Machine learning principles and communications for material scientists

Lecture 4: ML experimental design

September 26, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Core of ML experimental design

- Clear objectives
 - What to predict? Why? Is ML the best answer? Human-in-the-loop
- Sufficient data collection
 - Aware of annotation/labeling cost
 - Beware of unintended biases
- Appropriate performance metrics
 - Match the objective and use case
- Be realistic + acknowledge limitation

Objectives

Predict or not predict

- What is the pain point?

- Predictive model vs good visualization
 - Knowledge replaces sample size
- Level of performance required for the task
 - Can imperfect model still be useful?
- Al-only vs human-in-the-loop

Source: Lunit CXR webpage

Focus on the pain point

Whole Slide Image (WSI) (150,000 x 150,000 pixels)

Individual mitotic figures

- Pain point = inspecting the whole image
- Imperfect object detector is good enough for estimating mitotic density

Human in the loop

Cell-level performance

Low precision AI due to small training data

- Provide top 10 cells with highest p(infected) in each whole slide image
- 100% diagnosis when considering only proposed cells

Feasibility

- **Theory**: Is there relationship between input and output?

Literature:

- Has something similar been done?
- What were the data and models used?

Pilot:

- Small-scale data
- Simple benchmark: Linear → How much can I fit the training data?
- Leave-one-out cross-validation
 - n 1 samples for training, 1 for validation

Data collection

Data-centric approach

Conventional model-centric approach:

Data-centric approach:

Sample size

Stocchero, M. et al. Sci. Rep. 9(1):6151 (2019)

- **Objective**: Capture every mode & capture variance
 - Scale with data dimension
- **Best source**: Literature review

Cost-driven consideration

- Input features
 - Cheap and informative: Yes
 - Costly but informative: Maybe
 - Cheap but uninformative as input
 - Error analysis
 - Is it costly to re-collect?
- Annotation / label
 - Cost vs quality
- Unlabeled data can be useful

Objective-driven consideration

- Proof-of-concept
 - Show feasibility / achievable performance of model family
- Internal use
 - Get a working model
 - Internal validation (same measurement device, data collection process)
- Public deployment
 - External validation: Performance guarantee
 - Calibration: Interpretable output probability

Manual labeling for chest x-ray

- 30,000 CXR images
 - From >200,000 total
- 18 radiologists
- 6 months

Shih, G. et al. Radiol Artif Intell 1(1):e180041 (2019)

Automated labeling for chest x-ray

Report Segment and Labels	Reasoning	
two views of chest demonstrate cariomegaly with	T-auto, in contrast to CheXpert, recognizes con-	
no focal consolidation ditions with misspellings in the report		
	omegaly" in place of "cardiomegaly".	
Cardiomegaly		
CheXpert: Blank X		
T-auto: Positive ✓		
<u>consistent with acute and/or</u> chronic pulmonary	T-auto incorrectly detects uncertainty in the	
edema	edema label, likely from the "and/or"; CheXpert	
	correctly classifies this example as positive.	
Edema		
CheXpert: Positive ✓		
T-auto: Uncertain 🗴		
Normal heart size, mediastinal and hilar contours	T-auto and CheXpert both incorrectly label this ex-	
are unchanged in appearance	ample as negative for enlarged cardiomediastinum;	
	CheXbert correctly classifies it as uncertain, likely	
Enlarged Cardiomediastinum	recognizing that "unchanged" is associated with	
CheXpert: Negative X	uncertainty of the condition. The condition can-	
T-auto: Negative X	not be labeled positive or negative without more	
CheXbert: Uncertain ✓	information.	

Smit, A. et al. https://arxiv.org/pdf/2004.09167

- Radiologist's written report: keywords + positive / negative / uncertain

Impact of labeling quality

Kim, D. et al. Nature Comm 13:1867 (2022)

- Automated label extractions were previously used as ground truth
- Significant performance improvement by label cleaning

Iterative labeling process

Automated labeling reduces time spent on easy samples

Beware of hard samples

Bernhardt, M. et al. Nature Comm 13:1161 (2022)

3x-5x increase in label error in hard CIFAR10 samples (depending on task)

Ensure labeling standard

https://landing.ai/tips-for-a-data-centric-ai-approach/

More is not always better

https://landing.ai/tips-for-a-data-centric-ai-approach/

- Bad, noisy, out-of-distribution data can fool any model

Beware of unintended biases

- Repeated measurements of the same samples do not fully count
- Ensure enough samples with different feature values

Validation scheme

Train-Val-Test

Roles of data split

- Training:
 - Represent data distribution
 - Find the best fit coefficients
- **Validation**: Find the best hyperparameters
- Internal Test: Performance evaluation
- External Test: Generalizability

Typical Size

Test or no test

- For a proof-of-concept on small dataset, test sets can be dropped
 - Does not capture the variance of real data

Cross-validation and bootstrapping

- Cross-validation = equal split & used once
 - Minority class may be too few in each validation set
- Bootstrapping = repeated sampling
 - Customizable class ratios

Small dataset issues

- Small test
 - Estimated performance cannot be trusted
- Small validation
 - Select sub-optimal model
 - Select a biased model
- Small training
 - Poorly-fitted model
 - Less of a problem for linear model
 - Severe problem for tree model

Small dataset situations

- **Example 1**: 223 negative, 77 positive
 - **Test**: 31 negative, 27 positive
 - **Validation**: 25 negative, 25 positive
 - **Training**: 167 negative, 25 positive
- **Example 2**: 48 negative, 23 positive
 - 2-fold cross-validation: 24 negative, 11 positive
 - Limited to logistic regression model
 - Limited to discussion of feature importance

Performance metrics

Regression metrics

- MSE, MAE, MAPE, R²
- Select to match use case
 - Error < 15%
 - Absolute error <1 unit

Classification metrics

Predicted

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Predicted < 0.5

Predicted > 0.5

- Accuracy = (TN + TP) / total
- Precision = TP / (TP + FP) = Positive predictive value
- Recall = TP / (TP + FN) = Sensitivity
- Specificity = TN / (TN + FP)

Classification use cases

- Screening for secondary inspection
 - Recall: Missed samples cannot be recovered
 - Improve precision during secondary inspection
- Taking action based on prediction
 - Precision
 - Whether to perform surgery
 - Negative-class precision
 - Whether to send patient home
 - Whether the patient will be allergic to drug

Balanced classification metrics

Accuracy

$$F_1 = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

-
$$F_{\beta} = \frac{1 + \beta^2}{\frac{1}{R_{\text{prod}} + R_{\text{prod}} + R_{\text{prod}} + R_{\text{prod}}}}$$
 give more weight to recall

Threshold-free metrics

- Sensitivity-specificity at every output threshold
- Area under the ROC curve (AUROC, AUC)
 - Random guess = 0.5
 - Perfect model = 1.0
- Pick threshold from use case
 - Specificity < 0.1
 - Sensitivity > 0.9

Precision-Recall curve

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

The best model can depend on use case

Do you need calibration?

Calibration curve

https://medium.com/analytics-vidhya/how-probability-calibration-works-a4ba3f73fd4d

- Calibration = correction of predicted probability
- Improve interpretability of the model

Data cost of calibration

- Estimate the true fraction of positive for EVERY OUTPUT RANGE
- 20 data points with predicted [0, 0.1]
- 20 data points with predicted [0.1, 0.2]

-

https://medium.com/analytics-vidhya/how-probability-calibration-works-a4ba3f73fd4d

Summary

- Clear objectives
 - What to predict? Why? Is ML the best answer? Human-in-the-loop
- Sufficient data collection
 - Aware of annotation/labeling cost
 - Beware of unintended biases
- Appropriate performance metrics
 - Match the objective and use case
- Be realistic + acknowledge limitation

Any question?

See you on Wednesday 10-11am