9. Data mining

LAKSHMAN@OU.EDU

Timeline for rest of semester

- Mar 28: Data mining
- Apr 4: Guest lecture (active contours: real solution to something that several of you are working on)
 - Extra credit of 10% for incorporating snake into term project or exam.
- Apr. 11: In-class exam lasting a maximum of 3 hours
 - Bring your laptop
 - I'll assign a dataset and a problem
 - Solve it however you want
 - Open book, open computer but no discussion allowed
 - Use any software you like as long as you can explain what it does
- Apr 18 start of class: term projects are due
- Apr 18: term project presentations (Adam, Heather, Madison)
- Apr 25: term project presentations (Diana, Jason, Nicholas)
- May 2: term project presentations (Gifford, John)
- Class ends (nothing in finals week)

Being lazy ...

- Just repurposing an invited talk I gave a couple of years ago
 - Will fill information/details as we go along

Data Mining for Weather Nowcasting

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

Data Mining

- Extracting useful information from large amounts of data
 - Closely related to applied statistics
 - Summarize information, identify outliers, etc.
 - Encompasses many research areas
 - Exploratory data analysis, visualization, signal/image processing, pattern recognition, information theory, machine intelligence
 - Many areas in common with artificial intelligence, knowledge discovery
- An engineering discipline
 - Concerned with how to perform operations on large collections of data
 - Computing on samples, and generalizing to larger collections
 - Calculating on data points one-by-one
- Theory (statistics) + Technique to work on practical data sets
 - Sub-optimal, non-provable approaches are common

Example: Information Content

- Given a set of numbers, how can we determine how "interesting" the data collection is?
- Information theory
 - Higher the variance, the higher the information content
- Statistics

$$\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

- Computer Science
 - How can you compute the variance on a very large dataset?
 - How can you compute the variance in one pass?
 - Recast formula to use

$$\sum_{i=1}^{N} x_i$$
 and

 $d \sum_{i=1}^{N} (x_i^2)$

• Can both be updated during a single pass through data

Data Mining != Magic

- Data mining typically is a secondary concern
 - Techniques can work with whatever data are available

- However, data mining is not magic
 - Limited by the characteristics of the data
 - Limited by the questions that the users ask of the data
- ? Can I not just run through all the data looking for variables that are highly correlated?

Data Mining != Data Dredging

Data mining requires care

- Secondary analysis: so domain of data needs to be considered
- Deals with large data sets: so significance tests need to be modified
- Should not automatically scan large amounts of data for any relationship
 - Due to chance, there will always be relationships between variables
 - Likelier to find statistically significant relationships in large data sets
 - Most likely, the relationship is spurious
 - Techniques exist to limit the potential for erroneous conclusions
 - Cross-validation
 - Set statistical significance threshold according to number of patterns expected based on size of data set
- Finding all possible correlations and constructing a plausible hypothesis to explain them is called "data dredging"

A Typical Data Mining Approach

- Given a collection of data:
 - Perform exploratory data analysis on it
 - Graph it, look at correlations, histograms, etc.
 - Visualize it in different ways
 - 3D, loops, projections, etc.
 - Gain gut-level feeling for how the data are organized
 - Build a conceptual model of parts of the data
 - Regression (fit model to data)
 - Pattern recognition (identify interesting combinations)
 - Test samples of the data against the model
 - Understand expected skill of model if used in automated manner
 - Use the model in automated manner
 - Replace costlier, more time-consuming method (Approximation)
 - Find patterns on new data (Prediction)

Data Mining for Weather Nowcasting

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

Role of Visualization

- Visualization of data is rarely the end in itself
 - Visualize data to extract information from it
 - Visualization needs to enable information retrieval
- Visualization needs to tie data into relevant conceptual framework
 - Geo-location, height, time, event, other sensors, numerical models

"Rotation Tracks" – path taken by intense lowaltitude circulations

"Where should we send the damage survey team?" "Did it pass near Grandma Jones' house?"

Decision Support Systems

- Humans can extract information from data sets
 - Make decisions by visualizing data
 - Humans do the data mining
 - Pattern recognition skills of humans far exceeds that of computers
- Human data mining may not always scale
 - Humans can not process large data sets
 - Problems of objectivity, fatigue
- Role of data mining algorithms when humans make decisions
 - Summarize the data using models, reductions, projections, metrics
 - Extract interesting sections of data for human analysis

Storm Cell Identification and Tracking (SCIT)

Visualization For Automated Analysis

- Visualization is essential for exploratory data analysis
 - Allow designer of data mining algorithm to get gut-level feel for data
 - Determine if there is something wrong with the data
- Humans can train automated algorithms on samples of data
 - Identify regions of interest
 - Then let the automated algorithm loose on full data set

Human Truthing for Quality Control

- Looked at loops
- Examined radar data
- Other sensors
- Considered terrain, time of day, etc.
- Identified bad echoes

 Dataset was then used to train automated algorithm

Raw Data vs. Derived Products

- Visualizing the raw data may not always be the best choice
 - Tying the data into a framework may be more important
 - May want to visualize "derived" products

Data Mining for Weather Nowcasting

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

The Classification Problem

- A common requirement is to determine whether a particular data instance falls into a category
 - "If the radar reflectivity is x1, temperature is x2", is it raining?
 - Can easily become a prediction
 - If shear is x1, reflectivity is x2, temperature is x3, is hail likely?
- Two broad ways to answer this question:
 - Physical reasoning
 - What types of storms produce reflectivity of x1 at a temperature of x2?
 - Data-driven
 - Use assortment of radar and temperature measurements with "truth" value
 - Train data mining classifier algorithm on dataset that has ground truth
 - Run data mining on new data

Data-driven Classifiers

- Possible to create automated classification algorithm from data
 - Decision Trees
 - Optimal if-then rules to separate data into classes
 - Fuzzy Logic
 - Represent human knowledge as rules
 - Genetic Algorithms
 - Fine-tune parameters to some set model using data
 - Neural Networks
 - Fit "black-box" model to create target result from data
- Each of these methods has its strengths and weaknesses
 - Use them in different situations

Decision trees

- Can automatically build decision trees from tagged data
- Attributes chosen based on "information gain"
 - How much entropy change if we divide up the classes based on this variable at this threshold?
- Information gain often biased towards too many splits on attributes with many values
 - Entropy = p log (p)
 - So when p is small, entropy can be larger
- Information gain ratio is better
 - The numerator is information gain
 - Denominator is entropy due to the split (not on the whole training case, just the part of this tree)

Decision trees

- Disadvantages
 - Piece-wise linear, so typically less skilled than neural networks
 - Large decision trees are effectively a blackbox
 - Can not do regression, only classification
- Advantages:
 - Fast to train
 - New advances: bagged, boosted decision trees approach skill of neural networks, but are no longer fast to train

Fuzzy Logic

- Fuzzy logic addresses key problem in expert systems
 - How to represent domain knowledge
 - Humans use imprecisely calibrated terms
 - How to build decision trees on imprecise thresholds
- Fuzzy rules are easy to set up and troubleshoot
 - Humans suggest the rules
 - The encoding of the rules is easily understandable

Fuzzy logic example: How Much To Tip

Source: Matlab fuzzy logic toolbox tutorial

http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fp350.html

Fuzzy Logic: Pros and Cons

Considerable skill for little investment

- Fuzzy logic systems piggy bank on human analysis
 - Humans encode rules after intelligent analysis of lots of data
 - Verbal rules generated by humans are robust
- Simple to create
 - Not much need for data or ground truth
 - Logic tends to be easy to program
- A fuzzy logic system is limited
 - Piece-wise linear approximation to a system
 - Non-linear systems can not be approximated

Do not use fuzzy logic if humans do not understand the system

- Different experts disagree
- Knowledge can not be expressed with verbal rules
- Gut instinct is involved
 - Not just objective analysis

Fuzzy Logic Algorithm for BWER Detection

Genetic Algorithms

- Genetic algorithms are based around "survival of fittest"
 - Start with population of solutions
 - Breed the solutions together using crossover
 - Choosing parents who are more fit with higher probability
 - Mutate the solutions randomly
 - Over time, the population becomes more fit
- In genetic algorithms
 - One fixes the model
 - Rule base, equations, class of functions, etc.
 - Optimize the parameters to model on training data set
 - Use optimal set of parameters for unknown cases

Genetic Algorithms: Pros and Cons

- Genetic algorithms provide near-optimal parameters for given model
 - Human-understandable rules, and best parameters for them
 - Cost function need not be differentiable
 - The process of training uses natural selection, not gradient descent
 - Requires less data than a neural network
 - Search space is more limited
- Performance is highly dependent on class of functions
 - If poor model is chosen, poor results
 - Optimization may not help at all
 - Known model does not always lead to better understanding
 - Magnitude of weights, etc. may not be meaningful if inputs are correlated
 - Problem may have multiple parametric solutions

Neural Networks

- Neural networks can approximate non-linear systems
 - Evidence-based
 - Weights chosen through optimization procedure on known dataset
 - Works even if experts can't verbalize their reasoning
 - Can be used as long as there is ground truth
- Typically, dataset split into three parts:
 - Training data set
 - Optimization procedure chooses weights to minimize error on this data set
 - Validation data set
 - Used to stop the training when optimization starts to overfit
 - Used to choose structure of neural network
 - Testing data set
 - Used to verify that the neural network generalizes to unseen data

How Neural Networks Work

Diagram from:

http://www.codeproject.com/useritems/GA_ANN_XOR.asp

Neural Networks: Pros and Cons

Neural networks are general-purpose, easy to train and efficient at runtime

- The three-layer neural network can approximate any smooth function
- If output node is a sigmoid, can yield true probabilities
- Training process (back propagation, ridge regression, etc.) are well understood optimization procedures
 - Heuristics to minimize problems of local minima, over-fitting, generalization
- Efficient and easy to implement
 - Just a sum of exponential functions
 - Once trained, can calculate the output for a set of inputs quite fast

Neural network training is an art form

- Training set has to be complete and voluminous
- Unpredictable output on data unlike training
- Measure of skill needs to be continuous (e.g. entropy, RMS error)

A working neural network yields no insights

Magnitude of weights doesn't mean much: "A black box"

Data Mining for Weather Nowcasting

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

Approximation Techniques

- Several retrieval and approximation techniques:
 - Interpolation: the same data, just at higher resolution
 - Interpolation, objective analysis
 - Regression: create function to approximate data or process
 - Linear regression
 - Non-linear regression
 - Neural networks can do this

Gridding Observations

- Some environmental data are measured by in-situ instruments
 - Not remotely sensed
 - These measurements are at geographically dispersed points
 - Need to be converted into grids

Pixel Resolution

- If the chosen pixel resolution is too coarse, lose some of the observations
 - If the chosen pixel resolution is too fine, strong gradients may not be apparent
 - Choose pixel resolution to be half the mean distance between observation points
- Interpolation methods:
 - Cressman analysis
 - Barnes analysis
 - Kriging

$$I_{xy} = \frac{\sum_{i} I_{i} \frac{R^{2} - (x - x_{i})^{2} - (y - y_{i})^{2}}{R^{2} + (x - x_{i})^{2} + (y - y_{i})^{2}}}{\sum_{i} \frac{R^{2} - (x - x_{i})^{2} - (y - y_{i})^{2}}{R^{2} + (x - x_{i})^{2} + (y - y_{i})^{2}}}$$

Interpolation Techniques

- Cressman Analysis
 - Every observation gets weighted based on its distance from grid point
 - R is the "radius of influence"
 - Higher the R, the more distant points are considered
- The problem with a Cressman analysis:
 - Even if a pixel is collocated with an observation, the final value of pixel will be different
 - Due to (small) effect of pixels further away
- Barnes analysis: perform Cressman analysis on observation and errors
 - Compute errors at observation points
 - Perform Cressman analysis on errors, then add weighted error
 - N-pass Barnes analysis: closer and closer to the value of the observations at the observation points.
- Kriging is a principled method of interpolation using correlation between observations

Retrieval and Approximation

- Sometimes, a dataset is very hard to collect or very expensive to compute
 - Can we create an approximation of that data from data that are cheap and plentiful?

- For example:
 - Can I get the best estimate of rainfall given the radar reflectivity and satellite infrared temperature?
 - Train the system using rainfall collected by rain gauges
 - Rain gauges are not everywhere, so this data set is not enough
 - Use the trained system to evaluate rainfall everywhere else
 - Radar and satellite provide widespread coverages but don't measure rainfall

Using NN To Solve Inverse Problem

- Equation of state to estimate salinity estimated at each time step
 - Involves solving (T=temperature, S=salinity, P=pressure) step by step

$$\rho(T, S, P) = \frac{\rho(T, S, 0)}{1 - \frac{P}{K(T, S, P)}}$$

- An inverse problem with 40 parameters that is very time consuming
- Instead, approximate it by a single-step neural network transfer function
 - With different weights at different locations

$$f = b + a \tanh \left\{ \sum_{j=1}^{k} \omega_{j} \left[\tanh \left(\sum_{i=1}^{n} \Omega_{ji} x_{i} + B_{j} \right) \right] + \beta \right\}$$

- Use simulated data set to train network (answer known at all points)
- Very, very close approximation that is significantly faster to compute

Source: Vladimir Kransopolksy, National Centers for Environmental Prediction

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

Unsupervised Learning

- In both classification and regression, a "truth" data set exists
 - What if you don't know what categories are available in data?
 - Can a data mining algorithm provide "natural categories" in the data?
 - Called clustering
- Clustering techniques
 - Principal components analysis
 - Find linear combinations of parameters that explain most of the variance in data
 - K-Means
 - Find cluster centers so that inter-cluster variance is minimized
- Application of clustering: segmentation
 - Finding groups of pixels that together comprise an object

Region Growing

- Region growing can be applied only to binary images.
 - Apply to images that can be thresholded
 - Pixels below (above) a threshold are not of interest.
 - Your image now has only 0's (not interested) and 1's (interested)
- To void noisy regions when thresholding images, employ "hysterisis"
 - You are interested in areas > 30 dBZ (T_i threshold of interest)
 - But if you see a 30 dBZ pixel, you lose interest only if pixel value < 20 dBZ (T_d threshold of drop off)
 - Less chance of too many disconnected regions.
 - Choose T_i and T_d by experiment.

Example of Region Growing

Vector Segmentation

- Region growing:
 - Can lead to disconnected regions, even with hysterisis
 - Not hierarchical: can not always use hierarchy of thresholds
- Need a segmentation approach that:
 - Can avoid disconnected regions
 - Is hierarchical
- Contiguity-enhanced segmentation
 - Explicitly trade-off contiguity of region with the idea that a region's pixels ought to be similar
 - Similarity of pixels based on a number of texture or wavelet features
 - Pixels are dissimilar if vector distance between features is large

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing [skip]

Measures of Skill

Data-driven Weather Applications

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications

Measuring Skill

- Once you have automated technique to extract information from data
 - Need to measure skill of technique
 - How often does it get it right?
 - What is the typical error?
- Regression skill measured based on root mean square error, etc.
- Classification skill measured based on contingency matrix

Number of 0's correctly identified as 0's (correct nulls)	Number of 0's misidentified as 1's (false alarms)
Number of 1's misidentified as 0's (misses)	Number of 1's correctly identified (hits)

Also summarized by Accuracy, POD, FAR, CSI, HSS, TSS, etc.

Performance Assessment Radar-only QCNN with no seasonal targeting

POD: Probability of detection of "good" echo (fraction of	Product Composite Composite	Data range $> 0 \; dBZ$ $> 10 \; dBZ$	Measure CSI FAR POD HSS CSI	No QC 0.61 +/- 0.06 0.39 +/- 0.06 1 +/- 0 0.89 +/- 0.02 0.68 +/- 0.071	REC 0.59 +/- 0.057 0.4 +/- 0.06 0.96 +/- 0.0031 0.88 +/- 0.019 0.66 +/- 0.069	QCNN 0.86 +/- 0.011 0.02 +/- 0.0072 0.88 +/- 0.0088 0.98 +/- 0.0016 0.96 +/- 0.0083	Visual quality
good echo retained)			FAR -	9.32 +/- 0.071 1 +/- 0	0.32 +/- 0.073 0.94 +/- 0.0023	0.02 +/- 0.007 0.92 +/- 0.0039	95 to 97%
· otali · ou			HSS	0.93 +/- 0.017	0.93 +/- 0.0023	0.99 +/- 0.0011	
FAR:	Composite	$> 30 \; dBZ$	CSI	0.92 +/- 0.02	0.84 +/- 0.014	1 +/- 0.00072	Effect on precip
Fraction of			,	0.08 +/- 0.02	0.09 +/- 0.011	0 +/- 0.00057/	algorithms 99.9 to 100%
echoes in			POD	1 +/- 0	0.92 +/- 0.0065 L	1 +/- 0.00029	00.0 10 10070
final			HSS	1 +/- 0.00064	0.99 +/- 0.00052	1 +/- 0	
product that	Composite	$> 40 \; dBZ$	CSI	0.91 +/- 0.023	0.8 +/- 0.013	1 +/- 0.00038	
are "bad"			FAR	0.09 +/- 0.023	0.1 +/- 0.0074	0 +/- 0.00039	
			POD	1 +/- 0	0.88 +/- 0.0088	1 +/- 0	
CSI:			HSS	1 +/- 0.00016	1 +/- 0.00018	1 +/- 0	
Critical	VIL	$> 0 \; kg/m^{3}$	CSI	0.53 +/- 0.16	0.48 +/- 0.13	1 +/- 0.0011	Effect on severe weather algorithms
success			FAR	0.47 +/- 0.16	0.49 +/- 0.15	0 +/- 0.00053	99.9 to 100%
index			POD	1 +/- 0	0.9 +/- 0.0078	1 +/- 0.00084	
			HSS	0.97 +/- 0.0091	0.97 +/- 0.0085	1 +/- 0	
HSS:	VIL	$> 25 \ kg/m^3$	CSI	1 +/- 0.0022	0.65 +/- 0.033	0.99 +/- 0.0027	
Heidke skill			FAR	0 +/- 0.0022	0.19 +/- 0.025	0 +/- 0.0022	
score			POD	1 +/- 0	0.76 +/- 0.026	1 +/- 0.00075	
222.2			HSS	1 +/- 0	1 +/- 0	1 +/- 0	

What is Data Mining?

Interactive and Exploratory Data Analysis

Classification

Retrieval and Approximation

Unsupervised Learning

Pre-and-post Processing

Measures of Skill

Data-driven Weather Applications [skip]