Parametric Survival Models

Md. Moyazzem Hossain
Professor,
Dept. of Statistics & Data Science
Jahangirnagar University

1

• • • Parametric Survival Models

Parametric survival models are a class of models in survival analysis that make explicit assumptions about the distribution of survival times.

Unlike non-parametric methods (e.g., Kaplan-Meier estimator) or semi-parametric methods (e.g., Cox Proportional Hazards model), parametric models specify a functional form for the survival distribution.

Md. Moyazzem Hossain, Prof., ASDS

• • • Parametric Survival Models

This allows for more specific modeling of the underlying survival time distribution.

Commonly used parametric survival models include

- o Exponential,
- o Weibull,
- o Log-Normal,
- o Gompertz,
- o Gamma models.

Md. Moyazzem Hossain, Prof., ASDS, JU

3

• • • Exponential Model

In this model, we assume a constant hazard rate over time, and the survival function S(t) can be written as,

$$S(t) = e^{-\lambda t}$$

where λ is the hazard rate.

Md. Moyazzem Hossain, Prof., ASDS, JU

• • • Weibull Model

It allows the hazard rate to change over time and the survival function is,

$$S(t) = e^{-(\lambda t)^{\gamma}}$$

where λ is the scale parameter and γ is the shape parameter.

Md. Moyazzem Hossain, Prof., ASDS, JU

5

• • • Log-Normal Model

It is assumed that the logarithm of survival time follows a normal distribution.

The survival function involves the cumulative distribution function of the normal distribution.

Md. Moyazzem Hossain, Prof., ASDS, JU

Gompertz Model

In this model, the hazard rate increases exponentially with age.

The survival function is expressed in terms of the Gompertz function.

$$f(t) = ae^{-be^{-ct}}$$

Md. Moyazzem Hossain, Prof., ASDS, JU

7

• • • Gamma Model

It is assumed that survival times follow a Gamma distribution.

The survival function involves the incomplete gamma function.

Md. Moyazzem Hossain, Prof., ASDS, JU

• • • Gamma Model

The upper incomplete gamma function

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} e^{-t} dt$$

The lower incomplete gamma function

$$\Gamma(s,x) = \int_0^x t^{s-1}e^{-t}dt$$

Md. Moyazzem Hossain, Prof., ASDS, JU

9

Applications

- We consider the "lung" dataset in the <u>survival</u> package of R that contains information about survival times and censoring status for patients with advanced lung cancer. In this dataset, the following variables are available:
- inst: Institution code.
- time: This variable represents the survival time or the time until death (measured in days).
- status: This variable indicates the censoring status. A value of 1 represents an observed event (death), and a value of 0 represents censoring (individuals who were still alive at the end of the study).
- sex: The gender of the patient, coded as 1 for male and 2 for female.
- age: The age of the patient at the time of diagnosis.
- ph.ecog: The performance status of the patient, measured on the ECOG scale (Eastern Cooperative Oncology Group). It is a categorical variable representing the overall health and activity level of the patient. Common values include 0 (fully active), 1 (restricted activity but ambulatory), 2 (ambulatory but unable to work), and so on.
- ph.karno: The Karnofsky performance score, another measure of the patient's ability to perform normal daily activities.
- pat.karno: The Karnofsky performance score for the patient's spouse or partner.
- meal.cal: The number of calories consumed during a meal.

Md.wt.loss: Weight loss in the last six months.

Hossain, Prof., ASDS JU

Application_Exponential Model

```
# Fit an exponential survival model
fit_exponential_model <- survreg(Surv(time,
    status) ~ age + sex + ph.ecog + ph.karno +
    meal.cal + wt.loss, data = lung, dist =
    "exponential")

# Display summary
summary(fit_exponential_model)</pre>

Md.
Moyazzem
Hossain,
Prof.ASDS,
JU

11
```

Application_Exponential Model

● ● ● Application_Weibull Model

```
# Fit a Weibull survival model
fit_weibull_model <- survreg(Surv(time,
status) ~ age + sex + ph.ecog + ph.karno +
meal.cal + wt.loss, data = lung, dist =
"weibull")

# Display summary
summary(fit_weibull_model)</pre>

Moyazzem
Hossain,
Prof.,ASDS,
JU
```

Application_Weibull Model

Application_Log-normal Model

```
# Fit a log-normal survival model
fit_lognormal_model <- survreg(Surv(time,
    status) ~ age + sex + ph.ecog + ph.karno +
    meal.cal + wt.loss, data = lung, dist =
    "lognormal")

# Display summary
    summary(fit_lognormal_model)</pre>

Md.

Moyazzem
Hossain,
Prof.ASDS,
JU

15
```

Application_Log-normal Model

Application_Gompertz Model

```
# Fit a Gompertz survival model
  # Install and load the flexsurv package
  install.packages("flexsurv")
  library(flexsurv)
  # Fit a Gompertz survival model
  fit gompertz model <-</pre>
                                       flexsurvreq (Surv (time,
  status) ~ age + sex + ph.ecog + ph.karno
  meal.cal
                   wt.loss, data = lung, dist
  "gompertz")
  # Display summary
  summary(fit gompertz model)
  fit gompertz model$coefficients
\begin{array}{c} \underline{\text{MG-i}} \\ \text{Moyazzem} \end{array} \\ \underline{\text{gompertz}} \\ \underline{\text{model}} \\ \underline{\text{SAIC}}
Prof., ASDS,
JU
```

17

Application_Gompertz Model

Md. Moyazzem Hossain, Prof., ASDS, JU

Application_Gompertz Model

```
147 814 0.058139625 0.023037392 0.11094251
148 821 0.055355400 0.021398160 0.10692272
149 840 0.048286786 0.017726912 0.09641983
150 965 0.017129008 0.004271564 0.04311755
151 1022 0.009754968 0.001996665 0.02829327
> fit_gompertz_model$coefficients
      shape
                    rate
                                                          ph. ecog1
                                                                       ph. ecoa2
                                    age
                                                sex
1.944971e-03 -9.187697e+00 1.161597e-02 -5.413610e-01 6.419393e-01 1.690979e+00
    ph.ecog3 ph.karno meal.cal
                                             wt.loss
2.752043e+00 2.512697e-02 -2.254047e-05 -1.035909e-02
> fit_gompertz_model$AIC
[1] 1715.584
```

Md. Moyazzem Hossain, Prof., ASDS, JU

19

Application_Gamma Model

```
# Fit a gamma survival model
fit_gamma_model <- flexsurvreg(Surv(time,
status) ~ age + sex + ph.ecog + ph.karno +
wt.loss, data = lung, dist = "gamma")

# Display summary
summary(fit_gamma_model)
fit_gamma_model$coefficients
fit_gamma_model$AIC</pre>

Md.
Moyazzem
Hossain,
JU
```

Application_Gamma Model

```
Console Terminal × Background Jobs ×
                                                                                             =\Box
R 4.3.2 · ~/ ≈
> # Fit a gamma survival model
> fit_gamma_model <- flexsurvreg(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + wt.l
oss, data = lung, dist = "gamma")
> # Display summary
> summary(fit_gamma_model)
age=62.5023474178404,sex=1.4037558685446,ph.ecog1=0.497652582159624,ph.ecog2=0.2112676056338
03, ph. ecog3=0.00469483568075117, ph. karno=82.1596244131455, wt. loss=9.72769953051643
             est lcl
                                     uc1
      5 0.99897976 0.99705031 0.99971859
      11 0.99627645 0.99139772 0.99863102
     12 0.99570823 0.99032545 0.99837171
3
     13 0.99511024 0.98922306 0.99809052
4
     15 0.99382925 0.98691159 0.99746263
```

Md. Moyazzem Hossain, Prof., ASDS, JU

21

Application_Gamma Model

Md. Moyazzem Hossain, Prof., ASDS, JU

Thank You

Md. Moyazzem Hossain, Prof., ASDS, JU