GIẢI ĐỀ 10 – THPT CHUYÊN NGUYỄN HUỆ

Online: tuyensinh247.com

BẢNG ĐÁP ÁN

1.A	2.B	3.A	4.B	5.D	6.B	7.B	8.B	9.A	10.C
11.D	12.B	13.D	14.D	15.C	16.C	17.D	18.A	19.C	20.D
21.B	22.D	23.A	24.C	25.D	26.B	27.A	28.D	29.D	30.C
31.C	32.C	33.C	34.A	35.A	36.D	37.B	38.D	39.B	40.A
41.C	42.A	43.C	44.C	45.B	46.A	47.A	48.C	49.A	50.D

Câu 1:

+ Gọi G là tâm của tam giác đáy ABC, ta có:

$$SG \perp (ABC)$$

+ Khi đó góc giữa cạnh bên và mặt đáy là góc SAG.

+ Ta có:
$$AG = \frac{AB\sqrt{3}}{3} = \frac{a\sqrt{3}}{3}$$
.

$$\Rightarrow SA = \frac{AG}{\cos SAG} = \frac{a\sqrt{3}}{\cos 60^{\circ}} = \frac{2a}{\sqrt{3}}. \text{ Chọn } \underline{\mathbf{A}}.$$

Câu 2:

+ Gọi *I* là trung điểm của *BC*.

+ Hai tam giác ABC; DBC lần lượt là các tam giác cân tại

$$A$$
 và D .

$$\Rightarrow \begin{cases} AI \perp BC \\ DI \perp BC \end{cases} \Rightarrow (DIA) \perp BC \Rightarrow BC \perp AD.$$

Chọn B.

Câu 3: + Gọi số hộp sữa ở hàng dưới cùng được xếp là 2n-1.

+ Ta có:

$$1+3+5+...+(2n-1)=10000$$

$$\Leftrightarrow 2(1+2+...+n)-n=10000$$

$$\Leftrightarrow 2\frac{n(n+1)}{2} - n = 10000$$

$$\Leftrightarrow n^2 = 10000$$

$$\Leftrightarrow n = 100.$$

Vậy số hộp sữa ở hàng dưới cùng là: 2.100-1=199. **Chọn <u>A.</u>**

Câu 4: + Ta có:

$$+\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{(2n-1)(2n+1)}$$

$$= \frac{1}{2} \left[\frac{2}{1.3} + \frac{2}{3.5} + \dots + \frac{2}{(2n-1)(2n+1)} \right]$$

$$= \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}$$

$$+ \frac{1}{2.4} + \frac{1}{4.6} + \dots + \frac{1}{2n(2n+2)}$$

$$= \frac{1}{2} \left[\frac{2}{2.4} + \frac{2}{4.6} + \dots + \frac{2}{2n(2n+2)} \right]$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} + \frac{1}{4} - \frac{1}{6} + \dots + \frac{1}{2n} - \frac{1}{2n+2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2n+2} \right) = \frac{n}{4n+4}$$

$$\Rightarrow \lim u_n = \lim \left(\frac{n}{2n+1} + \frac{n}{4n+4}\right) = \lim \left(\frac{1}{2+\frac{1}{n}} + \frac{1}{4+\frac{4}{n}}\right) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}.$$

C2: Dùng máy tính bấm Shift + rồi nhập như bên dưới
$$\begin{array}{c|c}
 & & & & \\
\hline
 & & & & \\
\hline
 & & & \\
\hline$$

Nhấn = thu được

$$\sum_{x=1}^{100} \left(\frac{\frac{1}{(2X-1)\times(2X+1)}}{0.7450371903} \right)$$

Vậy kết quả = $\frac{3}{4}$. **Chọn <u>B.</u>**

Câu 5: + Ta có:
$$I = \lim \frac{2n^3 - 4n^2 + 3n + 3}{3n^2 - n^3 - 5n} = \lim \frac{2 - \frac{4}{n} + \frac{3}{n^2} + \frac{3}{n^3}}{\frac{3}{n} - 1 - \frac{5}{n^2}} = \frac{2}{-1} = -2$$
. Chọn D.

Câu 6: + Ta có:
$$\frac{2n-1}{n+4} = 1 \Leftrightarrow 2n-1 = n+4 \Leftrightarrow n=5.$$

Vậy 1 là số hạng thứ 5 của dãy số. Chọn B.

Câu 7: + Dự đoán SHTQ của dãy số như sau:

$$u_1 = 1 = 2^{1-1}$$

$$u_2 = 2.u_1 = 2 = 2^{2-1}$$

$$u_3 = 2u_2 = 4 = 2^{3-1}$$

...

$$u_n = 2^{n-1}$$
.

$$\Rightarrow u_n > 2^{2019} \Leftrightarrow 2^{n-1} > 2^{2019} \Leftrightarrow n-1 > 2019 \Leftrightarrow n > 2020.$$

Vậy số n nhỏ nhất thỏa mãn là 2021. Chọn B.

Câu 8: + Ta có: $y' = 4x^3 - 4x^2 + x - 1$.

+
$$y' < 0 \iff 4x^3 - 4x^2 + x - 1 < 0 \iff x < 1$$
.

Chú ý: Trong máy tính từ Vinacal 570esplus và Casio 570vn trở lên có chức năng tìm nghiệm BPT: Bấm Mode + xuống + 1: INEQ

Chon B.

Câu 9: + Ta có:
$$y' = \left(\sin\left(2x - \frac{\pi}{2}\right)\right)' = 2.\cos\left(2x - \frac{\pi}{2}\right) \Rightarrow y'\left(\frac{\pi}{6}\right) = 2.\cos\left(2.\frac{\pi}{6} - \frac{\pi}{2}\right) = \sqrt{3}$$
. Chọn A.

Câu 10: + Ta có: $y' = 3x^2 + 8x - 11$.

+
$$y' = 0 \Leftrightarrow 3x^2 + 8x - 11 = 0 \Leftrightarrow (x - 1)(3x + 11) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{-11}{3} \end{bmatrix}$$

Vậy tập nghiệm của phương trình là: $S = \left\{ \frac{-11}{3}; 1 \right\}$. **Chọn** <u>C.</u>

Câu 11: + Do a,b,c theo thứ tự lập thành cấp số cộng và a,c,b theo thứ tự lập thành cấp số nhân nên ta có hệ sau:

$$\begin{cases} 2b = a + c \\ c^2 = a.b \end{cases} \Leftrightarrow \begin{cases} c = 2b - a \\ c^2 = a.b \end{cases}.$$

+ Ta có:
$$c = 2b - a \Rightarrow c^2 = (2b - a)^2 = ab \Rightarrow a^2 - 5ab + 4b^2 = 0 \Rightarrow (a - b)(a - 4b) = 0 \Rightarrow \begin{bmatrix} a = b \\ a = 4b \end{bmatrix}$$

TH1: a = b: Loai do a < b < c.

TH2:
$$a = 4b \Rightarrow c = 2b - a = 2b - 4b = -2b$$
.

Do
$$a < b \Rightarrow 4b < b \Rightarrow b < 0$$
.

Mà c = -2b nên c > 0 và c là số chẵn nên số nguyên c nhỏ nhất thỏa mãn là: c = 2. **Chọn D**.

Câu 12: + Ta có:

$$u_1 = 2$$

$$u_2 = 3(u_1 + 1) = 3.(2+1) = 9$$

$$u_3 = 3(u_2 + 1) = 3.(9 + 1) = 30$$

Chon B.

Câu 13:

+ Xét hình chóp tứ giác đều S.ABCD, Olà tâm của hình vuông ABCD.

+ Gọi *M* là trung điểm của *BC*, ta có:

- OM là đường trung bình của tam giác ABC nên:

OM//AB mà $AB \perp BC$ suy ra $OM \perp BC$.

-Tam giác SBC cân tại S nên $SM \perp BC$.

Khi đó số đo góc α của mặt bên và mặt đáy bằng số đo góc SMO.

$$\Rightarrow \tan \alpha = \frac{SO}{MO} = \frac{SO}{\frac{AB}{2}} = 1.$$

$$\Rightarrow \alpha = 45^{\circ}$$
. Chon D.

+ Gọi P là trung điểm của AC, ta có:

NP là đường trung bình của tam giác $C\!AB$ nên:

NP//AB.

MP là đường trung bình của tam giác $C\!AD$ nên:

MP//CD.

Mà
$$NP = \frac{AB}{2} = \frac{CD}{2} = MP$$
 nên tam giác MNP cân tại P có

độ dài cạnh bên bằng $\frac{a}{2}$.

+ Lại có *NP* song song với *AB* nên góc giữa hai đường thẳng *AB*; *MN* sẽ bằng với góc giữa hai đường thẳng *NP*; *MN* .

$$\Rightarrow$$
 Số đo góc ở đỉnh của tam giác cân *MNP* bằng:

$$180^{\circ} - 2.30^{\circ} = 120^{\circ}$$
.

Áp dụng định lý hàm số cos ta có:

$$MN = \sqrt{NP^2 + MP^2 - 2MP.NP.\cos 120^0}$$
.

$$\Rightarrow MN = \frac{a\sqrt{3}}{2}$$
. Chọn D.

Câu 15: + Phương trình vận tốc theo thời gian của vật là: $v(t) = s'(t) = (2t^3 - t + 10)' = 6t^2 - 1$.

+ Vận tốc của vật tại thời điểm t = 3s là: $v(3) = 6.3^2 - 1 = 53m/s$. Chọn C.

Câu 16: + Ta có:
$$(x.\cos x)' = x'.\cos x + x.(\cos x)' = \cos x - x.\sin x$$
. Chọn C.

Câu 17: + Công sai d của cấp số cộng bằng: $d = u_4 - u_3 = 8 - (-7) = 15$. **Chọn D**.

Online: tuyensinh247.com

Câu 18: + Ta có:

$$\left(\left(x^2+2x+3\right)^5\right)^{1}=\left(x^2+2x+3\right)^4\cdot 5\cdot \left(x^2+2x+3\right)^4=\left(2x+2\right)\cdot 5\cdot \left(x^2+2x+3\right)^4=10\left(x+1\right)\left(x^2+2x+3\right)^4.$$

Chon A.

Câu 19: + Số tiền đặt cọc mỗi lần của người du khách là một cấp số nhân với số hạng đầu tiên $u_1 = 50000$ và công bội q = 2.

+ Do người đó thua 10 lần liên tiếp nên số tiền người đó mất sẽ là:

$$S(10) = u_1 + u_2 + ... + u_{10} = u_1 \cdot \frac{q^{10} - 1}{q - 1} = 50000 \cdot (2^{10} - 1).$$

+ Người du khách thắng ở lần thứ 11 nên sẽ không mất số tiền cọc ở lần thứ 11 và thu về được số tiền bằng số tiền cọc ở lần 11 tức số tiền người du khách thu về là:

$$L = u_{11} = u_1.q^{10} = 50000.2^{10}.$$

+ Ta có:
$$L - S(10) = 50000.2^{10} - 50000(2^{10} - 1) = 50000.$$

Vậy người du khách trên thắng 50000 đồng. Chọn C.

Câu 20:

+ Ta có:
$$\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AB'})$$
.
Do $\overrightarrow{AB'} = \overrightarrow{AA'} + \overrightarrow{A'B'} = \overrightarrow{c} + \overrightarrow{AB}$. Nên:
 $\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AB'}) = \frac{1}{2} (\overrightarrow{c} + 2\overrightarrow{AB}) = \frac{1}{2} \overrightarrow{c} + \overrightarrow{AB}$.
Mà $\overrightarrow{AB} = \overrightarrow{CB} - \overrightarrow{CA} = \overrightarrow{b} - \overrightarrow{a}$ nên:
 $\Rightarrow \overrightarrow{AM} = \frac{1}{2} \overrightarrow{c} + \overrightarrow{b} - \overrightarrow{a}$. Chọn $\underline{\mathbf{D}}$.

Câu 21:

+ Ta có:
$$\begin{cases} SA \perp CB \\ AB \perp CB \end{cases} \Rightarrow CB \perp (SAB).$$

+ Khi đó số đo α của góc giữa SC và (SAB) sẽ bằng số đo góc CSB.

$$\Rightarrow \tan CSB = \frac{BC}{SR} = \frac{a}{5a} = \frac{1}{5}$$
. Chọn B.

Câu 22: + Phương trình tiếp tuyến của đồ thị hàm số (C) tại một điểm x_0 bất kì là:

$$y = y'(x_0)(x - x_0) + y(x_0) \Leftrightarrow y = \frac{1}{(x_0 - 1)^2}(x - x_0) + \frac{1 - 2x_0}{x_0 - 1}.$$

+ Giao điểm của tiếp tuyến với trục tung và trục hoành lần lượt là:

$$A\left(0;\frac{-2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right);B\left(2x_0^2-2x_0+1;0\right).$$

+ Để tiếp tuyên tạo với hai trục tọa độ một tam giác vuông cân thì:

$$OA = OB \Leftrightarrow \left| \frac{-2x_0^2 + 2x_0 - 1}{(x_0 - 1)^2} \right| = \left| 2x_0^2 - 2x_0 + 1 \right| \Leftrightarrow \frac{1}{(x_0 - 1)^2} = 1 \Leftrightarrow \begin{bmatrix} x_0 - 1 = 1 \\ x_0 - 1 = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_0 = 2 \\ x_0 = 0 \end{bmatrix}$$

- + Với $x_0 = 2$ ta có phương trình tiếp tuyến là: x y 5 = 0.
- + Với $x_0 = 0$ ta có phương trình tiếp tuyến là: x y 1 = 0.

Hai tiếp tuyến trên song song với nhau nên khoảng cách giữa hai tiếp tuyến cũng bằng khoảng cách của điểm C(5;0) (thuộc x-y-5=0) đến đường thẳng x-y-1=0:

$$\Rightarrow d = \frac{|5 - 0 - 1|}{\sqrt{1^2 + (-1)^2}} = 2\sqrt{2}$$
. Chọn D.

Câu 23:
$$+\left(\sqrt{x^2-2x+5}\right)' = \frac{\left(x^2-2x+5\right)'}{2\sqrt{x^2-2x+5}} = \frac{2x-2}{2\sqrt{x^2-2x+5}} = \frac{x-1}{\sqrt{x^2-2x+5}}$$
. Chọn A.

Câu 24: + Giao điểm A của (H) với trục hoành có tọa độ là: A(-3;0).

+ Ta có:
$$y' = \frac{2(x+2)-(2x+6)}{(x+2)^2} = \frac{-2}{(x+2)^2}$$
.

+ Phương trình tiếp tuyến của (H) tại A là:

$$y = \frac{-2}{(-3+2)^2}(x+3) + 0 \Leftrightarrow y = -2x - 6$$
. Chọn C.

Câu 25:

+ Gọi h là đường cao ứng với đỉnh B của tứ diện *SABC*.

+ α là góc tạo bởi *SB* và mặt phẳng (*SAC*).

Khi đó ta có:
$$\sin \alpha = \frac{h}{SB}$$
.

+ Ta có:
$$DAB = 180^{\circ} - ABC = 60^{\circ}$$
.

Áp dụng định lý hàm số cos ta có:

$$DB = \sqrt{AB^2 + AD^2 - 2AD \cdot AB \cdot \cos 60^0} = a\sqrt{3}.$$

$$\Rightarrow SB = \sqrt{SD^2 + DB^2} = a\sqrt{6}.$$

+ Ta có:

$$V_{S.ABCD} = \frac{SD.S_{ABCD}}{3} = \frac{SD.AB.BC.\sin 60^{\circ}}{3} = a^{3}.$$

$$\Rightarrow V_{S.ABC} = \frac{V_{S.ABCD}}{2} = \frac{a^3}{2}.$$

Ta có:

$$SA = \sqrt{SD^2 + AD^2} = 2a; SC = \sqrt{SD^2 + DC^2} = a\sqrt{7}.$$

$$AC = \sqrt{AB^2 + BC^2 - 2AB.BC.\cos 120^0} = a\sqrt{7}.$$

Đặt
$$p = \frac{SA + AC + SC}{2}$$
. Ta suy ra:

$$S_{\Delta SAC} = \sqrt{p(p-AC)(p-SA)(p-SC)} = a^2 \sqrt{6}.$$

$$\Rightarrow h = \frac{3V_{B.SAC}}{S_{\Delta SAC}} = \frac{\frac{3a^3}{2}}{a^2\sqrt{6}} = \frac{a\sqrt{6}}{4}.$$

$$\Rightarrow \sin \alpha = \frac{h}{SB} = \frac{a\sqrt{6}}{4a\sqrt{6}} = \frac{1}{4}. \text{ Chọn } \underline{D}.$$

Câu 26: + Ta có:
$$I = \lim_{x \to 1} \frac{\sqrt{(3x^2 + 1)(x + 2)}}{3x^3 + 4x - 1} = \frac{\sqrt{(3.1^2 + 1).(1 + 2)}}{3.1^3 + 4.1 - 1} = \frac{\sqrt{12}}{6} = \frac{\sqrt{3}}{3}$$
. Chọn B.

Câu 27: + Ta có:
$$y' = \left(\frac{x^2 + x - 2}{x + 1}\right)' = \frac{(2x + 1)(x + 1) - (x^2 + x - 2)}{(x + 1)^2} = \frac{x^2 + 2x + 3}{(x + 1)^2}.$$

$$\Rightarrow a=2; b=3 \Rightarrow P=2a+b=7$$
. Chọn A.

Câu 28: C1: Ta có:
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1} \right)^2 - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\sqrt{1 + \frac{1}{x^2} + 1}} = 0.$$

C2: Dùng máy tính kiểm tra

+ Xét đáp án A:
$$\frac{X^{2}-1}{3X^{2}-4X+1}$$

1

+ Xét đáp án B: -1.666666648

$$\frac{\times^2 - 1}{\times^3 - 1}$$

+ Xét đáp án C:

$$\sqrt{X^2+1} - X$$

+ Xét đáp án D:

Chọn D.

Câu 29: + Ta có:
$$f'(x) = \frac{(2x+1)'}{2\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}$$
; $g'(x) = (\cot x)' = \frac{-1}{\sin^2 x}$.

$$\Rightarrow m.g'(\frac{\pi}{6}) + \frac{2m+1}{f'(4)} = m. \frac{-1}{\sin^2(\frac{\pi}{6})} + \frac{2m+1}{\frac{1}{\sqrt{2.4+1}}} = -4m + 6m + 3 = 2m + 3. \text{ Chọn } \underline{D}.$$

Câu 30:

+ Ta có:
$$\begin{cases} SA \perp BC \\ AB \perp BC \end{cases} \Rightarrow BC \perp (SAB). \text{ Chọn } \underline{C}.$$

Câu 31: + Cấp số nhân có số hạng đầu bằng $\frac{-1}{2}$, công bội bằng $\frac{-1}{2}$ nên tổng của cấp số nhân là:

$$S = \frac{u_1}{1-q} = \frac{\frac{-1}{2}}{1+\frac{1}{2}} = \frac{-1}{3}$$
. Chọn C.

Câu 32:

+ Ta có:
$$\frac{d\left(M/(SAC)\right)}{d\left(B/(SAC)\right)} = \frac{SM}{SB} = \frac{1}{2}.$$

+ Gọi O là giao điểm của AC;BD, ta có:

$$\begin{cases} AC \perp BD \\ SA \perp BD \end{cases} \Rightarrow BD \perp (SAC).$$

$$\Rightarrow d\left(B/\left(SAC\right)\right) = BO = \frac{BD}{2} = \frac{2a\sqrt{2}}{2} = a\sqrt{2}.$$

$$\Rightarrow d\left(M/(SAC)\right) = \frac{d\left(B/(SAC)\right)}{2} = \frac{a\sqrt{2}}{2}.$$

Chọn C.

Câu 33: C1: +
$$I = \lim \frac{n^3 - n \sin n^2}{1 - 3n^2} = \lim \frac{1 - \frac{\sin n^2}{n^2}}{\frac{1}{n^3} - \frac{3}{n}}$$
.

+ Ta có:
$$\lim \left(\frac{1}{n^3} - \frac{3}{n}\right) = 0^-$$
; $\lim \left(1 - \frac{\sin n^2}{n^2}\right) = 1$ nên ta suy ra: $I = \lim \frac{1 - \frac{\sin n^2}{n^2}}{\frac{1}{n^3} - \frac{3}{n}} = -\infty$.

C2: Dùng máy tính:

$$I = \lim \frac{n^3 - n \sin n^2}{1 - 3n^2} = -\infty$$
. Chọn C.

Online: tuyensinh247.com

Câu 34: + Theo định nghĩa về đạo hàm ta có: $f'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{x^3 - 27}{x - 3}$. **Chọn <u>A.</u>**

Câu 35:

+ Ta có: B'C//A'D nên số đo góc giữa hai đường thẳng A'B; B'C bằng với số đo góc giữa hai đường thẳng A'B; A'D.

+ Do ABCD.A'B'C'D' là hình lập phương nên:

A'D = DB = BA' nên tam giác A'BD là tam giác đều hay số đo góc giữa hai đường thẳng A'B; A'D bằng 60° . **Chọn A.**

Câu 36:

+ Ta có SA = SC nên hình chiếu vuông góc H của S xuống mặt phẳng $\begin{pmatrix} ABCD \end{pmatrix}$ sẽ nằm trên đường trung trực của AC.

+ Mà BD là đường trung trực của AC.

 \Rightarrow $SH \in (SBD)$ mà $SH \perp (ABCD)$ nên:

 \Rightarrow (SBD) \perp (ABCD). Chọn <u>D.</u>

Câu 37: +
$$I = \lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x - 1)} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{x - 1} = 12$$
. Chọn B.

Câu 38:

+ Gọi *M* là trung điểm của *BC*.

+ $\triangle ABC$ đều nên: $AM \perp BC$

Lại có: $SA \perp BC$ nên $(SAM) \perp BC$.

+ Gọi H là hình chiếu vuông có của A xuống SM.

$$\Rightarrow d(A/(SBC)) = AH.$$

Có:
$$SA = a\sqrt{6}$$
; $AM = \frac{AB\sqrt{3}}{2} = a\sqrt{3}$.

$$\Rightarrow AH = \frac{SA.AM}{\sqrt{SA^2 + AM^2}} = a\sqrt{2}$$
. Chọn D.

Câu 39: + Năm số hạng đầu tiên của cấp số cộng là: $-\frac{1}{2}$;0; $\frac{1}{2}$;1; $\frac{3}{2}$. **Chọn B**.

Câu 40:

+ Gọi *M* là trung điểm của *CD*, ta có:

 $\triangle ACD$ cân tại A nên: $AM \perp CD$

 ΔBCD cân tại B nên: $BM \perp CD$

 \Rightarrow $(ABM) \perp CD$ nên: $AB \perp CD$.

 $\Rightarrow \overrightarrow{AB}.\overrightarrow{CD} = 0$. Chon A.

Câu 41: + Ta có:
$$y' = x^2 - 4x + 7 = (x - 2)^2 + 3 \ge 3 \forall x$$

- + Dấu bằng xảy ra khi x = 2
- + Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 2 là:

$$d: y = f'(2)(x-2) + f(2) = 3(x-2) + 6 = 3x$$
. Chọn C.

Câu 42: + Ta có:
$$y' = 3x^2 + 4x - 1$$

+ Để tiếp tuyến của (C) tại điểm có hoành độ x_0 vuông góc với đường thẳng $y = \frac{1}{2}x - 3$ thì

$$f'(x_0) \cdot \frac{1}{2} = -1 \Leftrightarrow f'(x_0) = -2 \Leftrightarrow 3x_0^2 + 4x_0 - 1 = -2 \Leftrightarrow 3x_0^2 + 4x_0 + 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} x_0 = -1 \\ x_0 = \frac{-1}{3} \Rightarrow \begin{cases} x_1 = -1 \\ x_2 = \frac{-1}{3} \Rightarrow x_1 + x_2 = \frac{-4}{3} \end{cases}$$
. Chọn A.

Câu 43: + Ta có:
$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} \frac{x^2 - 4x + 3}{x - 1} = \lim_{x \to 1+} \frac{(x - 1)(x - 3)}{x - 1} = \lim_{x \to 1+} (x - 3) = -2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (ax - 2) = -a - 2; \ f(1) = a - 2$$

+ Để hàm số liên tục trên \mathbb{R} thì $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x) = f(1) \Leftrightarrow -2 = a - 2 \Leftrightarrow a = 0$. Chọn $\underline{\mathbf{C}}$.

$$\mathbf{C\hat{a}u} \ \mathbf{44:} + \lim_{x \to -\infty} \left(\sqrt{x^2 + mx + 1} + x \right) = \lim_{x \to -\infty} \frac{x^2 + mx + 1 - x^2}{\sqrt{x^2 + mx + 1} - x} = \lim_{x \to -\infty} \frac{mx + 1}{\left| x \right| \sqrt{1 + \frac{m}{x} + \frac{1}{x^2} - x}} = \lim_{x \to -\infty} \frac{m + \frac{1}{x}}{-\sqrt{1 + \frac{m}{x} + \frac{1}{x^2} - 1}} = \frac{m}{-2}$$

+ Do đó:
$$\frac{m}{-2} = -\frac{1}{4} \Leftrightarrow m = \frac{1}{2}$$
. Chọn C.

Câu 45:

+ Gọi I là trung điểm $AB \Rightarrow AICD$ là hình vuông

$$\Rightarrow$$
 CAB = 45⁰

Và $\triangle CIB$ vuông cân tại $I \Rightarrow ABC = 45^{\circ}$

$$\Rightarrow ACB = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ} \Rightarrow AC \perp CB$$

+ Kẻ
$$AH \perp SC; AK \perp SB$$

+ Ta có:
$$\begin{cases} BC \perp AC \\ BC \perp SA \\ SA, AC \in (SAC) \Rightarrow BC \perp (SAC) \Rightarrow BC \perp AH \\ SA \cap AC = A \end{cases}$$

$$\begin{cases} AH \perp SC \\ AH \perp BC \\ SC, BC \in (SBC) \Rightarrow AH \perp (SBC) \Rightarrow AH \perp SB \\ SC \cap BC = C \end{cases}$$

$$+ \begin{cases} SB \perp AK \\ SB \perp AH \Rightarrow SB \perp (AHK) \Rightarrow SB \perp HK \Rightarrow ((SAB);(SBC)) = AKH \\ + \frac{1}{AK^{2}} = \frac{1}{SA^{2}} + \frac{1}{AB^{2}} \Rightarrow AK = \frac{2a\sqrt{3}}{3}; \frac{1}{AH^{2}} = \frac{1}{SA^{2}} + \frac{1}{AC^{2}} \Rightarrow AH = a \end{cases}$$

+ Xét
$$\triangle AHK$$
 vuông tại $A \Rightarrow \sin AKH = \frac{AH}{AK} = \frac{a}{2a\sqrt{3}} = \frac{\sqrt{3}}{2} \Rightarrow AKH = 60^{\circ}$. Chọn **B**.

Câu 46:

$$+ I = \lim_{x \to +\infty} \frac{\sqrt{x^3 + 4x - 10} - \sqrt{2x^3 + 3x}}{x + \sqrt{x^2 + 2x}} = \lim_{x \to +\infty} \frac{\sqrt{x^3} \left(\sqrt{1 + \frac{4}{x^2} - \frac{10}{x^3}} - \sqrt{2 + \frac{3}{x^2}} \right)}{x \left(1 + \sqrt{1 + \frac{2}{x}} \right)}$$

$$= \lim_{x \to +\infty} \sqrt{x} \frac{\sqrt{1 + \frac{4}{x^2} - \frac{10}{x^3}} - \sqrt{2 + \frac{3}{x^2}}}{1 + \sqrt{1 + \frac{2}{x}}}$$

+ Ta có:
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$
; $\lim_{x \to +\infty} \frac{\sqrt{1 + \frac{4}{x^2} - \frac{10}{x^3}} - \sqrt{2 + \frac{3}{x^2}}}{1 + \sqrt{1 + \frac{2}{x}}} = \frac{1 - \sqrt{2}}{2} < 0$. Do đó: $I = -\infty$. Chọn A.

Câu 47: + Do trên $\left(0; \frac{\pi}{2}\right)$ hàm số $\sin x$ đồng biến nên $\sin a < \sin b \forall a < b$

+ Mà
$$\frac{\pi}{n+1} > \frac{\pi}{n+2} \Rightarrow \sin \frac{\pi}{n+1} > \sin \frac{\pi}{n+2} \Leftrightarrow u_n > u_{n+1} \forall n$$
. Vậy dãy số đã cho là dãy số giảm.

Chon A.

Câu 48: + Hàm số: $y = \sin^2 2x$

+
$$y' = 2(2x)'\sin 2x \cdot \cos 2x = 4\sin 2x \cdot \cos 2x = 2\sin 4x$$
. Chọn C.

Câu 49: + Ta có:
$$u_1 = \frac{3}{2}.5 = \frac{15}{2} \Rightarrow u_n = \frac{3}{2}.5^n = \frac{15}{2}.5^{n-1} = u_1.5^{n-1}$$

+ Do đó dãy số đã cho là cấp số nhân có công bội q = 5 và số hạng đầu $u_1 = \frac{15}{2}$. Chọn <u>A</u>.

Câu 50:

+ Dễ thấy
$$CD \perp (SAC) \Rightarrow \cos(MN;(SAC)) = \sin(MN;CD)$$

+ Gọi
$$H$$
 là trung điểm của $AB \Rightarrow MH \perp (ABCD)$

+
$$\Delta MHN$$
 vuông tại $H \Rightarrow MN = \sqrt{MH^2 + HN^2} = \frac{a\sqrt{10}}{2}$.

+
$$\triangle MHC$$
 vuông tại $H \Rightarrow MC = \sqrt{MH^2 + HC^2} = \frac{a\sqrt{6}}{2}$

+ Xét
$$\triangle MNC$$
 có $\cos MNC = \frac{MN^2 + NC^2 - MC^2}{2.MN.NC} = \frac{3\sqrt{5}}{10}$

$$\Rightarrow \cos\left(MN;(SAC)\right) = \sin MNC = \sqrt{1 - \left(\frac{3\sqrt{5}}{10}\right)^2} = \frac{\sqrt{55}}{10}.$$

Chọn D.

