Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022	
Team ID	PNT2022TMID44876	
Project Name	Project IoT Based Smart Crop Protection System for	
	Agriculture	
Maximum	4 Marks	
Marks		

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR NO.	Functional Requirement	Sub Requirement(Story / Sub-Task)
	(Epic)	
FR-1	User classification	The user has to classify crops such as
		food crops like rice, wheat and
		industrial crops like cotton, tobacco.
FR-2	User adoption	The user has to adopt new technology
		for boosting production.
FR-3	User detection	The user has to detect the ratio of
		defected crops on land.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR NO.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The sensors used in
		agriculture provides data that
		helps farmers to monitor and

		optimize crops with
		environmental conditions
		and challenges.
NFR-2	Security	The system is to promote
11111 2	Security	more permanent and viable
		farming operations over the
		long term by strengthening
		the farming community's
		sense of security in land use
		and the right to farm.
NFR-3	Doliobility	The system is highly
NFK-3	Reliability	
		reliable. They are easy to
		operate and increasing
		demand for food with
		minimum resources such as
NIED 4	D 4	water and seeds.
NFR-4	Performance	Sensors empower farmers to
		react quickly and
		dynamically maximize crop
		performance. It is cost
		effective and efficient.
NFR-5	Availability	The system is simple and
		easy understand by farmers
		to improve crop production.
		so it is used by all countries
		with different equipments.
NFR-6	Scalability	The usage of temperature
		sensor predicts accurate
		weather conditions. It also
		predicts water level and
		moisture content in field.