KonvergeAl

CCT 303 AI&CS
UNIT 1
Foundations for

ML

ML Techniques Overview

AI Landscape

https://www.instagram.com/sandserifcomics/

Al Landscape...

What are the factors driving the development of AI?

Another way of looking

Why do we need ML? The Email Spam Problem

Help Humans Learn

For instance, once a spam filter has been trained on enough spam, it can easily be inspected to reveal the list of words and combinations of words that it believes are the best predictors of spam. Sometimes this will reveal unsuspected correlations or new trends, and thereby lead to a better understanding of the problem.

Where to use ML?

- Problems for which existing solutions require a lot of fine-tuning or long lists of rules: one Machine Learning model can often simplify code and perform better than the traditional approach.
- Complex problems for which using a traditional approach yields no good solution: the best Machine Learning techniques can perhaps find a solution.
- Fluctuating environments: a Machine Learning system can easily be retrained on new data, always keeping it up to date.
- Getting insights about complex problems and large amounts of data.

Some Typical Applications

Analyzing images of products on a production line to automatically classify them

Detecting tumors in brain scans

Forecasting your company's revenue next year, based on many performance metrics

Segmenting clients based on their purchases so that you can design a different marketing strategy for each segment

Recommending a product that a client may be interested in, based on past purchases

Questions to be kept in mind when designing an ML System?

What question(s) am I trying to answer? Do I think the data collected can answer that question?

What is the best way to phrase my question(s) as a machine learning problem?

Have I collected enough data to represent the problem I want to solve?

What features of the data did I extract, and will these enable the right predictions?

How will I measure success in my application?

How will the machine learning solution interact with other parts of my research or business product?

Different Roles in an Organization's ML Model Development Process

Linear and Logistic Regression

Simple Linear Regression

Dependent variable (DV) Independent variable (IV)

Simple Linear Regression:

$$y = b_0 + b_1 x$$

Salary $= b_0 + b_1 * Experience$

Ordinary Least Squares

Salary Dataset write a program for simple linear regression in python

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

Dependent variable (DV) Independent variables (IVs)
$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$
Constant Coefficients

Multiple Linear Regression

Problem Statement:

Data of 50 companies.

R&D Spends/Administration/Marketing Spend/State Profit

(Independent Variables) (Dependent Variable)

A VC Fund is interested in investing in these companies. But has questions like: Where companies perform better? Are these companies are those who spend more money on R&D Spend or on Marketing Spend? Help VC Fund to build a model

Dummy Variable/Categorical Variable/One hot encoding

Profit R&D Spend Admin Marketing State New York 192,261.83 165,349.20 136,897.80 471,784.10 443,898.53 California 191,792.06 162,597.70 151,377.59 191,050.39 153,441.51 101,145.55 407,934.54 California 182,901.99 144,372.41 118,671.85 383,199.62 New York 166,187.94 142,107.34 91,391.77 366,168.42 California

Dummy Variables

New York	California
1	0
0	1
0	À
1	0
0	1

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

Dummy Variable Trap

Not Truly Independent Variables Multicollinearity = High correlation between 2 or more independent variables

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70			nia
191,050.39	153,441.51		= 1 - 1	nia
182,901.99	144,372.41	D ₂		rk
166,187.94	142,107.34	L_,	,	hia

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

$$b_4*D_1 + b_5*D_2$$

Dummy Variable Trap

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

Always omit one dummy variable

P Value = How likely it is to get a particular result when the null hypothesis is assumed to be true.

Statistical Significance

 H_0 : This is a fair coin H_1 : This is not a fair coin

0.5	P-Value
0.25	
0.12	
0.06	~ - 0.0F
0.03	$\alpha = 0.05$
0.01	

Try Building a Model

Logistic Regression

Unlike regression where you predict a continuous number, you use classification to predict a category. There is a wide variety of classification applications from medicine to marketing

$$y = b_0 + b_1^*x$$

$$sigmoid Function$$

$$p = \frac{1}{1 + e^{-y}}$$

$$ln \left(\frac{p}{1 - p}\right) = b_0 + b_1^*x$$

Try Building a Model

K Nearest Neighbor

STEP 1: Choose the number K of neighbors

STEP 2: Take the K nearest neighbors of the new data point, according to the Euclidean distance

STEP 3: Among these K neighbors, count the number of data points in each category

STEP 4: Assign the new data point to the category where you counted the most neighbors

Your Model is Ready

Euclidean Distance between P₁ and P₂ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

STEP 3: Among these K neighbors, count the number of data points in each category

STEP 4: Assign the new data point to the category where you counted the most neighbors

Decision Tree

CART

Help In Classification in categories like M/F etc.

Regression Trees

Help In Prediction of a value such as a salary etc.

Splits are reducing entropy, entropy is measure of uncertainty or disorder (Intuitive Understanding)

- Old Method
- Reborn with upgrades

Confidentia

- Random Forest
- Gradient Boosting
- etc.

Random Forest

Ensemble Learning

Put together Multiple Machine Learning Algorithms to create one bigger Machine Learning Algorithm

Random Forest basically combines lot of Decision Tree Methods

STEP 1: Pick at random K data points from the Training set.

STEP 2: Build the Decision Tree associated to these K data points.

STEP 3: Choose the number Ntree of trees you want to build and repeat STEPS 1 & 2

STEP 4: For a new data point, make each one of your Ntree trees predict the category to which the data points belongs, and assign the new data point to the category that wins the majority vote.

Power of Trees,

Taking Majority Vote

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf

Random Forest used in Microsoft Kinect to understand where body parts are