Train a model with bike rental data using XGBoost algorithm

Model is trained with XGBoost installed in notebook instance

In the later examples, we will train using SageMaker's XGBoost algorithm

```
In [1]: # Install xqboost in notebook instance.
        #### Command to install xgboost
        !pip install xgboost
        Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com
        Collecting xgboost
          Downloading xgboost-1.7.6-py3-none-manylinux2014_x86_64.whl (200.3 MB)
                                                   - 200.3/200.3 MB 3.1 MB/s eta 0:00:0000:0100:01
        Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.22.3)
        Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.10.1)
        Installing collected packages: xgboost
        Successfully installed xgboost-1.7.6
In [2]: import sys
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.metrics import mean squared error, mean absolute error
        # XGBoost
        import xgboost as xgb
        column_list_file = 'bike_train_column_list.txt'
        train file = 'bike train.csv'
        validation_file = 'bike_validation.csv'
        test file = 'bike test.csv'
In [4]: columns = ''
        with open(column_list_file,'r') as f:
```

```
columns = f.read().split(',')
         columns
In [5]:
Out[5]: ['count',
          'season',
          'holiday',
          'workingday',
          'weather',
          'temp',
          'atemp',
          'humidity',
          'windspeed',
          'year',
          'month',
          'day',
          'dayofweek',
          'hour']
         # Specify the column names as the file does not have column header
In [6]:
         df_train = pd.read_csv(train_file,names=columns)
         df_validation = pd.read_csv(validation_file,names=columns)
         df_train.head()
In [7]:
Out[7]:
            count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
                                                                                7.0015 2011
         0
               87
                       3
                               0
                                           0
                                                   2 26.24
                                                            30.305
                                                                        73
                                                                                                 9
                                                                                                      3
                                                                                                                 5
                                                                                                                      0
              248
                       3
                                                   1 32.80 34.850
                                                                                7.0015 2012
         1
                               0
                                           1
                                                                         33
                                                                                                     13
                                                                                                                 0
                                                                                                                      14
         2
              334
                       4
                               0
                                           0
                                                                               11.0014 2011
                                                                                                      5
                                                                                                                 5
                                                                                                                     17
                                                   1 15.58 19.695
                                                                        40
                                                                                                11
                               0
                                                   1 32.80 37.880
                                                                         55
                                                                               12.9980 2012
              623
                                                                                                                      19
                       2
                                                                                                                      6
         4
               70
                               0
                                           1
                                                   1 13.94 17.425
                                                                         76
                                                                                7.0015 2011
                                                                                                 4
                                                                                                     14
                                                                                                                 3
         df_validation.head()
In [8]:
```

```
Out[8]:
            count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
         0
              443
                      3
                              0
                                                 2 28.70 33.335
                                                                     79
                                                                           12.9980 2011
                                                                                            7
                                                                                                                8
              387
                                         0
                                                 1 32.80 37.880
                                                                     55
                                                                           12.9980 2011
                                                                                               11
                                                                                                               13
         2
               2
                              0
                                         1
                                                 1 14.76 16.665
                                                                     40
                                                                           19.9995 2011
                                                                                            2
                                                                                                           0
                                                                                                                2
                                                                           36.9974 2011
         3
               48
                              0
                                                    9.02
                                                          9.090
                                                                                                           1
                                                                                                               10
                                                                     47
         4
               55
                      4
                              0
                                         0
                                                                     87
                                                                            0.0000 2011
                                                                                           12
                                                                                                           6
                                                                                                                8
                                                 1 10.66 15.150
                                                                                                 4
 In [9]: X_train = df_train.iloc[:,1:] # Features: 1st column onwards
         y_train = df_train.iloc[:,0].ravel() # Target: 0th column
         X validation = df validation.iloc[:,1:]
         y validation = df validation.iloc[:,0].ravel()
In [10]: # XGBoost Training Parameter Reference:
         # https://github.com/dmlc/xqboost/blob/master/doc/parameter.md
         #regressor = xgb.XGBRegressor(max_depth=5,eta=0.1,subsample=0.7,num_round=150)
         #DWB# Note. 5 is the max depth - how many nodes any tree can go down.
                     150 is the number of trees
         regressor = xgb.XGBRegressor(max_depth=5,n_estimators=150)
In [11]:
         regressor
Out[11]:
                                              XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample bytree=None, early stopping rounds=None,
                       enable categorical=False, eval metric=None, feature types=None,
                       gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=None, max bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max delta step=None, max depth=5, max leaves=None,
                       min_child_weight=None, missing=nan, monotone_constraints=None,
```

In [12]: regressor.fit(X_train,y_train, eval_set = [(X_train, y_train), (X_validation, y_validation)])

[0]	validation_0-rmse:200.21253	validation_1-rmse:198.50750
[1]	validation_0-rmse:158.44940	validation_1-rmse:156.82238
[2]	validation 0-rmse:130.70633	validation 1-rmse:129.74683
[3]	validation_0-rmse:113.91983	validation_1-rmse:113.36164
[4]	validation 0-rmse:97.49929	validation_1-rmse:113.30104 validation_1-rmse:97.96390
[5]	validation 0-rmse:84.68191	validation_1-rmse:86.42600
[6]	validation_0-rmse:75.20273	validation_1-rmse:77.72003
[7]	validation_0-rmse:71.41857	validation_1-rmse:74.25260
[8]	validation_0-rmse:64.23005	validation_1-rmse:67.80524
[9]	validation_0-rmse:61.87001	validation_1-rmse:65.64181
[10]	validation 0-rmse:60.00386	validation_1-rmse:63.93544
[11]	validation_0-rmse:57.38252	validation_1-rmse:61.66847
[12]	validation_0-rmse:55.40470	validation_1-rmse:59.70897
[13]	validation_0-rmse:53.46252	validation_1-rmse:58.07008
[14]	validation_0-rmse:50.16573	validation_1-rmse:55.00782
[15]	validation 0-rmse:49.58626	validation_1-rmse:54.48380
[16]	validation_0-rmse:49.10568	validation_1-rmse:53.95741
[17]	validation_0-rmse:46.31593	validation_1-rmse:51.42871
[18]	validation 0-rmse:45.25657	validation_1-rmse:50.72695
[19]	validation 0-rmse:44.66090	validation_1-rmse:50.27214
[20]	validation 0-rmse:43.69099	validation 1-rmse:49.51648
[21]	validation_0-rmse:43.06359	validation_1-rmse:49.09360
[22]	validation_0-rmse:42.79748	validation_1-rmse:48.97205
[23]	validation_0-rmse:42.22981	validation_1-rmse:48.57886
[24]	validation_0-rmse:42.07683	validation_1-rmse:48.46537
[25]	validation_0-rmse:41.79092	validation_1-rmse:48.40560
[26]	validation_0-rmse:40.22368	validation_1-rmse:47.06446
[27]	validation_0-rmse:40.02085	validation_1-rmse:46.96824
[28]	validation_0-rmse:39.61362	validation_1-rmse:46.72801
[29]	validation_0-rmse:39.32625	validation_1-rmse:46.58315
[30]	validation_0-rmse:39.17388	validation_1-rmse:46.47925
[31]	validation_0-rmse:38.45699	validation_1-rmse:46.02084
[32]	validation_0-rmse:38.15526	validation 1-rmse:45.90458
[33]	validation_0-rmse:37.93132	validation_1-rmse:45.77935
[34]	validation_0-rmse:37.61136	validation_1-rmse:45.62779
[35]	validation_0-rmse:37.41721	validation_1-rmse:45.47065
[36]	validation_0-rmse:37.33951	validation_1-rmse:45.43344
[37]	validation_0-rmse:36.62579	validation_1-rmse:44.90997
[38]	validation_0-rmse:36.42528	validation_1-rmse:44.84257
[39]	validation_0-rmse:36.06161	validation_1-rmse:44.76581
[40]	validation_0-rmse:35.93213	validation_1-rmse:44.74343
[41]	validation_0-rmse:35.88741	validation_1-rmse:44.71638

[42]	validation_0-rmse:35.50912	validation_1-rmse:44.60798
[42]	validation_0-rmse:35.11191	validation_1-rmse:44.35004
[44]	_	validation 1-rmse:44.29069
	validation_0-rmse:35.00737	_
[45]	validation_0-rmse:34.78141	validation_1-rmse:44.23079
[46]	validation_0-rmse:34.73855	validation_1-rmse:44.23772
[47]	validation_0-rmse:34.65160	validation_1-rmse:44.17048
[48]	validation_0-rmse:34.35805	validation_1-rmse:44.09884
[49]	validation_0-rmse:34.19989	validation_1-rmse:44.09992
[50]	validation_0-rmse:34.14433	validation_1-rmse:44.11222
[51]	validation_0-rmse:33.91166	validation_1-rmse:44.04286
[52]	validation_0-rmse:33.74896	validation_1-rmse:44.04637
[53]	validation_0-rmse:33.58468	validation_1-rmse:43.98733
[54]	validation_0-rmse:33.51054	validation_1-rmse:43.98548
[55]	validation_0-rmse:33.31730	validation_1-rmse:44.02941
[56]	validation_0-rmse:33.23237	validation_1-rmse:44.02083
[57]	validation_0-rmse:33.19658	validation_1-rmse:44.00654
[58]	validation_0-rmse:33.07861	validation_1-rmse:43.99136
[59]	validation_0-rmse:32.86804	validation_1-rmse:43.89020
[60]	validation_0-rmse:32.72255	validation_1-rmse:43.82265
[61]	validation_0-rmse:32.31547	validation_1-rmse:43.49294
[62]	validation_0-rmse:32.29336	validation_1-rmse:43.46725
[63]	validation_0-rmse:32.07836	validation_1-rmse:43.38681
[64]	validation_0-rmse:31.90100	validation_1-rmse:43.32034
[65]	validation_0-rmse:31.86057	validation_1-rmse:43.32324
[66]	validation_0-rmse:31.70479	validation_1-rmse:43.18750
[67]	validation_0-rmse:31.59029	validation_1-rmse:43.19710
[68]	validation_0-rmse:31.39416	validation_1-rmse:43.18815
[69]	validation_0-rmse:31.12865	validation_1-rmse:43.09848
[70]	validation_0-rmse:31.07494	validation_1-rmse:43.09148
[71]	validation_0-rmse:31.00557	validation_1-rmse:43.09359
[72]	validation_0-rmse:30.87338	validation_1-rmse:43.00188
[73]	validation_0-rmse:30.56048	validation_1-rmse:42.88081
[74]	validation_0-rmse:30.48123	validation_1-rmse:42.82766
[75]	validation_0-rmse:30.32723	validation_1-rmse:42.81791
[76]	validation 0-rmse:30.23960	validation 1-rmse:42.79342
[77]	validation_0-rmse:30.20228	validation_1-rmse:42.78964
[78]	validation_0-rmse:29.99587	validation 1-rmse:42.77126
[79]	validation_0-rmse:29.75669	validation_1-rmse:42.64365
[80]	validation_0-rmse:29.66938	validation_1-rmse:42.59289
[81]	validation_0-rmse:29.62375	validation_1-rmse:42.59439
[82]	validation 0-rmse:29.50415	validation_1-rmse:42.54275
[83]	validation_0-rmse:29.42191	validation 1-rmse:42.49808
[05]	**************************************	14114461011_1 111136.72.77000

[84]	validation_0-rmse:29.36916	validation 1-rmse:42.49365
[85]	validation_0-rmse:29.27202	validation_1-rmse:42.43840
[86]	validation_0-rmse:29.13929	validation 1-rmse:42.42627
[87]	validation_0-rmse:29.08375	validation_1-rmse:42.40068
[88]	validation 0-rmse:29.02746	validation_1-rmse:42.39586
[89]	validation_0-rmse:28.88187	validation_1-rmse:42.35033
[90]	validation_0-rmse:28.75088	validation_1-rmse:42.28242
[91]	validation_0-rmse:28.64258	validation_1-rmse:42.29661
[92]	validation_0-rmse:28.51315	validation_1-rmse:42.24072
[93]	validation_0-rmse:28.43576	validation 1-rmse:42.21895
[94]	validation_0-rmse:28.34130	validation_1-rmse:42.23728
[95]	validation_0-rmse:28.24365	validation_1-rmse:42.19883
[96]	validation_0-rmse:28.14093	validation_1-rmse:42.15161
[97]	validation_0-rmse:28.08991	validation_1-rmse:42.13850
[98]	validation_0-rmse:28.05213	validation_1-rmse:42.12963
[99]	validation_0-rmse:28.01991	validation_1-rmse:42.13131
[100]	validation_0-rmse:27.97190	validation_1-rmse:42.12578
[101]	validation_0-rmse:27.95016	validation_1-rmse:42.13953
[102]	validation_0-rmse:27.84402	validation_1-rmse:42.10889
[103]	validation_0-rmse:27.80204	validation_1-rmse:42.07974
[104]	validation_0-rmse:27.79910	validation_1-rmse:42.08551
[105]	validation_0-rmse:27.75465	validation_1-rmse:42.08251
[106]	validation_0-rmse:27.62789	validation_1-rmse:42.08866
[107]	validation_0-rmse:27.48359	validation_1-rmse:42.00880
[108]	validation_0-rmse:27.31545	validation_1-rmse:41.93489
[109]	validation_0-rmse:27.23284	validation_1-rmse:41.92242
[110]	validation_0-rmse:27.09928	validation_1-rmse:41.90098
[111]	validation_0-rmse:27.00993	validation_1-rmse:41.87125
[112]	validation_0-rmse:27.00165	validation_1-rmse:41.87185
[113]	validation_0-rmse:26.93704	validation_1-rmse:41.84040
[114]	validation_0-rmse:26.80303	validation_1-rmse:41.80264
[115]	validation_0-rmse:26.73493	validation_1-rmse:41.80721
[116]	validation_0-rmse:26.64247	validation_1-rmse:41.77972
[117]	validation_0-rmse:26.57824	validation_1-rmse:41.79133
[118]	validation_0-rmse:26.46564	validation_1-rmse:41.71431
[119]	validation_0-rmse:26.39325	validation_1-rmse:41.67695
[120]	validation_0-rmse:26.37278	validation_1-rmse:41.68118
[121]	validation_0-rmse:26.28281	validation_1-rmse:41.66746
[122]	validation_0-rmse:26.19166	validation_1-rmse:41.64710
[123]	validation_0-rmse:26.00082	validation_1-rmse:41.58643
[124]	validation_0-rmse:25.85092	validation_1-rmse:41.59726
[125]	validation_0-rmse:25.79182	validation_1-rmse:41.58297

```
validation 0-rmse:25.68885
                                        validation_1-rmse:41.61713
[126]
[127]
        validation 0-rmse:25.58066
                                        validation 1-rmse:41.60252
[128]
        validation 0-rmse:25.52994
                                        validation 1-rmse:41.56733
[129]
        validation 0-rmse:25.45470
                                        validation 1-rmse:41.56769
[130]
        validation 0-rmse:25.39346
                                        validation 1-rmse:41.54351
[131]
        validation 0-rmse:25.37824
                                        validation 1-rmse:41.53871
[132]
        validation 0-rmse:25.24823
                                        validation 1-rmse:41.49660
[133]
        validation 0-rmse:25.19883
                                        validation 1-rmse:41.47297
[134]
        validation 0-rmse:25.12123
                                        validation 1-rmse:41.47223
[135]
        validation 0-rmse:25.07267
                                        validation 1-rmse:41.46833
[136]
        validation 0-rmse:25.01747
                                        validation 1-rmse:41.44283
[137]
        validation 0-rmse:24.91436
                                        validation 1-rmse:41.39120
[138]
        validation 0-rmse:24.90468
                                        validation 1-rmse:41.39363
[139]
        validation 0-rmse:24.81354
                                        validation 1-rmse:41.36809
[140]
        validation 0-rmse:24.78586
                                        validation 1-rmse:41.36993
[141]
        validation 0-rmse:24.74158
                                        validation 1-rmse:41.36148
[142]
        validation 0-rmse:24.62951
                                        validation 1-rmse:41.32304
[143]
        validation 0-rmse:24.57401
                                        validation 1-rmse:41.32358
[144]
        validation 0-rmse:24.51089
                                        validation 1-rmse:41.28476
[145]
        validation 0-rmse:24.42649
                                        validation 1-rmse:41.25937
[146]
        validation 0-rmse:24.39769
                                        validation 1-rmse:41.25983
[147]
        validation 0-rmse:24.30934
                                        validation 1-rmse:41.26104
[148]
        validation 0-rmse:24.20446
                                        validation 1-rmse:41.19978
[149]
        validation 0-rmse:24.10522
                                        validation 1-rmse:41.11284
```

Out[12]:

XGBRegressor

```
XGBRegressor(base score=None, booster=None, callbacks=None,
             colsample bylevel=None, colsample bynode=None,
             colsample_bytree=None, early_stopping_rounds=None,
             enable categorical=False, eval metric=None, feature types=None,
             gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max cat threshold=None, max cat to onehot=None,
             max delta step=None, max depth=5, max leaves=None,
             min child weight=None, missing=nan, monotone constraints=None,
```

```
eval result = regressor.evals result()
In [13]:
```

```
training_rounds = range(len(eval_result['validation_0']['rmse']))
         print(training rounds)
In [15]:
         range(0, 150)
In [16]:
         plt.scatter(x=training_rounds,y=eval_result['validation_0']['rmse'],label='Training_Error')
         plt.scatter(x=training_rounds,y=eval_result['validation_1']['rmse'],label='Validation_Error')
         plt.grid(True)
         plt.xlabel('Iteration')
         plt.ylabel('RMSE')
         plt.title('Training Vs Validation Error')
         plt.legend()
         plt.show()
```

Training Vs Validation Error


```
xgb.plot_importance(regressor)
In [17]:
         plt.show()
```


In [18]: # Verify Quality using Validation dataset # Compare actual vs predicted performance with dataset not seen by the model before df = pd.read_csv(validation_file,names=columns)

In [19]: df.head()

```
Out[19]:
            count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
                       3
                                                                                                                     8
          0
              443
                               0
                                                   2 28.70 33.335
                                                                        79
                                                                              12.9980 2011
                                                                                                7
                                           1
              387
                       2
                                           0
                                                   1 32.80 37.880
                                                                        55
                                                                              12.9980 2011
                                                                                                6
                                                                                                   11
                                                                                                                    13
                                                                                                               0
          2
                2
                       1
                               0
                                           1
                                                   1 14.76 16.665
                                                                        40
                                                                              19.9995 2011
                                                                                                2
                                                                                                   14
                                                                                                                     2
          3
               48
                       1
                               0
                                           1
                                                       9.02
                                                            9.090
                                                                              36.9974 2011
                                                                                                               1
                                                                                                                    10
                                                   1
                                                                        47
          4
               55
                       4
                               0
                                           0
                                                                        87
                                                                               0.0000 2011
                                                                                                               6
                                                                                                                     8
                                                   1 10.66 15.150
                                                                                               12
                                                                                                    4
In [20]: df.shape
Out[20]: (3266, 14)
         #DWB# The [:,1:] excludes the datetime variable
         X_test = df.iloc[:,1:]
         print(X_test[:5])
             season holiday
                              workingday
                                          weather
                                                     temp
                                                            atemp
                                                                   humidity
                                                                             windspeed
                  3
                           0
                                                    28.70
                                                           33.335
                                                                          79
                                                                                12.9980 \
          0
                                       1
                  2
         1
                           0
                                       0
                                                    32.80 37.880
                                                                          55
                                                                                12.9980
          2
                  1
                           0
                                       1
                                                 1 14.76 16.665
                                                                         40
                                                                               19.9995
          3
                                       1
                  1
                                                    9.02
                                                            9.090
                                                                                36.9974
                                                                         47
                  4
                           0
                                       0
                                                 1 10.66 15.150
                                                                          87
                                                                                 0.0000
                               dayofweek
                  month
                          day
            2011
                       7
                            7
                                       3
                                             8
            2011
                           11
                       6
                                             13
            2011
                       2
                           14
                                             2
                       2
          3
            2011
                            8
                                       1
                                             10
            2011
                      12
                                       6
                                              8
                            4
         result = regressor.predict(X_test)
In [22]:
In [23]: result[:5]
Out[23]: array([452.154
                            , 373.7294 , 0.7550393, 64.58522 , 83.32642 ],
                dtype=float32)
         df['count_predicted'] = result
In [24]:
```

```
df.head()
In [25]:
             count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour count_predic
Out[25]:
          0
               443
                        3
                                0
                                                                                  12.9980
                                                                                                                          8
                                                     2 28.70
                                                             33.335
                                                                           79
                                                                                         2011
                                                                                                                    3
                                                                                                                                 452.153
                        2
          1
               387
                                0
                                            0
                                                     1 32.80 37.880
                                                                           55
                                                                                  12.9980 2011
                                                                                                    6
                                                                                                       11
                                                                                                                    5
                                                                                                                         13
                                                                                                                                 373.729
          2
                 2
                        1
                                0
                                                                                  19.9995 2011
                                                                                                    2
                                                                                                                    0
                                                                                                                          2
                                                                                                                                   0.755
                                            1
                                                     1 14.76
                                                              16.665
                                                                           40
                                                                                                        14
                                                                                 36.9974 2011
          3
                48
                        1
                                0
                                            1
                                                         9.02
                                                               9.090
                                                                           47
                                                                                                    2
                                                                                                         8
                                                                                                                    1
                                                                                                                         10
                                                                                                                                  64.585
                                0
                                                                                                                          8
          4
                55
                        4
                                            0
                                                     1 10.66 15.150
                                                                           87
                                                                                  0.0000 2011
                                                                                                                    6
                                                                                                                                  83.326
                                                                                                   12
                                                                                                         4
          # Negative Values are predicted
          df['count_predicted'].describe()
Out[26]: count
                    3266.000000
                     190.070770
          mean
          std
                     174.655914
                     -95.306847
          min
          25%
                      43.720430
          50%
                     150.537590
          75%
                     284.134521
                     901.711853
          max
          Name: count_predicted, dtype: float64
In [27]:
          df[df['count_predicted'] < 0]</pre>
```

Out[27]:		count	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	count_pr
	99	71	2	0	1	3	22.96	26.515	88	7.0015	2012	5	15	1	23	-1.
	103	11	3	0	1	2	27.88	31.820	83	12.9980	2012	8	14	1	2	-6.
	117	2	4	0	1	1	8.20	12.880	80	0.0000	2011	12	13	1	2	-2.
	137	9	1	0	1	1	15.58	19.695	54	7.0015	2012	3	12	0	2	-6.
	158	45	1	0	0	2	12.30	13.635	100	19.9995	2011	3	5	5	8	-13.
	•••															
	3129	44	1	0	1	3	13.12	16.665	70	8.9981	2012	2	16	3	10	-5.
	3176	16	4	0	1	2	12.30	14.395	52	16.9979	2012	11	5	0	4	-2.
	3199	8	4	0	1	1	13.94	15.910	81	15.0013	2011	11	1	1	4	-1.
	3252	11	3	0	0	1	25.42	30.305	61	0.0000	2011	7	2	5	4	-1.
	3259	4	1	0	1	1	8.20	12.880	61	0.0000	2012	1	5	3	3	-2.

127 rows × 15 columns

```
df['count_predicted'].hist()
In [28]:
         plt.title('Predicted Count Histogram')
         plt.show()
```



```
In [29]: def adjust_count(x):
             if x < 0:
                  return 0
              else:
                  return x
         df['count_predicted'] = df['count_predicted'].map(adjust_count)
In [31]: df[df['count_predicted'] < 0]</pre>
Out[31]:
           count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour count_predicte
```

```
In [32]: # Actual Vs Predicted
         plt.plot(df['count'], label='Actual')
         plt.plot(df['count_predicted'],label='Predicted')
         plt.xlabel('Sample')
         plt.ylabel('Count')
         plt.xlim([100,150])
         plt.title('Validation Dataset - Predicted Vs. Actual')
         plt.legend()
         plt.show()
```

Validation Dataset - Predicted Vs. Actual


```
In [33]: # Over prediction and Under Prediction needs to be balanced
         # Training Data Residuals
         residuals = (df['count'] - df['count_predicted'])
```

```
plt.hist(residuals)
plt.grid(True)
plt.xlabel('Actual - Predicted')
plt.ylabel('Count')
plt.title('Residuals Distribution')
plt.axvline(color='r')
plt.show()
```



```
In [34]: value_counts = (residuals > 0).value_counts(sort=False)
         print(' Under Estimation: {0:0.2f}'.format(value_counts[True]/len(residuals)))
         print(' Over Estimation: {0:0.2f}'.format(value_counts[False]/len(residuals)))
```

Under Estimation: 0.50 Over Estimation: 0.50

```
In [35]: | print("RMSE: {0:0.2f}".format(mean_squared_error(df['count'],df['count_predicted'])**.5))
         RMSE: 40.89
In [36]: # RMSLE - Root Mean Squared Log Error
         # RMSLE Metric is used by Kaggle for this competition
         # RMSE Cost Function - Magnitude of difference matters
         # RMSLE cost function - "Only Percentage difference matters"
         # Reference: Katerina Malahova, Khor SoonHin
         # https://www.slideshare.net/KhorSoonHin/rmsle-cost-function
         def compute_rmsle(y_true, y_pred):
             if type(y_true) != np.ndarray:
                 y_true = np.array(y_true)
             if type(y_pred) != np.ndarray:
                 y_pred = np.array(y_pred)
             return(np.average((np.log1p(y_pred) - np.log1p(y_true))**2)**.5)
         print('RMSLE')
In [37]:
         print(compute_rmsle(100,50),
               compute_rmsle(1000,500),
               compute_rmsle(10000,5000))
         RMSI F
         0.683294884116934 0.6921486782303559 0.6930471955576127
In [38]: print('RMSLE')
         print(compute_rmsle(100,25),
               compute_rmsle(1000,250),
                compute_rmsle(10000,2500))
         RMSLE
         1.3570239788197775 1.383301840183437 1.3859944360988976
In [39]: print('RMSE')
         print(mean squared error([100],[50])**.5,
               mean_squared_error([1000],[500])**.5,
               mean_squared_error([10000],[5000])**.5)
```

```
RMSE
          50.0 500.0 5000.0
          print('RMSE')
In [40]:
          print(mean_squared_error([100],[25])**.5,
                mean squared_error([1000],[250])**.5,
                mean squared error([10000],[2500])**.5)
          RMSE
          75.0 750.0 7500.0
         print("RMSLE: {0}".format(compute_rmsle(df['count'],df['count_predicted'])))
In [41]:
          RMSLE: 0.5999730473932068
         # Prepare Data for Submission to Kaggle
In [42]:
          df_test = pd.read_csv(test_file,parse_dates=['datetime'])
          df_test.head()
In [43]:
Out[43]:
                  datetime season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
                 2011-01-20
                                        0
                                                    1
                                                                                                                          3
          0
                                1
                                                            1 10.66 11.365
                                                                                 56
                                                                                        26.0027
                                                                                               2011
                                                                                                          1
                                                                                                              20
                                                                                                                               0
                   00:00:00
                 2011-01-20
                                        0
                                                                                  56
                                                                                                                          3
          1
                                                    1
                                                            1 10.66 13.635
                                                                                         0.0000
                                                                                               2011
                                                                                                              20
                                                                                                                               1
                   01:00:00
                 2011-01-20
          2
                                        0
                                                    1
                                                                                               2011
                                                                                                                          3
                                                                                                                               2
                                                            1 10.66 13.635
                                                                                  56
                                                                                         0.0000
                                                                                                              20
                   02:00:00
                 2011-01-20
          3
                                        0
                                                    1
                                                            1 10.66 12.880
                                                                                  56
                                                                                        11.0014 2011
                                                                                                              20
                                                                                                                          3
                                                                                                                               3
                                                                                                          1
                   03:00:00
                 2011-01-20
          4
                                1
                                        0
                                                    1
                                                            1 10.66 12.880
                                                                                 56
                                                                                        11.0014 2011
                                                                                                              20
                                                                                                                          3
                                                                                                                               4
                                                                                                          1
                   04:00:00
In [44]: X_test = df_test.iloc[:,1:] # Exclude datetime for prediction
In [45]: X_test.head()
```

t[45]:		season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour
	0	1	0	1	1	10.66	11.365	56	26.0027	2011	1	20	3	0
	1	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	1
	2	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	2
	3	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	3
	4	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	4
]:		sult =		or.predict()	(_test)									
]:	ar		2.392899 pe=float	95, -3.7083 t32)	L811, -10	77708	33 ,	4.4427557	, -4.4427	557],				
8]:	df	_test["	count"]	= result										
9]:	df	_test.h	ead()											

Out[49]:		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	coun
	0	2011-01- 20 00:00:00	1	0	1	1	10.66	11.365	56	26.0027	2011	1	20	3	0	12.39290
	1	2011-01- 20 01:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	1	-3.70818
	2	2011-01- 20 02:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	2	-10.77708
	3	2011-01- 20 03:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	3	-4.44275
	4	2011-01- 20 04:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	4	-4.44275
Tn [50]:	44	: +oc+[df	+oc+["	count"l	. A1											•

In [50]: | df_test[df_test["count"] < 0]</pre>

Out[50]:		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	c
	1	2011-01- 20 01:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	1	-3.70
	2	2011-01- 20 02:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	2	-10.77
	3	2011-01- 20 03:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	3	-4.44
	4	2011-01- 20 04:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	4	-4.44
	25	2011-01- 21 01:00:00	1	0	1	2	9.84	11.365	70	16.9979	2011	1	21	4	1	-0.18
	•••															
	6210	2012-12- 20 03:00:00	4	0	1	2	12.30	15.910	70	6.0032	2012	12	20	3	3	-1.09
	6211	2012-12- 20 04:00:00	4	0	1	2	12.30	15.910	70	6.0032	2012	12	20	3	4	-1.09
	6235	2012-12- 21 04:00:00	1	0	1	2	14.76	15.910	71	32.9975	2012	12	21	4	4	-4.25
	6284	2012-12- 23 05:00:00	1	0	0	1	8.20	12.880	51	0.0000	2012	12	23	6	5	-1.27
	6451	2012-12- 30 06:00:00	1	0	0	2	9.84	9.850	52	27.9993	2012	12	30	6	6	-7.77

285 rows × 15 columns

```
In [51]: df_test["count"] = df_test["count"].map(adjust_count)
         df_test[['datetime','count']].to_csv('predicted_count.csv',index=False)
In [52]:
In [ ]: # RMSLE (Kaggle) Score
         # Test 1: 0.62 # Chandra
         #DWB# Test 1: 0.71796
In [ ]:
```

4