Problem Set 5, Tips

Vikram Damani Analysis I

October 31, 2024

Aufgaben in rot markiert, Tipps & Tricks in blau.

1 Theorie

Definition [Fundamentalsatz der Algebra]. Sei $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ ein Polynom mit Koeffizienten $a_0, a_1, \ldots, a_n \in \mathbb{C}$. Eine Zahl x_0 heißt Nullstelle von p(x), falls $p(x_0) = 0$.

Jedes Polynom p(x) vom Grad $n \ge 1$ hat genau n Nullstellen, gezählt mit Vielfachheit. Das Polynom p(x) lässt sich also schreiben als

$$p(x) = a_n(x - x_1)(x - x_2)\dots(x - x_n)$$
(1)

wobei x_1, x_2, \ldots, x_n die Nullstellen von p(x) sind.

Bemerkung: Die Nullstellen von einem Polynom p(x) mit reellen Koeffizienten $a_k \in \mathbb{R}$ sind nicht notwendigerweise reell. Es gilt jedoch, dass komplexe Nullstellen stets als Komplex konjugierte Paare auftreten, d.h. wenn $x_0 \in \mathbb{C}$ eine Nullstelle von p(x) ist, dann ist auch $\overline{x_0}$ eine Nullstelle von p(x).

Bemerkung [Arsinh]. Die Funktion Arsinh(x) ist die Umkehrfunktion von $\sinh(x)$, d.h. $\sinh(\operatorname{Arsinh}(x)) = x$. Es gilt aus der Vorlesung, dass $\operatorname{Arsinh}(x) = \ln(x + \sqrt{x^2 + 1})$.