Econ 711 – Fall 2019 – Problem Set 6 – Solutions

Question 1. Rationalizing Demand

Suppose you observe the following data on prices, wealth, and chosen consumption bundles for a certain consumer at four points in time:

w	p	x
100	(5, 5, 5)	(12, 4, 4)
100	(7, 4, 5)	(9, 3, 5)
100	(2, 4, 1)	(27, 9, 10)
150	(7, 4, 5)	(15, 5, 5)

(a) Are the data consistent with Walras law?

Let (w_i, p^i, x^i) refer to the i^{th} observation. Walras' Law requires $p^i \cdot x^i = w_i$ for each i; it's mechanical to check that this holds for each observation.

(b) Can these data be rationalized by a continuous, monotonic and concave utility function?

We know from Afriat that the data can be rationalized by a continuous, monotonic, concave utility function if and only if it satisfies GARP. We can use the hint to reduce the set of costs we need to calculate: since $x^3 > \{x^1, x^2, x^4\}$ and $x^4 > \{x^1, x^2\}$, we know that $p \cdot x^3 > p \cdot x^4 > \{p \cdot x^1, p \cdot x^2\}$ for any $p \gg 0$.

Looking at the data, then:

- $p^1 \cdot x^2 = 85 < p^1 \cdot x^1$, so $x^1 \succ^D x^2$; since $x^3 \gg x^1$ and $x^4 \gg x^1$, x^3 and x^4 were not affordable at (w_1, p^1) , so the choice of x^1 does not reveal anything about x^3 or x^4
- $p^2 \cdot x^1 = 120 > p^2 \cdot x^2$, and $x^3 > x^2$ and $x^4 > x^2$, so x^2 was not revealed preferred to any other bundle
- $x^3 > \{x^1, x^2, x^4\}$, so $p^3 \cdot x^i < p^3 \cdot x^3$ $(i \in \{1, 2, 4\})$, so $x^3 \succ^D \{x^1, x^2, x^4\}$
- $x^3 > x^4 > \{x^1, x^2\}$, so $x^4 \succ^D \{x^1, x^2\}$

Putting it together, we see that

$$x^3 \succ x^4 \succ x^1 \succ x^2$$

and there are no cycles; so the data satisfy GARP, and are therefore rationalizable.

Question 2. Aggregating Demand

Suppose there are n consumers, and consumer $i \in \{1, 2, ..., n\}$ has indirect utility function

$$v^i(p, w_i) = a_i(p) + b(p)w_i$$

where $\{a_i\}_{i=1}^n$ and b are differentiable functions from \mathbb{R}_+^k to \mathbb{R} .

(a) Use Roy's Identity to calculate each consumer's Marshallian demand $x^{i}(p, w_{i})$.

From Roy's identity, consumer i's demand for product j is

$$x_j^i(p,w) = -\frac{\frac{\partial v^i}{\partial p_j}}{\frac{\partial v^i}{\partial w}} = -\frac{1}{b(p)} \left(\frac{\partial a_i}{\partial p_j} + w_i \frac{\partial b}{\partial p_j} \right)$$

(b) Calculate the Marshallian demand X(p, W) of a "representative consumer" with wealth W and indirect utility function

$$V(p, W) = \sum_{i=1}^{n} a_i(p) + b(p)W$$

and show that $X(p, \sum_{i=1}^{n} w_i) = \sum_{i=1}^{n} x^i(p, w_i)$.

Again applying Roy's Identity,

$$X_{j}(p,W) = -\frac{\frac{\partial V}{\partial p_{j}}}{\frac{\partial V}{\partial W}} = -\frac{1}{b(p)} \left(\sum_{i} \frac{\partial a_{i}}{\partial p_{j}} + W \frac{\partial b}{\partial p_{j}} \right)$$

Plugging in $W = \sum_{i} w_{i}$,

$$X_{j}(p,W) = -\frac{1}{b} \left(\sum_{i} \frac{\partial a_{i}}{\partial p_{j}} + \sum_{i} w_{i} \frac{\partial b}{\partial p_{j}} \right) = \sum_{i} \left(-\frac{1}{b} \left(\frac{\partial a_{i}}{\partial p_{j}} + w_{i} \frac{\partial b}{\partial p_{j}} \right) \right) = \sum_{i} x_{j}^{i}(p,w_{i})$$

so demand aggregates.

Question 3. Homothetic Preferences

Complete, transitive preferences \succeq on \mathbb{R}^k_+ are called homothetic if for all $x, y \in \mathbb{R}^k_+$ and all t > 0,

$$x \gtrsim y \qquad \leftrightarrow \qquad tx \gtrsim ty$$

(a) Show that if preferences are homothetic, Marshallian demand is homogeneous of degree 1 in wealth: for any t > 0, x(p, tw) = tx(p, w).

Suppose $x \in x(p, w)$; we'll show that $tx \in x(p, tw)$.

- To show $tx \in x(p, tw)$, we need $tx \in B(p, tw)$ and $tx \succeq y$ for any $y \in B(p, tw)$
- Since $x \in x(p, w)$, $x \in B(p, w)$, so $p \cdot x \le w$; so $p \cdot (tx) = t(p \cdot w) \le tw$, and therefore $tx \in B(p, tw)$

- For any $y \in B(p, tw)$, we know $p \cdot y \le tw$, or $p \cdot \frac{y}{t} \le w$, so $\frac{y}{t} \in B(p, w)$
- Since $x \in x(p, w)$, we know that $x \succeq z$ for any $z \in B(p, w)$; since $\frac{y}{t} \in B(p, w)$, this means $x \succeq \frac{y}{t}$
- If preferences are homothetic, then $x \succsim \frac{y}{t}$ implies $tx \succsim y$
- So $tx \in B(p, tw)$, and $tx \succeq y$ for every $y \in B(p, tw)$, so $tx \in x(p, tw)$, finishing the proof.
- (b) Show that if preferences are homothetic, monotone, and continuous, they can be represented by a utility function which is homogeneous of degree 1. (Hint: try the utility function we used to prove existence of a utility function in class!)

Recall the proof of existence of a utility representation in class, where we defined $\alpha(x)$ as the unique value of α for which $x \sim (\alpha, \alpha, \dots, \alpha)$, and showed that if preferences were continuous and monotone, $u(x) = \alpha(x)$ was well-defined and represented the preferences \succeq . With homothetic preferences, this utility function is homogeneous of degree 1:

- Suppose that $u(x) = \alpha$, which means that $x \sim \alpha e$.
- If preferences are homothetic, then $x \sim \alpha e$ implies $tx \sim t(\alpha e) = (t\alpha)e$
 - if $x \sim \alpha e$, then $x \succeq \alpha e$ and $\alpha e \succeq x$
 - homothetic preferences means $tx \gtrsim t\alpha e$ and $t\alpha e \gtrsim tx$, so $tx \sim t\alpha e$
- So if $u(x) = \alpha$, then $u(tx) = t\alpha$, meaning u(tx) = tu(x), proving the utility function is homogeneous of degree 1.
- (c) Show that given (a) and (b), the indirect utility function takes the form v(p, w) = b(p)w for some function b.

For each (p, w), let $\hat{x}(p, w)$ be some arbitrary selection from x(p, w) (i.e., \hat{x} is a single-valued choice from Marshallian demand), so that $v(p, w) = u(\hat{x}(p, w))$. Then

$$v(p, w) = u(\hat{x}(p, w)) = u(w\hat{x}(p, 1)) = wu(\hat{x}(p, 1)) = wv(p, 1)$$

so if we let b(p) = v(p, 1), then v(p, w) = b(p)w.

(To put it in words: first solve the consumer problem with wealth normalized to 1, and let b(p) be the resulting indirect utility. By (a), if we multiply wealth by a constant w, Marshallian demand gets multiplied by w; by (b), if we consume a constant w times x, utility gets multiplied by the same constant w, so indirect utility is w times b(p).)

Question 4. Quasilinear Utility

Let $X = \mathbb{R} \times \mathbb{R}^{k-1}_+$ (allow positive or negative consumption of the first good), suppose utility

$$u(x) = x_1 + U(x_2, \dots, x_k)$$

is quasilinear, and fix the price of the first good $p_1 = 1$.

(a) Show that Marshallian demand for goods 2 through k do not depend on wealth.

For simplicity, define $y = (x_2, ..., x_k)$, so that $x = (x_1, y)$, and let $p_y = (p_2, ..., p_k)$. Then given the normalization $p_1 = 1$, we can write Marshallian demand as

$$x(p,w) = \arg\max_{x \in X} u(x)$$
 subject to $p \cdot x \le w$
= $\arg\max_{(x_1,y) \in X} \{x_1 + U(y)\}$ subject to $x_1 + p_y \cdot y \le w$

Since u is strictly increasing in x_1 , preferences are locally non-satiated, so the budget constraint will hold with equality, and we can rewrite the consumer problem as

$$\max_{(x_1,y)\in X} \{x_1 + U(y)\} \quad \text{subject to} \quad x_1 = w - p_y \cdot y$$

$$= \max_{(x_1,y)\in X} \{w - p_y \cdot y + U(y)\}$$

$$= w + \max_{(x_1,y)\in X} \{-p_y \cdot y + U(y)\}$$

So demand for the last k-1 goods is the solution to

$$\max_{y>0} \left\{ -p_y \cdot y + U(y) \right\}$$

which does not depend on w.

(If we let $y(p_y)$ denote the solution to this last problem, note that the result depends on the fact that the bundle $(w - p_y \cdot y(p_y), y(p_y))$ is feasible. In a standard problem with the constraint $x_1 \geq 0$, this won't always be true. Here, we eliminated the nonnegativity constraint on x_1 to get around the problem. If x_1 were constrained to be positive, then the demand for goods 2 through k would only be independent of wealth if w were high enough for the constraint on x_1 to not bind.)

(b) Show that indirect utility can be written as $v(p, w) = w + \tilde{v}(p)$ for some function \tilde{v} .

Well.

$$v(p,w) \ = \ \max_{(x_1,y) \in X} \left\{ w - p_y \cdot y + U(y) \right\} \ = \ w + \max_{y \geq 0} \left\{ -p_y \cdot y + U(y) \right\}$$

so we can simply define

$$\tilde{v}(p) = \max_{y>0} \left\{ -p_y \cdot y + U(y) \right\}$$

and we're done.

(c) Show the expenditure function can be written as e(p, u) = u - f(p) for some function f.

Since we already have $v(p, w) = w + \tilde{v}(p)$, we can note that v(p, e(p, u)) = u, meaning

$$u = v(p, e(p, u)) = e(p, u) + \tilde{v}(p)$$

and therefore

$$e(p, u) = u - \tilde{v}(p)$$

(d) Show that the Hicksian demand for goods 2 through k does not depend on target utility.

Working from $e(p, u) = u - \tilde{v}(p)$, we get

$$h_i(p, u) = \frac{\partial e}{\partial p_i}(p, u) = \frac{\partial (u - \tilde{v}(p))}{\partial p_i} = -\frac{\partial \tilde{v}}{\partial p_i}(p)$$

which does not depend on u. Or alternatively, for good $i \geq 2$, we already showed that Marshallian demand x_i does not depend on wealth, and therefore

$$h_i(p, u) = x_i(p, e(p, u)) = x_i(p, e(p, u')) = h_i(p, u')$$

for any two target utility levels u and u'.

(e) Show that Compensating Variation and Equivalent Variation are the same when the price of good $i \neq 1$ changes, and also equal to Consumer Surplus.

For the first part,

$$CV = \int_{p_i^1}^{p_i^0} h_i(p, u^0) dp_i = \int_{p_i^1}^{p_i^0} h_i(p, u^1) dp_i = EV$$

since we just showed Hicksian demand for good $i \neq 1$ does not depend on u, and therefore $h_i(p, u^0) = h_i(p, u^1)$.

For the last part, since

$$x_i(p, w) = h_i(p, v(p, w))$$

and h_i does not depend on u,

$$x_i(p,w) = h_i(p,v(p,w)) = h_i(p,u^0)$$

(or $h_i(p, u^1)$), so

$$CS = \int_{p_i^1}^{p_i^0} x_i(p, w) dp_i = \int_{p_i^1}^{p_i^0} h_i(p, u^0) dp_i = CV = EV$$