UNIVERZA V LJUBLJANI FAKULTETA ZA GRADBENIŠTVO IN GEODEZIJO

Kandidat:

JAN PRIBOŠEK

IZRAČUN ENERGETSKIH PARAMETROV HIDROELEKTRARNE

Diplomska naloga št.

Mentor:

doc. dr. Andrej Kryžanowski

Ljubljana, 2017

delovna verzija, 3. julij 2017

POPRAVKI

Stran z napako Vrstica z napako Namesto Naj bo

BIBLIOGRAFSKO-DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK

Avtor: Jan Pribošek

Mentor: doc. dr. Andrej Kryžanowski

Naslov: Izračun parametrov hidroelektrarne

Tip dokumenta: Diplomska naloga - univerzitetni študijski program gradbeništvo

Obseg in oprema: 21 str., 11 sl., 0 pregl., 48 en.

Ključne besede:

Izvleček

BIBLIOGRAPHIC-DOCUMENTALISTIC INFORMATION AND ABSTRACT

UDC

Author: Jan Pribošek

Supervisor: Assist. Prof. Andrej Kryžanowski, Ph. D.

Title: Calculating parameters of the hydroelectric powerplant

Document type: Graduation - Thesis - university program

Notes: 21 p., 11 fig., 0 tab., 48 eq.

Keywords:

Abstract

ZAHVALA

KAZALO VSEBINE

Bl	BIBLIOGRAFSKO-DOKUMENTACIJSKA STRAN IN IZVLEČEK				
Bl	BLIC	OGRAPHIC-DOCUMENTALISTIC INFORMATION AND ABSTRACT	Ш		
Z A	AHVA	LA	IV		
1	Uvo	d	1		
2	Teo	retične osnove	2		
	2.1	Pridobitev podatkov	2		
	2.2	Analiza hidrološkega niza podatkov	3		
	2.3	Izračun konsumpcijske krivulje	3		
		2.3.1 Izračun konsumpcijske krivulje za pravokotne in trapezne struge	3		
		2.3.2 Izračun konsumpcijske krivulje za struge poljubne oblike	6		
	2.4	Izračun proizvodnje električne energije	10		
3	Izra	čun	12		
	3.1	Izračun parametrov po trapezni metodi	12		
		3.1.1 Ročni izračun	12		
		3.1.2 Izračun s programom	12		
	3.2	Izračun parametrov po numerični metodi	14		
		3.2.1 Ročni izračun parametrov hidroelektrarne	14		
		3.2.2 Izračun parametrov hidroelektrarne s programom	14		
	3.3	Rezultati izračuna	16		
4	ZAI	KLJUČEK	17		
PO	OVZE	TEK	18		
SU	J MM	ARY	19		

VIRI 20

KAZALO SLIK

2.1	Prečni prerez pravokotne struge	4
2.2	Prečni prerez trapezne struge	4
2.3	Prečni prerez poljubno oblikovane struge vodotoka	6
2.4	Izbrani analizirani odsek struge	7
2.5	Detajl izbranega odseka struge	7
2.6	Shema prečnega prereza hidroelektrarne	10
3.1	Shema struge izbranega vodotoka	12
3.2	Vnos podatkov v program	13
3.3	Konsumpcijska krivulja izračunana po trapezni metodi	13
3.4	Vnos podatkov v program	15
3.5	Graf konsumpcijske krivulje izračunani po numerični metodi	15

KAZALO PREGLEDNIC

1 Uvod

Letna količina vode ki se pretoči v Sloveniji je $33.9 \ km^3$, kar nas primerjano na število prebivalcev uvršča v sam vrh v Evropi, takoj za Švico in Norveško. Potreba po električni energiji se iz leta v leto veča, vendar se le okoli 47% vodnega potenciala efektivno uporablja za potrebe proizvodnje električne energije. Voda v Sloveniji je povsod okoli nas, zato je zanimivo preračunati koliko električne energije bi lahko proizvedli iz bližnjega potoka ali večje reke. Podatki o pretokih rek v Sloveniji so namreč javno dostopni v arhivu na spletni strani agencije Republike Slovenije za okolje (ARSO). [1]

Cilj diplomske naloge je ocena proizvedene električne energije pretočne hidroelektrarne poljubne velikosti za vodotok poljubnega pretoka in oblike. V ta namen sem napisal program, ki s pomočjo začetno ocenjenih parametrov struge in meritev povprečnih dnevnih pretokov izbranega vodotoka izračuna parametre pretočne hidroelektrarne.

V diplomski nalogi bom najprej opisal postopek izračuna z osnovnimi enačbami, na koncu pa bom primerjal rezultate ročnega izračuna z rezultati ki jih izračuna program. Pri izračunu sem upošteval da je voda za pregrado na maksimalni konstantni višini, izkoristek turbine konstanten in neodvisen od pretoka skozi turbino ter naklon struge od 0% do 2%.

2 Teoretične osnove

Parametre za iskano hidroelektrarno lahko izračunamo po naslednjem algoritmu:

- 1. Pridobitev podatkov
- 2. Analiza hidrološkega niza podatkov za iskano obdobje
- 3. Izračun konsumpcijske krivulje
- 4. Izračun proizvodnje električne energije

2.1 Pridobitev podatkov

Za nadaljnje izračune potrebujemo podatke o:

- Dimenzijah in naklonu rečne struge
- Manningovem koeficientu hrapavosti rečnega korita
- Povprečnih dnevnih pretokih vodotoka za izbrano obdobje

Podatke o dimenzijah rečnega korita lahko pridobimo z meritvami na terenu ali pa dimenzije ocenimo na podlagi ortofoto posnetkov. Naklon rečne struge vodotoka se lahko oceni s pomočjo spletne aplikacije Geopedija. Izberemo odsek vodotoka, ki ga definirata dve točki. S pomočjo Geopedije odčitamo podatke o višinski razliki Δh in razdalji ΔL med točkama. S pomočjo spodnje enačbe določimo naklon izbranega odseka vodotoka:

$$I = \frac{100\Delta h}{\Delta L} [\%] \tag{2.1}$$

Manningov koeficient hrapavosti rečnega korita ng se lahko oceni izkustveno na terenu s pomočjo priročnikov ali pa z umerjanjem na podlagi podatkov o nivojih vode in pretokih. Manningov koeficient hrapavosti je odvisen od naslednjih 7 faktorjev [2]:

- 1. Hrapavosti površine ostenja
- 2. Zaraščenosti rečnega korita
- 3. Neregularnosti oblike rečnega korita
- 4. Meandriranja rečne struge
- 5. Zamašitve struge s plavinami
- 6. Oblike in velikosti rečnega korita
- 7. Polnosti rečnega korita z vodo

Podatke o pretokih slovenskih vodotokov lahko pridobimo iz arhiva, ki se nahaja na spletni strani agencije Republike Slovenije za okolje (v nadaljevanju ARSO). V primeru da iščemo pretok za manjši vodotok, je zelo verjetno da podatki o pretokih vodotoka ne obstajajo. V tem primeru lahko pretok vodotoka ocenimo s pomočjo meritev višine gladine vode in dimenzij struge, ocene Manningovega koeficienta hrapavosti in naklona struge. S pomočjo Manningove enačbe opisane kasneje v poglavju 2.3.1 dobimo končno ocenjeno vrednost pretoka vodotoka za posamezno obdobje meritev.

2.2 Analiza hidrološkega niza podatkov

Iz ARSO-vega arhiva lahko izvozimo podatke o povprečnih dnevnih pretokih iskanega vodotoka v csv obliki (comma separated values). Iz izvoženih podatkov lahko za vsak mesec obdobja izračunamo povprečni mesečni pretok. Če mesečne pretoke povprečimo za vsa leta izbranega obdobja lahko navedene povprečne mesečne pretoke obdobja prikažemo na hidrogramu obdobja. Hidrogram je graf, ki prikazuje povprečne mesečne pretoke vodotoka za izbrano obdobje analize.

2.3 Izračun konsumpcijske krivulje

Konsumpcijska krivulja je graf funkcije, ki predstavlja višino gladine vode v odvisnosti od pretoka vode v rečni strugi. Graf konsumpcijske krivulje potrebujemo za določitev višinske razlike dh med spodnjo in zgornjo vodo hidroelektrarne v odvisnosti od pretoka vode skozi turbine hidroelektrarne. Višinsko razliko dh potrebujemo za določitev moči hidroelektrarne v zadnjem koraku algoritma opisanega v tem poglavju.

2.3.1 Izračun konsumpcijske krivulje za pravokotne in trapezne struge

Za izračun konsumpcijske krivulje potrebujemo pretok vodotoka Q v odvisnosti od višine gladine vode h v strugi. Gladina vode h poteka od dna struge do maksimalne višine struge vodotoka H. Natančnost izračuna numeričnih metod, je odvisna od velikosti koraka izračuna. V našem primeru za potrebe ocene pretoka centimetrski korak po višini predstavlja zadostno natančnost. Pretok vode v odprti strugi Q se torej za vsak cm višine h izračuna po Manningovi enačbi:

$$Q(h) = \frac{1}{ng} \sqrt{I} \frac{S(h)^{5/3}}{P(h)^{2/3}}$$
 (2.2)

Kjer je:

Q pretok

ng Manningov koeficient hrapavosti dna struge

I naklon struge

S | ploščina omočenega dela prečnega profila

P dolžina omočenega oboda struge

1. Pravokotno oblikovana struga vodotoka:

Slika 2.1: Prečni prerez pravokotne struge

Omočeni obod pravokotne struge izračunamo kot seštevek širine dna struge in dvakratne višine gladine vode v strugi vodotoka h.

$$P_p(h) = B + 2h \tag{2.3}$$

Ploščino omočenega dela, ki ga omejujejo rečno korito in gladina vode za pravokotno oblikovano rečno strugo dobimo po enačbi:

$$S_p(h) = B \cdot h \tag{2.4}$$

2. Trapezno oblikovana struga vodotoka:

Slika 2.2: Prečni prerez trapezne struge

Omočeni obod trapezno oblikovane rečne struge izračunamo kot seštevek širine dna struge in dvakratne razdalje od roba dna do točke presečišča rečnega korita z gladino vode:

$$P_t(h) = b + 2 \cdot \sqrt{h^2 + \left(\frac{h}{\tan \alpha}\right)^2}$$
 (2.5)

Ploščino omočenega dela v trapezno oblikovani rečni strugi izračunamo po enačbi:

$$S_t(h) = b \cdot h + \frac{h^2}{2\tan\alpha} \tag{2.6}$$

Ko poznamo vse parametre Manningove enačbe 2.2, izračunamo pretoke vodotoka za vsak cm višine rečne struge, ki poteka od višine 0 do H in narišemo graf konsumpcijske krivulje h(Q). Iz konsumpcijske krivulje bomo v naslednjih poglavjih določali višino spodnje vode v rečni strugi.

2.3.2 Izračun konsumpcijske krivulje za struge poljubne oblike

V primeru, da iščemo konsumpcijsko krivuljo za strugo vodotoka poljubne oblike, si za izračun le te ne moremo pomagati s znanimi formulami preprostih geometrijskih likov. Poljubno oblikovano strugo lahko popišemo s serijo točk, ki jih dodajamo v kartezijski koordinatni sistem x,y. Za vsako točko ki definira poljubno rečno korito podamo x in y koordinato, za točke pa predpostavimo da so med seboj povezane z enačbo linearne funkcije. Na sliki 2.3 je predstavljen shema prečnega prereza poljubno oblikovane struge vodotoka.

Slika 2.3: Prečni prerez poljubno oblikovane struge vodotoka

Skrajni točki na robu struge vodotoka sta točki T_L in T_D na sliki 2.3. Točko na robu struge z nižjo y koordinato označimo s T_{Rmin} (na sliki 2.3 označena kot točka T_D). Najnižjo točko struge vodotoka označimo s T_{min} . Maksimalna višina gladine vode v rečnem koritu H je definirana kot razdalja med točkama T_{Rmin} in T_{min} . V primeru da je višina gladine vode večja od višine rečnega korita H pride do preliva vode čez robove struge vodotoka.

Za izračun konsumpcijske krivulje, s točkami definirano poljubno strugo vodotoka najprej razdelimo na odseke po dve točki O_1 (x_1, y_1) in O_2 (x_2, y_2) kar je prikazano na sliki 2.3. Za vsak analizirani odsek struge vodotoka, se najprej določi enačba linearne funkcije, ki povezuje točki O_1 in O_2 . Zaradi poenostavljenega zapisa so v nadaljevanju koordinate točke O_1 označene kot x_1 in y_1 , koordinate točke O_2 pa x_2 in y_2 .

Enačba linearne funkcije se definira kot:

$$f(x) = kx + n \tag{2.7}$$

Naklon funkcije k se izračuna po spodnji enačbi:

$$k = \frac{y_2 - y_1}{x_2 - x_1} \tag{2.8}$$

Če v enačbo linearne funkcije 2.7 vstavimo izračunan naklon k in koordinate točke O_1 , lahko izračunamo iskani n. S tem je določena enačba linearne funkcije f(x) ki povezuje točki O_1 in O_2 .

Slika 2.4: Izbrani analizirani odsek struge

Za vsak analizirani odsek dveh točk se določi najnižja točka odseka T_z , na sliki 2.4 označena kot točka O_2 . Y koordinata točke T_z nam predstavlja začetno višino odseka h_z . Od h_z do končne višine gladine vode v strugi H za vsak cm po višini določimo omočeni obod struge P(h) in ploščino prečnega prereza odseka pod vodo S(h). Razdaljo med y koordinatami točk O_1 in O_2 označimo z Δy , razdaljo med x koordinatami točk pa z Δx . Ravnina x0 predstavlja gladino vode pri trenutni višini x1, kar je prikazano na sliki 2.5.

Slika 2.5: Detajl izbranega odseka struge

Omočeni obod struge vodotoka P(h) in ploščina prečnega prereza struge vodotoka pod gladino vode S(h) se glede na naklon funkcije, ki povezuje točki na robu analiziranega odseka f(x) izračuna na dva načina:

1. V primeru ko velja $\Delta y = 0$ je funkcija med točkama odseka f(x) vodoravna premica in velja:

$$P(h) = \Delta x \tag{2.9}$$

$$S(h) = \Delta x \cdot h \tag{2.10}$$

2. V primeru ko $\Delta y \neq 0$ ima funkcija f(x) naklon $k \neq 0$. V tem primeru od začetka višine odseka h_z do končne višine gladine vode v strugi H za vsak cm izračunamo presečišče G, funkcije f(x) s horizontalno ravnino g = h.

Ko imamo določeno presečišče G gladine vode s funkcijo f(x) med točkama odseka, lahko izračunamo dolžino omočenega oboda struge odseka in ploščino lika ki ga oklepajo funkcija odseka f(x), navidezna gladina vode g=h in najnižja točka odseka T_z (na sliki 2.4 označena z O_2).

Način izračuna omočenega oboda struge vodotoka P(h) in ploščine prečnega prereza pod gladino vode S(h) je odvisen od pozicije presečišča G:

(a) V primeru da se presečišče G izbranega odseka struge nahaja v območju med točkama O_1 in O_2 , dolžino omočenega oboda določimo po Pitagorovem izreku kot:

$$P(h) = \sqrt{(T_{zx} - G_x(h))^2 + (T_{zy} - G_y(h))^2}$$
 (2.11)

Ploščino območja ki ga oklepajo horizontalna ravnina g s presečiščem G in najnižjo točko odseka T_z pa določimo kot ploščino trikotnika (območje I na sliki 2.4) po formuli:

$$S(h) = \frac{|T_{zx} - G_x(h)| \cdot |T_{zy} - G_y(h)|}{2}$$
(2.12)

(b) V primeru, da se presečišče G nahaja izven območja točk O_1 in O_2 se dolžina omočenega oboda odseka izračuna kot razdalja med točkama O_1 in O_2 po Pitagorovem izreku:

$$P = \sqrt{\Delta x^2 + \Delta y^2} \tag{2.13}$$

Ploščina pod gladino vode odseka S(h) pa se določi kot seštevek ploščin območij I in II označenih na sliki 2.4.

$$S(h) = S_I + S_{II}(h) (2.14)$$

Pri čemer sta S_I in S_{II} enaka:

$$S_I = \left| \frac{\Delta y \cdot \Delta x}{2} \right| \tag{2.15}$$

$$S_{II}(h) = \left| \Delta x \cdot (h - y_1) \right| \tag{2.16}$$

Ko imamo za vsak cm višine gladine vode izračunan omočeni obod $P_n(h)$ odseka n in ploščino prečnega prereza pod gladino vode $S_n(h)$ lahko določimo pretok vode skozi odsek struge vodotoka $Q_n(h)$. Pretok vode skozi odsek izračunamo po Manningovi enačbi omenjeni v poglavju 2.2. Za vsak računani odsek moramo poznati tudi naklon struge vodotoka I_n in Manningov koeficient hrapavosti površine ng_n , ki se ju določi po postopkih opisanih v poglavju 2.1.

$$Q_n(h) = \frac{1}{ng_n} \sqrt{I_n} \frac{S_n(h)^{5/3}}{P_n(h)^{2/3}}$$
(2.17)

Posamezne pretoke odsekov po višinah medsebojno seštejemo in dobimo končne vrednosti pretokov Q v odvisnosti od višine gladine vode v strugi vodotoka:

$$Q(h) = Q_1(h) + Q_2(h) + Q_3(h) + \dots + Q_{n-1}(h) + Q_n(h)$$
(2.18)

S tem postopkom smo izračunali točke ki določajo konsumpcijsko krivuljo h(Q) za izbrano strugo poljubne oblike.

2.4 Izračun proizvodnje električne energije

Za določitev končne proizvodnje električne energije potrebujemo razliko med koto zgornje vode t.j. vode v rezervoarju in koto spodnje vode t.j. vode ki teče skozi turbine hidroelektrarne. Ker računamo proizvodnjo električne energije za pretočne hidroelektrarne, predpostavimo da je kota zgornje vode konstantna na višini H_z .

Slika 2.6: Shema prečnega prereza hidroelektrarne

Koto spodnje vode H_s določimo iz prej izračunane konsumpcijske krivulje iz katere odčitamo višino gladine vode v strugi za dani povprečni mesečni pretok skozi turbine hidroelektrarne. V primeru da se pretok skozi turbine hidroelektrarne nahaja med dvema točkama pretokov v konsumpcijski krivulji, iskano višino spodnje vode določimo z linearno interpolacijo med znanima izračunanima točkama na grafu konsumpcijske krivulje.

Višinsko razliko med koto zgornje in spodnje vode določimo po spodnji enačbi:

$$dh = H_z - H_s \tag{2.19}$$

Moč hidroelektrarne izračunamo po enačbi:

$$P = \eta \cdot \frac{g \cdot \rho_v}{1000} \cdot Q_t \cdot dh \tag{2.20}$$

Pri čemer so:

$$\begin{array}{c|c} \mathbf{P} & \text{moč } [kW] \\ \eta & \text{izkoristek turbine } [\%] \\ \mathbf{g} & \text{gravitacijska konstanta } \left[9,81\,\frac{m}{s^2}\right] \\ \rho_v & \text{gostota vode } \left[\frac{1000kg}{m^3}\right] \\ Q_t & \text{pretok skozi turbine hidroelektrarne } \left[m^3/s\right] \\ \mathbf{dh} & \text{razlika višin spodnje in zgornje vode } [m] \end{array}$$

Izkoristek turbin hidroelektrarne je načeloma odvisen od pretoka vode skozi turbine, vendar lahko to lastnost turbin za potrebe ocene izračuna električne energije zanemarimo. Pretok vode skozi turbine

hidroelektrarne Q_t je odvisen od parametrov hidroelektrarne in pretoka vodotoka. Q_t se določi glede na spodnje pogoje:

$$Q_{t} = \begin{cases} 0, & Q < Q_{min} \\ Q, & Q_{min} < Q < Q_{max} \\ Q_{max}, & Q_{max} < Q < Q_{teh} \\ 0, & Q > Q_{teh} \end{cases}$$
 (2.21)

Pri čemer so:

Q Pretok vodotoka $\left[m^3/s\right]$ Q_{min} biološki minimum pretoka vodotoka $\left[m^3/s\right]$ Q_{max} instalirani pretok $\left[m^3/s\right]$ Q_{teh} tehnični maksimum pretoka vodotoka $\left[m^3/s\right]$

V primeru ko je pretok vodotoka manjši kot biološki minimum, ki se zahteva zato da reka ne presahne, se vsa voda preliva skozi prelivna polja hidroelektrarne. V primeru poplav, ko je pretok vodotoka večji od tehničnega maksimuma pretoka hidroelektrarne se vsa voda preliva preko jezu in hidroelektrarna ne proizvaja električne energije. V vseh ostalih primerih pretokov vodotoka pa je pretok skozi turbine kar enak pretoku vodotoka z maksimumom pri Q_{max} .

Za določitev povprečne mesečne proizvodnje električne energije potrebujemo znano povprečno mesečno moč hidroelektrarne \overline{P} . Povprečno mesečno moč hidroelektrarne izračunamo s povprečjem dnevnih moči hidroelektrarne za iskani mesec po enačbi 2.20. Podatke o povprečnih mesečnih pretokih pridobimo iz rezultatov analize hidrološkega niza podatkov opisane v poglavju 2.2. Za vsak mesec izračunamo povprečno moč hidroelektrarne po spodnji enačbi, pri čemer je n število dni v mesecu.

$$\overline{P} = \frac{P_1 + P_2 + P_3 + \dots + P_{n-1} + P_n}{n}$$
 (2.22)

Povprečno mesečno proizvodnjo električne energije izračunamo po naslednji enačbi:

$$E = \frac{24 \cdot \overline{P} \cdot d}{1000} \tag{2.23}$$

Pri čemer so:

 $\mathsf{E} \mid \mathsf{povprečna}$ mesečna proizvedena električna energija [MWh]

 $\overline{P} \mid$ povprečna moč v mesecu [kW]

d | število dni v mesecu

Končna povprečna letna proizvodnja električne energije je določena s seštevkom povprečnih mesečnih proizvodenj električne energije E:

$$E_{leto} = \frac{E_1 + E_2 + E_3 + \dots + E_{10} + E_{11} + E_{12}}{12} [MWh]$$
 (2.24)

3 Izračun

Za izračun ocene parametrov pretočne hidroelektrarne je ključnega pomena pravilen izračun konsumpcijske krivulje za izbran vodotok, saj se vsi nadaljnji izračuni nanašajo nanj. V tem poglavju bom s primerom dokazal, da program računa parametre pravilno. Za dokaz bom uporabil namišljen primer trapezno oblikovane struge vodotoka prikazane na sliki 3.1, z 1% naklonom struge, višino vode v strugi h = 5m in Manningovim koeficientom hrapavosti 0,3.

Rezultate ročnega izračuna bom primerjal z rezultati ki jih izračuna program po trapezni in numerični metodi opisani v poglavju 2.3.1 oz. 2.3.2. Vse mere na spodnji sliki 3.1 so v metrih.

Slika 3.1: Shema struge izbranega vodotoka

3.1 Izračun parametrov po trapezni metodi

3.1.1 Ročni izračun

Za izračun pretoka vodotoka pri višini h = 5m uporabimo enačbe navedene v poglavju 2.3.1.

$$P(h) = b + 2 \cdot \sqrt{h^2 + \left(\frac{h}{\tan \alpha}\right)^2} = 5 + 2 \cdot \sqrt{5^2 + \left(\frac{5}{\tan 45}\right)^2} = 19,1 m$$
 (3.1)

$$S(h) = b \cdot h + \frac{h^2}{\tan \alpha} = 55 + \frac{5^2}{\tan 45} = 50 m^2$$

$$Q(h) = \frac{\sqrt{0.01}}{0.03} \cdot \frac{50^{5/3}}{19.1^{2/3}} = 316.6 m^3/s$$
(3.2)

$$Q(h) = \frac{\sqrt{0.01}}{0.03} \cdot \frac{50^{5/3}}{19.1^{2/3}} = 316.6 \, m^3 / s \tag{3.3}$$

3.1.2 Izračun s programom

V program vnesemo podatke o rečnem koritu kot je prikazano na sliki 3.2.

Slika 3.2: Vnos podatkov v program

Slika 3.3: Konsumpcijska krivulja izračunana po trapezni metodi

S slike 3.3 lahko odčitamo pretok struge izračunane po trapezni metodi $Q(h = 5m) = 316, 1 \text{ } m^3/s.$

3.2 Izračun parametrov po numerični metodi

V tem poglavju bomo primerjali rezultate ročno izračunanih parametrov in parametrov izračunanih s programom po numerični metodi omenjeni v poglavju 3.1.

3.2.1 Ročni izračun parametrov hidroelektrarne

I. Odsek

$$S_I = \frac{55}{2} = 12,5 \, m^2 \tag{3.4}$$

$$P_I = \sqrt{5^2 + 5^2} = 7,07 m \tag{3.5}$$

$$Q_I = \frac{\sqrt{0.01}}{0.03} \cdot \frac{12.5^{5/3}}{7.07^{2/3}} = 60.9 \ m^3/s \tag{3.6}$$

II. Odsek

$$S_{II} = 55 = 25 \ m^2 \tag{3.7}$$

$$P_{II} = 5 m \tag{3.8}$$

$$Q_{II} = \frac{\sqrt{0.01}}{0.03} \cdot \frac{25^{5/3}}{5^{2/3}} = 243.7 \, m^3 / s \tag{3.9}$$

III. Odsek

$$S_{III} = S_I = 12,5 \ m^2 \tag{3.10}$$

$$P_{III} = S_I = 7,07 m ag{3.11}$$

$$Q_{III} = Q_{III} = 60.9 \ m^3/s \tag{3.12}$$

Skupni pretok za višino h = 5m:

$$Q_s = Q_I + Q_{II} + Q_{III} = 60,9 + 243,7 + 60,9 = 365,5 \text{ } m^3/s$$
(3.13)

3.2.2 Izračun parametrov hidroelektrarne s programom

S pomočjo uporabniškega vmesnika v koordinatni sistem vnašamo serijo točk, s katerimi modeliramo robove izbrane struge. V tabeli na levi strani diagrama, za vsak odsek med dvema točkama dodajamo Manningove koeficiente hrapavosti ng in naklone struge na sliki označene s φ . V našem primeru so vrednosti koeficientov za vse odseke rečne struge enake.

Slika 3.4: Vnos podatkov v program

Slika 3.5: Graf konsumpcijske krivulje izračunani po numerični metodi

Z grafa konsumpcijske krivulje 3.5 pri višini h=5m lahko preberemo da je pretok $Q=365,5\ m^3/s$. Rezultat po numeričnem postopku izračunan s programom je enak rezultatu ki smo ga izračunali ročno v poglavju 3.2.1

3.3 Rezultati izračuna

V poglavjih 3.1 in 3.2 smo preverili da sta rezultata ročnega izračuna in izračuna s programom po enaki metodi enaka. Če primerjamo rezultate trapezne metode z rezultati numerične metode pa se rezultati razlikujejo. Razlog za to je v izbiri matematičnega modela, kar prikazujejo enačbe spodaj.

Primerjali bomo rezultata pretokov vodotoka po trapezni in numerični metodi. Pri tem uporabimo podatke iz naloge opisane v poglavju 3. Celotna površina prečnega prereza pod gladino vode S(h) in omočeni obod struge P(h) sta sestavljena iz treh odsekov kot je prikazano na sliki 3.1. Q_i predstavlja izračun pretoka po trapezni metodi, Q_{ii} pa izračun pretoka po numerični metodi:

$$S(h) = S_I(h) + S_{II}(h) + S_{III}(h)$$
(3.14)

$$P(h) = P_I(h) + P_{II}(h) + P_{III}(h)$$
(3.15)

$$Q_i = \frac{\sqrt{I}}{nq} \cdot \frac{S^{5/3}}{P^{2/3}} \tag{3.16}$$

$$Q_{ii} = \frac{\sqrt{I}}{ng} \cdot \frac{S_I^{5/3}}{P_I^{2/3}} + \frac{\sqrt{I}}{ng} \cdot \frac{S_{II}^{5/3}}{P_{II}^{2/3}} + \frac{\sqrt{I}}{ng} \cdot \frac{S_{III}^{5/3}}{P_{III}^{2/3}}$$
(3.17)

Če v obeh enačbah odstranimo skupne člene enačbe, enačbe poenostavimo v:

$$Q_i = \frac{S^{5/3}}{P^{2/3}} \tag{3.18}$$

$$Q_{ii} = \frac{S_I^{5/3}}{P_I^{2/3}} + \frac{S_{II}^{5/3}}{P_{II}^{2/3}} + \frac{S_{III}^{5/3}}{P_{III}^{2/3}}$$
(3.19)

Enačimo obe enačbi in uporabimo podatke iz:

$$Q_i = Q_{ii} (3.20)$$

$$\frac{S^{5/3}}{P^{2/3}} = \frac{S_I^{5/3}}{P_I^{2/3}} + \frac{S_{II}^{5/3}}{P_{II}^{2/3}} + \frac{S_{III}^{5/3}}{P_{III}^{2/3}}$$
(3.21)

$$\frac{50^{5/3}}{19,14^{2/3}} = \frac{12,5^{5/3}}{7,07^{2/3}} + \frac{25^{5/3}}{5^{2/3}} + \frac{12,5^{5/3}}{7,07^{2/3}}$$
(3.22)

$$94,84 \neq 109,7 \tag{3.23}$$

Do razlike v rezultatih pride zaradi matematičnih pravil seštevanja potenc, kar smo pokazali z zgornjim izračunom:

$$(a+b)^y \neq a^y + b^y \tag{3.24}$$

4 ZAKLJUČEK

Predstavljena formulacija končnih elementov ...

POVZETEK

V disertaciji obravnavamo problem...

SUMMARY

In the present dissertation we study ...

VIRI

- [1] Kryžanowski, A., Mikoš, M., Brilly, M. 2011. Dragocen obnovljivi vir energije nam teče skozi prste?: Hidroelektrarne na srednji Savi. Delo 155: 3.
- [2] Chow, V. T. 1956. Open-Channel Hydraulics. McGraw-Hill Book Company.