Министерство образования Республики Беларусь Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Кафедра интеллектуальных информационных технологий

\sim		_		v	_
Отчет	по по	วกกกว	TONII	VII.	nanate
OISCI	110 116	wona	ловы	JII	Daooic

№1 по курсу:

«Модели решения задач в интеллектуальных системах» на тему: «Сжатие графической информации линейной рециркуляционной сетью» Вариант N11

Выполнил студент группы 021702:	Семченков Н.А.
Проверил:	Жук А.А

1. ЦЕЛЬ

Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

2. ПОСТАНОВКА ЗАДАЧИ

Реализовать модель линейной рециркуляционной сети с постояннымм коэффициентом обучения с нормированными весами.

3. ОПИСАНИЕ МОДЕЛИ

В лабораторной работе выполняется сжатие изображений формата png размером 256x256 пикселей.

Данные:

block height – высота исходного блока;

block width – ширина исходного блока;

number of blocks – количество блоков, на которые разбито изображение;

compressed block height – высота сжатого блока;

compressed block width – ширина сжатого блока;

second layer – количество нейронов на скрытом слое;

first layer – количество нейронов первого слоя;

 α – коэффициент обучения;

ERROR – максимальная допустимая ошибка.

Z – коэффициент сжатия (регулируется количеством нейронов скрытого слоя сети);

error – суммарная ошибка для обучающей выборки;

Iteration – число итераций.

4. РЕЗУЛЬТАТЫ

1) График зависимости количества итераций от коэффициента сжатия представлен в виде таблицы 1 и на рисунке 1.

Для определения данной зависимости были заданы следующие входные параметры:

- блоки изображения размером 8x8;
- значение максимальной допустимой ошибки 0.1e-1;
- значение коэффициент обучения 0.0007;

Для определения коэффициента сжатия использовалась следующая формула:

$$Z = (N*L)/((N+L)*p+2)$$

Изменение коэффициента сжатия достигалось путем варьирования количеством нейронов скрытого слоя.

second layer	99	120	138	156	180	192
Iteration	173	88	99	72	57	40
Z	1.600	1.325	1.154	1.023	0.888	0.833

Таблица 1 – Зависимость количества итераций от коэффициента сжатия

Рисунок $1 - \Gamma$ рафик зависимости количества итераций от коэффициента сжатия C увеличением коэффициента сжатия Z число итераций обучения увеличивается.

2) Таблица зависимости числа итераций обучения для разных изображений одного размера.

Для определения данной зависимости были заданы следующие параметры:

- блоки изображения размером 8х8;
- количество нейронов скрытого слоя 48;
- значение максимальной допустимой ошибки 1;
- значение коэффициент обучения 0.0007.

Использовались следующие изображения с размером 256х256:

anime.png

anime2.png

anime3.png

anime4.png

not_anime.png

Iteration	154	47	34	47	103
Изображение	anime.png	anime2.png	anime3.png	anime4.png	not_anime.png

Таблица 2 – Зависимость числа итераций обучения для разных изображений одного размера

3) График зависимости числа итераций от ERROR (максимальное допустимая ошибка) представлен в виде таблицы 3 и на рисунке 3

Для определения данной зависимости были заданы следующие параметры :

- блок изображения размером 8х8;
- количество нейронов скрытого слоя -48;
- значение коэффициент обучения 0.001.

Iteration	110	60	50	45	38	26
ERROR	1	5	10	15	20	25

Таблица 3 – Зависимость числа итераций от ERROR

Рисунок 3 — График зависимости числа итераций от е

4) График зависимости числа итераций от α представлен в виде таблицы 4 и на рисунке 4.

Для определения данной зависимости были заданы следующие параметры :

- блоки изображения размером 8x8;
- количество нейронов скрытого слоя 48;
- значение максимальной допустимой ошибки 10.

Iteration	88	70	51	38	36
α	0,0004	0,0007	0,001	0,002	0,003

Таблица 4 – Зависимость числа итераций

Рисунок 4 – Зависимость числа итераций от коэффициент обучения

Вывод:

В ходе лабораторной работы была реализована модель линейной рециркуляционной сети с нормированными весами. На основе экспериментальных данных была установлена зависимость между количеством итераций обучения и максимально допустимой ошибкой: при увеличении значения ошибки, уменьшается количество итераций. Также было выявлено, что при увеличении коэффициента сжатия, количество итераций увеличивается, и при увеличении размера картинки, увеличивается количество итераций.

С помощью модели линейной рециркуляционной сети с нормированными весами можно сжимать изображение и восстанавливать исходное изображение из сжатого.