Матанализ 1 семестр Экзамен

Студенты ИС'а

время последней сборки: 3 января 2023 г. 18:11

"Спасибо всем за вклад в написание билетов".

Содержание

1	Вещественная ось. Бесконечность. Окрестность точки.					
2	Точка сгущения. Определения предела функции. Односторонние пределы.					
3	Определение предела функции. Предел и бесконечность.					
4	Предел последовательности. Свойства сходящихся последовательностей.	7				
5	Предельный переход в неравенствах. Теорема о двух милиционерах.	8				
6	Бесконечно малые, бесконечно большие функции. Свойства.	9				
7	Теоремы о пределах.	10				
8	Сравнение бесконечно малых. Теоремы об эквивалентных функциях.	11				
9	Первый замечательный предел.	12				
10	Второй замечательный предел. Число е.	13				
11	Определения непрерывной функции и ее локальные свойства.	14				
12	Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).	15				
13	Определение и классификация разрывов.	16				
14	Определение производной функции. Дифференцируемая функция. Дифференциал 1-го порядка.	17				

15	Правила дифференцирования: производная и дифференциал суммы и произведения функций.	18
16	Правила дифференцирования: производная и дифференциал суммы и отношения функций.	19
17	Правила дифференцирования: производная сложной функций, инвариантность дифференциала.	20
18	Производные элементарных функций: константа, степенная функция.	21
19	Производные элементарных функций: показательная, логарифмическая функции.	22
20	Производные элементарных функций: синус и косинус.	23
21	Производные элементарных функций: тангенс и арктангенс.	24
22	Производные высших порядков. Дифференциал 2-го порядка.	25
23	Теоремы о дифференцируемых функциях. Теорема Ферма.	26
24	Теоремы о дифференцируемых функциях. Теорема Ролля.	27
25	Теоремы о дифференцируемых функциях. Теорема Лагранжа.	28
26	Теоремы о дифференцируемых функциях. Теорема Коши.	29
27	Теоремы о дифференцируемых функциях. Правило Лопиталя.	30
28	Формула Тейлора.	31
29	Исследование функции: Монотонность. Экстремумы. Необходимое и достаточное условия экстремума.	32
30	Исследование функции: Выпуклость функции. Точки перегиба. Необходимое и достаточное условия перегиба.	33
31	Определение функции двух переменных. Предел и непрерывность функции.	34
32	Частные производные функции двух переменных.	35
33	Производная сложной функции. Полная производная.	36
34	Полный дифференциал функции двух переменных. Инвариантность формы.	37
35	Вторые производные функции двух переменных. Равенство смешанных производных.	38
36	Формула Тейлора.	39

37	Экстремумы функции двух переменных. Необходимые и достаточные условия.	40
38	Приложения: касательная плоскость и нормаль к поверхности.	41
39	Приложения: градиент, производная по направлению.	42
40	Условный экстремум функции двух переменных.	43

1	Вещественная	ось.	Бесконечность.	Окрестность	точки.

	ИТМО, Санкт-Петербург	_
2	Точка сгущения. Определения предела функции.	
	Односторонние пределы.	

4	Предел последовательности. Свойства сходящихся
	последовательностей.

5	Предельный переход в неравенствах. Теорема о двух
	милиционерах.

		И	ТМО, Санкт-Петер	оург	
6	Бесконечно Свойства.	малые,	бесконечно	большие	функции.
	Своиства.				

7	Теоремы о пределах.

Матанализ 1 семестр Экзамен

иТМО, Санкт-Петербург Сравнение бесконечно малых. Теоремы об 8 эквивалентных функциях.

9	Первый замечательный предел.	

10	Второй замечательный предел. Число е.

		MITIVIO, CARKI-I			
11		непрерывной	функции	и ее	локальные
	свойства.				

12 Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).

13	Определение и классификация разрывов.

Определение производной функции.Дифференцируемая функция. Дифференциал 1-го порядка.

	Матанализ 1 семестр Экзамен ИТМО, Санкт-Петербург				
$\overline{15}$	Правила дифференцирования: производная и				
	дифференциал суммы и произведения функций.				

17	Правила дифференцирования: производная сложной					
_ •	функций, инвариантность дифференциала.					

Матанализ 1 семестр Экзамен

		TIMO, Canki-lie		
19	Производные элем	ментарных	функций:	показательная,
	логарифмическая	функции.		

Матанализ 1 семестр Экзамен

24	Теоремы о дифференцируемых функциях. Теорема
	Ролля.

25	Теоремы о дифференцируемых функциях. Теорема Лагранжа.

27	Теоремы о дифференцируемых функциях. Правило Лопиталя.

28	Формула	Тейлора.

	ИТМО, Санкт-Петербург
29	Исследование функции: Монотонность. Экстремумы.
	Необходимое и достаточное условия экстремума.

30 Исследование функции: Выпуклость функции. Точки перегиба. Необходимое и достаточное условия перегиба.

31	Определение функции двух переменных. Предел и
	непрерывность функции.

$\overline{32}$	Частные	производные	двух пере	менных.

Матанализ 1 семестр Экзамен

	ИТМО, Санкт-Петербург				
34	Полный дифференциал функции двух переменных.				
	Инвариантность формы.				

$\overline{35}$	ИТМО, Санкт-Петербург Вторые производные функции двух переменных.						
00	Равенство смешанных производных.						
	т авенство смещанных производива.						

36	Формула	Time, camer rie		

37 Экстремумы функции двух переменных. Необходимые и достаточные условия.

Матанализ 1 семестр Экзамен

39	Приложения:	градиент,	производная	ПО	направлению.

40	Условный	двух перем	ременных.	