Mathematical Notes on Mutect

David Benjamin* and Takuto Sato[†] Broad Institute, 75 Ames Street, Cambridge, MA 02142 (Dated: July 12, 2017)

I. SOMATIC LIKELIHOODS MODEL

We have a set of potential somatic alleles and read-allele likelihoods $\ell_{ra} \equiv P(\text{read } r|\text{allele } a)$. We don't know which alleles are real somatic alleles and so we must compute, for each subset \mathbb{A} of alleles, the likelihood that the reads come from \mathbb{A} . A simple model for this likelihood is as follows: each read r is associated with a latent indicator vector \mathbf{z}_r with one-hot encoding $z_{ra} = 1$ iff read r came from allele $a \in \mathbb{A}$. The conditional probability of the reads \mathbb{R} given their allele assignments is

$$P(\mathbb{R}|\mathbf{z},\mathbb{A}) = \prod_{r \in \mathbb{R}} \prod_{a} \ell_{ra}^{z_{ra}}.$$
 (1)

The alleles are not equally likely because there is a latent vector \mathbf{f} of allele fractions – f_a is the allele fraction of allele a. Since the components of \mathbf{f} sum to one it is a categorical distribution and can be given a Dirichlet prior,

$$P(\mathbf{f}) = \text{Dir}(\mathbf{f}|\alpha). \tag{2}$$

Then f_a is the prior probability that a read comes from allele a and thus the conditional probability of the indicators \mathbf{z} given the allele fractions \mathbf{f} is

$$P(\mathbf{z}|\mathbf{f}) = \prod_{r} \prod_{a} f_a^{z_{ra}}.$$
 (3)

The full-model likelihood is therefore

$$\mathbb{L}(\mathbb{A}) = P(\mathbb{R}, \mathbf{z}, \mathbf{f} | \mathbb{A}) = \text{Dir}(\mathbf{f} | \boldsymbol{\alpha}) \prod_{a} \prod_{r} (f_a \ell_{ra})^{z_{ra}}.$$
 (4)

And the marginalized likelihood of A, that is, the model evidence for allele subset A, is

$$P(\mathbb{R}|\mathbb{A}) = \sum_{\mathbf{z}} \int d\mathbf{f} \operatorname{Dir}(\mathbf{f}|\boldsymbol{\alpha}) \prod_{a} \prod_{r} (f_a \ell_{ra})^{z_{ra}}, \qquad (5)$$

where the integral is over the probability simplex $\sum_a f_a = 1$.

The integral over \mathbf{f} is the normalization constant of a Dirichlet distribution and as such we can simply look up its formula. However, the sum over all values of \mathbf{z} for all reads has exponentially many terms. We will get around this difficulty by handling \mathbf{z} with a mean-field approximation in which we factorize the likelihood as $\mathbb{L} \approx q(\mathbf{z})q(\mathbf{f})$. This approximation is exact in two limits: first, if there are many reads, each allele is associated with many reads and therefore the Law of Large Numbers causes \mathbf{f} and \mathbf{z} to become uncorrelated. Second, if the allele assignments of reads are obvious \mathbf{z}_r is effectively not a random variable at all (there is no uncertainty as to which of component is non-zero) and also becomes uncorrelated with \mathbf{f} .

In the variational Bayesian mean-field formalism the value of \mathbf{f} that \mathbf{z} "sees" is the expectation of $\log \mathbb{L}$ with respect to $q(\mathbf{f})$ and vice versa. That is,

$$q(\mathbf{f}) \propto \operatorname{Dir}(\mathbf{f}|\boldsymbol{\alpha}) \prod_{a} \prod_{r} f_{a}^{\bar{z}_{ra}} \propto \operatorname{Dir}(\mathbf{f}|\boldsymbol{\alpha} + \sum_{r} \bar{\mathbf{z}}_{r}),$$
 (6)

 $^{^*}$ Electronic address: davidben@broadinstitute.org

[†]Electronic address: tsato@broadinstitute.org

where $\bar{z}_{ra} \equiv E_q[z_{ra}]$, and

$$q(\mathbf{z}_r) = \prod_{a} \left(\tilde{f}_a \ell_{ra} \right)^{z_{ra}}, \tilde{f}_a = \exp E[\ln f_a]$$
 (7)

Because $q(\mathbf{z})$ is categorical and $q(\mathbf{f})$ is Dirichlet¹ the necessary mean fields are easily obtained and we have

$$\bar{z}_{ra} = \frac{\tilde{f}_a \ell_{ra}}{\sum_{a'} \tilde{f}_{a'} \ell_{ra'}} \tag{8}$$

and

$$\ln \tilde{f}_a = \psi(\alpha_a + \sum_r \bar{z}_{ra}) - \psi(\sum_{a'} \alpha_{a'} + N) \tag{9}$$

where ψ is the digamma function and N is the number of reads. To obtain $q(\mathbf{z})$ and $q(\mathbf{f})$ we iterate Equations 8 and 9 until convergence. A very reasonable initialization is to set $\bar{z}_{ra} = 1$ if a is the most likely allele for read r, 0 otherwise. Having obtained the mean field of \mathbf{z} , we would like to plug it into Eq 5. We can't do this directly, of course, because Eq 5 says nothing about our mean field factorization. Rather, we need the variational approximation (Bishop's Eq 10.3) to the model evidence, which is

$$\ln P(\mathbb{R}|\mathbb{A}) \approx \sum_{\mathbf{z}} \int d\mathbf{f} q(\mathbf{z}) q(\mathbf{f}) \left[\ln P(\mathbb{R}, \mathbf{z}, \mathbf{f}|\mathbb{A}) - \ln q(\mathbf{z}) - \ln q(\mathbf{f}) \right]$$
(10)

$$=E_{q}\left[\ln P(\mathbb{R}, \mathbf{z}, \mathbf{f}|\mathbb{A})\right] - E_{q}\left[\ln q(\mathbf{z})\right] - E_{q}\left[\ln q(\mathbf{f})\right]. \tag{11}$$

Before we proceed, let's introduce some notation. First, from Eq 6 the posterior $q(\mathbf{f})$ is

$$q(\mathbf{f}) = \text{Dir}(\mathbf{f}|\boldsymbol{\beta}), \quad \boldsymbol{\beta} = \boldsymbol{\alpha} + \sum_{r} \bar{\mathbf{z}}_{r}.$$
 (12)

Second, let's define the log normalization constant of a Dirichlet distribution as g so that

$$\ln \operatorname{Dir}(\mathbf{f}|\boldsymbol{\omega}) = g(\boldsymbol{\omega}) + \sum_{a} (\omega_a - 1) \ln f_a, \quad g(\boldsymbol{\omega}) = \ln \Gamma(\sum_{a} \omega_a) - \sum_{a} \ln \Gamma(\omega_a).$$
 (13)

Finally, define the Dirichlet mean log (aka "that digamma stuff") as h:

$$E_{\text{Dir}(\mathbf{f}|\boldsymbol{\omega})}\left[\ln f_a\right] = \psi(\omega_a) - \psi(\sum_{a'} \omega_{a'}) \equiv h_a(\boldsymbol{\omega}). \tag{14}$$

The log of Eq 4 is

$$\ln P(\mathbb{R}, \mathbf{z}, \mathbf{f} | \mathbb{A}) = g(\boldsymbol{\alpha}) + \sum_{a} (\alpha_a - 1) \ln f_a + \sum_{ra} z_{ra} (\ln f_a + \ln \ell_{ra}). \tag{15}$$

and thus the first term in Eq 11 is

$$E_q\left[\ln P(\mathbb{R}, \mathbf{z}, \mathbf{f}|\mathbb{A})\right] = g(\boldsymbol{\alpha}) + \sum_a (\alpha_a - 1)h_a(\boldsymbol{\beta}) + \sum_{ra} \bar{z}_{ra} \left(h_a(\boldsymbol{\beta}) + \ln \ell_{ra}\right)$$
(16)

$$=g(\boldsymbol{\alpha}) + \sum_{a} (\beta_a - 1)h_a(\boldsymbol{\beta}) + \sum_{ra} \bar{z}_{ra} \ln \ell_{ra}, \tag{17}$$

where we used the relationship $\beta = \alpha + \sum_{r} \bar{\mathbf{z}}_{r}$.

The second term in Eq 11 is

$$-E_q\left[\ln q(\mathbf{z})\right] = -\sum_{ra} \bar{z}_{ra} \ln \bar{z}_{ra}. \tag{18}$$

¹ Note that we didn't *impose* this in any way. It simply falls out of the mean field equations.

FIG. 1: The probabilistic graphical model

The third term in Eq 11 is

$$-E_q\left[\ln q(\mathbf{f})\right] = -g(\boldsymbol{\beta}) - \sum_a (\beta_a - 1)E_q[\ln f_a] = -g(\boldsymbol{\beta}) - \sum_a (\beta_a - 1)h_a(\boldsymbol{\beta}). \tag{19}$$

Adding Eqs 17, 18, and 19 and noting the cancellation between parts of Eqs 17 and 19 we obtain

$$\ln P(\mathbb{R}|\mathbb{A}) \approx g(\boldsymbol{\alpha}) - g(\boldsymbol{\beta}) + \sum_{ra} \bar{z}_{ra} \left(\ln \ell_{ra} - \ln \bar{z}_{ra} \right). \tag{20}$$

We now have the model evidence for allele subset \mathbb{A} . This lets us choose which alleles are true somatic variants. It also lets us make calls on somatic loss of heterozygosity events. Furthermore, instead of reporting max-likelihood allele fractions as before, we may emit the parameters of the Dirichlet posterior $q(\mathbf{f})$, which encode both the maximum likelihood allele fractions and their uncertainty.

II. STRAND ARTIFACT MODEL

- \mathbf{z} is a latent random variable having a 1-of-K representation. For each variant locus, \mathbf{z} encodes the presence of strand artifact in forward reads ([1,0,0]), artifact in reverse reads ([0,1,0]), or no artifact ([0,0,1])
- $f \sim \text{Unif}(0,1)$ is a prior distribution over alt allele fraction f
- $\epsilon \sim \text{Beta}(\alpha, \beta)$ is a prior distribution over the error probability on a read on the artifact strand. For instance, if we have strand artifact on the reverse strand (i.e. z = [0, 1, 0]), ϵ is the probability that the sequencer reads a ref allele on a reverse read as alt
- $x^+|f,\epsilon,z|$ is the number of forward reads with the alt allele. It's a mixture of binomials, defined as follows:

$$x^{+}|f,\epsilon,z \sim \begin{cases} \operatorname{Bin}(n^{+}, f + \epsilon(1-f)) & z = \operatorname{Art} + \\ \operatorname{Bin}(n^{+}, f) & z = \operatorname{Art} - \\ \operatorname{Bin}(n^{+}, f) & z = \operatorname{noArt} \end{cases}$$
(21)

We compute the conditional distributions of x^- analogously.

Having observed the read counts in the forward and reverse directions, we can compute the posterior probabilities of the latent variable z. Below we derive the unnormalized posterior probability of strand artifact in forward reads (z = art +), given that we observed x^+ forward alt reads and x^- reverse alt reads. We use a shorthand z_0 to denote z = art + for conciseness.

First we will derive the likelihood $p(x^+, x^-, f, \epsilon | z_0)$

$$p(x^{+}, x^{-}|z_{0}) = \iint_{f,\epsilon} p(x^{+}, x^{-}, f, \epsilon|z_{0}) df d\epsilon$$
(22)

$$= \iint_{f,\epsilon} p(f)p(\epsilon)p(x^+, x^-|z_0, f, \epsilon) df d\epsilon$$
(23)

$$= \iint_{f,\epsilon} p(f)p(\epsilon)p(x^{+}|z_{0},f,\epsilon)p(x^{-}|z_{0},f,\epsilon) df d\epsilon$$
(24)

$$= \iint_{f,\epsilon} p(\epsilon)p(x^{+}|z_{0}, f, \epsilon)p(x^{-}|z_{0}, f, \epsilon) df d\epsilon$$
(25)

$$= \iint_{f,\epsilon} \operatorname{Beta}(\epsilon | \alpha, \beta) \operatorname{Bin}(x^{+} | f + \epsilon(1 - f), n^{+}) \operatorname{Bin}(x^{-} | f, n^{-}) df d\epsilon$$
 (26)

The posterior probability of strand artifact in forward reads is therefore

$$p(z_0|x^+, x^-) \propto p(z_0)p(x^+, x^-|z_0)$$
 (27)

$$= p(z_0) \iint_{f,\epsilon} \operatorname{Beta}(\epsilon | \alpha, \beta) \operatorname{Bin}(x^+ | f + \epsilon(1 - f), n^+) \operatorname{Bin}(x^- | f, n^-) df d\epsilon$$
 (28)

The derivation for the probability of strand artifact on reverse strand is analogous.

For the case of no strand artifact, the derivation of likelihoods is identical up to (25). Here we can simply the equation to a single integral over f because the conditional probabilities of x^+ and x^- do not depend on ϵ . We use a shorthand z_2 for z = noArt

$$p(x^{+}, x^{-}|z_{2}) = \iint_{f,\epsilon} p(\epsilon)p(x^{+}|z_{2}, f, \epsilon)p(x^{-}|z_{2}, f, \epsilon) df d\epsilon$$

$$= \int_{f} p(x^{+}|z_{2}, f)p(x^{-}|z_{2}, f) df \int_{\epsilon} p(\epsilon)d\epsilon$$

$$= \int_{f} \operatorname{Bin}(x^{+}|f, n^{+})\operatorname{Bin}(x^{-}|f, n^{-}) df$$
(30)

And the posterior probability is

$$p(z_2|x^+, x^-) \propto p(z_2)p(x^+, x^-|z_2)$$
 (31)

$$= p(z_2) \int_f \text{Bin}(x^+|f, n^+) \text{Bin}(x^-|f, n^-) df$$
 (32)

III. GERMLINE FILTER

Suppose we have detected an allele such that its (somatic) likelihood in the tumor is ℓ_t and its (diploid) likelihood in the normal is ℓ_n . By convention, both of these are relative to a likelihood of 1 for the allele *not* to be found. If we have no matched normal, $\ell_n = 1$. Suppose we also have the population allele frequency f of this allele. Then the prior probability for the normal to be heterozygous or homozygous alt for the allele is $2f(1-f)+f^2$ and the prior probability for the normal genotype not to contain the allele is $(1-f)^2$. Finally, suppose that the prior for this allele to arise as a somatic variant is π .

We can determine the posterior probability that the variant exists in the normal genotype by calculating the unnormalized probabilities of four possibilities:

- 1. The variant exists is both the normal and the tumor samples. This has unnormalized probability $(2f(1-f)+f^2) \ell_n \ell_t (1-\pi)$.
- 2. The variant exists in the tumor but not the normal. This has unnormalized probability $(1-f)^2 \ell_t \pi$.

- 3. The variant exists in neither the tumor nor the normal. This has unnormalized probability $(1-f)^2(1-\pi)$.
- 4. The variants exists in the normal but not the tumor. This is biologically very unlikely. Furthermore, if it *did* occur we wouldn't care about filtering the variant as a germline event because we wouldn't call it as a somatic event. Thus we neglect this possibility.

Normalizing, we obtain the following posterior probability that an allele is a germline variant:

$$P(\text{germline}) = \frac{(1)}{(1) + (2) + (3)} = \frac{(2f(1-f) + f^2) \ell_n \ell_t (1-\pi)}{(2f(1-f) + f^2) \ell_n \ell_t (1-\pi) + (1-f)^2 \ell_t \pi + (1-f)^2 (1-\pi)}.$$
 (33)

To filter, we set a threshold on this posterior probability.

IV. PROPOSED TUMOR IN NORMAL ESTIMATION TOOL

Similar to the spirit of CalculateContamination, the fraction of tumor reads in the normal bam is a single number with a large amount of evidence and is probably well-estimated by simple descriptive statistics rather than a full-fledged probabilistic model. It shouldn't be much more complicated than finding somatic variants and comparing their signal in the normal sample to that in the tumor.

We propose the following steps to obtain our input of confident somatic SNVs:

- Run Mutect in tumor-only mode to obtain a preliminary list of somatic SNVs. For the sake of speed, we could implement a pileup-based mode in which we skip reassembly and equate read likelihoods with base qualities. This would allow us to obtain variant annotations using the existing architecture of Mutect and therefore to filter calls with no new code. It would probably make sense at this stage to filter more stringently than usual based on population allele frequencies in gnomAD.
- Run FilterMutectCalls. With default settings this eliminates the great majority of sequencing artifacts. To eliminate even more we could increase the log odds threshold slightly, essentially requiring a slightly larger alt allele count. Normally we don't do this because it sacrifices some sensitivity, but for our purposes here a 10 or 20 percent loss of sensitivity is perfectly acceptable as long as we are left with enough SNVs for our estimate.
- Remove all SNVs that have enough read counts in the normal that we conclude they are germline variants, as opposed to tumor in normal contamination. We could also accomplish this by using tumor-normal mode in the first step, but we would need to modify our active region determination which currently would mark a region as inactive based only on a small number of tumor-in-normal alt reads. We would also have to turn off the normal artifact filter.

The above steps are all very reliable, so at this point we can assume we have a collection of confident biallelic somatic SNVs that are hom ref in the germline. Similar to CalculateContamination, we can now estimate the number of alt reads in the normal at these sites:

alt in normal
$$\approx \sum_{\text{sites}} (\text{depth in normal}) \times (\text{alt fraction in tumor}) \times (\text{tumor in normal fraction})$$
 (34)

Hence we estimate

tumor in normal fraction
$$\approx \frac{\text{total number of alt reads in normal at somatic SNV sites}}{\sum_{\text{somatic SNV sites}} (\text{depth in normal}) \times (\text{alt fraction in tumor})}$$
 (35)