Preblem 1:

$$\frac{1}{2}\frac{y^{(4)}}{4} = -a\frac{1}{2}\frac{y^{(4)}}{4} - by^{(4)} + con^{(4)}$$

$$\frac{1}{2}\frac{y^{(4)}}{4} + a\frac{1}{2}\frac{y^{(4)}}{4} + by^{(4)} = con^{(4)}$$

(6) Taking Laplace transform, assuming 200 incheil enditas gins

$$S^{2} \bigvee (S) + \alpha S \bigvee (S) + b \bigvee (S) = c \bigotimes (S)$$

$$\left(S^{2} + \alpha S + b\right) \bigvee (S) = c \bigotimes (S)$$

The bourter function is given by H(s) = Y(s) = C X(s) = C+ as + b.

Lee Love
$$1+(s) = \frac{10}{s^2 + 6s + 5} = \frac{10}{(s+3)(s+2)}$$

h(t) is the invese Laplace harrow ex H(s). $H(s) = \frac{A}{s+3} + \frac{B}{s+2}$ where $A = \frac{10}{s+2}\Big|_{s=-2} = -10$ $B = \frac{10}{s+3}\Big|_{s=-3} = 10$

$$1+(8)=\frac{-10}{5+3}+\frac{10}{5+2}$$

Have
$$h(t) = \int_{-1}^{1} (H(s)) = -10 \int_{-1}^{1} (\frac{1}{s+3}) + 10 \int_{-2t}^{1} (\frac{1}{s+2})$$

$$= -10 e^{-3t} + 10 e^{-2t}.$$

Since the poles are S=-2 and -3 are on the lasta half s-plane, the System is stable.

The order ex the denominator polynomial is higher than that ex the numerator, the system is causal.

Problem 2.

(a) Writing KUL around the loop gives V(4) = i(4) R + [i(4)] where $V_c(t) = \frac{1}{c} \int c(t) dt$ or $c(t) = c \frac{dV_c(t)}{dt}$ Reuridig the above equal gives V(+) = RC = (+) + Vc(+)

Here V(t) = RC \(\frac{1}{1+}\) + V(t) \(\frac{1}{1+}\)

αν; θ) + βν2 θ) = αRC (() + β RC () + β VC2 () + β VC2 ()

$$= \mathcal{A}\left(R\left(\frac{dV_{c_{1}}(\theta)}{dt} + V_{c_{1}}(\theta)\right) + \mathcal{B}\left(R\left(\frac{dV_{c_{2}}(\theta)}{dt} + V_{c_{2}}(\theta)\right)\right)$$

Let v(t-t0) = RcdVc(t-t0) + Ve(t-t0)

which is equalated to delaying the input V(t) and the output V(t) by

to Here the system is time-involvent.

(unrest at time t

The circuits does not depend on future values ex the input voltage HD byset on the current input voltage. ____ causal

Recall RC dVott) + Vott) = V(t)

with R=0.500 and C=0.25F, we have

Using Laplace medhod.

Taking the Laplace transform of the above differential equal

gives

$$S \bigvee_{c}(s) + 8 \bigvee_{c}(s) = 8 \bigvee(s)$$

$$(s+8)\bigvee_{c}(s)=8\bigvee(s)$$

We have
$$V_c(s) = \frac{8}{5+8}V(s)$$

with
$$v(t) = u(t)$$
, $V(s) = \frac{1}{s}$

(4)

Heree
$$V_c(s) = \frac{8}{s(s+8)} = \frac{A}{s} + \frac{B}{s+8}$$

with
$$A = \frac{8}{s+8} \Big|_{s=0} = 1$$

$$\beta = \frac{8}{s} \left| s = -1 \right|$$

We have

$$V_{e}(s) = \frac{8}{s(s+8)} = \frac{1}{s} - \frac{1}{s+8}$$

Taking the invese Laplace transform of V. (6) gives

$$V_c(t) = \left(\frac{1}{5} \right) - \int_{-1}^{-1} \left(\frac{1}{1+6} \right)$$

$$= (1 - e^{-8t})udd$$
 $a = 1 - e^{-8t}, t > 0$.

using underlemined coexticient method

Complaneter goluhan: Let Ville = Alst

substituting into the homogenous regular = \frac{1}{48} \text{Ve(4)} =0 gives ASQ St + 8AL St =0 => AL St (S+8) =0

The complementary solution is thus Vitte Ae-8t

sulshouty into the differential equal gives

General Solution

$$\frac{s(uhn)}{V_c(t)} = V_c(t) + V_c(t) = 1 + Ae^{-8t}$$

Initial Condition: $0 = 1 + Ae^0 = A = -1$

Since the system is causal, h[n] =0 for n < 0.

Here

$$h(0) = (1-d) S(0) + d S(-1) = 1-d$$

 $h(1) = (1-d) S(1) + d S(0) = d$
 $h(2) = (1-d) S(2) + d S(1) = 0$

$$h(n) = \begin{cases} 1-d; & n=0 \\ 2; & n=1 \\ 0; & n=2 \end{cases}$$

(c) using
$$\frac{1}{2}h(n) = (1-x) f(n) + \frac{1}{2} f(n-1)$$

$$= \sum_{n=-\infty}^{\infty} (1-x) f(n) + x f(n-1) e^{-jnn}$$

$$= \sum_{n=-\infty}^{\infty} (1-x) f(n) + x f(n-1) e^{-jnn}$$

$$= \sum_{n=-\infty}^{\infty} (1-x) f(n) + x f(n-1) e^{-jnn}$$

$$= (1-x) e^{-jn} + x e^{-jn} = 1-x + x e^{-jn}$$

$$\bigwedge(\mathfrak{F}) = (1-\gamma)\chi(\mathfrak{F}) + \chi \, \mathfrak{F}_1 \chi(\mathfrak{F})$$

$$H(\theta) = \frac{\lambda(\theta)}{\lambda(\theta)} = 1 - \gamma + \alpha f_{-1}$$

$$h(n) = (1-d) b(n) = \sum_{n=0}^{\infty} (1-d) f(n) + d f(n-1) e^{-n}$$

$$= \sum_{n=0}^{\infty} (1-d) f(n) e^{-n} + \sum_{n=0}^{\infty} d f(n-1) e^{-n}$$

Nu, the filte cannot go unstable because it has no poles. It is a finite impulse response (FIR) Filter.

$$T_0 = \frac{2\pi}{2}$$

$$\Rightarrow T_0 w_0 = 2\pi$$

(a)

The square wave can be deserribed for a period as $siti = \begin{cases} V_m, & 0 \leq t \leq T_0/2 \\ -V_m, & T_0 \leq t \leq T_0 \end{cases}$

To express this in Fourier Series, we have

$$2 \cdot 40 = \sum_{k=-\infty}^{20} C_k e^{+j w_0 k t}$$
 with $C_k = \frac{1}{76} \int_{70}^{10} 2 \cdot 40 \cdot e^{-j k w_0 t} dt$

neure $C_{K} = \frac{1}{10} \int_{0}^{T_{0}/2} V_{m} e^{-jkw_{0}t} dt + \int_{T_{0}/2}^{T_{0}} V_{m} e^{-jkw_{0}t} dt$ = Vm e-jkwot To/2 e-jkwot To

using Town = 2x gives

$$C_{K} = \int \frac{V_{M}}{2\pi \kappa} \left(2 - 1 - 1 \right) = 0$$

For K odd

$$C_{k} = \frac{j V_{m}}{2 \pi k} \left[-2 - 1 - 1 \right] = \frac{-j 4 V_{m}}{2 \pi k} = \frac{-j 2 V_{m}}{\pi k}$$

Herre

$$C_{12} = \begin{cases} 0 & \text{i. } 12 \text{ even} \\ -32V_{\text{m}} & \text{j. } 12 \text{ even} \end{cases}$$

Herre

$$\Im(\mathcal{C}) = \sum_{K=-20}^{\infty} -j_2 \frac{V_m}{\pi_K} e^{j_K w_0 t}; k \text{ old}.$$

$$\mathfrak{A}(t) = \sum_{|X|=-10}^{\infty} \frac{2V_{m}}{\sqrt{12}} e^{j(kw_{c}t - \sqrt[3]{2})}.$$

Are see value 3

Luce 3
$$C_{0} = \frac{1}{T_{0}} \int_{T_{0}} 2\pi(t) dt = \frac{1}{T_{0}} \left[\frac{T_{0}}{V_{m}} dt + \int_{T_{0}/2}^{T_{0}} V_{m} dt + \int_{T_{0}/2}^{T_{0}} V_{m} dt \right]$$

$$= \frac{1}{T_{0}} \left[V_{m} t \Big|_{0}^{T_{0}/2} - V_{m} t \Big|_{T_{0}/2}^{T_{0}/2} \right] = \frac{1}{T_{0}} \left[V_{m} \frac{T_{0}}{2} - V_{m} T_{0} + V_{m} \frac{T_{0}}{2} \right] = 0$$

(c)

From (3) ble harmonie contents of the Square-wave includes wo, 300, 500, 700, 900, , --- while the output Sinusoidal Signal has only wo.

The Follows that 300, 500, 700, 900 +--- must be Rifered out

A Low-pass File will be readed.