

- 1. Linear transformations of random variables are useful for generating new probability density functions (pdf's) from standard pdf's such as a uniform distribution. This problem explores linear transformations.
 - a) Assuming the cumulative distribution, $F_X(x)$, of X is known, find an expression for the cumulative distribution, $F_Y(y)$, of Y where Y = aX + b and a > 0.
 - b) Use the result in (a) to find an expression for pdf $f_Y(y)$ in terms of pdf $f_X(x)$.
 - c) For the $f_X(x)$ shown below, find $f_Y(y)$ where Y = 3X 1.

Sol'n: a) The cumulative distribution $F_X(x)$ is, by definition, a probability:

$$F_X(x) \equiv P(X \leq x)$$

Likewise, the cumulative distribution $F_Y(y)$ is a probability:

$$F_Y(y) \equiv P(Y \le y)$$

Given Y = aX + b, we may write this probability for Y in terms of X:

$$P(Y \leq y) = P(aX + b \leq y)$$

Performing algebraic operations on the inequality inside the parentheses, we may reduce this to a probability for *X* by itself:

$$P(aX + b \le y) = P(aX \le y - b) = P\left(X \le \frac{y - b}{a}\right)$$

This last expression corresponds to a value of $F_X(x)$

$$P\left(X \le \frac{y - b}{a}\right) = F_X\left(x = \frac{y - b}{a}\right)$$

From the chain of equalities, we have the desired relationship:

$$F_Y(y) = F_X\left(x = \frac{y - b}{a}\right)$$

b) The probability density function $f_Y(y)$ is the derivative with respect to y of $F_Y(y)$. We wish to express this in terms of $f_X(x)$, the derivative of $F_X(x)$ with respect to x. To resolve the incompatibility of the variables of differentiation, we use the chain rule from calculus:

$$\frac{dF_Y(y)}{dy} = \frac{dF_X(x)}{dx}\bigg|_{x = \frac{y - b}{a}} \cdot \frac{dx}{dy}$$

or

$$\frac{dF_Y(y)}{dy} = f_X \left(x = \frac{y - b}{a} \right) \cdot \frac{dx}{dy}$$

or

$$\frac{dF_Y(y)}{dy} = f_X\left(x = \frac{y - b}{a}\right) \cdot \frac{d}{dy} \frac{y - b}{a}$$

or

$$\frac{dF_Y(y)}{dy} = f_X\left(x = \frac{y - b}{a}\right) \cdot \frac{1}{a}$$

or

$$\frac{dF_Y(y)}{dy} = f_Y(y) = \frac{1}{a} f_X \left(x = \frac{y - b}{a} \right)$$

c) The following equation describes $f_X(x)$:

$$f_X(x) = \begin{cases} \frac{1}{2}x & 0 \le x \le 2\\ 0 & otherwise \end{cases}$$

Since Y = 3X - 1, we have a = 3 and b = -1.

Using the result from (b) means we multiply $f_X(x)$ by 1/a and substitute $\frac{y-b}{a}$ for x everywhere, including the condition equation, $0 \le x \le 2$:

$$f_Y(y) = \frac{1}{a} \begin{cases} \frac{1}{2} \frac{y - b}{a} & 0 \le \frac{y - b}{a} \le 2\\ 0 & otherwise \end{cases}$$

or

$$f_Y(y) = \frac{1}{3} \begin{cases} \frac{1}{2} \frac{y+1}{3} & 0 \le \frac{y+1}{3} \le 2\\ 0 & otherwise \end{cases}$$

or

$$f_Y(y) = \begin{cases} \frac{y+1}{18} & -1 \le y+1 \le 5\\ 0 & otherwise \end{cases}$$

This pdf is still triangular, as we might have suspected:

