TEX 4312/ ME 4182

Textile/ Mechanical Design

NASA/ USRA Advanced Design Program

Lunar Regolith Bagging System

March 1990

Reuben Cannon Scott Henninger Mark Levandoski Jim Perkins Jack Pitchon Robin Swats Roger Wessels

(NASA-CR-186683) LUNAR REGOLITH BAGGING SYSTEM (Georgia Inst. of Tech.) 66 p CSCL 11E N90-25223

Unclas G3/27 0289176

LUNAR BAGGING SYSTEM

SUMMARY

1 - 12 1 - 12

This paper describes a design of a lunar regolith bag and bagging system. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 ft^3 volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a Boron/Aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5 / 8.

TABLE OF CONTENTS

- 1. Introduction
 - 1.1 Recognition of need
 - 1.2 Definition of problem
 - 1.3 Background
 - 1.4 Performance objectives
- 2. Final design of system
 - 2.1 Bag design and analysis
 - 2.2 Machinery design and analysis
 - 2.3 Performance
 - 2.4 Flowcharts of operations
 - 2.5 Tables of results & calculations
 - 2.6 Figures & drawings
- 3. Conclusions and recommendations
- 4. Appendix
 - 4.1 Design selection criteria
 - 4.1-1 Bag material considerations
 - 4.1-2 Bag design and constraints
 - 4.1-3 Bag mechanics
 - 4.1-4 Machinery design and constraints
- 5. References
- 6. Acknowledgements

1. INTRODUCTION

1.1 RECOGNITION OF NEED

During the continued development of systems supporting a lunar habitat, a need has arisen requiring the development of a system to utilize the lunar soil for construction applications. The need requires a system for transferring regolith into bags which can be used in the construction of various facilities. The system must be robotically controlled, use a minimal amount of energy, require minimal maintenance, have a low man-hour to machine-hour ratio, and survive the lunar environment.

1.2 DEFINITION OF PROBLEM

The problem can be divided into two major areas. The first area is the mechanical design of the bagging system and the second is the textile design of the bags. For the mechanical design it would be beneficial to utilize any existing technology. There is currently under development a three legged lunar SKITTER which is being designed as a transportation module for lunar needs. Therefore, a bagging system which can use this SKITTER as a base would be preferred. However, the performance limitations of the SKITTER require a system which does not exceed a given weight or geometry. The environment on the moon requires the modification of present machine materials used on earth or the development of new materials which can withstand the lunar environment. In addition, the system needs to be robotically controlled and require as little manpower as necessary. The energy requirements on the system will be very stringent due to the limited supply of power which will be available. The system must be able to bag for a certain time frame and then be recharged. For the bag design there are several problems which need to be addressed. The bag material must be able to withstand the lunar environment and provide adequate

protection for the lunar habitat. The bags must be large enough so that they will provide sufficient structural support. They also must be small enough so that they can be picked up and moved by an astronaut in the event that a repair or modification to the structure is necessary.

1.3 BACKGROUND

The materials for both the machinery and the bags must be able to withstand the very severe lunar environment. temperatures on the lunar surface vary from -250 to 250 degrees Since the lunar atmosphere is a vacuum the only modes of heat transfer present are conduction and radiation. Convection is not present because of the lack of air. The main mode of heating and cooling is due to the radiation. Therefore, when an object is in the sun it is very hot while if an object is in the shade it is very cold. Depending on the circumstances very large temperature gradients can be present over relatively short distances. The lack of a protective atmosphere also allows the various modes of radiation to bombard the surface of the moon. All materials must be able to withstand ultraviolet and gamma radiation. Strikes from meteorites and other space debris could also cause damage to structures on the lunar surface. Also the regolith is very abrasive. It has a density of approximately 1.2 g/cm³ and is relatively loose for the first 10 cm of lunar surface of depth an becomes very hard and compacted at any further depth. Another problem with the soil is that it bridges extensively when metered in a conventional hopper. material must be able to withstand sharp rocks or other matter which may be inadvertently loaded into the bags.

1.4 PERFORMANCE OBJECTIVES

The system is to be incorporated with the three legged lunar crawler. This crawler can move at speeds between 6 and 8 miles per hour. The bagging system being designed can use no more than 10 kW of energy at any one time period. The system will have an

operating schedule consisting of 8 hours on-line followed by a 16 hour recharge period The ratio of man-hours to machine hours will be 1/8. Man power will be required for machine maintenance and repair including bag replacement. The machine will fill 120 bags per hour with each bag having a capacity of one cubic foot. The one cubic foot bag is necessary because the filled bags must be able to be moved by individual astronauts. The bags will be supplied on a pre-fabricated roll manufactured on earth. The machine will be 5 1/2 feet wide and 12 feet long and have a weight of 900 kG and constructed from a Boron/Aluminum composite and Graphite/Epoxy composite materials. The bags will be supplied on a pre-fabricated roll manufactured on earth and will be constructed from a glass fiber composited filament. The intended operating life for this machine is 5 years.

2 FINAL DESIGN OF SYSTEM

2.1 BAG DESIGN AND ANALYSIS

MATERIAL SELECTION

Glass fiber was finally selected for the design of the bags. This fiber has high strength, a tenacity of 6.3 to 6.9 grams per denier. Elongation is only 3 to 4 percent, but elastic recovery is 100 percent. The fiber has outstanding dimensional stability, and it can absorb extreme stress without permanent deformation. In general, glass fiber does not have good abrasion properties, but the purpose of the design is to use the bags only once to store regolith for a period of time, taking abrasion requirements to a minimum. Density is 2.49 grams per cubic centimeter, which may sound too dense for general apparel use but quite satisfactory for the lunar habitat. The fibers do not absorb measurable amounts of moisture, and they have good resistance to creasing and wrinkling. They are smooth, even, transparent, and circular in cross section.

Glass fiber will not burn; however, it will soften at about 815∞C (1500∞F), and strength begins to decline at temperatures above 315∞C (600∞F). It exhibits excellent resistance to age, sunlight and weather. On the moon it will have an excellent resistance to UV and g radiation. A summary of bag materials can be seen in Table 1.

FABRIC CONSTRUCTION

Glass fiber will be woven to form the fabric. Plain weaves, consisting of yarns interlaced in an alternating pattern, one over and one under every other yarn, provide the most fabric stability and durability compared to other construction methods.

The bags may be formed by either bonding or sewing.

Bonding involves joining the fabric together using a polymer based resin. Because polymeric materials degrade with exposure to

Gamma radiation, bonding was eliminated as a consideration. Sewing variables include yarn type, stitch type and stitch density. Since polymeric materials cannot be used, glass yarns were chosen. A stitch density of 40 stitches per inch was specified.

The specific type of plain weave selected for the design of the bags was provided by Clark-Schwebel Fiber Glass Corporation. Some of the characteristics of the fabric include the following:

Thread count: 44x32 ends/inch

Weight: 6 ounces/yard²
Thickness: 0.0068 inches

Breaking Strength: 250x200 Lbs.F/inch

Warp Yarn: ECG 75-1/0 Filling Yarn: ECG 75-1/0

ECG 75-1/0 is the fiber glass yarn nomenclature which means the following:

E- Characterizes the glass composition.

Composition	E Glass
Silicon dioxide	52-56%
Calcium oxide	16-25%
Aluminum oxide	12-16%
Boron oxide	8-13%
Sodium and potassium oxide	0-1%
Magnesium oxide	0-6%

- C- Indicates the yarn is composed of continuous filament.
- G- Denotes the individual filament diameter: 0.00036 in.
- 75- Represents 7,500 yards/pound.
- 1- Represents the original number of twisted strands.
- 0- Represents the number of these strands plied together.

2.2 MACHINERY DESIGN AND ANALYSIS

A schematic of the machine is shown in Figures 1,2. The design consists of many components which in themselves had to be designed and researched. A list and analysis of the components is below.

The Machine operation is summarized in Flowcharts

1 thru 3

- I. Sweeper mechanism
- II. Trajectory analysis of soil
- III. Dimensions of the machine
- IV. Construction of the shroud
- V. Funnel system
- VI. Bag rolls and support system
- VII. Bag opening method
- VIII. Full bag detection system
- IX. Bag cutter
- X Bag Sealing
- XI. Clutch / brake assembly for bag drop off
- XII. Materials

I. SWEEPER MECHANISM:

The sweeper design is a modification of an existing sweeper. The modification is done to a model LEL4800 sweeper which is manufactured by the Sweepster Jenkins Equipment Company INC. This design was selected among several other contenders for several reasons. As a model for this system we thought of using a city street sweeper type of brush mechanism. However, there are several problems with such a design. First of all, street sweepers are very large and very heavy. The motors required to drive this system are very powerful and require a lot of horsepower. The maximum amount of power that our entire system can use is 10 Kw which is 13.3 horsepower. The drive systems on street sweepers are around 130 horsepower (97.7 kW) which is far too great for our

applications. Furthermore, the brushes are actually driven by hydraulic pumps which are driven by the drive engines for the vehicle. A hydraulic system would not be a good choice for lunar application because problems with freezing or boiling of the hydraulic fluid may be encountered.

The basic brush design is as follows. The brush width is 5 ft (1.6m) and has a brush diameter of 2 ft (.6m). The brush material will be modified from a polypropylene plastic to a aluminum/boron fiber composite material. The mass of the brush will be 6.21 lbm. The maximum rated RPM for this brush is 150 RPM. The brush drive system will consist of a 5 horsepower (3.76 Kw) motor with a 11 to 1 gear reduction system. The brush manufactured by Sweepster has a 5 horsepower Briggs & Stratton gasoline engine but an aspirated combustion engine will not work on the lunar surface without its own air supply. Although not lunar rated we did research an electric D.C. motor that did deliver 5 horsepower (3.76 Kw). The Reliance Electric Co. model B1811ATZ produces 5 horsepower at 1750 RPM. The mass of this motor is 4.97 The final drive will be from #40 chain and sprocket made from lbm. Graphite/Epoxy composite material. The expected weight of the entire system will be approximately 60 lbs (18.26 N) on the lunar surface. The calculations relating motor torque and brush speed are listed in Table 3 and Graphs 1 and 2. These calculations assume a coefficient of static friction between the brush material and the soil to be about 0.8.

II THROWN SOIL TRAJECTORY ANALYSIS

Because of the fact that there is no air resistance in lunar applications, the trajectory of the soil which is thrown up by the brush can be modeled very accurately. The length dimension of the machine is dependent upon this soil trajectory. An analysis of the soil trajectory as it relates to brush RPM is shown in Table 4. The analysis is done assuming a 30 degree angle of incidence between the lunar surface and the thrown soil. Due to the constraints of the machine in order for our design to work to soil must be able to be

lifted to a height of 5.25 ft (1.6 m) from the lunar surface. As shown in Table X.X for a brush rotation of 150 RPM the soil would have to be thrown horizontally 18.37 ft (5.6 m) to reach a maximum vertical height of 5.25ft (1.6 m). If this data is accurate this means that or machine would have to be at least 18.37 ft (5.6 m) long. However, to maintain stability of the crawler and the bagging system it would be beneficial to make the system as compact as possible. Therefore, we propose to coat the inside of the shroud with Teflon which has a very low coefficient of friction. The thrown soil can then be deflected by the shroud to get it up to the required height. Therefore, the length dimension of the machine will be 9.84 ft (3 m) long.

III. DIMENSIONS OF MACHINE

The dimensions of the machine were governed primarily by the geometric constraints imposed by the geometry of the SKITTER. Since there is no published data on the SKITTER we had to make some assumptions about its operation. We assumed that it is possible for the SKITTER to reach the minimum height above the ground of two meters during normal walking operations. Therefore, our machine design is 6.56 ft (2 m) tall. The width of the machine was governed by the width of the brush mechanism up front. In order to take full advantage of the entire five feet of sweep width for the brush the machine will be 5 feet (1.6 m) wide. The length of the machine was governed by the trajectory of the soil thrown up from the ground. The optimum length of the machine would be 18.37 ft (5.6) meters as explained in section Π above. However, the modifications to the shroud warrant a machine length of 11.84 ft (4 m). Detailed drawings of the machine and its components are shown in Figures 1 thru 2.

IV. CONSTRUCTION OF THE SHROUD

The shroud is designed to fulfill two main objectives: protection of operating machinery and control of the soil trajectory.

With regard to protection the shroud acts as a shielding device for such equipment as the pre-fabricated bag roll, cutting device, clutch/drop mechanism, bag opening device, bag full sensing device, and motor/gear assembly for the brush motor. The shroud will protect these components from large flying objects which could cause damage as well as keep the amount of contamination by the lunar soil to a minimum.

The primary role of the shroud is to act a a guide duct for the thrown up regolith. As stated earlier in order to compact the design the shroud will be designed to guide the soil up to the top of the funnel. The inside of the shroud will be coated with Teflon to reduce to coefficient of friction between to lunar soil and shroud material.

V. FUNNEL SYSTEM

The design of the funnel is very important to the success of the machine. The funnel had to be designed in order to hold a capacity of 10 bags of soil and be resistant to bridging. In order to prevent bridging it was required that the walls of the funnel be at a greater than 60 degree angle with respect to horizontal. An analysis of funnel height with respect to funnel top diameter and bottom diameter was performed to find the optimum dimensions of the funnel for the required volume capacity. The results of this analysis can be found in Table 5. The optimum funnel design will have a height of 3.28 ft (1.0 m), a top diameter of 3.67 ft (1.12 m) and a bottom diameter of .98 ft (.3) meters.

VI. BAG ROLL SUPPORT SYSTEM

The bags for this process will come off a pre-fabricated roll. Each roll will have 975 bags on it. A full roll will weigh 159.9 N on the lunar surface and have a diameter of 3.18 ft (0.97 m). This allows for a 6 inch (.15 m) clearance between the bottom of a full roll of bags and the lunar surface. The center of the roll will be a hollow shaft made out of a Boron - 6061 Aluminum composite. On both sides of the roll there will be a support beam designed to hold

up the roll of bags. A diagram of the system is shown in Figure 3. The Figure shows that the shaft will be designed to slide into the slots located at the bottom of the support members. This design allows for the easy loading of fresh rolls of pre-fabricated bags by a robot. As shown the slots on the support members have electronic check valves to insure that the bag rolls do not come loose during machine operation or transportation. An analysis of the size of the shaft needed for the bag rolls is provided in Tables 6 and 7. The shaft was designed using the maximum shear stress theory.

VII. BAG OPENING METHOD

Because the bags are coming off a roll there needs to be some way to insure that the bags stay open while they are being filled. This need will be satisfied using magnetics. Each pre-fabricated bag will have a small piece of metal near the opening on the outer side of the bag. As an empty bag is placed into position a small arm with an electromagnet will move to the opening of the bag. When the electromagnet is charged it will attract the metal strip fabricated into the bag. With the aid of a small servo-motor the electromagnetic arm will then retract which will draw one end of the bag so that the bag will be in the full open position. The motor used for this application is modelled after a Compumotor model KSX-260. motor is rated at .42 horsepower (.315 kW) and has a peak torque of 56.25 lb-in (6.36 Nm). In addition, when the end of the bag is attached to the electromagnetic arm it will compress a switch which will inform the rest of the system that a bag is in place and that it is ready to be filled. After the bag has been filled with soil, the electromagnet deenergizes which allows the bag to close. The bag is then cut and dropped from the roll. The process for opening the bag is then repeated. A diagram of this procedure is shown on the following page Figure 3.

VIII. FULL BAG DETECTION SYSTEM

A system must be employed to regulate the amount of regolith that is supplied to each bag. This is very important since if a bag were to be filled too much the sealing method would not work effectively. Also if the bag were not filled enough it may cause problems when the bag is applied to the construction applications. The system to monitor volume in our design uses strain gauges and a microprocessor.

The strain gauges are attached to the magnetic arm that holds the bags open. A diagram is shown in Figure 4. The strain gauges measure the deflection in the arm and send the information to the microprocessor for analysis. When the system detects a deflection of a signal is sent to the magnetic arm system to release the bag. This deflection indicates that the bag is full and that any further regolith addition would jeopardize the bag closure seal This system is modelled using components from *Motorolla* MC 68HC 11 A8 microcontroller. An analysis of the signal processing and deflection is shown in Tables 8 and 9 as well as a listing of the program.

IX. BAG CUTTER

Since the bags are on a continuous pre-fabricated roll there must be some way to separate the full bags from the empty bags. Since the bags are made from a glass reinforced composite, it will not be very easy to cut the material. Therefore, the cutting mechanism will consist of a double edged diamond tipped cutting blade. The blade will be mounted on a rod like mechanism so it can slide back and forth. The motion of the blade will be accomplished by connecting a servo-motor (Compumotor model KSX-260) to the mechanism analogous to the system used by a dot matrix line printer. After the the arm that holds the bag open releases the bag, a signal will be sent to the blade mechanism instructing it to make a cutting pass which will release the full bag from the rest of the roll. A new empty bag is then fed into position and the process repeats as required.

X. BAG SEALING

For this system the bags will be sealed by using a draw string method like that used on a garbage bag or a laundry bag. The draw strings will be fabricated into the bags. The draw strings will be composed of Kelvar. There will be no tying or twisting of the strings in order to seal them. The draw strings will have raised barbs on them which permit them to move in one direction through the eyelets on the bag. The bag eyelets will be reinforced so that the barbs cannot move back into the bags which would be detrimental to the seal of the bags. The draw strings will actually be in the form of a continuous loop and will have two hard boron/aluminum composite balls on them. The loop is present because it makes it easier for the recovery team to recover the filled bags. A long pole or other device can be used to simply scoop-up the loop in the draw strings and carry them back to base. The balls are needed in order to facilitate the closing of the bag as it drops of the machine. What occurs is that after the bag is full and released from the electromagnet, the balls slide into slots on a clutch and held there. After the bag is released its own weight causes it to drop but the draw strings are held in one place. Therefore, the draw strings are in effect pulled out and the bag is sealed. The clutch then releases the balls and the full bag is discarded to the lunar surface.

XL CLUTCH / BRAKE ASSEMBLY FOR BAG DROP-OFF

In order to insure an efficient and smooth way to drop off the filled bags a clutch system is used. To reduce the risk of bags being damaged or ruptured they must be laid as gently as possible on the lunar surface. After a bag has been filled and the electromagnet holding the bag has been deenergized the bag falls to the ground closing the draw strings which are held in the clutch plate assembly. At this point the brake holding the clutch stationary is engaged. After a half second delay, the brake releases and the clutch lowers the bag gently to the ground. A table showing the torque resistance in the clutch related to position is shown in Table 10. The brake is

reapplied after the clutch rotates 120 degrees where a new, empty bag is then positioned. The clutch and brake assembly used in this design is patterned after a combination of a model 602s0350 brake and a model L2-1-313A clutch manufactured by *Hilliard corp*..

XII. MATERIALS

The Materials for the structure of this machine had several different constraints. These materials had to be strong, lightweight, machinable, Have good thermal properties, and be resistant to The machine components are made from radiational degradation. two composite materials. The shroud of the machine is made of a Boron/Aluminum composite. This material hs a modulus of 32 msi, a thermal conductivity of approximately 0, a yield strength of 210 ksi and is currently being used on the Space Shuttle on various component parts. The other components are made from a Graphite/Epoxy composite. This material has a modulus of 70 msi, a thermal conductivity of approximately 0, and a yield strength of 360 ksi. This composite is also being currently on the Space Shuttle in such components as the deployable robot satellite access arm. these materials have already shown competence in orbital applications we are hopeful that they will give us acceptable performance on the lunar surface.

The maximum weight of the entire machine is summarized below:

Sweeper mechanism	5.08 Kg
Full roll of bags and shaft	79.75 Kg
Full hopper	339.80 Kg
Servo motors	20.10 Kg
Controllers -	15.00Kg
Support structure	250.00 Kg
Total	709.73 Kg

PERFORMANCE

The overall performance of the system is summarized in the following table.

MAXIMUM OPERATING TIME PER CHARGE	8 Hours
RECHARGE TIME	16 Hours
MAN HOURS/MACHINE HOURS	.5/8
ENERGY CONSUMPTION	5.705kW
MAXIMUM NUMBER OF BAGS PER ROLL	975
BAG SIZE	1 ft^3
PHYSICAL OPERATING LIMITS ROLL	5 degrees
PITCH	5 degrees
NET WEIGHT	709.73 Kg
MACHINE LIFE	5 Years

An analysis of the structure is shown in Figure 5.

CONCLUSIONS AND RECOMMENDATIONS

The overall design of this machine as well as the individual systems which make up this design have been analyzed in as much detail as possible regarding the time constraints of the class. The system we designed is very feasible and is capable of performing as planned

Several different systems were contemplated for this design. The alternates are discussed in detail in the appendix. The design we chose to implement is successful in meeting or exceeding the performance constraints outlined in the introduction. However, some of the parts used for this design were used strictly from earth sources. For example, the motors referenced for this design would have to modified for lunar applications. Therefore, these components would have to be developed before the system could be implemented.

Finally, a prototype could be constructed on earth and tested using regolith simulates.

4.APPENDIX

4.1 DESIGN SELECTION CRITERIA

4.1-1 BAG MATERIAL CONSIDERATIONS

MATERIAL SELECTION

The material selection process was the most important factor considered in the design of the bag. Many alternatives were taken into account, but only a small number of them could fulfil the requirements and constraints of the lunar habitat. Some fibers with their respective characteristics are shown in the Fiber Table (table 1).

Of the 27 materials considered, the first choice was polyester. Polyester was chosen for its superior resistance to UV and its low density. Polyester's strength is more than adequate to withstand the bagging stresses. The Tg of polyester is 69 ∞ C, which would be lowered by copolymerization with a siloxy group. The polyester/siloxy copolymer was discarded when the level of Gamma radiation was found to be to great for any organic polymer.

Next, since organic materials were eliminated, the search was focused on inorganic materials. The inorganic materials under consideration were silicon carbide, boron nitride, glass, carbon fiber and asbestos. Of these, boron nitride, carbon fiber and glass were given closer scrutiny. Boron nitride was eliminated because of the difficulty to get a high quality fabric that would not degrade on the moon. Carbon fibers were acceptable, but its extremely high modulus was deemed a disadvantage for flexibility. Finally, glass fiber was chosen because of its moderately high modulus, good radiation resistance, and its ability to meet the criteria already mentioned. The only disadvantage of glass when compared to carbon fiber is that the latter one has a lower density.

CLICATION	DENISITY (2/C) BBEAKING STRENGTH	BREAKING ST	PENGTH	MODULUS OF ELASTICITY	ELASTICITY	Tg (C)	Tm (C)	≥	~
	(2018)	ueb/o	nsi*10^3	a/den	psi*10^6				
C	0 0	954	1000+	1230	145	-125*	132	Ь	ΛV
Polyethylene, exput. orawn	0 97-0 98	35-60+	437-749+	2000	25	-125*	115	Ь	ΛP
Dolvaramide Kevlar 49	1 45	26	480	1080	20		200	ΛP	ΛP
Dobwiewi alcohol (allied)	1 33-1 34	20+	342	008-009	10.3-13.7	85	250	NG	ΛP
Polyaramide Keylar 29	1 44	26	480	1540	10	230	255	VP	Α
Aklon & freeze com	1 14	15	220	36	0.52		216	ш	VP
Silicon Carbida	3 30-3 42	10.4	450	1440	62	N/A	N/A	9	၅
Boron Nitride	2.38	18(10-25)	540(300-750)	1840	99	A/A	N/A	ŋ	၁
Dolvester H T	1.38	9.5	170	45-90	0.8-1.6	69	250	5	S S
GI ASS	2.49	21(6-30)	660(190-960	390	12.4		>1090	NG	Ş
TH CON	1.13-1.14	9.5	140	20-60	0.3-0.9	230	255	щ	δ
Polypropylene	0.90-0.91	6	100	20-60	0.2-0.7	-12	170	۵	Α
Poly (vinyl alcohol)	1.26-1.30	3.8-9	60-150	35-155	0.6-2.6	85	250	4	ΑΛ
Flax (linen)	1.5	7.7	150	250	4.8	N/A	N/A	۵	Α
Rayon	1.5	7	130	13-50	0.25-0.96	150	170	۵	Λρ
Domio	1.55	6.7	138	150	3	N/A	N/A	۵	Α
Homo	1 48	6.2	120	180	3.4	N/A	N/A	Ь	ΑV
Cotton	1.55	5.8	115	50	-	N/A	N/A	۵	Α
Polvethylene H O	0.95-0.96	3.5-7	43-86	20-50	0.24-0.61		130	۵	Λρ
Silk	1.25	5	80	22	0.35	N/A	A/A	۵	Ş
Modacrylic	1.25-1.37	4.2	70	3.8-42	0.06-0.74	N/A	A/A	ď	ΑÞ
Acrylic	1.16-1.18	4	09	5-10.4	0.07-0.16	N/A	317	۵	Α
Polyethylene 1.0	0.92	1.0-3.0	12.5-35	30-40	0.5-0.67	-125	140	ď	ΛΡ
1	1.32	1.7	29	3.6	0.061	N/A	120	۵	VP
Acetate	1.32	1.2-1.4	20-24	3.5-5.5	0.05-0.09		N/A	a.	ΑÞ
Teflon	2.1	0.5-1.6	13-43	1.0-8.8	0.027-0.24		260	ၒ	d V
Carbon(fiber)	1.7-1.96	12.5-20	260-500	1120-3580	28-78	A/A	A/N	ပ	9

FABRIC CONSTRUCTION

In selecting a fabric for industrial applications, a number of design parameters may be considered. These are broken down into four basic variables: yarn weight, thread count, weave pattern and fabric finish. Yarn weight combined with thread count, that is the number of warp ends and filling picks per inch, determine the strength, weight and thickness of the fabric.

Some of the alternatives for fabric construction were wovens, knits, and nonwovens. Circular weaving was considered for organic materials, but after deciding to go with inorganic materials, the method was discarded for its difficulty of manufacture. Knitting, commonly defined as forming a fabric by means of interlooping yarns, was also discarded because of the poor abrasion properties and the high elongation it has. Nonwovens were discarded because the textile structure is produced by bonding or interlocking of fibers, accomplished by mechanical, chemical, thermal, or solvent means that would be extremely affected by the lunar habitat. Finally, plain weave, consisting of yarns interlaced in an alternating pattern, one over and one under every other yarn, was considered for the construction of the fabric using an inorganic material.

4.1-2 BAG DESIGN AND CONSTRAINTS

The design of the regolith bag must withstand exposure to the conditions on the moon as previously described. The design must be evaluated by specific physical properties, mechanical properties, thermal properties, chemical properties and fabrication properties.

Physical properties of the bag material which must be considered are density, melting point, reflectivity, porosity and dimensional stability. Density is important for evaluating transportation costs. The bag should be of minimum mass while still meeting the criteria of the design. Also, the weight of the bags under the SKITTER must be kept to a minimum.

The melting point of the bag material must not be within the temperatures which exist on the moon since the material would lose its composition and fail. The glass transition temperature, which is related to the melting point of polymers, must be below the lowest temperature on the moon since the polymer must not crystallize and fracture if the temperature were to fall below the glass transition.

To protect against UV radiation the bag must reflect the incident UV range of the lunar spectrum to prevent degradation of organic materials, if chosen. This may be accomplished by the material itself or by the addition of a reflective coating on the bag. Of course, any coating must also satisfy the criteria of the bag itself and be compatible with the bag material.

The bag must also be dimensionally stable and have appropriate porosity. The bag cannot change shape drastically and still be filled and sealed properly by the machine. The bag should be of a porosity or space between fibers so that the regolith particles may not escape.

Mechanical properties which must be considered are modulus of elasticity in tension, yield strength in tension, ultimate strength in tension, creep and abrasion. The modulus of elasticity must be low enough so that the bag is not too stiff and brittle. The bag must conform well to other bags while stacked on the structure to reduce the chance of sliding past each other. In this respect, the coefficient of friction is also important. Of course, the yield strength and the ultimate strength of the fabric must be enough to withstand the loading and distribution operations. The material also must not creep drastically while on the structure, but moderate creep will actually improve the stability of the stacked bags by conforming with each other. Another important characteristic is abrasion resistance which must be great enough to withstand any sharp regolith or rubbing during the filling and distribution operations.

Thermal properties which must be considered are coefficient of expansion and emissivity. The coefficient of expansion is most important if coatings are used because the fabric and coatings must expand and contract to the same degree. The emissivity is the ability of the material to radiate heat. This property and absorption must

be of a level so that energy can be dissipated to prevent any thermal damage to the material.

Finally, the chemical properties to be considered are ultraviolet and gamma radiation degradation and thermal stability. UV and g degradation are the most critical properties to be considered for the material, since failure to withstand these would result in catastrophic structural failure of the bags with time. Thermal stability has been addressed with respect to glass transition, melting point, creep, emissivity and absorption.

4.1-3 BAG MECHANICS

The mechanical requirements of the bags were divided into four categories:

- 1.) Bag opening methods
- 2.) Bag sealing methods
- 3.) Bag full sensing methods
- 4.) Bag cutting methods

For each of these areas several different methods for achieving the desired result were explored. The results are summarized below.

1) Bag opening methods:

- A) Construct the bags with a spring at the opening to hold the bags open while filling.
- B) A mechanical device to pull the bags open.
- C) A gas charge to force the bags open
- D) A mechanical device to push the bags open
- E) Construct the bags with a small piece of metal at the opening which can be magnetically pulled open by an actuator.
- F) Electrostatic force.
- G) Use inertia to whip the bags open.
- F) Use a chemical reaction.

Bag opening methods:

We elected to implement the electromagnetic system to hold the bags open while filling.

Bag sealing method:

We elected to implement the draw string type closure method.

Bag full sensing methods:

We elected to implement the strain gage/beam deflection method.

Bag cutting method:

We elected to implement the diamond tipped servo cutter method.

4.1-4 MACHINERY DESIGN AND CONSTRAINTS

The overall design of the system had to remain within several constraints. First of all, the overall size of the machine was a factor. Figure X.X shows a schematic of the dimensions of the lunar SKITTER. The SKITTER is shown in its maximum deployed position. As can be seen the maximum allowable height for the machine is 6.56 ft (2 m) while the maximum width is 26.25 ft (8 m). However, it is desirable to keep the bagging system under the body of the SKITTER as much as possible. Therefore the Maximum operating width is about 11.84 ft (4 m). The maximum weight for the entire system is 1 metric ton (1000 Kg.) on the lunar surface. The entire system can use no more than 10 Kw of energy. The design must be able to withstand temperature fluctuations from 250 degrees Fahrenheit to -250 degrees Fahrenheit. Bearings and moving parts must be protected from contamination by the lunar soil and other

environmental contaminants. Structural materials must also be resistant to degradation from various forms of radiation.

SKITTER SCHEMATIC

For the machinery four preliminary designs were explored. Sketches of the designs are shown in Figures X.X thru X.X. The analysis of the advantages and disadvantages of each design is described for each figure.

Design #1

Advantages:

- 1. Storage system in the hopper
- 2. Continuous feed of filled bags that can be easily transported to the habitat for construction.
- 3. Equal and opposite forces in the brush and scoop: This forms a self-contained system that has no static effects on the crawler.
- 4. Bags can remain attached in sets of three which facilitates easier transportation of bags.

Disadvantages:

- 1. Complicated process which includes hydraulic lifting.
- 2. Requires heat sealing or sewing of two separate layers of cloth; a very complicated process.
- 3. Requires large amounts of energy.
- 4. Bulky system that requires a large amount of space under the crawler. This would cause it to be unstable due to the dynamics of the crawler movement.
- 5. The conveyers account for a lot of wasted energy
- 6. Inefficient use of available space.
- 7. Difficult maintenance.

Design #2

Advantages:

- 1. Less machinery
- 2. Simple process.
- 3. Pre-fabricated bags.
- 4. Free standing nature creates inherent stability.

Disadvantages:

- 1. Uses too much energy.
- 2. Requires the lifting of loaded bags.
- 3. Loaded bags are left scattered on lunar surface.
- 4. Inefficient process for filling bags.
- 5. Uncontrolled regolith which is thrown-up may contaminate mechanical linkages.
- 6. Requires constant movement of the crawler.
- 7. No volumetric metering of bag capacities.

DESIGN #2 LUNAR BAGGING SYSTEM

LUNAR SURFACE /

Design #3

Advantages:

- 1. Moves along the surface and maintains the proper clearance for brush and tray.
- 2. Bags are easier to handle and fill when they are on a prefabricated roll.
- 3. The shroud catches regolith and directs it towards the bags
- 4. Compact design.
- 5. Equal and opposite forces between the brush and tray.

Disadvantages:

- 1. No metering device for regolith.
- 2. Must continuously move to fill the bag.
- 3. Bags are dropped randomly.
- 4. Hard to seal bags in this position.
 - 5. Collection tray is long and does not prevent regolith from sliding down the wrong way.

Advantages:

- 1. Volumetric metering of bag capacities.
- 2. Does not require constant movement of crawler.
- 3. Storage capacity in hopper.
- 4. Shroud provides good control of regolith.
- 5. The design minimizes power consumption.
- 6. The bag undergoes a short drop from the collector to the ground.
- 7. Provides for a cluster of filled bags in a localized area.
- 8. Moving mechanical parts shielded from flying debris.
- 9. Pre-fabricated bags.
- 10. Efficient use of limited space.

Disadvantages:

- 1. Added weight due to storage.
- 2. Bridging problems possible in funnel.
- 3. Control of funnel operations may be difficult.

After weighing the advantages and disadvantages of each design we elected to implement the design shown in Figure 4. This

design consists of a rotating brush, protective shroud, Metering funnel, Prefabricated bags on a roll with built in draw strings, a cutter to cut filled bags from the roll, a clutch mechanism to pull the draw strings closed, and a magnetic control arm to hold the bags open while filling.

DESIGN MATRIX

Rating Scale: 1 worst----4 best

Design Factors	Design #1	Design #2	Design #3	Design #4
Energy consumption	1	2	4	3
Duration of operating schedule	1	2	4	3
Man/Machine Hours	1	2	3	4
Bagging capacity	3	1	2	4
Static/dynamic stability	1	4	2	3
Weight of machine	1	2	4.	3
Simplicity of design	1	4	2	3
Durability	1	2	4	3
Simplicity of process	1	4	2	3
Amout of new part design required	2	1	3	4
Transportability	1	4	3	3
Production rate	3	1	2	4
Size Constraints	1	1	3	3
Min. movement of crawler	3	1	2	4
Localized area of bag drop	3	1	2	4
	24	32	42	52

MATRIX

2404517 55	Elenem Wittinde	61833	Carokin Fro e n
	<u>.</u>	<u>-</u>	-
eligi la 1164. Aus	÷	<u></u>	
-11g195	3	5	
Themps (inefragrent or expansion	5		5
7 . 2	. <u>~</u>	. 6	:5

• Itser -5.0 Jest.

TABLE 2

•		VID:	ere wysą	er væ≖	e u≛	აქელი,	y, T
. ·		· • • • • • • • • • • • • • • • • • • •	-	2 20 4	* 1	: * *	N14
	,	F	* * * * * * * * * * * * * * * * * * *			+ . M	:77.73
· . •	: -	4	·	T . T	239.95	31.33	:68.07
	-			- 1		24.75	118.81
: 5	F 1 2 7 19 19	at the	<u>.</u>		932.93	<u> 20.00</u>	୍ଟ୍ର.କ୍ୟ
	5ee	F		₽3	755 Or	13.89	59.3;

nneu nn blum brenik bub ni llyknierktith if Gravetk

	r in a setting	70 300
	<u> </u>	787 KITTY
4 <u>3</u> 6	W	* 4
	7	70. C
		린프 기 기계
	****	2400.4
	73 5 .27	1:57.14
		1487.69

INTO COLUENDO DE MARIO

in the transfer of the second of the second

550 / 1124 P · 11

77.47 B 24.5

하는 하는 사람들이 하는 하는 것이 되어 있다는 수 때 생각수의 사람들이 수 있는 것이 나를 하는 것이 있다.

- 1 - 1119 - 1911 - 11 - 11 - 12<u>.2</u>5 Motor Torque and Horsepower Calculations ME 4182

Brush Torque (in-lb) 298 33.674 Nt-m Brush Angular Velocity (rev/s) 2.4 144.000 (rpm)

Motor	Angular				1	Brush to
Velo	city		Motor Torque	2	Horsepower	Motor
(rev/s)	(rpm)	(in-lb)	(oz-in)	(Nt-m)	(Hp)	Ratio
23.333	1400	30.651	490.423	3.464	0.672	9.722
24.167	1450	29.594	473.512	3.344	0.672	10.069
25.000	1500	28.608	457.728	3.233	0.672	10.417
25.833	1550	27.685	442.963	3.128	0.672	10.764
26.667	1600	26.820	429.120	3.031	0.672	11.111
27.500	1650	26.007	416.116	2.939	0.672	11.458
28.333	1700	25.242	403.878	2.852	0.672	11.806
29.167	1750	24.521	392.338	2.771	0.672	12.153
30.000	1800	23.840	381.440	2.694	0.672	12.500
30.833	1850	23.196	371.131	2.621	0.672	12.847
31.667	1900	22.585	361.364	2.552	0.672	13.194
38.500	1950	22,004	352.098	2.487	0.672	13.542
	2000	21,456	343.296	2.425	0.472	13.889
33.333 34.167	2050	20.933	334.923	2.365	0.672	14.236
35.000	2100	20.434	326.949	2.309	0.672	14.583
35.833	2150	19.959	319.345	2.255	0.672	14.931
36.667	2200	17.505	312.087	2.204	0.478	15.278
37.500	2250	19.072	305.152	2.155	0.672	15.625
38.333	2300	18.657	298.518	2.108	0.672	15.972
39.167	2350	18.260	292.167	2.063	0.672	16.319
40.000	2400	17.880	286.080	2.020	0.672	16.667
40.833	2450	17.515	280.242	1.979	0.672	17.014

A9: (F3) [W10] +B9/60

B9: [W10] 1400

C9: (F3) [W10] +\$E\$3*\$F\$4/B9 D9: (F3) [W10] +C9*16 E9: (F3) [W10] +C9*0.113

F9: (F3) [W10] (0.00074*B9*D9)/756

G9: (F3) [W10] +B9/\$F\$4

VELOCITY = ACCELERATION * TIME = 1.635 * .451

VELOCITY= 0.74 m/sec

POTENTIAL ENERGY = MASS * GRAVITY * HEIGHT

= 36.27 * 1.635 * .333 = 19.75 JOULES

MAXIMUM MOMENTUM = VELOCITY * MASS = .74 * 36.27 = 26.84 Kg-m/sec

Approximate Bag Dimensions for Roll Calculations

VOLUME: 1 FT³ FT 1 HEIGHT: FT DIAMETER: 1.13 0.56 FT RADIUS: 3.54 FT CIRCUM.:

1.77 WIDTH FLAT BAG FT

O.OB FT TOTAL GUIDE PATH WIDTH: 1 IN

FT TOTAL ROLL WIDTH 1.86

Funnell ilerations
Juble 2005

TABLE 6

Roll of Bags Calculations ME 4182

Shaft density (1b/in^3) Boron-6061 Al	0.08486	1578.390 kg/m^3
Bag material density (oz/yd^2)	6.25	0.043 lb/ft^2
Bag dimensions		
Depth (ft)	1.17	0.357 meter
Total width flat bag (ft)	1.86	0.567 meter
Circumference (ft)	3.55	1.082 meter
Flat bag thickness (mm)	.5	0.002 meter
Support Clearance (ft)	0.125	
Outside end pieces	0.083	,
Safety Factor	1.5	
Maximum Moment (Nt-m)	50.17	
Sy (GPa)	1109	
Moon Gravity (m/s^2)	1.67	

Shaft Shaft Moon Shaft Total Moon Total Earth Total Number of Moon Volume Roll Radius Radius Mass Weight (Nt) (m^3) Radius (m)D. D. (m)I. D. (m) Weight (Nt)Weight (Nt)Weight (Nt)Mass (kg) (kg) Bags 0.04 0.002 54.625 327.749 33.410 0.05 32.708 54.623 0.162 0.305 400 0.002 58.039 348.233 35.498 0.05 0.04 58.037 0.172 0.315 34.753 425 368.716 37.586 0.002 61.453 0.324 0.05 0.04 450 36.797 61.451 0.182 389.200 39.674 64.867 0.05 0.04 0.002 38.841 64.865 0.192 0.332 475 41.762 68.281 409.683 68.278 505.0 0.341 0.05 0.04 500.0 500 40.885 0.349 0.05 0.04 -0.002 71.694 430.167 43.850 0.212 525 42.930 71.692 0.002 75.108 450.650 45.938 0.05 0.04 75.106 0.222 0.357 550 44.974 78.522 471.134 48.026 0.002 0.05 0.04 0.233 0.365 575 47.018 78.520 50.114 81.936 491.617 9.002 0.05 0.04 49.062 81.934 0.243 0.372 600 85.350 512.101 52.202 0.04 0.002 85.348 0.253 0.380 0.05 625 51.107 532.585 54.290 88.764 0.263 0.387 0.05 0.04 0.002 53.151 88.762 650 56.378 0.05 0.04 0.002 92.178 553.06B 0.273 0.395 675 55.195 92.176 95.592 573.552 58.466 0.05 0.04 0.002 0.283 0.402 57.239 95.590 700 60.554 0.002 99.006 594.035 0.05 0.04 0.293 0.409 725 59.284 99.004 614.519 62.642 0.002 102.420 0.04 61.328 102.418 0.303 0.416 0.05 750 635.002 64.730 0.002 105.834 0.422 0.05 0.04 775 63.372 105.832 0.313 66.818 109.248 655.486 0.04 0.002 65.417 109.246 0.323 0.429 0.05 800 68.906 0.334 0.05 0.04 0.002 112.662 675.969 0.436 67.461 112.660 825 0.002 116.075 696.453 70.994 0.05 0.04 0.344 0.442 69.505 116.073 850 73.082 119.489 716.936 0.04 0.002 0.05 0.354 0.448 875 71.549 119.487 122.903 737.420 75.170 0.002 0.05 0.04 73.594 122.901 0.364 0.455 900 77.258 757.904 126.317 0.04 0.002 0.374 0.461 0.05 925 75.638 126.315 129.731 778.387 79.346 0.05 0.04 0.002 77.682 129.729 0.384 0.467 950 B1.434 798.871 0.04 0.002 133.145 0.394 0.473 0.05 79.726 133.143 975 0.002 136.559 819.354 83.522 0.05 0.04 81.771 136.557 0.404 0.479 1000 139.973 839.838 85.610 0.04 0.002 0.485 0.05 0.414 1025 83.815 139.971

^{320: (}F3) [W9] +\$6\$4*\$F\$8*\$F\$6*A20*(0.45359237)

^{120: (}F3) [W11] +B20*\$F\$15

^{320: (}F3) [W8] +A20*\$6\$6*\$6\$7*\$6\$9

^{120: (}F3) [W10] (D20/(\$6\$7+2PI)+F20^2)^0.5

F20: (F2) [W9] 0.05

^{320: [}W10] 0.04

^{120: (}F3) [W11] ((\$F\$3+3PI+(F20^2-620^2)+(\$6\$7+\$F\$10))+2+(\$F\$3+3PI+(F20+\$F\$11)^2+0.5))+(\$F\$15/4)

^{120: (}F3) [W11] +C20+H20

^{[20: (}F3) [W11] +I20+6

^{(20: (}F3) [W10] +J20/9.81

R1 = 740 n/m(.567 m)/2 R1 = 210 n = -R2

SHEAR DIAGRAM

M = (1/2)(.567 m)(210 n)M = 59.5 n-m

TABLE 8

HAR MEETING ACT OFFICE

TINTER TOTAL OF ACT THE 15 THOUSE BY SUMMING THE MENTINES

j -4 jr -4g490,75 = j - - PAT 37 + MOMSUT 488 + POD FORES * BAG DIAM = 7+.30*;..97*;..57*2 * POS FORES * 1.10 - 77.155 *

THE WASHINGTON OF BUTTON OF THE GAUGE ARE THEFT. FROM FIGURE FOR THE TWO THE BUTTON OF THE BUTTON OF

로마인 아이지도 있다. 역사는 14(편리 H-AUSENIN) 12 년 15 - 12 대한 기업 6일 기업 12 대한 기업 12 대한

1776(8)	2.75.5	The Alle	3 /3	1276	TOTAL	SIRAIN	TIXED	MAXIM	MAY REND
T SAMOE	1001107	5 ND 1 (1)	e (Halla	ूर	FORCE	MOMENT	MOMENT	DEFL	STEESS
	15.	₹.	115	N.E	fit:	Mt-m	Nt-m	T	MPa
			5.0°	•	29.65	1.775	2.372	0.001138	283.99
7,54E 3			PG .45	4	?9.a5	1.775	2.372	3.64E-05	5.5 9
स्तृत्य सम्		e jakan	57.:5	Ţ.	29.35	!.775	2.272	1.54E-05	3.84
			27.45	·.	29.55	1.779	2.372	8.21E-05	:4.35
7.7717:			29.3	•	25.15	1.779	2.372	5.11E-05	2.93
		4.304	20.25	0	29.65	1.779	2.372	4.23E-05	7.39
1.775283	5,755	0.0049	73/2 . 25	9	29,65	1.777	€.372	0.00187	233.48
	्र कर्		20.45		29.65	1.779	2.37 2	0.000246	30.59
- 		1.0	g0,45	Y	29.45	1.779	2.372	0.000167	E0.82
-		*, *,	± 1.25	;	3 7. 85	:.775	2.272	0.000149	19.41
				ž.	70.15	1.775	5. 37 2	4.555-75	ក ្ធ:
		. 35			70 , E	: .775	9.370	0.00191	03.35
•	·				97.45	:.770	₽.372	0.0004F8	원문. 47
	·				5 m 1 m 7 m	1,500	",377	7007 155	19,73

 $(x_1, x_2, \dots, x_n) = (x_1, \dots, x_n) = (x_1, \dots, x_n) \in \mathcal{C}(X)$

PROGRAM LISTING FOR STRAIN GAUGE CONTROL WITH THE MC68HC1)A8 CHIP

```
OPG $5000
                   * LOAD ACC. A WITH 90 HEX (144 DECIMAL)
        LDAB #≢80
        STAB $1039 * STORE ACC. A IN OPTION REGISTER
        * PAUSE TO ALLOW A/D CHARGE TO BUILD
PAHSE
        DECB
                   * BRANCH UNTIL AVD IS CHARGED
        BME PAUSE
        LDAA ##10 * LOAD ACCUMULATOR A WITH 20 HEX
BEGIN
        STAR $1030 * STORE ACC. A TO SET ADOTL TO SCAN CONTINUOUSLY
        LDAS $1030 * LOAD ACC. B WITH $1030 A/D RESULT REGISTER
FAUSER
        ANDE #$80 * CHECK IF CONVERSION FLAG IS SET
        BEG PAUSER * BRANCH UNTIL A/D CONVERSION FLAG IS SET
        1544 $1632 → LOAD ACC. A WITH A/D RESULT REGISTER
        STAA SCOFF * STORE A/D RESULT REGISTER IN MEMORY
        CDX #$0000 * CLEARS X REGISTER
        STX $C100 * STORES X REGISTER IN MEMORY
        AMDA #$80 * CHECK BIT 7 OF RESULT REGISTER
        BEQ LOOP1 * IF RESULT REGISTER IS NOT SET THEN BRANCH
        LDD #$09C4 * LOAD DOUBLE ACC. D WITH 2500 MILLIVOLTS
        SID $0100 * STORE ACC. D IN MEMORY
        LDAA $COFF * LOAD ACC. A WITH ORIGINAL AVD RESULT REGISTER
1.000
        AMDA ##46 * CHECK BIT & OF RESULT REGISTER
        BED LOOPS - * IF RESULT REGISTER IS NOT SET THEN BRANCH
         UDD $0100 → LOAD DOUBLE ACC. D
        ADDD #$04ER * ADD 462 HEX (1250 MILLIVOLTS) TO $0100
        STD $C100 * STORE THE ADDD AROVE IN $C100
        LDAA #COFF * LOAD ACC. A WITH DRIGINAL A/D RESULT REGISTER
10052
         AMDA #$20 * CHECK BIT 5 OF RESULT REGISTER
        850 LOOPS * IF RESULT REGISTER IS NOT SET THEN BRANCH
        LDD $0100 * LOAD DOUBLE ACC. D
        ADDD #60271 * ADD 271 HEX (625 MILLIPOLTS) TO $0100
         STD, #C100 + STORE THE ADDD ABOVE IN $C100
        LIMA $COFF * LOAD ACC. A WITH ORIGINAL AND RESULT REGISTER
: 00P3
         ANDH #$10 * CHECK BIT 4 OF RESULT REGISTER
         FES LOGPA - * IF RESULT REGISTER IS NOT SET THEN BRANCH
         LDD #0100 - A LOAD DOUBLE ACC. D
         4000 #$0139 + 400 139 HEY (312.5 MILLIVOLTS) TO $0100
         SHE SECTION - * STORE THE ADDD ABOVE IN $6100
         LEAA BOOFF - LOAD ACC. A WITH ORIGINAL AZD RESULT REGISTER
įjoja⊙...
         AUDIA #400 * CHECK BIT B OF RESULT REGISTER
         REG LOCOTS - + IF RESULT REGISTER IS NOT SET THEM BRANCH
         * DI #C100 * LOAD DOUBLE ACC. D
ADDD #ERC * ADD 90 HEX (156.2)
                   + ADD 90 HEX (156.2 MILLIVOLTS) TO $C100
         BID #C100 * STORE THE ADDD ABOVE IN #C100
         NDAA #CIFF * NOAD ACC. A WITH ORIGINAL AVD RESULT REGISTER
 _C^+(F-C)
         ANDA #504 * CHECK BIT 2 OF THE RESULT REGISTER
         RED LOCK- * IF RESULT PERISIER IS NOT SET THEN BRANCH
         LDD $5100 * LOAD DOUBLE ACC. D
         HEDD MAGE * ADD GE WEX (T8.1 MILLIVOLTS) TO $0100
         STE $0100 . * STORE THE ADD ABOVE IN $0100
```

```
LDAA $COFF * LOAD ACC. A WITH ORIGINAL A/D RESULT REGISTER
LOOPS
         ANDA #$02 * CHECK BIT 2 OF THE RESULT REGISTER
        BED LOOP? * IF RESULT REGISTER IS NOT SET THEN BRANCH
        LDD $0100 * LOAD DOUBLE ACC. D
                   * ADD 27 HEX (39.1 MILLIVOLTS) TO $C100
        ADDD #$87
        STD $0100
                   * STORE THE ADD ABOVE IN $C100
        LDAG $COFF + LOAD ACC. A WITH ORIGINAL A/D RESULT REGISTER
L00P2
        ANDA #$01 * CHECK BIT 2 OF THE RESULT REGISTER
                   * IF RESULT REGISTER IS NOT SET THEN BRANCH
        BEO LODES
        LDD $0100 * LOAD DOUBLE ACC. D
        ADDD #$14 * ADD 14 HEX (19.5 MILLIVOLTS) TO $0100
         STD $C100 * STORE THE ADD ABOVE IN $C100
                   + LOAD DOUBLE ACC. D WITH $C100
        LDD $0100
LOOPS
        LDX #1000 * LOAD REGISTER X WITH 1000 DECIMAL
                   * INTERGER DIVISION ON ACC. D AND REGISTER X
         IDIV
         STX $0150 * STORE QUOTIENT IN $0150
                   * LOAD REGISTER X WITH 100 DECIMAL
        LDX #100
                    * INTERGER DIVISION ON ACC. D AND REGISTER X
         IDIV
        STX $C:52 * STORE QUOTIENT IN $C152
                    * LOAD REGISTER X WITH 10 DECIMAL
         LDX #10
                    * INTEGER DIVISION ON ACC. D AND REGISTER X
         IDIV
         STX $C154 * STORE QUOTIENT IN $C154
                   * LOAD REGISTER X WITH 1 DEIMAL
        [DX #1
                   * INTEGER DIVISION ON ACC. D AND REGISTER X
         IDIV
         STX $0156 * STORE QUOTIENT IN $0156
         LDAA $0151 * LOAD ACC. A WITH LOW BYTE OF FIRST DIVISION
         ADDA #$30 * ADD $30 HEX TO ACC. A
                    * JUMP TO SUBROUTINE TO GET ASCII CODE
         JSR $FFB8
        LDAA $0153 * LOAD ACC. A WITH LOW BYTE OF SECOND DIVISION
         ADDA #$30 * ADD $30 HEX TO ACC. A
         ISR $FFB8 * JUMP TO SUBROUTINE TO GET ASCII CODE
         LDAA $0155 * LOAD ACC. A WITH LOW BYTE OF THIRD DIVISION
                    * ADD $30 HEX TO ACC. A
         ADDA ##30
                    * TUMP TO SUBROUTINE TO GET ASCII CODE
         JSR $FF88
         LDAA $0157 * LOAD ACC. A WITH LOW BYTE OF FOURTH DIVISION
                   # ADD $30 HEX TO ACC. A
         ADDA #$30

→ JUMP TO SUBPOUTINE TO GET ASCII CODE

         ISR ≸FFB8
                    * LOAD ACC. A WITH LOW BYTE OF FIFTH DIVISION
         LDAA #$20
         JSR #FFB8 * * JUMP TO SUBROUTINE TO GET ASCIT CODE
         LDAG #$60 + LOAD ACC. A WITH LOW BYTE OF SIX DIVISION
         ISR BEFERE * JUMP TO SUBROUTINE TO GET ASCII CODE
         IDAA #556 * LOAD ACC. A WITH LOW BYTE OF SEVENTH DIVISION
                    * JUMP TO SUPPOUTINE TO GET ASCII CODE
         ISR #FFR8
         * JUMP TO SUBROUTINE TO GET ASCII CODE
         TER SFFBB
                     * START OF TIMING LOOP
         LDAA #$05
         LDV ##DF26 * TIMIING LOOP
UFITI
                     * DECREMENT PART OF TIMING LOOP
         DEY
 VAITE
                    * TIMING LOOP
         BME MAITE
```

* TIMING LOOP

DECA

BNE WAIT! * TIMING LOOP

JMP BEGIN * JUMP BACK TO THE BEGINNING FOR ANOTHER LOOP

SHI

TABLE IO

DISK TORQUE CALCULATIONS

REGOLITH BAGGING MACHINE LOWERRING CLUTCH

SLOT	SLOT		TORQUE
ANGLE (DEG)	ANGLE (RAD)	(N-M)	(IN-LBF)
60	1.05	5.22	42.31
54	0.94	6.13	49.74
48	0.84	6.98	56.62
42	0.73	7.76	62.88
36	0.63	8.44	68.45
30	0.52	9.04	73.28
24	0.42	9.53	77.30
18	0.31	9.93	80.47
12	0.21	10.21	82.77
6	0.10	10.38	84.15
0	0.00	10.44	84.61
- 6	-0.10	10.38	84.15
-12	-0.21	10.21	82.77
-18	-0.31	9.93	80.47
-24	-0.42	9.53	77.30
-30	-0.52	9.04	73.28
-36	-0.63	8.44	68.45
-42	-0.73	7.76	62.88
-48	-0.84	6.98	56.62
-54	-0.94	6.13	49.74
-60	-1.05	5.22	42.31
VERAGE TORQ	UE	8.72	70.67

L2 LIGHT SERIES

L2 Light Series with dry type bronze metallic friction discs and adjustable torque for overload protection or constant torque. Not recommended for operation in oil. Oilite bushings require no lubrication.

COIL-SPRING TYPE

For installation requiring extra close adjustment or low torque range down to 1/2 lb.-in. Offered in both regular and double capacity and with heavy, medium or light springs. The number of springs used can be varied to develop the exact torque range needed.

Clutch-coupling models are used to directly connect two shaft alignment should be main-

tained within .005" parallel and 1/4° angular.

Models L2-1-313XA and L2-1-323XA feature a setscrew to anchor the hub on the shaft. Slightly more shaft length is needed for mounting.

Maximum Operating Speed—1800 RPM

#SK-2172 Spanner Wrench for all size L2 adjusting nuts

1/2" bore 1/8" × 1/16" keyway 5/8" bore 3/16" × 3/32" keyway 3/4" bore 3/16" × 1/32" keyway	1/2" bore 1/8" × 1/16" keyway 5/8" bore 3/16" × 3/32" keyway 3/4" bore 3/16" × 3/32" keyway (skeeve) 3/16" × 1/32" keyway (hub)

		and the second of the second of the second
L2-1-313A L2-1-323A L2-1-313XA L2-1-323XA	3 lbs.	Regular: 3 Heavy Springs—6 to 88 to -in. 8 Medium Springs—3 to 30 to -in. 8 Light Springs—1/2 to 6 to -in.
• DL2-1-313A • DL2-1-323A • DL2-1-313XA • DL2-1-323XA	3 lbs.	Double Capacity 16 Heavy Springs—12 to 176 lb -in 16 Medium Springs—6 to 60 lb -in 16 Light Springs—1 to 12 lb -in

. Letter "D" in size denotes Double Capacity

L2 LIGHT SERIES

DISC-SPRING TYPE

For the average installation and normal duty in a torque range one lb.-ft. (12 lb.-in.) and higher where the exact setting is not critical. Available in regular or double capacity. Excellent for overload protection in all kinds of drive systems.

Clutch-coupling models are used to connect two shaft ends and close alignment is required within .005" parallel and 1/4° angular.

Models L2-1-313X and L2-1-323X feature a setscrew to anchor the hub on the shaft. Slightly more shaft length is needed for mounting.

Maximum Operating Speed—1800 RPM #SK-2172 Spanner Wrench for all size L2 adjusting nuts

	- 12 2 2 2 2 2	under der der der der der der der der der			
L2-1-313 L2-1-323	3 lbs.	Regular: 12 to 108 lbin.			
L2-1-313X L2-1-323X		(Single Disc Spring)			
• DL2-1-313 • DL2-1-323	3 lbs.	Double Capacity: 24 to 216 lbin.			
• DL2-1-313X • DL2-1-323X		(Two Disc Springs)			

• Letter "D" in size denotes Double Capacity.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE I DIMENSIONS IN METERS NOT TO SCALE

FIGURE 3
Roll Replacement Schematic

 $\Sigma M_A = 0$ -36.27 kg (1.635 m/sec²) (1.13 ft/2) + B 1.13 ft = 0 B = 29.65 n

 $M_A = 0$ $M_B = 29.65 \text{ n (.08 m)}$ $M_B = 2.372 \text{ j}$ M = 29.65 n (.06 m)M = 1.78 j

SHEAR DIAGRAM

MOMENT DIAGRAM

1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

INPUT FILE: mmmm.in DATE: 1/ 1/1980 TIME: 02:54:08

NODAL COORDINATES

NODE	X	Y		
NODE 1 2 3 4 5 6 7 8 9	.0000 .0000 1.4122 1000 -1.6000 -2.4000 -2.4000 -1.9200 2500	.0000 2570 .0000 .0000 6380 8170 -1.3600 -1.4300 4790		
<u>LO</u>	.0000	-,8000		
1.1	1.4122			
SIEVSIS ANALYSIS	.7060 MODULE	8000 VERSION 1.1	DEMONSTRATION	VERSION

ELEMENT DEFINITIONS

ELEM	MATL	PROP	TYPE	NODE 1	NODE 5
1	1	1	10	1	2
2	1	1	10	1	3
3	1	i	10	3	11
	1	1	10	1 1	12
5	- 1	1	10	12	10
-	1	1	10	10	2
7	1	1	10	2	9

-		8		1	1		10	9	5
		9		j	1		10	9	8
		10		1	1		10	8	7
		11		1	1		10	7	5
		12		Į	1		10	7	. 6
•		13		1	1		10	6	5
		14		1	1		10	5	4
1 -	P	E ANA	LYSIS M	ODULE	VERSION	1.1	DEM	ONSTRATION	VERSION

MATERIAL PROPERTIES

MATE NO E NU DENS ALPHA

1 .2200000E+12 .3340000 1578.000 .00000000
1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

PHYSICAL PROPERTIES

PROPERTY SET 1 .5070000E-03 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000

I H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

SPECIFIED NODAL DISPLACEMENTS

NODE DOF SPEC. DISPL 1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

APPLIED NODAL FORCES

NODE DOF FORCE
3 2 231.5000
5 2 231.5000
7 1 82.33000
7 2 -74.17900

```
8 1 -82.33000

8 2 -37.11000

10 2 -65.17000

11 2 -147.9700

12 2 -147.9700
```

I H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

SPECIFIED NODAL TEMPERATURES

NODE TEMP

1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

ELEMENT LOADS

ELEM FACE VALUE
1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

TIME .00000

PROPORTIONAL LOAD 1.0000

ITERATION 1

G-LOAD DIR= 0

MAGNITUDE= .000

1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

HODAL DISPLACEMENT SOLUTION TIME .00000E+00 LOAD STEP 1 ITERATIO

· N 1

NODE -	X-COORD	Y-COORD	X-TRANS	Y-TRANS
1	.0000	.0000	.0000	4.384
2	.0000	2570	30.06	4.384
3	1.412	.0000	.0000	83.53
4	1000	.0000	-16.12	.0000
5	-1.600	6380	34.78	-119.7

6	-2.400	8170	14.73	-30.07
7	-2.400	-1.360	-46.07	-30.07
8	-1.920	-1.430	-27.38	98. 08
. 9	2500	4790	18.66	17.23
_	.0000	8000	.0000	4.384
10		8000	.0000	83.53
1 1	1.412	8000	.0000	-148.0
12	.7060	6000	.0000	1,510

ELASTIC STRAIN ENERGY INCREMENT# -15467.2

1 H P E ANALYSIS MODULE VERSION 1.1 DEMONSTRATION VERSION

ۇ

ELEMENT STRESS SOLUTION TIME .00000E+00 LOAD STEP 1 ITERATION TYPE STRAIN FORCE STRESS PROP ELEM MATL .0000 .0000 1 TYPE STRAIN
10 .0000 FORCE STRESS PROP MATL ELEM: .0000 .0000 1 1 FORCE TYPE STRAIN STRESS PROP MATL ELEM .0000 10 .0000 .0000 FORCE STRESS TYPE STRAIN PROF MATL ELEM .0000 .0000 .0000 10 1 i FORCE TYPE STRAIN STRESS PROP MATL ELEM 10 .0000 .0000 ,0000 TYPE STRAIN STRESS FORCE 10 .8782E-06 .1932E+06 97.95 280P EL THE MATL FORCE STRESS TYPE STRAIN 10 .0000 PROP MATL ELEM .0000 .0000 1 1 FORCE STRAIN STRESS TYPE PROP ELEM MATL -.1403E-05 -.3087E+06 -156.5 10 1 1 8

	ELEM	MATL	PROP	TYPE	STRAIN	STRESS	FORCE
	9	1	1	10	.0000	.0000	.0000
, .	ELEM	MATL	PROP	TYPE	STRAIN	STRESS	FORCE
	10	1	1	10	7864E-05	1730E+07	-877.2
	ELEM	MATL	PROP	TYPE	STRAIN	STRESS	FORCE
	11	I	1	10	.1062E-04	.2336E+07	1185.
	ELEM	MATL	PROP	TYPE	STRAIN	STRESS	FORCE
	12	1	I	10	.0000	.0000	.0000
	ELEM	MATL	PROP	TYPE	STRAIN	STRESS	FORCE
	13	1	1	10	.4072E-05	.8958E+06	454.2
: 11 P	ELEM 14 E AMALYSI	MATL 1 5 MODULE	PROP 1 VERSION 1	TYPE 10 .1 DEM	STRAIN 2340E-05 DNSTRATION VEF	STRESS 5149E+06 RSION	FORCE -261.0

NODAL	REACTIONS	ì
141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1

NODE	1 DOF	a DOF .0000E+00
2	.0000E+00 .0000E+00	.9795E+02
3	.0000E+00	.0000E+00
4	2402E+03	1022E+03
5	.1718E+04	.1013E+04
5	4432E+03	9916E+02
$\overline{\cdot}$	1137 E +02	9202E+03
Ð	8680E+03	.1266E+03
-	15546+03	1831E+02
10	.0000E+00	9795E+02
1 1	.0000E+00	.0000E+00
12	.0000E+00	.0000E+00
SUM	.1526E-04	.7629E05
ABS SUM	.3436E+04	.2476E+04

Thank you for using the demonstration version of the HPE Analysis Module. For further information on the HPE Analysis Programs contact:

H P E 102 Independence Dr. Forest, Va. 24551

1. Brush Movement Flowchart

2. Flowchart of the Bagging Process

GRAPH 1

Motor Torque and Ang. Velocity Brush/Motor Ratio VS

Motor Torque and Velocity

GRAPH 2

Motor Angular Velocity Vs Motor Torque

Motor Torque (oz-in)

5. REFERENCES

Shigely Joseph E., Mischke Charles R., Mechanical Engineering Design, McGraw Hill Book Co., New York. pp. 54

McGill David J., King Wilton W., Engineering Mechanics: Statics, PWS Publishers, Boston. pp. 351 - 352

Brandrup J., Immergut E. H., Polymer Handbook, Interscience publishers, New York. pp. 61 - 93.

Mohr Gilbert J., Rowe William P., Fiberglass, Van Nostrand Reinhold Company, London. pp. 241 -265.

Adsit N. R., Composites for Space Applications, ASTM Standardization News, December 1983. pp. 21 - 23.

Schrantz Joe, Coatings Vital for Space Performance, Industrial Finshing, August 1986, pp. 16 - 18.

Davis John G., Dixon Sidney C., Beyond Simulation, Aerospace America, July 1988, pp. 38 - 40.

Krempl E., Elzy D., Hog B., Uniaxial and Biaxial Fatigue Properties of Thin-Walled Composite Tubes, Journal of the American Helicopter Society, July 1988, pp. 3-10.

VSMF Catalogue Service March - April 1990, Sweepster Jenkins Equipment Co., Reliance Electric Co., Hilliard Corp.

6. ACKNOWLEDGMENTS

- Mr. J. W. Brazell, The School of Mechanical Engineering, The Georgia Institute of Technology, Atlanta Geogia.
- Dr. L. Dorrity, The School of Textile & Fiber Engineering, The Georgia Institute of Technology, Atlanta Georgia.
- Mr. Atwood Cannon, Manager, Cargill Fertilzer, Princeton Indiana.
- Mr. Frank Dennis, Electrical superintendent, Great Southern Paper Company, Cedar Springs Georgia.
- Mr. Ray Perkins, Owner, Blakely Auto Parts, Blakely Georgia.
- The Clark-Schwebel Fiberglass Corporation