

Anthony Vágó (student)

Lynxmotion SES V1 robotarm

Datum	30-06-2023		
Docent	Bram Knippenberg		
Course	WoR World		
Opdracht	Ontwerp en programmeren hardware interface		
Student	Anthony Vágó		
Studentnr.	1639709		

Inhoud

1) Business Use Case Diagram	1
2) Componenten	
3) Technisch use case diagram	
4) Protocol state diagram	
5) State machine diagram	

1) Business Use Case Diagram

Door middel van de robotarm driver kan de gebruiker de robotarm naar meerdere vooraf gedefinieerde statussen bewegen. Er zijn drie van deze statussen, namelijk: s

- 1. READY
- 2. PARK
- 3. STRAIGHT_UP

Door het bewegen naar een status, bewegen meerdere servo's in de robotarm. Het is ook mogelijk om de individuele servo's te bewegen naar een bepaalde positie.

Bij de initialisatie van de robotarm driver beweegt de robotarm naar de PARK status.

Figuur 1: Business Use Case diagram

Nr	Servo onderdeel	Positie	Hoek (in graden)
0	Base	Left	-90
		Middle	0
		Right	90
1	Shoulder	Backwards	-30
		Vertical	0
		Horizontal	90
2	Elbow	Straight	0
		Sharp down	90
		Inwards	135
3	Wrist	Up	90
		Straight	0
		Down	-90
4	Gripper	Fully open	-
		Fully closed	-
5	Wrist rotate	Left	-90
		Middle	0
		Right	90

Tabel 1: Servo afstanden in graden.

2) Componenten

In **figuur 2** is een component diagram te zien van de driver. De robotarm high-level driver (HLD) en de servo low-level driver (LLD) maken beide deze driver mogelijk.

De HLD, de robotarm driver, luistert naar commando's van de motion planner en voert deze instructies uit zolang deze servo graden zich binnen de veilige posities bevinden.

De LLD, de servo driver, is verantwoordelijk voor de communicatie tussen de HLD en de controller module van de robot.

Figuur 2: Component Diagram.

3) Technisch use case diagram

In **figuur 3** is te zien op welke manieren de verschillende componenten met elkaar communiceren.

Figuur 3: Technische use case diagram

4) Protocol state diagram

In **figuur 4** is te zien in welke statussen de robotarm driver zich in kan bevinden.

Figuur 4: Protocol state diagram.

5) State machine diagram

In **figuur 5** is te zien hoe de robotarm driver functioneert in verschillende statussen.

Figuur 5: State machine diagram.