

IQ-Learn: Inverse soft-Q Learning for Imitation

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, Stefano Ermon

Inverse Q-Learning

Learn Q-values from expert demos to recover both optimal policy and rewards

IQ-Learn

Scales well to complex envs

Convergence Guarantees

Works offline and online

Stable Simple Optimization

Adversarial Inverse RL

- X Doesn't scale to complex envs
- X Difficult to convergence
- X Sensitive to hyperparameters

Approach

Theorum:

Inverse RL \(\Limin \) Inverse Q-Learning

Results

State-of-the-art in offline and online Imitation Learning

Offline IL

Figure 2: Offline IL results. We plot the average environment returns vs the number of expert trajectories.

Method

IQ-Learn Algorithm: Modified Critic Update Rule

Can be implemented in **fewer than 15 lines** of code!!

Online IL

Table 3: Mujoco Results. We show our performance on MuJoCo control tasks using a single expert trajectory.

Task	GAIL	ValueDICE	IQ (Ours)	Expert
Hopper	3252.5	3312.1	3546.4	3532.7
Half-Cheetah	3080.0	3835.6	5076.6	5098.3
Walker	4013.7	3842.6	5134.0	5274.5
Ant	2299.1	1806.3	4362.9	4700.0

Atari Results

Figure 3: Atari Results. We show the returns vs the number of env steps. (Averaged over 5 seeds)

Outperform prior IL methods by more than 3x

Recovering Rewards

Figure 12: Hopper correlations

Figure 4: **Reward Visualization.** We use a discrete GridWorld environment with 5 possible actions: up, down, left, right, stay. Agent starts in a random state. (With 30 expert demos)

Imitation with Observations

Figure 5: State Rewards Visualization. We visualize the state-only rewards recovered on a continuous control point maze task. The agent (white circle) has to reach the goal (red star) avoiding the barrier on right.