Assignment 18

Rishab sharma

Predict the survival of passenger from given dataset using Logistic Regression.

Note:

- 1. Clean the Testing Set as steps did for Training Set
- 2. Does not consider Name and Ticket. Skip also in Testing set.
- 3. Apply model in Training set and predict in Testing set.
- 4. Make column i.e Survival in Testing set to store the predicted values

```
In [342]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [343]: train=pd.read_csv("titanic_train.csv")
```

In [344]: train.head()

Out[344]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Са
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	٨
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C,
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Ν
4											•

In [345]: train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

```
In [346]: train.isnull().sum()
Out[346]: PassengerId
                             0
           Survived
                             0
           Pclass
                             0
           Name
                             0
           Sex
           Age
                           177
           SibSp
                             0
           Parch
                             0
           Ticket
                             0
           Fare
                             0
           Cabin
                           687
           Embarked
                             2
           dtype: int64
```

In [347]: sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[347]: <AxesSubplot:>


```
In [348]: sns.set_style('whitegrid')
sns.countplot(x='Survived',data=train,palette='RdBu_r')
```

Out[348]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [349]: sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r')
```

Out[349]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [350]: sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Pclass',data=train,palette='RdBu_r')
```

Out[350]: <AxesSubplot:xlabel='Survived', ylabel='count'>

In [351]: sns.displot(train['Age'].dropna(),kde=False,color='darkred',bins=30)

Out[351]: <seaborn.axisgrid.FacetGrid at 0x2a82f708790>


```
In [352]: sns.countplot(x='SibSp',data=train)
```

Out[352]: <AxesSubplot:xlabel='SibSp', ylabel='count'>

In [353]: train['Fare'].hist(color='green',bins=40,figsize=(8,4))

Out[353]: <AxesSubplot:>


```
In [354]: #DataCleaning
In [355]: plt.figure(figsize=(12,7))
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')
```

```
Out[355]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>
```



```
In [356]: def add_age(cols):
    Age=cols[0]
    Pclass=cols[1]

    if pd.isnull(Age):
        if Pclass==1:
            return 37
        elif Pclass==2:
            return 29
        else:
            return 24
        else:
            return Age
```

```
In [357]: train['Age']=train[['Age','Pclass']].apply(add_age,axis=1)
```

In [358]: sns.heatmap(train.isna(),yticklabels=False,cbar=False,cmap='RdBu_r')

Out[358]: <AxesSubplot:>

In [359]: train.drop('Cabin',axis=1,inplace=True)

In [360]: train.head(2)

Out[360]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embark
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
4											

In [361]: train.dropna(inplace=True)

```
#Converting Categorical Feature
In [362]:
In [363]: | train.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 889 entries, 0 to 890
          Data columns (total 11 columns):
                             Non-Null Count Dtype
               Column
           0
               PassengerId
                             889 non-null
                                             int64
           1
               Survived
                             889 non-null
                                             int64
           2
               Pclass
                             889 non-null
                                             int64
           3
               Name
                             889 non-null
                                             object
           4
                                             object
               Sex
                             889 non-null
           5
               Age
                             889 non-null
                                             float64
           6
                                             int64
               SibSp
                             889 non-null
           7
                                             int64
               Parch
                             889 non-null
           8
               Ticket
                             889 non-null
                                             object
           9
               Fare
                             889 non-null
                                             float64
                             889 non-null
                                             object
           10 Embarked
          dtypes: float64(2), int64(5), object(4)
          memory usage: 83.3+ KB
In [364]: | train=pd.get dummies(train,columns=['Sex','Embarked'])
In [365]: train.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 889 entries, 0 to 890
          Data columns (total 14 columns):
           #
               Column
                             Non-Null Count
                                             Dtype
                                             ____
           0
               PassengerId 889 non-null
                                             int64
           1
               Survived
                             889 non-null
                                             int64
           2
               Pclass
                             889 non-null
                                             int64
           3
                             889 non-null
                                             object
               Name
           4
                             889 non-null
                                             float64
               Age
           5
               SibSp
                             889 non-null
                                             int64
           6
                                             int64
               Parch
                             889 non-null
           7
               Ticket
                             889 non-null
                                             object
           8
               Fare
                             889 non-null
                                             float64
           9
               Sex_female
                                             uint8
                             889 non-null
           10 Sex male
                             889 non-null
                                             uint8
           11 Embarked C
                             889 non-null
                                             uint8
               Embarked_Q
           12
                             889 non-null
                                             uint8
               Embarked S
           13
                             889 non-null
                                             uint8
          dtypes: float64(2), int64(5), object(2), uint8(5)
          memory usage: 73.8+ KB
```

For test data

In [366]: test=pd.read_csv("titanic_test.csv")

In [367]: | test.head()

Out[367]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
4											

In [368]: test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object
dtyp	es: float64(2), int64(4), obj	ect(5)

memory usage: 36.0+ KB

In [369]: test.describe()

Out[369]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

```
In [370]: test.isnull().sum()
Out[370]: PassengerId
          Pclass
          Name
          Sex
                            0
          Age
                           86
          SibSp
                            0
          Parch
          Ticket
          Fare
                            1
          Cabin
                          327
          Embarked
          dtype: int64
```

data cleaning of test set

```
In [371]: test['Age']=test[['Age','Pclass']].apply(add_age,axis=1)
In [372]: test.drop('Cabin',axis=1,inplace=True)
```

In [373]: test.head()

Out[373]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Q
3	895	3	Wirz, Mr. A l bert	male	27.0	0	0	315154	8.6625	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	S

```
In [374]: test.isnull().sum()
```

Out[374]: PassengerId 0 Pclass 0 Name 0 Sex 0 0 Age SibSp Parch Ticket Fare 1 Embarked dtype: int64

```
In [375]: test.dropna(inplace=True)
```

In [376]: test.isnull().sum()

Out[376]: PassengerId

0 Pclass 0 0 Name Sex 0 Age 0 SibSp Parch 0 Ticket Fare 0 Embarked dtype: int64

In [377]: | test=pd.get_dummies(test,columns=['Sex','Embarked'])

In []:

```
In [378]: test.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 417 entries, 0 to 417
          Data columns (total 13 columns):
                           Non-Null Count Dtype
               Column
           0
               PassengerId 417 non-null
                                           int64
           1
               Pclass
                           417 non-null
                                           int64
           2
                           417 non-null
                                           object
               Name
           3
                           417 non-null
                                           float64
               Age
           4
                                           int64
               SibSp
                           417 non-null
           5
               Parch
                           417 non-null
                                           int64
           6
             Ticket
                           417 non-null
                                           object
           7 Fare
                           417 non-null
                                           float64
           8
             Sex_female 417 non-null
                                           uint8
           9
               Sex_male 417 non-null
                                           uint8
           10 Embarked_C 417 non-null
                                           uint8
           11 Embarked Q 417 non-null
                                           uint8
           12 Embarked_S 417 non-null
                                           uint8
          dtypes: float64(2), int64(4), object(2), uint8(5)
          memory usage: 31.4+ KB
In [379]: | test.columns
Out[379]: Index(['PassengerId', 'Pclass', 'Name', 'Age', 'SibSp', 'Parch', 'Ticket',
                 'Fare', 'Sex_female', 'Sex_male', 'Embarked_C', 'Embarked_Q',
                 'Embarked S'],
                dtype='object')
          importing the necessary libraries
In [400]:
          from sklearn.model_selection import train_test_split
          from sklearn.linear model import LogisticRegression
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear model import LinearRegression
In [425]: x_train=train[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_female', 'Sex ma
                   'Embarked_C', 'Embarked_Q',
                 'Embarked_S']]
          x_test=test[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_female', 'Sex_male
                   'Embarked_C', 'Embarked_Q',
                 'Embarked S']]
          y_train=train['Survived']
```

```
In [426]: model=LogisticRegression(max_iter=1000) # creating an object model in class like
In [427]: model.fit(x_train,y_train) # fitting model on x train and y train
Out[427]: LogisticRegression(max_iter=1000)
In [428]: y_pred=model.predict(x_test) # predicting data on unseen x train
          , # plotting y pred and y_train.. since we have no data on y_test./ its only of
In [429]:
Out[429]: ('#',
            'plotting',
            'y',
            'pred',
            'and',
            'y_train..',
            'since',
            'we',
            'have',
            'no',
            'data',
            'on',
            'y_test./',
            'its',
            'only',
            'option')
In [430]: |y_train # this y training data
Out[430]: 0
                  0
           1
                  1
           2
                  1
           3
                  1
                  0
           4
           886
                  0
           887
                  1
           888
                  0
           889
                  1
           890
           Name: Survived, Length: 889, dtype: int64
```

the assignment is complete ..as we added survival column in x test

In [431]: x_test['survived']= y_pred

C:\Users\user\AppData\Local\Temp\ipykernel_8124\3310133094.py:1: SettingWithC opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver sus-a-copy)

x_test['survived']= y_pred

In [432]: x test

Out[432]:

	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male	Embarked_C	Embarked_Q	E
0	3	34.5	0	0	7.8292	0	1	0	1	
1	3	47.0	1	0	7.0000	1	0	0	0	
2	2	62.0	0	0	9.6875	0	1	0	1	
3	3	27.0	0	0	8.6625	0	1	0	0	
4	3	22.0	1	1	12.2875	1	0	0	0	
413	3	24.0	0	0	8.0500	0	1	0	0	
414	1	39.0	0	0	108.9000	1	0	1	0	
415	3	38.5	0	0	7.2500	0	1	0	0	
416	3	24.0	0	0	8.0500	0	1	0	0	
417	3	24.0	1	1	22.3583	0	1	1	0	

417 rows × 11 columns

```
In [433]: y_pred
Out[433]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
                 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
                 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
                 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
                 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
                 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
                 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0,
                 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0],
                dtype=int64)
  In [ ]: | # since we don't have y_test to check , we can use cross validation
In [434]: from sklearn.model selection import cross val predict
In [435]: from sklearn.metrics import accuracy score
In [446]: |y_pred_cross= cross_val_predict(model,x_train,y_train,cv=5)
          accuracy= accuracy_score(y_pred,y_pred_cross)
          print('accuracy',accuracy)
```

accuracy 1.0

In [449]: sns.regplot(x=y_pred,y=y_pred_cross)

Out[449]: <AxesSubplot:>

In []:	
In []:	
Tn [].	