Public key cryptology, RSA, ElGamal, Elliptic Curve

Jason Pearson and

November 23, 2015

Key Terms

Plain text: typically a simple text such as this line Cipher text: a message after it has been encrypted Prime Number: a whole number that can only be divided evenly by one and itself also it is greater than one

Types of Encryption

Symmetric Encryption Asymmetric Encryption Hashing Hybrid Encryption

Symmetric Encryption

Encryption and Decryption use the same key

Asymmetric Encryption

Public key and private key pair
Public key is used to encrypt a message
Private key is used to decrypt a message
Creating the key tends to be computationally expensive

Hashing

Hybrid Encryption

Uses ideas from symmetric and asymmetric encryption methods An asymmetric cryptosystem is used for key encapsulation and an symmetric system is used for data encapsulation

Cyclic Groups

Padding Schemes

RSA Cryptosystem

First designed in 1973 and declassified in 1997.

Named after its founders Ron Rivest, Adi Shamir and Leonar Adleman

Uses large prime numbers to create a private and public key

Security arises from the presumed difficulty of factoring large prime numbers

Background Mathmatics

NOT SURE IF I WANNA SPEND TIME ON BACKGROUND MATH WILL DETERMINE AFTER SOME DRY RUNS
The Set Of Integers Modulo P
Integer Remainder After Dividing
Multiplicative Inverse And The Greatest Common Divisor
Prime Numbers
Fuler's Totient

RSA Generating Public and Private Keys

Generate Two Large Prime Numbers Compute n Compute Euler's Totient Function Create Public Key Create Private Key

Generating Large Prime Numbers

Generate two large prime numbers. Typically uses AKS testing for prime numbers These two values we will call p and q p=991 q=821

Computing n and Euler's Totient

We calculate n = p * q

We then can determine Euler's totient value by using the following equation.

$$\phi(n) = \phi(p)\phi(q) = (p-1)(q-1) = n - (p+q-1)$$

So we have n = 991 * 821 = 813611

And for ϕ (*n*) = 81180

Create Public and Private Keys

To create a public key we pick an arbitrary number e between $1 < e < \phi(n)$ for example we will use e = 7423

To create a private key we need to find the modular multiplicative inverse of e.

This is commonly done using the Extended Euclidean Algorithm.

$$d \equiv e^{-1} \left(\operatorname{mod} \left(\phi \left(n \right) \right) \right)$$

This makes our value of d = 788287

ElGamal Cryptosystem

Elliptic Curve

Conclusion

References

http://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf