Single-Photon Software Lock-in for PL

Pipelines, Results, and Applications

Summary

- 1. Built two photon-counting lock-in pipelines:
 - Jakob et al. + Liu et al., yields a photon count.
 - Jakob et al. + Braun & Libchaber, yields modulation depth M and phase φ.
- 2. Explored different experimental conditions, each time comparing the lock-in and regular counting.
- 3. Implemented FDLM : extracting τ from $\phi(\omega)$ and/or $M(\omega)$.

Deliverables: CLI tools (reader, lock-ins), simple decision rules for when to use lock-in vs counting, and a (preliminary) FDLM workflow.

Quick Background

Classical:

- Inputs: Signal V_s(t), Reference V_r(t)
- Mixing (multiplication) -> low pass filtering (integration)
- Outputs: R, theta

Photon counting:

- Inputs: {t_p}, {t_m} taken in [0, T]
- Lock-in routine
- Outputs: Photon count (<= card({t_p})), mod. depth, theta

Physical lock-in inner workings

Hardware & Raw Data

Setup: Laser \rightarrow Chopper (out: TTL) \rightarrow Optics \rightarrow SPAD (out: NIM) \rightarrow PicoHarp-330 (T2).

Raw data (.PTU) (look inside, bits) -> decode -> .txt In practice: .PTU -> lock-in (.txt files are huge)


```
PicoHarp 300 T2 data
76
77
78
     record# chan
                     nsync truetime/ps
     0 MAR
             2 3784898
       CHN 1 27790538 111162152
80
81
     2 MAR
             2 28787954
82
     3 CHN 1 42820706 171282824
83
     4 CHN 1 42844464 171377856
     5 CHN 1 43200575 172802300
     6 CHN 1 48522661 194090644
     7 CHN 1 48831309 195325236
87
     8 CHN 1 49007922 196031688
88
             2 53797442
89
     10 CHN 1 67651075 270604300
```

Algorithms

Liu et al. (reference-weighted counting) and Braun & Libchaber

Algorithm A — Liu (reference-weighted counting)

- Compute instantaneous phase for each photon from reference markers.
- Accumulate $I = \Sigma$ square(ϕ), $Q = \Sigma$ square($\phi + 90^{\circ}$) over windows
- Signal Strength (or Photon Count) = norm(I + iQ), Phase = atan2(Q, I)
- Jakob Augmentation: dynamic references, better per-photon phase calculation.
- Main use cases: Multiple sources and responses, daylight operations.

Corrected Signal Modulation Phase Histogram

Algorithm A — Braun & Libchaber

Algorithm 1 Photon-Counting Lock-in Detection

```
1: function PhotonCountingLockIn
```

```
// Step 1: Record photon counts in time bins
                            N_{raw} \leftarrow \text{empty array}
                           for each time bin t_n with interval 1/f_{sample} do
                                         N_{raw}[n] \leftarrow \text{number of photons detected in bin}
                           end for
                            // Step 2: Create functional basis
                           R_{raw\_avg} \leftarrow \frac{1}{T} \sum_{n=0}^{T-1} R_{raw}(t_n)
                                                                                                                                                                                                                                                                                                                                                                       ▶ Time average
                            Find zero crossings t_z with positive slope
                            f_{ref}, \phi_{ref} \leftarrow \text{LinearRegression}(t_z)
                                                                                                                                                                                                                                                                                                       ▶ Extract frequency and phase
                           R_X(t_n) \leftarrow \sin(2\pi f_{ref}t_n + \phi_{ref})

    Sine reference
    □
    Sine reference
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
                           R_Y(t_n) \leftarrow \cos(2\pi f_{ref}t_n + \phi_{ref})
                                                                                                                                                                                                                                                                                                                                                           ▶ Cosine reference
                           // Step 3: Project counts onto basis
                          I \leftarrow \frac{1}{T} \sum_{n=0}^{T-1} N_{raw}(t_n)
                                                                                                                                                                                                                                                                                                                                               ▶ Average count rate
                          N(t_n) \leftarrow N_{raw}(t_n) - I
I_X \leftarrow \frac{\sum_n N(t_n) \cdot R_X(t_n)}{\sqrt{\sum_n R_X(t_n)^2}}
                                                                                                                                                                                                                                                                                                                                               ▷ Center around zero
15:
                                                                                                                                                                                                                                                                                                                                            ▶ In-phase component
                                                                                                                                                                                                                                                                                                                               ▶ Quadrature component
                            // Step 4: Calculate amplitude and phase
                                                                                                                                                                                                                                                                                                                                                 ▶ Relative amplitude
                           \phi \leftarrow \arctan \frac{I_Y}{I_{YY}}
                                                                                                                                                                                                                                                                                                                                                                          ▶ Signal phase
```


Fig. 1. Implementation of the photon-counting lock-in. Projections of time-binned counts N_{raw} to sinusoidal reference R_X and cosinusoidal reference R_Y are time averaged to yield the small I_X and I_Y signals of the lock-in.

Jakob et al. Augmentation: no need to bin, we resolve each individual photon arrival.

return A, ϕ, I

22: end function

Baselines & Statistics

OFF estimates background; subtract from ON.

SNR = mean/std

 $\sqrt{\text{(Integration Time)}}$ ($\sqrt{\text{s}}$)

SNR Results

SNR — Lock-in vs ON/OFF

 $\sqrt{\text{(Integration Time)}}$ ($\sqrt{\text{s}}$)

In photon counting without locking, we can measure only photon counts I at the noise limit [Eq. (4)]. When we use the photon-counting lock-in, we can also detect the small-signal amplitude and small-signal phase at the same fundamental detection limit [Eqs. (5)] as shown in Fig. 3.

Some Applications

Multiplexing, Lifetimes from Phase and Modulation

FIGURE 1. Schematic of the fNIRS-DOT instrument.

FDLM Theory (single-exponential)

As modulation frequency is increased:

- Modulation decreases from 1 to 0
- Phase increases from 0, pi/2

Idea: Extract lifetime from dynamics $M(\omega)$ and $\varphi(\omega)$. Models are especially simple if we assume single exponential decay:

$$- M(\omega) = 1 / V(1 + (\omega \tau)^2)$$

- tan
$$φ(ω) = ω τ$$

Use phase and/or modulation to fit τ ; amplitude a bit more straightforward.

FDLM Pipeline

- 1) Frequency sweep: collect TTTR T2 at f₁...f_n.
- 2) Braun(f) \rightarrow (M, ϕ).
- 3) Fit τ from M(ω).

Lessons Learned, Recs, If I had more time...

- Lock-in is not a free lunch: with stable background, ON-OFF sets a high bar in terms of SNR.
- Lock-in enables measurements beyond frequency counting: modulation, phase, multiple responses, daylight measurements (!)
- Use lock-in when we know of periodic noise, nearby in the band.
- When we need to enable measurements stated above.
- Otherwise, not worth the overhead. Introduces extra time and complexity (sources of error).
- Multi-exponential FDL fits, and further improvements to the models (regularization, error propagation, etc.)
- Cross-validation against TCSPC decay fits
- Dual-modulation experiment ?!

- Jakob, L. A., Deacon, W. M., Hicks, O., Manyakin, I., Ojambati, O. S., Traxler, M., & Baumberg, J. J. (2021). Single-photon multiclock lock-in detection by picosecond timestamping. Optica, 8(12), 1646–1653.
 https://doi.org/10.1364/OPTICA.441487
- Braun, D., & Libchaber, A. (2002). *Computer-based photon-counting lock-in for phase detection at the shot-noise limit*. **Optics Letters**, 27(16), 1418–1420. https://doi.org/10.1364/OL.27.001418
- Liu, D., Wang, B., Pan, T., Li, J., Qin, Z., Zhang, L., Zhou, Z., & Gao, F. (2015). Toward quantitative near infrared brain functional imaging: Lock-in photon counting instrumentation combined with tomographic reconstruction. IEEE Transactions on Biomedical Engineering, 62(12), 2941–2951. https://doi.org/10.1109/TBME.2015.2450217
- PicoQuant GmbH. (2013). *PicoHarp 300: Picosecond histogram accumulating real-time processor User's manual and technical data* (Software version 2.3). Berlin, Germany: PicoQuant GmbH.
- Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (3rd ed.).
 Springer. (Frequency-Domain Lifetime Measurements, Ch. 5).

Reconstructed Laser Modulation (Run 15; 750 Hz Modulation). Bin Size = 5.33e-06s

Typical Reconstructred ON/OFF Run (PicoHarp 300 data)

Lock-In Outputs at Different Laser Powers, High and Low Background.

Signal vs Optical Density - Linearity Test

