Ранг на система вектори. Ранг на матрица.

Нека V е линейно пространство, а $c_1, c_2, \ldots, c_k \in V$ е крйна система вектори, в която поне един е различен от нулевия вектор. Казваме, че системата има pahe r, ако в нея има r на брой линейно независими вектора и всеки r+1 вектора в нея са линейно зависими. (Иначе казано, r е максималният брой линейно независими вектори в системата). Ясно е, че $1 \leq r \leq k$. (r=k точно когато всичките вектори c_1, c_2, \ldots, c_k са линейно независими.) За системата, състояща се само от нулевият вектор, казваме че има ранг 0. Означение: $\operatorname{rank}(c_1, c_2, \ldots, c_k)$.

Твърдение. rank
$$(c_1, c_2, \dots, c_k) = \dim \ell(c_1, c_2, \dots, c_k)$$
.

Доказателство. Нека $\mathrm{rank}(c_1,c_2,\ldots,c_k)=r$ и без ограничение считаме, че векторите c_1,\ldots,c_r са линейно независими. За произволен вектор $c_i,r+1\leq i\leq k$ (ако r< k) допускаме, че $c_i\notin \ell(c_1,\ldots,c_r)$. Това обаче означава, че векторите c_1,\ldots,c_r,c_i са линейно независими и са r+1 на брой, което противоречи на условието $\mathrm{rank}(c_1,\ldots,c_k)=r$. Следователно $c_{r+1},\ldots,c_k\in \ell(c_1,\ldots,c_r)$ и всеки вектор от $\ell(c_1,\ldots,c_k)$ е линейна комбинация на векторите c_1,\ldots,c_r . Така c_1,\ldots,c_r е базис на $\ell(c_1,\ldots,c_k)$ и $\dim \ell(c_1,\ldots,c_k)=r=\mathrm{rank}(c_1,\ldots,c_k)$.

Да разгледаме матрицата

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \cdots & \cdots & \ddots & \cdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} \in F_{m \times n}.$$

Нека $k \leq m, k \leq n$. В A фиксираме k на брой реда и k на брой стълба. Елементите на A в тях образуват детерминанта от ред k, наречена munop

 $om\ ped\ k$ на A. Нека конкретните редове са с номера $i_1 < i_2 < \cdots < i_k$, а стълбовете са $j_1 < j_2 < \cdots < j_k$. Тогава минорът от ред k е

$$\begin{bmatrix} \alpha_{i_1j_1} & \alpha_{i_1j_2} & \cdots & \alpha_{i_1j_k} \\ \alpha_{i_2j_1} & \alpha_{i_2j_2} & \cdots & \alpha_{i_2j_k} \\ \cdots & \cdots & \ddots & \cdots \\ \alpha_{i_kj_1} & \alpha_{i_kj_2} & \cdots & \alpha_{i_kj_k} \end{bmatrix}.$$

За матрица $A \neq \mathbb{O}$ казваме, че има ранг r, ако в A има поне един минор от ред r, който е различен от нула и всички минори от ред r+1 са равни на нула. (Т.е. числото r е максималният ред на ненулев минор на матрицата A.) В случая $A = \mathbb{O}$ казваме, че рангът е 0. Означение: rank A.

Да отбележим, че в случая, когато $A \in F_{n \times n}$ е квадратна матрица от ред n, rank A = n точно тогава, когато $\det A \neq 0$.

Пример:

За матрицата

$$A = \begin{pmatrix} 2 & 1 & 0 & -1 \\ -3 & 1 & 1 & 4 \\ 1 & 3 & 1 & 2 \end{pmatrix} \in F_{3 \times 4}$$

имаме, че $A \neq \mathbb{O}$ и rank $A \leq 3$, rank $A \leq 4$. Следователно $1 \leq \operatorname{rank} A \leq 3$. Минор от ред 2, различен от 0 е

$$\begin{vmatrix} 2 & 1 \\ -3 & 1 \end{vmatrix} = 5 \neq 0.$$

Всички минори от ред 3 са:

$$\begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix} = 0, \begin{vmatrix} 2 & 1 & -1 \\ -3 & 1 & 4 \\ 1 & 3 & 2 \end{vmatrix} = 0, \begin{vmatrix} 2 & 0 & -1 \\ -3 & 1 & 4 \\ 1 & 1 & 2 \end{vmatrix} = 0 \text{ M} \begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & 4 \\ 3 & 1 & 2 \end{vmatrix} = 0.$$

Следователно $\operatorname{rank} A = 2$.

Свойства на $\operatorname{rank} A$, (които са следствие от свойствата на детерминантите):

- 1) rank $A = \operatorname{rank}(A^t)$,
- 2) rank A не се променя при разместване на редовете или стълбовете на

матрицата A.

Нека за матрицата

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} \in F_{m \times n}$$

означим $a_1 = (\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1n}), a_2 = (\alpha_{21}, \alpha_{22}, \cdots, \alpha_{2n}), \ldots,$ $a_m = (\alpha_{m1}, \alpha_{m2}, \cdots, \alpha_{mn}) \in F^n; \quad b_1 = (\alpha_{11}, \alpha_{21}, \ldots, \alpha_{m1}),$ $b_2 = (\alpha_{12}, \alpha_{22}, \ldots, \alpha_{m2}), \ldots, \quad b_n = (\alpha_{1n}, \alpha_{2n}, \ldots, \alpha_{mn}) \in F^m.$ Векторите a_1, \ldots, a_m се наричат вектор-редове, а b_1, \ldots, b_n вектор-стълбове на матрицата A.

Теорема. $\operatorname{rank}(a_1,\ldots,a_m)=\operatorname{rank}(b_1,\ldots,b_n)=\operatorname{rank} A.$

Доказателство. Ще докажем, че $\operatorname{rank}(b_1,\ldots,b_n)=\operatorname{rank} A$. Нека $\operatorname{rank} A=r$. Ако r=0, то $A=\mathbb O$ и следователно $b_1=\cdots=b_n=o$, а оттам и $\operatorname{rank}(b_1,\ldots,b_n)=0$. Готово. Нека сега $r\geq 1$. Без ограничение (след евентуално разместване на редовете и стълбовете на A) може да считаме, че в A различен от 0 е минорът от ред r

$$\Delta = \begin{vmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1r} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{r1} & \alpha_{r2} & \cdots & \alpha_{rr} \end{vmatrix}.$$

В такъв случай вектор-стълбовете b_1, \ldots, b_r са линейно независими. Наистина, ако допуснем противното, то линйната им зависимост ще се запази и в стълбовете на минора Δ . Тогава от свойствата на детерминантите ще следва, че $\Delta = 0$, което е противоречие.

Сега ще докажем, че всеки от останалите стълбове b_{r+1}, \ldots, b_n (ако r < n) е линейна комбинация на първите r стълба b_1, \ldots, b_r . Фиксираме индекс $k: r+1 \le k \le n$ и разглеждаме вектор-стълба b_k . Нека индексът $i=1,\ldots,m$ пробягва номерата на редовете на A. Разглеждаме

помощната детерминанта от ред r+1:

$$D_{i} = \begin{vmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1r} & \alpha_{1k} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2r} & \alpha_{2k} \\ \dots & \dots & \ddots & \dots & \dots \\ \alpha_{r1} & \alpha_{r2} & \dots & \alpha_{rr} & \alpha_{rk} \\ \hline \alpha_{i1} & \alpha_{i2} & \dots & \alpha_{ir} & \alpha_{ik} \end{vmatrix} = \begin{vmatrix} \Delta & & & |\alpha_{1k}| \\ \Delta & & & |\alpha_{2k}| \\ & & & & |\alpha_{2k}| \\ \hline & & & & & |\alpha_{rk}| \\ \hline \\ |\alpha_{rk}| \\ \hline & |\alpha_{rk}| \\ \hline \\ |\alpha_{rk}| \\$$

Ако $i \leq r$, то последният ред на D_i е равен на i-тия и седователно $D_i = 0$. Ако i > r, то D_i е минор от ред r+1 на матрицата A, получен от редовете $1, 2, \ldots, r, i$ и стълбовете $1, 2, \ldots, r, k$, но т.к. $\operatorname{rank} A = r$, то $D_i = 0$. И така $D_i = 0$ за $\forall i = 1, 2, \ldots, m$. Означаваме с A_1, A_2, \ldots, A_r адюнгираните количества на $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{ir}$; адюнгираното количество на $\alpha_{ik} = (-1)^{r+1+r+1}\Delta = \Delta$. Развиваме D_i по адюнгираните количества на последния ред:

$$D_i = \alpha_{i1}A_1 + \alpha_{i2}A_2 + \dots + \alpha_{ir}A_r + \alpha_{ik}\Delta.$$

Имайки предвид, че $D_i = 0$ и разделяйки на $\Delta \neq 0$, получаваме

$$\alpha_{ik} = -\frac{A_1}{\Delta}\alpha_{i1} - \frac{A_2}{\Delta}\alpha_{i2} - \dots - \frac{A_r}{\Delta}\alpha_{ir}.$$

Полагаме $-\frac{A_j}{\Delta} = \lambda_j$ за $j = 1, 2, \dots, r$. A_1, \dots, A_r не съдържат елементи от последния ред на D_i и не зависят от i; Δ също не зависи от i и поради тези причини коефициентите $\lambda_1, \lambda_2, \dots, \lambda_r$ не зависят от i. Така получваме, че

$$\alpha_{ik} = -\frac{A_1}{\Delta}\alpha_{i1} - \frac{A_2}{\Delta}\alpha_{i2} - \dots - \frac{A_r}{\Delta}\alpha_{ir}$$

с едни и същи коефициенти $\lambda_1, \ldots, \lambda_r$ за менящо се $i = 1, 2, \ldots, m$, което всъщност е равносилно на векторното равенство

$$b_k = \lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_r b_r.$$

Тези разсъждения са в сила за $k=r+1,\ldots,n$ и с това доказахме, че векторите b_{r+1},\ldots,b_n са линейна комбинация на векторите b_1,\ldots,b_r .

Разглеждаме $\ell(b_1, \ldots, b_n)$. Всеки вектор от тази линейна обвивка е линейна комбинация на b_1, \ldots, b_n и следователно е линейна комбинация на

стълбовете b_1, \ldots, b_r , които са и линейно независими. Така b_1, \ldots, b_r е ба-
зис на $\ell(b_1,\ldots,b_n)$ и $\dim \ell(b_1,\ldots,b_n)=r$. Но според предното твърдение
$\dim \ell(b_1,\ldots,b_n)=\operatorname{rank}(b_1,\ldots,b_n)$ и следователно $\operatorname{rank}(b_1,\ldots,b_n)=r=$
$\operatorname{rank} A$. Сега от свойството $\operatorname{rank} A^t = \operatorname{rank} A$ следва и че $\operatorname{rank}(a_1,\ldots,a_m) =$
$\operatorname{rank} A$. С това теоремата е доказана.

Следствие. За квадратна матрица A е в сила: $\det A = 0 \Leftrightarrow peдовете$ (стълбовете) на A са линейно зависими.

 \mathcal{A} оказателство. \Rightarrow) Ако $\det A = 0$, то $\operatorname{rank} A < n$, т.е. $\operatorname{rank}(a_1, \ldots, a_n) < n$ и вектор-редовете a_1, \ldots, a_n са линейно зависими.

⇐) Очевдино от свойствата на детерминантите. □