MANU2480

AUTONOMOUS SYSTEM

Mapping – Part 1

School of Science and Technology, RMIT Vietnam

Problem Statement

The three key questions to be answered for a mobile robot to exhibit an autonomous behaviour:

- Where am I?
- Where am I going?
- How do I get there?

Approach

To answer these questions, the robot needs to:

- Have a model of the environment, given or autonomously built (mapping);
- Plan path or trajectory (path planning).

Sample

Autonomous navigation and path planning of a robotic nurse from room to room in a hospital ward. For instance, move from a current position A to the next point B.

Behaviour-Based Navigation

Map-Based Navigation

Map Representation

- Continuous representations:
 continuous modelling of
 environmental obstacles using
 simple geometrical shapes.
- Using line segments
- Using polygons

- Grids
- exact cell decomposition
- fixed cell decomposition
- adaptive cell decomposition
- Topological representations

Continuous Representation: Line Segments

Basic spatial elements include points, lines and polygons.

Reference: https://www.mathworks.com/help/map/ref/polyxpoly.html

Continuous Representation: Polygons

Reference: https://www.mathworks.com/help/map/create-and-display-polygons.html

Grid: Exact Cell Decomposition

Grid: Fixed Decomposition

Grid: Adaptive Decomposition – Approximate Variable Cell

Occupancy Grid

- Each cell may have a counter.
- Counter value of 0 indicates that the cell has not been hit by any ranging measurements and therefore it is likely to be free-space.
- As the number of ranging strikes increases, the cell value is incremented.
- Above a certain threshold, the cell is deemed to be an obstacle.
- The values of the cells are discounted when a ranging strike travels through the cell.
 This allows us to represent "transient" (dynamic) obstacles.

Occupancy Grid

- A binary occupancy grid uses true values to represent the occupied workspace (obstacles) and false values to represent the free workspace.
- A probability occupancy grid uses probability values to create a more detailed map representation.

Topological Map

Thank you for your attendance :D

Reference

- MATHWORKS official tutorial.
- Lecture slides from RMIT Melbourne Autonomous System course, delivered by Prof Reza Hoseinnezhad.
- Introduction to Autonomous Mobile Robots by Roland Siegwart and Ilah R. Nourbakhsh.

Copyright Claim

The notes contain copyrighted material. It is intended only for students in the class in line with the provisions of Section VB of the Copyright Act for the teaching purposes of the University.

