Deriving pulsar pair-production multiplicities from pulsar wind nebulae using H.E.S.S. and LHAASO observations

S. T. Spencer &

Erlangen Centre for Astroparticle Physics (ECAP)

A. M. W. Mitchell

Department of Physics, Clarendon Laboratory

Arxiv: 2502.01318

Reporter: 曹顺顺 (Shunshun Cao)

2025.2

12 pages in total

I. Introduction

Pulsar wind nebulae (脉冲星星风云, PWNe): 处在脉冲星周围的,由脉冲星星风作为能量来源的,发光的云状天体。

A note in Zhihu for Amato's paper.

- · Located within or out of supernova remnants (SNRs).
- · Broadband emission.
- Most numerous class of galactic VHE γ-ray emitters.

(VHE: 0.1 TeV – 100 TeV)

Amato 2024 arxiv.

VHE emission mechanisms: mainly two approaches

· Leptonic process: inverse Compton scattering (ICS) by electrons/positrons.

· Hadronic process: pion decays, where pions are created in proton collisions.

Source of electrons: compact star itself & pair creation (γ-B process) Source of protons: compact star itself?

→ Will hadrons escape the pulsar surface into the PWN?

A related quantity: average pair production multiplicity $<\kappa>=$ (Number of e± escaping light cylinder) /(Number of Goldreich-Julian e±)

[Hadrons do not multiply in cascades in magnetospheres.]

Goal of this paper: constrain < k > for a number of PWNe.

Data from H.E.S.S. & LHAASO, also using radio observations (to get the sizes of PWNe & SNRs).

Modeling based on de Jager 2007 ApJ.

Basic logic:

$$\langle \kappa \rangle = \frac{N_{el}}{2N_{GJ}}$$

Number of PWN electrons: from observed spectrum (Radiative spectrum ← electron spectrum → electron number)

Number of GJ electrons: from integrating E-dot (Pulsar spin down ← Pulsar current → GJ electron number)

Note that this multiplicity is a lower limit, because PWN electrons are only calculated from VHE observations. They are only part of the total electrons.

II. Modeling theory

(i) Deriving P0:

Since the total GJ electron number needs accurate age information, the initial/birth period P0 is required.

$$\frac{1}{2}I\left(\frac{2\pi}{P_0}\right)^2 - \frac{1}{2}I\left(\frac{2\pi}{P_t}\right)^2 = E_{SD}\left(E_*\right) \text{ (total spin-down energy)}$$

The E_{SD} is related to observables by pressure balance (all assuming spherical):

Central pressure of the SNR (Sedov solution): $P_{\rm snr} \simeq 0.074 E_0/R_{\rm snr}^3$

PWN interior pressure: $P_{
m pwn} \simeq {3(\gamma-1)\over 4\pi} {E_*\over R_{
m pwn}^3}$

Equate two pressures: $R_{PWN}(t) = \eta_3(t)(\eta_1 E_{SD}/E_0)^{1/3} R_{SNR}(t)$. $\eta_1 = 1$ $\eta_3 = 1.02$

Also refer to van der Swaluw & Wu 2001 ApJ.

(ii) Deriving N_{GJ}

$$ho_{GJ}=-rac{ec{\Omega}\cdotec{B}}{2\pi c}$$
 Integrate ho_{GJ}/e over the polar cap, times c $ightharpoonup$ $\dot{N}_{GJ}=rac{B_{\star}\Omega^{2}R_{\star}^{3}}{2~e~c}$

Plug in dipolar radiation loss:
$$\dot{E} = \frac{B_{\star}^2 R_{\star}^6 \Omega^4 \sin^2 \chi}{6c^3}$$
 (sin^2 ~ ½)

Integrate over time
$$\rightarrow \rightarrow \rightarrow N_{GJ} = \int_{t=0}^{t=-\tau(P_0)} \frac{[6c\dot{E}(t)]^{1/2}}{e} (-dt)$$

E-dot changes because Ω changes with time (braking).

$$\dot{\Omega} = -k \ \Omega^n \implies \Omega(t) = \frac{\Omega_0}{(1+t/\tau)^{1/(n-1)}} \implies \dot{E}(t) = \dot{E}_0 \left(1 + \frac{t}{\tau_0}\right)^{-\alpha} \qquad \alpha = (n+1)/(n-1)$$

$$\tau_0 = P_0/((n-1)\dot{P}_0)$$

In the present paper, n=3, $\tau_0=10^3 {\rm yr}$.

Actual age used in integration:
$$\tau(P_t, \dot{P}_t, P_0, n) = \left(1 - \left(\frac{P_0}{P_t}\right)^{n-1}\right) \times \frac{P_t}{(n-1)\dot{P}_t}$$

(ii) Deriving N_{el} and $\langle \kappa \rangle$

The observed radiation spectrum is related to the electron spectrum through one-zone model:

$$N(\epsilon,t) = \int_{t_i}^t dt_i Q[\epsilon_i(\epsilon,t;t_i),t_i] rac{\partial \epsilon_i}{\partial \epsilon} \qquad \int d\epsilon_i \epsilon_i Q(\epsilon_i,t_i) = E_{Total} \qquad E_{ ext{Total}} = \dot{E} au_c$$

 $\partial \epsilon_i/\partial \epsilon$ is determined by electron emission mechanisms (synchrotron, ICS) and system expanding.

e.g. (from Amato 2024 arxiv.)
$$\frac{d\epsilon}{dt} = -\frac{\epsilon}{3R_N(t)}\frac{dR_N}{dt} - \frac{\sigma_T c}{8\pi(m_e c^2)^2}(\sqrt{2/3}B_N(t))^2\epsilon$$

Results on total PWN electron number:

(Giacinti et al. 2020, Woo et al. 2023, Amenomori et al. 2023, H.E.S.S. Collaboration et al. 2019)

$$N_{el} = E_{tot} \left(\frac{(2 - \Gamma)E_0^{1 - \Gamma}}{E_2^{2 - \Gamma} - E_1^{2 - \Gamma}} \right) \times \left(\frac{(E_2/E_0)^{1 - \Gamma} - (E_1/E_0)^{1 - \Gamma}}{1 - \Gamma} \right) \text{Most H.E.S.S.}$$

$$N_{el} \propto \left[\frac{1}{1 - \Gamma} \left(\frac{E_2}{E_0} \right)^{1 - \Gamma} - \frac{1}{1 - \Gamma} \left(\frac{E_1}{E_0} \right)^{1 - \Gamma} \right]$$
J1849-0001

$$N_{el} \propto \int_{E_0}^{E_2} \left(rac{E}{E_1}
ight)^{-\Gamma} \exp \left(rac{E}{E_{cut}}
ight) dE$$
 J2021+3651 $N_{el} \propto \left[\int_{E_0}^{E_1} E^{-\Gamma} dE + \int_{E_1}^{E_2} E^{-\Gamma_2} dE
ight]$ J1826-1334

III. Results

ATNF Name	R _{SNR} [pc]	R _{PWN} [pc]	P_t [ms]	$\frac{\dot{P}_t}{[\times 10^{-13} \text{ s/s}]}$	Model	E_0 [TeV]	E_1 [TeV]	E_{cut} [TeV]	E ₂ [TeV]	Γ	Γ_2	Refs.
J1833-1034	2.98	0.8	61.8	2.02	BPL1	0.1	0.39	-	10	2.2	-	1,2
J1513-5908	38.4	19.2	151.6	15.3	BPL1	0.1	0.61	-	10	2.2	-	1, 2
J1930+1852	10.8	2.7	136.9	7.50	BPL1	0.1	0.89	-	10	2.2	-	1, 2
J1846-0258	2.6	0.58	326.6	71.1	BPL1	0.1	0.40	-	10	2.2	-	1, 2
J0835-4510	19.5	12.2	89.3	1.25	BPL1	0.1	0.61	-	10	2.2	-	1, 2
J1747-2809	19.8	2.5	52.2	1.56	BPL1	0.1	0.17	-	10	2.2	-	1, 3
J2021+3651	-	-	103.7	0.957	PLEC	1	25	900	1400	1.4	-	4
J1841-0345	-	-	112.9	1.55	PLEC	1×10^{-5}	7.0	72	740	2.2	-	5
J1849-0001	-	-	38.5	0.142	PL	0.5	10	-	100	2.5	-	6
J1826-1334	-	-	101.5	0.753	BPL2	0.7	0.9	-	42	1.4	3.25	7

ATNF Name	P_0	\dot{E}_t	N_{el}	$E_{ m e,tot}$	$\langle \kappa \rangle$
AINT Name	[ms]	$[\times 10^{36} \text{ erg/s}]$	$[\times 10^{47} \text{ Counts}]$	$[\times 10^{47} \text{ erg}]$	[Dimensionless]
J1833-1034	33.0	33.9	45.6	51.8	1476
J1513-5908	15.2	17.0	5.14	8.35	809
J1930+1852	41.3	12.0	5.06	11.0	432
J1846-0258	50.8	8.13	1.62	1.87	1061
J0835-4510	10.9	6.92	18.7	1.87	174
J1747-2809	47.9	42.7	125	71.4	29328

The <u>t</u> in the right two plots are derived from:

$$E_{\rm CR} \approx 1.2 \times 10^{20} A_{56} \eta \langle \kappa \rangle_{\rm lim,4} I_{45} B_{13}^{-1} R_{\star,6}^{-3} \tau_{7.5}^{-1}$$

(Kotera, Amato & Blasi 2015 JCAP)

Iron cosmic ray could be **photodissociated** in the pulsar vicinity.

 κ is related to radiation. The above equation describes the maximum $<\kappa>$ to allow comic ray (iron) energy E_{CR} to escape.

ATNF Name	P_0	\dot{E}_t	N_{el}	$E_{ m e,tot}$	$\langle \kappa \rangle$
ATNITIALLE	[ms]	$[\times 10^{36} \text{ erg/s}]$	$[\times 10^{47} \text{ Counts}]$	$[\times 10^{47} \text{ erg}]$	[Dimensionless]
J1833-1034	33.0	33.9	45.6	51.8	1476
J1513-5908	15.2	17.0	5.14	8.35	809
J1930+1852	41.3	12.0	5.06	11.0	432
J1846-0258	50.8	8.13	1.62	1.87	1061
J0835-4510	10.9	6.92	18.7	1.87	174
J1747-2809	47.9	42.7	125	71.4	29328

Circular dots: <k> derived through the method in Section II.

If <k> is above <k>lim, hadrons are less likely to escape into PWN.

For J1747-2809, it seems to be this case.

 $<\kappa>v.s.$ Po for four LHAASO sources. Due to lack of radio observations, SNR & PWN sizes are unknown. No reliable Po is estimated.

Radio interferometric images are required in the future.

In addition... Parameter spaces

