$

Paso 3: Estimación de la Captura Biológicamente Aceptable (CBA):

Considerando que el modelo de evaluación de stock de sardina común emplea información agregada en año biológico, la población es proyectada uno o dos años biológicos hacia el futuro (a inicios de julio de un año a junio del año siguiente). Por consiguiente, el cálculo de la captura en año calendario se obtiene como el promedio ponderado según la estacionalidad semestral de la pesquería. El análisis de quiebres de la serie de proporción de desembarques del primer semestre muestra que a partir del 2010 la proporción disminuye en torno al 70 % para el primer semestre (**Figura 17**). De este modo, el cálculo de CBA se obtiene como el promedio ponderado según la estacionalidad semestral de la pesquería del período más reciente en 70 % para el primer semestre y 30 % para el segundo semestre del año calendario. Este supuesto fue acordado con el CCT-PP en la sesión 02/2019 ⁵.

Figura 17. Serie histórica de la proporción de los desembarques durante el primer semestre.

Percentiles de probabilidad de sobrepasar el objetivo de manejo F_{RMS}:

Se considera el establecimiento de un percentil entre un 10 % - 50 % de probabilidad de sobrepasar el objetivo de manejo igual a F_{RMS}. El percentil corresponde a una distribución de probabilidad acumulada y representa la probabilidad de estar en sobrepesca (**Figura 18**). El CCT-PP determina el rango de CBA seleccionado el percentil de probabilidad y escenario

⁵http://www.subpesca.cl/portal/616/articles-105403 documento.pdf

de reclutamiento proyectado. Dado la alta incertidumbre existente en el momento de definir la CBA inicial, el CCT-PP selecciona el escenario de reclutamiento más precautorio y un percentil de probabilidad inferior al 50 %. Este percentil de probabilidad es equivalente a un nivel de resguardo que se calcula a partir de la captura estimada para cada percentil de probabilidad y la captura al RMS, de este modo, se tiene un nivel de referencia de cuanto se está resguardando considerando el hito de revisión de CBA o condición del recurso.

$$Resguardo = 1 - \frac{Captura(i)}{Captura_{RMS}}, i = percentil.de.captura(10\%...50\%)$$

Donde la Captura(i) es la captura estimada para cada percentil de probabilidad (10 % - 50 %) y Captura_{RMS} corresponde a la media (50 % probabilidad).

Figura 18. CBA inicial ante percentiles de captura y bajo dos escenarios de reclutamiento.

Paso 4: Incorporación del descarte en la CBA:

La actual Ley General de Pesca y Acuicultura (LGPA, N° 18.892) persigue la conservación y el uso sustentable de los recursos pesqueros mediante la aplicación del enfoque precautorio y ecosistémico, garantizando el resguardo de los ecosistemas marinos. En este contexto, el Artículo 7°B de la LGPA indica que no podrá realizarse el descarte de individuos de una especie objetivo, cualquiera sea su régimen de acceso, y su fauna acompañante, salvo que se i) haya fijado una cuota global anual de captura para la especie objetivo y, ii) que en el proceso de establecimiento de la cuota global anual de captura se haya considerado el descarte, entre otras restricciones indicadas por el citado artículo.

Para dar cumplimiento a esta normativa se estima una CBA_{total} que da cuenta de toda la mortalidad por pesca incluido el descarte. El CCT-PP debe establecer el rango de CBA que se construye a partir de una CBA máxima (CBA_{max}), es decir, el rango por ley es ($0,8*CBA_{max};CBA_{max}$). Esta CBA_{max} , deberá estimarse a partir de la CBA_{total} descontando el porcentaje de descarte supuesto para el año 2021. La proporción del descarte (pd) supuesto para el año 2021 y que deberá ser descontado de la CBA_{total} para establecer la CBA_{max} .

$$CBA_{max} = CBA_{total} - pd * CBA_{total}$$

3.3.2. Proyección del stock

Se analiza las probables trayectorias de la biomasa desovante como consecuencia de la aplicación de mortalidad por pesca igual a F_{RMS} y dos ponderadores de F_{RMS} igual a 0,9 y 0,7, considerando la incertidumbre del estatus (e.g., matriz de varianza/covarianza de ADMB) y los posibles estados de la naturaleza a futuro (e.g., niveles probables de reclutamiento futuro, escenarios de reclutamiento). Lo anterior permite analizar los niveles de riesgo de no alcanzar el objetivo de manejo BD_{RMS} en el mediano plazo (2 años biológicos hacia el futuro), considerando la incertidumbre del estatus (probabilidad de sobre-explotación y/o colapso) y los probables estados de la naturaleza a futuro.

3.4. Objetivo específico 4:

"Informar el avance del Programa de Mejoramiento Continuo de la Calidad en la Asesoría Científica (PMCCAC) realizado durante el presente estudio, respecto al cumplimiento de recomendaciones formuladas en procesos de RPEI y priorizadas por el CCT, cuando corresponda."

Se informan los avances alcanzados durante el desarrollo de este estudio, conforme al Programa de Mejoramiento Continuo de la Calidad de la Asesoría Científica (PMCCAC), elaborado por recurso y/o pesquería. Este PMCCAC no sólo se enfoca en las brechas de datos, información y conocimiento, sino que incluye la pertinencia, consistencia, calidad y coherencia de éstos con la situación general de la pesquería, acorde con los requerimientos de asesoría solicitados por la administración pesquera. Con esto, se desarrolla un análisis de la incertidumbre involucrada en los datos e información utilizada en la evaluación.

En este sentido, todo lo referido a sistemas o procesos fuera del alcance de este estudio (i.e., información disponible, nivel de conocimiento del recurso, etc.) son consignados para conocimiento y fines de administración pesquera. No obstante, en el ámbito de responsabilidad directa de este estudio, se informa de todas las recomendaciones realizadas en el Taller de Revisión Por Pares Externa e Independiente (RPPEI) con el objetivo de lograr la mejor aplicación del EME, conforme al estándar de análisis de la pesquería. Sobre la base de lo anterior, se incorporan los ajustes necesarios, proponiendo las acciones, actividades, metas, plazos y condiciones que se consideren necesarios para lograr disminuir las brechas identificadas y los requerimientos para alcanzar los estándares de asesoría previamente definidos.

A continuación, se detalla el contenido presentado la Sección 4.4 de este informe:

- Esquema de trabajo y plan de actividades 2017-2018 acordado con SUBPESCA.
- Mejoras realizadas al modelo de evaluación de stock
- Avance en la reducción de brechas.
 - Actividades desarrolladas durante el año 2018
 - Actividades desarrolladas durante el año 2019
 - · Actividades desarrolladas durante el año 2020
- Recomendaciones realizadas en Revisión por Pares Externa e independiente (RPEI).
- Recomendaciones realizadas en Informe de evaluación técnica de proyectos del programa de investigación básica o permanente para la regulación pesquera y de acuicultura.

4. RESULTADOS

4.1. Objetivo específico 1:

"Implementar procedimientos de evaluación de stock basados en protocolos científicos para la determinación del estatus de sardina común, con arreglo al nivel de información, conocimiento e incertidumbre correspondiente, conforme a los estándares actuales en ciencia pesquera."

4.1.1. Datos de entrada al modelo de evaluación de stock

El período de análisis de la evaluación de stock comienza en 1990/91 hasta el año 2020/21. A continuación, se detalla los datos actualizados en la asesoría de marzo 2021 (**Figura 19**).

Datos actualizados

- Desembarque 2020/21
- Pesos medios e iniciales 2020/21
- Biomasa del crucero acústico de enero 2021
- Composición de edad del crucero acústico de enero 2021
- Biomasa del crucero acústico de otoño 2021
- Composición de edad del crucero acústico de otoño 2021

Datos supuestos

 Porcentaje de Descarte 2020/21: Se asume igual a un 4 % de descarte (acordado en sesión del 25 de febrero del CCT-PP) lo que equivale a una captura descartada de xxx t. (Tabla 16)

Supuestos de proyección de 1 año biológico 2021/2022

- Escenarios de reclutamiento promedio
- Mortalidad por pesca igual a F_{RMS}
- Pesos igual al promedio últimos 5 años (Revisar este supuesto)
- Proporción de captura semestral 70/30

Descripción de datos de entrada

Una de las principales características del stock de sardina común es el comportamiento estacional de las capturas, donde cerca del 70 % de la captura total anual se obtiene al primer semestre de cada año, con máximos entre marzo y abril. Esta estacionalidad es altamente influenciada por el pulso de reclutamiento de enero, observándose una fuerte relación entre la biomasa estimada por el crucero de enero y los desembarques. Al respecto, se observa que durante los años 2015 al 2019, las biomasas acústicas de verano se mantuvieron en niveles en torno a los dos millones de toneladas, lo cual se ve reflejado también en una estabilidad en las capturas en torno a las 330 mil toneladas. Por otro lado, las biomasas acústicas estimadas por el crucero de otoño reflejan el efecto de la remoción ejercidas por la pesca y causas naturales, con biomasas en general menores a las estimadas en el crucero de verano, en torno a 1,5 millones de toneladas (**Tabla 15** y **Figura 20**).

No obstante, para el año 2020 la biomasa estimada por el crucero acústico de verano se redujo a un millón de toneladas (54 % menor al 2019), la biomasa del crucero de otoño disminuye un 40 % respecto al 2019 y

Figura 19. Series de tiempo de los datos de entrada al modelo de evaluación de stock de sardina común de las Regiones de Valparaíso a Los Lagos.

las capturas 2019/20 se redujeron un 9 % respecto al año previo. El desembarque 2020 está en torno a las 258.092 toneladas, equivalente a un 80 % de la CBA 2020 recomentada por el CCT_PP (321.307 toneladas).

La biomasa total estimada por el crucero de enero 2021 retorno a los niveles observados entre el 2013 al 2019 (2,36 millones de t.), incrementando un 125 % respecto a lo estimado para el año 2020 (**Tabla 15** y **Figura 20**). En relación a la captura 2020/21 se asume una reducción del 24 % respecto del año biológico 2019/20, no obstante la captura 2020/21 es un supuesto que debe ser actualizado en la asesoría de julio 2021 con datos de desembarque del primer semestre 2021 (**Tabla 16**).

Tabla 15. Índices de abundancia utilizadas en la evaluación de stock de sardina común provenientes de los cruceros de Verano (RECLAS), Otoño (PELACES), crucero de huevos (MPDH).

	Biomasa crucero	Biomasa crucero	Biomasa desovante
Año	de verano	de otoño	MPDH
calendario	(toneladas)	(toneladas)	(toneladas)
1991			
1992			
1993			
1994			
1995			
1996			
1997			
1998			
1999			
2000	252.601		
2001	567.819		
2002	844.713		498.337
2003	477.998		
2004	351.125		5.186
2005	339.783		125.008
2006	2.178.397	552.880	
2007	2.134.043	188.675	168.611
2008	4.813.144		109.162
2009	1.555.625	991.730	213.762
2010	2.623.565	2.467.720	579.715
2011	3.216.857	1.416.034	649.985
2012	3.843.000	1.217.169	157.893
2013	1.133.477	2.296.489	87.575
2014	3.079.434	1.805.815	83.554
2015	1.972.148		
2016	2.032.684	1.482.799	
2017	2.025.002	1.565.315	
2018	2.424.330	1.577.507	
2019	2.275.425	1.421.176	
2020	1.050.175	867.257	
2021	2.363.380	1.100.020	

Tabla 16. Desembarques en toneladas, porcentaje de descarte supuesto, captura descartada (toneladas) y captura total (toneladas) estimadas en año biológico para sardina común de las Regiones de Valparaíso a Los Lagos.

Desembarques		Desembarques Capt		Captura total	
Año	(toneladas)	% descarte	(toneladas)	(toneladas)	
1990-91	494.567	0%	0	494.567	
1991-92	514.787	0%	0	514.787	
1992-93	250.237	0%	0	250.237	
1993-94	358.949	0%	0	358.949	
1994-95	361.735	0%	0	361.735	
1995-96	120.608	0%	0	120.608	
1996-97	552.515	0%	0	552.515	
1997-98	73.892	0%	0	73.892	
1998-99	212.993	0%	0	212.993	
1999-00	205.616	0%	0	205.616	
2000-01	50.451	4 %	2.018	52.469	
2001-02	305.257	4%	12.210	317.467	
2002-03	282.360	4%	11.294	293.654	
2003-04	372.689	4%	14.908	387.597	
2004-05	242.976	4 %	9.719	252.695	
2005-06	496.438	4%	19.858	516.296	
2006-07	344.596	4%	13.784	358.380	
2007-08	713.623	4%	28.545	742.168	
2008-09	905.818	4 %	36.233	942.051	
2009-10	603.450	4 %	24.138	627.588	
2010-11	796.319	4 %	31.853	828.172	
2011-12	826.505	4%	33.060	859.565	
2012-13	402.507	4%	16.100	418.607	
2013-14	500.641	4%	20.026	520.667	
2014-15	401.201	4%	16.048	417.249	
2015-16	289.013	4%	11.561	300.574	
2016-17	399.415	2%	7.988	407.403	
2017-18	348.574	2%	6.971	355.545	
2018-19	301.557	6%	18.093	319.650	
2019-20	273.376	6%	16.403	289.779	
2020-21	210.827	4%	8.433	219.260	

Figura 20. Serie de desembarques y biomasas estimadas por la evaluación hidroacústica de verano y otoño utilizadas como datos de entrada al modelo de evaluación de stock de sardina común de las Regiones de Valparaíso a Los Lagos.

Composición de edad y pesos medios

La pesquería de sardina común está sustentada principalmente por la abundancia del grupo de edad 0, con una proporción en torno al 60-70 % de la captura en número de la flota entre San Antonio-Corral. La captura en número a la edad se caracteriza por presentar una alta variabilidad interanual, siendo los años 2007, 2013, 2016, 2019 y 2020 los años con menor proporción de reclutas. Los pesos medios del grupo de edad 0 se encuentra en torno a los 8 grs. Se observa una estabilización de los pesos medios a partir del 2013 para todos los grupos de edad (**Figura 21** y **22**). En relación de la composición de edad de los cruceros de verano se observa que el grupo de edad 0 representa el 80 % de la captura en número. Por otro lado, en el caso del crucero de otoño, el grupo de edad 0 representa el 60 % de la captura en número (**Figura 23** y **24**).

Los resultados del crucero de verano 2019 y 2020 presentan una disminución en los niveles de abundancia de la fracción recluta, el estimado de biomasa total del crucero de verano 2019 es sostenido por la fracción adulta (edad 1+). Mientras que el estimado 2020 es sostenido por individuos de edad 2+.

Esta disminución se confirma al actualizar la composición de edad de la flota 2018/19 y 2019/20 y del crucero de otoño 2019 y 2020. Por lo tanto, la disminución de la biomasa total 2020 estaría fuertemente relacionada a la reducción del número de individuos de los grupos de edad 0 y 1 principalmente.

Los resultados del crucero de verano 2021 muestran un incremento significativo en los niveles de abundancia de la fracción recluta (94% individuos de edad 0), a diferencia de los dos años previos, la biomasa total del crucero de verano 2021 es sostenido principalmente por la fracción recluta (edad 0), observandose una baja presencia de individuos adultos (edad 1+).

Figura 21. Variabilidad interanual de la proporción de la captura de la flota (panel izquierdo) y pesos medios (panel derecho) de cada grupo de edad (edad 0 a 4) de sardina común de las Regiones de Valparaíso a Los Lagos.

Madurez sexual

La talla media de madurez sexual se estima considerando el criterio de 50 % de ejemplares maduros, ya que se acepta que la madurez progresa con la talla o la edad de acuerdo a un modelo logístico de la forma:

$$P(l) = \frac{1}{1 + exp(\beta_0 + \beta_1 * l)}$$

Donde P es la proporción de individuos maduros, es la talla (o edad), y β_0 y β_1 son parámetros de posición y

Figura 22. Composición de edad de la captura de la flota (panel izquierdo) y pesos medios (panel derecho) utilizados en la evaluación de stock de sardina común de las Regiones de Valparaíso a Los Lagos.

Figura 23. Variabilidad interanual de la proporción de la captura del crucero de verano (panel izquierdo) y crucero de otoño (panel derecho) de cada grupo de edad (edad 0 a 4).

Figura 24. Composición de edad de la captura de los cruceros de verano (panel izquierdo) y otoño (panel derecho) utilizados en la evaluación de stock .

pendiente, respectivamente. La talla media de madurez ha sido estimada por varios autores para sardina común y los parámetros se resumen en la **Tabla 17**. Se observa que la talla media de madurez fluctúa entre 10 y 11,5 cm. En términos de la edad, se consideran completamente maduros a los individuos mayores o iguales a 1 año de edad, mientras que los individuos de edad 0 se consideran inmaduros dado que a esa edad la madurez es menor del 4 %.

Aranís *et al.* (2006) estimaron una talla media de madurez en 11,5 cm LT cuando los virginales son cercanos al 0 % y la maduración incipiente es casi un 90 % de hembras maduras. La talla media de madurez (TMM) que es finalmente utilizada como referencia en la evaluación de stock es la reportada por Aranís *et al.* (2006) (**Figura 25**).

Parámetro	Pendiente	Talla media de		
de posición	eta_1	madurez	Método	Fuente
β_0		$L_{50\%}$ (cm)		
		11	EMS Macroscópicos	Arrizaga (1981)
		10	Histología	Mujica y Rojas (1984)
		11	IGS Cubillos y Arancibia	
11,6	-1,05	11	EMS macroscópicos	Arancibia et al. (1994)
20,32	-2,05	10	EMS macroscópicos Cubillos et al. (199	
		11,5	EMS macroscópicos	Aranís <i>et al</i> . (2005)
18,442	-1,644	11,2	Histología	Cubillos et al. (2009)

Tabla 17. Parámetros para la ojiva de madurez de sardina común, reportado por varios autores.

Figura 25. Talla media a la edad estimada en las claves talla-edad de las capturas para el período 2001-2015 (TMM= talla media de madurez y TR=Talla media de reclutamiento) y Ojiva de madurez a la edad de sardina común.

Mortalidad natural (M)

Respecto de las estimaciones de tasas de mortalidad natural de este recurso, Canales *et al.* (2007) realiza una revisión de las estimaciones indirectas de M y cuyos límites están entre M=0,85 año⁻¹ (Cubillos & Arancibia 1993) y M=1,2 año⁻¹ (Barría 2001) (**Tabla 18**).

Para propósitos de evaluación de stock se había estado empleando 1,2 como valor de referencia constante de M entre años y edades. Al respecto, en el reporte de la revisión por pares de sardina común se sugiere utilizar un rango de valores fijos de M, ampliando el rango de estimaciones directas y el valor estimado a partir del modelo y de esta forma crear un caso base de un set integrado de posibles valores de M. Por consiguiente, se probaron tres escenarios con M=1,2 año-1, M=0,85 año-1, M=1,0 año-1 y M=estimado por el modelo. En base a estos resultados, se está trabajando con el valor aproximado de M=1,0 año-1 para el caso base actual el cual representa una condición intermedia entre los escenarios analizados y un menor impacto a nivel de CBA.

Tabla 18. Estimaciones de mortalidad natural para la sardina común centro-sur (Canales et al. 2007).

Área	Método	$M (a \tilde{n} o^{-1})$	Datos	Referencia
Talcahuano	Pauly (1980)	0,85	1990-1991	Cubillos & Arancibia (1993)
VIII Región	Average of several methods	1,30	1990-1993	Cubillos <i>et al</i> . (1994)
Talcahuano	Average weighted	0,96 [0,71 - 1,3]	1990-1997	Cubillos <i>et al</i> . (1998)
Talcahuano	Hoening (1983)	1,2 [0,50 - 2,39]		Barría <i>et al</i> . (2001)

4.1.2. Diagnóstico del modelo de evaluación de stock

Ajuste del modelo a los datos y análisis de residuos

Los índices de abundancia de los cruceros acústicos de verano y otoño contienen un importante nivel de variabilidad que se resume en la amplitud de los intervalos de confianza supuestos con coeficiente de variación cv=0,3. El modelo reproduce la tendencia general de la variabilidad en los niveles de biomasa que han presentado las estimaciones de cruceros, siendo los valores más altos los que se escapan del ajuste, lo cual es consistente con la distribución de probabilidades empleada log-normal que considera sesgo positivo en su distribución. La **Figura 26** muestra que a partir del 2014 el modelo ajusta muy bien la señal de los cruceros acústicos de verano y otoño.

Se destaca que mientras por una parte los residuales del modelo no sugieren tendencias, es decir, la varianza residual es relativamente constante y homogénea entre años, el diagrama QQ indica que en términos generales la linealidad en la escala log se verifica en todos los índices. Sin perjuicio de esto, la serie de cruceros de verano son los que tienen mayor variabilidad y lejanía relativa respecto de la línea esperada (**Figura 27**). Los datos observados de captura (desembarques) se asumen insesgados y precisos con un CV de residuos de 0,01 lo cual se refleja en un buen ajuste del modelo a los datos observados.

Figura 26. Ajustes del modelo anual en edades a los valores de biomasas de cruceros de verano, otoño y desembarques. Las barras corresponden al intervalo de confianza asintótico y el círculo al valor del estimador central. Los años de la serie de desembarques corresponden a año biológico.

Figura 27. Residuales (escala log) del ajuste del modelo base actual a los datos observados.

Composición de edad

El ajuste del modelo a la información de composición de edades en general presenta un buen desempeño, particularmente en representar de mejor forma la composición de edades de los cruceros de verano (**Figura 28, 29** y **30**). El supuesto de invariabilidad anual de los patrones de explotación como medida de parsimonia, genera algunos desajustes en las composiciones de edades de las capturas, principalmente al inicio de la serie histórica y grupo de edad 0.

Figura 28. Ajuste del modelo base a las composiciones de edades de la flota de sardina común de las Regiones de Valparaíso a Los Lagos. Los años corresponden a año biológico.

Figura 29. Ajuste del modelo base a las composiciones de edades de los Cruceros de verano de sardina común de las Regiones de Valparaíso a Los Lagos.

Figura 30. Ajuste del modelo base a las composiciones de edades de los Cruceros de otoño de sardina común de las Regiones de Valparaíso a Los Lagos.

El comportamiento de los residuales de las composiciones de edades de los cruceros sugiere ciertos patrones que se reflejan principalmente en una tendencia a la subestimación de los grupos de edad 0 en los cruceros de verano. Cabe señalar que en el modelo los datos de composición de edad de los cruceros de verano y otoño ingresan con un menor peso estadístico respecto de las composiciones de edades de las capturas de la flota (menor tamaño de muestra), situación que explicaría entonces una menor bondad de ajuste y por ende la existencia de tendencias en algunos residuales (**Figura 31**).

Figura 31. Residuales del modelo base actual a las composiciones de edades de la flota y cruceros. Subestimaciones (círculos negros) y sobreestimaciones (circulo blanco), donde el tamaño corresponde a la magnitud relativa de error por edad.

Comparación con evaluaciones anteriores

Se comparan los resultados de los principales indicadores de estatus del modelo base actual (marzo 2021: MAE0321), con versiones anteriores (sept 2020, julio 2020, marzo 2020, sept 2019) para evaluar la consistencia de la evaluación presente (**Figura 32**). Al respecto, el análisis muestra mayor incertidumbre en los tres últimos años de las series, con una tendencia a subestimar los niveles de biomasa desovante y sobre-estimar los niveles de mortalidad por pesca, no obstante, las diferencias no son significativas.

Figura 32. Comparación con asesorías anteriores del reclutamiento, biomasa desovante y mortalidad por pesca $(Fa\|o^{-1})$ de la sardina común. Los años en el eje x corresponden a año biológico.

Análisis retrospectivo

En la **Figura 33** se muestra el patrón retrospectivo estándar y relativo de los reclutas, biomasa desovante y de la mortalidad por pesca de sardina común para el caso base de marzo 2021 (MAE0321). El análisis retrospectivo del modelo de evaluación muestra que en términos de rho (promedio de anomalías retrospectivas) la reducción de información genera un patrón de subestimación de los reclutas y de la biomasa desovante (rho = -0,08 y rho = -0,01, respectivamente), con una sobreestimación de la mortalidad por pesca (rho = +0,04). En general, los últimos años de las series pueden variar sustancialmente entre las sucesivas actualizaciones, mientras que hacia los primeros años tienden a converger a valores estables. La varianza estadística de las variables utilizadas para medidas de manejo tiende a aumentar en los últimos años de la serie, por lo tanto, son considerados estimaciones menos confiables.

Figura 33. Patrón retrospectivo estándar (panel izquierdo) y relativo (panel derecho) de los reclutamientos, biomasa desovante y de la mortalidad por pesca de sardina común centro-sur para el modelo base actual. Los años en el eje x corresponden a año biológico.

Perfil de verosimilitud

La **Figura 34** muestra el perfil de verosimilitud realizado para la asesoría de marzo 2021 de cada fuente de dato cuyo mínimo representa la estimación máxima a posteriori del reclutamiento medio (R_0) para cada fuente de error del caso base. El perfil muestran que los datos cuyos perfiles estuvieron más próximos entre si y la diferencia del log verosimilitud respecto del mínimo se elevó por sobre el criterio estadístico $X^2=1,92$ fueron la biomasa acústica de verano (Reclas), la proporción de edad del crucero de verano (propRecl). Mientras que, el dato proveniente de los cruceros acústicos de otoño no estaría aportando información relevante para la definición del reclutamiento medio.

Figura 34. Perfiles de verosimilitud donde la línea horizontal representa el nivel crítico para el test χ^2 .

4.2. Objetivo específico 2:

"Establecer el estatus actualizado de sardina común, sobre la base de sus principales indicadores estandarizados de estado y flujo, propagando para estos efectos todas las fuentes de incertidumbre subyacente a la pesquería."

4.2.1. Indicadores del stock

Reclutamientos:

Las tendencias de los reclutamientos han mostrado importantes fluctuaciones interanuales y en su historia conocida se aprecian tres períodos relevantes, a) Reclutamiento promedio del período 1991-2007 con los niveles más bajos de reclutamientos (113 mil millones de peces), b) Reclutamiento promedio del período 2008-2012 con los más altos niveles de reclutamiento (405 mil millones de peces) y c) Reclutamiento promedio del período 2013-2021 en torno a 180 mil millones de peces. En relación a los tres períodos relevantes, el reclutamiento 2021 es un 128 % mayor al Reclutamiento bajo (período 1991-2007), un 36 % menor al Reclutamiento alto (período 2008-2012) y un 43 % mayor al Reclutamiento medio (2013-2021) (**Tabla ??** y **Figura 35**).

Biomasa total y desovante:

La biomasa total de este recurso, es sustentada esencialmente en los grupos de edad 0 y 1 año. En general, los grupos de edad 2+ no revisten mayor contribución en la producción tanto a nivel de desove como de biomasa disponible a la flota. La tendencia de la biomasa total muestra un importante crecimiento a partir del año 2008 que genera un cambio de nivel que se mantiene hasta el 2018. Sin embargo, presenta una alta variabilidad producto de las fluctuaciones del reclutamiento. El promedio de la biomasa total para el período de mayor productividad de sardina común entre los años 2008 y 2012 es de 2,65 millones de toneladas. Para el año 2021 se estimó una biomasa total de 1,78 millones de toneladas, un 33 % menor al promedio del período de mayor productividad y un 10 % mayor al promedio histórico de la serie (promedio 1991-2021 = 1,62 millones de t.) (Tabla ?? y Figura 35). Por otro lado, la biomasa desovante promedio de la serie histórica se encuentra en torno a 702 mil toneladas, mientras que el promedio de los 8 años previos (período 2013-2020) de la serie es de 1,01 millones de toneladas. Al respecto, la biomasa desovante esperada para el año biológico 2020/2021 es un 39 % menor al promedio histórico y un 58 % menor al promedio de los 8 años previos (período 2013-2020) (Tabla ?? y Figura 35). La biomasa desovante al Máximo Rendimiento Sostenido (BD_{RMS}) está en torno a las 801 mil toneladas, de esta forma la BD_{2020/2021} esperada está un 46 % bajo BD_{RMS} (Tabla 21 y 22 y Figura 35). La biomasa desovante está sustentada principalente por la fracción adulta, correspondiente a individuos de edad 1+, la cual disminuyó su abundancia producto de la disminución del reclutamiento de dos años previos consecutivos 2019 y 2020 junto a la disminución de la biomasa adulta (1+ años) el 2020, provocando que la biomasa desovante del año biológico 2020-21 se reduzca significativamente respecto a años previos.

Mortalidad por pesca:

La mortalidad por pesca (Ft) ha sido más bien baja, en general menor a la mortalidad natural (M=1,0 año⁻¹), excepto para el año 2004 cuando los niveles de biomasa eran bajos. Esto se ve reflejado en las capturas, que, en promedio, han seguido las fluctuaciones en biomasa con tasas de explotación moderadas (**Tabla ??** y **Figura 35**). A partir del año 2005, la mortalidad por pesca ha seguido una tendencia al descenso, acentuada desde el año 2013 bajo el valor de F_{RMS} producto de la aplicación de F60 %. Para el año 2020/2021 se

estima una Ft=0.18 año⁻¹, un 39 % bajo F_{RMS} , no obstante, este valor se debe considerar preliminar ya que está basado en un supuesto de captura 2020/21 (**Tabla 21** y **22** y **Figura 35**).

Selectividades:

Por su parte, las selectividades de la flota y cruceros de otoño indican que el recurso alcanza su completo reclutamiento a la pesquería a la edad de 1 año cuando su retención es del 100 % aprox., mientras que los individuos de edad 0 (reclutamientos) son vulnerados entre 70 % (flota) y 84 % (crucero de otoño). De igual forma, la información del crucero acústico de verano indica que todos los individuos son vulnerables en un 100 % por el arte de pesca empleado (arrastre de media-agua y cubre-copo) y cubiertos por el diseño de muestreo (**Figura 36**).

Figura 35. Estimaciones medias de los reclutamientos, biomasa total, biomasa desovante y mortalidad por pesca y su respectivo Intervalo de Confianza (IC). Las línea segmentada corresponde al promedio y mediana de la serie respectiva. Los años en el eje x corresponden a año biológico.

Tabla 19. Comparación de las variables poblacionales estimadas en la evaluación de septiembre 2020, marzo y julio 2021 de sardina común de las Regiones de Valparaíso a Los Lagos.

Año	BD_{sept}	BD_{mar}	BD_{jul}	BT_{sept}	BT_{mar}	BT_{jul}
1990/91	2.008.700	2.030.000		2.844.200	287.0400	
1991/92	1.344.500	1.358.500		1.949.500	196.6700	
1992/93	645.250	652.550		955.290	964.360	
1993/94	358.150	362.070		902.180	909.000	
1994/95	390.940	395.090		761.620	767.170	
1995/96	469.770	473.120		151.8000	151.7100	
1996/97	648.700	647.450		1.080.200	1.077.600	
1997/98	348.370	346.010		746.840	741.130	
1998/99	314.830	311.640		653.870	646.260	
1999/00	198.580	194.090		475.590	465.230	
2000/01	123.590	118.470		457.800	444.970	
2001/02	254.560	246.340		725.490	713.020	
2002/03	272.510	264.590		766.550	753.550	
2003/04	221.470	215.090		773.620	767.100	
2004/05	132.870	130.190		629.360	626.840	
2005/06	167.690	166.450		1.310.300	1.299.600	
2006/07	621.470	612.730		1.074.400	1.058.400	
2007/08	546.580	533.910		3.087.000	3.029.800	
2008/09	1.263.800	123.0300		2.846.100	2.794.700	
2009/10	894.040	867.720		1.877.000	1.828.600	
2010/11	974.810	936.800		3.000.800	2.926.400	
2011/12	1.189.500	1.147.700		2.747.600	2.690.600	
2012/13	1.116.600	1.088.100		1.869.900	1.824.500	
2013/14	883.910	857.790		3.164.100	3.096.700	
2014/15	1.284.500	1.250.400		2.252.000	2.202.700	
2015/16	1.047.700	1.021.300		1.916.400	1.876.300	
2016/17	851.980	831.090		2.728.000	2.663.200	
2017/18	934.650	907.150		2.809.100	2.763.000	
2018/19	1.331.300	130.7200		1.841.000	1.811.000	
2019/20	849.310	832.960		1.333.000	1.305.400	
2020/21	NA	430.060		NA	1.782.600	

Tabla 20. Comparación de las variables poblacionales estimadas en la evaluación de septiembre 2020, marzo y julio 2021 de sardina común de las Regiones de Valparaíso a Los Lagos.

Año	R_{sept}	R_{mar}	R_{jul}	F_{sept}	F_{mar}	F_{jul}
1990/91	169.670	170.120		0,209	0,207	
1991/92	93.768	94.041		0,386	0,382	
1992/93	94.409	94.707		0,379	0,375	
1993/94	142.470	143.180		0,576	0,57	
1994/95	115.500	115.760		0,192	0,19	
1995/96	212.650	211.490		0,347	0,347	
1996/97	83.311	82.828		0,8	0,803	
1997/98	35.378	35.062		0,137	0,138	
1998/99	34.847	34.292		0,547	0,555	
1999/00	47.251	46.073		0,764	0,786	
2000/01	88.252	86.319		0,167	0,172	
2001/02	126.940	126.130		0,671	0,686	
2002/03	105.990	105.110		0,63	0,643	
2003/04	73.689	73.955		1,104	1,12	
2004/05	67.496	67.638		0,809	0,813	
2005/06	364.340	361.230		0,631	0,636	
2006/07	72.290	70.839		0,412	0,419	
2007/08	586.530	576.230		0,389	0,397	
2008/09	332.590	329.460		0,545	0,557	
2009/10	275.020	268.470		0,494	0,509	
2010/11	364.240	358.290		0,386	0,398	
2011/12	495.590	492.960		0,493	0,504	
2012/13	97.434	95.115		0,296	0,303	
2013/14	289.240	284.180		0,263	0,269	
2014/15	243.240	240.020		0,262	0,268	
2015/16	107.500	106.000		0,212	0,217	
2016/17	244.410	238.570		0,258	0,264	
2017/18	270.150	267.990		0,213	0,216	
2018/19	75.649	75.099		0,207	0,21	
2019/20	58.067	56.309		0,319	0,326	
2020/21	NA	257.750		NA	0,183	

4.2.2. Puntos Biológicos de Referencia (PBRs)

En la **Tabla 21** se muestran los valores calculados en la asesoría de septiembre 2020 y marzo 2021 de BD₀, BD_{RMS}, BD_{LIM} y F_{RMS},recomendados por el Comité Científico Técnicos de Pelágicos Pequeños (Informe Técnico CCT-PP N°01/2015) de acuerdo con la metodología discutida durante el segundo taller (Abril, 2014) y tercer taller (Agosto, 2014) de PBRs (Payá *et al.* 2014). El valor mediano de la mortalidad por pesca experimentado históricamente (F_{mh}) por el stock de sardina común centro-sur cercano a F53 %BDPR un porcentaje bajo considerando los altos niveles de mortalidad por pesca que ha experimentado el stock (bajo el valor de mortalidad natural, M=1,0 año⁻¹) (**Figura 37**). Esto podría explicarse por la ubicación de la curva de selectividad respecto a la madurez, donde la selectividad se encuentra a la izquierda de la curva de madurez, producto de que la pesquería presenta una alta selección de juveniles, de manera que

Figura 36. Patrón de explotación o selectividad de la flota y de los cruceros acústicos de sardina común de las Regiones de Valparaíso a Los Lagos.

la selectividad de la flota comienza antes de la madurez (**Figura 38**). Esta condición produciría valores de F60 % más moderados, que aumentaría si la selectividad fuese igual a la madurez.

Tabla 21. Puntos Biológicos de Referencia de biomasa (miles t) estimada en la asesoría de septiembre 2020, marzo y julio 2021 para sardina común, calculados siguiendo los pasos descritos en la metodología de este informe.

Etapas	Cálculo	Aproximación	Sept 2020	Marzo 2021	Julio 2021
	Promedio de la serie histórica entre	$BD_{promedio}$	723 mil t	702 mil t.	
Paso 1	1991-2020 de la evaluación de stock				
	Mediana de la serie histórica entre	F_{mh}	0.39	0.38	
	1991-2020 de la evaluación de stock				
Paso 2	Cálculo de la curva de biomasa	$\%BDPR(F_{mh})$	52.5 %	52.9%	
	por recluta (BDPR)	$\%BDPR(F_{RMS})$	60%	60 %	
Paso 3	$\%BDPR(F_{mh}) - 5\%$	$\%BD(F_{mh})$	47.5%	47.9%	
	$\%BDPR(F_{RMS}) - 5\%$	$\%BD(F_{RMS})$	55%	55 %	
Paso 4	$BD_0 = BD_{promedio} / \% BD_{Fmh}$	BD_0	1.51 millón de t	1.46 millón t.	
Paso 5	$BD_{RMS} = BD_0 * \%BD(F_{RMS})$	BD _{55 %}	830 mil t	801 mil t.	
Paso 6	$BD_{LIM} = BD_0 * \%BD(F_{LIM})$	$BD_{27,5\%}$	415 mil t	401 mil t.	

4.2.3. Estado de explotación

La **Figura 39** muestra que en el inicio de la serie histórica la biomasa indicaría una caída BD<BD_{RMS} entre los años 1994 y 1995 producto probablemente de fallas sucesivas en los reclutamientos. El estado de la pesquería de sardina común durante los años 1998 y 2006 estuvo marcado por condiciones ambientales "El Niño" 1997-1998, provocando la caída hacia niveles inferiores de la biomasa desovante límite (BD_{LIM}) bajo el cual una pesquería califica de agotada o colapsada. A partir del 2007 comienza un período favorable para la condición de sardina común, ingresando a un proceso de expansión poblacional que permite el año

Figura 37. Series de Biomasa desovante y mortalidad por pesca junto a los PBRs calculados a partir de la BD promedio y mediana de F (Fmh). Los años en el eje x corresponden a año biológico.

Figura 38. Madurez, selectividad (Panel izquierdo) y Curva de Biomasa por Recluta (%BDPR) (Panel derecho), utilizados en los cálculos de F_{RMS} .

2009 desplazarse hacia un nivel de biomasa desovante superior al BD_{RMS} . En la evaluación actual (marzo 2021) la $BD_{2020/2021}$ esperada está un 46 % bajo BD_{RMS} (**Figura 39**). Dado que la biomasa desovante se sustenta principalmente por la fracción adulta de individuos (edad 1+), cuya abundancia disminuyó producto de bajos reclutamientos ocurridos por dos años consecutivos (2019 - 2020), la biomasa desovante del año biológico 2020/21 se redujo significativamente respecto de años previos, posicionándola en una condición desfavorable por debajo del objetivo de manejo.

En términos de la mortalidad por pesca (Ft año $^{-1}$), ésta se había mantenido por sobre el nivel objetivo de referencia F_{RMS} en prácticamente toda la serie histórica analizada producto de la alta selección de juveniles capturados antes de que estos maduren (**Figura 39**). La alta selectividad de juveniles conlleva a un valor de F_{RMS} (F60 %BDPR) más moderado que una selectividad cercana o por sobre la ojiva de madurez. A partir del año 2013 los niveles de Ft se han mantenido bajo el nivel de referencia generado posiblemente por las caídas de los reclutamientos en algunos años y las bajas CBAs recomendadas luego de la implementación de los PBRs. Con respecto a la razón entre $F_{2020/21}$ y F_{RMS} fue de 0.61, siendo un 39 % menor a F_{RMS} , no obstante, este valor se debe considerar preliminar ya que está basado en un supuesto de captura 2020/21 (**Figura 39**).

La condición estimada con información preliminar para el año 2020/2021 indica que la sardina común se encuentra en sobreexplotación (46 % bajo BD_{RMS} y 39 % bajo F_{RMS}), con un 38 % de probabilidad de colapso y sin riesgo de sobrepesca (**Tabla 22** y **Figura 40**).

Figura 39. a) Razón BD/BD_{RMS} , b) la distribución de probabilidad de BD_{last}/BD_{RMS} , c) razón F/F_{RMS} y d) la distribución de probabilidad F_{last}/F_{RMS} . Los años en el eje x corresponden a año biológico.

Tabla 22. Comparación de los índices de reducción de F respecto de F_{RMS} (F/F_{RMS}), BD respecto de BD_{RMS} (BD/BD_{RMS}) estimados en la asesoría de septiembre 2020, marzo y julio 2021 de sardina común de las Regiones de Valparaíso a Los Lagos.

Año	$F/F_{RMS_{sept}}$	$F/F_{RMS_{max}}$	$F/F_{RMS_{jul}}$	$BD/BD_{RMS_{sept}}$	$BD/BD_{RMS_{max}}$	$BD/BD_{RMS_{jul}}$
1990/91	0,7	0,693		2,419	2,534	
1991/92	1,293	1,279		1,619	1,696	
1992/93	1,27	1,256		0,777	0,815	
1993/94	1,931	1,911		0,431	0,452	
1994/95	0,643	0,637		0,471	0,493	
1995/96	1,164	1,161		0,566	0,591	
1996/97	2,682	2,689		0,781	0,808	
1997/98	0,461	0,464		0,42	0,432	
1998/99	1,835	1,859		0,379	0,389	
1999/00	2,561	2,632		0,239	0,242	
2000/01	0,56	0,576		0,149	0,148	
2001/02	2,249	2,299		0,307	0,308	
2002/03	2,111	2,155		0,328	0,33	
2003/04	3,701	3,751		0,267	0,269	
2004/05	2,713	2,724		0,16	0,163	
2005/06	2,116	2,131		0,202	0,208	
2006/07	1,383	1,405		0,748	0,765	
2007/08	1,305	1,331		0,658	0,667	
2008/09	1,825	1,865		1,522	1,536	
2009/10	1,657	1,707		1,077	1,083	
2010/11	1,295	1,335		1,174	1,17	
2011/12	1,651	1,688		1,433	1,433	
2012/13	0,991	1,016		1,345	1,358	
2013/14	0,881	0,901		1,065	1,071	
2014/15	0,878	0,898		1,547	1,561	
2015/16	0,71	0,726		1,262	1,275	
2016/17	0,865	0,886		1,026	1,038	
2017/18	0,713	0,725		1,126	1,133	
2018/19	0,693	0,705		1,603	1,632	
2019/20	1,068	1,091		1,023	1,04	
2020/21	NA	0,613		NA	0,537	

Tabla 23. Comparación de las tasas de explotación anual referidos a la biomasa (Y/BT) y a la abundancia estimada (C#/N#), estimadas en la evaluación de septiembre 2020, marzo y julio 2021 de sardina común de las Regiones de Valparaíso a Los Lagos.

Año	Y/BT_{sept}	Y/BT_{mar} Y/BT_{jul}	$C\#/N\#_{sept}$	$C\#/N\#_{max}$ C	$C\#/N\#_{jul}$
1990/91	0,174	0,172	0,102	0,101	
1991/92	0,264	0,261	0,179	0,178	
1992/93	0,262	0,26	0,169	0,167	
1993/94	0,398	0,395	0,232	0,23	
1994/95	0,158	0,157	0,088	0,088	
1995/96	0,238	0,238	0,148	0,149	
1996/97	0,512	0,513	0,323	0,324	
1997/98	0,099	0,1	0,069	0,069	
1998/99	0,326	0,33	0,233	0,236	
1999/00	0,432	0,442	0,291	0,298	
2000/01	0,115	0,118	0,074	0,076	
2001/02	0,438	0,445	0,261	0,266	
2002/03	0,383	0,39	0,252	0,256	
2003/04	0,501	0,505	0,39	0,394	
2004/05	0,401	0,403	0,302	0,304	
2005/06	0,394	0,397	0,237	0,239	
2006/07	0,334	0,339	0,193	0,196	
2007/08	0,24	0,245	0,158	0,161	
2008/09	0,331	0,337	0,229	0,234	
2009/10	0,334	0,343	0,209	0,215	
2010/11	0,276	0,283	0,164	0,169	
2011/12	0,313	0,319	0,202	0,206	
2012/13	0,224	0,229	0,147	0,15	
2013/14	0,165	0,168	0,116	0,119	
2014/15	0,185	0,189	0,119	0,122	
2015/16	0,157	0,16	0,104	0,107	
2016/17	0,149	0,153	0,114	0,117	
2017/18	0,127	0,129	0,097	0,098	
2018/19	0,174	0,176	0,105	0,107	
2019/20	0,217	0,222	0,152	0,155	
2020/21	NA	0,123	NA	0,08	

Tabla 24. Puntos Biológicos de referencia (PBRs) y probabilidades de estar bajo BD_{RMS} y sobre F_{RMS} y en sobreexplotación, colapsado o sobrepesca.

	Septiembre 2020	Marzo 2021	Julio 2021
Año biológico	2019/20	2020/21	2020/21
F_{RMS}	0,3	0,3	
BD_{RMS}	830 mil t	801 mil t	
BD_{LIM}	415 mil t	401 mil t	
$p(BD_{last} < BD_{RMS})$	0,45	1	
$p(F_{last} > F_{RMS})$	0,6	0,02	
$p(sobre - explotaci\'{o}n)$	0,26	1	
p(agotado/colapsado)	0	0,38	
p(sobrepesca)	0,45	0	

 $[\]qquad \qquad p(BD_{last} < BD_{RMS}) = \text{Probabilidad de que BD del año más reciente sea menor a } BD_{RMS}$

[•] $p(F_{last} > F_{RMS})$ = Probabilidad que la Ft del año más reciente sea menor a F_{RMS}

[■] Probabilidad de estar en sobreexplotación = $p(BD_{last} < 0, 9BD_{RMS})$

 $[\]qquad \text{Probabilidad de estar en colapso} = p(BD_{last} < BD_{LIM})$

[■] Probabilidad de estar en sobrepesca = $p(F_{last} > 1, 1F_{RMS})$

Figura 40. Diagrama de fases de explotación de la biomasa desovante respecto de la mortalidad por pesca de la asesoría de septiembre 2020 y marzo 2021 (panel superior) y julio 2021 (panel inferior). Los ejes están estandarizados a los valores que generan el RMS proxy. Cruz azul corresponde a los intervalos de confianza de la razón BD/BD_{RMS} y F/F_{RMS} . El año con cruz continua corresponde a "*Estatus completo*" y la cruz con línea discontinua a "*Estatus preliminar*".

4.3. Objetivo específico 3:

"Determinar niveles de Captura Biológicamente Aceptable (CBA) que lleven y/o mantenga la pesquería en torno al Rendimiento Máximo Sostenible (RMS), a partir de un análisis de riesgo en condiciones de incertidumbre de no alcanzar los objetivos de conservación y sostenibilidad conforme lo establece la LGPA y contenidos en el Plan de Manejo y/o en el Programa de Recuperación respectivo, según corresponda."

CBA 2021 Inicial (Asesoría de septiembre 2020)

Para el cálculo CBA 2021 se proyectó la población 2 años biológicos hacia el futuro (julio2020-junio2021 y julio2021-junio2022) en base a tres escenarios de reclutamiento: a) un escenario desfavorable que consiste en el reclutamiento promedio del período 1991-2007 (113 mil millones de ind.), b) un escenario favorable que corresponde al promedio de los reclutamientos del período 2008 - 2012 (411 mil millones de ind.) y un escenario que representa el período reciente entre el 2013-2020 (173 mil millones de ind.) (**Figura 41**).

Figura 41. Escenarios de reclutamiento proyectado asesoría de septiembre 2020.

El cálculo de la CBA inicial para el año calendario 2021 se obtiene como el promedio ponderado según la estacionalidad semestral de la pesquería que a la fecha se asume 70 % para el primer semestre y 30 % para el segundo semestre, bajo un criterio de explotación de F60 %SPR, sujeto a percentiles de probabilidad entre el 10 % y 50 %.

La **Tabla 25** muestra los rangos de capturas para el año 2021 estimada bajo un escenario de Rprom(1991-2007) podría situarse entre 195 mil t. y 250 mil t. y bajo un escenario de Rprom(2008-2012) entre 353 mil t. y 448 mil t. y bajo un escenario de Rprom(2013-2020) entre 223 mil t. y 301 mil t.

Para evaluar el efecto que tiene la decisión de la CBA en base a los percentiles (10 %-50 %) que en general son menores a la captura al RMS (percentil del 50 %), se calculó el resguardo a lo cual equivale cada percentil (**Tabla 26**). Esos niveles variaron entre un 5 % para un percentil del 40 % a un 22 % en promedio, considerando un percentil de probabilidad del 10 % para los tres escenarios de reclutamiento.

Considerando que no se cuenta con el % de descarte actualizado al 2020, para la asesoría de septiembre

2020 se muestran 2 escenarios de descarte, la Tabla 27 muestra los rangos de captura menos el 2% correspondiente al descarte 2017 y la Tabla 28 muestra los rangos de captura con el descuento del 6 % (descarte 2019).

En la secta sesión del CCT-PP 2020 (Acta de Sesión №6, octubre 2020 6.) se recomendó una CBA máxima 2021 de 201.409 toneladas correspondiente al escenario de reclutamiento promedio bajo (1991-2007), 20 % de percentil de captura (equivalente a un 14 % resguardo) y el descuento del 6 % de descarte (Tabla 28).

Tabla 25. CBA inicial 2021 de sardina común calculada bajo F_{RMS} , con sus respectivos percentiles de captura entre 10 % y 50 % y tres escenarios de reclutamientos.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
mean	250.260	447.840	300.810
sd	42.769	73.667	60.397
10%	195.449	353.432	223.408
20 %	214.265	385.840	249.979
30 %	227.832	409.209	269.138
40 %	239.425	429.177	285.509
50%	250.260	447.840	300.810

Tabla 26. Reguardo de la Captura al RMS.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50 %			

Tabla 27. CBA inicial 2021 menos el 2 %descarte.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50%			

Tabla 28. CBA inicial 2021 menos el 6 %descarte.*CBA máxima recomendada por el CCT-PP = 201.409 t.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			_

⁶https://www.subpesca.cl/portal/616/articles-108975_documento.pdf

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
20%			
30 %			
40 %			
50 %			

Primera revisión CBA 2021 (Asesoría de marzo 2021)

Para el cálculo CBA 2021 se proyectó la población 1 año biológico hacia el futuro (julio2021-junio2022) en base a tres escenarios de reclutamiento: a) un escenario desfavorable que consiste en el reclutamiento promedio del período 1991-2007 (113 mil millones de ind.), b) un escenario favorable que corresponde al promedio de los reclutamientos del período 2008 - 2012 (405 mil millones de ind.) y un escenario que representa el período reciente entre el 2013-2021 (180 mil millones de ind.) (**Figura 42**).

Figura 42. Escenarios de reclutamiento proyectado asesoría de marzo 2021.

El cálculo de la primera revisión de la CBA para el año calendario 2021 se obtiene como el promedio ponderado según la estacionalidad semestral de la pesquería que a la fecha se asume 70 % para el primer semestre y 30 % para el segundo semestre, bajo un criterio de explotación de F60 %SPR, sujeto a percentiles de probabilidad de captura entre el 10 % y 50 %.

La **Tabla 29** muestra los rangos de capturas para el año 2021 estimada bajo un escenario de Rprom(1990-2007) podría situarse entre 234 mil t. y 272 mil t. y bajo un escenario de Rprom(2008-2012) entre 269 mil t. y 313 mil t. y bajo un escenario de Rprom(2013-2021) entre 236 mil t. y 279 mil t.

Para evaluar el efecto que tiene la decisión de la CBA en base a los percentiles (10 %-50 %) que en general son menores a la captura al RMS (percentil del 50 %), se calculó el resguardo a lo cual equivale cada percentil (**Tabla 30**). Esos niveles variaron entre un 3 % para un percentil del 40 % a un 14 % en promedio, considerando un percentil de probabilidad del 10 % para los tres escenarios de reclutamiento.

En la primera sesión del CCT-PP 2021 (febrero 2021) se acordó utilizar un 4 % de descarte para el supuesto de descarte proyectado de sardina común, en base a esto, la **Tabla 31** muestra los rangos de captura menos el 4 % de descarte. La **Tabla 32** muestra las diferencias porcentuales entre la CBA inicial menos el 6 % de descarte y la primera revisión de CBA 2012 menos el 4 %.

Tabla 29. Primera revisión de CBA 2021 de sardina común calculada bajo F_{RMS} , con sus respectivos percentiles de captura entre 10 % y 50 % y tres escenarios de reclutamientos.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50 %			

Tabla 30. Reguardo de la Captura al RMS.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40 %			
50%			

Tabla 31. CBA 2021 menos el 4 %descarte.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50%			

Tabla 32. Diferencia porcentuales entre la CBA inicial menos el 6 %descarte y la primera revisión de CBA 2021 menos el 4 %descarte. (1-(1erarevisiónCBA/CBAinicial)*100)

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50%			

Segunda revisión CBA 2021 (Asesoría de julio 2021)

Para el cálculo CBA 2021 se proyectó la población 1 año biológico hacia el futuro (julio2021-junio2022) en base a tres escenarios de reclutamiento: a) un escenario desfavorable que consiste en el reclutamiento promedio del período 1991-2007 (113 mil millones de ind.), b) un escenario favorable que corresponde al promedio de los reclutamientos del período 2008 - 2012 (405 mil millones de ind.) y un escenario que representa el período reciente entre el 2013-2021 (180 mil millones de ind.) (**Figura 43**).

Figura 43. Escenarios de reclutamiento proyectado asesoría de julio 2021.

El cálculo de la primera revisión de la CBA para el año calendario 2021 se obtiene como el promedio ponderado según la estacionalidad semestral de la pesquería que a la fecha se asume 70 % para el primer semestre y 30 % para el segundo semestre, bajo un criterio de explotación de F60 %SPR, sujeto a percentiles de probabilidad de captura entre el 10 % y 50 %.

La **Tabla 33** muestra los rangos de capturas para el año 2021 estimada bajo un escenario de Rprom(1990-2007) podría situarse entre 234 mil t. y 272 mil t. y bajo un escenario de Rprom(2008-2012) entre 269 mil t. y 313 mil t. y bajo un escenario de Rprom(2013-2021) entre 236 mil t. y 279 mil t.

Para evaluar el efecto que tiene la decisión de la CBA en base a los percentiles (10 %-50 %) que en general son menores a la captura al RMS (percentil del 50 %), se calculó el resguardo a lo cual equivale cada percentil (**Tabla 34**). Esos niveles variaron entre un 3 % para un percentil del 40 % a un 14 % en promedio, considerando un percentil de probabilidad del 10 % para los tres escenarios de reclutamiento.

En la primera sesión del CCT-PP 2021 (febrero 2021) se acordó utilizar un 4 % de descarte para el supuesto de descarte proyectado de sardina común, en base a esto, la **Tabla 35** muestra los rangos de captura menos el 4 % de descarte. La **Tabla 36** muestra las diferencias porcentuales entre la CBA inicial menos el 6 % de descarte y la primera revisión de CBA 2012 menos el 4 %.

Tabla 33. Segunda revisión de CBA 2021 de sardina común calculada bajo F_{RMS} , con sus respectivos percentiles de captura entre 10 % y 50 % y tres escenarios de reclutamientos.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50 %			

Tabla 34. Resguardo de la Captura al RMS.

$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
	$R_{1991-2007}$	$R_{1991-2007}$ $R_{2008-2012}$

Tabla 35. CBA 2021 menos el 4 %descarte.

	$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
10%			
20%			
30%			
40%			
50%			

Tabla 36. Diferencia porcentuales entre la CBA inicial menos el 6 %descarte y la primera revisión de CBA 2021 menos el 4 %descarte. (1-(1erarevisiónCBA/CBAinicial)*100)

$R_{1991-2007}$	$R_{2008-2012}$	$R_{2013-2020}$
	$R_{1991-2007}$	$R_{1991-2007}$ $R_{2008-2012}$

4.3.2. Proyección del stock (Asesoría de septiembre 2020)

En relación al estatus 2020/21, se proyectó el stock bajo tres escenarios reclutamientos 2021 que representan los períodos más relevantes de la historia conocida de sardina común y con una mortalidad por pesca en torno al F_{RMS} (ponderadores de F_{RMS}). Al respecto, si bien la sardina se ha mantenido en una condición de plena-explotación a partir del 2013 a la fecha, la disminución del reclutamiento los años 2019 y 2020 junto a la disminución de la biomasa adulta (1+ años) el 2020 generan una alta probabilidad (100 %) de sobreexplotación y un 42 % de probabilidad de colapso de sardina común para el año 2020/21 (**Tabla 32**) independiente de los escenario de reclutamiento futuros y ponderadores de F_{RMS} (**Figura 44**). En base a esta proyección, era recomendable considerar un escenario de reclutamiento precautorio en torno al promedio del período de reclutamientos bajos (1991-2007) para la determinación de una captura 2021 biológicamente sustentable para sardina común a la espera de la actualización de marzo y julio 2021.

- p[BD<0,9BD_{RMS}] = probabilidad de sobre-explotación
- p[BD<0,5BD_{RMS}] = probabilidad de colapso

Tabla 32.

Incertidumbre del estatus previo 2018/19, actual 2019/20 y proyectado 2020/21 bajo tres escenarios de reclutamiento y ponderadores de F_{RMS} . Asesoría de septiembre 2020.

Figura 44. Diagramas de fases de explotación de la biomasa desovante respecto de la mortalidad por pesca mostrando el estatus de sardina común para el año previo 2018/19 (punto verde), año actual 2019/20 (punto y cruz naranjo) y año proyectado 2020/21 (punto rojo) bajo un escenario de reclutamiento promedio bajo [1991-2007] (panel superior), reclutamiento promedio alto [2008-2012] (panel intermedio), reclutamiento promedio reciente [2013-2020] (panel inferior) y ponderadores de F_{RMS} (1,0.9 y 0.7). **Asesoría de septiembre 2020**.

4.3.3. Proyección del stock (Asesoría de marzo 2021)

En relación al estatus 2020/21, en la asesoría previa (septiembre 2020) la proyección mostraba una alta probabilidad (100 %) de sobreexplotación y un 42 % de probabilidad de colapso de sardina común para el año 2020/21 producto de la disminución del reclutamiento los años 2019 y 2020 junto a la disminución de la biomasa adulta (1+ años) el 2020 independiente de los escenario de reclutamiento futuros y ponderadores de F_{RMS} (**Tabla 32 y Figuras 44**). La primera actualización del estatus 2020/21 con información del crucero de venaro 2021 (asesoría de marzo 2021) confirman una condición de sobreexplotación (100 % de probabilidad) y un 38 % de probabilidad de colapso (**Tabla 33**).

No obstante, dado los altos niveles de reclutamiento estimados para el 2021 en base a la actualización de la información de biomasa total y composición de edad del crucero de verano 2021 se proyecta una recuperación del estatus para el año biológico 2021/22, retornando a una condición de plena-explotación con un 26 % de probabilidad de sobre-explotación y un 3 % de probabilidad de colapso (**Tabla 33 y Figura 45**), independiente del escenario de reclutamiento proyectado.

Tabla 33.

Incertidumbre del estatus actual 2020/21 y proyectado 2021/22 bajo tres escenarios de reclutamiento y ponderadores de

■ p[BD<0,9BD_{RMS}] = probabilidad de sobre-explotación

■ $p[BD<0,5BD_{RMS}] = probabilidad de colapso$

 F_{RMS}

Figura 45. Diagramas de fases de explotación de la biomasa desovante respecto de la mortalidad por pesca mostrando el estatus de sardina común para el año previo 2019/20 (punto naranjo), año actual 2020/21 (punto y cruz rojo) y año proyectado 2021/22 (punto verde) bajo un escenario de reclutamiento promedio bajo [1991-2007] (panel superior), reclutamiento promedio alto [2008-2012] (panel intermedio), reclutamiento promedio reciente [2013-2021] (panel inferior) y ponderadores de F_{RMS} (1,0.9 y 0.7). **Asesoría de marzo 2021**. \vspace{0.5cm}

4.3.4. Proyección del stock (Asesoría de julio 2021)

En relación al estatus 2020/21, en la asesoría previa (septiembre 2020) la proyección mostraba una alta probabilidad (100 %) de sobreexplotación y un 42 % de probabilidad de colapso de sardina común para el año 2020/21 producto de la disminución del reclutamiento los años 2019 y 2020 junto a la disminución de la biomasa adulta (1+ años) el 2020 independiente de los escenario de reclutamiento futuros y ponderadores de F_{RMS} (**Tabla 32 y Figuras 44**). La primera actualización del estatus 2020/21 con información del crucero de venaro 2021 (asesoría de marzo 2021) confirman una condición de sobreexplotación (100 % de probabilidad) y un 38 % de probabilidad de colapso (**Tabla 33**).

No obstante, dado los altos niveles de reclutamiento estimados para el 2021 en base a la actualización de la información de biomasa total y composición de edad del crucero de verano 2021 se proyecta una recuperación del estatus para el año biológico 2021/22, retornando a una condición de plena-explotación con un 26 % de probabilidad de sobre-explotación y un 3 % de probabilidad de colapso (**Tabla 33 y Figura 45**), independiente del escenario de reclutamiento proyectado.

Tabla 33.

Incertidumbre del estatus actual 2020/21 y proyectado 2021/22 bajo tres escenarios de reclutamiento y ponderadores de

■ p[BD<0,9BD_{RMS}] = probabilidad de sobre-explotación

■ $p[BD<0,5BD_{RMS}] = probabilidad de colapso$

 F_{RMS}

Figura 45. Diagramas de fases de explotación de la biomasa desovante respecto de la mortalidad por pesca mostrando el estatus de sardina común para el año previo 2019/20 (punto naranjo), año actual 2020/21 (punto y cruz rojo) y año proyectado 2021/22 (punto verde) bajo un escenario de reclutamiento promedio bajo [1991-2007] (panel superior), reclutamiento promedio alto [2008-2012] (panel intermedio), reclutamiento promedio reciente [2013-2021] (panel inferior) y ponderadores de F_{RMS} (1,0.9 y 0.7). **Asesoría de julio 2021**. \vspace{0.5cm}

4.4. Objetivo específico 4:

"Informar el avance del Programa de Mejoramiento Continuo de la Calidad en la Asesoría Científica (PMCCAC) realizado durante el presente estudio, respecto al cumplimiento de recomendaciones formuladas en procesos de RPEI y priorizadas por el CCT, cuando corresponda."

5. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

El período de análisis del presente estudio (Asesoría de marzo 2021) comprende los años biológicos desde 1990/91 a 2020/21 con información del crucero de verano 2021 (composición de edad y biotasa total) y supuestos de captura, descarte, composición de edad y pesos medios de la flota. El porcentaje de descarte 2020/21 se asume igual al 4% (supuesto de proyección acordado en primera sesión del CCT-PP, febrero 2021). Una de las principales características del stock de sardina común es el comportamiento estacional de las capturas, donde cerca del 70% de la captura total anual se obtiene al primer semestre de cada año, con máximos entre marzo y abril. Esta estacionalidad es altamente influenciada por el pulso de reclutamiento de enero, observándose una fuerte relación entre la biomasa estimada por el crucero de enero y los desembarques. Al respecto, a partir del 2015 las biomasas acústicas de verano se mantuvieron en niveles en torno a los dos millones de toneladas, lo cual se ve reflejado también en una estabilidad en las capturas en torno a las 330 mil toneladas.

Las biomasas acústicas de otoño reflejan el efecto de la remoción ejercidas por la pesca y causas naturales, con biomasas en general menores a las estimadas en el crucero de verano en torno a 1,5 millones de toneladas. Saavedra *et al.* (2017) señalan que la tendencia histórica de los cruceros acústicos de otoño es a disminuir la abundancia y biomasa de sardina común respecto al crucero de verano y a aumentar la abundancia y biomasa de la anchoveta centro sur respecto al crucero de verano, consolidando la importancia del crucero de otoño para observar el reclutamiento de anchoveta por sobre el seguimiento del reclutamiento de sardina común.

Para el año 2020 se observa un cambio en las tendencias de las biomasas estimada por el crucero acústico de verano, otoño y capturas. La biomasa estimada en enero se redujo a un millón de toneladas (54 % menor al 2019), la estimada en mayo disminuye un 40 % respecto al 2019 y el desembarque registrado para el primer semestre 2020 se redujo un 19 % respecto del primer semestre 2019 y un 31 % respecto al 2018. A diciembre 2020 se registraron capturas en torno las 258.092 toneladas, equivalente a un 80 % de la CBA 2020 recomentada por el CCT_PP (321.307 toneladas). No obstante las disminuciones observadas en los indices de abundancia del año previo, para el año 2021 la biomasa estimada por el crucero acústico de enero retornó a los niveles en torno a los 2 millones de toneladas observados entre el 2013 al 2019 (2,36 millones de t.), incrementando un 125 % respecto a lo estimado para el año 2020. En relación a la captura 2020/21 se asume una reducción del 24 % respecto del año biológico 2019/20, no obstante la captura 2020/21 es un supuesto que debe ser actualizado en la asesoría de julio 2021 con datos de desembarque del primer semestre 2021. El modelo de evaluación de stock reproduce la tendencia general de los niveles de biomasa que han presentado las estimaciones de cruceros acústicos de verano y otoño, considerando que estos contienen un importante nivel de variabilidad interanual.

La pesquería de sardina común está sustentada sobre un 60 % por la abundancia del grupo de edad cero (GE 0). Los resultados del crucero de verano 2019 y 2020 presentan una disminución en los niveles de abundancia de la fracción recluta, de este modo, el estimado de biomasa del crucero de verano 2019 es sostenido principalmente por la fracción adulta (edad 1+). Mientras que para el 2020 disminuye la abundancia de 2 grupos de edad (edad 0 y 1), por lo tanto, la biomasa es sostenido por individuos de edad 2+. Esta disminución se confirma al actualizar la composición de edad de la flota y del crucero de otoño. Por lo tanto, la disminución de la biomasa 2020 estaría fuertemente relacionada a la reducción del número de individuos de los grupos de edad 0 y 1 principalmente. Mientras que el incremeto de la biomasa acústica 2021 estaría sostenida principalmente por la fracción recluta (94 % de individuos de edad 0).

El comportamiento de los residuales de los cruceros sugiere ciertos patrones que se reflejan principalmente

en una tendencia a la subestimación de los grupos de edad 0 en los cruceros de verano en el perído de mayor abundancia de sardina común (2009-2018). No obstante, para los dos años de bajos reclutamientos (2019 y 2020) este patrón cambia hacia una tendencia a sobre-estimar, producto de la reducción de los reclutas.

En relación a las tendencias de las variables poblacionales se observa que los reclutamientos han mostrado importantes fluctuaciones interanuales y en su historia conocida se aprecian tres períodos relevantes, a) Rprom(1991-2007) con los niveles más bajos de reclutamientos (113 mil millones de peces), b) Rprom(2008-2012) con los más altos niveles de reclutamiento (405 mil millones de peces) y c) Rprom(2013-2020) con reclutamientos medios en torno a 180 mil millones de peces. En relación a los tres períodos relevantes, el reclutamiento 2021 es un 128 % mayor al Rprom(1991-2007), un 36 % menor al Rprom(2008-2012) y un 43 % mayor al Rprom(2013-2021). El incremento del reclutamiento 2021 genera una recuperación en los niveles de biomasa total, encontrándose un 10 % sobre el promedio histórico de la serie (promedio 1991-2021 = 1,62 millones de t.). No obstante, producto de los bajos reclutamientos registrados durante los dos últimos años (2019 y 2020), junto a la disminución de la biomasa adulta (1+ años) el 2020, generaron una disminución significativa de la biomasa desovante esperada para el año biológico 2020/2021, siendo un 39% menor al promedio histórico y un 58% menor al promedio de los 8 años previos (período 2013-2020). Confirmándose, de este modo, el estatus 2020/21 proyectado en la asesoría de septiembre 2020 (Zúñiga et al., 2020). En consecuencia, la condición estimada en este estudio para el año 2020/2021 indica que la sardina común se encuentra en sobreexplotación (46 % bajo BD_{RMS} y 39 % bajo F_{RMS}), con un 38 % de probabilidad de colapso ysin riesgo de sobrepesca. Cabe recordar que la asesoría actual (marzo 2021) cuenta con información parcial de la flota, por lo tanto, el estatus debe ser actualizado nuevamente con información de la flota y crucero de otoño para contar con un "estatus completo" en la asesoría de julio 2021.

Adicionalmente, en este estudio se analizó el efecto del retorno del reclutamiento 2021 ha niveles favorables sobre el estatus proyectado hacia el 2021/22 bajo una mortalidad por pesca en torno al FRMS. Los resultados indican una recuperación del estatus para el año biológico 2021/22, retornando a una condición de plena-explotación con un 26 % de probabilidad de sobre-explotación y un 3 % de probabilidad de colapso, independiente del escenario de reclutamiento proyectado. Al parecer, esta recuperación podría estar relacionada a las condiciones ambientales favorables registradas hacia fines del 2020 e inicios del año 2021, donde se registró una condición fría, con gran cobertura espacial de ATSM negativas al norte de los 40°S y procesos de intensa surgencia costera, con elevadas concentraciones de clorofila-a en la costa, lo que se tradujo en una mayor disponibilidad de alimento (fitoplancton) para los reclutas de anchoveta y sardina común (Saavedra *et al.*, 2021).

La pesquería de sardina común está muy asociada a la de anchoveta centro-sur, con la cual presenta una importante interacción tecnológica y biológica. Estas características originan operaciones de pesca mixta, con alternancia de dominio intra e inter anual. El análisis de los indicadores de ambos stock muestran niveles de productividad muy disímiles (**Figura 49**) revelando alternancia y predominancias importantes una sobre la otra. Estos cambios de productividad podrían ser producto de diversos factores biológicos (fenómenos depensatorios de la dinámica poblacional, reducción del potencial reproductivo) y factores oceanográficos desfavorables para anchoveta y que han favorecido la producción de la sardina común dejando en evidencia la alternancia de ambas especies, las cuales son explotadas en la misma área y por la misma flota.

Al respecto, considerando la recuperación de anchoveta los últimos años, Saavedra *et al.* (2020) esperan un escenario en que anchoveta pase a cohabitar junto a sardina común con una mayor presencia geográfica (1.420 mn² vs 1.033 mn² de distribución efectiva), mayor cantidad de ejemplares (84.958 vs 69.294 millones de individuos) y mayor biomasa (1.005.293 t. vs 867.257 t.) transformándose hasta el año 2020, en la especie

principal en el ecosistema de la zona centro-sur.

Adicionalmente, el estudio de variables ambientales realizado por Aranis *et al.* (2020) mostró que entre el 2015-2017 se registró una condición más cálida que podría haber impulsado condiciones reproductivas levemente más intensas para ambos recursos, no obstante, sólo se registrarían reclutamientos exitosos para anchoveta, coincidiendo con una condición ambiental neutra 2018-19. Algunos estudios han encontrado una relación inversa y significativa con la anomalía de la TSM y una relación positiva y significativa con la anomalía de la CHL, ya que se reconoce que la sardina común se alimenta preferentemente sobre presas de menor tamaño asociadas al fitoplancton (Arteaga *et al.* 2014, Cubillos & Arcos 2002, Van der Lingen *et al.* 2009). Gómez *et al.* (2012) sugieren que la clorofila costera de primavera es un buen indicador de la abundancia de alimento de sardina común, afectando significativamente la supervivencia de pre-reclutas de sardina común y por consiguiente, la fuerza de los reclutamientos a finales de primavera. Dado que las condiciones ambientales registradas hacia fines del 2020 e inicios del 2021 indican que nos encontraríamos en una condición fría, posiblemente favorable para sardina común, las tendencias poblacionales de ambos recursos podrían invertirse nuevamente.

En el Sistema de Corriente de Humbolt (HCS) se han descrito regímenes que caracterizan un sistema dominado por anchoveta o por sardina, sobre la base de series anuales de capturas, series termporales de volumen de zooplancton y parámetros ambientales físicos como la temperatura superficial del mar, índices de surgencia, índices de oscilación del sur, profundidades de termoclina y otros (Chavez et al. 2003, Alheit & Niguen 2004, Montecinos et al. 2003, Alheit & Bakun, 2009). Según Swartzman et al. (2009), los cambios de régimen son causados por períodos duraderos de anomalías en la temperatura cálida o fría relacionadas con la intrusión o retroceso de aguas oceánicas subtropicales cálidas a la costa de perú y Chile. Algunos estudios señalan que si la productividad promedio en el tiempo ha sido influenciada por las condiciones ambientales cambiantes, entonces los objetivos de manejo pueden no ser sostenibles si se basan en el reclutamiento futuro basado en condiciones que ya no existen (Haltuch et al. 2009). De este modo, considerando el efecto de la variabilidad ambiental en el reclutamiento, es probable que se mejore el asesoramiento científico a través de un enfoque más preventivo asumiendo que se ha producido un cambio en el reclutamiento (Wayte, 2013). Según Polovina (2005), cuando se ha producido un cambio de régimen, las políticas para reconstruir el stock a niveles anteriores no son posibles. En este caso, el stock debería ser manejado en su nuevo nivel de productividad. Sin embargo, aceptar o no que ha ocurrido un cambio en la productividad de los stocks es una decisión difícil de tomar para los científicos y administradores. Klaer et al. (2015), señalan que un cambio de productividad se define como un cambio en el tiempo en las características biológicas de una población de peces que conduciría a un cambio en los puntos de referencia biológicos (como el rendimiento máximo sostenible). En la estimación de los puntos de referencia biológicos, se supone a menudo que la mortalidad natural, la relación longitud a la edad, longitud peso, madurez a la edad/longitud y la relación del reclutamiento con la biomasa desovante son constantes a lo largo del tiempo. Un cambio temporal substancial en cualquiera de estos factores causaría lo que llamamos un cambio de régimen en la población. Al respecto, si bien hacia el último año se registró una falla del reclutamiento de sardina común, Aranis et al. (2020) informan que el factor de condición indica una condición saludable para ambos recursos, con mejores índices para sardina común, lo que permite inferir que esta es una especie mejor adaptada al ambiente centro-sur y que la alometría positiva indica que es altamente probable que no exista una limintante de la oferta ambiental. En base a estos antecedentes, no es posible indicar un cambio de régimen en la zona centro-sur de Chile.

La pesquería de sardina comúm ha sido manejada históricamente de manera monoespecífica, considerando la incertidumbre asociada a la evaluación de stock. No obstante, desde el punto de vista de la administración

pesquera, la característica de pesquería mixta de anchoveta y sardina común y que ambas se encuentran en niveles de productividad muy disímiles, resulta complejo alcanzar el máximo rendimiento sostenido simultáneamente para cada una de las especies.

En relación al descarte de peces pelágicos, se han identificado problemáticas relacionadas con la alta incertidumbre en la estimación del descarte producto de la corta serie anual, diferencia de cobertura y tamaños de muestra espacial y temporal, forma de estimación del descarte (eg. visual), variación en la proporción de especies, entre otros. Esta incertidumbre complejiza la toma de decisión, por lo cual, el CCT-PP acordó mantener un valor fijo por un período interino (Acta sesión extraordinaria Nº1 ⁷) para utilizar en el descuento de la CBA. Este valor fue discutido en la primera sesión del CCT-PP realizada el 25 de febrero 2021, consensuando en un 4 % de descarte proyectado para sardina común y un 2 % para anchoveta de la zona centro-sur. En la sesión correspondiente al Taller de Datos y Modelos de mayo 2021 se revisará nuevamente los valores históricos para su corrección si es necesario.

De acuerdo al ciclo de manejo histórico de esta pesquería, este estudio entrega la información base para el segundo hito correspondiente al cálculo de la primera revisión de la CBA que permite al Comité Científico Técnico de Pesquerías Pelágicas (CCT-PP), revisar el estatus 2020/21 y el rango de CBA para el año 2021. El rango se CBA se obtiene bajo un criterio de explotación de mortalidad por pesca constante igual al F_{RMS}, sujeto a percentiles de probabilidad entre el 10 % y 50 % de sobrepasar dicho criterio. Se asume que el 70 % de la captura se obtendrá durante el primer semestre 2021 y que ocurrirá un 4 % de descarte.

De este modo, la captura para el año 2021, descontando el 4 % de descarte y estimada bajo un escenario de reclutamientos bajos (período 1991-2007) se encuentre entre 225 mil t. y 261 mil toneladas. Bajo un escenario de reclutamientos altos (período 2008-2012), alcanza un rango entre 258 mil t. y 300 mil toneladas. Y bajo un escenario de reclutamientos recientes (período 2013-2020), entre 227 mil t. y 268 mil t.

Continuando con el ciclo de manejo, en el segundo hito se realiza la primera revisión de la CBA 2021, incorporando información del crucero de enero 2021 (Asesoría de marzo). No obstante, en este hito la incertidumbre en los indicadores utilizados para medidas de manejo es alta producto de la incompletidud de datos, ya que solo se cuenta con información del crucero de verano, el resto de la información se basa en supuestos (Figura 32). En marzo se inicia el período de extracción y en mayo se realiza el segundo crucero de evaluación acústica (crucero de otoño) para actualizar el estatus y revisar una vez más la CBA 2021. Por lo cual se recomienda para el segundo hito considerar un estatus 2020/21 preliminar a la espera de completar la información de la flota 2020/21 y crucero de otoño 2021 en el tercer hito de revisión (Asesoría de julio). Además, se ha observado que las estimaciones de los principales indicadores cambian para los últimos años de la serie, en el caso de sardina hay un patrón de subestimación de las biomasas y sobre-estimación de la mortalidad por pesca (Figura 33). Dado que la varianza estadística tiende a aumentar en los últimos años de la serie analizada, estas se consideran estimaciones menos confiables. Finalmente, se recomienda una revisión del ciclo de manejo actual, ya que desde un punto de vista práctico y administrativo es imposible disminuir la cuota asignada, aunque se cuente con información actualizada y estimados de estatus y CBA más confliables, esto debido a que por lo general a mitad de año gran parte de la cuota ha sido consumida. Ante esta situación el CCT-PP ha recomendado mantener una situación de "statu quo" cada vez que se ha presentado una disminución de la CBA en el segundo y/o tercer hito del ciclo de manejo.

Figura 49. Razón BD/BD_{RMS} de sardina común y anchoveta centro-sur.

⁷https://www.subpesca.cl/portal/616/articles-109471 documento.pdf

6. REFERENCIAS BIBLIOGRÁFICAS

Aguayo, M. & S.B. Soto., 1978. Edad y crecimiento de la sardina común, Clupea (*Strangomera bentincki*), en Coquimbo y Talcahuano. Invest. Pesq. Inst. Fom. Pesq. (Chile) N°28: 1-55.

Alheit J & M Niquen. 2004. Regime shifts in the Humboldt current ecosystem. Progress In Oceanography 60: 201–222.

Alheit, J. & A. Bakun. 2009. History of international co-operation in research. In: Climate change and small pelagic fish. Ed. by D. M. Checkley, J. Alheit, Y. Oozeki and C. Roy. Cambridge: Cambridge Univ. Press: 1-5.

Arancibia H, L Cubillos, J Remmaggi & R Alarcón. 1994. Determinación de la talla de primera madurez sexual y fecundidad parcial en la sardina común, *Strangomera bentincki* (Norman, 1936), del área de Talcahuano, Chile. Biología Pesquera, 23: 11-17.

Aranís A, L Caballero, G Böhm, F Cerna, C Vera, V Bocic, A Gómez & G Rosson. 2006. Informe Final Investigación Situación Pesquería Pelágica Zona Centro-Sur 2005. Seguimiento del Estado de Situación de las Principales Pesquerías Nacionales. Subsecretaría de Pesca, Instituto Fomento Pesquero (IFOP), Valparaíso, Chile. 163 p+ Anexos.

Aranís A, L Caballero, A Gómez, M González, F Cerna, V Bocic, A López, C Machuca & C Vera. 2011. Informe de Avance. Asesoría integral para la toma de decisiones en pesca y acuicultura, 2011. Actividad 1: Recursos Pelágicos: Pesquería Pelágica Zona Centro-Sur, 2011. Subsecretaría de Pesca, Instituto Fomento Pesquero (IFOP), Valparaíso, Chile. 69 p + Anexos.

Aranís A, A Gómez, K Walker, G Muñoz, L Caballero, G Eisele, F Cerna, A López, C Machuca, L Muñoz, C Valero, M Ramírez, C Toledo, V Valdebenito, S Mora & M Albornoz. 2016. Informe Final, Convenio de Desempeño, 2015. Programa de Seguimiento de las Pesquerías Pelágicas de la Zona Centro-Sur de Chile, V-XI Regiones, año 2015. Subsecretaría de Economía y EMT, Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 338 p + Anexos.

Aranis A, A Gómez, K Walker, G Muñoz, L, Caballero, G Eisele, F Cerna, C Valero, A Lopez, C Machuca, L Muñoz, M Ramirez, M Troncoso, M Albornoz, J Bonicelli, U Cifuentes. 2018. Informe pre-final. Programa de Seguimiento de las Principales Pesquerías Pelágicas de la zona centro-sur de Chile, V-XI Regiones, año 2017. Subsecretaría de Economía y EMT, Inst. Fom. Pesq. Valparaíso, Chile. 315 p + Anexos.

Aranis A, A Gómez, K Walker, M Ramírez, L Caballero, G Eisele, F Cerna, C Valero, A Lopez, C Machuca, L Muñoz, M Troncoso, M Albornoz, M Pizarro, H Reyes, U Cifuentes & A Bustamante. 2020. Programa de seguimiento de las principales pesquerías pelágicas de la zona centro-sur de Chile, regiones de Valparaíso y Aysén del General Carlos Ibánez del Campo, año 2019. Subsecretaría de Economía y EMT, Instituto Fomento Pesquero (IFOP), Valparaíso, Chile. 306 p + Anexos.

Arrizaga A. 1981. Nuevos antecedentes biológicos para la sardina común, Clupea (*Strangomera bentincki*) Norman 1936. Boletín de la Sociedad de Biología de Concepción, 52: 5-66.

Arrizaga A & C Veloso. 1982. Estimación de mortalidades (M, F y Z) y del coeficiente de capturabilidad (q) en la sardina común Clupea (*Strangomera bentincki*) Norman, 1936, de Talcahuano - Chile. Monografías Biológicas (2): 39-49.

Arteaga M, B Ernst, S Vásquez & C Gatica. 2014. Bases conceptuales para la aplicación de una evaluación de estrategias de manejo (EEM) en sardina común (*Strangomera bentincki*) y anchoveta (*Engraulis ringens*) en la zona centro - sur de Chile. Latin American Journal Aquatic Research, 42 (3): 445-467.

Barría P. 2001. Evaluación del stock de sardina común y anchoveta, 2001. IFOP. Informe final 62 pp.

Beverton RJH & SJ Holt. 1957. On the Dynamics of Exploited Fish Populations. Gt. Britain, Fishery Invest., Ser. II, Vol. XIX. 533 pp.

Cadigan NG & PJ Farrell. 2005. Local influence diagnostics for the retrospective problem in sequential population analysis. ICES Journal of Marine Science, 62: 256-265.

Cadrin SX & DS Vaughn. 1997. Retrospective analysis of virtual population estimates for Atlantic menhaden stock assessment. U.S. National Marine Fisheries Service Fishery Bulletin, 95: 445-455.

Canales M, C Canales, J Castillo, A Aranís & L Caballero. 2007. Investigación Evaluación de stock y CTP anchoveta centro sur 2007. Pre-informe Final Proyecto BIP N°30043740-0. 24 pp.+ ANEXOS.

Canales CR & MJ Zúñiga. 2016. INFORME 1 DE ESTATUS. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2017 en sardina común V-X Regiones. Sardina común V-X Regiones, noviembre 2016. Subsecretaria de Economía y EM. Instituto Fomento Pesquero (IFOP), Valparaíso, Chile. 115 p + Anexos.

Castillo J, A Saavedra, F Leiva, H Reyes, M Pizarro, V Catasti, C Lang, E Molina, F Cerna, A López, S Nuñez, L Valenzuela & S Vásquez. 2012. Evaluación hidroacústica reclutamiento anchoveta sardina común entre la V y X Regiones, año 2011. Informe Final FIP 2010-04. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 275 pp + Figuras y Tablas.

Castillo J, A Saavedra, V Catasti, F Leiva, C Lang, R Vargas, H Reyes, M Pizarro, E Molina, F Cerna, A López, S Nuñez, L Valenzuela & J Silva. 2013. Evaluación hidroacústica reclutamiento anchoveta sardina común entre la V y X Regiones, año 2013. Informe Final FIP 2012-12. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 307 pp + Figuras y Tablas.

Castro L, G Claramunt, MC Krautz, A Llanos-Rivera & P Moreno. 2009. Egg trait variation in anchoveta *Engraulis ringens*: a maternal response to changing environmental conditions in contrasting spawning habitats. Marine Ecology Progress Series, 381: 237-248.

Castro L, G Claramunt, H González, MC Krautz, A Llanos-Rivera, J Méndez, W Schneider & S Soto. 2010. Fatty acids in anchoveta eggs, Engraulis ringens, during two contrasting winter spawning seasons. Marine Ecology Progress Series, 420: 193-205.

Chavez FP, J Ryan, SE Lluch-Cota & M Ñiquen. 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299: 217–221.

Claramunt G, L Cubillos, L Castro, C Hernández & M Arteaga. 2013. Variation in the spawning periods of *Engraulis ringens* and *Strangomera bentincki* off the coasts of Chile: A quantitative analysis. Fisheries Research, 160: 96-102.

Cleveland WS, E Grosse & MJ Shyu. 1992. A Package of C and Fortran Routines for Fitting Local Regression Models, unpublished paper.

Cubillos LA & H Arancibia. 1993a. Análisis de la pesquería de sardina común y anchoveta del área de Talcahuano, situación actual y perspectivas. Documentos Técnicos del Instituto de Investigación Pesquera (IIP), Talcahuano, Chile 2(2): 1-19.

Cubillos LA & H Arancibia. 1993b. Análisis de la pesquería de sardina común (*Strangomera bentincki*) y anchoveta (*Engraulis ringens*) del área de Talcahuano, Chile. Investigaciones Marinas, 21: 3-21.

Cubillos LA, R Alarcón, D Bucarey, M Canales, P Sobarzo & L Vilugrón. 1998. Evaluación indirecta del stock de anchoveta y sardina común en la zona centro-sur. Informes Técnicos FIP, FIP-IT/ 96-10, 223 pp.

Cubillos LA, M Canales, D Bucarey, A Rojas & R Alarcón. 1999. Época reproductiva y talla media de primera madurez sexual de *Strangomera bentincki* y *Engraulis ringens* en el periodo 1993-1997, zona centro-sur de Chile (1993-1997). Investigaciones Marinas. 28: 73-85.

Cubillos LA, D Arcos, D Bucarey & M Canales. 2001. Seasonal growth of small pelagic fish off Talcahuano, Chile (37°S, 73°W): a consequence of their reproductive strategy to seasonal upwelling?. Aquatic Living Resources, 14: 115-124.

Cubillos LA & D Arcos. 2002. Recruitment of common sardine (*Strangomera bentincki*) and anchovy (*Engraulis ringens*) off central-south Chile in the 1990s and the impact of the 1997-1998 El Niño. Aquatic Living Resources. 15: 87-94.

Cubillos LA, L Castro, G Claramunt. 2011. Evaluación del stock desovante de anchoveta y sardina común en la zona centro-sur, año 2010. Informe Final FIP 2010-02. Universidad de Concepción. (Concepción, Chile). 90 pp.

Francis RIC. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences, 68: 1124-1138.

Francis RIC. 2014. Replacing the multinomial in stock assessment models: A first step. Fisheries Research. 151: 70-84.

Fournier DA, HJ Skaug, J Ancheta, J Ianelli, A Magnusson, MN Maunder, A Nielsen & J Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods & Software 27 (2), 233-249.

Galleguillos R, J Chong, C Oyarzún, M Oliva & R Roa. 1994. Unidades de stock en los recursos sardina común y anchoveta de la zona Centro-Sur. Informes Técnicos FIP, FIP-IT/94-20, 64 pp

Gomez F, A Montecinos, S Hormazabal, L Cubillos, M Correa-Ramirez & FP Chavez. 2012. Impact of spring upweling variability off southern-central Chile on common sardine (*Strangomera bentincki*) recruitment. Fisheries Oceanography. 21: 6, 405-414.

Hutchings L, M Barange, SF Bloomer, Aj Boyd, RJM Crawford, JA Huggett, M Kertsan, JL Korrubel, JAA De Oliveira, SJ Painting, AJ Richardson, IJ Shannon, FH Shulein, CD van der Lingen & HM Verheye. 1998. Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursey areas. South African Journal Marine Science, 19: 211-225.

Ichinokawaa M, Okamura H & Y Takeuchi. 2014. Data conflict caused by model mis-specification of selectivity in an integrated stock assessment model and its potential effects on stock status estimation. Fisheries Research, 158: 147-157.

Klaer NL, RN O'Boyle, JJ Deroba, SE Wayte, LR Little, LA Alade, & PJ Rago. 2015. How much evidence is required for acceptance of productivity regime shifts in fish stock assessments: are we letting managers off the hook? Fisheries Research, 168: 49 –55.

Lee HH, KR Piner, RD Methot & MN Maunder. 2014. Use of likelihood pro-filing over a global scaling parameter to structure the population dynamics model: An example using blue marlin in the Pacific Ocean. Fisheries Research, 158: 138-146.

Maunder MN & PJ Starr. 1998. Validating the Hauraki Gulf snapper pre-recruit trawl surveys and temperature recruitment relationship using catch at age analysis with auxiliary information. New Zealand Fisheries Assessment Research Document 98/15.

Maunder MN & PJ Starr. 2003. Fitting fisheries models to standardized CPUE abundance indices. Fisheries Research, 63: 43-50.

McAllister MK & JN Ianelli. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Canad. J. Fish. Aquat. Sci. 54, 284-300.

Mohn R. 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES Journal of Marine Science, 56: 473-488.

Montecinos A, S Purca & O Pizarro. 2003. Interannual to interdecadal sea surface temperature variability along the western coast of South America. Geophysical Research Letters 30,1570.19.1929/2003GL017345.

Montecinos A & F Gomez. 2010. ENSO modulation of upwelling season off southern-central Chile. Geophysical Research Letters, 37:L02708 1-4.

Mujica A & O Rojas. 1984. Fecundidad y estructura poblacional de sardina común (*Clupea bentincki*, Norman) (Clupeiformes-Clupeidae). Investigación Pesquera, 31: 59-69.

Parada C, F Colas, S Soto-Mendoza & L Castro. 2012. Effects of seasonal variability in across- and alongshore transport of anchoveta (*Engraulis ringens*) larvae on model-based pre-recruitment indices off central Chile. Progress Oceanography, 92(1): 192-205.

Parrish RH, A Bakun, DM Husby & CS Nelson. 1983. Comparative climatology of selected environmental process in relation to Eastern boundary current pelagic fish reproduction. In: Sharp, G.D. and J. Csirke (Eds.). Proceeding of the expert consultation to examine changes in abundance and species composition of neritic fish resources. FAO Fish Rep., 291,3. pp 731-777.

Payá I, C Canales, D Bucare, M Canales, F Contreras, F Espíndola, E Leal, C Montenegro, J Quiroz, R Tascheri & MJ Zúñiga. 2014. Revisión de los puntos biológicos de referencia (Rendimiento Máximo Sostenible) en las pesquerías nacionales. Primer Taller internacional. Informe de Avance 1. Subsecretaría de Economía - IFOP. 32 pp.+ 4 Anexos.

Pikitch E, PD Boersma, IL Boyd, DO Conover, P Cury, T Essington, SS Heppell, ED Houde, M Mangel, D Pauly, É Plagányi, K Sainsbury, & RS Steneck. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp.

Polacheck T. 2014. Review report on the 2012 stock assessment of the common sardine (sardina común *Strangomera bentincki*). 74 pp

Saavedra A, R Vargas, E Molina, C Lang, U Cifuentes, M Pizarro, C Grendi & A Bustamante. 2017. Evaluación hidroacústica de los stocks de anchoveta y sardina común entre la V y X Regiones, año 2017. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 32 p + Anexos.

Saavedra A, R Vargas, E Molina. Informe de Avance №2. Evaluación hidroacústica de los stocks de anchoveta y sardina común entre las Regiones de Valparaíso y Los Lagos, Año 2020. Subsecretaría de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 31 p + Figuras y Tablas.

Swartzman G, A Bertrand, M Gutiérrez, S Bertrand & L Vasquez. 2009. The relationship of anchovy and sardine to water masses in the Peruvian Humboldt Current System from 1983 to 2005. Progress in Oceanography. 79: 228-237.

Serra R. 1978. La pesquería de la sardina común (Clupea *Strangomera bentincki*) y anchoveta (*Engraulis ringens*) de Talcahuano: Análisis de su desarrollo y situación actual. IFOP, Santiago (Chile), 29, 21 p.

Soto-Mendoza S, C Parada, L Castro, F Colas & W Schneider. 2012. Modeling transport and survival of anchoveta eggs and yolk-sac larvae in the coastal zone off central-southern Chile: Assessing spatial and temporal spawning parameters. Progress Oceanography, 92(1): 178-191.

Van der Lingen C, A Bertrand, A Bode, R Brodeur & others .2009. Trophic dynamics. In: Checkley DM, Alheit J, Oozeki Y, Roy C (eds) Climate change and small pelagic fish. Cambridge University Press, Cambridge.

Vega R, L Ossa, B Suárez, A González, S Henríquez, R Ojeda, A Ramírez, A Simeone, M Sepúlveda, MJ Pérez & R Escobar. 2017. INFORME FINAL. Programa de Observadores Científicos, 2016. Subsecretaria de

Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 232 p + Anexos.

Vega R, L Ossa, B Suárez, A González, S Henríquez, R Ojeda, MF Jiménez, A Ramírez, J Le-Bert, A Simeone, C Anguita, M Sepúlveda, MJ Pérez, M Santos & H Araya. 2018. INFORME FINAL. Programa de observadores científicos 2017-2018. Programa de investigación del descarte y captura de pesca incidental en pesquerías pelágicas. Programa de monitoreo y evaluación de los planes de reducción del descarte y de la pesca incidental 2017-2018. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 241 p + Anexos.

Vega R, L Ossa, B Suárez, MF Jiménez,S Henríquez, A González, R Ojeda, A Simeone,C Anguita,M Sepúlveda,MJ Pérez, M Santos & H Araya. 2019. INFORME FINAL. Programa de observadores científicos 2018-2019. Programa de investigación del descarte y captura de pesca incidental en pesquerías pelágicas. Programa de monitoreo y evaluación de los planes de reducción del descarte y de la pesca incidental 2018-2019. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 305 p + Anexos.

Vega R, L Ossa, B Suárez, MF Jiménez,S Henríquez, A González, R Ojeda, A Simeone,C Anguita,M Sepúlveda,MJ Pérez, M Santos, J Cavieres, P Paredes, I Cari, P Zárate & D Devia. 2020. INFORME FINAL. Programa de observadores científicos: Programa de investigación y monitoreo del descarte y de la captura de pesca incidental en pesquerías pelágicas, 2019-2020. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 341 p + Anexos.

Wang SP, MN Maunder, KR Piner, AM Aires-da-Silva & HH Lee. 2014. Evaluation of virgin recruitment profiling as a diagnostic for selectivity curve structure in integrated stock assessment models. Fisheries Research, 158: 158-164.

Yáñez E, C Silva, A Órdenes, F Gómez, A Valdenegro, S Hormazábal, A Montecinos, F Espíndola & O Pizarro. 2005. Análisis integrado histórico ambiente-recursos, I y II Regiones. Informe Final Proyecto FIP N° 2003-33. Valparaíso. 408 pp.

Zúñiga MJ & CR Canales. 2014. INFORME DE ESTATUS Y CUOTA. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2015 en sardina común V-X Regiones. Sardina común V-X Regiones, septiembre 2014. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 87 p + Anexos.

Zúñiga MJ. 2017a. INFORME 2 DE ESTATUS. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2017 en sardina común V-X Regiones. sardina común V-X Regiones, marzo 2017. Subsecretaria de Economía y EM. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 135 p + Anexos.

Zúñiga MJ. 2017b. INFORME 3 DE ESTATUS. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2017 en sardina común V-X Regiones. Sardina común V-X Regiones, julio 2017. Subsecretaria de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 97 p + Anexos.

Zúñiga MJ & JC Quiroz. 2017c. INFORME 1 DE ESTATUS. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, año 2018 en sardina común V-X regiones. Sardina común V-X regiones, septiembre 2017. Subsecretaría de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 161 p + Anexos.

Zúñiga MJ, D Bucarey, E Leal, F Espíndola, JC Quiroz. 2018a. INFORME 2 DE ESTATUS. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, año 2018 en sardina común V-X regiones, marzo 2018. Subsecretaría de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 123 p + Anexos.

Zúñiga MJ, D Bucarey, E Leal, F Espíndola, JC Quiroz. 2018b. INFORME CONSOLIDADO. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, año 2018 en sardina común V-X regiones, julio 2018. Subsecretaría de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 148 p + Anexos.

Zúñiga MJ. 2019. INFORME CONSOLIDADO. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, año 2019 en sardina común V-X regiones, julio 2019. Subsecretaría de Economía y EMT. Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile. 135 p + Anexos.