

CLAIMS

1. A compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

5 wherein X and X' are independently selected from $-C(R_5)_2-$, $-O-$, $-S-$, $-N(R_5)-$, or taken together form $-C(R_5)=C(R_5)-$, $-C(R_5)=N-$, $-N=C(R_5)-$, $-N(R_5)-N(R_5)-$ or $-N=N-$;

10 Y and Y' are independently selected from $-C(R_5)_2-$, $-O-$, $-S-$, $-N(R_5)-$, or taken together form $-C(R_5)=C(R_5)-$, $-C(R_5)=N-$, $-N=C(R_5)-$, $-N(R_5)-N(R_5)-$ or $-N=N-$;

15 Z is $-C(R_5)_2-$, $-O-$, $-S-$ or $-N(R_5)-$, or forms a covalent single or double bond between X' and Y', or Z together with X' or Y' forms $-C(R_5)=C(R_5)-$, $-C(R_5)=N-$, $-N=C(R_5)-$, $-N(R_5)-N(R_5)-$ or $-N=N-$;

 wherein when Z is $-O-$, $-S-$ or $-N(R_5)-$, X' and Y' are $-C(R_5)_2-$;

 when X is $-O-$, $-S-$ or $-N(R_5)-$, X' is $-C(R_5)_2-$;

 when Y is $-O-$, $-S-$ or $-N(R_5)-$, Y' is $-C(R_5)_2-$; or

 X or Y together with the carbon atom bearing the phenyl group form a double bond wherein which ever of X or Y forms part of the double bond is selected from $-C(R_5)-$ and $-N-$;

 R₁ is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_nN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and

(A)_nR₁₁, or when X or Y together with the carbon atom bearing the phenyl group form a double bond, R₁ is absent;

R₂ and R₄ are independently selected from hydrogen, C₁₋₃alkyl and (A)_mR₁₂;

R₃ is selected from C₁₋₃alkyl, (A)_mR₁₂, (A)_maryl and (A)_mheterocyclyl;

5 R₅ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, (A)_nC(O)R₆, (A)_nC(S)R₆, (A)_nS(O)R₆, (A)_nS(O)₂R₆, (A)_nOR₇, (A)_nSR₇, (A)_pN(R₈), (A)_nC(=NR₉)R₁₀ and (A)_nR₁₁;

10 R₆ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, OH, OC₁₋₁₀alkyl, OC₂₋₁₀alkenyl, OC₂₋₁₀alkynyl, O(A)_qR₁₁, SH, SC₁₋₁₀alkyl, SC₂₋₁₀alkenyl, SC₂₋₁₀alkynyl, S(A)_qR₁₁, N(R₁₃)₂, [NH-CH(R₁₄)C(O)]_s-OH, [NH-CH(R₁₄)C(O)]_s-OC₁₋₃alkyl, [sugar]_s and (A)_qR₁₁;

15 R₇ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, (A)_qR₁₁, C(O)H, C(O)C₁₋₁₀alkyl, C(O)C₂₋₁₀alkenyl, C(O)C₂₋₁₀alkynyl, C(O)-aryl, C(O)(A)_qR₁₁, C(O)₂H, C(O)₂C₁₋₁₀alkyl, C(O)₂C₂₋₁₀alkenyl, C(O)₂C₂₋₁₀alkynyl, C(O)₂-aryl, C(O)₂(A)_qR₁₁, C(S)H, C(S)C₁₋₁₀alkyl, C(S)C₂₋₁₀alkenyl, C(S)C₂₋₁₀alkynyl, C(S)-aryl, C(S)(A)_qR₁₁, C(S)OH, C(S)OC₁₋₁₀alkyl, C(S)OC₂₋₁₀alkenyl, C(S)OC₂₋₁₀alkynyl, C(S)O-aryl, C(S)O(A)_qR₁₁, S(O)_tH, S(O)_tC₁₋₁₀alkyl, S(O)_tC₂₋₁₀alkenyl, S(O)_tC₂₋₁₀alkynyl, S(O)_t-aryl, S(O)_t(A)_qR₁₁, [C(O)CH(R₁₄)NH]_s-H, [C(O)CH(R₁₄)NH]_s-C₁₋₁₀alkyl, [C(O)CH(R₁₄)NH]_s-C₂₋₁₀alkenyl, [C(O)CH(R₁₄)NH]_s-C₂₋₁₀alkynyl, [C(O)CH(R₁₄)NH]_s-aryl, [C(O)CH(R₁₄)NH]_s-(A)_qR₁₁ and [sugar]_s;

20 each R₈ is independently selected from R₇ and NHC(=NR₁₅)NH₂;

R₉ is selected from hydrogen and C₁₋₆alkyl;

R₁₀ is selected from C₁₋₆alkyl, NH₂, NH(C₁₋₃alkyl), N(C₁₋₃alkyl)₂, OH, OC₁₋₃alkyl, SH and SC₁₋₃alkyl;

25 R₁₁ is selected from OH, OC₁₋₆alkyl, OC₁₋₃alkyl-O-C₁₋₃alkyl, O-aryl, O-heterocyclyl, O[C(O)CH(R₁₄)NH]_sH, [sugar]_s, SH, SC₁₋₆alkyl, SC₁₋₃alkyl-O-C₁₋₃alkyl, S-aryl, S-heterocyclyl, S[C(O)CH(R₁₄)NH]_sH, halo, N(R₁₅)₂, C(O)R₁₆, CN, C(R₁₇)₃, aryl and heterocyclyl;

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl and $(A)_q R_{11}$;

R_{14} is the characterising group of an amino acid;

5 each R_{15} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-3} alkoxy C_{1-3} alkyl, aryl and heterocyclyl;

R_{16} is selected from C_{1-3} alkyl, OH, C_{1-3} alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R_{17} is independently selected from hydrogen and halogen;

10 A is optionally substituted methylene wherein when $n > 1$, any two adjacent A groups are optionally interrupted by -O-, -S- or -N(R_{15})-;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

15 s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

20 2. A compound according to claim 1 of formula (II), or a pharmaceutically acceptable salt or prodrug thereof

wherein X and Y are independently selected from $-O-$, $-S-$, $-N(R_5)-$ and $-C(R_5)_2-$;

Z is $-C(R_5)_2-$ or is a covalent bond between adjacent methylene groups;

5 R₁ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, (A)_nC(O)R₆, (A)_nC(S)R₆, (A)_nS(O)R₆, (A)_nS(O)₂R₆, (A)_nOR₇, (A)_nSR₇, (A)_nN(R₈), (A)_nC(=NR₉)R₁₀ and (A)_nR₁₁;

R₂ and R₄ are independently selected from hydrogen, C₁₋₃alkyl and (A)_mR₁₂;

R₃ is selected from C₁₋₃alkyl, (A)_mR₁₂, (A)_maryl and (A)_mheterocyclyl;

10 R₅ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, (A)_nC(O)R₆, (A)_nC(S)R₆, (A)_nS(O)R₆, (A)_nS(O)₂R₆, (A)_nOR₇, (A)_nSR₇, (A)_pN(R₈), (A)_nC(=NR₉)R₁₀ and (A)_nR₁₁;

15 R₆ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, OH, OC₁₋₁₀alkyl, OC₂₋₁₀alkenyl, OC₂₋₁₀alkynyl, O(A)_qR₁₁, SH, SC₁₋₁₀alkyl, SC₂₋₁₀alkenyl, SC₂₋₁₀alkynyl, S(A)_qR₁₁, N(R₁₃)₂, [NH-CH(R₁₄)C(O)]_s-OH, [NH-CH(R₁₄)C(O)]_s-OC₁₋₃alkyl, [sugar]_s and (A)_qR₁₁;

20 R₇ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl, C₂₋₂₀alkynyl, (A)_qR₁₁, C(O)H, C(O)C₁₋₁₀alkyl, C(O)C₂₋₁₀alkenyl, C(O)C₂₋₁₀alkynyl, C(O)-aryl, C(O)(A)_qR₁₁, C(O)₂H, C(O)₂C₁₋₁₀alkyl, C(O)₂C₂₋₁₀alkenyl, C(O)₂C₂₋₁₀alkynyl, C(O)₂-aryl, C(O)₂(A)_qR₁₁, C(S)H, C(S)C₁₋₁₀alkyl, C(S)C₂₋₁₀alkenyl, C(S)C₂₋₁₀alkynyl, C(S)-aryl, C(S)(A)_qR₁₁, C(S)OH, C(S)OC₁₋₁₀alkyl, C(S)OC₂₋₁₀alkenyl, C(S)OC₂₋₁₀alkynyl, C(S)O-aryl, C(S)O(A)_qR₁₁, S(O)_tH, S(O)_tC₁₋₁₀alkyl, S(O)_tC₂₋₁₀alkenyl, S(O)_tC₂₋₁₀alkynyl, S(O)_t-aryl, S(O)_t(A)_qR₁₁,

[C(O)CH(R₁₄)NH]_s-H, [C(O)CH(R₁₄)NH]_s-C₁₋₁₀alkyl, [C(O)CH(R₁₄)NH]_s-C₂₋₁₀alkenyl, [C(O)CH(R₁₄)NH]_s-C₂₋₁₀alkynyl, [C(O)CH(R₁₄)NH]_s-aryl, [C(O)CH(R₁₄)NH]_s-(A)_qR₁₁ and [sugar]_s;

each R₈ is independently selected from R₇ and NHC(=NR₁₅)NH₂;

5 R₉ is selected from hydrogen and C₁₋₆alkyl;

R₁₀ is selected from C₁₋₆alkyl, NH₂, NH(C₁₋₃alkyl), N(C₁₋₃alkyl)₂, OH, OC₁₋₃alkyl, SH and SC₁₋₃alkyl;

10 R₁₁ is selected from OH, OC₁₋₆alkyl, OC₁₋₃alkyl-O-C₁₋₃alkyl, O-aryl, O-heterocyclyl, O[C(O)CH(R₁₄)NH]_sH, [sugar]_s, SH, SC₁₋₆alkyl, SC₁₋₃alkyl-O-C₁₋₃alkyl, S-aryl, S-heterocyclyl, S[C(O)CH(R₁₄)NH]_sH, halo, N(R₁₅)₂, C(O)R₁₆, CN, C(R₁₇)₃, aryl and heterocyclyl;

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R₁₃ is independently selected from hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl and (A)_qR₁₁;

15 R₁₄ is the characterising group of an amino acid;

each R₁₅ is independently selected from hydrogen, C₁₋₆alkyl, C₁₋₃alkoxyC₁₋₃alkyl, aryl and heterocyclyl;

R₁₆ is selected from C₁₋₃alkyl, OH, C₁₋₃alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

20 each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when n > 1, any two adjacent A groups are optionally interrupted by -O-, -S- or -N(R₁₅)-;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

25 p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

5 3. A compound according to claim 2 wherein

X is -O-, -S-, -NH- or -CH₂-;

Y is -O-, -S- or -NR₅-;

Z forms a covalent bond between adjacent methylene groups;

R₁ is selected from C₁₋₂₀alkyl, C₁₋₂₀alkenyl, O-(A)_qO-C₁₋₆alkyl, O-(A)_q-heterocyclyl,

10 O-(A)_q-sugar, O-(A)_qO[C(O)CH(R₁₄)NH]_s-H, (A)_nOH, (A)_nOC₁₋₂₀alkyl,

(A)_nOC₁₋₂₀alkenyl, (A)_nOC(O)C₁₋₂₀alkyl, (A)_nOC(O)C₁₋₂₀alkenyl, (A)_nOC(O)aryl,

(A)_nO[C(O)CH(R₁₄)NH]_s-H, (A)_nO[sugar]_s, (A)_nNHC₁₋₂₀alkyl, (A)_nN(C₁₋₂₀alkyl)₂,

(A)_nNHC₁₋₂₀alkenyl, (A)_nN(C₁₋₂₀alkenyl)₂, (A)_nNHC(O)C₁₋₂₀alkyl,

(A)_nNHC(O)C₁₋₂₀alkenyl, (A)_nNHC(O)aryl, (A)_nNH[C(O)CH(R₁₄)NH]_s-H,

(A)_nNH-[sugar]_s, (A)_nSO₃H, (A)_nSO₃C₁₋₂₀alkyl, (A)_nSO₃C₁₋₂₀alkenyl,

(A)_nC(O)C₁₋₂₀alkyl, (A)_nC(O)C₁₋₂₀alkenyl, (A)_nCO₂H, (A)_nCO₂C₁₋₂₀alkyl,

(A)_nCO₂C₁₋₂₀alkenyl, (A)_nC(O)NHC₁₋₂₀alkyl, (A)_nC(O)N(C₁₋₂₀alkyl)₂,

(A)_nC(O)NHC₁₋₂₀alkenyl, (A)_nC(O)N(C₁₋₂₀alkenyl)₂, (A)_nC(O)[NHCH(R₁₄)C(O)]_s-OH,

(A)_nC(O)[sugar]_s; wherein A is methylene optionally substituted one or two times

20 with a group that is independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, halogen, OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₃alkyl, NH₂, NHC₁₋₃alkyl, -N(C₁₋₃alkyl)₂, CN, NO₂, aryl or heterocyclyl; R₁₄ is the characterising group of an amino acid, n is 0 or an integer from 1 to 20 and s is an integer from 1 to 5;

R₂ is hydrogen, C₁₋₃alkyl, OH, SH, NH₂, -NO₂, CF₃, halo or -CN;

25 R₃ is hydrogen, C₁₋₃alkyl, -(CH₂)_mNH₂, -(CH₂)_m-OH, -(CH₂)_m-CF₃, -(CH₂)_m-SH or a 5 or 6 membered heterocyclic group, wherein m is 0 or an integer from 1 to 3;

R₄ is hydrogen, C₁₋₃alkyl, OH, SH, NH₂, NO₂, CF₃, halo or CN;

A is unsubstituted methylene or mono-substituted methylene.

4. A compound according to claim 2 wherein

X is -O-, -S-, -NH-;

Y is -O-, -S- or -N(R₅)-;

Z forms a covalent bond between adjacent methylene groups;

5 R₁ is C₁-C₂₀alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl, (A)_nC(O)R₆, -(A)_nC(S)R₆, -(A)_nS(O)R₆, -(A)_nS(O)₂R₆, -(A)_nOR₇, -(A)_nSR₇, -(A)_nN(R₈)₂, (A)_nC(=NR₉)R₁₀ or (A)_nR₁₁ where n, R₆, R₇, R₈, R₉, R₁₀ and R₁₁ are defined above;

R₂ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, halo or CN;

R₃ is C₁₋₃alkyl, -(CH₂)_mNH₂, -(CH₂)_m-OH, -(CH₂)_mSH or heterocyclyl where m is defined above;

10 R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, CF₂, halo or CN.

5. A compound according to claim 2 wherein

X is -O- or NH;

Y is -O- or -N(R₁₈)- where R₁₈ is selected from hydrogen, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkynyl and (CH₂)_nR₁₁ where R₁₁ and n are defined above;

15 Z forms a covalent bond between adjacent methylene groups;

R₂ is hydrogen, halomethyl, OH, OCH₃, SH, NH₂, NO₂ or CN;

R₃ is hydrogen, C₁₋₃alkyl, (CH₂)_mNH₂, (CH₂)_mOH or (CH₂)_mCF₃ or heterocyclyl where m is defined above;

R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂ or CN.

20 6. A compound according to claim 1 of formula (III)

wherein

X is -O- or -NH-;

Y is -O- or -N(R₁₈)- where R₁₈ is defined above;

5 R₃ is hydrogen, NH₂, OH;

R₄ is hydrogen, methyl, OCH₃, or OH.

7. A compound according to claim 6 wherein R₁ is selected from (A)_nOR₇ where n is 0.

8. A compound according to claim 1 wherein

X is -S-;

10 Y is -N(R₅)-;

X' is -C(R₅)₂-;

Y' is -C(R₅)₂-;

Z forms a covalent bond between X' and Y'.

9. A compound according to claim 8 wherein

15 Y is -NH-;

X' is -CH₂-;

Y' is -CH₂-;

R_1 is H.

10. A compound according to claim 1 wherein

X and Y are each $-O-$;

X' and Y' are each $-C(R_5)_2-$;

5 Z forms a covalent bond between X' and Y'.

11. A compound according to claim 10 wherein

X' and Y' are each $-CH_2-$; R_1 is H.

12. A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=N-$;

10 Y is $-C(R_5)-$ and taken together with the carbon atom bearing the phenyl group forms a double bond;

Y' is $-N(R_5)-$;

Z forms a covalent bond between X and Y'.

13. A compound according to claim 12 wherein

15 Y is $-CH-$;

X is $-CH-$.

14. A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=N-$;

Z together with Y' forms $-C(R_5)=C(R_5)-$;

20 Y is $-C(R_5)-$ and together with the carbon atom bearing the phenyl group forms a double bond.

15. A compound according to claim 14 wherein

X is $-C(OCH_3)-$;

Z together with Y' forms $-\text{C}(\text{OCH}_3)=\text{CH}-$;

Y is $-\text{CH}-$.

16. A compound according to claim 1 wherein

X' is $-\text{C}(\text{R}_5)_2-$;

5 Y' is $-\text{C}(\text{R}_5)_2-$;

Z is $-\text{C}(\text{R}_5)_2-$;

X and Y are each $-\text{O}-$.

17. A compound according to claim 16 wherein

X', Y' and Z are each $-\text{CH}_2-$; R₁ is H.

10 18. A compound according to claim 1 wherein

X and Y are each $-\text{S}-$;

X' and Y' are each $-\text{C}(\text{R}_5)_2-$;

Z forms a covalent bond between X' and Y'.

19. A compound according to claim 18 wherein

15 X' and Y' are each $-\text{CH}_2-$; R₁ is H.

20. A compound according to claim 1 wherein

X is $-\text{S}-$;

Y is $-\text{O}-$;

X' and Y' are each $-\text{C}(\text{R}_5)_2-$;

20 Z forms a covalent bond between X' and Y'.

21. A compound according to claim 20 wherein

X' and Y' are each $-\text{CH}_2-$.

22. A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=C(R_5)-$;

Z together with Y forms $-C(R_5)=C(R_5)-$;

Y is $-C(R_5)-$ and together with the carbon atom bearing the phenyl group forms a double bond.

5 23. A compound according to claim 22 wherein

X and X' taken together form $-CH=CH-$;

Z together with Y forms $-CH=CH-$;

Y is $-CH-$.

10 24. A compound according to claim 1 wherein

Y is $-N-$ and taken together with the carbon atom bearing the phenyl group forms a double bond;

X is $-O-$;

X' and Y' are each $-C(R_5)_2-$

15 Z forms a covalent bond between X' and Y'.

25. A compound according to claim 24 wherein

X' and Y' are each $-CH_2-$.

26. A compound according to claim 1 wherein

X and Y are each $-C(R_5)_2-$;

20 X' and Y' are each $-N(R_5)-$;

Z is $C(R_5)_2$.

27. A compound according to claim 1 wherein

X is $-O-$;

Y' is $-N(R_5)-$;

X' and Y are each $-C(R_5)_2-$.

28. A compound according to claim 1 wherein

X and X' are each $-C(R_5)_2-$;

5 Y is $-N(R_5)-$;

Y' is $C(R_5)_2-$;

Z forms a covalent bond between X' and Y'.

29. A compound according to claim 1 wherein

X is $-N(R_5)-$;

10 X' is $-C(R_5)_2-$;

Y is $-C(R_5)_2-$;

Y' is $-N(R_5)-$;

Z forms a covalent bond between X' and Y'.

30. A compound according to claim 1 wherein

15 X and X' are each $-C(R_5)_2-$

Y is $-C(R_5)_2-$;

Y' is $-N(R_5)-$;

Z is $-C(R_5)_2-$

31. A compound according to claim 1 selected from the group consisting of:

20 2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(4-hydroxyphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(3-bromo-4-hydroxy-5-methylphenyl)-1,3-dioxolane;

2-(4-Bromophenyl)-1,3-thiazolane;
2-(4-Methoxyphenyl)-1,3-thiazolane;
4-(1,3-Thiazolidin-2-yl)benzonitrile;
2-(4-Hydroxy-3-methoxyphenyl)-1,3-thiazolane;
5 2-(3,4-Dimethoxyphenyl)-1,3-thiazolane;
Methyl 4-[2-(4-fluorophenyl)-1,3-dioxolan-2-yl]butanoate;
4-[2-(4-Fluorophenyl)-1,3-dioxolan-2-yl]butan-1-ol;
2-(4'-Bromophenyl)-2-butyl-1,3-dioxolane;
4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;
10 1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;
2,6-Dimethoxy-3-[4-(trifluoromethoxy)phenyl]pyridine);
2-[4-(2-Thienyl)phenyl]-1,3-thiazolane;
2-Ethyl-2-(4-methoxyphenyl)-1,3-dioxolane;
2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;
15 2-Methyl-2-(4-methylphenyl)-1,3-dithiolane;
2-Hexyl-2-(4-methylphenyl)-1,3-dioxolane;
2-(4-Chlorophenyl)-2-methyl-1,3-dioxane;
2-(4-Chlorophenyl)-2-methyl-1,3-dioxolane;
2-Methyl-2-(4-methylphenyl)-1,3-dioxane;
20 2-Methyl-2-(4-methylphenyl)-1,3-dioxolane;
2-(4-Chlorophenyl)-2-methyl-1,3-dithiolane;
2-(4-Nitrophenyl)-2-methyl-1,3-dioxolane;

2-(4-Nitrophenyl)-2-methyl-1,3-dioxane;

2-(4-Methoxyphenyl)-1,3-oxathiolane;

2-(3,4,5-Trimethoxyphenyl)-1,3-oxathiolane;

2-Methoxy-4-(1,3-oxathiolan-2-yl)phenol;

5 4-(1,3-Oxathiolan-2-yl)benzonitrile;

2-(4-Bromophenyl)-2-ethyl-1,3-oxathiolane;

4-(5-Methyl-1,3-oxathiolan-2-yl)benzonitrile;

2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;

4-(5-Methyl-2-octyl-1,3-oxathiolan-2-yl)phenol;

10 2-Fluoro-5-(5-methyl-1,3-oxathiolan-2-yl)benzenecarbonitrile;

4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;

2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine;

2-(4-bromophenyl)-2-butyl-4-propyl-1,3-oxathiane;

4-(1,3-Dioxolan-2-yl)benzenecarbonitrile;

15 2-(3,5-Dimethoxyphenyl)-2-hexyl-1,3-dioxolane;

2-(4-Chlorophenyl)-2-ethyl-4-methyl-1,3-dioxolane;

5-(5,5-Diethyl-1,3-dioxan-2-yl)-2-fluorobenzenecarbonitrile;

2-(4-Chlorophenyl)-4,5-dihydro-1,3-oxazole;

2-(4-Methylphenyl)-4,5-dihydro-1,3-oxazole.

20 32. A compound according to claim 31 selected from the group consisting of:

2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(4-hydroxyphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(3-bromo-4-hydroxy-5-methylphenyl)-1,3-dioxolane;
Methyl 4-[2-(4-fluorophenyl)-1,3-dioxolan-2-yl]butanoate;
4-[2-(4-Fluorophenyl)-1,3-dioxolan-2-yl]butan-1-ol;
2-(4'-Bromophenyl)-2-butyl-1,3-dioxolane;
5 4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;
1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;
2,6-Dimethoxy-3-[4-(trifluoromethoxy)phenyl]pyridine);
2-[4-(2-Thienyl)phenyl]-1,3-thiazolane;
2-Ethyl-2-(4-methoxyphenyl)-1,3-dioxolane;
10 2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;
2-Hexyl-2-(4-methylphenyl)-1,3-dioxolane;
2-(4-Bromophenyl)-2-ethyl-1,3-oxathiolane;
4-(5-Methyl-1,3-oxathiolan-2-yl)benzonitrile;
2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;
15 4-(5-Methyl-2-octyl-1,3-oxathiolan-2-yl)phenol;
2-Fluoro-5-(5-methyl-1,3-oxathiolan-2-yl)benzenecarbonitrile;
4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;
2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine;
2-(4-bromophenyl)-2-butyl-4-propyl-1,3-oxathiane;
20 4-(1,3-Dioxolan-2-yl)benzenecarbonitrile;
2-(4-Chlorophenyl)-2-ethyl-4-methyl-1,3-dioxolane;
5-(5,5-Diethyl-1,3-dioxan-2-yl)-2-fluorobenzenecarbonitrile.

33. A compound according to claim 1 selected from the group consisting of:

2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;

4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;

1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;

5 2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;

2-Methyl-2-(4-methylphenyl)-1,3-dithiolane;

2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;

4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;

2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine.

10 34. A method of inhibiting cytokine or biological activity of MIF comprising contacting MIF with a cytokine or biological inhibiting amount of a compound according to any one of claims 1 to 33.

15 35. A method of treating, preventing or diagnosing a disease or condition wherein MIF cytokine or biological activity is implicated comprising the administration of a treatment, prevention or diagnostic effective amount of a compound according to any one of claims 1 to 33 to a subject in need thereof.

36. The use of a compound according to any one of claims 1 to 33 in the manufacture of a medicament for the treatment, prevention or diagnosis of a disease or condition wherein MIF cytokine or biological activity is implicated.

20 37. A method according to claim 35 or a use according to claim 36 wherein the disease or condition is selected from the group consisting of autoimmune diseases, tumours or chronic or acute inflammatory diseases.

25 38. A method or use according to claim 37 wherein the disease or condition is selected from the group consisting of: rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, Crohn's disease, multiple sclerosis, psoriasis, uveitis, atherosclerotic vascular disease, asthma and chronic obstructive pulmonary disease.

39. A method according to claim 35 wherein the subject is a human subject.
40. A pharmaceutical composition comprising a compound according to any one of claims 1 to 33 and a pharmaceutically acceptable carrier, diluent or excipient
41. A pharmaceutical composition according to claim 40 further comprising a glucocorticoid.
42. A method of treating or preventing a disease or condition wherein MIF cytokine or biological activity is implicated comprising:
administering to a mammal a compound according to any one of claims 1 to 33 or a pharmaceutically acceptable salt or prodrug thereof and a second therapeutic agent.
43. A method according to claim 42 wherein the second therapeutic agent is a glucocorticoid.
44. A method of prophylaxis or treatment of a disease or condition for which treatment with a glucocorticoid is indicated, said method comprising:
administering to a mammal a glucocorticoid and a compound according to any one of claims 1 to 33 or a pharmaceutically acceptable salt or prodrug thereof.
45. A method of treating a steroid-resistant disease or condition comprising:
administering to a mammal a glucocorticoid and a compound according to any one of claims 1 to 33 or a pharmaceutically acceptable salt or prodrug thereof.
46. A method of enhancing the effect of a glucocorticoid in mammals comprising
administering according to any one of claims 1 to 33 simultaneously, separately or sequentially with said glucocorticoid.