Problem 3:

- (a) Post-pruning based on optimistic errors
 - (i) Optimistic Errors:

Before Splitting	After Splitting
$\frac{10}{25}$	<u>9</u> 25

- (ii) Based upon the optimistic erros, the subtree should not be pruned. As after splitting based on SBP, the optimistic error reduces. Therefore, we keep the given decision tree retained.
- (iii) Classified provided testing dataset ("hw2q3_test.csv"):

Vaso	MAP	SBP	Sepsis Shock	Predicted Class (Based on given retained decision tree)
FALSE	Low	High	Yes	Yes
FALSE	Low	High	Yes	Yes
FALSE	Low	High	Yes	Yes
FALSE	Low	High	No	Yes
TRUE	High	High	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
TRUE	Low	Low	Yes	Yes
FALSE	High	Low	Yes	Yes
FALSE	Low	Normal	Yes	No
FALSE	Low	Normal	Yes	No
FALSE	Low	Normal	No	No
FALSE	Low	Normal	No	No
FALSE	Low	Normal	No	No
FALSE	Low	Normal	No	No
TRUE	High	Normal	Yes	Yes
FALSE	Low	Very High	Yes	Yes
TRUE	Low	Very High	Yes	Yes

Performance Matrix

		Predicted Class		
		Class = Yes	Class = No	
Actual Class = Yes		13 (TP) (a)	2 (FN) (b)	
	Class = No	1 (FP) (c)	4 (TN) (d)	

Accuracy =
$$\frac{a+d}{a+b+c+d}$$
 = $\frac{13+4}{13+2+1+4}$ = $\frac{17}{20}$ = 0.85

Recall =
$$\frac{a}{a+b}$$
 = $\frac{13}{13+2}$ = $\frac{13}{15}$ = 0.867

Precision =
$$\frac{a}{a+c}$$
 = $\frac{13}{13+1}$ = $\frac{13}{14}$ = 0.93

Specificity (TNR) =
$$\frac{TN}{N} = \frac{TN}{TN + FP} = \frac{4}{4+1} = \frac{4}{5} = 0.8$$

Sensitivity (TPR) = $\frac{TP}{P} = \frac{TP}{TP + FN} = \frac{13}{13+2} = \frac{13}{15} = 0.867$
F1 Measure = 2 * $\frac{precision * recall}{precision + recall} = 2 * $\frac{0.93 * 0.867}{0.93 + 0.867} = 0.8965$$

- (b) Post-pruning based on pessimistic errors
 - (i) Pessimistic Errors:

Before Splitting	After Splitting
$\frac{(10+1*0.5)}{25} = \frac{10.5}{25}$	$\frac{(9+4*0.5)}{25} = \frac{11}{25}$

(ii) Based upon the pessimistic erros, the subtree should be pruned. As after splitting based on SBP, the pessimistic error increases. Therefore, we prune the given decision tree from SBP. Pruned Decision Tree is as shown below:

(iii) Classified provided testing dataset ("hw2q3_test.csv"):

Vaso	MAP	SBP	Sepsis Shock	Predicted Class (Has Septic Shock)
FALSE	Low	High	Yes	Yes
FALSE	Low	High	Yes	Yes
FALSE	Low	High	Yes	Yes
FALSE	Low	High	No	Yes
TRUE	High	High	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
FALSE	Low	Low	Yes	Yes
TRUE	Low	Low	Yes	Yes

FALSE	High	Low	Yes	Yes
FALSE	Low	Normal	Yes	Yes
FALSE	Low	Normal	Yes	Yes
FALSE	Low	Normal	No	Yes
FALSE	Low	Normal	No	Yes
FALSE	Low	Normal	No	Yes
FALSE	Low	Normal	No	Yes
TRUE	High	Normal	Yes	Yes
FALSE	Low	Very High	Yes	Yes
TRUE	Low	Very High	Yes	Yes

Performance Matrix

		Predicted Class	
		Class = Yes Class = No	
Actual Class	Class = Yes	15 (TP) (a)	0 (FN) (b)
	Class = No	5 (FP) (c)	0 (TN) (d)

Accuracy =
$$\frac{a+d}{a+b+c+d}$$
 = $\frac{15+0}{15+0+5+0}$ = $\frac{15}{20}$ = 0.75

Recall =
$$\frac{a}{a+b}$$
 = $\frac{15}{15+0}$ = $\frac{15}{15}$ = 1

Precision =
$$\frac{a}{a+c}$$
 = $\frac{15}{20}$ = $\frac{15}{20}$ = 0.75

Specificity (TNR) =
$$\frac{TN}{N} = \frac{TN}{TN + FP} = \frac{0}{0 + 5} = \frac{0}{5} = 0$$

Sensitivity (TPR) = $\frac{TP}{P} = \frac{TP}{TP + FN} = \frac{15}{15 + 0} = \frac{15}{15} = 1$
F1 Measure = 2 * $\frac{precision * recall}{precision + recall} = 2 * $\frac{0.75 * 1}{0.75 + 1} = 0.857$$

(c) Performance Comparison

	Before Pruning	After Pruning
Accuracy	0.85	0.75
Recall	0.867	1
Precision	0.93	0.75

Here, as the problem mentioned that the sepsis deaths could be prevented with early diagnosis and intervention. So, it is very important to measure TP and TNs are very costly for this example. So, we more care about recall. So, after pruning we have higher recall. So problem 3 (b) (ii) decision tree would be better model for the task of septic shock prediction.