Study Notes December 26, 2013 Kenneth Chu

Let $Y: \Omega \longrightarrow \mathbb{R}^n$ be an \mathbb{R}^n -valued random variable defined on the probability space Ω . We assume that the expected value E[Y] of Y exists. Then, trivially, we have $E[Y] \in \mathbb{R}^n$.

1 Assumption on the expected value of the response variable Y

The most fundamental assumption of the General Linear Model is that the expected value of the response variable Y lies in a model-specific subspace of \mathbb{R}^n (this subspace will be called the *estimation space* of the model), in the following sense: One of the "components" of a general linear model is its *model matrix* $X \in \mathbb{R}^{n \times p}$, and the expected value of the response variable Y is assumed to lie in the column space $\mathcal{C}(X) \subset \mathbb{R}^n$.

In other words:

The Estimation Space Assumption

$$E[Y] \in \mathcal{C}(X)$$
; equivalently, $E[Y] = X\beta$, for some (unknown) $\beta \in \mathbb{R}^p$, (1.1)

where $C(X) \subset \mathbb{R}^n$ is the column space of the model matrix $X \in \mathbb{R}^{n \times p}$.

We will call \mathbb{R}^n the observation space, and $\mathcal{C}(X)$ the estimation space of the model.

2 Assumption of the distribution of the response variable Y

In order to make estimation and hypothesis testing computationally feasible, we need to make certain assumptions on the distribution of the response variable Y.

Assumptions on the distribution of Y:

- 1. The response variable Y has a multivariate normal distribution.
- 2. The components of Y are independent \mathbb{R} -valued random variables.
- 3. The variances of the components of Y are all equal.

The assumptions on the expected value and distribution on Y together are equivalent to the following:

$$Y \sim N(X\beta, \sigma^2 I_n)$$
, for some (unknown but fixed) $\beta \in \mathbb{R}^p$, and some (unknown but fixed) $\sigma > 0$. (2.1)

Define $\varepsilon := Y - X\beta$. Then, $\varepsilon : \Omega \longrightarrow \mathbb{R}^n$ is also an \mathbb{R}^n -valued random variable, with

$$\varepsilon \sim N(0, \sigma^2 I_n)$$
, for some $\sigma > 0$. (2.2)

Proposition 2.1 (Distribution of the full-model error sum-of-squares)

Let $P_{\mathcal{C}(X)^{\perp}}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ denote the orthogonal projection operator onto the subspace $\mathcal{C}(X)^{\perp}$. Then,

$$\frac{\parallel P_{\mathcal{C}(X)^\perp}(Y) \parallel^2}{\sigma^2} \ \sim \ \chi^2 \big(\mathrm{rank} \big(\mathcal{C}(X)^\perp \big) \big)$$

3 Testing the hypothesis that $H_0: E[Y] \in \mathcal{C}(X_0) \subset \mathcal{C}(X)$

Proposition 3.1

Let $P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ denote the orthogonal projection operator onto the subspace $\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)$. Then,

$$\frac{\|P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)}(Y)\|^2}{\sigma^2} \sim \chi^2 \left(\operatorname{rank} \left(\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X) \right) , \frac{\|P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)} X \beta \|^2}{2 \sigma^2} \right)$$

Corollary 3.2 (Distribution of F-statistics under validity of full model)

$$\frac{\|P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)}(Y)\|^2 / \operatorname{rank}\left(\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)\right)}{\|P_{\mathcal{C}(X)^{\perp}}(Y)\|^2 / \operatorname{rank}\left(\mathcal{C}(X)^{\perp}\right)} \sim F\left(\operatorname{rank}\left(\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)\right), \operatorname{rank}\left(\mathcal{C}(X)^{\perp}\right); \frac{\|P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)}X\beta\|^2}{2\sigma^2}\right)$$

Corollary 3.3 (Distribution of F-statistics under validity of reduced model)

$$\frac{\|P_{\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)}(Y)\|^2 / \operatorname{rank}\left(\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)\right)}{\|P_{\mathcal{C}(X)^{\perp}}(Y)\|^2 / \operatorname{rank}\left(\mathcal{C}(X)^{\perp}\right)} \sim F\left(\operatorname{rank}\left(\mathcal{C}(X_0)^{\perp} \cap \mathcal{C}(X)\right), \operatorname{rank}\left(\mathcal{C}(X)^{\perp}\right); 0\right)$$

4 Model adequacy checking

Model adequacy checking is large done via examination of the residuals of the model fit. Recall that the least-squares estimator $\widehat{Y}: \Omega \longrightarrow \mathcal{C}(X)$ of the response variable $Y: \Omega \longrightarrow \mathbb{R}^n$ is given by:

$$\widehat{Y} = X \cdot (X^t \cdot X)^{-1} \cdot X^t \cdot Y = H \cdot Y,$$

where $H := X \cdot (X^t \cdot X)^{-1} \cdot X^t$ is called the **hat matrix** of the model. Recall also that, geometrically speaking, the hat matrix H is simply the orthogonal projection operator, defined on \mathbb{R}^n (the observation space), onto the column space $\mathcal{C}(X)$ of X (the estimation space, or the model space). The **residual** $\mathbf{e}: \Omega \longrightarrow \mathcal{C}(X)^{\perp}$ is defined to be:

$$\mathbf{e} := Y - \widehat{Y} = (I_n - H) \cdot Y,$$

where I-H is the orthogonal projection operator defined on \mathbb{R}^n (the observation space) onto the orthogonal complement $\mathcal{C}(X)^{\perp}$ of $\mathcal{C}(X)$. Note that $\mathcal{C}(X)^{\perp}$ can be regarded as the **error space** of the model. Recall that our model assumption is:

$$Y = X \cdot \beta + \varepsilon$$
,

with $\varepsilon \sim N(0, \sigma^2 I_n)$; see (2.2). Note that in general, the codomain of the error term $\varepsilon : \Omega \longrightarrow \mathbb{R}^n$ is NOT $\mathcal{C}(X)^{\perp}$ but all of the observation space \mathbb{R}^n . On the other hand, observe that

$$\mathbf{e} = (I_n - H) \cdot Y = (I_n - H) \cdot (X \cdot \beta + \varepsilon) = (I_n - H) \cdot \varepsilon$$

since $I_n - H$ is the orthogonal projection operator onto $\mathcal{C}(X)^{\perp}$, which maps $X \cdot \beta \in \mathcal{C}(X)$ to zero. We thus see that the residual $\mathbf{e} : \Omega \longrightarrow \mathcal{C}(X)^{\perp}$ is the orthogonal projection of the error term $\varepsilon : \Omega \longrightarrow \mathbb{R}^n$ onto the error space $\mathcal{C}(X)^{\perp}$. Or, more strictly speaking, the residual $\mathbf{e} : \Omega \longrightarrow \mathcal{C}(X)^{\perp}$ is the composition

$$\mathbf{e}: \Omega \xrightarrow{\varepsilon} \mathbb{R}^n \xrightarrow{I_n - H} \mathcal{C}(X)^{\perp}$$