Router Architectures An overview of router architectures.

Introduction

What is a Packet Switch?

- Basic Architectural Components
- Some Example Packet Switches
- The Evolution of IP Routers

!

Functional Components

Routing and Forwarding

Routing functions include:

- route calculation
- maintenance of the routing table
- execution of routing protocols
- On commercial routers handled by a single general purpose processor, called *route processor*

IP forwarding is per-packet processing

- On high-end commercial routers, IP forwarding is distributed
- Most work is done on the interface cards

5

Basic Architectural Components Per-packet processing Output Scheduling Routing Table Switch Fabric Routing Decision Routing Table Forwarding Decision Routing Table Forwarding Decision

Router Components

On a PC router:

- interconnection network is the (PCI) bus
- Interface cards are NICs (e.g., Ethernet cards)
- All forwarding and routing is done on central processor

On Commercial routers:

- Interconnection network and interface cards can be sophisticated
- Central processor is the route processor (only responsible for control functions)

7

Slotted Chassis

- Large routers are built as a slotted chassis
 - Interface cards are inserted in the slots
 - Route processor is also inserted as a slot
- This simplifies repairs and upgrades of components

Evolution of Router Architectures

- Early routers were essentially general purpose computers
- Today, high-performance routers resemble supercomputers
 - Exploit parallelism
 - Special hardware components
- Until 1980s (1st generation): standard computer
- Early 1990s (2nd generation): delegate to interfaces
- Late 1990s (3rd generation): Distributed architecture
- Today: Distributed over multiple racks

9

1st Generation Routers

- This architecture is still used in low end routers
- Arriving packets are copied to main memory via direct memory access (DMA)
- Interconnection network is a backplane (shared bus)
- All IP forwarding functions are performed in the central processor.
- Routing cache at processor can accelerate the routing table lookup.
- Drawbacks:
 - Forwarding Performance is limited by CPU
 - Capacity of shared bus limits the number of interface cards that can be connected

3rd Generation Architecture

 Interconnection network is a switch fabric (e.g., a crossbar switch)

Distributed architecture:

- Interface cards operate independent of each other
- No centralized processing for IP forwarding
- These routers can be scaled to many hundred interface cards and to aggregate capacity of > 1 Terabit per second

