Improvement of the higher-order tensor renormalization group method

Satoshi Morita (ISSP, Univ. Tokyo)

Outline

- O Introduction
 - > Real-space renormalization based on TN
 - ➤ How to calculate a projector in HOTRG
- O Calculation of higher-order moments by HOTRG
 - Renormalization of multi-impurity tensors
 - Finite-scaling analysis on q-state Potts model
- O Entanglement filtering in HOTRG
 - ➤ HOTRG + Full Environment Truncation (FET)*
 - ➤ Benchmark on 2d Ising model*
- O Summary

^{*} Unpublished results are removed in this PDF.

Tensor network methods

- O Hamiltonian mechanics
 - Wave function of many-body systems

$$|\psi\rangle = \sum_{i_1\cdots i_N} \frac{C_{i_1\cdots i_N}}{O(d^N)} |i_1i_2\cdots i_N\rangle$$

$$O(d^N) \text{ coefficients}$$

Approx. by tensor decomp.

- O Lagrangian mechanics
 - Partition function (Action)

$$Z = \sum_{\{S_i\}} e^{-\beta H(\{S_i\})}$$

 $O(d^N)$ terms

Representation by tensor decomp.

Tensor network representations reduce exponential computational cost to polynomial order.

TN representation of the partition function

$$Z = \sum_{\{\sigma_i\}} \prod_{ij} e^{K\sigma_i \sigma_j} = t \operatorname{Tr} \left(\bigotimes_{x=1}^N A \right)$$

Sum over states Tensor contraction

Ising model
$$A_{S_1S_2S_3S_4} = e^{K(S_1S_2 + S_2S_3 + S_3S_4 + S_4S_1)}$$

- Tensor index corresponds to spin direction.
- One tensor contains two spin.
- In higher dimensional systems, a tensor has many indices (= 2^d).

TN representation of the partition function

$$Z = \sum_{\{\sigma_i\}} \prod_{\langle ij \rangle} W_{\sigma_i \sigma_j} \prod_{i=1}^N V_{\sigma_i} = t \operatorname{Tr} \prod_{i=1}^N T_{x_i y_i x_i' y_i'} \qquad T_{xyx'y'} = \sum_{\sigma} X_{\sigma x} X_{\sigma y} X_{\sigma x'}^* X_{\sigma y'}^* V_{\sigma}$$

Sum over states

Tensor cont.

Local Boltzmann factors

$$W_{\sigma\sigma'} = e^{-\beta h_{\sigma\sigma'}}$$
$$V_{\sigma} = e^{-\beta h_{\sigma}}$$

Kronecker's delta

$$\delta^{\sigma}_{xyx'y'} = \delta_{\sigma x} \delta_{\sigma y} \delta_{\sigma x'} \delta_{\sigma y'}$$

- Spin is already traced out.
- One tensor contains one spin.
- # of indices is 2d.

Real-space renormalization group

https://github.com/smorita/TN_animation

Real-space renormalization

O TRG (Tensor Renormalization Group) \boldsymbol{A} Levin, Nave (2007) **Truncated SVD** $O(\chi^5)$ Contraction $O(\chi^6)$ **Decomposition & Contraction**

TRG-base methods

O TNR (Tensor Network Renormalization) Evenbly, Vidal (2015)

O LOOP-TNR Yang, Gu, Wen (2017)

- O TNR+ Bal, et al. (2017)
 - (d) (c)
- $O(\chi^5)$ algorithms
 - TRG + Randomized SVD SM, Igarashi, Zhao, Kawashima (2018)
 - Projectively Truncated TRG Nakamura, Oba, Takeda (2019)

Only for 2-d systems

HOTRG

O Higher-order Tensor Renormalization Group Xie, et al. (2012)

Advantage of HOTRG

➤ Accuracy

- Conservation of lattice structure
- ➤ No tensor decomposition

> Higher-dimensional systems

✓ 3-state Potts model on cubic lattice Wang, et al., (2014) [arXiv:1405.1179]

Key parts of HOTRG

O Renormalization

- O HOSVD (Higher-Order Singular Value Decomposition)
 - > truncated Tucker decomposition

Key parts of HOTRG

O Renormalization

- O HOSVD (Higher-Order Singular Value Decomposition)
 - > truncated Tucker decomposition

Optimal Projector for 2x2 Cluster

O Problem

$$\Delta = \min_{P, Q} \left| \frac{T_1}{T_2} \right| \frac{T_3}{T_4}$$

Lower bound

How do we obtain P_L and P_R satisfying the follow conditions?

$$\frac{P_L}{P_L} = \frac{U_t}{\sqrt{\Sigma_t}} \qquad P_R = \frac{\sqrt{\Sigma_t}}{\sqrt{\Sigma_t}}$$

Algorithm based on QR decomposition

Wang, Verstraete, arXiv:1110.4362, Corboz, Rice, Troyer, PRL 113, 046402 (2014)

 $(P_L P_R)$ is an "oblique" projector

Derivation of "Oblique" Projector

$$A_L A_R = U \Sigma V^{\dagger} \approx U_t \Sigma_t V_t^{\dagger}$$

SVD truncation

$$A_L = Q_L R_L$$
 $A_R = R_R Q_R$ QR decomp. RQ decomp.

$$A_R = R_R Q_R$$

RQ decomp.

$$R_L R_R = \widetilde{U} \Sigma \widetilde{V}^{\dagger} = \widetilde{U}_t \Sigma_t \widetilde{V}_t^{\dagger}$$

SVD truncation

Comparing two SVDs, we obtain

$$U_t = Q_L \widetilde{U}_t \qquad V_t^{\dagger} = \widetilde{V}_t^{\dagger} Q_R$$

$$\widetilde{U}_t^{\dagger} = U_t^{\dagger} Q_L \qquad \widetilde{V}_t = Q_R V_t$$

$$A_{L}P_{L} = U_{t}\sqrt{\Sigma_{t}} \times \sqrt{\Sigma}V^{\dagger}V\Sigma_{t}^{-1/2}$$

$$= U\Sigma V^{\dagger} V_{t}\Sigma_{t}^{-1/2}$$

$$= (A_{L}A_{R})V_{t}\Sigma_{t}^{-1/2}$$

$$= A_{L}(R_{R}Q_{R})V_{t}\Sigma_{t}^{-1/2}$$

$$= A_{L}R_{R}\tilde{V}_{t}\Sigma_{t}^{-1/2}$$

In the same way, we obtain

$$P_R = \Sigma_t^{-1/2} \widetilde{U}_t^{\dagger} R_L$$

We can easily prove $P_L P_R = (P_L P_R)^2$.

Computational Cost

Wang, Verstraete, arXiv:1110.4362, Corboz, Rice, Troyer, PRL 113, 046402 (2014)

For HOTRG, $O(\chi^8)$ cost is unacceptable.

We can avoid the QR decomp by using ED because Q_L and Q_R is unnecessary.

Modified Algorithm for "Oblique" Projector

cf. lino, SM, Kawashima, arXiv:1905.02351, to be published in PRB

Use $\sqrt{\Lambda} U$ instead of R_L

Benchmark on random tensors

Boundary Tensor Renormalization Group

lino, SM, Kawashima, arXiv:1905.02351, to be published in PRB

O HOTRG with open boundaries

Iino's talk July 22, 15:30-

Scaling dimension of boundary CFT

$$Z_{\text{free},\text{free}} = \chi_0 + \chi_{\frac{1}{2}}$$

1st Part: Higher-order moments by Higher-order Tensor Renormalization Group

Binder ratio

K. Binder: Z. Phys. B 43, 119 (1981)

$$U_4 \equiv \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

Magnetization
$$m = \frac{1}{N} \sum_{i} S_{i}$$

$$\lim_{T \to 0} U_4 = 1 \qquad \lim_{T \to \infty} U_4 = 3$$
(Ising model)

- ✓ Dimensionless quantity
- ✓ Step function in $N \rightarrow \infty$
- ✓ Crossing point $\rightarrow T_c$

Finite-size scaling analysis

$$U_4(t,L) = \Psi(tL^{1/\nu}) \qquad t \equiv \frac{T - T_c}{T_c}$$

Order parameter $\langle m \rangle$

1. Derivative of free energy

$$\langle m \rangle = -\frac{\partial f}{\partial h}$$

- Error from numerical differential approximation.
- External field breaks symmetry of tensor.

$$\operatorname{Tr} S_i e^{-\beta H} = \operatorname{tTr}$$

Multi-point correlations are necessary for high-order moments $\langle m^n \rangle$.

Multipoint correlation functions

> 1st-order moment

$$\left\langle \frac{1}{N} \sum_{i=1}^{N} S_i \right\rangle$$

"the average of the local operators"

➤ 2nd-order moment

$$\left\langle \frac{1}{N^2} \sum_{i,j} S_i S_j \right\rangle$$

We calculate the renormalized tensor of the summation of multipoint correlation functions by using HOTRG.

Renormalization of multi-impurity tensors

Renormalization of multi-impurity tensors

$$S_{1}^{(t+1)} \simeq \frac{1}{2} \left\{ \begin{array}{c} & & \\ &$$

- Use the same isometry $U^{(t)}$ for the local tensor $T^{(t)}$
- Generalization for multiple kinds of impurities

2D *q*-state classical Potts model

$$H = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} - h \sum_i \delta_{\sigma_i,0}$$

$$(\sigma_i=0,1,\ldots,q-1)$$

We consider h = 0.

- O Phase transition at $T_c = \frac{J}{\log(\sqrt{q}+1)}$
 - $> q \le 4 : 2^{\text{nd}} \text{order}$
 - > q > 4:1st-order
 - Correlation length

q	4	5	6	7	8	9	10
ξ	∞	2512.2	158.9	48.1	23.9	14.9	10.6

Weakly 1st-order

TN representation

O Local tensor

$$T_{xyx'y'}^{(0)} = \frac{\sqrt{\lambda_x \lambda_y \lambda_{x'} \lambda_{y'}}}{q} \delta_{x+y,x'+y'}^{[q]}$$

$$Z_q \text{ symmetry}$$

$$x + y - x' - y' \equiv 0 \mod q$$

$$\lambda_x = e^K - 1 + q\delta_{x,0}$$
 Eigen value of local Boltzmann

factor $W_{\sigma,\sigma'} = e^{K\delta_{\sigma,\sigma'}}$

- O Order parameter
 - Complex magnetization

$$m = \frac{1}{N} \sum_{i=1}^{N} \exp\left[i\frac{2\pi}{q}S_i\right]$$
 $U_4 \equiv \frac{\langle |m|^4 \rangle}{\langle |m|^2 \rangle^2}$

$$U_4 \equiv \frac{\langle |m|^4 \rangle}{\langle |m|^2 \rangle^2}$$

 \triangleright Impurity tensor for $m^k m^{*k'}$

$$S_{k,k';xyx'y'}^{(0)} = \frac{\sqrt{\lambda_x\lambda_y\lambda_{x'}\lambda_{y'}}}{q} \delta_{x+y+k,x'+y'+k'}^{[q]} \qquad \text{Covariant with spin rotation} \qquad \text{(charge } k-k'\text{)}$$

$$x + y - x' - y' \equiv k - k' \bmod q$$

Magnetization

$$\langle |m|^2 \rangle_N \simeq \frac{\text{Tr } S_{1,1}^{(t)}}{\text{Tr } T^{(t)}}$$

$$\operatorname{Tr} T^{(t)} = \sum_{x,y} T_{xyxy}^{(t)}$$

Periodic BC $N = 2^t$

 \triangleright Ising model (q=2)

χ -dependence

Transition temperature

Bisection search

χ -dependence

- Estimated values converge to the exact value with oscillation
- Relative error seems to decay in proportion to $\chi^{-3.5}$

Finite-size scaling analysis

$$\langle |m|^2 \rangle \sim L^{-2\beta/\nu} g(L^{1/\nu} \delta)$$

$$\delta \equiv (K - K_c(\chi))/K_c$$

- ✓ Fitting by Bayesian scaling (Harada, 2011)
- ✓ Effect of logarithmic correction is small

- ✓ No fitting
- ✓ Plateau indicate the 1st-order phase transition.

Slope of Binder ratio

Summary of the 1st part

O Renormalization of tensors with multiple impurities

- ✓ Beyond the system size which the Monte-Carlo method can treat.
- ✓ Finite-size scaling analysis of the magnetization and the Binder ratio.
- ✓ Distinguish weakly first-order and continuous phase transitions

2nd Part: HOTRG with entanglement filtering

Internal Correlations

- \triangleright Irrelevant correlations with O(1) length scale
- Converge to a fictitious fixed-point tensor
 - Corner Double Line structure

We need to remove internal correlations within a loop. "Entanglement Filtering"

Internal Correlations

- \triangleright Irrelevant correlations with O(1) length scale
- Converge to a fictitious fixed-point tensor
 - Corner Double Line structure Gu, Wen (2009)

We need to remove internal correlations within a loop. "Entanglement Filtering"

TRG with Entanglement Filtering

O TRG-base methods

- > **TEFT** [Gu, Wen (2009)]
- > TNR [Evenbly, Vidal (2015)]
- > loop-TNR [Yang, Gu, Wen (2017)]

Only for 2-d systems

Entanglement Filtering

O TRG-base methods Only for 2-d systems

- > TEFT [Gu, Wen (2009)]
- > TNR [Evenbly, Vidal (2015)]
- ➤ loop-TNR [Yang, Gu, Wen (2017)]
- > TNR+ [Bal, et al, (2017)]

O General methods

- ➤ Graph Independent Local Truncation [Hauru, Delcamp, Mizera (2017)]
- ➤ Tensor Network Skeletonization [Ying (2016)]
- Entanglement Branching [Harada (2018)]
- Full Environment Truncation [Evenbly (2018)]

We consider a combination with HOTRG and FET.

Full Environment Truncation (FET)

✓ Simple criterion

Optimize isometries u, v and bond diagonal matrix $\tilde{\sigma}_{AB}$ to minimize the difference

$$\left\| |\psi\rangle - |\tilde{\psi}\rangle \right\|^2$$

Evenbly (2018)

Thank you for your attention!