Algorytm Schrage dla $1|r_j, q_j|\overline{C_{max}}$

Mariusz Makuchowski

25 listopada 2022

Sformułowanie problemu: $1|r_j, q_j|C_{max}$

- Mamy do wykonania *n* zadań na pojedynczej maszynie.
- Zadanie j opisane jest trzema parametrami:
 - r_i czas dostarczenia,
 - p_i czas trwania,
 - q_j czas stygnięcia;

ullet Szukamy uszeregowania o najmniejszej długści C_{max} .

Przykład:

j	1	2	3	4	5	6	7
r_j	10	13	11	20	30	0	30
p_{j}	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

Przykład:

j	1	2	3	4	5	6	7
r_j	10	13	11	20	30	0	30
p_{j}	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

Przykład: rozwiązanie optymalne

j	1	2	3	4	5	6	7
r_j	10	13	11	20	30	0	30
p_{j}	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

Algorytm Schrage

Algorytm buduje rozwiązanie poprzez dokładanie jeszcze nieuszeregowanych zadań na koniec bieżącej kolejności.

Przykład: $J = \{1, 2, 3, 4, 5, 6, 7\}$

- krok 1: $\pi = (6)$
- krok 2: $\pi = (6,1)$
- krok 3: $\pi = (6, 1, 2)$
- krok 4: $\pi = (6, 1, 2, 3)$
- krok 5: $\pi = (6, 1, 2, 3, 4)$
- krok 6: $\pi = (6, 1, 2, 3, 4, 5)$
- krok 7: $\pi = (6, 1, 2, 3, 4, 5, 7)$

Algorytm Schrage

Z zadań dostępnych dodaj zadanie o największym czasie stygnięcia.

Zadanie dostępne są to zadania, które już dotarły do maszyny i jeszcze nie zostały wykonane.

Algorytm Schrage: przykład

j	1	2	3	4	5	6	7
$\overline{r_i}$	10	13	11	20	30	0	30
p_i	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

krok algorytmu	czas t	zadania dostępne	utworzona kolejność	modyfikacja czasu <i>t</i>	ostygnięcie dodanego zadania
krok 1	t=0	{6}	$\pi = (6)$	t:=0+6=6	$C_6 = t + 17 = 23$
krok 1a	t=6	{}		t:=10	
krok 2	t=10	{1}	$\pi = (6, 1)$	t:=10+5=15	$C_1 = t + 7 = 22$
krok 3	t=15	{2,3}	$\pi = (6, 1, 2)$	t = 15 + 6 = 21	$C_2 = t + 26 = 47$
krok 4	t=21	{3,4}	$\pi = (6, 1, 2, 3)$	t:=21+7=28	$C_3 = t + 24 = 52$
krok 5	t=28	{4}	$\pi = (6, 1, 2, 3, 4)$	t:=28+4=32	$C_4 = t + 21 = 53$
krok 6	t=32	{5,7}	$\pi = (6, 1, 2, 3, 4, 5)$	t:=32+3=35	$C_5 = t + 8 = 43$
krok 7	t=35	{7}	$\pi = (6, 1, 2, 3, 4, 5, 7)$	t := 35 + 2 = 37	$C_7 = t + 0 = 37$

Złożoność obliczeniowa

Złożoność obliczeniowa algorytmu Schrage na kopcach

 $O(n \log n)$

Dwa kopce.

- pierwszy ma zadania niedostępne, zadanie o najmniejszym R w korzeniu
- drugi zawiera zadania dostępne, zadanie o największym Q w korzeniu

Operacje na kopcach posiadają złożoność:

- dodanie do kopca zadania O(log n)
- pobranie z kopca zadania $O(\log n)$
- budowa kopca O(n)

Dolne ograniczenie

Uogólnienie problemu $1|r_j, q_j|C_{max}$ do problemu $1|r_j, q_j, pmtn|C_{max}$.

- każde rozwiązanie problemu $1|r_j, q_j|C_{max}$ jest także rozwiązaniem problemu $1|r_j, q_j, pmtn|C_{max}$.
- optymalne rozwiązanie problemu $1|r_j, q_j|C_{max}$ jest więc nie lepsze niż optymalne rozwiązanie problemu $1|r_j, q_j, pmtn|C_{max}$.
- znalezienie rozwiązania optymalnego w problemie $1|r_j,q_j,pmtn|C_{max}$ jest łatwe, zmodyfikowana postać algorytmu Schrage. Złożoność $O(n\log n)$.

