

BPhO Practice

Question 1

A particle, mass m, slides down the smooth track, **Figure 1** from a height H under gravity. It is to complete a circular trajectory of radius R when reaching its lowest point. Determine the smallest value of H.

Figure 1

[3]

Question 2

The pulley system in **Figure 2** consists of two pulleys of radii a and b rigidly fixed together, but free to rotate about a common horizontal axis. The weight W hangs from the axle of a freely suspended pulley P, which can rotate about its axle. If section A of a rough rope is pulled down with velocity V:

- (i) Explain which way W will move.
- (ii) With what speed will it move?

Figure 2

[5]

Question 3

Three boats start at time t=0 from the corners of an equilateral triangle, of side 50 km, and maintain constant speeds of 30 km h^{-1} during the subsequent motion. They each maintain a heading, clockwise, towards the neighbouring boat. They all eventually meet at P. Determine:

- (i) qualitatively, the evolution of the triangle formed by the three boats
- (ii) the velocity components of the three boats in the direction of P, as a function of time, t, and in the perpendicular directions
- (iii) the time, t_M , at which they all meet
- (iv) the distance travelled by each boat, D.

[8]

Question 4

A tank contains water to a depth of $1.0 \,\mathrm{m}$. Water emerges from a small hole in the vertical side of the tank at $20 \,\mathrm{cm}$ below the surface. Determine:

- (i) the speed at which the water emerges from the hole
- (ii) the distance from the base of the tank at which the water strikes the floor on which the tank is standing.

[5]

Question 5

Two $1.00\,\mathrm{m}$ lengths of wire, one copper and one tungsten, are joined vertically end to end. The copper wire has a diameter of $0.500\,\mathrm{mm}$. When a $100\,\mathrm{kg}$ block is suspended from one end, the combined length of wire stretches by $6.00\,\mathrm{cm}$. What is the diameter, d, of the tungsten wire if the Young's modulus for copper is $12.4 \times 10^{10}\,\mathrm{Pa}$, and that for tungsten is $35.5 \times 10^{10}\,\mathrm{Pa}$?

[6]

Question 6

A man, on an open wagon of a train travelling along a straight horizontal track at a constant speed of $10\,\mathrm{m\,s^{-1}}$, throws a ball into the air in line with the track, that he judges to be at 60° to the horizontal. A woman standing on the ground observes the ball rise vertically.

How high does the ball rise relative to

- (i) the man and;
- (ii) the woman?

[5]

Question 7

A battery of emf E and internal resistance r drives $3.0~\mathrm{A}$ round a circuit consisting of two $2.0~\Omega$ resistors in parallel. When these resistors are connected in series the current is $1.2~\mathrm{A}$. Calculate E, r and the power dissipated, W, in each resistor.

[5]

Question 8

Determine, in **Figure** $\boxed{3}$ the total resistances, R_{TBC} , across BC, R_{TBD} across BD and R_{TBA} across AB.

Figure 3

Question 9

The temperature coefficients of resistance, α , of certain alloys are positive and others are negative. They have resistance per unit length of r. This makes it possible to produce a resistor, using the two wires in series, which does not vary with temperature. The values of r, at 0° C, and α are given in Table 1 for constantan and manganin. These wire have lengths L_c and L_m respectively at 0° C. What values of L_c and L_m are required to produce a $5.0~\Omega$ resistor?

Wire	r / $\Omega\mathrm{m}^{-1}$	α / $^{\circ}$ C ⁻¹
Constantan	6.3	-3.0×10^{-5}
Manganin	5.3	$+1.4 \times 10^{-5}$

Table 1

[5]

Question 10

The circuit in **Figure** 4 contains a cell of emf E, a known variable resistance R_0 , an unknown resistance R and an ammeter. When X and Y are short circuited $E = I_0 R_0$.

When R is inserted the current is αI_0 , where α is a constant.

(i) Express R in terms of R_0 and α , giving the range of validity of R and α .

(ii) In order to extend the range of α , modify the circuit by putting R in parallel with R_0 . Determine the ranges of R and α for the modified circuit.

[4]

Question 11

A chain of resistors, **Figure** [5] is composed of n units, each consisting of three resistors, each resistor of resistance R, **Figure** [6] A unit is attached to the left hand end of the chain in order to increase the number of units from n to (n+1).

- (i) Calculate the resistance (between A and B) across a chain with two units, R_2 , and the resistance R_3 , across a chain with three units.
- (ii) A unit is attached to a long chain. The resistance of the chain, R_T , is not altered by this addition. Determine the resistance of the chain.

[6]

Question 12

A glass block of refractive index $\mu = 1.5$ has an 'L' cross-section, **Figure** 7 and is of constant width and thickness.

Figure 7

- a) A laser beam enters the block from the left, as indicated in **Figure** 7, at an incident angle of $\theta=45^{\circ}$. If the block was absent the beam would pass through the point P. Determine the angle at which the beam will emerge from the bottom face after refraction through the block.
- b) If this beam enters the block below the horizontal through P, determine its possible subsequent path(s).

[6]

Question 13

A ray of light is incident on a 60° glass prism of refractive index 1.500 at an angle of incidence of 48.59° . Determine:

- (i) the angle of emergence, θ , from the prism; i.e. the angle between the emergent ray and the normal to the prism face.
- (ii) the angle of deviation of the ray, δ .

[5]

Question 14

In **Figure 8** a fixed mirror, a light source and a light receiver are all $0.30 \, \mathrm{km}$ from a rotating mirror, with angular frequency ω . The distance between the light source and the receiver is $0.60 \, \mathrm{m}$. What is the lowest value of ω required for detection of the reflected light?

[4]

Question 15

Protons are accelerated from rest through a p.d. of $2.0 \times 10^6 \text{ V}$ and fired at a gold ($^{197}_{79}\text{Au}$) foil. What is the distance of closest approach of a proton to the gold nucleus?

[4]

Question 16

A lithium surface, with work function energy $W=3.7\times 10^{-19}\,\mathrm{J}$, is irradiated with photons of frequency $f=6.3\times 10^{14}\,\mathrm{Hz}$. The loss of photoelectrons from the surface causes the metal to acquire a positive potential, V. What will this potential be when the metal prevents the loss of further electrons?

[4]

Question 17

A small object of mass m rests on a scale-pan which is supported by a spring. The period of vertical oscillations is $0.50\,\mathrm{s}$. When the amplitude of the oscillations exceeds the value, A, the mass leaves the scale-pan. Determine A.

[3]

Question 18

A calorimeter contains $800 \,\mathrm{kg}$ of water at a temperature of $15 \,^{\circ}\mathrm{C}$. The heat capacity of the calorimeter is $42.8 \,\mathrm{J} \,^{\circ}\mathrm{C}^{-1}$. $0.400 \,\mathrm{kg}$ of molten lead is poured into the calorimeter. The final equilibrium temperature is $25 \,^{\circ}\mathrm{C}$. What was the initial temperature of the lead?

```
The specific heat of molten lead is 158\,\mathrm{J\,kg^{-1}\,^{\circ}C^{-1}}. The specific heat of solid lead is 137\,\mathrm{J\,kg^{-1}\,^{\circ}C^{-1}}. The specific latent heat of solid lead is 2.323\times10^4\,\mathrm{J\,kg^{-1}}. Lead freezes at 327\,^{\circ}\mathrm{C}. The specific heat of water is 4200\,\mathrm{J\,kg^{-1}\,^{\circ}C^{-1}}.
```

[5]

Question 19

To determine the specific heat capacity, s, of a liquid flowing at a constant rate of $0.060 \text{ kg min}^{-1}$ down a pipe, heat from an electrical supply is maintained at the rate of 12 W. It produces a temperature rise of $2.0 \,^{\circ}\text{C}$ along the flow. Calculate s.

[2]

Ouestion 20

A bicycle tyre has a volume of $1.20 \times 10^{-3} \, \mathrm{m}^3$ when fully inflated. The barrel of the bicycle pump has a working volume of $9.0 \times 10^{-5} \, \mathrm{m}^3$. How many strokes of the pump are needed to completely inflate the flat tyre to a total pressure of $3.0 \times 10^5 \, \mathrm{Pa}$? The atmospheric pressure is $1.00 \times 10^5 \, \mathrm{Pa}$. Assume the air is pumped in slowly, so that the temperature remains constant.

[4]