

08 Mars 2022 (2h)

OMG: Mathématiques Générales

La notation tiendra compte de la RIGUEUR, de la présentation et de la clarté de la rédaction.

Algèbre linéaire

★ Exercice 1: Sous-espaces vectoriels et bases (3 Pts)

Dans \mathbb{R}^4 , nous considérons les sous-ensembles :

$$\begin{array}{l} ---A = \{(x,y,z,t) \in \mathbb{R} \mid 3x - y + t = 0\} \\ ---B = \{(x,y,z,t) \in \mathbb{R} \mid |x + t| = |y|\} \end{array}$$

Préciser lesquels sont des sous-espaces vectoriels et lorsque c'est le cas, en donner une base.

★ Exercice 2: Famille libre (20 Pts)

Nous posons $\phi_k(x) = \cos kx$ avec $k \in \mathbb{N}$

ightharpoonup Question 1: Montrer que la famille $(\phi_0(x), \phi_1(x), \dots, \phi_n(x))$ est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$

★ Exercice 3: Application linéaire (10 Pts)

Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$ et Id l'application identité (Id(x) = x) tel que

$$f^2 - 3f + 2Id = 0$$

 \triangleright Question 1: Montrer que f est inversible et exprimer son inverse en fonction de f

 \triangleright Question 2: Établir que $\ker(f-Id)$ et $\ker(f-2Id)$ sont des sous-espaces vectoriels supplémentaires dans E.

(Indication) Théorème : Soient F et G deux sous-espaces vectoriels de E alors les propriétés suivantes sont équivalentes :

1. F et G sont supplémentaires (dans E)

2. E = F + G et $F \cap G = \{0\}$

* Exercice 4: Endomorphisme et Automorphisme(3 Pts)

Soient f et g des applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 définies par :

$$f(x,y) = (2x - 4y, x - 2y)$$
 $g(x,y) = (3x - 4y, x - y)$

/⊳ Question 1: Monter que f est un endomorphisme

 \triangleright Question 2: Déterminer Ker(f) et Im(f)

, ▷ Question 3: Montrer que g automorphisme

★ Exercice 5: S-E-V des émissions (3 Pts)

Soit $\mathcal{M}_{2,2}^{\mathbb{R}}$ l'ensemble des matrices carré de taille 2 à coefficients dans \mathbb{R} . Soit \mathcal{A} l'ensemble des matrices de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ avec $(a,\ b,\ c) \in \mathbb{R}^3$

ightharpoonup Question 1: (1.5 Pts) Montrer que l'ensemble $\mathcal A$ est un sous-espace vectoriel de $\mathcal M_{2,2}^{\mathbb R}$

▶ Question 2: (1 Pt) Donner une base de A

▶ Question 3: (0.5 Pt) Donner la dimension de A