

Unit 3: Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Unit 3

Section 1: Basic Classification

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.
 - Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.
- Probabilistic vs. non-probabilistic models

Illustrating Classification Task

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc

Classification Techniques

- Decision Trees
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines
- Instance-based methods
- Many others...

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical categorical

continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Test Data

Refund	Marital Status		Cheat
No	Married	80K	?

TEST DATA

Refund	Marital Status		Cheat
No	Married	80K	?

TEST DATA

	Marital Status	Taxable Income	Cheat
No	Married	80K	?

TEST DATA

Refund	Marital Status		Cheat
No	Married	80K	?

Decision Tree Classification Task

Decision Tree Induction

Many Algorithms:

- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5
- SLIQ, SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains vecovds that belong the same class y_t , then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If Dt contains vecovds that belong to move than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the vecords based on an attribute test that optimizes certain criterion.
- > Issues
 - Determine how to split the records
 - How to specify the attribute test conditions
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test condition?

- Depends on attribute types
 - Nominal
 - Ovdinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets. Need to find optimal partitioning.

02/10/19 09:59 CIB Research Group 21/107

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets. Need to find optimal partitioning.

02/10/19 09:59 CIB Research Group 22/107

Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic vanges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binavy decision (consider all vallues): (A < v) or (A >= v)
 - consider all possible splits and finds the best cut
 - can be move compute intensive
 - In some case too many splits

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the vecovds based on an attribute test that optimizes certain criterion.
- > Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best splits
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5

Non-homogeneous,

High degree of impurity

C0: 9 C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j|t) is the velative frequency of class j at node t).

- Maximum (1 $1/n_c$) when vecovds are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all vecovds belong to one class, implying most interesting information

C1	0
C2	6
Gini=	0.000

CI	
<u>C2</u>	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $P(C1) = 0/6 = 0$ $P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

n; = number of records at child i

n = number of records at node p

Best: Minimum value

Binary Attributes: computing GINI Index

- > Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Puver Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

$$= 0.4081$$

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.3200

	N1	N2							
C1	5	1							
C2	2	4							
Gini = 0.3714									

Gini(Children)

$$= 7/12 * 0.4081 +$$

$$= 0.3714$$

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType											
	Family	Sports	Luxury										
C1	1	2	1 1										
C2	4	1											
Gini	0.393												

Two-way split (find best partition of values)

	CarType											
	{Sports, Luxury}	{Family}										
C1	3	1										
C2	2	4										
Gini	0.400											

	CarType									
	{Sports}	{Family, Luxury}								
C1	2	2								
C2	1	5								
Gini	0.419									

continuous Attributes: computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values =
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A >= v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sorted Values
Split Positions

Cheat		No		No		N	0	Ye	Yes Yes		S	Yes No		o No		No N		o		No																						
										Ta	xabl	e In	com	е																												
		60	70 75 85 90 95 100 120 125 220																																							
	5	5	6	5	7	2	8	80 87		87 92		97		97 1		10 1		22	172		2 230																					
	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>																				
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0																				
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0																				
Gini	0.4	20	0.4	100	0.3	375	0.3	.343 0.4		0.417		117 0.4		0.400		100 <u>0.3</u>		00.3		0.3		<u>0.3</u>		00 0.30		00 0.30		00 0.3		0.30		<u>0.300</u>		<u>0.300</u> 0		343	0.3	375	0.4	100	0.4	120

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

Entropy
$$(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: p(j | t) is the velative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when vecovds ave equally distributed among all classes implying least information
 - Minimum (0.0) when all vecovds belong to one class, implying most information.
- Entropy based computations are similar to the GINI index computations.
- Best: Minimum value

Examples for computing Entropy

$$\text{Entropy}(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2(1/6) - (5/6) \log_2(1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Splitting Based on information gain

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Pavent Node, p is split into K pavtitions; n, is number of vecords in pavtition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in 103 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on gain ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Pavent Node, p is split into K pavtitions n, is the number of records in pavtition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error

Classification error at a node t:

$$Error(t) = 1 - max_i P(i|t)$$

- Measures misclassification error made by a node.
 - \bullet Maximum (I I/n_c) when vecovds ave equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all vecords belong to one class, implying most interesting information.

Examples for computing Error

$$Error(t) = 1 - max_i P(i|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

comparison among Splitting Criteria

For a two-class problem

Misclassification Error vs. Gini

	Parent
C1	7
C2	3
Gini	= 0.42

Gini(N1)

$$= 1 - (3/3)^2 - (0/3)^2$$

= 0.0000

Gini(N2)

$$= 1 - (4/7)^2 - (3/7)^2$$

= 0.4898

	N1	N2		
C1	3	4		
C2	0	3		
Gini = 0.3427				

Gini(Children)

$$= 3/10 * 0.000$$

$$= 0.3427$$

Gini improves!!

Tree Induction

- Greedy strategy.
 - Split the vecovds based on an attribute test that optimizes certain criterion.
- > Issues
 - Determine how to split the vecovds
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- > Stop expanding a node when all the records have similar attribute values
- > Early termination (to be discussed later)

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets
- Unstable

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-cove sorting.
- You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Costs of Classification

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:

$$0.5 \le \operatorname{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2 + x_2^2) > 0.5 or$$

$$sqrt(x_1^2 + x_2^2) < 1$$

Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

- Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region
- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

overfitting

Curse of overfitting:

- Related to leavning
- Worse when you learning algorithm is better
- No matter who hard you try, it's worse

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing $(\Sigma e'(t))$
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach (adds model complexity):
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total evvovs: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances): Training error = 10/1000 = 1%Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$
 - Reduced evvov pvuning (REP):
 - Uses validation data set to estimate generalization evvor

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- > Therefore, one should include model complexity when evaluating a model
- Problem: Not easy to know which is the simpler model

Minimum Description Length (MDL)

- Cost(Model, Data) = Cost(DatalModel) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(DatalModel) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

X	у
X ₁	1
X ₂	0
X_3	0
X_4	1
X _n	1

X	у
X_1	?
X_2	?
X_3	?
X_4	?
\mathbf{X}_{n}	?
NI AMERICAN STREET	A A CONTRACTOR AND A STATE OF

How to Address Overfitting

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- Move vestvictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - \circ Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the curvent node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting

Post-pruning

- Grow decision tree to its entirety
- Tvim the nodes of the decision tree in a bottom-up fashion.
- If validation evvov improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Example of Post-Pruning

Class = Yes	20
Class = No	10
Error = 10/30	

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting) = $(9 + 4 \times 0.5)/30 = 11/30$

Class = Yes	8	Class = Yes	3	Class = Yes	4	Class = Yes	5
Class = No	4	Class = No	4	Class = No	1	Class = No	1

Examples of Post-pruning

- Optimistic error?
 - Don't prune for both cases
- Pessimistic error?
 - Don't prune case 1, prune case 2
- Reduced error pruning?
 - Depends on validation set

Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
- Affects how to distribute instance with missing value to child nodes
- Affects how a test instance with missing value is classified.

Computing Impurity Measure

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	e 70K No	
4	Yes	Married 120K N		No
5	No	Divorced	Divorced 95K Ye	
6	No	Married 60K		No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Missing value

Before Splitting:

Entropy(Parent) = $-0.3 \log(0.3)$ - $(0.7)\log(0.7)$ = 0.8813

	Class	
	= Yes	= No
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund

$$Entropy(Refund = Yes) = 0$$

Entropy(Refund=No)
=
$$-(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$$

Entropy(Children) =
$$0.3 (0) + 0.6 (0.9183) = 0.551$$

$$Gain = 0.9 \times (0.8813 - 0.551) = 0.3303$$

Distribute Instances

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Class=Yes	0
Class=No	3

Cheat=Yes	2
Cheat=No	4

- Probability that Refund=Yes is 3/9
- Probability that Refund = No is 6/9
- Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Classify Instances

New record:

	Married	Single	Divorced	Total
Class=No	3	1	0	4
Class=Yes	6/9	1	1	2.67
Total	3.67	2	1	6.67

Probability that Marital Status

= Married is 3.67/6.67

Probability that Marital Status

= {Single,Divorced} is 3/6.67

Other Issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- > Tree Replication

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

Search Strategy

- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-divectional

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: pavity function:
 - Class = I if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Decision Boundary

Border line between two neighboring regions of different classes is known as decision boundary Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Tree Replication

Same subtree appears in multiple branches

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain veliable estimates?
- Methods for Model Comparison
 - How to compare the velative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	ТР	FN
CLASS	Class=No	FP	TN

Metrics for Performance Evaluation

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	c (FP)	d (TN)	

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class I examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class I example.

COSE Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

C(i | j): Cost of misclassifying class j example as class i

computing cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i j)	+	-		
	+	-1	100		
	-	1	0		

Model M ₁	PREDICTED CLASS				
		+	-		
ACTUAL CLASS	+	150	40		
	-	60	250		

$$Accuracy = 80\%$$

$$Cost = 3910$$

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
	-	5	200	

$$Accuracy = 90\%$$

$$Cost = 4255$$

Cost vs Accuracy

Count	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a	b	
	Class=No	С	d	

Cost	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	р	q
CLASS	Class=No	q	р

Accuracy is proportional to cost if

1.
$$C(Yes \mid No) = C(No \mid Yes) = q$$

2.
$$C(Yes \mid Yes) = C(No \mid No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost-Sensitive Measures

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(NolNo)

Precision
$$(p) = \frac{a}{a+c}$$

Recall
$$(r) = \frac{a}{a+b}$$

F-measure
$$(F) = \frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Class-imbalanced data measures

- Sensitivity (Recall, true positive rate):
 - \circ Sn = TP/(TP+FN)
- Specificity (True negative rate)
- > G-mean

$$G-mean = \sqrt{(Sn \cdot Sp)}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain veliable estimates?
- Methods for Model Comparison
 - How to compare the velative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of tvaining and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size

 Requires a sampling schedule for creating learning curve:
 - Avithmetic sampling (Langley et al.)
 - Geometric sampling (Provost et al.)
 - Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate

Methods of Estimation

- > Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Pavtition data into K disjoint subsets
 - K-fold: tvain on K-1 pavtitions, test on the vernaining one
 - Leave-one-out: K=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with veplacement

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain veliable estimates?
- Methods for Model Comparison
 - How to compare the velative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Chavacterize the trade-off between positive hits and false alarms.
- PROC curve plots TP rate (Sn) on the y-axis against FP rate (1-Sp) on the x-axis
- Performance of each classifier represented as a point on the ROC curve
 - Changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Cyrve

1-dimensional data set containing 2 classes (positive and negative) any points located at x > t is classified as positive

At threshold t:

TP = 0.5, FN = 0.5, FP = 0.12, FN = 0.88

ROC Cyrve

- \rightarrow (TP rate = TP/P, FP rate = Fp/N):
- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - pvediction is opposite of the
 - true class

Using ROC for Model comparison

- No model consistently outperform the other
 - Mis better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
- Ideal:
 - Avea = 1
- Random guess:
 - \bullet Avea = 0.5

How to construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+| A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP,
- TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

Threshold >=

Class	+	-	+	-	-	-	+	-	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

02/10/19 09:59 CIB Research Group

93/107

Test of Significance

- Given two models:
 - Model M_i: accuracy = 85%, tested on 30 instances
 - Model M_2 : accuvacy = 75%, tested on 5000 instances
- Can we say M_1 is better than M_2 ?
 - ullet How much confidence can we place on accuracy of M_1 and M_2 ?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or wrong
 - Collection of Bernoulli trials has a Binomial distribution:
 - \circ x \sim Bin(N, p) x: number of covvect predictions
 - e.g: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = $N \times p = 50 \times 0.5 = 25$
- Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances)
- Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

For large test sets (N > 30),

 acc has a normal distribution with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

$$1-\alpha$$

Area = $1 - \alpha$

Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^2 \pm \sqrt{Z_{\alpha/2}^2 + 4 \times N \times acc - 4 \times N \times acc^2}}{2\left(N + Z_{\alpha/2}^2\right)}$$

Confidence Interval for Accuracy

Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:

- \bullet N=100, acc = 0.8
- Let $1-\alpha = 0.95$ (95% confidence)
- From probability table, $Z_{\alpha/2}$ =1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

comparing Performance of 2 Models

Given two models, say M1 and M2, which is better?

- MI is tested on DI (size= n_i), found evvov vate = e_i
- M2 is tested on D2 (size= n_2), found evvov vate = e_2
- Assume D₁ and D₂ ave independent
- If n₁ and n₂ ave sufficiently large, then

$$e_1 \sim N\left(\mu_1, \sigma_1\right)$$

$$e_2 \sim N\left(\mu_2, \sigma_2\right)$$

Approximate:

$$\hat{\sigma}_i = \frac{e_i (1 - e_i)}{n_i}$$

comparing Performance of 2 Models

- To test if performance difference is statistically significant: $d = e_1 e_2$
 - $d \sim N(d_1, \sigma_1)$, where d_1 is the true difference
 - Since D_1 and D_2 ave independent, their variance adds up:

$$\frac{\sigma_t^2 = \sigma_1^2 + \sigma_2^2 = \hat{\sigma}_1^2 + \hat{\sigma}_2^2}{e1(1 - e1)} + \frac{e2(1 - e2)}{n2}$$

ullet At (I-lpha) confidence level,

$$d_t = d \pm Z_{\alpha/2} \hat{\sigma}_t$$

An Illustrative Example

- Given: M_1 : $n_1 = 30$, $e_1 = 0.15$ M_2 : $n_2 = 5000$, $e_2 = 0.25$
- $d = |e_2 e_1| = 0.1$ (2-sided test)

$$\hat{\sigma}_d = \frac{0.15(1-0.15)}{30} + \frac{0.25(1-0.25)}{5000} = 0.0043$$

At 95% confidence level, $Z_{\alpha/2}$ =1.96

$$d_t = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

Interval contains 0 => difference may not be statistically significant

comparing Performance of 2 Algorithms

- Each learning algorithm may produce k models:
 - L₁ may produce M₁₁, M₁₂, ..., M_{1K}
 - L₂ may produce M₂₁, M₂₂, ..., M_{2k}
- If models are generated on the same test sets $D_1,D_2,...,D_k$ (e.g., via cross-validation)
 - For each set: compute $d_j = e_{lj} e_{2j}$
 - ullet d, has mean d, and vaviance $oldsymbol{\sigma}_{\scriptscriptstyle t}$
 - Estimate:

$$\sum_{t=0}^{k} (d_{j} - \overline{d})^{2}$$

$$\hat{\sigma}_{t}^{2} = \frac{j=1}{k(k-1)}$$

$$d_{t} = d \pm t_{1-\alpha,k-1} \hat{\sigma}_{t}$$

Non parametric tests: 1 vs. 1 over N problems

Wilcoxon's test

- 2 algorithms over N problems
- \bullet d, is the difference of the performance in i-th set

$$R^+ = \sum_{d_i>0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i=0} \operatorname{rank}(d_i) \qquad \qquad R^- = \sum_{d_i<0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i=0} \operatorname{rank}(d_i).$$

Being T the smaller of the sums:

$$z = \frac{T - \frac{1}{4}N(N+1)}{\sqrt{\frac{1}{24}N(N+1)(2N+1)}}$$

is normally distributed.

 \circ A p-value is obtained from the value of z and compared with a critical value $oldsymbol{lpha}$

Non parametric tests: 1 vs. k-1 over N problems

Holm's procedure

$$R_i = 1/N \sum_j r_j^i$$

z is normally distributed

$$z = \frac{(R_i - R_j)}{\sqrt{\frac{k(k+1)}{6N}}}.$$

- The critical value, alpha, is adjusted using:
- p values are ordered and tested in turns

$$\alpha/(k-1)$$

Holm's procedure

Graphical representation

Friedman test

- Multiple comparison test
- Bonferroni correction: $\alpha/(k-1)$ for k methods
 - Too conservative
- Friedman Test
 - Let vi be the vank of the j-th of K algorithms on the i-th of N data sets.
 - Fviedman test compares the average vanks of algorithms R;

$$\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_j R_j^2 - \frac{k(k+1)^2}{4} \right]$$

• is distributed according to χ_{F^2} with K-1 degrees of freedom, when N and K are big enough (as a rule of a thumb, N > 10 and K > 5)

Iman - Davenport test

- Friedman test is undesirably conservative
- Iman and Davenport designed a better statistic:

$$F_{F} = \frac{(N-1)\chi_{F}^{2}}{N(k-1)-\chi_{F}^{2}}$$

which is distributed according to the F-distribution with k-1 and (k-1)(N-1) degrees of freedom.

Nemenyi test

- Based on Friedman's ranks
- Methods significantly different if rank different above critical value:

$$CD = q_{\alpha} \sqrt{k(k+1) \frac{6}{N}}$$

• K: #nethods, N: #datasets, q_{α} : critical value (Student t)

