

Computing the Action of the Matrix Exponential

Nick Higham School of Mathematics The University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

Joint work with Awad H. Al-Mohy

16th ILAS Conference, Pisa, June 2010

The f(A)b Problem

Given

- matrix function $f: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$,
- lacksquare $A \in \mathbb{C}^{n \times n}$, $b \in \mathbb{C}^n$,

compute f(A)b without first computing f(A).

Most important cases

- $f(x) = x^{-1}$,
- $f(x) = e^x.$

Application:

$$y'(t) = Ay(t), \quad y(0) = b \quad \Rightarrow \quad y(t) = e^{At}b.$$

Second Order ODE

$$\frac{d^2y}{dt^2} + Ay = 0, \qquad y(0) = y_0, \quad y'(0) = y'_0$$

has solution

$$y(t) = \cos(\sqrt{A}t)y_0 + (\sqrt{A})^{-1}\sin(\sqrt{A}t)y_0'.$$

Second Order ODE

$$\frac{d^2y}{dt^2} + Ay = 0, y(0) = y_0, y'(0) = y'_0$$

has solution

$$y(t) = \cos(\sqrt{A}t)y_0 + \left(\sqrt{A}\right)^{-1}\sin(\sqrt{A}t)y_0'.$$

But

$$\begin{bmatrix} y' \\ y \end{bmatrix} = \exp\left(\begin{bmatrix} 0 & -tA \\ t I_n & 0 \end{bmatrix}\right) \begin{bmatrix} y'_0 \\ y_0 \end{bmatrix}.$$

Themes

- Simple, direct algorithm for computing *e*^A*B* with arbitrary *A* using only matrix products.
- Many problems can be reduced to $e^A B$.
- Backward error viewpoint avoids consideration of conditioning in algorithm design.

Exponential Integrators

$$u'(t) = Au(t) + g(t, u(t)), \quad u(0) = u_0, \quad t \ge 0,$$

Solution can be written

$$u(t) = e^{tA}u_0 + \sum_{k=1}^{\infty} \varphi_k(tA)t^k u_k,$$

where $u_k = g^{(k-1)}(t, u(t))|_{t=0}$ and $\varphi_{\ell}(z) = \sum_{k=0}^{\infty} z^k / (k + \ell)!$.

Exponential Integrators

$$u'(t) = Au(t) + g(t, u(t)), \quad u(0) = u_0, \quad t \ge 0,$$

Solution can be written

$$u(t) = e^{tA}u_0 + \sum_{k=1}^{\infty} \varphi_k(tA)t^k u_k,$$

where $u_k = g^{(k-1)}(t, u(t)) \mid_{t=0}$ and $\varphi_\ell(z) = \sum_{k=0}^\infty z^k/(k+\ell)!$.

$$u(t) \approx \widehat{u}(t) = e^{tA}u_0 + \sum_{k=1}^{p} \varphi_k(tA)t^k u_k.$$

Exponential time differencing (ETD) Euler (p = 1):

$$y_{n+1} = e^{hA}y_n + h\varphi_1(hA)g(t_n, y_n).$$

Saad's Trick (1992)

$$\varphi_1(z)=\frac{e^z-1}{z}.$$

$$\exp\left(\begin{bmatrix} A & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} e^A & \varphi_1(A)b \\ 0 & 1 \end{bmatrix}$$

Theorem (Al-Mohy & H, 2010)

Let $A \in \mathbb{C}^{n \times n}$, $U = [u_1, u_2, \dots, u_p] \in \mathbb{C}^{n \times p}$, $\tau \in \mathbb{C}$, and define

$$B = \left[\begin{array}{cc} A & U \\ 0 & J \end{array} \right] \in \mathbb{C}^{(n+p)\times(n+p)}, \quad J = \left[\begin{array}{cc} 0 & I_{p-1} \\ 0 & 0 \end{array} \right] \in \mathbb{C}^{p\times p}.$$

Then for $X = e^{\tau B}$ we have

$$X(1: n, n+j) = \sum_{k=1}^{j} \tau^{k} \varphi_{k}(\tau A) u_{j-k+1}, \quad j=1: p.$$

Theorem (Al-Mohy & H, 2010)

Let $A \in \mathbb{C}^{n \times n}$, $U = [u_1, u_2, \dots, u_p] \in \mathbb{C}^{n \times p}$, $\tau \in \mathbb{C}$, and define

$$B = \left[egin{array}{cc} A & U \ 0 & J \end{array}
ight] \in \mathbb{C}^{(n+
ho) imes (n+
ho)}, \quad J = \left[egin{array}{cc} 0 & I_{
ho-1} \ 0 & 0 \end{array}
ight] \in \mathbb{C}^{
ho imes
ho}.$$

Then for $X = e^{\tau B}$ we have

$$X(1: n, n+j) = \sum_{k=1}^{j} \tau^{k} \varphi_{k}(\tau A) u_{j-k+1}, \quad j=1: p.$$

Completely removes the need to evaluate φ_k functions!

Implementation of Exponential Integrators

We compute

$$\widehat{u}(t) = e^{tA}u_0 + \sum_{k=1}^p \varphi_k(tA)t^k u_k$$

as, with $U = [u_p, \ldots, u_1]$,

$$\widehat{u}(t) = \begin{bmatrix} I_n & 0 \end{bmatrix} \exp\left(t \begin{bmatrix} A & \eta U \\ 0 & J \end{bmatrix}\right) \begin{bmatrix} u_0 \\ \eta^{-1} e_p \end{bmatrix}.$$

Choose

$$\eta = \mathbf{2}^{-\lceil \log_2(\|U\|_1) \rceil}$$

to avoid overscaling.

Formulae for e^A , $A \in \mathbb{C}^{n \times n}$

Power series	Limit	Scaling and squaring	
$I+A+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots$	$\lim_{s\to\infty}(I+A/s)^s$	$(e^{A/2^s})^{2^s}$	
Cauchy integral	Jordan form	Interpolation	
$\frac{1}{2\pi i}\int_{\Gamma}e^{z}(zl-A)^{-1}dz$	Z diag $(e^{J_k})Z^{-1}$	$\sum_{i=1}^n f[\lambda_1,\ldots,\lambda_i] \prod_{j=1}^{i-1} (A-\lambda_j I)$	
Differential system	Schur form	Padé approximation	
Y'(t) = AY(t), Y(0) = I	Qe ^T Q*	$p_{km}(A)q_{km}(A)^{-1}$	

Krylov methods: Arnoldi fact. $AQ_k = Q_k H_k + h_{k+1,k} q_{k+1} e_k^T$ with Hessenberg $H: \mathbf{e}^A \mathbf{b} \approx \mathbf{Q}_k \mathbf{e}^{H_k} \mathbf{Q}_k^* \mathbf{b}$.

Scaling and Squaring Method

- ▶ $B \leftarrow A/2^i$ so $||B||_{\infty} \approx 1$
- $ightharpoonup r_m(B) = [m/m]$ Padé approximant to e^B
- $X = r_m(B)^{2^i} \approx e^A$
- MATLAB expm uses alg of H (2005).
- Improved algorithm: Al-Mohy & H (2009).

Can we adapt this approach for $e^A B$?

Computing $e^A B$

$$\underbrace{A}_{n \times n}$$
, $\underbrace{B}_{n \times n_0}$, $n_0 \ll n$. Exploit, for integer s ,

$$e^AB = (e^{s^{-1}A})^sB = \underbrace{e^{s^{-1}A}e^{s^{-1}A}\cdots e^{s^{-1}A}}_{s \text{ times}}B.$$

Choose s so
$$T_m(s^{-1}A) = \sum_{j=0}^m \frac{(s^{-1}A)^j}{j!} \approx e^{s^{-1}A}$$
. Then

$$B_{i+1} = T_m(s^{-1}A)B_i, \quad i = 0: s-1, \qquad B_0 = B$$

yields $B_s \approx e^A B$.

Computing $e^A B$

$$\underbrace{A}_{n \times n}$$
, $\underbrace{B}_{n \times n_0}$, $n_0 \ll n$. Exploit, for integer s ,

$$e^AB = (e^{s^{-1}A})^sB = \underbrace{e^{s^{-1}A}e^{s^{-1}A}\cdots e^{s^{-1}A}}_{s \text{ times}}B.$$

Choose s so
$$T_m(s^{-1}A) = \sum_{j=0}^m \frac{(s^{-1}A)^j}{j!} \approx e^{s^{-1}A}$$
. Then

$$B_{i+1} = T_m(s^{-1}A)B_i, \quad i = 0: s-1, \qquad B_0 = B$$

yields $B_s \approx e^A B$.

How to choose *s* and *m*?

Backward Error Analysis

Lemma (Al-Mohy & H, 2009)

$$T_m(s^{-1}A)^sB = e^{A+\Delta A}B$$
, where $\Delta A = sh_{m+1}(s^{-1}A)$ and $h_{m+1}(x) = \log(e^{-x}T_m(x)) = \sum_{k=m+1}^{\infty} \frac{c_k}{c_k} x^k$. Moreover,

$$||h_{m+1}(A)|| \leq \sum_{k=m+1}^{\infty} |c_k| |\alpha_p(A)^k|$$

if
$$m+1 \ge p(p-1)$$
, where

$$\alpha_p(A) = \max(d_p, d_{p+1}),$$

$$d_p = ||A^p||^{1/p}.$$

Why Use $d_p = \|A^p\|^{1/p}$?

- $\|A^k\| \le \|A^{pk}\|^{1/p} \le (\|A^p\|^{1/p})^k.$
- $\rho(A) \leq ||A^p||^{1/p} \leq ||A||.$

• With
$$A = \begin{bmatrix} 0.9 & 500 \\ 0 & -0.5 \end{bmatrix}$$
:

$$\begin{array}{c|cccc} k & 2 & 5 & 10 \\ & \|A^k\|_1 & 2.0e2 & 2.2e2 & 1.2e2 \\ & \|A\|_1^k & 2.5e5 & 3.1e13 & 9.8e26 \\ d_2^k = \left(\|A^2\|_1^{1/2}\right)^k & 2.0e2 & 5.7e5 & 3.2e11 \\ d_3^k = \left(\|A^3\|_1^{1/3}\right)^k & 4.5e1 & 1.3e4 & 1.9e8 \end{array}$$

■ Cheaply estimate $||A^k||$, for a few k (H & Tisseur, 2001).

Why Use $d_p = ||A^p||^{1/p}$? — cont.

- $d_p = ||A^p||^{1/p}$ provide information about the nonnormality of A.
- Their use helps avoid overscaling.
- What other uses do they have?

Choice of s and m

- lacksquare $\theta_m := \max \left\{ \theta : \sum_{k=m+1}^{\infty} |c_k| \theta^{k-1} \le \epsilon \right\}$

$$\frac{\|\Delta A\|}{\|A\|} \le \epsilon \text{ if } m+1 \ge p(p-1) \text{ and } s^{-1}\alpha_p(A) \le \theta_m.$$

Computational cost for $B_s \approx e^A B$ is

$$C_m(A) = m \max(\lceil \alpha_p(A)/\theta_m \rceil, 1)$$

matrix products.

- Cost decreases with m.
- Restrict $2 \le p \le p_{\text{max}}$, $p(p-1) 1 \le m \le m_{\text{max}}$.
- Minimize cost over p, m

Size of Taylor Series Argument

Constants θ_m (via symbolic, high precision):

	10		~ ~		
single	1.0e0	3.6e0	6.3e0	9.1e0	1.3e1
double	1.4e-1	1.4e0	3.5e0	6.0e0	9.9e0

Preprocessing

Expand the Taylor series about $\mu \in \mathbb{C}$:

$$e^{\mu}\sum_{k=0}^{\infty}(A-\mu I)^k/k!$$

Choose μ so $||A - \mu I|| \le ||A||$.

- Alg is based on 1-norm, but minimizing $||A \mu I||_F$ does better empirically at minimizing $d_p(A \mu I)$.
- Recover e^A from

$$e^{\mu} [T_m(s^{-1}(A-\mu I))]^s$$
, $[e^{\mu/s}T_m(s^{-1}(A-\mu I))]^s$.

First expression prone to overflow, so prefer second.

Balancing is an option.

Termination Criterion

In evaluating

$$T_m(s^{-1}A)B_i = \sum_{j=0}^m \frac{(s^{-1}A)^j}{j!}B_i$$

we accept $T_k(A)B_i$ for the first k such that

$$\frac{\|A^{k-1}B_i\|}{(k-1)!} + \frac{\|A^kB_i\|}{k!} \le \epsilon \|T_k(A)B_i\|.$$

Algorithm for $F = e^{tA}B$

```
1 \mu = \text{trace}(A)/n
2 A = A - \mu I
 3 [m_*, s] = parameters(tA)
4 F = B, \eta = e^{t\mu/s}
 5 for i = 1: s
   c_1 = \|B\|_{\infty}
    for i = 1: m_*
           B = tAB/(si), c_2 = ||B||_{\infty}
 8
           F = F + B
           if c_1 + c_2 < \text{tol} ||F||_{\infty}, quit, end
10
11
           C_1 = C_2
12 end
    F = \eta F, B = F
13
14
    end
```

George Forsythe "Pitfalls" (1970)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Since you learned mathematics because it is useful, you might expect to use the series to compute e^x . Suppose—just for illustration—that your floating-point number system F is characterized by $\beta = 10$ and s = 5. Let us use the series for x = -5.5, as proposed by Stegun and Abramowitz [13]. Here are the numbers we get:

$$\begin{array}{l} e^{-5.5} \approx & 1.0000 \\ - & 5.5000 \\ + & 15.125 \\ - & 27.730 \\ + & 38.129 \\ - & 41.942 \\ + & 38.446 \\ - & 30.208 \\ + & 20.768 \\ - & 12.692 \\ + & 6.9803 \\ - & 3.4902 \\ + & 1.5997 \\ \vdots \\ + & 0.0026363 \end{array}$$

Conditioning of e^AB

$$\kappa_{\mathsf{exp}}(A,B) \leq \frac{\|e^A\|_F \|B\|_F}{\|e^AB\|_F} (1 + \kappa_{\mathsf{exp}}(A)).$$

$$\|A\|_2 \le \kappa_{\sf exp}(A) \le rac{e^{\|A\|_2} \|A\|_2}{\|e^A\|_2}$$

Relative forward error due to roundoff bounded by

$$ue^{\|A\|_2}\|B\|_2/\|e^AB\|_F$$
.

- A normal implies $\kappa_{\text{exp}}(A) = ||A||_2$. Then instability if $e^{||A||_2} \gg ||e^A||_2$.
- A Hermitian implies spectrum of $A n^{-1} \operatorname{trace}(A)I$ has $\lambda_{\max} = -\lambda_{\min} \Rightarrow (\text{normwise})$ stability!

$e^{tA}B$ for Several t

Grid:
$$t_k = t_0 + kh$$
, $k = 0$: q , where $h = (t_q - t_0)/q$.

- Evaluate $B_k = e^{t_k A} B$, k = 0: q, directly.
- Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{khA}B_0, \quad k = 1: q$$
 $B_2 = e^{2hA}B_0$ (1)

Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{hA}B_{k-1}, \quad k = 1: q \qquad B_2 = e^{hA}(e^{hA}B_0)$$
 (2)

Suffers from **overscaling** when *h* is small enough.

etAB for Several t

Grid:
$$t_k = t_0 + kh$$
, $k = 0$: q , where $h = (t_q - t_0)/q$.

- Evaluate $B_k = e^{t_k A} B$, k = 0: q, directly.
- Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{khA}B_0, \quad k = 1: q$$
 $B_2 = e^{2hA}B_0$ (1)

Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{hA}B_{k-1}, \quad k = 1: q \qquad B_2 = e^{hA}(e^{hA}B_0)$$
 (2)

Suffers from **overscaling** when *h* is small enough.

etAB for Several t

Grid:
$$t_k = t_0 + kh$$
, $k = 0$: q , where $h = (t_q - t_0)/q$.

- Evaluate $B_k = e^{t_k A} B$, k = 0: q, directly.
- Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{khA}B_0, \quad k = 1: q$$
 $B_2 = e^{2hA}B_0$ (1)

Form $B_0 = e^{t_0 A} B$ and then

$$B_k = e^{hA}B_{k-1}, \quad k = 1: q \qquad B_2 = e^{hA}(e^{hA}B_0)$$
 (2)

Suffers from **overscaling** when *h* is small enough.

- Use (1) when no cost penalty (no scaling), else (2).
- Opportunity to save and re-use some matrix products.

The Sixth Dubious Way (1)

Moler & Van Loan (1978, 2003)

METHOD 6. SINGLE STEP O.D.E. METHODS. Two of the classical techniques for the solution of differential equations are the fourth order Taylor and Runge-Kutta methods with fixed step size. For our particular equation they become

$$x_{j+1} = \left(I + hA + \cdots + \frac{h^4}{4!}A^4\right)x_j = T_4(hA)x_j$$

and

$$x_{j+1} = x_j + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4,$$

where $k_1 = hAx_j$, $k_2 = hA(x_j + \frac{1}{2}k_1)$, $k_3 = hA(x_j + \frac{1}{2}k_2)$, and $k_4 = hA(x_j + k_3)$. A little manipulation reveals that in this case, the two methods would produce identical results were it not for roundoff error. As long as the step size is fixed, the matrix $T_4(hA)$ need be computed just once and then x_{j+1} can be obtained from x_j with just one matrix-vector multiplication. The standard Runge-Kutta method would require 4 such multiplications per step.

Let us consider x(t) for one particular value of t, say t = 1. If h = 1/m, then

$$x(1) = x(mh) \simeq x_m = [T_4(hA)]^m x_0$$

The Sixth Dubious Way (2)

Advantages of our method over the one-step ODE integrator:

- Fully exploits the linearity of the ODE.
- Backward error based; ODE integrator control local (forward) errors.
- Overscaling avoided.

Experiment 1

Trefethen, Weideman & Schmelzer (2006): $A \in \mathbb{R}^{9801 \times 9801}$, 2D Laplacian, -2500 * gallery ('poisson', 99).

Compute $e^{\alpha tA}b$ for 100 equally spaced $t \in [0, 1]$. tol = u_d .

	$\alpha = 0.02$			lpha=1		
	speed	cost	diff	speed	cost	diff
Alg AH	1	1119		1	49544	
expv	46.6	25575	4.5e-15	66.0	516429	6.2e-14
phipm	10.5	10744	5.5e-15	9.3	150081	6.3e-14
rational	107.8	700	9.1e-14	7.9	700	1.0e-12

Experiment 2

$$A = -gallery('triw', 20, 4.1), b_i = cos i, tol = u_d.$$

Experiment 3

Harwell-Boeing matrices:

- orani678, n = 2529, t = 100, $b = [1, 1, ..., 1]^T$;
- **bcspwr10**, n = 5300, t = 10, $b = [1, 0, ..., 0, 1]^T$.

2D Laplacian matrix, **poisson**. tol = u_s .

	Alg AH			ode15s		
	time	cost	error	time	cost	error
orani678	0.13	878	4e-8	136	7780+	2e-6
bcspwr10	0.021	215	7e-7	2.92	$1890+\cdots$	5e-5
poisson	3.76	29255	2e-6	2.48	$402+\cdots$	8e-6
4poisson	15	116849	9e-6	3.24	$49+\cdots$	1e-1

Comparison with Krylov Methods

AI	q	A	Н

Most time spent in matrix-vector products.

"Direct method", cost predictable.

No parameters to estimate.

Storage: 2 vectors

Evaluation of e^{At} at multiple points on interval.

Can handle mult col B.

Cost tends to \uparrow with ||A||.

Krylov Methods

Krylov recurrence and e^H can be significant.

Iterative method; needs stopping test.

Select Krylov subspace size.

Storage: Krylov basis

Need block Krylov method.

Some ||A|| dependence.

Conclusions

$$e^AB = (e^{s^{-1}A})^sB \approx \underbrace{T_m(s^{-1}A)\dots T_m(s^{-1}A)}_{s \text{ times}}B.$$

Key ideas: s and m to achieve b'err bound; terminate Taylor series prematurely; shifting and balancing; compute $e^{t_k A}B$ on grid, avoiding overscaling.

- Alg AH is best method in our experiments.
- Very easy to implement.
- Exploits optimized matrix products.
- Attractive for exponential integrators—using theorem on avoidance of φ functions.
- A. H. Al-Mohy and N. J. Higham, MIMS EPrint 2010.30, March 2010. Paper and MATLAB code.

References I

🚺 A. H. Al-Mohy and N. J. Higham.

A new scaling and squaring algorithm for the matrix exponential.

SIAM J. Matrix Anal. Appl., 31(3):970-989, 2009.

G. E. Forsythe.

Pitfalls in computation, or why a math book isn't enough.

Amer. Math. Monthly, 77(9):931-956, 1970.

N. J. Higham.

The Matrix Function Toolbox.

http:

//www.ma.man.ac.uk/~higham/mftoolbox.

References II

- N. J. Higham.
 The scaling and squaring method for the matrix exponential revisited.

 SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.
- N. J. Higham.

 Functions of Matrices: Theory and Computation.

 Society for Industrial and Applied Mathematics,
 Philadelphia, PA, USA, 2008.
 ISBN 978-0-898716-46-7.

 xx+425 pp.
- N. J. Higham and A. H. Al-Mohy. Computing matrix functions. *Acta Numerica*, 19:159–208, 2010.

References III

- N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–1201, 2000.
- C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix.
 - SIAM Rev., 20(4):801-836, 1978.
- C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

References IV

L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures and rational approximations. BIT, 46(3):653-670, 2006.