CS5487 Programming Assignment 1

Ji Yang

2019 October

1 Polynomial Function

1 (a) Implement 5 regression algorithms

Source code can be found at https://github.com/yangji12138/machine-learning/tree/master/Programming%201 or the Codes Appendix.

1 (b) Using Sample Data to estimate 5-th order poly function

	Least-Squares (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
		$\lambda = 0.48$	$\lambda = 0$
MSE	0.4086	0.4076	0.4086
	Robust Regression (RR)	Bayesian Regression (BR)	
MSE	0.7680	0.4592	

1 (c) Subset of Training Data

	Subset	Least-Sqaures (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
	Ratio	Least-Sqaures (LS)	$\lambda = 0.48$	$\lambda = 0.5$
MSE	10%	28.312	82.205	27.046
	25%	10.793	3.475	1.138
	50%	12.857	0.284	0.95
	75%	0.332	0.941	0.563
		Robust Regression (RR)	Bayesian Regression (BR)	
MSE	10%	13069.7	31.689	
	25%	1.011	13.292	
	50%	3.95	0.307	
	75%	0.257	0.73	

Figure 2: MSE versus training set

Figure 3: 10% Random Sample

Figure 4: 25% Random Sample

Figure 5: 50% Random Sample

Figure 6: 75% Random Sample

Observe the experiment results, we can find that:

- (i) RLS, LASSO and Bayesian Regression tends to be more robust
- (ii) RL and Roust Regression tends to overfit

(d) Adding Outlier Output Values

	Least-Squares (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
		$\lambda = 0.48$	$\lambda = 1$
MSE	2.746	2.352	2.551
	Robust Regression (RR)	Bayesian Regression (BR)	
MSE	0.933	1.661	

- (i) Here, I add 5 more values, that are obviously outliers.
- (ii) Robust Regression and Bayesian Regression are robust to the presence of outliers, while LS, RLS and LASSO are more sensitive
- (iii) Robust Regression is designed to limit the effects of outliers. Bayesian Regression contains prior knowledge which also limits the effects of data-driven prediction.

(e) Higher Order Polynomial Function (10th Order)

	Least-Sqaures (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
		$\lambda = 10$	$\lambda = 1.8$
MSE	7.983	2.877	2.637
	Robust Regression (RR)	Bayesian Regression (BR)	
MSE	1.289	3.043	

- (i) Here, I test 10th order of polynomial function.
- (ii) LS tends to overfit when learning a more complex model.
- (iii) On the contrary, RLS and LASSO can avoid get overfitting.

2 (a) Using Feature Directly

	Least-Sqaures (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
		$\lambda = 0.7$	$\lambda = 4$
MSE	3.102	2.62	2.45
MAE	1.365	1.277	1.25
	Robust Regression (RR)	Bayesian Regression (BR)	
MSE	3.112	3.146	
MAE	1.365	1.448	

- (i) LASSO works the best.
- (ii) I find that all the methods have the similar results finally

2 (b) 2nd Order Polynomial

	Least-Sqaures (LS)	Regularized LS (RLS)	L1-Regularized LS (LASSO)
		$\lambda = 0.57$	$\lambda = 3$
MSE	2.923594	2.425267	2.265683
MAE	1.326746	1.207617	1.177769
	Robust Regression (RR)	Bayesian Regression (BR)	
MSE	2.898128	2.913107	
MAE	1.307929	1.296899	

(i) I find that this 2nd order polynomial feature transformation has a better performance!

Codes

Source code can be found at https://github.com/yangji12138/machine-learning/tree/master/Programming%201.

Bayesian Regression

```
function [miu, sigma] = BR(x ,y ,n ,q, prior1, prior2)
 % x is the input set;
3 % y is the output set;
  % n is the set size
 % q is the order of polynomial
  b = zeros(n,1);
  for i = 1:n
     b(i) = y(i);
     for j = 1:q+1
10
         A(j, i) = x(i)^{(j-1)};
     end
12
  end
14
  sigma = inv((1/prior1)*eye(q+1) + (1/prior2)*(A*A'));
  miu = (1/prior2)*sigma*A*b;
  end
  LASSO
function [theta] = LASSO(x, y, n, q)
2 % x is the input set;
3 % y is the output set;
4 % n is the set size
_{5} % q is the order of polynomial
  % Here, A represents big phi; b is the outputs of samples
  b = zeros(n,1);
  for i = 1:n
     b(i) = y(i);
      for j = 1:q+1
10
         A(j, i) = x(i)^{(j-1)};
     end
12
 end
14 % Since LASSO doesn; t have closed-form answer, we use
      equivalent quadratic programming
```

```
_{15} % to get a approximate solution
  lamda = 0.5;
  % Set quadprog parameter
  H = [A*(A'), -A*(A'); -A*(A'), A*(A')];
  f = lamda*ones(2*q+2,1) - [A*b;-A*b];
  B = -eye(2*q+2);
  c = zeros(2*q+2,1);
   target = quadprog(H, f, B, c);
  thetaM = target (1:q+1,:);
  thetaN = target (q+2:end,:);
  theta = thetaM - thetaN;
  end
  Linear Regression
function [theta] = LS(x, y, n, q)
2 % x is the input set;
  % y is the output set;
  % n is the set size
  % q is the order of polynomial
  b = zeros(n,1);
   for i = 1:n
      b(i) = y(i);
      for j = 1:q+1
          A(j,i) = x(i)^{(j-1)};
      end
11
  end
12
   theta = inv(A*(A'))*A*b;
  end
  RLS
function [theta] = RLS(x, y, n, q)
2 % x is the input set;
3 % y is the output set;
4 % n is the set size;
 % q is the order of polynomial;
  % Here we set lamda 1;
  b = zeros(n,1);
  lamda = 0.48;
   for i = 1:n
      b(i) = y(i);
10
      for j = 1:q+1
          A(\,j\,\,,\,i\,\,)\,\,=\,\,x\,(\,i\,\,)\,\,\hat{}\,\,(\,j\,-1)\,;
12
      end
  end
14
  theta = \operatorname{inv}(A*(A') + \operatorname{lamda} * \operatorname{eye}(q+1))*A*b;
```

16 end

Robust Regression

```
_{1} \quad function \ [\,theta\,] \ = \ robust\,(\,x\ ,y\ ,n\ ,q\,)
_{2} % x is the input set;
3 % y is the output set;
_{4} % n is the set size
_{5} % q is the order of polynomial
6 % Here, A represents big phi; b is the outputs of samples
  b = zeros(n,1);
   for i = 1:n
      b(i) = y(i);
      for j = 1:q+1
          A(j,i) = x(i)^{(j-1)};
      \quad \text{end} \quad
12
  end
13
14
  %Transform the program into a standard linear program
  f = [zeros(q+1,1); ones(n,1)];
  B = [-A', -eye(n); A', -eye(n)];
  c = [-b; b];
   target = linprog(f,B,c);
   theta = target(1:(q+1),:);
  end
```