Comment déterminer à la main la fonction solution d'une équation différentielle du premier ordre vérifiant une condition initiale donnée ?

Pour déterminer, à la main, la fonction g solution de l'équation (1) ay' + by = c(x), qui vérifie une condition initiale donnée :

1. On détermine l'ensemble des solutions de l'équation (1) (voir fiche méthode 14).

L'expression de ces solutions est de la forme $y(x) = ke^{-\frac{b}{a}x} + f(x)$. Cette expression fait apparaître une constante réelle k.

- 2. On traduit la condition initiale donnée par une équation d'inconnue k; on résout cette équation.
- 3. On écrit l'expression de la fonction g solution.

Exemple. Déterminer la fonction g solution de l'équation (1) 3y' + 2y = 4x, qui vérifie la condition g(0) = 0.

1. On écrit l'expression des solutions de l'équation (1) (voir fiche méthode 14) :

$$y(x) = ke^{-\frac{2}{3}x} + 2x - 3.$$

2. g(x) est de la forme $g(x) = ke^{-\frac{2}{3}x} + 2x - 3$.

$$g(0) = 0$$
 s'écrit $ke^{-\frac{2}{3}\times 0} + 2\times 0 - 3 = 0$, soit, puisque $e^0 = 1$, $k - 3 = 0$, donc $k = 3$.

3. La fonction g solution de l'équation 3y' + 2y = 4x telle que g(0) = 0 est donc la fonction

définie sur \mathbb{R} par $g(x) = 3e^{-\frac{2}{3}x} + 2x - 3$.