

Deep Learning Cookbook: technology recipes to run deep learning workloads

Natalia Vassilieva, Sergey Serebryakov

Deep learning applications

Vision

- Search & information extraction
- Security/Video surveillance
- Self-driving cars
- Medical imaging
- Robotics

Speech

- Interactive voice response (IVR) systems
- Voice interfaces (Mobile, Cars, Gaming, Home)
- Security (speaker identification)
- Health care
- Simultaneous interpretation

Text

- Search and ranking
- Sentiment analysis
- Machine translation
- Question answering

Other

- Recommendation engines
- Advertising
- Fraud detection
- AI challenges
- Drug discovery
- Sensor data analysis
- Diagnostic support

Deep learning ecosystem

Keras

How to pick the right hardware/software stack?

Does one size fit all?

Applications break down

Types of artificial neural networks

Topology to fit data characteristics

One size does NOT fit all

Application

Data type

Data size

Model (topology of artificial neural network):

- How many layers
- How many neurons per layer
- Connections between neurons (types of layers)

Popular models

Name	Type	Model size (# params)	Model size (MB)	GFLOPs (forward pass)	
AlexNet	CNN	60,965,224	233 MB	0.7	
GoogleNet	CNN	6,998,552	27 MB	1.6	
VGG-16	CNN	138,357,544	528 MB	15.5	
VGG-19	CNN	143,667,240	548 MB	19.6	
ResNet50	CNN	25,610,269	98 MB	3.9	
ResNet101	CNN	44,654,608	170 MB	7.6	
ResNet152	CNN	60,344,387	230 MB	11.3	
Eng Acoustic Model	RNN	34,678,784	132 MB	0.035	
TextCNN	CNN	151,690	0.6 MB	0.009	

Popular models

Name	Type	Model size (# params)	Model size (MB)	GFLOPs (forward pass) 0.7	
AlexNet	CNN	60,965,224	233 MB		
GoogleNet CNN		6,998,552 27 MB		1.6	
VGG-16	CNN	138,357,544	528 MB	15.5	
VGG-19	CNN	143,667,240	548 MB	19.6	
ResNet50 CNN ResNet101 CNN		25,610,269	98 MB	3.9	
		44,654,608	4,608 170 MB	7.6	
ResNet152	CNN	60,344,387	230 MB	11.3	
Eng Acoustic Model	RNN	34,678,784	132 MB	0.035	
TextCNN CNN		CNN 151,690		0.009	

Compute requirements

Name	Type	Model size (# params)	Model size (MB)	GFLOPs (forward pass)
ResNet152	CNN	60,344,387	230 MB	11.3

Training data: 14M images (ImageNet)

FLOPs per epoch: $3 * 11.3 * 10^9 * 14 * 10^6 \approx 5 * 10^{17}$

1 epoch per hour: ~140 TFLOPS

Today's hardware:

Google TPU2: 180 TFLOPS Tensor ops

NVIDIA Tesla V100: 15 TFLOPS SP (30 TFLOPS FP16, 120 TFLOPS Tensor ops), 12 GB memory

NVIDIA Tesla P100: 10.6 TFLOPS SP, 16 GB memory

NVIDIA Tesla K40: 4.29 TFLOPS SP, 12 GB memory

NVIDIA Tesla K80: 5.6 TFLOPS SP (8.74 TFLOPS SP with GPU boost), 24 GB memory

INTEL Xeon Phi: 2.4 TFLOPS SP

Model parallelism

- Can be achieved with scalable distributed matrix operations
- Requires a certain compute/bandwidth ratio

Let's assume:

n – input size = batch size = output size

γ – compute power of the device (FLOPS)

 β – bandwidth (memory or interconnect) p^2 – number of compute devices

$$T_{compute} = \frac{2n^3}{p^2 \gamma}$$
 $T_{data_read} = \frac{2n^2}{p\beta}$ for FP32 $\beta \ge \frac{4p\gamma}{p}$

"SUMMA: Scalable Universal Matrix Multiplication Algorithm", R.A. van de Geijn, J. Watts

Model parallelism

- Can be achieved with scalable distributed matrix operations
- Requires a certain compute/bandwidth ratio

Let's assume:

n – input size = batch size = output size

 γ – compute power of the device (FLOPS)

 β – bandwidth (memory or interconnect)

 p^2 – number of compute devices

$$T_{compute} = \frac{2n^3}{p^2 \gamma}$$
 $T_{data_read} = \frac{2n^2}{p\beta}$ for FP32 $\beta \ge \frac{4p\gamma}{p}$

$$n = 2000$$
, $\gamma = 15 TFLOPS$

$$p = 10$$
, $\beta \ge 300 \, GB/s$

$$p = 1$$
, $\beta \ge 30 \, GB/s$

Data parallelism

```
T_{compute}(p, c, \gamma) = c/(p\gamma)

T_{communicate}(p, w, \beta) = 2wlog(p)/\beta
```

p – number of workers (nodes),

 γ – the computational power of the node,

c – the computational complexity of the model,

 β – bandwidth,

 \dot{w} – the size of the weights in bits.

Data parallelism

 $T_{compute}(p, c, \gamma) = c/(p\gamma)$

 $T_{communicate}(p, w, \beta) = 2wlog(p)/\beta$

p – number of workers (nodes),

 γ – the computational power of the node,

C – the computational complexity of the model,

 β – bandwidth,

w – the size of the weights in bits.

NVIDIA K40 (~4 TFLOPS), PCIe v3 (~16 GB/s)

Data parallelism

 $T_{compute}(p, c, \gamma) = c/(p\gamma)$

 $T_{communicate}(p, w, \beta) = 2wlog(p)/\beta$

p – number of workers (nodes),

 γ – the computational power of the node,

C − the computational complexity of the mode

 β – bandwidth,

w – the size of the weights in bits.

NVIDIA K40 (~4 TFLOPS), Infiniband (~56 Gb/s)

Deep Learning Cookbook helps to pick the right HW/SW stack

Benchmarking suite

- Benchmarking scripts
- Set of benchmarks (for core operations and reference models)
- Performance measurements for a subset of applications, models and HW/SW stacks
 - 11 models
 - 8 frameworks
 - 6 hardware systems

- Analytical performance and scalability models

- Performance prediction for arbitrary models
- Scalability prediction
- Reference solutions, white papers

Deep Learning Cookbook Automatic Meeting Notes Video Surveillance Hospital Smart Care Unit Custom **✓** Classification Training lmages Large Videos Detection Text Generation **Anomaly Detection** Small Inference **Data and Model** Data size **Epochs** 100000000 10 VGG16 ∇ Hardware Server **Processor unit** ∇ **NVIDIA P100** ∇ Cluster size Interconnect 8 ∇ InfiniBand FDR ∇ Software Framework Batch size ∇

Training performance

	Data		Hardware		Software	Time (hours)	
	Size Epo 100000000 10	chs Model VGG16	Server Apollo 6500 Count Clust 8 8	PU NVIDIA P100 ter size Interconnect IB	Framework BVLC Caffe Batch 16(weak)	188.1	×
•	Size Epo 100000000 10	chs Model VGG16	Server Apollo 6500 Count Clust 8 8	PU NVIDIA P100 ter size Interconnect IB	Framework Caffe2 Batch 16(weak)	175.8	×
•	Size Epo 100000000 10	chs Model VGG16	Server Apollo 6500 Count Clust 8 8	PU NVIDIA P100 ter size Interconnect IB	Framework TensorFlow Batch 16(weak)	416.1	×

Remove all

TensorFlow

Selected scalability results

HPE Apollo 6500 (8 x NVIDIA P100)

Selected observations and tips

- Larger models are easier to scale (such as ResNet and VGG)
 - A single GPU can hold only small batches (the rest of memory is occupied by a model)
- Fast interconnect is more important for less compute-intensive models (FCC)
- A rule of thumb: 1 or 2 CPU cores per GPU
- PCIe topology of the system is important

Further into the future: neuromorphic research projects

Neuromorphic Computing – the integration of algorithms, architectures, and technologies, <u>informed</u> by neuroscience, to create new computational approaches.

- Memristor Dot-Product Engine (DPE) successfully demonstrated
 - Memristor crossbar analog vector-matrix multiplication accelerator
- Hopfield Network (electronic and photonic) in progress

Thank you

Natalia Vassilieva nvassilieva@hpe.com