Verification & Validation Plan

Engenharia de sistemas

Verification & Validation Plan

- Outlines how requirements will be verified (testing, analysis, inspection, demonstration).
- Includes Acceptance Criteria and Test-Concept

Sumário

1. Introdução	03
2. A Competição	03
3. Especificações dos Robôs	03
4. O Percurso	04
5. Desenvolvimento da Competição	05
6. Regras para as Disputas	06
7. Penalidades	07
8. Módulo de Início	08

Contributors

• Marcos Antonio Tomé Oliveira Graduando em engenharia mecatrônica

I. Introdução

- A. Sistemas estáticos x sistemas dinâmicos
 - Sistemas Estáticos: saída depende apenas do valor atual da entrada.
 - Não possui memória
 - Sem dependência temporal
 - Representado por função algébrica
 - Sistemas Dinâmicos: saída depende de entradas passadas.
 - Possui memória
 - Representado por equações diferenciais ou de diferenças

II. Controlador PID

A. Ganho proporcional

Efeitos Positivos

- Reduz tempo de subida
- Atua na velocidade e precisão
- Melhora rejeição a distúrbios

Efeitos Negativos

- Overshoot excessivo
- Não elimina erro em regime
- Pode causar instabilidade

B. Efeitos do Ganho Integral

Efeitos Positivos

- Elimina erro em regime permanente
- Aumenta robustez
- Considera erros acumulados

Efeitos Negativos

- Pode causar oscilações
- Aumenta tempo de resposta
- Instabilidade com ganho elevado

C. Ganho Derivativo

O ganho derivativo prevê o comportamento futuro do erro com base na sua variação.

Como funciona:

- Calcula a derivada do erro
- Aplica ganho proporcional à taxa de variação

Efeitos:

- Amortece oscilações
- Reduz overshoot
- Melhora estabilidade
- Não atua em erro constante