CB $N^{\circ}7$ - CONIQUES - COURBES PARAMETREES - SUJET 1

1. Donner la nature de la conique d'équation cartésienne

$$x^2 - 2xy + y^2 + 3\sqrt{2}x - \sqrt{2}y + 2 = 0,$$

et la représenter dans un repère orthonormé.

Soient
$$S = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $L = \begin{pmatrix} 3\sqrt{2} & -\sqrt{2} \end{pmatrix}$, et $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

L'équation de la conique dans le repère (O, \vec{i}, \vec{j}) s'écrit : ${}^tXSX + LX + 2 = 0$.

La matrice S a pour déterminant 0, la conique est donc du type parabole.

0 étant une valeur propre de S, l'autre valeur propre est tr(S), c'est-à-dire 2.

Un vecteur propre associé à la valeur propre 2, est $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

On note \vec{u} et \vec{v} les vecteurs de coordonnées respectives $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ et $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, P la matrice de

passage de la base (\vec{i}, \vec{j}) à la base (\vec{u}, \vec{v}) , et $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = {}^t\!PX$.

L'équation devient :

$${}^{t}X_{1}\begin{pmatrix}2&0\\0&0\end{pmatrix}X_{1}+LPX_{1}+2=0$$

c'est-à-dire que l'équation de la parabole dans le repère (O, \vec{u}, \vec{v}) est : $2x_1^2 + 4x_1 + 2y_1 + 2 = 0$. En écrivant $2x_1^2 + 4x_1 + 2y_1 + 2 = 2(x_1 + 1)^2 + 2y_1$, on en déduit que le sommet S de la parabole a pour coordonnées (-1,0), dans le repère (O, \vec{u}, \vec{v}) , et que l'équation réduite de la parabole dans le repère (S, \vec{u}, \vec{v}) est

$$X^2 = -Y$$

On en déduit la courbe de la parabole :

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

2. Etudier et tracer la courbe admettant pour représentation paramétrique :

$$\begin{cases} x(t) = \frac{t^3}{t-1} \\ y(t) = \frac{t(t-2)}{t-1} \end{cases}, \quad t \in \mathbb{R} \setminus \{1\}$$

On a : $\begin{cases} x'(t) = \frac{t^2(2t-3)}{(t-1)^2} \\ y'(t) = \frac{t^2-2t+2}{(t-1)^2} \end{cases}$. On en déduit le tableau de variations suivant :

t	$-\infty$		0	1		3/2	-	$+\infty$
x'(t)		_	0	_	_	0	+	
	$+\infty$				$+\infty$			$+\infty$
x		\searrow	0	\searrow		\searrow	7	
				$-\infty$		27/	$^{\prime}4$	
y'(t)		+		+	+		+	
				$+\infty$				$+\infty$
y		7	0	7		\nearrow -3	3/2	
	$-\infty$				$-\infty$			

On a une tangente verticale aux points de paramètres 0 et $\frac{3}{2}$; il n'y a pas de point stationnaire.

Etude des branches infinies : On a, pour $t \notin \{0,1\}$, $\frac{y(t)}{x(t)} = \frac{t-2}{t^2}$.

En $\pm \infty$: $\lim_{x \to \infty} \frac{y}{x} = 0$; on a donc une branche parabolique de direction (Ox).

En $1: \lim_{t\to 1} \frac{y}{x} = -1$, et $\lim_{t\to 1} y + x = 3$; on a donc une asymptote d'équation x+y-3=0.

Comme on a : $y(t) + x(t) - 3 = (t-1)(t+3) \sim_{t\to 1} 4(t-1)$, on en déduit la position de la courbe par rapport à son asymptote.

Finalement, on obtient la courbe suivante :

CB $\mbox{N}^{\circ} 7$ - CONIQUES - COURBES PARAMETREES - SUJET 2

1. Donner la nature de la conique d'équation cartésienne

$$x^2 + 3y^2 - 2\sqrt{3}xy + 16y + 20 = 0,$$

et la représenter dans un repère orthonormé.

Soient
$$S = \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & 3 \end{pmatrix}$$
, $L = \begin{pmatrix} 0 & 16 \end{pmatrix}$, et $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

L'équation de la conique dans le repère (O, \vec{i}, \vec{j}) s'écrit : ${}^t X S X + L X + 20 = 0$.

La matrice S a pour déterminant 0, la conique est donc du type parabole.

0 étant une valeur propre de S, l'autre valeur propre est tr(S), c'est-à-dire 4.

Un vecteur propre associé à la valeur propre 4, est $\begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}$

On note \vec{u} et \vec{v} les vecteurs de coordonnées respectives $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ et $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, P la matrice de

passage de la base (\vec{i}, \vec{j}) à la base (\vec{u}, \vec{v}) , et $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = {}^t\!PX$.

L'équation devient :

$${}^{t}X_{1}\begin{pmatrix} 4 & 0\\ 0 & 0 \end{pmatrix}X_{1} + LPX_{1} + 2 = 0$$

c'est-à-dire que l'équation de la parabole dans le repère (O, \vec{u}, \vec{v}) est : $4x_1^2 - 8\sqrt{3}x_1 + 8y_1 + 20 = 0$. En écrivant $4x_1^2 - 8\sqrt{3}x_1 + 8y_1 + 20 = 4\left(x_1 - \sqrt{3}\right)^2 + 8(y_1 + 1)$, on en déduit que le somme S de la parabole a pour coordonnées $\left(\sqrt{3}, -1\right)$, dans le repère (O, \vec{u}, \vec{v}) , ou encore (0, -2) dans le repère initial, et que l'équation réduite de la parabole dans le repère (S, \vec{u}, \vec{v}) est

$$X^2 = -2Y$$

On en déduit la courbe de la parabole :

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

2. Etudier et tracer la courbe admettant pour représentation paramétrique :

$$\begin{cases} x(t) = \frac{t^2 - 1}{t} \\ y(t) = \frac{(1+t)^3}{t} \end{cases}, \quad t \in \mathbb{R}^*$$

On a : $\begin{cases} x'(t) = \frac{t^2+1}{t^2} \\ y'(t) = \frac{(t+1)^2(2t-1)}{t^2} \end{cases}$. On en déduit le tableau de variations suivant :

t	$-\infty$		- 1	0)		1/2		$+\infty$
x'(t)		+		+	+			+	
				$+\infty$					$+\infty$
x		7	0	7		7	-3/2	7	
	$-\infty$				$-\infty$				
y'(t)		_	0	_	_		0	+	
	$+\infty$				$+\infty$				$+\infty$
y		\searrow	0	\searrow		\searrow		7	
				$-\infty$			27/4		

On a une tangente horizontale aux points de paramètres -1 et $\frac{1}{2}$; il n'y a pas de point stationnaire.

Etude des branches infinies : On a, pour $t \notin \{0,1\}$, $\frac{y(t)}{x(t)} = \frac{t^2 - t + 1}{t - 1}$.

En $\pm \infty$: $\lim_{x \to \infty} \frac{y}{x} = +\infty$; on a donc une branche parabolique de direction (Oy).

En $0: \lim_{t\to 0} \frac{y}{x} = -1$, et $\lim_{t\to 0} y + x = 3$; on a donc une asymptote d'équation x+y-3=0.

Comme on a : $x(t) + y(t) - 3 = 4t(t+1) \sim_{t\to 0} 4t$, on en déduit la position de la courbe par rapport à son asymptote.

Finalement, on obtient la courbe suivante :

