Problem 1 (2.1.3). Show that the following subsets of the dihedral group D_8 are actually subgroups: (a) $\{1, r^2, s, sr^2\}$ (b) $\{1, r^2, sr, sr^3\}$.

- Proof. (a) Obviously $H = \{1, r^2, s, sr^2\}$ is nonempty. Since H is finite, we need only check that H is closed under multiplication. For r^2 we have $r^2r^2 = r^4 = 1$, $r^2s = sr^{-2} = sr^2 \in H$, and $r^2(sr^2) = (sr^{-2})r^2 = s \in H$. For s we have $sr^2 \in H$, $s^2 = 1$ and $s(sr^2) = s^2r^2 = r^2 \in H$. Finally for sr^2 we have $sr^2r^2 = sr^4 = s \in H$, $sr^2s = s^2s^{-2} = r^2 \in H$ and $sr^2sr^2 = s^2r^{-2}r^2 = 1$. Thus H is a subgroup of D_8 since it's finite, nonempty and is closed under multiplication.
- (b) By a similar argument as above, we only need to check that $H = \{1, r^2, sr, sr^3\}$ is closed under multiplication. For r^2 we have $r^2r^2 = 1$, $r^2sr = sr^2r = sr^2r = sr^3 \in H$, and $r^2sr^3 = sr^{-2}r^3 = sr \in H$. For sr we have $srr^2 = sr^3 \in H$, $srsr = ssr^{-1}r = 1 \in H$ and $srsr^3 = ssr^{-1}r^3 = ssr^2 = r^2 \in H$. Finally for sr^3 we have $sr^3r^2 = sr^5 = sr \in H$, $sr^3sr = ssr^{-3}r = ssr^2 = r^2 \in H$ and $sr^3sr^3 = ssr^{-3}r^{-3} = 1$. Thus H is a subgroup of D_8 since it's finite, nonempty and is closed under multiplication.

Problem 2 (2.1.6). Let G be an abelian group. Prove that $\{g \in G \mid |g| < \infty\}$ is a subgroup of G (called the torsion subgroup of G). Give an explicit example where this set is not a subgroup when G is non-abelian.

Proof. Clearly $|1| = 1 < \infty$ so $H = \{g \in G \mid |g| < \infty\} \neq \emptyset$. Take $x, y \in H$ such that |x| = n and |y| = m. Note that this implies $|y^{-1}| = m$ since $y^m = 1$ and we can multiply by $y^{-m} = (y^{-1})^m$ on both sides. Now since G is abelian we have $(xy^{-1})^{nm} = x^{nm}(y^{-1})^{nm} = (x^n)^m((y^{-1})^m)^n = 1$. Therefore $|xy^{-1}| \leq nm < \infty$. This shows that H is a subgroup of G.

As an example, consider the group with presentation $\langle r, s \mid s^2 = 1, rs = sr^{-1} \rangle$. This is a nonabelian group with infinite order. Note that $|r| = \infty$, |s| = 2, |sr| = 2. But $(s)(sr) = s^2r = r$ so $|(s)(sr)| = \infty$.

Problem 3 (2.1.10). (a) Prove that if H and K are subgroups of G then so is their intersection $H \cap K$. (b) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is again a subgroup of G (do not assume the collection is countable).

- *Proof.* (a) Since $1 \in H$ and $1 \in K$ we know $H \cap K \neq \emptyset$. Now take $x, y \in H \cap K$. Note that this means $x, y \in H$ and $x, y \in K$. But since $H \leq G$ we know $xy^{-1} \in H$ and the same for K. Therefore $xy^{-1} \in H \cap K$ and we're done.
- (b) Let \mathcal{A} be a nonempty collection of subgroups of G indexed by some set I. Note that $\bigcap_{i\in I}A_i\neq\emptyset$ since $1\in A_i$ for all $i\in I$. Now consider $x,y\in\bigcap_{i\in I}A_i$. This means $x,y\in A_i$ for each $i\in I$. But since $A_i\leq G$ we have $xy^{-1}\in A_i$ for each $i\in I$. Then this means that $xy^{-1}\in\bigcap_{i\in I}A_i$. Therefore $\bigcap_{i\in I}A_i$ is a subgroup of G by the subgroup criterion.

Problem 4 (2.1.15). Let $H_1 \leq H_2 \leq \ldots$ be an ascending chain of subgroups of G. Prove that $\bigcup_{i=1}^{\infty} H_i$ is a subgroup of G.

Proof. Clearly $\bigcup_{i=1}^{\infty} H_i \neq \emptyset$ since $1 \in H_1$. Let $x, y \in \bigcup_{i=1}^{\infty} H_i$. Then $x \in H_i$ and $y \in H_j$ for some i, j. Without loss of generality suppose $i \leq j$. Then we know $H_i \leq H_j$ and so $x, y \in H_j$. Since $H_j \leq G$, we know $xy^{-1} \in H_j$ and thus $xy^{-1} \in \bigcup_{i=1}^{\infty} H_i$. Therefore $\bigcup_{i=1}^{\infty} H_i \leq G$.

Problem 5 (2.1.16). Let $n \in \mathbb{Z}^+$ and let F be a field. Prove that the set $\{(a_{ij}) \in GL_n(F) \mid a_{ij} = 0 \text{ for all } i > j\}$ is a subgroup of $GL_n(F)$ (called the group of upper triangular matrices).

Proof. Let $H = \{(a_{ij}) \in GL_n(F) \mid a_{ij} = 0 \text{ for all } i > j\}$. The identity matrix $I \in H$ since $I_{ij} = 0$ for all $i \neq j$. Take $X, Y \in H$. Note that $Y^{-1} \in H$ because the inverse of an upper triangular matrix is an upper triangular matrix. This fact can be established with contradiction as multiplying an upper-triangular matrix by one which is not upper triangular will always result in an off-diagonal nonzero element. Furthermore, consider $(XY^{-1})_{ij} = \sum_{k=1}^{n} X_{ik} Y_{kj}$. Note that $X_{ik} = 0$ whenever i > k, and $Y_{kj} = 0$ whenever k > j.

Therefore, provided that i > j, this sum is always 0. This then shows that XY^{-1} is an upper triangular matrix. Therefore $XY^{-1} \in H$ and $H \leq GL_n(F)$.

Problem 6 (2.1.17). Let $n \in \mathbb{Z}^+$ and let F be a field. Prove that the set $\{(a_{ij}) \in GL_n(F) \mid a_{ij} = 0 \text{ for all } i > j \text{ and } a_i i = 1 \text{ for all } i \}$ is a subgroup of $GL_n(F)$

Proof. As in Problem 5 we see that $I \in H$. Let $X, Y \in H$. The fact that for $X, Y \in H$ we have $XY^{-1} \in H$ is the same proof as in Problem 5.

Problem 7 (2.2.6). Let H be a subgroup of the group G.

- (a) Show that $H \leq N_G(H)$. Give an example to show that this is not necessarily true if H is not a subgroup. (b) Show that $H \leq C_G(H)$ if and only if H is abelian.
- Proof. (a) Since $H \leq G$ we know that H is closed under inverses and products and $H \neq \emptyset$. To show $H \leq N_G(H)$ we must show that $H \subseteq N_G(H)$. Let $x \in H$. Consider xhx^{-1} for some $h \in H$. Since H is closed under products and inverses, we know that $xhx^{-1} \in H$. Furthermore, for $h \in H$ we know $xhx^{-1} \in H$. We thus have $xHx^{-1} = H$, and therefore $x \in N_G(H)$. Hence, $H \subseteq N_G(H)$ and since it respects the group operation, $H \leq N_G(H)$.

As an example, take any set H which doesn't contain the identity. Since $1 \cdot H \cdot 1^{-1} = H$ we know $1 \in N_G(H)$, but it's clear that $H \nleq N_G(H)$ since $1 \notin H$.

(b) Suppose $H \leq C_G(H)$. Then for $x, y \in H$ we know $xyx^{-1} = y$ which implies xy = yx. Conversely, suppose H is abelian. Then for all $x, y \in H$ we have xy = yx and so $xyx^{-1} = y$. But $C_G(H) = \{x \in G \mid xyx^{-1} = y \text{ for all } y \in H\}$. This shows that $H \subseteq C_G(H)$. Since $H \leq G$ we know $H \leq C_G(H)$.

Problem 8 (2.2.7). Let $n \in \mathbb{Z}$ with $n \geq 3$. Prove the following:

- (a) $Z(D_{2n}) = 1$ if n is odd.
- (b) $Z(D_{2n}) = \{1, r^k\}$ if n = 2k.
- Proof. (a) We know that $s \notin Z(D_{2n})$ since $rs = sr^{-1}$. Take $r^k \in D_{2n}$ for $k \neq 0$. Note that $r^k \neq r^{-k}$, otherwise $r^{2k} = 1 = r^n$ and n is even. Therefore $r^k s = sr^{-k}$ shows that r^k doesn't commute with s. Thus the only element which commutes with all elements of D_{2n} is 1 and $Z(D_{2n}) = 1$.
- (b) From Problem 1.2.4 we know that since n = 2k, r^k is the only nonidentity element which commutes with every element of D_{2n} . Therefore $Z(D_{2n}) = \{1, r^k\}$.

Problem 9 (2.2.8). Let $G = S_n$, fix an $i \in \{1, 2, ..., n\}$ and let $G_i = \{\sigma \in G \mid \sigma(i) = i\}$ (the stabilizer of i in G). Use group actions to prove that G_i is a subgroup of G. Find $|G_i|$.

Proof. Note that σ is a group action acting on the set $\{1, \ldots, n\}$ such that $\sigma.i = \sigma(i)$. It's easy to see that this is indeed a group action. Since the stabilizing set of a group action is always a subgroup of the acting group, we know that $G_i \leq G$. In any permutation of $\{1, 2, \ldots, n\}$ there are n possibilities for the location of i. Since G_i is the set of permutations which fix i, we see that $|G_i| = |S_n|/n = (n-1)!$.

Problem 10 (2.2.9). For any subgroup H of G and any nonempty subset A of G define $N_H(A)$ to be the set $\{h \in H \mid hAh^{-1} = A\}$. Show that $N_H(A) = N_G(A) \cap H$ and deduce that $N_H(A)$ is a subgroup of H (note that A need not be a subset of H).

Proof. Let $h \in N_H(A)$. Then $hAh^{-1} = A$ and $h \in H$. But since $h \in G$ this means that $h \in N_G(A)$. Moreover, $h \in H$ as well which means $h \in N_G(A) \cap H$. For the other inclusion, suppose $h \in N_G(A) \cap H$. Then $hAh^{-1} = A$. But since $h \in H$ we know that $h \in N_H(A)$. Both inclusions show that $N_H(A) = N_G(A) \cap H$. Since $N_H(A) \subseteq N_G(A) \cap H$ it follows that $N_H(A) \subseteq H$. Because of this fact, we know that $N_H(A)$ is closed under inverses and products. Therefore $N_H(A) \leq H$.

Problem 11 (2.3.11). Find all cyclic subgroups of D_8 . Find a proper subgroup of D_8 which is not cyclic.

Proof. We've shown that the groups $\langle r \rangle$ and $\langle s \rangle$ are cyclic subgroups of D_{2n} . Additionally, $\langle r^2 \rangle$ is a subgroup as per Problem 8. Consider the powers of r multiplied by s. We have $(r^k s)(r^k s) = r^k r^{-k} s^2 = 1$. This covers all the possible cyclic groups so we are left with $\langle 1 \rangle$, $\langle r \rangle$, $\langle r^2 \rangle$, $\langle s \rangle$, $\langle r^2 s \rangle$, $\langle r^3 s \rangle$. Consider the subgroup $\{1, s, r^2, sr^2\}$. From Problem 1 we know this is a subgroup.

Problem 12 (2.3.12). Prove that the following groups are not cyclic:

- (a) $Z_2 \times Z_2$.
- (b) $Z_2 \times \mathbb{Z}$.
- (c) $\mathbb{Z} \times \mathbb{Z}$.

Proof. (a) We can write this group as $\{1, a, b, c\}$ such that $a^2 = b^2 = c^2 = 1$ and ab = c, ac = b and bc = a. To see the identification, take 1 = (0,0), a = (1,0), b = (0,1) and c = (1,1). The necessary equalities hold. Note that each element has order 1 or 2, but $|Z_2 \times Z_2| = 4$ and therefore it is not cyclic.

- (b) We can write $Z_2 \times \mathbb{Z} = \langle (0,1), (1,0) \rangle$. If we take some element $(a,b) \in Z_2 \times \mathbb{Z}$ then we can write this as a(1,0) + b(0,1). This then implies that $Z_2 \times \mathbb{Z}$ is not cyclic.
- (c) As in part (b) write $\mathbb{Z} \times \mathbb{Z} = \langle (0,1), (1,0) \rangle$. The same linear decomposition from (b) works here. Therefore $\mathbb{Z} \times \mathbb{Z}$ is not cyclic.

Problem 13 (2.3.16). Assume |x| = n and |y| = m. Suppose that x and y commute: xy = yx. Prove that |xy| divides the least common multiple of m and n. Need this be true if x and y do not commute? Give an example of commuting elements x, y such that the order of xy is not equal to the least common multiple of x and y.

Proof. Let l be the least common multiple of n and m such that an = l and bm = l. Then $1 = (x^n)^a (y^m)^b = x^{an}y^{bm} = x^ly^l = (xy)^l$ since x and y commute. But we know that if |xy| = k then $|(xy)^l| = k/(k, l)$. Since $(xy)^l = 1$ we have k = (k, l) and in particular $k \mid l$.

In the case of D_6 we have |r| = 3 and |s| = 2. The least common multiple of 2 and 3 is 6. But $(rs)(rs) = rr^{-1}s^2 = 1$, so |rs| = 2. Thus if x and y do not commute, the statement is false. In D_6 consider the commuting elements r and r^2 . We know |r| = 6 and $|r^2| = 3$ so the least common multiple is 6. But $rr^2 = r^3$ and $|r^3| = 2$. Nevertheless, $2 \mid 6$.

Problem 14 (2.3.26). Let Z_n be a cyclic group of order n and for each integer a let

$$\sigma_a: Z_n \to Z_n$$
 by $\sigma_a(x) = x^a$ for all $x \in Z_n$.

- (a) Prove that σ_a is an automorphism of Z_n if and only if a and n are relatively prime.
- (b) Prove that $\sigma_a = \sigma_b$ if and only if $a \equiv b \pmod{n}$.
- (c) Prove that every automorphism of Z_n is equal to σ_a for some integer a.
- (d) Prove that $\sigma_a \circ \sigma_b = \sigma_{ab}$. Deduce that the map $\overline{a} \mapsto \sigma_a$ is an isomorphism of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ onto the automorphism group of Z_n (so $\operatorname{Aut}(Z_n)$ is an abelian group of order $\phi(n)$).

Proof. (a) Note that if |x| = n then $Z_n = \langle x^a \rangle$ if and only if (a, n) = 1. Suppose that σ_a is an automorphism of Z_n . Then for each $y \in Z_n$ there exists $x \in Z_n$ such that $\sigma_a(x) = x^a = y$. There exists $y \in Z_n$ such that |y| = n and so $Z_n = \langle y \rangle = \langle x^a \rangle$. But the above theorem states that (a, n) = 1. Conversely, suppose that (a, n) = 1. Then we know $Z_n = \langle x^a \rangle$. This shows that σ_a is surjective. To show that it's injective, take $y^i, y^j \in Z_n$ with $y^i \neq y^j$. Then we have $\sigma_a(y^i) = (y^a)^i \neq (y^a)^j = \sigma_a(y^j)$. The fact that σ_a is a homomorphism follows from $\sigma_a(xy) = (xy)^a = x^a y^a = \sigma_a(x)\sigma_a(y)$. Thus, σ_a is an automorphism.

(b) Suppose $\sigma_a = \sigma_b$. Then for all $x \in Z_n$ we have $x^a = x^b$ and $x^{a-b} = 1$. For some x, |x| = n, so we

(b) Suppose $\sigma_a = \sigma_b$. Then for all $x \in Z_n$ we have $x^a = x^b$ and $x^{a-b} = 1$. For some x, |x| = n, so we have $n \mid (a-b)$ which means $a \equiv b \pmod{n}$. Conversely, suppose that $a \equiv b \pmod{n}$. Then $n \mid (a-b)$ so there exists c such that cn = a - b. Then $1 = (x^n)^c = x^{cn} = x^{a-b}$. Therefore $x^a = x^b$ and so $\sigma_a = \sigma_b$.

(c) Let $\varphi: Z_n \to Z_n$ be an automorphism. Then since elements of Z_n are of the form x^k for $1 \le k \le n$ we know $\varphi(x) = x^k$ for some k. But then note that

$$\varphi(x^j) = \varphi(x \cdot x \cdot \dots \cdot x) = \varphi(x)\varphi(x) \dots \varphi(x) = (\varphi(x))^j = (x^k)^j = (x^j)^k.$$

Thus $\varphi = \sigma_k$.

(d) We have

$$\sigma_a \circ \sigma_b(x) = \sigma_a(\sigma_b(x)) = \sigma_a(x^b) = (x^b)^a = x^{ab} = \sigma_{ab}(x).$$

Let $\varphi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(Z_n)$ be the map described. Part (b) shows injectivity of φ . Part (c) shows surjectivity. And the above calculation shows that the group structure is preserved. Thus, φ is an isomorphism. \square

Problem 15 (2.4.14). A group H is called finitely generated if there is a finite set A such that $H = \langle A \rangle$.

- (a) Prove that every finite group is finitely generated.
- (b) Prove that \mathbb{Z} is finitely generated.
- (c) Prove that every finitely generated subgroup of the additive group \mathbb{Q} is cyclic.

Proof. (a) Let $H = \{1, a_1, a_2, \dots, a_n\}$ be a finite group. Then $H = \langle a_1, a_2, \dots, a_n \rangle$.

- (b) Let $n \in \mathbb{Z}$. Then we can write $n = \pm 1 \cdot n$. Therefore $\mathbb{Z} = \langle 1 \rangle$.
- (c) Let $H = \langle a_1/b_1, a_2/b_2, \ldots, a_n/b_n \rangle$ be a finitely generated additive subgroup of \mathbb{Q} . Let $x = \prod_{i=1}^n b_i$. Now take $m_1/n_1 = \sum_{j=k}^l a_{i_j}/b_{i_j}$ and $m_2/n_2 = \sum_{j=k'}^{l'} a_{i_j}/b_{i_j}$. Note that $n_1 = \prod_{j=k}^l b_{i_j}$ and $n_2 = \prod_{j=k'}^{l'} b_{i_j}$. Now consider the sum $(m_1n_2 + m_2n_1)/(n_1n_2)$. Note that if any terms in the products n_1 and n_2 coincide, then we can undistribute them in the sum in the numerator and cancel them with the denominator. This shows that $n_1n_2 \mid x$. Letting $y = x/(n_1n_2)$ we have $1 \cdot (m_1/n_1 + m_2/n_2) = (y/y)(m_1/n_1 + m_2/n_2) = (y(m_1n_2 + m_2n_1))/(yn_1n_2) = (ym_1n_2 + ym_2n_1)/x$. We have thus shown that $H \leq \langle 1/x \rangle$ which proves that H is cyclic.

Problem 16 (2.4.16). A subgroup M of a group G is called a maximal subgroup if $M \neq G$ and the only subgroups of G which contain M are M and G.

- (a) Prove that H is a proper subgroup of the finite group G then there is a maximal subgroup of G containing H.
- (b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.
- (c) Show that if $G = \langle x \rangle$ is a cyclic group of order $n \geq 1$ then a subgroup of H is maximal if and only if $H = \langle x^p \rangle$ for some prime p dividing n.
- *Proof.* (a) If H is maximal then we're done. If H is not maximal, then since $H \neq G$, there must be a subgroup H_1 of smallest order which contains H. If $H_1 = G$ then H must have been maximal since H and G both contain H and since H_1 is of smallest order, there are no other such subgroups. Otherwise, if H_1 is maximal then we're finished, and if not then there exists a subgroup H_2 of smallest order which contains H_1 . Since G is finite, this process must eventually stop so that $H_i = G$ for some i. Then H_{i-1} is maximal since is a proper subgroup of G for which the only subgroups which contain it are H_{i-1} and G.
- (b) Clearly $\langle r \rangle \neq D_{2n}$ since $s \notin \langle r \rangle$. Let $H \leq D_{2n}$ be a subgroup such that $\langle r \rangle \leq H$. Since all powers of r are already in H, we must have $sr^k \in H$ or $r^k s \in H$. Note that if $sr^k \in H$ then $sr^k r^{-k} = s \in H$. A similar argument holds for $r^k s$. Therefore $s \in H$, and so $H = D_{2n}$. This shows that $\langle r \rangle$ is maximal in D_{2n} .
- (c) Let H be a maximal subgroup of G. Note that since G is cyclic, there is a unique cyclic subgroup $\langle x^d \rangle$ of order a for each $a \mid n$ where ad = n. Furthermore, H is one of these subgroups. If $H = \langle x^a \rangle$ for a = bc then $H = \langle x^{bc} \rangle = \langle (x^b)^c \rangle$. Therefore $H \leq \langle x^b \rangle$. But since H is maximal, $H = \langle x^p \rangle$ where p is not the product of two integers. Therefore p is prime.

Conversely, suppose that $H = \langle x^p \rangle$ for some prime p dividing n. Then let $K \leq G$ be a subgroup such that $H \leq K$. By the statement above, we know $K = \langle x^a \rangle$ where a divides n. Since $H \leq K$ we know that $x^p = (x^a)^k = x^{ak}$ for some k. If $k \neq 1$ then p is not prime, so k = 1. But then p = a and H = K. Furthermore, we know H has order n/p and since $p \neq 1$ we see $H \neq G$. This shows that H is maximal. \square

Problem 17 (2.4.17). Let G be a finitely generated group, say $G = \langle g_1, g_2, \ldots, g_n \rangle$ and let S be the set of all proper subgroups of G. Then S is partially ordered by inclusion. Let C be a chain in S.

- (a) Prove that the union, H, of all the subgroups in C is a subgroup of G.
- (b) Prove that H is a proper subgroup.
- (c) Use Zorn's Lemma to show that S has a maximal element (which is, by definition, a maximal subgroup).

Proof. (a) Since S is partially ordered by inclusion, this follows directly from Problem 4.

- (b) Suppose that H = G. Then for each $i, g_i \in H$. But then each g_i is in a proper subgroup of G lying in C. But since C is chain, each subgroup is contained in another in C. Since there are only finitely many g_i , there must be one subgroup which contains all of them. But then this subgroup isn't proper. This is a contradiction and so H must be a proper subgroup.
- (c) Part (b) shows that $H \in \mathcal{S}$ and part (a) shows that H is an upper bound for \mathcal{C} . Since \mathcal{S} is nonempty $(\langle 1 \rangle \in \mathcal{S})$ and each chain has an upper bound, by Zorn's Lemma \mathcal{S} must have a maximal element.

Problem 18 (2.5.7). Find the center of D_{16} .

Proof. From Problem 8 we know that $Z(D_{16}) = \{1, r^4\}.$

Problem 19 (2.5.8). In each of the following groups, find the normalizer of each subgroup: (a) S_3 .

(b) Q_8 .

Proof. (a) The subgroups of S_3 are $\langle (1\ 2)\rangle$, $\langle (1\ 3)\rangle$, $\langle (2\ 2)\rangle$ and $\langle (1\ 2\ 3)\rangle$. We know $(1\ 2\ 3)\notin N_{S_3}(\langle (1\ 2)\rangle)$ because $\langle (1\ 2)\rangle = \{(1), (1\ 2)\}$ and $(1\ 2\ 3)(1\ 2)(1\ 2\ 3)^{-1} = (1\ 2\ 3)^2(1\ 2)\notin N_{S_3}(\langle (1\ 2)\rangle)$. The same argument holds for $(1\ 2\ 3)^2$. Now consider $(1\ 3)$. We see that $(1\ 3)(1\ 2)(1\ 3)^{-1} = (2\ 3)\notin \langle (1\ 3)\rangle$. The same argument holds for $(2\ 3)$. This shows that $N_{S_3}(\langle (1\ 2)\rangle) = \langle (1\ 2)\rangle$. A similar statement holds for $\langle (1\ 3)\rangle$ and $\langle (2\ 3)\rangle$. Now note that $\langle (1\ 2\ 3)\rangle \leq N_{S_3}(\langle (1\ 2\ 3)\rangle) \leq S_3$. Since S_3 has order 6 and $\langle (1\ 2\ 3)\rangle$ has order 3, from Lagrange's Theorem we know that $N_{S_3}(\langle (1\ 2\ 3)\rangle)$ is either $\langle (1\ 2\ 3)\rangle$ or S_3 . Noting that $(1\ 2)(1\ 2\ 3)(1\ 2) = (1\ 2\ 3)^{-1}$ and that a similar statement can be said for $(1\ 2\ 3)^2$, we see that $(1\ 2)\in N_{S_3}(\langle (1\ 2\ 3)\rangle)$. Since $(1\ 2)\notin \langle (1\ 2\ 3)\rangle$ we must have $N_{S_3}(\langle (1\ 2\ 3)\rangle) = S_3$. A similar proof shows the same is true for $(1\ 2\ 3)^2$. This delineates all the normalizers for subgroups of S_3 .

(b) From Problem 25 we know that every subgroup of Q_8 is normal. This is equivalent to saying $N_{Q_8}(H) = Q_8$ for $H \leq Q_8$.

Problem 20 (2.5.12). The group $A = Z_2 \times Z_4 = \langle a, b \mid a^2 = b^4 = 1, ab = ba \rangle$ has order 8 and has three subgroups of order 4: $\langle a, b^2 \rangle \cong V_4$, $\langle b \rangle \cong Z_4$ and $\langle ab \rangle \cong Z_4$ and every proper subgroup is contained in one of these three. Draw the lattice of all subgroups of A, giving each subgroup in terms of at most two generators.

Problem 21 (2.5.13). The group $G = Z_2 \times Z_8 = \langle x, y \mid x^2 = y^8 = 1, xy = yx \rangle$ has order 16 and has three subgroups of order 8: $\langle x, y^2 \rangle \cong Z_2 \times Z_4$, $\langle y \rangle \cong Z_8$ and $\langle xy \rangle \cong Z_8$ and every proper subgroup is contained in one of these three. Draw the lattice of all subgroups of G, giving each subgroup in terms of at most two generators.

Problem 22 (2.5.14). Let M be the group of order 16 with the following presentation:

$$\langle u, v \mid u^2 = v^8 = 1, uv = uv^5 \rangle$$

(sometimes called the modular group of order 16). It has three subgroups of order 8: $\langle u, v^2 \rangle$, $\langle v \rangle$ and $\langle uv \rangle$ and every proper subgroup is contained in one of these three. Prove that $\langle u, v^2 \rangle \cong Z_2 \times Z_4$, $\langle v \rangle \cong Z_8$ and $\langle uv \rangle \cong Z_8$. Show that the lattice of subgroups of M is the same as the lattice of subgroups of $Z_2 \times Z_8$ but that these two groups are not isomorphic.

Proof. Let $G = \langle u, v^2 \rangle$ and $H = Z_2 \times Z_4 = \langle a, b \mid a^2 = b^4 = 1, ab = ba \rangle$. Let $\varphi : H \to G$ be a function such that $\varphi(a) = u$ and $\varphi(b) = v^2$. Comparing the two sets quickly shows that φ is a bijection (the two sets are identical with $v^2 = b$). Now take $\varphi(ab) = uv^2 = \varphi(a)\varphi(b)$. This shows that the two sets are isomorphic. It should be immediately obvious that $\langle v \rangle \cong Z_8$ since this is the cyclic group of order 8. To show $\langle uv \rangle \cong Z_8$ we need only show that |uv| = 8. But this is easily seen since |v| = 8 and $|u| \mid |v|$. Note that $M \ncong Z_2 \times Z_8$ because M is not abelian. That is, if $\varphi : Z_2 \times Z_8 \to M$ is an isomorphism, then $\varphi(a)\varphi(b) = \varphi(ab) = \varphi(ba) = \varphi(b)\varphi(a)$. But this is not in general true for M. Therefore $M \ncong Z_2 \times Z_8$. The lattice for M is

Homework 3

Problem 23 (3.1.3). Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give an example of a nonabelian group G containing a proper normal subgroup N such that G/N is abelian.

Proof. Let $xB, yB \in A/B$. Since xy = yx we see that xByB = (xy)B = (yx)B = yBxB. Consider $G = Q_8/\langle i \rangle$. From Problem 25 we know that $G \cong \mathbb{Z}/2\mathbb{Z}$, which is abelian, while $\langle i \rangle \subsetneq Q_8$.

Problem 24 (3.1.22). (a) Prove that if H and K are normal subgroups of a group G then their intersection $H \cap K$ is also a normal subgroup of G.

Proof. Let $g \in G$. Since $gHg^{-1} = H$ and $gKg^{-1} = K$, consider

$$g(H \cap K)g^{-1} = \{gxg^{-1} \mid x \in H, x \in K\} = \{gxg^{-1} \mid x \in H\} \cap \{gxg^{-1} \mid x \in K\} = gHg^{-1} \cap gKg^{-1} = H \cap K.$$

Since H and K are normal subgroups of G, we have $gHg^{-1} \subseteq H$.

Problem 25 (3.1.32). Prove that every subgroup of Q_8 is normal. For each subgroup find the isomorphism type of its corresponding quotient.

Proof. The subgroups of Q_8 are $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$, $\langle -1 \rangle$, $\langle 1 \rangle$. Consider $\langle i \rangle = \{1, i, -1, -i\}$ and the coset $j \langle i \rangle = \{jx \mid x \in \langle i \rangle\}$. Note that j(1) = (1)j, ji = -ij, j(-1) = (-1)j and j(-i) = ij. Therefore $j \langle i \rangle = \langle i \rangle j$. A similar argument holds for $\langle j \rangle$ and $\langle k \rangle$ since these groups have identical structures to $\langle i \rangle$. Also note that $i \langle -1 \rangle = \langle -1 \rangle$ since i(1) = (1)i and i(-1) = (-1)i. A similar argument holds for $j \langle -1 \rangle$ and $k \langle -1 \rangle$. This shows that for every subgroup of Q_8 , the left coset is also a right coset. Thus, every subgroup is normal.

For $Q_8/\langle i \rangle$ we have

$$j\langle i \rangle = \{j, ji, -ji, -j\} = \{j, -k, k, -j\} = \{ki, -k, k, -ki\} = k\langle i \rangle.$$

Also since every element $x \in \langle i \rangle$ appears as both x and -x we now know $\pm j \langle i \rangle = \pm k \langle i \rangle$. Likewise

$$i\langle i\rangle = \{i, i^2, -i, -i^2\} = \{i, 1, -i, -1\} = 1\langle i\rangle$$

and the same argument above shows that $\pm i\langle i\rangle = \pm 1\langle i\rangle$. Thus, we can take $j\langle i\rangle$ and $\langle i\rangle$ to be the two elements of $Q_8/\langle i\rangle$. Note that $j\langle i\rangle \cdot j\langle i\rangle = -\langle i\rangle = \langle i\rangle$. Thus we have $Q_8/\langle i\rangle \cong \mathbb{Z}/2\mathbb{Z}$. This same argument holds for $Q_8/\langle j\rangle$ and $Q_8/\langle j\rangle$ as well.

For $Q_8/\langle -1 \rangle$ we have $\pm \langle -1 \rangle = \{1, -1\}$. Thus for $x \in \{i, j, k\}$ we also have $\pm x \langle -1 \rangle = \{x, -x\}$. Therefore $(\pm i \langle -1 \rangle)^2 = (\pm j \langle -1 \rangle)^2 = (\pm k \langle -1 \rangle)^2 = \pm \langle -1 \rangle$. Furthermore, $i \langle -1 \rangle \cdot j \langle -1 \rangle = -k \langle -1 \rangle = k \langle -1 \rangle$. Since similar statements can be said about jk and ki, we see that $Q_8/\langle -1 \rangle \cong V_8$, the Klein-4 group. \square

Problem 26 (3.2.1). Which of the following are permissible orders for subgroups of a group of order 120: 1, 2, 5, 7, 9, 15, 60, 240? For each permissible order, give the corresponding index.

Proof. By Lagrange's Theorem we know that permissible orders are those which divide 120. Therefore, the permissible orders are 1, 2, 5, 15, and 60 with indices 120, 60, 24, 8 and 2 respectively.

Problem 27 (3.2.5). Let H be a subgroup of G and fix some element $g \in G$.

- (a) Prove that gHg^{-1} is a subgroup of G of the same order as H.
- (b) Deduce that if $n \in \mathbb{Z}^+$ and H is the unique subgroup of G of order n, then $H \subseteq G$.

Kris Harper MATH 25700 October 16, 2009

Homework 3

Proof. (a) Since $1 \in H$ we know $1 = g \cdot 1 \cdot g^{-1} \in gHg^{-1}$ and so the set is nonempty. Take $x, y \in gHg^{-1}$. Then $x = gh_1g^{-1}$ and $y = gh_2g^{-1}$ for $h_1, h_2 \in H$. Also $y^{-1} = (g^{-1})^{-1}(gh_2)^{-1} = gh_2^{-1}g^{-1}$. Therefore $xy^{-1} = (gh_1g^{-1})(gh_2g^{-1}) = gh_1h_2^{-1}g^{-1}$. Since H is a subgroup of G we know $h_1h_2^{-1} \in H$ and thus $xy^{-1} \in gHg^{-1}$. This shows that $gHg^{-1} \leq G$. Now suppose that x = y so that $gh_1g^{-1} = gh_2g^{-1}$. Then $h_1 = h_2$. Also, if $x \in gHg^{-1}$ then there's clearly $h_1 \in H$ for which $x = ghg^{-1}$. Thus the map $\phi : H \to gHg^{-1}$ where $h \mapsto ghg^{-1}$ is a bijection. Thus $|H| = |gHg^{-1}|$.

(b) If H is the unique subgroup of order n of G then from part (a) we know that $gHg^{-1} = H$ for all

(b) If H is the unique subgroup of order n of G then from part (a) we know that $gHg^{-1} = H$ for all $g \in G$. This shows that $H \subseteq G$.

Problem 28 (3.2.8). Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.

Proof. Suppose to the contrary that $x \in H \cap K$ with $x \neq 1$. Then $\langle x \rangle \leq H$ and $\langle x \rangle \leq K$. But since $x \neq 1$ we know that $|\langle x \rangle| = k$ for some $k \neq 1$. Therefore each of H and K have a subgroup of order k. By Lagrange's Theorem we have $k \mid |H|$ and $k \mid |K|$ contradicting the fact that (|H|, |K|) = 1.