Задача №2, семинар 7.12.2022

Условие:

2. Измерения показали, что ндеальный полосовой сигнал

характеризуется следующими параметрами: 9 = 20 мкс, $U_0 = 15$ В. Найдите ширину полосы частот этого сигнала и модуль его спектральной плотности в пределах этой полосы.

Решение:

Используем обратное преобразование Фурье:

$$s(t) = \frac{2S_0\Delta\omega}{\pi} * \frac{\sin(\Delta\omega t)}{\Delta\omega t} * \cos(\omega_0 t)$$

Из условия видно, что амплитуда $U_0=15\ [\mathrm{B}]$ дана в точке t=0, подставим это значение в формулу выше:

$$s(0) = \frac{2S_0\Delta\omega}{\pi} * 1 * 1 = \frac{2S_0\Delta\omega}{\pi} = U_0 = s(0) = \frac{2S_0\Delta\omega}{\pi}$$

Можно заметить, что при подстановке t=0, косинус и синус обратились в единицы. С косинусом понятно почему. Чтобы синус обратился в 1, мы применили $\frac{sinx}{x} \to 1$.

Далее мы будем находить то, для чего у нас хватает данных.

Можем узнать, какая из функций первой дала 0 на графике. Для этого: $\cos(\omega_0 t) * \sin(\Delta \omega t) = 0$

 ω_{0}

1)
$$cos(\omega_0 t) = 0$$

$$\omega_0 t = \frac{\pi}{2} \Longrightarrow t_1 = \frac{\pi}{2\omega_0}$$

$$\omega_0 t = -\frac{\pi}{2} \Longrightarrow t_2 = -\frac{\pi}{2\omega_0}$$

$$2)\sin(\Delta\omega t)=0$$

$$\Delta \omega t = 0$$
, $t = 0$ — не подходит, т.к $\frac{sinx}{x} \to 1$

$$\Delta \omega t = \pi = > t_3 = \frac{\pi}{\Delta \omega}$$

 $-\omega_0$

Из всех проделанных действий выше следует, что от косинуса мы раньше увидим 0 чем от синуса.

Всё это приводит нас к:

$$\theta = \frac{\pi}{2\omega_0} = > \omega_0 = \frac{\pi}{2\theta} = \frac{\pi}{2*20*10^{-6}} = 0.0785*10^6[c^{-1}]$$

Вернёмся к первому действию.

$$U_0 = \frac{2S_0\Delta\omega}{\pi} = S_0\Delta\omega = \frac{\pi U_0}{2} = S_0\Delta\omega = \frac{\pi*15}{2} = 23,56.$$

Далее, если мы располагаем значением S_0 или $\Delta \omega$ мы можем найти неизвестное.