Projet DRONE

Gestion de L'OS embarqué

Pierre-jean TEXIER

Ecole Supérieure des Technologies Electronique Informatique Infographie

13 Février 2014

Sommaire

- Présentation du Projet
- Présentation Segment SOL
- Objectif
- 4 Analyse Fonctionelle
- Gestion de Projet
 - Cycle de vie Logiciel
 - Diagramme de GANTT
 - Diagramme PERT
 - Outils

- 6 Réalisations
 - Choix technologiques
 - Environnement
 - Kernel
 - Qt embedded
 - OpenCV embedded
 - Optimisation démarrage
 - Hardware
 - Subjectif
 - Power Management
 - Optimisation du Système
 - Conclusion

Présentation du Projet

Segment SOL

Présentation du Segment SOL

- Présentation
- L'équipe
- Matrice de compétence

Objectif

Tâches à réaliser

- OS Linux embarqué Fonctionnel
- Préparation de l'environnement graphique (Qt, openCV, ...)
- Optimisation du temps de boot hardware et subjectif
- Gestion de l'énergie

Objectif

Tâches à réaliser

- OS Linux embarqué Fonctionnel
- Préparation de l'environnement graphique (Qt, openCV, ...)
- Optimisation du temps de boot hardware et subjectif
- Gestion de l'énergie

Degré 1

Cycle de vie Logiciel

Cycle de vie Logiciel Diagramme de GANTT Diagramme PERT Outils

ROADMAP : Segment SOL

Phases	2013				2014			
	Sep.	Oct.	Т	Nov.	Déc.		Jan.	Fév.
Analyse des besoins CLIENT / Cahier des Charges fonctionnelle du système.								
Définition architecture système et sous- système.	<					Г		
Spécifications sous-systèmes et choix matérielles et logicielles.				\Leftrightarrow		Г		
Conception et réalisation des composants spécifiques logicielles et matérielles.						F	\Rightarrow	
Tests unitaire du software, Qualifications des composants spécifiques hardwares.				\Leftrightarrow	<	 	}	
Test d'intégration des sous-ensembles et sous-systèmes								
Validation / Qualification du système complet.								>

Suivi des dépenses : Segment SOL

Gantt

Dans les jalons le long du projet

Cycle de vie Logiciel Diagramme de GANTT Diagramme PERT Outils

Pert

Cycle de vie Logiciel Diagramme de GANTT Diagramme PERT **Outils**

Outils mis en places

hoix technologiques invironnement (cernel) (ternel) (t

Réalisations

Choix technologiques

hoix technologiques invironnement (ernel)t embedded)penCV embedded)ptimisation démarrage ower Management

- Choix technologiques
- 2 Environnement

hoix technologiques invironnement (ernel)t embedded)penCV embedded)ptimisation démarrage ower Management owtimisation du Système

- Choix technologiques
- 2 Environnement
- & Kernel

hoix technologiques nvironnement ernel t embedded penCV embedded ptimisation démarrage own Management ptimisation du Système

- Choix technologiques
- 2 Environnement
- & Kernel
- Qtembedded

hoix technologiques nvironnement ernel it embedded penCV embedded ptimisation démarrage ower Management ptimisation du Système

- Choix technologiques
- 2 Environnement
- & Kernel
- Qtembedded
- OpenCV

hoix technologiques
nvironnement
ernel
t embedded
penCV embedded
ptimisation démarrage
ower Management
ptimisation du Système

- Choix technologiques
- 2 Environnement
- & Kernel
- Qtembedded
- OpenCV
- Optimisation Temps de Boot

hoix technologiques
nvironnement
ernel
t embedded
penCV embedded
ptimisation démarrage
ower Management
ptimisation du Système

- Choix technologiques
- 2 Environnement
- Kernel
- Qtembedded
- OpenCV
- Optimisation Temps de Boot
- Power Management

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management

Choix technologiques

- Choix du 'System On Chip'
- Choix de la carte de développement

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management

Choix technologiques

- Choix du 'System On Chip'
- Choix de la carte de développement

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation de Suprabage

Environnement

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Chaine de compilation croisée

• gcc-linaro-arm-linux-gnueabihf-4.7-linux

Pourquoi armhf?

FPU neon-vfvp4

Pourquoi Linaro?

- CodeSourcery
- Crosstool-ng
- Buildroot

) Q (3

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Environnement

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management

Kernel

Informations

- Version 3.4.67
- Non mainline

▶ Lien github

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation de Système

Qt embedded

Portage sur cible Arm Cortex A7:

• Qt embedded 4.8.2

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation de Système

Qt embedded

Portage sur cible Arm Cortex A7:

- Qt embedded 4.8.2
- Librairie touchscreen tslib

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Qt embedded

Portage sur cible Arm Cortex A7:

- Qt embedded 4.8.2
- Librairie touchscreen tslib
- Divers exemples Qt4

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management

OpenCV embedded

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Hardware

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Subjectif

Logo de base

Logo personnalisé

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Power Management

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Conclusion

• Apport ...