Computer Vision Exam Notes

Introduction to Computer Vision

Definition:

Computer Vision is a field of AI that enables machines to interpret and make decisions based on visual data (images or videos), similar to human sight.

? What is Computer Vision?

- It's a multidisciplinary field combining AI, image processing, ML, and deep learning.
- The goal is to **automate tasks** the human visual system can do.

Applications of Computer Vision

1. Healthcare

- Tumor detection (MRI/CT scans)
- Automated X-ray analysis
- Retinal disease diagnosis (fundus images)

2. Autonomous Vehicles

- Object detection (pedestrians, vehicles, traffic signs)
- Lane detection
- · Real-time scene understanding

3. Face Recognition

- Surveillance systems
- Device unlocking (Face ID)
- Emotion detection

4. Others

Augmented reality (AR)

- Industrial inspection
- OCR (Optical Character Recognition)

History and Evolution of Computer Vision

- 1960s: Early research focused on interpreting simple shapes and edges.
- 1970s–80s: Shift towards geometry, edge detection, and object recognition.
- **1990s**: Emergence of real-time video processing, feature extraction.
- 2000s-2010s: ML + feature-based systems (SIFT, SURF, HOG).
- **Post-2012**: Deep Learning (CNNs) revolutionized the field (e.g., AlexNet).

Overview of Image Processing vs. Computer Vision

Aspect Image Processing Computer Vision

Purpose Enhancing image quality Understanding the image

Focus Pixel manipulation Object detection, scene understanding

Techniques Filtering, transformation Feature extraction, classification

Image Processing Basics

Digital Image Representation

- Pixel: Smallest unit of an image with intensity value.
- **Resolution**: Total number of pixels (e.g., 1920×1080).
- Color Models:
 - o **RGB**: Red, Green, Blue (standard for color images).
 - HSV: Hue, Saturation, Value (better for color detection).
 - o **Grayscale**: 1 channel (intensity from 0 to 255).

✓ Image Filtering

1. Smoothing (Blurring)

Reduces noise and detail.

• Average Filter:

 $I'(x,y)=1N\sum_{i,j}I(x+i,y+j)I'(x, y) = \frac{1}{N} \sum_{i,j}I(x+i, y+j)$

Gaussian Filter (weighted average with Gaussian kernel)

2. Sharpening

Enhances edges by emphasizing pixel differences.

Uses Laplacian operator:

3. Edge Detection

Sobel Operator: Detects gradients in x and y directions.

 $Gx = [-101 - 202 - 101], Gy = [-1 - 2 - 1000121] G_x = \left[-101 - 202 - 101 \right], Gy = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_x = \left[-101 - 202 - 101 \right], G_y = \left[-1 - 2 - 1000121 \right] G_y = \left[$

 Canny Edge Detection: Multi-stage algorithm (smoothing → gradient → non-max suppression → hysteresis thresholding)

🔁 Image Transformation

1. Scaling

- Changes image size.
- Nearest Neighbor / Bilinear Interpolation.

2. Rotation

- Rotates image about a point.
- Uses rotation matrix:

[x'y']=[cos@θ-sin@θsin@θcos@θ][xy]\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}

3. Affine Transformations

- Linear transformation preserving points and parallel lines.
- Matrix form:

 $[x'y']=A[xy]+[txty]\setminus begin\{bmatrix\}x' \setminus y' \setminus begin\{bmatrix\}x' \setminus y \setminus begin\{bmatrix\}x' \setminus y$ + \begin{bmatrix} t_x \\ t_y \end{bmatrix}

Histogram Equalization and Contrast Adjustment

Histogram

Shows pixel intensity distribution.

Histogram Equalization

Improves global contrast of an image.

Steps:

- 1. Compute histogram.
- 2. Compute Cumulative Distribution Function (CDF).
- 3. Normalize the CDF to 0-255.
- 4. Map old values to new values using normalized CDF.

Mathematical Formula:

New Pixel=round(CDF(x)-CDFmin(M×N)-CDFmin×(L-1))\text{New Pixel} = \text{round} $\left(\frac{CDF}{x} - \frac{CDF}{min} \right) - \left(\frac{CDF}{mi$ \right)

Where:

- M×NM \times N: Total number of pixels
- LL: Number of intensity levels (usually 256)