Домашнее задание для студентов 2-го курса (2-й этап) (По программе курса физики на 3 семестра)

Дифракция Френеля

- 1. Вычислить радиусы первых пяти зон Френеля для случая плоской волны. Расстояние от волновой поверхности до точки наблюдения -1,2 м. Длина волны $\lambda = 600$ нм.
- 2. Найти внешний радиус третьей зоны Френеля при разбиении волнового фронта точечного монохроматического источника, находящегося на расстоянии: от источника a = 4 *см*, до точки наблюдения: b = 150 *мм* и $\lambda = 570$ *нм*.
- 3. На экране Р наблюдается дифракция Френеля на круглом отверстии от точечного монохроматического источника S, если в отверстии укладывается две зоны. Определить диаметр отверстия, если расстояние от источника до отверстия: $a = 16 \, mm$, расстояние от отверстия до экрана: $b = 220 \, mm$, $\lambda = 0.65 \, mkm$. Максимум или минимум интенсивности наблюдается при этом на экране?
- 4. На экране наблюдают результат дифракции монохроматического излучения $(\lambda = 450 \ нm)$ от точечного источника на круглом отверстии. Определить диаметр отверстия, если известно, что оказались открыты четыре френелевских зоны. Расстояние от источника до отверстия: $a = 15 \ mm$, расстояние от отверстия до экрана: $b = 250 \ mm$
- 5. На круглое отверстие радиусом 1,5 *мм* в непрозрачном экране падает нормально параллельный пучок лучей с длиной волны 0,6 *мкм*. На пути лучей, прошедших через отверстие помещают экран. Определить максимальное расстояние от отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.
- 6. Расстояние между точечным источником (·) S и точкой наблюдения (·) B равно 2 m. В какой точке на луче SB, надо поставить диафрагму с отверстием, диаметр которого 1,9 m, чтобы при рассмотрении из точки B в отверстии укладывалось три зоны Френеля? Длина волны излучаемого света $\lambda = 600 \ n$.
- 7. В точке S находится источник монохроматического света ($\lambda = 600 \text{ нм}$). Диафрагма с отверстием, радиусом 1 *мм*, перемещается из точки, отстоящей от S на 0,5 *м*, в точку, отстоящую от S на 1,27 *м*. Сколько раз будет наблюдаться затемнение в точке B, если SB = 1,5 *м*?
- 8. На чертеже зон Френеля, сделанном для плоского фронта волны, радиус первой окружности, ограничивающей центральную зону равен 2 *см*. Радиус последней окружности 14 *см*. Сколько зон Френеля содержится на чертеже? Зная, что площади всех зон равновелики, определить расстояние между двумя последними окружностями.
- 9. Между точечным источником S и точкой наблюдения B находится экран c отверстием, радиус которого можно изменять. При R_1 0,8 *мм* в (·) B открыто 3 зоны Френеля. Найдите $R_2 > R_1$ при котором в (·) B снова наблюдается максимум интенсивности.
- 10. Между точечным источником S и точкой наблюдения B находится экран c отверстием, радиус которого можно изменять. При R_1 = 0,6 *мм* в (·) B открыто 2 зоны Френеля. Найдите R_2 > R_1 , при котором в (·) B снова наблюдается минимум интенсивности.
- 11. Определить радиус г последней n-ой открытой френелевской зоны для наблюдателя в (·) B, если расстояние от вершины сферического волнового фронта до плоскости отверстия $d = 2 \ \textit{мкм}$, а расстояния а (радиус фронта) и b, соответственно равны 90 мм и 300 мм.
- 12. Точечный источник света с длиной волны, равной $\lambda = 0.5 \, \text{мкм}$, расположен на расстоянии $a = 100 \, \text{см}$ перед диафрагмой с круглым отверстием радиуса $r = 1.0 \, \text{мм}$. Найти расстояние b от диафрагмы до точки наблюдения, для которой число зон Френеля в отверстии составляет три.
- 13. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого г можно менять. Расстояния от диафрагмы до источника и экрана равны а = 100 см и b = 125 см. Определить длину волны света, если максимум освещенности в центре

- дифракционной картины на экране наблюдается при $r_1,00$ мм и следующий максимум при $r_2 = 1,29$ мм.
- 14. Зонная пластинка дает изображение источника удаленного от нее на $2 \, m$, на расстоянии $1,5 \, m$ от своей поверхности. Где получится изображение источника, если его отодвинуть в бесконечность?
- 15. Рассчитать радиус m-ой зоны Френеля при условии, что на зональную пластинку падает плоская волна. Найти r_1 для этого случая, полагая расстояние до экрана $b = 8 \, m$, $\lambda = 450 \, \mu m$.
- 16. Радиус центрального прозрачного круга амплитудной зонной пластинки равен 250 мкм. Определить внутренний радиус третьего темного кольцевого пояса.
- 17. На амплитудную зонную пластинку падает плоский волновой фронт ($\lambda = 585 \ нm$). Максимальная концентрация световой энергии на оси пластинки достигается в точке F_0 на расстоянии 450 mm от нее. Найти диаметр центральной непрозрачной зоны. Найти значения 3-х первых дополнительных фокусов.
- 18. Дифракционная картина наблюдается на расстоянии L от точечного источника монохроматического света ($\lambda = 600 \ \text{нм}$). На расстоянии $0,5 \ L$ от источника помещена круглая непрозрачная преграда диаметром $1 \ \text{см}$. Чему равно расстояние L, если преграда закрывает только центральную зону Френеля?
- 19. На рисунке (см. рис. 1) представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях P_1 , P_2 и P_3 . Найти дистанцию Рэлея (R), условно отделяющую области дифракции в ближней и дальней зоне. Ширина щели 250 мкм, $\lambda = 0.45$ мкм.
- 20. Определить фокусное расстояние зонной пластинки для света с длиной волны $546 \ нm$, если радиус пятого кольца этой пластинки равен $1,2 \ mm$. Определить радиус r_1 первого кольца этой пластинки. Что произойдет, если пространство между зональной пластинкой и экраном заполнено средой с показателем преломления $n \ (n > 1)$?
- 21. Плоская монохроматическая волна падает нормально на экран с круглым отверстием. Диаметр отверстия уменьшается в N раз. Найти новое расстояние b, при котором в (·) В будет наблюдаться та же дифракционная картина, но уменьшенная в N раз.
- 22. Диск диаметром 0,5 *см* с неровностями 20 *мкм* расположен на расстоянии 1 *м* от точечного источника S ($\lambda = 0,5$ *мкм*). Считая, что пятно Пуассона видно до тех пор, пока неровности перекрывают зону Френеля не более чем на 1/4, найти min расстояние (b_m) для его наблюдения.
- 23. На рисунке (см. рис. 1) представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях P_1 , P_2 и P_3 . Определить величину угла, соответствующего окрашенной области, если $\lambda = 480$ нм, а дистанция Рэлея R = 1,1 мм.
- 24. Радиус третьего кольца зонной пластинки равен 1,1 мм. Определить фокусное расстояние этой пластинки для света с длиной волны 480 нм. Определить радиус первого кольца этой пластинки.
- 25. Радиус центрального прозрачного круга амплитудной зонной пластинки равен 200 мкм. Определить внешний радиус второго темного кольцевого пояса.
- 26. Точечный источник света S, излучающий свет с длиной волны 550 μ M освещает экран, расположенный на расстоянии L = 11 μ M от S. Между источником света и экраном на расстоянии а = 5μ M от экрана помещена ширма с круглым отверстием, диаметр которого d = 4,2 μ M. Является μ M освещенность в центре получающейся на экране картины большей или меньшей, чем та, которая будет иметь место, если убрать ширму?
- 27. Точечный источник света S (λ =0,5 *мкм*) расположен на расстоянии а = 90 *см* перед экраном с круглым отверстием диаметра 1,0 *мм*. Найти расстояние b до точки наблюдения P, для которой амплитуда излучения изображается вектором AB на векторной диаграмме (см. рис. 2).

- 28. Свет от точечного источника S дифрагирует на круглом отверстии. Амплитуде в (\cdot) P соответствует на векторной диаграмме вектор AB (см. рис. 3). Экран с отверстием заменяют диском того же диаметра. Найти новый вектор, соответствующий амплитуде в (\cdot) P.
- 29. Плоская монохроматическая волна ($\lambda = 610~\text{нм}$) с интенсивностью J_0 падает по нормали на круглое отверстие с r = 1~нм. Найти интенсивность в (·) Р при расстоянии до экрана b = 1,1~нм. Амплитуде в (·)Р соответствует один из векторов, показанных на векторной диаграмме (см. рис. 3).
- 30. Какова интенсивность света J в фокусе зонной пластинки, если закрыты все зоны, кроме первой? Интенсивность света без пластинки равна J_0 .
- 31. Какова интенсивность света J в фокусе зонной пластинки, если закрыть всю пластинку, за исключением внешней половины первой зоны? Интенсивность света без пластинки равна J_0 .
- 32. Плоская световая волна ($\lambda = 570 \ \text{нм}$) с интенсивностью J_0 падает нормально на непрозрачную диафрагму с отверстием радиуса 0,7 мм. Найти интенсивность в центре дифракционной картины на экране, отстоящем на расстоянии 1,7 м от отверстия.
- 33. Плоская световая волна ($\lambda = 450~\text{нм}$) с интенсивностью J_0 падает нормально на непрозрачный диск радиуса 0,9 мм. Найти интенсивность в центре дифракционной картины на экране, отстоящем на расстоянии 1,2 м от диска.
- 34. Непрозрачный диск радиуса 1,1 мм освещается плоской световой волной ($\lambda = 550 \ \text{нм}$) с интенсивностью J_0 . Найти интенсивность в центре дифракционной картины на экране, отстоящем на расстоянии 1,1 м от диска.
- 35. Плоская монохроматическая волна с интенсивностью J_0 падает нормально на непрозрачную диафрагму с круглым отверстием. Какова интенсивность в центре дифракционной картины на экране, для которой отверстие открывает только внутреннюю половину первой зоны Френеля?
- 36. Плоская монохроматическая волна с интенсивностью J_0 падает нормально на непрозрачную диафрагму с круглым отверстием. Какова интенсивность в центре дифракционной картины на экране, для которой отверстие сделали равным первой зоне Френеля и затем закрыли его половину (по диаметру)?
- 37. Какова интенсивность света J в фокусе зонной пластинки, если для точки наблюдения она закрывает все зоны, кроме первой и третьей? Интенсивность света без пластинки равна J₀.
- 38. Какова интенсивность света J в фокусе зонной пластинки, если для точки наблюдения она закрывает все зоны, кроме второй и четвертой? Интенсивность света без пластинки равна J_0 .

Дифракция Фраунгофера

- 1. Узкая щель шириной 35 *мкм* освещается монохроматическим излучением с плоским фронтом $(\lambda = 620 \text{ нм})$. На экране P наблюдается дифракция Фраунгофера с характерным размером х (см. рис. 4). Определить величину х, если расстояние от щели до экрана b = 80 см.
- 2. I(x) распределение интенсивности дифрагированного на узкой щели излучения, где x координата в плоскости экрана, перпендикулярная длинной стороне щели (см. рис. 5). Найти ширину щели, если $\lambda = 0.51$ мкм, a = 8.3 мм, а расстояние от щели до экрана 765 мм.
- 3. I(x) распределение интенсивности дифрагированного на узкой щели излучения, где x координата в плоскости экрана, перпендикулярная длинной стороне щели (см. рис. 5). Найти расстояние от щели до экрана, если $\lambda = 570$ нм, a = 13.2 мм, ширина щели 0,06 мм.
- 4. Узкая щель освещается монохроматическим излучением с плоским фронтом ($\lambda = 610 \ нm$). На экране наблюдается дифракция Фраунгофера с характерным размером $x = 7,5 \ mm$ (см. рис. 4). Определить ширину щели, если расстояние от щели до экрана $b = 108 \ cm$.
- 5. Узкая щель освещается монохроматическим излучением с плоским фронтом. На экране наблюдается дифракция Фраунгофера с характерным размером х = 8 мм (см. рис. 4).

- Определить длину волны падающего света, если ширина щели d = 32 мкм, расстояние от щели до экрана b = 60 *см*.
- 6. Плоская монохроматическая волна падает на щель шириной d. На экране P наблюдается дифракционная картина в дальней зоне. Определить, что произойдет с центральным максимумом при изменении угла падения волны на экран с 0 до α .
- 7. На экране P с помощью линзы L с фокусным расстоянием 50 *см* наблюдают дифракцию Фраунгофера на щели шириной d. Определить изменение ширины центрального максимума и его сдвиг после поворота волнового фронта на угол $\alpha = 20^{\circ}$.
- 8. Свет с длиной волны $\lambda = 0.5$ *мкм* падает по нормали на щель шириной d = 10 *мкм*. Найти угловые положения первых минимумов, расположенных по обе стороны центрального фраунгоферовского максимума после того, как волновой фронт повернулся на угол $\alpha = 30^{\circ}$.
- 9. Чему равна постоянная дифракционной решетки, если для того, чтобы увидеть красную линию ($\lambda = 700 \ \text{нм}$) в спектре второго порядка, зрительную трубу пришлось установить под углом 30° к оси коллиматора? Какое число штрихов нанесено на 1 *см* длины этой решетки? Свет падает на решетку нормально к поверхности.
- 10. Сколько штрихов на 1 *мм* длины имеет дифракционная решетка, если зеленая линия ртути (λ = 546 *нм*) в спектре первого порядка наблюдается под углом 19°8'.
- 11. На плоскую дифракционную решетку нормально к поверхности падает свет линии D натрия (λ = 589 μ м). Определить число штрихов на 1 μ м длины решетки, если спектр второго порядка наблюдается под углом 45° к нормали.
- 12. На дифракционную решетку, нормально к ней падает пучок света. Угол дифракции для натриевой линии ($\lambda = 589 \ \text{нм}$) в спектре первого порядка был найден равным 17°8'. Некоторая линия дает в спектре второго порядка угол дифракции равный 24°12'. Найти длину волны этой линии и число штрихов на 1 *мм* решетки.
- 13. На дифракционную решетку, нормально к ней, падает пучок света от разрядной трубки. Чему должна быть равна постоянная дифракционной решетки, чтобы в направлении $\varphi = 41^\circ$ совпадали максимумы двух линий: $\lambda_1 = 6563~A$ и $\lambda_2 = 4102~A$?*
- 14. Дифракционная решетка освещается нормально падающим параллельным пучком света. В зрительной трубе, установленной под углом 30° к оси решетки, видны две совпадающие линии $\lambda_1 = 675 \ \text{нм}$ и $\lambda_2 = 450 \ \text{нм}$. Наибольший порядок спектра, который можно наблюдать с помощью решетки 4-ый. Определить постоянную решетки.
- 15. При освещении белым светом дифракционной решетки спектры третьего и четвертого порядков отчасти перекрывают друг друга. На какую длину волны в спектре третьего порядка накладывается фиолетовая граница спектра четвертого порядка ($\lambda_1 = 400 \ \text{нм}$)?
- 16. На дифракционную решетку, нормально к ней, падает пучок света от разрядной трубки, наполненной гелием. На какую длину волны в спектре третьего порядка накладывается красная линия гелия ($\lambda = 670 \ \mu m$) спектра второго порядка?
- 17. Найти наибольший порядок спектра для желтой линии натрия $\lambda = 589 \ нm$, если период дифракционной решетки равен 2 $m\kappa m$.
- 18. Дифракционная решетка освещается параллельным, нормально падающим пучком света. В зрительной трубе, под углом 30° к оси решетки видны совпадающие линии (λ_1 = 630 *нм* и λ_2 = 420 *нм*). Наибольший порядок, который дает эта решетка пятый. Определить период решетки.
- 19. Чему равен период дифракционной решетки, если эта решетка может разрешить в первом порядке спектра линии $\lambda_1 = 4044 \, A$ и $\lambda_2 = 4047 \, A$? Ширина решетки 3 *см*.
- 20. Чему должна быть равна постоянная дифракционной решетки шириной в 2,5 *см*, чтобы в первом порядке был разрешен дублет натрия $\lambda_1 = 5890 \, A$ и $\lambda_2 = 5896 \, A$?

 $[\]cdot$ Здесь и далее символом A обозначена единица измерения длины *ангстрем*.

- 22. Период дифракционной решетки шириной 2 c_M равен 1 m_{KM} . Какую разность длин волн $\Delta\lambda$ (в ahzcmpemax) может разрешить эта решетка в области длин волн $600~h_M$ в спектре второго порядка?
- 23. Определить угловую дисперсию дифракционной решетки для $\lambda = 589$ *нм* в спектре первого порядка. Период решетки равен 2,5 *мкм*.
- 24. Определить разрешающую способность решетки, и разрешит ли решетка, имеющая постоянную 20мкм, натриевый дублет ($\lambda_1 = 5890~A$ и $\lambda_2 = 5896~A$) в спектре второго порядка, если длина нарезанной части решетки 1.5~cm?
- 25. Ширина решетки равна 25 *мм*, постоянная d = 6 *мкм*. В спектре какого *наименьшего* порядка получается раздельное изображение двух спектральных линий с разностью длин волн 1 A, если линии лежат в красной части спектра вблизи $\lambda = 700$ *нм*?
- 26. Спектр натрия наблюдается с помощью дифракционной решетки, имеющей 500 штрихов на 1 *мм*. Какова должна быть минимальная длина решетки, чтобы разрешить линии 5890 и 5896 *А* в *наивысшем* порядке, в котором могут наблюдаться эти линии?
- 27. Угловая дисперсия дифракционной решетки для $\lambda = 668$ *нм* в спектре первого порядка равна 41,6 *угл.сек/нм*. Найти период дифракционной решетки.
- 28. Разрешит ли решетка, имеющая постоянную 20*мкм*, натриевый дублет ($\lambda_1 = 5890$ *A*, $\lambda_2 = 5896$ *A*) в спектре первого порядка, если длина нарезанной части решетки 2 *см*?
- 29. Ширина решетки равна 15 *мм*, постоянная $d = 5 m \kappa m$. В спектре какого наименьшего порядка получается раздельное изображение двух спектральных линий с разностью длин волн 1 A, если линии лежат в красной части спектра вблизи от 700 до 780 n m?
- 30. Дифракционная решетка шириной 25 $\mathit{мм}$ имеет 400 штрихов на $\mathit{мм}$. Определить: а) ее разрешающую способность для спектра третьего порядка; б) наименьшую разность длин волн $\delta\lambda$ двух спектральных линий одинаковой интенсивности вблизи $\lambda = 0,56$ $\mathit{мкм}$, которые можно разрешить этой решеткой в максимальном порядке спектра, если свет падает на решетку нормально.
- 31. Подсчитать угловую дисперсию (в *угл.с./нм*) в спектре первого порядка для решетки, имеющей 3937 штрихов на 1 *см*. Подсчитать расстояние между компонентами желтой линии дублета Na $(\lambda_1 = 5890 \, A, \ \lambda_2 = 5896 \, A)$ которое получится на фотопластинке в спектрографе с такой же решеткой при объективе с фокусным расстоянием 50 *см*.
- 32. Подсчитать угловую дисперсию (в *угл.с./нм*) в спектре второго порядка для решетки, имеющей 3937 штрихов на 1 *см*. Подсчитать линейную дисперсию спектрографа с такой решеткой при объективе с фокусным расстоянием 50 *см*.
- 33. На каком расстоянии будут находиться на экране две линии ртутной дуги (5770 A и 5791 A) в спектре первого порядка, даваемого дифракционной решеткой, имеющей 500 штрихов на 1 мм. Фокусное расстояние линзы равно 0,6 м.
- 34. Какое фокусное расстояние должна иметь линза, проектирующая на экран спектр, полученный при помощи дифракционной решетки, чтобы расстояние между двумя линиями калия $\lambda_1 = 4044$ A и $\lambda_2 = 4047$ A в спектре первого порядка было равно 0,1 MM? Период решетки 2 MKM.
- 35. Какое фокусное расстояние должен иметь спектрограф с дифракционной решеткой, имеющей ширину заштрихованной части 10~cm и полное число штрихов 60000, чтобы разрешаемые им во втором порядке спектральные линии были видны на фотопластинке не ближе чем на расстоянии 0.2~mm ($\lambda = 650~mm$)?
- 36. Период решетки равен 4 *мкм*. На решетку падает нормально к поверхности пучок лучей белого света. Линза проектирует спектр на экран, удаленный на 1 *м* от линзы. Определить длину

спектра первого порядка на экране. За границы видимого спектра принять длины волн от 400 до 780 μ м.

- 37. На дифракционную решетку, содержащую 500 штрихов на *мм* падает в направлении нормали к ее поверхности белый свет. Спектр проектируется на экран линзой. Определить длину спектра первого порядка на экране, если расстояние от линзы до экрана равно 3 *м*. Границы видимого спектра $\lambda_1 = 780$ *нм*, $\lambda_2 = 400$ *нм*.
- 38. Перед объективом фотокамеры установлена дифракционная решетка с периодом 0,002 *мм*. На решетку, нормально к ней, падает пучок белого света. Найти длину спектра первого порядка, если фокусное расстояние объектива 21 *см*, а пленка чувствительна к лучам с длиной волны от 310 до 680 *нм*.
- 39. Перекрываются ли спектры первого и второго порядков для решетки, имеющей 100 штрихов на 1 *мм*, если на решетку нормально падает параллельный пучок лучей белого света? Какова разность углов отклонения конца первого и начала второго порядков спектра? Граница видимого света от 400 до 700 *нм*.
- 40. Найти разность углов отклонения конца первого и начала второго порядка спектров, даваемых дифракционной решеткой, имеющей 100 штрихов на *мм*. Решетка освещается нормально падающим на нее белым светом от 400 *нм* до 750 *нм*. Могут ли перекрываться спектры первого и второго порядков для этой решетки?

Рисунки к задачам по дифракции Френеля:

Рисунки к задачам по дифракции Фраунгофера:

Рис. 3

-4a -3a -2a -a 0 a 2a 3a 4a

Рис. 5

Распределение задач по вариант	'am
--------------------------------	-----

№ варианта	Дифракция Френеля			Дифракция Фраунгофера	
1	1	17	35	15	20
2	10	19	34	9	32
3	5	21	32	12	30
4	8	16	27	3	26
5	11	25	29	1	21
6	7	20	36	5	31
7	9	24	30	20	34
8	13	23	38	10	37
9	12	19	32	5	19
10	4	14	28	14	24
11	2	18	33	17	25
12	5	22	34	2	35
13	2	24	37	28	36
14	3	16	30	23	38
15	6	20	35	11	25
16	13	15	26	6	29
17	4	25	37	27	39
18	10	14	29	4	24
19	9	23	31	8	28
20	7	22	36	13	33
21	12	18	38	1	30
22	8	15	33	18	22
23	1	24	28	7	40
24	6	21	27	16	23
25	3	17	31	12	27