

第三章 空间分布的测度和时间序列

——河北师范大学资环学院 胡引翠

本章主要内容:

空间分布的测度

时间序列

测度: Measure, 是一个

函数。

序列:用于趋势分析、预

测。

Part1 空间分布的测度 (Measure)

空间分布的类型都包括哪些?

- ✓点状分布的类型
- ✓线状分布的类型 ✓面状分布的类型
 - •离散区域分布类型

2. 线状分布类型 河流

城市

3. 面状分布类型 行政区

点状分布

线状分布

离散区域

连续区域

1 最邻近平均距离的测度

【顺序法、区域法】

2 对中心位置的测度

【中项中心、平均中心】

3 离散程度的测度

【计算特定位置点离散度、点与点间离散度】

点状分布

线状分布

离散区域

连续区域

1 最邻近平均距离的测度

【顺序法、区域法】

1最邻近平均距离

- 顺序法

基准点: i;

- □测定d_{ih},d_{ib};
- □找出满足d_{ih}≤ d_{ib}的距离;
- □若有p个,按顺序排列:

$$d_{i1} \le d_{i2} \le ... \le d_{ip}$$

p=0,1,2,...,n-1

1最邻近平均距离

- 区域法

• 将地图空间分割成K个大小相等的 齿轮状区域,参照"顺序法"量度 各区内点到最邻近点的距离,得到 k个距离值,从中选出满足边界条 件的距离。

 $=\frac{a_1}{\overline{d}}$

邻近指数

1最邻近平均距离

- 区域法
 - 将地图空间分割成K个大小相等的 齿轮状区域,参照"顺序法"量度 各区内点到最邻近点的距离,得到 k个距离值,从中选出满足边界条

 $\overline{d}_e = \frac{1}{2\sqrt{D}}$ 为理论的随机分布型的最邻近平均距离。

 $D = \frac{n}{A}$ 为点的密度,其中A为区域面积,n为区域内点的个数。

- 邻近指数R对于点状分布类型的判断:

- R=1, 随机型分布;
- R<1, 趋向于凝集型分布;
- R>1, 趋向于离散型的均匀分布。

2019-9-16

- 采用指标R的优点在于:

- 可以把要讨论的点的空间分布图式 放在一个从凝集的、通过随机的一 直到均匀分布的连续广阔的定量范 围之内,此尺度范围为: 0-2.149。
- 对于一个固定地域来说,点的空间分布随时间而变化,亦可通过R尺度分析去判断其空间分布比原先的是更凝集还是更趋于分散,并且定量的表达出其凝集或分散的程度。
- R的数值一般在0.33-1.67之间。

邻近指数练习

我国1953年5万人口以上的城镇数为151个,至1978年发展到302个,见下表。根据计算,各年5万人口以上城镇的最邻近平均距离如表所示。 试计算点状分布的R指标,并作简要的地理解释。

年代	城镇数	र्व₁(km)	R
1953	151	160.31	
1963	210	95.96	
1973	271	83.79	
1978	302	81.02	

2019-9-16

邻近指数练习

解: 1.计算各年的理论随机分布的平均距离。

1953:
$$\overline{d}_e = \frac{1}{2\sqrt{\frac{n}{4}}} = \frac{1}{2\sqrt{\frac{151}{9600000}}} = 126 \ (km)$$

2.计算各年的邻近指数R。

1953:
$$R_{53} = \frac{\overline{d_1}}{\overline{d_e}} = \frac{160 .31}{126} = 1.29$$
 $R_{63} = 0.88, R_{73} = 0.89, R_{78} = 0.90$

	710011000000	000110000001	0101010101000
(年代	城镇数	R
(1953	151	1.29
)(1963	210	0.88
)(1973	271	0.89
	1978	302	0.90

邻近指数练习

• 地理解释:

- 我国5万人口以上的城镇1953年的R指标为1.29, 比随机分布更 趋分散。
- 在1953-1963年间,城镇发展迅速,由151个发展到210个,增长了大约39%,R₆₃=0.88说明城镇分布已略呈凝集型。
- 以后虽然城镇总数虽然继续扩大,但因在此期间边远城镇相对 发展比较迅速,因此R指标反而略有增大。

2019-9-16

点状分布

线状分布

离散区域

车续区域

2 对中心位置的测度

中项中心

- □画东西线AB,保证南北两部分样点个数相同;
- □画南北线CD,保证东西两部分样点数相同;
- **□**交点即中心。中**项中心总是偏向分布点密度**

较大的一侧

假设要在10个居民区内设立一个商业中心,希望居民都

很便利。居住区坐标如卜,如何做?										
										111001011
										1110000110
1	0141010001	109010000	113000011	102001110	1016101010	1016101111	107011100	008100000	000 6 110010	000/0/100
1000000	001 <mark>0100101</mark>	010101010	010101010	111000001	1100001100	00000001110	0100110000	1000011000	0001010101	010000110
		010100000	0100001100	0000000110	0000010101	0101010101	010010101	1101010110	010101010	01100111
		1111101110	110111000	100011000	D100001100	00111111110	010010101	10101 <mark>01</mark> 10	010101010	101111100
		101010001	0000111000	1000000	1110000011	1111100000	010010101	1101010110	1010101010	01100011

1111110001										100000110
地点	01 4 1010001 0010100101	102 10000	1300011	104001110	101 5 101010	10 6 101111	107011100	008100000	000 9 110010	0010 100
101000110	0111000001 1010100010	0101000001	01000001100	0000000110	0000010101	0101010101	0100101010	0101010110	010101010	101100111
111110001	1100001100	1010100011	0000111000	0011000000	1110000011	1111100000	01001010101	0101010110	1010101010	101100011
1 X 000000	3.58	7.45	3.21	6.47	5.32	6.54	7.81	9.65	6.78	8.92

6.89

11111100011										
地点	01 4 1010001 0010100101	102100001	11 3 000011 010101010	104001110	1015101010	101 <mark>6</mark> 101111 0000001110	10701110	000 8 100000	00 9 110010	00010 100
0010010101	01010001 01010001 100001100	1111011101	110111000	100011000	01000010101 0100001100 1110000011	00111111110 1111110000C	010010101 010010101 010010101	0101010110 0101010110 0101010110	010101010	0110011
1 X 000000	3.58	7.45	3.21	6.47	5.32	6.54	7.81	9.65	6.78	8.92

2.97

111110001	3.58	7.45	3.21	6.47	1110000011	6.54	7.81	9.65	0 6.78 O	8.92
	0111000001 1010100010	0101000001	01000 <mark>0</mark> 1100		0000010101 0100001100	0101010101 0011111110		1010101101 1010101		
地点	01 <mark>4</mark> 1010001 001010100101	10 2 0100001	11 3 000011 01 0 101010	10 4 001110	101 5 101010 110 5 001100	10 16 101111 0000001110	10 7 011100 0100110000	00 8 1000000	000 9 1100100	10 100
111110001	1100001100	1010100011	0000111000	0011000000	1110000011	1111100000 1100000101	0110101000 0101111000)1100001110)0011100001	1000000000	100000110
101000170 001001010	1010100001	0101000001 11111011101	110111000	110001100	0000010101 01 0 0001100	0011111110				

点状分布

线状分布

离散区域

连续区域

2 对中心位置的测度 区域重心(补充)

【中项中心、平均中心】

$$x = \sum_{i=1}^{n} M_{i} X_{i} / \sum_{i=1}^{n} M_{i}, y = \sum_{i=1}^{n} M_{i} Y_{i} / \sum_{i=1}^{n} M_{i}$$

空间分布的测度:

点状分布

线状分布

离散区域

连续区域

 $\bar{x} = \sum_{i=1}^{n} M_{i} X_{i} / \sum_{i=1}^{n} M_{i}, \bar{y} = \sum_{i=1}^{n} M_{i} Y_{i} / \sum_{i=1}^{n} M_{i}$

2 对中心位置的测度

- 区域重心(补充)
- □若属性值Mi为各小区单元的面积,则空间均值P就是区域的几何中心。
- □当某一空间现象的空间均值显著区别于区域几何中心,就指示了这一空间现象的不 均衡分布.或称"重心偏离"。
- □偏离方向指示了空间现象的"高密度"部位,偏离的距离则指示了均衡程度。

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

【计算特定位置点离散度、点与点间离散度】

- □对平均中心 (中项中心) 的离散程度
- □对任意指定中心的离散程度
- □各点之间的离散程度

空间分布的测度:

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

□对平均中心的离散程度

【计算特定位置点离散度、点与点间离散度】

$$d^2 = d_w^2 + d_h^2$$

标准距离:
$$d = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2 + (y_i - y)^2}{n}}$$

 d_h^2/d^2 : 趋于时,区域间具有最大差异性;

接近于0时,各区域具有与整个模型相同的平均中心

小区间的标准距离: $d_b = \sqrt{\frac{1}{n} \sum_{j=1}^k n_j [(x_j - x)^2 + (y_j - y_j)^2]}$

点状分布

线状分布

离散区域

连续区域

- 3 离散程度的测度
 - □对中项中心的离散程度 取1/4等分线等分点数

$$I_d = \frac{Q}{A}$$

A: 大矩形面积

Q: 小矩形面积

小矩形面积越小, 离散程度也小

空间分布的测度:

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

□对中项中心的离散程度

【计算特定位置点离散度、点与点间离散度】

大矩形面积

小矩形面积

如果均匀分布,值应该是?

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

【计算特定位置点离散度、点与点间离散度】

- □对任意指定位置的离散程度
 - •按照指定的距中心点的距离范围间隔进行分组,如距离1公里,2公里,4 公里:
 - •统计每个半径出现的点数,绘制累积频率曲线
 - •读出占50%的累积频率半径,作为分析离散程度的依据

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

【计算特定位置点离散度、点与点间离散度】

- □各点之间的离散程度
 - •方法1: 以每点作为基准点,量算一定数量最近的邻点的距离,
 - •计算最近邻点指数R

理想平均距离:
$$r_E = \frac{1}{2\sqrt{D}} = \frac{1}{2\sqrt{n/A}}$$

点状分布

线状分布

离散区域

连续区域

3 离散程度的测度

【计算特定位置点离散度、点与点间离散度】

- □各点之间的离散程度
 - •方法2: 计算每点的指定距离内的邻点数量
 - •如果随机分布情况下,每点的r_e距离内平均有一个邻点,即每点的平均邻点数为1
 - •实际计算时,如果某点平均邻点数小于1,则为均匀分布

理想平均距离:
$$r_E = \frac{1}{2\sqrt{D}} = \frac{1}{2\sqrt{n/A}}$$

邻点数小于1,均匀分布 邻点数大于1,凝聚分布 邻点数等于1,随机分布