$12n_{0725} (K12n_{0725})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^3 + 2u^2 + b + 2u - 1, \ a + 1, \ u^4 - 2u^3 - u^2 + 4u - 1 \rangle \\ I_2^u &= \langle b - 2u + 2, \ a + 1, \ u^2 + u - 1 \rangle \\ I_3^u &= \langle b - 2, \ a - u - 2, \ u^2 + u - 1 \rangle \\ I_4^u &= \langle b, \ a - u, \ u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^3 + 2u^2 + b + 2u - 1, \ a + 1, \ u^4 - 2u^3 - u^2 + 4u - 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\u^{3} - 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u\\-u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 1\\2u^{3} - 3u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{3} - 2u^{2} - 4u + 2\\4u^{3} - 5u^{2} - 10u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\-u^{3} - 2u\\4u^{3} - 2u^{2} - 9u + 3 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^3 2u^2 2u 16$

Crossings	u-Polynomials at each crossing
c_1	$u^4 + 6u^3 + 23u^2 + 10u + 1$
c_2, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^4 + 2u^3 - u^2 - 4u - 1$
c_4, c_9	$u^4 + 2u^3 + 8u^2 + 12u + 4$

Crossings	Riley Polynomials at each crossing	
c_1	$y^4 + 10y^3 + 411y^2 - 54y + 1$	
c_2, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^4 - 6y^3 + 15y^2 - 14y + 1$	
c_4, c_9	$y^4 + 12y^3 + 24y^2 - 80y + 16$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.34859		
a = -1.00000	-11.3144	-21.8460
b = -2.39292		
u = 1.53492 + 0.55154I		
a = -1.00000	-3.91702 - 5.91675I	-18.7424 + 2.9716I
b = -3.95793 - 0.75887I		
u = 1.53492 - 0.55154I		
a = -1.00000	-3.91702 + 5.91675I	-18.7424 - 2.9716I
b = -3.95793 + 0.75887I		
u = 0.278744		
a = -1.00000	-0.590771	-16.6700
b = 0.308773		

II.
$$I_2^u = \langle b - 2u + 2, a + 1, u^2 + u - 1 \rangle$$

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 2u-2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -3u+2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -3u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ u-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -20

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_3 c_7, c_8	$u^2 + u - 1$		
c_4, c_9	u^2		
c_5, c_6, c_{10} c_{11}, c_{12}	$u^2 - u - 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$		
c_4, c_9	y^2		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.00000	-1.97392	-20.0000
b = -0.763932		
u = -1.61803		
a = -1.00000	-17.7653	-20.0000
b = -5.23607		

III.
$$I_3^u=\langle b-2,\; a-u-2,\; u^2+u-1 \rangle$$

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u-3 \\ -u-2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u-3 \\ -2u-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+2 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u+2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -15

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_3 c_7, c_8	$u^2 + u - 1$		
c_4, c_9	u^2		
c_5, c_6, c_{10} c_{11}, c_{12}	$u^2 - u - 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$		
c_4, c_9	y^2		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 2.61803	-9.86960	-15.0000
b = 2.00000		
u = -1.61803		
a = 0.381966	-9.86960	-15.0000
b = 2.00000		

IV.
$$I_4^u = \langle b, \ a - u, \ u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u + 2 \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -4u + 4 \\ u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u + 1 \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u + 2 \\ 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -15

Crossings	u-Polynomials at each crossing	
c_1	$u^2 - u + 7$	
c_2, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^2 + u + 1$	
c_4, c_9	$(u+2)^2$	

Crossings	Riley Polynomials at each crossing	
c_1	$y^2 + 13y + 49$	
c_2, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^2 + y + 1$	
c_4, c_9	$(y-4)^2$	

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.500000 + 0.866025I		
a =	0.500000 + 0.866025I	0	-15.0000
b =	0		
u =	0.500000 - 0.866025I		
a =	0.500000 - 0.866025I	0	-15.0000
b =	0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^2 - u + 7)(u^2 + u - 1)^2(u^4 + 6u^3 + 23u^2 + 10u + 1) $
c_2, c_3, c_7 c_8	$(u^2 + u - 1)^2(u^2 + u + 1)(u^4 + 2u^3 - u^2 - 4u - 1)$
c_4, c_9	$u^4(u+2)^2(u^4+2u^3+8u^2+12u+4)$
c_5, c_6, c_{10} c_{11}, c_{12}	$(u^2 - u - 1)^2(u^2 + u + 1)(u^4 + 2u^3 - u^2 - 4u - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 - 3y + 1)^2(y^2 + 13y + 49)(y^4 + 10y^3 + 411y^2 - 54y + 1)$
c_2, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y^2 - 3y + 1)^2(y^2 + y + 1)(y^4 - 6y^3 + 15y^2 - 14y + 1)$
c_4, c_9	$y^4(y-4)^2(y^4+12y^3+24y^2-80y+16)$