Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Problems

Chris Doble

June 2023

Contents

1	Vec	\mathbf{tors}																							2
	1.1	Vectors	iı	1	2	-5	Sp	a	сe	9															2
		1.1.1																							2
		1.1.9																							2
		1.1.15																							2
		1.1.19																							2
		1.1.21																							2
		1.1.25																							2
		1.1.31																							2
		1.1.37																							3
		1.1.41																							3
		1.1.43																							3
		1.1.45																							3
		1.1.47																							4
		1.1.49																							4
	1.2	Vectors	iı	1	3	-5	Sp	a	ce	9															4
		1.2.7																							4
		1.2.9																							4
		1.2.13																							5
		1.2.15																							5
		1.2.17																							5
		1.2.19																							5
		1.2.21																							5
		1.2.31																							5
		1.2.33																							5
		1 2 27																							5

1 Vectors

1.1 Vectors in 2-Space

1.1.1

- (a) $3\mathbf{a} = 6\mathbf{i} + 12\mathbf{j}$
- (b) $\mathbf{a} + \mathbf{b} = \mathbf{i} + 8\mathbf{j}$
- (c) a b = 3i
- (d) $||\mathbf{a} + \mathbf{b}|| = \sqrt{1 + 8^2} = \sqrt{65}$
- (e) $||\mathbf{a} \mathbf{b}|| = 3$

1.1.9

- (a) $4\mathbf{a} 2\mathbf{b} = \langle 6, -14 \rangle$
- (b) $-3a 5b = \langle 2, 4 \rangle$

1.1.15

$$\overrightarrow{P_1P_2} = \langle 2, 5 \rangle$$

1.1.19

(1, 18)

1.1.21

- (a) Yes
- (b) Yes
- (c) Yes
- (d) No
- (e) Yes
- (f) Yes

1.1.25

(a)
$$\frac{\mathbf{a}}{||\mathbf{a}||} = \frac{\langle 2, 2 \rangle}{\sqrt{2^2 + 2^2}} = \frac{1}{2\sqrt{2}} \langle 2, 2 \rangle = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

(b)
$$\langle -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \rangle$$

1.1.31

$$2\tfrac{\mathbf{a}}{||\mathbf{a}||} = 2\tfrac{\langle 3,7\rangle}{\sqrt{3^2+7^2}} = \tfrac{2}{\sqrt{58}}\langle 3,7\rangle = \langle \tfrac{6}{\sqrt{58}}, \tfrac{14}{\sqrt{58}}\rangle$$

1.1.37

$$\mathbf{x} = -(\mathbf{a} + \mathbf{b})$$

1.1.41

$$\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$$

$$\mathbf{b} = \mathbf{i} + \mathbf{j}$$

$$\mathbf{c} = \mathbf{i} - \mathbf{j}$$

$$\mathbf{i} = \frac{1}{2}(\mathbf{b} + \mathbf{c})$$

$$\mathbf{j} = \frac{1}{2}(\mathbf{b} - \mathbf{c})$$

$$\mathbf{a} = 2\left(\frac{1}{2}(\mathbf{b} + \mathbf{c})\right) + 3\left(\frac{1}{2}(\mathbf{b} - \mathbf{c})\right)$$

$$= \mathbf{b} + \mathbf{c} + \frac{3}{2}\mathbf{b} - \frac{3}{2}\mathbf{c}$$

$$= \frac{5}{2}\mathbf{b} - \frac{1}{2}\mathbf{c}$$

1.1.43

$$y = \frac{1}{4}x^2 + 1$$

$$y(2) = 2$$

$$y' = \frac{1}{2}x$$

$$y'(2) = 1$$

$$\mathbf{v} = \pm \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

1.1.45

(a)

$$\mathbf{F}_{n} = \mathbf{F} \cos \theta$$

$$\mathbf{F}_{g} = \mathbf{F} \sin \theta$$

$$||\mathbf{F}_{f}|| = \mu ||\mathbf{F}_{n}||$$

$$|| - \mathbf{F}_{g}|| = \mu ||\mathbf{F}_{n}||$$

$$|| - \mathbf{F} \sin \theta || = \mu ||\mathbf{F} \cos \theta ||$$

$$||\mathbf{F}|| \sin \theta = \mu ||\mathbf{F}|| \cos \theta$$

$$\tan \theta = \mu$$

(b) $\theta = \arctan \mu \approx 31^{\circ}$

1.1.47

$$F_{x} = \frac{qQ}{4\pi\epsilon_{0}} \int_{-a}^{a} \frac{L \, dy}{2a(L^{2} + y^{2})^{3/2}}$$

$$= \frac{LqQ}{8\pi\epsilon_{0}} \int_{-a}^{a} (L^{2} + y^{2})^{-3/2} \, dy$$

$$= \frac{LqQ}{8\pi\epsilon_{0}} \frac{2a}{L^{2}\sqrt{a^{2} + L^{2}}}$$

$$= \frac{aqQ}{4\pi\epsilon_{0}L\sqrt{a^{2} + L^{2}}}$$

$$F_{y} = -\frac{qQ}{4\pi\epsilon_{0}} \int_{-a}^{a} \frac{y \, dy}{2a(L^{2} + y^{2})^{3/2}}$$

$$= 0$$

$$\mathbf{F} = \langle \frac{1}{4\pi\epsilon_{0}} \frac{qQ}{L\sqrt{a^{2} + L^{2}}}, 0 \rangle$$

1.1.49

Let the three sides of the triangle be vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . The triangle is closed so it must be the case that

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0.$$

This gives

$$\mathbf{c} = -(\mathbf{a} + \mathbf{b}).$$

The vector from the midpoint of side ${\bf a}$ to the midpoint of side ${\bf b}$ is

$$\left(\mathbf{a} + \frac{1}{2}\mathbf{b}\right) - \frac{1}{2}\mathbf{a} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$$

which is parallel with \mathbf{c} and half its length.

1.2 Vectors in 3-Space

1.2.7

A plane at z = 5 parellel with the x-y plane.

1.2.9

A line parallel to the z axis at x = 2 and y = 3.

1.2.13

- (a) (0,5,4), (-2,0,4), (-2,5,0)
- (b) (-2,5,-2)
- (c) (3,5,4)

1.2.15

The planes x = 0, y = 0, and z = 0.

1.2.17

(-1, 2, -3)

1.2.19

The planes $z=\pm 5$.

1.2.21

$$\sqrt{(6-3)^2 + (4+1)^2 + (8-2)^2} = \sqrt{9+25+36} = \sqrt{70}$$

1.2.31

$$\sqrt{(2-x)^2 + (1-2)^2 + (1-3)^2} = \sqrt{21}$$

$$(2-x)^2 + 1 + 4 = 21$$

$$(2-x)^2 = 16$$

$$2 - x = \pm 4$$

$$x = 2 \pm 4$$

$$= -2 \text{ or } 6$$

1.2.33

 $\left(4, \frac{1}{2}, \frac{3}{2}\right)$

1.2.37

(-3, -6, 1)