Registration No:

١	-									
ı	2	7	^	1	n	1	11	-	-	-
ı	0	0	0		2		4	0	6	5
ı										

Total Number of Pages: 02

B. Tech / Integrated Dual Degree (B. Tech & M.Tech) RMA1A001

1st Semester Regular/Back Examination: 2022-23

Mathematics - I

BRANCH(S): All branches

CE, CSE, ECE, EE, ME (Integrated Dual Degree)

Time: 3 Hour Max Marks: 100 Q.Code: L646

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1

Answer the following questions:

 (2×10)

- Find the asymptotes of the curve $y = \frac{x^2}{x^2 + 1}$ parallel to the x-axis
- What is the curvature of the circle $x^2 + y^2 = 4$ at the point (2, 0)?
- What is the value of $\beta(2,3)$?
- When the differential equation M(x, y)dx + N(x, y)dy = 0 is exact?
- Solve the differential equation $\frac{dy}{dx} = \sin x$.
- Write the solution of a 2nd order homogeneous ODE if the roots of the auxiliary (characteristic) equation are $\lambda = 1 + 2i$ & 1 2i.
- Let the roots of the auxiliary (characteristic) equation of $y'' + ay' + by = e^{2x}$ are 2 and 3. Then what is the choice for $y_p(x)$ for this equation?
- b) Under what conditions a function f(t), defined for t > 0 will have a Laplace transform?
 - i) What is the Laplace transform of the unit step function u(t-a)?

What is Laplace inverse of $\frac{1}{(s-1)(s-2)}$?

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of (6 × 8 Twelve)

- a) Find all the asymptotes of the curve $y(y-1)^2 x^2y = 0$.
- b) Show that $3\sqrt{3}/2$ is the least value of the $|\rho|$ for $y = \ln x$.
- c) Show that $\beta(p+1,q) + \beta(p,q+1) = \beta(p,q)$.

- d) Solve $xy' = \frac{1}{2}y^2 + y$.
- e) Solve $x^3y' + 3x^2y 1 = 0$, y(1) = -1.
- f) Solve y'' 2y' 3y = 0, y(0) = 2, y'(0) = 14
- g) Solve $y'' 4y' + 4y = x^2 e^x$.
- h) Solve y' = y + x by power series method.
- i) Show that $J'_0(x) = -J_1(x)$.
- j) Solve y'' + 2y' + 2y = 0, y(0) = 1, y'(0) = -3 by Laplace transform.
- k) Find out the given convolution. $\sin t * \cos t$.
 - Solve the integral equation $y(t) + \int_{0}^{t} (t \tau)y(\tau)d\tau = 1$.

Find the absolute maxima and minima of the function
$$f(x,y) = x^2 + xy + y^2 - 6x + 2 \text{ on the rectangular region } 0 \le x \le 5, -3 \le y \le 0.$$

Q4 Solve
$$y'' + 4y = 16\cos 2x$$
, $y(0) = 0$, $y'(0) = 0$ (16)

Q5 Solve
$$y'' - y' + xy = 0$$
 by power series method. (16)

Q6 Solve
$$y'' + 2y' + 2y = e^{-t} + 5\delta(t-2)$$
, $y(0) = 0$, $y'(0) = 1$ (16)

Registration No :					

Total Number of Pages: 02

B.Tech **RMA1A001**

1st Semester Regular/Back Examination 2019-20

MATHEMATICS –I

BRANCH: AEIE, AERO, AG, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, CST, ECE, EEE, EIE, ELECTRICAL, ELECTRICAL & C.E, ELECTRONICS & C.E, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING,

MME, PE, PLASTIC, PT, TEXTILE

Max Marks: 100 Time: 3 Hours Q.CODE: HRB563

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Q1 Only Short Answer Type Questions (Answer All-10) (2×10)

- What is the practical significance of general solution and particular solution of a differential equation?
- What do you mean by integrating factor? How it helps to solve differential equations? b)
- Find the parallel asymptotes of $y^2x a^2(x-a) = 0$ C)
- d) What is the relation between curvature and radius of curvature of the curve?
- What is the Wronskian? What role does it play in getting solution of a differential equation.
- f) Write the Generating function of Legendre's Polynomial
- Prove that $\beta(m,n) = \beta(n,m)$ g)
- h) What does the convergence of a power series means? Why is it important?
- Write down Second sifting theorem for Laplace transform and inverse Laplace transform with examples.
- State convolution theorem. j)

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6×8)

Show that the eight points of intersection of the curve $xy(x^2-y^2)+x^2+y^2=a^2$. and its asymptotes lie on a circle whose center is at the origin

Solve the following differential equation b)

$$(2x + 3)^2y'' - (2x + 3)y' - 12y = 6x$$
, where $y' = \frac{dy}{dx}$.

c) Prove that $L^{-1}\left(\frac{s^2}{s^4 + a^4}\right) = \frac{1}{2a}$ (coshat sinat + sinhat cosat)

- Find the Laplace Transform of $f(t) = \left(\frac{1 e^{-t}}{t}\right)$
- e) . Express $J_{\underline{7}}$ (x) in terms of sine and cosine functions.
- Solve the differential equation: $(D^2 + 6D + 8)y = e^{-2x} \cdot \sin 2x$

- Solve the differential equation: $(b^2 + 6b^2 + 6)y = c^2 \cdot \sin 2x$ Solve the differential equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos 2y$ Solve: $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$ Solve the equation $(1-x^2)\frac{d2y}{dx^2} + \frac{dy}{dx} + 4y = 0$, by power series method
- j) Prove that the center of curvature at points of a cycloid lie on an equal cycloid

- **k)** Solve the differential equation by using method of undetermined coefficient : $(D^2 + 6D + 8)y = x + e^{-2x} + \cos 2x$.
- 1) Solve the differential equation $y'' + y = x \sin x$, by using variation of parameter method.

- Find all the asymptotes of the cubic polynomial $x^3 2y^3 + xy(2x y) + y(x y) + 1 = 0$ and show that cut the curve in three point which lie on the straight line x y + 1 = 0
- State and prove Rodrigues formula and hence derive $P_4(x)$, in terms of Polynomial (16) Function.
- Find the point of the curve $y = e^x$, at which the curvature is maximum and show that the tangent at the point forms with the axes of co-ordinates a triangle whose sides are in the ratio $1:\sqrt{2}:\sqrt{3}$.
- Q6 Solve the differential equation using Laplace transform (16) $y'' + 4y' + 4y = 6e^{-t}$, y(0) = -2, y'(0) = 8.

320

1st Semester Regular / Back Examination: 2021-22 MATHEMATICS-I

BRANCH(S): AEIE, AERO, AG, AME, AUTO, BIOMED,

BRANCH(S): AEIE, ALICA SEAIME, CST, ECE, EEE, EIE, ELECTRICAL,
BIOTECH, CHEM, CIVIL, CSE, CSEAI, CSEAIME, CST, ECE, EEE, EIE, ELECTRICAL,
ELECTRICAL & C.E., ELECTRONICS & C.E., ENV, ETC, IT, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PE, PLASTIC, PT

320

Time: 3 Hour Max Marks: 100 Q.Code: OF596

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Answer the following questions: Q1

a) Find the asymptotes, parallel to the axis of x of the curve (2×10)

 $y^4 + x^2y^2 + 2x^2y + 2xy^2 - 4x^2 - y + 1 = 0.$

Find the radials of curvature for the catenary $s = c \tan \psi$.

- How Beta and Gamma functions are related? c)
- d) Find the Wronskian $W(x^4, x^4 \ln x)$.
- Define Bernoulli differential equation. e)
- What is exact differential equation?
- Write the Legendre polynomial of degree three.
- Find the integrating factor of the differential equation $y dx + (x^2y x)dy = 0$.
- Find the inverse Laplace transformation of the function $\frac{7}{(s-1)^2}$ 320
- Find the convolution $t * e^t$ by integration. j)

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of (6×8) Twelve)

a) Find all the asymptotes of

$$y^3 - x^2y - 2xy^2 + 2x^3 - 7xy + 3y^2 + 2x^2 + 2x + 2y + 1 = 0.$$

- b) Evaluate the integral $\int_0^\infty e^{-ax} \cos bx \, dx$ using Gamma function.
- c). Solve the following ordinary differential equation by method of variation of parameter: $\frac{d^2y}{dx^2} + y = \cos x + \sec x$.
- d). Find the maxima and minima of the function $f(x,y) = 21x - 12x^2 - 2y^2 + x^3 + xy^2.$
- Solve the differential equation $\frac{d^2y}{dx^2} y = 2e^{-x^2/20}$ 320
- f). Find the value of ρ for the curve $x = s \cos(\frac{s}{a})$, $y = a \sin(\frac{s}{a})$.
- Solve the ordinary differential equation $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + 6y = 0$.

- h), Find the indicial equation of the Bessel's differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 v^2)y = 0, 320 320$ i), Solve the differential equation $\frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 2y = 0 \text{ by power series method.}$ j) Using Laplace transform, solve the initial value problem: $\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 8y = e^{-3t} e^{-5t}, y(0) = 0 = y'(0).$
- k) Using Laplace transform solve the integral equation $y(t) = te^{t} 2e^{t} \int_{-\tau}^{t} e^{-\tau} y(\tau) d\tau.$ 320
- 1) Using convolution, find inverse f(t) of $F(s) = \frac{s}{(s^2 + \pi^2)^2}$.

320

Only Long Answer Type Questions (Answer Any Two out of Four)

- Q3 320 Show that the following improper integral is convergent: 320 320 (16) $\int_0^1 t^{x-1} (1-t)^{y-1} dt, x > 0, y > 0.$
- Determine the characteristic (auxiliary) equation of the second order Euler Cauchy type ordinary differential equations. Solve the initial value problem $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0, \ y(1) = 4, y'(1) = -2. \ \text{https://www.bputonline.com}$
- Q5. Obtain Legendre polynomial of degree n, from the Legendre differential equation (1- x^2) $\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + m(m+1)y = 0$, m is given constant. (16)
- Solve the initial value problems $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = \begin{cases} 1, 0 < t < a \\ 0, t > a \end{cases}, y(0) = 0 = y'(0).$ (16)

https://www.bputonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रूपये पायें,

Paytm or Google Pay सं

Reg	istra	ation No :													
Tota												B.Tech BS1101			
	ELE	H : AEIE, AE CTRICAL, E E, MECH, ME Answer Ques The	NV, E TTA, stion	TC, MET	O, BIO FASI TAM	OMEI HION IIN, M Tim Max Q.CO	D, BI , FA' IINE ne : 3 x Ma ODE com	OTE T, IE RAL, B Hou rks : : HB puls	CH, CE, IT, MIN 170 170 170 170 170 170 170 170 170 170	ITE, ING, and a	MAN MME	NUFA E, PE	C, MA , PLAS	NUTE STIC, T	CH, EXTILE
Q1	a) b) c) d) e) f) g) h) i)	Answer the f Define rectilin Define homog What do you equations? Define curvat Define Cauch Define a Unita What is the ra Define Legen How can you Explain the c than one solu	ear Asgeneous measture and arry manning of dre economic and arry manning and arry arry arry arry arry arry arry arr	symp us an n by and ce omoge atrix a a ma quatic real:	totes. d nor integ enter ceneou and gi trix? V on and squar	n-homoreting of Curus line ve exa Write id Lege e mat	ogen yatur ar Di ample its ba endre rix is	tor? I e fferen es sic in polyn ortho	tial ed nporta nomia gonal	it hel quatio ince? il ?	ps to	solv			(2 x 10)
Q2	a) b)	Find the rank									[2 ·	1 1]			(5) (5)
Q3	a) b)	Solve the equipment of the solve in the solv	ation equati	(1 + :	$(x^2)\frac{d^2}{dx}$	$\frac{y}{x^2} + x$	$\frac{dy}{dx} + 4$	4 <i>y</i> = (0, by _l	oowei	r serie			n and	(5) (5)
Q4	a) b)	Solve the diffe									where	e y	$\frac{dy}{dx}$.		(5) (5)
Q5	a) b)	Solve the parameter. Solve the difference of the control of the co									by u	ısing	variatio	on of	(5) (5)

- Show that the radius of curvature of any point of the asteroid x=a cos³t,y=a sin³t Q6 a) (5) is equal to three times the length of the perpendicular from the origin to the tangent
 - **b)** Solve: $(D^2 + 6D + 8)y = x + e^{2x} + \sin hx$ (5)
- **Q7** a) Solve: $(y(1+\frac{1}{x}) + \cos y) dx + (x + \log x x \sin y) dy = 0$ (5)
 - b) Solve the following system of linear equation by Gauss elimination method: (5) 10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12.
- Q8 Write short Notes on any TWO: (5×2)
 - a) Exact Differential Equation

 - b) Bessel's Equationc) Linear independent and linear dependent.
 - d) LU-Decomposition

Tota	ıl Nu	ımber of Pages: 02	B.Tech BS1101
BR	ANC	1 th Semester Back Examination 2017-18 MATHEMATICS - I CH: AEIE, AERO, AUTO, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICA	
	FA	ASHION, IEE, IT, MANUTECH, MECH, METTA, MINING, MME, PE, PLAST Time: 3 Hours Max Marks: 70	ГІС
		Q.CODE: B756 Answer Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks.	
Q1		Answer the following questions:	(2 x 10)
	a)	Find the Radius of convergence of $\sum_{n=1}^{\infty} \frac{x^{3n}}{8^n}$?	
	c)	Find the radius of curvature to the circle $x^2 + y^2 = 16$? Find the integrating factor of 2cosy $-\sin y$ dy=0?	
	d) e)	Define rank of the matrix? Write the differential equations whose solutions are e^x and e^{2x} ?	
	f)	Evaluate $(\frac{3}{2})$?	
	g) h)	Prove that product of two unitary matrix is unitary? Find the General solutions of $(D^2 - 1)y = 0$; $D = \frac{d}{dx}$?	
	i)	Check whether the vector (1, 2,0), (1,1,1), (2,2,2) and (0,0,0) are	
	-,	Linearly independent or linearly dependent?	
	j)	Find Asymptotes parallel to both the axis of the curve $y^3x + x^4 + 2xy + 1 = 0$	
Q2	a)	Find the radius of curvature at any point $x = \frac{\pi}{4}$ of the curve $y = 4\sin 2x - \sin 4x$?	(5)
	b)	Find all asymptotes of the curve $x^2 + 3xy + 2y^2 + 3x - 2y + 1 = 0$?	(5)
Q3	a)	Prove the Rodrigue's formula ?	(5)
	b)	Prove that $J_{-0.5}(x) = \sqrt{\frac{2}{\pi x}} \cos x$, $j_n(x)$ be the Bessel's functions	(5)
Q4	a)	Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x} \log x$	(5)
		Solve the initial value problem $\frac{dy}{dx} + y \cos x = \sin 2x, y(\pi) = 0$	(5)
		ax s	
Q5	a)	By using method of undetermined coefficient solve $(D^2 - 3D + 2)y = e^x + e^{2x}; D = \frac{d}{dx}$?	(5)
	b)	Solve $y'' - 4y' + 5y = e^x cosec x$ by method of variation of the parameter?	(5)
Q6	a)	Find the rank of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 4 & 4 \\ -3 & 4 & 4 \end{bmatrix}$?	(5)
	b)	L-3 4 4 J Solve the system of linear equations $4y + 3z = 8$, $2x - z = 2$, $3x + 2y = 5$ by Gauss elimination method?	(5)

Registration No:

- Q7 a) Diagonalize the matrix $P = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ (5)
 - b) Find the type of conic section represented by the quadratic form $4x^2 + 12xy + 13y^2 = 16$? (5)
- (5)
- Q8 a) Solve the initial value problem $x^2y'' xy' + y = \ln x$, y(1) = 3, y'(1) = 0? b) Prove that the eigenvalues of a hermitian matrix are real? (5)

Registration No :							
Total Number of Pages	s : 02						B.Tech
_							15BS1101

1st Semester Back Examination 2019-20

MATHEMATICS - I

BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE

> Max Marks: 100 Time: 3 Hours **Q.CODE: HB708**

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1 Only Short Answer Type Questions (Answer All-10) (2×10)

- a) Define rectilinear Asymptotes.
- b) Define homogeneous and non-homogeneous differential equation.
- What do you mean by integrating factor? How it helps to solve differential equations? c)
- d) Define curvature and center of Curvature.
- Define Cauchy's homogeneous linear Differential equation. e)
- f) Define a Unitary matrix and give examples.
- What is the rank of a matrix? Write its basic importance? g)
- Find the Legendre polynomial $P_1(x)$ and $P_2(x)$. h)
- i) How can you say a real square matrix is orthogonal?
- Explain the condition for which a system of linear equation will possess more than one j) solution.

Q2 (6×8)

- a)
- Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

 Find the rank of the matrix $A = \begin{bmatrix} 4 & 2 & 3 \\ 8 & 4 & 6 \\ -2 & -1 & -1.5 \end{bmatrix}$ Solve the equation $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 4y = 0$, by power series method.

 Reduce the equation $siny \frac{dy}{dx} = cosx(2cosy sin2x)$ to a linear equation and hence solve it.
- Solve the differential equation: $xy \frac{dy}{dx} = 1 + x + y + xy$. d)
- e) Solve the differential equation: $y'' + 4y' + 4y = e^x \sin 2x$, where $y' = \frac{dy}{dx}$
- Solve the following differential equation f)

$$(2x + 3)^2y'' - (2x + 3)y' - 12y = 6x$$
, where $y' = \frac{dy}{dx}$.

- $(2x+3)^2y'' (2x+3)y' 12y = 6x$, where $y' = \frac{dy}{dx}$. Obtain the rectilinear asymptotes of the curver $(e^{\theta} 1) = a(e^{\theta} + 1)$ g)
- Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ h)
- Solve the differential equation, $\frac{dy}{dx} + x \sin 2y = x^3 \cos 2y$ Solve the differential equation $y'' + y = \cot x$, by using variation of parameter method. i)
- j)
- Prove that the center of curvature at points of a cycloid lie on an equal cycloid.
- Solve: $\left(y\left(1+\frac{1}{x}\right)+\cos y\right)dx+\left(x+\log x-x\sin y\right)dy=0.$ I)

- Find the point of the curve $y = e^x$, at which the curvature is maximum and show that the tangent at the point forms with the axes of co-ordinates a triangle whose sides are in the ratio $1:\sqrt{2}:\sqrt{3}$.
- Similar matrices have equal spectra verify this for A and $B = P^{-1}AP$, Where (16)

$$A = \begin{bmatrix} 10 & -3 & 5 \\ 0 & 1 & 0 \\ -15 & 9 & -10 \end{bmatrix}, \ P = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$

- Q5 a) Solve the differential equation by using method of undetermined coefficient: $(D^2 + (16))y = x + 16 \sin 4x$.
 - **b)** Solve $(D^2 + 5D + 6)y = e^{2x} \sinh 2x$
- Q6 State and prove Rodrigues formula and hence derive $P_4(x)$. (16)

Reg	jistra	ition No:											
Tota	al Nu	ımber of Paç	jes: 02									1	B.Tech 5BS1101
EL	ECT.	RANCH: AEIE RICAL, ETC wer Questio Th	E, AERO, , FAT, IEE	AUTO E, IT, I MME, nd 2 w	MATI D, BIO MANU PE, P Tim Max Q.C	HEMA TECH TECH LAST e: 3 H Marks ODE: are co	, MEC IC, TE ours s: 100 B755 mpuls	M, CIV H, ME XTILE	/IL, C ETTAN E	SE, WIN,	MINE	EEE, I RAL, I	EIE, MINING,
Q1	a) b) c) d) e) f) g) h) i)	The degree of Let $A = [a_{IJ}]$ is characteristic The eigenvalue of Trace(A)=3. The Radius of (1, 1) is	ote to the of $y = 0$ (c) $y = 0$ (c) $y = 0$ (d) $y = 0$ (e) $y = 0$ (f) $y $	eurve x : $= 0$ function $\frac{3}{2} = (x)$ matrix so ial of A mpoter value to of the differential of A (b) line A (b) line A (b) line A	2 y + x; (d) nor on then y' + 5) such that is at matri of the curve ynomia ynomia (2,2) and early de	$y^2 = 0$ the value of the va	parallel lue of = 1 for A^{T}) is + e^{2x} of the value of	to x-a $J_n(0) \text{ is}$ all I an $J_n(0) \text{ is}$ at the pue of I both a	xis is s ind j, the pooint $p_n(-1)$	en) is _			(2 x 10)
Q2	a) b) c) d) e) f) g) h) i)	Find the Algebra the eigenvalue Find the Radia Find the Radia Find the Radia Solve $(x^3D^3 - W)$ What is the irrespondent to the Solve the order Find the asymparallel to the Define rank of Let $A = [a_{IJ}]$ is identity matrix	braic and the 0? it is of curve it is of converting of the analysis of the converting of the curve it is a substitution of the curve of the cu	Geome ature for ergeno 6xD — factor of rential the cuil and what 3?	or the post of $y = 0$ of $y' + 0$ equation $y' + 0$ or $y' + 0$	pedal control of the	urve p^3 $\frac{1}{2}x^n$?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	y = 0; $y^2 = 0;$ the ide	D =) whice the second term is t	d dx ch are matrix 3× 3	and	(2 x 10)
Q3	a) b)	of the eigenvector of the eigenvector of the eigenvector of the arrange of the eigenvector of the eigenvect	alues ? symptotes · 7xy² + 2y	of the	curve l <i>xy</i> +7 <i>y</i>	$x^2 + 4x$	+ 5 = (0?			 	-	(10) (5)

- Q4 a) Prove that $J_{-0.5}(x) = \sqrt{\frac{2}{\pi x}} \cos x$, $j_n(x)$ be the Bessel's functions? (10)
 - **b)** Evaluate the value of $(\frac{9}{2})$? (5)
- **Q5** a) Solve $(D^2 + 4)y = 2 \tan x$; x>0, $D = \frac{d}{dx}$? (10)
 - **b)** Find the second linear independent solution of $y'' \frac{2}{r^2}y = 0$ (5) While one solution is x^2 ?
- a) Find the series solution of y'' xy' 2y = 0 about x = 0? (10)Q6
 - State and Prove the Rodrigue's formula? b) (5)
- Q7 Show that $(n+1)p_{n+1}(x) = (2n+1)xp_n(x) - np_{n-1}(x)$; $n \ge 1$? (10)Prove that $\int_{-1}^{1} p_m(x) p_n(x) dx = 0$ if $m \neq n$? (5)
- Find eigenvalue and eigenvector of A= $\begin{bmatrix} 3 & 0 & 0 \\ 2 & 6 & 0 \\ 4 & 2 & 12 \end{bmatrix}$? Q8 a) (10)
 - b) Prove that inverse of unitary matrix is unitary? (5)
- **Q9** a) Solve $(2xy^4e^y + 2xy^3 + y) dx + (x^2y^4e^y x^2y^2 3x) dy = 0$ (10)b) Find the current at any time t>0 in a circuit having in series a constant (5) electromotive force 40 v ,a resistor 10Ω and an inductor 0.2H given that initial

current is zero?

Registration No :					

Total Number of Pages: 02

B.Tech PAM1A001

1st Semester Back Examination 2019-20 APPLIED MATHEMATICS-I

BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FAT, IEE, IT, MANUFAC, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PE, PLASTIC, PT, TEXTILE

Max Marks: 100 Time: 3 Hours Q.CODE: HB562

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part-l

Q1 Only Short Answer Type Questions (Answer All-10)

(2 x 10)

- **a)** What is the practical significance of general solution and particular solution of a differential equation?
- b) What do you mean by integrating factor? How it helps to solve differential equations?
- c) Find the parallel asymptotes of $y^2x a^2(x-a) = 0$
- d) What is the relation between curvature and radius of curvature of the curve?
- **e)** What is the Wronskian? What role does it play in getting solution of a differential equation.
- f) Write the Generating function of Legendre's Polynomial
- g) If α is an eigen value of an orthogonal matrix, then find its eigen value
- h) What does the convergence of a power series means? Why is it important?
- i) Write down the Lagrange sufficient condition for a function of two variable to attain a minimum value?
- j) Find the radius of curvature for the pedal curve ?

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

a) Show that the eight points of intersection of the curve $xy(x^2-y^2)+x^2+y^2=a^2$. and its asymptotes lie on a circle whose center is at the origin

b) Solve the following differential equation

$$(2x + 3)^2y'' - (2x + 3)y' - 12y = 6x$$
, where $y' = \frac{dy}{dx}$.

- C) Obtain Taylors series expansion of $tan^{-1}(\frac{y}{x})$ about (1,1) up to and including the second degree.
- d) Find the following information regarding the linear system of Equation.

$$2 x + 3 y - z = 0$$

 $5 x - 3 y + z = 7$
 $8 x + 9 y - 3 z = 2$

(i) Find the Solution by using Gauss Elimination

Method.

- (ii) Find the rank of the co-efficient matrix
- **e)** Express $J_{\underline{7}}(x)$ in terms of sine and cosine functions.
- **f)** Solve the differential equation: $(D^2 + 6D + 8)y = e^{-2x} \cdot \sin 2x$
- **g)** Solve the differential equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos 2y$

- h) Solve: $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$
- Solve the equation $(1-x^2)\frac{d2y}{dx^2} x\frac{dy}{dx} + 4y = 0$, by power series method Prove that the center of curvature at points of a cycloid lie on an equal cycloid i)
- j)
- Solve the differential equation by using method of undetermined coefficient: $(D^2 +$ k) $6D + 8)y = x + e^{-2x} + \cos 2x$.
- Solve the differential equation $y'' + y = x \sin x$, by using variation of parameter method. I)

- Q3 Find all the asymptotes of the cubic polynomial (16) $x^3 - 2y^3 + xy(2x - y) + y(x - y) + 1 = 0$ and show that cut the curve in three point which lie on the straight line x - y + 1 = 0
- State and prove Rodrigues formula and hence derive $P_4(x)$, in terms of Polynomial Q4 (16)Function.
- Q5 Find the point of the curve $y = e^x$, at which the curvature is maximum and show that (16)the tangent at the point forms with the axes of co-ordinates a triangle whose sides are in the ratio $1:\sqrt{2}:\sqrt{3}$.
- Find a basis of Eigenvectors and diagonalizable the following matrix $\begin{bmatrix} 18 & 0 & 0 \\ 24 & -4 & 0 \\ 42 & -12 & 2 \end{bmatrix}$ Q6 (16)

Reg	gistr	ation No:	
Tota	al Nu	umber of Pages: 02	B.Tech
E	ELEC	1 st Semester Regular / Back Examination 2017-18 APPLIED MATHEMATICS-I CH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EI CTRICAL, ETC, FAT, IEE, IT, MANUTECH, MECH, METTA, MINERAL, MII MME, PE, PLASTIC, PT, TEXTILE Time: 3 Hours Max Marks: 100 Q.CODE: B733 Swer Question No.1 and 2 which are compulsory and any four from the	NING,
		The figures in the right hand margin indicate marks.	
Q1	a)	Answer the following questions: multiple type or dash fill up type The Asymptote of a n'th degree curve cuts the curve into	(2 x 10)
	b)	a) n points (b) n(n-1) points (c) n(n-2) points (d) None? The number of asymptotes of a curve of n'th degree is	
	c)	a) Atleast one (b) Atleast n (c) Atmost n (d) None The sum of order and degree of the differential equation	
		$\frac{d^2}{dx^2}(y'' + 1) + 2y' = 0 \text{ is}$	
	d)	a) 2 (b) 3 (c) 4 (d) 5 Let A = $[a_{IJ}]$ be a 2017× 2017 matrix such that $a_{ij} = \alpha$ for all I and j , then	
	,	characteristics polynomial of A is	
	e)	a) $x^{2015}(x-2017 \alpha)$ (b) $x^{2016}(x-2017\alpha)$ (c) $x^2(x-2017\alpha)$ (d) None Let $A^* = A^{-1}$; Where $A^* = (\overline{A})^T$ Then eigen values of A are	
	f)	a) $\lambda = \pm 1$ (b) $\lambda = \pm i$ (c) $ \lambda = 1$ (d) $\lambda = \pm 2$? If Trace(A)=3 and Trace(P)= 5,Then Trace($P^{-1}AP$);where P is an invertible	
	',	matrix, Is equal to	
	g)	a)2 (b) 4 (c) 5 (d) 3 The Radius of curvature of the curve $y = e^x$ at the point (0 , 1) is	
	h)	a) $2\sqrt{2}$ (b) $3\sqrt{2}$ (c) 0 (d) None Let $p_n(x)$ be the Legendre polynomial then $p_n'(1)$	
	•••	a) 0 (b) 1 (c) $\frac{n(n-1)}{2}$ (d) $\frac{n(n+1)}{2}$	
	i)	Let A = $[a_{IJ}]$ be a $n \times n$ matrix such that rank of A = r ,then number of linearly	
		independent solutions of the homogeneous system of equations Ax =0 is a) n -1 (b) n - r (c) $n + r$ (d) $n - r + 1$	
	j)	What is the integrating factor of $(2y dx + 3x dy) + 2xy(3ydx + 4x dy)$ a) x^2y (b) xy (c) xy^2 (d) None	
Q2		Answer the following questions: Short answer type	(2 x 10)
	a)	Find the Algebraic and Geometric multiplicity of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ with respect to	
	b) c) d) e) f)	the eigenvalue 1? Find the Radius of curvature for the pedal curve $p^2 = ar$ Find the Radius of convergence of $\sum_{1}^{\infty} 5^n x^{n+2}$? Solve $(x^3D^3 - 3x^2D^2 + 6xD - 6)y = 0$? What is the integrating factor of $y' + p(x)y = q(x)y^n$; $n \ne 0,1$? Write down the Lagrange sufficient conditions for a function of two variable to	
	g)	attain a minimum value ? Solve the ordinary differential equation $(D + 1)((D - 2)^3 y = 0; D = \frac{d}{dx}$	
houto	nlina	u_{λ}	

- **h)** Find the asymptotes to the curve $x^4 + y^4 + x^2y + xy^2 = 0$ which are parallel to the axis?
- i) Define Similar Matrices.
- j) Let A = $[a_{IJ}]$ be a 3× 3 matrix such that det(A I) = 0 ,Where I be a 3× 3 identity matrix . If Trace(A) = 13, det(A) = 36 Then find the sum of the square of the eigenvalues?
- Q3 a) Find all the asymptotes of the curve $4x^4 13x^2y^2 + 9y^4 + 32yx^2 42y^3 20x^2 + 74y^2 + 16 = 0$
 - **b)** Find the radius of curvature for the curve $r = a(1 \cos \theta)$ (5)
- **Q4** a) Find the extrema of the function $f(x,y) = x^3y^2(1-x-y)$ (10)
 - **b)** Expand f(x, y)= $(2x + y)^2$ about the point (x, y)=(1,1) by the Taylor series method . (5)
- **Q5** a) Using method of variation of parameter solve $x^2y'' + xy' y = x^2e^x$? (10)
 - **b)** Find the second linear independent solution of xy'' (x + 1)y' + y = 0 (5) While one solution is e^x ?
- **Q6** a) Find the series solution of $y'' + xy' + x^2y = 0$ about x = 0? (10)
 - **b)** Prove that $np_n(x) = xp_n'(x) p_{n-1}'(x)$; where $p_n(x)$ is the Legendre polynomial. (5)
- **Q7** a) Show that $np_n(x) = (2n-1)xp_{n-1}(x) (n-1)p_{n-2}(x)$; $n \ge 2$? (10)
 - b) Prove that $\int_{-1}^{1} p_m(x) p_n(x) dx = 0$ if $m \neq n$? (5)
- Q8 a) Find eigenvalue and eigenvector of $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 8 \end{bmatrix}$? (10)
 - b) Prove that product of two unitary matrix is unitary? (5)
- **Q9** a) Solve $(1+y^2)dx = (\tan^{-1} y x) dy$ (10)
 - b) Find the current at any time t>0 in a circuit having in series a constant electromotive force 40 v ,a resistor 10Ω and an inductor 0.2H given that initial current is zero.