Problem Sheet 3

PhD students: solutions are to be handed in by Tuesday 25th of April

- (1) Consider the vector space \mathbb{R}^2 of ordered pairs of real numbers (x, y) with the norm $\|(x, y)\|_1 = |x| + |y|$.
 - (a) Show that this norm is not strictly convex.
 - (b) Let a = (2, 0), find all points on the unit ball of V which are minimal distance from a.
 - (c) Do the same as in part (b) if the norm is $||(x,y)||_2 = \sqrt{x^2 + y^2}$.
- (2) (a) Find the Chebyshev approximation to $f(x) = x^4$ out of the space $P_3[-1,1]$.
 - (b) In C[-1,1] find the best approximation to $g(x) = x^3 + x^2$ by a quadratic polynomial.
- (3) Show that the subset

$$M = \{(x_1, \dots x_n) : \sum_{i=1}^n x_i = 1\}$$

of the Euclidean space \mathbb{R}^n is convex. Find the vector of minimum norm in M.

- (4) Let V be a vector space, $b \in V$ and W be a finite-dimensional subspace of V with orthonormal basis $e_1, ..., e_n$.
 - (a) Let x be the least square approximation of b out of W, show that $b x \perp e_i$ for i = 1, ..., n.
 - (b) Show that $b x \perp w$ for all $w \in W$.
- (5) Consider the data (-1, -1), (0, 3), (2, 11) and (3, 27). Construct an interpolating polynomial p(x) for this data by using:
 - (a) Lagrange's formula;
 - (b) the method of undetermined coefficients;
 - (c) Newton's method.