







# Efficient tree-search algorithms in Optimization and Operation Research

Abdel-Malik Bouhassoun, Luc Libralesso

July 11, 2019

G-SCOP

#### Table of contents

Glass Cutting Challenge?

Constructive algorithm for the ROADEF challenge

General methodology

Branching Scheme

Search Strategy

Results

Towards a generic Tree Search framework

Sequential Ordering Problem

# Glass Cutting Challenge?

# **EURO/ROADEF Challenge**

- Presented by the French and European Operations Research societies
- International competition

# **EURO/ROADEF Challenge**

- Presented by the French and European Operations Research societies
- International competition

- A challenge every two years
  - 2012: Google
  - 2014: SNCF (state-owned railway company)
  - 2016: Air Liquide

# **EURO/ROADEF Challenge**

- Presented by the French and European Operations Research societies
- International competition

- A challenge every two years
  - 2012: Google
  - 2014: SNCF (state-owned railway company)
  - 2016: Air Liquide
  - 2018: Saint Gobain

# 2018 edition of the challenge - glass cutting



- Founded in 1665
- produces pipes, mirrors, mortars and glass

# 2018 edition of the challenge - glass cutting



- Founded in 1665
- produces pipes, mirrors, mortars and glass

Cut rectangular glass items from big glass plates (Plates)

# How to make glass



## One of our solutions



OBJECTIVE:

minimize waste

#### Objective:

minimize waste

#### DATA:

• Items (defined width and height, rotation possible)

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m x 3m) with defects

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m × 3m) with defects

#### Constraints:



Figure 1: Example of a solution



Figure 2: Example of a solution



 $\textbf{Figure 3:} \ \, \mathsf{Example of a solution}$ 



Figure 4: Example of a solution



Figure 5: Example of a solution



Figure 6: Example of a solution

# guillotine cuts and not allowed cuts



# guillotine cuts and not allowed cuts



# guillotine cuts and not allowed cuts



### Precedence constraints

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m × 3m) with defects

#### Constraints:

- guillotine constraint
- all items produced in a valid order

## **Precedence Constraint**



## **Precedence Constraint**



## **Defect avoidance**

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m × 3m) with defects

#### Constraints:

- guillotine constraint
- all items produced in a valid order
- · no defects in items
- no cut on a defect

# minimum/maximum cut size

#### OBJECTIVE:

minimize waste

#### DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m x 3m) with defects

#### Constraints:

- guillotine constraint
- all items produced in a valid order
- no defects in items
- no cut on a defect
- min/max constraints on cuts and waste



Figure 7: Min waste: easy case



Figure 8: Min waste: easy case



Figure 9: Min waste: more difficult



Figure 10: Min waste: more difficult



Figure 11: Min waste: more difficult



Figure 12: Min waste: more difficult

The problem is  $\mathcal{N}\mathcal{P}\text{-Hard}.$ 

# **Glass cutting Problem**

The problem is  $\mathcal{NP}\text{-Hard}.$ 

Difficult problem and big instances

# **Glass cutting Problem**

The problem is  $\mathcal{NP}\text{-Hard}.$ 

Difficult problem and big instances

We use anytime algorithms (meta-heuristics)

#### In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme** 

#### In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme** 

We explore this search tree cleverly (section after) we use **anytime tree searches** 

#### In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme** 

We explore this search tree cleverly (section after) we use **anytime tree searches** 

Work on a generic tree search framework

Application on the Sequential Ordering Problem

Constructive algorithm for the

**ROADEF** challenge

#### Constructive vs Local Search



#### Constructive vs Local Search



Our method integrates parts of Branch and bounds and Beam Search

- the Branching Scheme (i.e. problem specific):
  - root definition
  - children generation
  - bounds
  - etc.

- the Branching Scheme (i.e. problem specific):
  - root definition
  - children generation
  - bounds
  - etc.
- the Search strategy (i.e. generic):
  - DFS, A\*, Best First, Beam Search, LDS, etc.

- the Branching Scheme (i.e. problem specific):
  - root definition
  - children generation
  - bounds
  - etc.
- the Search strategy (i.e. generic):
  - DFS, A\*, Best First, Beam Search, LDS, etc.
  - others known in AI/planning: SMA\*, BULB, wA\* etc.

Tree Searches are made of two parts:

- the Branching Scheme (i.e. problem specific):
  - root definition
  - children generation
  - bounds
  - etc.
- the Search strategy (i.e. generic):
  - DFS, A\*, Best First, Beam Search, LDS, etc.
  - others known in AI/planning: SMA\*, BULB, wA\* etc.

We developed our algorithm using this principle.

# Our algorithm

- the Branching Scheme (i.e. problem specific)
- the Search strategy (i.e. generic)

 $\geq$  1 M nodes/s  $\leq$  1000 nodes/s Weak inference Strong inference







- We integrate quick bounds, symmetry breaking, dominance checking
- The idea of integrating Branch and Bound parts into Beam Searches can be found in [STDC18]

# Packing in the bottom left corner



# Packing in the bottom left corner



We prove that it is optimal if:

- guillotine and defects and precedence only
- guillotine and min waste only

# Packing in the bottom left corner



We prove that it is optimal if:

- guillotine and defects and precedence only
- guillotine and min waste only

We prove it is not if:

- guillotine and min waste and precedences
- guillotine and min waste and defects

# Not dominant in the challenge

Since guillotine and min waste and precedences and defects constraints.



# Good news - It still works very well!

We only need good solutions, so we make a heuristic Branch and Bound.



#### How to construct children

- Root node: empty solution
- Children: all possible items in all possible positions (i.e. new plate, new 1-cut, new 2-cut, new 3-cut or new 4-cut, rotations, defect avoidance)

# Pseudo dominance





# Symmetry breaking

 Symmetry breaking strategy: for two consecutive blocks, the one with the smallest minimum item id comes before.



Waste accumulated so far

Waste accumulated so far



#### Waste accumulated so far





Waste accumulated so far



#### Problem with waste:

• Small items at the beginning and big items at the end

## A better node goodness measure

waste percentage

## An even better node goodness measure

waste

total area · mean area

## An even better node goodness measure

 $\frac{\text{waste}}{\text{total area} \cdot \text{mean area}}$ 





## Our algorithm

- the Branching Scheme (i.e. problem specific)
- the Search strategy (i.e. generic , DFS, Best First, Beam Search, ...)

## MBA\*

Inspired from Beam Search and SMA\*

#### MBA\*

#### Inspired from Beam Search and SMA\*

- Best First strategy
- Delete some bad nodes if too many at the same time
- If finished, Restart with a bigger node limit D ( $D_{n+1} \leftarrow D_n \times 2$ )

### MBA\*

### Inspired from Beam Search and SMA\*

- Best First strategy
- Delete some bad nodes if too many at the same time
- If finished, Restart with a bigger node limit D ( $D_{n+1} \leftarrow D_n \times 2$ )

- $\bullet$  at the beginning (D=1), it behaves like a greedy algorithm
- ullet at the end  $(D pprox \infty)$ , it behaves like a Best First Search

- OpenClosed
- Pruned



















• Best solutions found on 20 over 30 instances.



- Best solutions found on 20 over 30 instances.
- Total waste 2nd team: 506M
- Total waste: 493M (13M less)



- Best solutions found on 20 over 30 instances.
- Total waste 2nd team: 506M
- Total waste: 493M (13M less)
- Total waste new version: 469*M* (24*M* less than our submission)

### Conclusions on the challenge

- Simple and effective algorithm
- Tree searches can be competitive with other methods
- Decomposing the algorithm helps to identify good (and bad) parts

### Conclusions on the challenge

- Simple and effective algorithm
- Tree searches can be competitive with other methods
- Decomposing the algorithm helps to identify good (and bad) parts

- We tried
  - several search strategies (DFS, Beam Search, LDS, and MBA\*)
  - several guides
- Chose best combination

# \_\_\_\_\_

Towards a generic Tree Search

framework

## **Starting Point**



First Black-box decomposition.

A problem specific and a Tree Search part.

### **Starting Point**



#### **Tree Searches**

#### **Exhaustive Search**

Enumerate all solutions of a problem to find the optimal one.

#### **Exact Algorithm**

For a long enough search, the optimal solution cannot be missed.

#### **Heuristic Algorithm**

Prunes nodes heuristically and could lead to missing the optimal solution.

### **Anytime Algorithm**

Can produce solutions during the search and not only at its end.



• Exhaustive Search.



#### **Breadth First Search**

• Exhaustive Search.



#### **Breadth First Search**

• Exhaustive Search.







- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.



- Exhaustive Search.
- Anytime Search.

## Beam Search (D=3)

#### Beam Search

- Heuristic Search.
- Iterative Anytime version exists.



- Heuristic Search.
- Iterative Anytime version exists.

#### **Limited Discrepancy Search**

Parameters: A starting discrepancy d. An evaluation function f.

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .

#### discrepancy function $d(\cdot)$

Let  $x_c$  a child of x,  $d(x_c) = d(x) - k$  (with k the rank of the node  $x_c$  in the sorted list).

#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



#### **Limited Discrepancy Search**

- Step 0: Open a node.
- Step 1: Sort the list of children nodes.
- Step 2: Apply discrepancy function.
- Step 3: Depth-First opening on children with discrepancy  $\geq 0$ .



## **Improved Genericity - Combinators**



Limited Discrepancy Search can be reproduced with: Limited Discrepancy Combinator & Depth First Search

#### **Memorization Combinator**

#### Memorization

Used to reproduce dynamic programming.

Can also be used to store remaining sub-problem lower bounds (memoization).

Let G = (V, E) be a complete graph where  $V = \{0, 1, 2, 3, 4, 5, 6\}$ . We are looking for a Hamiltonian path.

Comparable partial solution: same set of chosen vertices and same last one.

[0,1,2] is comparable with [1,0,2] but not with [0,1,3] nor [5,0,2] . The memorization combinator has to handle three different situations.

Let G=(V,E) be a complete graph where  $V=\{0,1,2,3,4,5,6\}$ . We are looking for a Hamiltonian path. Situation one *unknown solution*; [0,1,2,3,4] value 10

| Combinator memory |       |
|-------------------|-------|
| partial solution  | value |

Let G=(V,E) be a complete graph where  $V=\{0,1,2,3,4,5,6\}$ . We are looking for a Hamiltonian path. Situation one *unknown solution*; [0,1,2,3,4] value 10

| Combinator memory |       |
|-------------------|-------|
| partial solution  | value |
| [0,1,2,3,4]       | 10    |

Let G=(V,E) be a complete graph where  $V=\{0,1,2,3,4,5,6\}$ . We are looking for a Hamiltonian path. Situation two *better solution known*; [3,2,1,0,4] value 15

| Combinator memory |       |
|-------------------|-------|
| partial solution  | value |
| [0,1,2,3,4]       | 10    |

Let G=(V,E) be a complete graph where  $V=\{0,1,2,3,4,5,6\}$ . We are looking for a Hamiltonian path. Situation three *new best solution*; [1,0,3,2,4] value 7

| Combinator memory |       |
|-------------------|-------|
| partial solution  | value |
| [1,0,3,2,4]       | 7     |

## **Memorization Efficiency**



## **Sum up - Implemented Pieces**



**Sequential Ordering Problem** 

#### **Problem Definition**

#### **Sequential Ordering Problem**

It's a variant of classical Asymetric Traveling Salesman Problem which integrates precedency constraints. If a precedency constraint links i to j then i must be before j in any feasible solution.





## **Bound**

## Static (in/out)-going Bound

This bound stores for each vertex, its minimum weight arcs or the fixed ones.





## **Bound**

## Static (in/out)-going Bound

This bound stores for each vertex, its minimum weight arcs or the fixed ones.





## **Bound**

## Static (in/out)-going Bound

This bound stores for each vertex, its minimum weight arcs or the fixed ones.





## Results

| Instance      | best known LB | best known UB | Beam Search | time to record (s) |
|---------------|---------------|---------------|-------------|--------------------|
| R.500.100.1   | 4             | 4             | 281         | -                  |
| R.500.100.15  | 4.628         | 5.284         | 5.261       | 61.5               |
| R.500.1000.1  | 1.316         | 1.316         | 4.441       | -                  |
| R.500.1000.15 | 43.134        | 49.504        | 49.366      | 79.2               |
| R.600.100.1   | 1             | 1             | 307         | -                  |
| R.600.100.15  | 4.803         | 5.493         | 5.469       | 75.5               |
| R.600.1000.1  | 1.337         | 1.337         | 4.637       | -                  |
| R.600.1000.15 | 47.042        | 55.213        | 54.994      | 99.5               |
| R.700.100.1   | 1             | 1             | 315         | -                  |
| R.700.100.15  | 5.946         | 7.021         | 7.009       | 439.3              |
| R.700.1000.1  | 1.231         | 1.231         | 5.142       | -                  |
| R.700.1000.15 | 54.351        | 65.305        | 64.777      | 46.7               |

| avg [min ; max] | R.X.100.X       | R.X.1000.X      |
|-----------------|-----------------|-----------------|
| R.X.X.30        | 1.2s [0.1; 3.6] | 0.6s [0.1; 1.1] |
| R.X.X.60        | 0.0s [0.0; 0.0] | 0.0s [0.0; 0.0] |

## Methods employed

#### Proposed method

Static bound - Memorization - Beam Search Can be adapted to other problems.

#### State of the art

Ants - 3-exchange - Simulated Annealing. It is a dedicated black-box.









# Efficient tree-search algorithms in Optimization and Operation Research

Abdel-Malik Bouhassoun, Luc Libralesso

July 11, 2019

G-SCOP

#### **Bibliography**



Lei Shang, Vincent T'Kindt, and Federico Della Croce.

The memorization paradigm: Branch & memorize algorithms for the efficient solution of sequencing problems. 2018.











































