MATH 31AH - Homework 1

Merrick Qiu

October 11, 2021

1 Arithmetic of sets

1.1
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

The equality holds.

Proof. The equality can be demonstrated with set properties.

$$A \cap (B - C) = A \cap (B \cap \overline{C})$$

$$= (A \cap B) \cap \overline{C}$$

$$= \emptyset \cup ((A \cap B) \cap \overline{C}))$$

$$= ((A \cap B) \cap \overline{A}) \cup ((A \cap B) \cap \overline{C})$$

$$= (A \cap B) \cap (\overline{A} \cup \overline{C})$$

$$= (A \cap B) \cap (\overline{A} \cap C)$$

$$= (A \cap B) - (A \cap C)$$

1.2 $A \cup (B - C) = (A \cup B) - (A \cup C)$

The equality does not hold, but $A \cup (B - C) \supseteq (A \cup B) - (A \cup C)$ is true.

Proof. The left hand side can be simplified:

$$A \cup (B - C) = A \cup (B \cap \overline{C})$$
$$= (A \cup B) \cap (A \cup \overline{C})$$
$$= A \cup (B \cap \overline{C})$$

The right hand side can be simplified:

$$(A \cup B) - (A \cup C) = (A \cup B) \cap \overline{(A \cup C)}$$

$$= (A \cup B) \cap (\overline{A} \cap \overline{C})$$

$$= (A \cap (\overline{A} \cap \overline{C})) \cup (B \cap (\overline{A} \cap \overline{C}))$$

$$= \emptyset \cup (B \cap (\overline{A} \cap \overline{C}))$$

$$= (B \cap (\overline{A} \cap \overline{C}))$$

$$= \overline{A} \cap (B \cap \overline{C})$$

Since $\overline{A} \cap (B \cap \overline{C}) \subseteq (B \cap \overline{C}) \subseteq A \cup (B \cap \overline{C})$, we know that $(A \cup B) - (A \cup C) \subseteq A \cup (B - C)$

Let $x \in A$, so $x \in A \cup (B - C)$. However, $x \in A$ implies that $x \notin \overline{A} \cap B \cap \overline{C}$, which implies that $x \notin (A \cup B) - (A \cup C)$. Therefore $A \cup (B - C) \nsubseteq (A \cup B) - (A \cup C)$, so there is no equality. \square

1.3
$$A \times (B-C) = (A \times B) - (A \times C)$$

The equality holds.

Proof. Let $x \in A \times (B - C)$. Then $x = (x_1, x_2)$ where $x_1 \in A$ and $x_2 \in B - C$. The statement $x \in (A \times B) - (A \times C)$ is true if and only if $(x_1, x_2) \in A \times B$ and $(x_1, x_2) \notin A \times C$. Note, $(x_1, x_2) \in A \times B$ because $x_1 \in A$ and $x_2 \in B - C$. Because $x_2 \in B - C$, $x_2 \notin C$, so $(x_1, x_2) \notin A \times C$. Therefore, $x \in (A \times B) - (A \times C)$ and $A \times (B - C) \subseteq (A \times B) - (A \times C)$.

Let $x \in (A \times B) - (A \times C)$. Then $x = (x_1, x_2)$ where $(x_1, x_2) \in A \times B$ and $(x_1, x_2) \notin A \times C$. Because $(x_1, x_2) \notin A \times C$, $x_1 \notin A$ or $x_2 \notin C$. Because $x_1 \in A$ from $(x_1, x_2) \in A \times B$, $x_1 \notin A$ cannot be true. Therefore $x_2 \notin C$. Since $x_1 \in A$, $x_2 \in B$, and $x_2 \notin C$, it follows that $x \in A \times (B - C)$ and $A \times (B - C) \supseteq (A \times B) - (A \times C)$.

Since
$$A \times (B - C) \subseteq (A \times B) - (A \times C)$$
 and $A \times (B - C) \supseteq (A \times B) - (A \times C)$, it follows that $A \times (B - C) = (A \times B) - (A \times C)$.

2 Vectors on a circle

There exists elements $v, s \in S$ such that $v + w \in S$ where S is the unit circle.

Proof. Let $v = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $w = (\frac{1}{2}, -\frac{\sqrt{3}}{2})$. $(\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 = (\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2 = 1$ so v and w are in S. v+w = (1, 0), which is in S. Therefore, there exists vectors in the unit circle that add to another vector in the unit circle.

3 Ill-defined functions

3.1
$$f: \mathbb{C} \to \mathbb{C}$$
 and $f(z) = \frac{1}{z^2+3}$

The function is not well-definied when $z = \sqrt{3}i$ because of a divide by zero error.

3.2
$$g: \mathbb{Q} \to \mathbb{Z}$$
 and $g(\frac{a}{b}) = a - b$

The function is not well-defined since each rational number can be expressed with many different combinations of numerators and denominators.

3.3
$$h: X \to \mathbb{R}_{>0}$$
 and $h(x,y) = y$

The function is not well-defined since the value of h(0,-1) is -1, which is negative and not in the codomain of $\mathbb{R}_{>0}$.

4 Binary operations

4.1
$$S = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$$
 and $(x,y) \star (x',y') = (x+x',y+y')$

This function is not well defined since x = (1,0) and y = (0,1) does not have xy = 0.

4.2
$$S = \mathbb{R} \text{ and } x \star y = \frac{x}{y^2 + 1}$$

This function is well-defined since the square of a real number plus 1 cannot be zero.

4.3
$$S = \mathbb{C}$$
 and $x \star y = \frac{x}{y^2 + 1}$

This function is not well-defined since for y = i, there will be a divide by zero error.

5 Multiplication in fields

If $a, b \in \mathbb{F}$ are nonzero elements, then $ab \neq 0$.

Proof. Assume ab=0 with $a,b\neq 0$. Since b is not zero, it has multiplicative inverse b^-1 . Multiplying both sides by b^-1 gives $a \cdot b \cdot b^-1 = 0 \cdot b^-1 \implies a \cdot 1 = 0 \implies a = 0$. This contradicts the initial assumption that a is nonzero. Therefore $a,b\neq 0$ implies $ab\neq 0$.

6 Characteristic of a field

If $char(\mathbb{F}) = n > 0$ then n is prime.

Proof. Assume that n is not prime. This means that there exists numbers $1 < a \le b < n$ such that ab = n. Since 1 + 1 + ... + 1 = 0, and ab = n we have that 1 + 1 + ... + 1 = 0 which implies ab = 0. Since $1 < a \le b < n$, $ab \ne 0$ by problem 5, which contradicts ab = 0. Therefore n must be prime.

7 A four-element field?

Proof. Field S, a four element field with arithmetic modulo 4, does not exist.

A field must have a multiplicative inverse for every element in it. The element 2 in set S does not have a multiplicative inverse since $0 \cdot 2 = 0$, $1 \cdot 2 = 2$, $2 \cdot 2 = 0$, and $3 \cdot 2 = 2$. Therefore S is not a field.

8 A non-field

Proof. \mathbb{F}^2 with "coordinate-wise" arithmetic is not a field.

A field must have a multiplicative inverse for every nonzero element. Let x = (0, a) where a is an arbitrary nonzero element. Since the x is not the zero element, it must have a multiplicative inverse. Since the first element of x is 0, it does not have a multiplicative inverse, and so the

multiplicative inverse of x does not have a valid first element. This means that x does not have a multiplicative inverse under "coordinate-wise" arithmetic". Therefore, \mathbb{F}^2 is not a field.

$9 \quad \mathbb{R}^2 \text{ and } \mathbb{C} \text{ (Optional)}$

x is analogous to the real component of a complex number, and y is analogous to the imaginary component of a complex number. When viewed in this way, the arithmetic operations for \mathbb{R}^2 and \mathbb{C} are isomorphic. These rules can be used to define a field structure \mathbb{F}^2 for every \mathbb{F} :

- 1. Addition is commutative.
 - (a) (a,b) + (c,d)
 - (b) (a+c, b+d)
 - (c) (c+a, d+b)
 - (d) (c,d) + (a,b)
- 2. Addition is associative.
 - (a) ((a,b)+(c,d))+(e,f)
 - (b) (a+c,b+d)+(e,f)
 - (c) (a+c+e, b+d+f)
 - (d) (a + (c+e), b + (d+f))
 - (e) (a,b) + (c+e,d+f)
 - (f) (a,b) + ((c,d) + (e,f))
- 3. Multiplication is distributive.
 - (a) $(a,b) \cdot ((c,d) + (e,f)) =$
 - (b) $(a,b) \cdot (c+e,d+f) =$
 - (c) (ac + ae bd bf, ad + af + bc + be) =
 - (d) (ac bd, ad + bc) + (ae bf, af + be) =
 - (e) $(a,b) \cdot (c,d) + (a,b) \cdot (e,f)$
- 4. Zero is (0,0).
- 5. One is (1,0).
- 6. Additive inverse: -(x,y) = (-x,-y)
- 7. Multiplicative inverse: $(x,y)^{-1} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$
- 8. $(0,0) \neq (1,0)$.