EE4341 Advanced Analog Circuits Wideband Amplifier Design

Dr Zheng Yuanjin
Associate Professor
Division of Circuits & Systems
S2.2-B2-16 (Tel: 65927764)
School of EEE, NTU

1

Unity Gain Frequency of BJT

The short-circuit current gain is determined with output shorted.

$$i_s = \frac{v_s}{R_s + r_{b\theta}}$$

Unity Gain Frequency of BJT

Apply KCL at node b':

$$\begin{split} i_{b} &= g_{\pi} v_{b'e} + j \omega C_{b'e} v_{b'e} + j \omega C_{cb'} \big(v_{b'e} - v_{ce} \big) \\ &= g_{\pi} v_{b'e} + j \omega C_{b'e} v_{b'e} + j \omega C_{cb'} v_{b'e} \\ &= \big[g_{\pi} + j \omega \big(C_{b'e} + C_{cb'} \big) \big] v_{b'e} \end{split}$$

EE434: Wideband Amplifiers

3

$$i_{c} = g_{m} v_{b'e} \qquad i_{b} = \left[g_{\pi} + j\omega(C_{b'e} + C_{cb'})\right] v_{b'e}$$

$$A_{i(sc)} = \frac{i_{c}}{i_{b}} = \frac{g_{m}}{g_{\pi} + j\omega(C_{b'e} + C_{cb'})} = \left(\frac{g_{m}}{g_{\pi}}\right) \left[\frac{1}{1 + j\omega(C_{b'e} + C_{cb'})/g_{\pi}}\right]$$

$$\therefore \frac{g_{m}}{g_{\pi}} = \frac{I_{C}}{V_{T}} \times \frac{V_{T}}{I_{B}} = \beta$$

$$\therefore A_{i(sc)} = \frac{\beta}{1 + j\omega(C_{b'e} + C_{cb'})\beta/g_{m}}$$

By definition, unity gain frequency f_T occurs when:

$$\left|A_{i(sc)}\right| = \left|\frac{\beta}{1 + j\omega_T(C_{b'e} + C_{cb'})\beta/g_m}\right| = 1$$

$$\left| \frac{\beta}{1 + j\omega_T (C_{b'e} + C_{cb'})\beta / g_m} \right| = 1$$

$$\therefore \omega_T (C_{b'e} + C_{cb'}) \beta / g_m >> 1 \qquad \therefore \frac{\beta}{\underline{\omega_T (C_{b'e} + C_{cb'}) \beta}} \approx 1$$

$$\omega_T \approx \frac{g_m}{C_{b'e} + C_{cb'}} \Longrightarrow f_T = \frac{g_m}{2\pi (C_{b'e} + C_{cb'})}$$

Note: The above expression shows that f_T is independent of β but is dependent on the biasing point (that determines g_m) and the inherent parasitic capacitances of the device. As a general rule, to design a wideband amplifier with a -3dB bandwidth of BW_{3bB}, the BJT must have a $f_T > 5$ to 10 times BW_{3bB}.

EE4341 Wideband Amplifiers

5

Unity Gain Frequency of BJT

$$A_{i(sc)}(j\omega) = \frac{\beta}{1 + j\omega(C_{b'e} + C_{cb'})\beta/g_m}$$

$$: \omega_T = \frac{g_m}{C_{b'e} + C_{cb'}}$$

$$\therefore A_{i(sc)}(j\omega) = \frac{\beta}{1 + j\left(\frac{\beta\omega}{\omega_T}\right)} \qquad A_{i(sc)}(jf) = \frac{\beta}{1 + j\left(\frac{\beta f}{f_T}\right)}$$

Unity Gain Frequency of BJT

EE4341 Wideband Amplifiers

7

Frequency Response of CE Amplifier

EE4341 Wideband Amplifiers

8

Apply KCL at node b':

$$v_{b'e}(G_1 + g_{\pi} + j\omega C_{b'e}) = i_s + (v_o - v_{b'e})j\omega C_{cb'}$$

$$v_{b'e}[G_1 + g_{\pi} + j\omega (C_{b'e} + C_{cb'})] - j\omega C_{cb'}v_o = i_s - - - - (1)$$

Apply KCL at node c:

$$v_{o}(G_{L} + j\omega C_{L}) + g_{m}v_{b'e} = (v_{b'e} - v_{o})j\omega C_{cb'}$$

$$v_{o}[G_{L} + j\omega (C_{L} + C_{cb'})] + g_{m}v_{b'e} = j\omega C_{cb'}v_{b'e}$$

$$v_{o} = \frac{-(g_{m} - j\omega C_{cb'})v_{b'e}}{G_{L} + j\omega (C_{L} + C_{cb'})} - - - - - - - (2)$$

EE4341 Wideband Amplifiers

9

Substitute (2) into (1):

$$v_{b'e} \left[G_1 + g_{\pi} + j\omega (C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'} (g_m - j\omega C_{cb'})}{G_L + j\omega (C_{cb'} + C_L)} \right] = i_s$$

$$v_{b'e} = \frac{i_s}{G_1 + g_{\pi} + j\omega (C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'} (g_m - j\omega C_{cb'})}{G_L + j\omega (C_{cb'} + C_L)}} - - - - (3)$$

Substitute (3) into (2):

$$\therefore v_{o} = \left[\frac{-(g_{m} - j\omega C_{cb'})}{G_{L} + j\omega (C_{cb'} + C_{L})} \right] \frac{i_{s}}{G_{1} + g_{\pi} + j\omega (C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'}(g_{m} - j\omega C_{cb'})}{G_{L} + j\omega (C_{cb'} + C_{L})}$$

$$i_{s} = \frac{v_{s}}{R_{S} + r_{bb'}} = v_{s}G_{1}$$

$$A_{v} = \frac{v_{o}}{v_{s}} = \frac{-(g_{m} - j\omega C_{cb'})G_{1}}{[G_{L} + j\omega(C_{cb'} + C_{L})]G_{1} + g_{\pi} + j\omega(C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'}(g_{m} - j\omega C_{cb'})}{G_{L} + j\omega(C_{cb'} + C_{L})}}$$

In the frequency range of interest (*f* in the MHz range):

 g_m (in the range of 10^{-3}) >> $\omega C_{cb'}$ (in the range of $10^6 \times 10^{-12} \approx 10^{-6}$)

$$\therefore (g_m - j\omega C_{ch'})G_1 \approx g_m G_1$$

 G_1 (in the range of 10^{-2}) >> g_{π} (in the range of 10^{-4})

$$\therefore G_1 + g_{\pi} \approx G_1$$

 G_L (in the range of 10^{-3}) >> $\omega (C_{cb'} + C_L)$ (in the range of $10^6 \times 10^{-12} \approx 10^{-6}$)

11

$$A_{v} = \frac{-g_{m}G_{1}}{\left[G_{L} + j\omega(C_{cb'} + C_{L})\right]\left[G_{1} + j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})\right]}$$

$$= \frac{-g_{m}G_{1}}{G_{L}G_{1}\left[1 + \frac{j\omega(C_{cb'} + C_{L})}{G_{L}}\right]\left[1 + \frac{j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})}{G_{1}}\right]}$$

$$= \frac{-g_{m}R_{L}}{\left[1 + \frac{j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})}{G_{1}}\right]\left[1 + \frac{j\omega(C_{cb'} + C_{L})}{G_{L}}\right]}$$

$$= \frac{-g_{m}R_{L}}{(1 + j\omega/\omega_{1})(1 + j\omega/\omega_{2})}$$

The two break frequencies:

$$\omega_{1} = \frac{G_{1}}{C_{b'e} + C_{cb'}(1 + g_{m}R_{L})} = \frac{1}{(R_{S} + r_{bb'})[C_{b'e} + C_{cb'}(1 + g_{m}R_{L})]}$$

:.
$$f_1 = \frac{1}{2\pi (R_S + r_{bb'})C_i}$$
 where $C_i = C_{b'e} + (1 + g_m R_L)C_{cb'}$

Note: The effective input capacitance is equal to $C_{cb'}$ multiplied by $(1 + g_m R_L)$. This is known as the Miller effect.

$$\omega_2 = \frac{G_L}{C_{cb'} + C_L} = \frac{1}{R_L (C_{cb'} + C_L)}$$

$$\therefore f_2 = \frac{1}{2\pi R_L (C_{cb'} + C_L)}$$

EE4341 Wideband Amplifiers

13

Example

BJT Device Parameters: $r_{bb'} = 60 \ \Omega$, $R_s = 40 \ \Omega$, $C_{cb'} = 1.5 \ \text{pF}$ and $f_T = 1.6 \ \text{GHz}$. Load capacitance: $C_L = 1 \ \text{pF}$. The BJT is biased at 2.5 mA. Determine voltage gain frequency response for different values of R_L (varying from 30 Ω to 10 $k\Omega$.

$$\omega_{T} = 2\pi \times 1.6 \times 10^{9} = 1.005 \times 10^{10} \text{ rad/s} \qquad g_{m} = \frac{I_{C}}{V_{T}} = \frac{2.5 \text{ mA}}{26 \text{ mV}} = 0.096 \text{ S}$$

$$C_{b'e} + C_{cb'} = \frac{g_{m}}{\omega_{T}} = \frac{0.096}{1.005 \times 10^{10}} = 9.6 \text{ pF}$$

$$\left| A_{v(MID)} \right| = g_{m} R_{L} = (0.096) R_{L}$$

$$f_{1} = \frac{1}{2\pi (R_{s} + r_{bb'}) (C_{b'e} + C_{cb'} + g_{m} R_{L} C_{cb'})}$$

$$= \frac{1}{2\pi (100) (9.6 + 0.096 \times R_{L} \times 1.5) \times 10^{-12}}$$

$$= \frac{1}{6.28 \times 10^{-10} (11.1 + 0.144 R_{L})}$$
If $R_{L} = 1 \text{ k}\Omega$, $f_{1} = 10.26 \text{ MHz}$.

EE4341 Wideband Amplifiers

15

$$f_{2} = \frac{1}{2\pi \times R_{L}(C_{cb'} + C_{L})}$$

$$= \frac{1}{2\pi \times R_{L}(2.5 \times 10^{-12})}$$

$$= \frac{1}{1.57 \times 10^{-11} \times R_{L}}$$
If $R_{L} = 1 \text{ k}\Omega, f_{2} = 63.7 \text{ MHz}.$

We could calculate both f_1 and f_2 for different load R_L .

From the calculations, we have:

R_L (Ω)	f_1 (MHz)	f_2 (MHz)	BW (MHz)	$A_{V(MID)}$	$A_{V(MID)} \times BW (MHz)$
30	110	2,122	110	3	330
100	64	637	64	10	640
300	29	212	29	30	868
1.000	10	64	10	100	1,000
3,000	3.5	21	3.5	300	1,038
10,000	1.05	6.4	1.04	1,000	1,040

 $f_1 \ll f_2$ for all load resistance values. Therefore, f_1 is the primary factor that determines the -3dB BW of the amplifier.

Larger R_L gives larger mid-band gain but at the expense of reduction in BW.

EE4341 Wideband Amplifiers

17

Limitation of CE Stage for Wideband Application

$$f_1 = \frac{1}{2\pi (R_s + r_{bb'})C_i}$$
 where $C_i = C_{b'e} + (1 + |A_{v(MID)}|)C_{cb'}$

$$f_2 = \frac{1}{2\pi R_L (C_{cb'} + C_L)}$$

 $f_2 = \frac{1}{2\pi R_L (C_{cb'} + C_L)}$ The BW is determined by f_1 and C_i is large due to Miller effect. Hence, CE amplifier alone is not suitable for wideband application.

CE-CB Configuration (Cascode Amplifier)

EE4341 Wideband Amplifiers

19

$$Y_{L(CE)} = g_m \left(1 + \frac{jf}{f_T} \right)$$
 For $f \ll f_T$, $Y_{L(CE)} \approx g_m$

The voltage gain for CE stage is:

$$A_{V(CE)} = -g_m \left(\frac{1}{Y_{L(CE)}} \right) = -\frac{g_m}{g_m} = -1$$

$$\omega_1 = \frac{1}{(R_S + r_{bb'})[C_{b'e} + C_{cb'}(1 + |A_{V(CE)}|)]} = \frac{1}{(R_S + r_{bb'})(C_{b'e} + 2C_{cb'})}$$

$$\therefore C_{b'e} >> C_{cb'} \quad \therefore C_{b'e} + 2C_{cb'} \approx C_{b'e} + C_{cb'} \approx \frac{g_m}{\omega_T}$$

$$\omega_1 = \frac{\omega_T}{g_m(R_S + r_{bb'})} \Rightarrow f_1 = \frac{f_T}{g_m(R_S + r_{bb'})} \quad \text{Note: now } f_1 \quad \text{is independent of } R_L.$$

EE4341 Wideband Amplifiers

21

The second break frequency ω_2 is:

$$\omega_{2} = \frac{g_{e}}{C_{b'e} + C_{cb'} \left(1 + \frac{1}{|A_{v(CE)}|}\right)} \approx \frac{g_{m}}{C_{b'e} + 2C_{cb'}} \approx \omega_{T} \Rightarrow f_{2} \approx f_{T}$$

 ω_2 will not have any significant effect in finding the overall BW.

The third break frequency ω_3 is:

$$\omega_3 = \frac{1}{R_L(C_{cb'} + C_L)} \Rightarrow f_3 = \frac{1}{2\pi R_L(C_{cb'} + C_L)}$$

$$A_{V(CB)} = \frac{\alpha R_L}{r_e} \approx g_m R_L$$
 Note: $\alpha \approx 1$ and $r_e \approx \frac{1}{g_m}$

The overall mid-band gain:

$$A_{V(MID)} = A_{V(CE)}A_{V(CB)} = (-1)(g_m R_L) = -g_m R_L$$

Example

Two identical transistors Q_1 and Q_2 are configured as a Cascode Amplifier (CE-CB): BJT Device Parameters: $r_{bb'} = 60 \Omega$, $R_s = 40 \Omega$, $C_{cb'} = 1.5 pF$ and $f_T = 1.6$ GHz. Load capacitance: $C_L = 1 pF$. The BJT is biased at 2.5 mA. Determine overall voltage gain frequency response for different values of R_L (varying from 30Ω to $10 k\Omega$.

EE4341 Wideband Amplifiers

$$A_{V(MID)} = -g_m R_L = -0.096 R_L$$

$$f_1 = \frac{f_T}{g_m (R_s + r_{bb'})} = \frac{1.6 \times 10^9}{0.096(100)} \approx 160 \text{ MHz}$$

$$f_2 \approx f_T \approx 1.6 \text{ GHz}$$

$$f_3 = \frac{1}{2\pi R_L (C_{cb'} + C_L)} = \frac{1}{2\pi R_L (2.5 \times 10^{-12})}$$

$R_L(\Omega)$	f_1 (MHz)	f_2 (MHz)	f_3 (MHz)	BW (MHz)	AVIMIDI	$A_{V(MID)} \times BW(MHz)$
30	160	1,600	2,122	160	3	480
100	160	1,600	637	160	10	1,600
300	160	1,600	212	128	30	3,831
1,000	160	1,600	64	59	100	5,900
3,000	160	1,600	21	21	300	6,305
10,000	160	1,600	6.4	6.4	1,000	6,400

Comparison

	$A_{V(MID)} \times BW$ (MHz)	$A_{V(MID)}$	BW (MHz)	f_2 (MHz)	f_1 (MHz)	R_L (Ω)
	330	3	110	2,122	110	30
OE Chara	640	10	64	637	64	100
CE Stage	868	30	29	212	29	300
	1,000	100	10	64	10	1.000
	1,038	300	3.5	21	3.5	3,000
	1,040	1,000	1.04	6.4	1.05	10,000

łz)	$A_{V(\text{MID})} \times BW(N)$	AVIMIDI	BW (MHz)	f_3 (MHz)	f_2 (MHz)	f_1 (MHz)	$R_L(\Omega)$
	480	3	160	2,122	1,600	160	30
	1,600	10	160	637	1,600	160	100
	3,831	30	128	212	1,600	160	_300_
	5,900	100	59	64	1,600_	160	1,000
	6,305	300	21	21	1,600	160	3,000
	6,400	1,000	6.4	6.4	1,600	160	10,000

For $R_L = 1 \text{k}\Omega$, mid-band gain is 100 in both cases but BW = 10 MHz for CE and BW \approx 60 MHz for the cascode stage. Nearly 6 times wider in BW.

EE4341 Wideband Amplifiers

25

Applying Feedback to Broaden BW

As the bandwidth of the transistor is restricted by its device parameters, negative feedback technique can be employed to broaden the amplifier's bandwidth. Of course, at the expense of lower gain.

 $G(j\omega)$ is the voltage transfer function of the amplifier and $H(j\omega)$ is the negative feedback network.

If $H(j\omega)$ is frequency-independent in the frequency of interest, i.e. $H(j\omega) = H$:

$$A_{\nu}(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)H}$$

$$A_{v}(j\omega) = \frac{\frac{A_{o}}{1 + j\omega/\omega_{o}}}{1 + \frac{A_{o}H}{1 + j\omega/\omega_{o}}} = \frac{A_{o}}{1 + j\omega/\omega_{o} + A_{o}H}$$

$$= \frac{A_{o}}{1 + A_{o}H} \left(\frac{1}{1 + \frac{j\omega}{\omega_{o}(1 + A_{o}H)}}\right) = \frac{A_{o}}{1 + A_{o}H} \left(\frac{1}{1 + j\omega/\omega_{L}}\right)$$

EE4341 Wideband Amplifiers

27

$$A_{\nu}(j\omega) = \frac{A_o}{1 + A_o H} \left(\frac{1}{1 + j\omega/\omega_L} \right)$$

The mid-band gain of the amplifier with feedback is:

$$A_{\nu(MID)} = \frac{A_o}{1 + A_o H} \qquad \therefore A_o H >> 1 \therefore A_{\nu(MID)} \approx \frac{1}{H}$$

... The mid-band gain is controlled by the feedback network.

Now, the bandwidth has been broaden by a factor of $(1+A_0H)$:

$$\omega_L = \omega_o (1 + A_o H)$$

Amplifier with Series-Shunt Cascade

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{R_{F}}{R_{E}}$$

 $A_{v} = \frac{v_{out}}{v_{in}} = \frac{R_{F}}{R_{F}}$ The amplifier with series-shunt feedback cascade is a wideband voltage amplifier.

EE4341 Wideband Amplifiers

29

Amplifier with Shunt-Series Cascade

$$v_{o1} = i_{e2} (R_E + r_{e2}) \approx i_{e2} R_E \qquad \qquad \because i_{out} = i_{c2} \approx i_{e2} \therefore v_{o1} = i_{out} R_E$$

$$A_i = \frac{i_{out}}{i_{in}} = -\frac{R_F}{R_E}$$
 The amplifier with shunt-series feedback cascade is a wideband current amplifier.

Differential wideband amplifier

Circuit diagram of µA 733 wideband differential amplifier that uses the series-shunt cascade feedback topology.

The circuit has very good CMRR (Common-mode rejection ratio)

EE4341 Wideband Amplifiers

31

DC Biasing Analysis

AC Signal Analysis

EE4341 Wideband Amplifiers

33

The voltage gain for second stage $(Q_3 \text{ or } Q_4)$ is:

$$A_{V2} = \frac{v_{c3}}{v_{i2}} = -\frac{g_{f2}v_{i2}R_9}{v_{i2}} = -\left(\frac{I_{C3}}{V_T}\right)R_9 = -\frac{4.7\text{mA}/2}{26\text{mV}} \times 1.1\text{ k}\Omega = -103$$

The voltage gain for third stage $(Q_5 \text{ or } Q_6)$ is:

$$A_{V3} = \frac{v_o / 2}{v_{c3}} = \frac{i_{e5} R_L}{i_{e5} (R_L + r_{e5})} = \frac{R_L}{R_L + r_{e5}} \approx 1 :: R_L >> r_{e5}$$

$$\therefore A_{V2} \times A_{V3} \approx -100$$

Applying KCL at node "x":

$$\frac{g_{f1}v_{in}}{2} + \frac{v_x}{R_1} = \left(\frac{v_o}{2} - v_x\right)\left(\frac{1}{R_{11}}\right) \Rightarrow \frac{g_{f1}v_{in}}{2} = \frac{v_o}{2R_{11}} - v_x\left(\frac{1}{R_1} + \frac{1}{R_{11}}\right) - \cdots - (1)$$

Note that:
$$\frac{v_o}{2} = A_{v_1} A_{v_2} v_x \Rightarrow v_x = -\frac{v_o}{200} - - - (2)$$

Substituting (2) into (1):

$$\frac{g_{f1}v_{in}}{2} = \frac{v_o}{2R_{11}} + \left(\frac{v_o}{200}\right) \left(\frac{1}{R_1} + \frac{1}{R_{11}}\right)$$

$$A_v = \frac{v_o}{v_{in}} = \frac{g_{f1}}{1/R_{11} + (1/100)(1/R_1 + 1/R_{11})}$$

$$= \frac{g_{f1}}{1/7k + (1/100)(1/7k + 1/2.4k)} \approx g_{f1}(7k)$$

$$A_v = g_{f1}(7k) = \frac{7k}{r_{e1} + R_E} = \frac{7 \times 10^3}{11 + R_E}$$

EE4341 Wideband Amplifiers

35

The gain for $R_E = 0$, 50 Ω and 640 Ω are calculated as follows:

$$R_E = 0: A_v = \frac{7 \times 10^3}{11} = 640$$

$$R_E = 50 \Omega: A_v = \frac{7 \times 10^3}{11 + 50} = 115$$

$$R_E = 640 \Omega: A_v = \frac{7 \times 10^3}{11 + 640} = 10.8$$

The 3dB bandwidth obtained from the data sheet:

$$R_E = 0$$
: $BW = 40$ MHz (Typical)
 $R_E = 50 \Omega$: $BW = 90$ MHz (Typical)
 $R_E = 640 \Omega$: $BW = 120$ MHz (Typical)

Cascading Identical Stages

If a large voltage gain is required, it is convenient to cascade several identical amplifier stages.

The voltage transfer function of each stage is: $A_v = \frac{A}{1 + j\omega/\omega_p}$

The overall voltage transfer function of n stage is:

$$A_{T} = \frac{A^{n}}{\left(1 + j\omega/\omega_{p}\right)^{n}}$$

The overall bandwidth ω_1 can be found by:

$$\left|A_{T}\right| = \frac{A^{n}}{\left|1 + j\omega_{1}/\omega_{p}\right|^{n}} = \frac{A^{n}}{\sqrt{2}} \Longrightarrow \left[1 + \left(\omega_{1}/\omega_{p}\right)^{2}\right]^{n/2} = 2^{1/2}$$

$$\therefore \omega_1 = \omega_p \left(2^{1/n} - 1 \right)^{1/2} \Longrightarrow f_1 = f_p \sqrt{2^{1/n} - 1}$$

EE4341 Wideband Amplifiers

37

Example

Three identical amplifiers, each with a voltage gain of 10 and a bandwidth of 10 MHz, are cascaded. What are the overall gain and bandwidth?

The overall voltage gain:

$$A^n = 10^3 = 1.000$$

The overall bandwidth:

$$f_1 = f_p \sqrt{2^{1/n} - 1} = 10 \times 10^6 \sqrt{2^{1/3} - 1} = 5.1 \text{ MHz}$$

