МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «ВЫСШАЯ МАТЕМАТИКА»

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ДИСЦИПЛИНЕ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И СЛУЧАЙНЫЕ ПРОЦЕССЫ»

Часть 2

Методические указания

Рецензент

доцент кафедры «Высшая математика» канд. физ.-мат. наук О. Е. Григорьева

Печатается по решению редакционно-издательского совета Волгоградского государственного технического университета

Лабораторный практикум по дисциплине «Теория вероятностей, математическая статистика и случайные процессы». Ч. 2 : метод. указания / сост.: М. И. Андреева, В. А. Кобышев, Е. А. Смирнов, О. К. Чесноков, Н. В. Чигиринская ; ВолгГТУ. — Волгоград, 2018. — 24 с.

Даются задания по лабораторным работам и руководство к их выполнению. Могут использоваться студентами факультета электроники и вычислительной техники при подготовке к лабораторным работам по дисциплине и отчетам по ним.

© Волгоградский государственный технический университет, 2018

Учебное издание

Составители:

Марина Израилевна Андреева Владимир Алексеевич Кобышев Евгений Анатольевич Смирнов Олег Константинович Чесноков Наталья Вячеславовна Чигиринская

Лабораторный практикум по дисциплине «Теория вероятностей, математическая статистика и случайные процессы» Часть 2

Методические указания

Темплан 2018 г. (учебно-методическая литература). Поз. № 00. Подписано в печать 00.00.2018. Формат 60х84 1/16. Бумага офсетная. Гарнитура Times. Печать офсетная. Усл. печ. л. 000. Тираж 10 экз. Заказ

Волгоградский государственный технический университет. 400005, г. Волгоград, просп. В. И. Ленина, 28, корп. 1.

Отпечатано в типографии ИУНЛ ВолгГТУ. 400005, г. Волгоград, просп. В. И. Ленина, 28, корп. 7.

Лабораторная работа № 5

ПЕРВИЧНАЯ ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ

Цель работы: научиться проводить первичную обработку статистических данных, представленных в различной форме, вручную и с помощью составленных программ.

Формулировка заданий.

Задание 1. Первичная обработка статистических данных, представленных в виде небольшого массива (до 100 значений) или статистических данных, полученных при исследовании дискретной случайной величины.

- 1. Знать основные типы статистических рядов и рекомендации по их использованию, уметь строить статистические ряды частот и относительных частот. По заданному ряду частот или относительных частот уметь находить эмпирическую функцию распределения и строить ее график, а также строить полигоны частот и относительных частот. Знать формулы, по которым находятся числовые характеристики выборки и уметь ими пользоваться.
 - 2. Составить программу, обеспечивающую:
 - а) ввод данных из файла и вывод информации на экран;
 - b) составление вариационного ряда и вывод его на экран;
 - с) составление и вывод на экран статистического ряда частот и относительных частот, построение полигона для каждого из них;
 - d) нахождение эмпирической функции распределения $F^*(x)$ с выводом на экран определения эмпирической функции распределения и ее конкретного вида для заданного статистического распределения, построение графика $F^*(x)$;
 - е) вывод на экран формул для вычисления числовых характеристик выборки: $\overline{x}_{_{\rm B}}, D_{_{\rm B}}, \sigma_{_{\rm B}}, S$, их вычисление и вывод на экран полученных результатов;
 - g) выбор пользователем нужных ему пунктов меню для получения интересующих его результатов и необходимые комментарии по работе с программой.
- 3. Составить файл из статистических данных, содержащий от 50 до 80 целых чисел, среди которых количество различных вариантов должно быть не менее 10 и не более 20 (числа могут быть как одного, так и разных знаков).
- 4. Провести обработку данных с помощью программы и включить полученные результаты в протокол.

Задание 2. Первичная обработка статистических данных, представленных в виде большого массива (не менее 100 значений) или статистических данных, полученных при исследовании непрерывной случайной величины.

1. Уметь строить интервальные статистические ряды и группированные статистические ряды частот и относительных частот. Находить эмпи-

рическую функцию распределения и строить ее график. Строить гистограмму частот и относительных частот по соответствующему интервальному статистическому ряду и полигон по группированному статистическому ряду. Знать формулы, по которым находятся числовые характеристики выборки и уметь ими пользоваться.

- 2. Составить программу, обеспечивающую:
 - а) ввод данных из файла и вывод информации на экран;
 - b) задание количества интервалов, получение и вывод на экран интервального ряда частот и относительных частот, построение соответствующих гистограмм;
 - с) построение группированного ряда распределения частот и относительных частот и построение соответствующих полигонов:
 - d) нахождение и вывод на экран эмпирической функции распределения $F^*(x)$ для интервальных и группированных рядов, построение их графиков;
 - е) вывод на экран формул для вычисления числовых характеристик выборки: $\bar{x}_{_{\rm B}}, D_{_{\rm B}}, \sigma_{_{\rm B}}, S$, их вычисление и вывод на экран полученных результатов;
 - g) выбор пользователем нужных ему пунктов меню для получения интересующих его результатов и необходимые комментарии по работе с программой.
- 3. Для заданного (в соответствии с вариантом) файла провести обработку данных и включить полученные результаты в протокол.

Задание 3. Ввод данных с клавиатуры (ручной ввод данных) в виде интервального ряда распределения и его обработка, как в задании 2. Ввод и обработка интервального ряда распределения соответствующего варианту.

ВАРИАНТЫ СТАТИСТИЧЕСКИХ ДАННЫХ ДЛЯ ЗАДАНИЯ 2

				Вари	ант 1				
18	11	14	18	13	15	16	17	16	17
19	15	18	16	13	15	12	16	18	15
15	20	12	14	15	19	16	13	16	18
13	16	16	15	11	13	18	14	12	15
17	13	18	20	16	13	16	15	13	18
14	14	16	15	18	16	20	14	17	15
17	15	13	18	13	17	13	16	15	17
16	14	15	14	16	14	14	15	14	13
13	18	17	16	20	15	19	16	16	15
15	20	14	13	16	18	16	17	14	16

				Вари	ант 2				
4,7	4,1	4,4	4,6	4,8	4,3	4,4	4,3	4,6	4,9
4,1	4,6	4,5	4,1	4,6	4,5	4,5	4,8	4,4	4,5
4,5	4,2	4,8	4,5	4,2	4,1	4,8	4,7	4,6	4,3
4,8	4,5	4,6	4,7	4,6	4,6	4,4	4,2	4,6	4,8
5,0	4,6	4,3	4,5	4,3	4,8	4,6	4,6	4,2	4,7
4,5	4,7	4,5	4,4	4,5	4,7	4,9	4,6	4,8	4,4
4,3	4,6	4,5	4,6	4,7	4,6	4,6	4,7	4,5	4,5
4,6	4,8	4,9	4,8	4,4	5,0	4,8	4,6	4,4	5,0
4,5	4,4	4,6	4,6	4,5	4,7	4,5	4,5	4,5	4,6
4,4	4,6	4,7	5,0	4,5	4,4	4,5	4,3	4,5	4,4
				Вари	ант 3				
8	12	9	16	11	18	11	19	20	16
2	16	10	8	10	9	16	8	12	8
12	3	13	4	12	8	9	15	5	8
9	8	4	10	5	14	7	11	15	12
13	13	12	8	14	11	7	6	11	5
7	9	7	12	10	5	15	12	7	16
13	12	7	9	7	12	6	9	10	11
11	6	14	14	18	7	10	15	8	20
16	11	8	6	9	10	9	5	19	10
6	17	11	17	8	15	12	10	11	20
				Вари	ант 4				
35	32	41	39	48	36	49	42	39	46
37	43	32	48	40	47	36	41	46	39
35	41	40	41	39	40	42	36	42	42
39	35	43	41	35	44	40	42	40	38
41	42	39	33	44	39	35	41	36	46
34	37	43	42	33	42	45	39	45	40
34	42	42	40	42	42	38	40	38	36
41	39	37	44	49	38	45	41	41	50
40	43	38	44	37	46	39	37	30	42
41	40	47	38	46	41	50	37	45	38
				-	ант 5				
15	9	13	16	14	16	17	12	14	17
10	16	18	13	10	14	12	16	14	18
11	13	9	15	13	15	16	15	12	13
11	14	14	14	15	14	10	13	15	14
15	14	11	14	12	11	14	13	13	12
13	12	15	11	14	14	13	16	10	13

12	16	13	16	9	14	11	15	11	15
14	12	16	13	16	9	15	12	15	11
14	13	12	16	11	13	13	16	13	11
13	15	14	12	16	13	14	18	16	14
				Ranu	ант 6				
3,5	3,9	4,1	4,0	3,9	4,0	4,2	4,0	3,8	3,7
3,7	3,5	4,0	3,7	4,3	3,7	3,9	3,8	4,0	3,9
3,6	4,0	3,5	4,2	4,0	4,0	3,8	4,0	3,7	3,8
3,9	3,6	4,0	3,9	3,6	3,9	4,3	3,9	4,4	4,2
3,9	4,0	3,6	4,0	4,1	3,8	3,9	3,7	4,2	3,9
3,8	3,7	4,0	3,9	3,7	4,0	4,4	4,4	3,9	4,2
3,8	3,8	3,7	4,1	3,8	3,9	3,7	4,2	4,0	3,9
4,1	3,9	3,8	3,8	4,3	4,1	4,0	3,9	4,0	4,0
4,0	4,0	3,9	4,1	3,9	4,1	4,0	4,4	4,0	4,0
4,0	4,1	3,9	4,2	4,2	4,3	4,1	4,2	4,2	4,0
				Ranu	ант 7				
4,1	4,5	4,3	4,7	Б ари 4,6	4,2	4,6	4,4	4,8	4,7
4,8	4,1	4,7	4,3	4,6	4,5	4,8	4,6	4,6	4,4
4,5	4,6	4,1	4,6	4,2	4,5	4,3	4,5	4,4	4,6
4,5	4,3	4,7	4,5	4,9	4,8	4,5	4,6	4,7	4,6
4,6	4,2	4,6	4,6	4,5	4,3	4,8	4,4	4,5	4,4
4,4	4,7	4,6	4,2	4,6	4,9	4,3	4,7	4,6	4,6
4,7	4,6	4,5	4,8	4,5	4,6	4,8	4,0	4,4	4,0
4,5	4,4	4,8	4,2	4,9	4,4	4,5	4,3	4,5	4,7
4,7	4,5	4,5	4,8	4,3	4,9	4,6	4,0	4,5	4,4
4,6	4,7	4,8	4,5	4,8	4,6	4,6	4,5	4,5	4,6
				Вари	ант 8				
45	47	43	45	43	46	43	41	46	44
45	42	46	48	45	44	45	48	49	46
48	40	44	45	45	48	45	44	46	50
41	47	45	48	43	45	47	45	47	46
46	43	48	43	46	46	44	46	47	46
46	41	44	45	46	47	45	46	46	50
43	45	47	45	42	45	43	46	49	49
47	43	46	43	48	45	46	48	46	49
44	43	43	46	42	44	48	48	44	46
44	48	45	46	44	48	45	50	50	41

				Вари	ант 9				
29	27	25	30	32	34	28	34	31	37
33	22	29	32	26	35	31	26	31	37
25	32	27	25	28	29	36	40	35	23
30	24	30	29	30	28	26	34	40	31
24	33	29	27	30	28	31	28	36	40
33	25	30	27	25	32	29	36	26	28
27	32	22	32	29	26	35	31	39	31
33	27	32	26	28	35	25	35	35	40
27	34	29	30	32	25	30	31	39	25
33	29	27	32	34	30	36	31	36	36
				Вариа	ант 10				
1,8	2,2	2,3	1,9	1,7	2,1	1,6	1,9	2,0	1,9
2,0	1,8	2,2	1,8	2,1	2,2	2,1	2,0	2,2	2,1
2,2	2,0	2,3	2,1	1,9	1,7	2,2	2,0	1,7	2,5
2,0	1,8	2,0	2,2	2,1	2,2	2,0	2,2	2,0	2,1
2,2	2,2	2,1	2,1	2,3	2,3	2,0	1,9	2,4	2,3
2,1	2,0	2,1	2,0	1,8	2,1	1,8	2,1	2,2	2,3
1,6	2,1	2,0	2,3	2,2	2,0	2,1	1,9	2,4	2,0
2,1	1,9	1,9	1,6	1,9	2,0	1,7	2,1	2,3	2,5
1,8	2,1	1,8	2,0	2,0	1,9	2,3	2,4	2,1	2,5
1,8	1,9	1,9	1,8	2,0	2,3	1,9	2,2	2,1	2,2
				Вариа	ант 11				
15	12	16	12	13	16	10	16	14	17
13	15	13	14	13	14	15	17	11	15
16	15	12	13	11	14	11	15	13	12
9	13	13	16	14	11	13	14	17	15
13	16	13	14	13	16	16	10	14	9
9	13	14	13	11	13	11	13	12	13
14	13	13	14	15	13	13	12	13	18
12	10	14	15	12	11	14	14	18	15
14	14	15	13	15	14	9	13	18	12
10	14	15	13	12	16	14	10	14	16
				-	ант 12				
45,5	44,5	46	43,5	44,5	45	43,5	45,5	44,5	45
45	45,5	44,5	44,5	45	44	46	44,5	44	46
42,5	45	45,5	43,5	46	45	43,5	46	45	46,5
45	43	43	44	44,5	43,5	44	44,5	45	45,5
45,5	42,5	43	44,5	45	44	45,5	46,5	44	44,5
44,5	46	45,5	44,5	43	44,5	45	43,5	45,5	45

42,5	45	42,5	44	43,5	44,5	45	47	45	46,5
44,5	45,5	46	43	45	43,5	44,5	46	45,5	45,5
45,5	45	44,5	44	44,5	45	44	45	44,5	47
45	44,5	45,5	44	45,5	44,5	45,5	46	44,5	46
				Вариа	ант 13				
110	130	50	70	150	80	140	100	160	160
90	120	50	110	50	100	80	140	80	120
120	150	90	50	110	130	120	80	60	140
70	30	60	20	150	100	100	190	160	100
130	40	150	150	110	200	100	140	120	70
90	130	40	70	30	150	110	60	170	140
110	70	110	50	130	110	90	200	170	120
150	90	60	90	40	60	60	160	100	80
70	90	120	160	50	90	120	80	120	160
130	110	130	90	200	160	140	100	140	100
				Ranus	ант 14				
2,1	2,4	2,5	2,7	2,4	2,5	2,7	2,8	2,3	2,8
2,4	2,6	2,7	2,5	2,7	2,4	2,5	2,7	2,7	2,6
2,6	2,1	2,3	2,8	2,6	2,5	2,9	2,5	2,2	3,0
2,2	2,3	2,5	2,6	2,3	2,6	2,3	2,9	2,5	2,6
2,4	2,4	2,3	2,6	2,8	2,3	2,7	2,5	2,7	2,8
2,2	2,3	2,6	2,3	2,6	2,4	2,4	2,6	2,5	3,0
2,6	2,5	2,3	2,6	2,5	2,3	2,4	3,0	2,7	2,5
2,5	2,7	2,6	2,4	2,5	2,9	2,7	2,2	2,8	2,8
2,6	2,3	2,4	2,4	2,5	2,3	2,6	2,5		2,7
2,6	2,8	2,6	2,5	2,8	2,5	2,4	2,8	3,0	2,7
				Ranus	ант 15				
3,7	3,6	3,7	3,3	3,7	3,5	3,8	3,6	3,7	3,8
3,1	3,2	3,1	3,9	3,4	3,3	3,5	3,4	3,5	3,8
3,1	3,8	3,7	3,3	3,4	3,5	3,3	3,6	4,0	3,6
3,6	3,1	3,6	3,5	4,0	3,8	3,4	3,5	3,8	3,6
3,5	3,7	3,2	3,7	3,5	3,3	3,7	3,4	3,5	3,8
3,7	3,6	3,5	3,3	3,8	3,5	3,5	3,8	3,6	3,6
3,6	3,2	3,6	3,6	3,3	3,7	3,3	3,6	3,4	3,7
3,5	3,8	3,2	3,5	3,5	3,4	3,5	3,5	3,7	3,8
3,8	3,5	3,2	3,5	3,6	3,6	3,4	3,9	3,5	3,7
3,6	3,6	3,6	3,8	3,3	3,4	3,4	3,7	3,8	3,8
- , -	- , -	- , -	-,-	- ,-	- , .	- , .	- , .	- , -	- , -

				Вариа	ант 16				
2,4	2,6	2,4	2,6	2,2	2,0	2,6	2,8	2,2	2,8
1,4	2,2	1,6	1,4	2,4	3,0	2,0	2,4	2,4	2,2
1,4	2,4	1,8	2,2	1,8	2,2	2,4	2,8	2,2	2,8
2,2	1,4	2,6	1,8	2,4	2,0	3,2	2,2	3,2	2,2
1,8	3,0	1,6	2,4	1,8	2,4	2,0	2,6	2,2	2,6
2,6	1,8	2,6	1,6	2,0	2,4	2,2	2,0	2,4	2,6
2,8	2,8	2,2	2,4	3,2	1,8	2,2	3,0	2,8	2,8
2,8	2,4	1,6	1,8	2,2	2,8	2,0	2,4	2,2	2,2
2,2	2,8	1,8	2,8	1,8	2,2	2,2	2,6	2,6	2,4
2,4	1,8	2,4	2,2	2,0	2,6	2,4	2,2	2,4	2,8
				Вариа	ант 17				
35	30	60	50	40	55	40	45	60	45
35	35	30	50	55	45	60	40	60	60
25	50	40	35	45	40	70	60	45	45
50	25	55	35	50	65	35	50	60	55
30	60	35	55	40	45	45	40	50	60
35	50	50	35	70	35	70	60	50	45
30	25	50	65	40	50	50	45	40	55
35	50	35	40	50	45	35	50	45	55
60	35	55	40	45	40	55	35	55	45
30	35	40	50	40	50	45	55	60	50
				Вариа	ант 18				
25,0	37,5	22,5	30,0	37,5	32,5	37,5	32,5	35,0	32,5
35,0	20,0	32,5	25,0	30,0	27,5	37,5	35,0	30,0	35,0
22,5	37,5	25,0	32,5	27,5	35,0	32,5	30,0	32,5	30,0
25,0	20,0	27,5	25,0	37,5	30,0	35,0	40,0	42,5	32,5
35,0	37,5	22,5	32,5	27,5	32,5	27,5	35,0	30,0	42,5
20,0	30,0	32,5	25,0	37,5	30,0	35,0	32,5	40,0	30,0
35,0	37,5	20,0	30,0	25,0	35,0	27,5	37,5	30,0	37,5
25,0	25,0	32,5	27,5	32,5	30,0	37,5	27,5	32,5	30,0
22,5	35,0	25,0	35,0	27,5	32,5	30,0	32,5	37,5	32,5
37,5	25,0	27,5	27,5	30,0	30,0	37,5	35,0	30,0	35,0
2.5	2.5	40	4.5	-	ант 19	60	4.7	2.5	20
25	35	40	45	40	30	60	45	35	30
40	15	35	35	25	35	30	60	45	35
15	35	20	35	30	40	30	25	60	55
40	20	35	25	40	50	40	35	50	60
45 25	40	35	40	25	40	25 25	55	40	30
25	45	20	25	40	30	35	30	55	40

40	25	35	35	30	35	40	30	30	50
45	40	25	45	25	40	50	35	60	35
40	45	40	35	50	25	50	55	30	50
35	25	45	50	40	35	40	50	35	30
				Вариа	ант 20				
1,5	1,2	1,5	1,3	1,4	1,6	1,2	1,5	1,5	1,4
1,1	1,5	0,9	1,6	1,2	1,3	1,6	1,5	1,1	1,5
1,0	1,2	1,2	1,0	1,4	1,8	1,3	1,4	1,7	1,3
1,4	1,6	0,9	1,6	1,3	1,1	1,6	1,1	1,4	1,8
1,1	1,3	1,6	1,1	1,5	1,4	1,1	1,7	1,8	1,1
1,5	1,0	1,3	1,4	1,2	1,4	1,8	1,3	1,2	1,5
1,3	1,4	1,1	1,3	1,6	1,3	1,1	1,4	1,3	1,2
1,6	1,1	1,5	1,1	1,3	1,6	1,4	1,6	1,4	1,2
1,3	1,1	1,3	1,6	1,2	1,4	1,4	1,2	1,5	1,7
1,2	1,4	1,1	1,3	1,3	1,2	1,4	1,3	1,2	1,4
				Вариа	ант 21				
3,95	3,75	3,95	4,05	3,75	4,15	3,85	4,45	3,95	4,25
3,95	4,05	4,25	3,85	4,15	3,85	4,15	3,75	4,35	3,95
3,55	4,35	3,55	3,95	4,05	4,35	3,75	4,05	3,95	4,15
3,95	4,05	3,95	4,45	3,75	4,05	3,85	4,15	4,05	3,85
4,05	3,55	4,05	3,95	4,25	3,95	4,05	3,75	4,05	4,25
3,65	4,15	3,65	4,15	3,95	3,75	4,45	3,85	4,25	3,95
4,15	3,85	3,95	3,75	4,05	4,25	3,85	4,05	3,85	3,95
4,05	3,75	4,05	3,85	4,45	3,95	4,05	3,85	3,95	4,15
4,25	3,95	3,75	4,05	3,95	3,75	4,25	3,95	4,15	3,85
3,85	4,25	3,75	4,35	3,85	4,05	3,75	4,25	3,95	4,15
				Вариа	ант 22				
4,35	4,25	4,35	4,45	4,30	4,40	4,30	4,40	4,35	4,40
4,15	4,40	4,20	4,35	4,55	4,35	4,45	4,25	4,45	4,30
4,35	4,50	4,30	4,25	4,35	4,45	4,30	4,40	4,30	4,50
4,50	4,15	4,40	4,30	4,40	4,25	4,60	4,30	4,50	4,30
4,25	4,45	4,25	4,55	4,35	4,30	4,35	4,45	4,25	4,45
4,25	4,40	4,35	4,25	4,35	4,30	4,25	4,35	4,60	4,35
4,45	4,50	4,20	4,55	4,40	4,30	4,30	4,40	4,30	4,55
4,30	4,25	4,50	4,40	4,25	4,40	4,35	4,45	4,40	4,30
4,40	4,35	4,40	4,35	4,45	4,30	4,60	4,25	4,40	4,55
4,50	4,35	4,25	4,40	4,30	4,35	4,40	4,60	4,35	4,40

				Вариа	ант 23				
2,06	2,1	2,16	2,10	2,06	2,16	2,12	2,08	2,18	2,10
2,10	2,15	2,02	2,12	2,16	2,06	2,16	2,10	2,12	2,10
2,08	2,12	2,10	2,08	2,12	2,10	2,08	2,16	2,06	2,14
2,12	2,02	2,12	2,16	2,02	2,20	2,14	2,14	2,10	2,08
2,10	2,06	2,12	2,10	2,04	2,12	2,10	2,20	2,08	2,12
2,12	2,08	2,06	2,18	2,08	2,10	2,20	2,06	2,14	2,16
2,04	2,14	2,08	2,12	2,10	2,18	2,12	2,18	2,08	2,12
2,10	2,10	2,14	2,06	2,14	2,12	2,06	2,12	2,10	2,08
2,14	2,04	2,10	2,10	2,12	2,08	2,20	2,10	2,12	2,16
2,06	2,12	2,06	2,14	2,10	2,14	2,10	2,12	2,16	2,06
				Вариа	ант 24				
2,6	3,2	3,0	3,0	2,8	3,4	3,6	3,2	3,8	2,8
3,0	3,2	2,2	3,0	3,2	2,6	2,8	3,6	3,0	3,6
2,4	2,8	3,4	2,2	4,0	3,2	2,8	3,0	2,8	4,0
3,2	3,8	2,6	3,2	3,0	3,6	2,6	4,0	3,2	2,8
2,6	3,2	3,6	2,6	3,4	2,8	3,2	2,8	4,0	3,2
3,4	2,4	2,8	2,6	3,0	2,8	2,6	3,2	2,8	3,4
3,2	3,6	2,6	3,2	2,6	3,0	3,8	2,6	3,6	3,0
2,6	3,0	3,6	2,8	3,6	3,2	3,0	3,6	3,2	3,8
3,4	3,0	2,6	3,0	2,6	3,0	3,4	2,8	3,4	2,8
3,0	3,4	3,0	3,4	2,6	3,0	3,2	3,4	3,5	3,2

ВАРИАНТЫ СТАТИСТИЧЕСКИХ ДАННЫХ ДЛЯ ЗАДАНИЯ 3

Вариант 1

x_i ; x_{i+1}	10;12	12;14	14;16	16;18	18;20
n_i	4	25	45	20	6

Вариант 2

x_i ; x_{i+1}	44 ; 46	46 ; 48	48;50	50;52	52;54	54;56
n_i	4	13	34	32	12	5

Вариант 3

x_i ; x_{i+1}	4,0 ; 4,2	4,2 ; 4,4	4,4 ; 4,6	4,6 ; 4,8	4,8 ; 5,0
n_i	6	20	46	23	5

x_i ; x_{i+1}	0;5	5;10	10;15	15;20	20;25
n_i	15	75	100	50	10

$x_i; x_{i+1}$	30;35	35;40	40 ; 45	45;50	50;55
n_i	15	50	70	45	20

Вариант 6

x_i ; x_{i+1}	8;10	10;12	12;14	14;16	16;18
n_i	7	21	44	20	8

Вариант 7

$x_i; x_{i+1}$	3,45 ; 3,65	3,65; 3,85	3,85 ; 4,05	4,05 ; 4,25	4,25 ; 4,45
n_i	7	36	99	50	8

Вариант 8

x_i ; x_{i+1}	40 ; 42	42 ; 44	44 ; 46	46 ; 48	48;50
n_i	8	25	35	22	10

Вариант 9

x_i ; x_{i+1}	20;25	25;30	30;35	35 ; 40	40 ; 45
n_i	9	24	35	22	10

Вариант 10

$x_i; x_{i+1}$	$x_i; x_{i+1}$ 150; 170		190 ; 210	210;230	230;250
n_i	4	19	32	15	10

Вариант 11

x_i ; x_{i+1}	8;10	10;12	12;14	14;16	16;18
n_i	8	24	36	23	9

Вариант 12

x_i ; x_{i+1}	42;43	43 ; 44	44 ; 45	45 ; 46	46 ; 47
n_i	7	25	37	23	8

Вариант 13

x_i ; x_{i+1}	20;22	22;24	24;26	26;28	28;30
n_i	6	23	38	25	8

Вариант 14

$x_i; x_{i+1}$	-0,14; -0,12	-0,12;-0,10	-0,10; -0,08	-0,08; -0,06	-0,06; -0,04	-0,04; -0,02	-0,02; 0,00
n_i	6	13	22	25	19	10	5

$x_i; x_{i+1}$	19,80; 19,82	19,82; 19,84	19,84 ; 19,86	19,86 ; 19,88	19,88 ; 19,90
n_i	6	13	15	11	5

$x_i; x_{i+1}$	9,74; 9,76	9,76; 9,78	9,78; 9,80	9,80; 9,82	9,82; 9,84
n_i	4	12	25	14	5

Вариант 17

x_i ; x_{i+1}	20,0; 20,4	20,4; 20,8	20,8; 21,2	21,2; 21,6	21,6; 22,0	
n_i	7	14	55	15	9	

Вариант 18

$x_i; x_{i+1}$	2,0 ; 2,2	2,2;2,4	2,4 ; 2,6	2,6;2,8	2,8;3,0	
n_i	7	20	44	21	8	

Вариант 19

$x_i; x_{i+1}$	$; x_{i+1} 1,2; 1,6 1,$		2,0 ; 2,4	2,4 ; 2,8	2,8 ; 3,2
n_i	7	20	48	19	6

Вариант 20

$x_i; x_{i+1}$ 20; 30		30;40	40;50	50;60	60;70	
n_i	9	20	45	19	7	

Вариант 21

Γ	x_i ; x_{i+1}	$x_i; x_{i+1}$ 20; 30		40;50	50;60	60;70	
	n_i	7	20	21	44	8	

Вариант 22

$x_i; x_{i+1}$	$x_i; x_{i+1}$ 22,5; 27,5		32,5; 37,5	37,5; 42,5	42,5; 47,5	
n_i	7	22	44	21	6	

Вариант 23

$x_i; x_{i+1}$	-0,44; -0,40	-0,40; -0,36	-0,36; -0,32	-0,32; -0,28	-0,28; -0,24
n_i	6	9	22	8	5

Вариант 24

x_i ; x_{i+1}	2,0;2,5	2,5;3,0	3,0;3,5	3,5 ; 4,0	4,0 ; 4,5	4,5;5,0
n_i	4	10	33	35	12	6

$x_i; x_{i+1} = 0; 10$		10;20	20;30	30;40	40;50	
n_i	16	48	70	47	19	

Вопросы к отчету по лабораторной работе № 5

1. Генеральная совокупность и выборка.

Основные типы статистических рядов: статистические ряды (частот и относительных частот); интервальные статистические ряды (частот и относительных частот); группированные статистические ряды (частот и относительных частот).

- 2. Эмпирическая функция распределения. Определение, свойства и график.
- 3. Полигоны частот и относительных частот для различных типов статистических рядов.
 - 4. Гистограммы частот и относительных частот.
- 5. Формулы для вычисления числовых характеристик выборки ($\overline{x}_{_{\rm B}}, D_{_{\rm B}}, S^2, \, \sigma_{_{\rm B}}$ и S) для разных типов заданных числовых рядов.

Лабораторная работа № 6

ПРОВЕРКА ГИПОТЕЗЫ О ВИДЕ ЗАКОНА РАСПРЕДЕЛЕНИЯ ПО КРИТЕРИЮ СОГЛАСИЯ ПИРСОНА

Цель работы: научиться использовать критерий согласия Пирсона для проверки гипотезы о виде закона распределения изучаемой случайной величины, написать программы, обеспечивающие компьютерную проверку гипотез.

Задание 1. Для результатов испытаний, заданных в виде массива значений или в виде интервального статистического ряда частот, проверить гипотезу о нормальном распределении изучаемой случайной величины, используя критерий согласия Пирсона.

- 1. Составить программу для проверки гипотезы. В случае задания необработанного массива данных программа должна обеспечивать:
 - 1) ввод данных и вывод на экран исходного массива;
 - 2) получение и вывод на экран интервального статистического ряда;
 - 3) вычисление и вывод на экран числовых характеристик выборки $(\overline{x}_{_{\rm B}}, D_{_{\rm B}}, \sigma_{_{\rm B}})$ и формул для их вычисления;
 - 4) вывод на экран точечных оценок параметров предполагаемого нормального закона распределения a^* и σ^* ;
 - 5) вывод на экран формулы плотности предполагаемого закона распределения (нормального) с найденными a^* и σ^* ;
 - 6) построение на рядом расположенных рисунках или на одном рисунке: а) ломаной с вершинами в точках, являющихся серединами горизонтальных отрезков гистограммы относительных частот эмпирического интервального ряда распределения; б) графика плотности нормального распределения с найденными a^* и σ^* ;

7) вычисление и вывод на экран теоретических вероятностей p_i попадания значений предполагаемой нормально распределенной случайной величины в соответствующие интервалы значений X по формуле:

$$p_{i} = \frac{1}{\sqrt{2\pi}} \int_{\frac{x_{i-1}-a^{*}}{\sigma_{*}^{*}}}^{\sigma_{*}^{*}} e^{-\frac{t^{2}}{2}} dt$$

(Приближенные значения p_i рекомендуется вычислять по составной формуле Симпсона);

- 8) Вычисление χ^2 наблюдаемого и вывод на экран формулы для $\chi^2_{\text{набл}}$ и найденное значение $\chi^2_{\text{набл}}$;
- 9) Задание уровня значимости α и вычисление числа степеней свободы с выводом на экран соответствующей формулы и полученного результата;
- 10) Вывод на экран сокращенной таблицы для $\chi^2_{\text{крит}}$ или значения $\chi^2_{\text{крит}}$, найденного по соответствующим параметрам;
- 11) Сравнение $\chi^2_{\mbox{\tiny Haб}_{\mbox{\tiny I}}}$ с $\chi^2_{\mbox{\tiny крит}}$ и вывод на экран результата проверки.

Замечание. Для результатов испытаний, оформленных в виде интервального статистического ряда частот, вместо 1) и 2) следует предусмотреть ввод соответствующей таблицы с клавиатуры.

2. Протестировать программу и провести исследование для данных своего варианта аналитически и с помощью программы; внести полученные результаты в протокол.

Задание 2. Проверить гипотезу о распределении изучаемой случайной величины по одному из четырех законов (биноминальному, Пуассона, равномерному или показательному), используя критерий согласия Пирсона и составленную программу. Тип распределения выбирается в соответствии с вариантом.

- 1. Составить программу проверки гипотезы о виде закона распределения изучаемой случайной величины X. В случае проверки гипотезы об одном из непрерывных законов распределения (равномерном или показательном) программа должна обеспечивать:
 - 1) ввод соответствующего интервального ряда частот;
 - 2) вывод на экран формул для точечных оценок неизвестных параметров распределения (λ^* для показательного распределения и a^* и b^* для равномерного распределения);
 - 3) вычисление точечных оценок и вывод их на экран;
 - 4) вывод на экран формул для плотности f(x) и функции F(x) предполагаемого закона распределения со значениями параметров, равными найденным точечным оценкам;

- 5) построение на рядом расположенных рисунках или на одном рисунке: а) ломаной с вершинами в точках, являющихся серединами горизонтальных отрезков гистограммы относительных частот заданного эмпирического ряда распределения; б) графика плотности предполагаемого распределения из пункта 4;
- 6) вычисление и вывод на экран теоретических вероятностей p_i попадания значений предполагаемой распределенной случайной величины в соответствующие интервалы значений X через функцию распределения предполагаемого распределения;
- 7) вычисление и вывод на экран в виде продолжения исходной таблицы $n'_i = p_i * n$ и $(n'_i n_i)^2$;
- 8) вычисление $\chi^2_{\text{набл}}$ и вывод на экран формулы для $\chi^2_{\text{набл}}$ и найденное значение $\chi^2_{\text{набл}}$;
- 9) задание уровня значимости α и вычисление числа степеней свободы с выводом на экран соответствующей формулы и полученного результата;
- 10) вывод на экран сокращенной таблицы для $\chi^2_{\text{крит}}$ или значения $\chi^2_{\text{крит}}$, найденного по соответствующим параметрам; при выводе на экран таблицы, следует обеспечить ввод $\chi^2_{\text{крит}}$ с клавиатуры;
- 11) сравнение $\chi^2_{_{\text{набл}}}$ с $\chi^2_{_{\text{крит}}}$ и вывод на экран результата проверки.

В случае проверки гипотезы о распределении изучаемой случайной величины по одному из дискретных законов распределения (биноминальному, Пуассона) программа должна обеспечивать:

- 1) ввод соответствующего группированного ряда частот (при необходимости с дополнительным текстом, уточняющим условие задачи);
- 2) вывод на экран формул для точечных оценок неизвестных параметров распределения (p^* для биноминального или λ^* для распределения Пуассона);
- 3) вычисление точечных оценок и вывод их на экран;
- 4) вывод на экран формулы, определяющей вероятность события $P(X = x_i)$ для предполагаемого закона распределения в общем виде и для найденных точечных оценок;
- 5) построение в одной системе координат или в рядом расположенных системах координат: на рядом расположенных рисунках или на одном рисунке: а) многоугольника предполагаемого теоретического распределения; б) полигона относительных частот;
- 6) вычисление теоретических вероятностей $P_i = P(X = x_i)$ для предполагаемого закона распределения вероятностей с параметрами, равными найденным точечным оценкам, вывод их на экран в виде продолжения исходной таблицы;

- 7) вычисление и вывод на экран в виде продолжения исходной таблицы значений $n_i'=p_i n,\; \left(n_i'-n_i\right)^2$ и $\frac{\left(n_i'-n_i\right)^2}{n_i'};$
- 8) вычисление $\chi^2_{{}_{{}^{\text{набл}}}}$ и вывод на экран формулы для $\chi^2_{{}_{{}^{\text{набл}}}}$ и найденного значения $\chi^2_{{}_{{}^{\text{набл}}}}$;
- 9) задание уровня значимости α и вычисление числа степеней свободы с выводом на экран соответствующей формулы и полученного результата;
- 10) вывод на экран сокращенной таблицы для $\chi^2_{\text{крит}}$ или значения $\chi^2_{\text{крит}}$, найденного по соответствующим значениям параметров; при выводе на экран таблицы, следует обеспечить ввод пользователем $\chi^2_{\text{крит}}$ с клавиатуры.

ВАРИАНТЫ СТАТИСТИЧЕСКИХ ДАННЫХ

- 1. Варианты статистических данных для проверки гипотезы о нормальном распределении генеральной совокупности такие же, как для заданий 2 и 3 лабораторной работы \mathbb{N}_2 5.
- 2. Варианты статистических данных для проверки гипотезы о распределении генеральной совокупности по закону Пуассона.

Для заданного количества испытаний n и заданного уровня значимости α проверить гипотезу о распределении X по закону Пуассона.

Вариант 1

x_i	0	1	2	3	4	≥5
n_i	165	189	101	33	8	4

$$n = 500;$$

 $\alpha_1 = 0.05; \alpha_2 = 0.01$

Вариант 2

x_i	0	1	2	3	4	5	6	≥7
n_i	120	168	124	60	25	5	2	1

$$n = 500;$$

 $\alpha_1 = 0.05$

Вариант 3

x_i	0	1	2	3	4	5	6	7	≥8
n_i	30	100	132	98	91	29	17	2	1

$$n = 500;$$

 $\alpha_1 = 0.05; \ \alpha_2 = 0.01$

Вариант 4

x_i	0	1	2	3	4	5	6	7	8	≥9
n_i	25	82	117	115	86	34	25	9	5	2

$$n = 500;$$

 $\alpha_1 = 0.05,$

x_i	0	1	2	3	4	5	6	7	≥8
n_i	75	142	136	88	37	17	3	1	1

$$n = 500;$$

 $\alpha_1 = 0.05; \ \alpha_2 = 0.01$

x_i	0	1	2	3	4	≥5
n_i	229	211	93	35	7	1

3. Варианты статистических данных для проверки гипотезы о биноминальном распределении генеральной совокупности.

Производится серия из n независимых опытов, в каждом из которых проводится по N независимых испытаний, x_i — число появлений некоторого события при одном опыте, n_i — частота появлений значения x_i в серии. При заданном уровне значимости критерия α проверить гипотезу о биноминальном распределении X.

Вариант 1

x_i	0	1	2	3	4	5	6	7	8	N = 10; n = 100;
n_i	3	4	6	10	21	27	19	8	2	$\alpha = 0.01$

Вариант 2

x_i	0	1	2	3	4	5
n_i	2	7	15	16	8	2

$$N = 7; n = 50;$$

 $\alpha = 0.05$

Вариант 3

x_i	0	1	2	3	4	5	6	7	8
n_i	1	4	10	17	20	22	10	4	2

$$N = 10; n = 90;$$

 $\alpha = 0.05$

Вариант 4

x_i	0	1	2	3	4	5	6
n_i	9	24	26	15	5	1	0

$$N = 6$$
; $n = 80$; $\alpha_1 = 0.01$; $\alpha_2 = 0.05$

Вариант 5

x_i	0	1	2	3	4	5	6	7	8
n_i	1	4	12	22	25	20	11	4	1

$$N = 10$$
; $n = 100$; $\alpha_1 = 0.01$; $\alpha_2 = 0.05$

Вариант 6

x_i	0	1	2	3	4	5
n_i	32	40	26	10	4	3

$$N = 5$$
; $n = 115$; $\alpha_1 = 0.01$; $\alpha_2 = 0.05$

4. Варианты статистических данных для проверки гипотезы о равномерном распределении генеральной совокупности.

Для заданного интервального статистического ряда частот n_i при уровнях значимости α_1 и α_2 и количестве испытаний n проверить гипотезу о равномерном распределении X.

$x_i; x_{i+1}$	2;4	4;6	6;8	8;10	10;12	12;14	14;16	16;18	18;20	20;22
n_i	90	92	86	87	91	92	86	86	89	91

$$n = 890$$
; $\alpha = 0.05$

$x_i; x_{i+1}$	40;44	44;48	48;52	52;56	56;60	60;64	64;68
n_i	29	31	27	27	30	29	27

$$n = 200;$$

 $\alpha_1 = 0.05; \ \alpha_2 = 0.01$

Вариант 3

$x_i; x_{i+1}$	1;3	3;6	6;9	9;12	12;15	15;18
n_i	28	10	18	13	23	28

$$n = 120;$$

 $\alpha_1 = 0.05; \ \alpha_2 = 0.01$

Вариант 4

$x_i; x_{i+1}$	0;10	10;20	20;30	30;40	40;50	50;60
n_i	31	32	29	30	32	31

$$n = 185;$$

 $\alpha_1 = 0.05; \alpha_2 = 0.01$

Вариант 5

$x_i; x_{i+1}$	1;2	2;3	3;4	4;5	5;6	6;7	7;8
n_i	13	22	18	19	17	18	13

$$n = 120;$$

 $\alpha_1 = 0.05; \alpha_2 = 0.01$

Вариант 6

$x_i; x_{i+1}$	1;2	2;3	3;4	4;5	5;6	6;7	7;8
n_i	9	10	11	10	9	10	8

$$n = 67;$$

 $\alpha_1 = 0.05; \ \alpha_2 = 0.01$

5. Варианты статистических данных для проверки гипотезы о показательном распределении генеральной совокупности.

Для заданного количества испытаний n и заданного уровня значимости α проверить гипотезу о показательном распределении X.

Вариант 1

x_i ; x_{i+1}	0;11	11;22	22;33	33;44	44;55	55;66
n_i	422	249	155	86	49	39

$$n = 1000;$$

$$\alpha_1=0,\!05$$

Вариант 2

$x_i; x_{i+1}$	0;5	5;10	10;15	15;20	20;25	25;30
n_i	123	46	15	7	5	4

$$n = 200;$$

 $\alpha_1 = 0.01; \ \alpha_2 = 0.05$

Вариант 3

$x_i; x_{i+1}$	0;1	1;2	2;3	3;4	4;5	5;6
n_i	253	170	113	74	49	41

$$n = 700,$$

 $\alpha_1 = 0.01; \ \alpha_2 = 0.05$

Вариант 4

$x_i; x_{i+1}$	$x_i; x_{i+1} 0;11$		22;33	33;44	44;55	55;66
n_i	420	251	150	93	49	37

$$n = 1000;$$

 $\alpha_1 = 0.05$

$x_i; x_{i+1}$	0;5	5;10	10;15	15;20	20;25	25;30
n_i	125	45	16	6	5	3

$$n = 200;$$

 $\alpha_1 = 0.01; \ \alpha_2 = 0.05$

$x_i; x_{i+1}$	0;1	1;2	2;3	3;4	4;5	5;6	
n_i	257	174	107	70	52	40	α_1 =

$$n = 700;$$

 $\alpha_1 = 0.01; \ \alpha_2 = 0.05$

ПРИМЕРЫ ПРОВЕРКИ ГИПОТЕЗ О ВИДЕ ЗАКОНА РАСПРЕДЕЛЕНИЯ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ

Пример 1.

Статистические данные представлены в виде интервального статистического ряда.

$x_i; x_{i+1}$	40–42	42–44	44-46	46–48	48–50	Σ
n_i	8	25	35	22	10	100

С помощью критерия согласия Пирсона проверить гипотезу о нормальном распределении генеральной совокупности. Уровень значимости критерия принять равным 0,05.

Решение. Найдем относительные частоты $w_i = \frac{n_i}{n}$ и середины интервалов c_i и дополним ими таблицу.

w_i :	0,08	0,25	0,35	0,22	0,1
c_i :	41	43	45	47	49

Плотность вероятности нормального закона распределения имеет вид:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

Точечной оценкой σ^* параметра σ является $\sqrt{D_{\rm B}},$ а точечной оценкой параметра $a-\overline{x}_{\rm B}.$

Найдем выборочное среднее \overline{x}_{B} :

$$\overline{x}_{\rm B} = \frac{1}{n} \sum_{i=1}^{5} c_i n_i = \frac{4502}{100} = 45,02.$$

Так как n > 30, то выборочную дисперсию $D_{\rm B}$ найдем по формуле

$$D_{\rm B} = \frac{1}{n} \sum_{i=1}^{5} n_i (c_i - \overline{x}_{\rm B})^2; \quad D_{\rm B} = \frac{476}{100} = 4,76; \quad \sigma^* = \sqrt{D_{\rm B}} = \sqrt{4,76} \approx 2,182.$$

Таким образом, $a^* = 45,02$; $\sigma^* = 2,182$.

Плотность вероятности предполагаемого нормального закона распределения примет вид:

$$f(x) = \frac{1}{\sqrt{2\pi \cdot 2,182}} \cdot e^{\frac{-(x-45,02)^2}{2\cdot 2,182^2}} = 0,1829 \cdot e^{\frac{-(x-45,02)^2}{9,522}}.$$

20

Функцией распределения предполагаемого нормального закона является

$$F(x) = \int_{-\infty}^{x} f(x) dx.$$

В нашем случае это

$$F(x) = 0.1829 \int_{-\infty}^{x} e^{-\frac{(x-45,02)^2}{9.522}} dx,$$

или, с использованием нормированной функции Лапласа

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt, \quad F(x) = \frac{1}{2} + \Phi\left(\frac{x - a^{*}}{\delta^{*}}\right) = \frac{1}{2} + \Phi\left(\frac{x - 45,02}{2,182}\right).$$

Проверим гипотезу о нормальном законе распределения случайной величины X по критерию согласия Пирсона χ^2 .

1. Преобразуем границы частичных интервалов по формуле

$$U_i = \frac{x_i - \overline{x}}{\overline{S}}.$$

Так, из первого интервала(40; 42] получим:

$$\left(\frac{40-45,02}{2,182};\frac{42-45,02}{2,182}\right] = \left(-2,301;-1,384\right].$$

При этом наименьшее значение U_i полагают равным $(-\infty)$, а наибольшее $-(+\infty)$, следовательно, первый интервал будет иметь вид $(-\infty;-1,384]$, а последний $-(1,366;+\infty)$.

2. Вычислим вероятности P_i попадания случайной величины X, распределенной по нормальному закону с параметрами $a^* = 45,02$; $\sigma^* = 2,182$, в полученные частичные интервалы по формуле:

$$P_{i} = P(U_{i} < x < U_{i+1}) = \Phi(U_{i+1}) - \Phi(U_{i}).$$

$$\Phi(U_{i}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{U_{i}} e^{-\frac{t^{2}}{2}} dt$$

Значения

легко получить, используя методы численного интегрирования, например, метод Симпсона. Также можно использовать специальные таблицы. Дополним таблицу строкой значений P_i , найденных с помощью формулы Симпсона.

$$P_1 \approx 0.08314$$
; $P_2 \approx 0.2369$; $P_3 \approx 0.3533$; $P_4 \approx 0.2407$; $P_5 \approx 0.8598$.

3. Вычислим теоретические частоты n'_i нормального закона распределения:

$$n_i' = np_i$$
 $n_1' \approx 100 \cdot 0,08314 = 8,314, \quad n_2' \approx 100 \cdot 0,2369 = 23,69, \ и т. д.$

Сводная таблица результатов промежуточных вычислений

$x_i; x_{i+1}$	40–42	42–44	44-46	46–48	48–50	Σ
n_i	8	25	35	22	10	100
$w_i = n_i / n$	0,08	0,25	0,35	0,22	0,1	1
$c_i = \left(x_i + x_{i+1}\right)/2$	41	43	45	47	49	
$n_i m_i$	328	1075	1575	1034	490	4502
$c_i - \overline{x}_{\mathrm{B}}$	-4,02	-2,02	-0,02	1,98	3,98	
$\left(c_{i}-\overline{x}_{\mathrm{B}}\right)^{2}m_{i}$	129,3	102	0,014	86,25	158,4	476
$\left(x_{i}-\overline{x}_{\mathrm{B}};x_{i+1}-\overline{x}_{\mathrm{B}}\right]$	-5,02;-3,02	-3,03;-1,02	-1,02;0,98	0,98;2,98	2,98;4,98	
$\left[\left(\frac{x_i - \overline{x}_B}{\overline{S}}; \frac{x_{i+1} - \overline{x}_B}{\overline{S}} \right) \right]$	-2,301;-1,384	-1,384;-0,4675	-0,4675;0,4492	0,4492;1,366	1,366;2,283	
$\left(U_{i};U_{i+1}\right]$	-∞;-1,384	-1,384;-0,4675	-0,4675;0,4492	0,4492;1,366	1,366;+∞	
$p_i = \Phi(U_{i+1}) - \Phi(U_i)$	0,08314	0,2369	0,3533	0,2407	0,08598	
$n_i = np_i$	8,314	23,69	35,33	24,07	8,598	
$\left(n_i - np_i\right)^2 / np_i$	0,01184	0,0722	0,003079	0,1774	0,2286	0,4932

4. Вычислим наблюдаемое значение критерия χ^2 по формуле

$$\chi_{\text{набл}}^2 = \sum_{i=1}^5 \frac{\left(n_1 - np_i\right)^2}{np_i} \approx 0,4932,$$

используя данные из таблицы.

5. По уровню значимости $\alpha = 0.05$ и числу степеней свободы k = m - r - 1 = 5 - 2 - 1 = 2 (m = 5 — число интервалов, r = 2 —число параметров распределения (a и σ), оцениваемых по выборке) с помощью таблицы критических точек распределения χ^2 находим критическое значение

$$\chi^2_{\text{критич}} = \chi^2(0,05;2) = 6.$$

Если $\chi^2_{_{\text{набл}}} < \chi^2_{_{\text{критич}}}$, то нет оснований для отклонения гипотезы о распределении случайной величины X по нормальному закону. В нашем случае

$$\chi^2_{\text{набл}} = 0,4932 < \chi^2_{\text{критич}} = 6.$$

Следовательно, гипотеза о нормальном распределении случайной величины X хорошо согласуется с экспериментальными данными.

Пример 2.

В течение 100 дней фиксировалось количество аварий на линиях электроснабжения города. Получены следующие числовые данные:

Число аварий x_i	0	1	2	3	4	5
Частоты m_i	6	24	32	18	12	8

Проверить гипотезу о том, что распределение числа аварий подчиняется закону Пуассона. Уровень значимости принять $\alpha = 0.05$.

Решение. На основании наблюдаемых значений найдем точечную оценку параметра λ :

$$\lambda^* = \overline{x}_B = \frac{1}{n} \sum_{i=0}^{5} x_i = \frac{0 \cdot 6 + 1 \cdot 24 + 2 \cdot 32 + 3 \cdot 18 + 4 \cdot 12 + 5 \cdot 8}{100} = 2,3.$$

Вычислим теоретические вероятности p_i появления числа аварий x_i по формуле Пуассона

$$P_i = P(X = x_i) = \frac{\lambda^{x_i} \cdot e^{-\lambda}}{x_i!} = \frac{2 \cdot 3^{x_i} \cdot e^{-2 \cdot 3}}{x_i!}, \quad x_i = 0, 1, 2, 3, 4, 5.$$

Результаты вычислений сведем в таблицу

	m_i	p_i	$n \cdot p_i$	$\left(n_1 - np_i\right)^2$	$\left(n_1 - np_i\right)^2 / np_i$	
0	6	0,1003	10,03	16,2409	1,6192	
1	24	0,2306	23,06	0,8836	0,0383	
2	32	0,2653	26,53	29,9209	1,1278	
3	18	0,2034	20,34	5,4756	0,2692	
4	12	0,1170	17,70	0,09	0,0077	
5	8	0,0538	5,38	6,8644	1,2759	

$$\chi_{\text{набл}}^2 = \sum_{i=0}^{5} \frac{(m_i - np_i)^2}{np_i} \approx 4,34$$

Число степеней свободы k = 6 - 1 - 1 = 4.

По таблице «Критические точки распределения χ^2 » находим

$$\chi^{2}_{\kappa p}(4;0,05) = 9,5;$$
 $\chi^{2}_{\kappa p}(4;0,05) = 9,5 > \chi^{2}_{\text{набл}} \approx 4,34.$

Следовательно, нет оснований для отклонения гипотезы о том, что закон распределения числа аварий на линиях электроснабжения города является законом Пуассона.

Пример 3.

Стрелок произвел по 10 (N) выстрелов по каждой из 100 (n) мишеней. В таблице приведено число мишеней, соответствующих каждому числу попаданий.

Число попаданий x_i	0	1	2	3	4	5	6	7	8	9	10
Число мишеней n_i	0	1	3	5	20	22	25	16	6	2	0

Проверить с помощью критерия χ^2 гипотезу о биномиальном распределении числа попаданий в мишень, приняв за p его точечную оценку p^* для рассматриваемого статистического распределения. Уровень значимости критерия принять равным 0,05.

Решение.

- 1. Оценим параметр $p: p^* = \overline{x}_B / N; p^* \approx 0,54$.
- 2. По формуле Бернулли $P_i = P_N(i) = C_N^i p^i q^{N-i}$ найдем вероятность $P_i(i=\overline{0,10})$ того, что в N=10 выстрелах будет ровно i попаданий.

Учитывая, что $p^* = 0.54$, $q^* = 0.46$, получим:

$$P_0 = C_{10}^0 \cdot (0.54)^0 \cdot (0.46)^{10} \approx 0.000424; \quad P_1 = C_{10}^1 \cdot (0.54)^1 \cdot (0.46)^9 \approx 0.004979.$$

Аналогично вычислим:

- $$\begin{split} P_2 \approx 0,002630; \quad P_3 \approx 0,082350; \quad P_4 \approx 0,169177; \quad P_5 \approx 0,238318; \quad P_6 \approx 0,233138; \\ P_7 \approx 0,156390; \quad P_8 \approx 0,068845; \quad P_9 \approx 0,017959; \quad P_{10} \approx 0,002108. \end{split}$$
 - 3. Найдем теоретические частоты $n'_i \approx n \cdot P_i$.

Учитывая, что n = 100, получим: $n'_0 \approx 0,042$;

$$n_1' \approx 0,498; \quad n_2' \approx 2,631; \quad n_3' \approx 8,235; \quad n_4' \approx 16,917; \quad n_5' \approx 23,832; \\ n_6' \approx 23,314; \quad n_7' \approx 15,639; \quad n_8' \approx 6,885; \quad n_9' \approx 1,796; \quad n_{10}' \approx 0,211.$$

4. Сравним эмпирические и теоретические частоты с помощью критерия Пирсона. Малочисленные (< 5) частоты n_0 , n_1 , n_2 объединим с $n_3 = 5$ и в таблицу запишем 0+1+3+5=9; в качестве теоретической частоты, соответствующей объединенной частоте 9, запишем сумму соответствующих теоретических частот: $n'_0 + n'_1 + n'_2 + n'_3 = 11,406$. Аналогично объединим n_{10} , n_9 с $n_8 = 6$ и запишем в таблицу 0+2+6=8. В качестве соответствующей теоретической частоты возьмем $n'_{10} + n'_9 + n'_8 = 8,892$.

i	n_i	n'_i	$n_i - n'_i$	$\left(n_i - n_i'\right)^2$	$\left(n_i - n_i'\right)^2 / n_i'$
1	9	11,406	-2,406	5,7888	0,508
2	20	16,917	3,083	9,5049	0,562
3	22	23,832	-1,832	3,3562	0,141
4	25	23,314	1,686	2,8426	0,122
5	16	15,639	0,361	0,1303	0,008
6	8	8,892	-0,892	0,7957	0,092

По таблице критических точек распределения χ^2 по уровню значимости $\alpha=0.05$ и числу степеней свободы k=S-2=6-2=4 находим критическую точку правосторонней критической области $\chi^2_{\mbox{\tiny KP}}\left(0.05;4\right)=9.5$.

Так как $\chi^2_{\text{набл}} = 1,433 < \chi^2_{\text{кр}} \left(0,05;4\right) = 9,5$, то нет оснований отвергнуть гипотезу о распределении случайной величины X (числа попаданий) по биномиальному закону.

Вопросы к отчету по лабораторной работе N 6

- 1. Задачи статистической проверки гипотез. Параметрические и непараметрические гипотезы. Основная и конкурирующая гипотезы. Статистический критерий. Ошибки первого и второго рода. Примеры параметрических критериев.
- 2. Уровень значимости критерия. Виды критических областей. Основной принцип проверки гипотез. Методика проверки гипотез.
- 3. Проверка гипотез о виде закона распределения. Критерий согласия Пирсона. Наблюдаемое значение критерия. Критическое значение критерия. Общая схема проверки.
- 4. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию согласия Пирсона для следующих видов распределений: нормального, показательного, равномерного, Пуассана, биномиального. Схема проверки. Отыскание точечных оценок неизвестных параметров распределения, наблюдаемого и критического значений критерия.