import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import gdown

from scipy.stats import norm

!gdown 1lcjtmvtSjco6cnWaJvgJNTGjGJoKieh1

→ Downloading...

From: https://drive.google.com/uc?id=1lcjtmvtSjco6cnWaJvgJNTGjGJoKieh1

To: /content/walmart-data.csv

100% 23.0M/23.0M [00:00<00:00, 180MB/s]

Loading the dataset -

 $\label{local_data} $$ $\operatorname{pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/293/original/walmart_data.csv?1641285094')$ $$ $\operatorname{data.sample(10)}$ $$$

_		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category P
	97760	1003169	P00274042	М	51- 55	0	С	2	0	1
	378227	1004183	P00171742	М	26- 35	1	В	4+	0	5
	244745	1001694	P00028842	М	26- 35	12	В	3	1	6
	87270	1001451	P00109242	М	36- 45	20	В	0	0	6
	320160	1001320	P00289242	М	26- 35	4	А	2	0	1
	357959	1001150	P00051542	F	26- 35	20	А	1	0	8
	421183	1004796	P00311542	М	36- 45	7	А	4+	1	5
	214199	1003087	P00136442	F	0- 17	1	В	0	0	14
	130764	1002073	P00186942	F	18- 25	4	В	4+	0	5
	66520	1004179	P00086742	F	36- 45	20	С	3	1	5

data.shape

→ (550068, 10)

data.info()

<<cl>> <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 550068 entries, 0 to 550067
 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	User_ID	550068 non-null	int64
1	Product_ID	550068 non-null	object
2	Gender	550068 non-null	object
3	Age	550068 non-null	object
4	Occupation	550068 non-null	int64
5	City_Category	550068 non-null	object
6	Stay_In_Current_City_Years	550068 non-null	object
7	Marital_Status	550068 non-null	int64
8	Product_Category	550068 non-null	int64
9	Purchase	550068 non-null	int64
4.4			

dtypes: int64(5), object(5)
memory usage: 42.0+ MB

data.isnull().sum()

```
<del>_</del>→
                                   0
                User_ID
                                   0
              Product_ID
                                   0
                Gender
                                   0
                 Age
              Occupation
                                   0
             City_Category
                                   0
      Stay_In_Current_City_Years 0
            Marital_Status
          Product_Category
                                  0
               Purchase
     dtumer inté 4
```

data.isnull().sum().sum()

→ 0

Unique Attributes and Value Counts

data.head()

→		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purcha
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	83
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	152
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	14
	4										•

data['User_ID'].value_counts()

```
\overline{\mathbf{T}}
                count
      User_ID
      1001680
                 1026
      1004277
                  979
      1001941
                  898
      1001181
                  862
      1000889
                  823
      1002690
                     7
      1002111
      1005810
      1004991
      1000708
                     6
     5891 rows × 1 columns
```

data['User_ID'].nunique()

→ 5891

data['Product_ID'].value_counts()

```
\overline{\Rightarrow}
                    count
       {\tt Product\_ID}
       P00265242
                     1880
       P00025442
                     1615
       P00110742
                     1612
       P00112142
                     1562
       P00057642
                     1470
       P00314842
       P00298842
       P00231642
       P00204442
       P00066342
     3631 rows × 1 columns
data['Product_ID'].nunique()
```

→ 3631

Visualizing the data

```
gender=data['Gender'].value_counts()
gender
```

Gender
M 414259
F 135809

diama: inté A

x_bar=gender.index
y_bar=gender
plt.bar(x_bar,y_bar)

→ ⟨BarContainer object of 2 artists⟩

On the whole from the given data, 75% are males and rest are females.

```
x_bar=age.index
y_bar=age
plt.bar(x_bar,y_bar)
```


Most of the Walmart customers are from the age range between 26 and 35.

```
occ=data['Occupation'].value_counts()
x_bar=occ.index
y_bar=occ
plt.bar(x_bar,y_bar)
```

→ <BarContainer object of 21 artists>


```
city_cat=data['City_Category'].value_counts()
x_bar=city_cat.index
y_bar=city_cat
plt.bar(x_bar,y_bar)
```


The Customers from B category cities are more followed C and A.

city_stay=data['Stay_In_Current_City_Years'].value_counts()
x_bar=city_stay.index
y_bar=city_stay
plt.bar(x_bar,y_bar)

 $\label{lem:sns.countplot} $$sns.countplot(x='Marital_Status', data=data, color='cornflowerblue')$ plt.xticks(rotation=90)$

→ ([0, 1], [Text(0, 0, '0'), Text(1, 0, '1')])

sns.kdeplot(data['Purchase'])

Bivariate Analysis

```
col = ['Gender', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years', 'Marital_Status']
for i in col:
    sns.boxplot(x=i, y='Purchase', data=data)
    plt.xticks(rotation=90,fontsize=12)
    plt.yticks(fontsize=12)
    plt.title(f'{i} vs Purchase', fontsize=15)
    plt.show()
```



```
plt.figure(figsize=(20, 8))
sns.countplot(data=data, x='Age',hue='Marital_Status')
plt.show()
```



```
plt.figure(figsize=(20, 8))
sns.countplot(data=data, x='Product_Category',hue='Marital_Status')
plt.show()
```


Most of the purchases are done by males

```
plt.figure(figsize=(20, 8))
sns.countplot(data=data, x='Product_Category',hue='Age')
plt.show()
```


1, 5 and 8 were the most purchased product_category sold in Walmart.

data[col].melt().groupby(['variable', 'value'])['value'].count()*100/len(data)

vatue

		value
variable	value	
Age	0-17	2.745479
	18-25	18.117760
	26-35	39.919974
	36-45	19.999891
	46-50	8.308246
	51-55	6.999316
	55+	3.909335
City_Category	Α	26.854862
	В	42.026259
	С	31.118880
Gender	F	24.689493
	М	75.310507
Marital_Status	0	59.034701
	1	40.965299
Occupation	0	12.659889
	1	8.621843
	2	4.833584
	3	3.208694
	4	13.145284
	5	2.213726
	6	3.700452
	7	10.750125
	8	0.281056
	9	1.143677
	10	2.350618
	11	2.106285
	12	5.668208
	13	1.404917
	14	4.964659
	15	2.211545
	16	4.612339
	17	7.279645
	18	1.203851
	19	1.538173
	20	6.101427
Stay_In_Current_City_Years	0	13.525237
	1	35.235825
	2	18.513711
	3	17.322404
	4+	15.402823
II		

dtype: float64

Multi-variate Analysis

 $sns.barplot(data=data, \ x='Age', \ y='Purchase',hue="Marital_Status")\\ plt.show()$

 $\label{local-condition} $$sns.boxplot(x='Age',y='Purchase',hue='Marital_Status',data=data)$ plt.show()$

data.describe(include='all').T

_											
₹		count	unique	top	freq	mean	std	min	25%	50%	75%
	User_ID	550068.0	NaN	NaN	NaN	1003028.842401	1727.591586	1000001.0	1001516.0	1003077.0	1004478.0
	Product_ID	550068	3631	P00265242	1880	NaN	NaN	NaN	NaN	NaN	NaN
	Gender	550068	2	М	414259	NaN	NaN	NaN	NaN	NaN	NaN
	Age	550068	7	26-35	219587	NaN	NaN	NaN	NaN	NaN	NaN
	Occupation	550068.0	NaN	NaN	NaN	8.076707	6.52266	0.0	2.0	7.0	14.0
	City_Category	550068	3	В	231173	NaN	NaN	NaN	NaN	NaN	NaN
	Stay_In_Current_City_Years	550068	5	1	193821	NaN	NaN	NaN	NaN	NaN	NaN
	Marital_Status	550068.0	NaN	NaN	NaN	0.409653	0.49177	0.0	0.0	0.0	1.0
	Product_Category	550068.0	NaN	NaN	NaN	5.40427	3.936211	1.0	1.0	5.0	8.0
	Purchase	550068.0	NaN	NaN	NaN	9263.968713	5023.065394	12.0	5823.0	8047.0	12054.0

Distribution of Expenses based on Gender

User_ID **Occupation** Product_Cate count mean std min 25% 50% 75% count mean 75% Gender F 135809.0 1.003130e+06 1786.630589 1000001.0 1001569.0 1003159.0 1004765.0 1006039.0 135809.0 6.74054 8.0 414259.0 1.002996e+06 1706.493873 1000002.0 1001505.0 1003041.0 1004411.0 1006040.0 414259.0 8.51475 8.0 М

data.groupby('Gender')['Purchase'].describe()

2 rows × 40 columns

Female Purchases

₹

Female_data = data[data["Gender"]=="F"]
print("Female Purchase amount Mean:"+ str(Female_data["Purchase"].mean()))
print("Female Purchase amount SD:"+ str(Female_data["Purchase"].std()))

Male Purchases

Male_data = data[data["Gender"]=="M"]
print("Male Purchase amount Mean:"+ str(Male_data["Purchase"].mean()))
print("Male Purchase amount SD:"+ str(Male_data["Purchase"].std()))

Female Purchase amount Mean:8734.565765155476 Female Purchase amount SD:4767.233289291444 Male Purchase amount Mean:9437.526040472265 Male Purchase amount SD:5092.186209777949

sns.displot(x='Purchase', bins=25, kde=True, data=data)

<seaborn.axisgrid.FacetGrid at 0x7e0734de3880>


```
sns.displot(x='Purchase', bins=25, kde=True, hue='Gender', data=data )
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Gender']=='M']['Purchase'].mean(), color='b')
plt.axvline(x=data[data['Gender']=='F']['Purchase'].mean(), color='g')
plt.show()
```


Almost male and female means coincide with overall means.

Exploring data using CLT.

data.sample(300).groupby('Gender')['Purchase'].describe()

data.sample(00).groupby('Gender')['Purchase'].describe()

female_sample_means_for_300=[Female_data.sample(300, replace=True)['Purchase'].mean() for i in range(1000)]

sns.displot(bins=25, kde=True, data=female_sample_means_for_300)

<seaborn.axisgrid.FacetGrid at 0x7e07321e9840>

<seaborn.axisgrid.FacetGrid at 0x7e073618c6a0>

np.mean(female_sample_means_for_600)

₹ 8732.294033333334

<seaborn.axisgrid.FacetGrid at 0x7e07361a0850>

np.mean(male_sample_means_for_600)

9443.043593333334

f_stderror=np.std(female_sample_means_for_600)/np.sqrt(1000)

m_stderror=np.std(male_sample_means_for_600)/np.sqrt(1000)

 $norm.interval (confidence=.95, loc=np.mean (female_sample_means_for_600), scale=f_stderror)$

→ (8719.866794165076, 8744.72127250159)

 $norm.interval (confidence=.95, loc=np.mean (male_sample_means_for_600), scale=m_stderror)$

The confidence interval of the sample average of male and female does not coincide.

Distribution of Expenses based on Maritial Status

data.groupby('Marital_Status')['Purchase'].describe()

Married Purchase amount SD:5016.89737779313

Single Purchases Single_data = data[data["Marital_Status"]==0] print("Single Purchase amount Mean:"+ str(Single_data["Purchase"].mean())) print("Single Purchase amount SD:"+ str(Single_data["Purchase"].std())) # Married Purchases Married_data = data[data["Marital_Status"]==1] print("Married Purchase amount Mean:"+ str(Married_data["Purchase"].mean())) print("Married Purchase amount SD:"+ str(Married_data["Purchase"].std())) Single Purchase amount Mean:9265.907618921507 Single Purchase amount SD:5027.347858674457 Married Purchase amount Mean:9261.174574082374

sns.displot(x='Purchase', bins=25, kde=True, hue='Marital_Status', data=data)
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Marital_Status']==0]['Purchase'].mean(), color='b')
plt.axvline(x=data[data['Marital_Status']==1]['Purchase'].mean(), color='g')
plt.show()

data.sample(600).groupby('Marital_Status')['Purchase'].describe()

→		count	mean	std	min	25%	50%	75%	max	
	Marital_Status									ılı
	0	346.0	9375.910405	4965.922135	191.0	5942.25	8615.5	11903.75	23809.0	
	1	254.0	9423.377953	4878.291733	566.0	5977.75	8138.0	12064.25	23262.0	

⇒ <seaborn.axisgrid.FacetGrid at 0x7e07338154e0>

 ${\tt np.mean(single_sample_means_for_600)}$

€ 9268.45226

<>> <seaborn.axisgrid.FacetGrid at 0x7e072f6001c0>

np.mean(married_sample_means_for_600)

9266.183008333335

s_stderror=np.std(single_sample_means_for_600)/np.sqrt(1000)

m_stderror=np.std(married_sample_means_for_600)/np.sqrt(1000)

 $norm.interval (confidence=.95, loc=np.mean (single_sample_means_for_600), scale=s_stderror)$

(9255.62389375113, 9281.28062624887)

 $norm.interval (confidence=.95, loc=np.mean (married_sample_means_for_600), scale=m_stderror)$

→ (9253.660797812818, 9278.705218853853)

Distribution of Expenses based on Age

```
data.groupby('Age')['Purchase'].describe()
\rightarrow
                                                                      75%
                                                                                     丽
               count
                            mean
                                          std min
                                                       25%
                                                              50%
                                                                               max
       Age
      0-17
             15102.0 8933.464640 5111.114046 12.0 5328.0 7986.0 11874.0 23955.0
             99660.0 9169.663606 5034.321997 12.0 5415.0 8027.0 12028.0 23958.0
      18-25
      26-35 219587.0 9252.690633 5010.527303 12.0 5475.0 8030.0 12047.0 23961.0
      36-45 110013.0 9331.350695 5022.923879 12.0 5876.0 8061.0 12107.0 23960.0
      46-50
             45701.0 9208.625697 4967.216367 12.0 5888.0 8036.0 11997.0 23960.0
      51-55
             38501.0 9534.808031 5087.368080 12.0 6017.0 8130.0 12462.0 23960.0
             21504.0 9336.280459 5011.493996 12.0 6018.0 8105.5 11932.0 23960.0
      55+
# Single Purchases
Age_grp1 = data[data["Age"]=='0-17']
print("Age_grp1 Purchase amount Mean:"+ str(Age_grp1["Purchase"].mean()))
print("Age_grp1 Purchase amount SD:"+ str(Age_grp1["Purchase"].std()))
# Married Purchases
Age_grp2 = data[data["Age"]=='18-25']
print("Age_grp2 Purchase amount Mean:"+ str(Age_grp2["Purchase"].mean()))
print("Age_grp2 Purchase amount SD:"+ str(Age_grp2["Purchase"].std()))
# Married Purchases
Age_grp3 = data[data["Age"]=='26-35']
print("Age grp3 Purchase amount Mean:"+ str(Age grp3["Purchase"].mean()))
print("Age_grp3 Purchase amount SD:"+ str(Age_grp3["Purchase"].std()))
# Married Purchases
Age_grp4 = data[data["Age"]=='36-45']
print("Age_grp4 Purchase amount Mean:"+ str(Age_grp4["Purchase"].mean()))
print("Age_grp4 Purchase amount SD:"+ str(Age_grp4["Purchase"].std()))
# Married Purchases
Age_grp5 = data[data["Age"]=='46-50']
print("Age_grp5 Purchase amount Mean:"+ str(Age_grp5["Purchase"].mean()))
print("Age_grp5 Purchase amount SD:"+ str(Age_grp5["Purchase"].std()))
# Married Purchases
Age_grp6 = data[data["Age"]=='51-55']
print("Age_grp6 Purchase amount Mean:"+ str(Age_grp6["Purchase"].mean()))
print("Age_grp6 Purchase amount SD:"+ str(Age_grp6["Purchase"].std()))
# Married Purchases
Age_grp7 = data[data["Age"]=='55+']
print("Age_grp7 Purchase amount Mean:"+ str(Age_grp7["Purchase"].mean()))
print("Age_grp7 Purchase amount SD:"+ str(Age_grp7["Purchase"].std()))
Age_grp1 Purchase amount Mean:8933.464640444974
     Age_grp1 Purchase amount SD:5111.11404600277
     Age_grp2 Purchase amount Mean:9169.663606261289
     Age_grp2 Purchase amount SD:5034.321997176577
     Age_grp3 Purchase amount Mean:9252.690632869888
     Age_grp3 Purchase amount SD:5010.527303002927
     Age grp4 Purchase amount Mean:9331.350694917874
     Age_grp4 Purchase amount SD:5022.923879204652
     Age_grp5 Purchase amount Mean:9208.625697468327
     Age_grp5 Purchase amount SD:4967.216367142921
     Age_grp6 Purchase amount Mean:9534.808030960236
     Age_grp6 Purchase amount SD:5087.368079602116
     Age_grp7 Purchase amount Mean:9336.280459449405
     Age_grp7 Purchase amount SD:5011.493995603418
sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data )
plt.axvline(x=data['Purchase'].mean(), color='r')
```

plt.axvline(x=data[data['Age']=='0-17']['Purchase'].mean(), color='b')

plt.show()

sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data)
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Age']=='18-25']['Purchase'].mean(), color='r')
plt.show()

sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data)
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Age']=='26-35']['Purchase'].mean(), color='b')
plt.show()

sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data)
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Age']=='36-45']['Purchase'].mean(), color='b')
plt.show()

sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data)
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Age']=='46-50']['Purchase'].mean(), color='b')
plt.show()


```
sns.displot(x='Purchase', bins=25, kde=True, hue='Age', data=data )
plt.axvline(x=data['Purchase'].mean(), color='r')
plt.axvline(x=data[data['Age']=='55+']['Purchase'].mean(), color='b')
plt.show()
```


Age_grp1_means_for_600=[Age_grp1.sample(600, replace=True)['Purchase'].mean() for i in range(1000)] sns.displot(bins=25, kde=True, data=married_sample_means_for_600)