

erc

Une famille de représentations covariantes de signaux discrets et son application à la détection de signaux à partir de leurs zéros[†]

1. CNRS, Université de Lille, CRIStAL, France. barbara.pascal@univ-lille.fr, remi.bardenet@gmail.com

Contexte et contributions

Transformée de Kravchuk : transformée temps-fréquence discrète; d'espace des phases la sphère \mathbb{S}^2 ; covariante sous les rotations.

- \longrightarrow Construite à partir des polynômes de Kravchuk associés à Binomial(N, p), avec p = 0.5;
- \longrightarrow Distribution des zéros du spectrogramme de Kravchuk du bruit blanc gaussien coïncide avec celle des zéros de la GAF sphérique;
- Détection de signal s'appuyant sur les statistiques spatiales des zéros du spectrogramme de Kravchuk.

(Pascal. et col, 2022, Trans Sig Process)

Extension à $p \in]\mathbf{0}; \mathbf{1}[:(i)]$ correspond à la variance de la fenêtre, discrète, d'analyse;

(ii) p-spectrogramme relié au spectrogramme de Kravchuk par une rotation de \mathbb{S}^2 ;

 \implies adaptation *automatique* au signal.

Famille de transformées

p-Transformée de Kravchuk

Signal discret
$$\mathbf{y} \in \mathbb{C}^{N+1}$$
, $N \in \mathbb{N}$, $p \in]0;1[$

$$\forall (\vartheta, \varphi) \in \mathbb{S}^2, \quad T^{(p)} \boldsymbol{y}(\vartheta, \varphi) = \langle \boldsymbol{y}, \boldsymbol{\Psi}_{\vartheta, \varphi}^{(p)} \rangle$$

États cohérents de SO(3) généralisés :

$$\boldsymbol{\Psi}_{\vartheta,\varphi}^{(p)} = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^n \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{\mathrm{i}n\varphi} \boldsymbol{q}_n^{(p)},$$

 $\{\boldsymbol{q}_{n}^{(p)}, n=0,1,\ldots,N\}$, fonctions de Kravchuk,

- forment une famille orthonormée;
- basée sur les polynômes de Kravchuk, orthogonaux pour Binomial(N, p).

Reparamétrisation: $z = \cot(\vartheta/2)e^{i\varphi} \in \mathbb{C} \cup \{\infty\}$

$$T^{(p)}\boldsymbol{y}(z) = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \frac{z^n}{\sqrt{(1+|z|^2)^N}} \langle \boldsymbol{y}, \boldsymbol{q}_n^{(p)} \rangle$$

 \longrightarrow polynôme complexe de degré N

p-Spectrogrammes de Kravchuk

Exemple d'un chirp linéaire bruité : signal sous-jacent de la forme

$$x(t) = A_{\nu}(t) \times \sin\left(2\pi \left(f_1 + (f_2 - f_1)\frac{(t+\nu)}{2\nu}\right)t\right)$$

échantillonné en N+1 points uniformément répartis dans [-T,T].

p-spectrogrammes de Kravchuk et leurs zéros

p = 0.1

Zéros du p-spectrogramme de Kravchuk

 $\underline{\text{GAF sph\'erique}} \quad \mathsf{GAF}_{\mathbb{S}}(z) = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} z^n \boldsymbol{\xi}'[n], \ \boldsymbol{\xi}'[n] \sim \mathcal{N}_{\mathcal{C}}(0,1).$

Soit $\boldsymbol{\xi} \in \mathbb{C}^{N+1}$ un bruit blanc gaussien, $\sqrt{(1+|z|^2)^N T^{(p)}(z)} \stackrel{\text{(loi)}}{=} \mathsf{GAF}_{\mathbb{S}}(z)$,

 \Rightarrow Distribution **uniforme** des zéros du *p*-spectrogramme de Kravchuk de ξ .

(Bardenet et col, 2021, Appl Comput Harmon Anal; Pascal. et col, 2022, Trans Sig Process)

p = 0.75

Lien entre les p-spectrogrammes de Kravchuk

Proposition: Soit $p \in]0; 1[$, $\eta = \sqrt{p/(1-p)}$ et $z = \cot(\vartheta/2)e^{i\varphi}$, avec (ϑ, φ) des coordonnées sphériques

$$\left| T^{(p)} \boldsymbol{y} \left(h_{\eta}(z) \right) \right|^2 = \left| T^{(0.5)} \boldsymbol{y}(z) \right|^2 \text{ où } h_{\eta}(z) := \frac{(1+\eta)z - (1-\eta)}{(1-\eta)z + 1 + \eta} \text{ est une isométrie.}$$

Le p-spectrogramme de Kravchuk est équivalent, à une rotation près, au spectrogramme de Kravchuk.

Corollaire: La p-transformée de Kravchuk: (i) possède une résolution de l'identité; (ii) préserve l'énergie ; (iii) est covariante sous l'action de SO(3) sur \mathbb{C}^{N+1} . (Pascal. et col, 2022, Trans Sig Process)

Détection de signal

But : rejeter avec un niveau de confiance $1-\alpha$

 $\mathbf{H}_0: \boldsymbol{y} = \boldsymbol{\xi}$ bruit blanc gaussien seul en étudiant les zéros du p-spectrogramme.

(Bardenet et col, 2020, Appl Comput Harmon Anal; Pascal. et col, 2022, Trans Sig Process)

Test de Monte Carlo

Niveau de confiance souhaité : $\alpha \in]0,1[$,

- (i) Calculer s(y), statistique résumante;
- (ii) Générer m bruits indépendants $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \dots, \boldsymbol{\xi}_m, \quad \boldsymbol{\xi}_i \sim \mathcal{N}_{\mathbb{C}}(0, \mathbf{I}) ;$
- (iii) Calculer $s_j = s(\boldsymbol{\xi}_j), \quad 1 \leq j \leq m,$ ordonner $s_1 \geq s_2 \geq \ldots \geq s_m$;
- (iv) Si $s(y) \geq s_k$, rejeter \mathbf{H}_0 .

Statistiques spatiales sur la sphère:

Fonct. d'espace vide $F(r) = \mathbb{P}(b(0, r) \cap Z)$

Statistique résumante

-Z: zéros du p-spectrogramme de Kravchuk, -b(0,r) boule centrée au pôle nord, de rayon r

 \overline{F} estimateur de F

 $s(\boldsymbol{y}) = \sqrt{\int_0^r |\widehat{F}_{\boldsymbol{y}}(r) - F_0(r)|^2 dr}, \quad F_0 \text{ sous } \mathbf{H}_0$

Choisir $k \leq m, k, m \in \mathbb{N}$ tels que $\alpha = \frac{k}{m+1}$.

Données: $y = \operatorname{snr} \times x + \xi \in \mathbb{C}^{N+1}$

 $-\mathsf{snr} \in \{1;2;5\} \; ;$

- chirps linéaires bruités ;

Puissance du test de détection

- 200 tirages de $\boldsymbol{\xi} \sim \mathcal{N}_{\mathbb{C}}(0, \mathbf{I})$ chacun ; $- p \in \{0.1 ; 0.25 ; 0.5 ; 0.75 ; 0.9\}.$ 0.2 +Observations:

 $\nu = 15 \text{ s}$

(1) Signal court, $\nu = 10 \text{ s}$, p a peu d'influence;

(2) Signal long, $\nu = 20$ s, β augmente avec p.

Interprétation : $implémentation \Rightarrow résolution élevée aux pôles : une rotation améliore la détection.$

Conclusion

- Famille de transformées discrètes covariantes, paramétrée par $p \in [0, 1]$; Bilan

- Choix de $p \equiv rotation$: pas d'échelle caractéristique, ajustement automatique au signal;

– Détection de signal à partir de la distribution des zéros du p-spectrogramme de Kravchuk. - Schéma numérique robuste pour l'inverse de la p-transformée de Kravchuk;

- Application à des problèmes de débruitage et de démélange.