WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI 1

		prowadząc(a/y)			
grupa	podgrupa zesp	ół semestr letni roku	u akademickiego 202/2	02	
student(ka)					
stadont(ka)		E Z PRACY LABORA			
	BADANIE DRG	AN WAHADŁA MATI	EMATYCZNEGO		
pomiary wykonano dnia		. jako ćwiczenie	. z obowiązujących 5		
OCENA ZA					
TEORIE					
data					
Podejście	1 (zasadnicze, przed następnymi zajęciami)	2 (poprawa, tydzień przed sesją zasad.)	3 (poprawa, tydzień przed końcem sesji zas.)	4 (poprawa, tydzień przed końcem sesji popr.)	
OCENA KOŃCOWA				popy	
data					
Po wykonaniu sprawozd	lania wypełnij poniższy 🖊	Arkusz Samokontroli			
sprawdzając czy wszyst					
1. Dane informacyjne	2. Kompletność sprav	vozdania	4. Poprawność wykre	sów	
□ czy na karcie	🗌 czy sprawozdanie z	awiera:	☐ czy wykresy:		
tytułowej znajdują się:			a. wykonano na papierze milimetrowym,		
a. dane wykonawcy,	i krótkim opisem zag		b. skale osi dobrano tak, aby wykres wypełniał		
b. numer grupy,	którego dotyczy ćwiczenie,		większość obszaru arkusza,		
c. tytuł ćwiczenia	b. kartę pomiarową z podpisem prowadzącego,				
laboratoryjnego,	c. obliczenia opatrzone wyjaśniającym opisem,				
d. data wykonania	d. komplet ponumerowanych i opatrzonych		d. naniesiono punkty pomiarowe i ich niepew-		
sprawozdania,	pełnym tytułem wykresów i tabel,		ności jeśli są widocz		
e. oraz czy wszystkie	e. wyniki wszystkich poleceń wymienionych			cji wyników krzywą (ale nie tej podano jej równanie.	
strony są w pkt. 4 instrukcji do ćwiczenia (Opracowanie wyników pomiarów).			, , ,	tej podano jej rownanie.	
ponumerowane.	(Opracowanie wynik	ow pomiarow).	5. Poprawność tabel		
	3. Poprawność oblicz	eń	□ czy w tabelach:		
	_ •		a. dane pomiarowe opa		
	Czy w sprawozdaniu		(jednostką) – w nagł		
	 a. podano przykłady ob z rachunkiem jednos 		b. właściwie określono		
		liczby sprowadzono do	dla danych zawartyc	h w tabelach.	
	tych samych jednost		6. Podsumowanie		
		wymagane niepewności	☐ czy w podsumowai	niu i wnioskach:	
	pomiarowe,	, , ,	-	y wraz z jego niepewnością	
	d. wyznaczono niepewi		z właściwą liczbą cyfr z	znaczących i jednostką,	
	wielkości, w tym skła	dowe niepewności		zaju błędów pomiarowych	
	złożonych,		na wynik końcowy,		
	e. podano wynik i jego		_	czące przebiegu i oceny	
	o właściwą liczbę cy	fr znaczących.	pomiarów (np. porów	vnanie z literaturą).	

Tabela pomiarowa

Czas t_i mierzony dla n = 10 okresów drgań

l.p.	L [m]			
1.				
2.				
3.				
4.				
5.				
6.	+[c]			
7.	t [s]			
8.				
9.				
10.				
11.				
12.				

N	ΛI	iepewności	nomiaru	CZOCU CI	tonorom At	_
ı	A	ieheminosci	pomiaru	UZasu si	robereili 71	

Niepewności pomiaru długości wahadła $\Delta L =$

Promień kuli R=38 mm z u(R)=1 mm

Data i podpis osoby prowadzącej:

Badanie drgań wahadła matematycznego

1. Opis teoretyczny do ćwiczenia

Wahadło było wykorzystywane od niepamiętnych czasów. Jego zastosowania opierają się na wykorzystaniu przyciągania grawitacyjnego pomiędzy dwiema masami - masą Ziemi oraz masą wahadła, czyli np. ciężarka zawieszonego na sznurku, za pomocą którego można wyznaczać pion.

W starożytności drgania odwróconego wahadła służyły do wykrywania trzęsień Ziemi oraz ich kierunku.¹ Dzięki badaniom Galileusza nad izochronizmem, przez następne blisko 330 lat zastosowanie wahadła umożliwiło budowę najdokładniejszych zegarów, zwiększając dokładność tych urządzeń z 15 minut do 15 sekund na dobę², a nawet lepiej.

W przypadku poniższego eksperymentu wahadło zostanie wykorzystane do pomiaru wartości przyspieszenia ziemskiego g, gdyż wartość tego przyspieszenia ma wpływ na długość okresu jego drgań.

Rozważmy masę punktową m zawieszoną na nierozciągliwej, nieważkiej nici o długości L. Na wahadło wychylone z położenia o kąt działa moment siły ciężkości przeciwnie skierowany w stosunku do wektora przyspieszenia. Korzystając z II Zasady Dynamiki Newtona dla ruchu obrotowego otrzymujemy:

$$I\vec{\varepsilon} = \vec{M} \tag{1}$$

gdzie $I = mL^2$ to moment bezwładności masy m.

Wartość momentu siły zależy od składowej siły ciężkości prostopadłej do ramienia wahadła (rys. 1):

$$M = Lmgsin\theta \tag{2}$$

Wówczas II Zasada Dynamiki Newtona przyjmuje postać

$$I\frac{d^2\theta}{dt^2} = -Lmgsin\theta \tag{3}$$

Znak "–" oznacza, że składowa siły ciężkości przeciwdziała wychylaniu się masy z położenia równowagi.

Równanie to nie opisuje jednak drgań harmonicznych, bo działająca siła nie jest wprost proporcjonalna do wychylenia z położenia równowagi. Jednak dla małych kątów (θ <10°) sin $\theta \sim \theta$ i uwzględniając wartość momentu bezwładności równanie (3) przyjmuje postać równania drgań harmonicznych:

Rys. 1. Schemat wahadła matematycznego.

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\theta\tag{4}$$

Przyrównując do oscylatora harmonicznego:

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \tag{5}$$

Otrzymujemy wartość częstości kołowej drgań:

$$\omega_o = \sqrt{\frac{g}{L}} \tag{6}$$

Czyli okres drgań wahadła możemy zapisać jako:

$$T = \frac{2\pi}{\omega_0} = 2\pi \cdot \sqrt{\frac{L}{g}} \tag{7}$$

Z powyższego wzoru można określić wartość przyspieszenia ziemskiego:

¹ Morton, W. Scott and Charlton M. Lewis (2005). China: Its History and Culture. New York: McGraw-Hill, Inc.

² Eidson, John C. (2006). Measurement, Control, and Communication using IEEE 1588. Burkhausen.

$$g = L \left(\frac{2\pi}{T}\right)^2 \tag{8}$$

Korzystając z metody różniczki zupełnej wyznaczamy niepewność pomiarową przyspieszenia ziemskiego:

$$u_{c}(g) = \sqrt{\left(\frac{\partial g}{\partial L} \cdot u(L)\right)^{2} + \left(\frac{\partial g}{\partial T} \cdot u_{c}(T)\right)^{2}}$$
(9)

Gdzie:

$$\frac{\partial g}{\partial L} = \frac{4\pi^2}{T^2} \tag{10}$$

$$\frac{\partial g}{\partial T} = \frac{8L\pi^2}{T^3} \tag{11}$$

$$u(L) = \frac{\Delta L}{\sqrt{3}} \tag{12}$$

$$\Delta T = \frac{\Delta t}{n} \tag{12a}$$

gdzie n – liczba mierzonych okresów drgań

$$u_c(T) = \sqrt{(\sigma_T)^2 + \frac{\Delta T^2}{3}} \tag{13}$$

Podstawiając (10), (11) do (9) otrzymujemy:

$$u_{c}(g) = \sqrt{\frac{16^{-4}}{T^{4}} \cdot u(L)^{2} + \frac{64 \pi^{4} L^{2}}{T^{6}} \cdot u_{c}(T)^{2}}$$
 (14)

Wyznaczoną wartość g można porównać wielkością tablicową uwzględniając niepewność rozszerzoną U_c(g). Istnieje wiele modeli opisujących zależność g od położenia geograficznego i wysokości nad poziomem morza (n.p.m.). Jedną z częściej stosowanych formuł jest wyrażenie opisane poniższym równaniem:

$$g(\alpha, h) = 9.780318 * (1 + 0.0053024 * sin[\frac{\pi\alpha}{180}]^2 - 0.0000058 * sin[\frac{\pi\alpha}{90}]^2) - 3.086 * 10^{-6} * h$$
 (15) gdzie:

α - wyraża szerokość geograficzną liczoną w stopniach,

h - określa wysokość nad poziomem morza liczoną w metrach.

Przyjmując dla Warszawy $\alpha = 52,25$ °N i h = 116 m n.p.m. otrzymujemy $\mathbf{g} = 9,8123$ ms⁻²,

2. Opis układu pomiarowego

Laboratoryjny układ pomiarowy zbudowany jest z podstawy (a.), czyli poziomej płyty, do której przymocowany jest pionowy pręt (b.) o przekroju kołowym. Na nim znajduje się pozioma belka (c.) z otworem (d.) na jej końcu. Przez otwór przechodzi linka (e.) z możliwością regulacji jej długości za pomocą śruby (f.). Na końcu linki zaczepiona jest kula (g.).

W doświadczeniu pomijamy sprężystość i wagę linki (e.) a także opór powietrza.

Układ należy ustawić na wypoziomowanym stole, a przed przystąpieniem do pomiarów upewnić się, że płyta (a.) nie porusza się podczas oscylacji kuli g. Optymalny układ powinien posiadać trzy klocki podpierające płytę a. wówczas uniknie się oscylacji wahadła w kierunku prostopadłym do jego początkowego ruchu.

Dotyczy przypadku zdalnego wykonywania ćwiczenia:

Zadaniem studenta jest skonstruowanie podobnego wahadła w domu wykorzystując niewielki ciężarek zawieszony na lince (sznurku, nici lub drucie) o długości od 30 cm do 200 cm. Długość wahadła zmieniamy poprzez zmianę punktu zawieszenia linki. Zdjęcie skonstruowanego układu należy umieścić w sprawozdaniu.

Podstawowe cele ćwiczenia:

- 1. wyznaczyć wartość przyspieszenia ziemskiego;
- 2. uzasadnić wpływ długości wahadła na otrzymaną wartość g.

3. Przeprowadzenie pomiarów

- 1. Ustawić największą długość wahadła i zmierzyć długość linki L, od górnego mocowania linki do środka ciężarka.
- 2. Zmierzyć czas trwania 10 okresów drgań wahadła pamiętając, że kąt początkowego wychylenia nie może być większy od 10 stopni.
- 3. Pomiary z punktu 2 powtórzyć 12 razy i wyniki pomiarów wpisać do tabeli pomiarowej.
- 4. Czynności z punktu 2 i 3 przeprowadzić dla pięciu długości L wahadła zmniejszając ją o stałą wartość (np. o ok. 4 6 cm) i wyniki pomiarów wpisać do tabeli pomiarowej. (Minimalna długość L nie powinna być krótsza od 25 cm.)
- 5. Oszacować i zapisać niepewności użytych narzędzi pomiarowych.

4. Opracowanie pomiarów

- 1. Wyniki pomiarów długości wahadła wpisać do tabeli nr 1.
- 2. Określić u(L), czyli niepewność pomiaru długości wahadła L.
- 3. Wyniki 10 pomiarów czasu trwania 10 okresów drgań wahadła wpisać do tabeli nr 1 odrzucając dwie najbardziej skrajne wartości dla każdej długości wahadła (jako ewentualne błędy grube).
- 4. Obliczyć średnią wartość trwania 10 okresów drgań wahadła dla i wyznaczyć okres T dla każdej długości wahadła.
- 5. Określić $u_c(T)$ na podstawie odchylenia standardowego σ_T dla 10 pomiarów okresów drgania wahadła i niepewności użytego narzędzia pomiarowego ΔT (wzór 13).
- 6. Wyznaczyć wartość przyspieszenia ziemskiego g oraz $u_c(g)$ i $U_c(g)$. Przeprowadzić bilans jednostek, zapisać przykładowe obliczenia.
- 7. Obliczenia z punktów 5, 6 wpisać do tabeli nr 1 dla kolejnych długości wahadła.

Tabela 1. Zestawienie operacji wykonanych w punktach od 1 do 7

L [m]			
t ₁ [s]			
t ₂ [s]			
t ₃ [s]			
t ₄ [s]			
t ₅ [s]			
t ₆ [s]			
t ₇ [s]			
t ₈ [s]			
t ₉ [s]			
t ₁₀ [s]			
t _{śr} [s]			
T [s]			
$u_{\rm c}$ (T) [s]			
$g\left[\frac{m}{s^2}\right]$			
$u_c(g)\left[\frac{m}{s^2}\right]$			
$U_c(g)\left[\frac{m}{s^2}\right]$			

- 8. Wykonać wykres wartości g w funkcji długości wahadła wraz ze znacznikami rozszerzonych niepewności pomiarowych.
- 9. Na wykresie z punktu 8. zaznaczyć wartość tablicową $g(\alpha, h)$ w postaci poziomej linii zgodnie z wartością określoną wzorem (15).

5. Podsumowanie

Zestawienie:

1. Na podstawie zebranych wyników zapisać końcową wartość przyspieszenia ziemskiego wraz z rozszerzoną niepewnością pomiarową.

Analiza:

- 2. Przeanalizować uzyskane rezultaty:
 - a) czy otrzymane wyniki mieszczą się w granicach rozszerzonych niepewności pomiarowych z wartościami przyspieszenia ziemskiego obliczonymi dla współrzędnych geograficznych i wysokości nad poziomem morza dla miejsca, w którym dokonano badania?
 - b) określić wpływ długości wahadła na uzyskaną wartość przyspieszenia ziemskiego.
- 3. Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych oraz ich prawdopodobnych przyczyn.

Synteza:

- 4. Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- 5. Podać cele ćwiczenia i wyjaśnić czy zostały osiągnięte.

6. Przykładowe pytania

- 1. Podaj wielkości opisujące ruch harmoniczny prosty.
- 2. Jaki wpływ na wynik końcowy eksperymentu ma waga i kształt ciężarka zastosowanego w wahadle względem gęstości oraz temperatury powietrza? Dlaczego wahadło zegarów wahadłowych ma kształt dysku, a nie kuli?
- 3. Jak działa kompensacja długości wahadła w zegarze wahadłowym?
- 4. Czy w układzie zamkniętym, pozbawionym powietrza, ciężar wahadła miałaby znaczenie na wynik eksperymentu?
- 5. Czy opór powietrza wpływa na okres drgania wahadła?
- 6. Czy kąt początkowego wychylenia wahadła wpływa na okres drgań wahadła? Dlaczego mierzymy okres drgań dla możliwie najmniejszych wychyleń wahadła?
- 7. Proszę wyprowadzić równanie oscylatora harmonicznego: $\frac{d^2\theta}{dt^2} = -\frac{g}{L}\theta$
- 8. Wyznaczyć wzór na okres $T = \frac{2\pi}{\omega_0} = 2\pi \cdot \sqrt{\frac{L}{g}}$ drgania wahadła matematycznego o długości L.