Prédiction des pannes

Utilisation d'un réseau de neurones récurrents pour de la maintenance prédictive

Paul Vardon

Ecole Polytechnique - NASA

Sommaire de la présentation

- 1. Introduction
- 2. Données
- 3. Algorithme
- 4. Résultats
- 5. Bilan

Introduction

Présentation des données

Le set d'entraînement est constitué de 20,631 entrées, réparties en 100 turbines qui tournent jusqu'à arrêt par panne.

Pour chaque turbine et chaque cycle, 3 paramètres de configurations opérationnelles et 20 paramètres de mesure sont disponibles.

Le set de test est constitué de 13,096 entrées, réparties elles aussi en 100 turbines. Les enregistrements s'arrêtent, pour chaque turbine, à un nombre arbitraire de cycles, correspondant ainsi à la réalité effective des observations.

Enfin, un set de mesures effectives des pannes des turbines du set d'entraînement est disponible.

Objectif du travail

- 1. Prédire la RUL (Remaining Useful Life) de chaque turbine
- 2. Minimiser la MSE (Mean Squared Error) des prédictions
- 3. Proposer une solution au problème, ainsi qu'une mise en perspective de cette solution

Données

Répartition des pannes

Figure 1 – Temps avant la première panne (train set)

Répartition des paramètres

Figure 2 – Evolution des paramètres pour la 20e turbine

Algorithme

Réseau de neurones récurrents

Figure 3 – Long Short Term Memory NN

Pour résoudre ce problème, on utilise un réseau LSTM, qui permet de propager dans le réseau une mémoire à long terme de l'évolution des données.

Réseau de neurones récurrents

Layer (type)	Output Shape	Param #
=======================================		
lstm_0 (LSTM)	(None, 50, 100)	50400
dropout_0 (Dropout)	(None, 50, 100)	0
lstm_1 (LSTM)	(None, 50, 50)	30200
dropout_1 (Dropout)	(None, 50, 50)	0
lstm_2 (LSTM)	(None, 25)	7600
dropout_2 (Dropout)	(None, 25)	0
dense_0 (Dense)	(None, 1)	26
activation_0 (Activation)	(None, 1)	0
Total params: 88,226 Trainable params: 88,226 Non-trainable params: 0		
None		

Figure 4 – Implémentation du réseau de neurones

Résultats

Résultats d'entraînement

Figure 5 – Mean Square Error sur le set d'entraînement

Résultats de test

 $\textbf{Figure 6} - \mathsf{Comparaison} \ \mathsf{Prediction} / \mathsf{R\'ealit\'e}$

Bilan

Evaluation de la prédiction

Estimateur	Valeur
Mean Square Error	303.49
Root Mean Square Error	11.65
Mean Absolute Error	11.65
Efficience	85.79%

Figure 7 – Analyse statistique de l'occurence des pannes

Les estimateurs RMSE et MAE sont comparatifs : ils donnent des informations sur l'efficacité du modèle en comparaison avec d'autres modèles. Les résultats permettent de conclure à la validité de la méthode adoptée.

Risques et améliorations

Problèmes potentiels

Les résultats ne permettent pas une systématisation de la prédicition. Ils constituent un **outil d'aide à la décision**.

Améliorations

- Prise en compte de tous les cycles
- Optimisation des hyper-paramètres
- Instauration de seuils de maintenance

Questions?