Assignment -1 (10 Marks)

Q1.

Network tomography. A network consists of n links, labeled $1, \ldots, n$. A path through the network is a subset of the links. (The order of the links on a path does not matter here.) Each link has a (positive) delay, which is the time it takes to traverse it. We let d denote the n-vector that gives the link delays. The total travel time of a path is the sum of the delays of the links on the path. Our goal is to estimate the link delays (i.e., the vector d), from a large number of (noisy) measurements of the travel times along different paths. This data is given to you as an $N \times n$ matrix P, where

$$P_{ij} = \begin{cases} 1 & \text{link } j \text{ is on path } i \\ 0 & \text{otherwise,} \end{cases}$$

and an N-vector t whose entries are the (noisy) travel times along the N paths. You can assume that N > n. You will choose your estimate \hat{d} by minimizing the RMS deviation between the measured travel times (t) and the travel times predicted by the sum of the link delays. Explain how to do this, and give a matrix expression for \hat{d} . If your expression requires assumptions about the data P or t, state them explicitly.

Remark. This problem arises in several contexts. The network could be a computer network, and a path gives the sequence of communication links data packets traverse. The network could be a transportation system, with the links representing road segments.

Polynomial classifier with one feature. Generate 200 points $x^{(1)}, \ldots, x^{(200)}$, uniformly spaced in the interval [-1, 1], and take

$$y^{(i)} = \begin{cases} +1 & -0.5 \le x^{(i)} < 0.1 \text{ or } 0.5 \le x^{(i)} \\ -1 & \text{otherwise} \end{cases}$$

for i = 1, ..., 200. Fit polynomial least squares classifiers of degrees 0, ..., 8 to this training data set.

- (a) Evaluate the error rate on the training data set. Does the error rate decrease when you increase the degree?
- (b) For each degree, plot the polynomial $\tilde{f}(x)$ and the classifier $\hat{f}(x) = \mathbf{sign}(\tilde{f}(x))$.
- (c) It is possible to classify this data set perfectly using a classifier $\hat{f}(x) = \mathbf{sign}(\tilde{f}(x))$ and a cubic polynomial

$$\tilde{f}(x) = c(x+0.5)(x-0.1)(x-0.5),$$

for any positive c. Compare this classifier with the least squares classifier of degree 3 that you found and explain why there is a difference.

Additional Instructions:

1-	For	Q1, \	you can u	pload a	printed or	r a handı	written ansv	ver .
----	-----	-------	-----------	---------	------------	-----------	--------------	-------

2. For Q2 code in python and use plots to showcase your results. You are allowed to use python packages in your code. Upload a report explaining your answers along with your python code for Q2.