(19) 世界知的所有権機関 国際事務局

) (1887 ENITED IN EXEMPERICAN ECON CENT CENT CON CONTRACTOR CONTRA

(43) 国際公開日 2004 年6 月17 日 (17.06.2004)

PCT

(10) 国際公開番号 WO 2004/050869 A1

(51) 国際特許分類⁷: C12N 15/09, C07K 14/47, C12N 1/15, 1/19, 1/21, 5/10, G01N 33/573, A61K 37/02, A61P 5/48

(21) 国際出願番号:

PCT/JP2003/015546

(22) 国際出願日:

2003年12月4日(04.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-354155 2002 年12 月5 日 (05.12.2002) JP 特願2003-206952 2003 年8 月8 日 (08.08.2003) JP

(71) 出願人 (米国を除く全ての指定国について): 山之内 製薬株式会社 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8411 東京都 中央区 日本橋 本町二丁目 3番 1 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 遠藤 由規(ENDO,Yuki) [JP/JP]; 〒305-8585 茨城県 つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 遠藤 英樹 (ENDOH,Hideki) [JP/JP]; 〒305-8585 茨城県 つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 上田 能孝 (UEDA,Yoshitaka) [JP/JP]; 〒305-8585 茨城県 つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 加藤 美雪 (KATO,Miyuki) [JP/JP]; 〒305-8585 茨城県 つくば市御幸が丘21 山之内製薬

株式会社内 Ibaraki (JP). 井鍋 一則 (INABE,Kazunori) [JP/JP]; 〒305-8585 茨城県 つくば市 御幸が丘21 山 之内製薬株式会社内 Ibaraki (JP).

- (74) 代理人: 長井 省三 ,外(NAGAI,Shozo et al.); 〒174-8612 東京都 板橋区 蓮根三丁目 1 7 番 1 号 山之内製 薬株式会社 特許部内 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: PROTEIN BINDING TO Akt2

(54) 発明の名称: Akt2に結合する蛋白質

(57) Abstract: A novel polypeptide useful in screening an insulin resistance improving agent and a saccharometabolism improving agent; a polynucleotide encoding this polypeptide; an expression vector containing this polynucleotide; and cells transfected with this expression vector. The above-described polypeptide is a protein expressed in fat and the activity of Akt2 is lowered in adipocytes with the overexpression of this protein. A method of screening an insulin resistance improving agent and a saccharometabolism improving agent by using the above-described polypeptide; and a process for producing a composition for improving insulin resistance and improving saccharometabolism which contains a substance obtained by this screening method as the active ingredient.

(57) 要約: インスリン抵抗性改善薬及び糖代謝改善薬のスクリーニングに有用な新規なポリペプチド、前記ポリペプチドをコードするポリヌクレオチド、前記ポリヌクレオチドを含む発現ベクター、及び前記発現ベクターでトランスフェクトされた細胞を開示する。前記ポリペプチドは脂肪に発現する蛋白質であり、同蛋白質を高発現させた脂肪細胞ではAkt2の活性が低下する。前記ポリペプチドを用いたインスリン抵抗性改善薬及び糖代謝改善薬のスクリーニング方法ではより得られる物質を有効成分とするインスリン抵抗性改善用及び糖代謝改善用及び糖

69805

1

明細書

Akt2に結合する蛋白質

技術分野

本発明は、Akt2に結合する新規なポリペプチド、及び該ポリペプチドをコードする新規なポリヌクレオチド、該ポリヌクレオチドを含有するベクター、該ベクターを含有する形質転換細胞及び前記ポリペプチドとAkt2との結合阻害物質をスクリーニングする方法に関する。

背景技術

インスリンは膵臓ランゲルハンス島のβ細胞より分泌され、主に筋肉、肝臓、脂肪に作用して血中の糖を細胞に取り込ませて貯蔵、消費させることにより血糖値を降下させる。糖尿病は、このインスリンの作用不足から引き起こされるが、患者にはインスリンの生産又は分泌に障害をもつ1型と、インスリンによる糖代謝促進が起こりにくくなる2型の2つのタイプが存在する。いずれの患者でも血糖値が健常人より高くなるが、1型では血中インスリンが絶対的に不足するのに対して、2型ではインスリンの存在にもかかわらず血糖の細胞における取り込み又は消費が促進されないインスリン抵抗性が生じている。2型糖尿病は遺伝的素因に加えて過食や運動不足、ストレスなどが原因となり惹起されるいわゆる生活習慣病である。今日先進諸国では摂取カロリーの増大に伴いこの2型糖尿病患者が急激に増加しており、日本では糖尿病患者の95%を占めている。そのため糖尿病の治療薬には単純な血糖降下剤のみでなく、インスリン抵抗性の改善により糖代謝を促進する2型糖尿病の治療を対象とした研究の必要性が高まっている。

現在1型糖尿病患者の治療にはインスリン注射製剤が処方されている。一方、2型患者に処方される血糖降下剤としては、インスリン注射製剤に加えて膵臓の β 細胞に作用してインスリンの分泌を促すスルホニル尿素系血糖降下剤(SU剤)や、嫌気的解糖作用による糖利用の増大や糖新生の抑制、及び糖の腸管吸収を抑制する作用を持つビグアナイド系血糖降下剤の他、糖質の消化吸収を遅らせる α - ϕ

ルコシダーゼ阻害剤が知られている。これらは間接的にインスリン抵抗性を改善するが、近年より直接的にインスリン抵抗性を改善する薬剤としてチアゾリジン誘導体が使われるようになった。その作用は細胞内へのブドウ糖の取り込みと細胞内におけるブドウ糖利用の促進である。このチアゾリジン誘導体はペルオキシソーム増殖剤応答性受容体ガンマ(peroxisome proliferator activated receptor:PPAR ャ)のアゴニストとして作用することが示されている(非特許文献1参照)。しかしチアゾリジン誘導体はインスリン抵抗性を改善するのみでなく、浮腫を惹起する副作用が知られている(非特許文献2、非特許文献3参照)。この浮腫の惹起は心肥大をもたらす重篤な副作用なので、インスリン抵抗性改善のために、PPAR ャにかわるより有用な創薬標的分子が求められている。

インスリン作用のシグナルは細胞膜上にあるインスリン受容体を介して細胞内へ伝達される。このインスリンの作用経路には第一と第二の 2 経路が存在する。(非特許文献 4 参照)。第一経路においては、活性化されたインスリン受容体から IRS-1、 IRS-2、PI3 キナーゼ、及び PDK1 を介して Akt1 (PKBα)若しくは Akt2 (PKBβ)、または PKCλ若しくは PKCζへ順次シグナルが伝達され、その結果として細胞内に存在するグルコーストランスポーターGLUT4 を細胞膜上へ移行させることにより、細胞外からの糖の取り込みを促進する(非特許文献 5 参照)。一方、第二経路ではインスリン受容体から c-Cbl 及び CAP を介して CrK II、C3G、並びに TC10 へ順次シグナルが伝達され、結果 GLUT4 による糖の取り込みを促進する(非特許文献 6 参照)。しかし、これらインスリンシグナル伝達経路の詳細についてはいまだ不明な部分が多く、特にこれらのシグナルが最終的にどのような機構を経てグルコーストランスポーターを介した細胞の糖取り込みを促進するのか明らかではない。

Akt2は前述のインスリンシグナル第一経路に存在し、インスリンの刺激により PDK1を介してリン酸化され活性化する。活性化したAkt2はキナーゼとして基質と なる蛋白質をリン酸化することによりシグナルを伝達する。Akt2蛋白質をコード する遺伝子を人為的に欠失させたホモノックアウトマウスは主に筋肉、肝臓においてインスリンの感受性が低下し2型糖尿病様の表現型を示すことが報告されて いる。これらの事実から、Akt2はインスリンシグナルに応答した細胞内への糖取

り込みに働くシグナル仲介因子であり、その機能阻害はインスリンシグナル伝達 の部分的な遮断によりインスリン抵抗性を惹起すると考えられている(非特許文献7参照)。

(非特許文献1)

「ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)」、(米国)、1995年、第270巻、p. 12953-12956
(非特許文献2)

「ダイアビーティーズ フロンティア(Diabetes Frontier)」、(米国)、1999年、 第10巻、p. 811-818

(非特許文献3)

「ダイアビーティーズ フロンティア(Diabetes Frontier)」、(米国)、1999年、 第10巻、p. 819-824

(非特許文献4)

「ザ・ジャーナル・オブ・クリニカル・インベスティゲーション(The Journal of Clinical Investigation)」(米国)、2000年、第106巻、第2号、p. 165-169 (非特許文献 5)

「ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)」、(米国)、1999 年、第 274 巻、第 4 号、p. 1865-1868 (非特許文献6)

「ネイチャー(Nature)」、(英国)、2001年、第410巻、第6831号、p. 944-948 (非特許文献7)

「サイエンス (Science)」(米国)、2002年、第292巻、第2号、p. 1728-1731

発明の開示

本発明者らは、上述の知見からAkt2の働きを増強させることができれば、インスリン抵抗性を改善できると考えた。そしてこの目的は、Akt2自身の活性を増大させるか、Akt2に結合してその作用を制御している細胞内因子を同定し、その作用を調節することにより達成できると考えた。しかしAkt2はキナーゼであり、その酵素活性を薬剤によって増強する方向に調節することは困難である。そこで

Akt2に結合する蛋白質を、酵母ツーハイブリッドシステムにより同定した。その結果、Akt2に結合する蛋白質AKBP2 (Akt2 Binding Protein 2)をコードする新規な塩基配列のマウス由来cDNAのクローニングに成功した。さらに同蛋白質は糖尿病モデルマウスの筋肉および脂肪において正常個体より発現量が顕著に増加していることから同蛋白質が糖尿病態の原因因子であることを見出した。加えて、ヒトオルソログであるヒトAKBP2遺伝子のクローニングに成功し、該遺伝子がインスリン応答組織である脂肪細胞に発現していること、マウスAKBP2と同様ヒトAKBP2もAkt2に結合することを見出した。加えて、マウスAKBP2と同様ヒトAKBP2もAkt2に結合することを見出した。加えて、マウスAKBP2と利業現によりAkt2のキナーゼ活性が低下することを検出し、AKBP2によりインスリンシグナルが遮断されインスリン抵抗性が惹起されること、従って、AKBP2とAkt2との結合を阻害することによりインスリン抵抗性が改善されることがわかった。そこで、AKBP2とAkt2との相互作用を利用したインスリン抵抗性改善薬及び/又は糖代謝改善薬のスクリーニング系を構築した。

これらの結果、インスリン抵抗性改善薬及び/又は糖代謝改善薬の探索に有用な新規なポリペプチド、前記ポリペプチドをコードするポリヌクレオチド、前記ポリヌクレオチドを含む発現ベクター、前記発現ベクターで形質転換された細胞、インスリン抵抗性改善薬及び/又は糖代謝改善薬をスクリーニングする方法、並びに、インスリン抵抗性改善用及び/又は糖代謝改善用医薬組成物の製造方法を提供し、本発明を完成した。

すなわち、本発明は、

- [1]配列番号2又は配列番号4で表されるアミノ酸配列、あるいは、配列番号2 又は配列番号4で表されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換、及び/若しくは挿入されたアミノ酸配列
- を含み、しかもAkt2と結合するポリペプチド、
- [2] 配列番号2又は配列番号4で表されるアミノ酸配列からなるポリペプチド、
- [3] [1] 又は [2] に記載のポリペプチドをコードするポリヌクレオチド、
- [4] [3] に記載のポリヌクレオチドを含む発現ベクター、
- [5] [4] に記載の発現ベクターで形質転換された細胞、

[6] (1) [1] 若しくは [2] に記載のポリペプチド、または配列番号2若しくは配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかもAkt2と結合するポリペプチド、あるいは前記ポリペプチドを発現している細胞と (2) 試験物質とを接触させる工程、

該ポリペプチドとAkt2との結合を測定する工程、及び

前記結合を阻害する物質を選択する工程

を含むことを特徴とする前記ポリペプチドとAkt2との結合阻害物質をスクリーニングする方法、

- [7] 結合阻害物質がインスリン抵抗性改善薬及び/又は糖代謝改善薬である
- [6] に記載のスクリーニングする方法。
- [8] (1) [1] 又は [2] に記載のポリペプチド、あるいは配列番号2若しくは配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかも、Akt2と結合するポリペプチドと (2) Akt2との結合を測定する工程が、前記結合の変化によるAkt2の変化を測定する工程である [6] 又は [7] に記載のスクリーニングする方法。
- [9] [6] 乃至[8] に記載のスクリーニングする方法を用いてスクリーニングする工程、及び

製剤化する工程

を含むことを特徴とする、インスリン抵抗性改善用及び/又は糖代謝改善用医薬 組成物の製造方法

に関する。

配列番号1~4に記載の本発明のポリペプチド及びポリヌクレオチドと同一の配列は知られていない。本願優先日後に、配列データベースGenBankにおいてアクセッション番号AX714043、BC042155、及びBC049110として本発明のポリヌクレオチドと相同性を有する配列が収載されたが、配列が開示されたにすぎず、その具体的用途については記載されていない。また、配列データベースGenPeptには、アクセッション番号AK056090として、本発明のポリペプチドの一つである配列番号4で表されるアミノ酸配列において、68個のアミノ酸が欠失したアミノ酸配列からなるポリペプチド、及びアクセッション番号AK019105として、本発明のポリ

ペプチドの一つである配列番号2で表されるアミノ酸配列において、228個のアミノ酸が欠失し、13個のアミノ酸が置換されたアミノ酸配列からなるポリペプチドが収載されている。しかしながら、実際にこれらポリペプチドを取得したとの情報はおろか、どのように取得できるかの具体的情報もない。また、当該ポリペプチドの具体的用途についても記載されていない。本発明者らは本発明のポリペプチド及びポリヌクレオチドを初めて見出し、その蛋白質の発現亢進及びAkt2との結合の増加が糖尿病病態の原因であることを初めて明らかにした。また、本発明のポリペプチドとAkt2との結合を利用した本発明のスクリーニング方法は本発明者らによって初めて提供された方法である。

図面の簡単な説明

図1は、培養細胞におけるAKBP2の発現を示す図である。レーン1及びレーン3は分子量マーカーを、レーン2は空ベクターを、レーン3はpcDNA-AKBP2を導入した場合を示している。

- 図2の(1)は、通常食又は高脂肪食負荷した正常マウス C57BL/6J における脂肪での AKBP2 発現量の比較を示す図である。図の縦軸はマウス脂肪における相対発現量を示す。白塗りのバーは通常食、黒塗りのバーは高脂肪食負荷した場合を示している。
- (2) は、通常食又は高脂肪食負荷した正常マウス C57BL/6J における筋肉での AKBP2 発現量の比較を示す図である。図の縦軸はマウス筋肉における相対発現量 を示す。白塗りのバーは通常食、黒塗りのバーは高脂肪食負荷した場合を示して いる。
- (3) は、正常マウス C57BL/6J 及び糖尿病モデルマウス KKAY/Ta における脂肪での AKBP2 発現量の比較を示す図である。図の縦軸はマウス脂肪における相対発現量を示す。白塗りのバーは正常マウス C57BL/6J、線入りのバーは糖尿病モデルマウス KKAY/Ta の結果を示している。
- (4) は、正常マウス C57BL/6J 及び糖尿病モデルマウス KKAY/Ta における筋肉での AKBP2 発現量の比較を示す図である。図の縦軸はマウス筋肉における相対発

現量を示す。白塗りのバーは正常マウス C57BL/6J、線入りのバーは糖尿病モデルマウス KKA^y/Ta の結果を示している。

(1)、(2)の比較においては通常食のC57BL/6Jの発現量を、(3)、(4)の比較においてはC57BL/6Jの発現量を、それぞれ1として表示している。

図3は、NIH3T3 L1脂肪細胞におけるマウス AKBP2 過剰発現による Akt2 酵素活性への影響を示す図である。図の縦軸は相対活性を示しており、インスリン無刺激状態におけるコントロールウイルス感染細胞における酵素活性の値を 1 として表示している。図の横軸の数値は、インスリンの刺激時間(分)を示している。

発明を実施するための最良の形態

以下、本発明を詳細に説明する。

<本発明のポリペプチド>

本発明のポリペプチドには、

- (1)配列番号2又は配列番号4で表されるアミノ酸配列からなるポリペプチド; 及び
- (2) i)配列番号2又は配列番号4で表されるアミノ酸配列を含み、しかもAkt2に結合するポリペプチド、あるいは、ii)配列番号2又は配列番号4で表されるアミノ酸配列において、1~10個(好ましくは1~7個、より好ましくは1~5個、更に好ましくは1~3個)のアミノ酸が欠失、置換、及び/若しくは挿入されたアミノ酸配列を含み、しかもAkt2に結合するポリペプチド(以下、機能的等価改変体と称する)

が含まれる。

本発明のポリペプチドは、Akt2と結合し、Akt2のキナーゼ活性を低下させるものが特に好ましい。

また、本発明のポリペプチドは、前述の(1) ~ (2) のいずれかに該当する限りヒト及びマウス由来のポリペプチドに限定されず、他の脊椎動物(例えばラット、ウサギ、ウマ、ヒツジ、イヌ、サル、ネコ、クマ、ブタ、ニワトリなど)由来のものも包含する。また、前述の(1) ~ (2) のいずれかに該当する限り、天然のポリペプチドに限定されず人工的に製造した変異体も含まれる。

「Akt2に結合する」とは、Akt2(好ましくはヒトAkt2、更に好ましくは GenBankのアクセッション番号M95936によりコードされるポリペプチド)にポリペプチドが結合することを意味しており、「結合する」か否かは以下の方法により確認することができる。

結合するか否かの検討対象ポリペプチドの一部若しくは全長域、またはGSTやFlag、Hisなどのタグを融合させた検討対象ポリペプチドの一部若しくは全長域を細胞に発現させる。前記細胞としてはインスリンに応答する細胞が好ましく、より具体的には脂肪細胞、肝細胞、あるいは骨格筋由来細胞が好ましい。前記細胞から抗Akt2抗体を用いた免疫沈降によりAkt2蛋白質とそこに結合する蛋白質を濃縮することができる。得られたAkt2およびその結合蛋白質の濃縮液を公知の方法によりポリアクリルアミドゲル電気泳動法により分離し、抗体を用いたウェスタンブロティングにより検討対象のポリペプチドがAkt2に結合するか否かを確認することができる。ここで用いる抗体は、検討対象のポリペプチド若しくはその部分配列をもとに作製した検討対象のポリペプチドに対する抗体、または上記タグを認識する抗体を利用することができる。

また検討対象のポリペプチドを発現させた細胞の抽出液、または、インビトロで転写及び翻訳して作製した蛋白質混合液と、GSTなどのタグをつけて精製したAkt2蛋白質とを用いたin vitroのプルダウン法(実験工学、Vol13、No. 6、1994年528頁 松七五三ら)と上述と同様のウエスタンブロッティングを組み合わせるによってもAkt2と検討対象のポリペプチドの結合を検出することができる。好ましくは、実施例6に示すように検討対象蛋白質発現用プラスミド(例えば実施例1(5)で作製したAKBP2蛋白質発現用プラスミド)から直接検討対象蛋白質をインビトロトランスレーションキット(例えばTNTキット(プロメガ社))を用いてin vitroで転写及び翻訳して作製した蛋白質混合液を用いて結合を検出できる。より好ましくは、実施例6に記載の方法により検討対象のポリペプチドとAkt2との結合を検出することができる。「Akt2のキナーゼ活性を低下させる」とは、検討対象のポリペプチドがAkt2に結合することによりAkt2の有するキナーゼ活性を低下させることを意味する。「キナーゼ活性を低下」させるか否かは、以下の方法により確認することができる。

Akt2は分子内のセリン473番 (Ser473) あるいはスレオニン308番 (Thr308) が リン酸化されてキナーゼ活性が亢進することが知られている (Biochem.

J. ,1998 335 (1-13))。これを利用し、Akt2のSer473又はThr308のリン酸化状態をこれらリン酸化残基に特異的に反応する抗体(例えば抗phosphoSer抗体等)を用いたウエスタンブロットにより検出することでAkt2の活性の有無が検出できる。より具体的には、検討対象のポリペプチドの一部若しくは全長域を発現させた細胞(インスリンに応答する細胞が好ましく、より具体的には脂肪細胞、肝細胞、または骨格筋由来細胞が好ましい)を溶解し、これを試料として抗phosphoSer抗体を用いるウエスタンブロット法、スポットウエスタンブロット法などを利用することによりAkt2のリン酸化、すなわちAkt2の活性の有無を検出することができる。好ましくは実施例7の方法で検出することができる。この検出系において、検討対象のポリペプチドを発現させない細胞から得た試料に比較して検討対象のポリペプチドを発現させた細胞から得た試料に比較して検討対象のポリペプチドを発現させた細胞から得た試料を用いたときのAkt2のリン酸化(すなわちAkt2の活性化)の低下が観察された場合、検討対象のポリペプチドは「Akt2のキナーゼ活性を低下させる」と判断することができる。

また、ヒストンH2BやGSK-3融合タンパク質などをAkt2の基質としてAkt2の免疫 沈降物と反応させたときの、基質に対する放射性リン酸の取り込み量を測定する インピトロキナーゼアッセイ法によっても「Akt2のキナーゼ活性を低下」させる か否か確認することができる。具体的には、検討対象のポリペプチドの一部また は全長域を発現させた細胞(インスリンに応答する細胞が好ましく、より具体的 には脂肪細胞、肝細胞、あるいは骨格筋由来細胞が好ましい)の抽出液から抗 Akt2抗体を用いた免疫沈降によりAkt2蛋白質を濃縮することができる。Akt2の基 質、例えば、GST-crosstide(Aktの生理的基質であるGSK3-beta配列のGST融合蛋 白質)と濃縮Akt2蛋白質とを混合することにより、基質のリン酸化を指標として Akt2のキナーゼ活性を測定及び定量化できる。好ましくは実施例7に記載の方法 で測定することができる。この測定系において、検討対象のポリペプチドを発現 させない細胞から得た試料に比較して検討対象のポリペプチドを発現させた細胞 から得た試料を用いたときの基質のリン酸化の低下が観察された場合、検討対象 のポリペプチドは「Akt2のキナーゼ活性を低下させる」と判断することができる。

〈本発明のポリヌクレオチド〉

本発明のポリヌクレオチドは、本発明のポリペプチド、すなわち、配列番号 2 又は配列番号 4 に記載のアミノ酸配列で表されるポリペプチド、またはその機能 的等価改変体をコードする塩基配列ならいずれの種由来のものであってもよい。 好ましくは、配列番号 2 又は配列番号 4 に記載のアミノ酸配列をコードする塩基 配列からなるポリヌクレオチドであり、さらに好ましくは、配列番号 1 又は配列 番号 3 に記載の塩基配列である。なお、本明細書における「ポリヌクレオチド」 には、DNA 及び RNA の両方が含まれる。

本発明のポリヌクレオチドには、本発明のポリペプチドをコードする限り、あらゆる変異体を含むことが出来る。より具体的には天然に存在するアレル変異体、天然に存在しない変異体、欠失、置換、付加及び挿入を有する変異体を含むことが出来る。前記の変異は、例えば天然において突然変異によって生じることもあるが、人為的に改変し作製することも出来る。本発明は、上記ポリヌクレオチドの変異の原因及び手段を問わず、上記本発明のポリペプチドをコードする全ての変異遺伝子を包含する。上記の変異体作製にいたる人為的手段としては、例えば塩基特異的置換法(Methods in Enzymology、(1987) 154、350, 367–382)等の遺伝子工学的手法の他、リン酸トリエステル法やリン酸アミダイド法などの化学合成手段(Science 150、178、1968)を挙げることができる。それらの組み合わせによって所望の塩基置換を伴う DNA を得ることが可能である。あるいは PCR 法の繰り返し作業や、その反応液中にマンガンイオンなどを存在させることにより DNA 分子中の非特定塩基に置換を生じさせることが可能である。

本発明のポリヌクレオチド及びポリペプチドは、本発明により開示された配列 情報に基づいて一般的遺伝子工学的手法により容易に製造・取得することが出来 る。

本発明のポリペプチドをコードするポリヌクレオチドは、例えば次のように得ることができるが、この方法に限らず公知の操作「Molecular Cloning Sambrook, Jら、Cold Spring Harbor Laboratory Press、1989年」等でも得ることができる。

例えば、(1) PCR を用いた方法、(2) 常法の遺伝子工学的手法(すなわち

cDNA ライブラリーで形質転換した形質転換株から所望のアミノ酸を含む形質転換株を選択する方法)を用いる方法、又は(3)化学合成法などを挙げることができる。各製造方法については、W001/34785に記載されているのと同様に実施できる。

PCR を用いた方法では、例えば、前記特許文献の「発明の実施の形態」 1)蛋白質遺伝子の製造方法 a)第1製造法に記載された手順により、本明細書記載のポリヌクレオチドを製造することができる。該記載において、「本発明の蛋白質を産生する能力を有するヒト細胞あるいは組織」とは、例えば、脂肪細胞を挙げることができる。ヒト又はマウス脂肪細胞から mRNA を抽出する。次いで、このmRNA をランダムプライマーまたはオリゴ dT プライマーの存在下で、逆転写酵素反応を行い、第一鎖 cDNA を合成することが出来る。得られた第一鎖 cDNA を用い、目的遺伝子の一部の領域をはさんだ2種類のプライマーを用いてポリメラーゼ連鎖反応 (PCR) に供し、本発明のポリヌクレオチドまたはその一部を得ることができる。より具体的には、例えば実施例1及び実施例4に記載の方法により本発明のポリヌクレオチドを製造することが出来る。

常法の遺伝子工学的手法を用いる方法では、例えば、前記特許文献の「発明の実施の形態」1)蛋白質遺伝子の製造方法 b)第2製造法に記載された手順により、本発明のポリペプチドをコードするポリヌクレオチドを製造することができる。

化学合成法を用いた方法では、例えば、前記特許文献の「発明の実施の形態」

1) 蛋白質遺伝子の製造方法c)第3製造法、d)第4製造法に記載された方法によって、本発明のポリペプチドをコードするポリヌクレオチドを製造することができる。

このようにして得られる本発明のポリヌクレオチドの一部または全部の塩基配列を利用することにより、個体もしくは各種組織における本発明のポリヌクレオチドの発現レベルを特異的に検出することが出来る。

かかる検出方法としては、RT-PCR (Reverse transcribed-Polymerase chain reaction)、ノーザンブロッティング解析、in situ ハイブリダイゼーションなどの方法を挙げることが出来る。

<本発明の発現ベクター、細胞、及びポリペプチドの製造法>

本発明には、本発明の形質転換された細胞を培養することを特徴とする本発明のポリペプチドの製造方法も包含される。

上述のように得られた本発明のポリペプチドをコードするポリヌクレオチドは、「Molecular Cloning Sambrook, Jら、Cold Spring Harbor Laboratory Press、1989年」等に記載の公知の方法により、適当なプロモーターの下流に連結することで本発明のポリペプチドを試験管内、あるいは試験細胞内で発現させることに利用できる。

具体的には上述のように得られた本発明のポリペプチドの開始コドン上流に特定のプロモーター配列を含むポリヌクレオチドを付加することにより、これを鋳型として用いた無細胞系での遺伝子の転写、翻訳による本発明のポリペプチドの発現が可能である。

あるいは上述の本発明のポリペプチドをコードするポリヌクレオチドを適当なペクタープラスミドに組み込み、プラスミドの形で宿主細胞に導入すれば細胞内で本発明のポリペプチドの発現が可能になる。あるいは、このような構成が染色体DNAに組み込まれた細胞を取得してこれを用いてもよい。より具体的には、単離されたポリヌクレオチドを含む断片は、適当なベクタープラスミドに再び組込むことにより、真核生物及び原核生物の宿主細胞を形質転換させることができる。さらに、これらのベクターに適当なプロモーター及び形質発現にかかわる配列を導入することにより、それぞれの宿主細胞において本発明のポリペプチドを発現させることが可能である。宿主細胞は、特に限定されるわけではなく、本発明のポリペプチドの発現量をメッセンジャーRNAレベルで、あるいは蛋白質レベルで検出できるものであればよい。内在性のAkt2が豊富に存在する脂肪由来細胞、あるいは筋肉由来細胞を宿主細胞として用いることがより好ましい。

宿主細胞を形質転換し遺伝子を発現させる方法は、例えば、前記特許文献の「発明の実施の形態」 2) 本発明のベクター、本発明の宿主細胞、本発明の組換え蛋白の製造方法に記載された方法により実施できる。発現ベクターは、所望のポリヌクレオチドを含む限り、特に限定されるものではない。例えば、用いる宿主細胞に応じて適宜選択した公知の発現ベクターに、所望のポリヌクレオチドを

挿入することにより得られる発現ベクターを挙げることができる。本発明の細胞は、例えば、前記発現ベクターにより所望の宿主細胞をトランスフェクションすることにより得ることができる。より具体的には、例えば、実施例2に記載のように所望のポリヌクレオチドを哺乳類動物細胞用の発現ベクターpcDNA3.1に組み込むことにより、所望の蛋白質の発現ベクターを得ることができ、該発現ベクターをリン酸カルシウム法を用いて293細胞に取り込ませて本発明の形質転換細胞を製造することができる。

上記で得られる所望の形質転換細胞は、常法に従い培養することができ、該培養により所望の蛋白質が生産される。該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択できる。例えば上記 293 細胞であれば牛胎児血清 (FBS) 等の血清成分を添加したダルベッコ修飾イーグル最小必須培地 (DMEM) 等の培地に G418 を加えたものを使用できる。本発明の形質転換された細胞としては、本発明のポリペプチドを発現している細胞が好ましい。

本発明の細胞を培養することにより、細胞中で産生した本発明のポリペプチドを検出、定量、さらには精製することが出来る。例えば、本発明のポリペプチドと結合する抗体を用いたウエスタンブロット法、あるいは免疫沈降法により本発明のポリペプチドを検出、精製することが可能である。あるいは、本発明のポリペプチドを、グルタチオンーSートランスフェラーゼ(GST)、プロティンA、βーガラクトシダーゼ、マルトースバインディングプロティン(MBP)など適当なタグ蛋白質との融合蛋白質として発現させることにより、これらタグ蛋白質に特異的な抗体を用いてウエスタンブロット法、あるいは免疫沈降法により本発明のポリペプチドを検出、タグ蛋白質を利用して精製することが出来る。より具体的には以下のようにしてタグ蛋白質を利用して精製することができる。

本発明のポリペプチド(例えば、配列番号2又は配列番号4で表されるポリペプチド)は、本発明のポリヌクレオチド(例えば、配列番号1及び3で示されるポリヌクレオチド)を例えばHisタグが融合されるベクター、より具体的には例えば実施例1に記載のpcDNA3. 1/V5-His-TOPO (インビトロジェン社)等に組み込むことで培養細胞に発現させ、Hisタグを用いて精製した後でタグ部分を除去することにより得ることができる。例えば実施例1あるいは実施例5においてpcDNA3. 1/V5-

His-TOPOを用いて作製したマウスあるいはヒトのAKBP2発現プラスミドは、いず れもAKBP2のC-末端にV5およびHisタグが付加されるように設計されている。これ により、それらのHisタグを利用して、実施例2あるいは実施例5に示したAKBP2を 発現させた培養細胞からAKBP2蛋白質を精製することができる。具体的には公知 の方法 (実験医学別冊 タンパク質の分子間相互作用実験法、1996年32頁 中原 ら)に従って、破砕した細胞の抽出液よりHisタグと融合したAKBP2蛋白質をNi2+-NTA-Agarose(フナコシ)に結合させて遠心分離により単離することができる。 より具体的には培養フラスコ (例えば10cm径のシャーレ) に培養させた本発明の ポリペプチド発現細胞を適当な量の緩衝液(例えば、1 ml)を加えて掻き取った 後、毎分15000回転で5分間の遠心分離によって上清を分離し、適当な緩衝液で置 換した適量(例えば50μM)のNi²⁺-NTA-Agaroseを加えて十分に混合する(例えば、 ローテーターで10分以上攪拌する)ことができる。続いて遠心分離(例えば毎分 2000回転で2分間)により上清を分離して除去し、pHを6.8にした緩衝液を適量(例 えば0.5 ml)加えて再度遠心分離することにより洗浄する。これを3回繰り返した。 後適量 (例えば50 µ I) の100mM EDTAを加えて10分置き、上清を回収することに より遊離した本発明のポリペプチドを精製することができる。上記緩衝液として は、例えば緩衝液B(8M Urea, 0.1M Na₂HPO₄, 0.1M NaH₂PO₄, 0.01M Tris-HCI pH8.0)を用いることができる。精製した蛋白質分子中のHisタグは、例えばN末 端がわにHisタグを融合させる様設計することによりTAGZyme System (キアゲン 社)を用いることで分子中から除去することができる。

あるいは所望により、タグ蛋白質を利用しない方法、例えば、本発明のポリペプチドからなる蛋白質の物理的性質、化学的性質を利用した各種の分離操作によっても精製できる。具体的には限外濾過、遠心分離、ゲル濾過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、高速液体クロマトグラフィーの利用を例示することが出来る。

本発明のポリペプチドは、配列番号2又は配列番号4に示すアミノ酸配列情報に従って、一般的な化学合成法により製造することが出来る。具体的には液相、及び固相法によるペプチド合成法が包含される。合成はアミノ酸を1個ずつ逐次結合させても、数アミノ酸からなるペプチド断片を合成した後に結合させてもよい。

これらの手段により得られる本発明ポリペプチドは前記した各種の方法に従って 精製を行うことが出来る。

<糖尿病の検査方法>

本発明のポリヌクレオチドにストリンジェントな条件下でハイブリダイズするプローブを用いることにより、本発明のポリペプチドをコードするポリヌクレオチドの発現量を調べることができ、その発現量(好ましくは脂肪組織における発現量)の増加を指標として糖尿病の診断をすることができる。糖尿病の検査方法において、「ストリンジェントな条件」とは、非特異的な結合が起こらない条件を意味し、具体的には、0.1%ラウリル硫酸ナトリウム(SDS)を含有する0.1×SSC(Saline-sodium citrate buffer)溶液を使用し、温度が65℃である条件を意味する。プローブとしては、本発明のポリヌクレオチドの少なくとも一部若しくは全部の配列(またはその相補配列)を有し、少なくとも15bpの鎖長のDNAが用いられる。

糖尿病の検出方法では、上述のプローブと試験試料とを接触させ、本発明のポリペプチドをコードするポリヌクレオチド(例えば、mRNA又はそれ由来のcDNA)と前記プローブとの結合体を、公知の分析方法(例えば、ノザンブロッティング)で分析することにより、糖尿病であるか否かを検出することができる。また、上述のプローブをDNAチップに適用し、発現量を分析することもできる。前記結合体の量、すなわち、本発明のポリペプチドをコードするポリヌクレオチドの量が、健常人に比べて増加している場合には、糖尿病であると判定することができる。

本発明のポリヌクレオチドの発現レベルを測定する方法として、発現レベルを本発明のポリペプチドの検出によって測定する方法が可能である。このような検査方法としては、例えば、試験試料を本発明のポリペプチドに結合する抗体、好ましくは、本発明のポリペプチドに特異的に結合する抗体を利用したウエスタンブロッティング、免疫沈降法、ELISA法などを利用することが出来る。試験試料中に含まれる本発明のポリペプチドの量を定量する際、本発明のポリペプチドを標準量として利用することができる。また、本発明のポリペプチドは本発明のポ

リペプチドに結合する抗体を作製するために有用である。本発明のポリペプチド の量が健常人に比べて増加している場合には、糖尿病であると判定することができる。

<本発明のスクリーニングする方法>

(1)本発明のポリペプチド、(2)配列番号2又は配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかも、Akt2と結合するポリペプチド(以下、相同ポリペプチドと称する)、あるいは(3)配列番号1又は配列番号3で表される塩基配列であるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドによりコードされるポリペプチドであって、しかも、Akt2に結合する蛋白質であるポリペプチド(以下、ハイブリダイズポリペプチドと称する)を使用し、前記ポリペプチド(即ち本発明のポリペプチド、相同ポリペプチド又はハイブリダイズポリペプチド)とAkt2キナーゼとの相互作用を利用してインスリン抵抗性改善作用を有する物質及び/又は糖代謝改善作用を有する物質(即ち糖尿病改善薬)のスクリーニング方法を構築できる。本発明のポリペプチド、前記相同ポリペプチド及び前記ハイブリダイズポリペプチドを総称して本発明のスクリーニング用ポリペプチドと称する。

本明細書における相同ポリペプチドは、配列番号2又は配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかも、Akt2に結合するポリペプチドである限り、特に限定されるものではないが、配列番号2又は配列番号4で表されるアミノ酸配列に関して、好ましくは95%以上、更に好ましくは98%以上の相同性を有するアミノ酸配列からなるポリペプチドが好ましい。

なお、本明細書における前記「相同性」とは、Clustal program (Higgins and Sharp, Gene 73, 237-244, 1998; Thompson et al. Nucl. Acids Res. 22, 4673-4680, 1994)検索によりデフォルトで用意されているパラメータを用いて得られた値(Identities)を意味する。前記のパラメータは以下のとおりである。Multiple Alignment Parametersとして、Gap Penalty 15.00、Gap Length Penalty 6.66、Delay Divergent Seqs(%) 30、DNA Transition Weight 0.50、

Pairwise Alignment Parametersとして、Slow-Accurateで、Gap Penalty 15.00、Gap Length Penalty 6.66。

本明細書のハイブリダイズポリペプチドをコードするポリヌクレオチドが、配列番号1又は配列番号3で表される塩基配列であるポリヌクレオチドとハイブリダイズする、本明細書のハイブリダイズポリペプチド用の「ストリンジェントな条件」としては、ハイブリダイゼーションのための条件として、「5xSSPE、5xDenhard's液、0.5% SDS、40% ホルムアミド、 200μ g/ml 鮭精子DNA、37°Cオーバーナイト」の条件であり、より厳しい条件としては「5xSSPE、5xDenhard's液、0.5% SDS、50% ホルムアミド、 200μ g/ml 鮭精子DNA、42°Cオーバーナイト」の条件である。また洗浄のための条件として、緩い条件としては「5xSSC、1% SDS、42°C」、通常「0.5xSSC、0.1% SDS、42°C」の条件であり、より厳しい条件としては「5xSSC、1% SDS、42°C」の条件である。

本発明のスクリーニングする方法には、本発明のスクリーニング用ポリペプチドまたは本発明のスクリーニング用ポリペプチドを発現している細胞と試験物質とを接触させる工程、該ポリペプチドとAkt2との結合を測定する工程、及び前記結合を阻害する物質を選択する工程を含むことを特徴とする前記ポリペプチドとAkt2との結合阻害物質をスクリーニングする方法が含まれる。本発明のスクリーニング用ポリペプチドを発現している細胞は、本発明のスクリーニング用ポリペプチドを発現している細胞は、本発明のスクリーニング用ポリペプチドを発現している細胞は、本発明のスクリーニング用ポリペプチドをコードするポリヌクレオチドを含む発現ベクターで形質転換した細胞、天然に存在する本発明のポリペプチドを発現している細胞何れでも良いが、形質転換した細胞が好ましい。

本発明のスクリーニング用ポリペプチドの一つであるAKBP2はAkt2と結合すること、糖尿病モデルマウスで発現が低下していること、及びマウスAKBP2を過剰発現させた脂肪細胞でAkt2活性が低下していることから、本発明のポリペプチドはAkt2との結合を介してインスリンシグナルを負に制御していることがわかった。従って、上述のスクリーニングする方法によりインスリン抵抗性改善薬及び/又は糖代謝改善薬をスクリーニングすることができる。

上述のスクリーニングする方法における本発明のスクリーニング用ポリペプチドまたは本発明のスクリーニング用ポリペプチドを発現している細胞とAkt2との

結合を測定する工程は、本発明のスクリーニング用ポリペプチドとAkt2との結合を直接検出することによって実施でき、また、前記結合の変化によるAkt2の変化を測定することによっても実施できる。

本発明のスクリーニングする方法で使用する試験物質としては、特に限定されるものではないが、例えば、市販の化合物(ペプチドを含む)、ケミカルファイルに登録されている種々の公知化合物(ペプチドを含む)、コンビナトリアル・ケミストリー技術 (N. K. Terrett, M. Gardner, D. W. Gordon, R. J. Kobylecki,

J. Steele, Tetrahedron, 51, 8135-73 (1995)) によって得られた化合物群、微生物の培養上清、植物や海洋生物由来の天然成分、動物組織抽出物、あるいは、本発明のスクリーニング法により選択された化合物 (ペプチドを含む) を化学的又は生物学的に修飾した化合物 (ペプチドを含む) を挙げることができる。

上記スクリーニングする方法として限定はされないが具体的には以下のスクリーニング方法が挙げられる。

1) Akt2のリン酸化を利用したスクリーニング方法

Akt2は分子内のセリン473番(Ser473)あるいはスレオニン308番(Thr308)が リン酸化されてキナーゼ活性が亢進することが知られている(Biochem.

J. ,1998 335 (1-13))。これを利用し、Akt2のSer473又はThr308のリン酸化状態をこれらリン酸化残基に特異的に反応する抗体(例えば抗phosphoSer抗体等)を用いたウエスタンブロットにより検出することでAkt2の活性の有無が検出できる。

本発明のスクリーニング用ポリペプチドの一部あるいは全長域を発現している試験用細胞に試験物質を未処理又は処理する。試験用細胞としてはインスリンに応答する細胞が好ましく、より具体的には脂肪細胞、肝細胞、あるいは骨格筋由来細胞が好ましい。試験物質を未処理又は処理した細胞を溶解し、これを試料として抗phosphoSer抗体を用いるウエスタンブロット法、スポットウエスタンブロット法などを利用することによりAkt2のリン酸化、すなわちAkt2の活性の有無を検出することができる。好ましくは実施例7の方法で検出することができる。この検出系において、試験物質を未処理の試料に比較してAkt2のリン酸化(すなわちAkt2の活性化)の亢進が観察された試料に処理した物質を本発明のスクリー

ニング用ポリペプチドとAkt2との結合を阻害する物質として選択することができ、これによりインスリン抵抗性改善薬及び/又は糖代謝改善薬、即ち糖尿病治療効果を有する物質をスクリーニングすることができる。このような物質としては、該スクリーニング法におけるAkt2のリン酸化亢進作用のED50が、 10μ M以下、、好ましくは 1μ M以下、更に好ましくは 0.1μ M以下のものを選択することが好ましい。

2) インビトロキナーゼ法を利用したスクリーニング法

ヒストンH2BやGSK-3融合タンパク質などをAkt2の基質としてAkt2の免疫沈降物と反応させたときの、基質に対する放射性リン酸の取り込み量を測定するインビトロキナーゼアッセイ法によってもAkt2活性を検出することができる。具体的には、本発明のスクリーニング用ポリペプチドの一部あるいは全長域を発現している試験用細胞に試験物質を未処理又は処理する。試験用細胞としてはインスリンに応答する細胞が好ましく、より具体的には脂肪細胞、肝細胞、あるいは骨格筋由来細胞が好ましい。前記細胞から抗Akt2抗体を用いた免疫沈降により活性化したAkt2蛋白質を濃縮することができる。Akt2の基質、例えば、GST-crosstide(Aktが生理的基質としているGSK3-beta配列のGST融合タンパク)と濃縮Akt2蛋白質とを混合することにより、基質のリン酸化を指標としてAkt2のキナーゼ活性を測定及び定量化できる。好ましくは実施例7に記載の方法で測定することができる。キナーゼ測定は、トータルキナーゼアッセイ法(Wagaら、

J. Immunol. Methods 190, pp71-77, 1996)を利用することにより大規模な数の化合物のスクリーニング方法として使用が可能である。この測定系において、試験物質を未処理の試料に比較してAkt2のキナーゼ活性の亢進が観察された試料に処理した物質を本発明のスクリーニング用ポリペプチドとAkt2との結合を阻害する物質として選択することができ、これによりインスリン抵抗性改善薬及び/又は糖代謝改善薬、即ち糖尿病治療効果を有する物質をスクリーニングすることができる。このような物質としては、該スクリーニング法におけるAkt2のキナーゼ活性亢進作用のED50が、 $10\,\mu\,M$ 以下、、好ましくは $1\,\mu\,M$ 以下、更に好ましくは $0.1\,\mu\,M$ 以下のものを選択することが好ましい。

3) 本発明のスクリーニング用ポリペプチドと Akt2 との結合を利用したスクリーニング方法

本発明のスクリーニング用ポリペプチドはAkt2との結合を介してインスリンシ グナルを負に制御していることから、本発明のスクリーニング用ポリペプチドと Akt2との結合を指標とした以下のスクリーニング方法が挙げられる。具体的には、 本発明のスクリーニング用ポリペプチドの一部あるいは全長域、あるいはGSTや Flag、Hisなどのタグを融合させた本発明のスクリーニング用ポリペプチドの一 部あるいは全長域を発現している試験用細胞を試験物質で未処理又は処理する。 試験用細胞としてはインスリンに応答する細胞が好ましく、より具体的には脂肪 細胞、肝細胞、あるいは骨格筋由来細胞が好ましい。前記細胞から抗Akt2抗体を 用いた免疫沈降によりAkt2蛋白質とそこに結合する蛋白質を濃縮することができ る。この濃縮過程では反応液中に上記で細胞を処理した同じ試験物質を含有させ ておくことが望ましい。得られたAkt2およびその結合蛋白質の濃縮液を公知の方 法によりポリアクリルアミドゲル電気泳動法により分離し、抗体を用いたウエス タンブロティングにより本発明のスクリーニング用ポリペプチドの量を測定する ことにより、本発明のスクリーニング用ポリペプチドとAkt2の結合を阻害する試 験物質を選択することができる。このような物質としては、上記のスクリーニン グ方法において、本発明のポリペプチドとAkt2との結合を阻害する作用のIC50が、 好ましくは 10μ M以下、好ましくは 1μ M以下、更に好ましくは 0.1μ M以下のもの を選択することが好ましい。ここで用いる抗体は、本発明のスクリーニング用ポ リペプチド或いはその部分配列をもとに作製した本発明のスクリーニング用ポリ ペプチドに対する抗体(例えば抗AKBP2抗体)、あるいは上記タグを認識する抗体 を利用することができる。

以上1)~3)のスクリーニング方法においては、試験用細胞にインスリンを 未刺激又は刺激して用いることができるが、好ましくは試験用細胞にインスリン 刺激して用いることができる。

また上述と同様に本発明のスクリーニング用ポリペプチドを発現している細胞の抽出液またはインビトロで転写及び翻訳して作製した蛋白質混合液に試験物質

を添加あるいは未添加したものから、GSTなどのタグをつけて精製したAkt2蛋白 質を用いたin vitroのプルダウン法(実験工学、Vol13、No.6、1994年528頁 松 七五三ら)と上述と同様のウエスタンブロッティングを組み合わせるによっても Akt2と本発明のスクリーニング用ポリペプチドの結合を阻害する試験物質を選択 することができる。好ましくは、実施例6に示すように本発明のスクリーニング 用ポリペプチドを発現するプラスミド(例えば、実施例1(5)で作製したAKBP2 発現プラスミド)から直接本発明のポリペプチドからなる蛋白質(例えば、 AKBP2蛋白質)をインピトロトランスレーションキット(例えばTNTキット(プロ メガ社))を用いてin vitroで転写及び翻訳して作製した蛋白質混合液に試験物 質を添加あるいは未添加したものを用いても同様にAkt2と本発明のスクリーニン グ用ポリペプチドの結合を阻害する試験物質を選択することができる。これらの 方法ではいずれもポリアクリルアミド電気泳動法を行わずに公知のスポットウェ スタンブロッティングを行うことにより多数の試験物質をスクリーニングするこ とが可能である。また上述と同様のタグを融合させて発現させた本発明のスクリー ーニング用ポリペプチドおよびAkt2を同時に発現させた細胞の溶解液に試験物質 を添加することからなる公知のELISA法に従ってもAkt2と本発明のスクリーニン グ用ポリペプチドの結合を阻害する試験物質を選択するスクリーニングが可能で ある。また公知の哺乳類細胞におけるツーハイブリッドシステム(クロンテック 社)を利用して、ベイトにGAL4のDNA結合領域と融合させたAkt2を、プレイ側に VP16の転写促進領域を融合させた本発明のスクリーニング用ポリペプチドを配置 することにより、既存のCATあるいはルシフェラーゼ活性の検出によりAkt2と本発 明のスクリーニング用ポリペプチドとの結合を阻害する試験物質を大多数の母集 団からスクリーニングし選択することが可能である。

本発明のスクリーニング方法により得られる物質を有効成分とする製剤は、前

記有効成分のタイプに応じて、それらの製剤化に通常用いられる担体、賦形剤、 及び/又はその他の添加剤を用いて調製することができる。

投与としては、例えば、錠剤、丸剤、カプセル剤、顆粒剤、細粒剤、散剤、又は経口用液剤などによる経口投与、あるいは、静注、筋注、若しくは関節注などの注射剤、坐剤、経皮投与剤、又は経粘膜投与剤などによる非経口投与を挙げることができる。特に胃で消化されるペプチドにあっては、静注等の非経口投与が好ましい。

経口投与のための固体組成物においては、1又はそれ以上の活性物質と、少なくとも一つの不活性な希釈剤、例えば、乳糖、マンニトール、ブドウ糖、微結晶セルロース、ヒドロキシプロピルセルロース、デンプン、ポリビニルピロリドン、又はメタケイ酸アルミン酸マグネシウムなどと混合することができる。前記組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えば、滑沢剤、崩壊剤、安定化剤、又は溶解若しくは溶解補助剤などを含有することができる。錠剤又は丸剤は、必要により糖衣又は胃溶性若しくは腸溶性物質などのフィルムで被覆することができる。

経口のための液体組成物は、例えば、乳濁剤、溶液剤、懸濁剤、シロップ剤、 又はエリキシル剤を含むことができ、一般的に用いられる不活性な希釈剤、例えば、精製水又はエタノールを含むことができる。前記組成物は、不活性な希釈剤 以外の添加剤、例えば、湿潤剤、懸濁剤、甘味剤、芳香剤、又は防腐剤を含有す ることができる。

非経口のための注射剤としては、無菌の水性若しくは非水性の溶液剤、懸濁剤、 又は乳濁剤を含むことができる。水溶性の溶液剤又は懸濁剤には、希釈剤として、 例えば、注射用蒸留水又は生理用食塩水などを含むことができる。非水溶性の溶 液剤又は懸濁剤の希釈剤としては、例えば、プロピレングリコール、ポリエチレ ングリコール、植物油(例えば、オリーブ油)、アルコール類(例えば、エタノ ール)、又はポリソルベート80等を含むことができる。前記組成物は、更に湿潤 剤、乳化剤、分散剤、安定化剤、溶解若しくは溶解補助剤、又は防腐剤などを含 むことができる。前記組成物は、例えば、バクテリア保留フィルターを通す濾過、 殺菌剤の配合、又は照射によって無菌化することができる。また、無菌の固体組 成物を製造し、使用の際に、無菌水又はその他の無菌用注射用媒体に溶解し、使用することもできる。

投与量は、有効成分、すなわち本発明のスクリーニング方法により得られる物質の活性の強さ、症状、投与対象の年齢、又は性別等を考慮して、適宜決定することができる。

例えば、経口投与の場合、その投与量は、通常、成人(体重60kgとして)において、1日につき約0.1~100mg、好ましくは0.1~50mgである。非経口投与の場合、注射剤の形では、1日につき0.01~50mg、好ましくは0.01~10mgである。

実施例

以下、実施例によって本発明を詳述するが、本発明は該実施例によって限定されるものではない。なお、特に断りがない場合は、公知の方法(「Molecular Cloning Sambrook, Jら、Cold Spring Harbor Laboratory Press、1989年」、等)に従って実施可能である。また、市販の試薬やキットを用いる場合には市販品の指示書に従って実施可能である。

<実施例1>マウスAKBP2遺伝子のクローニングと発現ベクターの構築
(1) Akt2遺伝子のクローニング

遺伝子データベースGenBankのアクセッション番号M95936に記載されたヒトAkt2の全長領域をコードするcDNA配列を参照して設計した配列番号5及び配列番号6で示されるオリゴヌクレオチドをプライマーとし、ヒト骨格筋 cDNA (Marathon-Ready™ cDNA:クロンテック社)を鋳型として、DNAポリメラーゼ (Pyrobest DNA Polymerase (宝酒造社))を用いて、95℃3分間の熱変性反応の後、98℃ 10秒間、60℃ 30秒間、74℃ 1分30秒からなるサイクルを40回、さらに74℃7分間の条件で、PCRを行なった。これにより生成した約1.5 kbpのDNA断片を、プラスミドpZEr0™-2.1 (インビトロジェン社)のEcoRV認識部位に挿入することにより、ヒトAkt2 cDNAをクローニングした。ベクター上にクローニングしたAkt2 cDNAの配列は前述の配列番号5及び配列番号6に示すオリゴヌクレオチドをプライマーとして、シーケンシングキット(アプライドバイオシステム社)及びシーケ

ンサー(ABI 3700 DNA sequencer アプライドバイオシステムズ社)を用いて塩 基配列を決定し、報告された配列と一致することを確認した。

(2) 酵母ツーハイブリッド用発現プラスミドの作製

ヒトAkt2のcDNAを酵母ツーハイブリッド用発現ベクターpDBtrp(インビトロジェン社)に挿入するため、ヒトAkt2遺伝子配列のそれぞれ5'側及び3'側に pDBtrpベクターのマルチクローニングサイトの前後40ヌクレオチドと相同な領域を付加した配列番号7及び配列番号8に示すプライマーを設計した。PCRは上述でクローニングしたヒトAkt2プラスミドを鋳型として、DNAポリメラーゼ(Pyrobest DNA polymerase;宝酒造社)を用い、 98° C(1分)の後、 98° C(5秒)、 55° C(30秒)、 72° C(5分)のサイクルを35回、繰り返した。その結果得られたDNA断片はヒトAkt2遺伝子の全コード領域を有している。

制限酵素Sall及びNcolで切断して直鎖状にしたベクターpDBtrp及び上記で得られたヒトAkt2のcDNAを含むPCR断片を同時にツーハイブリッド用酵母株MaV2O3 (インビトロジェン社) へ添加し、リチウム酢酸法により形質転換した(Guthrie C. and Fink R. Guide to Yeast Genetics and Molecular Biology, Academic, San Diego, 1991年)。その結果同酵母細胞内で相同組換えが生じ、pDBtrpのマルチクローニングサイトにAkt2 cDNAが挿入されたプラスミド(以下pDB-Akt2と略称する)が形成された。同プラスミドを有する酵母細胞を、プラスミドの選択マーカーであるトリプトファンを欠乏させた固形合成最小培地(DIFCO社)(20%アガロース)上にて培養することにより選択し、同酵母細胞をザイモリエース(生化学工業社)で37℃にて30分処理した後、アルカリ法でプラスミドを単離精製し、シーケンシングキット(アプライドバイオシステム社)及びシーケンサー(ABI 3700 DNA sequencer アプライドバイオシステムズ社)を用いて塩基配列の決定を行い、Akt2のcDNAが、pDBtrpのGAL4 DNA結合領域のコード領域と翻訳フレームが一致して挿入されているものを選択した。

(3)マウス脂肪組織由来cDNAライブラリーの作製

12 週令オスの C57BL/6J マウス、及び 13 週令オスの C57BL/KsJ-+m/+m マウスを 日本クレアより購入し、副睾丸脂肪から実験医学別冊 バイオマニュアルシリー ズ 2 遺伝子ライブラリー作製法 (羊土社 野島博 編集; 1994 年 2 月 20 日発

行)に記載の mRNA 調製法に従い、Poly(A)*RNA を調製した。ストラタジーン社の ZAP-cDNA Synthesis Kit を用いて、添付のプロトコールに従い、5μg の RNA を 用いて第1ストランド合成、第2ストランド合成を行い、2本鎖 cDNA を平滑末端 化し、キットに添付の EcoRI アダプターを連結し、制限酵素 EcoRI、及び XhoI で 切断した。スピンカラム(CHROMA SPIN-400:クロンテック社)によりサイズ分 画を行い、短い断片を除いた。ベクターpACT2(クロンテック社)100μg を制限 酵素 Xhol で切断し、アルカリフォスファターゼ(Bacterial Alkaline Phosphatase; 宝酒造社) で処理した後、制限酵素 EcoRI で切断し、スピンカラ ム (CHROMA SPIN-1000; クロンテック社) にかけた。実験医学別冊 バイオマニ ュアルシリーズ 2 遺伝子ライブラリー作製法 (羊土社 野島博 編集;1994年2 月20日発行)のcDNAライブラリー作製法に従い、ベクターとcDNAを連結し、 連結後のサンプルをミリポア社のフィルターカップ(UFCP3TK50)で処理した。 ギブコ BRL 社のエレクトロポレーション用大腸菌 (ElectroMAX™ DH10B™ Cells) を用いて、エレクトロポレーション法による形質転換を行い、1000ml の培養液で 一晩振盪培養した。培養液中に独立コロニーが 106 個以上であることを確認し、 プラスミド精製キット(Qiagen Plasmid Kit;キアゲン社)を用いて、キットに 添付のプロトコールに従い、プラスミドを精製した。

(4) 酵母ツーハイブリッドスクリーニング

上述のpDB-Akt2により形質転換したツーハイブリッド用酵母株MaV203を400mlのYPD液体培地(DIFCO社)に懸濁し、波長590ナノメートルの吸光度が0.1から0.4になるまで30℃で約6時間振とう培養した後、リチウム酢酸法でコンピテントセルとし、最終量を1.0mlの0.1M リチウムートリス緩衝液に懸濁した。同細胞を前述(3)で作製したマウス脂肪組織由来cDNAライブラリー各20μgで形質転換し、同細胞をpDB-Akt2及びライブラリーそれぞれのプラスミドの選択マーカーであるトリプトファン、ロイシンを欠乏させた固形合成最小培地(DIFCO社)(20%アガロース)上にて培養することにより選別し、両プラスミドが導入された形質転換株を得た。同時に同じ形質転換細胞をトリプトファン、ロイシンのほかに、ツーハイブリッドシステムにおいて人工的に発現させたGAL4 DNA 結合領域の融合蛋白質に、GAL4 転写促進領域の融合蛋白質が結合した場合に発現するレポーター遺伝

子H/S3が作動した細胞を選択するため、ヒスチジンを培地から除き、さらにH/S3 がコードする酵素の阻害剤である3AT (3-AMINO-1, 2, 4-TRIAZOLE; シグマ社) 20mM を添加した固形最小培地(20%アガロース)上で30℃にて5日間培養した。同条 件下でAkt2に結合する蛋白質を発現していることを示す3AT耐性の酵母のコロニ ーを取得した。これらの酵母細胞を24時間YPD固形培地上で成長させた後、HIS3と は別のツーハイブリッド システムの結合指示レポーターである /acZ遺伝子の発 現を β -ガラクトシダーゼ活性を指標として調べた。 β -ガラクトシダーゼ活性は 培地上の酵母細胞をニトロセルロースフィルターに移し取り、液体窒素中で凍結 させた後、室温で解凍し、フィルターを0.4%のX-GAL(シグマ社)溶液を浸した濾 紙上にのせて37℃で24時間静置し、β-ガラクトシダーゼによる青色変化を測定 した。フィルター上に写し取った細胞内容物が白色から青色に変化したコロニー を選択することにより、Akt2に結合する蛋白質を発現している酵母細胞を特定し、 同細胞からクロンテック社Yeast Protocols Handbookの方法に従ってライブラリ 一由来のプラスミドを抽出した。そこに含まれる遺伝子断片の塩基配列を、配列 番号9で表される塩基配列(GAL4 AD領域に結合する配列; GenBankアクセッショ ン番号 U29899 Cloning vector pACT2 由来)をプライマーとし、シーケンシン グキット(アプライドバイオシステム社)及びシーケンサー (ABI 3700 DNA sequencer アプライドバイオシステムズ社)を用いて決定した結果、配列番号1 に示す塩基配列が含まれていることを確認した。

(5)マウスAKBP2遺伝子の開始コドンの決定

前述(4)の結果、配列番号1で表される塩基配列を含む遺伝子断片を持ったライブラリー由来のプラスミドが得られた。そこで該断片に含まれる遺伝子の開始コドンを決定するために、配列番号1で示された塩基配列の第1034番から第1011番の塩基配列の相補鎖に相当する配列番号10で表される塩基配列のプライマーを合成(プロリゴ社)し、該プライマーと前述配列番号9で表される塩基配列のプライマーを向成(プロリゴ社)し、該プライマーと前述配列番号9で表される塩基配列のプライマーを用いて前述の脂肪組織由来cDNAライブラリー中からPCR法により該遺伝子の発現産物由来の全長cDNAの増幅を試みた。PCR反応はDNAポリメラーゼ(TAKARA LA Taq;宝酒造社)を用い、94℃(3分)の後、94℃(30秒)・58℃(1.5分)・72℃(4分)のサイクルを35回繰り返した。反応液中の同DNA断片を発現ベクター

(pcDNA3. 1/V5-His-TOPO:インビトロジェン社)にTOPO TA Cloning システム (インビトロジェン社)を用いてクローニングした。得られたプラスミド中の挿入DNA断片の塩基配列を、ベクター上のT7プロモーター領域に結合するプライマー (TOPO TA Cloning kit;インビトロジェン社;配列番号11)とシーケンシングキット(アプライドバイオシステム社)及びシーケンサー(ABI 3700 DNA sequencer;アプライドバイオシステムズ社)を用いて決定した。その結果、該遺伝子の配列を有する様々な長さのcDNAを含むプラスミドが得られたが、最長のcDNAはいずれも前述(4)で得られた転写産物由来のcDNAとほぼ同等の鎖長であった。数度の試行でも同じ結果であったことから、該遺伝子の転写産物の鎖長および配列は(4)で得られたcDNAとほぼ一致することがわかった。これにより配列番号1に示す塩基配列の初めにあるATGが該遺伝子の開始コドンであるとわかり、配列番号1に示す塩基配列の初めにあるATGが該遺伝子の開始コドンであるとわかり、配列番号1に示す該遺伝子のオープンリーディングフレームを確定した。この遺伝子をマウスAKBP2遺伝子と名付けた。

(6)マウスAKBP2発現ベクターの作製

前述(4)の結果、配列番号1で表される塩基配列の全長を含む遺伝子断片を持ったライブラリー由来のプラスミドが得られ、Akt2に結合する因子の存在が示された。また前述(5)においてそのオープンリーディングフレームが確定した。そこで配列番号1に示す塩基配列情報に従い、配列番号12及び配列番号13に示すプライマーを合成(プロリゴ社)し、該プライマーを用いて、正味AKBP2蛋白質をコードするAKBP2 cDNAを前述の(4)で得られたプラスミドを鋳型としてPCR法により増幅した。これら2種類のDNAプライマーはそれぞれ配列番号1が示すマウスAKBP2遺伝子の5'側、3'側の部分配列と相同な塩基配列を有する。PCR反応はDNAポリメラーゼ(Pyrobest DNA Polymerase:宝酒造社)を用い、98℃(1分)の後、98℃(5秒)、55℃(30秒)、72℃(5分)のサイクルを35回繰り返した。PCR産物をアガロースゲル電気泳動によって分離した結果、約1.7kbpのDNA断片が増幅されたことを確認した。そこで反応液中の同DNA断片を発現ベクター(pcDNA3.1/V5-His-TOPO;インビトロジェン社)にTOPO TA Cloning システム(インビトロジェン社)を用いてサブクローニングした。このとき用いた配列番号13に示すプライマーはクローニング後3'側にベクター由来のV5エピトープ(paramyxovirus SV5のV protein由来、

Southern J A, J. Gen. Virol. 72, 1551-1557, 1991) 及びHis6タグ(Lindner P BioTechniques22, 140-149, 1997)がマウスAKBP2遺伝子のトリプレットと同じフレームで続くように、AKBP2のストップコドン配列が除かれるよう設計した。得られたプラスミド中の挿入DNA断片の塩基配列を、ベクター上のT7プロモーター領域に結合するプライマー(TOPO TA Cloning kit; インビトロジェン社; 配列番号11)とシーケンシングキット(アプライドバイオシステム社)及びシーケンサー(ABI 3700 DNA sequencer; アプライドバイオシステムズ社)を用いて決定した。その結果、配列番号1に示す正味AKBP2蛋白質をコードする1719塩基対のAKBP2 cDNAがDNA配列の3'側のストップコドンを除いたDNAとして前述の発現ベクターpcDNA3. 1/V5-His-TOPOに挿入されていることを確認した。以下この発現プラスミドをpcDNA-AKBP2と略記する。

<実施例2> AKBP2蛋白質を発現する培養細胞の作製

(1) AKBP2発現細胞の作製

上述の実施例1(5)で作製した発現プラスミドpcDNA-AKBP2又は空ベクター (pcDNA3.1/V5-His-TOPO) を293細胞(セルバンク社)に導入した。293細胞は6ウェル培養プレート(ウェル直径35mm)の培養皿に各ウェル2mlの10%牛胎児血清(シグマ社)を含む最少必須培地DMEM(ギブコ社)を加えて70%コンフルエントの状態になるまで培養した。この細胞にリン酸カルシウム法(Graham et al., Virology, 52, 456, 1973、新井直子、遺伝子導入と発現/解析法13-15頁1994年)によりpcDNA-AKBP2(3.0 μ g/ウェル)を一過性に導入した。30時間培養した後、培地を除去し、細胞をリン酸緩衝液(以下PBSと略称する)で洗浄した後にウェルあたり0.1 mlの細胞溶解液(100mM リン酸カリウム(pH7.8)、0.2%トリトンX-100)を添加して細胞を溶解した。

(2) AKBP2蛋白質の検出

上述実施例 2 (1) のAKBP2発現細胞の溶解液 10μ Iに 10μ Iの2倍濃度SDSサンプルパッファー(125mM トリス塩酸(pH6.8)、3%ラウリル硫酸ナトリウム、20% グリセリン、0.14M β -メルカプトエタノール、0.02%プロムフェノールブルー)を添加し、100°Cで2分間処理した後、10%のSDSポリアクリルアミドゲル電気泳動を行い、

試料中に含まれている蛋白質を分離した。セミドライ式ブロッティング装置(バイオラッド社)を用いてポリアクリルアミドゲル中の蛋白質をニトロセルロース膜に転写した後、常法に従いウエスタンブロッティング法により該ニトロセルロース上のAKBP2蛋白質の検出を行った。一次抗体にはAKBP2のC末端に融合させたV5エピトープを認識するモノクローナル抗体(インビトロジェン社)を用い、二次抗体にはマウス IgG-HRP融合抗体(バイオラッド社)を用いた。その結果、図1に示す通り、45アミノ酸からなるC末端側のタグを含む618アミノ酸からなるAKBP2-V5-His6融合蛋白質を示す約70kDaの蛋白質が発現ベクターpcDNA-AKBP2の遺伝子導入に依存して検出されることを確認した。これにより、培養細胞中でクローニングした前述のマウスAKBP2遺伝子は全長領域が確かに発現し、蛋白質として安定な構造をとりうることが明らかになった。

<実施例3>正常マウス、高脂肪食負荷正常マウス、および糖尿病モデルマウスにおけるAKBP2発現量の測定

上述の知見により本発明のマウス AKBP2 蛋白質は Akt2 と結合し、脂肪、筋肉などのインスリン応答組織で発現していることが判明した。Akt2 蛋白質はインスリンシグナル第一経路に作用する因子であることから、本発明の AKBP2 の作用がインスリン抵抗性に関わることが予想された。そこで 2 型糖尿病モデルマウス KKAY/Ta (Iwatsuka et al. Endocrinol. Japon.: 17, 23–35, 1970、Taketomi et al., Horm. Metab. Res., 7, 242–246, 1975) および通常食もしくは高脂肪食を与えた健常マウス C57BL/6J の筋肉および脂肪における AKBP2 遺伝子のメッセンジャーRNA (mRNA) 発現量を測定した。

遺伝子発現量は、本発明のマウス AKBP2 遺伝子の発現量を測定し、同時に測定したグリセルアルデヒド 3-リン酸脱水素酵素 (Glyceraldehyde 3-phosphate dehydrogenase (G3PDH)) 遺伝子の発現量により補正した。測定系としては PRISM 7700 Sequence Detection System と SYBR Green PCR Master Mix (アプライドバイオシステムズ社)を用いた。本測定系においては PCR で増幅された 2 本鎖 DNA がとりこむ SYBR Green I 色素の蛍光量をリアルタイムに検出・定量することにより、目的とする遺伝子の発現量が決定される。

具体的には、以下の手順により測定した。

(1) 全 RNA(total RNA)の調製

通常食又は高脂肪食負荷した 14 週齢のオスの C57BL/6J マウス、並びに 15 週齢のオスの C57BL/6J マウス及び KKAY /Ta マウス (いずれも日本クレア社)を使用した。高脂肪食負荷は 5 週齢から 14 週齢までの 9 週間行った。高脂肪食の組成は次の通りである;カゼイン 29.8%、スクロース 15.8%、ビタミンミックス 1.3%、ミネラルミックス 8.8%、セルロースパウダー5.0%、メチオニン 0.5%、サフラワーオイル 28.9%、水 10%。一方、正常食は CE-2 (日本クレア社)を用いた。前記各マウスの筋肉および脂肪を摘出し、RNA 抽出用試薬 (Isogen;ニッポンジーン社)を用いて、説明書に従い全 RNA を調製した。調製した各々の全 RNA はその後デオキシリボヌクレアーゼ (ニッポンジーン社)を用いて処理し、フェノール/クロロホルム処理、エタノール沈殿して滅菌水に溶解し-20℃で保存した。

(2) 1 本鎖 cDNA の合成

全 RNA から 1 本鎖 cDNA への逆転写は、(1)で調製した 1μ g の RNA(脂肪)、 1μ g の RNA(14 週齢のマウスの筋肉)、 0.25μ g の RNA(15 週齢のマウスの筋肉)をそれぞれ用い、逆転写反応用キット(Advantage[™] RT-for-PCR Kit; クロンテック社)を用いて 20μ l の系で行った。逆転写後、滅菌水 180μ l を加えて-20°Cで保存した。

(3) PCR プライマーの作製

4つのオリゴヌクレオチド(配列番号 14-配列番号 17)を(4)の項で述べる PCR のプライマーとして設計した。マウス AKBP2 遺伝子に対しては配列番号 14 と配列番号 15 の組合せ、G3PDH 遺伝子に対しては配列番号 16 と配列番号 17 の組み 合わせで使用した。

(4) 遺伝子発現量の測定

PRISM 7700 Sequence Detection System による PCR 増幅のリアルタイム測定は $25\,\mu$ l の系で説明書に従って行った。各系において 1 本鎖 cDNA は $5\,\mu$ l、 2xSYBR Green 試薬を $12.5\,\mu$ l、各プライマーは $7.5\,pmo$ l 使用した。ここで 1 本鎖 cDNA は (2) で保存したものを G3PDH に関しては 30 倍希釈、マウス AKBP2 に関して

は 10 倍希釈して使用した。なお検量線作成には、1 本鎖 cDNA に代えて $0.1 \mu g/\mu$ μ のマウスゲノム DNA (クロンテック社)を適当に希釈したものを 5μ 月 用いた。 PCR は、50°Cで 10 分に続いて 95°Cで 10 分の後、95°Cで 15 秒、60°Cで 60 秒の 2 ステップからなる工程を 45 サイクル繰り返すことにより行った。

各試料におけるマウス AKBP2 遺伝子の発現量は、下記式に基づいて G3PDH 遺伝子の発現量で補正した。

[AKBP2 補正発現量]=[AKBP2 遺伝子の発現量 (生データ)]/ [G3PDH 遺伝子の発現量 (生データ)].

脂肪における発現量の比較においては通常食の C57BL/6J マウスの発現量を、筋肉組織における発現量の比較においては C57BL/6J マウスの発現量を、それぞれ 1 とした相対量を図 2 に示した。

図 2 に示す通り、高脂肪食負荷時の脂肪および筋肉、または糖尿病モデルマウスの脂肪および筋肉において、本発明のマウス AKBP2 遺伝子の発現は顕著に増加していることが判明した。従って本発明のマウス AKBP2 は脂肪および筋肉における発現量亢進によりインスリン抵抗性を惹起すると考えられる。以上のことからインスリン抵抗性に本発明のマウス AKBP2 の関与が大きいと結論づけられる。

また本実施例の結果より、マウス AKBP2 発現量の測定により糖尿病病態の診断が出来ることが明らかとなった。

〈実施例4〉 ヒトAKBP2遺伝子のクローニング、および組織別発現分布解析 ヒト脂肪由来cDNAライブラリー (クロンテック社)を鋳型とし、配列番号18及び配列番号19に示す一対のプライマーを用いて、前述の実施例1(5)に示したものと同様のPCR法により、AKBP2ヒトオルソログ遺伝子全長cDNAの増幅を試みた。その結果得られた約1.8kbpのDNA断片を、実施例1に示したものと同様の方法に従い塩基配列を決定したところ、配列番号3に示す遺伝子の全長cDNAが含まれることを確認した。該遺伝子cDNAは配列番号4に示すポリペプチドをコードする新規の遺伝子である。該遺伝子は配列番号1に示すマウスAKBP2遺伝子と76.8%、コードするポリペプチドは配列番号2に示すマウスAKBP2遺伝子と76.8%、コードするポリペプチドは配列番号2に示すマウスAKBP2蛋白質と71.3%の相同性をそれぞれ有しているAKBP2のヒトオルソログ遺伝子である。

そこで次に該ヒトAKBP2遺伝子の配列をもとに、配列番号20に示すプライマーを設計し、これと前述配列番号19に示すプライマーを用いて、ヒトAKBP2遺伝子の3'末端側約800塩基のcDNA断片を、ヒト各種組織由来cDNAからPCR反応を用いて増幅を試み、各種組織におけるAKBP2の発現の有無を調べた。ヒトの各種組織cDNAライブラリー(クロンテック社)各2μgを鋳型としてPCR反応はDNAポリメラーゼ(Pyrobest DNA Polymerase;宝酒造社)を用い、98℃(1分)の後、98℃(5秒)、55℃(30秒)、72℃(5分)のサイクルを35回繰り返した。得られたPCR産物をアガロースゲル電気泳動によって分離した結果、骨格筋、肝臓、脂肪由来の各cDNAライブラリーから所望するヒトAKBP2遺伝子の3'末端側部分配列を含むと思われる約800塩基対のDNA断片が増幅された。これらのDNA断片を各々アガロースゲル中から分離した後、上述の実施例1(4)に記した方法に従い配列番号20に示すプライマーを用いて該DNA断片の塩基配列をそれぞれ決定した結果、配列番号3に示すヒトAKBP2遺伝子の3'末端側の部分配列であることを確認した。このことから、ヒトAKBP2遺伝子の発現は、インスリンシグナルに応答する脂肪、筋肉、肝臓などの限定された臓器で特異的に制御されていることが判明した。

本実施例の結果、ヒトAKBP2はマウスAKBP2と相同性が高く、さらにインスリン 応答性組織で発現が観察されることから、マウスと同様の機能を有しており、糖 尿病診断、糖尿病改善薬のスクリーニングに有用であることが明らかになった。

<実施例5> ヒトAKBP2蛋白質を発現する培養細胞の作製

前述の実施例 4 で得られたヒト AKBP2 遺伝子の全長 cDNA を前述の実施例 1(6) に示したものと同様の方法でサブクローニングした。そして配列番号 3 に示す正味ヒト AKBP2 蛋白質をコードする 1782 塩基対のヒト AKBP2 cDNA が DNA 配列の 3'側のストップコドンを除いた DNA として前述の発現ベクターpcDNA3. 1/V5-His-TOPO に挿入されていることを確認した。以下この発現プラスミドを pcDNA-human AKBP2 と略記する。この発現プラスミド pcDNA-human AKBP2 を実施例 2(1) と同様の方法でウェルあたり $5.1\mu g$ 導入し、ヒト AKBP2 タンパク質の発現を実施例 2(2) の方法に従って検出した。その結果、45 アミノ酸からなる 0 末端側のタグを含む 0 638 アミノ酸からなるヒト AKBP2-0 0 高の金属白質を示す約 00 00

蛋白質が発現ベクターpcDNA- human AKBP2 の遺伝子導入に依存して検出されることを確認し、クローニングした前述のヒト AKBP2 遺伝子は培養細胞中で全長領域が確かに発現し、蛋白質として安定な構造をとりうることが明らかになった。

<実施例6>ヒトAKBP2とAkt2の相互作用の検証

(1) GST融合Akt2発現プラスミドの作製

ヒトAkt2のcDNAをGST融合発現ベクターpGEX-3X(アマシャムバイオサイエンス社)に挿入するため、実施例1(1)で得られたヒトAkt2のcDNAを制限酵素HindIII及びEcoR I で、ベクターpGEX-3Xを制限酵素BamH I 及びEcoR I でそれぞれ切断し、直鎖状にした。また配列番号21及び配列番号22に示す断片をこれらの連結用断片として用いるために、前処理として各々60℃で30分間処理した後混合し、室温で2時間放置した。これら処理済みのヒトAkt2 cDNA断片、ベクターpGEX-3X及び連結用断片を混合したものをDNA ligase液(DNA ligation kit II:宝酒造社)と混合して16℃で3時間処理し、pGEX-3XのマルチクローニングサイトにAkt2 cDNAが挿入されたプラスミド(以下pGEX-Akt2と略称する)を作製した。配列番号23に示すオリゴヌクレオチドをプライマーとして、シーケンシングキット(アプライドバイオシステム社)及びシーケンサー(ABI 3700 DNA sequencer アプライドバイオシステムズ社)を用いて塩基配列の決定を行い、Akt2のcDNAのコード領域とpGEXベクターのGSTタグ翻訳フレームが一致して挿入されているものを選択した。

(2) GST融合Akt2タンパク質の精製

上述の(1)で得られたプラスミドpGEX-Akt2を大腸菌BL21を用いて、heat shock法による形質転換を行い、2.4 mLの培養液で一晩振盪培養した後、その全量を400 mL培養液に移し変え、37℃で3時間振盪培養した後、最終濃度が2.5 mM となるようにIPTG(SIGMA)を添加し、更に3時間振盪培養してGST融合Akt2蛋白質(以下GST-Akt2と略記する)の発現を誘導した。菌体を回収し、公知の方法(実験工学、Vol13、No.6、1994年528頁 松七五三ら)に従ってGST-Akt2をグルタチオンセファロースビーズ(Glutathione Sepharose 4B; アマシャム・ファルマシア社)上に精製した。コントロールとしてpGEX-3Xで形質転換した大腸菌

BL21からGST部分のみの蛋白質(以下GST蛋白質と略記する)を上述と同様に発現 誘導して精製した。公知の方法に従ってSDSポリアクリルアミドゲル電気泳動法 による分離及びクーマジーブリリアントブルー染色を行い、期待される分子量の 蛋白質(GST-Akt2;79kDa、GST蛋白質;26kDa)が精製されていることを確認し た。

(3) Akt2蛋白質とヒトAKBP2蛋白質との生化学的結合の確認

上述(2)で作製したGST融合Akt2蛋白質(以下GST-Akt2と略記する)を用いて、 ヒトAKBP2蛋白質とAkt2蛋白質の直接の相互作用の有無をGST-pull down法(実験 工学、Vol13、No.6、1994年528頁 松七五三ら)によって確認した。まず上述実 施例5で作製したpcDNA-human AKBP2の0.5μgを鋳型としてTNT kit (TNT^RQuick Coupled Transcription/Translation System; プロメガ社) 40μlおよびラジオア イソトープ(redivue Pro-mix L-[35S]; アマシャム)1.3 MBqを用いて添付のプ ロトコールに従いin vitroでの転写・翻訳によりラジオアイソトープラベルされ たヒトAKBP2蛋白質を調製した。このヒトAKBP2蛋白質調製液各15μlと上述 (2) でグルタチオンビーズ上に精製したGST蛋白質あるいはGST-Akt2各1μgを混合し、 0.3 mlのBuffer A(50mMトリス塩酸(pH7.5)、10%グリセロール、120mM NaCl、 1mM EDTA、0.1mM EGTA、0.5mM PMSF、0.5%NP-40)を添加して4℃で1時間振盪し た。その後遠心分離によりビーズ上のGST蛋白質あるいはGST-Akt2に結合する蛋 白質を共沈殿させた。これを上述のBuffer AのNaCl濃度を100mMに置換した緩衝 液0.5 mlでけん濁し、再度遠心分離により共沈殿させた。この操作を4回繰り返 したのち、沈殿物中の蛋白質を公知の方法に従ってSDSポリアクリルアミドゲル 電気泳動法により分離し、オートラジオグラフィによりヒトAKBP2蛋白質を検出 した。その結果、GST蛋白質を混合した場合には検出されないバンドがGST-Akt2 を混合した場合に検出された。これにより、本発明のポリペプチドの一つである ヒトAKBP2は、本発明のマウスAKBP2と同様にAkt2蛋白質と相互作用することが明 らかになり、これらヒト、マウスのAKBP2は両動物種で互いに同一の機能を担うカ ウンターパートであることが裏付けられた。従って本発明のヒトAKBP2は、本発 明のマウスAKBP2と同様にAkt2蛋白質との相互作用を介してインスリン抵抗性の 惹起に関与することがわかった。

<実施例7>NIH3T3 L1 脂肪細胞におけるマウス AKBP2 過剰発現による Akt2 キナーゼ活性への影響

上述の酵母ツーハイブリッド及び生化学的結合の解析の結果から、Akt2 と AKBP2 が相互作用することが示された。そこで、AKBP2 が Akt2 の酵素 (キナーゼ) 活性にどのような影響を及ぼすか、培養細胞 NIH3T3 L1 を用いたインビトロキナーゼアッセイで調査した。

(1)インビトロキナーゼアッセイ用基質GST-crosstideの調製

Akt2 の生理的基質である GSK3 β のリン酸化部位をコードする配列番号 24 および配列番号 25 に示した合成オリゴ DNA を混合し、pGEX-6P-1 ベクターの EcoRI、Xhol サイトに組み換えた。これを pGST-crosstide とした。プラスミド pGST-crosstide を大腸菌 BL21 を用いて、heat shock 法による形質転換を行い、2.4 mL の培養液で一晩振盪培養した後、その全量を 400 mL 培養液に移し変え、37℃で 3 時間振盪培養した後、最終濃度が 2.5 mM となるように IPTG (SIGMA 社) を添加し、更に 3 時間振盪培養して GST 融合蛋白質(以下 GST-crosstide と略記する)の発現を誘導した。菌体を回収し、公知の方法(実験工学、Vol13、No.6、1994年 528 頁 松七五三ら)に従って GST-crosstide をグルタチオンセファロースビーズ(Glutathione Sepharose 4B; アマシャム・ファルマシア社)上に精製した。精製したこれらの蛋白質は、公知の方法に従って SDS ポリアクリルアミドゲル電気泳動法による分離と、クーマジーブリリアントブルー染色により GST-crosstide 蛋白質が精製されていることを確認した。

(2)アデノウイルスベクターを利用したAKBP2高発現ウイルスの作製

マウスAKBP2をコードする遺伝子断片を、pcDNA-AKBP2ベクターより制限酵素BamHI、SacIIを用いて切り出し、さらにSacIIおよびNotI切断断片をつくるリンカーオリゴ配列番号26および配列番号27を用いてアデノウイルスベクターpAdTrack-CMV(ジョンズホプキンス癌センターより入手)のマルチクローニングサイト(BgIIIおよびNotI)に挿入し、AKBP2/pAdTrack-CMVベクターを得た。

以下、公知のプロトコール ["A Practical Guide for using the AdEasy

System"] (HYPERLINK "http://www.coloncancer.org/adeasy.htm" "http://www.coloncancer.org/adeasy/protocol2.htm")] に従い、AKBP2を発現する高力価アデノウイルス液の調製を行った。コントロール用アデノウイルスは、pAdTrack-CMVより調製した。

なおウイルス量は260 nmにおける吸光度(A260)を測定し、下記の計算式で換算した。

[式] 1 A260 = 1.1 x 10¹² ウイルス粒子 = 3.3 x 10¹¹ pfu/ml

(3) NIH3T3 L1 脂肪細胞におけるマウス AKBP2 過剰発現および Akt2 の免疫沈降 NIH3T3 L1細胞を10% ウシ胎児血清 (FCS) を含むダルベッコ変法イーグル培地 (DMEM) に懸濁し、8x 10^5 個/穴になるようにコラーゲンコートした6穴プレート (旭テクノグラス社) にまいた。翌日、 $10\,\mu\,\mathrm{g/ml}$ インスリン、250 nM デキサメサゾン、0.5 mM 3-イソブチル-1-メチルキサンチン(IBMX)を加えたDMEM(10% FCS)に培地を交換して3T3-L1細胞の分化を誘導した。その2日後、培地を0.4 ml のDMEM(10% FCS)に戻した。その4日後、AKBP2を発現させるアデノウイルスを1穴あたり8 x 10^{10} pfuの濃度で培地に添加した。コントロールとしてはGFPのみを発現させるアデノウイルスを用いた。

アデノウイルス感染36時間後より16時間、無血清DMEM培地で培養し、100 nMインスリンにより所定の時間(0、30、60分間)刺激し、ただちに細胞溶解液(50 mM Tris-HCl pH 7.5、1 mM EDTA、5 mM EGTA、0.5 mM Na $_3$ VO $_4$ 、0.1 % 2-メルカプトエタノール、50 mM NaF、5 mM sodium pyrophosphate、10 mM β - Glycerophosphate、1 % Triton-X 100、0.1 mM PMSF)500 μ | 中に溶解した。15000 rpm、20分間の遠心後、上清に抗Akt2抗体(Upstate社)およびProtein Gーsepharose(Amersham社)により免疫沈降した。免疫沈降物は細胞溶解液で2回、洗浄液(50 mM Tris-HCl pH 7.5、0.03 % Brij35、0.1% 2-メルカプトエタノール)で2回、反応液(20 mM MOPS pH 7.2、10 mM MgCl $_2$ 、25 mM β -Glycerophosphate、5 mM EDTA、1 mM DTT)で2回洗浄し、キナーゼ反応に供与した。

(4) インビトロキナーゼアッセイ

上記免疫沈降物を 20μ \mid の反応液にけん濁した。さらに、 15μ \mid M ATP、 10μ

Ci[γ³²P]ーATP、3μg GSTーcrosstideを含む反応液を加え、30℃で20分間加温し た。反応は、 10μ I O4xSDSサンプルバッファーを加えて停止した。<math>SDSポリアクリルアミドゲル電気泳動により分離後、GST-crosstideに取り込まれた放射活性 をBAS2000バイオイメージングアナライザー(富士フィルム社)により解析し、 定量した。図3に示すように、インスリン無刺激状態におけるコントロールウイ ルス (GFP) およびAKBP2を感染させたNIH3T3 L1細胞を比較した場合、Akt2のキ ナーゼ活性はAKBP2過剰発現によりコントロールより0.82倍に低下した。同様に 100 nMインスリン刺激によるAkt2の活性上昇を観察したところ、GFP感染細胞で は、無刺激状態に比べ1.39倍(30分)、1.5倍(60分)の酵素活性の上昇を示し たのに対し、AKBP2ウイルスを感染させた細胞では、刺激依存的な活性上昇は 1.30倍(30分) および1.22倍(60分) しか示さなかった。また、Akt2の活性化に セリン473番のリン酸化が重要であることから、上述のインスリン刺激後に免疫 沈降したAkt2を抗リン酸化セリン473抗体(New England Biolab社)を用いてウ エスタンブロット解析したところ、無刺激時のリン酸化状態は、AKBP2ウイルス を感染させた細胞においてコントロールウイルス感染細胞より低下していた。ま た、30分間のインスリン刺激により、AKBP2ウイルスを感染させた細胞とコント ロールウイルス感染細胞において共に刺激依存的なリン酸化の亢進が認められた が、そのリン酸化亢進の程度は、AKBP2ウイルスを感染させた細胞においてはコ ントロールウイルス感染細胞より弱められており、インビトロキナーゼアッセイ の結果を支持した。以上の結果より、本発明のマウスAKBP2は、Akt2と相互作用 し、そのインスリン非依存的な酵素活性に加え、インスリン依存的な酵素活性上 昇を低下させることによりインスリン抵抗性を惹起していると考えられる。

産業上の利用可能性

Akt2に結合する性質を有し、Akt2のキナーゼ活性を低下させ、糖尿病態において発現量が増加する本発明のポリペプチド及びポリヌクレオチドは、糖尿病の診断に有用である。また、本発明のポリペプチド、ポリヌクレオチド、発現ベクター及び細胞は本発明のポリペプチドとAkt2との結合を阻害する物質(すなわちAkt2

の働きを増強させる物質)のスクリーニングに有用である。該スクリーニングにより選択される物質はインスリン抵抗性改善薬並びに糖尿病改善薬の候補物質として有用である。

配列表フリーテキスト

以下の配列表の数字見出し<223>には、「Artificial Sequence」の説明を 記載する。具体的には、配列表の配列番号 5~8、10~27 の配列で表される各塩 基配列は、人工的に合成したプライマー配列である。配列番号 9 の配列で表され る塩基配列は、クローニングベクターpACT2(GenBank U29899)の第 5183 番 (5') ~第 5162 番 (3') の塩基からなる配列である。

以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は 本発明の範囲に含まれる。

請求の範囲

1. 配列番号2又は配列番号4で表されるアミノ酸配列、あるいは、配列番号2又は配列番号4で表されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換、及び/若しくは挿入されたアミノ酸配列

を含み、しかも、Akt2と結合するポリペプチド。

- 2. 配列番号2又は配列番号4で表されるアミノ酸配列からなるポリペプチド。
- 3. 請求の範囲1又は請求の範囲2に記載のポリペプチドをコードするポリヌクレオチド。
- 4. 請求の範囲3に記載のポリヌクレオチドを含む発現ベクター。
- 5. 請求の範囲4に記載の発現ベクターで形質転換された細胞。
- 6. (1) 請求の範囲1若しくは請求の範囲2に記載のポリペプチド、または配列番号2若しくは配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかもAkt2と結合するポリペプチド、あるいは前記ポリペプチドを発現している細胞と (2) 試験物質とを接触させる工程、

該ポリペプチドとAkt2との結合を測定する工程、及び

前記結合を阻害する物質を選択する工程

を含むことを特徴とする前記ポリペプチドとAkt2との結合阻害物質をスクリーニングする方法。

- 7. 結合阻害物質がインスリン抵抗性改善薬及び/又は糖代謝改善薬である請求の範囲6に記載のスクリーニングする方法。
- 8. (1) 請求の範囲1又は請求の範囲2に記載のポリペプチド、あるいは配列番号2 若しくは配列番号4で表されるアミノ酸配列との相同性が90%以上であるアミノ酸配列からなり、しかもAkt2と結合するポリペプチドと (2) Akt2との結合を測定する工程が、前記結合の変化によるAkt2の変化を測定する工程である請求の範囲6又は請求の範囲7に記載のスクリーニングする方法。
- 9. 請求の範囲6乃至請求の範囲8に記載のスクリーニングする方法を用いてスクリーニングする工程、及び

製剤化する工程

を含むことを特徴とする、インスリン抵抗性改善用及び/又は糖代謝改善用医薬 組成物の製造方法。

Fig. 1

Fig. 2

(2)

(3)

(4)

Fig. 3

SEQUENCE LISTING

<110> Yamanouchi Pharmaceutical Co. Ltd

<120>, Akt2 interacting protein

<130> Y0363-PCT

<150> JP2002-354155

<151> 2002-12-05

<150> JP2003-206952

<151> 2003-08-08

<160> 27

<170> PatentIn version 3.1

<210> 1

<211> 1722

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1).. (1719)

<223> Inventor: Endo, Yuki; Endoh, Hideki; Ueda, Yoshitaka; Kato, Miyuki;

Inabe, Kazunori

<400> 1

atg gca gct gtg ccg ccc ctg cgg gac cgc ttg agc ttc ttg cat agg 48 Met Ala Ala Val Pro Pro Leu Arg Asp Arg Leu Ser Phe Leu His Arg 1 5 10

15

96

ctc ccc atc ctg ttg aag ggg acc tca gat gat agc atc cca tgt cca

Leu	Pŗo	lle	Leu 20	Leu	Lys	Gly	Thr	Ser 25	Asp _.	Asp	Ser	lle	Pro 30	Cys	Pro	
											cac His					144
											cgt Arg 60				_	192
											ttg Leu					240
											agg Arg					288
											cca Pro					336
											gcc Ala					384
											cca Pro 140					432
											gcc Ala					480
gcc	ctg	caa	ggc	ttc	ggc	tac	acg	aag	gag	agc	agc	cgg	aca	ggc	tcc	528

Ala	Leu	GIn	Gly	Phe 165	Gly	Tyr	Thr	Lys	Glu 170	Ser	Ser	Arg	Thr	Gly 175	Ser	
					ctc Leu											576
					cct Pro											624
					tcc Ser											672
					cct Pro 230							_		_		720
					cac His								G1 y			768
					cct Pro									-		816
					gac Asp											864
					gag Glu								_		_	912
acg	CCC	cca	aat	gac	tgc	cag	caa	gaa	ctg	aat	cta	gtg	agg	act	gtg	960

Thr 305	Pro	Pro	Asn	Asp	Cys 310	GIn	GIn	Glu	Leu	Asn 315	Leu	Val	Arg	Thr	Va I 320	•	
						ttc Phe											1008
						ctc Leu											1056
						acc Thr											1104
						ggg Gly 375									-		1152
						cag Gin											1200
						aaa Lys											1248
						ctc Leu	Pro		Leu								1296
						gtg Val										1	1344
gtg	cct	gcc	cct	ggg	agc	cag	gtc	tgc	ctc	cag	cct	ctc	agc	tcc	gcc		1392

Val	Pro 450	Ala	Pro	Gly	Ser	GIn 455	Val	Cys	Leu	Gln	Pro 460	Leu	Ser	Ser	Ala	
	gtg Val															1440
	ccg Pro															1488
	tct Ser															1536
	acc Thr											_				1584
	ttt Phe 530													_		1632
	tcg Ser															1680
	gtt Val												tga			1722

<210> 2

<211> 573

<212> PRT ·

<213> Mus sp.

<400> 2

Met Ala Ala Val Pro Pro Leu Arg Asp Arg Leu Ser Phe Leu His Arg

1 10 15

Leu Pro IIe Leu Leu Lys Gly Thr Ser Asp Asp Ser IIe Pro Cys Pro 20 25 30

Gly Tyr Leu Phe Glu Glu IIe Ala Lys IIe Ser His Glu Ser Leu Gly 35 40 45

Ser Ser Gln Cys Leu Leu Glu Tyr Leu Leu Asn Arg Leu Asp Ser Ser 50 55 60

Ser Gly His Val Lys Leu Lys Val Leu Lys IIe Leu Leu Tyr Leu Cys 70 75 80

Gly His Gly Ser Ser Phe Leu Leu IIe Leu Arg Arg Asn Ser Ala 85 90 95

Leu Ile Gin Glu Ala Thr Ala Phe Ser Gly Pro Pro Asp Pro Leu His
100 105 110

Gly Asn Ser Leu Tyr Gln Lys Val Arg Ala Ala Ala Gln Asp Leu Gly 115 120 125

Ser Thr Leu Phe Ser Asp Ala Val Pro Gln Pro Pro Ser Gln Pro Pro

WO 2004/050869

7/27

130

135

140

Gln lle Pro Pro Pro Ala Gly Met Gly Ala Gln Ala Arg Pro Leu Ser 145 150 155 160

Ala Leu Gin Gly Phe Gly Tyr Thr Lys Glu Ser Ser Arg Thr Gly Ser 165 170 175

Ala Gly Glu Thr Phe Leu Ser Thr lle Gln Arg Ala Ala Glu Val Val
180 185 190

Ala Asn Ala Val Arg Pro Gly Pro Asp Asn Pro Cys Thr Lys Gly Pro
195 200 205

Leu Pro Tyr Gly Asp Ser Tyr Gln Pro Ala Val Thr Pro Ser Ala Ser 210 215 220

His Thr His Pro Asn Pro Gly Asn Leu Leu Pro Gly Ala IIe Leu Gly 225 230 235 240

Ala Arg Ala Val Arg His Gln Pro Gly Gln Ala Gly Gly Gly Trp Asp 245 250 255

Glu Leu Asp Ser Ser Pro Ser Ser Gln Asn Ser Ser Cys Thr Ser Asn 260 265 270

Leu Ser Arg Ala Ser Asp Ser Gly Ser Arg Ser Gly Ser Asp Ser His

WO 2004/050869 PCT/JP2003/015546

8/27

275 280 285

Ser Gly Thr Ser Arg Glu Pro Gly Asp Leu Ala Glu Arg Ala Glu Ala 290 295 300

Thr Pro Pro Asn Asp Cys Gin Gin Glu Leu Asn Leu Val Arg Thr Val 305 310 315 320

Thr Gln Gly Pro Arg Val Phe Leu Ser Arg Glu Glu Thr Gln His Phe 325 330 335

Ile Lys Glu Cys Gly Leu Leu Asn Cys Glu Ala Val Leu Glu Leu Leu 340 345 350

Leu Arg Gln Leu Val Gly Thr Ser Glu Cys Glu Gln Met Arg Ala Leu 355 360 365

Cys Ala Ile Ala Ser Phe Gly Ser Ala Asp Leu Leu Pro Gln Glu His 370 375 380

Val Leu Leu Cys Arg Gin Gin Leu Gin Giu Leu Giy Ala Giy Ser 385 390 395 400

Pro Gly Pro Val Thr Asn Lys Ala Thr Lys IIe Leu Arg His Phe Glu 405 410 415

Ala Ser Cys Gly Gln Gln Leu Pro Thr Leu Arg Leu Cys Ala Gln Pro

WO 2004/050869

9/27

420

425

430

Asn Ser Ala Ala Pro Val Gly Pro Ala Asp Leu Leu Thr Ser Pro 435 440 445

Val Pro Ala Pro Gly Ser Gln Val Cys Leu Gln Pro Leu Ser Ser Ala 450 455 460

Thr Val Val Pro Arg Ser Pro Val Leu Phe Pro Ser Pro Asn Thr Leu 465 470 475 480

Pro Pro Ser Ala Leu Glu Glu Pro Ser Glu Val Arg Thr Gln Leu Val 485 490 495

Cys Ser Ser Glu Gln Gly Thr Glu Ser Glu Gln Arg Leu Glu Asn Thr 500 505 510

Asp Thr Pro Glu Asp Ser Ser Ser Pro Leu Pro Trp Ser Pro Asn Ser 515 520 525

Leu Phe Ala Gly Met Glu Leu Val Ala Cys Pro Arg Leu Pro Cys His 530 540

Ser Ser Gln Asp Leu Gln Thr Asp Leu Gln Lys Val Thr Thr Glu Ala 545 550 555 560

Pro Val Ser Glu Pro Ser Ala Phe Ala Phe Leu Asn Met

WO 2004/050869 PCT/JP2003/015546

10/27

565 570

<210> 3 <211> 1782 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (1782) <223> <400> 3 atg gct gcc gcg ccg ccg cta cgg gac cgc ctg agc ttt cta cac cgg 48 Met Ala Ala Ala Pro Pro Leu Arg Asp Arg Leu Ser Phe Leu His Arg 1 10 15 ctc ccg att ctc ctg aag ggg acg tcc gat gat gat gtc ccg tgt ccg 96 Leu Pro IIe Leu Leu Lys Gly Thr Ser Asp Asp Val Pro Cys Pro 20 25 30 ggo tac ctg ttt gaa gag att got aaa atc too cac gag tot cog ggo 144 Gly Tyr Leu Phe Glu Glu lle Ala Lys lle Ser His Glu Ser Pro Gly 35 40 45 agc agc cag tgc ctg ctg gag tac ctc ctg agc cgc ctg cac agc agc 192 Ser Ser Gln Cys Leu Leu Glu Tyr Leu Leu Ser Arg Leu His Ser Ser 50 55 60 tcc ggc cac ggg aag ctc aag gtg ctg aag atc ctg ctc tat ctg tgc 240 Ser Gly His Gly Lys Leu Lys Val Leu Lys Ile Leu Leu Tyr Leu Cys 65 70 75 80 ago cao ggo too too tto tto ctg ctc atc ctc aaa cgc aac tot gcc 288 Ser His Gly Ser Ser Phe Phe Leu Leu IIe Leu Lys Arg Asn Ser Ala

		85			90			95	
							gat Asp		336
							cag Gln 125		384
							ccc Pro		432
							gcc Ala		480
							ggc Gly		528
							gcc Ala		576
							agt Ser 205		624
							atg Met		672
							ggg Gly		720

225	230	235	240
	Arg His GIn Pro G	ggg cag gcc gga ggg gg Gly Gln Ala Gly Gly Gl 250 25	y Trp
		cag aat toc toc cag aa Gin Asn Ser Ser Gin As 270	
		agt cat toc ggc agc ga Ser His Ser Gly Ser As 285	
		gac ctg gca gaa agg gt Asp Leu Ala Glu Arg Va 300	
		gag ttg agc ttg gtg ag Alu Leu Ser Leu Val Ar 315	-
	Arg Ala Phe Leu S	ago ogo gag gag goa ca Ser Arg Glu Glu Ala Gl 330 33	n His
		gt gag goc gtg ctg ca Cys Glu Ala Val Leu Gl 350	
		gaa tgc acg cag ctg ag Alu Cys Thr Gin Leu Ar 365	
		gc gac ctc ctc ccc ca Ser Asp Leu Leu Pro Gl	

cac atc ctc cgc acc cgg ccg tgg ctg cag gag ctc agc atg ggc His IIe Leu Leu Arg Thr Arg Pro Trp Leu Gln Glu Leu Ser Met Gly agc ccg gga cct gtg acc aac aag gcc acc aag atc ctg agg cac ttt Ser Pro Gly Pro Val Thr Asn Lys Ala Thr Lys IIe Leu Arg His Phe gag gcc tcc tgt ggg cag ctg tcc cct gcc cgg ggc acc tca gct gag Glu Ala Ser Cys Gly Gln Leu Ser Pro Ala Arg Gly Thr Ser Ala Glu cct ggc ccc aca gcc gcc ctc cca ggc cca tct gac ctg ctg acc gac Pro Gly Pro Thr Ala Ala Leu Pro Gly Pro Ser Asp Leu Leu Thr Asp gct gtg cct ctc cct ggg agc cag gtc ttc ctg cag cct ctg agt tca Ala Val Pro Leu Pro Gly Ser Gln Val Phe Leu Gln Pro Leu Ser Ser acc ccg gtc tcg tcc cgg agc cct gct ccc tca tct ggg atg ccg tcc Thr Pro Val Ser Ser Arg Ser Pro Ala Pro Ser Ser Gly Met Pro Ser age cet gtg eec ace cea cee cea gat gee tee cee att cea gee cee Ser Pro Val Pro Thr Pro Pro Pro Asp Ala Ser Pro Ile Pro Ala Pro gga gac ccc agc gag gcc gag gcc aga ctg gca gaa agc agg cgg tgg Gly Asp Pro Ser Glu Ala Glu Ala Arg Leu Ala Glu Ser Arg Arg Trp aga cct gaa cgg atc ccg ggg ggc acg gac agc cca aag aga ggc ccc Arg Pro Glu Arg lie Pro Gly Gly Thr Asp Ser Pro Lys Arg Gly Pro

5	515		520	l	52	25			
agc agc t Ser Ser C 530	ys Ala							_	1632
gtg gcc t Val Ala C 545									1680
tgt cct g Cys Pro A	sp Ala			GIn Th					1728
gcc aaa g Ala Lys G									1776
gcc tga Ala									1782
<210> 4 <211> 59 <212> PR <213> Hot		ens							
<400> 4									
Met Ala A 1		Pro Pro 5	Leu Arg	Asp Ar	Ser Ph	e Leu	His 15	Arg	

Leu Pro IIe Leu Leu Lys Gly Thr Ser Asp Asp Val Pro Cys Pro

25

30

20

- Gly Tyr Leu Phe Glu Glu IIe Ala Lys IIe Ser His Glu Ser Pro Gly 35 40 45
- Ser Ser Gln Cys Leu Leu Glu Tyr Leu Leu Ser Arg Leu His Ser Ser 50 55 60
- Ser Gly His Gly Lys Leu Lys Val Leu Lys IIe Leu Leu Tyr Leu Cys 75 80
- Ser His Gly Ser Ser Phe Phe Leu Leu IIe Leu Lys Arg Asn Ser Ala 85 90 95
- Phe IIe Gin Glu Ala Ala Ala Phe Ala Gly Pro Pro Asp Pro Leu His 100 105 110
- Gly Asn Ser Leu Tyr Gln Lys Val Arg Ala Ala Ala Gln Asp Leu Gly
 115 120 125
- Ser Thr Leu Phe Ser Asp Thr Val Leu Pro Leu Ala Pro Ser Gin Pro 130 135 140
- Leu Gly Thr Pro Pro Ala Thr Gly Met Gly Ser Gln Ala Arg Pro His 145 150 155 160
- Ser Thr Leu Gln Gly Phe Gly Tyr Ser Lys Glu His Gly Arg Thr Gly 165 170 175

- Ser Ala Gly Glu Ala Phe Leu Ser Thr IIe Gln Lys Ala Ala Glu Val 180 1.85 190
- Val Ala Ser Ala Met Arg Pro Gly Pro Glu Ser Pro Ser Thr Arg Arg 195 200 205
- Leu Leu Pro Arg Gly Asp Thr Tyr Gln Pro Ala Met Met Pro Ser Ala 210 215 220
- Ser His Gly Pro Pro Thr Leu Gly Asn Leu Leu Pro Gly Ala IIe Pro 225 230 235 240
- Gly Pro Arg Ala Val Arg His Gln Pro Gly Gln Ala Gly Gly Gly Trp
 245 250 255
- Asp Glu Leu Asp Ser Gly Pro Ser Ser Gln Asn Ser Ser Gln Asn Ser 260 265 270
- Asp Leu Ser Arg Val Ser Asp Ser Gly Ser His Ser Gly Ser Asp Ser 275 280 285
- His Ser Gly Ala Ser Arg Glu Pro Gly Asp Leu Ala Glu Arg Val Glu 290 295 300
- Val Val Ala Leu Ser Asp Cys Gln Gln Glu Leu Ser Leu Val Arg Thr 305 310 315 320

- Val Thr Arg Gly Pro Arg Ala Phe Leu Ser Arg Glu Glu Ala Gln His 325 330 335
- Phe IIe Lys Ala Cys Gly Leu Leu Asn Cys Glu Ala Val Leu Gln Leu 340 345 350
- Leu Thr Cys His Leu Arg Gly Thr Ser Glu Cys Thr Gln Leu Arg Ala 355 360 365
- Leu Cys Ala lie Ala Ser Leu Gly Ser Ser Asp Leu Leu Pro Gin Glu 370 375 380
- His lie Leu Leu Arg Thr Arg Pro Trp Leu Gin Glu Leu Ser Met Gly 385 390 395 400
- Ser Pro Gly Pro Val Thr Asn Lys Ala Thr Lys IIe Leu Arg His Phe 405 410 415
- Glu Ala Ser Cys Gly Gln Leu Ser Pro Ala Arg Gly Thr Ser Ala Glu 420 425 430
- Pro Gly Pro Thr Ala Ala Leu Pro Gly Pro Ser Asp Leu Leu Thr Asp 435 440 445
- Ala Val Pro Leu Pro Gly Ser Gln Val Phe Leu Gln Pro Leu Ser Ser 450 455 460

- Thr Pro Val Ser Ser Arg Ser Pro Ala Pro Ser Ser Gly Met Pro Ser 465 470 475 480
- Ser Pro Val Pro Thr Pro Pro Pro Asp Ala Ser Pro Ile Pro Ala Pro 485 490 495
- Gly Asp Pro Ser Glu Ala Glu Ala Arg Leu Ala Glu Ser Arg Arg Trp 500 505 510
- Arg Pro Glu Arg Ile Pro Gly Gly Thr Asp Ser Pro Lys Arg Gly Pro 515 520 525
- Ser Ser Cys Ala Trp Ser Arg Asp Ser Leu Phe Ala Gly Met Glu Leu 530 535 540
- Val Ala Cys Pro Arg Leu Val Gly Ala Gly Ala Ala Ala Gly Glu Ser 545 550 555 560
- Cys Pro Asp Ala Pro Arg Ala Pro Gln Thr Ser Ser Gln Arg Thr Ala 565 570 575
- Ala Lys Glu Pro Pro Gly Ser Glu Pro Ser Ala Phe Ala Phe Leu Asn 580 585 590

<210>	5	•
<211>	27	•
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence:an artificially synthesized primer sequence	
<400>	5	
cgtaco	cacgo tgocaccatg aatgagg	27
/010 \		
<210>		
<211><212>	27 DNA	•
	Artificial	
<220>	·	
<223>	Description of Artificial Sequence:an artificially synthesized primer sequence	
<400>	6	
gcagcg	gagog tgogtoctot gogtggg	27
/ 210\	7	
<210> <211>	7	
<211 <i>></i>	61 DNA	
<212>	Artificial	
1410/	ALCITIOIAL .	
<220>		
<223>	Description of Artificial Sequence: an artificially synthesized primer sequence	

<400>	7	
agagag	tagt aacaaaggtc aaagacagtt gactgtatcg atgaatgagg tgtctgtcat	60
С		61
<210>	8	
<211>	58	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: an artificially synthesized primer sequence	
<400>	8	
tggaga	cttg accaaacctc tggcgaagaa gtccaaagct tcactcgcgg atgctggc	58
<210>	9	
<211>	22	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: the sequence of 5183th(5') 5162th(3') bases in Cloning vector pACT2(GenBank U29899)	to
<400>	9	
cgcgtt [.]	tgga atcactacag gg	22
(010)		
<210>	10	
<211>	24	
<212>	DNA	

18

21/27

<213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 10 cagttgagca ggccacactc tttg 24 <210> 11 <211> 20 <212> DNA <213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 11 taatacgact cactataggg 20 <210> 12 <211> 18 <212> DNA <213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 12 atggcagctg tgccgccc

WO 2004/050869

	22/21	
<210>	13	
<211>	21	
<212>	DNA	
<213>	Artificial	
	•	
<220>		
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>	•	
catgtt	taaa aatgcaaaag c	21
<210>	14	
<211>		
<212>		
	Artificial	
<220>		
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>		
catgto	cagg ctacctgttt ga	22
<210>	15 ·	
<211>	17	
<212>	DNA	
	Artificial	
<220>		
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>	15	

WO 2004/050869

caggo	actgg ctgctgc	17
<210>	10	
<210>		
<211>		
	Artificial	
<220>		
<223>	Description of Artificial Sequence: an artificially synthesized primer sequence	
<400>	16	
aaagtg	ggaga ttgttgccat	20
<210>	17	
<211>	19	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: an artificially synthesized primer sequence	
<400>	17	
ttgact	gtgc cgttgaatt	19
<210>	18	
<211>	17	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence:an artificially	

synthesized primer sequence

<400>	18	
atggct	gccg cgccgcc	17
<210>	19	
<211>	20	
<212>	DNA	
	Artificial	
<220>		
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>	19 .	
ggcgtt	cagg aacgcgaaag	20
	•	
<210>	•	
<211>	18	
<212>	DNA	
<213>	Artificial	
/000 \		
<220>	Description 5 A 1151 1 1 0	
<223>	Description of Artificial Sequence: an artificially	
	synthesized primer sequence	
<400>	20	
	gact cggggacc	18
- \	•	.5
/21 0 \	01	
<210>	21	
<211> <212>	21	
\Z1Z/ /010\	DNA	

WO 2004/050869

25/27

<220>		
<223>	Description of Artificial Sequence an artificially	
	synthesized primer sequence	٠
<400>	21	
gatccc	cggg tatcgcatcc a	2
<210>	22	
<211>	21	
<212>	DNA ·	
	Artificial	
<220>	•	
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>	22	
agcttg	gatg cgataccegg g	21
	•	
<210>	23	
<211>	19	
<212>		
<213>	Artificial	
<220>	·	
<223>	Description of Artificial Sequence:an artificially	
	synthesized primer sequence	
<400>	23	
tttgca	gggc tggcaagcc	19

<210> 24

WO 2004/050869 PCT/JP2003/015546

26/27

<211> 39 <212> DNA <213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 24 aattcggaag gccaagaact tcatcgttcg cagagggtc 39 <210> 25 <211> 38 <212> DNA <213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 25 tcgagaccct ctgcgaacga tgaagttctt ggccttcc 38 <210> 26 <211> 30 <212> DNA <213> Artificial <220> <223> Description of Artificial Sequence:an artificially synthesized primer sequence <400> 26

gggactacaa ggacgatgac gataagtagc

<210> 27

<211> 36

<212> DNA

<213> Artificial

<220>

<223> Description of Artificial Sequence an artificially synthesized primer sequence

<400> 27

ggccgctact tatcgtcatc gtccttgtag tcccgc

36

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/15546

A. CLASSIFICATION OF SUBJECT MATTER		103/13346		
Int.Cl' C12N15/09, C07K14/47, C	12N1/15, C12N1/19, C12N1/	/21		
012N3/10, G01N33/3/3, A	61K3//U2, A61P5/48	21,		
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols)				
Int.Cl ⁷ C12N15/09, C07K14/47, C C12N5/10, G01N33/573, A	12N1/15, $C12N1/19$ $C12N1/19$	21,		
Documentation searched other than minimum documentation to				
Electronic data base consulted during the international search (SwssProt/PIR/Geneseq, WPI (DIALOG Genbank/EMBL/DDBJ/Geneseq, JSTP1		arch terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where	e appropriate, of the relevant passages	Relevant to claim No.		
A Y, MITSUUCHI et al., Identi some 3p14.3-21.1 gene, APPI molecule that interacts wit serine/threonine kinase AKT Vol.18, No.35, pages 4891 t	h, encoding an adaptor th the oncoprotein-	1-9		
P,A JP 2003-88388 A (Helix Res 25 March, 2003 (25.03.03), & EP 1293569 A2 & t	earch Institute), US 2003/0219741 A1	1-9		
P,A US 2003/0181366 A1 (V,L, G 25 September, 2003 (25.09.0 (Family: none)	IRANDA), 3),	1-9		
Further documents are listed in the		·		
Further documents are listed in the continuation of Box C. See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "E" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention considered to involve an inventive step when the document of particular relevance; the claimed invention considered to involve an inventive step when the document of particular relevance; the claimed invention considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention considered to involve an inventive step when the document of particular relevance; the claimed invention considered to involve an inventive step when the document of particular relevance; the claimed invention considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention considered novel or cannot be considered to involve an inventive step when the document is alken alone document of particular relevance; the claimed inv				
Date of the actual completion of the international search 08 January, 2004 (08.01.04)	Date of mailing of the international search report 27 January, 2004 (27.01.04)			
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer			
Facsimile No. Telephone No.				
Form PCT/ISA/210 (second sheet) (July 1998)				

電話番号 03-3581-1101 内線 3488

Α. 発明の属する分野の分類 (国際特許分類 (IPC)) C12N15/09, C07K14/47, C12N1/15, C12N1/19, C12N1/21, C12N5/10 Int. C17 GO1N33/573, A61K37/O2, A61P5/48 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) C12N15/09, C07K14/47, C12N1/15, C12N1/19, C12N1/21, C12N5/10 Int. Cl' G01N33/573, A61K37/02, A61P5/48 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) SwissProt/PIR/Geneseq, WPI (DIALOG), BIOSIS (DIALOG). Genbank/EMBL/DDBJ/Geneseq, JSTPlus(STN) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Α Y, MITSUUCHI, et. al., Identification of a chromosome 3p14.3-21.1 1-9 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2.. Oncogene. (1999), Vol. 18, No. 35, p. 4891-4898 JP 2003-88388 A (株式会社へリックス研究所) 2003.03.25 PA: 1-9 & EP 1293569 A2 & US 2003/0219741 A1 PΑ US 2003/0181366 A1 (V, L, GIRANDA) 2003.09.25 1-9 (ファミリーなし) 】 C欄の続きにも文献が列挙されている。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 27 1, 2004 08.01.2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 B 3335 日本国特許庁 (ISA/JP) 鈴木 美葉子 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号