Benchmarking Parameter Control Methods in DE for Mixed-Integer Black-Box Optimization

GECCO 2024 at Melbourne

Ryoji Tanabe

Yokohama National University Yokohama city, Japan

Mixed-integer black-box optimization in this work

Note: Categorical variables are not considered

Mixed-integer BBOB (bbob-mixint) [Tušar 19]

- bbob-mixint consists of 24 mixed-integer functions
 - They are mixed-integer versions of the 24 bbob functions
 - The first 4n/5 variables are integer

Tea Tušar, Dimo Brockhoff, Nikolaus Hansen: Mixed-integer benchmark problems for single- and bi-objective optimization. GECCO 2019: 718-726

CMA-ES variants outperform the Scipy imple. of differential evolution (DE) on bbob-mixint [Marty 23]

Tristan Marty, Yann Semet, Anne Auger, Sébastien Héron, Nikolaus Hansen: Benchmarking CMA-ES with Basic Integer Handling on a Mixed-Integer Test Problem Suite. GECCO Companion 2023: 1628-1635

Contribution: This work benchmarks parameter control methods (PCMs) in DE on bbob-mixint

- Two critical parameters in DE
 - Scale factor s > 0 for differential mutation
 - Crossover rate $c \in [0,1]$ for crossover
 - ullet Best settings of s and c depend on a problem
- ullet DE requires a PCM that automatically adjusts s and c
 - Their importance is well known for continuous optimization
 - All state-of-the-art DEs (e.g., L-SHADE) use them
- Their effectiveness is unknown for mixed-integer opt.
 - The performance of DE can possibly be improved

Scale factor s and crossover rate c are critical in DE

Parameter control methods (PCMs)

- For each iteration of DE, the μ individuals $\mathbf{x}_1, \dots, \mathbf{x}_{\mu}$ generate the μ children $\mathbf{u}_1, \dots, \mathbf{u}_{\mu}$
 - In environmental selection, \mathbf{u}_i is compared only to \mathbf{x}_i
 - For each $i \in \{1, \dots, \mu\}$, if $f(\mathbf{u}_i) \leq f(\mathbf{x}_i)$, $\mathbf{x}_i \leftarrow \mathbf{u}_i$
- Scale factor s determines the magnitude of mutation

$$\mathbf{v}_i = \mathbf{x}_{r_1} + \mathbf{s} \left(\mathbf{x}_{r_2} - \mathbf{x}_{r_3} \right)$$

• Crossover rate c determines the number of elements inherited from each parent x to a child u

$$u_{i,j} = \begin{cases} v_{i,j} & \text{if } \text{rand}[0,1] \leq \mathbf{c} \text{ or } j = j_{\text{rand}} \\ x_{i,j} & \text{otherwise} \end{cases}$$

This work focuses only on PCMs in DE

I am interested in "the PCM in jDE", not "jDE"

Conclusion

This work benchmarks 9 PCMs in DE

3 deterministic PCMs

Introduction

- PCM in CoDE [Wang 11]
- PCM in SinDE [Draa 15]
- PCM in CaRS+S [Molina-Pérez 24]
- 6 adaptive PCMs
 - PCM in jDE [Brest 06]
 - PCM in cDE [Tvrdik 06]
 - PCM in JADE [Zhang 09]
 - PCM in **EPSDE** [Mallipeddi 11]
 - PCM in **SHADE** [Tanabe 13]
 - PCM in CoBiDE [Wang 14]

Deterministic parameter control methods in DE

- ullet Generating s and c values based on a simple rule
 - without using any information obtained by the search
- Example: The PCM in SinDE [Draa 15]
 - s and c are determined based on the sinusoidal functions

Amer Draa, Samira Bouzoubia, Imene Boukhalfa: A sinusoidal differential evolution algorithm for numerical optimisation. Appl. Soft Comput. 27: 99-126 (2015)

Most adaptive PCMs in DE use a success criterion

- If the child \mathbf{u}_i is better than its parent \mathbf{x}_i , the pair of s_i and c_i are said to be successful
 - Assumption: The better child was generated because the pair of s_i and c_i was suitable for a target problem
- Example: The PCM in jDE [Brest 06]

Parameter control methods (PCMs)

Janez Brest, Saso Greiner, Borko Boskovic, Marjan Mernik, Viljem Zumer: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 10(6): 646-657 (2006) 10 / 19

Rounding operator to repair infeasible solutions

Infeasible

Introduction

Rounding

Feasible

The Lamarckian and Baldwinian repair methods

- Let y be a repaired feasible version of an infeasible x
- Both of them use f(y) as f(x), but ...
 - \bullet The Lamarckian one *replaces* \mathbf{x} with \mathbf{y}
 - The Baldwinian one doesn't replace x with y
- All individuals in the population are ...
 - always feasible for the Lamarckian one
 - likely to be infeasible for the Baldwinian one
- There is no clear winner between them [Salcedo-Sanz 09]

Sancho Salcedo-Sanz: A survey of repair methods used as constraint handling techniques in evolutionary algorithms. Comput. Sci. Rev. 3(3): 175-192 (2009)

Results

Experimental setup

- The COCO platform [Hansen 21]
 - The 24 bbob-mixint functions
 - Num. variables $n \in \{5, 10, 20, 40, 80, 160\}$
- Settings for DE: $(9+1) \times 8 \times 2 = 160$ configurations
 - The max. fun. evals. was set to $10^4 \times n$
 - The population size μ : 100
 - Hyper-par. in the 9 PCMs: default
 - For DE with no PCM, s = 0.5 and c = 0.9
 - Eight representative mutation strategies
 - The Lamarckian and Baldwinian repair methods

Results for n = 80 (rand/1, Baldwinian)

PCMs can improve the performance of DE

Results

Results for n = 80 (rand/1, Baldwinian)

- DE with the PCM in SHADE performs poorly
 - P-SHA is SOTA for continuous bbob
 - Rankings for bbob and bbob-mixint are different

Best PCM depends on the type of mutation strategy

Results of the Baldwinian repair method

Strategy	<i>n</i> = 5	n = 10	n = 20	n = 40	n = 80	n = 160
rand/1	NOPCM	P-CoBi	P-c	P-Sin	P-Sin	P-Sin
rand/2	P-Sin	P-Sin	P-Sin	P-Sin	P-j	P-j
best/1	P-Co	P-Co	P-Co	P-Co	P-Co	P-JA
best/2	P-CoBi	P-CoBi	P-EPS	P-CoBi	P-c	P-c
ctb/1	P-CoBi	P-Co	P-Co	P-CoBi	P-Co	P-JA
ctr/1	P-CoBi	P-CoBi	P-CoBi	P-CoBi	P-CoBi	P-CoBi
ct p / 1	P-Co	P-CoBi	P-Co	P-Co	P-Co	P-Co
rt p / 1	P-Co	P-Co	P-Co	P-Co	P-Co	P-Co

Best PCM depends on the type of repair method

Results of the Lamarckian repair method

Strategy	n = 5	n = 10	n = 20	n = 40	n = 80	n = 160
rand/1	P-CoBi	P-CoBi	P-CoBi	P-CaRS	P-CoBi	P-JA
rand/2	P-Sin	P-Sin	P-CoBi	P-Sin	P-CoBi	P-CoBi
best/1	P-Co	P-Co	P-Co	P-Co	P-Co	P-Co
best/2	P-CoBi	P-CoBi	P-Co	P-CaRS	P-Co	P-Co
ctb/1	P-Co	P-CoBi	P-Co	P-Co	P-Co	P-Co
ctr/1	P-CoBi	P-CoBi	P-Co	P-CoBi	P-CoBi	P-CoBi
ct p / 1	P-CoBi	P-CoBi	P-CoBi	P-Co	P-Co	P-Co
rt p / 1	P-CoBi	P-SHA	P-Co	P-Co	P-Co	P-Co

Comparison with CMA-ES variants (n = 80**)**

DE with PCMs perform well for larger budgets of fevals

Conclusion: parameter control methods (PCMs)

- 9 PCMs in DE were benchmarked on bbob-mixint
 - Using a PCM can improve the performance of DE
 - The best PCM depends on the type of
 - mutation strategy (e.g., rand/1, rand/2, best/1, etc.)
 - repair method (Lamarckian and Baldwinian)
 - The best PCMs on bbob and bbob-mixint are different
 - PCM in SHADE does not work for bbob-mixint
 - PCM in CoDE, CoBiDE, jDE, and SinDE work well
 - DE with a suitable PCM performs better than CMA-ES on bbob-mixint for larger budgets of fevals
- Many future works: analysis of "DE" and "PCMs"
 - Nobody can explain how the results happened
 - Even analysis of DE for mix-int. opt. has not been done