

Applied Matrix Theory - Math 551

Homework assignment 9

Created by Prof. Diego Maldonado and Prof. Virginia Naibo

Name:

Due date: Thursday, April 4th at 5:00pm. Use the drop box adjacent to CW120. No late homework will be accepted.

Instructions: Unless indicated otherwise, you are strongly encouraged to use your calculator or Matlab to complete this assignment. Write legibly, use extra sheets of paper if needed, and **staple your work**. Also, try to do a two-sided printing of this assignment.

Honor pledge: "On my honor, as a student, I have neither given nor received unauthorized aid on this academic work."

Exercises. All answers must be justified by using matrix theory

1. Let

$$A = \begin{bmatrix} -2 & 2 \\ 4 & 6 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Solve for λ in the equation

$$\det(A - \lambda I) = 0.$$

Hint: Spell out all the operations, compute the 2×2 determinant, and solve the quadratic equation in λ .

2. Let $T: \mathbf{R}^3 \to \mathbf{R}^4$ be a linear transformation and $\beta = \{u_1, u_2, u_3\}$ be a basis of \mathbf{R}^3 such that

$$u_1 = \begin{bmatrix} -3\\1\\3 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 5\\1\\-1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

and

$$T(u_1) = \begin{bmatrix} 4 \\ 6 \\ -1 \\ 5 \end{bmatrix}, \quad T(u_2) = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad T(u_3) = \begin{bmatrix} 3 \\ 7 \\ -2 \\ 5 \end{bmatrix}.$$

Find T(u) where

$$u = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}.$$

Find a basis for kernel(T). Is T one-to-one? Find a basis for range(T). Is T onto?

3. Find the orthogonal projection of the vector
$$v = \begin{bmatrix} 2 \\ 4 \\ 6 \\ -2 \\ 4 \\ 8 \end{bmatrix}$$
 onto the subspace $\mathcal{U} = \begin{bmatrix} 2 \\ 4 \\ 6 \\ -2 \\ 4 \\ 8 \end{bmatrix}$

$$span(u_1, u_2, u_3)$$
, where $u_1 = \begin{bmatrix} 1\\1\\-2\\1\\0\\0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2\\2\\2\\0\\1\\0 \end{bmatrix}$, and $u_3 = \begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix}$. Compute

the distance from v to \mathcal{U} .

4. Let N be the 2×5 matrix

$$N = \left[\begin{array}{rrrr} -2 & 2 & 1 & 5 & 2 \\ 4 & 6 & -1 & 3 & 1 \end{array} \right]$$

Find an **orthonormal** basis for null(N) by first finding any basis and then applying the Gram-Schmidt process to it.

	5	

5. Write a Matlab function that takes an arbitrary 3×3 non-singular matrix U and performs

and outputs the Gram-Schmidt process to its columns.

6. Find a decomposition of the vector
$$v = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 4 \\ 1 \end{bmatrix}$$
 of the form $v = \bar{v} + w$ such that \bar{v} belongs to the subspace $\mathcal{U} = span(u_1, u_2)$, where $u_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ -2 \\ 3 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \\ -1 \\ 1 \end{bmatrix}$, and $w \in \mathcal{U}^{\perp}$.

to the subspace
$$\mathcal{U} = span(u_1, u_2)$$
, where $u_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ -2 \\ 3 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \\ -1 \\ 1 \end{bmatrix}$, and $w \in \mathcal{U}^{\perp}$.

Hint: Notice that u_1 and u_2 are **not** orthogonal (check out their dot product).

7. Consider the vectors

$$w_1 = \begin{bmatrix} 2\\1\\4\\-2\\1 \end{bmatrix}$$
 $w_2 = \begin{bmatrix} 2\\1\\2\\1\\0 \end{bmatrix}$, and $w_3 = \begin{bmatrix} -1\\1\\1\\5\\-8 \end{bmatrix}$.

Find an **orthonormal** basis for the subspace of all the vectors in \mathbb{R}^5 which are orthogonal to w_1 , w_2 , and w_3 .

Hint: Find a regular basis and then apply the Gram-Schmidt process to it.

8. True or False - Circle the right one (1 point each)

T or **F**. The angle between the vectors w and v is the same as the angle between the vectors 2w and 4v.

T or **F**. If P and Q are $n \times n$ orthogonal matrices then PQ is also orthogonal.

T or **F**. If Q is an orthogonal matrix, so is Q^T .

T or **F**. For any $n \times n$ matrix A and any pair of vectors u and v in \mathbf{R}^n we have

$$Au \cdot v = u \cdot A^T v$$

T or **F**. Orthogonal matrices can only have determinant equal to 1 or -1.

Points obtained in this assignment (out of 16):