

Assertions and Tokens Path tracing

SPIFFE/SPIRE Nov/2022

Introduction

Main needs:

 A system that allow a subject to make arbitrary authenticated statements

 A token scheme that supports distributed signing, aggregate/concatenate signatures, and/or attenuations

Introduction – Use cases

Useful to define a minimal structure for assertions and tokens

Assert that a workload is entitled to act on behalf of a specific user

 Provide the path of workloads through which a request has passed

Nested model

Original + Assertion + Assertion

Token tracing

Link between issuer and audience

Attack model 1

issuer != audience

Attack model 1

issuer bearer!= audience

Attack model 2

Hash chaining

Token path tracing

Provide the path of workloads that a request has passed

ID mode:

Uses SVID private key to sign, sending necessary certificates to identify the workload and validate the signature and iss/aud link

Anonymous mode:

- No ID associated to keys
- Uses concatenated Schnorr signatures that results in smaller tokens and faster validation

ECDSA — SVID (ID mode)

Sign with SVID private key. Send SVID certificates with token

- Pros:
 - Certificates allow off-line validation and identification
 - Anonymous mode also available
- Cons:
 - OID mode requires more bandwidth
- Possibilities:
 - Use lightweight SVID

ECDSA - SVID

(Anonymous mode)

Sign with SVID private key. Add public keys in iss/aud claims

Pros:

- Uses SPIFFE/SPIRE infra
- Cons:
 - Token size
 - Validation runtime
- Possibilities:
 - Use Schnorr signature algorithm

EdDSA – Schnorr Concatenated

Biscuits-based solution. Each hop uses part of previous signature as private key

- Pros:
 - Smaller token size (compared to standard model and ECDSA)
 - Faster validation (using Galindo-Garcia) than sequencial model
 - Cryptographic-linked signatures
- Cons:
 - Only anonymous mode available
- Possibilities:
 - Study aggregated signatures state-of-art and ECDSA-Schnorr

Biscuits model reference

SchCo-Biscuits

(using concatenated Schnorr-based signatures: Galindo-Garcia-style)

ECDSA - Dillithium

Sign with SVID private key adding, optionally, a post-quantum signature algorithm.

- Pros:
 - Improved security using post-quantum algorithm (ECDSA+Crystals)
- Cons:
 - Bigger keys/signatures
- Possibilities:
 - Optional to specific use cases
 - Follow-up state-of-art

Demo 1: ECDSA – SVID (ID mode)

Demo 1: ECDSA – SVID (ID mode)

Demo 2: EdDSA – Schnorr (Anonymous mode)

Demo 2: ECDSA – Dilithium

Prototype that generates 2 tokens: ECDSA and Dilithium

SPIFFE Community Day

Opportunity to present the work to community and get feedbacks:)

SPIFFE Community Day

Next Steps

Add proxy to PoC scenario

Generate assertions using SPIRE selectors

General solution benchmarks

Future Work

Specify and implement lightweight SVID

Identity-based SVID: lightweight SVID with Galindo-Garcia

Post-Quantum algorithms (e.g. Crystals) analysis

Protobuf / JSON analysis

