المرجح فد انتياله تنظ

القدرات المنتظرة

- ـ استعمال المرجح في تبسيط تعبير متجهي؛
 - ي إنشاء مرجح n نقطة $(2 \le n \le 4)$ ؛
- ـ استعمال المرجح لإثبات استقامية ثلاث نقط من المستوى؛
 - ـ استعمال المرجح في إثبات تقاطع المستقيمات؛
 - ـ استعمال المرجح في حل مسائل هندسية وفيزيائية.

<u>I- مرجح نقطتىن</u>

<u>1- النقطة المتزنة</u>

تعريف

لتكن A نقطة من المستوى و α عددا حقيقيا

A الزوج (A;lpha) يسمى نقطة متزنة. نقول كذلك النقطة A معينة بالمعامل lpha. أو العدد

2- مرجح نقطتين

أنشطة

- لتكن A و B نقطتين مختلفتين (I
- بين أنه توجد نقطة وحيدة G حيث $\overrightarrow{GA} 4\overrightarrow{GB} = \overrightarrow{0}$ ثم أنشئها -1
- 2- بین أنه توجد نقطة وحیدة G حیث $\overline{G} = \overline{G} + 3\overline{G} + 3\overline{G}$ ثم أنشئها
- لتکن A و B نقطتین مختلفتین و lpha و eta عددین حقیقیین غیر منعدمین (II
 - $\alpha \overline{GA} + \beta \overline{GB} = \vec{0}$ بين اذا كان $\alpha + \beta \neq 0$ فان توجد نقطة وحيدة -1
 - $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$ فانه لا توجد أية نقطة G حيث $\alpha + \beta = 0$ إذا كان -2

مىرھنة و تعرىف

 $.\alpha+eta
eq 0$ نقطتین متزنتین من المستوی حیث (B;eta) و (A;lpha)

 $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$ توجد نقطة وحيدة G من المستوى حيث

 $(B;\beta)$ و $(A;\alpha)$ النقطة G تسمى مرجح النقطتين المتزنتين

ملاحظة

إذا كان $(B; \beta)$ و $(A; \alpha)$ النقطتين المتزنتين $(A; \alpha)$ و أدا كان $\alpha + \beta = 0$

3- <u>مركز ثقل نقطتىن</u>

<u>تعرىف</u>

مركز ثقل نقطتين A و B هو مرجح A و B المعينين بنفس المعامل الغير المنعدم.

خاصىة

 $\begin{bmatrix} AB \end{bmatrix}$ مرکز ثقل نقطتین A و B هو منتصف

4-<u>الصمود</u>

$$k \in \mathbb{R}^*$$
 لیکن

$$lpha+eta
eq 0 \qquad lpha\overrightarrow{GA}+eta\overrightarrow{GB}=\vec{0} \Leftrightarrow \left(B\,;eta
ight)$$
 و $\left(A\,;lpha
ight)$ مرجح النقطتين المتزنتين G

$$k\alpha + k\beta \neq 0$$
 $k\alpha \overrightarrow{GA} + k\beta \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow$

 $\left(B;keta
ight)$ و $\left(A;klpha
ight)$ مرجح النقطتين المتزنتين $G\Leftrightarrow$

خاصية

مرجح نقطتين لا يتغير إذا ضربنا وزنيهما في نفس العدد الغير المنعدم.

تمرين

حدد
$$eta$$
 و $(B;eta)$ عرجح G مرجح $(B;eta)$ عرجح

$$2\overrightarrow{GA} - 3\overrightarrow{GB} = 5\overrightarrow{AB}$$
 -

A -بA مرکز ثقل A

5- الخاصية المميزة

نشاط

 $\alpha + \beta \neq 0$ ليكن $\alpha + \beta \neq 0$ عددين حقيقيين حيث α

$$orall M \in (P)$$
 $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$ تكافئ $(B; \beta)$ و $(A; \alpha)$ مرجح -1

 $(O; \vec{i}; \vec{j})$ لى معلم (P) الى المستوى -2

$$\overrightarrow{OG} = \frac{\alpha}{\alpha + \beta} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta} \overrightarrow{OB} \overrightarrow{OB}$$
 أ/ بين أن

 $B\left(x_{_{B}};y_{_{B}}\right)$ و $A\left(x_{_{A}};y_{_{A}}\right)$ أن G علما أن G علما إستنتج

B(1;4)و A(-2;3) حيث (B;2) و (A;-5) عرجح مرجح G' عرب وحد إحداثيتي

مبرهنة

lpha+eta
eq 0 و eta عددان حقیقیان حیث lpha

تكون G مرجح $(A; \alpha)$ و $(B; \beta)$ إذا و فقط إذا كان لكل M من المستوى

 $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$

نتبحة

lpha+eta
eq 0 و eta عددان حقیقیان حیث lpha

$$\overrightarrow{AG} = \frac{\beta}{(\alpha + \beta)} \overrightarrow{AB}$$
 تكون G مرجح $(A; \alpha)$ و $(B; \beta)$ إذا و فقط إذا كان

$$\overrightarrow{BG} = \frac{\alpha}{(\alpha + \beta)} \overrightarrow{BA}$$
 تكون G مرجح $(B; \beta)$ و $(B; \beta)$ و $(A; \alpha)$

ملاحظة

(AB)مرجح نقطتين مختلفتين A و B تنتمي إلى المستقيم

6- <u>احداثيتا مرجح نقطتين</u>

$$B\left(x_{_{B}};y_{_{B}}
ight)$$
 في مستوى منسوب إلى معلم $B\left(x_{_{B}};y_{_{B}}
ight)$. لتكن $A\left(x_{_{A}};y_{_{A}}
ight)$ تاكن . $\left(O;ec{i};ec{j}
ight)$

$$\left\{ egin{aligned} x_G &= rac{lpha x_A + eta x_B}{lpha + eta} \ y_G &= rac{lpha y_A + eta y_B}{lpha + eta} \end{aligned}
ight.$$
 فان $\left(B; eta
ight)$ و $\left(A; lpha
ight)$ و $\left(A; lpha
ight)$

نمرين

(B;1) و (A;2) مرجح G مرجح (B;3) و (A;-2) عرفت (A;-2)

 \overrightarrow{AB} أحسب \overrightarrow{GG} بدلالة

تمرين

(B;-4) و (C;1) و (C;1) و (B;2) و (B;2) و أنشئ I مرجح (C;1) أنشئ I مرجح

(K;3) و (C;1) مرجح B أثبت أن B

.[KI] منتصف J -2

<u>تمرين</u>

 $A \neq B$ لتكن

$$\left\| 3\overrightarrow{MA} + 2\overrightarrow{MB} \right\| = 0$$
 حدد مجموعة النقط M حيث -1

$$\|3\overline{MA} + 2\overline{MB}\| = \|2\overline{MA} + 3\overline{MB}\|$$
 حدد مجموعة النقط M حيث -2

 $B\left(-4;3
ight)$ و $A\left(-1;2
ight)$ حيث $A\left(-1;2
ight)$ و $A\left(-4;3
ight)$ عرب حدد إحداثيتي G مرجح

II- مرجح ثلاث نقط

1- انشطة

نشاط1

لتكن A و B و C ثلث نقط من المستوى

$$\overrightarrow{GA} + 2\overrightarrow{GB} - 5\overrightarrow{GC} = \overrightarrow{0}$$
 انشئ G حیث -1

$$\overrightarrow{GA} - 2\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$
 هل يمكن إنشاء G حيث G

نشاط2

لتكن A و B و C نقط مختلفة و α و β و β عداد حقيقية

$$(*)$$
 $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \lambda \overrightarrow{GC} = \overrightarrow{0}$ نحدد G نحدد

الحواب

$$(\alpha + \beta + \lambda)\overrightarrow{AG} = \beta \overrightarrow{AB} + \lambda \overrightarrow{AC}$$
 لدينا (*) تكافئ

$$\overrightarrow{AG} = \frac{\beta}{(\alpha + \beta + \lambda)} \overrightarrow{AB} + \frac{\lambda}{(\alpha + \beta + \lambda)} \overrightarrow{AC}$$
 فان $\alpha + \beta + \lambda \neq 0$ خان -*

 $lpha \overrightarrow{GA} + eta \overrightarrow{GB} + \lambda \overrightarrow{GC} = \vec{0}$ ومنه توجد نقطة وحيدة

$$\beta \overrightarrow{AB} + \lambda \overrightarrow{AC} = \overrightarrow{0}$$
 فان $\alpha + \beta + \lambda = 0$ -*

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \lambda \overrightarrow{GC} = \vec{0}$$
 حيث G فانه لا توجد نقطة $\beta \overrightarrow{AB} + \lambda \overrightarrow{AC} \neq \vec{0}$ خان $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \lambda \overrightarrow{GC} = \vec{0}$ فان جميع نقط المستوى تحقق $\beta \overrightarrow{AB} + \lambda \overrightarrow{AC} = \vec{0}$ فان جميع نقط المستوى تحقق - إذا كان

2- <u>مىرھنة و تعرىف</u>

$$(C;\lambda)$$
 و $(B;\beta)$ و $(B;\beta)$ و $(A;\alpha)$ نقط متزنة من المستوى حيث $(B;\beta)$ و $(A;\alpha)$ توجد نقطة وحيدة $(C;\lambda)$ من المستوى حيث $(C;\lambda)$ و $(B;\beta)$ و $(B;\beta)$ و $(B;\beta)$ و $(B;\beta)$ و $(B;\beta)$

ملاحظة

إذا كان $(C;\lambda)$ و $(B;\beta)$ و $(A;\alpha)$ و النقط المتزنة $(A;\alpha)$ فان النقط المتزنة

3- <u>مركز ثقل ثلاث نقط</u>

تعریف

مركز ثقل ثلاث نقط A و B و C هو مرجح A و B و C المعينين بنفس المعامل الغير المنعدم. حاصية

(C;1) و (B;1) و (A;1) مرکز ثقل ثلاث نقط A و B و B مرکز ثقل ثلاث نقط

<u>خاصىە</u>

 \overline{ABC} متوسطات مثلث \overline{ABC} تتلاقی في نقطة وحيدة \overline{G} هي مركز ثقل المثلث $\overline{GA}+\overline{GB}+\overline{GC}=\overline{0}$ و تحقق

و $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AA'}$ ف \overrightarrow{B} و AC و AB و AC و AB و AC و BC و BC و BC و BC و BC

$$\overrightarrow{CG} = \frac{2}{3}\overrightarrow{CC}'$$
 g $\overrightarrow{BG} = \frac{2}{3}\overrightarrow{BB}'$

4- خاصىة

مرجح ثلاث نقط لا يتغير إذا ضربنا وزنيهما في نفس العدد الغير المنعدم.

5- <u>الخاصية المميزة</u>

بشاط

$$\alpha + \beta + \lambda \neq 0$$
 و β و β أعداد حقيقية حيث α

$$lpha \overrightarrow{MA} + eta \overrightarrow{MB} + \lambda \overrightarrow{MC} = (lpha + eta + \lambda) \overrightarrow{MG}$$
 تكافئ $(C;\lambda)$ تكافئ $(A;lpha)$ مرجح $(A;lpha)$ عن أن $(C;\lambda)$ عن أن $(A;lpha)$ عن أن $(A;lpha)$

$$(O;\vec{i};\vec{j})$$
لى معلم (P) الى المستوى -2

$$\overrightarrow{OG} = \frac{\alpha}{\alpha + \beta + \lambda} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta + \lambda} \overrightarrow{OB} + \frac{\lambda}{\alpha + \beta + \lambda} \overrightarrow{OC}$$
 أ/ بين أن $B(x_B; y_B)$ و $A(x_A; y_A)$ فا أن $A(x_A; y_A)$ علما أن $A(x_A; y_A)$ علما أن $A(x_A; y_A)$ أ

 $\alpha + \beta + \lambda \neq 0$ و β و β أعداد حقيقية حيث α تكون G مرجح $(A; \alpha)$ و $(B; \beta)$ و $(B; \beta)$ و أذا و فقط إذا كان لكل $(B; \alpha)$ $\alpha MA + \beta MB + \lambda MC = (\alpha + \beta + \lambda)MG$

6- إحداثيتا مرجح ثلاث نقط

في مستوى منسوب إلى معلم
$$\left(C\left(x_{C}; y_{C} \right) \right)$$
 . لتكن $\left(A\left(x_{A}; y_{A} \right) \right)$. لتكن $\left(C\left(x_{C}; y_{C} \right) \right)$. $\left(C\left(x_{C}; y_{C} \right) \right)$.

7- خاصية التجميعية

 $\alpha + \beta + \lambda \neq 0$ و β و β أعداد حقيقية حيث α

 $lpha \overrightarrow{MA} + eta \overrightarrow{MB} + \lambda \overrightarrow{MC} = (lpha + eta + \lambda) \overrightarrow{MG}$ ومنه $(C;\lambda)$ و (B;eta) و (A;lpha)

 $lpha \overrightarrow{MA} + eta \overrightarrow{MB} = (lpha + eta) \overrightarrow{MG_1}$ و (B; eta) تقبل مرجحا (B; eta) و (A; lpha) فان (B; eta) و (A; lpha) $(\alpha + \beta)\overrightarrow{MG_1} + \lambda \overrightarrow{MC} = ((\alpha + \beta) + \lambda)\overrightarrow{MG}$ وبالتالي

 $(C;\lambda)$ و $(G_1;\alpha+\beta)$ و رجح

 $(C;\lambda)$ بنفس الطريقة نبين أن G مرجح G مرجح G و $G(B;\beta)$ و $G(B;\beta)$ و $G(B;\beta)$ و *

 $(C;\lambda)$ بنفس الطريقة نبين أن G مرجح G مرجح G و G و G و G مرجح G بنفس الطريقة نبين أن G مرجح G بنفس الطريقة نبين أن G

مرجح ثلاث نقط لا يتغير إذا عوضنا نقطتين بمرجحهما معيناً بمجموع معامليهما الغير المنعدم.

تمرين

(C;2) و (B;1) و (A;1)(C;-1) و (B;2) و (A;-3)

تمرين

 $\overrightarrow{AD} = \frac{4}{5}\overrightarrow{AB}$ مثلث و G مرجح (B;4) و (B;4) و (A;1) مثلث و (B;4)أنشى الشكل بين أن D و G مستقيمية

 $\|2\overline{MA} + \overline{MB} + \overline{MC}\| = \|-2\overline{MA} + \overline{MB} + \overline{MC}\|$ مثلث. حدد مجموعة النقط M حيث ABC

III- مر<u>جح أربع نقط</u>

المستوى حيث لتكن $(A; \alpha)$ و $(B; \beta)$ و $(C; \lambda)$ و $(B; \beta)$ نقط متزنة من $\alpha + \beta + \lambda + \mu \neq 0$

 $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \lambda \overrightarrow{GC} + \mu \overrightarrow{GD} = \vec{0}$ توجد نقطة وحيدة $\,G\,$ من المستوى حيث $(D;\mu)$ و $(C;\lambda)$ و $(B;\beta)$ و $(A;\alpha)$ و النقطة G تسمى مرجح

إذا كان $0=\mu+\lambda+\mu=0$ فان النقط المتزنة(A;lpha) و (B;eta) و $(C;\lambda)$ و رجحا

2- <u>مركز ثقل أربع نقط</u>

مركز ثقل أربع نقط A و B و C و D هو مرجح A و B و C و D المعينين بنفس المعامل الغير Cالمنعدم.

<u>خاصىة</u>

(D;1) و (C;1) و (B;1) و (A;1) و (A;1) و (B;1) مرکز ثقل أربع نقط A و B و B و A

3- <u>خاصىة</u>

مرجح أربع نقط لا يتغير إذا ضربنا وزنيهما في نفس العدد الغير المنعدم.

4- الخاصية المميزة

مىرھنة

 $lpha+eta+\lambda+\mu
eq 0$ و eta و μ أعداد حقيقية حيث $\alpha+eta+\lambda+\mu
eq 0$ و $\alpha+eta+\lambda+\mu\neq 0$ و $\alpha+\lambda+\mu\neq 0$ و $\alpha+\mu\neq 0$ و

<u>!- خاصىة التحمىعية</u>

خاصىة

مرجح أربع نقط لا يتغير إذا عوضنا نقطتين بمرجحهما معينا بمجموع معامليهما الغير المنعدم أو عوضنا ثلاث نقط بمرجحها معينا بمجموع معاملاتها.

<u>تمرىن</u>

متوازي الأضلاع ABCD متوازي الأضلاع (C;1) و (C;2) و (B;1) و (A;1) و $G \in (AC)$ بين أن $G \in (AC)$